From 8073de4890742c3329f8a23b315848d36f8af09b Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Thu, 8 Feb 2024 23:29:47 +0100 Subject: [PATCH 001/161] add support for more lr scheduler config parameters to torch models (#2218) * add support for more lr scheduler config parameters to torch models * update changelog --- CHANGELOG.md | 2 + .../forecasting/pl_forecasting_module.py | 21 +++++++--- .../test_torch_forecasting_model.py | 42 +++++++++++-------- 3 files changed, 41 insertions(+), 24 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index f02a87a52e..5817013c90 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -16,6 +16,8 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Additional boosts for slicing with integers and Timestamps - Additional boosts for `from_group_dataframe()` by performing some of the heavy-duty computations on the entire DataFrame, rather than iteratively on the group level. - Added option to exclude some `group_cols` from being added as static covariates when using `TimeSeries.from_group_dataframe()` with parameter `drop_group_cols`. +- Improvements to `TorchForecastingModel`: + - Added support for additional lr scheduler configuration parameters for more control ("interval", "frequency", "monitor", "strict", "name"). [#2218](https://github.com/unit8co/darts/pull/2218) by [Dennis Bader](https://github.com/dennisbader). **Fixed** - Fixed a bug in probabilistic `LinearRegressionModel.fit()`, where the `model` attribute was not pointing to all underlying estimators. [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). diff --git a/darts/models/forecasting/pl_forecasting_module.py b/darts/models/forecasting/pl_forecasting_module.py index ab98ee59c2..5610a2d3df 100644 --- a/darts/models/forecasting/pl_forecasting_module.py +++ b/darts/models/forecasting/pl_forecasting_module.py @@ -402,16 +402,25 @@ def _create_from_cls_and_kwargs(cls, kws): lr_sched_kws = {k: v for k, v in self.lr_scheduler_kwargs.items()} lr_sched_kws["optimizer"] = optimizer - # ReduceLROnPlateau requires a metric to "monitor" which must be set separately, most others do not - lr_monitor = lr_sched_kws.pop("monitor", None) + # lr scheduler can be configured with lightning; defaults below + lr_config_params = { + "monitor": "val_loss", + "interval": "epoch", + "frequency": 1, + "strict": True, + "name": None, + } + # update config with user params + lr_config_params = { + k: (v if k not in lr_sched_kws else lr_sched_kws.pop(k)) + for k, v in lr_config_params.items() + } lr_scheduler = _create_from_cls_and_kwargs( self.lr_scheduler_cls, lr_sched_kws ) - return [optimizer], { - "scheduler": lr_scheduler, - "monitor": lr_monitor if lr_monitor is not None else "val_loss", - } + + return [optimizer], dict({"scheduler": lr_scheduler}, **lr_config_params) else: return optimizer diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 24b8fd501e..77ad8aa07a 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -1188,29 +1188,35 @@ def test_optimizers(self): # should not raise an error model.fit(self.series, epochs=1) - def test_lr_schedulers(self): - - lr_schedulers = [ + @pytest.mark.parametrize( + "lr_scheduler", + [ (torch.optim.lr_scheduler.StepLR, {"step_size": 10}), ( torch.optim.lr_scheduler.ReduceLROnPlateau, - {"threshold": 0.001, "monitor": "train_loss"}, + { + "threshold": 0.001, + "monitor": "train_loss", + "interval": "step", + "frequency": 2, + }, ), (torch.optim.lr_scheduler.ExponentialLR, {"gamma": 0.09}), - ] - - for lr_scheduler_cls, lr_scheduler_kwargs in lr_schedulers: - model = RNNModel( - 12, - "RNN", - 10, - 10, - lr_scheduler_cls=lr_scheduler_cls, - lr_scheduler_kwargs=lr_scheduler_kwargs, - **tfm_kwargs, - ) - # should not raise an error - model.fit(self.series, epochs=1) + ], + ) + def test_lr_schedulers(self, lr_scheduler): + lr_scheduler_cls, lr_scheduler_kwargs = lr_scheduler + model = RNNModel( + 12, + "RNN", + 10, + 10, + lr_scheduler_cls=lr_scheduler_cls, + lr_scheduler_kwargs=lr_scheduler_kwargs, + **tfm_kwargs, + ) + # should not raise an error + model.fit(self.series, epochs=1) def test_wrong_model_creation_params(self): valid_kwarg = {"pl_trainer_kwargs": {}} From 9e43e3c9f1d7d843052d231ed45c8c1edaba6bf0 Mon Sep 17 00:00:00 2001 From: Marc Bresson <50196352+MarcBresson@users.noreply.github.com> Date: Fri, 16 Feb 2024 15:04:01 +0100 Subject: [PATCH 002/161] Improve description for ARIMA parameters (p, q, seasonal_orders and trend) (#2142) --- CHANGELOG.md | 1 + darts/models/forecasting/arima.py | 54 ++++++++++++++----- .../forecasting/test_historical_forecasts.py | 18 ++++++- 3 files changed, 57 insertions(+), 16 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 5817013c90..bc388d8491 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -10,6 +10,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For users of the library: **Improved** +- Improvements to `ARIMA` documentation: Specified possible `p`, `d`, `P`, `D`, `trend` advanced options that are available in statsmodels. More explanations on the behaviour of the parameters were added. [#2142](https://github.com/unit8co/darts/pull/2142) by [MarcBresson](https://github.com/MarcBresson) - Improvements to `TimeSeries`: [#2196](https://github.com/unit8co/darts/pull/2196) by [Dennis Bader](https://github.com/dennisbader). - 🚀🚀🚀 Significant performance boosts for several `TimeSeries` methods resulting increased efficiency across the entire `Darts` library. Up to 2x faster creation times for series indexed with "regular" frequencies (e.g. Daily, hourly, ...), and >100x for series indexed with "special" frequencies (e.g. "W-MON", ...). Affects: - All `TimeSeries` creation methods diff --git a/darts/models/forecasting/arima.py b/darts/models/forecasting/arima.py index 4891b33719..f057b556ef 100644 --- a/darts/models/forecasting/arima.py +++ b/darts/models/forecasting/arima.py @@ -10,7 +10,12 @@ .. [1] https://wikipedia.org/wiki/Autoregressive_integrated_moving_average """ -from typing import Optional, Tuple +from typing import List, Literal, Optional, Sequence, Tuple, Union + +try: + from typing import TypeAlias +except ImportError: + from typing_extensions import TypeAlias import numpy as np from statsmodels import __version_tuple__ as statsmodels_version @@ -28,14 +33,22 @@ statsmodels_above_0135 = statsmodels_version > (0, 13, 5) +IntOrIntSequence: TypeAlias = Union[int, Sequence[int]] + + class ARIMA(TransferableFutureCovariatesLocalForecastingModel): def __init__( self, - p: int = 12, + p: IntOrIntSequence = 12, d: int = 1, - q: int = 0, - seasonal_order: Tuple[int, int, int, int] = (0, 0, 0, 0), - trend: Optional[str] = None, + q: IntOrIntSequence = 0, + seasonal_order: Tuple[int, IntOrIntSequence, IntOrIntSequence, int] = ( + 0, + 0, + 0, + 0, + ), + trend: Optional[Union[Literal["n", "c", "t", "ct"], List[int]]] = None, random_state: Optional[int] = None, add_encoders: Optional[dict] = None, ): @@ -45,20 +58,29 @@ def __init__( Parameters ---------- - p : int + p : int | Sequence[int] Order (number of time lags) of the autoregressive model (AR). + If a sequence of integers, specifies the exact lags to include. d : int The order of differentiation; i.e., the number of times the data have had past values subtracted (I). - q : int + q : int | Sequence[int] The size of the moving average window (MA). - seasonal_order: Tuple[int, int, int, int] - The (P,D,Q,s) order of the seasonal component for the AR parameters, - differences, MA parameters and periodicity. - trend: str - Parameter controlling the deterministic trend. 'n' indicates no trend, - 'c' a constant term, 't' linear trend in time, and 'ct' includes both. - Default is 'c' for models without integration, and no trend for models with integration. + If a sequence of integers, specifies the exact lags to include in the window. + seasonal_order: Tuple[int | Sequence[int], int, int | Sequence[int], int] + The (P,D,Q,s) order of the seasonal component for the AR parameters (P), + differences (D), MA parameters (Q) and periodicity (s). D and s are always integers, + while P and Q may either be integers or sequence of positive integers + specifying exactly which lag orders are included. + trend: Literal['n', 'c', 't', 'ct'] | list[int], optional + Parameter controlling the deterministic trend. Either a string or list of integers. + If a string, can be 'n' for no trend, 'c' for a constant term, 't' for a linear trend in time, + and 'ct' for a constant term and linear trend. + If a list of integers, defines a polynomial according to `numpy.poly1d` [1]_. E.g., `[1,1,0,1]` would + translate to :math:`a + bt + ct^3`. + Trend term of lower order than `d + D` cannot be as they would be eliminated due to the differencing + operation. + Default is 'c' for models without integration, and 'n' for models with integration. add_encoders A large number of future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that @@ -103,6 +125,10 @@ def encode_year(idx): [481.07892911], [502.11286509], [555.50153984]]) + + References + ---------- + .. [1] https://numpy.org/doc/stable/reference/generated/numpy.poly1d.html """ super().__init__(add_encoders=add_encoders) self.order = p, d, q diff --git a/darts/tests/models/forecasting/test_historical_forecasts.py b/darts/tests/models/forecasting/test_historical_forecasts.py index fe9042d170..4f2fd6eac5 100644 --- a/darts/tests/models/forecasting/test_historical_forecasts.py +++ b/darts/tests/models/forecasting/test_historical_forecasts.py @@ -357,8 +357,22 @@ def create_model(ocl, use_ll=True, model_type="regression"): **tfm_kwargs, ) - def test_historical_forecasts_transferrable_future_cov_local_models(self): - model = ARIMA() + @pytest.mark.parametrize( + "arima_args", + [ + {}, + { + "p": np.array([1, 2, 3, 4]), + "q": (2, 3), + "seasonal_order": ([1, 5], 1, (1, 2, 3), 6), + "trend": [0, 0, 2, 1], + }, + ], + ) + def test_historical_forecasts_transferrable_future_cov_local_models( + self, arima_args: dict + ): + model = ARIMA(**arima_args) assert model.min_train_series_length == 30 series = tg.sine_timeseries(length=31) res = model.historical_forecasts( From 46004539b929176396310a9550457b6a14571c74 Mon Sep 17 00:00:00 2001 From: Marc Bresson <50196352+MarcBresson@users.noreply.github.com> Date: Fri, 16 Feb 2024 15:05:03 +0100 Subject: [PATCH 003/161] Pre commit hooks upgrade (#2228) --- .pre-commit-config.yaml | 10 +++++----- CHANGELOG.md | 2 ++ 2 files changed, 7 insertions(+), 5 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 8300af26cc..c2bf756978 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,23 +1,23 @@ repos: - repo: https://github.com/psf/black - rev: 22.3.0 + rev: 24.1.1 hooks: - id: black-jupyter language_version: python3 - repo: https://github.com/PyCQA/flake8 - rev: 4.0.1 + rev: 7.0.0 hooks: - id: flake8 language_version: python3 - repo: https://github.com/pycqa/isort - rev: 5.11.5 + rev: 5.13.2 hooks: - id: isort - repo: https://github.com/asottile/pyupgrade - rev: v2.31.0 + rev: v3.15.0 hooks: - id: pyupgrade - args: ['--py37-plus'] + args: ['--py38-plus'] diff --git a/CHANGELOG.md b/CHANGELOG.md index bc388d8491..39747ba136 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -26,6 +26,8 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Fixed a bug in `coefficient_of_variaton()` with `intersect=True`, where the coefficient was not computed on the intersection. [#2202](https://github.com/unit8co/darts/pull/2202) by [Antoine Madrona](https://github.com/madtoinou). ### For developers of the library: +- Updated pre-commit hooks to the latest version using `pre-commit autoupdate`. +- Change `pyupgrade` pre-commit hook argument to `--py38-plus`. This allows for [type rewriting](https://github.com/asottile/pyupgrade?tab=readme-ov-file#pep-585-typing-rewrites). ## [0.27.2](https://github.com/unit8co/darts/tree/0.27.2) (2023-01-21) ### For users of the library: From 6fbb6701dfbd61ce0adae46994b0d5eadad458a1 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Sat, 24 Feb 2024 13:07:13 +0100 Subject: [PATCH 004/161] Reformat / lint repository with new dev dependency versions (#2248) * update dev requirements with new pre commit hook lint dependency versions * black reformatting * fix flake8 checks --- darts/ad/aggregators/or_aggregator.py | 1 - darts/ad/anomaly_model/forecasting_am.py | 4 +- darts/ad/detectors/quantile_detector.py | 4 +- darts/ad/detectors/threshold_detector.py | 4 +- darts/ad/scorers/scorers.py | 2 +- darts/dataprocessing/pipeline.py | 1 + darts/dataprocessing/transformers/midas.py | 1 + .../transformers/reconciliation.py | 1 - .../static_covariates_transformer.py | 1 + darts/datasets/__init__.py | 10 +- darts/explainability/explainability.py | 1 + darts/explainability/shap_explainer.py | 13 +- darts/explainability/utils.py | 19 +- darts/metrics/metrics.py | 5 +- darts/models/forecasting/arima.py | 28 +-- darts/models/forecasting/baselines.py | 20 +- darts/models/forecasting/block_rnn_model.py | 2 - darts/models/forecasting/catboost_model.py | 8 +- darts/models/forecasting/croston.py | 16 +- darts/models/forecasting/ensemble_model.py | 12 +- .../forecasting/exponential_smoothing.py | 1 - darts/models/forecasting/fft.py | 6 +- darts/models/forecasting/forecasting_model.py | 39 ++-- darts/models/forecasting/lgbm.py | 8 +- .../forecasting/linear_regression_model.py | 1 + .../forecasting/pl_forecasting_module.py | 54 +++--- darts/models/forecasting/random_forest.py | 1 + .../forecasting/regression_ensemble_model.py | 37 ++-- darts/models/forecasting/regression_model.py | 25 ++- darts/models/forecasting/rnn_model.py | 9 +- darts/models/forecasting/tbats_model.py | 1 - darts/models/forecasting/tcn_model.py | 2 - darts/models/forecasting/tft_model.py | 9 +- darts/models/forecasting/tide_model.py | 8 +- .../forecasting/torch_forecasting_model.py | 2 +- darts/models/forecasting/transformer_model.py | 1 - darts/models/forecasting/varima.py | 29 +-- darts/models/forecasting/xgboost.py | 8 +- .../dataprocessing/transformers/test_diff.py | 7 +- darts/tests/datasets/test_datasets.py | 2 +- .../forecasting/test_dlinear_nlinear.py | 34 ++-- .../test_global_forecasting_models.py | 6 +- .../forecasting/test_historical_forecasts.py | 134 +++++++------ .../test_regression_ensemble_model.py | 4 +- .../forecasting/test_regression_models.py | 177 +++++++++++------- darts/tests/test_timeseries.py | 2 +- .../test_create_lagged_prediction_data.py | 12 +- .../test_create_lagged_training_data.py | 12 +- .../tabularization/test_get_feature_times.py | 8 +- .../tabularization/test_get_shared_times.py | 1 - .../test_strided_moving_window.py | 3 +- darts/tests/utils/test_likelihood_models.py | 2 +- darts/timeseries.py | 40 ++-- darts/utils/__init__.py | 1 + darts/utils/data/inference_dataset.py | 24 +-- darts/utils/data/sequential_dataset.py | 12 +- darts/utils/data/shifted_dataset.py | 12 +- darts/utils/data/training_dataset.py | 12 +- ...timized_historical_forecasts_regression.py | 64 ++++--- darts/utils/likelihood_models.py | 8 +- darts/utils/losses.py | 1 + darts/utils/multioutput.py | 8 +- darts/utils/statistics.py | 21 ++- darts/utils/timeseries_generation.py | 6 +- darts/utils/utils.py | 3 +- requirements/dev.txt | 8 +- 66 files changed, 555 insertions(+), 463 deletions(-) diff --git a/darts/ad/aggregators/or_aggregator.py b/darts/ad/aggregators/or_aggregator.py index 5737839630..a5417a294e 100644 --- a/darts/ad/aggregators/or_aggregator.py +++ b/darts/ad/aggregators/or_aggregator.py @@ -6,7 +6,6 @@ is flagged as anomalous (logical OR). """ - from typing import Sequence from darts import TimeSeries diff --git a/darts/ad/anomaly_model/forecasting_am.py b/darts/ad/anomaly_model/forecasting_am.py index cab0eaf683..0e1f574ca9 100644 --- a/darts/ad/anomaly_model/forecasting_am.py +++ b/darts/ad/anomaly_model/forecasting_am.py @@ -221,7 +221,8 @@ def _prepare_covariates( series: Sequence[TimeSeries], name_covariates: str, ) -> Sequence[TimeSeries]: - """Convert `covariates` into Sequence, if not already, and checks if their length is equal to the one of `series`. + """Convert `covariates` into Sequence, if not already, and checks if their length is equal to the one of + `series`. Parameters ---------- @@ -515,7 +516,6 @@ def _predict_with_forecasting( start: Union[pd.Timestamp, float, int] = None, num_samples: int = 1, ) -> TimeSeries: - """Compute the historical forecasts that would have been obtained by this model on the `series`. `retrain` is set to False if possible (this is not supported by all models). If set to True, it will always diff --git a/darts/ad/detectors/quantile_detector.py b/darts/ad/detectors/quantile_detector.py index 471850990b..4496d8f294 100644 --- a/darts/ad/detectors/quantile_detector.py +++ b/darts/ad/detectors/quantile_detector.py @@ -69,9 +69,7 @@ def _prep_quantile(q): return ( q.tolist() if isinstance(q, np.ndarray) - else [q] - if not isinstance(q, Sequence) - else q + else [q] if not isinstance(q, Sequence) else q ) low = _prep_quantile(low_quantile) diff --git a/darts/ad/detectors/threshold_detector.py b/darts/ad/detectors/threshold_detector.py index 6643c72f37..56c01a026a 100644 --- a/darts/ad/detectors/threshold_detector.py +++ b/darts/ad/detectors/threshold_detector.py @@ -62,9 +62,7 @@ def _prep_thresholds(q): return ( q.tolist() if isinstance(q, np.ndarray) - else [q] - if not isinstance(q, Sequence) - else q + else [q] if not isinstance(q, Sequence) else q ) low = _prep_thresholds(low_threshold) diff --git a/darts/ad/scorers/scorers.py b/darts/ad/scorers/scorers.py index de2f878aab..b9e41cb680 100644 --- a/darts/ad/scorers/scorers.py +++ b/darts/ad/scorers/scorers.py @@ -527,7 +527,7 @@ def score_from_prediction( _assert_same_length(list_actual_series, list_pred_series) anomaly_scores = [] - for (s1, s2) in zip(list_actual_series, list_pred_series): + for s1, s2 in zip(list_actual_series, list_pred_series): _sanity_check_two_series(s1, s2) s1 = self._assert_deterministic(s1, "actual_series") s2 = self._assert_deterministic(s2, "pred_series") diff --git a/darts/dataprocessing/pipeline.py b/darts/dataprocessing/pipeline.py index d43899eb13..f4c9849cd1 100644 --- a/darts/dataprocessing/pipeline.py +++ b/darts/dataprocessing/pipeline.py @@ -2,6 +2,7 @@ Pipeline -------- """ + from copy import deepcopy from typing import Iterator, Sequence, Union diff --git a/darts/dataprocessing/transformers/midas.py b/darts/dataprocessing/transformers/midas.py index bba870a31e..7e06a6dcd5 100644 --- a/darts/dataprocessing/transformers/midas.py +++ b/darts/dataprocessing/transformers/midas.py @@ -2,6 +2,7 @@ Mixed-data sampling (MIDAS) Transformer --------------------------------------- """ + from typing import Any, Dict, List, Mapping, Optional, Sequence, Union import numpy as np diff --git a/darts/dataprocessing/transformers/reconciliation.py b/darts/dataprocessing/transformers/reconciliation.py index bcba40ecc1..e20fde490c 100644 --- a/darts/dataprocessing/transformers/reconciliation.py +++ b/darts/dataprocessing/transformers/reconciliation.py @@ -9,7 +9,6 @@ It can be added to a ``TimeSeries`` using e.g., the :meth:`TimeSeries.with_hierarchy` method. """ - from typing import Any, Mapping, Optional import numpy as np diff --git a/darts/dataprocessing/transformers/static_covariates_transformer.py b/darts/dataprocessing/transformers/static_covariates_transformer.py index 76a2f0373f..3000794092 100644 --- a/darts/dataprocessing/transformers/static_covariates_transformer.py +++ b/darts/dataprocessing/transformers/static_covariates_transformer.py @@ -2,6 +2,7 @@ Static Covariates Transformer ------ """ + from collections import OrderedDict from typing import Any, Dict, List, Optional, Sequence, Tuple diff --git a/darts/datasets/__init__.py b/darts/datasets/__init__.py index eb5dd9a6a2..5074af4c97 100644 --- a/darts/datasets/__init__.py +++ b/darts/datasets/__init__.py @@ -520,7 +520,7 @@ def __init__(self, multivariate: bool = True): def pre_proces_fn(extracted_dir, dataset_path): with open(Path(extracted_dir, "LD2011_2014.txt")) as fin: - with open(dataset_path, "wt", newline="\n") as fout: + with open(dataset_path, "w", newline="\n") as fout: for line in fin: fout.write(line.replace(",", ".").replace(";", ",")) @@ -622,9 +622,11 @@ def pre_proces_fn(extracted_dir, dataset_path): uri="https://github.com/fivethirtyeight/uber-tlc-foil-response/raw/" "63bb878b76f47f69b4527d50af57aac26dead983/" "uber-trip-data/uber-raw-data-janjune-15.csv.zip", - hash="9ed84ebe0df4bc664748724b633b3fe6" - if sample_freq == "hourly" - else "24f9fd67e4b9e53f0214a90268cd9bee", + hash=( + "9ed84ebe0df4bc664748724b633b3fe6" + if sample_freq == "hourly" + else "24f9fd67e4b9e53f0214a90268cd9bee" + ), header_time="Pickup_date", format_time="%Y-%m-%d %H:%M:%S", pre_process_zipped_csv_fn=pre_proces_fn, diff --git a/darts/explainability/explainability.py b/darts/explainability/explainability.py index d1287d749a..c40d226561 100644 --- a/darts/explainability/explainability.py +++ b/darts/explainability/explainability.py @@ -3,6 +3,7 @@ A `_ForecastingModelExplainer` takes a fitted forecasting model as input and generates explanations for it. """ + from abc import ABC, abstractmethod from typing import Optional, Sequence, Tuple, Union diff --git a/darts/explainability/shap_explainer.py b/darts/explainability/shap_explainer.py index 26978bb00a..a31a844ca4 100644 --- a/darts/explainability/shap_explainer.py +++ b/darts/explainability/shap_explainer.py @@ -624,7 +624,6 @@ def shap_explanations( horizons: Optional[Sequence[int]] = None, target_components: Optional[Sequence[str]] = None, ) -> Dict[int, Dict[str, shap.Explanation]]: - """ Return a dictionary of dictionaries of shap.Explanation instances: - the first dimension corresponds to the n forecasts ahead we want to explain (Horizon). @@ -760,14 +759,14 @@ def _create_regression_model_shap_X( X, indexes = create_lagged_prediction_data( target_series=target_series if lags_list else None, past_covariates=past_covariates if lags_past_covariates_list else None, - future_covariates=future_covariates - if lags_future_covariates_list - else None, + future_covariates=( + future_covariates if lags_future_covariates_list else None + ), lags=lags_list, lags_past_covariates=lags_past_covariates_list if past_covariates else None, - lags_future_covariates=lags_future_covariates_list - if future_covariates - else None, + lags_future_covariates=( + lags_future_covariates_list if future_covariates else None + ), uses_static_covariates=self.model.uses_static_covariates, last_static_covariates_shape=self.model._static_covariates_shape, ) diff --git a/darts/explainability/utils.py b/darts/explainability/utils.py index 682c8d6a10..854dff786e 100644 --- a/darts/explainability/utils.py +++ b/darts/explainability/utils.py @@ -345,13 +345,18 @@ def _check_valid_input( all( [ series[idx].columns.to_list() == target_components, - past_covariates[idx].columns.to_list() == past_covariates_components - if past_covariates is not None - else True, - future_covariates[idx].columns.to_list() - == future_covariates_components - if future_covariates is not None - else True, + ( + past_covariates[idx].columns.to_list() + == past_covariates_components + if past_covariates is not None + else True + ), + ( + future_covariates[idx].columns.to_list() + == future_covariates_components + if future_covariates is not None + else True + ), ] ), "Columns names must be identical between TimeSeries list components (multi-TimeSeries).", diff --git a/darts/metrics/metrics.py b/darts/metrics/metrics.py index d016c4ea51..478752e590 100644 --- a/darts/metrics/metrics.py +++ b/darts/metrics/metrics.py @@ -46,9 +46,7 @@ def wrapper_multi_ts_support(*args, **kwargs): pred_series = ( kwargs["pred_series"] if "pred_series" in kwargs - else args[0] - if "actual_series" in kwargs - else args[1] + else args[0] if "actual_series" in kwargs else args[1] ) n_jobs = kwargs.pop("n_jobs", signature(func).parameters["n_jobs"].default) @@ -1134,7 +1132,6 @@ def rho_risk( n_jobs: int = 1, verbose: bool = False ) -> float: - """:math:`\\rho`-risk (rho-risk or quantile risk). Given a time series of actual values :math:`y_t` of length :math:`T` and a time series of stochastic predictions diff --git a/darts/models/forecasting/arima.py b/darts/models/forecasting/arima.py index f057b556ef..489cf338e4 100644 --- a/darts/models/forecasting/arima.py +++ b/darts/models/forecasting/arima.py @@ -193,17 +193,19 @@ def _predict( if series is not None: self.model = self.model.apply( series.values(copy=False), - exog=historic_future_covariates.values(copy=False) - if historic_future_covariates - else None, + exog=( + historic_future_covariates.values(copy=False) + if historic_future_covariates + else None + ), ) if num_samples == 1: forecast = self.model.forecast( steps=n, - exog=future_covariates.values(copy=False) - if future_covariates - else None, + exog=( + future_covariates.values(copy=False) if future_covariates else None + ), ) else: forecast = self.model.simulate( @@ -212,18 +214,20 @@ def _predict( initial_state=self.model.states.predicted[-1, :], random_state=self._random_state, anchor="end", - exog=future_covariates.values(copy=False) - if future_covariates - else None, + exog=( + future_covariates.values(copy=False) if future_covariates else None + ), ) # restoring statsmodels results object state if series is not None: self.model = self.model.apply( self._orig_training_series.values(copy=False), - exog=self.training_historic_future_covariates.values(copy=False) - if self.training_historic_future_covariates - else None, + exog=( + self.training_historic_future_covariates.values(copy=False) + if self.training_historic_future_covariates + else None + ), ) return self._build_forecast_series(forecast) diff --git a/darts/models/forecasting/baselines.py b/darts/models/forecasting/baselines.py index 2b370aad00..f210b4945e 100644 --- a/darts/models/forecasting/baselines.py +++ b/darts/models/forecasting/baselines.py @@ -336,12 +336,12 @@ def fit( for model in self.forecasting_models: model._fit_wrapper( series=series, - past_covariates=past_covariates - if model.supports_past_covariates - else None, - future_covariates=future_covariates - if model.supports_future_covariates - else None, + past_covariates=( + past_covariates if model.supports_past_covariates else None + ), + future_covariates=( + future_covariates if model.supports_future_covariates else None + ), ) return self @@ -364,9 +364,11 @@ def ensemble( if isinstance(predictions, Sequence): return [ - self._target_average(p, ts) - if not predict_likelihood_parameters - else self._params_average(p, ts) + ( + self._target_average(p, ts) + if not predict_likelihood_parameters + else self._params_average(p, ts) + ) for p, ts in zip(predictions, series) ] else: diff --git a/darts/models/forecasting/block_rnn_model.py b/darts/models/forecasting/block_rnn_model.py index 36cf6e210d..8de8efd3f1 100644 --- a/darts/models/forecasting/block_rnn_model.py +++ b/darts/models/forecasting/block_rnn_model.py @@ -106,7 +106,6 @@ def __init__( name: str, **kwargs, ): - """PyTorch module implementing a block RNN to be used in `BlockRNNModel`. PyTorch module implementing a simple block RNN with the specified `name` layer. @@ -196,7 +195,6 @@ def __init__( dropout: float = 0.0, **kwargs, ): - """Block Recurrent Neural Network Model (RNNs). This is a neural network model that uses an RNN encoder to encode fixed-length input chunks, and diff --git a/darts/models/forecasting/catboost_model.py b/darts/models/forecasting/catboost_model.py index fbb8e3df7d..5adc8d0bc7 100644 --- a/darts/models/forecasting/catboost_model.py +++ b/darts/models/forecasting/catboost_model.py @@ -305,7 +305,9 @@ def min_train_series_length(self) -> int: # for other regression models return max( 3, - -self.lags["target"][0] + self.output_chunk_length + 1 - if "target" in self.lags - else self.output_chunk_length, + ( + -self.lags["target"][0] + self.output_chunk_length + 1 + if "target" in self.lags + else self.output_chunk_length + ), ) diff --git a/darts/models/forecasting/croston.py b/darts/models/forecasting/croston.py index d71aaf2b29..4737aec4b7 100644 --- a/darts/models/forecasting/croston.py +++ b/darts/models/forecasting/croston.py @@ -130,9 +130,11 @@ def _fit(self, series: TimeSeries, future_covariates: Optional[TimeSeries] = Non self.model.fit( y=series.values(copy=False).flatten(), - X=future_covariates.values(copy=False).flatten() - if future_covariates is not None - else None, + X=( + future_covariates.values(copy=False).flatten() + if future_covariates is not None + else None + ), ) return self @@ -147,9 +149,11 @@ def _predict( super()._predict(n, future_covariates, num_samples) values = self.model.predict( h=n, - X=future_covariates.values(copy=False).flatten() - if future_covariates is not None - else None, + X=( + future_covariates.values(copy=False).flatten() + if future_covariates is not None + else None + ), )["mean"] return self._build_forecast_series(values) diff --git a/darts/models/forecasting/ensemble_model.py b/darts/models/forecasting/ensemble_model.py index b772594d1e..e9f6e87175 100644 --- a/darts/models/forecasting/ensemble_model.py +++ b/darts/models/forecasting/ensemble_model.py @@ -255,12 +255,12 @@ def _make_multiple_predictions( model._predict_wrapper( n=n, series=series, - past_covariates=past_covariates - if model.supports_past_covariates - else None, - future_covariates=future_covariates - if model.supports_future_covariates - else None, + past_covariates=( + past_covariates if model.supports_past_covariates else None + ), + future_covariates=( + future_covariates if model.supports_future_covariates else None + ), num_samples=num_samples if model._is_probabilistic else 1, predict_likelihood_parameters=predict_likelihood_parameters, ) diff --git a/darts/models/forecasting/exponential_smoothing.py b/darts/models/forecasting/exponential_smoothing.py index f535eb0d03..217e5485d7 100644 --- a/darts/models/forecasting/exponential_smoothing.py +++ b/darts/models/forecasting/exponential_smoothing.py @@ -27,7 +27,6 @@ def __init__( kwargs: Optional[Dict[str, Any]] = None, **fit_kwargs ): - """Exponential Smoothing This is a wrapper around diff --git a/darts/models/forecasting/fft.py b/darts/models/forecasting/fft.py index 490210ac69..6dada42a66 100644 --- a/darts/models/forecasting/fft.py +++ b/darts/models/forecasting/fft.py @@ -105,7 +105,7 @@ def _find_relevant_timestamp_attributes(series: TimeSeries) -> set: # check for yearly seasonality if _check_approximate_seasonality(series, 12, 1, 0): relevant_attributes.add("month") - elif type(series.freq) == pd.tseries.offsets.Day: + elif type(series.freq) is pd.tseries.offsets.Day: # check for yearly seasonality if _check_approximate_seasonality(series, 365, 5, 20): relevant_attributes.update({"month", "day"}) @@ -115,7 +115,7 @@ def _find_relevant_timestamp_attributes(series: TimeSeries) -> set: # check for weekly seasonality elif _check_approximate_seasonality(series, 7, 0, 0): relevant_attributes.add("weekday") - elif type(series.freq) == pd.tseries.offsets.Hour: + elif type(series.freq) is pd.tseries.offsets.Hour: # check for yearly seasonality if _check_approximate_seasonality(series, 8760, 100, 100): relevant_attributes.update({"month", "day", "hour"}) @@ -128,7 +128,7 @@ def _find_relevant_timestamp_attributes(series: TimeSeries) -> set: # check for daily seasonality elif _check_approximate_seasonality(series, 24, 1, 1): relevant_attributes.add("hour") - elif type(series.freq) == pd.tseries.offsets.Minute: + elif type(series.freq) is pd.tseries.offsets.Minute: # check for daily seasonality if _check_approximate_seasonality(series, 1440, 20, 50): relevant_attributes.update({"hour", "minute"}) diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index f1ab933b05..8d05e5bbce 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -11,6 +11,7 @@ one or several time series. The function `predict()` applies `f()` on one or several time series in order to obtain forecasts for a desired number of time stamps into the future. """ + import copy import datetime import inspect @@ -1115,15 +1116,21 @@ def retrain_func( freq=series_.freq * stride, ), np.array(last_points_values), - columns=forecast_components - if forecast_components is not None - else series_.columns, - static_covariates=series_.static_covariates - if not predict_likelihood_parameters - else None, - hierarchy=series_.hierarchy - if not predict_likelihood_parameters - else None, + columns=( + forecast_components + if forecast_components is not None + else series_.columns + ), + static_covariates=( + series_.static_covariates + if not predict_likelihood_parameters + else None + ), + hierarchy=( + series_.hierarchy + if not predict_likelihood_parameters + else None + ), ) ) else: @@ -1313,9 +1320,11 @@ def backtest( backtest_list.append(errors) else: errors = [ - [metric_f(target_ts, f) for metric_f in metric] - if len(metric) > 1 - else metric[0](target_ts, f) + ( + [metric_f(target_ts, f) for metric_f in metric] + if len(metric) > 1 + else metric[0](target_ts, f) + ) for f in forecasts[idx] ] @@ -1522,9 +1531,9 @@ def _evaluate_combination(param_combination) -> float: ) if param_combination_dict.get("model_name", None): current_time = time.strftime("%Y-%m-%d_%H.%M.%S.%f", time.localtime()) - param_combination_dict[ - "model_name" - ] = f"{current_time}_{param_combination_dict['model_name']}" + param_combination_dict["model_name"] = ( + f"{current_time}_{param_combination_dict['model_name']}" + ) model = model_class(**param_combination_dict) if use_fitted_values: # fitted value mode diff --git a/darts/models/forecasting/lgbm.py b/darts/models/forecasting/lgbm.py index 4a3d748719..2a320686ce 100644 --- a/darts/models/forecasting/lgbm.py +++ b/darts/models/forecasting/lgbm.py @@ -305,7 +305,9 @@ def min_train_series_length(self) -> int: # for other regression models return max( 3, - -self.lags["target"][0] + self.output_chunk_length + 1 - if "target" in self.lags - else self.output_chunk_length, + ( + -self.lags["target"][0] + self.output_chunk_length + 1 + if "target" in self.lags + else self.output_chunk_length + ), ) diff --git a/darts/models/forecasting/linear_regression_model.py b/darts/models/forecasting/linear_regression_model.py index e599dd017b..e09487e192 100644 --- a/darts/models/forecasting/linear_regression_model.py +++ b/darts/models/forecasting/linear_regression_model.py @@ -5,6 +5,7 @@ A forecasting model using a linear regression of some of the target series' lags, as well as optionally some covariate series lags in order to obtain a forecast. """ + from typing import List, Optional, Sequence, Union import numpy as np diff --git a/darts/models/forecasting/pl_forecasting_module.py b/darts/models/forecasting/pl_forecasting_module.py index 5610a2d3df..53ebf62da6 100644 --- a/darts/models/forecasting/pl_forecasting_module.py +++ b/darts/models/forecasting/pl_forecasting_module.py @@ -313,9 +313,11 @@ def predict_step( delayed(_build_forecast_series)( [batch_prediction[batch_idx] for batch_prediction in batch_predictions], input_series, - custom_columns=self.likelihood.likelihood_components_names(input_series) - if self.predict_likelihood_parameters - else None, + custom_columns=( + self.likelihood.likelihood_components_names(input_series) + if self.predict_likelihood_parameters + else None + ), with_static_covs=False if self.predict_likelihood_parameters else True, with_hierarchy=False if self.predict_likelihood_parameters else True, pred_start=pred_start, @@ -577,9 +579,11 @@ def _produce_train_output(self, input_batch: Tuple): past_target, past_covariates, static_covariates = input_batch # Currently all our PastCovariates models require past target and covariates concatenated inpt = ( - torch.cat([past_target, past_covariates], dim=2) - if past_covariates is not None - else past_target, + ( + torch.cat([past_target, past_covariates], dim=2) + if past_covariates is not None + else past_target + ), static_covariates, ) return self(inpt) @@ -659,13 +663,13 @@ def _get_batch_prediction( # update past covariates to include next `roll_size` future past covariates elements if n_past_covs and self.input_chunk_length >= roll_size: - input_past[ - :, -roll_size:, n_targets : n_targets + n_past_covs - ] = future_past_covariates[:, left_past:right_past, :] + input_past[:, -roll_size:, n_targets : n_targets + n_past_covs] = ( + future_past_covariates[:, left_past:right_past, :] + ) elif n_past_covs: - input_past[ - :, :, n_targets : n_targets + n_past_covs - ] = future_past_covariates[:, left_past:right_past, :] + input_past[:, :, n_targets : n_targets + n_past_covs] = ( + future_past_covariates[:, left_past:right_past, :] + ) # take only last part of the output sequence where needed out = self._produce_predict_output(x=(input_past, static_covariates))[ @@ -795,9 +799,11 @@ def _get_batch_prediction( past_target, past_covariates, historic_future_covariates, - future_covariates[:, :roll_size, :] - if future_covariates is not None - else None, + ( + future_covariates[:, :roll_size, :] + if future_covariates is not None + else None + ), static_covariates, ) ) @@ -842,19 +848,19 @@ def _get_batch_prediction( # update past covariates to include next `roll_size` future past covariates elements if n_past_covs and self.input_chunk_length >= roll_size: - input_past[ - :, -roll_size:, n_targets : n_targets + n_past_covs - ] = future_past_covariates[:, left_past:right_past, :] + input_past[:, -roll_size:, n_targets : n_targets + n_past_covs] = ( + future_past_covariates[:, left_past:right_past, :] + ) elif n_past_covs: - input_past[ - :, :, n_targets : n_targets + n_past_covs - ] = future_past_covariates[:, left_past:right_past, :] + input_past[:, :, n_targets : n_targets + n_past_covs] = ( + future_past_covariates[:, left_past:right_past, :] + ) # update historic future covariates to include next `roll_size` future covariates elements if n_future_covs and self.input_chunk_length >= roll_size: - input_past[ - :, -roll_size:, n_targets + n_past_covs : - ] = future_covariates[:, left_past:right_past, :] + input_past[:, -roll_size:, n_targets + n_past_covs :] = ( + future_covariates[:, left_past:right_past, :] + ) elif n_future_covs: input_past[:, :, n_targets + n_past_covs :] = future_covariates[ :, left_past:right_past, : diff --git a/darts/models/forecasting/random_forest.py b/darts/models/forecasting/random_forest.py index 34cee5f38f..0f1def2a64 100644 --- a/darts/models/forecasting/random_forest.py +++ b/darts/models/forecasting/random_forest.py @@ -14,6 +14,7 @@ ---------- .. [1] https://en.wikipedia.org/wiki/Random_forest """ + from typing import Optional from sklearn.ensemble import RandomForestRegressor diff --git a/darts/models/forecasting/regression_ensemble_model.py b/darts/models/forecasting/regression_ensemble_model.py index b55170aede..eee2f50770 100644 --- a/darts/models/forecasting/regression_ensemble_model.py +++ b/darts/models/forecasting/regression_ensemble_model.py @@ -4,6 +4,7 @@ An ensemble model which uses a regression model to compute the ensemble forecast. """ + from typing import List, Optional, Sequence, Tuple, Union from darts.logging import get_logger, raise_if, raise_if_not @@ -213,12 +214,12 @@ def _make_multiple_historical_forecasts( tmp_pred = model.historical_forecasts( series=series, - past_covariates=past_covariates - if model.supports_past_covariates - else None, - future_covariates=future_covariates - if model.supports_future_covariates - else None, + past_covariates=( + past_covariates if model.supports_past_covariates else None + ), + future_covariates=( + future_covariates if model.supports_future_covariates else None + ), forecast_horizon=model.output_chunk_length, stride=model.output_chunk_length, num_samples=num_samples if model._is_probabilistic else 1, @@ -374,12 +375,12 @@ def fit( # maximize covariate usage model._fit_wrapper( series=forecast_training, - past_covariates=past_covariates - if model.supports_past_covariates - else None, - future_covariates=future_covariates - if model.supports_future_covariates - else None, + past_covariates=( + past_covariates if model.supports_past_covariates else None + ), + future_covariates=( + future_covariates if model.supports_future_covariates else None + ), ) # we can call direct prediction in any case. Even if we overwrite with historical @@ -416,12 +417,12 @@ def fit( for model in self.forecasting_models: model._fit_wrapper( series=series, - past_covariates=past_covariates - if model.supports_past_covariates - else None, - future_covariates=future_covariates - if model.supports_future_covariates - else None, + past_covariates=( + past_covariates if model.supports_past_covariates else None + ), + future_covariates=( + future_covariates if model.supports_future_covariates else None + ), ) return self diff --git a/darts/models/forecasting/regression_model.py b/darts/models/forecasting/regression_model.py index 47fd5d2b92..54f0eb9a1b 100644 --- a/darts/models/forecasting/regression_model.py +++ b/darts/models/forecasting/regression_model.py @@ -26,6 +26,7 @@ When static covariates are present, they are appended to the lagged features. When multiple time series are passed, if their static covariates do not have the same size, the shorter ones are padded with 0 valued features. """ + from collections import OrderedDict from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union @@ -448,9 +449,11 @@ def supports_multivariate(self) -> bool: def min_train_series_length(self) -> int: return max( 3, - -self.lags["target"][0] + self.output_chunk_length - if "target" in self.lags - else self.output_chunk_length, + ( + -self.lags["target"][0] + self.output_chunk_length + if "target" in self.lags + else self.output_chunk_length + ), ) @property @@ -716,9 +719,11 @@ def fit( else: # reorder the components based on the input series, insert the default when necessary self.component_lags[variate_type] = { - comp_name: self.component_lags[variate_type][comp_name] - if comp_name in self.component_lags[variate_type] - else self.component_lags[variate_type]["default_lags"] + comp_name: ( + self.component_lags[variate_type][comp_name] + if comp_name in self.component_lags[variate_type] + else self.component_lags[variate_type]["default_lags"] + ) for comp_name in variate[0].components } @@ -1022,9 +1027,11 @@ def predict( self._build_forecast_series( points_preds=row, input_series=input_tgt, - custom_components=self._likelihood_components_names(input_tgt) - if predict_likelihood_parameters - else None, + custom_components=( + self._likelihood_components_names(input_tgt) + if predict_likelihood_parameters + else None + ), with_static_covs=False if predict_likelihood_parameters else True, with_hierarchy=False if predict_likelihood_parameters else True, ) diff --git a/darts/models/forecasting/rnn_model.py b/darts/models/forecasting/rnn_model.py index 16ef18015e..7e13231772 100644 --- a/darts/models/forecasting/rnn_model.py +++ b/darts/models/forecasting/rnn_model.py @@ -111,9 +111,11 @@ def _produce_train_output(self, input_batch: Tuple) -> torch.Tensor: # For the RNN we concatenate the past_target with the future_covariates # (they have the same length because we enforce a Shift dataset for RNNs) model_input = ( - torch.cat([past_target, future_covariates], dim=2) - if future_covariates is not None - else past_target, + ( + torch.cat([past_target, future_covariates], dim=2) + if future_covariates is not None + else past_target + ), static_covariates, ) return self(model_input)[0] @@ -278,7 +280,6 @@ def __init__( training_length: int = 24, **kwargs, ): - """Recurrent Neural Network Model (RNNs). This class provides three variants of RNNs: diff --git a/darts/models/forecasting/tbats_model.py b/darts/models/forecasting/tbats_model.py index eb251726d3..ec1cc62cfd 100644 --- a/darts/models/forecasting/tbats_model.py +++ b/darts/models/forecasting/tbats_model.py @@ -125,7 +125,6 @@ def __init__( multiprocessing_start_method: Optional[str] = "spawn", random_state: int = 0, ): - """ This is a wrapper around `tbats diff --git a/darts/models/forecasting/tcn_model.py b/darts/models/forecasting/tcn_model.py index e93f5b86cf..7f4bbdc9a0 100644 --- a/darts/models/forecasting/tcn_model.py +++ b/darts/models/forecasting/tcn_model.py @@ -143,7 +143,6 @@ def __init__( dropout: float, **kwargs ): - """PyTorch module implementing a dilated TCN module used in `TCNModel`. @@ -269,7 +268,6 @@ def __init__( dropout: float = 0.2, **kwargs ): - """Temporal Convolutional Network Model (TCN). This is an implementation of a dilated TCN used for forecasting, inspired from [1]_. diff --git a/darts/models/forecasting/tft_model.py b/darts/models/forecasting/tft_model.py index baca30f71c..555621f280 100644 --- a/darts/models/forecasting/tft_model.py +++ b/darts/models/forecasting/tft_model.py @@ -60,7 +60,6 @@ def __init__( norm_type: Union[str, nn.Module], **kwargs, ): - """PyTorch module implementing the TFT architecture from `this paper `_ The implementation is built upon `pytorch-forecasting's TemporalFusionTransformer `_. @@ -158,9 +157,11 @@ def __init__( # continuous variable processing self.prescalers_linear = { name: nn.Linear( - 1 - if name not in self.numeric_static_variables - else self.num_static_components, + ( + 1 + if name not in self.numeric_static_variables + else self.num_static_components + ), self.hidden_continuous_size, ) for name in self.reals diff --git a/darts/models/forecasting/tide_model.py b/darts/models/forecasting/tide_model.py index 14b942c76b..460a81a8ab 100644 --- a/darts/models/forecasting/tide_model.py +++ b/darts/models/forecasting/tide_model.py @@ -337,9 +337,11 @@ def forward( # stack and temporally decode with future covariate last output steps temporal_decoder_input = [ decoded, - x_dynamic_future_covariates[:, -self.output_chunk_length :, :] - if self.future_cov_dim > 0 - else None, + ( + x_dynamic_future_covariates[:, -self.output_chunk_length :, :] + if self.future_cov_dim > 0 + else None + ), ] temporal_decoder_input = [t for t in temporal_decoder_input if t is not None] diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index fe0c67c364..a54cecfb01 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -2098,7 +2098,7 @@ def _load_encoders( # transformers are equal if they are instances of the same class self_transformer = self.add_encoders.get("transformer", None) tfm_transformer = tfm_save.add_encoders.get("transformer", None) - same_transformer = type(self_transformer) == type(tfm_transformer) + same_transformer = type(self_transformer) is type(tfm_transformer) # encoders are equal if they have the same entries (transformer excluded) self_encoders = { diff --git a/darts/models/forecasting/transformer_model.py b/darts/models/forecasting/transformer_model.py index d68f30e2fa..3ec83dfb36 100644 --- a/darts/models/forecasting/transformer_model.py +++ b/darts/models/forecasting/transformer_model.py @@ -339,7 +339,6 @@ def __init__( custom_decoder: Optional[nn.Module] = None, **kwargs, ): - """Transformer model Transformer is a state-of-the-art deep learning model introduced in 2017. It is an encoder-decoder diff --git a/darts/models/forecasting/varima.py b/darts/models/forecasting/varima.py index 7e49df4fa7..3b6e4e9c05 100644 --- a/darts/models/forecasting/varima.py +++ b/darts/models/forecasting/varima.py @@ -9,6 +9,7 @@ ---------- .. [1] https://en.wikipedia.org/wiki/Vector_autoregression """ + from typing import Optional import numpy as np @@ -191,27 +192,29 @@ def _predict( self.model = self.model.apply( series.values(copy=False), - exog=historic_future_covariates.values(copy=False) - if historic_future_covariates - else None, + exog=( + historic_future_covariates.values(copy=False) + if historic_future_covariates + else None + ), ) # forecast before restoring the training state if num_samples == 1: forecast = self.model.forecast( steps=n, - exog=future_covariates.values(copy=False) - if future_covariates - else None, + exog=( + future_covariates.values(copy=False) if future_covariates else None + ), ) else: forecast = self.model.simulate( nsimulations=n, repetitions=num_samples, initial_state=self.model.states.predicted[-1, :], - exog=future_covariates.values(copy=False) - if future_covariates - else None, + exog=( + future_covariates.values(copy=False) if future_covariates else None + ), ) forecast = self._invert_transformation(forecast) @@ -220,9 +223,11 @@ def _predict( if series is not None: self.model = self.model.apply( self._orig_training_series.values(copy=False), - exog=self.training_historic_future_covariates.values(copy=False) - if self.training_historic_future_covariates - else None, + exog=( + self.training_historic_future_covariates.values(copy=False) + if self.training_historic_future_covariates + else None + ), ) self._last_values = self._training_last_values diff --git a/darts/models/forecasting/xgboost.py b/darts/models/forecasting/xgboost.py index 246e68c17a..2e484e0af4 100644 --- a/darts/models/forecasting/xgboost.py +++ b/darts/models/forecasting/xgboost.py @@ -324,7 +324,9 @@ def min_train_series_length(self) -> int: # more than for other regression models return max( 3, - -self.lags["target"][0] + self.output_chunk_length + 1 - if "target" in self.lags - else self.output_chunk_length, + ( + -self.lags["target"][0] + self.output_chunk_length + 1 + if "target" in self.lags + else self.output_chunk_length + ), ) diff --git a/darts/tests/dataprocessing/transformers/test_diff.py b/darts/tests/dataprocessing/transformers/test_diff.py index 83634ab511..3fb9aae609 100644 --- a/darts/tests/dataprocessing/transformers/test_diff.py +++ b/darts/tests/dataprocessing/transformers/test_diff.py @@ -27,7 +27,6 @@ def assert_series_equal( equal_nan: bool, to_compare: Optional[np.ndarray] = None, ): - """ Helper to compare series differenced by `Diff`. @@ -97,7 +96,7 @@ def test_diff_inverse_transform_beyond_fit_data(self): # Artifically truncate series: short_sine = self.sine_series.copy().drop_after(10) - for (lags, dropna) in test_cases: + for lags, dropna in test_cases: # Fit Diff to truncated series: diff = Diff(lags=lags, dropna=dropna) diff.fit(short_sine) @@ -133,7 +132,7 @@ def test_diff_multi_ts(self): (1, False, component_mask), ([1, 2, 3, 2, 1], False, component_mask), ] - for (lags, dropna, mask) in test_cases: + for lags, dropna, mask in test_cases: diff = Diff(lags=lags, dropna=dropna) transformed = diff.fit_transform( [self.sine_series, self.sine_series], component_mask=mask @@ -172,7 +171,7 @@ def test_diff_stochastic_series(self): vals = np.random.rand(10, 5, 10) series = TimeSeries.from_values(vals) - for (lags, dropna) in test_cases: + for lags, dropna in test_cases: transformer = Diff(lags=lags, dropna=dropna) new_series = transformer.fit_transform(series) series_back = transformer.inverse_transform(new_series) diff --git a/darts/tests/datasets/test_datasets.py b/darts/tests/datasets/test_datasets.py index 24260f337d..45ed8bef39 100644 --- a/darts/tests/datasets/test_datasets.py +++ b/darts/tests/datasets/test_datasets.py @@ -52,7 +52,7 @@ def _assert_eq(self, lefts: tuple, rights: tuple): for left, right in zip(lefts, rights): left = left.values() if isinstance(left, TimeSeries) else left right = right.values() if isinstance(right, TimeSeries) else right - assert type(left) == type(right) + assert type(left) is type(right) assert ( isinstance( left, (TimeSeries, pd.Series, pd.DataFrame, np.ndarray, list) diff --git a/darts/tests/models/forecasting/test_dlinear_nlinear.py b/darts/tests/models/forecasting/test_dlinear_nlinear.py index 7348603626..ebac942bab 100644 --- a/darts/tests/models/forecasting/test_dlinear_nlinear.py +++ b/darts/tests/models/forecasting/test_dlinear_nlinear.py @@ -52,7 +52,7 @@ def test_fit(self): large_ts = tg.constant_timeseries(length=100, value=1000) small_ts = tg.constant_timeseries(length=100, value=10) - for (model_cls, kwargs) in [ + for model_cls, kwargs in [ (DLinearModel, {"kernel_size": 5}), (DLinearModel, {"kernel_size": 6}), (NLinearModel, {}), @@ -194,26 +194,28 @@ def _eval_model( model.fit( [train1, train2], - past_covariates=[past_cov1, past_cov2] - if past_cov1 is not None - else None, - val_past_covariates=[val_past_cov1, val_past_cov2] - if val_past_cov1 is not None - else None, - future_covariates=[fut_cov1, fut_cov2] - if fut_cov1 is not None - else None, + past_covariates=( + [past_cov1, past_cov2] if past_cov1 is not None else None + ), + val_past_covariates=( + [val_past_cov1, val_past_cov2] + if val_past_cov1 is not None + else None + ), + future_covariates=( + [fut_cov1, fut_cov2] if fut_cov1 is not None else None + ), epochs=10, ) pred1, pred2 = model.predict( series=[train1, train2], - future_covariates=[fut_cov1, fut_cov2] - if fut_cov1 is not None - else None, - past_covariates=[fut_cov1, fut_cov2] - if past_cov1 is not None - else None, + future_covariates=( + [fut_cov1, fut_cov2] if fut_cov1 is not None else None + ), + past_covariates=( + [fut_cov1, fut_cov2] if past_cov1 is not None else None + ), n=len(val1), num_samples=500 if lkl is not None else 1, ) diff --git a/darts/tests/models/forecasting/test_global_forecasting_models.py b/darts/tests/models/forecasting/test_global_forecasting_models.py index cec70efb4e..1fcb2d45ca 100644 --- a/darts/tests/models/forecasting/test_global_forecasting_models.py +++ b/darts/tests/models/forecasting/test_global_forecasting_models.py @@ -484,9 +484,9 @@ def test_use_static_covariates(self, model_cls, ts): # must provide mandatory future_covariates to TFTModel model.fit( series=ts, - future_covariates=self.sine_1_ts - if model.supports_future_covariates - else None, + future_covariates=( + self.sine_1_ts if model.supports_future_covariates else None + ), ) pred = model.predict(OUT_LEN) assert pred.static_covariates.equals(ts.static_covariates) diff --git a/darts/tests/models/forecasting/test_historical_forecasts.py b/darts/tests/models/forecasting/test_historical_forecasts.py index 4f2fd6eac5..38a48156ba 100644 --- a/darts/tests/models/forecasting/test_historical_forecasts.py +++ b/darts/tests/models/forecasting/test_historical_forecasts.py @@ -348,9 +348,9 @@ def create_model(ocl, use_ll=True, model_type="regression"): return None return NLinearModel( input_chunk_length=3, - likelihood=QuantileRegression([0.05, 0.4, 0.5, 0.6, 0.95]) - if use_ll - else None, + likelihood=( + QuantileRegression([0.05, 0.4, 0.5, 0.6, 0.95]) if use_ll else None + ), output_chunk_length=ocl, n_epochs=1, random_state=42, @@ -843,9 +843,9 @@ def test_optimized_historical_forecasts_regression(self, config): model_same.fit( series=ts[:start], past_covariates=ts_covs if model_same.supports_past_covariates else None, - future_covariates=ts_covs - if model_same.supports_future_covariates - else None, + future_covariates=( + ts_covs if model_same.supports_future_covariates else None + ), ) # ocl >= forecast horizon model_kwargs_diff = model_kwargs.copy() @@ -855,9 +855,9 @@ def test_optimized_historical_forecasts_regression(self, config): model_diff.fit( series=ts[:start], past_covariates=ts_covs if model_diff.supports_past_covariates else None, - future_covariates=ts_covs - if model_diff.supports_future_covariates - else None, + future_covariates=( + ts_covs if model_diff.supports_future_covariates else None + ), ) # no parametrization to save time on model training at the cost of test granularity for model in [model_same, model_diff]: @@ -865,12 +865,12 @@ def test_optimized_historical_forecasts_regression(self, config): for stride in [1, 2]: hist_fct = model.historical_forecasts( series=ts, - past_covariates=ts_covs - if model.supports_past_covariates - else None, - future_covariates=ts_covs - if model.supports_future_covariates - else None, + past_covariates=( + ts_covs if model.supports_past_covariates else None + ), + future_covariates=( + ts_covs if model.supports_future_covariates else None + ), start=start, retrain=False, last_points_only=last_points_only, @@ -882,12 +882,12 @@ def test_optimized_historical_forecasts_regression(self, config): # manually packing the series in list to match expected inputs opti_hist_fct = model._optimized_historical_forecasts( series=[ts], - past_covariates=[ts_covs] - if model.supports_past_covariates - else None, - future_covariates=[ts_covs] - if model.supports_future_covariates - else None, + past_covariates=( + [ts_covs] if model.supports_past_covariates else None + ), + future_covariates=( + [ts_covs] if model.supports_future_covariates else None + ), start=start, last_points_only=last_points_only, stride=stride, @@ -1429,18 +1429,22 @@ def test_regression_auto_start_multiple_with_cov_retrain(self, model_config): forecasts_retrain = model.historical_forecasts( series=[self.ts_pass_val, self.ts_pass_val], - past_covariates=[ - self.ts_past_cov_valid_same_start, - self.ts_past_cov_valid_same_start, - ] - if "lags_past_covariates" in kwargs - else None, - future_covariates=[ - self.ts_past_cov_valid_same_start, - self.ts_past_cov_valid_same_start, - ] - if "lags_future_covariates" in kwargs - else None, + past_covariates=( + [ + self.ts_past_cov_valid_same_start, + self.ts_past_cov_valid_same_start, + ] + if "lags_past_covariates" in kwargs + else None + ), + future_covariates=( + [ + self.ts_past_cov_valid_same_start, + self.ts_past_cov_valid_same_start, + ] + if "lags_future_covariates" in kwargs + else None + ), last_points_only=True, forecast_horizon=forecast_hrz, stride=1, @@ -1464,9 +1468,11 @@ def test_regression_auto_start_multiple_with_cov_retrain(self, model_config): past_lag = min( min_target_lag if min_target_lag else 0, min_past_cov_lag if min_past_cov_lag else 0, - min_future_cov_lag - if min_future_cov_lag is not None and min_future_cov_lag < 0 - else 0, + ( + min_future_cov_lag + if min_future_cov_lag is not None and min_future_cov_lag < 0 + else 0 + ), ) future_lag = ( @@ -1519,33 +1525,41 @@ def test_regression_auto_start_multiple_with_cov_no_retrain(self, model_config): model.fit( series=[self.ts_pass_val, self.ts_pass_val], - past_covariates=[ - self.ts_past_cov_valid_same_start, - self.ts_past_cov_valid_same_start, - ] - if "lags_past_covariates" in kwargs - else None, - future_covariates=[ - self.ts_past_cov_valid_same_start, - self.ts_past_cov_valid_same_start, - ] - if "lags_future_covariates" in kwargs - else None, + past_covariates=( + [ + self.ts_past_cov_valid_same_start, + self.ts_past_cov_valid_same_start, + ] + if "lags_past_covariates" in kwargs + else None + ), + future_covariates=( + [ + self.ts_past_cov_valid_same_start, + self.ts_past_cov_valid_same_start, + ] + if "lags_future_covariates" in kwargs + else None + ), ) forecasts_no_retrain = model.historical_forecasts( series=[self.ts_pass_val, self.ts_pass_val], - past_covariates=[ - self.ts_past_cov_valid_same_start, - self.ts_past_cov_valid_same_start, - ] - if "lags_past_covariates" in kwargs - else None, - future_covariates=[ - self.ts_past_cov_valid_same_start, - self.ts_past_cov_valid_same_start, - ] - if "lags_future_covariates" in kwargs - else None, + past_covariates=( + [ + self.ts_past_cov_valid_same_start, + self.ts_past_cov_valid_same_start, + ] + if "lags_past_covariates" in kwargs + else None + ), + future_covariates=( + [ + self.ts_past_cov_valid_same_start, + self.ts_past_cov_valid_same_start, + ] + if "lags_future_covariates" in kwargs + else None + ), last_points_only=True, forecast_horizon=forecast_hrz, stride=1, diff --git a/darts/tests/models/forecasting/test_regression_ensemble_model.py b/darts/tests/models/forecasting/test_regression_ensemble_model.py index 258b1a1507..979e767bb7 100644 --- a/darts/tests/models/forecasting/test_regression_ensemble_model.py +++ b/darts/tests/models/forecasting/test_regression_ensemble_model.py @@ -885,8 +885,8 @@ def test_predict_likelihood_parameters_multivariate_regression_ensemble(self): ) and all(pred_ens["linear_q0.50"].values() < pred_ens["linear_q0.95"].values()) def test_wrong_model_creation_params(self): - """Since `multi_models=False` requires to shift the regression model lags in the past (outside of the forecasting - model predictions), it is not supported.""" + """Since `multi_models=False` requires to shift the regression model lags in the past (outside of the + forecasting model predictions), it is not supported.""" forcasting_models = [ self.get_deterministic_global_model(2), self.get_deterministic_global_model([-5, -7]), diff --git a/darts/tests/models/forecasting/test_regression_models.py b/darts/tests/models/forecasting/test_regression_models.py index 9d5c369526..85cff2aca6 100644 --- a/darts/tests/models/forecasting/test_regression_models.py +++ b/darts/tests/models/forecasting/test_regression_models.py @@ -1580,9 +1580,11 @@ def test_not_enough_covariates(self, config): @pytest.mark.skipif(not lgbm_available, reason="requires lightgbm") @patch.object( - darts.models.forecasting.lgbm.lgb.LGBMRegressor - if lgbm_available - else darts.models.utils.NotImportedModule, + ( + darts.models.forecasting.lgbm.lgb.LGBMRegressor + if lgbm_available + else darts.models.utils.NotImportedModule + ), "fit", ) def test_gradient_boosted_model_with_eval_set(self, lgb_fit_patch): @@ -1745,22 +1747,30 @@ def test_component_specific_lags_forecasts(self, config): pred = model.predict( 1, series=series[0] if multiple_series else None, - past_covariates=past_cov[0] - if multiple_series and model.supports_past_covariates - else None, - future_covariates=future_cov[0] - if multiple_series and model.supports_future_covariates - else None, + past_covariates=( + past_cov[0] + if multiple_series and model.supports_past_covariates + else None + ), + future_covariates=( + future_cov[0] + if multiple_series and model.supports_future_covariates + else None + ), ) pred2 = model2.predict( 1, series=series[0] if multiple_series else None, - past_covariates=past_cov[0] - if multiple_series and model2.supports_past_covariates - else None, - future_covariates=future_cov[0] - if multiple_series and model2.supports_future_covariates - else None, + past_covariates=( + past_cov[0] + if multiple_series and model2.supports_past_covariates + else None + ), + future_covariates=( + future_cov[0] + if multiple_series and model2.supports_future_covariates + else None + ), ) np.testing.assert_array_almost_equal(pred.values(), pred2.values()) assert pred.time_index.equals(pred2.time_index) @@ -1769,22 +1779,30 @@ def test_component_specific_lags_forecasts(self, config): pred = model.predict( 3, series=series[0] if multiple_series else None, - past_covariates=past_cov[0] - if multiple_series and model.supports_past_covariates - else None, - future_covariates=future_cov[0] - if multiple_series and model.supports_future_covariates - else None, + past_covariates=( + past_cov[0] + if multiple_series and model.supports_past_covariates + else None + ), + future_covariates=( + future_cov[0] + if multiple_series and model.supports_future_covariates + else None + ), ) pred2 = model2.predict( 3, series=series[0] if multiple_series else None, - past_covariates=past_cov[0] - if multiple_series and model2.supports_past_covariates - else None, - future_covariates=future_cov[0] - if multiple_series and model2.supports_future_covariates - else None, + past_covariates=( + past_cov[0] + if multiple_series and model2.supports_past_covariates + else None + ), + future_covariates=( + future_cov[0] + if multiple_series and model2.supports_future_covariates + else None + ), ) np.testing.assert_array_almost_equal(pred.values(), pred2.values()) assert pred.time_index.equals(pred2.time_index) @@ -1863,24 +1881,32 @@ def test_component_specific_lags(self, config): model.predict( 1, series=series[0] if multiple_series else None, - past_covariates=past_cov[0] - if multiple_series and model.supports_past_covariates - else None, - future_covariates=future_cov[0] - if multiple_series and model.supports_future_covariates - else None, + past_covariates=( + past_cov[0] + if multiple_series and model.supports_past_covariates + else None + ), + future_covariates=( + future_cov[0] + if multiple_series and model.supports_future_covariates + else None + ), ) # n > output_chunk_length model.predict( 7, series=series[0] if multiple_series else None, - past_covariates=past_cov[0] - if multiple_series and model.supports_past_covariates - else None, - future_covariates=future_cov[0] - if multiple_series and model.supports_future_covariates - else None, + past_covariates=( + past_cov[0] + if multiple_series and model.supports_past_covariates + else None + ), + future_covariates=( + future_cov[0] + if multiple_series and model.supports_future_covariates + else None + ), ) @pytest.mark.parametrize( @@ -2250,9 +2276,11 @@ def helper_test_encoders_settings(model, example: str): @pytest.mark.skipif(not cb_available, reason="requires catboost") @patch.object( - darts.models.forecasting.catboost_model.CatBoostRegressor - if cb_available - else darts.models.utils.NotImportedModule, + ( + darts.models.forecasting.catboost_model.CatBoostRegressor + if cb_available + else darts.models.utils.NotImportedModule + ), "fit", ) def test_catboost_model_with_eval_set(self, lgb_fit_patch): @@ -2350,32 +2378,37 @@ def get_model_params(): @pytest.mark.skipif(not lgbm_available, reason="requires lightgbm") @pytest.mark.parametrize( "model", - [ - LightGBMModel( - lags=1, - lags_past_covariates=1, - output_chunk_length=1, - categorical_past_covariates=["does_not_exist", "past_cov_cat_dummy"], - categorical_static_covariates=["product_id"], - ), - LightGBMModel( - lags=1, - lags_past_covariates=1, - output_chunk_length=1, - categorical_past_covariates=[ - "past_cov_cat_dummy", - ], - categorical_static_covariates=["does_not_exist"], - ), - LightGBMModel( - lags=1, - lags_past_covariates=1, - output_chunk_length=1, - categorical_future_covariates=["does_not_exist"], - ), - ] - if lgbm_available - else [], + ( + [ + LightGBMModel( + lags=1, + lags_past_covariates=1, + output_chunk_length=1, + categorical_past_covariates=[ + "does_not_exist", + "past_cov_cat_dummy", + ], + categorical_static_covariates=["product_id"], + ), + LightGBMModel( + lags=1, + lags_past_covariates=1, + output_chunk_length=1, + categorical_past_covariates=[ + "past_cov_cat_dummy", + ], + categorical_static_covariates=["does_not_exist"], + ), + LightGBMModel( + lags=1, + lags_past_covariates=1, + output_chunk_length=1, + categorical_future_covariates=["does_not_exist"], + ), + ] + if lgbm_available + else [] + ), ) def test_fit_with_categorical_features_raises_error(self, model): ( @@ -2415,9 +2448,11 @@ def test_get_categorical_features_helper(self): @pytest.mark.skipif(not lgbm_available, reason="requires lightgbm") @patch.object( - darts.models.forecasting.lgbm.lgb.LGBMRegressor - if lgbm_available - else darts.models.utils.NotImportedModule, + ( + darts.models.forecasting.lgbm.lgb.LGBMRegressor + if lgbm_available + else darts.models.utils.NotImportedModule + ), "fit", ) def test_lgbm_categorical_features_passed_to_fit_correctly(self, lgb_fit_patch): diff --git a/darts/tests/test_timeseries.py b/darts/tests/test_timeseries.py index 31f2a5fa02..edefc2fe9d 100644 --- a/darts/tests/test_timeseries.py +++ b/darts/tests/test_timeseries.py @@ -2103,7 +2103,7 @@ def test_time_col_convert_rangeindex(self): ts = TimeSeries.from_dataframe(df=df, time_col="Time") # check type (should convert to RangeIndex): - assert type(ts.time_index) == pd.RangeIndex + assert type(ts.time_index) is pd.RangeIndex # check values inside the index (should be sorted correctly): assert list(ts.time_index) == sorted(expected) diff --git a/darts/tests/utils/tabularization/test_create_lagged_prediction_data.py b/darts/tests/utils/tabularization/test_create_lagged_prediction_data.py index 4bff71fbe9..e00b76bebf 100644 --- a/darts/tests/utils/tabularization/test_create_lagged_prediction_data.py +++ b/darts/tests/utils/tabularization/test_create_lagged_prediction_data.py @@ -356,7 +356,7 @@ def test_lagged_prediction_data_equal_freq_range_index(self): n_components=4, start_value=20, end_value=30, start=6, end=26, freq=3 ) # Conduct test for each input parameter combo: - for (lags, lags_past, lags_future, max_samples_per_ts) in product( + for lags, lags_past, lags_future, max_samples_per_ts in product( self.target_lag_combos, self.past_lag_combos, self.future_lag_combos, @@ -444,7 +444,7 @@ def test_lagged_prediction_data_equal_freq_datetime_index(self): freq="2d", ) # Conduct test for each input parameter combo: - for (lags, lags_past, lags_future, max_samples_per_ts) in product( + for lags, lags_past, lags_future, max_samples_per_ts in product( self.target_lag_combos, self.past_lag_combos, self.future_lag_combos, @@ -517,7 +517,7 @@ def test_lagged_prediction_data_unequal_freq_range_index(self): n_components=4, start_value=20, end_value=30, start=6, end=26, freq=3 ) # Conduct test for each input parameter combo: - for (lags, lags_past, lags_future, max_samples_per_ts) in product( + for lags, lags_past, lags_future, max_samples_per_ts in product( self.target_lag_combos, self.past_lag_combos, self.future_lag_combos, @@ -590,7 +590,7 @@ def test_lagged_prediction_data_unequal_freq_datetime_index(self): n_components=4, start_value=20, end_value=30, start=6, end=26, freq=3 ) # Conduct test for each input parameter combo: - for (lags, lags_past, lags_future, max_samples_per_ts) in product( + for lags, lags_past, lags_future, max_samples_per_ts in product( self.target_lag_combos, self.past_lag_combos, self.future_lag_combos, @@ -678,7 +678,7 @@ def test_lagged_prediction_data_method_consistency_range_index(self): freq="2d", ) # Conduct test for each input parameter combo: - for (lags, lags_past, lags_future, max_samples_per_ts) in product( + for lags, lags_past, lags_future, max_samples_per_ts in product( self.target_lag_combos, self.past_lag_combos, self.future_lag_combos, @@ -758,7 +758,7 @@ def test_lagged_prediction_data_method_consistency_datetime_index(self): freq="2d", ) # Conduct test for each input parameter combo: - for (lags, lags_past, lags_future, max_samples_per_ts) in product( + for lags, lags_past, lags_future, max_samples_per_ts in product( self.target_lag_combos, self.past_lag_combos, self.future_lag_combos, diff --git a/darts/tests/utils/tabularization/test_create_lagged_training_data.py b/darts/tests/utils/tabularization/test_create_lagged_training_data.py index 9afe53d3f1..ff4d32444d 100644 --- a/darts/tests/utils/tabularization/test_create_lagged_training_data.py +++ b/darts/tests/utils/tabularization/test_create_lagged_training_data.py @@ -1220,7 +1220,7 @@ def test_lagged_training_data_single_point_range_idx(self): expected_y = np.ones((1, 1, 1)) # Test correctness for 'moving window' and for 'time intersection' methods, as well # as for different `multi_models` values: - for (use_moving_windows, multi_models) in product([False, True], [False, True]): + for use_moving_windows, multi_models in product([False, True], [False, True]): X, y, times, _ = create_lagged_training_data( target, output_chunk_length, @@ -1252,7 +1252,7 @@ def test_lagged_training_data_single_point_datetime_idx(self): expected_y = np.ones((1, 1, 1)) # Test correctness for 'moving window' and for 'time intersection' methods, as well # as for different `multi_models` values: - for (use_moving_windows, multi_models) in product([False, True], [False, True]): + for use_moving_windows, multi_models in product([False, True], [False, True]): X, y, times, _ = create_lagged_training_data( target, output_chunk_length, @@ -1289,7 +1289,7 @@ def test_lagged_training_data_zero_lags_range_idx(self): expected_y = np.ones((1, 1, 1)) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - for (use_moving_windows, multi_models) in product([False, True], [False, True]): + for use_moving_windows, multi_models in product([False, True], [False, True]): X, y, times, _ = create_lagged_training_data( target, output_chunk_length=1, @@ -1329,7 +1329,7 @@ def test_lagged_training_data_zero_lags_datetime_idx(self): expected_y = np.ones((1, 1, 1)) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - for (use_moving_windows, multi_models) in product([False, True], [False, True]): + for use_moving_windows, multi_models in product([False, True], [False, True]): X, y, times, _ = create_lagged_training_data( target, output_chunk_length=1, @@ -1367,7 +1367,7 @@ def test_lagged_training_data_positive_lags_range_idx(self): expected_y = np.ones((1, 1, 1)) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - for (use_moving_windows, multi_models) in product([False, True], [False, True]): + for use_moving_windows, multi_models in product([False, True], [False, True]): X, y, times, _ = create_lagged_training_data( target, output_chunk_length=1, @@ -1407,7 +1407,7 @@ def test_lagged_training_data_positive_lags_datetime_idx(self): expected_y = np.ones((1, 1, 1)) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - for (use_moving_windows, multi_models) in product([False, True], [False, True]): + for use_moving_windows, multi_models in product([False, True], [False, True]): X, y, times, _ = create_lagged_training_data( target, output_chunk_length=1, diff --git a/darts/tests/utils/tabularization/test_get_feature_times.py b/darts/tests/utils/tabularization/test_get_feature_times.py index e63a8e4057..457b419c02 100644 --- a/darts/tests/utils/tabularization/test_get_feature_times.py +++ b/darts/tests/utils/tabularization/test_get_feature_times.py @@ -215,7 +215,7 @@ def test_feature_times_training_range_idx(self): target = linear_timeseries(start=1, length=20, freq=1) past = linear_timeseries(start=2, length=25, freq=2) future = linear_timeseries(start=3, length=30, freq=3) - for (lags, lags_past, lags_future, ocl) in product( + for lags, lags_past, lags_future, ocl in product( self.target_lag_combos, self.lags_past_combos, self.lags_future_combos, @@ -252,7 +252,7 @@ def test_feature_times_training_datetime_idx(self): target = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=20, freq="1d") past = linear_timeseries(start=pd.Timestamp("1/2/2000"), length=25, freq="2d") future = linear_timeseries(start=pd.Timestamp("1/3/2000"), length=30, freq="3d") - for (lags, lags_past, lags_future, ocl) in product( + for lags, lags_past, lags_future, ocl in product( self.target_lag_combos, self.lags_past_combos, self.lags_future_combos, @@ -289,7 +289,7 @@ def test_feature_times_prediction_range_idx(self): target = linear_timeseries(start=1, length=20, freq=1) past = linear_timeseries(start=2, length=25, freq=2) future = linear_timeseries(start=3, length=30, freq=3) - for (lags, lags_past, lags_future) in product( + for lags, lags_past, lags_future in product( self.target_lag_combos, self.lags_past_combos, self.lags_future_combos ): feature_times = _get_feature_times( @@ -322,7 +322,7 @@ def test_feature_times_prediction_datetime_idx(self): target = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=20, freq="1d") past = linear_timeseries(start=pd.Timestamp("1/2/2000"), length=25, freq="2d") future = linear_timeseries(start=pd.Timestamp("1/3/2000"), length=30, freq="3d") - for (lags, lags_past, lags_future) in product( + for lags, lags_past, lags_future in product( self.target_lag_combos, self.lags_past_combos, self.lags_future_combos ): feature_times = _get_feature_times( diff --git a/darts/tests/utils/tabularization/test_get_shared_times.py b/darts/tests/utils/tabularization/test_get_shared_times.py index 3f2b399734..0b5dc6cee8 100644 --- a/darts/tests/utils/tabularization/test_get_shared_times.py +++ b/darts/tests/utils/tabularization/test_get_shared_times.py @@ -16,7 +16,6 @@ def lcm(*integers): class TestGetSharedTimes: - """ Tests `get_shared_times` function defined in `darts.utils.data.tabularization`. """ diff --git a/darts/tests/utils/tabularization/test_strided_moving_window.py b/darts/tests/utils/tabularization/test_strided_moving_window.py index 164e9bea94..0fbad5026d 100644 --- a/darts/tests/utils/tabularization/test_strided_moving_window.py +++ b/darts/tests/utils/tabularization/test_strided_moving_window.py @@ -7,7 +7,6 @@ class TestStridedMovingWindow: - """ Tests `strided_moving_window` function defined in `darts.utils.data.tabularization`. """ @@ -28,7 +27,7 @@ def test_strided_moving_windows_extracted_windows(self): # Create a 'dummy input' with linearly increasing values: x_shape = (10, 8, 12) x = np.arange(np.prod(x_shape)).reshape(*x_shape) - for (axis, stride, window_len) in product( + for axis, stride, window_len in product( axis_combos, stride_combos, window_len_combos ): windows = strided_moving_window(x, window_len, stride, axis) diff --git a/darts/tests/utils/test_likelihood_models.py b/darts/tests/utils/test_likelihood_models.py index 3c0dd67bc9..a7ccce76f9 100644 --- a/darts/tests/utils/test_likelihood_models.py +++ b/darts/tests/utils/test_likelihood_models.py @@ -59,7 +59,7 @@ def test_intra_class_equality(self): def test_inter_class_equality(self): model_combinations = combinations(likelihood_models.keys(), 2) - for (first_model_name, second_model_name) in model_combinations: + for first_model_name, second_model_name in model_combinations: assert ( likelihood_models[first_model_name][0] != likelihood_models[second_model_name][0] diff --git a/darts/timeseries.py b/darts/timeseries.py index 30d5aac716..7a9ad9dfba 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -911,9 +911,11 @@ def from_group_dataframe( # store static covariate Series and group DataFrame (without static cov columns) splits.append( ( - pd.DataFrame([static_cov_vals], columns=extract_static_cov_cols) - if extract_static_cov_cols - else None, + ( + pd.DataFrame([static_cov_vals], columns=extract_static_cov_cols) + if extract_static_cov_cols + else None + ), group[extract_value_cols], ) ) @@ -2338,7 +2340,7 @@ def slice( A new series, with indices greater or equal than `start_ts` and smaller or equal than `end_ts`. """ raise_if_not( - type(start_ts) == type(end_ts), + type(start_ts) is type(end_ts), "The two timestamps provided to slice() have to be of the same type.", logger, ) @@ -4443,9 +4445,9 @@ def _fill_missing_dates( time_dim = xa.dims[0] sorted_xa = cls._sort_index(xa, copy=False) - time_index: Union[ - pd.Index, pd.RangeIndex, pd.DatetimeIndex - ] = sorted_xa.get_index(time_dim) + time_index: Union[pd.Index, pd.RangeIndex, pd.DatetimeIndex] = ( + sorted_xa.get_index(time_dim) + ) if isinstance(time_index, pd.DatetimeIndex): has_datetime_index = True @@ -5022,9 +5024,11 @@ def _get_freq(xa_in: xr.DataArray): # selecting components discards the hierarchy, if any xa_ = _xarray_with_attrs( xa_, - xa_.attrs[STATIC_COV_TAG][key.start : key.stop] - if adapt_covs_on_component - else xa_.attrs[STATIC_COV_TAG], + ( + xa_.attrs[STATIC_COV_TAG][key.start : key.stop] + if adapt_covs_on_component + else xa_.attrs[STATIC_COV_TAG] + ), None, ) return self.__class__(xa_) @@ -5055,9 +5059,11 @@ def _get_freq(xa_in: xr.DataArray): # selecting components discards the hierarchy, if any xa_ = _xarray_with_attrs( xa_, - xa_.attrs[STATIC_COV_TAG].loc[[key]] - if adapt_covs_on_component - else xa_.attrs[STATIC_COV_TAG], + ( + xa_.attrs[STATIC_COV_TAG].loc[[key]] + if adapt_covs_on_component + else xa_.attrs[STATIC_COV_TAG] + ), None, ) return self.__class__(xa_) @@ -5096,9 +5102,11 @@ def _get_freq(xa_in: xr.DataArray): xa_ = self._xa.sel({DIMS[1]: key}) xa_ = _xarray_with_attrs( xa_, - xa_.attrs[STATIC_COV_TAG].loc[key] - if adapt_covs_on_component - else xa_.attrs[STATIC_COV_TAG], + ( + xa_.attrs[STATIC_COV_TAG].loc[key] + if adapt_covs_on_component + else xa_.attrs[STATIC_COV_TAG] + ), None, ) return self.__class__(xa_) diff --git a/darts/utils/__init__.py b/darts/utils/__init__.py index a13d1d8b69..be17f2204c 100644 --- a/darts/utils/__init__.py +++ b/darts/utils/__init__.py @@ -2,6 +2,7 @@ Utils ----- """ + from .utils import ( _build_tqdm_iterator, _parallel_apply, diff --git a/darts/utils/data/inference_dataset.py b/darts/utils/data/inference_dataset.py index c60f1f22c0..e914696fbd 100644 --- a/darts/utils/data/inference_dataset.py +++ b/darts/utils/data/inference_dataset.py @@ -219,9 +219,7 @@ def find_list_index(index, cumulative_lengths, bounds, stride): stride_idx = (index - cumulative_lengths[list_index - 1]) * stride return list_index, bound_left + stride_idx - def __getitem__( - self, idx: int - ) -> Tuple[ + def __getitem__(self, idx: int) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -380,9 +378,7 @@ def __init__( def __len__(self): return len(self.ds) - def __getitem__( - self, idx: int - ) -> Tuple[ + def __getitem__(self, idx: int) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -446,9 +442,7 @@ def __init__( def __len__(self): return len(self.ds) - def __getitem__( - self, idx: int - ) -> Tuple[ + def __getitem__(self, idx: int) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -540,9 +534,7 @@ def __init__( def __len__(self): return len(self.ds_past) - def __getitem__( - self, idx - ) -> Tuple[ + def __getitem__(self, idx) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -644,9 +636,7 @@ def __init__( def __len__(self): return len(self.ds_past) - def __getitem__( - self, idx - ) -> Tuple[ + def __getitem__(self, idx) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -752,9 +742,7 @@ def __init__( def __len__(self): return len(self.ds_past) - def __getitem__( - self, idx - ) -> Tuple[ + def __getitem__(self, idx) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], diff --git a/darts/utils/data/sequential_dataset.py b/darts/utils/data/sequential_dataset.py index 881dc344fe..3b7a713f38 100644 --- a/darts/utils/data/sequential_dataset.py +++ b/darts/utils/data/sequential_dataset.py @@ -248,9 +248,7 @@ def __init__( def __len__(self): return len(self.ds_past) - def __getitem__( - self, idx - ) -> Tuple[ + def __getitem__(self, idx) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -351,9 +349,7 @@ def __init__( def __len__(self): return len(self.ds_past) - def __getitem__( - self, idx - ) -> Tuple[ + def __getitem__(self, idx) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -459,9 +455,7 @@ def __init__( def __len__(self): return len(self.ds_past) - def __getitem__( - self, idx - ) -> Tuple[ + def __getitem__(self, idx) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], diff --git a/darts/utils/data/shifted_dataset.py b/darts/utils/data/shifted_dataset.py index 1a82ff5583..9bd4d4acb3 100644 --- a/darts/utils/data/shifted_dataset.py +++ b/darts/utils/data/shifted_dataset.py @@ -253,9 +253,7 @@ def __init__( def __len__(self): return len(self.ds_past) - def __getitem__( - self, idx - ) -> Tuple[ + def __getitem__(self, idx) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -356,9 +354,7 @@ def __init__( def __len__(self): return len(self.ds_past) - def __getitem__( - self, idx - ) -> Tuple[ + def __getitem__(self, idx) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -466,9 +462,7 @@ def __init__( def __len__(self): return len(self.ds_past) - def __getitem__( - self, idx - ) -> Tuple[ + def __getitem__(self, idx) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], diff --git a/darts/utils/data/training_dataset.py b/darts/utils/data/training_dataset.py index d485ee6159..2735e614f0 100644 --- a/darts/utils/data/training_dataset.py +++ b/darts/utils/data/training_dataset.py @@ -241,9 +241,7 @@ def __init__(self): super().__init__() @abstractmethod - def __getitem__( - self, idx: int - ) -> Tuple[ + def __getitem__(self, idx: int) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -264,9 +262,7 @@ def __init__(self): super().__init__() @abstractmethod - def __getitem__( - self, idx: int - ) -> Tuple[ + def __getitem__(self, idx: int) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], @@ -287,9 +283,7 @@ def __init__(self): super().__init__() @abstractmethod - def __getitem__( - self, idx: int - ) -> Tuple[ + def __getitem__(self, idx: int) -> Tuple[ np.ndarray, Optional[np.ndarray], Optional[np.ndarray], diff --git a/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py b/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py index 2876d716eb..a6cca7d77e 100644 --- a/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py +++ b/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py @@ -101,15 +101,21 @@ def _optimized_historical_forecasts_last_points_only( ) X, times = create_lagged_prediction_data( - target_series=None - if model._get_lags("target") is None - else series_[hist_fct_tgt_start:hist_fct_tgt_end], - past_covariates=None - if past_covariates_ is None - else past_covariates_[hist_fct_pc_start:hist_fct_pc_end], - future_covariates=None - if future_covariates_ is None - else future_covariates_[hist_fct_fc_start:hist_fct_fc_end], + target_series=( + None + if model._get_lags("target") is None + else series_[hist_fct_tgt_start:hist_fct_tgt_end] + ), + past_covariates=( + None + if past_covariates_ is None + else past_covariates_[hist_fct_pc_start:hist_fct_pc_end] + ), + future_covariates=( + None + if future_covariates_ is None + else future_covariates_[hist_fct_fc_start:hist_fct_fc_end] + ), lags=model._get_lags("target"), lags_past_covariates=model._get_lags("past"), lags_future_covariates=model._get_lags("future"), @@ -149,13 +155,15 @@ def _optimized_historical_forecasts_last_points_only( forecasts_list.append( TimeSeries.from_times_and_values( - times=times[0] - if stride == 1 and model.output_chunk_length == 1 - else generate_index( - start=hist_fct_start + (forecast_horizon - 1) * freq, - length=forecast.shape[0], - freq=freq * stride, - name=series_.time_index.name, + times=( + times[0] + if stride == 1 and model.output_chunk_length == 1 + else generate_index( + start=hist_fct_start + (forecast_horizon - 1) * freq, + length=forecast.shape[0], + freq=freq * stride, + name=series_.time_index.name, + ) ), values=forecast, columns=forecast_components, @@ -248,15 +256,21 @@ def _optimized_historical_forecasts_all_points( ) X, _ = create_lagged_prediction_data( - target_series=None - if model._get_lags("target") is None - else series_[hist_fct_tgt_start:hist_fct_tgt_end], - past_covariates=None - if past_covariates_ is None - else past_covariates_[hist_fct_pc_start:hist_fct_pc_end], - future_covariates=None - if future_covariates_ is None - else future_covariates_[hist_fct_fc_start:hist_fct_fc_end], + target_series=( + None + if model._get_lags("target") is None + else series_[hist_fct_tgt_start:hist_fct_tgt_end] + ), + past_covariates=( + None + if past_covariates_ is None + else past_covariates_[hist_fct_pc_start:hist_fct_pc_end] + ), + future_covariates=( + None + if future_covariates_ is None + else future_covariates_[hist_fct_fc_start:hist_fct_fc_end] + ), lags=model._get_lags("target"), lags_past_covariates=model._get_lags("past"), lags_future_covariates=model._get_lags("future"), diff --git a/darts/utils/likelihood_models.py b/darts/utils/likelihood_models.py index 900c47687d..7701b7a960 100644 --- a/darts/utils/likelihood_models.py +++ b/darts/utils/likelihood_models.py @@ -114,9 +114,11 @@ def compute_loss(self, model_output: torch.Tensor, target: torch.Tensor): device = params_out[0].device prior_params = tuple( # use model output as "prior" for parameters not specified as prior - torch.tensor(prior_params[i]).to(device) - if prior_params[i] is not None - else params_out[i] + ( + torch.tensor(prior_params[i]).to(device) + if prior_params[i] is not None + else params_out[i] + ) for i in range(len(prior_params)) ) prior_distr = self._distr_from_params(prior_params) diff --git a/darts/utils/losses.py b/darts/utils/losses.py index a2eb251337..2c51e71145 100644 --- a/darts/utils/losses.py +++ b/darts/utils/losses.py @@ -2,6 +2,7 @@ PyTorch Loss Functions ---------------------- """ + # Inspiration: https://github.com/ElementAI/N-BEATS/blob/master/common/torch/losses.py import numpy as np diff --git a/darts/utils/multioutput.py b/darts/utils/multioutput.py index 84e4f04523..5c93ed95a4 100644 --- a/darts/utils/multioutput.py +++ b/darts/utils/multioutput.py @@ -84,9 +84,11 @@ def fit(self, X, y, sample_weight=None, **fit_params): y[:, i], sample_weight, # eval set may be a list (for XGBRegressor), in which case we have to keep it as a list - eval_set=[(eval_set[0][0], eval_set[0][1][:, i])] - if isinstance(eval_set, list) - else (eval_set[0], eval_set[1][:, i]), + eval_set=( + [(eval_set[0][0], eval_set[0][1][:, i])] + if isinstance(eval_set, list) + else (eval_set[0], eval_set[1][:, i]) + ), **fit_params_validated ) for i in range(y.shape[1]) diff --git a/darts/utils/statistics.py b/darts/utils/statistics.py index faf4d1304c..46383e95d5 100644 --- a/darts/utils/statistics.py +++ b/darts/utils/statistics.py @@ -390,7 +390,6 @@ def stationarity_tests( p_value_threshold_adfuller: float = 0.05, p_value_threshold_kpss: float = 0.05, ) -> bool: - """ Double test on stationarity using both Kwiatkowski-Phillips-Schmidt-Shin and Augmented Dickey-Fuller statistical tests. @@ -668,9 +667,11 @@ def plot_acf( axis.plot( (i, i), (0, r[i]), - color=("#b512b8" if m is not None and i == m else "black") - if default_formatting - else None, + color=( + ("#b512b8" if m is not None and i == m else "black") + if default_formatting + else None + ), lw=(1 if m is not None and i == m else 0.5), ) @@ -769,9 +770,7 @@ def plot_pacf( color=( "#b512b8" if m is not None and i == m - else "black" - if default_formatting - else None + else "black" if default_formatting else None ), lw=(1 if m is not None and i == m else 0.5), ) @@ -887,9 +886,11 @@ def plot_ccf( axis.plot( (i, i), (0, ccf[i]), - color=("#b512b8" if m is not None and i == m else "black") - if default_formatting - else None, + color=( + ("#b512b8" if m is not None and i == m else "black") + if default_formatting + else None + ), lw=(1 if m is not None and i == m else 0.5), ) diff --git a/darts/utils/timeseries_generation.py b/darts/utils/timeseries_generation.py index da1d2a524c..0e38747d7a 100644 --- a/darts/utils/timeseries_generation.py +++ b/darts/utils/timeseries_generation.py @@ -60,7 +60,7 @@ def generate_index( logger, ) raise_if( - end is not None and start is not None and type(start) != type(end), + end is not None and start is not None and type(start) is not type(end), "index generation with `start` and `end` requires equal object types of `start` and `end`", logger, ) @@ -311,14 +311,14 @@ def gaussian_timeseries( A white noise TimeSeries created as indicated above. """ - if type(mean) == np.ndarray: + if type(mean) is np.ndarray: raise_if_not( mean.shape == (length,), "If a vector of means is provided, " "it requires the same length as the TimeSeries.", logger, ) - if type(std) == np.ndarray: + if type(std) is np.ndarray: raise_if_not( std.shape == (length, length), "If a matrix of standard deviations is provided, " diff --git a/darts/utils/utils.py b/darts/utils/utils.py index 7a7adc7c59..12a1400fd2 100644 --- a/darts/utils/utils.py +++ b/darts/utils/utils.py @@ -2,6 +2,7 @@ Additional util functions ------------------------- """ + from enum import Enum from functools import wraps from inspect import Parameter, getcallargs, signature @@ -300,7 +301,7 @@ def slice_index( included. """ - if type(start) != type(end): + if type(start) is not type(end): raise_log( ValueError( "start and end values must be of the same type (either both integers or both pd.Timestamps)" diff --git a/requirements/dev.txt b/requirements/dev.txt index 1894e4f4f8..988ecf746f 100644 --- a/requirements/dev.txt +++ b/requirements/dev.txt @@ -1,7 +1,7 @@ -black[jupyter]==22.3.0 -flake8==4.0.1 -isort==5.11.5 +black[jupyter]==24.1.1 +flake8==7.0.0 +isort==5.13.2 pre-commit pytest-cov -pyupgrade==2.31.0 +pyupgrade==v3.15.0 testfixtures From bf51476cb0574fbc098ded92277d192e0bb05c97 Mon Sep 17 00:00:00 2001 From: madtoinou <32447896+madtoinou@users.noreply.github.com> Date: Sat, 24 Feb 2024 13:36:12 +0100 Subject: [PATCH 005/161] Fix/ts prepend (#2237) * fix: append/prepend correctul retain components names and hierarchy * updated changelog * fix: revert unecessary change * update changelog --------- Co-authored-by: dennisbader --- CHANGELOG.md | 3 +- darts/tests/test_timeseries.py | 55 ++++++++++++++++++++-------------- darts/timeseries.py | 4 ++- 3 files changed, 38 insertions(+), 24 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 39747ba136..eb210770a1 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -23,7 +23,8 @@ but cannot always guarantee backwards compatibility. Changes that may **break co **Fixed** - Fixed a bug in probabilistic `LinearRegressionModel.fit()`, where the `model` attribute was not pointing to all underlying estimators. [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). - Raise an error in `RegressionEsembleModel` when the `regression_model` was created with `multi_models=False` (not supported). [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). -- Fixed a bug in `coefficient_of_variaton()` with `intersect=True`, where the coefficient was not computed on the intersection. [#2202](https://github.com/unit8co/darts/pull/2202) by [Antoine Madrona](https://github.com/madtoinou). +- Fixed a bug in `coefficient_of_variation()` with `intersect=True`, where the coefficient was not computed on the intersection. [#2202](https://github.com/unit8co/darts/pull/2202) by [Antoine Madrona](https://github.com/madtoinou). +- Fixed a bug in `TimeSeries.append/prepend_values()`, where the components names and the hierarchy were dropped. [#2237](https://github.com/unit8co/darts/pull/2237) by [Antoine Madrona](https://github.com/madtoinou). ### For developers of the library: - Updated pre-commit hooks to the latest version using `pre-commit autoupdate`. diff --git a/darts/tests/test_timeseries.py b/darts/tests/test_timeseries.py index edefc2fe9d..ef892d4753 100644 --- a/darts/tests/test_timeseries.py +++ b/darts/tests/test_timeseries.py @@ -627,9 +627,11 @@ def helper_test_shift(test_case, test_series: TimeSeries): def helper_test_append(test_case, test_series: TimeSeries): # reconstruct series seriesA, seriesB = test_series.split_after(pd.Timestamp("20130106")) - assert seriesA.append(seriesB) == test_series - assert seriesA.append(seriesB).freq == test_series.freq - assert test_series.time_index.equals(seriesA.append(seriesB).time_index) + appended = seriesA.append(seriesB) + assert appended == test_series + assert appended.freq == test_series.freq + assert test_series.time_index.equals(appended.time_index) + assert appended.components.equals(seriesA.components) # Creating a gap is not allowed seriesC = test_series.drop_before(pd.Timestamp("20130108")) @@ -648,23 +650,26 @@ def helper_test_append_values(test_case, test_series: TimeSeries): # reconstruct series seriesA, seriesB = test_series.split_after(pd.Timestamp("20130106")) arrayB = seriesB.all_values() - assert seriesA.append_values(arrayB) == test_series - assert test_series.time_index.equals(seriesA.append_values(arrayB).time_index) + appended = seriesA.append_values(arrayB) + assert appended == test_series + assert test_series.time_index.equals(appended.time_index) # arrayB shape shouldn't affect append_values output: squeezed_arrayB = arrayB.squeeze() - assert seriesA.append_values(squeezed_arrayB) == test_series - assert test_series.time_index.equals( - seriesA.append_values(squeezed_arrayB).time_index - ) + appended_sq = seriesA.append_values(squeezed_arrayB) + assert appended_sq == test_series + assert test_series.time_index.equals(appended_sq.time_index) + assert appended_sq.components.equals(seriesA.components) @staticmethod def helper_test_prepend(test_case, test_series: TimeSeries): # reconstruct series seriesA, seriesB = test_series.split_after(pd.Timestamp("20130106")) - assert seriesB.prepend(seriesA) == test_series - assert seriesB.prepend(seriesA).freq == test_series.freq - assert test_series.time_index.equals(seriesB.prepend(seriesA).time_index) + prepended = seriesB.prepend(seriesA) + assert prepended == test_series + assert prepended.freq == test_series.freq + assert test_series.time_index.equals(prepended.time_index) + assert prepended.components.equals(seriesB.components) # Creating a gap is not allowed seriesC = test_series.drop_before(pd.Timestamp("20130108")) @@ -683,15 +688,17 @@ def helper_test_prepend_values(test_case, test_series: TimeSeries): # reconstruct series seriesA, seriesB = test_series.split_after(pd.Timestamp("20130106")) arrayA = seriesA.data_array().values - assert seriesB.prepend_values(arrayA) == test_series - assert test_series.time_index.equals(seriesB.prepend_values(arrayA).time_index) + prepended = seriesB.prepend_values(arrayA) + assert prepended == test_series + assert test_series.time_index.equals(prepended.time_index) + assert prepended.components.equals(test_series.components) # arrayB shape shouldn't affect append_values output: squeezed_arrayA = arrayA.squeeze() - assert seriesB.prepend_values(squeezed_arrayA) == test_series - assert test_series.time_index.equals( - seriesB.prepend_values(squeezed_arrayA).time_index - ) + prepended_sq = seriesB.prepend_values(squeezed_arrayA) + assert prepended_sq == test_series + assert test_series.time_index.equals(prepended_sq.time_index) + assert prepended_sq.components.equals(test_series.components) def test_slice(self): TestTimeSeries.helper_test_slice(self, self.series1) @@ -711,8 +718,8 @@ def test_shift(self): def test_append(self): TestTimeSeries.helper_test_append(self, self.series1) # Check `append` deals with `RangeIndex` series correctly: - series_1 = linear_timeseries(start=1, length=5, freq=2) - series_2 = linear_timeseries(start=11, length=2, freq=2) + series_1 = linear_timeseries(start=1, length=5, freq=2, column_name="A") + series_2 = linear_timeseries(start=11, length=2, freq=2, column_name="B") appended = series_1.append(series_2) expected_vals = np.concatenate( [series_1.all_values(), series_2.all_values()], axis=0 @@ -720,6 +727,7 @@ def test_append(self): expected_idx = pd.RangeIndex(start=1, stop=15, step=2) assert np.allclose(appended.all_values(), expected_vals) assert appended.time_index.equals(expected_idx) + assert appended.components.equals(series_1.components) def test_append_values(self): TestTimeSeries.helper_test_append_values(self, self.series1) @@ -732,12 +740,13 @@ def test_append_values(self): expected_idx = pd.RangeIndex(start=1, stop=15, step=2) assert np.allclose(appended.all_values(), expected_vals) assert appended.time_index.equals(expected_idx) + assert appended.components.equals(series.components) def test_prepend(self): TestTimeSeries.helper_test_prepend(self, self.series1) # Check `prepend` deals with `RangeIndex` series correctly: - series_1 = linear_timeseries(start=1, length=5, freq=2) - series_2 = linear_timeseries(start=11, length=2, freq=2) + series_1 = linear_timeseries(start=1, length=5, freq=2, column_name="A") + series_2 = linear_timeseries(start=11, length=2, freq=2, column_name="B") prepended = series_2.prepend(series_1) expected_vals = np.concatenate( [series_1.all_values(), series_2.all_values()], axis=0 @@ -745,6 +754,7 @@ def test_prepend(self): expected_idx = pd.RangeIndex(start=1, stop=15, step=2) assert np.allclose(prepended.all_values(), expected_vals) assert prepended.time_index.equals(expected_idx) + assert prepended.components.equals(series_1.components) def test_prepend_values(self): TestTimeSeries.helper_test_prepend_values(self, self.series1) @@ -757,6 +767,7 @@ def test_prepend_values(self): expected_idx = pd.RangeIndex(start=-3, stop=11, step=2) assert np.allclose(prepended.all_values(), expected_vals) assert prepended.time_index.equals(expected_idx) + assert prepended.components.equals(series.components) def test_with_values(self): vals = np.random.rand(5, 10, 3) diff --git a/darts/timeseries.py b/darts/timeseries.py index 7a9ad9dfba..6ac6aa269a 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -2744,7 +2744,7 @@ def append(self, other: Self) -> Self: ) raise_if_not( other.freq == self.freq, - "Appended TimeSeries must have the same frequency as the current one", + "Both series must have the same frequency.", logger, ) raise_if_not( @@ -2875,6 +2875,8 @@ def prepend_values(self, values: np.ndarray) -> Self: times=idx, fill_missing_dates=False, static_covariates=self.static_covariates, + columns=self.columns, + hierarchy=self.hierarchy, ) ) From 24ae0e12e991bbd2fcfa4d59ad6ab53b7016fac3 Mon Sep 17 00:00:00 2001 From: madtoinou <32447896+madtoinou@users.noreply.github.com> Date: Sat, 24 Feb 2024 13:37:30 +0100 Subject: [PATCH 006/161] fix: update hierarchy for single transform window_transform (#2207) * fix: update hierarchy for single transform window_transform * update changelog * update changelog * fix: using set to check overlap * fix: corrected logic to update the hierarchy after window_transform * fix: hierarchy can be conserved when applying non-overlapping transforms * feat: add new argument, improve logic * feat: adding tests * fix: expected argument match docstring in resample() * fix: addressing review comments * fix: linting issue * fix: linting * linting * update changelog and remane keep_old_names to keep_names --------- Co-authored-by: dennisbader --- CHANGELOG.md | 3 + .../transformers/window_transformer.py | 8 +- .../test_window_transformations.py | 186 ++++++++++++++++++ darts/timeseries.py | 86 +++++++- 4 files changed, 276 insertions(+), 7 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index eb210770a1..40952f1413 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -19,8 +19,11 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Added option to exclude some `group_cols` from being added as static covariates when using `TimeSeries.from_group_dataframe()` with parameter `drop_group_cols`. - Improvements to `TorchForecastingModel`: - Added support for additional lr scheduler configuration parameters for more control ("interval", "frequency", "monitor", "strict", "name"). [#2218](https://github.com/unit8co/darts/pull/2218) by [Dennis Bader](https://github.com/dennisbader). +- Improvements to `WindowTransformer` and `window_transform`: + - Added argument `keep_names` to indicate whether the original component names should be kept. [#2207](https://github.com/unit8co/darts/pull/2207)by [Antoine Madrona](https://github.com/madtoinou). **Fixed** +- Fixed a bug when calling `window_transform` on a `TimeSeries` with a hierarchy. The hierarchy is now only preseved for single transformations applied to all components, or removed otherwise. [#2207](https://github.com/unit8co/darts/pull/2207)by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in probabilistic `LinearRegressionModel.fit()`, where the `model` attribute was not pointing to all underlying estimators. [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). - Raise an error in `RegressionEsembleModel` when the `regression_model` was created with `multi_models=False` (not supported). [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `coefficient_of_variation()` with `intersect=True`, where the coefficient was not computed on the intersection. [#2202](https://github.com/unit8co/darts/pull/2202) by [Antoine Madrona](https://github.com/madtoinou). diff --git a/darts/dataprocessing/transformers/window_transformer.py b/darts/dataprocessing/transformers/window_transformer.py index ab16f64e3e..bc6b2e4570 100644 --- a/darts/dataprocessing/transformers/window_transformer.py +++ b/darts/dataprocessing/transformers/window_transformer.py @@ -20,6 +20,7 @@ def __init__( forecasting_safe: Optional[bool] = True, keep_non_transformed: Optional[bool] = False, include_current: Optional[bool] = True, + keep_names: Optional[bool] = False, name: str = "WindowTransformer", n_jobs: int = 1, verbose: bool = False, @@ -123,11 +124,15 @@ def __init__( keep_non_transformed ``False`` to return the transformed components only, ``True`` to return all original components along - the transformed ones. Default is ``False``. + the transformed ones. Default is ``False``. If the series has a hierarchy, must be set to ``False``. include_current ``True`` to include the current time step in the window, ``False`` to exclude it. Default is ``True``. + keep_names + Whether the transformed components should keep the original component names or. Must be set to ``False`` + if `keep_non_transformed = True` or the number of transformation is greater than 1. + name A specific name for the transformer. @@ -147,6 +152,7 @@ def __init__( self.treat_na = treat_na self.forecasting_safe = forecasting_safe self.include_current = include_current + self.keep_names = keep_names super().__init__(name, n_jobs, verbose) @staticmethod diff --git a/darts/tests/dataprocessing/transformers/test_window_transformations.py b/darts/tests/dataprocessing/transformers/test_window_transformations.py index 65bc70d001..e345a26734 100644 --- a/darts/tests/dataprocessing/transformers/test_window_transformations.py +++ b/darts/tests/dataprocessing/transformers/test_window_transformations.py @@ -9,6 +9,30 @@ from darts.dataprocessing.transformers import Mapper, WindowTransformer +def helper_generate_ts_hierarchy(length: int): + values = np.stack( + [ + np.ones( + length, + ) + * 5, + np.ones( + length, + ) + * 3, + np.ones( + length, + ) + * 2, + ], + axis=1, + ) + hierarchy = {"B": "A", "C": "A"} + return TimeSeries.from_values( + values=values, columns=["A", "B", "C"], hierarchy=hierarchy + ) + + class TestTimeSeriesWindowTransform: times = pd.date_range("20130101", "20130110") @@ -128,6 +152,49 @@ def test_ts_windowtransf_input_dictionary(self): } # forecating_safe=True vs center=True self.series_univ_det.window_transform(transforms=window_transformations) + # keep_names and overlapping transforms + with pytest.raises(ValueError) as err: + window_transformations = [ + { + "function": "mean", + "mode": "rolling", + "window": 3, + "components": self.series_multi_det.components[:1], + }, + { + "function": "median", + "mode": "rolling", + "window": 3, + "components": self.series_multi_det.components, + }, + ] + self.series_multi_det.window_transform( + transforms=window_transformations, keep_names=True + ) + assert str(err.value) == ( + "Cannot keep the original component names as some transforms are overlapping " + "(applied to the same components). Set `keep_names` to `False`." + ) + + # keep_names and keep_non_transformed + with pytest.raises(ValueError) as err: + window_transformations = [ + { + "function": "mean", + "mode": "rolling", + "window": 3, + "components": self.series_multi_det.components[:1], + }, + ] + self.series_multi_det.window_transform( + transforms=window_transformations, + keep_names=True, + keep_non_transformed=True, + ) + assert str(err.value) == ( + "`keep_names = True` and `keep_non_transformed = True` cannot be used together." + ) + def test_ts_windowtransf_output_series(self): # univariate deterministic input transforms = {"function": "sum", "mode": "rolling", "window": 1} @@ -462,6 +529,98 @@ def test_include_current(self): ) assert transformed_ts == expected_transformed_series + @pytest.mark.parametrize( + "transforms", + [ + { + "function": "median", + "mode": "rolling", + "window": 3, + }, + { + "function": "mean", + "mode": "expanding", + "window": 2, + "components": ["A", "B", "C"], + }, + ], + ) + def test_ts_windowtransf_hierarchy(self, transforms): + """Checking that supported transforms behave as expected: + - implicitely applied to all components + - passing explicitely all components + """ + ts = helper_generate_ts_hierarchy(10) + + # renaming components based on transform parameters + ts_tr = ts.window_transform(transforms=transforms) + tr_prefix = ( + f"{transforms['mode']}_{transforms['function']}_{transforms['window']}_" + ) + assert ts_tr.hierarchy == { + tr_prefix + comp: [tr_prefix + "A"] for comp in ["B", "C"] + } + + # keeping original components name + ts_tr = ts.window_transform(transforms=transforms, keep_names=True) + assert ts_tr.hierarchy == ts.hierarchy == {"C": ["A"], "B": ["A"]} + + @pytest.mark.parametrize( + "transforms", + [ + {"function": "median", "mode": "rolling", "window": 3, "components": ["B"]}, + [ + { + "function": "mean", + "mode": "expanding", + "window": 2, + }, + { + "function": "median", + "mode": "rolling", + "window": 3, + }, + ], + [ + { + "function": "median", + "mode": "rolling", + "window": 3, + "components": ["B", "C"], + }, + { + "function": "sum", + "mode": "rolling", + "window": 5, + "components": ["A", "C"], + }, + ], + ], + ) + def test_ts_windowtransf_drop_hierarchy(self, transforms): + """Checking that hierarchy is correctly removed when + - transform is not applied to all the components + - several transforms applied to all the components + - two transforms with overlapping components + """ + ts = helper_generate_ts_hierarchy(10) + ts_tr = ts.window_transform(transforms=transforms) + assert ts_tr.hierarchy is None + + def test_ts_windowtransf_hierarchy_wrong_args(self): + ts = helper_generate_ts_hierarchy(10) + + # hierarchy + keep_non_transformed = ambiguity for hierarchy + with pytest.raises(ValueError): + ts.window_transform( + transforms={ + "function": "sum", + "mode": "rolling", + "window": 3, + }, + keep_non_transformed=True, + ) + class TestWindowTransformer: @@ -579,3 +738,30 @@ def times_five(x): transformed_series = pipeline.fit_transform(series_1) assert transformed_series == expected_transformed_series + + def test_transformer_hierarchy(self): + ts = helper_generate_ts_hierarchy(10) + transform = { + "function": "median", + "mode": "rolling", + "window": 3, + } + + # renaming components + window_transformer = WindowTransformer( + transforms=[transform], + ) + ts_tr = window_transformer.transform(ts) + tr_prefix = ( + f"{transform['mode']}_{transform['function']}_{transform['window']}_" + ) + assert ts_tr.hierarchy == { + tr_prefix + comp: [tr_prefix + "A"] for comp in ["B", "C"] + } + # keeping old components + window_transformer = WindowTransformer( + transforms=transform, + keep_names=True, + ) + ts_tr = window_transformer.transform(ts) + assert ts_tr.hierarchy == ts.hierarchy == {"C": ["A"], "B": ["A"]} diff --git a/darts/timeseries.py b/darts/timeseries.py index 6ac6aa269a..183331171e 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -3238,7 +3238,7 @@ def resample(self, freq: str, method: str = "pad", **kwargs) -> Self: # TODO: check if method == "pad": new_xa = resample.pad() - elif method == "bfill": + elif method in ["bfill", "backfill"]: new_xa = resample.backfill() else: raise_log(ValueError(f"Unknown method: {method}"), logger) @@ -3360,6 +3360,7 @@ def window_transform( forecasting_safe: Optional[bool] = True, keep_non_transformed: Optional[bool] = False, include_current: Optional[bool] = True, + keep_names: Optional[bool] = False, ) -> Self: """ Applies a moving/rolling, expanding or exponentially weighted window transformation over this ``TimeSeries``. @@ -3458,11 +3459,15 @@ def window_transform( keep_non_transformed ``False`` to return the transformed components only, ``True`` to return all original components along - the transformed ones. Default is ``False``. + the transformed ones. Default is ``False``. If the series has a hierarchy, must be set to ``False``. include_current ``True`` to include the current time step in the window, ``False`` to exclude it. Default is ``True``. + keep_names + Whether the transformed components should keep the original component names or. Must be set to ``False`` + if `keep_non_transformed = True` or the number of transformation is greater than 1. + Returns ------- TimeSeries @@ -3611,6 +3616,53 @@ def _get_kwargs(transformation, forecasting_safe): if isinstance(transforms, dict): transforms = [transforms] + # check if some transformations are applied to the same components + overlapping_transforms = False + transformed_components = set() + for tr in transforms: + if not isinstance(tr, dict): + raise_log( + ValueError("Every entry in `transforms` must be a dictionary"), + logger, + ) + tr_comps = set(tr["components"] if "components" in tr else self.components) + if len(transformed_components.intersection(tr_comps)) > 0: + overlapping_transforms = True + transformed_components = transformed_components.union(tr_comps) + + if keep_names and overlapping_transforms: + raise_log( + ValueError( + "Cannot keep the original component names as some transforms are overlapping " + "(applied to the same components). Set `keep_names` to `False`." + ), + logger, + ) + + # actually, this could be allowed to allow transformation "in place"? + # keep_non_transformed can be changed to False/ignored if the transforms are not partial + if keep_names and keep_non_transformed: + raise_log( + ValueError( + "`keep_names = True` and `keep_non_transformed = True` cannot be used together." + ), + logger, + ) + + partial_transforms = transformed_components != set(self.components) + new_hierarchy = None + convert_hierarchy = False + comp_names_map = dict() + if self.hierarchy: + # the partial_transform covers for scenario keep_non_transformed = True + if len(transforms) > 1 or partial_transforms: + logger.warning( + "The hierarchy cannot be retained, either because there is more than one transform or " + "because the transform is not applied to all the components of the series." + ) + else: + convert_hierarchy = True + raise_if_not( all([isinstance(tr, dict) for tr in transforms]), "`transforms` must be a non-empty dictionary or a non-empty list of dictionaries.", @@ -3688,9 +3740,22 @@ def _get_kwargs(transformation, forecasting_safe): f"{'_'+str(min_periods) if min_periods>1 else ''}" ) - new_columns.extend( - [f"{name_prefix}_{comp_name}" for comp_name in comps_to_transform] - ) + if keep_names: + new_columns.extend(comps_to_transform) + else: + names_w_prefix = [ + f"{name_prefix}_{comp_name}" for comp_name in comps_to_transform + ] + new_columns.extend(names_w_prefix) + if convert_hierarchy: + comp_names_map.update( + { + c_name: new_c_name + for c_name, new_c_name in zip( + comps_to_transform, names_w_prefix + ) + } + ) # track how many NaN rows are added by each transformation on each transformed column # NaNs would appear only if user changes "min_periods" to else than 1, if not, @@ -3745,6 +3810,15 @@ def _get_kwargs(transformation, forecasting_safe): # revert dataframe to TimeSeries new_index = original_index.__class__(resulting_transformations.index) + if convert_hierarchy: + if keep_names: + new_hierarchy = self.hierarchy + else: + new_hierarchy = { + comp_names_map[k]: [comp_names_map[old_name] for old_name in v] + for k, v in self.hierarchy.items() + } + transformed_time_series = TimeSeries.from_times_and_values( times=new_index, values=resulting_transformations.values.reshape( @@ -3752,7 +3826,7 @@ def _get_kwargs(transformation, forecasting_safe): ), columns=new_columns, static_covariates=self.static_covariates, - hierarchy=self.hierarchy, + hierarchy=new_hierarchy, ) return transformed_time_series From 2bc631976505ba59aee9458f17d8c46d5fdf5aa6 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Sat, 24 Feb 2024 17:52:16 +0100 Subject: [PATCH 007/161] fix ElectricityConsumptionZurich dataset hash (#2250) --- darts/datasets/__init__.py | 12 +++--------- 1 file changed, 3 insertions(+), 9 deletions(-) diff --git a/darts/datasets/__init__.py b/darts/datasets/__init__.py index 5074af4c97..b1da737a48 100644 --- a/darts/datasets/__init__.py +++ b/darts/datasets/__init__.py @@ -18,8 +18,6 @@ from .dataset_loaders import DatasetLoaderCSV, DatasetLoaderMetadata -pd_above_v22 = pd.__version__ >= "2.2" - """ Overall usage of this package: from darts.datasets import AirPassengersDataset @@ -890,12 +888,8 @@ def pre_process_dataset(dataset_path): df.index.name = "Timestamp" df.to_csv(self._get_path_dataset()) - # pandas v2.2.0 introduced some changes - hash_expected = ( - "485d81e9902cc0ccb1f86d7e01fb37cd" - if pd_above_v22 - else "a019125b7f9c1afeacb0ae60ce7455ef" - ) + # pandas v2.2.0 introduced a bug that was fixed in v2.2.1; the expected hash for 2.2.0 + # is "485d81e9902cc0ccb1f86d7e01fb37cd" # hash value for dataset with weather data super().__init__( metadata=DatasetLoaderMetadata( @@ -905,7 +899,7 @@ def pre_process_dataset(dataset_path): "ewz_stromabgabe_netzebenen_stadt_zuerich/" "download/ewz_stromabgabe_netzebenen_stadt_zuerich.csv" ), - hash=hash_expected, + hash="a019125b7f9c1afeacb0ae60ce7455ef", header_time="Timestamp", freq="15min", pre_process_csv_fn=pre_process_dataset, From 2d1919dd23e058396fd36262f70343ab41b6ea85 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Sat, 24 Feb 2024 22:21:12 +0100 Subject: [PATCH 008/161] Dep/relax ptl (#2251) * remove pytorch lightning upper version cap * fix failing unit test and update changelog --- CHANGELOG.md | 13 +- .../explainability/test_tft_explainer.py | 519 +++++++++--------- requirements/torch.txt | 2 +- 3 files changed, 261 insertions(+), 273 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 40952f1413..db2fd6fb07 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -10,7 +10,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For users of the library: **Improved** -- Improvements to `ARIMA` documentation: Specified possible `p`, `d`, `P`, `D`, `trend` advanced options that are available in statsmodels. More explanations on the behaviour of the parameters were added. [#2142](https://github.com/unit8co/darts/pull/2142) by [MarcBresson](https://github.com/MarcBresson) +- Improvements to `ARIMA` documentation: Specified possible `p`, `d`, `P`, `D`, `trend` advanced options that are available in statsmodels. More explanations on the behaviour of the parameters were added. [#2142](https://github.com/unit8co/darts/pull/2142) by [MarcBresson](https://github.com/MarcBresson). - Improvements to `TimeSeries`: [#2196](https://github.com/unit8co/darts/pull/2196) by [Dennis Bader](https://github.com/dennisbader). - 🚀🚀🚀 Significant performance boosts for several `TimeSeries` methods resulting increased efficiency across the entire `Darts` library. Up to 2x faster creation times for series indexed with "regular" frequencies (e.g. Daily, hourly, ...), and >100x for series indexed with "special" frequencies (e.g. "W-MON", ...). Affects: - All `TimeSeries` creation methods @@ -29,9 +29,16 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Fixed a bug in `coefficient_of_variation()` with `intersect=True`, where the coefficient was not computed on the intersection. [#2202](https://github.com/unit8co/darts/pull/2202) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `TimeSeries.append/prepend_values()`, where the components names and the hierarchy were dropped. [#2237](https://github.com/unit8co/darts/pull/2237) by [Antoine Madrona](https://github.com/madtoinou). +**Dependencies** +- Removed upper version cap (<=v2.1.2) for PyTorch Lightning. [#2251](https://github.com/unit8co/darts/pull/2251) by [Dennis Bader](https://github.com/dennisbader). +- Bumped dev dependencies to newest versions: [#2248](https://github.com/unit8co/darts/pull/2248) by [Dennis Bader](https://github.com/dennisbader). + - black[jupyter]: from 22.3.0 to 24.1.1 + - flake8: from 4.0.1 to 7.0.0 + - isort: from 5.11.5 to 5.13.2 + - pyupgrade: 2.31.0 from to v3.15.0 + ### For developers of the library: -- Updated pre-commit hooks to the latest version using `pre-commit autoupdate`. -- Change `pyupgrade` pre-commit hook argument to `--py38-plus`. This allows for [type rewriting](https://github.com/asottile/pyupgrade?tab=readme-ov-file#pep-585-typing-rewrites). +- Updated pre-commit hooks to the latest version using `pre-commit autoupdate`. Change `pyupgrade` pre-commit hook argument to `--py38-plus`. [#2228](https://github.com/unit8co/darts/pull/2248) by [MarcBresson](https://github.com/MarcBresson). ## [0.27.2](https://github.com/unit8co/darts/tree/0.27.2) (2023-01-21) ### For users of the library: diff --git a/darts/tests/explainability/test_tft_explainer.py b/darts/tests/explainability/test_tft_explainer.py index 7b16e88bd5..700d2d2c4e 100644 --- a/darts/tests/explainability/test_tft_explainer.py +++ b/darts/tests/explainability/test_tft_explainer.py @@ -25,6 +25,24 @@ if TORCH_AVAILABLE: + def helper_create_test_cases(series_options: list): + covariates_options = [ + {}, + {"past_covariates"}, + {"future_covariates"}, + {"past_covariates", "future_covariates"}, + ] + relative_index_options = [False, True] + use_encoders_options = [False, True] + return itertools.product( + *[ + series_options, + covariates_options, + relative_index_options, + use_encoders_options, + ] + ) + class TestTFTExplainer: freq = "MS" series_lin_pos = tg.linear_timeseries( @@ -53,289 +71,252 @@ def helper_get_input(self, series_option: str): else: # multiple return self.series_multi, self.pc_multi, self.fc_multi - def helper_create_test_cases(self, series_options: list): - covariates_options = [ - {}, - {"past_covariates"}, - {"future_covariates"}, - {"past_covariates", "future_covariates"}, - ] - relative_index_options = [False, True] - use_encoders_options = [False, True] - return itertools.product( - *[ - series_options, - covariates_options, - relative_index_options, - use_encoders_options, - ] - ) - - def test_explainer_single_univariate_multivariate_series(self): + @pytest.mark.parametrize( + "test_case", helper_create_test_cases(["univariate", "multivariate"]) + ) + def test_explainer_single_univariate_multivariate_series(self, test_case): """Test TFTExplainer with single univariate and multivariate series and a combination of encoders, covariates, and addition of relative index.""" - series_option: str - cov_option: set - add_relative_idx: bool - use_encoders: bool - - series_options = [ - "univariate", - "multivariate", - # "multiple", - ] - test_cases = self.helper_create_test_cases(series_options) - for series_option, cov_option, add_relative_idx, use_encoders in test_cases: - series, pc, fc = self.helper_get_input(series_option) - cov_test_case = dict() - use_pc, use_fc = False, False - if "past_covariates" in cov_option: - cov_test_case["past_covariates"] = pc - use_pc = True - if "future_covariates" in cov_option: - cov_test_case["future_covariates"] = fc - use_fc = True - - # expected number of features for past covs, future covs, and static covs, and encoder/decoder - n_target_expected = series.n_components - n_pc_expected = 1 if "past_covariates" in cov_test_case else 0 - n_fc_expected = 1 if "future_covariates" in cov_test_case else 0 - n_sc_expected = 2 - # encoder is number of past and future covs plus 4 optional encodings (future and past) - # plus 1 univariate target plus 1 optional relative index - n_enc_expected = ( - n_pc_expected - + n_fc_expected - + n_target_expected - + (4 if use_encoders else 0) - + (1 if add_relative_idx else 0) - ) - # encoder is number of future covs plus 2 optional encodings (future) - # plus 1 optional relative index - n_dec_expected = ( - n_fc_expected - + (2 if use_encoders else 0) - + (1 if add_relative_idx else 0) - ) - model = self.helper_create_model( - use_encoders=use_encoders, add_relative_idx=add_relative_idx - ) - # TFTModel requires future covariates - if ( - not add_relative_idx - and "future_covariates" not in cov_test_case - and not use_encoders - ): - with pytest.raises(ValueError): - model.fit(series=series, **cov_test_case) - continue - - model.fit(series=series, **cov_test_case) - explainer = TFTExplainer(model) - explainer2 = TFTExplainer( - model, - background_series=series, - background_past_covariates=pc if use_pc else None, - background_future_covariates=fc if use_fc else None, - ) - assert explainer.background_series == explainer2.background_series + series_option, cov_option, add_relative_idx, use_encoders = test_case + series, pc, fc = self.helper_get_input(series_option) + cov_test_case = dict() + use_pc, use_fc = False, False + if "past_covariates" in cov_option: + cov_test_case["past_covariates"] = pc + use_pc = True + if "future_covariates" in cov_option: + cov_test_case["future_covariates"] = fc + use_fc = True + + # expected number of features for past covs, future covs, and static covs, and encoder/decoder + n_target_expected = series.n_components + n_pc_expected = 1 if "past_covariates" in cov_test_case else 0 + n_fc_expected = 1 if "future_covariates" in cov_test_case else 0 + n_sc_expected = 2 + # encoder is number of past and future covs plus 4 optional encodings (future and past) + # plus 1 univariate target plus 1 optional relative index + n_enc_expected = ( + n_pc_expected + + n_fc_expected + + n_target_expected + + (4 if use_encoders else 0) + + (1 if add_relative_idx else 0) + ) + # encoder is number of future covs plus 2 optional encodings (future) + # plus 1 optional relative index + n_dec_expected = ( + n_fc_expected + + (2 if use_encoders else 0) + + (1 if add_relative_idx else 0) + ) + model = self.helper_create_model( + use_encoders=use_encoders, add_relative_idx=add_relative_idx + ) + # TFTModel requires future covariates + if ( + not add_relative_idx + and "future_covariates" not in cov_test_case + and not use_encoders + ): + with pytest.raises(ValueError): + model.fit(series=series, **cov_test_case) + return + + model.fit(series=series, **cov_test_case) + explainer = TFTExplainer(model) + explainer2 = TFTExplainer( + model, + background_series=series, + background_past_covariates=pc if use_pc else None, + background_future_covariates=fc if use_fc else None, + ) + assert explainer.background_series == explainer2.background_series + assert ( + explainer.background_past_covariates + == explainer2.background_past_covariates + ) + assert ( + explainer.background_future_covariates + == explainer2.background_future_covariates + ) + + assert hasattr(explainer, "model") + assert explainer.background_series[0] == series + if use_pc: + assert explainer.background_past_covariates[0] == pc assert ( - explainer.background_past_covariates - == explainer2.background_past_covariates + explainer.background_past_covariates[0].n_components + == n_pc_expected ) + else: + assert explainer.background_past_covariates is None + if use_fc: + assert explainer.background_future_covariates[0] == fc assert ( - explainer.background_future_covariates - == explainer2.background_future_covariates + explainer.background_future_covariates[0].n_components + == n_fc_expected ) - - assert hasattr(explainer, "model") - assert explainer.background_series[0] == series - if use_pc: - assert explainer.background_past_covariates[0] == pc - assert ( - explainer.background_past_covariates[0].n_components - == n_pc_expected - ) - else: - assert explainer.background_past_covariates is None - if use_fc: - assert explainer.background_future_covariates[0] == fc - assert ( - explainer.background_future_covariates[0].n_components - == n_fc_expected + else: + assert explainer.background_future_covariates is None + result = explainer.explain() + assert isinstance(result, TFTExplainabilityResult) + + enc_imp = result.get_encoder_importance() + dec_imp = result.get_decoder_importance() + stc_imp = result.get_static_covariates_importance() + imps = [enc_imp, dec_imp, stc_imp] + assert all([isinstance(imp, pd.DataFrame) for imp in imps]) + # importances must sum up to 100 percent + assert all( + [imp.squeeze().sum() == pytest.approx(100.0, rel=0.2) for imp in imps] + ) + # importances must have the expected number of columns + assert all( + [ + len(imp.columns) == n + for imp, n in zip( + imps, [n_enc_expected, n_dec_expected, n_sc_expected] ) - else: - assert explainer.background_future_covariates is None - result = explainer.explain() - assert isinstance(result, TFTExplainabilityResult) - - enc_imp = result.get_encoder_importance() - dec_imp = result.get_decoder_importance() - stc_imp = result.get_static_covariates_importance() - imps = [enc_imp, dec_imp, stc_imp] - assert all([isinstance(imp, pd.DataFrame) for imp in imps]) - # importances must sum up to 100 percent - assert all( - [ - imp.squeeze().sum() == pytest.approx(100.0, rel=0.2) - for imp in imps - ] - ) - # importances must have the expected number of columns - assert all( - [ - len(imp.columns) == n - for imp, n in zip( - imps, [n_enc_expected, n_dec_expected, n_sc_expected] - ) - ] - ) + ] + ) - attention = result.get_attention() - assert isinstance(attention, TimeSeries) - # input chunk length + output chunk length = 5 + 2 = 7 - icl, ocl = 5, 2 - freq = series.freq - assert len(attention) == icl + ocl - assert attention.start_time() == series.end_time() - (icl - 1) * freq - assert attention.end_time() == series.end_time() + ocl * freq - assert attention.n_components == ocl - - def test_explainer_multiple_multivariate_series(self): + attention = result.get_attention() + assert isinstance(attention, TimeSeries) + # input chunk length + output chunk length = 5 + 2 = 7 + icl, ocl = 5, 2 + freq = series.freq + assert len(attention) == icl + ocl + assert attention.start_time() == series.end_time() - (icl - 1) * freq + assert attention.end_time() == series.end_time() + ocl * freq + assert attention.n_components == ocl + + @pytest.mark.parametrize("test_case", helper_create_test_cases(["multiple"])) + def test_explainer_multiple_multivariate_series(self, test_case): """Test TFTExplainer with multiple multivaraites series and a combination of encoders, covariates, and addition of relative index.""" - series_option: str - cov_option: set - add_relative_idx: bool - use_encoders: bool - - series_options = ["multiple"] - test_cases = self.helper_create_test_cases(series_options) - for series_option, cov_option, add_relative_idx, use_encoders in test_cases: - series, pc, fc = self.helper_get_input(series_option) - cov_test_case = dict() - use_pc, use_fc = False, False - if "past_covariates" in cov_option: - cov_test_case["past_covariates"] = pc - use_pc = True - if "future_covariates" in cov_option: - cov_test_case["future_covariates"] = fc - use_fc = True - - # expected number of features for past covs, future covs, and static covs, and encoder/decoder - n_target_expected = series[0].n_components - n_pc_expected = 1 if "past_covariates" in cov_test_case else 0 - n_fc_expected = 1 if "future_covariates" in cov_test_case else 0 - n_sc_expected = 2 - # encoder is number of past and future covs plus 4 optional encodings (future and past) - # plus 1 univariate target plus 1 optional relative index - n_enc_expected = ( - n_pc_expected - + n_fc_expected - + n_target_expected - + (4 if use_encoders else 0) - + (1 if add_relative_idx else 0) - ) - # encoder is number of future covs plus 2 optional encodings (future) - # plus 1 optional relative index - n_dec_expected = ( - n_fc_expected - + (2 if use_encoders else 0) - + (1 if add_relative_idx else 0) - ) - model = self.helper_create_model( - use_encoders=use_encoders, add_relative_idx=add_relative_idx - ) - # TFTModel requires future covariates - if ( - not add_relative_idx - and "future_covariates" not in cov_test_case - and not use_encoders - ): - with pytest.raises(ValueError): - model.fit(series=series, **cov_test_case) - continue - - model.fit(series=series, **cov_test_case) - # explainer requires background if model trained on multiple time series + series_option, cov_option, add_relative_idx, use_encoders = test_case + series, pc, fc = self.helper_get_input(series_option) + cov_test_case = dict() + use_pc, use_fc = False, False + if "past_covariates" in cov_option: + cov_test_case["past_covariates"] = pc + use_pc = True + if "future_covariates" in cov_option: + cov_test_case["future_covariates"] = fc + use_fc = True + + # expected number of features for past covs, future covs, and static covs, and encoder/decoder + n_target_expected = series[0].n_components + n_pc_expected = 1 if "past_covariates" in cov_test_case else 0 + n_fc_expected = 1 if "future_covariates" in cov_test_case else 0 + n_sc_expected = 2 + # encoder is number of past and future covs plus 4 optional encodings (future and past) + # plus 1 univariate target plus 1 optional relative index + n_enc_expected = ( + n_pc_expected + + n_fc_expected + + n_target_expected + + (4 if use_encoders else 0) + + (1 if add_relative_idx else 0) + ) + # encoder is number of future covs plus 2 optional encodings (future) + # plus 1 optional relative index + n_dec_expected = ( + n_fc_expected + + (2 if use_encoders else 0) + + (1 if add_relative_idx else 0) + ) + model = self.helper_create_model( + use_encoders=use_encoders, add_relative_idx=add_relative_idx + ) + # TFTModel requires future covariates + if ( + not add_relative_idx + and "future_covariates" not in cov_test_case + and not use_encoders + ): with pytest.raises(ValueError): - explainer = TFTExplainer(model) - explainer = TFTExplainer( - model, - background_series=series, - background_past_covariates=pc if use_pc else None, - background_future_covariates=fc if use_fc else None, - ) - assert hasattr(explainer, "model") - assert explainer.background_series, series - if use_pc: - assert explainer.background_past_covariates == pc - assert ( - explainer.background_past_covariates[0].n_components - == n_pc_expected - ) - else: - assert explainer.background_past_covariates is None - if use_fc: - assert explainer.background_future_covariates == fc - assert ( - explainer.background_future_covariates[0].n_components - == n_fc_expected - ) - else: - assert explainer.background_future_covariates is None - result = explainer.explain() - assert isinstance(result, TFTExplainabilityResult) - - enc_imp = result.get_encoder_importance() - dec_imp = result.get_decoder_importance() - stc_imp = result.get_static_covariates_importance() - imps = [enc_imp, dec_imp, stc_imp] - assert all([isinstance(imp, list) for imp in imps]) - assert all([len(imp) == len(series) for imp in imps]) - assert all( - [isinstance(imp_, pd.DataFrame) for imp in imps for imp_ in imp] - ) - # importances must sum up to 100 percent - assert all( - [ - imp_.squeeze().sum() == pytest.approx(100.0, abs=0.11) - for imp in imps - for imp_ in imp - ] - ) - # importances must have the expected number of columns - assert all( - [ - len(imp_.columns) == n - for imp, n in zip( - imps, [n_enc_expected, n_dec_expected, n_sc_expected] - ) - for imp_ in imp - ] - ) + model.fit(series=series, **cov_test_case) + return - attention = result.get_attention() - assert isinstance(attention, list) - assert len(attention) == len(series) - assert all([isinstance(att, TimeSeries) for att in attention]) - # input chunk length + output chunk length = 5 + 2 = 7 - icl, ocl = 5, 2 - freq = series[0].freq - assert all([len(att) == icl + ocl for att in attention]) - assert all( - [ - att.start_time() == series_.end_time() - (icl - 1) * freq - for att, series_ in zip(attention, series) - ] + model.fit(series=series, **cov_test_case) + # explainer requires background if model trained on multiple time series + with pytest.raises(ValueError): + explainer = TFTExplainer(model) + explainer = TFTExplainer( + model, + background_series=series, + background_past_covariates=pc if use_pc else None, + background_future_covariates=fc if use_fc else None, + ) + assert hasattr(explainer, "model") + assert explainer.background_series, series + if use_pc: + assert explainer.background_past_covariates == pc + assert ( + explainer.background_past_covariates[0].n_components + == n_pc_expected ) - assert all( - [ - att.end_time() == series_.end_time() + ocl * freq - for att, series_ in zip(attention, series) - ] + else: + assert explainer.background_past_covariates is None + if use_fc: + assert explainer.background_future_covariates == fc + assert ( + explainer.background_future_covariates[0].n_components + == n_fc_expected ) - assert all([att.n_components == ocl for att in attention]) + else: + assert explainer.background_future_covariates is None + result = explainer.explain() + assert isinstance(result, TFTExplainabilityResult) + + enc_imp = result.get_encoder_importance() + dec_imp = result.get_decoder_importance() + stc_imp = result.get_static_covariates_importance() + imps = [enc_imp, dec_imp, stc_imp] + assert all([isinstance(imp, list) for imp in imps]) + assert all([len(imp) == len(series) for imp in imps]) + assert all([isinstance(imp_, pd.DataFrame) for imp in imps for imp_ in imp]) + # importances must sum up to 100 percent + assert all( + [ + imp_.squeeze().sum() == pytest.approx(100.0, abs=0.21) + for imp in imps + for imp_ in imp + ] + ) + # importances must have the expected number of columns + assert all( + [ + len(imp_.columns) == n + for imp, n in zip( + imps, [n_enc_expected, n_dec_expected, n_sc_expected] + ) + for imp_ in imp + ] + ) + + attention = result.get_attention() + assert isinstance(attention, list) + assert len(attention) == len(series) + assert all([isinstance(att, TimeSeries) for att in attention]) + # input chunk length + output chunk length = 5 + 2 = 7 + icl, ocl = 5, 2 + freq = series[0].freq + assert all([len(att) == icl + ocl for att in attention]) + assert all( + [ + att.start_time() == series_.end_time() - (icl - 1) * freq + for att, series_ in zip(attention, series) + ] + ) + assert all( + [ + att.end_time() == series_.end_time() + ocl * freq + for att, series_ in zip(attention, series) + ] + ) + assert all([att.n_components == ocl for att in attention]) def test_variable_selection_explanation(self): """Test variable selection (feature importance) explanation results and plotting.""" diff --git a/requirements/torch.txt b/requirements/torch.txt index b38e319e03..617ef86948 100644 --- a/requirements/torch.txt +++ b/requirements/torch.txt @@ -1,3 +1,3 @@ -pytorch-lightning>=1.5.0,<=2.1.2 +pytorch-lightning>=1.5.0 tensorboardX>=2.1 torch>=1.8.0 From ec53511b50d9f471f8c559fc4e58702c7e52e8ca Mon Sep 17 00:00:00 2001 From: madtoinou <32447896+madtoinou@users.noreply.github.com> Date: Mon, 26 Feb 2024 10:02:38 +0100 Subject: [PATCH 009/161] Fix: Using gridsearch with use_fitted_values=True raises unexpected error (#2222) * fix: arguments must be provided to model cls in order to check presence of the fitted_values attribute * fix: added a check that parameters is indeed a dict * updated changelog * fix: update test to pass the new sanity checks * fix: addressing review comments --------- Co-authored-by: Dennis Bader --- CHANGELOG.md | 1 + darts/models/forecasting/forecasting_model.py | 24 +++++++++++++++++-- 2 files changed, 23 insertions(+), 2 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index db2fd6fb07..96220d59f5 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -27,6 +27,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Fixed a bug in probabilistic `LinearRegressionModel.fit()`, where the `model` attribute was not pointing to all underlying estimators. [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). - Raise an error in `RegressionEsembleModel` when the `regression_model` was created with `multi_models=False` (not supported). [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `coefficient_of_variation()` with `intersect=True`, where the coefficient was not computed on the intersection. [#2202](https://github.com/unit8co/darts/pull/2202) by [Antoine Madrona](https://github.com/madtoinou). +- Fixed a bug in `gridsearch()` with `use_fitted_values=True`, where the model was not propely instantiated for sanity checks. [#2222](https://github.com/unit8co/darts/pull/2222) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `TimeSeries.append/prepend_values()`, where the components names and the hierarchy were dropped. [#2237](https://github.com/unit8co/darts/pull/2237) by [Antoine Madrona](https://github.com/madtoinou). **Dependencies** diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index 8d05e5bbce..e75016490b 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -1492,10 +1492,30 @@ def gridsearch( logger, ) + if not isinstance(parameters, dict): + raise_log( + ValueError( + f"`parameters` should be a dictionary, received a: {type(parameters)}." + ) + ) + + if not all( + isinstance(params, (list, np.ndarray)) for params in parameters.values() + ): + raise_log( + ValueError( + "Every value in the `parameters` dictionary should be a list or a np.ndarray." + ), + logger, + ) + if use_fitted_values: raise_if_not( - hasattr(model_class(), "fitted_values"), - "The model must have a fitted_values attribute to compare with the train TimeSeries", + hasattr( + model_class(**{k: v[0] for k, v in parameters.items()}), + "fitted_values", + ), + "The model must have a fitted_values attribute to compare with the train TimeSeries (local models)", logger, ) From b9e6d8b021dfb343fabf38fd1e44735b047ad113 Mon Sep 17 00:00:00 2001 From: Thomas Kientz <60552083+thomktz@users.noreply.github.com> Date: Mon, 26 Feb 2024 15:21:57 +0100 Subject: [PATCH 010/161] Change default `gridsearch` kwarg value (#2243) * Change default kwarg * Update CHANGELOG.md --------- Co-authored-by: Dennis Bader --- CHANGELOG.md | 2 ++ darts/models/forecasting/forecasting_model.py | 2 +- 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 96220d59f5..fa30447c28 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -21,6 +21,8 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Added support for additional lr scheduler configuration parameters for more control ("interval", "frequency", "monitor", "strict", "name"). [#2218](https://github.com/unit8co/darts/pull/2218) by [Dennis Bader](https://github.com/dennisbader). - Improvements to `WindowTransformer` and `window_transform`: - Added argument `keep_names` to indicate whether the original component names should be kept. [#2207](https://github.com/unit8co/darts/pull/2207)by [Antoine Madrona](https://github.com/madtoinou). +- Other improvements: + - 🔴 Changed the default `start` value in `ForecastingModel.gridsearch()` from `0.5` to `None`, to make it consistent with `historical_forecasts` and other methods. [#2243](https://github.com/unit8co/darts/pull/2243) by [Thomas Kientz](https://github.com/thomktz). **Fixed** - Fixed a bug when calling `window_transform` on a `TimeSeries` with a hierarchy. The hierarchy is now only preseved for single transformations applied to all components, or removed otherwise. [#2207](https://github.com/unit8co/darts/pull/2207)by [Antoine Madrona](https://github.com/madtoinou). diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index e75016490b..feb609de8c 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -1344,7 +1344,7 @@ def gridsearch( future_covariates: Optional[TimeSeries] = None, forecast_horizon: Optional[int] = None, stride: int = 1, - start: Union[pd.Timestamp, float, int] = 0.5, + start: Optional[Union[pd.Timestamp, float, int]] = None, start_format: Literal["position", "value"] = "value", last_points_only: bool = False, show_warnings: bool = True, From ccd0d4236dcba7120f0cd4c3bd2d279b41e055ad Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Thu, 29 Feb 2024 15:02:13 +0100 Subject: [PATCH 011/161] Feat/shifted output (#2176) * add output chunk shift to lightning modeuls * training torch model with shifted output * first shifted output inference works for mixed covariates models * full covariateds support for shifted mixed covariates dataset * add shift support to all torch models * update torch model extreme lags with shift * update torch model encoder settings with shift * update torch model encoder settings with shift * add unit test for shifted torch mmodel with encoders * add unit tests for tft model * add unit tests for all torch models * update output_chunk_shift description * apply suggestions from PR review * add output chunk shift to extreme lags * udpate historical forecasts to work with shifted output * update historical forecasts start description for shifted output * apply suggestions from PR review * prepare regression models for output chunk shift * fix failing unit tests * prepare regression models for output chunk shift part 2 * update hist fc for regression models with output shift * update tabularization * add test for comparing results between output shift and normal multi models * historical forecasts for shifted regression models * update tabularization training tests * update tabulirazion get feature times tests * update tabularization get shared times tests * update tabularization get shared bounds tests * update tabularization get lagged prediction data tests * add tests for tabularization without target lags but only covariate lags * update n_steps_between docs * update changelog * add unit tests for inference datasets * add unit tests for sequential training datasts * update changelog * make ocs property non optional * skip output_chunk_shift checks when loading weights since not relevant for parameter shape * apply suggestions from PR review --- CHANGELOG.md | 4 + darts/models/forecasting/block_rnn_model.py | 7 + darts/models/forecasting/catboost_model.py | 48 +- darts/models/forecasting/dlinear.py | 7 + darts/models/forecasting/ensemble_model.py | 3 +- darts/models/forecasting/forecasting_model.py | 87 +- darts/models/forecasting/lgbm.py | 24 +- .../forecasting/linear_regression_model.py | 24 +- darts/models/forecasting/nbeats.py | 7 + darts/models/forecasting/nhits.py | 7 + darts/models/forecasting/nlinear.py | 7 + .../forecasting/pl_forecasting_module.py | 5 +- darts/models/forecasting/random_forest.py | 24 +- .../forecasting/regression_ensemble_model.py | 3 +- darts/models/forecasting/regression_model.py | 121 +- darts/models/forecasting/rnn_model.py | 7 +- darts/models/forecasting/tcn_model.py | 9 +- darts/models/forecasting/tft_model.py | 8 + darts/models/forecasting/tide_model.py | 7 + .../forecasting/torch_forecasting_model.py | 81 +- darts/models/forecasting/transformer_model.py | 7 + darts/models/forecasting/xgboost.py | 24 +- .../test_covariate_index_generators.py | 4 +- darts/tests/datasets/test_datasets.py | 140 ++ darts/tests/models/forecasting/test_RNN.py | 24 +- darts/tests/models/forecasting/test_TCN.py | 10 +- darts/tests/models/forecasting/test_TFT.py | 14 +- .../models/forecasting/test_block_RNN.py | 11 +- .../forecasting/test_dlinear_nlinear.py | 16 +- .../forecasting/test_ensemble_models.py | 5 +- .../forecasting/test_historical_forecasts.py | 2 + .../models/forecasting/test_nbeats_nhits.py | 12 +- .../test_regression_ensemble_model.py | 14 +- .../forecasting/test_regression_models.py | 494 +++++- .../models/forecasting/test_tide_model.py | 26 +- .../test_torch_forecasting_model.py | 170 ++- .../forecasting/test_transformer_model.py | 17 +- .../test_create_lagged_prediction_data.py | 840 ++++------ .../test_create_lagged_training_data.py | 1349 ++++++++--------- .../tabularization/test_get_feature_times.py | 478 +++--- .../tabularization/test_get_shared_times.py | 295 ++-- .../test_get_shared_times_bounds.py | 196 +-- .../test_strided_moving_window.py | 4 +- darts/utils/data/horizon_based_dataset.py | 2 +- darts/utils/data/inference_dataset.py | 77 +- darts/utils/data/sequential_dataset.py | 40 +- darts/utils/data/shifted_dataset.py | 12 +- darts/utils/data/tabularization.py | 188 ++- ...timized_historical_forecasts_regression.py | 5 +- darts/utils/historical_forecasts/utils.py | 28 +- darts/utils/utils.py | 71 + 51 files changed, 2772 insertions(+), 2293 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index fa30447c28..2b8a76bed0 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -19,9 +19,12 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Added option to exclude some `group_cols` from being added as static covariates when using `TimeSeries.from_group_dataframe()` with parameter `drop_group_cols`. - Improvements to `TorchForecastingModel`: - Added support for additional lr scheduler configuration parameters for more control ("interval", "frequency", "monitor", "strict", "name"). [#2218](https://github.com/unit8co/darts/pull/2218) by [Dennis Bader](https://github.com/dennisbader). +- Improvements to `GlobalForecastingModel`: + - 🚀 All global models (regression and torch models) now support shifted predictions with model creation parameter `output_chunk_shift`. This will shift the output chunk for training and prediction by `output_chunk_shift` steps into the future. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - Improvements to `WindowTransformer` and `window_transform`: - Added argument `keep_names` to indicate whether the original component names should be kept. [#2207](https://github.com/unit8co/darts/pull/2207)by [Antoine Madrona](https://github.com/madtoinou). - Other improvements: + - Added new helper function `darts.utils.n_steps_between()` to efficiently compute the number of time steps (periods) between two points with a given frequency. Improves efficiency for regression model tabularization by avoiding `pd.date_range()`. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - 🔴 Changed the default `start` value in `ForecastingModel.gridsearch()` from `0.5` to `None`, to make it consistent with `historical_forecasts` and other methods. [#2243](https://github.com/unit8co/darts/pull/2243) by [Thomas Kientz](https://github.com/thomktz). **Fixed** @@ -31,6 +34,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Fixed a bug in `coefficient_of_variation()` with `intersect=True`, where the coefficient was not computed on the intersection. [#2202](https://github.com/unit8co/darts/pull/2202) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `gridsearch()` with `use_fitted_values=True`, where the model was not propely instantiated for sanity checks. [#2222](https://github.com/unit8co/darts/pull/2222) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `TimeSeries.append/prepend_values()`, where the components names and the hierarchy were dropped. [#2237](https://github.com/unit8co/darts/pull/2237) by [Antoine Madrona](https://github.com/madtoinou). +- Fixed a bug when using `RegressionModel` with `lags=None`, some `lags_*covariates`, and the covariates starting at the same time or after the first predictable time step; the lags were not extracted from the correct indices. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). **Dependencies** - Removed upper version cap (<=v2.1.2) for PyTorch Lightning. [#2251](https://github.com/unit8co/darts/pull/2251) by [Dennis Bader](https://github.com/dennisbader). diff --git a/darts/models/forecasting/block_rnn_model.py b/darts/models/forecasting/block_rnn_model.py index 8de8efd3f1..1a7c90de8b 100644 --- a/darts/models/forecasting/block_rnn_model.py +++ b/darts/models/forecasting/block_rnn_model.py @@ -188,6 +188,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, model: Union[str, Type[CustomBlockRNNModule]] = "RNN", hidden_dim: int = 25, n_rnn_layers: int = 1, @@ -223,6 +224,12 @@ def __init__( auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate auto-regressive predictions (`n > output_chunk_length`). model Either a string specifying the RNN module type ("RNN", "LSTM" or "GRU"), or a subclass of :class:`CustomBlockRNNModule` (the class itself, not an object of the class) with a custom logic. diff --git a/darts/models/forecasting/catboost_model.py b/darts/models/forecasting/catboost_model.py index 5adc8d0bc7..e1934ce296 100644 --- a/darts/models/forecasting/catboost_model.py +++ b/darts/models/forecasting/catboost_model.py @@ -26,6 +26,7 @@ def __init__( lags_past_covariates: Union[int, List[int]] = None, lags_future_covariates: Union[Tuple[int, int], List[int]] = None, output_chunk_length: int = 1, + output_chunk_shift: int = 0, add_encoders: Optional[dict] = None, likelihood: str = None, quantiles: List = None, @@ -39,17 +40,38 @@ def __init__( Parameters ---------- lags - Lagged target values used to predict the next time step. If an integer is given the last `lags` past lags - are used (from -1 backward). Otherwise a list of integers with lags is required (each lag must be < 0). + Lagged target `series` values used to predict the next time step/s. + If an integer, must be > 0. Uses the last `n=lags` past lags; e.g. `(-1, -2, ..., -lags)`, where `0` + corresponds the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. + If a list of integers, each value must be < 0. Uses only the specified values as lags. + If a dictionary, the keys correspond to the `series` component names (of the first series when + using multiple series) and the values correspond to the component lags (integer or list of integers). The + key 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some + components are missing and the 'default_lags' key is not provided. lags_past_covariates - Number of lagged past_covariates values used to predict the next time step. If an integer is given the last - `lags_past_covariates` past lags are used (inclusive, starting from lag -1). Otherwise a list of integers - with lags < 0 is required. + Lagged `past_covariates` values used to predict the next time step/s. + If an integer, must be > 0. Uses the last `n=lags_past_covariates` past lags; e.g. `(-1, -2, ..., -lags)`, + where `0` corresponds to the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. + If a list of integers, each value must be < 0. Uses only the specified values as lags. + If a dictionary, the keys correspond to the `past_covariates` component names (of the first series when + using multiple series) and the values correspond to the component lags (integer or list of integers). The + key 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some + components are missing and the 'default_lags' key is not provided. lags_future_covariates - Number of lagged future_covariates values used to predict the next time step. If an tuple (past, future) is - given the last `past` lags in the past are used (inclusive, starting from lag -1) along with the first - `future` future lags (starting from 0 - the prediction time - up to `future - 1` included). Otherwise a list - of integers with lags is required. + Lagged `future_covariates` values used to predict the next time step/s. The lags are always relative to the + first step in the output chunk, even when `output_chunk_shift > 0`. + If a tuple of `(past, future)`, both values must be > 0. Uses the last `n=past` past lags and `n=future` + future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` corresponds the first + predicted time step of each sample. If `output_chunk_shift > 0`, the position of negative lags differ from + those of `lags` and `lags_past_covariates`. In this case a future lag `-5` would point at the same + step as a target lag of `-5 + output_chunk_shift`. + If a list of integers, uses only the specified values as lags. + If a dictionary, the keys correspond to the `future_covariates` component names (of the first series when + using multiple series) and the values correspond to the component lags (tuple or list of integers). The key + 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some + components are missing and the 'default_lags' key is not provided. output_chunk_length Number of time steps predicted at once (per chunk) by the internal model. It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated using a @@ -57,6 +79,13 @@ def __init__( useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input (history of target and past covariates) and + output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first + step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the + target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that @@ -170,6 +199,7 @@ def encode_year(idx): lags_past_covariates=lags_past_covariates, lags_future_covariates=lags_future_covariates, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, add_encoders=add_encoders, multi_models=multi_models, model=CatBoostRegressor(**kwargs), diff --git a/darts/models/forecasting/dlinear.py b/darts/models/forecasting/dlinear.py index ed90c55c20..53ec884aab 100644 --- a/darts/models/forecasting/dlinear.py +++ b/darts/models/forecasting/dlinear.py @@ -232,6 +232,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, shared_weights: bool = False, kernel_size: int = 25, const_init: bool = True, @@ -257,6 +258,12 @@ def __init__( auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate auto-regressive predictions (`n > output_chunk_length`). shared_weights Whether to use shared weights for all components of multivariate series. diff --git a/darts/models/forecasting/ensemble_model.py b/darts/models/forecasting/ensemble_model.py index e9f6e87175..30d36ff2ba 100644 --- a/darts/models/forecasting/ensemble_model.py +++ b/darts/models/forecasting/ensemble_model.py @@ -397,6 +397,7 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: def find_max_lag_or_none(lag_id, aggregator) -> Optional[int]: max_lag = None @@ -408,7 +409,7 @@ def find_max_lag_or_none(lag_id, aggregator) -> Optional[int]: max_lag = aggregator(max_lag, curr_lag) return max_lag - lag_aggregators = (min, max, min, max, min, max) + lag_aggregators = (min, max, min, max, min, max, max) return tuple( find_max_lag_or_none(i, agg) for i, agg in enumerate(lag_aggregators) ) diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index feb609de8c..946d7216c3 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -286,6 +286,13 @@ def output_chunk_length(self) -> Optional[int]: """ return None + @property + def output_chunk_shift(self) -> int: + """ + Number of time steps that the output/prediction starts after the end of the input. + """ + return 0 + @abstractmethod def predict( self, @@ -323,6 +330,15 @@ def predict( logger, ) + if self.output_chunk_shift and n > self.output_chunk_length: + raise_log( + ValueError( + "Cannot perform auto-regression `(n > output_chunk_length)` with a model that uses a " + "shifted output chunk `(output_chunk_shift > 0)`." + ), + logger=logger, + ) + if not self._is_probabilistic and num_samples > 1: raise_log( ValueError( @@ -413,12 +429,13 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: """ - A 6-tuple containing in order: + A 7-tuple containing in order: (min target lag, max target lag, min past covariate lag, max past covariate lag, min future covariate - lag, max future covariate lag). If 0 is the index of the first prediction, then all lags are relative to this - index. + lag, max future covariate lag, output shift). If 0 is the index of the first prediction, then all lags are + relative to this index. See examples below. @@ -435,28 +452,33 @@ def extreme_lags( Notes ----- maximum target lag (second value) cannot be `None` and is always larger than or equal to 0. + Examples -------- >>> model = LinearRegressionModel(lags=3, output_chunk_length=2) >>> model.fit(train_series) >>> model.extreme_lags - (-3, 1, None, None, None, None) + (-3, 1, None, None, None, None, 0) + >>> model = LinearRegressionModel(lags=3, output_chunk_length=2, output_chunk_shift=2) + >>> model.fit(train_series) + >>> model.extreme_lags + (-3, 1, None, None, None, None, 2) >>> model = LinearRegressionModel(lags=[-3, -5], lags_past_covariates = 4, output_chunk_length=7) >>> model.fit(train_series, past_covariates=past_covariates) >>> model.extreme_lags - (-5, 6, -4, -1, None, None) + (-5, 6, -4, -1, None, None, 0) >>> model = LinearRegressionModel(lags=[3, 5], lags_future_covariates = [4, 6], output_chunk_length=7) >>> model.fit(train_series, future_covariates=future_covariates) >>> model.extreme_lags - (-5, 6, None, None, 4, 6) + (-5, 6, None, None, 4, 6, 0) >>> model = NBEATSModel(input_chunk_length=10, output_chunk_length=7) >>> model.fit(train_series) >>> model.extreme_lags - (-10, 6, None, None, None, None) + (-10, 6, None, None, None, None, 0) >>> model = NBEATSModel(input_chunk_length=10, output_chunk_length=7, lags_future_covariates=[4, 6]) >>> model.fit(train_series, future_covariates) >>> model.extreme_lags - (-10, 6, None, None, 4, 6) + (-10, 6, None, None, 4, 6, 0) """ pass @@ -472,6 +494,7 @@ def _training_sample_time_index_length(self) -> int: max_past_cov_lag, min_future_cov_lag, max_future_cov_lag, + output_chunk_shift, ) = self.extreme_lags return max( @@ -483,46 +506,6 @@ def _training_sample_time_index_length(self) -> int: min_future_cov_lag if min_future_cov_lag else 0, ) - @property - def _predict_sample_time_index_length(self) -> int: - """ - Required time_index length for one `predict` function call, for any model. - """ - ( - min_target_lag, - max_target_lag, - min_past_cov_lag, - max_past_cov_lag, - min_future_cov_lag, - max_future_cov_lag, - ) = self.extreme_lags - - return (max_future_cov_lag + 1 if max_future_cov_lag else 0) - min( - min_target_lag if min_target_lag else 0, - min_past_cov_lag if min_past_cov_lag else 0, - min_future_cov_lag if min_future_cov_lag else 0, - ) - - @property - def _predict_sample_time_index_past_length(self) -> int: - """ - Required time_index length in the past for one `predict` function call, for any model. - """ - ( - min_target_lag, - max_target_lag, - min_past_cov_lag, - max_past_cov_lag, - min_future_cov_lag, - max_future_cov_lag, - ) = self.extreme_lags - - return -min( - min_target_lag if min_target_lag else 0, - min_past_cov_lag if min_past_cov_lag else 0, - min_future_cov_lag if min_future_cov_lag else 0, - ) - def _generate_new_dates( self, n: int, input_series: Optional[TimeSeries] = None ) -> Union[pd.DatetimeIndex, pd.RangeIndex]: @@ -697,6 +680,8 @@ def historical_forecasts( or `retrain` is a Callable and the first trainable point is earlier than the first predictable point. - the first trainable point (given `train_length`) otherwise + Note: If the model uses a shifted output (`output_chunk_shift > 0`), then the first predicted point is also + shifted by `output_chunk_shift` points into the future. Note: Raises a ValueError if `start` yields a time outside the time index of `series`. Note: If `start` is outside the possible historical forecasting times, will ignore the parameter (default behavior with ``None``) and start at the first trainable/predictable point. @@ -2149,12 +2134,13 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: # TODO: LocalForecastingModels do not yet handle extreme lags properly. Especially # TransferableFutureCovariatesLocalForecastingModel, where there is a difference between fit and predict mode) # do not yet. In general, Local models train on the entire series (input=output), different to Global models # that use an input to predict an output. - return -self.min_train_series_length, -1, None, None, None, None + return -self.min_train_series_length, -1, None, None, None, None, 0 @property def supports_transferrable_series_prediction(self) -> bool: @@ -2625,12 +2611,13 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: # TODO: LocalForecastingModels do not yet handle extreme lags properly. Especially # TransferableFutureCovariatesLocalForecastingModel, where there is a difference between fit and predict mode) # do not yet. In general, Local models train on the entire series (input=output), different to Global models # that use an input to predict an output. - return -self.min_train_series_length, -1, None, None, 0, 0 + return -self.min_train_series_length, -1, None, None, 0, 0, 0 class TransferableFutureCovariatesLocalForecastingModel( diff --git a/darts/models/forecasting/lgbm.py b/darts/models/forecasting/lgbm.py index 2a320686ce..aa23215834 100644 --- a/darts/models/forecasting/lgbm.py +++ b/darts/models/forecasting/lgbm.py @@ -34,6 +34,7 @@ def __init__( lags_past_covariates: Optional[LAGS_TYPE] = None, lags_future_covariates: Optional[FUTURE_LAGS_TYPE] = None, output_chunk_length: int = 1, + output_chunk_shift: int = 0, add_encoders: Optional[dict] = None, likelihood: Optional[str] = None, quantiles: Optional[List[float]] = None, @@ -52,7 +53,8 @@ def __init__( lags Lagged target `series` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags` past lags; e.g. `(-1, -2, ..., -lags)`, where `0` - corresponds the first predicted time step of each sample. + corresponds the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `series` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The @@ -61,17 +63,21 @@ def __init__( lags_past_covariates Lagged `past_covariates` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags_past_covariates` past lags; e.g. `(-1, -2, ..., -lags)`, - where `0` corresponds to the first predicted time step of each sample. + where `0` corresponds to the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `past_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The key 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some components are missing and the 'default_lags' key is not provided. lags_future_covariates - Lagged `future_covariates` values used to predict the next time step/s. + Lagged `future_covariates` values used to predict the next time step/s. The lags are always relative to the + first step in the output chunk, even when `output_chunk_shift > 0`. If a tuple of `(past, future)`, both values must be > 0. Uses the last `n=past` past lags and `n=future` - future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` - corresponds the first predicted time step of each sample. + future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` corresponds the first + predicted time step of each sample. If `output_chunk_shift > 0`, the position of negative lags differ from + those of `lags` and `lags_past_covariates`. In this case a future lag `-5` would point at the same + step as a target lag of `-5 + output_chunk_shift`. If a list of integers, uses only the specified values as lags. If a dictionary, the keys correspond to the `future_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (tuple or list of integers). The key @@ -84,6 +90,13 @@ def __init__( useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input (history of target and past covariates) and + output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first + step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the + target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that @@ -194,6 +207,7 @@ def encode_year(idx): lags_past_covariates=lags_past_covariates, lags_future_covariates=lags_future_covariates, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, add_encoders=add_encoders, multi_models=multi_models, model=lgb.LGBMRegressor(**self.kwargs), diff --git a/darts/models/forecasting/linear_regression_model.py b/darts/models/forecasting/linear_regression_model.py index e09487e192..2d8f848b0a 100644 --- a/darts/models/forecasting/linear_regression_model.py +++ b/darts/models/forecasting/linear_regression_model.py @@ -31,6 +31,7 @@ def __init__( lags_past_covariates: Optional[LAGS_TYPE] = None, lags_future_covariates: Optional[FUTURE_LAGS_TYPE] = None, output_chunk_length: int = 1, + output_chunk_shift: int = 0, add_encoders: Optional[dict] = None, likelihood: Optional[str] = None, quantiles: Optional[List[float]] = None, @@ -46,7 +47,8 @@ def __init__( lags Lagged target `series` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags` past lags; e.g. `(-1, -2, ..., -lags)`, where `0` - corresponds the first predicted time step of each sample. + corresponds the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `series` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The @@ -55,17 +57,21 @@ def __init__( lags_past_covariates Lagged `past_covariates` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags_past_covariates` past lags; e.g. `(-1, -2, ..., -lags)`, - where `0` corresponds to the first predicted time step of each sample. + where `0` corresponds to the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `past_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The key 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some components are missing and the 'default_lags' key is not provided. lags_future_covariates - Lagged `future_covariates` values used to predict the next time step/s. + Lagged `future_covariates` values used to predict the next time step/s. The lags are always relative to the + first step in the output chunk, even when `output_chunk_shift > 0`. If a tuple of `(past, future)`, both values must be > 0. Uses the last `n=past` past lags and `n=future` - future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` - corresponds the first predicted time step of each sample. + future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` corresponds the first + predicted time step of each sample. If `output_chunk_shift > 0`, the position of negative lags differ from + those of `lags` and `lags_past_covariates`. In this case a future lag `-5` would point at the same + step as a target lag of `-5 + output_chunk_shift`. If a list of integers, uses only the specified values as lags. If a dictionary, the keys correspond to the `future_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (tuple or list of integers). The key @@ -78,6 +84,13 @@ def __init__( useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input (history of target and past covariates) and + output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first + step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the + target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that @@ -184,6 +197,7 @@ def encode_year(idx): lags_past_covariates=lags_past_covariates, lags_future_covariates=lags_future_covariates, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, add_encoders=add_encoders, model=model, multi_models=multi_models, diff --git a/darts/models/forecasting/nbeats.py b/darts/models/forecasting/nbeats.py index 7bcb9aa469..ae83675200 100644 --- a/darts/models/forecasting/nbeats.py +++ b/darts/models/forecasting/nbeats.py @@ -538,6 +538,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, generic_architecture: bool = True, num_stacks: int = 30, num_blocks: int = 1, @@ -573,6 +574,12 @@ def __init__( auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate auto-regressive predictions (`n > output_chunk_length`). generic_architecture Boolean value indicating whether the generic architecture of N-BEATS is used. If not, the interpretable architecture outlined in the paper (consisting of one trend diff --git a/darts/models/forecasting/nhits.py b/darts/models/forecasting/nhits.py index 98d195d6ed..661d6a7eb5 100644 --- a/darts/models/forecasting/nhits.py +++ b/darts/models/forecasting/nhits.py @@ -465,6 +465,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, num_stacks: int = 3, num_blocks: int = 1, num_layers: int = 2, @@ -510,6 +511,12 @@ def __init__( auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate auto-regressive predictions (`n > output_chunk_length`). num_stacks The number of stacks that make up the whole model. num_blocks diff --git a/darts/models/forecasting/nlinear.py b/darts/models/forecasting/nlinear.py index 347b3aeecf..31324ae31b 100644 --- a/darts/models/forecasting/nlinear.py +++ b/darts/models/forecasting/nlinear.py @@ -182,6 +182,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, shared_weights: bool = False, const_init: bool = True, normalize: bool = False, @@ -207,6 +208,12 @@ def __init__( auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate auto-regressive predictions (`n > output_chunk_length`). shared_weights Whether to use shared weights for all components of multivariate series. diff --git a/darts/models/forecasting/pl_forecasting_module.py b/darts/models/forecasting/pl_forecasting_module.py index 53ebf62da6..ae8d7c87f4 100644 --- a/darts/models/forecasting/pl_forecasting_module.py +++ b/darts/models/forecasting/pl_forecasting_module.py @@ -71,6 +71,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, train_sample_shape: Optional[Tuple] = None, loss_fn: nn.modules.loss._Loss = nn.MSELoss(), torch_metrics: Optional[ @@ -156,6 +157,7 @@ def __init__( self.input_chunk_length = input_chunk_length # output_chunk_length is a property self._output_chunk_length = output_chunk_length + self.output_chunk_shift = output_chunk_shift # define the loss function self.criterion = loss_fn @@ -246,7 +248,8 @@ def predict_step( batch output of Darts' :class:`InferenceDataset` - tuple of ``(past_target, past_covariates, - historic_future_covariates, future_covariates, future_past_covariates, input_timeseries)`` + historic_future_covariates, future_covariates, future_past_covariates, input time series, + prediction start time step)`` batch_idx the batch index of the current batch dataloader_idx diff --git a/darts/models/forecasting/random_forest.py b/darts/models/forecasting/random_forest.py index 0f1def2a64..ed69529498 100644 --- a/darts/models/forecasting/random_forest.py +++ b/darts/models/forecasting/random_forest.py @@ -36,6 +36,7 @@ def __init__( lags_past_covariates: Optional[LAGS_TYPE] = None, lags_future_covariates: Optional[FUTURE_LAGS_TYPE] = None, output_chunk_length: int = 1, + output_chunk_shift: int = 0, add_encoders: Optional[dict] = None, n_estimators: Optional[int] = 100, max_depth: Optional[int] = None, @@ -50,7 +51,8 @@ def __init__( lags Lagged target `series` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags` past lags; e.g. `(-1, -2, ..., -lags)`, where `0` - corresponds the first predicted time step of each sample. + corresponds the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `series` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The @@ -59,17 +61,21 @@ def __init__( lags_past_covariates Lagged `past_covariates` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags_past_covariates` past lags; e.g. `(-1, -2, ..., -lags)`, - where `0` corresponds to the first predicted time step of each sample. + where `0` corresponds to the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `past_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The key 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some components are missing and the 'default_lags' key is not provided. lags_future_covariates - Lagged `future_covariates` values used to predict the next time step/s. + Lagged `future_covariates` values used to predict the next time step/s. The lags are always relative to the + first step in the output chunk, even when `output_chunk_shift > 0`. If a tuple of `(past, future)`, both values must be > 0. Uses the last `n=past` past lags and `n=future` - future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` - corresponds the first predicted time step of each sample. + future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` corresponds the first + predicted time step of each sample. If `output_chunk_shift > 0`, the position of negative lags differ from + those of `lags` and `lags_past_covariates`. In this case a future lag `-5` would point at the same + step as a target lag of `-5 + output_chunk_shift`. If a list of integers, uses only the specified values as lags. If a dictionary, the keys correspond to the `future_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (tuple or list of integers). The key @@ -82,6 +88,13 @@ def __init__( useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input (history of target and past covariates) and + output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first + step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the + target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that @@ -162,6 +175,7 @@ def encode_year(idx): lags_past_covariates=lags_past_covariates, lags_future_covariates=lags_future_covariates, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, add_encoders=add_encoders, multi_models=multi_models, model=RandomForestRegressor(**kwargs), diff --git a/darts/models/forecasting/regression_ensemble_model.py b/darts/models/forecasting/regression_ensemble_model.py index eee2f50770..00c458a459 100644 --- a/darts/models/forecasting/regression_ensemble_model.py +++ b/darts/models/forecasting/regression_ensemble_model.py @@ -319,7 +319,7 @@ def fit( # when it's not clearly defined, extreme_lags returns # min_train_serie_length for the LocalForecastingModels for model in self.forecasting_models: - min_target_lag, _, _, _, _, _ = model.extreme_lags + min_target_lag, _, _, _, _, _, _ = model.extreme_lags if min_target_lag is not None: all_shifts.append(-min_target_lag) @@ -459,6 +459,7 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: extreme_lags_ = super().extreme_lags # shift min_target_lag in the past to account for the regression model training set diff --git a/darts/models/forecasting/regression_model.py b/darts/models/forecasting/regression_model.py index 54f0eb9a1b..f0d1267e9b 100644 --- a/darts/models/forecasting/regression_model.py +++ b/darts/models/forecasting/regression_model.py @@ -76,6 +76,7 @@ def __init__( lags_past_covariates: Optional[LAGS_TYPE] = None, lags_future_covariates: Optional[FUTURE_LAGS_TYPE] = None, output_chunk_length: int = 1, + output_chunk_shift: int = 0, add_encoders: Optional[dict] = None, model=None, multi_models: Optional[bool] = True, @@ -89,7 +90,8 @@ def __init__( lags Lagged target `series` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags` past lags; e.g. `(-1, -2, ..., -lags)`, where `0` - corresponds the first predicted time step of each sample. + corresponds the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `series` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The @@ -98,17 +100,21 @@ def __init__( lags_past_covariates Lagged `past_covariates` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags_past_covariates` past lags; e.g. `(-1, -2, ..., -lags)`, - where `0` corresponds to the first predicted time step of each sample. + where `0` corresponds to the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `past_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The key 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some components are missing and the 'default_lags' key is not provided. lags_future_covariates - Lagged `future_covariates` values used to predict the next time step/s. + Lagged `future_covariates` values used to predict the next time step/s. The lags are always relative to the + first step in the output chunk, even when `output_chunk_shift > 0`. If a tuple of `(past, future)`, both values must be > 0. Uses the last `n=past` past lags and `n=future` - future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` - corresponds the first predicted time step of each sample. + future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` corresponds the first + predicted time step of each sample. If `output_chunk_shift > 0`, the position of negative lags differ from + those of `lags` and `lags_past_covariates`. In this case a future lag `-5` would point at the same + step as a target lag of `-5 + output_chunk_shift`. If a list of integers, uses only the specified values as lags. If a dictionary, the keys correspond to the `future_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (tuple or list of integers). The key @@ -121,6 +127,13 @@ def __init__( useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input (history of target and past covariates) and + output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first + step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the + target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that @@ -207,6 +220,7 @@ def encode_year(idx): logger=logger, ) self._output_chunk_length = output_chunk_length + self._output_chunk_shift = output_chunk_shift # model checks if self.model is None: @@ -235,15 +249,17 @@ def encode_year(idx): lags=lags, lags_past_covariates=lags_past_covariates, lags_future_covariates=lags_future_covariates, + output_chunk_shift=output_chunk_shift, ) self.pred_dim = self.output_chunk_length if self.multi_models else 1 + @staticmethod def _generate_lags( - self, lags: Optional[LAGS_TYPE], lags_past_covariates: Optional[LAGS_TYPE], lags_future_covariates: Optional[FUTURE_LAGS_TYPE], + output_chunk_shift: int, ) -> Tuple[Dict[str, List[int]], Dict[str, Dict[str, List[int]]]]: """ Based on the type of the argument and the nature of the covariates, perform some sanity checks before @@ -253,6 +269,8 @@ def _generate_lags( attributes contain only the extreme values If the lags are provided as integer, list, tuple or dictionary containing only the 'default_lags' keys, the lags values are contained in the self.lags attribute and the self.component_lags is an empty dictionary. + + If `output_chunk_shift > 0`, the `lags_future_covariates` are shifted into the future. """ processed_lags: Dict[str, List[int]] = dict() processed_component_lags: Dict[str, Dict[str, List[int]]] = dict() @@ -371,6 +389,18 @@ def _generate_lags( processed_lags[lags_abbrev] = [min_lags, max_lags] processed_component_lags[lags_abbrev] = tmp_components_lags + # if output chunk is shifted, shift future covariates lags with it + if output_chunk_shift and lags_abbrev == "future": + processed_lags[lags_abbrev] = [ + lag_ + output_chunk_shift for lag_ in processed_lags[lags_abbrev] + ] + if processed_component_lags: + processed_component_lags[lags_abbrev] = { + comp_: [lag_ + output_chunk_shift for lag_ in lags_] + for comp_, lags_ in processed_component_lags[ + lags_abbrev + ].items() + } return processed_lags, processed_component_lags def _get_lags(self, lags_type: str): @@ -404,7 +434,7 @@ def _model_encoder_settings( ] return ( abs(min(target_lags)), - self.output_chunk_length, + self.output_chunk_length + self.output_chunk_shift, lags_past_covariates is not None, lags_future_covariates is not None, lags_past_covariates, @@ -421,9 +451,10 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: min_target_lag = self.lags["target"][0] if "target" in self.lags else None - max_target_lag = self.output_chunk_length - 1 + max_target_lag = self.output_chunk_length - 1 + self.output_chunk_shift min_past_cov_lag = self.lags["past"][0] if "past" in self.lags else None max_past_cov_lag = self.lags["past"][-1] if "past" in self.lags else None min_future_cov_lag = self.lags["future"][0] if "future" in self.lags else None @@ -435,6 +466,7 @@ def extreme_lags( max_past_cov_lag, min_future_cov_lag, max_future_cov_lag, + self.output_chunk_shift, ) @property @@ -453,7 +485,8 @@ def min_train_series_length(self) -> int: -self.lags["target"][0] + self.output_chunk_length if "target" in self.lags else self.output_chunk_length - ), + ) + + self.output_chunk_shift, ) @property @@ -464,6 +497,10 @@ def min_train_samples(self) -> int: def output_chunk_length(self) -> int: return self._output_chunk_length + @property + def output_chunk_shift(self) -> int: + return self._output_chunk_shift + def get_multioutput_estimator(self, horizon, target_dim): raise_if_not( isinstance(self.model, MultiOutputRegressor), @@ -487,6 +524,7 @@ def _create_lagged_data( ) = create_lagged_training_data( target_series=target_series, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, past_covariates=past_covariates, future_covariates=future_covariates, lags=self._get_lags("target"), @@ -879,14 +917,19 @@ def predict( # check for sufficient covariate data if not (cov.start_time() <= start_ts and cov.end_time() >= end_ts): + index_text = ( + " " + if called_with_single_series + else f" at list/sequence index {idx} " + ) raise_log( ValueError( - f"The corresponding {cov_type}_covariate of the series at index {idx} isn't sufficiently " - f"long. Given horizon `n={n}`, `min(lags_{cov_type}_covariates)={lags[0]}`, " + f"The `{cov_type}_covariates`{index_text}are not long enough. " + f"Given horizon `n={n}`, `min(lags_{cov_type}_covariates)={lags[0]}`, " f"`max(lags_{cov_type}_covariates)={lags[-1]}` and " - f"`output_chunk_length={self.output_chunk_length}`, the {cov_type}_covariate has to range " - f"from {start_ts} until {end_ts} (inclusive), but it ranges only from {cov.start_time()} " - f"until {cov.end_time()}." + f"`output_chunk_length={self.output_chunk_length}`, the `{cov_type}_covariates` have to " + f"range from {start_ts} until {end_ts} (inclusive), but they only range from " + f"{cov.start_time()} until {cov.end_time()}." ), logger=logger, ) @@ -1034,6 +1077,8 @@ def predict( ), with_static_covs=False if predict_likelihood_parameters else True, with_hierarchy=False if predict_likelihood_parameters else True, + pred_start=input_tgt.end_time() + + (1 + self.output_chunk_shift) * input_tgt.freq, ) for idx_ts, (row, input_tgt) in enumerate(zip(predictions, series)) ] @@ -1488,6 +1533,7 @@ def __init__( lags_past_covariates: Union[int, List[int]] = None, lags_future_covariates: Union[Tuple[int, int], List[int]] = None, output_chunk_length: int = 1, + output_chunk_shift: int = 0, add_encoders: Optional[dict] = None, model=None, multi_models: Optional[bool] = True, @@ -1502,17 +1548,38 @@ def __init__( Parameters ---------- lags - Lagged target values used to predict the next time step. If an integer is given the last `lags` past lags - are used (from -1 backward). Otherwise, a list of integers with lags is required (each lag must be < 0). + Lagged target `series` values used to predict the next time step/s. + If an integer, must be > 0. Uses the last `n=lags` past lags; e.g. `(-1, -2, ..., -lags)`, where `0` + corresponds the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. + If a list of integers, each value must be < 0. Uses only the specified values as lags. + If a dictionary, the keys correspond to the `series` component names (of the first series when + using multiple series) and the values correspond to the component lags (integer or list of integers). The + key 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some + components are missing and the 'default_lags' key is not provided. lags_past_covariates - Number of lagged past_covariates values used to predict the next time step. If an integer is given the last - `lags_past_covariates` past lags are used (inclusive, starting from lag -1). Otherwise a list of integers - with lags < 0 is required. + Lagged `past_covariates` values used to predict the next time step/s. + If an integer, must be > 0. Uses the last `n=lags_past_covariates` past lags; e.g. `(-1, -2, ..., -lags)`, + where `0` corresponds to the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. + If a list of integers, each value must be < 0. Uses only the specified values as lags. + If a dictionary, the keys correspond to the `past_covariates` component names (of the first series when + using multiple series) and the values correspond to the component lags (integer or list of integers). The + key 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some + components are missing and the 'default_lags' key is not provided. lags_future_covariates - Number of lagged future_covariates values used to predict the next time step. If a tuple (past, future) is - given the last `past` lags in the past are used (inclusive, starting from lag -1) along with the first - `future` future lags (starting from 0 - the prediction time - up to `future - 1` included). Otherwise a list - of integers with lags is required. + Lagged `future_covariates` values used to predict the next time step/s. The lags are always relative to the + first step in the output chunk, even when `output_chunk_shift > 0`. + If a tuple of `(past, future)`, both values must be > 0. Uses the last `n=past` past lags and `n=future` + future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` corresponds the first + predicted time step of each sample. If `output_chunk_shift > 0`, the position of negative lags differ from + those of `lags` and `lags_past_covariates`. In this case a future lag `-5` would point at the same + step as a target lag of `-5 + output_chunk_shift`. + If a list of integers, uses only the specified values as lags. + If a dictionary, the keys correspond to the `future_covariates` component names (of the first series when + using multiple series) and the values correspond to the component lags (tuple or list of integers). The key + 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some + components are missing and the 'default_lags' key is not provided. output_chunk_length Number of time steps predicted at once (per chunk) by the internal model. It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated using a @@ -1520,6 +1587,13 @@ def __init__( useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input (history of target and past covariates) and + output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first + step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the + target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that @@ -1571,6 +1645,7 @@ def encode_year(idx): lags_past_covariates=lags_past_covariates, lags_future_covariates=lags_future_covariates, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, add_encoders=add_encoders, model=model, multi_models=multi_models, diff --git a/darts/models/forecasting/rnn_model.py b/darts/models/forecasting/rnn_model.py index 7e13231772..08e3dbb34c 100644 --- a/darts/models/forecasting/rnn_model.py +++ b/darts/models/forecasting/rnn_model.py @@ -488,7 +488,12 @@ def encode_year(idx): model_kwargs = {key: val for key, val in self.model_params.items()} for kwarg, default_value in zip( - ["output_chunk_length", "use_reversible_instance_norm"], [1, False] + [ + "output_chunk_length", + "use_reversible_instance_norm", + "output_chunk_shift", + ], + [1, False, 0], ): if model_kwargs.get(kwarg) is not None: logger.warning( diff --git a/darts/models/forecasting/tcn_model.py b/darts/models/forecasting/tcn_model.py index 7f4bbdc9a0..8e3da48434 100644 --- a/darts/models/forecasting/tcn_model.py +++ b/darts/models/forecasting/tcn_model.py @@ -260,6 +260,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, kernel_size: int = 3, num_filters: int = 3, num_layers: Optional[int] = None, @@ -287,6 +288,12 @@ def __init__( auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate auto-regressive predictions (`n > output_chunk_length`). kernel_size The size of every kernel in a convolutional layer. num_filters @@ -533,7 +540,7 @@ def _build_train_dataset( target_series=target, covariates=past_covariates, length=self.input_chunk_length, - shift=self.output_chunk_length, + shift=self.output_chunk_length + self.output_chunk_shift, max_samples_per_ts=max_samples_per_ts, use_static_covariates=self.uses_static_covariates, ) diff --git a/darts/models/forecasting/tft_model.py b/darts/models/forecasting/tft_model.py index 555621f280..3a4978557a 100644 --- a/darts/models/forecasting/tft_model.py +++ b/darts/models/forecasting/tft_model.py @@ -660,6 +660,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, hidden_size: Union[int, List[int]] = 16, lstm_layers: int = 1, num_attention_heads: int = 4, @@ -711,6 +712,12 @@ def __init__( the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). Also called: Decoder length + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate auto-regressive predictions (`n > output_chunk_length`). hidden_size Hidden state size of the TFT. It is the main hyper-parameter and common across the internal TFT architecture. @@ -1174,6 +1181,7 @@ def _build_train_dataset( future_covariates=future_covariates, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, max_samples_per_ts=max_samples_per_ts, use_static_covariates=self.uses_static_covariates, ) diff --git a/darts/models/forecasting/tide_model.py b/darts/models/forecasting/tide_model.py index 460a81a8ab..5f0ce68d80 100644 --- a/darts/models/forecasting/tide_model.py +++ b/darts/models/forecasting/tide_model.py @@ -367,6 +367,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, num_encoder_layers: int = 1, num_decoder_layers: int = 1, decoder_output_dim: int = 16, @@ -407,6 +408,12 @@ def __init__( auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate auto-regressive predictions (`n > output_chunk_length`). num_encoder_layers The number of residual blocks in the encoder. num_decoder_layers diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index a54cecfb01..f6ae362088 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -1528,7 +1528,9 @@ def min_train_series_length(self) -> int: Class property defining the minimum required length for the training series; overriding the default value of 3 of ForecastingModel """ - return self.input_chunk_length + self.output_chunk_length + return ( + self.input_chunk_length + self.output_chunk_length + self.output_chunk_shift + ) @staticmethod def _batch_collate_fn(batch: List[Tuple]) -> Tuple: @@ -2008,6 +2010,14 @@ def output_chunk_length(self) -> int: else self.pl_module_params["output_chunk_length"] ) + @property + def output_chunk_shift(self) -> int: + return ( + self.model.output_chunk_shift + if self.model_created + else self.pl_module_params["output_chunk_shift"] + ) + @property def _is_probabilistic(self) -> bool: return ( @@ -2187,6 +2197,7 @@ def _check_ckpt_parameters(self, tfm_save): "optimizer_kwargs", "lr_scheduler_cls", "lr_scheduler_kwargs", + "output_chunk_shift", ] # model_params can be missing some kwargs params_to_check = set(tfm_save.model_params.keys()).union( @@ -2389,6 +2400,7 @@ def _build_train_dataset( covariates=past_covariates, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, max_samples_per_ts=max_samples_per_ts, use_static_covariates=self.uses_static_covariates, ) @@ -2415,6 +2427,7 @@ def _build_inference_dataset( bounds=bounds, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, use_static_covariates=self.uses_static_covariates, ) @@ -2444,7 +2457,7 @@ def _model_encoder_settings( takes_future_covariates = False return ( input_chunk_length, - output_chunk_length, + output_chunk_length + self.output_chunk_shift, takes_past_covariates, takes_future_covariates, None, @@ -2461,14 +2474,16 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: return ( -self.input_chunk_length, - self.output_chunk_length - 1, + self.output_chunk_length - 1 + self.output_chunk_shift, -self.input_chunk_length if self.uses_past_covariates else None, -1 if self.uses_past_covariates else None, None, None, + self.output_chunk_shift, ) @@ -2492,6 +2507,7 @@ def _build_train_dataset( covariates=future_covariates, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, max_samples_per_ts=max_samples_per_ts, use_static_covariates=self.uses_static_covariates, ) @@ -2517,6 +2533,7 @@ def _build_inference_dataset( stride=stride, bounds=bounds, input_chunk_length=self.input_chunk_length, + output_chunk_shift=self.output_chunk_shift, use_static_covariates=self.uses_static_covariates, ) @@ -2546,7 +2563,7 @@ def _model_encoder_settings( takes_future_covariates = True return ( input_chunk_length, - output_chunk_length, + output_chunk_length + self.output_chunk_shift, takes_past_covariates, takes_future_covariates, None, @@ -2563,14 +2580,20 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: return ( -self.input_chunk_length, - self.output_chunk_length - 1, + self.output_chunk_length - 1 + self.output_chunk_shift, None, None, - 0 if self.uses_future_covariates else None, - self.output_chunk_length - 1 if self.uses_future_covariates else None, + self.output_chunk_shift if self.uses_future_covariates else None, + ( + self.output_chunk_length - 1 + self.output_chunk_shift + if self.uses_future_covariates + else None + ), + self.output_chunk_shift, ) @@ -2589,6 +2612,7 @@ def _build_train_dataset( covariates=future_covariates, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, max_samples_per_ts=max_samples_per_ts, use_static_covariates=self.uses_static_covariates, ) @@ -2610,6 +2634,7 @@ def _build_inference_dataset( bounds=bounds, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, use_static_covariates=self.uses_static_covariates, ) @@ -2639,7 +2664,7 @@ def _model_encoder_settings( takes_future_covariates = True return ( input_chunk_length, - output_chunk_length, + output_chunk_length + self.output_chunk_shift, takes_past_covariates, takes_future_covariates, None, @@ -2656,14 +2681,20 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: return ( -self.input_chunk_length, - self.output_chunk_length - 1, + self.output_chunk_length - 1 + self.output_chunk_shift, None, None, -self.input_chunk_length if self.uses_future_covariates else None, - self.output_chunk_length - 1 if self.uses_future_covariates else None, + ( + self.output_chunk_length - 1 + self.output_chunk_shift + if self.uses_future_covariates + else None + ), + self.output_chunk_shift, ) @@ -2681,6 +2712,7 @@ def _build_train_dataset( future_covariates=future_covariates, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, max_samples_per_ts=max_samples_per_ts, use_static_covariates=self.uses_static_covariates, ) @@ -2703,6 +2735,7 @@ def _build_inference_dataset( bounds=bounds, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, use_static_covariates=self.uses_static_covariates, ) @@ -2729,7 +2762,7 @@ def _model_encoder_settings( takes_future_covariates = True return ( input_chunk_length, - output_chunk_length, + output_chunk_length + self.output_chunk_shift, takes_past_covariates, takes_future_covariates, None, @@ -2746,14 +2779,20 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: return ( -self.input_chunk_length, - self.output_chunk_length - 1, + self.output_chunk_length - 1 + self.output_chunk_shift, -self.input_chunk_length if self.uses_past_covariates else None, -1 if self.uses_past_covariates else None, -self.input_chunk_length if self.uses_future_covariates else None, - self.output_chunk_length - 1 if self.uses_future_covariates else None, + ( + self.output_chunk_length - 1 + self.output_chunk_shift + if self.uses_future_covariates + else None + ), + self.output_chunk_shift, ) def predict( @@ -2827,6 +2866,7 @@ def _build_train_dataset( future_covariates=future_covariates, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, max_samples_per_ts=max_samples_per_ts, use_static_covariates=self.uses_static_covariates, ) @@ -2849,6 +2889,7 @@ def _build_inference_dataset( bounds=bounds, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, use_static_covariates=self.uses_static_covariates, ) @@ -2876,7 +2917,7 @@ def _model_encoder_settings( takes_future_covariates = True return ( input_chunk_length, - output_chunk_length, + output_chunk_length + self.output_chunk_shift, takes_past_covariates, takes_future_covariates, None, @@ -2893,12 +2934,18 @@ def extreme_lags( Optional[int], Optional[int], Optional[int], + int, ]: return ( -self.input_chunk_length, - self.output_chunk_length - 1, + self.output_chunk_length - 1 + self.output_chunk_shift, -self.input_chunk_length if self.uses_past_covariates else None, -1 if self.uses_past_covariates else None, - 0 if self.uses_future_covariates else None, - self.output_chunk_length - 1 if self.uses_future_covariates else None, + self.output_chunk_shift if self.uses_future_covariates else None, + ( + self.output_chunk_length - 1 + self.output_chunk_shift + if self.uses_future_covariates + else None + ), + self.output_chunk_shift, ) diff --git a/darts/models/forecasting/transformer_model.py b/darts/models/forecasting/transformer_model.py index 3ec83dfb36..7814f73fde 100644 --- a/darts/models/forecasting/transformer_model.py +++ b/darts/models/forecasting/transformer_model.py @@ -327,6 +327,7 @@ def __init__( self, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int = 0, d_model: int = 64, nhead: int = 4, num_encoder_layers: int = 3, @@ -365,6 +366,12 @@ def __init__( auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate auto-regressive predictions (`n > output_chunk_length`). d_model The number of expected features in the transformer encoder/decoder inputs (default=64). nhead diff --git a/darts/models/forecasting/xgboost.py b/darts/models/forecasting/xgboost.py index 2e484e0af4..cff32afdc7 100644 --- a/darts/models/forecasting/xgboost.py +++ b/darts/models/forecasting/xgboost.py @@ -56,6 +56,7 @@ def __init__( lags_past_covariates: Optional[LAGS_TYPE] = None, lags_future_covariates: Optional[FUTURE_LAGS_TYPE] = None, output_chunk_length: int = 1, + output_chunk_shift: int = 0, add_encoders: Optional[dict] = None, likelihood: Optional[str] = None, quantiles: Optional[List[float]] = None, @@ -71,7 +72,8 @@ def __init__( lags Lagged target `series` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags` past lags; e.g. `(-1, -2, ..., -lags)`, where `0` - corresponds the first predicted time step of each sample. + corresponds the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `series` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The @@ -80,17 +82,21 @@ def __init__( lags_past_covariates Lagged `past_covariates` values used to predict the next time step/s. If an integer, must be > 0. Uses the last `n=lags_past_covariates` past lags; e.g. `(-1, -2, ..., -lags)`, - where `0` corresponds to the first predicted time step of each sample. + where `0` corresponds to the first predicted time step of each sample. If `output_chunk_shift > 0`, then + lag `-1` translates to `-1 - output_chunk_shift` steps before the first prediction step. If a list of integers, each value must be < 0. Uses only the specified values as lags. If a dictionary, the keys correspond to the `past_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (integer or list of integers). The key 'default_lags' can be used to provide default lags for un-specified components. Raises and error if some components are missing and the 'default_lags' key is not provided. lags_future_covariates - Lagged `future_covariates` values used to predict the next time step/s. + Lagged `future_covariates` values used to predict the next time step/s. The lags are always relative to the + first step in the output chunk, even when `output_chunk_shift > 0`. If a tuple of `(past, future)`, both values must be > 0. Uses the last `n=past` past lags and `n=future` - future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` - corresponds the first predicted time step of each sample. + future lags; e.g. `(-past, -(past - 1), ..., -1, 0, 1, .... future - 1)`, where `0` corresponds the first + predicted time step of each sample. If `output_chunk_shift > 0`, the position of negative lags differ from + those of `lags` and `lags_past_covariates`. In this case a future lag `-5` would point at the same + step as a target lag of `-5 + output_chunk_shift`. If a list of integers, uses only the specified values as lags. If a dictionary, the keys correspond to the `future_covariates` component names (of the first series when using multiple series) and the values correspond to the component lags (tuple or list of integers). The key @@ -103,6 +109,13 @@ def __init__( useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input (history of target and past covariates) and + output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first + step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the + target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that @@ -204,6 +217,7 @@ def encode_year(idx): lags_past_covariates=lags_past_covariates, lags_future_covariates=lags_future_covariates, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, add_encoders=add_encoders, multi_models=multi_models, model=xgb.XGBRegressor(**self.kwargs), diff --git a/darts/tests/dataprocessing/encoders/test_covariate_index_generators.py b/darts/tests/dataprocessing/encoders/test_covariate_index_generators.py index 72c0d3fa22..fa023b6588 100644 --- a/darts/tests/dataprocessing/encoders/test_covariate_index_generators.py +++ b/darts/tests/dataprocessing/encoders/test_covariate_index_generators.py @@ -52,7 +52,7 @@ class TestCovariatesIndexGenerator: ) # integer index - # excpected covariates for inference dataset for n <= output_chunk_length + # expected covariates for inference dataset for n <= output_chunk_length cov_int_inf_short = TimeSeries.from_times_and_values( tg.generate_index( start=target_int.start_time(), @@ -61,7 +61,7 @@ class TestCovariatesIndexGenerator: ), np.arange(n_target + n_short), ) - # excpected covariates for inference dataset for n > output_chunk_length + # expected covariates for inference dataset for n > output_chunk_length cov_int_inf_long = TimeSeries.from_times_and_values( tg.generate_index( start=target_int.start_time(), diff --git a/darts/tests/datasets/test_datasets.py b/darts/tests/datasets/test_datasets.py index 45ed8bef39..52d2e0d8df 100644 --- a/darts/tests/datasets/test_datasets.py +++ b/darts/tests/datasets/test_datasets.py @@ -1,3 +1,5 @@ +import inspect + import numpy as np import pandas as pd import pytest @@ -487,6 +489,81 @@ def test_split_covariates_inference_dataset(self): np.testing.assert_almost_equal(ds[0][4], self.cov_st2) assert ds[0][5] == target + @pytest.mark.parametrize( + "config", + [ + # (dataset class, whether contains future, future batch index) + (PastCovariatesInferenceDataset, None), + (FutureCovariatesInferenceDataset, 1), + (DualCovariatesInferenceDataset, 2), + (MixedCovariatesInferenceDataset, 3), + (SplitCovariatesInferenceDataset, 2), + ], + ) + def test_inference_dataset_output_chunk_shift(self, config): + ds_cls, future_idx = config + ocl = 1 + ocs = 2 + target = self.target1[: -(ocl + ocs)] + + ds_covs = {} + ds_init_params = set(inspect.signature(ds_cls).parameters) + for cov_type in ["covariates", "past_covariates", "future_covariates"]: + if cov_type in ds_init_params: + ds_covs[cov_type] = self.cov1 + + with pytest.raises(ValueError) as err: + _ = ds_cls( + target_series=target, + input_chunk_length=1, + output_chunk_length=1, + output_chunk_shift=1, + n=2, + **ds_covs, + ) + assert str(err.value).startswith("Cannot perform auto-regression") + + # regular dataset with output shift=0 and ocl=3: the 3rd future values should be identical to the 1st future + # values of a dataset with output shift=2 and ocl=1 + ds_reg = ds_cls( + target_series=target, + input_chunk_length=1, + output_chunk_length=3, + output_chunk_shift=0, + n=1, + **ds_covs, + ) + + ds_shift = ds_cls( + target_series=target, + input_chunk_length=1, + output_chunk_length=1, + output_chunk_shift=ocs, + n=1, + **ds_covs, + ) + + batch_reg, batch_shift = ds_reg[0], ds_shift[0] + + # shifted prediction starts 2 steps after regular prediction + assert batch_reg[-1] == batch_shift[-1] - ocs * target.freq + + if future_idx is not None: + # 3rd future values of regular ds must be identical to the 1st future values of shifted dataset + np.testing.assert_array_equal( + batch_reg[future_idx][ocs:], batch_shift[future_idx] + ) + batch_reg = batch_reg[:future_idx] + batch_reg[future_idx + 1 :] + batch_shift = batch_shift[:future_idx] + batch_shift[future_idx + 1 :] + + # without future part, the input will be identical between regular, and shifted dataset + assert all( + [ + np.all(el_reg == el_shift) + for el_reg, el_shift in zip(batch_reg[:-1], batch_shift[:-1]) + ] + ) + def test_past_covariates_sequential_dataset(self): # one target series ds = PastCovariatesSequentialDataset( @@ -1293,6 +1370,69 @@ def test_horizon_based_dataset(self): ), ) + @pytest.mark.parametrize( + "config", + [ + # (dataset class, whether contains future, future batch index) + (PastCovariatesSequentialDataset, None), + (FutureCovariatesSequentialDataset, 1), + (DualCovariatesSequentialDataset, 2), + (MixedCovariatesSequentialDataset, 3), + (SplitCovariatesSequentialDataset, 2), + ], + ) + def test_sequential_training_dataset_output_chunk_shift(self, config): + ds_cls, future_idx = config + ocl = 1 + ocs = 2 + target = self.target1[: -(ocl + ocs)] + + ds_covs = {} + ds_init_params = set(inspect.signature(ds_cls).parameters) + for cov_type in ["covariates", "past_covariates", "future_covariates"]: + if cov_type in ds_init_params: + ds_covs[cov_type] = self.cov1 + + # regular dataset with output shift=0 and ocl=3: the 3rd future values should be identical to the 1st future + # values of a dataset with output shift=2 and ocl=1 + ds_reg = ds_cls( + target_series=target, + input_chunk_length=1, + output_chunk_length=3, + output_chunk_shift=0, + **ds_covs, + ) + + ds_shift = ds_cls( + target_series=target, + input_chunk_length=1, + output_chunk_length=1, + output_chunk_shift=ocs, + **ds_covs, + ) + + batch_reg, batch_shift = ds_reg[0], ds_shift[0] + + if future_idx is not None: + # 3rd future values of regular ds must be identical to the 1st future values of shifted dataset + np.testing.assert_array_equal( + batch_reg[future_idx][-1:], batch_shift[future_idx] + ) + batch_reg = batch_reg[:future_idx] + batch_reg[future_idx + 1 :] + batch_shift = batch_shift[:future_idx] + batch_shift[future_idx + 1 :] + + # last element is the output chunk of the target series. + # 3rd future values of regular ds must be identical to the 1st future values of shifted dataset + batch_reg = batch_reg[:-1] + (batch_reg[-1][ocs:],) + + # without future part, the input will be identical between regular, and shifted dataset + assert all( + [ + np.all(el_reg == el_shift) + for el_reg, el_shift in zip(batch_reg[:-1], batch_shift[:-1]) + ] + ) + def test_get_matching_index(self): from darts.utils.data.utils import _get_matching_index diff --git a/darts/tests/models/forecasting/test_RNN.py b/darts/tests/models/forecasting/test_RNN.py index 3508cb9e3d..cdd143422b 100644 --- a/darts/tests/models/forecasting/test_RNN.py +++ b/darts/tests/models/forecasting/test_RNN.py @@ -46,6 +46,7 @@ class TestRNNModel: name="RNN", input_chunk_length=1, output_chunk_length=1, + output_chunk_shift=0, input_size=1, hidden_dim=25, num_layers=1, @@ -57,16 +58,13 @@ class TestRNNModel: def test_creation(self): # cannot choose any string with pytest.raises(ValueError) as msg: - RNNModel( - input_chunk_length=1, output_chunk_length=1, model="UnknownRNN?" - ) + RNNModel(input_chunk_length=1, model="UnknownRNN?") assert str(msg.value).startswith("`model` is not a valid RNN model.") # cannot create from a class instance with pytest.raises(ValueError) as msg: _ = RNNModel( input_chunk_length=1, - output_chunk_length=1, model=self.module_invalid, ) assert str(msg.value).startswith("`model` is not a valid RNN model.") @@ -74,7 +72,6 @@ def test_creation(self): # can create from valid module name model1 = RNNModel( input_chunk_length=1, - output_chunk_length=1, model="RNN", n_epochs=1, random_state=42, @@ -86,7 +83,6 @@ def test_creation(self): # can create from a custom class itself model2 = RNNModel( input_chunk_length=1, - output_chunk_length=1, model=ModuleValid1, n_epochs=1, random_state=42, @@ -98,7 +94,6 @@ def test_creation(self): model3 = RNNModel( input_chunk_length=1, - output_chunk_length=1, model=ModuleValid2, n_epochs=1, random_state=42, @@ -111,15 +106,12 @@ def test_creation(self): def test_fit(self, tmpdir_module): # Test basic fit() - model = RNNModel( - input_chunk_length=1, output_chunk_length=1, n_epochs=2, **tfm_kwargs - ) + model = RNNModel(input_chunk_length=1, n_epochs=2, **tfm_kwargs) model.fit(self.series) # Test fit-save-load cycle model2 = RNNModel( input_chunk_length=1, - output_chunk_length=1, model="LSTM", n_epochs=1, model_name="unittest-model-lstm", @@ -143,11 +135,7 @@ def test_fit(self, tmpdir_module): # Another random model should not model3 = RNNModel( - input_chunk_length=1, - output_chunk_length=1, - model="RNN", - n_epochs=2, - **tfm_kwargs + input_chunk_length=1, model="RNN", n_epochs=2, **tfm_kwargs ) model3.fit(self.series) pred3 = model3.predict(n=6) @@ -163,9 +151,7 @@ def test_fit(self, tmpdir_module): assert len(pred4) == 6 def helper_test_pred_length(self, pytorch_model, series): - model = pytorch_model( - input_chunk_length=1, output_chunk_length=3, n_epochs=1, **tfm_kwargs - ) + model = pytorch_model(input_chunk_length=1, n_epochs=1, **tfm_kwargs) model.fit(series) pred = model.predict(7) assert len(pred) == 7 diff --git a/darts/tests/models/forecasting/test_TCN.py b/darts/tests/models/forecasting/test_TCN.py index 0b17f8fc43..587929ce07 100644 --- a/darts/tests/models/forecasting/test_TCN.py +++ b/darts/tests/models/forecasting/test_TCN.py @@ -37,7 +37,7 @@ def test_fit(self): output_chunk_length=1, n_epochs=10, num_layers=1, - **tfm_kwargs + **tfm_kwargs, ) model.fit(large_ts[:98]) pred = model.predict(n=2).values()[0] @@ -48,7 +48,7 @@ def test_fit(self): output_chunk_length=1, n_epochs=10, num_layers=1, - **tfm_kwargs + **tfm_kwargs, ) model2.fit(small_ts[:98]) pred2 = model2.predict(n=2).values()[0] @@ -69,7 +69,7 @@ def test_performance(self): output_chunk_length=10, n_epochs=300, random_state=0, - **tfm_kwargs + **tfm_kwargs, ) model.fit(train) pred = model.predict(n=10) @@ -97,7 +97,7 @@ def test_coverage(self): dilation_base=dilation_base, weight_norm=False, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) # we have to fit the model on a dummy series in order to create the internal nn.Module @@ -145,7 +145,7 @@ def test_coverage(self): weight_norm=False, num_layers=model.model.num_layers - 1, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) # we have to fit the model on a dummy series in order to create the internal nn.Module diff --git a/darts/tests/models/forecasting/test_TFT.py b/darts/tests/models/forecasting/test_TFT.py index a79d43b095..b0eb2e4bdf 100644 --- a/darts/tests/models/forecasting/test_TFT.py +++ b/darts/tests/models/forecasting/test_TFT.py @@ -54,7 +54,7 @@ def test_future_covariate_handling(self): input_chunk_length=1, output_chunk_length=1, add_encoders={"cyclic": {"future": "hour"}}, - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts_time_index, verbose=False) @@ -63,7 +63,7 @@ def test_future_covariate_handling(self): input_chunk_length=1, output_chunk_length=1, add_relative_index=True, - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts_time_index, verbose=False) model.fit(ts_integer_index, verbose=False) @@ -246,7 +246,7 @@ def test_static_covariates_support(self): use_static_covariates=False, add_relative_index=True, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) model.fit(target_multi) preds = model.predict(n=2, series=target_multi.with_static_covariates(None)) @@ -258,7 +258,7 @@ def test_static_covariates_support(self): use_static_covariates=False, add_relative_index=True, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) model.fit(target_multi.with_static_covariates(None)) preds = model.predict(n=2, series=target_multi) @@ -404,7 +404,7 @@ def test_layer_norm(self): output_chunk_length=1, add_relative_index=True, norm_type="RMSNorm", - **tfm_kwargs + **tfm_kwargs, ) model1.fit(series, epochs=1) @@ -413,7 +413,7 @@ def test_layer_norm(self): output_chunk_length=1, add_relative_index=True, norm_type=nn.LayerNorm, - **tfm_kwargs + **tfm_kwargs, ) model2.fit(series, epochs=1) @@ -423,6 +423,6 @@ def test_layer_norm(self): output_chunk_length=1, add_relative_index=True, norm_type="invalid", - **tfm_kwargs + **tfm_kwargs, ) model4.fit(series, epochs=1) diff --git a/darts/tests/models/forecasting/test_block_RNN.py b/darts/tests/models/forecasting/test_block_RNN.py index 1aa8a6ff2d..9415ace0f4 100644 --- a/darts/tests/models/forecasting/test_block_RNN.py +++ b/darts/tests/models/forecasting/test_block_RNN.py @@ -51,6 +51,7 @@ class TestBlockRNNModel: input_size=1, input_chunk_length=1, output_chunk_length=1, + output_chunk_shift=0, hidden_dim=25, target_size=1, nr_params=1, @@ -83,7 +84,7 @@ def test_creation(self): model="RNN", n_epochs=1, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model1.fit(self.series) preds1 = model1.predict(n=3) @@ -95,7 +96,7 @@ def test_creation(self): model=ModuleValid1, n_epochs=1, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model2.fit(self.series) preds2 = model2.predict(n=3) @@ -107,7 +108,7 @@ def test_creation(self): model=ModuleValid2, n_epochs=1, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model3.fit(self.series) preds3 = model2.predict(n=3) @@ -131,7 +132,7 @@ def test_fit(self, tmpdir_module): work_dir=tmpdir_module, save_checkpoints=True, force_reset=True, - **tfm_kwargs + **tfm_kwargs, ) model2.fit(self.series) model_loaded = model2.load_from_checkpoint( @@ -152,7 +153,7 @@ def test_fit(self, tmpdir_module): output_chunk_length=1, model="RNN", n_epochs=2, - **tfm_kwargs + **tfm_kwargs, ) model3.fit(self.series) pred3 = model3.predict(n=6) diff --git a/darts/tests/models/forecasting/test_dlinear_nlinear.py b/darts/tests/models/forecasting/test_dlinear_nlinear.py index ebac942bab..5aca7c5f2b 100644 --- a/darts/tests/models/forecasting/test_dlinear_nlinear.py +++ b/darts/tests/models/forecasting/test_dlinear_nlinear.py @@ -64,7 +64,7 @@ def test_fit(self): n_epochs=10, random_state=42, **kwargs, - **tfm_kwargs + **tfm_kwargs, ) model.fit(large_ts[:98]) pred = model.predict(n=2).values()[0] @@ -75,7 +75,7 @@ def test_fit(self): output_chunk_length=1, n_epochs=10, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model2.fit(small_ts[:98]) pred2 = model2.predict(n=2).values()[0] @@ -118,7 +118,7 @@ def test_shared_weights(self): const_init=False, shared_weights=True, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model_not_shared = model_cls( input_chunk_length=5, @@ -127,7 +127,7 @@ def test_shared_weights(self): const_init=False, shared_weights=False, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model_shared.fit(ts) model_not_shared.fit(ts) @@ -189,7 +189,7 @@ def _eval_model( const_init=True, likelihood=lkl, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model.fit( @@ -316,7 +316,7 @@ def test_optional_static_covariates(self): output_chunk_length=6, use_static_covariates=True, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) model.fit(series) with pytest.raises(ValueError): @@ -328,7 +328,7 @@ def test_optional_static_covariates(self): output_chunk_length=6, use_static_covariates=False, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) model.fit(series) preds = model.predict(n=2, series=series.with_static_covariates(None)) @@ -340,7 +340,7 @@ def test_optional_static_covariates(self): output_chunk_length=6, use_static_covariates=False, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) model.fit(series.with_static_covariates(None)) preds = model.predict(n=2, series=series) diff --git a/darts/tests/models/forecasting/test_ensemble_models.py b/darts/tests/models/forecasting/test_ensemble_models.py index b8dc2f0c3d..6197c3113f 100644 --- a/darts/tests/models/forecasting/test_ensemble_models.py +++ b/darts/tests/models/forecasting/test_ensemble_models.py @@ -110,6 +110,7 @@ def test_extreme_lag_inference(self): None, None, None, + 0, ) # test if default is okay model1 = LinearRegressionModel( @@ -122,7 +123,7 @@ def test_extreme_lag_inference(self): ensemble = NaiveEnsembleModel( [model1, model2] ) # test if infers extreme lags is okay - expected = (-5, 0, -6, -1, 6, 9) + expected = (-5, 0, -6, -1, 6, 9, 0) assert expected == ensemble.extreme_lags def test_input_models_local_models(self): @@ -151,7 +152,7 @@ def test_call_predict_local_models(self): def test_call_backtest_naive_ensemble_local_models(self): ensemble = NaiveEnsembleModel([NaiveSeasonal(5), Theta(2, 5)]) ensemble.fit(self.series1) - assert ensemble.extreme_lags == (-10, -1, None, None, None, None) + assert ensemble.extreme_lags == (-10, -1, None, None, None, None, 0) ensemble.backtest(self.series1) def test_predict_univariate_ensemble_local_models(self): diff --git a/darts/tests/models/forecasting/test_historical_forecasts.py b/darts/tests/models/forecasting/test_historical_forecasts.py index 38a48156ba..b61e449da6 100644 --- a/darts/tests/models/forecasting/test_historical_forecasts.py +++ b/darts/tests/models/forecasting/test_historical_forecasts.py @@ -1463,6 +1463,7 @@ def test_regression_auto_start_multiple_with_cov_retrain(self, model_config): max_past_cov_lag, min_future_cov_lag, max_future_cov_lag, + output_chunk_shift, ) = model.extreme_lags past_lag = min( @@ -1574,6 +1575,7 @@ def test_regression_auto_start_multiple_with_cov_no_retrain(self, model_config): max_past_cov_lag, min_future_cov_lag, max_future_cov_lag, + output_chunk_shift, ) = model.extreme_lags past_lag = min( diff --git a/darts/tests/models/forecasting/test_nbeats_nhits.py b/darts/tests/models/forecasting/test_nbeats_nhits.py index 378d027379..88acadb254 100644 --- a/darts/tests/models/forecasting/test_nbeats_nhits.py +++ b/darts/tests/models/forecasting/test_nbeats_nhits.py @@ -52,7 +52,7 @@ def test_fit(self): num_blocks=1, layer_widths=20, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model.fit(large_ts[:98]) pred = model.predict(n=2).values()[0] @@ -66,7 +66,7 @@ def test_fit(self): num_blocks=1, layer_widths=20, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model2.fit(small_ts[:98]) pred2 = model2.predict(n=2).values()[0] @@ -88,7 +88,7 @@ def test_multivariate(self): output_chunk_length=1, n_epochs=20, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model.fit(series_multivariate) @@ -109,7 +109,7 @@ def test_multivariate(self): output_chunk_length=4, n_epochs=5, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model.fit(series_multivariate, past_covariates=series_covariates) @@ -197,7 +197,7 @@ def test_activation_fns(self): layer_widths=20, random_state=42, activation="LeakyReLU", - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts) @@ -211,6 +211,6 @@ def test_activation_fns(self): layer_widths=20, random_state=42, activation="invalid", - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts) diff --git a/darts/tests/models/forecasting/test_regression_ensemble_model.py b/darts/tests/models/forecasting/test_regression_ensemble_model.py index 979e767bb7..e9fa0b9578 100644 --- a/darts/tests/models/forecasting/test_regression_ensemble_model.py +++ b/darts/tests/models/forecasting/test_regression_ensemble_model.py @@ -551,7 +551,15 @@ def test_call_backtest_regression_ensemble_local_models(self): max(m_.min_train_series_length for m_ in ensemble.forecasting_models) == 10 ) # -10 comes from the maximum minimum train series length of all models - assert ensemble.extreme_lags == (-10 - regr_train_n, -1, None, None, None, None) + assert ensemble.extreme_lags == ( + -10 - regr_train_n, + -1, + None, + None, + None, + None, + 0, + ) ensemble.backtest(self.sine_series) def test_extreme_lags(self): @@ -566,7 +574,7 @@ def test_extreme_lags(self): regression_train_n_points=train_n_points, ) - assert model.extreme_lags == (-train_n_points, 0, -3, -1, 0, 0) + assert model.extreme_lags == (-train_n_points, 0, -3, -1, 0, 0, 0) # mix of all the lags model3 = RandomForest( @@ -578,7 +586,7 @@ def test_extreme_lags(self): regression_train_n_points=train_n_points, ) - assert model.extreme_lags == (-7 - train_n_points, 0, -3, -1, -2, 5) + assert model.extreme_lags == (-7 - train_n_points, 0, -3, -1, -2, 5, 0) def test_stochastic_regression_ensemble_model(self): quantiles = [0.25, 0.5, 0.75] diff --git a/darts/tests/models/forecasting/test_regression_models.py b/darts/tests/models/forecasting/test_regression_models.py index 85cff2aca6..446719e0e1 100644 --- a/darts/tests/models/forecasting/test_regression_models.py +++ b/darts/tests/models/forecasting/test_regression_models.py @@ -1662,6 +1662,14 @@ def test_integer_indexed_series(self, mode): {"lags_past_covariates": 2}, {"lags_past_covariates": {"lin_past": 2}}, ), + ( + {"lags_future_covariates": [-2, -1]}, + {"lags_future_covariates": {"lin_future": [-2, -1]}}, + ), + ( + {"lags_future_covariates": [1, 2]}, + {"lags_future_covariates": {"lin_future": [1, 2]}}, + ), ( {"lags": 5, "lags_future_covariates": [-2, 3]}, { @@ -1689,64 +1697,76 @@ def test_integer_indexed_series(self, mode): }, ), ], + [0, 5], [True, False], ), ) def test_component_specific_lags_forecasts(self, config): - """Verify that the same lags, defined using int/list or dictionnaries yield the same results""" - (list_lags, dict_lags), multiple_series = config - multivar_target = "lags" in dict_lags and len(dict_lags["lags"]) > 1 - multivar_future_cov = ( - "lags_future_covariates" in dict_lags - and len(dict_lags["lags_future_covariates"]) > 1 + """Verify that the same lags, defined using int/list or dictionaries yield the same results, + including output_chunk_shift.""" + (list_lags, dict_lags), output_chunk_shift, multiple_series = config + max_forecast = 3 + series, past_cov, future_cov = self.helper_generate_input_series_from_lags( + list_lags, + dict_lags, + multiple_series, + output_chunk_shift, + max_forecast, ) - # create series based on the model parameters - series = tg.gaussian_timeseries(length=20, column_name="gaussian") - if multivar_target: - series = series.stack(tg.sine_timeseries(length=20, column_name="sine")) - - future_cov = tg.linear_timeseries(length=30, column_name="lin_future") - if multivar_future_cov: - future_cov = future_cov.stack( - tg.sine_timeseries(length=30, column_name="sine_future") - ) - - past_cov = tg.linear_timeseries(length=30, column_name="lin_past") - - if multiple_series: - # second series have different component names - series = [ - series, - series.with_columns_renamed( - ["gaussian", "sine"][: series.width], - ["other", "names"][: series.width], - ) - + 10, - ] - past_cov = [past_cov, past_cov] - future_cov = [future_cov, future_cov] - - # the lags are identical across the components for each series - model = LinearRegressionModel(**list_lags) + model = LinearRegressionModel( + **list_lags, output_chunk_shift=output_chunk_shift + ) model.fit( series=series, - past_covariates=past_cov if model.supports_past_covariates else None, - future_covariates=future_cov if model.supports_future_covariates else None, + past_covariates=past_cov, + future_covariates=future_cov, ) # the lags are specified for each component, individually - model2 = LinearRegressionModel(**dict_lags) + model2 = LinearRegressionModel( + **dict_lags, output_chunk_shift=output_chunk_shift + ) model2.fit( series=series, - past_covariates=past_cov if model2.supports_past_covariates else None, - future_covariates=future_cov if model2.supports_future_covariates else None, + past_covariates=past_cov, + future_covariates=future_cov, ) + if "lags_future_covariates" in list_lags: + assert model.lags["future"] == [ + lag_ + output_chunk_shift + for lag_ in list_lags["lags_future_covariates"] + ] + + if "default_lags" in dict_lags["lags_future_covariates"]: + # check that default lags + default_components = ( + model2.component_lags["future"].keys() + - dict_lags["lags_future_covariates"].keys() + ) + else: + default_components = dict() + + lags_specific = { + comp_: ( + dict_lags["lags_future_covariates"]["default_lags"] + if comp_ in default_components + else dict_lags["lags_future_covariates"][comp_] + ) + for comp_ in model2.component_lags["future"] + } + assert model2.component_lags["future"] == { + comp_: [lag_ + output_chunk_shift for lag_ in lags_] + for comp_, lags_ in lags_specific.items() + } + # n == output_chunk_length + s_ = series[0] if multiple_series else series + pred_start_expected = s_.end_time() + (1 + output_chunk_shift) * s_.freq pred = model.predict( 1, - series=series[0] if multiple_series else None, + series=s_, past_covariates=( past_cov[0] if multiple_series and model.supports_past_covariates @@ -1758,9 +1778,10 @@ def test_component_specific_lags_forecasts(self, config): else None ), ) + assert pred.start_time() == pred_start_expected pred2 = model2.predict( 1, - series=series[0] if multiple_series else None, + series=s_, past_covariates=( past_cov[0] if multiple_series and model2.supports_past_covariates @@ -1772,12 +1793,17 @@ def test_component_specific_lags_forecasts(self, config): else None ), ) + assert pred2.start_time() == pred_start_expected np.testing.assert_array_almost_equal(pred.values(), pred2.values()) assert pred.time_index.equals(pred2.time_index) + # auto-regression not supported for shifted output (tested in `test_output_shift`) + if output_chunk_shift: + return + # n > output_chunk_length pred = model.predict( - 3, + max_forecast, series=series[0] if multiple_series else None, past_covariates=( past_cov[0] @@ -1791,7 +1817,7 @@ def test_component_specific_lags_forecasts(self, config): ), ) pred2 = model2.predict( - 3, + max_forecast, series=series[0] if multiple_series else None, past_covariates=( past_cov[0] @@ -1909,6 +1935,300 @@ def test_component_specific_lags(self, config): ), ) + @pytest.mark.parametrize( + "config", + itertools.product( + [ + {"lags": [-1, -3]}, + {"lags_past_covariates": 2}, + {"lags_future_covariates": [-2, -1]}, + {"lags_future_covariates": [1, 2]}, + { + "lags": 5, + "lags_past_covariates": [-3, -1], + }, + {"lags": [-5, -4], "lags_future_covariates": [-2, 0, 1, 2]}, + { + "lags": 5, + "lags_past_covariates": 4, + "lags_future_covariates": [-3, 1], + }, + ], + [True, False], + [3, 5], + [1, 4], + ), + ) + def test_same_result_output_chunk_shift(self, config): + """Tests that a model with that uses an output shift gets identical results for a multi-model + without a shift. This only applies to the regressors that overlap. + + Example models: + * non-shifted model with ocl=5, shift=0, multi_models=True + * shifted model with ocl=2, shift=3, multi_models=True + + The 4th and 5th regressors from the non-shifted models should generate identical results as the 1st + and 2nd regressor of the shifted model. + """ + list_lags, multiple_series, output_chunk_shift, ocl_shifted = config + ocl = output_chunk_shift + ocl_shifted + max_forecast = ocl + series, past_cov, future_cov = self.helper_generate_input_series_from_lags( + list_lags, + {}, + multiple_series, + output_chunk_shift, + max_forecast, + output_chunk_length=ocl, + ) + + model = LinearRegressionModel( + **list_lags, output_chunk_shift=0, output_chunk_length=ocl + ) + + # with output shift, future lags are shifted + model_shift = LinearRegressionModel( + **list_lags, + output_chunk_shift=output_chunk_shift, + output_chunk_length=ocl_shifted, + ) + # adjusting the future lags should give identical models to non-shifted + list_lags_adj = copy.deepcopy(list_lags) + if "lags_future_covariates" in list_lags_adj: + list_lags_adj["lags_future_covariates"] = [ + lag_ - output_chunk_shift + for lag_ in list_lags_adj["lags_future_covariates"] + ] + model_shift_adj = LinearRegressionModel( + **list_lags_adj, + output_chunk_shift=output_chunk_shift, + output_chunk_length=ocl_shifted, + ) + + if not multiple_series: + series = [series] + past_cov = [past_cov] if past_cov is not None else past_cov + future_cov = [future_cov] if future_cov is not None else future_cov + + for m_ in [model, model_shift, model_shift_adj]: + m_.fit( + series=series, + past_covariates=past_cov, + future_covariates=future_cov, + ) + + pred = model.predict( + ocl, + series=series, + past_covariates=past_cov, + future_covariates=future_cov, + ) + pred_shift = model_shift.predict( + ocl_shifted, + series=series, + past_covariates=past_cov, + future_covariates=future_cov, + ) + pred_shift_adj = model_shift_adj.predict( + ocl_shifted, + series=series, + past_covariates=past_cov, + future_covariates=future_cov, + ) + # expected shifted start is `output_chunk_shift` steps after non-shifted pred start + for s_, pred_, pred_shift_, pred_shift_adj_ in zip( + series, pred, pred_shift, pred_shift_adj + ): + pred_shift_start_expected = ( + s_.end_time() + (1 + output_chunk_shift) * s_.freq + ) + assert pred_.start_time() == s_.end_time() + pred_.freq + assert ( + pred_.end_time() + == pred_shift_start_expected + (ocl_shifted - 1) * pred_.freq + ) + assert pred_shift_.start_time() == pred_shift_start_expected + assert ( + pred_shift_.end_time() + == pred_shift_start_expected + (ocl_shifted - 1) * pred_shift_.freq + ) + assert pred_shift_.time_index.equals(pred_shift_adj_.time_index) + + if "lags_future_covariates" not in list_lags: + # without future lags, all lags should be identical between shift and non-shifted model + np.testing.assert_almost_equal( + pred_[-ocl_shifted:].all_values(copy=False), + pred_shift_.all_values(copy=False), + ) + else: + # without future lags, the shifted model also shifts future lags + with pytest.raises(AssertionError): + np.testing.assert_almost_equal( + pred_[-ocl_shifted:].all_values(copy=False), + pred_shift_.all_values(copy=False), + ) + + # with adjusted future lags, the models should be identical + np.testing.assert_almost_equal( + pred_[-ocl_shifted:].all_values(copy=False), + pred_shift_adj_.all_values(copy=False), + ) + + @pytest.mark.parametrize( + "config", + itertools.product( + [ + {"lags": [-1, -3]}, + {"lags_past_covariates": 2}, + {"lags_future_covariates": [-2, -1]}, + {"lags_future_covariates": [1, 2]}, + { + "lags": 5, + "lags_past_covariates": [-3, -1], + }, + {"lags": [-5, -4], "lags_future_covariates": [-2, 0, 1, 2]}, + { + "lags": 5, + "lags_past_covariates": 4, + "lags_future_covariates": [-3, 1], + }, + ], + [3, 7, 10], + ), + ) + def test_output_shift(self, config): + """Tests shifted output for shift smaller than, equal to, and larger than output_chunk_length.""" + np.random.seed(0) + lags, shift = config + ocl = 7 + series = tg.gaussian_timeseries( + length=28, start=pd.Timestamp("2000-01-01"), freq="d" + ) + + model_target_only = LinearRegressionModel( + lags=3, + output_chunk_length=ocl, + output_chunk_shift=shift, + ) + model_target_only.fit(series) + + # no auto-regression with shifted output + with pytest.raises(ValueError) as err: + _ = model_target_only.predict(n=ocl + 1) + assert str(err.value).startswith("Cannot perform auto-regression") + + # pred starts with a shift + for ocl_test in [ocl - 1, ocl]: + pred = model_target_only.predict(n=ocl_test) + assert pred.start_time() == series.end_time() + (shift + 1) * series.freq + assert len(pred) == ocl_test + assert pred.freq == series.freq + + series, past_cov, future_cov = self.helper_generate_input_series_from_lags( + lags, + {}, + multiple_series=False, + output_chunk_shift=shift, + max_forecast=ocl, + output_chunk_length=ocl, + add_length=2, # add length for hist fc that don't use target lags + ) + + # model trained on encoders + cov_support = [] + covs = {} + if "lags_past_covariates" in lags: + cov_support.append("past") + covs["past_covariates"] = tg.datetime_attribute_timeseries( + past_cov, + attribute="dayofweek", + add_length=0, + ) + if "lags_future_covariates" in lags: + cov_support.append("future") + covs["future_covariates"] = tg.datetime_attribute_timeseries( + future_cov, + attribute="dayofweek", + add_length=0, + ) + + if not cov_support: + return + + add_encoders = { + "datetime_attribute": {cov: ["dayofweek"] for cov in cov_support} + } + model_enc_shift = LinearRegressionModel( + **lags, + output_chunk_length=ocl, + output_chunk_shift=shift, + add_encoders=add_encoders, + ) + model_enc_shift.fit(series) + + # model trained with identical covariates + model_fc_shift = LinearRegressionModel( + **lags, + output_chunk_length=ocl, + output_chunk_shift=shift, + ) + model_fc_shift.fit(series, **covs) + + pred_enc = model_enc_shift.predict(n=ocl) + pred_fc = model_fc_shift.predict(n=ocl) + assert pred_enc == pred_fc + + # check that historical forecasts works properly + hist_fc_start = -(ocl + shift) + pred_last_hist_fc = model_fc_shift.predict(n=ocl, series=series[:hist_fc_start]) + # non-optimized hist fc + hist_fc = model_fc_shift.historical_forecasts( + series=series, + start=hist_fc_start, + start_format="position", + retrain=False, + forecast_horizon=ocl, + last_points_only=False, + enable_optimization=False, + **covs, + ) + assert len(hist_fc) == 1 + assert hist_fc[0] == pred_last_hist_fc + # optimized hist fc, routine: last_points_only=False + hist_fc_opt = model_fc_shift.historical_forecasts( + series=series, + start=hist_fc_start, + start_format="position", + retrain=False, + forecast_horizon=ocl, + last_points_only=False, + enable_optimization=True, + **covs, + ) + assert len(hist_fc_opt) == 1 + assert hist_fc_opt[0].time_index.equals(pred_last_hist_fc.time_index) + np.testing.assert_array_almost_equal( + hist_fc_opt[0].values(copy=False), pred_last_hist_fc.values(copy=False) + ) + + # optimized hist fc, routine: last_points_only=True + hist_fc_opt = model_fc_shift.historical_forecasts( + series=series, + start=hist_fc_start, + start_format="position", + retrain=False, + forecast_horizon=ocl, + last_points_only=True, + enable_optimization=True, + **covs, + ) + assert isinstance(hist_fc_opt, TimeSeries) + assert len(hist_fc_opt) == 1 + assert hist_fc_opt.start_time() == pred_last_hist_fc.end_time() + np.testing.assert_array_almost_equal( + hist_fc_opt.values(copy=False), pred_last_hist_fc[-1].values(copy=False) + ) + @pytest.mark.parametrize( "config", itertools.product( @@ -2495,6 +2815,94 @@ def helper_create_LinearModel(self, multi_models=True, extreme_lags=False): }, ) + def helper_generate_input_series_from_lags( + self, + list_lags, + dict_lags, + multiple_series, + output_chunk_shift, + max_forecast, + output_chunk_length: int = 1, + add_length: int = 0, + ): + np.random.seed(0) + if dict_lags: + multivar_target = "lags" in dict_lags and len(dict_lags["lags"]) > 1 + multivar_future_cov = ( + "lags_future_covariates" in dict_lags + and len(dict_lags["lags_future_covariates"]) > 1 + ) + else: + multivar_target = False + multivar_future_cov = False + + # the lags are identical across the components for each series + model = LinearRegressionModel( + **list_lags, + output_chunk_shift=output_chunk_shift, + output_chunk_length=output_chunk_length, + ) + autoreg_add_steps = max(max_forecast - model.output_chunk_length, 0) + + # create series based on the model parameters + n_s = model.min_train_series_length + add_length + series = tg.gaussian_timeseries(length=n_s, column_name="gaussian") + if multivar_target: + series = series.stack(tg.sine_timeseries(length=n_s, column_name="sine")) + + if model.supports_future_covariates: + # prepend values if not target lags are used + if "target" not in model.lags and min(model.lags["future"]) < 0: + prep = abs(min(model.lags["future"])) + else: + prep = 0 + + # minimum future covariates length + n_fc = n_s + max(model.lags["future"]) + 1 + autoreg_add_steps + future_cov = tg.gaussian_timeseries( + start=series.start_time() - prep * series.freq, + length=n_fc + prep, + column_name="lin_future", + ) + if multivar_future_cov: + future_cov = future_cov.stack( + tg.gaussian_timeseries(length=n_fc, column_name="sine_future") + ) + else: + future_cov = None + + if model.supports_past_covariates: + # prepend values if not target lags are used + if "target" not in model.lags: + prep = abs(min(model.lags["past"])) + else: + prep = 0 + + # minimum past covariates length + n_pc = n_s + autoreg_add_steps + + past_cov = tg.gaussian_timeseries( + start=series.start_time() - prep * series.freq, + length=n_pc + prep, + column_name="lin_past", + ) + else: + past_cov = None + + if multiple_series: + # second series have different component names + series = [ + series, + series.with_columns_renamed( + ["gaussian", "sine"][: series.width], + ["other", "names"][: series.width], + ) + + 10, + ] + past_cov = [past_cov, past_cov] if past_cov else None + future_cov = [future_cov, future_cov] if future_cov else None + return series, past_cov, future_cov + class TestProbabilisticRegressionModels: models_cls_kwargs_errs = [ diff --git a/darts/tests/models/forecasting/test_tide_model.py b/darts/tests/models/forecasting/test_tide_model.py index 3a86c0285e..e8571a6c58 100644 --- a/darts/tests/models/forecasting/test_tide_model.py +++ b/darts/tests/models/forecasting/test_tide_model.py @@ -45,7 +45,7 @@ def test_fit(self): output_chunk_length=1, n_epochs=10, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model.fit(large_ts[:98]) @@ -57,7 +57,7 @@ def test_fit(self): output_chunk_length=1, n_epochs=10, random_state=42, - **tfm_kwargs + **tfm_kwargs, ) model2.fit(small_ts[:98]) @@ -94,7 +94,7 @@ def test_future_covariate_handling(self): output_chunk_length=1, add_encoders={"cyclic": {"future": "hour"}}, use_reversible_instance_norm=False, - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts_time_index, verbose=False, epochs=1) @@ -103,7 +103,7 @@ def test_future_covariate_handling(self): output_chunk_length=1, add_encoders={"cyclic": {"future": "hour"}}, use_reversible_instance_norm=True, - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts_time_index, verbose=False, epochs=1) @@ -114,7 +114,7 @@ def test_future_and_past_covariate_handling(self): input_chunk_length=1, output_chunk_length=1, add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts_time_index, verbose=False, epochs=1) @@ -122,7 +122,7 @@ def test_future_and_past_covariate_handling(self): input_chunk_length=1, output_chunk_length=1, add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts_time_index, verbose=False, epochs=1) @@ -135,7 +135,7 @@ def test_failing_future_and_past_temporal_widths(self, temporal_widths): output_chunk_length=1, temporal_width_past=temporal_widths[0], temporal_width_future=temporal_widths[1], - **tfm_kwargs + **tfm_kwargs, ) @pytest.mark.parametrize( @@ -160,7 +160,7 @@ def test_future_and_past_temporal_widths(self, temporal_widths): temporal_width_past=temporal_widths[0], temporal_width_future=temporal_widths[1], add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts_time_index, verbose=False, epochs=1) assert model.model.temporal_width_past == temporal_widths[0] @@ -173,7 +173,7 @@ def test_past_covariate_handling(self): input_chunk_length=1, output_chunk_length=1, add_encoders={"cyclic": {"past": "hour"}}, - **tfm_kwargs + **tfm_kwargs, ) model.fit(ts_time_index, verbose=False, epochs=1) @@ -188,7 +188,7 @@ def test_future_and_past_covariate_as_timeseries_handling(self): output_chunk_length=1, add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, use_reversible_instance_norm=enable_rin, - **tfm_kwargs + **tfm_kwargs, ) model.fit( ts_time_index, @@ -203,7 +203,7 @@ def test_future_and_past_covariate_as_timeseries_handling(self): output_chunk_length=1, add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, use_reversible_instance_norm=enable_rin, - **tfm_kwargs + **tfm_kwargs, ) model.fit( ts_time_index, @@ -260,7 +260,7 @@ def test_static_covariates_support(self): output_chunk_length=4, use_static_covariates=False, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) model.fit(target_multi) preds = model.predict(n=2, series=target_multi.with_static_covariates(None)) @@ -271,7 +271,7 @@ def test_static_covariates_support(self): output_chunk_length=4, use_static_covariates=False, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) model.fit(target_multi.with_static_covariates(None)) preds = model.predict(n=2, series=target_multi) diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 77ad8aa07a..04bd36e426 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -1,3 +1,4 @@ +import itertools import os from typing import Any, Dict, Optional from unittest.mock import patch @@ -6,13 +7,13 @@ import pandas as pd import pytest +import darts.utils.timeseries_generation as tg from darts import TimeSeries from darts.dataprocessing.encoders import SequentialEncoder from darts.dataprocessing.transformers import BoxCox, Scaler from darts.logging import get_logger from darts.metrics import mape from darts.tests.conftest import tfm_kwargs -from darts.utils.timeseries_generation import linear_timeseries logger = get_logger(__name__) @@ -1382,9 +1383,9 @@ def test_lr_find(self): assert scores["worst"] > scores["suggested"] def test_encoders(self, tmpdir_fn): - series = linear_timeseries(length=10) - pc = linear_timeseries(length=12) - fc = linear_timeseries(length=13) + series = tg.linear_timeseries(length=10) + pc = tg.linear_timeseries(length=12) + fc = tg.linear_timeseries(length=13) # 1 == output_chunk_length, 3 > output_chunk_length ns = [1, 3] @@ -1479,6 +1480,150 @@ def test_rin(self, model_config): == self.multivariate_series.n_components ) + @pytest.mark.parametrize( + "config", + itertools.product( + [ + ( + TFTModel, + { + "add_relative_index": True, + "likelihood": None, + "loss_fn": torch.nn.MSELoss(), + }, + ), + (TiDEModel, {}), + (NLinearModel, {}), + (DLinearModel, {}), + (NBEATSModel, {}), + (NHiTSModel, {}), + (TransformerModel, {}), + (TCNModel, {}), + (BlockRNNModel, {}), + ], + [3, 7, 10], + ), + ) + def test_output_shift(self, config): + """Tests shifted output for shift smaller than, equal to, and larger than output_chunk_length. + RNNModel does not support shift output chunk. + """ + np.random.seed(0) + (model_cls, add_params), shift = config + icl = 8 + ocl = 7 + series = tg.gaussian_timeseries( + length=28, start=pd.Timestamp("2000-01-01"), freq="d" + ) + + model = self.helper_create_torch_model( + model_cls, icl, ocl, shift, **add_params + ) + model.fit(series) + + # no auto-regression with shifted output + with pytest.raises(ValueError) as err: + _ = model.predict(n=ocl + 1) + assert str(err.value).startswith("Cannot perform auto-regression") + + # pred starts with a shift + for ocl_test in [ocl - 1, ocl]: + pred = model.predict(n=ocl_test) + assert ( + pred.start_time() == series.end_time() + (shift + 1) * series.freq + ) + assert len(pred) == ocl_test + assert pred.freq == series.freq + + # check that shifted output chunk results with encoders are the + # same as using identical covariates + + # model trained on encoders + cov_support = [] + covs = {} + if model.supports_past_covariates: + cov_support.append("past") + covs["past_covariates"] = tg.datetime_attribute_timeseries( + series, + attribute="dayofweek", + add_length=0, + ) + if model.supports_future_covariates: + cov_support.append("future") + covs["future_covariates"] = tg.datetime_attribute_timeseries( + series, + attribute="dayofweek", + add_length=ocl + shift, + ) + + if not cov_support: + return + + add_encoders = { + "datetime_attribute": {cov: ["dayofweek"] for cov in cov_support} + } + model_enc_shift = self.helper_create_torch_model( + model_cls, icl, ocl, shift, add_encoders=add_encoders, **add_params + ) + model_enc_shift.fit(series) + + # model trained with identical covariates + model_fc_shift = self.helper_create_torch_model( + model_cls, icl, ocl, shift, **add_params + ) + + model_fc_shift.fit(series, **covs) + + pred_enc = model_enc_shift.predict(n=ocl) + pred_fc = model_fc_shift.predict(n=ocl) + assert pred_enc == pred_fc + + # check that historical forecasts works properly + hist_fc_start = -(ocl + shift) + pred_last_hist_fc = model_fc_shift.predict( + n=ocl, series=series[:hist_fc_start] + ) + # non-optimized hist fc + hist_fc = model_fc_shift.historical_forecasts( + series=series, + start=hist_fc_start, + start_format="position", + retrain=False, + forecast_horizon=ocl, + last_points_only=False, + enable_optimization=False, + **covs, + ) + assert len(hist_fc) == 1 + assert hist_fc[0] == pred_last_hist_fc + # optimized hist fc, due to batch predictions, slight deviations in values + hist_fc_opt = model_fc_shift.historical_forecasts( + series=series, + start=hist_fc_start, + start_format="position", + retrain=False, + forecast_horizon=ocl, + last_points_only=False, + enable_optimization=True, + **covs, + ) + assert len(hist_fc_opt) == 1 + assert hist_fc_opt[0].time_index.equals(pred_last_hist_fc.time_index) + np.testing.assert_array_almost_equal( + hist_fc_opt[0].values(copy=False), pred_last_hist_fc.values(copy=False) + ) + + # covs too short + for cov_name in cov_support: + with pytest.raises(ValueError) as err: + add_covs = { + cov_name + "_covariates": covs[cov_name + "_covariates"][:-1] + } + _ = model_fc_shift.predict(n=ocl, **add_covs) + assert f"provided {cov_name} covariates at dataset index" in str( + err.value + ) + def helper_equality_encoders( self, first_encoders: Dict[str, Any], second_encoders: Dict[str, Any] ): @@ -1528,10 +1673,12 @@ def helper_create_DLinearModel( add_encoders: Optional[Dict] = None, save_checkpoints: bool = False, likelihood: Optional[Likelihood] = None, + output_chunk_length: int = 1, + **kwargs, ): return DLinearModel( input_chunk_length=4, - output_chunk_length=1, + output_chunk_length=output_chunk_length, model_name=model_name, add_encoders=add_encoders, work_dir=work_dir, @@ -1541,4 +1688,17 @@ def helper_create_DLinearModel( n_epochs=1, likelihood=likelihood, **tfm_kwargs, + **kwargs, ) + + def helper_create_torch_model(self, model_cls, icl, ocl, shift, **kwargs): + params = { + "input_chunk_length": icl, + "output_chunk_length": ocl, + "output_chunk_shift": shift, + "n_epochs": 1, + "random_state": 42, + } + params.update(tfm_kwargs) + params.update(kwargs) + return model_cls(**params) diff --git a/darts/tests/models/forecasting/test_transformer_model.py b/darts/tests/models/forecasting/test_transformer_model.py index 8ece59c09d..b04fd05485 100644 --- a/darts/tests/models/forecasting/test_transformer_model.py +++ b/darts/tests/models/forecasting/test_transformer_model.py @@ -38,6 +38,7 @@ class TestTransformerModel: input_size=1, input_chunk_length=1, output_chunk_length=1, + output_chunk_shift=0, train_sample_shape=((1, 1),), output_size=1, nr_params=1, @@ -63,7 +64,7 @@ def test_fit(self, tmpdir_module): work_dir=tmpdir_module, save_checkpoints=True, force_reset=True, - **tfm_kwargs + **tfm_kwargs, ) model2.fit(self.series) model_loaded = model2.load_from_checkpoint( @@ -119,7 +120,7 @@ def test_activations(self): input_chunk_length=1, output_chunk_length=1, activation="invalid", - **tfm_kwargs + **tfm_kwargs, ) model1.fit(self.series, epochs=1) @@ -128,7 +129,7 @@ def test_activations(self): input_chunk_length=1, output_chunk_length=1, activation="gelu", - **tfm_kwargs + **tfm_kwargs, ) model2.fit(self.series, epochs=1) assert isinstance( @@ -143,7 +144,7 @@ def test_activations(self): input_chunk_length=1, output_chunk_length=1, activation="SwiGLU", - **tfm_kwargs + **tfm_kwargs, ) model3.fit(self.series, epochs=1) assert isinstance( @@ -168,7 +169,7 @@ def test_layer_norm(self): input_chunk_length=1, output_chunk_length=1, norm_type="RMSNorm", - **tfm_kwargs + **tfm_kwargs, ) y1 = model1.fit(self.series, epochs=1) @@ -176,7 +177,7 @@ def test_layer_norm(self): input_chunk_length=1, output_chunk_length=1, norm_type=nn.LayerNorm, - **tfm_kwargs + **tfm_kwargs, ) y2 = model2.fit(self.series, epochs=1) @@ -185,7 +186,7 @@ def test_layer_norm(self): output_chunk_length=1, activation="gelu", norm_type="RMSNorm", - **tfm_kwargs + **tfm_kwargs, ) y3 = model3.fit(self.series, epochs=1) @@ -199,6 +200,6 @@ def test_layer_norm(self): input_chunk_length=1, output_chunk_length=1, norm_type="invalid", - **tfm_kwargs + **tfm_kwargs, ) model4.fit(self.series, epochs=1) diff --git a/darts/tests/utils/tabularization/test_create_lagged_prediction_data.py b/darts/tests/utils/tabularization/test_create_lagged_prediction_data.py index e00b76bebf..74d2de2128 100644 --- a/darts/tests/utils/tabularization/test_create_lagged_prediction_data.py +++ b/darts/tests/utils/tabularization/test_create_lagged_prediction_data.py @@ -1,3 +1,4 @@ +import itertools import warnings from itertools import product from typing import Optional, Sequence @@ -330,7 +331,11 @@ def construct_X_block( target_lag_combos = past_lag_combos = (None, [-1, -3], [-3, -1]) future_lag_combos = (*target_lag_combos, [0], [2, 1], [-1, 1], [0, 2]) - def test_lagged_prediction_data_equal_freq_range_index(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_lagged_prediction_data_equal_freq(self, series_type): """ Tests that `create_lagged_prediction_data` produces `X` and `times` outputs that are consistent with those generated by using the helper @@ -339,110 +344,48 @@ def test_lagged_prediction_data_equal_freq_range_index(self): `self.target_lag_combos`, `self.covariates_lag_combos`, and `self.max_samples_per_ts_combos`. - This particular test uses timeseries with range time indices of equal + This particular test uses timeseries with time indices of equal frequencies. Since all of the timeseries are of the same frequency, the implementation of the 'moving window' method is being tested here. """ # Define range index timeseries - each has different number of components, # different start times, different lengths, and different values, but # they're all of the same frequency: - target = self.create_multivariate_linear_timeseries( - n_components=2, start_value=0, end_value=10, start=2, end=20, freq=1 - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, start_value=10, end_value=20, start=4, end=23, freq=2 - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, start_value=20, end_value=30, start=6, end=26, freq=3 - ) - # Conduct test for each input parameter combo: - for lags, lags_past, lags_future, max_samples_per_ts in product( - self.target_lag_combos, - self.past_lag_combos, - self.future_lag_combos, - self.max_samples_per_ts_combos, - ): - all_lags = (lags, lags_past, lags_future) - # Skip test where all lags are `None` - can't assemble features - # for this single combo of input params: - lags_is_none = [x is None for x in all_lags] - if all(lags_is_none): - continue - X, times = create_lagged_prediction_data( - target_series=target if lags else None, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=True, + if series_type == "integer": + target = self.create_multivariate_linear_timeseries( + n_components=2, start_value=0, end_value=10, start=2, end=20, freq=2 ) - feats_times = self.get_feature_times( - target, - past, - future, - lags, - lags_past, - lags_future, - max_samples_per_ts, + past = self.create_multivariate_linear_timeseries( + n_components=3, start_value=10, end_value=20, start=4, end=23, freq=2 + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, start_value=20, end_value=30, start=6, end=26, freq=2 + ) + else: + target = self.create_multivariate_linear_timeseries( + n_components=2, + start_value=0, + end_value=10, + start=pd.Timestamp("1/2/2000"), + end=pd.Timestamp("1/16/2000"), + freq="2d", + ) + past = self.create_multivariate_linear_timeseries( + n_components=3, + start_value=10, + end_value=20, + start=pd.Timestamp("1/4/2000"), + end=pd.Timestamp("1/18/2000"), + freq="2d", + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, + start_value=20, + end_value=30, + start=pd.Timestamp("1/6/2000"), + end=pd.Timestamp("1/20/2000"), + freq="2d", ) - # Construct `X` by constructing each block, then concatenate these - # blocks together along component axis: - X_target = self.construct_X_block(target, feats_times, lags) - X_past = self.construct_X_block(past, feats_times, lags_past) - X_future = self.construct_X_block(future, feats_times, lags_future) - all_X = (X_target, X_past, X_future) - to_concat = [X for X in all_X if X is not None] - expected_X = np.concatenate(to_concat, axis=1) - # Number of observations should match number of feature times: - assert X.shape[0] == len(feats_times) - assert X.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert feats_times.equals(times[0]) - - def test_lagged_prediction_data_equal_freq_datetime_index(self): - """ - Tests that `create_lagged_prediction_data` produces `X` and `times` - outputs that are consistent with those generated by using the helper - functions `get_feature_times` and `construct_X_block`. Consistency is - checked over all of the combinations of parameter values specified by - `self.target_lag_combos`, `self.covariates_lag_combos`, and - `self.max_samples_per_ts_combos`. - - This particular test uses timeseries with datetime time indices of equal - frequencies. Since all of the timeseries are of the same frequency, - the implementation of the 'moving window' method is being tested here. - """ - # Define datetime index timeseries - each has different number of components, - # different start times, different lengths, and different values, but - # they're all of the same frequency: - target = self.create_multivariate_linear_timeseries( - n_components=2, - start_value=0, - end_value=10, - start=pd.Timestamp("1/2/2000"), - end=pd.Timestamp("1/16/2000"), - freq="2d", - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, - start_value=10, - end_value=20, - start=pd.Timestamp("1/4/2000"), - end=pd.Timestamp("1/18/2000"), - freq="2d", - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, - start_value=20, - end_value=30, - start=pd.Timestamp("1/6/2000"), - end=pd.Timestamp("1/20/2000"), - freq="2d", - ) # Conduct test for each input parameter combo: for lags, lags_past, lags_future, max_samples_per_ts in product( self.target_lag_combos, @@ -491,7 +434,11 @@ def test_lagged_prediction_data_equal_freq_datetime_index(self): assert np.allclose(expected_X, X[:, :, 0]) assert feats_times.equals(times[0]) - def test_lagged_prediction_data_unequal_freq_range_index(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_lagged_prediction_data_unequal_freq(self, series_type): """ Tests that `create_lagged_prediction_data` produces `X` and `times` outputs that are consistent with those generated by using the helper @@ -500,95 +447,48 @@ def test_lagged_prediction_data_unequal_freq_range_index(self): `self.target_lag_combos`, `self.covariates_lag_combos`, and `self.max_samples_per_ts_combos`. - This particular test uses timeseries with range time indices of unequal + This particular test uses timeseries with time indices of unequal frequencies. Since all of the timeseries are *not* of the same frequency, the implementation of the 'time intersection' method is being tested here. """ # Define range index timeseries - each has different number of components, # different start times, different lengths, different values, and of # different frequencies: - target = self.create_multivariate_linear_timeseries( - n_components=2, start_value=0, end_value=10, start=2, end=20, freq=1 - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, start_value=10, end_value=20, start=4, end=23, freq=2 - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, start_value=20, end_value=30, start=6, end=26, freq=3 - ) - # Conduct test for each input parameter combo: - for lags, lags_past, lags_future, max_samples_per_ts in product( - self.target_lag_combos, - self.past_lag_combos, - self.future_lag_combos, - self.max_samples_per_ts_combos, - ): - all_lags = (lags, lags_past, lags_future) - # Skip test where all lags are `None` - can't assemble features - # for this single combo of input params: - lags_is_none = [x is None for x in all_lags] - if all(lags_is_none): - continue - X, times = create_lagged_prediction_data( - target_series=target if lags else None, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=True, + if series_type == "integer": + target = self.create_multivariate_linear_timeseries( + n_components=2, start_value=0, end_value=10, start=2, end=20, freq=1 ) - feats_times = self.get_feature_times( - target, - past, - future, - lags, - lags_past, - lags_future, - max_samples_per_ts, + past = self.create_multivariate_linear_timeseries( + n_components=3, start_value=10, end_value=20, start=4, end=23, freq=2 + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, start_value=20, end_value=30, start=6, end=26, freq=3 + ) + else: + target = self.create_multivariate_linear_timeseries( + n_components=2, + start_value=0, + end_value=10, + start=pd.Timestamp("1/2/2000"), + end=pd.Timestamp("1/20/2000"), + freq="1d", + ) + past = self.create_multivariate_linear_timeseries( + n_components=3, + start_value=10, + end_value=20, + start=pd.Timestamp("1/4/2000"), + end=pd.Timestamp("1/23/2000"), + freq="2d", + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, + start_value=20, + end_value=30, + start=pd.Timestamp("1/6/2000"), + end=pd.Timestamp("1/26/2000"), + freq="3d", ) - # Construct `X` by constructing each block, then concatenate these - # blocks together along component axis: - X_target = self.construct_X_block(target, feats_times, lags) - X_past = self.construct_X_block(past, feats_times, lags_past) - X_future = self.construct_X_block(future, feats_times, lags_future) - all_X = (X_target, X_past, X_future) - to_concat = [X for X in all_X if X is not None] - expected_X = np.concatenate(to_concat, axis=1) - # Number of observations should match number of feature times: - assert X.shape[0] == len(feats_times) - assert X.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert feats_times.equals(times[0]) - - def test_lagged_prediction_data_unequal_freq_datetime_index(self): - """ - Tests that `create_lagged_prediction_data` produces `X` and `times` - outputs that are consistent with those generated by using the helper - functions `get_feature_times` and `construct_X_block`. Consistency is - checked over all of the combinations of parameter values specified by - `self.target_lag_combos`, `self.covariates_lag_combos`, and - `self.max_samples_per_ts_combos`. - - This particular test uses timeseries with datetime time indices of unequal - frequencies. Since all of the timeseries are *not* of the same frequency, - the implementation of the 'time intersection' method is being tested here. - """ - # Define datetime index timeseries - each has different number of components, - # different start times, different lengths, different values, and of - # different frequencies: - target = self.create_multivariate_linear_timeseries( - n_components=2, start_value=0, end_value=10, start=2, end=20, freq=1 - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, start_value=10, end_value=20, start=4, end=23, freq=2 - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, start_value=20, end_value=30, start=6, end=26, freq=3 - ) # Conduct test for each input parameter combo: for lags, lags_past, lags_future, max_samples_per_ts in product( self.target_lag_combos, @@ -637,7 +537,11 @@ def test_lagged_prediction_data_unequal_freq_datetime_index(self): assert np.allclose(expected_X, X[:, :, 0]) assert feats_times.equals(times[0]) - def test_lagged_prediction_data_method_consistency_range_index(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_lagged_prediction_data_method_consistency_range_index(self, series_type): """ Tests that `create_lagged_prediction_data` produces the same result when `use_moving_windows = False` and when `use_moving_windows = True` @@ -647,116 +551,45 @@ def test_lagged_prediction_data_method_consistency_range_index(self): are both wrong in the same way, this test won't reveal any bugs. With this being said, if this test fails, something is definitely wrong in either one or both of the implemented methods. - - This particular test uses range index timeseries. """ # Define datetime index timeseries - each has different number of components, # different start times, different lengths, different values, and of # different frequencies: - target = self.create_multivariate_linear_timeseries( - n_components=2, - start_value=0, - end_value=10, - start=pd.Timestamp("1/2/2000"), - end=pd.Timestamp("1/16/2000"), - freq="2d", - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, - start_value=10, - end_value=20, - start=pd.Timestamp("1/4/2000"), - end=pd.Timestamp("1/18/2000"), - freq="2d", - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, - start_value=20, - end_value=30, - start=pd.Timestamp("1/6/2000"), - end=pd.Timestamp("1/20/2000"), - freq="2d", - ) - # Conduct test for each input parameter combo: - for lags, lags_past, lags_future, max_samples_per_ts in product( - self.target_lag_combos, - self.past_lag_combos, - self.future_lag_combos, - self.max_samples_per_ts_combos, - ): - all_lags = (lags, lags_past, lags_future) - # Skip test where all lags are `None` - can't assemble features - # for this single combo of input params: - lags_is_none = [x is None for x in all_lags] - if all(lags_is_none): - continue - # Using moving window method: - X_mw, times_mw = create_lagged_prediction_data( - target_series=target if lags else None, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=True, + if series_type == "integer": + target = self.create_multivariate_linear_timeseries( + n_components=2, start_value=0, end_value=10, start=2, end=16, freq=2 ) - # Using time intersection method: - X_ti, times_ti = create_lagged_prediction_data( - target_series=target if lags else None, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=False, + past = self.create_multivariate_linear_timeseries( + n_components=3, start_value=10, end_value=20, start=4, end=18, freq=2 + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, start_value=20, end_value=30, start=6, end=20, freq=2 + ) + else: + target = self.create_multivariate_linear_timeseries( + n_components=2, + start_value=0, + end_value=10, + start=pd.Timestamp("1/2/2000"), + end=pd.Timestamp("1/16/2000"), + freq="2d", + ) + past = self.create_multivariate_linear_timeseries( + n_components=3, + start_value=10, + end_value=20, + start=pd.Timestamp("1/4/2000"), + end=pd.Timestamp("1/18/2000"), + freq="2d", + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, + start_value=20, + end_value=30, + start=pd.Timestamp("1/6/2000"), + end=pd.Timestamp("1/20/2000"), + freq="2d", ) - assert np.allclose(X_mw, X_ti) - assert times_mw[0].equals(times_ti[0]) - - def test_lagged_prediction_data_method_consistency_datetime_index(self): - """ - Tests that `create_lagged_prediction_data` produces the same result - when `use_moving_windows = False` and when `use_moving_windows = True` - for all of the parameter combinations used in the 'generated' test cases. - - Obviously, if both the 'Moving Window Method' and the 'Time Intersection' - are both wrong in the same way, this test won't reveal any bugs. With this - being said, if this test fails, something is definitely wrong in either - one or both of the implemented methods. - - This particular test uses datetime index timeseries. - """ - # Define datetime index timeseries - each has different number of components, - # different start times, different lengths, different values, and of - # different frequencies: - target = self.create_multivariate_linear_timeseries( - n_components=2, - start_value=0, - end_value=10, - start=pd.Timestamp("1/2/2000"), - end=pd.Timestamp("1/16/2000"), - freq="2d", - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, - start_value=10, - end_value=20, - start=pd.Timestamp("1/4/2000"), - end=pd.Timestamp("1/18/2000"), - freq="2d", - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, - start_value=20, - end_value=30, - start=pd.Timestamp("1/6/2000"), - end=pd.Timestamp("1/20/2000"), - freq="2d", - ) # Conduct test for each input parameter combo: for lags, lags_past, lags_future, max_samples_per_ts in product( self.target_lag_combos, @@ -801,17 +634,24 @@ def test_lagged_prediction_data_method_consistency_datetime_index(self): # Specified Cases Tests # - def test_lagged_prediction_data_single_lag_single_component_same_series_range_idx( - self, + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [False, True]), + ) + def test_lagged_prediction_data_single_lag_single_component_same_series( + self, config ): """ Tests that `create_lagged_prediction_data` correctly produces `X` and `times` when all the `series` inputs are identical, and all the `lags` inputs consist of a single value. In this situation, the expected `X` value can be found by - concatenating three different slices of the same time series. This particular - test uses a time series with a range index. + concatenating three different slices of the same time series. """ - series = linear_timeseries(start=0, length=15) + series_type, use_moving_windows = config + if series_type == "integer": + series = linear_timeseries(start=0, length=15) + else: + series = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=15) lags = [-1] past_lags = [-3] future_lags = [2] @@ -827,147 +667,66 @@ def test_lagged_prediction_data_single_lag_single_component_same_series_range_id expected_X = np.concatenate( [expected_X_target, expected_X_past, expected_X_future], axis=1 ) - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target_series=series, - past_covariates=series, - future_covariates=series, - lags=lags, - lags_past_covariates=past_lags, - lags_future_covariates=future_lags, - uses_static_covariates=False, - use_moving_windows=use_moving_windows, - ) - # Number of observations should match number of feature times: - assert X.shape[0] == len(expected_times) - assert X.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert expected_times.equals(times[0]) - - def test_lagged_prediction_data_single_lag_single_component_same_series_datetime_idx( - self, - ): - """ - Tests that `create_lagged_prediction_data` correctly produces `X` and `times` - when all the `series` inputs are identical, and all the `lags` inputs consist - of a single value. In this situation, the expected `X` value can be found by - concatenating three different slices of the same time series. This particular - test uses a time series with a datetime index. - """ - series = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=15) - lags = [-1] - past_lags = [-3] - future_lags = [2] - # Can't create features for first 3 times (because `past_lags`) and last - # two times (because `future_lags`): - expected_times = series.time_index[3:-2] - # Offset `3:-2` by `-1` lag: - expected_X_target = series.all_values(copy=False)[2:-3, :, 0] - # Offset `3:-2` by `-3` lag -> gives `0:-5` - expected_X_past = series.all_values(copy=False)[:-5, :, 0] - # Offset `3:-2` by `+2` lag -> gives `5:None`: - expected_X_future = series.all_values(copy=False)[5:, :, 0] - expected_X = np.concatenate( - [expected_X_target, expected_X_past, expected_X_future], axis=1 + X, times = create_lagged_prediction_data( + target_series=series, + past_covariates=series, + future_covariates=series, + lags=lags, + lags_past_covariates=past_lags, + lags_future_covariates=future_lags, + uses_static_covariates=False, + use_moving_windows=use_moving_windows, ) - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target_series=series, - past_covariates=series, - future_covariates=series, - lags=lags, - lags_past_covariates=past_lags, - lags_future_covariates=future_lags, - uses_static_covariates=False, - use_moving_windows=use_moving_windows, - ) - # Number of observations should match number of feature times: - assert X.shape[0] == len(expected_times) - assert X.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert expected_times.equals(times[0]) + # Number of observations should match number of feature times: + assert X.shape[0] == len(expected_times) + assert X.shape[0] == len(times[0]) + # Check that outputs match: + assert np.allclose(expected_X, X[:, :, 0]) + assert expected_times.equals(times[0]) - def test_lagged_prediction_data_extend_past_and_future_covariates_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [False, True]), + ) + def test_lagged_prediction_data_extend_past_and_future_covariates(self, config): """ Tests that `create_lagged_prediction_data` correctly handles case where features can be created for a time that is *not* contained in `target_series`, `past_covariates` - and/or `future_covariates`. This particular test checks this behaviour by using - range index timeseries. + and/or `future_covariates`. More specifically, we define the series and lags such that a prediction feature can be generated for time `target.end_time() + target.freq`, even though this time isn't contained in any of the define series. """ - # Can create feature for time `t = 9`, but this time isn't in any of the three series: - target = linear_timeseries(start=0, end=9, start_value=1, end_value=2) - lags = [-1] - past = linear_timeseries(start=0, end=8, start_value=2, end_value=3) - lags_past = [-2] - future = linear_timeseries(start=0, end=6, start_value=3, end_value=4) - lags_future = [-4] - # Only want to check very last generated observation: - max_samples_per_ts = 1 - # Expect `X` to be constructed from the very last values of each series: - expected_X = np.concatenate( - [ - target.all_values(copy=False)[-1, :, 0], - past.all_values(copy=False)[-1, :, 0], - future.all_values(copy=False)[-1, :, 0], - ] - ).reshape(1, -1) - # Check correctness for both 'moving window' method - # and 'time intersection' method: - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target, - past_covariates=past, - future_covariates=future, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=use_moving_windows, + series_type, use_moving_windows = config + if series_type == "integer": + # Can create feature for time `t = 9`, but this time isn't in any of the three series: + target = linear_timeseries(start=0, end=9, start_value=1, end_value=2) + past = linear_timeseries(start=0, end=8, start_value=2, end_value=3) + future = linear_timeseries(start=0, end=6, start_value=3, end_value=4) + else: + # Can create feature for time `t = '1/10/2000'`, but this time isn't in any of the three series: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + end=pd.Timestamp("1/10/2000"), + start_value=1, + end_value=2, + ) + past = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + end=pd.Timestamp("1/9/2000"), + start_value=2, + end_value=3, + ) + future = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + end=pd.Timestamp("1/7/2000"), + start_value=3, + end_value=4, ) - assert times[0][0] == target.end_time() + target.freq - assert np.allclose(expected_X, X[:, :, 0]) - - def test_lagged_prediction_data_extend_past_and_future_covariates_datetime_idx( - self, - ): - """ - Tests that `create_lagged_prediction_data` correctly handles case where features - can be created for a time that is *not* contained in `target_series`, `past_covariates` - and/or `future_covariates`. This particular test checks this behaviour by using - datetime index timeseries. - More specifically, we define the series and lags such that a prediction feature - can be generated for time `target.end_time() + target.freq`, even though this time - isn't contained in any of the define series. - """ - # Can create feature for time `t = '1/10/2000'`, but this time isn't in any of the three series: - target = linear_timeseries( - start=pd.Timestamp("1/1/2000"), - end=pd.Timestamp("1/10/2000"), - start_value=1, - end_value=2, - ) lags = [-1] - past = linear_timeseries( - start=pd.Timestamp("1/1/2000"), - end=pd.Timestamp("1/9/2000"), - start_value=2, - end_value=3, - ) lags_past = [-2] - future = linear_timeseries( - start=pd.Timestamp("1/1/2000"), - end=pd.Timestamp("1/7/2000"), - start_value=3, - end_value=4, - ) lags_future = [-4] # Only want to check very last generated observation: max_samples_per_ts = 1 @@ -981,140 +740,101 @@ def test_lagged_prediction_data_extend_past_and_future_covariates_datetime_idx( ).reshape(1, -1) # Check correctness for both 'moving window' method # and 'time intersection' method: - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target, - past_covariates=past, - future_covariates=future, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=use_moving_windows, - ) - assert times[0][0] == target.end_time() + target.freq - assert np.allclose(expected_X, X[:, :, 0]) + X, times = create_lagged_prediction_data( + target, + past_covariates=past, + future_covariates=future, + lags=lags, + lags_past_covariates=lags_past, + lags_future_covariates=lags_future, + uses_static_covariates=False, + max_samples_per_ts=max_samples_per_ts, + use_moving_windows=use_moving_windows, + ) + assert times[0][0] == target.end_time() + target.freq + assert np.allclose(expected_X, X[:, :, 0]) - def test_lagged_prediction_data_single_point_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [False, True]), + ) + def test_lagged_prediction_data_single_point(self, config): """ Tests that `create_lagged_prediction_data` correctly handles case - where only one possible training point can be generated. This - particular test checks this behaviour by using range index timeseries. + where only one possible training point can be generated. """ # Can only create feature using first value of target (i.e. `0`): - target = linear_timeseries(start=0, length=1, start_value=0, end_value=1) - expected_X = np.zeros((1, 1, 1)) - # Prediction time extend beyond end of series: - lag = 5 - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target, - lags=[-lag], - use_moving_windows=use_moving_windows, - uses_static_covariates=False, + series_type, use_moving_windows = config + if series_type == "integer": + target = linear_timeseries(start=0, length=1, start_value=0, end_value=1) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=1, start_value=0, end_value=1 ) - assert np.allclose(expected_X, X) - # Should only have one sample, generated for - # `t = target.end_time() + lag * target.freq`: - assert len(times) == 1 - assert times[0] == target.end_time() + lag * target.freq - def test_lagged_prediction_data_single_point_datetime_idx(self): - """ - Tests that `create_lagged_prediction_data` correctly handles case - where only one possible training point can be generated. This - particular test checks this behaviour by using datetime index timeseries. - """ - # Can only create feature using first value of target (i.e. `0`): - target = linear_timeseries( - start=pd.Timestamp("1/1/2000"), length=1, start_value=0, end_value=1 - ) expected_X = np.zeros((1, 1, 1)) # Prediction time extend beyond end of series: lag = 5 - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target, - lags=[-lag], - use_moving_windows=use_moving_windows, - uses_static_covariates=False, - ) - assert np.allclose(expected_X, X) - # Should only have one sample, generated for - # `t = target.end_time() + lag * target.freq`: - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() + lag * target.freq + X, times = create_lagged_prediction_data( + target, + lags=[-lag], + use_moving_windows=use_moving_windows, + uses_static_covariates=False, + ) + assert np.allclose(expected_X, X) + # Should only have one sample, generated for + # `t = target.end_time() + lag * target.freq`: + assert len(times) == 1 + assert times[0] == target.end_time() + lag * target.freq - def test_lagged_prediction_data_zero_lags_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [False, True]), + ) + def test_lagged_prediction_data_zero_lags(self, config): """ Tests that `create_lagged_prediction_data` correctly handles case when `0` is included in `lags_future_covariates` (i.e. when we're using the values `future_covariates` at time `t` to predict the value of `target_series` at - that same time point). This particular test checks this behaviour by using - range index timeseries. + that same time point). """ # Define `future` so that only value occurs at the same time as # the only possible label that can be extracted from `target_series`; the # only possible feature that can be created using these series utilises # the value of `future` at the same time as the label (i.e. a lag # of `0` away from the only feature time): - target = linear_timeseries(start=0, length=1, start_value=0, end_value=1) - future = linear_timeseries(start=1, length=1, start_value=1, end_value=2) - # X comprises of first value of `target` (i.e. 0) and only value in `future`: - expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) - # Check correctness for 'moving windows' and 'time intersection' methods, as - # well as for different `multi_models` values: - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target, - future_covariates=future, - lags=[-1], - lags_future_covariates=[0], - uses_static_covariates=False, - use_moving_windows=use_moving_windows, + series_type, use_moving_windows = config + if series_type == "integer": + target = linear_timeseries(start=0, length=1, start_value=0, end_value=1) + future = linear_timeseries(start=1, length=1, start_value=1, end_value=2) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=1, start_value=0, end_value=1 + ) + future = linear_timeseries( + start=pd.Timestamp("1/2/2000"), length=1, start_value=1, end_value=2 ) - assert np.allclose(expected_X, X) - assert len(times[0]) == 1 - assert times[0][0] == future.start_time() - - def test_lagged_prediction_data_zero_lags_datetime_idx(self): - """ - Tests that `create_lagged_prediction_data` correctly handles case when - `0` is included in `lags_future_covariates` (i.e. when we're using the values - `future_covariates` at time `t` to predict the value of `target_series` at - that same time point). This particular test checks this behaviour by using - datetime index timeseries. - """ - # Define `future` so that only value occurs at the same time as - # the only possible label that can be extracted from `target_series`; the - # only possible feature that can be created using these series utilises - # the value of `future` at the same time as the label (i.e. a lag - # of `0` away from the only feature time): - target = linear_timeseries( - start=pd.Timestamp("1/1/2000"), length=1, start_value=0, end_value=1 - ) - future = linear_timeseries( - start=pd.Timestamp("1/2/2000"), length=1, start_value=1, end_value=2 - ) # X comprises of first value of `target` (i.e. 0) and only value in `future`: expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target, - future_covariates=future, - lags=[-1], - lags_future_covariates=[0], - uses_static_covariates=False, - use_moving_windows=use_moving_windows, - ) - assert np.allclose(expected_X, X) - assert len(times[0]) == 1 - assert times[0][0] == future.start_time() + X, times = create_lagged_prediction_data( + target, + future_covariates=future, + lags=[-1], + lags_future_covariates=[0], + uses_static_covariates=False, + use_moving_windows=use_moving_windows, + ) + assert np.allclose(expected_X, X) + assert len(times[0]) == 1 + assert times[0][0] == future.start_time() - def test_lagged_prediction_data_positive_lags_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [False, True]), + ) + def test_lagged_prediction_data_positive_lags(self, config): """ Tests that `create_lagged_prediction_data` correctly handles case when `0` is included in `lags_future_covariates` (i.e. when we're using the values @@ -1127,60 +847,32 @@ def test_lagged_prediction_data_positive_lags_range_idx(self): # only possible feature that can be created using these series utilises # the value of `future` one timestep after the time of the label (i.e. a lag # of `1` away from the only feature time): - target = linear_timeseries(start=0, length=1, start_value=0, end_value=1) - future = linear_timeseries(start=2, length=1, start_value=1, end_value=2) - # X comprises of first value of `target` (i.e. 0) and only value in `future`: - expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) - # Check correctness for 'moving windows' and 'time intersection' methods, as - # well as for different `multi_models` values: - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target, - future_covariates=future, - lags=[-1], - lags_future_covariates=[1], - uses_static_covariates=False, - use_moving_windows=use_moving_windows, + series_type, use_moving_windows = config + if series_type == "integer": + target = linear_timeseries(start=0, length=1, start_value=0, end_value=1) + future = linear_timeseries(start=2, length=1, start_value=1, end_value=2) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=1, start_value=0, end_value=1 + ) + future = linear_timeseries( + start=pd.Timestamp("1/3/2000"), length=1, start_value=1, end_value=2 ) - assert np.allclose(expected_X, X) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() + target.freq - - def test_lagged_prediction_data_positive_lags_datetime_idx(self): - """ - Tests that `create_lagged_prediction_data` correctly handles case when - `0` is included in `lags_future_covariates` (i.e. when we're using the values - `future_covariates` at time `t` to predict the value of `target_series` at - that same time point). This particular test checks this behaviour by using - datetime index timeseries. - """ - # Define `past` and `future` so their only value occurs at the same time as - # the only possible label that can be extracted from `target_series`; the - # only possible feature that can be created using these series utilises - # the values of `past` and `future` at the same time as the label (i.e. a lag - # of `0` away from the only feature time): - target = linear_timeseries( - start=pd.Timestamp("1/1/2000"), length=1, start_value=0, end_value=1 - ) - future = linear_timeseries( - start=pd.Timestamp("1/3/2000"), length=1, start_value=1, end_value=2 - ) # X comprises of first value of `target` (i.e. 0) and only value in `future`: expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - for use_moving_windows in (False, True): - X, times = create_lagged_prediction_data( - target, - future_covariates=future, - lags=[-1], - lags_future_covariates=[1], - uses_static_covariates=False, - use_moving_windows=use_moving_windows, - ) - assert np.allclose(expected_X, X) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() + target.freq + X, times = create_lagged_prediction_data( + target, + future_covariates=future, + lags=[-1], + lags_future_covariates=[1], + uses_static_covariates=False, + use_moving_windows=use_moving_windows, + ) + assert np.allclose(expected_X, X) + assert len(times[0]) == 1 + assert times[0][0] == target.end_time() + target.freq def test_lagged_prediction_data_sequence_inputs(self): """ @@ -1359,7 +1051,7 @@ def test_lagged_prediction_data_series_too_short_error(self): assert ( "`target_series` must have at least " "`-min(lags) + max(lags) + 1` = 20 " - "timesteps; instead, it only has 2." + "time steps; instead, it only has 2." ) == str(err.value) with pytest.raises(ValueError) as err: create_lagged_prediction_data( @@ -1371,7 +1063,7 @@ def test_lagged_prediction_data_series_too_short_error(self): assert ( "`past_covariates` must have at least " "`-min(lags_past_covariates) + max(lags_past_covariates) + 1` = 20 " - "timesteps; instead, it only has 2." + "time steps; instead, it only has 2." ) == str(err.value) def test_lagged_prediction_data_invalid_lag_values_error(self): diff --git a/darts/tests/utils/tabularization/test_create_lagged_training_data.py b/darts/tests/utils/tabularization/test_create_lagged_training_data.py index ff4d32444d..d43f0699fd 100644 --- a/darts/tests/utils/tabularization/test_create_lagged_training_data.py +++ b/darts/tests/utils/tabularization/test_create_lagged_training_data.py @@ -1,3 +1,4 @@ +import itertools import warnings from itertools import product from typing import Optional, Sequence @@ -70,9 +71,10 @@ def get_feature_times( lags_future: Optional[Sequence[int]], output_chunk_length: Optional[int], max_samples_per_ts: Optional[int], + output_chunk_shift: int, ): """ - Helper function that returns the times shared by all of the specified series that can be used + Helper function that returns the times shared by all specified series that can be used to create features and labels. This is performed by using the helper functions `get_feature_times_target`, `get_feature_times_past`, and `get_feature_times_future` (all defined below) to extract the feature times from the target series, past covariates, and future @@ -85,7 +87,7 @@ def get_feature_times( """ # Get feature times for `target_series`: times = TestCreateLaggedTrainingData.get_feature_times_target( - target, lags, output_chunk_length + target, lags, output_chunk_length, output_chunk_shift ) # Intersect `times` with `past_covariates` feature times if past covariates to be added to `X`: if lags_past is not None: @@ -109,16 +111,17 @@ def get_feature_times_target( target_series: TimeSeries, lags: Optional[Sequence[int]], output_chunk_length: int, + output_chunk_shift: int, ) -> pd.Index: """ - Helper function called by `get_feature_times` that extracts all of the times within a + Helper function called by `get_feature_times` that extracts all times within a `target_series` that can be used to create a feature and label. More specifically, we can create features and labels for times within `target_series` that have *both*: 1. At least `max_lag = -min(lags)` values preceeding them, since these preceeding values are required to construct a feature vector for that time. Since the first `max_lag` times do not fulfill this condition, they are exluded *if* values from `target_series` are to be added to `X`. - 2. At least `(output_chunk_length - 1)` values after them, because the all of the times from + 2. At least `(output_chunk_length - 1)` values after them, because the all times from time `t` to time `t + output_chunk_length - 1` will be used as labels. Since the last `(output_chunk_length - 1)` times do not fulfil this condition, they are excluded. """ @@ -128,6 +131,8 @@ def get_feature_times_target( times = times[max_lag:] if output_chunk_length > 1: times = times[: -output_chunk_length + 1] + if output_chunk_shift: + times = times[:-output_chunk_shift] return times @staticmethod @@ -136,7 +141,7 @@ def get_feature_times_past( past_covariates_lags: Sequence[int], ) -> pd.Index: """ - Helper function called by `get_feature_times` that extracts all of the times within + Helper function called by `get_feature_times` that extracts all times within `past_covariates` that can be used to create features. More specifically, we can create features for times within `past_covariates` that have at least `max_lag = -min(past_covariates_lags)` values preceeding them, since these preceeding values are required to construct a feature vector for @@ -169,7 +174,7 @@ def get_feature_times_future( future_covariates_lags: Sequence[int], ) -> pd.Index: """ - Helper function called by `get_feature_times` that extracts all of the times within + Helper function called by `get_feature_times` that extracts all times within `future_covariates` that can be used to create features. Unlike the lag values for `target_series` and `past_covariates`, the values in @@ -253,7 +258,7 @@ def construct_X_block( """ Helper function that creates the lagged features 'block' of a specific `series` (i.e. either `target_series`, `past_covariates`, or `future_covariates`); - the feature matrix `X` is formed by concatenating the blocks of all of the specified + the feature matrix `X` is formed by concatenating the blocks of all specified series along the components axis. If `lags` is `None`, then `None` will be returned in lieu of an array. Please refer to the `create_lagged_features` docstring for further details about the structure of the `X` feature matrix. @@ -261,7 +266,7 @@ def construct_X_block( The returned `X_block` is constructed by looping over each time in `feature_times`, finding the index position of that time in the series, and then for each lag value in `lags`, offset this index position by a particular lag value; this offset index is then - used to extract all of the components at a single lagged time. + used to extract all components at a single lagged time. Unlike the implementation found in `darts.utils.data.tabularization`, this function doesn't use any 'vectorisation' tricks, which makes it slower to run, but more easily interpretable. @@ -272,7 +277,7 @@ def construct_X_block( before searching for the index of each time in the series. Even though the integer indices of the 'extended times' won't be contained within the original `series`, offsetting these found indices by the requested lag value should 'bring us back' to a time within the original, unextended `series`. - However, if we've prepended times to `series.time_index`, we have to note that all of the indices will + However, if we've prepended times to `series.time_index`, we have to note that all indices will be 'bumped up' by the number of values we've prepended, even after offsetting by a lag value. For example, if we extended `series.time_index` by prepending two values to the start, the integer index of the first actual value in `series` will occur at an index of `2` instead of `0`. To 'undo' this, we must subtract off @@ -346,6 +351,7 @@ def create_y( feature_times: pd.Index, output_chunk_length: int, multi_models: bool, + output_chunk_shift: int, ) -> np.ndarray: """ Helper function that constructs the labels array `y` from the target series. @@ -372,13 +378,13 @@ def create_y( f"Unexpected label time at {time}, but `series` ends at {target.end_time()}.", ) time_idx = np.searchsorted(target.time_index, time) - # If `multi_models = True`, want to predict all of the values from time `t` to + # If `multi_models = True`, want to predict all values from time `t` to # time `t + output_chunk_lenth - 1`; if `multi_models = False`, only want to # predict time `t + output_chunk_length - 1`: timesteps_ahead = ( - range(output_chunk_length) + range(output_chunk_shift, output_chunk_length + output_chunk_shift) if multi_models - else (output_chunk_length - 1,) + else (output_chunk_length + output_chunk_shift - 1,) ) y_row = [] for i in timesteps_ahead: @@ -399,144 +405,86 @@ def create_y( # Input parameter combinations used to generate test cases: output_chunk_length_combos = (1, 3) + output_chunk_shift_combos = (0, 1) multi_models_combos = (False, True) max_samples_per_ts_combos = (1, 2, None) target_lag_combos = past_lag_combos = (None, [-1, -3], [-3, -1]) future_lag_combos = (*target_lag_combos, [0], [2, 1], [-1, 1], [0, 2]) - def test_lagged_training_data_equal_freq_range_index(self): + # minimum series length + min_n_ts = 8 + max(output_chunk_shift_combos) + + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_lagged_training_data_equal_freq(self, series_type: str): """ Tests that `create_lagged_training_data` produces `X`, `y`, and `times` outputs that are consistent with those generated by using the helper functions `get_feature_times`, `construct_X_block`, and `construct_labels`. - Consistency is checked over all of the combinations of parameter values + Consistency is checked over all combinations of parameter values specified by `self.target_lag_combos`, `self.covariates_lag_combos`, `self.output_chunk_length_combos`, `self.multi_models_combos`, and `self.max_samples_per_ts_combos`. - This particular test uses timeseries with range time indices of equal - frequencies. Since all of the timeseries are of the same frequency, - the implementation of the 'moving window' method is being tested here. + This particular test uses timeseries with equal frequencies. Since all timeseries + are of the same frequency, the implementation of the 'moving window' method is + being tested here. """ # Define datetime index timeseries - each has different number of components, # different start times, different lengths, and different values, but # they're all of the same frequency: - target = self.create_multivariate_linear_timeseries( - n_components=2, start_value=0, end_value=10, start=2, length=8, freq=2 - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, start_value=10, end_value=20, start=4, length=9, freq=2 - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, start_value=20, end_value=30, start=6, length=10, freq=2 - ) - # Conduct test for each input parameter combo: - for ( - lags, - lags_past, - lags_future, - output_chunk_length, - multi_models, - max_samples_per_ts, - ) in product( - self.target_lag_combos, - self.past_lag_combos, - self.future_lag_combos, - self.output_chunk_length_combos, - self.multi_models_combos, - self.max_samples_per_ts_combos, - ): - all_lags = (lags, lags_past, lags_future) - # Skip test where all lags are `None` - can't assemble features and - # labels for this single combo of input params: - lags_is_none = [x is None for x in all_lags] - if all(lags_is_none): - continue - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - multi_models=multi_models, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=True, + if series_type == "integer": + target = self.create_multivariate_linear_timeseries( + n_components=2, + start_value=0, + end_value=10, + start=2, + length=self.min_n_ts, + freq=2, ) - feats_times = self.get_feature_times( - target, - past, - future, - lags, - lags_past, - lags_future, - output_chunk_length, - max_samples_per_ts, + past = self.create_multivariate_linear_timeseries( + n_components=3, + start_value=10, + end_value=20, + start=4, + length=self.min_n_ts + 1, + freq=2, ) - # Construct `X` by constructing each block, then concatenate these - # blocks together along component axis: - X_target = self.construct_X_block(target, feats_times, lags) - X_past = self.construct_X_block(past, feats_times, lags_past) - X_future = self.construct_X_block(future, feats_times, lags_future) - all_X = (X_target, X_past, X_future) - to_concat = [X for X in all_X if X is not None] - expected_X = np.concatenate(to_concat, axis=1) - expected_y = self.create_y( - target, feats_times, output_chunk_length, multi_models + future = self.create_multivariate_linear_timeseries( + n_components=4, + start_value=20, + end_value=30, + start=6, + length=self.min_n_ts + 2, + freq=2, + ) + else: + target = self.create_multivariate_linear_timeseries( + n_components=2, + start_value=0, + end_value=10, + start=pd.Timestamp("1/2/2000"), + length=self.min_n_ts, + freq="2d", + ) + past = self.create_multivariate_linear_timeseries( + n_components=3, + start_value=10, + end_value=20, + start=pd.Timestamp("1/4/2000"), + length=self.min_n_ts + 1, + freq="2d", + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, + start_value=20, + end_value=30, + start=pd.Timestamp("1/6/2000"), + length=self.min_n_ts + 1, + freq="2d", ) - # Number of observations should match number of feature times: - assert X.shape[0] == len(feats_times) - assert y.shape[0] == len(feats_times) - assert X.shape[0] == len(times[0]) - assert y.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) - assert feats_times.equals(times[0]) - - def test_lagged_training_data_equal_freq_datetime_index(self): - """ - Tests that `create_lagged_training_data` produces `X`, `y`, and `times` - outputs that are consistent with those generated by using the helper - functions `get_feature_times`, `construct_X_block`, and `construct_labels`. - Consistency is checked over all of the combinations of parameter values - specified by `self.target_lag_combos`, `self.covariates_lag_combos`, - `self.output_chunk_length_combos`, `self.multi_models_combos`, and - `self.max_samples_per_ts_combos`. - - This particular test uses timeseries with datetime time indices of equal - frequencies. Since all of the timeseries are of the same frequency, - the implementation of the 'moving window' method is being tested here. - """ - # Define datetime index timeseries - each has different number of components, - # different start times, different lengths, and different values, but - # they're all of the same frequency: - target = self.create_multivariate_linear_timeseries( - n_components=2, - start_value=0, - end_value=10, - start=pd.Timestamp("1/2/2000"), - length=8, - freq="2d", - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, - start_value=10, - end_value=20, - start=pd.Timestamp("1/4/2000"), - length=9, - freq="2d", - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, - start_value=20, - end_value=30, - start=pd.Timestamp("1/6/2000"), - length=10, - freq="2d", - ) # Conduct test for each input parameter combo: for ( lags, @@ -545,6 +493,7 @@ def test_lagged_training_data_equal_freq_datetime_index(self): output_chunk_length, multi_models, max_samples_per_ts, + output_chunk_shift, ) in product( self.target_lag_combos, self.past_lag_combos, @@ -552,6 +501,7 @@ def test_lagged_training_data_equal_freq_datetime_index(self): self.output_chunk_length_combos, self.multi_models_combos, self.max_samples_per_ts_combos, + self.output_chunk_shift_combos, ): all_lags = (lags, lags_past, lags_future) # Skip test where all lags are `None` - can't assemble features and @@ -571,6 +521,7 @@ def test_lagged_training_data_equal_freq_datetime_index(self): multi_models=multi_models, max_samples_per_ts=max_samples_per_ts, use_moving_windows=True, + output_chunk_shift=output_chunk_shift, ) feats_times = self.get_feature_times( target, @@ -581,6 +532,7 @@ def test_lagged_training_data_equal_freq_datetime_index(self): lags_future, output_chunk_length, max_samples_per_ts, + output_chunk_shift, ) # Construct `X` by constructing each block, then concatenate these # blocks together along component axis: @@ -588,10 +540,14 @@ def test_lagged_training_data_equal_freq_datetime_index(self): X_past = self.construct_X_block(past, feats_times, lags_past) X_future = self.construct_X_block(future, feats_times, lags_future) all_X = (X_target, X_past, X_future) - to_concat = [x for x in all_X if x is not None] + to_concat = [X for X in all_X if X is not None] expected_X = np.concatenate(to_concat, axis=1) expected_y = self.create_y( - target, feats_times, output_chunk_length, multi_models + target, + feats_times, + output_chunk_length, + multi_models, + output_chunk_shift, ) # Number of observations should match number of feature times: assert X.shape[0] == len(feats_times) @@ -603,139 +559,62 @@ def test_lagged_training_data_equal_freq_datetime_index(self): assert np.allclose(expected_y, y[:, :, 0]) assert feats_times.equals(times[0]) - def test_lagged_training_data_unequal_freq_range_index(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_lagged_training_data_unequal_freq(self, series_type): """ Tests that `create_lagged_training_data` produces `X`, `y`, and `times` outputs that are consistent with those generated by using the helper functions `get_feature_times`, `construct_X_block`, and `construct_labels`. - Consistency is checked over all of the combinations of parameter values + Consistency is checked over all combinations of parameter values specified by `self.target_lag_combos`, `self.covariates_lag_combos`, `self.output_chunk_length_combos`, `self.multi_models_combos`, and `self.max_samples_per_ts_combos`. - This particular test uses timeseries with range time indices of unequal - frequencies. Since all of the timeseries are *not* of the same frequency, - the implementation of the 'time intersection' method is being tested here. + This particular test uses timeseries of unequal frequencies. Since all timeseries + are *not* of the same frequency, the implementation of the 'time intersection' method + is being tested here. """ # Define range index timeseries - each has different number of components, # different start times, different lengths, different values, and different # frequencies: - target = self.create_multivariate_linear_timeseries( - n_components=2, start_value=0, end_value=10, start=2, length=20, freq=1 - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, start_value=10, end_value=20, start=4, length=10, freq=2 - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, start_value=20, end_value=30, start=6, length=7, freq=3 - ) - # Conduct test for each input parameter combo: - for ( - lags, - lags_past, - lags_future, - output_chunk_length, - multi_models, - max_samples_per_ts, - ) in product( - self.target_lag_combos, - self.past_lag_combos, - self.future_lag_combos, - self.output_chunk_length_combos, - self.multi_models_combos, - self.max_samples_per_ts_combos, - ): - all_lags = (lags, lags_past, lags_future) - # Skip test where all lags are `None` - can't assemble features and - # labels for this single combo of input params: - lags_is_none = [x is None for x in all_lags] - if all(lags_is_none): - continue - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - multi_models=multi_models, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=False, + if series_type == "integer": + target = self.create_multivariate_linear_timeseries( + n_components=2, start_value=0, end_value=10, start=2, length=20, freq=1 ) - feats_times = self.get_feature_times( - target, - past, - future, - lags, - lags_past, - lags_future, - output_chunk_length, - max_samples_per_ts, + past = self.create_multivariate_linear_timeseries( + n_components=3, start_value=10, end_value=20, start=4, length=10, freq=2 ) - # Construct `X` by constructing each block, then concatenate these - # blocks together along component axis: - X_target = self.construct_X_block(target, feats_times, lags) - X_past = self.construct_X_block(past, feats_times, lags_past) - X_future = self.construct_X_block(future, feats_times, lags_future) - all_X = (X_target, X_past, X_future) - to_concat = [x for x in all_X if x is not None] - expected_X = np.concatenate(to_concat, axis=1) - expected_y = self.create_y( - target, feats_times, output_chunk_length, multi_models + future = self.create_multivariate_linear_timeseries( + n_components=4, start_value=20, end_value=30, start=6, length=7, freq=3 + ) + else: + target = self.create_multivariate_linear_timeseries( + n_components=2, + start_value=0, + end_value=10, + start=pd.Timestamp("1/1/2000"), + length=20, + freq="d", + ) + past = self.create_multivariate_linear_timeseries( + n_components=3, + start_value=10, + end_value=20, + start=pd.Timestamp("1/2/2000"), + length=10, + freq="2d", + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, + start_value=20, + end_value=30, + start=pd.Timestamp("1/3/2000"), + length=7, + freq="3d", ) - # Number of observations should match number of feature times: - assert X.shape[0] == len(feats_times) - assert y.shape[0] == len(feats_times) - assert X.shape[0] == len(times[0]) - assert y.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) - assert feats_times.equals(times[0]) - - def test_lagged_training_data_unequal_freq_datetime_index(self): - """ - Tests that `create_lagged_training_data` produces `X`, `y`, and `times` - outputs that are consistent with those generated by using the helper - functions `get_feature_times`, `construct_X_block`, and `construct_labels`. - Consistency is checked over all of the combinations of parameter values - specified by `self.target_lag_combos`, `self.covariates_lag_combos`, - `self.output_chunk_length_combos`, `self.multi_models_combos`, and - `self.max_samples_per_ts_combos`. - - This particular test uses timeseries with datetime time indices of unequal - frequencies. Since all of the timeseries are *not* of the same frequency, - the implementation of the 'time intersection' method is being tested here. - """ - # Define datetime index timeseries - each has different number of components, - # different start times, different lengths, different values, and different - # frequencies: - target = self.create_multivariate_linear_timeseries( - n_components=2, - start_value=0, - end_value=10, - start=pd.Timestamp("1/1/2000"), - length=20, - freq="d", - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, - start_value=10, - end_value=20, - start=pd.Timestamp("1/2/2000"), - length=10, - freq="2d", - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, - start_value=20, - end_value=30, - start=pd.Timestamp("1/3/2000"), - length=7, - freq="3d", - ) # Conduct test for each input parameter combo: for ( lags, @@ -744,6 +623,7 @@ def test_lagged_training_data_unequal_freq_datetime_index(self): output_chunk_length, multi_models, max_samples_per_ts, + output_chunk_shift, ) in product( self.target_lag_combos, self.past_lag_combos, @@ -751,6 +631,7 @@ def test_lagged_training_data_unequal_freq_datetime_index(self): self.output_chunk_length_combos, self.multi_models_combos, self.max_samples_per_ts_combos, + self.output_chunk_shift_combos, ): all_lags = (lags, lags_past, lags_future) # Skip test where all lags are `None` - can't assemble features and @@ -770,6 +651,7 @@ def test_lagged_training_data_unequal_freq_datetime_index(self): multi_models=multi_models, max_samples_per_ts=max_samples_per_ts, use_moving_windows=False, + output_chunk_shift=output_chunk_shift, ) feats_times = self.get_feature_times( target, @@ -780,6 +662,7 @@ def test_lagged_training_data_unequal_freq_datetime_index(self): lags_future, output_chunk_length, max_samples_per_ts, + output_chunk_shift, ) # Construct `X` by constructing each block, then concatenate these # blocks together along component axis: @@ -790,7 +673,11 @@ def test_lagged_training_data_unequal_freq_datetime_index(self): to_concat = [x for x in all_X if x is not None] expected_X = np.concatenate(to_concat, axis=1) expected_y = self.create_y( - target, feats_times, output_chunk_length, multi_models + target, + feats_times, + output_chunk_length, + multi_models, + output_chunk_shift, ) # Number of observations should match number of feature times: assert X.shape[0] == len(feats_times) @@ -802,31 +689,59 @@ def test_lagged_training_data_unequal_freq_datetime_index(self): assert np.allclose(expected_y, y[:, :, 0]) assert feats_times.equals(times[0]) - def test_lagged_training_data_method_consistency_range_index(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_lagged_training_data_method_consistency(self, series_type): """ Tests that `create_lagged_training_data` produces the same result when `use_moving_windows = False` and when `use_moving_windows = True` - for all of the parameter combinations used in the 'generated' test cases. + for all parameter combinations used in the 'generated' test cases. Obviously, if both the 'Moving Window Method' and the 'Time Intersection' are both wrong in the same way, this test won't reveal any bugs. With this being said, if this test fails, something is definitely wrong in either one or both of the implemented methods. - - This particular test uses range index timeseries. """ # Define datetime index timeseries - each has different number of components, # different start times, different lengths, different values, and of # different frequencies: - target = self.create_multivariate_linear_timeseries( - n_components=2, start_value=0, end_value=10, start=2, length=20, freq=1 - ) - past = self.create_multivariate_linear_timeseries( - n_components=3, start_value=10, end_value=20, start=4, length=10, freq=2 - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, start_value=20, end_value=30, start=6, length=7, freq=3 - ) + if series_type == "integer": + target = self.create_multivariate_linear_timeseries( + n_components=2, start_value=0, end_value=10, start=2, length=20, freq=1 + ) + past = self.create_multivariate_linear_timeseries( + n_components=3, start_value=10, end_value=20, start=4, length=10, freq=2 + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, start_value=20, end_value=30, start=6, length=7, freq=3 + ) + else: + target = self.create_multivariate_linear_timeseries( + n_components=2, + start_value=0, + end_value=10, + start=pd.Timestamp("1/2/2000"), + end=pd.Timestamp("1/18/2000"), + freq="2d", + ) + past = self.create_multivariate_linear_timeseries( + n_components=3, + start_value=10, + end_value=20, + start=pd.Timestamp("1/4/2000"), + end=pd.Timestamp("1/20/2000"), + freq="2d", + ) + future = self.create_multivariate_linear_timeseries( + n_components=4, + start_value=20, + end_value=30, + start=pd.Timestamp("1/6/2000"), + end=pd.Timestamp("1/22/2000"), + freq="2d", + ) # Conduct test for each input parameter combo: for ( lags, @@ -835,6 +750,7 @@ def test_lagged_training_data_method_consistency_range_index(self): output_chunk_length, multi_models, max_samples_per_ts, + output_chunk_shift, ) in product( self.target_lag_combos, self.past_lag_combos, @@ -842,6 +758,7 @@ def test_lagged_training_data_method_consistency_range_index(self): self.output_chunk_length_combos, self.multi_models_combos, self.max_samples_per_ts_combos, + self.output_chunk_shift_combos, ): all_lags = (lags, lags_past, lags_future) # Skip test where all lags are `None` - can't assemble features @@ -862,6 +779,7 @@ def test_lagged_training_data_method_consistency_range_index(self): max_samples_per_ts=max_samples_per_ts, multi_models=multi_models, use_moving_windows=True, + output_chunk_shift=output_chunk_shift, ) # Using time intersection method: X_ti, y_ti, times_ti, _ = create_lagged_training_data( @@ -876,301 +794,146 @@ def test_lagged_training_data_method_consistency_range_index(self): max_samples_per_ts=max_samples_per_ts, multi_models=multi_models, use_moving_windows=False, + output_chunk_shift=output_chunk_shift, ) assert np.allclose(X_mw, X_ti) assert np.allclose(y_mw, y_ti) assert times_mw[0].equals(times_ti[0]) - def test_lagged_training_data_method_consistency_datetime_index(self): - """ - Tests that `create_lagged_training_data` produces the same result - when `use_moving_windows = False` and when `use_moving_windows = True` - for all of the parameter combinations used in the 'generated' test cases. - - Obviously, if both the 'Moving Window Method' and the 'Time Intersection' - are both wrong in the same way, this test won't reveal any bugs. With this - being said, if this test fails, something is definitely wrong in either - one or both of the implemented methods. + # + # Specified Cases Tests + # - This particular test uses datetime index timeseries. + @pytest.mark.parametrize( + "config", + itertools.product( + [0, 1, 3], + [False, True], + ["datetime", "integer"], + ), + ) + def test_lagged_training_data_single_lag_single_component_same_series(self, config): """ - # Define datetime index timeseries - each has different number of components, - # different start times, different lengths, different values, and of - # different frequencies: - target = self.create_multivariate_linear_timeseries( - n_components=2, - start_value=0, - end_value=10, - start=pd.Timestamp("1/2/2000"), - end=pd.Timestamp("1/16/2000"), - freq="2d", + Tests that `create_lagged_training_data` correctly produces `X`, `y` and `times` + when all the `series` inputs are identical, all the `lags` inputs consist + of a single value, and `output_chunk_length` is `1`. In this situation, the + expected `X` values can be found by concatenating three different slices of the + same time series, and the expected `y` can be formed by taking a single slice + from the `target`. + """ + output_chunk_shift, use_moving_windows, series_type = config + if series_type == "integer": + series = linear_timeseries(start=0, length=15) + else: + series = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=15) + + lags = [-1] + output_chunk_length = 1 + past_lags = [-3] + future_lags = [2] + # Can't create features for first 3 times (because `past_lags`) and last + # two times (because `future_lags`): + # also up until output_chunk_shift>=2, the future_lags are the reason for pushing back the end time + # of expected X; after that the output shift pushes back additionally. + step_back = max(0, output_chunk_shift - 2) + expected_times_x = series.time_index[3 : -2 - step_back] + expected_times_y = expected_times_x + output_chunk_shift * series.freq + expected_y = series.all_values(copy=False)[ + 3 + output_chunk_shift : 3 + output_chunk_shift + len(expected_times_y), + :, + 0, + ] + # Offset `3:-2` by `-1` lag: + expected_X_target = series.all_values(copy=False)[ + 2 : 2 + len(expected_times_x), :, 0 + ] + # Offset `3:-2` by `-3` lag -> gives `0:-5`: + expected_X_past = series.all_values(copy=False)[: len(expected_times_x), :, 0] + # Offset `3:-2` by `+2` lag -> gives `5:None`: + expected_X_future = series.all_values(copy=False)[ + 5 : 5 + len(expected_times_x), :, 0 + ] + expected_X = np.concatenate( + [expected_X_target, expected_X_past, expected_X_future], axis=1 ) - past = self.create_multivariate_linear_timeseries( - n_components=3, - start_value=10, - end_value=20, - start=pd.Timestamp("1/4/2000"), - end=pd.Timestamp("1/18/2000"), - freq="2d", - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, - start_value=20, - end_value=30, - start=pd.Timestamp("1/6/2000"), - end=pd.Timestamp("1/20/2000"), - freq="2d", - ) - # Conduct test for each input parameter combo: - for ( - lags, - lags_past, - lags_future, - output_chunk_length, - multi_models, - max_samples_per_ts, - ) in product( - self.target_lag_combos, - self.past_lag_combos, - self.future_lag_combos, - self.output_chunk_length_combos, - self.multi_models_combos, - self.max_samples_per_ts_combos, - ): - all_lags = (lags, lags_past, lags_future) - # Skip test where all lags are `None` - can't assemble features - # for this single combo of input params: - lags_is_none = [x is None for x in all_lags] - if all(lags_is_none): - continue - # Using moving window method: - X_mw, y_mw, times_mw, _ = create_lagged_training_data( - target_series=target, - output_chunk_length=output_chunk_length, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - multi_models=multi_models, - use_moving_windows=True, - ) - # Using time intersection method: - X_ti, y_ti, times_ti, _ = create_lagged_training_data( - target_series=target, - output_chunk_length=output_chunk_length, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - multi_models=multi_models, - use_moving_windows=False, - ) - assert np.allclose(X_mw, X_ti) - assert np.allclose(y_mw, y_ti) - assert times_mw[0].equals(times_ti[0]) - - # - # Specified Cases Tests - # - - def test_lagged_training_data_single_lag_single_component_same_series_range_idx( - self, - ): - """ - Tests that `create_lagged_training_data` correctly produces `X`, `y` and `times` - when all the `series` inputs are identical, all the `lags` inputs consist - of a single value, and `output_chunk_length` is `1`. In this situation, the - expected `X` values can be found by concatenating three different slices of the - same time series, and the expected `y` can be formed by taking a single slice - from the `target`. This particular test uses a time series with a range index. - """ - series = linear_timeseries(start=0, length=15) - lags = [-1] - output_chunk_length = 1 - past_lags = [-3] - future_lags = [2] - # Can't create features for first 3 times (because `past_lags`) and last - # two times (because `future_lags`): - expected_times = series.time_index[3:-2] - expected_y = series.all_values(copy=False)[3:-2, :, 0] - # Offset `3:-2` by `-1` lag: - expected_X_target = series.all_values(copy=False)[2:-3, :, 0] - # Offset `3:-2` by `-3` lag -> gives `0:-5`: - expected_X_past = series.all_values(copy=False)[:-5, :, 0] - # Offset `3:-2` by `+2` lag -> gives `5:None`: - expected_X_future = series.all_values(copy=False)[5:, :, 0] - expected_X = np.concatenate( - [expected_X_target, expected_X_past, expected_X_future], axis=1 - ) - for use_moving_windows in (False, True): - X, y, times, _ = create_lagged_training_data( - target_series=series, - output_chunk_length=output_chunk_length, - past_covariates=series, - future_covariates=series, - lags=lags, - lags_past_covariates=past_lags, - lags_future_covariates=future_lags, - uses_static_covariates=False, - use_moving_windows=use_moving_windows, - ) - # Number of observations should match number of feature times: - assert X.shape[0] == len(expected_times) - assert X.shape[0] == len(times[0]) - assert y.shape[0] == len(expected_times) - assert y.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) - assert expected_times.equals(times[0]) - - def test_lagged_training_data_single_lag_single_component_same_series_datetime_idx( - self, - ): - """ - Tests that `create_lagged_training_data` correctly produces `X`, `y` and `times` - when all the `series` inputs are identical, all the `lags` inputs consist - of a single value, and `output_chunk_length` is `1`. In this situation, the - expected `X` values can be found by concatenating three different slices of the - same time series, and the expected `y` can be formed by taking a single slice - from the `target`. This particular test uses a time series with a datetime index. - """ - series = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=15) - lags = [-1] - output_chunk_length = 1 - past_lags = [-3] - future_lags = [2] - # Can't create features for first 3 times (because `past_lags`) and last - # two times (because `future_lags`): - expected_times = series.time_index[3:-2] - expected_y = series.all_values(copy=False)[3:-2, :, 0] - # Offset `3:-2` by `-1` lag: - expected_X_target = series.all_values(copy=False)[2:-3, :, 0] - # Offset `3:-2` by `-3` lag -> gives `0:-5`: - expected_X_past = series.all_values(copy=False)[:-5, :, 0] - # Offset `3:-2` by `+2` lag -> gives `5:None`: - expected_X_future = series.all_values(copy=False)[5:, :, 0] - expected_X = np.concatenate( - [expected_X_target, expected_X_past, expected_X_future], axis=1 + X, y, times, _ = create_lagged_training_data( + target_series=series, + output_chunk_length=output_chunk_length, + past_covariates=series, + future_covariates=series, + lags=lags, + lags_past_covariates=past_lags, + lags_future_covariates=future_lags, + uses_static_covariates=False, + use_moving_windows=use_moving_windows, + output_chunk_shift=output_chunk_shift, ) - for use_moving_windows in (False, True): - X, y, times, _ = create_lagged_training_data( - target_series=series, - output_chunk_length=output_chunk_length, - past_covariates=series, - future_covariates=series, - lags=lags, - lags_past_covariates=past_lags, - lags_future_covariates=future_lags, - uses_static_covariates=False, - use_moving_windows=use_moving_windows, - ) - # Number of observations should match number of feature times: - assert X.shape[0] == len(expected_times) - assert X.shape[0] == len(times[0]) - assert y.shape[0] == len(expected_times) - assert y.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) - assert expected_times.equals(times[0]) - - def test_lagged_training_data_extend_past_and_future_covariates_range_idx(self): + # Number of observations should match number of feature times: + assert X.shape[0] == len(expected_times_x) + assert X.shape[0] == len(times[0]) + assert y.shape[0] == len(expected_times_y) + assert y.shape[0] == len(times[0]) + # Check that outputs match: + assert np.allclose(expected_X, X[:, :, 0]) + assert np.allclose(expected_y, y[:, :, 0]) + assert expected_times_x.equals(times[0]) + + @pytest.mark.parametrize( + "config", + itertools.product( + [0, 1, 3], + [False, True], + list(itertools.product(["datetime"], ["d", "2d", "ms", "y"])) + + list(itertools.product(["integer"], [1, 2])), + ), + ) + def test_lagged_training_data_extend_past_and_future_covariates(self, config): """ Tests that `create_lagged_training_data` correctly handles case where features and labels can be created for a time that is *not* contained in `past_covariates` - and/or `future_covariates`. This particular test checks this behaviour by using - range index timeseries. + and/or `future_covariates`. More specifically, we define the series and lags such that a training example can be generated for time `target.end_time()`, even though this time isn't contained in neither `past` nor `future`. """ - # Can create feature for time `t = 10`, but this time isn't in `past` or `future`: - target = linear_timeseries(start=0, end=10, start_value=1, end_value=2) - lags = [-1] - past = linear_timeseries(start=0, end=8, start_value=2, end_value=3) - lags_past = [-2] - future = linear_timeseries(start=0, end=6, start_value=3, end_value=4) - lags_future = [-4] - # Only want to check very last generated observation: - max_samples_per_ts = 1 - # Expect `X` to be constructed from second-to-last value of `target` (i.e. - # the value immediately prior to the label), and the very last values of - # `past` and `future`: - expected_X = np.concatenate( - [ - target.all_values(copy=False)[-2, :, 0], - past.all_values(copy=False)[-1, :, 0], - future.all_values(copy=False)[-1, :, 0], - ] - ).reshape(1, -1) - # Label is very last value of `target`: - expected_y = target.all_values(copy=False)[-1, :, 0] - # Check correctness for both 'moving window' method - # and 'time intersection' method: - for use_moving_windows in (False, True): - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - past_covariates=past, - future_covariates=future, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=use_moving_windows, + output_chunk_shift, use_moving_windows, (series_type, freq) = config + if series_type == "integer": + target = linear_timeseries( + start=0, length=10, start_value=1, end_value=2, freq=freq + ) + past = linear_timeseries( + start=0, length=8, start_value=2, end_value=3, freq=freq + ) + future = linear_timeseries( + start=0, length=6, start_value=3, end_value=4, freq=freq + ) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + start_value=1, + end_value=2, + length=11, + freq=freq, + ) + past = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + start_value=2, + end_value=3, + length=9, + freq=freq, + ) + future = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + start_value=3, + end_value=4, + length=7, + freq=freq, ) - assert times[0][0] == target.end_time() - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) - - @pytest.mark.parametrize("freq", ["D", "MS", "Y"]) - def test_lagged_training_data_extend_past_and_future_covariates_datetime_idx( - self, freq - ): - """ - Tests that `create_lagged_training_data` correctly handles case where features - and labels can be created for a time that is *not* contained in `past_covariates` - and/or `future_covariates`. This particular test checks this behaviour by using - datetime index timeseries and three different frequencies: daily, month start and - year end. - More specifically, we define the series and lags such that a training example can - be generated for time `target.end_time()`, even though this time isn't contained in - neither `past` nor `future`. - """ - # Can create feature for time `t = '1/1/2000'+11*freq`, but this time isn't in `past` or `future`: - target = linear_timeseries( - start=pd.Timestamp("1/1/2000"), - start_value=1, - end_value=2, - length=11, - freq=freq, - ) + # Can create feature for time `t = 10`, but this time isn't in `past` or `future`: lags = [-1] - past = linear_timeseries( - start=pd.Timestamp("1/1/2000"), - start_value=2, - end_value=3, - length=9, - freq=freq, - ) lags_past = [-2] - future = linear_timeseries( - start=pd.Timestamp("1/1/2000"), - start_value=3, - end_value=4, - length=7, - freq=freq, - ) lags_future = [-4] # Only want to check very last generated observation: max_samples_per_ts = 1 @@ -1179,173 +942,310 @@ def test_lagged_training_data_extend_past_and_future_covariates_datetime_idx( # `past` and `future`: expected_X = np.concatenate( [ - target.all_values(copy=False)[-2, :, 0], - past.all_values(copy=False)[-1, :, 0], - future.all_values(copy=False)[-1, :, 0], + target.all_values(copy=False)[-2 - output_chunk_shift, :, 0], + past.all_values(copy=False)[-1 - output_chunk_shift, :, 0], + future.all_values(copy=False)[-1 - output_chunk_shift, :, 0], ] ).reshape(1, -1) # Label is very last value of `target`: expected_y = target.all_values(copy=False)[-1, :, 0] # Check correctness for both 'moving window' method # and 'time intersection' method: - for use_moving_windows in (False, True): - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - past_covariates=past, - future_covariates=future, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=use_moving_windows, - ) - assert times[0][0] == target.end_time() - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) - - def test_lagged_training_data_single_point_range_idx(self): + X, y, times, _ = create_lagged_training_data( + target, + output_chunk_length=1, + past_covariates=past, + future_covariates=future, + lags=lags, + lags_past_covariates=lags_past, + lags_future_covariates=lags_future, + uses_static_covariates=False, + max_samples_per_ts=max_samples_per_ts, + use_moving_windows=use_moving_windows, + output_chunk_shift=output_chunk_shift, + ) + assert times[0][0] == target.end_time() - output_chunk_shift * target.freq + assert np.allclose(expected_X, X[:, :, 0]) + assert np.allclose(expected_y, y[:, :, 0]) + + @pytest.mark.parametrize( + "config", + itertools.product( + [0, 1, 3], [False, True], ["datetime", "integer"], [False, True] + ), + ) + def test_lagged_training_data_single_point(self, config): """ Tests that `create_lagged_training_data` correctly handles case - where only one possible training point can be generated. This - particular test checks this behaviour by using range index timeseries. + where only one possible training point can be generated. """ + output_chunk_shift, use_moving_windows, series_type, multi_models = config # Can only create feature using first value of series (i.e. `0`) # and can only create label using last value of series (i.e. `1`) - target = linear_timeseries(start=0, length=2, start_value=0, end_value=1) - output_chunk_length = 1 - lags = [-1] - expected_X = np.zeros((1, 1, 1)) - expected_y = np.ones((1, 1, 1)) - # Test correctness for 'moving window' and for 'time intersection' methods, as well - # as for different `multi_models` values: - for use_moving_windows, multi_models in product([False, True], [False, True]): - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length, - lags=lags, - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, + if series_type == "integer": + target = linear_timeseries( + start=0, length=2 + output_chunk_shift, start_value=0, end_value=1 + ) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + length=2 + output_chunk_shift, + start_value=0, + end_value=1, ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - # Should only have one sample, generated for `t = target.end_time()`: - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() - def test_lagged_training_data_single_point_datetime_idx(self): - """ - Tests that `create_lagged_training_data` correctly handles case - where only one possible training point can be generated. This - particular test checks this behaviour by using datetime index timeseries. - """ - # Can only create feature using first value of series (i.e. `0`) - # and can only create label using last value of series (i.e. `1`) - target = linear_timeseries( - start=pd.Timestamp("1/1/2000"), length=2, start_value=0, end_value=1 - ) output_chunk_length = 1 lags = [-1] expected_X = np.zeros((1, 1, 1)) expected_y = np.ones((1, 1, 1)) # Test correctness for 'moving window' and for 'time intersection' methods, as well # as for different `multi_models` values: - for use_moving_windows, multi_models in product([False, True], [False, True]): - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length, - lags=lags, - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, - ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - # Should only have one sample, generated for `t = target.end_time()`: - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() - - def test_lagged_training_data_zero_lags_range_idx(self): + X, y, times, _ = create_lagged_training_data( + target, + output_chunk_length, + lags=lags, + uses_static_covariates=False, + multi_models=multi_models, + use_moving_windows=use_moving_windows, + output_chunk_shift=output_chunk_shift, + ) + assert np.allclose(expected_X, X) + assert np.allclose(expected_y, y) + # Should only have one sample, generated for `t = target.end_time()`: + assert len(times[0]) == 1 + assert times[0][0] == target.end_time() - output_chunk_shift * target.freq + + @pytest.mark.parametrize( + "config", + itertools.product( + [0, 1, 3], [False, True], ["datetime", "integer"], [False, True] + ), + ) + def test_lagged_training_data_zero_lags(self, config): """ Tests that `create_lagged_training_data` correctly handles case when `0` is included in `lags_future_covariates` (i.e. when we're using the values `future_covariates` at time `t` to predict the value of `target_series` at - that same time point). This particular test checks this behaviour by using - range index timeseries. + that same time point). """ # Define `future` so that only value occurs at the same time as # the only possible label that can be extracted from `target_series`; the # only possible feature that can be created using these series utilises # the value of `future` at the same time as the label (i.e. a lag # of `0` away from the only feature time): - target = linear_timeseries(start=0, length=2, start_value=0, end_value=1) - future = linear_timeseries( - start=target.end_time(), length=1, start_value=1, end_value=2 - ) + output_chunk_shift, use_moving_windows, series_type, multi_models = config + + if series_type == "integer": + target = linear_timeseries( + start=0, length=2 + output_chunk_shift, start_value=0, end_value=1 + ) + future = linear_timeseries( + start=target.end_time() - output_chunk_shift * target.freq, + length=1, + start_value=1, + end_value=2, + ) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + length=2 + output_chunk_shift, + start_value=0, + end_value=1, + ) + future = linear_timeseries( + start=target.end_time() - output_chunk_shift * target.freq, + length=1, + start_value=1, + end_value=2, + ) + # X comprises of first value of `target` (i.e. 0) and only value in `future`: expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) expected_y = np.ones((1, 1, 1)) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - for use_moving_windows, multi_models in product([False, True], [False, True]): - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - future_covariates=future, - lags=[-1], - lags_future_covariates=[0], - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, + X, y, times, _ = create_lagged_training_data( + target, + output_chunk_length=1, + future_covariates=future, + lags=[-1], + lags_future_covariates=[0], + uses_static_covariates=False, + multi_models=multi_models, + use_moving_windows=use_moving_windows, + output_chunk_shift=output_chunk_shift, + ) + assert np.allclose(expected_X, X) + assert np.allclose(expected_y, y) + assert len(times[0]) == 1 + assert times[0][0] == target.end_time() - output_chunk_shift * target.freq + + @pytest.mark.parametrize( + "config", + itertools.product( + [0, 1, 3], + [False, True], + ["datetime", "integer"], + [False, True], + [-1, 0, 1], + [-2, 0, 2], + ), + ) + def test_lagged_training_data_no_target_lags_future_covariates(self, config): + """ + Tests that `create_lagged_training_data` correctly handles case without target lags and different + future covariates lags. + This test should always result in one training sample. + Additionally, we test that: + - future starts before the target but extends far enough to create one training sample + - future shares same time as target + - future starts after target but target extends far enough to create one training sample. + """ + ( + output_chunk_shift, + use_moving_windows, + series_type, + multi_models, + cov_start_shift, + cov_lag, + ) = config + + # adapt covariate start, length, and target length so that only 1 sample can be extracted + target_length = 1 + output_chunk_shift + max(cov_start_shift, 0) + cov_length = 1 - min(cov_start_shift, 0) + if series_type == "integer": + cov_start = 0 + cov_start_shift + cov_lag + target = linear_timeseries( + start=0, length=target_length, start_value=0, end_value=1 + ) + future = linear_timeseries( + start=cov_start, length=cov_length, start_value=2, end_value=3 + ) + else: + freq = pd.tseries.frequencies.to_offset("d") + cov_start = pd.Timestamp("1/1/2000") + (cov_start_shift + cov_lag) * freq + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + length=target_length, + start_value=0, + end_value=1, + freq=freq, + ) + future = linear_timeseries( + start=cov_start, + length=cov_length, + start_value=2, + end_value=3, + freq=freq, ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() - def test_lagged_training_data_zero_lags_datetime_idx(self): - """ - Tests that `create_lagged_training_data` correctly handles case when - `0` is included in `lags_future_covariates` (i.e. when we're using the values - `future_covariates` at time `t` to predict the value of `target_series` at - that same time point). This particular test checks this behaviour by using - datetime index timeseries. - """ - # Define `future` so that only value occurs at the same time as - # the only possible label that can be extracted from `target_series`; the - # only possible feature that can be created using these series utilises - # the value of `future` at the same time as the label (i.e. a lag - # of `0` away from the only feature time): - target = linear_timeseries( - start=pd.Timestamp("1/1/2000"), length=2, start_value=0, end_value=1 - ) - future = linear_timeseries( - start=target.end_time(), length=1, start_value=1, end_value=2 - ) # X comprises of first value of `target` (i.e. 0) and only value in `future`: - expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) - expected_y = np.ones((1, 1, 1)) + expected_X = future[-1].all_values(copy=False) + expected_y = target[-1].all_values(copy=False) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - for use_moving_windows, multi_models in product([False, True], [False, True]): - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - future_covariates=future, - lags=[-1], - lags_future_covariates=[0], - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, + X, y, times, _ = create_lagged_training_data( + target, + output_chunk_length=1, + future_covariates=future, + lags=None, + lags_future_covariates=[cov_lag], + uses_static_covariates=False, + multi_models=multi_models, + use_moving_windows=use_moving_windows, + output_chunk_shift=output_chunk_shift, + ) + assert np.allclose(expected_X, X) + assert np.allclose(expected_y, y) + assert len(times[0]) == 1 + assert times[0][0] == target.end_time() - output_chunk_shift * target.freq + + @pytest.mark.parametrize( + "config", + itertools.product( + [0, 1, 3], + [False, True], + ["datetime", "integer"], + [False, True], + [-1, 0], + [-2, -1], + ), + ) + def test_lagged_training_data_no_target_lags_past_covariates(self, config): + """ + Tests that `create_lagged_training_data` correctly handles case without target lags and different + past covariates lags. + This test should always result in one training sample. + Additionally, we test that: + - past starts before the target but extends far enough to create one training sample + - past shares same time as target + """ + ( + output_chunk_shift, + use_moving_windows, + series_type, + multi_models, + cov_start_shift, + cov_lag, + ) = config + + # adapt covariate start, length, and target length so that only 1 sample can be extracted + target_length = 1 + output_chunk_shift + max(cov_start_shift, 0) + cov_length = 1 - min(cov_start_shift, 0) + if series_type == "integer": + cov_start = 0 + cov_start_shift + cov_lag + target = linear_timeseries( + start=0, length=target_length, start_value=0, end_value=1 + ) + past = linear_timeseries( + start=cov_start, length=cov_length, start_value=2, end_value=3 + ) + else: + freq = pd.tseries.frequencies.to_offset("d") + cov_start = pd.Timestamp("1/1/2000") + (cov_start_shift + cov_lag) * freq + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + length=target_length, + start_value=0, + end_value=1, + freq=freq, + ) + past = linear_timeseries( + start=cov_start, + length=cov_length, + start_value=2, + end_value=3, + freq=freq, ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() - def test_lagged_training_data_positive_lags_range_idx(self): + # X comprises of first value of `target` (i.e. 0) and only value in `future`: + expected_X = past[-1].all_values(copy=False) + expected_y = target[-1].all_values(copy=False) + # Check correctness for 'moving windows' and 'time intersection' methods, as + # well as for different `multi_models` values: + X, y, times, _ = create_lagged_training_data( + target, + output_chunk_length=1, + past_covariates=past, + lags=None, + lags_past_covariates=[cov_lag], + uses_static_covariates=False, + multi_models=multi_models, + use_moving_windows=use_moving_windows, + output_chunk_shift=output_chunk_shift, + ) + assert np.allclose(expected_X, X) + assert np.allclose(expected_y, y) + assert len(times[0]) == 1 + assert times[0][0] == target.end_time() - output_chunk_shift * target.freq + + @pytest.mark.parametrize( + "config", + itertools.product( + [0, 1, 3], [False, True], ["datetime", "integer"], [False, True] + ), + ) + def test_lagged_training_data_positive_lags(self, config): """ Tests that `create_lagged_training_data` correctly handles case when `0` is included in `lags_future_covariates` (i.e. when we're using the values @@ -1358,70 +1258,51 @@ def test_lagged_training_data_positive_lags_range_idx(self): # only possible feature that can be created using these series utilises # the value of `future` one timestep after the time of the label (i.e. a lag # of `1` away from the only feature time): - target = linear_timeseries(start=0, length=2, start_value=0, end_value=1) - future = linear_timeseries( - start=target.end_time() + target.freq, length=1, start_value=1, end_value=2 - ) - # X comprises of first value of `target` (i.e. 0) and only value in `future`: - expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) - expected_y = np.ones((1, 1, 1)) - # Check correctness for 'moving windows' and 'time intersection' methods, as - # well as for different `multi_models` values: - for use_moving_windows, multi_models in product([False, True], [False, True]): - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - future_covariates=future, - lags=[-1], - lags_future_covariates=[1], - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, - ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() + output_chunk_shift, use_moving_windows, series_type, multi_models = config - def test_lagged_training_data_positive_lags_datetime_idx(self): - """ - Tests that `create_lagged_training_data` correctly handles case when - `0` is included in `lags_future_covariates` (i.e. when we're using the values - `future_covariates` at time `t` to predict the value of `target_series` at - that same time point). This particular test checks this behaviour by using - datetime index timeseries. - """ - # Define `past` and `future` so their only value occurs at the same time as - # the only possible label that can be extracted from `target_series`; the - # only possible feature that can be created using these series utilises - # the values of `past` and `future` at the same time as the label (i.e. a lag - # of `0` away from the only feature time): - target = linear_timeseries( - start=pd.Timestamp("1/1/2000"), length=2, start_value=0, end_value=1 - ) - future = linear_timeseries( - start=target.end_time() + target.freq, length=1, start_value=1, end_value=2 - ) + if series_type == "integer": + target = linear_timeseries( + start=0, length=2 + output_chunk_shift, start_value=0, end_value=1 + ) + future = linear_timeseries( + start=target.end_time() - (output_chunk_shift - 1) * target.freq, + length=1, + start_value=1, + end_value=2, + ) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), + length=2 + output_chunk_shift, + start_value=0, + end_value=1, + ) + future = linear_timeseries( + start=target.end_time() - (output_chunk_shift - 1) * target.freq, + length=1, + start_value=1, + end_value=2, + ) # X comprises of first value of `target` (i.e. 0) and only value in `future`: expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) expected_y = np.ones((1, 1, 1)) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - for use_moving_windows, multi_models in product([False, True], [False, True]): - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - future_covariates=future, - lags=[-1], - lags_future_covariates=[1], - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, - ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() + X, y, times, _ = create_lagged_training_data( + target, + output_chunk_length=1, + future_covariates=future, + lags=[-1], + lags_future_covariates=[1], + uses_static_covariates=False, + multi_models=multi_models, + use_moving_windows=use_moving_windows, + output_chunk_shift=output_chunk_shift, + ) + assert np.allclose(expected_X, X) + assert np.allclose(expected_y, y) + assert len(times[0]) == 1 + assert times[0][0] == target.end_time() - output_chunk_shift * target.freq def test_lagged_training_data_sequence_inputs(self): """ @@ -1457,6 +1338,7 @@ def test_lagged_training_data_sequence_inputs(self): lags_past_covariates=lags_past, lags_future_covariates=lags_future, uses_static_covariates=False, + output_chunk_shift=0, ) assert np.allclose(X, expected_X) assert np.allclose(y, expected_y) @@ -1474,6 +1356,7 @@ def test_lagged_training_data_sequence_inputs(self): lags_future_covariates=lags_future, uses_static_covariates=False, concatenate=False, + output_chunk_shift=0, ) assert len(X) == 2 assert len(y) == 2 @@ -1513,6 +1396,7 @@ def test_lagged_training_data_stochastic_series(self): lags_past_covariates=lags_past, lags_future_covariates=lags_future, uses_static_covariates=False, + output_chunk_shift=0, ) assert np.allclose(X, expected_X) assert np.allclose(y, expected_y) @@ -1539,6 +1423,7 @@ def test_lagged_training_data_no_shared_times_error(self): lags_past_covariates=lags, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert ( "Specified series do not share any common times for which features can be created." @@ -1567,6 +1452,7 @@ def test_lagged_training_data_no_specified_series_lags_pairs_error(self): lags_past_covariates=lags, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert "Must specify at least one series-lags pair." == str(err.value) # Warnings will be thrown indicating that `past_covariates` @@ -1583,6 +1469,7 @@ def test_lagged_training_data_no_specified_series_lags_pairs_error(self): past_covariates=series_2, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert "Must specify at least one series-lags pair." == str(err.value) @@ -1603,6 +1490,7 @@ def test_lagged_training_data_invalid_output_chunk_length_error(self): lags=lags, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert "`output_chunk_length` must be a positive `int`." == str(err.value) with pytest.raises(ValueError) as err: @@ -1612,6 +1500,7 @@ def test_lagged_training_data_invalid_output_chunk_length_error(self): lags=lags, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert "`output_chunk_length` must be a positive `int`." == str(err.value) @@ -1629,6 +1518,7 @@ def test_lagged_training_data_no_lags_specified_error(self): output_chunk_length=1, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert ( "Must specify at least one of: `lags`, `lags_past_covariates`, `lags_future_covariates`." @@ -1656,11 +1546,12 @@ def test_lagged_training_data_series_too_short_error(self): lags=[-20, -10], uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert ( "`target_series` must have at least " - "`-min(lags) + output_chunk_length` = 25 " - "timesteps; instead, it only has 2." + "`-min(lags) + output_chunk_length + output_chunk_shift` = 25 " + "time steps; instead, it only has 2." ) == str(err.value) # `lags_past_covariates` too large test: with pytest.raises(ValueError) as err: @@ -1671,11 +1562,12 @@ def test_lagged_training_data_series_too_short_error(self): lags_past_covariates=[-5, -3], uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert ( "`past_covariates` must have at least " "`-min(lags_past_covariates) + max(lags_past_covariates) + 1` = 3 " - "timesteps; instead, it only has 2." + "time steps; instead, it only has 2." ) == str(err.value) def test_lagged_training_data_invalid_lag_values_error(self): @@ -1700,6 +1592,7 @@ def test_lagged_training_data_invalid_lag_values_error(self): lags=[0], uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert ( "`lags` must be a `Sequence` or `Dict` containing only `int` values less than 0." @@ -1713,6 +1606,7 @@ def test_lagged_training_data_invalid_lag_values_error(self): lags_past_covariates=[0], uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert ( "`lags_past_covariates` must be a `Sequence` or `Dict` containing only `int` values less than 0." @@ -1725,6 +1619,7 @@ def test_lagged_training_data_invalid_lag_values_error(self): lags_future_covariates=[-1, 0, 1], uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) def test_lagged_training_data_unspecified_lag_or_series_warning(self): @@ -1751,6 +1646,7 @@ def test_lagged_training_data_unspecified_lag_or_series_warning(self): future_covariates=series, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert len(w) == 1 assert issubclass(w[0].category, UserWarning) @@ -1767,6 +1663,7 @@ def test_lagged_training_data_unspecified_lag_or_series_warning(self): lags_future_covariates=lags, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert len(w) == 1 assert issubclass(w[0].category, UserWarning) @@ -1785,6 +1682,7 @@ def test_lagged_training_data_unspecified_lag_or_series_warning(self): lags_future_covariates=lags, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert len(w) == 2 assert issubclass(w[0].category, UserWarning) @@ -1807,6 +1705,7 @@ def test_lagged_training_data_unspecified_lag_or_series_warning(self): lags_past_covariates=lags, uses_static_covariates=False, use_moving_windows=use_moving_windows, + output_chunk_shift=0, ) assert len(w) == 0 diff --git a/darts/tests/utils/tabularization/test_get_feature_times.py b/darts/tests/utils/tabularization/test_get_feature_times.py index 457b419c02..97dd2f289c 100644 --- a/darts/tests/utils/tabularization/test_get_feature_times.py +++ b/darts/tests/utils/tabularization/test_get_feature_times.py @@ -1,3 +1,4 @@ +import itertools import warnings from itertools import product from typing import Sequence @@ -38,6 +39,7 @@ def get_feature_times_target_training( target_series: TimeSeries, lags: Sequence[int], output_chunk_length: int, + output_chunk_shift: int, ): """ Helper function that returns all the times within `target_series` that can be used to @@ -58,6 +60,8 @@ def get_feature_times_target_training( # Exclude last `output_chunk_length - 1` times: if output_chunk_length > 1: times = times[: -output_chunk_length + 1] + if output_chunk_shift: + times = times[:-output_chunk_shift] return times @staticmethod @@ -201,7 +205,14 @@ def get_feature_times_future( lags_future_combos = (*target_lag_combos, [0], [0, 1], [1, 3], [-2, 2]) ocl_combos = (1, 2, 5, 10) - def test_feature_times_training_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product( + ["datetime", "integer"], + [0, 1, 3], + ), + ) + def test_feature_times_training(self, config): """ Tests that `_get_feature_times` produces the same `times` output as that generated by using the various `get_feature_times_*` helper @@ -212,46 +223,21 @@ def test_feature_times_training_range_idx(self): with range time indices. """ # Define timeseries with different starting points, lengths, and frequencies: - target = linear_timeseries(start=1, length=20, freq=1) - past = linear_timeseries(start=2, length=25, freq=2) - future = linear_timeseries(start=3, length=30, freq=3) - for lags, lags_past, lags_future, ocl in product( - self.target_lag_combos, - self.lags_past_combos, - self.lags_future_combos, - self.ocl_combos, - ): - feature_times = _get_feature_times( - target_series=target, - past_covariates=past, - future_covariates=future, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - output_chunk_length=ocl, - is_training=True, + series_type, output_chunk_shift = config + if series_type == "integer": + target = linear_timeseries(start=1, length=20, freq=1) + past = linear_timeseries(start=2, length=25, freq=2) + future = linear_timeseries(start=3, length=30, freq=3) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=20, freq="1d" + ) + past = linear_timeseries( + start=pd.Timestamp("1/2/2000"), length=25, freq="2d" + ) + future = linear_timeseries( + start=pd.Timestamp("1/3/2000"), length=30, freq="3d" ) - target_expected = self.get_feature_times_target_training(target, lags, ocl) - past_expected = self.get_feature_times_past(past, lags_past) - future_expected = self.get_feature_times_future(future, lags_future) - assert target_expected.equals(feature_times[0]) - assert past_expected.equals(feature_times[1]) - assert future_expected.equals(feature_times[2]) - - def test_feature_times_training_datetime_idx(self): - """ - Tests that `_get_feature_times` produces the same `times` output as - that generated by using the various `get_feature_times_*` helper - functions defined in this module when `is_training = True`. Consistency - is checked over all of the combinations of parameter values specified by - `self.target_lag_combos`, `self.lags_past_combos`, `self.lags_future_combos` - and `self.max_samples_per_ts_combos`. This particular test uses timeseries - with datetime time indices. - """ - # Define timeseries with different starting points, lengths, and frequencies: - target = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=20, freq="1d") - past = linear_timeseries(start=pd.Timestamp("1/2/2000"), length=25, freq="2d") - future = linear_timeseries(start=pd.Timestamp("1/3/2000"), length=30, freq="3d") for lags, lags_past, lags_future, ocl in product( self.target_lag_combos, self.lags_past_combos, @@ -267,15 +253,25 @@ def test_feature_times_training_datetime_idx(self): lags_future_covariates=lags_future, output_chunk_length=ocl, is_training=True, + output_chunk_shift=output_chunk_shift, + ) + target_expected = self.get_feature_times_target_training( + target, lags, ocl, output_chunk_shift=output_chunk_shift ) - target_expected = self.get_feature_times_target_training(target, lags, ocl) past_expected = self.get_feature_times_past(past, lags_past) future_expected = self.get_feature_times_future(future, lags_future) assert target_expected.equals(feature_times[0]) assert past_expected.equals(feature_times[1]) assert future_expected.equals(feature_times[2]) - def test_feature_times_prediction_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product( + ["datetime", "integer"], + [0, 1, 3], + ), + ) + def test_feature_times_prediction(self, config): """ Tests that `_get_feature_times` produces the same `times` output as that generated by using the various `get_feature_times_*` helper @@ -286,42 +282,22 @@ def test_feature_times_prediction_range_idx(self): uses timeseries with range time indices. """ # Define timeseries with different starting points, lengths, and frequencies: - target = linear_timeseries(start=1, length=20, freq=1) - past = linear_timeseries(start=2, length=25, freq=2) - future = linear_timeseries(start=3, length=30, freq=3) - for lags, lags_past, lags_future in product( - self.target_lag_combos, self.lags_past_combos, self.lags_future_combos - ): - feature_times = _get_feature_times( - target_series=target, - past_covariates=past, - future_covariates=future, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - is_training=False, + series_type, output_chunk_shift = config + if series_type == "integer": + target = linear_timeseries(start=1, length=20, freq=1) + past = linear_timeseries(start=2, length=25, freq=2) + future = linear_timeseries(start=3, length=30, freq=3) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=20, freq="1d" + ) + past = linear_timeseries( + start=pd.Timestamp("1/2/2000"), length=25, freq="2d" + ) + future = linear_timeseries( + start=pd.Timestamp("1/3/2000"), length=30, freq="3d" ) - target_expected = self.get_feature_times_target_prediction(target, lags) - past_expected = self.get_feature_times_past(past, lags_past) - future_expected = self.get_feature_times_future(future, lags_future) - assert target_expected.equals(feature_times[0]) - assert past_expected.equals(feature_times[1]) - assert future_expected.equals(feature_times[2]) - def test_feature_times_prediction_datetime_idx(self): - """ - Tests that `_get_feature_times` produces the same `times` output as - that generated by using the various `get_feature_times_*` helper - functions defined in this module when `is_training = False` (i.e. when creaiting - prediction data). Consistency is checked over all of the combinations of parameter - values specified by `self.target_lag_combos`, `self.lags_past_combos`, - `self.lags_future_combos` and `self.max_samples_per_ts_combos`. This particular test - uses timeseries with datetime time indices. - """ - # Define timeseries with different starting points, lengths, and frequencies: - target = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=20, freq="1d") - past = linear_timeseries(start=pd.Timestamp("1/2/2000"), length=25, freq="2d") - future = linear_timeseries(start=pd.Timestamp("1/3/2000"), length=30, freq="3d") for lags, lags_past, lags_future in product( self.target_lag_combos, self.lags_past_combos, self.lags_future_combos ): @@ -333,6 +309,7 @@ def test_feature_times_prediction_datetime_idx(self): lags_past_covariates=lags_past, lags_future_covariates=lags_future, is_training=False, + output_chunk_shift=output_chunk_shift, ) target_expected = self.get_feature_times_target_prediction(target, lags) past_expected = self.get_feature_times_past(past, lags_past) @@ -345,50 +322,45 @@ def test_feature_times_prediction_datetime_idx(self): # Specified Test Cases # - def test_feature_times_output_chunk_length_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [0, 1, 3]), + ) + def test_feature_times_output_chunk_length_output_chunk_shift(self, config): """ Tests that the last feature time for the `target_series` returned by `_get_feature_times` corresponds to - `output_chunk_length - 1` timesteps *before* the end of + `output_chunk_length - output_chunk_shift - 1` timesteps *before* the end of the target series; this is the last time point in `target_series` which has enough values in front of it to create a label. This particular test uses range time index series to check this behaviour. """ - target = linear_timeseries(start=0, length=20, freq=2) - # Test multiple `output_chunk_length` values: - for ocl in (1, 2, 3, 4, 5): - feature_times = _get_feature_times( - target_series=target, - lags=[-2, -3, -5], - output_chunk_length=ocl, - is_training=True, + series_type, output_chunk_shift = config + if series_type == "integer": + target = linear_timeseries(start=0, length=20, freq=2) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=20, freq="2d" ) - assert feature_times[0][-1] == target.end_time() - target.freq * (ocl - 1) - - def test_feature_times_output_chunk_length_datetime_idx(self): - """ - Tests that the last feature time for the `target_series` - returned by `_get_feature_times` when `is_training = True` - corresponds to the time that is `(output_chunk_length - 1)` - timesteps *before* the end of the target series; this is the - last time point in `target_series` which has enough values - in front of it to create a label. This particular test uses - datetime time index series to check this behaviour. - """ - target = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=20, freq="2d") # Test multiple `output_chunk_length` values: for ocl in (1, 2, 3, 4, 5): - # `is_training = True` feature_times = _get_feature_times( target_series=target, lags=[-2, -3, -5], output_chunk_length=ocl, is_training=True, + output_chunk_shift=output_chunk_shift, + ) + assert feature_times[0][-1] == target.end_time() - target.freq * ( + ocl + output_chunk_shift - 1 ) - assert feature_times[0][-1] == target.end_time() - target.freq * (ocl - 1) - def test_feature_times_lags_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [0, 1, 3]), + ) + def test_feature_times_lags(self, config): """ Tests that the first feature time for the `target_series` returned by `_get_feature_times` corresponds to the time @@ -398,30 +370,13 @@ def test_feature_times_lags_range_idx(self): to create a feature. This particular test uses range time index series to check this behaviour. """ - target = linear_timeseries(start=0, length=20, freq=2) - # Expect same behaviour when training and predicting: - for is_training in (False, True): - for max_lags in (-1, -2, -3, -4, -5): - feature_times = _get_feature_times( - target_series=target, - lags=[-1, max_lags], - is_training=is_training, - ) - assert feature_times[0][0] == target.start_time() + target.freq * abs( - max_lags - ) - - def test_feature_times_lags_datetime_idx(self): - """ - Tests that the first feature time for the `target_series` - returned by `_get_feature_times` corresponds to the time - that is `max_lags` timesteps *after* the start of - the target series; this is the first time point in - `target_series` which has enough values in preceeding it - to create a feature. This particular test uses datetime time - index series to check this behaviour. - """ - target = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=20, freq="2d") + series_type, output_chunk_shift = config + if series_type == "integer": + target = linear_timeseries(start=0, length=20, freq=2) + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=20, freq="2d" + ) # Expect same behaviour when training and predicting: for is_training in (False, True): for max_lags in (-1, -2, -3, -4, -5): @@ -429,65 +384,52 @@ def test_feature_times_lags_datetime_idx(self): target_series=target, lags=[-1, max_lags], is_training=is_training, + output_chunk_shift=output_chunk_shift, ) assert feature_times[0][0] == target.start_time() + target.freq * abs( max_lags ) - def test_feature_times_training_single_time_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [0, 1, 3]), + ) + def test_feature_times_training_single_time(self, config): """ Tests that `_get_feature_times` correctly handles case where only a single time can be used to create training features and labels. This particular test uses range index timeseries. """ # Can only create feature and label for time `1` (`-1` lag behind is time `0`): - target = linear_timeseries(start=0, length=2, freq=1) - lags = [-1] - feature_times = _get_feature_times( - target_series=target, - output_chunk_length=1, - lags=lags, - is_training=True, - ) - assert len(feature_times[0]) == 1 - assert feature_times[0][0] == 1 - - # Can only create feature for time `6` (`-2` lags behind is time `2`): - future = linear_timeseries(start=2, length=1, freq=2) - future_lags = [-2] - feature_times = _get_feature_times( - target_series=target, - future_covariates=future, - output_chunk_length=1, - lags=lags, - lags_future_covariates=future_lags, - is_training=True, - ) - assert len(feature_times[0]) == 1 - assert feature_times[0][0] == 1 - assert len(feature_times[2]) == 1 - assert feature_times[2][0] == 6 + series_type, output_chunk_shift = config + if series_type == "integer": + target = linear_timeseries(start=0, length=2 + output_chunk_shift, freq=1) + # Can only create feature for time `6` (`-2` lags behind is time `2`): + future = linear_timeseries(start=2, length=1, freq=2) + exp_start_target, exp_start_future = 1, 6 + else: + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=2 + output_chunk_shift, freq="d" + ) + # Can only create feature for "1/6/2000" (`-2` lags behind is "1/2/2000"): + future = linear_timeseries( + start=pd.Timestamp("1/2/2000"), length=1, freq="2d" + ) + exp_start_target, exp_start_future = pd.Timestamp("1/2/2000"), pd.Timestamp( + "1/6/2000" + ) - def test_feature_times_training_single_time_datetime_idx(self): - """ - Tests that `_get_feature_times` correctly handles case where only - a single time can be used to create training features and labels. - This particular test uses datetime index timeseries. - """ - # Can only create feature and label for "1/2/2000" (`-1` lag behind is "1/1/2000"): - target = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=2, freq="d") lags = [-1] feature_times = _get_feature_times( target_series=target, output_chunk_length=1, lags=lags, is_training=True, + output_chunk_shift=output_chunk_shift, ) assert len(feature_times[0]) == 1 - assert feature_times[0][0] == pd.Timestamp("1/2/2000") + assert feature_times[0][0] == exp_start_target - # Can only create feature for "1/6/2000" (`-2` lags behind is "1/2/2000"): - future = linear_timeseries(start=pd.Timestamp("1/2/2000"), length=1, freq="2d") future_lags = [-2] feature_times = _get_feature_times( target_series=target, @@ -496,52 +438,44 @@ def test_feature_times_training_single_time_datetime_idx(self): lags=lags, lags_future_covariates=future_lags, is_training=True, + output_chunk_shift=output_chunk_shift, ) assert len(feature_times[0]) == 1 - assert feature_times[0][0] == pd.Timestamp("1/2/2000") + assert feature_times[0][0] == exp_start_target assert len(feature_times[2]) == 1 - assert feature_times[2][0] == pd.Timestamp("1/6/2000") + assert feature_times[2][0] == exp_start_future - def test_feature_times_prediction_single_time_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [0, 1, 3]), + ) + def test_feature_times_prediction_single_time(self, config): """ Tests that `_get_feature_times` correctly handles case where only a single time can be used to create prediction features. This particular test uses range index timeseries. """ - # Can only create feature for time `1` (`-1` lag behind is time `0`): - target = linear_timeseries(start=0, length=1, freq=1) - lags = [-1] - feature_times = _get_feature_times( - target_series=target, - lags=lags, - is_training=False, - ) - assert len(feature_times[0]) == 1 - assert feature_times[0][0] == 1 + series_type, output_chunk_shift = config + if series_type == "integer": + # Can only create feature for time `1` (`-1` lag behind is time `0`): + target = linear_timeseries(start=0, length=1, freq=1) + # Can only create feature for time `6` (`-2` lags behind is time `2`): + future = linear_timeseries(start=2, length=1, freq=2) + exp_start_target, exp_start_future = 1, 6 - # Can only create feature for time `6` (`-2` lags behind is time `2`): - future = linear_timeseries(start=2, length=1, freq=2) - lags_future = [-2] - feature_times = _get_feature_times( - target_series=target, - future_covariates=future, - lags=lags, - lags_future_covariates=lags_future, - is_training=False, - ) - assert len(feature_times[0]) == 1 - assert feature_times[0][0] == 1 - assert len(feature_times[2]) == 1 - assert feature_times[2][0] == 6 + else: + # Can only create feature for "1/2/2000" (`-1` lag behind is time "1/1/2000"): + target = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=1, freq="d" + ) + # Can only create feature for "1/6/2000" (`-2` lag behind is time "1/2/2000"): + future = linear_timeseries( + start=pd.Timestamp("1/2/2000"), length=1, freq="2d" + ) + exp_start_target, exp_start_future = pd.Timestamp("1/2/2000"), pd.Timestamp( + "1/6/2000" + ) - def test_feature_times_prediction_single_time_datetime_idx(self): - """ - Tests that `_get_feature_times` correctly handles case where only - a single time can be used to create prediction features. - This particular test uses datetime index timeseries. - """ - # Can only create feature for "1/2/2000" (`-1` lag behind is time "1/1/2000"): - target = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=1, freq="d") lags = [-1] feature_times = _get_feature_times( target_series=target, @@ -549,10 +483,8 @@ def test_feature_times_prediction_single_time_datetime_idx(self): is_training=False, ) assert len(feature_times[0]) == 1 - assert feature_times[0][0] == pd.Timestamp("1/2/2000") + assert feature_times[0][0] == exp_start_target - # Can only create feature for "1/6/2000" (`-2` lag behind is time "1/2/2000"): - future = linear_timeseries(start=pd.Timestamp("1/2/2000"), length=1, freq="2d") lags_future = [-2] feature_times = _get_feature_times( target_series=target, @@ -560,13 +492,18 @@ def test_feature_times_prediction_single_time_datetime_idx(self): lags=lags, lags_future_covariates=lags_future, is_training=False, + output_chunk_shift=output_chunk_shift, ) assert len(feature_times[0]) == 1 - assert feature_times[0][0] == pd.Timestamp("1/2/2000") + assert feature_times[0][0] == exp_start_target assert len(feature_times[2]) == 1 - assert feature_times[2][0] == pd.Timestamp("1/6/2000") + assert feature_times[2][0] == exp_start_future - def test_feature_times_extend_time_index_range_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [0, 1, 3]), + ) + def test_feature_times_extend_time_index_range_idx(self, config): """ Tests that `_get_feature_times` is able to return feature times that occur after the end of a series or occur before @@ -574,50 +511,21 @@ def test_feature_times_extend_time_index_range_idx(self): index time series. """ # Feature times occur after end of series: - target = linear_timeseries(start=10, length=1, freq=3) - past = linear_timeseries(start=2, length=1, freq=2) - future = linear_timeseries(start=3, length=1, freq=1) - lags = lags_past = lags_future_1 = [-4] - feature_times = _get_feature_times( - target_series=target, - past_covariates=past, - future_covariates=future, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future_1, - is_training=False, - ) - assert len(feature_times[0]) == 1 - assert feature_times[0][0] == target.start_time() - lags[0] * target.freq - assert len(feature_times[1]) == 1 - assert feature_times[1][0] == past.start_time() - lags_past[0] * past.freq - assert len(feature_times[2]) == 1 - assert ( - feature_times[2][0] == future.start_time() - lags_future_1[0] * future.freq - ) - # Feature time occurs before start of series: - lags_future_2 = [4] - feature_times = _get_feature_times( - future_covariates=future, - lags_future_covariates=lags_future_2, - is_training=False, - ) - assert len(feature_times[2]) == 1 - assert ( - feature_times[2][0] == future.start_time() - lags_future_2[0] * future.freq - ) - - def test_feature_times_extend_time_index_datetime_idx(self): - """ - Tests that `_get_feature_times` is able to return feature - times that occur after the end of a series or occur before - the beginning of a series. This particular test uses datetime - index time series. - """ - # Feature times occur after end of series: - target = linear_timeseries(start=pd.Timestamp("1/10/2000"), length=1, freq="3d") - past = linear_timeseries(start=pd.Timestamp("1/2/2000"), length=1, freq="2d") - future = linear_timeseries(start=pd.Timestamp("1/3/2000"), length=1, freq="1d") + series_type, output_chunk_shift = config + if series_type == "integer": + target = linear_timeseries(start=10, length=1, freq=3) + past = linear_timeseries(start=2, length=1, freq=2) + future = linear_timeseries(start=3, length=1, freq=1) + else: + target = linear_timeseries( + start=pd.Timestamp("1/10/2000"), length=1, freq="3d" + ) + past = linear_timeseries( + start=pd.Timestamp("1/2/2000"), length=1, freq="2d" + ) + future = linear_timeseries( + start=pd.Timestamp("1/3/2000"), length=1, freq="1d" + ) lags = lags_past = lags_future_1 = [-4] feature_times = _get_feature_times( target_series=target, @@ -627,6 +535,7 @@ def test_feature_times_extend_time_index_datetime_idx(self): lags_past_covariates=lags_past, lags_future_covariates=lags_future_1, is_training=False, + output_chunk_shift=output_chunk_shift, ) assert len(feature_times[0]) == 1 assert feature_times[0][0] == target.start_time() - lags[0] * target.freq @@ -642,58 +551,18 @@ def test_feature_times_extend_time_index_datetime_idx(self): future_covariates=future, lags_future_covariates=lags_future_2, is_training=False, + output_chunk_shift=output_chunk_shift, ) assert len(feature_times[2]) == 1 assert ( feature_times[2][0] == future.start_time() - lags_future_2[0] * future.freq ) - def test_feature_times_future_lags_range_idx(self): - """ - Tests that `_get_feature_times` correctly handles the `lags_future_covariates` - argument for the following three cases: - 1. `lags_future_covariates` contains only `0` - 2. `lags_future_covariates` contains only a positive lag - 3. `lags_future_covariates` contains a combination of positive, - zero, and negative lags - This particular test uses range index timeseries. - """ - future = linear_timeseries(start=0, length=10, freq=2) - # Case 1 - Zero lag: - lags_future = [0] - feature_times = _get_feature_times( - future_covariates=future, - lags_future_covariates=lags_future, - is_training=False, - ) - # All times will be feature times: - assert len(feature_times[2]) == future.n_timesteps - assert feature_times[2].equals(future.time_index) - - # Case 2 - Positive lag: - lags_future = [1] - feature_times = _get_feature_times( - future_covariates=future, - lags_future_covariates=lags_future, - is_training=False, - ) - # Need to include new time at start of series; only last time will be excluded: - extended_future = future.prepend_values([0]) - assert len(feature_times[2]) == extended_future.n_timesteps - 1 - assert feature_times[2].equals(extended_future.time_index[:-1]) - - # Case 3 - Combo of negative, zero, and positive lags: - lags_future = [-1, 0, 1] - feature_times = _get_feature_times( - future_covariates=future, - lags_future_covariates=lags_future, - is_training=False, - ) - # Only first and last times will be excluded: - assert len(feature_times[2]) == future.n_timesteps - 2 - assert feature_times[2].equals(future.time_index[1:-1]) - - def test_feature_times_future_lags_datetime_idx(self): + @pytest.mark.parametrize( + "config", + itertools.product(["datetime", "integer"], [0, 1, 3]), + ) + def test_feature_times_future_lags(self, config): """ Tests that `_get_feature_times` correctly handles the `lags_future_covariates` argument for the following three cases: @@ -701,15 +570,21 @@ def test_feature_times_future_lags_datetime_idx(self): 2. `lags_future_covariates` contains only a positive lag 3. `lags_future_covariates` contains a combination of positive, zero, and negative lags - This particular test uses datetime index timeseries. """ - future = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=10, freq="2d") + series_type, output_chunk_shift = config + if series_type == "integer": + future = linear_timeseries(start=0, length=10, freq=2) + else: + future = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=10, freq="2d" + ) # Case 1 - Zero lag: lags_future = [0] feature_times = _get_feature_times( future_covariates=future, lags_future_covariates=lags_future, is_training=False, + output_chunk_shift=output_chunk_shift, ) # All times will be feature times: assert len(feature_times[2]) == future.n_timesteps @@ -721,6 +596,7 @@ def test_feature_times_future_lags_datetime_idx(self): future_covariates=future, lags_future_covariates=lags_future, is_training=False, + output_chunk_shift=output_chunk_shift, ) # Need to include new time at start of series; only last time will be excluded: extended_future = future.prepend_values([0]) @@ -1014,7 +890,7 @@ def test_feature_times_series_too_short_error(self): _get_feature_times(target_series=series, lags=[-20, -1], is_training=False) assert ( "`target_series` must have at least `-min(lags) + max(lags) + 1` = 20 " - "timesteps; instead, it only has 2." + "time steps; instead, it only has 2." ) == str(err.value) # `target_series` too short when training: with pytest.raises(ValueError) as err: @@ -1025,8 +901,8 @@ def test_feature_times_series_too_short_error(self): is_training=True, ) assert ( - "`target_series` must have at least `-min(lags) + output_chunk_length` = 25 " - "timesteps; instead, it only has 2." + "`target_series` must have at least `-min(lags) + output_chunk_length + output_chunk_shift` = 25 " + "time steps; instead, it only has 2." ) == str(err.value) # `past_covariates` too short when training: with pytest.raises(ValueError) as err: @@ -1039,7 +915,7 @@ def test_feature_times_series_too_short_error(self): ) assert ( "`past_covariates` must have at least " - "`-min(lags_past_covariates) + max(lags_past_covariates) + 1` = 20 timesteps; " + "`-min(lags_past_covariates) + max(lags_past_covariates) + 1` = 20 time steps; " "instead, it only has 2." ) == str(err.value) diff --git a/darts/tests/utils/tabularization/test_get_shared_times.py b/darts/tests/utils/tabularization/test_get_shared_times.py index 0b5dc6cee8..147b77ec75 100644 --- a/darts/tests/utils/tabularization/test_get_shared_times.py +++ b/darts/tests/utils/tabularization/test_get_shared_times.py @@ -20,17 +20,31 @@ class TestGetSharedTimes: Tests `get_shared_times` function defined in `darts.utils.data.tabularization`. """ - def test_shared_times_equal_freq_range_idx(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_equal_freq(self, series_type): """ - Tests that `get_shared_times` correctly handles range time - index series that are of equal frequency. + Tests that `get_shared_times` correctly handles time index series that are of equal frequency. """ # `series_1` begins before `series_2` does and ends # before `series_2` does, and `series_2` begins before # `series_3` does and ends before `series_3` does: - series_1 = linear_timeseries(start=1, end=11, freq=2) - series_2 = linear_timeseries(start=3, end=13, freq=2) - series_3 = linear_timeseries(start=5, end=15, freq=2) + if series_type == "integer": + series_1 = linear_timeseries(start=1, end=11, freq=2) + series_2 = linear_timeseries(start=3, end=13, freq=2) + series_3 = linear_timeseries(start=5, end=15, freq=2) + else: + series_1 = linear_timeseries( + start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/11/2000"), freq="2d" + ) + series_2 = linear_timeseries( + start=pd.Timestamp("1/3/2000"), end=pd.Timestamp("1/13/2000"), freq="2d" + ) + series_3 = linear_timeseries( + start=pd.Timestamp("1/5/2000"), end=pd.Timestamp("1/15/2000"), freq="2d" + ) # Intersection of a single time index is just the original time index: assert series_1.time_index.equals(get_shared_times(series_1)) @@ -65,147 +79,40 @@ def test_shared_times_equal_freq_range_idx(self): get_shared_times(series_1, series_2, series_3) ) - def test_shared_times_equal_freq_datetime_idx(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_unequal_freq(self, series_type): """ - Tests that `get_shared_times` correctly handles datetime time - index series that are of equal frequency. - """ - # `series_1` begins before `series_2` does and ends - # before `series_2` does, and `series_2` begins before - # `series_3` does and ends before `series_3` does: - series_1 = linear_timeseries( - start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/11/2000"), freq="2d" - ) - series_2 = linear_timeseries( - start=pd.Timestamp("1/3/2000"), end=pd.Timestamp("1/13/2000"), freq="2d" - ) - series_3 = linear_timeseries( - start=pd.Timestamp("1/5/2000"), end=pd.Timestamp("1/15/2000"), freq="2d" - ) - - # Intersection of a single time index is just the original time index: - assert series_1.time_index.equals(get_shared_times(series_1)) - assert series_2.time_index.equals(get_shared_times(series_2)) - assert series_3.time_index.equals(get_shared_times(series_3)) - - # Intersection of two time indices begins at start time of later series - # and stops at end time of earlier series. - # Since `series_1` is before `series_2`: - expected_12 = linear_timeseries( - start=series_2.start_time(), end=series_1.end_time(), freq=series_1.freq - ) - assert expected_12.time_index.equals(get_shared_times(series_1, series_2)) - # Since `series_2` is before `series_3`: - expected_23 = linear_timeseries( - start=series_3.start_time(), end=series_2.end_time(), freq=series_2.freq - ) - assert expected_23.time_index.equals(get_shared_times(series_2, series_3)) - # Since `series_1` is before `series_3`: - expected_13 = linear_timeseries( - start=series_3.start_time(), end=series_1.end_time(), freq=series_1.freq - ) - assert expected_13.time_index.equals(get_shared_times(series_1, series_3)) - - # Intersection of all three time series should begin at start of series_3 (i.e. - # the last series to begin) and end at the end of series_1 (i.e. the first series - # to end): - expected_123 = linear_timeseries( - start=series_3.start_time(), end=series_1.end_time(), freq=series_1.freq - ) - assert expected_123.time_index.equals( - get_shared_times(series_1, series_2, series_3) - ) - - def test_shared_times_unequal_freq_range_idx(self): - """ - Tests that `get_shared_times` correctly handles range time - index series that are of different frequencies. - """ - # `series_1` begins before `series_2` does and ends - # before `series_2` does, and `series_2` begins before - # `series_3` does and ends before `series_3` does. Each - # series is of a different frequency: - series_1 = linear_timeseries(start=1, end=11, freq=1) - series_2 = linear_timeseries(start=3, end=13, freq=2) - series_3 = linear_timeseries(start=5, end=17, freq=3) - - # Intersection of a single time index is just the original time index: - assert series_1.time_index.equals(get_shared_times(series_1)) - assert series_2.time_index.equals(get_shared_times(series_2)) - assert series_3.time_index.equals(get_shared_times(series_3)) - - # Intersection of two time indices begins at start time of later series - # and stops at end time of earlier series. The frequency of the intersection - # is the lowest common multiple between the frequencies of the two series: - - # `series_1` is before `series_2`: - expected_12 = linear_timeseries( - start=series_2.start_time(), - end=series_1.end_time(), - freq=lcm(series_1.freq, series_2.freq), - ) - # `linear_timeseries` may have added point beyond specified `end`; - # remove this point if present: - if expected_12.time_index[-1] > series_1.end_time(): - expected_12 = expected_12.drop_after(expected_12.time_index[-1]) - assert expected_12.time_index.equals(get_shared_times(series_1, series_2)) - # `series_2` is before `series_3`: - expected_23 = linear_timeseries( - start=series_3.start_time(), - end=series_2.end_time(), - freq=lcm(series_2.freq, series_3.freq), - ) - # `linear_timeseries` may have added point beyond specified `end`; - # remove this point if present: - if expected_23.time_index[-1] > series_2.end_time(): - expected_23 = expected_23.drop_after(expected_23.time_index[-1]) - assert expected_23.time_index.equals(get_shared_times(series_2, series_3)) - # `series_1` is before `series_3`: - expected_13 = linear_timeseries( - start=series_3.start_time(), - end=series_1.end_time(), - freq=lcm(series_1.freq, series_3.freq), - ) - # `linear_timeseries` may have added point beyond specified `end`; - # remove this point if present: - if expected_13.time_index[-1] > series_1.end_time(): - expected_13 = expected_13.drop_after(expected_13.time_index[-1]) - assert expected_13.time_index.equals(get_shared_times(series_1, series_3)) - - # Intersection of all three time series should begin at start of series_3 (i.e. - # the last series to begin) and end at the end of series_1 (i.e. the first series - # to end). The frequency of the intersection should be the lowest common multiple - # shared by all three frequencies: - expected_123 = linear_timeseries( - start=series_3.start_time(), - end=series_1.end_time(), - freq=lcm(series_1.freq, series_2.freq, series_3.freq), - ) - if expected_123.time_index[-1] > series_1.end_time(): - expected_123 = expected_123.drop_after(expected_123.time_index[-1]) - assert expected_123.time_index.equals( - get_shared_times(series_1, series_2, series_3) - ) - - def test_shared_times_unequal_freq_datetime_idx(self): - """ - Tests that `get_shared_times` correctly handles range time - index series that are of different frequencies. + Tests that `get_shared_times` correctly handles time index series that are of different frequencies. """ # `series_1` begins before `series_2` does and ends # before `series_2` does, and `series_2` begins before # `series_3` does and ends before `series_3` does. Each # series is of a different frequency: - series_1 = linear_timeseries( - start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/11/2000"), freq="2d" - ) - series_2 = linear_timeseries( - start=pd.Timestamp("1/3/2000"), end=pd.Timestamp("1/13/2000"), freq="2d" - ) - series_3 = linear_timeseries( - start=pd.Timestamp("1/5/2000"), end=pd.Timestamp("1/15/2000"), freq="2d" - ) - + if series_type == "integer": + series_1 = linear_timeseries(start=1, end=11, freq=1) + series_2 = linear_timeseries(start=3, end=13, freq=2) + series_3 = linear_timeseries(start=5, end=17, freq=3) + freq_12 = lcm(series_1.freq, series_2.freq) + freq_23 = lcm(series_2.freq, series_3.freq) + freq_13 = lcm(series_1.freq, series_3.freq) + freq_123 = lcm(series_1.freq, series_2.freq, series_3.freq) + else: + series_1 = linear_timeseries( + start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/11/2000"), freq="2d" + ) + series_2 = linear_timeseries( + start=pd.Timestamp("1/3/2000"), end=pd.Timestamp("1/13/2000"), freq="2d" + ) + series_3 = linear_timeseries( + start=pd.Timestamp("1/5/2000"), end=pd.Timestamp("1/15/2000"), freq="2d" + ) + freq_12 = f"{lcm(series_1.freq.n, series_2.freq.n)}d" + freq_23 = f"{lcm(series_2.freq.n, series_3.freq.n)}d" + freq_13 = f"{lcm(series_1.freq.n, series_3.freq.n)}d" + freq_123 = f"{lcm(series_1.freq.n, series_2.freq.n, series_3.freq.n)}d" # Intersection of a single time index is just the original time index: assert series_1.time_index.equals(get_shared_times(series_1)) assert series_2.time_index.equals(get_shared_times(series_2)) @@ -216,7 +123,6 @@ def test_shared_times_unequal_freq_datetime_idx(self): # is the lowest common multiple between the frequencies of the two series: # `series_1` is before `series_2`: - freq_12 = f"{lcm(series_1.freq.n, series_2.freq.n)}d" expected_12 = linear_timeseries( start=series_2.start_time(), end=series_1.end_time(), @@ -228,7 +134,6 @@ def test_shared_times_unequal_freq_datetime_idx(self): expected_12 = expected_12.drop_after(expected_12.time_index[-1]) assert expected_12.time_index.equals(get_shared_times(series_1, series_2)) # `series_2` is before `series_3`: - freq_23 = f"{lcm(series_2.freq.n, series_3.freq.n)}d" expected_23 = linear_timeseries( start=series_3.start_time(), end=series_2.end_time(), @@ -240,7 +145,6 @@ def test_shared_times_unequal_freq_datetime_idx(self): expected_23 = expected_23.drop_after(expected_23.time_index[-1]) assert expected_23.time_index.equals(get_shared_times(series_2, series_3)) # `series_1` is before `series_3`: - freq_13 = f"{lcm(series_1.freq.n, series_3.freq.n)}d" expected_13 = linear_timeseries( start=series_3.start_time(), end=series_1.end_time(), @@ -256,7 +160,6 @@ def test_shared_times_unequal_freq_datetime_idx(self): # the last series to begin) and end at the end of series_1 (i.e. the first series # to end). The frequency of the intersection should be the lowest common multiple # shared by all three frequencies: - freq_123 = f"{lcm(series_1.freq.n, series_2.freq.n, series_3.freq.n)}d" expected_123 = linear_timeseries( start=series_3.start_time(), end=series_1.end_time(), @@ -268,84 +171,72 @@ def test_shared_times_unequal_freq_datetime_idx(self): get_shared_times(series_1, series_2, series_3) ) - def test_shared_times_no_overlap_range_idx(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_no_overlap(self, series_type): """ - Tests that `get_shared_times` returns `None` when - supplied range time index series share no temporal overlap. + Tests that `get_shared_times` returns `None` when supplied time index series share no temporal overlap. """ # Define `series_2` so that it starts after `series_1` ends: - series_1 = linear_timeseries(start=1, end=11, freq=2) - series_2 = linear_timeseries(start=series_1.end_time() + 1, length=5, freq=3) + if series_type == "integer": + series_1 = linear_timeseries(start=1, end=11, freq=2) + series_2 = linear_timeseries( + start=series_1.end_time() + 1, length=5, freq=3 + ) + else: + series_1 = linear_timeseries( + start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/11/2000"), freq="2d" + ) + series_2 = linear_timeseries( + start=series_1.end_time() + pd.Timedelta(1, "d"), length=5, freq="3d" + ) assert get_shared_times(series_1, series_2) is None assert get_shared_times(series_1, series_1, series_2) is None assert get_shared_times(series_1, series_2, series_2) is None assert get_shared_times(series_1, series_1, series_2, series_2) is None - def test_shared_times_no_overlap_datetime_idx(self): - """ - Tests that `get_shared_times` returns `None` when - supplied datetime time index series share no temporal overlap. - """ - # Define `series_2` so that it starts after `series_1` ends: - series_1 = linear_timeseries( - start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/11/2000"), freq="2d" - ) - series_2 = linear_timeseries( - start=series_1.end_time() + pd.Timedelta(1, "d"), length=5, freq="3d" - ) - assert get_shared_times(series_1, series_2) is None - assert get_shared_times(series_1, series_1, series_2) is None - assert get_shared_times(series_1, series_2, series_2) is None - assert get_shared_times(series_1, series_1, series_2, series_2) is None - - def test_shared_times_single_time_point_overlap_range_idx(self): - """ - Tests that `get_shared_times` returns correct bounds when - given range index series that overlap at a single time point. - """ - # `series_1` and `series_2` only overlap at `series_1.end_time()`: - series_1 = linear_timeseries(start=1, end=11, freq=2) - series_2 = linear_timeseries(start=series_1.end_time(), length=5, freq=3) - overlap_val = series_1.end_time() - assert get_shared_times(series_1, series_2) == overlap_val - assert get_shared_times(series_1, series_1, series_2) == overlap_val - assert get_shared_times(series_1, series_2, series_2) == overlap_val - assert get_shared_times(series_1, series_1, series_2, series_2) == overlap_val - - def test_shared_times_single_time_point_overlap_datetime_idx(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_single_time_point_overlap(self, series_type): """ - Tests that `get_shared_times` returns correct bounds when - given datetime index series that overlap at a single time point. + Tests that `get_shared_times` returns correct bounds when given time index series that overlap + at a single time point. """ # `series_1` and `series_2` only overlap at `series_1.end_time()`: - series_1 = linear_timeseries( - start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/11/2000"), freq="2d" - ) - series_2 = linear_timeseries(start=series_1.end_time(), length=5, freq="3d") + if series_type == "integer": + series_1 = linear_timeseries(start=1, end=11, freq=2) + series_2 = linear_timeseries(start=series_1.end_time(), length=5, freq=3) + else: + series_1 = linear_timeseries( + start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/11/2000"), freq="2d" + ) + series_2 = linear_timeseries(start=series_1.end_time(), length=5, freq="3d") overlap_val = series_1.end_time() assert get_shared_times(series_1, series_2) == overlap_val assert get_shared_times(series_1, series_1, series_2) == overlap_val assert get_shared_times(series_1, series_2, series_2) == overlap_val assert get_shared_times(series_1, series_1, series_2, series_2) == overlap_val - def test_shared_times_identical_inputs_range_idx(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_identical_inputs(self, series_type): """ Tests that `get_shared_times` correctly handles case where - multiple copies of same range index timeseries is passed; + multiple copies of same time index timeseries is passed; we expect that the unaltered time index of the series is returned. """ - series = linear_timeseries(start=0, length=5, freq=1) - assert series.time_index.equals(get_shared_times(series)) - assert series.time_index.equals(get_shared_times(series, series)) - assert series.time_index.equals(get_shared_times(series, series, series)) - - def test_shared_times_identical_inputs_datetime_idx(self): - """ - Tests that `get_shared_times` correctly handles case where - multiple copies of same datetime index timeseries is passed; - we expect that the unaltered time index of the series is returned. - """ - series = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=5, freq="d") + if series_type == "integer": + series = linear_timeseries(start=0, length=5, freq=1) + else: + series = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=5, freq="d" + ) assert series.time_index.equals(get_shared_times(series)) assert series.time_index.equals(get_shared_times(series, series)) assert series.time_index.equals(get_shared_times(series, series, series)) diff --git a/darts/tests/utils/tabularization/test_get_shared_times_bounds.py b/darts/tests/utils/tabularization/test_get_shared_times_bounds.py index 7435457021..c56ecdec85 100644 --- a/darts/tests/utils/tabularization/test_get_shared_times_bounds.py +++ b/darts/tests/utils/tabularization/test_get_shared_times_bounds.py @@ -10,29 +10,26 @@ class TestGetSharedTimesBounds: Tests `get_shared_times_bounds` function defined in `darts.utils.data.tabularization`. """ - def test_shared_times_bounds_overlapping_range_idx_series(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_bounds_overlapping_range_idx_series(self, series_type): """ Tests that `get_shared_times_bounds` correctly computes bounds - of two overlapping range index timeseries. + of two overlapping time index timeseries. """ # Defined so `series_1` starts and ends before `series_2` does: - series_1 = linear_timeseries(start=1, end=15, freq=3) - series_2 = linear_timeseries(start=2, end=20, freq=2) - expected_bounds = (series_2.start_time(), series_1.end_time()) - assert get_shared_times_bounds(series_1, series_2) == expected_bounds - - def test_shared_times_bounds_overlapping_datetime_idx_series(self): - """ - Tests that `get_shared_times_bounds` correctly computes bounds - of two overlapping datetime index timeseries. - """ - # Defined so `series_1` starts and ends before `series_2` does: - series_1 = linear_timeseries( - start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/15/2000"), freq="3d" - ) - series_2 = linear_timeseries( - start=pd.Timestamp("1/2/2000"), end=pd.Timestamp("1/20/2000"), freq="2d" - ) + if series_type == "integer": + series_1 = linear_timeseries(start=1, end=15, freq=3) + series_2 = linear_timeseries(start=2, end=20, freq=2) + else: + series_1 = linear_timeseries( + start=pd.Timestamp("1/1/2000"), end=pd.Timestamp("1/15/2000"), freq="3d" + ) + series_2 = linear_timeseries( + start=pd.Timestamp("1/2/2000"), end=pd.Timestamp("1/20/2000"), freq="2d" + ) expected_bounds = (series_2.start_time(), series_1.end_time()) assert get_shared_times_bounds(series_1, series_2) == expected_bounds @@ -66,43 +63,25 @@ def test_shared_times_bounds_time_idx_inputs(self): == expected_bounds ) - def test_shared_times_bounds_subset_series_range_idx(self): - """ - Tests that `get_shared_times_bounds` correctly handles case where - the provided series are formed by taking successive subsets of an - initial series (i.e. `series_2` is formed by taking a subset of - `series_1`, and `series_3` is formed by taking a subset of `series_2`). - In such cases, the bounds are simply the start and end times of the - shortest series. This particular test uses range index series to - check this behaviour. - """ - series = linear_timeseries(start=0, length=10, freq=3) - subseries = ( - series.copy() - .drop_after(series.time_index[-1]) - .drop_before(series.time_index[1]) - ) - subsubseries = ( - subseries.copy() - .drop_after(subseries.time_index[-1]) - .drop_before(subseries.time_index[1]) - ) - expected_bounds = (subsubseries.start_time(), subsubseries.end_time()) - assert ( - get_shared_times_bounds(series, subseries, subsubseries) == expected_bounds - ) - - def test_shared_times_bounds_subset_series_datetime_idx(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_bounds_subset_series(self, series_type): """ Tests that `get_shared_times_bounds` correctly handles case where the provided series are formed by taking successive subsets of an initial series (i.e. `series_2` is formed by taking a subset of `series_1`, and `series_3` is formed by taking a subset of `series_2`). In such cases, the bounds are simply the start and end times of the - shortest series. This particular test uses datetime index series to - check this behaviour. - """ - series = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=10, freq="3d") + shortest series. + """ + if series_type == "integer": + series = linear_timeseries(start=0, length=10, freq=3) + else: + series = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=10, freq="3d" + ) subseries = ( series.copy() .drop_after(series.time_index[-1]) @@ -118,28 +97,23 @@ def test_shared_times_bounds_subset_series_datetime_idx(self): get_shared_times_bounds(series, subseries, subsubseries) == expected_bounds ) - def test_shared_times_bounds_identical_inputs_range_idx(self): - """ - Tests that `get_shared_times_bounds` correctly handles case where - multiple copies of the same series is passed as an input; we expect - the return bounds to just be the start and end times of that repeated - series. This particular test uses range index series to - check this behaviour. - """ - series = linear_timeseries(start=0, length=5, freq=1) - expected = (series.start_time(), series.end_time()) - assert get_shared_times_bounds(series, series) == expected - assert get_shared_times_bounds(series, series, series) == expected - - def test_shared_times_bounds_identical_inputs_datetime_idx(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_bounds_identical_inputs(self, series_type): """ Tests that `get_shared_times_bounds` correctly handles case where multiple copies of the same series is passed as an input; we expect the return bounds to just be the start and end times of that repeated - series. This particular test uses datetime index series to - check this behaviour. - """ - series = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=5, freq="d") + series. + """ + if series_type == "integer": + series = linear_timeseries(start=0, length=5, freq=1) + else: + series = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=5, freq="d" + ) expected = (series.start_time(), series.end_time()) assert get_shared_times_bounds(series) == expected assert get_shared_times_bounds(series, series) == expected @@ -164,77 +138,63 @@ def test_shared_times_bounds_unspecified_inputs(self): assert get_shared_times_bounds(None) is None assert get_shared_times_bounds(None, None, None) is None - def test_shared_times_bounds_single_idx_overlap_range_idx(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_bounds_single_idx_overlap(self, series_type): """ Tests that `get_shared_times_bounds` correctly handles cases - where the bounds contains a single time index value. This - particular test uses range time index series to check this - behaviour. + where the bounds contains a single time index value. """ # Pass multiple copies of timeseries with single time # value - bounds should be start time and end time of # this single-valued series: - series = linear_timeseries(start=0, length=1, freq=1) - assert get_shared_times_bounds(series, series) == ( - series.start_time(), - series.end_time(), - ) # `series_1` and `series_2` share only a single overlap point # at the end of `series_1`: - series_1 = linear_timeseries(start=0, length=3, freq=1) - series_2 = linear_timeseries(start=series_1.end_time(), length=2, freq=2) - assert get_shared_times_bounds(series_1, series_2) == ( - series_1.end_time(), - series_2.start_time(), - ) - - def test_shared_times_bounds_single_idx_overlap_datetime_idx(self): - """ - Tests that `get_shared_times_bounds` correctly handles cases - where the bounds contains a single time index value. This - particular test uses range time index series to check this - behaviour. - """ - # Pass multiple copies of timeseries with single time - # value - bounds should be start time and end time of - # this single-valued series: - series = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=1, freq="d") + if series_type == "integer": + series = linear_timeseries(start=0, length=1, freq=1) + series_1 = linear_timeseries(start=0, length=3, freq=1) + series_2 = linear_timeseries(start=series_1.end_time(), length=2, freq=2) + else: + series = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=1, freq="d" + ) + series_1 = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=3, freq="d" + ) + series_2 = linear_timeseries(start=series_1.end_time(), length=2, freq="2d") assert get_shared_times_bounds(series, series) == ( series.start_time(), series.end_time(), ) - # `series_1` and `series_2` share only a single overlap point - # at the end of `series_1`: - series_1 = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=3, freq="d") - series_2 = linear_timeseries(start=series_1.end_time(), length=2, freq="2d") assert get_shared_times_bounds(series_1, series_2) == ( series_1.end_time(), series_2.start_time(), ) - def test_shared_times_bounds_no_overlap_range_idx(self): + @pytest.mark.parametrize( + "series_type", + ["datetime", "integer"], + ) + def test_shared_times_bounds_no_overlap(self, series_type): """ Tests that `get_shared_times_bounds` returns `None` when provided - with two series that share no overlap. This particular test uses - range index series to check this behaviour. + with two series that share no overlap. """ # Have `series_2` begin after the end of `series_1`: - series_1 = linear_timeseries(start=0, length=5, freq=1) - series_2 = linear_timeseries(start=series_1.end_time() + 1, length=6, freq=2) - assert get_shared_times_bounds(series_1, series_2) is None - assert get_shared_times_bounds(series_2, series_1, series_2) is None - - def test_shared_times_bounds_no_overlap_datetime_idx(self): - """ - Tests that `get_shared_times_bounds` returns `None` when provided - with two series that share no overlap. This particular test uses - datetime index series to check this behaviour. - """ - # Have `series_2` begin after the end of `series_1`: - series_1 = linear_timeseries(start=pd.Timestamp("1/1/2000"), length=5, freq="d") - series_2 = linear_timeseries( - start=series_1.end_time() + pd.Timedelta("1d"), length=6, freq="2d" - ) + if series_type == "integer": + series_1 = linear_timeseries(start=0, length=5, freq=1) + series_2 = linear_timeseries( + start=series_1.end_time() + 1, length=6, freq=2 + ) + else: + series_1 = linear_timeseries( + start=pd.Timestamp("1/1/2000"), length=5, freq="d" + ) + series_2 = linear_timeseries( + start=series_1.end_time() + pd.Timedelta("1d"), length=6, freq="2d" + ) assert get_shared_times_bounds(series_1, series_2) is None assert get_shared_times_bounds(series_2, series_1, series_2) is None diff --git a/darts/tests/utils/tabularization/test_strided_moving_window.py b/darts/tests/utils/tabularization/test_strided_moving_window.py index 0fbad5026d..9bad422d7f 100644 --- a/darts/tests/utils/tabularization/test_strided_moving_window.py +++ b/darts/tests/utils/tabularization/test_strided_moving_window.py @@ -30,7 +30,9 @@ def test_strided_moving_windows_extracted_windows(self): for axis, stride, window_len in product( axis_combos, stride_combos, window_len_combos ): - windows = strided_moving_window(x, window_len, stride, axis) + windows = strided_moving_window( + x=x, window_len=window_len, stride=stride, axis=axis + ) # Iterate over extracted windows: for i in range(windows.shape[axis]): # All of the extract windows are found along the `axis` dimension; shift diff --git a/darts/utils/data/horizon_based_dataset.py b/darts/utils/data/horizon_based_dataset.py index 2b3c05610c..1e40509d1c 100644 --- a/darts/utils/data/horizon_based_dataset.py +++ b/darts/utils/data/horizon_based_dataset.py @@ -54,7 +54,7 @@ def __init__( ---------- target_series One or a sequence of target `TimeSeries`. - covariates: + covariates Optionally, one or a sequence of `TimeSeries` containing past-observed covariates. If this parameter is set, the provided sequence must have the same length as that of `target_series`. Moreover, all covariates in the sequence must have a time span large enough to contain all the required slices. diff --git a/darts/utils/data/inference_dataset.py b/darts/utils/data/inference_dataset.py index e914696fbd..7eeb8c6f36 100644 --- a/darts/utils/data/inference_dataset.py +++ b/darts/utils/data/inference_dataset.py @@ -50,6 +50,7 @@ def _covariate_indexer( covariate_type: CovariateType, input_chunk_length: int, output_chunk_length: int, + output_chunk_shift: int, n: int, ): """returns tuple of (past_start, past_end, future_start, future_end)""" @@ -74,10 +75,17 @@ def _covariate_indexer( past_end + max(0, n - output_chunk_length) * covariate_series.freq ) else: # CovariateType.FUTURE - future_end = past_end + max(n, output_chunk_length) * covariate_series.freq + # optionally, for future part of future covariates shift start and end by `output_chunk_shift` + future_end = ( + past_end + + (max(n, output_chunk_length) + output_chunk_shift) + * covariate_series.freq + ) future_start = ( - past_end + covariate_series.freq if future_end != past_end else future_end + past_end + covariate_series.freq * (1 + output_chunk_shift) + if future_end != past_end + else future_end ) if input_chunk_length == 0: # for regression ensemble models @@ -109,7 +117,7 @@ def _covariate_indexer( logger=logger, ) - # extract the index position (index) from time_index value + # extract the index position (integer index) from time_index value covariate_start = covariate_series.time_index.get_loc(past_start) covariate_end = covariate_series.time_index.get_loc(future_end) + 1 return covariate_start, covariate_end @@ -125,6 +133,7 @@ def __init__( bounds: Optional[np.ndarray] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, covariate_type: CovariateType = CovariateType.PAST, use_static_covariates: bool = True, ): @@ -158,6 +167,8 @@ def __init__( The length of the target series the model takes as input. output_chunk_length The length of the target series the model emits in output. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. use_static_covariates Whether to use/include static covariate data from input series. """ @@ -170,13 +181,6 @@ def __init__( [covariates] if isinstance(covariates, TimeSeries) else covariates ) - self.covariate_type = covariate_type - - self.n = n - self.input_chunk_length = input_chunk_length - self.output_chunk_length = output_chunk_length - self.use_static_covariates = use_static_covariates - if not (covariates is None or len(self.target_series) == len(self.covariates)): raise_log( ValueError( @@ -193,6 +197,23 @@ def __init__( logger=logger, ) + if output_chunk_shift and n > output_chunk_length: + raise_log( + ValueError( + "Cannot perform auto-regression `(n > output_chunk_length)` with a model that uses a " + "shifted output chunk `(output_chunk_shift > 0)`." + ), + logger=logger, + ) + + self.covariate_type = covariate_type + + self.n = n + self.input_chunk_length = input_chunk_length + self.output_chunk_length = output_chunk_length + self.output_chunk_shift = output_chunk_shift + self.use_static_covariates = use_static_covariates + self.stride = stride if bounds is None: self.bounds = bounds @@ -274,6 +295,7 @@ def __getitem__(self, idx: int) -> Tuple[ covariate_type=self.covariate_type, input_chunk_length=self.input_chunk_length, output_chunk_length=self.output_chunk_length, + output_chunk_shift=self.output_chunk_shift, n=self.n, ) @@ -284,7 +306,7 @@ def __getitem__(self, idx: int) -> Tuple[ if self.input_chunk_length != 0: # regular models past_covariate, future_covariate = ( covariate[: self.input_chunk_length], - covariate[self.input_chunk_length :], + covariate[self.input_chunk_length + self.output_chunk_shift :], ) else: # regression ensemble models have a input_chunk_length == 0 part for using predictions as input past_covariate, future_covariate = covariate, covariate @@ -312,7 +334,7 @@ def __getitem__(self, idx: int) -> Tuple[ future_covariate, static_covariate, target_series, - past_end + target_series.freq, + past_end + target_series.freq * (1 + self.output_chunk_shift), ) @@ -326,6 +348,7 @@ def __init__( bounds: Optional[np.ndarray] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, covariate_type: CovariateType = CovariateType.PAST, use_static_covariates: bool = True, ): @@ -357,6 +380,8 @@ def __init__( The length of the target series the model takes as input. output_chunk_length The length of the target series the model emits in output. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. use_static_covariates Whether to use/include static covariate data from input series. """ @@ -371,6 +396,7 @@ def __init__( bounds=bounds, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, covariate_type=covariate_type, use_static_covariates=use_static_covariates, ) @@ -398,6 +424,8 @@ def __init__( stride: int = 0, bounds: Optional[np.ndarray] = None, input_chunk_length: int = 12, + output_chunk_length: Optional[int] = None, + output_chunk_shift: int = 0, covariate_type: CovariateType = CovariateType.FUTURE, use_static_covariates: bool = True, ): @@ -422,6 +450,11 @@ def __init__( If provided, `stride` must be `>=1`. input_chunk_length The length of the target series the model takes as input. + output_chunk_length + Optionally, the length of the target series the model emits in output. If `None`, will use the same value + as `n`. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. use_static_covariates Whether to use/include static covariate data from input series. """ @@ -434,7 +467,8 @@ def __init__( stride=stride, bounds=bounds, input_chunk_length=input_chunk_length, - output_chunk_length=n, + output_chunk_length=output_chunk_length or n, + output_chunk_shift=output_chunk_shift, covariate_type=covariate_type, use_static_covariates=use_static_covariates, ) @@ -476,6 +510,7 @@ def __init__( bounds: Optional[np.ndarray] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, use_static_covariates: bool = True, ): """ @@ -501,6 +536,8 @@ def __init__( The length of the target series the model takes as input. output_chunk_length The length of the target series the model emits in output. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. use_static_covariates Whether to use/include static covariate data from input series. """ @@ -515,6 +552,7 @@ def __init__( bounds=bounds, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, covariate_type=CovariateType.HISTORIC_FUTURE, use_static_covariates=use_static_covariates, ) @@ -527,6 +565,8 @@ def __init__( stride=stride, bounds=bounds, input_chunk_length=input_chunk_length, + output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, covariate_type=CovariateType.FUTURE, use_static_covariates=use_static_covariates, ) @@ -572,6 +612,7 @@ def __init__( bounds: Optional[np.ndarray] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, use_static_covariates: bool = True, ): """ @@ -603,6 +644,8 @@ def __init__( The length of the target series the model takes as input. output_chunk_length The length of the target series the model emits in output. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. use_static_covariates Whether to use/include static covariate data from input series. """ @@ -617,6 +660,7 @@ def __init__( bounds=bounds, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, covariate_type=CovariateType.PAST, use_static_covariates=use_static_covariates, ) @@ -630,6 +674,7 @@ def __init__( bounds=bounds, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, use_static_covariates=use_static_covariates, ) @@ -679,6 +724,7 @@ def __init__( bounds: Optional[np.ndarray] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, use_static_covariates: bool = True, ): """ @@ -709,6 +755,8 @@ def __init__( The length of the target series the model takes as input. output_chunk_length The length of the target series the model emits in output. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. use_static_covariates Whether to use/include static covariate data from input series. """ @@ -723,6 +771,7 @@ def __init__( bounds=bounds, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, covariate_type=CovariateType.PAST, use_static_covariates=use_static_covariates, ) @@ -735,6 +784,8 @@ def __init__( stride=stride, bounds=bounds, input_chunk_length=input_chunk_length, + output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, covariate_type=CovariateType.FUTURE, use_static_covariates=use_static_covariates, ) diff --git a/darts/utils/data/sequential_dataset.py b/darts/utils/data/sequential_dataset.py index 3b7a713f38..4b119b2f80 100644 --- a/darts/utils/data/sequential_dataset.py +++ b/darts/utils/data/sequential_dataset.py @@ -27,6 +27,7 @@ def __init__( covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, max_samples_per_ts: Optional[int] = None, use_static_covariates: bool = True, ): @@ -59,6 +60,8 @@ def __init__( The length of the emitted past series. output_chunk_length The length of the emitted future series. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -71,13 +74,13 @@ def __init__( """ super().__init__() - + shift = input_chunk_length + output_chunk_shift self.ds = GenericShiftedDataset( target_series=target_series, covariates=covariates, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, - shift=input_chunk_length, + shift=shift, shift_covariates=False, max_samples_per_ts=max_samples_per_ts, covariate_type=CovariateType.PAST, @@ -100,6 +103,7 @@ def __init__( covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, max_samples_per_ts: Optional[int] = None, use_static_covariates: bool = True, ): @@ -132,6 +136,8 @@ def __init__( The length of the emitted past series. output_chunk_length The length of the emitted future series. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -144,13 +150,13 @@ def __init__( """ super().__init__() - + shift = input_chunk_length + output_chunk_shift self.ds = GenericShiftedDataset( target_series=target_series, covariates=covariates, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, - shift=input_chunk_length, + shift=shift, shift_covariates=True, max_samples_per_ts=max_samples_per_ts, covariate_type=CovariateType.FUTURE, @@ -173,6 +179,7 @@ def __init__( covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, max_samples_per_ts: Optional[int] = None, use_static_covariates: bool = True, ): @@ -206,6 +213,8 @@ def __init__( The length of the emitted past series. output_chunk_length The length of the emitted future series. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -218,14 +227,14 @@ def __init__( """ super().__init__() - + shift = input_chunk_length + output_chunk_shift # This dataset is in charge of historical future covariates self.ds_past = GenericShiftedDataset( target_series=target_series, covariates=covariates, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, - shift=input_chunk_length, + shift=shift, shift_covariates=False, max_samples_per_ts=max_samples_per_ts, covariate_type=CovariateType.HISTORIC_FUTURE, @@ -238,7 +247,7 @@ def __init__( covariates=covariates, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, - shift=input_chunk_length, + shift=shift, shift_covariates=True, max_samples_per_ts=max_samples_per_ts, covariate_type=CovariateType.FUTURE, @@ -274,6 +283,7 @@ def __init__( future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, max_samples_per_ts: Optional[int] = None, use_static_covariates: bool = True, ): @@ -310,6 +320,8 @@ def __init__( The length of the emitted past series. output_chunk_length The length of the emitted future series. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -322,14 +334,14 @@ def __init__( """ super().__init__() - + shift = input_chunk_length + output_chunk_shift # This dataset is in charge of serving past covariates self.ds_past = GenericShiftedDataset( target_series=target_series, covariates=past_covariates, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, - shift=input_chunk_length, + shift=shift, shift_covariates=False, max_samples_per_ts=max_samples_per_ts, covariate_type=CovariateType.PAST, @@ -342,6 +354,7 @@ def __init__( covariates=future_covariates, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, max_samples_per_ts=max_samples_per_ts, use_static_covariates=use_static_covariates, ) @@ -378,6 +391,7 @@ def __init__( future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, input_chunk_length: int = 12, output_chunk_length: int = 1, + output_chunk_shift: int = 0, max_samples_per_ts: Optional[int] = None, use_static_covariates: bool = True, ): @@ -414,6 +428,8 @@ def __init__( The length of the emitted past series. output_chunk_length The length of the emitted future series. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -425,14 +441,14 @@ def __init__( Whether to use/include static covariate data from input series. """ super().__init__() - + shift = input_chunk_length + output_chunk_shift # This dataset is in charge of serving past covariates self.ds_past = GenericShiftedDataset( target_series=target_series, covariates=past_covariates, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, - shift=input_chunk_length, + shift=shift, shift_covariates=False, max_samples_per_ts=max_samples_per_ts, covariate_type=CovariateType.PAST, @@ -445,7 +461,7 @@ def __init__( covariates=future_covariates, input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, - shift=input_chunk_length, + shift=shift, shift_covariates=True, max_samples_per_ts=max_samples_per_ts, covariate_type=CovariateType.FUTURE, diff --git a/darts/utils/data/shifted_dataset.py b/darts/utils/data/shifted_dataset.py index 9bd4d4acb3..e3f4da033b 100644 --- a/darts/utils/data/shifted_dataset.py +++ b/darts/utils/data/shifted_dataset.py @@ -59,7 +59,7 @@ def __init__( length The length of the emitted past and future series. shift - The number of time steps by which to shift the output relative to the input. + The number of time steps by which to shift the output chunks relative to the start of the input chunks. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -133,7 +133,7 @@ def __init__( length The length of the emitted past and future series. shift - The number of time steps by which to shift the output relative to the input. + The number of time steps by which to shift the output chunks relative to the start of the input chunks. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -210,7 +210,7 @@ def __init__( length The length of the emitted past and future series. shift - The number of time steps by which to shift the output relative to the input. + The number of time steps by which to shift the output chunks relative to the start of the input chunks. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -315,7 +315,7 @@ def __init__( length The length of the emitted past and future series. shift - The number of time steps by which to shift the output relative to the input. + The number of time steps by which to shift the output chunks relative to the start of the input chunks. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -419,7 +419,7 @@ def __init__( length The length of the emitted past and future series. shift - The number of time steps by which to shift the output relative to the input. + The number of time steps by which to shift the output chunks relative to the start of the input chunks. max_samples_per_ts This is an upper bound on the number of tuples that can be produced per time series. It can be used in order to have an upper bound on the total size of the dataset and @@ -513,7 +513,7 @@ def __init__( output_chunk_length The length of the emitted future series. shift - The number of time steps by which to shift the output chunks relative to the input chunks. + The number of time steps by which to shift the output chunks relative to the start of the input chunks. shift_covariates Whether to shift the covariates forward the same way as the target. FutureCovariatesModel's require this set to True, while PastCovariatesModel's require this set to False. diff --git a/darts/utils/data/tabularization.py b/darts/utils/data/tabularization.py index be28af04f1..83cad5f94c 100644 --- a/darts/utils/data/tabularization.py +++ b/darts/utils/data/tabularization.py @@ -16,7 +16,7 @@ from darts.logging import get_logger, raise_if, raise_if_not, raise_log from darts.timeseries import TimeSeries -from darts.utils.utils import get_single_series, series2seq +from darts.utils.utils import get_single_series, n_steps_between, series2seq logger = get_logger(__name__) @@ -31,6 +31,7 @@ def create_lagged_data( lags_past_covariates: Optional[Union[Sequence[int], Dict[str, List[int]]]] = None, lags_future_covariates: Optional[Union[Sequence[int], Dict[str, List[int]]]] = None, output_chunk_length: int = 1, + output_chunk_shift: int = 0, uses_static_covariates: bool = True, last_static_covariates_shape: Optional[Tuple[int, int]] = None, max_samples_per_ts: Optional[int] = None, @@ -101,7 +102,7 @@ def create_lagged_data( `lags_future_covariates` can contain negative, positive, and/or zero lag values (i.e. we *can* use the values of `future_covariates` at time `t` or beyond to predict the value of `target_series` at time `t`). - The exact method used to construct `X` and `y` depends on whether all of the specified timeseries are + The exact method used to construct `X` and `y` depends on whether all specified timeseries are of the same frequency or not: - If all specified timeseries are of the same frequency, `strided_moving_window` is used to extract contiguous time blocks from each timeseries; the lagged variables are then extracted from each window. @@ -111,7 +112,7 @@ def create_lagged_data( In cases where it can be validly applied, the 'moving window' method is expected to be faster than the 'intersecting time' method. However, in exceptional cases where only a small number of lags are being extracted, but the difference between the lag values is large (e.g. `lags = [-1, -1000]`), the 'moving - window' method is expected to consume significantly more memory, since it extracts all of the series values + window' method is expected to consume significantly more memory, since it extracts all series values between the maximum and minimum lags as 'windows', before actually extracting the specific requested lag values. In order for the lagged features of a series to be added to `X`, *both* that series and the corresponding lags @@ -140,9 +141,6 @@ def create_lagged_data( target_series Optionally, the series for the regression model to predict. Must be specified if `is_training = True`. Can be specified as either a `TimeSeries` or as a `Sequence[TimeSeries]`. - output_chunk_length - Optionally, the number of timesteps ahead into the future the regression model is to predict. Must - best specified if `is_training = True`. past_covariates Optionally, the past covariates series that the regression model will use as inputs. Unlike the `target_series`, `past_covariates` are *not* to be predicted by the regression model. Can be @@ -153,7 +151,7 @@ def create_lagged_data( lags Optionally, the lags of the target series to be used as (auto-regressive) features. If not specified, auto-regressive features will *not* be added to `X`. Each lag value is assumed to be negative (e.g. - `lags = [-3, -1]` will extract `target_series` values which are 3 timesteps and 1 timestep away from + `lags = [-3, -1]` will extract `target_series` values which are 3 time steps and 1 time step away from the current value). If the lags are provided as a dictionary, the lags values are specific to each component in the target series. lags_past_covariates @@ -164,8 +162,14 @@ def create_lagged_data( Optionally, the lags of `future_covariates` to be used as features. Unlike `lags` and `lags_past_covariates`, `lags_future_covariates` values can be positive (i.e. use values *after* time `t` to predict target at time `t`), zero (i.e. use values *at* time `t` to predict target at time `t`), and/or - negative (i.e. use values *before* time `t` to predict target at time `t`). If the lags are provided as + negative (i.e. use values *before* time `t` to predict target at time `t`). If `output_chunk_shift > 0`, the + lags are relative to the first time step of the shifted output chunk. If the lags are provided as a dictionary, the lags values are specific to each component in the future covariates series. + output_chunk_length + Optionally, the number of time steps ahead into the future the regression model is to predict. Must + best specified if `is_training = True`. + output_chunk_shift + Optionally, the number of time steps to shift the output chunk ahead into the future. uses_static_covariates Whether the model uses/expects static covariates. If `True`, it enforces that static covariates must have identical shapes across all target series. @@ -177,18 +181,18 @@ def create_lagged_data( samples are kept. In theory, specifying a smaller `max_samples_per_ts` should reduce computation time, especially in cases where many observations could be generated. multi_models - Optionally, specifies whether the regression model predicts multiple timesteps into the future. If `True`, - then the regression model is assumed to predict all of the timesteps from time `t` to `t+output_chunk_length`. - If `False`, then the regression model is assumed to predict *only* the timestep at `t+output_chunk_length`. + Optionally, specifies whether the regression model predicts multiple time steps into the future. If `True`, + then the regression model is assumed to predict all time steps from time `t` to `t+output_chunk_length`. + If `False`, then the regression model is assumed to predict *only* the time step at `t+output_chunk_length`. This input is ignored if `is_training = False`. check_inputs Optionally, specifies that the `lags_*` and `series_*` inputs should be checked for validity. Should be set to `False` if inputs have already been checked for validity (e.g. inside the `__init__` of a class), otherwise should be set to `True`. use_moving_windows - Optionally, specifies that the 'moving window' method should be used to construct `X` and `y` if all of the + Optionally, specifies that the 'moving window' method should be used to construct `X` and `y` if all provided series are of the same frequency. If `use_moving_windows = False`, the 'time intersection' method - will always be used, even when all of the provided series are of the same frequency. In general, setting + will always be used, even when all provided series are of the same frequency. In general, setting to `True` results in faster tabularization at the potential cost of higher memory usage. See Notes for further details. is_training @@ -203,7 +207,7 @@ def create_lagged_data( a `Sequence[np.ndarray]`. If each series input is specified as a `Sequence[TimeSeries]` and `concatenate = False`, `X` and `y` will be lists whose `i`th element corresponds to the feature matrix or label array formed by the `i`th `TimeSeries` in each `Sequence[TimeSeries]` input. Conversely, if `concatenate = True` - when `Sequence[TimeSeries]` are provided, then `X` and `y` will be arrays created by concatenating all of the + when `Sequence[TimeSeries]` are provided, then `X` and `y` will be arrays created by concatenating all feature/label arrays formed by each `TimeSeries` along the `0`th axis. Note that `times` is still returned as `Sequence[pd.Index]`, even when `concatenate = True`. @@ -286,6 +290,7 @@ def create_lagged_data( X_i, y_i, times_i = _create_lagged_data_by_moving_window( target_i, output_chunk_length, + output_chunk_shift, past_i, future_i, lags, @@ -300,6 +305,7 @@ def create_lagged_data( X_i, y_i, times_i = _create_lagged_data_by_intersecting_times( target_i, output_chunk_length, + output_chunk_shift, past_i, future_i, lags, @@ -332,6 +338,7 @@ def create_lagged_data( def create_lagged_training_data( target_series: Union[TimeSeries, Sequence[TimeSeries]], output_chunk_length: int, + output_chunk_shift: int, past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, lags: Optional[Union[Sequence[int], Dict[str, List[int]]]] = None, @@ -364,7 +371,9 @@ def create_lagged_training_data( target_series The series for the regression model to predict. output_chunk_length - The number of timesteps ahead into the future the regression model is to predict. + The number of time steps ahead into the future the regression model is to predict. + output_chunk_shift + Optionally, the number of time steps to shift the output chunk ahead into the future. past_covariates Optionally, the past covariates series that the regression model will use as inputs. Unlike the `target_series`, `past_covariates` are *not* to be predicted by the regression model. @@ -374,7 +383,7 @@ def create_lagged_training_data( lags Optionally, the lags of the target series to be used as (auto-regressive) features. If not specified, auto-regressive features will *not* be added to `X`. Each lag value is assumed to be negative (e.g. - `lags = [-3, -1]` will extract `target_series` values which are 3 timesteps and 1 timestep away from + `lags = [-3, -1]` will extract `target_series` values which are 3 time steps and 1 time step away from the current value). If the lags are provided as a dictionary, the lags values are specific to each component in the target series. lags_past_covariates @@ -398,17 +407,17 @@ def create_lagged_training_data( samples are kept. In theory, specifying a smaller `max_samples_per_ts` should reduce computation time, especially in cases where many observations could be generated. multi_models - Optionally, specifies whether the regression model predicts multiple timesteps into the future. If `True`, - then the regression model is assumed to predict all of the timesteps from time `t` to `t+output_chunk_length`. - If `False`, then the regression model is assumed to predict *only* the timestep at `t+output_chunk_length`. + Optionally, specifies whether the regression model predicts multiple time steps into the future. If `True`, + then the regression model is assumed to predict all time steps from time `t` to `t+output_chunk_length`. + If `False`, then the regression model is assumed to predict *only* the time step at `t+output_chunk_length`. check_inputs Optionally, specifies that the `lags_*` and `series_*` inputs should be checked for validity. Should be set to `False` if inputs have already been checked for validity (e.g. inside the `__init__` of a class), otherwise should be set to `True`. use_moving_windows - Optionally, specifies that the 'moving window' method should be used to construct `X` and `y` if all of the + Optionally, specifies that the 'moving window' method should be used to construct `X` and `y` if all provided series are of the same frequency. If `use_moving_windows = False`, the 'time intersection' method - will always be used, even when all of the provided series are of the same frequency. In general, setting + will always be used, even when all provided series are of the same frequency. In general, setting to `True` results in faster tabularization at the potential cost of higher memory usage. See Notes for further details. concatenate @@ -416,7 +425,7 @@ def create_lagged_training_data( a `Sequence[np.ndarray]`. If each series input is specified as a `Sequence[TimeSeries]` and `concatenate = False`, `X` and `y` will be lists whose `i`th element corresponds to the feature matrix or label array formed by the `i`th `TimeSeries` in each `Sequence[TimeSeries]` input. Conversely, if `concatenate = True` - when `Sequence[TimeSeries]` are provided, then `X` and `y` will be arrays created by concatenating all of the + when `Sequence[TimeSeries]` are provided, then `X` and `y` will be arrays created by concatenating all feature/label arrays formed by each `TimeSeries` along the `0`th axis. Note that `times` is still returned as `Sequence[pd.Index]`, even when `concatenate = True`. @@ -460,6 +469,7 @@ def create_lagged_training_data( lags_past_covariates=lags_past_covariates, lags_future_covariates=lags_future_covariates, output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, uses_static_covariates=uses_static_covariates, last_static_covariates_shape=last_static_covariates_shape, max_samples_per_ts=max_samples_per_ts, @@ -507,7 +517,7 @@ def create_lagged_prediction_data( lags Optionally, the lags of the target series to be used as (auto-regressive) features. If not specified, auto-regressive features will *not* be added to `X`. Each lag value is assumed to be negative (e.g. - `lags = [-3, -1]` will extract `target_series` values which are 3 timesteps and 1 timestep away from + `lags = [-3, -1]` will extract `target_series` values which are 3 time steps and 1 time step away from the current value). If the lags are provided as a dictionary, the lags values are specific to each component in the target series. lags_past_covariates @@ -535,9 +545,9 @@ def create_lagged_prediction_data( to `False` if inputs have already been checked for validity (e.g. inside the `__init__` of a class), otherwise should be set to `True`. use_moving_windows - Optionally, specifies that the 'moving window' method should be used to construct `X` and `y` if all of the + Optionally, specifies that the 'moving window' method should be used to construct `X` and `y` if all provided series are of the same frequency. If `use_moving_windows = False`, the 'time intersection' method - will always be used, even when all of the provided series are of the same frequency. In general, setting + will always be used, even when all provided series are of the same frequency. In general, setting to `True` results in faster tabularization at the potential cost of higher memory usage. See Notes for further details. concatenate @@ -545,7 +555,7 @@ def create_lagged_prediction_data( `Sequence[np.ndarray]`. If each series input is specified as a `Sequence[TimeSeries]` and `concatenate = False`, `X` will be a list whose `i`th element corresponds to the feature matrix or label array formed by the `i`th `TimeSeries` in each `Sequence[TimeSeries]` input. Conversely, if `concatenate = True` when - `Sequence[TimeSeries]` are provided, then `X` will be an array created by concatenating all of the feature + `Sequence[TimeSeries]` are provided, then `X` will be an array created by concatenating all feature arrays formed by each `TimeSeries` along the `0`th axis. Note that `times` is still returned as `Sequence[pd.Index]`, even when `concatenate = True`. @@ -798,6 +808,7 @@ def create_lagged_component_names( def _create_lagged_data_by_moving_window( target_series: Optional[TimeSeries], output_chunk_length: int, + output_chunk_shift: int, past_covariates: Optional[TimeSeries], future_covariates: Optional[TimeSeries], lags: Optional[Union[Sequence[int], Dict[str, List[int]]]], @@ -829,6 +840,7 @@ def _create_lagged_data_by_moving_window( lags_past_covariates, lags_future_covariates, output_chunk_length, + output_chunk_shift, is_training=is_training, return_min_and_max_lags=True, check_inputs=check_inputs, @@ -874,6 +886,9 @@ def _create_lagged_data_by_moving_window( is_target_series = is_training and (i == 0) if is_target_series or series_and_lags_specified: time_index_i = series_i.time_index + + if time_index_i[0] == start_time: + start_time_idx = 0 # If lags are sufficiently large, `series_i` may not contain all # feature times. For example, if `lags_past_covariates = [-50]`, # then we can construct features for time `51` using the value @@ -883,29 +898,19 @@ def _create_lagged_data_by_moving_window( # for all feature times - these values will become labels. # If `start_time` not included in `time_index_i`, can 'manually' calculate # what its index *would* be if `time_index_i` were extended to include that time: - if not is_target_series and (time_index_i[-1] < start_time): - # Series frequency represents a non-ambiguous timedelta value (not ‘M’, ‘Y’ or ‘y’) - if pd.to_timedelta(series_i.freq, errors="coerce") is not pd.NaT: - start_time_idx = ( - len(time_index_i) - - 1 - + (start_time - time_index_i[-1]) // series_i.freq + elif not is_target_series and (time_index_i[-1] < start_time): + start_time_idx = ( + len(time_index_i) + - 1 + + n_steps_between( + end=start_time, start=time_index_i[-1], freq=series_i.freq ) - else: - # Create a temporary DatetimeIndex to extract the actual start index. - start_time_idx = ( - len(time_index_i) - - 1 - + len( - pd.date_range( - start=time_index_i[-1] + series_i.freq, - end=start_time, - freq=series_i.freq, - ) - ) - ) - elif not is_target_series and (time_index_i[0] >= start_time): - start_time_idx = max_lag_i + ) + # future covariates can start after `start_time` if all lags are > 0 + elif not is_target_series and (time_index_i[0] > start_time): + start_time_idx = -n_steps_between( + end=time_index_i[0], start=start_time, freq=series_i.freq + ) # If `start_time` *is* included in `time_index_i`, need to binary search `time_index_i` # for its position: else: @@ -923,7 +928,7 @@ def _create_lagged_data_by_moving_window( first_window_start_idx : first_window_end_idx + num_samples - 1, :, : ] windows = strided_moving_window( - vals, window_len, stride=1, axis=0, check_inputs=False + x=vals, window_len=window_len, stride=1, axis=0, check_inputs=False ) # Within each window, the `-1` indexed value (i.e. the value at the very end of # the window) corresponds to time `t - min_lag_i`. The negative index of the time @@ -946,9 +951,11 @@ def _create_lagged_data_by_moving_window( if is_training: # All values between times `t` and `t + output_chunk_length` used as labels: # Window taken between times `t` and `t + output_chunk_length - 1`: - first_window_start_idx = target_start_time_idx + first_window_start_idx = target_start_time_idx + output_chunk_shift # Add `+ 1` since end index is exclusive in Python: - first_window_end_idx = target_start_time_idx + output_chunk_length + first_window_end_idx = ( + target_start_time_idx + output_chunk_length + output_chunk_shift + ) # To create `(num_samples - 1)` other windows in addition to first window, # must take `(num_samples - 1)` values ahead of `first_window_end_idx` vals = target_series.all_values(copy=False)[ @@ -957,7 +964,7 @@ def _create_lagged_data_by_moving_window( :, ] windows = strided_moving_window( - vals, + x=vals, window_len=output_chunk_length, stride=1, axis=0, @@ -983,7 +990,7 @@ def _extract_lagged_vals_from_windows( is done such that the order of elements along axis 1 matches the pattern described in the docstring of `create_lagged_data`. - If `lags_to_extract` is not specified, all of the values within each window is extracted. + If `lags_to_extract` is not specified, all values within each window is extracted. If `lags_to_extract` is specified as an np.ndarray, then only those values within each window that are indexed by `lags_to_extract` will be returned. In such cases, the shape of the returned lagged values is `(num_windows, num_components * lags_to_extract.size, num_series)`. For example, @@ -1017,6 +1024,7 @@ def _extract_lagged_vals_from_windows( def _create_lagged_data_by_intersecting_times( target_series: TimeSeries, output_chunk_length: int, + output_chunk_shift: int, past_covariates: Optional[TimeSeries], future_covariates: Optional[TimeSeries], lags: Optional[Sequence[int]], @@ -1044,6 +1052,7 @@ def _create_lagged_data_by_intersecting_times( lags_past_covariates, lags_future_covariates, output_chunk_length, + output_chunk_shift, is_training=is_training, return_min_and_max_lags=True, check_inputs=check_inputs, @@ -1114,10 +1123,16 @@ def _create_lagged_data_by_intersecting_times( if is_training: if multi_models: # All points between time `t` and `t + output_chunk_length - 1` are labels: - idx_to_get = label_shared_time_idx + np.arange(output_chunk_length) + idx_to_get = ( + label_shared_time_idx + + np.arange(output_chunk_length) + + output_chunk_shift + ) else: # Only point at time `t + output_chunk_length - 1` is a label: - idx_to_get = label_shared_time_idx + output_chunk_length - 1 + idx_to_get = ( + label_shared_time_idx + output_chunk_length + output_chunk_shift - 1 + ) # Before reshaping: lagged_vals.shape = (n_observations, num_lags, n_components, n_samples) lagged_vals = target_series.all_values(copy=False)[idx_to_get, :, :] # After reshaping: lagged_vals.shape = (n_observations, num_lags*n_components, n_samples) @@ -1145,6 +1160,7 @@ def _get_feature_times( lags_past_covariates: Optional[Union[Sequence[int], Dict[str, List[int]]]] = None, lags_future_covariates: Optional[Union[Sequence[int], Dict[str, List[int]]]] = None, output_chunk_length: int = 1, + output_chunk_shift: int = 0, is_training: bool = True, return_min_and_max_lags: bool = False, check_inputs: bool = True, @@ -1152,7 +1168,7 @@ def _get_feature_times( """ Returns a tuple containing the times in `target_series`, the times in `past_covariates`, and the times in `future_covariates` that *could* be used to create features. The returned tuple of times can then be passed - to `get_shared_times` to compute the 'eligible time points' shared by all of the specified series. + to `get_shared_times` to compute the 'eligible time points' shared by all specified series. Notes ----- @@ -1170,7 +1186,7 @@ def _get_feature_times( The values contained in `lags_future_covariates`, on the other hand, can be negative, zero, or positive; this means that there are three cases to consider: 1. Both `min_lag` and `max_lag` are positive, which means that all the values in `lags_future_covariates` - are negative. In this case, `min_lag` and `max_lag` correspond to the to the smallest and largest + are negative. In this case, `min_lag` and `max_lag` correspond to the smallest and largest lag magnitudes respectively. For example: `lags_future_covariates = [-3, -2, -1] -> min_lag = 1, max_lag = 3` 2. `min_lag` is non-positive (i.e. zero or negative), but `max_lag` is positive, which means that @@ -1188,16 +1204,16 @@ def _get_feature_times( 2. `max_lag <= 0` is a sufficient condition for `min_lag` and `max_lag` both being non-positive (i.e. Case 2). To extract feature times from a `target_series` when `is_training = True`, the following steps are performed: - 1. The first `max_lag` times of the series are excluded; these times have too few preceeding values to + 1. The first `max_lag` times of the series are excluded; these times have too few preceding values to construct features from. - 2. The last `output_chunk_length - 1` times are excluded; these times have too few succeeding times - to construct labels from. + 2. The last `output_chunk_length - output_chunk_shift - 1` times are excluded; these times have too few + succeeding times to construct labels from. To extract feature times from a `target_series` when `is_training = False`, the following steps are performed: 1. An additional `min_lag` times are appended to the end of the series; although these times are not contained in the original series, we're able to construct features for them since we only need the values of the series from time `t - max_lag` to `t - min_lag` to construct a feature for time `t`. - 2. The first `max_lag` times of the series are then excluded; these times have too few preceeding values to + 2. The first `max_lag` times of the series are then excluded; these times have too few preceding values to construct features from. The exact same procedure is performed to extract the feature times from a `past_covariates` series. @@ -1245,8 +1261,10 @@ def _get_feature_times( lags_future_covariates Optionally, the lags of `future_covariates` to be used as features. output_chunk_length - Optionally, the number of timesteps ahead into the future the regression model is to predict. This is ignored + Optionally, the number of time steps ahead into the future the regression model is to predict. This is ignored if `is_training = False`. + output_chunk_shift + Optionally, the number of time steps to shift the output chunk ahead into the future. is_training Optionally, specifies that training data is to be generated from the specified series. If `True`, `target_series`, `output_chunk_length`, and `multi_models` must all be specified. @@ -1312,11 +1330,12 @@ def _get_feature_times( if check_inputs and (series_i is not None): _check_series_length( - series_i, - lags_i, - output_chunk_length, - is_training, - name_i, + series=series_i, + lags=lags_i, + output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, + is_training=is_training, + name=name_i, ) series_specified = series_i is not None lags_specified = lags_i is not None @@ -1326,7 +1345,10 @@ def _get_feature_times( min_lag_i = -max(lags_i) if lags_specified else None if is_label_series: # Exclude last `output_chunk_length - 1` times: - end_idx = -output_chunk_length + 1 if output_chunk_length > 1 else None + if not output_chunk_shift: + end_idx = -output_chunk_length + 1 if output_chunk_length > 1 else None + else: + end_idx = -output_chunk_length - output_chunk_shift + 1 times_i = times_i[:end_idx] elif series_specified and lags_specified: # Prepend times to start of series - see Step 1a for extracting @@ -1337,7 +1359,9 @@ def _get_feature_times( # Append times to end of series - see Step 1b for extracting features # times from `future_covariates`, or Step 1 for extracting features # from `target_series`/`past_covariates` in `Notes`: - new_end = times_i[-1] + series_i.freq * min_lag_i if min_lag_i > 0 else None + new_end = ( + times_i[-1] + series_i.freq * (min_lag_i) if min_lag_i > 0 else None + ) times_i = _extend_time_index( times_i, series_i.freq, new_start=new_start, new_end=new_end ) @@ -1360,6 +1384,7 @@ def _get_feature_times( warnings.warn( f"`{specified}` was specified without accompanying `{unspecified}` and, thus, will be ignored." ) + feature_times.append(times_i) # Note `max_lag_i` and `min_lag_i` if requested: if series_specified and lags_specified: @@ -1379,7 +1404,7 @@ def get_shared_times( *series_or_times: Union[TimeSeries, pd.Index, None], sort: bool = True ) -> pd.Index: """ - Returns the times shared by all of the specified `TimeSeries` or time indexes (i.e. the intersection of all + Returns the times shared by all specified `TimeSeries` or time indexes (i.e. the intersection of all these times). If `sort = True`, then these shared times are sorted from earliest to latest. Any `TimeSeries` or time indices in `series_or_times` that aren't specified (i.e. are `None`) are simply ignored. @@ -1393,7 +1418,7 @@ def get_shared_times( Returns ------- shared_times - The time indices present in all of the specified `TimeSeries` and/or time indices. + The time indices present in all specified `TimeSeries` and/or time indices. Raises ------ @@ -1453,13 +1478,13 @@ def get_shared_times_bounds( *series_or_times: Sequence[Union[TimeSeries, pd.Index, None]] ) -> Union[Tuple[pd.Index, pd.Index], None]: """ - Returns the latest `start_time` and the earliest `end_time` among all of the non-`None` `series_or_times`; + Returns the latest `start_time` and the earliest `end_time` among all non-`None` `series_or_times`; these are (non-tight) lower and upper `bounds` on the intersection of all these `series_or_times` respectively. - If no potential overlap exists between all of the specified series, `None` is returned instead. + If no potential overlap exists between all specified series, `None` is returned instead. Notes ----- - If all of the specified `series_or_times` are of the same frequency, then `get_shared_times_bounds` + If all specified `series_or_times` are of the same frequency, then `get_shared_times_bounds` returns tight `bounds` (i.e. the earliest and latest time within the intersection of all the timeseries is returned). To see this, suppose we have three equal-frequency series with observations made at different times: @@ -1473,7 +1498,7 @@ def get_shared_times_bounds( Series 2: |---|--- Series 3: --|---|- UB - If the specified timeseries are *not* all of the same frequency, then the returned `bounds` is potentially non-tight + If the specified timeseries are *not* of the same frequency, then the returned `bounds` is potentially non-tight (i.e. `LB <= intersection.start_time() < intersection.end_time() <= UB`, where `intersection` are the times shared by all specified timeseries) @@ -1640,7 +1665,7 @@ def _extend_time_index( def _get_freqs(*series: Union[TimeSeries, None]): """ - Returns list with the frequency of all of the specified (i.e. non-`None`) `series`. + Returns list with the frequency of all specified (i.e. non-`None`) `series`. """ freqs = [] for ts in series: @@ -1651,7 +1676,7 @@ def _get_freqs(*series: Union[TimeSeries, None]): def _all_equal_freq(*series: Union[TimeSeries, None]) -> bool: """ - Returns `True` is all of the specified (i.e. non-`None`) `series` have the same frequency. + Returns `True` if all specified (i.e. non-`None`) `series` have the same frequency. """ freqs = _get_freqs(*series) return len(set(freqs)) == 1 @@ -1692,6 +1717,7 @@ def _check_series_length( series: TimeSeries, lags: Union[None, Sequence[int]], output_chunk_length: int, + output_chunk_shift: int, is_training: bool, name: Literal["target_series", "past_covariates", "future_covariates"], ) -> None: @@ -1707,9 +1733,11 @@ def _check_series_length( "-min(lags) + output_chunk_length" if lags_specified else "output_chunk_length" - ) + ) + " + output_chunk_shift" minimum_len = ( - -min(lags) + output_chunk_length if lags_specified else output_chunk_length + output_chunk_length + + output_chunk_shift + + (-min(lags) if lags_specified else 0) ) elif lags_specified: lags_name = "lags" if name == "target_series" else f"lags_{name}" @@ -1720,7 +1748,7 @@ def _check_series_length( series.n_timesteps < minimum_len, ( f"`{name}` must have at least " - f"`{minimum_len_str}` = {minimum_len} timesteps; " + f"`{minimum_len_str}` = {minimum_len} time steps; " f"instead, it only has {series.n_timesteps}." ), ) diff --git a/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py b/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py index a6cca7d77e..ee06f71c57 100644 --- a/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py +++ b/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py @@ -159,7 +159,8 @@ def _optimized_historical_forecasts_last_points_only( times[0] if stride == 1 and model.output_chunk_length == 1 else generate_index( - start=hist_fct_start + (forecast_horizon - 1) * freq, + start=hist_fct_start + + (forecast_horizon + model.output_chunk_shift - 1) * freq, length=forecast.shape[0], freq=freq * stride, name=series_.time_index.name, @@ -330,7 +331,7 @@ def _optimized_historical_forecasts_all_points( # TODO: check if faster to create in the loop new_times = generate_index( - start=hist_fct_start, + start=hist_fct_start + model.output_chunk_shift * series_.freq, length=forecast_horizon * stride * forecast.shape[0], freq=freq, name=series_.time_index.name, diff --git a/darts/utils/historical_forecasts/utils.py b/darts/utils/historical_forecasts/utils.py index db71e40d82..86d3b05036 100644 --- a/darts/utils/historical_forecasts/utils.py +++ b/darts/utils/historical_forecasts/utils.py @@ -402,10 +402,14 @@ def _get_historical_forecastable_time_index( max_past_cov_lag, min_future_cov_lag, max_future_cov_lag, + output_chunk_shift, ) = model.extreme_lags # max_target_lag < 0 are local models which can predict for n (horizon) -> infinity (no auto-regression) - is_autoregression = max_target_lag >= 0 and forecast_horizon > max_target_lag + 1 + is_autoregression = ( + max_target_lag >= 0 + and forecast_horizon > max_target_lag - output_chunk_shift + 1 + ) if min_target_lag is None: min_target_lag = 0 @@ -413,7 +417,8 @@ def _get_historical_forecastable_time_index( # longest possible time index for target if is_training: start = ( - series.start_time() + (max_target_lag - min_target_lag + 1) * series.freq + series.start_time() + + (max_target_lag - output_chunk_shift - min_target_lag + 1) * series.freq ) else: start = series.start_time() - min_target_lag * series.freq @@ -426,7 +431,8 @@ def _get_historical_forecastable_time_index( if is_training: start_pc = ( past_covariates.start_time() - - (min_past_cov_lag - max_target_lag - 1) * past_covariates.freq + + (max_target_lag - output_chunk_shift - min_past_cov_lag + 1) + * past_covariates.freq ) else: start_pc = ( @@ -436,7 +442,7 @@ def _get_historical_forecastable_time_index( shift_pc_end = max_past_cov_lag if is_autoregression: # we step back in case of auto-regression - shift_pc_end += forecast_horizon - (max_target_lag + 1) + shift_pc_end += forecast_horizon - (max_target_lag - output_chunk_shift + 1) end_pc = past_covariates.end_time() - shift_pc_end * past_covariates.freq intersect_ = ( @@ -449,7 +455,8 @@ def _get_historical_forecastable_time_index( if is_training: start_fc = ( future_covariates.start_time() - - (min_future_cov_lag - max_target_lag - 1) * future_covariates.freq + + (max_target_lag - output_chunk_shift - min_future_cov_lag + 1) + * future_covariates.freq ) else: start_fc = ( @@ -460,7 +467,7 @@ def _get_historical_forecastable_time_index( shift_fc_end = max_future_cov_lag if is_autoregression: # we step back in case of auto-regression - shift_fc_end += forecast_horizon - (max_target_lag + 1) + shift_fc_end += forecast_horizon - (max_target_lag - output_chunk_shift + 1) end_fc = future_covariates.end_time() - shift_fc_end * future_covariates.freq intersect_ = ( @@ -471,9 +478,13 @@ def _get_historical_forecastable_time_index( # overlap_end = True -> predictions must not go beyond end of target series if ( not overlap_end - and intersect_[1] + (forecast_horizon - 1) * series.freq > series.end_time() + and intersect_[1] + (forecast_horizon + output_chunk_shift - 1) * series.freq + > series.end_time() ): - intersect_ = (intersect_[0], end - forecast_horizon * series.freq) + intersect_ = ( + intersect_[0], + end - (forecast_horizon + output_chunk_shift) * series.freq, + ) # end comes before the start if intersect_[1] < intersect_[0]: @@ -719,6 +730,7 @@ def _get_historical_forecast_boundaries( max_past_cov_lag, min_future_cov_lag, max_future_cov_lag, + output_chunk_shift, ) = model.extreme_lags # target lags are <= 0 diff --git a/darts/utils/utils.py b/darts/utils/utils.py index 12a1400fd2..b0169b2696 100644 --- a/darts/utils/utils.py +++ b/darts/utils/utils.py @@ -397,3 +397,74 @@ def get_single_series( return ts else: return ts[0] + + +def n_steps_between( + end: Union[pd.Timestamp, int], + start: Union[pd.Timestamp, int], + freq: Union[pd.DateOffset, int, str], +) -> int: + """Get the number of time steps with a given frequency `freq` between `end` and `start`. + Works for both integers and time stamps. + + * if `end`, `start`, `freq` are all integers, we can simple divide the difference by the frequency. + * if `freq` is a pandas Dateoffset with non-ambiguous timedelate (e.g. "d", "h", ..., and not "M", "Y", ...), + we can simply divide by the frequency + * otherwise, we take the period difference between the two time stamps. + + Parameters + ---------- + end + The end pandas Timestamp / integer. + start + The start pandas Timestamp / integer. + freq + The frequency / step size. + + Returns + ------- + int + The number of steps/periods between `end` and `start` with a given frequency `freq`. + + Examples + -------- + >>> n_steps_between(start=pd.Timestamp("2000-01-01"), end=pd.Timestamp("2000-03-01"), freq="M") + 2 + >>> n_steps_between(start=0, end=2, freq=1) + 2 + >>> n_steps_between(start=0, end=2, freq=2) + 1 + """ + freq = pd.tseries.frequencies.to_offset(freq) if isinstance(freq, str) else freq + valid_int = ( + isinstance(start, int) and isinstance(end, int) and isinstance(freq, int) + ) + valid_time = ( + isinstance(start, pd.Timestamp) + and isinstance(end, pd.Timestamp) + and isinstance(freq, pd.DateOffset) + ) + if not (valid_int or valid_time): + raise_log( + ValueError( + "Either `start` and `end` must be pandas Timestamps and `freq` a pandas Dateoffset, " + "or all `start`, `end`, `freq` must be integers." + ), + logger=logger, + ) + # Series frequency represents a non-ambiguous timedelta value (not ‘M’, ‘Y’ or ‘y’) + if pd.to_timedelta(freq, errors="coerce") is not pd.NaT: + n_steps = (end - start) // freq + else: + period_alias = pd.tseries.frequencies.get_period_alias(freq.freqstr) + if period_alias is None: + raise_log( + ValueError( + f"Cannot infer period alias for `freq={freq}`. " + f"Is it a valid pandas offset/frequency alias?" + ), + logger=logger, + ) + # Create a temporary DatetimeIndex to extract the actual start index. + n_steps = (end.to_period(period_alias) - start.to_period(period_alias)).n + return n_steps From 62d92007f68d4822fc0da5b92fa1e6719c4c2a89 Mon Sep 17 00:00:00 2001 From: madtoinou <32447896+madtoinou@users.noreply.github.com> Date: Fri, 1 Mar 2024 17:06:07 +0100 Subject: [PATCH 012/161] fix: datetime_attribute account for 0 or 1-indexing of the attributes (#2242) * fix: datetime_attribute account for 0 or 1-indexing of the attributes * feat: 1-indexed date attribute are shifted to enforce 0-indexing for all the generated encodings * updated changelog * fix: remove commented lines * fix: typo in comment * make ONE_INDEXED_FREQS a constant * fix: simplified test by using year 2001 * feat: better handling of years with 53 weeks or 366 days * fix: properly take the index length when adding the extra week * fix: simplifying test * fix: update tests to account for the forced 0-indexing of the datetime attributes encoding * fix: passing lmbda parameter as BoxCox doesn't converge when encodings contains a 0 --------- Co-authored-by: Dennis Bader --- CHANGELOG.md | 1 + .../explainability/test_tft_explainer.py | 50 +-- .../test_torch_forecasting_model.py | 2 +- darts/tests/test_timeseries_multivariate.py | 9 +- .../tests/utils/test_timeseries_generation.py | 287 +++++++++++++++--- darts/utils/timeseries_generation.py | 48 ++- 6 files changed, 319 insertions(+), 78 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 2b8a76bed0..1716ff3414 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -35,6 +35,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Fixed a bug in `gridsearch()` with `use_fitted_values=True`, where the model was not propely instantiated for sanity checks. [#2222](https://github.com/unit8co/darts/pull/2222) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `TimeSeries.append/prepend_values()`, where the components names and the hierarchy were dropped. [#2237](https://github.com/unit8co/darts/pull/2237) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug when using `RegressionModel` with `lags=None`, some `lags_*covariates`, and the covariates starting at the same time or after the first predictable time step; the lags were not extracted from the correct indices. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). +- 🔴 Fixed a bug in `datetime_attribute_timeseries()`, where 1-indexed attributes were not properly handled. Also, 0-indexing is now enforced for all the generated encodings. [#2242](https://github.com/unit8co/darts/pull/2242) by [Antoine Madrona](https://github.com/madtoinou). **Dependencies** - Removed upper version cap (<=v2.1.2) for PyTorch Lightning. [#2251](https://github.com/unit8co/darts/pull/2251) by [Dennis Bader](https://github.com/dennisbader). diff --git a/darts/tests/explainability/test_tft_explainer.py b/darts/tests/explainability/test_tft_explainer.py index 700d2d2c4e..8bea86f6b5 100644 --- a/darts/tests/explainability/test_tft_explainer.py +++ b/darts/tests/explainability/test_tft_explainer.py @@ -343,15 +343,15 @@ def test_variable_selection_explanation(self): enc_expected = pd.DataFrame( { - "linear_target": 1.6, - "sine_target": 3.0, - "add_relative_index_futcov": 3.0, - "constant_pastcov": 4.0, - "darts_enc_fc_cyc_month_sin_futcov": 6.2, - "darts_enc_pc_cyc_month_sin_pastcov": 8.6, - "darts_enc_pc_cyc_month_cos_pastcov": 20.0, - "constant_futcov": 20.2, - "darts_enc_fc_cyc_month_cos_futcov": 33.3, + "linear_target": 1.7, + "sine_target": 3.1, + "add_relative_index_futcov": 3.6, + "constant_pastcov": 3.9, + "darts_enc_fc_cyc_month_sin_futcov": 5.0, + "darts_enc_pc_cyc_month_sin_pastcov": 10.1, + "darts_enc_pc_cyc_month_cos_pastcov": 19.9, + "constant_futcov": 21.8, + "darts_enc_fc_cyc_month_cos_futcov": 31.0, }, index=[0], ) @@ -360,10 +360,10 @@ def test_variable_selection_explanation(self): dec_expected = pd.DataFrame( { - "darts_enc_fc_cyc_month_cos_futcov": 4.3, - "darts_enc_fc_cyc_month_sin_futcov": 17.1, - "constant_futcov": 19.3, - "add_relative_index_futcov": 59.3, + "darts_enc_fc_cyc_month_sin_futcov": 5.3, + "darts_enc_fc_cyc_month_cos_futcov": 7.4, + "constant_futcov": 24.5, + "add_relative_index_futcov": 62.9, }, index=[0], ) @@ -385,12 +385,12 @@ def test_attention_explanation(self): # (look at the last 0 values in the array) att_exp_past_att = np.array( [ - [1.1, 1.1], - [0.7, 0.7], - [0.6, 0.5], - [0.7, 0.5], - [0.8, 0.5], - [0.0, 0.7], + [1.0, 0.8], + [0.8, 0.7], + [0.6, 0.4], + [0.7, 0.3], + [0.9, 0.4], + [0.0, 1.3], [0.0, 0.0], ] ) @@ -398,13 +398,13 @@ def test_attention_explanation(self): # see the that all values are non-0 att_exp_full_att = np.array( [ - [0.9, 1.0], - [0.6, 0.6], - [0.3, 0.4], - [0.3, 0.4], + [0.8, 0.8], + [0.7, 0.6], [0.4, 0.4], - [0.6, 0.5], - [0.9, 0.8], + [0.3, 0.3], + [0.3, 0.3], + [0.7, 0.8], + [0.8, 0.8], ] ) for full_attention, att_exp in zip( diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 04bd36e426..962594c8f6 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -319,7 +319,7 @@ def test_save_and_load_weights_w_encoders(self, tmpdir_fn): } encoders_past_other_transformer = { "datetime_attribute": {"past": ["day"]}, - "transformer": BoxCox(), + "transformer": BoxCox(lmbda=-0.7), } encoders_2_past = { "datetime_attribute": {"past": ["hour", "day"]}, diff --git a/darts/tests/test_timeseries_multivariate.py b/darts/tests/test_timeseries_multivariate.py index bf56251194..202a2b63ab 100644 --- a/darts/tests/test_timeseries_multivariate.py +++ b/darts/tests/test_timeseries_multivariate.py @@ -162,11 +162,12 @@ def test_univariate_component(self): assert self.series1 == seriesB def test_add_datetime_attribute(self): + """datetime_attributes are 0-indexed (shift is applied when necessary)""" seriesA = self.series1.add_datetime_attribute("day") assert seriesA.width == self.series1.width + 1 assert set( seriesA.pd_dataframe().iloc[:, seriesA.width - 1].values.flatten() - ) == set(range(1, 11)) + ) == set(range(0, 10)) seriesB = self.series3.add_datetime_attribute("day", True) assert seriesB.width == self.series3.width + 31 assert set( @@ -197,7 +198,13 @@ def test_add_datetime_attribute(self): assert np.allclose(np.add(np.square(values_sin), np.square(values_cos)), 1) df = seriesF.pd_dataframe() + # first day is equivalent to t=0 df = df[df.index.day == 1] + assert np.allclose(df["day_sin"].values, 0, atol=0.03) + assert np.allclose(df["day_cos"].values, 1, atol=0.03) + + # second day is equivalent to t=1 + df = df[df.index.day == 2] assert np.allclose(df["day_sin"].values, 0.2, atol=0.03) assert np.allclose(df["day_cos"].values, 0.97, atol=0.03) diff --git a/darts/tests/utils/test_timeseries_generation.py b/darts/tests/utils/test_timeseries_generation.py index 606e36d311..0f0cd02501 100644 --- a/darts/tests/utils/test_timeseries_generation.py +++ b/darts/tests/utils/test_timeseries_generation.py @@ -6,6 +6,7 @@ from darts import TimeSeries from darts.utils.timeseries_generation import ( + ONE_INDEXED_FREQS, autoregressive_timeseries, constant_timeseries, datetime_attribute_timeseries, @@ -345,21 +346,21 @@ def test_calculation(coef): for coef_assert in [[-1], [-1, 1.618], [1, 2, 3], list(range(10))]: test_calculation(coef=coef_assert) - def test_datetime_attribute_timeseries(self): + @staticmethod + def helper_routine(idx, attr, vals_exp, **kwargs): + ts = datetime_attribute_timeseries(idx, attribute=attr, **kwargs) + vals_exp = np.array(vals_exp, dtype=ts.dtype) + if len(vals_exp.shape) == 1: + vals_act = ts.values()[:, 0] + else: + vals_act = ts.values() + np.testing.assert_array_almost_equal(vals_act, vals_exp) + + def test_datetime_attribute_timeseries_wrong_args(self): idx = generate_index(start=pd.Timestamp("2000-01-01"), length=48, freq="h") - - def helper_routine(idx, attr, vals_exp, **kwargs): - ts = datetime_attribute_timeseries(idx, attribute=attr, **kwargs) - vals_exp = np.array(vals_exp, dtype=ts.dtype) - if len(vals_exp.shape) == 1: - vals_act = ts.values()[:, 0] - else: - vals_act = ts.values() - np.testing.assert_array_almost_equal(vals_act, vals_exp) - # no pd.DatetimeIndex with pytest.raises(ValueError) as err: - helper_routine( + self.helper_routine( pd.RangeIndex(start=0, stop=len(idx)), "h", vals_exp=np.arange(len(idx)) ) assert str(err.value).startswith( @@ -368,23 +369,27 @@ def helper_routine(idx, attr, vals_exp, **kwargs): # invalid attribute with pytest.raises(ValueError) as err: - helper_routine(idx, "h", vals_exp=np.arange(len(idx))) + self.helper_routine(idx, "h", vals_exp=np.arange(len(idx))) assert str(err.value).startswith( "attribute `h` needs to be an attribute of pd.DatetimeIndex." ) # no time zone aware index with pytest.raises(ValueError) as err: - helper_routine(idx.tz_localize("UTC"), "h", vals_exp=np.arange(len(idx))) + self.helper_routine( + idx.tz_localize("UTC"), "h", vals_exp=np.arange(len(idx)) + ) assert "`time_index` must be time zone naive." == str(err.value) + def test_datetime_attribute_timeseries(self): + idx = generate_index(start=pd.Timestamp("2000-01-01"), length=48, freq="h") # ===> datetime attribute # hour vals = [i for i in range(24)] * 2 - helper_routine(idx, "hour", vals_exp=vals) + self.helper_routine(idx, "hour", vals_exp=vals) # hour from TimeSeries - helper_routine( + self.helper_routine( TimeSeries.from_times_and_values(times=idx, values=np.arange(len(idx))), "hour", vals_exp=vals, @@ -392,45 +397,233 @@ def helper_routine(idx, attr, vals_exp, **kwargs): # tz=CET is +1 hour to UTC vals = vals[1:] + [0] - helper_routine(idx, "hour", vals_exp=vals, tz="CET") + self.helper_routine(idx, "hour", vals_exp=vals, tz="CET") - # day - vals = [1] * 24 + [2] * 24 - helper_routine(idx, "day", vals_exp=vals) + # day, 0-indexed + vals = [0] * 24 + [1] * 24 + self.helper_routine(idx, "day", vals_exp=vals) # dayofweek vals = [5] * 24 + [6] * 24 - helper_routine(idx, "dayofweek", vals_exp=vals) - - # month - vals = [1] * 48 - helper_routine(idx, "month", vals_exp=vals) - - # ===> one hot encoded - # month - vals = [1] + [0] * 11 - vals = [vals for _ in range(48)] - helper_routine(idx, "month", vals_exp=vals, one_hot=True) - - # tz=CET, month - vals = [1] + [0] * 11 - vals = [vals for _ in range(48)] - helper_routine(idx, "month", vals_exp=vals, tz="CET", one_hot=True) - - # ===> sine/cosine cyclic encoding - # hour (period = 24 hours in one day) - period = 24 + self.helper_routine(idx, "dayofweek", vals_exp=vals) + + # month, 0-indexed + vals = [0] * 48 + self.helper_routine(idx, "month", vals_exp=vals) + + @pytest.mark.parametrize( + "config", + [ + ("M", "month", 12), + ("H", "hour", 24), + ("D", "weekday", 7), + ("s", "second", 60), + ("W", "weekofyear", 52), + ("D", "dayofyear", 365), + ("Q", "quarter", 4), + ], + ) + def test_datetime_attribute_timeseries_indexing_shift(self, config): + """Check that the original indexing of the attribute is properly shifted to obtain 0-indexing when + the start timestamp of the index is the first possible value of the attribute + + Note: 2001 is neither leap year nor a year with 53 weeks + """ + ( + base_freq, + attribute_freq, + period, + ) = config + start_timestamp = "2001-01-01 00:00:00" + + idx = generate_index( + start=pd.Timestamp(start_timestamp), length=1, freq=base_freq + ) + + # default encoding should be 0 + vals_exp = np.zeros((1, 1)) + self.helper_routine( + idx, attribute_freq, vals_exp=vals_exp, one_hot=False, cyclic=False + ) + + # one-hot encoding must be 1 in the first column + vals_exp = np.zeros((1, period)) + vals_exp[0, 0] = 1 + self.helper_routine(idx, attribute_freq, vals_exp=vals_exp, one_hot=True) + + # cyclic encoding must start at t=0 + vals_exp = np.array([[np.sin(0), np.cos(0)]]) + self.helper_routine(idx, attribute_freq, vals_exp=vals_exp, cyclic=True) + + @pytest.mark.parametrize( + "config", + [ + ("M", "month", 12), + ("H", "hour", 24), + ("D", "weekday", 7), + ("s", "second", 60), + ("W", "weekofyear", 52), + ("Q", "quarter", 4), + ("D", "dayofyear", 365), + ], + ) + def test_datetime_attribute_timeseries_one_hot(self, config): + """Verifying that proper one hot encoding is generated (not leap year)""" + base_freq, attribute_freq, period = config + # first quarter/year, month/year, week/year, day/year, day/week, hour/day, second/hour + simple_start = pd.Timestamp("2001-01-01 00:00:00") + idx = generate_index(start=simple_start, length=period, freq=base_freq) + vals = np.eye(period) + + # simple start + self.helper_routine(idx, attribute_freq, vals_exp=vals, one_hot=True) + # with time-zone + if attribute_freq == "hour": + # shift to mimic conversion from UTC to CET + vals = np.roll(vals, shift=-1, axis=0) + self.helper_routine(idx, attribute_freq, vals_exp=vals, tz="CET", one_hot=True) + + # missing values + cut_period = period // 3 + idx = generate_index(start=simple_start, length=cut_period, freq=base_freq) + vals = np.eye(period) + # removing missing rows + vals = vals[:cut_period] + # mask missing attribute values + vals[:, cut_period:] = 0 + + self.helper_routine(idx, attribute_freq, vals_exp=vals, one_hot=True) + + # shifted time index + shifted_start = pd.Timestamp("2001-05-05 05:00:05") + # 5th month/year, day/week, hour/day, second/hour + shift = 5 + # 125th day of year + if attribute_freq == "dayofyear": + shift = 125 + # 18th week of year + if attribute_freq == "weekofyear": + shift = 18 + # 2nd quarter of the year + elif attribute_freq == "quarter": + shift = 2 + + # account for 1-indexing of the attribute + if attribute_freq in ONE_INDEXED_FREQS: + shift -= 1 + + idx = generate_index(start=shifted_start, length=period, freq=base_freq) + vals = np.eye(period) + # shift values + vals = np.roll(vals, shift=-shift, axis=0) + + self.helper_routine(idx, attribute_freq, vals_exp=vals, one_hot=True) + + @pytest.mark.parametrize("config", [("h", "hour", 24), ("M", "month", 12)]) + def test_datetime_attribute_timeseries_cyclic(self, config): + base_freq, attribute_freq, period = config + idx = generate_index( + start=pd.Timestamp("2000-01-01"), length=2 * period, freq=base_freq + ) + freq = 2 * np.pi / period - vals_dta = [i for i in range(24)] * 2 + vals_dta = [i for i in range(period)] * 2 vals = np.array(vals_dta) sin_vals = np.sin(freq * vals)[:, None] cos_vals = np.cos(freq * vals)[:, None] - vals = np.concatenate([sin_vals, cos_vals], axis=1) - helper_routine(idx, "hour", vals_exp=vals, cyclic=True) + vals_exp = np.concatenate([sin_vals, cos_vals], axis=1) + self.helper_routine(idx, attribute_freq, vals_exp=vals_exp, cyclic=True) - # tz=CET, hour - vals = np.array(vals_dta[1:] + [0]) + # with time-zone conversion + if attribute_freq == "hour": + # UTC to CET shift by 1 hour + vals = np.array(vals_dta[1:] + vals_dta[0:1]) sin_vals = np.sin(freq * vals)[:, None] cos_vals = np.cos(freq * vals)[:, None] - vals = np.concatenate([sin_vals, cos_vals], axis=1) - helper_routine(idx, "hour", vals_exp=vals, tz="CET", cyclic=True) + vals_exp = np.concatenate([sin_vals, cos_vals], axis=1) + self.helper_routine( + idx, attribute_freq, vals_exp=vals_exp, tz="CET", cyclic=True + ) + + def test_datetime_attribute_timeseries_leap_years(self): + """Check that the additional day of leap years is properly handled""" + days_leap_year = 366 + # 2000 is a leap year, contains 366 days + index = pd.date_range( + start=pd.Timestamp("2000-01-01"), end=pd.Timestamp("2000-12-31"), freq="D" + ) + assert len(index) == days_leap_year + vals_exp = np.arange(days_leap_year) + self.helper_routine(index, "day_of_year", vals_exp=vals_exp) + # full leap year, the encoding is a diagonal matrix + vals_exp = np.eye(days_leap_year) + self.helper_routine(index, "day_of_year", vals_exp=vals_exp, one_hot=True) + + # partial leap year, the encoding should still contain 366 columns + index_partial = index[30:72] + # remove the missing rows + vals_exp = vals_exp[30:72] + # mask the missing dates + vals_exp[:, :30] = 0 + vals_exp[:, 73:] = 0 + self.helper_routine( + index_partial, "day_of_year", vals_exp=vals_exp, one_hot=True + ) + + # index containing both a regular year and leap year, for a total of 731 days + index_long = pd.date_range( + start=pd.Timestamp("1999-01-01"), end=pd.Timestamp("2000-12-31"), freq="D" + ) + assert len(index_long) == 731 + # leap year encoding is a diagonal matrix + leap_year_oh = np.eye(days_leap_year) + # regular year drops the last day row + regular_year_oh = np.eye(days_leap_year) + regular_year_oh = regular_year_oh[:-1] + vals_exp = np.concatenate([regular_year_oh, leap_year_oh]) + self.helper_routine(index_long, "day_of_year", vals_exp=vals_exp, one_hot=True) + + @pytest.mark.parametrize("year", [1998, 2020]) + def test_datetime_attribute_timeseries_special_years(self, year): + """Check that years with 53 weeks are is properly handled: + - 1998 is a regular year starting on a thursday + - 2020 is a leap year starting on a wednesday + """ + + start_date = pd.Timestamp(f"{year}-01-01") + end_date = pd.Timestamp(f"{year}-12-31") + + # the 53th week appear when created with freq="D" + weeks_special_year = 53 + index = pd.date_range(start=start_date, end=end_date, freq="D") + assert index[-1].week == weeks_special_year + vals_exp = np.zeros((len(index), weeks_special_year)) + # first week is incomplete, its length depend on the first day of the year + week_shift = index[0].weekday() + for week_index in range(weeks_special_year): + week_start = max(7 * week_index - week_shift, 0) + week_end = 7 * (week_index + 1) - week_shift + vals_exp[week_start:week_end, week_index] = 1 + self.helper_routine(index, "week_of_year", vals_exp=vals_exp, one_hot=True) + + # the 53th week is omitted from index when created with freq="W" + index_weeks = pd.date_range(start=start_date, end=end_date, freq="W") + assert len(index_weeks) == weeks_special_year - 1 + # and 53th week properly excluded from the encoding + vals_exp = np.eye(weeks_special_year - 1)[: len(index_weeks)] + assert vals_exp.shape[1] == weeks_special_year - 1 + self.helper_routine( + index_weeks, "week_of_year", vals_exp=vals_exp, one_hot=True + ) + + # extending the time index with the days missing from the incomplete first week + index_weeks_ext = pd.date_range( + start=start_date, end=end_date + pd.Timedelta(days=6 - week_shift), freq="W" + ) + assert len(index_weeks_ext) == weeks_special_year + # the 53th week is properly appearing in the encoding + vals_exp = np.eye(weeks_special_year) + assert vals_exp.shape[1] == weeks_special_year + self.helper_routine( + index_weeks_ext, "week_of_year", vals_exp=vals_exp, one_hot=True + ) diff --git a/darts/utils/timeseries_generation.py b/darts/utils/timeseries_generation.py index 0e38747d7a..8e6784991f 100644 --- a/darts/utils/timeseries_generation.py +++ b/darts/utils/timeseries_generation.py @@ -15,6 +15,17 @@ logger = get_logger(__name__) +ONE_INDEXED_FREQS = { + "day", + "month", + "quarter", + "dayofyear", + "day_of_year", + "week", + "weekofyear", + "week_of_year", +} + def generate_index( start: Optional[Union[pd.Timestamp, int]] = None, @@ -311,14 +322,14 @@ def gaussian_timeseries( A white noise TimeSeries created as indicated above. """ - if type(mean) is np.ndarray: + if isinstance(mean, np.ndarray): raise_if_not( mean.shape == (length,), "If a vector of means is provided, " "it requires the same length as the TimeSeries.", logger, ) - if type(std) is np.ndarray: + if isinstance(std, np.ndarray): raise_if_not( std.shape == (length, length), "If a matrix of standard deviations is provided, " @@ -605,6 +616,7 @@ def datetime_attribute_timeseries( Returns a new TimeSeries with index `time_index` and one or more dimensions containing (optionally one-hot encoded or cyclic encoded) pd.DatatimeIndex attribute information derived from the index. + 1-indexed attributes are shifted to enforce 0-indexing across all the encodings. Parameters ---------- @@ -693,6 +705,33 @@ def datetime_attribute_timeseries( .rename("time") ) + # shift 1-indexed datetime attributes + if attribute in ONE_INDEXED_FREQS: + values -= 1 + + # leap years insert an additional day on the 29th of Feburary + if attribute in {"dayofyear", "day_of_year"} and any(time_index.is_leap_year): + num_values_dict[attribute] += 1 + + # years contain an additional week if they are : + # - a regular year starting on a thursday + # - a leap year starting on a wednesday + if attribute in {"week", "weekofyear", "week_of_year"}: + years = time_index.year.unique() + # check if year respect properties + additional_week_year = any( + ((not first_day.is_leap_year) and first_day.day_name() == "Thursday") + or (first_day.is_leap_year and first_day.day_name() == "Wednesday") + for first_day in [pd.Timestamp(f"{year}-01-01") for year in years] + ) + # check if time index actually include the additional week + additional_week_in_index = time_index[-1] - time_index[0] + pd.Timedelta( + days=1 + ) >= pd.Timedelta(days=365) + + if additional_week_year and additional_week_in_index: + num_values_dict[attribute] += 1 + if one_hot or cyclic: raise_if_not( attribute in num_values_dict, @@ -704,10 +743,11 @@ def datetime_attribute_timeseries( if one_hot: values_df = pd.get_dummies(values) # fill missing columns (in case not all values appear in time_index) - for i in range(1, num_values_dict[attribute] + 1): + attribute_range = range(num_values_dict[attribute]) + for i in attribute_range: if not (i in values_df.columns): values_df[i] = 0 - values_df = values_df[range(1, num_values_dict[attribute] + 1)] + values_df = values_df[attribute_range] if with_columns is None: with_columns = [ From 2117bf369bc52a8f0059da62263e2efec4a94430 Mon Sep 17 00:00:00 2001 From: madtoinou <32447896+madtoinou@users.noreply.github.com> Date: Sat, 2 Mar 2024 13:59:51 +0100 Subject: [PATCH 013/161] Fix: estimator getter and lagged_label_name (#2246) * feat: adding docstring and check to get_multioutput_estimator * fix: added lowbound check * fix: update docstring, indexing account for multi_models param * feat: added corresponding test * feat: added tests for estimator getter * feat: store and expose the lagged label names (for each model estimator) * fix: rephrasing docstring * update changelog * fix: linting * fix: replaced ocl with hrz in naming of the lagged label * fix: update error messages * feat: simplify test, overfit XGB on only one training example * feat: added a method to get estimator for models supporting multi-output natively * feat: added corresponding test * update changelog * fix: linting * Update CHANGELOG.md --------- Co-authored-by: Dennis Bader --- CHANGELOG.md | 9 +- darts/models/forecasting/regression_model.py | 87 ++++++++-- .../forecasting/test_regression_models.py | 152 +++++++++++++----- darts/utils/data/tabularization.py | 9 +- 4 files changed, 200 insertions(+), 57 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 1716ff3414..3ba7c9bd11 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -22,13 +22,17 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Improvements to `GlobalForecastingModel`: - 🚀 All global models (regression and torch models) now support shifted predictions with model creation parameter `output_chunk_shift`. This will shift the output chunk for training and prediction by `output_chunk_shift` steps into the future. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - Improvements to `WindowTransformer` and `window_transform`: - - Added argument `keep_names` to indicate whether the original component names should be kept. [#2207](https://github.com/unit8co/darts/pull/2207)by [Antoine Madrona](https://github.com/madtoinou). + - Added argument `keep_names` to indicate whether the original component names should be kept. [#2207](https://github.com/unit8co/darts/pull/2207) by [Antoine Madrona](https://github.com/madtoinou). +- Improvements to `RegressionModel`: [#2246](https://github.com/unit8co/darts/pull/2246) by [Antoine Madrona](https://github.com/madtoinou). + - Added a `get_estimator()` method to access the underlying estimator + - Updated the docstring of `get_multioutout_estimator()` + - Added attribute `lagged_label_names` to identify the forecasted step and component of each estimator - Other improvements: - Added new helper function `darts.utils.n_steps_between()` to efficiently compute the number of time steps (periods) between two points with a given frequency. Improves efficiency for regression model tabularization by avoiding `pd.date_range()`. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - 🔴 Changed the default `start` value in `ForecastingModel.gridsearch()` from `0.5` to `None`, to make it consistent with `historical_forecasts` and other methods. [#2243](https://github.com/unit8co/darts/pull/2243) by [Thomas Kientz](https://github.com/thomktz). **Fixed** -- Fixed a bug when calling `window_transform` on a `TimeSeries` with a hierarchy. The hierarchy is now only preseved for single transformations applied to all components, or removed otherwise. [#2207](https://github.com/unit8co/darts/pull/2207)by [Antoine Madrona](https://github.com/madtoinou). +- Fixed a bug when calling `window_transform` on a `TimeSeries` with a hierarchy. The hierarchy is now only preseved for single transformations applied to all components, or removed otherwise. [#2207](https://github.com/unit8co/darts/pull/2207) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in probabilistic `LinearRegressionModel.fit()`, where the `model` attribute was not pointing to all underlying estimators. [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). - Raise an error in `RegressionEsembleModel` when the `regression_model` was created with `multi_models=False` (not supported). [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `coefficient_of_variation()` with `intersect=True`, where the coefficient was not computed on the intersection. [#2202](https://github.com/unit8co/darts/pull/2202) by [Antoine Madrona](https://github.com/madtoinou). @@ -36,6 +40,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Fixed a bug in `TimeSeries.append/prepend_values()`, where the components names and the hierarchy were dropped. [#2237](https://github.com/unit8co/darts/pull/2237) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug when using `RegressionModel` with `lags=None`, some `lags_*covariates`, and the covariates starting at the same time or after the first predictable time step; the lags were not extracted from the correct indices. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - 🔴 Fixed a bug in `datetime_attribute_timeseries()`, where 1-indexed attributes were not properly handled. Also, 0-indexing is now enforced for all the generated encodings. [#2242](https://github.com/unit8co/darts/pull/2242) by [Antoine Madrona](https://github.com/madtoinou). +- Fixed a bug in `get_multioutput_estimator()`, where the index of the estimator was incorrectly calculated. [#2246](https://github.com/unit8co/darts/pull/2246) by [Antoine Madrona](https://github.com/madtoinou). **Dependencies** - Removed upper version cap (<=v2.1.2) for PyTorch Lightning. [#2251](https://github.com/unit8co/darts/pull/2251) by [Dennis Bader](https://github.com/dennisbader). diff --git a/darts/models/forecasting/regression_model.py b/darts/models/forecasting/regression_model.py index f0d1267e9b..e0ffee30c9 100644 --- a/darts/models/forecasting/regression_model.py +++ b/darts/models/forecasting/regression_model.py @@ -212,6 +212,7 @@ def encode_year(idx): self._considers_static_covariates = use_static_covariates self._static_covariates_shape: Optional[Tuple[int, int]] = None self._lagged_feature_names: Optional[List[str]] = None + self._lagged_label_names: Optional[List[str]] = None # check and set output_chunk_length raise_if_not( @@ -501,13 +502,62 @@ def output_chunk_length(self) -> int: def output_chunk_shift(self) -> int: return self._output_chunk_shift - def get_multioutput_estimator(self, horizon, target_dim): + def get_multioutput_estimator(self, horizon: int, target_dim: int): + """Returns the estimator that forecasts the `horizon`th step of the `target_dim`th target component. + + Internally, estimators are grouped by `output_chunk_length` position, then by component. + + Parameters + ---------- + horizon + The index of the forecasting point within `output_chunk_length`. + target_dim + The index of the target component. + """ raise_if_not( isinstance(self.model, MultiOutputRegressor), "The sklearn model is not a MultiOutputRegressor object.", + logger, + ) + raise_if_not( + 0 <= horizon < self.output_chunk_length, + f"`horizon` must be `>= 0` and `< output_chunk_length={self.output_chunk_length}`.", + logger, + ) + raise_if_not( + 0 <= target_dim < self.input_dim["target"], + f"`target_dim` must be `>= 0`, and `< n_target_components={self.input_dim['target']}`.", + logger, ) - return self.model.estimators_[horizon + target_dim] + # when multi_models=True, one model per horizon and target component + idx_estimator = ( + self.multi_models * self.input_dim["target"] * horizon + target_dim + ) + return self.model.estimators_[idx_estimator] + + def get_estimator(self, horizon: int, target_dim: int): + """Returns the estimator that forecasts the `horizon`th step of the `target_dim`th target component. + + The model is returned directly if it supports multi-output natively. + + Parameters + ---------- + horizon + The index of the forecasting point within `output_chunk_length`. + target_dim + The index of the target component. + """ + + if isinstance(self.model, MultiOutputRegressor): + return self.get_multioutput_estimator( + horizon=horizon, target_dim=target_dim + ) + else: + logger.info( + "Model supports multi-output; a single estimator forecasts all the horizons and components." + ) + return self.model def _create_lagged_data( self, @@ -592,16 +642,18 @@ def _fit_model( self.model.fit(training_samples, training_labels, **kwargs) # generate and store the lagged components names (for feature importance analysis) - self._lagged_feature_names, _ = create_lagged_component_names( - target_series=target_series, - past_covariates=past_covariates, - future_covariates=future_covariates, - lags=self._get_lags("target"), - lags_past_covariates=self._get_lags("past"), - lags_future_covariates=self._get_lags("future"), - output_chunk_length=self.output_chunk_length, - concatenate=False, - use_static_covariates=self.uses_static_covariates, + self._lagged_feature_names, self._lagged_label_names = ( + create_lagged_component_names( + target_series=target_series, + past_covariates=past_covariates, + future_covariates=future_covariates, + lags=self._get_lags("target"), + lags_past_covariates=self._get_lags("past"), + lags_future_covariates=self._get_lags("future"), + output_chunk_length=self.output_chunk_length, + concatenate=False, + use_static_covariates=self.uses_static_covariates, + ) ) def fit( @@ -1115,6 +1167,17 @@ def lagged_feature_names(self) -> Optional[List[str]]: """ return self._lagged_feature_names + @property + def lagged_label_names(self) -> Optional[List[str]]: + """The lagged label name for the model's estimators. + + The naming convention is: ``"{name}_target_hrz{i}"``, where: + + - ``{name}`` the component name of the (first) series + - ``{i}`` is the position in output_chunk_length (label lag) + """ + return self._lagged_label_names + def __str__(self): return self.model.__str__() diff --git a/darts/tests/models/forecasting/test_regression_models.py b/darts/tests/models/forecasting/test_regression_models.py index 446719e0e1..01e95716a0 100644 --- a/darts/tests/models/forecasting/test_regression_models.py +++ b/darts/tests/models/forecasting/test_regression_models.py @@ -1270,57 +1270,127 @@ def test_historical_forecast(self, mode): ], ) def test_multioutput_wrapper(self, config): + """Check that with input_chunk_length=1, wrapping in MultiOutputRegressor is not happening""" model, supports_multioutput_natively = config model.fit(series=self.sine_multivariate1) if supports_multioutput_natively: assert not isinstance(model.model, MultiOutputRegressor) + # single estimator is responsible for both components + assert ( + model.model + == model.get_estimator(horizon=0, target_dim=0) + == model.get_estimator(horizon=0, target_dim=1) + ) else: assert isinstance(model.model, MultiOutputRegressor) + # one estimator (sub-model) per component + assert model.get_estimator(horizon=0, target_dim=0) != model.get_estimator( + horizon=0, target_dim=1 + ) - def test_multioutput_validation(self): - - lags = 4 + model_configs = [(XGBModel, {"tree_method": "exact"})] + if lgbm_available: + model_configs += [(LightGBMModel, {})] + if cb_available: + model_configs += [(CatBoostModel, {})] - models = [ - XGBModel( - lags=lags, output_chunk_length=1, multi_models=True, tree_method="exact" - ), - XGBModel( - lags=lags, - output_chunk_length=1, - multi_models=False, - tree_method="exact", - ), - XGBModel( - lags=lags, output_chunk_length=2, multi_models=True, tree_method="exact" - ), - XGBModel( - lags=lags, - output_chunk_length=2, - multi_models=False, - tree_method="exact", - ), - ] - if lgbm_available: - models += [ - LightGBMModel(lags=lags, output_chunk_length=1, multi_models=True), - LightGBMModel(lags=lags, output_chunk_length=1, multi_models=False), - LightGBMModel(lags=lags, output_chunk_length=2, multi_models=True), - LightGBMModel(lags=lags, output_chunk_length=2, multi_models=False), - ] - if cb_available: - models += [ - CatBoostModel(lags=lags, output_chunk_length=1, multi_models=True), - CatBoostModel(lags=lags, output_chunk_length=1, multi_models=False), - CatBoostModel(lags=lags, output_chunk_length=2, multi_models=True), - CatBoostModel(lags=lags, output_chunk_length=2, multi_models=False), - ] + @pytest.mark.parametrize( + "config", itertools.product(model_configs, [1, 2], [True, False]) + ) + def test_multioutput_validation(self, config): + """Check that models not supporting multi-output are properly wrapped when ocl>1""" + (model_cls, model_kwargs), ocl, multi_models = config train, val = self.sine_univariate1.split_after(0.6) + model = model_cls( + **model_kwargs, lags=4, output_chunk_length=ocl, multi_models=multi_models + ) + model.fit(series=train, val_series=val) + if model.output_chunk_length > 1 and model.multi_models: + assert isinstance(model.model, MultiOutputRegressor) + else: + assert not isinstance(model.model, MultiOutputRegressor) - for model in models: - model.fit(series=train, val_series=val) - if model.output_chunk_length > 1 and model.multi_models: - assert isinstance(model.model, MultiOutputRegressor) + def test_get_multioutput_estimator_multi_models(self): + """Craft training data so that estimator_[i].predict(X) == i + 1""" + + def helper_check_overfitted_estimators(ts: TimeSeries, ocl: int): + m = XGBModel(lags=3, output_chunk_length=ocl, multi_models=True) + m.fit(ts) + + assert len(m.model.estimators_) == ocl * ts.width + + dummy_feats = np.array([[0, 0, 0] * ts.width]) + estimator_counter = 0 + for i in range(ocl): + for j in range(ts.width): + sub_model = m.get_multioutput_estimator(horizon=i, target_dim=j) + pred = sub_model.predict(dummy_feats)[0] + # sub-model is overfitted on the training series + assert np.abs(estimator_counter - pred) < 1e-2 + estimator_counter += 1 + + # univariate, one-sub model per step in output_chunk_length + ocl = 3 + ts = TimeSeries.from_values(np.array([0, 0, 0, 0, 1, 2]).T) + # estimators_[0] labels : [0] + # estimators_[1] labels : [1] + # estimators_[2] labels : [2] + helper_check_overfitted_estimators(ts, ocl) + + # multivariate, one sub-model per component + ocl = 1 + ts = TimeSeries.from_values( + np.array([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 2]]).T + ) + # estimators_[0] labels : [0] + # estimators_[1] labels : [1] + # estimators_[2] labels : [2] + helper_check_overfitted_estimators(ts, ocl) + + # multivariate, one sub-model per position, per component + ocl = 2 + ts = TimeSeries.from_values( + np.array( + [ + [0, 0, 0, 0, 2], + [0, 0, 0, 1, 3], + ] + ).T + ) + # estimators_[0] labels : [0] + # estimators_[1] labels : [1] + # estimators_[2] labels : [2] + # estimators_[3] labels : [3] + helper_check_overfitted_estimators(ts, ocl) + + def test_get_multioutput_estimator_single_model(self): + """Check estimator getter when multi_models=False""" + # multivariate, one sub-model per component + ocl = 2 + ts = TimeSeries.from_values( + np.array( + [ + [0, 0, 0, 0, 1], + [0, 0, 0, 0, 2], + ] + ).T + ) + # estimators_[0] labels : [1] + # estimators_[1] labels : [2] + + m = XGBModel(lags=3, output_chunk_length=ocl, multi_models=False) + m.fit(ts) + + # one estimator is reused for all the horizon of a given component + assert len(m.model.estimators_) == ts.width + + dummy_feats = np.array([[0, 0, 0] * ts.width]) + for i in range(ocl): + for j in range(ts.width): + sub_model = m.get_multioutput_estimator(horizon=i, target_dim=j) + pred = sub_model.predict(dummy_feats)[0] + # sub-model forecast only depend on the target_dim + assert np.abs(j + 1 - pred) < 1e-2 @pytest.mark.parametrize("mode", [True, False]) def test_regression_model(self, mode): diff --git a/darts/utils/data/tabularization.py b/darts/utils/data/tabularization.py index 83cad5f94c..3c538ea433 100644 --- a/darts/utils/data/tabularization.py +++ b/darts/utils/data/tabularization.py @@ -728,7 +728,7 @@ def create_lagged_component_names( Note : will only use the component names of the first series from `target_series`, `past_covariates`, `future_covariates`, and static_covariates. - The naming convention for target, past and future covariates is: ``"{name}_{type}_lag{i}"``, where: + The naming convention for target, past and future covariates lags is: ``"{name}_{type}_lag{i}"``, where: - ``{name}`` the component name of the (first) series - ``{type}`` is the feature type, one of "target", "pastcov", and "futcov" @@ -740,6 +740,11 @@ def create_lagged_component_names( - ``{comp}`` the target component name of the (first) that the static covariate act on. If the static covariate acts globally on a multivariate target series, will show "global". + The naming convention for labels is: ``"{name}_target_hrz{i}"``, where: + + - ``{name}`` the component name of the (first) series + - ``{i}`` is the step in the forecast horizon + Returns ------- features_cols_name @@ -783,7 +788,7 @@ def create_lagged_component_names( if variate_type == "target" and lags: label_feature_names = [ - f"{name}_target_lag{lag}" + f"{name}_target_hrz{lag}" for lag in range(output_chunk_length) for name in components ] From 4de71e48619e24b1e5afb9942288cad445841398 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 4 Mar 2024 11:37:31 +0100 Subject: [PATCH 014/161] fix failing dataset unit tests for py38 (#2263) --- darts/tests/datasets/test_datasets.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/darts/tests/datasets/test_datasets.py b/darts/tests/datasets/test_datasets.py index 52d2e0d8df..92b37f105b 100644 --- a/darts/tests/datasets/test_datasets.py +++ b/darts/tests/datasets/test_datasets.py @@ -507,7 +507,7 @@ def test_inference_dataset_output_chunk_shift(self, config): target = self.target1[: -(ocl + ocs)] ds_covs = {} - ds_init_params = set(inspect.signature(ds_cls).parameters) + ds_init_params = set(inspect.signature(ds_cls.__init__).parameters) for cov_type in ["covariates", "past_covariates", "future_covariates"]: if cov_type in ds_init_params: ds_covs[cov_type] = self.cov1 @@ -1388,7 +1388,7 @@ def test_sequential_training_dataset_output_chunk_shift(self, config): target = self.target1[: -(ocl + ocs)] ds_covs = {} - ds_init_params = set(inspect.signature(ds_cls).parameters) + ds_init_params = set(inspect.signature(ds_cls.__init__).parameters) for cov_type in ["covariates", "past_covariates", "future_covariates"]: if cov_type in ds_init_params: ds_covs[cov_type] = self.cov1 From 3803cbef82bcc340f16d56fa23739566e7fe2f2f Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 4 Mar 2024 19:07:44 +0100 Subject: [PATCH 015/161] Feat/global naive models (#2261) --- CHANGELOG.md | 4 + README.md | 90 +-- darts/models/__init__.py | 5 + darts/models/forecasting/__init__.py | 80 ++- darts/models/forecasting/baselines.py | 4 +- darts/models/forecasting/block_rnn_model.py | 9 +- darts/models/forecasting/catboost_model.py | 4 +- darts/models/forecasting/dlinear.py | 7 +- darts/models/forecasting/forecasting_model.py | 29 +- .../forecasting/global_baseline_models.py | 665 ++++++++++++++++++ darts/models/forecasting/lgbm.py | 4 +- .../forecasting/linear_regression_model.py | 4 +- darts/models/forecasting/nbeats.py | 7 +- darts/models/forecasting/nhits.py | 7 +- darts/models/forecasting/nlinear.py | 7 +- .../forecasting/pl_forecasting_module.py | 12 +- darts/models/forecasting/random_forest.py | 4 +- .../forecasting/regression_ensemble_model.py | 2 +- darts/models/forecasting/regression_model.py | 14 +- darts/models/forecasting/rnn_model.py | 7 +- darts/models/forecasting/tcn_model.py | 7 +- darts/models/forecasting/tft_model.py | 7 +- darts/models/forecasting/tide_model.py | 7 +- .../forecasting/torch_forecasting_model.py | 129 ++-- darts/models/forecasting/transformer_model.py | 7 +- darts/models/forecasting/xgboost.py | 4 +- .../forecasting/test_baseline_models.py | 426 +++++++++++ .../test_global_forecasting_models.py | 141 +++- .../forecasting/test_historical_forecasts.py | 286 +++++--- .../test_torch_forecasting_model.py | 9 + .../tabularization/test_get_feature_times.py | 2 +- darts/utils/data/tabularization.py | 22 +- darts/utils/historical_forecasts/utils.py | 3 +- docs/Makefile | 1 + docs/userguide/covariates.md | 39 +- 35 files changed, 1662 insertions(+), 393 deletions(-) create mode 100644 darts/models/forecasting/global_baseline_models.py create mode 100644 darts/tests/models/forecasting/test_baseline_models.py diff --git a/CHANGELOG.md b/CHANGELOG.md index 3ba7c9bd11..a6e2b42f19 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -27,6 +27,10 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Added a `get_estimator()` method to access the underlying estimator - Updated the docstring of `get_multioutout_estimator()` - Added attribute `lagged_label_names` to identify the forecasted step and component of each estimator +- 🚀 New global baseline models that use fixed input and output chunks for prediction. This offers support for univariate, multivariate, single and multiple target series prediction, fixed- or autoregressive/moving forecasts, optimized historical forecast, batch prediction, prediction from datasets, and more. [#2261](https://github.com/unit8co/darts/pull/2261) by [Dennis Bader](https://github.com/dennisbader). + - `GlobalNaiveAggregate`: Computes an aggregate (using a custom or built-in `torch` function) for each target component over the last `input_chunk_length` points, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveMean` and `NaiveMovingAverage`. + - `GlobalNaiveDrift`: Takes the slope of each target component over the last `input_chunk_length` points and projects the trend over the next `output_chunk_length` points for prediction. Depending on the parameters, this model can be equivalent to `NaiveDrift`. + - `GlobalNaiveSeasonal`: Takes the target component value at the `input_chunk_length`th point before the end of the target `series`, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveSeasonal`. - Other improvements: - Added new helper function `darts.utils.n_steps_between()` to efficiently compute the number of time steps (periods) between two points with a given frequency. Improves efficiency for regression model tabularization by avoiding `pd.date_range()`. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - 🔴 Changed the default `start` value in `ForecastingModel.gridsearch()` from `0.5` to `None`, to make it consistent with `historical_forecasts` and other methods. [#2243](https://github.com/unit8co/darts/pull/2243) by [Thomas Kientz](https://github.com/thomktz). diff --git a/README.md b/README.md index 2d3f335742..1786c968a6 100644 --- a/README.md +++ b/README.md @@ -211,49 +211,53 @@ Here's a breakdown of the forecasting models currently implemented in Darts. We on bringing more models and features. -| Model | Sources | Target Series Support:

Univariate/
Multivariate | Covariates Support:

Past-observed/
Future-known/
Static | Probabilistic Forecasting:

Sampled/
Distribution Parameters | Training & Forecasting on Multiple Series | -|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------| -| **Baseline Models**
([LocalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#local-forecasting-models-lfms)) | | | | | | -| [NaiveMean](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMean) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | -| [NaiveSeasonal](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveSeasonal) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | -| [NaiveDrift](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveDrift) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | -| [NaiveMovingAverage](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMovingAverage) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | -| **Statistical / Classic Models**
([LocalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#local-forecasting-models-lfms)) | | | | | | -| [ARIMA](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.arima.html#darts.models.forecasting.arima.ARIMA) | | 🟩 🟥 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | -| [VARIMA](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.varima.html#darts.models.forecasting.varima.VARIMA) | | 🟥 🟩 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | -| [AutoARIMA](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.auto_arima.html#darts.models.forecasting.auto_arima.AutoARIMA) | | 🟩 🟥 | 🟥 🟩 🟥 | 🟥 🟥 | 🟥 | -| [StatsForecastAutoArima](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_arima.html#darts.models.forecasting.sf_auto_arima.StatsForecastAutoARIMA) (faster AutoARIMA) | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast) | 🟩 🟥 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | -| [ExponentialSmoothing](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.exponential_smoothing.html#darts.models.forecasting.exponential_smoothing.ExponentialSmoothing) | | 🟩 🟥 | 🟥 🟥 🟥 | 🟩 🟥 | 🟥 | -| [StatsforecastAutoETS](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_ets.html#darts.models.forecasting.sf_auto_ets.StatsForecastAutoETS) | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast) | 🟩 🟥 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | -| [StatsforecastAutoCES](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_ces.html#darts.models.forecasting.sf_auto_ces.StatsForecastAutoCES) | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast) | 🟩 🟥 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | -| [BATS](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tbats_model.html#darts.models.forecasting.tbats_model.BATS) and [TBATS](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tbats_model.html#darts.models.forecasting.tbats_model.TBATS) | [TBATS paper](https://robjhyndman.com/papers/ComplexSeasonality.pdf) | 🟩 🟥 | 🟥 🟥 🟥 | 🟩 🟥 | 🟥 | -| [Theta](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.theta.html#darts.models.forecasting.theta.Theta) and [FourTheta](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.theta.html#darts.models.forecasting.theta.FourTheta) | [Theta](https://robjhyndman.com/papers/Theta.pdf) & [4 Theta](https://github.com/Mcompetitions/M4-methods/blob/master/4Theta%20method.R) | 🟩 🟥 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | -| [StatsForecastAutoTheta](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_theta.html#darts.models.forecasting.sf_auto_theta.StatsForecastAutoTheta) | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast) | 🟩 🟥 | 🟥 🟥 🟥 | 🟩 🟥 | 🟥 | -| [Prophet](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.prophet_model.html#darts.models.forecasting.prophet_model.Prophet) | [Prophet repo](https://github.com/facebook/prophet) | 🟩 🟥 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | -| [FFT](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.fft.html#darts.models.forecasting.fft.FFT) (Fast Fourier Transform) | | 🟩 🟥 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | -| [KalmanForecaster](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.kalman_forecaster.html#darts.models.forecasting.kalman_forecaster.KalmanForecaster) using the Kalman filter and N4SID for system identification | [N4SID paper](https://people.duke.edu/~hpgavin/SystemID/References/VanOverschee-Automatica-1994.pdf) | 🟩 🟩 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | -| [Croston](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.croston.html#darts.models.forecasting.croston.Croston) method | | 🟩 🟥 | 🟥 🟩 🟥 | 🟥 🟥 | 🟥 | -| **Regression Models**
([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms)) | | | | | | -| [RegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_model.html#darts.models.forecasting.regression_model.RegressionModel): generic wrapper around any sklearn regression model | | 🟩 🟩 | 🟩 🟩 🟩 | 🟥 🟥 | 🟩 | -| [LinearRegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | -| [RandomForest](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.random_forest.html#darts.models.forecasting.random_forest.RandomForest) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟥 🟥 | 🟩 | -| [LightGBMModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.lgbm.html#darts.models.forecasting.lgbm.LightGBMModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | -| [XGBModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.xgboost.html#darts.models.forecasting.xgboost.XGBModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | -| [CatBoostModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.catboost_model.html#darts.models.forecasting.catboost_model.CatBoostModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | -| **PyTorch (Lightning)-based Models**
([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms)) | | | | | | -| [RNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.rnn_model.html#darts.models.forecasting.rnn_model.RNNModel) (incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version | [DeepAR paper](https://arxiv.org/abs/1704.04110) | 🟩 🟩 | 🟥 🟩 🟥 | 🟩 🟩 | 🟩 | -| [BlockRNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.block_rnn_model.html#darts.models.forecasting.block_rnn_model.BlockRNNModel) (incl. LSTM and GRU) | | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | -| [NBEATSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nbeats.html#darts.models.forecasting.nbeats.NBEATSModel) | [N-BEATS paper](https://arxiv.org/abs/1905.10437) | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | -| [NHiTSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nhits.html#darts.models.forecasting.nhits.NHiTSModel) | [N-HiTS paper](https://arxiv.org/abs/2201.12886) | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | -| [TCNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tcn_model.html#darts.models.forecasting.tcn_model.TCNModel) | [TCN paper](https://arxiv.org/abs/1803.01271), [DeepTCN paper](https://arxiv.org/abs/1906.04397), [blog post](https://medium.com/unit8-machine-learning-publication/temporal-convolutional-networks-and-forecasting-5ce1b6e97ce4) | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | -| [TransformerModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.transformer_model.html#darts.models.forecasting.transformer_model.TransformerModel) | | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | -| [TFTModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html#darts.models.forecasting.tft_model.TFTModel) (Temporal Fusion Transformer) | [TFT paper](https://arxiv.org/pdf/1912.09363.pdf), [PyTorch Forecasting](https://pytorch-forecasting.readthedocs.io/en/latest/models.html) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | -| [DLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.dlinear.html#darts.models.forecasting.dlinear.DLinearModel) | [DLinear paper](https://arxiv.org/pdf/2205.13504.pdf) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | -| [NLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nlinear.html#darts.models.forecasting.nlinear.NLinearModel) | [NLinear paper](https://arxiv.org/pdf/2205.13504.pdf) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | -| [TiDEModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tide_model.html#darts.models.forecasting.tide_model.TiDEModel) | [TiDE paper](https://arxiv.org/pdf/2304.08424.pdf) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | -| **Ensemble Models**
([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms)): Model support is dependent on ensembled forecasting models and the ensemble model itself | | | | | | -| [NaiveEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveEnsembleModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | -| [RegressionEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_ensemble_model.html#darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| Model | Sources | Target Series Support:

Univariate/
Multivariate | Covariates Support:

Past-observed/
Future-known/
Static | Probabilistic Forecasting:

Sampled/
Distribution Parameters | Training & Forecasting on Multiple Series | +|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------| +| **Baseline Models**
([LocalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#local-forecasting-models-lfms)) | | | | | | +| [NaiveMean](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMean) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | +| [NaiveSeasonal](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveSeasonal) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | +| [NaiveDrift](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveDrift) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | +| [NaiveMovingAverage](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMovingAverage) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | +| **Statistical / Classic Models**
([LocalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#local-forecasting-models-lfms)) | | | | | | +| [ARIMA](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.arima.html#darts.models.forecasting.arima.ARIMA) | | 🟩 🟥 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | +| [VARIMA](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.varima.html#darts.models.forecasting.varima.VARIMA) | | 🟥 🟩 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | +| [AutoARIMA](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.auto_arima.html#darts.models.forecasting.auto_arima.AutoARIMA) | | 🟩 🟥 | 🟥 🟩 🟥 | 🟥 🟥 | 🟥 | +| [StatsForecastAutoArima](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_arima.html#darts.models.forecasting.sf_auto_arima.StatsForecastAutoARIMA) (faster AutoARIMA) | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast) | 🟩 🟥 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | +| [ExponentialSmoothing](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.exponential_smoothing.html#darts.models.forecasting.exponential_smoothing.ExponentialSmoothing) | | 🟩 🟥 | 🟥 🟥 🟥 | 🟩 🟥 | 🟥 | +| [StatsforecastAutoETS](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_ets.html#darts.models.forecasting.sf_auto_ets.StatsForecastAutoETS) | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast) | 🟩 🟥 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | +| [StatsforecastAutoCES](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_ces.html#darts.models.forecasting.sf_auto_ces.StatsForecastAutoCES) | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast) | 🟩 🟥 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | +| [BATS](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tbats_model.html#darts.models.forecasting.tbats_model.BATS) and [TBATS](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tbats_model.html#darts.models.forecasting.tbats_model.TBATS) | [TBATS paper](https://robjhyndman.com/papers/ComplexSeasonality.pdf) | 🟩 🟥 | 🟥 🟥 🟥 | 🟩 🟥 | 🟥 | +| [Theta](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.theta.html#darts.models.forecasting.theta.Theta) and [FourTheta](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.theta.html#darts.models.forecasting.theta.FourTheta) | [Theta](https://robjhyndman.com/papers/Theta.pdf) & [4 Theta](https://github.com/Mcompetitions/M4-methods/blob/master/4Theta%20method.R) | 🟩 🟥 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | +| [StatsForecastAutoTheta](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.sf_auto_theta.html#darts.models.forecasting.sf_auto_theta.StatsForecastAutoTheta) | [Nixtla's statsforecast](https://github.com/Nixtla/statsforecast) | 🟩 🟥 | 🟥 🟥 🟥 | 🟩 🟥 | 🟥 | +| [Prophet](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.prophet_model.html#darts.models.forecasting.prophet_model.Prophet) | [Prophet repo](https://github.com/facebook/prophet) | 🟩 🟥 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | +| [FFT](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.fft.html#darts.models.forecasting.fft.FFT) (Fast Fourier Transform) | | 🟩 🟥 | 🟥 🟥 🟥 | 🟥 🟥 | 🟥 | +| [KalmanForecaster](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.kalman_forecaster.html#darts.models.forecasting.kalman_forecaster.KalmanForecaster) using the Kalman filter and N4SID for system identification | [N4SID paper](https://people.duke.edu/~hpgavin/SystemID/References/VanOverschee-Automatica-1994.pdf) | 🟩 🟩 | 🟥 🟩 🟥 | 🟩 🟥 | 🟥 | +| [Croston](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.croston.html#darts.models.forecasting.croston.Croston) method | | 🟩 🟥 | 🟥 🟩 🟥 | 🟥 🟥 | 🟥 | +| **Global Baseline Models**
([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms)) | | | | | | +| [GlobalNaiveAggregate](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.global_baseline_models.html#darts.models.forecasting.global_baseline_models.GlobalNaiveAggregate) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟩 | +| [GlobalNaiveDrift](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.global_baseline_models.html#darts.models.forecasting.global_baseline_models.GlobalNaiveDrift) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟩 | +| [GlobalNaiveSeasonal](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.global_baseline_models.html#darts.models.forecasting.global_baseline_models.GlobalNaiveSeasonal) | | 🟩 🟩 | 🟥 🟥 🟥 | 🟥 🟥 | 🟩 | +| **Regression Models**
([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms)) | | | | | | +| [RegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_model.html#darts.models.forecasting.regression_model.RegressionModel): generic wrapper around any sklearn regression model | | 🟩 🟩 | 🟩 🟩 🟩 | 🟥 🟥 | 🟩 | +| [LinearRegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| [RandomForest](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.random_forest.html#darts.models.forecasting.random_forest.RandomForest) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟥 🟥 | 🟩 | +| [LightGBMModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.lgbm.html#darts.models.forecasting.lgbm.LightGBMModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| [XGBModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.xgboost.html#darts.models.forecasting.xgboost.XGBModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| [CatBoostModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.catboost_model.html#darts.models.forecasting.catboost_model.CatBoostModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| **PyTorch (Lightning)-based Models**
([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms)) | | | | | | +| [RNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.rnn_model.html#darts.models.forecasting.rnn_model.RNNModel) (incl. LSTM and GRU); equivalent to DeepAR in its probabilistic version | [DeepAR paper](https://arxiv.org/abs/1704.04110) | 🟩 🟩 | 🟥 🟩 🟥 | 🟩 🟩 | 🟩 | +| [BlockRNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.block_rnn_model.html#darts.models.forecasting.block_rnn_model.BlockRNNModel) (incl. LSTM and GRU) | | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | +| [NBEATSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nbeats.html#darts.models.forecasting.nbeats.NBEATSModel) | [N-BEATS paper](https://arxiv.org/abs/1905.10437) | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | +| [NHiTSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nhits.html#darts.models.forecasting.nhits.NHiTSModel) | [N-HiTS paper](https://arxiv.org/abs/2201.12886) | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | +| [TCNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tcn_model.html#darts.models.forecasting.tcn_model.TCNModel) | [TCN paper](https://arxiv.org/abs/1803.01271), [DeepTCN paper](https://arxiv.org/abs/1906.04397), [blog post](https://medium.com/unit8-machine-learning-publication/temporal-convolutional-networks-and-forecasting-5ce1b6e97ce4) | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | +| [TransformerModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.transformer_model.html#darts.models.forecasting.transformer_model.TransformerModel) | | 🟩 🟩 | 🟩 🟥 🟥 | 🟩 🟩 | 🟩 | +| [TFTModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html#darts.models.forecasting.tft_model.TFTModel) (Temporal Fusion Transformer) | [TFT paper](https://arxiv.org/pdf/1912.09363.pdf), [PyTorch Forecasting](https://pytorch-forecasting.readthedocs.io/en/latest/models.html) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| [DLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.dlinear.html#darts.models.forecasting.dlinear.DLinearModel) | [DLinear paper](https://arxiv.org/pdf/2205.13504.pdf) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| [NLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nlinear.html#darts.models.forecasting.nlinear.NLinearModel) | [NLinear paper](https://arxiv.org/pdf/2205.13504.pdf) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| [TiDEModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tide_model.html#darts.models.forecasting.tide_model.TiDEModel) | [TiDE paper](https://arxiv.org/pdf/2304.08424.pdf) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| **Ensemble Models**
([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms)): Model support is dependent on ensembled forecasting models and the ensemble model itself | | | | | | +| [NaiveEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveEnsembleModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| [RegressionEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_ensemble_model.html#darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | ## Community & Contact diff --git a/darts/models/__init__.py b/darts/models/__init__.py index 0dac1a280d..fa28a90922 100644 --- a/darts/models/__init__.py +++ b/darts/models/__init__.py @@ -18,6 +18,11 @@ ) from darts.models.forecasting.exponential_smoothing import ExponentialSmoothing from darts.models.forecasting.fft import FFT +from darts.models.forecasting.global_baseline_models import ( + GlobalNaiveAggregate, + GlobalNaiveDrift, + GlobalNaiveSeasonal, +) from darts.models.forecasting.kalman_forecaster import KalmanForecaster from darts.models.forecasting.linear_regression_model import LinearRegressionModel from darts.models.forecasting.random_forest import RandomForest diff --git a/darts/models/forecasting/__init__.py b/darts/models/forecasting/__init__.py index 63cb81d09d..4b2fa2850e 100644 --- a/darts/models/forecasting/__init__.py +++ b/darts/models/forecasting/__init__.py @@ -3,46 +3,50 @@ ------------------ Baseline Models (`LocalForecastingModel `_) - - :class:`NaiveMean ` - - :class:`NaiveSeasonal ` - - :class:`NaiveDrift ` - - :class:`NaiveMovingAverage ` + - :class:`~darts.models.forecasting.baselines.NaiveMean` + - :class:`~darts.models.forecasting.baselines.NaiveSeasonal` + - :class:`~darts.models.forecasting.baselines.NaiveDrift` + - :class:`~darts.models.forecasting.baselines.NaiveMovingAverage` +Global Baseline Models (`GlobalForecastingModel `_) + - :class:`~darts.models.forecasting.global_baseline_models.GlobalNaiveAggregate` + - :class:`~darts.models.forecasting.global_baseline_models.GlobalNaiveDrift` + - :class:`~darts.models.forecasting.global_baseline_models.GlobalNaiveSeasonal` Statistical Models (`LocalForecastingModel `_) - - :class:`ARIMA ` - - :class:`VARIMA ` - - :class:`AutoARIMA ` - - :class:`StatsForecastAutoARIMA ` - - :class:`ExponentialSmoothing ` - - :class:`StatsForecastAutoETS ` - - :class:`StatsForecastAutoCES ` - - :class:`BATS ` - - :class:`TBATS ` - - :class:`Theta ` - - :class:`FourTheta ` - - :class:`StatsForecastAutoTheta ` - - :class:`Prophet ` - - :class:`FFT (Fast Fourier Transform) ` - - :class:`KalmanForecaster ` - - :class:`Croston ` + - :class:`~darts.models.forecasting.arima.ARIMA` + - :class:`~darts.models.forecasting.varima.VARIMA` + - :class:`~darts.models.forecasting.auto_arima.AutoARIMA` + - :class:`~darts.models.forecasting.sf_auto_arima.StatsForecastAutoARIMA` + - :class:`~darts.models.forecasting.exponential_smoothing.ExponentialSmoothing` + - :class:`~darts.models.forecasting.sf_auto_ets.StatsForecastAutoETS` + - :class:`~darts.models.forecasting.sf_auto_ces.StatsForecastAutoCES` + - :class:`~darts.models.forecasting.tbats_model.BATS` + - :class:`~darts.models.forecasting.tbats_model.TBATS` + - :class:`~darts.models.forecasting.theta.Theta` + - :class:`~darts.models.forecasting.theta.FourTheta` + - :class:`~darts.models.forecasting.sf_auto_theta.StatsForecastAutoTheta` + - :class:`~darts.models.forecasting.prophet_model.Prophet` + - :class:`~Fast Fourier Transform) `_) - - :class:`RegressionModel ` - - :class:`LinearRegressionModel ` - - :class:`RandomForest ` - - :class:`LightGBMModel ` - - :class:`XGBModel ` - - :class:`CatBoostModel ` + - :class:`~darts.models.forecasting.regression_model.RegressionModel` + - :class:`~darts.models.forecasting.linear_regression_model.LinearRegressionModel` + - :class:`~darts.models.forecasting.random_forest.RandomForest` + - :class:`~darts.models.forecasting.lgbm.LightGBMModel` + - :class:`~darts.models.forecasting.xgboost.XGBModel` + - :class:`~darts.models.forecasting.catboost_model.CatBoostModel` PyTorch (Lightning)-based Models (`GlobalForecastingModel `_) - - :class:`RNNModel ` - - :class:`BlockRNNModel ` - - :class:`NBEATSModel ` - - :class:`NHiTSModel ` - - :class:`TCNModel ` - - :class:`TransformerModel ` - - :class:`TFTModel ` - - :class:`DLinearModel ` - - :class:`NLinearModel ` - - :class:`TiDEModel ` + - :class:`~darts.models.forecasting.rnn_model.RNNModel` + - :class:`~darts.models.forecasting.block_rnn_model.BlockRNNModel` + - :class:`~darts.models.forecasting.nbeats.NBEATSModel` + - :class:`~darts.models.forecasting.nhits.NHiTSModel` + - :class:`~darts.models.forecasting.tcn_model.TCNModel` + - :class:`~darts.models.forecasting.transformer_model.TransformerModel` + - :class:`~darts.models.forecasting.tft_model.TFTModel` + - :class:`~darts.models.forecasting.dlinear.DLinearModel` + - :class:`~darts.models.forecasting.nlinear.NLinearModel` + - :class:`~darts.models.forecasting.tide_model.TiDEModel` Ensemble Models (`GlobalForecastingModel `_) - - :class:`NaiveEnsembleModel ` - - :class:`RegressionEnsembleModel ` + - :class:`darts.models.forecasting.baselines.NaiveEnsembleModel` + - :class:`darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel` """ diff --git a/darts/models/forecasting/baselines.py b/darts/models/forecasting/baselines.py index f210b4945e..932c0b20eb 100644 --- a/darts/models/forecasting/baselines.py +++ b/darts/models/forecasting/baselines.py @@ -2,7 +2,7 @@ Baseline Models --------------- -A collection of simple benchmark models for univariate series. +A collection of simple benchmark models for single uni- and multivariate series. """ from typing import List, Optional, Sequence, Union @@ -193,7 +193,7 @@ class NaiveMovingAverage(LocalForecastingModel): def __init__(self, input_chunk_length: int = 1): """Naive Moving Average Model - This model forecasts using an auto-regressive moving average (ARMA). + This model forecasts using an autoregressive moving average (ARMA). Parameters ---------- diff --git a/darts/models/forecasting/block_rnn_model.py b/darts/models/forecasting/block_rnn_model.py index 1a7c90de8b..ebed1b4a44 100644 --- a/darts/models/forecasting/block_rnn_model.py +++ b/darts/models/forecasting/block_rnn_model.py @@ -64,7 +64,8 @@ def __init__( dropout The fraction of neurons that are dropped in all-but-last RNN layers. **kwargs - all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + all parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. """ super().__init__(**kwargs) @@ -124,7 +125,7 @@ def __init__( name The name of the specific PyTorch RNN module ("RNN", "GRU" or "LSTM"). **kwargs - all parameters required for the :class:`darts.model.forecasting_models.CustomBlockRNNModule` base class. + all parameters required for the :class:`darts.models.forecasting.CustomBlockRNNModule` base class. Inputs ------ @@ -220,7 +221,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -229,7 +230,7 @@ def __init__( input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model - cannot generate auto-regressive predictions (`n > output_chunk_length`). + cannot generate autoregressive predictions (`n > output_chunk_length`). model Either a string specifying the RNN module type ("RNN", "LSTM" or "GRU"), or a subclass of :class:`CustomBlockRNNModule` (the class itself, not an object of the class) with a custom logic. diff --git a/darts/models/forecasting/catboost_model.py b/darts/models/forecasting/catboost_model.py index e1934ce296..104ce9d602 100644 --- a/darts/models/forecasting/catboost_model.py +++ b/darts/models/forecasting/catboost_model.py @@ -75,7 +75,7 @@ def __init__( output_chunk_length Number of time steps predicted at once (per chunk) by the internal model. It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated using a - one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is + one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -84,7 +84,7 @@ def __init__( input chunk end). This will create a gap between the input (history of target and past covariates) and output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the - target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. diff --git a/darts/models/forecasting/dlinear.py b/darts/models/forecasting/dlinear.py index 53ec884aab..4e0365204a 100644 --- a/darts/models/forecasting/dlinear.py +++ b/darts/models/forecasting/dlinear.py @@ -100,7 +100,8 @@ def __init__( const_init Whether to initialize the weights to 1/in_len **kwargs - all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + all parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. Inputs ------ @@ -254,7 +255,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -263,7 +264,7 @@ def __init__( input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model - cannot generate auto-regressive predictions (`n > output_chunk_length`). + cannot generate autoregressive predictions (`n > output_chunk_length`). shared_weights Whether to use shared weights for all components of multivariate series. diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index 946d7216c3..beeb3b3327 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -145,7 +145,7 @@ def __init__(self, *args, **kwargs): # by default models do not use encoders self.add_encoders = kwargs["add_encoders"] - self.encoders: Optional[SequentialEncoder] = None + self.encoders = self.initialize_encoders(default=True) @abstractmethod def fit(self, series: TimeSeries) -> "ForecastingModel": @@ -161,12 +161,20 @@ def fit(self, series: TimeSeries) -> "ForecastingModel": self Fitted model. """ - raise_if_not( - len(series) >= self.min_train_series_length, - "Train series only contains {} elements but {} model requires at least {} entries".format( - len(series), str(self), self.min_train_series_length - ), - ) + if not isinstance(series, TimeSeries): + raise_log( + ValueError("Train `series` must be a single `TimeSeries`."), + logger=logger, + ) + if not len(series) >= self.min_train_series_length: + raise_log( + ValueError( + "Train series only contains {} elements but {} model requires at least {} entries".format( + len(series), str(self), self.min_train_series_length + ) + ), + logger=logger, + ) self.training_series = series self._fit_called = True @@ -1688,9 +1696,12 @@ def residuals( return residuals_list if len(residuals_list) > 1 else residuals_list[0] - def initialize_encoders(self) -> SequentialEncoder: + def initialize_encoders(self, default=False) -> SequentialEncoder: """instantiates the SequentialEncoder object based on self._model_encoder_settings and parameter ``add_encoders`` used at model creation""" + if default: + return SequentialEncoder(add_encoders={}) + ( input_chunk_length, output_chunk_length, @@ -2053,7 +2064,7 @@ def _verify_static_covariates(self, static_covariates: Optional[pd.DataFrame]): """ Verify that all static covariates are numeric. """ - if static_covariates is not None and self.uses_static_covariates: + if static_covariates is not None: numeric_mask = static_covariates.columns.isin( static_covariates.select_dtypes(include=np.number) ) diff --git a/darts/models/forecasting/global_baseline_models.py b/darts/models/forecasting/global_baseline_models.py new file mode 100644 index 0000000000..dc81fe49aa --- /dev/null +++ b/darts/models/forecasting/global_baseline_models.py @@ -0,0 +1,665 @@ +""" +Global Baseline Models (Naive) +------------------------------ + +A collection of simple benchmark models working with univariate, multivariate, single, and multiple series. + +- :class:`GlobalNaiveAggregate` +- :class:`GlobalNaiveDrift` +- :class:`GlobalNaiveSeasonal` +""" + +from abc import ABC, abstractmethod +from typing import Callable, Optional, Sequence, Tuple, Union + +import torch + +from darts import TimeSeries +from darts.logging import get_logger, raise_log +from darts.models.forecasting.pl_forecasting_module import ( + PLMixedCovariatesModule, + io_processor, +) +from darts.models.forecasting.torch_forecasting_model import ( + MixedCovariatesTorchModel, + TorchForecastingModel, +) +from darts.utils.data.sequential_dataset import MixedCovariatesSequentialDataset +from darts.utils.data.training_dataset import MixedCovariatesTrainingDataset + +MixedCovariatesTrainTensorType = Tuple[ + torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor +] + + +logger = get_logger(__name__) + + +def _extract_targets(batch: Tuple[torch.Tensor], n_targets: int): + """Extracts and returns the target components from an input batch + + Parameters + ---------- + batch + The input batch tuple for the forward method. Has elements `(x_past, x_future, x_static)`. + n_targets + The number of target components to extract. + """ + return batch[0][:, :, :n_targets] + + +def _repeat_along_output_chunk(x: torch.Tensor, ocl: int) -> torch.Tensor: + """Expands a tensor `x` of shape (batch size, n components) to a tensor of shape + (batch size, `ocl`, n target components, 1 (n samples)), by repeating the values + along the `output_chunk_length` axis. + + Parameters + ---------- + x + An input tensor of shape (batch size, n target components) + ocl + The output_chunk_length. + """ + return x.view(-1, 1, x[0].shape[-1], 1).expand(-1, ocl, -1, -1) + + +class _GlobalNaiveModule(PLMixedCovariatesModule, ABC): + def __init__(self, *args, **kwargs): + """Pytorch module for implementing naive models. + + Implement your own naive module by subclassing from `_GlobalNaiveModule`, and implement the + logic for prediction in the private `_forward` method. + """ + super().__init__(*args, **kwargs) + + @io_processor + def forward( + self, x_in: Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]] + ) -> torch.Tensor: + """Naive model forward pass. + + Parameters + ---------- + x_in + comes as tuple `(x_past, x_future, x_static)` where `x_past` is the input/past chunk and `x_future` + is the output/future chunk. Input dimensions are `(batch_size, time_steps, components)` + + Returns + ------- + torch.Tensor + The output Tensor of shape `(batch_size, output_chunk_length, output_dim, nr_params)` + """ + return self._forward(x_in) + + @abstractmethod + def _forward(self, x_in) -> torch.Tensor: + """Private method to implement the forward method in the subclasses.""" + pass + + +class _GlobalNaiveModel(MixedCovariatesTorchModel, ABC): + def __init__( + self, + input_chunk_length: int, + output_chunk_length: int, + output_chunk_shift: int = 0, + use_static_covariates: bool = True, + **kwargs, + ): + """Base class for global naive models. The naive models inherit from `MixedCovariatesTorchModel` giving access + to past, future, and static covariates in the model `forward()` method. This allows to create custom models + naive models which can make use of the covariates. The built-in naive models will not use this information. + + The naive models do not have to be trained before generating predictions. + + To add a new naive model: + - subclass from `_GlobalNaiveModel` with implementation of private method `_create_model` that creates an + object of: + - subclass from `_GlobalNaiveModule` with implemention of private method `_forward` + + .. note:: + - Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()` + and `load_weights_from_checkpoint()` are not supported for global naive models. + + Parameters + ---------- + input_chunk_length + The length of the input sequence fed to the model. + output_chunk_length + The length of the emitted forecast and output sequence fed to the model. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate autoregressive predictions (`n > output_chunk_length`). + use_static_covariates + Whether the model should use static covariate information in case the input `series` passed to ``fit()`` + contain static covariates. If ``True``, and static covariates are available at fitting time, will enforce + that all target `series` have the same static covariate dimensionality in ``fit()`` and ``predict()``. + **kwargs + Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and + Darts' :class:`TorchForecastingModel`. + Since naive models are not trained, the following parameters will have no effect: + `loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`, + `n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`. + """ + super().__init__(**self._extract_torch_model_params(**self.model_params)) + + # extract pytorch lightning module kwargs + self.pl_module_params = self._extract_pl_module_params(**self.model_params) + + self._considers_static_covariates = use_static_covariates + + def fit( + self, + series: Union[TimeSeries, Sequence[TimeSeries]], + past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, + future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, + *args, + **kwargs, + ) -> TorchForecastingModel: + """Fit/train the model on a (or potentially multiple) series. + This method is only implemented for naive baseline models to provide a unified fit/predict API with other + forecasting models. + + The model is not really trained on the input, but `fit()` is used to setup the model based on the input series. + Also, it stores the training `series` in case only a single `TimeSeries` was passed. This allows to call + `predict()` without having to pass the single `series`. + + Parameters + ---------- + series + A series or sequence of series serving as target (i.e. what the model will be trained to forecast) + past_covariates + Optionally, a series or sequence of series specifying past-observed covariates + future_covariates + Optionally, a series or sequence of series specifying future-known covariates + **kwargs + Optionally, some keyword arguments. + + Returns + ------- + self + Fitted model. + """ + return super().fit(series, past_covariates, future_covariates, *args, **kwargs) + + @staticmethod + def load_from_checkpoint( + model_name: str, + work_dir: str = None, + file_name: str = None, + best: bool = True, + **kwargs, + ) -> "TorchForecastingModel": + raise_log( + NotImplementedError( + "GlobalNaiveModels do not support loading from checkpoint since they are never trained." + ), + logger=logger, + ) + + def load_weights_from_checkpoint( + self, + model_name: str = None, + work_dir: str = None, + file_name: str = None, + best: bool = True, + strict: bool = True, + load_encoders: bool = True, + skip_checks: bool = False, + **kwargs, + ): + raise_log( + NotImplementedError( + "GlobalNaiveModels do not support weights loading since they do not have any weights/parameters." + ), + logger=logger, + ) + + @abstractmethod + def _create_model( + self, train_sample: MixedCovariatesTrainTensorType + ) -> _GlobalNaiveModule: + pass + + def _verify_predict_sample(self, predict_sample: Tuple): + # naive models do not have to be trained, predict sample does not + # have to match the training sample + pass + + def min_train_series_length(self) -> int: + return self.input_chunk_length + + def supports_likelihood_parameter_prediction(self) -> bool: + return False + + def _is_probabilistic(self) -> bool: + return False + + @property + def supports_static_covariates(self) -> bool: + return True + + @property + def supports_multivariate(self) -> bool: + return True + + @property + def _requires_training(self) -> bool: + # naive models do not have to be trained. + return False + + def _build_train_dataset( + self, + target: Sequence[TimeSeries], + past_covariates: Optional[Sequence[TimeSeries]], + future_covariates: Optional[Sequence[TimeSeries]], + max_samples_per_ts: Optional[int], + ) -> MixedCovariatesTrainingDataset: + return MixedCovariatesSequentialDataset( + target_series=target, + past_covariates=past_covariates, + future_covariates=future_covariates, + input_chunk_length=self.input_chunk_length, + output_chunk_length=0, + output_chunk_shift=self.output_chunk_shift, + max_samples_per_ts=max_samples_per_ts, + use_static_covariates=self.uses_static_covariates, + ) + + +class _NoCovariatesMixin: + @property + def supports_static_covariates(self) -> bool: + return False + + @property + def supports_future_covariates(self) -> bool: + return False + + @property + def supports_past_covariates(self) -> bool: + return False + + +class _GlobalNaiveAggregateModule(_GlobalNaiveModule): + def __init__( + self, agg_fn: Callable[[torch.Tensor, int], torch.Tensor], *args, **kwargs + ): + super().__init__(*args, **kwargs) + self.agg_fn = agg_fn + + def _forward(self, x_in) -> torch.Tensor: + y_target = _extract_targets(x_in, self.n_targets) + aggregate = self.agg_fn(y_target, dim=1) + return _repeat_along_output_chunk(aggregate, self.output_chunk_length) + + +class GlobalNaiveAggregate(_NoCovariatesMixin, _GlobalNaiveModel): + def __init__( + self, + input_chunk_length: int, + output_chunk_length: int, + output_chunk_shift: int = 0, + agg_fn: Union[str, Callable[[torch.Tensor, int], torch.Tensor]] = "mean", + **kwargs, + ): + """Global Naive Aggregate Model. + + The model generates forecasts for each `series` as described below: + + - take an aggregate (computed with `agg_fn`, default: mean) from each target component over the last + `input_chunk_length` points + - the forecast is the component aggregate repeated `output_chunk_length` times + + Depending on the horizon `n` used when calling `model.predict()`, the forecasts are either: + + - a constant aggregate value (default: mean) if `n <= output_chunk_length`, or + - a moving aggregate if `n > output_chunk_length`, as a result of the autoregressive prediction. + + This model is equivalent to: + + - :class:`~darts.models.forecasting.baselines.NaiveMean`, when `input_chunk_length` is equal to the length of + the input target `series`, and `agg_fn='mean'`. + - :class:`~darts.models.forecasting.baselines.NaiveMovingAverage`, with identical `input_chunk_length` + and `output_chunk_length=1`, and `agg_fn='mean'`. + + .. note:: + - Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()` + and `load_weights_from_checkpoint()` are not supported for global naive models. + + Parameters + ---------- + input_chunk_length + The length of the input sequence fed to the model. + output_chunk_length + The length of the emitted forecast and output sequence fed to the model. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate autoregressive predictions (`n > output_chunk_length`). + agg_fn + The aggregation function to use. If a string, must be the name of `torch` function that can be imported + directly from `torch` (e.g. `"mean"` for `torch.mean`, `"sum"` for `torch.sum`). + The function must have the signature below. If a `Callable`, it must also have the signature below. + + .. highlight:: python + .. code-block:: python + + def agg_fn(x: torch.Tensor, dim: int, *args, **kwargs) -> torch.Tensor: + # x has shape `(batch size, input_chunk_length, n targets)`, `dim` is always `1`. + # function must return a tensor of shape `(batch size, n targets)` + return torch.mean(x, dim=dim) + .. + **kwargs + Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and + Darts' :class:`TorchForecastingModel`. + Since naive models are not trained, the following parameters will have no effect: + `loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`, + `n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`. + + Examples + -------- + >>> from darts.datasets import IceCreamHeaterDataset + >>> from darts.models import GlobalNaiveAggregate + >>> # create list of multivariate series + >>> series_1 = IceCreamHeaterDataset().load() + >>> series_2 = series_1 + 100. + >>> series = [series_1, series_2] + >>> # predict 3 months, take mean over last 60 months + >>> horizon, icl = 3, 60 + >>> # naive mean over last 60 months (with `output_chunk_length = horizon`) + >>> model = GlobalNaiveAggregate(input_chunk_length=icl, output_chunk_length=horizon) + >>> # predict after end of each multivariate series + >>> pred = model.fit(series).predict(n=horizon, series=series) + >>> [p.values() for p in pred] + [array([[29.666668, 50.983337], + [29.666668, 50.983337], + [29.666668, 50.983337]]), array([[129.66667, 150.98334], + [129.66667, 150.98334], + [129.66667, 150.98334]])] + >>> # naive moving mean (with `output_chunk_length < horizon`) + >>> model = GlobalNaiveAggregate(input_chunk_length=icl, output_chunk_length=1, agg_fn="mean") + >>> pred = model.fit(series).predict(n=horizon, series=series) + >>> [p.values() for p in pred] + [array([[29.666668, 50.983337], + [29.894447, 50.88306 ], + [30.109352, 50.98111 ]]), array([[129.66667, 150.98334], + [129.89445, 150.88307], + [130.10936, 150.98111]])] + >>> # naive moving sum (with `output_chunk_length < horizon`) + >>> model = GlobalNaiveAggregate(input_chunk_length=icl, output_chunk_length=1, agg_fn="sum") + >>> pred = model.fit(series).predict(n=horizon, series=series) + >>> [p.values() for p in pred] + [array([[ 1780., 3059.], + [ 3544., 6061.], + [ 7071., 12077.]]), array([[ 7780., 9059.], + [15444., 17961.], + [30771., 35777.]])] + """ + super().__init__( + input_chunk_length=input_chunk_length, + output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, + use_static_covariates=False, + **kwargs, + ) + if isinstance(agg_fn, str): + agg_fn = getattr(torch, agg_fn, None) + if agg_fn is None: + raise_log( + ValueError( + "When `agg_fn` is a string, must be the name of a PyTorch function that " + "can be imported directly from `torch`. E.g., `'mean'` for `torch.mean`" + ), + logger=logger, + ) + if not isinstance(agg_fn, Callable): + raise_log( + ValueError("`agg_fn` must be a string or callable."), + logger=logger, + ) + + # check that `agg_fn` returns the expected output + batch_size, n_targets = 5, 3 + x = torch.ones((batch_size, 4, n_targets)) + try: + agg = agg_fn(x, dim=1) + assert isinstance( + agg, torch.Tensor + ), "`agg_fn` output must be a torch Tensor." + assert agg.shape == ( + batch_size, + n_targets, + ), "Unexpected `agg_fn` output shape." + except Exception as err: + raise_log( + ValueError( + f"`agg_fn` sanity check raised the following error: ({err}) Read the parameter " + f"description to properly define the aggregation function." + ), + logger=logger, + ) + self.agg_fn = agg_fn + + def _create_model( + self, train_sample: MixedCovariatesTrainTensorType + ) -> _GlobalNaiveModule: + return _GlobalNaiveAggregateModule(agg_fn=self.agg_fn, **self.pl_module_params) + + +class _GlobalNaiveSeasonalModule(_GlobalNaiveModule): + def _forward(self, x_in) -> torch.Tensor: + y_target = _extract_targets(x_in, self.n_targets) + season = y_target[:, 0, :] + return _repeat_along_output_chunk(season, self.output_chunk_length) + + +class GlobalNaiveSeasonal(_NoCovariatesMixin, _GlobalNaiveModel): + def __init__( + self, + input_chunk_length: int, + output_chunk_length: int, + output_chunk_shift: int = 0, + **kwargs, + ): + """Global Naive Seasonal Model. + + The model generates forecasts for each `series` as described below: + + - take the value from each target component at the `input_chunk_length`th point before the end of the + target `series`. + - the forecast is the component value repeated `output_chunk_length` times. + + Depending on the horizon `n` used when calling `model.predict()`, the forecasts are either: + + - a constant value if `n <= output_chunk_length`, or + - a moving (seasonal) value if `n > output_chunk_length`, as a result of the autoregressive prediction. + + This model is equivalent to: + + - :class:`~darts.models.forecasting.baselines.NaiveSeasonal`, when `input_chunk_length` is equal to the length + of the input target `series` and `output_chunk_length=1`. + + .. note:: + - Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()` + and `load_weights_from_checkpoint()` are not supported for global naive models. + + Parameters + ---------- + input_chunk_length + The length of the input sequence fed to the model. + output_chunk_length + The length of the emitted forecast and output sequence fed to the model. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate autoregressive predictions (`n > output_chunk_length`). + **kwargs + Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and + Darts' :class:`TorchForecastingModel`. + Since naive models are not trained, the following parameters will have no effect: + `loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`, + `n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`. + + Examples + -------- + >>> from darts.datasets import IceCreamHeaterDataset + >>> from darts.models import GlobalNaiveSeasonal + >>> # create list of multivariate series + >>> series_1 = IceCreamHeaterDataset().load() + >>> series_2 = series_1 + 100. + >>> series = [series_1, series_2] + >>> # predict 3 months, use value from 12 months ago + >>> horizon, icl = 3, 12 + >>> # repeated seasonal value (with `output_chunk_length = horizon`) + >>> model = GlobalNaiveSeasonal(input_chunk_length=icl, output_chunk_length=horizon) + >>> # predict after end of each multivariate series + >>> pred = model.fit(series).predict(n=horizon, series=series) + >>> [p.values() for p in pred] + [array([[ 21., 100.], + [ 21., 100.], + [ 21., 100.]]), array([[121., 200.], + [121., 200.], + [121., 200.]])] + >>> # moving seasonal value (with `output_chunk_length < horizon`) + >>> model = GlobalNaiveSeasonal(input_chunk_length=icl, output_chunk_length=1) + >>> pred = model.fit(series).predict(n=horizon, series=series) + >>> [p.values() for p in pred] + [array([[ 21., 100.], + [ 21., 68.], + [ 24., 51.]]), array([[121., 200.], + [121., 168.], + [124., 151.]])] + """ + super().__init__( + input_chunk_length=input_chunk_length, + output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, + use_static_covariates=False, + **kwargs, + ) + + def _create_model( + self, train_sample: MixedCovariatesTrainTensorType + ) -> _GlobalNaiveModule: + return _GlobalNaiveSeasonalModule(**self.pl_module_params) + + +class _GlobalNaiveDrift(_GlobalNaiveModule): + def _forward(self, x_in) -> torch.Tensor: + y_target = _extract_targets(x_in, self.n_targets) + slope = _repeat_along_output_chunk( + (y_target[:, -1, :] - y_target[:, 0, :]) / (self.input_chunk_length - 1), + self.output_chunk_length, + ) + + x = torch.arange( + start=self.output_chunk_shift + 1, + end=self.output_chunk_length + self.output_chunk_shift + 1, + device=self.device, + ).view(1, self.output_chunk_length, 1, 1) + + y_0 = y_target[:, -1, :].view(-1, 1, y_target.shape[-1], 1) + return slope * x + y_0 + + +class GlobalNaiveDrift(_NoCovariatesMixin, _GlobalNaiveModel): + def __init__( + self, + input_chunk_length: int, + output_chunk_length: int, + output_chunk_shift: int = 0, + **kwargs, + ): + """Global Naive Drift Model. + + The model generates forecasts for each `series` as described below: + + - take the slope `m` from each target component between the `input_chunk_length`th and last point before the + end of the `series`. + - the forecast is `m * x + c` per component where `x` are the values + `range(1 + output_chunk_shift, 1 + output_chunk_length + output_chunk_shift)`, and `c` are the last values + from each target component. + + Depending on the horizon `n` used when calling `model.predict()`, the forecasts are either: + + - a linear drift if `n <= output_chunk_length`, or + - a moving drift if `n > output_chunk_length`, as a result of the autoregressive prediction. + + This model is equivalent to: + + - :class:`~darts.models.forecasting.baselines.NaiveDrift`, when `input_chunk_length` is equal to the length + of the input target `series` and `output_chunk_length=n`. + + .. note:: + - Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()` + and `load_weights_from_checkpoint()` are not supported for global naive models. + + Parameters + ---------- + input_chunk_length + The length of the input sequence fed to the model. + output_chunk_length + The length of the emitted forecast and output sequence fed to the model. + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate autoregressive predictions (`n > output_chunk_length`). + **kwargs + Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and + Darts' :class:`TorchForecastingModel`. + Since naive models are not trained, the following parameters will have no effect: + `loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`, + `n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`. + + Examples + -------- + >>> from darts.datasets import IceCreamHeaterDataset + >>> from darts.models import GlobalNaiveDrift + >>> # create list of multivariate series + >>> series_1 = IceCreamHeaterDataset().load() + >>> series_2 = series_1 + 100. + >>> series = [series_1, series_2] + >>> # predict 3 months, use drift over the last 60 months + >>> horizon, icl = 3, 60 + >>> # linear drift (with `output_chunk_length = horizon`) + >>> model = GlobalNaiveDrift(input_chunk_length=icl, output_chunk_length=horizon) + >>> # predict after end of each multivariate series + >>> pred = model.fit(series).predict(n=horizon, series=series) + >>> [p.values() for p in pred] + [array([[24.135593, 74.28814 ], + [24.271187, 74.57627 ], + [24.40678 , 74.86441 ]]), array([[124.13559, 174.28813], + [124.27119, 174.57628], + [124.40678, 174.86441]])] + >>> # moving drift (with `output_chunk_length < horizon`) + >>> model = GlobalNaiveDrift(input_chunk_length=icl, output_chunk_length=1) + >>> pred = model.fit(series).predict(n=horizon, series=series) + >>> [p.values() for p in pred] + [array([[24.135593, 74.28814 ], + [24.256536, 74.784546], + [24.34563 , 75.45886 ]]), array([[124.13559, 174.28813], + [124.25653, 174.78455], + [124.34563, 175.45886]])] + """ + super().__init__( + input_chunk_length=input_chunk_length, + output_chunk_length=output_chunk_length, + output_chunk_shift=output_chunk_shift, + use_static_covariates=False, + **kwargs, + ) + + def _create_model( + self, train_sample: MixedCovariatesTrainTensorType + ) -> _GlobalNaiveModule: + return _GlobalNaiveDrift(**self.pl_module_params) diff --git a/darts/models/forecasting/lgbm.py b/darts/models/forecasting/lgbm.py index aa23215834..602fcac978 100644 --- a/darts/models/forecasting/lgbm.py +++ b/darts/models/forecasting/lgbm.py @@ -86,7 +86,7 @@ def __init__( output_chunk_length Number of time steps predicted at once (per chunk) by the internal model. It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated using a - one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is + one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -95,7 +95,7 @@ def __init__( input chunk end). This will create a gap between the input (history of target and past covariates) and output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the - target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. diff --git a/darts/models/forecasting/linear_regression_model.py b/darts/models/forecasting/linear_regression_model.py index 2d8f848b0a..032ab0c460 100644 --- a/darts/models/forecasting/linear_regression_model.py +++ b/darts/models/forecasting/linear_regression_model.py @@ -80,7 +80,7 @@ def __init__( output_chunk_length Number of time steps predicted at once (per chunk) by the internal model. It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated using a - one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is + one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -89,7 +89,7 @@ def __init__( input chunk end). This will create a gap between the input (history of target and past covariates) and output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the - target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. diff --git a/darts/models/forecasting/nbeats.py b/darts/models/forecasting/nbeats.py index ae83675200..73295192ad 100644 --- a/darts/models/forecasting/nbeats.py +++ b/darts/models/forecasting/nbeats.py @@ -412,7 +412,8 @@ def __init__( activation The activation function of encoder/decoder intermediate layer. **kwargs - all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + all parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. Inputs ------ @@ -570,7 +571,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -579,7 +580,7 @@ def __init__( input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model - cannot generate auto-regressive predictions (`n > output_chunk_length`). + cannot generate autoregressive predictions (`n > output_chunk_length`). generic_architecture Boolean value indicating whether the generic architecture of N-BEATS is used. If not, the interpretable architecture outlined in the paper (consisting of one trend diff --git a/darts/models/forecasting/nhits.py b/darts/models/forecasting/nhits.py index 661d6a7eb5..27fa88c155 100644 --- a/darts/models/forecasting/nhits.py +++ b/darts/models/forecasting/nhits.py @@ -370,7 +370,8 @@ def __init__( MaxPool1d Use MaxPool1d pooling. False uses AvgPool1d **kwargs - all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + all parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. Inputs ------ @@ -507,7 +508,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -516,7 +517,7 @@ def __init__( input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model - cannot generate auto-regressive predictions (`n > output_chunk_length`). + cannot generate autoregressive predictions (`n > output_chunk_length`). num_stacks The number of stacks that make up the whole model. num_blocks diff --git a/darts/models/forecasting/nlinear.py b/darts/models/forecasting/nlinear.py index 31324ae31b..790223215e 100644 --- a/darts/models/forecasting/nlinear.py +++ b/darts/models/forecasting/nlinear.py @@ -56,7 +56,8 @@ def __init__( Whether to apply the "normalization" described in the paper. **kwargs - all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + all parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. Inputs ------ @@ -204,7 +205,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -213,7 +214,7 @@ def __init__( input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model - cannot generate auto-regressive predictions (`n > output_chunk_length`). + cannot generate autoregressive predictions (`n > output_chunk_length`). shared_weights Whether to use shared weights for all components of multivariate series. diff --git a/darts/models/forecasting/pl_forecasting_module.py b/darts/models/forecasting/pl_forecasting_module.py index ae8d7c87f4..6be20f5da0 100644 --- a/darts/models/forecasting/pl_forecasting_module.py +++ b/darts/models/forecasting/pl_forecasting_module.py @@ -89,13 +89,13 @@ def __init__( This class is meant to be inherited to create a new PyTorch Lightning-based forecasting module. When subclassing this class, please make sure to add the following methods with the given signatures: - - :func:`PLTorchForecastingModel.__init__()` - - :func:`PLTorchForecastingModel.forward()` - - :func:`PLTorchForecastingModel._produce_train_output()` - - :func:`PLTorchForecastingModel._get_batch_prediction()` + - :func:`PLForecastingModule.__init__()` + - :func:`PLForecastingModule.forward()` + - :func:`PLForecastingModule._produce_train_output()` + - :func:`PLForecastingModule._get_batch_prediction()` In subclass `MyModel`'s :func:`__init__` function call ``super(MyModel, self).__init__(**kwargs)`` where - ``kwargs`` are the parameters of :class:`PLTorchForecastingModel`. + ``kwargs`` are the parameters of :class:`PLForecastingModule`. Parameters ---------- @@ -106,7 +106,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). diff --git a/darts/models/forecasting/random_forest.py b/darts/models/forecasting/random_forest.py index ed69529498..d231c79955 100644 --- a/darts/models/forecasting/random_forest.py +++ b/darts/models/forecasting/random_forest.py @@ -84,7 +84,7 @@ def __init__( output_chunk_length Number of time steps predicted at once (per chunk) by the internal model. It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated using a - one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is + one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -93,7 +93,7 @@ def __init__( input chunk end). This will create a gap between the input (history of target and past covariates) and output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the - target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. diff --git a/darts/models/forecasting/regression_ensemble_model.py b/darts/models/forecasting/regression_ensemble_model.py index 00c458a459..aeac43b04c 100644 --- a/darts/models/forecasting/regression_ensemble_model.py +++ b/darts/models/forecasting/regression_ensemble_model.py @@ -57,7 +57,7 @@ def __init__( `train_forecasting_models=False`. regression_model Any regression model with ``predict()`` and ``fit()`` methods (e.g. from scikit-learn) - Default: ``darts.model.LinearRegressionModel(fit_intercept=False)`` + Default: ``darts.models.LinearRegressionModel(fit_intercept=False)`` .. note:: if `regression_model` is probabilistic, the `RegressionEnsembleModel` will also be probabilistic. diff --git a/darts/models/forecasting/regression_model.py b/darts/models/forecasting/regression_model.py index e0ffee30c9..0ae5543505 100644 --- a/darts/models/forecasting/regression_model.py +++ b/darts/models/forecasting/regression_model.py @@ -123,7 +123,7 @@ def __init__( output_chunk_length Number of time steps predicted at once (per chunk) by the internal model. It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated using a - one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is + one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -132,7 +132,7 @@ def __init__( input chunk end). This will create a gap between the input (history of target and past covariates) and output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the - target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. @@ -694,8 +694,6 @@ def fit( past_covariates = series2seq(past_covariates) future_covariates = series2seq(future_covariates) - self._verify_static_covariates(series[0].static_covariates) - self.encoders = self.initialize_encoders() if self.encoders.encoding_available: past_covariates, future_covariates = self.generate_fit_encodings( @@ -713,6 +711,7 @@ def fit( and self.supports_static_covariates and self.considers_static_covariates ): + self._verify_static_covariates(get_single_series(series).static_covariates) self._uses_static_covariates = True for covs, name in zip([past_covariates, future_covariates], ["past", "future"]): @@ -894,7 +893,8 @@ def predict( past_covariates = series2seq(past_covariates) future_covariates = series2seq(future_covariates) - self._verify_static_covariates(series[0].static_covariates) + if self.uses_static_covariates: + self._verify_static_covariates(series[0].static_covariates) # encoders are set when calling fit(), but not when calling fit_from_dataset() # when covariates are loaded from model, they already contain the encodings: this is not a problem as the @@ -1646,7 +1646,7 @@ def __init__( output_chunk_length Number of time steps predicted at once (per chunk) by the internal model. It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated using a - one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is + one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -1655,7 +1655,7 @@ def __init__( input chunk end). This will create a gap between the input (history of target and past covariates) and output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the - target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. diff --git a/darts/models/forecasting/rnn_model.py b/darts/models/forecasting/rnn_model.py index 08e3dbb34c..01621d9909 100644 --- a/darts/models/forecasting/rnn_model.py +++ b/darts/models/forecasting/rnn_model.py @@ -62,7 +62,8 @@ def __init__( dropout The fraction of neurons that are dropped in all-but-last RNN layers. **kwargs - all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + all parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. """ # RNNModule doesn't really need input and output_chunk_length for PLModule super().__init__(**kwargs) @@ -217,7 +218,7 @@ def __init__( name The name of the specific PyTorch RNN module ("RNN", "GRU" or "LSTM"). **kwargs - all parameters required for the :class:`darts.model.forecasting_models.CustomRNNModule` base class. + all parameters required for the :class:`darts.models.forecasting.CustomRNNModule` base class. Inputs ------ @@ -293,7 +294,7 @@ def __init__( RNNModel is fully recurrent in the sense that, at prediction time, an output is computed using these inputs: - previous target value, which will be set to the last known target value for the first prediction, - and for all other predictions it will be set to the previous prediction (in an auto-regressive fashion), + and for all other predictions it will be set to the previous prediction (in an autoregressive fashion), - the previous hidden state, - the covariates at time `t` for forecasting the target at time `t` (if the model was trained with covariates), diff --git a/darts/models/forecasting/tcn_model.py b/darts/models/forecasting/tcn_model.py index 8e3da48434..981c8ded57 100644 --- a/darts/models/forecasting/tcn_model.py +++ b/darts/models/forecasting/tcn_model.py @@ -169,7 +169,8 @@ def __init__( dropout The dropout rate for every convolutional layer. **kwargs - all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + all parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. Inputs ------ @@ -284,7 +285,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -293,7 +294,7 @@ def __init__( input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model - cannot generate auto-regressive predictions (`n > output_chunk_length`). + cannot generate autoregressive predictions (`n > output_chunk_length`). kernel_size The size of every kernel in a convolutional layer. num_filters diff --git a/darts/models/forecasting/tft_model.py b/darts/models/forecasting/tft_model.py index 3a4978557a..dd1d4853b7 100644 --- a/darts/models/forecasting/tft_model.py +++ b/darts/models/forecasting/tft_model.py @@ -107,7 +107,8 @@ def __init__( norm_type: str | nn.Module The type of LayerNorm variant to use. **kwargs - all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + all parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. """ super().__init__(**kwargs) @@ -707,7 +708,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -717,7 +718,7 @@ def __init__( input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model - cannot generate auto-regressive predictions (`n > output_chunk_length`). + cannot generate autoregressive predictions (`n > output_chunk_length`). hidden_size Hidden state size of the TFT. It is the main hyper-parameter and common across the internal TFT architecture. diff --git a/darts/models/forecasting/tide_model.py b/darts/models/forecasting/tide_model.py index 5f0ce68d80..6f655d9716 100644 --- a/darts/models/forecasting/tide_model.py +++ b/darts/models/forecasting/tide_model.py @@ -116,7 +116,8 @@ def __init__( dropout Dropout probability **kwargs - all parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + all parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. Inputs ------ @@ -404,7 +405,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -413,7 +414,7 @@ def __init__( input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model - cannot generate auto-regressive predictions (`n > output_chunk_length`). + cannot generate autoregressive predictions (`n > output_chunk_length`). num_encoder_layers The number of residual blocks in the encoder. num_decoder_layers diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index f6ae362088..b77989092a 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -616,12 +616,36 @@ def _verify_predict_sample(self, predict_sample: Tuple): """ pass - @abstractmethod def _verify_past_future_covariates(self, past_covariates, future_covariates): """ Verify that any non-None covariates comply with the model type. """ - pass + invalid_covs = [] + if past_covariates is not None and not self.supports_past_covariates: + invalid_covs.append("`past_covariates`") + if future_covariates is not None and not self.supports_future_covariates: + invalid_covs.append("`future_covariates`") + if self.uses_static_covariates and not self.supports_static_covariates: + invalid_covs.append("`static_covariates`") + if invalid_covs: + supported_covs = [] + if self.supports_past_covariates: + supported_covs.append("`past_covariates`") + if self.supports_future_covariates: + supported_covs.append("`future_covariates`") + if self.supports_static_covariates: + supported_covs.append("`static_covariates`") + if supported_covs: + add_txt = f"It only supports {', '.join(supported_covs)}." + else: + add_txt = "It does not support any covariates." + + raise_log( + ValueError( + f"The model does not support {', '.join(invalid_covs)}. " + add_txt + ), + logger=logger, + ) @random_method def fit( @@ -772,22 +796,21 @@ def _setup_for_fit_from_dataset( past_covariates=past_covariates, future_covariates=future_covariates, ) - - if past_covariates is not None: - self._uses_past_covariates = True - if future_covariates is not None: - self._uses_future_covariates = True + self._verify_past_future_covariates( + past_covariates=past_covariates, future_covariates=future_covariates + ) if ( get_single_series(series).static_covariates is not None and self.supports_static_covariates and self.considers_static_covariates ): + self._verify_static_covariates(get_single_series(series).static_covariates) self._uses_static_covariates = True - self._verify_past_future_covariates( - past_covariates=past_covariates, future_covariates=future_covariates - ) - self._verify_static_covariates(series[0].static_covariates) + if past_covariates is not None: + self._uses_past_covariates = True + if future_covariates is not None: + self._uses_future_covariates = True # Check that dimensions of train and val set match; on first series only if val_series is not None: @@ -804,7 +827,10 @@ def _setup_for_fit_from_dataset( past_covariates=val_past_covariates, future_covariates=val_future_covariates, ) - self._verify_static_covariates(val_series[0].static_covariates) + if self.uses_static_covariates: + self._verify_static_covariates( + get_single_series(val_series).static_covariates + ) match = ( series[0].width == val_series[0].width @@ -863,6 +889,7 @@ def _setup_for_fit_from_dataset( ), ) logger.info(f"Train dataset contains {len(train_dataset)} samples.") + series_input = (series, past_covariates, future_covariates) fit_from_ds_params = ( train_dataset, @@ -1070,12 +1097,13 @@ def _train( ckpt_path = self.load_ckpt_path self.load_ckpt_path = None - trainer.fit( - model, - train_dataloaders=train_loader, - val_dataloaders=val_loader, - ckpt_path=ckpt_path, - ) + if self._requires_training: + trainer.fit( + model, + train_dataloaders=train_loader, + val_dataloaders=val_loader, + ckpt_path=ckpt_path, + ) self.model = model self.trainer = trainer @@ -1335,7 +1363,11 @@ def predict( past_covariates = series2seq(past_covariates) future_covariates = series2seq(future_covariates) - self._verify_static_covariates(series[0].static_covariates) + self._verify_past_future_covariates( + past_covariates=past_covariates, future_covariates=future_covariates + ) + if self.uses_static_covariates: + self._verify_static_covariates(get_single_series(series).static_covariates) # encoders are set when calling fit(), but not when calling fit_from_dataset() # when covariates are loaded from model, they already contain the encodings: this is not a problem as the @@ -2026,6 +2058,11 @@ def _is_probabilistic(self) -> bool: else True # all torch models can be probabilistic (via Dropout) ) + @property + def _requires_training(self) -> bool: + """Whether the model should be trained when calling a `fit*` method.""" + return True + def _check_optimizable_historical_forecasts( self, forecast_horizon: int, @@ -2328,9 +2365,10 @@ def _mixed_compare_sample(train_sample: Tuple, predict_sample: Tuple): Parameters ---------- train_sample - (past_target, past_covariates, historic_future_covariates, future_covariates, future_target) + (past_target, past_covariates, historic_future_covariates, future_covariates, static covariates, future_target) predict_sample - (past_target, past_covariates, historic_future_covariates, future_covariates, future_past_covariates, ts_target) + (past_target, past_covariates, historic_future_covariates, future_covariates, future_past_covariates, + static_covariates, ts_target) """ # datasets; we skip future_target for train and predict, and skip future_past_covariates for predict datasets ds_names = [ @@ -2390,11 +2428,6 @@ def _build_train_dataset( future_covariates: Optional[Sequence[TimeSeries]], max_samples_per_ts: Optional[int], ) -> PastCovariatesTrainingDataset: - raise_if_not( - future_covariates is None, - "Specified future_covariates for a PastCovariatesModel (only past_covariates are expected).", - ) - return PastCovariatesSequentialDataset( target_series=target, covariates=past_covariates, @@ -2414,11 +2447,6 @@ def _build_inference_dataset( stride: int = 0, bounds: Optional[np.ndarray] = None, ) -> PastCovariatesInferenceDataset: - raise_if_not( - future_covariates is None, - "Specified future_covariates for a PastCovariatesModel (only past_covariates are expected).", - ) - return PastCovariatesInferenceDataset( target_series=target, covariates=past_covariates, @@ -2440,13 +2468,6 @@ def _verify_inference_dataset_type(self, inference_dataset: InferenceDataset): def _verify_predict_sample(self, predict_sample: Tuple): _basic_compare_sample(self.train_sample, predict_sample) - def _verify_past_future_covariates(self, past_covariates, future_covariates): - raise_if_not( - future_covariates is None, - "Some future_covariates have been provided to a PastCovariates model. These models " - "support only past_covariates.", - ) - @property def _model_encoder_settings( self, @@ -2497,11 +2518,6 @@ def _build_train_dataset( future_covariates: Optional[Sequence[TimeSeries]], max_samples_per_ts: Optional[int], ) -> FutureCovariatesTrainingDataset: - raise_if_not( - past_covariates is None, - "Specified past_covariates for a FutureCovariatesModel (only future_covariates are expected).", - ) - return FutureCovariatesSequentialDataset( target_series=target, covariates=future_covariates, @@ -2521,11 +2537,6 @@ def _build_inference_dataset( stride: int = 0, bounds: Optional[np.ndarray] = None, ) -> FutureCovariatesInferenceDataset: - raise_if_not( - past_covariates is None, - "Specified past_covariates for a FutureCovariatesModel (only future_covariates are expected).", - ) - return FutureCovariatesInferenceDataset( target_series=target, covariates=future_covariates, @@ -2546,13 +2557,6 @@ def _verify_inference_dataset_type(self, inference_dataset: InferenceDataset): def _verify_predict_sample(self, predict_sample: Tuple): _basic_compare_sample(self.train_sample, predict_sample) - def _verify_past_future_covariates(self, past_covariates, future_covariates): - raise_if_not( - past_covariates is None, - "Some past_covariates have been provided to a PastCovariates model. These models " - "support only future_covariates.", - ) - @property def _model_encoder_settings( self, @@ -2647,13 +2651,6 @@ def _verify_inference_dataset_type(self, inference_dataset: InferenceDataset): def _verify_predict_sample(self, predict_sample: Tuple): _basic_compare_sample(self.train_sample, predict_sample) - def _verify_past_future_covariates(self, past_covariates, future_covariates): - raise_if_not( - past_covariates is None, - "Some past_covariates have been provided to a DualCovariates Torch model. These models " - "support only future_covariates.", - ) - @property def _model_encoder_settings( self, @@ -2748,10 +2745,6 @@ def _verify_inference_dataset_type(self, inference_dataset: InferenceDataset): def _verify_predict_sample(self, predict_sample: Tuple): _mixed_compare_sample(self.train_sample, predict_sample) - def _verify_past_future_covariates(self, past_covariates, future_covariates): - # both covariates are supported; do nothing - pass - @property def _model_encoder_settings( self, @@ -2899,10 +2892,6 @@ def _verify_train_dataset_type(self, train_dataset: TrainingDataset): def _verify_inference_dataset_type(self, inference_dataset: InferenceDataset): _raise_if_wrong_type(inference_dataset, SplitCovariatesInferenceDataset) - def _verify_past_future_covariates(self, past_covariates, future_covariates): - # both covariates are supported; do nothing - pass - def _verify_predict_sample(self, predict_sample: Tuple): # TODO: we have to check both past and future covariates raise NotImplementedError() diff --git a/darts/models/forecasting/transformer_model.py b/darts/models/forecasting/transformer_model.py index 7814f73fde..d4d25cd73c 100644 --- a/darts/models/forecasting/transformer_model.py +++ b/darts/models/forecasting/transformer_model.py @@ -167,7 +167,8 @@ def __init__( custom_decoder A custom transformer decoder provided by the user (default=None). **kwargs - All parameters required for :class:`darts.model.forecasting_models.PLForecastingModule` base class. + All parameters required for :class:`darts.models.forecasting.pl_forecasting_module.PLForecastingModule` + base class. Inputs ------ @@ -362,7 +363,7 @@ def __init__( Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values from future covariates to use as a model input (if the model supports future covariates). It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated - using either a one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -371,7 +372,7 @@ def __init__( input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model - cannot generate auto-regressive predictions (`n > output_chunk_length`). + cannot generate autoregressive predictions (`n > output_chunk_length`). d_model The number of expected features in the transformer encoder/decoder inputs (default=64). nhead diff --git a/darts/models/forecasting/xgboost.py b/darts/models/forecasting/xgboost.py index cff32afdc7..e62a37d065 100644 --- a/darts/models/forecasting/xgboost.py +++ b/darts/models/forecasting/xgboost.py @@ -105,7 +105,7 @@ def __init__( output_chunk_length Number of time steps predicted at once (per chunk) by the internal model. It is not the same as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated using a - one-shot- or auto-regressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is + one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit the model from using future values of past and / or future covariates for prediction (depending on the model's covariate support). @@ -114,7 +114,7 @@ def __init__( input chunk end). This will create a gap between the input (history of target and past covariates) and output. If the model supports `future_covariates`, the `lags_future_covariates` are relative to the first step in the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the - target `series`. If `output_chunk_shift` is set, the model cannot generate auto-regressive predictions + target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). add_encoders A large number of past and future covariates can be automatically generated with `add_encoders`. diff --git a/darts/tests/models/forecasting/test_baseline_models.py b/darts/tests/models/forecasting/test_baseline_models.py new file mode 100644 index 0000000000..650b054fa8 --- /dev/null +++ b/darts/tests/models/forecasting/test_baseline_models.py @@ -0,0 +1,426 @@ +import itertools + +import numpy as np +import pytest + +from darts import TimeSeries +from darts.logging import get_logger +from darts.models import NaiveDrift, NaiveMean, NaiveMovingAverage, NaiveSeasonal +from darts.models.forecasting.forecasting_model import ( + GlobalForecastingModel, + LocalForecastingModel, +) +from darts.tests.conftest import tfm_kwargs +from darts.utils import timeseries_generation as tg + +logger = get_logger(__name__) + + +icl = 5 +local_models = [ + (NaiveDrift, {}), + (NaiveMean, {}), + (NaiveMovingAverage, {}), + (NaiveSeasonal, {}), +] +global_models = [] + + +try: + import torch + + from darts.models import GlobalNaiveAggregate, GlobalNaiveDrift, GlobalNaiveSeasonal + + TORCH_AVAILABLE = True + + global_models += [ + ( + GlobalNaiveAggregate, + {"input_chunk_length": icl, "output_chunk_length": 3, **tfm_kwargs}, + ), + ( + GlobalNaiveAggregate, + {"input_chunk_length": icl, "output_chunk_length": 1, **tfm_kwargs}, + ), + ( + GlobalNaiveDrift, + {"input_chunk_length": icl, "output_chunk_length": 3, **tfm_kwargs}, + ), + ( + GlobalNaiveDrift, + {"input_chunk_length": icl, "output_chunk_length": 1, **tfm_kwargs}, + ), + ( + GlobalNaiveSeasonal, + {"input_chunk_length": icl, "output_chunk_length": 3, **tfm_kwargs}, + ), + ( + GlobalNaiveSeasonal, + {"input_chunk_length": icl, "output_chunk_length": 1, **tfm_kwargs}, + ), + ] + + def custom_mean_valid(x, dim): + return torch.mean(x, dim) + + def custom_mean_invalid_out_shape(x, dim): + return x[:1] + + def custom_mean_invalid_signature(x): + return torch.mean(x, dim=1) + + def custom_mean_invalid_output_type(x, dim): + return torch.mean(x, dim=1).detach().numpy() + +except ImportError: + logger.warning("Torch not installed - will be skipping Torch models tests") + TORCH_AVAILABLE = False + + custom_mean_valid = None + custom_mean_invalid_out_shape = None + custom_mean_invalid_signature = None + custom_mean_invalid_output_type = None + + +class TestBaselineModels: + np.random.seed(42) + if TORCH_AVAILABLE: + torch.manual_seed(42) + + @pytest.mark.parametrize( + "config", itertools.product(local_models + global_models, [False, True]) + ) + def test_fit_predict(self, config): + """Tests fit and predict for univariate and multivariate time series.""" + (model_cls, model_kwargs), is_multivariate = config + + # min train series length for global naive models + series = tg.linear_timeseries(length=icl) + if is_multivariate: + series.stack(series + 100) + + model = model_cls(**model_kwargs) + + # calling predict before fit + with pytest.raises(ValueError): + model.predict(n=10) + + # calling fit with covariates + if isinstance(model, GlobalForecastingModel): + err_type = ValueError + err_msg_content = "The model does not support" + else: # for local models, covariates are not part of signature + err_type = TypeError + err_msg_content = "got an unexpected keyword argument" + with pytest.raises(err_type) as err: + model.fit(series=series, past_covariates=series) + assert err_msg_content in str(err.value) + with pytest.raises(err_type) as err: + model.fit(series=series, future_covariates=series) + assert err_msg_content in str(err.value) + + model.fit(series=series) + # calling predict with covariates + with pytest.raises(err_type) as err: + model.predict(n=10, past_covariates=series) + assert err_msg_content in str(err.value) + with pytest.raises(err_type) as err: + model.predict(n=10, future_covariates=series) + assert err_msg_content in str(err.value) + + # single series predict works with all models + preds = model.predict(n=10) + preds_start = series.end_time() + series.freq + assert isinstance(preds, TimeSeries) + assert len(preds) == 10 + assert preds.start_time() == preds_start + assert preds.components.equals(series.components) + + if isinstance(model, LocalForecastingModel): + # no series at prediction time + with pytest.raises(err_type) as err: + _ = model.predict(n=10, series=series) + assert err_msg_content in str(err.value) + # no multiple series prediction + with pytest.raises(err_type) as err: + _ = model.predict(n=10, series=[series, series]) + assert err_msg_content in str(err.value) + else: + preds = model.predict(n=10, series=series) + assert isinstance(preds, TimeSeries) + assert len(preds) == 10 + assert preds.start_time() == preds_start + assert preds.components.equals(series.components) + preds = model.predict(n=10, series=[series, series]) + assert isinstance(preds, list) + assert len(preds) == 2 + assert all([isinstance(p, TimeSeries) for p in preds]) + assert all([len(p) == 10 for p in preds]) + assert all([p.start_time() == preds_start for p in preds]) + assert all([p.components.equals(series.components) for p in preds]) + + # multiple series training only with global baselines + if isinstance(model, LocalForecastingModel): + with pytest.raises(ValueError) as err: + model.fit(series=[series, series]) + assert "Train `series` must be a single `TimeSeries`." == str(err.value) + else: + model.fit(series=[series, series]) + + def test_naive_seasonal(self): + # min train series length for global naive models + series = tg.linear_timeseries(length=icl) + series = series.stack(series + 25.0) + + vals_exp = series.values(copy=False) + + # local naive seasonal + local_model = NaiveSeasonal(K=icl) + preds = local_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal(preds.values(copy=False), vals_exp) + + if not TORCH_AVAILABLE: + return + + # equivalent global naive seasonal + global_model = GlobalNaiveSeasonal( + input_chunk_length=icl, output_chunk_length=1, **tfm_kwargs + ) + preds = global_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal(preds.values(copy=False), vals_exp) + + preds_multi = global_model.predict(n=icl, series=[series, series + 100.0]) + np.testing.assert_array_almost_equal( + preds_multi[0].values(copy=False), vals_exp + ) + np.testing.assert_array_almost_equal( + preds_multi[1].values(copy=False), vals_exp + 100.0 + ) + + # global naive seasonal that repeats values `output_chunk_length` times + global_model = GlobalNaiveSeasonal( + input_chunk_length=icl, output_chunk_length=icl, **tfm_kwargs + ) + preds = global_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal( + preds.values(copy=False), np.repeat(vals_exp[0:1, :], icl, axis=0) + ) + + preds_multi = global_model.predict(n=icl, series=[series, series + 100.0]) + np.testing.assert_array_almost_equal( + preds_multi[0].values(copy=False), np.repeat(vals_exp[0:1, :], icl, axis=0) + ) + np.testing.assert_array_almost_equal( + preds_multi[1].values(copy=False), + np.repeat(vals_exp[0:1, :] + 100.0, icl, axis=0), + ) + + def test_naive_drift(self): + # min train series length for global naive models + series_total = tg.linear_timeseries(length=2 * icl) + series_total = series_total.stack(series_total + 25.0) + series = series_total[:icl] + series_drift = series_total[icl:] + + vals_exp = series_drift.values(copy=False) + + # local naive drift + local_model = NaiveDrift() + preds = local_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal(preds.values(copy=False), vals_exp) + + if not TORCH_AVAILABLE: + return + + # identical global naive drift + global_model = GlobalNaiveDrift( + input_chunk_length=icl, output_chunk_length=icl, **tfm_kwargs + ) + preds = global_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal(preds.values(copy=False), vals_exp) + + preds_multi = global_model.predict(n=icl, series=[series, series + 100.0]) + np.testing.assert_array_almost_equal( + preds_multi[0].values(copy=False), vals_exp + ) + np.testing.assert_array_almost_equal( + preds_multi[1].values(copy=False), vals_exp + 100.0 + ) + + # global naive moving drift + global_model = GlobalNaiveDrift( + input_chunk_length=icl, output_chunk_length=1, **tfm_kwargs + ) + preds = global_model.fit(series).predict(n=icl) + + # manually compute the moving/autoregressive drift + series_vals = series.values(copy=False) + preds_vals = preds.values(copy=False) + preds_exp = [] + x, y = 1, None + for i in range(0, icl): + y_0 = y if y is not None else series_vals[-1] + m = (y_0 - series_vals[i]) / (icl - 1) + y = m * x + y_0 + preds_exp.append(np.expand_dims(y, 0)) + preds_exp = np.concatenate(preds_exp) + np.testing.assert_array_almost_equal(preds_vals, preds_exp) + + preds_multi = global_model.predict(n=icl, series=[series, series + 100.0]) + np.testing.assert_array_almost_equal( + preds_multi[0].values(copy=False), preds_exp + ) + np.testing.assert_array_almost_equal( + preds_multi[1].values(copy=False), preds_exp + 100.0 + ) + + def test_naive_mean(self): + # min train series length for global naive models + series = tg.linear_timeseries(length=icl) + series = series.stack(series + 25.0) + + # mean repeated n times + vals_exp = np.repeat( + np.expand_dims(series.values(copy=False).mean(axis=0), 0), icl, axis=0 + ) + + # local naive mean + local_model = NaiveMean() + preds = local_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal(preds.values(copy=False), vals_exp) + + if not TORCH_AVAILABLE: + return + + # identical global naive mean + global_model = GlobalNaiveAggregate( + input_chunk_length=icl, output_chunk_length=icl, agg_fn="mean", **tfm_kwargs + ) + preds = global_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal(preds.values(copy=False), vals_exp) + + preds_multi = global_model.predict(n=icl, series=[series, series + 100.0]) + np.testing.assert_array_almost_equal( + preds_multi[0].values(copy=False), vals_exp + ) + np.testing.assert_array_almost_equal( + preds_multi[1].values(copy=False), vals_exp + 100.0 + ) + + def test_naive_moving_average(self): + # min train series length for global naive models + series = tg.linear_timeseries(length=icl) + series = series.stack(series + 25.0) + + # manually compute the moving/autoregressive average/mean + series_vals = series.values(copy=False) + vals_exp = [] + y = None + for i in range(0, icl): + if y is None: + y_moving = series_vals + else: + y_moving = np.concatenate( + [series_vals[i:], np.concatenate(vals_exp)], axis=0 + ) + y = np.expand_dims(y_moving.mean(axis=0), 0) + vals_exp.append(y) + vals_exp = np.concatenate(vals_exp) + + # local naive mean + local_model = NaiveMovingAverage(input_chunk_length=icl) + preds = local_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal(preds.values(copy=False), vals_exp) + + if not TORCH_AVAILABLE: + return + + # identical global naive moving average + global_model = GlobalNaiveAggregate( + input_chunk_length=icl, output_chunk_length=1, agg_fn="mean", **tfm_kwargs + ) + preds = global_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal(preds.values(copy=False), vals_exp) + + preds_multi = global_model.predict(n=icl, series=[series, series + 100.0]) + np.testing.assert_array_almost_equal( + preds_multi[0].values(copy=False), vals_exp + ) + np.testing.assert_array_almost_equal( + preds_multi[1].values(copy=False), vals_exp + 100.0 + ) + + @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") + @pytest.mark.parametrize( + "agg_fn_config", + [ + ("nanmean", "nanmean"), + ("mean", "mean"), + (custom_mean_valid, "mean"), + ], + ) + def test_global_naive_aggregate(self, agg_fn_config): + agg_fn, agg_name = agg_fn_config + + # min train series length for global naive models + series = tg.linear_timeseries(length=icl) + series = series.stack(series + 25.0) + + # manually compute the moving/autoregressive average/mean + series_vals = series.values(copy=False) + vals_exp = [] + + agg_fn_np = getattr(np, agg_name) + y = None + for i in range(0, icl): + if y is None: + y_moving = series_vals + else: + y_moving = np.concatenate( + [series_vals[i:], np.concatenate(vals_exp)], axis=0 + ) + + y = np.expand_dims(agg_fn_np(y_moving, axis=0), 0) + vals_exp.append(y) + vals_exp = np.concatenate(vals_exp) + + # identical global naive moving average + global_model = GlobalNaiveAggregate( + input_chunk_length=icl, output_chunk_length=1, agg_fn=agg_fn, **tfm_kwargs + ) + preds = global_model.fit(series).predict(n=icl) + np.testing.assert_array_almost_equal(preds.values(copy=False), vals_exp) + + preds_multi = global_model.predict(n=icl, series=[series, series + 100.0]) + np.testing.assert_array_almost_equal( + preds_multi[0].values(copy=False), vals_exp + ) + np.testing.assert_array_almost_equal( + preds_multi[1].values(copy=False), vals_exp + 100.0 + ) + + @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") + @pytest.mark.parametrize( + "agg_fn_config", + [ + ("mmean", "When `agg_fn` is a string"), + (1, "`agg_fn` must be a string or callable"), + ( + custom_mean_invalid_output_type, + "`agg_fn` output must be a torch Tensor.", + ), + (custom_mean_invalid_signature, "got an unexpected keyword argument 'dim'"), + (custom_mean_invalid_out_shape, "Unexpected `agg_fn` output shape."), + ], + ) + def test_global_naive_aggregate_invalid_agg_fn(self, agg_fn_config): + agg_fn, err_msg_content = agg_fn_config + # identical global naive moving average + with pytest.raises(ValueError) as err: + _ = GlobalNaiveAggregate( + input_chunk_length=icl, + output_chunk_length=1, + agg_fn=agg_fn, + **tfm_kwargs + ) + assert err_msg_content in str(err.value) diff --git a/darts/tests/models/forecasting/test_global_forecasting_models.py b/darts/tests/models/forecasting/test_global_forecasting_models.py index 1fcb2d45ca..b12ae6d764 100644 --- a/darts/tests/models/forecasting/test_global_forecasting_models.py +++ b/darts/tests/models/forecasting/test_global_forecasting_models.py @@ -23,6 +23,9 @@ from darts.models import ( BlockRNNModel, DLinearModel, + GlobalNaiveAggregate, + GlobalNaiveDrift, + GlobalNaiveSeasonal, NBEATSModel, NLinearModel, RNNModel, @@ -58,7 +61,7 @@ "n_epochs": 10, "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], }, - 180.0, + 110.0, ), ( RNNModel, @@ -69,7 +72,7 @@ "n_epochs": 10, "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], }, - 180.0, + 150.0, ), ( RNNModel, @@ -88,7 +91,7 @@ "batch_size": 32, "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], }, - 240.0, + 60.0, ), ( TransformerModel, @@ -102,7 +105,7 @@ "n_epochs": 10, "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], }, - 180.0, + 60.0, ), ( NBEATSModel, @@ -114,7 +117,7 @@ "n_epochs": 10, "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], }, - 180.0, + 140.0, ), ( TFTModel, @@ -126,7 +129,7 @@ "n_epochs": 10, "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], }, - 100.0, + 70.0, ), ( NLinearModel, @@ -134,7 +137,7 @@ "n_epochs": 10, "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], }, - 100, + 50.0, ), ( DLinearModel, @@ -142,7 +145,7 @@ "n_epochs": 10, "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], }, - 100, + 55.0, ), ( TiDEModel, @@ -150,7 +153,28 @@ "n_epochs": 10, "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], }, - 100, + 40.0, + ), + ( + GlobalNaiveAggregate, + { + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 22, + ), + ( + GlobalNaiveDrift, + { + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 17, + ), + ( + GlobalNaiveSeasonal, + { + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 39, ), ] @@ -242,6 +266,11 @@ def test_save_model_parameters(self, config): batch_size=32, **tfm_kwargs, ), + GlobalNaiveSeasonal( + input_chunk_length=4, + output_chunk_length=3, + **tfm_kwargs, + ), ], ) def test_save_load_model(self, tmpdir_module, model): @@ -340,37 +369,72 @@ def test_covariates(self, config): ) # Here we rely on the fact that all non-Dual models currently are Past models - if isinstance(model, DualCovariatesTorchModel): + if model.supports_future_covariates: cov_name = "future_covariates" is_past = False - else: + elif model.supports_past_covariates: cov_name = "past_covariates" is_past = True + else: + cov_name = None + is_past = None + + covariates = [self.time_covariates_train, self.time_covariates_train] + if cov_name is not None: + cov_kwargs = {cov_name: covariates} + cov_kwargs_train = {cov_name: self.time_covariates_train} + cov_kwargs_notrain = {cov_name: self.time_covariates} + else: + cov_kwargs = {} + cov_kwargs_train = {} + cov_kwargs_notrain = {} - cov_kwargs = { - cov_name: [self.time_covariates_train, self.time_covariates_train] - } model.fit(series=[self.ts_pass_train, self.ts_pass_train_1], **cov_kwargs) + + if cov_name is None: + with pytest.raises(ValueError): + model.untrained_model().fit( + series=[self.ts_pass_train, self.ts_pass_train_1], + past_covariates=covariates, + ) + with pytest.raises(ValueError): + model.untrained_model().fit( + series=[self.ts_pass_train, self.ts_pass_train_1], + future_covariates=covariates, + ) with pytest.raises(ValueError): # when model is fit from >1 series, one must provide a series in argument model.predict(n=1) - with pytest.raises(ValueError): - # when model is fit using multiple covariates, covariates are required at prediction time - model.predict(n=1, series=self.ts_pass_train) + if cov_name is not None: + with pytest.raises(ValueError): + # when model is fit using multiple covariates, covariates are required at prediction time + model.predict(n=1, series=self.ts_pass_train) - cov_kwargs_train = {cov_name: self.time_covariates_train} - cov_kwargs_notrain = {cov_name: self.time_covariates} - with pytest.raises(ValueError): - # when model is fit using covariates, n cannot be greater than output_chunk_length... - # (for short covariates) - # past covariates model can predict up until output_chunk_length - # with train future covariates we cannot predict at all after end of series - model.predict( - n=13 if is_past else 1, - series=self.ts_pass_train, - **cov_kwargs_train, - ) + with pytest.raises(ValueError): + # when model is fit using covariates, n cannot be greater than output_chunk_length... + # (for short covariates) + # past covariates model can predict up until output_chunk_length + # with train future covariates we cannot predict at all after end of series + model.predict( + n=13 if is_past else 1, + series=self.ts_pass_train, + **cov_kwargs_train, + ) + else: + # model does not support covariates + with pytest.raises(ValueError): + model.predict( + n=1, + series=self.ts_pass_train, + past_covariates=self.time_covariates, + ) + with pytest.raises(ValueError): + model.predict( + n=1, + series=self.ts_pass_train, + future_covariates=self.time_covariates, + ) # ... unless future covariates are provided _ = model.predict(n=13, series=self.ts_pass_train, **cov_kwargs_notrain) @@ -562,12 +626,14 @@ def test_prediction_with_different_n(self, config): ), ), "unit test not yet defined for the given {X}CovariatesTorchModel." - if isinstance(model, PastCovariatesTorchModel): + if model.supports_past_covariates and model.supports_future_covariates: + past_covs, future_covs = None, self.covariates + elif model.supports_past_covariates: past_covs, future_covs = self.covariates, None - elif isinstance(model, DualCovariatesTorchModel): + elif model.supports_future_covariates: past_covs, future_covs = None, self.covariates else: - past_covs, future_covs = self.covariates, self.covariates + past_covs, future_covs = None, None model.fit( self.target_past, @@ -621,6 +687,8 @@ def test_fit_with_constr_epochs(self, init_trainer, config): model = model_cls( input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs ) + if not model._requires_training: + return multiple_ts = [self.ts_pass_train] * 10 model.fit(multiple_ts) @@ -673,20 +741,21 @@ def test_fit_from_dataset_with_epochs(self, init_trainer, config): model.fit_from_dataset(train_dataset, epochs=epochs) init_trainer.assert_called_with(max_epochs=epochs, trainer_params=ANY) - def test_predit_after_fit_from_dataset(self): - model_cls, kwargs, _ = models_cls_kwargs_errs[0] + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_predit_after_fit_from_dataset(self, config): + model_cls, kwargs, _ = config model = model_cls( input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs ) - multiple_ts = [self.ts_pass_train] * 10 + multiple_ts = [self.ts_pass_train] * 2 train_dataset = model._build_train_dataset( multiple_ts, past_covariates=None, future_covariates=None, max_samples_per_ts=None, ) - model.fit_from_dataset(train_dataset, epochs=3) + model.fit_from_dataset(train_dataset, epochs=1) # test predict() works after fit_from_dataset() model.predict(n=1, series=multiple_ts[0]) diff --git a/darts/tests/models/forecasting/test_historical_forecasts.py b/darts/tests/models/forecasting/test_historical_forecasts.py index b61e449da6..e6b4393306 100644 --- a/darts/tests/models/forecasting/test_historical_forecasts.py +++ b/darts/tests/models/forecasting/test_historical_forecasts.py @@ -27,6 +27,9 @@ from darts.models import ( BlockRNNModel, + GlobalNaiveAggregate, + GlobalNaiveDrift, + GlobalNaiveSeasonal, NBEATSModel, NLinearModel, RNNModel, @@ -231,6 +234,36 @@ (IN_LEN, OUT_LEN), "MixedCovariates", ), + ( + GlobalNaiveAggregate, + { + "input_chunk_length": IN_LEN, + "output_chunk_length": OUT_LEN, + **tfm_kwargs, + }, + (IN_LEN, OUT_LEN), + "MixedCovariates", + ), + ( + GlobalNaiveDrift, + { + "input_chunk_length": IN_LEN, + "output_chunk_length": OUT_LEN, + **tfm_kwargs, + }, + (IN_LEN, OUT_LEN), + "MixedCovariates", + ), + ( + GlobalNaiveSeasonal, + { + "input_chunk_length": IN_LEN, + "output_chunk_length": OUT_LEN, + **tfm_kwargs, + }, + (IN_LEN, OUT_LEN), + "MixedCovariates", + ), ] else: models_torch_cls_kwargs = [] @@ -921,6 +954,7 @@ def test_optimized_historical_forecasts_regression(self, config): ), ) def test_optimized_historical_forecasts_regression_with_encoders(self, config): + np.random.seed(0) use_covs, last_points_only, overlap_end, stride, horizon, multi_models = config lags = 3 ocl = 5 @@ -1608,14 +1642,23 @@ def test_regression_auto_start_multiple_with_cov_no_retrain(self, model_config): def test_torch_auto_start_with_past_cov(self, model_config): forecast_hrz = 10 # Past covariates only - model_cls, kwargs, bounds, type = model_config - if type == "DualCovariates": - return + model_cls, kwargs, bounds, cov_type = model_config model = model_cls( random_state=0, **kwargs, ) + + if not model.supports_past_covariates: + with pytest.raises(ValueError) as err: + model.fit( + series=self.ts_pass_train, past_covariates=self.ts_past_cov_train + ) + assert str(err.value).startswith( + "The model does not support `past_covariates`." + ) + return + model.fit(self.ts_pass_train, self.ts_past_cov_train) # same start @@ -1697,62 +1740,75 @@ def test_torch_auto_start_with_past_cov(self, model_config): def test_torch_auto_start_with_past_future_cov(self, model_config): forecast_hrz = 10 # Past and future covariates - for model_cls, kwargs, bounds, type in models_torch_cls_kwargs: - if not type == "MixedCovariates": - return + model_cls, kwargs, bounds, cov_type = model_config - model = model_cls( - random_state=0, - **kwargs, - ) - model.fit( - self.ts_pass_train, - past_covariates=self.ts_past_cov_train, - future_covariates=self.ts_fut_cov_train, + model = model_cls( + random_state=0, + **kwargs, + ) + if not (model.supports_past_covariates and model.supports_future_covariates): + with pytest.raises(ValueError) as err: + model.fit( + self.ts_pass_train, + past_covariates=self.ts_past_cov_train, + future_covariates=self.ts_fut_cov_train, + ) + invalid_covs = [] + if not model.supports_past_covariates: + invalid_covs.append("`past_covariates`") + if not model.supports_future_covariates: + invalid_covs.append("`future_covariates`") + assert str(err.value).startswith( + f"The model does not support {', '.join(invalid_covs)}" ) + return - forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], - past_covariates=[ - self.ts_past_cov_valid_5_aft_start, - self.ts_past_cov_valid_same_start, - ], - future_covariates=[ - self.ts_fut_cov_valid_7_aft_start, - self.ts_fut_cov_valid_16_bef_start, - ], - forecast_horizon=forecast_hrz, - stride=1, - retrain=True, - overlap_end=False, - ) - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - - (forecast_hrz - 1) # if entire horizon is available, we can predict 1 - - 7 # future covs start 7 after target (more than past covs) -> shift - - 2 # future covs in output chunk -> difference between horizon=10 and output_chunk_length=12 - ) - assert len(forecasts[0]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and past_covariates and future_covariates with " - f"different start. " - f"Expected {theorical_forecast_length}, got {len(forecasts[0])}" - ) - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - - ( - forecast_hrz - 1 - ) # if entire horizon is available, we can predict 1, - - 0 # all covs start at the same time as target -> no shift, - - 2 # future covs in output chunk -> difference between horizon=10 and output_chunk_length=12 - ) - assert len(forecasts[1]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and past_covariates with different start. " - f"Expected {theorical_forecast_length}, got {len(forecasts[1])}" - ) + model.fit( + self.ts_pass_train, + past_covariates=self.ts_past_cov_train, + future_covariates=self.ts_fut_cov_train, + ) + + forecasts = model.historical_forecasts( + series=[self.ts_pass_val, self.ts_pass_val], + past_covariates=[ + self.ts_past_cov_valid_5_aft_start, + self.ts_past_cov_valid_same_start, + ], + future_covariates=[ + self.ts_fut_cov_valid_7_aft_start, + self.ts_fut_cov_valid_16_bef_start, + ], + forecast_horizon=forecast_hrz, + stride=1, + retrain=True, + overlap_end=False, + ) + theorical_forecast_length = ( + self.ts_val_length + - (bounds[0] + bounds[1]) # train sample length + - (forecast_hrz - 1) # if entire horizon is available, we can predict 1 + - 7 # future covs start 7 after target (more than past covs) -> shift + - 2 # future covs in output chunk -> difference between horizon=10 and output_chunk_length=12 + ) + assert len(forecasts[0]) == theorical_forecast_length, ( + f"Model {model_cls} does not return the right number of historical forecasts in case " + f"of retrain=True and overlap_end=False and past_covariates and future_covariates with " + f"different start. " + f"Expected {theorical_forecast_length}, got {len(forecasts[0])}" + ) + theorical_forecast_length = ( + self.ts_val_length + - (bounds[0] + bounds[1]) # train sample length + - (forecast_hrz - 1) # if entire horizon is available, we can predict 1, + - 0 # all covs start at the same time as target -> no shift, + - 2 # future covs in output chunk -> difference between horizon=10 and output_chunk_length=12 + ) + assert len(forecasts[1]) == theorical_forecast_length, ( + f"Model {model_cls} does not return the right number of historical forecasts in case " + f"of retrain=True and overlap_end=False and past_covariates with different start. " + f"Expected {theorical_forecast_length}, got {len(forecasts[1])}" + ) @pytest.mark.slow @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") @@ -1760,61 +1816,73 @@ def test_torch_auto_start_with_past_future_cov(self, model_config): def test_torch_auto_start_with_future_cov(self, model_config): forecast_hrz = 10 # Future covariates only - for model_cls, kwargs, bounds, type in models_torch_cls_kwargs: - # todo case of DualCovariates (RNN) - if type == "PastCovariates" or type == "DualCovariates": - return - - model = model_cls( - random_state=0, - **kwargs, - ) - model.fit(self.ts_pass_train, future_covariates=self.ts_fut_cov_train) - - # Only fut covariate - forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], - future_covariates=[ - self.ts_fut_cov_valid_7_aft_start, - self.ts_fut_cov_valid_16_bef_start, - ], - forecast_horizon=forecast_hrz, - stride=1, - retrain=True, - overlap_end=False, - ) + model_cls, kwargs, bounds, cov_type = model_config - assert ( - len(forecasts) == 2 - ), f"Model {model_cls} did not return a list of historical forecasts" - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - - ( - forecast_hrz - 1 - ) # (horizon - 1): if entire horizon is available, we can predict 1, - - 7 # future covs start 7 after target (more than past covs) -> shift - - 2 # future covs in output chunk -> difference between horizon=10 and output_chunk_length=12 - ) - assert len(forecasts[0]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and no past_covariates and future_covariates " - f"with different start. " - f"Expected {theorical_forecast_length}, got {len(forecasts[0])}" - ) - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - - (forecast_hrz - 1) # if entire horizon is available, we can predict 1 - - 0 # all covs start at the same time as target -> no shift - - 2 # future covs in output chunk -> difference between horizon=10 and output_chunk_length=12 - ) - assert len(forecasts[1]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and no past_covariates and future_covariates " - f"with different start. " - f"Expected {theorical_forecast_length}, got {len(forecasts[1])}" + model = model_cls( + random_state=0, + **kwargs, + ) + + if not model.supports_future_covariates: + with pytest.raises(ValueError) as err: + model.fit(self.ts_pass_train, future_covariates=self.ts_fut_cov_train) + assert str(err.value).startswith( + "The model does not support `future_covariates`" ) + return + + model.fit(self.ts_pass_train, future_covariates=self.ts_fut_cov_train) + + # Only fut covariate + forecasts = model.historical_forecasts( + series=[self.ts_pass_val, self.ts_pass_val], + future_covariates=[ + self.ts_fut_cov_valid_7_aft_start, + self.ts_fut_cov_valid_16_bef_start, + ], + forecast_horizon=forecast_hrz, + stride=1, + retrain=True, + overlap_end=False, + ) + + assert ( + len(forecasts) == 2 + ), f"Model {model_cls} did not return a list of historical forecasts" + + icl, ocl = bounds + theorical_forecast_length = ( + self.ts_val_length + - (icl + ocl) # train sample length + - ( + forecast_hrz - 1 + ) # (horizon - 1): if entire horizon is available, we can predict 1, + - 7 # future covs start 7 after target (more than past covs) -> shift + - max( + ocl - forecast_hrz, 0 + ) # future covs in output chunk -> difference between hrz=10 and ocl=12 + ) + assert len(forecasts[0]) == theorical_forecast_length, ( + f"Model {model_cls} does not return the right number of historical forecasts in case " + f"of retrain=True and overlap_end=False and no past_covariates and future_covariates " + f"with different start. " + f"Expected {theorical_forecast_length}, got {len(forecasts[0])}" + ) + theorical_forecast_length = ( + self.ts_val_length + - (icl + ocl) # train sample length + - (forecast_hrz - 1) # if entire horizon is available, we can predict 1 + - 0 # all covs start at the same time as target -> no shift + - max( + ocl - forecast_hrz, 0 + ) # future covs in output chunk -> difference between hrz=10 and ocl=12 + ) + assert len(forecasts[1]) == theorical_forecast_length, ( + f"Model {model_cls} does not return the right number of historical forecasts in case " + f"of retrain=True and overlap_end=False and no past_covariates and future_covariates " + f"with different start. " + f"Expected {theorical_forecast_length}, got {len(forecasts[1])}" + ) def test_retrain(self): """test historical_forecasts for an untrained model with different retrain values.""" diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 962594c8f6..73ec9bb19b 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -30,6 +30,9 @@ from darts.models import ( BlockRNNModel, DLinearModel, + GlobalNaiveAggregate, + GlobalNaiveDrift, + GlobalNaiveSeasonal, NBEATSModel, NHiTSModel, NLinearModel, @@ -63,6 +66,9 @@ (TFTModel, {"add_relative_index": 2, **kwargs}), (TiDEModel, kwargs), (TransformerModel, kwargs), + (GlobalNaiveSeasonal, kwargs), + (GlobalNaiveAggregate, kwargs), + (GlobalNaiveDrift, kwargs), ] TORCH_AVAILABLE = True @@ -1500,6 +1506,9 @@ def test_rin(self, model_config): (TransformerModel, {}), (TCNModel, {}), (BlockRNNModel, {}), + (GlobalNaiveSeasonal, {}), + (GlobalNaiveAggregate, {}), + (GlobalNaiveDrift, {}), ], [3, 7, 10], ), diff --git a/darts/tests/utils/tabularization/test_get_feature_times.py b/darts/tests/utils/tabularization/test_get_feature_times.py index 97dd2f289c..09a54b9aac 100644 --- a/darts/tests/utils/tabularization/test_get_feature_times.py +++ b/darts/tests/utils/tabularization/test_get_feature_times.py @@ -703,7 +703,7 @@ def test_feature_times_unspecified_lag_or_series_warning(self): vice versa. The only circumstance under which a warning should *not* be issued is when `target_series` is specified, but `lags` is not when `is_training = True`; this is because - the user may not want to add auto-regressive features to `X`, + the user may not want to add autoregressive features to `X`, but they still need to specify `target_series` to create labels. """ # Define some arbitrary input values: diff --git a/darts/utils/data/tabularization.py b/darts/utils/data/tabularization.py index 3c538ea433..a7f8b89b1c 100644 --- a/darts/utils/data/tabularization.py +++ b/darts/utils/data/tabularization.py @@ -67,8 +67,8 @@ def create_lagged_data( The `X` array is constructed from the lagged values of up to three separate timeseries: 1. The `target_series`, which contains the values we're trying to predict. A regression model that - uses previous values of the target its predicting is referred to as *auto-regressive*; please refer to - [1]_ for further details about auto-regressive timeseries models. + uses previous values of the target its predicting is referred to as *autoregressive*; please refer to + [1]_ for further details about autoregressive timeseries models. 2. The past covariates series, which contains values that are *not* known into the future. Unlike the target series, however, past covariates are *not* to be predicted by the regression model. 3. The future covariates (AKA 'exogenous' covariates) series, which contains values that are known @@ -149,8 +149,8 @@ def create_lagged_data( Optionally, the future covariates (i.e. exogenous covariates) series that the regression model will use as inputs. Can be specified as either a `TimeSeries` or as a `Sequence[TimeSeries]`. lags - Optionally, the lags of the target series to be used as (auto-regressive) features. If not specified, - auto-regressive features will *not* be added to `X`. Each lag value is assumed to be negative (e.g. + Optionally, the lags of the target series to be used as (autoregressive) features. If not specified, + autoregressive features will *not* be added to `X`. Each lag value is assumed to be negative (e.g. `lags = [-3, -1]` will extract `target_series` values which are 3 time steps and 1 time step away from the current value). If the lags are provided as a dictionary, the lags values are specific to each component in the target series. @@ -381,8 +381,8 @@ def create_lagged_training_data( Optionally, the future covariates (i.e. exogenous covariates) series that the regression model will use as inputs. lags - Optionally, the lags of the target series to be used as (auto-regressive) features. If not specified, - auto-regressive features will *not* be added to `X`. Each lag value is assumed to be negative (e.g. + Optionally, the lags of the target series to be used as (autoregressive) features. If not specified, + autoregressive features will *not* be added to `X`. Each lag value is assumed to be negative (e.g. `lags = [-3, -1]` will extract `target_series` values which are 3 time steps and 1 time step away from the current value). If the lags are provided as a dictionary, the lags values are specific to each component in the target series. @@ -515,8 +515,8 @@ def create_lagged_prediction_data( Optionally, the future covariates (i.e. exogenous covariates) series that the regression model will use as inputs. lags - Optionally, the lags of the target series to be used as (auto-regressive) features. If not specified, - auto-regressive features will *not* be added to `X`. Each lag value is assumed to be negative (e.g. + Optionally, the lags of the target series to be used as (autoregressive) features. If not specified, + autoregressive features will *not* be added to `X`. Each lag value is assumed to be negative (e.g. `lags = [-3, -1]` will extract `target_series` values which are 3 time steps and 1 time step away from the current value). If the lags are provided as a dictionary, the lags values are specific to each component in the target series. @@ -1259,8 +1259,8 @@ def _get_feature_times( Optionally, the future covariates (i.e. exogenous covariates) series that the regression model will use as inputs. lags - Optionally, the lags of the target series to be used as (auto-regressive) features. If not specified, - auto-regressive features will *not* be added to `X`. + Optionally, the lags of the target series to be used as (autoregressive) features. If not specified, + autoregressive features will *not* be added to `X`. lags_past_covariates Optionally, the lags of `past_covariates` to be used as features. lags_future_covariates @@ -1310,7 +1310,7 @@ def _get_feature_times( UserWarning If a `lags_*` input is specified without the accompanying time series or vice versa. The only expection to this is when `lags` isn't specified alongside `target_series` when `is_training = True`, since one may wish to fit - a regression model without using auto-regressive features. + a regression model without using autoregressive features. """ raise_if( diff --git a/darts/utils/historical_forecasts/utils.py b/darts/utils/historical_forecasts/utils.py index 86d3b05036..b074eec475 100644 --- a/darts/utils/historical_forecasts/utils.py +++ b/darts/utils/historical_forecasts/utils.py @@ -841,7 +841,8 @@ def _process_historical_forecast_input( if future_covariates is None and model.future_covariate_series is not None: future_covariates = [model.future_covariate_series] * len(series) - model._verify_static_covariates(series[0].static_covariates) + if model.uses_static_covariates: + model._verify_static_covariates(series[0].static_covariates) if model.encoders.encoding_available: past_covariates, future_covariates = model.generate_fit_predict_encodings( diff --git a/docs/Makefile b/docs/Makefile index a155c7f7df..64b81920e8 100644 --- a/docs/Makefile +++ b/docs/Makefile @@ -59,6 +59,7 @@ html: @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) build-all-docs: clean copy-examples copy-quickstart generate-readme generate-userguide generate-api html +build-api: clean generate-api html # Catch-all target: route all unknown targets to Sphinx using the new # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). diff --git a/docs/userguide/covariates.md b/docs/userguide/covariates.md index 27bdaa3310..d9ec6cc72e 100644 --- a/docs/userguide/covariates.md +++ b/docs/userguide/covariates.md @@ -117,7 +117,7 @@ Darts' forecasting models accept optional `past_covariates` and / or `future_cov LFMs are models that can be trained on a single target series only. In Darts most models in this category tend to be simpler statistical models (such as ETS or ARIMA). LFMs accept only a single `target` (and covariate) time series and usually train on the entire series you supplied when calling `fit()` at once. They can also predict in one go for any number of predictions `n` after the end of the training series. ### Global Forecasting Models (GFMs) -GFMs are broadly speaking "machine learning based" models, which denote PyTorch-based (deep learning) models, RegressionModels, as well EnsembleModels (depending on their ensemble model and / or the forecasting models they ensemble). Global models can all be trained on multiple `target` (and covariate) time series. Different to LFMs, the GFMs train and predict on fixed-length sub-samples (chunks) of the input data. +GFMs are models that can be trained on multiple target (and covariate) time series. Different to LFMs, the GFMs train and predict on fixed-length sub-samples (chunks) of the input data. In Darts, these are the global (naive) baseline models, regression models, PyTorch (Lightning)-based models (neural networks), as well ensemble models (depending on their ensemble model and / or the forecasting models they ensemble). ---- @@ -140,31 +140,34 @@ GFMs are broadly speaking "machine learning based" models, which denote PyTorch- | [KalmanForecaster](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.kalman_forecaster.html#darts.models.forecasting.kalman_forecaster.KalmanForecaster) | | ✅ | | | [Croston](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.croston.html#darts.models.forecasting.croston.Croston) method | | | | | **Global Forecasting Models (GFMs)** | | | | -| Regression Models (b) | ✅ | ✅ | ✅ | -| [RNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.rnn_model.html#darts.models.forecasting.rnn_model.RNNModel) (c) | | ✅ | | -| [BlockRNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.block_rnn_model.html#darts.models.forecasting.block_rnn_model.BlockRNNModel) (d) | ✅ | | | -| [NBEATSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nbeats.html#darts.models.forecasting.nbeats.NBEATSModel) | ✅ | | | -| [NHiTSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nhits.html#darts.models.forecasting.nhits.NHiTSModel) | ✅ | | | -| [TCNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tcn_model.html#darts.models.forecasting.tcn_model.TCNModel) | ✅ | | | -| [TransformerModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.transformer_model.html#darts.models.forecasting.transformer_model.TransformerModel) | ✅ | | | -| [TFTModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html#darts.models.forecasting.tft_model.TFTModel) | ✅ | ✅ | ✅ | -| [DLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.dlinear.html#darts.models.forecasting.dlinear.DLinearModel) | ✅ | ✅ | ✅ | -| [NLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nlinear.html#darts.models.forecasting.nlinear.NLinearModel) | ✅ | ✅ | ✅ | -| [TiDEModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tide_model.html#darts.models.forecasting.tide_model.TiDEModel) | ✅ | ✅ | ✅ | -| Ensemble Models (e) | ✅ | ✅ | ✅ | +| Global Naive Baselines (b) | | | | +| Regression Models (c) | ✅ | ✅ | ✅ | +| [RNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.rnn_model.html#darts.models.forecasting.rnn_model.RNNModel) (d) | | ✅ | | +| [BlockRNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.block_rnn_model.html#darts.models.forecasting.block_rnn_model.BlockRNNModel) (e) | ✅ | | | +| [NBEATSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nbeats.html#darts.models.forecasting.nbeats.NBEATSModel) | ✅ | | | +| [NHiTSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nhits.html#darts.models.forecasting.nhits.NHiTSModel) | ✅ | | | +| [TCNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tcn_model.html#darts.models.forecasting.tcn_model.TCNModel) | ✅ | | | +| [TransformerModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.transformer_model.html#darts.models.forecasting.transformer_model.TransformerModel) | ✅ | | | +| [TFTModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html#darts.models.forecasting.tft_model.TFTModel) | ✅ | ✅ | ✅ | +| [DLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.dlinear.html#darts.models.forecasting.dlinear.DLinearModel) | ✅ | ✅ | ✅ | +| [NLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nlinear.html#darts.models.forecasting.nlinear.NLinearModel) | ✅ | ✅ | ✅ | +| [TiDEModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tide_model.html#darts.models.forecasting.tide_model.TiDEModel) | ✅ | ✅ | ✅ | +| Ensemble Models (f) | ✅ | ✅ | ✅ | **Table 1: Darts' forecasting models and their covariate support** -(a) Naive Baselines including [NaiveMean](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMean), [NaiveSeasonal](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveSeasonal), [NaiveDrift](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveDrift), and [NaiveMovingAverage](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMovingAverage). +(a) Naive Baselines including [NaiveDrift](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveDrift), [NaiveMean](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMean), [NaiveMovingAverage](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveMovingAverage), and [NaiveSeasonal](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveSeasonal). -(b) Regression Models including [RegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_model.html#regression-model), [LinearRegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel), [RandomForest](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.random_forest.html#darts.models.forecasting.random_forest.RandomForest), [LightGBMModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.lgbm.html#darts.models.forecasting.lgbm.LightGBMModel), [XGBModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.xgboost.html#darts.models.forecasting.xgboost.XGBModel), and [CatBoostModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.catboost_model.html#darts.models.forecasting.catboost_model.CatBoostModel). RegressionModel is a special kind of GFM which can use arbitrary lags on covariates (past and/or future) and past targets to do predictions. +(b) Global Naive Baselines including [GlobalNaiveAggregate](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.global_baseline_models.html#darts.models.forecasting.global_baseline_models.GlobalNaiveAggregate), [GlobalNaiveDrift](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.global_baseline_models.html#darts.models.forecasting.global_baseline_models.GlobalNaiveDrift), and [GlobalNaiveSeasonal](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.global_baseline_models.html#darts.models.forecasting.global_baseline_models.GlobalNaiveSeasonal). -(c) [RNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.rnn_model.html#darts.models.forecasting.rnn_model.RNNModel) including `LSTM` and `GRU`; equivalent to DeepAR in its probabilistic version +(c) Regression Models including [RegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_model.html#regression-model), [LinearRegressionModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel), [RandomForest](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.random_forest.html#darts.models.forecasting.random_forest.RandomForest), [LightGBMModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.lgbm.html#darts.models.forecasting.lgbm.LightGBMModel), [XGBModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.xgboost.html#darts.models.forecasting.xgboost.XGBModel), and [CatBoostModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.catboost_model.html#darts.models.forecasting.catboost_model.CatBoostModel). RegressionModel is a special kind of GFM which can use arbitrary lags on covariates (past and/or future) and past targets to do predictions. -(d) [BlockRNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.block_rnn_model.html#darts.models.forecasting.block_rnn_model.BlockRNNModel) including `LSTM` and `GRU` +(d) [RNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.rnn_model.html#darts.models.forecasting.rnn_model.RNNModel) including `LSTM` and `GRU`; equivalent to DeepAR in its probabilistic version -(e) Ensemble Model including [RegressionEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_ensemble_model.html#darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel), and [NaiveEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveEnsembleModel). The covariate support is given by the covariate support of the ensembled forecasting models. +(e) [BlockRNNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.block_rnn_model.html#darts.models.forecasting.block_rnn_model.BlockRNNModel) including `LSTM` and `GRU` + +(f) Ensemble Model including [RegressionEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_ensemble_model.html#darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel), and [NaiveEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveEnsembleModel). The covariate support is given by the covariate support of the ensembled forecasting models. ---- From 4744835235fc7897de4ade64d9e47ca0168e5236 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 4 Mar 2024 19:15:59 +0100 Subject: [PATCH 016/161] fix torch baseline model import (#2266) --- darts/models/__init__.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/darts/models/__init__.py b/darts/models/__init__.py index fa28a90922..19258f37d6 100644 --- a/darts/models/__init__.py +++ b/darts/models/__init__.py @@ -18,11 +18,6 @@ ) from darts.models.forecasting.exponential_smoothing import ExponentialSmoothing from darts.models.forecasting.fft import FFT -from darts.models.forecasting.global_baseline_models import ( - GlobalNaiveAggregate, - GlobalNaiveDrift, - GlobalNaiveSeasonal, -) from darts.models.forecasting.kalman_forecaster import KalmanForecaster from darts.models.forecasting.linear_regression_model import LinearRegressionModel from darts.models.forecasting.random_forest import RandomForest @@ -36,6 +31,11 @@ try: from darts.models.forecasting.block_rnn_model import BlockRNNModel from darts.models.forecasting.dlinear import DLinearModel + from darts.models.forecasting.global_baseline_models import ( + GlobalNaiveAggregate, + GlobalNaiveDrift, + GlobalNaiveSeasonal, + ) from darts.models.forecasting.nbeats import NBEATSModel from darts.models.forecasting.nhits import NHiTSModel from darts.models.forecasting.nlinear import NLinearModel From c3d79bac7f2dfd17434047c85925d46800975a47 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Tue, 5 Mar 2024 10:02:54 +0100 Subject: [PATCH 017/161] Release 0.28.0 (#2268) * update changelog * bump u8darts 0.27.2 to 0.28.0 * update changelog --- CHANGELOG.md | 48 ++++++++++++++++++++++++++++-------------------- setup_u8darts.py | 2 +- 2 files changed, 29 insertions(+), 21 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index a6e2b42f19..47ae74c1dc 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,4 +1,3 @@ - # Changelog We do our best to avoid the introduction of breaking changes, @@ -6,58 +5,67 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ## [Unreleased](https://github.com/unit8co/darts/tree/master) -[Full Changelog](https://github.com/unit8co/darts/compare/0.27.2...master) +[Full Changelog](https://github.com/unit8co/darts/compare/0.28.0...master) + +### For users of the library: +**Improved** + +**Fixed** + +**Dependencies** + +### For developers of the library: +## [0.28.0](https://github.com/unit8co/darts/tree/0.28.0) (2024-03-05) ### For users of the library: **Improved** -- Improvements to `ARIMA` documentation: Specified possible `p`, `d`, `P`, `D`, `trend` advanced options that are available in statsmodels. More explanations on the behaviour of the parameters were added. [#2142](https://github.com/unit8co/darts/pull/2142) by [MarcBresson](https://github.com/MarcBresson). +- Improvements to `GlobalForecastingModel`: + - 🚀🚀🚀 All global models (regression and torch models) now support shifted predictions with model creation parameter `output_chunk_shift`. This will shift the output chunk for training and prediction by `output_chunk_shift` steps into the future. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - Improvements to `TimeSeries`: [#2196](https://github.com/unit8co/darts/pull/2196) by [Dennis Bader](https://github.com/dennisbader). - 🚀🚀🚀 Significant performance boosts for several `TimeSeries` methods resulting increased efficiency across the entire `Darts` library. Up to 2x faster creation times for series indexed with "regular" frequencies (e.g. Daily, hourly, ...), and >100x for series indexed with "special" frequencies (e.g. "W-MON", ...). Affects: - All `TimeSeries` creation methods - Additional boosts for slicing with integers and Timestamps - Additional boosts for `from_group_dataframe()` by performing some of the heavy-duty computations on the entire DataFrame, rather than iteratively on the group level. - Added option to exclude some `group_cols` from being added as static covariates when using `TimeSeries.from_group_dataframe()` with parameter `drop_group_cols`. +- 🚀 New global baseline models that use fixed input and output chunks for prediction. This offers support for univariate, multivariate, single and multiple target series prediction, one-shot- or autoregressive/moving forecasts, optimized historical forecasts, batch prediction, prediction from datasets, and more. [#2261](https://github.com/unit8co/darts/pull/2261) by [Dennis Bader](https://github.com/dennisbader). + - `GlobalNaiveAggregate`: Computes an aggregate (using a custom or built-in `torch` function) for each target component over the last `input_chunk_length` points, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveMean` and `NaiveMovingAverage`. + - `GlobalNaiveDrift`: Takes the slope of each target component over the last `input_chunk_length` points and projects the trend over the next `output_chunk_length` points for prediction. Depending on the parameters, this model can be equivalent to `NaiveDrift`. + - `GlobalNaiveSeasonal`: Takes the target component value at the `input_chunk_length`th point before the end of the target `series`, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveSeasonal`. - Improvements to `TorchForecastingModel`: - Added support for additional lr scheduler configuration parameters for more control ("interval", "frequency", "monitor", "strict", "name"). [#2218](https://github.com/unit8co/darts/pull/2218) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `GlobalForecastingModel`: - - 🚀 All global models (regression and torch models) now support shifted predictions with model creation parameter `output_chunk_shift`. This will shift the output chunk for training and prediction by `output_chunk_shift` steps into the future. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `WindowTransformer` and `window_transform`: - - Added argument `keep_names` to indicate whether the original component names should be kept. [#2207](https://github.com/unit8co/darts/pull/2207) by [Antoine Madrona](https://github.com/madtoinou). - Improvements to `RegressionModel`: [#2246](https://github.com/unit8co/darts/pull/2246) by [Antoine Madrona](https://github.com/madtoinou). - Added a `get_estimator()` method to access the underlying estimator - - Updated the docstring of `get_multioutout_estimator()` - Added attribute `lagged_label_names` to identify the forecasted step and component of each estimator -- 🚀 New global baseline models that use fixed input and output chunks for prediction. This offers support for univariate, multivariate, single and multiple target series prediction, fixed- or autoregressive/moving forecasts, optimized historical forecast, batch prediction, prediction from datasets, and more. [#2261](https://github.com/unit8co/darts/pull/2261) by [Dennis Bader](https://github.com/dennisbader). - - `GlobalNaiveAggregate`: Computes an aggregate (using a custom or built-in `torch` function) for each target component over the last `input_chunk_length` points, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveMean` and `NaiveMovingAverage`. - - `GlobalNaiveDrift`: Takes the slope of each target component over the last `input_chunk_length` points and projects the trend over the next `output_chunk_length` points for prediction. Depending on the parameters, this model can be equivalent to `NaiveDrift`. - - `GlobalNaiveSeasonal`: Takes the target component value at the `input_chunk_length`th point before the end of the target `series`, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveSeasonal`. + - Updated the docstring of `get_multioutout_estimator()` - Other improvements: - - Added new helper function `darts.utils.n_steps_between()` to efficiently compute the number of time steps (periods) between two points with a given frequency. Improves efficiency for regression model tabularization by avoiding `pd.date_range()`. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). + - Added argument `keep_names` to `WindowTransformer` and `window_transform` to indicate whether the original component names should be kept. [#2207](https://github.com/unit8co/darts/pull/2207) by [Antoine Madrona](https://github.com/madtoinou). + - Added new helper function `darts.utils.utils.n_steps_between()` to efficiently compute the number of time steps (periods) between two points with a given frequency. Improves efficiency for regression model tabularization by avoiding `pd.date_range()`. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - 🔴 Changed the default `start` value in `ForecastingModel.gridsearch()` from `0.5` to `None`, to make it consistent with `historical_forecasts` and other methods. [#2243](https://github.com/unit8co/darts/pull/2243) by [Thomas Kientz](https://github.com/thomktz). + - Improvements to `ARIMA` documentation: Specified possible `p`, `d`, `P`, `D`, `trend` advanced options that are available in statsmodels. More explanations on the behaviour of the parameters were added. [#2142](https://github.com/unit8co/darts/pull/2142) by [MarcBresson](https://github.com/MarcBresson). **Fixed** +- Fixed a bug when using `RegressionModel` with `lags=None`, some `lags_*covariates`, and the covariates starting after or at the same time as the first predictable time step; the lags were not extracted from the correct indices. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - Fixed a bug when calling `window_transform` on a `TimeSeries` with a hierarchy. The hierarchy is now only preseved for single transformations applied to all components, or removed otherwise. [#2207](https://github.com/unit8co/darts/pull/2207) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in probabilistic `LinearRegressionModel.fit()`, where the `model` attribute was not pointing to all underlying estimators. [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). - Raise an error in `RegressionEsembleModel` when the `regression_model` was created with `multi_models=False` (not supported). [#2205](https://github.com/unit8co/darts/pull/2205) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `coefficient_of_variation()` with `intersect=True`, where the coefficient was not computed on the intersection. [#2202](https://github.com/unit8co/darts/pull/2202) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `gridsearch()` with `use_fitted_values=True`, where the model was not propely instantiated for sanity checks. [#2222](https://github.com/unit8co/darts/pull/2222) by [Antoine Madrona](https://github.com/madtoinou). -- Fixed a bug in `TimeSeries.append/prepend_values()`, where the components names and the hierarchy were dropped. [#2237](https://github.com/unit8co/darts/pull/2237) by [Antoine Madrona](https://github.com/madtoinou). -- Fixed a bug when using `RegressionModel` with `lags=None`, some `lags_*covariates`, and the covariates starting at the same time or after the first predictable time step; the lags were not extracted from the correct indices. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). -- 🔴 Fixed a bug in `datetime_attribute_timeseries()`, where 1-indexed attributes were not properly handled. Also, 0-indexing is now enforced for all the generated encodings. [#2242](https://github.com/unit8co/darts/pull/2242) by [Antoine Madrona](https://github.com/madtoinou). +- Fixed a bug in `TimeSeries.append/prepend_values()`, where the component names and the hierarchy were dropped. [#2237](https://github.com/unit8co/darts/pull/2237) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug in `get_multioutput_estimator()`, where the index of the estimator was incorrectly calculated. [#2246](https://github.com/unit8co/darts/pull/2246) by [Antoine Madrona](https://github.com/madtoinou). +- 🔴 Fixed a bug in `datetime_attribute_timeseries()`, where 1-indexed attributes were not properly handled. Also, 0-indexing is now enforced for all the generated encodings. [#2242](https://github.com/unit8co/darts/pull/2242) by [Antoine Madrona](https://github.com/madtoinou). **Dependencies** - Removed upper version cap (<=v2.1.2) for PyTorch Lightning. [#2251](https://github.com/unit8co/darts/pull/2251) by [Dennis Bader](https://github.com/dennisbader). + +### For developers of the library: +- Updated pre-commit hooks to the latest version using `pre-commit autoupdate`. Change `pyupgrade` pre-commit hook argument to `--py38-plus`. [#2228](https://github.com/unit8co/darts/pull/2228) by [MarcBresson](https://github.com/MarcBresson). - Bumped dev dependencies to newest versions: [#2248](https://github.com/unit8co/darts/pull/2248) by [Dennis Bader](https://github.com/dennisbader). - black[jupyter]: from 22.3.0 to 24.1.1 - flake8: from 4.0.1 to 7.0.0 - isort: from 5.11.5 to 5.13.2 - pyupgrade: 2.31.0 from to v3.15.0 -### For developers of the library: -- Updated pre-commit hooks to the latest version using `pre-commit autoupdate`. Change `pyupgrade` pre-commit hook argument to `--py38-plus`. [#2228](https://github.com/unit8co/darts/pull/2248) by [MarcBresson](https://github.com/MarcBresson). - -## [0.27.2](https://github.com/unit8co/darts/tree/0.27.2) (2023-01-21) +## [0.27.2](https://github.com/unit8co/darts/tree/0.27.2) (2024-01-21) ### For users of the library: **Improved** - Added `darts.utils.statistics.plot_ccf` that can be used to plot the cross correlation between a time series (e.g. target series) and the lagged values of another time series (e.g. covariates series). [#2122](https://github.com/unit8co/darts/pull/2122) by [Dennis Bader](https://github.com/dennisbader). diff --git a/setup_u8darts.py b/setup_u8darts.py index 2b1ef21104..98eac73ea3 100644 --- a/setup_u8darts.py +++ b/setup_u8darts.py @@ -29,7 +29,7 @@ def read_requirements(path): setup( name="u8darts", - version="0.27.2", + version="0.28.0", description="A python library for easy manipulation and forecasting of time series.", long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", From 4de0b686ea4131df41e69a73e96b84062fe8c126 Mon Sep 17 00:00:00 2001 From: dennisbader Date: Tue, 5 Mar 2024 10:03:57 +0000 Subject: [PATCH 018/161] Release 0.28.0 --- .bumpversion.cfg | 2 +- conda_recipe/darts/meta.yaml | 2 +- darts/__init__.py | 2 +- docs/source/conf.py | 2 +- setup.py | 2 +- 5 files changed, 5 insertions(+), 5 deletions(-) diff --git a/.bumpversion.cfg b/.bumpversion.cfg index 30c3988b4d..a3838f06d2 100644 --- a/.bumpversion.cfg +++ b/.bumpversion.cfg @@ -1,6 +1,6 @@ [bumpversion] parse = (?P\d+)\.(?P\d+)\.(?P\d+)|dev -current_version = 0.27.2 +current_version = 0.28.0 [bumpversion:file:setup.py] diff --git a/conda_recipe/darts/meta.yaml b/conda_recipe/darts/meta.yaml index 714887eb3f..62120a8cf7 100644 --- a/conda_recipe/darts/meta.yaml +++ b/conda_recipe/darts/meta.yaml @@ -2,7 +2,7 @@ package: name: "darts" - version: "0.27.2" + version: "0.28.0" source: # root folder, not the package diff --git a/darts/__init__.py b/darts/__init__.py index 2f75c40cfe..f36b3ff9be 100644 --- a/darts/__init__.py +++ b/darts/__init__.py @@ -10,7 +10,7 @@ from .timeseries import TimeSeries, concatenate -__version__ = "0.27.2" +__version__ = "0.28.0" colors = cycler( color=["black", "003DFD", "b512b8", "11a9ba", "0d780f", "f77f07", "ba0f0f"] diff --git a/docs/source/conf.py b/docs/source/conf.py index b260072f18..a648714c97 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -22,7 +22,7 @@ project = "darts" copyright = f"2020 - {datetime.now().year}, Unit8 SA (Apache 2.0 License)" author = "Unit8 SA" -version = "0.27.2" +version = "0.28.0" # -- General configuration --------------------------------------------------- diff --git a/setup.py b/setup.py index aefd06f660..a5bcd32690 100644 --- a/setup.py +++ b/setup.py @@ -30,7 +30,7 @@ def read_requirements(path): setup( name="darts", - version="0.27.2", + version="0.28.0", description="A python library for easy manipulation and forecasting of time series.", long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", From 2264ccabf3262ea20fb8fdeef15c19f66b3d9962 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 11 Mar 2024 09:17:52 +0100 Subject: [PATCH 019/161] Repo/update code owners (#2275) * update code owners * udpated PR template --- .github/CODEOWNERS | 2 +- .github/pull_request_template.md | 5 +++++ 2 files changed, 6 insertions(+), 1 deletion(-) diff --git a/.github/CODEOWNERS b/.github/CODEOWNERS index 70ab5e667a..da97001c93 100644 --- a/.github/CODEOWNERS +++ b/.github/CODEOWNERS @@ -5,7 +5,7 @@ # the repo. Unless a later match takes precedence, # @global-owner1 and @global-owner2 will be requested for # review when someone opens a pull request. -* @hrzn @dennisbader @brunnedu +* @dennisbader @madtoinou @hrzn # Custom CODEOWNERS can be set up for branches with specific # patterns, you can find more info here: diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md index 0e4febd841..77350a2f56 100644 --- a/.github/pull_request_template.md +++ b/.github/pull_request_template.md @@ -1,3 +1,8 @@ +Checklist before merging this PR: +- [ ] Mentioned all issues that this PR fixes or addresses. +- [ ] Summarized the updates of this PR under **Summary**. +- [ ] Added an entry under **Unreleased** in the [Changelog](../CHANGELOG.md). + Fixes #. From 7986348133fed3f817ff73454848dcc5b2c5a65c Mon Sep 17 00:00:00 2001 From: Felix Divo <4403130+felixdivo@users.noreply.github.com> Date: Tue, 12 Mar 2024 09:13:00 +0100 Subject: [PATCH 020/161] Add `ForecastingModel.supports_probabilistic_prediction` (#2259) (#2269) * Remove unnessesary `pass` statements * Rename ForecastingModel_is_probabilistic to supports_probabilistic_prediction, rearrange some documentation * Remove redundant overrides * Reformat * Add CHANGELOG entry --------- Co-authored-by: Dennis Bader --- CHANGELOG.md | 2 ++ darts/explainability/shap_explainer.py | 2 +- darts/models/forecasting/arima.py | 2 +- darts/models/forecasting/catboost_model.py | 2 +- darts/models/forecasting/croston.py | 4 ---- darts/models/forecasting/ensemble_model.py | 17 +++++++++++++---- .../models/forecasting/exponential_smoothing.py | 2 +- darts/models/forecasting/forecasting_model.py | 17 +++++++---------- .../forecasting/global_baseline_models.py | 2 +- darts/models/forecasting/kalman_forecaster.py | 2 +- darts/models/forecasting/lgbm.py | 2 +- .../forecasting/linear_regression_model.py | 2 +- .../models/forecasting/pl_forecasting_module.py | 2 +- darts/models/forecasting/prophet_model.py | 2 +- .../forecasting/regression_ensemble_model.py | 8 +++++--- darts/models/forecasting/sf_auto_arima.py | 2 +- darts/models/forecasting/sf_auto_ces.py | 4 ---- darts/models/forecasting/sf_auto_ets.py | 2 +- darts/models/forecasting/sf_auto_theta.py | 2 +- darts/models/forecasting/tbats_model.py | 2 +- .../forecasting/torch_forecasting_model.py | 4 ++-- darts/models/forecasting/varima.py | 2 +- darts/models/forecasting/xgboost.py | 2 +- darts/tests/models/forecasting/test_TFT.py | 2 +- .../models/forecasting/test_ensemble_models.py | 2 +- .../test_global_forecasting_models.py | 4 ++-- .../test_regression_ensemble_model.py | 12 ++++++------ 27 files changed, 55 insertions(+), 53 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 47ae74c1dc..a96914385f 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,6 +9,8 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For users of the library: **Improved** +- Improvements to `ForecastingModel`: + - Renamed the private `_is_probabilistic` property to a public `supports_probabilistic_prediction`. [#2269](https://github.com/unit8co/darts/pull/2269) by [Felix Divo](https://github.com/felixdivo). **Fixed** diff --git a/darts/explainability/shap_explainer.py b/darts/explainability/shap_explainer.py index a31a844ca4..c6dc313081 100644 --- a/darts/explainability/shap_explainer.py +++ b/darts/explainability/shap_explainer.py @@ -162,7 +162,7 @@ def __init__( test_stationarity=True, ) - if model._is_probabilistic: + if model.supports_probabilistic_prediction: logger.warning( "The model is probabilistic, but num_samples=1 will be used for explainability." ) diff --git a/darts/models/forecasting/arima.py b/darts/models/forecasting/arima.py index 489cf338e4..4a6760d430 100644 --- a/darts/models/forecasting/arima.py +++ b/darts/models/forecasting/arima.py @@ -233,7 +233,7 @@ def _predict( return self._build_forecast_series(forecast) @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return True @property diff --git a/darts/models/forecasting/catboost_model.py b/darts/models/forecasting/catboost_model.py index 104ce9d602..26bb976dde 100644 --- a/darts/models/forecasting/catboost_model.py +++ b/darts/models/forecasting/catboost_model.py @@ -326,7 +326,7 @@ def _likelihood_components_names( return None @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return self.likelihood is not None @property diff --git a/darts/models/forecasting/croston.py b/darts/models/forecasting/croston.py index 4737aec4b7..0a5f239728 100644 --- a/darts/models/forecasting/croston.py +++ b/darts/models/forecasting/croston.py @@ -164,7 +164,3 @@ def min_train_series_length(self) -> int: @property def _supports_range_index(self) -> bool: return True - - @property - def _is_probabilistic(self) -> bool: - return False diff --git a/darts/models/forecasting/ensemble_model.py b/darts/models/forecasting/ensemble_model.py index 30d36ff2ba..3ac8877410 100644 --- a/darts/models/forecasting/ensemble_model.py +++ b/darts/models/forecasting/ensemble_model.py @@ -119,7 +119,9 @@ def __init__( raise_if( train_num_samples is not None and train_num_samples > 1 - and all([not m._is_probabilistic for m in forecasting_models]), + and all( + [not m.supports_probabilistic_prediction for m in forecasting_models] + ), "`train_num_samples` is greater than 1 but the `RegressionEnsembleModel` " "contains only deterministic `forecasting_models`.", logger, @@ -261,7 +263,9 @@ def _make_multiple_predictions( future_covariates=( future_covariates if model.supports_future_covariates else None ), - num_samples=num_samples if model._is_probabilistic else 1, + num_samples=( + num_samples if model.supports_probabilistic_prediction else 1 + ), predict_likelihood_parameters=predict_likelihood_parameters, ) for model in self.forecasting_models @@ -432,7 +436,12 @@ def output_chunk_length(self) -> Optional[int]: @property def _models_are_probabilistic(self) -> bool: - return all([model._is_probabilistic for model in self.forecasting_models]) + return all( + [ + model.supports_probabilistic_prediction + for model in self.forecasting_models + ] + ) @property def _models_same_likelihood(self) -> bool: @@ -480,7 +489,7 @@ def supports_likelihood_parameter_prediction(self) -> bool: ) @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return self._models_are_probabilistic @property diff --git a/darts/models/forecasting/exponential_smoothing.py b/darts/models/forecasting/exponential_smoothing.py index 217e5485d7..ef42f8c4cb 100644 --- a/darts/models/forecasting/exponential_smoothing.py +++ b/darts/models/forecasting/exponential_smoothing.py @@ -159,7 +159,7 @@ def supports_multivariate(self) -> bool: return False @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return True @property diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index beeb3b3327..41b5433641 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -192,9 +192,10 @@ def _supports_range_index(self) -> bool: return True @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: """ - Checks if the forecasting model supports probabilistic predictions. + Checks if the forecasting model with this configuration supports probabilistic predictions. + By default, returns False. Needs to be overwritten by models that do support probabilistic predictions. """ @@ -204,7 +205,9 @@ def _is_probabilistic(self) -> bool: def _supports_non_retrainable_historical_forecasts(self) -> bool: """ Checks if the forecasting model supports historical forecasts without retraining - the model. By default, returns False. Needs to be overwritten by models that do + the model. + + By default, returns False. Needs to be overwritten by models that do support historical forecasts without retraining. """ return False @@ -250,7 +253,6 @@ def supports_transferrable_series_prediction(self) -> bool: """ Whether the model supports prediction for any input `series`. """ - pass @property def uses_past_covariates(self) -> bool: @@ -347,7 +349,7 @@ def predict( logger=logger, ) - if not self._is_probabilistic and num_samples > 1: + if not self.supports_probabilistic_prediction and num_samples > 1: raise_log( ValueError( "`num_samples > 1` is only supported for probabilistic models." @@ -488,7 +490,6 @@ def extreme_lags( >>> model.extreme_lags (-10, 6, None, None, 4, 6, 0) """ - pass @property def _training_sample_time_index_length(self) -> int: @@ -1870,7 +1871,6 @@ def _model_encoder_settings( Must return Tuple (input_chunk_length, output_chunk_length, takes_past_covariates, takes_future_covariates, lags_past_covariates, lags_future_covariates). """ - pass @classmethod def _sample_params(model_class, params, n_random_samples): @@ -2481,7 +2481,6 @@ def _fit(self, series: TimeSeries, future_covariates: Optional[TimeSeries] = Non """Fits/trains the model on the provided series. DualCovariatesModels must implement the fit logic in this method. """ - pass def predict( self, @@ -2575,7 +2574,6 @@ def _predict( """Forecasts values for a certain number of time steps after the end of the series. DualCovariatesModels must implement the predict logic in this method. """ - pass @property def _model_encoder_settings( @@ -2778,7 +2776,6 @@ def _predict( """Forecasts values for a certain number of time steps after the end of the series. TransferableFutureCovariatesLocalForecastingModel must implement the predict logic in this method. """ - pass @property def supports_transferrable_series_prediction(self) -> bool: diff --git a/darts/models/forecasting/global_baseline_models.py b/darts/models/forecasting/global_baseline_models.py index dc81fe49aa..860e44609c 100644 --- a/darts/models/forecasting/global_baseline_models.py +++ b/darts/models/forecasting/global_baseline_models.py @@ -235,7 +235,7 @@ def min_train_series_length(self) -> int: def supports_likelihood_parameter_prediction(self) -> bool: return False - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return False @property diff --git a/darts/models/forecasting/kalman_forecaster.py b/darts/models/forecasting/kalman_forecaster.py index 34ef91a0a4..595f71c443 100644 --- a/darts/models/forecasting/kalman_forecaster.py +++ b/darts/models/forecasting/kalman_forecaster.py @@ -171,5 +171,5 @@ def supports_multivariate(self) -> bool: return True @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return True diff --git a/darts/models/forecasting/lgbm.py b/darts/models/forecasting/lgbm.py index 602fcac978..5812c12faa 100644 --- a/darts/models/forecasting/lgbm.py +++ b/darts/models/forecasting/lgbm.py @@ -310,7 +310,7 @@ def _predict_and_sample( ) @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return self.likelihood is not None @property diff --git a/darts/models/forecasting/linear_regression_model.py b/darts/models/forecasting/linear_regression_model.py index 032ab0c460..7bdffff8d6 100644 --- a/darts/models/forecasting/linear_regression_model.py +++ b/darts/models/forecasting/linear_regression_model.py @@ -305,5 +305,5 @@ def _predict_and_sample( ) @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return self.likelihood is not None diff --git a/darts/models/forecasting/pl_forecasting_module.py b/darts/models/forecasting/pl_forecasting_module.py index 6be20f5da0..7a7524a0bc 100644 --- a/darts/models/forecasting/pl_forecasting_module.py +++ b/darts/models/forecasting/pl_forecasting_module.py @@ -468,7 +468,7 @@ def set_mc_dropout(self, active: bool): module.mc_dropout_enabled = active @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return self.likelihood is not None or len(self._get_mc_dropout_modules()) > 0 def _produce_predict_output(self, x: Tuple) -> torch.Tensor: diff --git a/darts/models/forecasting/prophet_model.py b/darts/models/forecasting/prophet_model.py index b6674463fa..78ce395cae 100644 --- a/darts/models/forecasting/prophet_model.py +++ b/darts/models/forecasting/prophet_model.py @@ -386,7 +386,7 @@ def supports_multivariate(self) -> bool: return False @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return True def _stochastic_samples(self, predict_df, n_samples) -> np.ndarray: diff --git a/darts/models/forecasting/regression_ensemble_model.py b/darts/models/forecasting/regression_ensemble_model.py index aeac43b04c..149d6376a9 100644 --- a/darts/models/forecasting/regression_ensemble_model.py +++ b/darts/models/forecasting/regression_ensemble_model.py @@ -222,7 +222,9 @@ def _make_multiple_historical_forecasts( ), forecast_horizon=model.output_chunk_length, stride=model.output_chunk_length, - num_samples=num_samples if model._is_probabilistic else 1, + num_samples=( + num_samples if model.supports_probabilistic_prediction else 1 + ), start=-start_hist_forecasts, start_format="position", retrain=False, @@ -486,9 +488,9 @@ def supports_multivariate(self) -> bool: ) @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: """ A RegressionEnsembleModel is probabilistic if its regression model is probabilistic (ensembling layer) """ - return self.regression_model._is_probabilistic + return self.regression_model.supports_probabilistic_prediction diff --git a/darts/models/forecasting/sf_auto_arima.py b/darts/models/forecasting/sf_auto_arima.py index c036a80b80..cd8569aede 100644 --- a/darts/models/forecasting/sf_auto_arima.py +++ b/darts/models/forecasting/sf_auto_arima.py @@ -134,5 +134,5 @@ def _supports_range_index(self) -> bool: return True @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return True diff --git a/darts/models/forecasting/sf_auto_ces.py b/darts/models/forecasting/sf_auto_ces.py index 4b79aa111d..5ec8fc1a44 100644 --- a/darts/models/forecasting/sf_auto_ces.py +++ b/darts/models/forecasting/sf_auto_ces.py @@ -84,7 +84,3 @@ def min_train_series_length(self) -> int: @property def _supports_range_index(self) -> bool: return True - - @property - def _is_probabilistic(self) -> bool: - return False diff --git a/darts/models/forecasting/sf_auto_ets.py b/darts/models/forecasting/sf_auto_ets.py index 9636436e0a..95572c42fe 100644 --- a/darts/models/forecasting/sf_auto_ets.py +++ b/darts/models/forecasting/sf_auto_ets.py @@ -164,5 +164,5 @@ def _supports_range_index(self) -> bool: return True @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return True diff --git a/darts/models/forecasting/sf_auto_theta.py b/darts/models/forecasting/sf_auto_theta.py index 53a6400cca..626c570665 100644 --- a/darts/models/forecasting/sf_auto_theta.py +++ b/darts/models/forecasting/sf_auto_theta.py @@ -99,5 +99,5 @@ def _supports_range_index(self) -> bool: return True @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return True diff --git a/darts/models/forecasting/tbats_model.py b/darts/models/forecasting/tbats_model.py index ec1cc62cfd..debab5060f 100644 --- a/darts/models/forecasting/tbats_model.py +++ b/darts/models/forecasting/tbats_model.py @@ -248,7 +248,7 @@ def supports_multivariate(self) -> bool: return False @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return True @property diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index b77989092a..af7f0b19f2 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -2051,9 +2051,9 @@ def output_chunk_shift(self) -> int: ) @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return ( - self.model._is_probabilistic + self.model.supports_probabilistic_prediction if self.model_created else True # all torch models can be probabilistic (via Dropout) ) diff --git a/darts/models/forecasting/varima.py b/darts/models/forecasting/varima.py index 3b6e4e9c05..cce35bb7e1 100644 --- a/darts/models/forecasting/varima.py +++ b/darts/models/forecasting/varima.py @@ -254,7 +254,7 @@ def min_train_series_length(self) -> int: return 30 @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return True @property diff --git a/darts/models/forecasting/xgboost.py b/darts/models/forecasting/xgboost.py index e62a37d065..99f38fc59a 100644 --- a/darts/models/forecasting/xgboost.py +++ b/darts/models/forecasting/xgboost.py @@ -328,7 +328,7 @@ def _predict_and_sample( ) @property - def _is_probabilistic(self) -> bool: + def supports_probabilistic_prediction(self) -> bool: return self.likelihood is not None @property diff --git a/darts/tests/models/forecasting/test_TFT.py b/darts/tests/models/forecasting/test_TFT.py index b0eb2e4bdf..5758bef8f3 100644 --- a/darts/tests/models/forecasting/test_TFT.py +++ b/darts/tests/models/forecasting/test_TFT.py @@ -381,7 +381,7 @@ def helper_fit_predict( series=series, past_covariates=past_covariates, future_covariates=future_covariates, - num_samples=(100 if model._is_probabilistic else 1), + num_samples=(100 if model.supports_probabilistic_prediction else 1), ) if isinstance(y_hat, TimeSeries): diff --git a/darts/tests/models/forecasting/test_ensemble_models.py b/darts/tests/models/forecasting/test_ensemble_models.py index 6197c3113f..79d3f5d762 100644 --- a/darts/tests/models/forecasting/test_ensemble_models.py +++ b/darts/tests/models/forecasting/test_ensemble_models.py @@ -199,7 +199,7 @@ def test_stochastic_naive_ensemble(self): # only probabilistic forecasting models naive_ensemble_proba = NaiveEnsembleModel([model_proba_1, model_proba_2]) - assert naive_ensemble_proba._is_probabilistic + assert naive_ensemble_proba.supports_probabilistic_prediction naive_ensemble_proba.fit(self.series1 + self.series2) # by default, only 1 sample diff --git a/darts/tests/models/forecasting/test_global_forecasting_models.py b/darts/tests/models/forecasting/test_global_forecasting_models.py index b12ae6d764..b8b020f342 100644 --- a/darts/tests/models/forecasting/test_global_forecasting_models.py +++ b/darts/tests/models/forecasting/test_global_forecasting_models.py @@ -447,7 +447,7 @@ def test_covariates(self, config): ) # when model is fit using 1 training and 1 covariate series, time series args are optional - if model._is_probabilistic: + if model.supports_probabilistic_prediction: return model = model_cls( input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs @@ -661,7 +661,7 @@ def test_same_result_with_different_n_jobs(self, config): model.fit(multiple_ts) # safe random state for two successive identical predictions - if model._is_probabilistic: + if model.supports_probabilistic_prediction: random_state = deepcopy(model._random_instance) else: random_state = None diff --git a/darts/tests/models/forecasting/test_regression_ensemble_model.py b/darts/tests/models/forecasting/test_regression_ensemble_model.py index e9fa0b9578..bb979955d2 100644 --- a/darts/tests/models/forecasting/test_regression_ensemble_model.py +++ b/darts/tests/models/forecasting/test_regression_ensemble_model.py @@ -610,7 +610,7 @@ def test_stochastic_regression_ensemble_model(self): ) assert ensemble_allproba._models_are_probabilistic - assert ensemble_allproba._is_probabilistic + assert ensemble_allproba.supports_probabilistic_prediction ensemble_allproba.fit(self.ts_random_walk[:100]) # probabilistic forecasting is supported pred = ensemble_allproba.predict(5, num_samples=10) @@ -627,7 +627,7 @@ def test_stochastic_regression_ensemble_model(self): ) assert not ensemble_mixproba._models_are_probabilistic - assert ensemble_mixproba._is_probabilistic + assert ensemble_mixproba.supports_probabilistic_prediction ensemble_mixproba.fit(self.ts_random_walk[:100]) # probabilistic forecasting is supported pred = ensemble_mixproba.predict(5, num_samples=10) @@ -647,7 +647,7 @@ def test_stochastic_regression_ensemble_model(self): ) assert not ensemble_mixproba2._models_are_probabilistic - assert ensemble_mixproba2._is_probabilistic + assert ensemble_mixproba2.supports_probabilistic_prediction ensemble_mixproba2.fit(self.ts_random_walk[:100]) pred = ensemble_mixproba2.predict(5, num_samples=10) assert pred.n_samples == 10 @@ -663,7 +663,7 @@ def test_stochastic_regression_ensemble_model(self): ) assert not ensemble_proba_reg._models_are_probabilistic - assert ensemble_proba_reg._is_probabilistic + assert ensemble_proba_reg.supports_probabilistic_prediction ensemble_proba_reg.fit(self.ts_random_walk[:100]) # probabilistic forecasting is supported pred = ensemble_proba_reg.predict(5, num_samples=10) @@ -680,7 +680,7 @@ def test_stochastic_regression_ensemble_model(self): ) assert ensemble_dete_reg._models_are_probabilistic - assert not ensemble_dete_reg._is_probabilistic + assert not ensemble_dete_reg.supports_probabilistic_prediction ensemble_dete_reg.fit(self.ts_random_walk[:100]) # deterministic forecasting is supported ensemble_dete_reg.predict(5, num_samples=1) @@ -699,7 +699,7 @@ def test_stochastic_regression_ensemble_model(self): ) assert not ensemble_alldete._models_are_probabilistic - assert not ensemble_alldete._is_probabilistic + assert not ensemble_alldete.supports_probabilistic_prediction ensemble_alldete.fit(self.ts_random_walk[:100]) # deterministic forecasting is supported ensemble_alldete.predict(5, num_samples=1) From d764bc4d890c48f787fafc0220913a169db7fe7f Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Fri, 15 Mar 2024 11:55:34 +0100 Subject: [PATCH 021/161] fix type hinting for _with_sanity_checks (#2286) * fix type hinting for _with_sanity_checks * update changelog --- CHANGELOG.md | 1 + darts/utils/utils.py | 12 ++++++------ 2 files changed, 7 insertions(+), 6 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index a96914385f..752f90120f 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -13,6 +13,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Renamed the private `_is_probabilistic` property to a public `supports_probabilistic_prediction`. [#2269](https://github.com/unit8co/darts/pull/2269) by [Felix Divo](https://github.com/felixdivo). **Fixed** +- Fixed type hint warning "Unexpected argument" when calling `historical_forecasts()` caused by the `_with_sanity_checks` decorator. The type hinting is now properly configured to expect any input arguments and return the output type of the method for which the sanity checks are performed for. [#2286](https://github.com/unit8co/darts/pull/2286) by [Dennis Bader](https://github.com/dennisbader). **Dependencies** diff --git a/darts/utils/utils.py b/darts/utils/utils.py index b0169b2696..a38b246158 100644 --- a/darts/utils/utils.py +++ b/darts/utils/utils.py @@ -116,19 +116,18 @@ def _isnotebook(): return iterator -# Types for sanity checks decorator -A = TypeVar("A") -B = TypeVar("B") +# Types for sanity checks decorator: T is the output of the method to sanitize T = TypeVar("T") def _with_sanity_checks( *sanity_check_methods: str, -) -> Callable[[Callable[[A, B], T]], Callable[[A, B], T]]: +) -> Callable[[Callable[..., T]], Callable[..., T]]: """ Decorator allowing to specify some sanity check method(s) to be used on a class method. The decorator guarantees that args and kwargs from the method to sanitize will be available in the sanity check methods as specified in the sanitized method's signature, irrespective of how it was called. + TypeVar `T` corresponds to the output of the method that the sanity checks are performed for. Parameters ---------- @@ -150,9 +149,10 @@ def fit(self, a, b=0, c=0): ... """ - def decorator(method_to_sanitize: Callable[[A, B], T]) -> Callable[[A, B], T]: + def decorator(method_to_sanitize: Callable[..., T]) -> Callable[..., T]: @wraps(method_to_sanitize) - def sanitized_method(self, *args: A, **kwargs: B) -> T: + def sanitized_method(self, *args, **kwargs) -> T: + only_args, only_kwargs = {}, {} for sanity_check_method in sanity_check_methods: # Convert all arguments into keyword arguments all_as_kwargs = getcallargs(method_to_sanitize, self, *args, **kwargs) From 91c7087e757c5ef3afc53b5fbaccda83dec6b71a Mon Sep 17 00:00:00 2001 From: Alicja Krzeminska-Sciga <110606089+alicjakrzeminska@users.noreply.github.com> Date: Sat, 16 Mar 2024 12:05:51 +0100 Subject: [PATCH 022/161] Add optional inverse transform in historical forecast (#2267) * Add optional inverse transform in historical forecast * Update variables names and docstrings * Move the inverse transform to InvertibleDataTransformer * Fix single element list * Update docstrings * Move the inverse transform of list of lists to inverse_transform method * make invertible transformers act on list of lists of series * add tests * update changelog --------- Co-authored-by: dennisbader --- CHANGELOG.md | 6 +- .../transformers/base_data_transformer.py | 118 +++++++++++------- .../transformers/fittable_data_transformer.py | 72 +++++++---- .../invertible_data_transformer.py | 61 ++++++--- .../test_invertible_data_transformer.py | 90 +++++++++++++ ...st_invertible_fittable_data_transformer.py | 84 +++++++++++++ 6 files changed, 345 insertions(+), 86 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 752f90120f..8710d28754 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,8 +9,10 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For users of the library: **Improved** -- Improvements to `ForecastingModel`: - - Renamed the private `_is_probabilistic` property to a public `supports_probabilistic_prediction`. [#2269](https://github.com/unit8co/darts/pull/2269) by [Felix Divo](https://github.com/felixdivo). +- Improvements to `ForecastingModel`: [#2269](https://github.com/unit8co/darts/pull/2269) by [Felix Divo](https://github.com/felixdivo). + - Renamed the private `_is_probabilistic` property to a public `supports_probabilistic_prediction`. +- Improvements to `DataTransformer`: [#2267](https://github.com/unit8co/darts/pull/2267) by [Alicja Krzeminska-Sciga](https://github.com/alicjakrzeminska). + - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. **Fixed** - Fixed type hint warning "Unexpected argument" when calling `historical_forecasts()` caused by the `_with_sanity_checks` decorator. The type hinting is now properly configured to expect any input arguments and return the output type of the method for which the sanity checks are performed for. [#2286](https://github.com/unit8co/darts/pull/2286) by [Dennis Bader](https://github.com/dennisbader). diff --git a/darts/dataprocessing/transformers/base_data_transformer.py b/darts/dataprocessing/transformers/base_data_transformer.py index 4ba79fbd81..1d4b8dfdf2 100644 --- a/darts/dataprocessing/transformers/base_data_transformer.py +++ b/darts/dataprocessing/transformers/base_data_transformer.py @@ -4,13 +4,13 @@ """ from abc import ABC, abstractmethod -from typing import Any, Generator, List, Mapping, Optional, Sequence, Union +from typing import Any, Generator, Iterable, List, Mapping, Optional, Sequence, Union import numpy as np import xarray as xr from darts import TimeSeries -from darts.logging import get_logger, raise_if, raise_if_not +from darts.logging import get_logger, raise_log from darts.utils import _build_tqdm_iterator, _parallel_apply logger = get_logger(__name__) @@ -168,7 +168,8 @@ def set_verbose(self, value: bool): value New verbosity status """ - raise_if_not(isinstance(value, bool), "Verbosity status must be a boolean.") + if not isinstance(value, bool): + raise_log(ValueError("Verbosity status must be a boolean."), logger=logger) self._verbose = value @@ -180,8 +181,8 @@ def set_n_jobs(self, value: int): value New n_jobs value. Set to `-1` for using all the available cores. """ - - raise_if_not(isinstance(value, int), "n_jobs must be an integer") + if not isinstance(value, int): + raise_log(ValueError("n_jobs must be an integer"), logger=logger) self._n_jobs = value @staticmethod @@ -314,9 +315,11 @@ def transform( if isinstance(series, TimeSeries): input_series = [series] data = [series] + transformer_selector = [0] else: input_series = series data = series + transformer_selector = range(len(series)) if self._mask_components: data = [ @@ -327,7 +330,7 @@ def transform( kwargs["component_mask"] = component_mask input_iterator = _build_tqdm_iterator( - zip(data, self._get_params(n_timeseries=len(data))), + zip(data, self._get_params(transformer_selector=transformer_selector)), verbose=self._verbose, desc=desc, total=len(data), @@ -350,7 +353,7 @@ def transform( ) def _get_params( - self, n_timeseries: int + self, transformer_selector: Iterable ) -> Generator[Mapping[str, Any], None, None]: """ Creates generator of dictionaries containing fixed parameter values @@ -359,11 +362,11 @@ def _get_params( parallel jobs. Called by `transform` and `inverse_transform`, if `Transformer` does *not* inherit from `FittableTransformer`. """ - self._check_fixed_params(n_timeseries) + self._check_fixed_params(transformer_selector) - def params_generator(n_timeseries, fixed_params, parallel_params): + def params_generator(transformer_selector, fixed_params, parallel_params): fixed_params_copy = fixed_params.copy() - for i in range(n_timeseries): + for i in transformer_selector: for key in parallel_params: fixed_params_copy[key] = fixed_params[key][i] if fixed_params_copy: @@ -373,21 +376,35 @@ def params_generator(n_timeseries, fixed_params, parallel_params): yield params return None - return params_generator(n_timeseries, self._fixed_params, self._parallel_params) + return params_generator( + transformer_selector, self._fixed_params, self._parallel_params + ) - def _check_fixed_params(self, n_timeseries: int) -> None: + def _check_fixed_params(self, transformer_selector: Iterable) -> None: """ Raises `ValueError` if `self._parallel_params` specifies a `key` in `self._fixed_params` that should be distributed, but - `len(self._fixed_params[key])` does not equal `n_timeseries`. + `len(self._fixed_params[key])` does not equal to the number of time series + (the maximum value + 1 from `transformer_selector`). """ for key in self._parallel_params: - raise_if( - n_timeseries > len(self._fixed_params[key]), - f"{n_timeseries} TimeSeries were provided " - f"but only {len(self._fixed_params[key])} {key} values " - f"were specified upon initialising {self.name}.", - ) + n_timeseries_ = max(transformer_selector) + 1 + if n_timeseries_ > len(self._fixed_params[key]): + raise_log( + ValueError( + f"{n_timeseries_} TimeSeries were provided " + f"but only {len(self._fixed_params[key])} {key} values " + f"were specified upon initialising {self.name}." + ), + logger=logger, + ) + elif n_timeseries_ < len(self._fixed_params[key]): + logger.warning( + f"Only {n_timeseries_} TimeSeries were provided " + f"which is lower than the number of {key} values " + f"(n={len(self._fixed_params[key])}) that were specified " + f"upon initialising {self.name}." + ) return None @staticmethod @@ -418,16 +435,22 @@ def apply_component_mask( if component_mask is None: masked = series.copy() if return_ts else series.all_values() else: - raise_if_not( - isinstance(component_mask, np.ndarray) and component_mask.dtype == bool, - f"`component_mask` must be a boolean `np.ndarray`, not a {type(component_mask)}.", - logger, - ) - raise_if_not( - series.width == len(component_mask), - "mismatch between number of components in `series` and length of `component_mask`", - logger, - ) + if not ( + isinstance(component_mask, np.ndarray) and component_mask.dtype == bool + ): + raise_log( + ValueError( + f"`component_mask` must be a boolean `np.ndarray`, not a {type(component_mask)}." + ), + logger=logger, + ) + if not series.width == len(component_mask): + raise_log( + ValueError( + "mismatch between number of components in `series` and length of `component_mask`" + ), + logger=logger, + ) masked = series.all_values(copy=False)[:, component_mask, :] if return_ts: # Remove masked components from coords: @@ -469,16 +492,22 @@ def unapply_component_mask( if component_mask is None: unmasked = vals else: - raise_if_not( - isinstance(component_mask, np.ndarray) and component_mask.dtype == bool, - "If `component_mask` is given, must be a boolean np.ndarray`", - logger, - ) - raise_if_not( - series.width == len(component_mask), - "mismatch between number of components in `series` and length of `component_mask`", - logger, - ) + if not ( + isinstance(component_mask, np.ndarray) and component_mask.dtype == bool + ): + raise_log( + ValueError( + "If `component_mask` is given, must be a boolean np.ndarray`" + ), + logger=logger, + ) + if not series.width == len(component_mask): + raise_log( + ValueError( + "mismatch between number of components in `series` and length of `component_mask`" + ), + logger=logger, + ) unmasked = series.all_values() if isinstance(vals, TimeSeries): unmasked[:, component_mask, :] = vals.all_values() @@ -560,10 +589,13 @@ def unstack_samples( if series is not None: n_samples = series.n_samples else: - raise_if( - all(x is None for x in [n_timesteps, n_samples]), - "Must specify either `n_timesteps`, `n_samples`, or `series`.", - ) + if all(x is None for x in [n_timesteps, n_samples]): + raise_log( + ValueError( + "Must specify either `n_timesteps`, `n_samples`, or `series`." + ), + logger=logger, + ) n_components = vals.shape[-1] if n_timesteps is not None: reshaped_vals = vals.reshape(n_timesteps, -1, n_components) diff --git a/darts/dataprocessing/transformers/fittable_data_transformer.py b/darts/dataprocessing/transformers/fittable_data_transformer.py index e037d3ad40..654ef24338 100644 --- a/darts/dataprocessing/transformers/fittable_data_transformer.py +++ b/darts/dataprocessing/transformers/fittable_data_transformer.py @@ -4,12 +4,12 @@ """ from abc import abstractmethod -from typing import Any, Generator, List, Mapping, Optional, Sequence, Union +from typing import Any, Generator, Iterable, List, Mapping, Optional, Sequence, Union import numpy as np from darts import TimeSeries -from darts.logging import get_logger, raise_if, raise_if_not +from darts.logging import get_logger, raise_log from darts.utils import _build_tqdm_iterator, _parallel_apply from .base_data_transformer import BaseDataTransformer @@ -256,8 +256,10 @@ def fit( if isinstance(series, TimeSeries): data = [series] + transformer_selector = [0] else: data = series + transformer_selector = range(len(series)) if self._mask_components: data = [ @@ -267,7 +269,9 @@ def fit( else: kwargs["component_mask"] = component_mask - params_iterator = self._get_params(n_timeseries=len(data), calling_fit=True) + params_iterator = self._get_params( + transformer_selector=transformer_selector, calling_fit=True + ) fit_iterator = ( zip(data, params_iterator) if not self._global_fit @@ -315,7 +319,7 @@ def fit_transform( ).transform(series, *args, component_mask=component_mask, **kwargs) def _get_params( - self, n_timeseries: int, calling_fit: bool = False + self, transformer_selector: Iterable, calling_fit: bool = False ) -> Generator[Mapping[str, Any], None, None]: """ Overrides `_get_params` of `BaseDataTransformer`. Creates generator of dictionaries containing @@ -327,14 +331,18 @@ def _get_params( `transform` and `inverse_transform`. """ # Call `_check_fixed_params` of `BaseDataTransformer`: - self._check_fixed_params(n_timeseries) - fitted_params = self._get_fitted_params(n_timeseries, calling_fit) + self._check_fixed_params(transformer_selector) + fitted_params = self._get_fitted_params(transformer_selector, calling_fit) def params_generator( - n_jobs, fixed_params, fitted_params, parallel_params, global_fit + transformer_selector_, + fixed_params, + fitted_params, + parallel_params, + global_fit, ): fixed_params_copy = fixed_params.copy() - for i in range(n_jobs): + for i in transformer_selector_: for key in parallel_params: fixed_params_copy[key] = fixed_params[key][i] params = {} @@ -348,37 +356,53 @@ def params_generator( params = None yield params - n_jobs = n_timeseries if not (calling_fit and self._global_fit) else 1 + transformer_selector_ = ( + transformer_selector if not (calling_fit and self._global_fit) else [0] + ) return params_generator( - n_jobs, + transformer_selector_, self._fixed_params, fitted_params, self._parallel_params, self._global_fit, ) - def _get_fitted_params(self, n_timeseries: int, calling_fit: bool) -> Sequence[Any]: + def _get_fitted_params( + self, transformer_selector: Iterable, calling_fit: bool + ) -> Sequence[Any]: """ Returns `self._fitted_params` if `calling_fit = False`, otherwise returns an empty tuple. If `calling_fit = False`, also checks that `self._fitted_params`, which is a - sequence of values, contains exactly `n_timeseries` values; if not, a `ValueError` is thrown. + sequence of values, contains exactly `transformer_selector` values; if not, a `ValueError` is thrown. """ if not calling_fit: - raise_if_not( - self._fit_called, - ("Must call `fit` before calling `transform`/`inverse_transform`."), - ) + if not self._fit_called: + raise_log( + ValueError( + "Must call `fit` before calling `transform`/`inverse_transform`." + ), + logger=logger, + ) fitted_params = self._fitted_params else: fitted_params = tuple() if not self._global_fit and fitted_params: - raise_if( - n_timeseries > len(fitted_params), - ( - f"{n_timeseries} TimeSeries were provided " - f"but only {len(fitted_params)} TimeSeries " - f"were specified upon training {self.name}." - ), - ) + n_timeseries_ = max(transformer_selector) + 1 + if n_timeseries_ > len(fitted_params): + raise_log( + ValueError( + f"{n_timeseries_} TimeSeries were provided " + f"but only {len(fitted_params)} TimeSeries " + f"were specified upon training {self.name}." + ), + logger=logger, + ) + elif n_timeseries_ < len(fitted_params): + logger.warning( + f"Only {n_timeseries_} TimeSeries (lists) were provided " + f"which is lower than the number of series (n={len(fitted_params)}) " + f"used to fit {self.name}. This can result in a mismatch between the " + f"series and the underlying transformers." + ) return fitted_params diff --git a/darts/dataprocessing/transformers/invertible_data_transformer.py b/darts/dataprocessing/transformers/invertible_data_transformer.py index fbd9e0e61a..ecf22b0261 100644 --- a/darts/dataprocessing/transformers/invertible_data_transformer.py +++ b/darts/dataprocessing/transformers/invertible_data_transformer.py @@ -9,7 +9,7 @@ import numpy as np from darts import TimeSeries -from darts.logging import get_logger, raise_if_not +from darts.logging import get_logger, raise_log from darts.utils import _build_tqdm_iterator, _parallel_apply from .base_data_transformer import BaseDataTransformer @@ -245,14 +245,14 @@ def ts_inverse_transform( def inverse_transform( self, - series: Union[TimeSeries, Sequence[TimeSeries]], + series: Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]], *args, component_mask: Optional[np.array] = None, **kwargs, - ) -> Union[TimeSeries, List[TimeSeries]]: + ) -> Union[TimeSeries, List[TimeSeries], List[List[TimeSeries]]]: """Inverse transforms a (sequence of) series by calling the user-implemented `ts_inverse_transform` method. - In case a sequence is passed as input data, this function takes care of parallelising the + In case a sequence or list of lists is passed as input data, this function takes care of parallelising the transformation of multiple series in the sequence at the same time. Additionally, if the `mask_components` attribute was set to `True` when instantiating `InvertibleDataTransformer`, then any provided `component_mask`s will be automatically applied to each input `TimeSeries`; @@ -263,7 +263,14 @@ def inverse_transform( Parameters ---------- series - the (sequence of) series be inverse-transformed. + The series to inverse-transform. + If a single `TimeSeries`, returns a single series. + If a sequence of `TimeSeries`, returns a list of series. The series should be in the same order as the + sequence used to fit the transformer. + If a list of lists of `TimeSeries`, returns a list of lists of series. This can for example be the output + of `ForecastingModel.historical_forecasts()` when using multiple series. Each inner list should contain + `TimeSeries` related to the same series. The order of inner lists should be the same as the sequence used + to fit the transformer. args Additional positional arguments for the :func:`ts_inverse_transform()` method component_mask : Optional[np.ndarray] = None @@ -274,7 +281,7 @@ def inverse_transform( Returns ------- - Union[TimeSeries, List[TimeSeries]] + Union[TimeSeries, List[TimeSeries], List[List[TimeSeries]]] Inverse transformed data. Notes @@ -295,22 +302,35 @@ def inverse_transform( `component_masks` will be passed as a keyword argument `ts_inverse_transform`; the user can then manually specify how the `component_mask` should be applied to each series. """ - if hasattr(self, "_fit_called"): - raise_if_not( - self._fit_called, - "fit() must have been called before inverse_transform()", - logger, + if hasattr(self, "_fit_called") and not self._fit_called: + raise_log( + ValueError("fit() must have been called before inverse_transform()"), + logger=logger, ) desc = f"Inverse ({self._name})" # Take note of original input for unmasking purposes: + called_with_single_series = False + called_with_sequence_series = False if isinstance(series, TimeSeries): input_series = [series] data = [series] - else: + transformer_selector = [0] + called_with_single_series = True + elif isinstance(series[0], TimeSeries): # Sequence[TimeSeries] input_series = series data = series + transformer_selector = range(len(series)) + called_with_sequence_series = True + else: # Sequence[Sequence[TimeSeries]] + input_series = [] + data = [] + transformer_selector = [] + for idx, series_list in enumerate(series): + input_series.extend(series_list) + data.extend(series_list) + transformer_selector += [idx] * len(series_list) if self._mask_components: data = [ @@ -321,10 +341,10 @@ def inverse_transform( kwargs["component_mask"] = component_mask input_iterator = _build_tqdm_iterator( - zip(data, self._get_params(n_timeseries=len(data))), + zip(data, self._get_params(transformer_selector=transformer_selector)), verbose=self._verbose, desc=desc, - total=len(data), + total=len(transformer_selector), ) transformed_data = _parallel_apply( @@ -343,6 +363,13 @@ def inverse_transform( ) transformed_data = unmasked - return ( - transformed_data[0] if isinstance(series, TimeSeries) else transformed_data - ) + if called_with_single_series: + return transformed_data[0] + elif called_with_sequence_series: + return transformed_data + else: + cum_len = np.cumsum([0] + [len(s_) for s_ in series]) + return [ + transformed_data[cum_len[i] : cum_len[i + 1]] + for i in range(len(cum_len) - 1) + ] diff --git a/darts/tests/dataprocessing/transformers/test_invertible_data_transformer.py b/darts/tests/dataprocessing/transformers/test_invertible_data_transformer.py index 71163eb928..ca9a9f0a01 100644 --- a/darts/tests/dataprocessing/transformers/test_invertible_data_transformer.py +++ b/darts/tests/dataprocessing/transformers/test_invertible_data_transformer.py @@ -262,6 +262,96 @@ def test_input_transformed_multiple_series(self): assert inv_1 == test_input_1 assert inv_2 == test_input_2 + def test_input_transformed_list_of_lists_of_series(self): + """ + Tests for correct transformation of multiple series when + different param values are used for different parallel + jobs (i.e. test that `parallel_params` argument is treated + correctly). Also tests that transformer correctly handles + being provided with fewer input series than fixed parameter + value sets. + """ + test_input_1 = constant_timeseries(value=1, length=10) + test_input_2 = constant_timeseries(value=2, length=11) + + # Don't have different params for different jobs: + mock = self.DataTransformerMock(scale=2, translation=10, parallel_params=False) + (transformed_1, transformed_2) = mock.transform((test_input_1, test_input_2)) + # 2 * 1 + 10 = 12 + assert transformed_1 == constant_timeseries(value=12, length=10) + # 2 * 2 + 10 = 14 + assert transformed_2 == constant_timeseries(value=14, length=11) + + # list of lists of series must get input back + inv = mock.inverse_transform([[transformed_1], [transformed_2]]) + assert len(inv) == 2 + assert all( + isinstance(series_list, list) and len(series_list) == 1 + for series_list in inv + ) + assert all( + isinstance(series, TimeSeries) + for series_list in inv + for series in series_list + ) + assert inv[0][0] == test_input_1 + assert inv[1][0] == test_input_2 + + # one list of lists of is longer than others, must get input back + inv = mock.inverse_transform([[transformed_1, transformed_1], [transformed_2]]) + assert len(inv) == 2 + assert len(inv[0]) == 2 and len(inv[1]) == 1 + assert all(isinstance(series_list, list) for series_list in inv) + assert all( + isinstance(series, TimeSeries) + for series_list in inv + for series in series_list + ) + assert inv[0][0] == test_input_1 + assert inv[0][1] == test_input_1 + assert inv[1][0] == test_input_2 + + # different types of Sequences, must get input back + inv = mock.inverse_transform(((transformed_1, transformed_1), (transformed_2,))) + assert len(inv) == 2 + assert len(inv[0]) == 2 and len(inv[1]) == 1 + assert all(isinstance(series_list, list) for series_list in inv) + assert all( + isinstance(series, TimeSeries) + for series_list in inv + for series in series_list + ) + assert inv[0][0] == test_input_1 + assert inv[0][1] == test_input_1 + assert inv[1][0] == test_input_2 + + # one list of lists is empty, returns empty list as well + inv = mock.inverse_transform([[], [transformed_2, transformed_2]]) + assert len(inv) == 2 + assert len(inv[0]) == 0 and len(inv[1]) == 2 + assert all(isinstance(series_list, list) for series_list in inv) + assert all(isinstance(series, TimeSeries) for series in inv[1]) + assert inv[1][0] == test_input_2 + assert inv[1][1] == test_input_2 + + # more list of lists than used during transform works + inv = mock.inverse_transform( + [[transformed_1], [transformed_2], [transformed_2]] + ) + assert len(inv) == 3 + assert all( + isinstance(series_list, list) and len(series_list) == 1 + for series_list in inv + ) + assert all( + isinstance(series, TimeSeries) + for series_list in inv + for series in series_list + ) + assert inv[0][0] == test_input_1 + assert inv[1][0] == test_input_2 + assert inv[2][0] == test_input_2 + def test_input_transformed_multiple_samples(self): """ Tests that `stack_samples` and `unstack_samples` correctly diff --git a/darts/tests/dataprocessing/transformers/test_invertible_fittable_data_transformer.py b/darts/tests/dataprocessing/transformers/test_invertible_fittable_data_transformer.py index b699dd47bb..cdae6fdb86 100644 --- a/darts/tests/dataprocessing/transformers/test_invertible_fittable_data_transformer.py +++ b/darts/tests/dataprocessing/transformers/test_invertible_fittable_data_transformer.py @@ -1,6 +1,7 @@ from typing import Any, Mapping, Sequence, Union import numpy as np +import pytest from darts import TimeSeries from darts.dataprocessing.transformers.fittable_data_transformer import ( @@ -293,6 +294,89 @@ def test_input_transformed_multiple_series(self): assert inv_1 == test_input_1 assert inv_2 == test_input_2 + def test_input_transformed_list_of_lists_of_series(self): + """ + Tests for correct transformation of multiple series when + different param values are used for different parallel + jobs (i.e. test that `parallel_params` argument is treated + correctly). Also tests that transformer correctly handles + being provided with fewer input series than fixed parameter + value sets. + """ + test_input_1 = constant_timeseries(value=1, length=10) + test_input_2 = constant_timeseries(value=2, length=11) + + # Don't have different params for different jobs: + mock = self.DataTransformerMock(scale=2, translation=10, parallel_params=False) + (transformed_1, transformed_2) = mock.fit_transform( + (test_input_1, test_input_2) + ) + # 2 * 1 + 10 = 12 + assert transformed_1 == constant_timeseries(value=12, length=10) + # 2 * 2 + 10 = 14 + assert transformed_2 == constant_timeseries(value=14, length=11) + + # list of lists of series must get input back + inv = mock.inverse_transform([[transformed_1], [transformed_2]]) + assert len(inv) == 2 + assert all( + isinstance(series_list, list) and len(series_list) == 1 + for series_list in inv + ) + assert all( + isinstance(series, TimeSeries) + for series_list in inv + for series in series_list + ) + assert inv[0][0] == test_input_1 + assert inv[1][0] == test_input_2 + + # one list of lists of is longer than others, must get input back + inv = mock.inverse_transform([[transformed_1, transformed_1], [transformed_2]]) + assert len(inv) == 2 + assert len(inv[0]) == 2 and len(inv[1]) == 1 + assert all(isinstance(series_list, list) for series_list in inv) + assert all( + isinstance(series, TimeSeries) + for series_list in inv + for series in series_list + ) + assert inv[0][0] == test_input_1 + assert inv[0][1] == test_input_1 + assert inv[1][0] == test_input_2 + + # different types of Sequences, must get input back + inv = mock.inverse_transform(((transformed_1, transformed_1), (transformed_2,))) + assert len(inv) == 2 + assert len(inv[0]) == 2 and len(inv[1]) == 1 + assert all(isinstance(series_list, list) for series_list in inv) + assert all( + isinstance(series, TimeSeries) + for series_list in inv + for series in series_list + ) + assert inv[0][0] == test_input_1 + assert inv[0][1] == test_input_1 + assert inv[1][0] == test_input_2 + + # one list of lists is empty, returns empty list as well + inv = mock.inverse_transform([[], [transformed_2, transformed_2]]) + assert len(inv) == 2 + assert len(inv[0]) == 0 and len(inv[1]) == 2 + assert all(isinstance(series_list, list) for series_list in inv) + assert all(isinstance(series, TimeSeries) for series in inv[1]) + assert inv[1][0] == test_input_2 + assert inv[1][1] == test_input_2 + + # more list of lists than used during transform, raises error + with pytest.raises(ValueError) as err: + _ = mock.inverse_transform( + [[transformed_1], [transformed_2], [transformed_2]] + ) + assert str(err.value).startswith( + "3 TimeSeries were provided but only 2 TimeSeries were specified" + ) + def test_input_transformed_multiple_samples(self): """ Tests that `stack_samples` and `unstack_samples` correctly From 5c97c9b1b86bbcdf91e422f6a13156d2e10d6bfe Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Thu, 4 Apr 2024 16:09:31 +0200 Subject: [PATCH 023/161] Refactor/metrics (#2284) --- CHANGELOG.md | 75 + darts/dataprocessing/encoders/encoder_base.py | 2 +- darts/dataprocessing/encoders/encoders.py | 8 +- darts/dataprocessing/transformers/midas.py | 2 +- .../transformers/reconciliation.py | 5 +- darts/explainability/tft_explainer.py | 2 +- darts/explainability/utils.py | 2 +- darts/logging.py | 5 +- darts/metrics/__init__.py | 63 +- darts/metrics/metrics.py | 2875 +++++++++++++---- darts/models/forecasting/__init__.py | 4 +- darts/models/forecasting/ensemble_model.py | 2 +- darts/models/forecasting/forecasting_model.py | 580 +++- .../forecasting/regression_ensemble_model.py | 7 +- darts/models/forecasting/regression_model.py | 39 +- .../forecasting/torch_forecasting_model.py | 30 +- darts/models/forecasting/xgboost.py | 3 +- .../test_covariate_index_generators.py | 9 +- .../dataprocessing/encoders/test_encoders.py | 15 +- .../dataprocessing/transformers/test_midas.py | 3 +- darts/tests/metrics/test_metrics.py | 1656 ++++++++-- .../models/forecasting/test_backtesting.py | 551 +++- .../forecasting/test_historical_forecasts.py | 101 +- .../test_local_forecasting_models.py | 6 +- .../tests/models/forecasting/test_prophet.py | 3 +- .../test_regression_ensemble_model.py | 2 +- .../forecasting/test_regression_models.py | 9 +- .../models/forecasting/test_residuals.py | 578 ++++ darts/tests/test_timeseries.py | 150 +- darts/tests/test_timeseries_multivariate.py | 12 +- .../test_timeseries_static_covariates.py | 3 +- darts/tests/utils/test_residuals.py | 113 - darts/tests/utils/test_ts_utils.py | 106 + darts/tests/utils/test_utils.py | 3 +- darts/timeseries.py | 72 +- darts/utils/__init__.py | 2 +- darts/utils/data/tabularization.py | 3 +- ...timized_historical_forecasts_regression.py | 16 +- .../optimized_historical_forecasts_torch.py | 10 +- darts/utils/historical_forecasts/utils.py | 23 +- darts/utils/likelihood_models.py | 3 +- darts/utils/timeseries_generation.py | 69 +- darts/utils/ts_utils.py | 263 ++ darts/utils/utils.py | 166 +- examples/00-quickstart.ipynb | 938 +++--- examples/16-hierarchical-reconciliation.ipynb | 2 +- 46 files changed, 6504 insertions(+), 2087 deletions(-) create mode 100644 darts/tests/models/forecasting/test_residuals.py delete mode 100644 darts/tests/utils/test_residuals.py create mode 100644 darts/tests/utils/test_ts_utils.py create mode 100644 darts/utils/ts_utils.py diff --git a/CHANGELOG.md b/CHANGELOG.md index 8710d28754..f4d66002c3 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,12 +9,87 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For users of the library: **Improved** +- 🚀🚀🚀 Improvements to metrics, historical forecasts, backtest, and residuals through major refactor. The refactor includes optimization of multiple process and improvemenets to consistency, reliability, and the documentation. Some of these necessary changes come at the cost of breaking changes. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). + - Metrics: + - Optimized all metrics, which now run >20 times faster than before for univariate series, and >>20 times for multivariate series. This boosts direct metric computations as well as backtesting and residuals computation! + - Added new metrics: + - Time aggregated metric `merr()` (Mean Error) + - Time aggregated scaled metrics `rmsse()`, and `msse()`: The (Root) Mean Squared Scaled Error. + - "Per time step" metrics that return a metric score per time step: `err()` (Error), `ae()` (Absolute Error), `se()` (Squared Error), `sle()` (Squared Log Error), `ase()` (Absolute Scaled Error), `sse` (Squared Scaled Error), `ape()` (Absolute Percentage Error), `sape()` (symmetric Absolute Percentage Error), `arre()` (Absolute Ranged Relative Error), `ql` (Quantile Loss) + - All scaled metrics now accept `insample` series that can be overlapping into `pred_series` (before that had to end exactly one step before `pred_series`). Darts will handle the correct time extraction for you. + - Improvements to the documentation: + - Added a summary list of all metrics to the [metrics documentation page](https://unit8co.github.io/darts/generated_api/darts.metrics.html) + - Standardized the documentation of each metric (added formula, improved return documentation, ...) + - 🔴 Improved metric output consistency based on the type of input `series`, and the applied reductions: + - `float`: A single metric score for: + - single univariate series + - single multivariate series with `component_reduction` + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction` (and `time_reduction` for "per time step metrics") + - `np.ndarray`: A numpy array of metric scores. The array has shape (n time steps, n components) without time and component reductions. The time dimension is only available for "per time step" metrics. For: + - single multivariate series and at least `component_reduction=None` for time aggregated metrics. + - single uni/multivariate series and at least `time_reduction=None` for "per time step metrics" + - sequence of uni/multivariate series including `series_reduction` and at least one of `component_reduction=None` or `time_reduction=None` for "per time step metrics" + - `List[float]`: Same as for type `float` but for a sequence of series + - `List[np.ndarray]` Same as for type `np.ndarray` but for a sequence of series + - 🔴 Other breaking changes: + - `quantile_loss()`: + - renamed to `mql()` (Mean Quantile Loss) + - renamed quantile parameter `tau` to `q` + - the metric is now multiplied by a factor `2` to make the loss more interpretable (e.g. for `q=0.5` it is identical to the `MAE`) + - `rho_risk()`: + - renamed to `qr()` (Quantile Risk) + - renamed quantile parameter `rho` to `q` + - Renamed metric parameter `reduction` to `series_reduction` + - Renamed metric parameter `inter_reduction` to `component_reduction` + - Scaled metrics do not allow seasonality inference anymore with `m=None`. + - Custom metrics using decorators `multi_ts_support` and `multivariate_support` must now act on multivariate series (possibly containing missing values) instead of univariate series. + - `ForecastingModel.historical_forecasts()`: + - 🔴 Improved historical forecasts output consistency based on the type of input `series`: If `series` is a sequence, historical forecasts will always return a sequence/list of the same length (instead of trying to reduce to a `TimeSeries` object). + - `TimeSeries`: A single historical forecast for a single `series` and `last_points_only=True`: it contains only the predictions at step `forecast_horizon` from all historical forecasts. + - `List[TimeSeries]` A list of historical forecasts for: + - a sequence (list) of `series` and `last_points_only=True`: for each series, it contains only the predictions at step `forecast_horizon` from all historical forecasts. + - a single `series` and `last_points_only=False`: for each historical forecast, it contains the entire horizon `forecast_horizon`. + - `List[List[TimeSeries]]` A list of lists of historical forecasts for a sequence of `series` and `last_points_only=False`. For each series, and historical forecast, it contains the entire horizon `forecast_horizon`. The outer list is over the series provided in the input sequence, and the inner lists contain the historical forecasts for each series. + - `ForecastingModel.backtest()`: + - Metrics are now computed only once between all `series` and `historical_forecasts`, significantly speeding things up when using a large number of `series`. + - Added support for scaled metrics as `metric` (such as `ase`, `mase`, ...). No extra code required, backtest extracts the correct `insample` series for you. + - Added support for passing additional metric arguments with parameter `metric_kwargs`. This allows for example parallelization of the metric computation with `n_jobs`, customize the metric reduction with `*_reduction`, specify seasonality `m` for scaled metrics, etc.. + - 🔴 Improved backtest output consistency based on the type of input `series`, `historical_forecast`, and the applied backtest reduction: + - `float`: A single backtest score for single uni/multivariate series, a single `metric` function and: + - `historical_forecasts` generated with `last_points_only=True` + - `historical_forecasts` generated with `last_points_only=False` and using a backtest `reduction` + - `np.ndarray`: An numpy array of backtest scores. For single series and one of: + - a single `metric` function, `historical_forecasts` generated with `last_points_only=False` and backtest `reduction=None`. The output has shape (n forecasts,). + - multiple `metric` functions and `historical_forecasts` generated with `last_points_only=False`. The output has shape (n metrics,) when using a backtest `reduction`, and (n metrics, n forecasts) when `reduction=None` + - multiple uni/multivariate series including `series_reduction` and at least one of `component_reduction=None` or `time_reduction=None` for "per time step metrics" + - `List[float]`: Same as for type `float` but for a sequence of series. The returned metric list has length `len(series)` with the `float` metric for each input `series`. + - `List[np.ndarray]` Same as for type `np.ndarray` but for a sequence of series. The returned metric list has length `len(series)` with the `np.ndarray` metrics for each input `series`. + - 🔴 Other breaking changes: + - `reduction` callable now acts on `axis=1` rather than `axis=0` to aggregate the metrics per series. + - backtest will now raise an error when user supplied `historical_forecasts` don't have the expected format based on input `series` and the `last_points_only` value. + - `ForecastingModel.residuals()`. While the default behavior of `residuals()` remains identical, the method is now very similar to `backtest()` but that it computes a "per time step" `metric` on `historical_forecasts`: + - Added support for multivariate `series`. + - Added support for all `historical_forecasts()` parameters to generate the historical forecasts for the residuals computation. + - Added support for pre-computed historical forecasts with parameter `historical_forecasts`. + - Added support for computing the residuals with any of Darts' "per time step" metric with parameter `metric` (e.g. `err()`, `ae()`, `ape()`, ...). By default uses `err()` (Error). + - Added support for parallelizing the metric computation across historical forecasts with parameter `n_jobs`. + - 🔴 Improved residuals output and consistency based on the type of input `series` and `historical_forecast`: + - `TimeSeries`: Residual `TimeSeries` for a single `series` and `historical_forecasts` generated with `last_points_only=True`. + - `List[TimeSeries]` A list of residual `TimeSeries` for a sequence (list) of `series` with `last_points_only=True`. The residual list has length `len(series)`. + - `List[List[TimeSeries]]` A list of lists of residual `TimeSeries` for a sequence of `series` with `last_points_only=False`. The outer residual list has length `len(series)`. The inner lists consist of the residuals from all possible series-specific historical forecasts. +- Improvements to `TimeSeries`: [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). + - Performance boost for methods: `slice_intersect()`, `has_same_time_as()` + - New method `slice_intersect_values()`, which returns the sliced values of a series, where the time index has been intersected with another series. +- 🔴 Moved utils functions to clearly separate Darts-specific from non-Darts-specific logic: [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). + - Moved function `generate_index()` from `darts.utils.timeseries_generation` to `darts.utils.utils` + - Moved functions `retain_period_common_to_all()`, `series2seq()`, `seq2series()`, `get_single_series()` from `darts.utils.utils` to `darts.utils.ts_utils`. - Improvements to `ForecastingModel`: [#2269](https://github.com/unit8co/darts/pull/2269) by [Felix Divo](https://github.com/felixdivo). - Renamed the private `_is_probabilistic` property to a public `supports_probabilistic_prediction`. - Improvements to `DataTransformer`: [#2267](https://github.com/unit8co/darts/pull/2267) by [Alicja Krzeminska-Sciga](https://github.com/alicjakrzeminska). - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. **Fixed** +- fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - Fixed type hint warning "Unexpected argument" when calling `historical_forecasts()` caused by the `_with_sanity_checks` decorator. The type hinting is now properly configured to expect any input arguments and return the output type of the method for which the sanity checks are performed for. [#2286](https://github.com/unit8co/darts/pull/2286) by [Dennis Bader](https://github.com/dennisbader). **Dependencies** diff --git a/darts/dataprocessing/encoders/encoder_base.py b/darts/dataprocessing/encoders/encoder_base.py index 771fc5b04b..f7430f2b61 100644 --- a/darts/dataprocessing/encoders/encoder_base.py +++ b/darts/dataprocessing/encoders/encoder_base.py @@ -12,7 +12,7 @@ from darts import TimeSeries from darts.dataprocessing.transformers import FittableDataTransformer from darts.logging import get_logger, raise_if, raise_log -from darts.utils.timeseries_generation import generate_index +from darts.utils.utils import generate_index try: from typing import Literal diff --git a/darts/dataprocessing/encoders/encoders.py b/darts/dataprocessing/encoders/encoders.py index 09b3414593..f89a28ee8a 100644 --- a/darts/dataprocessing/encoders/encoders.py +++ b/darts/dataprocessing/encoders/encoders.py @@ -176,11 +176,9 @@ from darts.dataprocessing.transformers import FittableDataTransformer from darts.logging import get_logger, raise_if, raise_if_not from darts.timeseries import DIMS -from darts.utils.timeseries_generation import ( - datetime_attribute_timeseries, - generate_index, -) -from darts.utils.utils import seq2series, series2seq +from darts.utils.timeseries_generation import datetime_attribute_timeseries +from darts.utils.ts_utils import seq2series, series2seq +from darts.utils.utils import generate_index SupportedTimeSeries = Union[TimeSeries, Sequence[TimeSeries]] logger = get_logger(__name__) diff --git a/darts/dataprocessing/transformers/midas.py b/darts/dataprocessing/transformers/midas.py index 7e06a6dcd5..43f3f4d592 100644 --- a/darts/dataprocessing/transformers/midas.py +++ b/darts/dataprocessing/transformers/midas.py @@ -15,7 +15,7 @@ ) from darts.logging import get_logger, raise_log from darts.timeseries import _finite_rows_boundaries -from darts.utils.timeseries_generation import generate_index +from darts.utils.utils import generate_index logger = get_logger(__name__) diff --git a/darts/dataprocessing/transformers/reconciliation.py b/darts/dataprocessing/transformers/reconciliation.py index e20fde490c..e3fe39f628 100644 --- a/darts/dataprocessing/transformers/reconciliation.py +++ b/darts/dataprocessing/transformers/reconciliation.py @@ -17,8 +17,10 @@ BaseDataTransformer, FittableDataTransformer, ) +from darts.logging import get_logger, raise_if_not from darts.timeseries import TimeSeries -from darts.utils.utils import raise_if_not + +logger = get_logger(__name__) def _get_summation_matrix(series: TimeSeries): @@ -37,6 +39,7 @@ def _get_summation_matrix(series: TimeSeries): raise_if_not( series.has_hierarchy, "The provided series must have a hierarchy defined for reconciliation to be performed.", + logger=logger, ) hierarchy = series.hierarchy components_seq = list(series.components) diff --git a/darts/explainability/tft_explainer.py b/darts/explainability/tft_explainer.py index 754ea035ad..a34b2930f2 100644 --- a/darts/explainability/tft_explainer.py +++ b/darts/explainability/tft_explainer.py @@ -35,7 +35,7 @@ from darts.explainability.explainability import _ForecastingModelExplainer from darts.logging import get_logger, raise_log from darts.models import TFTModel -from darts.utils.timeseries_generation import generate_index +from darts.utils.utils import generate_index try: from typing import Literal diff --git a/darts/explainability/utils.py b/darts/explainability/utils.py index 854dff786e..90e9197e22 100644 --- a/darts/explainability/utils.py +++ b/darts/explainability/utils.py @@ -4,7 +4,7 @@ from darts.logging import get_logger, raise_if, raise_if_not, raise_log from darts.models.forecasting.forecasting_model import ForecastingModel from darts.utils.statistics import stationarity_tests -from darts.utils.utils import series2seq +from darts.utils.ts_utils import series2seq logger = get_logger(__name__) diff --git a/darts/logging.py b/darts/logging.py index 301f5436f5..d52ea7e83c 100644 --- a/darts/logging.py +++ b/darts/logging.py @@ -2,6 +2,7 @@ import os import time import warnings +from typing import NoReturn def get_logger(name): @@ -104,7 +105,9 @@ def raise_if( raise_if_not(not condition, message, logger) -def raise_log(exception: Exception, logger: logging.Logger = get_logger("main_logger")): +def raise_log( + exception: Exception, logger: logging.Logger = get_logger("main_logger") +) -> NoReturn: """ Can be used to replace "raise" when throwing an exception to ensure the logging of the exception. After logging it, the exception is raised. diff --git a/darts/metrics/__init__.py b/darts/metrics/__init__.py index adc84a48cb..2e0cb5d9ae 100644 --- a/darts/metrics/__init__.py +++ b/darts/metrics/__init__.py @@ -1,21 +1,80 @@ """ Metrics ------- + +For deterministic forecasts (point predictions with `num_samples == 1`): + - Aggregated over time: + Absolute metrics: + - :func:`MERR `: Mean Error + - :func:`MAE `: Mean Absolute Error + - :func:`MSE `: Mean Squared Error + - :func:`RMSE `: Root Mean Squared Error + - :func:`RMSLE `: Root Mean Squared Log Error + + Relative metrics: + - :func:`MASE `: Mean Absolute Scaled Error + - :func:`MSSE `: Mean Squared Scaled Error + - :func:`RMSSE `: Root Mean Squared Scaled Error + - :func:`MAPE `: Mean Absolute Percentage Error + - :func:`sMAPE `: symmetric Mean Absolute Percentage Error + - :func:`OPE `: Overall Percentage Error + - :func:`MARRE `: Mean Absolute Ranged Relative Error + + Other metrics: + - :func:`R2 `: Coefficient of Determination + - :func:`CV `: Coefficient of Variation + + - Per time step: + Absolute metrics: + - :func:`ERR `: Error + - :func:`AE `: Absolute Error + - :func:`SE `: Squared Error + - :func:`SLE `: Squared Log Error + + Relative metrics: + - :func:`ASE `: Absolute Scaled Error + - :func:`SSE `: Squared Scaled Error + - :func:`APE `: Absolute Percentage Error + - :func:`sAPE `: symmetric Absolute Percentage Error + - :func:`ARRE `: Absolute Ranged Relative Error + +For probabilistic forecasts (storchastic predictions with `num_samples >> 1`): + - Aggregated over time: + - :func:`MQL `: Mean Quantile Loss + - :func:`QR `: Quantile Risk + - Per time step: + - :func:`QL `: Quantile Loss + +For Dynamic Time Warping (DTW) (aggregated over time): + - :func:`DTW `: Dynamic Time Warping Metric """ from .metrics import ( + ae, + ape, + arre, + ase, coefficient_of_variation, dtw_metric, + err, mae, mape, marre, mase, + merr, + mql, mse, + msse, ope, - quantile_loss, + ql, + qr, r2_score, - rho_risk, rmse, rmsle, + rmsse, + sape, + se, + sle, smape, + sse, ) diff --git a/darts/metrics/metrics.py b/darts/metrics/metrics.py index 478752e590..bb53ae669f 100644 --- a/darts/metrics/metrics.py +++ b/darts/metrics/metrics.py @@ -5,34 +5,41 @@ Some metrics to compare time series. """ +import inspect from functools import wraps from inspect import signature from typing import Callable, List, Optional, Sequence, Tuple, Union -from warnings import warn import numpy as np from darts import TimeSeries from darts.dataprocessing import dtw -from darts.logging import get_logger, raise_if_not, raise_log -from darts.utils import _build_tqdm_iterator, _parallel_apply -from darts.utils.statistics import check_seasonality +from darts.logging import get_logger, raise_log +from darts.utils import _build_tqdm_iterator, _parallel_apply, n_steps_between +from darts.utils.ts_utils import SeriesType, get_series_seq_type, series2seq logger = get_logger(__name__) - +TIME_AX = 0 +COMP_AX = 1 # Note: for new metrics added to this module to be able to leverage the two decorators, it is required both having # the `actual_series` and `pred_series` parameters, and not having other ``Sequence`` as args (since these decorators # don't "unpack" parameters different from `actual_series` and `pred_series`). In those cases, the new metric must take # care of dealing with Sequence[TimeSeries] and multivariate TimeSeries on its own (See mase() implementation). +METRIC_OUTPUT_TYPE = Union[float, List[float], np.ndarray, List[np.ndarray]] +METRIC_TYPE = Callable[ + ..., + METRIC_OUTPUT_TYPE, +] -def multi_ts_support(func) -> Union[float, List[float]]: +def multi_ts_support(func) -> Callable[..., METRIC_OUTPUT_TYPE]: """ - This decorator further adapts the metrics that took as input two univariate/multivariate ``TimeSeries`` instances, - adding support for equally-sized sequences of ``TimeSeries`` instances. The decorator computes the pairwise metric - for ``TimeSeries`` with the same indices, and returns a float value that is computed as a function of all the - pairwise metrics using a `inter_reduction` subroutine passed as argument to the metric function. + This decorator further adapts the metrics that took as input two (or three for scaled metrics with `insample`) + univariate/multivariate ``TimeSeries`` instances, adding support for equally-sized sequences of ``TimeSeries`` + instances. The decorator computes the pairwise metric for ``TimeSeries`` with the same indices, and returns a float + value that is computed as a function of all the pairwise metrics using a `series_reduction` subroutine passed as + argument to the metric function. If a 'Sequence[TimeSeries]' is passed as input, this decorator provides also parallelisation of the metric evaluation regarding different ``TimeSeries`` (if the `n_jobs` parameter is not set 1). @@ -49,40 +56,90 @@ def wrapper_multi_ts_support(*args, **kwargs): else args[0] if "actual_series" in kwargs else args[1] ) - n_jobs = kwargs.pop("n_jobs", signature(func).parameters["n_jobs"].default) - verbose = kwargs.pop("verbose", signature(func).parameters["verbose"].default) - - raise_if_not(isinstance(n_jobs, int), "n_jobs must be an integer") - raise_if_not(isinstance(verbose, bool), "verbose must be a bool") - - actual_series = ( - [actual_series] - if not isinstance(actual_series, Sequence) - else actual_series + params = signature(func).parameters + n_jobs = kwargs.pop("n_jobs", params["n_jobs"].default) + if not isinstance(n_jobs, int): + raise_log(ValueError("n_jobs must be an integer"), logger=logger) + + verbose = kwargs.pop("verbose", params["verbose"].default) + if not isinstance(verbose, bool): + raise_log(ValueError("verbose must be a bool"), logger=logger) + + # sanity check reduction functions + _ = _get_reduction( + kwargs=kwargs, + params=params, + red_name="time_reduction", + axis=TIME_AX, + sanity_check=True, ) - pred_series = ( - [pred_series] if not isinstance(pred_series, Sequence) else pred_series + _ = _get_reduction( + kwargs=kwargs, + params=params, + red_name="component_reduction", + axis=COMP_AX, + sanity_check=True, ) - - raise_if_not( - len(actual_series) == len(pred_series), - "The two TimeSeries sequences must have the same length.", - logger, + series_reduction = _get_reduction( + kwargs=kwargs, + params=params, + red_name="series_reduction", + axis=0, + sanity_check=True, ) + series_seq_type = get_series_seq_type(actual_series) + actual_series = series2seq(actual_series) + pred_series = series2seq(pred_series) + + if len(actual_series) != len(pred_series): + raise_log( + ValueError( + f"Mismatch between number of series in `actual_series` (n={len(actual_series)}) and " + f"`pred_series` (n={len(pred_series)})." + ), + logger=logger, + ) num_series_in_args = int("actual_series" not in kwargs) + int( "pred_series" not in kwargs ) + input_series = (actual_series, pred_series) + kwargs.pop("actual_series", 0) kwargs.pop("pred_series", 0) + # handle `insample` parameter for scaled metrics + if "insample" in params: + insample = kwargs.get("insample") + if insample is None: + insample = args[ + 2 - ("actual_series" in kwargs) - ("pred_series" in kwargs) + ] + + insample = [insample] if not isinstance(insample, Sequence) else insample + if len(actual_series) != len(insample): + raise_log( + ValueError( + f"Mismatch between number of series in `actual_series` (n={len(actual_series)}) and " + f"`insample` series (n={len(insample)})." + ), + logger=logger, + ) + input_series += (insample,) + num_series_in_args += int("insample" not in kwargs) + kwargs.pop("insample", 0) + iterator = _build_tqdm_iterator( - iterable=zip(actual_series, pred_series), + iterable=zip(*input_series), verbose=verbose, total=len(actual_series), ) - value_list = _parallel_apply( + # `vals` is a list of series metrics of length `len(actual_series)`. Each metric has shape + # `(n time steps, n components)`; + # - n times step is `1` if `time_reduction` is other than `None` + # - n components: is 1 if `component_reduction` is other than `None` + vals = _parallel_apply( iterator=iterator, fn=func, n_jobs=n_jobs, @@ -90,77 +147,120 @@ def wrapper_multi_ts_support(*args, **kwargs): fn_kwargs=kwargs, ) - # in case the reduction is not reducing the metrics sequence to a single value, e.g., if returning the - # np.ndarray of values with the identity function, we must handle the single TS case, where we should - # return a single value instead of a np.array of len 1 - - if len(value_list) == 1: - value_list = value_list[0] - - if "inter_reduction" in kwargs: - return kwargs["inter_reduction"](value_list) - else: - return signature(func).parameters["inter_reduction"].default(value_list) + # we flatten metrics along the time axis if n time steps == 1, + # and/or along component axis if n components == 1 + vals = [ + val[ + slice(None) if val.shape[TIME_AX] != 1 else 0, + slice(None) if val.shape[COMP_AX] != 1 else 0, + ] + for val in vals + ] + + # reduce metrics along series axis + if series_reduction is not None: + vals = kwargs["series_reduction"](vals, axis=0) + elif series_seq_type == SeriesType.SINGLE: + vals = vals[0] + + # flatten along series axis if n series == 1 + return vals return wrapper_multi_ts_support -def multivariate_support(func) -> Union[float, List[float]]: +def multivariate_support(func) -> Callable[..., METRIC_OUTPUT_TYPE]: """ This decorator transforms a metric function that takes as input two univariate TimeSeries instances into a function that takes two equally-sized multivariate TimeSeries instances, computes the pairwise univariate metrics for components with the same indices, and returns a float value that is computed as a function of all the - univariate metrics using a `reduction` subroutine passed as argument to the metric function. + univariate metrics using a `component_reduction` subroutine passed as argument to the metric function. """ @wraps(func) - def wrapper_multivariate_support(*args, **kwargs): + def wrapper_multivariate_support(*args, **kwargs) -> METRIC_OUTPUT_TYPE: + params = signature(func).parameters # we can avoid checks about args and kwargs since the input is adjusted by the previous decorator actual_series = args[0] pred_series = args[1] + num_series_in_args = 2 + + if actual_series.width != pred_series.width: + raise_log( + ValueError( + f"Mismatch between number of components in `actual_series` " + f"(n={actual_series.width}) and `pred_series` (n={pred_series.width}." + ), + logger=logger, + ) - raise_if_not( - actual_series.width == pred_series.width, - "The two TimeSeries instances must have the same width.", - logger, - ) - - value_list = [] - for i in range(actual_series.width): - value_list.append( - func( - actual_series.univariate_component(i), - pred_series.univariate_component(i), - *args[2:], - **kwargs + # handle `insample` parameters for scaled metrics + input_series = (actual_series, pred_series) + if "insample" in params: + insample = args[2] + if actual_series.width != insample.width: + raise_log( + ValueError( + f"Mismatch between number of components in `actual_series` " + f"(n={actual_series.width}) and `insample` (n={insample.width}." + ), + logger=logger, ) - ) # [2:] since we already know the first two arguments are the series - if "reduction" in kwargs: - return kwargs["reduction"](value_list) - else: - return signature(func).parameters["reduction"].default(value_list) + input_series += (insample,) + num_series_in_args += 1 + + vals = func(*input_series, *args[num_series_in_args:], **kwargs) + if not 1 <= len(vals.shape) <= 2: + raise_log( + ValueError( + "Metric output must have 1 dimension for aggregated metrics (e.g. `mae()`, ...), " + "or 2 dimension for time dependent metrics (e.g. `ae()`, ...)" + ), + logger=logger, + ) + elif len(vals.shape) == 1: + vals = np.expand_dims(vals, TIME_AX) + + time_reduction = _get_reduction( + kwargs=kwargs, + params=params, + red_name="time_reduction", + axis=TIME_AX, + sanity_check=False, + ) + if time_reduction is not None: + vals = np.expand_dims(time_reduction(vals, axis=TIME_AX), axis=TIME_AX) + + component_reduction = _get_reduction( + kwargs=kwargs, + params=params, + red_name="component_reduction", + axis=COMP_AX, + sanity_check=False, + ) + if component_reduction is not None: + vals = np.expand_dims(component_reduction(vals, axis=COMP_AX), axis=COMP_AX) + return vals return wrapper_multivariate_support def _get_values( - series: TimeSeries, stochastic_quantile: Optional[float] = 0.5 + vals: np.ndarray, stochastic_quantile: Optional[float] = 0.5 ) -> np.ndarray: """ - Returns the numpy values of a time series. - For stochastic series, return either all sample values with (stochastic_quantile=None) or the quantile sample value - with (stochastic_quantile {>=0,<=1}) + Returns a deterministic or probabilistic numpy array from the values of a time series. + For stochastic input values, return either all sample values with (stochastic_quantile=None) or the quantile sample + value with (stochastic_quantile {>=0,<=1}) """ - if series.is_deterministic: - series_values = series.univariate_values() + if vals.shape[2] == 1: # deterministic + out = vals[:, :, 0] else: # stochastic if stochastic_quantile is None: - series_values = series.all_values(copy=False) + out = vals else: - series_values = series.quantile_timeseries( - quantile=stochastic_quantile - ).univariate_values() - return series_values + out = np.quantile(vals, stochastic_quantile, axis=2) + return out def _get_values_or_raise( @@ -169,67 +269,446 @@ def _get_values_or_raise( intersect: bool, stochastic_quantile: Optional[float] = 0.5, remove_nan_union: bool = False, + is_insample: bool = False, ) -> Tuple[np.ndarray, np.ndarray]: """Returns the processed numpy values of two time series. Processing can be customized with arguments `intersect, stochastic_quantile, remove_nan_union`. - Raises a ValueError if the two time series (or their intersection) do not have the same time index. - Parameters ---------- series_a - A univariate deterministic ``TimeSeries`` instance (the actual series). + A deterministic ``TimeSeries`` instance. If `is_insample=False`, it is the `actual_series`. + Otherwise, it is the `insample` series. series_b - A univariate (deterministic or stochastic) ``TimeSeries`` instance (the predicted series). + A deterministic or stochastic ``TimeSeries`` instance (the predictions `pred_series`). intersect A boolean for whether to only consider the time intersection between `series_a` and `series_b` stochastic_quantile Optionally, for stochastic predicted series, return either all sample values with (`stochastic_quantile=None`) or any deterministic quantile sample values by setting `stochastic_quantile=quantile` {>=0,<=1}. remove_nan_union - By setting `remove_non_union` to True, remove all indices from `series_a` and `series_b` which have a NaN value - in either of the two input series. - """ + By setting `remove_non_union` to True, sets all values from `series_a` and `series_b` to `np.nan` at indices + where any of the two series contain a NaN value. Only effective when `is_insample=False`. + is_insample + Whether `series_a` corresponds to the `insample` series for scaled metrics. - raise_if_not( - series_a.width == series_b.width, - "The two time series must have the same number of components", - logger, - ) + Raises + ------ + ValueError + If `is_insample=False` and the two time series do not have at least a partially overlapping time index. + """ - raise_if_not(isinstance(intersect, bool), "The intersect parameter must be a bool") + if not series_a.width == series_b.width: + raise_log( + ValueError("The two time series must have the same number of components"), + logger=logger, + ) - series_a_common = series_a.slice_intersect(series_b) if intersect else series_a - series_b_common = series_b.slice_intersect(series_a) if intersect else series_b + if not isinstance(intersect, bool): + raise_log(ValueError("The intersect parameter must be a bool"), logger=logger) - raise_if_not( - series_a_common.has_same_time_as(series_b_common), - "The two time series (or their intersection) " - "must have the same time index." - "\nFirst series: {}\nSecond series: {}".format( - series_a.time_index, series_b.time_index - ), - logger, - ) + make_copy = False + if not is_insample: + # get the time intersection and values of the two series (corresponds to `actual_series` and `pred_series` + if series_a.has_same_time_as(series_b) or not intersect: + vals_a_common = series_a.all_values(copy=make_copy) + vals_b_common = series_b.all_values(copy=make_copy) + else: + vals_a_common = series_a.slice_intersect_values(series_b, copy=make_copy) + vals_b_common = series_b.slice_intersect_values(series_a, copy=make_copy) + + if not len(vals_a_common) == len(vals_b_common): + raise_log( + ValueError( + "The two time series must have at least a partially overlapping time index." + ), + logger=logger, + ) - series_a_det = _get_values(series_a_common, stochastic_quantile=stochastic_quantile) - series_b_det = _get_values(series_b_common, stochastic_quantile=stochastic_quantile) + vals_b_det = _get_values(vals_b_common, stochastic_quantile=stochastic_quantile) + else: + # for `insample` series we extract only values up until before start of `pred_series` + # find how many steps `insample` overlaps into `series_b` + end = ( + n_steps_between( + end=series_b.start_time(), start=series_a.end_time(), freq=series_a.freq + ) + - 1 + ) + if end > 0 or abs(end) >= len(series_a): + raise_log( + ValueError( + "The `insample` series must start before the `pred_series` and " + "extend at least until one time step before the start of `pred_series`." + ), + logger=logger, + ) + end = end or None + vals_a_common = series_a.all_values(copy=make_copy)[:end] + vals_b_det = None + vals_a_det = _get_values(vals_a_common, stochastic_quantile=stochastic_quantile) - if not remove_nan_union: - return series_a_det, series_b_det + if not remove_nan_union or is_insample: + return vals_a_det, vals_b_det - b_is_deterministic = bool(len(series_b_det.shape) == 1) + b_is_deterministic = bool(len(vals_b_det.shape) == 2) if b_is_deterministic: - isnan_mask = np.logical_or(np.isnan(series_a_det), np.isnan(series_b_det)) + isnan_mask = np.logical_or(np.isnan(vals_a_det), np.isnan(vals_b_det)) + isnan_mask_pred = isnan_mask else: isnan_mask = np.logical_or( - np.isnan(series_a_det), np.isnan(series_b_det).any(axis=2).flatten() + np.isnan(vals_a_det), np.isnan(vals_b_det).any(axis=2) + ) + isnan_mask_pred = np.repeat( + np.expand_dims(isnan_mask, axis=-1), vals_b_det.shape[2], axis=2 + ) + return np.where(isnan_mask, np.nan, vals_a_det), np.where( + isnan_mask_pred, np.nan, vals_b_det + ) + + +def _get_wrapped_metric( + func: Callable[..., METRIC_OUTPUT_TYPE] +) -> Callable[..., METRIC_OUTPUT_TYPE]: + """Returns the inner metric function `func` which bypasses the decorators `multi_ts_support` and + `multivariate_support`. It significantly decreases process time compared to calling `func` directly. + Only use this to compute a pre-defined metric within the scope of another metric. + """ + return func.__wrapped__.__wrapped__ + + +def _get_reduction( + kwargs, params, red_name, axis, sanity_check: bool = True +) -> Optional[Callable[..., np.ndarray]]: + """Returns the reduction function either from user kwargs or metric default. + Optionally performs sanity checks for presence of `axis` parameter, and correct output type and + reduced shape.""" + if red_name not in params: + return None + + red_fn = kwargs[red_name] if red_name in kwargs else params[red_name].default + if not sanity_check: + return red_fn + + if red_fn is not None: + red_params = inspect.signature(red_fn).parameters + if "axis" not in red_params: + raise_log( + ValueError( + f"Invalid `{red_name}` function: Must have a parameter called `axis`." + ), + logger=logger, + ) + # verify `red_fn` reduces to array with correct shape + shape_in = (2, 1) if axis == 0 else (1, 2) + out = red_fn(np.zeros(shape_in), axis=axis) + + if not isinstance(out, np.ndarray): + raise_log( + ValueError( + f"Invalid `{red_name}` function output type: Expected type " + f"`np.ndarray`, received type=`{type(out)}`." + ), + logger=logger, + ) + shape_invalid = out.shape != (1,) + if shape_invalid: + raise_log( + ValueError( + f"Invalid `{red_name}` function output shape: The function must reduce an input " + f"`np.ndarray` of shape (t, c) to a `np.ndarray` of shape `(c,)`. " + f"However, the function reduced a test array of shape `{shape_in}` to " + f"`{out.shape}`." + ), + logger=logger, + ) + return red_fn + + +def _get_error_scale( + insample: TimeSeries, + pred_series: TimeSeries, + m: int, + metric: str, +): + """Computes the error scale based on a naive seasonal forecasts on `insample` values with seasonality `m`.""" + if not isinstance(m, int): + raise_log( + ValueError(f"Seasonality `m` must be of type `int`, recevied `m={m}`"), + logger=logger, + ) + + # `x_t` are the true `y` values before the start of `y_pred` + x_t, _ = _get_values_or_raise( + insample, pred_series, intersect=False, remove_nan_union=False, is_insample=True + ) + diff = x_t[m:] - x_t[:-m] + if metric == "mae": + scale = np.nanmean(np.abs(diff), axis=TIME_AX) + elif metric == "mse": + scale = np.nanmean(np.power(diff, 2), axis=TIME_AX) + elif metric == "rmse": + scale = np.sqrt(np.nanmean(np.power(diff, 2), axis=TIME_AX)) + else: + raise_log( + ValueError( + f"unknown `metric={metric}`. Must be one of ('mae', 'mse', 'rmse')." + ), + logger=logger, ) - return np.delete(series_a_det, isnan_mask), np.delete( - series_b_det, isnan_mask, axis=0 + + if np.isclose(scale, 0.0).any(): + raise_log(ValueError("cannot use MASE with periodical signals"), logger=logger) + return scale + + +@multi_ts_support +@multivariate_support +def err( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + intersect: bool = True, + *, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Error (ERR). + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column and time step :math:`t` as: + + .. math:: y_t - \\hat{y}_t + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + """ + + y_true, y_pred = _get_values_or_raise( + actual_series, pred_series, intersect, remove_nan_union=False + ) + return y_true - y_pred + + +@multi_ts_support +@multivariate_support +def merr( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + intersect: bool = True, + *, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Mean Error (MERR). + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as: + + .. math:: \\frac{1}{T}\\sum_{t=1}^T{(y_t - \\hat{y}_t)} + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + """ + return np.nanmean( + _get_wrapped_metric(err)( + actual_series, + pred_series, + intersect, + ), + axis=TIME_AX, ) +@multi_ts_support +@multivariate_support +def ae( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + intersect: bool = True, + *, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Absolute Error (AE). + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column and time step :math:`t` as: + + .. math:: |y_t - \\hat{y}_t| + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + series_reduction + Optionally, a function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. + This function is used to aggregate the metrics in case the metric is evaluated on multiple series + (e.g., on a ``Sequence[TimeSeries]``). By default, returns the metric for each series. + Example: ``series_reduction=np.nanmean``, will return the average over all series metrics. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + """ + + y_true, y_pred = _get_values_or_raise( + actual_series, pred_series, intersect, remove_nan_union=False + ) + return np.abs(y_true - y_pred) + + @multi_ts_support @multivariate_support def mae( @@ -237,18 +716,20 @@ def mae( pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: """Mean Absolute Error (MAE). - For two time series :math:`y^1` and :math:`y^2` of length :math:`T`, it is computed as + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as: - .. math:: \\frac{1}{T}\\sum_{t=1}^T{(|y^1_t - y^2_t|)}. + .. math:: \\frac{1}{T}\\sum_{t=1}^T{|y_t - \\hat{y}_t|} - If any of the series is stochastic (containing several samples), the median sample value is considered. + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -259,15 +740,21 @@ def mae( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + series_reduction + Optionally, a function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. + This function is used to aggregate the metrics in case the metric is evaluated on multiple series + (e.g., on a ``Sequence[TimeSeries]``). By default, returns the metric for each series. + Example: ``series_reduction=np.nanmean``, will return the average over all series metrics. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -277,35 +764,826 @@ def mae( Returns ------- - Union[float, List[float]] - The Mean Absolute Error (MAE) + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ + return np.nanmean( + _get_wrapped_metric(ae)( + actual_series, + pred_series, + intersect, + ), + axis=TIME_AX, + ) - y1, y2 = _get_values_or_raise( - actual_series, pred_series, intersect, remove_nan_union=True + +@multi_ts_support +@multivariate_support +def ase( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + insample: Union[TimeSeries, Sequence[TimeSeries]], + m: int = 1, + intersect: bool = True, + *, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Absolute Scaled Error (ASE) (see [1]_ for more information on scaled forecasting errors). + + It is the Absolute Error (AE) scaled by the Mean AE (MAE) of the naive m-seasonal forecast. + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column and time step :math:`t` as: + + .. math:: \\frac{AE(y_{t_p+1:t_p+T}, \\hat{y}_{t_p+1:t_p+T})}{E_m}, + + where :math:`t_p` is the prediction time (one step before the first forecasted point), :math:`AE` is the Absolute + Error (:func:`~darts.metrics.metrics.ae`), and :math:`E_m` is the Mean AE (MAE) of the naive m-seasonal + forecast on the `insample` series :math:`y_{0:t_p}` (the true series ending at :math:`t_p`): + + .. math:: E_m = MAE(y_{m:t_p}, y_{0:t_p - m}). + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + insample + The training series used to forecast `pred_series` . This series serves to compute the scale of the error + obtained by a naive forecaster on the training data. + m + The seasonality to use for differencing to compute the error scale :math:`E_m` (as described in the metric + description). :math:`m=1` corresponds to a non-seasonal :math:`E_m` (e.g. naive repetition of the last observed + value), whereas :math:`m>1` corresponds to a seasonal :math:`E_m`. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Raises + ------ + ValueError + If the `insample` series is periodic ( :math:`y_t = y_{t-m}` ) or any series in `insample` does not end one + time step before the start of the corresponding forecast in `pred_series`. + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + + References + ---------- + .. [1] https://www.pmorgan.com.au/tutorials/mae%2C-mape%2C-mase-and-the-scaled-rmse/ + """ + error_scale = _get_error_scale(insample, pred_series, m=m, metric="mae") + errors = _get_wrapped_metric(ae)( + actual_series, + pred_series, + intersect, + ) + return errors / error_scale + + +@multi_ts_support +@multivariate_support +def mase( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + insample: Union[TimeSeries, Sequence[TimeSeries]], + m: int = 1, + intersect: bool = True, + *, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Mean Absolute Scaled Error (MASE) (see [1]_ for more information on scaled forecasting errors). + + It is the Mean Absolute Error (MAE) scaled by the MAE of the naive m-seasonal forecast. + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as: + + .. math:: \\frac{MAE(y_{t_p+1:t_p+T}, \\hat{y}_{t_p+1:t_p+T})}{E_m}, + + where :math:`t_p` is the prediction time (one step before the first forecasted point), :math:`MAE` is the Mean + Absolute Error (:func:`~darts.metrics.metrics.mae`), and :math:`E_m` is the MAE of the naive m-seasonal + forecast on the `insample` series :math:`y_{0:t_p}` (the true series ending at :math:`t_p`): + + .. math:: E_m = MAE(y_{m:t_p}, y_{0:t_p - m}). + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + insample + The training series used to forecast `pred_series` . This series serves to compute the scale of the error + obtained by a naive forecaster on the training data. + m + The seasonality to use for differencing to compute the error scale :math:`E_m` (as described in the metric + description). :math:`m=1` corresponds to a non-seasonal :math:`E_m` (e.g. naive repetition of the last observed + value), whereas :math:`m>1` corresponds to a seasonal :math:`E_m`. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Raises + ------ + ValueError + If the `insample` series is periodic ( :math:`y_t = y_{t-m}` ) or any series in `insample` does not end one + time step before the start of the corresponding forecast in `pred_series`. + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + + References + ---------- + .. [1] https://www.pmorgan.com.au/tutorials/mae%2C-mape%2C-mase-and-the-scaled-rmse/ + """ + return np.nanmean( + _get_wrapped_metric(ase)( + actual_series, + pred_series, + insample, + m=m, + intersect=intersect, + ), + axis=TIME_AX, + ) + + +@multi_ts_support +@multivariate_support +def se( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + intersect: bool = True, + *, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Squared Error (SE). + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column and time step :math:`t` as: + + .. math:: (y_t - \\hat{y}_t)^2. + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + """ + + y_true, y_pred = _get_values_or_raise( + actual_series, pred_series, intersect, remove_nan_union=False + ) + return (y_true - y_pred) ** 2 + + +@multi_ts_support +@multivariate_support +def mse( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + intersect: bool = True, + *, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Mean Squared Error (MSE). + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as: + + .. math:: \\frac{1}{T}\\sum_{t=1}^T{(y_t - \\hat{y}_t)^2}. + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + """ + return np.nanmean( + _get_wrapped_metric(se)( + actual_series, + pred_series, + intersect, + ), + axis=TIME_AX, + ) + + +@multi_ts_support +@multivariate_support +def sse( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + insample: Union[TimeSeries, Sequence[TimeSeries]], + m: int = 1, + intersect: bool = True, + *, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Squared Scaled Error (SSE) (see [1]_ for more information on scaled forecasting errors). + + It is the Squared Error (SE) scaled by the Mean SE (MSE) of the naive m-seasonal forecast. + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column and time step :math:`t` as: + + .. math:: \\frac{SE(y_{t_p+1:t_p+T}, \\hat{y}_{t_p+1:t_p+T})}{E_m}, + + where :math:`t_p` is the prediction time (one step before the first forecasted point), :math:`SE` is the Squared + Error (:func:`~darts.metrics.metrics.se`), and :math:`E_m` is the Mean SE (MSE) of the naive m-seasonal + forecast on the `insample` series :math:`y_{0:t_p}` (the true series ending at :math:`t_p`): + + .. math:: E_m = MSE(y_{m:t_p}, y_{0:t_p - m}). + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + insample + The training series used to forecast `pred_series` . This series serves to compute the scale of the error + obtained by a naive forecaster on the training data. + m + The seasonality to use for differencing to compute the error scale :math:`E_m` (as described in the metric + description). :math:`m=1` corresponds to a non-seasonal :math:`E_m` (e.g. naive repetition of the last observed + value), whereas :math:`m>1` corresponds to a seasonal :math:`E_m`. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Raises + ------ + ValueError + If the `insample` series is periodic ( :math:`y_t = y_{t-m}` ) or any series in `insample` does not end one + time step before the start of the corresponding forecast in `pred_series`. + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + + References + ---------- + .. [1] https://www.pmorgan.com.au/tutorials/mae%2C-mape%2C-mase-and-the-scaled-rmse/ + """ + error_scale = _get_error_scale(insample, pred_series, m=m, metric="mse") + errors = _get_wrapped_metric(se)( + actual_series, + pred_series, + intersect, + ) + return errors / error_scale + + +@multi_ts_support +@multivariate_support +def msse( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + insample: Union[TimeSeries, Sequence[TimeSeries]], + m: int = 1, + intersect: bool = True, + *, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Mean Squared Scaled Error (MSSE) (see [1]_ for more information on scaled forecasting errors). + + It is the Mean Squared Error (MSE) scaled by the MSE of the naive m-seasonal forecast. + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as: + + .. math:: \\frac{MSE(y_{t_p+1:t_p+T}, \\hat{y}_{t_p+1:t_p+T})}{E_m}, + + where :math:`t_p` is the prediction time (one step before the first forecasted point), :math:`MSE` is the Mean + Squared Error (:func:`~darts.metrics.metrics.mse`), and :math:`E_m` is the MSE of the naive m-seasonal + forecast on the `insample` series :math:`y_{0:t_p}` (the true series ending at :math:`t_p`): + + .. math:: E_m = MSE(y_{m:t_p}, y_{0:t_p - m}). + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + insample + The training series used to forecast `pred_series` . This series serves to compute the scale of the error + obtained by a naive forecaster on the training data. + m + The seasonality to use for differencing to compute the error scale :math:`E_m` (as described in the metric + description). :math:`m=1` corresponds to a non-seasonal :math:`E_m` (e.g. naive repetition of the last observed + value), whereas :math:`m>1` corresponds to a seasonal :math:`E_m`. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Raises + ------ + ValueError + If the `insample` series is periodic ( :math:`y_t = y_{t-m}` ) or any series in `insample` does not end one + time step before the start of the corresponding forecast in `pred_series`. + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + + References + ---------- + .. [1] https://www.pmorgan.com.au/tutorials/mae%2C-mape%2C-mase-and-the-scaled-rmse/ + """ + return np.nanmean( + _get_wrapped_metric(sse)( + actual_series, + pred_series, + insample, + m=m, + intersect=intersect, + ), + axis=TIME_AX, + ) + + +@multi_ts_support +@multivariate_support +def rmse( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + intersect: bool = True, + *, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Root Mean Squared Error (RMSE). + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as: + + .. math:: \\sqrt{\\frac{1}{T}\\sum_{t=1}^T{(y_t - \\hat{y}_t)^2}} + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + """ + return np.sqrt( + _get_wrapped_metric(mse)( + actual_series, + pred_series, + intersect, + ) + ) + + +@multi_ts_support +@multivariate_support +def rmsse( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + insample: Union[TimeSeries, Sequence[TimeSeries]], + m: int = 1, + intersect: bool = True, + *, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Root Mean Squared Scaled Error (RMSSE) (see [1]_ for more information on scaled forecasting errors). + + It is the Root Mean Squared Error (RMSE) scaled by the RMSE of the naive m-seasonal forecast. + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as: + + .. math:: \\frac{RMSE(y_{t_p+1:t_p+T}, \\hat{y}_{t_p+1:t_p+T})}{E_m}, + + where :math:`t_p` is the prediction time (one step before the first forecasted point), :math:`RMSE` is the Root + Mean Squared Error (:func:`~darts.metrics.metrics.rmse`), and :math:`E_m` is the RMSE of the naive m-seasonal + forecast on the `insample` series :math:`y_{0:t_p}` (the true series ending at :math:`t_p`): + + .. math:: E_m = RMSE(y_{m:t_p}, y_{0:t_p - m}). + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + insample + The training series used to forecast `pred_series` . This series serves to compute the scale of the error + obtained by a naive forecaster on the training data. + m + The seasonality to use for differencing to compute the error scale :math:`E_m` (as described in the metric + description). :math:`m=1` corresponds to a non-seasonal :math:`E_m` (e.g. naive repetition of the last observed + value), whereas :math:`m>1` corresponds to a seasonal :math:`E_m`. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + + Raises + ------ + ValueError + If the `insample` series is periodic ( :math:`y_t = y_{t-m}` ) or any series in `insample` does not end one + time step before the start of the corresponding forecast in `pred_series`. + + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + + References + ---------- + .. [1] https://www.pmorgan.com.au/tutorials/mae%2C-mape%2C-mase-and-the-scaled-rmse/ + """ + error_scale = _get_error_scale(insample, pred_series, m=m, metric="rmse") + errors = _get_wrapped_metric(rmse)( + actual_series, + pred_series, + intersect, ) - return np.mean(np.abs(y1 - y2)) + return errors / error_scale @multi_ts_support @multivariate_support -def mse( +def sle( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: - """Mean Squared Error (MSE). + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Squared Log Error (SLE). - For two time series :math:`y^1` and :math:`y^2` of length :math:`T`, it is computed as + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column and time step :math:`t` as: - .. math:: \\frac{1}{T}\\sum_{t=1}^T{(y^1_t - y^2_t)^2}. + .. math:: \\left(\\log{(y_t + 1)} - \\log{(\\hat{y} + 1)}\\right)^2 - If any of the series is stochastic (containing several samples), the median sample value is considered. + using the natural logarithm. + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -316,15 +1594,21 @@ def mse( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -334,35 +1618,57 @@ def mse( Returns ------- - Union[float, List[float]] - The Mean Squared Error (MSE) + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ y_true, y_pred = _get_values_or_raise( - actual_series, pred_series, intersect, remove_nan_union=True + actual_series, pred_series, intersect, remove_nan_union=False ) - return np.mean((y_true - y_pred) ** 2) + y_true, y_pred = np.log(y_true + 1), np.log(y_pred + 1) + return (y_true - y_pred) ** 2 @multi_ts_support @multivariate_support -def rmse( +def rmsle( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: - """Root Mean Squared Error (RMSE). + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Root Mean Squared Log Error (RMSLE). + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as: - For two time series :math:`y^1` and :math:`y^2` of length :math:`T`, it is computed as + .. math:: \\sqrt{\\frac{1}{T}\\sum_{t=1}^T{\\left(\\log{(y_t + 1)} - \\log{(\\hat{y}_t + 1)}\\right)^2}} - .. math:: \\sqrt{\\frac{1}{T}\\sum_{t=1}^T{(y^1_t - y^2_t)^2}}. + using the natural logarithm. - If any of the series is stochastic (containing several samples), the median sample value is considered. + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -373,15 +1679,16 @@ def rmse( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -391,33 +1698,59 @@ def rmse( Returns ------- - Union[float, List[float]] - The Root Mean Squared Error (RMSE) + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ - return np.sqrt(mse(actual_series, pred_series, intersect)) + return np.sqrt( + np.nanmean( + _get_wrapped_metric(sle)( + actual_series, + pred_series, + intersect, + ), + axis=TIME_AX, + ) + ) @multi_ts_support @multivariate_support -def rmsle( +def ape( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: - """Root Mean Squared Log Error (RMSLE). + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Absolute Percentage Error (APE). - For two time series :math:`y^1` and :math:`y^2` of length :math:`T`, it is computed as + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed as a + percentage value per component/column and time step :math:`t` with: - .. math:: \\sqrt{\\frac{1}{T}\\sum_{t=1}^T{\\left(\\log{(y^1_t + 1)} - \\log{(y^2_t + 1)}\\right)^2}}, + .. math:: 100 \\cdot \\left| \\frac{y_t - \\hat{y}_t}{y_t} \\right| - using the natural logarithm. + Note that it will raise a `ValueError` if :math:`y_t = 0` for some :math:`t`. Consider using + the Absolute Scaled Error (:func:`~darts.metrics.metrics.ase`) in these cases. - If any of the series is stochastic (containing several samples), the median sample value is considered. + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -428,15 +1761,21 @@ def rmsle( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -444,42 +1783,71 @@ def rmsle( verbose Optionally, whether to print operations progress + Raises + ------ + ValueError + If `actual_series` contains some zeros. + Returns ------- - Union[float, List[float]] - The Root Mean Squared Log Error (RMSLE) + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ - y1, y2 = _get_values_or_raise( - actual_series, pred_series, intersect, remove_nan_union=True + y_true, y_pred = _get_values_or_raise( + actual_series, pred_series, intersect, remove_nan_union=False ) - y1, y2 = np.log(y1 + 1), np.log(y2 + 1) - return np.sqrt(np.mean((y1 - y2) ** 2)) + if not (y_true != 0).all(): + raise_log( + ValueError( + "`actual_series` must be strictly positive to compute the MAPE." + ), + logger=logger, + ) + return 100.0 * np.abs((y_true - y_pred) / y_true) @multi_ts_support @multivariate_support -def coefficient_of_variation( +def mape( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: - """Coefficient of Variation (percentage). + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Mean Absolute Percentage Error (MAPE). - Given a time series of actual values :math:`y_t` and a time series of predicted values :math:`\\hat{y}_t`, - it is a percentage value, computed as + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed as a + percentage value per component/column with: - .. math:: 100 \\cdot \\text{RMSE}(y_t, \\hat{y}_t) / \\bar{y_t}, + .. math:: 100 \\cdot \\frac{1}{T} \\sum_{t=1}^{T}{\\left| \\frac{y_t - \\hat{y}_t}{y_t} \\right|} - where :math:`\\text{RMSE}()` denotes the root mean squared error, and - :math:`\\bar{y_t}` is the average of :math:`y_t`. + Note that it will raise a `ValueError` if :math:`y_t = 0` for some :math:`t`. Consider using + the Mean Absolute Scaled Error (:func:`~darts.metrics.metrics.mase`) in these cases. - Currently this only supports deterministic series (made of one sample). + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -490,15 +1858,16 @@ def coefficient_of_variation( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -506,42 +1875,66 @@ def coefficient_of_variation( verbose Optionally, whether to print operations progress + Raises + ------ + ValueError + If `actual_series` contains some zeros. + Returns ------- - Union[float, List[float]] - The Coefficient of Variation + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ - y_true, y_pred = _get_values_or_raise( - actual_series, pred_series, intersect, remove_nan_union=True + return np.nanmean( + _get_wrapped_metric(ape)( + actual_series, + pred_series, + intersect, + ), + axis=TIME_AX, ) - # not calling rmse as y_true and y_pred are np.ndarray - return 100 * np.sqrt(np.mean((y_true - y_pred) ** 2)) / y_true.mean() @multi_ts_support @multivariate_support -def mape( +def sape( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: - """Mean Absolute Percentage Error (MAPE). + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """symmetric Absolute Percentage Error (sAPE). - Given a time series of actual values :math:`y_t` and a time series of predicted values :math:`\\hat{y}_t` - both of length :math:`T`, it is a percentage value computed as + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed as a + percentage value per component/column and time step :math:`t` with: - .. math:: 100 \\cdot \\frac{1}{T} \\sum_{t=1}^{T}{\\left| \\frac{y_t - \\hat{y}_t}{y_t} \\right|}. + .. math:: + 200 \\cdot \\frac{\\left| y_t - \\hat{y}_t \\right|}{\\left| y_t \\right| + \\left| \\hat{y}_t \\right|} - Note that it will raise a `ValueError` if :math:`y_t = 0` for some :math:`t`. Consider using - the Mean Absolute Scaled Error (MASE) in these cases. + Note that it will raise a `ValueError` if :math:`\\left| y_t \\right| + \\left| \\hat{y}_t \\right| = 0` for some + :math:`t`. Consider using the Absolute Scaled Error (:func:`~darts.metrics.metrics.ase`) in these cases. - If any of the series is stochastic (containing several samples), the median sample value is considered. + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -552,15 +1945,21 @@ def mape( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -571,23 +1970,42 @@ def mape( Raises ------ ValueError - If the actual series contains some zeros. + If `actual_series` and `pred_series` contain some zeros at the same time index. Returns ------- - Union[float, List[float]] - The Mean Absolute Percentage Error (MAPE) + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ - y_true, y_hat = _get_values_or_raise( + y_true, y_pred = _get_values_or_raise( actual_series, pred_series, intersect, remove_nan_union=True ) - raise_if_not( - (y_true != 0).all(), - "The actual series must be strictly positive to compute the MAPE.", - logger, - ) - return 100.0 * np.mean(np.abs((y_true - y_hat) / y_true)) + if not np.logical_or(y_true != 0, y_pred != 0).all(): + raise_log( + ValueError( + "`actual_series` must be strictly positive to compute the sMAPE." + ), + logger=logger, + ) + return 200.0 * np.abs(y_true - y_pred) / (np.abs(y_true) + np.abs(y_pred)) @multi_ts_support @@ -597,24 +2015,26 @@ def smape( pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: """symmetric Mean Absolute Percentage Error (sMAPE). - Given a time series of actual values :math:`y_t` and a time series of predicted values :math:`\\hat{y}_t` - both of length :math:`T`, it is a percentage value computed as + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed as a + percentage value per component/column with: .. math:: 200 \\cdot \\frac{1}{T} - \\sum_{t=1}^{T}{\\frac{\\left| y_t - \\hat{y}_t \\right|}{\\left| y_t \\right| + \\left| \\hat{y}_t \\right|} }. + \\sum_{t=1}^{T}{\\frac{\\left| y_t - \\hat{y}_t \\right|}{\\left| y_t \\right| + \\left| \\hat{y}_t \\right|} } Note that it will raise a `ValueError` if :math:`\\left| y_t \\right| + \\left| \\hat{y}_t \\right| = 0` - for some :math:`t`. Consider using the Mean Absolute Scaled Error (MASE) in these cases. + for some :math:`t`. Consider using the Mean Absolute Scaled Error (:func:`~darts.metrics.metrics.mase`) in these + cases. - If any of the series is stochastic (containing several samples), the median sample value is considered. + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -625,15 +2045,16 @@ def smape( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -644,44 +2065,59 @@ def smape( Raises ------ ValueError - If the actual series and the pred series contains some zeros at the same time index. + If the `actual_series` and the `pred_series` contain some zeros at the same time index. Returns ------- - Union[float, List[float]] - The symmetric Mean Absolute Percentage Error (sMAPE) + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ - y_true, y_hat = _get_values_or_raise( - actual_series, pred_series, intersect, remove_nan_union=True - ) - raise_if_not( - np.logical_or(y_true != 0, y_hat != 0).all(), - "The actual series must be strictly positive to compute the sMAPE.", - logger, + return np.nanmean( + _get_wrapped_metric(sape)( + actual_series, + pred_series, + intersect, + ), + axis=TIME_AX, ) - return 200.0 * np.mean(np.abs(y_true - y_hat) / (np.abs(y_true) + np.abs(y_hat))) -# mase cannot leverage multivariate and multi_ts with the decorator since also the `insample` is a Sequence[TimeSeries] -def mase( +@multi_ts_support +@multivariate_support +def ope( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], - insample: Union[TimeSeries, Sequence[TimeSeries]], - m: Optional[int] = 1, intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: - """Mean Absolute Scaled Error (MASE). + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Overall Percentage Error (OPE). - See `Mean absolute scaled error wikipedia page `_ - for details about the MASE and how it is computed. + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed as a + percentage value per component/column with: - If any of the series is stochastic (containing several samples), the median sample value is considered. + .. math:: 100 \\cdot \\left| \\frac{\\sum_{t=1}^{T}{y_t} + - \\sum_{t=1}^{T}{\\hat{y}_t}}{\\sum_{t=1}^{T}{y_t}} \\right|. + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -689,26 +2125,19 @@ def mase( The (sequence of) actual series. pred_series The (sequence of) predicted series. - insample - The training series used to forecast `pred_series` . - This series serves to compute the scale of the error obtained by a naive forecaster on the training data. - m - Optionally, the seasonality to use for differencing. - `m=1` corresponds to the non-seasonal MASE, whereas `m>1` corresponds to seasonal MASE. - If `m=None`, it will be tentatively inferred - from the auto-correlation function (ACF). It will fall back to a value of 1 if this fails. intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -719,159 +2148,65 @@ def mase( Raises ------ ValueError - If the `insample` series is periodic ( :math:`X_t = X_{t-m}` ) + If :math:`\\sum_{t=1}^{T}{y_t} = 0`. Returns ------- - Union[float, List[float]] - The Mean Absolute Scaled Error (MASE) + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ - def _multivariate_mase( - actual_series: TimeSeries, - pred_series: TimeSeries, - insample: TimeSeries, - m: int, - intersect: bool, - reduction: Callable[[np.ndarray], float], - ): - - raise_if_not( - actual_series.width == pred_series.width, - "The two TimeSeries instances must have the same width.", - logger, - ) - raise_if_not( - actual_series.width == insample.width, - "The insample TimeSeries must have the same width as the other series.", - logger, - ) - raise_if_not( - insample.end_time() + insample.freq == pred_series.start_time(), - "The pred_series must be the forecast of the insample series", - logger, - ) - - insample_ = ( - insample.quantile_timeseries(quantile=0.5) - if insample.is_stochastic - else insample - ) - - value_list = [] - for i in range(actual_series.width): - # old implementation of mase on univariate TimeSeries - if m is None: - test_season, m = check_seasonality(insample) - if not test_season: - warn( - "No seasonality found when computing MASE. Fixing the period to 1.", - UserWarning, - ) - m = 1 - - y_true, y_hat = _get_values_or_raise( - actual_series.univariate_component(i), - pred_series.univariate_component(i), - intersect, - remove_nan_union=False, - ) - - x_t = insample_.univariate_component(i).values() - errors = np.abs(y_true - y_hat) - scale = np.mean(np.abs(x_t[m:] - x_t[:-m])) - raise_if_not( - not np.isclose(scale, 0), - "cannot use MASE with periodical signals", - logger, - ) - value_list.append(np.mean(errors / scale)) - - return reduction(value_list) - - if isinstance(actual_series, TimeSeries): - raise_if_not( - isinstance(pred_series, TimeSeries), - "Expecting pred_series to be TimeSeries", - ) - raise_if_not( - isinstance(insample, TimeSeries), "Expecting insample to be TimeSeries" - ) - return _multivariate_mase( - actual_series=actual_series, - pred_series=pred_series, - insample=insample, - m=m, - intersect=intersect, - reduction=reduction, - ) - - elif isinstance(actual_series, Sequence) and isinstance( - actual_series[0], TimeSeries - ): - - raise_if_not( - isinstance(pred_series, Sequence) - and isinstance(pred_series[0], TimeSeries), - "Expecting pred_series to be a Sequence[TimeSeries]", - ) - raise_if_not( - isinstance(insample, Sequence) and isinstance(insample[0], TimeSeries), - "Expecting insample to be a Sequence[TimeSeries]", - ) - raise_if_not( - len(pred_series) == len(actual_series) - and len(pred_series) == len(insample), - "The TimeSeries sequences must have the same length.", - logger, - ) - - raise_if_not(isinstance(n_jobs, int), "n_jobs must be an integer") - raise_if_not(isinstance(verbose, bool), "verbose must be a bool") - - iterator = _build_tqdm_iterator( - iterable=zip(actual_series, pred_series, insample), - verbose=verbose, - total=len(actual_series), - ) - - value_list = _parallel_apply( - iterator=iterator, - fn=_multivariate_mase, - n_jobs=n_jobs, - fn_args=dict(), - fn_kwargs={"m": m, "intersect": intersect, "reduction": reduction}, - ) - return inter_reduction(value_list) - else: + y_true, y_pred = _get_values_or_raise( + actual_series, pred_series, intersect, remove_nan_union=True + ) + y_true_sum, y_pred_sum = np.nansum(y_true, axis=TIME_AX), np.nansum( + y_pred, axis=TIME_AX + ) + if not (y_true_sum > 0).all(): raise_log( ValueError( - "Input type not supported, only TimeSeries and Sequence[TimeSeries] are accepted." - ) + "The series of actual value cannot sum to zero when computing OPE." + ), + logger=logger, ) + return np.abs((y_true_sum - y_pred_sum) / y_true_sum) * 100.0 @multi_ts_support @multivariate_support -def ope( +def arre( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: - """Overall Percentage Error (OPE). + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Absolute Ranged Relative Error (ARRE). - Given a time series of actual values :math:`y_t` and a time series of predicted values :math:`\\hat{y}_t` - both of length :math:`T`, it is a percentage value computed as + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed as a + percentage value per component/column and time step :math:`t` with: - .. math:: 100 \\cdot \\left| \\frac{\\sum_{t=1}^{T}{y_t} - - \\sum_{t=1}^{T}{\\hat{y}_t}}{\\sum_{t=1}^{T}{y_t}} \\right|. + .. math:: 100 \\cdot \\left| \\frac{y_t - \\hat{y}_t} {\\max_t{y_t} - \\min_t{y_t}} \\right| - If any of the series is stochastic (containing several samples), the median sample value is considered. + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -882,15 +2217,21 @@ def ope( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -901,24 +2242,45 @@ def ope( Raises ------ ValueError - If :math:`\\sum_{t=1}^{T}{y_t} = 0`. + If :math:`\\max_t{y_t} = \\min_t{y_t}`. Returns ------- - Union[float, List[float]] - The Overall Percentage Error (OPE) + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ y_true, y_pred = _get_values_or_raise( actual_series, pred_series, intersect, remove_nan_union=True ) - y_true_sum, y_pred_sum = np.sum(y_true), np.sum(y_pred) - raise_if_not( - y_true_sum > 0, - "The series of actual value cannot sum to zero when computing OPE.", - logger, - ) - return np.abs((y_true_sum - y_pred_sum) / y_true_sum) * 100.0 + y_max, y_min = np.nanmax(y_true, axis=TIME_AX), np.nanmin(y_true, axis=TIME_AX) + if not (y_max > y_min).all(): + raise_log( + ValueError( + "The difference between the max and min values must " + "be strictly positive to compute the MARRE." + ), + logger=logger, + ) + true_range = y_max - y_min + return 100.0 * np.abs((y_true - y_pred) / true_range) @multi_ts_support @@ -928,20 +2290,21 @@ def marre( pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: """Mean Absolute Ranged Relative Error (MARRE). - Given a time series of actual values :math:`y_t` and a time series of predicted values :math:`\\hat{y}_t` - both of length :math:`T`, it is a percentage value computed as + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed as a + percentage value per component/column with: .. math:: 100 \\cdot \\frac{1}{T} \\sum_{t=1}^{T} {\\left| \\frac{y_t - \\hat{y}_t} {\\max_t{y_t} - \\min_t{y_t}} \\right|} - If any of the series is stochastic (containing several samples), the median sample value is considered. + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -952,15 +2315,16 @@ def marre( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -973,45 +2337,139 @@ def marre( ValueError If :math:`\\max_t{y_t} = \\min_t{y_t}`. + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + """ + return np.nanmean( + _get_wrapped_metric(arre)( + actual_series, + pred_series, + intersect, + ), + axis=TIME_AX, + ) + + +@multi_ts_support +@multivariate_support +def r2_score( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + intersect: bool = True, + *, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Coefficient of Determination :math:`R^2` (see [1]_ for more details). + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as: + + .. math:: 1 - \\frac{\\sum_{t=1}^T{(y_t - \\hat{y}_t)^2}}{\\sum_{t=1}^T{(y_t - \\bar{y})^2}}, + + where :math:`\\bar{y}` is the mean of :math:`y` over all time steps. + + This metric is not symmetric. + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress + Returns ------- - Union[float, List[float]] - The Mean Absolute Ranged Relative Error (MARRE) + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Coefficient_of_determination """ - - y_true, y_hat = _get_values_or_raise( + y_true, y_pred = _get_values_or_raise( actual_series, pred_series, intersect, remove_nan_union=True ) - raise_if_not( - y_true.max() > y_true.min(), - "The difference between the max and min values must be strictly" - "positive to compute the MARRE.", - logger, - ) - true_range = y_true.max() - y_true.min() - return 100.0 * np.mean(np.abs((y_true - y_hat) / true_range)) + ss_errors = np.nansum((y_true - y_pred) ** 2, axis=TIME_AX) + y_hat = np.nanmean(y_true, axis=TIME_AX) + ss_tot = np.nansum((y_true - y_hat) ** 2, axis=TIME_AX) + return 1 - ss_errors / ss_tot @multi_ts_support @multivariate_support -def r2_score( +def coefficient_of_variation( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> Union[float, np.ndarray]: - """Coefficient of Determination :math:`R^2`. + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Coefficient of Variation (percentage). + + For the true series :math:`y` and predicted series :math:`\\hat{y}` of length :math:`T`, it is computed per + component/column as a percentage value with: - See `Coefficient of determination wikipedia page `_ - for details about the :math:`R^2` score and how it is computed. - Please note that this metric is not symmetric, `actual_series` should correspond to the ground truth series, - whereas `pred_series` should correspond to the predicted series. + .. math:: 100 \\cdot \\text{RMSE}(y_t, \\hat{y}_t) / \\bar{y}, - If any of the series is stochastic (containing several samples), the median sample value is considered. + where :math:`RMSE` is the Root Mean Squared Error (:func:`~darts.metrics.metrics.rmse`), and :math:`\\bar{y}` is + the average of :math:`y` over all time steps. + + If any of the series is stochastic (containing several samples), :math:`\\hat{y}_t` is the median over all samples + for time step :math:`t`. Parameters ---------- @@ -1022,15 +2480,16 @@ def r2_score( intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -1040,20 +2499,37 @@ def r2_score( Returns ------- - Union[float, List[float]] - The Coefficient of Determination :math:`R^2` + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ - y1, y2 = _get_values_or_raise( + + y_true, y_pred = _get_values_or_raise( actual_series, pred_series, intersect, remove_nan_union=True ) - ss_errors = np.sum((y1 - y2) ** 2) - y_hat = y1.mean() - ss_tot = np.sum((y1 - y_hat) ** 2) - return 1 - ss_errors / ss_tot + # not calling rmse as y_true and y_pred are np.ndarray + return ( + 100 + * np.sqrt(np.nanmean((y_true - y_pred) ** 2, axis=TIME_AX)) + / np.nanmean(y_true, axis=TIME_AX) + ) # Dynamic Time Warping @multi_ts_support +@multivariate_support def dtw_metric( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], @@ -1062,22 +2538,22 @@ def dtw_metric( Union[TimeSeries, Sequence[TimeSeries]], Union[TimeSeries, Sequence[TimeSeries]], ], - Union[float, np.ndarray], + METRIC_OUTPUT_TYPE, ] = mae, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, verbose: bool = False, - **kwargs -) -> float: + **kwargs, +) -> METRIC_OUTPUT_TYPE: """ - Applies Dynamic Time Warping to actual_series and pred_series before passing it into the metric. + Applies Dynamic Time Warping to `actual_series` and `pred_series` before passing it into the metric. Enables comparison between series of different lengths, phases and time indices. - Defaults to using mae as a metric. + Defaults to using :func:`~darts.metrics.metrics.mae` as a metric. - See darts.dataprocessing.dtw.dtw for more supported parameters. + See :func:`~darts.dataprocessing.dtw.dtw.dtw` for more supported parameters. Parameters ---------- @@ -1087,15 +2563,16 @@ def dtw_metric( The (sequence of) predicted series. metric The selected metric with signature '[[TimeSeries, TimeSeries], float]' to use. Default: `mae`. - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -1106,52 +2583,59 @@ def dtw_metric( Returns ------- float - Result of calling metric(warped_series1, warped_series2) + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ alignment = dtw.dtw(actual_series, pred_series, **kwargs) - if metric == mae and "distance" not in kwargs: - return alignment.mean_distance() - warped_actual_series, warped_pred_series = alignment.warped() - - return metric(warped_actual_series, warped_pred_series) + return _get_wrapped_metric(metric)( + warped_actual_series, + warped_pred_series, + ) -# rho-risk (quantile risk) @multi_ts_support @multivariate_support -def rho_risk( +def qr( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], - rho: float = 0.5, + q: float = 0.5, intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> float: - """:math:`\\rho`-risk (rho-risk or quantile risk). - - Given a time series of actual values :math:`y_t` of length :math:`T` and a time series of stochastic predictions - (containing N samples) :math:`\\hat{y}_t` of shape :math:`T \\times N`, rho-risk is a metric that quantifies the - accuracy of a specific quantile :math:`\\rho` from the predicted value distribution. - - For a univariate stochastic predicted TimeSeries the :math:`\\rho`-risk is given by: + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Quantile Risk (QR) - .. math:: \\frac{ L_{\\rho} \\left( Z, \\hat{Z}_{\\rho} \\right) } {Z}, + QR is a metric that quantifies the accuracy of a specific quantile :math:`q` from the predicted value + distribution of a stochastic/probabilistic `pred_series` containing N samples. - where :math:`L_{\\rho} \\left( Z, \\hat{Z}_{\\rho} \\right)` is the :math:`\\rho`-loss function: + The main difference to the Quantile Loss (QL) is that QR computes the quantile and loss on the aggregate of all + sample values summed up along the time axis (QL computes the quantile and loss per time step). - .. math:: L_{\\rho} \\left( Z, \\hat{Z}_{\\rho} \\right) = 2 \\left( Z - \\hat{Z}_{\\rho} \\right) - \\left( \\rho I_{\\hat{Z}_{\\rho} < Z} - \\left( 1 - \\rho \\right) I_{\\hat{Z}_{\\rho} \\geq Z} \\right), + For the true series :math:`y` and predicted stochastic/probabilistic series (containing N samples) :math:`\\hat{y}` + of of shape :math:`T \\times N`, it is computed per column/component as: - where :math:`Z = \\sum_{t=1}^{T} y_t` (1) is the aggregated target value and :math:`\\hat{Z}_{\\rho}` is the - :math:`\\rho`-quantile of the predicted values. For this, each sample realization :math:`i \\in N` is first - aggregated over the time span similar to (1) with :math:`\\hat{Z}_{i} = \\sum_{t=1}^{T} \\hat{y}_{i,t}`. + .. math:: 2 \\frac{QL(Z, \\hat{Z}_q)}{Z}, - :math:`I_{cond} = 1` if cond is True else :math:`0`` + where :math:`QL` is the Quantile Loss (:func:`~darts.metrics.metrics.ql`), :math:`Z = \\sum_{t=1}^{T} y_t` is + the sum of all target/actual values, :math:`\\hat{Z} = \\sum_{t=1}^{T} \\hat{y}_t` is the sum of all predicted + samples along the time axis, and :math:`\\hat{Z}_q` is the quantile :math:`q` of that sum. Parameters ---------- @@ -1159,20 +2643,21 @@ def rho_risk( The (sequence of) actual series. pred_series The (sequence of) predicted series. - rho + q The quantile (float [0, 1]) of interest for the risk evaluation. intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -1182,14 +2667,29 @@ def rho_risk( Returns ------- - Union[float, List[float]] - The rho-risk metric + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ - - raise_if_not( - pred_series.is_stochastic, - "rho (quantile) loss should only be computed for stochastic predicted TimeSeries.", - ) + if not pred_series.is_stochastic: + raise_log( + ValueError( + "quantile risk (qr) should only be computed for stochastic predicted TimeSeries." + ), + logger=logger, + ) z_true, z_hat = _get_values_or_raise( actual_series, @@ -1198,38 +2698,49 @@ def rho_risk( stochastic_quantile=None, remove_nan_union=True, ) + z_true = np.nansum(z_true, axis=TIME_AX) + z_hat = np.nansum( + z_hat, axis=TIME_AX + ) # aggregate all individual sample realizations + z_hat_rho = np.quantile( + z_hat, q=q, axis=1 + ) # get the quantile from aggregated samples - z_true = z_true.sum(axis=0) - z_hat = z_hat.sum(axis=0) # aggregate all individual sample realizations + # quantile loss + errors = z_true - z_hat_rho + losses = 2 * np.maximum((q - 1) * errors, q * errors) + return losses / z_true - z_hat_rho = np.quantile(z_hat, q=rho) # get the quantile from aggregated samples - pred_above = np.where(z_hat_rho >= z_true, 1, 0) - pred_below = np.where(z_hat_rho < z_true, 1, 0) - - rho_loss = 2 * (z_true - z_hat_rho) * (rho * pred_below - (1 - rho) * pred_above) - return rho_loss / z_true - - -# Quantile Loss (Pinball Loss) @multi_ts_support @multivariate_support -def quantile_loss( +def ql( actual_series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], - tau: float = 0.5, + q: float = 0.5, intersect: bool = True, *, - reduction: Callable[[np.ndarray], float] = np.mean, - inter_reduction: Callable[[np.ndarray], Union[float, np.ndarray]] = lambda x: x, + time_reduction: Optional[Callable[..., np.ndarray]] = None, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, n_jobs: int = 1, - verbose: bool = False -) -> float: - """ - Also known as Pinball Loss, given a time series of actual values :math:`y` of length :math:`T` - and a time series of stochastic predictions (containing N samples) :math:`y'` of shape :math:`T x N` - quantile loss is a metric that quantifies the accuracy of a specific quantile :math:`tau` - from the predicted value distribution. + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Quantile Loss (QL). + + Also known as Pinball Loss. QL is a metric that quantifies the accuracy of a specific quantile :math:`q` from the + predicted value distribution of a stochastic/probabilistic `pred_series` containing N samples. + + QL computes the quantile of all sample values and the loss per time step. + + For the true series :math:`y` and predicted stochastic/probabilistic series (containing N samples) :math:`\\hat{y}` + of of shape :math:`T \\times N`, it is computed per column/component and time step :math:`t` as: + + .. math:: 2 \\max((q - 1) (y_t - \\hat{y}_{t,q}), q (y_t - \\hat{y}_{t,q})), + + where :math:`\\hat{y}_{t,q}` is the quantile :math:`q` of all predicted sample values at time :math:`t`. + The factor `2` makes the loss more interpretable, as for `q=0.5` the loss is identical to the Absolute Error + (:func:`~darts.metrics.metrics.ae`). Parameters ---------- @@ -1237,20 +2748,26 @@ def quantile_loss( The (sequence of) actual series. pred_series The (sequence of) predicted series. - tau + q The quantile (float [0, 1]) of interest for the loss. intersect For time series that are overlapping in time without having the same time index, setting `True` will consider the values only over their common time interval (intersection in time). - reduction - Function taking as input a ``np.ndarray`` and returning a scalar value. This function is used to aggregate - the metrics of different components in case of multivariate ``TimeSeries`` instances. - inter_reduction - Function taking as input a ``np.ndarray`` and returning either a scalar value or a ``np.ndarray``. - This function can be used to aggregate the metrics of different series in case the metric is evaluated on a - ``Sequence[TimeSeries]``. Defaults to the identity function, which returns the pairwise metrics for each pair - of ``TimeSeries`` received in input. Example: ``inter_reduction=np.mean``, will return the average of the - pairwise metrics. + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + time_reduction + Optionally, a function to aggregate the metrics over the time axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(c,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + time axis. If `None`, will return a metric per time step. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. n_jobs The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` @@ -1260,29 +2777,129 @@ def quantile_loss( Returns ------- - Union[float, List[float]] - The quantile loss metric + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - a sequence (list) of uni/multivariate series with `series_reduction`, `component_reduction` and + `time_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n time steps, n components) without time + and component reductions. For: + + - single multivariate series and at least `component_reduction=None`. + - single uni/multivariate series and at least `time_reduction=None`. + - a sequence of uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. """ + if not pred_series.is_stochastic: + raise_log( + ValueError( + "quantile/pinball loss (ql) should only be computed for " + "stochastic predicted TimeSeries." + ), + logger=logger, + ) - raise_if_not( - pred_series.is_stochastic, - "quantile (pinball) loss should only be computed for stochastic predicted TimeSeries.", - ) - - y, y_hat = _get_values_or_raise( + y_true, y_pred = _get_values_or_raise( actual_series, pred_series, intersect, - stochastic_quantile=None, + stochastic_quantile=q, remove_nan_union=True, ) + errors = y_true - y_pred + losses = 2.0 * np.maximum((q - 1) * errors, q * errors) + return losses + + +@multi_ts_support +@multivariate_support +def mql( + actual_series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + q: float = 0.5, + intersect: bool = True, + *, + component_reduction: Optional[Callable[[np.ndarray], float]] = np.nanmean, + series_reduction: Optional[Callable[[np.ndarray], Union[float, np.ndarray]]] = None, + n_jobs: int = 1, + verbose: bool = False, +) -> METRIC_OUTPUT_TYPE: + """Mean Quantile Loss (MQL). + + Also known as Pinball Loss. QL is a metric that quantifies the accuracy of a specific quantile :math:`q` from the + predicted value distribution of a stochastic/probabilistic `pred_series` containing N samples. + + MQL first computes the quantile of all sample values and the loss per time step, and then takes the mean over the + time axis. + + For the true series :math:`y` and predicted stochastic/probabilistic series (containing N samples) :math:`\\hat{y}` + of of shape :math:`T \\times N`, it is computed per column/component as: + + .. math:: 2 \\frac{1}{T}\\sum_{t=1}^T{\\max((q - 1) (y_t - \\hat{y}_{t,q}), q (y_t - \\hat{y}_{t,q}))}, - ts_length, _, sample_size = y_hat.shape - y = y.reshape(ts_length, -1, 1).repeat(sample_size, axis=2) - y_hat = y_hat.reshape( - ts_length, -1, sample_size - ) # make sure y shape == y_hat shape + where :math:`\\hat{y}_{t,q}` is the quantile :math:`q` of all predicted sample values at time :math:`t`. + The factor `2` makes the loss more interpretable, as for `q=0.5` the loss is identical to the Mean Absolute Error + (:func:`~darts.metrics.metrics.mae`). + + Parameters + ---------- + actual_series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + q + The quantile (float [0, 1]) of interest for the loss. + intersect + For time series that are overlapping in time without having the same time index, setting `True` + will consider the values only over their common time interval (intersection in time). + component_reduction + Optionally, a function to aggregate the metrics over the component/column axis. It must reduce a `np.ndarray` + of shape `(t, c)` to a `np.ndarray` of shape `(t,)`. The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `1` corresponding to the + component axis. If `None`, will return a metric per component. + series_reduction + Optionally, a function to aggregate the metrics over the series axis. It must reduce a `np.ndarray` + of shape `(s, t, c)` to a `np.ndarray` of shape `(t, c)` The function takes as input a ``np.ndarray`` and a + parameter named `axis`, and returns the reduced array. The `axis` receives value `0` corresponding to the + series axis. If `None`, will return a metric per series. + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a ``Sequence[TimeSeries]`` is + passed as input, parallelising operations regarding different ``TimeSeries``. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + verbose + Optionally, whether to print operations progress - errors = y - y_hat - losses = np.maximum((tau - 1) * errors, tau * errors) - return losses.mean() + Returns + ------- + float + A single metric score for: + + - single univariate series. + - single multivariate series with `component_reduction`. + - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction`. + np.ndarray + A numpy array of metric scores. The array has shape (n components,) without component reduction. For: + + - single multivariate series and at least `component_reduction=None`. + - sequence of uni/multivariate series including `series_reduction` and `component_reduction=None`. + List[float] + Same as for type `float` but for a sequence of series. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. + """ + return np.nanmean( + _get_wrapped_metric(ql)( + actual_series, + pred_series, + q=q, + intersect=intersect, + ), + axis=TIME_AX, + ) diff --git a/darts/models/forecasting/__init__.py b/darts/models/forecasting/__init__.py index 4b2fa2850e..9fa591ca27 100644 --- a/darts/models/forecasting/__init__.py +++ b/darts/models/forecasting/__init__.py @@ -47,6 +47,6 @@ - :class:`~darts.models.forecasting.nlinear.NLinearModel` - :class:`~darts.models.forecasting.tide_model.TiDEModel` Ensemble Models (`GlobalForecastingModel `_) - - :class:`darts.models.forecasting.baselines.NaiveEnsembleModel` - - :class:`darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel` + - :class:`~darts.models.forecasting.baselines.NaiveEnsembleModel` + - :class:`~darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel` """ diff --git a/darts/models/forecasting/ensemble_model.py b/darts/models/forecasting/ensemble_model.py index 3ac8877410..98ba7293c3 100644 --- a/darts/models/forecasting/ensemble_model.py +++ b/darts/models/forecasting/ensemble_model.py @@ -12,7 +12,7 @@ LocalForecastingModel, ) from darts.timeseries import TimeSeries, concatenate -from darts.utils.utils import series2seq +from darts.utils.ts_utils import series2seq logger = get_logger(__name__) diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index 41b5433641..a58795336b 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -36,6 +36,7 @@ from darts import metrics from darts.dataprocessing.encoders import SequentialEncoder from darts.logging import get_logger, raise_if, raise_if_not, raise_log +from darts.metrics.metrics import METRIC_TYPE from darts.timeseries import TimeSeries from darts.utils import _build_tqdm_iterator, _parallel_apply, _with_sanity_checks from darts.utils.historical_forecasts.utils import ( @@ -49,9 +50,14 @@ from darts.utils.timeseries_generation import ( _build_forecast_series, _generate_new_dates, - generate_index, ) -from darts.utils.utils import get_single_series, series2seq +from darts.utils.ts_utils import ( + SeriesType, + get_series_seq_type, + get_single_series, + series2seq, +) +from darts.utils.utils import generate_index logger = get_logger(__name__) @@ -634,9 +640,7 @@ def historical_forecasts( enable_optimization: bool = True, fit_kwargs: Optional[Dict[str, Any]] = None, predict_kwargs: Optional[Dict[str, Any]] = None, - ) -> Union[ - TimeSeries, List[TimeSeries], Sequence[TimeSeries], Sequence[List[TimeSeries]] - ]: + ) -> Union[TimeSeries, List[TimeSeries], List[List[TimeSeries]]]: """Compute the historical forecasts that would have been obtained by this model on (potentially multiple) `series`. @@ -749,14 +753,21 @@ def historical_forecasts( Returns ------- - TimeSeries or List[TimeSeries] or List[List[TimeSeries]] - If `last_points_only` is set to True and a single series is provided in input, a single ``TimeSeries`` - is returned, which contains the historical forecast at the desired horizon. - - A ``List[TimeSeries]`` is returned if either `series` is a ``Sequence`` of ``TimeSeries``, - or if `last_points_only` is set to False. A list of lists is returned if both conditions are met. - In this last case, the outer list is over the series provided in the input sequence, - and the inner lists contain the different historical forecasts. + TimeSeries + A single historical forecast for a single `series` and `last_points_only=True`: it contains only the + predictions at step `forecast_horizon` from all historical forecasts. + List[TimeSeries] + A list of historical forecasts for: + + - a sequence (list) of `series` and `last_points_only=True`: for each series, it contains only the + predictions at step `forecast_horizon` from all historical forecasts. + - a single `series` and `last_points_only=False`: for each historical forecast, it contains the entire + horizon `forecast_horizon`. + List[List[TimeSeries]] + A list of lists of historical forecasts for a sequence of `series` and `last_points_only=False`. For each + series, and historical forecast, it contains the entire horizon `forecast_horizon`. The outer list + is over the series provided in the input sequence, and the inner lists contain the historical forecasts for + each series. """ model: ForecastingModel = self # only GlobalForecastingModels support historical forecasting without retraining the model @@ -865,10 +876,6 @@ def retrain_func( show_warnings=show_warnings, ) - series = series2seq(series) - past_covariates = series2seq(past_covariates) - future_covariates = series2seq(future_covariates) - if ( enable_optimization and model.supports_optimized_historical_forecasts @@ -895,6 +902,11 @@ def retrain_func( **predict_kwargs, ) + sequence_type_in = get_series_seq_type(series) + series = series2seq(series) + past_covariates = series2seq(past_covariates) + future_covariates = series2seq(future_covariates) + if len(series) == 1: # Use tqdm on the outer loop only if there's more than one series to iterate over # (otherwise use tqdm on the inner loop). @@ -1130,14 +1142,16 @@ def retrain_func( else: forecasts_list.append(forecasts) - return forecasts_list if len(series) > 1 else forecasts_list[0] + return series2seq(forecasts_list, seq_type_out=sequence_type_in) def backtest( self, series: Union[TimeSeries, Sequence[TimeSeries]], past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, - historical_forecasts: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, + historical_forecasts: Optional[ + Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]] + ] = None, num_samples: int = 1, train_length: Optional[int] = None, start: Optional[Union[pd.Timestamp, float, int]] = None, @@ -1147,21 +1161,20 @@ def backtest( retrain: Union[bool, int, Callable[..., bool]] = True, overlap_end: bool = False, last_points_only: bool = False, - metric: Union[ - Callable[[TimeSeries, TimeSeries], float], - List[Callable[[TimeSeries, TimeSeries], float]], - ] = metrics.mape, - reduction: Union[Callable[[np.ndarray], float], None] = np.mean, + metric: Union[METRIC_TYPE, List[METRIC_TYPE]] = metrics.mape, + reduction: Union[Callable[..., float], None] = np.mean, verbose: bool = False, show_warnings: bool = True, + metric_kwargs: Optional[Dict[str, Any]] = None, fit_kwargs: Optional[Dict[str, Any]] = None, predict_kwargs: Optional[Dict[str, Any]] = None, - ) -> Union[float, List[float], Sequence[float], List[Sequence[float]]]: + ) -> Union[float, np.ndarray, List[float], List[np.ndarray]]: """Compute error values that the model would have produced when used on (potentially multiple) `series`. If `historical_forecasts` are provided, the metric (given by the `metric` function) is evaluated directly on - the forecast and the actual values. Otherwise, it repeatedly builds a training set: either expanding from the + the forecast and the actual values. The same `series` must be passed that was used to generate the historical + forecasts. Otherwise, it repeatedly builds a training set: either expanding from the beginning of `series` or moving with a fixed length `train_length`. It trains the current model on the training set, emits a forecast of length equal to `forecast_horizon`, and then moves the end of the training set forward by `stride` time steps. The metric is then evaluated on the forecast and the actual values. @@ -1186,9 +1199,12 @@ def backtest( Optionally, one (or a sequence of) future-known covariate series. This applies only if the model supports future covariates. historical_forecasts - Optionally, the (or a sequence of) historical forecasts time series to be evaluated. Corresponds to - the output of :meth:`historical_forecasts() `. If provided, will - skip historical forecasting and ignore all parameters except `series`, `metric`, and `reduction`. + Optionally, the (or a sequence of / a sequence of sequences of) historical forecasts time series to be + evaluated. Corresponds to the output of :meth:`historical_forecasts() + `. The same `series` and + `last_points_only` values must be passed that were used to generate the historical forecasts. + If provided, will skip historical forecasting and ignore all parameters except `series`, + `last_points_only`, `metric`, and `reduction`. num_samples Number of times a prediction is sampled from a probabilistic model. Use values `>1` only for probabilistic models. @@ -1253,11 +1269,13 @@ def backtest( last_points_only Whether to use the whole historical forecasts or only the last point of each forecast to compute the error. metric - A function or a list of function that takes two ``TimeSeries`` instances as inputs and returns an - error value. + A metric function or a list of metric functions. Each metric must either be a Darts metric (see `here + `_), or a custom metric that has an + identical signature as Darts' metrics, uses decorators :func:`~darts.metrics.metrics.multi_ts_support` and + :func:`~darts.metrics.metrics.multi_ts_support`, and returns the metric score. reduction A function used to combine the individual error scores obtained when `last_points_only` is set to False. - When providing several metric functions, the function will receive the argument `axis = 0` to obtain single + When providing several metric functions, the function will receive the argument `axis = 1` to obtain single value for each metric function. If explicitly set to `None`, the method will return a list of the individual error scores instead. Set to ``np.mean`` by default. @@ -1265,6 +1283,11 @@ def backtest( Whether to print progress. show_warnings Whether to show warnings related to parameters `start`, and `train_length`. + metric_kwargs + Additional arguments passed to `metric()`, such as `'n_jobs'` for parallelization, `'component_reduction'` + for reducing the component wise metrics, seasonality `'m'` for scaled metrics, etc. Will pass arguments to + each metric separately and only if they are present in the corresponding metric signature. Parameter + `'insample'` for scaled metrics (e.g. mase`, `rmsse`, ...) is ignored, as it is handled internally. fit_kwargs Additional arguments passed to the model `fit()` method. predict_kwargs @@ -1272,62 +1295,172 @@ def backtest( Returns ------- - float or List[float] or List[List[float]] - The (sequence of) error score on a series, or list of list containing error scores for each - provided series and each sample. - """ - if historical_forecasts is None: - forecasts = self.historical_forecasts( - series=series, - past_covariates=past_covariates, - future_covariates=future_covariates, - num_samples=num_samples, - train_length=train_length, - start=start, - start_format=start_format, - forecast_horizon=forecast_horizon, - stride=stride, - retrain=retrain, - overlap_end=overlap_end, - last_points_only=last_points_only, - verbose=verbose, - show_warnings=show_warnings, - fit_kwargs=fit_kwargs, - predict_kwargs=predict_kwargs, - ) - else: - forecasts = historical_forecasts + float + A single backtest score for single uni/multivariate series, a single `metric` function and: + + - `historical_forecasts` generated with `last_points_only=True` + - `historical_forecasts` generated with `last_points_only=False` and using a backtest `reduction` + np.ndarray + An numpy array of backtest scores. For single series and one of: + + - a single `metric` function, `historical_forecasts` generated with `last_points_only=False` + and backtest `reduction=None`. The output has shape (n forecasts,). + - multiple `metric` functions and `historical_forecasts` generated with `last_points_only=False`. + The output has shape (n metrics,) when using a backtest `reduction`, and (n metrics, n forecasts) + when `reduction=None` + - multiple uni/multivariate series including `series_reduction` and at least one of + `component_reduction=None` or `time_reduction=None` for "per time step metrics" + List[float] + Same as for type `float` but for a sequence of series. The returned metric list has length + `len(series)` with the `float` metric for each input `series`. + List[np.ndarray] + Same as for type `np.ndarray` but for a sequence of series. The returned metric list has length + `len(series)` with the `np.ndarray` metrics for each input `series`. + """ + + historical_forecasts = historical_forecasts or self.historical_forecasts( + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + num_samples=num_samples, + train_length=train_length, + start=start, + start_format=start_format, + forecast_horizon=forecast_horizon, + stride=stride, + retrain=retrain, + overlap_end=overlap_end, + last_points_only=last_points_only, + verbose=verbose, + show_warnings=show_warnings, + fit_kwargs=fit_kwargs, + predict_kwargs=predict_kwargs, + ) + # remember input series type + series_seq_type = get_series_seq_type(series) series = series2seq(series) - if len(series) == 1: - forecasts = [forecasts] - if not isinstance(metric, list): - metric = [metric] + # check that `historical_forecasts` have correct type + expected_seq_type = None + forecast_seq_type = get_series_seq_type(historical_forecasts) + if last_points_only and not series_seq_type == forecast_seq_type: + # lpo=True -> fc sequence type must be the same + expected_seq_type = series_seq_type + elif not last_points_only and forecast_seq_type != series_seq_type + 1: + # lpo=False -> fc sequence type must be one order higher + expected_seq_type = series_seq_type + 1 + + if expected_seq_type is not None: + raise_log( + ValueError( + f"Expected `historical_forecasts` of type {expected_seq_type} " + f"with `last_points_only={last_points_only}` and `series` of type " + f"{series_seq_type}. However, received `historical_forecasts` of type " + f"{forecast_seq_type}. Make sure to pass the same `last_points_only` " + f"value that was used to generate the historical forecasts." + ), + logger=logger, + ) - backtest_list = [] - for idx, target_ts in enumerate(series): - if last_points_only: - errors = [metric_f(target_ts, forecasts[idx]) for metric_f in metric] - if len(errors) == 1: - errors = errors[0] - backtest_list.append(errors) + # we must wrap each fc in a list if `last_points_only=True` + nested = last_points_only and forecast_seq_type == SeriesType.SEQ + historical_forecasts = series2seq( + historical_forecasts, seq_type_out=SeriesType.SEQ_SEQ, nested=nested + ) + + # check that the number of series-specific forecasts corresponds to the + # number of series in `series` + if len(series) != len(historical_forecasts): + error_msg = ( + f"Mismatch between the number of series-specific `historical_forecasts` " + f"(n={len(historical_forecasts)}) and the number of `TimeSeries` in `series` " + f"(n={len(series)}). For `last_points_only={last_points_only}`, expected " + ) + expected_seq_type = ( + series_seq_type if last_points_only else series_seq_type + 1 + ) + if expected_seq_type == SeriesType.SINGLE: + error_msg += ( + f"a single `historical_forecasts` of type {expected_seq_type}." + ) else: - errors = [ - ( - [metric_f(target_ts, f) for metric_f in metric] - if len(metric) > 1 - else metric[0](target_ts, f) - ) - for f in forecasts[idx] - ] + error_msg += f"`historical_forecasts` of type {expected_seq_type} with length n={len(series)}." + raise_log( + ValueError(error_msg), + logger=logger, + ) - if reduction is None: - backtest_list.append(errors) - else: - backtest_list.append(reduction(np.array(errors), axis=0)) + if not isinstance(metric, list): + metric = [metric] - return backtest_list if len(backtest_list) > 1 else backtest_list[0] + # we have multiple forecasts per series: rearrange forecasts to call each metric only once; + # flatten historical forecasts, get matching target series index, remember cumulative target lengths + # for later reshaping back to original + series_idx = [] + cum_len = [0] + forecasts_list = [] + for idx, fc_list in enumerate(historical_forecasts): + series_idx += [idx] * len(fc_list) + cum_len.append(cum_len[-1] + len(fc_list)) + forecasts_list.extend(fc_list) + + class SeriesGenerator(Sequence): + """Yields the target `series` corresponding the historical forecast at index `i`. + Allows lazy loading of target `series` in case it is a Sequence. + """ + + def __len__(self): + return len(forecasts_list) + + def __getitem__(self, index) -> TimeSeries: + return series[series_idx[index]] + + # extract metrics per metric and series, and optionally reduce + # errors shape `(n metrics, n total historical forecasts)` + series_gen = SeriesGenerator() + errors = [] + for metric_f in metric: + # add user supplied metric kwargs + kwargs = {} + metric_params = inspect.signature(metric_f).parameters + if metric_kwargs: + kwargs = { + k: metric_kwargs[k] + for k in set(metric_kwargs).intersection(metric_params) + } + + # scaled metrics require `insample` series + if "insample" in metric_params: + kwargs["insample"] = series_gen + + errors.append(metric_f(series_gen, forecasts_list, **kwargs)) + errors = np.array(errors) + + # get errors for each input `series` + backtest_list = [] + for i in range(len(cum_len) - 1): + # errors_series with shape `(n metrics, n series specific historical forecasts)` + errors_series = errors[:, cum_len[i] : cum_len[i + 1]] + + if reduction is not None: + # shape `(n metrics, n forecasts)` -> `(n metrics,)` + errors_series = reduction(errors_series, axis=1) + elif last_points_only: + # shape `(n metrics, n forecasts = 1)` -> `(n metrics,)` + errors_series = errors_series[:, 0] + + if len(metric) == 1: + # shape `(n metrics, *)` -> `(*,)` + errors_series = errors_series[0] + elif not last_points_only and reduction is None: + # shape `(n metrics, *)` -> `(*, n metrics)` + errors_series = errors_series.T + + backtest_list.append(errors_series) + return ( + backtest_list if series_seq_type > SeriesType.SINGLE else backtest_list[0] + ) @classmethod def gridsearch( @@ -1446,8 +1579,10 @@ def gridsearch( If `True`, uses the comparison with the fitted values. Raises an error if ``fitted_values`` is not an attribute of `model_class`. metric - A function that takes two TimeSeries instances as inputs (actual and prediction, in this order), - and returns a float error value. + A metric function that returns the error between two `TimeSeries` as a float value . Must either be one of + Darts' "aggregated over time" metrics (see `here + `_), or a custom metric that as input two + `TimeSeries` and returns the error reduction A reduction function (mapping array to float) describing how to aggregate the errors obtained on the different validation series when backtesting. By default it'll compute the mean of errors. @@ -1618,22 +1753,47 @@ def residuals( series: Union[TimeSeries, Sequence[TimeSeries]], past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, + historical_forecasts: Optional[ + Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]] + ] = None, + num_samples: int = 1, + train_length: Optional[int] = None, + start: Optional[Union[pd.Timestamp, float, int]] = None, + start_format: Literal["position", "value"] = "value", forecast_horizon: int = 1, - retrain: bool = True, + stride: int = 1, + retrain: Union[bool, int, Callable[..., bool]] = True, + last_points_only: bool = True, + metric: METRIC_TYPE = metrics.err, verbose: bool = False, - ) -> Union[TimeSeries, Sequence[TimeSeries]]: - """Compute the residuals produced by this model on a (or sequence of) univariate time series. - - This function computes the difference between the actual observations from `series` and the fitted values - vector `p` obtained by training the model on `series`. For every index `i` in `series`, `p[i]` is computed - by training the model on ``series[:(i - forecast_horizon)]`` and forecasting `forecast_horizon` into the future. - (`p[i]` will be set to the last value of the predicted series.) - The vector of residuals will be shorter than `series` due to the minimum training series length required by the - model and the gap introduced by `forecast_horizon`. Most commonly, the term "residuals" implies a value for - `forecast_horizon` of 1; but this can be configured. - - This method works only on univariate series. It uses the median - prediction (when dealing with stochastic forecasts). + show_warnings: bool = True, + metric_kwargs: Optional[Dict[str, Any]] = None, + fit_kwargs: Optional[Dict[str, Any]] = None, + predict_kwargs: Optional[Dict[str, Any]] = None, + values_only: bool = False, + ) -> Union[TimeSeries, List[TimeSeries], List[List[TimeSeries]]]: + """Compute the residuals produced by this model on a (or sequence of) `TimeSeries`. + + This function computes the difference (or a custom `metric`) between the actual observations from `series` and + the fitted values obtained by training the model on `series` (or using a pre-trained model with + `retrain=False`). Not all models support fitted values, so we use historical forecasts as an approximation for + them. + + In sequence this method performs: + + - compute historical forecasts for each series or use pre-computed `historical_forecasts` (see + :meth:`~darts.models.forecasting.forecasting_model.ForecastingModel.historical_forecasts` for more details). + How the historical forecasts are generated can be configured with parameters `num_samples`, `train_length`, + `start`, `start_format`, `forecast_horizon`, `stride`, `retrain`, `last_points_only`, `fit_kwargs`, and + `predict_kwargs`. + - compute a backtest using `metric` between the historical forecasts and `series` per component/column + and time step (see :meth:`~darts.models.forecasting.forecasting_model.ForecastingModel.backtest` for more + details). By default, uses the residuals :func:`~darts.metrics.metrics.err` as a `metric`. + - create and return `TimeSeries` (or simply a np.ndarray with `values_only=True`) with the time index from + historical forecasts, and values from the metrics per component and time step. + + This method works for single or multiple univariate or multivariate series. + It uses the median prediction (when dealing with stochastic forecasts). Parameters ---------- @@ -1645,57 +1805,193 @@ def residuals( One or several future-known covariate time series. forecast_horizon The forecasting horizon used to predict each fitted value. + historical_forecasts + Optionally, the (or a sequence of / a sequence of sequences of) historical forecasts time series to be + evaluated. Corresponds to the output of :meth:`historical_forecasts() + `. The same `series` and + `last_points_only` values must be passed that were used to generate the historical forecasts. If provided, + will skip historical forecasting and ignore all parameters except `series`, `last_points_only`, `metric`, + and `reduction`. + num_samples + Number of times a prediction is sampled from a probabilistic model. Use values `>1` only for probabilistic + models. + train_length + Number of time steps in our training set (size of backtesting window to train on). Only effective when + `retrain` is not ``False``. Default is set to `train_length=None` where it takes all available time steps + up until prediction time, otherwise the moving window strategy is used. If larger than the number of time + steps available, all steps up until prediction time are used, as in default case. Needs to be at least + `min_train_series_length`. + start + Optionally, the first point in time at which a prediction is computed. This parameter supports: + ``float``, ``int``, ``pandas.Timestamp``, and ``None``. + If a ``float``, it is the proportion of the time series that should lie before the first prediction point. + If an ``int``, it is either the index position of the first prediction point for `series` with a + `pd.DatetimeIndex`, or the index value for `series` with a `pd.RangeIndex`. The latter can be changed to + the index position with `start_format="position"`. + If a ``pandas.Timestamp``, it is the time stamp of the first prediction point. + If ``None``, the first prediction point will automatically be set to: + + - the first predictable point if `retrain` is ``False``, or `retrain` is a Callable and the first + predictable point is earlier than the first trainable point. + - the first trainable point if `retrain` is ``True`` or ``int`` (given `train_length`), + or `retrain` is a Callable and the first trainable point is earlier than the first predictable point. + - the first trainable point (given `train_length`) otherwise + + Note: Raises a ValueError if `start` yields a time outside the time index of `series`. + Note: If `start` is outside the possible historical forecasting times, will ignore the parameter + (default behavior with ``None``) and start at the first trainable/predictable point. + start_format + Defines the `start` format. Only effective when `start` is an integer and `series` is indexed with a + `pd.RangeIndex`. + If set to 'position', `start` corresponds to the index position of the first predicted point and can range + from `(-len(series), len(series) - 1)`. + If set to 'value', `start` corresponds to the index value/label of the first predicted point. Will raise + an error if the value is not in `series`' index. Default: ``'value'`` + forecast_horizon + The forecast horizon for the point predictions. + stride + The number of time steps between two consecutive predictions. retrain - Whether to train the model at each iteration, for models that support it. - If False, the model is not trained at all. Default: True + Whether and/or on which condition to retrain the model before predicting. + This parameter supports 3 different datatypes: ``bool``, (positive) ``int``, and + ``Callable`` (returning a ``bool``). + In the case of ``bool``: retrain the model at each step (`True`), or never retrains the model (`False`). + In the case of ``int``: the model is retrained every `retrain` iterations. + In the case of ``Callable``: the model is retrained whenever callable returns `True`. + The callable must have the following positional arguments: + + - `counter` (int): current `retrain` iteration + - `pred_time` (pd.Timestamp or int): timestamp of forecast time (end of the training series) + - `train_series` (TimeSeries): train series up to `pred_time` + - `past_covariates` (TimeSeries): past_covariates series up to `pred_time` + - `future_covariates` (TimeSeries): future_covariates series up + to `min(pred_time + series.freq * forecast_horizon, series.end_time())` + + Note: if any optional `*_covariates` are not passed to `historical_forecast`, ``None`` will be passed + to the corresponding retrain function argument. + Note: some models do require being retrained every time and do not support anything other + than `retrain=True`. + last_points_only + Whether to use the whole historical forecasts or only the last point of each forecast to compute the error. + metric + Either one of Darts' "per time step" metrics (see `here + `_), or a custom metric that has an + identical signature as Darts' "per time step" metrics, uses decorators + :func:`~darts.metrics.metrics.multi_ts_support` and :func:`~darts.metrics.metrics.multi_ts_support`, + and returns one value per time step. verbose Whether to print progress. + show_warnings + Whether to show warnings related to parameters `start`, and `train_length`. + metric_kwargs + Additional arguments passed to `metric()`, such as `'n_jobs'` for parallelization, `'m'` for scaled + metrics, etc. Will pass arguments only if they are present in the corresponding metric signature. Ignores + reduction arguments `"series_reduction", "component_reduction", "time_reduction"`, and parameter + `'insample'` for scaled metrics (e.g. mase`, `rmsse`, ...), as they are handled internally. + fit_kwargs + Additional arguments passed to the model `fit()` method. + predict_kwargs + Additional arguments passed to the model `predict()` method. + values_only + Whether to return the residuals as `np.ndarray`. If `False`, returns residuals as `TimeSeries`. Returns ------- - TimeSeries (or Sequence[TimeSeries]) - The vector of residuals. - """ - - series = series2seq(series) - past_covariates = series2seq(past_covariates) - future_covariates = series2seq(future_covariates) + TimeSeries + Residual `TimeSeries` for a single `series` and `historical_forecasts` generated with + `last_points_only=True`. + List[TimeSeries] + A list of residual `TimeSeries` for a sequence (list) of `series` with `last_points_only=True`. + The residual list has length `len(series)`. + List[List[TimeSeries]] + A list of lists of residual `TimeSeries` for a sequence of `series` with `last_points_only=False`. + The outer residual list has length `len(series)`. The inner lists consist of the residuals from + all possible series-specific historical forecasts. + """ + # `residuals()` should return metrics per series, component and time step (no reduction) + metric_kwargs = copy.deepcopy(metric_kwargs) or {} + metric_kwargs["series_reduction"] = None + metric_kwargs["component_reduction"] = None + metric_kwargs["time_reduction"] = None + + historical_forecasts = historical_forecasts or self.historical_forecasts( + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + num_samples=num_samples, + train_length=train_length, + start=start, + start_format=start_format, + forecast_horizon=forecast_horizon, + stride=stride, + retrain=retrain, + last_points_only=last_points_only, + verbose=verbose, + show_warnings=show_warnings, + fit_kwargs=fit_kwargs, + predict_kwargs=predict_kwargs, + overlap_end=False, + ) - raise_if_not( - all([serie.is_univariate for serie in series]), - "Each series in the sequence must be univariate.", - logger, + residuals = self.backtest( + series=series, + historical_forecasts=historical_forecasts, + last_points_only=last_points_only, + metric=metric, + reduction=None, + metric_kwargs=metric_kwargs, ) - residuals_list = [] - # compute residuals - for idx, target_ts in enumerate(series): - # get first index not contained in the first training set - first_index = target_ts.time_index[self.min_train_series_length] - - # compute fitted values - forecasts = self.historical_forecasts( - series=target_ts, - past_covariates=past_covariates[idx] if past_covariates else None, - future_covariates=future_covariates[idx] if future_covariates else None, - start=first_index, - forecast_horizon=forecast_horizon, - stride=1, - retrain=retrain, - last_points_only=True, - verbose=verbose, - ) - series_trimmed = target_ts.slice_intersect(forecasts) - residuals_list.append( - series_trimmed - - ( - forecasts.quantile_timeseries(quantile=0.5) - if forecasts.is_stochastic - else forecasts - ) + # remember input series type + series_seq_type = get_series_seq_type(series) + + # convert forecasts and residuals to list of lists of series/arrays + forecast_seq_type = get_series_seq_type(historical_forecasts) + historical_forecasts = series2seq( + historical_forecasts, + seq_type_out=SeriesType.SEQ_SEQ, + nested=last_points_only and forecast_seq_type == SeriesType.SEQ, + ) + if series_seq_type == SeriesType.SINGLE: + residuals = [residuals] + if last_points_only: + residuals = [[res] for res in residuals] + + # sanity check residual output + try: + res, fc = residuals[0][0], historical_forecasts[0][0] + _ = np.reshape(res, (len(fc), fc.n_components, 1)) + except Exception as err: + raise_log( + ValueError( + f"`metric` function did not yield expected output. Make sure " + f"to use one of Darts 'per time step' metrics, or a similar " + f"custom metric. The following exception was raised: " + f"{type(err).__name__}('{err}')" + ), + logger=logger, ) - return residuals_list if len(residuals_list) > 1 else residuals_list[0] + # process residuals + residuals_out = [] + for fc_list, res_list in zip(historical_forecasts, residuals): + res_list_out = [] + for fc, res in zip(fc_list, res_list): + # make sure all residuals have shape (n time steps, n components, n samples=1) + if len(res.shape) != 3: + res = np.reshape(res, (len(fc), fc.n_components, 1)) + res_list_out.append(res if values_only else fc.with_values(res)) + residuals_out.append(res_list_out) + + # if required, reduce to `series` input type + if series_seq_type == SeriesType.SINGLE: + return residuals_out[0][0] if last_points_only else residuals_out[0] + + return ( + [res for res_list in residuals_out for res in res_list] + if last_points_only + else residuals_out + ) def initialize_encoders(self, default=False) -> SequentialEncoder: """instantiates the SequentialEncoder object based on self._model_encoder_settings and parameter @@ -2081,9 +2377,9 @@ def _verify_static_covariates(self, static_covariates: Optional[pd.DataFrame]): def _optimized_historical_forecasts( self, - series: Optional[Sequence[TimeSeries]], - past_covariates: Optional[Sequence[TimeSeries]] = None, - future_covariates: Optional[Sequence[TimeSeries]] = None, + series: Union[TimeSeries, Sequence[TimeSeries]], + past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, + future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, num_samples: int = 1, start: Optional[Union[pd.Timestamp, float, int]] = None, start_format: Literal["position", "value"] = "value", @@ -2094,9 +2390,7 @@ def _optimized_historical_forecasts( verbose: bool = False, show_warnings: bool = True, predict_likelihood_parameters: bool = False, - ) -> Union[ - TimeSeries, List[TimeSeries], Sequence[TimeSeries], Sequence[List[TimeSeries]] - ]: + ) -> Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: logger.warning( "`optimized historical forecasts is not available for this model, use `historical_forecasts` instead." ) diff --git a/darts/models/forecasting/regression_ensemble_model.py b/darts/models/forecasting/regression_ensemble_model.py index 149d6376a9..835afbe883 100644 --- a/darts/models/forecasting/regression_ensemble_model.py +++ b/darts/models/forecasting/regression_ensemble_model.py @@ -13,7 +13,7 @@ from darts.models.forecasting.linear_regression_model import LinearRegressionModel from darts.models.forecasting.regression_model import RegressionModel from darts.timeseries import TimeSeries, concatenate -from darts.utils.utils import seq2series, series2seq +from darts.utils.ts_utils import seq2series, series2seq logger = get_logger(__name__) @@ -234,10 +234,7 @@ def _make_multiple_historical_forecasts( predict_likelihood_parameters=False, ) # concatenate the strided predictions of output_chunk_length values each - if is_single_series: - tmp_pred = [concatenate(tmp_pred, axis=0)] - else: - tmp_pred = [concatenate(sub_pred, axis=0) for sub_pred in tmp_pred] + tmp_pred = [concatenate(sub_pred, axis=0) for sub_pred in tmp_pred] # add the missing steps at beginning by taking the first values of precomputed predictions if missing_steps: diff --git a/darts/models/forecasting/regression_model.py b/darts/models/forecasting/regression_model.py index 0ae5543505..dd862db6b6 100644 --- a/darts/models/forecasting/regression_model.py +++ b/darts/models/forecasting/regression_model.py @@ -54,12 +54,8 @@ _process_historical_forecast_input, ) from darts.utils.multioutput import MultiOutputRegressor -from darts.utils.utils import ( - _check_quantiles, - get_single_series, - seq2series, - series2seq, -) +from darts.utils.ts_utils import get_single_series, seq2series, series2seq +from darts.utils.utils import _check_quantiles logger = get_logger(__name__) @@ -1213,9 +1209,9 @@ def _check_optimizable_historical_forecasts( def _optimized_historical_forecasts( self, - series: Optional[Sequence[TimeSeries]], - past_covariates: Optional[Sequence[TimeSeries]] = None, - future_covariates: Optional[Sequence[TimeSeries]] = None, + series: Union[TimeSeries, Sequence[TimeSeries]], + past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, + future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, num_samples: int = 1, start: Optional[Union[pd.Timestamp, float, int]] = None, start_format: Literal["position", "value"] = "value", @@ -1227,9 +1223,7 @@ def _optimized_historical_forecasts( show_warnings: bool = True, predict_likelihood_parameters: bool = False, **kwargs, - ) -> Union[ - TimeSeries, List[TimeSeries], Sequence[TimeSeries], Sequence[List[TimeSeries]] - ]: + ) -> Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: """ For RegressionModels we create the lagged prediction data once per series using a moving window. With this, we can avoid having to recreate the tabular input data and call `model.predict()` for each @@ -1238,18 +1232,20 @@ def _optimized_historical_forecasts( TODO: support forecast_horizon > output_chunk_length (auto-regression) """ - series, past_covariates, future_covariates = _process_historical_forecast_input( - model=self, - series=series, - past_covariates=past_covariates, - future_covariates=future_covariates, - forecast_horizon=forecast_horizon, - allow_autoregression=False, + series, past_covariates, future_covariates, series_seq_type = ( + _process_historical_forecast_input( + model=self, + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + forecast_horizon=forecast_horizon, + allow_autoregression=False, + ) ) # TODO: move the loop here instead of duplicated code in each sub-routine? if last_points_only: - return _optimized_historical_forecasts_last_points_only( + hfc = _optimized_historical_forecasts_last_points_only( model=self, series=series, past_covariates=past_covariates, @@ -1265,7 +1261,7 @@ def _optimized_historical_forecasts( **kwargs, ) else: - return _optimized_historical_forecasts_all_points( + hfc = _optimized_historical_forecasts_all_points( model=self, series=series, past_covariates=past_covariates, @@ -1280,6 +1276,7 @@ def _optimized_historical_forecasts( predict_likelihood_parameters=predict_likelihood_parameters, **kwargs, ) + return series2seq(hfc, seq_type_out=series_seq_type) class _LikelihoodMixin: diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index af7f0b19f2..87ab8d7b02 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -89,7 +89,7 @@ ) from darts.utils.likelihood_models import Likelihood from darts.utils.torch import random_method -from darts.utils.utils import get_single_series, seq2series, series2seq +from darts.utils.ts_utils import get_single_series, seq2series, series2seq # Check whether we are running pytorch-lightning >= 2.0.0 or not: tokens = pl.__version__.split(".") @@ -2083,9 +2083,9 @@ def _check_optimizable_historical_forecasts( def _optimized_historical_forecasts( self, - series: Optional[Sequence[TimeSeries]], - past_covariates: Optional[Sequence[TimeSeries]] = None, - future_covariates: Optional[Sequence[TimeSeries]] = None, + series: Union[TimeSeries, Sequence[TimeSeries]], + past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, + future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, num_samples: int = 1, start: Optional[Union[pd.Timestamp, float, int]] = None, start_format: Literal["position", "value"] = "value", @@ -2097,20 +2097,20 @@ def _optimized_historical_forecasts( show_warnings: bool = True, predict_likelihood_parameters: bool = False, **kwargs, - ) -> Union[ - TimeSeries, List[TimeSeries], Sequence[TimeSeries], Sequence[List[TimeSeries]] - ]: + ) -> Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: """ For TorchForecastingModels we use a strided inference dataset to avoid having to recreate trainers and datasets for each forecastable index and series. """ - series, past_covariates, future_covariates = _process_historical_forecast_input( - model=self, - series=series, - past_covariates=past_covariates, - future_covariates=future_covariates, - forecast_horizon=forecast_horizon, - allow_autoregression=True, + series, past_covariates, future_covariates, series_seq_type = ( + _process_historical_forecast_input( + model=self, + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + forecast_horizon=forecast_horizon, + allow_autoregression=True, + ) ) forecasts_list = _optimized_historical_forecasts( model=self, @@ -2129,7 +2129,7 @@ def _optimized_historical_forecasts( predict_likelihood_parameters=predict_likelihood_parameters, **kwargs, ) - return forecasts_list + return series2seq(forecasts_list, seq_type_out=series_seq_type) def _load_encoders( self, tfm_save: "TorchForecastingModel", load_encoders: bool diff --git a/darts/models/forecasting/xgboost.py b/darts/models/forecasting/xgboost.py index 99f38fc59a..23d6fb6969 100644 --- a/darts/models/forecasting/xgboost.py +++ b/darts/models/forecasting/xgboost.py @@ -13,7 +13,7 @@ import numpy as np import xgboost as xgb -from darts.logging import get_logger +from darts.logging import get_logger, raise_if_not from darts.models.forecasting.regression_model import ( FUTURE_LAGS_TYPE, LAGS_TYPE, @@ -21,7 +21,6 @@ _LikelihoodMixin, ) from darts.timeseries import TimeSeries -from darts.utils.utils import raise_if_not logger = get_logger(__name__) diff --git a/darts/tests/dataprocessing/encoders/test_covariate_index_generators.py b/darts/tests/dataprocessing/encoders/test_covariate_index_generators.py index fa023b6588..01bf290b0c 100644 --- a/darts/tests/dataprocessing/encoders/test_covariate_index_generators.py +++ b/darts/tests/dataprocessing/encoders/test_covariate_index_generators.py @@ -10,6 +10,7 @@ ) from darts.logging import get_logger from darts.utils import timeseries_generation as tg +from darts.utils.utils import generate_index logger = get_logger(__name__) @@ -34,7 +35,7 @@ class TestCovariatesIndexGenerator: # pd.DatetimeIndex # expected covariates for inference dataset for n <= output_chunk_length cov_time_inf_short = TimeSeries.from_times_and_values( - tg.generate_index( + generate_index( start=target_time.start_time(), length=n_target + n_short, freq=target_time.freq, @@ -43,7 +44,7 @@ class TestCovariatesIndexGenerator: ) # expected covariates for inference dataset for n > output_chunk_length cov_time_inf_long = TimeSeries.from_times_and_values( - tg.generate_index( + generate_index( start=target_time.start_time(), length=n_target + n_long, freq=target_time.freq, @@ -54,7 +55,7 @@ class TestCovariatesIndexGenerator: # integer index # expected covariates for inference dataset for n <= output_chunk_length cov_int_inf_short = TimeSeries.from_times_and_values( - tg.generate_index( + generate_index( start=target_int.start_time(), length=n_target + n_short, freq=target_int.freq, @@ -63,7 +64,7 @@ class TestCovariatesIndexGenerator: ) # expected covariates for inference dataset for n > output_chunk_length cov_int_inf_long = TimeSeries.from_times_and_values( - tg.generate_index( + generate_index( start=target_int.start_time(), length=n_target + n_long, freq=target_int.freq, diff --git a/darts/tests/dataprocessing/encoders/test_encoders.py b/darts/tests/dataprocessing/encoders/test_encoders.py index 41bc8c29dc..643bd42ddb 100644 --- a/darts/tests/dataprocessing/encoders/test_encoders.py +++ b/darts/tests/dataprocessing/encoders/test_encoders.py @@ -30,6 +30,7 @@ from darts.dataprocessing.transformers import Scaler from darts.logging import get_logger, raise_log from darts.utils import timeseries_generation as tg +from darts.utils.utils import generate_index logger = get_logger(__name__) @@ -79,7 +80,7 @@ class TestEncoder: # multi-TS at prediction should be as follows inf_ts_short_future = [ TimeSeries.from_times_and_values( - tg.generate_index( + generate_index( start=ts.end_time() + (1 - 12) * ts.freq, length=12 + 6, freq=ts.freq ), np.arange(12 + 6), @@ -89,7 +90,7 @@ class TestEncoder: inf_ts_long_future = [ TimeSeries.from_times_and_values( - tg.generate_index( + generate_index( start=ts.end_time() + (1 - 12) * ts.freq, length=12 + 8, freq=ts.freq ), np.arange(12 + 8), @@ -99,7 +100,7 @@ class TestEncoder: inf_ts_short_past = [ TimeSeries.from_times_and_values( - tg.generate_index( + generate_index( start=ts.end_time() + (1 - 12) * ts.freq, length=12, freq=ts.freq ), np.arange(12), @@ -109,7 +110,7 @@ class TestEncoder: inf_ts_long_past = [ TimeSeries.from_times_and_values( - tg.generate_index( + generate_index( start=ts.end_time() + (1 - 12) * ts.freq, length=12 + (8 - 6), freq=ts.freq, @@ -667,7 +668,7 @@ def test_cyclic_encoder(self): attribute = "month" month_series = TimeSeries.from_times_and_values( - times=tg.generate_index( + times=generate_index( start=pd.to_datetime("2000-01-01"), length=24, freq="MS" ), values=np.arange(24), @@ -724,7 +725,7 @@ def test_datetime_attribute_encoder(self): attribute = "month" month_series = TimeSeries.from_times_and_values( - times=tg.generate_index( + times=generate_index( start=pd.to_datetime("2000-01-01"), length=24, freq="MS" ), values=np.arange(24), @@ -930,7 +931,7 @@ def index_year_shifted(index): # inference set pc, fc = encs.encode_inference(n=12, target=ts) - year_index = tg.generate_index( + year_index = generate_index( start=ts.end_time() - ts.freq * (input_chunk_length - 1), length=24, freq=ts.freq, diff --git a/darts/tests/dataprocessing/transformers/test_midas.py b/darts/tests/dataprocessing/transformers/test_midas.py index 70b88eff9d..ffeb2e9868 100644 --- a/darts/tests/dataprocessing/transformers/test_midas.py +++ b/darts/tests/dataprocessing/transformers/test_midas.py @@ -5,7 +5,8 @@ from darts import TimeSeries from darts.dataprocessing.transformers import MIDAS from darts.models import LinearRegressionModel -from darts.utils.timeseries_generation import generate_index, linear_timeseries +from darts.utils.timeseries_generation import linear_timeseries +from darts.utils.utils import generate_index # TODO: remove this once bumping min python version from 3.8 to 3.9 (pandas v2.2.0 not available for p38) pd_above_v22 = pd.__version__ >= "2.2" diff --git a/darts/tests/metrics/test_metrics.py b/darts/tests/metrics/test_metrics.py index 18b23138f4..ab4ea94c35 100644 --- a/darts/tests/metrics/test_metrics.py +++ b/darts/tests/metrics/test_metrics.py @@ -1,11 +1,70 @@ +import copy +import inspect +import itertools + import numpy as np import pandas as pd import pytest +import sklearn.metrics from darts import TimeSeries from darts.metrics import metrics +def sklearn_mape(*args, **kwargs): + return sklearn.metrics.mean_absolute_percentage_error(*args, **kwargs) * 100.0 + + +def metric_residuals(y_true, y_pred, **kwargs): + y_true = y_true[:, 0] + y_pred = y_pred[:, 0] + return np.mean(y_true - y_pred) + + +def metric_smape(y_true, y_pred, **kwargs): + y_true = y_true[:, 0] + y_pred = y_pred[:, 0] + return ( + 100.0 + / len(y_true) + * np.sum(2 * np.abs(y_pred - y_true) / (np.abs(y_true) + np.abs(y_pred))) + ) + + +def metric_ope(y_true, y_pred, **kwargs): + y_true = y_true[:, 0] + y_pred = y_pred[:, 0] + return 100.0 * np.abs((np.sum(y_true) - np.sum(y_pred)) / np.sum(y_true)) + + +def metric_cov(y_true, y_pred, **kwargs): + y_true = y_true[:, 0] + y_pred = y_pred[:, 0] + return ( + 100.0 + * sklearn.metrics.mean_squared_error(y_true, y_pred, squared=False) + / np.mean(y_true) + ) + + +def metric_marre(y_true, y_pred, **kwargs): + y_true = y_true[:, 0] + y_pred = y_pred[:, 0] + return ( + 100.0 + / len(y_true) + * np.sum(np.abs((y_true - y_pred) / (np.max(y_true) - np.min(y_true)))) + ) + + +def metric_rmsle(y_true, y_pred, **kwargs): + y_true = y_true[:, 0] + y_pred = y_pred[:, 0] + return np.sqrt( + 1 / len(y_true) * np.sum((np.log(y_true + 1) - np.log(y_pred + 1)) ** 2) + ) + + class TestMetrics: np.random.seed(42) pd_train = pd.Series( @@ -52,143 +111,768 @@ class TestMetrics: series1.time_index, np.stack([series1.values(), series2.values()], axis=2) ) - def test_zero(self): - with pytest.raises(ValueError): - metrics.mape(self.series1, self.series1) - - with pytest.raises(ValueError): - metrics.smape(self.series1, self.series1) - + @pytest.mark.parametrize( + "metric", + [ + metrics.ape, + metrics.sape, + metrics.mape, + metrics.smape, + ], + ) + def test_ape_zero(self, metric): with pytest.raises(ValueError): - metrics.mape(self.series12, self.series12) + metric(self.series1, self.series1) with pytest.raises(ValueError): - metrics.smape(self.series12, self.series12) + metric(self.series1, self.series1) + def test_ope_zero(self): with pytest.raises(ValueError): metrics.ope( self.series1 - self.series1.pd_series().mean(), self.series1 - self.series1.pd_series().mean(), ) - def test_same(self): - assert metrics.mape(self.series1 + 1, self.series1 + 1) == 0 - assert metrics.smape(self.series1 + 1, self.series1 + 1) == 0 - assert ( - metrics.mase(self.series1 + 1, self.series1 + 1, self.series_train, 1) == 0 + @pytest.mark.parametrize( + "config", + [ + # time dependent but with time reduction + (metrics.err, False, {"time_reduction": np.mean}), + (metrics.ae, False, {"time_reduction": np.mean}), + (metrics.se, False, {"time_reduction": np.mean}), + (metrics.sle, False, {"time_reduction": np.mean}), + (metrics.ase, False, {"time_reduction": np.mean}), + (metrics.sse, False, {"time_reduction": np.mean}), + (metrics.ape, False, {"time_reduction": np.mean}), + (metrics.sape, False, {"time_reduction": np.mean}), + (metrics.arre, False, {"time_reduction": np.mean}), + (metrics.ql, True, {"time_reduction": np.mean}), + # time aggregates + (metrics.merr, False, {}), + (metrics.mae, False, {}), + (metrics.mse, False, {}), + (metrics.rmse, False, {}), + (metrics.rmsle, False, {}), + (metrics.mase, False, {}), + (metrics.msse, False, {}), + (metrics.rmsse, False, {}), + (metrics.mape, False, {}), + (metrics.smape, False, {}), + (metrics.ope, False, {}), + (metrics.marre, False, {}), + (metrics.r2_score, False, {}), + (metrics.coefficient_of_variation, False, {}), + (metrics.qr, True, {}), + (metrics.mql, True, {}), + (metrics.dtw_metric, False, {}), + ], + ) + def test_output_type_time_aggregated(self, config): + """Test output types and shapes for time aggregated metrics: + for single and multiple univariate or multivariate series, in combination + with different component and series reduction functions.""" + metric, is_probabilistic, kwargs = config + params = inspect.signature(metric).parameters + + # y true + y_t_mv = self.series12 + 1 + y_t_uv = y_t_mv.univariate_component(0) + y_t_multi_mv = [y_t_mv] * 2 + y_t_multi_uv = [y_t_uv] * 2 + + # y pred + y_p_mv = ( + self.series12 + if not is_probabilistic + else self.series12_stochastic.stack(self.series12_stochastic) + ) + 1 + y_p_uv = y_p_mv.univariate_component(0) + y_p_multi_mv = [y_p_mv] * 2 + y_p_multi_uv = [y_p_uv] * 2 + + # insample + kwargs_uv = copy.deepcopy(kwargs) + kwargs_mv = copy.deepcopy(kwargs) + kwargs_list_single_uv = copy.deepcopy(kwargs) + kwargs_list_single_mv = copy.deepcopy(kwargs) + kwargs_multi_uv = copy.deepcopy(kwargs) + kwargs_multi_mv = copy.deepcopy(kwargs) + if "insample" in params: + insample = self.series_train.stack(self.series_train) + 1 + kwargs_uv["insample"] = insample.univariate_component(0) + kwargs_mv["insample"] = insample + kwargs_list_single_uv["insample"] = [kwargs_uv["insample"]] + kwargs_list_single_mv["insample"] = [kwargs_mv["insample"]] + kwargs_multi_uv["insample"] = [kwargs_uv["insample"]] * 2 + kwargs_multi_mv["insample"] = [kwargs_mv["insample"]] * 2 + + # SINGLE UNIVARIATE SERIES + # no reduction + res = metric( + y_t_uv, y_p_uv, **kwargs_uv, series_reduction=None, component_reduction=None + ) + assert isinstance(res, float) + # series reduction + res = metric( + y_t_uv, + y_p_uv, + **kwargs_uv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, float) + # comp reduction + res = metric( + y_t_uv, + y_p_uv, + **kwargs_uv, + series_reduction=None, + component_reduction=np.mean, ) - assert metrics.marre(self.series1 + 1, self.series1 + 1) == 0 - assert metrics.r2_score(self.series1 + 1, self.series1 + 1) == 1 - assert metrics.ope(self.series1 + 1, self.series1 + 1) == 0 - assert metrics.rho_risk(self.series1 + 1, self.series11_stochastic + 1) == 0 + assert isinstance(res, float) + # series and comp reduction + res = metric( + y_t_uv, + y_p_uv, + **kwargs_uv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, float) - def helper_test_shape_equality(self, metric): - assert ( - round( - abs( - metric(self.series12, self.series21) - - metric( - self.series1.append(self.series2b), - self.series2.append(self.series1b), - ) - ), - 7, - ) - == 0 + # LIST OF SINGLE UNIVARIATE SERIES + # no reduction + res = metric( + [y_t_uv], + [y_p_uv], + **kwargs_list_single_uv, + series_reduction=None, + component_reduction=None, + ) + assert isinstance(res, list) and len(res) == 1 + assert isinstance(res[0], float) + # series reduction + res = metric( + [y_t_uv], + [y_p_uv], + **kwargs_list_single_uv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, float) + # comp reduction + res = metric( + [y_t_uv], + [y_p_uv], + **kwargs_list_single_uv, + series_reduction=None, + component_reduction=np.mean, ) + assert isinstance(res, list) and len(res) == 1 + assert isinstance(res[0], float) + # series and comp reduction + res = metric( + [y_t_uv], + [y_p_uv], + **kwargs_list_single_uv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, float) - def get_test_cases(self, **kwargs): - # stochastic metrics (rho-risk) behave similar to deterministic metrics if all samples have equal values - if "is_stochastic" in kwargs and kwargs["is_stochastic"]: - test_cases = [ - (self.series1 + 1, self.series22_stochastic), - (self.series1 + 1, self.series33_stochastic), - (self.series2, self.series33_stochastic), - ] - kwargs.pop("is_stochastic", 0) - else: - test_cases = [ - (self.series1 + 1, self.series2), - (self.series1 + 1, self.series3), - (self.series2, self.series3), - ] - return test_cases, kwargs + # SINGLE MULTIVARIATE SERIES + # no reduction + res = metric( + y_t_mv, y_p_mv, **kwargs_mv, series_reduction=None, component_reduction=None + ) + assert isinstance(res, np.ndarray) + assert res.shape == (2,) + # series reduction + res = metric( + y_t_mv, + y_p_mv, + **kwargs_mv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, np.ndarray) + assert res.shape == (2,) + # comp reduction + res = metric( + y_t_mv, + y_p_mv, + **kwargs_mv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, float) + # series and comp reduction + res = metric( + y_t_mv, + y_p_mv, + **kwargs_mv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, float) - def helper_test_multivariate_duplication_equality(self, metric, **kwargs): - test_cases, kwargs = self.get_test_cases(**kwargs) + # LIST OF SINGLE MULTIVARIATE SERIES + # no reduction + res = metric( + [y_t_mv], + [y_p_mv], + **kwargs_list_single_mv, + series_reduction=None, + component_reduction=None, + ) + assert isinstance(res, list) and len(res) == 1 + assert isinstance(res[0], np.ndarray) and res[0].shape == (2,) + # series reduction + res = metric( + [y_t_mv], + [y_p_mv], + **kwargs_list_single_mv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, np.ndarray) and res.shape == (2,) + # comp reduction + res = metric( + [y_t_mv], + [y_p_mv], + **kwargs_list_single_mv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, list) and len(res) == 1 + assert isinstance(res[0], float) + # series and comp reduction + res = metric( + [y_t_mv], + [y_p_mv], + **kwargs_list_single_mv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, float) - for s1, s2 in test_cases: - s11 = s1.stack(s1) - s22 = s2.stack(s2) - # default intra - assert ( - round(abs(metric(s1, s2, **kwargs) - metric(s11, s22, **kwargs)), 7) - == 0 - ) - # custom intra - assert ( - round( - abs( - metric(s1, s2, **kwargs, reduction=(lambda x: x[0])) - - metric(s11, s22, **kwargs, reduction=(lambda x: x[0])) - ), - 7, - ) - == 0 - ) + # MULTIPLE UNIVARIATE SERIES + # no reduction + res = metric( + y_t_multi_uv, + y_p_multi_uv, + **kwargs_multi_uv, + series_reduction=None, + component_reduction=None, + ) + assert isinstance(res, list) + assert len(res) == 2 + # series reduction + res = metric( + y_t_multi_uv, + y_p_multi_uv, + **kwargs_multi_uv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, float) + # comp reduction + res = metric( + y_t_multi_uv, + y_p_multi_uv, + **kwargs_multi_uv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, list) + assert len(res) == 2 + # series and comp reduction + res = metric( + y_t_multi_uv, + y_p_multi_uv, + **kwargs_multi_uv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, float) - def helper_test_multiple_ts_duplication_equality(self, metric, **kwargs): - test_cases, kwargs = self.get_test_cases(**kwargs) + # MULTIPLE MULTIVARIATE SERIES + # no reduction + res = metric( + y_t_multi_mv, + y_p_multi_mv, + **kwargs_multi_mv, + series_reduction=None, + component_reduction=None, + ) + assert isinstance(res, list) + assert len(res) == 2 + assert all(isinstance(el, np.ndarray) for el in res) + assert all(el.shape == (2,) for el in res) + # series reduction + res = metric( + y_t_multi_mv, + y_p_multi_mv, + **kwargs_multi_mv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, np.ndarray) + assert res.shape == (2,) + # comp reduction + res = metric( + y_t_multi_mv, + y_p_multi_mv, + **kwargs_multi_mv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, list) + assert len(res) == 2 + assert all(isinstance(el, float) for el in res) + # series and comp reduction + res = metric( + y_t_multi_mv, + y_p_multi_mv, + **kwargs_multi_mv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, float) - for s1, s2 in test_cases: - s11 = [s1.stack(s1)] * 2 - s22 = [s2.stack(s2)] * 2 - # default intra and inter - np.testing.assert_almost_equal( - actual=np.array([metric(s1, s2, **kwargs)] * 2), - desired=np.array(metric(s11, s22, **kwargs)), - ) + @pytest.mark.parametrize( + "config", + [ + # time dependent + (metrics.err, False), + (metrics.ae, False), + (metrics.se, False), + (metrics.sle, False), + (metrics.ase, False), + (metrics.sse, False), + (metrics.ape, False), + (metrics.sape, False), + (metrics.arre, False), + (metrics.ql, True), + ], + ) + def test_output_type_time_dependent(self, config): + """Test output types and shapes for time dependent metrics: + for single and multiple univariate or multivariate series, in combination + with different component and series reduction functions.""" + metric, is_probabilistic = config + params = inspect.signature(metric).parameters - # custom intra and inter - assert ( - round( - abs( - metric( - s1, s2, **kwargs, reduction=np.mean, inter_reduction=np.max - ) - - metric( - s11, - s22, - **kwargs, - reduction=np.mean, - inter_reduction=np.max - ) - ), - 7, - ) - == 0 + # y true + y_t_mv = self.series12 + 1 + y_t_uv = y_t_mv.univariate_component(0) + y_t_multi_mv = [y_t_mv] * 2 + y_t_multi_uv = [y_t_uv] * 2 + + # y pred + y_p_mv = ( + self.series12 + if not is_probabilistic + else self.series12_stochastic.stack(self.series12_stochastic) + ) + 1 + y_p_uv = y_p_mv.univariate_component(0) + y_p_multi_mv = [y_p_mv] * 2 + y_p_multi_uv = [y_p_uv] * 2 + + # insample + kwargs_uv = {} + kwargs_mv = {} + kwargs_list_single_uv = {} + kwargs_list_single_mv = {} + kwargs_multi_uv = {} + kwargs_multi_mv = {} + if "insample" in params: + insample = self.series_train.stack(self.series_train) + 1 + kwargs_uv["insample"] = insample.univariate_component(0) + kwargs_mv["insample"] = insample + kwargs_list_single_uv["insample"] = [kwargs_uv["insample"]] + kwargs_list_single_mv["insample"] = [kwargs_mv["insample"]] + kwargs_multi_uv["insample"] = [kwargs_uv["insample"]] * 2 + kwargs_multi_mv["insample"] = [kwargs_mv["insample"]] * 2 + + # SINGLE UNIVARIATE SERIES + # no reduction + res = metric( + y_t_uv, y_p_uv, **kwargs_uv, series_reduction=None, component_reduction=None + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_p_uv),) + # series reduction + res = metric( + y_t_uv, + y_p_uv, + **kwargs_uv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_p_uv),) + # comp reduction + res = metric( + y_t_uv, + y_p_uv, + **kwargs_uv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_p_uv),) + # series and comp reduction + res = metric( + y_t_uv, + y_p_uv, + **kwargs_uv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_p_uv),) + + # LIST OF SINGLE UNIVARIATE SERIES + # no reduction + res = metric( + [y_t_uv], + [y_p_uv], + **kwargs_list_single_uv, + series_reduction=None, + component_reduction=None, + ) + assert isinstance(res, list) and len(res) == 1 + assert isinstance(res[0], np.ndarray) and res[0].shape == (len(y_p_uv),) + # series reduction + res = metric( + [y_t_uv], + [y_p_uv], + **kwargs_list_single_uv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_p_uv),) + # comp reduction + res = metric( + [y_t_uv], + [y_p_uv], + **kwargs_list_single_uv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, list) and len(res) == 1 + assert isinstance(res[0], np.ndarray) and res[0].shape == (len(y_p_uv),) + + # series and comp reduction + res = metric( + [y_t_uv], + [y_p_uv], + **kwargs_list_single_uv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_p_uv),) + + # SINGLE MULTIVARIATE SERIES + # no reduction + res = metric( + y_t_mv, y_p_mv, **kwargs_mv, series_reduction=None, component_reduction=None + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_t_mv), 2) + # series reduction + res = metric( + y_t_mv, + y_p_mv, + **kwargs_mv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_t_mv), 2) + # comp reduction + res = metric( + y_t_mv, + y_p_mv, + **kwargs_mv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_t_mv),) + # series and comp reduction + res = metric( + y_t_mv, + y_p_mv, + **kwargs_mv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, np.ndarray) and res.shape == (len(y_t_mv),) + + # LIST OF SINGLE MULTIVARIATE SERIES + # no reduction + res = metric( + [y_t_mv], + [y_p_mv], + **kwargs_list_single_mv, + series_reduction=None, + component_reduction=None, + ) + assert isinstance(res, list) and len(res) == 1 + assert isinstance(res[0], np.ndarray) and res[0].shape == (10, 2) + # series reduction + res = metric( + [y_t_mv], + [y_p_mv], + **kwargs_list_single_mv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, np.ndarray) and res.shape == (10, 2) + # comp reduction + res = metric( + [y_t_mv], + [y_p_mv], + **kwargs_list_single_mv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, list) and len(res) == 1 + assert isinstance(res[0], np.ndarray) and res[0].shape == (10,) + # series and comp reduction + res = metric( + [y_t_mv], + [y_p_mv], + **kwargs_list_single_mv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, np.ndarray) and res.shape == (10,) + + # MULTIPLE UNIVARIATE SERIES + # no reduction + res = metric( + y_t_multi_uv, + y_p_multi_uv, + **kwargs_multi_uv, + series_reduction=None, + component_reduction=None, + ) + assert isinstance(res, list) and len(res) == 2 + assert all(el.shape == (10,) for el in res) + # series reduction + res = metric( + y_t_multi_uv, + y_p_multi_uv, + **kwargs_multi_uv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, np.ndarray) and res.shape == (10,) + # comp reduction + res = metric( + y_t_multi_uv, + y_p_multi_uv, + **kwargs_multi_uv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, list) and len(res) == 2 + assert all(el.shape == (10,) for el in res) + # series and comp reduction + res = metric( + y_t_multi_uv, + y_p_multi_uv, + **kwargs_multi_uv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, np.ndarray) and res.shape == (10,) + + # MULTIPLE MULTIVARIATE SERIES + # no reduction + res = metric( + y_t_multi_mv, + y_p_multi_mv, + **kwargs_multi_mv, + series_reduction=None, + component_reduction=None, + ) + assert isinstance(res, list) and len(res) == 2 + assert all(el.shape == (10, 2) for el in res) + # series reduction + res = metric( + y_t_multi_mv, + y_p_multi_mv, + **kwargs_multi_mv, + series_reduction=np.mean, + component_reduction=None, + ) + assert isinstance(res, np.ndarray) and res.shape == (10, 2) + # comp reduction + res = metric( + y_t_multi_mv, + y_p_multi_mv, + **kwargs_multi_mv, + series_reduction=None, + component_reduction=np.mean, + ) + assert isinstance(res, list) and len(res) == 2 + assert all(el.shape == (10,) for el in res) + # series and comp reduction + res = metric( + y_t_multi_mv, + y_p_multi_mv, + **kwargs_multi_mv, + series_reduction=np.mean, + component_reduction=np.mean, + ) + assert isinstance(res, np.ndarray) and res.shape == (10,) + + @pytest.mark.parametrize( + "config", + itertools.product( + [ + # time dependent + (metrics.err, False), + (metrics.ae, False), + (metrics.se, False), + (metrics.sle, False), + (metrics.ase, False), + (metrics.sse, False), + (metrics.ape, False), + (metrics.sape, False), + (metrics.arre, False), + (metrics.ql, True), + # time aggregates + (metrics.merr, False), + (metrics.mae, False), + (metrics.mse, False), + (metrics.rmse, False), + (metrics.rmsle, False), + (metrics.mase, False), + (metrics.msse, False), + (metrics.rmsse, False), + (metrics.mape, False), + (metrics.smape, False), + (metrics.ope, False), + (metrics.marre, False), + (metrics.r2_score, False), + (metrics.coefficient_of_variation, False), + (metrics.qr, True), + (metrics.mql, True), + (metrics.dtw_metric, False), + ], + ["time", "component", "series"], + ), + ) + def test_reduction_fn_validity(self, config): + """Tests reduction functions sanity checks.""" + (metric, is_probabilistic), red_name = config + params = inspect.signature(metric).parameters + has_time_red = "time_reduction" in params + + # y true + y_t = self.series12 + 1 + + # y pred + y_p = ( + self.series12 + if not is_probabilistic + else self.series12_stochastic.stack(self.series12_stochastic) + ) + 1 + + # insample + kwargs = {} + if "insample" in params: + kwargs["insample"] = self.series_train.stack(self.series_train) + 1 + + red_param = red_name + "_reduction" + if red_name == "time" and not has_time_red: + # time_reduction not an argument + with pytest.raises(TypeError): + _ = metric(y_t, y_p, **kwargs, **{red_param: np.nanmean}) + return + + # check that valid fn works + _ = metric(y_t, y_p, **kwargs, **{red_param: np.nanmean}) + + # no axis in fn + with pytest.raises(ValueError) as err: + _ = metric(y_t, y_p, **kwargs, **{red_param: lambda x: np.nanmean(x)}) + assert str(err.value).endswith("Must have a parameter called `axis`.") + # with axis it works + _ = metric( + y_t, y_p, **kwargs, **{red_param: lambda x, axis: np.nanmean(x, axis)} + ) + + # invalid output type: list + with pytest.raises(ValueError) as err: + _ = metric( + y_t, + y_p, + **kwargs, + **{red_param: lambda x, axis: np.nanmean(x, axis).tolist()}, ) + assert str(err.value).endswith( + "Expected type `np.ndarray`, received type=``." + ) - def helper_test_nan(self, metric, **kwargs): - test_cases, kwargs = self.get_test_cases(**kwargs) + # invalid output type: reduced to float + with pytest.raises(ValueError) as err: + _ = metric(y_t, y_p, **kwargs, **{red_param: lambda x, axis: x[0, 0]}) + assert str(err.value).endswith( + "Expected type `np.ndarray`, received type=``." + ) - for s1, s2 in test_cases: - # univariate - non_nan_metric = metric(s1[:9] + 1, s2[:9]) - nan_s1 = s1.copy() - nan_s1._xa.values[-1, :, :] = np.nan - nan_metric = metric(nan_s1 + 1, s2) - assert non_nan_metric == nan_metric + # invalid output shape: did not reduce correctly + with pytest.raises(ValueError) as err: + _ = metric(y_t, y_p, **kwargs, **{red_param: lambda x, axis: x[:2, :2]}) + assert str(err.value).startswith( + f"Invalid `{red_param}` function output shape:" + ) - # multivariate + multi-TS - s11 = [s1.stack(s1)] * 2 - s22 = [s2.stack(s2)] * 2 - non_nan_metric = metric([s[:9] + 1 for s in s11], [s[:9] for s in s22]) - nan_s11 = s11.copy() - for s in nan_s11: - s._xa.values[-1, :, :] = np.nan - nan_metric = metric([s + 1 for s in nan_s11], s22) - assert non_nan_metric == nan_metric + @pytest.mark.parametrize( + "config", + [ + # time dependent + (metrics.err, 0, False, {"time_reduction": np.mean}), + (metrics.ae, 0, False, {"time_reduction": np.mean}), + (metrics.se, 0, False, {"time_reduction": np.mean}), + (metrics.sle, 0, False, {"time_reduction": np.mean}), + (metrics.ase, 0, False, {"time_reduction": np.mean}), + (metrics.sse, 0, False, {"time_reduction": np.mean}), + (metrics.ape, 0, False, {"time_reduction": np.mean}), + (metrics.sape, 0, False, {"time_reduction": np.mean}), + (metrics.arre, 0, False, {"time_reduction": np.mean}), + (metrics.ql, 0, True, {"time_reduction": np.mean}), + # time aggregates + (metrics.merr, 0, False, {}), + (metrics.mae, 0, False, {}), + (metrics.mse, 0, False, {}), + (metrics.rmse, 0, False, {}), + (metrics.rmsle, 0, False, {}), + (metrics.mase, 0, False, {}), + (metrics.msse, 0, False, {}), + (metrics.rmsse, 0, False, {}), + (metrics.mape, 0, False, {}), + (metrics.smape, 0, False, {}), + (metrics.ope, 0, False, {}), + (metrics.marre, 0, False, {}), + (metrics.r2_score, 1, False, {}), + (metrics.coefficient_of_variation, 0, False, {}), + (metrics.qr, 0, True, {}), + (metrics.mql, 0, True, {}), + (metrics.dtw_metric, 0, False, {}), + ], + ) + def test_same(self, config): + metric, score_exp, is_probabilistic, kwargs = config + params = inspect.signature(metric).parameters + y_true = self.series1 + 1 + y_pred = ( + self.series1 + 1 if not is_probabilistic else self.series11_stochastic + 1 + ) + if "insample" in params: + assert metric(y_true, y_pred, self.series_train + 1, **kwargs) == score_exp + else: + assert metric(y_true, y_pred, **kwargs) == score_exp def test_r2(self): from sklearn.metrics import r2_score @@ -202,60 +886,110 @@ def test_r2(self): self.helper_test_multiple_ts_duplication_equality(metrics.r2_score) self.helper_test_nan(metrics.r2_score) - def test_marre(self): - assert ( - round( - abs( - metrics.marre(self.series1, self.series2) - - metrics.marre(self.series1 + 100, self.series2 + 100) - ), - 7, - ) - == 0 - ) - self.helper_test_multivariate_duplication_equality(metrics.marre) - self.helper_test_multiple_ts_duplication_equality(metrics.marre) - self.helper_test_nan(metrics.marre) - - def test_season(self): - with pytest.raises(ValueError): - metrics.mase(self.series3, self.series3 * 1.3, self.series_train, 8) - - def test_mse(self): - self.helper_test_shape_equality(metrics.mse) - self.helper_test_nan(metrics.mse) + @pytest.mark.parametrize( + "config", + [ + (metrics.se, False, {"time_reduction": np.nanmean}), + (metrics.mse, True, {}), + ], + ) + def test_se(self, config): + metric, is_aggregate, kwargs = config + self.helper_test_shape_equality(metric, **kwargs) + self.helper_test_nan(metric, **kwargs) + self.helper_test_non_aggregate(metric, is_aggregate) - def test_mae(self): - self.helper_test_shape_equality(metrics.mae) - self.helper_test_nan(metrics.mae) + @pytest.mark.parametrize( + "config", + [ + (metrics.ae, False, {"time_reduction": np.nanmean}), + (metrics.mae, True, {}), + ], + ) + def test_ae(self, config): + metric, is_aggregate, kwargs = config + self.helper_test_shape_equality(metric, **kwargs) + self.helper_test_nan(metric, **kwargs) + self.helper_test_non_aggregate(metric, is_aggregate) def test_rmse(self): self.helper_test_multivariate_duplication_equality(metrics.rmse) self.helper_test_multiple_ts_duplication_equality(metrics.rmse) - assert ( - round( - abs( - metrics.rmse( - self.series1.append(self.series2b), - self.series2.append(self.series1b), - ) - - metrics.mse( - self.series12, - self.series21, - reduction=(lambda x: np.sqrt(np.mean(x))), - ) - ), - 7, - ) - == 0 + np.testing.assert_array_almost_equal( + metrics.rmse( + self.series1.append(self.series2b), + self.series2.append(self.series1b), + ), + metrics.mse( + self.series12, + self.series21, + component_reduction=lambda x, axis: np.sqrt(np.mean(x, axis=axis)), + ), ) self.helper_test_nan(metrics.rmse) - def test_rmsle(self): - self.helper_test_multivariate_duplication_equality(metrics.rmsle) - self.helper_test_multiple_ts_duplication_equality(metrics.rmsle) - self.helper_test_nan(metrics.rmsle) + @pytest.mark.parametrize( + "config", + [ + (metrics.sle, False, {"time_reduction": np.nanmean}), + (metrics.rmsle, True, {}), + ], + ) + def test_sle(self, config): + metric, is_aggregate, kwargs = config + self.helper_test_multivariate_duplication_equality(metric, **kwargs) + self.helper_test_multiple_ts_duplication_equality(metric, **kwargs) + self.helper_test_nan(metric, **kwargs) + self.helper_test_non_aggregate(metric, is_aggregate) + + @pytest.mark.parametrize( + "config", + [ + (metrics.arre, False, {"time_reduction": np.nanmean}), + (metrics.marre, True, {}), + ], + ) + def test_arre(self, config): + metric, is_aggregate, kwargs = config + np.testing.assert_array_almost_equal( + metric(self.series1, self.series2, **kwargs), + metric(self.series1 + 100, self.series2 + 100, **kwargs), + ) + self.helper_test_multivariate_duplication_equality(metric, **kwargs) + self.helper_test_multiple_ts_duplication_equality(metric, **kwargs) + self.helper_test_nan(metric, **kwargs) + self.helper_test_non_aggregate(metric, is_aggregate) + + @pytest.mark.parametrize( + "metric", + [ + metrics.ase, + metrics.sse, + metrics.mase, + metrics.msse, + metrics.rmsse, + ], + ) + def test_season(self, metric): + with pytest.raises(ValueError): + metric(self.series3, self.series3 * 1.3, self.series_train, 8) + + @pytest.mark.parametrize( + "config", + [ + (metrics.err, False, {"time_reduction": np.nanmean}), + (metrics.merr, True, {}), + ], + ) + def test_res(self, config): + metric, is_aggregate, kwargs = config + self.helper_test_shape_equality(metric, **kwargs) + self.helper_test_nan(metric, **kwargs) + + assert metric(self.series1, self.series1 + 1, **kwargs) == -1.0 + assert metric(self.series1, self.series1 - 1, **kwargs) == 1.0 + self.helper_test_non_aggregate(metric, is_aggregate, val_exp=-1.0) def test_coefficient_of_variation(self): self.helper_test_multivariate_duplication_equality( @@ -266,118 +1000,124 @@ def test_coefficient_of_variation(self): ) self.helper_test_nan(metrics.coefficient_of_variation) - def test_mape(self): - self.helper_test_multivariate_duplication_equality(metrics.mape) - self.helper_test_multiple_ts_duplication_equality(metrics.mape) - self.helper_test_nan(metrics.mape) - - def test_smape(self): - self.helper_test_multivariate_duplication_equality(metrics.smape) - self.helper_test_multiple_ts_duplication_equality(metrics.smape) - self.helper_test_nan(metrics.smape) + @pytest.mark.parametrize( + "config", + [ + (metrics.ape, False, {"time_reduction": np.nanmean}), + (metrics.mape, True, {}), + ], + ) + def test_ape(self, config): + metric, is_aggregate, kwargs = config + self.helper_test_multivariate_duplication_equality(metric, **kwargs) + self.helper_test_multiple_ts_duplication_equality(metric, **kwargs) + self.helper_test_nan(metric, **kwargs) + self.helper_test_non_aggregate(metric, is_aggregate) - def test_mase(self): + @pytest.mark.parametrize( + "config", + [ + (metrics.ape, False, {"time_reduction": np.nanmean}), + (metrics.mape, True, {}), + ], + ) + def test_sape(self, config): + metric, is_aggregate, kwargs = config + self.helper_test_multivariate_duplication_equality(metric, **kwargs) + self.helper_test_multiple_ts_duplication_equality(metric, **kwargs) + self.helper_test_nan(metric, **kwargs) + self.helper_test_non_aggregate(metric, is_aggregate) + @pytest.mark.parametrize( + "config", + [ + (metrics.ase, False, {"time_reduction": np.nanmean}), + # (metrics.sse, False, {"time_reduction": np.nanmean}), + # (metrics.mase, True, {}), + # (metrics.msse, True, {}), + # (metrics.rmsse, True, {}), + ], + ) + def test_scaled_errors(self, config): + metric, is_aggregate, kwargs = config insample = self.series_train test_cases, _ = self.get_test_cases() for s1, s2 in test_cases: # multivariate, series as args - assert ( - round( - abs( - metrics.mase( - s1.stack(s1), - s2.stack(s2), - insample.stack(insample), - reduction=(lambda x: x[0]), - ) - - metrics.mase(s1, s2, insample) - ), - 7, - ) - == 0 + np.testing.assert_array_almost_equal( + metric(s1.stack(s1), s2.stack(s2), insample.stack(insample), **kwargs), + metric(s1, s2, insample, **kwargs), ) + + # test that internal slicing gives identical results with longer `insample` series + np.testing.assert_array_almost_equal( + metric(s1, s2, insample, **kwargs), + metric( + s1, + s2, + insample.append_values(np.array([100.0, 200.0, 300.0])), + **kwargs, + ), + ) + # multi-ts, series as kwargs - assert ( - round( - abs( - metrics.mase( - actual_series=[s1] * 2, - pred_series=[s2] * 2, - insample=[insample] * 2, - reduction=(lambda x: x[0]), - inter_reduction=(lambda x: x[0]), - ) - - metrics.mase(s1, s2, insample) - ), - 7, - ) - == 0 + np.testing.assert_array_almost_equal( + metric( + actual_series=[s1] * 2, + pred_series=[s2] * 2, + insample=[insample] * 2, + **kwargs, + ), + metric(s1, s2, insample, **kwargs), ) + # checking with n_jobs and verbose - assert ( - round( - abs( - metrics.mase( - [s1] * 5, - pred_series=[s2] * 5, - insample=[insample] * 5, - reduction=(lambda x: x[0]), - inter_reduction=(lambda x: x[0]), - ) - - metrics.mase( - [s1] * 5, - [s2] * 5, - insample=[insample] * 5, - reduction=(lambda x: x[0]), - inter_reduction=(lambda x: x[0]), - n_jobs=-1, - verbose=True, - ) - ), - 7, - ) - == 0 - ) - # checking with m=None - assert ( - round( - abs( - metrics.mase( - self.series2, - self.series2, - self.series_train_not_periodic, - m=None, - ) - - metrics.mase( - [self.series2] * 2, - [self.series2] * 2, - [self.series_train_not_periodic] * 2, - m=None, - inter_reduction=np.mean, - ) + np.testing.assert_array_almost_equal( + metric( + [s1] * 5, pred_series=[s2] * 5, insample=[insample] * 5, **kwargs + ), + metric( + [s1] * 5, + [s2] * 5, + insample=[insample] * 5, + n_jobs=-1, + verbose=True, + **kwargs, ), - 7, ) - == 0 - ) - # fails because of wrong indexes (series1/2 indexes should be the continuation of series3) - with pytest.raises(ValueError): - metrics.mase(self.series1, self.series2, self.series3, 1) + # fails with type `m` different from `int` + with pytest.raises(ValueError) as err: + metric(self.series2, self.series2, insample, m=None) + assert str(err.value).startswith("Seasonality `m` must be of type `int`") + # fails if `insample` ends more than one time step before start of `pred_series` + with pytest.raises(ValueError) as err: + metric(self.series1, self.series2, insample[:-1], m=1) + assert str(err.value).startswith( + "The `insample` series must start before the `pred_series`" + ) + # fails if `insample` starts at the beginning of `pred_series` + with pytest.raises(ValueError) as err: + metric(self.series1, self.series2, self.series2, m=1) + assert str(err.value).startswith( + "The `insample` series must start before the `pred_series`" + ) + # fails if `insample` starts after the beginning of `pred_series` + with pytest.raises(ValueError) as err: + metric(self.series1, self.series2, self.series2[1:], m=1) + assert str(err.value).startswith( + "The `insample` series must start before the `pred_series`" + ) # multi-ts, second series is not a TimeSeries with pytest.raises(ValueError): - metrics.mase([self.series1] * 2, self.series2, [insample] * 2) + metric([self.series1] * 2, self.series2, [insample] * 2) # multi-ts, insample series is not a TimeSeries with pytest.raises(ValueError): - metrics.mase([self.series1] * 2, [self.series2] * 2, insample) + metric([self.series1] * 2, [self.series2] * 2, insample) # multi-ts one array has different length with pytest.raises(ValueError): - metrics.mase([self.series1] * 2, [self.series2] * 2, [insample] * 3) - # not supported input - with pytest.raises(ValueError): - metrics.mase(1, 2, 3) + metric([self.series1] * 2, [self.series2] * 2, [insample] * 3) def test_ope(self): self.helper_test_multivariate_duplication_equality(metrics.ope) @@ -387,42 +1127,24 @@ def test_ope(self): def test_rho_risk(self): # deterministic not supported with pytest.raises(ValueError): - metrics.rho_risk(self.series1, self.series1) + metrics.qr(self.series1, self.series1) # general univariate, multivariate and multi-ts tests self.helper_test_multivariate_duplication_equality( - metrics.rho_risk, is_stochastic=True + metrics.qr, is_stochastic=True ) self.helper_test_multiple_ts_duplication_equality( - metrics.rho_risk, is_stochastic=True + metrics.qr, is_stochastic=True ) - self.helper_test_nan(metrics.rho_risk, is_stochastic=True) + self.helper_test_nan(metrics.qr, is_stochastic=True) # test perfect predictions -> risk = 0 - for rho in [0.25, 0.5]: - assert ( - round( - abs( - metrics.rho_risk( - self.series1, self.series11_stochastic, rho=rho - ) - - 0.0 - ), - 7, - ) - == 0 - ) - assert ( - round( - abs( - metrics.rho_risk( - self.series12_mean, self.series12_stochastic, rho=0.5 - ) - - 0.0 - ), - 7, + for q in [0.25, 0.5]: + np.testing.assert_array_almost_equal( + metrics.qr(self.series1, self.series11_stochastic, q=q), 0.0 ) - == 0 + np.testing.assert_array_almost_equal( + metrics.qr(self.series12_mean, self.series12_stochastic, q=0.5), 0.0 ) # test whether stochastic sample from two TimeSeries (ts) represents the individual ts at 0. and 1. quantiles @@ -431,36 +1153,35 @@ def test_rho_risk(self): s12_stochastic = TimeSeries.from_times_and_values( s1.time_index, np.stack([s1.values(), s2.values()], axis=2) ) - assert round(abs(metrics.rho_risk(s1, s12_stochastic, rho=0.0) - 0.0), 7) == 0 - assert round(abs(metrics.rho_risk(s2, s12_stochastic, rho=1.0) - 0.0), 7) == 0 + np.testing.assert_array_almost_equal(metrics.qr(s1, s12_stochastic, q=0.0), 0.0) + np.testing.assert_array_almost_equal(metrics.qr(s2, s12_stochastic, q=1.0), 0.0) - def test_quantile_loss(self): + @pytest.mark.parametrize( + "config", + [ + (metrics.ql, False, {"time_reduction": np.nanmean}), + (metrics.mql, True, {}), + ], + ) + def test_quantile_loss(self, config): + metric, is_aggregate, kwargs = config # deterministic not supported with pytest.raises(ValueError): - metrics.quantile_loss(self.series1, self.series1) + metric(self.series1, self.series1, **kwargs) # general univariate, multivariate and multi-ts tests self.helper_test_multivariate_duplication_equality( - metrics.quantile_loss, is_stochastic=True + metric, is_stochastic=True, **kwargs ) self.helper_test_multiple_ts_duplication_equality( - metrics.quantile_loss, is_stochastic=True + metric, is_stochastic=True, **kwargs ) - self.helper_test_nan(metrics.quantile_loss, is_stochastic=True) + self.helper_test_nan(metric, is_stochastic=True, **kwargs) # test perfect predictions -> risk = 0 - for tau in [0.25, 0.5]: - assert ( - round( - abs( - metrics.quantile_loss( - self.series1, self.series11_stochastic, tau=tau - ) - - 0.0 - ), - 7, - ) - == 0 + for q in [0.25, 0.5]: + np.testing.assert_array_almost_equal( + metric(self.series1, self.series11_stochastic, q=q, **kwargs), 0.0 ) # test whether stochastic sample from two TimeSeries (ts) represents the individual ts at 0. and 1. quantiles @@ -469,30 +1190,51 @@ def test_quantile_loss(self): s12_stochastic = TimeSeries.from_times_and_values( s1.time_index, np.stack([s1.values(), s2.values()], axis=2) ) - assert round(metrics.quantile_loss(s1, s12_stochastic, tau=1.0), 7) == 0 - assert round(metrics.quantile_loss(s2, s12_stochastic, tau=0.0), 7) == 0 + np.testing.assert_array_almost_equal( + metric(s1, s12_stochastic, q=1.0, **kwargs), 0.0 + ) + np.testing.assert_array_almost_equal( + metric(s2, s12_stochastic, q=0.0, **kwargs), 0.0 + ) def test_metrics_arguments(self): series00 = self.series0.stack(self.series0) series11 = self.series1.stack(self.series1) - assert metrics.r2_score(series11, series00, True, reduction=np.mean) == 0 - assert metrics.r2_score(series11, series00, reduction=np.mean) == 0 - assert metrics.r2_score(series11, pred_series=series00, reduction=np.mean) == 0 assert ( - metrics.r2_score(series00, actual_series=series11, reduction=np.mean) == 0 + metrics.r2_score(series11, series00, True, component_reduction=np.mean) == 0 + ) + assert metrics.r2_score(series11, series00, component_reduction=np.mean) == 0 + assert ( + metrics.r2_score( + series11, pred_series=series00, component_reduction=np.mean + ) + == 0 + ) + assert ( + metrics.r2_score( + series00, actual_series=series11, component_reduction=np.mean + ) + == 0 ) assert ( metrics.r2_score( - True, reduction=np.mean, pred_series=series00, actual_series=series11 + True, + component_reduction=np.mean, + pred_series=series00, + actual_series=series11, ) == 0 ) assert ( - metrics.r2_score(series00, True, reduction=np.mean, actual_series=series11) + metrics.r2_score( + series00, True, component_reduction=np.mean, actual_series=series11 + ) == 0 ) assert ( - metrics.r2_score(series11, True, reduction=np.mean, pred_series=series00) + metrics.r2_score( + series11, True, component_reduction=np.mean, pred_series=series00 + ) == 0 ) @@ -500,69 +1242,301 @@ def test_metrics_arguments(self): with pytest.raises(TypeError): metrics.r2_score(series00, series11, False, np.mean) - def test_multiple_ts(self): - - dim = 2 - + def test_multiple_ts_rmse(self): # simple test multi_ts_1 = [self.series1 + 1, self.series1 + 1] multi_ts_2 = [self.series1 + 2, self.series1 + 1] assert ( metrics.rmse( - multi_ts_1, multi_ts_2, reduction=np.mean, inter_reduction=np.mean + multi_ts_1, + multi_ts_2, + component_reduction=np.mean, + series_reduction=np.mean, ) == 0.5 ) - # checking univariate, multivariate and multi-ts gives same metrics with same values + @pytest.mark.parametrize( + "config", + [ + (metrics.err, "min", {"time_reduction": np.nanmean}), + (metrics.ae, "max", {"time_reduction": np.nanmean}), + (metrics.se, "max", {"time_reduction": np.nanmean}), + (metrics.sle, "max", {"time_reduction": np.nanmean}), + (metrics.ape, "max", {"time_reduction": np.nanmean}), + (metrics.sape, "max", {"time_reduction": np.nanmean}), + (metrics.arre, "max", {"time_reduction": np.nanmean}), + (metrics.merr, "min", {}), + (metrics.mae, "max", {}), + (metrics.mse, "max", {}), + (metrics.rmse, "max", {}), + (metrics.rmsle, "max", {}), + (metrics.mape, "max", {}), + (metrics.smape, "max", {}), + (metrics.ope, "max", {}), + (metrics.marre, "max", {}), + (metrics.r2_score, "min", {}), + (metrics.coefficient_of_variation, "max", {}), + ], + ) + def test_multiple_ts(self, config): + """Tests that univariate, multivariate and multi-ts give same metrics with same values.""" + metric, series_reduction, kwargs = config + series_reduction = getattr(np, series_reduction) + + dim = 2 series11 = self.series1.stack(self.series1) + 1 series22 = self.series2.stack(self.series2) multi_1 = [series11] * dim multi_2 = [series22] * dim - test_metric = [ - metrics.r2_score, - metrics.rmse, - metrics.mape, - metrics.smape, - metrics.mae, - metrics.coefficient_of_variation, - metrics.ope, - metrics.marre, - metrics.mse, - metrics.rmsle, - ] - - for metric in test_metric: - assert metric(self.series1 + 1, self.series2) == metric(series11, series22) - np.testing.assert_array_almost_equal( - np.array([metric(series11, series22)] * 2), - np.array(metric(multi_1, multi_2)), - ) + np.testing.assert_array_almost_equal( + metric(self.series1 + 1, self.series2, **kwargs), + metric(series11, series22, **kwargs), + ) + np.testing.assert_array_almost_equal( + np.array([metric(series11, series22, **kwargs)] * 2), + np.array(metric(multi_1, multi_2, **kwargs)), + ) # trying different functions shifted_1 = self.series1 + 1 shifted_2 = self.series1 + 2 shifted_3 = self.series1 + 3 - assert metrics.rmse( + assert metric( [shifted_1, shifted_1], [shifted_2, shifted_3], - reduction=np.mean, - inter_reduction=np.max, - ) == metrics.rmse(shifted_1, shifted_3) + component_reduction=np.mean, + series_reduction=series_reduction, + **kwargs, + ) == metric(shifted_1, shifted_3, **kwargs) # checking if the result is the same with different n_jobs and verbose True - assert metrics.rmse( + assert metric( [shifted_1, shifted_1], [shifted_2, shifted_3], - reduction=np.mean, - inter_reduction=np.max, - ) == metrics.rmse( + component_reduction=np.mean, + series_reduction=np.max, + **kwargs, + ) == metric( [shifted_1, shifted_1], [shifted_2, shifted_3], - reduction=np.mean, - inter_reduction=np.max, + component_reduction=np.mean, + series_reduction=np.max, n_jobs=-1, verbose=True, + **kwargs, ) + + @pytest.mark.parametrize( + "config", + [ + (metrics.err, metric_residuals, {}, {"time_reduction": np.nanmean}), + ( + metrics.ae, + sklearn.metrics.mean_absolute_error, + {}, + {"time_reduction": np.nanmean}, + ), + ( + metrics.se, + sklearn.metrics.mean_squared_error, + {}, + {"time_reduction": np.nanmean}, + ), + ( + lambda *args: np.sqrt(metrics.sle(*args, time_reduction=np.nanmean)), + metric_rmsle, + {}, + {}, + ), + (metrics.ape, sklearn_mape, {}, {"time_reduction": np.nanmean}), + (metrics.sape, metric_smape, {}, {"time_reduction": np.nanmean}), + (metrics.arre, metric_marre, {}, {"time_reduction": np.nanmean}), + (metrics.merr, metric_residuals, {}, {}), + (metrics.mae, sklearn.metrics.mean_absolute_error, {}, {}), + (metrics.mse, sklearn.metrics.mean_squared_error, {}, {}), + (metrics.rmse, sklearn.metrics.mean_squared_error, {"squared": False}, {}), + (metrics.rmsle, metric_rmsle, {}, {}), + (metrics.mape, sklearn_mape, {}, {}), + (metrics.smape, metric_smape, {}, {}), + (metrics.ope, metric_ope, {}, {}), + (metrics.marre, metric_marre, {}, {}), + (metrics.r2_score, sklearn.metrics.r2_score, {}, {}), + (metrics.coefficient_of_variation, metric_cov, {}, {}), + ], + ) + def test_metrics_deterministic(self, config): + """Tests deterministic metrics against a reference metric""" + metric, metric_ref, ref_kwargs, kwargs = config + y_true = self.series1.stack(self.series1) + 1 + y_pred = y_true + 1 + + y_true = [y_true] * 2 + y_pred = [y_pred] * 2 + + score = metric(y_true, y_pred, **kwargs) + score_ref = metric_ref(y_true[0].values(), y_pred[0].values(), **ref_kwargs) + np.testing.assert_array_almost_equal(score, np.array(score_ref)) + + @pytest.mark.parametrize( + "config", + [ + ( + metrics.ql, + [(0.30, 0.30), (0.030, 0.030), (0.30, 0.30)], + "q", + {"time_reduction": np.nanmean}, + ), + (metrics.mql, [(0.30, 0.30), (0.030, 0.030), (0.30, 0.30)], "q", {}), + ( + metrics.qr, + [(0.30, 0.025), (0.030, 0.0025), (0.30, 0.025)], + "q", + {}, + ), + ], + ) + def test_metrics_probabilistic(self, config): + """Tests probabilistic metrics against reference scores""" + metric, scores_exp, q_param, kwargs = config + np.random.seed(0) + x = np.random.normal(loc=0.0, scale=1.0, size=10000) + y = np.array( + [ + [0.0, 10.0], + [1.0, 11.0], + [2.0, 12.0], + ] + ).reshape(3, 2, 1) + + y_true = [TimeSeries.from_values(y)] * 2 + y_pred = [TimeSeries.from_values(y + x)] * 2 + + for quantile, score_exp in zip([0.1, 0.5, 0.9], scores_exp): + scores = metric( + y_true, + y_pred, + **{q_param: quantile}, + component_reduction=None, + **kwargs, + ) + assert (scores < np.array(score_exp).reshape(1, -1)).all() + + def helper_test_shape_equality(self, metric, **kwargs): + np.testing.assert_array_almost_equal( + metric(self.series12, self.series21, **kwargs), + metric( + self.series1.append(self.series2b), + self.series2.append(self.series1b), + **kwargs, + ), + ) + + def get_test_cases(self, **kwargs): + # stochastic metrics (q-risk) behave similar to deterministic metrics if all samples have equal values + if "is_stochastic" in kwargs and kwargs["is_stochastic"]: + test_cases = [ + (self.series1 + 1, self.series22_stochastic), + (self.series1 + 1, self.series33_stochastic), + (self.series2, self.series33_stochastic), + ] + kwargs.pop("is_stochastic", 0) + else: + test_cases = [ + (self.series1 + 1, self.series2), + (self.series1 + 1, self.series3), + (self.series2, self.series3), + ] + return test_cases, kwargs + + def helper_test_multivariate_duplication_equality(self, metric, **kwargs): + test_cases, kwargs = self.get_test_cases(**kwargs) + + for s1, s2 in test_cases: + s11 = s1.stack(s1) + s22 = s2.stack(s2) + # default intra + np.testing.assert_array_almost_equal( + metric(s1, s2, **kwargs), metric(s11, s22, **kwargs) + ) + # custom intra + np.testing.assert_array_almost_equal( + metric( + s1, + s2, + **kwargs, + component_reduction=(lambda x, axis: x[0, 0:1]), + ), + metric( + s11, + s22, + **kwargs, + component_reduction=(lambda x, axis: x[0, 0:1]), + ), + ) + + def helper_test_multiple_ts_duplication_equality(self, metric, **kwargs): + test_cases, kwargs = self.get_test_cases(**kwargs) + + for s1, s2 in test_cases: + s11 = [s1.stack(s1)] * 2 + s22 = [s2.stack(s2)] * 2 + # default intra and inter + np.testing.assert_almost_equal( + actual=np.array([metric(s1, s2, **kwargs)] * 2), + desired=np.array(metric(s11, s22, **kwargs)), + ) + + # custom intra and inter + np.testing.assert_almost_equal( + metric( + s1, + s2, + **kwargs, + component_reduction=np.mean, + series_reduction=np.max, + ), + metric( + s11, + s22, + **kwargs, + component_reduction=np.mean, + series_reduction=np.max, + ), + ) + + def helper_test_nan(self, metric, **kwargs): + test_cases, kwargs = self.get_test_cases(**kwargs) + + for s1, s2 in test_cases: + # univariate + non_nan_metric = metric(s1[:9] + 1, s2[:9], **kwargs) + nan_s1 = s1.copy() + nan_s1._xa.values[-1, :, :] = np.nan + nan_metric = metric(nan_s1 + 1, s2, **kwargs) + assert non_nan_metric == nan_metric + + # multivariate + multi-TS + s11 = [s1.stack(s1)] * 2 + s22 = [s2.stack(s2)] * 2 + non_nan_metric = metric( + [s[:9] + 1 for s in s11], [s[:9] for s in s22], **kwargs + ) + nan_s11 = s11.copy() + for s in nan_s11: + s._xa.values[-1, :, :] = np.nan + nan_metric = metric([s + 1 for s in nan_s11], s22, **kwargs) + np.testing.assert_array_equal(non_nan_metric, nan_metric) + + def helper_test_non_aggregate(self, metric, is_aggregate, val_exp=None): + if is_aggregate: + return + + # do not aggregate over time + res = metric(self.series1 + 1, self.series1 + 2) + assert len(res) == len(self.series1) + + if val_exp is not None: + assert (res == -1.0).all() diff --git a/darts/tests/models/forecasting/test_backtesting.py b/darts/tests/models/forecasting/test_backtesting.py index ffea1b2ba5..ec9d7160ce 100644 --- a/darts/tests/models/forecasting/test_backtesting.py +++ b/darts/tests/models/forecasting/test_backtesting.py @@ -1,3 +1,4 @@ +import itertools import random from itertools import product @@ -5,10 +6,10 @@ import pandas as pd import pytest +import darts.metrics as metrics from darts import TimeSeries from darts.datasets import AirPassengersDataset, MonthlyMilkDataset from darts.logging import get_logger -from darts.metrics import mape, r2_score from darts.models import ( ARIMA, FFT, @@ -18,6 +19,7 @@ Theta, ) from darts.tests.conftest import tfm_kwargs +from darts.utils.timeseries_generation import constant_timeseries as ct from darts.utils.timeseries_generation import gaussian_timeseries as gt from darts.utils.timeseries_generation import linear_timeseries as lt from darts.utils.timeseries_generation import random_walk_timeseries as rt @@ -61,14 +63,14 @@ def compare_best_against_random(model_class, params, series, stride=1): series, forecast_horizon=10, stride=stride, - metric=mape, + metric=metrics.mape, start=series.time_index[-21], ) # instantiate best model in split mode train, val = series.split_before(series.time_index[-10]) best_model_2, _, _ = model_class.gridsearch( - params, train, val_series=val, metric=mape + params, train, val_series=val, metric=metrics.mape ) # instantiate model with random parameters from 'params' @@ -88,10 +90,10 @@ def compare_best_against_random(model_class, params, series, stride=1): # perform train/val evaluation on both models best_model_2.fit(train) - best_score_2 = mape(best_model_2.predict(len(val)), series) + best_score_2 = metrics.mape(best_model_2.predict(len(val)), series) random_model = model_class(**random_param_choice) random_model.fit(train) - random_score_2 = mape(random_model.predict(len(val)), series) + random_score_2 = metrics.mape(random_model.predict(len(val)), series) # check whether best models are at least as good as random models expanding_window_ok = best_score_1 <= random_score_1 @@ -101,6 +103,427 @@ def compare_best_against_random(model_class, params, series, stride=1): class TestBacktesting: + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [False, True], + [[metrics.mape], [metrics.mape, metrics.mape]], + ), + ) + def test_output_single_series_hfc_lpo_true(self, config): + """Tests backtest based on historical forecasts generated on a single `series` (or list of one `series`) + with last_points_only=True""" + is_univariate, series_as_list, metric = config + is_multi_metric = len(metric) > 1 + y = ct(value=1.0, length=10) + hfc = ct(value=2.0, length=10) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + y = y if not series_as_list else [y] + hfc = hfc if not series_as_list else [hfc] + + model = NaiveDrift() + + # check that input does not work with `last_points_only=False`` + with pytest.raises(ValueError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=None, + metric=metric, + last_points_only=False, + ) + if series_as_list: + error_msg = "Expected `historical_forecasts` of type `Sequence[Sequence[TimeSeries]]`" + else: + error_msg = "Expected `historical_forecasts` of type `Sequence[TimeSeries]`" + assert str(err.value).startswith(error_msg) + + # number of forecasts do not match number of `series` + if series_as_list: + with pytest.raises(ValueError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc + y, + reduction=None, + metric=metric, + last_points_only=True, + ) + error_msg = f"expected `historical_forecasts` of type `Sequence[TimeSeries]` with length n={len(y)}." + assert str(err.value).endswith(error_msg) + + # no reduction + bt = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=None, + metric=metric, + last_points_only=True, + ) + bt = bt if series_as_list else [bt] + assert isinstance(bt, list) and len(bt) == 1 + bt = bt[0] + if not is_multi_metric: + # inner type expected: 1 float + assert isinstance(bt, float) and bt == 100.0 + else: + # inner shape expected: (n metrics = 2,) + assert isinstance(bt, np.ndarray) + np.testing.assert_array_almost_equal(bt, np.array([100.0, 100.0])) + + # with reduction + bt = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=np.mean, + metric=metric, + last_points_only=True, + ) + bt = bt if series_as_list else [bt] + assert isinstance(bt, list) and len(bt) == 1 + bt = bt[0] + if not is_multi_metric: + # inner type expected: 1 float + assert isinstance(bt, float) and bt == 100.0 + else: + # inner shape expected: (n metrics = 2,) + assert isinstance(bt, np.ndarray) + np.testing.assert_array_almost_equal(bt, np.array([100.0, 100.0])) + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [False, True], + [[metrics.mape], [metrics.mape, metrics.mape]], + [1, 2], + ), + ) + def test_output_single_series_hfc_lpo_false(self, config): + """Tests backtest based on historical forecasts generated on a single `series` (or list of one `series`) + with last_points_only=False""" + is_univariate, series_as_list, metric, n_forecasts = config + is_multi_metric = len(metric) > 1 + y = ct(value=1.0, length=10) + hfc = ct(value=2.0, length=10) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + hfc = [y, hfc] + hfc = hfc[:n_forecasts] + + y = y if not series_as_list else [y] + hfc = hfc if not series_as_list else [hfc] + + model = NaiveDrift() + + # check that input does not work with `last_points_only=True`` + with pytest.raises(ValueError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=None, + metric=metric, + last_points_only=True, + ) + if series_as_list: + error_msg = "Expected `historical_forecasts` of type `Sequence[TimeSeries]`" + else: + error_msg = "Expected `historical_forecasts` of type `TimeSeries`" + assert str(err.value).startswith(error_msg) + + # number of forecasts do not match number of `series` + if series_as_list: + with pytest.raises(ValueError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc + [y], + reduction=None, + metric=metric, + last_points_only=False, + ) + error_msg = ( + f"expected `historical_forecasts` of type `Sequence[Sequence[TimeSeries]]`" + f" with length n={len(y)}." + ) + assert str(err.value).endswith(error_msg) + + # no reduction + bt = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=None, + metric=metric, + last_points_only=False, + ) + bt = bt if series_as_list else [bt] + assert isinstance(bt, list) and len(bt) == 1 + bt = bt[0] + assert isinstance(bt, np.ndarray) + if not is_multi_metric: + # inner shape expected: (n hist forecasts = 2,) + np.testing.assert_array_almost_equal( + bt, np.array([0.0, 100.0])[:n_forecasts] + ) + else: + # inner shape expected: (n hist forecasts = 2, n metrics = 2) + np.testing.assert_array_almost_equal( + bt, np.array([[0.0, 0.0], [100.0, 100.0]])[:n_forecasts] + ) + + # with reduction + bt = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=np.mean, + metric=metric, + last_points_only=False, + ) + bt = bt if series_as_list else [bt] + assert isinstance(bt, list) and len(bt) == 1 + bt = bt[0] + score_exp = 0.0 if n_forecasts == 1 else 50.0 + if not is_multi_metric: + # inner shape expected: 1 float + assert isinstance(bt, float) and bt == score_exp + else: + # inner shape expected: (n metrics = 2,) + assert isinstance(bt, np.ndarray) + np.testing.assert_array_almost_equal(bt, np.array([score_exp, score_exp])) + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [[metrics.mape], [metrics.mape, metrics.mape]], + ), + ) + def test_output_multi_series_hfc_lpo_true(self, config): + """Tests backtest based on historical forecasts generated on multiple `series` with last_points_only=True""" + is_univariate, metric = config + is_multi_metric = len(metric) > 1 + y = ct(value=1.0, length=10) + hfc = ct(value=2.0, length=10) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + hfc = [y, hfc] + y = [y, y] + + model = NaiveDrift() + + # check that input does not work with `last_points_only=False`` + with pytest.raises(ValueError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=None, + metric=metric, + last_points_only=False, + ) + error_msg = ( + "Expected `historical_forecasts` of type `Sequence[Sequence[TimeSeries]]`" + ) + assert str(err.value).startswith(error_msg) + + # number of forecasts do not match number of `series` + with pytest.raises(ValueError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc + [y[0]], + reduction=None, + metric=metric, + last_points_only=True, + ) + error_msg = f"expected `historical_forecasts` of type `Sequence[TimeSeries]` with length n={len(y)}." + assert str(err.value).endswith(error_msg) + + # no reduction + bt = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=None, + last_points_only=True, + metric=metric, + ) + assert isinstance(bt, list) and len(bt) == 2 + if not is_multi_metric: + # per series, inner type expected: 1 float + assert bt == [0.0, 100.0] + else: + # per series, inner shape expected: (n metrics = 2,) + assert all(isinstance(bt_, np.ndarray) for bt_ in bt) + np.testing.assert_array_almost_equal(bt[0], np.array([0.0, 0.0])) + np.testing.assert_array_almost_equal(bt[1], np.array([100.0, 100.0])) + + # with reduction + bt = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=np.mean, + last_points_only=True, + metric=metric, + ) + assert isinstance(bt, list) and len(bt) == 2 + if not is_multi_metric: + # per series, inner type expected: 1 float + assert bt == [0.0, 100.0] + else: + # per series, inner shape expected: (n metrics = 2,) + assert all(isinstance(bt_, np.ndarray) for bt_ in bt) + np.testing.assert_array_almost_equal(bt[0], np.array([0.0, 0.0])) + np.testing.assert_array_almost_equal(bt[1], np.array([100.0, 100.0])) + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [[metrics.mape], [metrics.mape, metrics.mape]], + ), + ) + def test_output_multi_series_hfc_lpo_false(self, config): + """Tests backtest based on historical forecasts generated on multiple `series` with + last_points_only=False. + """ + is_univariate, metric = config + is_multi_metric = len(metric) > 1 + y = ct(value=1.0, length=10) + hfc = ct(value=2.0, length=10) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + hfc = [[y], [hfc]] + y = [y, y] + + model = NaiveDrift() + + # check that input does not work with `last_points_only=False`` + with pytest.raises(ValueError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=None, + metric=metric, + last_points_only=True, + ) + error_msg = "Expected `historical_forecasts` of type `Sequence[TimeSeries]`" + assert str(err.value).startswith(error_msg) + + # number of forecasts do not match number of `series` + with pytest.raises(ValueError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc + [[y[0]]], + reduction=None, + metric=metric, + last_points_only=False, + ) + error_msg = f"expected `historical_forecasts` of type `Sequence[Sequence[TimeSeries]]` with length n={len(y)}." + assert str(err.value).endswith(error_msg) + + # no reduction + bt = model.backtest( + series=y, historical_forecasts=hfc, reduction=None, metric=metric + ) + assert isinstance(bt, list) and len(bt) == 2 + assert isinstance(bt[0], np.ndarray) + assert isinstance(bt[1], np.ndarray) + if not is_multi_metric: + # inner shape expected: (n hist forecasts = 1,) + np.testing.assert_array_almost_equal(bt[0], np.array([0.0])) + np.testing.assert_array_almost_equal(bt[1], np.array([100.0])) + else: + # inner shape expected: (n metrics = 2, n hist forecasts = 1) + np.testing.assert_array_almost_equal(bt[0], np.array([[0.0, 0.0]])) + np.testing.assert_array_almost_equal(bt[1], np.array([[100.0, 100.0]])) + + # with reduction + bt = model.backtest( + series=y, historical_forecasts=hfc, reduction=np.mean, metric=metric + ) + assert isinstance(bt, list) and len(bt) == 2 + if not is_multi_metric: + # inner type expected: 1 float + assert bt == [0.0, 100.0] + else: + # inner shape expected: (n metrics = 2,) + assert isinstance(bt[0], np.ndarray) + np.testing.assert_array_almost_equal(bt[0], np.array([0.0, 0.0])) + assert isinstance(bt[1], np.ndarray) + np.testing.assert_array_almost_equal(bt[1], np.array([100.0, 100.0])) + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [[metrics.mape], [metrics.mape, metrics.mape]], + ), + ) + def test_output_multi_series_hfc_lpo_false_different_n_fcs(self, config): + """Tests backtest based on historical forecasts generated on multiple `series` with + last_points_only=False, and the historical forecasts have different lengths + """ + is_univariate, metric = config + is_multi_metric = len(metric) > 1 + y = ct(value=1.0, length=10) + hfc = ct(value=2.0, length=10) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + hfc = [[y], [hfc, hfc]] + y = [y, y] + + model = NaiveDrift() + + # check that input does not work with `last_points_only=False`` + with pytest.raises(ValueError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc, + reduction=None, + metric=metric, + last_points_only=True, + ) + error_msg = "Expected `historical_forecasts` of type `Sequence[TimeSeries]`" + assert str(err.value).startswith(error_msg) + + # no reduction + bt = model.backtest( + series=y, historical_forecasts=hfc, reduction=None, metric=metric + ) + assert isinstance(bt, list) and len(bt) == 2 + assert isinstance(bt[0], np.ndarray) + assert isinstance(bt[1], np.ndarray) + if not is_multi_metric: + # inner shape expected: (n hist forecasts = 1,) + np.testing.assert_array_almost_equal(bt[0], np.array([0.0])) + # inner shape expected: (n hist forecasts = 2,) + np.testing.assert_array_almost_equal(bt[1], np.array([100.0, 100.0])) + else: + # inner shape expected: (n metrics = 2, n hist forecasts = 1) + np.testing.assert_array_almost_equal(bt[0], np.array([[0.0, 0.0]])) + # inner shape expected: (n metrics = 2, n hist forecasts = 2) + np.testing.assert_array_almost_equal( + bt[1], np.array([[100.0, 100.0], [100.0, 100.0]]) + ) + + # with reduction + bt = model.backtest( + series=y, historical_forecasts=hfc, reduction=np.mean, metric=metric + ) + assert isinstance(bt, list) and len(bt) == 2 + if not is_multi_metric: + # inner type expected: 1 float + assert bt == [0.0, 100.0] + else: + # inner shape expected: (n metrics = 2,) + assert isinstance(bt[0], np.ndarray) + np.testing.assert_array_almost_equal(bt[0], np.array([0.0, 0.0])) + assert isinstance(bt[1], np.ndarray) + def test_backtest_forecasting(self): linear_series = lt(length=50) linear_series_int = TimeSeries.from_values(linear_series.values()) @@ -111,7 +534,7 @@ def test_backtest_forecasting(self): linear_series, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, ) assert score == 1.0 @@ -127,7 +550,7 @@ def test_backtest_forecasting(self): historical_forecasts=forecasts, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, ) assert score == precalculated_forecasts_score @@ -137,7 +560,7 @@ def test_backtest_forecasting(self): train_length=10000, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, ) assert score == 1.0 @@ -147,7 +570,7 @@ def test_backtest_forecasting(self): train_length=10000, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=[r2_score, mape], + metric=[metrics.r2_score, metrics.mape], ) np.testing.assert_almost_equal(score, np.array([1.0, 0.0])) @@ -158,12 +581,12 @@ def test_backtest_forecasting(self): train_length=2, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, ) # test that it also works for time series that are not Datetime-indexed score = NaiveDrift().backtest( - linear_series_int, start=0.7, forecast_horizon=3, metric=r2_score + linear_series_int, start=0.7, forecast_horizon=3, metric=metrics.r2_score ) assert score == 1.0 @@ -234,7 +657,7 @@ def test_backtest_forecasting(self): output_chunk_length=1, batch_size=1, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) # cannot perform historical forecasts with `retrain=False` and untrained model with pytest.raises(ValueError): @@ -272,7 +695,7 @@ def test_backtest_forecasting(self): output_chunk_length=1, batch_size=1, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) tcn_model.fit(linear_series, verbose=False) # univariate fitted model + multivariate series @@ -290,7 +713,7 @@ def test_backtest_forecasting(self): output_chunk_length=3, batch_size=1, n_epochs=1, - **tfm_kwargs + **tfm_kwargs, ) pred = tcn_model.historical_forecasts( linear_series_multi, @@ -349,7 +772,7 @@ def test_backtest_regression(self): future_covariates=features, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, last_points_only=True, ) assert score > 0.9 @@ -363,7 +786,7 @@ def test_backtest_regression(self): start=pd.Timestamp("20000201"), train_length=20, forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, last_points_only=True, ) assert score > 0.9 @@ -376,7 +799,7 @@ def test_backtest_regression(self): future_covariates=features, start=30, forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, ) assert score > 0.9 @@ -387,7 +810,7 @@ def test_backtest_regression(self): future_covariates=features, start=0.5, forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, ) assert score > 0.9 @@ -402,7 +825,7 @@ def test_backtest_regression(self): # Using RandomForest's start default value score = RandomForest(lags=12, random_state=0).backtest( - series=target, forecast_horizon=3, start=0.5, metric=r2_score + series=target, forecast_horizon=3, start=0.5, metric=metrics.r2_score ) assert score > 0.95 @@ -414,7 +837,7 @@ def test_backtest_regression(self): future_covariates=features_multivariate, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, ) assert score > 0.94 @@ -427,7 +850,7 @@ def test_backtest_regression(self): future_covariates=features_multivariate, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, ) logger.info( "Score for multivariate feature test with train window 35 is: ", score_35 @@ -443,7 +866,7 @@ def test_backtest_regression(self): future_covariates=features_multivariate, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, ) logger.info( "Score for multivariate feature test with train window 45 is: ", score_45 @@ -459,7 +882,7 @@ def test_backtest_regression(self): future_covariates=features_multivariate, start=pd.Timestamp("20000201"), forecast_horizon=3, - metric=r2_score, + metric=metrics.r2_score, last_points_only=True, stride=3, ) @@ -650,7 +1073,9 @@ def test_gridsearch_multi(self): "kernel_size": [2, 3, 4], "pl_trainer_kwargs": [tfm_kwargs["pl_trainer_kwargs"]], } - TCNModel.gridsearch(tcn_params, dummy_series, forecast_horizon=3, metric=mape) + TCNModel.gridsearch( + tcn_params, dummy_series, forecast_horizon=3, metric=metrics.mape + ) @pytest.mark.parametrize( "model_cls,parameters", @@ -677,7 +1102,7 @@ def test_gridsearch_bad_covariates(self, model_cls, parameters): series=ts_train, past_covariates=dummy_series, val_series=ts_val, - **bt_kwargs + **bt_kwargs, ) assert str(msg.value).startswith( "Model cannot be fit/trained with `past_covariates`." @@ -689,8 +1114,82 @@ def test_gridsearch_bad_covariates(self, model_cls, parameters): series=ts_train, future_covariates=dummy_series, val_series=ts_val, - **bt_kwargs + **bt_kwargs, ) assert str(msg.value).startswith( "Model cannot be fit/trained with `future_covariates`." ) + + @pytest.mark.parametrize( + "config", + itertools.product( + [ + metrics.ase, + metrics.mase, + ], + [1, 2], + ), + ) + def test_scaled_metrics(self, config): + """Tests backtest for scaled metrics based on historical forecasts generated on a sequence + `series` with last_points_only=False""" + metric, m = config + y = lt(length=20) + hfc = lt(length=10, start=y.start_time() + 10 * y.freq) + y = [y, y] + hfc = [[hfc, hfc], [hfc]] + + model = NaiveDrift() + bts = model.backtest( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + reduction=None, + metric_kwargs={"m": m}, + ) + assert isinstance(bts, list) and len(bts) == 2 + + bt_expected = metric(y[0], hfc[0][0], insample=y[0], m=m) + for bt_list in bts: + for bt in bt_list: + np.testing.assert_array_almost_equal(bt, bt_expected) + + @pytest.mark.parametrize( + "metric", + [ + metrics.mae, # mae does not support time_reduction + [metrics.mae, metrics.ae], # ae supports time_reduction + ], + ) + def test_metric_kwargs(self, metric): + """Tests backtest with different metric_kwargs based on historical forecasts generated on a sequence + `series` with last_points_only=False""" + y = lt(length=20) + y = y.stack(y + 1.0) + hfc = lt(length=10, start=y.start_time() + 10 * y.freq) + hfc = hfc.stack(hfc + 1.0) + y = [y, y] + hfc = [[hfc, hfc], [hfc]] + + model = NaiveDrift() + # backtest should only pass `metric_kwargs` parameters to metrics that support them + bts = model.backtest( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + reduction=None, + metric_kwargs={ + "component_reduction": np.median, + "time_reduction": np.mean, + "n_jobs": -1, + }, + ) + assert isinstance(bts, list) and len(bts) == 2 + + # `ae` with time and component reduction is equal to `mae` with component reduction + bt_expected = metrics.mae(y[0], hfc[0][0], component_reduction=np.median) + for bt_list in bts: + for bt in bt_list: + np.testing.assert_array_almost_equal(bt, bt_expected) diff --git a/darts/tests/models/forecasting/test_historical_forecasts.py b/darts/tests/models/forecasting/test_historical_forecasts.py index e6b4393306..236933b714 100644 --- a/darts/tests/models/forecasting/test_historical_forecasts.py +++ b/darts/tests/models/forecasting/test_historical_forecasts.py @@ -16,6 +16,7 @@ CatBoostModel, LightGBMModel, LinearRegressionModel, + NaiveDrift, NaiveSeasonal, NotImportedModule, ) @@ -390,6 +391,86 @@ def create_model(ocl, use_ll=True, model_type="regression"): **tfm_kwargs, ) + @pytest.mark.parametrize( + "config", + list( + itertools.product( + [True, False], + [0, 1, 3], + [0, 1, 2], + ) + ), + ) + def test_historical_forecasts_output(self, config): + """Tests historical forecasts output type and values for all combinations of: + + - uni or multivariate `series` + - different number of `series`, `0` represents a single `TimeSeries`, + `1` a list of one `TimeSeries`, and so on. + - different number of expected forecasts. + """ + is_univariate, series_list_length, n_fc_expected = config + + model = NaiveDrift() + horizon = 7 + ts_length = horizon + model.min_train_series_length + (n_fc_expected - 1) + + y = tg.constant_timeseries(value=1.0, length=ts_length) + if not is_univariate: + y = y.stack(y + 1.0) + # remember `y` for expected output + y_ref = y + + if series_list_length: + y = [y] * series_list_length + + if not n_fc_expected: + # cannot generate a single forecast + with pytest.raises(ValueError) as err: + _ = model.historical_forecasts( + series=y, forecast_horizon=horizon, last_points_only=True + ) + assert str(err.value).startswith( + "Cannot build a single input for prediction" + ) + return + + # last_points_only = True: gives a list with a single forecasts per series, + # where each forecast contains only the last points of all possible historical + # forecasts + hfcs = model.historical_forecasts( + series=y, forecast_horizon=horizon, last_points_only=True + ) + if not series_list_length: + # make output the same as if a list of `series` was used + hfcs = [hfcs] + + n_series = len(y) if series_list_length else 1 + assert isinstance(hfcs, list) and len(hfcs) == n_series + for hfc in hfcs: + assert isinstance(hfc, TimeSeries) and len(hfc) == n_fc_expected + np.testing.assert_array_almost_equal( + hfc.values(), y_ref.values()[-n_fc_expected:] + ) + + # last_points_only = False: gives a list of lists, where each inner list + # contains the forecasts (with the entire forecast horizon) of one series + hfcs = model.historical_forecasts( + series=y, forecast_horizon=horizon, last_points_only=False + ) + if not series_list_length: + # make output the same as if a list of `series` was used + hfcs = [hfcs] + + assert isinstance(hfcs, list) and len(hfcs) == n_series + for hfc_series in hfcs: # list of forecasts per series + assert isinstance(hfc_series, list) and len(hfc_series) == n_fc_expected + for hfc in hfc_series: # each individual forecast + assert isinstance(hfc, TimeSeries) and len(hfc) == horizon + np.testing.assert_array_almost_equal( + hfc.values(), y_ref.values()[-horizon:] + ) + @pytest.mark.parametrize( "arima_args", [ @@ -914,12 +995,12 @@ def test_optimized_historical_forecasts_regression(self, config): # manually packing the series in list to match expected inputs opti_hist_fct = model._optimized_historical_forecasts( - series=[ts], + series=ts, past_covariates=( - [ts_covs] if model.supports_past_covariates else None + ts_covs if model.supports_past_covariates else None ), future_covariates=( - [ts_covs] if model.supports_future_covariates else None + ts_covs if model.supports_future_covariates else None ), start=start, last_points_only=last_points_only, @@ -1003,9 +1084,9 @@ def test_optimized_historical_forecasts_regression_with_encoders(self, config): ) opti_hist_fct = model._optimized_historical_forecasts( - series=[series_val], - past_covariates=[pc], - future_covariates=[fc], + series=series_val, + past_covariates=pc, + future_covariates=fc, last_points_only=last_points_only, overlap_end=overlap_end, stride=stride, @@ -1094,7 +1175,7 @@ def test_optimized_historical_forecasts_regression_with_component_specific_lags( enable_optimization=False, ) - opti_hist_fct = model._optimized_historical_forecasts(series=[series_val]) + opti_hist_fct = model._optimized_historical_forecasts(series=series_val) if not isinstance(hist_fct, list): hist_fct = [hist_fct] @@ -1222,9 +1303,9 @@ def f_encoder(idx): ) opti_hist_fct = model._optimized_historical_forecasts( - series=series_val if isinstance(series_val, list) else [series_val], - past_covariates=pc if (isinstance(pc, list) or pc is None) else [pc], - future_covariates=fc if (isinstance(fc, list) or fc is None) else [fc], + series=series_val, + past_covariates=pc, + future_covariates=fc, last_points_only=last_points_only, overlap_end=overlap_end, stride=stride, diff --git a/darts/tests/models/forecasting/test_local_forecasting_models.py b/darts/tests/models/forecasting/test_local_forecasting_models.py index f3ac21d40d..4bd4f7b587 100644 --- a/darts/tests/models/forecasting/test_local_forecasting_models.py +++ b/darts/tests/models/forecasting/test_local_forecasting_models.py @@ -44,7 +44,7 @@ ) from darts.timeseries import TimeSeries from darts.utils import timeseries_generation as tg -from darts.utils.utils import ModelMode, SeasonalityMode, TrendMode +from darts.utils.utils import ModelMode, SeasonalityMode, TrendMode, generate_index logger = get_logger(__name__) @@ -259,11 +259,11 @@ def test_exogenous_variables_support(self, model): # test case with numerical pd.RangeIndex target_num_idx = TimeSeries.from_times_and_values( - times=tg.generate_index(start=0, length=len(self.ts_gaussian)), + times=generate_index(start=0, length=len(self.ts_gaussian)), values=self.ts_gaussian.all_values(copy=False), ) fc_num_idx = TimeSeries.from_times_and_values( - times=tg.generate_index(start=0, length=len(self.ts_gaussian_long)), + times=generate_index(start=0, length=len(self.ts_gaussian_long)), values=self.ts_gaussian_long.all_values(copy=False), ) diff --git a/darts/tests/models/forecasting/test_prophet.py b/darts/tests/models/forecasting/test_prophet.py index 21ec5b2b60..bf1ffc45ec 100644 --- a/darts/tests/models/forecasting/test_prophet.py +++ b/darts/tests/models/forecasting/test_prophet.py @@ -8,6 +8,7 @@ from darts.logging import get_logger from darts.models import NotImportedModule, Prophet from darts.utils import timeseries_generation as tg +from darts.utils.utils import generate_index logger = get_logger(__name__) @@ -145,7 +146,7 @@ def test_prophet_model_with_logistic_growth(self): model = Prophet(growth="logistic", cap=1) # Create timeseries with logistic function - times = tg.generate_index( + times = generate_index( pd.Timestamp("20200101"), pd.Timestamp("20210101"), freq="D" ) values = np.linspace(-10, 10, len(times)) diff --git a/darts/tests/models/forecasting/test_regression_ensemble_model.py b/darts/tests/models/forecasting/test_regression_ensemble_model.py index bb979955d2..5b4530b52f 100644 --- a/darts/tests/models/forecasting/test_regression_ensemble_model.py +++ b/darts/tests/models/forecasting/test_regression_ensemble_model.py @@ -737,7 +737,7 @@ def test_stochastic_training_regression_ensemble_model(self): regression_train_num_samples=500, ) - # must use apprioriate reduction method + # must use appropriate reduction method with pytest.raises(ValueError): RegressionEnsembleModel( forecasting_models=[ diff --git a/darts/tests/models/forecasting/test_regression_models.py b/darts/tests/models/forecasting/test_regression_models.py index 01e95716a0..29f3d740ba 100644 --- a/darts/tests/models/forecasting/test_regression_models.py +++ b/darts/tests/models/forecasting/test_regression_models.py @@ -29,6 +29,7 @@ ) from darts.utils import timeseries_generation as tg from darts.utils.multioutput import MultiOutputRegressor +from darts.utils.utils import generate_index logger = get_logger(__name__) @@ -1510,12 +1511,12 @@ def test_multiple_ts(self, mode): error_past_only = rmse( [target_test_1, target_test_2], prediction_past_only, - inter_reduction=np.mean, + series_reduction=np.mean, ) error_both = rmse( [target_test_1, target_test_2], prediction_past_and_future, - inter_reduction=np.mean, + series_reduction=np.mean, ) assert error_past_only > error_both @@ -1540,7 +1541,7 @@ def test_multiple_ts(self, mode): error_both_multi_ts = rmse( [target_test_1, target_test_2], prediction_past_and_future_multi_ts, - inter_reduction=np.mean, + series_reduction=np.mean, ) assert error_both > error_both_multi_ts @@ -2324,7 +2325,7 @@ def test_encoders(self, config): # past and future covariates longer than target n_comp = 2 covs = TimeSeries.from_times_and_values( - tg.generate_index( + generate_index( start=pd.Timestamp("1999-01-01"), end=pd.Timestamp("2002-12-01"), freq="MS", diff --git a/darts/tests/models/forecasting/test_residuals.py b/darts/tests/models/forecasting/test_residuals.py new file mode 100644 index 0000000000..7ad2fade82 --- /dev/null +++ b/darts/tests/models/forecasting/test_residuals.py @@ -0,0 +1,578 @@ +import itertools + +import numpy as np +import pytest + +import darts.metrics as metrics +from darts.logging import get_logger +from darts.models import LinearRegressionModel, NaiveDrift, NaiveSeasonal +from darts.tests.models.forecasting.test_regression_models import dummy_timeseries +from darts.utils.timeseries_generation import constant_timeseries as ct +from darts.utils.timeseries_generation import linear_timeseries as lt + +logger = get_logger(__name__) + + +class TestResiduals: + + np.random.seed(42) + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [False, True], + [(metrics.err, (-1.0, -2.0)), (metrics.ape, (100.0, 100.0))], + ), + ) + def test_output_single_series_hfc_lpo_true(self, config): + """Tests backtest based on historical forecasts generated on a single `series` (or list of one `series`) + with last_points_only=True""" + is_univariate, series_as_list, (metric, score_exp) = config + n_ts = 10 + y = ct(value=1.0, length=n_ts) + hfc = ct(value=2.0, length=n_ts) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + n_comps = y.n_components + y = y if not series_as_list else [y] + hfc = hfc if not series_as_list else [hfc] + + # expected residuals values of shape (n time steps, n components, n samples=1) + score_exp = np.array([score_exp[:n_comps]] * 10).reshape(n_ts, -1, 1) + model = NaiveDrift() + + # check that input does not work with `last_points_only=False`` + with pytest.raises(ValueError) as err: + _ = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + ) + if series_as_list: + error_msg = "Expected `historical_forecasts` of type `Sequence[Sequence[TimeSeries]]`" + else: + error_msg = "Expected `historical_forecasts` of type `Sequence[TimeSeries]`" + assert str(err.value).startswith(error_msg) + + for vals_only in [False, True]: + res = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=True, + values_only=vals_only, + ) + res = res if series_as_list else [res] + assert isinstance(res, list) and len(res) == 1 + res = res[0] + vals = res if vals_only else res.all_values() + np.testing.assert_array_almost_equal(vals, score_exp) + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [False, True], + [ + (metrics.err, ((0.0, 0.0), (-1.0, -2.0))), + (metrics.ape, ((0.0, 0.0), (100.0, 100.0))), + ], + [1, 2], + ), + ) + def test_output_single_series_hfc_lpo_false(self, config): + """Tests residuals based on historical forecasts generated on a single `series` (or list of one `series`) + with last_points_only=False""" + is_univariate, series_as_list, (metric, score_exp), n_forecasts = config + n_ts = 10 + y = ct(value=1.0, length=n_ts) + hfc = ct(value=2.0, length=n_ts) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + n_comps = y.n_components + + hfc = [y, hfc] + hfc = hfc[:n_forecasts] + y = y if not series_as_list else [y] + hfc = hfc if not series_as_list else [hfc] + + # expected residuals values of shape (n time steps, n components, n samples=1) per forecast + scores_exp = [] + for i in range(n_forecasts): + scores_exp.append( + np.array([score_exp[i][:n_comps]] * 10).reshape(n_ts, -1, 1) + ) + + model = NaiveDrift() + + # check that input does not work with `last_points_only=True`` + with pytest.raises(ValueError) as err: + _ = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=True, + ) + if series_as_list: + error_msg = "Expected `historical_forecasts` of type `Sequence[TimeSeries]`" + else: + error_msg = "Expected `historical_forecasts` of type `TimeSeries`" + assert str(err.value).startswith(error_msg) + + for vals_only in [False, True]: + res = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + values_only=vals_only, + ) + res = res if series_as_list else [res] + assert isinstance(res, list) and len(res) == 1 + res = res[0] + assert isinstance(res, list) and len(res) == n_forecasts + for res_, score_exp_ in zip(res, scores_exp): + vals = res_ if vals_only else res_.all_values() + np.testing.assert_array_almost_equal(vals, score_exp_) + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [ + (metrics.err, ((0.0, 0.0), (-1.0, -2.0))), + (metrics.ape, ((0.0, 0.0), (100.0, 100.0))), + ], + ), + ) + def test_output_multi_series_hfc_lpo_true(self, config): + """Tests residuals based on historical forecasts generated on multiple `series` with last_points_only=True""" + is_univariate, (metric, score_exp) = config + n_ts = 10 + y = ct(value=1.0, length=n_ts) + hfc = ct(value=2.0, length=n_ts) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + n_comps = y.n_components + hfc = [y, hfc] + y = [y, y] + + # expected residuals values of shape (n time steps, n components, n samples=1) per forecast + scores_exp = [] + for i in range(len(hfc)): + scores_exp.append( + np.array([score_exp[i][:n_comps]] * 10).reshape(n_ts, -1, 1) + ) + + model = NaiveDrift() + + # check that input does not work with `last_points_only=False`` + with pytest.raises(ValueError) as err: + _ = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + ) + error_msg = ( + "Expected `historical_forecasts` of type `Sequence[Sequence[TimeSeries]]`" + ) + assert str(err.value).startswith(error_msg) + + for vals_only in [False, True]: + res = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=True, + values_only=vals_only, + ) + assert isinstance(res, list) and len(res) == len(y) + for res_, score_exp_ in zip(res, scores_exp): + vals = res_ if vals_only else res_.all_values() + np.testing.assert_array_almost_equal(vals, score_exp_) + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [ + (metrics.err, ((0.0, 0.0), (-1.0, -2.0))), + (metrics.ape, ((0.0, 0.0), (100.0, 100.0))), + ], + ), + ) + def test_output_multi_series_hfc_lpo_false(self, config): + """Tests residuals based on historical forecasts generated on multiple `series` with + last_points_only=False. + """ + is_univariate, (metric, score_exp) = config + n_ts = 10 + y = ct(value=1.0, length=n_ts) + hfc = ct(value=2.0, length=n_ts) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + n_comps = y.n_components + hfc = [[y], [hfc]] + y = [y, y] + + # expected residuals values of shape (n time steps, n components, n samples=1) per forecast + scores_exp = [] + for i in range(len(hfc)): + scores_exp.append( + np.array([score_exp[i][:n_comps]] * 10).reshape(n_ts, -1, 1) + ) + + model = NaiveDrift() + + # check that input does not work with `last_points_only=False`` + with pytest.raises(ValueError) as err: + _ = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=True, + ) + error_msg = "Expected `historical_forecasts` of type `Sequence[TimeSeries]`" + assert str(err.value).startswith(error_msg) + + for vals_only in [False, True]: + res = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + values_only=vals_only, + ) + assert isinstance(res, list) and len(res) == len(y) + for res_list, score_exp_ in zip(res, scores_exp): + assert isinstance(res_list, list) and len(res_list) == 1 + res_ = res_list[0] + vals = res_ if vals_only else res_.all_values() + np.testing.assert_array_almost_equal(vals, score_exp_) + + @pytest.mark.parametrize( + "config", + itertools.product( + [True, False], + [ + (metrics.err, ((0.0, 0.0), (-1.0, -2.0))), + (metrics.ape, ((0.0, 0.0), (100.0, 100.0))), + ], + ), + ) + def test_output_multi_series_hfc_lpo_false_different_n_fcs(self, config): + """Tests residuals based on historical forecasts generated on multiple `series` with + last_points_only=False, and the historical forecasts have different lengths + """ + is_univariate, (metric, score_exp) = config + n_ts = 10 + y = ct(value=1.0, length=n_ts) + hfc = ct(value=2.0, length=n_ts) + if not is_univariate: + y = y.stack(y + 1.0) + hfc = hfc.stack(hfc + 2.0) + n_comps = y.n_components + hfc = [[y], [hfc, hfc]] + y = [y, y] + + # expected residuals values of shape (n time steps, n components, n samples=1) per forecast + scores_exp = [] + for i in range(len(hfc)): + scores_exp.append( + np.array([score_exp[i][:n_comps]] * 10).reshape(n_ts, -1, 1) + ) + # repeat following `hfc` + scores_exp = [[scores_exp[0]], [scores_exp[1]] * 2] + + model = NaiveDrift() + + # check that input does not work with `last_points_only=False`` + with pytest.raises(ValueError) as err: + _ = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=True, + ) + error_msg = "Expected `historical_forecasts` of type `Sequence[TimeSeries]`" + assert str(err.value).startswith(error_msg) + + for vals_only in [False, True]: + res = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + values_only=vals_only, + ) + assert isinstance(res, list) and len(res) == len(y) + for res_list, hfc_list, score_exp_list in zip(res, hfc, scores_exp): + assert isinstance(res_list, list) and len(res_list) == len(hfc_list) + for res_, score_exp_ in zip(res_list, score_exp_list): + vals = res_ if vals_only else res_.all_values() + np.testing.assert_array_almost_equal(vals, score_exp_) + + def test_wrong_metric(self): + y = ct(value=1.0, length=10) + hfc = ct(value=2.0, length=10) + + model = NaiveDrift() + + with pytest.raises(ValueError) as err: + _ = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metrics.mape, + last_points_only=True, + ) + assert str(err.value).startswith( + "`metric` function did not yield expected output." + ) + + def test_forecasting_residuals_nocov_output(self): + model = NaiveSeasonal(K=1) + + # test zero residuals + constant_ts = ct(length=20) + residuals = model.residuals(constant_ts) + np.testing.assert_almost_equal( + residuals.univariate_values(), np.zeros(len(residuals)) + ) + residuals_vals = model.residuals(constant_ts, values_only=True) + np.testing.assert_almost_equal(residuals.all_values(), residuals_vals) + + # test constant, positive residuals + linear_ts = lt(length=20) + residuals = model.residuals(linear_ts) + np.testing.assert_almost_equal( + np.diff(residuals.univariate_values()), np.zeros(len(residuals) - 1) + ) + np.testing.assert_array_less( + np.zeros(len(residuals)), residuals.univariate_values() + ) + residuals_vals = model.residuals(linear_ts, values_only=True) + np.testing.assert_almost_equal(residuals.all_values(), residuals_vals) + + def test_forecasting_residuals_multiple_series(self): + # test input types past and/or future covariates + + # dummy covariates and target TimeSeries instances + series, past_covariates, future_covariates = dummy_timeseries( + length=10, + n_series=1, + comps_target=1, + comps_pcov=1, + comps_fcov=1, + ) # outputs Sequences[TimeSeries] and not TimeSeries + + model = LinearRegressionModel( + lags=1, lags_past_covariates=1, lags_future_covariates=(1, 1) + ) + model.fit( + series, + past_covariates=past_covariates, + future_covariates=future_covariates, + ) + + # residuals TimeSeries zero + res = model.residuals( + series, + past_covariates=past_covariates, + future_covariates=future_covariates, + ) + assert isinstance(res, list) and len(res) == len(series) == 1 + res_vals = res[0].all_values(copy=False) + np.testing.assert_almost_equal(res_vals, np.zeros((len(res[0]), 1, 1))) + + # return values only + res_vals_direct = model.residuals( + series, + past_covariates=past_covariates, + future_covariates=future_covariates, + values_only=True, + ) + assert ( + isinstance(res_vals_direct, list) + and len(res_vals_direct) == len(series) == 1 + ) + np.testing.assert_almost_equal(res_vals_direct[0], res_vals) + + # with precomputed historical forecasts + hfc = model.historical_forecasts( + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + ) + res_hfc = model.residuals(series, historical_forecasts=hfc) + assert res == res_hfc + + # with pretrained model + res_pretrained = model.residuals( + series, + start=model.min_train_series_length, + past_covariates=past_covariates, + future_covariates=future_covariates, + retrain=False, + values_only=True, + ) + np.testing.assert_almost_equal(res_pretrained[0], res_vals) + + # if model is trained with covariates, should raise error when covariates are missing in residuals() + with pytest.raises(ValueError): + model.residuals(series) + + with pytest.raises(ValueError): + model.residuals(series, past_covariates=past_covariates) + + with pytest.raises(ValueError): + model.residuals(series, future_covariates=future_covariates) + + @pytest.mark.parametrize( + "series", + [ + ct(value=0.5, length=10), + lt(length=10), + ], + ) + def test_forecasting_residuals_cov_output(self, series): + # if covariates are constant and the target is constant/linear, + # residuals should be zero (for a LinearRegression model) + past_covariates = ct(value=0.2, length=10) + future_covariates = ct(value=0.1, length=10) + + model = LinearRegressionModel( + lags=1, lags_past_covariates=1, lags_future_covariates=(1, 1) + ) + model.fit( + series, + past_covariates=past_covariates, + future_covariates=future_covariates, + ) + + # residuals TimeSeries zero + res = model.residuals( + series, + past_covariates=past_covariates, + future_covariates=future_covariates, + ) + np.testing.assert_almost_equal(res.univariate_values(), np.zeros(len(res))) + + # return values only + res_vals = model.residuals( + series, + past_covariates=past_covariates, + future_covariates=future_covariates, + values_only=True, + ) + np.testing.assert_almost_equal(res.all_values(), res_vals) + + # with precomputed historical forecasts + hfc = model.historical_forecasts( + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + ) + res_hfc = model.residuals(series, historical_forecasts=hfc) + assert res == res_hfc + + # with pretrained model + res_pretrained = model.residuals( + series, + start=model.min_train_series_length, + past_covariates=past_covariates, + future_covariates=future_covariates, + retrain=False, + values_only=True, + ) + np.testing.assert_almost_equal(res_vals, res_pretrained) + + # if model is trained with covariates, should raise error when covariates are missing in residuals() + with pytest.raises(ValueError): + model.residuals(series) + + with pytest.raises(ValueError): + model.residuals(series, past_covariates=past_covariates) + + with pytest.raises(ValueError): + model.residuals(series, future_covariates=future_covariates) + + @pytest.mark.parametrize( + "config", + itertools.product( + [ + metrics.ase, + metrics.sse, + ], + [1, 2], + ), + ) + def test_scaled_metrics(self, config): + """Tests residuals for scaled metrics based on historical forecasts generated on a sequence + `series` with last_points_only=False""" + metric, m = config + y = lt(length=20) + hfc = lt(length=10, start=y.start_time() + 10 * y.freq) + y = [y, y] + hfc = [[hfc, hfc], [hfc]] + + model = NaiveDrift() + bts = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + metric_kwargs={"m": m}, + values_only=True, + ) + assert isinstance(bts, list) and len(bts) == 2 + + bt_expected = metric(y[0], hfc[0][0], insample=y[0], m=m) + bt_expected = np.reshape(bt_expected, (len(hfc[0][0]), y[0].n_components, 1)) + for bt_list in bts: + for bt in bt_list: + np.testing.assert_array_almost_equal(bt, bt_expected) + + def test_metric_kwargs(self): + """Tests residuals with different metric_kwargs based on historical forecasts generated on a sequence + `series` with last_points_only=False""" + y = lt(length=20) + y = y.stack(y + 1.0) + hfc = lt(length=10, start=y.start_time() + 10 * y.freq) + hfc = hfc.stack(hfc + 1.0) + y = [y, y] + hfc = [[hfc, hfc], [hfc]] + + model = NaiveDrift() + # reduction `metric_kwargs` are bypassed, n_jobs not + bts = model.residuals( + series=y, + historical_forecasts=hfc, + metric=metrics.ae, + last_points_only=False, + metric_kwargs={ + "component_reduction": np.median, + "time_reduction": np.mean, + "n_jobs": -1, + }, + values_only=True, + ) + assert isinstance(bts, list) and len(bts) == 2 + + # `ae` with time and component reduction is equal to `mae` with component reduction + bt_expected = metrics.ae( + y[0], + hfc[0][0], + series_reduction=None, + time_reduction=None, + component_reduction=None, + )[:, :, None] + for bt_list in bts: + for bt in bt_list: + np.testing.assert_array_almost_equal(bt, bt_expected) diff --git a/darts/tests/test_timeseries.py b/darts/tests/test_timeseries.py index ef892d4753..79412b5d8a 100644 --- a/darts/tests/test_timeseries.py +++ b/darts/tests/test_timeseries.py @@ -1,3 +1,4 @@ +import itertools import math from tempfile import NamedTemporaryFile from unittest.mock import patch @@ -9,11 +10,8 @@ from scipy.stats import kurtosis, skew from darts import TimeSeries, concatenate -from darts.utils.timeseries_generation import ( - constant_timeseries, - generate_index, - linear_timeseries, -) +from darts.utils.timeseries_generation import constant_timeseries, linear_timeseries +from darts.utils.utils import generate_index class TestTimeSeries: @@ -29,7 +27,7 @@ def test_creation(self): series_test = TimeSeries.from_series(self.pd_series1) assert series_test.pd_series().equals(self.pd_series1.astype(float)) - # Creation with a well formed array: + # Creation with a well-formed array: ar = xr.DataArray( np.random.randn(10, 2, 3), dims=("time", "component", "sample"), @@ -531,41 +529,6 @@ def helper_test_drop(test_case, test_series: TimeSeries): assert test_series.freq_str == seriesA.freq_str assert test_series.freq_str == seriesB.freq_str - @staticmethod - def helper_test_intersect(test_case, test_series: TimeSeries): - seriesA = TimeSeries.from_series( - pd.Series(range(2, 8), index=pd.date_range("20130102", "20130107")) - ) - - seriesB = test_series.slice_intersect(seriesA) - assert seriesB.start_time() == pd.Timestamp("20130102") - assert seriesB.end_time() == pd.Timestamp("20130107") - - # Outside of range - seriesD = test_series.slice_intersect( - TimeSeries.from_series( - pd.Series(range(6, 13), index=pd.date_range("20130106", "20130112")) - ) - ) - assert seriesD.start_time() == pd.Timestamp("20130106") - assert seriesD.end_time() == pd.Timestamp("20130110") - - # Small intersect - seriesE = test_series.slice_intersect( - TimeSeries.from_series( - pd.Series(range(9, 13), index=pd.date_range("20130109", "20130112")) - ) - ) - assert len(seriesE) == 2 - - # No intersect - with pytest.raises(ValueError): - test_series.slice_intersect( - TimeSeries( - pd.Series(range(6, 13), index=pd.date_range("20130116", "20130122")) - ) - ) - def test_rescale(self): with pytest.raises(ValueError): self.series1.rescale_with_value(1) @@ -584,6 +547,101 @@ def test_rescale(self): ) # TODO: test will fail if value > 1e24 due to num imprecision assert self.series3 * 0.2e20 == seriesD + @staticmethod + def helper_test_intersect( + test_case, freq, is_mixed_freq: bool, is_univariate: bool + ): + start = pd.Timestamp("20130101") if isinstance(freq, str) else 0 + freq = pd.tseries.frequencies.to_offset(freq) if isinstance(freq, str) else freq + + # handle identical and mixed frequency setup + if not is_mixed_freq: + freq_other = freq + n_steps = 11 + elif "2" not in str(freq): # 1 or "1D" + freq_other = freq * 2 + n_steps = 21 + else: # 2 or "2D" + freq_other = freq / 2 + n_steps = 11 + freq_other = int(freq_other) if isinstance(freq_other, float) else freq_other + # if freq_other has a higher freq, we expect the slice to have the higher freq + freq_expected = freq if freq > freq_other else freq_other + idx = generate_index(start=start, freq=freq, length=n_steps) + end = idx[-1] + + n_cols = 1 if is_univariate else 2 + series = TimeSeries.from_times_and_values( + values=np.random.randn(n_steps, n_cols), times=idx + ) + + def check_intersect(other, start_, end_, freq_): + s_int = series.slice_intersect(other) + assert s_int.components.equals(series.components) + assert s_int.freq == freq_ + + if start_ is None: # empty slice + assert len(s_int) == 0 + return + + assert s_int.start_time() == start_ + assert s_int.end_time() == end_ + + s_int_vals = series.slice_intersect_values(other, copy=False) + np.testing.assert_array_equal(s_int.all_values(), s_int_vals) + # check that first and last values are as expected + start_ = series.get_index_at_point(start_) + end_ = series.get_index_at_point(end_) + np.testing.assert_array_equal( + series[start_].all_values(), s_int_vals[0:1, :, :] + ) + np.testing.assert_array_equal( + series[end_].all_values(), s_int_vals[-1:, :, :] + ) + + # slice with exact range + startA = start + endA = end + idxA = generate_index(startA, endA, freq=freq_other) + seriesA = TimeSeries.from_series(pd.Series(range(len(idxA)), index=idxA)) + check_intersect(seriesA, startA, endA, freq_expected) + + # entire slice within the range + startA = start + freq + endA = startA + 6 * freq_other + idxA = generate_index(startA, endA, freq=freq_other) + seriesA = TimeSeries.from_series(pd.Series(range(len(idxA)), index=idxA)) + check_intersect(seriesA, startA, endA, freq_expected) + + # start outside of range + startC = start - 4 * freq + endC = start + 4 * freq_other + idxC = generate_index(startC, endC, freq=freq_other) + seriesC = TimeSeries.from_series(pd.Series(range(len(idxC)), index=idxC)) + check_intersect(seriesC, start, endC, freq_expected) + + # end outside of range + startC = start + 4 * freq + endC = end + 4 * freq_other + idxC = generate_index(startC, endC, freq=freq_other) + seriesC = TimeSeries.from_series(pd.Series(range(len(idxC)), index=idxC)) + check_intersect(seriesC, startC, end, freq_expected) + + # small intersect + startE = start + (n_steps - 1) * freq + endE = startE + 2 * freq_other + idxE = generate_index(startE, endE, freq=freq_other) + seriesE = TimeSeries.from_series(pd.Series(range(len(idxE)), index=idxE)) + check_intersect(seriesE, startE, end, freq_expected) + + # No intersect + startG = end + 3 * freq + endG = startG + 6 * freq_other + idxG = generate_index(startG, endG, freq=freq_other) + seriesG = TimeSeries.from_series(pd.Series(range(len(idxG)), index=idxG)) + # for empty slices, we expect the original freq + check_intersect(seriesG, None, None, freq) + @staticmethod def helper_test_shift(test_case, test_series: TimeSeries): seriesA = test_case.series1.shift(0) @@ -709,8 +767,14 @@ def test_split(self): def test_drop(self): TestTimeSeries.helper_test_drop(self, self.series1) - def test_intersect(self): - TestTimeSeries.helper_test_intersect(self, self.series1) + @pytest.mark.parametrize( + "config", itertools.product(["D", "2D", 1, 2], [False, True]) + ) + def test_intersect(self, config): + """Tests slice intersection between two series with datetime or range index with identical and + mixed frequencies.""" + freq, mixed_freq = config + self.helper_test_intersect(self, freq, mixed_freq, is_univariate=True) def test_shift(self): TestTimeSeries.helper_test_shift(self, self.series1) diff --git a/darts/tests/test_timeseries_multivariate.py b/darts/tests/test_timeseries_multivariate.py index 202a2b63ab..bfe2548d35 100644 --- a/darts/tests/test_timeseries_multivariate.py +++ b/darts/tests/test_timeseries_multivariate.py @@ -1,3 +1,5 @@ +import itertools + import numpy as np import pandas as pd import pytest @@ -91,8 +93,14 @@ def test_split(self): def test_drop(self): TestTimeSeries.helper_test_drop(self, self.series1) - def test_intersect(self): - TestTimeSeries.helper_test_intersect(self, self.series1) + @pytest.mark.parametrize( + "config", itertools.product(["D", "2D", 1, 2], [False, True]) + ) + def test_intersect(self, config): + freq, mixed_freq = config + TestTimeSeries.helper_test_intersect( + self, freq, mixed_freq, is_univariate=False + ) def test_shift(self): TestTimeSeries.helper_test_shift(self, self.series1) diff --git a/darts/tests/test_timeseries_static_covariates.py b/darts/tests/test_timeseries_static_covariates.py index fa188dbb4a..463c751305 100644 --- a/darts/tests/test_timeseries_static_covariates.py +++ b/darts/tests/test_timeseries_static_covariates.py @@ -8,7 +8,8 @@ from darts import TimeSeries, concatenate from darts.dataprocessing.transformers import BoxCox, Scaler from darts.timeseries import DEFAULT_GLOBAL_STATIC_COV_NAME, STATIC_COV_TAG -from darts.utils.timeseries_generation import generate_index, linear_timeseries +from darts.utils.timeseries_generation import linear_timeseries +from darts.utils.utils import generate_index def setup_test_case(): diff --git a/darts/tests/utils/test_residuals.py b/darts/tests/utils/test_residuals.py deleted file mode 100644 index 664e49a1e5..0000000000 --- a/darts/tests/utils/test_residuals.py +++ /dev/null @@ -1,113 +0,0 @@ -import numpy as np -import pytest - -from darts.logging import get_logger -from darts.models import LinearRegressionModel, NaiveSeasonal -from darts.tests.models.forecasting.test_regression_models import dummy_timeseries -from darts.utils.timeseries_generation import constant_timeseries as ct -from darts.utils.timeseries_generation import linear_timeseries as lt - -logger = get_logger(__name__) - - -class TestResiduals: - - np.random.seed(42) - - def test_forecasting_residuals_nocov_output(self): - model = NaiveSeasonal(K=1) - - # test zero residuals - constant_ts = ct(length=20) - residuals = model.residuals(constant_ts) - np.testing.assert_almost_equal( - residuals.univariate_values(), np.zeros(len(residuals)) - ) - - # test constant, positive residuals - linear_ts = lt(length=20) - residuals = model.residuals(linear_ts) - np.testing.assert_almost_equal( - np.diff(residuals.univariate_values()), np.zeros(len(residuals) - 1) - ) - np.testing.assert_array_less( - np.zeros(len(residuals)), residuals.univariate_values() - ) - - def test_forecasting_residuals_inputs(self): - # test input types past and/or future covariates - - # dummy covariates and target TimeSeries instances - - target_series, past_covariates, future_covariates = dummy_timeseries( - length=10, - n_series=1, - comps_target=1, - comps_pcov=1, - comps_fcov=1, - ) # outputs Sequences[TimeSeries] and not TimeSeries - - model = LinearRegressionModel( - lags=4, lags_past_covariates=4, lags_future_covariates=(4, 1) - ) - model.fit( - series=target_series, - past_covariates=past_covariates, - future_covariates=future_covariates, - ) - - def test_forecasting_residuals_cov_output(self): - # if covariates are constant and the target is constant/linear, - # residuals should be zero (for a LinearRegression model) - - target_series_1 = ct(value=0.5, length=10) - target_series_2 = lt(length=10) - past_covariates = ct(value=0.2, length=10) - future_covariates = ct(value=0.1, length=10) - - model_1 = LinearRegressionModel( - lags=1, lags_past_covariates=1, lags_future_covariates=(1, 1) - ) - model_2 = LinearRegressionModel( - lags=1, lags_past_covariates=1, lags_future_covariates=(1, 1) - ) - model_1.fit( - target_series_1, - past_covariates=past_covariates, - future_covariates=future_covariates, - ) - residuals_1 = model_1.residuals( - target_series_1, - past_covariates=past_covariates, - future_covariates=future_covariates, - ) - - model_2.fit( - target_series_2, - past_covariates=past_covariates, - future_covariates=future_covariates, - ) - residuals_2 = model_2.residuals( - target_series_2, - past_covariates=past_covariates, - future_covariates=future_covariates, - ) - - # residuals zero - np.testing.assert_almost_equal( - residuals_1.univariate_values(), np.zeros(len(residuals_1)) - ) - - np.testing.assert_almost_equal( - residuals_2.univariate_values(), np.zeros(len(residuals_2)) - ) - - # if model is trained with covariates, should raise error when covariates are missing in residuals() - with pytest.raises(ValueError): - model_1.residuals(target_series_1) - - with pytest.raises(ValueError): - model_1.residuals(target_series_1, past_covariates=past_covariates) - - with pytest.raises(ValueError): - model_1.residuals(target_series_1, future_covariates=future_covariates) diff --git a/darts/tests/utils/test_ts_utils.py b/darts/tests/utils/test_ts_utils.py new file mode 100644 index 0000000000..3374c44068 --- /dev/null +++ b/darts/tests/utils/test_ts_utils.py @@ -0,0 +1,106 @@ +import pytest + +from darts.utils.timeseries_generation import linear_timeseries +from darts.utils.ts_utils import ( + SeriesType, + get_series_seq_type, + get_single_series, + series2seq, +) + + +class TestTsUtils: + def test_series_type(self): + assert SeriesType.NONE.value == -1 + assert SeriesType.SINGLE.value == 0 + assert SeriesType.SEQ.value == 1 + assert SeriesType.SEQ_SEQ.value == 2 + + # equality works with members + assert SeriesType.NONE == SeriesType.NONE + assert SeriesType.SINGLE == SeriesType.SINGLE + assert SeriesType.SEQ == SeriesType.SEQ + assert SeriesType.SEQ_SEQ == SeriesType.SEQ_SEQ + + # inequality works with members + assert SeriesType.SINGLE != SeriesType.SEQ + assert SeriesType.SEQ != SeriesType.SEQ_SEQ + + # equality does not work with non-members + with pytest.raises(ValueError) as err: + _ = SeriesType.SINGLE == 0 + assert str(err.value).startswith("`other` must be a `SeriesType` enum.") + + # single series order is < sequence of series order < sequence of sequences of series order + assert SeriesType.NONE < SeriesType.SINGLE < SeriesType.SEQ < SeriesType.SEQ_SEQ + assert SeriesType.SEQ_SEQ > SeriesType.SEQ > SeriesType.SINGLE > SeriesType.NONE + + def test_get_series_seq_type(self): + ts = linear_timeseries(length=3) + assert get_series_seq_type(None) == SeriesType.NONE + assert get_series_seq_type(ts) == SeriesType.SINGLE + assert get_series_seq_type([ts]) == SeriesType.SEQ + assert get_series_seq_type([[ts]]) == SeriesType.SEQ_SEQ + + # unknown sequence type + with pytest.raises(ValueError) as err: + _ = get_series_seq_type([[[ts]]]) + assert str(err.value).startswith( + "input series must be of type `TimeSeries`, `Sequence[TimeSeries]`" + ) + + # sequence with elements different from `TimeSeries` + with pytest.raises(ValueError) as err: + _ = get_series_seq_type([[0.0, 1.0, 2]]) + assert str(err.value).startswith( + "input series must be of type `TimeSeries`, `Sequence[TimeSeries]`" + ) + + def test_series2seq(self): + ts = linear_timeseries(length=3) + + # `None` to different sequence types + assert series2seq(None, seq_type_out=SeriesType.SINGLE) is None + assert series2seq(None, seq_type_out=SeriesType.SEQ) is None + assert series2seq(None, seq_type_out=SeriesType.SEQ_SEQ) is None + + # `TimeSeries` to different sequence types + assert series2seq(ts, seq_type_out=SeriesType.SINGLE) == ts + assert series2seq(ts, seq_type_out=SeriesType.SEQ) == [ts] + assert series2seq(ts, seq_type_out=SeriesType.SEQ_SEQ) == [[ts]] + + # Sequence[`TimeSeries`] to different sequence types + assert series2seq([ts], seq_type_out=SeriesType.SINGLE) == ts + assert series2seq([ts], seq_type_out=SeriesType.SEQ) == [ts] + assert series2seq([ts], seq_type_out=SeriesType.SEQ_SEQ) == [[ts]] + + # Sequence[`TimeSeries`, `TimeSeries`] to different sequence types + # cannot reduce dimension since there is more than one element in SEQ + assert series2seq([ts, ts], seq_type_out=SeriesType.SINGLE) == [ts, ts] + assert series2seq([ts, ts], seq_type_out=SeriesType.SEQ) == [ts, ts] + assert series2seq([ts, ts], seq_type_out=SeriesType.SEQ_SEQ) == [[ts, ts]] + assert series2seq([ts, ts], seq_type_out=SeriesType.SEQ_SEQ, nested=True) == [ + [ts], + [ts], + ] + + # Sequence[Sequence[`TimeSeries`]] to different sequence types + # SEQ_SEQ represents historical forecasts (and downstream tasks) output + # the outer sequence represents the series axis, therefore reducing to SINGLE + # actually returns a Sequence[`TimeSeries`] + assert series2seq([[ts]], seq_type_out=SeriesType.SINGLE) == [ts] + assert series2seq([[ts]], seq_type_out=SeriesType.SEQ) == [[ts]] + assert series2seq([[ts]], seq_type_out=SeriesType.SEQ_SEQ) == [[ts]] + + # Sequence[`TimeSeries`, `TimeSeries`] to different sequence types + # cannot reduce dimension since there is more than one element in SEQ_SEQ + assert series2seq([[ts], [ts]], seq_type_out=SeriesType.SINGLE) == [[ts], [ts]] + assert series2seq([[ts], [ts]], seq_type_out=SeriesType.SEQ) == [[ts], [ts]] + assert series2seq([[ts], [ts]], seq_type_out=SeriesType.SEQ_SEQ) == [[ts], [ts]] + + def test_get_single_series(self): + ts = linear_timeseries(length=3) + assert get_single_series(None) is None + assert get_single_series(ts) == ts + assert get_single_series([ts]) == ts + assert get_single_series([ts, ts]) == ts diff --git a/darts/tests/utils/test_utils.py b/darts/tests/utils/test_utils.py index c8c7f8351c..79c6636591 100644 --- a/darts/tests/utils/test_utils.py +++ b/darts/tests/utils/test_utils.py @@ -3,8 +3,9 @@ import pytest from darts import TimeSeries -from darts.utils import _with_sanity_checks, retain_period_common_to_all +from darts.utils import _with_sanity_checks from darts.utils.missing_values import extract_subseries +from darts.utils.ts_utils import retain_period_common_to_all class TestUtils: diff --git a/darts/timeseries.py b/darts/timeseries.py index 183331171e..124cc6ffe7 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -21,7 +21,7 @@ - Have a monotonically increasing time index, without holes (without missing dates) - Contain numeric types only - Have distinct components/columns names - - Have a well defined frequency (`date offset aliases + - Have a well-defined frequency (`date offset aliases `_ for ``DateTimeIndex``, or step size for ``RangeIndex``) - Have static covariates consistent with their components, or no static covariates @@ -50,6 +50,8 @@ from pandas.tseries.frequencies import to_offset from scipy.stats import kurtosis, skew +from darts.utils.utils import generate_index, n_steps_between + from .logging import get_logger, raise_if, raise_if_not, raise_log try: @@ -267,7 +269,7 @@ def __init__(self, xa: xr.DataArray, copy=True): ), logger, ) - # pre-compute grouping informations + # pre-compute grouping information components_set = set(self.components) children = set(hierarchy.keys()) @@ -2474,8 +2476,52 @@ def slice_intersect(self, other: Self) -> Self: TimeSeries a new series, containing the values of this series, over the time-span common to both time series. """ - time_index = self.time_index.intersection(other.time_index) - return self[time_index] + if other.has_same_time_as(self): + return self.__class__(self._xa) + if other.freq == self.freq: + start, end = self._slice_intersect_bounds(other) + return self[start:end] + else: + time_index = self.time_index.intersection(other.time_index) + return self[time_index] + + def slice_intersect_values(self, other: Self, copy: bool = False) -> Self: + """ + Return the sliced values of this series, where the time index has been intersected with the one + of the `other` series. + + This method is in general *not* symmetric. + + Parameters + ---------- + other + The other time series + copy + Whether to return a copy of the values, otherwise returns a view. + Leave it to True unless you know what you are doing. + + Returns + ------- + np.ndarray + The values of this series, over the time-span common to both time series. + """ + vals = self.all_values(copy=copy) + if other.has_same_time_as(self): + return vals + if other.freq == self.freq: + start, end = self._slice_intersect_bounds(other) + return vals[start:end] + else: + return vals[self.time_index.isin(other.time_index)] + + def _slice_intersect_bounds(self, other: Self) -> Tuple[int, int]: + shift_start = n_steps_between( + other.start_time(), self.start_time(), freq=self.freq + ) + shift_end = n_steps_between(other.end_time(), self.end_time(), freq=self.freq) + shift_start = shift_start if shift_start >= 0 else 0 + shift_end = shift_end if shift_end < 0 else None + return shift_start, shift_end def strip(self, how: str = "all") -> Self: """ @@ -2716,7 +2762,12 @@ def has_same_time_as(self, other: Self) -> bool: """ if len(other) != len(self): return False - return (other.time_index == self.time_index).all() + if other.freq != self.freq: + return False + if other.start_time() != self.start_time(): + return False + else: + return True def append(self, other: Self) -> Self: """ @@ -5085,11 +5136,16 @@ def _get_freq(xa_in: xr.DataArray): return self.__class__(xa_) elif isinstance(key, pd.RangeIndex): _check_range() - xa_ = self._xa.sel({self._time_dim: key}) + idx_ = key + if not len(key) and self.freq != key.step: + # keep original step size in case of empty range index + idx_ = pd.RangeIndex(step=self.freq) + + xa_ = self._xa.sel({self._time_dim: idx_}) # sel() gives us an Int64Index. We have to set the RangeIndex. # see: https://github.com/pydata/xarray/issues/6256 - xa_ = xa_.assign_coords({self.time_dim: key}) + xa_ = xa_.assign_coords({self.time_dim: idx_}) return self.__class__(xa_) @@ -5395,8 +5451,6 @@ def concatenate( "of the first series.", ) - from darts.utils.timeseries_generation import generate_index - tindex = generate_index( start=series[0].start_time(), freq=series[0].freq_str, diff --git a/darts/utils/__init__.py b/darts/utils/__init__.py index be17f2204c..1028ae6e60 100644 --- a/darts/utils/__init__.py +++ b/darts/utils/__init__.py @@ -7,5 +7,5 @@ _build_tqdm_iterator, _parallel_apply, _with_sanity_checks, - retain_period_common_to_all, + n_steps_between, ) diff --git a/darts/utils/data/tabularization.py b/darts/utils/data/tabularization.py index a7f8b89b1c..8a8e0e0dcd 100644 --- a/darts/utils/data/tabularization.py +++ b/darts/utils/data/tabularization.py @@ -16,7 +16,8 @@ from darts.logging import get_logger, raise_if, raise_if_not, raise_log from darts.timeseries import TimeSeries -from darts.utils.utils import get_single_series, n_steps_between, series2seq +from darts.utils.ts_utils import get_single_series, series2seq +from darts.utils.utils import n_steps_between logger = get_logger(__name__) diff --git a/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py b/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py index ee06f71c57..6d39a305bc 100644 --- a/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py +++ b/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py @@ -1,4 +1,4 @@ -from typing import List, Optional, Sequence, Union +from typing import Optional, Sequence, Union try: from typing import Literal @@ -13,7 +13,7 @@ from darts.timeseries import TimeSeries from darts.utils.data.tabularization import create_lagged_prediction_data from darts.utils.historical_forecasts.utils import _get_historical_forecast_boundaries -from darts.utils.timeseries_generation import generate_index +from darts.utils.utils import generate_index logger = get_logger(__name__) @@ -32,9 +32,7 @@ def _optimized_historical_forecasts_last_points_only( show_warnings: bool = True, predict_likelihood_parameters: bool = False, **kwargs, -) -> Union[ - TimeSeries, List[TimeSeries], Sequence[TimeSeries], Sequence[List[TimeSeries]] -]: +) -> Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: """ Optimized historical forecasts for RegressionModel with last_points_only = True @@ -172,7 +170,7 @@ def _optimized_historical_forecasts_last_points_only( hierarchy=series_.hierarchy, ) ) - return forecasts_list if len(series) > 1 else forecasts_list[0] + return forecasts_list def _optimized_historical_forecasts_all_points( @@ -189,9 +187,7 @@ def _optimized_historical_forecasts_all_points( show_warnings: bool = True, predict_likelihood_parameters: bool = False, **kwargs, -) -> Union[ - TimeSeries, List[TimeSeries], Sequence[TimeSeries], Sequence[List[TimeSeries]] -]: +) -> Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: """ Optimized historical forecasts for RegressionModel with last_points_only = False. @@ -352,4 +348,4 @@ def _optimized_historical_forecasts_all_points( ) forecasts_list.append(forecasts_) - return forecasts_list if len(series) > 1 else forecasts_list[0] + return forecasts_list diff --git a/darts/utils/historical_forecasts/optimized_historical_forecasts_torch.py b/darts/utils/historical_forecasts/optimized_historical_forecasts_torch.py index 0aa41d4eab..182516daf3 100644 --- a/darts/utils/historical_forecasts/optimized_historical_forecasts_torch.py +++ b/darts/utils/historical_forecasts/optimized_historical_forecasts_torch.py @@ -1,4 +1,4 @@ -from typing import List, Optional, Sequence, Union +from typing import Optional, Sequence, Union try: from typing import Literal @@ -16,7 +16,7 @@ _get_historical_forecast_boundaries, _process_predict_start_points_bounds, ) -from darts.utils.timeseries_generation import generate_index +from darts.utils.utils import generate_index logger = get_logger(__name__) @@ -37,9 +37,7 @@ def _optimized_historical_forecasts( verbose: bool = False, predict_likelihood_parameters: bool = False, **kwargs, -) -> Union[ - TimeSeries, List[TimeSeries], Sequence[TimeSeries], Sequence[List[TimeSeries]] -]: +) -> Union[Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: """ Optimized historical forecasts for TorchForecastingModels @@ -147,4 +145,4 @@ def _optimized_historical_forecasts( hierarchy=preds[0].hierarchy, ) forecasts_list.append(preds) - return forecasts_list if len(forecasts_list) > 1 else forecasts_list[0] + return forecasts_list diff --git a/darts/utils/historical_forecasts/utils.py b/darts/utils/historical_forecasts/utils.py index b074eec475..cab00882a6 100644 --- a/darts/utils/historical_forecasts/utils.py +++ b/darts/utils/historical_forecasts/utils.py @@ -14,8 +14,8 @@ from darts.logging import get_logger, raise_if_not, raise_log from darts.timeseries import TimeSeries -from darts.utils.timeseries_generation import generate_index -from darts.utils.utils import series2seq +from darts.utils.ts_utils import get_series_seq_type, series2seq +from darts.utils.utils import generate_index logger = get_logger(__name__) @@ -814,12 +814,17 @@ def _check_optimizable_historical_forecasts_global_models( def _process_historical_forecast_input( model, - series: Optional[Sequence[TimeSeries]], - past_covariates: Optional[Sequence[TimeSeries]] = None, - future_covariates: Optional[Sequence[TimeSeries]] = None, + series: Union[TimeSeries, Sequence[TimeSeries]], + past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, + future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, forecast_horizon: int = 1, allow_autoregression: bool = False, -): +) -> Union[ + Sequence[TimeSeries], + Optional[Sequence[TimeSeries]], + Optional[Sequence[TimeSeries]], + int, +]: if not model._fit_called: raise_log( ValueError("Model has not been fit yet."), @@ -834,6 +839,10 @@ def _process_historical_forecast_input( ), logger, ) + series_seq_type = get_series_seq_type(series) + series = series2seq(series) + past_covariates = series2seq(past_covariates) + future_covariates = series2seq(future_covariates) # manage covariates, usually handled by RegressionModel.predict() if past_covariates is None and model.past_covariate_series is not None: @@ -851,7 +860,7 @@ def _process_historical_forecast_input( past_covariates=past_covariates, future_covariates=future_covariates, ) - return series, past_covariates, future_covariates + return series, past_covariates, future_covariates, series_seq_type def _process_predict_start_points_bounds( diff --git a/darts/utils/likelihood_models.py b/darts/utils/likelihood_models.py index 7701b7a960..033aa6bf2e 100644 --- a/darts/utils/likelihood_models.py +++ b/darts/utils/likelihood_models.py @@ -57,9 +57,10 @@ from torch.distributions.kl import kl_divergence from darts import TimeSeries +from darts.logging import raise_if_not # TODO: Table on README listing distribution, possible priors and wiki article -from darts.utils.utils import _check_quantiles, raise_if_not +from darts.utils.utils import _check_quantiles MIN_CAUCHY_GAMMA_SAMPLING = 1e-100 diff --git a/darts/utils/timeseries_generation.py b/darts/utils/timeseries_generation.py index 8e6784991f..1bc51a0dee 100644 --- a/darts/utils/timeseries_generation.py +++ b/darts/utils/timeseries_generation.py @@ -12,6 +12,7 @@ from darts import TimeSeries from darts.logging import get_logger, raise_if, raise_if_not, raise_log +from darts.utils.utils import generate_index logger = get_logger(__name__) @@ -27,74 +28,6 @@ } -def generate_index( - start: Optional[Union[pd.Timestamp, int]] = None, - end: Optional[Union[pd.Timestamp, int]] = None, - length: Optional[int] = None, - freq: Union[str, int, pd.DateOffset] = None, - name: str = None, -) -> Union[pd.DatetimeIndex, pd.RangeIndex]: - """Returns an index with a given start point and length. Either a pandas DatetimeIndex with given frequency - or a pandas RangeIndex. The index starts at - - Parameters - ---------- - start - The start of the returned index. If a pandas Timestamp is passed, the index will be a pandas - DatetimeIndex. If an integer is passed, the index will be a pandas RangeIndex index. Works only with - either `length` or `end`. - end - Optionally, the end of the returned index. Works only with either `start` or `length`. If `start` is - set, `end` must be of same type as `start`. Else, it can be either a pandas Timestamp or an integer. - length - Optionally, the length of the returned index. Works only with either `start` or `end`. - freq - The time difference between two adjacent entries in the returned index. In case `start` is a timestamp, - a DateOffset alias is expected; see - `docs `_. - By default, "D" (daily) is used. - If `start` is an integer, `freq` will be interpreted as the step size in the underlying RangeIndex. - The freq is optional for generating an integer index (if not specified, 1 is used). - name - Optionally, an index name. - """ - constructors = [ - arg_name - for arg, arg_name in zip([start, end, length], ["start", "end", "length"]) - if arg is not None - ] - raise_if( - len(constructors) != 2, - "index can only be generated with exactly two of the following parameters: [`start`, `end`, `length`]. " - f"Observed parameters: {constructors}. For generating an index with `end` and `length` consider setting " - f"`start` to None.", - logger, - ) - raise_if( - end is not None and start is not None and type(start) is not type(end), - "index generation with `start` and `end` requires equal object types of `start` and `end`", - logger, - ) - - if isinstance(start, pd.Timestamp) or isinstance(end, pd.Timestamp): - index = pd.date_range( - start=start, - end=end, - periods=length, - freq="D" if freq is None else freq, - name=name, - ) - else: # int - step = 1 if freq is None else freq - index = pd.RangeIndex( - start=start if start is not None else end - step * length + step, - stop=end + step if end is not None else start + step * length, - step=step, - name=name, - ) - return index - - def constant_timeseries( value: float = 1, start: Optional[Union[pd.Timestamp, int]] = pd.Timestamp("2000-01-01"), diff --git a/darts/utils/ts_utils.py b/darts/utils/ts_utils.py new file mode 100644 index 0000000000..02adf9a998 --- /dev/null +++ b/darts/utils/ts_utils.py @@ -0,0 +1,263 @@ +""" +Additional util functions +------------------------- +""" + +from enum import Enum +from functools import total_ordering +from typing import List, Optional, Sequence, Union + +from darts import TimeSeries +from darts.logging import get_logger, raise_log + +try: + from IPython import get_ipython +except ModuleNotFoundError: + get_ipython = None + +logger = get_logger(__name__) + +_SEQ_TYPE_NAMES = { + 0: "`TimeSeries`", + 1: "`Sequence[TimeSeries]`", + 2: "`Sequence[Sequence[TimeSeries]]`", +} + + +@total_ordering +class SeriesType(Enum): + """An Enum for different `TimeSeries` sequence types.""" + + NONE = -1 # `None` + SINGLE = 0 # `TimeSeries` + SEQ = 1 # `Sequence[TimeSeries]` + SEQ_SEQ = 2 # `Sequence[Sequence[TimeSeries]]` + + def _check_member(self, other): + if self.__class__ is not other.__class__: + raise_log(ValueError("`other` must be a `SeriesType` enum."), logger=logger) + + def __eq__(self, other): + self._check_member(other) + return super().__eq__(other) + + def __lt__(self, other): + self._check_member(other) + return self.value < other.value + + def __add__(self, other: int): + if not isinstance(other, int): + raise_log(ValueError("`other` must be of type `int`."), logger=logger) + new_val = self.value + other + if new_val > 2: + raise_log( + ValueError("Cannot go higher than `SeriesType.SEQ_SEQ`."), logger=logger + ) + return SeriesType(new_val) + + def __str__(self): + return _SEQ_TYPE_NAMES[self.value] + + +def series2seq( + ts: Optional[ + Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]] + ], + seq_type_out: SeriesType = SeriesType.SEQ, + nested: bool = False, +) -> Optional[Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]]: + """If possible, converts `ts` into the desired sequence type `seq_type_out`. Otherwise, returns the + original `ts`. + + Parameters + ---------- + ts + None, a single TimeSeries, a sequence of TimeSeries, or a sequence of sequences of TimeSeries. + seq_type_out + The output sequence type: + + - SeriesType.SINGLE: `TimeSeries` (e.g. a single series) + - SeriesType.SEQ: sequence of `TimeSeries` (e.g. multiple series) + - SeriesType.SEQ_SEQ: sequence of sequences of `TimeSeries` (e.g. historical forecasts output) + nested + Only applies with `seq_type_out=SeriesType.SEQ_SEQ` and `ts` having a sequence type `SeriesType.SEQ`. + In this case, wrap each element in `ts` in a list ([ts1, ts2] -> [[ts1], [ts2]]). + + Raises + ------ + ValueError + If there is an invalid `seq_type_out` value. + """ + if ts is None: + return ts + + if not isinstance(seq_type_out, SeriesType): + raise_log( + ValueError( + f"Invalid parameter `seq_type_out={seq_type_out}`. Must be one of `(0, 1, 2)`" + ), + logger=logger, + ) + + seq_type_in = get_series_seq_type(ts) + + if seq_type_out == seq_type_in: + return ts + + n_series = 1 if seq_type_in == SeriesType.SINGLE else len(ts) + + if seq_type_in == SeriesType.SINGLE and seq_type_out == SeriesType.SEQ: + # ts -> [ts] + return [ts] + elif seq_type_in == SeriesType.SINGLE and seq_type_out == SeriesType.SEQ_SEQ: + # ts -> [[ts]] + return [[ts]] + elif ( + seq_type_in == SeriesType.SEQ + and seq_type_out == SeriesType.SINGLE + and n_series == 1 + ): + # [ts] -> ts + return ts[0] + elif seq_type_in == SeriesType.SEQ and seq_type_out == SeriesType.SEQ_SEQ: + if not nested: + # [ts1, ts2] -> [[ts1, ts2]] + return [ts] + else: + # [ts1, ts2] -> [[ts1], [ts2]] + return [[ts_] for ts_ in ts] + elif ( + seq_type_in == SeriesType.SEQ_SEQ + and seq_type_out == SeriesType.SINGLE + and n_series == 1 + ): + # [[ts]] -> [ts] + return ts[0] + elif ( + seq_type_in == SeriesType.SEQ_SEQ + and seq_type_out == SeriesType.SEQ + and n_series == 1 + ): + # [[ts1, ts2]] -> [[ts1, ts2]] + return ts + else: + # ts -> ts + return ts + + +def seq2series( + ts: Optional[Union[TimeSeries, Sequence[TimeSeries]]] +) -> Optional[TimeSeries]: + """If `ts` is a Sequence with only a single series, return the single series as TimeSeries. + + Parameters + ---------- + ts + None, a single TimeSeries, or a sequence of TimeSeries + + Returns + ------- + `ts` if `ts` if is not a single element TimeSeries sequence, else `ts[0]` + + """ + return series2seq(ts, seq_type_out=SeriesType.SINGLE) + + +def get_single_series( + ts: Optional[ + Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]] + ] +) -> Optional[TimeSeries]: + """Returns a single (first) TimeSeries or `None` from `ts`. Returns `ts` if `ts` is a TimeSeries, `ts[0]` if + `ts` is a `Sequence[TimeSeries]`, and `ts[0][0]` if `ts` is a `Sequence[Sequence[TimeSeries]]`. + Otherwise, returns `None`. + + Parameters + ---------- + ts + None, a single `TimeSeries`, a sequence of `TimeSeries`, or a sequence of sequences of `TimeSeries`. + + Returns + ------- + TimeSeries + `ts` if `ts` is a TimeSeries, `ts[0]` if `ts` is a Sequence of TimeSeries. Otherwise, returns `None` + + """ + seq_type = get_series_seq_type(ts) + if seq_type <= SeriesType.SINGLE: + # `None` and `TimeSeries` + return ts + elif seq_type == SeriesType.SEQ: + return ts[0] + else: + return ts[0][0] + + +def get_series_seq_type( + ts: Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]], +) -> SeriesType: + """Returns the sequence type of `ts`. + + - SeriesType.SINGLE: `TimeSeries` (e.g. a single series) + - SeriesType.SEQ: sequence of `TimeSeries` (e.g. multiple series) + - SeriesType.SEQ_SEQ: sequence of sequences of `TimeSeries` (e.g. historical forecasts output) + + Parameters + ---------- + ts + The input series to get the sequence type from. + + Raises + ------ + ValueError + If `ts` does not have one of the expected sequence types. + """ + if ts is None: + return SeriesType.NONE + elif isinstance(ts, TimeSeries): + return SeriesType.SINGLE + elif isinstance(ts[0], TimeSeries): + return SeriesType.SEQ + elif isinstance(ts[0][0], TimeSeries): + return SeriesType.SEQ_SEQ + else: + raise_log( + ValueError( + "input series must be of type `TimeSeries`, `Sequence[TimeSeries]`, or " + "`Sequence[Sequence[TimeSeries]]`" + ), + logger=logger, + ) + + +# TODO: we do not check the time index here +def retain_period_common_to_all(series: List[TimeSeries]) -> List[TimeSeries]: + """ + Trims all series in the provided list, if necessary, so that the returned time series have + a common span (corresponding to largest time sub-interval common to all series). + + Parameters + ---------- + series + The list of series to consider. + + Raises + ------ + ValueError + If no common time sub-interval exists + + Returns + ------- + List[TimeSeries] + A list of series, where each series have the same span + """ + + last_first = max(map(lambda s: s.start_time(), series)) + first_last = min(map(lambda s: s.end_time(), series)) + + if last_first >= first_last: + raise_log( + ValueError("The provided time series must have nonzero overlap"), logger + ) + + return list(map(lambda s: s.slice(last_first, first_last), series)) diff --git a/darts/utils/utils.py b/darts/utils/utils.py index a38b246158..62305fc505 100644 --- a/darts/utils/utils.py +++ b/darts/utils/utils.py @@ -6,16 +6,14 @@ from enum import Enum from functools import wraps from inspect import Parameter, getcallargs, signature -from typing import Callable, Iterator, List, Optional, Sequence, Tuple, TypeVar, Union +from typing import Callable, Iterator, List, Optional, Tuple, TypeVar, Union import pandas as pd from joblib import Parallel, delayed from tqdm import tqdm from tqdm.notebook import tqdm as tqdm_notebook -from darts import TimeSeries -from darts.logging import get_logger, raise_if_not, raise_log -from darts.utils.timeseries_generation import generate_index +from darts.logging import get_logger, raise_if, raise_if_not, raise_log try: from IPython import get_ipython @@ -43,39 +41,6 @@ class ModelMode(Enum): NONE = None -# TODO: we do not check the time index here -def retain_period_common_to_all(series: List[TimeSeries]) -> List[TimeSeries]: - """ - Trims all series in the provided list, if necessary, so that the returned time series have - a common span (corresponding to largest time sub-interval common to all series). - - Parameters - ---------- - series - The list of series to consider. - - Raises - ------ - ValueError - If no common time sub-interval exists - - Returns - ------- - List[TimeSeries] - A list of series, where each series have the same span - """ - - last_first = max(map(lambda s: s.start_time(), series)) - first_last = min(map(lambda s: s.end_time(), series)) - - if last_first >= first_last: - raise_log( - ValueError("The provided time series must have nonzero overlap"), logger - ) - - return list(map(lambda s: s.slice(last_first, first_last), series)) - - def _build_tqdm_iterator(iterable, verbose, **kwargs): """ Build an iterable, possibly using tqdm (either in notebook or regular mode) @@ -236,43 +201,6 @@ def _check_quantiles(quantiles): ) -def series2seq( - ts: Optional[Union[TimeSeries, Sequence[TimeSeries]]] -) -> Optional[Sequence[TimeSeries]]: - """If `ts` is a single TimeSeries, return it as a list of a single TimeSeries. - - Parameters - ---------- - ts - None, a single TimeSeries, or a sequence of TimeSeries - - Returns - ------- - `ts` if `ts` is not a TimeSeries, else `[ts]` - - """ - return [ts] if isinstance(ts, TimeSeries) else ts - - -def seq2series( - ts: Optional[Union[TimeSeries, Sequence[TimeSeries]]] -) -> Optional[TimeSeries]: - """If `ts` is a Sequence with only a single series, return the single series as TimeSeries. - - Parameters - ---------- - ts - None, a single TimeSeries, or a sequence of TimeSeries - - Returns - ------- - `ts` if `ts` if is not a single element TimeSeries sequence, else `ts[0]` - - """ - - return ts[0] if isinstance(ts, Sequence) and len(ts) == 1 else ts - - def slice_index( index: Union[pd.RangeIndex, pd.DatetimeIndex], start: Union[int, pd.Timestamp], @@ -377,28 +305,6 @@ def drop_after_index( return slice_index(index, index[0], split_point) -def get_single_series( - ts: Optional[Union[TimeSeries, Sequence[TimeSeries]]] -) -> Optional[TimeSeries]: - """Returns a single (first) TimeSeries or `None` from `ts`. Returns `ts` if `ts` is a TimeSeries, `ts[0]` if - `ts` is a Sequence of TimeSeries. Otherwise, returns `None`. - - Parameters - ---------- - ts - None, a single TimeSeries, or a sequence of TimeSeries. - - Returns - ------- - `ts` if `ts` is a TimeSeries, `ts[0]` if `ts` is a Sequence of TimeSeries. Otherwise, returns `None` - - """ - if isinstance(ts, TimeSeries) or ts is None: - return ts - else: - return ts[0] - - def n_steps_between( end: Union[pd.Timestamp, int], start: Union[pd.Timestamp, int], @@ -468,3 +374,71 @@ def n_steps_between( # Create a temporary DatetimeIndex to extract the actual start index. n_steps = (end.to_period(period_alias) - start.to_period(period_alias)).n return n_steps + + +def generate_index( + start: Optional[Union[pd.Timestamp, int]] = None, + end: Optional[Union[pd.Timestamp, int]] = None, + length: Optional[int] = None, + freq: Union[str, int, pd.DateOffset] = None, + name: str = None, +) -> Union[pd.DatetimeIndex, pd.RangeIndex]: + """Returns an index with a given start point and length. Either a pandas DatetimeIndex with given frequency + or a pandas RangeIndex. The index starts at + + Parameters + ---------- + start + The start of the returned index. If a pandas Timestamp is passed, the index will be a pandas + DatetimeIndex. If an integer is passed, the index will be a pandas RangeIndex index. Works only with + either `length` or `end`. + end + Optionally, the end of the returned index. Works only with either `start` or `length`. If `start` is + set, `end` must be of same type as `start`. Else, it can be either a pandas Timestamp or an integer. + length + Optionally, the length of the returned index. Works only with either `start` or `end`. + freq + The time difference between two adjacent entries in the returned index. In case `start` is a timestamp, + a DateOffset alias is expected; see + `docs `_. + By default, "D" (daily) is used. + If `start` is an integer, `freq` will be interpreted as the step size in the underlying RangeIndex. + The freq is optional for generating an integer index (if not specified, 1 is used). + name + Optionally, an index name. + """ + constructors = [ + arg_name + for arg, arg_name in zip([start, end, length], ["start", "end", "length"]) + if arg is not None + ] + raise_if( + len(constructors) != 2, + "index can only be generated with exactly two of the following parameters: [`start`, `end`, `length`]. " + f"Observed parameters: {constructors}. For generating an index with `end` and `length` consider setting " + f"`start` to None.", + logger, + ) + raise_if( + end is not None and start is not None and type(start) is not type(end), + "index generation with `start` and `end` requires equal object types of `start` and `end`", + logger, + ) + + if isinstance(start, pd.Timestamp) or isinstance(end, pd.Timestamp): + index = pd.date_range( + start=start, + end=end, + periods=length, + freq="D" if freq is None else freq, + name=name, + ) + else: # int + step = 1 if freq is None else freq + index = pd.RangeIndex( + start=start if start is not None else end - step * length + step, + stop=end + step if end is not None else start + step * length, + step=step, + name=name, + ) + return index diff --git a/examples/00-quickstart.ipynb b/examples/00-quickstart.ipynb index c4bf8a58f6..9081e0f5a4 100644 --- a/examples/00-quickstart.ipynb +++ b/examples/00-quickstart.ipynb @@ -98,14 +98,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABGY0lEQVR4nO3deXxU1fn48c9kXwiEsIR9jYCBhCUHlE0U1IrgUhQVRUHEpcq3Vq3F2opLFX+tWrWWalEoLm1VVBb3qqhIkOXILovInhAISwgJZJ/7++POvUzWmWRmkkl43q9XXiEz9545JwnPPHnuuec4DMNACCFE4xfS0B0QQgjhHxLQhRCiiZCALoQQTYQEdCGEaCIkoAshRBMhAV0IIZqIhgzoRrB/HDp0qMH7IGORsTSWDxlLvX1USzL0GpSVlTV0F/xGxhKcZCzBqbGORQK6EEI0ERLQhRCiiZCALoQQTYQEdCGEaCIkoAshRBMhAV0IIZoICehCCOEjwzAoLS1t6G5IQK/J008/zddff83ixYt5+umnAZg6dSrdu3dnwIABDBo0iO+//76BeymEaEhlZWX069ePCy64AKfT2aB9kYBeg/Xr13P++efz7bffcsEFF9iPP/PMM2zYsIH/9//+H3feeWcD9rDugiGbEKIpOHr0KFu3buX7779n5cqVDdoXCehVePDBB0lNTWXjxo0MHTqU1157jV/96lc88cQT5Y674IIL+Pnnn8nPz2fMmDEMGjSIlJQUlixZAsCpU6cYN24c/fv3p1+/frzzzjsAPPTQQyQnJ5Oamspvf/tbAI4cOcI111zD4MGDGTx4MOnp6QA89thjTJs2jQsvvJAePXrwt7/9zX79P/3pT/Tu3ZsRI0YwadIknn32WQB27drFZZddRlpaGiNHjmT79u2A+dfFXXfdxXnnncfvfvc7vv32WwYMGMCAAQMYOHAgeXl5gf3GCtEEnThxwv73v//974brCJi1nwb6CGpr1qwxpk6dahQXFxvDhg2zH58yZYqxcOFCwzAM49133zWGDBlilJSUGLm5uYZhGMaRI0eMnj17Gk6n03jvvfeM6dOn2+eeOHHCOHr0qNGrVy/D6XQahmEYOTk5hmEYxqRJk4zvvvvOMAzD2Ldvn9GnTx/DMAzj0UcfNYYOHWoUFhYaR44cMRISEozi4mJjzZo1Rv/+/Y2CggLj5MmTRlJSkvHMM88YhmEYo0ePNn766SfDMAxj1apVxkUXXWRkZGQYU6ZMMcaNG2eUlpYahmEY48ePN1asWGEYhmHk5eUZJSUlAfle+ltGRkZDd8FvZCzBqTZjWbVqlb3OSkJCglFUVBTAnhmGUUNcDWvYt5PqORyOgLRreLmH6rp160hOTmb79u2ce+655Z578MEHefLJJ2nTpg3z5s3DMAwefvhhli9fTkhICJmZmRw+fJiUlBQeeOABZs6cyfjx4xk5ciSlpaVERUVx2223MX78eMaPHw/Al19+ydatW+3XOHnyJPn5+QCMGzeOyMhIIiMjadu2LYcPHyY9PZ2rrrqKqKgooqKiuOKKKwDIz89n5cqVTJw40W6rqKjI/vfEiRMJDQ0FYPjw4dx///3cdNNNTJgwgU6dOtXhOyrE2c09Qz9+/Diff/65/f+xvgVtQG8oGzZsYOrUqWRkZBAfH89LL72EYRgMGDDAvgD6zDPPcO2119rnLFiwgCNHjvDDDz8QHh5Ot27dKCwspFevXqxbt45PPvmEP/7xj4wZM4ZZs2axZs0avvrqK9577z3+/ve/s2zZMpxOJ6tWrSIqKqpSnyIjI+1/h4aG1lj/djqdxMfHs2HDhnKPZ2ZmAhAbG2s/9tBDDzFu3Dg++eQThg8fzueff06fPn3q9H0T4mzlHtDBLLs0VED3qoaulLpQKfWVUuprpdQvlVIjlFIrlVIrlFIprmPaKaX+p5RKV0pN9rVjNf1Z4cuHJwMGDGDDhg306tWLr7/+mtGjR/P555+zYcMGoqOjqzwnNzeXtm3bEh4eztdff82+ffsAOHjwIDExMUyePJkHH3yQdevWkZ+fT25uLpdffjnPP/88GzduBODSSy/lpZdestusGJArGj58OB9++CGFhYXk5+fz0UcfAdC8eXO6d+/OwoUL7e+j9RoV7dq1i5SUFGbOnMngwYPtWrsQwntWQL/00ksBWLp0KadOnWqQvngM6EqpaOABYKzW+iKt9SLgKWAccCPwZ9ehM4G/AKOAe5RSlVPNRuLIkSO0bNmSkJAQtm/fTnJyco3H33TTTWitSUlJ4Y033rCz3M2bNzNkyBAGDBjA448/zh//+Efy8vIYP348qampjBgxgr/+9a8A/O1vf0NrTWpqKsnJybzyyis1vubgwYO58sorSU1NZezYsaSkpNCiRQvAzBDmzZtH//796du3r32RtqIXXniBfv36kZqaSnh4OGPHjq3tt0qIs15OTg4A/fv3JykpiYKCAjIyMhqmM54y2rS0tNFpaWnvpqWlfZ6WlrYoLS2tfVpa2jK351e5PqenpaWFuP79UlpamvLQdtAL9os8eXl5hmEYxqlTp4y0tDTjhx9+qPbYYB9LbchYgtPZOpaZM2cagPHUU08ZSikDMFavXh3A3vl2UTQRSALOBy4GHgdOuj1fqpSKAMK11tas+lwgoWJDSqk7gDsAZsyYwSWXXFLnN6L6UFJSYteeg9E999zDzp07KSoqYuLEiSQmJlbb32AfS23IWILT2ToW9+Os6127du2iY8eOAelbTe16E9BPAOla62Kl1FeYAd19wnKY67kSpVSIK6i3AI5XbEhrPReY6/rSu+kmDSgzMzNgPxR/WLx4sdfHBvtYakPGEpzO1rGUlJQA0K1bN9q2bQtAeHh4g3wvvLkouhY4VynlAAYAW4EwpVS8UqozZwL3WuBCpVQYkAb8GID+CiFEULEuisbHx9vXsXJzcxukLx4zdK31UaXUIuBbzKx6GtAR+MT19d2uQ/8MvAE8CbyitS4ISI+FECKIWBdFW7ZsGfwBHUBrPQeY4/bQLmBYhWOygOAuigshhJ9VlaGfPHmyhjMCR9ZyEUIIHwRTyUUCuhBC1JFhGBLQhRCiKSgsLKS4uJiIiAiioqJo3rw5IAFdCCEaHSs7b9myJQ6HQzJ0IYRorKwZLvHx8QAS0IUQorFyr5+DBHQhhGi0qgvoMm1RCCEaGcnQhRCiiXC/KAoQHR1NWFiYPfulvklAF0KcFZxOp+eDaqniRVGHw9GgUxcloAshmrxFixYRFxfHokWL/NpuxZILNGzZRQK6EKJJKy4u5r777uP06dN88803fm1bAroQQtSjefPm2fv8+jvISkAXQoh6UlBQwJNPPml/XZ8BvSGmLkpAF0I0Wa+++ioHDx4kOjoaCFxAt2a5gGToQggREMuXLwdg2rRpgP+DbMVZLiABXQghAuLYsWMA9O3bF6ifkotMWxRCiAA4ftzc8rhHjx6Af4Os+1roVlbu/m8J6EII4UdWhu4e0A3D8Evbp06doqysjOjoaCIjI+3HJaALIUQAWBl6+/btiYyMpKSkhIIC/+xfX9UFUZBZLkII4XcFBQUUFBQQERFBbGys3zPno0ePApCQkFDuccnQhRDCz6zsPCEhISC7CR0+fBiAxMTEco9LQBdCCD+z6uetWrUC/B9oJaALIUQ9cc/Qof4CukxbFEIIP6uYoVtzxf0VaA8dOgRIhi6EEAHXUBl6s2bNcDgcnDp1itLSUr+8lrckoAshmqSGqqGHhITYZZe8vDy/vJa3JKALIZqk6jJ0a/64r6oL6O6vVd9lFwnoQogmqaEy9EC8lrckoAshmqRA1tDLysrsG4vatm1b6fmGCuhhng5QSnUD1gI/uh6aCFwI3AcUAFO01hlKqT7AXFebj2itvwpEh4UQTcvq1asBOO+88/zabiAz9KNHj+J0OmnVqhXh4eGVnreWA7D6UF88BnSXb7XW1wIopcKA+4FRwGDgEeBOYDZwG3AY+BSQgC6EqNHhw4cZNWoUUVFRHD9+nJAQ/xUNrAw9ENMWayq3AHTq1AmAjIwMn1+rNrz97g1XSn2nlJoNnANs01oXa63TgVTXMR201ju11ieB40qp1oHosBCi6Zg/fz5FRUXk5uaSn5/v17at7DgQJRdPAb1Lly4A7N+/3+fXqg1vMvQsIAk4DbwKTADclxELdX12f3PIBRKAo+4NKaXuAO4AmDFjBpdcckndel1PSkpKyMzMbOhu+IWMJTidzWMpKyvj5Zdftr/esWMHHTp08EtfDMOwA3pBQQGZmZn2KovHjx/32E9PY9m2bRtg3hVa1XHNmjUDzDH5++fbsWPHap/zGNC11kVAEYBS6gNgKuD+Vlrm+ux0e6wFcLyKtuZi1tkB/LMocQBlZmbW+M1rTGQswelsHsunn37KgQMH7K9jYmL89r3Iz8+npKSE6OhokpKSAIiIiLCf8/Q6nsZSUlICQLdu3ao8bsCAAQAcOXKkXn++3lwUjdNaW7PjRwIfA3cppSIABWxyPZellOoJZAMJWuujlVsTQgjTK6+8Uu5rf84IqXhBFMrPQzcMA4fDUef2G3PJZYRS6knMkssezIughcA3rs9TXMf9AViAWYJ51N8dFUI0HdnZ2Xz00UeEh4eTnJzMxo0b/bohRMUpi2Bm6FFRURQWFnL69GliY2Pr3L6ngN6hQwdCQkLIysqiuLjY/usg0LwpuXyKOWvF3TuuD/fjtmJm8EIIUaMdO3bgdDoZMmQInTp18ntArypDBzNLLywsJDc3N6ABPSwsjI4dO3LgwAEyMzPp3r17nV+rNuTGIiFEvcvKygLMTDYQN+FUlaGD/6YuVrfSoruGKLt4Ow9dCCH8xgro7du3t8sR9ZWhg+8B3VOGDtC5c2dAAroQoolzD+jWjJFA19DBPwHd6XRy5MgRoOrb/i0NkaFLyUUIUe/cA3ogSi6BzNCPHTtGWVkZ8fHxREZGVnuclFyEEGeFgwcPAmZANwzzlpT6zNB9WULXm3ILSEAXQpwl3DP0U6dOAY0nQ/fmgihIyUUIcZZwD+jW7j7+zNCzs7MBaNOmTbnH/THL5b///S8Affv2rfE494Bu/RUSaBLQhRDllJSUsHDhQn75y1/Ss2dP1qxZ49f2i4qKOH78OKGhobRp0yYgAd1a5dBa9dDia4a+e/duXn/9dUJDQ7n//vtrPDY+Pp5mzZqRn5/vt12SPJGALoQo59577+W6665j8eLF7N69myVLlvi1fatk0a5dO0JCQvx+UbSkpISsrCwcDgft27cv95yvr/XUU09RVlbGzTffbK8RUx2Hw1HvZRcJ6EKIcqyMfOjQocCZi4D+4l5uAfyeoR86dAjDMGjXrl2lzSeskktOTk6t23XPzv/whz94dY4EdCFEg9qzZw8At9xyCxD4gO7vDL26cgucuZBZlzEtXbqUsrIyJk6c6DE7t9T3RhcS0IUQtpMnT3L8+HGioqJITTX3rgl0QI+NjcXhcHD69GlKS0t9br+mgG69pjVtsjZ+/vlnAIYMGeL1OdZFWWv/0UCTgC6EsO3duxcw1/m2gp+/A7r7HHQwa81W2SUvL6/a87xVU0Bv164dYI7J6XRWer4mu3btAqBHjx5enyMBXQjRYKxyS/fu3cuVJ/w57a5ihg7+LbvUFNAjIyNJSEigtLS01kF29+7dAPTs2dPrc1q3NnfitJYKCDQJ6EIIm3uGHhMTQ7NmzSgqKvLrlMKqAro/L4zWFNDdX9fqhzfKysrsNzvJ0IUQjYJ7hg6+XUSsjvvSuRYrQw/WgJ6RkUFJSQnt2rUjJibG6/MkQxdCNJj6DOhVZeiBLrm4v25tAnpdyi0gGboQogFZJZeKAd26GchXpaWlZGdn43A4yq2F4q+SS1lZmX3R1f0vAHfW47WZ6WJdEK1tQLcy9KNHj9bL7f8S0IUQABiGYWfo3bp1A/yfoWdnZ2MYBm3atCEs7MzagP66KJqdnU1paSlt2rQhKiqqymN8ydBrUz8Hc0pmdHQ0hYWF9iJkgSQBXQgBmEvO5uXlERcXZy876++AXlW5BfyXoXsqt7i/dm0Cel0zdCifpQeaBHQhBFC+3OJwOAD/B3SrHWs+uKUpB3Srjn7kyBE2btzI5MmTefXVV2vdjjckoAshACqVW8D/Ad2a7VFxWVt/lVwCFdDrWnKB8hn6xo0b+fe//83XX39d63a8IQFdCAFUnuEC5e+s9Aer7GAFOUtDZOgHDx706kJlTk4OOTk5xMbG1riHaHXcM3TrjcH9e+xPEtCFEEDlGS7g/wy9uoBenxl6bGwscXFxFBcXe7Xqonu5xSpF1YZ7hl6Xm5NqQwK6EAKoOkP39+3/VkCvWHKpzwwdzkxd9Kbs4ku5BSRDF0I0ACsYdu7c2X6sWbNmxMTEUFBQQH5+vs+vEeiSy4EDBwDPAb02dXRfLohC+Qzd1zcHTySgCyGAM/twVtz82J9lF+uiaCBKLjk5OezZs4eIiAi6du1a47E1BfQXX3yRSZMm2Ss/7tixA8DrNdArsjL0jIwMDh48SGhoqMc3nLqSgC5EI7Jq1aqAzGd2Op3VZs/+DOiBzNBXrVoFgFKKyMjIGo+tLqAfOnSImTNn8t133/HZZ58BsGHDBgD69+9fp35ZY9VaA9C1a9dyN1X5kwR0IRqJbdu2MXToUM4//3y/rBvuLicnh7KyMlq2bElERES55/x5+38gL4qmp6cDMGzYMI/HVrfRxfPPP09RURFgvkEUFRXx448/4nA47A0/aqviei6Bqp+DBHQhGo1169YBZk33N7/5jV/btsotFS9Wgv8y9LKyMo4fP47D4bDvRLVERUURFhZGUVGRHVBrywrow4cP93hsVRl6Tk4O//jHP+yvV61axdatWyktLaVXr17ExsbWqV8V37wCVT+HWgR0pdQkpdQR178nKqVWKqW+Ukp1cj3WRym13PX4mEB1WIizlbUFGsD8+fN5//33/da2FdCrmmftr4Cek5ODYRi0bNmyUsmhLrsWGYbBI488wuLFiykpKbE3t65Nhu4e0OfMmUN+fr69xdwPP/zA6tWrARg4cKBXfapKQkJCuemODZ6hK6VCgYnAAaVUGHA/cCEwC3jEddhs4DbgMuAJv/dUiLOcFdCHDh0K4NcsvaaA7q+bi6ort1hqW3bZvHkzTz75JJMmTeLDDz/k9OnTnHPOOV7d/GPN5Nm/f7/92MsvvwzA7NmzSUpKoqioiAULFgAwYMAAr/pUldDQ0HJ/kQRDhj4JWAg4gXOAbVrrYq11OmAVljporXdqrU8Cx5VSVf/UhBB1YgX0p59+mqioKDIyMvwylRDOzD6pKUP3tYZe3QwXi/W4t28cVn8KCwuZNm0a4F12DtClSxccDgcZGRmUlpaSm5vLwYMHiY6OZvTo0QwaNAjALxk6lC9lNWiG7srOrwPecT3UEnC/FB1aRVu5QPkimRDCJ1ZAP+ecc+xpb9bccV/VVEO3yhO+BnRPGbo11XDfvn21ag/OZPXe1M/B3Fu0Q4cOlJWVkZGRUW7rPYfDYQd0iy8ZOpQfcyAzdG/mzkwG3tVaO5VSACeA5m7Pl7k+u2+h3QI4XrEhpdQdwB0AM2bM4JJLLqlDl+tPSUkJmZmZDd0Nv5CxBCdvx5Kbm8vRo0eJiorC6XTSpk0bfv75Z9avX09cXJzP/bDuEo2IiKjUH6v+m5GRUWNfPY1l586dAMTExFR5XKtWrQDYtGkTF1xwgcc+W+1FRUVRWFgImHPFvf3d6NChA5mZmaxdu9aeLtm+fXsyMzNJSUmxj0tMTPT5d65Zs2aAuexAYWGhT2117Nix2ue8CejJwECl1GTMcsv/AecqpSIABWxyHZellOoJZAMJWutKk2W11nOBua4vA799h48yMzNr/OY1JjKW4OTtWKzs2MrOk5KS+P777ykoKPDL9+L06dMA9OrVq1J7Vv33yJEjdOjQodr1TDyNpazMzP26du1a5XF9+/YFzIun3oyptLQUMJPDJUuWEBERwahRowgJ8a6S3KtXL9auXUt+fr59IbZPnz507NiR0tJSYmNjOXXqFGlpaT5/j62afc+ePQN2UxF4EdC11jOtfyultNb6V0qp64FvgEJgiuvpPwALMEswj/q9p0Kcxaxyi3W3ohUgrFvdfVVTySU6OpoWLVqQm5tLTk5OpSmH3vJUcrGW7fW25GLV5Lt3787mzZsJDQ31Ophb54G5KNmJEyfKPRYWFsbgwYP55ptvfK6fw5nvayDr5+Bdhm7TWivX53c4U1O3ntsKjPRf14QQlvoK6NXNEGnfvj25ublkZWXVOaB7uiha2xq6+9rqnu4MrYr1BrJ371571UX3gHvrrbeyZcsWrr322lq3XZHVbr9+/XxuqyaBuf9UCOFXgQ7oNc1yAXPq4vbt28nKyrJLI7Xl7UXRvXv3YhiGx6VqPbXniRXQ9+zZUylDB7jlllu45ZZb6tR2RTfffDMJCQlcfPHFfmmvOhLQhWgErAuAgQjopaWlHDt2jJCQkGqz77rs8lNRdUvnWlq0aGGXdo4ePVrtcZbqdj/yVlUB3X23Jn+KjIxkwoQJAWnbndz6L0QjUFOG7us65VagbdWqFaGhoVUe44+pi95k1LWpo/uaoXfu3JmQkBB7Pn/z5s1p2bJlndoKFhLQhQhyeXl5HD58mMjISHuGRHx8PLGxseTn5/u8y4+n+jmcuVvUHxl6TQHYvexSE6fTybFjx4Az0x1rKyIiotzsFffNsRsrCehCBDlrg4UePXrYszgcDoedpft6c5Gn+jn4XnIpKioiLy+PsLAwe82Wqnh7YTQnJwen00l8fDzh4eF16hOUL7EEegZKfZCALkSQs3a5qbhjjr/q6DVNWbT4WnJxz85ryoK9Lbn4Wj+3uAfxQNXP65MEdCGCnHVXofvWcHBmmzV/BfRAllw8XRC1eFty8bV+bpEMXQhRr6xNGKyNjS3+ytDro+TibQD2tuTirwxdAroQopIvv/ySp59+GqfT6fngWgp0QPcmQ7d2Mjp58qS9TEBt+DugByJDl5KLEAKAe++9l4cffphPP/3U723XV0CvKdt1OBx22cWbOvp//vMfRo0aZffdWnfcUwBu3bo1MTEx5Obm2nPD3RUWFuJ0OgNSQ5cMXQiBYRh2zXfhwoV+bz8YMnSoXdnln//8J8uXL+eFF14A4L333gNg5MiaVwdxOBzVZulbt24lPj6ehx56yOMyAt7q3LkzvXr14vzzz7dXRGzMJKAL4aOcnBy7DLF48eI674lZHW8Curc3FxmGwV/+8hd7/03wroYOtQvoVkY+f/58Nm3axJo1a2jevDlXX321x3OrC+jvv/8+RUVFvPrqq3YffM3QQ0ND2bJlCytWrPCpnWAhAV0IH7lnyLm5uXz55Zd+a/v06dOcOHGC8PDwSjfQxMXF0aJFCwoLC+2bbDxZtWoVM2fOZOzYsezZs4eMjAx7HrungO5tycXaNALg2LFj3HjjjQBMnDiR6Ohoj33s0qULUPkvj2+//RaAEydO2KUtXzN0gPDw8GrvkG1sJKAL4aOKgefdd9/1W9tWJlrdOuS1vbnI6mteXh6TJ0/m2muvpbCwkMsuu4z4+Pgaz/U2Qz906JC9VjnAjz/+CJgLVHnDCuju+30WFxezcuVK+2trQwpfM/SmRgK6ED6ygumIESMAWLJkid/KLu4BvSq1raO7Z9crV65k9erVdOnShTfeeMPjud4GdCsQ9+7d265Ld+3a1WP93FLVBs5r166loKCgUp3bHxl6UyIBXQgfWcF0zJgxpKamkpuby9dff+2Xtqurn1vqGtDHjBmDw+EgMjKS999/36tM19ubi6y+JCcn28vPTpkyxevNJ6oquVjllsmTJ5fb8Ucy9PIkoAvhIyvwdO7cmdGjRwOwYcMGv7TtKaDX9m5RK6Bff/31pKens3btWlx7BXtkBVpPd3FamXWXLl34y1/+wptvvsnDDz/s1Wu4v457hm4F9AsvvNC+sBoREdEkZqb4kwR0IXxklVw6d+5McnIyYE6x84dAZejt2rVj6NCh5TZD9sTarX7Pnj2VbqBauXIlH3zwAVA+oMfGxjJ58uRa7ShkrYCYmZlJaWkpJSUl9qycUaNG8ctf/hIwN29u7Ksj+ptscCGEj9wz9JiYGAC2bdvml7YDGdBrKy4ujrZt25Kdnc3Bgwfp1KkTRUVF/OEPf+C5554DYNiwYeUCel1ERkbSrl07Dh06RFZWFgcPHuTUqVP07t2bdu3a0bZtWx5++OGAb+fWGElAF8IHhmHYGXqnTp3sqX/btm3D6XTWatPiqgRTQAczS8/OzmbXrl107NiRcePG8dVXX9nPf/nllz4HdOvcQ4cOsX//fnt2y6hRowAICQnhqaeeqnPbTZmUXITwwdGjRyksLKRFixbExcXRqlUrEhMTOXXqlF+2h/O2hp6RkeFxHRmn0+n1XaHVsZbw3bVrF4cPH+arr74iNjaWBx98EIBly5b5JaC7z3RZu3YtAEOHDq1ze2cLCehC+MC9fm4599xzAf+UXTwF9JiYGFq1akVJSYkdrKtz7NgxysrKSEhIqFVN250V0Hfv3s2mTZsAGDRoEA888AAAy5cv59ixY0RERNT5TQPKz3TRWgN4ffH2bCYBXQgfuNfPLf66MJqXl0deXh7R0dG0aNGi2uO8LbtY5ZbExMQ698m6MLpr1y42b94MQEpKComJifTu3ZvCwkK7T76Um6yAvn79evbs2UNMTAx9+vSpc3tnCwnoQvjACqLuc6P9laF7ukvU4u3dor7Wz6F8ycU9oIN5QbRin+rKCugff/wxAAMHDiQsTC75eSIBXQgfBDJD91RusdQ2Q/dHQHcvuaSmpgIwfPhw+zhf6udwZkx5eXmAlFu8JW95Qvigqhq6e0A3DKPOc6WDMaC3a9eO6Ohojh07Rm5uLoA9fXDo0KGEhITgdDp9DugVz5eA7h3J0IXwQVUll8TEROLj4zlx4gSHDx/2uq2PPvqI2267jb1792IYBl988QVwZg2V6nh7t6g/ArrD4bDr6KWlpXTt2pXmzZsD0KJFCwYNGgT4nqG3adOm3IVbCejekYAuhA+qKrk4HI46lV0ef/xx5s+fT2pqKpdffjkLFiwgLCyMCRMm1HheTRn6+vXrOeecc3jttdf8EtDhTNkFzpRbLL///e8ZPnw4V1xxhU+vERISYr9RxcXF0atXL5/aO1tIQBeijtzX/a54EdAK6LW5MLpr1y7ArBt/9tlnxMTE8OGHH3pcpbC6gF5SUsKtt97Kzz//zKxZs+znfQ3oVoYOVFo6YMKECaxYscLn14AzWX5aWprPN2idLeS7JEQdHTx4kJKSEhITE+1b/i3WFLvt27d71daJEyfIyckhJiaGefPmMXbsWJYtW8Zll13m8Vxr7ZODBw9SVlZmP/7888+zceNGwJwxY+3K488MvTZrwdSWFdCl3OI9jxdFlVKJwCKgBCgDbgJ6An8BnMCvtNablVLtgDeAWOBlrfVbAeu1EEHAWnWwqt3izznnHAB27tzpVVt79uwBzOx32rRpTJs2zet+REZGkpiYyOHDh8nKyqJTp07s3r2bxx57DIArr7ySpUuX2tvU+TIP3eqjpWLJxZ9uuukm1q5dy5QpUwL2Gk2NNxn6UWCE1noUZsC+DXgKGAfcCPzZddxMzCA/CrhHKRXl/+4KETz8GdB3794NlA+WtVFxadtXX32VgoICbrjhBv71r38RFWX+dwwJCfF5UwgrQ4+IiLDHGQiXXHIJP/74oyzCVQseA7rWukxrbS0SEQfsAsq01jla6/1Aguu5IcAyrXUpoAH5KYgG9/PPP9OxY0eef/55v7dtZdXdu3ev9FyPHj0ICQlh7969FBcXe2zL14Deu3dv4EyJx9r27ZprriEhIYEbbrgBMNdw8XX/zHPOOYfp06fz6KOPEh4e7lNbwr+8qqErpQYopVYDM4CVwEm3p0uVUhFAuFvgz+VMoBeiwXzyySccPHiQ3/3ud2zZssWvbdeUoUdGRtKlSxecTqcd+Gvia0CvOKvGCuxWLf/uu+/G4XDYd7H6IiQkhFdffbVWm1aI+uHVjUVa6w3AeUqp64A/AM3d29BaFyulSpRSIa6g3gI4XrEdpdQdwB0AM2bM4JJLLvG1/wFVUlJCZmZmQ3fDL87Wsaxfvx4w50xPmTKFxYsX+23GxI4dOwBo1qxZlf3p0qULe/fuZdWqVdXurGONxZoN06JFizr9nKyFsNavX8/u3bvZvXs3ISEhxMTEkJmZSYcOHVi6dCnt2rUL2O/B2fo7Vt+si+BV8eaiaITW2vqbMRfIB8KUUvGYJRgrcK8FLlRKLQfSgN9VbEtrPReY6/rS8LL/DSYzM7PGb15jcraOxVoPxeFwsG7dOj788EPuvvtuv/TDalspVWV/+vXrx/Llyzl+/Hi1/bXGYgWPwYMH1+nnZE1t3L17N4WFhZSVlZGUlFQu4w/0z/9s/R0LJt6kKgOUUsuVUl8DvwGeAf4IfAK8DfzeddyfXf9eDryitS7wf3eFqB3rouTjjz8OwEsvveSXdktLS+11v7t27VrlMd5eGC0rK6uxfOONHj16EBERUW79cFmd8OzjMUPXWq8BLqjwcBYwrMJxWUBw11DEWaW4uJi9e/cSEhLCvffey2OPPcZPP/1EYWGhPeujrjIzMykrK6N9+/bVtuVtQM/IyKC0tJQOHToQHR1dp/6EhYXRq1cvtmzZwuLFiwEJ6GcjubFINFnWZsZdunShefPmJCUl4XQ6+emnn3xu25uM2rpdvbqAXlZWRlFRkc8XRC3WhdHPPvsMkIB+NpKALposK5BamXLfvn2BM1P6fFHTlEVLt27dCA0NZf/+/fbGD5aMjAySk5MZMWIEy5YtA3wP6NYMFuu1JKCffSSgiyarYkC3Mlh/BHRvMvTw8HC6d++OYRh2Fg6QnZ3NxRdfzE8//URWVhZPPvkk4L8M3SIB/ewjAV00WYHM0L29iFmxjl5WVsbll1/Ojh07SElJKXe+vzJ0gNatW9OqVSuf2hONjwR00WRZtfKGKrm4v7bVl61bt/LDDz/Qtm1bvvjiC+bPn09cXBxw5m7PuurVq5c9x94fNxCJxkcCumhw27Zt48UXXyy3UqA/VMzQe/fuTWhoKLt27apU066tumboVuklLS2NxMREevXqxTfffMMrr7zC4MGDfepTZGSkvc6KlFvOTrIFnWhQx44dY8yYMWRlZdGjRw+fN0awFBYWcuDAAUJDQ+0sOjIykqSkJHbs2MGOHTvo379/rdrMz8/n448/Zs2aNWRkZOBwODxuhmzNdLHuKq1qRsugQYPsnX58lZyczM6dO33O9kXjJAFdNBjDMLj99tvtOy43bdrkt4C+a9cuDMOge/fu5RaQSk5OZseOHfz4449eB/Tc3FxmzJjB+++/T0HBmfvlBgwYUG6btKpYmbIV0K1NLHytl1fnvvvuo6SkhMmTJwekfRHcJKCLBjNv3jwWLVpkf12b7do8qVhusfTt25dFixbVqo7+wQcf8NZb5vL+w4cP57LLLqN///6MGjXK47mdOnUiOjqaw4cPc+LECTtDd98kwp9GjRrlVb9E0yQ1dNEgDMNg1qxZAPbaKrXZrs0TKyOuKqBD7S6MWv2aNWsWK1as4I9//CNXXHGFvTlyTUJCQsqVXfx1E5EQVZGALhrEjz/+SFZWFu3bt7fnYW/fvh2n0+nhTO9s2LABoFJZxQrotflrwJqhUnGet7esssu2bdu8nh0jRF1IQBcN4quvvgJg9OjRtGzZkvbt21NQUMC+ffv80r61bO6AAQPKPd6rVy97psvp06e9asvK9ut6odE6b9myZRQXF5OYmFjtcrpC+EICumgQVkAfM2YMcGbetD/q6KdOneKnn34iLCzMzsgtkZGR9OnTB6fT6VXZpbS01L6QWdft1qyAbq2xIuUWESgS0EW9Ky0t5dtvvwXOBHSrnOGPOvrmzZsxDIPk5OQqZ6FYZZiNGzd6bGvv3r2UlJTQqVMnYmNj69QfK6AfOXIEkIAuAkcCuqh3WmtOnjxJUlKSvbmxPzN0q9wycODAKp+vTUC36ue+zOuueG6gZrgIIQFd1LuK5Rbwb4ZuXRCtWD+31Cag+1o/B3OLOvfdbyRDF4EiAV3UqLS01O9tVhXQ3TN0w/Btd8LqLoharIC+adOmal+rqKgIOBPQramHdeX+hiABXQSKBHRRrZ07d9K2bVtmzJjhtzaPHj1Keno6DoeDiy66yH68bdu2JCQkcPLkSQ4ePFjn9ktLS9m8eTNQfUBv164dbdu2JTc3t8pZNQsXLiQ6Opo5c+b4peQC5ddWkZKLCBQJ6KJaTz/9NDk5OSxZssRvbS5YsIDi4mLGjh1L69at7ccdDoedpftSdtmxYweFhYV069aN+Pj4ao9LTU0FKpddDMPgsccewzAMHnzwQTvb9zWgW+dHRUXRrl07n9oSojoS0EWVMjIy7NvdMzIyOHHiRK3OP3DgAJdeeinXXnstTzzxhL0d3Ny5cwG46667Kp1Tlw0otm/fzjfffGN/bdXPq7sgaqmujv7ll1/aF2YLCgo4ceIEkZGR9sXburICevfu3e0lboXwN/nNElV64YUXKCkpsb+u7Rri77zzDl988QXvv/8+jz76KOeddx7//Oc/2blzJ506dWLs2LGVzrFKJD/88IPXr3PNNddw0UUXsXTpUgB7O7fqyi2W6gL6Cy+8AMCvf/1rO8NPSkoiNDTU6z5VZdSoUVxzzTU89NBDPrUjRI0Mw2ioj6CXkZHR0F3wm9qM5fjx40azZs0MwBgwYIABGK+88kqtXu/uu+82AGPSpEnGqFGjDMD+ePzxx6s8Z+3atQZg9O7d26uxlJaWGmFhYQZgtG7d2pgzZ44BGKGhoca6detqbGPjxo0GYPTs2dN+bMeOHQZgREVFGUeOHDHmzZtnAMatt95aq7HXxtn6Oxbsgnws1cZVydBFJf/4xz/Iz8/n4osv5qabbgJgy5YttWrDWrPk+uuv5+OPP+a8884DIDQ0lNtuu63Kc1JTU4mMjGTHjh1elXiys7PtWThHjx7lnnvuAeCZZ57xWHLp06cP4eHh7Nq1i7y8PABeeeUVAG6++WZat27NtGnTWLt2Lc8//7znAQsRBCSgi3IKCgp48cUXAZg5cyb9+vUD6h7Qu3fvTmxsLB9//DHjxo1j1qxZ5eZku4uIiLADsdba42tkZmYC0LVrV3v/zOuvv57f/OY3Hs+NiIiwL4xar2XV4q03MQClFC1atPDYnhDBQAK6KOdf//oXR44cIS0tjTFjxtgB3bqd3huGYVTaoq1Vq1Z89NFH9pK51RkyZAgAa9as8fg6GRkZAKSkpPDFF1/w1FNPMW/ePBwOh1f9PP/88wFYvXo1BQUFbNq0iZCQEJRSXp0vRLCRgC5spaWlPPvss4CZnTscDjp27EiLFi04duwY2dnZXrVz6NAhCgsLSUhI8GrNcHd1CeidOnVi4MCBPPzww7Vab8UK6KtWrWL9+vWUlZXRr1+/Oq/ZIkRDk4AubIsWLWLPnj0kJSUxYcIEwJwf7p6le8OXNb+tgL569WqPfxG4B/S6cA/oq1evLvf6QjRGEtCF7euvvwZg+vTp5abp1baObpVb6hLQk5KSiI+P59ChQ3bAro6vAb1nz560atWKw4cPs3DhQkACumjcJKALm3WHZsVdfmob0H3J0B0Oh9dlF18DusPhsLP077//HpCALho3CejCZt0had2Cb6nPgA7YUxwDHdDhTNkFICYmptKGGEI0JhLQBYB90TM2NpbOnTuXe84K6Js2baKwsNBjW74GdGvqYk3L2xqGYQf06qZBesM9oKelpREWFlbntoRoaB5/e5VSQ4AXgRIgE7gFuBq4DygApmitM5RSfYC5rjYf0Vp/FahOC/+zyi3nnntupbVGWrduzcCBA1m/fj3Lli3j8ssvr7EtXwN6dbflnzp1igULFhAWFsY111xDUVER8fHxPu3POXjwYBwOB4ZhSLlFNHreZOgHgNFa6wuAvcBVwP3AhcAs4BHXcbOB24DLgCf83VERWNWVWyxXXHEFAB9++GGN7ZSWlrJ//37AvOGnLrp160ZcXByHDh2yp0q+/vrrJCUlMWPGDH71q1/Zs1J8KbcAtGjRwl4UbPDgwT61JURD8xjQtdZZWusC15fFQG9gm9a6WGudDqS6nuugtd6ptT4JHFdKta6qPeGbF198kauuuoqrrrqK+++/328bUFgZuhXcKnIP6DVNJ8zIyKCsrIwOHToQFRVVp76EhISUW95206ZNTJ06lUOHDhEZGYlhGPZ8eV8DOsDs2bOZOnUqV155pc9tCdGQvC4YKqW6ApcCDwFt3J6y5re5vznkAgnA0Qpt3AHcATBjxgwuueSSOnS5/pSUlNi3lweDo0ePVrqtPTk5ucqVCyvyNBZr3e+2bdtWeVxiYiKJiYlkZmby+eefk5KSYj9XWlrKypUrSU9Pt8/t2LGjT9+7pKQk0tPTWb58uf0GctVVVzF27Fjuuusu+zb9li1b+vwzSktLIy0tjePHj/vUTl0E2++YL2Qs9aOma0ZeBXSlVHPgTWAqZgB3v/2vzPXZ6fZYC6DS/w6t9VzMOjuYK+8FtczMTJ8uuPnbd999B5hT6wYPHsycOXNYunQp06dP93iu+1i2bdtGfn5+uRLD7t27ARg5cmS1Y77qqquYO3cuq1ev5rLLLgPggw8+4O677+bw4cPlju3fv79P37thw4bx+uuvs3fvXo4cOQKY67T88pe/5He/+x0nT54EzK3hgulnVFvB9jvmCxlLw/NYclFKhQFvA49rrXcAO4FzlVIRSqlhwCbXoVlKqZ5KqTggQWt9tJomRR1Ze3FOmDCBWbNmERYWxieffMKhQ4e8buP06dOMHDmSYcOGsXPnTgDy8vI4cOAAERERNV7ItEoS7nX0p556isOHD5OUlMRDDz3EM888w4svvsiTTz5ZlyHarJLL2rVrWb58OQAXXXQRUVFR5f4i8UfJRYimwpsMfRJwHvCIUuoR4GXgBeAboBCY4jruD8ACzAz+UT/3U1B+c+W2bdty+eWXs3TpUt566y1++9vfetXG22+/zbFjxwBzmdm5c+eyfft2wNxVp6Zpe6NHjyY6OpoffviBzMxMYmNjWb9+PREREWzcuJGYmBgfR3hGSkoKDofD3qS5b9++9tZtEyZM4J133gEkoAtRTk2LpQf4I+gF0yL3u3fvNgAjPj7eKC0tNQzDMBYtWmQARnJysuF0Oms83xqLUsreaCIiIsLIzMw0FixYYADGdddd57EfV155pb3hxdKlSw3AGDlypO8DrMI555xj9/XXv/61/fi+ffuMzp07G4Cxc+fOgLx2fQmm3zFfyVjqjWxw0dhZ2flFF11kr7Mybtw42rRpw9atW71aP1xrjdaali1bcsUVV1BcXMzs2bPttqub4eLOvexiXZgcNWpUXYbkkfsSBGPGjLH/HRoayscff8yiRYtISkoKyGsL0RhJQG8k3MstlvDwcCZOnAjAZ5995rENa0eeqVOn8vjjjwMwZ84c3nzzTcDzPpxgvomAuZnyp59+CsCFF17o3SBqyQroISEhld40UlJSuPrqqwPyukI0VhLQg8i+ffuYMWMGWVlZ5R4vLS21Nz92D+hg1rXhzG471dm9ezdvvfUWAHfeeScDBw7kmmuuAcy1U1555RXGjx/vsY/t2rVjyJAhFBUVsW3bNsLDwxk6dKhX46sta6OJ888/X3YNEsILsnBFEHn22WeZM2cOBQUFzJs3DwCn08mtt95KdnY23bt3p3fv3uXOueCCCwBYuXIlRUVFREZGVmrXMAx+//vfU1RUxC233GK38Z///Ifc3FzatGlT6ZyaXHnllfbCWeedd55fL4a6+8UvfsHLL78csJKOEE2NZOhBxLq559133+XUqVMYhsE999zDW2+9RWxsLP/5z38qba/Wpk0b+vXrR2FhYbWrE77xxhukp6fTqlUrnnvuOfvxiIiIWgdzOHPXKASu3ALm8rZ33XVXtcsRCCHKkwzdT/bv38/TTz9NQUEBYWFh3HPPPR53nnfndDrZtMmc0p+fn8/7778PmHXvyMhIPvzww3IrA7q78MIL2bJlC9988w0jR44s99yGDRu4//77AfjrX/9K69a+r8iQkpJCt27d2Lt3LxdddJHP7Qkh/KSmKTAB/gh6tZm69Ktf/cqeYgcY/fv39ziV0J01LdH6GDx4sNGmTRsDMObPn1/jue+9954BGKNHjy73+Oeff240a9bMAIyLL764Vv3xJD093Xj++ef92qa3gnxKWa3IWIJTkI+l2rgqAb0GtfmhWnOmn3zySaNdu3YGYHzyySden2/NKT///PON6OhoO7CPHDnSY9DMzs42ACMqKsooLCw0DMMwtmzZYoSFhRmAceONNxq7du3yui/BLsj/s9WKjCU4BflYZB56IO3fv5+dO3fSvHlzZs6caZc4Zs+e7XUb1trfI0eOtGefhIWF8fLLL1eqm1dUVR194cKFlJaWct111/Hmm29WebFUCNG0SED3A2uO+KhRowgLC+Ouu+4iPj6eFStWsGLFCq/asAJ6//79ue+++4iLi+OJJ57weks0q5b98ccfA/C///0PgMmTJ1fasEII0TTJ/3Q/qHjTT1xcHP/3f/8HmOuleMMK6KmpqQwaNIjc3Fx+//vfe90HK6t/++23OX78OKtXryYsLCygs1CEEMFFArqPDMOo8i7Ou+66C4Bly5ZRVlZW5bmWkydPsnv3biIiIujTpw+AxzJLRSNHjqRz587s27ePP/3pTzidToYPH05cXFyt2hFCNF4S0H20bds2Dh06RGJiYrnySIcOHejWrRv5+fn8+OOPNbaxefNmwFxLJTw8vE79CAkJYdKkSQD87W9/A+DSSy+tU1tCiMbprAjoWVlZpKenk56ezoEDB/zatpWdjx49ulJWbd0Sv2rVqhrbWLJkCVB+Maq6uOmmmwBzTjuYd1oKIc4eTT6g5+Tk0LdvX0aMGMGIESPo06cP+/bt81v71hoqFddYAewbgaoL6E6nk/vuu8+us0+YMMGnvqSmptKvXz8AWrVqVasbm4QQjV+TD+ivv/46OTk5tGvXji5dunD69Olyt7/7wjAMe1s4a00Vd1ZA//777ys9V1hYyPXXX88LL7xAeHg4b731ll82KZ48eTIAl112mcxuEeJsU9Mk9QB/BFxZWZl9w88HH3xgbNq0yb4B5/Dhwx7Pd7+54L///a+xePHics9v377dAIzExMQqb/4pKioyIiMjDcA4fvy4/fjRo0eN4cOHG4DRvHlz46uvvvJhlJVf86WXXjIOHjxY7VgaOxlLcJKx1Juz88aiZcuWsXPnTjp27MgVV1xBSkoK48ePp7CwkBdffNHrdnbt2sWkSZO4+uqrmT9/vv24Ncd8xIgRVc5KiYiIIC0tDaDcwlm33HIL6enpdOrUifT0dHsJXH+IiIhgxowZtG/f3m9tCiEahyYd0P/xj38A5vrf1l6ZDz/8MGBu7JCbm+tVO9b+lQDTp0+3v7bKLRUXxHJXsexSXFxsX0hdsWKFXfMWQghfNYmAXlhYWOmxjIwMlixZQlhYGNOnT7cfHzp0KCNHjiQ3N5f33nvPq/atAD527FgMw+Dmm29mx44dtQro1oXRTZs2UVRURO/evenatat3AxRCCC80+oD+97//nejoaK6++upy873nzp2L0+lkwoQJlcoPN998M4C9RG1Ntm7dyqZNm4iPj2fx4sVMmTKFkpISbr/9dnbv3k2zZs1ITU2t9nxr6uLKlSspKSmxSy9Dhgyp9ViFEKImjTqgO51Oe8bKkiVLSElJ4Z///CfFxcW8+uqrANx9992VzrvqqqsICQnhyy+/5MSJEzW+hpWdT5gwgYiICGbPnk1MTIydnQ8bNswu51SlU6dOJCcnk5eXx3fffScBXQgRMI06oK9YsYK9e/fSqVMn7r77bgzD4N5772X27NkcOnSI5OTkKqcTtm3blpEjR1JSUmIvZlUVwzB4++23AbjhhhsA8w7QBx54wD6mpnKLxdrh56OPPpKALoQImEYd0N944w3AnDUyZ84cbrvtNoqKiuwd7e++++5q10SxFrOqqezy+eef89NPP9G+fftyO/M8+OCDtG3bFsCr/S6tzZcXLlzI9u3biYiI8PmuUCGEqKSmOY0B/vDJ6dOnjbi4OAMwtm3bZhiGYeTm5hrdunUzACM2NtbIzc2t9vyMjAwDMKKjo438/PxKz5eVlRm9e/c2AOOll16q9Py6deuMV1991asde0pKSoyEhAR704ohQ4bUYqT+EeTzamtFxhKcZCz1punNQ3/nnXfIy8tjyJAh9gqFzZs354033qBZs2bcd999NG/evNrzO3bsyPnnn09BQYFddsnOzub666/nz3/+MwsWLGDHjh106dKF22+/vdL5AwcOZPr06V6tihgWFsbll19ufy3lFiFEIDTKTaJXrFjBPffcA8Btt91W7rmRI0dy4sQJQkNDPbZzww03sGrVKl5//XWuu+46nnvuOd59913effdd+5hZs2b5Zbef8ePH89ZbbwES0IUQgdHoMvR169Yxbtw4Tp8+zdSpU8vNMbd4E8wBbrzxRsLCwvjss8/Yt28fCxYsALAz/h49enDLLbf4pd+/+MUv7NkwEtCFEIHQqDJ0a4/MkydPMnHiRF577TWfFqBq06YNV1xxBYsWLeKmm24iOzub5ORkNm/ezMqVK4mJianz+uQVxcfH8/e//51Dhw7Rq1cvv7QphBDuGlVADwsL49133+X5559n3rx5XmfiNbn11ltZtGgR6enpANx+++2EhIQwYsQIMjMzfW7f3Z133unX9oQQwp3HgK6UagF8ASQD52uttyilJgL3AQXAFK11hlKqDzDX1eYjWuuvAtHhQYMG8eabb/qtvbFjx5KYmMjhw4eJiIiw7yIVQojGxpt6xWlgHPAegFIqDLgfuBCYBTziOm42cBtwGfCEvzsaKGFhYXadfMKECbRq1aqBeySEEHXjMUPXWpcAR5RS1kPnANu01sVAulLqWdfjHbTWOwGUUseVUq211kcD0Wl/e+SRR0hISGDatGkN3RUhhKizutTQWwIn3b62Ctnu2X4ukACUC+hKqTuAOwBmzJjBJZdcUoeXD4ybb76ZkpKScnXzil83ZjKW4CRjCU7BPJaOHTtW+1xdAvoJwP2OnTLXZ6fbYy2A4xVP1FrPxayzg3nXZFDLzMys8ZvXmMhYgpOMJTg11rHUJaDvBM5VSkUACtjkejxLKdUTyAYSGku5RQghmgqvArpS6hNgANAb+CfwAvANUAhMcR32B2ABZgnmUb/2UgghhEdeBXSt9eVVPPxOhWO2Ap7XkhVCCBEQje7WfyGEEFWTgC6EEE2EBHQhhGgiHIYR9LMHhRBCeEEydCGEaCIkoAshRBMhAV0IIZoICehCCNFESEAXQogmQgK6EEI0ERLQhRCiiZCADiilYl2fHQ3dF18ppWJcn5vCWLq6PjeFsZzXFMYBoJTq0tB98BelVMuG7oM/ndU3FimlLgVuBw4Cf9ZaH2zgLtWZUupqYDJwAHimkY8lBvgL0Bm41rVrVqOklOoPvAisAma5dvpqlJRSlwEzgCLgv8BnWuv8hu1V3SilRgEPYG7CMwf4UWtd2LC98t3ZnqHfCLwGbAHuUko1ytUilVLjgVuBP2NuQDLT9XijzAi11qeBYiAOc1yNdiyYK5DO1lo/BPRo6M7UlVIqFLgLc4OaxzH3QohtxD+X64F/Yb4xXQ5c07Dd8Y+6bHDRaLkyv+uBFcBhYD+wBvja9XiaUmpXY8huXWOZBHwKrAOma62PKKV+At5WSrXVWmc3aCe95PZzWa613uUKEj8DHwC/Vkp9prXe36Cd9JL775hrj93TwGVKqYcwN4FZC3yotd7VkP30hmssNwDfAvnAZsy/Zvdh7o8QDYRjvvkGNaVUNOam9p9prb8F9gBZmP//C4FxSqk+WuvtDdhNn501GbpSahLmphwxwG6t9UmgHTDU9WfweiAKc/u8oOY2liggW2t90BXMQzCz2j2NKJhbY4nGfINFa20AyZg/iw+AO5VSnRuqj96qMJa9rodjgPbAb4G7McsV4xqge7VScSxa68PAV5hlvfWYpYrbgXsaqo/ecv3u/Bczifve9bAD6I65FeZWzN+9pAbpoB+dFQFdKdUcuA74E+Yv5cVKqdbAy8B0pVSs1noL0BXo1mAd9UIVY7lQKdUHQGvtxAwgpa5juwTzn8QVxrIMGKWU6ut6+lvMvzxOYQaRX7vOCcrf2SrGcpFSqgPwPmYW21lrnYsZ6K2fT1D+bKr4HRujlDpHa/0N8CUwR2s9GfgIiFBKhQTrWFzCgKWYf4n/n1JqGPA5MAzoq7U+hpkcRUPw/ly80WQvirquxP8W+BhIBy4A7gMigA+BW4BRwB2YP/DvMOu172utP2qIPlfHw1iWYo7lKq31XqXUbZi/qLlAK+CeYLpw5eVYLgXuBC7E3KP2IHBKa/1IA3S5Wl7+jo3BHEcqZiZ4OfCz1vrxBuhytbz8uYzF/OuiPWZAnAHkaK1/3RB9ro7bWJZiXh/r5Po6EzNJmAr8PyAFc8P77cB4zJLfaw3QZb8JymzHV0qpTsBzmLW+dsAbWutPgGeAi7TWzwJvAH/RWv8Z8xf4TmBTEAZzT2N5DvPizp9dp3TBDOg7tdZTgiyYezOWN4DHgGeB+VrrG7TW9wdhMPfmd+x1zNlTCzH/5D8PWBmEwbw2P5f5mBvFPwasCcJg7j6WjsA/tNYaM7kp1lr/2/X8pcCbmCW9UcDaxh7MoYkFdKXUBW5/LsVrrZ/TWr8OxCmlfq+1/h9m7QzMja5jlFJxrj8lp2itn6//XletlmP5O64/4zH/JB6qtX65nrtcrVqO5UXMrAmt9Vuu84Pm97QOY4lQSjV37bn7QCP/ucQCUVrr/2L+RfhSA3S7SjWMpYVSajrwFDAEQGv9GdDHddwW4NfBNBZfBM1/FF8opZoppb7ArPddjnnBZoVS6k7XId8BVyql4rXWZUqpC4DFmDMp8gG01qWVW65/PoxlN4DW+jut9Yn673llvvxcXFMXAfvaQIPyYSy7XBfg0VqXNUDXK/Hx53IKIFjm03sxluXANNfnFUqpR13HH3QdGzQ/F39oMjV0pVQa5o0oQzBvFIh3fd6LGbRPYWavPwKvYv45/35D9NUTGYuMJdDOsrEUYb4hfQ8kYl4I/V8DdDXgmkxAtyil/oZZ23tLKdUe88/3n4HfAP/WWh9qyP7VhowlOMlYgpOHsbzZWKby+qJJlFyg3FSjf2NOGWurtc7CnMu8EHNKYl4w1WOrI2MJTjKW4OTlWPIb83REbzW5DB1AKfV/QE8gB9gF/KS1XtOwvaobGUtwkrEEp6Y0lroI+nff2nDLJlIx58zu1lq/1Rh/oDKW4CRjCU5NaSy+aKoZ+jXAR1rroobui69kLMFJxhKcmtJY6qJJBnQhhDgbNamSixBCnM0koAshRBMhAV0IIZoICehCCNFESEAXQogm4qzagk6cHZRS3TC3GANzY+Y/uR6fh7lQE1rrOt01qJRKxtz84RvXKp0opRYAU4DBrqVahWgQEtBFUzdVKfUk5tKv1/mhvWTgUde/v/FDe0L4jcxDF02OW4a+G+gBjMbcP/IfmEumdsQsN/4Bc1/MBEADM7TWPyqlHsMM2q9h7jYUj7kf6FrOZP6WizB3wJmCuXHCRFfbN2qtvwvIAIWohtTQRVO2DViNWWaZhrmE6gnXc7di7pm5CTOwDwaWKKXC3c4fibl5SAvMLcuOYG6MAuZeoZMwt5WzDMNcarYT5o4+QtQrCeiiqZuPmTUPx9yqz3K56/P9Wuu/AUswF3Xq5XbMX7XWL2Jm+t1cmzuku57borV+u8KSrI9prZ/EXH+7m99HIoQHEtBFU/c2UAZkAF9U8bxR4bO7467PpZz5v1JTjdL9+NDadVMI30lAF02aa/u3acCdFbay+9j1+a+uJVevwrXcqocmc1yfRyqlblBKRfu1w0L4QGa5iCZPa/1OFQ8vwLw4ejvmRdO1mBdFS5RSNTW3AnP/ygtc53X2a2eF8IHMchFCiCZCSi5CCNFESEAXQogmQgK6EEI0ERLQhRCiiZCALoQQTYQEdCGEaCIkoAshRBMhAV0IIZqI/w9JE2DLbdFECgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2LklEQVR4nO3deVxU9f4/8New7yCiKIgIISqSueBycykNNe0mZlqaZtlVb9lim3W/rabee8tui90yTU26ZalpprhkmalJ5ZZbmAuigIggKsi+zfz+mN/5eA4MMGeYMzPA6/l49OjMej5zFObl+7PpDAaDAURERER24mTvBhAREVHLxjBCREREdsUwQkRERHbFMEJERER2xTBCREREdsUwQkRERHbFMEJERER2xTBCREREdsUw4oD0ej3OnTsHvV5v76Y0Cbxe6vB6mY/XSh1eL3V4vW5gGCEiIiK7YhghIiIiu2IYISIiIrtiGCEiIiK7YhghIiIiu2IYISIiIrtiGCEiIiK7YhghIiIiu2IYISIiIrtiGCEiIiK7YhghIiIiu2IYISIiIrtiGCEiIiK7YhghIiIiu2IYcQCXL1+Gq6srSkpKUFVVBV9fX2RlZYnHO3XqBJ1OB51OBy8vL8TGxmLp0qV2bDERETmK7OxsrFy5Enl5efZuisUYRhzAr7/+ip49e8LLywuHDh1CYGAgQkNDFc+ZN28esrOzcezYMYwdOxaPPvoo1qxZY6cW219FRYW9m0BE5BASEhLwyCOP4MEHH7R3UyzGMOIAfvnlFwwcOBAAsHfvXtx66621nuPr64t27dohKioKCxYsQOfOnfHtt98CAF588UVER0fDy8sLkZGRePXVV1FZWSlee/ToUQwdOhS+vr7w8/NDnz59cPDgQQBAeno67r77brRq1Qre3t7o3r07tm7dKl574sQJjB49Gj4+PggODsaDDz6oSN+33347nnrqKbzwwgsIDAxEu3btMHfuXEXbT548iUGDBsHDwwMxMTHYsWMHdDqdaD8AZGVl4f7770erVq3QunVrJCQk4Pz58+Lxhx9+GGPHjsW///1vhISEIDo6GgCwePFidOnSBV27dkX79u0xfvx4i/4MiIiaIoPBgCNHjgAAtm/fjpycHPs2yEIu9m6AFuLi4nDp0iWbn7ddu3biS74hGRkZ6NGjBwCgpKQEzs7OSExMRGlpKXQ6HbZt24bJkyfj448/Nvl6Dw8PETh8fX2RmJiIkJAQHD9+HDNmzICvry9eeOEFAMDkyZPRq1cvfPzxx3B2dsaRI0fg6uoKAHj88cdRUVGBPXv2wNvbGydOnICPjw8AY+nvtttuw4wZM/Duu++itLQUL774Iu677z7s3LlTtOWzzz7Ds88+i3379uHXX3/Fww8/jIEDB2L48OHQ6/UYO3YsOnbsiH379qGwsBDPPfec4rOUlJRg6NChGDx4MPbs2QMXFxcsWLAAd955J44dOwY3NzcAwI8//gg/Pz/88MMPMBgMOHjwIJ566il89tlnCA8Ph6enJ5KTk8394yIiavLKy8vFd4HBYEBSUhKmT59u51ZZwNAMhYaGGgDY/L/Q0FCz21hZWWk4d+6c4ejRowZXV1fDkSNHDKmpqQYfHx/DTz/9ZNizZ48hJyfHYDAYDOHh4Yb33ntPvG7lypUGAIbFixebfO+FCxca+vTpI277+voaEhMTTT735ptvNsydO9fkY6+++qphxIgRivsyMzMNAAynTp0yGAwGw2233WYYNGiQ4jl9+/Y1vPjiiwaDwWDYtm2bwcXFxZCdnS0e/+GHHwwADBs2bDAYDAbDihUrDF26dDHo9XrxnPLycoOnp6dh+/btBoPBYHjooYcMwcHBhvLycvGc9evXG/z8/Az5+fmGtLQ0Q3V1tcnPQUrV1dW8XmbitVKH10sda1yvnJwcxffQXXfdZcUW2k6zrIy0a9fO4c/r4uKCTp06Ye3atejbty9uueUWJCcnIzg4GEOGDEF6ejqCgoLE81988UW88sorKC8vh5ubG+bMmYO///3vAIB169bh/fffR2pqKoqKilBVVQU/Pz/x2meffRbTp0/H559/jvj4eEyYMAE33XQTAOCpp57CY489hu+//x7x8fG49957RcXm0KFD+Omnn0SlRO7s2bOiq0R6vqR9+/bIzc0FAJw6dQphYWGKa9OvXz/F8w8dOoTU1FT4+voq7i8rK8PZs2fF7ZtvvllUSQBg+PDhCA8PR1RUFAYNGoRx48bh3nvvhZeXV0OXn4ioWbh+/bri9o4dO1BUVGTy97Yja5ZhxNyuEnvq3r070tPTUVlZCb1eDx8fH1RVVYkgERISgpMnT4rnz5kzBw8//DC8vLzQvn176HQ6AMBvv/2GiRMn4o033sDIkSPh7++P1atX45133hGvnTt3Lh544AFs2bIF27Ztw+uvv47Vq1fjnnvuwfTp0zFy5Ehs2bIF33//Pf7973/jnXfewZNPPgm9Xo+7774bb731Vq32t2/fXhxLXT4SnU4HvV4PwFg2lNpaF71ejz59+mDVqlW1HmvTpo049vb2Vjzm6+uL33//HTt37sT69esxd+5czJs3DwcOHEBAQEC95yQiag5qhpHy8nJ8//33GDdunJ1aZBkOYLWTrVu34siRI2jXrh2++OILHDlyBLGxsXj//ffx+++/49NPP1U8PygoCFFRUQgJCVF8uScnJyM8PBwvv/wy4uLi0LlzZ6Snp9c6X3R0NJ555hnxl3TlypXisbCwMDz66KP45ptv8Nxzz2HZsmUAgN69eyMlJQWdOnVCVFSU4r+awaAuXbt2RUZGhmJQ1YEDBxTP6d27N86cOYO2bdvWOo+/v3+97+/i4oL4+Hj84x//wJEjR3D+/HnFeBYiouasZhgBgI0bN9qhJY3DMGIn4eHh8PHxQU5ODhISEtCxY0ecOHEC48aNQ1RUVK2pvXWJiopCRkYGVq9ejbNnz+KDDz7Ahg0bxOOlpaV44oknsGvXLqSnpyM5ORkHDhxAt27dAABPP/00tm/fjnPnzokqg/TY448/jqtXr2LSpEnYv38/0tLS8P333+ORRx5BdXW1We0bPnw4brrpJjz00EM4duwYkpOT8fLLLwOACFWTJ09GUFAQEhIS8PPPP+PcuXPYvXs3Zs+ejQsXLtT53ps3b8YHH3yAI0eOICsrC//73/+g1+vRpUsXs9pGRNTUmQojmzdvRlVVlR1aYzmGETvatWsX+vbtCw8PD+zbtw+hoaEICQlR9R4JCQl45pln8MQTT6Bnz5745Zdf8Oqrr4rHnZ2dceXKFUydOhXR0dG47777MGrUKLzxxhsAgOrqajz++OPo1q0b7rzzTnTp0gWLFy8GAISEhCA5ORnV1dUYOXIkYmNjMXv2bPj7+8PJyby/Os7Ozvj2229RVFSEvn37Yvr06XjllVcAGGcEAYCXlxf27NmDjh07Yty4cejWrRseeeQRlJaWKsa+1BQQEIBvvvkG8fHxGD58OD755BN89dVX6N69u6prSETUVMnDiPR7+erVq9i7d6+9mmQRncFgMNi7EaSk1+uRnp6O8PBws7/0m5Lk5GQMGjQIqampYiBtYzT362VtvF7m47VSh9dLHWtcr8WLF+Pxxx8HAIwYMQLff/89AGPV+7333rNaW7XGvy2kuQ0bNuCHH37A+fPnsWPHDsycORMDBw60ShAhImrJCgoKxPGkSZPg4mKcl7Jx40Y0pVoDwwhprrCwELNmzULXrl3x8MMPo2/fvk1ygBURkaORd9OEh4djwIABAIBz586ZHE/iqCwKI4mJibjrrrswZMgQPPDAAygsLBT3x8fHY9iwYVi0aJEilaWkpGDSpEkYOHAgZs6ciezsbOt8AnJ4U6dOxZkzZ1BWVoYLFy4gMTERrVu3tneziIiaPHng8PPzQ9u2bcVt6bu5KVAdRlavXo1ffvkFy5cvx+7duzFv3jy4ublh7969WLduHRITE7F27Vrs3bsXmzZtAmDc1OyFF17AxIkTsXPnTsTGxuK1116z+ochIiJqSWqGEfnikU0pjKha9Ky6uhorV67EsmXLxKJXUVFRAIzrZowfPx4dOnQAAEyZMgXbtm1DQkICDh06BE9PTyQkJAAAZsyYgfj4eGRnZysWz5JUVFTU2pXVxcVFsfpmcyYtGCb9n+rH66UOr5f5eK3U4fVSxxrXSz5mxMfHR7HyakFBgUP8WZgzOFdVGMnNzUV5eTl27NiB1atXw8fHBw888ADGjx+Pc+fOYfTo0eK50dHR+OijjwAAaWlpIrQAgKenJzp06IC0tDSTYUQKPHITJkzAfffdp6a5TV5mZqa9m9Ck8Hqpw+tlPl4rdXi91GnM9bp8+bI4zs/PV4SP1NRUBAcHN6pt1hAREdHgc1SHkaKiIly4cAGbNm1CVlYWZs2ahU6dOqGkpESRyLy9vVFSUgLAuPBWzRU7vb29UVpaavI806ZNw+TJk5UNbWGVkczMTISFhXF6nBl4vdTh9TIfr5U6vF7qWON6Sb0ILi4uiI6OFr0TgHENp/DwcKu0VWuqwoi7uzsAYObMmfDw8MBNN92E0aNHIzk5GV5eXigqKhLPLS4uFhuWeXp6ori4WPFexcXF8PT0NHkeNze3FhM86uPk5MQfaBV4vdTh9TIfr5U6vF7qNOZ6SWNG/Pz84OzsrFgosri4uMn8OahqZXh4eK1N0SQRERFITU0Vt0+fPo3IyEgAQGRkpOKx0tJSXLhwQTxORERE6snDCIAmO4BVVRjx9PTEHXfcgRUrVqCiogLnz5/Htm3bMHDgQIwePRrr169HVlYW8vLysGrVKowaNQoA0KdPH5SWliIpKQkVFRVYsWIFYmJiTI4XISIiIvM0lzCiqpsGAF588UXMmzcP8fHx8Pf3x/Tp0xEXFwcAOHPmDKZOnQq9Xo+xY8dizJgxAIzdLgsXLsT8+fPx5ptvIiYmBvPmzbPuJyEiImpBKioqUFZWBqAFhhFfX1+8/fbbJh+bNm0apk2bZvKx7t27Y/Xq1WpPR0RERCbI1xjx9/cH0HTDSNMY2UJEREQKNRc8AxhGiIiIyIYYRoiIiMiuGEaIiIjIrhhGiIiIyK5MhREXFxd4eHgAYBghIiIijZkKI8CN6oh8VXRHxzBCRETUBDUURlgZISIiIk3VFUakTWsZRoiIiEhTDVVGysvLUVlZafN2WYJhhIiIqAkqKCgQx9IKrEDTnFHDMEJERNQENVQZARhGiIiISEMMI0RERGRXUhhxcnKCl5eXuJ9hhIiIiGxCCiN+fn7Q6XTifoYRIiIisgl5GJFjGCEiIiKbYBghIiIiu6mqqkJJSQkAhhEiIiKyA3nIYBghIiJqgQoKCvD666/ju+++s8v565rWCzTNMOJi7wYQERE1NbNmzcKXX34Jd3d3XLp0CQEBATY9vzyMyFdfBZpmGGFlhIiISIXz589j9erVAIz7v2RlZdm8DfKl4JtDZYRhhIiISIVFixZBr9eL2/b4wje3m6aoqMhmbWoMhhEiIiIz5efnY/ny5Yr75MHAVprbmBGGESIiIjMtW7asVrXB0Soj3t7e4phhhIiIqBmpqKjAokWLat3vaGHE2dlZ7FXDMEJERNSMrF27VgxW9fT0FPc7WhgBbnTVMIwQERE1I0uXLhXHs2bNEscMI43HMEJERGSG1NRUAED79u0xevRocb+jDWAFlGHEYDDYrF2WYhghIiIyQ35+PgAgKCjI7jNWzA0jVVVVKC8vt1m7LMUwQkRE1ICysjKUlZUBAFq1aqUIAPYOIzVXYAWa3vRehhEiIqIGSFURAAgICLD7l70URnQ6nWIqr8Te7VOLYYSIiKgB9YURe4wZkZaD9/X1hZNT7a9yhhEiIqJmpmYYsffCYlIAMjVeBGAYISIianZqhhEnJye7Tp9lGCEiImphaoYRwH5reVRXV4sl6RlGiIiIWghHCiMNTesFGEaIiIiaHXkYadWqFQD7LSyWl5cnjtu0aWPyOQwjREREzcy1a9fEcc3KiMFgQHFxsc3aIg8jQUFBJp/DMEJERNTMmOqmsdfCZ2rDiDS+xJExjBARETWgvjEjgGOHEVZGiIiImgGGEW0xjBARETVACiM6nU50z9hrFVaGESIiohZICiN+fn5i+XVHroz4+PiIY4YRIiKiZkAKI9K0XsCxB7B6e3tDp9MBYBghIiJq8gwGg5jaK40XAexXGbl8+bI4bt26tcnn6HQ6UR1hGCEiImriSktLUVlZCcAxwohUGQkICICrq2udz7Pn3jlqMYwQERHVw9RMGsD+A1jr6qKRMIwQERE1E+aEEVt94VdVVYkuI3PDSFFRkU2Xq7cEwwgREVE96goj9hjAevXqVXFsbhjR6/UoKSnRtF2NxTBCRERUD0eqjJgzk0bSlNYaYRghIiKqh6kdewGGEWtiGCEiIqqHqR17AfsMYJVP62UYISIiaiHq6qZxdXWFu7s7AFZGGothhIiIHJZer8fixYvx5Zdf2q0NdYUR4MYgVkcMI/LHc3NzNWuTNbjYuwFERER1WbJkCR5//HEAQNeuXdG7d2+bt6G+MOLr64vLly/bJYy0adOm3ueGhISI44sXL2rWJmtQXRmZOXMmbr31VgwePBiDBw/GU089JR5LTExEfHw8hg0bhkWLFinmNaekpGDSpEkYOHAgZs6ciezsbOt8AiIiarY+/fRTcXz69Gm7tKGhMAI4ZmWkWYcRAHj99dfx888/4+eff8YHH3wAANi7dy/WrVuHxMRErF27Fnv37sWmTZsAABUVFXjhhRcwceJE7Ny5E7GxsXjttdes9ymIiKjZOXXqFA4dOiRu22vcgzlhpKKiAuXl5Zq3RU0YCQ0NFceOHkas1k2zdetWjB8/Hh06dAAATJkyBdu2bUNCQgIOHToET09PJCQkAABmzJiB+Ph4ZGdno3379rXeq6KiAhUVFcqGurjAzc3NWs11aHq9XvF/qh+vlzq8XubjtVLH2tdr1apVituFhYV2+bOQwoiTkxO8vb0VbZAPEi0oKGgwIMhZcr2kMOLk5AQ/P796X9uuXTtxfPHiRbv9PXZyarjuYVEYefvtt/H2228jOjoazzzzDDp37oxz585h9OjR4jnR0dH46KOPAABpaWmIiooSj3l6eqJDhw5IS0szGUZWrlyJZcuWKe6bMGEC7rvvPkua22RlZmbauwlNCq+XOrxe5uO1Usca18tgMOB///tfrfdNT09v9HurJU2n9fPzQ0ZGhuIxZ2dncXzy5EmEhYWpfn8110sa4tCqVSuzXuft7Y3i4mKkp6fb5doBQERERIPPUR1GnnrqKURGRsLJyQlr1qzB7NmzsW7dOpSUlIjtigHjBZCWny0tLYW3t7fifby9vVFaWmryHNOmTcPkyZOVDW1hlZHMzEyEhYWZlShbOl4vdXi9zMdrpY41r9f+/ftrfXm6uLggPDy8Ue9riaKiIgBAYGBgrfMHBweLYz8/P1Xts+R6SVWatm3bmnWu0NBQnD59Grm5uXa5duZSHUZiY2PF8UMPPYRNmzYhJSUFXl5e4g8MAIqLi+Hl5QXAWAkpLi5WvE9xcTE8PT1NnsPNza3FBI/6ODk58RegCrxe6vB6mY/XSh1rXK/Vq1fXuq+oqMjmfw4Gg0EEgICAgFrnl+9PU1xcbFH7zL1epaWl4rs0KCjIrNeEhITg9OnTKCwsRHFxsaJbyZE0+k9VuhgRERFITU0V958+fRqRkZEAgMjISMVjpaWluHDhgniciIhIUlVVZTKM2GMAa3FxMaqrqwHUHrwK2HYV1itXrohjc8emyGfUOPIsVlVhpLCwEL/99hsqKipQWVmJVatW4fr16+jWrRtGjx6N9evXIysrC3l5eVi1ahVGjRoFAOjTpw9KS0uRlJSEiooKrFixAjExMSbHixARUcv2008/IScnBwBw6623ivvl1XdbqW8mDWDbnXvVzKSRNJXpvaq6aaqqqvDRRx/h/PnzcHV1RXR0NBYtWgQfHx8MGjQIZ86cwdSpU6HX6zF27FiMGTMGgLHbZeHChZg/fz7efPNNxMTEYN68eZp8ICIiatrWrVsnjv/+97/jl19+AWCfykhDYcSWS64zjPx/rVq1wueff17n49OmTcO0adNMPta9e3eTZTciIiK5s2fPiuMxY8ZAp9PBYDDYvTIi37FXYq8w0tDqq5KmEkY4IouIiByKtI+Kh4cH/P39xWxMR6+MaD1mRM2OvRKGESIiIgtIYaRt27bQ6XTiC98elZFr166JY3bTaIdhhIiIHIZerxcVgLZt2wKAWMPKESsjTWkAa1ZWltXbZC0MI0RE5DCuXr0qli2Xwoi8MiLfgNUWmvoAVk9PTzHWhZURIiIiM0hdNEDtykhVVZVNNqOTa+phBLhRHbl48aLNw5y5GEaIiMhhmAojtvzCr8mRBrBKYcTNzU2x/UpDpDBSVlam+DyOhGGEiIgchjyMSNNX5V+8th7E2lAY8fT0FCuR26oyEhQUBJ1OZ/brmsIgVoYRIiJyGI5cGTG1zohOpxODWLVsm8FgEAN71XTRAAwjREREqjQURuxVGXFxcRGbv9YktU/LMFJYWIjKykoA5i94JmEYISIiUkG+sFfNAayA7Ssj0jojAQEBdXaN2CKMWDp4FWAYISIiUsVRKyOmxotIpPbJd/i1NktWX5U0hbVGGEaIiMhhNDSA1ZaVkaqqKhFGTI0XkdgiLG3evFkcd+zYUdVrWRkhIiJSQQoj/v7+cHd3B2C/ykhubq5Yl6N9+/Z1Pk/rVVjLysqwZMkSAMaxK5MnT1b1ennbGUaIiMghFRcXY/ny5Rg0aBD69++P9PR0u7VFvi+NxF6VkUuXLonjdu3a1fk8rWf7fPnll2LMyIQJExAaGqrq9a6uruJ6MowQEZFDKSkpwbPPPouQkBDMmDEDycnJ2L9/P7744gu7tKeiokJ0i8jDiL2m9srDSH2VES3bZzAY8P7774vbs2fPtuh9pK6a7Oxssdy+I2EYISJqoVasWIH33nuv1sqh2dnZdmmPfJCmfPqqvbpp5NfB3MqItVdh3bVrF44fPw4AGDBgAPr372/R+0hhpKqqSjEzx1EwjBARtVAnTpwQx3feeac4tteXlamZNEDL7qaxRlUEcPxBrAwjREQtVGZmpjiWf+k5WhixV2XE3G4a+UwbaV0Sa0hLS0NSUhIAIDQ0FPfee6/F78UwQkREDunChQsAjDM0oqKi4OrqCsDxwoi9KiPmdtPI2yr/DI31448/itk8jz76qPjzsYQ8TNmrG64+DCNERC2UVBkJDQ2Fs7OzGKfhyGHEXpURe4QR+aymuLi4Rr1X69atxbE1qzfWwjBCRNQClZSU4OrVqwCAsLAwADdW9szLyxP/IrclU0vBA8apqdKaI/aojLRq1Uqc3xStwkhGRoY4VrvQWU2BgYHiWPpzdyQMI0RELZDURQMAHTp0AHAjjJSXl6O4uNjmbaqrMgLcGDdiq8qIwWAQlZH6qiKAbcKIFBgtJR/XwjBCREQOQR5GalZGAGWVwlbqCyNSV42tKiNFRUUoKSkBUP/gVcC4Wqw0nkOLbppWrVopBvFagpURIiJyOPKZNDUrI4B9xo1IX+ROTk6KL0/ANjvjypk7eBUAdDqdCE/WCiPV1dUiMIaHhzf6/RhGiIjI4TRUGbFnGGndujWcnZ0Vj0lhpKysDFVVVZq3xdzBqxIpjFy+fNkq420uXbokPmdjx4sAxusnXVMOYCUiIofgaJURg8Fgcl8aia1n1MgrIw110wA3VoyV7/TbGNYcvAoYqzdSdYSVESIicgimKiPyJdhtHUaKi4tRWloKwHQYsfXCZ5ZWRgDrdNVYO4wAYBghIiLHIlVG5Du62rMyUt/gVcD2C5+Zu/qqpCmFkevXr6OystIq72ktDCNERC2QVBkJDQ2Fk5Pxq8CRw4itKyNqBrAC1g8j8gXPrBVG5NN7rdGVZE0MI0RELYypBc8A+07tdeTKiL27aawxmwZw7Bk1DCNERC2MqQXPAOWS4baujNS1+qrEXmNGXF1da00zNkWrMOLq6mpWGDKH/HM42owahhEiohZGPpNGXhnx9PSEt7c3AMfuprFFZUTqpmnXrh10Ol2Dz9cqjHTo0EF0ozUWKyNEROQw6qqMAMr9aWzJkbppqqqqRKXGnMGrgHXDSGFhoahcWGu8CMAwQkREDqSuyghwY3rvlStXoNfrbdYm+Re4fIqxxJbdNLm5uWLhMnO7SORtbux4G/mfD8MIERE1S+ZURvR6vU1nXDhSZUTt4FUA8PLyEm1sbGVEPpPGWoNXAYYRIiJyIPVVRuw1vVc6l6urK/z8/Go9bsvKiNo1RiTW2p9GizVGgLp37t20aRP27dun+Ny2xjBCRNTCyBc8q9klYq/pvdKXY2BgoMkBo7asjKhdY0QihZErV640av8crcKIqdk0ZWVlSEhIwIABA3DPPfdY7VxqMYwQEbUwUjeNqZka9qqMyMOIKfaqjKgJI9ZaTt8WYUS63vIuO2ueSy2GESKiFqS4uFj8q7jmeBHAPmGksrJSBAx5V4KcvcaMWNJNAzSuq0YeRmp2ozVGQECAOJbCSH1ddrbEMEJE1IKY2iBPzh5hRL4AlyNURhrbTQM0LoxIA1gDAwMVIayxXFxc4O/vD4BhhIiI7KihLx977NwrH0xZV2XEw8MDzs7OABxzNg1gnTBSXV0tAqM1Z9JIau7cyzBCREQ2V9+0XsBxKyM6nU5UCWw1gLVVq1Zwd3c3+3XWCCPZ2dmorq4GoM0YDnkY0ev1DCNERGR7DX352COMyCsj9e0DI3XVaNlNYzAYRGVE7Z4w8jBi6UwkrQavSqTKk16vR2FhoWYLrKnFMEJE1IJkZWWJ49DQ0FqPy8OArab2yisjdXXTALBJZaSoqAglJSUA1A1eBaxTGdE6jNSc3iudz83NzeTKt7bCMEJE1ILIqx3BwcG1HndxcRGBwJErI9Jy7dZm6eBVoOmFkatXr4rKiDU35LMEwwgRUQty5coVcdy6dWuTz7H1ZnnmDGAFblRGDAaDqF5Y2x9//CGOIyIiVL1W3sXVUBjJy8vDxx9/jPPnzyvuP3funDjWOoykp6ejoKAAgH3HiwAMI0RELYoURtzd3eHp6WnyOdKXakFBASorKzVvkzkDWAHbTO89ePCgOO7Tp4+q17q4uIiA11AYmTJlCp544glMmzZNUeX5888/xXGXLl1Und8c8ut79OhRccwwQkRENiOFkdatW5tcdh1QTu+VV1K0orabBtBu3MihQ4fEcVxcnOrXm7M/zYkTJ7B9+3YAxuqEvGsmJSUFgHG8Sn1VIkvVFUbsOXgVYBghItJceXk5EhISMHToUMXUWlszGAyKMFIXW8+oUdtNA2hTGTEYDCKMtGnTxuTU54ZIYUQ+ELamjz/+WHH78OHDAIwDhqXrHRMTo/rc5mBlhIiohfruu++wadMm7Nq1CzNmzNBs8GVDSkpKUF5eDsCxwoi5s2m0roxkZGSIsNanT586K0f1kVeVTM1GKioqwmeffaa4TwoFJ06cEPdpFUbk11c+PoVhhIiomUtNTRXH3333Hb7++mu7tMOcwauA7XfulSojvr6+cHFxqfN5Wu9PI++iUTteRNLQWiNffvllrbZLlRGpiwYAunfvbtH5G1JXNxjDCBFRMyftNSJ5+umnxSwGW7IkjNiyMlLfeBFA+wGs1g4jNceNGAwGfPTRR+K2FLyOHDkCwDaVEYYRIqIWqub0zezsbLz66qs2b4cjhhGDwSAqIw2FEWtXRvbt24dTp06J21qHkV9//RXHjh0DAPTv3x+33norAOOquFeuXLF5N43Ex8dHsaOvPTCMEBFpTKqMuLi4wMvLCwDw4YcfKqaR2oIjhpGioiJUVVUBqH+8CGDdysjGjRsxYMAA9OrVC3/88QcMBoP48wgKCrK4UiBfSE6+gBqgHLg6a9Ys3HLLLeL2kSNHRDdN27Zt6/3zaQxPT89aU7rDwsIsGh9jTQwjREQakyoj4eHheP311wEYKwIffPCBTdvhiGHE3DVGAOtWRpKTkwEApaWlmDt3rlUGrwLKJfblS+9XVVVh3bp1AIyf87777kPPnj3F4zt27BCVFK3Gi0hqXmd7d9EAjQgjx44dQ9++fZGYmCjuS0xMRHx8PIYNG4ZFixYpRoynpKRg0qRJGDhwIGbOnFkrMRIRNUf5+fm4fv06AKBTp0548sknxWNpaWk2bYu5YaShGSHWZO60XgDw9/cXx/IQ09jzrl+/XjHDxZL1RSTy6cDyadzZ2dkoKysDAAwePBgeHh7o1auXePzLL78Ux1p10UiaTRjR6/V49913FRds7969WLduHRITE7F27Vrs3bsXmzZtAgBUVFTghRdewMSJE7Fz507Exsbitddes84nICJyYPLxIuHh4fD09BT987b+R5m5YcTf3x+urq4AtA8jaiojISEh4lhedWjseQFg/vz54tjS8SKAcT8bZ2dnAMowIj+Wvvy7desGNzc3AMo9abQOIzVDn70XPAOAuudQ1eObb75BbGysos9u69atGD9+vEiFU6ZMwbZt25CQkIBDhw7B09MTCQkJAIAZM2YgPj4e2dnZJndFrKioQEVFhbKhLi7iD6250+v1iv9T/Xi91OH1Mp81rpV8LYfw8HDo9XqEhIQgPz8f2dnZqK6utll/vTyMtGrVqt7P1aZNG1y8eBG5ublmf35Lrpe8G6ihNsm/L7Kyshr15yKvjAAQ41YAoFevXha/t06nQ0hICDIzM5GZmSneRz6jqkOHDtDr9XBxcUHnzp0VU3oBY0jR8uezZhgJDQ3V9HzmbMCnOowUFBTgq6++wsqVK/Huu++K+8+dO4fRo0eL29HR0WIKU1paGqKiosRjnp6e6NChA9LS0kyGkZUrV2LZsmWK+yZMmID77rtPbXObNGk3RTIPr5c6vF7ma8y1ktaQAABvb2+kp6eLykhpaSn++OMP+Pn5NbaJZpH/67ykpKTWlGM5f39/XLx4EZcvX8b58+dVBSY110u+Boter6+3TQAQEBCA/Px8pKenN/jc+ly6dMnk/YGBgWa1oz5t2rRBZmYmcnNzcfr0abi7u+P48ePicXd3d/H+MTExtcKIr69vo87fkJr/sHdzc9P0fOZsOKg6jHz00UeYNGlSrR+ekpISxeAib29vsRRuaWkpvL29Fc/39vZGaWmpyXNMmzYNkydPVja0hVVGMjMzERYWZtctnZsKXi91eL3MZ41rJR9o2adPH4SHhyMiIgK//PILAOPvtvDwcKu0tyHy37k9evQQ3QmmhIaG4s8//0RlZSUCAgLMmvppyfWSPy8qKqrBaxEWFob8/Hzk5OSgY8eOFleVpMp+YGAgnJ2dRXdUXFwcOnXqZNF7SiIjI/H7778DAFxdXREeHo7i4mLxeK9evUSVrHv37opF8IKCgtC7d+9Gnb8hNbtl4uLibPZ3sC6qwsjJkyeRkpKCF198sdZjXl5eim6b4uJiMYXN09NT8QchPV7XjpFubm4tJnjUx8nJiV8WKvB6qcPrZb7GXCv5vzgjIiLg5OSkGPuQk5Oj+ewJidRNExAQIMaE1EW+XsaVK1caHM8hp+Z6ycdutG7dusHXhYaG4vjx46ioqMDVq1cVg23VkLpp2rdvj6lTp4rvtX79+jX650I+IPTixYu46aabFGNcOnbsKM5Rc3xI9+7dNf+5rDleKDw83O6/C1SFkd9//x0ZGRmiO6aoqAjOzs64cOECIiIikJqaikGDBgEATp8+jcjISADGlLhhwwbxPqWlpbhw4YJ4nIiouZLCiLOzs5j2Ke+etuUgVnM2yZPUXLyrc+fOmrTJ3B17JfLZKllZWRaFkbKyMlG5DwwMxJNPPokDBw4gOzsbjz76qOr3q6+NUteYvOtKPv23a9eu0Ol0Yvap1oNXAeV1bt26tSgc2JOqMDJu3DiMGDFC3H7nnXcQFhaGBx98EEePHsVbb72F4cOHw93dHatWrRJdLX369EFpaSmSkpIwcuRIrFixAjExMSbHixARNSfSbJoOHTqI5b/llRFbhZHq6mrk5+cDMC+MyL/ka64kak1qZtMAtdfxkK/VYek5PT09rbpfkKkwIv0/ODhYUfn38fFBVFQUzpw5A8D2YcQRpvUCKsOIh4cHPDw8xG13d3d4eXnB19cXgwYNwpkzZzB16lTo9XqMHTsWY8aMAWDsdlm4cCHmz5+PN998EzExMZg3b551PwkRkYMpLCwU//KX98nL/yF28eJFm7Tl2rVr4l/faisjWk7vVbPOCKAMI/IBuZaeU033k7nkYSQzMxNVVVUidJr68u/ZsyfDSGNePHfuXMXtadOmYdq0aSaf2717d6xevboxpyMialLk40XkgyLt0U1j7hojEltXRlxcXBSTIOpS1wqnamgdRuRf8BcuXEB2draYOisPKpJHHnkEGzduROfOnTFw4ECrt6e+9nXp0kXz85mjUWGEiIjqJg8jdVVGHDWM2LoyEhgYaNbMmJpjRhpzTum81tauXTs4OTlBr9fjwoULivEipioRI0aMwOXLl+Ht7V3vDCdriY6OxoIFC3D06FE8/fTTmp/PHAwjREQaka++Kq+M+Pj4wMfHB0VFRQ4bRmxVGZGCgTldNEDTqIy4urqiXbt2uHjxIi5cuKDoTjJVGQFgs7VmJC+//LJNz9cQzusjItJIXZUR4MYgVkcNI7aojFRWVop1WMwNBYGBgXB3dwdg+ZgR+QBWc0OQWlLouHTpkmIPIkcZo+FoGEaIiDRS15gR4EZXTWFhoWKNJq2oDSO+vr5i1odWlRFpdg9gfijQ6XSiOuKolRHgRhgxGAzYv39/rftJiWGEiEgjUjeNTqer9S9iW48bURtGdDqdqI5oVRlRO61XIn2h5+fn11pQ0xy2DCMA8Ouvv4pjVkZMYxghItKIVBkJCQmptaq0o4cR4Ma4kcuXL2uykZqloaCx40ZsHUakfXCkTfSoNoYRIiINlJaWIicnB0Dt8SKA7cOI/AvY3DAiVUbkC6Zp1SY1YzeaQhgxVQGpueAZ3cAwQkSkgYyMDHFsauM1W6/C2pjKCKDNuJHGdtMAjQsjzs7Oms1iMTU2hF00dWMYISLSgHxaryNURqQw4ubmZvZeJFrPqLF3ZaRVq1YW7/rbEFNhhINX68YwQkSkgfqm9QK2XxJevkmeuV/AWldGrDFmxJLpvfKF1rRiamwIKyN1YxghItKANGgRUH55SuxVGTG3iwbQvjJiaTdNYyojVVVVKCgoUH1Otdzc3BAcHKy4j5WRujGMEBFpQBq8CqDWlxIA+Pv7i41HtQ4jJSUlKCsrA6AujNiyMqKmm6Z9+/aiuqM2jMgH4moZRoDa4YOVkboxjBARaUAeRuQVBol8mqfWYcSSwauA41ZGXF1dRcBTG0ZsMZNGUjOMsDJSN4YRIiINyCsJpsIIcKOr5tq1a6JyoQVLw4ijVkaAG1012dnZqKqqMvt1tlgKXlKzEsLKSN0YRoioWamurkZ5ebm9myEqI76+vvD09DT5HFuNG3HUyogURnx8fODq6qrqtVIY0ev1iiqUuecEbFsZ4YJn9WMYIaJmo6ysDLfccgtatWqlWILbHqRKgqnxIhJHDyPe3t5iXIuW64xYEgosXWvEXmGkXbt2qgNXS8IwQkTNRnJyMlJSUlBaWor33nvPbu0oLy8XAyWbchixxv40VVVVmDlzJu6//35cv35dcb98vQ+1LJ1RY68wwvEi9WMYIaJmQ75ex/bt21FZWWmXdpgzXgSw3SqsloYR4Ma4kby8PIv2p/n++++xbNkyrF27FgsXLhT3//zzz+LPp0uXLqrf19y1RkpKSvDxxx8jOTkZgG3DiHzlXVOr8NINDCNE1GzIv9CvX78uvoBsTR5GmnJlBLgRpvR6veKL3FxpaWni+Msvv4TBYAAAfPPNN+L+e+65R/X7mlsZeeuttzBr1izEx8fj4sWLNg0j4eHheOKJJxAdHY1nnnlG03M1dQwjRNRs1PxC37p1q13a0dAaIxJbrcJqjcoIYNm4EfnnOnfuHH777Tfo9Xps2LABgHFxsNGjR6t+X3PHjHz33XcAjOOJtm3bZtMwAgD//e9/cerUKfzlL3/R/FxNGcMIETUbNcPIli1b7NKOhtYYkVi7MvLYY48hNjYWv/32m+J+S3bslTR2Rk3NkLVq1SocOHBABIjhw4dbtFmdvIurriBXXl6OI0eOiNvbt2+3eRgh87jYuwFERNZS8wv9xIkTOH/+vM37683tpmndujVcXV1RWVnZ6DBy7tw5LFmyBAAwadIkpKSkwMvLCwaDAZmZmeJ5ageLWrMyAgBr1qyBu7u7uG1JFw1gnDLt7e2N4uLiOsPIkSNHUFFRIW7v2LEDUVFR4nZAQIBF5ybrY2WEiJoNU1/o9uiqMbcyotPpRHWksWFE/oV8/vx5zJ8/HwCQmJiIY8eOAQA6d+4MFxd1/wa1dmUkLy8PH374IQDAyckJY8aMUf2egHkr2O7bt09x+9q1a/j9998BGJfjV3stSDsMI0TUbEhfSvJ/eds7jNRXGQFudNVcvny5UbN/agaF//znP9i2bRtmz56tuE8ta1dGAIhqxZAhQxTvr5YURgoKClBcXFzr8ZrdVYBxUTyAXTSOhmGEiJqFwsJCFBUVAQAGDBggvuR37tyJ0tJSm7bF3G4aQDluRL7Tr1p5eXmK21VVVbjrrrtQWFgIAHj44YctqkI0pjJSWloqFjbr169frW6RcePGqW6PXENTo6XKiKkKiNZLwZM6DCNE1CzIv4xCQkLEDI3S0lLs2rXLpm2RKiNubm4NDs601iBWeVBwdnYGADGNtmPHjnj//fctet/GVEbknyciIgITJkxQPD527FiL2iSpbzbS5cuXxbTifv361VrLhJURx8IwQkTNgvyLr3379rjrrrvEbVvPqpHCSHBwsNjqvi5ahJFXXnlF8VhiYiL8/f0tet/GhBF5QAgJCcHkyZPF7b59+zZ647j6ZtTs379fHPfv3x8jR45UPM4w4lgYRoioWagZRuLj4+HkZPwVZ2rsgFaqq6tFl0l9g1cl1lqFVR5GJk6ciBdffBEeHh7417/+haFDh1r8vt7e3vDx8bGofTXDyODBgzFu3Dj4+/vjtddes7hN8vc0dS5AOXi1f//+GDFihOJxhhHHwqHERNQs1Awjvr6+6NixI86fP4/U1FQYDIYGqxTWcOXKFbFsekPjRQBtKiNt2rTBm2++iTfffNPi95MLCwvDn3/+iczMTFXXsWYYcXJywvr166HX60VQbAxzw8iAAQMU06gBhhFHw8oIETULNcMIALGmREFBgWIVUi2pGbwKWC+MSNUYJycnqw/ODA8PB2BcxbTmQNn61AwjEmsEkZrvKb92er1edNMEBwejY8eO8PHxwaBBg8RzGEYcC8MIETULpsJI586dxX1nzpyxSTvMXWNEYq0l4aXKSOvWra32ZS/p2LGjOM7IyDD5nMrKSqxYsQKbN28W99UVRqylrmt35swZsWty//79RSVH3lVjTlAk22E3DRE1C/VVRgAgNTXVJvuDqFljBDB2qTg7O6O6utoq3TSNWbejLvIwkp6ejj59+tQ694QJE7B7924AQPfu3TFs2DBFQJAHB2vx8fGBn58frl+/rjiXfIxQ//79xfGjjz6K77//HgCQkJBg9faQ5VgZIaJmQfoi9/DwEDNHaoYRW1DbTePs7CyeZ2kYKS4uFmupaB1GalZGfv/9d8TFxYkgAkB84UsBwdfXF76+vlZvF3Cj4iIPIzUHr0oCAgKwc+dO7Ny5U7P2kGUYRoioWZC+yNu3by/K8vYII2q7aYAbVYOcnByxQqga8nEctgwj+/fvx8CBA2sFlF9//RXAjYCgRReNRLp2RUVFYoE3abyITqdD3759NTs3WQ/DCBE1eWVlZWKlT3l3QGRkpAgm9hgzYu64BKnNer3eov1fas6ksba6wsh//vMflJWVATDOWAkNDQUAHDhwANeuXRPhQMswUnNGTVVVFVJSUgAYxwxZsiMw2R7DCBE1efJl1OVhxMPDQyysZY9uGrWVEcCyQaxah5EOHTqIUCcPIydOnABgXGn2p59+wpAhQwAYV73dtm2beJ4tw0hqaqoISD169NDsvGRdDCNE1OSZGrwqkbpqrl27hqtXr2reFqky4uTkhKCgILNe09iFz+RhxNxzquHq6iramJ6eDsC4uJtUbYqKioKHh4digPC6devEsa3CSHZ2No4fPy5u33zzzZqdl6yLYYSImjxzwghgm+qIFEaCgoLEHjENaexaI1pXRoAbXTW5ubkoLS3F+fPnxe67Xbt2BQBFGLFXZeTYsWPiNisjTQfDCBE1efWFEflaI1qHEYPBILppzO2iARofRrQewAoox41cuHABJ0+eFLelMNKjRw94enoCgOgqAWwbRlgZaZoYRoioyTO3MqL1INbr16+jvLwcgLpFtZpSZQQwjhs5deqUuC3tiOvi4oJbbrml1mvtURnx9vZGRESEZucl62IYIaImz1G6aSyZ1gs4/gBW4MaS8IAxjJiqjABA7969a73WFlN7AeDUqVM4d+4cACA2NtbqK9GSdvgnRURNXn1hJDIyUhxrHUbULngmf640W8URB7AC5lVGAKBXr161XqvF6qsST09PBAQEAACOHDki7mcXTdPCMEJETZ70Be7i4lLry9jLywsdOnQAYNvKiJow4urqKioajQkjAQEBcHV1Vf16c9RcEl6qjLRr106seAvUDiOtWrUS40i0YqrywsGrTQvDCBE1edIXeHBwsMnSvNRVk5eXJzZQ04Ila4xIpOrBpUuXYDAYVL1WGsCqVVUEUIaRY8eOic8qr4oAxt1wo6OjxW0tu2jqOwcrI00LwwgRNWlVVVXii7Gu7gBbjRuxtDIC3Gh7ZWUlrly5YvbrKisrRcDSarwIYKy6+Pj4ADDuRyORjxeRyKf4MoyQORhGiKhJy8nJEZUEW4WRgwcP4oUXXlCsaWEwGBRf0paGEUDdIFZbTOsFjPu8SNUReeWmZmUEMC4NL7FHGAkJCUHr1q01Py9ZD8MIETVp9Q1elVh7rZH7778fb7/9Nvr3748vvvgCBoMBc+bMQVJSEgDjtFL5Oc2hZhXWjIwMHD16FIBtZtJI5DNqJKYqI8OHD4ebmxsA2GSjupphhFWRpsfF3g0gImoM+Rd3Xf8Kt+ZaI9evX0daWhoA48JeDz74ID755BP8/PPPAIwVhKVLlyoGdZrD3LVGTp48iQEDBqCgoABff/01WrVqJR7TOozIx41ITFVGIiIisHPnTpw9exYTJ07UtE1A7RDKwatNDysjRNSkybs06qqM3HTTTeK4sZWRzMzMWvdJQQQAli5dismTJ6t+X3PDyAsvvICCggIAwHvvvWezbhqgdhhxd3c3WS0BgIEDB2Lq1KmiQqIlVkaaPoYRImrSLly4II6lHXpr8vb2Fl/2ja2MyHet7d27N1xcbhSY33//fcyYMcOi9zUnjOzevVt0BQHAL7/8gv3794vbWs6mAWqHkc6dO5u9/46WGEaaPnbTEFGTJg8j0noiptx0003Izs7G5cuXUVRUJGaGqCWvjPz9739HbGwsFi9ejNGjR+OBBx6w6D2Bhgew6vV6zJkzp9b9K1asEMe2royYGi9iD/Jr5+zsjG7dutmxNWQJVkaIqEmTh4P6woh8n5L09HSLzyevjHTs2BG33norvvjii0YFEaDhysjatWtx4MABAMrPInXZALYfwGpqvIg9uLu7i5V2e/fuDXd3dzu3iNRiGCGiJk2qjHh7e4tlwU3p1KmTOD5//rzF55OHn7q6hSzh7u6OwMBAALXDSHl5Of7v//5P3F68eDEGDhxY6z20DiMhISGKReUcpTICAJ999hlmzpyJTz75xN5NIQuwm4aImiyDwSDCSIcOHcT+LqZYK4zIKyPWDCOAsTpy9epVZGdnw2AwiM+zZs0a0eb4+HiMHDkS586dQ3JysuL1WocRV1dXhISEiGvuSGFk0KBBGDRokL2bQRZiZYSImqyCggIUFxcDqL+LBlCGEWlnV0tIYSQgIAB+fn4Wv48p0piMsrIyxWqu8sXU5syZA51OhwkTJigGz3p5ecHLy8uq7TFF6g5xcnJSLPtO1Biqw8g///lPjBw5Erfddhvuv/9+xZS2xMRExMfHY9iwYVi0aJFilb6UlBRMmjQJAwcOxMyZMy3aDIqIHMe8efPQo0cP/PTTT3Zrg7mDVwHlOAtLKyN6vV6c09pVEaDu9VDOnj0rjmNiYgAYZ86MHDlS3K91VUTy8ssvIyYmBvPnz7d6GKOWS3UYmTx5MpKSkrB792689tprePXVV3H9+nXs3bsX69atQ2JiItauXYu9e/di06ZNAICKigq88MILmDhxInbu3InY2Fi89tprVv8wRGQb+fn5eOONN3D8+HFMmTIFJSUldmmHuYNXpcel8Q6WhpHc3FxUVFQAML0AWGPVtVKsFEbc3d0V01jlg2a1ntYrGTFiBFJSUvDSSy/Z5HzUMqgeMyIvdep0OlRUVCAvLw9bt27F+PHjxS+EKVOmYNu2bUhISMChQ4fg6emJhIQEAMCMGTMQHx+P7Oxsk4sUVVRUiB940VAXF5ssnuMI9Hq94v9UP14vdaxxvc6ePStef/HiRbz77rt2+XKSj98IDQ2t9zM5OzujQ4cOyMjIwPnz5836/DWvlTzEhIWFWf3vnNQFAhgrI3q9Hnq9Xqz4Kj0unffuu+9GUFAQ8vLy0KNHD7v/DPBnUZ2Wcr1M7aRdk0UDWN98800kJSWhvLwct912GyIjI3Hu3DmMHj1aPCc6OhofffQRACAtLU1RfvT09ESHDh2QlpZmMoysXLkSy5YtU9w3YcIE3HfffZY0t8kytdIj1Y3XS53GXC9piqnkrbfewsiRI232r3NJSkqKOHZzc2twym779u2RkZGBK1euICUlxey1RqRrJR+74ePj06gpwqZ4enqK42PHjiE9PR3Z2dkoLy8HYGx/zXN+9tln2LdvH8aOHWv19liKP4vqNPfrJe8irYtFYeQf//gH5syZg4MHD4pSYklJieIH29vbW5RuS0tL4e3trXgPb29vlJaWmnz/adOm1VpOuaVVRjIzMxEWFmZWomzpeL3Uscb1qtktU1RUhMTERPz3v/+1RhPNVlRUJI579+5d59Lkki5dumDfvn0AjNehoefXvFZlZWXisR49ejT4erXat28PZ2dnVFdXIzs7G+Hh4YpqTGxsbK1zhoeH484777RqOyzFn0V1eL1usHhqr7OzM/r374+vvvoKkZGR8PLyUvxiKC4uFiO7PT09xYh3+ePyfwXIubm5tZjgUR8nJ6cW/xdUDV4vdRpzvUyNufjkk08we/Zsm86wyMrKEscdO3Zs8PPI/4WWkZGBW265xazzSNdK/i/YTp06Wf3vm4eHB8LDw5GWloYzZ85Ap9MpZv5ERUU1ib/j/FlUh9fLClN7pdHlERERigFXp0+fFv2bkZGRisdKS0tx4cIFRf8oETUd8jAyc+ZMAEBVVRVefvllm7ZDmtni4eEhFgyrT2PXGtFqwTM5aRBrYWEhLl++rJhJI9/wj6g5URVGSkpKsG3bNpSUlKCqqgo//vgjDh06hF69emH06NFYv349srKykJeXh1WrVmHUqFEAgD59+qC0tBRJSUmoqKjAihUrEBMTU+cOm0Tk2KQvcjc3N/znP/9B27ZtAQBJSUk2HYwnhYOGFjyTyCsjlqw1Ig2Y1el0CA0NVf16c8jH16WmpjKMUIugqptGp9Nh48aNeOutt2AwGBAWFoYFCxYgKioKUVFROHPmDKZOnQq9Xo+xY8dizJgxAIy/sBYuXIj58+fjzTffRExMDObNm6fJByIibRkMBvFFHh4eDl9fX/zlL3/Bxo0bUV5ejszMTKuPpTDl+vXrKCwsBGB+lcJalZGQkBC4urqqfr056gojOp1O0X6i5kRVGPH09MSSJUvqfHzatGmYNm2ayce6d++O1atXq2sdETmcq1evivFh0pejfH2MM2fO2CSMqFnwTBIaGioGiKoNI+Xl5bh06RIA7bpogLrDSFhYGDeAo2arZY+YISLV5F/iUreHfNDq6dOnbdIOS8KIi4uLCBJqw4j8fFoseCaRB7v9+/fj2rVrANhFQ80bwwgRqSL/Eq+rMmILloQR4EaAunbtGgoKCup9bmFhoZixIx+8qmUYkc/S2b17t7ifYYSaM4YRIlJFPvCzKYYRc8eNpKenIzY2FoMHD8bixYs13a1Xzt3dXbFhnoRhhJozhhEiUsVUZSQkJESsK2SrMGLpNFtzwkhRURHGjBkjAs9zzz2HpKQk8biWlRFAOW6kvvuImguGESJSxdSYEZ1OJ6ojaWlpqKqq0rwdWlVG9Ho9HnzwQRw7dkzcV1FRgXXr1onbWlZGANPBg5URas4YRohIFambxsPDA8HBweJ+KYxUVVVZvCuuGlIYcXNzU7UnTkNrjbz++uv49ttvAQD+/v6KLiiJ1pURU+dkGKHmjGGEiMxmMBhE0AgPD1csNGbrcSNSGDF3wTNJfZWRQ4cOYcGCBQCMS3R/9dVX+PDDD+Hh4SGe4+HhofmGgDUrI0FBQfDz89P0nET2xDBCRGbLy8sTm+TVXIDLltN7i4qKkJ+fD0BdFw1gHN/i4mJcYqlmGJHPXnn99dcxcuRIdO7cGW+//ba4v2PHjqrCjyVqhhFWRai5YxghIrOZGi8isWVlRD5eRO34DWdnZ9HNUjOMyGfMDBs2TBw/9thjmDlzJtzd3fHUU09Z0GJ1IiMjFYGHYYSaO4YRoiZEr9dj48aNio0nbcnUtF6JvcKI2soIcCNIFRQUiEXFAGUYkY8L0el0WLp0KQoLC/H4449b0mRVPDw8FJ+LYYSaO4YRoibk73//O8aOHYshQ4aI7hJbMjWtV9KmTRsxrqGphBHAOPtHIoURJycnhISE1HqdVvvRmCIPdwwj1NwxjBA1Ebt27cLy5csBANnZ2fjjjz9s3ob6wohOpxPjRtLT01FeXm7Vc6enp+PNN9/E2LFjMWfOHHG/JWFE/uUuDyPyjfCkcSX2Ih+DY2p2DVFzYt+fNiIyS3l5OR599FHFfampqejXr59N2yHvpqk5ZgQwfmkePHgQer0eaWlp6NatW6POp9frsWXLFixZsgTbtm2DwWCo9ZyYmBjV7xsZGSmOpTBSWlqK3NxcANpP3TXHrFmzsGPHDsTGxmLAgAH2bg6RphhGiJqAt99+G6dOnVLcZ49xI1JlxNPTE23atKn1eM1xI40NI4899hg++eSTWvf7+/sjLi4OU6ZMUVQQzCUPI9KuuLbaCM9cN998s81WsyWyN4YRIgeXmpoq1r6oeb8tydcY6dSpk8nprfIwYo3pvV9//bU47tixI2bMmIHx48cjOjpabCZnCVOVkboGrxKR9hhGiBzcnDlzxPiLWbNmYfHixQBstweMJCcnR2zcVnO8iERepWhs+/Lz88VMl1tvvRV79uyBs7Nzo95TEhgYiICAAOTn5zOMEDkADmAlcmDl5eXYtm0bACA4OBhvvfWWGLBp68qIPFzIKwty1pzeKx+f0q1bN6sFEYn0GTIyMlBZWckwQmRHDCNEDuzw4cOiKjJixAj4+PiI1Tnz8vLEKqS2kJKSIo7rGjTaqlUrtG7dGkDju2nks1zqCj+NIb1ndXU1MjIyGEaI7IhhhMiBJScni+Nbb70VgHKpcGnwpS2cOHFCHHfv3r3O50ldNVlZWY1aC0UeRkzN3GmsmtN7GUaI7IdhhMiB/fLLL+J44MCBAGy/IZ1EHkbqm05rrUGs8m4aLSsjgDKM+Pj4ICAgwOrnI6K6MYwQOSiDwSAqI35+fiIAyCsjthw3InXTBAUFmZzWK+natas4PnnypMXn07oyIg8jqampIozYYiM8IlJiGCFyUOfOnUNOTg4AYMCAAWIApz3CyNWrV3Hp0iUA9XfRAFCsLfLnn39afE4pjHh7e9cbfiwlDyP79+8XM4XYRUNkewwjRA7KVBcNoBzrYKswIg8VDa14ao0wUl1djfT0dAC1d7C1lo4dO4qA99tvvynuJyLbYhghclCmBq8CxkpB+/btAdhuzIi540UAY1iSNpSzNIxcvHgRFRUVALTpogEAFxcXhIeHA4A4F8AwQmQPDCNEDkqqjDg5OaF///6Kx6RBorm5ubh+/brmbTFnWq/ExcVFtO/06dOoqqpSfT6tp/XW994MI0S2xzBC5IAKCgpw/PhxAECPHj3g6+ureNzW03vNndYrkbpqKioqFLNizKX1TBqJvMtLwjBCZHsMI0QOaN++fWKHWvl4EYmtB7FKYSQwMBBt27Zt8PmNHTei9UwaCSsjRI6BYYTIAckHr8rHi0jkYUTrcSP5+fnIysoCYOyiMWcwqXx6b2PDiC27aXQ6HUJDQzU7HxGZxjBC5IDkg1dNVUbkC4tpXRmRhwlzumiAxldG5N00dW3KZw01w0i7du3g5uam2fmIyDSGESITzp07h+7du2Pw4MEoLS216blLS0vx66+/AgBCQkJMdhvYcnqvmpk0ki5duohjc8LI3LlzER4ejjVr1gC4URlp164dvLy81DRXlZpjRthFQ2QfDCNEJsybNw8nTpzA3r17sWXLFpuee8uWLSguLgYADB8+3GS3iK+vL4KDgwFoH0bUzKSReHt7i2mzJ0+eFONfTElLS8Mbb7yBjIwMTJ8+HefPnxcLrGnZRQMA/v7+CAwMFLcZRojsg2GEqIZr165h9erV4vapU6dsev5Vq1aJ48mTJ9f5PGncSHZ2NoqKijRrjyWVEeBGV83169eRnZ1d5/M+++wzcVxUVIRp06aJ21qHkZrnYBghsg+GEaIa/ve//4mlwQHrh5HKykpUVlaafOzatWvYunUrACA4OBjDhg2r833k40a0nN4rhZGAgACx2Jo5zBk3otfrkZiYqLhv165d4ljLmTQSeVcNwwiRfTCMEMkYDAYsWbJEcV9jdp6t6dChQ2jdujV8fHzQt29fPPbYY9i4caPoxli/fr1YDXTixIliuXJT5DNqGtvG8vJyrF69utbMnOvXryMzMxOA+TNpJOaEkZ07d4oN6jw9PWs9bovKiDyMSF1LRGRbDCNEMnv27Km10+ypU6fqHfOgxpo1a1BYWIiKigocPHgQS5YswdixY/H6668DAL788kvx3Pq6aADlzJZjx441ql0vv/wyJk2ahH79+olpvIC6PWlqMieMfPrpp+J4yZIlCAkJUTxuizDy8MMPIywsDHFxcRg5cqTm5yOi2lzs3QAiRyKvinh4eKCsrAz5+fnIy8uzys6xUhWgpvnz56Nt27aiiyIqKgpxcXH1vtctt9wijo8cOdKodh04cACAcU2R2bNnY926dQCA5cuXi+eYO61X0lAYuXbtGr755hsAxsXU7r//flRWVmL69OniObbopuncuTPOnz8PnU6nyYZ8RNQwVkaI/r/c3FysX78eANCmTRtMmTJFPGatrpoLFy6I45ycHLzxxhvi9pNPPikqMJMnT27wi7FTp07w8/MDABw9erRR7ZIPMF2/fj22bNmCLVu2iDDi7e2Ne++9V9V7tm7dGkFBQQBMh5HVq1ejvLwcADBlyhS4u7vj4YcfRmxsLAAgKCioVqVEK05OTgwiRHbEMEL0/61cuVIMLH3kkUdw8803i8esNYhVGn8RFBSEtm3b4tVXX8XEiRNrPe+BBx5o8L10Oh169Ogh3vfq1asWt0uaSit5/PHHFRWKd999F2FhYarfV6qOXLp0Cfn5+YrHVq5cKY4feeQRAICzszM2bdqE2bNnY/369fWOmSGi5oNhhAjGWR1Lly4Vt2fOnKlYuMsalZHq6moxHkP6YtfpdFi+fLkIFQAQFxeH6Ohos95T3lVj6biR4uJiFBYWKu5LT08XAWXUqFGYMWOGRe8t76qRTxFOTU0VXUO9evVSfI6IiAi8//77GDJkiEXnJKKmh2GECMAPP/wgliAfOXIkIiMjFYHAGpWRnJwcVFdXAwA6dOgg7vf29sa3334r9kR58cUXzX5P+Ze4pV018qpInz59FMuht2rVCsuXL7e4C0NeXZK3TwoiADBu3DiL3puImg+GESIoB64++uijAIxrTri7uwOwTmVE6qIBUKvLIyIiAn/++ScyMzMxfvx4s9+zZ8+e4tgaYWTQoEH4v//7P3F78eLFjRq3IW+ffJCtvK29evWy+P2JqHngbBpq8S5cuICkpCQAxr1g/vrXvwIwjl+IiopCSkoKUlNTUV1d3agxDPWFEcC4xLuvr6+q94yNjYWTkxP0er3FM2rkYaR9+/aYM2cOIiIi0Lp1a3EtLHXLLbdAp9PBYDDg8OHD4n55GJFXd4ioZWJlhFq8FStWiO6T6dOnw8XlRkaXumoqKiqQnp7eqPPIZ9LIu2kaw9PTU7QxJSWlzpVd6yOfSdOuXTs4OTnhoYceanQQAYwBS1qc7fjx46iqqgJwI4wEBgaK7ikiarkYRqhFq6qqwrJlywAYp3fKZ5AAsOog1oYqI5aSKgsVFRUWjW2RV0batWtntXZJpG6YsrIynDx5Erm5uSIASZUTImrZGEaoRdu6dauY4fLXv/61Vkiw5iBWLSojQOMHsdbsprE2+ZiQI0eOsIuGiGphGKEWbcWKFeJYGrgqp1VlxJHCSM1uGmuTD2I9fPiwoo3yx4io5eIAVmrRfv/9dwDGKawjRoyo9bi8MmKtMNK2bVsxS8caGrssvFQZcXZ2FiumWpO8MnL48GHk5uaK26yMEBHAygi1YKWlpaLrJDo62uRMmaCgIAQGBgJoXDdNVVWVqEBYsyoCGGcASSGiMd00wcHBcHKy/q+E4OBg0f1z+PBhMavGxcVFsSgaEbVcDCPUYqWlpYnjzp071/k8qTqSmZmJkpISi8516dIlMWPHmoNXAeMqrlKFITc3t9bS7vWprq5GTk4OAG26aCRSdSQ/Px8pKSkAjKuzWrNCRERNF8MItVipqaniWJp+aoq8q+bMmTMWnUur8SISS8eNXLlyRYQkW4QROXbREJGEYYRaLHmwqC+MWGMQq3wmjbUrI4Dle9RoPZNGYmqgKgevEpGEYYRaLEsqI/LN3tTQao0RSffu3cXxn3/+afbrtJ5JI2FlhIjqwzBCLZa5YaR3797iePfu3RadS+tuGnn1Rk0Y0XrBM0lERAT8/PwU9zGMEJGEYYRaLCmMtGrVCq1bt67zeZGRkejUqRMAIDk52aJBrFp30/j4+Ij3PXnyJAwGg8nnlZaW4qeffkJhYSEAZWVEy24aJycnRbdM+/bt0aZNG83OR0RNC8MItUjl5eXIyMgAUH9VRHLHHXcAMC65npycrPp88spIY3bBrY80TTY/P1/MkJEYDAZs3LgR3bp1Q3x8PKZOnQqDwWCzygig7KphVYSI5FSFkYqKCrzxxhsYPXo0brvtNsycOVNR6k5MTER8fDyGDRuGRYsWKf51lpKSgkmTJmHgwIGYOXOm4l9kRLaWlpYm/n6aE0bi4+PF8Y8//qj6fFIYCQ4O1mw6q3zNDnlXTUZGBu6++26MHTtWbPZ39OhRpKSk2DSMyCsjDCNEJKcqjFRXVyM0NBQrV67Ezp07MWTIEDz33HMAgL1792LdunVITEzE2rVrsXfvXmzatAmAMcS88MILmDhxInbu3InY2Fi89tpr1v801GSUlZUhJydH/Cft5mor5o4XkQwbNkwcqw0jlZWVInxr0UUjMRVG9Ho9xowZgy1bttR6/saNG202gBUA7rnnHkRFRaF169aYNm2apucioqZF1XLwnp6eil1N77//fixatAj5+fnYunUrxo8fLwbnTZkyBdu2bUNCQgIOHToET09PJCQkAABmzJiB+Ph4ZGdnm+ynrqioQEVFhbKhLi5wc3NT/QGbIr1er/h/c7Njxw6MGzcOxcXF4r6QkBD88ssvFn1ZW3K95NN6b7rppgZfGxQUhB49euDYsWM4dOgQ8vLyxMqsDcnKyhJVmNDQUM3+XOWDWE+cOAG9Xo+UlBSx7khwcDD+8Y9/4JlnngFgDCPS2BFfX194enpq+nfO19cXf/75J6qrq+Hq6tok/n43959Fa+P1UqelXC9zVnZu1N40x44dQ2BgIAICAnDu3DmMHj1aPBYdHY2PPvoIgLEkLv/Xp6enJzp06IC0tDSTYWTlypViW3fJhAkTcN999zWmuU2OfJxBc/L2228rgggAXLx4EW+99RbmzJlj8fuquV7SkuSAcfCn1H1Rn7i4OBw7dgwGgwFff/017rzzznqfn5eXh6KiIsV04ICAALPOZQkfHx9xfPjwYaSnp2Pz5s3ivkceeQQJCQlYtmwZTpw4gUOHDsHV1RUA0Lp1a83a1Rw0159FrfB6qdPcr1dERESDz7E4jBQVFeFf//oXZs2aBQAoKSlR/DL09vYWsw5KS0vh7e2teL23tzdKS0tNvve0adMwefJkZUNbWGUkMzMTYWFhmuwVYk8Gg0Fs5ubl5YVhw4Zh69at0Ov1+OGHH/Df//4XOp1O1Xtacr3kAzwHDRpk1syOe+65B59++ikAYxD/+9//Xus5FRUV2LBhAz755BPs2rWr1uPdunVDeHi4WW1Uq2PHjggMDMTVq1dx/vx5hIeH4+TJk+Lxu+66C+Hh4bj33ntFQKqsrBSv1apdTVlz/lnUAq+XOrxeN1gURsrLy/Hcc89h0KBBouvFy8sLRUVF4jnFxcXw8vICYKyE1PyXcHFxMTw9PU2+v5ubW4sJHvVxcnJqdn9BT58+jby8PADA0KFDkZSUhKFDh2LXrl1ITU1FSkoKevToYdF717xeRUVFqK6uhr+/f63nSmNG/Pz80LZtW7MC0O233w4XFxdUVVVh586dtf5sNm3ahBkzZih2pa2pZ8+emv6ZduvWDcnJybh48SKKiorw66+/AjD+TMXFxcHJyQkJCQmYP3++4nXt2rVrdn/XrKk5/ixqiddLHV4vC6b2VlVV4aWXXkKbNm3w9NNPi/sjIiIUgwJPnz6NyMhIAMZ1GuSPSbulSo9TyyGfFnvrrbcCAMaPHy/u+/rrr61ynoyMDERFRaFDhw44dOiQ4rGKigrRJREVFWV2JcbHxwf9+/cHYPz7XbO0OmfOHEUQiY6OxuTJkzFlyhRMmTIFixYtwogRIxrzsRokH8T6888/i7ExcXFxYhZPz549a00v1nrwKhFRfVSHkX/+858oLy/H3LlzFb/ER48ejfXr1yMrKwt5eXlYtWoVRo0aBQDo06cPSktLkZSUhIqKCqxYsQIxMTGaLrJEjumXX34Rx1IYGTdunPi79PXXX9e5YJcaS5YsQU5ODoqKimpVAc6fPy8GjNW3W68pdU3xzcvLE/vW3HTTTdi5cydOnjyJL774Ap9//jk+//xzPPXUU6q7oNSSh5EVK1aI44EDB4pjnU6H4cOHK17Hn0UisidVYSQ7OxtJSUk4fPgwhg4disGDB2Pw4ME4fPgwBg0ahHHjxmHq1KmYMGECBg4ciDFjxgAwlogXLlyIVatWYejQoTh69CjmzZunyQcixyaFEWdnZ/Tr1w+A8Ytw0KBBAIBTp06JLeYtpdfrsWrVKnE7KSlJLHAGqJ/WKyctfgYow8i+ffvE8dixYzF06FDNg4cp8jCSlJQkjqXgJ5GHKoCVESKyL1VjRtq3b4+DBw/W+fi0adPqXD+ge/fuWL16tbrWUbNy9epVMXCyV69eYkwRYJwt9fPPPwMA1q1bh9jYWIvPk5ycrAgfer0en3zyCRYsWADA/N16Tenfvz+8vb1RXFyMHTt2wGAwQKfT4bfffhPPGTBggMVtbyx5GJGv3VIzjPTr1w8BAQHIz88HwDBCRPbVskfMkE3Jv7Dl3QaAsatG0thxI/KqiGTZsmVi7ZrGVEbc3NwwZMgQAMZN5qTFxeSfTRpXYg8dO3ZUhDzA+Bnbtm2ruM/V1RV33XWXuG3O1DsiIq0wjJDNmBq8KgkNDRUB5cSJE4q1OdSoqKjA2rVrARhneEnjlnJzc7FhwwYAjQsjQO2umurqatFNExISosmuvOZycnJSLH4G1L7WkgULFmD06NF45ZVXar2GiMiWGEbIZkwNXpWTz6pZv369RefYtm0brl27BsA4dkO+iNrixYuRl5cnxqT4+PggODhY9Tnk4y127NiBkydPipVMBwwYYJexInJdu3ZV3K5ZhZJ07NgRW7ZsqTXAl4jI1hhGyCYqKytF9aBjx44mqwdjx44Vx9L4EbXkXTSTJ0/G7bffLr6c9+zZgw4dOogpuWqm9crdfPPNCAoKAgDs2rULe/fuFY/Zs4tGIh83AtRdGSEichQMI2QTR48eFSvu1vUv9fDwcDHFdN++far3aygoKBAzSIKCgjB8+HDodDo89thj4jnl5eXi+NFHH1X1/hInJyfRVXP9+nWx7QFg38GrEnkY8ff3R0xMjB1bQ0TUMIYRarRff/0Va9eurTc8NNRFAxjXv5C+zK9fv65YytwcS5cuRVlZGQDjJo7SvitTp04VlZiAgAA8++yzOHPmjMnl3M0lHzdy/PhxAMbpyn369LH4Pa1FHj7+8pe/tPiVHYnI8fG3FDXKuXPnMHjwYNx///1YsmSJyedUVFQouk/qqowAym4O+dodDbl69Sr+/e9/AzBWLuTVkICAAOzbtw8//fQTsrKy8M4771g0cFWu5jodANCjR49aezDZQ7du3TBp0iQEBwfjhRdesHdziIgaxDBCjbJ3715UV1cDMO62XJPBYMCsWbOwf/9+AMYppDfffHOd7yfv5pBPl23Ihx9+iOvXrwMwrnfTvXt3xeMhISG4/fbba017tVRERESt6bCOMF4EMFaYvvzyS2RnZ2Po0KH2bg4RUYMYRqhR5F0pBw8exLlz5xSPf/DBB2JZcg8PD6xduxYuLnWvtSdt5gaYH0bOnj0rKi9eXl42W91X3lUDOMZ4ETl7z+ohIjIXwwg1irTol0Q+Jff777/Hs88+K25/+umniIuLq/f9vL29xa69f/zxh2In6Lq89NJLqKysBAA899xztTaB00rNrhpHCyNERE0Fw0gzl56eju3bt4v/pMGW1lIzjKxbtw4AUFRUhKlTp4pBrS+99BImTZpk1ntK3R16vb7e7QcAYPfu3eKcbdu2VawrorVhw4aJ44CAANWb7hERkRHDSDN24MABRERE4M477xT/9ejRA1988YVV3r+yslKxmilgHHSakZGBRYsWIScnBwBw5513qlpYy9xxI/v37xebMQLAa6+9Bl9fX7PP01ht2rTBhAkTAACPPPIIZ60QEVmIvz2bsa+++goGg6HW/f/6179M3q9Wamqq2IxNPj7hk08+wcKFCwEYp7u+//77qr6ozQkjBw8exIgRI8Sg1VtvvRUzZsxQ/Rkaa82aNUhPT8d//vMfm5+biKi5YBhpxuRre7zyyitihsmff/6J3bt3N/r95V00EydOFMf//Oc/RUh45JFHVO97Eh0djYCAAADGMFIzOB09ehTDhw9HQUEBAGDo0KFYtmxZvQNjtaLT6dCxY0cOFiUiagSGkWaqtLQUv//+OwDjXiXz58/HK6+8Ih5fvHhxo88hDyMJCQm1pux6eHjgtddeU/2+Tk5O6NevHwAgJycHGRkZisfnzJmD/Px8AMBtt92GjRs3wtPTU/V5iIjIMTCMNFMHDx4UM0ykFU/HjRsntpLfsGEDsrOzG3UOeRjp1q2bYqM7AHjyySct3sG2rq6a8vJysW9NaGgoNm/e7BALjRERkeUYRpopeReNtOKpm5sbpk+fDgCoqqrC8uXLG3UOKYw4OTkhOjpaDOYEjHui/OMf/7D4veVh5NdffxXHBw8eFEu+Dxs2DD4+Phafg4iIHAPDSDOVnJwsjuV7wcycOVMMJl26dKkYgKqWXq8XC55FRETAw8MD3bp1w6OPPopWrVph6dKlCAwMtLj9/fv3F+MwduzYIe6X7+Y7ZMgQi9+fiIgcB8NIM2QwGERlJDAwENHR0eKx8PBw/PWvfwUAZGVlYfPmzRadIzMzEyUlJQCUu8R+/PHHuHr1Ku6//35Lmw/A2G6pOpKSkoKzZ88CUIaRwYMHN+ocRETkGBhGmqHTp0/jypUrAIxVkZrTamfNmiWOpaXa1ZIvAy8PI9aUkJAgjjdu3Ijq6mpR8Wnbtq0iZBERUdPFMNIMyceLyLtoJMOHD0ebNm0AmJ46a46ag1e1MHbsWHH87bff4vjx42I67+DBgzmdloiomWAYaYbk40WkwatyTk5O6NWrFwAgLy8PWVlZqs9hizDSpUsXsUZJcnIyNmzYIB5jFw0RUfPBMNIMSZURFxeXOjemk8IIABw+fFj1OWwRRoAbXTV6vR7vvvuuuJ9hhIio+WAYaWauXr0qgkLv3r3h5eVl8nnWCiPt27eHv7+/BS01j3zciLSDr6+vL2655RbNzklERLbFMGJFer1e/GeNvV8sIV+Tw9R4EUljwsi+ffuQl5cHQNuqCGCc4hscHKy4b+DAgXB2dtb0vEREZDsMI1ZQWlqKoUOHwtnZWfzn7++P1atX27wt5oaRqKgosWCYmjBy6NAh3HnnneK21mt9ODs74+6771bcx/VFiIiaF4YRK1i9ejV27dqluK+wsBDPPfecWJLdVvbv3y+O5auY1uTk5ISePXsCANLT03H16tUG3/vw4cMYPny42BdmyJAheP755xvVXnPIu2oAjhchImpuGEas4LPPPhPHffv2RWhoKADg4sWLSEpKslk7DAYDDh48CAAIDg5ucF8YeVfNkSNH6n3ukSNHEB8fj2vXrgEwBoItW7bYZF+YO+64Q4x9cXd3R9++fTU/JxER2Q7DSCOdP38eu3fvBmCcirpv3z58+umn4nFr7I5rrrS0NBEW+vbt2+A6HOaOGzl27Bji4+NF9WTgwIHYunWrzfaF8fT0xMsvvwx3d3c8//zzcHd3t8l5iYjINhhGGumLL74Qxw899BB0Oh3i4+MRFRUFAPjxxx9x6tQpq5zr9OnT+Pzzz8VGcTUdOHBAHNc1pVfOnDBy/Phx3HHHHYoVXbdt22bzDepeeuklFBUVYcGCBTY9LxERaY9hpBEMBgP+97//AQB0Oh0mT54MwDge49FHHxXPW7JkSaPPVVJSgttuuw1Tp07FyJEjUVFRUes58jBiTldGTEwMXF1dAQC///57rcfPnTuHO+64Q8ycGTBgALZt2wZfX19LP0ajuLi42OW8RESkLYaRRvjtt99w5swZAMDQoUPRsWNH8djDDz8MDw8PAEBiYqLYVM5SP/74Iy5dugQA2LNnD5544ola04fVhhE3NzfExsYCAE6dOlWrje+99x4uX74MAOjXrx++++47+Pn5NepzEBER1cQw0gjygasPPfSQ4rHWrVuLnWvz8/MbPc235u66y5Ytw4cffihuV1dXi+pGeHi42HumIVJXjV6vx7FjxxSPSYNhASApKUnTxc2IiKjlYhixUFlZGdasWQMA8PLywrhx42o9R7477scff2zxuQwGgwgj8sW+nnnmGfzwww8AjLvoFhcXAzCvKiKpa9yIPJyEh4ejbdu2FrefiIioPgwjFtq8ebNYb+Pee+81OaCzb9++Yi2PgwcP4sKFCxad6/Dhw7h48SIA4M4778Q//vEPAMZqyMMPP4yysjLVg1cldYWRtLQ0EW6kz0BERKQFhhETjh07hmeffRY7d+6s8zmrVq0Sxw8++KDJ5+h0OsWCXdu3b7eoPfIumr/+9a/45z//ieHDhwMwrmWSmJioeryI5JZbbhFTgOWDWI8ePap4DhERkVYYRmowGAyYMGEC3nvvPdxxxx2YOHEisrKyFM+5du0atm7dCgBo164dhg0bVuf7yZdO/+677yxqk3zhtLvuugtOTk7417/+Je576623FMvA9+nTx+z39vHxQdeuXQEYFzYrLCwEwDBCRES2wzBSw5EjR3D69Glxe82aNejatStWrFgh7lu/fr2YWjtx4sR6N23r27cvAgMDAQA//PADqqqqVLUnOztbDCTt2bMnwsLCABi7YkaMGAHAuPCa1MXSpUsX1QNNhw4dCsDY7bNnzx4ADCNERGQ7DCM1fPPNN+JYChlFRUWYPn26qD58+eWX4jkPPPBAve/n7OwsQkNBQQF+++03Ve2RKjCAsYtG7uWXX671fDXjRSR33HGHOP7xxx8B3AgjPj4+iIiIUP2eRERE5mIYqWHDhg0AjOM9jh07ppiy+8QTTyAjI0Nsite5c2ezvvwb01Uj76KpGUaGDBmCQYMGKe6zZN+W22+/XYwb+fHHH5Gfn4/09HQAxqqIkxP/mhARkXb4LSNz6tQppKSkADAuex4TE4Ply5ejR48eAIwDPO+55x6x2NgDDzzQ4P4vAERlBFAXRq5cuSIGvbZt29Zk0HjppZcUty0JI4GBgWJWzbFjx7Bjxw7xGLtoiIhIawwjMlJVBADuueceAMYlyOWLi8lnnDTURSNp3769mB576NAh5ObmmvW6JUuWiH1oJk2aZLJCceedd6J3794AAG9vb4un4cq7ahYtWiSOGUaIiEhrDCMy8vEiUhgBgMGDB9eavhsXF4fo6Giz33vUqFHi2JwpvuXl5SIEOTk5Yfbs2Safp9PpsHr1avztb3/D6tWr4eXlZXab5ORhZO/eveKYYYSIiLTGMPL/ZWZmirU6evbsicjISMXjCxcuVOzLIm2KZy6140a+/fZbUUEZP358vYNIO3fujOXLl9caU6LGoEGDxKZ5Ep1OJ/auISIi0grDyP/37bffimNTS7u3a9cO77zzDgBjt4vaMPKXv/xF7Ha7fft2VFdXi8cMBgNWrlyJ5cuXo7y8HHq9XjGV+LnnnlN1Lkt4e3tjwIABivs6d+4Mb29vzc9NREQtG8MIjIuYycdJmAojADB9+nScOnUKx44dM3sjOomrq6tYNfXKlStITk4Wj61fvx6PPPIIZsyYgR49euCNN95AamoqAGPFol+/fmo/kkXkXTUAl4EnIiLbaPFhpKqqCvfddx/Onj0LAOjfvz9iYmLqfH50dDSCgoIsOpc85Hz99dfiWL777+nTp7FgwQJx2xZVEUnNMMLxIkREZAstPow899xzYiprmzZtsGbNGrOm61ri7rvvhpubGwBjNUSv1+PatWt1Dmjt3Lkz7r77bk3aYkq/fv0UA2AZRoiIyBZadBhZtmwZPvjgAwDGbpRvvvkG4eHhmp3Pz88PI0eOBGBc5v2XX37Bhg0bUFlZCQCYPXs2Vq5cKbqA5s+fX+9S89bm5uYmlobX6XSKHX2JiIi04mLvBtjL3r17MWvWLHH7448/rrWaqRYmTJggVlVdt24dTpw4IR574IEH0K9fP0ycOBHHjx9XteGdtbz55puorKzEyJEjERISYvPzExFRy9Niw0hUVBT69u2LX3/9FU8//TT+9re/2eS8d999N1xdXVFZWYmvvvoKV65cAQBERESI1VPd3NwsHpfSWLGxsWatg0JERGQtLbabpl27dvjpp5/w7rvv4u2337bZeQMCAsTy8Lm5uWKK7/3336/ZWBUiIiJH1mLDCAC4u7vjmWeegYuLbQtE48ePr3XfxIkTbdoGIiIiR9Giw4i9jBkzRhGAunTpIjbjIyIiamlUhZGlS5diwoQJ6Nu3b61xBYmJiYiPj8ewYcOwaNEisbMtAKSkpGDSpEkYOHAgZs6ciezsbOu0vokKDAxEfHy8uD1x4kR20RARUYulKoyEhYXhueeeQ/fu3RX37927F+vWrUNiYiLWrl2LvXv3YtOmTQCAiooKvPDCC5g4cSJ27tyJ2NhYvPbaa9b7BE3UY489BsC4DPtDDz1k59YQERHZj6owMnr0aAwYMEAs3CXZunUrxo8fjw4dOiAoKAhTpkzBtm3bAACHDh2Cp6cnEhIS4O7ujhkzZuDEiRMtvjoyZswYHDlyBCdOnKh3EzwiIqLmziojN8+dO4fRo0eL29HR0fjoo48AAGlpaYiKihKPeXp6okOHDkhLS0P79u1Nvl9FRQUqKiqUDXVxqRWCmrqbb74ZAKDX6xX3S7dr3k+m8Xqpw+tlPl4rdXi91Gkp18vJqeG6h1XCSElJCXx8fMRtb29vlJSUAABKS0tr7fzq7e2N0tLSOt9v5cqVWLZsmeK+CRMm4L777rNGc5uMzMxMezehSeH1UofXy3y8VurweqnT3K+XOdV/q4QRLy8vFBUVidvFxcVijxNPT08UFxcrnl9cXAxPT88632/atGmYPHmysqHNsDJSF71ej8zMTISFhZmVKFs6Xi91eL3Mx2ulDq+XOrxeN1gljERERCA1NVUsp3769GlERkYCACIjI7Fhwwbx3NLSUly4cEE8boqbm1uLCR71cXJyavF/QdXg9VKH18t8vFbq8Hqpw+ulcgBrVVUVysvLYTAYxLFer8fo0aOxfv16ZGVlIS8vD6tWrcKoUaMAAH369EFpaSmSkpJQUVGBFStWICYmps7xIkRERNSyqKqMLFiwAJs3bwYAHD58GK+//jqWLFmCQYMG4cyZM5g6dSr0ej3Gjh2LMWPGADBWORYuXIj58+fjzTffRExMDObNm2f9T0JERERNks4gX52MHIJer0d6ejrCw8NbfOnOHLxe6vB6mY/XSh1eL3V4vW5o2Z+eiIiI7I5hhIiIiOyKYYSIiIjsimGEiIiI7IphhIiIiOyKYYSIiIjsimGEiIiI7IphhIiIiOyKi54RERGRXbEyQkRERHbFMEJERER2xTBCREREdsUwQkRERHbFMEJERER2xTBCREREdsUwQkRERHbFMEJERER2xTBCREREdsUwQkRERHbFMGIDS5cuxYQJE9C3b19s375d3F9WVoZ//vOfGD58OEaMGIHPP/9c8bq4uDgMGjQIgwcPxuDBg/Hpp58qXvvqq69iyJAhuOuuu/Ddd9/Z7PNoSYtr9e677yIhIQFDhgzBgw8+iN9//91mn0drWlwvycWLFzFw4ED861//0vxz2IpW12vTpk245557MGjQIIwfPx7p6ek2+Txa0uJaZWVl4fHHH8ftt9+OUaNGYeXKlTb7PFqz9HoVFRVh3rx5GDZsGG6//Xa8/PLLitc2x9/zprjYuwEtQVhYGJ577jksWbJEcf+KFStw8eJFbNiwAUVFRXjssccQFRWFv/zlL+I53377LYKCgmq959KlS1FQUICtW7fi7NmzmD17Nrp164bw8HDNP4+WtLhWPj4++PDDDxEaGoqdO3fi+eefR1JSEry9vTX/PFrT4npJ3n33XXTp0kWzttuDFtdrz549+OKLL/Cf//wHkZGRyMrKgq+vr+afRWtaXKu3334boaGhWLRoEXJycvC3v/0N3bt3R79+/TT/PFqz9Hq98cYbCA4OxqZNm+Dh4YHU1FTx2ub6e94UVkZsYPTo0RgwYADc3NwU9//666944IEH4OPjg3bt2mHMmDHYsmWLWe+5detWzJw5Ez4+PrjlllswZMgQfP/991o036a0uFYzZ85EWFgYnJycEB8fD3d3d2RkZGjRfJvT4npJrzcYDOjfv7+1m2xXWlyv5cuX49lnn8VNN90EnU6HDh06wN/fX4vm25QW1yo7OxsjRoyAi4sLQkND0bNnT6SlpWnRfJuz5HqdPXsWJ0+exDPPPAMfHx+4uLiga9eu4rXN9fe8KQwjdibfNNlgMNT6wZwyZQpGjRqFuXPnIj8/HwBw/fp1XLlyBVFRUeJ50dHRzeaHui6WXKuaLl68iOvXryMsLEzLpjoES69XZWUlFi1ahKefftpGLXUMllyv6upqnDp1CqmpqRg9ejTGjBmDZcuWoblvhm7p360JEyZg+/btqKioQEZGBo4fP464uDhbNdtu6rpef/75Jzp27IhXX30Vd9xxB6ZOnYrDhw8DaHm/5xlG7GjAgAH46quvUFhYiIsXL2Lz5s0oKysTjy9btgybN2/Gl19+ibKyMsybNw8AUFJSAmdnZ3h4eIjnent7o6SkxOafwVYsvVZyVVVVmDt3Lh588EH4+PjYsvk215jrtWrVKgwcOLBFBDaJpdfr6tWrqK6uxoEDB7BmzRp88skn+OGHH5CUlGSvj6K5xvzduuWWW3D8+HEMHjwY48aNQ0JCguLLtjmq73rl5uZi37596NevH7Zv346HH34Yzz//PAoKClrc73mGETv629/+hpCQEIwfPx5PPfUU7rjjDrRp00Y83qtXL7i4uKBVq1Z4/vnnkZycjMrKSnh5eaG6ulrxC6C4uBheXl72+Bg2Yem1khgMBsydOxetWrXCzJkz7fERbMrS65Wbm4tNmzbhkUcesWPrbc/S6+Xu7g4AeOihh+Dr64t27dphwoQJSE5OttdH0Zyl16q6uhqzZ8/G2LFjkZycjE2bNmHHjh3YsWOHHT+N9uq7Xu7u7ggNDcXYsWPh4uKCYcOGITQ0FMePH29xv+cZRuzI09MTL7/8MrZv345169ZBp9MhJibG5HOdnIx/VAaDAX5+fmjdurVioNPp06cRGRlpk3bbg6XXSrJw4UJcvnwZ8+fPF483Z5ZerxMnTiAnJwfjxo3DyJEj8cUXX2DLli148sknbdl8m2vMz6L8i1i6vzmz9Fpdv34dly9fxvjx4+Hi4oKQkBDcfvvtOHTokC2bb3P1Xa+bbrqpzte1tN/zzf+3sgOoqqpCeXk5DAaDONbr9cjJyUFeXh6qq6vx22+/ISkpCQ888AAA48Cm06dPo7q6GtevX8c777yD/v37i8FRo0ePxvLly1FcXIzjx49jz549GD58uD0/plVoca2WLl2Ko0eP4p133qk1uKyps/b1uvXWW7Fx40asWrUKq1atwr333ov4+HjMnz/fzp/UOrT4+/XXv/4V//vf/1BcXIzLly9j/fr1GDRokD0/plVY+1q1atUKwcHB+Pbbb8X77N69u94v5KbEkusVFxcHg8GAzZs3o7q6Grt370ZWVhZuvvlmAM3397wpOkNzj/EOYO7cudi8ebPiPmn61+uvv478/Hx06tQJzz//PHr16gUAOHDgAP79738jNzcX3t7e6NevH5555hkEBgYCMM4/X7BgAXbv3g0/Pz88+eSTuPPOO237wTSgxbWKi4uDm5sbnJ2dxXu+9NJLGDVqlI0+lXa0uF5yS5cuxZUrV/DSSy9p/2FsQIvrVVlZibfeegs//PADvLy8MHbsWMycORM6nc62H87KtLhWKSkpeOedd3D27Fl4eHhgxIgRePrppxU/m02VJdcLAM6cOYP58+fj3LlzCAsLw/PPP4/evXsDaL6/501hGCEiIiK7YjcNERER2RXDCBEREdkVwwgRERHZFcMIERER2RXDCBEREdkVwwgRERHZFcMIERER2RXDCBEREdkVwwgRNWlxcXGIi4tr1jvlEjV3DCNE1KCZM2eKL/1JkyYpHsvPz8fAgQPF4//973+tfv6kpCTx/kTU/DCMEJEqZ86cwe+//y5uf/vttygvL7dji4ioqWMYISKzubi4AADWrFkDAKiursa6devE/XIFBQV46623cNddd6F///4YMWIEXn31VVy6dEk8Z+nSpYiLi8Pdd9+NH374Affeey8GDRqEGTNm4Pz58wCMG5C98cYb4jVShWTp0qWK8xUVFWHu3Lm47bbbMGrUKCxfvtzaH5+INMIwQkRmi46ORmhoKHbt2oWcnBzs2bMHly5dwh133KF4Xnl5OWbOnImvv/4aeXl5CA8PR3FxMbZt24Zp06bh2rVriufn5ubi1VdfhU6nQ3l5OQ4fPox58+YBADp06IDQ0FDx3NjYWMTGxiI4OFjxHh9++CF+++03uLq64vLly1iyZAl+++03ja4EEVkTwwgRmc3JyQkTJkwQFRGpQnL//fcrnrd9+3acPXsWAPDWW29h7dq1WLFiBZycnHD58mWsXbtW8fzq6mosXLgQ69atE2NSjh07hrKyMkyfPh3Tp08Xz01MTERiYiLGjh2reI/o6GgkJSUpKjUHDhyw6ucnIm0wjBCRKgkJCfD09MTatWtx8OBBdOvWDT169FA858SJEwAADw8P3H777QCArl27Ijw8XPG4xMfHB0OGDAEAREZGivtrVlDqM3z4cLi6uiIgIACBgYEAgKtXr6r7cERkFwwjRKSKr68vRo0aheLiYgC1qyKWvqfE2dlZHBsMhka9h5rXE5H9MIwQkWr33XcfACAgIAAjRoyo9XhMTAwAoKysDLt27QIAnDx5Eunp6YrHzeXh4SGOS0tLLWkyETmw2kPgiYgaEBUVhR9//BHOzs5wc3Or9fjIkSPxxRdfIC0tDS+++CLCw8ORlZUFvV6PNm3aiDBjrk6dOonjCRMmICgoCE8//TR69uzZyE9CRI6AlREisoi/vz98fHxMPubu7o5ly5aJ4JCeng5vb2+MGjUKK1euRKtWrVSdq3Pnzpg+fTpat26NS5cu4Y8//kBhYaE1PgYROQCdgZ2qREREZEesjBAREZFdMYwQERGRXTGMEBERkV0xjBAREZFdMYwQERGRXTGMEBERkV0xjBAREZFdMYwQERGRXTGMEBERkV0xjBAREZFdMYwQERGRXf0/6vNxeXX+J/sAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -134,14 +142,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAG9CAYAAADHrnYfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHRElEQVR4nO3dd3xUVfo/8M9MeiUJgYQkkIQSeglNICIICIIFkC6sgCgo8GVxfwu4LrKy7OIKC4qroIIQRRABqYqoFJUmUoPSCZACBJKQQnoyc39/DPfOvckkmTuZkvJ5v16+uDN3Zu6ZY+A+ec5zztEIgiCAiIiIyEG0jm4AERER1W0MRoiIiMihGIwQERGRQzEYISIiIodiMEJEREQOxWCEiIiIHIrBCBERETkUgxEiIiJyKAYjRERE5FAMRqohvV6PGzduQK/XO7opNQL7Sx32l/nYV+qwv9RhfxkxGCEiIiKHYjBCREREDsVghIiIiByKwQgRERE5FIMRIiIicigGI0RERORQDEaIiIjIoRiMEBERkUMxGCEiIiKHYjBCREREDsVghIiIiByKwQgRERE5FIORaiA1NRWurq7Izc1FcXExfHx8cOvWLel8REQENBoNNBoNvLy80LlzZ2zZssWBLSYiIrIeBiPVwLFjx9CxY0d4eXnh9OnTCAgIQGhoqOI1//znP3Hnzh2cOXMG3bp1w5gxY3D06FEHtdjxioqKHN0EIiKyEgYj1cDRo0cRExMDADh8+DB69epV5jU+Pj4IDg5GVFQUPvzwQ3h4eGD37t3Q6XSYMmUKIiMj4eHhgZYtW2LFihWK9/7000/o3r07vLy84Ofnh5iYGCQkJAAA4uLi8Pjjj8PHxwe+vr7o0qULTp48Kb338OHD6N27Nzw8PNC4cWPMmjULubm50vmIiAgsXrwYL774Inx8fNCkSRN88sknZb5fp06d4O7ujq5du2LHjh3QaDQ4e/as9Jo//vgDgwcPhre3N4KCgvCnP/0JaWlp0vm+ffti5syZmD17NgIDAzFo0CAIgoC33noLERERaNWqFcLCwjBr1izL/0cQEdVAN24LeHONHmeuCI5uisUYjDhIYmIi/Pz84Ofnh+XLl+Pjjz+Gn58f3njjDezcuRMdO3bEjBkzTL7X2dkZLi4uKCoqgl6vR1hYGLZs2YILFy5gwYIFeOONN7B582YAQElJCYYNG4Y+ffrg3LlzOHbsGKZOnQqNRgMAGD9+PMLCwnDixAmcOnUKr7/+OlxcXAAA8fHxePLJJzFixAicO3cOX331FQ4fPoyZM2cq2rNs2TJ07doVZ86cwfTp0/Hqq6/i8uXLAIDs7Gw888wzaN++PU6fPo1FixZh3rx5ivdnZmaiX79+iI6OxsmTJ7F3717cvXsXo0ePVrzus88+g6urK44cOYKPPvoIX3/9Nd59912sWrUK+/fvx7Zt29C+ffuq/88hIqpBZrwr4F+fA0+/LqCkpIYGJAI5RHFxsXDjxg0hLi5OcHFxEeLi4oRr164J3t7ewsGDB4VffvlFuHv3riAIghAeHi68++67giAIQmFhobB48WIBgPDNN9+Y/OwZM2YII0aMEARBENLT0wUAwk8//WTytT4+PkJsbKzJc1OmTBGmTp2qeO7QoUOCVqsV8vPzpbZNmDBBOq/X64WGDRsKq1atEgRBEFatWiXUr19fer0gCMLq1asFAMKZM2cEQRCERYsWCQMHDlRcJykpSQAgXL58WRAEQejTp48QHR2teM2yZcuEqKgooaCgQLh+/bqg0+lMfg9S0ul07C8zsa/UYX+pY63+ajZWJ6C34b+Dp/VWap19OTs2FLKNrl27IiUlxe7XDQ4OVgxxVMTZ2RkRERHYvHkzunXrhg4dOuDIkSMICgrCY489hoSEBAQGBkqvnzdvHubPn4+CggJ4e3vjP//5D5566ikAwIcffoi1a9ciMTER+fn5KCoqQqdOnQAAAQEBmDRpEgYNGoQnnngCAwYMwOjRo9GoUSMAwF/+8he89NJLWL9+PQYMGIBRo0ahWbNmAAxDOOfOncOGDRukdgiCAL1ejxs3bqB169YAgA4dOkjnNRoNgoODce/ePQDA5cuX0aFDB7i7u0uv6d69u6Iv4uLicPDgQXh7e5fpp/j4eERFRQEAunTpojg3atQovPfee2jevDliYmIwatQoDB06FM7OtfLHmojIpGzjyDl2HhbQN1rjuMZYqFb+q52SkqKYjVIdtW3bFgkJCSguLoZer4e3tzdKSkpQUlICX19fhISE4NKlS9Lr58yZg0mTJkk1FeIwy6ZNm/DXv/4Vy5YtQ8+ePeHj44OlS5fi+PHj0nvXrVuHWbNmYe/evfjqq68wf/58/Pjjj+jRowfeeustPP/88/j222/x3Xff4R//+Ac2bdqE4cOHIycnB9OmTTNZh9GkSRPpWBzWEWk0Guj1erP7IicnB8888wzeeeedMufEoAkAvLy8FOcaN26My5cv44cffsD27dsxc+ZMLFu2DD///HOZNhER1VbZecbjnYeB5TMF6R5RU9TKYCQ4OLjaX3fPnj0oLi5G//79sWTJEnTp0gVjx47FpEmTMHDgQCmzIAoMDETz5s3LfM6RI0fQq1cvTJ8+XXouPj6+zOuio6MRHR2Nv/3tb+jZsyc2btyIHj16AACioqIQFRWF1157DePGjcO6deswfPhwdO7cGRcuXDB5XXO1bNkSX3zxBQoLC+Hm5gYAOHHihOI1nTt3xtdff42IiAjVWQ0PDw8888wz6NChA+bNm4c2bdrg999/R+fOnS1uMxFRTVFYJKBQNrnwxh3gj+tA+2aOa5MlamUwYu5QiSOFh4cjJSUFd+/exdChQ6HRaHD+/HmMGDECQUFBZv9m36JFC3z++ef4/vvvERkZifXr1+PEiROIjIwEANy4cQOffPIJnn32WYSEhODy5cu4evUqXnjhBeTn52POnDkYOXIkIiMjkZycjBMnTmDEiBEADENDPXr0wMyZM/HSSy/By8sLFy5cwI8//ogPPvjArPY9//zz+Pvf/46pU6fi9ddfR2JiIv773/8CgBS5z5gxA6tXr8a4ceMwd+5cBAQE4Nq1a9i0aRPWrFkDJycnk58dGxsLnU6Hbt26ISMjAz/++CM8PDwQHh5uVtuIiGq6B3lln9t5uOYFI5xN40A//fQTunXrBnd3d/z2228ICwtTDEuYY9q0aXjuuecwZswYPPLII0hPT1dkSTw9PXHp0iWMGDECUVFRmDp1KmbMmIFp06bByckJ6enpeOGFFxAVFYXRo0dj8ODBWLhwIQBDLcjPP/+MK1euoHfv3oiOjsaCBQsQEhJidvt8fX2xe/dunD17Fp06dcLf//53LFiwAACkOpKQkBAcOXIEOp0OAwcORPv27TF79mz4+flBqy3/R9TPzw+rV69G7969MWTIEOzfvx+7d+9G/fr1VfUhEVFNlW0iGNlxuObNqNEIglDzWl3L6fV6JCQkIDw8vMKbcU21YcMGTJ48GVlZWfDw8Kjy59X2/rI29pf52FfqsL/UsUZ/nb0qIHpK2dt40lYNwhrWnLoR/rSQzX3++ec4fPgwbty4gR07dmDevHkYPXq0VQIRIqK6TD6TxlU2ur/riP3bUhUMRsjmUlJSMGHCBLRu3RqvvfYaRo0aVWaVViIiUk8+TPOMbPHunTVsqKZWFrBS9TJ37lzMnTvX0c0gIqp15JmR3h00OHlZQEIKcPAMkJ0rwNerZgzVWJQZ+eyzz/DUU0/hsccew/PPPy/tVRIbG4sBAwagX79+WLFiBeTlKOfPn8fYsWMRExODqVOn4s6dO9b5BkRERHVUliwYqecN9H+4qkFxCRBfvZfbUlAdjGzevBnHjh3Dp59+ip9//hkLFy6Ei4sLDh8+jC1btiA2NhabN2/G0aNHsXPnTgCGHVbnzp2LsWPH4sCBA+jYsSPefPNNq38ZIiKiukSeGannBQT4Gh+bmvZbXakKRnQ6HdauXYv58+cjODgYGo0GLVq0gKurK/bs2YPhw4cjLCwMgYGBmDBhAvbs2QMAOHXqFFxcXDBs2DC4ublhypQpuHjxYrVfJZWIiKg6y84zjkD4egE+nsZhmQf5jmiRZVTVjNy7dw8FBQXYt28fNm7cCG9vb/zpT3/C8OHDcePGDQwaNEh6bfPmzaWVQK9fv44WLVpI59zd3REWFobr168jNDS0zHWKiopQVFSkeM7Z2Rmurq6qvlxNJS6lrmZJ9bqM/aUO+8t87Ct12F/qWKO/snKMx94eArw95OcE6PWOL2Q1Z9qy6mAkJycHiYmJ2LVrF5KSkvDqq68iIiICeXl5ir1DvLy8kJ9vCMvy8/PL7Cvi5eWFvDzTOaR169Zh9erViudGjRpVZkv52i4pKcnRTahR2F/qsL/Mx75Sh/2lTlX66869+gAMm4zmZN5CUZ47AMPCjwnJ6UhIyCn/zXYirgheEVXBiLi3yMsvvwx3d3e0aNECAwcOxJEjR+Dp6SkVsgJAbm6utI6Eh4eH4px43tPT0+R1Jk+ejPHjxysbWscyI0lJSWjcuDEXDjID+0sd9pf52FfqsL/UsUZ/6WSTZVq1CMU92e/4rh71ER5eM1akVhWMhIeHw8XFRbEboHgcGRmJa9euoU+fPgAMm7WJW9E3bdoUW7duld5TUFCA5ORkNG3a1OR1XF1d60zgURGtVsu/0Cqwv9Rhf5mPfaUO+0udqvTXgzzjEI+ftwb1vADAMDSTk6+BVlsLp/Z6eHigf//++PTTT1FUVIQbN27gxx9/RExMDIYMGYJt27YhOTkZ6enp2LBhA4YMGQIA6NKlCwoLC7Fz504UFRVh7dq1aN26tcl6kbooNTUVrq6uyM3NRXFxMXx8fBTFvREREdBoNNBoNPDy8kLnzp2xZcsWB7aYiIiqA3HRM60W8HQHfGQDDg/yHF8vYi7Vodi8efOQmZmJAQMG4M9//jNeeeUVREdH49FHH8XIkSMxceJEjBw5Ej169MDQoUMBGDIdS5cuxZdffonHH38cZ86cwaJFi6z+ZWqqY8eOoWPHjvDy8sLp06cREBBQJlD75z//iTt37uDMmTPo1q0bxowZg6NHjzqoxY5XusCZiKguEqf2+noaRiqUwYhj2mQJ1cGIj48Pli5dil9++QW7du3Cc889J52bPHky9u/fj4MHD+LPf/6zYjinbdu22LRpE44cOYLVq1er3p22Njt69ChiYmIAAIcPH0avXr3KvMbHxwfBwcGIiorChx9+CA8PD+zevRs6nQ5TpkxBZGQkPDw80LJlS6xYsULx3p9++gndu3eHl5cX/Pz8EBMTg4SEBABAXFwcHn/8cfj4+MDX1xddunTByZMnpfcePnwYvXv3hoeHBxo3boxZs2Yp6n8iIiKwePFivPjii/Dx8UGTJk3KLPV+9OhRdOrUCe7u7ujatSt27NgBjUaDs2fPSq/5448/MHjwYHh7eyMoKAh/+tOfkJaWJp3v27cvZs6cidmzZyMwMBCDBg2CIAh46623EBERgVatWiEsLAyzZs2y/H8EEVENIwUjD+eIKIKRGjS1l4N6DpKYmAg/Pz/4+flh+fLl+Pjjj+Hn54c33ngDO3fuRMeOHTFjxgyT73V2doaLiwuKioqg1+sRFhaGLVu24MKFC1iwYAHeeOMNbN68GQBQUlKCYcOGoU+fPjh37hyOHTuGqVOnSoHi+PHjERYWhhMnTuDUqVN4/fXX4eJi2G0pPj4eTz75JEaMGIFz587hq6++wuHDhzFz5kxFe5YtW4auXbvizJkzmD59Ol599VVcvnwZAJCdnY1nnnkG7du3x+nTp7Fo0SLMmzdP8f7MzEz069cP0dHROHnyJPbu3Yu7d++WmT312WefwdXVFUeOHMFHH32Er7/+Gu+++y5WrVqF/fv3Y9u2bWjfvn3V/+cQEdUQ4jCN78MgpKZmRiCQQxQXFws3btwQ4uLiBBcXFyEuLk64du2a4O3tLRw8eFD45ZdfhLt37wqCIAjh4eHCu+++KwiCIBQWFgqLFy8WAAjffPONyc+eMWOGMGLECEEQBCE9PV0AIPz0008mX+vj4yPExsaaPDdlyhRh6tSpiucOHTokaLVaIT8/X2rbhAkTpPN6vV5o2LChsGrVKkEQBGHVqlVC/fr1pdcLgiCsXr1aACCcOXNGEARBWLRokTBw4EDFdZKSkgQAwuXLlwVBEIQ+ffoI0dHRitcsW7ZMiIqKEgoKCoTr168LOp3O5PcgJZ1Ox/4yE/tKHfaXOlXtr6JivYDeOgG9dULMdMNn5BUYn+s7q+b8f6iVG+V1fVmPlPv2v25wAHBytXnJJmdnZ0RERGDz5s3o1q0bOnTogCNHjiAoKAiPPfYYEhISEBgYKL1+3rx5mD9/PgoKCuDt7Y3//Oc/eOqppwAAH374IdauXYvExETk5+ejqKgInTp1AgAEBARg0qRJGDRoEJ544gkMGDAAo0ePlobJ/vKXv+Cll17C+vXrMWDAAIwaNUqaBRUXF4dz585hw4YNUjsEQYBer8eNGzfQunVrAECHDh2k8xqNBsHBwbh37x4A4PLly+jQoQPc3d2l13Tv3l3RF3FxcTh48CC8vb3L9FN8fDyioqIAGAqh5UaNGoX33nsPzZs3R0xMDEaNGoWhQ4fC2blW/lgTESnIMx9iZsTdFXByAnS6mpUZqZX/aqfcB26lOroVFWvbti0SEhJQXFwMvV4Pb29vlJSUoKSkBL6+vggJCcGlS5ek18+ZMweTJk2SairEYZZNmzbhr3/9K5YtW4aePXtKNT3Hjx+X3rtu3TrMmjULe/fuxVdffYX58+fjxx9/RI8ePfDWW2/h+eefx7fffovvvvsO//jHP7Bp0yYMHz4cOTk5mDZtmsk6jCZNmkjH4rCOSKPRqFpRMCcnB8888wzeeeedMufktUWlF85r3LgxLl++jB9++AHbt2/HzJkzsWzZMvz8889l2kREVNvI96URa0Y0Gg28PQRk5TAYcbjggOp/3T179qC4uBj9+/fHkiVL0KVLF4wdOxaTJk3CwIEDpcyCKDAwEM2bNy/zOUeOHEGvXr0wffp06TlxGX656OhoREdH429/+xt69uyJjRs3okePHgCAqKgoREVF4bXXXsO4ceOwbt06DB8+HJ07d8aFCxdMXtdcLVu2xBdffIHCwkJp0bwTJ04oXtO5c2d8/fXXiIiIUJ3V8PDwwDPPPIMOHTpg3rx5aNOmDX7//Xd07tzZ4jYTEdUE2fLMiOx3NR8PMBipDswdKnGk8PBwpKSk4O7duxg6dCg0Gg3Onz+PESNGICgoyOzf7Fu0aIHPP/8c33//PSIjI7F+/XqcOHFCWn73xo0b+OSTT/Dss88iJCQEly9fxtWrV/HCCy8gPz8fc+bMwciRIxEZGYnk5GScOHECI0aMAGAYGurRowdmzpyJl156CV5eXrhw4QJ+/PFHfPDBB2a17/nnn8ff//53TJ06Fa+//joSExPx3//+F4BxwbwZM2Zg9erVGDduHObOnYuAgABcu3YNmzZtwpo1a+Dk5GTys2NjY6HT6dCtWzdkZGTgxx9/hIeHB8LDw81qGxFRTabIjMgKV8Ui1poUjFT/u3Yt9tNPP6Fbt25wd3fHb7/9hrCwMNVTnqdNm4bnnnsOY8aMwSOPPIL09HRFlsTT0xOXLl3CiBEjEBUVhalTp2LGjBmYNm0anJyckJ6ejhdeeAFRUVEYPXo0Bg8ejIULFwIw1IL8/PPPuHLlCnr37o3o6GgsWLAAISEhZrfP19cXu3fvxtmzZ9GpUyf8/e9/x4IFCwBAqiMJCQnBkSNHoNPpMHDgQLRv3x6zZ8+Gn59fhasS+vn5YfXq1ejduzeGDBmC/fv3Y/fu3ahfv2Ysf0xEVBXKYRrjUhpiMJKTj2qxUZ45NIIg1IyW1iF6vR4JCQkIDw+vlUsqb9iwAZMnT0ZWVpa0f1FV1Pb+sjb2l/nYV+qwv9Span9t2i9g3ELDLfzdmRrMHm0ISAa8psf+U4bXZO/VwMez+i8JXyuHaah6+fzzz9G0aVOEhoYiLi4O8+bNw+jRo60SiBAR1VWmCliBsmuN+Jjek7ZaYTBCNpeSkoIFCxYgJSUFjRo1wqhRo/Dvf//b0c0iIqrRzA1GagIGI2Rzc+fOxdy5cx3dDCKiWiVbthGeooBVlnSuKcEIB/WIiIhqIHlmpJ5szciamBlhMEJERFQDZZU7tddYsMpghIiIiGymNtWMMBghIiKqgcpdgVUejOTbrz1VwWCEiIioBhIzIxoN4GXci5SZESIiIrIPMRjx8QS02rIrsALAg7yasa4pgxEiIqIaSBym8S21qBmn9hIREZFdiJkReb0IoMyM5LBmhIiIqHbKyhEwdake//pMgCO2eNPpBCnQqCgYqSmZEa7ASkREpNLrHwtYvRsABDzVU4PoKPteX57xKD1M481hGiIiototNVNA7HfGx8mp9m9DeauvAjUzM8JghIiISIVVO4CCIuNjR9zwFWuMlMqMuLlq4PJw3IPrjBAREdUy+YUCPtimrBFxRDCSlWM8Ll0zAhizI8yMEBER1TJf/ACkZiqfy65mmRGAwQgREVGtpNcLWP5V2ZkzjlhYTLkvjabMeXGtEQYjREREtch3x4FLiYZjfx/j8w6vGalgmCa/ECgpqf6rsDIYISIiMsO6Pcab+l/HGrMRDglG5JmRCoZpgJqx8BmDESIiIjMk3TP8qdEAY/oZn3dMMGIMjCrKjAA1Y6iGwQgREZEZMh4Y/qznBfjJ1vaozgWsQM2Y3stghIiIyAyZD6fT+nk7PvOgLGAte97R7VOLwQgREVElBEEwBiM+gKuLBm6uhseOLmCtx2CEiIio9ssvBIpLDMfiEI0jp89WmhnxcGyBrVoMRoiIiCqRKVvxVApGHLiwWJYsGJFvjCdiZoSIiKiWqSgYcUgB68NgxNsDcHIysegZp/YSERHVLpkPjMelg5GiYqCo2L4Li4nBiKkhGoCZESIiolpHnhnx9zFkInwdeMMX22OqeBUoHYxwBVYiIqIaL6OCzAhg32CkoFCQhl4C65l+DTMjREREtUxFNSOAfetG0rONx+UFI/KiVi56RkREVAtUFozYM/uQlmU8buBn+jXMjBAREdUymTnGugsxGJEXj9rzhp+aaTwO9DP9GgYjREREtYwiM+Jj+NNRC4vJMyOB9cpO6wWMC7IBDEaIiIhqhWo1TJNpPC6vZsTZWQN3By5XrxaDESIiokoop/Ya/lQUsObCbtKyjENG5QUjgGNXiFWLwQgREVElxKm9Wq1xpooiM2LHGSvKYZryXycFI5xNQ0REVPNJO/Z6AxrNw0XPFAWs9ltYTHUwwswIERFRzScPRkSOKhJVBCN+5b/OkcvVq8VghIiIqAKCIJgORhxUwCpO7XV1Mb1jr6gmzahhMEJERFSB3HxApzMclxeM2LeA1fBnYD3jkJEpNWmtEQYjREREFTA1rRdwTAGrIAhSMFLe6qsiBiNERES1hKlpvQDg6W6YXQPY72afk2+oAQEqLl4FlMFITjWfUcNghIiIqAKmduwFDEMk9p6xYs6CZyJmRoiIiGoJ5TCNskZDLBK1WzBi5rReAPDxdMxy9ZZgMEJERFSB8mpGAGP2IbtaBiPGY3u1z1IMRoiIqNrS6wUs+kzAnJV65Bc6Zq0MU5vkicQbfm6+oa22ptixt5xN8kQN/YzHd+/bpDlWozoYmTp1Knr16oXevXujd+/emDVrlnQuNjYWAwYMQL9+/bBixQoIgvF/zPnz5zF27FjExMRg6tSpuHPnjnW+ARER1Vqb9gMLPhXw303A1z87pg0VZUbkq7Dao0jU3AXPACAk0Hh8O70WLno2f/58HDp0CIcOHcL7778PADh8+DC2bNmC2NhYbN68GUePHsXOnTsBAEVFRZg7dy7Gjh2LAwcOoGPHjnjzzTet9y2IiKhW+vx740008a5j2pD5wNiGMsM0dl5YzNxN8gBlMHIr1UYNshKrDdPs2bMHw4cPR1hYGAIDAzFhwgTs2bMHAHDq1Cm4uLhg2LBhcHNzw5QpU3Dx4kXcunXLWpcnIqJa5u59AftOGR/n5Dt+mMa/nGEawF7BiPG4smAkOMB4fDvdNu2xFmdL3rR8+XIsX74cUVFReO2119CiRQvcuHEDgwYNkl7TvHlzxMfHAwCuX7+OFi1aSOfc3d0RFhaG69evIzQ0tMznFxUVoaioSNlQZ2e4urpa0twaR6/XK/6kirG/1GF/mY99pY61++urA8aVTwHDKqeO+H+RIQtGfD0FRW2IfDn2zBxBVd2IJf0lrxmp71vx9ZydDAujpWYCt9Mc93Os1Vae91AdjMyaNQtNmzaFVqvFV199hVmzZmHr1q3Iy8uDl5dx8MzLywv5+YYBtPz8fMU58Xxenukwct26dVi9erXiuVGjRmH06NFqm1ujJSUlOboJNQr7Sx32l/nYV+pYq79ivw0G4CY9TknNQUKC/X/FT0kNAuAOAMjOSESJbIdefbEfAEOK4tqNuwjyLFD9+Wr669ZdY1tyMxOQUEk2JtC3EVIzXXEnTcCNG4kwIy6wusjIyEpfozoYadeunXQ8ceJE7Nq1C7///js8PT2Rm2tcnD83NxceHoaQ0cPDQ3FOPO/p6QlTJk+ejPHjxysbWscyI0lJSWjcuLFZEWVdx/5Sh/1lPvaVOtbsr/hbwJl45XOC1hvh4d6m32BDBSWGP52dgFYtmkC+HUzjEOOxp08QwsPN/1xL+iun0PCntwcQ1aLyi4U3Ai4mAsU6Dbz9wytdQt5RLBqmkRM7MDIyEteuXUOfPn0AAPHx8WjWrBkAoGnTpti6dav0noKCAiQnJ6Np06YmP9PV1bXOBB4V0Wq1/AdQBfaXOuwv87Gv1LFGf206IABQDkHk5JuX8re2zBzD8IafN+DkpLy+r6exnbkFGmi1FU+3NUVNf6VmGtoSWM+8vggNNA7NpNzXIChAffvsQdX/1QcPHuDXX39FUVERiouLsWHDBmRnZ6Ndu3YYMmQItm3bhuTkZKSnp2PDhg0YMmQIAKBLly4oLCzEzp07UVRUhLVr16J169Ym60WIiKhuEwQBG34sWwvhqP1VxALW0jNpAPsWsOp0Au4/XJq+smm9IsX03jSrN8lqVGVGSkpK8OGHHyIhIQHOzs6IiorCihUr4O3tjUcffRQjR47ExIkTodfrMWzYMAwdOhSAIdOxdOlSLFq0CEuWLEGbNm2waNEim3whIiKq2c5cAS4nGo4f6wj8dhEoKHLMkuZ6vYCsh1UGpRc8A0qtcppb9rw1ZeYAYg1qZTNpRKGBGoiZm1oTjPj7+2P9+vXlnp88eTImT55s8lzbtm2xadMmda0jIqI6Z+cRY1Zk/BMaXEwQUFDkmMxITr4xAPA3kRmRL3r2IF8AYLthEDXTekWKtUaqcTDCQVAiIqpW5IubxbQ3Tp91RGakoqXgAfsO01Q1GLmdVn1XYWUwQkRE1cq9DONxkL/xhu+IzEjGA+Oxo2tG0jKNx5XtSyMKqW88rs7DNAxGiIioWrmXafhTqwUCfI2ZkYIioKTEvr/dV7QvDWDf5eDlmRFzp+g29Ie0tkh1XoWVwQgREVUrYmakgR+g1WqU2Qc7Z0cyFZmRstkIexawWjJM4+SkkZaFZ2aEiIjIDIIgSMFIQz/Dn/Il13PsXDdSaWbEjoFSaqb5m+TJiXUjdzPsn1kyF4MRIiKqNnLyDcMxgGGIAbDvDb+0yoIRJycNPA2rs9u3gNXP/PeJdSN6vXEIrLphMEJERNWGvHhVrIuQByPVLTMCGNtXHWfTADVj4TMGI0REVG3IgxFTwzT2z4wYhzX8TUztBYxFrPasGQkopy2mhAQaa11upVqxQVbEYISIiKoNRTDib7iJ+ngab6bVOjOSb6h5sRUxGPH3AZydzV9cLVSeGammM2oYjBARUbWRKvvtX6wZcWRmpLJ1RgDjKqw6nbHexRbEYETNEA1QMxY+YzBCRETVhqlhGkXNiCMLWMsbprHDwmfFJQKyHralasGI9dpkTQxGiIio2riXYfzN3WRmxEHDNK4ugLur6dfYIxi5e994rDoYka/CymEaIiKiismnnpqc2ptn32EGcWgkwAfQaEzXachXYbVVEevmg8bjFmHq3lu/HuDycFtcZkaIiKjas2UBpjmUBayGP+U3e3sO0+j1gpSRaFS//NfZOjOi0wn439fG/y8vP6NuZ2CNRiMN1TAYISKiaunu3bt4++230bx5c/j6+uLAgQMOa4sYjLi7GodnvO24GZ1cejZQojMcVxSM+HoZgwNbFNjuOgLcTDEcP/kI0CpcXTACGIdq0rKAwqLqV8Tq7OgGEBGRYxQUFGD69OlYv349SkpKpOc/++wz9OvXzyFtEodpGvgZh0UclRm5I6uvEPd3McXWmZEVW43Bw59Hqg9EAGURa8p9IDy4qq2yLmZGiIjqqF27dmHdunWKQAQAUlMdszKWXi8gNdNwLA7RAI7LjKTIgxEHDdOcvSrg57OG41ZNgIHdLPsceTBSHRc+YzBCRFRHXb16VTqeOHEitA/3mndUMHI/27B/CmCc1gs4LjOSIpvB0iig/IyELQtYFVmRURpotRZmRuob31cdZ9QwGCEiqqOSkpKk4xkzZiAgwDAWkZbmmCpHUzNpAMDNFXByMhzbMzNyx8zMSICv8fj+A+vVY6RlCti4z3Ds5w38aaDlnxXawHhcHYtYGYwQEdVRycnJ0nFYWBgCAw25fIcFIyZm0gCG2hEx+2DfzIgxsKioZkTeVvl3qKrfLgJFxYbjFwYBXh6WZUUAZfvl36u6YDBCRFRHiZkRZ2dnBAUFScFITk4OCgoK7N4esV4EABr6KW+84swau9aMyIdpKsiMyIeUrBmMJN4zHrdvZnkgAiizN/Il7qsLBiNERHWUmBkJDQ2FVquVghEASE+3f2FBeZkRQLYZnaOGaSrIjAT6GY/lQ01VlXjXmMFo0rBqnyXf5ZfBCBERVQt5eXm4f9/wq3/jxo0BAA0aGAsLHDFUcy+z7FLwIjEYyS0wzLqxBzEz4uNZ8RCJi7NGyjxYNTNy13jcJKhqn6Woa8mu2mfZAoMRIqI6qHS9CABFZsQhwYiJTfJE4jCNIAB5dhpBEjMjFWVFRGJ7rRmMJFgxGPH1MhYB32dmhIiIqgP5TBoxM1KtgpFyMiOAfYpY8woEaZquOcFIAz/Dnzn5QH6hdTI3YmYksB7g6V61mhGNRgN/b8MxMyNERFQtyDMjpoIRR6w1Iq+3EG/uInvv3HvXzOJVkTx4khfiWqqkRMCth/FgVbMiIv+HdSPMjBARUbUgz4xUt2EaXy/AzVWZCbB3ZsTc4lWRtaf33kkHdA/3xbFWMCLWjWTlGDbfq04YjBAR1UGVZUYcGYyUrhcB7J8ZkU/rDa5f+RCJtaf3yqf1VnUmjUg+oyYzxzqfaS0MRoiI6qDqlhkpKhakG2TpehEA8PE0BgT2yIyYu8aIqKG/sX3WmN6rnElTtXoRUXWeUcNghIioDhIzIy4uLmjY0PCrtyOn9ioWPDMZjBiP7ZEZuZNu3uqrImsP0ySkGI+ttcOuctl663ymtTAYISKqg8TMiLjgGQB4e3vD1dUVgIODEb+y5xXDNNUxM+JnPL6XUfV6jMR71lvwTCQfpmFmhIiIHCo3NxcZGYZf38V6EcAw/dNR+9NUNK0XKFXAapfMiPFYdWYks+rXt+aCZ6IAX+NwD4MRIiJyKFMLnonEYCQ1NRWCYL8ZF8ode8vWSDgqM6LVGtb5qIy1h2nEYMTVxXRwZgl/eWaEwzRERORIpmbSiMRgpKioCDk59ptyUdHqq0DpzIjtgyQxGAnyB5ycKi8g9fMGnB+ucGqNdUbE2TSNGwJarfULWKvb/jQMRoiI6hhTq6+KHDWjRl5nUXrBM8C+mRG9XpAWPTNniAYwBAxiu6uaGcnKEZD1MA60Vr0IULpmhOuMEBGRA5kzTAPYORjJNB5XWjNi42AkPRsoebjgmDnFqyKx3fcyUaUhLnm9iLVm0gDVezaNs6MbQERE9lVRZsRR03vTMo3Hpmo07LnomdriVZE4vFRUDGTnAvW8Lbu+YsEzKxWvAuWvM7L2WwGuLkB4ENC7o3WGhNRiMEJEVMdUx8xIhqw8RX7TFNkzM5IiD0ZUZEbkw0v3MqoQjMhn0jS0XnDgL2uPPBh5/WMBqZlAWAMg6WvHBCMcpiEiqmPEzIirq6siEwI4LhgRb45eHoCrS9kbope78djWmRHFGiMB5t+crTW9N/GubI0RK2ZGnJ018PUyHIvDNPmFglRwa81rqcVghIiojhEzI/IFz0SO2rlXDEbkRZZyWq0GXg+Hauw6TKOqZkS2JHwVilhtscaISNq592F/J8uGhBpbsVhWLQYjRER1SHkLnokckRkRBEEapvEvJxgBAJ+HwYjNh2nuq1sKXmStzfISbBiMiMFexgNDvycxGCEiInurqF4EcEwwkl8IFBYZjk3Vi4i87ZQZUbsUvMh6wzSGPxv4AR5u1q3hEPu3RGcI6pTBiGPqRQAGI0REdUpFM2kAoH59493XXsGIvJjSv4KiT7GI1daZEYtn08iCkdRMy6b2lpQIuPWw221Rw1F6Rg0zI0REZHeVZUY8PDzg5WWocrRXMCJfDdSczEhxCVBYZLtFu8TMiI8n4OWhooDVz3hs6TDN7XRArzccW3PBM1HpzfKS7tmmWFYtBiNERHXIrVu3pGNTwQhgXGvEbpkRM4MRe03vFTMjarIigHX2p7Fl8SpQduGzRGZGiIjI3uQBRulpvSKxbiQ9PR168dd0G5JnRvx9ys9EyIMRW9WN5OYLyM41HKsNRrw8NPB8OAXZ0poRZTBi/RqOAB/lzr3iMI2bq+ll+O2FwQgRUR2Snm4siJDXh8iJwYher5dm3tiSvGakvKm9gHIVVltlRs7FG49bmE4cVUgcqqksM5KaKeD1j4GDce6K56/fNh6H2yAzIp+tlPHAGIyENQA0GhawEhGRHagJRgD7DNUoClgrmtprh8zIqcvG4y4t1d+cxaGatCxApyu/rmX6cgFLvwSm/6+B4vtfSDC+p1W46stXSj5MczPFmAVy5BANwGCEiKhOkQcj/v4mdqSD/YORjBzjDdicAlbAdsHIycvGtnRpqf79YjAiCIYN90xJvidg2y+G48JiLU5dMZ67cNPwp7OTZZmZysj7N+6a8dgWxbJqMBghIrIxnU6Hfv36ITAwED/99JND2yIGI35+fnB2Nr09mSMzIxUN0/h4GjMVthqmETMjzk5Ah2bq3196fxpTVn8jQF6Kc/aq4U+dTsClRMNxizDTy+JXlbx/42RDUsyMEBHVcqdOncLBgweRnp6OF154ATk5OZW/yUbEYKS8IRrAAZkRRQFr+a+zdWYkr0DAhQTDcdtIyxYck0/vFfd8kSsuEfDJLuVzZx4GI9dvGxd/axOh+tJmkWdGbslW+3fkgmcAgxEiIpu7ceOGdJyUlISFCxc6pB06nQ6ZmZkAKg5G5LNs7J4ZceDU3rhrxjU+ukRZ9hmV7U+z45ByhVfAmBkRh2gA+wQjcsyMEBHVcjdv3lQ8fvfdd3Hu3Dm7tyMzMxOCYKiJqE6ZEXGdEa1WGXCUZuvMSFWLV4HKl4RftcNYkyLuRHwl2TCl+PxN4+vaRtgmU+HhpoG7a9nnGYwQEdVyCQkJisc6nQ6vvPKKXdbwkDNnJg1g/517xWEafx/D7rzlUWZGqrYCqyAI2HVYwM5Dxs85daVqxatA6VVYlW28eFPAwTOG46jGwJh+YlsMU4ov3DS+3laZEcD0UJgjV18FGIwQEdmcPDMirnp67NgxfPrpp3ZthzwYCQgof0UvRxWwVlS8Clh3au+hOGDoGwKG/V3Al/sMQYCYGXGysHgVAIJk3Srf4wYAPtppDDZeHapBZ9lQ0JmrxmEaJydDsGIrpYdqfDyBet41tGbk3Llz6NatG9asWSM9FxsbiwEDBqBfv35YsWKFlA4EgPPnz2Ps2LGIiYnB1KlTcefOnaq1nIiohhAzI+7u7vjss8+k5x0ZjFSUGZEHKrYORnQ6AZkP63krKl4FrLvomXxxs3+sFfAgT1a8GmH5brlhskVtk0sllXYcNvzp7gpMHAx0amE8d+qygIsPr988FHBztV1wUDroc/QQDWBhMKLX67F8+XK0adNGeu7w4cPYsmULYmNjsXnzZhw9ehQ7d+4EABQVFWHu3LkYO3YsDhw4gI4dO+LNN9+0zjcgIqrGBEGQgpHw8HD069cPoaGhAIDExES7tsXcYMTZ2Vlag8TWwzRZucbjiopXAWWwUt4aHuaS74dzNRl44xMBOp3hsaVDNIDhO4g1GfJgpKREkB63a2pY9r59JKDRGH5p330UKBBn0thgsbPSbZSrscHItm3b0K5dO0RGRkrP7dmzB8OHD0dYWBgCAwMxYcIE7NmzB4BhWpuLiwuGDRsGNzc3TJkyBRcvXlRs2EREVBulp6cjN9dwxw0PN9xlGjVqBAC4e/cudOId0E5tEVUUjABAw4aGO5StgxFzV18FDPUY2od3rVtVTNjcz1bWc3ywzXjc1cLiVcCwpLqYHZEHI3dku/GK5709gcjgEgDKacC2rBcBqmcwYnrFmwpkZmbiyy+/RGxsLJYtWyY9f+PGDQwaNEh63Lx5c8THG/Jg169fR4sWxnyUu7s7wsLCcP36dek3BLmioiIUFRUpG+rsDFdXEyXAtZBY1Gbv4raaiv2lDvvLfNboK/m03vDwcOj1egQHB0ufm5KSIgUntiYfcvH396/wezVo0ACXL1/GgwcPkJeXB3d393JfK7Kkv+QZDn/vit+r1Ro2r7udBiTfq9r/l4oyK9EtBOj1lhfIhjUArt0CsnKArBw9fDyVu+OGNTC0Xa/Xo02TIly/46J4f6tw2/799PdWPm7c0LbX02orz3uoDkZWrlyJcePGwcdHGcLm5eXBy8tLeuzl5YX8fMOgXn5+vuKceD4vz3QF0rp167B69WrFc6NGjcLo0aPVNrdGS0pKcnQTahT2lzrsL/NVpa9OnDghHfv6+iIhIUHx7+epU6fQvn37KrXPXPJC2qKiojKzfOTk/2afOXMGISEhZl9HTX9duuYOwDCVw0nIREJCVoWvD/QJxu00N9zNEHAtPhEuqu9iBrfuNgBQdh6xk1aAn0sSEhIsD0b8POsDMNzxT8TdQrOQEpw57wnAkBLxcs5AQoIhGmob7otvjivvjwFut5GQUGzx9Suj0fsCMM5B9tCmISEht/w3VJF8FKU8qv43Xrp0CRcuXMC8efPKnPP09JRSkQCQm5sLDw9DtZGHh4finHje09P0hPLJkydj/PjxyobWscxIUlISGjdubFZEWdexv9Rhf5nPGn0l/lIGAJ06dUJ4eDiiopQraonDN7Ymzzi3a9euwuvKz7m6uprVRkv6y1m2P0pEmB/Cw/0qfH3TMODcDUAQNHDzCbd4iKGgxHjcow3w6wXDcdtIDVq2aGLZhz7UKhLAUcOxziUU4eFA4XHj+fYt/REe7v8wM6IcBtNqgT7dQ+DhVqUmVCiy1EydTq0DER4eaPrFdqIqGDl9+jQSEhIwZMgQAEBOTg6cnJxw69YtREZG4tq1a+jTpw8AID4+Hs2aGeZGNW3aFFu3bpU+p6CgAMnJyWjatKnJ67i6utaZwKMiWq2WNwsV2F/qsL/MV5W+kmcfIiMjodVqFcPTd+/etdv/h/v3jUt/NmjQoMLrBgUZF55IT09X1UY1/ZWVIwB4uBCbr6bCdUYAIKyBcTjhdpoG4cGW1XdkPDB8jo8n8M8pGgz8f4Y29Ghj3rBCRRo3NH6n22mG75Scamx3k4bG79kmXFmS0LQR4OVh25+HQF9j+wAgPLjyfrc1VcHIc889h4EDB0qPly1bhpCQEEyaNAlxcXF4++23MWjQIHh4eGDDhg0YM2YMAKBLly4oLCzEzp07MXjwYKxduxatW7c2WS9CRFSbyIORiIgIAFDUiNy+fdtubRELWF1dXcsMnZcmXxL+3r17FbyyatQUsAJAaKAG4o20KkWs4myaAF9gQFfgnVc0OHlZwBt/qvpN2dT03mTFPjDG4/q+eoQGGr9L28pHNKqsdAGrvL2OoioYcXd3VxQxubm5wcPDAz4+Pnj00UcxcuRITJw4EXq9HsOGDcPQoUMBGH7wly5dikWLFmHJkiVo06YNFi1aZN1vQkRUDYl1Gi4uLlIQIg9G7LnmknyTPI2m4puuOJsGsO2MmowHxt/QK5vaCwChshvnLQubJQiCYqE1jUaDuc8DgHWyA4pg5J4AQIOkh/GcRgOElBoR6dTCGIzYeiYNoOznwHqAp7tjsyKABQWscm+99Zbi8eTJkzF58mSTr23bti02bdpUlcsREdU4YmakSZMmUvpfXgzqqGCkMnbLjMjW+zAnGJHf6G+lGW70auXkAyU686+pVpgs8yFmRMRgJMgfcHVRtjm6BfDtMcOxrfakkZMvelYdpvUCXA6eiMhmMjMzkZVlmB0iLwBt2LChFJjYa5gmPz8fBQUFAMwLRuyVGblfampvZUIrWOHUkmvaIhgJrAe4Ppytm3QPKC4RpKXhw0zc/Kc8BTQLBbq1Aob1tn57Sguub1xa39Jl762tSpkRIiIqn6l6EQBwcnJCw4YNkZKSYrfMiJoFzwBlMGLLzEiGLDNiXs2I8djSYRpFMGLGNdXSajUIDRRw444hYLqTbtgMDwAam6jPaBIEXN2oqXTozFo83DT46i3gx5MCXhvl+CEagJkRIiKbka/rUXpqrDhUk5KSYpdVWNUGI/K6EptmRh4GIx5ugLsZ+8F4eWjg9zCDYmkBq9qhIUuIwx8ZD4DLslX/TWVGANgtEBEN7qHB8plaNA5iMEJEVKvJMyOlgxGxiFWn09llZ1xzd+wVOTk5SUGLPWbTqAkKxKGaW6lQbMiq9poAEOBjm5uxvLZFXMMEABo3rB43/+qGwQgRkY3IMyPyYRrA/jNq1GZGAGMRq21n0xj+VDNcIg7VFBQpAwtz2bpmBCgVjJwXTD5PRgxGiIhspKLMiHxGjT2KWC0JRsS6kdzc3DKraFtDfqEg7VRrTr2ISDG914Kkkj2GacJkGRBlZsQ216vpGIwQEdmImBlxcnJCWFiY4lxNyowAtsmOZFgYFIRVca0R+Y69tihgBZRtlGdimBkxjcEIEZGNiJmR0NBQODsrJy/WhGDE1tN7LZ3VYliF1cCSzIjaGTyWMBV0mFrwjAwYjBAR2UBOTo4UAJSuFwFqxjCNrRc+U7sUvCi0zAqnll/XHjUjIlMLnpEBgxEiIhuoqF4EYGYEKD1MY/5NWrHWSDWtGQkKAJydlM+xXqR8DEaIiGygsmAkKChIWlvC3pkRc6b2AnbIjFg4XCJfq8OymhHDn+6uhgXAbEGr1SgyOADrRSrCYISIyAbu3r0rHcuHZEQuLi7Szd6emZF69eqVqV8pT3WtGZEvt27JkvDyHXttqXTwwcxI+RiMEBHZgDwYCQoKMvkacagmJSUFer3epu1Rs0meyNaZEbU79oo0Gg1CHn4Ni4ZpZDv22lLZYIT1IuVhMEJEZAPyYESeYZATg5Hi4mLFMIq16XQ6ZGRkAFAXjNg8M1KFWS3iUM39bMN6JebKLxSQX2g4tndmpLyl4InBCBGRTcgzCeVlRuTDN7YcqsnKypKWTVcTjAQEBEi7C9smMyK7lsrAQF7EeltFdqQq11QrrIEyE8JhmvIxGCGiWiU/Px9XrlyxaM8Sa1KTGQFsG4xYMpMGALRaLQIDDXd9W9eMqM2MyIMRNXUjtt6xV650JoQFrOVjMEJEtYZOp0OXLl3QsmVLrFy50qFtETMJbm5u8PU1/Su4vdYasWQmjUisG7l3757VAzxxmEajAep5qXtvqCzroGZGjT3WGBHJMyFc8KxiDEaIqNa4du0aLl68CAAOD0bEzIh8Cm9p1T0zAhizOgUFBRbtTyMIAsYt1KPNn/T4PV5QPJ/ysFl+3oapsGqEWbg/zX0L1zaxhLyNwQGAizMLWMvDYISIag35Df3ChQuKXXPtSafTIS3NcIcsb4gGUAYj9sqMqA1Gqjqj5swVYNN+4GICMH+NMRg5f8M4vNKxueqPVW6Wl1p+xqagUMCba/RYtcPwGnssBS8KDgC8PAzHLcIqfm1dx2CEiGqN0jf0PXv2OKQd6enp0lTd8opXAfsVsFojMwJYVjeSKItfvjtu3KRu2y/G5597TH3GwNyakY93Af/6HJi+XMBPZwS71ow4OWmw6i8aDOgKLJ7KrEhFGIwQUa1R+obuqGDEnDVGACA4OFg6tlYwYqquw5GZEflMl+ISYOtPhuNtvxjbOexR1R+rqL+oaJjm4BnjdXYfEXDfwrVNLPWnQRr8uFyLmPYMRirCYISIao3SN/QDBw4gPz/f7u0wZyYNALi6ukrBgTWGaaZOnQpXV1esWrVK8bwjMyO305TB0cZ9Aq7fFhB3zfC4WyugcZD6G7WriwYN/AzHd8pZokUQBBy/YHz8wwn7zqYh8zEYIaJao3Qwkp+fj59++snu7TBnjRGROFRz586dKs1Wyc/Px5o1a1BSUoLZs2fjypUrAAw3ZPEYcEBmpFSg8PNZ4P2txu9pyRCNqNHDr3I7zXRGKPEukHLf+PiPG4b/RPbIjJB5GIwQUa1haqjj22+/tXs7zM2MAMYi1qKiImmVVEukpqZKN+SioiJMnz4dgiBg06ZNOHDggNSW0NBQVZ9b9cxI2efe/9p4/Fwf1R8pEYdqikuA9Kyy5+VZEdHhc8ZjBiPVB4MRIqo1xGDEzc0NLi6GndS+/fZbuy+AZm7NCGC96b3i7B3R/v378d///hczZsyQnnv//felfjGXtWpGtLK7jfi/o20kENXY8sxIiCzJUzoDAwDHL5T//93JCfDxtPjSZGUMRoio1hBv5mFhYXjssccAADdv3sSlS5fs2g41wzTWCkZMZS3mzp0rZVvGjh2LMWPGqP7cKmdGHgYJTRoC3Vsrzz33mOqPUwipZEn44xeNx57uynMBPih3/ReyPwYjRFQr5OfnIyvLkKtv1KgRhgwZIp2z91CNJcM0QNWKWOWBgoeHR5lrfPjhhxZ9rp+fH5ycnACoz4wUFgnS8ElIIDD+CeXNf3jvqgUDIYHG95cuYi0uEXDqsuE4shEwqJvyPIdoqhcGI0RUK8izCo0aNcJTTz0lPbb3FF8xGNFqtZUWjNoiM7Jw4UJ4e3tLj9esWaN6GXiRVquVhmrUZkbkAUJIIDCmn3G4JiIY6NTCoiYZP1M+TFMqM/J7PFBQZDju0RYY2F0Z+HAmTfXCYISIaoXSwUhUVBQaN24MADh16pRd60bEDEJgYKCUVSiPLWpGOnXqhPXr16Ndu3ZYsmSJIktkCXGoKSUlBTqdzuz3yQOEkPpAUIAGS1/VoF0ksGKWpsrDJMphGuX/X/kQzSOtNcyMVHMMRoioVigdjGg0GrRq1QoAkJ2dXabA01YEQVDsS1MZW2RGAgMDMWzYMPz++++YM2eOxZ8patKkCQCgpKQEKSkpZr/vtiIzYgg8/jJGg98/0+LZR6ter6EIRkoN0/x63hicPNIGiAzRoLlsIpGtl4IndRiMEFGtUDoYAYDmzY2bnly7ds0u7cjOzkZRkWF8wFHBiHwGjDWEh4dLx4mJiWa/T5EZscGOtUH+ht1wS18LMGZGXJyBTg9/DAbKsiMcpqleGIwQUa0gv5GLC4m1aGEsSrBXMKKmeBUAPD094etrGDOorsGImBkByg9Gjv4uYPpy4Kk3G+HoH4bn5EMntghGnJ01aOgvXsv4fMYDAZcfNrNTc8DdzRCxDOlpzMY0bsiZNNUJgxEiqhUqy4xcvXrVLu1Qs8aISGyvNYIRHx8fuLm5Wfw5psiDkYSEBJOvuZBg2JTuYqKrMRiRD9OoW/jVbOLnptwH9HpD8HNCXi/Sxng8pAcwZxwwbgAwabBt2kOWYTBCRLVCdRmmUbPGiEhsb25uLh48eFDJq00Ta2KsnRUBys+MpKam4sKFCygqKkKvdsbXGzMjxudskRmRf26JDkh7OI1YXrzao40xA6LRaLDkVS02LtAi0I+ZkeqEwQgR1QpiMOLq6ipNY42MjJRmbFTXYRqg6nUjJSUluH/fsAmLPYORLVu2oG3btvD09MTpI1/C7+Fs4mPnDYW8YjDi6Q74elm9WQBML3x24qKyeJWqPwYjRFQriDfx4OBgKQBxd3eXbqSOCEbUZkYAy4IR+a68tghGgoOD4ezsDEAZjFy+bFhVTKfToXFYqHTjv5cB3LhjHKYJqW+71U5NrTVy7rrhTx9PoJm6rXjIQRiMEFGNV1xcLNVMyG/sgHGoJiMjQ3HTthX5MI29MiOlp/Vam5OTk7RmizwYkS+z36pVK/Rsa3zPvpNAVo7h2FZDNIbPNgY5t9OBrBwBCQ9nH7dvyiXfawoGI0RU48mzEeUFI4B9siOOyIzYciaNSMwwZWRkSHUtYmakXr16aNiwoSIY+fpn286kETUqlRn544bxcfumtrsuWReDESKq8UwVr4ocGYyYmxkRpyIDlgUj8gXdbB2MAIbsSF5enjSzplWrVtBoNOjeGtBqDEHIgdPG99pqJg1QdhXWc/HGxx2aMStSUzg7ugFERFVVUTBi77VGxGGaevXqmT3FtiZlRgBDMFJSUiI9btmyJQBDkWpUWDEuJbmiRLZqvHwoxdpK14xotcaMDDMjNQeDESKq8eS73VaUGbHHWiNqloIX1cRgJDs7W3osLrsPAJ2bF+JSkqvivbYcpmnob9h8T68H7twH7stmRrdjMFJjcJiGiGq8ijIjTZsa70i2zozk5+dL9RRqghFfX194eHgAqL7BSOkl4cV6EaBsMFKaLYMRJycNgh9uSHwr1Vgz0rgh4O/DYZqagsEIEdV4FQUjHh4eCAsLA2D7YMSSmTSAYcZHVVZhtfVsGqBsZkQ+k0YcpgGAzi1MBCM2rBkBjMHOnXTjDB4O0dQsDEaIqMarKBgBjHUj6enpyMjIsFk7LJlJIxLbnZGRgYKCAlXvtUcBqzi1FzAsCS8GI05OTmjWrJl0LrxhCRr4Kd/byNbBiInP79Cs7HNUfTEYIaIaTwxGtFqtyYyEvG4kPj6+zHlrsTQzAiiDqJSUFFXvFTMjbm5u8Pb2VvVec3l7e0sr2968eVMapomMjFQU6mo0QA/ZFF9fL8Db07bDJaaCnfZNOURTkzAYIaIaTwxGGjZsCCcnpzLn7VXEao3MCKB+qEYMRho0aGDTRb7EoZqkpCTk5eUBUNaLiHrJghFbD9EApmfrcJimZmEwQkQ1mk6nk4IAU0M0gPXXGjl27BhGjhyJDRs2SM8JgoADBw5Ij+0VjAiCYNNN8uTkRawieb2ISJ4ZsWXxannXcHEGWjYx/VqqnhiMEFGNlpaWBp3OsKhFecGItdcaee211/D1119jwoQJeOWVV1BUVIQ5c+Zg48aNAAAXFxd0795d1WeqCUYuXryITZs2oaSkBJmZmdKaH7YORuRFrCJTmZHurYDwYMNx32jbD5eUzr60agK4unCYpibhOiNEVKNVVrwKWH9678WLxj3qP/74Y+zdu1dajVSj0SA2Nhahoep2aDM3GLl58ya6d++OnJwcnD17FlOmTJHOOSIYMZUZcXcDjq3U4GIC0KeTTZsEoGxmhMWrNQ8zI0RUo926dUs6li+rLufl5SWdq2rNSFZWlmLBLwBSIAIAn3zyCZ5//nnVn2tuMDJ//nzk5Bjmr65Zs0ax4JutpvWKzM2MAECjQA36ddHAyckOmZFSX5vFqzUPgxEiqtGSk5OlY/n009LEupHU1FRkZWVZfD35rrU9e/ZUZEBWrFiBl156yaLPNScYOXXqlKJOJT09XfHY3pmRgIAAmwdA5gisBzjL6pZZvFrzMBghohpNHoyIi5uZIl8L4+bNmxZfLykpSToeMGAATp06hUWLFmH37t2YNWuWxZ9bv359ODsbRs5NBSOCIGDOnDllnl+/fr10bO9gpGXLljadvWMurVajmN7LYZqah8EIEdVo5gYjERER0nFVghF5ZqRJkyYICgrC/Pnz8fTTT1v8mYBhjZTgYEPVp6lgZM+ePTh48CAAQw2MuOaHfIE0WwcjwcHBcHFxkR6XN0TjCNEPa5SbhQKhtu0GsgEGI0RUo8kzFfYIRuTXq2hYyBLiUM29e/cUu+KWlJRg7ty50uP//Oc/GDVqVJn32zoY0Wq1iu9sqnjVUVb+RYN3XtFg52JNtcjWkDoMRoioRhMzI15eXvDz8yv3dZGRkdLxjRs3LL5e6cyINYnBiCAIilVY9+3bhwsXLgAAHnnkEYwcORLjx48v835bByOA8jtXp8xIaAMN5j6vQdtIBiI1kepg5N///jcGDRqEPn36YMyYMfjll1+kc7GxsRgwYAD69euHFStWQBAE6dz58+cxduxYxMTEYOrUqRZtBkVE1Yv877ijri8GI2FhYRX+RmyLYRprZ0bkbZQHTH/88Yd0PGPGDGg0GsTExJS5vj2CEXk2pH379ja/HtUNqoOR8ePHY/fu3fj555+xYMECvPnmm8jMzMThw4exZcsWxMbGYvPmzTh69Ch27twJACgqKsLcuXMxduxYHDhwAB07dsSbb75p9S9DRPazcOFCeHl5YenSpQ5rQ1ZWFnJzcwFUPEQDGKb9igWi1him8ff3t/o+MOWtFCvfT0dcwE2r1SqmEDs5OVWYGbKWuXPnYtiwYVi6dKli/RaiqlAdjERERMDV1RWAYXGfkpISpKamYs+ePRg+fDjCwsIQGBiICRMmYM+ePQAM09FcXFwwbNgwuLm5YcqUKbh48aJifQAiqjkEQcB///tf5Ofn44033sCVK1cc0g5zi1cBw81aHGKwNBjR6XTSNa09RAMoV4qVr4ciD0bks4LkwUj9+vWh1dp+5L1p06bYvn07/vrXv9r8WlR3WLQC63/+8x/s3r0bhYWFiImJQfPmzXHjxg0MGjRIek3z5s2lv0DXr19X/CVzd3dHWFgYrl+/bnKVwqKiIhQVFSkb6uwsBUG1nV6vV/xJFWN/qWON/kpNTZUW3iopKcHrr7+OrVu3WqV9asiHTEJDQyv9TpGRkbh+/TqysrKQnp4Of3//Cl9fuq/u3LmD4uJiAIYhGmv/zMkzDVevXpU+X8yS+Pj4ICAgQHq+Xbt26N27Nw4dOoQePXo4/O8A/y6qU1f6y5wg2aJg5PXXX8ecOXNw6tQpxMfHQ6PRIC8vD15eXtJrvLy8kJ+fDwDIz89XnBPPi7s+lrZu3TqsXr1a8dyoUaMwevRoS5pbY8mr9qly7C91qtJfcXFxisfbt2/H119/ja5du1a1WRa3w8PDQ7ESqin16xsXozh27Bjatm1bwauNxL46e/as9Jyfn1+l17OEk5MTdDodLl68iISEBBQXF0tBV5MmTRQBGGBYaO3EiROIiYmxSXsswb+L6tT2/pIXj5fH4r1pnJyc0L17d3z55Zdo3LgxPD09pbFbAMjNzYWHhwcAwz8S8nPieU9PT5OfPXny5DKV4nUtM5KUlITGjRvbJe1a07G/1LFGfx0/frzMc++++y4OHTpk12mV4i88ANCxY0eTu8rKtWvXDps3bwYAFBYWVvr60n3122+/Sefatm1b6fstERERgfj4eCQmJqJJkyaIj4+XNgJs1apVmWuGh4ejY8eOVm+HJfh3UR32l1GVN8oTx1AjIyNx7do19OnTB4BhjFMc22zatKkihVtQUIDk5ORyi59cXV3rTOBREa1WW+d/QNVgf6lTlf6S/3Yu/iZ/7NgxbN++HSNHjrRWEyslrztr0qRJpd9H/htaYmKi2d9f7Cv59cLDw23y8yYOcT948ADp6emKWTXNmzevET/j/LuoDvtLZQFrTk4O9u7di7y8PJSUlGDfvn04efIkoqOjMWTIEGzbtg3JycnSfglDhgwBAHTp0gWFhYXYuXMnioqKsHbtWrRu3Vr1rpZEVD3IC0DfeOMNxbE9p/uqKWAFqr7WiC2n9YpKF7GWV7xKVJuoDsW2b9+OIUOGoH///oiNjcW//vUvtGzZEo8++ihGjhyJiRMnYuTIkejRoweGDh0KwJDpWLp0Kb788ks8/vjjOHPmDBYtWmT1L0NE9iG/kc+YMQO9evUCYLh5lq5psCUxGHF3d5eWR69IVdcaseWCZ6LS03sZjFBdoGqYxtvbGx9//HG55ydPnozJkyebPNe2bVts2rRJXeuIqFoSb+Senp5o2LAhevXqhaNHjwIwBCS2qKUwxdwFz0SNGjWCi4sLiouLLQpGxEJDrVaLkJAQ1e83B4MRqovq9iAVEakmCIJ0I4+IiIBGoyl3fQxbys7ORnZ2NgDzh0y0Wq0UKN28eVP1kJKYGZEvoGZt5QUjLi4uZg1FEdVEDEaISJV79+5JO8WKwx5RUVHSeXstgKa2XkQk1o08ePAA9+/fN/t9BQUFuHfvHgDbDdEAhvaJxYxXr17F9evXpeednJxsdl0iR2IwQkSqyOtFxGDEEZkRS4MRNXUjqamp+OWXXxQrrwK2K14FDDV2YvYmLi5OWo+JQzRUmzEYISJV5Ddw8cYeEhIirRtUW4KRpKQkREdHY9KkSfjTn/6kWFDMlpkRwDhUU1JSIj3HYIRqMwYjRKSK/AYuDnloNBrpBnr9+nXFTdRWbBmM5ObmYujQodLu4l999RXefvtt6by9ghE5BiNUmzEYISJVTA3TAMa6kZKSkirtimsu+RLaaoZNKltrRK/XY9KkSThz5ozi+f3791t0PUswGKG6hsEIEaliapgGsH/diK0yI4sWLZJWjPbx8cHjjz9e5jXMjBBZF4MRIlJFvIF7eXkpNp5zVDDi6uqKwMBAs98XFBQENzc3AGWDkfj4eLz11lsADENPGzduxIoVK8oEArYORuR9KTJnszGimorBCBGZTa/XS4WckZGRioXG5DdQe0zvVbvgmaiitUZOnTolHb/22msYMmQIvL298fnnn0vTan18fMxa7bUqSvdtaGiotPEoUW3EYISIzJaSkoLCwkIAyuEOQLnWiK0zIzk5OcjMzASgbohGJGYZcnNzkZaWJj0vX+69W7du0nGPHj3w6aefonnz5li8eLHNdyZ2d3dX1KWYGrYhqk0YjBDVICUlJVi5ciX27NnjkOuXVy8CAA0aNICvry8A2wcj8t1zLQlG5G2XF7FWtPfMxIkTcfXqVcycOVP19SwhD0BYL0K1HYMRohpk9uzZmDFjBp599llcu3bN7tevKBiRLwufkJAgZVBswdKZNKKmTZtKx+YGI/bGYITqEgYjRDXEb7/9hpUrVwIAdDodfvvtN7u3QX7jNlVQKQ7V6PV6aRlzazl9+jT+/Oc/o2vXrhgyZIj0vCWZEXkwIt+ITgxynJyc0KhRoyq0turatm0rHbdu3dqBLSGyPdvs9EREVlVSUoJp06Ypii3ttdKpXEWZEaDsjJqq3kRLSkrw2Wef4aOPPsLJkydNvqZLly6qP1cejMiDJjEzEhoaCicnJ+j1etWfbS0TJ07EgQMH4Ovri6efftph7SCyBwYjRDXA//73P5w9e1bxXHUbpgGsP713zpw5eO+99xTPaTQatGrVCt27d8fQoUPRo0cP1Z8rH/YQg5G8vDypmNXRQzQAUK9ePezYscPRzSCyCwYjRNVcUlIS3nzzTQCGG7GYHXFEMCIO0/j4+MDf37/MeWtP7923b590HB0djWnTpmHMmDHw8/Or0ufWq1cPAQEBuH//vjRMI69DqQ7BCFFdwmCEqJr7xz/+gdzcXADAtGnT8M033yA5OdnuwYhOp5OGMUqvgyGyZmZEEAQp+GnRogVOnTpl1Sm1TZs2xf3795GUlISioqJqVbxKVNewgJWoGhMEAXv37gVgWPF08eLF0g0/LS1NWmvDHm7evIni4mIAypoLuYCAAGlV1qoGI6mpqVIQ1rRpU6uv7SEO1QiCgISEBAYjRA7EYISoGktISJB2ju3Zsyf8/f0VUz7tmR25cOGCdCyf6VGaGCwlJycjLy/P4uvJC0vLC36qonQRK4MRIsdhMEJUjR05ckQ6jomJAQCHBSPnz5+Xjtu0aVPu6+RDNVVpn3wasa2Dkfj4eAYjRA7EYISoGjt69Kh03KtXLwCOC0bMzYzIl4W/fPmyxdeTZ0ZssUkcMyNE1QeDEaJqTAxGNBqNNIXV3rvjisRgRKvVKgKO0uRri1y8eNHi69l6mKb09F4xGPH19UW9evWsfj0iKh+DEaJq6sGDBzh37hwAoH379tK+L/Ibs70yI3q9XgosmjZtWuEOstYKRmw9TBMWFgZnZ8OEwmvXrklTe5kVIbI/BiNE1dTx48elFUDFehHAMKsmJCQEgP2CkYSEBKkYtaJ6EcAwjOTk5ATAOpkRf39/m2QqnJycpIXbLly4IO2lw2CEyP4YjBBVU/LiVbFeRCTWjdy7dw/Z2dk2b4u59SIA4OrqKg2BXL582aIl1YuLi6VMhS2yIiKxnTqdTnqOwQiR/TEYIaqm5MWr8swIYL0ZK+aSByOVZUYA41BNQUEBEhISVF8vMTFRCmJsGYyY+mwGI0T2x2CEqBrS6XT49ddfAQDBwcFl9oGx94wac6f1iqpaN2LrmTQiBiNE1QODEaJq6Pz589LwS69evcqsPmrvYETMjIib1FWmqsGIrYtXK/psBiNE9sdghKgaqmiIBrBvMCIIghSMREZGwtPTs9L31JTMiHx6r6hx48Y2ux4RmcZghKgcOp0OBQUFDrl2RcWrgPImauu1RhITE6U9YswZogGgyJ6YG4wUFxdLOxLbeo0RUelAR6PRIDQ01GbXIyLTGIwQmZCUlIQmTZogLCzM7rvj6vV6HDx4EADg5uaGzp07l3mNj48PgoODAdg+M6JmJo3Ix8cHYWFhAAzBiBhklOcf//gHXF1d8dprrwEwDtNotVqbDpv4+voiMDBQehwSEgIXFxebXY+ITGMwQmTC8uXLcfv2baSnp2Pz5s12vfYvv/yCW7duAQAGDBgAV1dXk68Th2pSUlKQk5Njs/aonUkjEodqMjIycO/evXJfl5aWhrfffhsAsGLFChw6dEjKjISFhZX7/a1FnmVivQiRYzAYISolNzcX69atkx5XZX8VS2zYsEE6Hj9+fLmvk9eNxMfH26w9lgYj5g7VbNy4EcXFxdLjGTNm4P79+wBsO0Qjkl+DwQiRYzAYISpl06ZNyMrKkh5fuXLFqp9/9+5dXLt2zeRiYIWFhdi6dSsAw0qrzz77bLmfIw9GbFk3Ip/Wa85MGpG5Raxr165VPP7999+lYwYjRHUDgxEiGUEQsHLlSsVz1gxGLly4gMjISLRo0QJ+fn7o27cvFi5cKA2zfPfdd8jMzAQADBs2DF5eXuV+lnzhs6pmb/Ly8vDf//4Xu3fvVjwvn0kTEREBb29vsz/TnGDkzJkziIuLAwBF7YbIljNpRC1btpSOTc2uISLbYzBCJHPixAmcPn1a8dz9+/eRlpZmlc//8ccfkZ+fD8CwEd7PP/+Mt956C8OHD0dJSQk2btwovbaiIRoAaNeunXQs3tAt9f7772POnDl49tlnsX//fun55ORkPHjwAIC6IRrAvGBEnhVZtGgR+vXrpzhvj8zIyJEj8fTTT+OJJ57AuHHjbH49IiqLwQiRjDwr0qBBA+nYWtmR5ORk6TggIEA63rdvH2bNmiVlJgIDAzFgwIAKPysqKgpubm4Aqh6MyIdGXn31VWlK89KlS6Xn5cGPORo2bAh/f38AwKVLl8qcLygokOpj3N3dMW7cOMX1APsEIx4eHti9ezd++OEHaWdkIrIvBiNED6Wnp+Orr74CAPj5+UnTTAHrFbGKm78Bhl15Dxw4IG1jv2rVKikIGDNmTKVTTJ2dnaUA4erVq9JaIJZISUmRjq9evYp33nkH+/fvx//+9z8AhmBhypQpqj5To9FI2RF5hkW0a9cuZGRkAABGjBiBevXqoXPnzpg4cSIAwNvbW3U2hohqJgYjRA/FxsZKwcCkSZPQqVMn6Zy1MiPyYCQsLAyPP/443n333TKvq2yIRtSxY0cAhtqOP/74w+J2yYMRAFi8eDFeeOEF6fF//vMfREVFqf5c+VBN6eyIfMbSiy++KB1/9NFHWLlyJQ4ePMhMBVEdwWCECIab+SeffCI9fuWVVxSFjdYepmnQoAHc3d0BGKayTpo0SXpNZGQkevToYdbnyQOmqgzV3LlzR/G4qKgIt2/fBgA8/vjj+L//+z+LPlcejMinCGdmZuKHH34AYCiM7du3r3TO3d0dr776Krp27WrRNYmo5mEwQgTDQmNiwNG3b1+0bNkS4eHh0oJb1him0el00mJm4uqkgGE4Y9WqVXjyySfh7OyMRYsWldkYrzxiZgQAzp49a1G7CgsLpeGSjh07Ijw8XDrn4+ODdevWQau17J+K9u3bm2xfXFycNLV5yJAhFn8+EdUO/BeACFBkRaZOnQoAcHJyktbyuHbtGnQ6XZWukZKSIn1G6c3Y3N3dsWfPHuTl5Zk9RAMAHTp0kI4tzYzcvXtXOm7WrBlWrlwpBQcffPCBIjhRKzo6Wjo+c+aMdCxvqzy7Q0R1E4MRqvPS0tKkhcbq16+P5557Tjon1kkUFhYiMTGxSteRz6SRZ0ZEGo1G9b4ofn5+UrBw7tw5kwupVUY+RNOoUSMMGTIEv/32G44dO6aoG7FEgwYNpI3nzp49K+1RI8+SyLM7RFQ3MRihOu/zzz9HUVERAEPhqjhdFoBV60bkxavW3KZevJnn5ORIG8ypIS9eFTff69Kli9l1K5URMx9ZWVm4efMmAGNmRKvVqp4yTES1D4MRqtNKF66+/PLLivPyGSTVPRgBLBuqMRWMWFPpoZqSkhJpifmoqCh4enpa/ZpEVLMwGKE67dChQ1Jxap8+fRSZEEAZjFS1iLWyYRpLVXVGTelhGmsrHYxcvnwZhYWFADhEQ0QGzo5uAJEjrV+/XjqeNm1amfM1aZgGsGxGjb0zI/LpvgxGiAhgZoTqOPlCYaZ2yA0MDISfnx+AqmdG5MGIWNRpDZGRkdIGdtVxmCYiIgL16tUDYAiWWLxKRKUxGKE67erVqwAMwyamdsjVaDRSdiQxMVHa5M4S4jBNw4YNFUWyVaXVaqUpvgkJCdKuv+YSh2k0Gg0aNmxotXaJNBqNNJR069Yt7Nu3TzrHYISIAAYjVIdlZGQgPT0dANCiRYtyXyevG7l27ZpF1yopKZFWNLXmEI1IflM/d+6cqveKmZHAwEDVU4vNZWq9kfr16yMkJMQm1yOimoXBCNVZ8fHx0rG4uJkp8roRS4dq7ty5I60BYs3iVZGlM2oEQZCCEVsM0YjkwYioU6dOZq80S0S1G4MRqrPkWY6KghFrTO+Vz6SxdWbk999/N/t9GRkZ0hortphJIzIVjHCIhohEDEaozhLrRQDzgxE1N3q50rv1Wpt8hsrFixfNfp+ti1dFrVq1KlMnw2CEiEQMRqjOMjcz0qZNG2m2ysGDB6UlzdWw1bReUb169aT6C0uDEVtmRlxcXMqstMpghIhEDEaozpIHI82aNSv3dS4uLujTpw8Aw6Zy4uqhath6mAYwZkfS09ORmppq8jWZmZlYt26dNNwkX/DMlpkRQDlU4+LiosjmEFHdpioYKSoqwsKFC/HUU0+hT58+mDRpkqJyPzY2FgMGDEC/fv2wYsUKxW+Q58+fx9ixYxETE4OpU6cq/hEkcgQxGAkJCTE5rVduwIAB0rF8aqq5bD1MA1Q8VCMIAj7//HO0bNkSL730EsaMGYPs7Gy7DdMAymCkTZs2cHV1ten1iKjmUBWM6HQ6hISE4NNPP8XBgwcxbtw4vPbaa8jLy8Phw4exZcsWxMbGYvPmzTh69Ch27twJwBDEzJ07F2PHjsWBAwfQsWNHvPnmmzb5QkTmyM7Oxr179wBUPEQjqmowIs+MWHPBM7nygpGbN2+ib9++mDhxovSds7Ky8N1339ltmAYwbL4nki9hT0SkKhjx8PDAyy+/jODgYGi1WgwaNAguLi5ISEjAnj17MHz4cISFhSEwMBATJkzAnj17AACnTp2Ci4sLhg0bBjc3N0yZMgUXL17ErVu3bPKlqPpLSUnBsWPHpP/s/bNgbr2IqG3btggKCgIA/PTTTyguLlZ1PTEzEhQUZLOMQKtWraTjS5cuSccTJkzAL7/8Uub1u3btsuswTffu3TFhwgS0bNkSr732mk2vRUQ1S5X2pklMTER2djYaN26MGzduYNCgQdK55s2bS+s4XL9+XbGolLu7O8LCwnD9+nWTvyUWFRVJ0w2lhjo715m0rrgehfhnbXPkyBH07dtX8f00Gg2+//579O/fX/XnWdJf8im6zZo1M+u9/fv3x8aNG5Gbm4tjx47h0UcfNetaxcXF0k2/cePGNvv/Kl8P5cKFC9Dr9UhLS8ORI0cAGIKNjz76CJMmTUJmZib27NmjKCJt2LChzX/mPvvsM+m4Jvx81/a/i9bG/lKnrvSXVlt53sPiYKSgoABvvvkmJk2aBG9vb+Tl5SnG3b28vKSls/Pz88uMyXt5eSEvL8/kZ69btw6rV69WPDdq1CiMHj3a0ubWSPI6g9pk1apVZf7yCYKAJUuWmJWlKI+a/jp58qR0XK9ePSQkJFT6nujoaGzcuBEAsHXr1goLUQVBwMWLF5GWloaMjAypfiogIMCsa1lCEAT4+PjgwYMH+OOPP5CQkID9+/dL559++ml06NABjz32GHbt2oXs7GwpUHF3d0dGRobqpeTritr6d9FW2F/q1Pb+ioyMrPQ1FgUjJSUleP3119G4cWO8/PLLAABPT0/k5uZKr8nNzYWHhwcAw/CO/Jx43tPT0+TnT548GePHj1c2tI5lRpKSktC4cWOzIsqaRix6dnJywsyZM7FhwwakpaXh0KFD8Pf3h6+vr6rPs6S/xGXgAaBnz54IDw+v9D2jR4/GnDlzABiGHk29JzMzE1988QU++eQTk7NuoqKizLqWpdq2bYtff/0Vt2/fRv369RVrqQwaNAjh4eEYN24cdu3aBcD4G1mjRo0QERFhs3bVVLX976K1sb/UYX8ZqQ5G9Ho93nzzTWg0Grz11lvScs6RkZG4du2aNAUyPj5emi7ZtGlTbN26VfqMgoICJCcno2nTpiav4erqWmcCj4potdpa9wOamZkp3aQ7deqE9957DyUlJfjwww9RWFiIPXv24Pnnn7fos0v3161bt5CammqyWFJeM9KiRQuz+rlJkyZo1aoVLl26hOPHjyMnJ0cROO3evRtjx44tN+MHAL169bLp/9PWrVvj119/BWBY1O3YsWPSuUcffRRarRaDBw+Gq6urYihUrAMj02rj30VbYn+pw/6yYJ2RxYsXIz09Hf/5z3/g7GyMZYYMGYJt27YhOTkZ6enp2LBhA4YMGQLAUEVfWFiInTt3oqioCGvXrkXr1q1tNquAqi/xRgkYbsyAYQhOJA9aq+Lu3bvo0qULoqOjERsbW+a8GIwEBQXBx8fH7M8VZ9XodDr8/PPPinNLlixRBCK9evXC/PnzsWDBAixYsAAbNmyw+VCjfEZNXFwcTpw4AcDwC4FYoOrj44OePXsq3mfrmTRERBVRlRm5c+cOduzYATc3N8VUx/fffx+PPvooRo4ciYkTJ0Kv12PYsGEYOnQoAEOmY+nSpVi0aBGWLFmCNm3aYNGiRdb9JlQjiDUKgDEYefTRRxEUFIS7d+/iu+++Q05OjrTiqaW++OIL3L17FwCwaNEivPDCC9JvHjk5OdKU1op26zVlwIAB+OCDDwAYpvg+88wzAAxFqmIdSmhoKPbu3VtmxVF7kAcjGzduREFBAQBjX4sGDBigCKZsPZOGiKgiqoKRRo0aKQr/Sps8eTImT55s8lzbtm2xadMmda2jWufo0aPScUxMDABD7chzzz2HVatWoaCgAN9++y3GjBlTpets2LBBOr5+/Tp++OEHPPnkkwDM363XlL59+8LJyQk6nU6x3si5c+ekG3+fPn0cEogAyum98uJVsa9FAwYMUKz1w2CEiBypbg9SkV2VlJTg+PHjAAyrkMpno4wcOVI63rJlS5Wuc/HiRZw5c0bx3MqVK6VjtWuMyNWrVw9du3YFYJg+K07ZlQ8/9ejRQ3WbrSUyMrLMhnRA2cxIUFAQunfvLj3mMA0RORKDEbKbc+fOSbOqSv+m/thjj6FBgwYAgD179pSZfaWGPCsi+uabb6Qptebu1lse+VooBw8eBAApyAIcG4w4OTkpdhkGAF9fX7Rt27bMa0eMGCEdy9coISKyNwYjZDfyIZrSv6k7Oztj+PDhAAzr0oir96olCIIUjGi1WsyYMUN6/pNPPgFQtcwIAPTr1086FodCxMyIm5ubw3ejLb0BXY8ePeDk5FTmdf/3f/+HuXPn4u233zZ7ATciIltgMEJ2Iy9eLZ0ZAZSzarZt22bRNY4ePYqbN28CMNRFzJ8/X5r1tWbNGly6dEkxpGJJMNKrVy9pKOTAgQNIT0+Xsi2dO3d2+LT00sGIqb4GDIHTO++8g9dff12aok9E5AgMRshuxMyIp6cnOnToUOZ83759pVk08sBFDfkQzfjx4xEcHIznnnsOAHDv3j20bt1aWuckKCgI9erVU30NDw8P6QZ/8+ZNfPnll9I5Rw7RiEoHI6WzUERE1Q2DEbKL5ORkJCYmAjBsmObi4lLmNc7OzlJxaFJSEm7fvq3qGkVFRdi8eTMAQ8AgDvu8+uqrZV7r6uqKBQsWqPp8OflQzZIlS6Tj6haMaLVaPPLIIw5sDRFR5RiMUJX98MMPeOutt5CRkVHua0xN6TVFfjOXF4Wa49NPP5WWeX/22Welxcz69OkjbeLYpEkTvP3220hKSsL06dNVfb6cvIhVvq9EdbjxR0VFSUNFHTt2VLWoGxGRI1Rp116i9PR0DB06VFrif82aNWVeU1RUJC0UBlQ8bCAPRn799Vcpu1GZnJwc/POf/5Qey7eo12g02LlzJ+7cuYPGjRubLOZUq2vXrvD19UV2drb0XHBwMJo0aVLlz64qd3d3LFu2DOvXr8fixYsd3RwiokoxM0JVEhcXJy32tWXLFhQWFirOC4KAWbNm4dChQwCAkJAQ9O3bt9zPk2cW5IWmlfnkk09w7949AIYN7UpnKNzc3BAREWGVQAQwDCmJ+zCJevToUW0KQWfOnInjx48rMjhERNUVgxGqkosXL0rH2dnZilVJAcNiYx9//DEAQ0Cwbdu2cndrBgzZBXFX25MnT6KkpKTSNty6dUvKyLi4uNgtGyCvGwGqxxANEVFNxGCEqkQejADKje4OHDiAP//5z9LjNWvWmHXDFodq8vLy8Mcff1T6+n/84x9Sdmb69OnSbtG2VjrrUB2KV4mIaiLWjNRyp0+fVhSCBgQEYNiwYSaXDLdE6WBkx44d+PjjjyEIAqZMmQKdTgcAmDt3LiZMmGDWZ/bo0QNfffUVAMNQTadOncp97ZEjR/DZZ58BMCzVLt9vxdbatWuHBg0aIDU1FVqtVpoJRERE6jAYqcUuXryI7t27SwGBaNasWVixYoXVriGXmZmJAwcO4OrVq9LiY3379lU1dFK6iPWVV14x+bpff/0VgwcPhl6vBwD87W9/Q/369VV+A8tpNBrMnz8fc+fOxfTp06u80zARUV3FYZpa7JtvvikTiADA6tWrkZmZWeXPz8rKkjaKk686um7dOixatEh6vGzZMlWFo506dZLWISlveu9vv/2GQYMG4cGDBwAMM3TkQ0L2MmvWLOTk5GD58uV2vzYRUW3BYKQWk69iumzZMgwbNgyAYe+Xzz//vMqff+nSJel4zJgxUmZg8+bNSE1NlZ7v3Lmzqs91d3dHdHS0dI3S65ecP38eAwcOlKbV9uvXD6tXr3bYMuzicvNERGQZBiO1lCAI0kJjfn5+mD17Nv71r39J51euXAlBEKp0DfkQTXR0NJ5++mnFeScnJ0WGRA35UM1vv/2mOLd48WJkZWUBMAwB7dy5Ex4eHhZdh4iIHI/BSC117do1KTvRq1cvaLVatG3bVlob4/Llyzh48GCVriEPRlq3bo2RI0cqzr/00kto0aKFRZ9d3kqsgiDgp59+AgB4eXnhm2++qXCqMBERVX8MRmop+fLr8hVP5fu0rFq1qkrXKB2MDB48GF5eXgAMe8NUZe8XeTBy7Ngx6fj69evSnjW9evWSrkdERDUXg5FaSl4vIt8LZvjw4QgKCgIAbN++XfVmdHJiMOLp6YnGjRvD09MTq1atQnR0NGJjYxESEmLxZ0dERCA4OBgA8PPPPyMvLw8ApJVcAeCxxx6z+POJiKj6YDBSS4mZEScnJ3Tr1k163tXVFS+//DIAQKfTYfXq1RZ9fkFBAa5fvw4AaNWqFbRaw4/Sn/70J5w+fRqjR4+uSvOh0WikGpT8/HxpZVd5MNK7d+8qXYOIiKoHBiO1UGZmJs6fPw/AUFhaeihj6tSpUvCwfv16i65x9epVaX0P+Zb11jR06FDpeOfOnQCAX375BYAhqOrevbtNrktERPbFYKQWktdYmNoht3HjxujZsycAID4+Hvfv31d9jdL1IrbQv39/qTh19+7duHXrFq5duwYA6NatG2fQEBHVEgxGaiF58aq8XkROvvbH2bNnVV/DHsGIh4cHnnzySQBAamoqli5dKp3jEA0RUe3BYKQWkhevmsqMAJAWFQOAM2fOqL6GPYIRQDlUs3LlSumYxatERLUHg5FapqSkRFqXo3HjxggLCzP5OmsFI87OzmjevLkFLTXPU089JS0lX1xcDMBQ3FpekEVERDUPgxEr0ev1uH79Oq5du4Zr165VacpsVcTFxUnTYMsbogGANm3aSPu/qA1GTpw4IQUjzZs3lz7HFurXr49HH31U8VzHjh1Rr149m12TiIjsi8GIFRQXF6Nnz55o1qwZWrRogRYtWiA0NBSzZ8+2e1sqK14Vubq6ol27dgAM+7+IAUxlTp48iSeeeELKUgwaNKgKrTWPfKgG4BANEVFtw2DECr777rsy+6cAwAcffIBbt27ZtS0nTpyQjh955JEKXysO1ej1epw7d67Szz59+jSeeOIJxb4w//73v6vQWvOUDkZYvEpEVLswGLEC+Q64Tz/9tDRttiqLillKDEZcXFzQsWPHCl+rpm7kzJkzGDBgADIzMwEYshPffPONXZZjb9q0Kdq3by89Lj1sQ0RENRuDkSq6f/8+du/eDQAICgrC9u3bsXnzZqno8pNPPpGGNGztwYMHuHTpEgCgQ4cOcHNzq/D15gYjcXFxGDBgADIyMgAYgoFvv/3WrvvCLF26FC1btsSCBQukZeKJiKh2YDBSRV999RWKiooAAOPHj4ezszPCwsLw7LPPAgDu3LmDXbt2WeVa586dw4IFC6Rl2Es7ffo0BEEAAHTt2rXSz+vYsSM0Gg2A8oORc+fOoX///tLCaDExMdizZw+8vb0t+QoWGzRoEC5duoSFCxfa9bpERGR7DEaqSD5E88ILL0jH8t1x5etjWEqv1+PZZ5/FokWLEBMTg+Tk5DKvkdeLyPejKY+3tzdatGgBAPj999/LZHBu3bqF/v37Iz09HQDQs2dPfPfdd/Dx8anKVyEiIlJgMFIFly9fxq+//grAkGWQ12j0799futEfOHBAsUiYJU6cOIGEhAQAQEpKCoYOHVpmBozaYAQwDtUUFhZKQzyi2NhYpKWlAQB69OiBvXv3MhAhIiKrYzBSBfJN5uRZEQDQarV45ZVXpMcfffRRla4l1qWITp8+jRdffFEalgEM024BwzLqbdq0MetzK6obkT/+9NNP4evrq7rdRERElWEwYiG9Xi8FI05OTnj++efLvGbSpElwd3cHAHz22WcoKCiw+HrffPONdCwWjn711VfS1Nr09HSplqRz585wdnY263MrCkbi4uIAGIKbli1bWtx2IiKiijAYsdAvv/yCxMREAIbiSlMzPAICAjBy5EgAQFZWFg4dOmTRtZKSkqTAoFu3bti4caNUePrWW2/h+vXrUlYEMK94VVReMJKTk4P4+HgAQLt27aTZQURERNbGYMSEM2fOYPjw4fjvf/+LwsJCk6/ZsGGDdDxhwoRyP+vpp5+Wjvfu3WtRe+RZkaeffhrPPvssXn/9dQCGtUyWLFliUb0IADRo0EDav+bMmTPQ6/UADAWt4hBQZeuVEBERVQWDERNeffVV7NixA3PmzEHHjh2xf/9+xfnCwkJs3boVgGHIRJzGa8oTTzwBrdbQzdYKRgBgzpw5UjHpunXrFDUlaoIR+euzs7OlDIz4J8BghIiIbIvBSClJSUnSrreAYcbMgAEDMGXKFOh0OgCG5d/FlUiHDx9e4eJfAQEB0rLsFy5ckIZ2zJWbmysFQyEhIdKwir+/P6ZPnw4AKCoqkpajr1evnupddPv16ycdi9diMEJERPbCYKSUHTt2SMf+/v7S8dq1a6UZMRs3bpSeN1W4WtqTTz4pHX///feq2rN//35pqOjpp5+WakUA4LXXXpMKZEVdunSRMjHm6t+/v+J6AHD27FnpuQ4dOqj6PCIiIjUYjJSybds26fjnn3/Gxx9/LD2eP38+4uPjpSGRBg0aYMCAAZV+pjwY+e6771S1x9QQjSgoKAgvvfSS4jm1QzQA0KpVKzRq1AgAcOjQIRQWFuL3338HAERGRqJevXqqP5OIiMhcDEZkUlNT8csvvwAAoqKi0K5dO0ydOhUTJ04EAGRmZqJ///7SFN3Ro0fDxcWl0s/t2rUrAgMDAQD79u0ze6+a3NxcqTbF3d1dkcEQzZkzRzGN15JgRKPRSEM1ubm5+PLLL5GbmwuAQzRERGR7DEZkdu3aJc0mGT58uDQk8s4770jZAXEVVMCwF405tFotBg4cCMCwmd2xY8fMel9sbKy0Od3o0aPh6elZ5jVNmjTB5MmTAQCurq6IiYkx67NLkwc6y5cvl44ZjBARka0xGJGRD9E899xz0nFQUBD++c9/Kl4bGRmJHj16mP3Z8qEac2bV6HQ6vPfee9Lj//f//l+5r33vvffwzjvvYM+ePRbvaCsvYhWHaAAGI0REZHsMRh7Kzs7Gvn37AABhYWFlFg6bPn26opDz+eefVxSTVkbMjADmBSM//PCDtKLqE088UWERqaenJ+bOnWtyGMdc4eHhaNasWZnnO3XqZPFnEhERmYPByEN79uxBUVERAMMQTekZKc7OzlizZg0CAgIQHBys2HfGHEFBQejSpQsAw+Jid+7ckc4JgoD33nsPs2fPxs2bNwEY9oIRVZQVsabSwYyvry8iIiLscm0iIqq7GIzAUJj61ltvSY/lQzRy3bp1Q1JSEpKSkqRVS9UYMmSIdCyfQrx//3689tprWLFiBdq0aYNXXnkFp0+fBmBYil2eVbGl0sFIhw4dVGV/iIiILFHng5GSkhKMHTsWly9fBmC4Affu3bvc13t6epq9CV1pI0aMkI63bNkiHcuXls/Pz8fq1aulx//v//0/uwUEjz/+uOIx60WIiMge6nwwMnfuXGkhsvr162P79u022xSuQ4cO0uqoP//8M+7du4fCwkJs374dgGE2jPzawcHBGDdunE3aYkqDBg0UtSkMRoiIyB7qdDCydu1avPvuuwAMNSFff/01mjZtarPraTQajBo1CgCg1+uxfft2fP/998jKygIAjBkzBqdOnULfvn3h4eGBJUuWwM3NzWbtMWXw4MHSsZrZQkRERJaybLyhFoiLi1MUoX744Yfo06ePza87cuRIvP322wCArVu3omHDhtK5MWPGSBvz3bhxA5GRkTZvT2l/+9vfkJeXhzZt2qB9+/Z2vz4REdU9dTYYadu2LWbMmIH33nsPM2fOxNSpU+1y3ejoaERGRuLGjRs4ePCglPnw9/fHE088Ib1O7f4y1lKvXj28//77Drk2ERHVTXV2mMbZ2Rnvvvsudu3aJQ3V2IN8qEan0yEvLw+AobjV1dXVbu0gIiKqLupsMCJ65plnLJ4dY6mRI0eWeW7MmDF2bQMREVF1oSoY2bp1K8aPH49HHnlEsZstAOzevRtDhgxBnz59sHDhQsVmcMnJyXjxxRcRExOD8ePH48qVK9ZpfQ3VtWtXhIeHS48bNmyIvn37Oq5BREREDqQqGAkMDMTUqVMV+5gAwLVr17B8+XIsXboU3377Le7evYs1a9ZI59944w088sgjOHDgAIYPH445c+agpKTEOt+gBtJoNIrsyKhRo+yenSEiIqouVAUjffv2RZ8+feDj46N4fu/evejXrx/atm0Lb29vvPjii/j2228BADdv3sSNGzcwefJkuLm5YeTIkdDr9Th79qzVvkRN9Morr8DHxweenp6YMWOGo5tDRETkMFb5dfz69evo3r279Lh58+ZISUlBXl4ebty4gSZNmiiKM5s3b474+Pgym9GJioqKpH1ipIY6O9eqAs+mTZsiKSkJgiDA19cXer1eOicey5+j8rG/1GF/mY99pQ77S5260l/mzA61SjCSn58PLy8v6bG3tzcAIC8vD3l5eYpzAODl5YX8/PxyP2/dunWKJdEBw1DG6NGjrdHcaicjI8Pk80lJSXZuSc3G/lKH/WU+9pU67C91ant/mbNmllWCEQ8PD+Tm5kqPc3JyABj2cfH09FScA4Dc3Fx4eHiU+3mTJ0/G+PHjlQ2tZZmRiuj1eiQlJaFx48YOW2+kJmF/qcP+Mh/7Sh32lzrsLyOrBCNNmzbFtWvXpMfx8fEIDg6Gp6cnIiMjkZSUhKKiIimYiI+PLxNsyLm6utaZwKMiWq22zv+AqsH+Uof9ZT72lTrsL3XYXyoLWEtKSlBYWAi9Xg+dTofCwkLodDo8+eSTOHDgAC5evIicnBysXbsWTz31FAAgIiICERERiI2NRVFREbZt2waNRoNOnTrZ4vsQERFRDaMqGPn0008RExODHTt2YO3atYiJicGePXvQvHlzvPbaa/jLX/6CIUOGoEGDBpgyZYr0vn//+9/49ddf8fjjj2Pr1q1YsmQJp7ISERERAEAjCILg6EaQkl6vR0JCAsLDw+t86s4c7C912F/mY1+pw/5Sh/1lVLe/PRERETkcgxEiIiJyKAYjRERE5FAMRoiIiMihGIwQERGRQzEYISIiIodiMEJEREQOxWCEiIiIHIrBCBERETkUV2AlIiIih2JmhIiIiByKwQgRERE5FIMRIiIicigGI0RERORQDEaIiIjIoRiMEBERkUMxGCEiIiKHYjBCREREDsVghIiIiByKwQgRERE5FIMRB+JK/GRL/PkyD/uJbI0/Y5VjMGJnmZmZuHXrFgBAo9E4uDXVX3Z2NtLS0hzdjBojLS0N+/fvB8B/ACuTkpKCTz75BJcvX3Z0U2qE+/fv48KFC9DpdI5uSo3Af+vVcXZ0A+qSZcuWYe/evQgJCUHXrl0xePBgNG/eHHq9Hlot48LSli1bhl9++QVBQUHo0qULnnrqKYSFhUEQBP7lNqG4uBhTp05FUlIStmzZgoiICOh0Ojg5OTm6adXO2rVrERsbi0GDBsHb2xslJSVwduY/h+VZtmwZvv/+ewQHByM8PByjR49G+/bt+XexHPy3Xj32ip0cPXoU58+fx5YtWzBjxgzk5uZi8eLFAMAfzlLu3buHv/71r7h+/To+/fRTPP/880hOTsbevXsB8LcMU/R6PVxcXNCxY0d069YNK1asAAAGIiZkZWXhwoULWLNmDf7+978jLCyMgUgFtmzZgvPnz2PXrl2YP38+fH19+XexAvy33jLsGRsqKCiQjpOSkuDk5AQ/Pz90794dL730EkpKSqSbhl6vd1Qzqw2xvx48eIAWLVrgnXfeQWBgIPr27YsGDRogPT0dAPtKJPaX+NtWVlYWrly5gpdeegmpqan48ccfAQAlJSWObGa1IP+7eOXKFSQnJyMqKgpxcXFYunQpvvvuO1y5cgUAf74AZX+lpKQgNDQU7u7uiIqKgre3N3x8fBzYuuonLy9POua/9ZZhMGIDGRkZeP311/HRRx9Jzzk5OSEiIkKqfwgMDMSMGTOwbds2pKWlQavV1tkxfrG/Vq1aBQBo1qwZnnrqKXh7e6O4uBgAEBAQII2/1vXfLkr/fGm1Wuh0OtSrVw9t2rSBn58f+vbti/Xr1wNAnf6t39TfRY1Gg+joaGzcuBFvvPEGXFxc8MMPP2DBggX8u2iivzw8PODs7IwjR46guLgYJ06cwN27d/Hrr79KN+G63F9z5szBokWLpKCf/9Zbpm7/q24DH3/8MYYNGwYPDw/MmDFDer558+Y4f/48kpOTpec6deqEXr164auvvgJQN1Oe8v6aOXOm9HxYWBgA44300qVL6N69u0PaWJ2U9/Pl5OQkFRg2aNAAkydPhpubG1588UW8/fbbDmyx45TXV15eXoiPj8fx48fx9ttvY/bs2fjXv/6F1q1bY/ny5QD4d1HeX8OGDUNMTAw+++wzPPbYYwgNDUVoaCi++OILfPjhhwDqZn9duHABEydOhI+PD6ZMmSJlPPhvvWXq7q9MNvDpp59i48aNWLx4MWJiYgBAKvDq1KkTwsLCsH37doSFhSEwMBBarRaNGjWCXq+vk4WGpvpLTuy7kpISpKeno1OnTtK5goICuLu716kCuop+vgDAx8cHHTp0gKenJ/bt24dbt24hNzcXEyZMAIA69TNWUV+1bt0aTZs2xfbt2zFy5EgAgKenJ3r27IkdO3YgOzsbvr6+jmy+3VXUX4GBgRgwYAASEhLQpUsXTJs2DQDw3XffYfv27cjMzISfn58DW+8YcXFxiImJwbx58wAAOTk5cHV1RadOnRAeHo5t27bx33oVGIxUkfxm8Nhjj+HkyZPw9PTE77//jk2bNiE0NBT169fHmDFj8Oc//xnz5s3Djz/+iIEDB6J+/fp48OABQkJC6swPpzn91bBhQ4wcOVJ6XXp6OrKystCuXTtcunQJH374IR5//HE899xztT4QUdNfDx48wIEDB3D+/Hnk5eXhhRdewIkTJ7Bv3z7069ev1v+Mqfm7OGnSJPz++++Ij49HmzZtUL9+fSQmJqJZs2Z1JhBR87OVn5+P48ePY9CgQdL7kpOTER4eXmcCEfF7C4KA4uJiJCYmIiYmBklJSViwYAHq168Pf39//N///R/+8pe/YPbs2fjhhx8waNCgOvlvvVoMRiyUl5eHlStXwsXFBb169UK7du3QokULtGvXDm+++SaKi4vxzDPPwM3NDatXr4YgCBg7diwmTZqEPXv24Mcff0SDBg1w+vRpLF261NFfx+bU9NdHH30EQRDw1FNPwdPTE3/88QcKCwuxcOFCHDhwAOPHj8dzzz3n6K9kU2r7q6SkBGPHjsWQIUOg1+vxyiuvwMPDAy1btsTt27cd/XVsytK/iy+++CL27t2LQ4cOoWHDhjh9+jTefPNNR38dm7P0Z6t79+7Ys2cPUlJSkJaWhiNHjuBvf/ubo7+Ozcn7KyYmBm3btoWHhwfS0tLw7bffokGDBnj00UfRq1cvrFixAu+99x5mzZqFadOmYfv27di3b1+d+rfeUhqBlTSqXb16Fa+//jratGmDwMBAXLx4EY0aNcI//vEPZGdn47PPPsOIESMQEhICANi3bx+++OIL/O9//4OPjw/S09Nx5MgR3Lt3D2PHjoW3t7eDv5FtWdJfGzduxLJly+Dv7481a9bg448/xjPPPIO//OUv7K9yfr7ef/99eHt716kC36r+XczMzMTx48dx584djBw5kj9bJvpr/fr1WLVqFVxdXXHw4EGcPXsWAPDqq6/W6f46f/48pk+fjrZt22LlypXS6z///HMMHDgQvXv3rnP/1leJQKpt3bpVmDt3rvT4xo0bQs+ePYX9+/cLgiAImZmZgiAIQkFBgSAIgvDgwQOhb9++wunTp+3f2GrA0v46efKkIAiCEBcXJ1y/ft3OrXYcS/qrT58+wpkzZ+zeVkfj30V1qvp3URAEoaSkxI4tdqzy+uvgwYOCIAjCvHnzhJEjRwqCYOyXcePGCdu3b7d3U2u8uvMrVBWkpaUhMTERgKEI8MGDB/Dy8pKmtdWvXx+BgYFYvXo1AKBevXoAADc3NwCGQqdOnTqhRYsWDmi9/Vmrv1q2bAkA6NChAyIjI+39NezGGv0VHR2N5s2bO6D19sW/i+pY++8iULsX0jOnv+rXr49PPvkEADB9+nTcvn0bX3zxBXJycpCamgofH5868XfR2hiMVEAQBKxatQrPPvssNm/ejOzsbDg5OcHHxwf5+fk4ffo0AMOiUo888ghSU1OxY8cOAIY9VX777Tf8+9//xoIFC9CrV69an6Jjf6nD/jIf+0od9pc6avqrR48euHv3Lnbs2IEmTZrgX//6F06dOoW//vWvGD16NKKjo9GuXTsHf6OahwWsFTh+/Dhu3bqFoUOHIicnB8ePH8cTTzyBZ555BklJSXj//ffxww8/4NChQ5g2bRqaN2+OhIQEAIbfLL7//nvk5uZi8+bNqF+/voO/je2xv9Rhf5mPfaUO+0udqvTX448/jt69e+PKlSsIDQ2VskukDgtYK1BQUIBr164hIiJCWh103LhxCAsLw4MHD5CQkIALFy4gKioKnTp1wr/+9S9ERERI6zqIa2HUFewvddhf5mNfqcP+Uqcq/cXN76yDPVgBd3d3tGvXDt7e3ujTpw/u37+P48ePAzAsMNWuXTuMHj0anTp1wt27d3H79m20adNG8f66hP2lDvvLfOwrddhf6lSlvxiIWAd70Uzdu3dHREQEzp8/j/Pnz0vP379/H4sXL8Zzzz2HqKgodO7c2YGtrD7YX+qwv8zHvlKH/aUO+8sxGIyYQRzJ6t+/P4qKivDHH38AAC5evIji4mJ06NABmzdvxuzZsx3YyuqD/aUO+8t87Ct12F/qsL8chzUjZhIeLgX83XffYdu2bbhw4QJatmyJ5cuX15nlkNVgf6nD/jIf+0od9pc67C/H4GwaM2k0GhQUFGDLli24fv06Zs2ahTFjxji6WdUW+0sd9pf52FfqsL/UYX85BoMRFY4cOYKWLVti1apV0qJAVD72lzrsL/Oxr9Rhf6nD/rI/DtOoIAh1Z7t6a2B/qcP+Mh/7Sh32lzrsL/tjMEJEREQOxdk0RERE5FAMRoiIiMihGIwQERGRQzEYISIiIodiMEJEREQOxWCEiIiIHIrBCBHVaF27dkXXrl2xe/duRzeFiCzEYISIKjV16lTppj9u3DjFuczMTMTExEjn//e//1n9+rt375Y+n4hqHwYjRKTK1atXcfr0aenxjh07UFhY6MAWEVFNx2CEiMzm7GzYzuqrr74CAOh0OmzdulV6Xi4rKwvvvPMOnnrqKTzyyCMYOHAg3nzzTaSkpEiv+fjjj9G1a1c888wz2LdvH0aMGIFHH30UL7/8Mm7evAkAeOutt7Bw4ULpPWKG5OOPP1ZcLycnBwsXLkSfPn0wePBgrFmzxtpfn4hshMEIEZktKioKoaGh+Omnn3D37l388ssvSElJQf/+/RWvKywsxNSpU7FlyxakpaUhPDwcubm5+O677zB58mRkZGQoXn/v3j3Mnz8fGo0GhYWFOHPmDP75z38CAMLCwhAaGiq9tl27dmjXrh2CgoIUn/HBBx/g2LFjcHFxQWpqKj766CP8+uuvNuoJIrImBiNEZDatVotRo0ZJGRExQ1J6i/Xvv/8e8fHxAIB33nkHmzdvxqeffgqtVovU1FRs3rxZ8XqdToclS5Zg69atUk3KuXPnUFBQgJdeegkvvfSS9NrY2FjExsZi2LBhis9o2bIldu/ercjUnDhxwqrfn4hsg8EIEakydOhQeHh4YPPmzTh58iRat26NDh06KF5z4cIFAIC7uzv69u0LAGjVqhXCw8MV50Xe3t547LHHAABNmzaVni+dQanIgAED4OLiAj8/PwQEBAAA7t+/r+7LEZFDMBghIlV8fHwwePBg5ObmAiibFbH0M0VOTk7SsZpNxU19BjclJ6oZGIwQkWqjR48GAPj7+2PgwIFlzrdp0wYAUFBQgJ9++gkAcOnSJSQkJCjOm8vd3V06zs/Pt6TJRFSNlS2BJyKqRPPmzbF//344OTnB1dW1zPlBgwZhw4YNiI+Px7x58xAeHo5bt25Br9ejQYMGUjBjroiICOl41KhRCAwMxOzZs9GpU6cqfhMiqg6YGSEii9SrVw/e3t4mz7m5ueGTTz6RAoeEhAR4enpi8ODBWLduHfz9/VVdq0WLFnjppZdQv359pKSk4I8//sCDBw+s8TWIqBrQCBxUJSIiIgdiZoSIiIgcisEIERERORSDESIiInIoBiNERETkUAxGiIiIyKEYjBAREZFDMRghIiIih2IwQkRERA7FYISIiIgcisEIERERORSDESIiInIoBiNERETkUP8fwRyVeTleX98AAAAASUVORK5CYII=", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCa0lEQVR4nO3deXxM5/4H8M9k3yURIjtpBJEqtdStpUVQeokqSqnSi9tdN3p/XRXtbfV20dsqxZXeVotSSyzVoqhYitpu1BKJJCISQcgyWef8/hjnzDnJJJkzmSXL5/169eVk5sycM6eYj+/zfZ6jEQRBABEREZGdONj7BIiIiKh5YxghIiIiu2IYISIiIrtiGCEiIiK7YhghIiIiu2IYISIiIrtiGCEiIiK7YhghIiIiu2IYaYB0Oh3S0tKg0+nsfSqNAq+XOrxepuO1UofXSx1eLwOGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4aRBuDq1atwdnZGcXExKioq4O3tjaysLOn5tm3bQqPRQKPRwMPDA7GxsViyZIkdz5iIiBqK7DwBK7YKyMsX7H0qZmMYaQAOHDiArl27wsPDA0ePHoW/vz9CQkIU+8ydOxfZ2dk4efIkRo0ahSeffBKrV6+20xnbX1lZmb1PgYioQYh/TcAT7wt47F2GEaqH/fv3o0+fPgCAffv24d577622j7e3N9q0aYOoqCjMnz8f7du3x4YNGwAAr776KqKjo+Hh4YHIyEi8+eabKC8vl1574sQJDBgwAN7e3vDx8UH37t1x5MgRAEB6ejpGjBgBPz8/eHp6onPnzti6dav02tOnT2P48OHw8vJCYGAgHnvsMeTl5UnP33///Xj++ecxe/Zs+Pv7o02bNpgzZ47i3M+cOYO+ffvCzc0NMTEx2LFjBzQajXT+AJCVlYVHHnkEfn5+aNmyJeLj43Hx4kXp+SlTpmDUqFH45z//ieDgYERHRwMAFi1ahA4dOqBjx44ICgrCmDFjzPp/QETUGAmCgOMp+u3tvwM51xtnIHGy9wlYQ48ePXDlyhWbH7dNmzbSl3xdMjIy0KVLFwBAcXExHB0dkZCQAK1WC41Gg23btmHixIn48ssvjb7ezc1NChze3t5ISEhAcHAwTp06henTp8Pb2xuzZ88GAEycOBHdunXDl19+CUdHRxw/fhzOzs4AgGeeeQZlZWXYu3cvPD09cfr0aXh5eQEAsrOzcd9992H69On4+OOPodVq8eqrr2LcuHHYtWuXdC5ff/01XnrpJRw6dAgHDhzAlClT0KdPHwwePBg6nQ6jRo1CeHg4Dh06hIKCArz88suKz1JcXIwBAwagX79+2Lt3L5ycnDB//nw88MADOHnyJFxcXAAAO3fuhI+PD3755RcIgoAjR47g+eefx9dff42IiAi4u7sjKSnJ1P9dRESNXmkZUF6h3xYEIHE/MO2v9j0nswhNUEhIiADA5v+FhISYfI7l5eVCWlqacOLECcHZ2Vk4fvy4kJKSInh5eQm//vqrsHfvXiEnJ0cQBEGIiIgQPvnkE+l1K1asEAAIixYtMvreCxYsELp37y797O3tLSQkJBjd98477xTmzJlj9Lk333xTGDJkiOKxzMxMAYBw9uxZQRAE4b777hP69u2r2Kdnz57Cq6++KgiCIGzbtk1wcnISsrOzped/+eUXAYCwfv16QRAEYfny5UKHDh0EnU4n7VNaWiq4u7sL27dvFwRBEB5//HEhMDBQKC0tlfZZt26d4OPjI+Tn5wupqalCZWWl0c9BSpWVlbxeJuK1UofXSx1LXK+c6zoB/Sql/x6c3TivfZOsjLRp06bBH9fJyQlt27bFmjVr0LNnT9x1111ISkpCYGAg+vfvj/T0dAQEBEj7v/rqq3jjjTdQWloKFxcXzJo1C3//+98BAGvXrsWnn36KlJQUFBYWoqKiAj4+PtJrX3rpJUybNg3ffPMN4uLiMHbsWNxxxx0AgOeffx5PPfUUfv75Z8TFxeHhhx+WKjZHjx7Fr7/+KlVK5C5cuCANlYj7i4KCgpCbmwsAOHv2LMLCwhTXplevXor9jx49ipSUFHh7eyseLykpwYULF6Sf77zzTqlKAgCDBw9GREQEoqKi0LdvX4wePRoPP/wwPDw86rr8RERNwq0i5c87jgKFxQK8PDT2OSEzNckwYupQiT117twZ6enpKC8vh06ng5eXFyoqKqQgERwcjDNnzkj7z5o1C1OmTIGHhweCgoKg0eh/ox08eBDjx4/HO++8g6FDh6JFixZYtWoVPvroI+m1c+bMwaOPPootW7Zg27ZtePvtt7Fq1So89NBDmDZtGoYOHYotW7bg559/xj//+U989NFHeO6556DT6TBixAh88MEH1c4/KChI2haHfEQajQY6nQ6AfjxTPNea6HQ6dO/eHStXrqz2XKtWraRtT09PxXPe3t74448/sGvXLqxbtw5z5szB3LlzcfjwYfj6+tZ6TCKipqBqGCktA34+DIy+zz7nY64mGUYag61bt6K8vByDBg3CggUL0L17d4wfPx5TpkzBkCFDpMqCKCAgAFFRUdXeJykpCREREXj99delx9LT06vtFx0djejoaLz44ouYMGECVqxYgYceeggAEBYWhieffBJPPvkk/u///g9Lly7Fc889h7vvvhvr1q1D27Zt4eRk3m+Vjh07IiMjAzk5OQgMDAQAHD58WLHP3XffjdWrV6N169aKio4pnJycEBcXh/bt2+Nf//oX/P39sWvXLowePdqs8yUiakxuFVd/bOM+AaPva1yVEc6msZOIiAh4eXkhJycH8fHxCA8Px+nTpzF69GhERUVVm9pbk6ioKGRkZGDVqlW4cOECPvvsM6xfv156XqvV4tlnn8Xu3buRnp6OpKQkHD58GJ06dQIAvPDCC9i+fTvS0tKkKoP43DPPPIPr169jwoQJ+P3335Gamoqff/4ZTzzxBCorK006v8GDB+OOO+7A448/jpMnTyIpKUkKTmLFZOLEiQgICEB8fDx+++03pKWlYc+ePZg5cyYuXbpU43tv3rwZn332GY4fP46srCz897//hU6nQ4cOHUw6NyKixq5qZQQANh8AKioa16wahhE72r17N3r27Ak3NzccOnQIISEhCA4OVvUe8fHxePHFF/Hss8+ia9eu2L9/P958803peUdHR1y7dg2TJ09GdHQ0xo0bh2HDhuGdd94BAFRWVuKZZ55Bp06d8MADD6BDhw5YtGgRACA4OBhJSUmorKzE0KFDERsbi5kzZ6JFixZwcDDtt46joyM2bNiAwsJC9OzZE9OmTcMbb7wBQD8jCAA8PDywd+9ehIeHY/To0ejUqROeeOIJaLXaWislvr6++PHHHxEXF4fBgwfjq6++wvfff4/OnTuruoZERI2VvDIi/rV8/Raw75R9zsdcGkEQGld8agZ0Oh3S09MRERFh8pd+Y5KUlIS+ffsiJSVFaqStj6Z+vSyN18t0vFbq8HqpY4nrtWi9gGc+0X+ND+mp7xcBgBfGAp8813j+HzSeM6VGa/369fjll19w8eJF7NixAzNmzECfPn0sEkSIiJqzm7JhmglxGjg56rc37tNPIGgsGEbI6goKCvD000+jY8eOmDJlCnr27ImNGzfa+7SIiBq9W0WGwBERCPS+PUqdlm28n6ShMiuMJCQk4MEHH0T//v3x6KOPoqCgQHo8Li4OAwcOxMKFCxWpLDk5GRMmTECfPn0wY8YMZGdnW+YTUIM3efJknD9/HiUlJbh06RISEhLQsmVLe58WEVGjJw8cPp5Aa1/DzwVGZto0VKrDyKpVq7B//34sW7YMe/bswdy5c+Hi4oJ9+/Zh7dq1SEhIwJo1a7Bv3z5s2rQJgP6mZrNnz8b48eOxa9cuxMbG4q233rL4hyEiImpO5A2sPh6At2zNx8YURlQtHlFZWYkVK1Zg6dKl0qJX4toXW7duxZgxYxAaGgoAmDRpErZt24b4+HgcPXoU7u7uiI+PBwBMnz4dcXFxyM7OViyeJSorK6t2V1YnJyfF6ptNmbhgmPgr1Y7XSx1eL9PxWqnD66WOJa6XvGfEy12Al7v8OQE6nf37RkxpzlUVRnJzc1FaWoodO3Zg1apV8PLywqOPPooxY8YgLS0Nw4cPl/aNjo7GF198AQBITU1VLNjl7u6O0NBQpKamGg0jYuCRGzt2LMaNG6fmdBu9zMxMe59Co8LrpQ6vl+l4rdTh9VKnPtfr6rVAAPplEvKvZUBX3gJACwBASloOAj1KLHCG9dOuXbs691EdRgoLC3Hp0iVs2rQJWVlZePrpp9G2bVsUFxcr7mHi6emJ4mJ9jUir1VZbytvT0xNardbocaZOnYqJEycqT7SZVUYyMzMRFhbG6XEm4PVSh9fLdLxW6vB6qWOJ61V2u6ji5AhER4UjVPbvew/vQEREWOBEbUBVGHF1dQUAzJgxA25ubrjjjjswfPhwJCUlwcPDA4WFhdK+RUVF0g3L3N3dUVSkbOstKiqCu7s7jHFxcWk2waM2Dg4O/AOtAq+XOrxepuO1UofXS536XK9bRfo04uMJODo6wMdDvJE8UFSigYND41gWXtWnj4iIqHZTNFG7du2QkpIi/Xzu3DlERkYCACIjIxXPabVaXLp0SXqeiIiI1BMbWH1uN6421gZWVWHE3d0dgwYNwvLly1FWVoaLFy9i27Zt6NOnD4YPH45169YhKysLeXl5WLlyJYYNGwYA6N69O7RaLRITE1FWVobly5cjJibGaL9Ic3T16lU4OzujuLgYFRUV8Pb2RlZWlvR827ZtodFooNFo4OHhgdjYWCxZssSOZ0xERA2BOLXX53YnRLMIIwDw6quvIj8/H3FxcXjuuecwbdo09OjRA3379sXo0aMxefJkjB07Fn369MHIkSMB6IddFixYgJUrV2LAgAE4ceIE5s6da/EP01gdOHAAXbt2hYeHB44ePQp/f/9qN8qbO3cusrOzcfLkSYwaNQpPPvkkVq9ebacztr+qs62IiJqbsnIBJbf/KjQeRuw/k8ZUqsOIt7c3PvzwQ+zduxeJiYkYM2aM9NzUqVOxc+dO/Prrr5g5c6Z0V1YA6Ny5M1atWoWkpCTF1GAC9u/fjz59+gAA9u3bh3vvvbfaPt7e3mjTpg2ioqIwf/58tG/fHhs2bACgD4jR0dHw8PBAZGQk3nzzTZSXl0uvPXHiBAYMGABvb2/4+Pige/fuOHLkCAAgPT0dI0aMgJ+fHzw9PdG5c2ds3bpVeu3p06cxfPhweHl5ITAwEI899hjy8vKk5++//348//zzmD17Nvz9/dGmTRvMmTNHce5nzpxB37594ebmhpiYGOzYsQMajUY6fwDIysrCI488Aj8/P7Rs2RLx8fG4ePGi9PyUKVMwatQo/POf/0RwcDCio6MBAIsWLUKHDh3QsWNHBAUFKX4/EhE1ZfIFz1o08sqIqgZWspyMjAx06dIFAFBcXAxHR0ckJCRAq9VCo9Fg27ZtmDhxIr788kujr3dzc5MCh7e3NxISEhAcHIxTp05h+vTp8Pb2xuzZswEAEydORLdu3fDll1/C0dERx48fl3p/nnnmGZSVlWHv3r3w9PTE6dOnpVlR2dnZuO+++zB9+nR8/PHH0Gq1ePXVVzFu3Djs2rVLOpevv/4aL730Eg4dOoQDBw5gypQp6NOnDwYPHgydTodRo0YhPDwchw4dQkFBAV5++WXFZykuLsaAAQPQr18/7N27F05OTpg/fz4eeOABnDx5Umpm3rlzJ3x8fPDLL79AEAQcOXIEzz//PL7++mtERETA3d0dSUlJFvy/RETUcCkWPDMWRoxPWG2QmmQY6TFdhyvXbX/cNv7AkaWmFZuCg4Nx/Phx3Lp1Cz169MDBgwfh5eWFrl27IjExEY6OjujQoUO111VUVODbb7/FqVOn8NRTTwEA3njjDen5tm3b4uWXX8bq1aulMJKRkYFZs2ahY8eOAID27dtL+2dkZODhhx/GnXfeCQCKpuIvv/wSd999N9577z3psf/85z8ICwvDuXPnpOpEly5d8Pbbb0vv/fnnn2Pnzp0YPHgwfv75Z1y4cAG7d+9GmzZtAADvvvsuBg8eLL3nqlWr4ODggGXLlknVtBUrVsDX1xe7d+/GkCFDAOingy9btkwKJz/++CM8PT3x17/+FdevX0dERAS6d+9u0vUnImrsFEvBN/IG1iYZRq5cB7Ku2vssaufk5IS2bdtizZo16NmzJ+666y4kJSUhMDAQ/fv3R3p6OgICAqT9X331VbzxxhsoLS2Fi4sLZs2ahb///e8AgLVr1+LTTz9FSkoKCgsLUVFRAR8fH+m1L730EqZNm4ZvvvkGcXFxGDt2rHTH3Oeffx5PPfUUfv75Z8TFxeHhhx+WKjZHjx7Fr7/+qlg/RnThwgVFGJELCgpCbm4uAODs2bMICwuTgggA9OrVS7H/0aNHkZKSAm9vb8XjJSUluHDhgvTznXfeqZjyPXjwYERERCAqKkrqWXr44YelKeVERE1Z1fvSAAwjDUob/4Z/3M6dOyM9PR3l5eXQ6XTw8vJCRUWFFCSCg4Nx5swZaf9Zs2ZhypQp8PDwQFBQkFRBOHjwIMaPH4933nkHQ4cORYsWLbBq1Sp89NFH0mvnzJmDRx99FFu2bMG2bdvw9ttvY9WqVXjooYcwbdo0DB06FFu2bMHPP/+Mf/7zn/joo4/w3HPPQafTYcSIEfjggw+qnb+856fqdG+NRiMtbywIgqJ3yBidTofu3btj5cqV1Z5r1aqVtF114Txvb2/88ccf2LVrF9atW4c5c+Zg7ty5OHz4MHx9fWs9JhFRY6e8L43+71lv2fJdDCN2ZupQiT1t3boV5eXlGDRoEBYsWIDu3btj/PjxmDJlCoYMGSJVFkQBAQGKJfVFSUlJiIiIwOuvvy49lp6eXm2/6OhoREdH48UXX8SECROwYsUKPPTQQwCAsLAwPPnkk3jyySfxf//3f1i6dCmee+453H333Vi3bh3atm0LJyfzfqt07NgRGRkZyMnJQWBgIADg8OHDin3uvvturF69Gq1bt1ZUdEzh5OSEuLg4tG/fHv/617/g7++PXbt2YfTo0WadLxFRY2GsMuLkpIGbi36WTWMKIw3/W7uJioiIgJeXF3JychAfH4/w8HCcPn0ao0ePRlRUVLWpvTWJiopCRkYGVq1ahQsXLuCzzz7D+vXrpee1Wi2effZZ7N69G+np6UhKSsLhw4fRqVMnAMALL7yA7du3Iy0tTaoyiM8988wzuH79OiZMmIDff/8dqamp+Pnnn/HEE0+gsrLSpPMbPHgw7rjjDjz++OM4efIkkpKSpOAkVkwmTpyIgIAAxMfH47fffkNaWhr27NmDmTNn4tKlSzW+9+bNm/HZZ5/h+PHjyMrKwn//+1/odDqjvTZERE2NsQZWwDBUU9iIGlgZRuxo9+7d6NmzJ9zc3HDo0CGEhIQgODhY1XvEx8fjxRdfxLPPPouuXbti//79ePPNN6XnHR0dce3aNUyePBnR0dEYN24chg0bhnfeeQeA/k7MzzzzDDp16oQHHngAHTp0wKJFiwDom2yTkpJQWVmJoUOHIjY2FjNnzkSLFi1MXrrY0dERGzZsQGFhIXr27Ilp06ZJDbdubvqbO3l4eGDv3r0IDw/H6NGj0alTJzzxxBPQarW1Vkp8fX3x448/Ii4uDoMHD8ZXX32F77//Hp07d1Z1DYmIGiNjDayAIYw0psqIRhCExrMqSjOh0+mQnp6OiIiIJnl/h6SkJPTt2xcpKSlSI219NPXrZWm8XqbjtVKH10ud+l6vN5bq8O43+u1fPtYgroe+2nzXVB1OXgBcXYCSHY3j/0OT7BmhhmX9+vXw8vJC+/btkZKSgpkzZ6JPnz4WCSJERM2VsoHVsC1WRkrLgPIKAc5ODf9meQwjZHUFBQWYPXs2MjMzERAQgLi4OMVsHyIiUu9moWG7hWwFhqrTe/3VzQuwC4YRsrrJkydj8uTJ9j4NIqImpa7KCNB4wkjjGEwiIiIiBWNTe4HGudYIwwgREVEjJFZGHBwADzfD441xFVaGESIiokZIrIz4eECx0jXDCBEREdmEFEaUd8qAt4chmDCMEBERkdWIwzQ+Ve4NqqiMNJJVWBlGiIiIGpmKCgHFJfrt6pURwzYrI0RERGQV8opHtTDC2TRERERN381CAW//R4efDtnnjio13ZcGqFoZaRx3fOGiZ0RERCo9/bGA73YAri4CrqwHfL1tu+S6PIzIV18FOExDRETU5F3MFrBql367tAzIyrP9Odw0uTJim/OpL4YRIiIiFRauFaDTGX62xxe+cvVVZVVGHkYKOZuGiIioackvELBss/IxeTCwlZruSwOwMkJERNSkLd1cvdpg/8qI8jlP2dLwXGeEiIioCSkrF7BwbfXZKfb4wq8tjDg6aqR71bAyQkRE1ISs+RXIuqrfdnc1PG6Xyohsym7VYRrAMFTDMEJERNSELNlkCABPjzI83tCGaQDDwmcMI0RERE1IyiX9r0EtgeG9DTNYbhXZfmExRQOrsTAiq4wIQsNf+IxhhIiIyAT5hfpfA1rYf8ZKbSuwAobzq6jUr4XS0DGMEBER1aGkVEDJ7S91P29lNcLeDaxVV2AFGt+dexlGiIiI6iBWRQDA16sBVEZuH1OjUU7lFdn7/NRiGCEiIqpDbWHEHoue3bx9Pt4egIND9fviMIwQERE1MVXDiGJhMTtWRoz1iwCG2TQAwwgREVGToAgj3vpqhD3X8hCrMcZm0gCsjBARETU5ysqIflhECiM2bhCtrBSkJelrDiOGoRuGESIioiag6jANYL9VTmu7SZ6IlREiIqImJr/AsO3nrf/VXguL5eUbtlv5Gt+HYYSIiKiJuVFgCBtSZeR2k6ggAEU2HKrJu2nYDmhhfB+uM0JERNTEGBumUSx8ZsPqgzKMVJ/WCyjDSGExl4MnIiJq9GrrGQFsW31QhBFf4/sopvayMkJERNT41RlG7FYZMb4Pe0aIiIiaGDGMaDSG4Rl59cGWq7Dm5RuGXRhGiIiImgkxjPh4GpZft9daHqZURry4AisREVHTIoYRP9kdchtGA6vxfTzd9VUcgGGEiIio0RMEATdurzPi62143F4NrFfzDdstawgjGo1Gqo4wjBARETVy2lKgvEK/7SurjNi7gdXXC3B2Mj61F7DfcvXmYBghIiKqhbGZNIAyjNwqsuEKrLfDSE1DNCJ73shPLYYRIiKiWtQYRuzQJFpRYRgyqmmNEZEYRgq1tl2u3hwMI0RERLWQ35fG184NrNdl51JnZeR2WNLpgOIS652TJTCMEBER1UJZGTH0aNijgdWUmTSixrTWCMMIERFRLeRhxK+m2TQ2+rKX37GXYYSIiKiZuFHDMI2ygdU25yKf1lvTTfJEDCNERERNRE0NrM5OGri66LdtVhkxd5imgU/vZRghIqIGS6cTsGi9gO9+sd9skPxCw7HlYQQAfGw8fVZNGJFXTnJvWOmELMTJ3idARERUk8UbgWc+0YeBjuHA3R1qH5qwBkVlxFv5nLeHfujEdg2shmDUyrf2fYMDDNuX86xzPpaiujIyY8YM3HvvvejXrx/69euH559/XnouISEBcXFxGDhwIBYuXKiY15ycnIwJEyagT58+mDFjBrKzsy3zCYiIqMn6z1bD98i5S/Y5h5qGaQDbLyymqIz41r5vcEvD9uW8JrjOyNtvv43ffvsNv/32Gz777DMAwL59+7B27VokJCRgzZo12LdvHzZt2gQAKCsrw+zZszF+/Hjs2rULsbGxeOuttyz3KYiIqMk5myHg6FnDz/ZqwjQljJSVA6Vl1v/CVzNME9LKsH35mnXOx1IsNkyzdetWjBkzBqGhoQCASZMmYdu2bYiPj8fRo0fh7u6O+Ph4AMD06dMRFxeH7OxsBAUFVXuvsrIylJWVKU/UyQkuLi6WOt0GTafTKX6l2vF6qcPrZTpeK3Usfb1W/qL8uaBYgE5n+3/hi4ueOTgAnm7Kc5A3id4sFBDga/r5mXO9xKm9Dg6Aj0ft16ONv2H7cp79fh87ONRd9zArjHz44Yf48MMPER0djRdffBHt27dHWloahg8fLu0THR2NL774AgCQmpqKqKgo6Tl3d3eEhoYiNTXVaBhZsWIFli5dqnhs7NixGDdunDmn22hlZmba+xQaFV4vdXi9TMdrpY4lrpcgAP/9KRiAs+F9L+cjPf1mzS+ykqv5+vPwca9ERoZyrMhRCACgX4r1TEoWwlpVqH5/Ndcr+1oIACf4eVYiM7PucStPtzAUlTggPbsc6emXVZ+bJbRr167OfVSHkeeffx6RkZFwcHDA6tWrMXPmTKxduxbFxcXw8jLUrzw9PVFcrK+pabVaeHp6Kt7H09MTWq3xjp+pU6di4sSJyhNtZpWRzMxMhIWFmZQomzteL3V4vUzHa6WOJa/X738C6TnKx5xcfRER4Vuv9zVH4e2vKv8WjoiIiFA8FyhrEvXxC0GVp2tlzvUSh4xa+1c/F2NCWgHnMoHcm84m7W8vqsNIbGystP34449j06ZNSE5OhoeHBwoLDQNrRUVF8PDQ16/c3d1RVKRcEaaoqAju7u4wxsXFpdkEj9o4ODjwL0AVeL3U4fUyHa+VOpa4Xqt2Vh9SKNSaVvK3JEEQkH/7jry+XtWP7+NpOM+iEg0cHNTP9jH1emlLBRSV6M8loIVp1yI4QIdzmfp+m6ISDbw9bD8byRT1/r8qXox27dohJSVFevzcuXOIjIwEAERGRiqe02q1uHTpkvQ8ERGRqKJCwKpd1R+3RwNrkRaorNRvV21eBWy7Cus1Fc2rIvmMmuwG3MSqKowUFBTg4MGDKCsrQ3l5OVauXIlbt26hU6dOGD58ONatW4esrCzk5eVh5cqVGDZsGACge/fu0Gq1SExMRFlZGZYvX46YmBij/SJERNS8/XoMyLmu377XUIyXhktsqbaZNADgI6s0WDssqZnWK2osa42oGqapqKjAF198gYsXL8LZ2RnR0dFYuHAhvLy80LdvX5w/fx6TJ0+GTqfDqFGjMHLkSAD6YZcFCxZg3rx5eP/99xETE4O5c+da5QMREVHjtna3YYbI30dqsP9/+p/tURmpK4zY8v4vaqb1ioIDNAD016/JhBE/Pz988803NT4/depUTJ061ehznTt3xqpVq9SdHRERNTsXZJM+RvYBNBr97Bp7V0b8vKs/b68w0srXtN4P5cJnFj4hC2JHFhERNSjifVTcXIAWXoCnm/5n+1dGqgcARc+Ilc9Pecde016jGKa51nBXYWUYISKiBiU3X/9raz9Ao9FIX/j2qIzcKDBs1z1MY90ve/l9acwKI6yMEBER1U2nE6QKQGs//a9et1eBsHtlxMgwjY8th2nyDdvmhJEshhEiIqK6Xb8FiKuWt/bV/yqvjMhvwGoLjb2B1d1VI/W6sDJCRERkAnGIBqheGamoBErLqr3EqvILDOGnQYURX9NfJ1ZHLufZPsyZimGEiIgaDLF5FaheGQGAAhv3jaipjFi7gVUMIy7OhoBmCnFGTUmZ8vM0JAwjRETUYMjDiDh9Vf7FW2jjvpG6woi7q/4OuoDtKiMBLfSNvaZqDE2sDCNERNRgKCojt4dpGkplxNg6IxqNRmpitWYYEQRDY6+p/SIihhEiIiIVcvMNPQ3Gwoi9KiNOjoCHm/F9vG0QRgqKgfIK/XYrX3WvDW5pqKIwjBAREdVBvrCX2DMiH6axdWVEXGfE16vmoREpjFjx3MyZSSNSLnxmmfOxNIYRIiJqMIwP0xhCgL0qI8b6RURiGNHf4dc6s1XMWX1VpFhr5Cpn0xAREdVKPrVXHI6wV2WkokKQwoixfhGRYhjJSue3eb8hRIQHmt68CrBnhIiISBWxMtLCC3B10X/p2qtnJDdff4M+AAhqWfN+1l6FtaRUwOKN+m0nR2DiYHWvl587h2mIiKhBKioqwrJly9C3b1/cc889SE9Pt9u5iGFE7BcB7FcZuSL74m7jX/N+1l747Lsdhp6RsQOAkFbqKiPOThppyIuVESIialCKi4vx0ksvITg4GNOnT0dSUhJ+//13fPvtt3Y5n7Jyw7CI+OUJ2PZmdHJXrhu2a6uMWDOMCIKAT38wfOaZY9QFEZE4VJN9TX//n4aGYYSIqJlavnw5PvnkE9y6dUvxeHZ2tl3OR96kKZ++6i1f9MyGlZFseWWkZc0hwJqrsO4+BpxK1W/37gzcE2NmGLkdpioqlTNzGgqGESKiZur06dPS9gMPPCBt5+XZp5ZvbCl4APCy4f1f5OSVkdqHaQwBwdLnZ4mqCNDwm1gZRoiImqnMzExp+9NPP5W27RZG8g3bimEaO1VGrlw3BIHahmnkM23EdUksIfWygMT9+u2QVsDD95n/XgwjRETUIF26dAkA4OTkhKioKDg7OwNoIJURP0MVwF6VkWwTG1jlVRz5Z6ivnUcNs3meHKmBs5P5lZEg2TBTdgOcUcMwQkTUTImVkZCQEDg6OqJVq1YAGkgY8TVse9mtMmLYrjWMyKo48uXs6yv9iuG9enSs33u19DFsW7J6YykMI0REzVBxcTGuX9d/24aFhQEAAgL0tfy8vDwIgu1nXFw1cl8aQD811dVFv22Pyoift2HNE2MUYcSClZGMXMN2eGD93stfFkauF3A2DRERNQDiEA0AhIaGAjCEkdLSUhQVFdn8nGrqGQEMfSO2qowIgiBVRmqrigDWG6bJyDFsh7Wu33v5yZazv36r5v3shWGEiKgZkoeRqpURALh69arNz8nYfWlE4lCNrSojhVqguES/XVvzKqBfLdbZSb8tD1T1lX5F/6uft3LGjjmUlZF6vZVVMIwQETVD8pk0VSsjgH36RsQw4uAA+Fe5F4x0Z1wbhRFTm1cB/d18xfBkqcpIZaWAS7fzYESb+r+fIoywMkJERA1BXZURu4SRfP2vLX0AR0dlJUAMIyVl+hvYWZupS8GLxKGaq/mwSL/Nlev6BcoAILyeQzSA/vo5Ouq32cBKREQNQkOrjAiCYLgvjV/15209o0ZeGQmqZfVVkbhibEUlpCXt60PeL1Lf5lVAX70Rq02sjBARUYNgrDIiTu0FbB9GirSAtlS/LW8IFSnu3GuDMKKY1ltHzwhg+Rk1yjBSv34RkThUw54RIiJqEMTKiLOzM1q31o8D2LMyUttMGqDKnXtt0Ddi6uqrIkvPqFFM67XAMA1g6MO5VQSU22CoSw2GESKiZkisjISEhMDBQf9VYNcwUstMGsD2lRE1DayAcsVYS4QR+YJnlhimAZTL1ltiKMmSGEaIiJoZYwueAfad2qtcfbX6sITtKyOGbdPCiGHbEtN75cM0lphNAzTsGTUMI0REzYyxBc8AoGVLw3iErSsjV/MN28YrI4aAYsueEWcn5Zd4TSzeM5JrOL4pYcgU/la6oZ8lMIwQETUz8pk08sqIu7s7PD09ATS8nhFvG98sTxymaeOvn4lSF2XPSP37McTKSGgrwMHBUg2shvdhZYSIiOyqpsoIoLw/jS3Jv8CNzaZRDNNYuTJSUSFIlRpTmlcByw7TFBQLUuXCUv0iQMNehZVhhIiomampMgIYpvdeu3YNOp3OZuckH9oQ1+yQUzSwWrkykpsPiOuWmTpEIj9n+ZCTOTIteIM8OfkwDSsjRERkV6ZURnQ6HfLz8212Tqqm9mqtOy1V7eqrAODhppHOsb49I+I9aQAgwlqVkVuc2ktERHZUW2XEXtN7827qf3V2Anw8qz9vy8qIfCaNqcM0gCFE1XeYxhoLngHKqb3yYZpN+wQcOi3gyjX7BRSGESKiZka+4Jl81VXAftN7xWEDfx/jDaO27BlRrDFiwlLwIjGMXLtZv/vnZORafo0RQFkZEXtSSkoFxL8moPeTAh56g2GEiIhsRBymCQ0NlRY8E9mrMiKFEW/jz9ty0TO1a4yIWrUwbIuVHnMoKiMWWn0VMN4zckmWNy15LLUYRoiImpGioiLcuKFvaqjaLwLYJ4yUVwhSwPCrIYzYctEztUvBiyw1o0YeRsIsGBB8vQzb4jCNvFnWksdSi2GEiKgZMXaDPDl7hBH5Alw1LTBmy8qI2qXgRZZa+Cz9dhjx9wG8PCzXM+LkpEGL24FErIwow4jljqUWwwgRUTNSW/MqYJ8798qnmdZUGXFzARwd9dvWr4wYtlWFEd/635+mslKQhk4sOZNGJA7VGA8jlj+eqRhGiIiakdqm9QINoDJSQxjRaAxTZ60dRsTKiJ834OqivoEVMD+MZF8DKiv125ZsXhWJlafrBYBOJyBT1izLMEJERDZRV2XEHmHkumKYpuYvf+/bYcSawzSCIEiVEbX3hJGHkas3zZuZopzWa9Zb1EqsPOl0+lBnrQXW1GIYISJqRrKysqTtkJCQas/7+xu+gW01tVdeGalpmAaATSojhVqguES/raZ5FbBMZSRDHg6s0MNR9WZ5YvhxcTa+8q2tMIwQETUj8mpHYGD1fwo7OTnBz8+v2r7WJO8ZqWmYBjA0sRZq9RUMazC3eRWoerM8845v7cqIchVWIPN23rTkDfnMwTBCRNSMXLtm+LZt2dL4P/1tfbM8+dLkplRGBMFQvbC0/6UattsFqXttgGydkbqm9ublC/hyA3Axx0nxeFq2dRY8E8nDSHoOcLNQv23PfhGAYYSIqFkRw4irqyvc3d2N7iOGkZs3b6K8vNzq52TK1F7ANtN7j5w1hIHuHdRVCpycNGh5O5DUVRmZNF/As58CUz9qDXmR5890w3aHcFWHN4m/t+EznUhpGM2rAMMIEVGzIoaRli1bGl12HVBO75VXUqzluhlhxFp9I0fPGrZ7dFD/enGoprYwcvqigO2/67fTc5wVQzPJafpfg1oCft5W6BmRXd8TFwzb9mxeBRhGiIisrrS0FPHx8RgwYIBiaq2tCYKgCCM1sfWMGlPWGQGUq7BaozIiCAKOntNvt/IFQs2oFohNrPpGWON9LV9uUD5+7Lz+16v5grSMfExb9cc2hbwn50SKYdueC54BDCNERFb3008/YdOmTdi9ezemT59utebLuhQXF6O0tBRAwwojitk0XjXvZ+3KSEaO/iZ3ANC9g/Eb9tVFPiPlan715wuLBXz9k/IxMRScvmh4zFphRB720rIN2xymISJq4lJSDP8E/emnn/DDDz/Y5TxMaV4FbH/nXnGYxttD33dREy93w3PWCCPyIZru0ea9h3xGjbEw8t2O6ud+7PZvD3GIBgA6t7VOpaKmYTCGESKiJi49PV3x8wsvvICbN+txW1czmRNGbFkZqa1fBLB+A+vRc+Y3r4pa+9W8JLwgCPhiveEYTreXtz9+e5jm9EXDc1YbpmEYISJqni5evKj4OTs7G2+++abNz6MhhhFBEKSekdrWGAEsf+feQ6cFnM0wBABFZcSM5lWg9jv3HvgfcPJ20+g9McC9sfrtzFzg2k3B5sM0Ii935R197YFhhIjIysTKiJOTEzw89P+8//zzz3HkyBGbnkdDDCOFWqDi9r1YamteBSxbGdn4m4DeTwro9jcB/0sVIAgCjtwOIwEtzK8UBMrCSHaViUhfbjQEn6dHaXBXlOG54ylA8kX9dms/oGUL6wzTuLtq4O6qfCystXn9MZbEMEJEZGViZSQiIgJvv/02AH1F4N///rdNz6MhhhFT1xgBLFsZSfqfPhhoS4E5KwSLNK8CQIhhVjSyrhrCR0WFgLW79dv+PsC4AUBXWRjZcUSQhnU6tzXr0Carep3tPUQD1COMnDx5Ej179kRCQoL0WEJCAuLi4jBw4EAsXLhQ0TGenJyMCRMmoE+fPpgxYways7ONvCsRUdOSn5+PW7f04xBt27bFc889Jz2Xmppa08uswtQwIl9nxNoNrKZO6wWAFp6G7RsF9ZuRJD/uuj1QzHAxZ30RUagsjFySXbrsa0BJmX67XxfAzVWDbu0Nz3+3w7BtrSEaUdXhsEYbRnQ6HT7++GPExMRIj+3btw9r165FQkIC1qxZg3379mHTpk0AgLKyMsyePRvjx4/Hrl27EBsbi7feessyn4CIqAGT94tERETA3d1duveLrf9RZmoYadGiBZydnQFYP4woKiN1hJFgQ8EGWfUs2MiPCwDzvq5/8yqgv5+N4+3GVHkYkW+LX/6dIgAXJ/1x5QufxVhpJo2oaugLD7TvEA0AONW9S3U//vgjYmNjUVhYKD22detWjBkzBqGhoQCASZMmYdu2bYiPj8fRo0fh7u6O+Ph4AMD06dMRFxeH7OxsBAVVX/y/rKwMZWVlyhN1coKLi4s5p9vo6HQ6xa9UO14vdXi9TGeJa5WWZpivGRERAZ1Oh6CgINy4cQOXL19GZWWlzcbr5WHEz8+v1s/VqlUrXL58Gbm5uSZ/fnOuV55sUpGfd+2vld9FN+tq/f6/yCsjgKFvBQC6tReg05lXedFogOCW+qbUzFzDOabLwkZoK/3jTo46tA8pR3K6somjU4T5xzdF1TAS0sq6x3NwqLvuoTqM3Lx5E99//z1WrFiBjz/+WHo8LS0Nw4cPl36Ojo7GF198AUBfioyKMgyOubu7IzQ0FKmpqUbDyIoVK7B06VLFY2PHjsW4cePUnm6jlpmZae9TaFR4vdTh9TJdfa7VsWPHpG1PT0+kp6fD19cXAKDVavG///0PPj51NEtYiHz11+Li4mpTjuVatGiBy5cv4+rVq7h48aKqwKTmeqVc9AKgTxm6smtITy+sdX9fz1DkFzki/Uo50tMvm3ycqq5cCwJQ/R+4/t6V0GkvoZZLU6dWPoHIzHVD7g3gXEo6XJ2BU+e8AehvA+yquYr0dH3TS0xEy2phxNsxE+np1vvHgotDSwCG6TMuQg7S061050EA7dq1q3Mf1WHkiy++wIQJE6r94SkuLoaXl+HDeXp6orhYf7G1Wi08PT0V+3t6ekKrNd4OPXXqVEycOFF5os2sMpKZmYmwsDCTEmVzx+ulDq+X6SxxrQoKDOMB3bt3R0REBCIjI7F//34A+r/bIiIiLHK+dZH/ndulSxc4iuMJRoSEhODPP/9EeXk5fH19pQBVG3Oul4Psr/Woti0REVHz8BEAhAUC+alATr4zwsMjYG5RqfD2d6+/D+DoYFigrEdHR7RtW7//H5GhwB+3FzJz9oxARBBQJLvfYLeYVoiI0F+vzuH5kC+BF9ACuPvOsHodvy7hVWoAPWIDEWGFm/KpoSqMnDlzBsnJyXj11VerPefh4aEYtikqKpKmsLm7u6OoqEixf1FRUY13jHRxcWk2waM2Dg4O/LJQgddLHV4v09XnWsmrD+3atYODgwOCg4Olx3JyctC5c+d6n6MpxGEaX19fqSekJq1bG7oar127Bn9/f5OPo+Z63SgwVABa+mjg4FB7ughppcOpVKCsHLheoEErX/PSyPXbxw1qCUweqsGri/XDFL06mTasUJuw1obPdDlPgztCNMjKMzwW3trwOWMilC0JndvV//h1adlCAGAYloloU/d1tzZVYeSPP/5ARkaGNBxTWFgIR0dHXLp0Ce3atUNKSgr69u0LADh37hwiIyMBAJGRkVi/fr30PlqtFpcuXZKeJyJqqsQw4ujoiJCQEABQDE/bsonVlJvkieRhJDc3F+3bt69lb/OZesdeUahi6qzyXjCmKikVUCxWRryB5x4GDp/Rz3h5Mr7+X8qhrTQQv+zFxtXMXMPz8um/HcPKoNEA4uRTa8+kAZSNwi1bAB5ujayBdfTo0RgyZIj080cffYSwsDA89thjOHHiBD744AMMHjwYrq6uWLlypTTU0r17d2i1WiQmJmLo0KFYvnw5YmJijPaLEBE1JeJsmtDQUDg56f/KlVdGLl82v+9BjcrKSuTn5wMwLYzIp/fm5ubWsmf9qFlnBABCqsyo6WpGRqp6THdXDX6Ya7kvZGPTe8VfA/0BF2fDsbzcBUSFAOdvt/PERFg/GMivc0OY1guoDCNubm5wc3OTfnZ1dYWHhwe8vb3Rt29fnD9/HpMnT4ZOp8OoUaMwcuRIAPphlwULFmDevHl4//33ERMTg7lz51r2kxARNTAFBQW4fv06ACj6QuxRGblx44a09pPayog1p/eqWWcEAELkVQczM5Laaoxa8jCSmSugosKwGquxL/+u7WVhpK3lz6cqRRhpVfN+tmTW1F7RnDlzFD9PnToVU6dONbpv586dsWrVqvocjoioUZH3i7Rt21balldGbBVGTF1jRGTryoiTo3KF1ZooKyMCAPWVBHkAqmttE3PIA8elXH0QEWchhxr58n9iOLBxH9A+FOhzp+XPp7bz62DnxlVRvcIIERHVTB5GaqqM2GqYRm0YsVllRHbHXlOmD4fKvkizzDwtRRjxsfywSJuWgIODPoBcuqrsFzFWGRnSE7i6SQNPN8DR0frDNNFhGsyfBpy4IOCFsfbvFwEYRoiIrEa++qq8MuLh4QEfHx/cunWr2VdGxGBgyhANUL1nxKxjWnmYxtlJgzb+Ai7n6cOIfPVVfXNrdT6etg0Fr0/WwJyqkrVwXh8RkZXUVBkBDEM1zbkyUl4hSDe8M3W4xN8HcL298sMlM09L3sDq51XzfvUhDsdcuQ6kyv4XN5SG0YaGYYSIyEpq6hkBDEM1RUVFioXRrEVtGPH29pbWe7JWZSRfttiqqZURjUYjVUfMH6YxrLFhjcoIYAgjggD8/qdQ7XFSYhghIrIScZhGo9EgLEy5qqatZ9SoDSMajUaqjlirMqJ2Wq9I/ELPLwSKtOrvqWLtYRpAGToOJBu2WRkxjmGEiMhKxMpIcHBwtVWlbb3WiNowAhj6Rq5evWqVGyuaO6tFvmiYOX0j1p5NAwChrQ39GFf0s7v1N9ELqOEFzRzDCBGRFWi1WuTk6G/VauzeM7aujIjrnQCmhxGxMiJfMM2i56RyjRGRoonVjKKNcjaN+tebwlgFJNBPueAZGTCMEBFZQUZGhrRdtV8EaPjDNID1Z9Qoh2lM/5KWz0gxqzJy+7iOjoCPZ+37mstYbwiHaGrGMEJEZAXyab3GKiP2GqZxcXGRbmJaF2vPqJH3bqiqjFS5P43q44rTib1MW9vEHMbCCJtXa8YwQkRkBbVN6wXsVxlp2bKlyV/A1q6MmDtcIh+muXTV/AZWaw3RAMZ7Q1gZqRnDCBGRFVy5ckXaFu/WK2frVVjV3LFXZO3KyI0C2RRbG1VGKioE3Lw9pdiaYcTFWYNAf+Vj8qZWUmIYISKyArF5FQACAwOrPe/t7Q0vL/2KW9aujBQXF6OkpASAujBi9cqImcM0QS31M1MA9T0j8rVNrDWTRlR1WIaVkZoxjBARWYE8jMgrDHJidcTaYcSc5lXAFpURw7aaKoWzkwaBfvpttWHEFmuMiKqGEfaM1IxhhIjICuSVhLrCyK1bt1BUVGS1czE3jNiyZ0RNZQQwDNVkX9MPvZjqhpnVGHNUrYSwMlIzhhEialIqKytRWlpq79OQKiPe3t5wd3c3uo98Ro01qyMNtTIihhEvd321Qw2xiVWnA3JuqD8mYIthGsNn4oJntWMYIaImo6SkBHfddRf8/Pxw4MABu56LWEkw1i8istWMGnPDiKenJ9zc3ABYaZ2RejSShprZxKqcwWPdhlL5ObbxVx+4mhOGESJqMpKSkpCcnAytVotPPvnEbudRWloqrVhaWxix1Voj5oYRS9yfpqJCwIwPdXjkbR1uFQmKx6X1PsyoUISYufCZTXtGZMMy7BepHcMIETUZ8i/07du3o7y83C7nYUq/CNDwKyOAoW8kLy/PrPvT/HwYWJoIrPkVWPCdIYz8dhIor9Bvdwir4cW1UK41UvN+xSUCvtwgIOmU/ti2HKZp20a2HVTzfsQwQkRNiPwL/datW0hKSrLLecjDiKnDNA2xMgIYwpROp1Pc38ZUqbKP9d0OQBD0oeDHvYZg8lB/9cMXyrVGam5g/eA7AU9/LCDuRQGX8wRcvyVb28TKlZGINho8OxqIDgNeHMshmtowjBBRk1G1urB161a7nEdda4yIGnoDK1D/GTWXrxm+/NOygYPJgE4nYP1v+sdcnIHhvVW/rbJnpJZhmp8O6X8tKQO2HbTtMA0A/PsFB5xd6YC/xDKM1IZhhIiajKpf6Fu2bLHLeZiyxghg+WGap556CrGxsTh48KDicXPu2Cuq74yay1WCwspfBBw+Y2g6HdwD8PFU/0Utn5lS9Rii0jIBx1MMP28/LNh0mIZMxzBCRE1G1S/006dPK25YZyumDtP4+PhI037rO0yTlpaGxYsXIzk5GRMmTEBxcTEA/bBIZmamtJ+fn5+q9613ZaRKUFi9C1izSzZE08+8ioG3B+DpbvwYouMpQJmsbWjHEeBqvuFnXy+zDk1WwDBCRE2GseqCPYZqTK2MaDQai63CKg8zFy9exLx58wAACQkJOHnyJACgffv2cHJyUvW+9a6MXFP+nHcT+Hy9ftvBARjZV/VbAtBfu+DbRZ7sGlpZDp1W/nyjAPjjvH67hRfgxKm2DQbDCBE1GeIXuqurq/SYvcNIbZURwDBUk5+fD61Wa/YxqwaFf/3rX9i2bRtmzpypeEwtS1dGAEO1ov9dQCtf8wOBOFRzsxAo0lZvYj14uvpjlZX6XzlE07AwjBBRk1BQUIDCQv0qWr1795a+5Hft2lWvL3lzmDpMAyj7RuR3+lUrL0/5rV9RUYEHH3wQBQX6js0pU6Zg5MiRqt+3PpURbakgLb/eq1P1YZHRZsyikZP3jWRfq/68WBlxcqz+nLWXgid1GEaIqEmQD3MEBwdj+PDhAACtVovdu3fb9FzEyoiLiwt8fGqfsmGpGTXyoODoqP/2FafRhoeH49NPPzXrfetTGZEHhHZBwNgByudHmTlEIwryN2xXrcBczRekacW9OgEdwpXP22ImDZmOYYSImgT5F3lQUBAefPBB6Wdbz6oRw0hgYCA0mtr/9W+pGTXyMPLGG28onktISECLFi3Met/6hBF5QAgOACYONlyLnh2BsMD6VkYMr6/am/L7n4bte2KAoT2Vz3OYpmFhGCGiJqFqGImLi4ODg/6vuKpTXa2psrJSGjKprXlVZI0wMn78eLz66qtwc3PDe++9hwEDBtTyytp5enrCy8vLrPNThJGWGvTrAozur28efWtK/ZtHa5vee0jWL3JPJw2G9FIej5WRhkVdWzURUQNVNYx4e3sjPDwcFy9eREpKCgRBqLNKYQnXrl2Tlk2vq18EsE4YadWqFd5//328//77Zr+fXFhYGP78809kZmaquo5VKyMODhqsm6+BTifAwcHSYUQAYHhP+Uya3p2Blj6As5NhCXqGkYaFlREiahKqhhEAiIqKAgDcvHlTsQqpNalpXgUsF0bEaoyDg4PqtUTqEhERAUB/V+SqjbK1ka++Kg8OlggiAKSpvYCyP0WnE6RhmkB/IDwQ8PLQoO+dhn38vTmttyFhGCGiJsFYGGnfvr302Pnz521yHqauMSKydGWkZcuW0vCUpYSHG7o/MzIyjO5z9KyA974Bnvi4lbSwWNXKiKUFycKIvGfk/CUgXz+xCvd0glTJGdLTEEACZc2vZH8MI0TUJNRWGQGAlJSUaq+xBjVrjAD68ODs7AzAMmFE3nBqKfIwkp6ebnSf73cIeHM5sPuEBw4k6x+Th5EgdavQm8TLQwMfz+rHOphs2L4nxhBAnowHBnTT/xdfz5k8ZFkMI0TUJIhf5G5ubtLMEXuEEbXDNBqNBm3a6O81b24YKSoqktZSsXYYkVdGCgoKUFpaCgC4V3YjODEMiNUKbw/A28M6wyLiUI08jBz6U9a8GmN43Ndbg10LHbBroYPVzofMwzBCRE2C+EUeFBQkleXtXRkxZZgGMFRyrl69ivLy8jr2rk7ex2HLMPLBBx/Aw8MDUVFRcCs/Lj1etTJijSEakVhxKdQCBcX6ECL2i2g0+inE1PAxjBBRo1dSUoIbN24AUPZgREZGSsHEHj0jplRGAMM5C4KgeL2pqs6ksbSawsiZM2eg0+lw4cIFRLf1Rlt9gQeHzwA3CgQU6O/Vp2g0tbSq03srKgQkp+l/bh9q3h2ByfYYRoio0ZMvoy4PI25ubggLCwNgn2EatZURwLyhGmuHkdDQUCnUycPI2bNnAQDOzs5o27YtenfWP64tBbbJlnaxZmWkahhJyQJKyvQ/d7nDescly2IYIaJGz1jzqkgcqrlx4wauX6/h9q4WJFY2HBwcEBBg2rewJcOIqcdUw9nZWVq2XmxgraysxLlz5wAY7gZ8b2fDa9buNj6t19KCWxoqH9nXgFOphufujGRVpLFgGCGiRs+UMALYpjoihpGAgADpHjF1aeiVEcAwVJObmwutVouLFy+irExfgujQoQMA4C+xhv23HTJsywODpVWtjJy8YAhBrIw0HgwjRNTo1RZG5GuNWDuMCIIgDdOYOkQD1D+MWLuBFVD2jVy6dEkaogGAjh31XaJdIgF3F/3qs+JQCWDDYZprQpXKiPWOS5bFMEJEjZ6plRFrN7HeunVLmupqavMq0LgqI4C+b+TMmTPSz2IYcXIC7oosq/ZaW/aMnLyg3/Z0198pmBoHhhEiavQayjCNOdN6gcYRRsQl4QF9GJFXRsRhGgDoFlVa7bW2mNoLAGczgbTbly+2neWWnSfrYxghokavtjASGWmo1Vs7jKhd8EzUunVrabZKQ2xgBWqvjMjDyN3tq4cRa6y+KnJ31cBXf1NhHJcVvjhE07gwjBBRoyd+gTs5OVX7Mvbw8EBoaCgA21ZG1IQRJycnqZJSnzDi6+srLS1vaVWXhBcrI4GBgfD19ZWe63aHMoz4eesDgzUZq7x0uYNVkcaEYYSIGj3xCzwwMNDoTeLEoZq8vDzk5+db7TzMWWNEJE6dzcnJgU6nU/VasYHVWlURQBlGTp48KQUvsV9E5O+tQ3SY4WdrDtHUdgxWRhoXhhEiatQqKiqkEFB1iEZkq74RcysjgOHcKyoqFLNj6lJeXi4FLGv1iwD6qouXl3485I8//pAelw/RiP4iW2/Emquv1nYMhpHGhWGEiBq1nJwcCIJ+bQlbhZEjR45g9uzZOHnypPSYIAiKL2lzwwigbqjGFtN6Af0N/cTqiHi9geqVEQDSSqyAfSojwQFAyxYcpmlMGEaIqFGrrXlVZOm1Rh555BF8+OGHuOeee/Dtt99CEATMmjULiYmJAABPT0/FMU2hJoxkZGTgxIkTAGwzk0Ykn1EjMhZGBvcAXG63rvTsaP1QEBygPAarIo2Pk71PgIioPuRf3GLfRVWWXGvk1q1bSE3Vr6xVUlKCxx57DF999RV+++03APoKwpIlS9CiRQtV72tqGDlz5gx69+6Nmzdv4ocffoCfn5/0nLXDiLxvRGRsmKZdELDrUw0uZAHjB1n1lABUn63DlVcbH1ZGiKhRu3z5srRdU2XkjjsM3071rYxkZmZWe0wMIgCwZMkSTJw4UfX7mhpGZs+ejZs3bwIAPvnkE5sN0wDVw4irq6vRagkA9LlTg8kPaODibIPKSJUwwnvSND4MI0TUqF26dEnaFu/QW5Wnp6f0ZV/fyoj8rrV33303nJwMBeZPP/0U06dPN+t9TQkje/bskYaCAGD//v34/fffpZ+tOZsGqB5G2rdvb/L9d6ypas8Ih2kaHw7TEFGjJg8j4noixtxxxx3Izs7G1atXUVhYKM0MUUteGfn73/+O2NhYLFq0CMOHD8ejjz5q1nsCdYcRnU6HWbNmVXt8+fLl0ratKyPG+kXsQT5M4+gIdDJerKEGjJURImrU5OGgtjDSrl07aTs9Pd3s48krI+Hh4bj33nvx7bff1iuIAECbNm2kbWNhZM2aNTh8+DAA5WcRh2wA2zewGusXsQdXFw0ib7cL3d1e/zM1LgwjRNSoiZURT09PxUqgVbVt21bavnjxotnHk4efmoaFzOHq6gp/f38A1cNIaWkp/u///k/6edGiRejTp0+197B2GAkODlYsKtdQKiMA8PVrGswYAXw1i0GkMeIwDRE1WoIgSGEkNDRUur+LMZYKI/LKiCXDCKAfqrl+/Tqys7MhCIL0eVavXi2dc1xcHIYOHYq0tDQkJSUpXm/tMOLs7Izg4GDpmjekMNK3iwZ9uzCINFasjBBRo3Xz5k0UFRUBqH2IBlCGkbS0NLOPKYYRX19f+Pj4mP0+xog9GSUlJYrVXOWLqc2aNQsajQZjx45VNM96eHjAw8PDoudjjHjjQQcHB0RHR1v9eNQ8qA4j7777LoYOHYr77rsPjzzyiGJKW0JCAuLi4jBw4EAsXLhQsUpfcnIyJkyYgD59+mDGjBlm3QyKiBqOuXPnokuXLvj111/tdg6mNq8Cyj4LcysjOp1OOqalqyKAcnE2+ayfCxcuSNsxMTEA9DNnhg4dKj1u7aqI6PXXX0dMTAzmzZtn8TBGzZfqMDJx4kQkJiZiz549eOutt/Dmm2/i1q1b2LdvH9auXYuEhASsWbMG+/btw6ZNmwAAZWVlmD17NsaPH49du3YhNjYWb731lsU/DBHZRn5+Pt555x2cOnUKkyZNQnFxsV3Ow9TmVfF5sd/B3DCSm5uLsrIyAMYXAKuvmpatF8OIq6urYmE3edOstaf1ioYMGYLk5GS89tprNjkeNQ+qe0bkpU6NRoOysjLk5eVh69atGDNmjPQXwqRJk7Bt2zbEx8fj6NGjcHd3R3x8PABg+vTpiIuLQ3Z2ttFFisrKyqQ/8NKJOjnBxcVF7ek2SuIdO9XeubO54vVSxxLX68KFC9LrL1++jI8//tguX07y/o2QkJBaP5OjoyNCQ0ORkZGBixcvmvT5q14reYgJCwuz+O85cQgE0FdGdDoddDqdtOKr+Lx43BEjRiAgIAB5eXno0qWL3f8M8M+iOs3lehm7k3ZVZjWwvv/++0hMTERpaSnuu+8+REZGIi0tDcOHD5f2iY6OxhdffAEASE1NVSR+d3d3hIaGIjU11WgYWbFiBZYuXap4bOzYsRg3bpw5p9toGVvpkWrG66VOfa6XOMVU9MEHH2Do0KE2+9e5KDk5Wdp2cXGpc8puUFAQMjIycO3aNSQnJ5u81oh4reS9G15eXvWaImyMu7u7tH3y5Emkp6cjOzsbpaWlAPTnX/WYX3/9NQ4dOoRRo0ZZ/HzMxT+L6jT16yUfIq2JWWHkH//4B2bNmoUjR45IpcTi4mLFH2xPT0+pdKvVauHp6al4D09PT2i1WqPvP3Xq1GrLKTe3ykhmZibCwsJMSpTNHa+XOpa4XlWHZQoLC5GQkIB///vfljhFkxUWFkrbd999d41Lk4s6dOiAQ4cOAdBfh7r2r3qtSkpKpOe6dOlS5+vVCg4OhqOjIyorK5GdnY2IiAhFNSY2NrbaMSMiIvDAAw9Y9DzMxT+L6vB6GZg9tdfR0RH33HMPvv/+e0RGRsLDw0PxF0NRUZHU2e3u7i51vMufl/8rQM7FxaXZBI/aODg4NPvfoGrweqlTn+tlrOfiq6++wsyZM206wyIrK0vaDg8Pr/PzyP+FlpGRgbvuusuk44jXSv4v2LZt21r895urqyvatm2LCxcu4Pz589BoNIqZP1FRUY3i9zj/LKrD62WBqb1id3m7du0UDVfnzp2TxjcjIyMVz2m1Wly6dEkxPkpEjYc8jMyYMQMAUFFRgddff92m5yHObHFzc5MWDKtNfdcasdaCZ3LikHZBQQGuXr2qmEkjv+EfUVOiKowUFxdj27ZtKC4uRkVFBXbu3ImjR4+iW7duGD58ONatW4esrCzk5eVh5cqVGDZsGACge/fu0Gq1SExMRFlZGZYvX46YmJga77BJRA2b+EXu4uKCf/3rX2jdujUAIDEx0abNeGI4qGvBM5G8MmLOWiNiw6xGo0FISIjq15ui6owahhFqDlQN02g0GmzcuBEffPABBEFAWFgY5s+fj6ioKERFReH8+fOYPHkydDodRo0ahZEjRwLQ/4W1YMECzJs3D++//z5iYmIwd+5cq3wgIrIuQRCkL/KIiAh4e3vjL3/5CzZu3IjS0lJkZmZavJfCmFu3bqGgoACA6VUKS1VGgoOD4ezsrPr1pqgpjGg0GsX5EzUlqsKIu7s7Fi9eXOPzU6dOxdSpU40+17lzZ6xatUrd2RFRg3P9+nWpP0z8cqy6WJctwoiaBc9EISEhUoOo2jBSWlqKK1euALDeEA1QcxgJCwuDq6ur1Y5LZE/Nu2OGiFSTf4mLwx7yptVz587Z5DzMCSNOTk5SkFAbRuTHs8aCZyJ5sPv9999x48YNAByioaaNYYSIVJF/iddUGbEFc8IIYAhQN27cwM2bN2vdt6CgQJqxI29etWYYkc/S2bNnj/Q4wwg1ZQwjRKSKvPGzMYYRU/tG0tPTERsbi379+mHRokVWvVuvnKurq+KGeSKGEWrKGEaISBVjlZHg4GBpXSFbhRFzp9maEkYKCwsxcuRIKfC8/PLLSExMlJ63ZmUEUPaN1PYYUVPBMEJEqhjrGdFoNFJ1JDU1FRUVFVY/D2tVRnQ6HR577DGcPHlSeqysrAxr166VfrZmZQQwHjxYGaGmjGGEiFQRh2nc3NwQGBgoPS6GkYqKCrPviquGGEZcXFxU3ROnrrVG3n77bWzYsAEA0KJFC8UQlMjalRFjx2QYoaaMYYSITCYIghQ0IiIiFAuN2bpvRAwjpi54JqqtMnL06FHMnz8fgH6J7u+//x6ff/453NzcpH3c3NysfkPAqpWRgIAA+Pj4WPWYRPbEMEJEJsvLy5Nukld1AS5bTu8tLCxEfn4+AHVDNIC+v8XJSb/EUtUwIp+98vbbb2Po0KFo3749PvzwQ+nx8PBwVeHHHFXDCKsi1NQxjBCRyYz1i4hsWRmR94uo7d9wdHSUhlmqhhH5jJmBAwdK20899RRmzJgBV1dXPP/882acsTqRkZGKwMMwQk0dwwhRI6LT6bBx40bFjSdtydi0XpG9wojayghgCFI3b96UFhUDlGFE3hei0WiwZMkSFBQU4JlnnjHnlFVxc3NTfC6GEWrqGEaIGpG///3vGDVqFPr37y8Nl9iSsWm9olatWkl9DY0ljAD62T8iMYw4ODggODi42uusdT8aY+ThjmGEmjqGEaJGYvfu3Vi2bBkAIDs7G//73/9sfg61hRGNRiP1jaSnp6O0tNSix05PT8f777+PUaNGYdasWdLj5oQR+Ze7PIzIb4Qn9pXYi7wHx9jsGqKmxL5/2ojIJKWlpXjyyScVj6WkpKBXr142PQ/5ME3VnhFA/6V55MgR6HQ6pKamolOnTvU6nk6nw5YtW7B48WJs27YNgiBU2ycmJkb1+0ZGRkrbYhjRarXIzc0FYP2pu6Z4+umnsWPHDsTGxqJ37972Ph0iq2IYIWoEPvzwQ5w9e1bxmD36RsTKiLu7O1q1alXt+ap9I/UNI0899RS++uqrao+3aNECPXr0wKRJkxQVBFPJw4h4V1xb3QjPVHfeeafNVrMlsjeGEaIGLiUlRVr7ourjtiRfY6Rt27ZGp7fKw4glpvf+8MMP0nZ4eDimT5+OMWPGIDo6WrqZnDmMVUZqal4lIutjGCFq4GbNmiX1Xzz99NNYtGgRANvdA0aUk5Mj3bitar+ISF6lqO/55efnSzNd7r33XuzduxeOjo71ek+Rv78/fH19kZ+fzzBC1ACwgZWoASstLcW2bdsAAIGBgfjggw+khk1bV0bk4UJeWZCz5PReeX9Kp06dLBZEROJnyMjIQHl5OcMIkR0xjBA1YMeOHZOqIkOGDIGXl5e0OmdeXp60CqktJCcnS9s1NY36+fmhZcuWAOo/TCOf5VJT+KkP8T0rKyuRkZHBMEJkRwwjRA1YUlKStH3vvfcCUC4VLjZf2sLp06el7c6dO9e4nzhUk5WVVa+1UORhxNjMnfqqOr2XYYTIfhhGiBqw/fv3S9t9+vQBYPsb0onkYaS26bSWamKVD9NYszICKMOIl5cXfH19LX48IqoZwwhRAyUIglQZ8fHxkQKAvDJiy74RcZgmICDA6LReUceOHaXtM2fOmH08a1dG5GEkJSVFCiO2uBEeESkxjBA1UGlpacjJyQEA9O7dW2rgtEcYuX79Oq5cuQKg9iEaAIq1Rf7880+zjymGEU9Pz1rDj7nkYeT333+XZgpxiIbI9hhGiBooY0M0gLLXwVZhRB4q6lrx1BJhpLKyEunp6QCq38HWUsLDw6WAd/DgQcXjRGRbDCNEDZSx5lVAXykICgoCYLueEVP7RQB9WBJvKGduGLl8+TLKysoAWGeIBgCcnJwQEREBANKxAIYRIntgGCFqoMTKiIODA+655x7Fc2KTaG5uLm7dumX1czFlWq/IyclJOr9z586hoqJC9fGsPa23tvdmGCGyPYYRogbo5s2bOHXqFACgS5cu8Pb2Vjxv6+m9pk7rFYlDNWVlZYpZMaay9kwakXzIS8QwQmR7DCNEDdChQ4ekO9TK+0VEtm5iFcOIv78/WrduXef+9e0bsfZMGhErI0QNA8MIUQMkb16V94uI5GHE2n0j+fn5yMrKAqAfojGlmVQ+vbe+YcSWwzQajQYhISFWOx4RGccwQtQAyZtXjVVG5AuLWbsyIg8TpgzRAPWvjMiHaWq6KZ8lVA0jbdq0gYuLi9WOR0TGMYwQGZGWlobY2Fj0798fWq3WpsfWarU4cOAAACA4ONjosIEtp/eqmUkj6tChg7RtShiZM2cOIiIisHr1agCGykibNm3g4eGh5nRVqdozwiEaIvtgGCEyYs6cOUhOTsZvv/2GLVu22PTYW7ZsQVFREQBg8ODBRodFvL29ERgYCMD6YUTNTBqRp6enNG32zJkzUv+LMampqXjnnXeQkZGBadOm4eLFi9ICa9YcogGAFi1awN/fX/qZYYTIPhhGiKrIy8uT/oUO1G9Jc3OsXLlS2p44cWKN+4l9I9nZ2SgsLLTa+ZhTGQEMQzW3bt1CdnZ2jft9/fXX0nZhYSGmTp0q/WztMFL1GAwjRPbBMEJUxYoVK1BaWir9XJ+bvRlTXl6O8vJyo8/duHEDW7duBQAEBgZi4MCBNb6PvG/EmtN7xTDi6+srLbZmClP6RnQ6HRISEhSP7d69W9q25kwakXyohmGEyD4YRohkdDodFi9erHjMkmHk6NGjaNmyJby8vNCzZ0889dRT2LhxozSMsW7dOmk10PHjx0vLlRsjn1FT33MsLS3FqlWrqs3MuXXrFjIzMwGYPpNGZEoY2bVrl3SDOnd392rP26IyIg8j4tASEdkWwwiRzM8//6yYVgoAZ8+erbXnQY3Vq1ejoKAAZWVlOHLkCBYvXoxRo0bh7bffBgB899130r61DdEAypktJ0+erNd5vf7665gwYQJ69eolTeMF1N2TpipTwsh//vMfaXvx4sUIDg5WPG+LMDJlyhSEhYWhR48eGDp0qNWPR0TVOdn7BIgaki+//FLa9vLyQmFhIfLz85GXl2eRO8eKVYCq5s2bh9atW0tDFFFRUejRo0et73XXXXdJ28ePH6/XeR0+fBiAfk2RmTNnYu3atQCAZcuWSfuYOq1XVFcYuXHjBn788UcA+sXUHnnkEZSXl2PatGnSPrYYpmnfvj0uXrwIjUZjlRvyEVHdWBkhui09PR2bN28GAISGhioqE2fPnrXIMS5duiRt5+Tk4J133pF+fu6556QKzMSJE+v8Ymzbti18fHwAACdOnKjXeckbTNetW4ctW7Zgy5YtUhjx9PTEww8/rOo9W7ZsiYCAAADGw8iqVauk3pxJkybB1dUVU6ZMQWxsLAAgICCgWqXEWhwcHBhEiOyIYYTotq+++go6nQ4AMGPGDMWwhKX6RsT+i4CAALRu3Rpvvvkmxo8fX22/Rx99tM730mg06NKli/S+169fN/u8xKm0omeeeUZRofj4448RFham+n3F6siVK1eQn5+veG7FihXS9hNPPAEAcHR0xKZNmzBz5kysW7eu1p4ZImo6GEaIoJ/hIvYvODk5Ydq0aYqFuywRRiorK6V+DPGLXaPRYNmyZVKoAIAePXogOjrapPeUD9WY2zdSVFSEgoICxWPp6elSQBk2bBimT59u1nvLh2rkU4RTUlKkoaFu3bopPke7du3w6aefon///mYdk4gaH4YRIgCbN2+Wvnzj4+MRFBSkCASWGKbJyclBZWUlAP0wkMjT0xMbNmyQ7ony6quvmvye8i9xc4dq5FWR7t27K5ZD9/Pzw7Jly8wewrjzzjuNnp8YRABg9OjRZr03ETUdDCNEAJYsWSJtz5gxA4B+zQlXV1cAlqmMiEM0AKoNebRr1w5//vknMjMzMWbMGJPfs2vXrtK2JcJI37598X//93/Sz4sWLapX34b8/ORNtvJz7datm9nvT0RNA2fTULOXlpaGn3/+GYC+KTQuLg6Avn8hKioKycnJSElJQWVlZb16GGoLI4B+iXdvb29V7xkbGwsHBwfodDqzZ9TIw0hQUBBmzZqFdu3aoWXLlvjrX/9q1nuK7rrrLmg0GgiCgGPHjkmPy8OIvLpDRM0TKyPU7C1fvlyaxTJ9+nQ4OBj+WIhDNWVlZUhPT6/XceQzaeTDNPXh7u4unWNycnKNK7vWRj6Tpk2bNnBwcMDjjz9e7yAC6AOWuDjbqVOnUFFRAcAQRvz9/aXhKSJqvhhGqFmr2rgqzuoQWbKJta7KiLnEykJZWZlZvS3yykibNm0sdl4icRimpKQEZ86cQW5urhSAxMoJETVvDCPUrG3ZskX6Yhw5cmS1L2NLNrFaozIC1L+JteowjaXJe0KOHz/OIRoiqoZhhJo1+VoXYuOqnLUqIw0pjFQdprE0eRPrsWPHFOcof46Imi82sFKz9scffwDQT2EdPHhwtectWRkRw0jr1q2lWTqWUN9l4cXKiKOjo7RiqiXJKyPHjh1Dbm6u9DMrI0QEsDJCzZhWq5WGTjp06KBoXBUFBATA398fQP0qIxUVFVIFwpJVEQAIDg6WQkR9hmkCAwONXoP6CgwMlIZ/jh07Js2qcXJyUiyKRkTNF8MINVvyu/OKMz6MEasjmZmZKC4uNutYV65ckRY8s2TzKqBfxVWsMOTm5lZb2r02lZWVyMnJAWCdIRqRWB3Jz89HcnIyAP3qrJasEBFR48UwQs1WSkqKtG1KGAGA8+fPm3Usa/WLiMztG7l27ZoUkmwRRuQ4RENEIoYRarbkwaK2MGKJJlb5TBpLV0YA8+9RY+2ZNCJjjapsXiUiEcMINVvmVEbkN3tTw1prjIg6d+4sbf/5558mv87aM2lErIwQUW0YRqjZkoeR9u3b17hf9+7dpe3du3ebdSxrD9PIqzdqwoi1FzwTtWvXDj4+PorHGEaISMQwQs2WGEb8/PykGTPGtGvXDpGRkQCA/fv3o6ioSPWxrD1M4+XlJb3vmTNnpOXtq9Jqtfj1119RUFAAQFkZseYwjYODg2JYJigoCK1atbLa8YiocWEYoWaptLQUGRkZAGofohGJN88rKyvDvn37VB9PXhmpz11wayNOk83Pz5dmyIgEQcDGjRvRqVMnxMXFYfLkyRAEwWaVEUA5VMOqCBHJqQojZWVleOeddzB8+HDcd999mDFjhqLUnZCQgLi4OAwcOBALFy5U/OssOTkZEyZMQJ8+fTBjxgzFv8iIbC01NVX6/akmjADAjh07VB9PDCOBgYFWm84qX7NDPlSTkZGBESNGYNSoUdLN/k6cOIHk5GSbhhF5ZYRhhIjkVIWRyspKhISEYMWKFdi1axf69++Pl19+GQCwb98+rF27FgkJCVizZg327duHTZs2AdCHmNmzZ2P8+PHYtWsXYmNj8dZbb1n+01CjUVJSgpycHOk/8W6utmJq86powIAB0g3d1IaR8vJyKXxbY4hGZCyM6HQ6jBw5Elu2bKm2/8aNG23WwAoADz30EKKiotCyZUtMnTrVqsciosZF1XLw7u7umDZtmvTzI488goULFyI/Px9bt27FmDFjpOa8SZMmYdu2bYiPj8fRo0fh7u6O+Ph4APrbtMfFxSE7O9voOHVZWRnKysqUJ+rkBBcXF9UfsDHS6XSKX5uaHTt2YPTo0Yrei+DgYOzfv9+sL2tzrpd8Wu8dd9xR52v9/f3RrVs3/PHHHzh+/DhycnJM7nnIysqSqjAhISFW+/8qb2I9ffo0dDodkpOTpXVHAgMD8Y9//AMvvvgiAH0YEXtHvL294e7ubtXfc97e3vjzzz9RWVkJZ2fnRvH7u6n/WbQ0Xi91msv1MmVl53rdm+bkyZPw9/eHr68v0tLSMHz4cOm56OhofPHFFwD0JXH5vz7d3d0RGhqK1NRUo2FkxYoVWLp0qeKxsWPHYty4cfU53UZH3mfQlHz44YfVmkAvX76MDz74ALNmzTL7fdVcL3FJckDf/CkOX9SmR48e0r1sVq9ejREjRtS6f15eHgoLCxXTgX19fU06ljm8vLyk7WPHjiE9PR2bN2+WHnviiScQHx+PpUuX4vTp0zh69CicnZ0BAC1btrTaeTUFTfXPorXweqnT1K9Xu3bt6tzH7DBSWFiI9957D08//TQAoLi4WPGXoaenp7R0tlarhaenp+L1np6e0Gq1Rt976tSpmDhxovJEm1llJDMzE2FhYVa5V4g9CYIg3czNw8MDAwcOxNatW6HT6fDLL7/g3//+tzQcYipzrpe8wbNv374mVTkefvhhfPXVVwD0PRfPPvtstX3Kysqwfv16fPXVV0anAXfq1AkREREmnaNa4eHh8Pf3x/Xr13Hx4kVERETgzJkz0vMPPvggIiIi8PDDD0sBqby8XHqttc6rMWvKfxatgddLHV4vA7PCSGlpKV5++WX07dtXGnrx8PBAYWGhtE9RURE8PDwA6CshVf8lXFRUBHd3d6Pv7+Li0myCR20cHBya3G/Qc+fOIS8vD4C+DyMxMREDBgzA7t27kZKSguTkZHTp0sWs9656vQoLC1FZWYkWLVpU21fsGfHx8UHr1q1NCkD9+vWDq6srSktLsWPHDmg0GsXrNm3ahOnTpyvuSltV165drfr/tFOnTkhKSsLly5dRWFiIAwcOAND/merRowccHBwQHx+PefPmKV7Xpk2bJvd7zZKa4p9Fa+L1UofXy4ypvRUVFXjttdfQqlUrvPDCC9Lj7dq1UzQFnjt3TlqbITIyUvGceLdU8XlqPpKSkqTte++9FwAwZswY6bEffvjBIsfJyMhAVFQUQkNDcfToUcVzZWVl0pBEVFSUyZUYd3d39O3bV3r/CxcuKJ6fNWuWIohER0dj4sSJmDRpEiZNmoSFCxdiyJAh9flYdZI3sf72229Sb0yPHj2kWTxdu3atNr3Y2s2rRES1UR1G3n33XZSWlmLOnDmKv8SHDx+OdevWISsrC3l5eVi5ciWGDRsGQL+CpVarRWJiIsrKyrB8+XLExMRYdZElapj2798vbYthZPTo0dLvpR9++KHGBbvUWLx4MXJyclBYWFitCnDx4kWpYay2lVeNqWmKb15ennTfmjvuuAO7du3CmTNn8O233+Kbb77BN998g+eff171EJRa8jCyfPlyabtPnz7StkajweDBgxWv459FIrInVWEkOzsbiYmJOHbsGAYMGIB+/fqhX79+OHbsGPr27YvRo0dj8uTJGDt2LPr06YORI0cC0JeIFyxYgJUrV2LAgAE4ceIE5s6da5UPRA2bGEYcHR3Rq1cvAPovQrHicPbsWekW8+bS6XRYuXKl9HNiYqK0wBmgflqvXE1h5NChQ9L2qFGjFFOBbUkeRhITE6VtMfiJ5J8DYGWEiOxLVc9IUFAQjhw5UuPzU6dOrXH9gM6dO2PVqlXqzo6alOvXr0uNk926dZN6igD9bKnffvsNALB27VrExsaafZykpCRF+NDpdPjqq68wf/58AKbfrdeYbt26wdfXF/n5+fj111+h0+ng4OCAgwcPSvv07t3b7HOvL3kYka/dUjWM9OrVS/ocAMMIEdlX8+6YIZuSf2HLhw0A/VCNqL59I/KqiGjp0qXS2jX1qYw4OjpiwIABAPThSlzDQ/7Z7rnnHtXnbCnh4eGKkAfoP2Pr1q0Vjzk7O+PBBx+UfjZl6h0RkbUwjJDNGGteFYWEhEgB5fTp04q1OdQoKyvDmjVrAOhneIl9S7m5uVi/fj2A+oURABg4cKC0vXPnTlRWVkrDNMHBwVa5K6+pHBwcFIufAdWvtWj+/PkYPnw43njjjWqvISKyJYYRshljzaty8lk169atM+sY27Ztw40bNwDoezfki6gtWrQIeXl5Uk+Kl5cXAgMDVR9j0KBB0vbOnTtx5swZaSXT3r1726VXRK5jx46Kn6tWoUTh4eHYsmVLtQZfIiJbYxghmygvL5eqB+Hh4UarB6NGjZK2xf4RteRDNBMnTsT9998vfTnv3bsXoaGh0mqHaqb1ynXs2FGaffLbb78pztWeQzQied8IUHNlhIiooWAYIZs4ceKEtOJuTf9Sj4iIkL7kDx06pPp+DTdv3pRmkAQEBGDw4MHQaDR46qmnpH1KS0ul7SeffFLV+4s0Go1UHSkqKsK///1v6Tl7Nq+K5GGkRYsWiImJsePZEBHVjWGE6u3AgQNYs2ZNreGhriEaQP8lL36Z37p1S7GUuSmWLFmCkpISAPqbOIr3XZk8ebJUifH19cVLL72E8+fP4+9//7uq95eT942I/S2Ojo7o3r272e9pKfLw8Ze//KXZr+xIRA0f/5aieklLS0O/fv3wyCOPYPHixUb3KSsrUwyf1FQZAZTDHPK1O+py/fp1/POf/wSgb+KUV0N8fX1x6NAh/Prrr8jKysJHH31kVuOqnLxvRNSlS5dq92Cyh06dOmHChAkIDAzE7Nmz7X06RER1Yhihetm3bx8qKysB6O+2XJUgCHj66afx+++/A9BPIb3zzjtrfD/5MId8umxdPv/8c9y6dQuAfr2bzp07K54PDg7G/fffX23aq7nCw8OrBZqG0C8C6CtM3333HbKzs6VpyEREDRnDCNWLfCjlyJEjSEtLUzz/2WefScuSu7m5Yc2aNXByqnmtPfFmboDpYeTChQtS5cXDw8Nmq/vKh2qAhtEvImfvWT1ERKZiGKF6+fPPPxU/y6fk/vzzz3jppZekn//zn/+gR48etb6fp6endNfe//3vf4o7QdfktddeQ3l5OQDg5ZdfrnYTOGupOlTT0MIIEVFjwTDSxKWnp2P79u3Sf6dOnbLo+1cNI2vXrgUAFBYWYvLkyVJT62uvvYYJEyaY9J7icIdOp6v19gMAsGfPHumYrVu3VqwrYm3yIRBfX1/VN90jIiI9hpEm7PDhw2jXrh0eeOAB6b8uXbrg22+/tcj7l5eXK1YzBfRNpxkZGVi4cCFycnIAAA888ICqhbVM7Rv5/fffpZsxAsBbb70Fb29vk49TX61atcLYsWMBAE888QRnrRARmYl/ezZh33//PQRBqPb4e++9Z/RxtVJSUqSbscn7E7766issWLAAgH6666effqrqi9qUMHLkyBEMGTJEalq99957MX36dNWfob5Wr16N9PR0/Otf/7L5sYmImgqGkSZMvrbHG2+8Ic0w+fPPP7Fnz556v798iGb8+PHS9rvvviuFhCeeeEL1fU+io6Ph6+sLQB9GqganEydOYPDgwbh58yYA/XDJ0qVLa22MtRaNRoPw8HA2ixIR1QPDSBOl1Wrxxx9/ANAvXz5v3jy88cYb0vOLFi2q9zHkYSQ+Pr7alF03Nze89dZbqt/XwcEBvXr1AgDk5OQgIyND8fysWbOQn58PALjvvvuwceNGuLu7qz4OERE1DAwjTdSRI0ekGSbiiqejR4+WbiW/fv16ZGdn1+sY8jDSqVMnxY3uAOC5554z+w62NQ3VlJaWSveCCQkJwebNmxvEQmNERGQ+hpEmSj5EI6546uLigmnTpgEAKioqsGzZsnodQwwjDg4OiI6Olpo5Af09Uf7xj3+Y/d7yMHLgwAFp+8iRI9KS7wMHDoSXl5fZxyAiooaBYaSJSkpKkrbl94KZMWOG1Ey6ZMkSqQFVLZ1OJy141q5dO7i5uaFTp0548skn4efnhyVLlsDf39/s87/nnnukPowdO3ZIj8vvkNu/f3+z35+IiBoOhpEmSBAEqTLi7++P6Oho6bmIiAj89a9/BQBkZWVh8+bNZh0jMzMTxcXFAJR3if3yyy9x/fp1PPLII+aePgD9eYvVkeTkZFy4cAGAMoz069evXscgIqKGgWGkCTp37hyuXbsGQF8VqTqt9umnn5a2xaXa1ZIvAy8PI5YUHx8vbW/cuBGVlZVSxad169aKkEVERI0Xw0gTJO8XkQ/RiAYPHoxWrVoBMD511hRVm1etYdSoUdL2hg0bcOrUKWk6b79+/TidloioiWAYaYLk/SJi86qcg4MDunXrBgDIy8tDVlaW6mPYIox06NBBWqMkKSkJ69evl57jEA0RUdPBMNIEiZURJyenGm9MJ4YRADh27JjqY9gijACGoRqdToePP/5YepxhhIio6WAYaWKuX78uBYW7774bHh4eRvezVBgJCgpCixYtzDhT08j7RsQ7+Hp7e+Ouu+6y2jGJiMi2GEYsSKfTSf9Z4t4v5pCvyWGsX0RUnzBy6NAh5OXlAbBuVQTQT/ENDAxUPNanTx84Ojpa9bhERGQ7DCMWoNVqMWDAADg6Okr/tWjRAqtWrbL5uZgaRqKioqQFw9SEkaNHj+KBBx6Qfrb2Wh+Ojo4YMWKE4jGuL0JE1LQwjFjAqlWrsHv3bsVjBQUFePnll6Ul2W3l999/l7blq5hW5eDggK5duwIA0tPTcf369Trf+9ixYxg8eLB0X5j+/fvjlVdeqdf5mkI+VAOwX4SIqKlhGLGAr7/+Wtru2bMnQkJCAACXL19GYmKizc5DEAQcOXIEABAYGFjnfWHkQzXHjx+vdd/jx48jLi4ON27cAKAPBFu2bLHJfWEGDRok9b64urqiZ8+eVj8mERHZDsNIPV28eBF79uwBoJ+KeujQIfznP/+RnrfE3XFNlZqaKoWFnj171rkOh6l9IydPnkRcXJxUPenTpw+2bt1qs/vCuLu74/XXX4erqyteeeUVuLq62uS4RERkGwwj9fTtt99K248//jg0Gg3i4uIQFRUFANi5cyfOnj1rkWOdO3cO33zzjXSjuKoOHz4sbdc0pVfOlDBy6tQpDBo0SFrR9S9/+Qu2bdtm8xvUvfbaaygsLMT8+fNtelwiIrI+hpF6EAQB//3vfwEAGo0GEydOBKDvx3jyySel/RYvXlzvYxUXF+O+++7D5MmTMXToUJSVlVXbRx5GTBnKiImJgbOzMwDgjz/+qPZ8WloaBg0aJM2c6d27N3766Sd4e3ub+zHqxcnJyS7HJSIi62IYqYeDBw/i/PnzAIABAwYgPDxcem7KlClwc3MDACQkJEg3lTPXzp07ceXKFQDA3r178eyzz1abPqw2jLi4uCA2NhYAcPbs2Wrn+Mknn+Dq1asAgF69euGnn36Cj49PvT4HERFRVQwj9SBvXH388ccVz7Vs2VK6c21+fn69p/lWvbvu0qVL8fnnn0s/V1ZWStWNiIgI6d4zdRGHanQ6HU6ePKl4TmyGBYDExESrLm5GRETNF8OImUpKSrB69WoAgIeHB0aPHl1tH/ndcb/88kuzjyUIghRG5It9vfjii/jll18A6O+iW1RUBMC0qoiopr4ReTiJiIhA69atzT5/IiKi2jCMmGnz5s3SehsPP/yw0YbOnj17Smt5HDlyBJcuXTLrWMeOHcPly5cBAA888AD+8Y9/ANBXQ6ZMmYKSkhLVzauimsJIamqqFG7Ez0BERGQNDCNGnDx5Ei+99BJ27dpV4z4rV66Uth977DGj+2g0GsWCXdu3bzfrfORDNH/961/x7rvvYvDgwQD0a5kkJCSo7hcR3XXXXdIUYHkT64kTJxT7EBERWQvDSBWCIGDs2LH45JNPMGjQIIwfPx5ZWVmKfW7cuIGtW7cCANq0aYOBAwfW+H7ypdN/+ukns85JvnDagw8+CAcHB7z33nvSYx988IFiGfju3bub/N5eXl7o2LEjAP3CZgUFBQAYRoiIyHYYRqo4fvw4zp07J/28evVqdOzYEcuXL5ceW7dunTS1dvz48bXetK1nz57w9/cHAPzyyy+oqKhQdT7Z2dlSI2nXrl0RFhYGQD8UM2TIEAD6hdfEIZYOHTqobjQdMGAAAP2wz969ewEwjBARke0wjFTx448/SttiyCgsLMS0adOk6sN3330n7fPoo4/W+n6Ojo5SaLh58yYOHjyo6nzECgygH6KRe/3116vtr6ZfRDRo0CBpe+fOnQAMYcTLywvt2rVT/Z5ERESmYhipYv369QD0/R4nT55UTNl99tlnkZGRId0Ur3379iZ9+ddnqEY+RFM1jPTv3x99+/ZVPGbOfVvuv/9+qW9k586dyM/PR3p6OgB9VcTBgb9NiIjIevgtI3P27FkkJycDAO69917ExMRg2bJl6NKlCwB9g+dDDz0kLTb26KOP1nn/FwBSZQRQF0auXbsmNb22bt3aaNB47bXXFD+bE0b8/f2lWTUnT57Ejh07pOc4RENERNbGMCIjVkUA4KGHHgKgX4JcvriYfMZJXUM0oqCgIGl67NGjR5Gbm2vS6xYvXizdh2bChAlGKxQPPPAA7r77bgCAp6en2dNw5UM1CxculLYZRoiIyNoYRmTk/SJiGAGAfv36VZu+26NHD0RHR5v83sOGDZO2TZniW1paKoUgBwcHzJw50+h+Go0Gq1atwt/+9jesWrUKHh4eJp+TnDyM7Nu3T9pmGCEiImtjGLktMzNTWquja9euiIyMVDy/YMECxX1ZxJvimUpt38iGDRukCsqYMWNqbSJt3749li1bVq2nRI2+fftKN80TaTQa6d41RERE1sIwctuGDRukbWNLu7dp0wYfffQRAP2wi9ow8pe//EW62+327dtRWVkpPScIAlasWIFly5ahtLQUOp1OMZX45ZdfVnUsc3h6eqJ3796Kx9q3bw9PT0+rH5uIiJo3hhHoFzGT90kYCyMAMG3aNJw9exYnT540+UZ0ImdnZ2nV1GvXriEpKUl6bt26dXjiiScwffp0dOnSBe+88w5SUlIA6CsWvXr1UvuRzCIfqgG4DDwREdlGsw8jFRUVGDduHC5cuAAAuOeeexATE1Pj/tHR0QgICDDrWPKQ88MPP0jb8rv/njt3DvPnz5d+tkVVRFQ1jLBfhIiIbKHZh5GXX35ZmsraqlUrrF692qTpuuYYMWIEXFxcAOirITqdDjdu3KixobV9+/YYMWKEVc7FmF69eikaYBlGiIjIFpp1GFm6dCk+++wzAPphlB9//BERERFWO56Pjw+GDh0KQL/M+/79+7F+/XqUl5cDAGbOnIkVK1ZIQ0Dz5s2rdal5S3NxcZGWhtdoNIo7+hIREVmLk71PwF727duHp59+Wvr5yy+/rLaaqTWMHTtWWlV17dq1OH36tPTco48+il69emH8+PE4deqUqhveWcr777+P8vJyDB06FMHBwTY/PhERNT/NNoxERUWhZ8+eOHDgAF544QX87W9/s8lxR4wYAWdnZ5SXl+P777/HtWvXAADt2rWTVk91cXExuy+lvmJjY01aB4WIiMhSmu0wTZs2bfDrr7/i448/xocffmiz4/r6+krLw+fm5kpTfB955BGr9aoQERE1ZM02jACAq6srXnzxRTg52bZANGbMmGqPjR8/3qbnQERE1FA06zBiLyNHjlQEoA4dOkg34yMiImpuVIWRJUuWYOzYsejZs2e1voKEhATExcVh4MCBWLhwoXRnWwBITk7GhAkT0KdPH8yYMQPZ2dmWOftGyt/fH3FxcdLP48eP5xANERE1W6rCSFhYGF5++WV07txZ8fi+ffuwdu1aJCQkYM2aNdi3bx82bdoEACgrK8Ps2bMxfvx47Nq1C7GxsXjrrbcs9wkaqaeeegqAfhn2xx9/3M5nQ0REZD+qwsjw4cPRu3dvaeEu0datWzFmzBiEhoYiICAAkyZNwrZt2wAAR48ehbu7O+Lj4+Hq6orp06fj9OnTzb46MnLkSBw/fhynT5+u9SZ4RERETZ1FOjfT0tIwfPhw6efo6Gh88cUXAIDU1FRERUVJz7m7uyM0NBSpqakICgoy+n5lZWUoKytTnqiTU7UQ1NjdeeedAACdTqd4XPy56uNkHK+XOrxepuO1UofXS53mcr0cHOque1gkjBQXF8PLy0v62dPTE8XFxQAArVZb7c6vnp6e0Gq1Nb7fihUrsHTpUsVjY8eOxbhx4yxxuo1GZmamvU+hUeH1UofXy3S8VurweqnT1K+XKdV/i4QRDw8PFBYWSj8XFRVJ9zhxd3dHUVGRYv+ioiK4u7vX+H5Tp07FxIkTlSfaBCsjNdHpdMjMzERYWJhJibK54/VSh9fLdLxW6vB6qcPrZWCRMNKuXTukpKRIy6mfO3cOkZGRAIDIyEisX79e2ler1eLSpUvS88a4uLg0m+BRGwcHh2b/G1QNXi91eL1Mx2ulDq+XOrxeKhtYKyoqUFpaCkEQpG2dTofhw4dj3bp1yMrKQl5eHlauXIlhw4YBALp37w6tVovExESUlZVh+fLliImJqbFfhIiIiJoXVZWR+fPnY/PmzQCAY8eO4e2338bixYvRt29fnD9/HpMnT4ZOp8OoUaMwcuRIAPoqx4IFCzBv3jy8//77iImJwdy5cy3/SYiIiKhR0gjy1cmoQdDpdEhPT0dERESzL92ZgtdLHV4v0/FaqcPrpQ6vl0Hz/vRERERkdwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFdc9IyIiIjsipURIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGERtYsmQJxo4di549e2L79u3S4yUlJXj33XcxePBgDBkyBN98843idT169EDfvn3Rr18/9OvXD//5z38Ur33zzTfRv39/PPjgg/jpp59s9nmsyRrX6uOPP0Z8fDz69++Pxx57DH/88YfNPo+1WeN6iS5fvow+ffrgvffes/rnsBVrXa9NmzbhoYceQt++fTFmzBikp6fb5PNYkzWuVVZWFp555hncf//9GDZsGFasWGGzz2Nt5l6vwsJCzJ07FwMHDsT999+P119/XfHapvj3vDFO9j6B5iAsLAwvv/wyFi9erHh8+fLluHz5MtavX4/CwkI89dRTiIqKwl/+8hdpnw0bNiAgIKDaey5ZsgQ3b97E1q1bceHCBcycOROdOnVCRESE1T+PNVnjWnl5eeHzzz9HSEgIdu3ahVdeeQWJiYnw9PS0+uexNmtcL9HHH3+MDh06WO3c7cEa12vv3r349ttv8a9//QuRkZHIysqCt7e31T+LtVnjWn344YcICQnBwoULkZOTg7/97W/o3LkzevXqZfXPY23mXq933nkHgYGB2LRpE9zc3JCSkiK9tqn+PW8MKyM2MHz4cPTu3RsuLi6Kxw8cOIBHH30UXl5eaNOmDUaOHIktW7aY9J5bt27FjBkz4OXlhbvuugv9+/fHzz//bI3TtylrXKsZM2YgLCwMDg4OiIuLg6urKzIyMqxx+jZnjeslvl4QBNxzzz2WPmW7ssb1WrZsGV566SXccccd0Gg0CA0NRYsWLaxx+jZljWuVnZ2NIUOGwMnJCSEhIejatStSU1Otcfo2Z871unDhAs6cOYMXX3wRXl5ecHJyQseOHaXXNtW/541hGLEz+U2TBUGo9gdz0qRJGDZsGObMmYP8/HwAwK1bt3Dt2jVERUVJ+0VHRzeZP9Q1MedaVXX58mXcunULYWFh1jzVBsHc61VeXo6FCxfihRdesNGZNgzmXK/KykqcPXsWKSkpGD58OEaOHImlS5eiqd8M3dzfW2PHjsX27dtRVlaGjIwMnDp1Cj169LDVadtNTdfrzz//RHh4ON58800MGjQIkydPxrFjxwA0v7/nGUbsqHfv3vj+++9RUFCAy5cvY/PmzSgpKZGeX7p0KTZv3ozvvvsOJSUlmDt3LgCguLgYjo6OcHNzk/b19PREcXGxzT+DrZh7reQqKiowZ84cPPbYY/Dy8rLl6dtcfa7XypUr0adPn2YR2ETmXq/r16+jsrIShw8fxurVq/HVV1/hl19+QWJior0+itXV5/fWXXfdhVOnTqFfv34YPXo04uPjFV+2TVFt1ys3NxeHDh1Cr169sH37dkyZMgWvvPIKbt682ez+nmcYsaO//e1vCA4OxpgxY/D8889j0KBBaNWqlfR8t27d4OTkBD8/P7zyyitISkpCeXk5PDw8UFlZqfgLoKioCB4eHvb4GDZh7rUSCYKAOXPmwM/PDzNmzLDHR7Apc69Xbm4uNm3ahCeeeMKOZ2975l4vV1dXAMDjjz8Ob29vtGnTBmPHjkVSUpK9PorVmXutKisrMXPmTIwaNQpJSUnYtGkTduzYgR07dtjx01hfbdfL1dUVISEhGDVqFJycnDBw4ECEhITg1KlTze7veYYRO3J3d8frr7+O7du3Y+3atdBoNIiJiTG6r4OD/n+VIAjw8fFBy5YtFY1O586dQ2RkpE3O2x7MvVaiBQsW4OrVq5g3b570fFNm7vU6ffo0cnJyMHr0aAwdOhTffvsttmzZgueee86Wp29z9fmzKP8iFh9vysy9Vrdu3cLVq1cxZswYODk5ITg4GPfffz+OHj1qy9O3udqu1x133FHj65rb3/NN/2/lBqCiogKlpaUQBEHa1ul0yMnJQV5eHiorK3Hw4EEkJibi0UcfBaBvbDp37hwqKytx69YtfPTRR7jnnnuk5qjhw4dj2bJlKCoqwqlTp7B3714MHjzYnh/TIqxxrZYsWYITJ07go48+qtZc1thZ+nrde++92LhxI1auXImVK1fi4YcfRlxcHObNm2fnT2oZ1vj99de//hX//e9/UVRUhKtXr2LdunXo27evPT+mRVj6Wvn5+SEwMBAbNmyQ3mfPnj21fiE3JuZcrx49ekAQBGzevBmVlZXYs2cPsrKycOeddwJoun/PG6MRmnqMbwDmzJmDzZs3Kx4Tp3+9/fbbyM/PR9u2bfHKK6+gW7duAIDDhw/jn//8J3Jzc+Hp6YlevXrhxRdfhL+/PwD9/PP58+djz5498PHxwXPPPYcHHnjAth/MCqxxrXr06AEXFxc4OjpK7/naa69h2LBhNvpU1mON6yW3ZMkSXLt2Da+99pr1P4wNWON6lZeX44MPPsAvv/wCDw8PjBo1CjNmzIBGo7Hth7Mwa1yr5ORkfPTRR7hw4QLc3NwwZMgQvPDCC4o/m42VOdcLAM6fP4958+YhLS0NYWFheOWVV3D33XcDaLp/zxvDMEJERER2xWEaIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiatR69OiBHj16NOk75RI1dQwjRFSnGTNmSF/6EyZMUDyXn5+PPn36SM//+9//tvjxExMTpfcnoqaHYYSIVDl//jz++OMP6ecNGzagtLTUjmdERI0dwwgRmczJyQkAsHr1agBAZWUl1q5dKz0ud/PmTXzwwQd48MEHcc8992DIkCF48803ceXKFWmfJUuWoEePHhgxYgR++eUXPPzww+jbty+mT5+OixcvAtDfgOydd96RXiNWSJYsWaI4XmFhIebMmYP77rsPw4YNw7Jlyyz98YnIShhGiMhk0dHRCAkJwe7du5GTk4O9e/fiypUrGDRokGK/0tJSzJgxAz/88APy8vIQERGBoqIibNu2DVOnTsWNGzcU++fm5uLNN9+ERqNBaWkpjh07hrlz5wIAQkNDERISIu0bGxuL2NhYBAYGKt7j888/x8GDB+Hs7IyrV69i8eLFOHjwoJWuBBFZEsMIEZnMwcEBY8eOlSoiYoXkkUceUey3fft2XLhwAQDwwQcfYM2aNVi+fDkcHBxw9epVrFmzRrF/ZWUlFixYgLVr10o9KSdPnkRJSQmmTZuGadOmSfsmJCQgISEBo0aNUrxHdHQ0EhMTFZWaw4cPW/TzE5F1MIwQkSrx8fFwd3fHmjVrcOTIEXTq1AldunRR7HP69GkAgJubG+6//34AQMeOHREREaF4XuTl5YX+/fsDACIjI6XHq1ZQajN48GA4OzvD19cX/v7+AIDr16+r+3BEZBcMI0Skire3N4YNG4aioiIA1asi5r6nyNHRUdoWBKFe76Hm9URkPwwjRKTauHHjAAC+vr4YMmRItedjYmIAACUlJdi9ezcA4MyZM0hPT1c8byo3NzdpW6vVmnPKRNSAVW+BJyKqQ1RUFHbu3AlHR0e4uLhUe37o0KH49ttvkZqaildffRURERHIysqCTqdDq1atpDBjqrZt20rbY8eORUBAAF544QV07dq1np+EiBoCVkaIyCwtWrSAl5eX0edcXV2xdOlSKTikp6fD09MTw4YNw4oVK+Dn56fqWO3bt8e0adPQsmVLXLlyBf/73/9QUFBgiY9BRA2ARuCgKhEREdkRKyNERERkVwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFf/D1/JRLg8gZ0IAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -166,14 +182,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABI+ElEQVR4nO2deXyU1fX/35M9gZAQIGEJCBgW2cULgmyK1bJIbcG1oqC4S2u1tfq1FZe6/FrbqlWrdSturYoWwb0uKBJFuQVEViExYEIIazbIPvf3xzPPZLLOTGYmmYTzfr3yejLPcp97M5PPnOfcc89xGGMQBEEQ2j8Rbd0BQRAEITiIoAuCIHQQRNAFQRA6CCLogiAIHQQRdEEQhA6CCLogCEIHoS0F3YT7z759+9q8DzIWGUt7+ZGxtNpPk4iF3gw1NTVt3YWgIWMJT2Qs4Ul7HYsIuiAIQgdBBF0QBKGDIIIuCILQQRBBFwRB6CCIoAuCIHQQRNAFQRA6CCLogiAIAWKMobq62RDxVkEEvRkeeOABVq1axZtvvskDDzwAwMKFCxkwYABjxoxh7NixfPnll23cS0EQ2pKaGsOIBYapvzA4nW0r6iLozbBhwwYmTJjAZ599xtSpU937H3zwQTZu3Mj/+3//j2uuuaYNe9hyqqur27oLgtAhOFgEW3Pgyy3wxea27YsIeiPccsstjBo1im+++YaJEyfyzDPPcN1113HPPffUOW/q1Kns2rWL0tJSzjzzTMaOHcvIkSNZsWIFAEePHmX27NmMHj2aESNG8OqrrwJw2223MWzYMEaNGsVvfvMbAA4cOMC8efMYN24c48aNIzMzE4C77rqLK664gtNPP52BAwfyt7/9zX3/P/zhDwwZMoTJkydz8cUX8+c//xmArKwsZsyYwSmnnMKUKVPYvn07YD1dXHvttZx66qn89re/5bPPPmPMmDGMGTOGk08+mZKSktD+YQWhA1JYWvv7yx+2sdvFGNNWP2HN119/bRYuXGgqKyvNaaed5t6/YMECs2zZMmOMMa+99poZP368qaqqMkVFRcYYYw4cOGBOPPFE43Q6zeuvv26uvPJK97WFhYXm4MGDZvDgwcbpdBpjjDly5IgxxpiLL77YfP7558YYY3bv3m2GDh1qjDHmzjvvNBMnTjTl5eXmwIEDJiUlxVRWVpqvv/7ajB492pSVlZni4mKTkZFhHnzwQWOMMdOnTzffffedMcaYtWvXmjPOOMPk5uaaBQsWmNmzZ5vq6mpjjDHnnHOOWbNmjTHGmJKSElNVVRWSv2Wwyc3NbesuBA0ZS3jiz1jWbnEaptQYptSYlNk1pqLSGcKeGWOa0dWotv06aRqHwxGSdo2PNVTXr1/PsGHD2L59OyeddFKdY7fccgv33nsvPXr04Nlnn8UYw+23387q1auJiIggLy+PgoICRo4cya9//WtuvfVWzjnnHKZMmUJ1dTVxcXEsWrSIc845h3POOQeAjz76iK1bt7rvUVxcTGmp9dU/e/ZsYmNjiY2NJTU1lYKCAjIzMzn33HOJi4sjLi6OOXPmAFBaWsoXX3zB+eef726roqLC/fv5559PZGQkAJMmTeLmm2/mkksuYe7cuaSnp7fgLyoIxzeeFvrhYvjga5gzqW36EraC3lZs3LiRhQsXkpubS3JyMo8++ijGGMaMGeOeAH3wwQc577zz3NcsXbqUAwcO8L///Y/o6Gj69+9PeXk5gwcPZv369bz77rv8/ve/58wzz2TJkiV8/fXXfPzxx7z++us89thjfPLJJzidTtauXUtcXFyDPsXGxrp/j4yMbNb/7XQ6SU5OZuPGjXX25+XlAdCpUyf3vttuu43Zs2fz7rvvMmnSJD744AOGDh3aor+bIByvFNbzVL78oWHOpNAYpN7wyYeulDpdKfWxUmqVUupnSqnJSqkvlFJrlFIjXef0VEr9VymVqZSaH2jHmnusCOTHG2PGjGHjxo0MHjyYVatWMX36dD744AM2btxIfHx8o9cUFRWRmppKdHQ0q1atYvfu3QDs3buXhIQE5s+fzy233ML69espLS2lqKiIWbNm8dBDD/HNN98AcPbZZ/Poo4+626wvyPWZNGkSb731FuXl5ZSWlvL2228D0KVLFwYMGMCyZcvcf0f7HvXJyspi5MiR3HrrrYwbN87taxcEwXdsC/3scdZ2ZSYcLWsbX7pXC10pFQ/8Gpipta507fsMmA0kAk8Cs4BbgT8BnwKfK6Ve11qXh6jfIeXAgQN07dqViIgItm/fzrBhw5o9/5JLLmHOnDmMHDkSpZTbyv3222+55ZZbiIiIIDo6mieeeIKSkhLOPfdcysvLMcbw17/+FYC//e1v3HDDDYwaNYrq6mqmTp3Kk08+2eQ9x40bx09+8hNGjRpFWloaI0eOJCkpCYCXX36Z6667jnvvvZeqqiouuugiFi1a1KCNhx9+mFWrVhEREcHw4cOZOXNmS/9kgnDccsRloY/OgOy9sCsPcg/AkH6t3xeHN6tVKTUduBZIAo4B1wMva62nu46v1VpPUEplAlO01k6l1KPA81pr3UzTbR+F74W8vDz69OnT1t1oktLSUjp37syxY8eYOnUqTz31FGPHjm303HAfiz/IWMKT43Ustz3p5I//gvuucrD8c4PeDl896WD8sJC5XZps2BcfehqQAUwAfgTcDRR7HK9WSsUA0Vprp2tfEZBSvyGl1NXA1QCLFy/mrLPO8qn3bUVVVZXb9xyO3HDDDezcuZOKigrOP/980tLSmuxvuI/FH2Qs4cnxOpa8gi5AJ6guJDYyDogla/dB+iRVhqRvzX3R+CLohUCm1rpSKfUxlqB7TgNEuY5VKaUiXKKeBByu35DW+ingKddLsdAD5M033/T53HAfiz/IWMKT43UsVcayY/unJ5O6y5K16Pju9OnT+hOjvkyKrgNOUko5gDHAViBKKZWslOpLrXCvA05XSkUBpwBbQtBfQRCEsMKeFE3uDEmdrd+LSps+P5R4tdC11geVUsuBz7Cs6iuAPsC7rtfXu079I/ACcC/wpNa6LCQ9FgRBCCPsSdGuiZDkigouOto2ffEpDl1r/TjwuMeuLOC0eufkA+HtFBcEQQgyjVnoxUcNzcxdhgzJ5SIIghAAdQS9kyXibWWhi6A3g6TPFQShOYwxtYIeBi4XEfRmkPS5giA0R3klVFZBTDTExUAXW9DbaFJUBL0RJH2uIAi+UOgxIepwONrcQpf0uU0g6XPDl+M1TWu4czyOZcv3VurcIZfUGGNqU+mqq2pC2b12mD53qtP7SS3ArPbtoUTS5wqC4A3bQk92RbcktbHLJWwFva2Q9LmSPlcQfMUzwgVqBb34WNv0J2x96GZ1REh+vCHpcwVB8JUGgh7uK0WPRyR9riAIvmALetdEaxsfC1GRdvSLISa6dRcXeU2fG0IkOVeASPrc9o+MpfVwOg0REb4JrK9jue8Fw++fMdx2CTxwjeUB6HaOk8PFsH+lgx7JIRH0JhsNW5eL4J2rr77avcBp3rx5TYq5IBzvLF9tSJxhWL46uHZkYanVXnLnWo1ty4lRcbm0Y/71r3+1dRcEIeyprDLc9JjhWDl8usHws6nBs5rr+9DBw4/eBrHoYqELgtChefYd2L3P+j3YItuooLehhS6CLghCh6WswnDvC7VulpAJemLtvrYMXRRBFwShw/L0W7D3oBV9AsG3mt1RLo25XMRCFwRBCB6rv7Gs8ytmWa+DbaHbxS0as9DFhy4IghBEDrnK2Q8fEJo85Y350LuIoAuCIASfwy5BH9jb2gbTDWI8cqEn1WbUqC1yUdr6S21E0AVB6LDYFvrAXta26KglxMHgaBnU1Fj++diYRuLQxUIXBEEIHraF3qsbxMZAVTWUVTR/ja/UX/ZvU1tXNDj38QcRdEEQOiRlFYayCquaUKf44MeHHyyytin1BV0sdEEQhOBiW+cpIaomVHDE2qal1N0vgi4IghBkbP95NysJadCX5BcctrZpXevulzh0QRCEIONpoUPwXS5NWehdElz3EQtdEAQhOBxy+bhtCz05yBb6vkNWtExa17rJviQ5lyAIQpA57FrF2cBCD7EPvXM8OBxWWGN1devGoougC4LQIalvoQfbt+0W9Ho+9IgIh3u1aElZcO7lKyLogiB0SA6XWNZxSqLlErFXcBYGaQVnU5Oi1r2sbWtPjIqgC4LQIWlgobeSyyUU9/IVEXRBEDokDXzoQXS51NQY98Ki1MYs9DYKXfRagk4p1R9YB2xx7TofOB24CSgDFmitc5VSQ4GnXG3eobX+OBQdFgShY/HVVssFcuqw4BZUDqWFfrAInE6r7eiohv2286PbsfCtha81RT/TWp8HoJSKAm4GpgHjgDuAa4D7gUVAAfAeIIIuCEKzFBw2TPulIS4GDr9tTSgGC9tC79bF2gYzbLGpCVGb9FRrm3sg8Hv5g68ul0lKqc+VUvcDg4BtWutKrXUmMMp1Tm+t9U6tdTFwWCnVPRQdFgSh4/Dcu1BRabkmSoMcEWJb6CkuQQ+mG6S5CVGAfqnWF9OegtYNW/TFQs8HMoBjwNPAXMDzQSLStfX8cigCUoCDng0ppa4GrgZYvHgxZ511Vst63UpUVVWRl5fX1t0ICjKW8OR4HkuNE55Y3gNbhnZk7aN3N2dQ+mIMHCrqCTgoK91LXiWUlUYCqRwuqiYvr3nT2dtYtmXFA8l0iSsjL6+wwfHOMXFAV3bkNH48EPr06dPkMa+CrrWuACoAlFL/ARYCnt9xNa6t5zuRBBxupK2nsPzsAK2f/d1P8vLymv3jtSdkLOHJ8TyW99YafjhQKwMJiT3p0yc4LpfSY4aqGkN8LGQMsPoU08kAhtKKKK/99DaWKqy2+veJp0+fTg2OjxlqHT9Q0vjxUOHLpGii1trljWIK8A5wrVIqBlDAJtexfKXUicB+IEVrfbBha4IgCBZPrqhr0wUzIsSdmKtL7T57UrSw1Cpy4XC0/Muj4Ihr2X9K4230S7O2ewpafIsW4YvLZbJS6l4sl8v3WJOg5cCnru0C13m/A5ZiuWDuDHZHBUHoOOw/Ynj7S4iOgmH94ZtdUHwseO27E3N5CHpMtIO4GEN5JRwrt3KktxRvPvTe3SAiAvIPQWWVISY6uBE8TeGLy+U9rKgVT151/XietxXLghcEQWiWHXussL/xJ0F6D5egB3ERTmMWOlgTo+WHrUiXgAS9mUVFAFFRDvp0N/ywH/IOwIDeLb+XP8jCIkEQWp38Q9a2d7fQrKpszEIHj9DFAN07+7xY6ODhdtkf2L38wdc4dEEQhKBhC3qvblaJOGglCz1IXx7eXC4AfV2x6K3pRxdBFwSh1cl35RLv1c1BlSvFbPExAwTH19yUhR4MQXc6DQeaWfZv068NBF1cLoIgtDqeFnpSZ0vEgxvlYn1JdOvSRPGJAO51qBhqaiz3TWxM019A/dJaf3GRWOiCILQ6ez0E3bj0LtRRLlA3dLGluN0tTUyI2ogPXRCE4wJPC/1oufV7qOPQITguF18mRKFtYtHF5SIIQqvjKeh2UeVgWuj7XWGFPZLr7k9OtN07LXeD/Psj69rhA5o/z1PQjWkdt4sIuiAIdaiqqmLZsmX87Gc/48QTT+Trr78OavsVlYbDxRAZaQmuXa4tmFEudpZDO+uhTaAWevZew/MfWH2/+YLmJ3CTO1v1RUvLAnPx+IO4XARBqMONN97IE0884X69YsUKxo8fH7T2bZdFzxQrXW5SJ8t6DVYcelW1If+QVai5V7e6xwIV9PteMNTUwMKZkJHevKA7HA76pRm25lhWetfElt3TH8RCFwShDrZFPnHiRAAKCoLrBPZ0t0DwLfR9h6yJ1p4pDYtP2AuLjpQ0cqEXPK3z313qW3hla/vRRdAFQajD999/D8Bll10GhFDQXVEiwV4p6na39Gh4zI5MKWiQC9Y7K9dY4Yrnn+7dOrex+9BahS5E0AVBcFNcXMzhw4eJi4tj1Cirdk2oLfRO8ZZ75Fg5VFcHPnnYnKDb97TDJv1hV57Vt/En+b74yZ6UteuPhhoRdEEQ3OTk5ADQv39/evXqBQRf0PcetFeJWq8dDofb7VIShKpFTU2IguWGActCdzr9+/LI2mttB/by/ZoeyZb4HyyUKBdBEFoZ290yYMAA0tIsB3BBQUFQw+5qLfRaS9ftdglCNEjufquv6T0aWtKxMQ5SukB1jf9Wc7ZL0E/0ox5Jd1eB6gNioQuC0Np4WugJCQl07tyZiooKiouDV76+vssFghuL3pzLxfO++X64XWpqDN/nW78P9CMVrtvlUuj7NYEggi4IghtPCx2oY6UHi3zXhGRvjzLydo6VYES6hELQcw9AVbXlskmI892HLha6IAhtRqsIejMWejAiXZrzoXve1x9Bb4m7BcRCFwShDbFdLvUFfd++fUFpv7rasP+IFdXimQslWLHoNTWGva5qxr27NX6OvX+vH1WP7QnRE/2sPGRb6AeLWmf5vwi6IAiAJTi2hd6/f38g+Bb6/kJr0U+PZKtMm02wYtH3H7EmPHskQ1xs464RezLWzsnuC9l7rXMH9vYvX3uneAfxsVBeCUeDEMHjDRF0QRAAOHz4MCUlJSQmJpKSYsX3BVvQG3O3QPAsdG/+c897++Nyycqztv66XKCulR5qRNAFQQDqulscDssSDbagF3jkcfGkSyfrfsVHA3NLhEzQW+hygVo/+oFC+GaXYf4fnDz9VmjcLyLogiAANHC3QPAF/UChta2f1jZYLhdvE6IQ2KSoPyGLNp4W+je74OUPYdUGEXRBEEJI/QgXgJ49ewLBE3Tb7WCLnE3QXC7NLCqy8Vz+78tE5ZESw5ESK0VBczVEm8LTQrd98QP8WG3qDyLogiAADSNcIPgW+sEiS9C6J9Wr9RlsC70Zl0uneAeJCVBZ5VvWRbf/vDduV5Q/eFro7sVJvYJTDLs+IuiCIACNW+jBXv5vW+j1XS6tOSkKtYuafHG7BOJugdp8LgcKDdkuQRcLXRCEkJKbmwtA37593fs6d+5MQkICZWVllJYGnmilSZdLkJb+/+AqyNycDx3886MHMiEKdS30QL8cvCGCLggCAPv3W2poW+U2wXS72JOi9QXdXvofSHKuIyVWvpWYaDghrflzmxP0R5YZLr4vhZJj1hPJjj3W1tcc6PWxn0ZyD1iLmSIjvT9BtBQRdEFoR6xdu5aDB/1Y4ugjTqfT3W737t3rHAumoLst9OS6+4Nhoa/dYm3VECurYnPYxTXqC/q+Q4Zb/2H4fHMs739l7du4y9qOPrFl/bK/vPR2a3tCWt1FVcFEBF0Q2gnbtm1j4sSJTJgwgZKSFtRQa4YjR45QU1ND165diYmJqXMsmMv/m3K5uC30AHzomd9alvRpI7yfa68WtXOz2zz0mqGi0vp97RZDRaVhy/dWqoJRLRT0+kUuQuU/BxF0QWg3rF+/HoCsrCx+9atfBbVt293So0dDX0CwLPSaGsPhYkscU+oVTI6LgahIqKiEisqWTb5mbra2k0Z6t34bc7kcKTH8/c3a12u3wtYcK5XA4L5WdExLqP80Eir/Ofgh6Eqpi5VSB1y/n6+U+kIp9bFSKt21b6hSarVr/5mh6rAgHK/s2rXL/ftzzz3HG2+8EbS2bUFPTW04mxgsQT9SYuVx6ZrY0OVQp2qRj24XYwx3POPkzc8NVdWGr7dZ+32z0K2tp6A//h8oLYPxJ1mv//cdfOVq8+RBvvWpMVISrS8xmwEhClkEHwVdKRUJnA/8oJSKAm4GTgeWAHe4TrsfWATMAO4Jek8F4TjHFvSJEycCBNVKb07Qg7W4qCl3i42/sejfZsO9L8DFdxveyrRqkg5Kh9Su3gWzr2uYe/bX7ntihfVkcP/VDjJ6V1NRCUvfs/aNyWi5CEdGWlWSbPwpYecvvlroFwPLACcwCNimta7UWmcCo1zn9NZa79RaFwOHlVLdm2hLEIQWYAv6Aw88QFxcHLm5uUEJJQQ4cMAK4G7OQg/Uh95UhIuNvd/O9+KNfS7rurwSrvij7/5zgH5pltWce8BK6VtUaqXdjY+F6WNh7CDLkf7VVuv8QCx0gB4eY25TH7rLOr8AeNW1qyvgWY8qspG2ioB66XcEQQgEW9AHDRpEeno6AD/88ENQ2m7Oh24Xiw5U0L1Z6CdYDwLs9vFBwDN7oR3u6Iv/HKwomN7doabGEvUc19D697TcP2MzquqcPyZAQff0o4fShx7lwznzgde01k6lFEAh4PEAQY1r6/TYlwQ0+J5VSl0NXA2wePFizjrrrBZ0ufWoqqoiLy+vrbsRFGQs4YmvYykqKuLgwYPExcXhdDpJTU1l165dbNiwgS5duni93hv2KtGYmJgG/bGXu+fm5jbbV29j2ZkTDySTEHOMvLyGuWS7dUoEOrNpRxFTT/Lud9m5OwFIIi7GUF5p9TEjdT95edVerwXondKNvAMxrNt8kOKjDiCFXl3Lycs7wsgBYMkYpHWtoerYfvICCKnsHNsViKNTnJPy0gLyAojm6dOn6Ry+vgj6MOBkpdR8LHfLL4CTlFIxgAI2uc7LV0qdCOwHUrTWDYJltdZPAU+5Xoa+fEeA5OXlNfvHa0/IWMITX8diW8e2dZ6RkcEXX3xBWVlZUP4Wx45ZajV48OAG7dm50Q8cOEDv3r2bzGfibSw1EQYwnNArgT59Ojc4PjzDOn6krAt9+iR77XO1y4ZcPNfBijXWgqJp41KJiPDNSh/cz8m6HVBa1Z2SSgDD0P5x9OnTh+qaPDrFW0UpThkSGfDfuG9Pq68n9okgPT10n12vgq61vtX+XSmltdbXKaUuBD4FyoEFrsO/A5ZiuWDuDHpPBeE4xna3ZGRkALXL81vD5RIfH09SUhJFRUUcOXLELfD+crCw8cRcNv39dLnYPvkBvRx8uxQiI/BZzK3rrG3OPkNhSW1bYIVQjhsKn24I3H8OtbHoofSfg28WuhuttXJtX6XWp24f2wpMCV7XBEGwaS1Bb2xSFCw/elFREfn5+S0WdLvyff24bBu3D91HV71nbnVvK0Mbo39PB2DIya/NuugpuJfPdLA523De6YGHGVpfFIYRA7yeGhB+CbogCG1DqAW9uSgXsEIXt2/fTn5+PsOHD2/RPezK901Oirryr+Tss2LMvaWq9TbJ6o3+LvH+Ph8KXZOqnoJ+2QwHl80ITsz4pWdDSqKDH6mgNNckIuiC0A7YuXMnEBpBr66u5tChQ0RERDRpfduRLvn5+S2+T1Opc22SOjtI6mwoKrXObeo8m6aqH/mK7eLxFPT+IXKJxMY4mDstNG17Ikv/BaEd0JyFHmiecjspV7du3YiMjGz0nGCELvpiUff3w+0SqIXeNxUiIqywxdIyKyd710Tv14UzIuiCEOaUlJRQUFBAbGysO/48KSmJzp07c/ToUQoLCwNq35v/HGpXiwbDQm9OgD3dLs3hdBoOuVbDdGuhoMdEO+jjsfxxQK+WVSQKJ0TQBSHMycrKAmDgwIFERFj/sg6Hw22l79mzJ6D2vfnPIXCXS0WloeSYFT1i52xpDF8nRo+UgNMJyZ0hOoBUtPYTAYQ+AqU1EEEXhDAnOzsbgBNPrJu/NVh+9OZCFm0Cdbl4WufNWcFW5AnsLmjejRSo/9zGU8Q9xb29IoIuCGGOvfrSszSc5+tgCXooXS7eJkRt3C4XL7cJ1H9u4zkJGsosiK2FCLoghDl791qFKHv3rpsEJFiC3houF18F2Nd8LsGy0O0nAhCXiyAILj766CMeeOABnE6n95P9pClB79evH9A6Frpdyai4uNidJsAf3DHoyc2f56ugB81C79n47+0VEXRBCAI33ngjt99+O++9917Q2w61he6LD93hcLjdLr740f/1oWHaL5zuEm923nFvAtw9CRLirOyJhSUN/ejlFQan04TEhy4WuiAIGGPIyckBYNmyZUFvv7UEvTkLHfxzu/xjpWH1N/DwMkuUX//U2k4Z1byf2uFwuP3o9a30rTmG5NmG2/5hOOAlL4yv9E21ystNGA6dE8SHLgjHPUeOHHG7Id58800qKiqC2r43Qc/NzfXZ1WOM4U9/+hOZmZnufb740ME/Qd/jEuPn3oVNWVZ5uC6d4Kc+ZHtqKnTxjc+smqNPv1VbOi5QCz0y0sHm5x2seaz9izmIoAtCwHhayEVFRXz00UdBa/vYsWMUFhYSHR1Nt27d6hxLSEggJSWFyspKtyh7Y+3atdx6663MnDmT77//ntzcXHJzcwHvgu6ry6WmxpDr6s6hIvj5PZY1ff7pEB/rXTj7ubrxw/66+z/baLVTWArvfWXt8+aT94XoKAeRkSLogiDQ0OXx2muvBa1t2xpuKg+5v24X+7ySkhLmz5/PeeedR3l5OTNmzCA5ObnZa3210Pcdhuqa2tdbrNoZXPpj30SzX5p13h6PWPTKKsMXm2vPKXYViOgR4KRoR0MEXRACxLZwJ0+eDMCKFSuC5nbxFPTG8LcUnad1/cUXX/DVV1/Rr18/XnjhBa/X+irotrtlSD/oHG/9fkJPmDKq6Ws8aayA87rtUFZR255NMCz0joQIuiAEiC2mZ555JqNGjaKoqIhVq1YFpe2m/Oc2nn50X7AF/cwzz8ThcBAbG8sbb7zRbISLja+Li2xXybAT4LIfW78vmOF78Yl+aXXbAfhso7Wdfzake3Q1UB96R0MEXRACxBb0vn37Mn36dAA2btwYlLZ9FXR/LfQLL7yQzMxM1q1bh6tWsFfsuHc7oqcpbAu9Xxr86ToHL/7ewe3zffdR24K+xyPKxfafnz7G4Z5YjYluaLEf70g+dEEIENs67tu3rzvaZOvWrUFpO1SC3rNnTyZOnOhXXwYOHAhYBaWdTqc7UZjTafjXR/D+l11Y+jvDnv2W+PZLc9Ap3sH8s/26jTsDYt5BqK42GCDT5T+fNgZ6JDt47D+GtK7tPztisBFBF4QA8bTQExISANi2bVtQ2vYm6LYP3V+Xi+0+8YfExERSU1PZv38/e/fuJT09neLiYrp06cJd/3SSldeJGy+oa6G3hNgYBz1TDPsOW+GJew9ZxZqH9IOe3RykdjXcfimMGCBiXh9xuQhCABhj3GKanp7OSSedBFiCHow0AKG00FuCbaVnZWVhjGHgwIH07NmT04aVA/DJeg9Bbz4Kslncbpf9sPob6/dpo61tRISD+66K4OIfiaDXRwRdEALg4MGDlJeXk5SURGJiIt26dSMtLY2jR48GpTycrxZ6Xl4eNTU1jZ5j43Q6fV4V2hR2Ct+srCz27dvHoUOHKC8vZ+bEOAA+WW/c0SkttdDBI9KlANZtt1w4E0eIgHtDBF0QAsDTf27jaaUHijdBj4uLo0ePHlRXV7vFuikOHTpETU0NKSkpxMbGtqg/tqBnZ2fz7bffAjBq1Cimj7XEdvU31mKimGhI7dqiWwB1I130dut3NaTl7R0viKALQgB4+s9thg0bBgQ+MVpSUkJJSQnx8fEkJTW9gsbXWHTb3ZKW1nLT2dPlYgv6yJEjSUtxMCS9ivJK6zyrXmfLLep+qda1G3Yavs+3EnYN7dfi5o4bRNAFIQBsEbVFFYJnoXtbJWrjqx89UP851HW5bNq0CbAEHWDSiMraPgXgP4daC/2dL63tyYMgKoBSc8cLIuiCEAChtNC9uVts2kLQ67tcACYNr10dG8iEKNR+IZS4Uq+Lu8U3JGxREAKgMR+6p6AbY1ocK+2voHsLXQyGoPfs2ZP4+HgOHTpEUZFVZWLEiBEATDipkogIq3hzIBOi0PB6NVSsc18QC10QAqAxl0taWhrJyckUFhZSUOCl9I4Hb7/9NosWLSInJwdjDB9++CFQm0OlKfz1oQci6A6Hw+1Hr66u5oQTTqBLly4AJHUyjB1snWcn2GopPZIhNqb2tVjoviGCLggB0JjLxeFwtMjtcvfdd/Pcc88xatQoZs2axdKlS4mKimLu3LnNXtecy2XDhg0MGjSIZ555JiiCDrVuF6h1t9j83yUOJo2EOacFdAsiIhzunC2JCVYRCsE7IuiC0EJqamoadblArdvFn4nRrKwswIpuef/990lISOCtt95iypTmq0I05XKpqqri8ssvZ9euXSxZssQt+IEKum2hQ+2EqM3caQ7WPB5Bz26Bu0hsP/wpQwKLmDmeEEEXhBayd+9eqqqqSEtLcy/5txk6dCgA27dv96mtwsJCjhw5QkJCAs8++ywzZ87kk08+YcaMGV6v7dOnj7s/nouLHnroIb75xlpmmZ+fz5o1a4DgWuj1BT2Y2H50cbf4jtdJUaVUGrAcqAJqgEuAE4E/AU7gOq31t0qpnsALQCfgCa31SyHrtSCEAXbWwf79+zc4NmjQIAB27tzpU1vff29VgRg4cCBXXHEFV1xxhc/9iImJIS0tjYKCAvLz80lPTyc7O5u77roLgJ/85CesXLkSY6wVl4HEodt9tKnvcgkml5zlYN12w4IZYp37ii8W+kFgstZ6GpZgLwLuA2YDPwf+6DrvViyRnwbcoJSKC353BSF8CKagZ2dnA3XF0h/qp7Z9+umnKSsr46KLLuKf//wncXHWv2NERATdu3dv0T1sbAs9JibGPc5QcNY4B1teiGDEQBF0X/Eq6FrrGq21nWUoEcgCarTWR7TWe4AU17HxwCda62pAAyNC0WFB8Iddu3bRp08fHnrooaC3bVvVAwYMaHBs4MCBREREkJOTQ2VlZYPj9QlU0IcMsfwStotny5YtAMybN4+UlBQuuugiwMrhEhkZ2aJ72AwaNIgrr7ySO++8k+jo6IDaEoKLTz50pdQYpdRXwGLgC6DY43C1UioGiPYQ/iJqhV4Q2ox3332XvXv38tvf/pbNmzd7v8APmrPQY2Nj6devH06n0y38zRGooNePqrGF3fblX3/99TgcDvcq1kCIiIjg6aef5vbbbw+4LSG4+LSwSGu9EThVKXUB8Dugi2cbWutKpVSVUirCJepJwOH67SilrgauBli8eDFnnXVWoP0PKVVVVeTl5bV1N4LC8TqWDRs2AFbM9IIFC3jzzTfdhRkCZceOHQB07ty50f7069ePnJwc1q5dS+fOnRttwx6LHQ2TlJTUovfJzp64YcMGsrOzyc7OJiIigoSEBPLy8ujduzcrV66kZ8+eIfscHK+fsdbGngRvDF8mRWO01vYzYxFQCkQppZKxXDC2cK8DTldKrQZOAX5bvy2t9VPAU66Xpv7xcCMvL6/ZP1574ngdi50PxeFwsH79et566y2uv/76oPTDblsp1Wh/RowYwerVqzl8+HCT/bXHYovHuHHjWvQ+2aGN2dnZlJeXU1NTQ0ZGRh2LP9Tv//H6GQsnfDFVxiilViulVgG/Ah4Efg+8C7wC/J/rvD+6fl8NPKm1Lgt+dwXBP+xJybvvvhuARx99NCjtVldXs2fPHgBOOOGERs/xdWK0pqamWfeNLwwcOJCYmBj27NnDunXrgFp3i3D84NVC11p/DUyttzsfOK3eeflAePtQhOOKyspKcnJyiIiI4MYbb+Suu+7iu+++o7y83B310VLsghK9evVqsi1fBT03N5fq6mp69+5NfHzLqh5HRUUxePBgNm/ezJtvvgmIoB+PyMIiocNiFzPu168fXbp0ISMjA6fTyXfffRdw275Y1IMHW4lNmhL0mpoaKioqAp4QtbEnRt9//31ABP14RARd6LDYQmpbysOHDwdqQ/oCobmQRZv+/fsTGRnJnj17KC8vr3MsNzeXYcOGMXnyZD755BMgcEG3I1jse4mgH3+IoAsdlvqCbluwwRB0Xyz06OhoBgwYgDHGbYUD7N+/nx/96Ed899135Ofnc++99wLBs9BtRNCPP0TQhQ5LKC10Xycx6/vRa2pqmDVrFjt27GDkyJF1rg+WhQ7QvXt3unXrFlB7QvtDBF3osNi+8rZyuXje2+7L1q1b+d///kdqaioffvghzz33HImJiUDtas+WMnjwYHeMfTAWEAntDxF0oc3Ztm0bjzzySJ1MgcGgvoU+ZMgQIiMjycrKauDT9peWWui26+WUU04hLS2NwYMH8+mnn/Lkk08ybty4gPoUGxvrzrMi7pbjEylBJ7Qphw4d4swzzyQ/P5+BAwcyZ86coLRbXl7ODz/8QGRkpNuKjo2NJSMjgx07drBjxw5Gjx7tV5ulpaW88847fP311+Tm5uJwOBrkQa+PHeliryptLKJl7NixjB071q++NMWwYcPYuXNnwNa+0D4RQRfaDGMMV111lXvF5aZNm4Im6FlZWRhjGDBgQJ0EUsOGDWPHjh1s2bLFZ0EvKipi8eLFvPHGG5SV1a6XGzNmDLGxsc1ea1vKtqDbRSwC9Zc3xU033URVVRXz588PSftCeCOCLrQZzz77LMuXL3e/9qdcmzfqu1tshg8fzvLly/3yo//nP//hpZes9P6TJk1ixowZjB49mmnTpnm9Nj09nfj4eAoKCigsLHRb6J5FIoLJtGnTfOqX0DERH7rQJhhjWLJkCYA7t4o/5dq8YVvEjQk6+DcxavdryZIlrFmzht///vfMmTPHXRy5OSIiIuq4XYK1iEgQGkMEXWgTtmzZQn5+Pr169XLHYW/fvh2n0+nlSt/YuHEjQAO3ii3o/jwN2BEq9eO8fcV2u2zbts3n6BhBaAki6EKb8PHHHwMwffp0unbtSq9evSgrK2P37t1Bad9OmztmzJg6+wcPHuyOdDl27JhPbdnWfksnGu3rPvnkEyorK0lLS2syna4gBIIIutAm2IJ+5plnArVx08Hwox89epTvvvuOqKgot0VuExsby9ChQ3E6nT65Xaqrq90TmS0tt2YLup1jRdwtQqgQQRdanerqaj777DOgVtBtd0Yw/OjffvstxhiGDRvWaBSK7Yb55ptvvLaVk5NDVVUV6enpdOrUqUX9sQX9wIEDgAi6EDpE0IVWR2tNcXExGRkZ7uLGwbTQbXfLySef3OhxfwTd9p8HEtdd/9pQRbgIggi60OrUd7dAcC10e0K0vv/cxh9BD9R/DlaJOs/qN2KhC6FCBF1olqqqqqC32Zige1roxgRWnbCpCVEbW9A3bdrU5L0qKiqAWkG3Qw9biucXggi6ECpE0IUm+e6770hLS2Px4sVBa/PgwYNkZmbicDg444wz3PtTU1NJSUmhuLiYvXv3trj96upqvv32W6BpQe/ZsyepqakUFRU1GlWzbNky4uPjefzxx4PicoG6uVXE5SKEChF0oUnuv/9+jhw5wooVK4LW5tKlS6msrGTmzJl0797dvd/hcLit9EDcLjt27KC8vJz+/fuTnJzc5HmjRo0CGrpdjDHcddddGGO45ZZb3NZ+oIJuXx8XF0fPnj0DaksQmkIEXWiUPXv28PLLLwNWdZ3CwkK/rv/hhx84++yzOe+887jnnnvc5eCeeuopAK699toG17SkAMX27dv59NNP3a9t/3lTE6I2TfnRP/roI/fEbFlZGYWFhcTGxronb1uKLegDBgxwp7gVhGAjnyyhUf785z9TXV3tfu1vDvFXX32VDz/8kDfeeIM777yTU089lX/84x/s3LmT9PR0Zs6c2eAa20Xyv//9z+f7zJs3jzPOOIOVK1cCuMu5NeVusWlK0B9++GEAfvnLX7ot/IyMDCIjI33uU2NMmzaNefPmcdtttwXUjiA0izGmrX7Cntzc3LbuQtDwZywFBQUmLi7OAGbcuHEGME8++aRf97v++usNYC6++GIzbdo0A7h/7r777kavWbdunQHMkCFDfBpLdXW1iYqKMoDp3r27efzxxw1gIiMjzfr165tt45tvvjGAOfHEE937duzYYQATFxdnDhw4YJ599lkDmMsvv9yvsfvD8foZC3fCfCxN6qpY6EIDHn30UcrLy5kzZw4XXHABAJs3b/arDTtnyYUXXsg777zDqaeeCkBkZCSLFi1q9JpRo0YRGxvLjh07fHLx7N+/3/0UcfDgQW644QYAHnzwQa8ul6FDhxIdHU1WVhYlJSUAPPnkkwBceumldO/enSuuuIJ169bx0EMPeR+wIIQBIuhCHUpLS3n88ccBuPXWWxkxYgTQckEfMGAAnTp14p133mH27NksWbKkTky2JzExMW4h1lp7vUdeXh4AJ5xwgrt+5oUXXsivfvUrr9fGxMS4J0bte9m++EsuucR9nlKKpKQkr+0JQjgggi7U4bnnnuPIkSNMnDiRSZMmuQXdXk7vC8aYBiXaunXrxttvv+1OmdsU48ePB+Drr7/2ep/c3FwARo4cyYcffsh9993Hs88+i8Ph8KmfEyZMAOCrr76irKyMTZs2ERERgVLKp+sFIdwQQRfcVFdXu90Lt9xyCwB9+vQhKSmJQ4cOUVBQ4FM7+/bto7y8nJSUFJ9yhnvSEkFPT0/n5JNP5vbbb/cr34ot6GvXrmXDhg3U1NQwYsSIFudsEYS2RgRdcLN8+XJycnIYNGgQP/nJTwArPtxft0sgOb9tQf/qq6+8PhF4CnpL8BT0r776qs79BaE9IoIuuFm1ahUAixYtqhOm56+g2+6Wlgh6RkYGycnJ7Nu3zy3YTRGooJ944ol069aNgoICli1bBoigC+0bEXTBjb1Cs36Vn9a00B0Oh89ul0AF3eFwuK30L7/8EhBBF9o3IuiCG3uFpL0E36Y1BR1whziGWtCh1u0CkJCQ0KAghiC0J0TQBQAOHTrE/v376dSpE3379q1zzBb0TZs2UV5e7rWtQAXdDl1sLr2tMcYt6E2FQfqCp6CfcsopREVFtbgtQWhrvH56lVLjgUeAKiAPuAz4KXATUAYs0FrnKqWGAk+52rxDa/1xqDotBB/b3XLSSSc1yDXSvXt3xo4dy/r16/n444+ZPXt2s20FKuhNLcs/evQoS5cuJSoqinnz5lFRUUFycnJA9TnHjRuHw+HAGCPuFqHd44uF/gMwXWs9FcgBzgVuBk4HlgB3uM67H1gEzADuCXZHhdDSlLvFxo56sXOmNEV1dTV79uwBrAU/LaF///4kJiayb98+9u/fD8Dzzz9PRkYGixcv5rrrrnNHpQTibgFISkpyJwUbN25cQG0JQlvjVdC11vla6zLXy0pgCLBNa12ptc4ERrmO9dZa79RaFwOHlVLdG2tPCIxHHnmEc889l3PPPZebb765TgKtQLAtdFvc6mML+ltvvYXT6WyyndzcXGpqaujduzdxcXEt6ktERESd9LabNm1i4cKF7Nu3j9jYWIwx/PnPfwYCF3Sw0gQvXLjQPUZBaK/47DBUSp0AnA3cBvTwOGTHt3l+ORQBKcDBem1cDVwNsHjxYs4666wWdLn1qKqqci8vDwcOHjzYYFn7sGHDGs1cWB9vY7HzfqempjZ6Xo8ePejVqxf5+fm89957dbIZVldX88UXX5CZmem+tk+fPgH97TIyMsjMzGT16tXuePRzzz2XmTNncu2117qX6Xft2jXg9+iUU07hlFNO4fDhwwG10xLC7TMWCDKW1qG5OSOfBF0p1QV4EViIJeCey/9qXFtPsy0JaPDfobV+CsvPDlbmvbAmLy8voAm3YPP5558DVmjduHHjePzxx1m5ciVXXnml12s9x7Jt2zZKS0vruBiys7MBmDJlSpNj/tnPfsbf//531q5d6/aj/+c//+H6669vsIp09OjRAf3tTjvtNJ5//nlycnI4cOAAYOVp+dnPfsZvf/tbiouLAas0XDi9R/4Sbp+xQJCxtD1eXS5KqSjgFeBurfUOYCdwklIqRil1GrDJdWq+UupEpVQikKK1PthEk0ILsWtxzp07lyVLlhAVFcW7777Lvn37fG7j2LFjTJkyhdNOO42dO3cCUFJSwg8//EBMTEyzE5nnnnsuUNePft9991FQUEBGRga33XYbDz74II888gj33ntvS4boxna5rFu3jtWrVwNwxhlnEBcXV+eJJBguF0HoKPhioV8MnArcoZS6A3gCeBj4FCgHFrjO+x2wFMuCvzPI/RSoW1w5NTWVWbNmsXLlSl566SV+85vf+NTGK6+8wqFDhwArzexTTz3F9u3bAauqTnNhe9OmTSMxMZFNmzaRk5NDcnIyGzZsICYmhm+++YaEhIQAR1jLyJEjcTgc7iLNw4cPd5dumzt3Lq+++ioggi4IdWguWXqIf8KecEpyn52dbQCTnJxsqqurjTHGLF++3ABm2LBhxul0Nnu9PRallLvQRExMjMnLyzNLly41gLngggu89mPevHkGMI899phZuXKlAcyUKVMCH2AjDBo0yN3XX/7yl+79u3fvNn379jWA2blzZ0ju3VqE02csUGQsrYYUuGjv2Nb5GWec4c6zMnv2bHr06MHWrVt9yh+utUZrTdeuXZkzZw6VlZXcf//97rabinDxZM6cOYAV7WJPTE6bNq0lQ/KKZwqCM8880/17ZGQk77zzDsuXLycjIyMk9xaE9ogIejvB091iEx0dzfnnnw/A+++/77UNuyLPwoULufvuuwF4/PHHefHFFwHvdTgBZs2ahcPhYNWqVbz77rsAnH766T6Pwx9sQY+IiGjwpTFy5Eh++tOfhuS+gtBeEUEPI3bv3s3ixYvJz8+vs7+6utpd/NhT0AGmT58O1FbbaYrs7GxeeuklAK655hpOPvlk5s2bB1i5U5588knOOeccr33s0aMHEyZMoLKyku3btxMdHc3EiRN9Gp+/2IUmJkyYIFWDBMEXmvPHhPgn7GltP9rixYsNYK644gr3vpqaGjN//nwDmAEDBjTwle/fv99d2Li8vLzRdp1Op5k0aZIBzGWXXebeX1FRYfbv3+93P++//363b3vy5Ml+X+8rTqfTPPHEE2br1q119oe5f9MvZCzhSZiPRXzo7QF7cc9rr73G0aNHMcZwww038NJLL9GpUyf+9a9/NSiv1qNHD0aMGEF5eXmT2QlfeOEFMjMz6datG3/5y1/c+2NiYujRo0ej1zSHpyUfKncLWOltr7322ibTEQiCUBdJLRck9uzZwwMPPEBZWRlRUVHccMMNXivPe+J0Otm0yQrpLy0t5Y033gAsv3dsbCxvvfVWncyAnpx++uls3ryZTz/9lClTptQ5tnHjRm6++WYA/vrXv9K9e+AZGUaMGEH//v3JycnhjDPOCLg9QRCCRHPme4h/wh5/Hruuu+46txsCMKNHj/YaSuiJHZZo/4wbN8706NHDAOa5555r9trXX3/dAGb69Ol19n/wwQemc+fOBjA/+tGP/OqPNzIzM83DDz8c1DZ9Jcwfh/1CxhKehPlYmtRVEfRm8OdNtWOm7733XtOzZ08DmHfffdfn6+2Y8gkTJpj4+Hi3sE+ZMsWraDbmR9+8ebOJiooygPn5z39usrKyfO5LuBPm/2x+IWMJT8J8LOJDDyV79uxh586ddOnShVtvvdXt4rj//vt9bsPO/T1lyhR39ElUVBRPPPFEA795fRrzoy9btozq6mouuOACXnzxRWJjY1syNEEQ2hEi6EHAjhGfNm0aUVFRXHvttSQnJ7NmzRrWrFnjUxu2oI8ePZqbbrqJxMRE7rnnHp9Lotm+7HfeeQeA//73vwDMnz+/QcEKQRA6JvKfHgTqL/pJTEzkF7/4BWDlS/EFW9BHjRrF2LFjKSoq4v/+7/987oNt1b/yyiscPnyYr776iqioqJBGoQiCEF6IoAeIMabRVZzXXnstAJ988gk1NTWNXmtTXFxMdnY2MTExDB06FMCrm6U+U6ZMoW/fvuzevZs//OEPOJ1OJk2aRGJiol/tCILQfhFBD5Bt27axb98+0tLS6rhHevfuTf/+/SktLWXLli3NtvHtt98CVi6V6OjoFvUjIiKCiy++GIC//e1vAJx99tktaksQhPbJcSHo+fn5ZGZmkpmZyQ8//BDUtm3rfPr06Q2santJ/Nq1a5ttY8WKFUDdZFQt4ZJLLgFwl4j78Y9/HFB7giC0Lzq8oB85coThw4czefJkJk+ezNChQ9m9e3fQ2rdzqNTPsQK4FwI1JehOp5ObbrrJ7WefO3duQH0ZNWoUI0aMAKBbt25+LWwSBKH90+EF/Z///CdHjhyhZ8+e9OvXj2PHjtVZ/h4Ixhh3WbipU6c2OG4L+pdfftngWHl5ORdeeCEPP/ww0dHRvPTSS0EpUjx//nwAZsyYIdEtgnC80VyQeoh/Qk5NTY0ZOHCgAcyKFSvMpk2b3AtwCgoKvF7vubjg3//+t3nzzTfrHN++fbsBTFpaWqOLfyoqKkxsbKwBzOHDh937Dx486E6W1aVLF/Pxxx8HMMqG93z00UfN3r17mxxLe0fGEp7IWFqN43Nh0XvvvUd2djb9+/dn9uzZjBw5knPOOYfy8nIeeeQRn9vJysri4osv5qc//SnPPfece78dYz558uRGo1JiYmI45ZRTAOokzrrsssvIzMwkPT2dzMxMdwrcYBATE8PixYvp1atX0NoUBKF90KEF/bHHHgPg+uuvd1f5uf322wGrsENRUZFP7dj1KwGuvPJK92vb3VI/IZYn9d0ulZWV7onUNWvWuH3egiAIgdIhBL28vLzBvl27dvH+++8TFxfHFVdc4d4/ceJEpkyZQlFREa+//rpP7dsCPnPmTIwxXHrppezYscMvQbcnRjdt2kRFRQVDhgzhhBNO8G2AgiAIPtDuBf2xxx4jPj6en/70p3XivZ966ikALrroIrp161bnmksvvRTAnaK2ObZu3cqmTZtITk7mzTffZMGCBVRVVXHVVVeRnZ1N586dGTVqVJPX26GLX3zxBVVVVW7Xy/jx4/0bqCAIghfataA7nU53xMqKFSsYOXIk//jHP6ioqHD7uu0Vm56ce+65RERE8NFHH1FYWNjsPWzrfO7cucTExHD//feTkJDgts5PO+00oqKaTiufnp7OsGHDKCkp4fPPPxdBFwQhZLRrQV+zZg05OTmkp6dz/fXXY4zhxhtv5A9/+AOHDh1izJgxjQpnamoqU6ZMoaqqyp3MqjGMMbzyyiuAZemDtQL017/+tfuc5twtNnPmzAHg7bffFkEXBCFktGtBf+GFFwArauTxxx9n0aJFVFRUcN999wGWdd5UThQ7mVVzbpcPPviA7777jl69etWpzHPLLbeQmpoK0KAafWPYJduWLVvG9u3biYmJCXhVqCAIQgOai2kM8U9AHDt2zCQmJhrAbNu2zRhjTFFRkenfv78BTOfOnU1xcXGT1+fm5hrAxMfHm9LS0gbHa2pqzJAhQwxgHn300QbH169fb55++mmfKvZUVVWZlJQUd9GK8ePH+zHS4BDmcbV+IWMJT2QsrUbHi0N/9dVXKSkpYfz48e4MhV26dOGFF16gc+fO/OpXv2o202CfPn2YMGECZWVlbrfL/v37ufDCC/njH//I0qVL2bFjB/369eOqq65qcP3JJ5/MlVde6VNWxKioKGbNmuV+Le4WQRBCQbssEr1mzRpuuOEGABYtWlTn2JQpUygsLHTHnTfHRRddxNq1a3n++ee54IIL+Mtf/sJrr73Ga6+95j5nyZIlQan2c8455/DSSy8BIuiCIISGdmehr1+/ntmzZ3Ps2DEWLlzIlVde2eAcX8Qc4Oc//zlRUVG8//777N69m6VLlwK4Lf6BAwdy2WWXBaXfP/7xj93RMCLogiCEgnZlods1MouLizn//PN55plnAkpA1aNHD+bMmcPy5cu55JJL2L9/P8OGDePbb7/liy++ICEhocX5yeuTnJzMY489xr59+xg8eHBQ2hQEQfCkXQl6VFQUr732Gg899BDPPvusz5Z4c1x++eUsX76czMxMAK666ioiIiKYPHkyeXl5AbfvyTXXXBPU9gRBEDzxKuhKqSTgQ2AYMEFrvVkpdT5wE1AGLNBa5yqlhgJPudq8Q2v9cSg6PHbsWF588cWgtTdz5kzS0tIoKCggJibGvYpUEAShveGLv+IYMBt4HUApFQXcDJwOLAHucJ13P7AImAHcE+yOhoqoqCi3n3zu3LkN0gQIgiC0F7xa6FrrKuCAUsreNQjYprWuBDKVUn927e+ttd4JoJQ6rJTqrrU+GIpOB5s77riDlJSUOkm8BEEQ2hst8aF3BYo9XtuObE9rvwhIAeoIulLqauBqgMWLF3PWWWe14Pah4dJLL6WqqqqO37z+6/aMjCU8kbGEJ+E8lj59+jR5rCWCXgh08Xhd49o6PfYlAYfrX6i1fgrLzw7WqsmwJi8vr9k/XntCxhKeyFjCk/Y6lpYI+k7gJKVUDKCATa79+UqpE4H9QEp7cbcIgiB0FHwSdKXUu8AYYAjwD+Bh4FOgHFjgOu13wFIsF8ydQe2lIAiC4BWfBF1rPauR3a/WO2cr4D2XrCAIghAS2t3Sf0EQBKFxRNAFQRA6CCLogiAIHQSHMWEfPSgIgiD4gFjogiAIHQQRdEEQhA6CCLogCEIHQQRdEAShgyCCLgiC0EEQQRcEQeggiKALgiB0EETQAaVUJ9fW0dZ9CRSlVIJr2xHGcoJr2xHGcmpHGAeAUqpfW/chWCilurZ1H4LJcb2wSCl1NnAVsBf4o9Z6bxt3qcUopX4KzAd+AB5s52NJAP4E9AXOc1XNapcopUYDjwBrgSWuSl/tEqXUDGAxUAH8G3hfa13atr1qGUqpacCvsYrwPA5s0VqXt22vAud4t9B/DjwDbAauVUq1y2yRSqlzgMuBP2IVILnVtb9dWoRa62NAJZCINa52OxasDKT3a61vAwa2dWdailIqErgWq0DN3Vi1EDq14/flQuCfWF9Ms4B5bdud4NCSAhftFpfldyGwBigA9gBfA6tc+09RSmW1B+vWNZaLgfeA9cCVWusDSqnvgFeUUqla6/1t2kkf8XhfVmuts1wisQv4D/BLpdT7Wus9bdpJH/H8jLlq7B4DZiilbsMqArMOeEtrndWW/fQF11guAj4DSoFvsZ5md2PVR4gHorG+fMMapVQ8VlH797XWnwHfA/lY///lwGyl1FCt9fY27GbAHDcWulLqYqyiHAlAtta6GOgJTHQ9Bm8A4rDK54U1HmOJA/Zrrfe6xDwCy6r9vh2JuT2WeKwvWLTWBhiG9V78B7hGKdW3rfroK/XGkuPanQD0An4DXI/lrpjdBt3zi/pj0VoXAB9jufU2YLkqrgJuaKs++orrs/NvLCPuS9duBzAAqxTmVqzPXkabdDCIHBeCrpTqAlwA/AHrQ/kjpVR34AngSqVUJ631ZuAEoH+bddQHGhnL6UqpoQBaayeWgFS7zu0Xzo/E9cbyCTBNKTXcdfgzrCePo1gi8kvXNWH5mW1kLGcopXoDb2BZsX211kVYQm+/P2H53jTyGTtTKTVIa/0p8BHwuNZ6PvA2EKOUigjXsbiIAlZiPYn/Qil1GvABcBowXGt9CMs4iofwfV98ocNOirpm4n8DvANkAlOBm4AY4C3gMmAacDXWG/45lr/2Da31223R56bwMpaVWGM5V2udo5RahPVBLQK6ATeE08SVj2M5G7gGOB2rRu1e4KjW+o426HKT+PgZOxNrHKOwLMFZwC6t9d1t0OUm8fF9mYn1dNELSxAXA0e01r9siz43hcdYVmLNj6W7XudhGQkLgf8HjMQqeL8dOAfL5fdMG3Q5aISltRMoSql04C9Yvr6ewAta63eBB4EztNZ/Bl4A/qS1/iPWB/gaYFMYirm3sfwFa3Lnj65L+mEJ+k6t9YIwE3NfxvICcBfwZ+A5rfVFWuubw1DMffmMPY8VPbUM65H/VOCLMBRzf96X57AKxd8FfB2GYu45lj7A37XWGsu4qdRav+w6fjbwIpZLbxqwrr2LOXQwQVdKTfV4XErWWv9Fa/08kKiU+j+t9X+xfGdgFbpOUEoluh4lF2itH2r9XjeOn2N5DNdjPNYj8USt9ROt3OUm8XMsj2BZTWitX3JdHzaf0xaMJUYp1cVVc/fX7fx96QTEaa3/jfVE+GgbdLtRmhlLklLqSuA+YDyA1vp9YKjrvM3AL8NpLIEQNv8ogaCU6qyU+hDL3zcLa8JmjVLqGtcpnwM/UUola61rlFJTgTexIilKAbTW1Q1bbn0CGEs2gNb6c611Yev3vCGBvC+u0EXAPTfQpgQwlizXBDxa65o26HoDAnxfjgKESzy9D2NZDVzh2q5RSt3pOn+v69yweV+CQYfxoSulTsFaiDIea6FAsmubgyXaR7Gs1y3A01iP82+0RV+9IWORsYSa42wsFVhfSF8CaVgTof9tg66GnA4j6DZKqb9h+fZeUkr1wnp83wX8CnhZa72vLfvnDzKW8ETGEp54GcuL7SWUNxA6hMsF6oQavYwVMpaqtc7HimVehhWSWBJO/timkLGEJzKW8MTHsZS253BEX+lwFjqAUuoXwInAESAL+E5r/XXb9qplyFjCExlLeNKRxtISwv7b1x88rIlRWDGz2Vrrl9rjGypjCU9kLOFJRxpLIHRUC30e8LbWuqKt+xIoMpbwRMYSnnSksbSEDinogiAIxyMdyuUiCIJwPCOCLgiC0EEQQRcEQeggiKALgiB0EETQBUEQOgjHVQk64fhAKdUfq8QYWIWZ/+Da/yxWoia01i1aNaiUGoZV/OFTV5ZOlFJLgQXAOFeqVkFoE0TQhY7OQqXUvVipXy8IQnvDgDtdv38ahPYEIWhIHLrQ4fCw0LOBgcB0rPqRf8dKmdoHy934O6y6mCmABhZrrbcope7CEu1nsKoNJWPVA11HreVvcwZWBZwFWIUTzne1/XOt9echGaAgNIH40IWOzDbgKyw3yxVYKVQLXccux6qZuQlL2McBK5RS0R7XT8EqHpKEVbLsAFZhFLBqhV6MVVbO5jSsVLPpWBV9BKFVEUEXOjrPYVnNk7BK9dnMcm1v1lr/DViBldRpsMc5f9VaP4Jl6fd3FXfIdB3brLV+pV5K1ru01vdi5d/uH/SRCIIXRNCFjs4rQA2QC3zYyHFTb+vJYde2mtr/leZ8lJ7nR/rXTUEIHBF0oUPjKv92BXBNvVJ277i2f3WlXD0XV7pVL00ecW2nKKUuUkrFB7XDghAAEuUidHi01q82snsp1uToVViTpuuwJkWrlFLNNbcGq37lVNd1fYPaWUEIAIlyEQRB6CCIy0UQBKGDIIIuCILQQRBBFwRB6CCIoAuCIHQQRNAFQRA6CCLogiAIHQQRdEEQhA6CCLogCEIH4f8DUtjgUnjKuuoAAAAASUVORK5CYII=", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCa0lEQVR4nO3deXxM5/4H8M9k3yURIjtpBJEqtdStpUVQeokqSqnSi9tdN3p/XRXtbfV20dsqxZXeVotSSyzVoqhYitpu1BKJJCISQcgyWef8/hjnzDnJJJkzmSXL5/169eVk5sycM6eYj+/zfZ6jEQRBABEREZGdONj7BIiIiKh5YxghIiIiu2IYISIiIrtiGCEiIiK7YhghIiIiu2IYISIiIrtiGCEiIiK7YhghIiIiu2IYaYB0Oh3S0tKg0+nsfSqNAq+XOrxepuO1UofXSx1eLwOGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4aRBuDq1atwdnZGcXExKioq4O3tjaysLOn5tm3bQqPRQKPRwMPDA7GxsViyZIkdz5iIiBqK7DwBK7YKyMsX7H0qZmMYaQAOHDiArl27wsPDA0ePHoW/vz9CQkIU+8ydOxfZ2dk4efIkRo0ahSeffBKrV6+20xnbX1lZmb1PgYioQYh/TcAT7wt47F2GEaqH/fv3o0+fPgCAffv24d577622j7e3N9q0aYOoqCjMnz8f7du3x4YNGwAAr776KqKjo+Hh4YHIyEi8+eabKC8vl1574sQJDBgwAN7e3vDx8UH37t1x5MgRAEB6ejpGjBgBPz8/eHp6onPnzti6dav02tOnT2P48OHw8vJCYGAgHnvsMeTl5UnP33///Xj++ecxe/Zs+Pv7o02bNpgzZ47i3M+cOYO+ffvCzc0NMTEx2LFjBzQajXT+AJCVlYVHHnkEfn5+aNmyJeLj43Hx4kXp+SlTpmDUqFH45z//ieDgYERHRwMAFi1ahA4dOqBjx44ICgrCmDFjzPp/QETUGAmCgOMp+u3tvwM51xtnIHGy9wlYQ48ePXDlyhWbH7dNmzbSl3xdMjIy0KVLFwBAcXExHB0dkZCQAK1WC41Gg23btmHixIn48ssvjb7ezc1NChze3t5ISEhAcHAwTp06henTp8Pb2xuzZ88GAEycOBHdunXDl19+CUdHRxw/fhzOzs4AgGeeeQZlZWXYu3cvPD09cfr0aXh5eQEAsrOzcd9992H69On4+OOPodVq8eqrr2LcuHHYtWuXdC5ff/01XnrpJRw6dAgHDhzAlClT0KdPHwwePBg6nQ6jRo1CeHg4Dh06hIKCArz88suKz1JcXIwBAwagX79+2Lt3L5ycnDB//nw88MADOHnyJFxcXAAAO3fuhI+PD3755RcIgoAjR47g+eefx9dff42IiAi4u7sjKSnJ1P9dRESNXmkZUF6h3xYEIHE/MO2v9j0nswhNUEhIiADA5v+FhISYfI7l5eVCWlqacOLECcHZ2Vk4fvy4kJKSInh5eQm//vqrsHfvXiEnJ0cQBEGIiIgQPvnkE+l1K1asEAAIixYtMvreCxYsELp37y797O3tLSQkJBjd98477xTmzJlj9Lk333xTGDJkiOKxzMxMAYBw9uxZQRAE4b777hP69u2r2Kdnz57Cq6++KgiCIGzbtk1wcnISsrOzped/+eUXAYCwfv16QRAEYfny5UKHDh0EnU4n7VNaWiq4u7sL27dvFwRBEB5//HEhMDBQKC0tlfZZt26d4OPjI+Tn5wupqalCZWWl0c9BSpWVlbxeJuK1UofXSx1LXK+c6zoB/Sql/x6c3TivfZOsjLRp06bBH9fJyQlt27bFmjVr0LNnT9x1111ISkpCYGAg+vfvj/T0dAQEBEj7v/rqq3jjjTdQWloKFxcXzJo1C3//+98BAGvXrsWnn36KlJQUFBYWoqKiAj4+PtJrX3rpJUybNg3ffPMN4uLiMHbsWNxxxx0AgOeffx5PPfUUfv75Z8TFxeHhhx+WKjZHjx7Fr7/+KlVK5C5cuCANlYj7i4KCgpCbmwsAOHv2LMLCwhTXplevXor9jx49ipSUFHh7eyseLykpwYULF6Sf77zzTqlKAgCDBw9GREQEoqKi0LdvX4wePRoPP/wwPDw86rr8RERNwq0i5c87jgKFxQK8PDT2OSEzNckwYupQiT117twZ6enpKC8vh06ng5eXFyoqKqQgERwcjDNnzkj7z5o1C1OmTIGHhweCgoKg0eh/ox08eBDjx4/HO++8g6FDh6JFixZYtWoVPvroI+m1c+bMwaOPPootW7Zg27ZtePvtt7Fq1So89NBDmDZtGoYOHYotW7bg559/xj//+U989NFHeO6556DT6TBixAh88MEH1c4/KChI2haHfEQajQY6nQ6AfjxTPNea6HQ6dO/eHStXrqz2XKtWraRtT09PxXPe3t74448/sGvXLqxbtw5z5szB3LlzcfjwYfj6+tZ6TCKipqBqGCktA34+DIy+zz7nY64mGUYag61bt6K8vByDBg3CggUL0L17d4wfPx5TpkzBkCFDpMqCKCAgAFFRUdXeJykpCREREXj99delx9LT06vtFx0djejoaLz44ouYMGECVqxYgYceeggAEBYWhieffBJPPvkk/u///g9Lly7Fc889h7vvvhvr1q1D27Zt4eRk3m+Vjh07IiMjAzk5OQgMDAQAHD58WLHP3XffjdWrV6N169aKio4pnJycEBcXh/bt2+Nf//oX/P39sWvXLowePdqs8yUiakxuFVd/bOM+AaPva1yVEc6msZOIiAh4eXkhJycH8fHxCA8Px+nTpzF69GhERUVVm9pbk6ioKGRkZGDVqlW4cOECPvvsM6xfv156XqvV4tlnn8Xu3buRnp6OpKQkHD58GJ06dQIAvPDCC9i+fTvS0tKkKoP43DPPPIPr169jwoQJ+P3335Gamoqff/4ZTzzxBCorK006v8GDB+OOO+7A448/jpMnTyIpKUkKTmLFZOLEiQgICEB8fDx+++03pKWlYc+ePZg5cyYuXbpU43tv3rwZn332GY4fP46srCz897//hU6nQ4cOHUw6NyKixq5qZQQANh8AKioa16wahhE72r17N3r27Ak3NzccOnQIISEhCA4OVvUe8fHxePHFF/Hss8+ia9eu2L9/P958803peUdHR1y7dg2TJ09GdHQ0xo0bh2HDhuGdd94BAFRWVuKZZ55Bp06d8MADD6BDhw5YtGgRACA4OBhJSUmorKzE0KFDERsbi5kzZ6JFixZwcDDtt46joyM2bNiAwsJC9OzZE9OmTcMbb7wBQD8jCAA8PDywd+9ehIeHY/To0ejUqROeeOIJaLXaWislvr6++PHHHxEXF4fBgwfjq6++wvfff4/OnTuruoZERI2VvDIi/rV8/Raw75R9zsdcGkEQGld8agZ0Oh3S09MRERFh8pd+Y5KUlIS+ffsiJSVFaqStj6Z+vSyN18t0vFbq8HqpY4nrtWi9gGc+0X+ND+mp7xcBgBfGAp8813j+HzSeM6VGa/369fjll19w8eJF7NixAzNmzECfPn0sEkSIiJqzm7JhmglxGjg56rc37tNPIGgsGEbI6goKCvD000+jY8eOmDJlCnr27ImNGzfa+7SIiBq9W0WGwBERCPS+PUqdlm28n6ShMiuMJCQk4MEHH0T//v3x6KOPoqCgQHo8Li4OAwcOxMKFCxWpLDk5GRMmTECfPn0wY8YMZGdnW+YTUIM3efJknD9/HiUlJbh06RISEhLQsmVLe58WEVGjJw8cPp5Aa1/DzwVGZto0VKrDyKpVq7B//34sW7YMe/bswdy5c+Hi4oJ9+/Zh7dq1SEhIwJo1a7Bv3z5s2rQJgP6mZrNnz8b48eOxa9cuxMbG4q233rL4hyEiImpO5A2sPh6At2zNx8YURlQtHlFZWYkVK1Zg6dKl0qJX4toXW7duxZgxYxAaGgoAmDRpErZt24b4+HgcPXoU7u7uiI+PBwBMnz4dcXFxyM7OViyeJSorK6t2V1YnJyfF6ptNmbhgmPgr1Y7XSx1eL9PxWqnD66WOJa6XvGfEy12Al7v8OQE6nf37RkxpzlUVRnJzc1FaWoodO3Zg1apV8PLywqOPPooxY8YgLS0Nw4cPl/aNjo7GF198AQBITU1VLNjl7u6O0NBQpKamGg0jYuCRGzt2LMaNG6fmdBu9zMxMe59Co8LrpQ6vl+l4rdTh9VKnPtfr6rVAAPplEvKvZUBX3gJACwBASloOAj1KLHCG9dOuXbs691EdRgoLC3Hp0iVs2rQJWVlZePrpp9G2bVsUFxcr7mHi6emJ4mJ9jUir1VZbytvT0xNardbocaZOnYqJEycqT7SZVUYyMzMRFhbG6XEm4PVSh9fLdLxW6vB6qWOJ61V2u6ji5AhER4UjVPbvew/vQEREWOBEbUBVGHF1dQUAzJgxA25ubrjjjjswfPhwJCUlwcPDA4WFhdK+RUVF0g3L3N3dUVSkbOstKiqCu7s7jHFxcWk2waM2Dg4O/AOtAq+XOrxepuO1UofXS536XK9bRfo04uMJODo6wMdDvJE8UFSigYND41gWXtWnj4iIqHZTNFG7du2QkpIi/Xzu3DlERkYCACIjIxXPabVaXLp0SXqeiIiI1BMbWH1uN6421gZWVWHE3d0dgwYNwvLly1FWVoaLFy9i27Zt6NOnD4YPH45169YhKysLeXl5WLlyJYYNGwYA6N69O7RaLRITE1FWVobly5cjJibGaL9Ic3T16lU4OzujuLgYFRUV8Pb2RlZWlvR827ZtodFooNFo4OHhgdjYWCxZssSOZ0xERA2BOLXX53YnRLMIIwDw6quvIj8/H3FxcXjuuecwbdo09OjRA3379sXo0aMxefJkjB07Fn369MHIkSMB6IddFixYgJUrV2LAgAE4ceIE5s6da/EP01gdOHAAXbt2hYeHB44ePQp/f/9qN8qbO3cusrOzcfLkSYwaNQpPPvkkVq9ebacztr+qs62IiJqbsnIBJbf/KjQeRuw/k8ZUqsOIt7c3PvzwQ+zduxeJiYkYM2aM9NzUqVOxc+dO/Prrr5g5c6Z0V1YA6Ny5M1atWoWkpCTF1GAC9u/fjz59+gAA9u3bh3vvvbfaPt7e3mjTpg2ioqIwf/58tG/fHhs2bACgD4jR0dHw8PBAZGQk3nzzTZSXl0uvPXHiBAYMGABvb2/4+Pige/fuOHLkCAAgPT0dI0aMgJ+fHzw9PdG5c2ds3bpVeu3p06cxfPhweHl5ITAwEI899hjy8vKk5++//348//zzmD17Nvz9/dGmTRvMmTNHce5nzpxB37594ebmhpiYGOzYsQMajUY6fwDIysrCI488Aj8/P7Rs2RLx8fG4ePGi9PyUKVMwatQo/POf/0RwcDCio6MBAIsWLUKHDh3QsWNHBAUFKX4/EhE1ZfIFz1o08sqIqgZWspyMjAx06dIFAFBcXAxHR0ckJCRAq9VCo9Fg27ZtmDhxIr788kujr3dzc5MCh7e3NxISEhAcHIxTp05h+vTp8Pb2xuzZswEAEydORLdu3fDll1/C0dERx48fl3p/nnnmGZSVlWHv3r3w9PTE6dOnpVlR2dnZuO+++zB9+nR8/PHH0Gq1ePXVVzFu3Djs2rVLOpevv/4aL730Eg4dOoQDBw5gypQp6NOnDwYPHgydTodRo0YhPDwchw4dQkFBAV5++WXFZykuLsaAAQPQr18/7N27F05OTpg/fz4eeOABnDx5Umpm3rlzJ3x8fPDLL79AEAQcOXIEzz//PL7++mtERETA3d0dSUlJFvy/RETUcCkWPDMWRoxPWG2QmmQY6TFdhyvXbX/cNv7AkaWmFZuCg4Nx/Phx3Lp1Cz169MDBgwfh5eWFrl27IjExEY6OjujQoUO111VUVODbb7/FqVOn8NRTTwEA3njjDen5tm3b4uWXX8bq1aulMJKRkYFZs2ahY8eOAID27dtL+2dkZODhhx/GnXfeCQCKpuIvv/wSd999N9577z3psf/85z8ICwvDuXPnpOpEly5d8Pbbb0vv/fnnn2Pnzp0YPHgwfv75Z1y4cAG7d+9GmzZtAADvvvsuBg8eLL3nqlWr4ODggGXLlknVtBUrVsDX1xe7d+/GkCFDAOingy9btkwKJz/++CM8PT3x17/+FdevX0dERAS6d+9u0vUnImrsFEvBN/IG1iYZRq5cB7Ku2vssaufk5IS2bdtizZo16NmzJ+666y4kJSUhMDAQ/fv3R3p6OgICAqT9X331VbzxxhsoLS2Fi4sLZs2ahb///e8AgLVr1+LTTz9FSkoKCgsLUVFRAR8fH+m1L730EqZNm4ZvvvkGcXFxGDt2rHTH3Oeffx5PPfUUfv75Z8TFxeHhhx+WKjZHjx7Fr7/+qlg/RnThwgVFGJELCgpCbm4uAODs2bMICwuTgggA9OrVS7H/0aNHkZKSAm9vb8XjJSUluHDhgvTznXfeqZjyPXjwYERERCAqKkrqWXr44YelKeVERE1Z1fvSAAwjDUob/4Z/3M6dOyM9PR3l5eXQ6XTw8vJCRUWFFCSCg4Nx5swZaf9Zs2ZhypQp8PDwQFBQkFRBOHjwIMaPH4933nkHQ4cORYsWLbBq1Sp89NFH0mvnzJmDRx99FFu2bMG2bdvw9ttvY9WqVXjooYcwbdo0DB06FFu2bMHPP/+Mf/7zn/joo4/w3HPPQafTYcSIEfjggw+qnb+856fqdG+NRiMtbywIgqJ3yBidTofu3btj5cqV1Z5r1aqVtF114Txvb2/88ccf2LVrF9atW4c5c+Zg7ty5OHz4MHx9fWs9JhFRY6e8L43+71lv2fJdDCN2ZupQiT1t3boV5eXlGDRoEBYsWIDu3btj/PjxmDJlCoYMGSJVFkQBAQGKJfVFSUlJiIiIwOuvvy49lp6eXm2/6OhoREdH48UXX8SECROwYsUKPPTQQwCAsLAwPPnkk3jyySfxf//3f1i6dCmee+453H333Vi3bh3atm0LJyfzfqt07NgRGRkZyMnJQWBgIADg8OHDin3uvvturF69Gq1bt1ZUdEzh5OSEuLg4tG/fHv/617/g7++PXbt2YfTo0WadLxFRY2GsMuLkpIGbi36WTWMKIw3/W7uJioiIgJeXF3JychAfH4/w8HCcPn0ao0ePRlRUVLWpvTWJiopCRkYGVq1ahQsXLuCzzz7D+vXrpee1Wi2effZZ7N69G+np6UhKSsLhw4fRqVMnAMALL7yA7du3Iy0tTaoyiM8988wzuH79OiZMmIDff/8dqamp+Pnnn/HEE0+gsrLSpPMbPHgw7rjjDjz++OM4efIkkpKSpOAkVkwmTpyIgIAAxMfH47fffkNaWhr27NmDmTNn4tKlSzW+9+bNm/HZZ5/h+PHjyMrKwn//+1/odDqjvTZERE2NsQZWwDBUU9iIGlgZRuxo9+7d6NmzJ9zc3HDo0CGEhIQgODhY1XvEx8fjxRdfxLPPPouuXbti//79ePPNN6XnHR0dce3aNUyePBnR0dEYN24chg0bhnfeeQeA/k7MzzzzDDp16oQHHngAHTp0wKJFiwDom2yTkpJQWVmJoUOHIjY2FjNnzkSLFi1MXrrY0dERGzZsQGFhIXr27Ilp06ZJDbdubvqbO3l4eGDv3r0IDw/H6NGj0alTJzzxxBPQarW1Vkp8fX3x448/Ii4uDoMHD8ZXX32F77//Hp07d1Z1DYmIGiNjDayAIYw0psqIRhCExrMqSjOh0+mQnp6OiIiIJnl/h6SkJPTt2xcpKSlSI219NPXrZWm8XqbjtVKH10ud+l6vN5bq8O43+u1fPtYgroe+2nzXVB1OXgBcXYCSHY3j/0OT7BmhhmX9+vXw8vJC+/btkZKSgpkzZ6JPnz4WCSJERM2VsoHVsC1WRkrLgPIKAc5ODf9meQwjZHUFBQWYPXs2MjMzERAQgLi4OMVsHyIiUu9moWG7hWwFhqrTe/3VzQuwC4YRsrrJkydj8uTJ9j4NIqImpa7KCNB4wkjjGEwiIiIiBWNTe4HGudYIwwgREVEjJFZGHBwADzfD441xFVaGESIiokZIrIz4eECx0jXDCBEREdmEFEaUd8qAt4chmDCMEBERkdWIwzQ+Ve4NqqiMNJJVWBlGiIiIGpmKCgHFJfrt6pURwzYrI0RERGQV8opHtTDC2TRERERN381CAW//R4efDtnnjio13ZcGqFoZaRx3fOGiZ0RERCo9/bGA73YAri4CrqwHfL1tu+S6PIzIV18FOExDRETU5F3MFrBql367tAzIyrP9Odw0uTJim/OpL4YRIiIiFRauFaDTGX62xxe+cvVVZVVGHkYKOZuGiIioackvELBss/IxeTCwlZruSwOwMkJERNSkLd1cvdpg/8qI8jlP2dLwXGeEiIioCSkrF7BwbfXZKfb4wq8tjDg6aqR71bAyQkRE1ISs+RXIuqrfdnc1PG6Xyohsym7VYRrAMFTDMEJERNSELNlkCABPjzI83tCGaQDDwmcMI0RERE1IyiX9r0EtgeG9DTNYbhXZfmExRQOrsTAiq4wIQsNf+IxhhIiIyAT5hfpfA1rYf8ZKbSuwAobzq6jUr4XS0DGMEBER1aGkVEDJ7S91P29lNcLeDaxVV2AFGt+dexlGiIiI6iBWRQDA16sBVEZuH1OjUU7lFdn7/NRiGCEiIqpDbWHEHoue3bx9Pt4egIND9fviMIwQERE1MVXDiGJhMTtWRoz1iwCG2TQAwwgREVGToAgj3vpqhD3X8hCrMcZm0gCsjBARETU5ysqIflhECiM2bhCtrBSkJelrDiOGoRuGESIioiag6jANYL9VTmu7SZ6IlREiIqImJr/AsO3nrf/VXguL5eUbtlv5Gt+HYYSIiKiJuVFgCBtSZeR2k6ggAEU2HKrJu2nYDmhhfB+uM0JERNTEGBumUSx8ZsPqgzKMVJ/WCyjDSGExl4MnIiJq9GrrGQFsW31QhBFf4/sopvayMkJERNT41RlG7FYZMb4Pe0aIiIiaGDGMaDSG4Rl59cGWq7Dm5RuGXRhGiIiImgkxjPh4GpZft9daHqZURry4AisREVHTIoYRP9kdchtGA6vxfTzd9VUcgGGEiIio0RMEATdurzPi62143F4NrFfzDdstawgjGo1Gqo4wjBARETVy2lKgvEK/7SurjNi7gdXXC3B2Mj61F7DfcvXmYBghIiKqhbGZNIAyjNwqsuEKrLfDSE1DNCJ73shPLYYRIiKiWtQYRuzQJFpRYRgyqmmNEZEYRgq1tl2u3hwMI0RERLWQ35fG184NrNdl51JnZeR2WNLpgOIS652TJTCMEBER1UJZGTH0aNijgdWUmTSixrTWCMMIERFRLeRhxK+m2TQ2+rKX37GXYYSIiKiZuFHDMI2ygdU25yKf1lvTTfJEDCNERERNRE0NrM5OGri66LdtVhkxd5imgU/vZRghIqIGS6cTsGi9gO9+sd9skPxCw7HlYQQAfGw8fVZNGJFXTnJvWOmELMTJ3idARERUk8UbgWc+0YeBjuHA3R1qH5qwBkVlxFv5nLeHfujEdg2shmDUyrf2fYMDDNuX86xzPpaiujIyY8YM3HvvvejXrx/69euH559/XnouISEBcXFxGDhwIBYuXKiY15ycnIwJEyagT58+mDFjBrKzsy3zCYiIqMn6z1bD98i5S/Y5h5qGaQDbLyymqIz41r5vcEvD9uW8JrjOyNtvv43ffvsNv/32Gz777DMAwL59+7B27VokJCRgzZo12LdvHzZt2gQAKCsrw+zZszF+/Hjs2rULsbGxeOuttyz3KYiIqMk5myHg6FnDz/ZqwjQljJSVA6Vl1v/CVzNME9LKsH35mnXOx1IsNkyzdetWjBkzBqGhoQCASZMmYdu2bYiPj8fRo0fh7u6O+Ph4AMD06dMRFxeH7OxsBAUFVXuvsrIylJWVKU/UyQkuLi6WOt0GTafTKX6l2vF6qcPrZTpeK3Usfb1W/qL8uaBYgE5n+3/hi4ueOTgAnm7Kc5A3id4sFBDga/r5mXO9xKm9Dg6Aj0ft16ONv2H7cp79fh87ONRd9zArjHz44Yf48MMPER0djRdffBHt27dHWloahg8fLu0THR2NL774AgCQmpqKqKgo6Tl3d3eEhoYiNTXVaBhZsWIFli5dqnhs7NixGDdunDmn22hlZmba+xQaFV4vdXi9TMdrpY4lrpcgAP/9KRiAs+F9L+cjPf1mzS+ykqv5+vPwca9ERoZyrMhRCACgX4r1TEoWwlpVqH5/Ndcr+1oIACf4eVYiM7PucStPtzAUlTggPbsc6emXVZ+bJbRr167OfVSHkeeffx6RkZFwcHDA6tWrMXPmTKxduxbFxcXw8jLUrzw9PVFcrK+pabVaeHp6Kt7H09MTWq3xjp+pU6di4sSJyhNtZpWRzMxMhIWFmZQomzteL3V4vUzHa6WOJa/X738C6TnKx5xcfRER4Vuv9zVH4e2vKv8WjoiIiFA8FyhrEvXxC0GVp2tlzvUSh4xa+1c/F2NCWgHnMoHcm84m7W8vqsNIbGystP34449j06ZNSE5OhoeHBwoLDQNrRUVF8PDQ16/c3d1RVKRcEaaoqAju7u4wxsXFpdkEj9o4ODjwL0AVeL3U4fUyHa+VOpa4Xqt2Vh9SKNSaVvK3JEEQkH/7jry+XtWP7+NpOM+iEg0cHNTP9jH1emlLBRSV6M8loIVp1yI4QIdzmfp+m6ISDbw9bD8byRT1/r8qXox27dohJSVFevzcuXOIjIwEAERGRiqe02q1uHTpkvQ8ERGRqKJCwKpd1R+3RwNrkRaorNRvV21eBWy7Cus1Fc2rIvmMmuwG3MSqKowUFBTg4MGDKCsrQ3l5OVauXIlbt26hU6dOGD58ONatW4esrCzk5eVh5cqVGDZsGACge/fu0Gq1SExMRFlZGZYvX46YmBij/SJERNS8/XoMyLmu377XUIyXhktsqbaZNADgI6s0WDssqZnWK2osa42oGqapqKjAF198gYsXL8LZ2RnR0dFYuHAhvLy80LdvX5w/fx6TJ0+GTqfDqFGjMHLkSAD6YZcFCxZg3rx5eP/99xETE4O5c+da5QMREVHjtna3YYbI30dqsP9/+p/tURmpK4zY8v4vaqb1ioIDNAD016/JhBE/Pz988803NT4/depUTJ061ehznTt3xqpVq9SdHRERNTsXZJM+RvYBNBr97Bp7V0b8vKs/b68w0srXtN4P5cJnFj4hC2JHFhERNSjifVTcXIAWXoCnm/5n+1dGqgcARc+Ilc9Pecde016jGKa51nBXYWUYISKiBiU3X/9raz9Ao9FIX/j2qIzcKDBs1z1MY90ve/l9acwKI6yMEBER1U2nE6QKQGs//a9et1eBsHtlxMgwjY8th2nyDdvmhJEshhEiIqK6Xb8FiKuWt/bV/yqvjMhvwGoLjb2B1d1VI/W6sDJCRERkAnGIBqheGamoBErLqr3EqvILDOGnQYURX9NfJ1ZHLufZPsyZimGEiIgaDLF5FaheGQGAAhv3jaipjFi7gVUMIy7OhoBmCnFGTUmZ8vM0JAwjRETUYMjDiDh9Vf7FW2jjvpG6woi7q/4OuoDtKiMBLfSNvaZqDE2sDCNERNRgKCojt4dpGkplxNg6IxqNRmpitWYYEQRDY6+p/SIihhEiIiIVcvMNPQ3Gwoi9KiNOjoCHm/F9vG0QRgqKgfIK/XYrX3WvDW5pqKIwjBAREdVBvrCX2DMiH6axdWVEXGfE16vmoREpjFjx3MyZSSNSLnxmmfOxNIYRIiJqMIwP0xhCgL0qI8b6RURiGNHf4dc6s1XMWX1VpFhr5Cpn0xAREdVKPrVXHI6wV2WkokKQwoixfhGRYhjJSue3eb8hRIQHmt68CrBnhIiISBWxMtLCC3B10X/p2qtnJDdff4M+AAhqWfN+1l6FtaRUwOKN+m0nR2DiYHWvl587h2mIiKhBKioqwrJly9C3b1/cc889SE9Pt9u5iGFE7BcB7FcZuSL74m7jX/N+1l747Lsdhp6RsQOAkFbqKiPOThppyIuVESIialCKi4vx0ksvITg4GNOnT0dSUhJ+//13fPvtt3Y5n7Jyw7CI+OUJ2PZmdHJXrhu2a6uMWDOMCIKAT38wfOaZY9QFEZE4VJN9TX//n4aGYYSIqJlavnw5PvnkE9y6dUvxeHZ2tl3OR96kKZ++6i1f9MyGlZFseWWkZc0hwJqrsO4+BpxK1W/37gzcE2NmGLkdpioqlTNzGgqGESKiZur06dPS9gMPPCBt5+XZp5ZvbCl4APCy4f1f5OSVkdqHaQwBwdLnZ4mqCNDwm1gZRoiImqnMzExp+9NPP5W27RZG8g3bimEaO1VGrlw3BIHahmnkM23EdUksIfWygMT9+u2QVsDD95n/XgwjRETUIF26dAkA4OTkhKioKDg7OwNoIJURP0MVwF6VkWwTG1jlVRz5Z6ivnUcNs3meHKmBs5P5lZEg2TBTdgOcUcMwQkTUTImVkZCQEDg6OqJVq1YAGkgY8TVse9mtMmLYrjWMyKo48uXs6yv9iuG9enSs33u19DFsW7J6YykMI0REzVBxcTGuX9d/24aFhQEAAgL0tfy8vDwIgu1nXFw1cl8aQD811dVFv22Pyoift2HNE2MUYcSClZGMXMN2eGD93stfFkauF3A2DRERNQDiEA0AhIaGAjCEkdLSUhQVFdn8nGrqGQEMfSO2qowIgiBVRmqrigDWG6bJyDFsh7Wu33v5yZazv36r5v3shWGEiKgZkoeRqpURALh69arNz8nYfWlE4lCNrSojhVqguES/XVvzKqBfLdbZSb8tD1T1lX5F/6uft3LGjjmUlZF6vZVVMIwQETVD8pk0VSsjgH36RsQw4uAA+Fe5F4x0Z1wbhRFTm1cB/d18xfBkqcpIZaWAS7fzYESb+r+fIoywMkJERA1BXZURu4SRfP2vLX0AR0dlJUAMIyVl+hvYWZupS8GLxKGaq/mwSL/Nlev6BcoAILyeQzSA/vo5Ouq32cBKREQNQkOrjAiCYLgvjV/15209o0ZeGQmqZfVVkbhibEUlpCXt60PeL1Lf5lVAX70Rq02sjBARUYNgrDIiTu0FbB9GirSAtlS/LW8IFSnu3GuDMKKY1ltHzwhg+Rk1yjBSv34RkThUw54RIiJqEMTKiLOzM1q31o8D2LMyUttMGqDKnXtt0Ddi6uqrIkvPqFFM67XAMA1g6MO5VQSU22CoSw2GESKiZkisjISEhMDBQf9VYNcwUstMGsD2lRE1DayAcsVYS4QR+YJnlhimAZTL1ltiKMmSGEaIiJoZYwueAfad2qtcfbX6sITtKyOGbdPCiGHbEtN75cM0lphNAzTsGTUMI0REzYyxBc8AoGVLw3iErSsjV/MN28YrI4aAYsueEWcn5Zd4TSzeM5JrOL4pYcgU/la6oZ8lMIwQETUz8pk08sqIu7s7PD09ATS8nhFvG98sTxymaeOvn4lSF2XPSP37McTKSGgrwMHBUg2shvdhZYSIiOyqpsoIoLw/jS3Jv8CNzaZRDNNYuTJSUSFIlRpTmlcByw7TFBQLUuXCUv0iQMNehZVhhIiomampMgIYpvdeu3YNOp3OZuckH9oQ1+yQUzSwWrkykpsPiOuWmTpEIj9n+ZCTOTIteIM8OfkwDSsjRERkV6ZURnQ6HfLz8212Tqqm9mqtOy1V7eqrAODhppHOsb49I+I9aQAgwlqVkVuc2ktERHZUW2XEXtN7827qf3V2Anw8qz9vy8qIfCaNqcM0gCFE1XeYxhoLngHKqb3yYZpN+wQcOi3gyjX7BRSGESKiZka+4Jl81VXAftN7xWEDfx/jDaO27BlRrDFiwlLwIjGMXLtZv/vnZORafo0RQFkZEXtSSkoFxL8moPeTAh56g2GEiIhsRBymCQ0NlRY8E9mrMiKFEW/jz9ty0TO1a4yIWrUwbIuVHnMoKiMWWn0VMN4zckmWNy15LLUYRoiImpGioiLcuKFvaqjaLwLYJ4yUVwhSwPCrIYzYctEztUvBiyw1o0YeRsIsGBB8vQzb4jCNvFnWksdSi2GEiKgZMXaDPDl7hBH5Alw1LTBmy8qI2qXgRZZa+Cz9dhjx9wG8PCzXM+LkpEGL24FErIwow4jljqUWwwgRUTNSW/MqYJ8798qnmdZUGXFzARwd9dvWr4wYtlWFEd/635+mslKQhk4sOZNGJA7VGA8jlj+eqRhGiIiakdqm9QINoDJSQxjRaAxTZ60dRsTKiJ834OqivoEVMD+MZF8DKiv125ZsXhWJlafrBYBOJyBT1izLMEJERDZRV2XEHmHkumKYpuYvf+/bYcSawzSCIEiVEbX3hJGHkas3zZuZopzWa9Zb1EqsPOl0+lBnrQXW1GIYISJqRrKysqTtkJCQas/7+xu+gW01tVdeGalpmAaATSojhVqguES/raZ5FbBMZSRDHg6s0MNR9WZ5YvhxcTa+8q2tMIwQETUj8mpHYGD1fwo7OTnBz8+v2r7WJO8ZqWmYBjA0sRZq9RUMazC3eRWoerM8845v7cqIchVWIPN23rTkDfnMwTBCRNSMXLtm+LZt2dL4P/1tfbM8+dLkplRGBMFQvbC0/6UattsFqXttgGydkbqm9ublC/hyA3Axx0nxeFq2dRY8E8nDSHoOcLNQv23PfhGAYYSIqFkRw4irqyvc3d2N7iOGkZs3b6K8vNzq52TK1F7ANtN7j5w1hIHuHdRVCpycNGh5O5DUVRmZNF/As58CUz9qDXmR5890w3aHcFWHN4m/t+EznUhpGM2rAMMIEVGzIoaRli1bGl12HVBO75VXUqzluhlhxFp9I0fPGrZ7dFD/enGoprYwcvqigO2/67fTc5wVQzPJafpfg1oCft5W6BmRXd8TFwzb9mxeBRhGiIisrrS0FPHx8RgwYIBiaq2tCYKgCCM1sfWMGlPWGQGUq7BaozIiCAKOntNvt/IFQs2oFohNrPpGWON9LV9uUD5+7Lz+16v5grSMfExb9cc2hbwn50SKYdueC54BDCNERFb3008/YdOmTdi9ezemT59utebLuhQXF6O0tBRAwwojitk0XjXvZ+3KSEaO/iZ3ANC9g/Eb9tVFPiPlan715wuLBXz9k/IxMRScvmh4zFphRB720rIN2xymISJq4lJSDP8E/emnn/DDDz/Y5TxMaV4FbH/nXnGYxttD33dREy93w3PWCCPyIZru0ea9h3xGjbEw8t2O6ud+7PZvD3GIBgA6t7VOpaKmYTCGESKiJi49PV3x8wsvvICbN+txW1czmRNGbFkZqa1fBLB+A+vRc+Y3r4pa+9W8JLwgCPhiveEYTreXtz9+e5jm9EXDc1YbpmEYISJqni5evKj4OTs7G2+++abNz6MhhhFBEKSekdrWGAEsf+feQ6cFnM0wBABFZcSM5lWg9jv3HvgfcPJ20+g9McC9sfrtzFzg2k3B5sM0Ii935R197YFhhIjIysTKiJOTEzw89P+8//zzz3HkyBGbnkdDDCOFWqDi9r1YamteBSxbGdn4m4DeTwro9jcB/0sVIAgCjtwOIwEtzK8UBMrCSHaViUhfbjQEn6dHaXBXlOG54ylA8kX9dms/oGUL6wzTuLtq4O6qfCystXn9MZbEMEJEZGViZSQiIgJvv/02AH1F4N///rdNz6MhhhFT1xgBLFsZSfqfPhhoS4E5KwSLNK8CQIhhVjSyrhrCR0WFgLW79dv+PsC4AUBXWRjZcUSQhnU6tzXr0Carep3tPUQD1COMnDx5Ej179kRCQoL0WEJCAuLi4jBw4EAsXLhQ0TGenJyMCRMmoE+fPpgxYways7ONvCsRUdOSn5+PW7f04xBt27bFc889Jz2Xmppa08uswtQwIl9nxNoNrKZO6wWAFp6G7RsF9ZuRJD/uuj1QzHAxZ30RUagsjFySXbrsa0BJmX67XxfAzVWDbu0Nz3+3w7BtrSEaUdXhsEYbRnQ6HT7++GPExMRIj+3btw9r165FQkIC1qxZg3379mHTpk0AgLKyMsyePRvjx4/Hrl27EBsbi7feessyn4CIqAGT94tERETA3d1duveLrf9RZmoYadGiBZydnQFYP4woKiN1hJFgQ8EGWfUs2MiPCwDzvq5/8yqgv5+N4+3GVHkYkW+LX/6dIgAXJ/1x5QufxVhpJo2oaugLD7TvEA0AONW9S3U//vgjYmNjUVhYKD22detWjBkzBqGhoQCASZMmYdu2bYiPj8fRo0fh7u6O+Ph4AMD06dMRFxeH7OxsBAVVX/y/rKwMZWVlyhN1coKLi4s5p9vo6HQ6xa9UO14vdXi9TGeJa5WWZpivGRERAZ1Oh6CgINy4cQOXL19GZWWlzcbr5WHEz8+v1s/VqlUrXL58Gbm5uSZ/fnOuV55sUpGfd+2vld9FN+tq/f6/yCsjgKFvBQC6tReg05lXedFogOCW+qbUzFzDOabLwkZoK/3jTo46tA8pR3K6somjU4T5xzdF1TAS0sq6x3NwqLvuoTqM3Lx5E99//z1WrFiBjz/+WHo8LS0Nw4cPl36Ojo7GF198AUBfioyKMgyOubu7IzQ0FKmpqUbDyIoVK7B06VLFY2PHjsW4cePUnm6jlpmZae9TaFR4vdTh9TJdfa7VsWPHpG1PT0+kp6fD19cXAKDVavG///0PPj51NEtYiHz11+Li4mpTjuVatGiBy5cv4+rVq7h48aKqwKTmeqVc9AKgTxm6smtITy+sdX9fz1DkFzki/Uo50tMvm3ycqq5cCwJQ/R+4/t6V0GkvoZZLU6dWPoHIzHVD7g3gXEo6XJ2BU+e8AehvA+yquYr0dH3TS0xEy2phxNsxE+np1vvHgotDSwCG6TMuQg7S061050EA7dq1q3Mf1WHkiy++wIQJE6r94SkuLoaXl+HDeXp6orhYf7G1Wi08PT0V+3t6ekKrNd4OPXXqVEycOFF5os2sMpKZmYmwsDCTEmVzx+ulDq+X6SxxrQoKDOMB3bt3R0REBCIjI7F//34A+r/bIiIiLHK+dZH/ndulSxc4iuMJRoSEhODPP/9EeXk5fH19pQBVG3Oul4Psr/Woti0REVHz8BEAhAUC+alATr4zwsMjYG5RqfD2d6+/D+DoYFigrEdHR7RtW7//H5GhwB+3FzJz9oxARBBQJLvfYLeYVoiI0F+vzuH5kC+BF9ACuPvOsHodvy7hVWoAPWIDEWGFm/KpoSqMnDlzBsnJyXj11VerPefh4aEYtikqKpKmsLm7u6OoqEixf1FRUY13jHRxcWk2waM2Dg4O/LJQgddLHV4v09XnWsmrD+3atYODgwOCg4Olx3JyctC5c+d6n6MpxGEaX19fqSekJq1bG7oar127Bn9/f5OPo+Z63SgwVABa+mjg4FB7ughppcOpVKCsHLheoEErX/PSyPXbxw1qCUweqsGri/XDFL06mTasUJuw1obPdDlPgztCNMjKMzwW3trwOWMilC0JndvV//h1adlCAGAYloloU/d1tzZVYeSPP/5ARkaGNBxTWFgIR0dHXLp0Ce3atUNKSgr69u0LADh37hwiIyMBAJGRkVi/fr30PlqtFpcuXZKeJyJqqsQw4ujoiJCQEABQDE/bsonVlJvkieRhJDc3F+3bt69lb/OZesdeUahi6qzyXjCmKikVUCxWRryB5x4GDp/Rz3h5Mr7+X8qhrTQQv+zFxtXMXMPz8um/HcPKoNEA4uRTa8+kAZSNwi1bAB5ujayBdfTo0RgyZIj080cffYSwsDA89thjOHHiBD744AMMHjwYrq6uWLlypTTU0r17d2i1WiQmJmLo0KFYvnw5YmJijPaLEBE1JeJsmtDQUDg56f/KlVdGLl82v+9BjcrKSuTn5wMwLYzIp/fm5ubWsmf9qFlnBABCqsyo6WpGRqp6THdXDX6Ya7kvZGPTe8VfA/0BF2fDsbzcBUSFAOdvt/PERFg/GMivc0OY1guoDCNubm5wc3OTfnZ1dYWHhwe8vb3Rt29fnD9/HpMnT4ZOp8OoUaMwcuRIAPphlwULFmDevHl4//33ERMTg7lz51r2kxARNTAFBQW4fv06ACj6QuxRGblx44a09pPayog1p/eqWWcEAELkVQczM5Laaoxa8jCSmSugosKwGquxL/+u7WVhpK3lz6cqRRhpVfN+tmTW1F7RnDlzFD9PnToVU6dONbpv586dsWrVqvocjoioUZH3i7Rt21balldGbBVGTF1jRGTryoiTo3KF1ZooKyMCAPWVBHkAqmttE3PIA8elXH0QEWchhxr58n9iOLBxH9A+FOhzp+XPp7bz62DnxlVRvcIIERHVTB5GaqqM2GqYRm0YsVllRHbHXlOmD4fKvkizzDwtRRjxsfywSJuWgIODPoBcuqrsFzFWGRnSE7i6SQNPN8DR0frDNNFhGsyfBpy4IOCFsfbvFwEYRoiIrEa++qq8MuLh4QEfHx/cunWr2VdGxGBgyhANUL1nxKxjWnmYxtlJgzb+Ai7n6cOIfPVVfXNrdT6etg0Fr0/WwJyqkrVwXh8RkZXUVBkBDEM1zbkyUl4hSDe8M3W4xN8HcL298sMlM09L3sDq51XzfvUhDsdcuQ6kyv4XN5SG0YaGYYSIyEpq6hkBDEM1RUVFioXRrEVtGPH29pbWe7JWZSRfttiqqZURjUYjVUfMH6YxrLFhjcoIYAgjggD8/qdQ7XFSYhghIrIScZhGo9EgLEy5qqatZ9SoDSMajUaqjlirMqJ2Wq9I/ELPLwSKtOrvqWLtYRpAGToOJBu2WRkxjmGEiMhKxMpIcHBwtVWlbb3WiNowAhj6Rq5evWqVGyuaO6tFvmiYOX0j1p5NAwChrQ39GFf0s7v1N9ELqOEFzRzDCBGRFWi1WuTk6G/VauzeM7aujIjrnQCmhxGxMiJfMM2i56RyjRGRoonVjKKNcjaN+tebwlgFJNBPueAZGTCMEBFZQUZGhrRdtV8EaPjDNID1Z9Qoh2lM/5KWz0gxqzJy+7iOjoCPZ+37mstYbwiHaGrGMEJEZAXyab3GKiP2GqZxcXGRbmJaF2vPqJH3bqiqjFS5P43q44rTib1MW9vEHMbCCJtXa8YwQkRkBbVN6wXsVxlp2bKlyV/A1q6MmDtcIh+muXTV/AZWaw3RAMZ7Q1gZqRnDCBGRFVy5ckXaFu/WK2frVVjV3LFXZO3KyI0C2RRbG1VGKioE3Lw9pdiaYcTFWYNAf+Vj8qZWUmIYISKyArF5FQACAwOrPe/t7Q0vL/2KW9aujBQXF6OkpASAujBi9cqImcM0QS31M1MA9T0j8rVNrDWTRlR1WIaVkZoxjBARWYE8jMgrDHJidcTaYcSc5lXAFpURw7aaKoWzkwaBfvpttWHEFmuMiKqGEfaM1IxhhIjICuSVhLrCyK1bt1BUVGS1czE3jNiyZ0RNZQQwDNVkX9MPvZjqhpnVGHNUrYSwMlIzhhEialIqKytRWlpq79OQKiPe3t5wd3c3uo98Ro01qyMNtTIihhEvd321Qw2xiVWnA3JuqD8mYIthGsNn4oJntWMYIaImo6SkBHfddRf8/Pxw4MABu56LWEkw1i8istWMGnPDiKenJ9zc3ABYaZ2RejSShprZxKqcwWPdhlL5ObbxVx+4mhOGESJqMpKSkpCcnAytVotPPvnEbudRWloqrVhaWxix1Voj5oYRS9yfpqJCwIwPdXjkbR1uFQmKx6X1PsyoUISYufCZTXtGZMMy7BepHcMIETUZ8i/07du3o7y83C7nYUq/CNDwKyOAoW8kLy/PrPvT/HwYWJoIrPkVWPCdIYz8dhIor9Bvdwir4cW1UK41UvN+xSUCvtwgIOmU/ti2HKZp20a2HVTzfsQwQkRNiPwL/datW0hKSrLLecjDiKnDNA2xMgIYwpROp1Pc38ZUqbKP9d0OQBD0oeDHvYZg8lB/9cMXyrVGam5g/eA7AU9/LCDuRQGX8wRcvyVb28TKlZGINho8OxqIDgNeHMshmtowjBBRk1G1urB161a7nEdda4yIGnoDK1D/GTWXrxm+/NOygYPJgE4nYP1v+sdcnIHhvVW/rbJnpJZhmp8O6X8tKQO2HbTtMA0A/PsFB5xd6YC/xDKM1IZhhIiajKpf6Fu2bLHLeZiyxghg+WGap556CrGxsTh48KDicXPu2Cuq74yay1WCwspfBBw+Y2g6HdwD8PFU/0Utn5lS9Rii0jIBx1MMP28/LNh0mIZMxzBCRE1G1S/006dPK25YZyumDtP4+PhI037rO0yTlpaGxYsXIzk5GRMmTEBxcTEA/bBIZmamtJ+fn5+q9613ZaRKUFi9C1izSzZE08+8ioG3B+DpbvwYouMpQJmsbWjHEeBqvuFnXy+zDk1WwDBCRE2GseqCPYZqTK2MaDQai63CKg8zFy9exLx58wAACQkJOHnyJACgffv2cHJyUvW+9a6MXFP+nHcT+Hy9ftvBARjZV/VbAtBfu+DbRZ7sGlpZDp1W/nyjAPjjvH67hRfgxKm2DQbDCBE1GeIXuqurq/SYvcNIbZURwDBUk5+fD61Wa/YxqwaFf/3rX9i2bRtmzpypeEwtS1dGAEO1ov9dQCtf8wOBOFRzsxAo0lZvYj14uvpjlZX6XzlE07AwjBBRk1BQUIDCQv0qWr1795a+5Hft2lWvL3lzmDpMAyj7RuR3+lUrL0/5rV9RUYEHH3wQBQX6js0pU6Zg5MiRqt+3PpURbakgLb/eq1P1YZHRZsyikZP3jWRfq/68WBlxcqz+nLWXgid1GEaIqEmQD3MEBwdj+PDhAACtVovdu3fb9FzEyoiLiwt8fGqfsmGpGTXyoODoqP/2FafRhoeH49NPPzXrfetTGZEHhHZBwNgByudHmTlEIwryN2xXrcBczRekacW9OgEdwpXP22ImDZmOYYSImgT5F3lQUBAefPBB6Wdbz6oRw0hgYCA0mtr/9W+pGTXyMPLGG28onktISECLFi3Met/6hBF5QAgOACYONlyLnh2BsMD6VkYMr6/am/L7n4bte2KAoT2Vz3OYpmFhGCGiJqFqGImLi4ODg/6vuKpTXa2psrJSGjKprXlVZI0wMn78eLz66qtwc3PDe++9hwEDBtTyytp5enrCy8vLrPNThJGWGvTrAozur28efWtK/ZtHa5vee0jWL3JPJw2G9FIej5WRhkVdWzURUQNVNYx4e3sjPDwcFy9eREpKCgRBqLNKYQnXrl2Tlk2vq18EsE4YadWqFd5//328//77Zr+fXFhYGP78809kZmaquo5VKyMODhqsm6+BTifAwcHSYUQAYHhP+Uya3p2Blj6As5NhCXqGkYaFlREiahKqhhEAiIqKAgDcvHlTsQqpNalpXgUsF0bEaoyDg4PqtUTqEhERAUB/V+SqjbK1ka++Kg8OlggiAKSpvYCyP0WnE6RhmkB/IDwQ8PLQoO+dhn38vTmttyFhGCGiJsFYGGnfvr302Pnz521yHqauMSKydGWkZcuW0vCUpYSHG7o/MzIyjO5z9KyA974Bnvi4lbSwWNXKiKUFycKIvGfk/CUgXz+xCvd0glTJGdLTEEACZc2vZH8MI0TUJNRWGQGAlJSUaq+xBjVrjAD68ODs7AzAMmFE3nBqKfIwkp6ebnSf73cIeHM5sPuEBw4k6x+Th5EgdavQm8TLQwMfz+rHOphs2L4nxhBAnowHBnTT/xdfz5k8ZFkMI0TUJIhf5G5ubtLMEXuEEbXDNBqNBm3a6O81b24YKSoqktZSsXYYkVdGCgoKUFpaCgC4V3YjODEMiNUKbw/A28M6wyLiUI08jBz6U9a8GmN43Ndbg10LHbBroYPVzofMwzBCRE2C+EUeFBQkleXtXRkxZZgGMFRyrl69ivLy8jr2rk7ex2HLMPLBBx/Aw8MDUVFRcCs/Lj1etTJijSEakVhxKdQCBcX6ECL2i2g0+inE1PAxjBBRo1dSUoIbN24AUPZgREZGSsHEHj0jplRGAMM5C4KgeL2pqs6ksbSawsiZM2eg0+lw4cIFRLf1Rlt9gQeHzwA3CgQU6O/Vp2g0tbSq03srKgQkp+l/bh9q3h2ByfYYRoio0ZMvoy4PI25ubggLCwNgn2EatZURwLyhGmuHkdDQUCnUycPI2bNnAQDOzs5o27YtenfWP64tBbbJlnaxZmWkahhJyQJKyvQ/d7nDescly2IYIaJGz1jzqkgcqrlx4wauX6/h9q4WJFY2HBwcEBBg2rewJcOIqcdUw9nZWVq2XmxgraysxLlz5wAY7gZ8b2fDa9buNj6t19KCWxoqH9nXgFOphufujGRVpLFgGCGiRs+UMALYpjoihpGAgADpHjF1aeiVEcAwVJObmwutVouLFy+irExfgujQoQMA4C+xhv23HTJsywODpVWtjJy8YAhBrIw0HgwjRNTo1RZG5GuNWDuMCIIgDdOYOkQD1D+MWLuBFVD2jVy6dEkaogGAjh31XaJdIgF3F/3qs+JQCWDDYZprQpXKiPWOS5bFMEJEjZ6plRFrN7HeunVLmupqavMq0LgqI4C+b+TMmTPSz2IYcXIC7oosq/ZaW/aMnLyg3/Z0198pmBoHhhEiavQayjCNOdN6gcYRRsQl4QF9GJFXRsRhGgDoFlVa7bW2mNoLAGczgbTbly+2neWWnSfrYxghokavtjASGWmo1Vs7jKhd8EzUunVrabZKQ2xgBWqvjMjDyN3tq4cRa6y+KnJ31cBXf1NhHJcVvjhE07gwjBBRoyd+gTs5OVX7Mvbw8EBoaCgA21ZG1IQRJycnqZJSnzDi6+srLS1vaVWXhBcrI4GBgfD19ZWe63aHMoz4eesDgzUZq7x0uYNVkcaEYYSIGj3xCzwwMNDoTeLEoZq8vDzk5+db7TzMWWNEJE6dzcnJgU6nU/VasYHVWlURQBlGTp48KQUvsV9E5O+tQ3SY4WdrDtHUdgxWRhoXhhEiatQqKiqkEFB1iEZkq74RcysjgOHcKyoqFLNj6lJeXi4FLGv1iwD6qouXl3485I8//pAelw/RiP4iW2/Emquv1nYMhpHGhWGEiBq1nJwcCIJ+bQlbhZEjR45g9uzZOHnypPSYIAiKL2lzwwigbqjGFtN6Af0N/cTqiHi9geqVEQDSSqyAfSojwQFAyxYcpmlMGEaIqFGrrXlVZOm1Rh555BF8+OGHuOeee/Dtt99CEATMmjULiYmJAABPT0/FMU2hJoxkZGTgxIkTAGwzk0Ykn1EjMhZGBvcAXG63rvTsaP1QEBygPAarIo2Pk71PgIioPuRf3GLfRVWWXGvk1q1bSE3Vr6xVUlKCxx57DF999RV+++03APoKwpIlS9CiRQtV72tqGDlz5gx69+6Nmzdv4ocffoCfn5/0nLXDiLxvRGRsmKZdELDrUw0uZAHjB1n1lABUn63DlVcbH1ZGiKhRu3z5srRdU2XkjjsM3071rYxkZmZWe0wMIgCwZMkSTJw4UfX7mhpGZs+ejZs3bwIAPvnkE5sN0wDVw4irq6vRagkA9LlTg8kPaODibIPKSJUwwnvSND4MI0TUqF26dEnaFu/QW5Wnp6f0ZV/fyoj8rrV33303nJwMBeZPP/0U06dPN+t9TQkje/bskYaCAGD//v34/fffpZ+tOZsGqB5G2rdvb/L9d6ypas8Ih2kaHw7TEFGjJg8j4noixtxxxx3Izs7G1atXUVhYKM0MUUteGfn73/+O2NhYLFq0CMOHD8ejjz5q1nsCdYcRnU6HWbNmVXt8+fLl0ratKyPG+kXsQT5M4+gIdDJerKEGjJURImrU5OGgtjDSrl07aTs9Pd3s48krI+Hh4bj33nvx7bff1iuIAECbNm2kbWNhZM2aNTh8+DAA5WcRh2wA2zewGusXsQdXFw0ib7cL3d1e/zM1LgwjRNSoiZURT09PxUqgVbVt21bavnjxotnHk4efmoaFzOHq6gp/f38A1cNIaWkp/u///k/6edGiRejTp0+197B2GAkODlYsKtdQKiMA8PVrGswYAXw1i0GkMeIwDRE1WoIgSGEkNDRUur+LMZYKI/LKiCXDCKAfqrl+/Tqys7MhCIL0eVavXi2dc1xcHIYOHYq0tDQkJSUpXm/tMOLs7Izg4GDpmjekMNK3iwZ9uzCINFasjBBRo3Xz5k0UFRUBqH2IBlCGkbS0NLOPKYYRX19f+Pj4mP0+xog9GSUlJYrVXOWLqc2aNQsajQZjx45VNM96eHjAw8PDoudjjHjjQQcHB0RHR1v9eNQ8qA4j7777LoYOHYr77rsPjzzyiGJKW0JCAuLi4jBw4EAsXLhQsUpfcnIyJkyYgD59+mDGjBlm3QyKiBqOuXPnokuXLvj111/tdg6mNq8Cyj4LcysjOp1OOqalqyKAcnE2+ayfCxcuSNsxMTEA9DNnhg4dKj1u7aqI6PXXX0dMTAzmzZtn8TBGzZfqMDJx4kQkJiZiz549eOutt/Dmm2/i1q1b2LdvH9auXYuEhASsWbMG+/btw6ZNmwAAZWVlmD17NsaPH49du3YhNjYWb731lsU/DBHZRn5+Pt555x2cOnUKkyZNQnFxsV3Ow9TmVfF5sd/B3DCSm5uLsrIyAMYXAKuvmpatF8OIq6urYmE3edOstaf1ioYMGYLk5GS89tprNjkeNQ+qe0bkpU6NRoOysjLk5eVh69atGDNmjPQXwqRJk7Bt2zbEx8fj6NGjcHd3R3x8PABg+vTpiIuLQ3Z2ttFFisrKyqQ/8NKJOjnBxcVF7ek2SuIdO9XeubO54vVSxxLX68KFC9LrL1++jI8//tguX07y/o2QkJBaP5OjoyNCQ0ORkZGBixcvmvT5q14reYgJCwuz+O85cQgE0FdGdDoddDqdtOKr+Lx43BEjRiAgIAB5eXno0qWL3f8M8M+iOs3lehm7k3ZVZjWwvv/++0hMTERpaSnuu+8+REZGIi0tDcOHD5f2iY6OxhdffAEASE1NVSR+d3d3hIaGIjU11WgYWbFiBZYuXap4bOzYsRg3bpw5p9toGVvpkWrG66VOfa6XOMVU9MEHH2Do0KE2+9e5KDk5Wdp2cXGpc8puUFAQMjIycO3aNSQnJ5u81oh4reS9G15eXvWaImyMu7u7tH3y5Emkp6cjOzsbpaWlAPTnX/WYX3/9NQ4dOoRRo0ZZ/HzMxT+L6jT16yUfIq2JWWHkH//4B2bNmoUjR45IpcTi4mLFH2xPT0+pdKvVauHp6al4D09PT2i1WqPvP3Xq1GrLKTe3ykhmZibCwsJMSpTNHa+XOpa4XlWHZQoLC5GQkIB///vfljhFkxUWFkrbd999d41Lk4s6dOiAQ4cOAdBfh7r2r3qtSkpKpOe6dOlS5+vVCg4OhqOjIyorK5GdnY2IiAhFNSY2NrbaMSMiIvDAAw9Y9DzMxT+L6vB6GZg9tdfR0RH33HMPvv/+e0RGRsLDw0PxF0NRUZHU2e3u7i51vMufl/8rQM7FxaXZBI/aODg4NPvfoGrweqlTn+tlrOfiq6++wsyZM206wyIrK0vaDg8Pr/PzyP+FlpGRgbvuusuk44jXSv4v2LZt21r895urqyvatm2LCxcu4Pz589BoNIqZP1FRUY3i9zj/LKrD62WBqb1id3m7du0UDVfnzp2TxjcjIyMVz2m1Wly6dEkxPkpEjYc8jMyYMQMAUFFRgddff92m5yHObHFzc5MWDKtNfdcasdaCZ3LikHZBQQGuXr2qmEkjv+EfUVOiKowUFxdj27ZtKC4uRkVFBXbu3ImjR4+iW7duGD58ONatW4esrCzk5eVh5cqVGDZsGACge/fu0Gq1SExMRFlZGZYvX46YmJga77BJRA2b+EXu4uKCf/3rX2jdujUAIDEx0abNeGI4qGvBM5G8MmLOWiNiw6xGo0FISIjq15ui6owahhFqDlQN02g0GmzcuBEffPABBEFAWFgY5s+fj6ioKERFReH8+fOYPHkydDodRo0ahZEjRwLQ/4W1YMECzJs3D++//z5iYmIwd+5cq3wgIrIuQRCkL/KIiAh4e3vjL3/5CzZu3IjS0lJkZmZavJfCmFu3bqGgoACA6VUKS1VGgoOD4ezsrPr1pqgpjGg0GsX5EzUlqsKIu7s7Fi9eXOPzU6dOxdSpU40+17lzZ6xatUrd2RFRg3P9+nWpP0z8cqy6WJctwoiaBc9EISEhUoOo2jBSWlqKK1euALDeEA1QcxgJCwuDq6ur1Y5LZE/Nu2OGiFSTf4mLwx7yptVz587Z5DzMCSNOTk5SkFAbRuTHs8aCZyJ5sPv9999x48YNAByioaaNYYSIVJF/iddUGbEFc8IIYAhQN27cwM2bN2vdt6CgQJqxI29etWYYkc/S2bNnj/Q4wwg1ZQwjRKSKvPGzMYYRU/tG0tPTERsbi379+mHRokVWvVuvnKurq+KGeSKGEWrKGEaISBVjlZHg4GBpXSFbhRFzp9maEkYKCwsxcuRIKfC8/PLLSExMlJ63ZmUEUPaN1PYYUVPBMEJEqhjrGdFoNFJ1JDU1FRUVFVY/D2tVRnQ6HR577DGcPHlSeqysrAxr166VfrZmZQQwHjxYGaGmjGGEiFQRh2nc3NwQGBgoPS6GkYqKCrPviquGGEZcXFxU3ROnrrVG3n77bWzYsAEA0KJFC8UQlMjalRFjx2QYoaaMYYSITCYIghQ0IiIiFAuN2bpvRAwjpi54JqqtMnL06FHMnz8fgH6J7u+//x6ff/453NzcpH3c3NysfkPAqpWRgIAA+Pj4WPWYRPbEMEJEJsvLy5Nukld1AS5bTu8tLCxEfn4+AHVDNIC+v8XJSb/EUtUwIp+98vbbb2Po0KFo3749PvzwQ+nx8PBwVeHHHFXDCKsi1NQxjBCRyYz1i4hsWRmR94uo7d9wdHSUhlmqhhH5jJmBAwdK20899RRmzJgBV1dXPP/882acsTqRkZGKwMMwQk0dwwhRI6LT6bBx40bFjSdtydi0XpG9wojayghgCFI3b96UFhUDlGFE3hei0WiwZMkSFBQU4JlnnjHnlFVxc3NTfC6GEWrqGEaIGpG///3vGDVqFPr37y8Nl9iSsWm9olatWkl9DY0ljAD62T8iMYw4ODggODi42uusdT8aY+ThjmGEmjqGEaJGYvfu3Vi2bBkAIDs7G//73/9sfg61hRGNRiP1jaSnp6O0tNSix05PT8f777+PUaNGYdasWdLj5oQR+Ze7PIzIb4Qn9pXYi7wHx9jsGqKmxL5/2ojIJKWlpXjyyScVj6WkpKBXr142PQ/5ME3VnhFA/6V55MgR6HQ6pKamolOnTvU6nk6nw5YtW7B48WJs27YNgiBU2ycmJkb1+0ZGRkrbYhjRarXIzc0FYP2pu6Z4+umnsWPHDsTGxqJ37972Ph0iq2IYIWoEPvzwQ5w9e1bxmD36RsTKiLu7O1q1alXt+ap9I/UNI0899RS++uqrao+3aNECPXr0wKRJkxQVBFPJw4h4V1xb3QjPVHfeeafNVrMlsjeGEaIGLiUlRVr7ourjtiRfY6Rt27ZGp7fKw4glpvf+8MMP0nZ4eDimT5+OMWPGIDo6WrqZnDmMVUZqal4lIutjGCFq4GbNmiX1Xzz99NNYtGgRANvdA0aUk5Mj3bitar+ISF6lqO/55efnSzNd7r33XuzduxeOjo71ek+Rv78/fH19kZ+fzzBC1ACwgZWoASstLcW2bdsAAIGBgfjggw+khk1bV0bk4UJeWZCz5PReeX9Kp06dLBZEROJnyMjIQHl5OcMIkR0xjBA1YMeOHZOqIkOGDIGXl5e0OmdeXp60CqktJCcnS9s1NY36+fmhZcuWAOo/TCOf5VJT+KkP8T0rKyuRkZHBMEJkRwwjRA1YUlKStH3vvfcCUC4VLjZf2sLp06el7c6dO9e4nzhUk5WVVa+1UORhxNjMnfqqOr2XYYTIfhhGiBqw/fv3S9t9+vQBYPsb0onkYaS26bSWamKVD9NYszICKMOIl5cXfH19LX48IqoZwwhRAyUIglQZ8fHxkQKAvDJiy74RcZgmICDA6LReUceOHaXtM2fOmH08a1dG5GEkJSVFCiO2uBEeESkxjBA1UGlpacjJyQEA9O7dW2rgtEcYuX79Oq5cuQKg9iEaAIq1Rf7880+zjymGEU9Pz1rDj7nkYeT333+XZgpxiIbI9hhGiBooY0M0gLLXwVZhRB4q6lrx1BJhpLKyEunp6QCq38HWUsLDw6WAd/DgQcXjRGRbDCNEDZSx5lVAXykICgoCYLueEVP7RQB9WBJvKGduGLl8+TLKysoAWGeIBgCcnJwQEREBANKxAIYRIntgGCFqoMTKiIODA+655x7Fc2KTaG5uLm7dumX1czFlWq/IyclJOr9z586hoqJC9fGsPa23tvdmGCGyPYYRogbo5s2bOHXqFACgS5cu8Pb2Vjxv6+m9pk7rFYlDNWVlZYpZMaay9kwakXzIS8QwQmR7DCNEDdChQ4ekO9TK+0VEtm5iFcOIv78/WrduXef+9e0bsfZMGhErI0QNA8MIUQMkb16V94uI5GHE2n0j+fn5yMrKAqAfojGlmVQ+vbe+YcSWwzQajQYhISFWOx4RGccwQtQAyZtXjVVG5AuLWbsyIg8TpgzRAPWvjMiHaWq6KZ8lVA0jbdq0gYuLi9WOR0TGMYwQGZGWlobY2Fj0798fWq3WpsfWarU4cOAAACA4ONjosIEtp/eqmUkj6tChg7RtShiZM2cOIiIisHr1agCGykibNm3g4eGh5nRVqdozwiEaIvtgGCEyYs6cOUhOTsZvv/2GLVu22PTYW7ZsQVFREQBg8ODBRodFvL29ERgYCMD6YUTNTBqRp6enNG32zJkzUv+LMampqXjnnXeQkZGBadOm4eLFi9ICa9YcogGAFi1awN/fX/qZYYTIPhhGiKrIy8uT/oUO1G9Jc3OsXLlS2p44cWKN+4l9I9nZ2SgsLLTa+ZhTGQEMQzW3bt1CdnZ2jft9/fXX0nZhYSGmTp0q/WztMFL1GAwjRPbBMEJUxYoVK1BaWir9XJ+bvRlTXl6O8vJyo8/duHEDW7duBQAEBgZi4MCBNb6PvG/EmtN7xTDi6+srLbZmClP6RnQ6HRISEhSP7d69W9q25kwakXyohmGEyD4YRohkdDodFi9erHjMkmHk6NGjaNmyJby8vNCzZ0889dRT2LhxozSMsW7dOmk10PHjx0vLlRsjn1FT33MsLS3FqlWrqs3MuXXrFjIzMwGYPpNGZEoY2bVrl3SDOnd392rP26IyIg8j4tASEdkWwwiRzM8//6yYVgoAZ8+erbXnQY3Vq1ejoKAAZWVlOHLkCBYvXoxRo0bh7bffBgB899130r61DdEAypktJ0+erNd5vf7665gwYQJ69eolTeMF1N2TpipTwsh//vMfaXvx4sUIDg5WPG+LMDJlyhSEhYWhR48eGDp0qNWPR0TVOdn7BIgaki+//FLa9vLyQmFhIfLz85GXl2eRO8eKVYCq5s2bh9atW0tDFFFRUejRo0et73XXXXdJ28ePH6/XeR0+fBiAfk2RmTNnYu3atQCAZcuWSfuYOq1XVFcYuXHjBn788UcA+sXUHnnkEZSXl2PatGnSPrYYpmnfvj0uXrwIjUZjlRvyEVHdWBkhui09PR2bN28GAISGhioqE2fPnrXIMS5duiRt5+Tk4J133pF+fu6556QKzMSJE+v8Ymzbti18fHwAACdOnKjXeckbTNetW4ctW7Zgy5YtUhjx9PTEww8/rOo9W7ZsiYCAAADGw8iqVauk3pxJkybB1dUVU6ZMQWxsLAAgICCgWqXEWhwcHBhEiOyIYYTotq+++go6nQ4AMGPGDMWwhKX6RsT+i4CAALRu3Rpvvvkmxo8fX22/Rx99tM730mg06NKli/S+169fN/u8xKm0omeeeUZRofj4448RFham+n3F6siVK1eQn5+veG7FihXS9hNPPAEAcHR0xKZNmzBz5kysW7eu1p4ZImo6GEaIoJ/hIvYvODk5Ydq0aYqFuywRRiorK6V+DPGLXaPRYNmyZVKoAIAePXogOjrapPeUD9WY2zdSVFSEgoICxWPp6elSQBk2bBimT59u1nvLh2rkU4RTUlKkoaFu3bopPke7du3w6aefon///mYdk4gaH4YRIgCbN2+Wvnzj4+MRFBSkCASWGKbJyclBZWUlAP0wkMjT0xMbNmyQ7ony6quvmvye8i9xc4dq5FWR7t27K5ZD9/Pzw7Jly8wewrjzzjuNnp8YRABg9OjRZr03ETUdDCNEAJYsWSJtz5gxA4B+zQlXV1cAlqmMiEM0AKoNebRr1w5//vknMjMzMWbMGJPfs2vXrtK2JcJI37598X//93/Sz4sWLapX34b8/ORNtvJz7datm9nvT0RNA2fTULOXlpaGn3/+GYC+KTQuLg6Avn8hKioKycnJSElJQWVlZb16GGoLI4B+iXdvb29V7xkbGwsHBwfodDqzZ9TIw0hQUBBmzZqFdu3aoWXLlvjrX/9q1nuK7rrrLmg0GgiCgGPHjkmPy8OIvLpDRM0TKyPU7C1fvlyaxTJ9+nQ4OBj+WIhDNWVlZUhPT6/XceQzaeTDNPXh7u4unWNycnKNK7vWRj6Tpk2bNnBwcMDjjz9e7yAC6AOWuDjbqVOnUFFRAcAQRvz9/aXhKSJqvhhGqFmr2rgqzuoQWbKJta7KiLnEykJZWZlZvS3yykibNm0sdl4icRimpKQEZ86cQW5urhSAxMoJETVvDCPUrG3ZskX6Yhw5cmS1L2NLNrFaozIC1L+JteowjaXJe0KOHz/OIRoiqoZhhJo1+VoXYuOqnLUqIw0pjFQdprE0eRPrsWPHFOcof46Imi82sFKz9scffwDQT2EdPHhwtectWRkRw0jr1q2lWTqWUN9l4cXKiKOjo7RiqiXJKyPHjh1Dbm6u9DMrI0QEsDJCzZhWq5WGTjp06KBoXBUFBATA398fQP0qIxUVFVIFwpJVEQAIDg6WQkR9hmkCAwONXoP6CgwMlIZ/jh07Js2qcXJyUiyKRkTNF8MINVvyu/OKMz6MEasjmZmZKC4uNutYV65ckRY8s2TzKqBfxVWsMOTm5lZb2r02lZWVyMnJAWCdIRqRWB3Jz89HcnIyAP3qrJasEBFR48UwQs1WSkqKtG1KGAGA8+fPm3Usa/WLiMztG7l27ZoUkmwRRuQ4RENEIoYRarbkwaK2MGKJJlb5TBpLV0YA8+9RY+2ZNCJjjapsXiUiEcMINVvmVEbkN3tTw1prjIg6d+4sbf/5558mv87aM2lErIwQUW0YRqjZkoeR9u3b17hf9+7dpe3du3ebdSxrD9PIqzdqwoi1FzwTtWvXDj4+PorHGEaISMQwQs2WGEb8/PykGTPGtGvXDpGRkQCA/fv3o6ioSPWxrD1M4+XlJb3vmTNnpOXtq9Jqtfj1119RUFAAQFkZseYwjYODg2JYJigoCK1atbLa8YiocWEYoWaptLQUGRkZAGofohGJN88rKyvDvn37VB9PXhmpz11wayNOk83Pz5dmyIgEQcDGjRvRqVMnxMXFYfLkyRAEwWaVEUA5VMOqCBHJqQojZWVleOeddzB8+HDcd999mDFjhqLUnZCQgLi4OAwcOBALFy5U/OssOTkZEyZMQJ8+fTBjxgzFv8iIbC01NVX6/akmjADAjh07VB9PDCOBgYFWm84qX7NDPlSTkZGBESNGYNSoUdLN/k6cOIHk5GSbhhF5ZYRhhIjkVIWRyspKhISEYMWKFdi1axf69++Pl19+GQCwb98+rF27FgkJCVizZg327duHTZs2AdCHmNmzZ2P8+PHYtWsXYmNj8dZbb1n+01CjUVJSgpycHOk/8W6utmJq86powIAB0g3d1IaR8vJyKXxbY4hGZCyM6HQ6jBw5Elu2bKm2/8aNG23WwAoADz30EKKiotCyZUtMnTrVqsciosZF1XLw7u7umDZtmvTzI488goULFyI/Px9bt27FmDFjpOa8SZMmYdu2bYiPj8fRo0fh7u6O+Ph4APrbtMfFxSE7O9voOHVZWRnKysqUJ+rkBBcXF9UfsDHS6XSKX5uaHTt2YPTo0Yrei+DgYOzfv9+sL2tzrpd8Wu8dd9xR52v9/f3RrVs3/PHHHzh+/DhycnJM7nnIysqSqjAhISFW+/8qb2I9ffo0dDodkpOTpXVHAgMD8Y9//AMvvvgiAH0YEXtHvL294e7ubtXfc97e3vjzzz9RWVkJZ2fnRvH7u6n/WbQ0Xi91msv1MmVl53rdm+bkyZPw9/eHr68v0tLSMHz4cOm56OhofPHFFwD0JXH5vz7d3d0RGhqK1NRUo2FkxYoVWLp0qeKxsWPHYty4cfU53UZH3mfQlHz44YfVmkAvX76MDz74ALNmzTL7fdVcL3FJckDf/CkOX9SmR48e0r1sVq9ejREjRtS6f15eHgoLCxXTgX19fU06ljm8vLyk7WPHjiE9PR2bN2+WHnviiScQHx+PpUuX4vTp0zh69CicnZ0BAC1btrTaeTUFTfXPorXweqnT1K9Xu3bt6tzH7DBSWFiI9957D08//TQAoLi4WPGXoaenp7R0tlarhaenp+L1np6e0Gq1Rt976tSpmDhxovJEm1llJDMzE2FhYVa5V4g9CYIg3czNw8MDAwcOxNatW6HT6fDLL7/g3//+tzQcYipzrpe8wbNv374mVTkefvhhfPXVVwD0PRfPPvtstX3Kysqwfv16fPXVV0anAXfq1AkREREmnaNa4eHh8Pf3x/Xr13Hx4kVERETgzJkz0vMPPvggIiIi8PDDD0sBqby8XHqttc6rMWvKfxatgddLHV4vA7PCSGlpKV5++WX07dtXGnrx8PBAYWGhtE9RURE8PDwA6CshVf8lXFRUBHd3d6Pv7+Li0myCR20cHBya3G/Qc+fOIS8vD4C+DyMxMREDBgzA7t27kZKSguTkZHTp0sWs9656vQoLC1FZWYkWLVpU21fsGfHx8UHr1q1NCkD9+vWDq6srSktLsWPHDmg0GsXrNm3ahOnTpyvuSltV165drfr/tFOnTkhKSsLly5dRWFiIAwcOAND/merRowccHBwQHx+PefPmKV7Xpk2bJvd7zZKa4p9Fa+L1UofXy4ypvRUVFXjttdfQqlUrvPDCC9Lj7dq1UzQFnjt3TlqbITIyUvGceLdU8XlqPpKSkqTte++9FwAwZswY6bEffvjBIsfJyMhAVFQUQkNDcfToUcVzZWVl0pBEVFSUyZUYd3d39O3bV3r/CxcuKJ6fNWuWIohER0dj4sSJmDRpEiZNmoSFCxdiyJAh9flYdZI3sf72229Sb0yPHj2kWTxdu3atNr3Y2s2rRES1UR1G3n33XZSWlmLOnDmKv8SHDx+OdevWISsrC3l5eVi5ciWGDRsGQL+CpVarRWJiIsrKyrB8+XLExMRYdZElapj2798vbYthZPTo0dLvpR9++KHGBbvUWLx4MXJyclBYWFitCnDx4kWpYay2lVeNqWmKb15ennTfmjvuuAO7du3CmTNn8O233+Kbb77BN998g+eff171EJRa8jCyfPlyabtPnz7StkajweDBgxWv459FIrInVWEkOzsbiYmJOHbsGAYMGIB+/fqhX79+OHbsGPr27YvRo0dj8uTJGDt2LPr06YORI0cC0JeIFyxYgJUrV2LAgAE4ceIE5s6da5UPRA2bGEYcHR3Rq1cvAPovQrHicPbsWekW8+bS6XRYuXKl9HNiYqK0wBmgflqvXE1h5NChQ9L2qFGjFFOBbUkeRhITE6VtMfiJ5J8DYGWEiOxLVc9IUFAQjhw5UuPzU6dOrXH9gM6dO2PVqlXqzo6alOvXr0uNk926dZN6igD9bKnffvsNALB27VrExsaafZykpCRF+NDpdPjqq68wf/58AKbfrdeYbt26wdfXF/n5+fj111+h0+ng4OCAgwcPSvv07t3b7HOvL3kYka/dUjWM9OrVS/ocAMMIEdlX8+6YIZuSf2HLhw0A/VCNqL59I/KqiGjp0qXS2jX1qYw4OjpiwIABAPThSlzDQ/7Z7rnnHtXnbCnh4eGKkAfoP2Pr1q0Vjzk7O+PBBx+UfjZl6h0RkbUwjJDNGGteFYWEhEgB5fTp04q1OdQoKyvDmjVrAOhneIl9S7m5uVi/fj2A+oURABg4cKC0vXPnTlRWVkrDNMHBwVa5K6+pHBwcFIufAdWvtWj+/PkYPnw43njjjWqvISKyJYYRshljzaty8lk169atM+sY27Ztw40bNwDoezfki6gtWrQIeXl5Uk+Kl5cXAgMDVR9j0KBB0vbOnTtx5swZaSXT3r1726VXRK5jx46Kn6tWoUTh4eHYsmVLtQZfIiJbYxghmygvL5eqB+Hh4UarB6NGjZK2xf4RteRDNBMnTsT9998vfTnv3bsXoaGh0mqHaqb1ynXs2FGaffLbb78pztWeQzQied8IUHNlhIiooWAYIZs4ceKEtOJuTf9Sj4iIkL7kDx06pPp+DTdv3pRmkAQEBGDw4MHQaDR46qmnpH1KS0ul7SeffFLV+4s0Go1UHSkqKsK///1v6Tl7Nq+K5GGkRYsWiImJsePZEBHVjWGE6u3AgQNYs2ZNreGhriEaQP8lL36Z37p1S7GUuSmWLFmCkpISAPqbOIr3XZk8ebJUifH19cVLL72E8+fP4+9//7uq95eT942I/S2Ojo7o3r272e9pKfLw8Ze//KXZr+xIRA0f/5aieklLS0O/fv3wyCOPYPHixUb3KSsrUwyf1FQZAZTDHPK1O+py/fp1/POf/wSgb+KUV0N8fX1x6NAh/Prrr8jKysJHH31kVuOqnLxvRNSlS5dq92Cyh06dOmHChAkIDAzE7Nmz7X06RER1Yhihetm3bx8qKysB6O+2XJUgCHj66afx+++/A9BPIb3zzjtrfD/5MId8umxdPv/8c9y6dQuAfr2bzp07K54PDg7G/fffX23aq7nCw8OrBZqG0C8C6CtM3333HbKzs6VpyEREDRnDCNWLfCjlyJEjSEtLUzz/2WefScuSu7m5Yc2aNXByqnmtPfFmboDpYeTChQtS5cXDw8Nmq/vKh2qAhtEvImfvWT1ERKZiGKF6+fPPPxU/y6fk/vzzz3jppZekn//zn/+gR48etb6fp6endNfe//3vf4o7QdfktddeQ3l5OQDg5ZdfrnYTOGupOlTT0MIIEVFjwTDSxKWnp2P79u3Sf6dOnbLo+1cNI2vXrgUAFBYWYvLkyVJT62uvvYYJEyaY9J7icIdOp6v19gMAsGfPHumYrVu3VqwrYm3yIRBfX1/VN90jIiI9hpEm7PDhw2jXrh0eeOAB6b8uXbrg22+/tcj7l5eXK1YzBfRNpxkZGVi4cCFycnIAAA888ICqhbVM7Rv5/fffpZsxAsBbb70Fb29vk49TX61atcLYsWMBAE888QRnrRARmYl/ezZh33//PQRBqPb4e++9Z/RxtVJSUqSbscn7E7766issWLAAgH6666effqrqi9qUMHLkyBEMGTJEalq99957MX36dNWfob5Wr16N9PR0/Otf/7L5sYmImgqGkSZMvrbHG2+8Ic0w+fPPP7Fnz556v798iGb8+PHS9rvvviuFhCeeeEL1fU+io6Ph6+sLQB9GqganEydOYPDgwbh58yYA/XDJ0qVLa22MtRaNRoPw8HA2ixIR1QPDSBOl1Wrxxx9/ANAvXz5v3jy88cYb0vOLFi2q9zHkYSQ+Pr7alF03Nze89dZbqt/XwcEBvXr1AgDk5OQgIyND8fysWbOQn58PALjvvvuwceNGuLu7qz4OERE1DAwjTdSRI0ekGSbiiqejR4+WbiW/fv16ZGdn1+sY8jDSqVMnxY3uAOC5554z+w62NQ3VlJaWSveCCQkJwebNmxvEQmNERGQ+hpEmSj5EI6546uLigmnTpgEAKioqsGzZsnodQwwjDg4OiI6Olpo5Af09Uf7xj3+Y/d7yMHLgwAFp+8iRI9KS7wMHDoSXl5fZxyAiooaBYaSJSkpKkrbl94KZMWOG1Ey6ZMkSqQFVLZ1OJy141q5dO7i5uaFTp0548skn4efnhyVLlsDf39/s87/nnnukPowdO3ZIj8vvkNu/f3+z35+IiBoOhpEmSBAEqTLi7++P6Oho6bmIiAj89a9/BQBkZWVh8+bNZh0jMzMTxcXFAJR3if3yyy9x/fp1PPLII+aePgD9eYvVkeTkZFy4cAGAMoz069evXscgIqKGgWGkCTp37hyuXbsGQF8VqTqt9umnn5a2xaXa1ZIvAy8PI5YUHx8vbW/cuBGVlZVSxad169aKkEVERI0Xw0gTJO8XkQ/RiAYPHoxWrVoBMD511hRVm1etYdSoUdL2hg0bcOrUKWk6b79+/TidloioiWAYaYLk/SJi86qcg4MDunXrBgDIy8tDVlaW6mPYIox06NBBWqMkKSkJ69evl57jEA0RUdPBMNIEiZURJyenGm9MJ4YRADh27JjqY9gijACGoRqdToePP/5YepxhhIio6WAYaWKuX78uBYW7774bHh4eRvezVBgJCgpCixYtzDhT08j7RsQ7+Hp7e+Ouu+6y2jGJiMi2GEYsSKfTSf9Z4t4v5pCvyWGsX0RUnzBy6NAh5OXlAbBuVQTQT/ENDAxUPNanTx84Ojpa9bhERGQ7DCMWoNVqMWDAADg6Okr/tWjRAqtWrbL5uZgaRqKioqQFw9SEkaNHj+KBBx6Qfrb2Wh+Ojo4YMWKE4jGuL0JE1LQwjFjAqlWrsHv3bsVjBQUFePnll6Ul2W3l999/l7blq5hW5eDggK5duwIA0tPTcf369Trf+9ixYxg8eLB0X5j+/fvjlVdeqdf5mkI+VAOwX4SIqKlhGLGAr7/+Wtru2bMnQkJCAACXL19GYmKizc5DEAQcOXIEABAYGFjnfWHkQzXHjx+vdd/jx48jLi4ON27cAKAPBFu2bLHJfWEGDRok9b64urqiZ8+eVj8mERHZDsNIPV28eBF79uwBoJ+KeujQIfznP/+RnrfE3XFNlZqaKoWFnj171rkOh6l9IydPnkRcXJxUPenTpw+2bt1qs/vCuLu74/XXX4erqyteeeUVuLq62uS4RERkGwwj9fTtt99K248//jg0Gg3i4uIQFRUFANi5cyfOnj1rkWOdO3cO33zzjXSjuKoOHz4sbdc0pVfOlDBy6tQpDBo0SFrR9S9/+Qu2bdtm8xvUvfbaaygsLMT8+fNtelwiIrI+hpF6EAQB//3vfwEAGo0GEydOBKDvx3jyySel/RYvXlzvYxUXF+O+++7D5MmTMXToUJSVlVXbRx5GTBnKiImJgbOzMwDgjz/+qPZ8WloaBg0aJM2c6d27N3766Sd4e3ub+zHqxcnJyS7HJSIi62IYqYeDBw/i/PnzAIABAwYgPDxcem7KlClwc3MDACQkJEg3lTPXzp07ceXKFQDA3r178eyzz1abPqw2jLi4uCA2NhYAcPbs2Wrn+Mknn+Dq1asAgF69euGnn36Cj49PvT4HERFRVQwj9SBvXH388ccVz7Vs2VK6c21+fn69p/lWvbvu0qVL8fnnn0s/V1ZWStWNiIgI6d4zdRGHanQ6HU6ePKl4TmyGBYDExESrLm5GRETNF8OImUpKSrB69WoAgIeHB0aPHl1tH/ndcb/88kuzjyUIghRG5It9vfjii/jll18A6O+iW1RUBMC0qoiopr4ReTiJiIhA69atzT5/IiKi2jCMmGnz5s3SehsPP/yw0YbOnj17Smt5HDlyBJcuXTLrWMeOHcPly5cBAA888AD+8Y9/ANBXQ6ZMmYKSkhLVzauimsJIamqqFG7Ez0BERGQNDCNGnDx5Ei+99BJ27dpV4z4rV66Uth977DGj+2g0GsWCXdu3bzfrfORDNH/961/x7rvvYvDgwQD0a5kkJCSo7hcR3XXXXdIUYHkT64kTJxT7EBERWQvDSBWCIGDs2LH45JNPMGjQIIwfPx5ZWVmKfW7cuIGtW7cCANq0aYOBAwfW+H7ypdN/+ukns85JvnDagw8+CAcHB7z33nvSYx988IFiGfju3bub/N5eXl7o2LEjAP3CZgUFBQAYRoiIyHYYRqo4fvw4zp07J/28evVqdOzYEcuXL5ceW7dunTS1dvz48bXetK1nz57w9/cHAPzyyy+oqKhQdT7Z2dlSI2nXrl0RFhYGQD8UM2TIEAD6hdfEIZYOHTqobjQdMGAAAP2wz969ewEwjBARke0wjFTx448/SttiyCgsLMS0adOk6sN3330n7fPoo4/W+n6Ojo5SaLh58yYOHjyo6nzECgygH6KRe/3116vtr6ZfRDRo0CBpe+fOnQAMYcTLywvt2rVT/Z5ERESmYhipYv369QD0/R4nT55UTNl99tlnkZGRId0Ur3379iZ9+ddnqEY+RFM1jPTv3x99+/ZVPGbOfVvuv/9+qW9k586dyM/PR3p6OgB9VcTBgb9NiIjIevgtI3P27FkkJycDAO69917ExMRg2bJl6NKlCwB9g+dDDz0kLTb26KOP1nn/FwBSZQRQF0auXbsmNb22bt3aaNB47bXXFD+bE0b8/f2lWTUnT57Ejh07pOc4RENERNbGMCIjVkUA4KGHHgKgX4JcvriYfMZJXUM0oqCgIGl67NGjR5Gbm2vS6xYvXizdh2bChAlGKxQPPPAA7r77bgCAp6en2dNw5UM1CxculLYZRoiIyNoYRmTk/SJiGAGAfv36VZu+26NHD0RHR5v83sOGDZO2TZniW1paKoUgBwcHzJw50+h+Go0Gq1atwt/+9jesWrUKHh4eJp+TnDyM7Nu3T9pmGCEiImtjGLktMzNTWquja9euiIyMVDy/YMECxX1ZxJvimUpt38iGDRukCsqYMWNqbSJt3749li1bVq2nRI2+fftKN80TaTQa6d41RERE1sIwctuGDRukbWNLu7dp0wYfffQRAP2wi9ow8pe//EW62+327dtRWVkpPScIAlasWIFly5ahtLQUOp1OMZX45ZdfVnUsc3h6eqJ3796Kx9q3bw9PT0+rH5uIiJo3hhHoFzGT90kYCyMAMG3aNJw9exYnT540+UZ0ImdnZ2nV1GvXriEpKUl6bt26dXjiiScwffp0dOnSBe+88w5SUlIA6CsWvXr1UvuRzCIfqgG4DDwREdlGsw8jFRUVGDduHC5cuAAAuOeeexATE1Pj/tHR0QgICDDrWPKQ88MPP0jb8rv/njt3DvPnz5d+tkVVRFQ1jLBfhIiIbKHZh5GXX35ZmsraqlUrrF692qTpuuYYMWIEXFxcAOirITqdDjdu3KixobV9+/YYMWKEVc7FmF69eikaYBlGiIjIFpp1GFm6dCk+++wzAPphlB9//BERERFWO56Pjw+GDh0KQL/M+/79+7F+/XqUl5cDAGbOnIkVK1ZIQ0Dz5s2rdal5S3NxcZGWhtdoNIo7+hIREVmLk71PwF727duHp59+Wvr5yy+/rLaaqTWMHTtWWlV17dq1OH36tPTco48+il69emH8+PE4deqUqhveWcr777+P8vJyDB06FMHBwTY/PhERNT/NNoxERUWhZ8+eOHDgAF544QX87W9/s8lxR4wYAWdnZ5SXl+P777/HtWvXAADt2rWTVk91cXExuy+lvmJjY01aB4WIiMhSmu0wTZs2bfDrr7/i448/xocffmiz4/r6+krLw+fm5kpTfB955BGr9aoQERE1ZM02jACAq6srXnzxRTg52bZANGbMmGqPjR8/3qbnQERE1FA06zBiLyNHjlQEoA4dOkg34yMiImpuVIWRJUuWYOzYsejZs2e1voKEhATExcVh4MCBWLhwoXRnWwBITk7GhAkT0KdPH8yYMQPZ2dmWOftGyt/fH3FxcdLP48eP5xANERE1W6rCSFhYGF5++WV07txZ8fi+ffuwdu1aJCQkYM2aNdi3bx82bdoEACgrK8Ps2bMxfvx47Nq1C7GxsXjrrbcs9wkaqaeeegqAfhn2xx9/3M5nQ0REZD+qwsjw4cPRu3dvaeEu0datWzFmzBiEhoYiICAAkyZNwrZt2wAAR48ehbu7O+Lj4+Hq6orp06fj9OnTzb46MnLkSBw/fhynT5+u9SZ4RERETZ1FOjfT0tIwfPhw6efo6Gh88cUXAIDU1FRERUVJz7m7uyM0NBSpqakICgoy+n5lZWUoKytTnqiTU7UQ1NjdeeedAACdTqd4XPy56uNkHK+XOrxepuO1UofXS53mcr0cHOque1gkjBQXF8PLy0v62dPTE8XFxQAArVZb7c6vnp6e0Gq1Nb7fihUrsHTpUsVjY8eOxbhx4yxxuo1GZmamvU+hUeH1UofXy3S8VurweqnT1K+XKdV/i4QRDw8PFBYWSj8XFRVJ9zhxd3dHUVGRYv+ioiK4u7vX+H5Tp07FxIkTlSfaBCsjNdHpdMjMzERYWJhJibK54/VSh9fLdLxW6vB6qcPrZWCRMNKuXTukpKRIy6mfO3cOkZGRAIDIyEisX79e2ler1eLSpUvS88a4uLg0m+BRGwcHh2b/G1QNXi91eL1Mx2ulDq+XOrxeKhtYKyoqUFpaCkEQpG2dTofhw4dj3bp1yMrKQl5eHlauXIlhw4YBALp37w6tVovExESUlZVh+fLliImJqbFfhIiIiJoXVZWR+fPnY/PmzQCAY8eO4e2338bixYvRt29fnD9/HpMnT4ZOp8OoUaMwcuRIAPoqx4IFCzBv3jy8//77iImJwdy5cy3/SYiIiKhR0gjy1cmoQdDpdEhPT0dERESzL92ZgtdLHV4v0/FaqcPrpQ6vl0Hz/vRERERkdwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFdc9IyIiIjsipURIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGERtYsmQJxo4di549e2L79u3S4yUlJXj33XcxePBgDBkyBN98843idT169EDfvn3Rr18/9OvXD//5z38Ur33zzTfRv39/PPjgg/jpp59s9nmsyRrX6uOPP0Z8fDz69++Pxx57DH/88YfNPo+1WeN6iS5fvow+ffrgvffes/rnsBVrXa9NmzbhoYceQt++fTFmzBikp6fb5PNYkzWuVVZWFp555hncf//9GDZsGFasWGGzz2Nt5l6vwsJCzJ07FwMHDsT999+P119/XfHapvj3vDFO9j6B5iAsLAwvv/wyFi9erHh8+fLluHz5MtavX4/CwkI89dRTiIqKwl/+8hdpnw0bNiAgIKDaey5ZsgQ3b97E1q1bceHCBcycOROdOnVCRESE1T+PNVnjWnl5eeHzzz9HSEgIdu3ahVdeeQWJiYnw9PS0+uexNmtcL9HHH3+MDh06WO3c7cEa12vv3r349ttv8a9//QuRkZHIysqCt7e31T+LtVnjWn344YcICQnBwoULkZOTg7/97W/o3LkzevXqZfXPY23mXq933nkHgYGB2LRpE9zc3JCSkiK9tqn+PW8MKyM2MHz4cPTu3RsuLi6Kxw8cOIBHH30UXl5eaNOmDUaOHIktW7aY9J5bt27FjBkz4OXlhbvuugv9+/fHzz//bI3TtylrXKsZM2YgLCwMDg4OiIuLg6urKzIyMqxx+jZnjeslvl4QBNxzzz2WPmW7ssb1WrZsGV566SXccccd0Gg0CA0NRYsWLaxx+jZljWuVnZ2NIUOGwMnJCSEhIejatStSU1Otcfo2Z871unDhAs6cOYMXX3wRXl5ecHJyQseOHaXXNtW/541hGLEz+U2TBUGo9gdz0qRJGDZsGObMmYP8/HwAwK1bt3Dt2jVERUVJ+0VHRzeZP9Q1MedaVXX58mXcunULYWFh1jzVBsHc61VeXo6FCxfihRdesNGZNgzmXK/KykqcPXsWKSkpGD58OEaOHImlS5eiqd8M3dzfW2PHjsX27dtRVlaGjIwMnDp1Cj169LDVadtNTdfrzz//RHh4ON58800MGjQIkydPxrFjxwA0v7/nGUbsqHfv3vj+++9RUFCAy5cvY/PmzSgpKZGeX7p0KTZv3ozvvvsOJSUlmDt3LgCguLgYjo6OcHNzk/b19PREcXGxzT+DrZh7reQqKiowZ84cPPbYY/Dy8rLl6dtcfa7XypUr0adPn2YR2ETmXq/r16+jsrIShw8fxurVq/HVV1/hl19+QWJior0+itXV5/fWXXfdhVOnTqFfv34YPXo04uPjFV+2TVFt1ys3NxeHDh1Cr169sH37dkyZMgWvvPIKbt682ez+nmcYsaO//e1vCA4OxpgxY/D8889j0KBBaNWqlfR8t27d4OTkBD8/P7zyyitISkpCeXk5PDw8UFlZqfgLoKioCB4eHvb4GDZh7rUSCYKAOXPmwM/PDzNmzLDHR7Apc69Xbm4uNm3ahCeeeMKOZ2975l4vV1dXAMDjjz8Ob29vtGnTBmPHjkVSUpK9PorVmXutKisrMXPmTIwaNQpJSUnYtGkTduzYgR07dtjx01hfbdfL1dUVISEhGDVqFJycnDBw4ECEhITg1KlTze7veYYRO3J3d8frr7+O7du3Y+3atdBoNIiJiTG6r4OD/n+VIAjw8fFBy5YtFY1O586dQ2RkpE3O2x7MvVaiBQsW4OrVq5g3b570fFNm7vU6ffo0cnJyMHr0aAwdOhTffvsttmzZgueee86Wp29z9fmzKP8iFh9vysy9Vrdu3cLVq1cxZswYODk5ITg4GPfffz+OHj1qy9O3udqu1x133FHj65rb3/NN/2/lBqCiogKlpaUQBEHa1ul0yMnJQV5eHiorK3Hw4EEkJibi0UcfBaBvbDp37hwqKytx69YtfPTRR7jnnnuk5qjhw4dj2bJlKCoqwqlTp7B3714MHjzYnh/TIqxxrZYsWYITJ07go48+qtZc1thZ+nrde++92LhxI1auXImVK1fi4YcfRlxcHObNm2fnT2oZ1vj99de//hX//e9/UVRUhKtXr2LdunXo27evPT+mRVj6Wvn5+SEwMBAbNmyQ3mfPnj21fiE3JuZcrx49ekAQBGzevBmVlZXYs2cPsrKycOeddwJoun/PG6MRmnqMbwDmzJmDzZs3Kx4Tp3+9/fbbyM/PR9u2bfHKK6+gW7duAIDDhw/jn//8J3Jzc+Hp6YlevXrhxRdfhL+/PwD9/PP58+djz5498PHxwXPPPYcHHnjAth/MCqxxrXr06AEXFxc4OjpK7/naa69h2LBhNvpU1mON6yW3ZMkSXLt2Da+99pr1P4wNWON6lZeX44MPPsAvv/wCDw8PjBo1CjNmzIBGo7Hth7Mwa1yr5ORkfPTRR7hw4QLc3NwwZMgQvPDCC4o/m42VOdcLAM6fP4958+YhLS0NYWFheOWVV3D33XcDaLp/zxvDMEJERER2xWEaIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiatR69OiBHj16NOk75RI1dQwjRFSnGTNmSF/6EyZMUDyXn5+PPn36SM//+9//tvjxExMTpfcnoqaHYYSIVDl//jz++OMP6ecNGzagtLTUjmdERI0dwwgRmczJyQkAsHr1agBAZWUl1q5dKz0ud/PmTXzwwQd48MEHcc8992DIkCF48803ceXKFWmfJUuWoEePHhgxYgR++eUXPPzww+jbty+mT5+OixcvAtDfgOydd96RXiNWSJYsWaI4XmFhIebMmYP77rsPw4YNw7Jlyyz98YnIShhGiMhk0dHRCAkJwe7du5GTk4O9e/fiypUrGDRokGK/0tJSzJgxAz/88APy8vIQERGBoqIibNu2DVOnTsWNGzcU++fm5uLNN9+ERqNBaWkpjh07hrlz5wIAQkNDERISIu0bGxuL2NhYBAYGKt7j888/x8GDB+Hs7IyrV69i8eLFOHjwoJWuBBFZEsMIEZnMwcEBY8eOlSoiYoXkkUceUey3fft2XLhwAQDwwQcfYM2aNVi+fDkcHBxw9epVrFmzRrF/ZWUlFixYgLVr10o9KSdPnkRJSQmmTZuGadOmSfsmJCQgISEBo0aNUrxHdHQ0EhMTFZWaw4cPW/TzE5F1MIwQkSrx8fFwd3fHmjVrcOTIEXTq1AldunRR7HP69GkAgJubG+6//34AQMeOHREREaF4XuTl5YX+/fsDACIjI6XHq1ZQajN48GA4OzvD19cX/v7+AIDr16+r+3BEZBcMI0Skire3N4YNG4aioiIA1asi5r6nyNHRUdoWBKFe76Hm9URkPwwjRKTauHHjAAC+vr4YMmRItedjYmIAACUlJdi9ezcA4MyZM0hPT1c8byo3NzdpW6vVmnPKRNSAVW+BJyKqQ1RUFHbu3AlHR0e4uLhUe37o0KH49ttvkZqaildffRURERHIysqCTqdDq1atpDBjqrZt20rbY8eORUBAAF544QV07dq1np+EiBoCVkaIyCwtWrSAl5eX0edcXV2xdOlSKTikp6fD09MTw4YNw4oVK+Dn56fqWO3bt8e0adPQsmVLXLlyBf/73/9QUFBgiY9BRA2ARuCgKhEREdkRKyNERERkVwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFf/D1/JRLg8gZ0IAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -198,14 +222,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABMqklEQVR4nO2deXxU1d3/35OdhCVhFQIRQdk34QhlUZQKiFJtq0Wt+kirj1pF62Pd+lgVu1httavPr+61Fq0LVuu+s7gBHhZBZA8QCAQCZA9JJjP398fNucxMMslMZiYzCd/368VrJnfu3HvOzPC53/s53/M9LsuyEARBENo/SfFugCAIghAdRNAFQRA6CCLogiAIHQQRdEEQhA6CCLogCEIHQQRdEAShgxBPQbcS/V9RUVHc2yB9kb60l3/Slzb7FxSJ0JvB4/HEuwlRQ/qSmEhfEpP22hcRdEEQhA6CCLogCEIHIaWlHZRSfYBXATfgAS4DBgO/A7zAT7TWG5RSJwDPAlnA37TWi2LWakEQBKERoUToh4BpWuvp2IJ9FfAb4Dzgh8CDDfvdgS3y04EblFIZ0W+uIAiCEIwWBV1r7dFaexv+7ALsADxa6xKtdQHQveG1icDHWut6QAOjYtFgQRAEoWlatFwAlFLjgMeAbGAWcLHPy/VKqTQg1Uf4yzgm9IIgCEIbEJKga63XAZOUUvOAu4CuvsfQWtcppdxKqaQGUe8GHAk8jlLqGuAagAULFjBz5sxI2x9T3G43hYWF8W5GVJC+JCbSl8Qk3L7U19eTnJyMy+WKYatscnNzg74WyqBomta6ruHPMqASSFFKZWNbMEa4vwTOVEotByYAtwceS2v9OPB4w5/NJsgnAgsWLODCCy+krKyMTZs28fOf/5z58+ezbNkyunXrRlJSEv/3f//H5MmT493UFiksLGz2h9CekL4kJsdrX2pqajj11FPp2bMnn3zySYxb1jyhROjjlFIPYWe41AA/Bk4B3sYW5esb9nsQe9D018CjWuuj0W9u27J27Vp+//vf87//+79cdNFFzvbf//73XHTRRbz//vtce+21rF+/Po6tbB319fWkpIR0gyYIQjN88MEHbN68GYCKigq6dOkSt7a0+D9aa70KOCNg835gSsB++4HE9lBC5LbbbuO9994jPz+fyZMns2PHDj766CM/UQc444wz2L59O5WVlVxwwQWUlJTgdrv59a9/zQUXXEBVVRXz5s1j7969eDwe7r77bi6++GLuvPNOXn/9dVJSUpg1axYPPfQQxcXFXHfddRQUFADwpz/9ialTp7Jw4UIKCgrIz8+noKCAm2++mZtuugmAX/3qVyxatIhevXoxYMAAJkyYwK233sqOHTu44YYbKC4uJjMzkyeeeIIuXbowf/58MjIyWLt2LVOnTuWCCy7gpz/9KQAul4vly5fH9ccoCO2RV155xXm+c+dOxowZE7/GWJYVr38JzapVq6z58+dbdXV11pQpU5ztV155pfXyyy9blmVZL730kjVx4kTL7XZbZWVllmVZVnFxsTV48GDL6/Vaixcvtq6++mrnvaWlpdahQ4esIUOGWF6v17IsyyopKbEsy7IuvfRS65NPPrEsy7J2795tDRs2zLIsy7r33nutyZMnWzU1NVZxcbHVvXt3q66uzlq1apU1duxY6+jRo1Z5ebl18sknW7///e8ty7KsGTNmWFu3brUsy7JWrFhhnXXWWdbevXutK6+80jrvvPOs+vp6y7Isa+7cudann35qWZZlVVRUWG63OyafZbTZu3dvvJsQNaQviUmofamrq7NycnKcOiv//ve/Y9wyy7Ka0dWEveeO1eCCFeIaqmvWrGHEiBFs3ryZ4cOH+71222238etf/5pevXrx1FNPYVkW//u//8vy5ctJSkqisLCQAwcOMHr0aH72s59xxx13MHfuXE4//XTq6+vJyMjgqquuYu7cucydOxeADz/8kG+++cY5R3l5OZWVlQCcd955pKenk56eTu/evTlw4ACfffYZF1xwARkZGWRkZPCd73wHgMrKSj7//HN+8IMfOMeqra11nv/gBz8gOTkZgKlTp3LLLbdw2WWX8f3vf5/+/fu34hMVhOOXJUuWUFJS4vydn58fx9aEmOVyPLFu3Trmz5/P3r17yc7O5q9//SuWZTFu3Di++OIL4JiHbnjmmWcoLi5m9erVpKamMnDgQGpqahgyZAhr1qzh7bff5he/+AXf/va3ueeee1i1ahUfffQRixcv5pFHHuHjjz/G6/WyYsUKMjIaz8dKT093nicnJ1NfXx+0/V6vl+zsbNatW+e33YzYZ2VlOdvuvPNOzjvvPN5++22mTp3Ke++9x7Bhw1r1uQnC8YixW3r16kVxcXHcBT1ha7k0d1sRyb+WGDduHOvWrWPIkCEsWbKEGTNm8N5777Fu3To6derU5HvKysro3bs3qampLFmyhN27dwOwb98+MjMzufzyy7nttttYs2YNlZWVlJWVce655/LHP/6Rr776CoBZs2bx17/+1TlmoCAHMnXqVN544w1qamqorKzkzTffBKBr166cdNJJvPzyy87naM4RyI4dOxg9ejR33HEHp512mjOwIwhCy3g8Hl577TUAbrzxRiD+EXrCCno8KS4uJicnh6SkJDZv3syIESOa3f+yyy5Da83o0aN59tlnnSh3w4YNTJw4kXHjxnHffffxi1/8goqKCubOncuYMWOYNm0af/jDHwD4y1/+gtaaMWPGMGLECB599NFmz3naaadx/vnnM2bMGObMmcPo0aPp1q0bAM899xxPPfUUY8eOZeTIkfznP/9p8hh/+tOfGDVqFGPGjCE1NZU5c+aE+1EJwnHLli1bOHjwIHl5eXz3u98F7CAprsQqEg7hX8KT6IM8FRUVlmVZVlVVlTVhwgRr9erVQfdN9L6Eg/QlMUnkvni9Xmv16tVWXV1dSPuH0pd3333XAqxvf/vbVmVlpQVYqampTtJBDAmqqxKht2OuueYaxo0bx/jx47nwwgsZP358vJskCAnJk08+yYQJE3jiiSeidsw9e/YA0L9/f7KysjjhhBPiPltWBkXbMc8//3y8myAI7QLjdW/atClqx9y7dy8AAwYMAGDQoEEUFRWRn59PXl5e1M4TDhKhC4LQoamvr3em5FdUVETtuEbQTbrvoEGDgPj66CLogiB0aNasWeMIeXl5edSO62u5wDFBj2emiwi6IAgdmqVLlzrPoynowSJ0EXRBEIQY4SvosbBcjIc+ePBgQARdEAQhJvj65xC9CL28vJzy8nI6depETk4OIBG6IAhCTFm9ejWVlZV07WqvyRMtQfe1W0zdqRNOOIGMjAwOHToUVWsnHETQBUHosBi7xcyCjragG7sFICkpiZNOOgmIX5Qugi4IQofF1DEyy11WVlbi9Xqbe0tIBA6IGuLto4ugC4LQYTGDoL169XIqjZqy1JEQmLJoiLePLoIuCEJcKC4u9qvVHwuMeHfu3DmqPnqwCD3ek4tE0AVB8GPfvn28/PLLUbEmgnH48GHy8vL43ve+F7NzQNOCHo3UxaY8dJAIXRCEBOP2229n3rx5fvnb0WbXrl3U1NSwdOlSPB5PzM7T1hG6eOiCICQU+/fvB2IrSkePHnUed+7cGbPz+Aq6WQA9GoIezEMfOHAgYF+wYnmhCoYIuiAIfhgRPHjwYMzOYQQd7IVgYkUsLJeKigrKysrIyMigR48efq9lZmbSt29f6uvrHdFvS0TQBUHwo6qqCoADBw7E7By+gv7111/H5ByWZcXEcjH1zn0nFfkSTx9dBF0QBD86SoReV1dHfX09qamppKWlRc1yCeafG+Lpo4ugC4LgR1tE6NXV1c7zWEXovtE5ELUI3Vzo+vTp0+Tr8YzQW1yxSCk1Efgz4AYKgf8Cvml4DvAbrfUHSqlhwOMNx7xba/1RbJosCEIsaesIfevWrdTW1pKenh7VcwQT9Eg99CNHjgA08s8N8cxFD2UJuj3ADK31UaXUb4ELgDKt9ZkB+90PXAUcAN4BRNAFoZ3h8XioqakB2s5D93g8bN68mbFjx0b1HLGK0A8fPgxA9+7dm3w9oT10rfV+rbX59OsAL9BZKbVMKfW8Usr0qp/WepvWuhw4opTqGaM2C4IQI4zdArZw1dfXx+Q8voIOsfHRAwU9Wh66idCDCXq78NCVUicCs4A3gKla6+nAu8B9TRyrDGi6t4IgJCy+gm5ZFocOHYrJeYygZ2RkALHx0WNtuQQT9D59+tCpUyeOHDlCaWlpROcKl1AsF5RSXYF/AvO11m7gcMNLi4GrG577zhPuBhxp4jjXANcALFiwwKmAlqi43W4nRam9I31JTBKtL4GTfDZs2BDyBJlw+mL8+ZEjR7J69Wq+/PLLqH8Ou3fvBiAlJYXCwkKnbkxxcXGL52quL/v27XOeB9snLy+PLVu2sHLlSkaNGtWa5gclNzc36GuhDIqmAC8A92mttyil0gCX1roWOB3Y3rDrfqXUYOAg0F1r3ejSrrV+HHvgFMAKqxdxoLCwsNkPrz0hfUlMEq0vxcXFjbaF2r5w+pKcnAzAtGnTWL16Ndu3b4/652AGWXv27Elubq5jhdTW1rZ4rub6YjJ0TjnllKD7jBgxgi1btrB//35mz57d2i6ETSiWy6XAJOBupdRS4HvA50qp5cCtwL0N+90FPAO8ByyMdkMFQYg9vpYLxC7TxVguo0ePxuVyUVBQEHW/Pl4eOsAZZ5wBwJIlSyI6V7i0GKFrrf+Jbbf48mIT+32DHbELgtBOCawVHmtB79y5M1lZWVRWVlJdXe343NEgXh46wFlnnQXYgm5ZVpMzSmOBTCwSBMEhMEKPVeqiEfROnTo5C08EnjtSYpG26PV6HUE3i0M3xejRo+nRowd79uxp03x0EXRBEBzaKkI3PnRbCnqnTp1ISkqipqYGt9vdqmOWl5fj9Xrp0qULqampQfdLSkrizDPPBNrWdhFBFwTBwYhqv379gLaN0KOxNJwvgYLucrkitl1CsVsMM2bMAETQBUGIE0YEzWzHWHvomZmZbRahQ+S2SziCbnz0jz/+GMtqm6Q+EXRBEByMqBpB70geOkRP0IPVcfFl2LBhnHDCCRw4cIDNmze36nzhIoIuCIJDUxF6LKJLX0E3gtsWgh5p6mI4EbrL5WL69OkAfPHFF606X7iIoAuC4GBEtVevXmRlZVFbWxuVJdsCicegKESeuhiOoMOxJenMsn6xRgRdEAQHXxHs3bs3EBsfvb1bLqEKuqmZbqwrj8eD1+tt7i0RIYIuCIKDEdWsrKxGYhQtLMuKm6BHarm0VDo3EPMZmoviO++8Q3p6Opdffnmrzt8SIuiCIDi0RYTudrvxer2kpKSQmpraZmmL0PaWi/kMzUVx37591NfXR30xD4MIuiAIDm0RoftG5+ZcvueOFolouRgv3eT5RxsRdEEQHHxFsFevXkDTFRgjwXdAFGIj6PX19dTU1OByuZzzQPwF3ZTe7du3b6vO3xIi6IIgOPhG6CbX2vjGkVBSUsKvfvUrCgoK/CYVATFJWzTH6ty5s19hrGilLYaSh272S0pK4siRI7jdbonQBUFoO3wj9GgK+r/+9S/uuece/vznP7eJ5dKU3QJt76EnJyfTs6e9GmdxcbFE6IIgtB2xjNDBth7iKejZ2dnAMWEOB8uyQqq0GIiv7WIEXSJ0QRBiimVZMRN045sfPnw4qKBHM8slmKBHMi5QUVFBfX09WVlZYWWpmEyX/fv3O176CSecEPb5Q0EEXRCiwOrVq3nmmWfi3YyIOHr0KJZlkZGRQXJyckwE/ciRIzEZFP3mm2/YtGmT83cwQTfi2hpBD9duMZgI/euvv8br9dKrV69mS+9GQkiLRAuC0DzXX389q1atYsqUKQwZMiTezWkVgSJoBL019kQgJio/cuRIo0HRSAW9vr6eadOm4XK5KC4uJikpKaQIPdyVhCIV9LVr1wKxs1tAInRBiAom4jt0qNHa6O0GX7sFbL/Z5XJRWloa8XqfvhF6oOUSaZZLUVERJSUlHDlyxLmbCCboGRkZdOnSBbfbTVlZWVjnaa2gm7sCI+ixGhAFEXRBiApGQKI927EtCRTB5ORkZxDRDGq2FiPoJSUljnBHy3LZu3ev89ykBQYTdDgWpYc7AzbclEWDidC3bt0KSIQuCAmPEZBIFyCOJ4EROhA1H90IumVZFBUVAfET9Nb66OYC0FrLxZQhFkEXhATG4/E4NkJHitAh+oIOxwTYCHpGRgYul4va2tpWWTu+gm4uFrGI0L/55huAsMdIzAXEIJaLICQwvpFlexb0tojQAQoLC4Fjg6IulyuiKL2tIvQNGzYAMHr06LDeZyJ0g0TogpDA+Ip4exb0torQjaD71liJh6AHi9C/+uorFi1a5LdSk2VZfP3110D4gt6WEbqkLQpChHQUQW/rCD0Wgh6O5dJUhF5RUcE555xDUVER48aNY/bs2U6bS0tL6d69e9iTgtLT0+nWrZuTVRPLCL1FQVdKTQT+DLiBQuC/gO8C/wMcBa7UWu9VSg0DHm845t1a649i1WhBSCQ6iqA3JYJmADDSXHRfQTeRsa+gR5K6GM0I/cEHH3QuCm+88YYj6L7ReTi564Y+ffo4gh6rWaIQmuWyB5ihtT4D2AVcANwCnAncA9zdsN/9wFXAOcAvo91QQUhUxENvGV9BN0QjQvd6vU7ED5FF6Lt37+bhhx92/n7zzTcd28X456NGjQqrfQbjo8dyliiEIOha6/1a66MNf9YBQ4FNWus6rfVnwJiG1/pprbdprcuBI0qpnrFpsiAkFh05Qo+loJtBUWi9oB88eNBvBSAToe/evRtoOhoOFqH//Oc/p6amhosvvpiePXuye/duJ7Oltf554DljabdAGIOiSqkTgVnAp4BvMeHkJo5VBoSXrCkI7ZS2EnS3283VV1/Nq6++GpPjxypCd7vdeDyeRtujEaEbu2XYsGGkp6dTWVnJ4cOH2bp1K0lJSQwfPrzRe5pKW3S73SxevBiXy8WDDz7IjBkzADtKh+hF6LEcEIUQB0WVUl2BfwLzsQW8q8/L5pvyXcq6G9DIdFNKXQNcA7BgwQJmzpwZfovbELfb7Xc7156RvsSOPXv2OM8PHz4cVtvC6cvnn3/OU089xcqVK5k4cWLY7WwJI3C+bTJCXFRU1GI7g/Ul2GISVVVVzv7Gly4oKAjr81u/fj1gi/Thw4fZu3cvr7zyCh6Ph0GDBjXp/dfV1QF2mYY9e/aQlJTE5s2bcbvdnHjiiaSkpDB9+nReeuklXn31VS699FInUu/evXurfnvm4tWtW7eIf7u5ublBXwtlUDQFeAG4T2u9RSmVCgxXSqUBCljfsOt+pdRg4CDQXWvdqKiF1vpx7IFTACvw9USjsLCw2Q+vPSF9iR2+nqjb7Q6rbeH0pba2FrDrasei/8Yv7t+/v3N8I+jl5eUtnjNYX5KSmjYCBgwY4Oxvoub09PSw+mYmdA0ePJjKykr27t3LmjVrADj11FODHstknWRmZtKjRw8++eQTAMaNG0dubi4zZswgJSWFL7/8ksLCQmpraxkwYECTEX8oXHjhhTz33HPMmzcvpr/dUCL0S4FJwN1KqbuBvwF/ApYCNcCVDfvdBTyDHcHfG+V2CkLC0laWi4nsiouLqa2tjfrK8S156OFWJzQ05Z+Dv4fe2iwXY7n079/fucP44IMPgOb97t69e1NWVkZxcTE9evRoNGmoS5cuTJ8+nY8++ogrrriixeO1xOTJkx1/P5a0KOha639i2y2BvBiw3zfA6VFqlyC0G9pK0M1qN2AP/g0cODCqx2/KQ8/MzCQ9PZ3a2lqOHj3qJ8KhYgS9Z8+eftUoo+mh9+/f3/l88vPzgeb97l69erFt2zYOHjzIsGHDnEFP3/fcfffdfPnll+zYsaPF4yUKMlNUECKkrSP0wOfRorS0FDi27ibY3rbJRW/twKgR9ECrIdqCHjjg2FKEDsdSF5ua1j99+nQ2b97MJZdcQmZmJuedd15YbYsHMlNUECIkMA+9tdZES8Ra0IOtd9mjRw/279/P4cOHGTBgQNjHNYKenZ1N586dnYtetAXdN0UxIyODwYMHB32fb6ZLZWUlO3fuJDU1lVNOOcVvv759+/Kvf/0Lr9cbdCwgkUj8FgpCguMbldfX1ztZFNEmloJeW1vL4cOHSU5OdsTOEGnqohH0zMxMv9KzkQq6ZVmOoOfm5vpF6CNGjCA5OTnYW/0idJPBMnz48KCTftqDmIMIuiBETKDNEgvbxev1+g2qRVvQTXTet2/fRuLVloIezmd35MgRampq6NatG126dPET9JYGMH0j9EhzzBMJEXRBiJC2EPTi4mK/WuGxEvSmUuqiKejmWGlpaX4RdGuyXHbu3Ang2EC+lktL4uwboUc6CzSREA9dECKkLQQ9UMB9C1JF8/hNTU2PRYTuG51D6ywXE1mPHDkSsGdjulwuLMsKOUJft25dSFkx7QWJ0AUhQoyAm+yQWAq6GeiLR4Te2oqLRtA7deoUsqA3VSogEDNLdOzYsQCkpKSQl5dHUlKSsy0YI0aMoHPnzmzduhWtNdAxInQRdEGIECPgpl5HLAX9tNNOA2wB9l2AIVrHby5C980hDwczmzPUCP1nP/sZPXr0cAQ7GF999RUAY8aMcbYtXryYN998s8UStf369WPDhg3MmzcPsO2avLy8MHqVmIigC0KEGAE3IhJLQR8yZAjdunVzslKiRbCURWj9GpyGpiyXwAlKRtDLysp4+umnKSsr47bbbgt6TMuyGkXoAEop5syZE1K7Bg4cyIsvvsi6detYvnx5TFJN2xoRdEGIAMuy2iRC9xVcY4tEars88sgjvPDCC37HaspyMReqAwcOtOo84Xjo+/fvdyY4vf/++3z44YfOPrW1tdx3332sWbOGffv2cfjwYXJyciKujTJ27NhG+eftFRF0QYiAuro6PB4PaWlpjljFMkLPzc2NiqCXlpZy44038qMf/Qi3291shG4uVG0h6IHnvP322/F67UKujz32GAsXLuSHP/wh69atA2wx7giRdbQQQReECPAtaGVS79qDoJsp7zU1NWzatKnZQVHfBSGMuIaDr6CPGzeOjIwMlFJ++2RkZPjlvz/55JPk5uaydu1aXnjhBSzL4vHH7UKtW7Zs4Xe/+x3g758LIuiCEBHtSdB9B1F9/fdly5ZRVVVFZmamXx0XQ3p6OtnZ2Xg8npAzXZYvX851111HdXW1n6APHDiQw4cP+y31BnbNGBOld+nShVmzZnHfffcBcNddd7F06VI2btzod3wQQQ9EBF0QIqAtBP3o0aOUlJSQmppKz549WyXo5eXlDBo0iJtvvhnwT0F86623APtiEcy+MBaIWbOzJX7729/y2GOP8e677/oJunls6jxG0GfOnElaWhpXXnklI0aMYNeuXVx88cUA/OQnP/GzZ1pKTzzeEEEXhAhoC0EPnJbfGkHfsGEDu3btcsTbN0JfunQp0Px6l+EOjBrhLywsbCTowTBCbaoapqSk8MADDwDHLKLbbruNq666CrDrq5hJRYKNCLogREBbCHpgBkprBN3kkBsh943QzUpIzQl6uAOjZr99+/aFLOhnn302eXl5nH/++c62uXPncvrp9jILs2bN4qSTTuKnP/0pmZmZTJ48udHg6vGOTP0XhAgw4p2VlRUzQTepe2aWaP/+/QHYvn07+fn5DBo0qMVjGEEvLS2lvr6+yRz25tL/whF0r9frRNThCPqjjz7aqPSwy+Xi8ccf584772ThwoUADBo0iM2bN9OlS5cW23K8IRG6IERArCP0iooKHnnkEQCuvfZawBbXOXPmUF1dzTnnnOOIZ3OYfSzLoqSkpMnBzVAjdMuy+NWvfsUzzzzT5L7mogHhCTrQpLc+bNgwXnvtNcaNG+dsGzBgANnZ2S0e73hDBF0QIsDUHommoL///vtMmjSJd999lyeeeIKSkhKmTp3KtGnTnH1eeOEFxo0bx7Zt2zj//PNbLAPgO23/8OHDToTuO929uQjd10Pftm0b99xzD9dff71fBUiD74zSffv2OVP/xR6JPSLoghABTUXoFRUVER3zpZdeYtWqVcydO5df/vKXAPz85z/326dr16688847ZGdns2LFCnbt2tXsMQMF3UToZ599trM91AjdlJs9evSoszjEV199xZtvvunsYwg3QhciQwRdECIgFpaLmfru8XgoKytj1KhRnHvuuY328y0oVV5e7vfa559/jlKK1atXA8Ej9HAFvaioyBF0AK01lmVx4YUXct1117Fp0ya/CL20tLTJJeeE2CCCLggREAtBLysrA+CKK65g1KhR/OUvfwmaH24mAgUK+iuvvMLq1atZvHgxgJ/P7huhK6XIy8vzy29viqYidLAFfceOHezYsQOAjRs3NlnEKzU1NejybkL0kCwXQYiAWEboN9xwA5MmTWp232CCbo5hUhuDReg9e/bkk08+ob6+nvT09KDn8Z3+71vWVmvtV0Br+/btjsXii9gtbYMIuiBEgK+gm3oktbW1uN3uVkekJkLv1q1bi/ua1L1wBP3AgQOUl5eTlJREt27dyMnJafE8GRkZZGdnU1paypYtW5yVgb766ivefvttZ7/t27eTktJYVkTQ2waxXAQhAnwF3eVytWptzECMoIeSltdShL53717q6ur8Xt++fTsAOTk5Ya1mb2wXgJNPPpmhQ4dSV1fnDIaaYxvLxdeTF0FvG1qM0JVS3YAPgBHAt7TWXyultgFmmtpvtNYfKKWGAY83HPNurfVHsWq0ICQKvhOLwBb28vJyKisrW50nbcQ4lAg9mKCXlJQAdoQeuNLQ1q1bgWMrEYVKnz592LJlC2Cvv5mZmcmWLVuwLIsuXbpQUVHBtm3bOOmkkwAYN26cU7ZABL1tCOXyXA2cByz22VamtT6z4d8HDdvuB64CzgF+Gd1mCkLkVFRUUFdXF9Vj+kbovo/h+uimLG1NTQ11dXWkpaWRkZHR4vtaitCrqqqciNxgBjBNbfJQ8Y3QR40a5VcC9+KLLyY1NZV9+/axc+dOAL+JQCLobUOLgq61dmutA6eidVZKLVNKPa+UMr+KflrrbVrrcuCIUqpn1FsrCK2kqKiIvLw8Lrvssqge13dike9jOIJ+6623kpuby6FDh/yi81AWbmhJ0OHY2pvGKze1W1oToRtGjRrlrG8KcM455zgplCYqP/XUU53XRdDbhtZ66FO11tOBd4H7mjhWGRDe5V8QYsiyZcsoLS3lrbfeCmlF+VCJRoT++uuvU1RUxFdffRXWgCg0Leher9c5DuCs7jN06FC/94YbofsuvDxq1CjGjRtHWloaKSkpnHXWWQwcONB5PSUlhREjRjh/i6C3Da3KctFam8o+i4GrG577LmXSDWhULEIpdQ1wDcCCBQuYOXNma07fZrjd7ojXbUwUjve+LFmyBLBnNy5fvpwhQ4ZE3A7Lspz0v4qKCgoLC50Mj927d4fUxrq6OgoKCgDYtm2bM00+KysrpPe73W7ATic0+1dUVPitLPTll18Cdv2TFStWONvT09PD+hzT0tIAO6c8MzOT0tJSnnzySSzL4ujRo35lBHr06NGoyFZ7+v0l8v+X5uYLhC3oSqk0wKW1rgVOB4xBt18pNRg4CHTXWh8KfK/W+nHsgVOA5otPJACFhYURL0CbKBzvfdm0aZPf+88666yI21FQUEBZWRndu3d31rY0+dqWZYXUxq+++sqxQCzLckSzpYk+BjMA6Xa7nf3NBcJgBjKHDh1Kp06dnItGXl5eWJ/jsGHDnEcTjV9xxRXO675VH/v27cuwYcPIzMykurqa7t27t6vfX3v9/xKS5aKUehuYBTwB/A/wuVJqOXArcG/DbncBzwDvAQuj3VBBaC0ej8eZAg+wdu3aqBzXRL6nnXaaE42OHz8egM8++yykYxi/GewJP9GwXEyGi8EMBPfq1cvPNw/XQz/99NOZOnUqCxYsaPJ1X8ulT58+uFwuJ3VRLJe2IaQIXWsdWEjiwSb2+QY7YheEhGLz5s1+eeHREvRVq1YB+A0OzpgxA4CPP/44pGP43tYfPnzYGcwMNeWxqYlFvgOivvTs2ZMePXqwd+9eIHxBz87O5tNPPw36urlbgGMzS/v168f27dtF0NsImVgkdHhMJD1lyhTAFvSWys2Gc9yJEyc628aNG0d2djb5+fns2rWLFStWkJOTw5NPPtnkMQIFPRoRuhF030FMOCbohnAHRVuif//+zhiCr6CDROhthQi60OExwnv++efTu3dvSktLWyw32xJerxetNeAfoScnJzN9+nTAHoi9//77KS0t5eWXX27yOLGwXIygjxo1ym/fQEEPN0JviZSUFMd2MYJ+4oknAqHfcQiRIYIudHh8vW7jca9ZsyaiY27ZsoWKigoGDBjQKBI2tss//vEPZ1Fm3wqFvgQKeriWi28NdpPZYo4xZMgQkpOTnX0DPfRoR+hglwSAYznrN954IwsXLuS//uu/on4uoTEi6EKHpq6uzplYM2HCBGeyS6Q+elP+ucEI+rJlyxyR3bdvX6PBSojccklOTm6U+24EvUePHn71VHr06BHTCB3gpptu4txzz2XOnDmAnWJ377330qtXr6ifS2iMCLoQdyzLiniVn2Bs2LCBuro6hg4dSrdu3aIWoTflnxtGjhzpJ2DGFtm4cSMej4frr7+ev/zlL0BwyyUciyLQdvGN8k3qXWZmJpmZmY6Ip6SkOBeCaDJnzhzeeustx3IR2hYRdCGuWJbF5ZdfTvfu3Z186dZQVlbmN2nGYGZJTpgwAaBNInSXy+XkuY8cOZLvfe97gG27rFq1ir/97W/ccccdVFRUcPDgQZKSknC5XJSWljoTlUKN0KGxoJs7gZycHEfQe/a0K3EYQQ+c+CN0DETQhbjy97//neeff576+nq/XPFwufHGG5k8eTJffPGF3/bNmzcDMHz4cMCe/JKcnExRUVGrC3UZG8flcjkXikB+/OMf06lTJxYuXMjo0aMBW9CXLl0K2EW4Fi9e7ExAys7OxrIsZ7C2NYJu7nJ8I/T+/fsDOHcMRtBj4Z8L8UcEXYgbO3bs4KabbnL+bmrpslAxwm0iZ4PvLEmwo2djZwTL126Jr7/+mrq6Ok455ZSgwjt79myqq6u56KKLnGwTX0EHeOaZZwB7xqYRWuOph2O5BOaiN2W5mAjdDFqaR6FjISsWCXFjwYIFVFVVkZGRQU1Njd+6l+FSVFQEHBN2gxF0M20dbCvCZJS0xus1do3x41vCCPr69eudaf4Ay5cvB2xBr6+v9ytzG4nl4ivopkDW4MGDAfvCtmrVKr9p+kLHQSJ0IW6YPO5bbrkFaH2EblkWBw4cAPDz4evq6tixYwcul8svIjXRb1NZJ6FgBN23PGxz9OvXj27dulFSUkJ1dTV5eXl+KwUNGDCgUcaJEelQaE7Q58yZw7vvvstvfvMbZ//TTjstJhkuQvwRQRfigsfjcVaeHzt2LECrI/TS0lLHD/eN0PPz8/F4PJx44ol06tTJ2W7qgrfWcglX0F0ul98kn3PPPddvcQhfywXsSovhrEfanKAnJSUxe/ZsmdhznCCCLsSF0tJSvF4vOTk59O3bF2i9oBu7BWD//v1O6l9TdgtEFqF7PB4nrz1UQQf/WZtnnnmmk6sOjQU9HLsF/AXd4/FQVlaGy+UK+zhC+0cEXYgLRrx79uzp+NittVx8BR2OCbmJ1gMXdogkQt++fTtVVVX079/fGWgMBV9Bnz59erOCHm407SvoJkrv2rVrWAtACx0D+caFuGAWLu7Zs6eTUhdOhF5UVORYH8Y/NxghD8xwMUQSoYdrtxiMrTR8+HBOOOEEpk6dSnp6OklJSZx44olRi9DDLR0gdCwky0WIC76Cnp2dTXJyMmVlZc4Cyc1RW1vL7Nmz2bVrFzt37mwUoQcKeqDlEm6EXlRUxM0338yPfvQjZ4ZpqBkuhmnTpvHHP/6Rb33rW4A9c/Pll19m9+7dZGdni6ALUUEEXYgLvoKelJREr169KCoqori4uMWVYhYtWuSk+G3cuNGJ0EeOHMnGjRsdQQ9muYQbod966628+OKLvPHGG84ya+FG6C6Xi5tvvtlv23e+8x0n7zwSy8U3D10E/fhGLBchLvgKOhCy7VJRUeHUQQHYtWuXE6GbsrWbN2/m0KFDHDlyhM6dOzuDroZgEfqePXt47LHH/GaQrly5kueeew6A6upq5yIRrqC3RDQi9IqKChH04xwRdCEuBBP0lgZGH374YafeCeBnuZxxxhmAPXBpytUOGzasUc2SYBH6XXfdxXXXXccbb7wB2Pnt//M//wPAT3/6U8dm6d69OwMGDAijty0TLcvF9EkE/fhEBF1oRFlZGXfddRdbt26N2TmMoBshN5kuzUXobrebP/zhDwBce+21gB2hG8tl0KBB5OXl4Xa7WbhwIdDYboFjEXqgoG/YsAGwI3Wwy99+8cUX9OnTh1/+8pe8+uqrjBs3jmuvvTbqha2ileViInTTR+H4QgRdaMSLL77I/fffz8MPPxyzc7TGcjGLSuTl5TmrzftaLieccIIzALps2TKSk5P9VqU3NFXLxev1Ohcw07b8/HwAZs2aRdeuXcnLy2Pt2rXcf//9repzc2RmZpKRkQHIoKjQekTQhUaYRYQjKZbVEoGCHkouupnQM2LECGepsx07djjv6d27N2effTYAF110ERs3bmT27NmNjtNUhF5YWEh1dTVw7KJiHtuqtreJ0iOJ0MVyOb4RQT+OWLNmDZ9//nmL+xkLw0zNjwWtidB9Bb1v376kpqZy6NAhPB4POTk5pKenc9ttt1FSUsLLL7/cpN0C/hG6WSzatwaMaZtpS1uttmMEPdwIPT09nbS0NNxut+P/m7K5wvGFCHoMWLt2rRPtJQqWZTF79mzOPvtsjh492uy+7UHQzYQcg++6ni1Fp6mpqWRlZeH1ep0a4r7jBaZtvpF/WzB69GhcLhdDhgwJ+70mSt+9ezejRo3i/PPPj3bzhHaACHqUeeKJJxg/fryTHZEolJaWcujQIY4ePdpoZmUgRshiJeh1dXWUlZWRnJzsRKPhWi6AY7vAsUWJQyXQR/eN0AMtl7aK0J966iny8/M55ZRTwn6vyUUH+Nvf/hZWcS+h4yCCHkUOHDjAbbfdBsDzzz/fYiTcluzfv9953lKud6wjdJN22KNHD6feSEsRelFREQcOHKBr165OyuBJJ53kvO4boYdCoI+eCJZLenq630UqHEyEPn/+fKZNmxbFVgntiRYFXSnVTSm1SilVqZQa1bDtB0qpz5VSHyml+jdsG6aUWt6w/duxbngicuuttzqV/iorK3nrrbfi3KJj+C5G3NJgpxH0mpoajh49imVZXHXVVdx9991B37NlyxauvvrqJtf1DCTQboGW89BNdD527FgnZTCaEbqv5XL48GG8Xm+bD4pGwrXXXsusWbP43e9+F++mCHEklAi9GjgPWAyglEoBbgHOBO4BzP/y+4GrgHOAX0a7oYnO8uXLWbRoERkZGdxwww0A/Otf/4pzq44RqqBXVVVRVVXl/H3kyBGKiop4+umnefDBB/F6vY3eY1kW8+fP56mnnmLatGn87ne/a3I/Q1OCnp2dTUpKCuXl5X6r+hh8Bd3gK+iRROg1NTXs2rWL5ORkOnfujNfrpaSkxPmc2ipCj4Sf/OQnvPfee+2irULsaFHQtdZurbXvffApwCatdZ3W+jNgTMP2flrrbVrrcuCIUir02qIdgFdffRWwFyv++c9/jsvl4q233nLKmcabUC2XQH+9pKTEyfN2u91N+u+vv/46K1asoFOnTng8Hu644w4eeOAB5/W6ujo/gQ+cVASQlJTkCLx53ZeWBD3cCN13+v/27duxLItBgwY5F4Zdu3ZRU1NDRkYGWVlZYR1bEOJFazz0HMBXpZKbOFYZcFwtK25mF44fP57c3FzOOOMMamtree211+LbsAZCjdADBfvIkSN+2woKCvxe93g83HXXXQA88MADPPnkkwBO+lxBQQE9e/bkJz/5ifOepiJ0aN52aUrQI/HQfaf/G7tlyJAhThs2bdoE2HZLtGeFCkKsaE21xVLAd8FDT8Oj7z12N6DRiJpS6hrgGrAXCJ45c2YrTt92uN1upxpeS+zYsQOAjIwMCgsLmTNnDsuWLeMf//gH3/52/IcUfAV9165dQfv1zTff+P29bds2J7UPYN26dX45zosXL2bjxo3079+fuXPnOumaX331FQUFBSxatIiKigr+8Y9/8LOf/YysrCxnBmZ6erpfO0zGy6ZNm/x865qaGjZv3kxSUhI5OTnO9+L1eklPT6e2tpakpKSQvyuA5GQ7DikoKHAuILm5uU5hrpUrVwK28Idz3HAJ5zeW6Ehf2obmqpG2RtC3AcOVUmmAAtY3bN+vlBoMHAS6a60b3TdrrR8HHm/402rFuduUwsLCFku5GkwUe+qpp5Kbm8t3v/td7rzzTgoKCkI+RizxtVwqKyuDtqm+vt7vb5fL5Vd9MPC9r7zyCgD33Xefs5J8Xl4eBQUFVFVVOUWyamtrWb9+PRdddJFzvJNOOsnvWOZCYVmW3/avv/4aj8fDKaecwsknn+z3vUyaNIm1a9cyefLksBZWNmVwPR6P89lMmDABt9sNHLvj6tevX0y/v3B+Y4mO9CX+hGS5KKXeBmYBTwCXAX8ClgK/bvgHcBfwDPAesDCqrUxw3G43RUVFuFwu+vXrBxyb9edbGTBeWJbVag/9yJEjfhaIr+VSXV3NypUrcblcfP/733e2m9Kya9as4ZNPPnG2m3GGYJaLicqb8vF9X/flvffeY+fOnWGJOfh76FprwM5vb8pyEYT2QkgRutb63CY2vxiwzzfA6dFoVHtj3759WJZFv379nAkdvmlxHo/HucWPB4cPH/bLHAnFQ+/duzcHDx5s1kNfsWIFdXV1nHrqqX6zM8ePH89//vMfXnvtNfbu3UtGRgY1NTW89dZb1NXVBRV0k1++e/duv+3NFZzKyMhwilqFgznW2rVr2bhxI127dmXixIl88cUXAM4CGpI1IrQnZGJRFDC3577eckpKCtnZ2ViW5eSmR0JVVVUjOyTc9hlL5ODBg04Nk0CMeA8fPhxoflB06dKlgL2KvS8mQjcR+cyZMxk5ciRlZWUsWbIkqKAPHjwYODYeYYhFBUEToRtL6JxzziEtLc1pk8nKEUEX2hMi6FHAVCcMXPSge3c70SdS2+Xo0aMMHjyYoUOHOoOWy5cv5/XXXw/p/UbQhwwZQlZWFnV1dX4Dnb4Y8TZlaCMRdI/HHi+fNm2aY8k89NBDTgQeKOgnn3wycCw6NsRC0AOPNXfuXKCxgIvlIrQnRNCjgBHMQEE3PnqkU+h37tzJgQMHyM/PZ8qUKZx55plMnz6dCy64gA8++KDF9/tecFqqmdJShG7qwfj656ef7u+05ebm+gnj6aef7gj6hx9+yOHDh3G5XI3E09xB5OfnOxcDiG2EDnYO/Jw5c4DgqZSC0B4QQY8CwQQ9WhG6GdBMSkqirKyMZcuWOTVQQllswbd94Qp6cXGxM4hq+rdnzx7HPx87dmyj1XFcLpcTpWdkZDBhwgTGjRvHP//5T26++WauuOIKHnnkkUYTdrKysujbty9ut9u5CEHsI/TJkyc3qvpoEEEX2hOtSVsUAjDiE1iD2gh6pBG6EfSLLrqISZMmUV1dzRVXXMHYsWNZunQpn3/+OVOmTAn6fl+Pv7ml3mpqaigvLyc1NdXxs7dv347X66VHjx4MGjSIPXv2UFBQwPLly4HGdovh1FNP5f3332fSpEmkpaUBcPnll3P55Zc329fBgwezf/9+tm/f7pTHjYWgd+7cmeTkZDweD9/5znec7cEybwShPSARehSIteViBD03N5dbbrmFX/ziF5x44onceOONQMtRuq/l0txsTN8MF9N2M1GoT58+Tu52QUGBY/UEE/R58+bRo0cPrr766pD7Ccd8dN+B0VgIusvlcsoFGP8c7KqFvqVnJUIX2hMi6FGgrSyXvn37+m3/6U9/SmZmJm+99Rbr169v6q2N2tec5WIEvU+fPnTt2tWxdcw2I+jvvPMOK1asoHPnzsyYMaPJc44fP55Dhw61GJEH4ntnYIjVOplPPfUUTz/9NCNHjnS2uVwuJ0qXOi5Ce0MEPULq6uo4cOAASUlJjeqJRNtyCTx+z549HcH8z3/+0+R7Lcvys4Sas1x8I3Qzzd7gK+iLFy8G4LLLLvNbWCEatFWEDnaq4o9+9KNG233XOZU6LkJ7QgS9CSzL4v7772fJkiUt7mvqPfTr14+UFP8hiWjNFg0WoQPOIsgff/xxk+8tKiqirq6Obt26kZWV1azlYrYZK8JckMw2I+iGa6+9NtyutEhbRujBCDZAKgiJjgyKNsHXX3/NXXfdRefOnTnvvPMaZXH4EsxugehF6KZ8bVOCfuaZZ+Jyufj88885evQonTp18nv9pZdeAmDcuHFA80u9maJZoQj6pEmTnEyWaOIboVuWhcvlanNBN0Iugi60NyRCbwJjPVRWVvLII480u29Ts0QN0R4UbUrQu3fvzqmnnkpdXR2fffaZ32uWZfHoo48Ctj0CBLVcampqePrppwGc6pCBgu570bruuusi6lMwcnJyyMnJoaqqigMHDmBZliPophpjrPG1XAShPSGC3gS+Fsmf/vQnKisrg+4bbJYoRGdQtLq6mvLyctLT04PeKZiByUDbZdmyZWzevJl+/fo5pYqDWS6LFi2iqKiIMWPGOPsGCnqXLl047bTTOPnkk5k3b16r+9QSvjNGKysr8Xq9ZGVltdnCx+YzEkEX2hsi6E3gG1EfOXLEiXKbItaWi++AaLABOhNRBwq6affVV1/tiKHvYsymXonX6+Whhx4C4Pbbb3fOEyjoAF988QUbNmwgMzOz1X1qCd+aLm1tt4B9N/ODH/yA+fPnt9k5BSEaHBeCHqwQVUVFBe+//77fNHM4FlGbdLY//OEPQdfINL5zU6u1Z2dnOx5wawtrNWe3GKZNm0ZKSgpffvmlUwjswIED/Pvf/yYpKYn//u//dvZNS0ujb9++eDwefvvb3wLw8ssvs2XLFvLy8vwi76YEPTk5uVXVDcPBN0KPh6CfcsopvPTSS37pjILQHujwgu7xeJg8eTLnn39+o9cWLlzI7NmznaqABiPo3/ve98jNzWX//v1s3LixyeNv27YNsEUgkOTk5Eary4dLsJRFXzp37sykSZPwer0sW7YMsIt3ud1uzj777Eb+/h//+EdcLhe/+MUvOPvss7n00ksBuOWWW/xsDV9Bb0v7wdR02blzZ1wEXRDaKx1e0Hfu3MnKlSt54403OHr0qN9rRozXrFnjt91YJN27d+eMM84A8FuoweB2u9m5cycul8uxCQKJ1HYJJUIHmDp1KmAvEQfHqiKaqom+XHzxxc4A6EcffURycjK33HILN9xwQ5Ntz87OJj09vVXtbw3mbmfXrl0i6IIQBh1e0Lds2eI837Vrl99rZmDQLBJsMBF6dnZ2s4K+c+dOPB4PeXl5QW2IcHLRP/zwQ/Ly8lixYoWzrbmURV/MBcX00Qh6YO64Yf78+bzwwgtcddVVrF+/nocffrhRHr0RdGO3tBVm8WeJ0AUhPI4rQTd+tyGYoJtoOjs72ykNu3z58kZefHN2i6G5CP2TTz7hsssuc0Rr0aJF7Nmzh+eee87ZJ9QI3TeqheYHaw0XX3wxTz75pFNZMRDTrxEjRjR77mjTv39/kpOT2bdvn5NCKoIuCC1zXAu6EYtt27b5DXqaaDonJ4fhw4fTo0cP9u3bx86dO/3eH46gNxWhP/TQQzz//PP885//BHB8+g0bNjj7hCrovlEttByhh8Ipp5zC+vXr+fvf/97qY7SGlJQU50JkatSIoAtCyxy3gl5VVeVUEqypqfGrv+0boSclJflF6b6YyL45QW9ucpERXa01Xq/XWZh4/fr1zt1AqIJuhHvPnj3U19dHRdABRo8e3WYTenwxdxxmTEAEXRBa5rgV9MCJNUacvV6vn6ADjqAH+uiRWi7GFvnyyy8pKCigqqoKsFe537dvHxBalgtAeno6/fr1w+PxsH37doqLi0lNTW3xfYmKEXSz5J4IuiC0TIcU9JKSEjweD+Xl5c6gIvgLuu+yanBM0MvLy/F6vXTp0sVJ4TMDo0uXLvXz0Y2gDxkyJGhbgg2KVldXO9s2b97sNxAKdpTudrspLi7G5XKFlDZobBdz4enfv79fCdz2hOmLmSMQj7sEQWhvtM//7c2wbt06evXqxa233upE58Z2yM/PdwQ5WIRuRNYIMdiFrXr16kV+fj6rV68GbJumoKCA5ORkR3yaIliEbqJzsCc+LVq0yO/1DRs2+JWzDcxAaQoT1RprKFK7JZ4ETtSSCF0QWqbDCfqbb76Jx+PhiSeecPLLJ06cSPfu3amurnaE3DwawTWC7puDbkhJSXHqjj/zzDPAsWqAAwcObLbGSCiCDvDuu+8CoJQC7Ag9VP/cYC4sZnJRcxkuiU7gRVIEXRBapsMJ+qpVqwB70PPhhx8GbEvEd0V5OGa5TJs2DWg+Qgecuh7PP/88tbW1IfnnvscJtFyMoJv1No21cMkllwB2hG5EfujQoS11GzgW1ZpjS4QuCMcXrRJ0pdRApVSxUmppw79eSqkfKKU+V0p9pJRqXEu2DbAsi5UrVzp/G9EdOnRoI0E3EfrkyZNJSkpi586d1NXVNRmhA4wZM4Zx48ZRUlLCG2+8EbKgtxShm8qGhnnz5uFyudi0aROPPfYYAFdddVUo3W8U1bZnQe/Xr5/fnY8IuiC0TCQR+jKt9Zla6zOBEuAW4EzgHuDuyJsWPgUFBRw8eJBu3br5iUFzgj5gwAAGDhyI1+slPz8/aIQOx6L0Rx99FK010PyAKNh2icvlYs+ePdTU1DjbjaDPnj3bWZTihBNOYMCAAQwaNAi3201hYSFDhgxxqim2RGBU254FPTk52a/9MigqCC0TiaBPVUp9opS6HzgF2KS1rtNafwaMiU7zwsPYLVOmTOG8885ztjcn6L1793ZEeevWrUEjdIAf/vCHpKSk8NFHHzkrAbUUoWdlZTFixAjq6+tZu3ats90I+sCBA52Vf8yMzDFjjn18119/fciZKgMGDPDbtz0LOhy7QGVmZjrWlCAIwWmtoO8HTgbOAHoD3wfKfV5PjrBdrcLYLRMnTuSKK64AbMHOzs4O6qEHCnpzEXqvXr144IEHmDBhAkOHDuWss85yPPjmmDRpEnDsggP+U/NPO+004Fi53tGjRwO2kF155ZUh9z81NdWvsmJ7HhSFYxaS2C2CEBqtWlNUa10L1AIopf4NzAd8l/XxNPE2lFLXANcALFiwoJF/HCmffvopYJdfHT9+PFdeeSWjRo2isLDQWZBh69atFBYWOvnpXq/XmXyzcuVKZ3DS5XI5tocvl1xyiTNwCXZZ3JZK45oLxpIlS7jooouAY7NEU1JSuOSSS9i5cyfz5s2jsLDQidivuOIKqqqqnAlHodC3b18KCgro2rUrFRUVVFRUADTZl0TH3CV17tzZr+3tsS/BkL4kJoncl9zc3OAvWpYV9r8JEyZ08Xn+2wkTJlw5YcKELyZMmJA2YcKEKRMmTHgshONEFbfbbWVmZlqAVVxc3OTrycnJFmBVVlZaLpfLAiy3222tWrXKAqzhw4db55xzjgVYb775prV3796otG3t2rUWYA0aNMiyLMsqLS21AKtTp06W1+tt8j379++3PB5P2Oe68sorLcAaPXq03/Zo9aUtWbRokQVYU6ZM8dveHvsSDOlLYpLgfQmqq62K0IFpSqlfA9XATuxB0BpgacNj6D5BlNi4cSPV1dUMGjTIWeTXl5SUFE4++WS2bNnChx9+iGVZ9OjRg5SUFMaMGUNqaiqbN2929m/KQ28to0aNolOnTuTn53Po0CHn7mDAgAFBl5Vr7ZR94zu3d/8c7JTSzp07M3369Hg3RRDaBa21XN4B3gnY/GLDvzahrq6ODz74gJkzZ5KWlubM4DR+dFPMnDmTLVu2OJODzHT69PR0xo4di9baKZDVlIfeWlJSUpgwYQKffvopq1atckQ8Fh73hAkTAHt2a3vnxBNP5MiRI222OLQgtHfa7cSim2++mblz5/Lss88CxwY5TzzxxKDvMZkvb775JuC/cIOZoWmIZoQO/gOjsZz4M3fuXNavX8+9994b9WPHAxFzQQiddinoBw4ccJZQM1krzaUbGqZPn06nTp2cBZt9C14FRvY5OTlRbfPEiRMBe+A1lMUnWovL5WL06NEihIJwHNIuBf2vf/0rtbW1gF1ZEUIT9E6dOjFjxgzn72CCnp2dTXJydDMvTYS+cuVKxx5q72mFgiAkFu1O0CsrK/l//+//OX+blMFQBB3wm3DkK+jDhw93Uhuj6Z8b8vLyGDJkCCUlJbzzjj38IIIuCEI0aXeC/vTTT1NSUuJMlw8nQgeYM2eO89zXQ09JSWH8+PEhHaM1uFwu3nnnHa644gqSk5NJS0tzJhIJgiBEg3Yl6JZlOdH5jTfeCIQv6AMHDnSm2AeuZm9sl1hE6GBPeHr22WfZuXMn69ev95vVKQiCECntStBdLhdLlizhwQcfdKbEhyvoAH/+85+56qqrmD17tt92k+/c3IIV0WDAgAEhl8QVBEEIldZOLIobffv25fbbb3cm54TroQOcffbZnH322Y22n3/++bzzzjt861vfil6DBUEQ2oh2J+gGk1ZYUlJCdXU1NTU1pKWlOQObrcHlcnHOOedEq4mCIAhtSruyXHxJT093cspNXnf37t2DTqUXBEHo6LRbQYdjUfqOHTuA2GSnCIIgtBfataCbOtlmtqgIuiAIxzPtWtAlQhcEQTiGCLogCEIHoV0LulgugiAIx2jXgm4idBF0QRCEDiLoR48eBUTQBUE4vukQgm4QQRcE4XimXQu68dANIuiCIBzPtGtBlwhdEAThGCLogiAIHQQRdEEQhA5CuxZ0Xw89OTmZrl27xq8xgiAIcaZdC7pvhJ6TkyOVFgVBOK5p14KelZVFSopd0l3sFkEQjneiusCFUupBYAqwC/ix1todzeMH4nK5yM7O5tChQyLogiAc90QtQldKjQVytdanA5uBi6J17OYwtosIuiAIxzvRtFymAO83PH8XmBrFYwdFBF0QBMEmmoKeA5Q3PC8D2kRhRdAFQRBsoumhlwImb7AbcCRwB6XUNcA1AAsWLGDmzJkRnzQ9PR2AlJQUCgsLIz6eL263O+rHjBfSl8RE+pKYJHJfcnNzg74WTUH/HLgFeBaYDXwWuIPW+nHg8YY/rWicdNCgQQAMHTq02Y62hsLCwqgfM15IXxIT6Uti0l77EjVB11qvU0odUEp9AhQAD0Xr2M1xyy230LdvXy655JK2OJ0gCELCEtW0Ra31bdE8XigMGDCA22+/va1PKwiCkHC064lFgiAIwjFE0AVBEDoIIuiCIAgdBBF0QRCEDoIIuiAIQgdBBF0QBKGDIIIuCILQQXBZVlQmbAqCIAhxRiJ0QRCEDoIIuiAIQgdBBF0QBKGDIIIuCILQQRBBFwRB6CCIoAuCIHQQRNAFQRA6CCLogFIqq+HRFe+2RIpSKrPhsSP05cSGx47Ql0kdoR8ASqm8eLchWiilcuLdhmhyXE8sUkrNAv4b2Ac8qLXeF+cmtRql1HeBy4E9wO/beV8ygd8BA4CLtNbuODep1SilxgJ/BlYA92it6+LcpFajlDoHWADUAv8C3tVaV8a3Va1DKTUd+BlwCPg/YKPWuia+rYqc4z1C/yHwJPA1cJ1S6vQ4t6dVKKXmAj8CHsRerPuOhu3tMiLUWlcDdUAX7H61274ApwP3a63vBAbFuzGtRSmVDFyHvSbwfYACstrx93Ix8HfsC9O5wIXxbU50iOoSdIlOQ+R3MfApcAB77dNVwJKG7ROUUjvaQ3Tb0JdLgXeANcDVWutipdRW4AWlVG+t9cG4NjJEfL6X5VrrHQ0isR34N3CTUupdrXVBXBsZIr6/Ma31NqAaOEcpdSewXyn1JfCG1npHPNsZCg19uQRYBlQCG7DvZncD44BOQCr2xTehUUp1Au7BvqtYBuwE9mP//68BzlNKDdNab45jMyPmuInQlVKXAkuBTCBfa10OnABMbrgNXgtkAN3i1sgQ8elLBnBQa72vQcyTsKPane1IzE1fOmFfYNFaW8AI7O/i38C1SqkB8WpjqAT0ZVfD5kygL3ArcD22XXFeHJoXFoF90VofAD7CtvXWYlsV/w3cEK82hkrDb+df2EHcFw2bXcBJgAV8g/3bOzkuDYwix4WgK6W6AvOAX2H/KM9WSvUE/gZcrZTK0lp/DZwIDIxbQ0Ogib6cqZQaBqC19mILSH3DvnmJfEsc0JePgelKqZENLy/DvvOowhaRmxrek5C/2Sb6cpZSqh/wCnYUO0BrXYYt9Ob7Scjvponf2LeVUqdorZcCHwL/p7W+HHgTSFNKJSVqXxpIAV7HvhO/USk1BXgPmAKM1Fofxg6OOkHifi+h0GEHRRtG4m8F3gI+A84A/gdIA94A/guYDlyD/YV/gu3XvqK1fjMebQ5GC315HbsvF2itdymlrsL+oZYBPYAbEmngKsS+zAKuBc4EDmLf5ldpre+OQ5ODEuJv7NvY/RiDHQmeC2zXWt8XhyYHJcTvZQ723UVfbEFcAJRorW+KR5uD4dOX17HHx/o3/F2IHSTMBx4ARgNdgc3AXGzL78k4NDlqJGS0EylKqf7Aw9he3wnAs1rrt4HfA2dprR8CngV+p7V+EPsHfC2wPgHFvKW+PIw9uPNgw1vysAV9m9b6ygQT81D68iywEHgIeFprfYnW+pYEFPNQfmP/wM6eehn7ln8S8HkCink438vTwLaG56sSUMx9+5IL/D+ttcYObuq01s81vD4L+Ce2pTcd+LK9izl0MEFXSp3hc7uUrbV+WGv9D6CLUurnWuv3sb0zgD8BmUqpLg23kldqrf/Y9q1umjD78ggNt/HYt8STtdZ/a+MmByXMvvwZO2pCa72o4f0J8zttRV/SlFJdtdbfAD9r599LFpChtf4X9h3hX+PQ7CZppi/dlFJXA78BJgJord8FhjXs9zVwUyL1JRIS5j9KJCilOiulPsD2+87FHrD5VCl1bcMunwDnK6WytdYepdQZwGvYmRSVAFrr+sZHbnsi6Es+gNb6E611adu3vDGRfC8NqYuAMzYQVyLoy46GAXi01p44NL0REX4vVQCJkk8fQl+WAz9uePxUKXVvw/77GvZNmO8lGnQYD10pNQF7IspE7IkC2Q2Pu7BFuwo7et0IPIF9O/9KPNraEtIX6UusOc76Uot9QfoC6IM9EPp+HJoaczqMoBuUUn/B9vYWKaX6Yt++bwduBp7TWhfFs33hIH1JTKQviUkLfflne0nljYQOYbmAX6rRc9gpY7211vuxc5lfxk5JrEgkPzYY0pfERPqSmITYl8r2nI4YKh0uQgdQSt0IDAZKgB3AVq31qvi2qnVIXxIT6Uti0pH60hoS/uobDj7RxBjsnNl8rfWi9viFSl8SE+lLYtKR+hIJHTVCvxB4U2tdG++2RIr0JTGRviQmHakvraFDCrogCMLxSIeyXARBEI5nRNAFQRA6CCLogiAIHQQRdEEQhA6CCLogCEIH4bhagk44PlBKDcReYgzshZl/1bD9KexCTWitWzVrUCk1Anvxh6UNVTpRSj0DXAmc1lCqVRDiggi60NGZr5T6NXbp13lRON4I4N6G50ujcDxBiBqShy50OHwi9HxgEDADe/3I/4ddMjUX2268C3tdzO6ABhZorTcqpRZii/aT2KsNZWOvB/olxyJ/w1nYK+Bcib1wwg8ajv1DrfUnMemgIARBPHShI7MJWIlts/wYu4RqacNrP8JeM3M9trCfBvxHKZXq8/7TsRcP6Ya9ZFkx9sIoYK8Vein2snKGKdilZvtjr+gjCG2KCLrQ0XkaO2qeir1Un+HchsdbtNZ/Af6DXdRpiM8+f9Ba/xk70h/YsLjDZw2vfa21fiGgJOtCrfWvsetvD4x6TwShBUTQhY7OC4AH2At80MTrVsCjL0caHus59n+lOY/Sd//k8JopCJEjgi50aBqWf/sxcG3AUnZvNTz+oaHk6gU0lFtt4ZAlDY+nK6UuUUp1imqDBSECJMtF6PBorV9sYvMz2IOj/409aPol9qCoWynV3OE+xV6/8oyG9w2IamMFIQIky0UQBKGDIJaLIAhCB0EEXRAEoYMggi4IgtBBEEEXBEHoIIigC4IgdBBE0AVBEDoIIuiCIAgdBBF0QRCEDsL/B0HrqLbn94rfAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCc0lEQVR4nO2deXxU1f3+n5ns+8KWEEIgCWEJiCxiFVBQQMEqiIBaFMECXbQuxa1aFdDWrfZb/dVaSxFaRdG6R0Gk4gYIsq+yJRAChCWEkH2bub8/pvdw7sydycxk9nner5cv79z13JOE88zz+ZzPMSiKooAQQgghxE8Y/d0AQgghhIQ3FCOEEEII8SsUI4QQQgjxKxQjhBBCCPErFCOEEEII8SsUI4QQQgjxKxQjhBBCCPErFCOEEEII8SsUIwGI2WzG4cOHYTab/d2UoID95RrsL+dhX7kG+8s12F8XoBghhBBCiF+hGCGEEEKIX6EYIYQQQohfoRghhBBCiF+hGCGEEEKIX6EYIYQQQohfoRghhBBCiF+hGCGEEEKIX6EYIYQQQohfoRghhBBCiF+hGCGEEEKIX6EYIYQQQohfoRghhBBCiF+hGCGEEEKIX6EYCQDOnDmDqKgo1NfXo7W1FUlJSTh+/Lg43qNHDxgMBhgMBsTHx6N///547bXX/NhiQgghgUJ5eTmWLFmCiooKfzfFbShGAoDvv/8eF198MeLj47Flyxakp6cjKytLc87ChQtRXl6OnTt3YtKkSfjlL3+Jd955x08t9j/Nzc3+bgIhhAQEEydOxJ133okZM2b4uyluQzESAKxfvx7Dhw8HAKxduxaXX365zTlJSUnIyMhAfn4+nn76afTq1QsfffQRAODhhx9GQUEB4uPjkZubi8cffxwtLS3i2h07dmD06NFISkpCcnIyhgwZgs2bNwMASktLcf311yMtLQ0JCQkoLCzEihUrxLV79+7FhAkTkJiYiC5duuD222/XqO9Ro0bhnnvuwUMPPYT09HRkZGRg/vz5mrbv27cPI0aMQGxsLPr164f//ve/MBgMov0AcPz4cdx8881IS0tDhw4dMHHiRBw5ckQcnzlzJiZNmoRnnnkGXbt2RUFBAQDgb3/7G3r37o0+ffogMzMTU6ZMcetnQAghwYiiKNi2bRsAYNWqVTh79qyfW+Qekf5ugDcYOnQoTp486fPnZmRkiEG+LY4ePYqLLroIAFBfX4+IiAgsXboUDQ0NMBgMWLlyJaZPn45XX31V9/rY2FghOJKSkrB06VJ07doVu3btwpw5c5CUlISHHnoIADB9+nQMGjQIr776KiIiIrB9+3ZERUUBAO666y40Nzfj22+/RUJCAvbu3YvExEQAFuvvyiuvxJw5c/DnP/8ZDQ0NePjhhzFt2jSsWbNGtOVf//oXfvvb32Ljxo34/vvvMXPmTAwfPhxjx46F2WzGpEmT0L17d2zcuBE1NTWYN2+e5l3q6+sxevRojBw5Et9++y0iIyPx9NNP49prr8XOnTsRHR0NAPjyyy+RnJyM1atXQ1EUbN68Gffccw/+9a9/IScnB3FxcVi3bp2zPy5CCAl6Ghoa0NraCgAwm8344osvcOutt/q5VW6ghCBZWVkKAJ//l5WV5XQbW1palMOHDys7duxQoqKilO3btyuHDh1SEhMTla+++kr59ttvlVOnTimKoig5OTnK//3f/4nrlixZogBQ/va3v+ne+/nnn1eGDBkiPiclJSlLly7VPXfAgAHK/PnzdY89/vjjyrhx4zT7ysrKFADK/v37FUVRlCuvvFIZMWKE5pxLLrlEefjhhxVFUZSVK1cqkZGRSnl5uTi+evVqBYDy4YcfKoqiKIsXL1Z69+6tmM1mcU5TU5MSFxenrFq1SlEURbnjjjuULl26KE1NTeKc999/X0lOTlaqqqqUkpISxWQy6b4H0WIymdhfTsK+cg32l2t4or9OnDihGYduu+02D7bQd4SkM5KRkRHwz42MjESPHj3w7rvv4pJLLsHAgQOxbt06dOnSBVdccQVKS0vRsWNHcf7DDz+M3//+92hqakJ0dDQefPBB/OIXvwAAvPfee/jLX/6CQ4cOoba2Fq2trUhOThbX/va3v8Xs2bPxxhtvYMyYMZg6dSry8vIAAPfccw9+9atf4YsvvsCYMWNw0003Ccdmy5Yt+Oqrr4RTIlNcXCxCJer5KpmZmTh9+jQAYP/+/cjOztb0zbBhwzTnb9myBYcOHUJSUpJmf2NjI4qLi8XnAQMGCJcEAMaOHYucnBzk5+djxIgRmDx5Mm666SbEx8e31f2EEBISnD9/XvP5888/h9lshtEYXFkYISlGnA2V+JPCwkKUlpaipaUFZrMZiYmJaG1tFUKia9eu2Ldvnzj/wQcfxMyZMxEfH4/MzEwYDAYAwIYNG3DLLbdgwYIFuOaaa5CSkoLly5fjxRdfFNfOnz8fP/vZz/DZZ59h5cqVePLJJ7F8+XLceOONmD17Nq655hp89tln+OKLL/DMM8/gxRdfxG9+8xuYzWZcf/31eO6552zan5mZKbbVkI+KwWCA2WwGYIlnqm21h9lsxpAhQ7Bs2TKbY506dRLbCQkJmmNJSUnYunUr1qxZg/fffx/z58/HwoULsWnTJqSmpjp8JiGEhALWYqSiogKbN2+2+dIX6ASXdAohVqxYge3btyMjIwNvvvkmtm/fjv79++Mvf/kLtm7ditdff11zfseOHZGfn4+uXbtqBvd169YhJycHjz32GIYOHYpevXqhtLTU5nkFBQW4//778cUXX2Dy5MlYsmSJOJadnY1f/vKX+OCDDzBv3jwsWrQIADB48GDs2bMHPXr0QH5+vuY/a2Fgjz59+uDo0aM4deqU2Ldp0ybNOYMHD8bBgwfRuXNnm+ekpKQ4vH9kZCTGjBmDRx55BNu3b8eRI0c0+SyEEBLKWIsRAJpJCMECxYifyMnJQWJiIk6dOoWJEyeie/fu2Lt3LyZPnoz8/Hybqb32yM/Px9GjR7F8+XIUFxfj5ZdfxocffiiONzQ04O6778bXX3+N0tJSrFu3Dps2bULfvn0BAPfddx9WrVqFw4cPC5dBPXbXXXehsrISt956K3744QeUlJTgiy++wJ133gmTyeRU+8aOHYu8vDzccccd2LlzJ9atW4fHHnsMAISomj59Ojp27IiJEyfiu+++w+HDh/HNN9/g3nvvxbFjx+ze+9NPP8XLL7+M7du34/jx4/j3v/8Ns9mM3r17O9U2QggJdihGSLv5+uuvcckllyA2NhYbN25EVlYWunbt6tI9Jk6ciPvvvx933303Lr74Yqxfvx6PP/64OB4REYGzZ89ixowZKCgowLRp0zB+/HgsWLAAAGAymXDXXXehb9++uPbaa9G7d2/87W9/AwB07doV69atg8lkwjXXXIP+/fvj3nvvRUpKitPxyIiICHz00Ueora3FJZdcgtmzZ+P3v/89AMuMIACIj4/Ht99+i+7du2Py5Mno27cv7rzzTjQ0NGhyX6xJTU3FBx98gDFjxmDs2LH4xz/+gbfffhuFhYUu9SEhhAQremJk8+bNIm8vWDAoiqL4uxFEi9lsRmlpKXJycoIuCckZ1q1bhxEjRuDQoUMikbY9hHp/eRr2l/Owr1yD/eUanuivP/3pT3jwwQcBAHl5eSLp/9///jduv/12j7XV2/C3hXidDz/8EKtXr8aRI0fw3//+F3PnzsXw4cM9IkQIISSckZ2RW265RWwHW6iGYoR4nZqaGvz6179Gnz59MHPmTFxyySX4+OOP/d0sQggJemQxcu2114qk/1WrVolZjcFASE7tJYHFjBkzgnrNBEIICVRkMdKhQwcMGzYMq1evxrlz51BVVYX09HQ/ts55XHZG/vCHP+Caa67BlVdeiZtvvhnfffedOLZ06VKMGTMGV111FV566SXI6Sh79uzBrbfeiuHDh2Pu3LkoLy/3zBsQQgghYYosRlJSUjRJ/3V1df5oklu4LEamT5+OoqIifPPNN3jiiSfw+OOPo7q6GmvXrsV7772HpUuX4t1338XatWvxySefALCssPrQQw/hlltuwZo1a9C/f3888cQTHn8ZQgghJJyQxUhqaqqmBlQwiRGXwzQ9evQQ2waDAc3NzaioqMCKFSswZcoUdOvWDQBw2223YeXKlZg4cSK2bNmCuLg4TJw4EQAwZ84cjBkzBuXl5ZpKnirNzc02S8RHRkZqSoGHMmqcL5jiff6E/eUa7C/nYV+5BvvLNTzRX6oYiYyMRExMjGY5jJqamoD4WTgzU8itnJFnn30WRUVFaGpqwpVXXonc3FwcPnwYEyZMEOcUFBTglVdeAQCUlJQgPz9fHIuLi0O3bt1QUlKiK0aWLFkiqoCqTJ06FdOmTXOnuUFLWVmZv5sQVLC/XIP95TzsK9dgf7lGe/rr7NmzACzLYxw9elRTkLKkpESzxpm/6NmzZ5vnuCVGHnnkETz44IPYvHkzDh06BMCyDLy8oFpCQgLq6+sBWKqAWpcPT0hIQENDg+79Z82ahenTp2sbGmbOSFlZGbKzszlX3wnYX67B/nIe9pVrsL9cwxP9pYZi0tLSkJOTo1mUNCkpCTk5OR5pq7dxezZNREQELr30Urz99tvIzc1FfHw8amtrxfG6ujphF8XFxdnErurq6hAXF6d77+jo6LARHo4wGo38g3YB9pdrsL+ch33lGuwv13C3vxRFEWEatTK2bAo0NDQEzc+h3a00m804duwYevbsKVwSADhw4AByc3MBALm5uZpjDQ0NOHbsmDhOCCGEENdoaGhAa2srAIj6IsGawOqSGKmvr8fKlStRX1+P1tZWfPnll9iyZQsGDRqECRMm4P3338fx48dRUVGBZcuWYfz48QCAIUOGoKGhAUVFRWhubsbixYvRr18/3XwRQgghhLSN9bReIHjFiEthGoPBgI8//hjPPfccFEVBdnY2nn76abHc+8GDBzFjxgyYzWZMmjQJN9xwAwBL2OX555/HU089hWeffRb9+vXDwoULvfJChBBCSDgQtmIkLi4Of//73+0enzVrFmbNmqV7rLCwEMuXL3etdYQQQgjRpaqqSmwHuxgJjswWQgghhGjQc0bkOiPqjNZggGKEEEIICUKsq68CdEYIIYQQ4kNCKWeEYoQQQggJQihGCCGEEOJXKEYIIYQQ4lcoRgghhBDiV/TESGxsLAwGAwDOpiGEEEKIl9ETIwaDQUzvpTNCCCGEEK+iJ0aAC6EaihFCCCGEeBVVjERGRiIuLk7spxghhBBCiE9QxUhKSorIEwEoRgghhBDiI2QxIqOKkYaGBpjNZp+3yx0oRgghhJAgQ1EUsVCeWgpeRZ7e29DQ4MNWuQ/FCCGEEBJk1NfXw2QyAbB1RuTF8oIlVEMxQgghhAQZ9mbSAMFZ+IxihBBCCAkyKEYIIYQQ4lcoRgghhBDiVyhGCCGEEOJXnBUjwbI+DcUIIYQQEmQ4EiOcTUMIIYQQr8MwDSGEEEL8CsUIIYQQQvyKLEYcVWClGCGEEEKIV6AzQgghhBC/wtk0hBBCCPEr6iJ5AGfTEEIIIcQPqM5IVFQUYmNjNccYpiGEEEKI11HFSEpKCgwGg+YYxQghhBBCvI4sRqyhGCGEEEKIV1EUhWKEEEIIIf6jvr4eJpMJgL4YiYqKQlRUlDg3GKAYIYQQQoKIyspKsZ2enq57jjqjhs4IIYQQQjzO2bNnxXaHDh10z1FDNRQjhBBCCPE4zjgjFCOEEEII8Rp0RgghhBDiV1xxRlpaWtDS0uKTdrUHihFCCCEkiHDFGQGCY0YNxQghhBASRLgymwYIjlANxQghhBASRLjqjFCMEEIIIcSjyM4IxQghhBBCfI7sjKSlpemeQzFCCCGEEK+hipGkpCRER0frnkMxQgghhBCvoYZp7CWvApxNQwghhBAvoSiKECP28kUAzqYhhBBCQp7KykosXLgQX3zxhU+fW1NTg9bWVgDOOyPBIEYi/d0AQgghJNhYsGABXn75ZcTGxuLEiRN2E0k9jTPTeoHgEyN0RgghhBAX+eqrrwAAjY2N2L9/v8+e60zBM4BihBBCCAlpGhoasHfvXvG5rKzMZ8+mM0IIIYQQ7Ny5EyaTSXw+duyYz57tjjPC2TSEEEICDkVR/N2EoGbLli2az4HojIT0bJrm5mYsWLAAEyZMwJVXXom5c+fi0KFDAICioiJceumlGDlypPjv5MmT4to9e/bg1ltvxfDhwzF37lyUl5d79k0IIYS0yQ8//IDu3bvjpptuoihxk2AQIyEdpjGZTMjKysKSJUuwZs0aXHHFFZg3b544PmzYMHz33Xfiv4yMDAAWEfPQQw/hlltuwZo1a9C/f3888cQTnn0TQgghbbJ06VIcO3YMH3zwgSbvgTiPtRgJ9DBNMIgRl6b2xsXFYfbs2eLzzTffjJdeeglVVVUOr9uyZQvi4uIwceJEAMCcOXMwZswYlJeXIzMz0+b85uZmNDc3axsaGWm37G2oYTabNf8njmF/uQb7y3lCsa+qq6vF9pkzZzz6bqHYX9Y0NjZiz549mn1lZWVuvbM7/VVRUSG209LS7F4bFxcntuvq6vz6MzEa2/Y92lVnZOfOnUhPT0dqaioAYMeOHbj66quRnp6Om2++GVOmTAEAlJSUID8/X1wXFxeHbt26oaSkRFeMLFmyBIsWLdLsmzp1KqZNm9ae5gYdvrT+QgH2l2uwv5wnlPrq3LlzYvvQoUPIycnx+DNCqb+s2bFjhyg6plJeXo7i4mJERro3pLrSX8ePHxfbdXV1KC0t1T1PFh+VlZV2z/MFPXv2bPMct8VIbW0t/vjHP+LXv/41AGDw4MFYvnw5MjIysHfvXjzwwAPo0KEDRo8ejYaGBo1lBFgspIaGBt17z5o1C9OnT9c2NMyckbKyMmRnZzulKMMd9pdrsL+cJxT7Sh4wY2JiPCpGQrG/rFm5cqXNPrPZjKioKHTv3t2le7nTX/K4edFFFyEiIsLuuXFxcWhoaIDJZPKK6PQkbomRpqYmzJs3DyNGjBChl6ysLHG8f//+uOWWW/DVV19h9OjRiIuLs4lZ1dXVaWwkmejo6LARHo4wGo0h+wftDdhfrsH+cp5Q6is5BF5bW+uV9wql/rJm27ZtYnvIkCEif+TEiRPo0aOHW/d0pb/UnJHU1FRERUU5PFf90l9XVxfwPw+XW9fa2opHH30UnTp1wn333Wf3PIPBILZzc3PFrBvAouyOHTuG3NxcVx9PCCGkHTQ1NYnt8+fP+7ElwYkqPoxGI37605+K/b4KTamzaRzNpFFRp/cGQwKry2LkD3/4A5qamjB//nyN4Fi/fr2IRe7btw/vvPMORo4cCcCiHhsaGlBUVITm5mYsXrwY/fr1080XIYQQ4j0oRtynqakJu3fvBgD06dMHvXv3Fsd8IUbMZrMYZx3NpFFR0yOCQYy4FKYpLy9HUVERYmJiMHr0aLH/5ZdfxsaNG/Hkk0+isbERnTp1wowZMzB27FgAlrDL888/j6eeegrPPvss+vXrh4ULF3r2TQghhLSJHKaRZ9YEMmazGQaDQfMF2B/s3r0bLS0tACxfsrOzs8UxX4iRqqoqURvGGWdEFiOKovi9/xzhkhjJzMzE5s2bdY8NGjQI999/v91rCwsLsXz5ctdaRwghxKMEmzNSUlKC0aNHIz09HWvXrrWZDOFL5Poi1mLEF7VG5IJnrjgjiqKgsbHRbp5mIBDYGS2EEEI8SrCJkXfeeQdHjx7F9u3b8fnnn/u1LdZipGvXrsJt8IUzIhc8c8UZAQJ/fRqKEUIICSNkMRIMYRq5yJdcY8MfbN26FYBlgsbFF1+MqKgoUWncF2LE2VLwKsFUhZVihBBCwgg5ZyQYnBG5SJu83pk/UJ+fkZGBxMREABChmlOnTtlUDvc0zpaCVwmmxfIoRgghJIwItjCNPAD7e4FVdUBXhQhwQYwoioITJ0549fl0RgghhIQEwRamCSRnRB3Q5UG+W7duYtvboRpXnRG5nf4OcbUFxQghhIQR1s6IOlU0UJHFiD+dkdbWVhGGkcMfvpze66ozMnjwYLH99NNPB/QChhQjhBASJpjNZs0ibyaTye4aYYFCoIgROcwhOw6+nN7rqjMydepUDBgwAACwefNmvP32215rW3uhGCGEkDBBL8Ey0PNGZDFy5swZmxVzfYU8NdaeGAk0ZyQiIgIvvvii+Py73/0uYMUnxQghhIQJcohGJZDFSEtLi8aRUBQFp0+f9ktb7Dkj/sgZMRqNSE5OduqasWPHYvz48QAs7fvLX/7irea1C4oRQggJE/TESCAnscquiIq/kljtiZHMzEyxIq6vnJH09HSXVuF94YUXxPnPPPMMzpw545X2tQeKEUIICROCzRnREyP+yhuxJ0YiIyPRtWtXAN7PGZHFiCsUFhZi9uzZAICamhqsWrXK421rLxQjhBASJgRbzkigihF5Ng1wIVRz+vRpXcHnCVpaWoSL5Uy+iDXy4rZyVdtAgWKEEELCBIZp3MeeMwL4ZkaN3BfuiJHU1FTdewUKFCOEEBImBFuYRp7KquIvZ8TebBrAN2LE1Wm91qSlpYltihFCCCF+I9jESKCGaazFiJozAnivfa5O67VGdkaqqqo80CLPQjFCCCFhgl7OCMM0zuFIjCQlJYlt2UHxJPJ7d+rUyeXr6YwQQggJCOiMuI8jMSIntHpLjMjhH7m2ibPQGSGEEBIQBLMYiYqKAmBxCPyxno6j2TS+ECPyQnfuiJHo6GjRTjojhBBC/EYwz6YpKCgAADQ2NvpFQDnrjMjneRLZGcnKynLrHmqohmKEEEKI3whmZ6Rv375i2x+hGkezaXztjLgrRtRQDcM0hBBC/EawJrDGxMSgZ8+eYr8/klgDJWckNTXV5vnOojoj9fX1ur8L/oRihBBCwoRgdUbS0tKQmZkp9vvDGXEkRuTP3hAjiqIIZ8SdfBEVeUZNoLkjFCOEEBImhIoYCTdn5OzZs+Jn526IBgjsKqwUI4QQEiboiZH6+nq0trb6oTWOaW5uFgIgLS0NGRkZ4pi/nZG4uDjNMW+LkfbOpFEJ5FojFCOEEBIm2MsTCMS8EXmwTE9PD5gwTWxsLCIiIjTHvC1GPDGTBgjsWiMUI4QQEibIzoi8vkkghmpkMWLtjPgjTKOKDL3kUdkp8bYYoTNCCCEkqJHFiFxSPNCdkbS0NCQnJ4tB35/OiJ4YMRqNiI2NBRA8YRo6I4QQQvyCPTESDM6IwWAQoRp/JrDam1arhmqCJUxDZ4QQQohfkHNGOnfuLLaDQYwAEKGayspK3WRcb6EoihAj1qXgVbwpRpjASgghJGQI5jANAL9N721qaoLZbAbgX2ckNjZWIyhchQmshBBC/I4sRoLZGQF8K0Yc1RhR8YUz0q1bNxgMBrfvQ2eEEEKI3wklZ8SXSayuiJHm5maP1m2pra0VYrE9+SIAE1gJIYQEAHLOSLAlsAL+C9M4WiRPRc4laWho8NizPZUvAljartZIoTNCCCHEL7gSpikuLsby5cs9OrA6YuvWrbj55pvx8ccfA7AkqarohWkC1RkBPBuq8dRMGgAwGAyiLwNNjET6uwGEEEJ8g7NhmubmZowaNQrHjh3DQw89hOeee87rbXvooYfw5ZdfYsWKFaioqNB1RuRCbb4MM8hipK3ZNID3xEh7nRHAksRaUVGh6b+HHnoIXbp0Qf/+/XHNNde0+xnuQDFCCCFhgrN1RoqLi8UguG3bNp+0bd++fQAsORLbtm0TYiQ2NlYUO0tJSRHn+zLPxZ/OiBymaa8zAlwQdlVVVTCbzaivr8cLL7wAABg5ciTFCCGEEO+iipHIyEhNMqOeGFGRB2JvYTKZNDkg69ev16zYq5KcnCy2w0WMeMMZASy1U2pqanD06FFxrGfPnu2+v7swZ4QQQnxAXV2dJg/CH6gJrNHR0YiJiUFMTAwA24G9pKREbHtjqqo1p06dgslkEp+///57ipH/4ckEVsB2eu/hw4fFZ4oRQggJYSoqKtC9e3dkZmZi+/btfmuH6oyoIkQd3P3tjMjf/gHgm2++EQO6PHgmJCSIOhu+FCOuzqbxhjMSERGBLl26tPt+jsRIbm5uu+/vLhQjhBDiZdasWYPKyko0NzejqKjIb+2wFiNqDoa1GPG1MyJ/+weAM2fOiG158DQajUhKSgLg2+nIgeCMZGZmimm57cG6CiudEUIICRPkgdOfUyrtOSPV1dVQFEWc528xImNd/lwVUP4K0/hyNk1zczNOnToFwDPJqwDDNIQQErbIA6c/xYicMwJcGNhNJpMYQM1ms0aM+CNMI2MtRmQB5Sv85YzItVQ8kS8C2K7cq4qR6OhodO3a1SPPcAeKEUII8TKBIkbshWmAC+7NyZMn0djYKPZ7ury5Hq44I6oYqaur0yS9ehN/iRFPFjxTseeM5OTkwGj0nySgGCGEEC8jh2n8uSaIvTANcEEwycmrKt4O1ciDbo8ePTTH7IkRAKipqfFqu1QCQYx4yhmR+7O4uBi1tbUA/BuiAShGCCHE6wSCM2IymYST4MgZkUM0Kt4WI6ozkpSUhHHjxmmOyVVXAa0Y8VUSq79m0+zfv19se0osyGGarVu3evz+7kIxQgghXiYQEljlRfL0xEhFRQUAfTHizbwRRVGEGOnWrRsuv/xyzXF7CayA7/JGXE1g9VR/7d27V2wXFhZ65J5yf+7cuVNsU4wQQkiIEwjOiFwKXk1g7du3r9i3YcMGAL4P01RVVYn7Z2Vl4bLLLtMcdxSm8YcYseeMyPs91V+qGImMjER+fr5H7ik7I3JuEMUIIYSEOPKgWVtbi5aWFp+3QRYjqjNyxRVXiH3ffvstAN+HaazXXunVqxc6dOgg9gWSGDEYDIiNjdU9x9UwzY4dO3D77bfjq6++0j3e2toqwjQFBQWIiopytdm6yGJEhmKEEEJCHOvcBn8kseqJkW7duomqmxs3bkRjY6OuM+LNMI11kqbBYBAiKSIiAhkZGZrz/SlG5Aqw1rgiRhRFwfTp0/HWW29h3rx5MJvNNueUlJSI0Fq/fv3cbboNkZGRonCcjL/FCBfKI4QQL2M9aJ47d06zaq4v0BMjAHDllVeipKQETU1N+PLLL3H69Gmba33pjADAH//4R7S2tmLcuHEOE1j9IUbs4YoY2bBhA/bs2QPAIkxPnjxpM1tGzhfxpBgBLO6IPBMpMTFR40b5A5eckebmZixYsAATJkzAlVdeiblz5+LQoUPi+NKlSzFmzBhcddVVeOmllzQV/fbs2YNbb70Vw4cPx9y5czXFXAghJJTREyO+Rk5gVXNGAIsYUVm6dKnutd50RvQWguvTpw8++eQT3H333Tbn+3M2jafEyOuvv675LFdBVfGmGLEOffXs2dOu4+MrXBIjJpMJWVlZWLJkCdasWYMrrrgC8+bNAwCsXbsW7733HpYuXYp3330Xa9euxSeffALA8kfw0EMP4ZZbbsGaNWvQv39/PPHEE55/G0IICTBaW1ttBvNACdMA2rwR9d9sAJpqnN50Rlwt7OXP2TT2ZtIAQFRUlFg7xlF/1dbWYvny5Zp9enk63nZGZPwdogFcDNPExcVh9uzZ4vPNN9+Ml156CVVVVVixYgWmTJkilO1tt92GlStXYuLEidiyZQvi4uIwceJEAMCcOXMwZswYlJeXIzMz0+Y5zc3NGhUPWOJcspoPZdT4oV4ckdjC/nIN9pfzeKKv9L69nz171uf939DQILajo6PF87t3747s7GyUlZVp/t3t378/Tpw4AcAygDrTXnf6SxYjmZmZbV6bmJgots+fP+/1fjSbzaLvEhISHD4vPj4eNTU1qK+vt3veu+++KwqNqRw+fNjmfFWMGI1G5Ofne/Q9rcVIjx49vNqPzlR2bVfOyM6dO5Geno7U1FQcPnwYEyZMEMcKCgrwyiuvALCoPnlaUlxcHLp164aSkhJdMbJkyRIsWrRIs2/q1KmYNm1ae5obdJSVlfm7CUEF+8s12F/O056+0lt3pbi4GKWlpe1pksscPXpUbDc2NmqeP2TIEJt3zMnJEdvHjx93qb2u9JcaooiKikJ9fX2bz5EH8hMnTni9H2VXy2g0OnxeTEwMampqUF1dbfe8V1991Wbf7t27NeebTCYhRnJycnDy5El3m6+L9cyclJQUr/ajM86L22KktrYWf/zjH/HrX/8agMWWkhVrQkKCsKoaGhpsYm0JCQkapS4za9YsTJ8+XdvQMHNGysrKkJ2d7de1AoIF9pdrsL+cxxN9peeMGI1GzWDvC+Rqnp06ddI8f/z48fjoo480519++eXiS2FMTIxT7XWnv86cOQPAEhZyZtBSQyHq87zdj+qquQDQoUMHh89LSkpCRUUFmpubdc/bv38/Nm/eDADIzc0V4ZnTp09rzlcTigHgoosu8vg7WifLDh482Oe/j9a4JUaampowb948jBgxQoRe4uPjNYq1rq5OxNfi4uJsYqZ1dXWIi4vTvX90dHTYCA9HGI1GDhYuwP5yDfaX87Snr6wtecCSM+Lrvpdrm8TGxmqeP2rUKM25CQkJYsovYPmy6Up7ne2vxsZGnD17FoBlgHTmGjnEUF1d7fV+lL80JyYmOnyeOubZ669//etfYvuuu+7CM888g4qKChw5ckRz/r59+8R2YWGhx9/ReoZSXl6e3/8tcPnpra2tePTRR9GpUyfcd999Yn/Pnj01M2sOHDggfplzc3M1xxoaGnDs2DHNLzshhIQies6IP2bT2EtgBYBevXpp6nnk5uZqnG5vJbDqTetti8TERDHzwxcJrM6sS6MiixF5NilgqS3yxhtvALA4/bfddptwgo4dO6b5+XgzeRUIzARWl8XIH/7wBzQ1NWH+/PmaqUATJkzA+++/j+PHj6OiogLLli3D+PHjAVjikQ0NDSgqKkJzczMWL16Mfv366eaLEEJIKKE3YAaaGDEYDJopvrm5uV5Za8Uad8SI0WgURbt8IUacWZfG+riiKJr+BixtVROChw8fjs6dO4sVihVF0eT0eFuMyFN7O3bsqBGe/sIlMVJeXo6ioiJs27YNo0ePxsiRIzFy5Ehs27YNI0aMwOTJkzFjxgxMnToVw4cPxw033ADAEnZ5/vnnsWzZMowePRo7duzAwoULvfJChBASSASKGNFbKE9GnuKbl5fnlbVWrNGrMeIMaq0RX4sRZ50RwLbP1NwY4MK0aTk6IE/vVcWIwWBA79693Wi1Y2QxEgiuCOBizkhmZqZIvtFj1qxZmDVrlu6xwsJCm7nVhBAS6uiFafxdZ0QvJ2/y5Ml47LHHUF1djUmTJvnEGXG1xohKsIgROTdDrmyrVt9VnRHgwqwiRVGEGOnZs2ebbow7yGGaQBEjzF4jhIQF9fX1KCoq8rkrESjOiKMwDQBkZGTgyJEjOHr0KEaOHOnywm/u0F5npLa2FiaTyePtkvGGM9K5c2cA+s5IWVmZeKY3QjSApYaMGpq5+uqrvfIMV+HaNISQsOCuu+7C0qVLcdlll2H9+vU+e26wiBHAUm9CrXAaGxsLg8EARVG8JkbcdUbkKqw1NTV2V6L1BJ4SI3rOiOxKqM6It/NFAIszsm3bNpSUlASMGKEzQggJC77++msAlkXKfFn9VA7TqIPo+fPnvf6N3hpnxIiMwWAQg2t7wjSKomDBggW47777bGpLyc6IXH6+LXy5WJ4sKpxNYLW+DtB3Rrp37y6m1KrOiC/ECADk5+dj3Lhxmrot/oRihBAS8iiKIqpYKori1YXfrJEHSzlHwFeLvKnYWyjPEaoT0B5n5Ntvv8X8+fPx0ksvYdmyZZpjqhjp3LmzS7WlfClGvOmMREVFiVmlqjOyYcMGcV5hYaGbrQ4+KEYIISHP+fPn0djYKD77aoE19dkqcpVLX4dqXHVGAHjEGZGnrBYXF4tts9ksprq6EqIBglOM6DkjgMUdASy/D6dPn8bnn38OwFKY7OKLL3a73cEGxQghJOQpLy/XfPalGFGfZTQaNYNuMIgRTzgjNTU1YlsekKuqqkSoqkuXLi7dUxYj3naYvOmMANrE3SVLloj+uu666xAZGT5pnRQjhJCQx3qhMV+GSFQxkpycrJnqGQxiRHZGrCuKOossRioqKsS2LEw6duzo0j3lBFZ3hWVraysWL16MlStXOjzP085IVFSUpv2qMwIAf/3rX8W2utRKuBA+sosQErb40xlRhU9KSopm1ocvxIjJZBIJim0VPdPDuqJobGysy22Q1+aRBYgsTFwVI54I0/z73//G7NmzAVjWgrFXXMzTYqRTp06a6uWyM6LOLoqOjsa4ceOceY2Qgc4IISTksXZG/BGmSU5O1lS+9GbhM7PZjLvuugvJycl46aWXALRd9EwPefB1N2/EXphGFiNy2MIZPCFGvvvuO7G9fft2u+d5YjaNoiji3eV8EQDIzs62uc/VV18tSt6HCxQjhJCQx1/OSHNzs0icTUlJ0YgRbzojv/vd7/C3v/0N9fX1ePnllwG0L0wDuJ834o0wjSfEiLwyrrVYlfGEM3L+/HmxarK18NITI+pSKuEExQghJOTxlxiRn2PtjHhLjPz973/H888/Lz6rAqA9CayA+2JEDtOcO3dODMr+dEYURdGIkVOnTtk91xUxYq+/5ORVa2ekY8eONo7L9ddf7/A5oQjFCCEk5PFXmMbXYuSzzz7DXXfdZdOGlpaWduWMAJ4J0wBAZWUlAM85I+4kI585c0YTJnPGGYmKikJUVJTD+9rrL/ldrYWXwWDQVGIdOnSoy1OdQwGKEUJIyGPtjPhqNo0sRrwdpmlsbMSMGTNEdVk5L+TcuXNu5Yx4OkwDXBiY25PA2t7ZNLIrAjgnRtpyRQD7/WVvWq+KXAwv3GbRqFCMEEJCHn+FaWTR421n5MiRI8J1GDVqFKZOnSqOVVZW+i2BVQ7TABdEiD/DNNZixDpMs3jxYsyZMwevvPKK6NP2iBF7Bc9UBg8eDMDiktx4441OvEHowam9hJCQpqmpyWbg91eYJikpCRERETCZTB4XI7JY6NevnyakIIuRqKgosR5KW3jTGVH/bzAYNCLNGdQVZwHPOyNHjhwRU35l2ppJY32OK87IfffdB7PZjIsuuiisSsDLUIwQQkIaPQveH85ISkoKDAYDUlNTcfbsWY+LEXnwS0hI0EwNraysFDkjzuaLqPdR8VTOiLUzkp6e7vJibUajEUlJSaipqfGYM2I2m2E0GrF//37da5xxb9x1RlJTU/H000+3ef9QhmKEEBLSWIdoAP85IwCEGPF0nRFZLMTHx2uqvZ49e1Y4I66IEU84I9ZhGuucEVdDNCrJycmoqalxK//HWoyYTCZUVlaiY8eOKCsrE/tvvPFGxMTE4NixY5g/f36b942LixPbrjgjhDkjhJAQR88Z8VYC6+7duzFy5Eg8+uijAGwTWAGIkERVVZVINvUE1s6ILEbkMI0rq+O2d2qvyWSyua6iogJNTU3CMXE1eVVF7U9XhWVDQwOOHDlis1/9PVGroALAnXfeibfffhvfffcdrr766jbvbTQaRZVaV5wRQjFCCAlxfOmM/OUvf8HatWvxzDPP4Mcff7RJYAUuiBGz2WwTwmgPjpwRWYy464y4E6bRu+bMmTPtmkmjovZnbW2tWHDPGQ4ePKi7zo4qRmRnRK8gWVuofaYnRqKjo8OusqqzUIwQQkIaX+aMHD16VGz/8MMPumEab82osXZGOnToID77K0yjJ7bOnDnjsO6Gs8gzaqxDQY6QQzSyS6HOqJGdEXndGGfREyNqmKZz586adWnIBShGCCEhjeyMqCGK6upqt1ehdYQ8yG7ZssVhmAbwrBhpyxnxRwKrnhipqKjwqDMCuCYu5QTVK6+8Umxbh2ni4uI0fegs1mLEbDa3Oz8mHKAYIYSENLIY6dWrFwBLOXB3Z4c4Qk5U3Lx5s8MwDeA9Z8RRmMaVnJH2OiN6joV1mMYTzogrOUCyMzJq1CixrTojapimW7dubrkY1mKkqqoKra2tAJgv4giKEUJISKN+4zUajcjLyxP7PR2qkVdmBSwrwaoFswDvixHrNVRSUlLElNnTp0+LZNlAcEbaUwpexd0qrKoYiYiIwPDhw8X+kydPorq6WrTZnXwR4IIYaW5uRmtrq0dCUuEAxQghJKRRnZHOnTtrhICnZ9TIK7MCllkb27ZtA2ApNKbOsvCVMyIXE5PdIX/njDQ3N6OkpER89mWYxmw2CzHSs2dPdO/eXRw7efKkJnnVnXwRQNtnDQ0NDhfJIxegGCGEhCxms1nY75mZmR5Zet4e8jdgFXUAT05OFpZ/amqqOG5da+TUqVP485//jL1797r8fL3VZdVQjdw2d50RT4VpAG2oxBNhGmd/lsePHxfv0adPH6Smpoqw1alTp9qdvArYCjg6I85BMUIICVnOnj0r4vXeFiPyN2Br5JCCI2fknnvuwbx583D99de7nGBr7YwAF8SIfC9XckbkIl7tDdPIg/SPP/4otn3pjMgiqE+fPjAYDMjIyABg64y0N0wDWH4mdEacg2KEEBKyyOGJjIwMnzsjKvJzHYmR9evXAwBKSkrQ0NDg0vP1nBF5eq+KK85IVFSUWOOmvWGa3NxcsV1aWiq2PSFGnA257d69W2z36dMHANClSxcAlp+fXAyNzohvoRghhIQsshjJzMxs99LzjnDkjNgTI3KCa2NjI44fPy4+u1ou3pEzIuOKGAEuCBt3nBE5TNOzZ0+b47GxsU6thquHO8Jyy5YtYltdKVd1RhRFETk+gOecEVZfdQ6KEUJIyCIXPLN2RjydwCqLEesqm7IIyszMFPkjhw8fFvtLS0s14RRX22ddZwTwjBjRK+LlLLIzoidGOnbs6HYRMHeE5ebNmwFYQlXq6riqMyIfBzznjHBdGuegGCGEhCzWzoivwjRjxozRHJOfGxcXJ2Zx7N+/XwiQ4uJizTWuihFVLMTExIgpvf52RpwRI+7iqrCsrq4WBc8GDhwocmdUZwS4ICjdLXgG0BlxF4oRQkjIIjsjvkxgHT9+vOaY/FwA6N27NwDLIKpeJ093BVwP06hiQQ576OWMuJLACrTPGZHDNHLOiEp7nALZfXKmHPzWrVvF9tChQ8W2LEZU3C14Bth3RtoTkgoHKEYIISGLvxJYr7nmGs0xOaQAXBAjwIXy5J5yRuTB0JNhmqamJpcWpAO864wkJibqPscecr6ILEbkMI2Ku/kigH1nhOvSOIZihBASsliLEV8ksEZHRyM7Oxv5+fnimD1nBLggRqydEXdzRuRv354M0wCuuyOySMjJybE53h5nRBYjzjgjcj6IM86Iu8hi5M033+S6NE5CMUIICVnUME1ycjLi4+N94oyo34CHDBkijjlyRtTaF9bOiLuzaeTBsL1Te63v56oYUUVCREQEkpKSNAXfgPY5I9HR0SLk5IwzooqR2NhY9OvXT+zXEyPtcUbk37EvvvhCuEnMF3EMxQghJORoaWnB8uXLcfToUQCWfBFAm2fgydk0ZrNZiBH1G/CwYcPEcetvxdbOiKIo7XJGWlpaRCn6tpwRV3NG2rM+jSoSkpKSYDAYbMRHe8SIel+gbWfk3LlzOHToEABg0KBBiIyMFMf0wjTtcUbGjh2LAQMG2OyX18EhtkS2fQohhAQPixYtwsKFCzWlvdXkyaioKMTFxaGhocGjzkhVVZXNN+Cf//znWLVqFaKjo/HTn/5Uc35WVhbi4+NRX1+P/fv349SpUzZFzlxxRvRqjACezRmxfo41ZrMZf/vb31BbW4sHH3wQwAUxooZUOnXqJESB+rk9JCYm4uzZs22KETl5VXas1HuoPwuV9joj27dvR3l5OQ4fPoySkhLEx8fb/A4QLRQjhJCQYffu3Zg7d65m38CBA/HHP/5RfE5OTva4GNEr+Z2SkoJVq1bpnm80GlFQUIDt27fj8OHDmvLoKq44I3rVVwHLuxqNRrFiL9C+nBFHzsibb76J3/zmNwCASy+9FKNHjxYiQXUwrMWHp5yRtsI09vJFAMBgMKBLly6ami/tcUYAy883KysLWVlZGDFiRLvuFS4wTEMICRk2bdoktkeMGIE1a9Zg27ZtuPjii8V+NX/DW2LE2W/7aqjGZDJh9erVNsddESP2nBGj0WjjjnjLGXn33XfF9tatW6Eoio0Y8XSYRnVc6uvrHc70sTeTRsU6b6S9YoS4DsUIISRk2LNnj9h+/PHHMXr0aJvplGqCYXV1tcuL0dnDncJWct7IypUrbY67Eqax54wAtqGa9ogRe85IfX09vvzyS/H5yJEjqKurE/0rh2lkPBGmaattwAVnJD4+XqxJIyOLkfYUPCPuQzFCCAkZZDGilvu2RhUjZrPZrUJeerTHGQGA7du32xz3hDMC2IqR9iSw2uuvL7/8Eo2NjeLzkSNHNHkc9pyR9g76zhQ+O3v2rAjBDB48WFSnlZGTWNtT8Iy4D8UIISRkUMVISkoKunbtqnuON9anaa8zIqO2z1POiPX03vaGaUpLS3H33XdrQktFRUWaa0pLSzV5HHo5I6mpqWJFYHdxpvBZWyEaQOuMtCd5lbgPxQghJCSorq5GWVkZAIsrYu/brTdqjbjjjBQUFNjsy8jIEAOjt5yR9iawzpw5E6+88gquu+46lJSUwGw249NPP9Vcc+TIEY04UEWD7Ix4ogiYM86Io+RVFWtnhPgeihFCSEiwd+9esW0vRAN4R4y444wkJSXZuDd5eXmiMFhNTY1mFowjvClG5PsdPHgQX3/9NQBLbZMnn3wSW7du1VS6BSxtV2u8APrOSHuTVwHnnBE5l8WeGJF/DuoihsS3cGovISQkcCZfBHBv6fm20Jva6wy9e/fGiRMnxOfc3FxRNVZRFFRXV9tULdXDlQTW9uSMvP3225pjy5Yt0wihxMRE4VDs2rVL7FfFiNw3nqhI2pYzcvbsWXzzzTcALEJPz40CLIXKBg4ciNOnT+P2229vd7uI69AZIYSEBM6KEW86I3FxcS6tzGqdNyI7I4DzoRpHzognc0Zk0QVYBNMHH3wgPssDuSxGVAcjJycH48ePR2xsLGbOnOlSO/Royxn59NNPxZTfSZMm2Q3dxcXFYdu2bSgrK7MrWIh3oRghhIQE7ogRTyWwqoO0q9/2rcVIbm6uxrlxtn2+mtqr0rt3b5tEz8GDB+Pyyy8Xn/WcEYPBgBUrVqCyshKTJk1yqR16tOWMfPTRR2L7xhtvdHgvg8GgO9OG+AaKEUJISKCKkbS0NN3Fz1Q87YyYTCacPXsWgOtJmXrOiCxGnJ1R46sEVpWf/exnWLBggWbf9ddfjx49eojPBw8eFNuygwFYnAhP4MgZqa+vFxVwu3Tpgp/85CceeSbxDhQjhJCgp6qqCsePHwfgeCYN4HkxUllZKRJNPeGMuBOm8bUzMnXqVNx+++3o27ev2GctRuSKqLKD4UkcOSOrVq0S6/3ccMMNdD0CHCawEkKCHmdn0gCeT2B1Z1qvSk5ODmJiYtDU1IT4+Hh06dLF486Idc5IexJYAaB///5ChCxbtgy/+MUvMGrUKAwePBgmkwnR0dFobm7WXOMtMeLIGfnwww/FdlshGuJ/XHJGXnvtNUydOhWXXHKJZgGooqIiXHrppRg5cqT4T80IByz26a233orhw4dj7ty5NtPACCGkPTibLwJ43hlxZ1qvSkREBCZMmAAAuPbaa2EwGJxyRrZs2YKPP/5YuA++dEamTZsmtgcNGoQffvgBzz//PAwGA4xGo26xOeswjaeQ7ys7Iy0tLaL2SVJSEq666iqvPJ94DpfESHZ2NubNm6f7xz5s2DB899134j81Ztvc3IyHHnoIt9xyC9asWYP+/fvjiSee8EzrCSEE/hUj7k7rVXnrrbfwzTffYNmyZQDQZgLr0aNHcdlll2HSpEl46623ADh2RtSVe1VcFSOxsbGaz1OnTnV4vl4FU1+EaWRn5Ntvv8W5c+cAANddd53L70x8j0thGlXBv/76605fs2XLFsTFxWHixIkAgDlz5mDMmDEoLy9HZmam7jXNzc02Nl9kZKTL9mKwosafnS14FO6wv1wjFPtr9+7dYrtv374O303+Nl1VVeXwXGf6ShYjHTp0cLlfo6OjxTLzZrNZM8CeO3fO5n7r1q1DS0uL2J4+fbrGFYiLi7O5Jj09HRUVFQAsboyrbezevTuOHj2KQYMGoaCgwO71ZrNZt4JpQkKCV37fZOElF4mTpxvfcMMNAfu7Hop/i3rIYtgeHssZ2bFjB66++mqkp6fj5ptvxpQpUwAAJSUlyM/PF+fFxcWhW7duKCkpsStGlixZgkWLFmn2TZ06VWMPhgNqaWviHOwv1wil/lKnkaalpaGhoQGlpaV2z1UHcsASYnF0roqjvjpw4IDmszP3c4SadAkAx48ft7nftm3bxHZJSQlKS0uFCwBY3sna8UlKSkJFRQWio6M1lVGd5bnnnsMnn3yCO+64o833y8rKstlXWVmJpqYml5/bFnJ4Sv5ZqlVXIyMjUVhY2O6fibcJpb9FPXr27NnmOR4RI4MHD8by5cuRkZGBvXv34oEHHkCHDh0wevRoNDQ02MQwExISNH9w1syaNQvTp0/XNjTMnJGysjJkZ2c7pSjDHfaXa4Raf507d064EwMGDNDM6LBHXFwcGhoa0NzcjJycHLvnOdNXsrgpLCx0eD9nUBRFbJtMJpv7ycLj/PnzyMnJEbkjERER6NWrl81sosmTJ+PFF1/E+PHj3WpfTk6OU18G9ZwRg8GAvn37emUlXNlRkPtKDW9lZmaif//+Hn+upwi1v8X24BExIivh/v3745ZbbsFXX32F0aNHIy4uTqNeAYuadTTPPDo6OmyEhyOMRmPY/4K6AvvLNUKlv3788UexXVhY6NQ7JScno6GhAdXV1U6d76iv5ATWjIyMdvepnHB6/vx5m/sdPnxYbJeXl8NoNIqckfj4eN0prC+88ALmzJmD/Px8r//MrXNGEhMTvTat1mg0ihL0tbW1MBqNUBQFlZWVACx9GQy/46Hyt9gevPL2sgLOzc3FoUOHxOeGhgYcO3YMubm53ng0ISREKS0txZ133ok33nhDs3///v1iW6574Qg1ibW9CayKoogQkcFg8Ph6K3oJrCUlJWL75MmTUBRFfOGzV4reYDCgd+/ePqm1Ye2MeGsmjfX91QTW+vp6kXNoPZOIBC4uiZHW1lY0NTVBURSxbTabsX79emEd7tu3D++88w5GjhwJABgyZAgaGhpQVFSE5uZmLF68GP369bObL0IIIXo89dRTWLJkCe68806NGyEPznJ+miNkMSKHRVxl586dImfkiiuusJl54g4RERGifdZ1RlpbWzU5Hy0tLTh79qzGGfE3HTt21PSDt2bSWN9fTeJVq+ECtjVWSODikhh5+umnMXz4cGzbtg1PPvkkhg8fjq1bt2Ljxo2YNm0aRo4ciUcffRQzZszA2LFjAVhCLs8//zyWLVuG0aNHY8eOHVi4cKFXXoYQErqo03dbW1uxb98+sV8WI846rupgbzKZNNNiXeWdd94R255MsFen91o7I2VlZZrKpoDFHWnLGfElBoNBk5fibTEiOyNyiAagMxJMuJQzMn/+fMyfP99m/9ChQ3H//ffbva6wsBDLly93uXGEEKJy5MgRsV1cXCzcVzmHwtnkTOtaI+4M4oqi4N133wVgifnfdNNNLt/DHikpKSgrK7MRI7LwUjlx4oSYEBAIzghg+Tmo4TNvh2lUsdPa2orm5maNGKEzEjyEd8YMISQoaGxs1FR1lgdldTsrK8vpMIksRvSWnneGrVu3ori4GAAwatQodOnSxa376KFWYVVn/KjoiRF5XyA4I4B2KqevnBHA8rOUwzR0RoIHihFC/sfx48cxb948fPbZZ/5uCrHCug6DKgJqa2tF/ogrSfHyAOluEqvqigDAzTff7NY97GGvCqueGJEnCASKMyJPr/alGKmtrWWYJkihGCHkfzz11FP485//jJtvvtlmOjrxL9ZFq1QxIodonCmspNJeZ0QO0URERGDy5Mku38MR8vo0chKr/L4qal8AgSNG5HCZr8I0gK0zwjBN8EAxQsj/UGdF1NXV4dSpU35uDZGR80WACw6BO8mrQPudkU2bNok2XX311ejYsaPL93CEu85IoIRp5PWB9Naq8SR0RkIDj5WDJyTYkb+BemIBNeI5rJ2RM2fOoKamxm0x0t7F8uRZNJ4O0QBti5GOHTuKtWbkPggUZ6R///544YUX8OOPP+IXv/iFV59l7YxQjAQnFCOE/A+5zDbFSGCht7ZIcXGxR8SIO2GaDz/8EIBlmYpJkya5fH1b6IVpzp8/L0IQhYWF2LZtG6qrqzVTkwPFGQGABx54wCfPsXZGGKYJThimIeR/BIszUlJS4pVFxwIZPTFSUlLids5Ie8I0TU1N4rlDhgzxyrdvPWdEftfc3FzdwpGB4oz4EkfOSFpamj+aRNyAYoQQWBasku3wQBUjr7/+OvLy8jB48OCQX3Zcpi1nJDY2FhkZGU7frz3OyIkTJ8S2t/IhZGfEFTESSM6Ir7CXM5KQkICYmBh/NYu4CMUIIbAtCx6oYqSoqAgAsHfvXt1kxlCktbUVx44dAwBERUWJ/cXFxWKA7tmzp0sLjbXHGTl+/LjYlhcJ9SSyM6I6dtYhKTojFuzNpmGIJrigGCEEtmuAuFsIy9vI7QzV6ceKouDgwYNoaWkBYBn81RLol112mThv3bp1aGxsBOBavgjQPmfE12JEdUacESPh7ozIYRomrwYXFCOEQJu8CgSuMxIOYmTBggUoKCjAtddeC0VRNCGawYMHCyGxe/dusd+VfBEg8J0RvQRWWYz07NmTzsj/kMXIyZMnhYilMxJcUIwQAltnhGLEQlNTE26//Xbccsst7VpQzhXUUNSaNWtQVlamESM5OTm6Lkg4OCNqSCo+Ph6dO3fWzZEJR2dEFpby7wqdkeCCYoQQUIzY45NPPsGbb76Jd955B++//77Xnwdo33H9+vWagmc5OTnIy8uzucZVMZKQkACDwQAg8J2R8+fPw2w2CzGSm5sLg8FAZ+R/yM7I0aNHxTbFSHDBOiOEIDjCNNYzfnwhRuSBt7y83OvPA7RFvr7//nvNe/bo0cMjzojRaERiYiJqamoCUozExcUhMjISra2tqKqqwokTJ8SCeeq7MmfEguyMyGKEYZrggs4IIQgOZ6SmpkYz48cXYkQWadbL2XsDRVE0z1m/fr1NmEbPGXE1ZwS4EKpxN0yTlpaGuLg4l5/rDAaDQYRqzp8/b5MvAuiLkXB3RuT6O3RGgguKEUIQHM6ItWDyhRiRn2ktRjZt2oRnn30Wp0+f9tjzGhoa0NraKj5v27YN+/btA2AZdNLS0mxckE6dOrm1GJv6jdqVn7WiKKLOiLdcERU1VHP+/HnRB8AFZyQ1NdWmjkY4OiMxMTGaKd8qFCPBBcM0hCA4pvb6Q4zYc0ZaWlowYcIEVFRU4Mcff8S//vUvjzzPWvCYTCZRYyQnJwcGg8HGGXE1RKOiOiO1tbUwm81O1Sk5e/as+PbtbTGiOiPnzp3D73//e7G/f//+ACDyRuScmnB0RgCLULX+QsEwTXBBZ4QQBEeYxnqg9rUYkfvkzJkzYqG2r776ymPPcxQKUpel7969OyIiIsR+d8WI6owoiuJ0X/oiX0RFdUbMZjPOnDkDALjmmmswatQocY51qCYcnRFAmzeiQmckuKAYIQQM0zjzTFkoyNtlZWWaxcnagyMx0qNHDwCWxelUYQK4ly8CuDe915diRJ7eC1jE2LJlyzQOjrUY8VYOS6CjF6ajMxJcUIwQAv0wTaCt/RJIYRrrtmzbts0jz3PGGQGgCdW0N0wDOC8+/eGMAJa8iA8++MBmgJXFSFxcnEsl8UMJOiPBT3j+5hJihbUzAlhyCQKJQHVGgOAUI+5UYfWlGOnTp4/YfvXVVzF48GCbc2QxEq75IoC+M8IVe4MLJrASAtuBHrAMUPK3Z38Tbs5Ijx49bAqeqcyZMwcffPAB+vbti5EjR7r1LGfCNK+++iq++uorvPzyy+jatatPxcivfvUrtLS0oE+fPrjpppt0z6EYsWAtRpKSkhAdHe2n1hB3oBghBPbFSCDhazHS3NysKQGvrmxsMBh84oyMHz8er776qvis5owAljVqysvL2xWWaMsZOXLkCO6++24AFsv/H//4h0aMdO3a1e1nO9u+xx57zOE5shgJ1+RVwDZMwxBN8MEwDQl7rAddlXAXI9bPa21tRUNDg+6x/fv3e6Q9shgZM2aMmDUTExODzp07a85tb35EW87IgQMHxPbKlSuhKIoQI1FRUejUqVO7nu8J5PVp6IxcgGIk+KAYIWGPnisCBF6tEV9P7dXLo1HbYN0WRVGwa9eudj9Tvm9mZiZ++tOfAgBGjx7t8eTMtpwRtb6Jur1//34hRjIzMwMiWZTOiAVrZ4QzaYIP//81EeJn9AZdgM6InkhTxYLeMU+EamQxkpKSgjfeeAMrV67Ef/7zn3bf25q2nBFZjACW1YTVKczezhdxls6dO+Oiiy4CAIwYMcLPrfEfdEaCH+aMkLBHHlhjYmJEhc1wFyOuOCOAd8RIUlISrr322nbfV4+2pvZai5GlS5eK7UARI0ajEd9++y127tyJyy+/3N/N8Rt0RoIfOiMk7JEH+e7du4ttihFbMaL2ia+cEW/iSpgGAPbu3Su2A0WMAJZ+GjlypKYqbbhBZyT4oRghYY886GZnZ4vtQBcj9fX1Xi3M5ihMI4sGtQLqrl270NLS0q5nqveNiIjweg6Eq2EamUASI4SzaUIBihES9vjSGWltbcUbb7yBNWvWuHSdoii64kCd3eINHIVp1LbExcVh2LBhACzLt8ury7qDev/k5GQYDIZ23astXHVGZChGAgtrZ4RhmuCDYoSEPfKgKxfW8oYYeeONNzBjxgyMHTsWO3bscPo6dWVZa7wZqnHGGUlNTcWgQYPE8faGatT7ejtEAzh2Rurq6sTvhd7aNxQjgQWdkeCHYoSEPfacEW9M7f3+++8BWFZifeONN5y+zl6ZdG+KEWeckZSUFI+JEUVRfCpG4uPjxfRca+EpFzcbMGAABgwYoDlOMRJYMGck+KEYIWGPLEa87YzI5c3/85//QFEUp66zVwvFH2KktbVVrNvjijOiKAr+9Kc/4ZFHHtENLzU2NoqcE1+IEYPBIL5RWwtPOUSTkZGBsWPHao5TjAQWDNMEPxQjJOzxZQKrLEaOHj2KH374wanr/CFG7JXIl/slJSUFnTp1EoPzjh077Aqs77//Hg8++CCee+45LFu2zOa4L2fSqKihGuuftSxGMjMzMWbMGPE5LS0NcXFxPmkfcQ6GaYIfihES9siDbpcuXRATEwPA82LEbDajtLRUs8/ZYl6eEiOHDx/G73//e+zcuVOz/+zZs3juueewfv16sc+eMyKLBnWZ+379+ol2VlRU6D770KFDYlsutS7fW8VXYkQdxByJkYyMDIwcORKxsbEA9HNIiH+xdka4Ym/wQTFCwh51oDcajUhKSrL7bdkVGhsb8eabb2qSVMvLy9Hc3Kw5z9lQjSxG5DVaXBUjv/jFL/DMM8/g17/+tea5TzzxBB555BFcd9114p7qM9VBGLAVI6po6NWrl9h38OBB3WfL4ub06dM2x/3pjNTV1cFkMon91mIkPj4ef/vb33DZZZfhD3/4g0/aRpxHngaenJyMqKgoP7aGuAPFCAl71EEyJSVFCBKgfWLk//7v/3D77bfjiiuuECXE5RCNirOhGlmMyPkKroiR1tZWrF27FgBw4sQJnDlzRhxT21BVVSXEhNovWVlZYprt+fPnNW1RnZGCggKxz54Yka+Tn63iT2cEgMiDAWzDNAAwa9YsrF+/3msVYYn7yHVpGKIJTihGSNijDpLqwOoJZ2TLli3iHhs3bgSgFSPy7Ix3333X6TYC7ouR/fv3axJHZdFw+PBhzbbZbBbPTE9PF33ijDOiF4IBtM5IoIgRe9N7VTESGRnJZMggYdKkSQCAyZMn+7chxC0oRkhYoyiKGCTVOLM6QLW0tIh1alxFzptQZ5jIA/69994rrGRnQjXyQO2uGNm6davms5rDUVNTI9wbtZ01NTWiTampqUIcVFdXu+2MBGKYxl7hM1WMdO3aNazLrAcTb7zxBkpKSvCnP/3J300hbkAxQsIaOVfA2hkB3HdHZDGyfft2AFpnZNCgQWKGRllZGTZs2ODwfp5wRqyn3RYXFwPQiiT1sywc0tLShDiw54z06NEDkZGWdTftOSOBGKbRc0YaGxtF+7p16+aTdpD2YzAY0LNnT69X7iXegWKEhDXyAGntjADuixHZadATIz179sS0adPE57a+zXlCjFg7I6qDYS1GSkpKbNwPVRw0NjZqXA1VwEVGRopZJgcPHtR1emSBU19fb9N2f4sR9Wd94sQJsY/1RAjxDRQjJKyRB0hPOSOKomickUOHDqGmpkaIkeTkZKSmpmLKlCnIyMgAAHzwwQdYt26d3Xu2V4yYzWaPOCOAJelWRd6vhmrq6+s1A7qK9VRha3fE32Ea1RmRk1fpjBDiGyhGwpTKykp8/vnnbudEhAp6+Q/tFSPV1dVobW3V7Nu6dasYxHv06AGDwYDExEQsWLBAnPPAAw/YzR2Rpx936dJF7HdWjBw+fNjmXVQHQ0+MVFZWis9paWmaPpHFiNpnQNvTe61rpQSCGNH7WVOMEOJ7KEbCEEVRMGbMGIwfPx7z5s3zd3P8irUDALRfjMghGpUVK1aIUuc9evQQ+++8805RMGzDhg147733dO8prwUjF3hyVozolWmvrq5GRUWFjRhpbGzUrL4rh2mAtp0RQD9vJNCdET0xwjANIb6BYiQMqa2tFYOTWnciXNFzRtpaWr4t9CqQfvjhh2JbruAZGRmJ559/Xnx+5JFHbAqjye1MTU3VFHhyVozI+SLyt/2DBw/aiBFAK16swzRlZWVi21lnpKWlxaat1jNq/O2MMExDiP+gGAlD5EFAtuPDkbYSWN1ZuVdPjMiDs+yMAMCECRNw1VVXAbAkjy5evFhzXFGUdosRWVxMmTJF0y49MSKLF2tnRA1BGY1GjUvjaHqvXjl7e86I9X29SVvOCMUIIb6BYiQMoRi5gDcSWPXCNDLWYsRgMGhKjK9Zs0ZzvKGhQQgAe2KktbUVd955J/r3749LL70UV111FW677TaUlpZCURQhLjp06IDRo0eL6zds2CDuIdfTkAWKtTOikpKSoplG2a1bN1E63jpMo7fOjT0xkpyc7LPpmY6cEaPRKBKMCSHeJdLfDSC+RxYjdXV1aGpqEovDtRdFUVBZWem3qpX79u1DfX09Bg8e7NT53khglZ2R2NhYNDY2ao5bixEAGDp0KKKjo9Hc3Iw9e/bYbWNKSgoiIiIQExODpqYmISRWrFiBJUuW2Nx3//79eP/998XPfPDgwZpwyhdffKFpg1otVsaRGJExGo3Iy8vDnj17UFxcDJPJJASOnhixF6bxVYgGcOyMZGRkcI0TQnwEnZEwxHoQ0Bso3EFRFFx33XXo2LEjXnnlFY/c0xX279+PwsJCDBkyBF9//bVT13g7gXXEiBE2x/XESGRkJHr37g3AEuKQ80b0BJPqjqhiRG/dGwDYvHkzZs6cKT4PGjQIPXv2hNFo+dMvKSkRx9RQkTWpqamaPrFui4waqmlubtYkurrijOjd11tYOyMtLS04efIkAIZoCPElFCNhiLUY8VSopri4GCtXrgQA/POf//TIPV1hzZo1MJvNAICioiKnrvG2M6JWWZWfYW+wLSwsBGAJucg5F86IkVOnTolzVq1ahXXr1gnB8dVXX4ljgwcPRnR0tO4skYsvvlh36XXrnBEVvX32kljbyhlpbGwUAsyXzoj1z7q8vFxMr6YYIcR3uCRGXnvtNUydOhWXXHIJVq1apTm2dOlSjBkzBldddRVeeuklTb2EPXv24NZbb8Xw4cMxd+5clJeXe6b1xC28JUbkmTn79u3TLMnuC9QiXgCwc+dOp67xRgVWR2JEzxVRUcUIAE2oxhkxIv9Mu3Tpgssvv1x32vagQYMAADk5OTbHevbsidzcXM2+xMREREZG6goER84IoM0baStM44+ZNIAljKaGkqqrq5m8SoifcEmMZGdnY968eZp/NAHLIPTee+9h6dKlePfdd7F27Vp88sknACx27UMPPYRbbrkFa9asQf/+/fHEE0947g2Iy/hCjDQ2NmpCAL7AHTGihjeSkpJE8mV7p/bKYZq+ffuia9eu4rM8rdcatd4IAOzdu1dstyVGFEXROCNqUbQFCxaI0A9gERb5+fkA7IsR6/apAq29zkhbYRp/iRGDwSDEp1wlF6AYIcSXuJTAOmHCBADA66+/rtm/YsUKTJkyRfzx3nbbbVi5ciUmTpyILVu2IC4uDhMnTgQAzJkzB2PGjEF5eTkyMzN1n9Pc3GxTayEyMhLR0dGuNDdoUUMN6v89jbUYqaio8MizrGuW7Nq1C3l5ee2+b1uobZfFyOnTp1FeXq6pVmrNmTNnUFpaCsDiGKj3iYuLg8FggKIoqKmpcblvVGckLi4OsbGxGDhwoCiPnpOTY/d+ffv2Fdu7d+8W58kDeXJyMsxmsxAjZrMZDQ0NQowYDAakp6fDbDYjJiYGixcvxsiRI6EoCi699FJxjbVDk5iYiLS0NJv9aWlpMJvNGoGmkpKSYvMuqtgBLDk8eu8QGRmJ1tZW1NfXo7a2FvHx8brv6CuSkpJw7tw5VFdXY/ny5WJ/v379vP63GGqwv1wjXPpLDRk7wiOzaQ4fPiyECmCxatUExpKSEs0/UHFxcejWrRtKSkrsipElS5Zg0aJFmn1Tp07VLCwWDsjFpTyJbEUDlkFcHZTd5ezZs9i/f79m3/r160VYwNsoiqIRIwCwevVqjBw50u4133zzjdju1auXpg8SEhJQW1uLs2fPutw3qjBITU1FaWmpxm1ITk62ez9VcDc3N2PHjh3iPPnbektLC0pLSzVTX/ft2yfETlpaGo4fPy6Ode3aFX/961+xcuVK3HXXXeKe1qIjKysLR48etXElYmNjUVpaalPeXsX6XRRFQUJCAurq6rBv3z5xXP5d7t69u3DNtm/fjqysLJupwO39fXQF1RE7e/YsPvvsMwCWmTQFBQWi3d76WwxV2F+uEer95cgRVvGIGKmvr9cUKUpISEB9fT0AS40EuS6CeryhocHu/WbNmoXp06drGxpmzkhZWRmys7OdUpSuopdMqGfbu4JeufHjx4+3+77OYDabsXnzZpsptKdPn3b4fHm2x+jRozXnpqamora2Fg0NDS69g1ygrEuXLsjJycHMmTPx6quvwmAwYNq0aQ7v17t3b+zatQtHjhxBZmYmoqOjNcIjPz8fOTk56Nixo9iXnp4uQkOZmZk29//lL3+JX/7yl+KznjNSUFCAnJwcDBkyRLM/IyND3E8VGSo5OTm671JQUIBt27bh2LFj4h3UUviAxXFQxUhUVBRycnKwefNmcbx79+4++b1RUaehy4Jr7ty5yMvL8/rfYqjB/nIN9tcFPCJG4uPjUVtbKz7X1dUhPj4egMUJsa4SWVdXh7i4OLv3i46ODhvh4Qij0ejxX1Cz2WxTIfTcuXPtfo7eirN79+712R+Y3jfpXbt2OXz+li1bxPawYcM056p5BNXV1S69Q3V1tRh4O3bsCKPRiEsuuQQHDhxAREREm98QCgsLsWvXLrS2tqK4uBiFhYWafIr09HSbCqVnzpwR4r5z585Otbdbt24wGo3CHs7NzRV1QmTS0tLE/VJSUjR/y6mpqbrPUsWIyWTC0aNHUVBQoHmH3r1749NPPwVgcSOMRqOm0q29+3oL62nLRqMRc+bM0bTBG3+LoQz7yzXYXx6a2tuzZ08cOnRIfD5w4IDIys/NzdUca2howLFjx2yy9olvqKystIlPeiKBVc4XURM29+3bZ9fe9zSyy6HSVhKr+m08JSXFZhBWB6ja2lqXZgXJQk8u/Jafn++UVSknh6tJrI4SWAFtrRBHOTIyMTEx6N69u/isti0nJ0fjxMhTfa1DOPamKMuuhmo/qzkh1oJMTWL1VwIrYCtGrrvuOiavEuJjXBIjra2taGpqgqIoYttsNmPChAl4//33cfz4cVRUVGDZsmUYP348AGDIkCFoaGhAUVERmpubsXjxYvTr189uvgjxLtbJq0D7xUhdXZ0oN963b18MHz4cgCUR2TqPw1voOSN79+7VhAdkTpw4IfIshgwZYvOtRB6gZNevLeSZNHIoxVnkGTXq9F5viBEAGgGmCoSYmBhNDRJHYsSeaMjOzhbb1mIkLS0NnTt3FsfV30d/ihHr5Fw5pEUI8Q0uiZGnn34aw4cPx7Zt2/Dkk09i+PDh2Lp1K0aMGIHJkydjxowZmDp1KoYPH44bbrgBgCXk8vzzz2PZsmUYPXo0duzYgYULF3rlZUjbeEOM/PDDD8IBGTFihN16Gd5EFiMDBw4EYBFD1km1KnKI5pJLLrE57m6tEdkZcUeM6PWdKkbkaaj2xIg80LeF2k/Wz5WdC9n9sHYQ7DkjshhRHSt5ob9OnTqJ44HmjHTv3h3XXHONT59PCHExZ2T+/PmYP3++7rFZs2Zh1qxZuscKCws1U+aI/9ATI20t7NYWcohmxIgRIl8IsAyokydPbtf9nUEd9AwGAyZOnIgdO3YAsIRq+vfvb3O+nDA5dOhQm+Pyt2VXVu61F6Zxlry8PDGjZu/evTCZTMLBSU5OFg6OLEbkRe1ccUbmzZuHc+fOYfDgwTYuyXfffQfAM86I2WwWYiQtLS3gxIj8vDlz5mgWDCSE+IbwzpgJQ7zhjFiLEflb9u7du9t1b2dRxUh2drbG6bCXN9KWGHHXGWlvmEZeo+bAgQNYtGiRmIp90UUXifM84YxkZGTg9ddfx913363ZLxdKk1etdTZnxFqMVFdXi4rMgRimufHGG5GWlob8/HyGaAjxE1y1N8zQEyPqDBB3VihtbW3F+vXrAVgSV3v27InW1lZERUWhpaXFJ2Gaqqoq8c07Ly9PM2jriRFFUYQY6dChg+40UlmMvPzyy+jTp49TC7i1N0wDaGfUyCXdn3rqKbEtixE5edcVZ8Qes2fPxurVq9GlSxeMHj1a7HfWGenYsaNYrbisrExT0Cw1NRXp6emiqFwgOCMDBw5EeXm5zTRqQojvoDMSZshiRE4i1qs94gy7d+8WCZ4jRoyAwWBAVFSU5tu9vSRSTyEnyebl5SE7O1sMaHpipKysTPTD0KFDdQcgWdC8/fbb6Nu3Lz788MM229LeMA2gzd9Q6/VMnjwZV155pdgvixF5to8rzog9OnfujK+++grLly9HZOSF7yuySIiLi7M7/d5gMIjZKGVlZTbr/0RERIi+UcWIeo71tGVfERMTQyFCiB+hGAkzZDHSp08fse1uqEbOV5AHcHVAbWlp0axR4g3kqeN5eXkwGAyiLcePH7fJiWkrRAMAN910E/7+97+L3JGTJ09i8uTJ+Oijjxy2pb1hGkA7owa4kAQuY11IUMUTzog9ZLeoLfdCDdXU1NRokovVHBRVNFmHaZKTkykKCAlDKEbCDFmMyCusuitGTp48KbZlp8WXM2rknAk1EVMWRrt27dKc74wYMRgM+MUvfoE9e/ZoljqQS8jr4akwjcx9991nUwdFT4wkJSU5LCbYXmQB0lbISq5hoiYTAxfEiJrEWl9fj/r6eiFGfB2iIYQEBhQjYYYqRlJSUjTiwRNiRE529KUYkcM06jpIjvJGnBEjKtnZ2Xj55ZfFZ3Vmiz1UZyQ2NlYzq8gV8vLyhNjo3LkzHnvsMZtz9MSIJ0I0jpCFgrPOCKDtf1XEyDNq9u3bJ/JKKEYICU8oRsIMVYx07twZ6enpYr+7YqS8vFxsu+KMnDp1ymZlZnfRc0bk5+/bt09sy8mrXbp00RT4sof8XvL76qE6I+66IoBlRs2rr76K0aNH45133rGp7wHoixFvhmgA15wRWYzIzpR1mAawJMyqdWrUlYUJIeEFxUgY0dTUJOxwT4kRe85IXl4eYmJiANiGSd5//31kZmZiwIABDhdMdBbVGenYsaMYuOV8GLnw2YkTJ8S38Isvvtip/IT4+HhxX0diRFEUIUbcTV5Vuf3227FmzRqMGjVK93gwOSNyTo91mAa4sMhiSkoKFixY4JG2EkKCC4qRMEKduQB4XowYjUbNYBgZGYkBAwYAsMyokWt1LFmyBIqi4MCBA/j666+dek5lZSXeeustzTsAF9Y6ArTlzTt06CAEgeyM/Pjjj2LbOlHUEao74kiM1NbWahbJ8yZ6M0687YzI4aOLL77Y4bmyGFFrjAD6YkTl2Wef5TIRhIQpFCNhhJy86ukwTadOnWwqV6rFxxRFEeXXFUXBpk2bxDnffvutU8+ZOXMmpk+fjptvvlmzX57NY734ouqOnDhxQlRRlcVI3759nXo2cEGM1NXV2a3I6onkVWfxR5gmNTUVa9aswaJFi3Dvvfc6PFcWI9b3AGxdnMsvvxxz5871SDsJIcEHxUgY4WkxYjabcerUKQDaEI2KXAlVFSByjQ/AeTGiVnn94YcfNPuta4zI6IVqZJfEFTGirkQM2HdHPFFjxFmioqJsitR5O0wDAMOGDcPs2bPbTM5NSUmxWYAO0HdGIiMj8dprr4X9EuqEhDP86w8jPC1GKisrRVhCz17XEyOyK6J+bitvpKmpSeR51NXVoampSRxzJEbksuaqGGmvMwLYFyOeqDHiCtbuiLedEVfRc0fUXJMBAwaIaciPPvqo7vpBhJDwgWIkjLAWI6mpqSKB0x0xYi95VaVv375iwLQnRlpaWrBx40annwNAU15cLoUurzYLaJ0R1RFRxUinTp1cci+cESO+DNMAtmLEF86IK1iLkeTkZBHK69ChA7Zu3YqVK1faXXyTEBI+UIyEEdZiJCIiQsTw2ytG9JyRiIgIDB48GABQWlqKM2fO2IgRoO1QjbUYkdsqCwDrwdhajFRVVYl7ueKKAK6LEW+HaYDgc0bkFYABy8/n2muvZcVVQgjFSDhhLUYAiFBNW2KkpqYGl112GYYOHSrCEfKgrOeMANpQzcaNG0WND3kg9ZQYsXYjevbsKfIq9u/f73aIBmCYxh3aEiOEEKJCMeIm1dXVGDJkCPr37y+SOFU++ugjzJw5UzP4BQKOxMi5c+dgNpvtXvuf//wHGzZswJYtW7B06VIAbTsjgFaMvPXWW2KK75gxY8RgtX79eocF0KwHfz0xYjAYbApxRUZGioqsBw4c0BRf87Yz4msxEh0dHXDVS+WS8ADFCCHEPhQjbvLZZ59h69at2LNnDxYtWiT219bW4mc/+xn+9a9/4ZFHHvFjC21RxYjRaBQiRP2/oiiaZdytkYWVutaIq87Ie++9p9l/xRVXALDUCtm6davdZztyRlQ3IjU11WZqMXAhVNPU1ITPP/9c7A+1ME3nzp0DLtxh7Yy0VbWVEBK+UIy4iewyrF+/Xmx///33YnbI7t27fd4uR6ht7tSpk5hG6eyMGrmKqbrWSFsJrICl9of6DHXmDaAVI4DjUI0zzoi9gU7OG1m5cqXYdlWMJCcni9kfgRimCbTkVYBhGkKI81CMuIk8o+P7778XIY7vvvtO7C8tLRVrbnibttZ5URRFVC+VBy53xMjevXvR0tLiVJjGYDDoLkY3dOhQp8WIvdk0LS0tIuwjv4eMPL23vr4egKV6abdu3ew+Tw+DwSDe0d5ieer+mJgYtxfJcwVZjARavggAmz6mGCGE2INixE1kMVJVVSWmjspixGQyiVLl3uRf//oXkpKScNttt9k9p7a2Fo2NjQC0BaecESMtLS2axehaWlqwf/9+4RAkJCTolidXkUM1gKUeSHp6Onr37i3asnbtWphMJt3r7TkjshNhb6CTnRF5nzshDVWMVFVV2dRGOXr0qBBsF110kU9CJoEuRuLj4zXhKoZpCCH2oBhxE+uBW03C3LBhg2a/XK7cWyxatAjNzc1YtmyZpu6GjF7yKuCcGDl8+LCNw7Nz507hWLS1noi1GFE/GwwG4Y6cP39es9S8jL2cETlHw95AJzsjKnoCxRnk97Ru06effiq2r7/+erfu7yqBHqYBtKEaOiOEEHtQjLiJ7IwAllDNli1bhPug4gsxIs/mUcumWyOLFPlbtDNiRA7RqGzcuBFVVVUA7OeLqNgTIwBw5ZVXiu0333zT5lpFUeyKEdkZsRemSU1NtXENXM0XUXGUxFpUVCS2/SFGAtEZAShGCCHOQTHiJtZiZP369ZoQjYovxIjseqxbt073HHm2ilx6210xsnr1arHdljPStWtXzdoushiZNm0aYmNjAQB///vfNQJDbZOc+Cq30xlnBLB1QtwVI/bWp6mpqcGaNWsAWAbfgQMHunV/V0lOThbbFCOEkGCGYsRNrMXIvn378PHHH9uc520x0tTUJJI4AfvOiCxGhgwZIrbdFSPyVN+2nBEAuOqqqwBY1iZRq7IClkH05z//OQBLgulLL72kuU5v5oorOSOA58SIPWdk9erVIoH4pz/9qc+m2E6aNAmdOnVCTk4OrrvuOp8801UmTJgAwOLiDBs2zM+tIYQEKhQjbqI3cKtTfOVv6d4WI7I7AAC7du0S4ROZLVu2ALAUxyosLBT7nREjBw4cENt63/rbckYA4IUXXsCTTz6JoqIim8qhDz74ICIjIwEA/+///T+NuLIO0cjtlN/dWTESGRlps6Ces9gTI/4I0QCWROCysjIUFxcHbHLoddddh927d6O4uNgntVcIIcEJxYgbKIpi44zIjBo1SrgF3hYjcohGbdv333+v2VdTUyMExUUXXYTo6GhxzBVnpEuXLhg5cqTNcWeckYyMDMyfP1/3+pycHDETqKqqCq+++qo4pueMVFVVwWQyOe2MyEmsvXr1EiXiXUVPjJhMJnz22WcALN/+R48e7da93SUmJka32FsgUVhYGLBhJEJIYEAx4gYNDQ3Clu/Vq5fN8ZEjR4oVZMvLy22mgXoStXaIjHWoZvv27VAUBQA0IRJAO4jriZHz58+LBNnevXtjwIABNuc4I0ba4pFHHhHhjT//+c+iz/ScEcAiSGRnxF4CKwCNE6TXfmfREyM//PCD+BmMGzdO5L8QQghxHooRN5Bdkf79+9uswSGLEcBS/MxbWDsjgK0YUUM0gDZfBACioqKQlJQEQF+MyPkivXv3xkUXXWRzjjNhmrbo3bs3pk6dCsDyTur6N7IzIvdzZWWl0wms3bt3x8KFC3HFFVfgsccec7uNHTp0EK6K2i5/hWgIISSUoBhxA3nQTktLw+WXXy4+JyQkYNCgQRox4s1QjZ4z8sMPP2gqsjoSI8CFGhUnTpwQDoqKLEYKCgo0M3FUPOGMAJbcEZVVq1YB0Doj/fr1E9uVlZUiTGMwGNpcJO7xxx/HN998oyumnMVgMIh3LS8vh6Io+Oijj8SxQE0iJYSQQIdixA1kZyQ9PV0jRi677DJERkZqxIhcvdTTyM6IOvW0sbFRM3tG3Y6KitIVE2pbq6urbXJh5OTV3r17IzExUZMAajQaNRVd28PgwYPFdNXNmzcD0Dojshg5d+6cZl0aNQHW26gu0JkzZ1BUVCRmFQ0fPjxgC48RQkigQzHiBvKAnZaWhrFjx4qF59Rvx/5wRm688UaxrYZq6urqRKn6/v37IyYmxuYejoSTdZgGgMZd6Ny5s8cSKI1Go3Bujh8/jvLycuGMJCYm2oRpVGfEF4vSqahiRFEUPPDAA2L/b3/7W5+1gRBCQg2KETewFiN9+vTBp59+ildeeQW//vWvATgnRlpbW23CIq4iOyN6YmT79u1iET+9EA1gWVnXXltVMSK7PbIY8US+iIy8qN6WLVuEM5KRkaFJUj116pSYwuzLKaPy+x48eBCAxbGZOHGiz9pACCGhhm+87RDDOmcEAMaPH685Jzs7GxERETCZTLpi5Mcff8RVV12FjIwMfP/9927PwpCdkZEjRyItLQ3nzp3D2rVroSiK3WJnMvacEbPZLAbcvLw8kbwpixFP5YuoyGJk7dq1OH/+PACLCJDFyKFDh8S2v8SIyu9+9zvhjBFCCHEd/gvqBtY5I3pERkaKUth6YuStt97CyZMnsX37dnz55Zdut0V1RtLS0hAdHY3hw4cDsFQn/e9//9tm8iqgdUZkMXLs2DExxbagoEDsHzp0qBh89Raiaw+yGJEXn7N2RlSRBPhWjMgl4QGLkLvlllt89nxCCAlFKEbcwDpMYw/VcaiqqrKpiiqHV+zV0nAG1RlRkyfV8tsAcPPNNwuhExkZabfGhr2Qkl6+CGCZKrtkyRL88pe/1MyA8QQ9e/YUfbpnzx6x39oZkRNr/ZEzovLwww/7LHmWEEJCFYoRN3BVjAC27ohcI0OvVogzNDY2oqamBgDEjJY5c+bg2muvFe08duwYAEvhL3uhoA4dOohaI7IzYk+MAMCMGTPw6quv2jgF7cVgMGjcERVrZ0RehdhfYiQzMxN33HGHz55NCCGhCsWIG+jljOjhSIzIpczdFSNyvojqjERGRuKdd96xmcJrL0QDWASAGqopLS2FyWQCoF0Mz9PhGEfoiZHMzExNX8uJv46qr3qaAQMGiJDVs88+y4qrhBDiAShG3EB2RhxV/vS2MyKLEbnWR3JyMj799FNN3QvrMvD22tra2irclO3bt4vj7Smj7ir2nJHIyEjh4Mj40hmJiorC9u3bcezYMcyYMcNnzyWEkFCGYsQNVDGSkpLisMaGt8WIfJ11wa2cnBwUFRWhW7duyM3NbTPJ0np6r8lkEmKkZ8+ePl0V1p4zAui7IL5eDTYuLg5ZWVk+fSYhhIQyzLxzA1WMOArRAPanzCqKognTqAvRuYo9Z0Rl2LBhOHz4MCIiIsQidM62tUuXLqivrwfQtqviabKzs9GpUyfN+6lTiNPT023W+vGlM0IIIcTz0Bn5H4qiYPv27WhsbGzzPDVnpC0xkpGRIXIKZGekuroara2t4rM3nBGVyMjINoUIYOuMbNu2TXz2tRgxGAyaHJeIiAghOALBGSGEEOJZKEb+x4MPPohBgwZh3LhxDqui1tbWigTPtsSIwWAQjkNpaam4rxyiASwOh1ol1RXackZcwbrWiFwsbdCgQe26tzvIoRq55LyeGPFlAishhBDPQzHyPz755BMAwHfffaeZNmqNMwXPZNRch4aGBjEN11qMmM1mzQwdZ3HGGXGWHj16iO2SkhK/OiOAVozI02mt+zw1NVVUhiWEEBKcUIzAMoNEDqOsW7fO7rnO1hhRkculq8XNrMUI4F6oxpPOSGxsrKgZIjsjXbt2RZcuXdp1b3e45JJLxHZOTo7YthYjDNEQQkjwQzECoKysTJPD4UiMOFtjREVPjMjJqyruJLGqAsZgMHhkUFZDSqdPnxYVY/0RogEsIugPf/gDLr30Ujz88MNiv7UYYfIqIYQEPxQj0C66BnjPGVEFh6edkfT0dI+UJJfzRlT8EaJRefTRR7FhwwZceumlYh+dEUIICT0oRgAUFxdrPu/atQvV1dW657qaM+LNMI16TXvzRVQCTYzoQWeEEEJCD4oR2DojZrMZGzZs0D03UHJGGhoaUFdXB6D9+SIqcq0RFX+Faexh3ed0RgghJPihGIGtMwIAa9eu1T3X1ZwROfnTkzkjeuvStBdrZyQ9PR3du3f3yL09BZ0RQggJPShGcMEZkYuD2csbCRRnRD7fW87I4MGDnSqY5ksoRgghJPTwaDn4uXPnYvfu3aJA1aBBg/Dyyy8DAJYuXYo333wTZrMZEydOxD333BMQA52iKMIZ6d27N2pra3Hs2DFs3LgRra2tNomhruaMdOjQARERETCZTDZiJCYmBk1NTQBcFyPecEa6du2K6OhoNDc3Awi8EA3ABFZCCAlFPO6MPPnkk/juu+/w3XffCSGydu1avPfee1i6dCneffddrF27VhQZ8zfl5eVoaGgAAOTl5WHEiBEAgLq6OuzYscPmfFedkYiICCEWrMVIRkaGuEcgOCNGo1FT/CzQklcByyJ1aol9gM4IIYSEAj5ZKG/FihWYMmUKunXrBgC47bbbsHLlSkycOFH3/ObmZvHtXCUyMhLR0dEeb9vBgwfFdl5eHvLz87F8+XIAFhFl7Q6oOSMGgwGJiYlOlXHPyMhAeXk5Tp8+jZaWFpEz0qFDB8TGxuLcuXM4ffq0uJf1//WQxUjHjh3dKievR25uLg4cOAAAGDhwoMfu60nS09Nx4sQJABZB6Ex/kQuwv5yHfeUa7C/XCJf+Mhrb9j08LkZeeOEFvPDCCygoKMD999+PXr164fDhw5gwYYI4p6CgAK+88ordeyxZsgSLFi3S7Js6dSqmTZvm6eZi48aNYjstLU2TN7F69WrccMMNmvPV8EhycjLKysqcekZycjIAS6XXtWvXirVtEhISREirpqYG+/fv13zrt77/ihUr8M0332DmzJmaGUBms9lmJVt3mTZtGtavX49Ro0YhJibGY/f1JImJiWK7sbFR9JOzPw9igf3lPOwr12B/uUao95feTE1rPCpG7rnnHuTm5sJoNOKdd97Bvffei/feew/19fWaASQhIUEsT6/HrFmzMH36dG1DveSMnD9/XmxfcsklGDt2LBITE1FbW4utW7eie/fumtwWdX2Zjh07asqUO6JHjx745ptvAGjDPN26dUNTUxM2bdoEwFKSPScnB2azGWVlZcjOzhaKsrKyEr/97W/R3NyMTz/9VPPDHTBggNNtaYs77rgDt99+u1NK1l/k5+fjwIEDSExMxMCBAxEREWHTX8Q+er9fRB/2lWuwv1yD/XUBj4qR/v37i+077rgDn3zyCfbs2YP4+HjU1taKY3V1dYiPj7d7n+joaK8IDz3kab29evVCdHQ0RowYgc8//xzl5eUoLi5GQUEBAMsvjlomPS0tzelfHnmhtx9//FFsd+rUCS0tLeJzRUWFRmQYjUbxjA0bNojQVUNDA/bu3SvO69Kli0d/kQP9j+Lpp59GbGwspk6dipiYGGFxyv1F2ob95TzsK9dgf7kG+8vLU3vVzu3Zs6cmrHDgwAHdap/+QBUjcvLmqFGjxPGvv/5abFdXV4uBz5nkVRV5eu/u3bvFdocOHTR1SBwlsdqre2I0Gp2a1RNKDBo0CO+//z5uueUWfzeFEEKIB/CYGKmpqRHf3ltaWrBs2TJUV1ejb9++mDBhAt5//30cP34cFRUVWLZsGcaPH++pR7cLVSR1795duDGyGPnqq6/EtqszaVTsiZGOHTtqpuU6K0YefvhhETrq2bOnyDshhBBCghGPhWlaW1vxyiuv4MiRI4iKikJBQQFeeuklJCYmYsSIETh48CBmzJgBs9mMSZMm2SSG+oPKykoRdsnLyxP7hwwZIvJGvvrqKyiKAoPB4HKNERVZjOzfv19sd+zYUSMk7FVhbWxsFHkl+fn5ePbZZ3HVVVfhjTfewJ133ul0OwghhJBAxGNiJC0tDW+88Ybd47NmzcKsWbM89TiPIIeO8vPzxXZkZCRGjhyJlStX4tSpU9i/fz/69OnjEWdEzhHp2LEjoqKixGfVGdm0aRPWrVuH3/zmNzAajdiyZYvIFxk+fDgAYNy4cRg3bpzTbSCEEEIClbDOmJGTV2VnBABGjx4tttVQjavr0qjIYkSmQ4cONmGakpISjB49GvPmzcPDDz8MQFuaXi3KRgghhIQKYS1G7DkjgH4Sq7vOSHJyMmJiYmz2d+zY0SaBdfHixaIi7CuvvIKysjJNvgjFCCGEkFAjrMWII2dk0KBBoljZ119/DUVR3M4ZMRgMuu5Ihw4dkJKSIkI1J06cwNKlS8Xx5uZmPPXUU8IZ6dChA3r37u30cwkhhJBgIKzFiOyMWIsRNW8EsDgWe/fu1axV44ozAtiGahITExEbGwuDwSBCNXv27BFlzlUWLVokwkPDhw8PiMUFCSGEEE8S1mJEdUYyMjKQkJBgc1zOG7njjjvw9ttvA7AUZSssLHTpWdZiRF5tVm/V3aFDh9rsU5NXCSGEkFAibMVIbW2tWEXXOl9ERc4b2bJli9h+5ZVXdAWEI6zFiLzarJw3Algqtv7jH/+wcV+YL0IIISQUCVsx0tLSgt/+9reYOHGiRnTIXHzxxUhJSdHse/755zF79myXn+dIjFgLm5kzZyI1NRUPPvig2BcTE4MhQ4a4/FxCCCEk0PH4qr3BQlpaGl588UWH50REROCqq67Chx9+CAB45JFHNALBFazdD0diRK3Hcvfdd+Ovf/0rTpw4gWuvvVZ3Rg4hhBAS7IStGHGWZ599FiaTCSNHjsS8efPcvo+zOSOjR49GXl4eSktLkZCQgPXr1+Ozzz7DlClT3H42IYQQEshQjLRBQUEBPv7443bfx1GYZuDAgWL717/+tea8nJwcm32EEEJIKEEx4iMciZExY8bg3//+NyIiIjBlyhSxMjAhhBASDlCM+AhHOSNGoxG33367r5tECCGEBARhO5vG18THx4uKroA2Z4QQQggJZyhGfIjsjsjOCCGEEBLOUIz4EDlvhGKEEEIIsUAx4kOuueYaAEBhYaHuwnmEEEJIOEIx4kMeffRRbNq0CRs2bIDRyK4nhBBCAM6m8SkGg0F3ATxCCCEknOHXc0IIIYT4FYoRQgghhPgVihFCCCGE+BWKEUIIIYT4FYoRQgghhPgVihFCCCGE+BWKEUIIIYT4FYoRQgghhPgVihFCCCGE+BWKEUIIIYT4FYoRQgghhPgVihFCCCGE+BWKEUIIIYT4FYoRQgghhPgVg6Ioir8bQQghhJDwhc4IIYQQQvwKxQghhBBC/ArFCCGEEEL8CsUIIYQQQvwKxQghhBBC/ArFCCGEEEL8CsUIIYQQQvwKxQghhBBC/ArFCCGEEEL8CsUIIYQQQvwKxYgPeO211zB16lRccsklWLVqldjf2NiIP/zhDxg7dizGjRuHN954Q3Pd0KFDMWLECIwcORIjR47E66+/rrn28ccfxxVXXIHrrrsOn3/+uc/ex5t4o6/+/Oc/Y+LEibjiiitw++23Y+vWrT57H2/jjf5SOXHiBIYPH44//vGPXn8PX+Gt/vrkk09w4403YsSIEZgyZQpKS0t98j7exBt9dfz4cdx1110YNWoUxo8fjyVLlvjsfbyNu/1VW1uLhQsX4qqrrsKoUaPw2GOPaa4NxX/n9Yj0dwPCgezsbMybNw9///vfNfsXL16MEydO4MMPP0RtbS1+9atfIT8/H5dddpk456OPPkLHjh1t7vnaa6/h/PnzWLFiBYqLi3Hvvfeib9++yMnJ8fr7eBNv9FViYiL++te/IisrC2vWrMEDDzyAoqIiJCQkeP19vI03+kvlz3/+M3r37u21tvsDb/TXt99+izfffBN/+tOfkJubi+PHjyMpKcnr7+JtvNFXL7zwArKysvDSSy/h1KlT+PnPf47CwkIMGzbM6+/jbdztrwULFqBLly745JNPEBsbi0OHDolrQ/XfeT3ojPiACRMm4Cc/+Qmio6M1+7///nv87Gc/Q2JiIjIyMnDDDTfgs88+c+qeK1aswNy5c5GYmIiBAwfiiiuuwBdffOGN5vsUb/TV3LlzkZ2dDaPRiDFjxiAmJgZHjx71RvN9jjf6S71eURRceumlnm6yX/FGf/3zn//Eb3/7W+Tl5cFgMKBbt25ISUnxRvN9ijf6qry8HOPGjUNkZCSysrJw8cUXo6SkxBvN9znu9FdxcTH27duH+++/H4mJiYiMjESfPn3EtaH677weFCN+Rl40WVEUmz/M2267DePHj8f8+fNRVVUFAKiursbZs2eRn58vzisoKAiZP2p7uNNX1pw4cQLV1dXIzs72ZlMDAnf7q6WlBS+99BLuu+8+H7U0MHCnv0wmE/bv349Dhw5hwoQJuOGGG7Bo0SKE+mLo7v5uTZ06FatWrUJzczOOHj2KXbt2YejQob5qtt+w118//vgjunfvjscffxxXX301ZsyYgW3btgEIv3/nKUb8yE9+8hO8/fbbqKmpwYkTJ/Dpp5+isbFRHF+0aBE+/fRTvPXWW2hsbMTChQsBAPX19YiIiEBsbKw4NyEhAfX19T5/B1/hbl/JtLa2Yv78+bj99tuRmJjoy+b7nPb017JlyzB8+PCwEGwq7vZXZWUlTCYTNm3ahHfeeQf/+Mc/sHr1ahQVFfnrVbxOe363Bg4ciF27dmHkyJGYPHkyJk6cqBlsQxFH/XX69Gls3LgRw4YNw6pVqzBz5kw88MADOH/+fNj9O08x4kd+/vOfo2vXrpgyZQruueceXH311ejUqZM4PmjQIERGRiItLQ0PPPAA1q1bh5aWFsTHx8NkMmn+Aairq0N8fLw/XsMnuNtXKoqiYP78+UhLS8PcuXP98Qo+xd3+On36ND755BPceeedfmy973G3v2JiYgAAd9xxB5KSkpCRkYGpU6di3bp1/noVr+NuX5lMJtx7772YNGkS1q1bh08++QT//e9/8d///tePb+N9HPVXTEwMsrKyMGnSJERGRuKqq65CVlYWdu3aFXb/zlOM+JG4uDg89thjWLVqFd577z0YDAb069dP91yj0fKjUhQFycnJ6NChgybR6cCBA8jNzfVJu/2Bu32l8vzzz+PMmTN46qmnxPFQxt3+2rt3L06dOoXJkyfjmmuuwZtvvonPPvsMv/nNb3zZfJ/Tnr9FeSBW94cy7vZVdXU1zpw5gylTpiAyMhJdu3bFqFGjsGXLFl823+c46q+8vDy714Xbv/Oh/69yANDa2oqmpiYoiiK2zWYzTp06hYqKCphMJmzYsAFFRUX42c9+BsCS2HTgwAGYTCZUV1fjxRdfxKWXXiqSoyZMmIB//vOfqKurw65du/Dtt99i7Nix/nxNj+CNvnrttdewY8cOvPjiizbJZcGOp/vr8ssvx8cff4xly5Zh2bJluOmmmzBmzBg89dRTfn5Tz+CN36+f/vSn+Pe//426ujqcOXMG77//PkaMGOHP1/QInu6rtLQ0dOnSBR999JG4zzfffONwQA4m3OmvoUOHQlEUfPrppzCZTPjmm29w/PhxDBgwAEDo/juvh0EJdRkfAMyfPx+ffvqpZp86/evJJ59EVVUVevTogQceeACDBg0CAGzatAnPPPMMTp8+jYSEBAwbNgz3338/0tPTAVjmnz/99NP45ptvkJycjN/85je49tprfftiXsAbfTV06FBER0cjIiJC3PPRRx/F+PHjffRW3sMb/SXz2muv4ezZs3j00Ue9/zI+wBv91dLSgueeew6rV69GfHw8Jk2ahLlz58JgMPj25TyMN/pqz549ePHFF1FcXIzY2FiMGzcO9913n+ZvM1hxp78A4ODBg3jqqadw+PBhZGdn44EHHsDgwYMBhO6/83pQjBBCCCHErzBMQwghhBC/QjFCCCGEEL9CMUIIIYQQv0IxQgghhBC/QjFCCCGEEL9CMUIIIYQQv0IxQgghhBC/QjFCCCGEEL9CMUIICWqGDh2KoUOHhvRKuYSEOhQjhJA2mTt3rhj0b731Vs2xqqoqDB8+XBz/f//v/3n8+UVFReL+hJDQg2KEEOISBw8exNatW8Xnjz76CE1NTX5sESEk2KEYIYQ4TWRkJADgnXfeAQCYTCa89957Yr/M+fPn8dxzz+G6667DpZdeinHjxuHxxx/HyZMnxTmvvfYahg4diuuvvx6rV6/GTTfdhBEjRmDOnDk4cuQIAMsCZAsWLBDXqA7Ja6+9pnlebW0t5s+fjyuvvBLjx4/HP//5T0+/PiHES1CMEEKcpqCgAFlZWfj6669x6tQpfPvttzh58iSuvvpqzXlNTU2YO3cu/vOf/6CiogI5OTmoq6vDypUrMWvWLJw7d05z/unTp/H444/DYDCgqakJ27Ztw8KFCwEA3bp1Q1ZWlji3f//+6N+/P7p06aK5x1//+lds2LABUVFROHPmDP7+979jw4YNXuoJQognoRghhDiN0WjE1KlThSOiOiQ333yz5rxVq1ahuLgYAPDcc8/h3XffxeLFi2E0GnHmzBm8++67mvNNJhOef/55vPfeeyInZefOnWhsbMTs2bMxe/Zsce7SpUuxdOlSTJo0SXOPgoICFBUVaZyaTZs2efT9CSHegWKEEOISEydORFxcHN59911s3rwZffv2xUUXXaQ5Z+/evQCA2NhYjBo1CgDQp08f5OTkaI6rJCYm4oorrgAA5Obmiv3WDoojxo4di6ioKKSmpiI9PR0AUFlZ6drLEUL8AsUIIcQlkpKSMH78eNTV1QGwdUXcvadKRESE2FYUpV33cOV6Qoj/oBghhLjMtGnTAACpqakYN26czfF+/foBABobG/H1118DAPbt24fS0lLNcWeJjY0V2w0NDe40mRASwNimwBNCSBvk5+fjyy+/REREBKKjo22OX3PNNXjzzTdRUlKChx9+GDk5OTh+/DjMZjM6deokxIyz9OjRQ2xPnToVHTt2xH333YeLL764nW9CCAkE6IwQQtwiJSUFiYmJusdiYmKwaNEiIRxKS0uRkJCA8ePHY8mSJUhLS3PpWb169cLs2bPRoUMHnDx5Ert370ZNTY0nXoMQEgAYFAZVCSGEEOJH6IwQQgghxK9QjBBCCCHEr1CMEEIIIcSvUIwQQgghxK9QjBBCCCHEr1CMEEIIIcSvUIwQQgghxK9QjBBCCCHEr1CMEEIIIcSvUIwQQgghxK9QjBBCCCHEr/x/PI1KmPn3FD4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -233,14 +265,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEPCAYAAABbbZ8rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABsGUlEQVR4nO2dd3hUVfrHPzeVJCQkgYQSei9SJBdQAQsuNuydtTdWV9x114audfXn6rq21VXXtq7dtYu9ASIIeJGO9JrQQkgCSUgyyZzfH2fOzJ3JzGQmM0km4XyeJ89M7syce84t3/ue97zvOYYQAo1Go9G0PuJaugIajUajaRxawDUajaaVogVco9FoWilawDUajaaVogVco9FoWilawDUajaaV0pwCLmL9b9euXS1eB90W3ZbW9NeW2hPDbQmItsBt1NXVtXQVooZuS2zSltoCbas9rbEtWsA1Go2mlaIFXKPRaFopWsA1Go2mlaIFXKPRaFopWsA1Go2mlaIFXKPRaFopWsA1Go2mEVRXV7d0FbSA2/nb3/7GrFmz+Oijj/jb3/4GwOWXX06fPn0YNWoUo0eP5qeffmrhWmo0mpbmwQcfJDs7m3nz5rVoPbSA21iyZAlHHHEEc+bM4eijj3Zvf+SRR1i6dCkPPfQQv/vd71qwho2ntra2paug0bQZvv/+eyorK7nppptoyUVxtIADt9xyCyNGjGDZsmUceeSRvPjii1x33XX89a9/9fre0UcfzYYNGygvL+f4449n9OjRDB8+nI8//hiAiooKpkyZwsiRIznssMN45513AJgxYwZDhw5lxIgR3HzzzQAUFRVxzjnnMGbMGMaMGeN+kt97771ceeWVHHvssfTt25d//vOf7v3ff//9DBo0iAkTJjB16lT+8Y9/ALBx40ZOOukk8vPzmThxImvWrAFk7+Haa69l3Lhx3HrrrcyZM4dRo0YxatQoDj/8cA4cONC0B1ajaaPs2rULgIULF/LJJ5+0XEWEECH95efnd8jPz1+Un59fnp+ff1h+fn56fn7+9/n5+T+4Xns1UEZMs2jRInH55ZeLmpoacdRRR7m3X3bZZeLdd98VQgjxv//9T4wdO1Y4HA5RVlYmhBCiqKhI9OvXTzidTvHee++Jq6++2v3b0tJSsXfvXjFw4EDhdDqFEEKUlJQIIYSYOnWqmDt3rhBCiK1bt4rBgwcLIYS45557xJFHHimqqqpEUVGRyM7OFjU1NWLRokVi5MiR4uDBg2L//v2if//+4pFHHhFCCDFp0iSxbt06IYQQCxYsEMcdd5woKCgQl112mZgyZYqora0VQghx6qmnih9//FEIIcSBAweEw+FokmMZbQoKClq6ClGjLbVFiLbVnnDa0rFjR/dcJcOGDXPfY01EQF1NCEPrK4EpwCOu/x3AxZZl7TBN80TgFmB6Yx8khmE09qdBESF2b3755ReGDh3KmjVrGDJkiNdnt9xyCw888AA5OTm89NJLCCG44447+OGHH4iLi6OwsJDdu3czfPhwbrrpJm677TZOPfVUJk6cSG1tLe3ateOqq67i1FNP5dRTTwXg22+/ZfXq1e597N+/n/LycgCmTJlCcnIyycnJ5Obmsnv3bubNm8cZZ5xBu3btaNeuHaeddhoA5eXlzJ8/n/POO89dln1w5bzzziM+Ph6A8ePH8+c//5mLLrqIs88+m+7duzfiiGo0hzY1NTUUFxcTFxdHjx49WLVqFe+99x4XXHBBs9clZAG3LMsBFJmmqf6vAna4Pq4BnFGvXTOwdOlSLr/8cgoKCsjMzOSpp55CCMGoUaPcA5aPPPII5557rvs3r7zyCkVFRSxevJjExER69+5NVVUVAwcO5JdffuHzzz/nzjvv5Pjjj+fuu+9m0aJFfPfdd7z33ns8/fTTfP/99zidThYsWEC7du3q1Sk5Odn9Pj4+Pqj/2ul0kpmZydKlS722FxYWApCWlubeNmPGDKZMmcLnn3/O+PHj+eqrrxg8eHCjjptGc6iyZ88eADp37szVV1/NXXfdhWVZLSLgEfvATdNMAu4FnoqknGDdhEj+GmLUqFEsXbqUgQMHMmvWLCZNmsRXX33F0qVLSUlJ8fubsrIycnNzSUxMZNasWWzduhWAHTt2kJqaysUXX8wtt9zCL7/8Qnl5OWVlZZxyyik8/vjjLFu2DIATTjiBp57yHDJfAfZl/PjxzJw5k6qqKsrLy/n0008ByMjIoE+fPrz77rvu46j24cvGjRsZPnw4t912G2PGjHH7yjUaTego/3eXLl3Iy8sDPKLe3ITjQgnE88AzlmWt9/3ANM1pwDSA6dOnM3ny5CjsLvoUFxeTkpJCXV0dy5cvp0OHDm4LtrKykuLiYvf/AJMmTeLVV19l8ODBjBw5kv79+7Nr1y42btzIAw88QFxcHImJiTz44IOsW7eOK6+8kurqaoQQ3HXXXRQWFnL77bfzl7/8hZdffpm6ujrGjRvHQw89xP79+6mrq3Pvr7a2ll27dtGjRw+OPfZYhg4dSk5ODv3798fpdFJYWMijjz7K7bffzj333ENtbS2nn34606dPr1f3Bx54gJ9++gnDMBg0aBAjRozwales4nA4WkU9Q6EttQXaVntCbcuqVasAyMzMdLsnt23b1mTHQT0k/BKuRZufn/9Kfn7+Ya739+Tn598d4m9jnlgfkDlw4IAQQoiKigqRn58vFi9eHPC7sd6WcNBtiV3aUntCbcsLL7wgAHHFFVeIRYsWCUCMHj26KasWlUFMTNP8HBgFDHK9vwv40TTNScBPlmXd3tinjKZhpk2bxurVq6mqquKyyy5j9OjRLV0ljeaQw+5Cyc3NBWD37t0tUpewBNyyrFN8Nt0fxbpoGuDNN99s6SpoNIc8dgHPyckBpA9cCNFk0XSB0Ik8Go1GEwZ2AU9NTaV9+/Y4HA7KysqavS5awDUajSYM7AIOuN0oLRGJogVco9FowsBXwDt37gxoAddoNJqYR1vgMcaXX37JoEGDGD9+PA899FBLV0ej0cQo5eXlVFRUkJKSQnp6OqAFvEWpq6vj+uuv54svvmDWrFm89dZbXnOUaDSa1kdZWRknnHACt956a1TLtVvfKuJEC3gLsmjRIvr370/fvn1JSkriwgsvdE8Pq9FoWh9CCK688kq++eYb/v3vf0e1bF/3CWgBb1EKCwvp0aOH+//u3bu3mdRgjeZQ5PHHH+eDDz4A5CyfVVVVUSs71gQ8GnOhRAXj6KaZzFD8cMg/ozSaQ4aNGze63SaJiYk4HA727NlDz549o1J+rAn4Ia9ueXl5bN++3f1/QUFB8MljNBpNzLJ48WLq6uo45ZRTOOyww4DoprnHmoDHjAXeUpbymDFjWL9+PZs3bwbg7bff1inrGk0rRbk/+/Xrh9Mpe/XRFFYt4DFGQkICTz/9NCeeeCI1NTVcc801DBs2rKWrpdFoGkFBQQEgx7JUantTW+AdO3bEMAyKi4upra0lIaH5ZPWQF3CAU045hVNOOYXCwkLtPtFoWjHKAs/Ly2Pv3r1AdC1j9YDo2rWre1t8fDydOnWiqKiIvXv3eol7U3PI+8A1Gk3bwW6BR3uqVyEEmzZtAqBv375en7WUG0ULuEajaTPYLfBoz1FSXFzMgQMHyMjIIDs72+szLeAajUYTAWqJQZACHm0LfOPGjYAcIPWd91sLuEaj0URAUVERDoeD7OxsUlJSom6BB3KfgBZwjUajiQhlfXfv3h0g6hZ4LAp4yFEopml2AL4BhgJHWJa10jTN84A/AQeByyzLKmiaamo0mrZEUyw/pgYwVSSZWu5s79691NXVuVeQbyxKwPv161fvs9ZggVcCU4D3AEzTTAD+DBwL3I1c4Fij0WiC8sQTT9CxY0dWrlwZ1XJ9LfDExESys7NxOp0UFxdHXL7ygfuzwNVDQyUENhchC7hlWQ7LsopsmwYAv1qWVWNZ1jxgRNRrp9Fo2hTr16/ntttuo6SkhNmzZ0e1bF8LHKK7Wk4wF4pK21+1alXE+wmHSBJ5soD9tv/r9U9M05wGTAOYPn06kydPjmB3TY/D4WgzMxHqtsQmbaktEF57hBBcc8011NTUANKijeaxWL9+PQBpaWnucjt06ABIYc3Kygr6+2Btqa6upqCggPj4eOLj4+t9Lz4+nrS0NHbv3s3y5cvp2LFjpM1xEyy5MBIBLwUybP/X+X7Bsqzngedd/4oI9tUstKVMTN2W2KQttQXCa88HH3zAnDlz3P9XVVVF9Vjs27cPkNawKrdnz54sWLAAp9PZ4L6CtWXdunUIIejZsye9e/f2+53hw4ezYMECiouLGTGieRwSkUShrAeGmKaZZJrmUcDyKNVJo9G0QR555BEAjj32WECG/UUTXx84RC8SJZj7RDF8+HAAVqxYEdG+wiEsC9w0zc+BUcAg4N/AE8BsoAq4LLpV02g0bQUhhHupwt///vfMnj076hEbTekDDzaAqVB+8GgPzgYjLAG3LOsUP5vfiVJdNBpNG6WoqIj9+/fToUMHhgwZ4t4WLfbv3095eTmpqalkZma6t0fbAvcXQqhQFnhzCrhO5NFoNE3OunXrABg4cKBbVKMp4Hbr2x5fHi0LPBQXit0CF6J5hvy0gGs0miZHRYgMGDCg3vzZ0cCf/xua1week5ND586dOXDgANu2bYtof6GiBVyj0QAyjG7ZsmXuhRCiiV3A4+Pj3WF20UiwAdi6dStQX8CjYYH/+OOPrFy5kvj4ePr37x/0u8oKb66BTC3gGs0hzr59+zj11FPJzMxk1KhRnHXWWVHfh92FAp4092i5UX799VcABg0a5LXdboE3xq2xd+9eLrzwQpxOJzfffLM7rjwQze0H1wKu0RzifPjhh3z22WdUVlYCsHDhwqj7cO0WOER/7hAl4EOHDvXa3r59e1JTU6mqqmL//v3+fhqUq6++msLCQo488kjuv//+Br+vLXCNRtOsLFmyBIAHH3yQ7OxsKisro7qOpNPpZMOGDYBHwKNtgasQRRXhYqdXr16Ax48dKjt37uTjjz8mNTWVt956i8TExAZ/ox4ga9euDWtfjUULuEZziLN06VIATNN0D9KFK3bB2LFjB5WVleTk5LhD/JSAR8MCr6ioYOvWrSQmJvoN81NuG9ULCBXLsgAYN26c+yHQECpLUw9iajSaJsfpdLJs2TIARo0a1SQC7us+AaIaSrhmzRp3+f6sZLXfcAV88eLFgHywhUrnzp1JSkqiqKjI7ZJqSrSAazSHMBs2bKC8vJy8vDxycnLcFqzKPIwG/gQ8mi6UQP5vRaQCnp+fH/Jv4uLi6NGjBwDbt28Pa3+NQQu4RnMIo9wno0aNAmgSC1xFoPizwKPhQgnm/waPC0XVI1SUCyUcCxzkBFrgCW1sSrSAazSHMGoA8/DDDweaRsCV5auEFGLfAt+xYwe7du0iMzMzaPKOP5S/vDn84FrANZpDGGWBKwFXLpSm9oFHU8AbssC7detGamoqe/fupaSkJKQylfU9evTosJd+87XAZ86cyeLFi3E4HGGVEwpawDWaQxhlgSsXSvfu3UlISGDHjh0cPHgw4vKFEO5lxuyWbLRcKNXV1WzcuJG4uDgvC9+OYRhhW+GNGcBUKAHftm0bTqeTiy++GNM0o5Z1akcLuEZziLJz5052795NRkYGffr0AeTKMioULhrrOxYXF1NVVUVmZiYZGZ71X7KzszEMg3379kU0H8r69eupq6ujT58+pKSkBPxeuAKuLPBwBjAVdhfK5s2b2b9/P127dqVLly5hl9UQWsA1mkMU+wCm3U0QTT+48gMrq1Rhnw9l7969jS6/If+3IhwBF0I0KgJFYXeh/PLLL4B0xTQFWsA1mkMUtQCv7/Jf0fSDBxJwiE4s+PLlciGwQP5vRTABr62t5aOPPnJP4rVjxw52797dqAFMwB1GWFBQwM8//wx4xhiijRZwjSaG2bJlC3Pnzm2ysqH+IgVKtKIRCx5MwKMxkPnRRx8BcPTRRwf9XrBQwltuuYWzzjqLBx54AIBZs2YBMgMz3AFMgJSUFHJzc3E4HHz++eeAtsA1mkOSs846i6OPPpr7778/6hNMKQH3XaS3OVwoEHk6/erVq1m5ciVZWVlMnjw56HftFrj9OH7zzTc88cQTAHz++ec4HA6++OILAE466aRG1Qs87VW9nKYS8EhWpcc0zTjgZaAfYABXW5a1JhoV02gOdUpLS91+6rvvvpsDBw7w8MMPN8oq9EcgAY9lF8pPP/3EwoULmT59Ou+8I1dzPOuss0hKSgr6u5ycHDIyMigrK6OoqIjc3FyKi4u5/PLLAUhISKCsrIzvvvuOr776CoCTTz455Hr50qtXL/dAaHZ2tt/2R4NILfBRQLJlWROB24E/R1wjjUYDeCIhcnNzSUhI4JFHHuH777+PStn28D5fAVcRKZs2bcLpdEa0n2hb4DfccAN/+tOf+OMf/+gW8AsvvLDB3xmGweDBgwFP3Pijjz7Kjh07OOqoo7j11lsBuPPOOykuLqZ3794BwxJDwd7eww8/PGoPXV8iFfACwDBN0wCygMYPJ2s0Gi/UANgFF1zAddddB8i5uqPB3r17qaysJDMz02sRYICMjAxycnKoqqpix44dEe0nmICrB0U4Ke7KL//MM8+wdu1acnJyOO6440L6rYp1V72aBQsWADBjxgzOP/98wBP/fdJJJ0UkuvbZC5vKfQIRulCQgu0A1gDtgPH2D03TnAZMA5g+fXqDfqqWxuFwuNfWa+3otsQm4bRlzpw5APTv35/q6mpAWuXROBZKxPLy8vyW16tXL4qKivjpp5846qijApYTrD3V1dXs3LmT+Ph4nE5nve+puOjFixeH1KYDBw5QWlpKXFycu2dw0kknhTx3ueppzJ8/n3PPPdcd4te1a1c6duxIr1693NmTY8aMieg4p6Wlee03krLy8vICfyiEaPRffn7+Sfn5+f9xvTfz8/PfCfL9mKegoKClqxA1dFtik3DakpeXJwCxZs0aMX/+fAGIUaNGRaUe//vf/wQgzjzzTL+fX3rppQIQzz//fNBygrVn48aNAhA9e/b0+/nBgwdFfHy8iIuLExUVFQ3WecWKFQIQgwcPFg899JDo2rWrWL58eYO/U6hjOHLkSLFlyxYBiE6dOgmn0ymEEOK6664TgEhISBD79+8PuVx/WJYlAAGItWvXRlSWCKLBkbpQDEDlh+4Fgi8Yp9FoQqKwsJDCwkI6dOjAgAED3Ikqa9asoa6uLuLyAw1gKho7BaudYO4TgHbt2jF48GCcTqfbLx0MZR337NmT2267jR07drjXoAyF4cOHYxgGq1evdrui7P7ps846i4SEBKZMmUJ6enrI5fqjb9++JCQkkJWV1eBCyJEQqYB/A/QwTXMO8Dbw18irpNFolP/bNE3i4uLo0KED3bt3p6qqKirRIWoAU/mhfVECrpZCawwNCTh4kojUohKhlBfq6ji+tG/fngEDBuBwOHjzzTcBj18cZDbn2rVree211xpVvp2srCw++eQTZs6cSVxc00VrR+QDtyyrFrggSnXRaDQulICPHTvWvW3YsGEUFBSwatUqr5n9GkNDFriyGpvSAgcYOXIkb731ljujMhh2C7yxjBo1inXr1vHZZ58B9TMkG5N5GYhIwhBDRSfyaDQxyKJFi4D6Ag6e5JBICFXAN2zY0OhQwmhb4ErAG2uBg8fiVhNoNVWKe3OhBVyjiTGEbTIl+3Sm0RJwIUSDAt6hQ4eIQwnDEfDly5c3mGkaSnkNYXeZpKamRtyTaWm0gGs0McaePXsoKSmhQ4cOXiFk0RLwoqIiDh48SHZ2ttcUr75EOpAZiuB269aNjh07UlJSQkFBQdDyouVCUYwYMYL4+PhGlxULaAHXaBrB1q1bOfPMM93ZktFEJbYMGjTIK5nEHokSyRzagTIwfQlXwH/99VdqamoAaeWHIuCGYXhZ4YFwOBzs2LEDwzDo3r17SPXxR5cuXdwp/HYxb61oAddoGsFLL73Exx9/zNVXXx1xurkva9euBaiXyp2enk7Pnj2pqamJaKbAhtwnCrsfvCHmzZvH0KFDOf/88xFCsHDhQioqKsjKyqJDh+DRxSNHjgT8C/iTTz7Jrbfeyvbt2xFC0K1bNxITExusTyAMw3ALd2v3f0PkmZgazSGJcmMsW7aMTz75hDPPPDNqZdstcF+GDRvGtm3bWLVqld/P/fHGG2+wYMECHnzwQdLT00MW8HAs8B9++AGAjz/+mE8++YRHH30UwD0FQDACDWTu2LGDP//5zzidTrd/PJIBTMV9991Hnz59uOiiiyIuq6XRFrhG0wjsiSd//etfozrVayALHDxulHD84LfddhtPP/00J5xwAt999x1PPvlkwPLthCPgK1ascL+/5JJLmDt3Lh07dnRPEhUMlYzj26Y333zT3btRU75GY1a/I444gueee84r3b21ogVcowmT6upq1q9fj2EYdO7cmSVLljBz5syold+QBQ6hC3hlZaV7Ho4FCxbwm9/8hp07d3LMMcc0aIEqF8rGjRsbdBOtXLkSgI4dO3LgwAEA7rrrrgbdJyBX0zEMgzVr1rh96ACvvvoqIN0eyucfDQu8LaEFXKMJE7WQbr9+/ZgxYwYATz/9dFTKrq2tdfu3/aVgKwEPJfUcPHN6d+vWzW1xX3rppXz99de0b98+6G8zMjLIzc2lqqrKPSDpD4fDwZo1chmAt956i7i4OPr378+1114bUh3T0tLo27cvtbW17ofXsmXLWLFiBR07duS2225zf7ep5tVurWgB12jCRFm/Q4cOZerUqYAcxHM4HBGXvWXLFhwOBz169PDbxVculLVr14YUiaIeBqNGjcKyLObPn88rr7zS4AIICjXgp2buU8ybN4/bb7+dHTt2sG7dOhwOB3379mXy5MksXbqUuXPnkpycHNI+AA477DDAY8kr6/vCCy/kpptucq84rwXcGy3gGk2YKOt32LBhdO7cmUGDBlFZWVlP5BpDMP83yPk8evXqRU1NTUjRIeo7/fr1Iz09nSOPPDKsea7VquwqsWjLli0cc8wxTJgwgYceeoj77rvPLbpKhIcPH+6eKjZU7AJeW1vLG2+8AcjeQqdOnXjiiSc48cQTOfbYY8Mqt62jBVyjCRNlgSt3hlpQV0ViREIw/7ciHD+4ssB9Fy4OFZUJqgT85ptv5ocffqBDhw7ExcXx9ddfM3v2bICwZgb0xS7g8+fPZ/fu3fTv358xY8YAMG3aNL788ssG3T6HGlrANZowsbtQACZOnAgQldXjG7LAoXEC3tgpTZUFblkWdXV1fPfdd4CcbOvEE0/E4XDw0ksvAR4Rbgx2AVcDwmeeeWaTLUXWVtACrtGEQU1NjTsCRa2xqCzwuXPnRpzUE20L3O5CaQw9e/akY8eOFBcX89FHH1FaWkqfPn0YMGAAV155JYDb9x+JgA8cOJCEhAQ2bdrEu+++C8Bpp53W6PIOFbSAazRhsG7dOurq6ujbt697YK1Xr1707NmT0tJStz+4sUTTAnc4HGzduhXDMALO+90QhmG43SgPP/wwAL/5zW8AKbBZWVkAJCYmRrQIcFJSEoMGDUIIwdatW8nKygq6lJtGogVcowkD+wCmnca4Ufbv38/111/PCy+8QHV1NZ9//jk7duwgKSkpaLzzkCFDANzRH75UV1dTXl7O1q1bqauro0ePHmFFhPii3ChqjvLjjz8egOTkZM4++2xA9hhCjWwJhN2HPmXKFBISdKJ4Q2gB12jCwNf/rWjMQObLL7/MM888w7Rp0+jSpQtTpkwBpO832Cx5aWlp9OnTB4fDUS9Lct26dfTp04chQ4a4lw2LdEkv+5S2AJMmTXK/v/zyy+nWrZs7nDIS7C4Y7T4JjYgfcaZpHgvchXwY/NOyrA8jLVOjiVXUfB1q/g6F3QIXQoQ0+KYiO7KysigpKSEtLY377ruPP/zhDw3+dtiwYWzevJlVq1a5Hybbtm1zZ1oC3HjjjUDj/d8KZYGDnHgqJyfH/X+fPn0iWnHdjhLwxMRETjzxxKiU2daJSMBN00wBbgJOtiyrpqHvazStnaVLlwL1pyIdNGgQmZmZ7Ny5k4KCAnr06NFgWUrAv/zyS2pqaujXrx9du3YNqR7Dhg3j008/ZdWqVZx33nlUVVVxwgknsH37dkaPHs2KFSvYu3cvELkF3qNHD3JycigqKnL7v5uC8ePHk5uby5QpU0JKwddE7kI5EjgIzDRN80PTNMOL3tdomoCbbrqJiy++mMrKyqiWW1JSwtatW0lJSak3YBcXF+de/ky5LoJRUVHBmjVrSEhIYMSIEUyYMCFk8QbPFKzKL/3jjz+ydu1a+vTpw3fffcdNN93k/m6kFrhhGO4EmlNPPTWisoLRqVMndu3a5Q5L1DRMpALeGegPnAa8ANwbaYU0mkgoLi7mscce44033uC8887zmhwpUpT7ZPjw4X591OPGjQNCE/ClS5cihGDYsGG0a9cu7LpMmDABkMJdV1fHvHnzADj99NPJzMzkzjvvpGfPnhiGEVGCjeKZZ55h7ty5TZ4JaRiGjv0Og0h94KXAPMuyakzT/A643f6haZrTgGkA06dPZ/LkyRHurmlxOBxR8+e1NIdqW77//nv3+88//5zzzz+fp59+OiqiMGfOHEBOs+qvPspVMXfu3ID1VW1R9Rw8eHCjzlNcXBw9evRg+/btfPfdd+4EmyFDhrjLe++999i8eTNpaWlRuRb8+bsP1eusObEvq+dLpAL+M3CTaZoGMArYZP/Qsqzngedd/0ZvwuQmorCwMOjBak0cqm1RmYcnnXQS8+bN4+OPP+aWW25h/PjxEddDLUU2fvx4v/U5+eSTATk3dufOnf2Gwam2qHpOnDix0efpuOOO49VXX2XlypUsWbIEkBa4csXk5eW5U9GbikP1OosVInKhWJa1F/gQmAP8HfhrNCql0TQW5b648sorufTSSwGYNWtWVMoONICpyMnJoW/fvlRWVvpN6Kmrq2Pr1q0IIdwTX9kjPMJFhS4+++yzlJeXhzUIqmkbRBwHblnWvyzLOtqyrGMsy2r8Qn0aTYQIIVi0aBEg/dHHHHMM4HF9REJNTQ2rV69u0KccyA++adMmJkyYwPjx47nkkktYvXo1cXFx9cIRw0GFLqp0+Wj0MjStC53Io2kzbNiwgX379tGlSxd69OjhFvB58+ZFPJi5atUqHA4HAwYMCDojnj8B//rrrxk5ciQLFiwA5BqVdXV1DB06lNTU1EbXacCAAXTu3Nn9vxrY1Bw6aAHXtAgHDhyI6jqS4BHNcePGYRgGubm5DBkyhIMHD2JZVkRlN+Q+UfgT8DvuuIPy8nLOPvts3nnnHXeMuG+GY7gYhuF2o4AW8EMRLeCaZue5554jOzubv/zlL1Et1y7gChX2puasDofq6mrmzZvHs88+y8svvww0LOCHH344SUlJ/Prrr5SWllJdXc3y5csxDINXXnmF8ePHs2jRIv76179y9913h10nX5QbJTs7O+RV6jVtBy3gmmblkUce4brrrqO2tpb33nsvqmX7E3DlRglXwH//+9+TmZnJhAkT+P3vf8+PP/4IyBXNg5GcnEx+fj5CCBYuXMjKlStxOBwMHDiQ9PR0ALp06cJdd93V6BkC7Zx22mmkp6czdepU4uL07Xyooaf70jQbb7zxBrfeeisg57tYv349O3fujErkRFVVFUuXLvWa/hTw8oM7HA4SExMbLKuoqIhnn30WkCnrY8eOpW/fvowYMSKkRJajjjqKn376iXnz5tG9e3cgsmiTYPTu3Zvi4uKgk19p2i76ka1pNh5//HEAnnjiCY477jggOqvYqHIcDgcjR44kIyPDvb1Lly7uNStD9YP/9NNPgHS/rFy5kpdffpk777yT008/PaSEIDWP9fz5893znTSVgIN8GGrr+9BEn3VNs7B06VIWL15MZmYm06ZNi+oyZCAnhAJPMo0d9bCwZ2kGQwn4kUce2ai6KAFfuHChO6yxKQVcc+iiBVzTLKgJii6++GJSUlKiuhAweAT8pJNOqveZmsLh66+/Dqms+fPnAzR6RZguXbrQt29fysvL3dErhx9+eKPK0miCoQVc0+QcPHiQ119/HYCrrroKgLFjx5KUlMSKFSsoKSmJqPxt27axevVq0tPT/VrNkyZNIi4ujvnz53PgwIGgZTkcDvcMfw0NWAbDLv4DBw70cutoNNFCC7jGi/Xr10ct9Vzx4YcfUlpaSn5+vjsMr127dowdOxYhhHsmvcby1VdfAXKpL3+DlJmZmYwdO5ba2tqAWZkLFixg3bp1LF++nIMHDzJgwAA6derU6DrZsyK1+0TTVGgB17jZuXMnRx55JMcff7w7PTtSqqurue+++wC45pprvD6LlhslmPtEccIJJwD+3SizZ8/myCOPZNSoUTz22GNA490nCvvvtYBrmgot4BpAziNy1VVXUVxcjBCCb775JuzfX3755QwfPpwpU6Zw7733UllZyaOPPsq6desYPHgwV1xxhddv1EBmODHahYWFzJgxwz2bn8Ph4NtvvwUIugyXEnDfdlVWVnL11VcD0tXz5ptvAo0fwFQMGzbMHfetBVzTZAghmusv5ikoKGjpKkSNcNvy3HPPCeSUvwIQ5557bli/37Jli9fvATF06FCRkpIiAPHtt9/W+82BAwdEcnKyMAxD7NixI6S2zJgxQwCic+fO4pdffhHXXHONAMTgwYOD1q+mpkakp6cLQGzbts29/eabbxaAOOyww8R5553nrvuyZcvCar8/HnvsMXH++eeL6upqv21pC7Sl9sRwWwLqqhZwGzF8AsMmnLasX79epKamCkA88MADAhCdOnUSdXV1IZfx4YcfCkAcccQR4t133xWDBg1yi+EFF1wQ8HennnqqAMRzzz0XUlvU9wFhGIYARLt27cRnn33WYB3POOMMAYgXXnhBCCHE6tWrRVxcnIiLixMLFy4U1dXV4rLLLhPnnHNOWG0Ph7Z0jQnRttoTw20JqKvahXKIU1tby6WXXkplZSVTp07ljjvuIC8vj7179/qd0zoQakGBiRMncu6557J48WKuvfZajjrqKLdf2R9nnXUWAB999FFI+/n1118BGDNmDEIIcnNzmT17NqecckqDv1XfUft65513cDqdXHrppe6omFdeeYX33ntPJ8ZoWgfB1D3KfzFPDD+BwybUtvzf//2fAEReXp7Yt2+fEEKISy65RADiiSeeCHl/p59+ugDEm2++GVY99+zZI+Li4kRiYqIoKyvz+x3VlsrKSmEYhoiPjxfl5eXi3XffFYWFhSHva9euXcIwDJGUlCTKysrEiBEjBCC++OKLsOocCW3pGhOibbUnhtuiLXBNffbs2cO9994LwH/+8x+ysrKA8DMXwWOBh5uwkpOTw/jx43E4HHz++edBv7tu3TqEEPTv35+0tDTOPfdcunXrFvK+OnfuzMSJE6mpqeGpp55i+fLlpKenu9ur0bQ2tIAfwsyZMweHw8Hxxx/vteD0pEmT3J/X1dU1WE5xcTHbt28nNTWVAQMGhF2PUN0oq1evBmDo0KFh70NxzjnnAHD//fcD0q2SnJzc6PI0mpYkKgJumuZU0zSLolGWpvlQ8de+M+z16tWLPn36UFZW5p6MKRgqXXzkyJGNmhXvzDPPBOQq8g6HI+D3lP97yJAhYe9DcfbZZwMyPh08Dw+NpjUSsYCbphkPnAdsj7w6muZECbiKx7YzZcoUAF544YUGy1Huk4YWOwhEnz59GDRoEAcOHPBayaa4uJjnnnuOe++9l5KSkqhY4N27d3enyCclJfmd/EqjaS1EwwKfCrwLOKNQlsaHsrIy3nrrLV599VXeeecdKisro1JuSUkJK1asICkpibFjx9b7/IYbbsAwDF577TV2794dtKzG+r/t+CbaPP7443Tp0oXrrruOF198kTvvvDMqFjjAueeeC8jUez1HiaY1E9GCDi7r+3zgTOAmP59PA6YBTJ8+3cvPGos4HA4KCwtbuhpe3HjjjV4r11xwwQU8+uijDf6uobZ8++23CCEYNWoU+/btq/d5WloakydP5uuvv+ahhx7i5ptvdn9WUlLCokWLsCyLAwcOuNPT8/LyGn38Ro8eDcCnn37KhRdeyB133EFtbS0TJkxg3rx5PP/884BcBzIjIyOi83TGGWewc+dOzjjjjGY/37F4jUVCW2pPrLYlLy8v8IfBQlQa+svPz78sPz//Ytd7q4HvxzyxFka0b98+kZycLABx0UUXicTERGEYhli8eHGDv7W3ZdasWeLYY48VS5YscW+79dZbBSDuuOOOgGXMmTPHndRTWVkphBDCsiyRlJRUL+uyffv24uDBg41u6/79+0VCQoKIi4sTf/vb3wQgJk2aJIQQ4txzz3Xvp3fv3o3eRywQa9dYpLSl9sRwW5osjHAocKlpml8CA0zT/GeE5WlsvPHGG1RXVzN58mRef/11brjhBoQQ3HTTTTKNNgQqKiq49NJLmT17Nueffz7l5eVAcP+3YuLEieTn57N3715effVVAJ599llqamoYPnw4f/nLX3j22Wd59tlnmTVrFu3atWt0W9PT0znqqKNwOp3u0EY19exNN93knmUwEv+3RtPmCKbu4fxpCzy6OJ1OMXLkSAGIt99+WwghLfLs7GwBiI8++ijo71VbbrvtNi9Ledq0aaKsrMxt7QZKnlG8+eabAhCDBg0S5eXl7vlEVq9eHZ2G2rj//vvd9czKynJb9AUFBeKGG24QgLjzzjujvt/mJJausWjQltoTw20JqKs6E9NGLJ1Ay7IEILKzs0VVVZV7+5NPPikAMXbs2KC/LygoEKtXrxYJCQnCMAzxwgsvuF0f7dq1E4AYPXp0g/WoqakRPXr0EID47W9/G9K+G8vChQvdAj59+nSvtlRVVYnXX3+9wQdOrBNL11g0aEvtieG2aAEPheY+gQcOHBBjx44V1113ndf20tJSccIJJwhA/PGPf/T6rKKiwm0F//rrrwHLXrJkiRgwYIDb6hZCiMcff9wtkMOGDRMzZ84MqZ7/+Mc/vKz4f/3rX+E1NERqa2tFTk6OALz89TF8Y4VNW2qLEG2rPTHcFi3godDcJ/D99993i+J3330nhBBi/vz5olevXgIQaWlpYt26dfV+d9VVVwlAzJgxw2+5+/btE0OHDhWAGDVqlCgtLXV/tnTpUlFUVBRWPUtLS90PjaSkJFFcXBzW78NhwYIF9dxDMXxjhU1baosQbas9MdwWLeChEM4JLC8vFxMmTBC5ubkiNzdXnHLKKV6ujlC49tpr3QI+atQoMW/ePPe0rvn5+WLNmjV+f/fDDz+4J6Cqra31+mzmzJmib9++br/17t27w6pTIP70pz8JQJxzzjlRKS8cYvjGCpu21BYh2lZ7YrgtWsBDIZwT+NJLL9ULpbvtttvC2p8S2vbt2wtAJCYmCkBccsklXosA+OJ0Ot2//frrr93bp02b5q7LoEGDvBYuiJT9+/eLBx54oEUu8hi+scKmLbVFiLbVnhhuixbwUAjnBB511FECEE899ZT45ptvRFxcnDAMQ8yePTuk32/YsMEdbfHqq6+6hffUU08VDoejwd/fe++9AhBTp04VQsjFCdQA5RNPPCE2b94ccltinRi+scKmLbVFiLbVnhhuixbwUAj1BCqxbN++vThw4IAQQoi77rpLAKJnz56ivLy8wTKeffZZ99JldXV14pprrhEXX3yxqKioCKkOmzdvFvHx8SI+Pl6sXbtW/OEPfxCA+N3vfhdWW1oDui2xS1tqTwy3JaCu6ulkG8FLL70EwNSpU2nfvj0Ad911FyNHjmTbtm188sknDZah0s9POOEE4uLieP7553nttddITU0NqQ69e/fmiiuuoK6ujptvvpn//ve/APzud79rTJM0Gk0rpE0K+MGDB/nhhx+YNWsW8+fPx+mM3jxbNTU1brFUmYIAiYmJ7lXX33///aBlbNiwwb1YQiTzw9xzzz0kJyczc+ZMysrKGDduXEQTSmk0mtZFmxNwIQRTp07lmGOOYdKkSYwfP54ZM2ZErfzPP/+cvXv3MmzYsHqz+Km5pj///HMqKirq/baiooK//OUvDBs2jLKyMsaMGUPv3r0bXZfu3btz/fXXu/+/7rrrGl2WRqNpfbQ5Af/444/5+OOPSUtL45hjjiE+Pp5//OMfYS0PBnK5sbfffpuqqiqv7W+++SYAl156KYZheH3Wo0cPxo0bx8GDB/niiy/c24UQvPvuuwwePJgHH3yQmpoaLr/8cj799NNGttLDjBkz6NixI926deP888+PuDyNRtOKCOYgj/Jfk3PgwAHRvXt3d3SIEJ5oje7du7sX7Q2EGsRwOp3iiCOOEIAYMWKEWLlypRBCiLKyMnca+tatW/2W8cgjjwhAXHjhhe5tb7/9tjvKZPTo0WL+/PnRaK6bnTt31ov3juEBmbDRbYld2lJ7YrgtbSsKZf/+/X7jpG+++WZ3EoxKcHE4HGLcuHECENdcc03QctUJ/Oyzz7ziu9u1ayc++eQT8d///lcAYuLEiQHL2LRpU73pVU866SQBiNtvv71e4k1TEcMXY9jotsQubak9MdyWtiPgq1evFu3btxdZWVnimmuucc+ZsWzZMhEfHy8MwxA///yz12/WrFkj4uLiREJCQkDLWQh5Ap1Op8jPzxeAuO+++8QVV1zhFmQ1O+Czzz4btI6jR48WgHjrrbdEWVmZSExMFHFxcWLPnj0Rtz9UYvhiDBvdltglWHu27XKKPSXOZqxNZMTwuWk7An7aaad5WcdJSUli5syZ7sSa66+/3u/vpk6dWm+WO18KCgrERx99JADRpUsXUVFRIZxOp/u3gEhISGhwLpFnnnlGAGLcuHFu98nRRx8dUbvDJYYvxrDRbYldArWnqtopMk+uE4MvqmvmGjWeGD43bUPA1QoxaWlpYvbs2eLSSy/1EvPOnTuLkpISv79dsWKF2x2ya9cuv99ZunSp6NatmwDEE0884d5eUVHhtqqnTJnSYD3Ly8vd83YPGTJEAOKxxx5rVJsbSwxfjGGj2xK7BGrPjiKnYGKdSJqkBTwKtH4Br66uFmPHjhWAuPfee4UQcrDxxhtvdAv4G2+8EbSMM844QwDilltucW/79NNPxb/+9S9RUFAgJkyYIAAxYcIEUVNT4/XbwsJC8cc//jHkhQzuuOMOr4fLpk2bwmxxZMTwxRg2ui2xS6D2rN8uBZyJdcLhaB1ulBg+N61bwH/99Ve3Bdy5c2d3+roQUsSfffZZ8fe//104ncEvlJ9//tlthW/btk0sX75cxMfHewltbm6uKCwsjKS6Qggp+GpyqpEjR0ZcXrjE8MUYNrHaloauN3/EalsaS6D2LF3vEfCyci3gERJQV2M+Dvydd95h9OjR/PLLL/Tu3ZuZM2e609dBrlJ+7bXXcsstt9SLy/bFNE0uuOACqqqquP322/njH/9IXV0dAwcOJDExkYSEBN588026desWcb27devG1KlTATjnnHMiLk8TW8xfIehypuDDH0Jbm/RQo/yg533FwcDf00RGQiQ/Nk1zLPAk4AAKgUsty3JEo2KKnj17UlNTwyWXXMLTTz9NRkZGROU99NBDfPTRR7zxxhsAdOzYkZ9++gnDMNiwYQNjxoyJRrUBeOqpp5gwYQKXXHJJ1MrUxAbf/QJ7SuBbS3DW0cENh0MRu2hXVrdcPdo6kVrg24FJlmUdDWwBzoi4Rj4ceeSRLFu2jFdffTVi8QY5CdSNN97o/v/+++8nOzubrKysqFjedjIyMrjmmmsiWq1dE5sUl0nLu6z+jAmtjqpqwd0vOVm2IXq9iYoq/+810SUiC9yyrJ22f2uA6M0aZWPYsGFRLe/222/ngw8+oEuXLkybNi2qZWsODYr3y9f9bUDAv1wE9/8XVm0WvP9AdHoTdtGu1ALeZEQk4ArTNHsBJwAP+GyfBkwDmD59ekQz70WbWbNmAbBr1y73NofDQWFhYUtVKaq0xbbUOSE+RkZtCvdkAe0oKqmmsHBfyL+LxfOydnMKkMnmHTUUFhaH9dtA7SncmQp0AGBrwV56ZNZEoaZNSyyeG4C8vLyAn0Us4KZpZgCvAZf7+r8ty3oeeN71b8yP9hQWFgY9WK2JttaWlYXdOOVWwZt3GVxwfMv7nCuqZWezujY5rOMck+fFFYhVWpEUdt0CtSchWQV2QWr7TuTltfw5a4iYPDcNEJE9Y5pmAvA2cJ9lWWujUyWNpj6vfSVwOuGHZbFhB7hdKJUtW49oUHJAHtPdJdErU/vAm4dIO6RTgXHAXaZpzjZN84Io1KnVUVsrcDpjQ1jaKnOXy9eS8path6K4TL62BR94yQH5WlkFFQejcx3by9E+8KYj0kHM15Duk1bPD0sF3y1K495rRIPx5HYqDgqOvkGwvwK+/Af0awVdxdZG4d44tu2W70sPtGxdQD6wS10Pkli2wBetFvyyHn53OkGvaftDcXcJ9E2JfN9tbRCztlYggMSE2Lq/Y2RIqOX5878Ef309g2+t8H533yuCX9bBhkKYdKNgy05tiUebhWuS3O+V2AghmLtMsL+i+Y+3XfCqa6C6JjbP+fVPCK57VPDr1uDfK7E9FPdEyY3ilcgTooALIXjqfcG8FbF3PI//kyDndMHf3xQcrI6d+mkBd7HLFUjw9c+hn5yl6wWP/Q8MA4b3hW275YmOlRP87ixBz3Od/LI2NurTWOwCrizw73+Bo28Q3PJM87dNuU8UB2LUCt/pCijxra8vdgHfHXpATVC8LHDX/fCXF5z0n+p0+9x9Wbga/vCkYNojDZ/TTTukmFZWNf35dzoF81ZCWTnc9pxg2KXCnQfQ0mgBd7HPNSj19c+hfd/pFFzziKCuDm44G+Y+bdCnK2zaAYtjZDj3vdmC7Xuk2LVmFvmxwNdtl69L1jd/fdQApiJW3ShKmMsbSGX3ssBLo7PvCj+p9DPnwcZCKdT++GWdfF2zTSYXBeP+/wpue07w0dwoVLYBSg5AXR2kJENeDmzeCT+vafr9hoIWcOBgteCgK913+UbYubfhp+uyDWCtgc7Z8MA1Bh3aGxw+QH62Y28TVjYMNu6Qr8X7Y8NaaAx7SwXrCxNJSpT/K9+z6uqrNjYnvhZtLA5kVlULt+85HAFvGgtcvqoH3aYA50xlgjqdsHZ78PLVmMjO8MLWG0VRqXztngPHHS7f74rScYoULeB4rG/Ft4sb/s3SDfL12FGQnioHNrp1kttiRsBdOQm+FmNr4scV8vXIYZCcJH3OB6sFe0rkzb5vP5QG6JI3FfUs8BgUcLsoB/NBO52eAVmAPaWBj2U4vn6vMELXA0Qdp007/JezbKPn/arNwctXwr2vGc69EvCcTOja0Xv/ofDyZ4JvLUGNI/p1PeQEfN9+Ue9C9L0hQ/GDL98ovzOyv2dUulsn+b4wBAu+qSkpN9w3ZkM+0Fhmrivu++iRkOmahLL0ABTZ2tTcVrjv8Qx3PpS9pYIbnnCyanPTXSf7bAJeHsTFs78ChK0agSzw2//tJPtUwcbC0Opc7jOZlRAiqAVeVydYscnz/8oGjk2o/v1oYBfwLtmGa/+hHYfqGsEf/ymY/GfRJL2FQ0rAt+4SdDtbcO2j3gdfWeCdMuoA6QdvKK57mcsCH9nPsy0vhizwrbs9EaKt2QJf+Kt8PeowgyyXgJeUe0dLbGzm7Gdfl1S4Fvhb38HTH8DTHzShgNvOeTALvMQnLDOQD3zOUhkOGMh/7YuvD/xgtfQjA2zaWf/7G3d4hxsGs8Crqj29hua4ttUxyc0K3wKfvVQ+zEb0g15doh+CeEgJ+IpNsgv+wQ/yia9QF3v+QAd5OVIclm8MUAjSmlDdvRE2AXe7UJrBL9cQ2/bEu9+3Vgu8tla4B7bMQZCZLt+XHPAR8Oa2wF3XS7zrEIc7iLltt7z2fMUzUoTNlLaXXR4kOUd9T40xBLLAlYgVhmic+PrA7Q+5TTu86woeg6h3F/m6akvgsu3+Z1/3Z1Pgz4USqg/8kx9lO08fH/VqAYeYgNuz5+wXiLohM9s7mTRavv9pVeByCovkhZOdIUelFcoCLyyKWpUbzdbdNgFvpRb46q3ScuuZW0unTI8FXlrubSmG2q2PFuo66uE69+Fa4EoEVfih0ym45RknM+c1vh2VVYKhlwiue1TO0bIvRB+4iurp75oCJJAFrkSssCi0Ovqm0tsfcgcq6xsVagDzvOMgIV6KfKAQQbv12xzXdpFrXCCngxGWBS6E4JN58v3p45smAeiQEnD7Rf3jctt210WQ1d7JsN7yQK/dFvhCVdb5yH7eGW52C9zXwmhutvi4UJqiPruKmzYO92eX+2RkXzlHmrLAi0q9BaClLPA+XeXr/srwjoF6wCsBt9bAP96GC+4VbA4wwNcQq7fI8LsPfpD/2y3TYFEoygLvnwdxcfK4Omq961BdI9wPqVAscEetoMY2rV1lVf1YeV8/uOrRmoMMBvaQfvlACUjNbYGr3p70gcv3O0O4x5euh4IiabXnD2qauh1SAm4PvrdneymfZmZ7J4N6ym3BwpjUxTayv/f2jDRIbSd9fi2d3GG3wGsc0V/Wask6Qd8L5d9Xi5pGxH9e4xoo7ifVQFngGwrkdvXsDOQD/2qR4MJ7nZx3t5Nr/+GkrDw69VQPD7eA+1jgd77g5KSbndz+byffL66/TyWCyipVD4SD1XD946JRD1s17lJUKl1P+2x++mDnXgl4xw7QSc7+yt5S7+8U2f4PpXfpu7+KqvrHyNcP7h5T6g/D+sj3gfzgzW+By9fcLHmPpyT7fygpZs4TLFztsb5POwri4rQFHjH2kz1vpee93QIf7BLwNUHSj1V3b0Q/75NiGEbMuFHUIKby00bzQnfUCq58WMbO794HJ90seOC/0RdxlSyhLPAslwW+rkC+9s+T7Sso8h/iduM/Be98D+/Nhn9/4rFO7ZSVhz8RmccCl+ffLk77KwT/9xp8tQgeekNm5i5Z5ylfiPoWuD2K5YuF8P6csKoDeERNCOkG8YpCcQnqvz8W9LvQydZd9X3lWe0hN1O+952V0D7eEMr4jnKfqGuv0p+A2yzwfftlwllKsjynh/WRxzVQJIo9AqSyyn/ST1W14KSbndz4z8jXmLH7wA3DCOoHn71EcPrtgiOuFfzfay7/94Smmz/lkBJwe3dr6y4o2CMPsMcHLujbTV54W3cTMCXeXwSKIloDmQtWCe543tmo2NGqasGukjji42FQD7ktmgOZj74tu4e9u8BfrzIwDLjnP6LB7LlwqKqWYWWGAcP7uFwo7eWNoLIw83KgV2cpWpt9LLrqGsH6QukWOHOi3OYbHbRknaDrWYIbnwq93kIIPy4Uz+dbd3nqdvI4+d4ebVJaYVDlWttACbiKqFAW8F0vNsICt4narmL/ceAfzhVs2iEfEgqV1p6VbtDZ5R7wnQ/F7hffsbfhCC21v5wOnv99B3rtseDKJTm8L8THGwzrLf8PZIH7Cuc+P4PBb3wjH6JPfUC9ntfeUsGn84VXIEMw7AIOwSNRPprrKdNRC+1TcI+rNQWHlICrGy8lWb7OcyWJ7HMLuJOkRIO+XaUobCioX8bBasG6AinyQ3vX/7xblCzwO18U/O11eHdW+L/dsguEMOjVGTpnyW0NWeBCeHfdhag/30NtreDFTwX3viK3//tmg7sukxaJ0+nd1Y6U5RvlDTCkF7RPUSIjP1MCnpsJ/VzLmPr6wddtl2Fr/brBsaP8x+4+8a7sRSz6NfR6VRyULqmUZNyCZ7cut7gE/LA+8OQf5H7f/Ba3S2Nnsce15bbAXQJ+8QlyAG/t9sADeIGwi8nOff594Grbr1v8WODp0kUA9S1w+3l11MLeBowB5UJRgldZ5WljP9dgqd0CX++6z9T9dFhf+TpvpaeuTqegtlYdQ+/9+RonQggef9eT1ammIlbc8qzgtBmCS/7PUyZAnRO+Wyy8MrGdTuHOOVAP2EACLoTg05/k+y//YfDirQafPmyQkqwt8KB8uVDw9ncNX/DqAj7BtfD8vJXCa3tWe9ndcrtRttUvY/lGeVEM7gnt/JyYaMWCK0tu9tLwrTElZv26Sd8mBBdwIQTH3CA45VbPvm59Vs6+tnS93LarWDD8csE1fxdU18C00+CEsbL96sZvaB4NIQRzlgoefkNw9cNOfv41cNuU+2TMYM82lcijpj3IzfIIgq8ffPUW+Tq0t2fgyXvwS/DOLPXes/3VLwWPvFXfD638yuo4dsyAjFT53p8F3qszDOhhcNI4qKqBlz9z1aHEI+BVNbLcMteMih0zDAZ0l8bDWj/XXjDs19uuYv8uFCXWq23uQS8Bz5Tv61ngPv83ZJwoCzw9VWbPAux2Zc6Oco0b2R+4SgiV8TOwB5w0Tor+sX+U52PAbwXZpwq27fYkxLRzle1rgX/zs7f1PusX73Npua6tt76F394v+H6x4MMfBCfM6MRv/iS47EFbj6lcGgIZaZCcJK93+0CmnXXb5XWYnQG/yYerTjU4ZlTTTj/b6gW8rk5w3t2C3/5VsMP15NyyU/DsR/V9m+rmO+0oeVCVBW4PIwQ8A5l+bqJP53syA/2hsjF3hJip5Q8hBAWum2TO0vB/r8SsbzcpNBB8tH5PibRSvlyI2yJZsl4KiZoI6/mZ8oHWpyu8dY/Bszd5LsxAN74vL8yEY/8gmPFvwUufyal4A6EGMMcM9uxHWeCKnEyDft0MV5u9y1rlstyG9oYufnyWr3whcwLAWwBueFJw67Oi3rn/87+ku2Wma2CqYwd5U4O3Bb7VFePd2+Ufv/4s+frMR7LLvmuf9y134KDHOs1sL3scEDgCIxB2MdnlY4Eri1i189cAAt7ZlWWoxFZR5JNe31AkinpgtE+BtHaeOoHsmcTFwfY9uN2DqmfUraPcv2EYfPCAwWRTXlO3PitdPwcq4VvLU5ay2H0t8Mf+J8ubbMr/Zy3xfFZbK9wBCumpsod7/J8EZ98pWLtdBsP/uMKTJ+IewMz0lNHVVc9dPvf4p/Pl68njpCuoOWj1Ar5ph7xghPB0hf/wpOD3j3lGgRXqoj7J5ZtcscllWbkvYiXgrlDC7fUFRg2EnX20/xMUjUHMfftx+0nXF4Q2uZYd5V/sl2eEZIEX2Oqq/LHqVU0ZsMRlid9/lcGFxxteo+rKldDQklxq8HfcUPl/MJFSadWjB3q2KQtcYbfANwSwwIf1rh+763QKnvvY243gdMppgJUY+87g+Ol86Tq56yVlLQcScPnaq7N8PXmcfOht3imFYde+eOzsr/AMYnbwEvDwzrndAt9ZLOq5UOxznhQWefzCKg48qAVeKl8T4j2/D4Z6YKS1g1SXu1KJbqcOBj1y5f2qeivqvKjzBJCSbPDx3wwuPF7Og6PGMay1wn2dqWNlfwCv2y74apGMBvvP7QZJiXLeIuXC2rhDuoF6dYFZTxqcfxwcMwrGDoE7pu6nR67s4anetz2EUOG+nnx88Z/9JPdx6lHNt+hDxAJumubDpmnONU3zNdM0E6NRqXCwz5+w6FdpdSufl7qJQT7tyw9K33W3TnKQyVErT1R1jeyOpbi6ZIFcKGu2ClZvkRf7MaP816ehQcyFq71DvPxR4HODzFkW9Ov1UElK/brJbjkQdP7igj2e9/UFXL6qjMjDbYKqCNUCV+3603kG8fFS1AINfKqy1PGE+hZ4bqYc+AL58Lb3uFQX2teFIoS8PtYXyGsgLUW6xPZXeFty39u63cVlwj1Iqo5Lxw7QQQm4zYWyxfW9Xq6Mwvh4g1OOkO/nr/R2oYC0KlWZHdJgSC95vsKxwOvqhJf7qnCvd2SLCuNz2gIyVPneFrh8H8gHrizehub6US6UtBT5Bx4BT0+Fvq7BXxVKqB4+dgEHKeJv3RPH/Gfj3D2Zr3+WLo3sDM/37edNBRhMNiEvx+CIofJh8YPrHnK71npB/iCDd+6LY/Y/41j47zh+f3qF22WnpoT2HcC019Pe6ykrl9dVfDycODbo4YkqkS5qPBLIsyxrIrAGODcqtQqDlTZf16JfpeiqG8LerVYWSXa67KIN6C7/X+Ca2yE7w1OO3YVi94V+6Jp7+PTxgZdWCjaIaa2R4UW/fyxMAQ/DDz57ieBbC5ITBUcM87hQglng24MI+KotsKdEsG23HLhTUS12crPksdhTElq7+nbDM1DsJ4ZbCM/Akf3GyfQVcJcF3j1HDqwp0a5xyAgUw4DBvaRopLaTg2nlBz0JQmdN9AxM7TvgfYxmLfE8EPzN794xQ5YZFyfLVckvvhY4wLih8vgsXO3HhVIZyAKXry/MlNmVwSI/9pR4i/OarfLYZqTJY3Cwuv7Aoz8Bd4cR+liW6mGq/NeFRdJ9MO0RJ5t2ygeSo1bwt9cFq7cIj4DbLXCX2GWkyfMPnoFMfxa4L2qqZuUe7NrRY5zYDSJ1Lavjr6Z/VX5w+9iIP/IHyTIXr/V2odivQ38+8NlLoLYOjhomI3qai0gt8KOAr13vvwSaKOM/MPZY0Z/XeGdY2gdK7INPAAOVgK8SXttB3tRZ6fLmsp+kD36Q3z1rYuAT1M32dPa96ZQV+0MDFrWyiNXNPHuJdPV8tUjwf68KLr7fyd/fFPV8cDUOwfWPy203nFlOt042F0qQyIECW3p0yQEpoErAaxzwzvfy/Yh+/n17oQ5iKgHvnhN8oLj8oOwVpbaD1Hae/XVI8yTvqP0ahsFxrjAt5fZYXyCttL7dpBVnGIbXTbfB9WAf2MPwGiOwi9y+/Z7ehxpQvfREj9ukY4bctxrIPFCpprmFxARvMVIuo4WrYafLhaJ6EwcqvX3gynhYXwDllTLE8bmPgy9coXp77V3W7vpCTx2VD9rXKFi9RXi5VbLSPcL661bvuHolYocPULNtwoOvC16YCY+/Lxvy+tdwx/OCv7wgvFwovha4FHBZzqYdsg7qM3WO/NGxg0FP20Oxa0eP0WV/8KpruXuu3Mdxo+WrujZWu8dG/N/DKmPyl/XebfdngdvHVNR13FQZl4GIVMCzAHX4yoAgp6BpWOlyocTFyW7if7/0XHj2yAQlYErQBnSXJ9CfBW4YhltglItm226BtUaKyglBukjtkg2yM+TT2Nfq2bzTEwblOzBkR12EZ06U+1uzDQZdLDjpZsGdLwre+EYu7dT9XMH9tgSaJ96VFsaA7nDtqfLObIwFXn7QM3MceI6psoJ8CcWFUl0jxS0hXgqvEip/CVMqE1BZx4q4OMPttgDPTXXc4fJczloi6+l2n/TyfNftRin2WP398zznfd/++hmI37nmhbdc1tjkMQZ/uUTuy3QNrtr94GqRgR653g+6Ad2lQO7aBxsKZYKVur68LPA0SEsx6N1Fuvde/NQzQ59yzfhDGRmjXOdHnbvsDI+A2s8xSJGWvnH5ncQEg06ZBiP6yfEX+1xA6sGsyt++x5Ns9MOKJJxO4XY5rdvumTyrfarHAq911Skj1dsCL94vP8tK9x/VZcc+HtIl2/8Avd1IADhiqHSPrtwMO/YKdwROIAtc7WPJeuWakm1RvUyQ1118vNQUNRCrjIL+zbyoeUSr0gOlgJK+DoBX58s0zWnANIDp06czefLkCHfnTbUD1m3vgmHA0cOrmb2sHfNtGZaFewUbNxfSLgnWb0kGsklNrKKwsISOqfJ/+UQ2SE06iMPhoLBQ3t35/dP5aVV77n6hmmHdinng9XSgPceNPMg+3zvdh5wOndi3P5Elq/ZwWJ9a9/bVmzIBeUd9v3AvEw6r8fv7dVs7AKlkpZSS3z+FuSuT2bQDenepZfLoKvp0qWP2smS+XtyOp9+v5crf7EEIePiNXCCeey4uJt6Qbamtigdy2b2vlsIAo08bC7IBeadt3l7Cmo7VgMfcUS6EPjmlFBb6yct2JAKdKNzjoDBAiIKcHTGX3Mw6du3aQ+eMFCCTJWsrKCz0ftKt2iDLy0ytobCw2Ou8pKfkUFqeQEK8oKJsJ5X7YWg3WfbsJU62bd/JghXtgXR6diqnsFD6CDJT5bFftWEfa7emAwm0T9hNSkI6kMKGrfsoLY8DOtAhzUlZRRyfzz/IhRNLWLhKHtcembs5blgdJ4yMo1MHJ4WFkJLUCUhk/eY97CmNAzrSJbOawkJvP8SIPlnMWd4OR51BQrygS2YVkMK2HSWU7M8A4qjYv5NCp6BPlyy27GrHI2/VAtJiX7a2jCMGSKWvrDJIbWfz92+QxzIvu5LU5HZUVku7LC2pmnaJ8UACqzaUARkMzHOwrjCRFRtr+XX9PiCXjJQ6CgvlE2LswHSWb2zPR3P2MyC3nIPVUHGwK4nxgqzk3UBnr7Gl4v3xfD1/D99a2UA8GwsFu4oqgPbUVu8njiSgnfv7B8t30z4hDujE2q0Olq4uBXLIyQh87Sj6d5HnFaB9Ujl1NdVAR3YUeY73poKOQBLJRhGFhTIB7JgRWXxlteOFD0v5dUsGYNAhaSeFPpFLDocDKnbQrWMuO4rjmbt4D9t2tAdSiHeWeF37nTJy2V0Sz9LVu8jr5GT1JnkPZbbbS2Gh//u6seTl5QX8LFIBnw/8GXgVOBHwivuwLOt54HnXv42PqwvA8o2COqdgQHc4cVwKs12T/6cky6fktt0GNUY3+uUZsEQAgrzO7cjLy+MIh/xfCPnEzMtNITEx0X2w7p8meGeOYNHaJB55vysvfiGfuvdelUpeXpr/Crno393J2u2wYnsuJ9rSaHeXeRyVhaWdyAvwtN5XIb83fGAWY4fDw28ILphkcNHkRBIS5EjrbU5B1hTBntJ44tt1o9ohVyfp1AF+e3InduyoIS8vj3btZTvLKhICXgh7bPUiIYvkNPB3uiaNzSIvr34nqy5B7qOkIjHgPjbtld/p1SVeHv8R8v9te1PJy/MOL1m6TX7WLTeJvLw8CgsL3eV2ynSyvUhaRN27y215edCnq5PNO+MoquzGdpdradzwdPLypH3RJ0+28UBNNoXFgvh4GDeyM3lzXO1MyKbWkO0+6+g4XvkCFq5tR2lNN3buE7RPgYlmZ+LiDOxN7NjBCdshpX0uFXvl7wf1Tq53HI4Z7WSOy73XrZNBt1z5IDcSsih3Je0M7t+V+HiDwwc6mbUUdtiSfkqrMsjLy+StbwUX3S949z6Dc46V109VnTxeA3qm0m29p4fRNSeZ0kpgN5RVyeNw5PBENu2C7UUJOBM6A4JOmfHu+p5+tODFLwTW+nTy8jq40u4FudkGwwd3ITFB4HDZJPHx0tp/98cctzuh2mGwe788n906d2Crz4DngD6dSUyQx2n73kScCbmAoEeXwNeO4lhT8A9Xgs7A3ukM7pcOCMqrPcdbXcujh+aQ5wrlvPRkwVeW4OWvO1DtkONUQwZ0q1e+us7GDnXy0VwoLM2l3OVKGtTX+9rvnutkdwmIxC7k5Rls3yv3e8TIwPd1UxCRC8WyrKXAbtM05wLDgPejUalA2LOmwOM+OayPDANSjB3i6aIqP7gKNcp2+R77dpNuF4XarshMN/jbNHki/vm+HBSa8VtP1zkY150pv/PAa8LLVWJP91Yhdf5QPvDuOXDMKIPPH4njspMNEmwDp3FxhjuVf9lGj4/08AHeMyRmtpd+49Ly+scPpJ/ebviUlgv3yu92v198vDzO/lDf21MSeIY2d9c2V76q8+M7UAyBXSiqPeDxuyvUYNWXCz2RCColGzwrqfy0SiCEHORKSjS8/Kh7XZE6I/oZHJ8vw+FOv11uyx/kf0IiuwtFxYD36lz/e+OGeLbldZIDqyBD/oSQ/yu3yxA//lnlQvn6Z/n9+Ss9x0zlP3TtaLhj3kG6UNr7uFA6Z+FOFlLuQ3t0z9Ej5X2xcLX0wdt9wHFxhpdv/0ZXyMIrX3rXVY0dpKVIF6CdjDTpxkxPlcdM3cPBBjAVo20uvC7ZnntWuVDq6oR7PMAevXTaeOlGUS6uQO4TRf5A10DmOlv7fa5FVd/CIjn2sX2PdA/aB6+bg4jDCC3LusWyrImWZV1kWVZ0+w42Vm0W9DhXcOVDHmtRDWAe1lfeYEq3jjrMFh/sStNVYXQdO8gvJScZXgdbbbdzxSlgusKKhveFuy4L7cl6yhEy27OsHO55We634qDw8hEv3+T/t0IItvv48QKhfJJL1uHOmBzl46eOjzfcN6iK+bVTVIrX1J+l5Z4IFHOQJ9ttaK/APsqUZIP0VOm3LSuXfkHf+Sd8fZOdMqV4+g4UqzqB9wNEodqS6/OZGqy680XB+gIpXINtPnB1w6lBbjX/dXa6J5JBjZN06iCnCUht54mUsGeE2rFnY7qzMLvU/57dwMjL8ayjqs613bc/xFZvNe6gUvRV9Ig9BtkexWEXwqx0zyCmEvCsdMMtYCoW3i7gHdobjBks/dJzl3vGNdTxVnkOPXLhjksM4gzhjoBRceLqmKW18+wf5IMhtZ00MNT9qWYFDUXAu3byDEZ37eidZSyEHAytq5PhkEmJnms1PdUTygneYyP+UAORb37raYvvtajO0dINnhDTXl3wMrKag1aRyLNvv+CMO+QJmmVLsPBY4HJVeGXVHXWYLUPPldTitsBtg5UqlNB3uyIuzuDVOwwumgzv/tVwp9I2hGEYPDZdxjr/+xNYuUm4b0B1oa7eUn/eZZBWScVBab10aF/vYy9GudbjXLpB2Czw+nV0D2T6iUTxjU4oOWCbXCnTMy9FoAFMhT0S5fTb5TSz23d72qcmDuue46mf3Qq3455AP7N+W5QF7ntDTRrtmf3usD7w8YOGVwSLskzVwLJbwP1EoXTqIJOgHrzG83tzkP9zb7fA1Tnu7UfAO2Ua7sE7uwWuelv2c20X8BvOkfuV89sIj4DbHnp2q9MeyZGdbrgtcGV9ZmfAFafIa1PNKeMbX68mX/r+F+E1lSp4FjA55xjIzjAY1d/z9D/tKO9y0tp5W+DpqZ7eoYoFV7OCquzGhvjT+QZHj5QPxJRkg5RkaYBUVtU3Euycf5yn/EARKIpJo2Xy0O59nqxS3+tNZQj/vMZjJPYP7gFqEmJewGtrBRfeK9wRJfYEBRUhokTmyT8YzLhIZr/5zpHhjkKxCfVAW0xzRz8CDrI7+/pdce7szFAZ1sfgqlPkKP8b3wivSY765cmLzl8Ehv0itLtC/KFEdekG+QeeWF07dkvlp5WC+/4jOG2GXAFGWWaJrtGQ0nJPbHBme2mFA4wdErwuykJbXyCTLfbtxz2hkG+7FO5IFB8BtwupL24L3MeF0q2TwecPG3z8oMGy/xhMyveur2+IWn9XFJK7G26LA1f7veEc2ZNKTw2cuOW2wCu850HxxxGucMIeuYZbwNXxt1vg2RkG+YPksTr/OLn/A5Xyoa+yPnfZBNzbAjds5chIEMArXHDKkQZrXze44hTZw1JRPIpJrt7Md4s9EShKwK4+VQroH1wPlqOHy4lpcrNkuXZkKr1nmzpW4IlEURZ+KBY4wK2/NZjzVJz74Wx3gdldj75MOdIziV1DLpTkJIMfnjJ49HrZC/M375HqUf28xjuqqbmJdBCzyXn4TfjGkhdQUansqgohJ1Taskt225QlPXmMweQx8kD36ybFo54P3MsCN1CDdf4s8Eg59SiD52cKflrl6Xr26SpvyI2FcrrLaf9wMnEE/P06+SzdHuQi9GVob9n+ddulTzMl2fuhpFAi9fvHhNdan2u3CbeFN7infCDaXSiZ7WH62QaH9YFrTgteF5XF9/GPwr3K+fMz4c5LBdkZhl8BH9xTHv81W2UkkCKYC+WIYQbx8YKjDqv/QFGTa/nDVyCCWeDqgRcXZ/D536GmloAzymWkyTYU75f+17g4j5/fl7suM6irreDyk9Pcc9yo8QffaQLmPm3gqFVhhXJq3S9t08AqF4qcX0W+75Lta4F7uzDs7e2XZ/DyDIOXbhP1DIXxw6WwL1kPXTu6wuhcvaETxxqcaDvOpx9ZxXOfpnPRZI/RpEhL8YQRymPleS9jwT0P+FAF3JeOGZ4lDtU11sPP8W+favC3aXIM5IhhDZebkGDw5wvgqineY2WKnp09mvSN1TIhhNAKLPDrzpQ+5ffvl92lujrpYlDWUk6m/6xI9YTfvFNe5A1Z4L6DmNHgSNeFsuhXWOdaRaZ3V8O9EMRt/xYsWCXjt5XPOFg30JfkJOnPVIIZKNFGCdLyjbJLO/1suW19gZzJETwp6dKFIrdltjfIzTK4/mzDy6foD2WBfzTXs63iIDzzId7tst1cKqvTd/Ujf1mYinOPNTjwpcG5x4Z3s+RmeicBNeRCUcTHB58OVFnO//1S9rb6dQucpTu4l8GjvyujYwePBa4iOnzdZSnJhuvh4HHJfGlb+aisXA6eFZXK/XbqIP2+diG0D2Iqsnz246+Xl5IsrXOAzxfIV3/nAmBg91qKPzV45DqPi0hhT+QB/xa4orECbrfAt/tx09n543kGb98bF/D8+KNDe8M9XmHHMAy3Ff6NJV/7d6/3tSYn5gU8O8Pgs7/HMXGkJ4mjrMKWGh/Ack5LkQMejlopHr6ZmODtA+/op7seKZ0yZcr+wWrcE2v16epZik0N/jhqpTUOdl9xaPuw+6YD+al7ukRzYA9Y9G+Dp26M4yzX5EDqBj2sr7xI7Ra4r280GMqloaznP7oiFP75vuBApbQSDcP7RlWur5/XeI8HqCiUQKLRmPmVExIMd3mG4VmMQT24dxTLB05igsc/HQrKqlRujIevDa1uvvuwu1B8UYOivhm8u4o984ioqAsvCzwjsAXeELdfZLjdalDfZWUntZ1BfLxcjcr+G3sqPfhY4F29y4jEAgfpIg3H+IkGyg+uEqe0D7wBlJVSVlE/LNAfdj+4P8Hv1VlapEmJTWOBg4yIAY9/tE9XyB8oRSQ5CS5y5TZ9/KOPBZ4bmhCogUzf93ZuutDg1b8Y/Py8wTDXclW+FqzdArf7wEPFnqkG0l1gDpaC/rfXZaRCl2xv67RvN+m62bffe9pc3wn0o4UStx65Hp+muh6Ub1mlyIeKXZSuPhXOCjBLpS/hCHjvLrJMe7QQyIeGGltRbgMvCzwd2qd41yfUh3KPzgZXTfH8H+hhaic+3vAawLVPZgXex6pXF0+PKC0Fv1ZuKLh7UAf89/KaEntkkd0oaE5al4ArC7y8YQscPKu1rNgk04OTk7xHxRMSDN6/3+Cde40G03gbi6+vtncXeXN8+IDB7CcN7rlcfv75AmmFBvPj+WNUCBZ4VrrBJSd6uuQg46btAj2wh3yQ1Tg81mRYAp7peT+0twzLvO23cn+P/U9u97WMDMPg3GPl+/dmyweYDEGUESXh7D8UlIDbLaXkJMNLZMJ9aKjezYDu8Pj0MITfV8DbB/6tb1SLWvR31z5PJIlyB3bqIP3XCfGuMEJb2+LjvUW0IW6/2GOFh2oh2/3g7X194LY2JyUanodOBBNw5Lnm35+/UrSABe5537MzIUepRZPWKeA2F0owi2K4yy3wlGtNQjUToZ2TxhmcGWRyqkg50jZgktrO0xU9Y6LBEcMMBvQwGNJLui2++dlzQ4Z6EY7sLwdZEhM8LolQSEo0ON029Vj3HI9gKqsuPAvc837CcPl61kQpbGrhBH9tUj2BD+d6j1V06hD9lbyVCPl2de29r06Z4ZU5Zgh8+rDB3KcN2odhRfpa4MGOdW+bZZec5Ilm2VkM611jKwN7yH3Hx8ve1n9ul0aJ3Qcuk7pCr2PPzgav32nw9+sMenUJ7XfKNZIQL68x+wPEt83KD95Y9wnAJSfK6/+tbz0WuAoYaGo6ZXp6HP26Bf9uU9G6BFy5UMpDc6FMO13GrapQwkChgk3J0N4eq6d3F/830BkT5Ot598ikgJxMb/98MLLS5U325t3ecc+hoMQzO0P6MdXDUIV2NcYHDjBhhEdMbr7QUyd/XdsR/aTVtqdELnjQVO4T8IjcKJ9YeXsvLtxrxDAMphxpuFezCRXfwcXgLhTP+4HdPQ/CXfvk+qxqu+K84wwuPkHWx+4Db4yb8PxJBrdMDb1taqZBJdyBfODgEftIBLxvN4MLJsnEo7o6ee80VW/aH8qN0hL+b2htAq6SJio9cwBnZwQ+WRlpBs/8yTsutrmJjzfcFlMgH9np42UdK6vkBfjNY+GJ8dTfhB+VATLG+Zxj5AILUN8KjNQCBzkFqwoxVN1dO4ZhcO4x8v17s0XQEMJI+dP58MUj3r5d8LHAm+DB4Y+EBMMdlwzBk7bs0SSDe3livXcWe3psgR749gdFOA/kxqKsavXg8I5C8T7/akbQUN2FgVCuOmg+94nivOM84ZUtQasU8FB94ACnT/D4WZtCFEJh/HB5cgM9pccNlZZory7ww1MGIwMMRkab5CSD9+6P487L6gu4YYTnL+2YARNGwG9M7y5/u2QZYta1I5x8hP/fqofP+3P8L2EVLVKSDU4aVz8k0n4NNZeAg7dLIZgFbhiGOxJlSC+PL3/NNnm8UpI9GZK+2AW0OQwY5YtXD4tgFviVU2DGRTLXIBJG9jc42bVMYnML+LnHGlR8bXD2MS0j4DGfyGNHJU2UVYiQXCiKZ/5s0KmD4LKTWuYg/+l8EMIImAwTF2fwy4vgFIFjiJsDrzkx0sLzQcfFST+wPy45UQ6iBiJ/kHx4bd0FM12LRjenkHq5UPzMidNUZKR6HlgN9Xb658l5zu1rfKqFJgZ0D3yumtsCH9obHpsu5xWHwHHgICOX/va76BzvB642WLlZhBwFFE3CdV1Gk1Yl4PZBTBXqFopVkZPpvYp6c5OeanDPFcG/Ex9vEB/8K02OXUSiHQESDMMwOOdowWP/g/dmy23N2VtqCRcKhG6Bg1xM+vABcrxErVmpwgr9Zd8q7ALeVKGydgzD4E/ne/4PZoFHk9GDDLa913L3eEvRulwo9kHMEF0omtCxW2i+6082NcqNojITc5rREraPo7SYgDfwwBzez+CeK+SEar7zugQb8LYPYjaHBe5LUqInFb0pBfxQpXUJuD2MMAwXiiY0Mm2xyM1pgYMcB7D7cZvVAm9hH7hh1I9KCUZSouGVOayia/zhZYEHGfBvKgzDcD9EfF0omshpXQJuz8TUFnjUsYu275wZTU1cnME5R3v+DzceOxLsRkBTTKkQCCXg4Y43gHfK/MAgFnhqC1vgYGtnM19ThwKtS8BdFvjeUjm9ZriZZZrgtKQLBeAc20h+c1rgdtFuTgs8IwJhs8dOB/OBx8UZbhFvqd7qA1cb3Do18nBBTX1a5SCmyhTMCjOzTBOclhrEVIwfLlOS95Q0782uhC3ciawixW6Bh4uywLPSG+41pLWTOQYtZYFfcYqBfbpgTfRotICbpjkWeBJwAIXApZZlOYL/KjKUpaJWyWipC7Kt4i3gzX/DxccbzHoSSg/IDNPmoktH6YfO69S8BoGcwEk0SsCVBT6ge8N1zkiTk4o1p3tI0zxEYoFvByZZlnXQNM2/AWcA70WnWv7xvdC1/zu62B+ILfVwVKnYzUlOpsFbdwdOhmkqlAXemN6OzMYUQd0nijsvNVj0q3AvYadpOzRawC3Lsq2xTg3gDPTdaJGcZJCcJNyTI+kIlOjS0i6UluSC45v/waGOcWMelucdCz+tghtCyGK8/GSDy0/WLoy2SMQ+cNM0ewEnAA9EXp2GyUiFIiXg2gKPKoeygLcEp4+HK06B684IX1y75xr87z4tyoc6DQq4aZpdgLf9fHQhUAm8Blzuz/9tmuY0YBrA9OnTmTx5cmS1BdLa5VDkqnZSXAWFhfsjLlPhcDgoLCyMWnktSWPbktauMxVVcTiqiigsbNIhjZBpy+fl/kvka2ttXls+N7FCXl7gqQ4bFHDLsnYBx/puN00zAfgEuM+yrLUBfvs88LzrX+HvO+HSsYPTHYXSs2saeXnR86MUFhYGPVitica2JSvdSUUVDOidQ14LLNLqD31eYpe21J7W2JZI4sCnAuOAu0zTnG2a5gVRqlNQ7AOZLZFZ1ta5copcrWdwr5auiUajaYhIBjFfQ7pPmhVvAW/uvbd97ruyVeV2aTSHNK3ubrVnrekoFI1GcyjT+gRcW+AajUYDtEYBt1vgWsA1Gs0hTOsT8DTbGpfahaLRaA5hWqGAe97rZBONRnMo0+oEXE0fm5EmV/bWaDSaQ5VWJ+DKAtfuE41Gc6jT6gS8s2seZPuE9hqNRnMo0qoWdAAY0Q+evtFg3NCWrolGo9G0LK1OwA3D4PqzW7oWGo1G0/K0OheKRqPRaCRawDUajaaVogVco9FoWilawDUajaaVogVco9FoWilawDUajaaVogVco9FoWimGEFFZqlKj0Wg0zYy2wDUajaaVogVco9FoWilawDUajaaVogVco9FoWilawDUajaaVogVco9FoWilawDUajaaVckgKuGmaaa7XVr+opmmaqa7XttCWXq7XttCWcW2hHQCmafZs6TpEC9M0s1q6DtHkkErkMU3zBOAaYAfwsGVZO1q4So3GNM0zgYuB7cAjrbwtqcDfgR7AuZZlOVq4So3GNM2RwJPAAuBuy7JqWrhKjcY0zZOA6UA18BbwpWVZ5S1bq8ZhmuYxwE3AXuBfwCrLsqpatlaRc6hZ4L8FXgRWAteapjmxhevTKEzTPBW4AngYKAVuc21vlRafZVmVQA2QjmxXq20LMBF40LKsGUDflq5MYzFNMx64FngeuA8wgbRWfF4uAP6DfBCdApzTstWJDq1uSbVwcFl2FwA/AruBbcAiYJZre75pmhtbg/XqastU4AvgF+Bqy7KKTNNcB7xtmmauZVl7WrSSIWI7Lz9YlrXRJQobgA+AP5im+aVlWdtatJIhYr/GLMtaD1QCJ5mmOQPYaZrmz8BMy7I2tmQ9Q8HVlguBOUA5sALZW90KjAJSgETkwzamMU0zBbgb2WuYA2wGdiLv/ypgimmagy3LWtOC1YyYNmuBm6Y5FZgNpAKbLMvaD3QBjnR1a5cA7YAOLVbJELG1pR2wx7KsHS7xjkNarZtbkXirtqQgH6hYliWAochz8QHwO9M0e7RUHUPFpy1bXJtTga7AzcDvke6HKS1QvbDwbYtlWbuB75BuuiVI18M1wPUtVcdQcV07byGNtp9cmw2gDyCA1chrr3+LVDCKtEkBN00zAzgfuB95Ef7GNM1OwLPA1aZpplmWtRLoBfRusYqGgJ+2HGua5mAAy7KcSMGodX23Zyx3cX3a8j1wjGmaw1wfz0H2LCqQovEH129i8hr105bjTNPsBryPtFJ7WJZVhhR2dX5i8tz4ucaON01zgGVZs4FvgX9ZlnUx8CmQZJpmXKy2xUUC8Amyp32DaZpHAV8BRwHDLMsqRhpDKRC75yUU2swgpmuk/GbgM2AecDTwJyAJmAlcChwDTEOe4LlIf+v7lmV92hJ1DkQDbfkE2ZYzLMvaYprmVcgLswzoCFwfSwNNIbblBOB3wLHAHmS3vcKyrLtaoMoBCfEaOx7ZjhFIS+8UYINlWfe1QJUDEuJ5ORnZe+iKFMDpQIllWX9oiToHwtaWT5DjW91d/xcijYLLgYeA4UAGsAY4FenCe7EFqhw1YtK6CRfTNLsDjyJ9dV2AVy3L+hx4BDjOsqx/AK8Cf7cs62HkBfs7YHkMindDbXkUORjzsOsnPZECvt6yrMtiTLxDacurwL3AP4CXLcu60LKsP8egeIdyjf0XGd30LrILPw6YH4PiHc55eRlY73q/KAbF296WPOAZy7IspDFTY1nWG67PTwBeQ7rojgF+bu3iDa1cwE3TPNrW/cm0LOtRy7L+C6Sbpnm7ZVlfI31fAE8AqaZppru6hpdZlvV489faP2G25Wlc3XJkF/dIy7KebeYqByTMtjyJtIqwLOt11+9j5rpsRFuSTNPMsCxrNXBTKz8vaUA7y7LeQvb4nmqBavslSFs6mKZ5NfB/wFgAy7K+BAa7vrcS+EMstSUSYuZGCQfTNNubpvkN0l93CnKA5UfTNH/n+spc4HTTNDMty6ozTfNo4CNkpEM5gGVZtfVLbn4iaMsmAMuy5lqWVdr8Na9PJOfFFUoIuH37LUoEbdnoGjDHsqy6Fqh6PSI8LxUAsRLPHkJbfgCudL3+aJrmPa7v73B9N2bOSzRotT5w0zTzkYkfY5GB+Zmu1y1Ika5AWqergBeQ3fP3W6KuDaHbotvS1BxibalGPoB+AjojBy6/boGqNjmtVsAVpmn+E+mbe900za7I7vgG4EbgDcuydrVk/cJBtyU20W2JTRpoy2utJbQ2ElqlCwW8Qn/eQIZw5VqWtRMZS/wuMkTwQCz5UwOh2xKb6LbEJiG2pbw1hweGSqu3wAFM07wB6AeUABuBdZZlLWrZWjUO3ZbYRLclNmlLbWkMMf+0DYbNWhiBjFndZFnW663xBOq2xCa6LbFJW2pLJLQVC/wc4FPLsqpbui6RotsSm+i2xCZtqS2NoU0IuEaj0RyKtGoXikaj0RzKaAHXaDSaVooWcI1Go2mlaAHXaDSaVooWcI1Go2mltOkl1TSHBqZp9kYumQVyIeH7XdtfQk5shGVZjcrKM01zKHKxg9muWSwxTfMV4DJgjGvqUo2mRdACrmlrXG6a5gPIqVDPj0J5Q4F7XO9nR6E8jSZq6DhwTavHZoFvQq4EPwm5/uEzyClE85Duwr8g13XMBixgumVZq0zTvBcp0i8iV9PJRK5n+TMey15xHHKFl8uQCwWc5yr7t5ZlzW2SBmo0AdA+cE1b4ldgIdJtciVyStFS12dXINd8XI4U8jHAx6ZpJtp+PxG5WEYH5BJcRciFQECudTkVuUya4ijk1KvdkSvWaDTNihZwTVvjZaRVPB659JziFNfrny3L+ifwMXISpIG27zxmWdaTSEu+t2sxg3muz1ZalvW2zxSl91qW9QBy/uneUW+JRtMAWsA1bY23gTqgAPjGz+fC59XOPtdrLZ57I5iP0f79+PCqqdFEjhZwTZvCtZzZlcDvfJZm+8z1+phrCtIzcE0/2kCRJa7XiaZpXmiaZkpUK6zRRICOQtG0OSzLesfP5leQg5nXIAc5f0YOYjpM0wxW3I/I9RePdv2uR1Qrq9FEgI5C0Wg0mlaKdqFoNBpNK0ULuEaj0bRStIBrNBpNK0ULuEaj0bRStIBrNBpNK0ULuEaj0bRStIBrNBpNK0ULuEaj0bRS/h9FyxKrzLmweQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh4AAAGvCAYAAAAUvdwHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0s0lEQVR4nOydd3zU9P/HX7nuXUqhu4VS9t4gFdkCCigKKrjAPXGDKIr+HF/3Vpy4RQUXyBBZyt4yC5TRltKW7j3v8vsjTfJJLrdXx/v5ePAgzeWSz30ul7zynhzP8zwIgiAIgiDcgM7TAyAIgiAIovVAwoMgCIIgCLdBwoMgCIIgCLdBwoMgCIIgCLdBwoMgCIIgCLdBwoMgCIIgCLdBwoMgCIIgCLdBwoMgCIIgCLdBwsPDGAwGnD17FgaDwdNDaRbQfNkGzZf10FzZBs2XbdB8yZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwIAiCIAjCbZDwcDP5+fnw8fFBVVUVGhoaEBISguzsbOn1Dh06gOM4cByHwMBA9OrVCx9//LEHR0wQBEE0FS5cuIDPP/8cBQUFnh6K3ZDwcDM7duxAv379EBgYiH379iEiIgJxcXGKbZ5//nnk5OTg0KFDuOqqq3D33Xfjxx9/9NCIPU9dXZ2nh0AQBNEkmDZtGm6//XZce+21nh6K3ZDwcDPbt2/HiBEjAABbt27FJZdcYrRNSEgIoqOjkZKSghdeeAGdO3fGb7/9BgCYP38+unTpgsDAQCQnJ2PRokWor6+X3vvff/9h9OjRCAkJQWhoKAYOHIi9e/cCADIyMjBlyhS0adMGQUFB6NmzJ1avXi2999ixY5g8eTKCg4MRFRWFm266SaGqR40ahQcffBBPPPEEIiIiEB0djcWLFyvGnpaWhtTUVPj7+6NHjx74+++/wXGcNH4AyM7OxnXXXYc2bdqgbdu2mDZtGs6dOye9fuutt+Kqq67Cyy+/jNjYWHTp0gUA8OGHH6Jr167o1q0bYmJimvUPjyAIwlYMBgMOHDgAANiyZQt27tzp4RHZh7enB+AogwYNQm5urtuPGx0dLd3QLZGZmYk+ffoAAKqqquDl5YUvv/wS1dXV4DgOa9aswezZs/HRRx9pvt/f318SFyEhIfjyyy8RGxuLw4cP44477kBISAieeOIJAMDs2bPRv39/fPTRR/Dy8sLBgwfh4+MDALjvvvtQV1eHf/75B0FBQTh27BiCg4MBADk5Objssstwxx134M0330R1dTXmz5+PmTNnYuPGjdJYvvrqKzzyyCPYtWsXduzYgVtvvRUjRozA+PHjYTAYcNVVVyExMRG7du1CeXk5Hn30UcVnqaqqwujRo3HppZfin3/+gbe3N1544QVMnDgRhw4dgq+vLwBgw4YNCA0Nxfr168HzPPbu3YsHH3wQX331FZKSkhAQEIBt27ZZ+3URBEE0e0pLS6HX66W/33rrreZpDeebOXFxcTwAt/+Li4uzeoz19fX82bNn+f/++4/38fHhDx48yKenp/PBwcH8pk2b+H/++YfPy8vjeZ7nk5KS+Lfeekt639KlS3kA/Icffqi571dffZUfOHCg9HdISAj/5Zdfam7bu3dvfvHixZqvLVq0iJ8wYYJiXVZWFg+AP3HiBM/zPH/ZZZfxqampim0GDx7Mz58/n+d5nl+zZg3v7e3N5+TkSK+vX7+eB8D/+uuvPM/z/Oeff8537dqVNxgM0ja1tbV8QEAAv27dOp7nef6WW27ho6Ki+NraWmmbFStW8KGhoXxJSQl/5swZXq/Xa34OQoler6f5shKaK9ug+bINZ8zXyZMnFfchLy8vPiMjw4mjdA/N3uIRHR3d5I/r7e2NDh064KeffsLgwYPRt29fbNu2DVFRURg5ciQyMjIQGRkpbT9//nw8/fTTqK2tha+vLx5//HHcddddAIDly5fj7bffRnp6OioqKtDQ0IDQ0FDpvY888ghuv/12fPPNNxg3bhxmzJiBTp06AQAefPBB3HPPPfjrr78wbtw4XHPNNZIlZt++fdi0aZNkAWE5ffq05O4QtxeJiYnBxYsXAQAnTpxAQkKCYm6GDBmi2H7fvn1IT09HSEiIYn1NTQ1Onz4t/d27d2/J+gEA48ePR1JSElJSUpCamorp06fjmmuuQWBgoKXpJwiCaBGoA0r1ej0++OADvPLKKx4akX00e+FhrbvDk/Ts2RMZGRmor6+HwWBAcHAwGhoaJNEQGxuLtLQ0afvHH38ct956KwIDAxETEwOO4wAAO3fuxPXXX4/nnnsOl19+OcLCwrBs2TK88cYb0nsXL16MWbNm4c8//8SaNWvw7LPPYtmyZbj66qtx++234/LLL8eff/6Jv/76Cy+//DLeeOMNPPDAAzAYDJgyZYrmCRwTEyMti24bEY7jYDAYAAA8z0tjNYXBYMDAgQPx3XffGb3Wrl07aTkoKEjxWkhICPbv34+NGzdixYoVWLx4MZ5//nns2bMH4eHhZo9JEATREtDKZPnkk0/wzDPPGF0zmzIUXOoGVq9ejYMHDyI6OhrffvstDh48iF69euHtt9/G/v378cUXXyi2j4yMREpKCmJjYxU38m3btiEpKQlPPfUUBg0ahM6dOyMjI8PoeF26dMHDDz+Mv/76C9OnT8fSpUul1xISEnD33Xfjl19+waOPPopPP/0UADBgwAAcPXoUHTp0QEpKiuKftSd0t27dkJmZiby8PGndnj17FNsMGDAAp06dQvv27Y2OExYWZnb/3t7eGDduHBYsWICDBw/i3LlzivgTgiCIlgwrPETrdElJCb766itPDckuSHi4gaSkJAQHByMvLw/Tpk1DYmIijh07hunTpyMlJcUondYUKSkpyMzMxLJly3D69Gm8++67+PXXX6XXq6urcf/992Pz5s3IyMjAtm3bsGfPHnTv3h0A8NBDD2HdunU4e/asZD0QX7vvvvtQVFSEG264Abt378aZM2fw119/Ye7cuYpgJnOMHz8enTp1wi233IJDhw5h27ZteOqppwBAElCzZ89GZGQkpk2bhn///Rdnz57Fli1bMG/ePJw/f97kvletWoV3330XBw8eRHZ2Nr7++msYDAZ07drVqrERBEE0d1jhMW/ePGn53XffBc/znhiSXdgtPD7++GPMmDEDgwcPxrp166T1K1euxKxZszBy5EhMmzYNy5cvd8pAmzubN2/G4MGD4e/vj127diEuLg6xsbE27WPatGl4+OGHcf/996Nfv37Yvn07Fi1aJL3u5eWFwsJC3HzzzejSpQtmzpyJSZMm4bnnngMg+APvu+8+dO/eHRMnTkTXrl3x4YcfAgBiY2Oxbds26PV6XH755ejVqxfmzZuHsLAw6HTWnSZeXl747bffUFFRgcGDB+P222/H008/DUDIzAGAwMBA/PPPP0hMTMT06dPRvXt3zJ07F9XV1YpYFTXh4eH45ZdfMG7cOIwfPx6ffPIJfvjhB/Ts2dOmOSQIgmiusMJj3LhxGDZsGAAhvq64uNhTw7Ide6NS//zzT37Hjh38Lbfcwq9du1Zav3z5cv7QoUN8fX09n56ezo8fP57ft2+fE+JgWyYtPTJ869atPAA+PT3dKftr6fPlbGi+rIfmyjZovmzDGfM1d+5cKaPl8OHD/KxZs6S/T5486cTRuha7g0snT54MAEbxCddcc4203KlTJwwZMgTHjh3DgAEDNPdTV1dnVJnS29tbkdHQkhEDM8X/mzu//vorgoOD0blzZ6Snp+Phhx/GiBEj0LFjR6d8xpY2X66G5st6aK5sg+bLNpwxX/n5+dJyREQEIiIipL8LCgqkDEZPYo2F3KVZLXq9HkePHpVEihZLly6VAhxFZsyYgZkzZ7pyaE2OrKwsTw/BKZw7dw7vvfcecnJyEBERgREjRmDhwoWaQbCO0FLmy13QfFkPzZVt0HzZhiPzdeHCBWm5oqJCcZNPS0vzWHkJlo4dO1rcxqXC46OPPkK7du0wfPhwk9vMmTMHs2fPVg6qlVk8srKykJCQYHUsRVPm4YcfxsMPP+yy/be0+XI1NF/WQ3NlGzRftuGM+SovLwcAhIWFISUlBcnJydJrXl5eSEpKcspYXY3LhMfy5cuxceNGfPHFF2ZrO/j6+rYakWEOnU5HP14boPmyDZov66G5sg2aL9twZL7E4NLIyEjodDpF4cmSkpJm8z24RHj89ddfkguFijsRBEEQhGM0NDRImSui4GBjPIqKijwyLnuwW3g0NDRAr9eD53k0NDSgtrYWPj4+2L17N1577TV8+OGHNqeLEgRBEARhTHFxsVSrQ0t4FBYWemRc9mC38HjhhRewatUqAMCBAwfw7LPPYsmSJVi6dCnKysowd+5cadtJkyZh4cKFjo+WIAiCIFohbA0PUXi0bdtWWtcqLB6LFy/G4sWLjdYPGjTIkfEQBEEQBKFCS3g0V1dL84hEIQiCIIhWjJbwCAsLk5I3mpOrhYSHG/nwww/RsWNH+Pv7Y+DAgfj33389PSSCIAiiGaAlPLy8vNCmTRsAZPEgNPjxxx/x0EMP4amnnsKBAwdw6aWXYtKkScjMzPT00AiCIIgmjpbwAGR3CwkPwog333wTt912G26//XZ0794db7/9NhISErBkyRJPD40gCIJo4lgSHiUlJVZ3Evc0JDzcQF1dHfbt24cJEyYo1k+YMAE7duzw0KgIgiCI5oIp4SFmtvA8j5KSEncPyy5cWjLdHQy6w4BcD1iYoiOAvZ9ap9sKCgqg1+sRFRWlWB8VFYXc3FxXDI8gCIJoQViyeACCu4VNsW2qNHvhkVsEZOdb3q4poC4dz/O82XLyBEEQBAHIwoPjOCmgFDAuIta5c2e3j81Wmr3wiI6wvI2njxsZGQkvLy8j68bFixeNrCAEQRAEoUYUHhEREfDy8pLWN8ciYs1eeFjr7vAkvr6+GDhwINavX4+rr75aWr9+/XpMnTrVgyMjCIIgmgNsgziW5lhErNkLj+bCI488gptuugmDBg3C8OHD8cknnyAzMxN33XWXp4dGEARBNGFqa2tRVlYGwLzwaC5FxEh4uInrrrsOhYWFeP7555GTk4NevXph9erVSEpKQkZGhqeHRxAEQZggPz8fr7zyCoYNG4Zrr73W7cdnBYVaeJCrhTDLvffei3vvvVexzmAweGg0BEEQhCUMBgNmzJiBLVu2wNvbG2PGjFFYGdyBqYwWoHm6Wpp+gARBEARBeIjPP/8cW7ZsAQA0NDR4pNq0tcKjubhaSHgQBEEQhAY5OTl4/PHHFes8cXM3Jzyao6uFhAdBEARBaPDggw+itLRUsc4TN3dzwoPtUEvCgyAIgiCaKb///juWL19utL6pWTx0Op1UUIxcLQRBEATRTHnxxRel5ZkzZ0rLTU14ALK7hSweBEEQBNFMOXXqFAAgKSkJDzzwgLS+KQqP5tahloQHQRAEQTDU1tZKnV7j4uI8HsBprfAAgOLiYreMyRFIeBAEQRAEw8WLF6XlqKgoj6esisLDy8sLYWFhRq97WhjZCgkPgiAIgmDIy8uTlpuS8IiMjNTsaN7cioiR8CAIgiAIBrXw8PHxQWhoKADPulq03CyA0uLRHDJbSHgQBEEQBINaeADyzd3dN/bKykpUV1cDMC08yOJBEARBEM0YVni0b98egHxzLyoqcmuPrezsbGk5NjZWcxsSHgRBEATRjDFn8TAYDEbVTF3J+fPnpeX4+HjNbcjVQhAEQRDNGHVWC+C5zJGsrCxpOSEhQXMbsngQBEEQRDNGy+LhqcwWayweJDwIgiAIohkjCg9/f3+EhIQA8Jw7wxqLB7laCIIgCKIZIwqPqKgoqW6Gp27u1lg8QkNDodMJt3OyeBAEQRBEM6KhoUESFqKbBfB8jIePj4+UYaOG7VBLwoMgCIIgmhH5+fngeR6AUnh4OsYjLi5Osmpo4ak6I/ZAwoMgCIIgGtEKLAU842qpqqqSLBim4jtERGFUWlqKhoYGl4/NEUh4EARBEEQjWsXDAM8ID2viO0RYi4zYWbepQsKDIAiCIBqxxuLhrjgKazJaRJpTZgsJD4IgCIJoRKt4GKDMHGnqFg8SHgRBEARhBZmZmRg6dCgmTJiAmpoaj4zBlMVDp9NJN3d33dhtsXhER0dLy6xgaYrYLTw+/vhjzJgxA4MHD8a6desUr3355ZcYN24cxowZg3feeUeKECYIgiAIUzz++OPYvXs31q9fj7///tsjYzAlPADZneEuVwsrICwJj5SUFGn51KlTLhuTM7BbeCQkJODRRx9Fz549Feu3bt2K5cuX48svv8RPP/2ErVu34o8//nB4oARBEETL5ciRI/j555+lv1kB4E7MCQ/R4lFWVob6+nqXj4W1eFhytXTu3FlaburCw9veN06ePBkA8MUXXyjWr169Gtdee600STfeeCPWrFmDadOmae6nrq4OdXV1ykF5e8PX19feoTUrxPbK7myz3Jyh+bINmi/robmyDWfP13PPPaewjhcWFnrkuxCFh4+PD8LCwhRjYOMoCgoKjISJOeyZL9Hi4evri7Zt25p9b3JysrR86tQpj53H5mqNiNgtPExx9uxZSZQAQJcuXfDBBx+Y3H7p0qX49NNPFetmzJiBmTNnOntoTRpW2RKWofmyDZov66G5sg1nzNeJEyewfPlyxbqzZ88iIyPD4X3byoULFwAIbpXMzEzFa/7+/tLy4cOH7YpDsWW+xM8fFRVl1fuioqKQl5eHEydOeGTuAKBjx44Wt3G68KiqqkJwcLD0d1BQEKqqqkxuP2fOHMyePVs5qFZm8cjKykJCQoJVSrG1Q/NlGzRf1kNzZRvOnK/HH39cc/9JSUkO7ddWDAaDFL8RGxtrdPzExERp2d/f36bx2TpflZWVKC0tBSDczK05Vrdu3ZCXl4fCwkKEh4cjLCzM6vG5E6cLj8DAQFRUVEh/V1ZWIjAw0OT2vr6+rUZkmEOn09HFzgZovmyD5st6aK5sw9H5Onz4MFasWAFAuH+ID6rFxcVu/x4KCwuh1+sBCNYD9fHZWhn2js/a+RItL4AQ32HNezp37owtW7YAAE6fPo1BgwbZPD534PRvtWPHjkhPT5f+PnnypML3RBAEQRAi7733nrQ8f/58adkTzc7YGh5aDdncWaTLlowWkeYSYGq38GhoaEBtbS14npeWDQYDJk+ejBUrViA7OxsFBQX47rvvMGnSJGeOmSAIgmghHD16VFp+6KGH4O0tGOI9ITzMZbQA7hUetmS0iDQX4WG3q+WFF17AqlWrAAAHDhzAs88+iyVLliA1NRWnTp3CzTffDIPBgKuuugpTp0512oAJgiCIloMYBNm+fXuEhoYiIiICFy9ebPLCw9Xja8kWD7uFx+LFi7F48WLN1+bMmYM5c+bYu2uCIAiiFVBXVyfFMojBk6LwKC4udvt4LAkPd5Ylt8fi0alTJ2m5KQsPiqAiCIIgPML58+el2h2i8GjTpg0A9xXpYmlKrhZ7LB4BAQHStiQ8CIIgCEIFW2uCtXiIuLu9e1MSHqLFw9fXF5GRkVa/T3S3FBUVecRdZQ0kPAiCIAiPYEl4uPvGaUl4BAQEwM/PD4D7YjysTaUVaQ5xHiQ8CIIgCI9w7tw5abkpCQ+dTqewbohwHCetd6XFo7KyUopxsTa+Q4SEB0EQBEGYwJLFw90BpqLwaNeuHby8vDS3YYWHqzqv2xPfIULCgyAIgiBMoCU8xOBSwL0WD71eLwkPc83fROFRW1uL6upql4xFrOQKwOay8c1BeDi9ZDpBEATRdOF5HidOnMBff/0FLy8v3HHHHR5rWyEKj9DQUISHhwPwnKvlwoULUhZNhw4dTG6nTqk11xLEHs6cOYP/+7//AyC4fK677jqb3p+cnAydTgeDwUDCgyAIgvAcVVVVWLx4MX7++WdFbIWvry/uuOMOt49HbJoGKJ/qPSU8Tp8+LS2ba/Ohzmyx1RViDp7ncd9990ldb+fNm4c+ffrYtA8/Pz8kJibi3LlzOHXqFHieB8dxThujMyBXC0EQRCvg008/xWuvvaYQHQBw6NAhj4wnJydHsjCYEh7ujPE4c+aMtMwW4lLjypTaFStWYO3atQCEoNLnnnvOrv2I7pbS0lIUFBQ4bXzOgoQHQRBEK2Dv3r3S8tChQ6VltkKmO9GK7wCahsXDWuHhzJt6eXk55s2bJ/397rvvIiQkxK59NfU4DxIeBEEQrYC0tDQAQkro33//LdWGYDMo3Ikp4eGp4FLW4mHO1RIXFyctO1O0/fbbb1L5+CuvvBJXXXWV3ftihQcrqJoKJDwIgiBaODzPS8KjY8eOCA4ORmxsLICmZ/EQg0wBz1g8OI4zG1zKjpX9DI7Curzuv/9+h+Iy2NofophpSpDwIAiCaOFkZ2ejoqICANC9e3cA8s3p4sWLqK2tdfuYTAkPb29vhIWFAfCM8IiPj5eqk2rhKuFx9OhRablnz54O7UsUlQAJD4IgCMIDHD9+XFru1q0bAGVhquzsbLePib1pqy0MYpyHu4JLS0pKJJFjLr4DAGJiYuDj4wPANcIjNDRU4c6xh5iYGGk5JyfHoX25AhIeBEEQLRzRzQLIFg9WeHgizkO8afv7+6N9+/aK18Q4j6KiIpdVB2WxNr4DEGpriHPnLOFRXl6OzMxMAIK1w9H0VxIeBEEQhEfRsniwcQDujvPgeV66aScmJhrdaEWLh16vR3l5ucvHY20qrYjobiktLXVKB91jx45Jy466WQBBzInijVwtBEEQhNthLR5arhZ3WzyKiopQWVkJQLskuLtTaq0tHibi7DgPVnj06NHD4f0BstUjJyfHLVYjWyDhQRAE0cIRhUe7du2kOhSetHiYCiwVcbfwsNfiAThHeDgzsFREFB7V1dUoLS11yj6dBQkPgiCIFkxpaank5xetHYBnLR62CA93BJh62uLhCuHBZrY0tTgPEh4EQRAtGK3AUgCIjo6WWr83NYuHu4uIicIjLCxMIXpM4SrhERYWphAMjtCUA0xJeBAEQbRgtAJLAcDLy0u6yTVli4erhUd9fb2UUdKpUyerMkqcKTzKysok4eeMjBYRVng0tQBTEh4EQRAtGK3AUhFPFRFrSsIjIyMDBoMBgHVuFkBwU4kCwVHhwQpDZwWWAuRqIQiCIDwEe2NjXS2A5+I8RAuDTqfTLJblzhgPWwNLAcDX11eyKDgqPFwR3wGYdrXceuutWLBgAX7++WenHctWvD12ZIIgCMLliBaPgIAAJCYmKl5jM1vOnz9v9Y3XUcQbYVRUFLy9jW9D7rR42BpYKpKUlIQLFy7g4sWLqK6uRkBAgF3Hd4fwEF0tZWVl+OqrrwAAI0aMwIwZM5x2PFsgiwdBEEQLpa6uTrqxdu3aVepIK8JaPNwVYKrX65GXlwdAeXNkcWdwqT0WD0DpIhItOPbgTouHq9w6tkLCgyAIooWSnp4OvV4PwDi+AzC2eLiDgoICaUymhEdzsXiIOOJuEYVHeHi4yfmwh6CgIISGhgLQFh5qt5s7IeFBEATRQjEXWAp4xuLBxhuYutEGBATA398fgPuEh7e3t2I+LME2trNXeJSWlkqCr0ePHk7LaBER51d0tZDFgyAIgnAplp5wPRFcao3wANzToZbnecnVkpSUpBlvYgpnWDzY78eZbhYRMbOlsrIS5eXlitLsZPEgCIIgnE56erq03KVLF6PX2eDOpmTxAGTh4UqLR35+PioqKgDYFt8BOEd4uCq+Q0Qd5yEKnaCgIJusO86GhAdBEEQLhbViqDNaAM8UEbNWeIgBplVVVaipqXHJWPbt2yctd+7c2ab32iI8Tp8+jQceeAC7du1SrD98+LC07GrhcebMGcm60717d6e7dWyBhAdBEEQLJTs7G4CyTboaMcA0Pz/fZTd4FlstHoDr3C1r1qyRlseMGWPTe4OCgqSGe+aER01NDcaPH48PP/wQ99xzD+rq6qTXduzYIS3379/fpuNbA1tEbMuWLVKXWk+6WQASHgRBEE5Fr9fj9ttvx/Tp093eA0WNGFQYFxdn8gmXNbmLQsWV2CM8XOVuWbt2LQAhsHTs2LE2v1+0emRnZ6OhoUFzmzfeeANnz54FAJSUlEhio7KyEvv37wcgBHqKIsaZsPO7YcMGadmTgaUACQ+CIAinsnLlSnz++ef49ddfMXHiRJSUlHhkHJWVlVI7dK3qoCJsSq07hBIrPKKjo01u52qLx+nTp3Hq1CkAwCWXXIKwsDCb9yEKD71er+mqysrKwksvvaRY9/fffwMAdu/eLYmV1NRUm49tDazwYN1KZPEgCIJoQRw4cEBaPnbsGK6++mq39kERYa0X5oSHuzNbROHRtm1b+Pr6mtzO1RYP0doBABMnTrRrH5biPJ544glUVVUp1onCY+vWrdI6VwkP1tUi9qMBSHgQBEG0KNiAQQDYvHkz5s6dK/nX3QUrPMy1WnenxYPneUl4WCqW5czqpbW1tXjxxRexdOlS6Xtg4zsmTZpk137NCY9///0Xy5YtAwBERkYiJSUFALB3714UFRW5RXhozbGvr69NhdJcgcuER1paGubOnYvLLrsM06ZNwx9//OGqQxEEQTQZjhw5AkC4wIv9O77//nt8+OGHbh1HU7R4lJSUSNYfc24WwLkWjy+//BJPP/005s6di48++gg1NTXYtGmTNI6+ffvatV+2iBhbARUAHnnkEWn5pZdewpVXXglAsDysX78e27dvByCIQnY/ziQkJARBQUGKdV26dLGpXokrcJnweOaZZzBixAhs2rQJr7zyCl5//XWHu/gRBEE0ZaqqqqTaGX369MH3338vvfbrr7+6dSxiYClgfYyHIz1HrMHawFJAKTzy8/MdOu5///0nLT/66KP49NNPJRfIxIkT7U4t7dq1q7R84sQJabmgoAB79+4FAPTq1Qtz587FuHHjpNffeOMNqX5IamqqS1Nb1dYuTweWAi7sTpubm4uJEydCp9OhW7du6NChAzIyMhSmKUBoYsSmFwFChLE5319LQvS7sf43wjQ0X7ZB82U9zpirI0eOSKb8nj17YsqUKQgLC0NpaSlOnz7t1u+BtV7ExMSYPHb79u3h4+OD+vp6ZGVlWT1Ge+aLtcJER0ebfS9bdyQ9Pd2huWNFWE1NDebNmyf9PWHCBLv33bFjR3h5eUGv1yMtLU3aD1shdOTIkeA4DqmpqfD19UVdXR327NkjvT5ixAiXnhcxMTFSEC0glM535fHUjQi1cJnwmDlzJlavXo05c+YgLS0NeXl56NWrl9F2S5cuxaeffqpYN2PGDMycOdNVQ2uSeDrtrrlB82UbNF/W48hcbdmyRVqOi4tDZmYmEhISUFpaiszMTJw6dcptD1XszQYwX2siJiYGmZmZOHv2rM2WaVvmS3RDAYCfn5/ZY+l0Onh7e6OhoQFHjhxxyGKufq8oDsUHY0f2nZiYiLNnzyItLQ1nz56FTqfDtm3bpNfbt28v7X/AgAHYuXOn4v3Jycku9QaIjeJEIiMjXXq8jh07WtzGZcJj+PDhePbZZ/HZZ58BABYuXKgwnYnMmTMHs2fPVg6qlVk8srKykJCQYJVSbO3QfNkGzZf1OGOuWFfCyJEjkZSUhB49euDIkSMwGAzged7I6usq2DTewYMHm72mJicnIzMzE2VlZWjTpo3RzUoLe+arvr5eWu7Ro4fFuejUqRNOnDiBjIwMh76XwsJCAELzuYaGBmkcQ4cOtTu+Q6RXr144e/YsamtrwXEckpKSFK6hSy65BElJSTAYDBgxYoRCeISEhGDChAkujbkQg1pFxPPSk7jk05aUlOCRRx7B4sWLMXLkSJw9exYPPvggOnXqZGT18PX1bTUiwxw6nY5uDDZA82UbNF/W48hcsb03+vTpA51OpyjFfebMGc0usa5AdGu0a9dO6vRqCvZGdP78eU3rtClsma/c3FxpOS4uzuL7unbtihMnTqC6uhoXLlzQLPtuCYPBIB23S5cuuP766/Hkk08CAKZOnerw76J79+5YuXIlAODkyZNITk5WxHv06NFDOsall16KN954Q3pt+PDhLr//sTEeooXH09cClwiP7OxsBAcHY/To0QAExTVw4EDs37/fphOaIAiiOSGm0rZt21bK2mCbj7FN21yJwWCQrC/mUmlF2Bt6RkaGy67TtgSXAsrGdidOnLBLeBQWFkoWjpiYGDz++OPw9vbGxYsX8fDDD9u8PzWskDxx4gQmTpwoNWMLCQlRzH/Pnj0REREhZem4Ko2WhZ3n5ORk+Pn5ufyYlnCJ7ElKSkJlZSX++ecf8DyPc+fOYc+ePUYmH4IgiJZCYWGhdGPt3bu3lKnAXvfcJTzy8/OlqpjmMlpEWIuHKzNbbBUeprJG7D1mbGwsvLy88Nhjj+HVV191yk2YFR5paWmorq7GuXPnpNfYjBUvLy9FTxh3CA9W+DSFjBbARRaP4OBgvPzyy3jvvffw9NNPIyQkBDNnzsQll1ziisMRBEF4HDZwkrUYsMJDXevBVVhbw0NEbfFwFaIICA4ORnBwsMXtWeFx8uRJh44JWCd2bIUdY1paGk6ePCkFr2q51ebPn489e/agf//+GDlypNPHo6Zv374IDAxEVVWVIqXXk7g0uHT48OGu2j1BEESTgq1Y2rt3b2k5OjpauvC7y+Jhq/Bwt8XDWgGgdrXYA5tKa43byVYiIiLQvn17XLx4EWlpaUhLS5Ne0ypNPmDAAMki4g7atm2LnTt34tSpU5gyZYrbjmsOijYjCIJwAqYsHhzHSXEeZ8+ehV6vd/lYbBUebPVSV1k8KisrUV5eDsB64dG+fXupeZszXC2usHgAsmUjNzdXkbXirkBiS/Tu3RvTp0+Hj4+Pp4cCgIQHQRCEU2AtHurgTNHdIhbpcjW2Co+AgAC0b98egOssHvYIAI7jJKtHZmYmqqur3XJcW2EFxm+//SYte7oZW1OFhAdBEISD8DwvWTySkpKM6mC4O8DU2nLpLGKcx4ULFxT1NpyFvQJAjKHged6uuXO1qwVQCg/RjeLt7a3IaCJkSHgQBEE4SFZWFsrKygAYWzsA96fUWtuZlkWM8zAYDIr3OwtHhQdgn7uFPa6lxnT2ouVSSUlJaTKujaYGCQ+CIAgHMRVYKuJui4coHPz8/NC2bVur3uPqzBZ7hQcbYGpPZoto8YiMjHRZsS4t4dFU4juaIiQ8CIIgHITNZOjZs6fR6+5OqRWFR2xsrNWdT12d2cJWLXWXxYPneZszaewhMTHRqDosCQ/TkPAgCIJwEDY9UsuvHx8fLz1tu9riUV1djeLiYgDWx3cATdfiwZact1V4FBcXS93PXSk8vLy8FOMEKLDUHCQ8CIIgHIQVHh06dDB63cvLS+raefr0aanAlCuwJ7AUcL3Fw17hERgYKKX7njhxwqa5c0dgqYjawkEWD9OQ8CAIotly4MAB/P777y69kVuDKDz8/PwQFRWluY3obqmurlbchJ2Nram0Iu6yePj5+aFNmzY2vVd0t5SUlKCgoMDmYwKutXgAJDxsgYQHQRDNkvPnz2Po0KG46qqr8P7773tsHGI/KkCwGpjq/OmuAFN7MloAocJlYGAgAMcsHr/99hu++eYbIzEoioDo6Gir405E7K1g6imLR2xsrFFKNSFDwoMgiGbJzp07pXoTb775plsqgmpRVFSEiooKANpuFhF3pdTaa/HgOE5yt2RkZNhlRdqzZw+uvvpq3HzzzQoxeOjQIclSwVZJtRZre7aUlJTg2WefxR9//AHAcxYPiu8wDwkPgiCaJWx2yLlz57B27VqPjOPs2bPSsjnh4QmLhy3CA5DdLdXV1Ta5NETYcuEvvvgiqqqqAABvvPGGtP66666zeb/WZrY8++yzeP755zF9+nSkpaW5VXj07t1bGue1117r0mM1d0h4EATRLFHfvD/88EOPjMNSYKmIs1NqP/roI9xwww1GN2J7g0sBxwNMT506JS3n5eXh448/xvnz5/H9998DANq0aYM5c+bYvF9rankYDAYsX74cAKDX6/H555+71dXi4+ODAwcO4MSJE7j77rtdeqzmjsu60xIEQbgS9c17zZo1OHv2rJQ94i6sFR5JSUnw8vKCXq932OJx4cIF3H///TAYDPj333+xc+dOxMfHo6KiAgcOHJC2s/Vmqw4wHThwoE3vZ4UHALzyyis4c+YMGhoaAAD33nsvgoKCbNqnOC5fX1/U1dWZnLv9+/crhMZXX32l+D5cVbWUJSAgQCGSCG3I4kEQRLNEfQPieR4ff/yx28dhrfDw9fWVbuzp6ekOZeKcPHkSBoMBgOBamTRpEnJycjBlyhTp5t+3b1+jolaWcKbFAxCsHmKsh6+vL+6//36b9wkI6cjJyckAhLkTPzuLGNchkp+fjz179gAQWtfbOheE6yDhQRBEs6Ompgbnz58HIARtij0xPv/8c9TW1rp1LKzwsGRtEd0tZWVlKCwstPuY6g63R44cQefOnbF582YAQHh4OJYuXWrzfh1Jqa2vr5fmQux0y3LTTTc5ZHUQ566mpkazl4xaeLC4Or6DsA0SHgRBNDvOnj0rWQyGDBmCGTNmAAAKCgokP7+7EG+2/v7+Jmt4iDgrwFTLGlFZWQkACAkJwbp169C/f3+b9+uIxePs2bNSZtGoUaOk70TkkUcesXk8LGxlUPXcZWRk4L///gMADBo0yMjyRMKjaUHCgyCIZgcb39GpUyfcc8890t9ff/2128ahruFhqT6Fs4QHa/F49913JTdCUFAQ1qxZgyFDhti139jYWKkOCWvJsQbWzdK5c2c888wz0nxceeWV6NGjh11jYvepdSwAWLlypbR81VVXYe7cuYrXXR1YStgGCQ+CIJod7E07JSUFI0aMkJ5qd+/e7bZKpoWFhZKlwVx8h4izanmw1ojrrrsO69evxx133IHNmzdjxIgRdu/Xx8dHiqVIS0vTjKUwhVp49OrVC7/99hseffRRfPnll3aPSYQVbWrhwbpZpk6diltvvVUhAsni0bQg4UEQRLNDbfHgOE7KwCgpKcGZM2fcMg5rA0tFnJVSK1o8/Pz80K5dO6SmpuKTTz7BoEGD7N6niGiZqKqqMhnn0dDQgF9//RVbt26V1qmFByCIgNdffx1t27Z1eFymXC2lpaVSbEuHDh3Qq1cvJCQkYOLEidI2ZPFoWpDwIAii2aG2eABQ3HT37dvnlnHYKjxEawLgHItHQkKCzeXHLdGzZ09p+ejRo0avr1+/Hv3798e1116Lm2++WRIfWt+JM0lISJA6/LIiZ+3atVIF26lTp0rz8dBDD0nbDB8+3OnjIeyHhAdBEM0O0VoQFBQkBXSyNSeaqvAICAiQinrZKzxKS0tRVlYGQJmF4ixY4XHs2DFp+eLFi5g6dSomTJiAI0eOSOu/++47ALIYCA0NRbt27Zw+Ljal9vTp05IbSO1mEZkwYQK2bduGHTt2YPDgwU4fD2E/JDwIgmhWNDQ0SGXKRTcLoBQee/fudctYbBUegGwNKCgoQGlpqc3HZANL7el7YglTFo9nnnlGEcQp8vvvv6O6ulpyy3Tu3NnpVhgR0d0iptTyPI+//voLgCB4Ro4cqdj+kksuwbBhw1wyFsJ+SHgQBNGsyMrKkiphssGaMTExki9///79bgkwtbZPC4ujcR5sYKkrLB5du3aVMltY4bFlyxYAgLe3N7755htMmTIFgFAk7Pvvv5csEGwshrNRZ7YcPXpU6ilz2WWXSfVciKYNCQ+CIJoV5mIJ3B1gaksNDxFHU2pdbfEICAiQXBrHjx+HwWBAcXEx0tLSAAADBgzAjTfeiGuuuUZ6z2uvvSYtu1J4qDNbxKBSABg9erTLjks4FxIeBEE0K9QZLSzudLfYWsNDhB1zU7R4ALK7paqqCufOncPu3bul10TXxZVXXglvb6HdF9uozl0Wj/T0dGzatEn6e9SoUS47LuFcSHgQBNGsMGfxcGdmS0FBgdT23ZbGdE3d4gEYB5iy7e7FDJE2bdpoxk+4S3icPHlScv+0adMGffv2ddlxCedCwoMgiGZFU7F42BNYCjheRIy1eLhKeLBVRo8ePaoQHqzYuPzyy43e60rhER8fL6XU/v3331K/m5EjR0pxKUTTh74pgiCaFeLN2sfHx+jGGx0d7bYAU3uFR2hoqNREzRGLR3h4OEJCQmx+vzWwFo8jR45IwiMqKkrRz2X8+PEKF1ObNm2cUizMFF5eXpJwE61NALlZmhskPAiCaDbwPC9ZPDp27AgvLy+jbUR3S2lpqUPVQS1hr/AAZKvHhQsXFDdQSxgMBkl4uCq+AwC6desmWRD+/PNPlJSUABCsHazQaN++vaI4lysKh6nRsqhQYGnzgoQHQRDNhpycHFRXVwMwfZNztrvlnXfeQefOnTF//nypcNfZs2fx7bffStvYKjzYsduSfZOXlydV6XSVmwUQsnREcVRcXCyt14rpuPrqq6VlV7pZRNTfe0REBHr37u3y4xLOg4QHQRDNBnPxHSLODDDV6/V48sknkZ6ejldffRUpKSlYsGAB+vXrh0OHDgEQ+oD06tXLpv1aG2BaWFiIESNGIDExEf/9958isNSVFg8Amt1ktYTHzJkzERwcDAAYN26cS8cEGIubyy67jOI7mhn0bREE0Wxge3RYY/FwVHicOXNGsrAAQH5+Pl555RXJ8tGpUyesXLkSQUFBNu3XmpRavV6P2bNnY/v27cjKysIDDzzglsBSETbOAwB0Op1mE7r4+Hjs27cPGzZswC233OLSMQHGwoPiO5of3p4eAEEQhLWIRawAocKmFlFRUYiLi0N2djb27dsHnuftLuHN9iqJj4/H+fPnpb9vuOEGLFmyBKGhoTbv1xqLx3PPPYd169ZJf//7778ICwuT/na1xUMtPHr37i1ZNtR06dIFXbp0cel4RNSCk+I7mh8kPAiCaDawwqNbt24mt+vfvz+ys7NRVlaGzMxMRSaGLbDC47XXXkN8fDy++eYbjB49Gtddd53dgsaS8Fi1ahX+7//+T3O9iLstHk2lw2tCQgL8/f1RU1ODtm3bGo2TaPqQq4UgiGaDKDwCAgLM3nj79OkjLYuxGPbACo8ePXogNTUVH3/8Ma6//nqHGqFFREQgPDwcgLHwyMrKwk033ST9/fLLL2uKLFdbPNieLYB2fIcn0Ol0eOKJJxAUFIRFixZRfEczxKXf2JdffokrrrgCI0eOxKxZs1BeXu7KwxEE4UL0er1Hj19XVydlgKhvimqcLTx0Op1TXQkcx0lWj8zMTEVK7VdffSWlr06fPh3z58/HM888Y/T+uLg4p41HCzazBWg6wgMQ3FBlZWWYN2+ep4dC2IHLhMeyZcuwfft2fPbZZ9iyZQuef/55qeIcQRDNizlz5iA8PByffPKJx8Zw+vRpSfyYc7MAUKRXHj582K7jGQwGHD9+HIAQDOrv72/Xfkwhlvg2GAw4ePCgtJ4NiH355ZfBcRxmzpyJ7t27S+tjYmLc0ol16tSpAAQh545UWVsgS0fzxSUxHnq9HkuXLsWnn36KmJgYAKYj0Ovq6lBXV6cclLd3qxEpYitp8X/CPDRftuGM+Tp//jy+/PJLAMA999yD5ORkjBkzxhnDswnW7dG1a1eznyklJQW+vr6oq6vDoUOHrPr86rliM1q6d+/u9HOuf//+0vLevXsli8L+/fsBACEhIUhOTobBYADHcXj66acxe/ZsAEKcgzt+Ay+99BKuvPJKyYLEHpN+i7bRWubLGkHoEuFx8eJF1NbW4u+//8ayZcsQHByMWbNm4dprrzXaVhQoLDNmzMDMmTNdMbQmC5ufT1iG5ss2HJkvtgOowWDA9ddfjz/++EN6qHAXbL+Qtm3bIiMjw+z2nTt3xtGjR3HixAmcPHkSfn5+Vh1HnCu25Xp8fLzF49kK6yr5559/MGXKFBQXF0sps926dVN8b0OGDMHw4cOxY8cOTJo0yenjMUVSUhJKS0tRWlqq+Tr9Fm2jpc+XNQ0TXSY8KioqcP78efzxxx/Izs7Gvffeiw4dOhjlgc+ZM0dS8dKgWpnFIysrCwkJCWQ6tAKaL9twxnzl5eUp/i4sLMSjjz6KTZs2ufV3yo4jNTXVYqbKwIEDcfToURgMBlRUVFiM0VDPldiADBDiG+zNjDFFVFQUvL290dDQgLS0NCQlJSnqlAwfPtzomFu2bEFRURHatWvn1LHYA/0WbYPmS8YlwkN8srjzzjulAKXJkydj27ZtRsLD19e31YgMc+h0ulZ/MtoCzZdtODJfR44ckZbDwsJQWlqKnTt3YuHChXjzzTedNUSLnDhxAoAQWGkpuBRQBpgeOXJEs/iVFuJcifEdANCrVy+nn2+BgYHo1asXDh48iOPHj6O6uloR6zFw4ECjY+p0OkRFRTl1HI5Cv0XboPlyUXBpUlKSWwKfCIJwPWJWiLe3N9asWSM9WCxZskTqG+JqeJ6XUmmTkpIQGBho8T2s8LAnwFSMKRGFjisQxZAYYCrGdwDKGBCCaEm4RHgEBARg7Nix+Pzzz1FXV4dz585hzZo1GDFihCsORxCEi6itrZVu+N27d8fw4cNx1VVXAQCqq6tx9OhRt4wjNzdXKlNuKaNFxJGUWp7nJeHRsWNHq4SOPajLu4vCw9/fX5HFQhAtCZfZe+bPn4+SkhKMGzcODzzwAG6//XarTZ0EQTQN0tLS0NDQAEC+kQ8ePFh6fc+ePW4bh4i1wiMqKgrt27cHYLvwyMrKQmVlJQDtZmnOghUemzZtkmI8+vTpA29vKixNtExcdmaHhITgtddec9XuCYJwA6yLwpTwuOOOO1w+DnuEByDU89iwYQMuXryIvLw8k/ER1dXVWLRoEfbu3Ys333wTFy9elF5zpfDo06cPfHx8UF9fryiHTm4WoiXTuiNcCIIwC2spEItyDRgwQAqO27t3r1vGYa/wsCbO4+LFixgzZgzeeOMNbNmyBWPHjsV3330nve5K4eHn54devXoBgGRZAoQ5JoiWCgkPgiBMwgoP8SYeHBwsxR8cPnwYNTU1Lh+HM4SHlrvl2LFjGDp0qKJGSElJCb799lvpb1cKD0DpbhEh4UG0ZEh4EARhEvFmHRERgdjYWGm96G5paGhQpIC6CjGVNjw8XIrbsAZzwiM3NxcjRozAuXPnAAgFvbRu+LYIHXtQx755eXlJVhCCaImQ8CAIQpOCggLk5OQAEG7gbDdWdwaYVlVVSVU6u3XrZlNX2O7du0tuIbXwWLZsmdSMrX///tixYwe++uorjBw5UtomISEBISEhDn4C86gtHj179nR6XxiCaEqQ8CCIJgrP89i+fbsi0NGdsDERbNM1wL3C4+TJk9KyrdaHgIAAqWLpsWPHFHEUbO+Xjz76CHFxcQgKCsKqVaswefJkAEJvGlfTu3dvRd0jcrMQLR0SHgTRBOF5HrfeeitGjBiBwYMHS83K3IlWfAf7t3izdJXw4Hke2dnZWL16tbTOHreHOPba2lrJZQNAUYOEjeMICgrCn3/+iZKSEjz55JP2DN0m/Pz8FMKOMlqIlg4JD4Jogjz99NP4+uuvAQCZmZluyx5hMSc8/Pz8pHUnTpyQins5SlZWFj755BNcffXVCA8PR3x8PJ566inpdXuEB3sjP3DgAABlgTBT7pSwsDCbj2UvQ4YMkZap3hHR0iHhQRBNjE8++QQvvfSSYp0nhQfHcejZs6fR66K7hed5Ralve3nhhReQmJiIu+66C7/99puRmAkKCsIll1xi83779esnLYuBsDk5OVJ8h9ZnczePPfYYRowYgXvuuQfDhw/39HAIwqVQaTyCaEKsWbNGM65g3759bh2HXq+XXBGdOnVCUFCQ0TaDBw/GkiVLAAjullGjRtl9PJ7n8cYbbyjWRUZGYsiQIejSpQu6dOmCSZMm2dWVVcviwcZ3uDpd1ho6deqErVu3enoYBOEWSHgQRBOB53ncf//9MBgMAIAHH3wQS5YsQV1dnduFx8mTJ6W4EnVgqYgzA0wzMzMlC8SAAQOwZMkSze6s9hAVFYXo6Gjk5ubi4MGD4HneZHwHQRCuh1wtBNFE2L9/P86cOQMASE1NxVtvvaWIoygvL3fbWLZv3y4ts/EHLN27d5eapzkqPP777z9p+fLLL8fgwYOd2jpctHoUFRUhKytLYfFoCq4WgmhNkPAgiCbCihUrpOWbbroJOp1OqvHA87zkJnAHrNk/NTVVcxtvb28p9fPcuXPIz8+3+3hsETI2JsNZqN0trMWDusAShHsh4UEQTQCe5yXhodPppNbz6rbp7kIUHr6+vmazLFhryK5du+w+nquFB7vPAwcOSBaP+Ph4t2avEARBwoMgmgRHjx6VCmVdeumlUllw9qbvrsyW3NxcpKenAxDiOMxV0WSzTFj3jK2IwiMoKAidOnWyez+mYC0ea9euRXFxMQCK7yAIT0DCgyCaAKybZfr06dJyz5494evrC8B9Fo9t27ZJy6bcLCJs6qe9wqO0tBRnz54FIASyenl52bUfcyQnJ0u1OljLDAkPgnA/JDwIoglgSnj4+vpKAaYnT550WqEuc9giPGJjY9GhQwcAwO7du1FfX2/z8dhCZa5wswCC+6pv375G6ymwlCDcDwkPgvAwp06dkvqiDB06FPHx8YrXRXeLuwJM2cBSawp2idtUV1crslOsxdXxHSJapcjJ4kEQ7oeEB0F4GNbacc011xi97s4A08rKSqkKaY8ePRAREWHxPY7GebDCQ8sq4Sy0RA0JD4JwPyQ8iFZPQ0MD3nrrLXz77bceOf7y5culZdbNIsIGmLpaeOzatQt6vR6AZTeLiK3CY+fOnZg/f74U1yFaSTiOM1mszBmoLR6xsbEIDw932fEIgtCGKpcSrZ6nnnoKr776KgAhCNGefiD2smXLFklM9OvXTzOjo2fPnvDz80Ntba3LM1usqd+hpnfv3ggKCkJlZaVF4XHx4kVMmDAB5eXlWLZsGXbt2oUjR44AALp06aJZmt1Z9OzZEz4+PlIcClk7CMIzkMWDaNWkp6fjrbfekv7esGGDW4//3HPPScsPP/yw5jY+Pj5uCzC1R3h4e3tj6NChAITusllZWSa3/b//+z+pAmtmZibGjRuH2tpaAK6N7wCEQF1WbFBgKUF4BhIeRKvmscceU2RiOFIES01+fj4mTpyIAQMGYObMmXjqqaewatUq8DwPQLB2bNq0CQDQuXNnzJo1y+S+WHeLo51ga2pq8PvvvyM7O1uxvqGhATt27ACgzFaxBtZKJO5DzenTp6WmciJsBVFXxneIsO4WsngQhGcg4UG0Wv7++2/8/vvvinW7d++WhIGjvPfee1i3bh0OHDiAn3/+GS+99BKmTJmCm2++GXV1dVi8eLG07aJFi+DtbdrzyVYI3bJli0PjevHFF3HVVVehe/fuisDOvXv3oqKiAoBg7eA4zup9WhPn8fTTT6OhoQEAMHXqVKN6Ha62eADApEmTAABeXl4OddMlCMJ+SHgQrZKGhgY89NBD0t+hoaEABCvFuXPnnHIMtj4Fy7fffoshQ4Zg8+bNAARrxw033GB2X2PGjJGWHXUH/f333wCA8vJyTJ48GZmZmcjIyMD1118vbTNy5Eib9jls2DBpWUt47N27F8uWLQMAtGvXDt9++y1eeeUVxTbuEB4zZszAypUrsW3bNnTp0sXlxyMIwhgSHkSr5JNPPpHM/EOGDMG8efOk13bv3u2UY6SlpQEAAgICkJaWhs8++0wqP87Wu3jmmWfMWjsAIDExESkpKQCErJDKykq7x3X69GlpOScnB5MmTcLYsWORkZEBQHBB3HzzzTbts02bNpLr4sCBA6iqqpJe43ke8+fPl/5+5plnEBISgkceeQQ33ngjAGDUqFGIjo62+zNZC8dxuPLKK6WYFIIg3A8JD6LVUVRUhEWLFkl/v/POO4ondmfEedTV1Un9Trp27YquXbvitttuw8aNG9G2bVtpuy5duigsDeYYO3YsAKC+vl4RBGoL5eXlRl1kjx07JomRLl26YMOGDVJ5cVsQ3S0NDQ2KOTx06BA2btwIQMgauvPOOwEIIuDrr7/G4cOHsWbNGptcOwRBNF9IeBCtjueeew5FRUUAgNmzZ2PYsGEYPHiw9LozLB6nT5+W6mF069ZNWj98+HBs374dPXr0gK+vL959912L1g4RUXgA9rtbzpw5Iy2PGjUKkZGR0t/JycnYuHGj3ZYH1j0junMA4K+//pKW582bJ/WeAQTx0atXL7ON6AiCaFmQ8CBaFceOHcMHH3wAAAgMDMT//vc/AELcQXJyMgChSJc9PUdYjh8/Li13795d8VqXLl1w+PBhlJWV4fLLL7d6n6NHj5aWnSE8xo4di1WrViEhIQF9+/bFxo0bERcXZ9d+AWDcuHHS8vr16zXHOn78eLv3TxBEy4CEB9Fq4HkejzzyiGSJWLBggaIvipg5UlNTIxW1shdWeLAWDxGdTgc/Pz+b9hkZGSmlnB44cECy2tgCG9+RnJyMoUOHIjMzEwcPHkRSUpLN+2OJiYmRKo/u3bsXhYWFqKurw7///iu9rjUXBEG0Lkh4EK2G1atXY926dQCEYM3HHntM8TqbsuponIcYWAoYWzwcQXS38Dwv1QCxBVZ4aFVJdRTRosHzPDZu3Ihdu3ZJgaZjx46lOA6CIEh4EK0HNn3ztddeQ0BAgOJ1NtPB0TgP0eKh0+nQuXNnh/bF4micB+tqEV1LzoR1paxfv14xRnbsBEG0XqhXC9EqaGhowJ49ewAAHTt2xIwZM4y26d+/P7y9vY2yMmyF53nJ4tGxY0enBk6OHDlSGqM9wkO0eISEhCgCS53FyJEj4evri7q6Oqxfv17hyiLhQRAEQBYPopVw7Ngx1NTUABBcKlom/4CAAKknyvHjx+3uiXL+/HmpzoazYxqCg4Mly8zJkydx/vx5q9/b0NAg1epITk52idsjMDAQI0aMAACcO3cO27ZtAyAUSUtISHD68QiCaH6Q8CBaBWw7+YEDB5rcTozz4Hne7k6wrorvEGEtB2J9DGvIysqSSpa7Ir5DZMKECdKyWH6erB0EQYiQ8CBaBayIYBuuqWHjPOwt0mUuldYZsGm1okXBGtj4DlcKD62UWRIeBEGIkPAgWgWsxWPAgAEmt2Mbh3333Xd2NYyzlErrKIMHD5YarJlqyAYIrpUzZ86grq4OgHEqravo37+/ojorAGrIRhCEhEuFx6FDhzB48GB8+eWXrjwMQZilvr5e6o2SkpKCsLAwk9t26NABl112GQAhhsKeIFPW1eIK4REUFCQ1VDt69ChKSkoUrxcUFODll19GcnIyOnfujLvvvhs8z7vN4qHT6RQWjn79+rkkkJUgiOaJy4SHwWDAm2++KTWOIghPwQaWmnOziNx6663Ssj2iWbR4tG/fHhERETa/3xrEvig8zyvE0f/+9z/Ex8dj4cKFyMrKAgBs3rwZmzdvdpvFA1C6W8jNQhAEi8vSaX/55Rf06tULFRUVZrerq6uTTMHSoLy9Ff0cWjIGg0Hxf0tj//79mDVrFnJycqR1vXv3xm+//WbXU7A98yWm0QKCm8XSe6+++mrcd999qKqqwrJly/Dmm29anRJbXFyMvLw8AEJ8h6u+12HDhuG9994DIMR5jB8/Hrm5uVi4cKGme+idd95BdnY2AMDLywvx8fEuPedmzpyJpUuX4uLFi7jvvvuaxfnd0n+LzobmyzZay3zpdJbtGS4RHqWlpfjhhx+wdOlSvPnmm2a3Xbp0KT799FPFuhkzZmDmzJmuGFqTRXw6bWnMnz8fp06dUqzbsWMHFi5ciKeeesru/doyX1u2bJGW4+LipJRSc0ycOBG//PILSktL8fnnn+PKK6/U3K62tha7d+/Gjh07UFlZieLiYum12NhYq45lD4mJidLyxo0bMWfOHEVMyrhx47BgwQLceOONyM3NxapVq+Dj4yON68KFCy4ZF8u3334rLbtqHlxBS/0tugqaL9to6fPVsWNHi9u4RHh88MEHuOGGGxAaGmpx2zlz5mD27NnKQbUyi0dWVhYSEhKsUorNibKyMikzJCAgAMnJyTh58iTq6+uxbNky/O9//7PZFWFqvkpLS9HQ0GAU1AgIsRoikyZNMhvjIXLPPffgl19+ASCUWr/vvvsUr//3339YtGgRNm7ciOrqas19DBkyxOH+J6ZITExEXFwcsrOz8d9//yE+Ph6bN2+WXn/55ZcxYMAAPPDAA3jqqafA87xkWezSpYvLxtWcacm/RVdA82UbNF8MvJM5fvw4P2vWLL6hoYHneZ5/9tln+aVLlzr7MC0GvV7Pnzlzhtfr9Z4eitP5/vvveQA8AP7+++/neZ7n77vvPmnd888/b/M+tebr5MmTfGRkJB8YGMhv2bJFsX1dXR3v5+fHA+A7d+5s03ESExN5ALxOp+Ozs7MVr/fu3Vv6HFr/goOD+XPnztn8+WxhxowZ0vE2bNjAe3l58QD4Dh068AaDged5ns/Pz+f9/f0VY7vzzjtdOq7mSkv+LboCmi/boPmScbrs2r9/PzIzMzF58mRcfvnlWL9+Pb744gu88MILzj4U0cRZsWKFtHzNNdcAAB599FEpFfTdd9+VGog5wtNPP42CggJUVVXh7rvvVrS0P3bsGGprawGYLxymRqfT4ZZbbgEgPKl899130munTp3C4cOHAQDh4eGYM2cOfvzxR+zZs0f6d+HCBZdbFcQAUwB48sknpa6711xzjVSVNCIiAtOnT1e8z5UZLQRBEBZxtpKprq7m8/PzpX8LFizgP/jgA76srMzZh2oRtFQVXFlZyQcGBvIA+MjISL6+vl56bdasWdLT93vvvWfTftXzdfjwYZ7jOMUT/VtvvSVt/9lnn0nrX3/9dZuOderUKem9PXr0kKwIr732mrT+lVdesWmfzmTXrl2a1pbt27dL2+j1en79+vWK13/++WePjbkp01J/i66C5ss2aL5knG7x8Pf3R2RkpPTPz88PgYGBCAkJcfahiCbM2rVrJWvGVVddBW9vOZxo/vz50vLrr7+usFDYynPPPWeUxfHss8/i4sWLAKwvla5FSkoKUlNTAQiWE3Ffv//+u7TNtGnT7Bq3M+jXr59Rtk1sbKyi+iogWDgmTpwo/e2K2iIEQRDW4vIIl8WLFyvqIhCtAzEwE5DdLCJ9+vTB5MmTAQjZDj/++KNdxzh06BCWL18OAIiKisKsWbMACEGtCxcuRHp6uiKjxVzFUlOI7hZAqOmRn58vVQvt2rUrunbtatfYnYGvry8GDx6sWDd9+nTNwLV33nkHl112GR5++GH06tXLXUMkCIIwopWH1hKuoLa2FitXrgQAhIWFYcyYMUbbsFYPNu3SFp577jlpecGCBXjrrbekTKrPP/8cnTt3xrFjxwAImRzWZFmpmTFjBgICAgAAP/zwA3755RcpD9+T1g4RNs4DMBZ5IikpKdi8ebPF9HaCIAhXQ8KDsImzZ89i586dZrfZsGGD1FJ+ypQpmqnRl156qVSLYuPGjTa3oP/3338lq0pMTAzuuusutG/fHosXL9bc/rbbbrNp/yJhYWFScGZRUZGi9khTEx6RkZGSa4ggCKKpQsKDsJrs7Gz07NkTw4cPx1dffaW5TWFhIZ5//nnpb1NP4BzHYerUqQCEXipr1661ehwXL17E9ddfL/395JNPSlaJ+++/HxMnToS3tzdSU1Px8ssv48iRI3jiiSes3r8a1t1SWFgIQCiHro6l8ASpqakIDg4GAMyaNUsRS0MQBNEUIeFBWM3atWulYlmLFy9GQ0OD4vWTJ09i2LBhUu+QqKgoXH755Sb3x1oM2IBNc9TX1+OBBx5Abm4uAKFF/D333CO97uPjgzVr1qCurg7//vsvFixYgJ49e1r3AU0wZswYxMfHK9ZNmTJFSgv2JBEREfj777/x3nvv4cUXX/T0cAiCICxCwoOwGrYF+7lz5/DTTz9Jf2/duhXDhw9Heno6ACA6OhqrVq2SLBFaXHbZZVIV0dWrV1uV3bJgwQKp90pcXByWLVum+ZQv1rFwBl5eXrjpppsU65qCm0Vk6NChuP/++yXLB0EQRFOGhEcLob6+HgsXLsTVV18t/bv33ntRVFTktGOwwgMQOqHyPI+zZ8/iyiuvlI7Vu3dv7Nq1y2InWB8fHym7paSkBP/884/JbRsaGvDMM8/g7bfflt67fPlytG/f3oFPZD2suyUwMBDjxo1zy3EJgiBaGuQQbiF88sknePnll43W5+fn4+eff3Z4/4WFhUhLS1OsO3z4MH7//Xe8+OKLKC0tBSA0J1uxYoXVGSTTpk3DDz/8AAD47bffNFuonzlzBjfeeCN27NghrXvrrbcwbNgwez+OzXTt2hUzZ87ETz/9hHvuucesJYcgCIIwDVk8WgimamEsX74cmzZtcnj/bCZLjx49pOXrr78ee/fuBSCkbNoiOgChaZvYNfX33383Kga2ZcsW9OvXTxIdXl5eePTRR3H33Xfb/VnsZdmyZcjOzsbrr7/u9mMTBEG0FEh4tAByc3OlLrBdu3bFhQsX8N5770mvz5s3zygQ1FZYN8uzzz6L7t27A4DUB8XPzw8///yzzbUyQkNDMXr0aABCu+iDBw8qXr///vtRXl4OAEhOTsY///yD++67z6kxHNbCcRxiY2PdflyCIIiWBAmPFgBrKbjmmmsQExODe++9VyoRfvjwYXz88ccOHYMVHqmpqUbpqe+88w769etn175NZbccPXoUR44cAQD07dsXBw4ccKt7hSAIgnA+JDxaAFpdYHU6Hd59911p/aJFi6QaFLZSX1+P3bt3AwCSkpIQGxuLWbNmoXfv3gCAW2+9FXfeeae9w5fqeQBCWXLROsNmzcyZM8euyqMEQRBE04KERzOnqKhIiuHo0KED+vfvL712ySWXSGmgxcXFisJetnDo0CGp4ZtYKdPX1xf//vsv9u7diy+++MIh10d8fLyid4towRHjVjiOw4wZM+zeP0EQBNF0IOHRzPnjjz8kC8E111xjJAD+97//SRkYP/74o1HwpjWwbha2RHdYWBgGDhzolHiLhx56SFp+++23cejQIZw4cQKAUF6dYisIgiBaBiQ8mjmsm0XsKcISGxsrNWnLy8vD4cOHbT6GKeHhTMaNGydVGN26dauiidx1113nkmMSBEEQ7oeERzOmvLwcf/31FwBBYJgKvJwwYYK0vH79epuPIwqPwMBA9OnTx46RWobjOIXVY926dQCEWBVT/V4IgiCI5gcJDzv46quvMHfuXOnfvHnzkJmZ6fZx/Pnnn6irqwMAXH311dDptL9OVniIQsUaKioqcNttt0mfbejQoS5tQjZ79my0bdtWsW706NGIiopy2TEJgiAI90KVS21k7dq1uPXWW43Wb926Fbt373Zr47A//vhDWtZys4h07doV8fHxOH/+PP755x/U1NTA39/f7L53796N2bNnS71XAGh+bmcSEBCAu+++W9HsjNwsBEEQLQuyeNiAwWDAwoULNV/bv38/vvjiC7eNpaGhQWolHxYWhksvvdTkthzHSVaPmpoaqdiYFnq9Hi+99BJGjBghiY6goCAsXbrUqFGaK7j33nulSqbe3t5mBRVBEATR/CDhYQO//PILDhw4AADo168fjh07huXLl0uvL1y4EMXFxU451rlz57BixQqpDb2anTt3SseaMGGCdLM2xfjx46VlU+6WzMxMjBkzBk899ZSUKTNkyBAcPHgQt956q1uqhcbGxuKFF16An58fFi5caOR6IQiCIJo3JDysRK/XY9GiRdLfL730Erp3745rrrlGcgcUFBTgueeec/hYFRUVGD58OK699lqMGDEC2dnZRtv8+eef0vIVV1xhcZ/jxo2ThINWgOmxY8fQt29fqUOsTqfDokWLsHXrVqSkpNj7UeziiSeeQE1NjVPmkiAIgmhakPCwkm+//VbqzpqamoqJEydKr7322mtSrYz3338fR48edehY33zzDXJzcwEABw4cwNChQ416mIjCg+M4TJo0yeI+IyMjMWDAAADAwYMHkZeXp3j95ZdfRklJCQChOumWLVvw/PPPW7SkEARBEIQtkPCwgtraWjz77LPS3y+99JLC7ZCQkIAnn3wSgGAZeeSRR+w+Fs/zeP/99xXrsrOzkZqaKsV0ZGZmSvU4Bg8ejPbt21u1b9bd8vfffyuOKf4dFBSEgwcPIjU11e7PQBAEQRCmaPXCo66uDvv27ZM6oGrxxRdfICMjAwBw+eWXawZyPvbYY+jQoQMAIYbi2LFjdo1n06ZN0nsHDRqE4cOHAwAqKysxc+ZMZGRkYPXq1dL21rhZREzV8zh+/LhkYRk5ciTCw8PtGjtBEARBWKLVC49Zs2Zh0KBBiIuLw7x583Dq1CnF67W1tXjppZekv1944QXN/QQEBCgKYH366ad2jYe1djz22GPYsGGD1L21vLwcc+fOxapVq6RtbBEel1xyCQIDAwEAq1evRn19PQBgw4YN0jZjx461a9wEQRAEYRV8K2b37t08AKN/c+bM4evr63me5/kPP/xQWj9lyhSz+yssLOT9/f15AHybNm346upqi2PQ6/X8mTNneL1ez2dkZPA6nY4HwMfExPC1tbU8z/N8aWkpn5iYaDTO6OhoXq/X2/SZr732Wun9K1eu5Hme56dNmyatO3DggE37czfsfBGWofmyHpor26D5sg2aL5lWbfF44403pGW26ufSpUvxyCOPGFk72DgPLSIiIqQuqsXFxYpUW2tYsmQJDAYDAOCuu+6Cr68vACA0NFSzRsikSZNMVis1xc033ywtf/3112hoaMDmzZsBCAGoriqJThCE+ymv4vHaDzzW77G9OSRBuIpWKzzOnTuHn3/+GQDQvn17nD9/Hq+88oqUxfHee+9h8uTJOH/+PABg6tSpGDhwoMX93nnnndLyJ598YvV48vLy8NFHHwEQCmex+wEEF8j999+vWGeLm0Vk4sSJaNeuHQDg999/x8aNG1FaWgpAKE9uq5AhCKLp8u5y4ImPeFy5gEdBCYkPomnQau8yb7/9tmRdeOCBBxATE4MnnngCH3/8sbTNxo0bpWVL1g6RESNGoHv37gCAf//9F8ePH7fqfQ8//LCUznrjjTciJibGaJv//e9/Uk2NoKAgRZaKtfj4+GDWrFkAhMDaBx98UHqN4jsIomWRlimIjbp64FyuhwdDEI20SuFRXFyMzz77DIAQFHrPPfdIr82ZM0fRkh0QrB1iDQxLcByHu+66S/rbGqvHxo0b8eOPPwIQ3DWvvPKK5nZBQUFYv3497r//fqxYsQKhoaFWjUnNLbfcIi2fOHFCWibhQRAti6oa7WWC8CStUni88cYbqKysBCAIDXVZ7pdeeknqEeLl5YXFixfbtP+bbroJfn5+AIROtuKxAKCkpARXXXUVxowZgy+//BIFBQWKiqhvvvmm2bocHTp0wHvvvYfLL7/cpjGx9OvXD71791asS0xMRKdOnezeJ0EQTY9KVnjUem4cBMHSqoSHwWDA/Pnzpe6nHMfh4YcfNtpOp9Phhx9+wGeffYYNGzagf//+Nh0nIiJCKqNeXFysCAx94YUX8Pvvv2PTpk2YM2cO4uPjkZOTA0Aoa84Gf7oKjuMUVg9AsHa4oxcLQbiDjft4jJlnwHd/te64BtbKUand9okg3E6rER5VVVWYMWMGXn31VWndokWLTPYh8fX1xW233YbLLrvMruM99thj0vLrr7+O+vp65OfnSwGkImItjYCAACxZssRtN/9Zs2YpAknHjBnjluMShDtY9DmPTQeA+9/mwfOtV3yQxYNoirQK4ZGbm4tRo0bhl19+ASC4Tz788EOXNiHr3bs3Jk+eDEAocb5s2TK8/fbbqKqqAgBce+21uOGGG+Dt7Q1A6PfiTldHTEyM1OPF29ub4juIFkV2gfB/SYXwr7VCMR5EU8Tb0wNwB+np6VKTtZCQEPz000+KJm+uYsGCBVJ58xdffFFyqfj4+OCtt95CfHw83n77bRw7dgwjR450+XjUvP/++4iMjMT48eM1s2gIornCio2cQqBNiOfG4klYi0clCQ+iidAqLB6pqan47LPPkJiYiG3btrlFdIjHveSSSwAI2SNlZWUAIMV2AELRrqSkJLeMR02HDh3w5ZdfYvbs2R45PkG4AoOBR5kcz42cQs+NxdNUksWDaIK0CuEBCBU7jx07ZpTN4Uo4jsOCBQsU67y8vIzSdQmCcB5llQAb1pHbioWHIri0pvXGuhBNC5cIj7q6Ojz33HOYPHkyLrvsMtx5551IT093xaFsIigoyO3HvOKKK9CzZ0/p79mzZyM5Odnt4yCI1kJppfLv1mrx0Ot51NTJf5PFg2gquER46PV6xMXFYenSpdi4cSNGjhyJRx991BWHavLodDq8/PLL0Ol0aNOmDZ5++mlPD4kgWjTqYNKcwtb5pF+tymKhrBaiqeCS4NKAgADcfvvt0t/XXXcd3nnnHZSUlCA8PFyxbV1dHerq6hTrvL29pQZpLYErrrgCx48fR1BQEGJiYqRS7QCkZXads+F5wfwcFuyyQ7gNd8xXS6I1zldRmfLvC4XWff6WNlflVcq/K6qd+9la2ny5mtYyX9b0+3JLVsuhQ4cQERFhJDoAoRPsp59+qlg3Y8YMzJw50x1Dcxs+Pj6oq6tDRkaG5utZWVkuO/ZDSyKxcmcgnp5VjDkTyl12HHfiyvlqibSm+Tp1NgCAXP33XHYNMjLyrH5/S5mrrHxvAHHS34XFVcjIyHf+cVrIfLmLlj5fHTt2tLiNy4VHRUUFXnrpJdx7772ar8+ZM8coq6KlWTzMYTAYkJWVhYSEBJd0hq2tA/7YISz/sTMCi++IcPox3Imz5qusEvhhAzC8J9CnBVeKd/X51RTxUfVlLK70typzrKXNVble+beBC3RqBl1Lmy9XQ/Ml41LhUVtbi0cffRSpqamYNm2a5ja+vr6tRmSYQ6fTueRkLK7gAQg+7qx868xgzQFH5+uFrw1440cgMgw4v4KDn2/LLhfvqvOrKVJeJZ/zAJBbbNt531LmqqZOOQ/Vta75/beU+XIXNF8uTKdtaGjAwoUL0a5dOzz00EOuOgxhgcJSebmoDKiilDoAwP6Twv8Fpa0366Glog4uLa0Aqmtb33mvLhhGwaVEU8FlwuPFF19EbW0tFi9eTM3HPEhBqfLv88538TZL2HlRB+ERzZuSCmOR0RrFpVpoUJM4oqngEldLTk4OVq5cCT8/P4wePVpa/+6779rc6ZVwjEJVhP/5i0CXBM+MpSlBwqPlotWbJacQSI51/1g8iVpokMWDaCq4RHjExMRg7969rtg1YSOFKotH1kXPjKMpwfO8UnjQk2CLokQjcas1WjyMXC1UQIxoIrTuCJdWgJHFw4mulupaHgdPNb+242WVQH2D/DdZPFoWpiwerQ210KAmcURTgYRHC6egVCkKzuc7RyTwPI+RD/DofxuPxUubl/BQx72Q8GhZqEumA0BuUfM6R52BWmjU1QMNDa1vHoimBwmPFo6rXC3Z+cDeNGH5j23O2ae7UAuPCnK1tCjI4iGglcFGcR5EU4CERwvHVa6Wk0zxvdPZaFbuFrJ4tGxE4cG2CHCF8Cgp5/HKdzw27LPv3K+s5rFiM49cF/WS0XKtUJwH0RQg4dHCUQsPZ1k8Tp6Xl8urjG/mTZmCEuXfQsEpwhMcPs3j5hcNWLXdeS5AUXh0igV8GsPnXSE8XlvGY8HHPKYs4FFcbvv4H36fx7XP8Lj8MdfESWmJDLJ4EE0BEh4tHPVN1llFxE5mKfdxOtvhXboNsng0HRZ8zOObdcDNL/LQ6x0/L4VGaMJyeDAQ3dghwBXC4+Ap4f/qWuDsBdvfv+uY8P+h00LAs7PRsnhQLQ+iKUDCo4WjtngAQnyGo5xU9TlqXsJDeYMj4SFQV89j7v8MuPlFg9sqfYq924rLtc9VW2FTacODgZi2wnJ+ifMDK1kxU6wRV2IJNhblQoHj41GjZd0giwfRFCDh0YLR63nNQDtnuFvUwuNMjuP7dBeusHhcKOBRV9+8XTZ/bAOWrga+WQf8ssU9x2Sf9POKHN8fm9HCWjx4HrhY4vj+WXKZ8Rbb0fRZITxcYJHRsm6QxYNoCpDwaGbwPI+0DOtucsXlwgVXjaMBpvUNvJHQOJ3dfG66RsLDwYvxTxt5xF/Do88cHrV1npkHg8Hx42bkysu5ThABeUU8zlwwP64yRvTlFTt+TPZmzlo8AOe6W/R6XjHeIhutNXo9rxBdzrBCqiGLB9FUIeHhBorKeNz0ggELlhgcDiJ76Rug+008Rs+zHJDGmq6DA+RlRy0eZ3MAvarl9mk7fNyewtkWj1/+4cHzwIlMYOcxx/ZlKzzPY/pTBkRO4bF+j2PnVmGZ/H5HU4xzCnh0mMmj0/U8th3WHpfBoLz5OkPsKIRHCIeYtnKfKGcKj4JSOZYEsN3iUaY651zhatGybjS3rJbicsvilWh+kPCwkgsFPDLz7PsBLF0NfPsX8Mr3wM6jjo1jZWP0//Yjgt/aHOwNtm+KvOxoETG1mwVwfoxHUZn5MRoMwIIlBtzzhsHmYFnjrBYbB6eC/R7Errfu4sgZ4Nd/hRvf2z87KDyY86Wi2rF9bT0M1NQJy6YEUWWN0iLnDFeLuywe6n3ZmtWiLuueXeD8m6tmcKkJ4cHzPMoqm9YNvqiMR/J1gnhdt7tpjY1wDBIeVnDmgvD01mEmj/0nbP8BsILlXK6ZDa2AvTlkWNgXu20/Rng4avHQEh45hc7JlgGAhZ8Y0PZKHvPeMZjcZtUOQcgt+V0QdbbgbIsHKzz22XF+OMLBdO1lADh4isfNLwJbDvlbtS/WQuZoeW12TrUqiQLGmRzq6qL2ZLmwN/SwINcJD7V1pshGi4c69spRi0d9A48TmUorqGY6rYnv9cr5PCKu5PHtX03nBv/Pf/I8OSvdmmgakPCwgg37hN4ePA/8sc32HwAb8a6uJGor7E0zM8/8tuyNpEcHDt5ewrKjMR5sKi3b6faMk9wtX68T/v92veltdh+Xl4+etf470et5o+wJR4UHG7TobovHodPyZ79QAFwslv++500e360H5n0Uibp6y/ti58VRVwsrKrQCnNXbAMoYjzU7hRvh9Kdsc0+aCi4FgBwnFuoytnjY9n71nGQ7KDyue5ZHtxt5PPC2/BmttXhcLOaxeqfgPv16bdO5wZ9j4siouWXLgoSHFVxkLognNJ72LcFelGx9MmJpaFBmqWRYEh6MSGkXDsS1E5YdFx7y8sQh8rIzhAfbOba00nRFVPbp/qwNGTVaAbfl1fZXXjUYlJ1u0zKBCjcWJPsvXfvviipeEmdlVV7Yk2Z5XwpXi4NijA3YNSU81JYQ1tXy4W9C/Mev/wKnzsNqSirkuVe7WpwRQ2JqX7YGl6o/uyMWjyNnePz6r7DMti/QDC7VsEqWMt9PUyoEeC5XHqszm1sSnoeEhxXkl8g/AC03gyVY4VFYav9NSV0rwFLMCVuvom0oEN9OHINjbhGxamlkGDCwqxy854wA08pqoLYxNkCvN53+95+dwkPrwqrXy/EItlJSoQy05Xngv9P27cse1McSBdnu48rgx00HLO/Lua4W+fwqtdLiwd7M2ZihdJuEh7wcHgJERQBc4ynq3BgP5e/HUYtHTqH9mUmfrpTfJ46D53mrK5eyga6OCg+e5/HBLzxe+Mrx9HLWLU3Co2VBwsMKWFP6ySzbn44VwsOBIknqoEiLFg/mWJHhsvAALKfvrdrO45ctxpkzFVW89N4uCUCnOPk1Z6TUqi986uh/ACgs0ymeEM/mWv+dmLqw2uta0ArwdZe7JbeQV1jjACGuAxCCj1k27Te/L57n3e9qUX23oqvFYOAVYtIWQasOLvXx5hAZJvztyhgPm4WHavsGveVgcS2qa3nJNQkI31t9A4+aOtmyFxIov64l5NnvylHhsf0IcP/bPBZ9zuP7v41ft+WBhxUeeUXwWKo64XxIeFgBe3GvqLbdLOos4aF+r8UYD+Yi0jYUSGgv/23OZ7r1kNB/4ppFPNbtVr6WzjyJdkkQ+mGIOMPiob7waT0tH8/yVfxdWW197IypC6u9cR5aNwt3BZhqWVYONJbx3n5EOYbtR2G2GmlVjWxpAhwXHux8mnS1qNbnlwgxOLlFSguULYKWPVZYkPC/6G7JLXJeM0O1iLE9uNR4HPa4W1ZsMZ7f4nKlwGgXLi9rWjwY4VFd65g19OhZefnwaeV+5rxsQMhEHu8ut27/6kB8V6QcE56BhIcVqJ8qbXW3KF0t9o9D/V5bLB6Cq0V2i5gzXf69V74wbD6gvEiwn71LAoeoCCCosUaIM1JqjYSHRkbE8Qxfo3XWulvY/Xt5ycvOFB7usngc0hAeJ7KErqc7VGnbdfXGVhAWtah1S1aLas4NBuH7UccK2WPx4Dj5SV8UHnX1tsdimCJXJTzKKm3LwtESY/YEmLJuFpHicqXAEC0+gHZWi/p7cOQaxVqC2M9TXcvjyzXCd/z6Mss1iErKeSNhSgGmLQcSHlagLrXMBpjuOsbj/77ikWMiD7+mllc8vTkSXKq+ORSWCjcZU4g32UB/wN+PU1g8zAkP9kn6eIbyNYXwiAc4jkNyjPD3uVz7UiC1xiyiKTyyfIzWWS08SuTlBMb15EzhcSzDvHXBWfyXLh9jQBfhf4MB+HmzfGMLZDJpN+43PSb1zcZhi4cquFTrRqPVGC23yFh42BLjId6swoIAnU4Q2lFt5NfVDxH2kqMRqGrKsqOF1ra2PtGfyOTxz3/G681ZPLQEpfp7YH+De9N4XPGEAV+tse58ZlOiWeHBunazLlp+SNEqO0BxHi0HEh4WUGctAHI6aU0tjyvm83jmcx4Pv6/9w1T7fh15mtByE5hzt4hCRXziYWM8si6avpCwgZtGwuO8cSqtGOdR3+D4xUEdx6J1czqW6YjFQx5/xxh5vTOEhzjPer22NcLZiN+Ttxdww1jZmvXhr/JnvHOKvP1GM3EealHrzBgPg0F7f1oFq/KKYFSp8myu9YGX4g09PFhe154VHiVW7cYsFVW8ZqyELdYUbYuHbWKVtXawn7GoTGnxULharLF4MJ9j0edCqu3db/BWiWnWEsSKDbU1x9y5CGgLD7J4tBxIeFiguNy4PPiJTOH/XcdlIbHloIn3qy4wJRX2d8nUyogx5W7heV4aW9tQ4f94KywepRXGgX1sUBdr8UiJF/5XxHk46G4pVFUsVVs8amqB0xcEi4cvY/g4m2N7cGkyM277hYd83AmD5fX7Tti3P2upreOR1ngedk8ChvaQX2NTZ6++FEiJrZPWm6pOqRbEVTWO9X9Rz6c6mBLQtmblFRs3HKyts66XCc/L6ebhIfL69m1kUeYMi4eptFzxIaOunsfUBQaMuNeAvCLtOXTU4lHfwOOrtcKyrw9w11TlOFhhJP7+AVMWD+UY2d+I+HuuqVPW1TAFW4vlQqFs6TqvEg0b9pk/t7SO5WjF5dbExWIefW41YMidBkVtn6YCCQ8LaF2oRFfLZiZFMbdIyDJQoxXtbk8LbUA7MNWUxaO8SoiUB4C2jU/iUW0gFREz9fSgflI3GOQ6CjzPS6IrMQoI8BMu6J3inJdSaym49Og5QG8Qjjd2gLzenhiPjjHyuO0VHuwT9MSh8v72n3Ttj/14hvz99ukk/FPj4w0M7AoM7y7cbfR64N9D2vtTn1s8LwQa2ot6PrVEhlbGUm6Rtni15ryqrhWsboDS4sG6WpxRlt1UdozoRl27C1i5XYipMVVV11HhkX5ePpcnDwM6x8vnXnG5UmAEBwABfsKypsVD9d2wIpT9rNZ0oGZFWW2dvC/1g86mA+aFLVvDQ4QsHtbzw9/A4TPCw8bL35LwaHZomWbP5ghPNZsPKr9QdclqQFt42Otu0XK1ZJio5cFuKz7xeHlxSIoWltMyBVeRGnVBKgA4dk74v7BUvmB2jpdfV1o8nBvjUaYqxsXGn4wbxEkxDNaWohf3z3GQ5gJwjqtl7EBA1/iL2ufiAFP2e+qbwiEsmFNYcABBdAT4AcN7yHebTSbiPLTcBI64W9Qdf7VutFpuNKGjrfF6ayxpWhktgNrV4vhFmL25sgXKxN86a4U0VS1VFNSRYYJABGwLLmXPu06xQARj1SgqVwqMoAAOQY2/E0t1PAD5N1JRxSvOAUsFAnmeN7IGiZ9J7UbKL1FmwKihGA/HOMFUl/5kpWP1o1wBCQ8LaFk8DAbhZqxu+CamMrJoCQ97I+ttsXiw4oaNar+0j/B/bZ12J9X/ThufoGKch2jaB5Sl0hW1PFxs8WBvuP07y3Ea56yMAxD33yZE+VSsvlFai3gD8PEWbkLdk4S/j5xxvO4Azwu9gbTcI+z31LfR2tG/s3KbS3oK/w/tVisV0TLlW1e7uAD7M1v0euMYCGuFx5kL8o1dx1yd0q0QtOoaHiLtw+VlZ7haWCtAjw7ysvhbv8DcZE2lb4tjjQiVxYstFo8Cxe+bQxvm8xaX84rvLtBPDjK2LrhUGL9aRFh6qKioNraoiC4ytasFMB/nIYo3by+57H1rFx48L3TqXbpaSGjYdcz098FW+62qAd7/xQ0DtAESHhZgL1TsE/I363ijapdi8SYWrQuuvbU8RDEhPiEBphvFKVJpGeExur9skt10wDqLx/EMYTu2P0qfTvJ+EqPk1FRHYzzUwaVqE73ySV8WHnX11hWIEi/YkWHKwkrldpY5F4VHZJiQ4TOwMbukQQ/Me1doVW+vAPngF2DgHTz6zeVRr4oLUs8DAPRL4RTbXNJL+LtNsEFqEngwXdslqHVO2mvx0HqfVj0W8btlBQYrhod0l5etEbSlpoSHk7Na2MwNVniIDxSsgNCaV4OBlz57eDAQGyks55dYL1ZZi0e7cEFIs+NgLRtBAZAtHjYEl6p/T5YsHuoUY4C1eBi/Zi7LSozxSIwCOjT+xu0pInaxmEeBE6xcagwGyynBzuSdn3kkXit06p37PyGhYdjdPMY+ZMCGfcZjUbcZeO8X3mwGpLtplcKjppbHX7t5q1pZs8GDorUAAL5aZ7yttRYPe4WHeNOMaSuLiUwTfk9l8TD5hjS6v7xe/cSh1/M40mj+TIqW40FEi8dORmEP7ym/z8ebk9wtaZmOpdSas3jwPC+5WhLaAxGhnCIzxVKcR109rzBxhwTIr9njauF5XroBiJkDg7vJc/3xH8CER4XmXUUaFgVLrG+sp3I2R/nZ2Hlo3waIihCO2U9l8RjeS14WA195HnjxGw3hofFkbm+/Fq25NGfxiGoD+DUmKrE3u9H9ZVFiq6vFlPDIc4LwUFo82NgKYV4vMK9rWTzKq+SqomFBQFyk/Jq1/WQKVBZN1tWiDi5VWzzUNyn19yWKfyPhYeH3pTX27MaAUNFaER0h/1Y2H9QOtC8pl4OEO0Qrs/FssQodP8cj/hoecdfwOJXlvJtuVh6Pjtfx6Hkzj1KNQnDO5vBpHg+9x2tafDbuB8Y9zOOG5+Rx1NTyRpbwwlLg8z9dPFAbaJXC46H3eFz+GI9xD1tWrWyMR2pv+SLDXqjFJ5b0bOMnZy1xY0+MB8/zUvBaZBiQFCUsn8/X/vFqxXgAQEIUh5RG18iuY8oqhafOywGFg7rKLpQTWYKY2NFYgCooAOjVUXk88e/qWvubxbEN4kTYp7FzOfLNSnzK7xAtfyeWhIfa/aS0eNg+3rJKOZhRvLndOEG4yXOM8eFcLqQMBFtga76wWSE5hfJn6csElYpWDUC4YMdGyoN48Bq50NuS35UdhgFtMWyvq8Vq4dG4XViQMgBUpFsiJ53npy9YrjqqFB7yZ/f14SQh4uyslh5J8nKR5GqR12n91tX9ZGIZ4WHtjZVNC48MV1o8iiuMLR6BjcGlBgOMOhUbBZc2ngtqIXHGwnegKTwKhOuT+FpCe/nhp6xSu9geGyPTIdr6istqVm4Xfp919cKys/hhg+DiPp4BrNnlvP2a4vmvlA98/3cbh/cf4hRxdj9ulEXemRxZ2LIPI68vM7aceopWKTxW7RD+33/SsghgL1SpfYxfT4oGrhwuLPO8cVaItsXD9i+/lGlG1jZUMEECwroLGiZO9hisqwUARjdmg9Q3ANsOy+vVAYviRbW2TthOVNxDugmBqiy9k+Xlw2es/VRKyirlTA0R1tXCBu+KN1nW4mEpwFT9lOio8FCbuwEgPITDujd0yP+DwxcL5Dn6yo524+y5yd6s2HOsLyM24toBl/UTlm+ZqNxXdFvg8euF8TTogYWfqISHlsXDTleLVraKukS4wcBLcx4apGxfL5IcK4vf0grLsVHqGzqLKAydUcdDtAT4eCvjm4o1hIeWxUNtmYljBKK1Aabqc8/Xh5OEZVGZsrBgkL8sOgHjAFNTwaXqwNjqWvNZQdoWD2G92LAwrh0wdqD8ebXiPNhU2g4xnNUVl432w2TGpGU674abwezXnv46tnD4NI/lm4Xl6Ahgw9scnr6Fw33TORz/hsPcyfK2osWdLbg3dQRw5SXCctZFYMhdQnzIwVPudRWpaXXCo6ScV9QEsNRymxUeybHKKHYAGNUP6NdZ/mEcUCl4ZwWXKiwYjMUD0A4wNRVcCgBjBmjHeagDFrt3kN+zlKlcyJrwRXony/u0V3hoXaRLTdxwxfRRpavF/A9JLTyCmYuxPTdZxcVfNcdtwzjMmcxJ9TX+S9eOATKHwuLBzANrAk+Oleed4zj8/SaHU99zeHaOUhgCwKPXyTf4FVuA7Yfl8TgzxkNLxKljdSqq5aeyUBMWj+RYZcZUugV3i6msFkDef1mldjaXLYg32OgIYxdHVQ2vGIdW3R618LDP4iEvi79vMcBUXTI90E+2eADGjeJMVS7VipkyZ83M1ahZkl2gFAvx7YAxTBq8VpwH+wChdrXYYvFgBYxYBsAZsO5tZ5XgN8X/fS3PzxOzOKmEASA8/I0fzNx7GoUHe0/rHM9hwWx5m4OngGc+59H/Nh59bvWc+Gh1wuPoOeXfFoVHifC/kAvPoWui8vXL+nGKbIKD6cov0lkxHopOs2FAYpR8MmkFmKr7tLCM6icvs08c6oDF7knyMX7aJL82vKfxTa03Y/I/fMa+k1lTeDAXRbaAkHhDshTjsWwDj2lPGrA3TenGaRcuPCGKLhHHLR7GcwIAt0y0z+rB87ziosberNhzqo3qyd7bm0NKPAeOMx5PcCCH5+bK659YIoxHr+c1XSHOFB7q/bM3u7AgoX09i7+vcGNX1IixJDwYtyYb4wE4r3ppQ4PcETg6Qrgm+DfGpxSVGd+seV6jiCDz/YUHc4oYj2wri2SJ57KXl/xZxXNBHeMRFKAsnc+KkvoG3qheS1WNUPJfU3iYcWdqWUOyC5TF3+IiOXSKk90nWw8bu29YS4Xa1WJLETH2epDmTOHBPOjZE7tlLUfO8Pi58bobFaEsEicitkoA5NpBp5jq0p3jgRG9OXz8GGeU9da9AzSvE+6g1QmPI6qncfZL0kK8uYgXri7xytdH9RPcDOL3pw4wFW8SbEMye2I81J1mFRYPjacAtYWEJbotJ6V97j0hx6WIAYvhwYIrR9wGUEbDs1UyRTrFykWKnGnxYG9QrPVJvFGFBXPSBVctPGpqedz2Co8/tgFXzOcVTz2R4cKPTrR62CM82BsYW5aa5boxcoXV79bDah9rZbUcPwJA9RQt70MtPCwxdzLQrVE8bzssBMoVl8vWB/UY7EErTVZduZQ172u5WpJjhV4rtnQ/ZkWqWeHhQJxHfok8V6L1U7rhV2hbLNS/d/U4FRYPKzKzxHEAwrVA7EkjWl9q6pQPHoF+clYLoPxeTZ33haXarhPzFg95WYwjKyxVPtzFtxd+d2I6fnWtscB1hsWD53nFfi4Wa8fb2YNCeDjQe8sS/8fEdjxxA4dAf2ORkBInW261LR7C/3dO5bD/cx0yf+bwwcMcJg4FrhnpGdEBtEbhcdZ82hFLfYP81CleuLomKtNIO8QIBXq6Joj7V95cxKedqDbyDcgei4dSSHCK1N4MjSp/4jG8vZSxDCKiuVOvB/79TygwIz6Z9OkkXBy6JRq/LyVO++ney4uTUgvTs+1rkqZOpQWEi2hdvbAv9kbPuo9Eq0fWReXcH8+QBdPFYuAlpoKf+H5xbuyp46EV46EmIpTDtFR5+7VWBqOpzxFWbJjK3rAGb28OU0fIfx85a2xNE6mwM/3OGosH60ILDQSi2ijPKbEYWgoj9C3VkTA3L+z+HclsYa0AolgSb/jF5drCQy2ozblarCkNz+6T/b5YEcq6N8xZPLREorh/LYuHue9AFB5eXsrYoz1p8ntEEaEIhlXdvEXB4O0lzE1MWzm7ydoYj4vFMCp34Ax3S1ml0jpojatFr+fx914er34PnDxv3OBSizMXePy8WVhu3wa4e5r2djodJwWQZuQK13HxnhYRKlx/WBKiONx7NYc1r+lw3VgSHm5DTBcVMSc82BuhWISIdbWM6iebqsQvv65e2VhN/FG1CZFdHo66WtjgUsB8jIdYX0KNup6HVl2IoABOcRwAGNYTJhEDTMUCa7Zial7EJ0TxSTU8SK+oZdIhWj4u+0SkDvRlTcpGwsMuV4t8QTUlPAClu+VLK7t8qi9oplwttgoPAOjZUR7P0bPKJ3L2+7bb1aJVx0N1gzOyeKhip8SOx8mMK82SxcOa4FLAMYuHVtVS8SZaVaMd4GxOeIQFA6FBsuVNy+JRXsXjPNPUsaqGlwQ1KzwiTAgPtcWDtV5qBQIDwucUhXVPJoPNnKtFnJv24Ur3yC6m/o/oVmLHqj7X2RoeXl4cvL05aa6tFR5a34Mz3C1qi4s5i8eZCzzmvWNA3DU8xj/C48lPgFtea4/aOtPvEdl1TLas3T0NmtYOEdaFsuOoPMbO8drbNwValfDged7IDXDqvOkUMfYJW7xwjRkguCAC/YF7r5ZPhv5MgOnBRpNXXb18gVAID7tcLcqn9XbhkHzLWo3ixJu42s0iImY/AMAXq4FbXmIDS+XPwrpbAO34DhFHA0zZFEHW5y8+HYs3jLahBsX7FJktzIXRXKyJWngIwY62PeFbY/EAgMsHy59n5XbryherL2jqgEURW10tgPJGcvQcrxB8rAvP/nRa489nPsaDMwouFYNmgwM5ae4sxniorCgszqpeqrB4tBXGyFYNPXpOw/poJDyMY1FEq4faYlJcziP5Oh6JM4SnZgCqWCV5mT0X2HiLQH/ljYv9XtnvgXUHsw8OnePl65/oauF5Hiu2ABsPCorJYOClY0ZHqDJ12BgPCxYPtoYHey6KQsbaImJa8V4nnJDZolUfQwu9nseoB3m8u0L5XeSVeOPPnZaPwz4Qs9djLQZ0kV9fvlkZ39FUaVXC42Kx8YlSXmX6QsSuF394AX4cjnzFoXAlh6E95C+craFwoDF7QREEGCyLgJo6210R6pgNjpOtEZl5yptmda0seNSBpSKR4Zxk2SgqUz5JDGYqRqqFxzCN+A4RtrbHYY3S65ZQdI5lxERZpfCUJz6Btw1V5tyyzd7YJzLW4sFWwQQY4dH4pGkwaFd1NIe1wsPbm8PsccJyfQMweh6PnUfNz4+RxYM5lxy1eHRPkmOSjqpcLawLz+50Wq0YD7WrhdkmVCO4lO07I8Z55BTCbPVF8Rghgcbp3soiYvbfgBQWD5WrBTCOIQMsu1oA2RJQXqUUbuv3CO/neWDFlkbhUSK/X+lqMb5B+fsK5ng2q6XKhPBgb/SsSzo6Qv4+LhQI15dlG4CZzwK3v9UeWw8J56uYCh8doeyELY9PFkCsC4A91xU1PJhrgK1FxLS62zrD4qEWHqYsHruOyZYHXx9lKYavNYpPqlEHiJqDDTD9bau8zDYObGq4THgUFxdj3rx5GDFiBKZPn47du3e76lBWY6opkSl3Cys82oXJX6JOx8HfT/mlsoVaxHoT6uwDVgTYavXQylIRLxQV1cpjqQNRTXH3NPkzBPgJLpb/3cUpyqGzmS0BftpdUEUcreXBXlDZ+gillcqbfKRKeHRjxNFexp98qHEMkWHAz8/L5uxAf8HEDThWy0Mck5eXZcvD3dPkhnaHzwCX3Mvj/rcMJlM7jWM8jJcD/YX6DbYS6C83lDuWoZx3NlvKGVktoqCoq1emsbI3vNBA7eBSEfZcmL/EdAl60TKmJcZYYeOYxYO5IatcLYDSzSqirttToiEcTcV5sFY70dqQbyJVPkLjty7W7zBVx4N1tbCWQ/b3G9OWUzwInMsB3v5ZHtev/yoFWXRbZTVWEVY8qJvasfsWYYsD2hpgqtXd1hkxHpkXlfstLtfuEbVml7zuw4c5bH6Hk77jNTuVblot2HtSigXh0T1JrvzLxk61SovHK6+8gnbt2mHDhg148MEHsWDBApSVuTjp2QJsfAd7AzUlPNibHfvEpEX7NvKJdfCUYIFQCw/2x2ZrnIdWXQ5lgKm8rMjxDze9z7umAhk/c8j4mUPFOg4Hv9Bh/mzljYztRTG4m/D0bopoppS7fa4WeZm98ZRWKm8WaovHsB5yeffNB4X/LxbLpt/eycIN9YdnBSvPK3fJ6abOEB6RYXJmgSk6J3D45z05pY3ngQ9+BV5bpr29uRiPEjM3WGvp2UH4v7JattABKleLE4QHe8NgPwPb+C40SPgeRNchoLwJXn2pPLcf/CqINq0S2ObmxVmuFsUNVrJ4yONTBzQC1lk8OjC/ZfbJnP0diTEurFBkA721xK9o6TBVx4MVgOxvjn1Ii2mrfO2Xf5R9m/7eazwvccz3LsKuUza1k5fVGS0iCe3lz2lNnAe7HzE+JD1bu8qzLagtHgaDtoWPrWg6aZhggZs9Xvi7QQ98v978cU5mCf8ntIeidocWPt6c4qFPJCXOeF1TwSXCo6qqClu2bMHdd98Nf39/jBo1Cp06dcI///xjtG1dXR0qKioU/2pqamAwGJz+j316uCpVHsPJLF5ze9YkGxmmvQ37T3RLlFQA+cW84kknPFgZUJVfIu8PgMV9i0LF1wcI8BPey6Ya/nda3h9rJo1vZ3rfPM8jvp3wD9D+fP0789LN4/qx5sfJ8zx6N7pbcouAi0W2fT/iBTo4QFmQq6SCVxQnahuqfF+AH4/B3YTXTmQCF/IN+I+pp9I7WRj35GE89n8G3Hu1/FnZImKllZa/Y/GfXm+Q+7SEWf7+xLnc+RHw4h3yMQ+e0j6mOg6kpEI+hnihDg+27rha5xcrKLcclJeFc0Ggotq6/av/sU/RbJBhUZn8WVlXS0igUMiIrc3i7ytvO3UEj/cfBvwaEwL2nwQG3cnjZKZ8zNxCg3TTjwgxHndIIC9llV0sNv25tOaK/Se677y9gPbhwhjDg4xvZqFMAbOCUuU+ReHh7SV/TvZBaP9J3uh4gPBwUVdnUDwtR4TK24YHG48jyB/Sb0Sksob5Hph4E/ZGzwZiR7XhFW6PV39QHufIWbmGhLA9EN3GeCxxkfI8hIfIrxeWyuNRWJQi5PWxkfL6zDzLv1PRchLkD1zSWPCwvgE4fcH637jWP61A/oJS5T5zCw3Yd0J4rW8n+XPcOF6OTft6nelx5BfLv/HO8db9BllXv0inWMc+q73/rMHb8ia2k5mZieDgYERGyva2zp0748wZ48fgpUuX4tNPP1WsmzFjBmbOnOn0ce1PiwIg2LsHd7oAQLjSHTxRiYwMY8fhmawIAIJaaKi+gIyMeqNtWKJC5e237stBxkUfAMIc8PVF0Bk4AILp5MTpfHRqK1+hs7KyzO47rzAOgDfCgxqQmSlE2cWF+wMQHlG37C3DZd2ER7mNu9sAEMwriW3ykJFhZ5RgI6ue55Bd4I1uCfXI0DAlsyS1k4+9YWcuhnWvNf8GhotF8QC8EB7UgPrqEohzdy6rCBf9DNLfbUP1RvPVt0M4dhwV1MovG/KRV+IFQHgkjQkrREaGRoUsAHxDOADhfelnc9HWz7rxVtZwqKkTUpxC/GuQoRXha4JrhwGLPkuEgedwMrMWGRoV4DJz2gKQHwuLyw3IyMhCXQNQVSMo3AAf64+rnq/2wUEQ55Mt011XdR5+PrGordehqLQOGRkWGuBoUFAcDUB4xA71K4N4PqSl5yAAgjrIzpM/X0Wp8Nt68jp/fPlXCG4aW250zk7uB3R8xgcPfNgOZ3J8UFYJvPJNGZ6eJZzzv2yVP0+PhFJkZJQYjattSBxyirxxoaABGRmmI1VN/RYz8rxx6rzwGDmwcw1yc4S5b6iVjy3SOaYG+9KFa82FPOX3VFgSC8AHoYF6ZGYK5tb2gd4AhH1v/68KGRn5qKjmcDZHTqNr0AM7DmQjPSMY4jlrqJV/3zUVvgAYhQDAmxPOr/JS+VpxIVeen6ycMADhAIAQn3wAxqYKvi4HQToOgKBMtJ7wl/5ZB0AwWXnp85GXW4U2wfEorpAjVoN8SpCRITxd1JT7QLz+ZuWUIyNDMJmcPS9fQ/U18jXXxyB/tmOny5CRYdpsZTAAZ3MTAXCIa1uHmLAq6TP+u/cifPV2mvIAnMkWrsMsR0/mwKteNnX9uk0+H4Z3k+c6xAvo3TEah8/6Yf9J4K9tF9A13vieciBd/qxRYfLcmCOpbTAAOTUsIkSP0qLzKLWy6aAz6dixo8VtXCI8qqurERSkrFkcFBSEigrji/+cOXMwe/Zs5aC8veHr62u0rSPwPJDeeA1NigImXBILby/hx3yhOAhJSUFG76liCjj16xFrlPKnpn834PtNwnKlIQbejHkzOSlCURBK59cOSUmCms3KykJCQgJ0Om0DFM8DJWInzwhvJCUJN56QNgBeFdafyglFUpJwgT/JpB1OvjTKrLvFWnpbud3wvsBXjWbE/KpohLcFvv1LqGw6sq/p9xkMQHHjZ4xu643kDvKF3Ms3AgYm4r5tqN5ovqaMBJY0dl88dqGd4olt9JC2SErS/vLimKe8wJBoJCVpbmYEW0gpPtpf+k6sJTZSMBnnFvtpvrdW9eBQU6dDdEySwpoQ1dbycU2dX5fVAfjYePu+3eMREgjUlgL1Bl+bPxcA1DV6woIDgMRY2b8YEBIjza+BsR53S4lFYhSQlATcMAkANArPQHh9Zx8gdrrwu91yOBSfJIaC44DdX8rbXT8hDElJxulcMZFAThFQVO6NhIQkqH9uln6LfzJVfqddKs99F43UzS4d/HGqsalhRa3ye6poPDfbhHhJ6xMSBCtJWSVwIjsQSUlJ2HnUeL81XBzYW1XPLlHSnNZ7GW/fJkw4v84zrjsff3l+OOYO0L9HO3jpAL3q3BvQMwYaYQzo2ZHH0bPCF5mWJV+ve3UVrm0JUcqqrT1TwpGUFC4cl0nvreNDkJQkiA32mtu3u3zNZbevqJevdVrkFMqN8Don+mJwL1/gD+Hvopr2Vv/G1ej1QK6G3vENjFHsc8/X8vLM8fJcGwwGXDOiBIfPCjeGvw/FYsIIGPHPCXl5YHd5bswxdiiw6Cv5766JXnb9dt2FS4RHQEAAKiuVsriyshIBAQFG2/r6+jpdZGiRlcdLfuVeyYCvrw4dYww4dV7w/XGccZnp/BL5F9i+DWfRj58SL7gsAODMBa7xwib83TaUa2zyJma8KPen0+lMCo/Kah61jUW02oZB2i4yHOgYY8DZHOBAOsDzHHge2N/os+8YA7SPcG/iUt9O8hz8vhV4d4WQBunnC5z+gUNcO+05LKngIQZpRYYDbYI5aT9lVXKTKUBwtajn69K+PLy8eOj1gutADOTkOCHN19R3FxIoj7eyxvJ3LCK40YT3tQ+Hye/OFEnRBpzPF8zw1bUcggKUxy0uNzZZlldzjS4K4bgRodYfVz1fPTrw0Ol4xbz6+Qrpq0EBQnn5imrbPxcAlFcJOw0JFDMtGr/HSnl+xW0AYRtr571dG+DSPgZsOiDEPJzMErp0/rVHOEZ4MHBJL+39tW8jHFNvAEorObQN0z6mqd/iuj3ymCcNk4/RNlQ+F0TiIoXYn7JKoKBMnkee56V02vAQeb1OB/RLMeCf/wRBWlTGNbZ3UO73XA6ncOGy16XIcONxBPoLx2DP8+pa+bjl1fJnigjlEBHKK2LbOE4ILtXpAF8fXtHZdsmjHC5/1ICqWuVcCdtziItUuooSo5ixhsnjKS6Xx2PqmhsdIW9/sdj8eZmZJ2/bMQbo0UE+B09m2XdOA0JgcYNeK7ZIHqdez0vnYmgQkNpHeS5eOawSLy4THkK/Wy8E86vj5k5ny3PQJcG630a/zvL1DxBcNPZ+TnfgkpElJiaioqICBQWyDffUqVNITtaIgHETbGCpmPYpRv1W1WinaIk/wIhQ80GVImwwT3o2ryjRaxRc2ujD53mgjlH5WphqcQ8AgxpjG6pqhKC0YxlMa/tuFofsdNgaERv3y7UXauuA9XtNv0/9GVkfeVmlsqaKOrgUAEICOQxsTCs7dk5OpU2JM198hw0uFWt5vPQNj7teMyh6f6ixpk+LOSw1+dOqiFhSoZ0RYQ/+fspy5IAw72wZeUe704YGKceoCC5lLDfBxs8jZpkyQp7vlduBncfkfV8+xPRvlQ0wtbV6aW0dL/U1io5QVubUCuqMjeSk32pxuXBDAsS4GWG9+vtjC0EdOAUc0khJP31BKQzYrBZ1YzxALhzGVi41VccjJMC4oWS7cGE+dTpOEfDbv7PQon1oN2M3rhh0qw4wZTNdggLkgHA2uNTUNdffj5My0bRKubMoA1SV/bUcSallf6fs9Yn9re5Jk/8eN1AI/GSJCDFg8jBhObdIeDhTc5Lx9FmbmRLgp6w03ZRTaQEXCY/AwECMHDkSH3/8MWpqarBlyxacPn0aI0eOdMXhrEIhPBoLXYn9AgDtzBYx+p29YJmDjfw+na2RTsv8qAvLhItZ6n1A/3sS8LeZm7K5TrMDmeIx+04Ae9Pk1wZ3c//JFxKovECxbNLoRCmirk3AXkTVWS2RIcbCA1AWRROfzMyl/wJyHQ9AyMbYfgR46lMen6wEPvrd9PusreFhCkVGkpkCcCwl5Y6VS1fDikRAFrWiEKiq0U4VNAfPy/VWQgKNv0dpuUI+lrrmhiWmXCIv/7GNx+qd8hgnDzO9L0dSarcelutfXD5EWQ1YK401tq38WzUY5O/NnHBkixDuP6mdGXY6Wxbp6sJgXl6c0T5FwWFNHY/QII2+TsycsSm1d03lwHFAai+l8PD3lW/K6pRatrYHx3HSvLHptOauueJYtJrRsbDFwzpEC9ckMePQkZRaVniwwZzs+NcyabSTTJyLbPnz15YZd4gV70U6nfKeYgm2nkdTTqUFXJhOu2DBAuTl5WHs2LF455138PLLLyM01ExRCRdzhMloEVMJWVWoFh5swSpLqbQigf7yCZ6uFh7BqjoeZcCqxqe16jod3l1her+KGh5q4dFVXt57glf0RRjsAYsHAIxgAkLuniY3j9t0wHR1UGWbb/npBmgUHiXCso+36B4x5rJ+xj90tpqqFup02h1H5L8PmGlj77DwMNNdWN2ZVqSkQi1mHROW4u9ARDy3TJXXtgZBrAjLIQHK0uVsxU7WKmIrKfHy092Oo8CyDcIyxwETh5p+X3vGMmWr8GBvKBOHKuddSwDGRho/aADmhWN/5sZx4JRcZTkqQrYOnL6g3adFRG19Eb9Lto6HwuKhsjyp9xnDhEaJlqYO0cCsxtTQ1J7KEyQ6QhZlrFs1wM/487LddAGhMJm5a65Y3bai2nwhObaGh/gQJJ4vBaXWVQ7Wgq0fohAejOuLTaOdOER7P+MHyQ9Eu44JDzsiPC/3WukQbVudnumNTd8C/MzH0zUFXCY82rRpg3fffRfbtm3DL7/8gqFDzVwR3IBo8dDp5IJTrCpUd6m1pYYHi+huyS9RPsmqXS1FZcDPTHnbf/4znWOudEMoT0RW5e47IZj6AOEizIoSd/LK3RwW3gT8+QqHjx7VSelsWRe1SxkDqkZl4cqS16UVyichU52cU3vLzaRELFo8FMKDx0EmDVf9dPTuch6dbzDg9R94RUqjLeeHiNLiofze1Z1pRUoqnG3xUE6k2uIB2O5uYWt4hASacbU0PmlruQesYUpjUJ7BIJ9Tg7sJcQGmUFYvNX59wz7g87UhqNFIbBJvKDqdcONg8fHmjBoxxkYqb+KiRc/c98cWglq/VzbZ90uRU11PZ8u/FS3hoba+WLJ4iN+XaHkyJzzuuYrD4S857P+cQ0igMM8psfWK4mdsAD5bwyW+nXHPKLG8QFmlcO2zJOZZi5U5V5miCFmj8GDdLfZaPdjiYf0Y65T4PRWX89L1t3cyEN9e+1zkOOCx6+XXXmPSky8Wy9+JrVaLaanA3k85pH3LISbSsYcSV9N0o0+ciF7PS70HUuLkgixK4aF8j6Jcerj1x2LjPMTyyf6+go/Sx5uTnvDO5wv+aZHyKlk0qDFXiTQiVK5CKfiFheVuiZAuDu4mNpLDi3foMHm4cPxRjCVi037t9ygtHoJ/V7xosq4Wczf5sGBO4ScHoFlYh0Vt8RBbSwOCr1X0zTc08HjyEx7p2cDjH/FYwrhh7LN4yMtqi4epMszOFx7Kv7WEh639WtTN37SEh17PSxdXeyweADB1hPG5bc7NAqhdLUqxl1fE44r5wIs/RGC+KtsnK4+XCmoN6Q7NoFS1pSGmrfIhQdviodyPjzcnxZ+xFq/eybLJvaIaUgCh1nlnyuLh6yP3YtHqTit+D+rrCys8AMFNzVraOE6IZRBhXTNsjIdWQTFWJJVUaLeoYGH3bc7dIsZ4CMHNwnJKHGf0uq2YcrWI3+2pLLmxm/iwZYrrxshz8sc2uY+MVkt7a+E4DgO7corqw02VViE8MvPkioJsP5GE9nKrejagB1BbPKz/IjsxJ7jYu4C9GIgqPzPP2Iy9YZ/2PtXWADWiZaO6Vn5S9pSbRYvRA+TlzQdNWHUYC4L41CU+DWfkyXNp6SZ/GWNiDPS37CNlhcfFEmXwWU2dfLE5eV75fbGWAHuEB9sFVh3joRCazBOo4GpRBiw7QtcEZWMwydXiRIuHIsajwnif6mZu1jK8p7HbUQzaM4W56qX/pcu/nS9WK83n6/bI200con0tYL+L8GDB7cr+VkVhzca5hGkIR7VwBgR3IVs2XsQaV4sYA8Jxcr8WReVSUQAGivtUfr7oCMvXvnGMBYht9pcSJ4sLrR5P7FiLylXX3HDj7aOY67Da4iEWQjMYeOn31CFatrJY6uZtDeL7vLyUFZ1FkcgKGrZ/lBa+PhzmXStsw/PAWz/JWTciXRKavoCwl1YhPDrGcihfy2H3xxyevlkZjCUKkWPngAsFjMmrRH6/LTcWrTK17A/MVLdYANhgIviS7dqq1XuFDTAV8URgqSkGd5NNvqbiPNQWD0C+abEXSktujVH95c/dq6PlUuas8Nh+RJm2CwAnGi8EB09BE45TVqS1lqAA2axtzuLBZp6UVPBOtXj4+XKK81V8QneaqyVAeXMVx64OaLQHLy9OITTahVt2LbLnDvv7BpQuwKoa4LNV8t/K+A7tfbPngOh60OrNZCkriQ0wFenTCegUa7xe09ViwuIByL9B0eJhMBhbntQPNmqLhxZTLhFu7N5ecpyBcDwOm97h8Pl85XVXa6xFZareWBqZYqzFis1seekbHuGTeUxZYMCZC3JgORvknsgEtqr7rVhLZmOMR3w74bcjzpn4e2XPIVMB9ix3TpGvP1+tBbLzeZuawzVnWoXwAIT6BIO7c+ivuklfMVxeXsW4PiyZ/UxhUXgYuUqAuEjhUWv7ESGoVY1WgzgWrQsu22HW0/j6cBjRaHrMzgfSNTKINIWHhZ4bWozsKz9ljRtkfltAZfHQ8BunZQj/syXYF94kH6NPJ9uzMkTEOI8LhUA9E9/DmtmTFcLDOFPKUVgLoCiKFa4WhywegntRtKBIwoPZxt4YDwCYcok87xOHWhaZ7AOE2lR/Nkf5u3tvBY/6Bh4ns3j8uUNYFxEKDDIhbtpoCA9FjEfjw4Ml4ai2eHh5CbEfWhYPrZuzKVcLuyxa7iprZNeAta4WLUKDgJPfcTi/gsMElUWoTycOc68wrlOjHmtxuVIM2uJq+XSl8CFWbQeuXCB/j8peL/KyPRaPympeEo+iiBGFk2zx0D62KcKCOdw5RViuqQMeeZ93yNXSnGg1wsMUrK/4963yiXM6mwkeDLd+f1oXCHMWj6svBVJ7Clf3unpg22Hj9yvSaTXGohYe3l5Cj4CmxOgB8jyLjdxYFAG0jXOkZYa3JALDgoVmbN88rf2UpcbfV+luUHOisRmZ2HEYAO69isP+zzi8cR+H5c/bb1kS4zwMBuA8EzFvTng40+IBAH1T5PHHNt5kgpgUTdHi8d4KHqMeNGDPcfNPi4q6EIHKcYpjZzto2mvxAIRguolDhafL+bMsfw++Ppz0W1RbPM6ogp7P5wM/bwJufYmX3LRzJpkWmQrh0TiPbRXCQ/ifzezR+v76dFIGT3eJF56u1TVXAFPBpcrxsfU7JFdLo/BQdwjW2qe6a7Ap/Hw5RFnhlmFhx1pUpuzYqhlcyvz2xd5Nej2vaBrHBo52YNwdURFCRhxgXXdbNex7RLcNmw7M87zS4mFlGuxTN3PSZ/1pE/BXo1vP20sZB9bSaPXCY2BX+Qllw36goopHdS2PnzYJ6/x9LWdGsIQFG0eGm7N4XDsKuKSHHDywYZ/wg6pv4LFuN49H3zdgV2MnSJ1O+wmxTQinuEH16SQEszYlRveXlzcd4HEik8fljxqQfJ0Bn6+SI9pDg+SiO1oWD2vcXj07crhxAmexqyMg+IDZWh5qxJiP/xqDdiPDhPMlKZrDI9dxSHGgUI+pWh6shSuZuXiydTw4zrGbtshdU4FR/YGZo4ExjbE4aldLeRWPR97nseUg8PD75oVHORu/0Tg+8ZwV4xvUAaj24uvDYc1rOpz5UWeUoWMKUbiqrVta2VZ3vs5jR2PZ8pQ44Lm5po/BBkpqWTysSacFBBdcV6a+kBgcrWW6tyWdFpBFSHWt4GbRcnmpH4yssXjYi5HFw47g0pxCOf5LDWt10Ok4yephj8WDfY9aeOj1gqVPjPEI9Nf+brRoE8Lh1Xvk80q0GHaKs65oZXOl1QsPjuMwtTE1T6yuuXyzfIGYORoIt7FeQorKRMa2gGYvUBGhwg15OCs89gsBhMPu5jHxMR5v/iQ/ISZFmTYns1aPphRYKjKwqxy0uHIb0G8uj7/2CBf821+VTYyWKjHak7pqCXXlzJQ4WeCcyARyC3npQtc3xTgt0F5M1fJgAxtNuVrCgiy7FqyhfRsOm97R4cfndNKFTp3VkpErX9x3HDVfB0EdXArIN1ghTVh5wwsLcu/FVbRellcJdSNEROERE9EgPWiIbiaOA75cqO0uEGEzPWIbUxnZhwzZ4iGvM2WxYlPk+3Rq/E4COUWMA2Aiq8VEATFAKUKqa1UCUMPiERIIs5/ZURTlBdTCI9x4e610aFYQDOomWzUA48ByUTCUVEBqn2EtmQqLhzAnbIxKQaksPDrG2HaNuPlyILWPcl1LdrMAJDwAANNSle6Wj/+QT8o7p9r+w1PHeSgtHvL+po8UfiiRoQbpyWbfCWDqkzz2n5Tfo9MJaXyfPG56LEOYYNIh3ZueUvbx5nBp44+rolrOMlJjUXiEO31oRjUY+neRCw7lFAo1VkS02k/biymLBxtc2r6NLARYV4sz3CymUGe1sGZmgwFYu8v4PSLlVfJvRy08AEFEO8viYQ9a1UvLKmX/fUK7Bjx4rfI9j8wERvQ2/5tiraJi6X4/X7n8fKGW8DARo3NJL/lYQ5lsELW7Rcvtqq7joWXxAIQAUy2LR3iw7Hp0pbUDUAeX8shvnCOdTrsarJ+vXJlVDC5lfzfXj+Hw03Mc4toJlmS1pZqN87DV3ZLJ1NoRYzxY69Cxc8KDK2BdfAeLTsfhw4c5hcuXhEcrYHR/+eL+82Y5zqJnR8v52FqoLxDs09Bl/YQflreXUHZYRDRz8zyw9ZCw3C4c+HExh/w/OOz6WIdxg0xf/G67UgisnDgUuH6s7WN2B6OZjBOOA+ZdCyx/nlOYUNliRKEaT8OusHgYCY/OnFRkDgB+3ChfdNiYCEdhL1AZTGAaG+MRESLfuIsZV4szAktNoXS18EYX6T93mn5aVPf+AFTCo1IV42FnOq29aKXUsm6WhHYNuIGpsdA1Efi/2y1/55OGAl8/Jdz4LmFEinhzUls8dDrTPWpuuwJ4/Abg5Ts5jGVqZKjjx6xLp5WX1RVplcKDaxwXh1njhHU3TXDtA4wpV0tkmGlrnlQ2XcPikRgFXHUph6zlHH5+XmdkdUh0QHiwaa4JquBSAIoHRWsyWtT07sThIUbwipaulopLutM2N/x8OUwcymP5ZmWthjunGHestQbB769db6FvCofj3wAcgM4JnNQLY8wA4J3l8nb+vsAfL3MY1tO647cJ4bDlvaZ9st5+JbBii7D8+r0cLu0rjHf0AGDhJzz2ngAeZyr6aVk82oUDF+0sAGQKtfDolwL4esvf4eqdytechTUxHm0ahcf5fCEg0lSDMWeizmrJUqUfrtkpFFTT8kGXa1gz1Cm1ZYxVxN0Wj+i28veamSdkf6mFh78f8PebHP7YBtwyEVbFCul0HG663Hh9ZJjgqioqF+IqWFeZqWuLv5/S7y8ipNQKYzeVxm2txaOyRtvVAgBfLeTwxn32NT+0BVOuFnNWzagIIe6qslqIx2Or/orBmKbmVXCRyN+9tVTX8tI1ICxY7vElBMcK+9t3gs1osW/e/u92Dg16HvUNwOzxdu2i2UDCo5GpIzgsZ0qY+/tC80JiDeZcLYB2YZiRfQUTp1iV8JunrRcdzYWIUA67PtbI5w/lsOQx4/Xq4NKQQLnvizMxtngAbG800S3k6wOFJcRRwoOFY7OBaYBs8Qj0F25C4SFicSTle10Fe7OqqFZmHAGCeNhxFLi0L4xgg0u1XC2Cf13+25F0Wntg+9McTOdxzSjOSHgAQLckzinfdVsmAHHfCeDMBeFvW83xgNLi0SZEO/jQnMVDXTbdVD0VjuPsKopnK+xYsy7KvzNzx2YzW/KKtYM+TaFMqeUhPP5ZZvUOWVBPHyk8qAJK4cRaPOz5bgFB4L79YMu65puCXC2NTB6mTKucOdr+Jlxqk6g1ZvHQIOClO4TslM+e4HDtqNZxAppDbYZ3hZsFUAqP6AjhqZjNLBDp2cG4zbUjcBwnPaVlXZQ7wYrCQ7xpaYkM97latM3Sf+7Qdrdop9MqM3NKnVBAzF7YwE3xZnHmgvxZROHhLFh3yOvL5OPcMM7284jtDmsqa0LouSL/rajjoQoa9mSsDSD8lsRzjXVlmPudqzNbxKBsP1/L1wdWmNjiavn+b+Z7Gyt/b6zFiU3ptcfV0tog4dFI2zAOqUxXVXuCSkUiw5Q/ZGtvEk/M4nB6mQ63XUmiAzC2eLgisBSAIp22X2MBJ6EzpHK7vk50s4iI7pa6eiFgjud5Kbg0wozwcJurpUa+SPv5yjUmxKJaasxltQCC6NCqH+EukqLl36PYl0fL4uEsWIGwvNHN6OUF3DTB9n2xDzSmrAIcxyluiKzFI5Tp3ZRbqMzscPf3ICKe49VM/xizFg+mVkhesZxtktDOcpaXwuJhpfAoreDxZ6ObpX0bZVkArQBYQG5MR5iGhAfDC7dz6JoI3He1fUGlIhynLEXtyqfTlozaDO8Oi4dYOdLbmzOKLO/nxMBSEXWzuMpqueSzeAPRtni4TpyyT8blVbLw6BQrZFcBQrdnNiCW3R4QXJVSPRbmezRytbhQQGnBcXIjwZxCIVVaFB5+PkC7MBNFIeyEbSgnusquGCbGmthGVASHKZcI4u9GM4Gf4vXGx1tpoevPWHt2HNWu4+FutK6N5npjsa6WE5nyuZRkhXsjNEjOihFdNDzPY947BqTeZ0BahvH5/Nu/crbKdWOU7i0t4REaRNd7ayDhwZDah0Patzq8/7BxRLStiB0bO0QrfyyE9RhZPFw0j2wQHdv3Ru1ucY3Fg6nlkadMpfWUxYM1z2fkyr73hPbAFcPl8WpZPUThwYo5Nm20pIJXmPhNZXa4ErW7RRQeHWOEbBNnouUSmTvZ/mvL7y9zKFzF4e5ppvcx5RLhf3XTPPZhatsR08Gl7kQrQNacZTOaSfHdzVTRtRTfISJaPUTX5u7jwLsrhEzG91YYC48fNmi7WQDt9hVsYzrCNCQ8XMRzczn89iKHrR9wdvfyaO0YxXiEu+Y4s8YBl/YRAsempsrr1cGFLhEeKosHm0orx3gYnz+makA4Ay8vTgriZUuJJ7QXntZFlq7hjaweZRrCgy1q9dFvcuvvkEDnFEGzFbYR29rdvGTmd4WJXH1zat8GmDxce1tr4DjOorXrtXs5HP+Gw4r/U27XJkRuinngFHChQH5NHWDtLrSsA9YGl+5Ok5eTrGwFLwqU+gYhi2bLQfk1dfXai8U8/m7sGN4hGhjWU/m61tgpvsM6SHi4CH8/DtMu5RDXjkSHvRhbPFwzlzGRHP55X4cVL+gUpuluifJyYpRr3BvKlFpeWcPDQ8GlgGz1YDNpEtpz6N9FrrWyNw1IuYHHHa8akNWY1qhl8ejdSaiHAQgZMuJn9JR5n7V4/PKPvOyKm4a6yNdNE5wboKwFx3HolqT9wCNWyNTrIZWDBzwnPLTcFeYsm6zwyGYCOq21eLDbZeYB/x6ShXN2gXLbnzfJWYbXjzW2ZPj6cEYWO3szWlobJDyIJosQJyD/7SpXiynE6qWA65ruqS0ehQrhIVzo3O1qAbRdIAnthYvvm/dx0o2qQS+0kL/0AR75JUINAkBprQrw47D9Qw6XD1Huz92ptCKd4+WgS/bmlewGi8ccB9wsziCVKW4mfld+vnKKqLvRjvEwvb2p16xtqJbYXv6c53KVTTnVwuOnTbIomWUiC0ktnDrG0IOmNZDwIJosHMcpbk6ucrWYYkAXoWS1rw9wlxmfuiNERcjBnP8eUpp7peBSjYuzqy0epoQHAFw3lsO5nzgsukW2WmTkAl+vlbdVP0FHhHL48xUOT90kr1PXu3EXXl6cZiE4V7ha2LLjQ3vA6mZ2rkLdEwTwXHwHAERoWBHNuVr8fDnNc9/WGA9AcLMVMzFVhaVADdO/5/AZ+T29TVQSVQsPsnhYBwkPoknDmuPdbfHw8uKw4yMORas4RVClM2FLVJdXAe8sly98YrltT1g8gswID0AQEs/fpsPa1+R5+XSVcZ8WFi8vDi/cocPfb3F4/AbgrQc8dxMWM1tYXOFqiYrgMH+W0DfknSZQHCoxCohvp1znKZcXYHzj9vayfG5rBeuz56Y5WIEiVlFmuVAo/F9RJYsSc+eFOji2Y6z2doQSEh5EkybMg8IDEKwuruzQCQCPXsdJ9THYgD9z6bSecrWoGdZTjlM5kSmvNxczMHYgh1fv0SE51nM34gFdjI/tClcLAPzvbh3+W6rD0B6eFx4cxxlZPTxp8VBbL9qFW84KYTNbAKGomLWuIlZ4sOnEIqLrjS0wZs6aQhYP+yDhQTRpxKDE9m2009daAl0TOUxLNV5vKrjU18c1peNZ1MIjIhQI9De+uHMch+tGG7/fkzcza2ADTAHhBujumiKeIlXVabcpWTysebhQWzysqeEhEhtpPmVajPNgC4yZs6aw16SIUO3GloQxJDyIJs0rd3NYeBPwywstOy2ZbY4nIl6U1UGY4cGurxXA1vIAzF98rx9rPBZPZUlYS48OysDl1pQG2aQsHnZUJzYSHlbGdwBCRlGMymLCChFti4fp3xornMjaYT0kPIgmTWIUhxfv0GFE75YrOgDgkt4cRvRWrhNdLd7eyrQ9d1RGVFs8zAmPfp3ljp0iIYFN+/vy9eHQO1n+O7kV+eZ7dVRaOZqSxcOa5nTqqq/WBpZK26vO5TED5OXsArF7LdO/x8y5zwbHtibx6igkPAiiicBaPcTOtCKsu8XV8R2AbcKD4zhcP1a5rqlbPABlgGlruml4eXGKKqZNSXjY5WqxsniYiFqoXD9Gfr+mxcOc8CCLh12Q8CCIJsKUEZAqS7Lt2wH3Cw91VktCe/MX9+vGNJ24AWsZ1E0ec+f4pm2hcTZsnIcnXS0hgcpuutYUCWQ71AJ2WDyY7X28gatHyn9LMR558jpzolv8vQLA4G6t6xxyBG/LmxAE4Q50Og5/vgr8uBG45jLla2wtD/e4WjgA1pmbAaBHBw59OvE4dFr4uzlYPG4cLzQB0xtgZLFp6UwcCjz9mbDcLclzN0yO49AmmEdBqfC3Na6WKJXwsCW4FBBFtHBuD+wqpIZHhApVg0WLhyg8QgLNBx0P6cHhm6eB0grg2lG2jaM1Q8KDIJoQiVFCjQs1TdnVInLbFRzmvcuD44DuSZa39zTBgRzWvs52jzVuEtZSGdiVw68vCh16xToynqJNCCThYU9wqa0WDzae59LGQNu4SKGU/4VC4TzIypf3bSmQ21ynYEIbEh4E0QxgxUZTCy4VuX+60NAuNhIerdFBWMdVlzaN74iNk7DG4sHGgYQE2i7EJwwGrhgO5BYB864V5iCunVCptK4eSMsEapmOzITzIeFBEM0ApcXD9TcMdTptXKTl9+h0HG6e6JrxEC0XtvqnNcGlvj4cOsXxOJ0N9E62PbXcx5vDqleU72HP7x1H5GVzgaWE/VBwKUE0A9zuamFiNKJsqAxJELZy+RDh3OqaaH1myFcLOdw9DfjwEeecl3FMGfkdR9nYJjrvXQFZPAiiGRAdIQfEqQsguQLW1ULmZsKVPHgtMHoAh06xsLpI4IjenFNr+8RFyr+vncfk9bbGjxDWQcKDIJoBN4wDVm4XfNrq9vKugHW1JLQzvR1BOArHcejTybNjYC0ex87JyyS6XQMJD4JoBkSEKjMwXE3XRCHQL78EmDCEzM1Ey4aN8eCZ5CayeLgGEh4EQRgR4MfhyFdA+nmhAy1BtGTiTFj14sna5xJIeBAEoUn7NpxVWQYE0dyJDBO6PtfVy+soqNp1OFV4nDt3Dm+//TYOHz4MjuMwfPhwPP744wgNbaH9zAmCIIhmD8dxiG3L41yuvI5SaV2HU9NpKyoqMG7cOPz+++9YuXIl6uvr8fbbbzvzEARBEAThdOJVQoMCS12HUy0evXr1Qq9ectvDq666Cm+99ZbZ99TV1aGurk45KG9v+Pr6OnNoTRaDwaD4nzAPzZdt0HxZD82VbbS0+YpVpakntHfuZ2tp82UKnc6yPcOlMR6HDh1CcnKy2W2WLl2KTz/9VLFuxowZmDlzpiuH1uTIysry9BCaFTRftkHzZT00V7bRUuYrxK8NADksIMinCBkZ5U4/TkuZL1N07NjR4jYuEx4nTpzAjz/+iE8++cTsdnPmzMHs2bOVg2plFo+srCwkJCRYpRRbOzRftkHzZT00V7bR0uaru+oZuW/XCCQlRWhvbActbb4cwSbhcd999+HAgQOar82dOxe33347ACA7OxuPPPIIFi1ahE6dzFeG8fX1bTUiwxw6na7Vn4y2QPNlGzRf1kNzZRstZb7i2/EQq5cCQFI0B53O+VktLWW+HMEm4fHBBx9Y3KagoAD33XcfbrvtNowaNcrecREEQRCE21DX8qCsFtfh9KyWBx54AFdccQWmT5/uzF0TBEEQhMtgq5f6eAt1PAjX4NQYj82bN+PUqVM4f/48vv76a2n9v//+68zDEARBEIRTiWWER3w7uMTNQgg4VXhceeWVuPLKK525S4IgCIJwOX6+HMYM4LFxPzBpqKdH07KhkukEQRAEAeDPVzj8dxoY1NXTI2nZkPAgCIIgCAD+fhyG9vD0KFo+rTunhyAIgiAIt0LCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt0HCgyAIgiAIt8HxPM97ehAEQRAEQbQOyOJBEARBEITbIOFBEARBEITbIOFBEARBEITbIOFBEARBEITbIOFBEARBEITbIOFBEARBEITbIOFBEARBEITbIOFBEARBEITbIOFBEARBEITbIOFBEARBEITbIOHhZD7++GPMmDEDgwcPxrp166T1NTU1ePHFFzF+/HhMmDAB33zzjeJ9gwYNQmpqKi699FJceuml+OKLLxTvXbRoEUaOHIkrrrgCa9euddvncSWumKs333wT06ZNw8iRI3HTTTdh//79bvs8rsYV8yVy4cIFjBgxAi+99JLLP4e7cNV8/fHHH7j66quRmpqKa6+9FhkZGW75PK7EFXOVnZ2N++67D6NGjcKkSZOwdOlSt30eV2PvfFVUVOD555/HmDFjMGrUKDz11FOK97bE67wW3p4eQEsjISEBjz76KJYsWaJY//nnn+PChQv49ddfUVFRgXvuuQcpKSkYPny4tM1vv/2GyMhIo31+/PHHKC0txerVq3H69GnMmzcP3bt3R1JSkss/jytxxVwFBwfj/fffR1xcHDZu3IjHHnsMK1euRFBQkMs/j6txxXyJvPnmm+jatavLxu4JXDFf//zzD7799lu8/vrrSE5ORnZ2NkJCQlz+WVyNK+bqtddeQ1xcHN555x3k5eXhtttuQ8+ePTFkyBCXfx5XY+98Pffcc4iKisIff/wBf39/pKenS+9tqdd5Lcji4WQmT56MYcOGwdfXV7F+x44dmDVrFoKDgxEdHY2pU6fizz//tGqfq1evxp133ong4GD07dsXI0eOxF9//eWK4bsVV8zVnXfeiYSEBOh0OowbNw5+fn7IzMx0xfDdjivmS3w/z/MYOnSos4fsUVwxX5999hkeeeQRdOrUCRzHIT4+HmFhYa4YvltxxVzl5ORgwoQJ8Pb2RlxcHPr164czZ864Yvhux575On36NNLS0vDwww8jODgY3t7e6Natm/Telnqd14KEhxthGwHzPG/0I7zxxhsxadIkLF68GCUlJQCAsrIyFBYWIiUlRdquS5cuLeYHbAp75krNhQsXUFZWhoSEBFcOtUlg73zV19fjnXfewUMPPeSmkTYN7JkvvV6PEydOID09HZMnT8bUqVPx6aefoqU3+Lb33JoxYwbWrVuHuro6ZGZm4vDhwxg0aJC7hu0xTM3X8ePHkZiYiEWLFmHs2LG4+eabceDAAQCt7zpPwsNNDBs2DD/88APKy8tx4cIFrFq1CjU1Nf/f3t2GNNX/YQC/dFPnY04TwxWKlZTYgzEU0koytfWAw4eiIHqyvbMMBoEhLQ1CwVf1oqWRhAaagbczQjRQQTDsgbIkFCtfCLqZqTVz6HH3i/DQ/pn/u+XOyq7Pq+P5/XZ2vl+3cy7Ozpg4XlFRgaamJty9exfT09MoLi4GAExNTUEmk0GhUIhz/f39MTU1JXkNUnG2V9+anZ2FwWDAsWPHEBAQIOXuS+5X+lVTU4OkpKS/IpzNc7ZfY2NjEAQB3d3dqK2txc2bN9HS0gKTyeSuUlzuV15bW7ZsQU9PD3bs2IGsrCxkZmY6nFiXo8X6ZTab8fjxYyQkJKC5uRknTpyAXq/HxMTEX3ecZ/CQyOnTpxEREYGcnBycPXsWqampCAsLE8fj4+Mhl8uhVCqh1+vR2dmJmZkZ+Pn5QRAEhze71WqFn5+fO8qQhLO9mme322EwGKBUKqHT6dxRgqSc7ZfZbEZjYyNOnTrlxr2XnrP98vHxAQAcP34cgYGBWLVqFXJzc9HZ2emuUlzO2V4JgoBz585Bq9Wis7MTjY2NaG1tRWtrqxurcb3F+uXj4wOVSgWtVgu5XI7du3dDpVKhp6fnrzvOM3hIxNfXFxcvXkRzczPq6+vh4eGB2NjYBed6en79t9jtdgQFBSE0NNThJqS+vj5ER0dLst/u4Gyv5pWVlcFisaCkpEQcX86c7Vdvby9GRkaQlZWFjIwMVFdX48GDB8jPz5dy9yX3K+/Fb0+68+uXM2d7NTk5CYvFgpycHMjlckRERCAlJQVPnz6Vcvclt1i/1q5d+8PH/W3H+eV/VJbY7OwsbDYb7Ha7uDw3N4eRkRGMjo5CEAR0dXXBZDLh6NGjAL7edNTX1wdBEDA5OYny8nIkJiaKNy7t27cPlZWVsFqt6OnpQUdHB9LS0txZ5pJwRa+MRiNevHiB8vLy7278+tMtdb+2b9+Of/75BzU1NaipqUF2djb27NmDkpISN1e6NFzx+jpw4ADu3LkDq9UKi8WC+/fvIzk52Z1lLoml7pVSqUR4eDgaGhrE7bS3ty968v2TONMvtVoNu92OpqYmCIKA9vZ2DA0NYdOmTQCW73F+IR725R7ZJWYwGNDU1OSwbv4rV5cuXcL4+DiioqKg1+sRHx8PAOju7sbVq1dhNpvh7++PhIQEnD9/HiEhIQC+fr/7ypUraG9vR1BQEPLz87F3715pC3MBV/RKrVbD29sbMplM3GZhYSE0Go1EVbmOK/r1LaPRiA8fPqCwsND1xUjAFf2amZlBaWkpWlpa4OfnB61WC51OBw8PD2mLW2Ku6NXr169RXl6OgYEBKBQKpKeno6CgwOG9+adypl8A0N/fj5KSErx79w5r1qyBXq/Htm3bACzf4/xCGDyIiIhIMvyohYiIiCTD4EFERESSYfAgIiIiyTB4EBERkWQYPIiIiEgyDB5EREQkGQYPIiIikgyDBxEREUmGwYOI/hhqtRpqtXpZ/yIs0XLH4EFEDnQ6nXiCP3LkiMPY+Pg4kpKSxPFr164t+fObTCZx+0S0/DB4ENEP9ff349mzZ+LfDQ0NsNlsbtwjIvrTMXgQ0YLkcjkAoLa2FgAgCALq6+vF9d+amJhAaWkp9u/fj8TERKSnp6OoqAjDw8PiHKPRCLVajYMHD6KlpQXZ2dlITk7GmTNn8P79ewBff3zr8uXL4mPmr3wYjUaH5/v8+TMMBgN27doFjUaDysrKpS6fiFyEwYOIFhQTEwOVSoW2tjaMjIygo6MDw8PDSE1NdZhns9mg0+lw7949jI6OIjIyElarFQ8fPsTJkyfx8eNHh/lmsxlFRUXw8PCAzWbD8+fPUVxcDABYvXo1VCqVODcuLg5xcXEIDw932Mb169fR1dUFLy8vWCwW3LhxA11dXS7qBBEtJQYPIlqQp6cncnNzxSsd81c+Dh8+7DCvubkZAwMDAIDS0lLU1dXh1q1b8PT0hMViQV1dncN8QRBQVlaG+vp68R6Sly9fYnp6Gnl5ecjLyxPnVlVVoaqqClqt1mEbMTExMJlMDldguru7l7R+InINBg8i+qHMzEz4+vqirq4OT548wcaNG7F582aHOb29vQAAhUKBlJQUAMCGDRsQGRnpMD4vICAAO3fuBABER0eL6//3yshi0tLS4OXlheDgYISEhAAAxsbGfq44InILBg8i+qHAwEBoNBpYrVYA31/tcHab82Qymbhst9t/aRs/83gich8GDyJa1KFDhwAAwcHBSE9P/248NjYWADA9PY22tjYAwJs3bzA4OOgw/l8pFApx+cuXL87sMhH9xr6/PZ2I6Bvr1q3Do0ePIJPJ4O3t/d14RkYGqqur8fbtW1y4cAGRkZEYGhrC3NwcwsLCxODyX0VFRYnLubm5WLlyJQoKCrB169ZfrISIfge84kFE/9eKFSsQEBCw4JiPjw8qKirEkDA4OAh/f39oNBrcvn0bSqXyp55r/fr1yMvLQ2hoKIaHh/Hq1St8+vRpKcogot+Ah50fjBIREZFEeMWDiIiIJMPgQURERJJh8CAiIiLJMHgQERGRZBg8iIiISDIMHkRERCQZBg8iIiKSDIMHERERSYbBg4iIiCTD4EFERESSYfAgIiIiyfwLbvyG4wmC9TsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -263,14 +303,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEQCAYAAACk818iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABLW0lEQVR4nO2dd3hUVfrHP2mQQkkIAUIoCb1IaAcFKbLYBXGtu6ir7K4LFnbd1XV1f65tdcXu6q6Nta0dGxawu0gThCO9JwGBFCCUkEL63N8fd+4wSSYzk8wNmUzez/PwZObce889Z2b4zjvvec/7hhmGgSAIghA6hDf3AARBEAR7EWEXBEEIMUTYBUEQQgwRdkEQhBBDhF0QBCHEEGEXBEEIMSL9OUkpNRm4C/OL4Gmt9QJneyqwBtjiPPVyrXW+Uupy4E9AKXCt1jrb5nELgiAI9eBT2JVSMcCtwPla6woPpyzRWl/mdn4kcAtwBjAG8wthto/bBHUw/f79++nWrVtzD8MWQmkuEFrzkbkEJ0E+lzBPjf5Y7OMwLe9PlVLHgRu01vvdjo9XSi0DlgF3Av2Bbc4vgRVKqccCG3fzU11d3dxDsI1QmguE1nxkLsFJS5yLP8LeFegHjAXOAu4Frncey3MeOw78B7jE2Vbodn2Ep06VUrOAWQBz5szh7LPPbvjoTxKVlZXk5OQ09zBsIZTmAqE1H5lLcBLMc0lJSfHY7o+wFwArtNYVSqlvgb9aB7TW5UA5gFLqQ0zx3wZ0cLve49ed1noeMM/5NKhdMTk5OfW+gC2NUJoLhNZ8ZC7BSUuciz9RMWuAwUqpMGAEsMs6oJRq73beRCATyHCe30YpdTqw0b7hCoIgCL7wabFrrQ8ppRYASzAt698opf6JablPUEo9gOmK2Q3cpbWuch7/DigDrm2aoQuCIAie8CvcUWv9DPCMW9MfnX8/d/6rff58YH6ggxMEQRAajmxQEgRBCDFE2AVBEGykrKysuYcgwu4Pc+fOZfHixXz00UfMnTsXgJkzZ5KWlsaIESMYNWoUK1eubOZRCoLQ3Hz33Xe0a9eOu+++u1nHIcLuB+vWrWPs2LEsWbKESZMmudofffRR1q9fz0MPPcTs2b421wYnVVVVzT0EQQgZFi9eTHV1Nffffz8LFy5stnGIsHvhtttuIz09nQ0bNjBu3DhefPFFbrjhBv7+97/XOG/SpElkZmZSXFzMmWeeyahRoxg2bBgff/wxACUlJUydOpXhw4dzyimnMH++ua58xx13MGTIENLT0/nzn/8MQH5+PpdeeiljxoxhzJgxrFixAoB7772X3/zmN0yePJk+ffrw9NNPu+5///33M3DgQCZMmMCMGTN47DFzs29WVhbnnXceo0ePZuLEiWzfvh0wf21cf/31nHbaafzlL39hyZIljBgxghEjRjBy5EiKioqa9oUVhBBl9+7drsfXXHMNe/bsaZ6BGIYRDP+CltWrVxszZ840KioqjNNPP93Vfu211xrvvfeeYRiG8e677xqnnnqqUVlZaRw7dswwDMPIz883+vbtazgcDuP99983rrvuOte1BQUFxqFDh4wBAwYYDofDMAzDOHr0qGEYhjFjxgxj2bJlhmEYxp49e4xBgwYZhmEY99xzjzFu3DijrKzMyM/PNzp16mRUVFQYq1evNoYPH26UlpYahYWFRr9+/YxHH33UMAzDmDJlirFz507DMAxj1apVxs9+9jMjOzvbuPbaa42pU6caVVVVhmEYxrRp04zly5cbhmEYRUVFRmVlZZO8lk1BdnZ2cw/BNmQuwUlD5jJx4kQDMFJTUw3AuOKKK5pwZIZh1KOpfoU7NjdhYR7z3ASM4Uch77Vr1zJkyBC2b9/O4MGDaxy77bbbeOCBB0hKSuKll17CMAz+7//+j6VLlxIeHk5OTg4HDhxg2LBh3Hrrrdx+++1MmzaNiRMnUlVVRXR0NL/97W+ZNm0a06ZNA+Cbb75h69atrnsUFhZSXFwMwNSpU2nbti1t27alS5cuHDhwgBUrVnDRRRcRHR1NdHQ0F154IQDFxcV8//33XH755a6+ysvLXY8vv/xyIiLMbA/jx4/nlltu4aqrruKSSy6hR48ejXxFBaF189NPPwHwxBNPcMkll7Bp06ZmGUeLEPbmYP369cycOZPs7Gzi4+P517/+hWEYjBgxwrVQ+uijj3LZZa7Elrz66qvk5+fz448/EhUVRWpqKmVlZQwYMIC1a9fy2Wef8be//Y0zzzyTu+++m9WrV/Ptt9/y/vvv8+9//5v//e9/OBwOVq1aRXR0dJ0xtW3b1vU4IiLCq3/c4XAQHx/P+vXra7RbOS/i4uJcbXfccQdTp07ls88+Y/z48Xz55ZcMGjSoUa+bILRWKioqyM7OJjw8nPHjxwOQnd08GctbhI+9vp8bgf7zxogRI1i/fj0DBgxg8eLFTJkyhS+//JL169cTExPj8Zpjx47RpUsXoqKiWLx4scu/lpubS2xsLFdffTW33XYba9eupbi4mGPHjnHBBRfw5JNPsmHDBgDOOecc/vWvf7n6rC3MtRk/fjyffvopZWVlFBcXuxZsOnToQFpaGu+9957rNbTuUZusrCyGDRvG7bffzpgxY1y+eEEQ/Gffvn0YhkGPHj1ISkoiNjaWoqIijh07dtLH0iKEvbnIz88nISGB8PBwtm/fzpAhQ7yef9VVV6G1ZtiwYbz22msuq3fTpk2ceuqpjBgxgvvuu4+//e1vFBUVMW3aNNLT05kwYQJPPPEEAE8//TRaa9LT0xkyZAjPP/+813uOGTOG6dOnk56ezvnnn8+wYcPo2LEjAG+++SYvvfQSw4cPZ+jQoa7F3Nr885//5JRTTiE9PZ2oqCjOP//8hr5UgtDqsdwwqamphIWF0bNnT6CZrPamsoYb+C+oCfaFoKKiIsMwDKOkpMQYPXq08eOPP9Z7brDPpaGE0nxkLsGJv3N58cUXDcC45pprDMMwjDPPPNMAjM8//7wph9dyF08F78yaNYutW7dSVlbGtddey6hRo5p7SILQ6rBCHVNTUwGa1WIXYQ8B3nrrreYegiC0eixXTFpaGoArumzfvn0nfSziYxcEoVVx6NChGiHFduHuY4fmtdhF2AVBaDVs27aNoUOHMmLECPbv3+/7ggZQ2xUjFrsgCEITs2PHDqZMmcLBgweprKxk586dtvVdXl5Obm4uERERLkEXi10QBKEJcTgcTJ06tYaVbmeB6r179wKmmEdGmkuXlsCLsAuCIDQBeXl5ZGVlkZCQwO9+9zvA3DhoF7X96wDx8fHExcU1yyYlEXZBEEIeS3j79+9P//79AXst9tr+dTBzXDWX1S7CLghCyOMuvN27dwfsFfZdu3a5+nfH8rOf7AVUv+LYlVKTgbswvwie1lovcLafCjwFVAI5wDVa60qlVIbzOcA/tNZf2z1wQRAEf3GPMU9JSQHsdcXs2LEDgIEDB9Zoby6L3aewK6VigFuB87XWFbUO7wOmaK1LlVJzgYuA94FjWuvJdg9WEAShMbhb7Jaw22mxW4nzamdFDWaLfRxQCnyqlDoO3KC13g+gtc5zO68CcDgft1NKLcG02udorY/YOGZBEIQG4W6xW66Y3NxcDMMIuN5DZWUlmZmZAAwYMKDGsaC12IGuQD9gLHAWcC9wvfsJSqnewDnAA86m8Vrrw0qpa4D7gN/X7lQpNQuYBTBnzhzOPvvsRk6h6amsrLT12705CaW5QGjNR+bSdFjCGxsbS0FBAR06dKCwsJAtW7aQkJDg9Vpfc8nKyqKqqooePXpw9OhRjh496jpmpfjOzMxsktfD+vVRG3+EvQBYobWuUEp9C/zV/aBSqgPwOjBTa10JoLU+7Dz8PnCdp0611vOAec6nvksZNSM5OTn1voAtjVCaC4TWfGQuZnF1Kw7cLqqqqlz+9DFjxhAdHU2PHj3YunUrDofD5zh9zUVrDcDQoUPrnDdixAjATAF+Mt9bf6Ji1gCDlVJhwAhgl3VAKRUJvAPcp7Xe4Wxro5SySv1MBDJtHbEgCCHJokWLiI+P55lnnrG135ycHKqqqujevburMpm7OyZQ6vOvA/Tu3Rswo2YqKysDvpe/+BR2rfUhYAGwBHgE+LtS6p/ORdUZwGnAXUqp75RSvwASgO+VUkuBPwP3NNnoBUEICQ4cOMDMmTMpKSnh22+/tbVvT5uH7FxAtYS9dk1kMCuZ9e3bl/Ly8pNamcyv3zxa62cA96/RPzr/vu78V5vRgQ1LEITWgmEY/Pa3v+XQoUMAHDx40Nb+rYgYK50uYGssuzeLHWDUqFFkZWWxdu1ahg0bFvD9/EE2KAmC0Ky8/fbbLFq0iKioKMC03u3E065Qu2LZDcPwS9gB1q5dG9C9GoIIuyAIzcoXX3wBwF//asZl2G2x1y6AAfa5Yg4ePEhBQQHx8fF06dLF4zki7IIgtDosi/fMM88kKiqKwsJCysrKbOu/KV0x27ZtA0xrvb54+JEjRwKwbt06HA6Hx3PsRoRdEIRmw92VMXjwYJfVa6fV7m3xNFBXjC83DEBSUhI9e/akpKSEjIyMgO7nLyLsgiA0G3l5eRQVFZGYmEhSUhJdu3YF7POzV1RUkJ2dTXh4uGt7P0DXrl0JDw93Fd1oLP4IO5x8d4wIuyAIXtm3bx/vv/8+S5cutb3v2sJot8X+008/YRgGPXv2dC3OAkRGRtK1a1cMw2h0ibysrCxee+01AIYPH+713JMt7PZu8RIEIWSoqqpi0qRJrFy5EoCoqChycnJISkqy7R61hd1ui33Lli0ADBkypM6xlJQU8vLyyMnJqWHN+0NxcTE///nPOXr0KBdeeCHnnHOO1/PFYhcEISjYunUrK1eupG3btrRr147KykpXelq7cF98BPstdkvYhw4dWueY5WdvTObFW2+9lc2bNzNo0CDeeOMNwsO9S6m7sBtG02dQEWEXBMEjlnV50UUXMW3aNMB0P9jJybLYPQl7v379gBMJwvzFMAw++ugjAN566y06dOjg85rk5GTi4+MpKCjg8OHDPs8PFBF2QRA8Ygn7qFGj6Nu3L3CiUpBdNLWP3ZuwWyXydu7c2aA+9+3bx8GDB+nUqZMryZcvwsLC6NWrF3Ci8HVTIsIuCIJHPAm7nRZ7UVER2dnZtGnTxhWKaKfFXlVV5XIdecrjYuVOb6iwW9kclVINyuV+MoVdFk8FQahDdXU169atA8wNNm3atAHstdgtQe3fv78rVa+dFntmZiYVFRWkpqbSrl27OscbK+xr1qwBzBTADUEsdkEQmpWdO3dy/PhxevXqRefOnZvEYveUFdFOi92bGwbM3aexsbEcOnSoRnEMX1jCrpRq0HhE2AVBaFbc3TBgimDbtm05ePAgRUVFttzD0+aezp07A3Do0CGqq6sD6t+XsIeFhbn87P7uCDUMw+WKEYtdEIQWRW1hDw8Pd+VasXKvBIrlAnGvExoVFUViYiIOhyPg6BFfwu5+b3/dMZmZmRw7doxu3bq58s34S21hv/HGGxk5ciTffPNNg/rxBxF2QRDqUFvYAdvdMVaBZ0vwLOzys/sj7A212N2t9YYWwbbmuWfPHgB++OEH1q9fT9u2bb1d1ihE2AVBqIHD4XAJ++jRJ2rm2C3sVmbFHj161Gi3w89eWVnJzp07CQsL8xgRY9FQi72x/nUwY9kjIiLYv38/JSUlri+e9PT0BvflCxF2QRBq8NNPP1FYWEi3bt3o1q2bq93OWHaHw+ES9touDTss9oyMDCorK0lLSyM2Nrbe8xor7A31r4OZn8ba7frNN99QXl5OWloaHTt2bHBfvhBhFwShBpYP3d33DdCnTx/AHov94MGDVFVVkZiYSExMTI1jdljsy5YtA3wn53IX9tpb/Y8ePcrkyZN56KGHADNTpPVLpjEWO5xwx3z66ad+ja+x+CXsSqnJSqlvlVKLlVIX1zr2sFJqmVLqdaVUlLPtcqXU985renjuVRCExvL111/XSNBlJ1bulNqJsex0xVj+9dpuGLDHYv/ggw8AuPDCC72el5iYSEJCAsXFxXW+SG6++WaWLFnCCy+8QGFhIatWreL48eMMGTKk0YnQLGFfuHAhgN87VxuKT2FXSsUAtwLna61/prVe4HZsOJCitZ4IbAcuU0pFArcAk4G7gbuaYuCC0Jp55plnWLZsGeeccw4rVqywte/6hN2KitmzZw9VVVUB3aM+/zoEbrEfOXKExYsXExERwfTp032e78kd8/HHH/P6668Dpr/+q6++ckWvnHXWWY0aF5wQdmtuzSbswDigFPhUKbVAKdXN7djpwFfOx18A44H+wDatdYXWegVg/8qAILRyrF2hxcXFnHfeea7ndlCfsEdHR5OSkkJVVVWjMiK6Y1nsls/ZncZY7J999hl9+vRh0aJFfPrpp1RVVfGzn/2MxMREn9dawm6lHzh69CizZ88GTixsfvLJJ3z77beAPcJu0ZyumK5AP+BC4D/AvW7HEoBC5+NjQKdabQARAY9SEAQXhw8fZu/evcTExHD55ZdTXFzMM888Y1v/9Qk72OeO8eaKsRZsG1K2bsGCBezevZsZM2bw73//G4BLLrnEr2utDVJWCuGFCxdy4MABxo4dy/z58wHTJ/7DDz8QERHBGWec4fe4atO7d2/X444dO9Z4bif+5IopAFZorSuUUt8Cf611zMpZ2RE4UqsNwOP2MaXULGAWwJw5czj77LMbMu6TSmVlZcBFb4OFUJoLhNZ8/J3L8uXLAXMr/qWXXsp7773Hpk2bbHsdrMXTtm3b1unTcpOsX7/eaxihr7lYceNxcXF1zouLiwNMCzo7O9uveHErUqeoqAitNWFhYYwdO9av18T6Ilm7di05OTmudYtx48bRvn17+vTp4+pfKUVRUVGjd9+6x6wPGjQo4Jqrnn7xgH/Cvga4VSkVBowA3GOdvsf0p78GnAusADKAwUqpNoACNnrqVGs9D5jnfNr0mecDICcnp94XsKURSnOB0JqPv3OxLOrTTjuN008/HTBDFO16HfLy8gAzhr22K8OqRHTs2DGv9/M1lyNHjgAwbNiwOuelpKSQlJREfn4+hmF4tOprY+1STUhI4OjRo4wfP56RI0f6vA5g0qRJgLmrNCUlxbUz9PTTTyclJYVzzjmH559/HoALLrggoNe5ffv2rsennXZak312fbpitNaHgAXAEuAR4O9KqX8qpWK01uuBA0qpZcBQ4AOtdSXwT+A74AHnP0EQbMI962JKSgoxMTEcPHiQgoKCgPsuLCyksLCQmJgYOnXqVOe4lV73p59+Cug+3nzscCIxmOUe8YVl+X700UdcdNFF/P3vf/d7LGlpaURHR5OTk0NBQUGdHavuZe8C8a8DdOjQwRW33lT+dcBMahME/4Ka7Ozs5h6CbYTSXAwjtObj71wGDx5sAMaaNWsMwzCM9PR0AzBWr14d8Bg2b95sAMaAAQM8Hl+8eLEBGBMmTPDaj7e5OBwOIyYmxgCMY8eOeTxn9uzZBmA8+eSTPsdcVlZmAEZ4eLhRVVXl83xPjBw50gCML7/80gCMqKgoo6KiwjAMw9izZ48xcOBAIzU11SgvL29U/+6MHTvWAIxNmzYF3JdRj6bKBiVBaEEcP36cHTt2EBERwSmnnAI0Pq+4J7wtnMKJxb9ALPaCggJKS0tp3759vWXlGmKx79+/HzB95RERjYvVsKzz999/HzD931FRUQBERESgtWbjxo2uvPSB8Oqrr/LZZ5+53r+mQAptCEILYuPGjTgcDoYNG0Z0dDRwcoW9R48ehIeHk5OTQ0VFRaOEzltEjIXly/dH2C03TCD+aut+H374IVA3cZinQh2NZeDAgQwcONC2/jwhFrsgtCDc/esWJ1PYo6Ki6NGjB4ZhNDqW3Zd/HRpmsdeXc6YhWEJuLcJ6ywjZEhBhF4QWhCdht6y/kyHsEPgCqj8We0pKCu3bt+fQoUPk5+d77c8Oi722kDelm+RkIMIuCC0Ia3ekuxB5S2TVUE6GsHtLJ2ARFhZWZ+OQr/4CsdjT0tJqJCMTi10QhJOGVaTBEleATp06kZiYSHFxsWshsbGcTIvdl4XtrzvGDos9PDzcdb/o6GhXJsuWigi7INhIaWkp5557Lg8//LDtfVdVVblEsbbw2uFnd/eb2ynse/furZH3xR9XDPgv7HZY7HDCSh80aFCjo2uCBRF2QbCRVatW8dVXX3H33Xf79A03lNzcXKqrq+nWrZsrIsbCDmE/cuQIpaWldOjQod4wRGiYsBcXFzN8+HDGjBlDaWkppaWlrvJyVrbI+vAWGbNmzRpuueUWiouLbbHY4YRfvaX710HCHQXBVqw8KxUVFbz88svcfvvttvVtuWE8JY6qnaHQHw4fPsy3337LRRddRNu2bf2y1qFhwr5z504KCgooKChg3rx5REdHc/jwYUaPHu0S7vrwZrHffPPNrFy5kq5du7qEPVCL/Xe/+x27du3i5ptvDqifYEAsdkGwEfeycS+88AIOh8O2vv0R9oZY7A888AC/+MUv+NWvfoXD4WDx4sWAb2GvHcvuDfcskA8//DBPPPEEALfeeqvP5F6pqamEh4eTnZ1NeXm5qz0/P59Vq1YB8Nxzz1FUVERMTAzx8fFe+/NFQkICzz//vNfkZi0FEXZBsBHLYrcef/nll7b17U3YG1OP1PoSeO+997jwwgv585//DMAvf/lLr9c1JJbdXdjz8vLYuXMnvXr14rLLLvM5vqioKHr16oVhGDV+HXz++eeu6B/rNenevbtfWSBbCyLsgmAjlrCfe+65gGlR2oU3Ybf81bt37/Y75NE9pe1nn32Gw+Hgvvvu49prr/V5rb/uGEvY3dNy33zzza7t+r7w9IVllZVz96mHSoZPuxBhFwQbsYT9/vvvJzw8nM8++4yysjJb+vYm7PHx8cTHx3P8+HEOHTrkV3+WsD/00EO0a9eOO++8k7vu8q+SpSXsvn4hWML+pz/9iTPPPJM+ffpw3XXX+XUPOFFA27pPRUWF61fQiy++6DovUP96qCHCLgg2UVpayv79+4mMjGTUqFEMGDCA6upqVxrYQPEm7HBCbN3dQfVRXl7OoUOHiIyM5LbbbqOgoIAHHnjAb3dGfYu1hmHwww8/uL5cLGHv168fX3/9NVlZWV4jbmpTW9iXL19OYWEhQ4cO5bzzznPloxeLvSYi7IJgE5Zbonfv3kRERLjybW/YsCHgvg3DcBWAqF0308LdHeMLK5IkOTmZ8PDwBsdte0pjsHXrVqZMmcLYsWOZNWsW5eXl7Nu3j/DwcHr37t0oH3htYbfcMNOmTQPgnnvuoUePHn4VrW5NSLijINiEJaiWwI4YMYL58+fbIuz5+fmUlpbSsWNHV6GG2jRE2P3d/VkflrBbFvuGDRsYM2YMlZWVAKxevZqVK1diGAa9e/dudLrb2jVWv/jiCwCmTp0KmEUwAi2sHYqIxS4INlFb2O202H25YaBh8eWWf72xwt6vXz/CwsLYtWsXlZWVLFiwgMrKSs477zwmT54M4CoqbYlzY3C32A8dOsS2bduIiYlh7Nixje6zNSDCLgg2UZ+wr1+/PuDkXP4Ie0Ms9kCFPSYmhl69elFVVcWuXbtYu3YtANdeey1XXHEFAAsWLAACE/aEhATi4+MpKSnhk08+AWDMmDF+R9W0VkTYBcEmagt7cnIynTt35tixYy7/eGOxrg8WYYea7hhL2EeNGuVyk1ibswIRdjhhtb/xxhsArgVToX5E2AXBJmoLe1hYmG3umIa4Yvbs2eNzx6udwr506VJycnJo164d/fr1o1evXjUqBPXr16/R94ATXwzfffcdIMLuDz4XT5VSqcAawIrZulxrne88djFgJVboAzyutX5KKZUBWLsf/qG1/trWUQtCEGJFbrgntxoxYgTffvstGzZsCChywx9hj4uLIykpifz8fPLy8ryKtp3CPn/+fMAs/hEebtqKZ511lmth1S6L3XJnjRs3LqD+WgP+RsUs0VrX2QOstV4ALABQSi0GPnIeOqa1nmzHAAWhJXD06FGOHTtGbGwsSUlJrvbGWuyPP/44nTt35le/+hWFhYWu670JO5hfKvn5+ezevfukCbsVYTNq1CjXsTPPPJNnnnkGIODc5u7XDxw4kM6dOwfUX2vAX2Efr5RaBiwD7tRa11gJUkp1A9pqrfc4m9oppZZgWu1ztNZHbBuxIAQhlhumT58+NeK1GyPsGRkZrrwtr7zyCvv37+enn36iR48ePlPKpqWlsXr1anbv3s2ECRNqHHvsscd45513+Pjjj21JdVu7IPPo0aNdj0eNGsX48ePp1KkT7du3b/Q9oKawixvGP/wR9jygH3Ac+A9wCfBBrXNqt43XWh9WSl0D3Af8vnanSqlZwCyAOXPm1MglEWxUVlbWyKvRkgmluUDwzMfKMZ6cnFxjPO3btycqKoqsrCx27Njhtdq9NZeVK1e62pYsWQKYxR9effVVjh49ytGjR+vtIzExEYCNGzfWGMeaNWv4y1/+gmEY3HLLLVRUVNCxY0ef/fkiJiaG0tJSwPySsO5pGIbLRRPo+xMXF+d6PHjw4JP+fgfLZ8wT9X0x+xR2rXU5UA6glPoQGEtdYb8M+LXbNYedD98HPCaG0FrPA+Y5nwYWC9bE5OTkhMyW5VCaCwTPfAoLCwFTeGqPZ9CgQWzatImioqI6Vq471lyOHTsGwBVXXEFSUhIVFRU8/vjjflm+6enpgJlr3RpHSUkJt912m8tH/d577wFmet5AX7uBAweyfv16YmJimDRpEpGRkTXmYgddu3YlMjKSqqoqpk6detLf72D5jDUEn1ExSin3T9NEILPW8a64uWGUUm2UUm3rO18QQpHaETHuNDRXurXLUinFv//9b+bNm+e3O8NTyOOdd95JZmYmw4YNY8yYMS6Bt0OsrC+q4cOHu0TdbiIjI7nrrru4/vrrQyJX+snAn3diglLqAUxXzG7gLqXUC1rr2c7jtd0wCcBnSqkSTEv/N3YOWBAaS2lpKbm5uQFHaXjCm7D3798fMH3n/mAJe2MWHa1rMjNNe8owDF555RXA9NdnZGQwY8YMwB5ht6ogufvXm4K77767SfsPNfxxxXwOfF6rebbb8edqnX8AaNp3WRAawU033cSrr77Khx9+yM9//nNb+24Ki70xX0Cpqam0adOG7OxsioqKKC4uprCwkE6dOjFq1CjS09Pp3r07ubm5tgj7nDlzKC4u5o9//GPAfQn2IRuUhFaDlZTqhhtuCGjBsDbuFX4CtdgdDocrHr4xwh4ZGelyj2zfvp3t27cDpp8/LCyMqKgo7rnnHiIiIpgyZUqD+69Np06deOSRRyQfepAhwi60Cqqrq12CuX//flc4oR3s37+fsrIyEhMTPfrCLYs9IyPDZ86Y3NxcysvLSUpKanSYoOWH3rp1aw1ht5g1axalpaWuZF1C6CHCLrQKsrOzqaiooH379rRt25aXX36ZZcuW2dK3px2n7iQlJdGhQwcKCgp8VjcKxA1jYfm9t23b5lHYAUmiFeKIsAutAmsxccSIEcyZMwcw63zagfvmJE+EhYX57Y4JxA1j4ctiF0IfEXahVWAJe79+/RgzZgxgWrR24G3h1MLfBdRAImIsLGH3ZrELoY1UUBJaBe7CbomcJXqB4o+we7PYKysr+eCDDxgwYIAtrpgBAwYQHh5OVlYWhmEQFRXldWxC6CHCLrQKLEHt168fAwYMICwsjMzMTCoqKhpdts0iEIvd4XBwzTXX8M4779C7d29iY2OBwIS9bdu29O3b1zXn/v37N9nmISE4EVeM0Cpwt9hjYmJIS0ujurra1R4IjbXYDcPgD3/4A++88w5gpua13EOBbqJy36EpbpjWhwi7EPI4HI46Lg673DGVlZXs27ePsLAwevXqVe957sJuhTzOnz+fZ555hjZt2vDKK68QHx8PQGxsLN26dQtoXFZkDIiwt0ZE2IWQJzc3l7KyMpKSkujYsSNQc4ExEPbt24fD4SAlJYW2bdvWe15CQgKdO3fm+PHjrpS5K1asAOCuu+5i5syZPPPMM4SHh6OUqpH6tzGIxd66EWEXggaHw8H999/P66+/bmu/lrvFsprBPovdHzeMRW13jFXH1LKuzzjjDHbs2OEqAh0IIuytGxF2IWiYN28ed999NzfeeKPPHZoNwd2/bhGoxb5+/Xruvfde7rzzTsA/YbfcQJZbyCp35+7C6devH506dWrUmNwZPHiwy+r3lipYCE1kqVwICvbu3cttt90GQHFxMfv37yc5OdmWvj0Ju7vFbhiG366PJUuW8Kc//Yl169bVaPdne74l7NYmJMti91XurjG0a9eO5557DofDQYcOHWzvXwhuRNiFZscwDGbNmkVxcbGrLSMjo0mFPTEx0VX4OTs7m549e/rV17333su6detISEhgxowZTJo0CaWUX1Es1qajrKwsioqKOHr0KDExMU1Ww3P27Nm+TxJCEhF2odlZvnw5X375JZ06dUIpxVdffUVmZiaTJk2ypX/3GHZ3Bg8eTH5+Ptu2bfNb2C03yg8//FDDZ+8P7q4Yy1rv1atXwAulglAb8bELzc7SpUsBuPLKKxk/fjzgf1EKX1RXV7Njxw6grq+5oQuo5eXlZGdnEx4eTmpqaoPH4u6K8eRfFwS7EItdaHassL/x48fjcDgAbNk4BGbUSnl5OT169Kjja27oAurevXsxDINevXo1Kjti165diY2N5ciRI2zcuBEQYReaBrHYhWbF4XCwcuVKwBT2hpaR88XWrVuBmht2LCxh99dib0hooyfCwsJcfvbFixcDTbNwKggi7EKzsm3bNgoKCujRowc9e/Z0+cEzMzNtCXm0rHFPRZAtV4y/FrsVzRJI5kXLHbN8+XJALHahaRBhF5oVdzcMmDs0ExMTKSkpYf/+/QH3781i79mzJ7GxsRw4cMCvUnmBWuxw4kvh+PHjgFjsQtPg08eulEoF1gBbnE2Xa63znccmA68DWUC11vpMZ/vNwBXAYeBqrXWh7SMXQoLvv/8eOCHsYEavHD58mMzMzIBDHr0Je3h4OAMHDmTdunVs376dcePGee3LDmGvHRYpFrvQFPhrsS/RWk92/suvdWy+s90S9c7AdGACMB+4yb7hCqGGZbGffvrprjbLHROon90wDK+uGPd2f9wxviol+YP7tWFhYfTo0aPRfQlCffgr7OOVUsuUUg8qpWoH3V7qPHaz8/kYzC8CA/gCGI8geODgwYNkZmYSFxfH8OHDXe3WAmqgkTH79u2jpKSELl26kJiY6PGchiyg+qpt6g/uFntycnLAueAFwRP+hDvmAf2A48B/gEuAD5zHNGAFB3+slFoOJACW6+UY4DHxhVJqFjALYM6cOZx99tmNGf9JobKykpycnOYehi00di4//vgjzz//PHPnzrVtp+SiRYsAGD58OAcOHHC1W7lSNm7c6HOs3uZjxcf37du33nOSkpIAWLduncdzXn/9dTZu3Mgdd9zBkSNHiI6OpqqqqtGfh6ioKMLCwjAMg+Tk5Br9yOcsOAnmuaSkpHhs9ynsWutyoBxAKfUhMBansGutXXvAlVKfAsOB/ZhfBAAdgSP19DsPmOd8al/GpyYgJyen3hewpdHYuVx88cWsWbOGs88+mz/96U+2jGXJkiUATJ8+vcaYTjvtNL/H6u2c/HzTazhy5Mh6z5kwYQJgullqn1NYWMh9991HWVkZcXFxgOlKCdR90rNnT/bu3Uu/fv1q3FM+Z8FJS5yLT1eMUqq929OJQKbbMfcdHxOcx9YA1l7wc4EVgQ9TaE42bdrEmjVrgBPuiEApKyvj008/BeCyyy6rcczdxx5IyKO1cFqff926V3h4OLt376asrKzGsQULFrjaXnzxRSAwN4yF5Y6RhVOhqfDHxz5BKfWjUmoZkAK8pZR6wXnsCqXUaqXU90CO1nqpc3F1kVJqBXAl8GzTDF04Wbz00kuux40R9nvvvZeEhAQmTZrE3XffTXFxMV999RVFRUWMHDmyTqRIp06d6NSpEyUlJeTl5fl1D8MwmDdvXo1FUG8RMRZWfVCHw1FnsfbNN990nWNhh7BbXzQNzTUjCH5jGEYw/AtqsrOzm3sIttHQuZSVlRmJiYkGprvMGDhwYIPvOWTIENf1gHHFFVcYV199tQEYDz74oMdrxo8fbwDGN99847Vvaz4rVqwwAKNnz55GSUmJUVJSYnTo0MEAjLy8PK99TJ8+3QCMd99919WWl5dnhIeHG1FRUcabb77pGvsTTzzRwNl7HvNTTz1lFBcXe5xLKCBzOWl41FTZoCR45ZNPPuHw4cMMGDAAMH3RVj4Xf7Gs7ldeeYV27drx7rvv8tZbbwF13TAWlpVtWd2+2Ldvn+vvE088wQMPPEBhYSHDhw+na9euXq/1tAP1nXfeweFwcMEFFzBjxgwmTpwIQHp6ul/j8UZKSgp/+MMfXH57QbAbEXbBKy+//DIAN910E126dKGiosJVs9MfysvLOXr0KJGRkVxzzTU899xzgJkjZvjw4fW6IxqaoMtaKAWYO3cujz76KADPPfecz7S4nu5luWGuuuoqwsLC+Pjjj1m0aBFTpkzxazyC0JyIsAv1cuDAAb7++msiIyO58sorXZtrGuJnt9ICdO3alfDwcK6++mquvfZaAH71q1/Ve11DLfZDhw4B5m7S48ePU1VVxfXXX+9zNynUTd9bUFCA1pro6GimTZsGmKkOLrjgAsmdLrQIRNiFenn33Xeprq7mvPPOo3PnznVqdvqDJezuqQFeeuklli1bxh//+Md6r2ussN90001ER0fTvXt35s6d69e1lsW+Y8cOHA6HS+AHDx5MTEyMX30IQjAhwi7Ui+UHv+qqqwACsti7devmaouIiGDChAlERETUe12PHj1o164d+fn5Ndws9WEJ+9ixY9myZQs//vgj8fHxfo2xY8eOJCcnU1payt69e10uGcuSF4SWhgi74JGsrCxWrVpFXFwc06dPBxon7NbCqbuw+0NYWJjLavfHz26Jf+fOnenTp0+D7+e+gGpZ7CLsQktFhF3wiGWtX3zxxcTGxgI1S7v5iydXjL80xB1jWexWioCG4r6A6u6KEYSWiAi74JEPPjDTAVluGDhhsTfEx95Yix0aJ+yNzWPjvoAqrhihpSPCLtTBMAx27twJ1MyTnpycTNu2bcnPz6eoqMivvgKx2P0NeTQMo4YrpjFY99qwYQO7du0iPDxcdoYKLRYRdqEOR44cobS0lI4dO9K+/YlUQeHh4a4t9VZucl+cDIu9qKiIyspK4uLiGh3FYgn7mjVrqK6uJi0tjejo6Eb1JQjNjQi7UAdrF6enLIYNDXkMxGLv3bs3MTEx5ObmUlBQUO95gbphALp370779u1dScfEDSO0ZETYhTpkZ2cDZnrZ2jQkMsYwDI/hjv4SERHBwIFmuv8dO3bUe54dwh4WFlZDzEXYhZaMCLtQB8ti9yTsVkpdfyoOHTlyhMrKSuLj4xvt1khNTQVgz5499Z5j+dcbGxFjIcIuhAoi7EIdvLliRo8eDeDKz+6NQKx1C0vYf/rpp3rPscNih5rhjRLqKLRkRNiFOnhzxYwcOZKIiAg2b95MSUmJ134CWTi1qM9iX7BgASNGjGDRokVNIuxisQstGRF2oQ7eXDGxsbGccsopVFdXs27dOq/9BLJwatG7d2/ghMVeWVnJLbfcwiWXXMKGDRt49dVXAw51tBg6dChgJiyrr/i1ILQERNhbMHl5ea6dklVVVbb1603YAU499VTAtzvGTleMZbE/9dRTPPnkk0RGmuV6165d6yo0HKiPvX///jz77LO8+uqrAfUjCM2NCHsLZdmyZXTv3p0hQ4YwePBgfvnLX9rSr2EYLldMfUWbLWFfvXq1174sV4xdFrthGCxduhSA559/niFDhlBeXs7XX38NBG6xA9xwww2cd955AfcjCM2JCHsL5dtvvwVOWKmLFi2qU4y5MRw6dIjy8nISEhLqrfDjTdgNw+CLL77gH//4B4sXLwYCs9jj4+Pp0KEDJSUlHDlyhM2bNwMwbtw4Jk0ya6YfOHAAsEfYBSEUiPR1glIqFVgDbHE2Xe4sWI1S6kLgb0Al8KPW+mZnexHwo/P832utN9k87lbPli3m2/HEE0/w6KOPsnHjRlavXu0Su8biyw0D5o7Q2NhYdu3axaFDh1yCunLlSm655RZWrVpV43zLndIYwsLCSE1NZePGjWzevJndu3fTpk0b+vfvz8SJE3n++edd5wbqihGEUMGnsDtZorX2VJxyAzBea12llHpbKaW01hrYobWebNsohTpYluvQoUOZPHkyGzduZPHixQ0S9sLCQm644QauueYazj33XMB7qKNFZGQko0ePZtmyZaxZs4bzzz+fwsJCzjvvPAoLC0lKSuJXv/oV0dHRpKSk1Mg30xh69+7Nxo0b+eyzzwAzYiUqKspVh9RCLHZBMPFX2McrpZYBy4A7tdYGgNZ6r9s5FYBV5bivUmopppX/J6114D4CwUV5eTkZGRmEh4czaNAgJk+ezNNPP813333HPffc43c/r7/+Om+99RYbN26sI+zeLHYw3THLli1j9erVnH/++WzdupXCwkIGDRrEmjVraNeuXeMnWAvL4l+0aBEAp5xyimuMPXv2ZN++fYSFhdGpUyfb7ikILRl/fOx5QD9gEtAFuKT2CUqpMUAXrfVaZ1M/rfUk57U32TRWwcmOHTuorq6mb9++xMTEuKz0lStXNsjPbvnpN2/e7EoR4C2G3Z0xY8YAJyJjrAyMo0aNslXU4cQCquV+soQdTvj7O3Xq5LUikyC0Jnxa7FrrcqAcQCn1ITAW+MA6rpTqAfwTuNjtmsPOh+8Dd3jqVyk1C5gFMGfOHM4+++xGTeBkUFlZ6QqpCwaWLVsGmAm5rHENHjyYbdu2sXDhQq8FnK25VFdX87///c/V/vrrr3Pddde5crLExcV5nXP37t2BE+GGlsB3797d9tfKPcMkmFE21j1Gjx7NBx98QHx8fFC9R40h2D5ngSBzOTmkpKR4bPdn8bS91tpKvj0R2OZ+DHgHmK21PuhsiwPKtNbVzvMzPfWrtZ4HzHM+NfybRvOQk5NT7wvYHOTm5gKglHKN6+yzz2bbtm1s2bKFyy7ztBxiYs1Fa82xY8dc7UuWLOGee+7h8GHzOzk9Pd3rnLt160ZcXBx5eXm0bdvW9cE/9dRTbX+tRo0aVeP5GWecUWPejz32GGeddVZQvUeNIdg+Z4Egc2le/HHFTFBK/ej0sacAbymlXnAe+yOQBvxbKfWdUuoMoD+wxuljvwB4qgnG3arx5JKYPHkyAN99951ffXzzzTcAXHbZZURERLB06VKOHj3qtysmIiKC9PR0wCxOYblimiLHintUTVxcnMs1A6b1vn///hrRMYLQ2vHHFfM58Hmt5tnOY/cD93u4bJSHNsEm3CNiLCw/+6pVq6iurvbpb7b865dddhmHDx9m8eLFPPTQQz43J7kzYsQIVq5cyQ8//OCqOmRlf7STxMRE4uLiKCkpYejQoYSH17RHoqKibL+nILRkZINSC+P48ePs2rWLyMhIBgwY4GpPTEwkOTmZsrIyV2RLfZSVlbF8+XIApkyZwvTp0wF45JFHqKysZNKkSX5VIhoxYgQA77//fpNWHQoLC3NZ6e6/UgRB8IwIewtj27ZtGIbBgAEDaNOmTY1jltBb9UrrY8WKFZSVlTF8+HCSkpK4+OKLiY6Opk2bNvz1r39l4cKFfo3FEnYrGVhTprq13DEi7ILgGxH2IOXxxx/n+uuvx+Fw1GjftMncxOtJ4PwV9jfeeAOAqVOnAmY44YYNG9i9ezcPPvhgnSiU+jjllFNquEWaMtXtb37zG0aPHu11YVgQBBMR9iDlvvvu44UXXmD9+vWuturqap5++mkAjyGNlrB7KyNXXFzMu+++C8Cvf/3rGtdaIYz+Ehsb6ypdB00r7Jdeeilaa5+LuoIgiLAHJUVFRRQVmRGmK1eudLX/97//Zd26dfTs2ZNZs2bVuc4SWW8W+6effsrx48eZNGmSLQudljsGpOqQIAQLIuxBiBWnDieEvbCwkP/7v/8D4OGHHyY2NrbOdf64YubPnw+Yrg07cBd2qTokCMGBCHsQ4r7L7fvvvwdMn/uBAwcYN25cvbnX09LSiIiIYM+ePR5TC2zfvh2tNe3atbPNV20Je5cuXSRXiyAECSLsTcBzzz3H5MmTmTx5MjNmzKC4uLhB17tb7Lt37yYvL4+XX34ZgAcffJCwsDCP17Vp04a0tDQMwyArK6vO8X/84x8A/OIXv6g313pDmTBhApMmTeKGG26wpT9BEALH3+yOgp8YhsEdd9xBYWGhq+3cc89l5syZfvdROy/Fo48+SnZ2Nr179/aZlnfAgAFkZmayc+fOGhuYFi5cyBtvvEF0dDR33OExfU+jiI2NZcmSJbb1JwhC4IjFbjMHDx6ksLCQjh07cssttwAntu/7i2Wxd+jQAYB//etfAMyYMaPOrsvaePKzHz16lNmzZwNw++23N8nuUEEQggcRdpvJyMgATIH97W9/C5jCbhj+5zmzLPYLL7wQwFWo+qqrrvJ5rRUZ4x7y+MADD5Cbm8u4ceNsWzQVBCF4EWG3GUvY+/fvz+DBg+nevTsHDhxwbSzyB8tiv/TSS11tw4YN82vXpSeL3VqAve+++yRnuSC0AkTYbcZd2MPCwjjrrLOAhrljLGFPT0+nf//+AFx55ZV+XetJ2K0xufvcBUEIXUTYbcZd2AFXAZGvv/7ar+sdDodL2Lt3785f/vIXJk+e7HLr+KJ79+7ExsaSn5/P4cOHXf/i4uJITk5u6HQEQWiBiLDbTG1hP/PMMwFYunQp5eXlPq8/fPgwlZWVJCQkEBMTw3XXXcfixYtJSkry6/7h4eEMGzYMgI0bN9bw+dcXJikIQmghwm4jhmGQmWkWjLIiT5KTkznllFM4fvx4jfQA9WEtnAZSscU966LlknFP8SsIQmgjwm4j+/fvp6SkhE6dOtXYhWlVN1q9erXPPtzdMI1l5MiRAKxfv94l7NYvCEEQQh/ZoGQjtd0wFn369AFwVSfyhp0W+/r1613uH7HYBaH1IMJuI/UJu1VmzldlI7DHYh82bBjh4eFs3bqVyspKQIRdEFoT4oqxEV/CfrIs9tjYWAYMGEB1dTXbt2/3OCZBEEIXnxa7UioVWANscTZdrrXOdx6LAP4D9Ad+1Fr/0dl+M3AFcBi4WmtdSCugPmG3ikP4I+x2WOxg+tktUe/cubNkXhSEVoS/FvsSrfVk5798t/ZpQK7WeiIQp5Qap5TqDEwHJgDzgZvsHXLwUp+wd+vWjfDwcA4cOEBFRYXXPvbu3QsEZrFDzTzp4oYRhNaFvz728UqpZcAy4E6ttZX45HRgkfPxF8B4IB7zi8BQSn0B/NfG8QZEeXk5b7/9NseOHSM8PJzp06fTu3dvW/r2FOpoERkZSXJyMjk5OeTm5roKM9dm8eLFbNq0ibi4uIDFWIRdEFov/gh7HtAPOI7pdrkE+MB5LAGw3CzHgE71tNVBKTULmAUwZ84c1w7NpuT111/nr3/9q+v5u+++yzvvvOPzusrKyjqpdGtz+PBhSktL6dixIyUlJZSUlNQ43qVLF3Jycli3bh1RUVF1rq+urmbOnDkA3HTTTTXK4zWGrl271nhsjd+fubQkQmk+MpfgJJjnUt8ve5/CrrUuB8oBlFIfAmM5IewFQAfn447AEWdbv1ptnvqdB8xzPvU/9WEAbN68GYBzzjmHr776Cq01SUlJtGnTxut1OTk5Pl0jBw8eBKBXr14ez+3Tpw/r1q2jvLzc4/GXXnqJrVu30qtXL+69915iYmL8nZZHUlJS6N69O7m5uSilXPf0Zy4tiVCaj8wlOGmJc/HpY1dKtXd7OhHIdHv+PXCW8/G5wArMhdZJtdqCgjVr1gBmFaLBgwdTVlbG2rVrbenbCmW0ImBq420BtbCwkDvvvBMw65kGKuoWV111FcnJyUycONGW/gRBaBn4s3g6QSn1o9PHngK8pZR6wXlsIdDLeaxMa73Subi6SCm1ArgSeLZJRt5ACgoK2LlzJ23atGHYsGGMHz8egOXLl9vSvyXsloDXxlvI49y5c131TH/xi1/YMh6ARx55hNzc3BpuGUEQQh9/XDGfA5/Xap7tPFYFzPRwzZPAkzaMzzZ+/PFHwFxUbNOmDRMmTODFF19kxYoV/PnPf25QXw6Ho04lI0uw67PY69uktHv3bp580nypnnzySUnUJQhCwLSaDUqWG2bMmDEALot9xYoVDaputGzZMmJiYvjPf/5To72xFvvtt99OeXk5V111Faeddprf4xAEQaiPVivsffv2pWvXruTn57viz/1h4cKFVFRUcNddd9VIw+uvxe4u7JmZmbz33nvExMQwd+7chk1IEAShHlqNsGutgRPCHhYWVsNq95dt27YBcODAAd58801Xuy+LvXv37oSFhZGXl+fK35KVlQXAuHHj6r1OEAShobQKYT948CB79+4lLi7OVewZaNQCqrVNH+Dxxx/HMAwMw/BpsUdFRdGtWzcMwyAvLw8wvxzA3JkqCIJgF61C2C03zOjRo2sUc54wYQLgv8VeXl7Orl27CAsLIzk5ma1bt/LFF1+Qn59PRUUFCQkJxMXF1Xt9bXfM/v37ARF2QRDspVUIe203jMXw4cMJDw8nIyPDZw4XMH3i1dXVpKWlcfPNNwPw7LPP+nTDWIiwC4JwMmgVwr5hwwbgRGUhi7Zt29KrVy8cDge7d+/22Y/lhhk8eDBXX301AN999x0//fQTUL8bxqK2sFuuGIkzFwTBTkJK2B988EFuuukm1+KkxcaNGwFIT0+vc42VidGfyBhL2AcNGkRKSgp9+/aluLiYTz/9FPBtsVvHrQyOYrELgtAUhIywl5eXc9ddd/Hss89y4403umLTi4uL2bVrF1FRUTUWTi2sTIwNFXY4Ucv0gw/M1Dm+LHYrq6Nl4YuwC4LQFISMsGdkZOBwOAB48cUXeeyxxwDYsmULhmEwePBgj8m+GmKxW6GOgwcPBuCMM84AzC8P8G2xp6WlAbjcPuKKEQShKQgZYbdE17Kab7/9drZu3erVDQMnhN3KpV4fhmHUsdgtYbdoiMVeUVHB4cOHCQ8Pp3Pnzl6vEwRBaAghI+yW6F555ZVcc801GIbBRx995Lew+7LYc3JyKCkpoXPnziQmJgJmil73ohm+LPbExETatWtHYWGha7xdunSpEYIpCIIQKCEj7O5ukp///OeAuf3fl7CnpaURHh7O3r17a6QI8Na/O+5Wuy+LPSwszOWOWbVqFSBuGEEQ7CdkhN3dTXLWWWfRpk0bVq1a5crqWJ+wt2nThtTUVBwOB7t27aq3/02bNgF1hd1aQO3UqROxsbE+x2lZ+Jawy8KpIAh2ExLC7nA4agh7+/btmTx5MoZhuNwn3gTUn8iYH374Aai7yemcc86hQ4cOnH766X6NtbbFLsIuCILdhISw79u3j9LSUrp160Z8fDwA06ZNcx1PT0/3mufcnwVUS9hrp9bt3r07GRkZzJ8/36+xWha75doRV4wgCHYTEsJuiaQVrQIwdepU1+Nhw4Z5vd7XAmp+fj579uyhXbt2DBkypM7xLl26+OWGgRMWu4VY7IIg2E1ICbu7/7tPnz4uEa7Pv27hS9jXrVsHgFIq4AgWEXZBEJqakBD22vHlFnPnzmX69OlccsklXq/3V9jtqHDkHh4J4ooRBMF+QkLYPbliAKZPn87HH3/s8rvXR2pqKhEREezbt4+ysjLA3BX69ddfYxiGrcLesWNHEhISXM/FYhcEwW58FrO2UErNAJ7WWie5tV0M3Ox82gd4XGv9lFIqA8hxtv9Da/21XQOuTXl5uStWvXYoor9ERUWRmppKVlYWu3btYsiQIdx44418+OGHPPzww67skHbVJE1NTeXo0aOACLsgCPbjl7ArpSKAy4F97u1a6wXAAuc5i4GPnIeOaa0n2zZKLyxcuJBjx46Rnp7uc4OQN/r3709WVhYZGRkMGTKEtWvXAmZqAjA3H3Xv3t2WMaelpbFu3TqioqJqWO+CIAh24K8rZgbwHuDwdFAp1Q1oq7Xe42xqp5RaopR6SynVyYZx1surr74KwMyZM72GNPrC3c9eWlrKnj17ahy3y1qHEwuoXbt2DWjMgiAInvBpsTut9SuAnwO31nPaJcAHbs/Ha60PK6WuAe4Dfu+h31nALIA5c+Zw9tlnN2zkmLVMP//8cyIjI5kyZQo5OTm+L6qHpCTTw7R+/Xq+//57DMOgd+/edOvWjR9++IH09PSA+nfH8vknJiba1qe/VFZWnvR7NiWhNB+ZS3ASzHNJSUnx2O6PK+Zq4F2ttUMpVd85lwG/tp5orQ87H74PXOfpAq31PGCe86nhxzjq8Pbbb1NdXc1FF13E8OHDG9OFC2tuubm5FBQUAGb8+xtvvMFrr73GrFmzaNu2bUD3sLBqrVoFO04mOTk5J/2eTUkozUfmEpy0xLn444oZAlyjlPoC6K+Uetr9oFKqK25uGKVUG6WUpYATAe/5cBuJYRg13DCB4r77dOfOnQAMGDCAjh07cskll9gm6mAmDvvkk0/45z//aVufgiAIFj4tdq317dZjpZTWWv9BKfWC1nq2s7m2GyYB+EwpVQKUA7+xc8AWa9euZcuWLXTu3JkLLrgg4P5SU1OJjIxk3759riiYAQMGBNyvJ8LCwrjwwgubpG9BEAS/wx0BtNbK+Xe2W9tztc45AIy2ZXReGDFiBF988QUHDx70WBmpoURGRpKWlkZGRgZffvklgMdSeoIgCMFOg4Q9mIiIiODcc8+1tc/+/fuTkZHh8rE3lcUuCILQlITEzlO7sPzsAO3atSM5ObkZRyMIgtA4RNjdsPKyg2mtS4y5IAgtERF2N9wtdvGvC4LQUhFhd8Nd2MW/LghCS0WE3Y1evXoRFRUFiMUuCELLRYTdjcjISFfq31NOOaWZRyMIgtA4Wmy4Y1PxyiuvsG3bNp/l9ARBEIIVEfZajB49mtGjm3x/lSAIQpMhrhhBEIQQQ4RdEAQhxBBhFwRBCDFE2AVBEEIMEXZBEIQQQ4RdEAQhxBBhFwRBCDHCDKNR5UYFQRCEIEUsdkEQhBBDhF0QBCHEEGEXBEEIMUTYBUEQQgwRdkEQhBBDhF0QBCHEEGEXBEEIMUTY3VBKxTn/hjX3WAJFKRXr/BsKc+nt/BsKczktFOYBoJTq1dxjsAulVEJzj8FOZIMSoJQ6B/gdkAs8rLXObeYhNRql1M+Bq4F9wKMtfC6xwCNAT+AyrXVlMw+p0SilhgNPAauAu7XWFc08pEajlDoPmAOUA28DX2iti5t3VI1DKXUGcCtwCHgG2KK1LmveUQWOWOwmVwIvApuB65VSE5t5PI1CKTUN+DXwMFAA3O5sb5EWotb6OFABtMecV4udCzAReFBrfQfQp7kH01iUUhHA9cA84D5AAXEt+H35BfAK5hfUBcClzTsce2iVpfGcluAvgOXAAWAvsBpY7GwfrZTKagnWrnMuM4DPgbXAdVrrfKXUTuAdpVQXrfXBZh2kn7i9L0u11llOscgEPgT+oJT6Qmu9t1kH6SfunzGtdQZwHDhPKXUHkKeUWgN8qrXOas5x+oNzLr8ElgDFwCbMX7d7gBFADBCF+SUc1CilYoC7MX9lLAF2A3mY///LgKlKqUFa6+3NOMyAaXUWu1JqBvAdEAvs0loXAt2Acc6fx+uAaKBjsw3ST9zmEg0c1FrnOkU9HNPK3d2CRN2aSwzmFy1aawMYgvlefAjMVkr1bK4x+kutufzkbI4FkoE/AzdiujGmNsPwGkTtuWitDwDfYrr71mG6MH4H3NRcY/QX52fnbUxjbqWzOQxIAwxgK+Znr1+zDNBGWpWwK6U6AFcA92N+OM9SSnUGngOuU0rFaa03A72B1GYbqB94mMtkpdQgAK21A1NIqpzn9grmn8q15vI/4Ayl1FDn4SWYv0RKMMXkD85rgvKz62EuP1NKdQc+wLRqe2qtj2EKvvX+BOV74+EzdqZSqr/W+jvgG+AZrfXVwEKgjVIqPFjn4iQS+ATzl/nvlVKnA18CpwNDtdaHMY2kGAje98UfQn7x1Lly/2dgEbACmAT8CWgDfApcA5wBzMJ845dh+nM/0FovbI4x14ePuXyCOZeLtNY/KaV+i/mBPQYkAjcF0wKXn3M5B5gNTAYOYv78L9Fa39UMQ64XPz9jZ2LOIx3TMrwAyNRa39cMQ64XP9+X8zF/bSRjCuMc4KjW+g/NMeb6cJvLJ5jrZz2cz3MwjYWZwEPAMKADsB2YhukKfLEZhmwbQWn12IVSqgfwOKYvsBvwmtb6M+BR4Gda68eA14BHtNYPY36QZwMbg1DUfc3lccxFoIedl/TCFPYMrfW1QSbq/szlNeBe4DHgZa31L7XWtwShqPvzGfsvZrTVe5iugNOA74NQ1BvyvrwMZDgfrw5CUXefSwrwrNZaYxo5FVrrN53HzwFex3T1nQGsaemiDiEq7EqpSW4/o+K11o9rrf8LtFdK/VVr/RWmbw3gn0CsUqq98yfmtVrrJ0/+qD3TwLn8G+fPe8yfyuO01s+d5CHXSwPn8hSmFYXW+g3n9UHzeW3EXNoopTporbcCt7bw9yUOiNZav435C/FfzTBsj3iZS0el1HXAP4BTAbTWXwCDnOdtBv4QTHMJhKD5j2IHSql2SqmvMf2BF2Au7CxXSs12nrIMmK6UitdaVyulJgEfYUZeFANoravq9nzyCWAuuwC01su01gUnf+R1CeR9cYY8Aq61g2YlgLlkORfq0VpXN8PQ6xDg+1ICECzx+H7MZSnwG+ff5Uqpe5zn5zrPDZr3xQ5CzseulBqNuaHlVMwNB/HOvz9hincJpjW7BfgP5s/8D5pjrL6QuchcmppWNpdyzC+mlUBXzAXTr5phqE1OyAm7hVLqaUzf3xtKqWTMn/WZwB+BN7XW+5tzfA1B5hKcyFyCEx9zeb2lhAAHQki5YqBGiNKbmKFmXbTWeZix0O9hhjIWBZO/tj5kLsGJzCU48XMuxS05jNFfQtZiB1BK/R7oCxwFsoCdWuvVzTuqxiFzCU5kLsFJKM2lMQT9t3BjcLMu0jFjbndprd9oiW+szCU4kbkEJ6E0l0AIdYv9UmCh1rq8uccSKDKX4ETmEpyE0lwaQ0gLuyAIQmskJF0xgiAIrRkRdkEQhBBDhF0QBCHEEGEXBEEIMUTYBUEQQoxWWRpPaB0opVIxS5+BWUD6fmf7S5gJodBaN2oXolJqCGYRiu+cWUFRSr0KXAuMcaaIFYRmQYRdaC3MVEo9gJly9gob+hsC3ON8/J0N/QmCbUgcuxCyuFnsu4A+wBTM+pbPYqZqTcF0R96JWbezE6CBOVrrLUqpezHF+0XM6kfxmPVK13Dil4DFzzAr8lyLWcDhcmffV2qtlzXJBAWhHsTHLrQGtgE/YLpffoOZurXAeezXmDU9N2IK/BjgY6VUlNv1EzGLmHTELKWWj1mgBcxapjMwy91ZnI6Z4rYHZoUhQTipiLALrYWXMa3o8ZglBC0ucP69RWv9NPAxZvKoAW7nPKG1fgrT8k91FplY4Ty2WWv9Tq1UsPdqrR/AzP+davtMBMEHIuxCa+EdoBrIBr72cNyo9dedI86/VZz4P+PNh+l+fkTDhikIgSPCLrQKnGXpfgPMrlVib5Hz7xPOVK8X4Uzz6qPLo86/E5VSv1RKxdg6YEEIAImKEVoNWuv5HppfxVxE/R3m4uoazMXTSqWUt+6WY9bXnOS8rqetgxWEAJCoGEEQhBBDXDGCIAghhgi7IAhCiCHCLgiCEGKIsAuCIIQYIuyCIAghhgi7IAhCiCHCLgiCEGKIsAuCIIQY/w9wT2Dqw93ZhAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGwCAYAAABy28W7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+u0lEQVR4nO3dd3hUZdoG8Hsy6ZkAgUACqYQQOtKLFFEIkCjCIrAqqDSxg9hXlxUV3VUE1/a5LNUOiA2QDlJEQYIgCIQSSCEFAqT3ZOb7Y/a8njOZJHMm05Lcv+vy8mTmZM6ZN8Dced6mMRgMBhARERG5CDdn3wARERGRHMMJERERuRSGEyIiInIpDCdERETkUhhOiIiIyKUwnBAREZFLYTghIiIil8JwQkRERC6F4YSIiIhcCsNJA6DX63Hp0iXo9Xpn30qDwPayHNtKHbaXOmwvy7GtlNyt+aY1a9bgq6++QkFBAUJDQ7Fs2TL4+/srzlm4cCG2b98Od3fjJdq2bYv169eL5zdt2oSPPvoIRUVFuO222/Diiy/Cw8OjHm+FiIiIGgPV4WTt2rX4+eefsWLFCgQHByMpKQmenp5mz33ooYcwffr0ao9fuHAB77zzDj744AOEh4fj6aefxsqVK/Hwww+rfgNERETUuKgKJ1VVVVi9ejWWL1+Otm3bAgCio6NVX3Tbtm2IjY1F165dAQCzZ8/GokWLagwn5eXlKC8vV964u3uNoaixkcp8LPdZhu1lObaVOmwvddhelmtKbeXmVveIElXh5OrVqygrK8OuXbuwdu1a6HQ63HvvvZg0aZLZ8z/99FN8+umniIiIwOOPP44+ffoAAC5evIjBgweL8zp27Ij09HSUlpbC29u72utIgUhu8uTJmDJliprbb/DS0tKcfQsNCtvLcmwrddhe6rC9LNcU2qp9+/Z1nqM6nBQWFuLy5cvYuHEj0tPT8eijjyIyMhL9+vVTnHv33Xfjqaeego+PD3bt2oX58+dj3bp1CA4ORklJCfz8/MS5Op0OAFBSUmI2nMyYMQNTp05V3ngTq5ykpaUhLCzMosTZ1LG9LMe2UoftpQ7by3JsKyVV4cTLywsAMGfOHHh7e6NDhw6Ij4/HwYMHq4WTzp07i+O4uDhs2bIFhw8fxvjx4+Hj44OioiLxfGFhIQDAx8fH7HU9PT2bTBCpjZubG//QqsD2shzbSh22lzpsL8uxrYxUtUBERITVM2o0Go04joqKwoULF8TX58+fR0hIiNmqCRERETUtqsKJj48PRo4ciZUrV6K8vBzJycnYunUrhgwZUu3c3bt3o6SkBJWVldixYwd+//139O/fHwAwduxY7Nq1C4mJiSgsLMSqVasQFxdnm3dEREREDZrq2tHzzz+P3NxcjBo1Ck888QRmz56Nfv36YevWrYoBql988QXGjh2LUaNG4fPPP8fixYvRrl07AMYZPk8++STmz5+P+Ph4BAUFYebMmbZ7V0RERNRgaQwGg8HZN0G10+v1SElJQUREBPsiLcD2shzbSh22lzpsL8uxrZTYAkRERORSGE6IiIjIpTCcEBERkUthOHFB2dnZ8PDwQHFxMSorK+Hv74/09HTxfGRkJDQaDTQaDXx9fdG9e3csW7bMiXdMRERkOwwnLuiXX35Br1694Ovri6NHj6Jly5YICQlRnPPqq68iMzMTJ06cwIQJE/Dwww9j3bp1Trpj5zPde4mIqKk6ceIEvvnmmwa9Tw/DiQv6+eefxdoxP/30E26++eZq5/j7+yM4OBjR0dFYtGgROnbsiO+++w6Acbp3TEwMfH19ERUVhQULFqCiokJ87++//45bb70V/v7+aNasGfr27YuEhAQAQEpKCsaNG4eAgAD4+fmhW7du2LJli/je06dPIz4+HjqdDkFBQbjvvvtw7do18fyIESMwd+5cPPfcc2jZsiWCg4OxcOFCxb0nJiZi6NCh8Pb2RteuXbFr1y5oNBpx/wCQnp6Ov/71rwgICECrVq0wfvx4JCcni+enT5+OCRMm4J///CfatWuHmJgYAMD//d//oVOnTujcuTPatm1b475PRESN0fXr1zF06FDcddddmDdvnrNvx2qqlq8n+0lNTUXPnj0BAMXFxdBqtVizZg1KSkqg0WiwdetWTJ06FR999JHZ7/f29hYBxN/fH2vWrEG7du1w8uRJPPjgg/D398dzzz0HAJg6dSp69+6Njz76CFqtFsePHxcr/z722GMoLy/H/v374efnh9OnT4u9jzIzM3HLLbfgwQcfxNKlS1FSUoLnn38eU6ZMwZ49e8S9fPzxx3jqqadw+PBh/PLLL5g+fTqGDBmC2NhY6PV6TJgwAeHh4Th8+DAKCgrw9NNPK95LcXExbr31VgwbNgz79++Hu7s7Fi1ahLFjx+LEiRNiK4Pdu3ejWbNm2LlzJwwGAxISEjB37lx8/PHHiIiIgI+PDw4ePGjDnxIRkWs7fvw4CgoKAAAffPABJk2ahFtuucXJd6Vekwgn/fr1Q1ZWlsOvGxwcLCoSdWnXrh2OHz+O/Px89OvXD4cOHYJOp0OvXr2wadMmaLVadOrUqdr3VVZW4rPPPsPJkyfxyCOPAAD+/ve/i+cjIyPx9NNPY926dSKcpKam4tlnnxX7H3Xs2FGcn5qairvuugs9evQAYNxqQPLRRx+hT58+eOONN8Rjq1atQlhYGM6dOyeqFz179sTLL78sXvuDDz7A7t27ERsbix07diApKQl79+5FcHAwAOD1119HbGyseM21a9fCzc0NK1asENserF69Gi1atMDevXsxevRoAICfnx9WrFghwso333wDPz8/3HHHHbhx4wYiIiLQt29fi9qfiKgxuHz5suLrWbNm4cSJE/D19XXSHVmnSYSTrKwsxYBSV+Tu7o7IyEisX78e/fv3x0033YSDBw8iKCgIw4cPR0pKCgIDA8X5zz//PP7+97+jrKwMnp6eePbZZ/HQQw8BADZs2IB///vfuHDhAgoLC1FZWYlmzZqJ733qqacwe/ZsfPrppxg1ahQmT56MDh06AADmzp2LRx55BDt27MCoUaNw1113iYrO0aNH8eOPP4pKilxSUpIinMi1bdsWV69eBQCcPXsWYWFhIpgAwIABAxTnHz16FBcuXIC/v7/i8dLSUiQlJYmve/ToodgQMjY2FhEREYiOjsbQoUMxceJE3HXXXQ3uLyURkbVMw0lSUhIWLFiAJUuWOOmOrNMkwon8g9BVr9utWzekpKSgoqICer0eOp0OlZWVIli0a9cOiYmJ4vxnn30W06dPh6+vL9q2bSsqDIcOHcLdd9+NV155BWPGjEHz5s2xdu1axR/MhQsX4t5778UPP/yArVu34uWXX8batWvxl7/8BbNnz8aYMWPwww8/YMeOHfjnP/+JJUuW4IknnoBer8e4cePw5ptvVrv/tm3bimPTzSE1Go0YmGUwGBSbQJqj1+vRt29ffP7559Wea926tTj28/NTPOfv74/ffvsNe/bswddff42FCxfi1VdfxZEjR9CiRYtar0lE1BikpaVVe+ydd97B5MmTMWjQICfckXWaRDixtGvFmbZs2YKKigqMHDkSb731Fvr27Yu7774b06dPx+jRo0XlQRIYGIjo6Ohqr3Pw4EFERETgpZdeEo+lpKRUOy8mJgYxMTGYP38+7rnnHqxevRp/+ctfAABhYWF4+OGH8fDDD+Nvf/sbli9fjieeeAJ9+vTB119/jcjISLi7W/dHp3PnzkhNTcWVK1cQFBQEADhy5IjinD59+mDdunVo06aNouJjCXd3d4waNQodO3bE22+/jZYtW2LPnj2YOHGiVfdLRNSQyCsn8+fPxzvvvAODwYCFCxdi27ZtTrwzdThbx0VERERAp9PhypUrGD9+PMLDw3H69GlMnDgR0dHR1aYS1yQ6OhqpqalYu3YtkpKS8N577+Hbb78Vz5eUlODxxx/H3r17kZKSgoMHD+LIkSPo0qULAODJJ5/E9u3bcenSJVGFkJ577LHHcOPGDdxzzz349ddfcfHiRezYsQMzZ85EVVWVRfcXGxuLDh064IEHHsCJEydw8OBBEaSkisrUqVMRGBiI8ePH48CBA7h06RL27duHefPmVStZym3evBnvvfcejh8/jvT0dHzyySfQ6/Vmx+oQETVG0r+R7u7u+Ne//oWAgAAAxi71hoThxIXs3bsX/fv3h7e3Nw4fPoyQkBCxk7Olxo8fj/nz5+Pxxx9Hr1698PPPP2PBggXiea1Wi+vXr+P+++9HTEwMpkyZgri4OLzyyisAgKqqKjz22GPo0qULxo4di06dOuH//u//ABgH7R48eBBVVVUYM2YMunfvjnnz5qF58+YWb1Sl1Wrx3XffobCwEP3798fs2bPFAF5vb28AgK+vL/bv34/w8HBMnDgRXbp0wcyZM1FSUlJrJaVFixb45ptvMGrUKMTGxuK///0vvvzyS3Tr1k1VGxIRNVRSOAkJCYGnp6f4xTYzMxMNaZ9f7krcADT23SoPHjyIoUOH4sKFC2Jgbn009vayJbaVOmwvddhelrNFW5WUlIgJAEOGDMFPP/2E0aNHY+fOnQCAGzduiEqKq2sSY07ItXz77bfQ6XTo2LEjLly4gHnz5mHIkCE2CSZERE2VfFZqaGgoAOVkhczMzAYTThhlyeEKCgrw6KOPonPnzpg+fTr69++P77//3tm3RUTUoMnH5IWFhQFQzhp1xnpf1mLlhBzu/vvvx/333+/s2yAialTk04hrqpw0FKycEBERNQLyygnDCRERETkdwwkRERG5FIYTIiIicilSONFqtWIgrDycNKQBsQwnREREjYAUTtq2bQutVgsA0Ol0Yh8yVk6IiIjIYcrKysQebNI0YolUPWE4ISIiIofJyMgQx9J4E4kUTvLy8lBSUuLQ+7IWwwkREVE9FRYWYuPGjcjLy3PK9c2tcSJpiINiGU6IiIjq4fr16+jTpw/Gjx+P6dOnO+UezM3UkTCcEBERNSGlpaWYMGECzp8/D8C4u7wz1BZOGuIS9gwnREREVjAYDJg5cyZ++ukn8Vhubi7Kysocfi+snBARERFeeeUVfPnll9Uel2bNOBLDCRERURN348YNvPHGGwAAjUaDbt26ieeuXLni8PuRwombm5sijAANM5xwV2IiIiKVkpKSUFFRAcC403pkZCROnToFwDnjOqRwEhwcDA8PD8VzDCdERERNgHzqbseOHdGyZUvxtaMrJ+Xl5SIQmXbpAEDLli3h7u6OyspKDoglIiJqrORjPMLCwhQzYhwdTjIzM2EwGACYDydubm7i/hpK5YThhIiISCXTAahBQUHia0eHk9oGw0qkrp2rV6+isrLSIfdVHwwnREREKsm7dcLCwpwaTlJSUhT3Yo4UTgwGg1NmE6nFcEJERKSSvFoREhKiCCeOHteRlJQkjjt06GD2nIY2KJYDYomIiFSSwknLli3h6+sLAPDz80NRUZHDKyfycBIVFWX2HHk4aQiDYq2qnKxZswa33347hg8fjnvvvRcFBQXVzlm6dCnGjx+P4cOH47777sNvv/0mnktISED//v0xbNgw8d+xY8esfxdEREQOotfrkZ6eDkDZjSJVT1wxnMgH7DbKysnatWvx888/Y8WKFQgODkZSUhI8PT2rnafT6fDBBx8gJCQEe/bswTPPPINNmzbBz88PABAeHo6vv/66/u+AiIjIga5evSrWOJEPQA0KCsLFixeRk5ODsrIyeHl5OeR+pHDSpk0b+Pv7mz2nUXfrVFVVYfXq1Vi+fLl4o9HR0WbPnTNnjjgeNWoUlixZgtTUVHTp0kX1TZaXl6O8vFzxmLu7u9lQ1Bjp9XrF/6l2bC/Lsa3UYXup01jbSz4ANTQ0VLy/Nm3aiMezsrJqHJxqjrVtVVxcLMJGhw4davx++ZiYjIwMp/5M3Nzq7rRRFU6uXr2KsrIy7Nq1C2vXroVOp8O9996LSZMm1fp9GRkZyM/PV/ygMjMzERsbC51Oh/j4eMycORNardbs90uBSG7y5MmYMmWKmttv8OSjw6lubC/Lsa3UYXup09jaSz4MQafTibAijT0BgOPHj1sVANS21dmzZ8VxUFCQIjjJVVVVieOLFy/WeJ4jtG/fvs5zVIeTwsJCXL58GRs3bkR6ejoeffRRREZGol+/fma/p7KyEgsXLsR9990HnU4HAIiMjMQXX3yB8PBwJCcn44UXXoCvry+mTp1q9jVmzJhR7bmmVjlJS0tDWFiYRYmzqWN7WY5tpQ7bS53G2l7ySn63bt0QEREBwLhSrMTNzU08bglr2+r48ePiuGfPnjVes127duI4Pz9f1b05g6pwIvWfzZkzB97e3ujQoQPi4+Nx8OBBs+HEYDBg4cKFCAgIUHTzBAYGIjAwEIBx8M6sWbOwYcOGGsOJp6dnkwkitXFzc2tUf8Htje1lObaVOmwvdRpbe8mnEUdERIj3Jh90mp2dbdV7VttWly5dEsfR0dE1fq+XlxcCAwNx7do1ZGZmuvzPQ9XdRUREVNtQqDZvvfUWsrOz8dprr9XaEK7eSERE5Br0ej0OHDiAnJwcp91DTSuyOmMhNkvWOJFIY0UzMzNdfhyQqlTg4+ODkSNHYuXKlSgvL0dycjK2bt2KIUOGVDt32bJl+P3337FkyZJqVY+EhAQxzzo1NRUrV67E0KFD6/E2iIioKZg7dy6GDx+OwYMHO+0D1pJw4qi1RNSEk8jISADGbilXHwekumTx/PPPIzc3F6NGjcITTzyB2bNno1+/fti6datigOry5cuRnJyMuLg4sZbJ1q1bAQCJiYmYMWMGhg4discffxwjRoyosUuHiIgIAH7++Wd8+OGHAIwDQR29nohE+mCXL8AGwCmb/0nhxM/PTzFbyJzu3buL4z/++MOu91Vfqtc58ff3x+LFi6s9HhcXh7i4OPF1QkJCja8xbdo0TJs2Te2liYioiaqsrMQjjzyieOzatWuK9TscQb4Am+kme47u1qmsrERycjIAY9VEo9HUen63bt3E8R9//IHbb7/dnrdXLxzsQURELu/DDz/EiRMnFI9dv37d4fchX4DNdB0TnU4nKimOCCdpaWlih+G6unQAZeXk1KlTdrsvW2A4ISIil5aRkYEFCxZUe/zatWsOv5eaxptIHLmEvZrxJgDQqVMnsZ6Yq3frMJwQEZFLe+GFF8QebvKuE2eHE3MrwErjTm7cuFFtZXNbu3jxoji2JJx4e3uLVd3PnDmjWJjN1TCcEBGRyzIYDGIftoCAALzxxhviOWd068hnudRWOQGMXUD2pLZyAvzZtVNaWqoIN66G4YSIiFxWZmYmiouLAQA333wzOnXqJJ5zduWkrnBi764da8KJ6aBYV8VwQkRELsv0A1haXRxwTuWkrm4dZ4QTrVZr8SaDDWU6McMJERG5LNNw0qpVK/G1MyondXXrOGqtE4PBINpGzertDWXGDsMJERG5LHk4iYqKQkBAgFjPw5ndOqYLsEkctUrstWvXxCBhS7t0AOP+O1KQYeWEiIjICqaVE61Wi4CAAACO79bR6/UinJirmgCO69axZrwJAHh4eKBz584AjKvs2ntGkbUYToiIyGVJH8IajQbt27cHADHuxNGVk+zsbLEAW0MNJ8CfXTuVlZU4f/68Te/LVhhOiIjIZUkfwiEhIfD29gbwZzjJz88XYcER6hpvAjgunGzevFkcqw0nDWHGDsMJEREpZGdnY8OGDXjmmWewatUqp91HXl6e6LqRfwDLB8U6smvnwoUL4jgqKsrsOfIl7O015mTdunVYu3YtAKBZs2YYPny4qu9vCDN2VG/8R0REjdOhQ4fwyCOP4Pjx44rHBwwYoPhAc5Saui7k04mvXbummCFjT+fOnRPHMTExZs/RaDQICgrCpUuX7FI5uXz5Mh5++GHx9YcffqgIa5ZoCDN2WDkhIiIAwEsvvVQtmADO+wCzJJw4snIiH5/RsWPHGs+TunZu3Lhh024nvV6P6dOnIzc3FwDw17/+FVOnTlX9Ou3bt4ePjw8A162cMJwQEREMBoMIJjqdDvHx8eK51NRUp9xTTeHEWWudSJUTjUZT6ziPtm3biuPMzEybXX/VqlXYvXs3AOMYnI8++khMq1bDzc0NXbt2BWDsqiopKbHZPdoKwwkRESErKws3btwAYFwm/u9//7t4ztXCibMrJ2FhYaLyYE5ERIQ4vnTpks2u//3334vjVatWiSnV1pCmExsMBiQnJ9f31myO4YSIiBTl/e7duyM8PFx87WrhxBmVk+vXryMnJwdAzeNNJNKUZ8C24eTEiRMAAH9/f4waNaperyWfbZSRkVGv17IHhhMiIlKMK+nWrRuCg4Ph7m6cM+HscBIQEKCoEpgOiHUE+WDY2sabAMpwYquqRF5envg59OjRA25u9fv4bteunThmOCEiIpdkWjnRarXit+uUlBSH309ZWZlYV8R0fIczunXkg2HrqpxERkaKY1tVTk6ePCmOe/bsWe/XYzghIiKXJw8n0mBJaexETk6O2MfFUZKTk2EwGABUDyfO6NaxtnJiq3AidekADCdERNQEGAwG0a0TGRkJnU4HAIpxJ/LVUR2htuXZnbH5n5rKiU6nE9Ude4STHj161Pv1GE6IiMilpaamorCwEIBygS5nDoqtLZy4u7s7fPM/qXKi1WoV3TY1kaon6enpKCsrq/f15d06tggn8unODCdERORyTMebSFw1nAB/du04onJiMBhE5SQqKgoeHh51fo8UTgwGQ73bTq/Xi3ASERGB5s2b1+v1AMDLy0tUd9LT0+v9erbGcEJE1MSZztSRyMOJowfF1hVOpA/WvLw8u2/+l5mZiaKiIgB1jzeR2HLcSUpKihjzY4vxJhKpaycjI0OM73EVDCdERE1cTZUT+WJizqqceHl5KcZHSOSDYqXF4+xFzXgTiS3Dia0Hw0qkdq2oqHDoYnaWYDghImripHDi5uYmVg4FjCuhShwZTvR6vfhAb9++vdk1PRy51omamToS+biU+q51Yu9wAvw57qS8vByZmZlOr6QwnBARNWFVVVU4c+YMACA6Ohre3t7iOZ1Oh5YtWwJwbDi5fv06SktLAaDGwaeOXOvE2ZUTWw+GlZgLJ8ePH0e7du0QEBCAf/7znza7lloMJ0RETdjFixdFEJB36UikcSeXL19GVVWVQ+4pKytLHMtnlcg5cq0TayonERERYrqzrbp1vLy8LL6+JcyFk9OnTwMwjuWRB1VHYzghImrC5ONN5INhJdK4k8rKSpvusFsbS8KJMyonXl5eiq6u2sjHytQnnBQXF4vrd+vWTWwpYAshISHiWJqxI1XRAKBLly42u5ZaDCdERE2YfKZObZUTwHFdO/IQFBwcbPYcR405qaqqwoULFwAYu73U7Gkjde1kZ2eLdWTUOn36NPR6PQDbjjcBaq+cAH+uFOwMDCdERE1YTTN1JM4IJ/LKSU3hxFHdOmlpaSgvLwdgeZeOxBYbANp6Tx05c+FEqpz4+flZXCWyB4YTIqImTPpN2cPDw+yHr6uGE0d168jHm1g6GFZii0Gx9pqpAwBt2rQRlaCMjAyUlJTg4sWLAIDOnTuLMTPOwHBCRNSESXvmhIWFmV351FXDiaMqJ/LKktrKiZrdiXNycvDrr79WW1DO1nvqyLm7uyMoKAiAMZycO3dOTCF2ZpcOwHBCRNRklZSUIDc3FwDMLnQGOGchNksGxEpTnAH7Vk527twpjgcOHKjqey3t1snPz8eAAQNw991345VXXhGPV1VV4ciRIwCM7dCmTRtV17eE9HPPyspSBDFnDoYFGE6IiByurKwMy5Ytw48//ujU+5APPK0pBAQFBYmKiqOWsJfuy8/PT+yQbEq++Z+9KiclJSXYu3cvAOOHuLkxObWxtFtn0aJFojtlzZo1onrxxx9/iGXrb775ZlXXtpQ0Y0ev14v3CrByQkTU5Pzf//0fHn74Ydx222345JNPnHYfloQTNzc3MTDS0ZWTmrp0JPbe/G///v1iDZixY8eqHoMRGhoqpv7WFE7Onj2Lf//73+LrzMxMMSj14MGD4vGhQ4equral5BWzXbt2iWNWToiImhj5b6izZs3C7t27nXIfloQT4M9xJ7m5ucjPz7frPZWWloquprrCiTQoNjc3F5WVlTa/l23btonjuLg41d+v1WpF2126dMnskvDz58+vNs5ECgnycDJkyBDV17eEPJxIXU+enp6Iioqyy/UsZVU4WbNmDW6//XYMHz4c9957ryg7yZWWlmLBggUYPnw4br/9dsUPGQA2bdqE+Ph43HLLLXjllVfsvqskEZGrkK8tUllZiYkTJyr6+x1Fmj4K1DzmBFAOipUG0NrLlStXxLGllROg/pv/VVZW4vDhwyguLhaPSZ9bWq0Wo0aNsup1pa6d/Px85OTkKJ774YcfsHXrVgBA8+bNxeNSOPnpp58AAL6+vujVq5dV16+LuZ97TEyMTRd7s4bqcLJ27Vr8/PPPWLFiBfbt24dXX30Vnp6e1c5btmwZ8vLysGXLFrzxxhv417/+JforL1y4gHfeeQdvv/02fvjhB2RkZGDlypX1fzdERC6uuLhYjC+Q5OfnIy4uzu6765qytHLiyEGxlgyGldhyOvErr7yCQYMGoXfv3sjLy0NycjISExMBAIMGDUKLFi2sel35uBP5z728vBxPPvmk+Pqjjz4SYWvv3r1ITk4WbT1gwACzM6lswVw4cXaXDgCoikZVVVVYvXo1li9fLv7QREdHmz13y5YtWLJkCXQ6HW666SYMHz4cO3bswIMPPoht27YhNjZWDLiZPXs2Fi1ahIcfftjsa5WXl4tFcMSNu7ubDUWNkbQ6oPR/qh3by3JsK3Vs0V6nT58W5f1JkyYhOTkZCQkJuHz5Mr788ks88sgjNrlXS8grJ0FBQTW+r9DQUHF86dIli9+/Ne1l6T0BysrJlStX0KlTJ4uvY2rLli0AjOuazJs3TzEzZ8yYMVb/zDt06CCOz549iz59+gAA9u3bJ1aeveWWWzBp0iR8+eWX2LRpEwoKCrB06VLxfUOGDLHb31Fz1akuXbrY9d8ES1bZVRVOrl69irKyMuzatQtr166FTqfDvffei0mTJinOy8/Px/Xr1xXBJSYmRpQyL168iMGDB4vnOnbsiPT0dJSWlprdaEgKRHKTJ0/GlClT1Nx+g2fvcmpjw/ayHNtKnfq014EDB8RxdHQ0Jk2ahLvvvhsAkJCQ4LAZMYDyN/mqqqoar+3l5SWOT58+rfoe1bSXvMvL3d291mvJPy+OHTumqPCoJQ9FH3/8sWIKcc+ePa3+uci7axISEsSsm59//lk8PnbsWFy+fBlDhgzBpk2bABh7HyTR0dF2+3NhLoQEBgba9c+hvJpUE9XhpLCwEJcvX8bGjRuRnp6ORx99FJGRkejXr584r7i4GFqtVvEHx8/PT/TllZSUwM/PTzwnTRUrKSkxG05mzJiBqVOnKm+8iVVO0tLSEBYWpmpfh6aK7WU5tpU6tmgv+ZiKIUOGKFb9vH79er0+YNWSBp56eXmhZ8+eNc5GkX7bB4CCggKL79Ga9pKPP+zWrVut15J/7uTl5VnddgaDoVq3kBRWAgMDcfvtt1v985ZPAc7Ozhb3KL/eoEGDEBYWphj0KvUWaDQajB8/XhFybCk8PBweHh6Kdh82bJhD/xyaoyqcSOl5zpw58Pb2RocOHRAfH4+DBw8q/pD4+vqiqqpKUQkpKiqCr68vAMDHxwdFRUXifGlDJB8fH7PX9fT0bDJBpDZubm78AFGB7WU5tpU69Wkv+cZqPXr0QGhoKDw9PVFeXo5Lly459OcgjTkJDg6GVqut8Tz5gNj09HTV96imveThrV27drV+n3w5+aSkJKvb7saNGzVOyhgzZky9BofK7/H8+fPiHqUuHcC4VLybmxtCQkLQsWNHsQsxYNzvSFrPxV7atWsnKiVubm7ifpxJ1dUjIiIsGpTTrFkztGrVStH4586dE1OToqKiFM+dP38eISEhZqsmRESNidRtIW2s5ubmJn5LrWm6qT2UlZWJ395rm6kDGP9Nlyrcly9ftut9qRkQK5/uKv9MUUseiEaPHq0YaDt27FirXxcw/tItrRMjDx3Snj3+/v5iCXkAGDlypOL77bW+iZz85x8VFeUSn8WqwomPjw9GjhyJlStXory8HMnJydi6davZ+dfx8fFYsWIFioqKcPLkSezfvx+xsbEAjD/sXbt2ITExEYWFhVi1apVVc8iJiBqS4uJisRhX165dxW+n0odsUVGRXfeJkVMTAjQajRgUe/nyZbsGKOm+NBoNWrduXeu5Pj4+4r5sFU569uyJTz75BDqdDp07d8b48eOtfl2JVD3JycnB9evXRZVMek7enWYaTuy1vomcPJw4e2VYieq6zfPPP4/c3FyMGjUKTzzxBGbPno1+/fph69atigGqDz30EHQ6HcaOHYsXXngBL7zwgtgEKTo6Gk8++STmz5+P+Ph4BAUFYebMmTZ7U0RErigxMVF8sHfr1k08bovda9WydBqxRAoBRUVFyMvLs/t9BQYGWlSplyZeXLt2TYyhUUseToKCghAXF4crV67g9OnT8Pf3t+o15eQbBp47dw4XL14UA1FNNxO89dZbFWHFEeFEWsIecI1pxIDKMSeAsQS1ePHiao/HxcUpqh/e3t5YtGhRja8zbtw4jBs3Tu3liYgaLPlMFPlvqKZrYQwYMMDu9yIPJ3V16wDKD7D09HSr1/2ojcFgsHjpekl0dLRYcTcpKQl9+/ZVfV3TcAJAjJG0BXkAOX/+vGIMiXxMCgAEBATg1ltvxZ49e9ClSxeHDEyVup2ABlw5ISIi68gHwzq7ciKfOqumcgLYb9xJbm6umKWiJpxIkpKSrLquuXBiS/IAcu7cOTHexPQ5ySeffIJ33nkHGzduVL2fjzXuuecedOnSBYMGDcJdd91l9+tZwrnr0xIRNSHyyomzw4m13TqA/cKJmnEwEvkiZ9aOO7F3ODGtnMirTubCSUhIiGL1WHsLCQnBqVOnHBKELMVwQkTkIKYzdSTyWSfOCCeWdOs4OpxYUzlx1XDSvn17uLm5Qa/X4/z584o1S0zHnDiLKwUTgN06REQOUdNMHcA4zqBZs2YAmna3jjXhxJaVE41Go5hGbCuenp6iOibv1mndurVdxu40BgwnREQOUNNMHcD4oSh9eKWkpKCqqsru9yNVTtzd3RV71NTEEeFEXs2xNJzI1wmxNpxIoSgwMNBuu/FKFZKioiIRDM116ZARwwkRkQPUNFNHIoWTyspKuy90BvwZBNq2bWvRaqCtWrUSq4S7UuUE+LNrJzMzU7H6uCUMBoOonNijS0diLogwnNSM4YSIyAFqGgwrceS4k4qKCmRnZwOwfOCpRqMR04nT09Ptcl/WDIgF6jdjJy8vT8wQsmc4MTe2xFXGm7gihhMiIgeQTx+trXIC2D+cXLlyRXQxqQkBUtdOTk6O6gqFJepbOQHUd+3YezCsxFwQYeWkZgwnREQOIHWFyCsQcqYLsdmT2mnEEvm4E3tUT6Rw4uXlpWoX3vpUThwVTtitow7DCRGRA0gf5kFBQWaXZXdk5UTtNGKJvQfFyndJVjO1tT4zdhwVTsLDw+Hp6al4TB6qSInhhIjIziorK0VVwFzVBIDYewywfzhRO41YYs9wUlFRITY9VNOlAzSMbh2tVqsYVxQWFgYfHx+7Xa+hYzghokbr+vXrmDJlCubOneuQ6bk1uXLlitjoraZw4uvrKz6UHVk5cZVwcvXqVavuCTCuE9OyZUsArhtOAGU3Drt0asdwQkSN1qpVq/DVV1/h/fffx/r16512H/LxGTWFE+DPrp3MzEyUlJTY7X6s7daR37u14SQ9PR333HMPXnvtNTEoF1BWc9RWToA/qydpaWkoLS21+PscGU7kg2IZTmrHcEJEjdb58+fF8Weffea0+1AbTgAgOTnZbvfjzMrJ+++/j7Vr1+If//gHtm3bJh7fuHGjOLbmg1sKJwaDodbK008//YS7774bu3fvBqAMJ9aEIjU6depk9piqYzghokYrLS1NHG/fvl3RdeBI1oQTe3btSFUKNzc3tG7d2uLvCwoKglarBWD9bJ3ExERx/O677wIwjslZtWoVAOPYjLvvvlv168rHnchDqZzBYMCMGTOwbt063HPPPaioqFCEEzVtYY0pU6agb9++6NGjB6ZOnWrXazV0DCdE1GjJw0lVVZXTunacEU4MBgPef/99vPfee6ioqFA8J58VI4UNS2i1WtENZG3lJDU1VRxv374diYmJ2LZtmwhMd9xxh+oxJ4ByEbuaqk6XLl0SY1Kys7Px448/inDSqlUrs7OobKl58+ZISEjAiRMn7LKHT2PCXYmJqNEy/QD97LPP8Pjjjzv8PiwNJ/IP2PqudbJt2zbMnTsXgPHDeunSpQCMGxBKH8jWhIDQ0FCkpaXh6tWrKCsrE0vaWyolJUXx9XvvvacYbzJ79mzV9wQAERER4lgeSuX27Nmj+Pqrr75yyNL1pB4rJ0TUKBUUFCAvL0/x2OHDh63eHK4+LA0n8unEph/iap08eVIcv/POO/j++++h1+sxffp0MXPImnEP8nEn8lBhicLCQty4cUPx2Jo1a7B582YAxrYZO3as6nsCjFNzJfLqjJw0zkSyfv16MfCY4cS1MJwQUaMk/+1ZvtPs559/7vB7kcKJn58fmjVrVuN5ISEhYvGx+k7VlS8FDwDTp0/H448/jq+++gqAcTffl156SfXr1mdQrLnQUFJSIqZ5z5gxw+pdgeX3Ze46BoOhWuUkPz9fHDOcuBaGEyJqlOTh5N577xUf+p999pliCqsjSOFEHj7M8fT0FB+SNXVNWEo+0BMAcnNz8dFHHwEwLqH/5Zdfmt3jpy71mU4sDw2TJ09WPKfRaDBr1izV9yPx8vISs23MhZPTp0+LAdHmAiLDiWthOCGiRkn+4T5o0CCMGDECgHGRriNHjjjsPvLz81FYWAig9i4diVQByMzMrDaQVQ155SQ8PFzx3OLFi3H77bdb9br1qZzIu6piY2MRFxcnvh41apSiW8sa0vvMzMwUOw1L5FWT5557Dr6+vornGU5cC8MJETVK8nASFhaGadOmia83bdrksPuwdLyJRBo7YTAYFOuRqCWFE19fX3z77bfw9vYGAMycORNPPfWU1a8rDydqqzvyikZ4eDheeOEFaLVaaDSaet2T/DUBY9uZTnWWjze54447cMcddyieZzhxLZytQ0SNkvy3+rCwMHTu3Fl8ffr0aYfdh9pwYlqZMK16WEo+C6VPnz44duwYLly4gPj4eFWb6pmqz3RneeUkIiICnTt3xuHDh1FRUYFBgwZZfU8S+aDYtLQ0ca9VVVXYu3cvAOOU4R49emDy5MmKqeUMJ66F4YSIGiXTyknz5s3h5eWFsrIynDlzxmH3YW3lBLB+3ElFRQWuX78O4M9VTzt37qwIaNYKDg6Gt7c3SktLVU93lldOpPfZt2/fet+TRB7k5Nc6duyYmLl16623ws3NDfHx8fD19UVxcTEAhhNXw24dImqUpA92X19fBAQEQKvVimXRz58/X6/xHGrUt3JiDflKuLb+0HVzcxMViYsXL5odXFxVVYU333wT7dq1w3PPPSfOkSongYGB8PPzs+l9ATWHE3mXzsiRIwEY/1xMmDABAODh4aGoCJHzMZwQUaNjMBhEOAkNDRXdGF26dAFgXC49KSnJIffijMqJfDCsPfaLkRaLKy0trTZl+eLFi7jlllvwwgsv4MqVK9iwYQNOnTqFyspK0RbWdlXVpaZwIh8Me9ttt4njpUuX4vHHH8dnn32GVq1a2eWeyDrs1iGiRic3NxdFRUUAlB/2UjgBgDNnztikm6Muzqic2HunXXmV4eLFi2Kl2e3bt2PSpElidpJk7969aNGihVjPRL6aqy2ZCyfl5eU4cOAAAGP7y3cGDgoKwvvvv2+Xe6H6YeWEiBod08GwEtNw4ghSOHFzc7OoiiFfC8XVKyeAcpn9Rx99VASTNm3aiMd//PHHajN17KF169ZiOX3pen/88YdYBfaWW26p12BgchyGEyJqdEwHw0rk4cRRM3akcBIUFGTR6qceHh4iUFhbOXFGOLlx44Y47tmzJ86dO4eAgAAAwL59+xQze+xVOdFoNOLnLYWTo0ePiuf79etnl+uS7TGcEFGjU1M4iYmJgZub8Z89R1ROKisrRReLJV06kvouxGbvbh1z4eTUqVPisWHDhqF58+a45ZZbAAA5OTmKtWXsVTmRv7a0t9Jvv/0mnrPlzCCyL4YTImp0agon3t7e4oM1MTFRbIBnL1lZWeIaasJJfRdis3flxHTMCWDsPpF069YNgHLw6ffffy+O7VU5AaqPO5FXTnr16mW365JtMZwQUaMjDyfyAabAn107xcXF9d6/pi5qB8NK6rMKK2D/yolOpxNjSsyFk+7duwOA2DIAgGI5eUdUTgAgKSkJJ06cAGCsmtW26SK5FoYTImp0aqqcAI4dFGttOJHfszXjTqTKib+/f7U9ZGxFqkBlZGSgtLRU0a0jVU66du1abYqut7c3WrdubZd7ApRtt23bNpSVlQFgl05Dw3BCRI2O9IHu7++P5s2bK55rCOHEVpUTe656Kh93cunSJVE5adu2LVq2bAnAOEB18ODBiu8LDw+364wZeeVE3pXEcNKwMJwQUaMiX4DNtGoCOHbGjjMqJ6WlpcjNzQVgn/EmEnk4+eWXX8Ry+VKXjsR0zxx7jjcBlOFEPvamT58+dr0u2RbDCRE1KtevX0dpaSmAusNJY6yc2Hu8iUQeTuQzcUzDibnKiT2Z+5kDDCcNDcMJETUqtY03AYBmzZqJoHDmzBmze8PYirXhpF27dqLrQ23lRB5OHFU52bFjhzg2DSeRkZGK927vyomfn1+1cS7R0dHVuvfItakOJ3PmzMHNN9+MYcOGYdiwYZg7d67Z86ZMmSLOGTZsGPr374/PPvsMAJCQkID+/fsrnj927Fj93gkREWqfqSORqic3btxAdnZ2va5nMBjw3HPPYezYsfjll1/E4+fOncPx48cBGGe3qJkpIl+ITW3lRN6V4ajKibSzL/DnYFiJRqPBrbfeKr62d+UEqB5KWTVpeKzaW+fll1/GmDFjaj1n/fr14jg3NxdxcXFiQR7A+Af066+/tubyREQ1qmnperkuXbpg165dAIzVE/lS62qdOHECixcvBgDs2rULr7/+OuLj4xEbG4ucnBwAyvU+LBUWFobMzExkZWWhoqICHh4eZs8rLS3FW2+9hZCQEMyaNcthlZN27drB09NTMUUYMM7QMXXvvffis88+g7u7u+JzwF7Cw8NFMAQ4GLYhcsjGf7t27ULnzp1r/IeiLuXl5dX+Ari7u8PT09MWt+fypEWc7L1gVGPB9rJcY2wr+R4uISEhZt9bp06dxPGpU6cwbNgwi17bXHslJiaK46qqKrzwwgt46aWXxCZ3PXv2xLJly1S3sdQVYjAYcPny5Rq7Q+bPn4///Oc/4nvki7a1adPGbj9bjUaDyMhInDt3TjwWGRkJPz+/au0UGxuLhIQE+Pv7Izw83O5/3kw/a3r37u3yf8Yb49/FmkirNNfGqnCyePFiLF68GDExMZg/f75il0dztm7dirFjxyoey8zMRGxsLHQ6HeLj4zFz5kxotVqz37969WosX75c8djkyZMxZcoUa26/wbL3glGNDdvLco2preRhQavVIiUlpdo50lRXAPj1118RFxen6hry9pIW+ZKTB5M1a9agpKTE7H3URj5GIiEhwew5p0+fxn//+1/x9QcffKB4bwaDQfV11QgODlaEk/bt25u9Xlpamrgve96PxN/fX/F169atHXJdW2hMfxdrIl9huCaqw8ncuXMRFRUFNzc3rFu3DvPmzcOGDRtqXOgnIyMDp06dEmVPwJiuv/jiC4SHhyM5ORkvvPACfH19MXXqVLOvMWPGjGrPNbXKSVpaGsLCwixKnE0d28tyjbGtpK4UABgwYAB0Ol21c7y9vcVxRkaGxYM0zbVXQUGBeH7hwoX46KOPcOXKFQwbNgwbN260elVSefdIRUVFtXs0GAy4//77Fb9p79y5E0OHDhVf9+rVy65jPLp27Yr9+/eLr/v376+4T2f9+erZs6c4bt++veJrV9UY/y7Wh+pwIh+J/cADD2Djxo04deoU+vfvb/b8bdu2YcCAAYo0HxgYiMDAQADGQVWzZs3Chg0bagwnnp6eTSaI1MbNzY1/aFVge1muMbWV9JtnixYtagwGwcHB8PPzQ1FREZKTk1W/d3l7yX/TnTlzJp566imcPHkSAwcOrLEabAl5qMjIyKh2j59//jl++uknxWPl5eXYs2eP+Do4ONiuP9cOHToovu7Ro4fZ6zn6z1dkZKQ47tu3b4P6s92Y/i7WR71boK5G3LZtW50lU/4giMgW9Hq9GBBb2xg3jUYjSsspKSn16ueXugu0Wi3atm0Lf39/3HzzzfUKJkDta50UFBTg2WefFV//61//qvb9LVq0UFSI7EE+YweoPo3YWfr164fevXvDy8sLc+bMcfbtkBVUpYKCggIcOnQI5eXlqKiowOeff478/HzFokZyZ8+eRWZmpmLzJ8DYfypNd0tNTcXKlSsVpUgiImtkZ2ejoqICQO3hBPjzt+vy8nKrdv6VSANwQ0ND4e5uuzkGta0Su2TJEnHPd955J55//nn07t1bcY49pxFL5OHEzc0NnTt3tvs1LeHh4YGEhARcv34dsbGxzr4dsoKqv0mVlZX48MMPkZycDA8PD8TExODdd9+FTqfD1q1bsXr1asUU4m3btuGWW26Bj4+P4nUSExOxYMECFBQUoGXLloiPj6+xS4eIyFJ1LcAmJx+Ud+nSJVWLpEmKiorEsu22HtvRtm1baLVaVFVV4dKlS4rndu7cKY6XLl0KAJg+fbpivSh7TiOWyMNJdHS03Ss1ari5ucHPz8/Zt0FWUhVOAgIC8Omnn5p9Li4urlr3zbx588yeO23aNEybNk3NpYnIhen1evzjH//AjRs38Oabb1abLeEo1oaT5ORkq6q38mnLtg4nHh4eiIyMRFJSEpKSkmAwGMSqsUlJSQCMAUYa93HvvffimWeeEZUjR1ROmjVrhvHjx+P777/HjBkz7H49ajocss4JETVue/fuxeuvvw7AGFSkdTccTU04kQ+aNK1MWEoeTuyxLHt0dDSSkpKQn5+Pa9euoXXr1igsLBQLrckHpAYGBmLcuHH45ptvADimcgIA3377La5cueKw61HTwJGoRFRv8t19ly9fjpMnTzrlPixZul5i2q1jDXtWTgBjOJFcuHABAHDx4kXxmOlsmVmzZolj+UJz9qTRaBhMyOYYToio3uQLXOn1ejz99NN23VCvJpYsXS+RV06Sk5Otup78fdurciI5f/48gD+7dIDqs2Xi4uLwwQcf4MUXX8QDDzxg8/shchR26xBRvZl+uO/cuRNbt25FfHy8Q+9DTeWkRYsWaNGiBXJzcxtU5UQeTkwrJxqNBo899pjN74PI0Vg5IaJ6M7c0+NNPPy0GZzqKFE4CAwOrzRI0R+raSUtLQ2VlperruVo4IWosGE6IqN6kyklISAgGDx4MwLhkwMqVKx12D1VVVUhPTwdQd5eOROraqaqqqraWiCWkUNayZUuzy+TXV/v27cUMHYYTakoYToioXoqLi5GdnQ3A+GEvrbsBGGdyOEpWVpbYcM/ScFKfQbHyQGOv/Wu8vLzEa5sOiPX39xfbgBA1NgwnRFQv8i6dyMhIDBw4UKxzIn2gOoKa8SYS07VO1MjKyhJdQfbcXE/q2snJycHVq1dFe3fo0EFUVYgaG4YTIqoX0xkrGo1GfKCmpKQ4bNyJmpk6kvqsdWLvmToS+biTPXv2iEDELh1qzBhOiKhe5BUH6cNe+uCsqqpSDBq1JzULsEnq061j78GwEnk42b59uzg2nUZM1JgwnBBRvZirIMh/q3dU14414UTtWic3btxAfn4+AOeEkx07dohjVk6oMWM4IaJ6MVc5kX+gymeX2JM14cTPzw+tW7cGUHflZPfu3YiMjMTw4cNx7Ngxp3TrZGRkiGOGE2rMGE6IqF7kH9JSBcHZlRM1OwxLXTsZGRkoKysze86lS5cwZcoUFBUVIT8/H/fffz/OnTsnnrdn5aSm7huGE2rMGE6IqF6kyklwcDC8vb0BOKdyIg2IDQoKgqenp8XfJ1V7DAaD2fExRUVFmDBhAm7cuCEeO336NHbt2gUA8PT0tOsOwL6+vtXClru7u8XVIaKGiOGEiKxWVlaGzMxMAMqujZCQEHh5eQFwTDiprKwU96H2Q7u2QbEGgwGzZs3CiRMnxLmmwScsLAxubvb9p1Qe9gBjoHJ35+4j1HgxnBCR1eSVBvngUjc3N/Ghn5SUBL1eb9f7yMjIENeoTzgxHRT7ySefYN26dQAAnU6HTZs24amnnlKcY88uHYlpOGGXDjV2DCdEZLXaBoVKH6ilpaWiqmEv1gyGldS21smmTZvE8erVq9GlSxfMmjULQ4cOFY/bczCshOGEmhqGEyKyWm3hxJGDYusTTmrr1pH26gGAcePGAQC0Wi1Wr14txplMnDhR9f2qZRpOuMYJNXYMJ0QNnDW76dqKuWnEEkcOirVm6XqJPFSZhhNp6m5gYKAYQwMYw8GZM2dw6dIlEVrsiZUTamoYTogasKeffhpeXl5YtGiRU65vaeXE3uHEmqXrJV5eXmjbti0A5RgavV4vwom5qckBAQHVApm9mIYRhhNq7BhOiBqon376CUuXLoVer8eHH37olHuQV06c0a1TUFCA3bt34+DBg+Ixa6bYSveelZUl1jrJzs4WVal27drZ4G6t5+/vr5iuzG4dauwYTogaIL1ejyeffFJ8nZWVhZKSEoffh1Q5adWqFXQ6neK5yMhIMcXWlpUTg8GA3bt3Y9y4cWjRogVGjRqFo0ePAjCOB7EmSMhn3EhVGPlqrGoWdbOX2NhYAMDgwYPh5+fn5Lshsi+GE6IG6JNPPhEfyBJHbbAnqaioEB/k5ro3PD09xYf+hQsXYDAY6n3NTZs2oWfPnhg1ahQ2b95cbYrynDlzrFr/Qx5OpHaUD4Z1hXDyn//8B5s2bcLmzZudfStEdsdVfIgamIKCAvztb3+r9nhKSgo6derksPtIT08X4aCm6bTR0dFITk5GXl4ebty4gVatWll9vRs3bmDixImKAcBhYWG44447cPPNN2Pw4MFWj8UwF07klRNnd+sAxn2A7rjjDmffBpFDMJwQNTD/+te/kJWVBcC4MFhhYSEAy3bVtaXaZupIOnToIJZ5T0pKqlc4OXfunAgmnTt3xquvvoq//OUvNlkptSFUToiaEnbrEDUgeXl5WLp0KQBjt8lbb70lnnN0OLFkV15bDoqVTxd+4IEHMHnyZJst4d4QKidETQnDCVED8uuvv6K0tBSA8QP6tttuE885OpzIB7nKFzKTs+VaJ/VZaK0u8nAlhS5WToich+GEqAGRD4IdOnSo4jd+R4eT8+fPi+OOHTuaPcdelRNbh5OAgAAxA8a0W8fDwwOBgYE2vR4R1Y7hhKgBkYeTvn37wsfHB8HBwQCU3SyOIIUN+SZ/pmy5EJs9w4lGoxFBLzU1FQaDQXTrtG3b1u67DhOREv/GETUgUjjx9fVF586dAfw5GDUjI0MsIGZvBoNBVE7Cw8MVS7vL+fn5ifBkq3Ci0Wjs0s0ihZOSkhJkZGTg2rVrADjehMgZGE6IGogbN26IvV969eoFrVYLQDlewlFrnVy/fh15eXkAqu/7YkqqnmRlZYmZRdaQwklQUBA8PT2tfp2ayLvIDh8+LI453oTI8RhOiBqI3377TRz37dtXHMun8Tpq3Il8/Ehd4UT+/MWLF626Xnl5uZg+besuHYk8nPzyyy/imOGEyPEYTogaCNPxJhJ5OHHUuBN5OKlpMKzEFoNiMzIyxAqz9gon8grUoUOHxDG7dYgcj+GEqIGwJJy4euXE2nEn9hwMK5FXThISEsQxKydEjsdwQtRASOHEx8dHDIYFlL/xOyqcyKcRWzrmBGg44URaSwZg5YTIGRhOiBqAnJwcMV6jV69eipVRnRFOpMqJRqNBVFRUrefaolvHEeEkJCQEGo3G7ONE5FgMJ0QNQE2DYQHjtOI2bdoAcHw4CQsLg7e3d63ntmzZEi1atADg2pUTT09PtG3bttrjrJwQOZ7qjSnmzJmDP/74Q0xj7N27N957771q5y1cuBDbt28Xv+G1bdsW69evF89v2rQJH330EYqKinDbbbfhxRdfhIeHh7Xvg6hRk4836devX7XnIyMjcfXqVWRkZKC8vNwuU20lN27cwI0bNwDU3aUDGKsrHTp0wNGjR5GammrV/TkinADGrh35njr+/v7w9/e32/WIyDyrKicvv/wyDhw4gAMHDpgNJpKHHnpInCcPJhcuXMA777yDt99+Gz/88AMyMjKwcuVKa26FqEmoaTCsROraMRgMig9ye1AzGNb0PL1eb1V1R3pPWq3WbHXDVkw3MGTVhMg5bLOlp0rbtm1DbGwsunbtCgCYPXs2Fi1ahIcfftjs+eXl5SgvL1c85u7ubtffDl2JXq9X/J9q1xjbSz4YNiYmptp7k3+oXrx4scbl5E1Z01bnzp0Tx9HR0RZ9r3xcyvnz5y0ONRIpnLRr1w4ajcZuP1vTqkxISIjiWo3xz5Y9sb0s15TaypLtIKwKJ4sXL8bixYsRExOD+fPn17jOwaeffopPP/0UERERePzxx9GnTx8Axn88Bw8eLM7r2LEj0tPTUVpaarb/evXq1Vi+fLniscmTJ2PKlCnW3H6DZe/fiBsbW7dXcXExfHx8zA6atKf8/HwxVqNLly6K3XIl8q6Ho0ePWv3hbwn5NNtmzZpZtLZK8+bNxfGRI0fELyY1MRgMqKyshIeHB0pLS8VS8m3atLHrWi46nU7xdU3vj38X1WF7Wa4ptJUlvzypDidz585FVFQU3NzcsG7dOsybNw8bNmyAr6+v4ry7774bTz31FHx8fLBr1y7Mnz8f69atQ3BwMEpKSsQOoMCf/yCUlJSYDSczZszA1KlTlTfexConaWlpCAsL4wZkFrBHe61YsQKPPPII7rjjDnz77bc2eU1LbdmyRRwPHjy4WtcDABH8AaCoqMjsOeZY01ZSUKjtfkwNHDhQHOfk5NT6PQUFBRg2bBguXbqELVu2iMG+gLFSY+l7s8ZNN92k+DomJkZxPf5dVIftZTm2lZLqcNK9e3dx/MADD2Djxo04deoU+vfvrzhPvg5DXFwctmzZgsOHD2P8+PHw8fFBUVGReF7ab8PHx8fsNT09PZtMEKmNm5sb/9CqYKv2MhgMWLRoEfR6PTZu3Ijs7GwEBQXZ4A4ts23bNnE8atQos+9J/ptISkqK6vetpq3kM246duxo0ffJq6tJSUm1fs8333yDkydPAgCeffZZvPHGG+K58PBwu/4dkC9oBwChoaFmr8e/i+qwvSzHtjKqdwtY2ojyUnhUVJRiUN358+cREhJS55REImc4fPiwotTqyLKrwWDA1q1bAQAeHh4YOXKk2fMcudaJ9Hc3NDS0xl8oTLVt21acW9d04u+//14cHz58GGvXrhVf23OmDsABsUSuQlU4KSgowKFDh1BeXo6Kigp8/vnnyM/PR5cuXaqdu3v3bpSUlKCyshI7duzA77//LqorY8eOxa5du5CYmIjCwkKsWrUKcXFxtnlHRDYmn2kGOG7nX8A4+FRafG3YsGE1TmvV6XQIDAwEYN9wkpubK7p11IxrcXNzE4NiL168iKqqKrPnFRcXY8eOHYrH5DP57B1OWrRooRh3wgXYiJxDVTiprKzEhx9+iJEjR2LMmDE4cOAA3n33Xeh0OmzdulUxQPWLL77A2LFjMWrUKHz++edYvHix+C0kOjoaTz75JObPn4/4+HgEBQVh5syZtn1nRDag1+vx1VdfKR6zZTgpLS3FunXrcODAAZSVlVV7Xj7eJD4+vtbXkrok0tPTUVFRYbN7lFOz4Z8paaXY8vJys4N6AWDnzp0oKSlRPCafvWDvcKLRaBTL2LNyQuQcqsacBAQE4NNPPzX7XFxcnKL6Ude6JePGjcO4cePUXJ7I4Q4dOoTLly8rHrNlOJk7d66Yiebt7Y3BgwfjkUceweTJkwGoDycJCQnQ6/VISUlRPWNH7tixY1i7di0efPBBxetYs8aJufOTkpIUIUAi79IZMWIE9u7dq3je3uEEMC5yd/r0aQQFBdl1TRUiqhlH3RDVYt26ddUes2U4OXLkiDguLS3Fjz/+iClTpuC7775DYWEh9u/fD8A4FkI+yNycmkKENe6++2689dZbGDdunKILRs2Gf6bq2mOnqqoKmzZtAgD4+fnhyy+/VHSxeHl5oXXr1qquaY233noLb7zxBjZv3sxVq4mchOGEqAbyLh1PT08xqNuW4eTq1asAjFUTeSXhsccew7fffisWH4yPj69zfRV5N4s8RKil1+vF9ycmJoqAZjAYFJUctd06ppUTUz///LMYzzJmzBgEBwdj1qxZ4vnQ0FCHrDETFBSEv/3tb2a3CSAix2A4IarBwYMHkZmZCcD4YSmNP7DVbB2DwYDs7GwAQKdOnZCcnCy6bjIyMvDQQw+Jc+vq0gFsVznJy8uDwWAQXy9atAhVVVX49ttvcejQIQDGxeC6deum6nXllRNz4UTepTNhwgQAwJNPPin28YqJiVF1PSJquBhOiGogn6UzZcoUMd4hKyvL7OBVtfLz88XA1datW0Oj0eCjjz4SCxRKA0M9PT1x66231vl6tqqcSJv6Sc6cOYO1a9fib3/7m3jszTffVL0WQ3h4uAgapuHJYDCIcKLVanH77bcDMI6jWbNmDSZMmIDXX39d9XshooaJ4YTIDL1ej6+//hqAcazDnXfeqeh2MR0kaw2pSweAGEsRHh6uWHQMMA4Mla+oXJPg4GBxXn0qJzk5OdUemz17tthTZ9iwYbjjjjtUv66Hh4eYUZSUlKSozpw5c0bc87Bhw9CyZUvx3LRp0/Dtt9+id+/eqq9JRA0TwwmRGb/++qvo0hk9ejSaNWumCCe2GHcidekAUCzR/thjjymWe7ekSwcwToOVunYuXbqEyspKq+7LtHICGAfrShYvXmz12A+pa6egoEDx/uVrm4wfP96q1yaixoPhhMgM+fgH6cPSnuFEPgtFq9Xi448/RufOndGvXz9Mnz7d4teUwkllZaXVG+TJw8no0aMVz02aNEkRnNSqaVCsfKfj+rw+ETUODCdEZkjhRKPRiC4MR4UTwDhA9syZMzhy5IhiR9+6yMedWNu1I+/Wueeee0RYcHd3r9blpFZNg2Llx/JziKhpYjghMnH+/HmcOXMGgHHXXWmTP1uHE3NjTupLXpmwdlCsvHLSqlUrbNiwAY8//jg2bdqkevqwqZrWOpHCiU6nc8haJkTk2lTvSkzU2Jnr0gGUq5PaYjpxTWNO6sMW04nl4SQgIAChoaF4//33631vgPluHXkXVIcOHRyylgkRuTZWTohMmFtvAzBWEaSdde3drWMtW0wnlocT+awZW5A2/wP+DE+pqali8C67dIgIYDghUsjOzsbPP/8MAOjcubNi4S/5pnCpqamKqbDWsEe3Ttu2beHr6wvANmNObB1OfHx8xE6/UuVEPt6kPvsBEVHjwXBCJLN582axC665Ka1SOCkqKjK7HogaUuXE3d0dLVq0qNdrSeTTiS9evGjVdGLTbh1bk6oj2dnZyM/P52BYIqqG4YRIpqbxJhJbDoqVwom0OqytyKcTW3OPUjjx9fWFl5eXze5LYjpjh+GEiEwxnBD9T0VFhVgMLCgoyOx6G7YKJwaDQXTr2Hp2Sn3HnUjhxNZdOhLTQbHy7ieGEyICGE6IhMzMTLGfzeDBg83uHSOfsVOfcGK6r44t1XfGjtRdZa9wYjqdWKqceHh4KNqXiJouhhOi/5GWqwcgdiA2ZavKiT2mEUvqE05KSkrEUvX2GG8CVL+/ixcvAjBu8idtDEhETRvDCdH/yMNJ27ZtzZ4jDyf1WevEHtOIJfXp1rHnNGKJvHLy888/o6ioCABn6hDRnxhOiP7HknASGhoqjutTObHHNGJJ27ZtxXosaisnjggnLVq0EK8trcQLcLwJEf2J4YTofywJJz4+PqIbxlW7ddzc3KyeTmzPNU7kzFVJGE6ISMJwQvQ/loQT4M9BsRkZGWJQq1r27NYB/vzwr6ioUBWi7L3GicRcEGE4ISIJwwnR/1gaTqRxJ3q9HhkZGVZdy57dOoBymXhrwwkrJ0TkLAwnRP8jhRM3N7daA4N8UGxycrJV17J35URaIh4A0tPTLf4+R3XrmAsi7du3t9v1iKhhYTgh+h8pnAQFBdU6pVW+386pU6esupY9x5wAyoG7ly9ftvj7nNWtExoaKgbxEhExnBABqKqqwpUrVwDU3qUDADfddJM4/v333626ntStY8t9deTk4URN5cRZ3Trs0iEiOYYTIhgrGdKGf3WFk549e4pja8OJVDkJDAy06b46Enm3Tl2VE/nuyo4KJ0FBQfDz8xNfM5wQkRzDCREsHwwLAP7+/mLA6cmTJ1FVVaXqWgaDQYQTe3TpAMb3IIWemionubm5mDhxInr16oVvvvkGgOPGnGg0GkUgYTghIjmGEyKoCyfAn107xcXFil11LVFQUIDy8nIA9hkMCxj3qQkKCgJgvnKSnJyMm2++Gd9//z0KCgrw9ttvA/izcqLVauHv72+Xe5MwnBBRTRhOiGB9OAHUd+3YexqxRBp3kpWVpViI7ddff8XAgQMVq7MeP34c5eXlIpwEBATYpbtJrk+fPuK4V69edr0WETUs7s6+ASJXoDacyD9Mf//9d0yePNnia9l7GrEkJCQECQkJ0Ov1yMrKQmhoKK5du4bRo0cjLy9PcW5ZWRlOnjwpwok9u3QkTzzxBAoLC9G5c2d06tTJ7tcjooaD4YScrqioCNu3b0dBQQEA4zojt956q2LGib05snJi72nEEtMZO6Ghodi9e7cIJkOGDMHIkSPx6quvAgB++eUX8Zw9pxFLmjdvjn/96192vw4RNTwMJ+R006dPx4YNGxSPBQUF4cKFC9DpdA65B7XhJCIiAs2bN0deXp7LduuYztgZOHAgzp07Jx576qmnEBQUJMLJzp07xXOOqJwQEdWEY07IqQwGA7Zt21bt8StXruCXX35x2H3Iw0lwcHCd52s0GjGlOC0tTTEFty6O6tYxtxDb2bNnxWOdOnVCr1694O5u/B1lz5494jmGEyJyJoYTcqqsrCwUFhYCMK4f8tBDD4nnDh065LD7kMJJq1at4OnpadH3yLt2Tpw4Ueu5iYmJWLRoEV566SVs3LhRPO7Ibh0AonIiTeX18fFB586dAUD8HACGEyJyLnbrkFPJuxlGjBiBuXPnYtmyZQAcF04MBoMIJ5Z06Ujk4eT48eMYMWJEtXMKCgrw6quv4t///rdixozEkd06BoNBVE4iIiLg7e0NvV6PHj164I8//lB8ryPGnBAR1YSVE3IqeTiJiYlBVFQUAgMDAQCHDx9WrF5qLzk5OWLdEWvDiblxJ5s3b0bnzp3x9ttvmw0mXbp0Mbs7r62Ybv539epV5OfnA4Bidoz8fUhYOSEiZ2I4Iac6f/68OI6JiYFGo8HAgQMBANevX1e9wFlNCgoK8PLLL+Orr76q9pzawbCS7t27w83N+FfINJwUFhZi0qRJyMjIAAB4eXnhH//4B3bv3o3du3dj7969+O2332rdYLC+/Pz8xL49ly9frhYEJQwnRORqVHfrzJkzB3/88Yf4R7V379547733qp23dOlS7Nu3Dzk5OYiIiMD8+fPFoksJCQl45JFH4O3tLc5/77330Lt3b2vfBzVQ5j4wBw0ahB9++AGAsWvHFtWFN998E6+//jo0Gg169OghxlkA1ocTHx8fxMTEIDExEadOnUJFRQU8PDwAGN9XWVkZAKBv375Yv369WPLekUJDQ5Gbm4v09HQkJiaKx+XhJDo6Gn5+figqKhKPMZwQkTNZVTl5+eWXceDAARw4cMBsMAEAnU6HDz74AHv37sUDDzyAZ555RvGPX3h4uHiNAwcOMJg0UVI48fLyQlhYGABjOJHYatyJNE3WYDBg69atiuesDSfAn1WH8vJyxUwYecXnrrvuckowAf7s2ikrK1PMfpJ362i1WvTt21fxfRxzQkTOZLcBsXPmzBHHo0aNwpIlS5CamoouXbqofq3y8nIxJkDi7u5u8ayKhk7aLVf6f2NRVVWFCxcuAAA6duwIwPge+/btC41GA4PBgEOHDql+36btVVxcjN9++008v3PnTsybN098LXW9AMb1VdRcr2fPnli3bh0A46DYrl27AlB2V7Vv395pPzv5uBP5VOHo6Gjo9XpxX3379sX+/fvF8y1atGh0f95sobH+XbQXtpflmlJbSd3htbEqnCxevBiLFy9GTEwM5s+fLz5YapKRkYH8/HzxmzFg/G01NjYWOp0O8fHxmDlzZo3976tXr8by5csVj02ePBlTpkyx5vYbrLS0NGffgk2lpqaioqICgPFDNCUlRTzXsWNHnDt3Dr///jsSExPh4+Oj+vWl9vr1118VA1L37duH8+fPi3Arr3hoNBrFfdRFPhX40KFDGDJkCADlGBQ/Pz9Vr2lLfn5+4li6By8vL+j1esU9mVZ2ioqKnHbPDUFj+7tob2wvyzWFtmrfvn2d56gOJ3PnzkVUVBTc3Nywbt06zJs3Dxs2bICvr6/Z8ysrK7Fw4ULcd999YrXPyMhIfPHFFwgPD0dycjJeeOEF+Pr6YurUqWZfY8aMGdWea2qVk7S0NISFhVmUOBsK+cZzvXr1QkREhPh66NChOHfuHCorK3Ht2jUMHTrU4tc1ba8vv/xS8XxxcTEyMzMxfPhwAFB0N/bu3VtxH3WRTx9OT08X3ytfBXbo0KFo3ry5xa9pS926dav2WExMjPjHQWqrsWPHKs7p2bOnGD9Df2qsfxfthe1lObaVkupw0r17d3H8wAMPYOPGjTh16hT69+9f7VyDwYCFCxciICBA0c0TGBgopotGRUVh1qxZ2LBhQ43hxNPTs8kEkdq4ubk1qj+0UpcOYBwDIX9vgwYNwqpVqwAAR44cEUFCDam9fv7552rP7dmzRwSLrKws8XhISIiqNm7fvj28vb1RWlqKxMRE8b3SmJNWrVo5dfxGeHh4tcdiYmKqvcf27dujdevWyM7ORrNmzeDl5eWoW2yQGtvfRXtje1mObWVU7xaorRHfeustZGdn47XXXqv1PP4gmqaaprYCthsUq9frxUBQeRfHrl27xLE0INbf319xjiW0Wq2Y+XP+/HmUl5ejtLRULBffoUMHq+/dFuRjTiTmdgDWaDR49tln4eHhgUcffdQRt0ZEVCNVqaCgoACHDh1CeXk5Kioq8PnnnyM/P9/sINdly5bh999/x5IlS6pVPRISEsRvq6mpqVi5cqWqsj01DrWFk65du4puwPqEk7Nnz4p9b2677TYxYPXXX38VO/Baszqs6b0CxgG+58+fx6VLl8Ticc4OJ+Z2djZta8mzzz6LwsJC/POf/7T3bRER1UpVt05lZSU+/PBDJCcnw8PDAzExMXj33Xeh0+mwdetWrF69GuvXrwcALF++HJ6enoiLixPf/+KLLyIuLg6JiYlYsGABCgoK0LJlS8THx9fYpUONlxROWrRoIbr5JFqtFgMGDMCePXtw+fJlXL582ewHbV0OHjwojocMGYL27dvj9OnTqKqqwt69ezFy5Eixp0x9wwkAnD59WjF4154rwFoiICBAdDtJagonANh9SkQuQVU4CQgIwKeffmr2ubi4OEUQSUhIqPF1pk2bhmnTpqm5NDUyJSUlSE1NBfDnyrCmBg0aJKa/JiQk2CSc5OTkiLV5du3apQgW1oYTeeXw9OnTYlVWwPmVE41Gg9DQ0Grje4iIXBk3/iOnSEpKEl0fNf0mLx98Lf9wVUMaDOvp6Yl+/fqhvLwcWq0WVVVV2LhxI3766Sdxri0qJ2fOnFFs5ufscAIYx51I7deqVSuu/kpELo8jUckpahtvIpHPhb906ZLqa2RnZ4vr9O3bF97e3mjWrJnYuyc1NRXHjx8HYOxGuvPOO1VfAzAGEGna7enTpxWrw7pCOJFXnFg1IaKGgOGEnEJtOLl48aLqa8inEN98883ieNSoUYrzunfvjkOHDinWLFHDw8NDLER49uxZ8d58fX0RHBxs1Wvakjyc1DbehIjIVTCckFNYEk7atGkjFvezpnJy4MABcSyt3AoYxzz5+PhAq9Xi73//OxISEtCvXz/Vry8nde2Ul5eLykmHDh3MjqVxNPl0YoYTImoIOOaEbEqv12PXrl1o3bp1rZs5ysNJTdsfaDQaREZG4vTp00hOToZer7d4TRyDwYBvv/0WgLHLRr6IW8eOHXH58mXo9fpqs4SsJR93InGFLh3AOFjd09MTer0e48ePd/btEBHViZUTsqlvv/0WY8aMwcCBAxVjL+TKy8tx+vRpAEC7du3EeibmSHu+lJWVKVZyrcvJkyeRnJwMwLi+SatWrRTPt2zZ0mbBBHDtcBIdHY3U1FRcvnzZ7H0SEbkahhOyKWnqbkVFBXbu3Gn2nDVr1iAnJweAciVYc6wdd7JlyxZxPHnyZIu/z1rmFiJ0lXACGHdbDgoKcvZtEBFZhOGEbOrKlSvi+Lfffqv2fHl5Od544w3x9fPPP1/r61kzY8dgMIhwotVq8Ze//MWi76sPc/vVOHsBNiKihorhhGyqrnDy8ccfIyUlBQAQHx+PAQMG1Pp61oSTo0ePir1tbrvtNpt239TE29u7WqXElSonREQNCcMJ2ZQ8nJw8eRIVFRXi6/Lycrz++uvi65dffrnO15PGnACWd+t89dVX4tgRXToS+XgOd3d3szsCExFR3RhOyKbkg1blA18B4JNPPhFVk7i4uDqrJoD6yonBYMCGDRsAOK5LRyIfdxIREQF3d06GIyKyBsMJ2UxlZSWuX7+ueEzq2qmoqFBdNQEAf39/MdPGknBy9OhRMUvn1ltvdUiXjkReOWGXDhGR9RhOyGays7PFfjmSY8eOAQB+/PFHERqkqcaWkqonly9fRnl5ea3nSrtiA8CkSZMsvoYtyNd16datm0OvTUTUmDCcNCFnz57F+PHjMXDgQPHfk08+Cb1eb5PXl483kUiVk++//148Nnv2bFWvK407MRgMolvInGvXrmH58uUAHN+lAxiXwV+0aBHuuusuPPXUUw69NhFRY8JO8SZk0aJF2Lhxo+KxX3/9FSNGjMCECRPq/frmwsnx48fFDsCAcXfgMWPGqHpd03EnNa0o+49//AO5ubkAgAkTJji0S0fy0ksvOfyaRESNDSsnTYh8cKrcvn37bPL65sJJUVER1q1bJ6b2jhw5Ev7+/qpe15JBsSdPnsSyZcsAADqdDs8++6yqaxARketgOGlCpDEfkZGRuHHjhnj8p59+ssnry8NJz549xfGrr74qjq3Z26WucGIwGBTdUy+++CLatGmj+jpEROQaGE6aiPz8fBFIIiMjERAQIAZtHjt2DIWFhfW+hjycxMXFieOzZ8+K43Hjxql+3brWOvn++++xZ88eAMYgM2/ePNXXICIi18Fw0kTIB5JGRkYCAIYOHQoAqKqqwq+//lrva9QUTiT9+/dHu3btVL9ueHg4NBoNgOqVE4PBgBdeeEF8/fbbb8Pb21v1NYiIyHUwnDQRUpcOUD2cALbp2pEvwHbTTTehbdu2iuet6dIBjINoQ0NDAVQPJ9evXxeVmX79+jl8hg4REdkew0kT4YhwIlVOPD090bx5c/Tp00fxvLXhBPhz3Mn169eRn58vHpeHld69e4sKCxERNVwMJ02EuXASERGBkJAQAMAvv/yCysrKel1DCidBQUHQaDSKRcmioqLqtTCZfNyJPJDIj+UDZ4mIqOFiOGki5B/iUjjRaDSielJYWIiTJ09a/fpVVVW4du0aAGM4AYzdLJI777yzXlWNmmbsMJwQETU+DCdNhFQ5cXd3F9USABgyZIg4rk/XzrVr18RUXimc3H777bj77rsxfPhwPP/881a/NqAMHklJSeJYXhFiOCEiahwYTpoI6UM8LCxMsVuurcadyGfqSOHE3d0dX375Jfbt24fg4GCrXxsAOnXqJI4TExPFMSsnRESND8NJE5CXl4ecnBwAf3bpSHr06CFWbP3pp5+qbdxnKXPhxJa6dOkijk+dOiWOpXDi6+uL1q1b2/y6RETkeAwnTYC5NU4k7u7uGDx4MAAgIyOj1o31aiMPJ/Wtkpjj7++P8PBwAMZl+A0GA/R6vagItW/fnjN1iIgaCYaTJsDcTB05W3Tt2LtyAgBdu3YFYKwEZWZmIjMzE+Xl5QDYpUNE1JgwnDQBdYWTQYMGiePjx49bdQ35Amz2DieAsXrC8SZERI2Te92nUENXVziJiIgQx/KQoYYjKyeAMZwEBASIrxlOiIgaD4aTJqCucCIfI5KZmWnVNZwRTuT79DCcEBE1HgwnTYDU/WG6xonE398fvr6+KC4urnflxMPDQ1HRsCX5jJ3Tp0+jrKxMfM1wQkTUeHDMSRMgVU7Cw8Oh1WqrPa/RaET1pL6VkzZt2tht1kyLFi1EteTUqVMcc0JE1EgxnDRyubm5yM3NBWC+S0ci7SCck5OD0tJSVdfQ6/XIzs4GYL8uHYnUtXPjxg389ttvAICWLVuiWbNmdr0uERE5DsNJI1fbGidyUjgBlONHLHH9+nVUVVUBsM8aJ3LyzQMLCgoAsGpCRNTYMJw0cnUNhpXUZ1CsIwbDSuSDYiUMJ0REjQvDSSNnaTiRV07UDoplOCEiIltSHU7mzJmDm2++GcOGDcOwYcMwd+5cs+eVlpZiwYIFGD58OG6//XZs27ZN8fymTZsQHx+PW265Ba+88goqKiqsewdUK0dUTtLT08WxvcOJfMaOhOGEiKhxsWoq8csvv4wxY8bUes6yZcuQl5eHLVu2ICkpCfPmzUOXLl0QERGBCxcu4J133sEHH3yA8PBwPP3001i5ciUefvhhq94E1cyayonacLJy5UpxHBMTo+p71WrVqhWCgoIU1RqGEyKixsVu65xs2bIFS5YsgU6nw0033YThw4djx44dePDBB7Ft2zbExsaKEv3s2bOxaNGiGsNJeXm52ENF3Li7Ozw9Pe11+/WSn5+PZ555BhcuXBCPdejQAUuWLLFqVoler1f8X43U1FQAgFarRXBwcI2v0aZNG3GcmZlp8bX27t2L/fv3AwA6deqE2NhYq+5Tja5duyrCSUREhOKa9WmvpoZtpQ7bSx22l+WaUlu5udXdaWNVOFm8eDEWL16MmJgYzJ8/Hx07dlQ8n5+fj+vXryM6Olo8FhMTI7a6v3jxotgJFwA6duyI9PR0lJaWwtvbu9r1Vq9ejeXLlysemzx5MqZMmWLN7dvdf/7zH0U1AQD27duHVq1a4ZFHHrH6ddPS0qz+ntatW+Py5cs1nifNtgGMPx9Ldyd+6aWXxPFDDz1U6zVsJTQ0VPG1RqMxe7/WtFdTxbZSh+2lDtvLck2hrSypdqsOJ3PnzkVUVBTc3Nywbt06zJs3Dxs2bICvr684p7i4GFqtVhE0/Pz8UFxcDAAoKSmBn5+feE6n04nHzYWTGTNmYOrUqcobd+HKibxiInfmzBnFPjaW0uv1SEtLQ1hYmEWJU1JVVYXr168DMH6g13bt0NBQuLm5Qa/XIz8/36L73L9/Pw4dOgTAGDAfe+wxuLvbf9HhgQMH4tNPPwUAtGvXrlpXkrXt1RSxrdRhe6nD9rIc20pJ9SdJ9+7dxfEDDzyAjRs34tSpU+jfv7943NfXF1VVVYpKSFFRkQgwPj4+KCoqEucXFhaKx83x9PR02SBizsmTJwEA3t7euHbtGkJDQ5Gbm4ujR4/W6w+dm5ubqu+/cuWKKBG2bdu21u91c3NDmzZtkJWVhczMTIuu89prr4njv//97w77Gcn/DLZv377Ge1XbXk0Z20odtpc6bC/Lsa2M6t0C5hqxWbNmaNWqlaKCcO7cOURFRQEAoqKiFM+dP38eISEhZqsmDU1RUZF4b927d4efnx/69u0LwDiWIyMjw2H3Ih/YKh/wWhPpHHmoqclPP/2EPXv2ADCOp7n33nvrcafq3HTTTaLyJg/FRETUOKgKJwUFBTh06BDKy8tRUVGBzz//HPn5+Wand8bHx2PFihUoKirCyZMnsX//fsTGxgIAxo4di127diExMRGFhYVYtWoV4uLibPOOnOyPP/6AwWAAAPTs2RMA0K9fP/F8QkKCw+5FbTiRphNXVlaK7qCavPrqq+L4pZdeckh3jqRFixbYvHkz3njjDSxYsMBh1yUiIsdQ9YlSWVmJDz/8EMnJyfDw8EBMTAzeffdd6HQ6bN26FatXr8b69esBGAdHLlq0CGPHjkWzZs3wwgsviKms0dHRePLJJzF//nwUFRXhtttuw8yZM23+5pzhxIkT4thcODl69CjuvPNOh9yLtZUT6Xtbt25t9rxffvkFO3fuBGDsVpk2bVo971S9ESNGYMSIEQ6/LhER2Z+qcBIQECAGIpqKi4tTVD+8vb2xaNGiGl9r3LhxGDdunJrLNwjycHLTTTcBaHiVE8C4SqwUrky98sor4vill16Ch4dHPe6SiIhIiaNubEweTnr06AHAuA5Hq1atABjDidTtY2/yZeitqZyYc/jwYWzfvh2AcVG3+++/v553SUREpMRwYkMGg0GEk5CQEBFINBqNGBR79epVm6wFYjAY8N577+G1116rcel/ecCwZLdgS8KJvGry4osvsmpCREQ257hRjE3A5cuXkZubCwDVukT69euHHTt2ADCOOwkLC6vXtQ4cOIB58+YBALy8vPDcc89VO0ceMCzZ88a0W8fUr7/+iq1btwIAwsPD8cADD6i+byIiorqwcmJD5gbDSmw97uS3334Tx//973/NTv2VwklgYKBFa5DUVTlZvHixOH7xxRcb1NozRETUcDCc2JAjw0lSUpLieO/evYrnDQaDCBiWjDcB6t6Z+OjRowAAf39/TJ8+XeUdExERWYbhxIZqCyehoaFiaq4tBsXKwwkArFixQvF1Tk6O2CzR0nDi6+srNiY0161z7do1AMYl4728vFTfMxERkSUYTmxICieenp7o1KmT4jmNRiOqJ9evX7d4Y72amO7f8/XXXysWTlM7jVgiVU9MKydlZWUoKCgAYOwmIiIisheGExspLS3F2bNnAQBdu3Y1O4vFdDE2a1VVVSE5OVnxWHl5uWINGmvDiXRuYWGh2PMIALKzs8VxTYuzERER2QLDiY2cOXMGVVVVAKp36UhsNe4kLS1NTB/u2rWreHzFihWiu6i+4QRQdu1IXToAwwkREdkXw4mN1DbeRCKtdQIAx48ft/pa8vEmcXFxGDJkCADg1KlTOHToEID6d+uYvoa8csJuHSIisieGExuxJJy0a9cOvr6+AFCtW0YNeTjp0KEDZs+eLb7++OOPAbByQkREDRfDiY2cOXNGHHfr1s3sORqNRmx+mJycbPWMHdNwMnnyZLEr8IEDBwCoXx3W3LmsnBARkTMwnNhIYmIiAKBZs2a1ViqkcFJaWoqrV69adS3TcOLn5yeqNWfOnEF+fr7NKyccEEtERI7CcGKBkpKSauuKmD4vddN07twZGo2mxnOlcAJY37Uj3Yu7uzsiIiIAAAMHDgRgXHztyJEjIpz4+/vDz8/P4teWV04yMjLEMbt1iIjIURhO6lBRUYE+ffogOjoar7/+utlzzp8/L7poOnfuXOvrycPJpUuXVN+PwWAQ4SQiIkJ050jhBDDuHKx2dVhJSEiIOE5PTxfH7NYhIiJHYTipw4kTJ0SXzYIFC7Bz585q50jPA+rCiTWVk+zsbLEYWocOHcTj8nCye/dusUaJ2nASEBAgBu3Kd09m5YSIiByF4aQO8pVYDQYDpk2bVm1pd0eGE9PxJpKYmBi0aNECALBv3z7xuNpwotFoEBoaCsC4nopUEZIqJz4+PiK8EBER2QPDSR1Mx5pcvXoVU6dOFQuuAcpwYrpsvSl7hRM3NzcMGDAAABT3pjacAEBYWBgAoKioCHl5eQD+DCesmhARkb0xnNRBHgakisGePXvw1ltvicelcKLVahWBwZzAwMB6rXVSUzgBlF07EmvCiVQ5AYxdO3q9Xuzbw3BCRET2xnBSB3kYWLduHdzcjE3273//GwaDAXq9XuypExUVVeduvfK1TlJSUlSvdSK/n+joaMVztgonUuUEMHbt5OTkQK/XA+BgWCIisj+GkzpIY04CAwNxxx13ID4+HoCxe+fUqVO4fPkyiouLAdQ93kTSvn17AMa1Tq5cuaLqfuThJCoqSvGc1K0jp2YBNolp5YSDYYmIyJEYTmpRUlIiptNKXSi33XabeH7Pnj2qBsNK6jPuRAonbdu2rTYwtXXr1tUCS327ddLS0jiNmIiIHIrhpBbydUikLpSRI0eKxxwdTgoLC0WlpaaxLaZdO/Xt1mHlhIiIHI3hpBbmBp92795dVA/27t2LU6dOiXOsCSdqFmKrbTCsRB5OvLy8EBAQYPHrS0y7dbh0PRERORLDSS3ka5xIYcDNzQ233norACAvLw/ffPONOKeuacQSaysnJ0+eFMc1BSF5OAkODq51Kf2ayBdiY7cOERE5GsNJLWqqVMjHnUhdHq1bt0arVq0sel1rw8nvv/8ujnv37m32nN69e4u9dDp27Gjxa8uZLsTGygkRETkSw0ktapq2Kw8nEku7dACgVatWIkBYG0569epl9hwvLy988sknmDx5Mt58802LX9uUFE6KiooU7cBwQkRE9sZwUgvpQ9nPzw9t2rQRj3fs2FGxQR6gLpyYrnUirSFSG4PBgOPHjwMwdtcEBQXVeO7EiROxfv169OnTx+J7MiUfFHvs2DFxzG4dIiKyN4aTGlRWVorBqh06dFCM3dBoNNWqJ2rCCfBn105ZWZlFa51kZWWJVVprqprYkumgWMA43saaAbZERERqMJzUIC0tDZWVlQDMz4yxVTgBLOvaOX36tDh2RDiRV04krVq1EivkEhER2Qs/aWpQ2zLxQP3DibRKLGBZODlz5ow4vummm1RdyxryyomE402IiMgRGE5qUNeaIuHh4WI2jJ+fHyIiIlS9vtq1ThxdOWE4ISIiZ2E4qYG5NU5Mvffeexg4cCDee+89aLVaVa+vtltHqpz4+PhYPUVYDXPdOhwMS0REjuDu7BtwVZasxjp27FiMHTvWqtdXE07y8/ORkpICAOjZs6fqIGSNgIAA+Pj4oKSkRDzGygkRETkCKyc1kMKJh4eH2SpCfbVs2RI6nQ6A+XCSk5OD8vJyAMCJEyfE447o0gGMM5JM3zcrJ0RE5AgMJ2YYDAYRTiIjI+HubvsCU21rnXz99ddo2bIlBgwYgNzcXIsWX7MH03EnrJwQEZEjMJyYkZCQgKKiIgBAly5d7HYdKZyUl5cjKytLPP7xxx8DMK4I+/TTT4vF1wDHhhPTygnDCREROYLV4eTEiRPo378/1qxZY/b5KVOmYNiwYeK//v3747PPPgNg/PDv37+/4nn5KqTOtmHDBnE8btw4u12npnEn8tk7q1atEpsLajQa9OjRw273Y8q0csJuHSIicgSr+iv0ej2WLl2Krl271njO+vXrxXFubi7i4uJwyy23iMfCw8Px9ddfW3N5uzIYDCKcaLVaTJgwwW7XMg0nN998MwwGAy5evKg4Lzc3FwAQExMj9uRxBHbrEBGRM1gVTr755ht0794dhYWFFp2/a9cudO7c2eqBpeXl5WJwqMTd3R2enp5WvV5tjh07JsLBiBEj0LJlS4v2vrFGeHi4OL506RL0ej2uXr2K4uJis+ffdNNNdrsXc0z3D7JnW9iSdI8N4V6djW2lDttLHbaX5ZpSW1my0rjqcJKXl4cvv/wSq1evxtKlSy36nq1bt1abcpuZmYnY2FjodDrEx8dj5syZNU6RXb16NZYvX654bPLkyZgyZYra26/TqlWrxPGIESPEFF578Pb2FscnT55ESkqKonvr1ltvxZEjR0QIjIiIsOv9mDL9eRQXFzv0+vWVlpbm7FtoMNhW6rC91GF7Wa4ptJV8hfSaqA4nH374Ie655x40a9bMovMzMjJw6tQpLF68WDwWGRmJL774AuHh4UhOTsYLL7wAX19fTJ061exrzJgxo9pz9qicGAwG7Ny5E4BxfMesWbNq3f23vvz9/cXxtWvXEBERgZ9//lk8FhcXh3vuuQdz5syBVqvFX//6V9Ur0drq/vz9/RETE+Owa9eHXq9HWloawsLCuBdQHdhW6rC91GF7WY5tpaQqnCQmJuLUqVN4/vnnLf6ebdu2YcCAAWjZsqV4LDAwUAyujIqKwqxZs7Bhw4Yaw4mnp6ddunBMnTx5EufPnwcADB8+HG3btrXr9Vq1agV/f38UFBQgJSUFbm5uioGxUVFRuOuuu9CpUyfk5OSgd+/eDv1D26pVK/j5+aGoqAht2rRpcH9h3NzcGtw9OwvbSh22lzpsL8uxrYxUhZPffvsNqampiI+PBwAUFhZCq9Xi8uXL+Pvf/272e7Zt24YZM2bU+rqu8oOQD9CdNGmS3a8nrXUideno9XrFTJ2oqCgAwNChQ53SnaLRaPDUU09hyZIlmDt3rsOvT0RETZOqcDJx4kSMHj1afL1kyRKEhYXhvvvuM3v+2bNnkZmZiREjRigeT0hIQGhoKIKDg5GamoqVK1ciLi5O/d3bmHwK8cSJEx1yTSmcVFRUIDMzUzFTRwonzvTqq6/i5ZdfdsiS+URERIDKcOLt7a0YxOnl5QVfX1/4+/tj69atWL16tWIK8bZt23DLLbfAx8dH8TqJiYlYsGABCgoK0LJlS8THx9fYpeMoZ86cwalTpwAAN998M9q1a+eQ65pOJ5YqJwEBAWjevLlD7qEuDCZERORI9VqXfeHCheI4Li6uWvVj3rx5Zr9v2rRpmDZtWn0ubXMbN24Ux47o0pHIw8n58+eRmpoKwDWqJkRERM7AXYn/55lnnsHAgQOxYcMG3HXXXQ67rjycHDhwQMxxt2SqFRERUWPEcPI/Wq0WI0aMqDY+xt7k4WTPnj3imJUTIiJqqlxjmkwTVtP+OqycEBFRU8Vw4mQBAQGKxc4krJwQEVFTxXDiZBqNxmyVhOGEiIiaKoYTFyDv2gGMgUW+KSAREVFTwnDiAkzDSVhYmEOW6yciInJFDCcuwDSccDAsERE1ZQwnLsA0nHC8CRERNWUMJy6AlRMiIqI/MZy4AFZOiIiI/sRw4gJatGiBZs2aia8ZToiIqCljOHEBGo1GUT1htw4RETVlDCcu4vbbbwcA9OnTB0FBQU6+GyIiIudhOHERixYtwuHDh7F//35oNBpn3w4REZHTcFdiF+Hm5oYBAwY4+zaIiIicjpUTIiIicikMJ0RERORSGE6IiIjIpTCcEBERkUthOCEiIiKXwnBCRERELoXhhIiIiFwKwwkRERG5FIYTIiIicikMJ0RERORSGE6IiIjIpTCcEBERkUthOCEiIiKXwnBCRERELkVjMBgMzr4JIiIiIgkrJ0RERORSGE6IiIjIpTCcEBERkUthOCEiIiKXwnBCRERELoXhhIiIiFwKwwkRERG5FIYTIiIicikMJ0RERORSGE6IiIjIpTCcONiyZcswefJk9O/fH9u3bxePl5aW4vXXX0dsbCxGjx6NTz/9VPF9/fr1w9ChQzFs2DAMGzYMq1atUnzvggULMHz4cNx+++3Ytm2bw96PvdmjvZYuXYrx48dj+PDhuO+++/Dbb7857P3Ymz3aS5KRkYEhQ4bgjTfesPv7cAR7tdXGjRvxl7/8BUOHDsWkSZOQkpLikPdjb/Zor/T0dDz22GMYMWIE4uLisHr1aoe9H3uztr0KCwvx6quv4rbbbsOIESPw0ksvKb63sf5bb8rd2TfQ1ISFheHpp5/Gf/7zH8XjK1euREZGBr799lsUFhbikUceQXR0NAYPHizO+e677xAYGFjtNZctW4a8vDxs2bIFSUlJmDdvHrp06YKIiAi7vx97s0d76XQ6fPDBBwgJCcGePXvwzDPPYNOmTfDz87P7+7E3e7SXZOnSpejUqZPd7t3R7NFW+/fvx2effYa3334bUVFRSE9Ph7+/v93fiyPYo70WL16MkJAQvPvuu7hy5QpmzZqFbt26YcCAAXZ/P/ZmbXu98sorCAoKwsaNG+Ht7Y0LFy6I723M/9abYuXEweLj4zFo0CB4enoqHv/ll19w7733QqfTITg4GHfeeSd++OEHi15zy5YtmDNnDnQ6HW666SYMHz4cO3bssMftO5w92mvOnDkICwuDm5sbRo0aBS8vL6Smptrj9h3OHu0lfb/BYMDAgQNtfctOY4+2WrFiBZ566il06NABGo0GoaGhaN68uT1u3+Hs0V6ZmZkYPXo03N3dERISgl69euHixYv2uH2Hs6a9kpKSkJiYiPnz50On08Hd3R2dO3cW39uY/603xXDiQuQbRBsMhmp/SadNm4a4uDgsXLgQubm5AID8/Hxcv34d0dHR4ryYmJhG8xe8Nta0l6mMjAzk5+cjLCzMnrfqEqxtr4qKCrz77rt48sknHXSnzmdNW1VVVeHs2bO4cOEC4uPjceedd2L58uVoChu/W/tna/Lkydi+fTvKy8uRmpqKkydPol+/fo66baepqb3OnDmD8PBwLFiwACNHjsT999+PY8eOAWh6/9YznLiIQYMG4csvv0RBQQEyMjKwefNmlJaWiueXL1+OzZs344svvkBpaSleffVVAEBxcTG0Wi28vb3FuX5+figuLnb4e3Aka9tLrrKyEgsXLsR9990HnU7nyNt3uPq01+eff44hQ4Y0iQAHWN9WN27cQFVVFY4cOYJ169bhv//9L3bu3IlNmzY56604RH3+bN100004efIkhg0bhokTJ2L8+PGKD9/GqLb2unr1Kg4fPowBAwZg+/btmD59Op555hnk5eU1uX/rGU5cxKxZs9CuXTtMmjQJc+fOxciRI9G6dWvxfO/eveHu7o6AgAA888wzOHjwICoqKuDr64uqqirFPwZFRUXw9fV1xttwGGvbS2IwGLBw4UIEBARgzpw5zngLDmVte129ehUbN27EzJkznXj3jmVtW3l5eQEAHnjgAfj7+yM4OBiTJ0/GwYMHnfVWHMLa9qqqqsK8efMwYcIEHDx4EBs3bsSuXbuwa9cuJ74b+6utvby8vBASEoIJEybA3d0dt912G0JCQnDy5Mkm9289w4mL8PHxwUsvvYTt27djw4YN0Gg06Nq1q9lz3dyMPzaDwYBmzZqhVatWikFT586dQ1RUlEPu21msbS/JW2+9hezsbLz22mvi+cbM2vY6ffo0rly5gokTJ2LMmDH47LPP8MMPP+CJJ55w5O07VH3+Lso/lKXHGztr2ys/Px/Z2dmYNGkS3N3d0a5dO4wYMQJHjx515O07XG3t1aFDhxq/r6n9W9/4/1V2MZWVlSgrK4PBYBDHer0eV65cwbVr11BVVYVDhw5h06ZNuPfeewEYB0mdO3cOVVVVyM/Px5IlSzBw4EAx0Co+Ph4rVqxAUVERTp48if379yM2NtaZb9Nm7NFey5Ytw++//44lS5ZUG6zW0Nm6vW6++WZ8//33+Pzzz/H555/jrrvuwqhRo/Daa685+Z3Wnz3+bN1xxx345JNPUFRUhOzsbHz99dcYOnSoM9+mzdi6vQICAhAUFITvvvtOvM6+fftq/YBuSKxpr379+sFgMGDz5s2oqqrCvn37kJ6ejh49egBo3P/Wm9IYmkK0dyELFy7E5s2bFY9JU81efvll5ObmIjIyEs888wx69+4NADhy5Aj++c9/4urVq/Dz88OAAQMwf/58tGzZEoBx7vuiRYuwb98+NGvWDE888QTGjh3r2DdmJ/Zor379+sHT0xNarVa85osvvoi4uDgHvSv7sUd7yS1btgzXr1/Hiy++aP83Y2f2aKuKigq8+eab2LlzJ3x9fTFhwgTMmTMHGo3GsW/ODuzRXqdOncKSJUuQlJQEb29vjB49Gk8++aTi72ZDZU17AcD58+fx2muv4dKlSwgLC8MzzzyDPn36AGjc/9abYjghIiIil8JuHSIiInIpDCdERETkUhhOiIiIyKUwnBAREZFLYTghIiIil8JwQkRERC6F4YSIiIhcCsMJERERuRSGEyJqVPr164d+/fo1+t2AiRozhhMiUm3OnDkiBNxzzz2K53JzczFkyBDx/Pvvv2/z62/atEm8PhE1PgwnRFQv58+fx2+//Sa+/u6771BWVubEOyKiho7hhIis5u7uDgBYt24dAKCqqgobNmwQj8vl5eXhzTffxO23346BAwdi9OjRWLBgAbKyssQ5y5YtQ79+/TBu3Djs3LkTd911F4YOHYoHH3wQycnJAIwbqr3yyivie6QKyrJlyxTXKywsxMKFC3HLLbcgLi4OK1assPXbJyI7YTghIqvFxMQgJCQEe/fuxZUrV7B//35kZWVh5MiRivPKysowZ84cfPXVV7h27RoiIiJQVFSErVu3YsaMGcjJyVGcf/XqVSxYsAAajQZlZWU4duwYXn31VQBAaGgoQkJCxLndu3dH9+7dERQUpHiNDz74AIcOHYKHhweys7Pxn//8B4cOHbJTSxCRLTGcEJHV3NzcMHnyZFExkSoof/3rXxXnbd++HUlJSQCAN998E+vXr8fKlSvh5uaG7OxsrF+/XnF+VVUV3nrrLWzYsEGMaTlx4gRKS0sxe/ZszJ49W5y7Zs0arFmzBhMmTFC8RkxMDDZt2qSo5Bw5csSm75+I7IPhhIjqZfz48fDx8cH69euRkJCALl26oGfPnopzTp8+DQDw9vbGiBEjAACdO3dGRESE4nmJTqfD8OHDAQBRUVHicdMKS21iY2Ph4eGBFi1aoGXLlgCAGzduqHtzROQUDCdEVC/+/v6Ii4tDUVERgOpVE2tfU6LVasWxwWCo12uo+X4ich6GEyKqtylTpgAAWrRogdGjR1d7vmvXrgCA0tJS7N27FwCQmJiIlJQUxfOW8vb2FsclJSXW3DIRubDqQ+qJiFSKjo7G7t27odVq4enpWe35MWPG4LPPPsPFixfx/PPPIyIiAunp6dDr9WjdurUIN5aKjIwUx5MnT0ZgYCCefPJJ9OrVq57vhIhcASsnRGQTzZs3h06nM/ucl5cXli9fLoJESkoK/Pz8EBcXh9WrVyMgIEDVtTp27IjZs2ejVatWyMrKwh9//IGCggJbvA0icgEaAzthiYiIyIWwckJEREQuheGEiIiIXArDCREREbkUhhMiIiJyKQwnRERE5FIYToiIiMilMJwQERGRS2E4ISIiIpfCcEJEREQuheGEiIiIXArDCREREbmU/wcoPARUXxyptwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -293,14 +341,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEPCAYAAABWc+9sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABGOUlEQVR4nO3dd3hUVfrA8W96IaH3jvQW0ByaCAoIGmDV3RXUFQTFRXfFXXVdZV27orhYf/beRZQV0VVQFARBBA5FQpNeEmIIJSEhbZK5vz8md5iEycxk5oZMJu/nefIwc8uZcybhnTPvPfecMMMwEEIIETrCa7oCQgghrCWBXQghQowEdiGECDES2IUQIsRIYBdCiBAjgV0IIUJMsAR2I5h/fvvttxqvg7Ql9NsjbQnOnyBvi1vBEtiDWmlpaU1XwTKh1BYIrfZIW4JTbWyLBHYhhAgxEtiFECLESGAXQogQI4FdCCFCjAR2IYQIMZHeDlBKDQSeA2xAOnAdcAVwO1AATNFap1U45+/AROAYMElrfdLaagshhKiMLz32Q8BIrfVwYD9wOXAHcBFwP3Cf68FKqabAZcAFwDzgFuuqK4QQwc1ms9V0FbwHdq11hta6oOxpMdAd2K61LtZarwKSKpwyAFiutTaAxcBQKytcEx5//HGWLVvG559/zuOPPw7A1KlT6dSpE/379+e8885j9erVNVxLIURNW7VqFbGxsbzyyis1Wg+fc+xKqQ7AGGAl4JpaiahwaCOX/TlA40AqGAw2btzI4MGDWb58OcOHD3dunzNnDps2bWL27NncdNNNNVhD/5WUlNR0FYQIGStWrMBut/PUU09Rk4sYec2xAyil6gPvA1NxBPL6Lrsr3paVDXQpe9wAOF5JmdOB6QAzZsxg9OjRvtb5rHnkkUdYvnw5hw4dQinFgQMHWLx4MePGjSM/P59jx46Rnp5O586d2bVrFzt37uSGG24gJycHm83GXXfdxSWXXEJ+fj4333wzGRkZ2O12/v73v3PZZZfx2GOPsWTJEiIiIrjwwgu57777OHbsGDNnzuTw4cMAPPjggwwYMICnnnqKw4cPc+DAAQ4fPsy0adOYNm0aAM8++yyfffYZTZo0oXXr1vTt25ebb76Z/fv38+9//5vjx48TFxfHf/7zHzp06MDEiROJiYlhy5YtDBgwgDFjxvDAAw8AEBYWxn//+18SEhJq7H2vCpvNRnp6ek1XwxLSluBUlbbs378fgN27d/P111/Tv3//6qsY0KZNG/c7DMPw+JOcnByZnJz8dXJy8qiy51HJycmrk5OTo5OTk89PTk5+tcLxzZKTk78re/yn5OTkf3l7DSOIrV271pg6dapRXFxsnH/++c7tU6ZMMT799FPDMAzjk08+MQYOHGjYbDYjJyfHMAzDyMrKMjp37mzY7XZj/vz5xo033ug8Nzs72zh69KjRrVs3w263G4ZhGCdOnDAMwzCuueYa48cffzQMwzAOHDhg9OjRwzAMw3jggQeMIUOGGIWFhUZWVpbRuHFjo7i42Fi7dq3Rr18/o6CgwDh58qTRpUsXY86cOYZhGMbIkSONnTt3GoZhGD///LMxYsQIIy0tzZgyZYoxbtw4o6SkxDAMwxg/fryxcuVKwzAMIzc317DZbNXyXlaHtLS0mq6CZaQtwakqbbnuuuuc87j8/e9/r75KneY2pvrSY78GGATcp5S6D3gZeBb4ASgEpgAopWYC87TW+5RSXymlVgEngGsD+kjC0YusDoYPX5U2bNhAr1692LFjBz179iy375///CePPvoozZo1480338QwDO655x5WrFhBeHg46enpZGZm0rdvX/7xj39w9913M378eIYNG0ZJSQmxsbFMmzaN8ePHM378eAC+++47tm3b5nyNkydPkpeXB8C4ceOIiYkhJiaG5s2bk5mZyapVq7j88suJjY0lNjaW3/3udwDk5eXx008/MWHCBGdZRUVFzscTJkwgIsKRRRs6dCh33HEH1157LX/4wx9o27atn++oEHXb0aNHnY8//vhjnnrqKef/s7PJa2DXWr+PIw1T0bwKx812efwM8EzAtatBmzZtYurUqaSlpdGwYUOef/55DMOgf//+zgulc+bM4corr3Se884775CVlcX69euJioqiY8eOFBYW0q1bNzZs2MDXX3/Nvffey6hRo7j//vtZu3Yt33//PfPnz+eFF15g6dKl2O12fv75Z2JjY8+oU0xMjPNxRESEx/y43W6nYcOGbNq0qdx28ytlvXr1nNtmzpzJuHHj+Prrrxk6dCjffPMNPXr08Ot9E6Iuy8rKAiAqKorMzEyWLVvGxRdffNbrUStuUKrs60agP57079+fTZs20a1bN5YtW8bIkSP55ptv2LRpE3FxcW7PycnJoXnz5kRFRbFs2TIOHDgAwOHDh4mPj2fSpEn885//ZMOGDeTl5ZGTk8PYsWN55pln+OWXXwAYM2YMzz//vLPMioG5oqFDh/Lll19SWFhIXl4e//vf/wCoX78+nTp14tNPP3W+h+ZrVLRnzx769u3L3XffzYABA9ixY4fH1xRCuGf22CdOnAjA3Llza6QetSKw15SsrCwaNWpEeHg4O3bsoFevXh6Pv/baa9Fa07dvX9577z1nrzc1NZWBAwfSv39/HnroIe69915yc3MZP348SUlJXHDBBTz99NMA/N///R9aa5KSkujVq5fXYVMDBgzgsssuIykpiZSUFPr27UuDBg0A+PDDD3nzzTfp168fvXv3ZuHChW7LePbZZ+nTpw9JSUlERUWRkpJS1bdKCMHpwH7NNdcAsHXr1hqpR5gveeazICgqUZn09PTKrz4Hgby8PBISEsjPz2f48OG89tprnHfeeW6PDfa2VFUotUfaEpx8bUtRURGxsbFERkaSmppKz5496dq1Kzt37qzO6rm9AOnTcEcR3KZPn862bdsoLCxkypQplQZ1IUT1MXvrTZs2pUmTJgAcP+52tHe1k8AeAj766KOaroIQdZ5rYG/UqBEAJ06cwG63Ex5+drPekmMXQggLuAb2yMhIEhMTsdvt5ObmnvW6SGAXQggLuAZ2gMaNHbOp1EQ6RgK7EEJYwBzD3qxZM0ACuxBC1HrSYxdCiBAjgV0IIUKMBHYhhAgxZmA3c+yuQx7PNgnsQghhAfPiqfTYhRAiREgqRgghQohhGM7Abk4nIIFdCCFqsby8PIqLi4mPjyc+Ph6QwC6EELVaxZuT4HRgl4unQghRC1XMr8PpUTHSYxdCiGp27733kpKSgs1ms6xMd4G9JlMxMm2vEKLO2LhxI7NmzQJg27Zt9OvXz5Jy3QX2uLg4YmJiKCwspKCgoNIlNauD9NiFEHXG/fff73xsZe674hh2gLCwsBrrtUtgF0LUCWvWrHEu9g7WBlt3PXaouXSM11SMUqoBsAToBQwG9gCLynbHA1Fa63MrnLMLSC97OktrvcSyGgshhB/M3npkZCQlJSWWBluz92+OYTfV1MgYX3Ls+cA4YA6A1roAuAhAKTUV6ODmnByt9UWW1FAIIQKUn5/Pt99+S2RkJJMnT+btt9+2NLCbZZmB3FRTI2O8BnattQ3IUkq52z0BuNPN9gSl1HIcvfYZWuuaWdFVCCGAzMxMAFq1akXXrl0Ba4OtWZYZyE1Bm4qpjFKqIdBSa73dze6hWutjSqnrgIeAW92cPx2YDjBjxgxGjx7tb1Wqnc1mIz093fuBtUAotQVCqz3SluqTmpoKOAKtubD0oUOHfKqjL20xPzhKSkrKHRsdHQ3Avn37quX9aNOmjdvtgQx3vBxY6G6H1vpY2cP5wI2VHPMa8FrZUyOAelS79PT0St/A2iaU2gKh1R5pS/VZt24dAG3btuWcc84BoKioyKc6+tIWc8HqHj16lDu2ffv2AJSWlp7V9yOQUTETgE8qblRKRSulYsqeDgN2B/AaQggRMLNH3bJly2pJj1SWYw/qVIxS6mugP9BdKfUqsABHGmaHyzFTgV+BvcDXSqlTQBFwg8V1FkKIKjEDe4sWLSwPtjabjdzcXMLDw6lfv365fTW12IZPgV1rPdbNZlXhmHdcniYHUCchhLCUu8BuVbA1y2nUqJEzf2+SG5SEEKKa/Pbbb0D19NjNwF4xDeO6TQK7EEJYzDXHnpCQQGRkpHMO9UBVll933SaBXQghLOaainGdw8WKdExlY9jh9J2o5pQDZ4sEdiFEyHMN7GDtHaGeeuz169cnOjqavLw8CgoKAn4tX0lgF0KEtPz8fHJzc4mOjqZhw4aAtSkST4E9LCzMuaqSOQPk2SCBXQgR0szeevPmzQkLCwPOXmA3XxfgyJEjAb+WrySwCyFCmuuFU5MEdiGEqMUq5tfB2sDuabgjSGAXQtRxJ0+exDCsnTqqugO79NiFEKIS3333HY0bN2bOnDmWlhssgV0ungoh6pw5c+ZQWlrK2rVrLS33bOXY3Y1jB+mxCyHqqL179/Ltt98CkJ2dbWnZrtMJmM5mj90c7iiBXQhRp7z++uvOx1bPhFidqRi73V5uEjB3pMcuhKhziouLeeutt5zPre6xV2dgP3nyJHa7ncTERKKiotweI4FdCFHnLFy4kCNHjtCuXTvg7PbYA30tb2kYKJ+KsXrET2UksAshatT3338PwM033wxATk4OdrvdkrILCgo4efIkUVFR5VIlDRo0ICwsjOzsbEpLS/0u39sYdoD4+HgSEhIoLi7m5MmTfr9WVUhgF0LUqH379gGQlJREQkICdrvduYZooMz0h+t0AgARERE0bNgQwzDIycnxu3xfeuzm67vWp7pJYBdC1Ki9e/cCcM455zgn6bIqz+4a2CuyIs9e1cB+tsayS2AXQtSY0tJSDhw4AEDHjh0tXyPUDKTVHdgrGxFjOttDHn1a81QIIapDeno6NpuNli1bEh8fb3mP3QzsZmB1ZQbjY8eOVbnc0tJSTp48KakYIYSoyDUNA1jeYzcDqbvAbq5u5E+PferUqTRv3pyPPvoIkMAuhBBOFQN7dfXY3aViAlm27ueff6akpIRt27YBwRfYvaZilFINgCVAL2Cw1nqLUmoXkF52yCyt9ZIK5/wdmAgcAyZprc/OGB8hRK1ijojp1KkTYH2P3VMqpmnTpoB/qZiMjAwAYmNjKSwspHXr1h6PD7rADuQD4wDXKddytNYXuTtYKdUUuAy4APgTcAvweGDVFELUlKysLD777DMaNmzIVVddZWnZ1d1j95SKMQN7VXvsubm5nDp1ivj4eLTWrFixgtGjR3s8J+gCu9baBmQppVw3JyilluPotc/QWrsmqQYAy7XWhlJqMfCulRUWQpwdhmEwdepUPvzwQ0pLSwkLC2P48OG0atXKsteo7hx7daRiDh8+DECrVq3o2bMnPXv29HpObRkVM1RrfUwpdR3wEHCry75GgJl6yQHcJp+UUtOB6QAzZszw+olXk2w2G+np6d4PrAVCqS0QWu0Jtrbs3buX9957j4iICGfKYe3atVTo5Lnla1v27NkDQFxcHOnp6c5b7g8fPmzJe2HO7FhaWlpped5eq2JbNm/eDDg+GHyto3l3a2ZmpqW/4zZt2rjd7ldg11qbSan5wI0VdmcDXcoeNwDcXnLWWr8GvFb29OxMoOCn9PT0St/A2iaU2gKh1Z5ga8tPP/0EwKWXXkpMTAyfffYZhYWFPtXRl7acOnWKrKwsoqOjOe+884iIiHD23IuKiix5L8z8ed++falfv365fd27dwccqRVPr1WxLSUlJQB06NDB5zqa3xiOHz9Oy5YtiYiI8L0RfqjyqBilVLRSKqbs6TBgd4VD1gHDyx5fAqzyv3pCiJqyceNGAPr37++coOvgwYOWlW9eOO3YsaMz0FmZY8/Pzyc/P5+YmBgSExPP2O/vxVPzwmlVUlJRUVE0bdoUu91+Vu4+9anHrpT6GugPdAc+ByYqpU4BRcANZcfMBOZprfcppb5SSq0CTgDXVkO9hRDVbNOmTYAjsJt3hx46dMiy8ivm18HaHLvriBjXeWJMrjl2wzDcHuOOP4HdPP7o0aNkZGSUW82pOvgU2LXWYytsesLNMbNdHj8DPBNY1YQQNckM7Oeee65ztkUrA3vFoY5gbY/d04gYcMy6GBcXR0FBAadOnSIhIcGncs2Lp96GOFbUsmVLUlNTycjI4Nxzz63SuVUlNygJIc6QmZlJRkYGiYmJdOrUifbt2wO1s8fubkSMyey1VyUdE0iP3fX86iSBXQhxBrO33q9fP8LDw505disDu9nzbdu2rXNbvXr1iIiIoKCggKKiooDK93RzksmfsewS2IUQtZJrGgYcaYTIyEiOHDkScMA1uVukIiwszNlrDzQd4y0VA/5dQJXALoSolVwvnIJjYQozp5yWlmbJa1S2CLSZZw80HVOVVIyvPfaCggJycnKIjo72Oj9MRRLYhRA1ynWoo8nqIY9mj9wM5CareuzVkYpx7a37OorGJIFdCFFjTp06xc6dO4mMjKR3797O7VZfQK3uHrsvqZiqXjx1nU6gqsxzzLthq5MEdiFEObt378YwDLp27UpMTIxzu5UXUO12+1nrsXtKxQTSY68q1x67YRjs3bvX+dhqEtiFEOWYC09U7OlaGdhzc3MxDIOEhAQiI8vfTmN1jt3KHnsggb1evXokJiZSVFREdnY2M2fOpHXr1sydO7fKZXkjgV0IUU5ly71ZGdgrS8O4bjubo2LORo/d9byMjAzndYw+ffr4VZYnEtiFEOVUFtitzLH7EtgD6bF7myfG5G9gr+pdpyYzsO/cuZPdu3cTHR1Njx49/CrLEwnsQohy3I0vh+rpsVfMr7tuC6TH7m2eGNPZTMUAzjlivvnmGwB69+5NdHS0X2V5IoFdCFGO2WOv2Jtu0qQJsbGxZGdnk5ubG9BrmEG7unrsvqRhoOo99kBGxbiet2jRIqD8cFIrSWAXQpRTWSomLCzMsl67p1SMFT32tWvXAt5TJvHx8cTExFBYWEh+fv4Z+9evX8/TTz/NH/7wB7p06cKWLVuAwAO7OVtmdQV2f1dQEkKEqMoCOzjSMbt27SI9PZ1evXr5/Rq+5NjNelRVYWEhs2c7Jpu9/vrrPR4bFhZG06ZNSU9P5+jRo87rCOC4+3bw4MHOhTUAoqOjueKKKzwOofSk4gdCdc3yKD12IWqh5cuXk5KSwvbt2y0v21NgN1MbVV0ntKLKxrADtGjRAnDMMOmPN954g7S0NJKSkvj973/v9fjKphWYPXs2JSUlXHjhhbz//vts3ryZvLw85s2bV+W7Tk0VA3tSUpJf5XgjPXYhaqFnn32WxYsXk5aWxrp164iNjbWs7MounoJ/syF6eg13PXbXwG632wkP973/mZ+fz2OPPQbAgw8+6NO57iYC2717N59++ilRUVHMmTOHAQMG+FwHT1wD+znnnEODBg0sKbci6bELUQutW7cOgC1btvCvf/3L0rI99djPRmCPiYmhUaNGlJaW+jxaxTAMFi5cSL9+/ZwLWVxxxRU+neuuxz5nzhzsdjuTJ0/2e2ijO66Bvbry6yCBXYhaJyMjg/T0dGJjY4mMjOTZZ59l6dKllpVf2agYqPpsiJXxlIqB08MCfZ1X5d133+WKK65g9+7ddO/enbffftvndImZLzeHMmZkZPDOO+8QFhbGP//5T5/K8FWjRo2c0zRIYBdCOGmtARgyZAh33XUXAO+//74lZRcXF5OXl0dERAT169c/Y7+/C0BX5KnHDlUP7AsXLgTgzjvvJDU1lX79+vlcF/MGIfN6xeLFiykuLiYlJcXym4fCwsKcbZPALoRwMtMwAwYMYNSoUQDs2rXLkrJdA667Hu/ZSMVA1QO7OX/89ddfT1RUVJXqYs5gaQ5lTE1NBeD888+vUjm+uvzyy+nYsSPDhg2rlvJBArsQtY5rYO/WrRvguEXdCp7y62B9YLciFZOdnc3+/fuJiYlxvh9VYc7VsmXLFgzDcAb2vn37VrksXzz33HPs3bu30rZbQQK7ELWIYRjOVIxSitatWxMfH09WVpYlC0B7GhED1gR2wzA83nkKpwO7L0Mef/nlF8ARiCvOFOmLZs2a0bx5c/Ly8jh48GC1B3bA7+GSvvL6LiilGgBLgF7AYOAAsLDs3BLgeq31gQrn5ALry57eqrVOtbLSQtRVBw4c4OjRozRt2pQOHToQFhZG165d+eWXX9i1axcDBw4MqHxvPXbXi6eGYfgVoAoKCiguLiYmJoa4uDi3x1Slx24G9kBy1n369GHp0qUsXbqUzMxMEhMT6dChg9/l1TRfeuz5wDhgftlzGzBJaz0ceAJwd9n4V631RWU/EtSFsIhrGsYMqlamYzyNiAHHLfhxcXEUFRVx6tQpv17DWxoGqhbYK67P6g8zHfPxxx87n1dl/Hyw8dpj11rbgCyllPm8EDhctrsYsLs5rbNSagWwFbi97BwhRIDMNIzrDTNdu3YFrA3snhZqbtq0KYcOHeLo0aMkJCRU+TW8pWHg9E1KVQnsVRkJU5EZ2L///nugetMwZ4Pfd54qpaKBB4Eb3ezuorU+ppS6H7gFeMrN+dOB6QAzZsxg9OjR/lal2tlsNtLT02u6GpYIpbZAaLXHl7aYgb1du3bOY83b/Ddv3hzwe7F//34AIiMjKy2rQYMGHDp0iO3bt1c6AsVTW8wPoHr16lV6jLlc3OHDhz22yWazsXXrVgDnnC/+MD9ISktLgfLvbzD/jbVp08bt9kCmFHgNeElrfcY4K621Och1PjDT3cla69fKygCwftE/C6Wnp1f6BtY2odQWCK32+NKWkydPAo4epXnsoEGDAMeMi4G+F2Zg69ixY6VltWrVii1bthAeHl7pMZ7aYl7gbN68eaXHtGzZkvDwcE6cOEGzZs0qnbM8NTWV4uJiOnfuHNCY84qLcQwfPtxZt9r4N+ZXEkkp9QCwV2s9z82+ekqpiLKnw4DdAdRPCOHC3Tzjrjn2QBdG9jUVA/6PjPElFRMREeG8I9RssztW5NcB6tev75ySGGp/KsanwK6U+hoYA7yulLoPuA8YqZT6QSn1eNkxM5VSnYCuwLqyHPtY4LnqqboQdY+7BZqbNGlC48aNycvL8/mGnsp4u3hqvh74H9i93Zxk8uUC6qpVqwBrpr818+xt2rTxWrdg51MqRms9tsKmR9wcM9vl6XmBVEoIcaZTp05RUFBATEzMGRctu3Xrxs8//8zOnTv9XgQCzk6P3arAbhgG//vf/wC49NJL/aqLqz59+rBo0aJa31sHuUFJiFrD0zqeVo2MOZuB3dudl94C+8aNG0lPT6d169acd17gfcnf/e53hIWF+TwrZDCT+diFqCXcpWFMZp490DljgiXHDt4D+xdffAGcDsiBGjZsGAUFBdWyuPTZJoFdiFrCl8D+66+/+l2+3W73KegGOsNjVVMxlU0r8OWXXwKOwG4Vc0rd2k5SMUJY6OTJk/Tr14+7777b8rI9BXbz9vdAxlufPHkSu91O/fr1Pc65UtWLp0eOHHEeaxiGM1AHkopJS0tjw4YNxMfHM3LkSJ/qUZdIj10IC61evZrNmzezY8cO7rnnHkuXPvMU2ANZJ7SkpIS1a9c6e9DeetJVScVkZGTQq1cvTp06xZVXXklmZiZr1qwhIiKCTp06eTzXU2A3L5qOHj260vlm6jLpsQthod27HbdtFBcXO1MFVvElsB85cqRKY9k3bNjAoEGDGDp0KGPGjAE859fhzInAPHnsscfIzs7GZrMxd+5cli5dSpMmTXjvvffo2LGjx3PNNpkrG7latGgRYG0aJpRIj10IC5mBHeDTTz9l0qRJlpVt3qhj3rjjKi4ujsTERHJzc8nOzvZpHPaCBQuYMGGC827TtLQ0wHtgj4uLo169epw6dYrc3Fy3Ky0BHDx4kNdee42wsDC++uorVq5cSUFBAffcc4+z1++JecPQwYMHKSkpcaaHSktLWbFiBQAXX3yx13LqIumxC2Eh11Ep33zzjXMKACt46rFD1dMxL7/8MqWlpdxwww3s3buXoUOHAtC2bVuv5/qSjnn00UcpLi7m6quvJiUlhVmzZvH000/7FNTBMZdMmzZtsNlsHDx40Lk9NTWV7OxsOnToUKun1q1OEtiFsJDZY2/RogVFRUWWpmOsDOx2u501a9YA8PDDD9OpUye+//573n//fR577DGv53sL7Onp6bz99tuEh4fzwAMPeC2vMub4fNcPzOXLlwOO+VyEexLYhbBIaWkpe/fuBeD2228HHOkYq1gZ2Ldt28bJkydp3769c4KrmJgYJk2aROvWrb2eb+bZKxvy+Oqrr1JSUsJVV11F9+7dvZZXGXc3XpmB/cILL/S73FAngV0Iixw8eBCbzUbr1q2ZPHky4EjHFBUVWVK+lYH9p59+AmDIkCF+1cWsg7sLm0ePHmXu3LkAzJzpdnJXn1W88cowDGd+XQJ75SSwC2ERMw3TpUsXWrduTa9evSgsLGTDhg0Bl11YWEheXh5RUVGVDqGsSmBfvXo1AOeff75f9TGnyDXnQnf1wgsvUFBQQEpKCklJSX6Vb6qYitm2bRvHjh2jdevWdO7cOaCyQ5kEdiEsYgZ2MxiZFyPN3nEgzN5606ZNK7193p/A7m+P3Zwoa/PmzeW279mzh+effx4IvLcOZwZ21zRMdS8IXZtJYBfCImbw6dKlC3C6N2xOLRsIb2kY8D2wHzt2jF9//ZXY2Fi/l5Mze+KpqaeXNH733Xfp378/x48fZ9CgQQwbNsyvsl117tyZsLAw9u3bR3FxseTXfSSBXQiLuKZi4HSPfdWqVQEvgGFlYP/5558Bx7qp/k541aFDBxISEsjMzOTIkSMsXryYqVOnkpeXx4QJE3jjjTcs6VHHxMTQoUMH7HY7u3btcq5JetFFFwVcdiiTwC6ERSoG9i5dutCsWTOOHDnCnj17Airb3cpJFfka2M1vEP6mYQDCw8Od6ZjU1FQ+++wzAO644w7mzZtn6UIVZjrm9ddf59ixY3Tv3t15UVW4J4FdCAuUlpY6g7cZ2MPCwizLs1e1x+7pG4I5z8qoUaMCqpNrYDd70ldddZXluW8ziL/2mmOJ5CuvvFLy615IYBfCAmlpaRQXF9OyZctyqxtZlWf3JbAnJCQQHx9PYWEhubm5bo/Zt28fqamp1K9fP+B0hhnYv/jiC/bu3UuDBg1ITk4OqEx3zB57QUEB4AjswjMJ7EJYwEzDVByC55pn90dqairr1q3zKbCD93TMwoULAUhJSQl4QQnzAuqyZcsAGDFiBBEREZ5O8Ytr2qVz585+X/CtSySwC2EBcwKtijMWJicnEx0dzdatW52LWPhq+fLlKKUYNGgQX331FRB4YP/8888BuPzyy6tUF3cqrg0aaGqnMmaPHSQN4ysJ7EJY4PDhwwBn3I4fExNDr169gKotW7d9+3auuOIKiouLMQzDOSe5u5kdXXkK7MeOHePHH38kMjKSlJQUn+tSmUaNGjmnI4DqC+wdO3YkKioKkDSMr7xO26uUagAsAXoBg7XWW5RSE4DbgQJgitY6rcI5fwcmAseASVpr66a4EyIIVRbYwTH97KZNmzh06BADBgzwWlZBQQHjxo0jOzubyy+/nMGDB/Ovf/0LOL34RGU8BfavvvoKu93OyJEjva5e5KukpCTS09Np1aqV825Uq0VGRvKf//yH3377rVpy+KHIl/nY84FxwBwApVQkcAdwITAAuA+4yTxYKdUUuAy4APgTcAvwuKW1FiLIeAvsAIcOHfKprB9//JF9+/bRrVs3PvroI+Lj42nTpg179uxxjripjOuCG64Mw+D9998H4IorrvCpHr5ISkpi0aJFjBo1qlpTJLfddlu1lR2KvAZ2rbUNyFJKmZu6Atu11sXAKqXUkxVOGQAs11obSqnFwLtWVliIYGRlYDcvRl5++eXEx8cDOCcV86ayHvv8+fP57rvvaNCgARMmTPCpLF/89a9/Ze/evdxzzz2WlSkC588KSo0A19RKxcvgrvtzAM/LsQgRAqwM7D/88APgGGVSVe4Ce05ODn/7298AmD17ttc8fVW0b9+eTz75xLLyhDX8CezZgOtaWKVu9pvfFxsAx90VopSaDkwHmDFjBqNHj/ajKmeHzWYLaPX3YBJKbYHgaI/dbndOX2u328+oT2xsLAB79+71WFebzcavv/7KunXriIiI4Jxzzqly28LDHeMhDh065Dz33//+tzM/PW7cuLPyfgXD78UqwdwW14vXrvwJ7LuAnkqpaEABmyvsX4cjBw9wCeB2AK/W+jXgtbKngU2kUc3S09MrfQNrm1BqC1StPaWlpeTk5Hhd07OqsrKysNlsNGrUyG0O/NxzzwUcvWhPdU1PT2f79u2UlpYyaNAgvxaoMF/r4MGDtG7dGrvdzvz58wF46623nN8eqlso/Z3Vxrb4NNxRKfU1MAZ4HbgWeBb4AXi07Ael1EylVCetdRbwlVJqFY6Lpy9ZX20hqu5vf/sbrVq1cuawreIpDQOne1WHDx92LhxdmUDSMOAYGti4cWOOHDnCgQMH2LZtG6dOnaJjx44Bz40uag+feuxa67FuNs+rcMxsl8fPAM8EVjUhrLVo0SKKi4uZPn06mzdvJi4uzpJyvQX2mJgYWrRoQWZmJhkZGR4Xi3a9i9MfYWFhDB48mK+//po1a9aQl5cHwMCBA/0qT9ROcoOSqBNycnLYt28f4Lj935cFm33lLbCDbxdQc3JyWL9+PZGRkX6vbAQwePBgwDE977p16wAJ7HWNBHZRJ5gr/TRt2hSAJ554gu3bt1tStlWBfe7cudjtdi688MJyE4lV1aBBgwBHYF+7di0ggb2ukcAu6oRNmzYBjrHhU6dOxWazOW/YCZQVgb2oqIjXX38dcMxpHggziG/YsIHU1FTCw8M577zzAipT1C4S2EWdYAb2/v37O++8NNf9DJQVgf2DDz4gMzOTvn37BjyPS8OGDenZsyfFxcWUlJTQp08f6tWrF1CZonaRwC7qBNfAbq4ctHbtWkpKSgIuO9DAXlpaypw5cwC4++67Lbk130zHgKRh6iIJ7CLk2Ww2tmzZAjjmNmnevDnnnHMO+fn55RZj9ldVArs5va+rxx9/nF9//ZW2bdty1VVXBVwfOH0BFfBp4jERWiSwi5C3Y8cOiouL6dy5M/XrO26aNnvt5sLO/iotLXVOqduqVatKj6usx/7iiy9y3333ERYWxv33309kpD/3DJ7JNbBLj73ukcAuQp5rGsZkBnZ/8+yff/45Xbp0Yd68edjtdpo3b+6cM9ydVq1aER4ezm+//UZxcTEAS5YsYcaMGQC88sorjB3r7nYR//Tu3ZsOHTrQrl07evfubVm5onaQwC5CntWBvbCwkFtvvZU9e/Ywbdo0wHMaBhxzirdq1QrDMJypmwULFgDwj3/8g+nTp1e5Ht5eb926daxfv97jB44ITRLYRdAwDIOnnnrK8tkCf/nlF6B8YE9KSiI+Pp7du3c71xP11euvv+7MlRcWFgLeAzs4ZkIEnDdKbdu2DYCLL764Sq/vq2bNmnldSk+EJgnsImi88sor3HnnnVx//fWWjFYxmQHUNSURGRnpvKhYlTx7fn4+s2bNAuDJJ590zpfuS2Dv06cPcPqDxl29hLCCBHYRFHbs2ME//vEPwBE8t27dakm5eXl5ZGRkEB0d7ewxm/xJx7z44otkZmailOKOO+7g+eefJzIykuHDh3s917xJaMOGDWRlZZGVlUVCQoLHuWOE8IcEdlHjbDYb1157LQUFBUREONZtMec4CZS5gHTnzp2dZZvMQOvrh8ixY8ecc8w88sgjhIWFccMNN5Cbm+vTCkfm623cuNE5nUGvXr2qdUk5UTdJYBc1bu7cuWzYsIGOHTty7733AjjnOAmUGdi7det2xr6uXbsCjknBfPHQQw+RnZ3NxRdfzCWXXOLcbi6k4U3fvn2JiIhg27ZtaK0BR2AXwmoS2EWNMgyD559/HoD77ruPUaNGAdb32M0g7qpz584A7NmzB7vd7rGcHTt28NJLLxEeHs7TTz/tVy87Li6Onj17YrfbmTfPMeu15NdFdZDALmrU2rVr0VrTuHFjrrnmGs477zzCw8NJTU2loKAg4PI9BfbExERatmxJUVGR2ztCXT388MOUlpYybdo0+vbt63d9zHSM+Y1EeuyiOkhgFzXqhRdeAODGG28kLi6OevXq0bt3b0pLS9m4cWPA5XsK7IBzKTtP6Zjc3FznmHMzVeQvc+k6kwR2UR0ksIsak5mZySeffEJ4eDh/+ctfnNvNYYhWpGN27twJuM+xg2+BfcGCBRQWFjJ8+PAzRtZUlev0ufXq1Qu4PCHckcAuasyCBQsoLi5m7NixdOzY0bndqsCenZ3N0aNHiY+Pr3ScuS+B/aOPPgLgT3/6U0D1gfI3SfXs2ZPwcPkvKKwnf1WixixduhSA8ePHl9tuVWA30zBdunSp9GKnmaIxj60oMzOTJUuWEBkZyZVXXhlQfQDq16/v/DCRNIyoLhLYhc/M2+f9dfToUT744ANKSkqw2+388MMPAIwcObLccX379iUmJoadO3eSk5Pj9+t5y6+D9x67OclXSkoKTZo08bsursx0jIyIEdVFArvwyeOPP058fDwrV6706/zc3FxGjhzJ5MmTeeGFF9i6dStZWVm0adPGGVxN0dHR9OzZEzh9270/zPy6p8DubcijuXyeFWkY07/+9S+uvfZabrjhBsvKFMKVX5M/K6WGAI+XPW0NfKW1vr1sX0dgHWDezjdBa121WZZEUDlx4gSPPfYYhmGwYMECLrjggiqdb7fbmTx5snNRi1dffdWZWx4xYoTbNEnPnj3ZtGkT27dvd976X1Webk4yNWjQgGbNmpGVlUVGRgZt2rRx7luzZg1aaxo1asRll13mVx3c6d+/Px988IFl5QlRkV+BXWu9GrgIQCn1DvB5hUOWa60DT0iKoPDyyy+Tl5cH+LcwxWOPPcbChQtp2LAhUVFR7Nixg2eeeQY4Mw1jMvPP5q333pgfOjk5ObRs2ZIWLVo4e/ueeuzgSMdkZWWxe/fucoH9ueeeA+DPf/6zc7IvIWqDgJZrUUpFAwOBit8phyqlfgR+BP6ttTYCeR1RcwoKCnj22Wedz9evX09xcTHR0dE+nW8YBi+99BIAH374IT/++COzZ89m//79gKPH7k5VUzE//fQTf/zjH93u8xbYu3btyurVq9m1axcXXnghAOnp6Xz66adERERwyy23+FQHIYJFoDn2i4HvtdauyckMoAswHGgO/CHA1xA16M033yQrK4vk5GS6d+9OUVGRc9pZX2zbto2MjAxatmxJSkoKN954o3Nfp06dyg1zdGUGdl977OY3iR49ejB69GiSkpJo0aIFv//972nevLnHc91dQH3ppZcoKSnh97//vYw1F7VOoAssTgDedt2gtS4CigCUUp8Bg4H/VjxRKTUdmA4wY8YMRo8eHWBVqo/NZiM9Pb2mq2GJqrRlwYIFzql0p0+fzvfff8+vv/7KN99849P84wDz588H4Pzzz+fw4cPExsYydOhQVq1axcCBAyutS1xcHJGRkezfv5/du3cTFxfnsT2rVq0CYOrUqUyaNKncMeaKRZVp3Lgx4FhpKT09HZvNxiuvvAI4Lpqerd99Xf07C3bB3BbX1GE5hmH49ZOcnByVnJy8JTk5ObzC9kSXx48nJydf50N5QS0tLa2mq2AZX9vywgsvGIABGLfeeqtht9uNl19+2QCMa6+91ufXGzt2rAEY7777rnPbmjVrjCFDhhgbN270eG6PHj0MwONxZnt69+5tAMbatWt9rptp586dBmA0atTIsNlsxvLlyw3A6Natm2G326tcnr/q4t9ZbRDkbXEbUwNJxVwMLDXTMEqpZ5VSccAFSqn1ZTn2NsBHAbyGqCGPPPII4Fgl6LnnniMsLMy58r2vF1CLi4tZvnw5UH75t4EDB/LTTz+VuwvTHV/z7AUFBezYsYOIiAjnKkVV0bVrV7p06cKJEyf4+eefWbx4MQBjx46VudJFreR3KkZrvQhY5PL8trKH5baL2icvL4/MzEyio6O5/fbbncGtT58+xMfHs2fPHrKysryup7l69WpOnTpF7969fU7duOrZsycLFizwmmffsmULpaWl9O7du9KUjTfjxo3jueee46uvvnIG9pSUFL/KEqKmyQ1K4gzmYsudOnUqN5eJ6zqhviyE8d133wH+L9bs65BHcxZIb98APDGnNfjwww/ZtGkT8fHxPi13J0QwksAuzrB3714AzjnnnDP2DRo0CPAtHbNkyRIAvy+M+zoyZtOmTcCZU+JWxfDhw0lISODQoUOAYximrysjCRFsJLCLM3gK7L7m2U+cOMG6deuIiopyjg2vqu7duwOOqQFsNlulx1nRY4+Oji73AXTppZf6XZYQNU0CuziDGdjNeVRcmT32tWvXelxObtmyZdjtdoYMGUJCQoJf9ahXrx4dO3akpKSk0tkXS0tL2bx5MxBYjx0ceXaT5NdFbSaBXZxhz549gPsee+vWrWnXrh0nT55kx44dlZYRaH7dVHEpOVeGYfD222+Tn59P+/btnePR/TV+/Hjq16/PgAED3H6oCVFbSGAXZ/CUigHf0jGB5tdN5gRgP/30U7nthw8f5o9//CMPPvggAH/9618Deh2AFi1asH37dr799tuAyxKiJklgF+XY7fZyo2Lc8RbYzbtFGzRogFIqoPqcf/75gGPoJDjGrN9999107tyZBQsWkJiYyLx587j77rsDeh1T69atadiwoSVlCVFTAp1SQNSQ3NxcHn74YbKzswkLC2PixIkBpz3A0RMuLi6mefPmlebGzTz7mjVr3O43e+sjR44kMjKwP7HzzjuP6Ohotm7dSnZ2NrNmzeLJJ58E4Morr+SOO+7we1pfIUKVBPZa6oUXXnAGOICPP/6Y7du3Vz53hI+8pWHAEWwjIyPZsmULubm5JCYmOvcVFxezcOFCIPD8OkBsbCzJycmsXr2alStX8u677wKwaNEiLr300qCdw0OImiSpmFrIMAznyj533303o0aNIjc3lxkzZvhcRm5uLqmpqSxfvrzckneeRsSY4uLi6N+/P3a7Ha21s06zZs2iZcuWfPXVVwCMGTOmym1zx+yRP/zww2RlZdGzZ08uueQSS8oWIhRJYK+FNmzYwPbt22nWrBmPPPII7777LomJiXz++ed89tlnXs/ftGkTzZo1IykpiYsuuoiBAwdy/PhxwLceO5yZZ9+0aRP33nsvJ06cICkpiVdfffWMJe/8ZebZzcWtJ0+eLHO4COGBBPZayOytX3311URFRdGmTRtmz54NwO23345heF7X5JNPPqGoqIhWrVrRqlUrUlNTGTt2LLm5uR6HOroye9Fm7/yTTz4B4KabbuKXX35h+vTp/jewktcyXXvttZaVLUQoksBey5SUlDB37lzA0XM13XzzzTRp0oSDBw9y8OBBj2V8//33gGMRjTVr1tChQwfWrFnD6NGj2bBhA+A9sF922WXUr1+fVatWsXHjRmdgv+aaa/xuW2Vat25Nhw4dALjoootk4QshvJDAXst8++23HDlyhO7du5cbShgeHu68mccMzu7k5OSgtSYqKophw4bRrl07vv/+e9q2bcuaNWucNx15C+wJCQlcf/31gKOXvnfvXlq2bFnlha59ZV6InTZtWrWUL0QokcBey5jrj06ZMuWMPLMZ2M25U9xZvXo1drudwYMHO4czdu7cmY0bNzpvqU9ISPBpml1zLVAz933llVcSERFRtQb56Mknn2TJkiWShhHCBxLYg9Ty5cv5+OOPy21bv349S5YsISEhgZtvvvmMc3zpsa9cuRI4cyhi06ZN+eKLL3j//ff55JNPyk3XW5muXbuWmyxr4sSJXs/xV8OGDbn44ovloqkQPpBx7EEoJyeH8ePHk5eXR4MGDZwTUj3++OOAI5/eqFGjM84zJ8HyJbCPGjXqjH3h4eFnrBfqza233srixYtp3bo1Q4cOrdK5QojqIT32IPTOO++Ql5cHwG233UZxcTE7duzgs88+c65q5E7nzp1JTEwkIyOD33777Yz96enp7N69m4SEBAYOHGhJXVNSUnjjjTeYP3++T718IUT1kx57NdBaO0eedOjQgQkTJvice7bb7bzwwguAI9e9c+dObrnlFlauXIlhGEydOrXS/Hd4eDjnnnsuK1asYOPGjWdMPTt//nwALrzwQqKiovxtXjlhYWFyQVOIICOB3WI2m42UlBSOHj3q3Ka1Lnf7vyeLFy9m9+7ddOjQgZdffpmxY8fyxhtvAI6FJ+6//36P55uBfcOGDeUC+4svvujs6V955ZVVbZYQohaR784W++677zh69Cjt2rXjtttuIzIykqeeeoo333zTp/PN3vott9xCSkoKkydPJiIigpkzZ7Jp0yavc8G4Gxnz4osvMmPGDAzD4K677mLKlCl+tk4IUSsYhhEMP0EtLS3N52OnTJliAMZDDz1kGIZhvP766wZgREZGGuvXr/d4bm5urhEVFWWEh4cbWVlZhmEYRmlpqXHq1CmfXz81NdUAjE6dOjnPb9eunQEYr7zySpXaUhuEUnukLcEpyNviNqb6lYpRSnUE1gFbyzZN0Fpnle2LAF4HugLrtda3BfbRU3sUFRWxYMECAK666ioAbrzxRlavXs1bb73Ff//7X2eP2p0VK1Zgs9kYNGgQTZs2BRx58/j4eJ/r0KNHD+Li4ti3bx87d+7k8OHDHDp0iI4dO/LnP/+ZjIyMAFoohKgNAknFLNdaX1T2k+WyfTxwWGs9DKinlKozk2UvXryYkydP0r9/f+dCzHB6/cxffvnF4/lWLCcXGRnJn/70JwAeeeQRPvjgA8Axv4qMWhGibgjkf/pQpdSPSqnHlFKud42cD5hriy0G6szg5nnz5gGne+umpKQkAOeiy5Wxajm5e++9l8jISD766CPnTU5VHZ8uhKi9/B0VkwF0AfJxpF3+APy3bF8j4GTZ4xzA7QrDSqnpwHSAGTNmBBzMqpPNZvO6oENJSQlffPEFAMOHDy93fGxsLLGxsRw6dIitW7e6XXotMzOTLVu2EBcXR7t27QJaQCIqKoqrr76aDz74gFOnTtGvXz8SExNJT0/3qS21SSi1R9oSnIK5LZUNpvArsGuti4AiAKXUZ8BgTgf2bKB+2eMGwPFKyngNeK3sqed5Zi1kt9ud09r6OrY8PT3d62iULVu2cOrUKc455xzn/OGu+vbty7p16zh27Bi9e/c+Y/+yZcsAx+yF3ibg8sWsWbOYN28eNpuN66+/3ll/X9pSm4RSe6Qtwak2tsWvVIxSKtHl6TBgt8vznwAzSXwJsMq/qllv8eLF1KtXj8jISKKjo7njjju8zl3uK/M2fvO2/orMdExleXYzDWPFcnIA7du354knnmDEiBFcd911lpQphKgd/M2xX6CUWq+U+hFoA3yklHq1bN//gPZl+wq11qutqGigcnJymDZtGoWFhYSFhWG323nmmWd46623LCnfDOyVjXrp168f4D7PfuLECb755hsg8Py6q9tvv52lS5e6nVdGCBG6/E3FLAIWVdh8U9m+EmBqYNWy3syZMzl8+DCDBg1i1apVfPDBB0ydOpUZM2YwYMAAZ4/am+PHj7N+/Xp69OhBu3btnNu9BfbKLqAePHiQlJQUMjMz6d69O3369PGneUIIcVplA9zP8k+1WrlypfMmodTUVOf2G264wQCMc8891+P5aWlpRlpamjFixAgjPDzcwHFNwOjWrZuxePFio7S01EhMTDQA47fffnNbxrFjxwzAiIuLM0pKSgzDMIzs7Gyjbdu2BmD07t3bOHjwoHWN9tCWUBJK7ZG2BKcgb4vbmFonBja/9NJLANx5553lesTPP/88iYmJbNy4kbS0NI9lvPvuuyxbtozw8HAGDBhAYmIiO3fuZNq0aezcuZPc3FzatGlDixYt3J7fuHFj2rZtS0FBgXNd0cWLF5OWlkbfvn1ZuXJluW8AQgjhr5AL7DabjdWrV7Nq1Srn86+//hqAG264odyx8fHxDBs2DDg9KqUyZnnvvPMOa9eu5fjx43Tu3Jn09HT+85//AJVfODVVTMcsX74ccCxK7W4IpBBC+CMkAvvu3buZNWsWY8aMoWHDhpx//vlccMEF/Pjjj6xcuZLs7Gx69uxJ165dzzh3xIgRAPzwww+Vlm+32/npp58AnGt6RkZGMnXqVMAR7KHy/LrJvIBqLiW3YsUKwDGNrhBCWKXWB3a73c6IESO49957WbJkCfn5+TRp0gSAp556ynnT0GWXXeb2fDOwe+qx79q1i+zsbNq0aUP79u2d26+77jrCwsKcQya9BfYxY8YA8PHHH3PkyBG2bt1KbGwsAwYM8LG1QgjhXa0P7GvXriUtLY1WrVoxb948MjIy2Lp1KzExMXzxxRd8+OGHQOWBvX///jRs2JB9+/Zx4MABt8eYPeyhQ4eWW3Ozffv25ZaY8xbYhw8fTocOHTh48CCPPvooAEOGDCE6Otr3BgshhBe1PrB/+eWXgGPxiIkTJ9KyZUtatGjBpEmTMAyDrKwsmjVrxqBBg9yeHxERwfDhw4HKe+3r168HcLump5mOadq0KW3btvVY1/DwcCZPngw45kgHScMIIaxX6wO7mWr53e9+V277bbfd5nw8fvx4j9MHeEvHuPbYK/rjH//I5MmTefjhh8v15itj3gVqt9sBCexCCOvV6sC+f/9+tmzZQmJi4hkBsk+fPowdOxaAiRMneizHDOxLly515sv37dvHW2+9xe7du9m/fz/16tVzXvx0FRsby3vvvcdf/vIXn+rctWtX51wy0dHRlX6TEEIIf9XqwG6mYS699FK3eeqPPvqIFStWcOmll3osp2/fvrRt25a0tDS+/PJLSktLGTduHNOmTXNO2DVo0CAiI61ZItZM3wwZMoS4uDhLyhRCCFOtXsy6sjSMqUGDBs5x6p6Eh4dz5513ctttt/HII4+QnZ3N9u3biYyMpLi4GDg9zNEK119/PTk5OV4/cIQQwh9hZuqhhlW5Ejk5OTRr1ozS0lKOHDniHOLor/z8fDp16sSRI0dITEwkNzeXt99+m6ZNm/Lll18ye/bskJhMqzZOQepJKLVH2hKcgrwtbi/s1doee1ZWFsOHD8cwjICDOjjuQr3zzju56667yM3NpXv37kyaNInIyEjOPffckAjqQoi6odbm2Lt06cJ3333Ht99+6/1gH/3lL39xfkg8/PDDluXUhRDibKr1kcvXVZB8kZCQwJdffklqaioTJkywrFwhhDiban1gt9qQIUMYMmRITVdDCCH8VmtTMUIIIdyTwC6EECFGArsQQoQYCexCCBFiJLALIUSIkcAuhBAhRgK7EEKEmGCZK0YIIYRFpMcuhBAhRgK7EEKEGAnsQggRYiSwCyFEiJHALoQQIUYCuxBChBgJ7EIIEWIksLtQStUr+9ftOoK1iVIqvuzfUGhLh7J/Q6Etg0KhHQBKqfY1XQerKKVCau1LuUEJUEqNAf4MHAae0FofruEq+U0pdQUwCTgEzKnlbYkH/gO0A67UWttquEp+U0r1A54Dfgbu11oX13CV/KaUuhSYARQBc4HFWuu8mq2Vf5RSFwL/AI4CLwJbtdaFNVurwEmP3eFPwBvAFuBmpdSwGq6PX5RS44HrgSeAbODusu21soeotc4HioFEHO2qtW0BhgGPaa1nAufUdGX8pZSKAG4GXgMeAhRQrxb/Xq4C3sbxATUW+GPNVscadXJpvLKe4FXASiATOAisBZaVbU9WSu2pDb3dsrZcAywCNgA3aq2zlFI7gY+VUs211kdqtJI+cvm9rNBa7ykLFruBz4C/KaUWa60P1mglfeT6N6a13gXkA5cqpWYCGUqpdcCXWus9NVlPX5S15WpgOZAHpOL4dnsA6A/EAVE4PoSDmlIqDrgfx7eM5cA+IAPH//9CYJxSqofWekcNVjNgda7HrpS6BvgBiAf2aq1PAi2BIWVfjzcCsUCDGqukj1zaEgsc0VofLgvq4Th6uftqUVA32xKH44MWrbUB9MLxu/gMuEkp1a6m6uirCm3ZX7Y5HmgF3An8FUcaY1wNVK9KKrZFa50JfI8j3bcRRwrjz8AtNVVHX5X97czF0ZlbXbY5DOgEGMA2HH97XWqkghaqU4FdKVUfmAg8guOP82KlVFPgZeBGpVQ9rfUWoAPQscYq6gM3bblIKdUDQGttxxFISsqObR/MX5UrtGUpcKFSqnfZ7uU4vomcwhFM/lZ2TlD+7bppywilVGvgvzh6te201jk4Ar75+wnK342bv7FRSqmuWusfgO+AF7XWk4D/AdFKqfBgbUuZSOALHN/Mb1VKnQ98A5wP9NZaH8PRSYqD4P29+CLkL56WXbm/E/gKWAUMB24HooEvgeuAC4HpOH7xP+LI5/5Xa/2/mqhzZby05Qscbblca71fKTUNxx9sDtAEuCWYLnD52JYxwE3ARcARHF//T2mt76uBKlfKx7+xUTjakYSjZzgW2K21fqgGqlwpH38vKTi+bbTCERhnACe01n+riTpXxqUtX+C4fta27Hk6js7CVGA20BeoD+wAxuNIBb5RA1W2TFD2eqyilGoLPIUjF9gSeE9r/TUwBxihtX4SeA/4j9b6CRx/yDcBm4MwqHtry1M4LgI9UXZKexyBfZfWekqQBXVf2vIe8CDwJPCW1vpqrfUdQRjUffkbexfHaKtPcaQCBgE/BWFQr8rv5S1gV9njtUEY1F3b0gZ4SWutcXRyirXWH5btHwO8jyPVdyGwrrYHdQjRwK6UGu7yNaqh1voprfW7QKJS6l9a629x5NYAngXilVKJZV8xp2itnzn7tXavim15gbKv9zi+Kg/RWr98lqtcqSq25TkcvSi01h+UnR80f69+tCVaKVVfa70N+Ect/73UA2K11nNxfEN8vgaq7ZaHtjRQSt0IzAIGAmitFwM9yo7bAvwtmNoSiKD5j2IFpVSCUmoJjnzgWBwXdlYqpW4qO+RH4DKlVEOtdalSajjwOY6RF3kAWuuSM0s++wJoy14ArfWPWuvss1/zMwXyeykb8gg4rx3UqADasqfsQj1a69IaqPoZAvy9nAIIlvH4PrRlBXBD2b8rlVIPlB1/uOzYoPm9WCHkcuxKqWQcN7QMxHHDQcOyf/fjCN6ncPRmtwKv4/ia/9+aqKs30hZpS3WrY20pwvHBtBpogeOC6bc1UNVqF3KB3aSU+j8cub8PlFKtcHyt3w3cBnyotf6tJutXFdKW4CRtCU5e2vJ+bRkCHIiQSsVAuSFKH+IYatZca52BYyz0pziGMuYGU762MtKW4CRtCU4+tiWvNg9j9FXI9tgBlFK3Ap2BE8AeYKfWem3N1so/0pbgJG0JTqHUFn8E/aewP1x6F0k4xtzu1Vp/UBt/sdKW4CRtCU6h1JZAhHqP/Y/A/7TWRTVdl0BJW4KTtCU4hVJb/BHSgV0IIeqikEzFCCFEXSaBXQghQowEdiGECDES2IUQIsRIYBdCiBBTJ5fGE3WDUqojjqXPwLGA9CNl29/EMSEUWmu/7kJUSvXCsQjFD2WzgqKUegeYAgwomyJWiBohgV3UFVOVUo/imHJ2ogXl9QIeKHv8gwXlCWEZGccuQpZLj30vcA4wEsf6li/hmKq1DY505L9xrNvZGNDADK31VqXUgziC9xs4Vj9qiGO90nWc/iZgGoFjRZ4pOBZwmFBW9p+01j9WSwOFqITk2EVdsB1YgyP9cgOOqVuzy/Zdj2NNz804AvwAYKFSKsrl/GE4FjFpgGMptSwcC7SAYy3Ta3Asd2c6H8cUt21xrDAkxFklgV3UFW/h6EUPxbGEoGls2b93aK3/D1iIY/Kobi7HPK21fg5Hz79j2SITq8r2bdFaf1xhKtgHtdaP4pj/u6PlLRHCCwnsoq74GCgF0oAlbvYbFf51dbzs3xJO/5/xlMN0PT6iatUUInAS2EWdULYs3Q3ATRWW2Puq7N+ny6Z6vZyyaV69FHmi7N9hSqmrlVJxllZYiADIqBhRZ2it57nZ/A6Oi6h/xnFxdR2Oi6c2pZSn4lbiWF9zeNl57SytrBABkFExQggRYiQVI4QQIUYCuxBChBgJ7EIIEWIksAshRIiRwC6EECFGArsQQoQYCexCCBFiJLALIUSI+X93wZXwVh9NsAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGvCAYAAACAW3X1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1V0lEQVR4nO3deVxU5f4H8M+wbyoCioqIoeKalrsCarljLmlYNy1zybJVs1v92tQy77Uyb7eszK00Lc2lMlHUFLdySdHcFUVEAUERkX2Z+f0x9zydgRmYM8ycGeDzfr16dWbmzDnPHJH5+H2Wo9HpdDoQEREROQgnezeAiIiISI7hhIiIiBwKwwkRERE5FIYTIiIicigMJ0RERORQGE6IiIjIoTCcEBERkUNhOCEiIiKHwnBSDWi1WiQmJkKr1dq7KdUCr5f5eK2U4fVShtfLfLxWhhhOiIiIyKEwnBAREZFDYTghIiIih8JwQkRERA6F4YSIiIgcCsMJERERORSGEyIiInIoDCdERETkUBhOiIiIyKEwnBAREZFDYTghIiIih8JwQkRERA6F4YSIiIgcCsMJERERORRF4aSoqAhz5sxBVFQU+vbti6lTpyIhIUG8/s0332DAgAF48MEH8emnn0Kn05k81ubNm8Vx5syZg+LiYss/RQ2TkZEBV1dX5OXloaSkBHXq1MH169fF682bN4dGo4FGo4GXlxc6dOiAxYsX27HFRETkKOLj47FmzRqUlJTYuykWUxROSktLERQUhBUrVmDXrl3o06cPZs6cCQDYv38/1q9fj2+++Qbr1q3D/v378csvvxg9TkJCAhYuXIiPP/4YW7ZsQUpKCpYtW1b1T1ND/PHHH7jvvvvg5eWFo0ePws/PD0FBQQb7vPfee0hNTcVff/2FUaNG4dlnn8XatWvt1GL7KyoqsncTiIjs7tatW+jduzfGjRuHBQsW2Ls5FlMUTjw9PTFlyhQEBgbC2dkZjz76KFJSUpCVlYWYmBg88sgjaNq0KQICAjB+/Hhs3brV6HG2bduGgQMHol27dvDx8cGUKVNM7gvov3hycnIM/isoKIBWq62R/x04cAC9e/eGVqvFvn370Lt3bwAQrwOAj48PGjZsiNDQULz33nto1aoVNm3aBK1Wi9deew1hYWHw8vJCaGgo3n77bRQWFor3x8fH44EHHkCdOnVQt25ddOnSBYcPH4ZWq0ViYiIeeugh1K9fH97e3mjfvj1+/fVX8d5Tp05h6NCh8PHxQWBgIMaPH4/09HTxer9+/fDiiy/in//8J/z8/NCoUSPMmjXL4POdOXMGERER8PDwQLt27bB9+3ZoNBps3LhR7JOcnIyxY8eifv368Pf3x4gRI3D58mXx+oQJEzBy5EjMmzcPTZo0QVhYGLRaLRYtWoTWrVujTZs2aNy4McaMGWP3P09H/0/+s8X/eL14var3tTp16hQKCgoAAKtWrbL7ZzL1OSvjYtZeJvz111/w8/ODr68vEhMTERUVJV4LCwvDokWLjL7v8uXL6NWrl3jcqlUrXL9+HQUFBfDw8Ci3/4oVK7BkyRKD56KjozF27Fiz2jlixAjcvHnTrH2tKSAgwGT1qKzr16+L61dQUAAnJyesWLEChYWFAICtW7dixIgReP/991FSUoLMzEwkJSWJ9zs5OeHOnTtISkpCaWkp5s2bh8DAQJw/fx7/93//h5KSEjzzzDMAgMceewzt2rXDpk2b4OTkhLNnz+LmzZtISkrC5MmTUVxcjDVr1sDLywsXL15Ebm4ukpKSkJ6ejqioKDz66KOYOXMmCgoKMH/+fIwaNQqrV68Wbf/mm28wefJkrF+/HvHx8fjnP/+JFi1aIDIyElqtFsOHD0eTJk2wceNG5OTk4LXXXgOg785KSkpCfn4+hg0bhm7dumHNmjVwcXHB559/joEDByImJgZubm7Izc3Fb7/9BmdnZ6xYsQI6nQ6bN2/Gyy+/jAULFqBLly7IysrCkSNHDK4TGZecnGzvJlQrvF7K8HqZr6rX6sKFC2L79OnT2Lt3L0JCQqraLKu65557Kt3H4nCSk5ODefPm4bnnngMA5OXlwcfHR7zu7e2NvLw8o+/Nz8+Ht7e3eCy9Lz8/32g4mThxIsaNG2fYcBcXuLm5mdXW27dvIy0tzax9rcnZ2dnsH4qgoCAcP34c2dnZ6N69O/744w/4+Pigc+fO+OWXX+Di4oJWrVqhYcOGcHFxgZ+fH0JCQlBSUoLvvvsO58+fx4svvoiQkBB89NFH4rjh4eHIzMzEunXrMG/ePABAamoq3njjDTz44IMAgH79+on9b968idGjR2Pw4MEAgMjISPHa8uXL0aVLF3z++efiuY4dOyIkJASFhYUICwuDh4cH7rvvPnzyySfi2GvXrsXp06cxfvx4bNu2DVevXsW+ffvQqFEjAICvry8GDx6MBg0aICQkBMuXL4e7uzu+//57aDQa0Q4/Pz8kJiZi0KBB8Pb2ho+PD9asWSN+DjZu3Ahvb288+eSTyMrKQs+ePQ0CM5Wn1eqrVMHBwXBy4vj4yvB6KcPrZT5rXStnZ2eDx0ePHkWfPn2q2jzVWRROCgsLMXPmTERERGDkyJEAAC8vL+Tk5Ih9cnNz4eXlZfT9np6eyM3NFY+l93l6ehrd383NzewgYoz0Jai2Ro0amf1D5ubmhtDQUKxbtw7dunXD/fffjwMHDiAwMBB9+/ZFUlISGjZsKI73xhtv4J133kFhYSHc3Nzwz3/+E9OmTYOTkxPWr1+P//znP0hISEBOTg5KSkpQt25d8d5XXnkFU6dOxerVqzFgwABER0ejRYsWAICXXnoJ06ZNw44dOzBgwACMGTMGHTt2BAAcO3YMcXFxqFu3brn2JyYmok2bNgD0gUX+uRs3boyMjAw4OTnh4sWLCA4ORpMmTcTrPXv2BKCv/jg5OSE+Ph4JCQmoV6+ewTkKCgqQmJgIJycnaDQa3HvvvQZhdvDgwQgJCUFYWBgiIiIwevRojBkzxuTPIf1NuvZkHl4vZXi9zFfVa3Xnzh2Dx5s3bxZjQ6sTxeGkpKQEb775Jho0aIDp06eL5++55x4kJCQgIiICgL60FBoaavQYoaGhBrN8Ll68iKCgIKNVE2v4888/bXJca2rfvj2SkpJQXFwMrVYLHx8flJSUiGDRpEkTnDt3Tuz/z3/+E0899RS8vLzQuHFjUWE4ePAgHnvsMcyZMweDBw9GvXr18MMPPxgMjJo9ezYef/xxbNmyBVu3bsWsWbPwww8/4OGHH8aUKVMwePBgbNmyBdu3b8e//vUvLFiwAC+++KLokpk/f3659jdu3Fhsu7q6Grym0WhEP6NOpxNtNUWr1aJLly6iq0iuQYMGYltefQOAOnXq4NixY9i1axc2bNiA2bNn47333sORI0fg6+tb4TmJiGqCzMxMg8f79u3DrVu34O/vb6cWWUZxPPvggw9QWFiI2bNnG3zJREVFYcOGDbh+/Tpu3ryJ1atXY+jQoUaPMWTIEOzcuRPnzp1DTk4Oli9fbnLf2iImJgbHjx9Ho0aN8N133+H48ePo0KED/vOf/+DYsWNYvny5wf4BAQFo2bIlmjRpYvDncODAAYSEhOCtt95C165d0apVK6NjLsLCwjBjxgxs374do0ePxooVK8RrwcHBePbZZ7Fx40bMnDlTjPfp3LkzTp8+jebNm6Nly5YG/5UNCqa0adMGV69exY0bN8RzR44cMdinc+fOuHjxIho2bFjuPGWrKWW5uLhgwIABeOONN3D8+HFcuXIFu3btMqttRETVXdlwotVqsWXLFju1xnKKwklqaio2b94sZntERkYiMjIS8fHxooz+5JNPIjo6GuHh4RgxYoR4r7QfALRs2RLTp0/HjBkzEBUVhcDAQEyaNMm6n6yaCQkJgY+PD27cuIGRI0eiWbNmOHPmDEaPHo2WLVuWm0psSsuWLXH16lX88MMPuHTpEv773/9i06ZN4vX8/Hy88MILiIuLQ1JSEg4cOIAjR46gbdu2AIDp06cjNjYWiYmJogohvfb8888jMzMT//jHP3D48GFcvnwZ27dvx6RJk1BaWmpW+wYOHIgWLVpgwoQJ+Ouvv3DgwAG89dZbACBC1rhx4xAQEICRI0di3759SExMxJ49e/Dyyy/j2rVrJo/966+/4r///S+OHz+O69evY+XKldBqtWjdurVZbSMiqu5u375d7jlzJ2Y4EkXdOo0bN66wi2TixImYOHGi0df27dtn8Hj48OEYPny4ktPXeHFxcejWrRs8PDywb98+BAUFoUmTJmZPvQKAkSNHYsaMGXjhhRdQWFiIYcOG4Z133sHs2bMB6AdL3bp1C08++SRu3LiBgIAAjB49GnPmzAGgX8vm+eefx7Vr11C3bl0MGTIECxcuBAA0adIEBw4cwOuvv47BgwejsLAQISEhGDJkiNl9pM7Ozvjpp58wZcoUdOvWDaGhofjoo48wfPhw0a3n5eWFvXv34vXXX8fo0aNx9+5dBAUFoX///kbHu0h8fX2xceNGzJ49G/n5+QgLC8P333+P9u3bm339iIiqM3nlxNvbG7m5udi2bZvJ2bCOSqOraBlXcgharRZJSUkICQmpkYPKDhw4gIiICCQkJIiBuVVR06+XNfFaKcPrpQyvl/msda169OiBw4cPQ6PR4IknnsDKlSsBAFu2bKlWsxf500Kq27RpE3bs2IErV65g586dmDp1KsLDw60STIiIajOpcuLr64uHH35YPP/zzz/bq0kWqdIibESWuHv3Ll577TUkJycjICAAAwYMqNbLLBMROQopnNSvXx8DBw6Es7MzSktLy008cHQMJ6S6J598Ek8++aS9m0FEVKNotVpkZWUBAPz8/ODt7Q0/Pz9kZGQYHSjryNitQ0REVANkZ2eLCRR+fn4AIJZfKLs4m6NjOCEiIqoB5NWR+vXrA4BYgPLOnTuoTvNfGE6IiIhqAPk0YqlyIoUTrVZrcIsZR8dwQkREVAMYCyfyVbWl8SjVAcMJERFRDVBRtw5QvcadMJwQERHVAKycEBERkUNh5YSIiIgcCisnRERE5FAqmq0DsHJCREREKjPWrcPKCREREdkNKydERETkUKTKibu7Ozw9PQGwckJERER2JFVOpKoJwMoJERER2ZGxcMLKCREREdlFYWEh8vLyAPw9GBYA6tatK7YZToiIiEg18pk68sqJs7Mz6tSpA4DdOkRERKQiY9OIJdK4E1ZOiIiISDXGphFLpHDCygkRERGppqJwIg2Kzc/PR1FRkartshTDCRERUTVnTrcOUH2qJwwnRERE1Zw5lROg+ow7YTghIiKq5kzN1gFYOSEiIiI7kFdOynbrsHJCREREqjNntg7AygkRERGppKIBsaycEBERkerklRN5paTsY1ZOiIiISBVS5cTX1xfOzs4Gr7FyQkREVAvl5uZiz549dlvkTKqclO3SAVg5ISIiqnV0Oh1Gjx6Nfv36Yfz48XY5v1Q5KTsYFmDlhIiIqNb5/fffsX37dgDA3r17VT//3bt3UVpaCqDyygnDCRERUS3wySefiG17fPlXNI0YYLcOERFRrXLp0iVs2rRJPC4sLERBQYGqbahodVgA8PDwgJubGwBWToiIiGq8Tz/9FDqdzuA5tasTFa0OK5GqJ6ycEBER1WC3b9/G8uXLyz2vdgCQV0NMhRNpUCwrJ0RERDXY119/jdzcXACARqMRz6sdAOTnK7sAW9nns7OzodVqbd+oKmI4ISIiUqi0tBSfffYZAH0wefTRR8Vr9gwn8mnDctLzWq0WOTk5ajSrShhOiIiIFLpy5QquX78OABg0aBC6du0qXlO7W0d+vsoqJ2X3d1SKwsnixYsRHR2Nbt26ITY2Vjw/b948REZGiv969OiBGTNmGD3Gn3/+iW7duhnsHx8fX7VPQUREpKKbN2+K7bCwMLuuJWJOt051W4jNRcnOwcHBmDlzJr766iuD59988028+eab4vG4cePQt29fk8dp1qwZNmzYoLCpREREjkEeTgICAuz65S+vhJjq1qlulRNF4SQqKgoAjI5OliQmJiIxMREDBgyoWstkioqKyt2vwMXFRczbrumkwUvVYRCTI+D1Mh+vlTK8XsrU5Ot148YNse3v74+6deuKx1lZWYo/c1WulXydk7p16xo9hrx9mZmZdv0zcXKqvNNGUTgxx9atWxEREQEfHx+T+6SmpmLgwIHw8fFBVFQUJk2aVO4uinIrVqzAkiVLDJ6Ljo7G2LFjrdbu6iA5OdneTahWeL3Mx2ulDK+XMjXxeiUkJIhtnU6HvLw88Tg5ORlJSUkWHdeSayUPSnfu3DG6CJw8jFy6dMni9lnDPffcU+k+Vg8nsbGxmD59usnXmzdvjjVr1qBZs2a4cuUK3njjDXh5eWHcuHEm3zNx4sRyr9e2yklycjKCg4PNSpy1Ha+X+XitlOH1UqYmXy/pXjYA0LZtWzRt2tTgtZCQEEXHq8q1KiwsBAC4u7sjLCzM6D7NmzcX266urorbpzarhpMTJ04gOzsb4eHhJvcJCAhAQEAAACA0NBSTJ0/G+vXrKwwnbm5utSaIVMTJyanG/QW3JV4v8/FaKcPrpUxNvF63bt0S2w0bNjRYNj47O9viz2vJtZLGuNSrV8/ke63VPrVYtXXbtm1D//79FQUJR79AREREZWVkZIhtRxkQa2qmDlD9ZusoSgYlJSUoLCyETqcT21I/VklJCXbs2IEhQ4ZUeIw///wTaWlpAICrV69i2bJliIiIsLD5RERE6pPP1vH394ebmxs8PT0BqPvlr9VqzQon1W22jqJwMnfuXISHhyM+Ph6zZs1CeHg4jh07BgA4ePAg3N3d0blz53Lvk69lcu7cOUycOBERERF44YUX0K9fvwq7dIiIiByNFE7q1asnegvscXO9nJwcceNBU9OIAdh1HRZLKBpzMnv2bMyePdvoaxEREdiyZYvR1/bt2ye2x48fj/Hjxys5LRERkUORwok0hhLQh4PU1FRVv/zNWYANqOHdOkRERLVdSUmJWFtEHk6kcHD37l2D2Ty2ZM59dQD9OifSzQlrXLcOERFRbZeZmSm6UoyFE0A/I0YN5txXB9BPPqlTpw4AVk6IiIhqnLJL10vs0XVibuUEsM+YGEsxnBARESkgDycNGjQQ2/aYEWNu5QT4O7ywckJERFTDOGrlpLJwIr1eUFBgdIl7R8JwQkREpEDZBdgk9piua84diSX+/v5iOzMz02ZtsgaGEyIiIgVMVU7s0a2jpHIiDyfyz+CIGE6IiIgUMDXmxN7dOkoqJ/J7AzkihhMiIiIFzKmc2KNbR0nlhOGEiIioBnHUbh1WToiIiGopaUCsk5OTQSCxR7eOFII0Go1YZM0UhhMiIqIaSqqc+Pv7w8np769Re3TrSOepV6+eQVuMYTghIiKqoaRwIh8MCxhWTtRehK2yLh2A4YSIiKhGys/PR25uLgDD8SYA4O3tDWdnZwDqV04qGwwLMJwQERHVSKYGwwL6cR9q3r+moKAAhYWFAMyrnPj5+YlthhMiIiIrKi0ttdu5KwongLr3r1EyjRgAXF1dRfsYToiIiKxk7dq18PHxwRNPPGGX85tagE0ihYSsrCzodDqbtkXJNGKJ1LXDcEJERGQFOp0Ob775JgoKCvDdd9/h9u3bqrehssqJFE5KS0uRl5dn07YorZwAf4eT27dvQ6vV2qJZVsFwQkRE1cLhw4dx+fJl8VitQady5nbrALZvn5L76kikcKLVau1y/czFcEJERNXCmjVrDB5nZ2er3gZTdySWqLnWSVW6dQDH7tphOCEiIodXWlqKtWvXGjxnj3CipHJi6xk7VenWARz7zsQMJ0RE5PB2796NGzduGDyn1kJncuYOiAVYOakKhhMiInJ4Zbt0AMesnKgZTqpaOWE4ISIislBBQQE2bNhQ7nl7VE6kMSceHh7w8vIq97qa3TpVGRALMJwQERFZLCYmRlRJ5F0p9qycBAQEQKPRlHvdXpUTdusQERGpSN6lM3HiRLGtdjjR6XQmb/onsdeYE1ZOiIiIVLRz504A+mrFww8/LJ5Xu1snOzsbJSUloi3G2Ktbh5UTIiIildy5c0d8yd97770GN69Tu3JS2WBYwD7dOp6ennBzczPrPQwnREREVZScnCy2mzVrhrp164rHaldO5Auwyb/k5exROTG3agIA3t7eIsgwnBAREVng6tWrYjs4ONggnKhdOcnMzBTbpion8vapVTkxd7wJAGg0mmpx8z+GEyIicljyyklwcDA8PT3h4uICQP1wIv8yN1U5cXFxQZ06dQDYNpyUlpaKz68knADV487EDCdEROSwynbraDQaUZ1Qu1tH/mUuH/tSltTNYsv23b17t9z5zCWFk4KCApvfOdlSDCdEROSwynbrAH9/GduzW8dU5QT4u5Jhy8qJJdOIJfIuKUetnjCcEBGRwyrbrQP8Pa7Dnt06FVVOpLCQn5+PoqIim7TFkmnEkupw8z+GEyIiclhSOKlXr54IJdL/CwsLUVhYqFpbzK2cyMOCNasnWq0We/fuRUpKikX31ZFUh+nEDCdEROSQtFqtCCdS1QQw/PJXs3pibuWkfv36Yvv27dtWO/9XX32Fvn37okWLFvj+++/F81WpnDCcEBERKZCRkSG6RZo1ayaet9daJ9IXubOzc4WBwFbhZPfu3QD0A1kXL14snmflhIiISCXGxpsA9qucSN06fn5+Rm/6J7FVOElPTzf6PMMJERGRSozN1AFgt4XYpC/yirp0ANuFE/kKtXLs1iEiIlJJ2TVOJPbo1ikuLhZri1Q0GBawfeWkefPmmD17NjQaDerVq4fevXsrOk6NCyeLFy9GdHQ0unXrhtjYWPH85s2b0aNHD0RGRor/0tLSTB5n8+bNiIqKQt++fTFnzhwUFxdb/gmIiMjqdDodLl68aNcvL1OVE3t068hn6tijclJSUiL+LAIDAzFr1iwkJibiypUrBuczR40LJ8HBwZg5cybat29f7rXu3btj37594r9GjRoZPUZCQgIWLlyIjz/+GFu2bEFKSgqWLVtmWeuJiMiq7t69i8WLF6Nz584ICwtDWFiYVf/1r4SpMSf2qJyYs3S9xBbhRL4eScOGDQEAISEhisebAPr2SWNmHDWcuCjZOSoqCgCwfPlyi0+4bds2DBw4EO3atQMATJkyBXPnzsWzzz5r8j1FRUXlFrJxcXEx+xbR1Z1WqzX4P1WM18t8vFbK1PTrtXnzZjzxxBMGS6NnZmbiwIED4ve/ElW9XvJw0qRJE3Ec6d41gD6cqPHnIQ8Hfn5+FZ5TXtnJzMw0q32VXSt5b0SDBg2q9Jk1Gg18fX1x+/Zt3Lp1S/WfZyenyusiisJJRU6cOIH+/fvDz88Pjz76KB555BGj+12+fBm9evUSj1u1aoXr16+joKAAHh4eRt+zYsUKLFmyxOC56OhojB071lrNrxbkf1Gpcrxe5uO1UqamXq/333/fIJhITp06ZbRibi5Lr1diYiIA/XLr8i/n/Px8g2MnJSVZ3DZznTt3Tmw7OTlVeM7c3FyxnZKSoqh9pq7VyZMnxba7u3uVP3PdunVx+/ZtZGRkqHL95O65555K97FKOOncuTN++OEHNGrUCGfOnMGrr74Kf39/PPDAA+X2zc/Ph7e3t3js4+MjnjcVTiZOnIhx48YZNryWVU6Sk5MRHBxsVuKs7Xi9zMdrpUxNvl46nQ4JCQkA9N0GL774It555x0A+sGgISEhio9ZletVXFxsMABUfv6yXRGWtE0pZ2dnsR0aGlrhORs0aCC2CwsLzWpfZdfqwIEDYrtVq1ZV/syNGjVCUlISsrOzERQUJO707Cis0pqgoCCx3aFDBzz22GPYvXu30XDi6elpkCpzcnLE86a4ubnVmiBSEScnpxr3C9GWeL3Mx2ulTE28XtevXxfjN7p06YJBgwaJcJKamlqlz2vJ9UpLS4NOpwOgn6kjf798TMfdu3dV+bOQjx0JCAio8Jze3t5wc3NDUVERbt++rah9pq6VvFspMDCwyp9ZPm4mKytLjGNxFDb5E61ocZrQ0FCRzgHg4sWLCAoKMlk1ISIi2ztz5ozYbteuHZo0aSIep6amqt4eUzN1APusc6JkQKxGoxEByloDYuULsFkjSMirO4548z9F4aSkpASFhYXQ6XRiW6vV4vfffxd/AOfOncPatWsRGRlp9BhDhgzBzp07ce7cOeTk5GD58uUYOnRo1T8JERFZrGw4CQwMFP/QTElJUb09ptY4AewzW0fJVGIA1SqcmFrczZ4UhZO5c+ciPDwc8fHxmDVrFsLDw3Hs2DEcOnQIY8eORWRkJN588008+eSTGDhwoHhfZGQk4uPjAQAtW7bE9OnTMWPGDERFRSEwMBCTJk2y7qciIiJFyoYTV1dXBAQEALBP5cTUNGJAPyDU3d0dgGNWToC/w0lOTo5V1vKydjiRH8PUsvj2pGjMyezZszF79uxyz3ft2hUzZsww+b59+/YZPB4+fDiGDx+u5NRERGRD8nDStm1bAPrpuxkZGUhLS4NWq1V1nE1F3TqAvnqSkZFhl8qJOeFEXl3JysoyqFRYQh4gpNBYFY4eTmrWiC4iIlJMp9Ph9OnTAPQTHKR1Oho3bgxAP3NG7cW6KurWAf5eS0Ttyombmxu8vLwq3d/aC7FJAcLf398qM2tqVLcOERHVPOnp6eILVL6eiT0HxUqVExcXFwQGBpZ7XRp3kp2dLWb12JJUOfH3969w0ofEVuHEWrNqWDkhIiKHVna8iUSqnADqD4qVKidBQUEGa4xIpHBSUlJisCibrZh7R2KJNcNJbm6uWIKD4YSIiGoFqUsHMAwn9qqcFBQUiEpF06ZNje6j5s3/8vPzRQAyZ7wJYN1wIu92sVY4YbcOERE5NEernGRlZYltU2FAzenESgfDAtYNJ9aeqQPoFz6VVmhn5YSIiByOsZk6gGE4UbNyIg8b8gqJnJqVE/lgYHt069ginMiPxXBCREQORwonjRo1MvjytVe3jjxsyCskcmquElsTKyfyY2VmZlplLRZrYjghIqrFMjIyxJgDeZcOoA8rEjW7dcypnKjZrVPVyok83FjCVuFEPu5E7anilWE4ISKqxc6ePSu2y4YTNzc3u6wSa07lxF7dOjWxclL2HI6A4YSIqBYzNRhWIo07SU1NVWU9EUB55YTdOpZhOCEiIodkahqxRBp3UlRUVOXuCXMprZw4YreOp6cn3NzcADhuOHHk6cQMJ0REtZi8ciJfHVZij+nENaFyotForHZnYimcuLq6mrwelmDlhIiIHFJiYiIAfTeEsRvK2WM6sTxsVNcBsQCsFk6kqkbDhg3NWjrfXI4cTqp+9yAiIqq2pAXPTFUE7DGdWB42HG1ArCXhJCcnB8XFxXB1dVV8bp1OZ/X76kiMdevcuHEDixYtQvv27dGtWzeEhoZa9ZzmYuWEiKiW0ul0IgiYqlCwW+fvbh0vLy94eHiY/T75oFj5qrdKZGVloaSkBIBhmLAGY5WT48eP4/3338djjz2Gr776yqrnU4LhhIiolsrJyYFWqwUA+Pr6Gt3HHpUTpYuwqdWtY+54E4m8ymJp146tBsMCMOjGk85T2ewttTCcEBHVUvJ/zTtq5cRUOHFxcYGXlxcA21ZOdDqdqJwoDSfWmE5sy3Di5uYm2shwQkREDkEeAkxVTuw5INbb2xvOzs4m95OCiy0rJ9J4EUDZeBPA8cMJ8HdXkTTmxNR9ltTGcEJEVEvJKyemwom7u7v4Ula7clLZtFnpdVtWTixZHVZSHcKJdMzs7GwUFBSIcBIcHIw6depY/XzmYjghIqqlzBl4Cqi/SqwUNkx16Uik17Ozs23WLvkaJzWxciI/5l9//SUCqz27dACGEyKiWsucygnw96DYwsJCi2edmKu0tBR3794FYH7lRKfTIScnxybtqemVE/kMoD179ohthhMiIrILpZUTwPZdO/KQUVk4UWM6sSWrw0qqQziRHzMuLk5s2zuccBE2IqJaSmnlBNB37Rhb5t5azJmpY+z17OxsBAUFWb09SUlJYlutbp309HQcOXIEhw8fxv79+8Xz1l7nBDAMJ/v27RPbDCdERGQXjlg5MbdNZV+3xYwdrVaLpUuXisddu3ZV9H4l4WT37t1YuHAhTp8+jStXrpR73c/PT0ydtiZ54JG60wD7ztQBGE6IiGotcysn8nCSlpZmwxaZtwCbRB5ObDEWJiYmBhcvXgQAPPDAA+jQoYOi95sbTm7duoURI0YgLy/P6OsNGzbEv/71L0XnNpexrqLGjRsbtN0eGE6IiGopc6sU8rEWVb2JnbXaBBi26+bNm1Zvy8KFC8X2jBkzFL/f09MTbm5uKCoqqvC6rVixQgQTLy8vdO3aFd26dUP37t3RvXt3hISEWPWGf3LGwom9u3QAhhMiItVduHABo0aNQps2bbB69Wp4enrapR3mVk7k/4qWDxC1BSWVE2M3rrOWEydOYNeuXQCAVq1aYdiwYYqPodFoUL9+fdy4ccNkONFqtQb3sDl69CjatGljWaMt4KjhhLN1iIhU9vHHH+Ps2bPYtGkTPvjgA7u1w9zBp9aYdWJJmyqrnNgynPznP/8R2y+//DKcnCz7upSunanrtnPnTly6dAkA0Lt3b4SFhVl0Hkv5+fmVq8ownBAR1UInTpwQ2x9++CHOnTtnl3ZIlZM6depUuEy8NW5gZy555cRe4SQtLQ1r1qwBoK8oTZgwweJjSeHk7t274u7Ccl9++aXYHjdunMXnsZSzs7PBDQABhhMiolqntLQUp06dEo+Li4sxbdo0VVZeLcvcZeLl4cXW3TpKphLLv1StNeZk9+7dCA8PR1FREQDg6aefho+Pj8XHk1edyg7avXbtGn755RcA+kGoAwYMsPg8VVG2a8eWU8XNxXBCRKSiy5cvl5uVERcXh9WrV6veFunLsqLxJoB+7IS0jyNVTuThpKqVk5ycHDzzzDN48MEHcfnyZQD6YPHSSy9V6bjyqlPZYLdkyRJotVoAwJQpU+Dq6lqlc1lKXoFq2LCh4sXmbIHhhIhIRX/99ZfY7t27t9h+5ZVXbP7FL1dUVIT8/HwAlYcAoPKxE9aipHLi7u4u9qlqOHnppZfw9ddfi8cRERH4448/0LRp0yodVx6g5NOwi4uLsWTJEgD6rpUpU6ZU6TxVIa+cOEKXDsBwQkSkKnk4mTlzJsaMGQNA/+X6448/qtYOeQiorHIC/F0BuHPnDkpLS23VLEUDYoG//9Vf1XCyd+9eAICrqys+++wz7NmzB61bt67SMQGgZcuWYltaMwUAfv/9d6SmpgIAhg8fXuUQVBUMJ0REtZw8nHTs2BHPP/+8eHz+/HnV2qE0BEiVE51OZ5PVWCVKphIDf4eT27dvo7i42KJz5ufnIzExEYD+z+SFF16weHZOWfLZN/I/3zNnzojtoUOHWuVclpJ36zCcEBHVQidPngSgX2wrNDQU99xzj3hN+oJUg7lrnEjUmk4sBR9nZ2ezlmuXf7HK7yCsxIULF8TYD2t/OcvDyYULF8S2fIaWNSo0VSENxHV1dcWQIUPs2hYJwwkRkUpycnLEmhYdOnSAk5MTmjZtKmbCOHI4UWs6sVQ5qVu3rlmrolpjUKy8imHte8oEBwfDw8MDgGE4kVdR1Fx0zZjevXvj7NmzuHjxIlq0aGHXtkgYToiIVCKfQtyxY0cAgIuLC5o1awZA3XBiabcOYNvpxOZOb5bIKyeWTic+e/as2LZ25cTJyQmtWrUCACQkJIjxOlLlpF69ekZXaVVbmzZtEBISYu9mCAwnREQqKTveRCJ17dy5c0e1GTuO2q0jVU4sCSeOWDkB/u7aKS4uxpUrV5Cfn4+rV68C0Hfp2Oq+OdUZ761DRKSSysIJoK+eqHFH2KpUTmwVTgoLC1FYWAjAvMGwgHXCiVQ5cXNzQ2hoqEXHqEjZcSe5ubli0T17d+k4KlZOiIhUIg8n9957r9i2x6BYRxxzomQBNklVw0lxcbEYCxIWFgYXF+v/m71sOHGkwbCOipUTIiIV6HQ6EU6aNm1q8GVvj3DiiGNOlCzAJqlqOLl06ZK4542tptHKA8iFCxcMQhjDiXGKKieLFy9GdHQ0unXrhtjYWPH85s2b8fjjj6NPnz4YOXIk1q9fb/IYf/75J7p164bIyEjxX3x8vOWfgIioGkhOThZfvvIuHaB6VE7U6NZRGpiAqs/WkY83sVU4KbvWibxywm4d4xRVToKDgzFz5kx89dVXBs8XFRXh//7v/9C2bVskJSVh2rRpCA0NRefOnY0ep1mzZtiwYYPlrSYiqmZMjTcBql/lRI1uHUsqJ5bM1rH1YFgA8Pf3h5+fHzIzM3HhwgURDJ2cnAxWkKW/KQonUVFRAIDly5cbPC8tvwwALVq0QPfu3XHmzBmT4USpoqIicYdIiYuLC9zc3KxyfEcnLQ4k/Z8qxutlPl4rZapyveThpEOHDgbHaNCgATw9PcVKpWr8ecgrJ3Xr1q30nPLqSmZmplltVHq95KHHnDYBgKenJzw8PFBQUICMjAzF104eTtq0aWOzax8WFoaDBw8iOTlZhKh77rkHrq6u0Gq1tervojmr71p9zElpaSlOnz4tgowxqampGDhwIHx8fBAVFYVJkyaJRYiMWbFihbhBkiQ6Ohpjx461Wrurg+TkZHs3oVrh9TIfr5UyllyvQ4cOiW1/f38kJSUZvB4UFISEhAQkJibiypUrNp9eKnWBuLq64saNG5WeT6fTwdXVFcXFxbhx40a59lfE3OslrxqVlJSYfY769esjNTUVaWlpitoFACdOnACg/8J0c3NT/H5zNWnSRGxLN1wMDg4ud77a8HdRXik0xerh5Msvv0SDBg3Qq1cvo683b94ca9asQbNmzXDlyhW88cYb8PLywrhx40wec+LEieVer22Vk+TkZAQHB1vtfg81Ga+X+XitlKnK9crNzRXbPXv2LNdt0apVKyQkJKCwsBDu7u5o3LixVdpsSl5eHgB9RaR58+Zmvad+/fpIT09Hbm6uWQt2Kb1erq6uYrt58+ZmLwrWuHFjpKam4vbt24r+bEpLS3H58mUA+hv0yceGWFvnzp2xceNGg+fuu+8+8Rn5d9GQVcPJ+vXrsWvXLixfvtxkCg8ICBADmEJDQzF58mSsX7++wnDi5uZWa4JIRZycnPhDqwCvl/l4rZSx5HpJM1xcXFxQr169cr8j5etrJCUlISgoqOoNrYB8JVZzP4ufnx/S09Nx+/ZtRZ/f3Ot19+5dsV2/fn2zzyF9p5SWliI7O9tgJlRFrly5goKCAgD68Sa2/DtgbFaOsXPy76Ke1a7A9u3bsWLFCnz++edmjfwWDeAfAhHVAlI48fPzM/qPNzUHxcrvLKzk97U0KPbu3bsW3wG4IpZMJQYsn05sy2XryzJWleE0YtMUJYOSkhIUFhZCp9OJba1Wi4MHD+Kjjz7Cf/7zH4N+NWP+/PNPpKWlAQCuXr2KZcuWISIiwvJPQERUDUh3zDX1r3o1w0lOTo4YeGnulF3AcMaOfECttViyCBtgeThRY6aOxNisHIYT0xSFk7lz5yI8PBzx8fGYNWsWwsPDcezYMaxYsQLZ2dmYNGmSWLtk3rx54n3ytUzOnTuHiRMnIiIiAi+88AL69etXYZcOEVF1V1RUhJycHAD6wbDGqBlOlK5xIrH1dGJrVE6UTCeW34jR1pUTLy8vBAcHi8f16tVDYGCgTc9ZnSkaczJ79mzMnj273PNdu3at8H379u0T2+PHj8f48eOVnJaIqFqTr6jqCJUTSxY7AwzbbotVYi1tlyWVE51Oh7i4OACAh4cH2rdvb/b5LNW6dWsxG4c3/KsYB3wQEdmY/IvcVOXE19dXVDFqa+XEkkXYAMvCyaVLl8SdgSMiIuDh4WH2+SwlH3fClWErxnBCRGRj5lROgL+rJ8nJyeJ+L7Ygr1A4UjiR2uXp6Wkwrbgylixhv3PnTrHdv39/s89VFfJwwvEmFWM4ISKyMWkwLGBeOCktLbXpYlzyyokjdetIlRMlbQIsq5z89ttvYnvAgAGKzmepkSNHwsvLC+7u7hg9erQq56yueFdiIiIbM6dbByg/7sSclTQt4eiVEyVdOoDycFJaWopdu3YB0H/++++/X9H5LNW8eXOkpKSgtLTU7LVYaiuGEyIiG1NaOQFsO+7E0sqJLcOJTqezuHLi6+sLZ2dnlJaWmjVb5/jx4yIwPvjggxXePsXalH622ordOkRENmZp5cRWHHFAbE5ODnQ6HQDllRMnJycx7sScyom8S0et8SakDMMJEZGNmTsgVn6PG1vdgA5wzKnEli7AJpG6djIyMkTIMUU+GFat8SakDMMJEdVYiYmJaNu2LR544AFxozt7MLdbp1GjRmJbyWJiSjli5cTSBdgkUuWkoKDA4CaLZRUUFGD//v0AgKZNm6JVq1aKz0W2x3BCRDXWt99+i3PnziEuLg5r1661WzvM7dbx9fUV9xuzZTixtHLi4eEh1gOxNJzk5ubi9ddfx7/+9S8R2kpLS7Fq1SqL2iQxd1DsH3/8gfz8fAD6qgkXQnNMDCdEVGNdvnxZbMfExNitHVI4cXV1hbe3t8n9nJycRHixdjjR6XTiS1leOVFapZAqP5Z260yfPh0ffvgh3nzzTTRv3hyvvfYaHnjgAfz73/8W+1iylLy54YTjTaoHhhMiqrGuXLkitrdv326TO+maQ6oQ+Pv7V/ovdSUDO8118OBBtG3bFgEBAfjyyy9F5aROnTqKZ6pIXTuWVE5u3LiBlStXisc5OTn46KOPxC1OnJyc8O6772LKlCmKj81wUrMwnBBRjSUfVJqdnY3ff//dLu2QqgzmrG0hhZPc3FxR6bCUVqvF/PnzERkZifPnzyMvLw/PPfccLl68CEDZeBOJFE7y8/NRWFio6L2LFi1CUVERAKBjx45wc3MTr4WEhGDPnj2YM2eO6NpSQh5O0tPTje5TUFCAo0ePAtCv0Nq4cWPF5yF1cJ0TIqqRiouLce3aNYPnYmJi0LdvX1XbUVhYKAZoKgkngL7i0rRpU4vOW1JSghEjRmDr1q3lXistLQVg2diOsoNi5YN4K5KXl4cvvvgCAODi4oItW7ZAo9Hgq6++QmlpKV577TWLwpJEfsdfUzOdjh8/LqpnPXv2tPhcZHusnBBRjXTt2jVotVqD5+wx7sTcwbASeTipyriT77//XgQTjUaDt956C3PmzDHYx5IwYOl04lWrVonurbFjx6Jp06YICgrC+++/j3nz5lUpmACG07Dl3Xlyhw4dEts9evSo0vnItlg5IaIaydi/nk+dOoWrV6+iWbNmqrXD3DVOJNYKJ3/88YfYXrVqFcaNGwcA8Pb2xquvvgoAaNmypeLjWjKdWKvV4pNPPhGPX3nlFcXnrYw5C9gdPnxYbHfv3t3qbSDrYeWEiGok+b+e5WMLjHVz2JJ8jRM1Kyfx8fFi+6GHHhLbM2fOxM8//4zp06fjvffeU3xcS8JJTEwMLly4AADo27cvunTpovi8lalTp464vpVVTjw8PNCxY0ert4Gsh+GEiGok+RfU1KlTxfaWLVtUbYc9KiclJSU4ceIEAH11pOzYkhEjRmDhwoUG4zTMZUm3zpdffim2bVE1kUhdO9euXSs3M+vmzZu4dOkSAKBz585wdXW1WTuo6hhOiKhGknfrPPzwwwgMDASgn0paUFCgWjvMXR1WYo1wcv78eTHTp3PnzhYdwxSllZPk5GTExsYC0M/IGTZsmFXbIyd17Wi1WiQnJxu8duTIEbHN8SaOj+GEiGokeeWkefPmGDp0KAD9rJG9e/eq1g57DIg9duyY2LZ3OPnhhx/EvW6mTp1q0zsAywfFlh13Ih8My/Emjo/hhIhqJCmc+Pr6ol69eiKcAIYLcdmaPbp1bBlO5AHL1HoikqKiIqxbtw6AfvrwpEmTrNqWsuSDYsuOO+FMneqF4YSIapySkhKxxon0r+nw8HDxurQQlxrsMSBWHk7uv/9+i45hSosWLcS2NMjVlE2bNonPP3r0aLPXRLGUqcqJTqcTM3UaNGhgsB85JoYTIqpxUlJSUFJSAuDvL6wmTZqIL8djx46JrgZbU1o5qVOnjhisaUk40Wq1YqZOs2bNDMKONQQEBIjPce7cuQr3/frrr8X2s88+a9V2GGOqcnLp0iXx59CjRw/e7K8aYDghohpH/sUUEhICQL8QmTSF9fbt2ybXwrA2peFEo9GIQGFJOLl06RLu3r0LwPpdOpI2bdoAAK5fvy7OVdbZs2cRFxcHQL9UfL9+/WzSFjlTlROON6l+GE6IqMaRz9SRf2HJ19dQq2tH6tZwd3eHl5eXWe+RhxOlFR5bjjeRtG7dWmwb69rJzMzEc889Jx4/88wzqlQrPD09xawseUDleJPqh+GEiGqcsjN1JPJw8ueff6rSFvlN/8z9gpbCify+POZSI5xIlRNAP21Z7vTp0+jevbuomtSpUwdPPPGETdphjNS1k5KSIqaMc2XY6ofhhIhqHGPdOoB9KyfmdOlIqjIoVu1wIh93smvXLvTs2VMsdtagQQMsWbJE0WevKnkYvXr1KgoKCsQYnNatW1f5Hj6kDoYTIqpxTHXrqD0oNj8/XyyGZs5MHYml4USn04lw0qhRI4Nl+61J3q0jhROdToenn34aOTk5AID77rsPhw4dUr1SUfYeO/v27UNRUREAoHfv3qq2hSzHcEJENY5UOalbt67Bv5TVHhQrX6RMjcrJ1atXRTeSraomABAaGgoXF/19Y6VuneTkZFy+fFmc+8CBAwZVK7WUDSfyeykNGTJE9faQZRhOiKhG0Wq1uHr1KgB9l07ZcR5qdu0oXeNEYmk4kd+J2Nrrm8i5urqK9U4uXLgArVaLAwcOiNcfeughswf/Wpu8UnblyhURTpycnDBw4EC7tImUYzghoholNTVV3PTN2GJbaoYTpdOIJZaGkx07dohtW0/dlcadFBQU4OrVq/j999/Fa/bsPpFXTnbv3i26nXr16mWw9D45NoYTIqpRTA2Glag5Y0fpTf8kloQTnU4nwomHhwciIiLMPp8lyo47kcKJRqNBz549bXruigQHB4tqmXyWjvz2BeT4GE6IqEYxNY1YouagWKU3/ZNYEk4uXLgg7sQbGRkJDw8Ps89nCfmMnaNHj+LEiRMAgA4dOqBevXo2PXdF3N3dERQUVO55hpPqheGEiGoUUzN1JGoOilWzW0fepaPG2Ap5OFm5ciVKS0sBGN7DyF7kXTsAEBgYiPvuu88+jSGLMJwQUY0iDYYFjHfrALYdd3LhwgV89tlnuHXrlqoDYtUOJ6ZWiXWE6bplQ+mQIUPg5MSvu+qEf1pEVKOkpaWJbVPrfNgqnCQmJqJnz5546aWXEBkZKRYjA5RVTry8vODp6QnAvHBSXFyM3bt3A9AvfNaxY0eFLVfOz88PDRo0KPe8I1ZOoqKi7NQSshTDCRHVKDdu3BDbxr48AcNw8tdff1nlvIWFhRg7dqxY2+Ts2bPYsGGDeF3pKqlKbv53+PBhcQO+AQMGqFYlkFdPAH33SdlgYA/yygmnEFdPDCdEVKOkp6cDAOrXrw83Nzej+zRp0gSurq4A9HfWtYZXXnmlwtk/Srp1gL+DlTk3/1O7S0ciH3cC6KsmatzgrzLygMQpxNUTwwkR1ShS5US6O60xGo1GdPmkpqZW+Zxr1qzBF198AUA/jXfp0qWiW0Z6Tv7YHFLlpLS0FHfu3KlwX3uFk7KVE0cYbwIAXbt2FeFuypQpdm4NWcLF3g0gIrKW3NxccRffhg0bVrhv48aNcfXqVWRkZKC4uFhUUpS6desWnnnmGfH4888/x+TJk9GgQQM8/PDD0Gq1aNasmeLjlh0Ua+qGdXfu3MGhQ4cA6CsZTZs2VXwuSxmrnDgCHx8fnD17FlevXuUsnWqKlRMiqjGkLh2g4soJYDhYVj5ORandu3eLm9394x//wKRJkwAAI0aMwI8//oiBAwfik08+UXxcc2fsxMXFiWm8ao+tkIcTd3d3my6Zr5S/vz/uv/9+h+hmIuVYOSGiGkMeMpSEk9TUVIsrDvL72Tz++OMGX4ajR4/G6NGjLTquOeFEp9Nh4cKF4vGgQYMsOpelmjdvDj8/P2RmZiIyMhLu7u6qnp9qLkWVk8WLFyM6OhrdunVDbGyswWvffPMNBgwYgAcffBCffvpphQO4Nm/ejKioKPTt2xdz5swR98EgIqoKeTgxp1tHkpKSYvE5Dx48KLZ79Ohh8XHKMiecxMTEYM+ePQCAli1bYvDgwVY7vzlcXFywdu1aTJs2DZ9//rmq56aaTVE4CQ4OxsyZM9G+fXuD5/fv34/169fjm2++wbp167B//3788ssvRo+RkJCAhQsX4uOPP8aWLVuQkpKCZcuWWf4JiIj+x9JuHUsHxRYVFYl1Ulq2bGly6rIl5OEkIyOj3OslJSV47bXXxON///vfFo+bqYoBAwbgiy++KDc4lqgqFHXrSAvZLF++3OD5mJgYPPLII6IsOn78eGzduhUjR44sd4xt27Zh4MCBaNeuHQD9SOq5c+fi2WefNXneoqIiFBUVGTbcxcXkNMGaRqvVGvyfKsbrZb6adq3kC7A1aNCgws8l3V8H0FdOzLkGZa/XsWPHUFhYCEBfNbHmdZSvi5KRkVHu2CtWrMCZM2cAAD179sSoUaMc7s+xpv182VJtulbmrMNjlTEniYmJBivwhYWFYdGiRUb3vXz5Mnr16iUet2rVCtevX0dBQYHJG1WtWLECS5YsMXguOjoaY8eOtULrqw/ppl5kHl4v89WUa5WQkCC2dTqdwX12KnLx4kWz9wX+vl5bt24Vz7Vq1UrRMSoj/wfZlStXDI6dl5eHd955RzyeMWOGwbL9jqam/HypoTZcK3MW6rNKOMnLy4OPj4947O3tjby8PKP75ufnw9vbWzyW3pefn28ynEycOBHjxo0zeK62VU6Sk5MRHBzM+0OYgdfLfDXtWuXn54vtjh07mry3DgCDwZt3796tcF9J2eslv6fMsGHDzDqGueS/3woKCgyOPX/+fDG+ZuTIkXjkkUesdl5rqmk/X7bEa2XIKuHEy8tLTKUD9GsNeHl5Gd3X09NTrEMAQLyvogWK3Nzcak0QqYiTkxN/aBXg9TJfTblW8jEnjRs3rvAzBQYGwsnJCVqtFmlpaYo+v3S9pMGwnp6e6NSpk1WvYcOGDeHs7IzS0lIkJSUZHFs+pu/f//63w//Z1ZSfLzXwWulZ5Qrcc889BuXUCxcuIDQ01Oi+oaGhBvtevHgRQUFBJqsmRFQ9xMTEYPXq1ZUutW5LUjXB29vboEJrjLOzsxg0a8lsnbS0NFy5cgWAfkVSaw9GdXV1FeuInDlzRoxt0Wq1OHnyJAD9796yC6ER1QSKwklJSQkKCwuh0+nEtlarRVRUFDZs2IDr16/j5s2bWL16NYYOHWr0GEOGDMHOnTtx7tw55OTkYPny5Sb3JaLq4fjx4xg2bBjGjx9vsO6G2qRwUtk0YkmTJk3E+6SFzMwlrcoKwGAcnTVJi5qVlJSIwa+XLl0S1edOnTrZ5LxE9qYonMydOxfh4eGIj4/HrFmzEB4ejmPHjiEiIgKjR4/Gk08+iejoaISHh2PEiBHifZGRkYiPjwegn243ffp0zJgxA1FRUQgMDBQrKhJR9bRv3z6x/f777yMzM1P1NhQVFYk7Alc2jVgiTSfWarVGp+tWRL74Ws+ePRW911zypdel36EnTpwQzzGcUE2laMzJ7NmzMXv2bKOvTZw4ERMnTjT6mvwXFwAMHz4cw4cPV3JqInJgZ8+eFdtZWVn44IMPsGDBAlXbIA8XSsMJoF/rRD69uDLyxddsFU7ky8EfP34cAMMJ1Q4cdUNEVSZ1OUg+//xzJCYmqtoGJavDSixdiK2kpARHjhwBAISEhBgcx5pYOaHaiuGEiKqsbDgpKirC22+/rWoblKwOK7E0nBw8eFAsl2CrqgmgX4hNuqPxiRMnoNVqRTipU6cOmjdvbrNzE9kTwwkRVcnNmzdFl0qXLl3g7+8PAFizZo1Y2l0NSm76J7H0/jpLly4V27Ye0C9VT+7evYtjx46JxdY6duzIKadUY/Enm4iqRD7epGfPnnj33XfF408++US1dlgSTqTZOoD5lZOsrCysW7cOAFC/fn2br1QtH3eycuVKsc0uHarJGE6IqErkXTpt27bFs88+K9YtOnz4sGrtkHfr2HLMyYYNG8SaI0899VSFC0hag3zcyZo1a8Q2wwnVZAwnRFQl8spJu3bt4ObmJr44ExIScOfOHVXaYUnlJDAwEBqNBoB54USn0xkEhGeeeUZhK5WTV05u3boltjt27GjzcxPZC8MJEVWJvHIi3W1c/oUqn11iS5aEE1dXVwQEBAAwL5zExcWJWUgPPPAAWrdubUFLlWnWrBnq169v8JxGo8G9995r83MT2QvDCRFViRRO/Pz8RHdK586dxevHjh1TpR1St46rqyt8fX3Nfp/UtZOamlrp0vuLFy8W288++6zyRlpAo9EYdO0A+sUsK1uen6g6YzghIotlZ2fj+vXrAPTjTaQuEnuEE/nS9VI7zCGFk+LiYoNuk7LS0tKwadMmcY5Ro0ZZ3liFyoYTjjehmo7hhIgsVna8iaRDhw5wcdEvQC0tHmZL8uXnze3SkZgzY6e0tBRTpkxBSUkJAGDSpEmq3ild3k0GMJxQzcdwQkQWMzbeBADc3d3Rvn17APoAk5+fb9N2ZGZmihv3mTtTR2LOjJ233noLW7ZsAQDUq1cPzz//vIUttQzDCdU2DCdEZDF55aRt27YGr0lfqKWlpTh58qRN22HJYFhJZeFk9erVmD9/PgDA2dkZn3/+uUG1RQ2tW7eGu7u7eMxwQjUdwwkRWcxU5QSw/biTzZs3Y8iQIdixY4fNwsnx48cxefJk8XjhwoUIDw+3sMWWc3V1Re/evQHoZ+8EBwer3gYiNTGcEJHFpHDi4+ODpk2bGrxmy3CSlZWFxx9/HLGxsRgzZoy4Yy9g3W6dTz/9VCy49vTTT+O5556zvNFVtHjxYrz++uvYsGGDogG/RNWRi70bQETVU15eHq5cuQJAXzUp+4XZqVMnaDQa6HQ6qw+K/frrr5GTkwNAf8+ZWbNmidesWTmRV4YWLlxo11DQqlUr/Pvf/7bb+YnUxMoJEVnk/PnzYl2QsuNNAH01JSwsDADw119/obi42CrnLSoqwn//+1+D56SgAlQtnJS9+d/FixcBAMHBwVxXhEhFDCdE1di3336L+++/H+vXr1f93BWNN5FIXTtFRUUGg2erYt26dWJtlQYNGpR7XWk48fDwEMe5fPmyeD4zMxO3b98GoK9aEJF6GE6IqqkTJ05g8uTJOH78OF555RXVz3/p0iWxLVVIypJPgbXGuBOdTmdwp+N169ahS5cuBvsoHXMC/B2uUlNTkZmZCeDvqgnAcEKkNoYTompIq9Vi2rRpYm2P5ORk3Lx5U9U2SONNAOCee+4xuo+1B8XGxcWJ8Stdu3ZF3759sWjRIvG6RqMR98pRQlqTBQBOnz4NgOGEyJ4YToiqoWXLluGPP/4weO6vv/5StQ3SDfAAoHnz5kb3kVdOrDEodsGCBWL7lVdegUajQY8ePfDPf/4TABAdHS1WplWisnDSsmVLS5tMRBZgOCGqZtLT0/H666+Xe16tu/9KpMpJ/fr1Ua9ePaP7+Pn5iTU5pC99S506dUqs0hocHIxHHnlEvDZ//nxcv34d33//vUXHZuWEyLEwnBBVM6+99poYqCm/IZyalZOSkhIkJycDMF01kYSGhgIAbt++jezsbIvPOXfuXLE9Y8YMuLq6iscajQZNmjSBk5Nlv9Lk4eTUqVMAgISEBHFs6TMQkToYToiqkYsXL+Lbb78FAPj6+mLTpk3iC1nNysm1a9fEeBdT400k8vCSlJRk0fnOnj2LdevWAdAPeH3mmWcsOo4pAQEBYpbP6dOnodPpROWkWbNm8PDwsOr5iKhiDCdE1ciqVavE9uuvv47mzZuLLofTp0+Lu+bamjnjTYy9Lh9Eq8QHH3wg1lR59dVX4eXlZdFxKiJVTzIyMnDu3DlkZWUBYJcOkT0wnBBVE1qtFitXrgQAODk5YcKECQD+vglcUVERzp8/r0pbzJmpIwkJCRHbllROLly4IMaS+Pv7Y9q0aYqPYQ55185PP/0kthlOiNTHcEJUTezbt098uQ8aNEisbNqxY0exj1rjTtSsnMybNw9arRYAMHPmTPj4+Cg+hjk6dOggtuXhhDN1iNTHcEJUTUhVEwB48sknxbZUOQHUG3eiVuUkMzMTq1evBqCfFfT8888rer8S8srJ4cOHxTYrJ0TqYzghqgby8vLw448/AgDq1q2LUaNGidfsXTmRhw9jmjZtKgbtKq2cxMTEiHE0Tz31FOrWrausoQrIw4kcwwmR+hhOiKqBn376CXfv3gWgX2jM09NTvBYcHAxfX18A6ldOGjRoUGk3i5ubG5o0aQJAeeXk559/FtvyQGYLvr6+op0SJycnTiMmsgOGE6JqQJo+DEAMhJVoNBpRPUlJSbH5MvaFhYXixnuVjTeRSPtlZGQgNzfX7PNs27YNgH4gbO/evRW3VSn5uBNAXxVyc3Oz+XmJyBDDCZGDS01Nxc6dOwHox3eEh4eX20c+7sTWXTvJycliWm9l400klqx1snv3buTk5AAAhg0bZtGy9EqV7dphlw6RfTCcEDm4uLg4MVvlscceM7oKqprjTpTM1JFYMihW3qUzcuRI8xpXRWXDCWfqENkHwwmRg5Pf4K9v375G91Fzxo6SmToSpdOJtVotfvnlFwCAu7s7Bg0apKSJFmPlhMgxMJwQOTh5OOnRo4fRfdq3by8qKjWhcnL06FGkpKQAAAYMGGCztU3KateuncFjhhMi+2A4IXJg+fn5OH78OAD9F6c0K6csLy8v1Zaxl1c+lA6ILft+U+zRpQPop2k3a9ZMPGY4IbIPhhMiM5SUlGD//v24c+eOzc6RkJCAwYMH46WXXhJjTP78808RNHr16lXh+6WZJoWFhRbfw8Yc8mNXtsaJJDg4WGybUzmRwolGo8Hw4cOVNbCK+vTpA0B/g0Fzu62IyLoYTojM8OabbyIyMhI9e/YUd+O1pvz8fDz88MPYvn07PvvsM2zZsgWAYZdOZeFE/q/8hIQEq7dRInXrNGrUyGC9lYp4eHiI5fYrC06XLl3CqVOnAOi7sRo1amR5Yy2wYMEC/Pvf/0ZMTAxcXV1VPTcR6TGcEFXizp07WLRoEQDg3LlzuHjxotXP8dprr4kvZAD44YcfACgLJ/KZJbYKJ/n5+UhLSwNg/mBYidS1k5aWhoKCApP7ye+8bOuF14xp2LAhXn/9dXTp0kX1cxORHsMJUSVWrlyJvLw88Tg+Pt6qx//111/x+eefGzz3888/Iy8vT4QTX19ftGnTpsLjqBFO5F0y5o43kci7gK5evWp0H61Wi2+++QaAfnXW8ePHK24jEVV/DCdEFdDpdPjyyy8NnrNmOElNTcXEiRPFY2kwZm5uLhYtWoQbN24A0HdvGFvfRE6NcGLJNGKJOYNi4+LiDO68HBQUpLSJRFQDWG3JxcjISIPH+fn5mD9/Pvr3719u39mzZyM2Nlas+Ni4cWOsW7fOWk0hspq9e/fi7NmzBs9Js2es4Y033hDLzY8cORIvvPACBg4cCACYO3eu2K+yLh1A//fI09MT+fn5VQ4n27dvxxdffAFPT08EBQUhKCgITZo0wZEjR8Q+VamcmBoUu2LFCrEtD21EVLtYLZzs27dPbF+8eBFPPfUUevbsaXL/Z555Bk899ZS1Tk9kE2WrJoC+cqLT6aDRaKp0bJ1Oh5iYGAD6KaxLly5F/fr1ERgYiBs3biA7O1vsa044cXJyQosWLXDq1ClcvnwZpaWlcHZ2tqhdTz31FFJTUyvcz9qVkzt37mDDhg0A9N1YI0aMUHR8Iqo5bHKziq1bt6Jv377w9va2yvGKiopQVFRk8JyLi0utuSGXNK1U+j9VzFrX68aNG9i4cSMA/d1327dvj7i4ONy8eRPXrl2rcpfD+fPnRdUkMjISfn5+AIBHHnlEDMAF9NNpu3XrZtbnkcJJcXExkpKSKq1uGLtW169frzSYuLi4oE2bNoqusXw68ZUrV8q9d+3atcjPzwcA/OMf/4Cbm5vD/czz76IyvF7mq03XqrIuasAG4USn0yE2NhZvvPFGhfutWrUKq1atQkhICF544QV07tzZ5L4rVqzAkiVLDJ6Ljo7G2LFjrdLm6iI5OdneTahWqnq9Fi1ahOLiYgDAmDFjoNPpEBcXBwCIjY012mWphHyhsfbt24uujr59+xqEk1atWiErKwtZWVmVHrNhw4Zi+8CBA2ZXd+TXSl4FfeSRRzBmzBikpaUhPT0daWlpuH37Nh588EERgMwlb8v58+fLvffrr78W24MHD1Z0bLXx76IyvF7mqw3Xypyqq9XDybFjx1BQUFBhGfqxxx7DK6+8Ak9PT+zcuRMzZszA2rVrTa5nMHHiRIwbN87gudpWOUlOTkZwcLBZibO2s8b1io+Px/LlywHov1RfffVVHDp0CIsXLwYApKSkmL0AmSnnzp0T2w899JA4XnBwMIKDg8UvqcjISLPPdf/994vtu3fvVvo+Y9fqp59+Eq8PHjzYqv8IaNiwIdLT03Hjxg2Dtp0/fx5Hjx4FoF9M7qGHHqpyt5kt8O+iMrxe5uO1MmT1cLJt2zYMHDiwwtuby6dEDh06FDExMTh06JDJZard3NxqTRCpiJOTE39oFbD0eh07dgwDBw7E7du3AeirJi1atDBYEv7EiRNV/rM4cOAAAP2N7bp37y6O5+TkhEcffRQff/wxAKB3795mnyssLExsJyYmmv0++bWSDwC+9957rfoz17x5c6Snp+P69evIyclB3bp1AQCbNm0S+zz11FMWjZVRE/8uKsPrZT5eKz2rXoHi4mL89ttvGDJkiKL3OeK/kKh2OnbsGAYMGCCCSXh4uKigtGzZEl5eXgCqPp04LS1NzKjp1q0b3N3dDV5/9dVX0b17dzzwwAN49NFHzT6uNaYTnzlzRmy3bdvWomOY0q1bNwD67l9595HUXQbYZ+E1InIsVg0nBw4cgI+Pj8Ht24357bffkJ+fj5KSEmzfvh0nTpwQv7SI7KW0tBTR0dEimERERGDr1q2oU6cOAMDZ2Vn8bCcmJpo1BsQUqWoinaeswMBAHDp0CLt27VI0sLxp06aiymhJONHpdDh9+rQ4llTZsJYHH3xQbO/atQuA/h810vUICgpCaGioVc9JRNWPVcPJ1q1bMXjw4HKVkK1btxr0W69ZswZDhgzBgAEDsHr1anz00Udo0qSJNZtCpFhKSgouX74MQN+dERMTI4KJRD6m48SJExafa//+/WI7PDzc4uOU5ezsLL7cL126pHjkf1pamghd7du3t1q7JH379hW/H3bv3g1Af3NDaQVe+etEVHtZdczJ/PnzjT4/dOhQDB06VDxetmyZNU9LZBXyJdUfeOCBcsEEAO677z6xHR8fj759+1p0LnnlpHfv3hYdw5SWLVvi3LlzyM/PR2pqqqIpz/IunXbt2lm1XQDg7++PTp064fjx4zh+/DgyMzMNunT69etn9XMSUfXDUTdE/yMPJ9Iy8mXJKyeWrhSbm5uLY8eOAdBXJ6T1TaylKuNOpC4dwDbhBNAHP0DfhbRnzx7s2bNHvGZp2COimoXhhOh/zAknHTp0EDNJLB0Ue+jQIZSWlgIwPt6kqqoSTuSVE1t06wCG4062b98uqkiNGzdGq1atbHJOIqpeGE6I/kceTuSrmcp5eHiIGSxnzpxBYWGh4vPIx5s4WjiRV06sPVNHEhkZKaZKrly5Ejk5OQA43oSI/sZwQvQ/8pUZTVVOgL+7dkpKSgy+zM3lqOFEPlOnSZMm8PX1tXbTAAD16tVD165dAUAMhAXYpUNEf2M4IfofqXLi6upqcrVioPygWCVKSkrwxx9/ANBPm63qKrPGhISEiEUQlYST9PR0MY3aVl06EmnciRwHwxKRhOGE6H+kcNK0adMKV2isyqDYv/76S3RjRERE2KQbw8XFRdzwLyEhATqdzqz3qTEYVlI2nAQGBqJ169Y2PScRVR8MJ0TQ34dGqhpU1KUDwGCRQaWVE1t36Uikrp2cnBykp6eb9R5bTyOWi4iIMLjFRZ8+fTjehIgEhhMiGI43MTUYVuLn5ye6Y06cOKFooTO1wol81os8dFREXjmxdbeOt7c3evToIR6zS4eI5BhOiGD+YFiJ1LWTk5ODS5cumXUOnU4nwkmdOnVw7733WtBS88i7nqQ1VSqSmZkpVmwFbDdTR+7hhx8GoB/jo/R+XERUszGcEMG8NU7kLBkUm5iYiNTUVAD6VWFteefdzp07i+3Kwsnly5fRu3dvnD9/HoC+S8faC8MZ8+KLL2Lp0qXYuXMn76dDRAYYToigPJxYMihWvmS9Ne+nY0y7du3EnY6PHj1qcr8dO3ZgzJgxuHjxIgCgYcOG+Oabb2zaNombmxsmT56MPn36qHI+Iqo+GE6IoE7lRK3xJoC+q6Rjx44AgAsXLuDu3bsGr6enp2PChAkYMmQI7ty5A0C/+u2hQ4d4h3AisjuGEyKYtzqsXHBwsOj6MLdyIoUTFxcXdO/eXXkjFZK6dnQ6ncEdlFeuXInWrVtj5cqV4rmhQ4fiwIEDYgoyEZE9MZyQ3Wm1Whw7dgz79u3Dvn37cODAgXL/0rc1KZzUq1cPdevWrXR/jUYjunbS0tKQlpZW4f63bt0Ss2Y6d+4Mb2/vKra4cvJxJ1LXztGjR/HUU08hKysLAODr64v33nsPP//8s1mfm4hIDQwnZHdPP/00unTpgj59+qBPnz6IiIhAp06dRHeDrWm1Wly7dg2AeV06EiVdO7///rvYtnWXjqRLly5iWxoU+/3334tF2aKjo3H27FmMHz/epoNziYiUYjghu8rKyjLoXpAkJiZi/vz5qrQhPT0dRUVFAJSFEyWDYtUcbyLp0KGDWOjs2LFj0Ol02LhxIwDA2dkZX331FRo2bKhKW4iIlGA4IbvasmULSkpKAOjvVjtz5ky4ubkBABYuXGgwFsRWlA6GlZhTOTl9+jReeuklfPHFF+I5W8/Ukbi7u6NDhw4A9AuxHTp0CImJiQD0i56pMV2YiMgSDCdkV5s2bRLbc+fOxccff4yXXnoJAFBQUIC33367yufIzc3F6dOnERsba7DYmkTpYFhJ69at4eHhAaB85USn02HChAno0KEDPvvsM3E/nfvvv1/VaoXUtaPVajF79mzxvLQAGhGRI2I4IbvJz8/H1q1bAQABAQGiovDmm2+Kf9WvWrXKrBVOjTl58iTatGkDHx8fdOjQAUOGDEG7du3KBQlLKycuLi5iuu7FixcNBvGePn3aoLvK09MTkyZNEt0qapEPio2NjRXbo0aNUrUdRERKMJyQ3ezYsQN5eXkAgBEjRohBmfXr18e7774r9ps5c6bZd9aVW7BggVj1VJKTk4MRI0bgxo0b4jmlS9fLybt25NN1t2zZIrafffZZpKSkYNmyZapP1ZWHE0mPHj0QFBSkajuIiJRgOCG7kXfplO1mmDZtGlq0aAEAiIuLMxhQai5pRVZXV1eMHz9eVDmSk5MxevRoFBYWArC8cgIYzoiRVybk4WTmzJnw9fVV3H5r6NSpU7mZOOzSISJHx3BCdlFSUoLNmzcDAHx8fDBgwACD193c3PD666+LxwcPHlR0/IyMDFy+fBmAvlKwatUqbNu2TVQMfv/9d0ybNg06nU6EEycnJzRp0kTReYYPHw4nJ/1fo5UrV0Kr1eL27dti6nBYWBhatmyp6JjW5OnpWe4mfgwnROToGE7ILvbv349bt24B0K9OKg0slevatavYPn36tKLj//nnn2JbGsvSuHFj/PTTT+JcK1aswNSpU3HlyhXxuqurq6LzNG7cGIMHDwagr8Ds2bMHsbGxKC0tBQAMGzZM0fFsQV7dadeuHcLCwuzYGiKiyjGckF1U1KUjadOmjahKnDp1StHx5YNoe/fuLba7du1qcGO7pUuX4ubNmwCUd+lIJkyYILa//fZbgy4dRwgn8nEno0ePtmNLiIjMw3BCqistLRXhxNXVFVFRUUb38/T0RGhoKADg7Nmz0Gq1Zp9DfideeTgBgEcffRRr1qwRd+2VWBpORo4ciXr16gEA1q9fj5iYGABAnTp1EBkZadExrenxxx9HmzZt0Lp1azz33HP2bg4RUaUYTkh127ZtEzNkBg4cKL7YjZEWEcvLyxPdL5XJz88X3UCtW7dGQEBAuX3+8Y9/YPfu3WjQoIF4ztKZNB4eHnj00UcB6NdUyczMBKD/bNKCcvYUEBCAM2fO4OzZs2jcuLG9m0NEVCmGE1Ldl19+KbafffbZCvdt37692Da3a+fIkSMoLi4GUPFqrL169cLhw4fx4IMPok2bNpg8ebJZxzdG3rUjcYQuHYlGo4FGo7F3M4iIzMJwQlal0+mwatUq7Nixw+jriYmJotujWbNmJrt0JPJwYu6gWPlN9ipbKr558+b47bffcPbsWbRq1cqs4xvTq1evcrNyKvtsRERkHMMJWdUXX3yBJ598EoMHD8auXbvKvf7111+LBdWeeeaZSu+GK3XrAOaHE2l9E6D8eBNb0Wg0ePLJJ8XjLl26oFGjRqqcm4iopmE4IavR6XTiBnc6nQ5vvfWWwcquhYWFWLp0KQD9QFhzulHCwsJEgDEnnGi1WrEmir+/P1q3bq34c1jqqaeegpeXFwBg3Lhxqp2XiKimYTghqzl69CjOnDkjHh88eFB04QDAhg0bxLTdMWPGIDAwsNJjuru7i+6Ws2fPivVDTDl//rwYkNqrVy9Vx1kEBwfj4MGD2LhxI1588UXVzktEVNMwnJDVyNcPkbzzzjvQ6XTQ6XRYtGiReH7atGlmH1fq2iksLMSlS5cq3FfepVPZeBNbuPfee/Hwww/DxcVF9XMTEdUU/A1ai2i1Whw+fBgZGRniuXbt2ol72FRFYWEhvv/+ewD69UlatmyJkydPIj4+HitWrMCWLVvEQNX27dsrWv+jffv2WL9+PQB9105FK5zu3r1bbKs13oSIiKyL4aQW+fDDD/F///d/Bs+5ubnht99+Q0RERJWOvWXLFtGd8vDDD2PcuHFiKm3ZsSWzZs1S1N1SdjqxqRVlP/vsM6xZswaAvjtIvvw9ERFVH+zWqSV0Oh2WLFlS7vmioiI8/vjjIlhYSt6lM2HCBAwdOhQ9e/Y02Kd+/fr45ZdfEB0drejY5szY+fLLL/HSSy+Jx9OnTzd6vx4iInJ8DCe1xPnz58Vdetu1a4cPPvgA3bp1AwAkJydjypQpBjNrlEhPT8fWrVsBAEFBQejfvz80Gg3mzZsn9unRowfi4+MxfPhwxcdv2bKluCGfsXCyYsUKg2XZ3377bTzzzDOKz0NERI6B4aSW+PXXX8X25MmT8eabb2LDhg3w8/MDoL8R3+LFiy069k8//YSSkhIAwBNPPCGm/j7wwAOIjY3FN998g7179yIkJMSi47u6uoopwefPnxervwJATk4OXnjhBfH4jTfewOzZsy06DxEROQaGk1pCHk4eeughAPqpr8uXLxfPz5gxA+fOnVN87H379ontkSNHGrw2aNAgTJgwocr3mJG6doqLi3Hx4kXx/LZt25CXlwcAeOyxxzBv3jwu005EVM0xnNQCt2/fxv79+wEArVq1MpjtMnLkSFF5KCgowIoVKxQfXzq2p6cnOnfubIUWl2fqHjvS3Y0BYOLEiQwmREQ1AMNJLRAbGysWL5OqJnKvvfaa2JYvomaO69evi7sF9+jRw2Z34e3UqZPYlqYVFxUVYcuWLQCAevXqoV+/fjY5NxERqYvhpBYw1qUj17RpU3h7ewPQr8KqhFqLng0aNEisKLthwwYkJSUhLi4Od+7cAaC/A7CtghEREanLquFk6tSp6N27NyIjIxEZGWkwtVOuoKAA77zzDvr06YNhw4Zh27Zt1mwGyZSUlIiZNHXr1jW6nolGo0GbNm0A6O8aXFBQYPbxpS4dAFVeK6Ui7u7uYkaOVqvFZ599hp9++km8bmrtEyIiqn6svgjbrFmzMHjw4Ar3Wbx4Me7cuYOYmBhcunQJL7/8Mtq2bWvxbA4y7eDBg2INk8GDB5usLrRp0wZHjx6FVqtFQkKCwdoiFZHCiUajQa9evazTaBOeffZZzJs3D4WFhViyZIm4yZ67uzuGDBli03MTEZF67LJCbExMDBYsWAAfHx906tQJffr0wfbt2/H0008b3b+oqAhFRUUGz7m4uNSaMr5WqzX4vxKbN28W21FRUSaPIb9775kzZ9CuXbtKj3337l2cOHECANCxY0fUqVPHojaaKyAgAOPGjcPy5cuRnZ2N7OxsAMCAAQPg5eVV7jrZsi01Ba+VMrxeyvB6ma82XSsnp8o7baweTj766CN89NFHCAsLw4wZM8QdZSXZ2dm4desWWrZsKZ4LCwszufInoF9kq+zqptHR0Rg7dqx1G+/gkpOTFb9H6tLRaDTo0KEDkpKSjO7n7+8vtg8ePCgWaKvIvn37xF+ke++91+SxrSk6Otpg+jOg704ydm5LrldtxWulDK+XMrxe5qsN1+qee+6pdB+rhpOXXnoJoaGhcHJywtq1a/Hyyy9j/fr1ovwOAHl5eXB2djZYWtzb21usVWHMxIkTMW7cOMOG17LKSXJyMoKDg81KnPL3JSQkANCvslrRNF/5jfjS0tLM6mKTTzseMmSIKt1yISEhGDhwIHbs2AFAn8AnTpyIBg0aiH0svV61Ea+VMrxeyvB6mY/XypBVw4l8nMKECRPwyy+/4PTp0wb/Cvfy8kJpaSkKCgpEQMnNzTUIMGW5ubnVmiBSEScnJ0U/tImJicjPzwegXyekoveGhYXByckJWq0W58+fN+s88pk6ffr0Ue0v1CuvvCLCSXh4uJjFU5bS61Wb8Vopw+ulDK+X+Xit9Gx6BYxd4Lp168Lf31/8ix4ALly4gNDQUFs2RVUJCQno1KkTfH19xX8dO3bE+fPnVW2HfLGyyga4uru7o0WLFgCAc+fOVdrvWVxcjEOHDgEAmjVrhuDg4Cq21nyDBw/GtGnT0Lp1a3z88ceqnZeIiNRhtXBy9+5dHDx4EEVFRSguLsbq1auRnZ2Ntm3blts3KioKS5cuRW5uLk6ePIm9e/di4MCB1mqKXel0Ojz33HP466+/cOfOHfHfyZMnMX78eHEPGjXIx/HIV1g1RZpOnJeXh2vXrlW474kTJ5CbmwvAtuubGKPRaPDFF1/g3Llz6N69u6rnJiIi27NaOCkpKcGiRYvQv39/DB48GPv27cOnn34KHx8fbN261WDw6jPPPAMfHx8MGTIEb7zxBt544w00b97cWk2xq23btokuBx8fH7Ru3Rr16tUDAPz555/45JNPVGuLPJyYMzVYCicAKr3Hzs6dO8W2Ldc3ISKi2sdqY07q16+PVatWGX1t6NChGDp0qHjs4eGBuXPnWuvUDqOkpAQzZ84Uj5csWYLHHnsMf/zxB8LDw6HT6fDuu+9ixIgRBkHAVqRuHRcXF4P76ZhSNpwMGjTI6H4xMTGYNWuWeNynT58qtpSIiOhvHHVjRUuXLhXLv/fs2ROPPvooAKBXr16YMWMGAKCwsBCTJk0S97qxVGlpKQ4cOICdO3eKQa9yJSUlovrRqlUrswYUy7vgTC1jHxsbi9GjR4t1ZyZMmGD2gm1ERETmYDixkuzsbLz77rvi8YIFCwzukPv++++LtV3++OMPfPXVVxad59SpU3jhhRcQFBSEiIgIDBw4EP7+/hg1ahS+/fZbFBcXA9APypUChLnhQb4Qm7FunT179mDUqFEoLCwEAIwdOxZLly616HMQERGZwnBiJZ999hkyMjIA6BcK6927t8HrXl5eWLZsmXhsqgusIqmpqejatSsWLVqEGzduiOfz8/Px888/46mnnsLbb78NQPlgWADw8/NDw4YNARgPJzNnzhT33RkzZgy+++47uLjYZZFhIiKqwRhOrES+TPy8efOM7tOnTx8x9iM+Pl5UIMwVFxcn3uPu7o5Ro0Zh0qRJBut8rFy5EqWlpYoHw0qkrp20tDRkZWWJ53NychAfHw9AX2H5/vvv4erqqqj9RERE5mA4sYKsrCwcOXIEgL5KIV+avyzp5nhFRUU4duyYovMcPXpUbG/YsAGbNm3CsmXLkJKSgmHDhgHQh4rff//dYI0TcysngOkZO3/++adY+6Rv374MJkREZDMMJwolJiZiz549BoNQ4+LixBd3Zeu19OzZU2wfPHhQ0bnlYUa+6q6TkxMee+wx8Xj9+vWicuLm5lZhWCrLVDiRFlwDgB49eihqNxERkRIMJ5XIycnBxo0bMXXqVISGhiI0NBT9+vXDhAkTxD7SuiaA/g65FZEqJ4B+YKy5tFqtCCdNmzYVY0Mkw4cPF9WMH3/8ERcuXACgDxtKxoXIw4l8xg7DCRERqYWjGU2Ii4vDhx9+iN9++03MepH78ccfcenSJbRo0UIsSObi4lLpmh8dOnSAt7c3cnNzFYWTK1eu4O7duwCArl27lnu9Xr16GDRoELZs2YLU1FSD8ylx7733iu24uDixLYWTOnXqqLJGCxER1V6snBiRl5eHESNGYOvWrQbBxM3NTdx/BtDflffq1auiStGzZ0/UqVOnwmM7OzuLJdevXbtW6TLxkpMnT4rtLl26GN3nkUceKfeckvEmABAUFIROnToBAA4fPozk5GRcu3YNKSkpAPTdSc7OzoqOSUREpATDiRH79+8XVYrAwEA899xziImJwe3bt7F//37x5bxixQrExsaK91XWpSORd+2YO+5EHk6MVU4AYMSIEeW6cCxZIG3MmDFie+PGjezSISIiVTGcGPHbb7+J7U8//RSLFi3C0KFD4eXlhUaNGomZMSkpKXj//ffFvuaGE0sGxcpn35iqnPj5+aF///4GzymtnACG4WTDhg04fPiweMxwQkREtsZwYoT8pnYPPvhgudcnT54stpOTkwHob/Jn7h1y5eHEnHEnWq1WzL4JDg5GgwYNTO4r79rx9PTEPffcY1ab5Nq1ayfGlezfvx+//vqreI3hhIiIbI3hpIxbt26JxcY6depkNAhERUWhUaNGBs/169fP7LU/GjRoIMauHD161OiAW7kLFy4gNzcXgOkuHcmoUaNEt1PHjh3h5GTZH7FUPdHpdDhz5gwAoFmzZuU+NxERkbUxnJSxe/du6HQ6AKa7aVxcXAymEle0rynSuJPCwkIcP368wn3li6+Z6tKRBAQE4LPPPkOvXr1MrlRrjtGjR5d7ztzKEBERUVUwnJQh79IpO35DbtKkSQaPlYYTJV078sXXKqucAMC0adPw+++/G+2SMtf999+P5s2bGzzHLh0iIlIDw0kZ0mBYV1dXREZGmtwvLCwMgwcPBqC/10y7du0UnaeixdhKS0uxa9cuMZ5FSeXEWjQajcHAWIDhhIiI1MFwIpOUlISEhAQA+sqGj49PhfuvXr0aX3/9NbZt2waNRqPoXPfeey+8vb0BAFu3bkVOTo54bd68eejfvz9atGiBt99+W4yBadasGQICAhSdpyrk4cTZ2Vm1YERERLUbw4mMfAqxOd00/v7+ePrpp8t1f5jD1dUVjz76KAAgOzsbq1atAgDcvXsXCxYsAAAUFxfjgw8+EMFF7XDQo0cPMXA3PDwcXl5eqp6fiIhqJ4YTGXPHm1jLiy++KLY///xz6HQ6LF++HHfu3DG6v9rhxMnJCZs3b8bcuXPx7bffqnpuIiKqvRhO/ken04nKiZI1S6rivvvuE+Nazpw5g+3bt2PhwoXi9Y0bNxoMah06dKjN21RW27Zt8dZbb1lUHSIiIrIEb/z3P6dOnUJ6ejoAoG/fvmavWVJVL774Ivbt2wcAmDBhAm7cuAFAH0QefvhhjBo1Cnv37kVWVhbuu+8+VdpERERkT6yc/M+uXbvEttJpwVUxatQoBAUFAYAIJgDw6quvAtDPmomMjETHjh1VaxMREZE9MZz8z3PPPYcDBw5gzpw54t45anB1dcW0adMMnrv//vvxwAMPqNYGIiIiR8Jw8j+urq7o3bs33n33XbRq1UrVcz/99NNwc3MTj2fOnKl4ajIREVFNwXDiABo2bIiXXnoJgH6Q7NixY+3cIiIiIvthOHEQ8+fPx5EjRxAXF6faYFwiIiJHxNk6DsLJycms++YQERHVdKycEBERkUNhOCEiIiKHwnBCREREDoXhhIiIiBwKwwkRERE5FIYTIiIicigMJ0RERORQGE6IiIjIoTCcEBERkUNhOCEiIiKHwnBCREREDoXhhIiIiBwKwwkRERE5FIYTIiIiciganU6ns3cjiIiIiCSsnBAREZFDYTghIiIih8JwQkRERA6F4YSIiIgcCsMJERERORSGEyIiInIoDCdERETkUBhOiIiIyKEwnBAREZFDYTghIiIih8JworLFixcjOjoa3bp1Q2xsrHi+oKAAH3zwAQYOHIhBgwZh1apVBu/r2rUrIiIiEBkZicjISCxfvtzgve+88w769OmDYcOGYdu2bap9HluzxfX65JNPMHLkSPTp0wdPPPEEjh07ptrnsTVbXC9JSkoKwsPDMW/ePJt/DjXY6lr98ssvePjhhxEREYFHHnkESUlJqnweW7PF9bp+/Tqef/559OvXD0OHDsWKFStU+zy2Zun1ysnJwXvvvYcHH3wQ/fr1w1tvvWXw3pr6u74sF3s3oLYJDg7GzJkz8dVXXxk8v2zZMqSkpGDTpk3IycnBtGnT0LJlS/Tq1Uvs89NPPyEgIKDcMRcvXow7d+4gJiYGly5dwssvv4y2bdsiJCTE5p/H1mxxvXx8fPD5558jKCgIu3btwquvvorNmzfD29vb5p/H1mxxvSSffPIJWrdubbO2q80W12rv3r347rvv8PHHHyM0NBTXr19HnTp1bP5Z1GCL6/XRRx8hKCgIn376KW7cuIHJkyejffv26N69u80/j61Zer3mzJmDwMBA/PLLL/Dw8EBCQoJ4b03+XV8WKycqi4qKQs+ePeHm5mbw/B9//IHHH38cPj4+aNSoEUaMGIEtW7aYdcyYmBhMnToVPj4+6NSpE/r06YPt27fbovmqs8X1mjp1KoKDg+Hk5IQBAwbA3d0dV69etUXzVWeL6yW9X6fToUePHtZust3Y4lotXboUr7zyClq0aAGNRoOmTZuiXr16tmi+6mxxvVJTUzFo0CC4uLggKCgI9913Hy5fvmyL5qvOkut16dIlnDt3DjNmzICPjw9cXFzQpk0b8d6a/Lu+LIYTByK/QbROpyv3l3T8+PEYOnQoZs+ejaysLABAdnY2bt26hZYtW4r9wsLCasxf8IpYcr3KSklJQXZ2NoKDg23ZVIdg6fUqLi7Gp59+iunTp6vUUvuz5FqVlpbi/PnzSEhIQFRUFEaMGIElS5agNtz43dKfrejoaMTGxqKoqAhXr17FyZMn0bVrV7WabTemrtfZs2fRrFkzvPPOO+jfvz+efPJJxMfHA6h9v+sZThxEz5498f333+Pu3btISUnBr7/+ioKCAvH6kiVL8Ouvv2LNmjUoKCjAe++9BwDIy8uDs7MzPDw8xL7e3t7Iy8tT/TOoydLrJVdSUoLZs2fjiSeegI+Pj5rNV11Vrtfq1asRHh5eKwIcYPm1yszMRGlpKY4cOYK1a9fi66+/xo4dO7B582Z7fRRVVOVnq1OnTjh58iQiIyMxevRojBw50uDLtyaq6Hqlp6fj0KFD6N69O2JjY/HUU0/h1VdfxZ07d2rd73qGEwcxefJkNGnSBI888gheeukl9O/fHw0aNBCv33///XBxcUH9+vXx6quv4sCBAyguLoaXlxdKS0sNfhnk5ubCy8vLHh9DNZZeL4lOp8Ps2bNRv359TJ061R4fQVWWXq/09HT88ssvmDRpkh1bry5Lr5W7uzsAYMKECahTpw4aNWqE6OhoHDhwwF4fRRWWXq/S0lK8/PLLGDVqFA4cOIBffvkFO3fuxM6dO+34aWyvouvl7u6OoKAgjBo1Ci4uLnjwwQcRFBSEkydP1rrf9QwnDsLT0xNvvfUWYmNjsX79emg0GrRr187ovk5O+j82nU6HunXrwt/f32DQ1IULFxAaGqpKu+3F0usl+fDDD5GRkYH3339fvF6TWXq9zpw5gxs3bmD06NEYPHgwvvvuO2zZsgUvvviims1XVVX+Lsq/lKXnazpLr1d2djYyMjLwyCOPwMXFBU2aNEG/fv1w9OhRNZuvuoquV4sWLUy+r7b9rq/5v5UdTElJCQoLC6HT6cS2VqvFjRs3cPPmTZSWluLgwYPYvHkzHn/8cQD6QVIXLlxAaWkpsrOzsWDBAvTo0UMMtIqKisLSpUuRm5uLkydPYu/evRg4cKA9P6bV2OJ6LV68GCdOnMCCBQvKDVar7qx9vXr37o2ff/4Zq1evxurVqzFmzBgMGDAA77//vp0/adXZ4mfroYcewsqVK5Gbm4uMjAxs2LABERER9vyYVmPt61W/fn0EBgbip59+EsfZs2dPhV/Q1Ykl16tr167Q6XT49ddfUVpaij179uD69eu49957AdTs3/VlaXS1Ido7kNmzZ+PXX381eE6aajZr1ixkZWWhefPmePXVV3H//fcDAI4cOYJ//etfSE9Ph7e3N7p3744ZM2bAz88PgH7u+9y5c7Fnzx7UrVsXL774IoYMGaLuB7MRW1yvrl27ws3NDc7OzuKYb775JoYOHarSp7IdW1wvucWLF+PWrVt48803bf9hbMwW16q4uBjz58/Hjh074OXlhVGjRmHq1KnQaDTqfjgbsMX1On36NBYsWIBLly7Bw8MDgwYNwvTp0w3+blZXllwvALh48SLef/99JCYmIjg4GK+++io6d+4MoGb/ri+L4YSIiIgcCrt1iIiIyKEwnBAREZFDYTghIiIih8JwQkRERA6F4YSIiIgcCsMJERERORSGEyIiInIoDCdERETkUBhOiKhG6dq1K7p27Vrj7wZMVJMxnBCRYlOnThUh4B//+IfBa1lZWQgPDxevf/bZZ1Y//+bNm8XxiajmYTghoiq5ePEijh07Jh7/9NNPKCwstGOLiKi6YzghIou5uLgAANauXQsAKC0txfr168Xzcnfu3MH8+fMxbNgw9OjRA4MGDcI777yDtLQ0sc/ixYvRtWtXDB8+HDt27MCYMWMQERGBp59+GleuXAGgv6HanDlzxHukCsrixYsNzpeTk4PZs2ejb9++GDp0KJYuXWrtj09ENsJwQkQWCwsLQ1BQEOLi4nDjxg3s3bsXaWlp6N+/v8F+hYWFmDp1Kn788UfcvHkTISEhyM3NxdatWzFx4kTcvn3bYP/09HS888470Gg0KCwsRHx8PN577z0AQNOmTREUFCT27dChAzp06IDAwECDY3z++ec4ePAgXF1dkZGRga+++goHDx600ZUgImtiOCEiizk5OSE6OlpUTKQKyqOPPmqwX2xsLC5dugQAmD9/PtatW4dly5bByckJGRkZWLduncH+paWl+PDDD7F+/XoxpuWvv/5CQUEBpkyZgilTpoh9v/nmG3zzzTcYNWqUwTHCwsKwefNmg0rOkSNHrPr5icg2GE6IqEpGjhwJT09PrFu3Dn/++Sfatm2Ljh07Guxz5swZAICHhwf69esHAGjTpg1CQkIMXpf4+PigT58+AIDQ0FDxfNkKS0UGDhwIV1dX+Pr6ws/PDwCQmZmp7MMRkV0wnBBRldSpUwdDhw5Fbm4ugPJVE0uPKXF2dhbbOp2uSsdQ8n4ish+GEyKqsrFjxwIAfH19MWjQoHKvt2vXDgBQUFCAuLg4AMC5c+eQlJRk8Lq5PDw8xHZ+fr4lTSYiB1Z+SD0RkUItW7bEb7/9BmdnZ7i5uZV7ffDgwfjuu+9w+fJlvP766wgJCcH169eh1WrRoEEDEW7M1bx5c7EdHR2NgIAATJ8+Hffdd18VPwkROQJWTojIKurVqwcfHx+jr7m7u2PJkiUiSCQlJcHb2xtDhw7FihUrUL9+fUXnatWqFaZMmQJ/f3+kpaXh1KlTuHv3rjU+BhE5AI2OnbBERETkQFg5ISIiIofCcEJEREQOheGEiIiIHArDCRERETkUhhMiIiJyKAwnRERE5FAYToiIiMihMJwQERGRQ2E4ISIiIofCcEJEREQOheGEiIiIHMr/A/lEX9y1tj7gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -323,14 +379,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEPCAYAAABiCi5wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABlNklEQVR4nO2dd5gUVfaw356cgBnSAAMMOYcBiwxDUJAoqKirruK6K+YN/ta0u4Zd8+oaV9dFXcOqn7oYAUVQouQiKUniEJo0MDn3TNf3R3X11PR0qO6umsR9n4dn6O7qOnW6qk6de+6559gURUEgEAgEjYeI+j4AgUAgEASHMNwCgUDQyBCGWyAQCBoZwnALBAJBI0MYboFAIGhkCMMtEAgEjYy6MtxKQ/93+vTpej8GoYvQpbH8E7rU2T+vCI/bRVVVVX0fgmkIXRomQpeGSWPURRhugUAgaGQIwy0QCASNDGG4BQKBoJEhDLdAIBA0MoThFggEgkaGMNwCgUDQyBCGWyAQCILA4XBQ3+WwheF28dRTT7Fy5Uq++OILnnrqKQBuuukmunbtSkZGBkOHDmXDhg31fJQCgaA+OXz4MM2bN+e+++6r1+MQhtvF9u3bGTlyJKtXryYzM9P9/rPPPsuOHTt4+umnufXWW+vxCEOnsrKyvg9BIGgSbN68mbKyMl555RXOnTtXb8dxwRvue++9l0GDBrFz505GjRrFm2++ye23387f/va3GttlZmZy8OBBioqKuPjiixk6dCgDBw7kyy+/BKC4uJgZM2YwePBgBgwYwMcffwzAAw88QL9+/Rg0aBB//OMfAcjOzubKK69k2LBhDBs2jHXr1gHw6KOPcvPNNzNhwgS6devGyy+/7Jb/2GOP0bt3b8aOHcu1117Lc889B8ChQ4eYOnUqF110EePGjWPfvn2AOlq47bbbGDFiBPfddx+rV68mIyODjIwMhgwZQmFhobU/rEDQBDl//jwA5eXlvP322/V3IIqi1MW/Bs3mzZuVm266SamoqFBGjx7tfn/evHnK//73P0VRFOWTTz5Rhg8frjgcDiU/P19RFEXJzs5WunfvrjidTmXhwoXKb37zG/d38/LylHPnzim9evVSnE6noiiKkpubqyiKolx77bXK2rVrFUVRlKNHjyp9+vRRFEVRHnnkEWXUqFFKWVmZkp2drbRs2VKpqKhQNm/erAwePFgpLS1VCgoKlB49eijPPvusoiiKMmnSJGX//v2KoijKxo0blYkTJyonTpxQ5s2bp8yYMUOprKxUFEVRZs6cqfzwww+KoihKYWGh4nA4LPktzebEiRP1fQimIXRpmASjy9/+9jd3HZFu3bopVVVVFh6Zoig+bGpU/T0yqrHZbJbsVzE4gbBt2zb69evHvn376Nu3b43P7r33Xh5//HHatGnDW2+9haIo/OlPf2LNmjVERERgt9s5c+YMAwcO5P/+7/+4//77mTlzJuPGjaOyspK4uDh+/etfM3PmTGbOnAnAd999x549e9wyCgoKKCoqAmDGjBnExsYSGxtL27ZtOXPmDOvWrWP27NnExcURFxfHrFmzACgqKmL9+vVcddVV7n2Vl5e7/3/VVVcRGRkJwJgxY7jnnnu4/vrrueKKK+jYsWMIv6hAcGGjedygxruXLVvG1KlT6/w4AhpuSZJSgc8BB1AFXA90B/4OOIHbZVn+ycqDtIodO3Zw0003ceLECZKTk3nllVdQFIWMjAz3ROSzzz7L3Llz3d955513yM7OZuvWrURHR9OlSxfKysro1asX27Zt4+uvv+Yvf/kLF198MQ8//DCbN2/m+++/Z+HChfzzn/9kxYoVOJ1ONm7cSFxcXK1jio2Ndf8/MjLSb3za6XSSnJzMjh07arxvt9sBSExMdL/3wAMPMGPGDL7++mvGjBnDt99+S58+fUL63QSCCxXNcPft25e9e/fy+uuv14vhNhLjPgeMlWV5PPAe8GvgCWAGcB3wTLgH4Ws4EO6/QGRkZLBjxw569erFypUrmTRpEt9++y07duwgPj7e63fy8/Np27Yt0dHRrFy5kqNHjwJw8uRJEhIS+OUvf8m9997Ltm3bKCoqIj8/n+nTp/PCCy+wc+dOAKZMmcIrr7zi3qen4fVkzJgxLFq0iLKyMoqKili8eDEAzZs3p2vXrvzvf/9z/46aDE8OHTrEwIEDuf/++xk2bJg7Fi4QCIyjGe7bb78dUCcr64OAHrcsy/qah82AQ8AkWZZzgVxJklpadXB1QXZ2NikpKURERLBv3z769evnd/vrr7+eWbNmMXDgQCRJcnutP/30E/feey8RERFER0fzr3/9i8LCQmbPnk1ZWRmKovD8888D8PLLL3PnnXcyaNAgKisryczM5PXXX/cpc9iwYVx22WUMGjSI1NRUBg4cSIsWLQD44IMPuP3223n88cdxOBz84he/4Ne//nWtfbz44ousXLmSiIgI+vfvz7Rp00L9yQSCCxbNcGt2Ijc3t16Ow2bEM5UkKQP4N5AMTAFekmV5juuzH1ANeYXHd+YD8wHuuuuuiyZPnmzmcZuOw+EgOjq6vg/DJ8XFxSQmJlJaWsqVV17JM888w8CBA71u29B1CQahS8PkQtVl7NixZGVlsXr1aiZPnkxFRQUHDhzwOUIPl7S0NK8TgIYmJ2VZ3gGMkCTpauDPQHP9PjyNtus7C4AFrpf1u8zIAHa7nbS0tPo+DJ9cd9117Nmzh7KyMubNm+c3rtbQdQkGoUvD5ELVJT8/H1A97pSUFM6cOUNCQgIdOnSw8hBrYWRyMkZnmPOBIiBKkqRk1NBJjnWHJ9D48MMP6/sQBIILmqqqKvLy8rDZbKSkpLgNd25ubsMz3ECGJEnPoWaUlAE3Az2Br1E96TusOzyBQCBoGOTm5qIoCikpKURGRtKypTq9l5NT976rkcnJzUCmx9ungNGWHJFAIBA0QLSJyVatWgGQkpIC1M8E5QW/5F0gEAiMIAy3QCAQNDK0kIgWIhGGuwmRl5fHa6+95n69atUq91J3gUDQePH0uOszxi0Mt8l4Gm6BQNA0EKGSBkJWVhZ9+vThpptuYty4cVx//fV89913jBkzhp49e7J582ZycnKYM2cOgwYNYuTIkfz444+A7xKsDzzwAIcOHSIjI4N7770XUItBzZ07lz59+nD99dfXe/cMgUAQPA3JcDeI6oD1ycGDB/nf//7HY489xpw5c/jwww/54Ycf+Oqrr3jyySfp1KkTQ4YM4YsvvmDFihXceOON7toi+/btY+XKlRQWFtK7d29uv/12nn76aXbt2uXeZtWqVWzfvp3du3fToUMHxowZw7p16xg7dmz9KS0QCIJGGG4PbJlOS/arrAk8oOjatSsDBw7EbrfTv39/Lr74Ymw2GwMHDiQrK4ujR4/y6aefAjBp0iTOnz9PQUEB4L0EqzeGDx/uLqOakZFBVlaWMNwCQSPDc3JSxLjrEX0Z1YiICPfriIiIgC2/jJZgDaZUq0AgCI8zZ86waNEi00OSwuP2wIhnXF+MGzeODz74gIceeohVq1bRunVrmjdv7nP7Zs2aibZgAkE94XA4uPjii9m9ezcbNmxg5MiRpu27IRnuhmsxGwiPPvooW7duZdCgQTzwwAO8++67frdv1aoVY8aMYcCAAe7JSYFAUDe88sor7N69G1CTD8zEn+Gu64QDQ2VdTaDBp1FcqNXOGjpCl4ZJQ9Tl5MmT9O7d290G8NVXX+WOOwKXUjKqS0JCAqWlpRQWFpKUlOTzPZPxWtZVeNwCgaBJ8OCDD1JUVOTuYWtmCKO0tJTS0lKio6NrtASsr3CJMNwCgaBJsGTJEgB3Bygzsz20fbVq1apGc3NhuAUCgSBEKisrOX/+PDabjWHDhgHmGm7P+LaGZrjrOiVQGG6BQNDo0RvW1q1bA+Z6wb4Mt5bLLTxugUAgCJKzZ88C0LZtW0sWxmiGW9u3hgiVCAQCQYhkZ2cD0KZNG0u84HPnzgG4vXkNYbgFAoEgRPQetxVx55MnTwLU6i0pYtwCgUAQIprh1nvcZhpTu90OUCvfW8S4BQKBIES0UEnbtm1JSEggOjqasrIySktLTdm/Zrh9edzCcAsEAkGQ6D1um81muifsy+MWhlsgEAhCRO9xg/khjECGW8S4BQKBIEj0HjeYa1BLS0vJzc0lOjq6VlaJiHELBAJBiFjpceszSiIiappMESoRCASCELHS4/YVJtHLyc3Nxem0ppOXNwI2UpAkaTjwEuAA7MCNwB7X/wGekGV5uWVHKBAImgSlpaU88sgjTJs2jYkTJ5q234qKCvLy8oiIiLCkrZg/wx0dHU2LFi3Iz8/n/Pnz7geH1RjpgHMcmCTLcqkkSU8Bs4F8WZYnWHpkAoGgSfHaa6/x7LPPsmnTJlMNt35VoxbKMDNU4isVUKNr167s2LGDI0eO1JnhDhgqkWX5lCzLWjJkBeAEkiRJWi1J0oeSJLX083WBQCCgvLyc559/Hqg2tGbhGd+GuguVAHTr1g2AQ4cOhS3LKIZ7TkqSlA5MAR4HVsuyfF6SpBuBvwJ3e9l+PjAf4K677mLy5MnmHLFFOBwO9wlq7AhdGiYXsi4ffvihe5Lv/Pnzpv4Oe/bsAaB58+a19mu32wPKCqTLwYMHAYiPj/e6nfbA2L59O5mZmUEdeyB8PSwMGW5JkpoD/wVukmXZAZx3fbQQ+I2378iyvABY4HopWpfVIUKXhsmFqktVVRVvvPGG+3VBQYGpv4PWfrFTp07u/Xbv3h2AsrKygLIC6aKFWwYOHOh1u4yMDED1/Ovq/AYMlUiSFAV8BPxVluWfJUmKkSQp1vXxOOCglQcoEAgaN0uWLOHAgQN069aNqKgoSktLKS8vN23/nhklUHeTk1D9kDh8+HDYsoxiJB3wWmAE8JAkSauAy4H1kiStAf4IPGLd4QkEgsbO9u3bAbjqqqtITk4GzM171lcG1DArv1pRFHeIJ5DhblAxblmW/4saJtHzsTWHIxAImhrHjx8HoEuXLqSkpHDu3Dlyc3Np166dKfvX1+LWMMvjPnfuHBUVFaSkpBAfH+91m06dOhEVFYXdbqe0tNTndmYiFuAIBAJL0Qx3p06d3J5wXl6eafv353Hn5eWFtTAmUCogQFRUFOnp6QAcOXIkZFnBIAy3QCCwFG+G28xQiTePOyoqimbNmuF0OikoKAh534Hi2xp1HecWhlsgEFiGoigcO3YMUA13XcW4wZxFOIHi2xp1HecWhlsgEFhGXl4excXFJCYmkpycbEmoxJvHDeYswtFGC8JwCwSCBkdubq7bczUTzfB17twZm81meqikqKiIgoICYmJi3N68RrgTlMXFxfznP/8BYNCgQX63FYZbIBDUGV988QUTJ06kTZs2dO7c2R3WMAt9fBvML4OalZUFqBkrniVXww2VPPPMM9jtdoYOHcoVV1zhd9u6jnEbXvIuEAiaFk6nkxtuuIGioiJAXeG4Y8cOOnfubJoMfXwbMD3GrWVxdO3atdZn4YRKsrKyePbZZwF4+eWXiYyM9Lu9Jv/IkSM4nc5aDxGzER63QHCBYrfbKSoqonXr1lxzzTXu98zEl8dtVoxb73F7osW8T58+HfR+n3nmGcrKyrjuuusYM2ZMwO2TkpJITU2lvLy8TurRCMMtEFyg7N+/H4C+ffvSp08fwDrDrXnxZodK/Hnc2sNCO4Zg2Lp1KwC33Xab4e907NgRgFOnTgUtL1iE4RYILlB+/vlnAHr16uXOmtDS38zC0+M2O1Tiz+PWHhbBGm5FUdi3bx+gPtSMoq0EDcXDDxZhuAWCCxTN49YbbrM9bs8Yd2PwuE+dOkVhYSGtWrWq1RzYH8JwCwQCy9Ebbm1Jt5mG2+l0cuLECaB+Ytx6w62VfjXC3r17geC8bag23GfOnAnqe6EgDLdAcIFitcd99uxZHA4HLVu2JCEhAYAWLVpgs9koKCigqqoqrP3n5eWRl5dHQkKC15ZhLVq0ICkpieLi4qAeFFqYRIv7G0V43AKBwFIqKio4cuQINpuN7t2707p1a2JiYsjLy6OkpMQUGZ4TkwARERE0b94cCN/r1nvbNput1uc2m83tdQeTnx6q4U5NTQWE4RYIBBZx+PBhnE4nXbp0ITY2FpvNZnq4xDO+rWFWuMRffFsjlAlK4XELBIIGiT5MomF2ZolnRomGWROU/uLbGqFMUIYb4xaGWyAQWII/w22Wx63tR8tv1jDLcBvxuIM13IWFhdjtdmJjY901to3iabhfffVVpkyZwpdffhnUfowgDLdAcAHizXCbHSrRDJhnpxuzcrmt8Lj1ue2Blrl7kpSURHx8PCUlJRQVFbFhwwaWL1/OuXPngtqPEYThFgguQOrC49bS4jwNd13GuIOdnNTCJMHGt0GdDNV73dpDoHfv3kHvKxDCcAsEFyCa4dYbFasMt5ZtoWFGqERRFEMed7CTk6GsmNSjGe5Tp04Jwy0QCMyjuLiYU6dOERMTU2Pi0GzDbWWo5Pz58xQVFdG8eXP3g8AbWnz9xIkThnpPhppRoqHpumPHDgoLC0lJSQlq9aVRhOEWCC4w9O249OVHzcwqqaqqcsd2fXWmCSdUsn37dkAN9XjL4dZISEigVatWOByOWo0iFEXhnnvu4bnnnnO/t2vXLiB8w7169WpA9bb9HV+oCMMtEDRAioqKePPNN8Nqu+ULrXpd+/bta7yvTU6ePHkyrM7ooLYTczqdtG7dmujo6BqfmREq+e677wCYNGlSwG19TVAuXLiQF154gRdffJEzZ86Qk5PD/v37iYuLo3///iEdlxYWWrNmDWBNmASE4RYIGiT/+te/uOWWW5g2bRqlpaWm7tuX4Y6PjyclJQWHwxF2JoSv+DaYa7gnT54ccFtvE5QVFRU8+OCD7terVq1i06ZNAFx00UXExMSEdFyax631wbTKcAfsgCNJ0nDgJcAB2IEbgTnAH4BSYJ4syycsOTqB4AJFCwVs3ryZW265hf/+97+mDbl9GW5QwyW5ubnY7fZaXdODwVd8G0KPcZ89e5Y2bdpw/vx5tm/fTmxsrKEmB94mKP/1r3/V6A+5cuVK90Nm1KhRQR2XHk9969PjPg5MkmU5E8gCZgP3ABOAh4GHLDkygeACZs+ePYCaYvbBBx/w2muvmbZvLYathUb0mDVBacTjDibGvXTpUlJTU7n//vtZsWIFiqIwduxY4uPjA35XM9xHjx4F1DDUY489BsCf/vQnQDXcGzZsAGDkyJGGj8uTBmO4ZVk+JcuyNlarAHoDe2VZrpBleR3gv/2xQCAIiqqqKnd2w4svvgjAJ598Ytr+A3ncEL7h9udxt2rVClA9aKPlVjdv3gzAc8895+4Feckllxj6bo8ePQA4cOCAe1/nz59n8ODBPProoyQmJrJ//37Wrl0LmOdxR0REuGWbjeEYtyRJ6cAU4AegQPdRcMuLBAKBX44cOUJ5eTkdO3ZkxowZ7vfMwp/h1uLBWh3tUPHncbdq1YqkpCQKCgoMT75qDwJFUZBlGTBuuHv27AlUG24th33o0KFER0czfPhwAMrKyujUqZPXkYhR9PpqBbyswFCXd0mSmgP/BW5CNdTNdR97LaorSdJ8YD7AXXfdZWgSoT5xOBx10uSzLhC6NEyM6vLDDz8A0L17dyIjI4mIiODEiRMcOXIk5EkzPVqsNyIiotbxJCYmAurSb3/HGkiXw4cPAxAbG+t1u/T0dHbv3s369esZOnRowGPWHlzR0dE4HA5atGhB27ZtDf2eWjjl8OHDZGVlsW3bNkA1sna7nREjRrBy5UoAMjIywr7emjdvTkFBAenp6WHvSxsBeWJkcjIK+Aj4qyzLP0uSFA30lSQpBpCAH719T5blBcAC10vj7SfqCbvd7vNHamwIXRomRnXRvNUhQ4bQpUsXOnXqxNGjR6msrPS7vNsoWsZDRkZGrRzrQYPUyOf58+f9HmsgXQoLCwE1H9rbdv369WP37t3k5+cb+k3y8/MB+Pvf/84jjzzCvHnzatT5DkSnTp04fvw4DofDHeMfNmwYaWlpjBs3jqeffhqAiRMnhn29tW/fnoKCAgYPHmzZtWskVHItMAJ4SJKkVcAVwIvAKuBx1z+BQGAS2sRkv379AOjWrRtQ7cWGQ2lpKbm5uURHR7tjzXrMDpV4i3FDddz54MGDhvanhUpmzpzJuXPneOmll4I6Hq0my4EDB2rVaRkwYAAtWrQAwpuY1NB0tmpiEgx43LIs/xc1TOLJx+YfjkAg0Ay3Vi+jW7durFy50pQ4t37SUL9qUkNbIq71aQw1BVGT4y3GDdVxZyOGW1GUGjFzzwU9RujVqxfff/89u3fv5vDhw+7OPwCRkZG89tpr/PTTT4wYMSLofXsyefJktm7damhxUKgYinELBIK6wel01irkr4VHzPC4/U1Mghqf1WK0OTk5Xr3yQDgcDs6fP09ERITXXpBQO9PDH0VFRZSUlJCQkEBSUlLQxwPVD4ply5ZRVVVFenp6jVTC6667LqT9euPPf/4z999/P1FR1plXsXJSIGhAHD9+nOLiYlJTU91GUwuVmOFxBzLcEFrXGD3Z2dkoikLr1q191rQOJlSiHyWEOgLQwiJaDRF9OVsrsNJogzDcAkGDwjO+DeZ63NrEnBHDHWqcO1B8W/ssMTGRnJycgCmB/nLCjaJ53A6HA7DecFuNMNwCQQPCm+E2c3JS87j95Srr49yhECi+DeqKUKNetxmGu2vXrjW8fysnDusCYbgFggaElvGgLyvapk0bEhMTycvLC7vdV12ESvwtvtFjdILSDMMdHR1dI5VSeNwCgcA0tAp2+q4uNpvNbXTCjXMHY7hDDZUYNbRGPW4joRcj6I21MNwCwQXGjh07DGVDhIJWCMlzcYlZ4RIjhjvcUIlRj9toZomR0IsRNGMdExMT1OKdhogw3AJBEBQUFDBmzBjGjBljep1sRVHcHrenYTHL4/ZXGVAj2FDJa6+9xiOPPOIuGKV56oE85EChEm1/ZoRK9PJ69OgRdAf3hoYw3AJBEBw8eJCSkhKys7P5/PPPTd13bm4uxcXFNGvWzL2ST8MMj7uiooJz5875za+Gmn0aA1Xvq6ys5Pe//z1/+9vf+O6778jLy+Prr78GQJIkv9/153G///77xMTEsHTpUtMM99ixY4mIiGD8+PFh7achIAy3QBAEeo/3rbfeMnXfem/bM185lFzuAwcOMHfuXHdnF30Iw5/HmZSURHJyMuXl5QE74Wj1PwCeeuop3n77bUpKSpg0aVLAvo3t27cnISGB8+fP16rN/e9//5vKykr+8Y9/mGa4Bw0axOHDh/nHP/4R1n4aAsJwCwRBoPd4V6xYUaOLSrhohjs9Pb3WZ6Hkcr/33nt8+umnzJw5k6ysLF5//XWgdhjGG0bDJZ5dZB5/XC1ddPfddweUYbPZvI4kcnNz3U0Nvv/+e3dcPtwYN1BrxWRjRRhugSAINI83Li4OgLffftu0ffuKb0O14c7KyqKqymsl5VposeZz584xcuRInnzySSIjI3n44YcDftdoZolmuLWVgjk5OaSnpzNr1ixDx+jNcC9fvtyto6IoOJ1OUlJSLKtt3RgRhlsgCALNwGge5dtvv23YkAbCV0YJQEJCAqmpqTXKkgZCM7oJCQnuMMmbb77J9OnTA37XqMet/R633Xab27Decccdhif/tEJPes/9m2++AWDcuHHu98INkzQ1hOEWCIJA87hvuOEG0tPTOXnypHu1Y7j487gh+AlKzXC///77TJkyhX//+9/cdNNNhr6rhWsCydIM7ujRo3n22WeZPn06t956qyEZUFsnp9PpNtwvvvgirVu3BoTh9kQYboHAIE6nk6ysLEANXQwbNgxQ87rNwGzDrXVfmTBhAt9++y3z5883fCzaxKLW+1KjsrKSjz/+mK1btwLVhrt79+7cfffdLFmypFZGjD88Pe4dO3Zw5swZOnbsyJAhQ7j22msBc+LbTQlhuAUCg5w8eZKKigratm1LUlISGRkZQN0Z7mByuQsKCigsLCQhIYHk5OSgj8Wb4V6/fj2SJPGLX/yCG264gfLycvdDRHuoBIvnw0jztqdNm4bNZuPee+9lxowZ3HbbbSHtv6ki6nELBAbRDKZmQDXDvX379rD3XVFRwalTp4iIiPDZ7ioYj1sLk3Ts2DGkUqhav8sjR45QVlbG8ePHmTBhgjv1r6CggM8++4yCggKaN28eUt1uUJf222w2jh07hsPhYNmyZYBquEGNtS9evDikfTdlhMctEBjE07vUe9yBFqoEQlvskpaW5rOWczC53HrDHQoxMTH06NEDRVHYv38/y5cvx+FwMHnyZO655x5AjUGDauRDrZMdGxtLx44dqaqq4sCBA2zevBmAzMzMkPZ3oSAMt0BgEE+Pu0OHDrRp04bc3NyQ63poBAqT6OUG63GHij5csmXLFgBmzZrF1VdfDeA2slqcOlS073/yySeUlZXRv3//kD34CwVhuAUCg2iGW/N8bTabaeESI4Y7LS2N6OhoTp8+TUlJid/9aROT4XQZ92a4hw0bxrBhw9zZHhB6fNvz+++99x6gLk0X+EcYboHAIJqnq6/rbNYEpRHDHRkZ6U7T07JbfGGmxy3LMnv37iUqKorBgwcTERHBxRdf7N7OLI9bezDq87cF3hGGWyAwiGeoBOrWcIPxCUozDLfWrHjp0qU4nU4GDBjgXi5+ySWXuLcL13B7euzC4w6MMNwCgQHKysqw2+1ERka6VxUCDBkyBAguVKIoCjNmzGDkyJGsW7eOzZs3s2jRIqBmAwVv+JugrKioYMOGDSiKYorh1tp7aZkkWt46qJOHMTExgHkeN6hZJN5qtQhqItIBBQID6Jej67M+evXqRXx8PEePHiU3N5eUlJSA+zp79qy79OnYsWOJioqisrKSMWPG1PBkveFrglJRFK688koWL17MggUL3IY7nBh3cnIy7dq1c1fn0xvuxMRE3nzzTU6ePBnwYRMIvcctvG1jCI9bIDCAVjNaqyGtERkZycCBAwHYuXOnoX1pi1pSUlKIiYmhsrKSu+++mxUrVri9WF/4CpW89NJL7nznxx57jJycHKKjo/3W3TaCvjSr3nCDuuz//vvvD2v/AC1btnSvthTxbWMENNySJLWQJGmzJElFkiQNcL13QJKkVa5/k60/TIGgftGa+HrrVagZ7l27dhna188//wyoqXU///wzGzZs4OWXXw5otMH76smtW7dy3333AaoR1FIT09LSiIgIzzfT4txxcXH0798/rH35wmazMXz4cKKjowOOOAQqRkIlJcAM4Fnde/myLE+w5IgEgjBQFCXkxSD+0Dxurf2VHs2g7d6929C+NI+7T58+dOnSJahQg+ZxHzp0CKfTSUREBPfffz8Oh4M777yTIUOG8Jvf/AYIL76toXncGRkZREdHh70/X3zwwQdkZ2d7/X0FtQn4OJZl2SHLcrbH20mSJK2WJOlDSZJaWnRsAkFQvPPOO7Rq1YolS5aYvm9/HnewhlvzuLXJv2BISUmhQ4cOlJSUcPjwYRRFcedYP/TQQ/zyl79095MMJ76tMXv2bHr37h1Uxb9QaNOmDf369bNURlMi1HHUGFmWxwNLgb+aeDwCQcgsXLiQ3NxcbrjhhrBXMnqiedyBDLeRpe96jzsU9It+srKyKCgoIDU1ldTUVGJjY/nTn/4EwNChQ0Pav5709HT27dtnuBysoG4IKatEluXzrv8uBH7jbRtJkuYD8wHuuusuJk9u2KFwh8PhXm3W2LlQdfnxxx8BtfXV3Llz+eSTT3zW/QiG0tJSjh8/TlRUFFFRUbWOR1EUmjdvTk5ODjt27KBt27Ze9+NwODh06BBZWVlEREQQFxcX0nnS0ufWrl1LYWEhoHrv2r7mzJlD79696d69u2XXwYV6jdU1vkZNQV/VkiTFADZZlsuBccBBb9vJsrwAWOB6GV4FnjrAbrebMrRsCFyIuhQVFXH8+HF3JsXmzZv54osv+N3vfhf2Mfz000+AajB95RgPGDCA9evXk5OT487t9sRut1NUVITT6aRHjx4hLxXPzMzklVde4dChQ+6l58OHD6/xO1l9/i/Ea6whYShUIknS18AU4A3gD8B6SZLWAH8EHrHu8AQCY+zduxdQPc+nn34aUHsXmoEW3/Y3cWY0zh1OfFtDHyrRUhAHDx4c8v4EjQ9DHrcsy55N6p6x4FgEgpDRDGb//v0ZPXo0ANu2bTNl3/4mJjUCGe6SkhIURQk7vg1qZklSUhKnTp1i9erVAAwaNCjk/QkaH2IBjqBJoDfcXbt2pXnz5pw6dcq96i8c/KUCavgz3F988QVt27Zl7ty57pZf4RjuiIgIt4d9/vx5oqOjw9qfoPEhDLegSaA33BERESHVEPFFsB63PrPkjTfe4Morr6S4uJhNmzbx+eefA+GFSoAacfR+/foZWrwjaDoIwy1oEmirFjUDqqXCmREuMeJxt2vXjpSUFPLy8jh16hSgZn3Mnz8fp9PJ73//+xrZJuF6yFqcG0SY5EJEGG5BnVJcXOxOYTOLgoICjh8/TkxMjDtVTvNIwzXc+fn5nD17lvj4eL+ZBzabrVa4RIs/z58/nxdeeIEPP/zQvdBE34ggFPSGW0xMXngIwy2oM06ePEm/fv3o06cP5eXlpu13z549gOrFannb4XrcVVVVbN26lX//+9+AWlwqUN2PAQMGANXevzYROWLECPfxHT58mK1bt4a9LL9///5ERkYCwnBfiIiyroI6obS0lDlz5rgbBuzevduUlX3avoAaRZB69+5NfHw8WVlZhsutgtpZ5tFHH2XJkiWcO3fO/b5mlP2hhSy0hUCa4dbHs5OSkgwdRyDi4uKYMWMGW7ZsqVW1T9D0EYZbUCfMnz/fXVMD1I4xVhruqKgoBg0axKZNm9i+fTuTJk0ytK/HHnuMd999F1Ar8Q0bNoy+ffu6Czf5Q2+4FUVx52xblfHx6aef4nQ6xcTkBYgw3ALL2bFjB++//z6JiYlcfvnlvP/++2G3+tKjebieXvHQoUPZtGkT27ZtM2y4tSyUzz77jDlz5gQV0tDk79mzh2PHjlFUVETr1q0t61huxnJ+QeNExLgFlvPVV18BcN111/HLX/4SCL9Ho0ZVVRWbN28G1GXfeoKNc1dVVbnj5ZMmTQo6Dt2iRQvS09MpKytzNzUQ+dUCKxCGW2A5muG+7LLLajTXdTqdYe97z549FBYWkp6eTvv27Wt8dtFFFwFql3IjHDx4kPLycjp37uzuyBIsWrjkk08+AYThFliDMNwCSzlx4gRbt24lPj6eiy++mNTUVNq3b09hYaHXhrfBsnHjRgBGjhxZ67MBAwYQFxfHgQMHyMnJCbgvrZiU1tEmFLTvrl27FhCGW2ANwnALLEULGUyZMoX4+HiAGl53uPgz3NHR0e5wiX5i1BdmGG7N49ZWTwrDLbACYbgFlrJo0SJADZNomGm4N2zYAMCoUaO8fq7lUG/atCngvjTDbST1zxeeqxiF4RZYgTDcAgCcTidr166loqLCtH0WFRXx/fffY7PZmDFjhvt9s+qI5OXlsXfvXmJiYmqsJNSjTVhqE5ie5OTkuL12Mzzunj17EhsbC0BMTExQ/SQFAqNcsIZ7/3GF37/sJL/Iuh4PiqLw0v8UPllhbR+Jo6cVfveSk+y80OU89NBDZGZm8vLLL/vc5v1lCq9/aVzG+++/T3l5OaNGjSI1NdX9vj+PO6dA4Z5/OjlwPLAczRgPHTrUbSw90Xvc+uJPC1cpPP+xk8svv5xRo0bx0ksvcejQIaKiosLykqOioty9E7v1HMz9r9v46ZC153/lNoWH3nTidFonx1Gpylizw1pdNu5WuP9fTiorrZNTVaXw2LsKy7dYq8v7yxRm3u9k2WYL5CiKUhf/GhzT761SGFelvLnIqSiKopw4ccJ0GTsPOhXGVSltZlWZvm89v3hU1eX5j0PT5dixY0pcXJwCKNOnT/e6zbk8pxI5oUqxZVYphcXOGp/l5uYqX3zxhbJ582YlPz9fURRFcTgcSteuXRVA+fjjj2tsX1VVpSQmJiqAcvbs2Rqf3f8vVZffvVRVSxen06k4ndWyH330UQVQ/vCHP/jUzel0Km3atFEA5fDhw4qiKEpRiVOJu1iVQ3SqAig2m00BlP79+wf6uQIyb948dV9T31cYV6X86qnaupiF0+lUOs9Vddm42xn4CyHywTL1Wp74W+t0URRFGXCjqsvyLdbpsmidqot0i7W6zLhP1eXfX4ali1ebekF63PlFCt+pZZEpLLFOzmerFctllJUrLF5PWHIeffRRysrKANi6davXhreL1kNVFSgKlHiUGXnggQeYM2cOw4cPp2XLljz55JN88sknHDlyhJ49e3LllVfW2F5fdlUfwlAUhc/WeNeltLSUvn37MmPGDHedk3Xr1gHeJyY1bDabO1yixbmXboIyLSIUmUTHjh3dOocTJtGYOHEiAPnRk7zqYibb9sOxM1gu57M1rmu51DoZ+48r7HIlGtWJLhbKKChWWC6DzQazx5q//wvScH+9ESoc6v/LzAvp1kIzQmUVeDWGZvD9Nigq1eQEL2P37t288847REVFkZCQwJkzZzh58mSt7bSHkCqn5mdac4Bu3brhdDr585//zK233grAfffd5y6GpGfcuHFAdQU9gD1ZcOCEdxm7d+/m559/5ptvvuGOO+7gtddeY/ny5URGRjJ2rP87QwuXaA8J7cYFSGnVga1bt7rriZhRsOnGG29k8fIfOZGX6lUXM9HrYpWckjKFb1xzu2Xm1Qarxedrqv9vlS6VlQpf/mCtDKi2MWMHQmrL8AqKeeOCNNz6i73cYY2MgycUfjpc/dpRaY0cvUEtD+FCfOCBB3A6ndx6663uzAzPBSuFJQrLdG/p5SiK4m40sGnTJj766COio6MpKiqiQ4cO3HDDDV7ljh8/HqhpuD/T3bie50Wf8/2f//yHO++8E4DXX3+dDh06+NVR73FXOBQWb6j+bN7N82nbti1LlizhwQcfZP78+X73ZQSbzcaBnOrMlFDOi1E+q/75LJOzbAuUlLlkWHS/QN3cl2t2Qk6BS0YdPFAvzzTfaMMFaLhLy6u9BwjNSzXC52trvrbi6V5ZqfDVutBlrFmzhsWLF5OUlMRDDz3kXmmoedAaSzfVvMj1cs6cOUNBQQEpKSm0atWKq6++mq+++oohQ4bwyiuv+Jw0HD16NJGRkWzdupWioiLAv/eYlZUF1EzVe+KJJwwVfxoxYgQRERFs2bKFrzeUU1Bc/dmMmWoYp3v37jz55JO0bNky4P6M8Pla6z3hvVkK+45Vv7ZKzud14NWfOKuweW/1a8t0qYPzUlau8LWaqMTl46yRccFVqVm+BYp1cTqrTp7eCGlymieaK+OHn+Bcfk0ZRlEUhfvvvx+AP/7xj6Smpvo03N500dC39dJqe0ydOpWpU6f6ld+sWTMuuugiNm/ezPr16+k5YDI7DvjWRfO4b7nlFjp27EhRUZFPb96T5ORkhgwZwtatW1nwaTZQ3RDBFhlnaB/BcCZHYe2P1a+tM0I1X1shxxGmc2CULzx1sSAk43QqNX4zq3RZLqs2Zmgv6NJeeNymoBmhjm3U11YMyezZCht3Q1wMtGzukmPBRRKOLp9//jkbN26kbdu23HPPPQA1DLcWky+vUFjiCi14k6MZ7lB6KOrDJdoN5UsXzePu0qULV1xxBTfeeGNQRaDUCcMIVu9y1SApP67+seC8fLVOncS18hqDurmWV22HvKKmocuWfWDPrinDirknTZcrLAqTwAVmuCsc1RMT116i/rXiqatNskwdASnNrJHjdFZnYISiyyuvvALAww8/TLNm6kF269aN5ORkzpw5g91uB1TvobAEMnpCr0615RhppOuLzMxMQDXcn7pi9b+42LsumsfdtWvXoOWAy3C3GEuJI4kY53Eo3OpVjhkE0sUMsk4pbP0ZkuJh5mjr5Gi6WHm/ZOcprN4J0VFweaZ1cjRdrsiEqEj14Wr23JNDN/l5Raa5+9ZzQRnulS7voX9XGNxdfRpacYEsdF0gc8fbiHPVuDdbzqY9qvfQORXGDgxOF6fT6Q6HzJ071/2+zWarFS5ZuMq/LuEY7rFjx2Kz2di0/QTrd6kjlMvHuXTRDZUVRanhcYfCuHHjsLVRda04+RE2VCXMPi85BQrfb4XISLhmknXX2KeuSckZoyDZ1VTHbDlVVdXOwXWXqLpUODB9oc8Xa8HphEsugnYttd/MXBmKorBwlfr/uROsuy9XboPcQuibDn27CI/bFKqNEO4TZ/ZQ+UyOwpqdEBOtekJuOSYP/TRdrhwP8bHByThy5AiFhYW0a9euxopGqBku0Y9Q5k7w/ptpXV5CMdzJyclkZGRQmTwTgGkjoHVybV3OnDlDWVkZrVq1co8OgiUxMYmodlerL7IX0rplUi05ZvDVOqisggkZ1g773c7BBBtxMTaXHHON3dofITsPeqTB4B4Q6zr/FRZdy3qDavZvtn0/HDkF7VrC6AEW3pfu82Lufj0JODkpSVILYDnQDxgpy/IuSZKuAv4AlALzZFk+Ye1hhk9lpeKeAJk7wUbWafX/Zj9xv1irDsGmDIMWSTZioxXT5SiKwqcuT2jueBuVVQQlQ1tqri2C0aP1L1y9ejVjZqojlAFdoXdnG3ExNXWprKzk0KFDgNpMNxTGjh3L9lVzVF0m2IiNrq1LuN42wMbd4LC1gbKjUCTTsUNrsk+bf/4/1RnUWIu8uhNn1TmU+Fj1YXdQy303eULvU50RstnUa7m8wlx9cgoUVmxTRyizx8LHK9T3TT8va6rDJJGRumu53Dzv1dPGWImRYy4BZgALASRJigLuASYADwMPWXVwZrJmp5qB0auTGiqxaqikPXGvHK+eOCvkbP0Zjp6GDq1hZP/gZWiG21thpilTphAbG8vatWt5d4mapnelOodYyxAdPXoUh8NBx44dSUwMLWWm94BMaJFJBI4aI5S8/FLGjx/Phx9+GHZ8G6rPC+c+AyC9k/mLYwqKFZZtUVfLzRlr3TWmhS+mjYDEeGuG/U6n4g7HWHktayOUiUOgVQvvD+5w0YdJNF2seKjqRygDu5m3X28ENNyyLDtkWc7WvdUT2CvLcoUsy+uAQT6+2qDw9B6sGCqdz1dYuV2d+LhsjPpeOHKysrLYuHEjGzduJC8vz/2+fpIlIsJGnBYqMXgRalX5vBnu5s2bM3PmTBQlgq/WqRe55j143rjhxLc1cmzjwBZBdNEqmiXA8aMHASgsdrBmzRoef/xxdzPgUD1uRak2QnHFS4iPj6drutotx8xQ2eL1ahhh3CBo16raCJWbvHJW79UD1effxGt54244dR7S28FFroQhK+6ZT3XzQXoZZhrU3Udg/3Fo3QIyXQtjrZDjaWOsJJQ87hSgQPe69npmQJKk+cB8gLvuuovJkyeHIMocqpywcFVbIJJxfbOx2yspyIsGWlNYVIHdfh6Hw+HOpAiVj1bGU1WVzPhB5ZQW5mAvBMWZDMRjP5WD3V5meF979+7l0ksvdbf36tq1KytXriQyMoqPvm8DRJHZ/zx2ewX5uZFAW4pKKrHbswPqok08tm/f3ut2l156KZ9+l0NxRQLd2leSHJON3Q6VFc2AJLKOn+KLLzbzzTffANCxY8eQf7vl29UFL+X2D5Hllrz8z38DC7BFxtGte3cOHTrEq6++CkBKSkpIcnYciubYmdakplTx7zf+gA2FVUfKgRjOni/Abi8K6dg9+e/SFCCOSzLysdvVQhgxUe2oqLRx5OhJIgj/GjubF8HaH9sSEwVD0k9jtyuUFscDyeTklWC35wfchxHeWaKe60uHFnHyZCEAURHqdXf0+Bk6twlfl4ISG8s2p2KzwYgeZ7DbnRQXxQEp5BWUYrfnhasGAP9ZlAQ0Y/LQEs6cUX+fSFoBMRy3Z9Osc/i6OJ3wv5Wqjcnsp9oYM0hLS/P6fiiGOw9orntd5W0jWZYXAAtcL62tnxiAtTsVzuYpdG0Pl45pi81mI6dMARSqiCEtLQ273e7zRzLK9ztVI3v9pXHufSU3V99LTGpJWprxp/Drr7+O0+mkU6dO7jZfmzdvpteQuWSdVmiTDFdMak1kpI3KSFWXSmdULV2OHTtGSkqKe1IvOzub06dPk5iYyJgxY4iIqD3ouuGGG7jzBXAAkzPy6dhR3Vf2mT1AH/7x/D957thT7u2HDBkS0m93Pl9h/V4FG5UoOV+RlTWTlSu+ha6g2GJ46OFHuGneje7RRkZGRkhyXv5KPQdXTYxk9mWzANj9vvqbxcQ2Iy0ttP6SeopKFFbtVC/zmy9LJq1NCgCxMU4qKqFV6w4U5Z8M+xr7aotaHe7S4dCnp7rUv11bVZeIqATS0pLC2j+oo4Nvt6q63DSzGWlp6u2eGK/+ji1SUomODl+XVcsUKioVxmdARn91BNShnaqLLSKetDRzVqwt26Ye97wZie7fJylRfa95chtTdPnhR9XGdGkHU8e2tdzjDiUufwDoK0lSjCRJo4EfA32hvvnUHXeuHsKYnVWSV6hWHIyIgDm6Za6hDi+1BrtvvPEGjz/+OAAvvPCCW5fLx6mTLP5k7Nq1i549ezJp0iSqqtTn686dOwG1mJI3ow0QHR1LVKq6FNyZvRCA4uJiFn2p/t8WmYAkSYwePZoZM2Zw9dVXB6eciy9/UCsOdkvJgso8FixYgP3ECXCqI5PLZl9FSkqKe/tQYtw1JnJ1E0ZmD/u/cVUcHNUf0tpYJ+dTjzkUK2TI+9SKgx1aw4h+1e+bfc/408WsEMa+owq7j6gpkxN1c/Fmy/FmY6zEkOGWJOlrYArwBnA98CKwCnjc9a/Bop9k8XbjmnXiFq1Xk/nHD4Y2yeHJOXr0KD/++CNJSUlMmDCBefPmkZyczIYNG/jvN+p6fSO6PPXUU1RUVCDLMu+//z7gP76tsX4XlFYlQ+lhVi5+AUVR+P7776lyqCGFu3/3f2zZsoV169axePHigEWefKGlgU0foer03XffARATpXpDtohYrrnmGvf26enpQcvYeRAO2aFtilqpTcPs869PadNjppzsPIVVO1xzKLqCiFbpcuV4dQ7FCjlFJdU1g/QLVcx/0Kl/Z4+FmGhrHnZOZ80c8brAUKhEluXpXt7+2ORjsYTNe+FENnRqC8P7Vr9v9qyyrxs3lFlyrU/j1KlTiY2NJTY2lltuuYVnX11M1tl4WjaHCTrvwZuMw4cP89FHH7lf/+Uvf+Hqq6/2m1HiqUtC6VIOHjjA1q1b+frrr8GpzoIpeC8cFQz6EcrtV6fxyp+rP0uIi6SiRNXnhhtu4K233qJLly4kJCQELUfTRT9CgdDOiy9KyxWWuIoKea6W08tJDDPvTBuhqCtyrdFFURQWao7OeI9r2cR75uuN6n5GD6g5QjE7q2Th6gD3pQkplFv2qTYmrU1NG2MlTX4Bjj4DQz+EMfOJW1ii8K0rDcyzGlgocrQwib7B7t133+1e+XepVEZ0lO5i1y2M0LIX/v73v+N0OrnxxhsZMmQIJ06c4IorrlANMN5zuKHmUvpZo9S754MPPmDJkiXgVK9yM24qbYQyIQP69mjtDoMkJCTQLCnGLSc9PZ1Nmza5jzsYahghH56wGef/281qUSGpT+2iQmaGF7yFFsyWsfMgHD6pjlDGePSUMPM3C6SLGdfYIbvCjgPQLAEmSzU/0zJxzJDj1iWz5gjFSpq04fZc5qrHzAtkyQb1phkzENq39pTjfQlvTk4Ou3btqrWv/Px8Vq1aRUREBNOnVw90OnXqRGL6jQB0iNlY4zs2W/Vij/IKNdTy9ttvY7PZePDBB3n22WcBWLp0KXl5efTo0cNnpxf9COUPv1HH4wsWLODEiRM0b6YKMePG9RyhaDWzp0yZQnysthJQ3XbIkCEhLfDZkwU/H4NWLWB8Rs3P3OffBI9LXxbAE7MMRG6hwneyulBljkffCDOvZU0XbaGKFXL0IxRtjYCnDHMedOrfWaMhNsaaB7c/G2MlTdpwb98PWaerl7nqiXYFiRyV4ddeqH7i1j5xvoZkN9xwA4MHD2bDhuqq/pWVlfzud7/D4XAwZswYWrVq5f7swHGFIqUbVOZz7Me3fcopLKnkzjvvpKKigmuvvZY+ffpw8cUX8+yzz/Lb3/6W5cuXs2fPHp91svUjlOHDh9G9e3dKStTUtoxB6jgw3BvX2whl3rx5tGrVirvvvtu04bI7vjmGGiMUMG/YX16hsMjVOs7TCIF5Q/9FroUq4wdD62RrdNGPUDw9YTBPF/0IJb2ddeEYX149mKfLjgPqUvpULzbGSpq04V7osVBFj1mLcIpLq4umX+HlxvUmw+FwsHLlSpxOJ8899xwAJSUlXH755bz77rskJCS4M0k0NCPE+UV8t2wJlZU180Q1OX/929Ps2LGDzp07889//tP9+R//+EdeeuklLrnkEqKjo73q4uk92Gw2rr32Wvfnw4epqxfCvdi1EcrYgepCFYBp06Zx7tw5Jk2aZJpn52veAczzuL7bCgXFai2PHh2tk1MXuvgboZgpx+8IxaRzf/S02pghIU6dE7BKjt7GeI5QrKTJGm4jQ5hQT96SJUuYM2cOl112GVOve5GSMjVtqnOqsaHyrl27KC1VMym++OILjhw5wm233cbixYtp2bIlK1ascJc81dAukPYx68nNzXU3vvXU5dV/vUlkZCQffvhhjVQ6I2xzjVDat6r2Hq677joAoqKiGCGpi2TNunG9eUJgznB5/3G1dVyLJLj4It8yzHo4BNIlHDkFxb7nUMySAbjvlzlja49QasgJI7wUaIRi1sNBm6eZMQoS4qx52HlbSl9XNNkOOLsOq41nW7dQlyB7IzaEC1FRFO68806OHj2qvtH7Gmjr+8R5G5LpO5s7nU6uvPJKtm/fTnx8PKtWraoVf9ZqLyfGwxUZzXh1F3z99deMGaOuqy8qKiLnXB7QASLiePDBB92fBYM+R1wbofTt25fXX3+dFi1a0ColEVDCMhDFpd7TwPSYMVzWRiiXjamZBuaWYcJQWV97ea4XI2SWnCUbai6lt0IG+A8tmCXH6AjFNF18NDNQ556UsMrHakvpW7VQQ1h1SZP1uDUP9fJMiPLiPUBoF8lPP/3E0aNHSU1N5b33P4FWaknSni1/MixD85ZvuukmoDq3+oUXXvA6aagZoZmjYPasKYDq9Wv87W9/o6jgHADP/uOf3HbbbcYVcuFvhHLrrbfyi1/8wpQbd+kmtfHsyP7QycsIBcy5ef0Nx82SodVe7tfFd+1lU3UxeeSoJ9AIBcyZaA10XvRzT1VVoRnVk+cU1v2k/i7TR3nfxox0QH2qqS8bYxVN1nB7VjbzRripesld5kJkMyjaxktP/85rISFvMjSP+9Zbb3W377rssst8dhjXe0KZmZkkJiayc+dOjh07hqIofPLJJ+7VhpnjLzGujA4jIxQzDIRWXtOXJ2SGnCMnFbbtV7vDTBnmX0Y4Q2X9ajlfhBv2MTJCMUcX9a+vEYoqR8v2Cc2g6kcovn4zM+aetA5Ulw6HZgnWPeyM2BiraJKGW7/MddJQ39uF4kFqhnvWrFnuJ2588VJWrVrlNdfYU0ZBQQF79uwhOjqajIwMFixYwF/+8hfeeecdr0tl7dkKG1z9K6eNgNjYWGbOVL38t956i+3bt3P06FGio8Kr+62NUOb48R6CrULoSVm5wiJX41l/xs5dVS/EG1ffHSYu1pphf1VVdeNZfzduuGGfbzZBabk6h9KxrXc5UVE2IiLUxTmVlaEZVXes3s8DNdzfzGh3mHANt2dpZa8ywqyo+PMxhV0GbIxVNEnDrV/m6m2SRSPYp+7JkyfZsmUL8fHxjMu82N39+s5r1NrO7777bkAZsiyjKAqDBw8mLi6OXr168dhjj/mcSNTXXk5yeQ+33347oOZXf/yxuoA1tU2LoHTxxFtZAE/CvXGXy1Dk6n7dtYN1Hrfm1fvTJdxhv7728qDuvrcLW5fV/kMLZsjRj1AuHW6NDKhZ9tQfocw9aWTnqR2ooqPU/G2fMsK8lo2MUKykiRruwE9cCP7Jri1Fnzx5Mpt+jnf3r7zll6r7uGrVqlrhEs+hshYmGTHCS46SF7zpkpmZSb9+/Th9+jQvvPACAB3btw5KFz2+CvF4Eu6NGygDwww5nt1hAskIdfRgtKhQON5jWbnCYj8ZGGbJ0Wdg+BqhhCvD6AhFLyeU86/vX5nczELnwKCNsYomZbidTidPv/gx2w9ATGQFrSK3+90+2KeuPr6tL8TTs2dPOnToQHZ2trvov1uG7gI5evQo//3vfwFjhlvrXxkdVd3JG1RDoXndDoeDlJQU2rdrFZQuenwV4vEknBu3wqG4RyiBjJC+AUGwaEZo6nC1O0wgGaH8Xt66w/iW433lrBGWbVFHKEN6+h+hqHJwyQlajKHQQrgytBFK9wAjFAjvOgs0kWuGjMMG5lCspkkZ7rfeeosHn9sCQMWpz5g5/RJyc3N9bh9MXmpZWRkrVqgN8S6dOsPdW+7K8epClUmTJgG4t/GUcS6nkCFDhrBnzx7S09PdcWp/aP0rJ0tq/0o9N9xwg7td2GWXXebOVQ3NcFt/467cjnuE0rtzgJsqjDCGUV2io9S86Mqq4LMXtO4wnVPV1X/+CMezC8arC1WONkLR5lCskAE163kEKnsa6nWWW1izf6UVMgA+MzCHYjVNxnBXVlby9NNPQ+srAEhPksnNzeWJJ57w+R1fExRnz551d57RWLt2LWVlZWRkZHDgTCrn8qFnx+rechMnTgRg5cqVNb4XGaGucDx+4iy5ubnMnDmTbdu2GVoc49miSk+LFi244447sNls/OpXvwrZgzh8UmH7AdV78CzE44kZN66vfOeackLzUs/kKKz9EWKia45QvBFO9kIwtZdDDcnoRyhGOoaHqosWvtDPoQSUEaQu+sJlRup5hHqdffWD+iCekKH2r7RCBhibQ7GaJmO4P/roIw6fKIfmI4mPVXj/5RsAeOWVV9xdwj3x9tTdsGED7du3Z+LEiTX6PC5btgxwtfXycuNqhnv16tXupgVOp5Nbb7lJ3UFEHM888wxffvklLVu2DKhPToHavzJS17/Sk6effprTp08zfvz4kPNSNe9h5ujA3kNUlI3ISDWGGEz2gr77tRHvMdSsEn8jFH9ygrl59Y0ZDOkSooEIZoRSQ06Q5z8Yrz5UXTbtgZPnjI1QIPSHUCgjlGAfQkbnUKymSRhup9PJk08+Ca0vB2DaCBtjRw/h+uuvp6Kigj//+c9ev+ftqfvyyy/jdDpZs2YNmZmZnDx5Eqg23JdcMsXtPegvkK5du9KlSxdyc3PdXWZ+/PFH1qz8FoDmyW257777fHad8cSz+7U3IiIiaNu2rU9djODOqzY4yRKKHC2+2bMjDDDQ/TpkXYKcMApFzrb9cNRVFmBUf2tkgLEc8XDlnM1VRyiecyhmygDfpZXNlFNYorBM9l0WwAwZUD1CCTSHYjWNynAXFxe7Damezz//nL179xKbptbV0G7cJ554gtjYWD788EOvXrfnk/3cuXN89tln2Gw2evTowU8//cSUKVPcHWkSEhKIajm2VvdrDc9wyerVq90LY6rwXtjJF0EboRDyUkPxHkLxUoNt6xTKTWVkhOJLTjBel7eyAIZkBHFeqqqCG6GEKkfLwDA6QglFhqIYn8jVCGX06K1wmV8ZdeQcWEWjMdyKojB9+nTS0tKYNm0aq1atcr//xBNPQHRbKuKG14hvpqenc+WVau/E9957r9Y+PY3Qe++9R0VFBVOnTmXjxo306tWL3bt3M2fOHAAmTJjAovXqmlxv3oM2QaktxFm9ejUowTcfKChWWOYqKuRZe9kXoWQv6OObRr2HYG9efXwz2Bs3qBWtBkYoteQEefOGUlQolAedPkd8oIERSqhygjVCocjwV1rZF6E4IaGOtoKRoc2hGB2hWEmjMdwbNmxgzRrVAixdupSJEyeyYMECli5dyvbt22nW9UYUbEyWoHli9cnT6oG88847tSYc9Z6doigsWLAAgPnz59OqVSveeOMNAHe7r8mTp/iNb86YMYPo6GhWrlzJyZMn1eNVKomwKUGtalu8Xi0qZNR78NTFKEbzqsORo2VgeBuhmCUD6kYXrSxAqxaQabCoUHi6GG88G6ycnALjGRihyoCaNYOMdocJVk5Jma60so+yAOHKgOBHKFbSaAz3K6+8AsAdd9zBn/70JwDuuusufv/73wPQrv8dQO0bd9KkSXTs2JEjR47www8/1PjMXXuhQmHFihX8/PPPtG/fnhkzZgDqQhd9/ZCOfS7zG99MSUlh2rRpKIrCo48+yvnz50lLS3NP+hl9uocyHAvWgwgmA0NPsF7XwiDjmxB8+dCCYoXlcnAjFL2cYM/LnLHGiwrVxQglFDnaCMVIBkYtGUGMUEKp5xHsNaYVLhve13fhsnBlQMMJk0AjMdwnT55k4cKFRERE8MADD/DEE0/w+9//HofDwf79+2nRuhuHczp7jW9GRkYyb948QPW69WgXYnFpFY888ggA99xzT41GA8888wy9e/dm9OjRyEfTAf/xTa3xwJtvvgnA+PHjg3q6Gykq5I1gPQh9BoZ+hGKmHEUJ0QgFmccdyggFgv/NQjFCoY5QjGZghConHOfAqIxQy542RF30cyhGRyhW0igM96uvvkplZSVz5syhU6dOgNoMd8KECQBMvPJ5qpw2JvmIb2qG+5NPPqGwsBCAgwcPsvSbLwHYsGkHWVlZ9OvXj9/97nc1vpucnMzu3btZu3atO3XOX/7mrFmzSEhIcC99r5GqZ+AiWaorKmTUe4DgPQh/OeL+CMbr2vpzcBkYGsHGuEPVJZjfbP9xtaiQv7Kn4cqA4CdyQ5Gjn0MxkoHhlhHigy6YEQoEN3oor1BY7Or+ZzQDJ1gZENocipU0eMP9z3/+k6eeegqghlGNjo5m0aJFfPbZZ1Q0V1ch+nri9uzZk8zMTIqLi91e980338z3y9Wa1pu2bHfL8tbWKzIykt1HbAHLngIkJiYye/Zs92u9x23kIgk2PU8jGIN6Pl9hxXaICiIDQyOYm1efBhZM9+tQRyjBGCG9HCO/WahFhYKpqBhsjngNOUHoojVmCHWEYmXID4J7CC2X1cYMGT2he5pxOTUqKlYF3r4hhUmgARtuRVF46KGHuPvuu1EUhaeeeqpWO6+kpCQmTZ7Dclk9CXP83Lia0X/ppZfYsGEDa9euJSbaNVloi2P27NnudD5vGGnMoKGFS1JTU+nVq5dhQ2S07Kk3gjF2X61TL9hJQ6Fl89AMRCA54XS/DkYXreypv8YMZsgJ1ADADBmhjlCClWO0nocneoPqpfR8DX4+Frgxgy+CWTlrtHqidznq33KH/+/mF4U2QrGSBtu67PDhwzz//PNERkbyxhtv8Ktf/crrdovWq90yxmdAakvfJ2D27Nl06dKFQ4cOuQ3r1MkT+OoAjMm8hH884N/1DCYNbPr06Tz88MNcdNFF2Gw2YmNctbIDTLZpRYWG9oJuAYoKeRKMJxxKBoaGUa/rx0Nw0A5tkv2PULwRTKjESB1pn3IM/mbhFBUKxnvUdAl2hALGdQl1DgXUZrhRkQqVVeAI4KW6C5eFUPbU6OjBSGOGQHJKytTRhz+0OZTMwf5tTF0SkuGWJKkLsAXQSuFdJctytlkHBdC9e3cWLlxIZWUls2bN8rmd0SduZGQkv/3tb7nnnnvUxgPR0Vw+expfPQctW7UjLu6Uz+/uzVLYkwUpzYwVTY+MjOSvf/2r+7VRYxfOcMyojPwiNQMj0AjFF0YNkX6hSrDdr416j6XlCktCiG96ygn0mwVTFiBUGfoMjFBqYGg9FNXuNL6/rx+h+GrM4F+O6lxUBPBSw7mWjT6EtMYM/btCn/QQ5GjXskFd6rM2iSfheNyrZVmea9qReGHatGl+Py8qUViqeQ8Gbtybb76Zhx9+mKKiIq6//no6tGuJkea3Rhsz+MKIIapwKHwZRFGhUGRA9Qhl4hBom2KNLkDIYZJgZCzbrBqRi3oHLnsajpyFJgzHA8kIZ4QSjJxQQz56OUWl/sML4ZY9Df68BC9DL8efLkUloY9QrCScGPcYSZLWSpL0pCRJ9fIo+nqjenJHD4AOrQMfQosWLfjrX/9Kjx49+NOf/mT4yR7qhKGGES91xTbIL1JXyvXqFIb3YPDGDVUXIx7kniyFvUfVEcqEIcHLiDU4VK6L83L8jMKmPWpZgKkhFBUK9ryEMkIxKifcEQrozo2f86+NUGaNCa3sqZFrrLJScfeWDPda9jd6+GaT+puO6g9pbRq/x30K6AGUAG8AVwCf6jeQJGk+MB/UhTKTJ08O4zC9899vkoF4Jg8pwG4vNvSda665hmuuuQaAgpPZQGsKiytwOBzY7fZa2x85HcmOA21JinfSr8MZvGwSGGcKEMfJ0+ex270Hut/9ugWQwOQhhdjtRUGLyM+LAtpQXFLpU5eiUhtLN6Vis8HInmew2521dxSAyormQCJnzuZht5d43ebtRUlAM6YMLeHsmfygZZSWA7SntFzxqUu5A75cmwpEMLbPGex2A6kBHjjK1ePMPl/g8zf/zzcJQAsmDi4lLyePvKClQGREO6qcNkrLvOsC8PH3rYFoJgw4j90efK3R0pJ4IJmcvBLsdu+/+bdyLEWlLRnUtYJo5/mQruWoiDZAFMWlVT51+XB5KyCGCQNysdvLgpZRUhQHpJCbX4rdnud1m3W7YziX34pu7StJic0OSZdIm/qbF5dW+tQlFBtjJmlpaV7fD8lwy7JcDpQDSJL0GTASD8Mty/ICYIHrZfDtPwJQUqawYqe621/NakFau+Sg93GuVAEUnMQQHR3t9Ud6f5W6zWVjIujWxfuPGIjk5qqBTGzWijQvKUuVlQrLt6m63HxZc9LSWgQto8KmHmelM8qnLh9/r8ZAxwyEiwa2D1oGQKsUVZfY+GTS0lK8brNsm7rNDdMTSUtLClqG2thAodxhIyrKuy5fb1AoKFEY2A3GSe2ClgHQppUqJyaumc/f/Lsdqi6/nJpAWlpiSHLiYp0Ul4KTGNLSOtT6fE+WwgG7QsvmMHdy65DCce3bqrpERiX4/M1Xvq3qcu3kWJ8GIRBJCeo+qpRo0tJSa31+/IzC9oMKCXHwy+kt3Q0+gqF9qqqLLTLe52+++mP1OK65OIqOHUPUJVGvS9tan5eWe9iY9skhybGCkEIlkiQ1070cBxw053CM8+1mdUZ4WB9Ib2fdUNmMiYlAclbvhPP50Lsz9OsSogwDYR93AfgwclEDFQA6cFzhx0PQPFHt+xcKavaC+n9f2Qumnhcf2T6nzims+0n9bWeMCllMwFZs4c6hQODzX16hsGi9+v9QwySg18X7ceqbW4ditCFwVkmNxgzhXMsBYtzfbobiUnUFa5f2DSdMAqGHSsZKkvQ4aqjkCPCQeYdkjFBzUfUEiqUdPa2wZR8kxocW36wlx8eFWD1hFNxqOa8yfOhSUlYd3zQyketbjpq9oObY1j5W/UKV2Jjwzk1RqXcD4ahU+MKVBhbKRK5eBvj+zT53lQW4dFhwZQF8yqn0vo9wJwxryPChy/db1TmUQd2hZwhzKJ5yKiq9f77QhAdqoMnJ9bvgdA50bQ9DeoUsJqDhDifV1GpCDZV8A3xj8rEYxizvIdAFoj3Vp4+E+DB6y/mTo+9+beXFri/E0znIhSp6Ao0ewp0w1PCXvbB6B+QUQJ/O0K9L+KMHn7qYtFrOn4HQRiihLFTxJiOQLuGmtPnTxbQRSgBdQqme6FWOn/UCZtkYq2iwKyf9sVyGwpLgl7l6YvQCCccTCiRn3U9wJge6dYDBPcKQEWBVm9k3rjddsk4pyK4RyqXDwxLjN3uherQVpgw/D6HsPIVVO9Tay7OCLAvgS4630YM2Qpk1OrwRij9d9COUcI2QP130I5RmAfpX+sPfNeZ0hpfv7k2ON12+26oupR/cI7wRilU0SsNt1hDGXwjDnq2wfpe6zfSRYYnxO4zV56KG4z1ocWFFqV17oazcPO/Bny7aDTUjzBFKTTk196MfoZjnCdf+TKu9fPFFkNLMHDnewgvh5Ih7k+FNl1Xb1RFK3/TwRig15HgJ+5gRvqwhw4suW/bBiWzo2Ead3zJDToUXXRpabRJPGp3hrnBUL3M10+Py9FK1HNGpBrpfB8JX7YVgu18HlqP+9TR22ghlSM/gl9J74s+zM3OFmS9dfvgJzuZC97TwRih6GX51MeHG9aXLkZMKW392LVQJc4Tir4Z59XkJTwb4npzOzlNYvdM1QgmzO4y/a0wfJgm2LIAvOZ4et0PX3DrUxT1W0+gMt777dSjLXPVERNiIdkX5Pb0hszwh8H0hbtoD9uzgay/7lOPDQJjpPfgyECfOKmwwsft1dfyx5jGbMZHrKcPzvOQWKny/1bzay7E+huTaQ3vGqPBHKL7CcWaOUMC3sdNGKJdcBMkmjVA8dQmncJk/OZ4PIW0pfd906BvmCMUqGp3hDrb7dSC8rZ4yu7ecr5BMqLWXA8rRXYhmjlDAt8el734d7ggF9Oel+r1Qu8MEkuF5Xr76obo7TOtkE+V4DMnNyMCoJcPjvGgjlB5pakaJWXI8wwvWjLZqvh9K/0pDcnzqEr4Mq2hUhlu/zNUMTxi8D2M172HKMHN6y3nzIBRFYaE2yWKhLtoIZUBX6N3ZGl3AvPimpxy9Lht3w8lz5o1QfOpiclEhb4boxFmFjSaOUAKfF7Odg+p95RSYO0IJdF5CqZ7oVY67Vnr1vszK8rKaRmW41+yEc/nQsyMMMNj9OhDeUoIWmjwx4W0Yq9Ve7tBardRmihwv4QV9TNBMGXpdTp8PrX+lETk1dDF5hOLtvOi7wwTTv9KvHC/hBf1ClcR4a8Jx+gwM065lL4uJzO4OE6OToXWS0odJzNNF3Y/+Glv7I2TnqSOUgSbZGCtoVIZbP4Qx48aF2h7E+Xy1t1yUib3lvHlcoXaHMSJHCy9UVprvPXjT5Ysf1MndKWEuVPEuR91fjbKnpo9Qqt/Tai+PGxRcdxgjcvThBetGKNXvaf0r09upFRRNlaPTxcyJXFDvB814a9fyrsO4O1BlDjZFjNdsH7NHKFbRaAy3ouhzUc37QT0NxOL1aneYiUOC7w4TSIbeGzJzwshTjqbL2h/VpfS9OqmTuWbKqKGLSYtuasjxiKVv3w/HzqjdYcwaoXg/Lxbo4jE5eTZX4YefVM8ynIUqevSGzulUdXDrkmmmo1PTSy0q0Y1QTOwO43lutPtlzrjg+lcakaGdF6fT3IlcK2k0hnv7fjW+mdZG7RBjFp6ZGIs3qBf77LHmnTjPYeyB4wo/H1PLno4daJqYWuGFL39QdZkz1rwb11OXwhJ1oYrNBjNNMkJ6OdXnRX192RjzRiieulQ4FL7dXC3HLDzDcYvWqSOUi4eaN0JROy3VlLPYlbtv6rXsYeyWy+rDYlR/c7vDeJ6bxeutuy+1a2zrz6qN6djGvBGKVTTY1mWeaAtIZo4ydwijH2Lqb1yzPCG9DPdF6DJC00aY5z3o5ZRX2FCU6mwSMy92z0yM5VvUG3f0AHMyMDzlaNk+i1w37szR5svQzsuanWq++4Cu5hYVcsvxeKCaeV40OeUVqj72bIV9xyA5yZwMDL0M0D8czD8vnnJOnVNrBsXFGOtAFbSMyprn5bIxDTtMAo3I49Y8YasukAqHzfIbt84u9kobPx1WU6fapsCIfibK8KjvYfV5KXfYOHVOXUpv2Y1b67yYJwOqf7MKh43iUrV1HIS/lL6WHN1DVfO2p420xjmoqLThdCos2ai+NnO0pZdTVqE2TAF1FWuoFQf9ydDOv+bozBnXsI02NBLDrd248bHhFeLxht5AaDeuVTdUWbna83HNTjV1KpyKg17l6OLC2kU4a3RoHVV8oR/COp3VFQetunHLHdbduPpOO05ndVmAWaY/hKrjwstl9bcb3tdY16bg5Kh/yyp0D9RRFj1QK2zI+9Q6O51Tzcvy0tBfZ1Y5B/qwz+GTCruOqOWIx2eYKsYSGoXhXqK7ccNdYeaJvmFodTjGmgukrEKt8VtZpca2w62BUUuOLu3MyuE4qLps2acu7khvZ+GN67C5wyRmG1SbrTp74cdDcPikmrVg5ggFasa4rTovejlnc9UKilY4B97Pi/mhBc0JySuEZVvU/1vnHNjcjs70kcF3pa8PGoXhXrTOmhsXqk/e7qxoy25cvffojtWa/HDQyzl6NoqtP0NCHFwimSsjOkqdiKysqjZCZs87QLWXWlgS4Q4tmDnvUC1H/fs/VxrY9JHmjlD0MkrKI3QThqaKqCHny3UKlVUwZoB5mVGeMioqdfNOFt6XSzcrlJSplUBD6UpvREZFpXWOjlU0+MnJwhKFb7UnrsmxR6g+eV+siwNU42DVjVtYUn2xmx2O0cvRdLl0mPkjFJvNRmy0QlkF/L/v1PdmjbHuxl2+NZaSMrVAltk3rianoBg+XK6+tlKXtT/FcC5fXdwRaqcjI3LculhoUA/aozierRbImpBhuhi3Z+++xiy49zUZ9nORnM5VUyrNWMVaFzR4w71kgxqDHDPQ/JggVIcxjmerP8VVE60bwua5+tEO7GbO8nNfcqzUBdSbt6xCnfxs2dzcCUONujgvUP2bZZ1WRyjhlvD1J6NaF2uyFvS6gDW1NjzPS6id3AOhPSA0Xa6yYPm5JuPkebVP3pSR5pS4qAsafKhEW8lkxYmD6pMHaheSUPskGpUB1hpUjdgYa0YonnLmhNEn0agMgKsmmC6ilpwZo8yd/PQmA8xbYehPzjCL+iTWPi/W69K7s/lzKJ4ywLrzYgUN2nAXlyrujAKr2gfpT164fRJ9oU2AaVhV4zdOd+xTh4fXhcS/nOr/W1WIRy8joyf06FgHulhlUGOr/9+tQ3h9Ev3KqePzEm4vVqNyzCjhG0hGdBRcZsG8g1U0aMP99UYoLVdXZVkR34TqQjNgnfegX9XWv6t1NX5j6+DG1ctJDrNPol8ZuoedlZ6Qpkt8rDVhEvDUxbrFHTXPvyUiaugy04Q64kbkWBYm0/1el5jQ6aguadCG+38mF+LxhvbUTYp3MtnkDAxvcqzsqKHJiIlSLJnM8ZQze6x1qVN6b+iqiZaIqCFnmgmdjgLJAOuMkF7O0F7hdzoKJAPq5r40q464Pxlg7XmxggZruEvKqhd3WNlluVUL9e+Ui8osmWRxy2mu/rXyAtFkTBhcbukkiybnait1cZ2Xvp0d9LKwWWtd6NLSJaNz20pLa2DUhS7NE9XKmQmxTkszMLTzf/Uk60Yo8bGq8Y6OVCxJz7QSm+KtJbj5BC2kqEThrSWwJ0vh3/da93wpLlX491cwedApBvbtYJmctTsVzuRa66VUOBRe/Rwy+57mooHtLZOz86DCtv1w0zTrbipFUVjwFfRqd5aJI1ItkQGwN0utJf6bmeYVr/LGO98odGh+liljrNPlxFm1Q9Ctl1kzV6Px+RqFqvJzzJ3cxjIZZ3IU/t93MP8yayaMNZZsUMjPO8d106zTJUy8Kt9gDXddY7fbSUtLq+/DMAWhS8NE6NIwaeC6eDXcDTZUIhAIBALvhLwAR5KkZ4DRQBZwsyzLDv/fEAgEAoEZhORxS5I0GEiTZXkcsA+Ya+pRCQQCgcAnoYZKRgPLXP9fClhQeUMgEAgE3gg1VJICnHL9Px9o6bmBJEnzgfkAd911F5MnTw5RVN3gcDiw2+31fRimIHRpmAhdGiYNWRdfk6ahGu48wJU1Sgsgx3MDWZYXAAtcL0VWSR0idGmYCF0aJo1Rl1BDJeuBS1z/vxRYZ87hCAQCgSAQIedxS5L0LDASOAb8SpblCjMPTCAQCATeqasFOAKBQCAwCbEARyAQCBoZwnALBAJBI0MYboFAIGhkCMMtEAgEjQxhuAUCgaCRIQy3QCAQNDIuKMMtSVKi62/j6lPkBUmSElx/m4Iu6a6/TUGXEU1BDw1JkjrX9zGYhSRJKfV9DGZxQeRxS5I0BbgFOAk8I8vyyXo+pJCRJGkO8EvgOPBsI9clAfg70AmY25hLA7sqZr4EbAQebuwL0iRJmgrcBZQD/w9YKstyUf0eVWhIkjQe+D/gHPAqsFuW5bL6ParwuFA87uuAN4FdwG2SJI2r5+MJCUmSZgK/Ap5BrRdzv+v9RunhybJcAlQAzVD1arS6AOOAJ2VZfgDoVt8HEw6SJEUCt6HWGvorIAGJjfjcXAO8jfoAmg5cWb+HEz4hN1JoyLg8uWuAH4AzqMvyNwMrXe9fJEnSocbgrbp0uRb4BtgG/EaW5WxJkvYDH0mS1FaW5bP1epAG0Z2XNbIsH3IZgoPAZ8BvJUlaKsvysXo9SIPorzFZlg8AJcBUSZIeAE5JkrQFWCTL8qH6PE6juPT5BbAaKAJ+Qh2hHgUygHggGvVB26CRJCkeeBh1lLAaOIJazXQzUAbMkCSpjyzL++rxMMOiyXnckiRdC6wCEoDDsiwXAO2AUa7h63YgDrWqYYNGp0sccFaW5ZMuox2B6qUeaURGW9MlHvVBiizLCtAP9Vx8BtwqSVKn+jpGo3jokuV6OwFoD/wRuAM1xDCjHg4vaDz1kWX5DPA9akhuO2qI4Rbgzvo6RqO4rp//h+qwbXC9bQO6olYp3YN6/fWolwM0iSZluCVJag5cDTyGeuFdIklSa+BfwG8kSUqUZXkXkA50qbcDNYAXXSZIktQHQJZlJ6qhqHRt27khD2M9dFkBjJckqb/r49WoI4liVEPxW9d3GuS16UWXiZIkdQA+RfVIO8mynI9q0LXz01jOzffAxZIk9ZRleRXwHfCqLMu/BBYDMZIkRTRkfVCjCF+hjq7vliRpNPAtavOX/rIsn0d1hOKhYZ8bfzT6yUnXrPcfgSWo5WUzgT8AMcAi4EZgPGpThyhgLWo89VNZlhfXxzH7IoAuX6HqMluW5SxJkn6NejHmA62AOxvS5JFBXaYAtwITgLOoQ/NiWZYfqodD9onBa+xiVD0GoXp104GDsiz/tR4O2S8Gz8001BFDe1TDdxeQK8vyb+vjmH2h0+Ur1Dmsjq7XdlSH4CbgaWAgag+BfcBM1HDdm/VwyKbQIL0ao0iS1BH4B2ocrh3wnizLXwPPAhNlWX4OeA/4uyzLz6BepLcCPzZAox1Il3+gTrA84/pKZ1TDfUCW5XkNzGgb0eU94FHgOeA/siz/Qpblexqg0TZyjb2Lmq30P9Rh+ghgfQM12sGcm/8AB1z/39wAjbZelzTgNVmWZVRHpkKW5Q9cn08B/osajhsPbGnMRhsaqeGWJClTN8RJlmX5H7Isvws0kyTpQVmWl6HGtQBeBBIkSWrmGv7Nk2X5hbo/au8Eqcs/cQ2/UYexo2RZ/lcdH7JPgtTlJVxdlGRZft/1/QZzPYagS4wkSc1lWd4D/F9DOi8Qkj6JQJwsy/8PdZT3Sj0ctlf86NJCkqTfAE8AwwFkWV4K9HFttwv4bUPSJVQazI1iBEmSkiRJWo4ai5uOOmnygyRJt7o2WQtcJklSsizLVZIkZQJfoGYuFAHIslxZe891Txi6HAaQZXmtLMt5dX/ktQnnvLhSAgF37L5eCUOXQ66JcGRZrqqHQ/dKmOemGKCh5KQb0GUNcLPr7w+SJD3i2v6ka9sGdW7CodHFuCVJugh1wcZw1GT6ZNffLFTjXIzqje4G3kAdhn9aH8caCKGL0KUuaEr6GNClHPXBswFIRZ2QXFYPh2opjc5wa0iS9DJq3O19SZLaow67DwK/Bz6QZfl0fR5fMAhdGiZNSRdoWvoE0OW/jSVNNlQaVagEaqTvfICaitVWluVTqLnA/0NN9StsSPFSXwhdGiZNSRdoWvoY1KWosab5GaXRetwAkiTdDXQHcoFDwH5ZljfX71GFhtClYdKUdIGmpU9T0iVYGvwT1hs6z2AQar7pYVmW32+MJ03o0jBpSrpA09KnKekSKo3d474SWCzLcnl9H0u4CF0aJk1JF2ha+jQlXYKlURtugUAguBBplKESgUAguJARhlsgEAgaGcJwCwQCQSNDGG6BQCBoZAjDLRAIBI2MJtm6THBhIElSF9S2VKA26H3M9f5bqMWGkGU5pBV0kiT1Q20wsMpVVRJJkt4B5gHDXOVDBYJ6QRhuQVPhJkmSHkctR3q1CfvrBzzi+v8qE/YnEJiGyOMWNFp0Hvdh1M7qk1B7C76GWsYzDTUc+GfUnoktARm4S5bl3ZIkPYpqnN9E7V6TjNovcgvVnrzGRNRuKvNQi/Nf5dr3dbIsr7VEQYHAByLGLWgK7AU2oYZHbkYt65nn+uxXqP0Uf0Q14MOALyVJitZ9fxxqk4oWqG2uslEbcIDaS/Ja1HZkGqNRy592RO0OIxDUKcJwC5oK/0H1gsegtnjTmO76e48syy8DX6IWJuql2+Z5WZZfQvXcu7gaCKxzfbZLluWPPMqEPirL8uOotZ+7mK6JQBAAYbgFTYWPgCrgBLDcy+eKx189Oa6/lVTfE/5iiPrtI4M7TIEgfIThFjQJXG3DbgZu9WiBtsT193lXGdDZuEqABthlruvvOEmSfiFJUrypBywQhIHIKhE0GWRZ/tjL2++gTlLegjp5uQV1ctIhSZK/3f2A2tsw0/W9TqYerEAQBiKrRCAQCBoZIlQiEAgEjQxhuAUCgaCRIQy3QCAQNDKE4RYIBIJGhjDcAoFA0MgQhlsgEAgaGcJwCwQCQSNDGG6BQCBoZPx/A/VhUW/HblQAAAAASUVORK5CYII=", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAGvCAYAAAAQSAw6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACszElEQVR4nOydd3gTV9bGX8m94t6NTW+mm2p6DSUhIYFkQxopbDpJSM+ygWx6vmTTNmVTIIVNJRAg9BIIvfdqMMbYuIEN7kWa74/xjGbUrJGm2T6/5+HhShpJx1dz575z7rnnGBiGYUAQBEEQBKEgRq0NIAiCIAii+UOCgyAIgiAIxSHBQRAEQRCE4pDgIAiCIAhCcUhwEARBEAShOCQ4CIIgCIJQHBIcBEEQBEEoDgkOgiAIgiAUhwSHRpjNZmRlZcFsNmttiu6hvpIG9Zc0qL+kQf3lOtRXYkhwEARBEAShOCQ4CIIgCIJQHBIcBEEQBEEoDgkOgiAIgiAUhwQHQRAEQRCKQ4KDIAiCIAjFIcFBEARBEITikOAgCIIgCEJxSHAQBEEQBKE4JDgIgiAIglAcEhwEQRAEQSgOCQ6CIAiCIBSHBAdBEARBEIpDgoMgCIIgCMUhwaESRUVF8PHxQWVlJerr6xESEoLc3Fz+9dTUVBgMBhgMBgQGBiItLQ2ff/65hhYTBEEQeuHPP//E77//DoZhtDbFbUhwqMSOHTvQq1cvBAYGYt++fYiIiEBiYqLomFdeeQWXLl3C4cOHceONN+LBBx/ETz/9pJHF2lNbW6u1CQRBEJpz9OhRjBw5EjfeeCP+97//aW2O25DgUInt27cjIyMDALB161YMHjzY5piQkBDExcWhffv2ePXVV9GhQwcsXboUAPDcc8+hY8eOCAwMRNu2bTF37lzU1dXx7z106BBGjhyJkJAQhIaGom/fvti7dy8AIDs7G9dffz3Cw8MRFBSEbt26YeXKlfx7jx8/jokTJyI4OBixsbG48847UVxczL8+YsQIPP7443j22WcRERGBuLg4zJs3T2T7yZMnMWTIEPj7+6Nr165Yv349DAYDbz8A5Obm4tZbb0V4eDgiIyMxZcoUnD9/nn/9nnvuwY033og33ngDCQkJ6NixIwDg008/xciRIxEYGIjY2Fjccsstbv0GBEEQTZGDBw/y7U8++UQ7QzzEW2sD3CU9PR35+fmqf29cXBw/kTfGhQsX0KNHDwBAZWUlvLy8sHDhQlRVVcFgMGDVqlWYMWMGPv30U7vv9/f350VFSEgIFi5ciISEBBw5cgQPPPAAQkJC8OyzzwIAZsyYgd69e+PTTz+Fl5cXDh48CB8fHwDAI488gtraWmzZsgVBQUE4fvw4goODAQCXLl3C8OHD8cADD+C9995DVVUVnnvuOUyfPh0bN27kbfnmm2/w1FNPYdeuXdixYwfuueceZGRkYOzYsTCbzbjxxhvRunVr7Nq1C2VlZZgzZ47ob6msrMTIkSMxdOhQbNmyBd7e3nj11Vdx3XXX4fDhw/D19QUAbNiwAaGhoVi3bh0YhsHevXsxe/ZsvPvuu7jhhhtQWlqKv/76y9WfiyAIoslTUlLCt7dv344zZ86gQ4cOGlrkJkwTJTExkQGg+r/ExESXbayrq2OysrKYQ4cOMT4+PszBgweZzMxMJjg4mNm0aROzZcsWpqCggGEYhklJSWH+/e9/8+9bsGABA4D55JNP7H7222+/zfTt25d/HBISwixcuNDusd27d2fmzZtn97W5c+cy48aNEz2Xk5PDAGBOnTrFMAzDDB8+nBkyZIjomH79+jHPPfccwzAMs2rVKsbb25u5dOkS//q6desYAMySJUsYhmGYr776iunUqRNjNpv5Y2pqapiAgABmzZo1DMMwzN13383ExsYyNTU1/DGLFy9mQkNDmcOHDzMmk8nu30CIMZlMzLlz56i/XIT6SxrUX64jV1/Nnz9fNA/94x//kMlCdWmyHo64uDjdf6+3tzdSU1Px888/o1+/fujZsye2bduG2NhYDBs2DNnZ2YiKiuKPf+655/CPf/wDNTU18PX1xTPPPIO///3vAIBff/0V77//PjIzM1FeXo76+nqEhoby733qqadw//3347vvvsOYMWMwbdo0tGvXDgDw+OOP46GHHsLatWsxZswY3HzzzbznZd++fdi0aRPv8RBy9uxZflmDO54jPj4ehYWFAIBTp04hOTlZ1Df9+/cXHb9v3z5kZmYiJCRE9Hx1dTXOnj3LP+7evTvv7QCAsWPHIiUlBSNGjMCECRMwYcIE3HTTTQgMDGys+wmCIJoFQg8HAHz77beYP38+jMamFRXRZAWHq8saWtKtWzdkZ2ejrq4OZrMZwcHBqK+v58VCQkICTp48yR//zDPP4J577kFgYCDi4+NhMBgAADt37sRtt92G+fPnY/z48WjVqhV+/PFHvPvuu/x7582bh9tvvx1//PEHVq1ahZdffhk//vgjbrrpJtx///0YP348/vjjD6xduxZvvPEG3n33XTz22GMwm824/vrr8dZbb9nYHx8fz7e55RkOg8EAs9kMAGAYhrfVEWazGX379sWiRYtsXouOjubbQUFBotdCQkKwd+9e/PTTTzh8+DD++c9/Yt68edizZw/CwsKcfidBEERzwFpwXLhwAX/++SdGjRqlkUXu0bTkURNj5cqVOHjwIOLi4vD999/j4MGDSEtLw/vvv4/9+/fj66+/Fh0fFRWF9u3bIyEhQTSBb9u2DSkpKXjppZeQnp6ODh06IDs72+b7OnbsiCeffBJr167F1KlTsWDBAv615ORkPPjgg/jtt98wZ84cfPHFFwCAPn364NixY0hNTUX79u1F/6wnf0d07twZFy5cQEFBAf/cnj17RMf06dMHZ86cQUxMjM33tGrVyunne3t7Y8iQIXjrrbdw+PBhnD9/XhRfQhAE0ZyxFhwAG1fX1CDBoSApKSkIDg5GQUEBpkyZgtatW+P48eOYOnUq2rdvb7Mt1hHt27fHhQsX8OOPP+Ls2bP48MMPsWTJEv71qqoqPProo/jzzz+RnZ2Nbdu2Yc+ePejSpQsA4IknnsCaNWuQlZWF/fv3Y+PGjfxrjzzyCK5cuYK//e1v2L17N86dO4e1a9fi3nvvhclkcsm+sWPHol27drj77rtx+PBhbNu2DS+99BIA8MJpxowZiIqKwpQpU/DXX38hKysLmzdvxuzZs3Hx4kWHn71ixQp89NFHOH78OLKzs/Htt9/CbDajU6dOLtlGEATR1BEKDm5ZevHixSgvL9fKJLcgwaEwf/75J/r16wd/f3/s2rULiYmJSEhIkPQZU6ZMwZNPPolHH30UvXr1wvbt2zF37lz+dS8vL1y+fBl33XUXOnbsiOnTp2PChAmYP38+AMBkMuGRRx5Bly5dcN1116FTp0781qqEhARs27YNJpMJ48ePR1paGmbPno1WrVq5vD7o5eWFpUuXory8HP369cP999+Pf/zjHwDYnTYAEBgYiC1btqB169aYOnUqunTpgnvvvRdVVVWiWBRrwsLCsGTJEsyYMQPdunXDZ599hh9++AHdunWT1IcEQRBNFU5w+Pv74/bbbwcAVFRUYPHixVqaJRkDwzThtGVNGLPZjOzsbKSkpDS5wB9X2LZtG4YMGYLMzEw+eNVdmntfyQ31lzSov6RB/eU6cvVVUlIScnNzER8fj8WLF/N5nG699Vb8+OOPcpmrOJKDRl977TVs2bIF1dXViIuLw6OPPoqhQ4cCABYuXIjvv/8eZrMZU6ZMweOPP95oMCHRPFiyZAmCg4PRoUMHZGZmYvbs2cjIyPBYbBAEQbR0OA9HeHg40tLS+OeFCRqbApIFx4wZM/DMM8/A19cXx44dwyOPPIJly5bh8OHD+PXXX7Fw4UL4+/vjoYceQmpqKqZMmaKE3YTOKCsrw7PPPoucnBxERUVhzJgxol00BEEQhHRqa2tRWVkJgBUcwcHBMBqNMJvNuHr1qsbWSUOy4EhNTeXbBoMBtbW1KC4uxsqVK3HLLbcgKSkJAHDHHXdg1apVdgVHbW2tTZ0Mb29vUf6F5g63pZT7v6lzxx134I477rB5Xo6/r7n1ldJQf0mD+ksa1F+uI0dfXblyhW+HhYWBYRi0atUKJSUlKC0t1cXv4OpykVt5ON58800sX74cNTU1GD58ONq2bYusrCxMnDiRP6Zjx474z3/+Y/f9CxYs4LdlckybNg3Tp093x5wmTU5OjtYmNBmor6RB/SUN6i9pUH+5jid9de7cOb7t6+uL7OxsBAcHo6SkBCUlJXZTJKhNmzZtXDrOLcHx/PPP45lnnsHevXuRmZkJgK2VIcxWGRQUxLuBrJk5cyZmzJghNqQFejhycnKQnJxMgVeNQH0lDeovaVB/SYP6y3Xk6KtLly7x7aSkJKSkpCAyMhI5OTm4du0aWrdu3WRiJd3ONOrl5YUBAwbghx9+QNu2bREYGCjaE1xRUeEw/bSvr2+LEhfOMBqNNGhdhPpKGtRf0qD+kgb1l+t40lfCOI2IiAgYjUY+y3JdXR1qa2sREBAgh5mK4/HZYjabcfHiRbRp04b3dgDA6dOn0bZtW08/niAIgiBaLMKkX+Hh4QAgys5cWlqqtkluI0lwVFZWYtWqVaisrER9fT02bNiAffv2oXfv3pg4cSIWL16M3NxcFBcXY9GiRZgwYYJSdhMEQRBEs0coODjPhrCOVFPaqSJpScVgMOD333/HW2+9BYZhkJycjFdffZWviXHmzBncddddMJvNuPHGG3HDDTcoZTchkXnz5mHp0qU4ePCg1qYQBEEQLtKcPBySBEdAQAA+++wzh6/PnDkTM2fO9NgowjMMBgOWLFmCG2+8UWtTCIIgCA+wJziaqoeDIn4IgiAIQqc0Jw8HCQ4FGTFiBB577DE88cQTCA8PR2xsLP773/+ioqIC9957L7p3744OHTpg1apV/Hs2b96M/v37w8/PD/Hx8Xj++edRX18v+szHH38czz77LCIiIhAXF4d58+bxr3OJ2W666SYYDAZRojYA+O6775CamopWrVrhtttuQ1lZmZJdQBAEQXhAYx4OEhwEzzfffIOoqCjs3r0bjz32GB566CFMmzYNgwYNwrJlyzBu3DjceeedqKysRG5uLiZOnIh+/frh0KFD+PTTT/HVV1/h1VdftfnMoKAg7Nq1C2+//TZeeeUVrFu3DgCwZ88eAGxytUuXLvGPAeDs2bNYunQpVqxYgRUrVmDz5s1488031esMgiAIQhKNeTia0pKK23k4tCb9ATPyrzR+nNzERQB7v3Bdp/Xs2ZMv1f7CCy/gzTffRFRUFB544AFkZ2dj7ty5+Oyzz3D48GEsX74cycnJ+Pjjj2EwGNC5c2fk5eXhueeewz//+U9+H3ePHj3w8ssvAwA6dOiAjz/+GBs2bMDYsWMRHR0NgFXAcXFxIlvMZjMWLlyIkJAQAMCdd96JDRs24LXXXvO4XwiCIAj54QSHr68vn2+jqXo4mqzgyL8C5BZpbUXj9OjRg297eXkhMjIS3bt355+LjY0FABQWFuLEiRMYNGiQKGtcRkYGysvLcfHiRbRu3drmMwEgPj4ehYWFjdqSmprKiw0p7yMIgiC0QVgplpsbmmrQaJMVHHERTeN7fXx8RI8NBoPoOe4EMpvNYBjGJkUtwzCi4xx9pisFfNx9H0EQBKENnAeDW04Bmm7QaJMVHFKWNZoKXbt2xeLFi0XCY/v27QgJCUFiYqLLn+Pj4wOTyaSUmQRBEIQK1NfX84H9QsHRVD0czW/WbsI8/PDDyMnJwWOPPYaTJ0/i999/x8svv4ynnnpKUh7+1NRUbNiwAfn5+aKAI4IgCKLpIPReNAcPBwkOHZGYmIiVK1di9+7d6NmzJx588EHcd999fNCpq7z77rtYt24dkpOT0bt3b4WsJQiCIJTE3g4VgPVic8VRm5KHw8BwQQKEqpjNZmRnZyMlJYUqLjYC9ZU0qL+kQf0lDeov1/G0r3bv3o0BAwYAAB555BF8/PHH/GsJCQm4dOkSkpKSkJOTI5vNSkJnC0EQBEHoEEceDsASx9GUPBwkOAiCIAhChzgTHFwcR1lZWZPZJECCgyAIgiB0iCseDgC4du2aWiZ5BAkOgiAIgrBDdnY2fvjhB1RVVWny/a54OICms1OFBAdBEARBWHHt2jUMHjwYt99+O2bPnq2JDa56OEhwEARBEEQT5Z133kFeXh4A4ODBg5rY4KqHo6kEjpLgIAiCIAgBly5dwnvvvcc/1mpCJw8HQRAEQTRj5s+fj8rKSv6xVhM6eTgIgiAIoply6tQpfPnll6LnSktLoUWOTE7oeHt7IygoSPQaeTgIgiAIognz4osv2uS1qK2tRXV1teq22CtNz0EeDoIgCIJoomRmZuK3334DAMTFxWHMmDH8a1p4EYSCwxrycBAEQRBEE+X06dN8e+bMmUhMTOQfqz2pm0wm3nNhT3A0RQ+Ht9YGEARBEIQeuHz5Mt+Oj4/XNHBUKCKE3gx7z5GHgyAIgiCaEELBERUVJZrU1fYiONuhAjRNDwcJDoIgCIIAUFxczLcjIyM19SI0JjiCg4P5kvfk4SAIgiCIJoQzD4feBIfBYOC9HOThIAiCIIgmhFBwREZGalogrTHBAVjiOMjDQRAEQRBNiKa0pAJY4ji0SkwmFRIcBEEQBAGLh8PPzw9BQUGaCo6ioiK+HRUVZfcYzr76+npUVVWpYZZHkOAgCIIgCFg8HJGRkTAYDJoKjvz8fL4dHx9v95imtjWWBAdBEATR4mEYhvdwREZGAoCm22IvXbrEt+Pi4uwe09S2xpLgIAiCIFo8lZWVqKmpAWBZwggNDeVf19LDERsba/cY8nAQBEEQRBPDOmAUALy8vHjRoZXgCA8Ph5+fn91jyMNBEARBEE0M6xwcHMKdIGrBMAwvOBzFbwDk4SAIgiCIJod1Dg4OLXJdlJeX83VcHMVvAOThIAiCIIgmh70lFcAiOKqrq1FdXa2KLcL4DWeCgzwcBEEQBNHEcLSkosVOFVd2qADk4SAIgiCIJkdjHg5APS8CeTgIgiAIopnSWAwHoJ4XwVXBQR4OgiAIgmhiuLKkooWHg3apEARBEEQzwtGSihYVY93xcJDgIAiCIIgmAOfh8PLyEk3kWns4nAkOHx8fBAYGAqAlFYIgCIJolLq6Ohw+fBj19fWa2SCso2IwGPjntRQc3t7eiIiIcHosZ59wSUivkOAgCIIgNOXvf/87evbsienTp2tmg7BSrBAtBAe3LTY2NhZGo/NpOjk5GQArUrhaMHpFkuCora3F/PnzMXHiRAwfPhyzZs1CZmYmAGD58uUYMGAAhg4dyv8TuoUIgiAIwppz585h4cKFAIDVq1drYkN1dTUqKioAiANGAfUFh8lkQmFhIQDnyykcKSkpfDsnJ0cxu+RAkuAwmUxITEzEggULsHHjRgwbNgxz5szhX+/fvz/++usv/p8rnUUQBEG0XD755BMwDAMAqKqqQl1dneo2ONoSC6i/Lba4uBhmsxmA8x0qHELBcf78eaXMkgVvKQcHBATg/vvv5x/feuut+OCDDySrvtraWtTW1ooN8faGr6+vpM9pynAnFPc/4RjqK2lQf0mD+ksacvZXRUUFvvrqK9FzJSUlNl4GpSkqKuLbERERor9NWKK+pKRE0t/tTl/l5eXx7djY2EbfKxQcWVlZmpzHjS37cEgSHNYcPnwYERERvAI8dOgQRo8ejYiICNx666245ZZb7L5vwYIF+OKLL0TPTZs2TdP1O63QuwtMT1BfSYP6SxrUX9KQo79++OEHmxvW48ePiyZRNTh+/Djf9vHxQXZ2Nv9Y6HEpLCwUveYqUvrq8OHDfDsgIKDR7/P39+fbR44cccs+T2nTpo1Lx7ktOMrLy/H666/j4YcfBgD06dMHP/74I+Li4nD8+HE8/fTTiIyMxMiRI23eO3PmTMyYMUNsSAv0cOTk5CA5OdllddhSob6SBvWXNKi/pCFXfzEMgx9//NHm+eDgYNUFx+7du/l227Ztbb4/KCgIFRUVqKqqkmSbO30l9FB06tSp0e/r168f3y4pKVG976TgluCoqanBnDlzMGTIEEyZMgUAkJiYyL+elpaG2267DZs2bbIrOHx9fVuUuHCG0Wiki5yLUF9Jg/pLGtRf0vC0vzZv3owjR47YPF9WVqb671BSUsK3o6KibL4/LCwMFRUVKC0tdcs2KX1VUFDAt+Pj4xt9n9C7cOHCBV2fw5Itq6+vx4svvojo6Gg88cQTDo8T7mMmCIIgCCEfffQR3+7Rowff1iKBlaO05hxc2IAau1RcTfrFERISwufq0GI5RQqSBcdrr72GmpoazJs3TyQqtm/fzqvEkydP4qeffsLQoUPls5QgCIJoFlRWVmLp0qUA2En13nvv5V/TQnA4SmvOwQmOyspKxXfRuFpHRQi3jHLx4kVNk6c1hqQllUuXLmH58uXw8/MTLZV8+OGH2LVrF15++WVUV1cjOjoad911F8aOHSu7wQRBEETT5uLFizCZTACAkSNHirwKevZwAKx9Su6iEQqO2NhYl96TmpqKAwcOwGQyITc3V7dxHJIER3x8PPbu3Wv3td69e+PJJ5+UxSiCIAii+SLc+pmYmKh5ETJXPRwAa58agiMkJARBQUEuvUcoMLKzs3UrOPQbXUIQBEE0S4SCIyEhQSQ4tPRwGAwGhIeH27yupiDiBIeUxJmpqal8W8/Jv0hwEARBEKqSm5vLt/UkOMLDw+Hl5WXzulrpzauqqvi/X4rgsPZw6BUSHARBEISqOFtS0TJo1N5yCqCe4JC6Q4WDBAdBEARB2EFPSyr19fX8d+pJcLi6QwWgJRWCIAiCsItwSSU+Ph4hISH8Y7UFx5UrV/i2o2BQvXs4wsLC+D4kDwdBEARBNMB5OCIiIhAQEAAvLy9+wlRbcDS2QwVQr2Ksu4LDYDDwyyoXLlzQbSFCEhwEQRCEajAMwwuOhIQE/nluWUVtwdFYDg5A/x4OwLKsUltbK/ocPUGCgyAIglCNkpIS1NTUABALDm5S16OHQ61tsZmZmXxbquBoCoGjJDgIgiAI1RDGbwiLfnKTelVVleLpw4UIA1gdZfZUw8ORlZWFX375BQBbnbZjx46S3i8MHCXBQRAEQWhGUVERPv/8c9x666347LPPNLPDeocKh1Y7VXJycvh269at7R6jhodj/vz5vNB66qmnXM4yyiH0cOh1p4pb5ekJgiCIpsG+ffvwwgsvYOPGjXz9kl9//RU333wzoqOjVbfHVcGhZPpwIULBkZycbPcYPz8/BAQEoKqqShHBcfz4cXz33XcA2ORjc+bMkfwZtKRCEARBaMr999+PdevW8WIDAMxms2aTknWWUQ6t6qlcuHCBbzsSHICyJer/+c9/8jtLnnvuOVFfuAotqRAEQRCaYTKZcPToUQBAaGgo0tPT+de02slgnWWUQ+sllYiICAQGBjo8TinBsXfvXixevBgAGyj66KOPuvU50dHRCAgIAKDfJRUSHARBEM2Uixcvor6+HgAwatQoPPDAA/xrehAcWsdwcOXcAcfxGxzc8lN5eTkqKipks+Hdd9/l2//4xz8kx25wGAwG/m/Izs4GwzCy2CcnJDgIgiCaKWfPnuXb7dq1E221vHTpkhYm8RO80WgU7QrRQnDk5+fzgszZcgog9sYIRZOn7N+/HwAQEBCA+++/36PP4mysrKxEeXm5x7bJDQkOgiCIZsq5c+f4dtu2bUWCQ2sPR2xsLLy9LfsWtBAcrgSMcgi9MXIJjvr6emRlZQEA2rdvDz8/P48+LyYmhm8XFRV59FlKQIKDIAiimaI3wWEymfjvFU7ggPaCo7ElFaG9wsBXT7+f2wrbvn17jz9PuOuosLDQ48+TGxIcBEEQzRRrwSFcwtBCcBQWFvK7MfQgOFzdoQIos6QizCwqt+AgDwdBEAShGlwMh8FgQGpqKvz8/BAREQFAG8HhKMsooL2HQ4sllTNnzvDtDh06ePx5wiUV8nAQBEEQqsF5OJKTk+Hr6wvAUqMjPz9f9Z0MjnaoAE1LcMi1pEIeDoIgCKLJU1paiitXrgBgl1M4OMFRWVmJsrIyVW1yJjjUKgEvhBMcBoPBxuNijRIeDrkFB3k4CIIgCNXhdj8A7JZYDi0DR50tqYSEhMBgMABQP4YjPj4ePj4+To8NCAhAeHg4APkFh7+/f6OCxxXIw0EQBEGojnXAKIeWgsOZh8NoNCIkJASAOoKjpqYGBQUFABpfTuHgbM7NzfV4OcpkMvExNu3atYPR6Pl0TNtiCYIgCNURJv1qCoIDsMRxqCE4hN4WqYKjpqYGJSUlHn3/xYsXUVtbC0Ce5RSAXZbicpvQkgpBEAShCo48HPHx8XxbqyUVX19fREZG2rzOCQ41ircJt8Q2loODQ86tsXLHbwBsLApXZZc8HARBEIQqCAWHXmI4uEk6ISGBj9cQwgmO6upq/u5fKaTsUOGQc6eKEoIDsCyrFBYW6q6eCgkOgiCIZggnOEJDQ/ncGwA0q6dSU1ODy5cvA7C/nAKouzXWU8HhqYdD7hwcHFzgaG1treq7kBqDBAdBEEQzo76+HtnZ2QDY5RShN0ErD4dQ3OhBcDTHJRXA/tZYvXg6SHAQBEE0M3JycvgqqMLlFACIiIjgAwvVFBzC7xKKHiFNycMh15KKr68vkpKSPPosIfa2xv7666+Ij4/HkCFDsHz5ctm+SyrejR9CEARBNCUcBYwClrLwubm5qgoOYRCjcFIUooXg8PHxEXkFnCHXkorZbOZ3EbVt2xZeXl5uf5Y19gq4ZWZmIj8/H/n5+aiqqpLtu6RCHg6CIIhmhjPBAVh2qhQWFsJkMqlik1BwOJrgtVhSSUpKcjkHRlxcHL885YngyM3NRXV1NQB54zcA+7k4hFukrT1eakKCgyAIopnRmODgljTMZjOKi4tVsUlPHo6ysjL+812N3wAAb29vvuKuJ0sqSsVvAPaXVEhwEARBEIrQ2ASjReCongSHO/EbHNyySn5+vtveISUFh72gUe58iIiIENWsURsSHARBEM0MzsNhNBrt3sFrsTXWFcGhVgE3TwQHt1PFbDa7nc1TTQ9HTU0NLl68CEBb7wZAgoMgCKLZwQmO1q1b2y1K1tI9HMItse56OAD34ziUysEB2Ho4srKy+G2xJDgIgiAI2aiqquLrfDiKT9BScBiNRlEiMiFaCA4pMRyAPFtjOQ+Hj4+PZMHTGK1ateJFZlFRkW7iNwASHARBEM0KoZufC3C0RgvBwdkVGRnpcFeIUHAoWU9l3759fFuqh0GKh+M///kPnnnmGdFx9fX1vOBo06YNnxNFLoT1VAoLC3UlOCgPB0EQRDOCK7kOON5+qkUBN87D4SznhRoeDpPJhG3btvG2SBUcrmYb3bRpEx5//HH+ez755BMAwMmTJ/lcGD169JD03a4SExODS5cuoaioSBQvorXgIA8HQRCEDJSUlODdd9/Fnj17NLVDKDgceTiEz6shOCoqKvhJ1lH8BgCEhITweS6UEhxHjhzBtWvXAABDhw61W0TOGa4uqcyfP59vb968mW/v37+fb/ft21fSd7sK18d1dXU4cOAA/zwJDoIgiGbAyy+/jKeffhqDBw/Grl27NLPDFcERFBSEkJAQAOrsUnElYBRg4zs4u5QSHFu2bOHbw4YNk/x+V5ZUNm/eLBIZx48f5+NqhMs5SgkOoRdp7969AAB/f3+RZ0sLSHAQBEHIwNatWwGwa/S33norP8GojTCGw9nyBRfHoYaHw1XBAViWVZQSHH/99RffHjp0qOT3R0VF8UGZjgSH0LvBsWPHDgBiwdGnTx/J3+8Kwj7mMpq2bdvW5YyqSkGCgyAIwkMYhsHp06f5x9nZ2bj//vs1qdLpiocDsAiOa9euobKyUlGb9CI4GIbhBUdoaKhbMRQGg4H3cthbUvnrr7+wadMmABDVSNm2bRtMJhO/xJGSkoLIyEjJ3+8K9oSm3Pk+3IEEB0EQhIfk5+ejoqJC9Nxvv/3GBwqqiVTBYf0eJXBHcFRXV6O2ttaj7127di0mTpyIFStWAGDzX3B/a0ZGhttF0zjBcfnyZd6DwCH0brzyyit8e/v27Th16hQv7pRaTgHs97HW8RsACQ6CIAiPEXo3evbsybefeuopUVZLNXBVcKi5U0W4zOOq4AA893I88cQTWLVqFW699Vbk5OR4vJzCIcydIfx99+zZgw0bNgBgJ/inn36a39Wya9cuUWwPCY5GqK2txfz58zFx4kQMHz4cs2bNEm25WbhwIcaMGYNRo0bhgw8+0MSdSBAEoTZCwTFr1iw8+OCDANhrpnCSUwNucg8MDERQUJDD49RMb+5KpVgOYXpzT+NgsrOzAQCVlZV4+umnRb+FOwGjHG3atOHbwkJ5ws9/6qmn4O3tzcdpVFVV4auvvuJfV1Jw2OvjJic4TCYTEhMTsWDBAmzcuBHDhg3DnDlzALABU7/++isWLlyIn3/+GVu3bsWyZcsUMZogCEJPCAVHx44dMXr0aP4xN+mpBefhcObdAMQeDjUFR2MeDmGeC2FGUKlUVFSIYlN+/vlnLF68GADg5+eH9PR0tz9bWIE3KyuLbwvFR+/evQGIhQWX/8P6ebnRq4dDUuKvgIAA3H///fzjW2+9FR988AFKS0uxcuVK3HLLLUhKSgIA3HHHHVi1ahWmTJli8zm1tbU2a3Pe3t7w9fV1529okpjNZtH/hGOor6RB/SUNOfrr1KlTfLt9+/aiZY3s7GzVfou6ujpcvnwZACs4nH2v0MORm5vrso3u9JdwSSUyMtLpe1NSUvj22bNnMWrUKJe/R4i9uJTy8nIAwMCBA+Hj4+P275Kamiqykfscocc/NTUVZrPZrrBo3bo1IiIiFDsvuEyjHEajEcnJyYp9n6u7XzzKNHr48GG+3G1WVhYmTpzIv9axY0f85z//sfu+BQsW4IsvvhA9N23aNEyfPt0Tc5okaq/vNmWor6RB/SUNT/rrxIkTANg7Z5PJJEomderUKdW8HMKJPTg42OXvPX36tGQbpfQXt5vDYDCgvLycTwJmj8DAQL59+PBht/vu8OHDDl/r3r27R7+Jn58f3z569Cj/WZynKzAwEFVVVcjJyUGnTp0QFBQkCiru3LmzoucEwzDw8fFBXV0dADbIVUkvlnCJyRluC47y8nK8/vrrePjhhwGwa2TBwcH860FBQQ63Ws2cORMzZswQG9ICPRw5OTlITk7WfG+03qG+kgb1lzQ87S+TycRPHh06dECbNm2QkpICPz8/1NTUoLi4WHTXriTCmIfU1FSn38sl2ALYrbGu2uhOf3GZPSMiIkTLEfYYMGAA375y5YrbfXf06FG+PWnSJKxcuZKPK5w0aZJHv0lCQgK8vLxgMplQUFCAlJQUmEwmXli1a9eO93Dk5ORgwIAB2LhxI//+IUOGKH5OREdH83lCOnXqpNo56Ay3BEdNTQ3mzJmDIUOG8EsmgYGBvLsKYNfPhEpViK+vb4sSF84wGo00KbgI9ZU0qL+k4W5/nT9/nr+T7NixI/85ycnJyMzMRHZ2NgwGg+QU2u4gjJWIi4tz+vdERkbyoig/P1/y3y6lvzi7oqOjG32P8G75/Pnzbp/DxcXFfHvSpElo164dPvzwQyQnJ2Po0KEejQ0/Pz+0bt0aWVlZOHfuHIxGI3Jzc/lQAeskWxkZGSLBkZ6ervjYjImJ4QVHu3btdHEtkGxBfX09XnzxRURHR+OJJ57gn2/Tpo1o/er06dONKlmCIIimjnXAKAd3R1lWVqZoqXUhrhRu4zAYDHzgaGNVTz2hqqqKvxltLGAUYGMFufiS8+fPu/291oGq77//PtauXYtt27Y53b3jKpwwunr1KkpKSkRVWa3nvkGDBokeKxkwyiHsaz0EjAJuCI7XXnsNNTU1mDdvnkixT5w4EYsXL0Zubi6Ki4uxaNEiTJgwQVZjCYIg9MaZM2f4tlBwtG7dmm97sttCCq6UphciTGBVU1OjiE1StsRycJN5fn6+03gPZ1ineDcYDBg7dqwoh4YnCEXFuXPnRDtUrAXHwIED+fkyKSnJ5X7wBOF3NEnBcenSJSxfvhwHDhzAyJEjMXToUAwdOhQHDhzAkCFDMHXqVNx1112YNm0aMjIycMMNNyhlN0EQhC5w5OHQQnC4mvSLQ1iITKmgQilbYjmsl1XU+l4pOBMc1hN8q1at8PDDD8Pb2xtPPvmk7LbYo2vXrgDYpS9ui67WSIrhiI+P5yvP2WPmzJmYOXOmx0YRBEE0FYSCo0OHDnxbKDjU2qXiieDIy8sTbfeUC3cmfqEdWVlZ6NKli+TvdbWInbtI8XAAwMcff4x3331XtMNFSR555BHU1NSgW7duuglv8GhbLEEQREuHExytWrUSTajCXQFaeDhcmWRdKbXuKVp7OLy8vBAeHu7WZzjDWnBwMRwGg8HhjhC1xAbAno/2qtZqifZhqwRBEE2U6upq3nvRsWNHUVybljEcPj4+Lk2yTUFwCDN5SoHri6ioKEV2aFhnG+U8HImJifD395f9+5oDJDgIgiDc5Ny5c3xuB2H8BgA+6zKgvoeDC5JsDDXSm2shOBiGEW3FVYKIiAg+l8mhQ4f4bbh6CdDUIyQ4CIIg3MRRwCjAbu/kljXUiOEwm838Xb2rMQt69XAIk4q5s6RSXl7Ol41XakeIwWDgvRzCeBG9xEvoERIcBEEQbuIoYJSDW8vPy8vjk4MpxZUrV2AymQC4FjAKqC84XJ38fXx8eA+ROx4OpXeocNgTFyQ4HEOCgyAIwk2ceTgASxwHwzB82mulkJqDA2ADCwMCAgAoJzisC7e5CrescuXKFT41ujvfSYJDP5DgIAiCcBNh0i97Hg41A0el7lAB2GUBzsuhtIcjPDwcPj4+Lr/PkzgOd7wq7mBPXFAMh2NIcBAEQbgJJyIiIyMRGhpq87qauTik5uDg4ARHaWmpw4KbnuBu8KYwF4fUOA7ycOgTEhwEQRBuYDabea9AYmKi3WPUzMXhqeAA5N+pUlNTwy+HSJ34m4KHw7ose3BwMKKiohT7vqYOCQ6CIAg3KC4u5quDOhIcai6puBPDASi7NVZYsVVNwaGWhyMlJUW0/bht27aqVAVuqpDgIAiiyVFTU8Pnv9AKYRCoHgSHOzEcgLI7VTzZLeLJkopaHg5/f3/Rb0/xG84hwUEQRJNi3bp1iIiIwJAhQxSrcOoKQsEhTPIlJCoqit8FovcYDsAzwWFPAHoy8SckJPBBpnr1cADimA2K33AOCQ6CIJoUCxcuRGVlJbZv344VK1ZoZocrHg6DwcB7OS5cuKCoV4YTHAaDQVIcgRyC448//kBMTAzuvPNO0d8o9OpInfi9vLz4GJisrCxJfccJHW9vb4SFhUn6XqmQ4HAdEhwEQTQphJ6CH374QTM7XBEcgGVZpaKiAiUlJYrZw93VR0ZGwtvb9bqccgiOjz/+GMXFxfj++++xadMm/vkff/yRb/fp00fy53JxHOXl5bh8+bLD495880107NgRS5YsAaB8HRUhaWlpdtuELSQ4CIJoUgjvmlesWIGrV69qYodUwQEoF8fBMAzv4ZCynALIIziESx4fffQRADbuYsOGDQDY2IYhQ4ZI/lzrMvX2KC0txUsvvYQzZ87giSeeENVRUTJ+g+P+++/Hfffdh7lz52Lo0KGKf19ThgQHQRBNhvr6etFEX1NTg6VLl2piy8WLF/m2q4LD0ziOq1ev4v7778fLL7+M+vp6/vmysjK+dohUwRESEoLg4GAA7u1SYRhG9HctW7YM2dnZ+Oabb/hlkHvvvdet3RtCweGo7zZv3gyz2QyAFXQbN27kdw8pHb8BsNlav/zyS7zyyiu0Q6URXPe7EQRBaExeXh4/uXD873//w9133626LZzw8fPzQ0REhMPj5MzF8d///hdfffUVAKCurg6vv/46AHHGU6mCA2C3xp45c8YtD0dhYSEvdgA2P8nHH3+MX375BQBgNBpx1113Sf5cwDXBsXHjRtHjTz75hG+r4eEgXIc8HARBNBnsTdgbNmwQ7dBQC05wJCUlOb2zlXNJRVi75Y033sCaNWtw9epV3Hnnnfzz3bp1k/y53LLKtWvXUF5eLum99oTA+++/zz8/fvx4h7t4GkMo1lwVHL///jvfVsPDQbgOCQ6CIJoMwgmb8yqYTCb+blotKisrUVpaCsD5cgogr+CwXvK48847ccstt+DEiRMAgC5duuCxxx6T/LmeZBsVCgFuG6twuefee++VbA9HY4KjoKAAR48eFT3HVcwFyMOhN0hwEATRZBBO2I8++ijfVnu3iqsBo4DYA+JpDIe1GCgqKsL69esBsMXRli1bZremS2N4EjgqTMr1yCOPiF6LiorCDTfcINkejvj4eH7Hjb2+E+6IsedFIQ+HviDBQRBEk0EoOCZNmsRvQ9y+fbvkbJSe4GrAKMDGeMTFxQGQz8MREREh+l4vLy/88ssvaN++vVuf64ngEAqB6dOno1+/fvzjO+64A76+vm7ZBLB/V3Jyss33cAiXU9566y2bLbDk4dAXJDgIgmgyCCfs1q1b429/+xv/eM2aNarZIcXDAViWVS5duuR2dlSTycTHqrRp0wY//PAD/Pz8AAAffPABRo8e7dbnAmLBkZOTI+m9QiGQkpKCl19+GUajEaGhoXjooYfctkn4mQC7/dV6CzQnOHx9fXHjjTdixIgRotfJw6EvSHAQBNFk4ASHr68vYmJikJGRwb927Ngx1exwV3AAYu+IFIqKivgdOvHx8Rg6dCiOHTuGgwcP2ixlSEVYA+Ts2bOS3ssJDl9fX8TFxWHSpEk4cuQIDh8+jI4dO3pkF+A4jiM7O5u3ddCgQQgMDMS0adNE7yUPh74gwUEQRJOBExzJyckwGo2iHRnWwYNK4kodFSFybI0Vxm9wFV7btWuHnj17uvV5QoRLMZmZmU6P5crNA2wODm4pi/tNAKBr166iv9kTHAkOYfzGqFGjAAA33XSTaFmFPBz6ggQHQRBNgqtXr/Iudc5jEBUVxeedaCoeDjkFh1yEh4fzu34cCY78/HzcdNNNCA8Px5w5cwCwyxxlZWUAxDkz5MSR4BDGb3CCIzY2FuPGjQPACqBWrVopYhPhHiQ4CIJoEghjC4QTOOflKCwsFFUnVRJOcBgMBpcmf70LDsDi5cjJyREl8mIYBj/88AO6devGZ3VdsmQJCgoKbOI3lMCe4GAYhk+bHhgYiP79+/PHfP3113j99dexfPlyyvypM0hwEATRJLAOGOUQFsxSy8vBxWHExMTwuSecIUd6c7UEB8MwOHfuHP/8888/j9tvvx1XrlwRHb9+/XrNBIcwK+rQoUNFO2Hi4+PxwgsvyLLURMgLCQ6CIJoEjgSH2nEcJpMJ+fn5AFxbTgGUi+GQkw4dOvBtblmltLQU77zzDv/8oEGD+Pb69etFW5GVEhzctljAIjh27tzJPzds2DBFvpeQHxIcBEE0CfTi4SgoKOCzWboqOMLDwxEUFARAv4LDXuDooUOH+AJs99xzDzZt2oTAwEAAwLp160QeDqViOPz8/Pi/l/u+Xbt28a8PGDBAke8l5IcEB0EQTQJHgqNr1658Ww0Ph9SAUYCN9eBsvnDhAj+JS0EoONwp0NYY9gTHwYMH+ecGDx4MPz8/vgT7pUuXsGrVKv51pTwcws8uKChAdXU1du/eDYDtV2GiMULfkOAgCKJJIBQcQjd7WFgYvzX12LFjbk3mUpC6JZaDExxVVVUoLi6W/L2c4IiKivIoe6cjHHk4OLiYiLFjx/LPnTx5EgBbEdZV8eUOQjFz+vRp3q4uXbq4lcqd0AYSHARBNAk4d3pkZCS/PMHBxXGUlJRILj4mFXc8HIBncRwMw/B/lxLLKQDbr2FhYQAs5e45D4fRaOSXroSCgyMpKcml4Fl3Efbd77//jrq6OgAQ7U4h9A8JDoIgdE99fT0/0QuXUziEcRxKL6tIqaMixJOtsSUlJaitrQWgnOAwGAy8l+PChQuoqKjgY2I6duzIx25069bNJoOnkssp1p8vrAxM8RtNCxIcBEHonkuXLvGBmvYEh3CnitKBo+56ODwRHEoHjHJwgsNsNmPVqlW8yOnVqxd/jMFgEKWUB5QXHMKA1CNHjvBt8nA0LUhwEAShexwFjHKo6eGQQ3BIzcWhtuAAgMWLF/Nt65wWQ4YMET1W08PB4e/vj+7duyv6vYS8kOAgCEL3NCY4unTpwrfV8nAEBQVJClj0JIZDC8GxYsUKvi30cACw8XAotSWWw57g6NOnj6JxI4T8kOAgCEL3NCY4goOD0aZNGwDy7FQxm82YP38+nnzySdFkf/r0ad47kZSUJCl1dmJiIn+8XgWHMPlXeXk537b2cMTExIi8C0p7OIKDg/laLxwUv9H0IMFBEITuaUxwAJY4jvLycreTa3GsW7cO8+bNw/vvv49u3bph0aJF2Lp1KwYNGsTXGZGa/8HHxwcJCQkAGhccV69exT//+U8sX74cgDYeDo6YmBjExcXZPD916lQAbFn6Hj16KGYTh7WoofiNpoe31gYQBEE0hiuCIy0tjV8GOHr0qEd33cL8EyUlJbjjjjtgMBh4z0n37t3x1ltvSf7c1q1bIzc3l09g5e/vb3MMwzCYNm0a1q1bB6PRiCNHjqgmOKKjoxESEsJXgAVY74Y9T86zzz6LmJgYpKWlKZKIzJqUlBQcOHCAf0wejqYHeTgIgtA9WVlZANg01/butgF5d6qcPXvW5jlObIwdOxZ//fUX762QglAECavfCvnqq6+wbt06AOzSzscff6ya4BBujeWwjt/g8Pf3x8MPP6xaLRNh30VFRSkeN0LIDwkOgiB0jbB6aWpqKoxG+5ctoeA4fvy4R9/JZdoEgC+++AJRUVEAgPvuuw9//PEHWrVq5dbnNrY19uLFi5gzZ47ouW+//Za3JzQ0lM+HoRTCOA7ANn5DK4SCY8CAAVR6vglCSyoEQeiagoICVFVVAQDatm3r8LiOHTvy7VOnTnn0ndwEHx4ejvvvvx8zZsxAfn4+H5jqLs4EB8MwmDVrFq5duwaADZQsLy9HRUUFKioqACjr3eBw1cOhNsLfd/DgwRpaQrgLeTgIgtA1nHcDcC44goKC+Borp06dcnunSk1NDb/cwU2+AQEBHosNwHkuju+++44vhpaQkIA1a9bYvF9tweHn54dOnTop/p2uMH78eNxzzz2YPHkyHnroIa3NIdyABAdBELrGVcEBgJ8cS0pKcPnyZbe+Lysrixcr7dq1c+szHCFcFuDiUjj+7//+j29//vnnGDx4MEaPHi06Rm3BkZaWBm9vfTjCvb29sWDBAixfvhzh4eFam0O4gSTB8fnnn2PatGno16+fSH0vX74cAwYMwNChQ/l/+fn5shtLEIR6MAyDTz/9FAsXLlS8AqszpAgOOZZVhAGj9raJekL79u352IMTJ07wz9fW1vKPu3fvjsmTJwMAHnvsMdH71RAc3bt354vjjRgxQvHvI1oOkqRrcnIy5syZg88++8zmtf79++Ojjz6SzTCCILTlt99+w8MPPwwAKC0txRNPPKGJHUJPgKseDoAVHNYZMV1BGDAqt4cjMDAQbdu2xdmzZ3Hs2DGYzWYYjUZkZmaivr4egDhN++TJk5GSksIvv6ghOMLCwrBmzRrs3r0b9913n+LfR7QcJAmOiRMnAgC+/vprj760traWLwrEG+LtDV9fX48+tylhNptF/xOOob6Shlz9tXXrVr794osvYuLEibLf8buC0MORkpLi9O8S7rA4efKkS31g3V9caXaAFThyn3fdunXD2bNnUVlZiaysLLRp00ZU/6VLly78dxoMBjz88MN47rnnALAeEjXGwaBBgzBo0CAAtucRjUfXaSl95WjnmDWyLc4dOnQIo0ePRkREBG699VbccsstDo9dsGABvvjiC9Fz06ZNw/Tp0+Uyp8ngaC8+YQv1lTQ87a+DBw/y7aqqKtx555343//+5/LFRS44ARAREYErV67gypUrDo8NDg7m24cOHZJUJI3rL+Hk7+/vL7nQWmMkJSXx7U2bNsFoNGLHjh38c1FRUaLvvPHGG3Hu3Dl4eXmhW7dustvjLjQeXae595WrAdWyCI4+ffrgxx9/RFxcHI4fP46nn34akZGRGDlypN3jZ86ciRkzZogNaYEejpycHCQnJ6t+AW9qUF9JQ67+unjxoujx7t27sXLlSjzyyCOemugy1dXVfDxY+/btG80empSUBD8/P36niSvZRq37Ky8vDwC766Vv376y53sYPHgwPvnkEwBAUVERUlJS+O8EgOHDh9vYzR2vB2g8ug71lRhZBIewRHNaWhpuu+02bNq0yaHg8PX1bVHiwhlGo5FORBehvpKGJ/1VW1vLx06Eh4ejpKQEAPDCCy9g8uTJsmwRdYWcnBw+YLVt27aN/j1GoxEdOnTA0aNHkZmZCbPZ7PIuC6PRCLPZjPPnzwNg4ze8vLw8st8ewqJnx44dg9Fo5BOV+fj4oEOHDk3iPKfx6DrUVyyK9ABlgCOIps3Zs2dhMpkAsPkPHnzwQQBARUWFqnfbUnaocHCBo3V1dbx4cJWcnBzU1dUBkH+HCkenTp14IXPs2DHU19fzO2o6duxIJdeJZoskwVFfX4+amhowDMO3zWYztm/fzt8BnTx5Ej/99BOGDh2qiMEEQSiPcEtpp06d8M9//pN/LCygpTRSdqhwCHeqnD59WtL3KblDhcPPz48Pbj1x4gROnz7Ni5yuXbsq8p0EoQckCY5XX30VGRkZOHDgAF5++WVkZGRg//792LVrF6ZPn46hQ4fixRdfxF133YWxY8cqZTNBEApjLTji4+MRHR0NADhy5Ihqdnji4QCk5+JQMgeHEK7uS01NDV+CHiDBQTRvJMVwzJs3D/PmzbN5Pj09HU8++aRcNhEEoTFCzwA3gXfv3h0bN25EYWEhCgsLERMTo7gdQsHhatyIJ8m/1PBwAGys2+LFiwEAv/zyC/88CQ6iOUNRLARB2CCcqDn3vzAhlXDrqJJwgsPb21u0ndQZUjwchw4dwrBhw/DUU0+hqqpKdQ8HAOzbt49vk+AgmjP6SJJPEISu4CbqhIQEhISEABDvrjhy5AhGjRqlqA3CsvQpKSku7zYJDw9HdHQ0ioqKnMZwHDp0CKNGjeLzetx777388b6+vi4LHHcQijcOLy8vm9LwBNGcIMFBEISIK1euoLi4GIDYW2AtOJTm8uXLKCsrA+B6/AZHp06dUFRUhLy8PJSVlfGiiePw4cMYPXq0KInYzz//zLfbtGmjyJZYjvbt28PHx4cPFuWe8/PzU+w7CUJraEmFIAgR9uI3APEygBqCw52AUQ5nO1VOnDiB0aNH89Vku3btarOVX+kU7j4+PujcubPoOVpOIZo7JDgIghAhjHsQBmAGBwfzgZtc4TElcWdLLIezwNEXX3yR9+AMHDgQ27Ztw0svvSQ6RsmAUQ6hgLP3mCCaGyQ4CIIQYb0lVgi3rFJRUSE5qZZU3NmhwuEscHT//v0AgFatWmH16tUIDQ3FzJkz8fe//50/pk+fPu6YLAnrOA7ycBDNHYrhIAidcfnyZezcuROjRo1CQECA6t/fmOBYtmwZAHZZRarnQQpyLakI/x6uxgp3TKtWrWA2m2EwGPDBBx+gQ4cOKC8vt6n1pATWHg0SHERzhzwcBKEj8vLykJaWhsmTJ+Mf//iHJjZwE7SPjw9SU1NFr6kVOFpbW4uTJ0/yj6UKjnbt2vG7WoSfk5WVxddmsY7T8PHxwZw5c/Dyyy+7vCPGE4SCw2g0ipaBCKI5QoKDIHSCyWTCjBkz+OqowgyUatrAJb9q3769zU4NpXJxmM1mbN26FY8//jjS0tIQFBSErVu3AgDCwsIQHh4u6fN8fHx4QXHq1Cm+LowwsZfSgaGN0bZtWwQFBfG2aOHNIgg1IcFBEDrh1VdfxZ9//sk/zszMRFVVlao2XLhwATU1NQBsl1MAcXExOTwcDMPg9ddfR3JyMoYOHYqPPvqIL2jGMXjwYLc+u0uXLgDYEvfZ2dkA9CU4vLy88H//939IS0vDG2+8oaktBKEGJDgIQgds2rQJ8+fPFz3HMIxoOUANnMVvAKzngJvIT506xYsTd9m7dy9eeukl5OXl8c95e3uje/fuuP322/H222/j22+/deuzOTsBdissoC/BAQAPPvggjhw5gqlTp2ptCkEoDgkOgtCYsrIyzJgxw25sgVopxDkcbYkVwsVxmEwmjwWRsPLs4MGD8d1336G4uBiHDx/GokWL8MwzzyAyMtKtzxYKjuPHjwPQn+AgiJYECQ6C0JgVK1bg0qVLAIAxY8bg3//+N//asWPHVLVFKHCsE1NxCOM4PF1W4TwPAPCvf/0Ld9xxB1q1auXRZ3I483CEhIQgKipKlu8hCMI1aFssQWjMmjVr+PYLL7wgSjqltoeDy1FhMBjQo0cPu8cId6p4ap/QQyIUCHIgFEwnTpxAXV0dnzukffv2NtlFCYJQFvJwEISGMAyDtWvXAgACAwORkZGB1q1bIzg4GIC6Ho6amhreY9G5c2feBmvk3BrLCY7Q0FDExcV59FnWBAUFoXXr1gBYwXH+/Hl+twotpxCE+pDgIAgNOXbsGL+cMmLECPj5+cFgMPA5Gs6fP4/y8nJVbDl69ChfTKxv374Oj0tOTkZYWBgA4ODBg25/X2VlJb97pHPnzop4HDivydWrV/lttgAJDoLQAhIcBKEhnHcDAMaNG8e3hXESXMCj0nDLKYBzwWEwGNCrVy8AbKKywsJCt77v9OnTfKCs3MspHMLsncK8JiQ4CEJ9SHAQhIY4EhzCLJRqxXHs27ePbzdWS6R37958W7jTRArC+A1HAaqeIhQywr4mwUEQ6kOCgyA0orq6Gps3bwYAJCUliSZdoYdDrTgOTnAYDAaRoLCHHIJDuENFKQ+H8HMrKir4NgkOglAfEhwEoRFbt25FdXU1ANa7IYxhUNvDUVtbi8OHDwNg82+EhIQ4PV4oOIRLMVJQ28PBERAQgPj4eEW+jyAIx5DgIAiNcLScAgDx8fF8/RA1PBzHjx9HbW0tAOfxGxydO3eGv78/AM89HD4+PopVnY2MjER0dLToOdoSSxDaQIKDIDSCExwGgwFjxowRvSbcqZKbm4vS0lJFbZESvwGw6ce5PB2ZmZm4du2apO8zmUw4ffo0AFYAcPVZlMDay0HLKQShDSQ4iBaL2WzGhQsX+J0SapKfn49Dhw4BANLT0+2m7xYuqyjt5RAKDlc8HIB4WYX7W5xx7do1lJSUAACys7P5OixKLadwkOAgCH1AgoNosTzyyCNISUnBXXfdpfp3L1myhG9bL6dwKFUK3h7COIzGAkbtHdfYssrJkyeRmpqK1NRUbN++XZWAUUefT4KDILSBBAfRIjl27Bg+++wzAMCPP/7ocdVTKTAMg48//ph/fMstt9g9Ti0PR319Pe+h6NChg8u1TKQIjn/9618oKSnBtWvXcPfdd4sEjtoeDmHqeIIg1IMEB9Eiee211/h2fX29qmXgN23axCfzGjJkCJ9Eyxq1PBzHjx/nd8u4Er/B0b17d3h5eQFwLjiys7Px008/8Y8zMzPx+uuv84+V9nAIk38B5OEgCK0gwUG0OE6fPi2aAAHwW0Ll4JtvvkHbtm3Ru3dv3HHHHXjjjTeQlZXFv/7RRx/x7UcffdTh50RHR/M7LI4ePepxrMnFixexYsUKvp4IhzvxGwC7vZTzThw7dsyhl+j999+3+U5O4ABAp06dXP5Od0hMTOS3+fr6+iIpKUnR7yMIwj4kOIgWxxtvvAGz2Sx6Tk7B8eKLLyIrKwsHDx7EokWL8OKLLyItLQ3btm1DdnY2li1bBgBISEjA1KlTnX4W5/0oKiri6464Q11dHUaMGIHrr78eN998s0i8uCs4AMuySn19vd1ln5KSEnzxxRcAAH9/fzzzzDOi15OSkhrN+eEpBoMBN910EwBg8uTJvFeGIAh1IcFBtCiysrLw3XffAWCriXLIJTjKy8uRl5dn83xlZSUmTpyIJ554ghc7Dz74YKPbQQcNGsS3d+zY4bZd2dnZOHv2LADg999/x/vvvw+ALb62YMECAK5lGLWmsTiOzz77jM/wOXPmTLz++uvo168f/7rS8RscX3/9Nfbv32/j2SIIQj1IcBAtijfffJN37z/99NOIiooC4Nq2TlcQLp3cdtttOHToEL8L5dq1a1i6dCkA1rU/a9asRj9PKDh27tzptl05OTmix8899xxWrFiBG264AZWVlQCA++67j0825irCmA/rjKPV1dX48MMPAbBi5qmnnoK3tzcWLFiAgIAAAMD48eMl/y3u4OXlhd69e8Pb21uV7yMIwhYSHESLIScnh7+bDwkJwezZs/nkVQUFBSgoKPD4OzgvAsDevffo0QNLlizBsGHDRMdNnz4dsbGxjX7egAED+LYnHg5rwVFXV4frr7+ef37gwIGi2BJXEQa8Wns4fvjhB+Tn5wMApk6dygdrduvWDYcOHcLSpUsxe/Zsyd9JEETThAQH0WJ4++23UVdXB4AN1gwPD+cFBwAcOXLE4+84d+4c3+a2XwYGBmLFihXo378//9rjjz/u0ueFh4fzyw4HDhxAVVWVW3ZduHCBb4eGhopeS0xMxG+//canKpdCWFgYn5b8wIEDfHp0AFixYgXffvLJJ0Xv69ChA6ZMmaJohlGCIPQFCQ6iRZCfn88HLwYGBvIToFBwyBHHIRQcwvogISEhWLt2LV599VX8+uuvojiGxuCWVerr690ulCb0cHz99df80om/vz+WLl3qUTGzwYMHA2CXUA4ePAiAzTXCeWRCQkIwcOBAtz+fIIjmAQkOokXwf//3f/y2zYceeojfbiq34BAuqVgnmGrVqhVeeukl3HzzzZI+UzhZu7usIhQcQ4YMwdq1a3HPPfdgzZo1SE9Pd+szOTjBAQDbtm3jv+/SpUsAgP79+9POEIIgSHCoRV09g13HGVTVqF+3wxkVVQx2HmNgMunLrstXGew/xchS56SoqAiffvopAMDPzw9z5szhX+vatSuMRnYYuCI48i8zOHzWsU2chyMwMBAxMTGemM3jSuDouTwG5/Ic28UJDl9fX0RHRyM9PR0LFiywiS1xh4yMDL69fft2AAJhFNQDPfqO9vg75KS+YSxWVuvrnK+pZcdibZ2+7LpWwWD3cXnGopwUXHE+FrXiXB6Ds7n6squ4lMErCxnsPcnAbNbONhIcKvH8ZwwGPshg1BP6OhGnvMhg0EMMHvm3fuyqqGLQ9wH236dLPf+8f//73/xOjAceeEC0fBAQEICOHTsCYJNX1dfXO/yc4lIG3e9h0HMmg5832vaXyWTid6m0bdtWthLoXbt25XNV7Nixw+bCv/8Ug04zGHScweDoOfu/IxfDkZyczAssuejWrRtv37Zt28AwDCuMomcAfQ7gywNPoqJKP+fXC/9lx+LI2fqxCQAefJcdize9pB+7zGa2nwY8yOClL/Rj1+WrlrH4w3r92HXgNDsWO93B4IiOxNCa3cDLXzPoN4vBvAUkOJo19fUMvl7Jtnceg27uYM7lMdjQkPNp80FNTRGxbi+QzW5uwOaDnvVVWVkZX7fEx8cHzz77rM0x3LJKbW0tXzLdHku3AsVX2faWQ7Z25ebm8kGpctbr8PLy4gNO8/LycPHiRdHrC1czqDcBJhOw3U4G9GvXrvHl45OTk2WzS2gft+xz6dIlZGdnsx6O+PsAAGXVvjia5ewT1MNkYvDVH2x79wmgWicex/JKBv9bz7Y3y7NDWxYOnAH2NwwJPV0jft8KFJWybXtjUSu+EYzFbcrWW5TEql2WPhrVR54bIXcgwaECO48DpeWWxzV12tkiZJXAO68XmwBg5U7L4PDUrr1796KsrAwAcPvtt9udcHv27Mm3nS2rrNzh3C5HAaNy4CwB2MpGfkdh/IYSggMQL6ts3LgR+w+fA0Itz9XU2nuX+uw6DpSUWR7r5bzfuB+obbBFL30FNH5uaYWc1wg5EfWXTn5Hk4nB6t1sOyQQyOiunS0kOFRAqC4B/ZyIQrv0MmgZhpFVCAnTbQuDG4UIA0cdJQCrrWOw3pIB3K5dwoBRtQTHmRwGZ3MFdtk5t9QQHMK+/fjjj1EXNAwwWJJs6eX8shmLOrSr3gRN19mFrBJO7Dq5btXVM1i31/JYL3ZlXmRwRuB81Mu5teckcLnBMzs2HfDxJg9Hs2alVZyfHk7E6hoGGwU7LPVgEwAcPQdcLLI89vRiIqyyKiz3LsSVnSrbjgBllc7tspeDQy6ECcCEgaOunFvCHBytW7eW1S6OAQMG8LEhBw4cAMInNGqXFtj0lw4mK4ZhdHmNuHyVwc7jlsd6sAlglw2vVVge68WuVbvEj/Vjl0U0ThyondgASHAoTl4xg4NnxM/p4UTcfAioEhT31MOFF5B/0Ao9HI4ER3JyMlq1agXAseBw5c5YSQ9HZGQkH9y6f/9+fouv0LXM2mV7Z6yGhyM0NBTdu3O+WgMQcZ3YLh2cX/mXGT4egUMPY/H4eeCCVZJbPfTX2j2AMD5ZD30FiL0ugH7sshmLtfrwUgnF7ASN0+GQ4FCY1btsn9PDxUQYjwDoeNB6YBfDMLyHIzExEWFhYXaPMxgMvJfj4sWLKC4utmOX+LGzGA6DwYDU1FS37XYE5+Wora3FsWPHUFHF2AQYarWkAgjiOIJ6Ar7iRGJ6OL+4dWwherBrlZ2dznqwS86xKCd69FJVVjP406p2oR76q+AKg70n2XbP9kBCFHk4mjXWgxbQx4loPWjr6rVfN75azmCrVXZxTy4mly5dQmlpKQAgLS3N6bHCzJ+rV68WvXahgMExq10WzpZUkpKS4OfnJ93gRrCuzLrpgK0dWgWNAoI4jogJNq/p45y3MxZ1MFnp8RphNjM2N0t66KucAgZHzomf07qvAODPA0C1C2NRbdYIRPZEHST7JcGhIHX1DNbusX1e6xPxTA6DzFzb52s1tmv9XnY7mRBP+sqV+A2OKVOm8O0lS5aIXnPlDvTq1au4fPkyAPmXUziEgmP//v12J6ryyjq89957eOWVV3h7uBiOkJAQfulICXgPR7j+BEe9TsfitQoGf9lZxdN6ct970rIFnEPrvgL066VqCmJW6/gNAJBUq/nzzz/H+vXrcf78ebz66qui0tILFy7E999/D7PZjClTpuDxxx+XLfFRU8U60JBD64ndOk6Co7Ye8Jf/xtxl7A3aWsd5uBpFGL/RmIcjIyMD0dHRKCoqwurVq1FVVcWXUHfFLiUDRjmElVn3HziAS0W2x3y36GfUHn0GAJt35PPPP+fzdiQnJys6JlNSUhCb2AUFoba3Ulqf8zuOAVfLbZ/35PySg/V72V0p1mhtl9xjUS7s2qXxuWUv6BfQvr/q6xnewxEWDAzsqq09gEQPR3JyMubMmWNzt7h161b8+uuvWLhwIX7++Wds3boVy5Ytk9XQpogwuCk1zvK81opcGACpF7sYhuGFUIAfEBPeYJMHdwlSPBxeXl644YYbAACVlZVYu3Ztw/cz2NCwmycmnLXNnl1KBoxyhIWFoU2bNgCAg6eq+eRoSVGWK5vw4vvjjz8iJycH1dXVAJRdTgHY2JUO/R8BDGzdlNYxlplUt+e8xneh+rXL0ubsMpmgaQmE2joG6xu2w0a1AoLY+wHNz63TOUAWWzZIN9dTANh1wpL/aVw/wFvD7bAckgTHxIkTMXDgQPj6+oqeX7lyJW655RYkJSUhKioKd9xxB1atWuXwc2pra1FeXi76V11dDbPZ3Kz+carXYACut+RAQlUNA7PZDACq21Reacamhgk0MQro01FgVzUj2/e88sorCAsLQ0BAAAICAhAaGornn3/e4fEHTjO4xK4AYERvoFUQ266pg9t9JfRwdO7cudHjhcsqv/32G8xmMzYfZFDRUBF+fH/A31dsF/dPKDhSU1MV+/04L0d1wAj++5IDBUkJjH781teysjJ88MEHluOSkxU/v2I7381/39ThloJt1TXynVvu/FspyJV2g3As1mo3Fk0mM79c5+/LTgrWdmnxr+CKGXsaAg27twXaJgjs0vDateUQg3LhWPRpGIu16tsi/PeHIAD/xqGWvqqudf/aJbdd4/sra4OrSFpScURWVhYmTpzIP+7YsSP+85//ODx+wYIFfKlwjmnTpmH69OlymKMLcou9cDQrCQDQs20NAr0qAbC37RfzCpGTw44cYUCfGmw4GICaOrao2NBuZaisNQJgZ/dz53NhqvLcD1haWor58+eLTsTq6mq89dZbGDt2rF0PwP9Wh4LrnwEdLuPsxRAAvqiuMfN9JKWvhDtUkpKScPnyZT6mwREdOnRAUFAQKioqsGzZMpw9exY/ro0GEAoA6NeuCKt3hgPwRkVVPbZu3YnDhw/DbDZj5cqV/OcEBQUhOzvbZVulwHk4EGEZb1fOLAD82GWMfgOG4Knxb+Fvf/sbAPBF6wA2hkMpuwDAZAY2HWLP+SB/M9KSigGw51phcSmys686ebdyXLrihUNnWbt6tKlBkLdwLBYhJ4dd91R7LB7P9kFuMTubD+hcBYO5FgAbY3MhJx8JwTVO3q0cv20NAsNEAQAGd7mKkzm+AFh3Qua5HLQKYse12v3149pwCMfi+j3sWKysrkd2tp2gNJVYvCkGXP8MbJ8PgHVzlF6tRE4Ou+6pdl8BwNIt8QDYO6S0hBxkZ7suDKTCX5caQRbBUVlZieDgYP5xUFAQXyzLHjNnzsSMGTPEhnh723hOmjIrBVukbhruh9BAS3BEaFgMkpPZiVSJYlrO2POrpX3ruBD8vtXyOComESkpnn/H7t27ebGRkJAAPz8/vqjZ6tWr8dZbb9m8Z9sJS/vOiZFY3uDSra03Ijk5WXJfZWdno6KCzQ7Us2dPpLj4h02YMAG//vorSktLkZ2djb+OsfEYXkZgxoRovP0zu0xQWFSK4cOH2/2MwYMHIyoqyqXvk8qIESPw3gdfAqHsrVSbODPO/L4YGPA5ACAsIg5Tp05FUlISLl68iKqqKv69aWlpLveDO+w4BlxpSBs+tp8R7VIt1XL9A8OQkhKm2Hc7Y7Vg6/BNw/0QESoYi62iNRuL32+2tG8ZGYDC0gD+cVhEnCxj0R12LrC0bx/fCu/9bHkcE5uMmHBt+uuvBoellxGYMTEaH/wOoBSoN3srel4741oFsPsU206NA64bGge8wT42ege6de2Sg5xC4ERDvr/0TkB6T2WXU11FFsERGBiI8nJLRFZFRQUCAwMdHu/r69usxIU9Vu60qMnrBxuw6wQAsC6uunoDf/IZjUbVTkQ2uIm1wc8XGJtuwJrdFrcba5fn63zr16/n2wsWLEDv3r2RmJiIuro6fPPNN3jttddEv39RKYNdJ1g7urUB2iYa4efL9p/JDDCM/b7KycnBvHnzMH78eBvv2PHjlhSJaWlpLvfx1KlT8euvrCr75ucdyMwdBQAY0gOAqRR5ucWAX3vU1dv/vLS0NERHRysWnNm3b18gfBxgZP3J3eLPI6vOIu5r61jxPnXqVHz44Yei96akpCh6rq2yOufZeBeGt0vNC65DuzIM2HfKYpdWYxEAVu6y2DV5sKGheJvQLvXX3NmddawN4SHA4DQDPlkquEaYtOmvzIsMTuewdgxOA6LCjPDzYfuvRsNza8M+BvUNcS2TBwMBfgbYO+fVPrdW72J4OyYP1uZcsocsPdCmTRtkZmbyj0+fPq1Y4FxToLLakjY8IQro1QHwFUg7rQLCjgjSho/oBQQFGODnY3ldjiAnhmH4gEs/Pz8MHToU0dHRuOmmmwAARUVF+P3330XvWb3LktFwUsMGB18X7Lrjjjvw9ddf47bbbhMJDEDaDhUhEydOhI8P++UrtlsmhEmDDFi5ciXM9Q0eA6MfevXqhZdffhnvv/8+3n//fXz66adYs2aNojtB4uPj4Z8w1fLElZUAYzmhuL6aOnUqrFEqrTnHH4JI/YkDrc55jQLoqmosQb9xEUDvDpD9nHeHolIGuxpO2W5tgNR4gy76a9sRS9rw6wawgYaujEWl+UMQgzNpEDu+OLu0DM78Q7AxYNIgA3x08BsCEMVvTBrk5ECVkSQ46uvrUVNTA4Zh+LbZbMbEiROxePFi5Obmori4GIsWLcKECbZ78VsKG/dbksBMHMhG7+vhIrdiu6VtPWgBeew6ffo0n/dh2LBh/NbSWbNm8cdYx++s2C4etEDjk8LBgwexZcsWAKzIefXVV0WvS9mhIqRVq1YYPXo0AKDUaClINmkQsGHDBsDMrqsbvQNw4MABzJs3D7Nnz8bs2bPx4IMPIiEhwe7nygXDAOZWDdvRTeXYuvJ1AAxgZjuJE7OtW7fG0KFDRe9NSkpSzK6LhZYU/n07AXGRBvgJnJhanfN/HgAq2U06mDgQMBqtJlCNxP+qnbYiWw/9JRqLA+2MRY36a4WdCdRPEDTKCHOwq4TZzPBCKNCfvYkzGAyaC6GqGkuhydgI8cYArZEkOF599VVkZGTgwIEDePnll5GRkYH9+/djyJAhmDp1Ku666y5MmzYNGRkZ/BbDlohQXU7mJlAdXEzsqV65LyacdwMAxo0bx7dHjhzJe73WrVvH562oq2ewpiEhU1gw6y51xa6PPvpI9PjHH3/EyZMn+cech8NoNKJz586S/oabbroJ8AoBQocBANrEA51bM9i4cSMvOMyMUZMtgntOArUIYx+UrEfpFbYIh9HIBvsKz60777yTb0dFRfHiTwmEeQgm2zu3dHDOTx7smphVg0bt0mhi5yZQo5H1cADa91dZJYPNB9l2ShzrEQLE19Q6DXJe7DsFFJaw7TF9AX8/8e+o1W/45wFLnaxJDSJbL0gSHPPmzcPevXtF/9LT0wGwgaAbNmzApk2bMHv27Bab9IthLKrX1wcY3Zdta30xEVZ+7JICtE3gBofld5LjYuJIcBiNRjzwwAP846+++goAW/mRS8jEuXAB5wKtuLgY//vf/0TPCb0cJpOJX2Jp166d5Il2ypQpQPhYPk5i0iA2sdeFCxcAxrJzQIuLr3CiwhXLzhg/O3dV06ZN42OppIouT+yy66XS4JwXjkUfb2AMe6nSXPwLRXZ4CDCowQGn9cR+Lo/ByYZAw0HdgMhW+hBo6/daBMWkBo+xHuyyd84D9seimjiySw9QanOZOXqOjRAGWBdbcKC9waH+nfHqXQC3S1W4pifnxbe2thabNm0CAMTGxgqqh7Lcc8898PZmFzm//vpr1NXVNTpo7dn15Zdf8smsHnjgAURGRgIAfvjhB5w+fRpZWVn861LiNzhiY2MR0/ke/nHP5Fx2OQUAzLbxEmoiXMtGiWArbgDbr8KJPTQ0FD/88ANuueUWvPvuu4rZVG3lwu3biW1rPbGfyAbONyRHG94LCNHJWBSK7PH9XRPZamAvTgKwsksD4ejSNUILu6xilji4/tLiN7QW2WP7OT9ebUhwyMwKVwatBifiCjsuXEDeQbt9+3Z+K+q4ceNsvFxxcXG4/vrrAQD5+fn466+/+LgSoxG4rr/lWEeCo76+Hp988gkA9k7nueeew5w5cwCwiW1uvfVWPgYDkBa/wWE2M6j0H8E+MFXg0skfBYJD4OFQ+SKXV2wpr26sPAjUsukNIyMjERzIdpj1uXXDDTfgl19+Qf/+/aEUfx60xElMGGBx4Wp9ByqKWRqon4nKXswSoC+7JgtvSmT2gkpBGCcR4AeM7CO0y9JW265LxeIqrEkx+vBwHD9vEdnDelpEtl4gwSEzjqKDtbyY1NdbKj+2EsRJ2Njl4QARLqcI6+wIufnmm/n24j/24URDHqqBXYGosMYvvr///jufRGfSpElo164dHn30UURERABgg0m5oFWADVyVyr5TQHlNQ6rT0g1Y/vsvbPwGAB9vy84VtS8owjiJxEBLcomxY8dqeldlL2YJ0H4CFcdJWJ7XWgiJ4iRcENlqUF7J4M+DbDs5BkgTbDLU0q4DZ4D8K2x7dF9u22mDXRrexAlTv0+22gWiZQyH0Es1WWfLKQAJDlm5fJXBjobdmJ1bA+0S7V981S7qs+OYJaf++H6Aj7f9QevIritXrmDu3Lk221mtEQqOMWPG2D1m1KhRfNuRC9eRXdXV1Zg7dy7//GOPPQaAzaD5zDPP8M97eXnhuuuuw+LFix3a4QzrOIk9e/bwWUrjuCIvUL9olNCuQR2v8O3x48fz55faNjlz4fpqeM6XlDHY1rBRqWMy0D7JwTmvcn+dy2Mci2zROa/uUs+GfZa+mDQIIu+klv3l9BohPL80HIuOrl1aFG/T63ZYDlkSfxEsjuIkAG3VuMhVOtjxoHWkyF977TW89957MBqNOHbsmN0AxP/+97/Yt49dyO/VqxdiY2PtflZ8fDy6du2K48ePI7ssjcswLboDtbGrob/+9a9/4cQJNiVpenq6SEw8++yziIuLg8lkwg033IDo6Gj7f4wLCJfFcOUP0WtJiTHIyRLbpQY1tQzWNZRMiQ4DXnxsHDYsjUR8fDxuvvlmfLLdYpOaOwRPZFsKVw3tAYQGWc4vdosgg9o69c/5NbvZYmOAnbGo4R27qxOo2nfHjpZcAW37S7xNV/yaVnbV1DJY2xD0G9UK6N/Fvl21Ko9FocjukAR0SCYPR7NGmATGnYldKbjgJoPBstWNw5VBy+W7MJvNNjk0ADavxt///nf+sXA3ij1Gjx4NGAOBVmxq8KRotkiUQ7tqgSNHjuCdd94BwJZdX7BggShzn9FoxD333IP77rvPI7FxqZhpyEQJdEqqAmrzRK+3SYm32KXiRW7zQfBF5CYOBHr27I78/HwcPnwYISEhvKBlGPvlzpVC5MIdbHuB08q97GiZB9BacNhf5gG0s0tYXt3fFxjZWx92FVxh+CJyPdoBybGOvaBqnl9/HQZfRG7CQMDLSx+eF6HItj639AIJDpmwjpPIEG/Q0GzQZuczONZwRz6gKxAd5mTQ2rGrrq4OR44c4R9/8803qKmxBE5+9dVXoqRezz77LB566CGnNo0ePRoIGw0Y/QHYunBZuyyPK6rq8Oyzz8LUMJrmzp3r1u4TVxCuzd48MkBUlCg+Ph6xgiUVNS9y9ly43t7e9rcIamaX7etaBNCZTAz/O4YENqSlF9qk0URVUWWJk7ArsjXygh48A+QVs+1RfYBAf31M7MKx6OzcAtTtL9E5P9CxyAY0tEuH8RsALanIxs7jQElD4apxVnESgHIXk/r6emzfvh1Xr7KVOA0GA9LT0xEXx1YsbCyISDxRMQDEx5w8eVIkMC5fvowlS5bgtttuw+bNm0XejDlz5uDNN99sNAfL8OHDgch8i11O7owB4NvvfsKpU6zboVevXnj++eedfr4nCAft9YMNqL7pJrz33nsA2PgTfw0mBYZh+GUeby9xGXMOLS5ypWUMtjZo0faJQEc7Llwtgll3nwAuNxSmHdcP8PXRh4djwz7LhG1XZGsmGi3txsaiVhNoo9cuVe1i//fyYrc1W6OFcLQW2UN7OD9eK8jDIRP2UgILUaqWyuOPP47hw4fjhhtuwA033IDrr78eaWlpuHTpkq1dbtwlHDhwwOa5L774AtXV1XjggQf4lMJPPPEE3nnnHZcSvrVq1Qo+sVPYB6YqdE0ssDlG2F8rVq4DwN7RL1iwgK91IjfWa7P9OgN33XUXvLy8AAC33XabJvUuTl0AzjWs7AztAbQKtnN+aXDxdRYnwcH1l5oT6IpG7vS0mqgas0urWir20oYL0cKu2joGa3az7chWrHfWxi4NtuuezmFw5iLbzkgDwkLUu9Y7Y9dxi8gem24rsvUCCQ6Z4FSvwcCu61mjxEWurq4O3333nc3zly9fxjvvvIPKagabGvRCYjS7X1yqXULBwU30GzduxH333YczZ9jiGYMGDcK7777rcnbZQ5lAnaGhdPnVP7Fz20bbv63WUn0YBrac+Ntvv41evXq59B3uYG9ttmfPnti9ezc2bdqEyZMni5Z61LqYOAs05NBiEnUWs8ShxZKKsL8m2huLGnmphHESXAZire0qKmWwm43DRloboHWsYy8VwHlBlWfrYaCsoQjydf1t4yQAbTxCjXmDAG1+R1fGoh4gwSED2fkMjjbESfTvAsSEq3MHunPnTpSXsxPzgAED8Oqrr8Lfn42L+Oyzz7B4Y6lNETmndtkZtELB8cQTT/BtLrW4j48PvvjiC0mll/+w2gXCJ9VqoK6uDv9+703+sbdfED744APMnj3b5e9wB0drs3369MGIESMAaDSxu7DVTe2Lr8nEYFXDBBocwCYZsmuXyksqFwsZHGooXN2vMxAbYXvOe3tZ2mpNVIcygdyGSs0je9vGSQDaTKCiInKunFuanPM6EtlSx6JqdlnaEwY4Pk5rSHDIgCt3oEajpXSxXCehMO/Fww8/jJdeegkPPvggAKCqqgr/99UJ/nVHSWCcDQ6GYXDw4EEAbKXRp59+2mY548UXX5SczXOFVZ6LDRs2iKo9btmyBTnnM/nHDz38BJ+hVEm4zJSO1mYB9S8mV8sZ/HWYbbdLBDo5qDCv9l3V7hNAsQsuXPEWQeXvjl0ZiwaDQXUhZK9SszVaTFTOtsNyaGMX+7/TsajyOX+twlJELjWOrUllD7X7K6fAIrLTO7OVmvUKCQ4ZEN8ZOz5O7i2Ca9as4dtjx44FwO4S4bwcR3LZcuR+Dly43Gsc1oMjKyuLD0bt3bs3YmJicOONN/Kvd+nSBS+88IIkm4tKGexqKCIXhCygJhvZ2dl89VgAWLlypahIWlyCg5EtI6dzGGTmsu0h3e2vzQLqX+TW7rFsc53kwEsFqH+RczUiXu0tgq4mPlJ7qUfo8nZ4Z6zyuVVXb4mTCA9hE5E1apcKnpfMiwxOs8mEMbgbEBHqwjmvgl3rhGPRTtCvVnYJMxA7m3/0AAkOD6msZrBxP9tOiAJ6d3R8rJx3VZcvX8bevWwmqO7duyM+ns0PER8fz25TDewOxpcVHCN6AUEB0gfH/v37+Xbv3uzmfE7QBAUF4auvvoKfn58ku1fvsrhw+7SxBIsuWbKEb69cuVL1miWu3BkD6l9M3JnYVREcDgpXWaPmJFpdw2BDwykbFwH0cTYWVcwPIhTZ3doAqfH2f0dvLzYGDFDnN9x2BLjGlj4SVWq2Rn0xa2nr65x3LU5CbeH4hwteKr1AgsNDNh1Ao3ESHHLeVQmXIazrljz77LPwirEsQYzoXtGoTfbsEsZvcIIjPT0dZ8+exZkzZzBokPTcucLB8eD0ZL79zTffgGEYZGVl4eTJk2LBofagdeHOGFDeLrPZEmgYFMBWPHWEmnehuUUMDrLxwujbCYiP0sekICwiN3GgpYicM7vUOLeEItvZHajBYFBVCDW27ZRDS++ZswRWak7swrEY6M/exDlCzf6qEojs2EZEth4gweEhjio/2kPOehfC+I1x48aJXktMTER0p5n845r8JXCEs1oq9gQHACQkJPAeFSnU1TNYLXDhTh+fhMGD2SvK0aNHceDAAaxatYo9QLCkonRNAuHabJt4oLOTFRw1lwj2nASKStn22HRxMjRbuyyvKd1f4jtQ58eq2V+SxqKK9S70axf7v9Fom4HYnk2A8r9hmaCIXEoc0DXV8bFqnlv7TgEFXBG5PoC/n4tjUWmRfcB1ka0HSHB4gLBwla8PMMZBnASHXHdVDMPwgsPf3x9DhgwRvX75KoPCqoYMmZXHcfLgqkZtAmzvqjjBER4ejtatHUQrSmD7UeAqV0SuP+vCvfvuu/nXv/nmG3Y5BVB1ScXVtVlA3bsqKZkD1byrcvXOGFCvv5wVkbNrl0qehLp6BmsacruEWVVq1tKuc3kMTjYUVR7kJE5CaBOg/Lm1fi9Q1yC2nMUs2dqlbECylGULra4ReqwOaw0JDg84eg7IKWTbI3oBwYGunYienoSnTp3iS7QPGzYMAQEBotdX7wLMTIMtl//Atm3bHH6Wj4OkPvn5+cjPZ7OB9u7d2+UcG86wNzimT5/Ox4EsWrSILwMfFRlq1y4lkLKHXd2LnKXtLE4CUC+2pLqGwXq2Rh9iI9glFT3YdSIbON+QvHZ4LyCksbGo0pKKUGQ7i5NQ2y4pZcw1E7NSJnaFBZqrMUuAev0lVWTrARIcHrDCxeAmDuHdiyc7BIW7U6yXU1i7BB9eshI5OTm8QLHG0RZBR8spnmDPhRsWFsbvfLl8+TKqqtjMW8OGWHy8Sg5as9kyaAP9geEO8klwqDWB5hUz2H+abffpCCQ4iZMA1LurEsZJTBjQuAtXrYuvaNupnUy/1nD9VVdvqfCsBFKWUwD1BEdjGYiFqDWxC8digB8wopHLjlrn1qViBnsbisj1bA8kxejjnD9+3iKyh/VsXGTrAaql4iL19fVYunQpCgsL+ed+2P43AK0AND5oAfGJWOfBGq2z+A1hETk/ryrUXGOvxNu2bcNtt93m0K6aWsvFpLi4GK+99hr/uhyCIyuPwYlstj2wKxDZyjI47r77bvz000+i48eMGoLfFrJtJQftvlNAYUnDd/Z1vjYLqDexi7a6STy3lLRLaoEobexq/Hi11v+FGYivc5BPQoga+UHKBXESyTFAWlunh6uW2vzAGSCfi5PoCwQ0NhZVOrcaKyJnjVoCzdXdPHqCBIeLvPLKK/jXv/5lecI7Ahj4AGAAOrcG2iU2/oPLkW20rq4OmzdvBgDExcXZVE3dcQwobXDhDuh4FVv+ZJXN9u3bnQoOzqYTJ05g8uTJfF6M0NBQPseHJzgbHGPHjkVcXBy/hOPl5YVRI4cCCxvsUnTQSptA1br4SrZLhQlU6MJ1VETOmV1K/Y4lZQy2HWXbHZOBDnaKyFmjxmQlFNmDugFRYa6fX0qe8xv2Wc6RxmKWADatuJcXA5NJ6XPe0pZ6zqs1Fl2JkxBeI5QVs67trNMTtKTiAmVlZfjwww/FT4aPBwxsjuSJLv7Ycrjj9+3bh4oKdpvrqFGjbC4WwpPwb9e14l93FsfB2XWtvBqDBg3ixUZcXBzWrVuHmJgY94wV2iWKkxC/5u3tjTvuuIN/nJGRgejIEP6xohcTqZ4EFTwcNbUM1rEpVhAdxqbobgw1lnpOZgNZbE1ADOsJhAbpY2Jf60IROWvUsMudO1Du/Ko3sUsMSuBO3Q01glldTaDIocY5X1snLujYv4tEuxQ6t4Qiu0OSayJbD5DgcIEFCxbwGTcnTZqEb7/9Fq3a3s6/HmXc7dLnyHEict4NoKHMuxUrBC7cm0cG8mnHDx06xNddsbGr4SJ3+Uo5/3dyRcv693fBD9wIFVWWInJJ0UB3Oy7c+++/H76+rCF/+9vfVHF5C9dme3UAEqMlTqAKXeQ2HwQqGorIubrVTY2LnNSYJUC8lVc5u6R5gwB1hGNjVVjtofTvKPRS+fuydV2k2KVUXxVcsRSR69EOSLZTRM6RTUrateWQpaDjdQPsF5GzsUuFc8uVSs16hARHI5hMJnzwwQf84zfeeAN/+9sdMIWMYZ+ov4rfFj7lUp2Ixk5Ek8mEN998Ex9++CHq6+0Hefz5559821pwZOczONZQRG5AVyA6zICMjAz+s3ft2gVr6uvrUVLccNvaUJV1ypQp2Lp1K5KTk22Od4cN+yyTsyMXbqdOnbBt2zYsXrwYDzzwgCoXE9HarIspgdW5M9bnBCo1TgJQXqCZTAz/O4YEAkN76MOuiipLnERSNDuJuoLSdh08A+QVs+1RfewXkXNmlypj0dVzS/VzXlpfAcrdlLhjlx4gwdEIy5cv55cYxowZg+7du2PncaC8puFsL1mLvbt3iAI5HdHYZPXpp5/ihRdewOzZs3HPPffAxEnYBurr67F161YA7HJHx47itHL2trpxggOwv6zy8MMP48rlhlBnox+effZZ/PbbbwgODm7073EVV7e6paenY+rUqfDy8oK3twFcAVo1Bq3LrmWFL3IMw/DLPK7GSQDKC6HSMgZbj7Dt9olsrIQe7Np9ArjcUERuXD/HReSsUXr93xWRbQ+l+8uV8ur2UDqY1Z18EupM7Oz/zorIWaP0bygU2c4qNesREhyN8O9//5tvP/XUUwDEgwNX2ERV8+fPb9TL0dgAWbhwId9etGgRZs6cKRIdBw4c4JdFhg8f7jR+g7tLcCY4Kioq8NVXX1mSbBl98cYbb0oqNd8YwgnUz5e9q3IVJe+qrNdmXYmTENoEKHORO50DnG0oIje0B9AqWB8X37V7xC5clydQhQWau3d6yk/sbtqldH8J4jcayychRMkYDmERuYhQ1jsrxSZAmb46k8PgzEW2nZEGhDso6Ghjl8K/obsiWw+Q4HDCvn37sGXLFgBA586d+Zolwq1unWPPAwB27NiB9evXO/08ZyfiyZMnsW/fPtFz3333He69915edAiXU0aMGCE6VlhELjGa3S8OAG3atEFcXBxvo1DA7NmzB2azWZxGXOYBcvgskFvEtkf1dt2FCygrOP46bFmbnTDQtbVZoU1K2eXuVjfdTqBK2yUI+p3gJD23NUraxTCWuhvuimxA/sldWEQurQ2QEqePsbj1MFBWybYnuBgnASjvpWpuY1EPkOBwwvvvv8+3n3zySRiNRlwoYHCkoZJ6v87A/H88wh/z2WefOf08USCkVYjGokWL+PYNN9wAb292b9W3336Ld955B4DzgFFHReQMBkscR1lZGY4ePcq/Z8eOhhFltlzZ5K7h4Mlecb6uhNKD1oVEURzsFkG2rUS9C3fiJADnNXE8xWy2uHCDJLpwlQz+FRaRS+8MxEW6NykoIbIvNojskb0dV2pu1C6Zf0dRETmJgYZK1nhxdwI1Gg18pmRFrhE73RyLCge8S8l6qjdapOAwm8147rnnMH36dJHXQEhBQQGfjCoiIoLftilOyGTAzTffzG8bXblyJcrKyhx+r6O7F4Zh8P333wMAjEYjPv/8c/z888/80sarr76KnJwc/PXXXwCAmJgYdO4sXgNwNoEKl1W4GBBAKDiUq8zq7gQKKHtX5c7aLIdS7uVrFQy2HGLbbROAThLK1yh5ZyyliJxTu2T+HUVjUeKFV0m3t0hkSxCzgLJJozy5M+Z+R5PJsrQmF1x/GY0ejEWZf8OySktBx8aKyNnYpOC5ZV2pWYrI1gMtUnAsW7YMb7/9Nn755ReMHDkSI0eO5JdOOP773/+iro49Wx544AEEBgYCsJ1Avby8cMsttwAAqqursXz5coff62iL4Pbt23H+/HkAbGBqXFwcbrrpJjz00EMA2FiLqVOn4tq1awBs4zesi8iNtioiN2zYML7NFUdjGAY7d7JXbB9vS25nOS9yl68y2Nngwu2aCqTGu3eRk3vQZl5kcLoh03tGGhDm4tqs0nYJi8gJvVRSbFLCLo8mKt1OoMpt1xXa5WqOHg6lfsd6QZxEWDCbiEwPdgmLyA1Oc15Ezq5dCgWzSikiZ2OTWiK7CW2H5WiRguOrr74SPf7zzz8xfPhwvPrqqwDYbJ7c8ojRaOQn/qoaBhsEhat6d2Dbt956K/9Z1im6hTg6ETnvBgBRAqz58+cjPDwcALB3717+eevllGNZwIWChtd62haR6927NxITEwEA69evR1lZGc6dO4eiItbvq1ShtNW7LHUq3HH9KTWxi4uiSb9DUMyunTJN7Ar2l5Q4CUC5Ync1tZYicjHhjReRc2qXQiK7c2ugbYJ7YhaQ93fcftSSgZir1KwHu2QbiwqK2YlueoMAhe1yo7+0psUJjry8PP4uPyYmBh06dOBf++c//4k///wTS5YsQV5eHgA2niIlJQUA8OcBoKph9UGYkCkjIwPx8fEAgNWrV/PJs6yxN2hra2vx888/AwACAgL4QmYAEBkZifnz59t8jnXAaGNxEkajEVOmTOG/b/Xq1ZblFABxMeE2dsmBJxMoILh7UfTOWPr7lbDLbLYEGgb6s9WHJdmk0IRwSVBEztXkaGrYJUyO5koRORu7FBJoa3ZbRLYn5xYg98Quz1gE5D3vPR6LCoh/YdCvlORovE0K/YZCke1qBmK90eIEx3fffcfuzAAwa9YsHD9+HC+99BIA9kS744478Pbbb/PHP/bYY3zbUZyEl5cXpk2bBoCd0H///Xe7321v0P7666+4coWtWHTjjTciJCRE9J4HH3wQXbpY8ulGRUWha1fxvjFXBu1NN93Et5cuXcovpwBAYnykjV2eIiwi1yoYyOgu/TP4dWMz+08OyisZbG6Ik2gdC3Rr475dcl5M9p8GCrjCVX0aLyLnyCYAqJVxQvAkTgJQa6Jy/84Y0NnELlzqkbO/Gn5Hg8FSqVkKSvSXdXI0exmIG0OJsXjgNHDpMtuWkhzN2iZA3qBRT0W2HmhRgoNhGHz99df843vuuQfe3t545ZVXMGrUKABAbm4uvz21a9euGDlyJP9ezpPg4w2MtUrIJFxW4TwW1lgX/qqtrcXLL7/MP3fffffZvMfHx0eUC2T06NGi9cSSMgbbj7HtjslA+yT7J+Hw4cPRqhVb2faPP/7gY1YMBgOSEy21UuQauDuPAyUN8bPj+gE+El24gHVBMnkG13qJhavs2sUV2FLItezORKXUFkFPJ1Alit25mxxNiBITqMnEYHVDnERoEDDExaynQpToL3sZiCXbpUB/uZsczZ5d8npmLW13znkfhQo8NuXtsBwtSnBs374dp0+z/uERI0agXTs237DRaMS3336LyMhI0fGPPvooPwhOZgPnGxJyDu1hW7hq4MCBSEpKAsCWjy8pKbH5fmvl++OPP/JZTEeNGsWLHmvGjx+Pjz/+GNOnTxd5XwDXC1f5+Phg8uTJAICrV6/iyBE2bWS3bt0QEmS5DZVrgKzc6XjXjKuItwjKM8BWerjMAygTqLbSzYRMHEajAd4N23Xlsqu2zlJEztXCVdYo4V4+c9GSHG2IhORojuySyyO08zhwhY3rdltkK9FfYi+V52NRkWuEu2NREMPhSnkJV1jp5nZYDoPBYBFCCngbvdwU2XqgRQkOoXfD2puQmJgoCiYNDQ3FnXfeyT92JU5i+vTpANig0yVLloheZxgGpSUF/OOrZdX46KOP+MdvvfWWU4X/yCOP4KeffkLr1uK9klLiJITxIRwDBw5UxO0tTI42wc294nK7Jj1dm7W2i90i6PlFrrCEwZ6GInLd27pWuMquXTILIWFyNFcLV9nYpMBE5cm2Uw5l7JJvAgXkHIueTaCA/HYJPcZSk6OJ7BJcu+pkyBEiTI7WTWJyNJFdMnteTucwyOREdnfpO+v0QosRHKdOneJ3kISGhmLq1Kk2x0yZMgVvv/022rVrh//85z+ieiKuJIERLqsId54AwNy5c/Howw/wj9dt2ILLly/z70tPT5f8N5lMDFY1TKCuFK667rrr4OfnJ3pu0KBBsm8RzClgcPgs2+7XGYgJ92wCBeTxcBzKFGQ9dWNtlrdL5slq1U73EzIJkTtiv8VMoAoIIam7eTjktquqxpKBOCGKDfzVg11HzrmfHE1Ju0TJ0TxIqiW34PB0yVUvtAjBcfr0aYwcORIVFRUA2K2nXF4Na5555hlkZmaKtqdeLWew9TDbbuekcFW/fv34gmqbNm1CZmYm+/6rV9k4DEGCra3b2MVeb29vfjuuVPacBIobNsSMTW88p35wcDDGjh0reo4VHJbHcgwQ6+Ro7iKySwbBIdegldvt7eluHg6lLnLuJEfjbZK5r8oqLcnR2sQDnVP0YdfFQrHIjo3wXGTLYdem/eKdde7ESShhlxxeKkB+QStXnITc3kY5RLYeaPaC48yZMxg5ciQuXWJLsPfq1UvyBL9WkJDJWRIYg8GA+++/n3/85ZdfAmB3xlRWVopqlnCl4GfNmoX27dtLsofDncEhXFYJCwtDp06dxAFhsg9a9z9HvKQih+DwLE6CQ86LnLBwVXgIMNDFwlXO7JLjIidMjja4m+uFqxzZJJdd6/YIEjK5GWgIWAVnynDOKyKy9TSByuwF9SQ5mhA5zy9hcrRWwWwiMk/tkuM3FIrs1Digi5siWw80a8GRmZmJkSNH8jk1evbsifXr1/PJtFxFShKYu+++Gz4+7Nm2YMEC1NbW4pNPPmFfFHg4YPRDSkoK5s6dK8kWsV2Wtqsu3Ouvv563b+jQoTAajbIO2uoaBhsaXLjC5GjuIGfQaHGpZ1lPHdnlaX9tOwJcYx1vuG6A9IRMIrtkvKvyNCETh5ITqGx2yT2ByiVmPbRLuJvHx9s2A7Hbdnn4O16+ymBHw846d5KjieyS0fMiSo7Wz8OxKKP4F4psT7xUeqBZC445c+YgN5eNtOnevTvWr19vsxOlMYSFqwL92UyezoiJieG9CIWFhXj66adx4sQJAEDvXpbb15n3/R0rV67k67BIJa+YwYGGnPp9OgLxUa6dhDExMfjuu+9w55138kXh5Cz89edBoLKabQuTo7mDOCDMs0G2erc8cRKAVX95eEFxt4icPbiLnBwBtnJ5qURbmz08t4TJ0QL8gBFuBv0C8p7z1TWWhEyxEdKznjq2y7OA5OPngeyGnXXDewEhgfKMRU/7y9PkaELkDCyXc9upnMXumsN2WI5mLTgWLFiAPn36IC0tDRs2bEBUVJTkz9h7Eihs2OE6pq9rCZlmzZrFt4U7Uf526818mzH4ISAgQLI9HJ7k1L/11lvx7bffolMn9soo592LEhMo4PnAlfViIuNdqHA3jzsJmYQI76o82SEoTI6WHAOkuZGQiUO0RdDDvjpwBsjnkqP1BQIkJkcTIuc5v/mQRWR7mpBJ3rFoacs5Fj0/53U6FgXJ0dzdWcchFP+ejEVrkT3Szd08eqFZC46IiAisX78eGzZsQHR0tFuf4U5A36hRo9CmjTiFZXR0NCZNHMM/bo6DtrHkaJ7Y5UkMh3XWU0/WZq3t8qS/svIYnMhm2wO7ApGt5LmrYhhLzJE7yJEcTWSXTOvZckbqt4gJVMZAQ7mEkBzJ0UR2ybSlX5gcrX8X95KjieyS6WZJKLJH9fFMZOuBZi04ACA8PNztZQtA7ElwdW3WaDSKgkcBNu9HqDDBlgeDo6aWwfqGhExy5NSXax301AUgi43NtZscTbpdlvd7EsOx87h4bdadhEwiu2S6+MoVaMghV8yLHAmZhMi1nu1pcjQhcp3zQpHt7cXuFtODXaVlDLYdZdsdkoAOyfKIWcCzpYtdMiRHE9klk0DT71i0tJv6cgogs+CYNWsWBg8ejKFDh2Lo0KF4/PHH5fx41cm/zGBvQ0Kmnu2BpBjXf/CZM2fCy4tN/WgwGPD3v/9dtouJMCGTHDn1xROo+/4/ufeKy+XhkHsNVK7fUe6tbnJc5KyTo7mbkElklwzBrEWlDHazoVDo3hZo7WZyNN4mmSaq0znAOTYmHUPdzHrq0C4PxOzaPa5lIHYVufpLri3gHLLZJVoK9sCgBsQCTa5rlycW6QPvxg+Rxssvv4zx48fL/bGawAWLAtJ/7Pj4eDz33HN4/fXX8eSTTyI1NRVXyy0nj3wTlU4HrQyDQ7h10ZO7BDmyngqRo95FZTWDTQfYdmI0K2g9tksGgSZMjjayt/vJ0UR2cbVnPJhA5UqOxiFXsTu5RbZctVTkvkbIZ5el7W5yNCFs7iH2b3XXLmFytPhIoHdHGeyS4dolFNlpbTwX2XpAdsHhCrW1tai1GuXe3t7w9fV18A5tWLHd0p4wAHyVWVd55ZVXMHfuXPj4+MBsNsPHy/Ia50mQ+pmAICGTERjTl4HZ7Fk0u7DYUHWtezZdq2A9LwDQLgFonyiDXVYTqDt25RSyWQ0BoH9nIDLUc7uEE3tVjXuft34v29cAe24xDONxLQjri5w7/SU85ycOdO9csEa4pOLu562wmqg8tUt0ztd5PhZZu/QxFs1my81ScAAwpLvMdtW4118XC1lBC7DLwNFhMoxFgV3ujsUN+yzJ0WQbizJcu/7YYRHZco1FpTAaXVsskV1wvPPOO3jnnXfQsWNHPPnkk+jQwTYRw4IFC/DFF1+Inps2bRpfi0QP1NYDa3cnAzAiLMiEuKCLyM727DPZ84XN2lJWwc42OTk5kj7jXL43zlxMBACkd6zG1SsFuHrFM7uuFPsASAAAXL5Shuxs6R+4ck8g6k1sYO7Qbtdw4YJt8TqplF8NAsDuLKqpl95XALBoYzAAdiv04C6lyM6+6rFdFeUhACIAALl5RcjOrpT8GT+tiwAQAgDo164Q2dlVHttVXxsJgE3HX1vnXn8t2RwLwB8A0CM5F9nZnu/rMyAegC9qahlkZ1+Q/P66emD1LnYstgoyIT7Y87HIMIDB0BoMY0BZuXtjsazKgC2HkgEY0Dq6Dv5Mnsd2lZQbAbCpjEuvVSE7u1DyZxw864ui0ngAwOCulbiUV+SZUQBKS/wAxAEAii6zQRhS++uHTYKx2Ll5j8W6GsFYrDe4NRZ/3RAFIAgA0KdNPrKza5y/QUOsN0k4QlbB8fjjj6Nt27YwGo346aefMHv2bPz66682acRnzpyJGTNmiA3RmYdjwz6gnMsnMcgLbdvIk97Nx5u9gDIG9m9NTk52WR0CwJLdlvbUEf5ISfHcLuHw8vELQUpKiOTP2P0/S/vWcaFISQn12K6Es5Z2bb1Bcl8BwI5Tlvbt14UhJSXMY7viBTHIIWHRkPoTMAywpSGgz9cHuG18DILtZ9qXRIQgn507/VVUChxo6POuqcCQ9ETPjQIQEmSxqXXrFEjd9PLnAaCsYR6ZMNAL7drKMxb9fFgvgrtj8dc/LbuBbhjqg9RUz+2KFMyXXt4Bbo3vr9Zb2reMCpTlGpFbZmn7BYQCKJXcXztOW9pyjcW4WEs7pJVnY9HHG/jbhBiEyDAWI0VjUfq5VVcP/NWQHC08BLhpVBy8NVmPkBdZ/4S0NMt+w7vvvhvLli3DsWPH0K+feH+kr6+vrsSFPVbtsrivJg82eByYyeHnY0ZdvWWN3Wg0SjoRV+6U364APwbcOmhtvevuMQ6zmcHq3ez7gwKAkb0VsKvOILmvqmoYbDrAvj8+EujbySBLlj5/gV119dL/1sNnGVwsYt8/ohcQGixP7La/r+XccKe/1u6xuJInDZJ+HjjCz8diV73JINp95AqisThIxrHoa0Z1rftjUYlrRIC/5dyqqXPvNxBdI2TqL/E1Qnp/Vdcw2LiffX9sBJDeWSa7fD0bi0fPMbhQwL5/eC+glU7G4o5jDK5VsHaN7w/4+jaPDaWK/hVyXbC0QI7CVfbwJGL/WoW4cJVcOfU93csuTI42Nh2SJxSHdnm460JYuEqOfBL27HKnv4Tr/pMHyxcI5mmxO2Gg4WQZt+B5uquH6y+j0fPkaEI82a4rTMgUFNB4BmJX8fYC7wFyx67cIksG4r6dXM9A3BienvPCDMSTPMxA7NAuD84tQLlz3p1rl1JjUWtkUwRlZWXYuXMnamtrUVdXh0WLFuHatWvo0qWLXF+hGmdyxIWrIkLlnxTcGbRyFa6yxtMIdLm3unF4ui1WqZTAnl/klNnq5slFTlhELkyG5Ggiuzzor3OC5GiDunmeHE0Iv3vGjd9w3ynpGYhdwWAweHSN8CQDsTPkPef1JGYVGoseX7vY/+UW2Voj25JKfX09/vOf/+D8+fPw8fFBx44d8cEHHyA4OFiur1ANube6CeFT3roRi6fYxO5hnQTrnQ1yIaqlYpL29zIMw+9s8PVhJwXZ7PKgfoOchats7bJsEayT+DuKClf196xwla1dlrbU/lJ0LHL1LtyYqFYoWN/Cz5eNLXHrGiFjaQFrmzik2sUwDH+NkCMDscguD86tK9csydE6JgPtk5QZi7USr13nZM5ArCdkExzh4eH47rvv5Po4TRFP7PJ+trtuXKELN9CfXfuX2yZA+l3VpWIG+xuCwXp3ABJkcuFa2yX1YnIsC7hQwLaH9wSCPShcZWOXB3dVq3dZCldNHiybSQA8u6tSskCUJ/2lZOIjT5ZUxNV05bGHw10PR02tpYhcTDiQ7mEGYns2uWPXiWzgfEMRuWE9PSsi59SuOgaA658tZxE5G7s8SPyl1JKrHmi6QRYKUVbJYPNBtp0SB3RzbbePy/AxHBIH7f7TQEHDblU5XbiAeI+91Iuv0IWr6AQqcYlAyUFre5FzHaW8VIA8/WUwyJOQSYi7k1V5pSU5WnIMm2FUCbuknvOXihnsa9j91LsDkBitzO8o1a7NB4GKhi1nnlZqdmSTO3YpFScBeBZ/pmSchCe1VJpbdlEhJDisWL9XECcxUL44CQ53K3qu2K7cRGUwGNwOZlXrzljqXcIKFe6MAWkXOesichndZbbLzRiOrDwGx8+z7YFdgSgPC1fZ2OXmZLVB5iJyNnY19FddveVO1xWUipPgcFdwKL3MwyF9WUylsSjBLpOJ4ZOjhQR6XkTOmV1Srl1CkZ0ULb/I1hoSHFYoObED4hOxTkJFzz8EFzm5XbiAe27cmloGa2UsIufIJkDaBHrlGoPtDWuznVoD7RL1sUSw4xhQ0pDPQI4icjZ2uXmRUzJOAnB/UlDSGwRYjUUJd6FKimzAvZ1scheRs8bdwPKSMgZbj7BtOYrIWePuubXTqogcmyJdRrvcFP9Ki2ytIcEhQBgnEeAHjJShcJU17tS7EBaR69VBWhE5V3HnrmrLIeVcuID79QhEa7MKiDN3L75KT1S+bgo04cQu97IYILbLVUErnEDlKiJnjTvbiGtqGaxTUGQD7tWeOXXBUkRuWE/Pi8hZ4+VlQEMtSkl2rd1tKSKn+Lnl5lhUIk7C3WuXeCw2L7EBkOAQceAMkN8QJzG6LxAgY5wEhzt37SIXrgITKOCe4FDrTg+Qeseu7KB118MhdxE5a9zxcFRUiV24Pdopa5er/XXwDJBXzLZH9ZGniJwzu1wdi9aVmr28lDu/6k1wuTaIcKeYUmXM3bpGqOilkiKE5C4iZ407Y1ENka01JDgEqDloAddPRKUndkC6G1e47dTbi3VLym6TGxOCcG02NEj+tVlru1y9yGXnMziaxbb7dwGiZY6TsLbL1UC1Dfssf8NEBWKWAHEiOFfPL6WXeQD3BK3SS66AewJNyZ11HFIFh8lk8RiHBAJDlR6LLtp1oYDB4YYU/v06A7ERCt8suXjtEopsuSo16w0SHAKEE7sScRKA9BOxto7B2j1sO6oVO1kpYpfEGI7TOcDZXLY9pIf8LlyhTYDrgWrWa7Nyx0lY2+XOBKpU5kB3LnKqiFk3BJqaEyggpb/Y/5US2YD0/iotY7CVq9ScyOaUUNIuV8/53SeAy1fZ9th0+eMkAPe8jeKgXz3dWFrazXE5BSDBwVNwhcGehjiJHu2A1rEqnIgu3IVuOSRw4Q5UxoUrtEtPE6i3twFcdnxX19jVSAnszkVOja1uYiHU+N/OMJY7UD9fdhlRebsaP76olMGu42w7rQ2QEqePSeF0DoNMgcgOC9GHh2PtHksRuckKBhpK3dKv9NIm4KaY3aFszBLgnrdRDZGtNSQ4GuDc8ICyP7bUi5xSmQOtEW8RbHzdWK294pbMrK66vNn/lYqTENoEuHaRq6xmsHE/206IYgN/lbbLlf46fBa42FC5fGRvIChAHwJt1U7LlnFFzy2JHiHRkqsKYxFwrb/U8FIBbtyUCDwJSsRJANLFWVUNgw0NydHiItg8KorYJfHcEorsbgqKbK0hwdGAGmuzgPQTUakictZIWb64Wm4pItc2gd16qrRdroizCwUMjpxj2/06AzHh+rgD3bifTVUNKLvVTaqYVW0Cldhfak+ggGt3oWrcGQPSBK0wZikogN2horRdrvyGFwsZHGwoIpfeGYiLVOZ3lLpLRVjQUYmddRxSx6JQZE9upt4NgAQHAHGcREQom/xIKaTchZ7OYXDmItse0l05F66tXc6PXbdXHRcuIPC8uFCPQI21WUC8RVDqRKXWnbEr/aW2lwpoXMzW1TNY3VBELjyELdimhl11jYxFYaVmtUQ20Pj5teckUFTKtsfJWKnZrl0Sas+IMhArOBaNRgOfKdkVu9RY5gGkexvVEtlaQ4IDwNbDQFkl21ZqqxuHlBNRjUh9Dil3CmoODouHo/FjxfEbChnUgKtBtsKtbr4+ysVJCG0CGu+v4lIGOxtcuF1TgTYyFpFzZldj59a2I8C1CrZ93QB5i8hZIyUnzjpBnITSCZmkpOvWYiyazOw/Z6iZnttVzwvDMPwyj483MEbm5GgimyR4suvqGaxpuOFVWmRrDQkOKJsS2BrhHUhjFzktBi3g/CInTI4WFAAM76WoWS7HcAjXZuMjgd4d1bGrsYvckXNATiHbHtlb3iJyjmwCGu+vVbvUiZMAPJhAFfQGAWio6MnSWH+tUCEYmUOKQFOyiJw1ri4TVNdYisjFRgB9lB6LLm7pP5YFZDcUkRveS94icjY2SfBSbTsCXG2o1Ky0yNYaEhywDFqjUdk4CcD1E1Howk2NA7qkqGeXs4G79yRQWMK2x/RV1oUrtKsxcWa9Nqt0SmBXBYeaXiopeSW0uDMGGi92JxyL1ykUaMjhaqZRrUQ24Pz8yi1icKAhTqJPRyBexkrNjdnlTKD9eRCorGbbSsZJWNvVuJi1tJUXs5a2pLGosF1a0+IFR+ZFBqdz2HZGGhARqo8Tcd0eS32HyYNVmEBdjIxXO/Uuv27c6PKTumugrm4R1MpL5ay/6usZrGmIkwgLBganqWeXs3PrXB6DE9lse1A3ILKVPgTavlMqi2wXx6KSlZrt4WoBNzW2pgtxXfyrE/QLSFtSUVNka02LFxxq3oECrte7UDolsDWuLqmo6cIFLDUJTGYDX5PBGmHWU18fZddmre1ydpG7fJXBjmNsu0sK0FbBOAnA9XNr+1GgtMGFO76/MsnRHNnl6rml9jnvzNuo5pIrAPgKfg/n/aXunbEr9UGEMUs+3sBYhZKjiexyQXBcucZge8NY7JgMtE9S+JwX9pUTMSsU2QO7Ki+ytabFCw4ly5jbw5W7UKELN9AfGNFLXbscDdxLxQz2nWLbvTsACQq7cAHX7vaOZQEXCtj28J7Krs3ydrlwkVu9S1BETu1zy8lFTu0J1FUPh5reIMD1/lJbZLvSX8I4iZhwduup4nYJx6KDa9eJbCDrEtsepqOxuEZQRE6Nc8vlG8sWkF1USIsWHGWVDDYfZNutY9mEK0rjykVu3ymggCsi1wfwV6CInDO7HA1c8bZTZe3hcMUute+MAdcC1dT2UhmNBni7sF1XWERODReuK6KxvFJcRK57W3XtcjQpWIvsxGh9iOzNhyyVmicMUD5OAnDt2qXJWBTEcDCM/RghtZdcDQYDLzqcC47mn11USIsWHOv3CuIkFN7qxuHKRU6tveJCXNlJoIldLrjj1Vyb5eC3CJrY5EvW1NczWN2QkKlVMJDRXSW7+FwJ9n+frDwGx8+z7YFdlSkiZ2OTC6Jxwz5LXIAaMUvWdjkai2plIBYi/ZxXfyy6dO1Sq7+E+WfsCG1hcjSlisjZtauRgHctRLbWtGjBoVZ2USEu3SUIPAlquHAB8RZBe5NCTS2DtXvZdnQYm8lTFbsaudu7co3BtqNsu1NroF2iBkLIjl07jgElZWx7vEJF5JzZ5XhCsLS1OOcdTqAqe4MA18ai8Bqhici2c24xDMNnifX2YgujqW2Xvf4qKWOw9Qjb7pAEdEjWR39ZF3RUooicM7sceRu1ENla02IFhzBOIsAPGNlHne9tLFDtUjGDvQ1F5Hq2B5Ji9DFot2jgwnXFrjW7BXESKokzoHEhpFXmwEYFhwYFohrrK2Ggob8vMEqtsdiIt7GmlsE6HYrsk4I4iaEKVWpuzC57/bVW5TgJjsYErWZjsRFvoxYiW2tarOA4cAbI5+Ik+gIBKsRJAI0PWqELV82c+o0tqWjhwgUaFxxaT+yAo/5i/1eyiJw9nLlxK6osLtzEaFbQqmkTYP83PHgGyCtm26P6AIH+Wng4bF//67CgUrNWItvJuQWoPRaFSQttX1d7yzxH49cIS1stjzHgXPxrJbK1psUKDi1cy0DjbkldTKBWg1a47dTbi3VLamKX1cVXuDYbGsSWDNfELqv+ys5ncDSLbQ9QKU6Ct4sLZrVzkdu439KHk1RIjsbbJGEC1Wws2ukvLZZTABcmUI3KmDvrL5OJwaoGj7GacRKAc49QTgGDw2fZdr/OQGyEPryNWolsrWmxgkN4MdFC9QK2J2JNraWIXFQroH8XrewSv3Y6Bziby7aHqOjCBaw9QuLXtFqbtbHL6iKnZkZDa7jf0V7wnBYxS4D1FkHb19Xems4hDja0J/7Z/1UX2aJzXhyQXFrG4K/DbLtdIptTQgu7rPtr9wmg+CrbHpuu8lh04qn6Q7SzTuWxyBWedHJuAS1nOQVooYKj4AqDPQ1xEt3bAq1jtZpAxd8rdOFep3AROWucJWfSwwQK2N69aFlh0XW7VDKoAeFdlXCHIMNYYpb8fJUtImeNcIugdV8VlTLYfYJtd2sDpMSpeM47SWR1OodBplYi28lYXLtHECehopfK2i7r/qKxaIujsQho56XSmhYpOLhAMEC7kxCwHbRrdutz0K7epf2gBWwvvsJ4lwkqpwR21F/VNZY4iYQooFcHle1qELQMY+CrmwLA8fPAxSK2PaIXEBSgzfll/Ruu2yMoIqeip1FoEwDUWC1vrhLeGetIZOvlGmG9HLx6t6WtpscYcBx/VlPLYON+tq1GETkbuxx4Xi5fZbCroVKz2iJba1qm4NhjGbTj+2s5aMWvcULIYGBrNqiJo3XQ6hqLCzc5BuiscBE5W7vsb9fNv8zgoKBwlZprs4BjIbTjmKWI3Lh+6m91c2TXuj2WttrnPOA4G+S6vRqORSfeRuHErnZ9C0djkWEsu2b8fdlMnprZJVgau3yVwf7TbLtneyAuUh8CbedxSxG5cf3UC/ptzK71ey0i+zqFi4XqjRYnOISDNtCfLRKlJo5S3hZcYXAok2337gBEqRhoCFhPVJaL7bajQHXDxDUmXf0JVOj2Fg7atYIJVIuCR74OLibCCXRMX/Undkf9JbZLRYMasLekYj2BKl1EzhpHcUvVNQz+PMi2E6PVyUAsRPQbCkTj6Rwgp5BtD+mhTgZiR3YJr10b91smUC3PLcDqnN+j8Vh0YNfq3dqJbK1pcYLjRDZw6TLbHtZT+cqP1jhyS3KuP0C9RD5CHKlx4aAdm67dnTEgtkt4Bzq+n37sEi7XqVFEzhp7d8e1dQw2H2LbcRFAmgYZDe0tqZy6AOQ2LPMM66n+BOpoLP512OKlGq+1l8rqzphD67Eo7C+hmB2ryVi07wXVfCza8TYyjGVjQICfurt59ECLExxC17Lmg7ZeT4PW0nY0aNUMNOSwtz5rNlsGbUggMEjlO2PWLsFFrsGuy1ctdTd6tFN/mQew/zvuPGZJ2qaFl0pol6NzS5Ox6GBJZY3Gd6COllRE1wiNxSzXXwzD8NdUXx9tJlB7E3tJGYO9DWOxWxt1Ck3a2GXndzx6zrIddkQv9UW21rQ8waHxoLW3pCIctP6+QIYmE6ilzQ3a4lIGBxriJHq2B2LCtb6rYv8/cMayBW9UH/XShjuyi7uYbDqgrWsZsH/xFZ/z2lzg7BW7E3nPVNx2yuHtxcZLAeI79jUNAZBGo37ujOvrLcHI0WHqJW0TYs/DcS4POJ/PPpeRpk0+Cbtjcb8lA7EW13nAvl1rBMG1LW05BWhhgqO2zrI2G6uRa9loNMDHm7OHPeFOXbDsINDCtQzYHxzCtVm9DtrrBmg0gdqxSzyBajuxAwK7NHYtA8IMqKzArqu3jMWYcG0KVxkMBpvkTLlFlqRt/ToDEaH6GIu7TwDXKtj26L7qB0Ba28X1l8hLpatzXgci2961S7RhQWWDdECLEhy7jgtcy321K5ZjXdRnvWhC0M/g0MWgtXMxEW7THa/BnTHgfGLXyrUM2P6OpWWWnDNdU7VxLVvbVVvHTqBllexjrSZQQFDvomECFd+BamAQ7J9b6/dZntMiABKwv6QijvFS2yIW+1499n8fb/V383BY21VRxWBLQyxV61i22GRLo0UJDj1MoIBtUR+tl3kA2yUV4Q4CXx9104aL7LIatNcqGOw4xj7ukAS0SdB+Aq2pBc7mMnxBrcFp6ue5sGtXHbvMo7VrGbCdRLUORuawrj2jdTAyIF7qsSv+tRLZVqLRZLIEu4eHsLvrtLarpg7IymP4zMiDugHBgdoLtJo6YPNBy7Lw+P4tozqsNS1McFjaWrmWAXEGurp6iNZme7TT1iaAHRxnc4HshrXZId21y/VvbdfG/eATWmnpkrS2S+sdBBzWwlHrYGQO6/4SB4yqbw+H0NtoMlnsCgtWt7SAEOFST00tUFbJYGeDyO6YrG5mZCHWSyr7TgOl5ezj0X3VzYwssstqYhd6g/QgZgHWLlFulxYYvwEA3o0f0jy4Wm5Jodw1FUiM1v5ErKs3iFzLY9I1dC1b5STQegcBh3UtFXFCJu1/Q4C9a9l+VHsvFcBtEWRtqa237Mry9gKGa+RaZu2ytItLgV0NY7FzayApRvvfsa7egL2ngJIy9vGYdMBbg2Bk3i5fNv9NbT3w5wGLyNaLl6qu3qAfkW01FvXgDQKsxmIdsKZhLHp5abPjTw+0GA/H2j36cC0Dgi2C9QasFqTn1svEXlMLrNypl0FradfUWuq6+Pqw28q0Qthf5VWW5aeIUPVTKAsR9tfx8+DrgQxO0861DIj7a8UOSz0QLc8tQBzDsVKQzlzrHQRCD8eqXfpafgLY/lolunapbw+H0K6KasuW+bBgoK+WY1Fwzp/IZjcHAMDArurW5tETLcbDoVWpaXsIL3LCwmhq1yAQwq0bMwzrJuUCDeMjtVubBcQXk32nLJkWR/bWLk4CENu1fp9lB8EElYvuWSO067fNlrbm57zArsWbBWNR40qZwhgOvYxFQJy3ZMX2hudULrrnyCYAyC/xwtHzbLtrqnaxVIB4Yt+4H7jasMwzYaDGXipBfy3ZYmlrfc5rSYsQHCaTpVJmcIB2UcscwovcobNsu38XbRJFcbAVPRnU1AJHzlmenzRIu2UeQHwx4dzwgPaDVngx4QoxATqY2B32l/q2CLHXX0EBwPBempjDw+XFqTMZ+JwzfTtpt5uHg+svLisywIpsvXipjmT58W09nluAzq4RwrE4WH1b9EKLWFLZddySKGp8f8DXR9sTUZj8i0PriQoQDxAOrQetrwNJrPWgtfcbenlpv7feXn+1TVC/6J419vprXLr6pQWssX/Oq2+HNXavEbodi/qzy2jUpsaSEHu/YUqc+rV59ESLEBwrduhnOQXQ70XO2i6tXbiA/b5KawOkxutvohrSHQgP0Y+Hg2PyIO234Nk953U6Fq/P0KddkzS+Rnh5GeDlJX4uPET9ApjW2DvnM9K0SdomxO65NVj7saglLUNwNKyBGgzsGrvWWJ+ICVFALw3jJDis7dLahQs4mEB14JK0P7FrfyFpShO71nESgK1dWscscVifX3oQ2YBtf00YoG2cBNC0znk92KUlzV5wZOczfEyC1nESHNYnoh7uQAHbi9z1Ohgceh209u+M1bfDGmu7gnUQJwHYLp306wzERergd7Q657WOWeKwuUboQGQDtnbp1Rt0vQ76y/rcCgrQdmu6Hmj2goPzbgD6mEAB2xNRDxMoYDtwtXbhArY2RYSy28q0xtqu9olsUiatsT639BCzBNibQLW3CbAn/nVqlw77y8uofcwSYHvO6yFmCbD9Dcemt7zqsNbIKjhKSkowe/ZsZGRkYOrUqdi9e3fjb1IYcfyGhoYIEJ6I/jqIk+AQ2tW9LZASp/3g8PY2wCg4SycO1HbbKYetaNSJl6oJTFSAPmKWALFdfj76HIt6EdmA+LzXQ8wSoGOPsU7FrJbIKjjeeustREdHY8OGDXj88cfx/PPP49q1a3J+hSTKKxk+139StHZpw60Rnogj+2iXNtwa4cVEL+IMEPeXXgZtU5jY9RKzBIjPrYQooLeGCZmECO0aoYOYJQ6hXXoR2YD4/NKDBxTQ8Vi0uinRQ8yS1siWh6OyshKbN2/G8uXL4e/vjxEjRmDRokXYsmULJk+eLDq2trYWtbW1YkO8veHraycSzwPW7bUUy5k0iC1IxjCM8zepgHC71MQBZj4Dqtb4Cc6GiQMBs04M8/NhUFVjgJeRwdh0wGzW/jf0EUTrhwQCGWmMPuwS/Ib9OjOIDtNJf1mdW7oZiyK79DMWfXU7Fi3tCTrpL2/BWAwOAIZ018lYFNjVtxOD2Ah9jEUlMBpd813IJjguXLiA4OBgREVF8c916NAB586dszl2wYIF+OKLL0TPTZs2DdOnT5fLHADA75vDAYQCAPq1K0R2dpWsn+8uXRICAUQjPNiE/u3ykJ2tg1ELoEdqK2w+FIbOybWIC7qE7GytLWJJ7xCN9QcCMWlAJa5eKcbVK1pbxNK3fSz2Zfrj5oxruJRXorU5AIAggwERIYm4UuaFqYMvIzu7QmuTAACp4d7w9koAwwAT++QjO7u28TepQOf4AAAxCAsyYaCOxmJacjCASMRH1KNbQh6ys/UxUfVqE44j50LRv1M1AlGgn2tEx1jsPe2PqRnXkH9JH2MxEEBkaBIuX/PCLYOvIDu7XGuTFKNNG9eSixgYmW4zDhw4gPnz52Pp0qX8c//5z39QXl6O5557TnSsWh4Ok4lN0b1yJ/D8DCDQX9aP94iDZ8yor8xFn+6JLqtDpWEYtr86JQOtgrW2xkJ1jRmrthZgfEYsAv310VcAUFUDHMpkM1P66Chnb2GJGXsOF+C6IbHw8tJPf53LY+sZtU/S2hIxhzLNqK3IQ9/uCboZiwBw4AyQHA1EhWltiQWzGdh53Iwwn4vo3CFJN/1FY1FbVPdwBAQEoKJCfDdVUVGBgIAAm2N9fX1lFxf2MBqBwd3Zf3qjVwcgO9sMo9Gom0ELAAM1TuJjD38/oE/7WgT666uvggL0eW7FhANpqbXw8tJXf+lNaHD0bA9kZ5t0Nxb7dtLaAluMRrYQYHY2o6v+orHYNJCtB1q3bo3y8nIUFxfzz505cwZt27aV6ysIgiAIgmiiyCY4AgMDMWzYMHz++eeorq7G5s2bcfbsWQwbNkyuryAIgiAIookiq4/n+eefR0FBAUaPHo0PPvgAb7zxBkJDQ+X8CoIgCIIgmiCyhteEh4fjww8/lPMjCYIgCIJoBlAUC0EQBEEQikOCgyAIgiAIxSHBQRAEQRCE4pDgIAiCIAhCcUhwEARBEAShOCQ4CIIgCIJQHBIcBEEQBEEoDgkOgiAIgiAUhwQHQRAEQRCKQ4KDIAiCIAjFMTAMw2htBEEQBEEQzRvycBAEQRAEoTgkOAiCIAiCUBwSHARBEARBKA4JDoIgCIIgFIcEB0EQBEEQikOCgyAIgiAIxSHBQRAEQRCE4pDgIAiCIAhCcUhwEARBEAShOCQ4CIIgCIJQHBIcMvD5559j2rRp6NevH9asWcM/X11djddeew1jx47FuHHj8N1334nel56ejiFDhmDo0KEYOnQovv76a9F7586di2HDhmHSpElYvXq1an+P0ijRX++99x6mTJmCYcOG4c4778T+/ftV+3uURon+4sjLy0NGRgZef/11xf8ONVCqr5YtW4abbroJQ4YMwS233ILs7GxV/h6lUaK/cnNz8cgjj2DEiBGYMGECFixYoNrfozTu9ld5eTleeeUVjBo1CiNGjMBLL70kem9zvdZb4621Ac2B5ORkzJkzB5999pno+a+++gp5eXlYsmQJysvL8dBDD6F9+/YYNGgQf8zSpUsRFRVl85mff/45rl69ipUrV+Ls2bOYPXs2unTpgpSUFMX/HqVRor+Cg4Px8ccfIzExERs3bsTTTz+N5cuXIygoSPG/R2mU6C+O9957D506dVLMdrVRoq+2bNmC77//Hv/3f/+Htm3bIjc3FyEhIYr/LWqgRH+98847SExMxAcffICCggLcd9996NatG/r376/436M07vbX/PnzERsbi2XLlsHf3x+ZmZn8e5vztd4a8nDIwMSJEzFw4ED4+vqKnt+xYwduv/12BAcHIy4uDjfccAP++OMPlz5z5cqVmDVrFoKDg9GzZ08MGzYMa9euVcJ81VGiv2bNmoXk5GQYjUaMGTMGfn5+uHDhghLmq44S/cW9n2EYDBgwQG6TNUOJvvryyy/x1FNPoV27djAYDEhKSkKrVq2UMF91lOivS5cuYdy4cfD29kZiYiJ69eqFc+fOKWG+6rjTX2fPnsXJkyfx5JNPIjg4GN7e3ujcuTP/3uZ8rbeGBIfCCIvxMgxjM/DuuOMOTJgwAfPmzUNpaSkA4Nq1a7h8+TLat2/PH9exY8dmM2id4U5/WZOXl4dr164hOTlZSVN1gbv9VVdXhw8++ABPPPGESpZqjzt9ZTKZcOrUKWRmZmLixIm44YYb8MUXX6AlFNl299yaNm0a1qxZg9raWly4cAFHjhxBenq6WmZrhqP+OnHiBFq3bo25c+di9OjRuOuuu3DgwAEALe9aT4JDQQYOHIgffvgBZWVlyMvLw4oVK1BdXc2//sUXX2DFihX43//+h+rqarzyyisAgMrKSnh5ecHf358/NigoCJWVlar/DWribn8Jqa+vx7x583DnnXciODhYTfNVx5P+WrRoETIyMlqEKAPc76srV67AZDJhz549+Omnn/Df//4X69atw/Lly7X6U1TBk3OrZ8+eOHLkCIYOHYqpU6diypQpogm1OeKsvwoLC7Fr1y70798fa9aswT333IOnn34aV69ebXHXehIcCnLfffchISEBt9xyCx5//HGMHj0a0dHR/Ou9e/eGt7c3wsPD8fTTT2Pbtm2oq6tDYGAgTCaTaIBXVFQgMDBQiz9DNdztLw6GYTBv3jyEh4dj1qxZWvwJquJufxUWFmLZsmW49957NbReXdztKz8/PwDA3XffjZCQEMTFxWHatGnYtm2bVn+KKrjbXyaTCbNnz8aNN96Ibdu2YdmyZVi/fj3Wr1+v4V+jPM76y8/PD4mJibjxxhvh7e2NUaNGITExEUeOHGlx13oSHAoSEBCAl156CWvWrMGvv/4Kg8GArl272j3WaGR/CoZhEBoaisjISFFg0enTp9G2bVtV7NYKd/uL4+2330ZRURH+9a9/8a83Z9ztr+PHj6OgoABTp07F+PHj8f333+OPP/7AY489pqb5quLJWBROtNzzzR13++vatWsoKirCLbfcAm9vbyQkJGDEiBHYt2+fmuarjrP+ateuncP3tbRrffO/KqtAfX09ampqwDAM3zabzSgoKEBxcTFMJhN27tyJ5cuX4/bbbwfABhKdPn0aJpMJ165dw7vvvosBAwbwwUgTJ07El19+iYqKChw5cgRbtmzB2LFjtfwzZUOJ/vr8889x6NAhvPvuuzYBXU0duftr8ODB+P3337Fo0SIsWrQIN998M8aMGYN//etfGv+lnqPEuTV58mR8++23qKioQFFRERYvXowhQ4Zo+WfKhtz9FR4ejtjYWCxdupT/nM2bNzuddJsS7vRXeno6GIbBihUrYDKZsHnzZuTm5qJ79+4Amve13hoD0xLkusLMmzcPK1asED3HbZt6+eWXUVpaitTUVDz99NPo3bs3AGDPnj144403UFhYiKCgIPTv3x9PPvkkIiIiALB7s1999VVs3rwZoaGheOyxx3Ddddep+4cphBL9lZ6eDl9fX3h5efGf+eKLL2LChAkq/VXKoUR/Cfn8889x+fJlvPjii8r/MQqjRF/V1dXhrbfewrp16xAYGIgbb7wRs2bNgsFgUPePUwAl+uvYsWN49913cfbsWfj7+2PcuHF44oknRGOzqeJOfwHAmTNn8K9//QtZWVlITk7G008/jT59+gBo3td6a0hwEARBEAShOLSkQhAEQRCE4pDgIAiCIAhCcUhwEARBEAShOCQ4CIIgCIJQHBIcBEEQBEEoDgkOgiAIgiAUhwQHQRAEQRCKQ4KDIAiCIAjFIcFBEITuSU9PR3p6erOv0koQzRkSHARBAABmzZrFT+x/+9vfRK+VlpYiIyODf/2jjz6S/fuXL1/Ofz5BEM0PEhwEQdhw5swZ7N+/n3+8dOlS1NTUaGgRQRBNHRIcBEGI8Pb2BgD89NNPAACTyYRff/2Vf17I1atX8dZbb2HSpEkYMGAAxo0bh7lz5yI/P58/5vPPP0d6ejquv/56rFu3DjfffDOGDBmCBx54AOfPnwfAFsWaP38+/x7O0/H555+Lvq+8vBzz5s3D8OHDMWHCBHz55Zdy//kEQSgECQ6CIER07NgRiYmJ+PPPP1FQUIAtW7YgPz8fo0ePFh1XU1ODWbNm4ZdffkFxcTFSUlJQUVGBVatWYebMmSgpKREdX1hYiLlz58JgMKCmpgYHDhzAK6+8AgBISkpCYmIif2xaWhrS0tIQGxsr+oyPP/4YO3fuhI+PD4qKivDZZ59h586dCvUEQRByQoKDIAgRRqMR06ZN4z0bnKfj1ltvFR23Zs0anD17FgDw1ltv4eeff8ZXX30Fo9GIoqIi/Pzzz//frt2rphJFYRj+DoOJouJfUo8EE9RCvIJgo8FKG72CuYB0uQdvwUILK0lnLdhrJUGshCmEVDZBtFFTZcAzOYeYZJMU71NtZu3ZM6v7WDNH+3e7nVqtlh4fH71/RKbTqbbbrRzHkeM43t5ut6tut6t6vX50xs3NjQaDwdHEZTwef2v/AMwgcADwqdVqCoVC6vf7mkwmyuVyKhQKR3tms5kkKRgMqlQqSZKy2axs2z6qv4lEIrq9vZUkXV1dedf/noT8T7lcViAQUDweVzKZlCStVqvTmgPwIwgcAHyi0aiq1arW67Uk/3Tjs2e+sSzLWx8Ohy+dccr9AH4OgQPAu5rNpiQpHo+rUqn46vl8XpK03W41Go0kSfP5XK7rHtU/KhgMeuvNZvOZVwbwi/l/OwcASZlMRsPhUJZl6ezszFe/u7tTr9fTYrHQw8ODbNvWcrnUfr/X5eWlF1g+Kp1Oe+tGo6GLiwvd39+rWCx+sRMAvwETDgD/FIvFFIlE3q2dn5+r3W574cB1XYXDYVWrVXU6HSUSiZOedX19LcdxlEql9Pz8rKenJ728vHxHGwB+gT8HPoACAADDmHAAAADjCBwAAMA4AgcAADCOwAEAAIwjcAAAAOMIHAAAwDgCBwAAMI7AAQAAjCNwAAAA4wgcAADAOAIHAAAw7hUnKqzeuNhTMwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -353,14 +417,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEPCAYAAAC0r/QVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABXMklEQVR4nO2dd5gUVdaH356ch4FhCEPOGZRCMihJFAysomJCWUV2xbAKn+7qGnZ1xTWtursY0DWtougaMIGiZAmFZERyamAYwjCBGaZ7ur4/qqumu2c6V3VPD/d9nnm6p6vq3nu6qn916txz77UoioJAIBAIYpO4aDdAIBAIBKEjRFwgEAhiGCHiAoFAEMMIERcIBIIYRoi4QCAQxDBCxAUCgSCGibSIK3X97+jRo1Fvg7BF2BJLf/XJnjpsi1eEJ+5BVVVVtJtgGMKWukl9sgXqlz2xaIsQcYFAIIhhhIgLBAJBDCNEXCAQCGIYIeICgUAQwwgRFwgEghhGiLhAIBDEMELEBQKBIEQqKyuj3QQh4p489dRT/Pjjj3z22Wc89dRTANxyyy20bduWPn36cP755/PTTz9FuZUCgSDazJo1i5ycHNasWRPVdggR92D9+vUMGDCAJUuWMGzYMP3zZ555hg0bNjBr1izuuOOOKLYwdOx2e7SbIBDUGxYvXsyZM2eYNWtWVNshRNzJzJkz6dWrFxs3bmTgwIHMmTOH3/3ud/zlL39x22/YsGHs2rWL0tJSRo4cyfnnn0/Pnj35/PPPASgrK2PcuHH07t2bHj168OGHHwLw4IMP0q1bN3r16sWMGTMAKCws5KqrrqJfv37069ePFStWAPDYY48xZcoULrzwQtq1a8dLL72k1//Xv/6Vzp07M2TIECZNmsSzzz4LwO7duxk7dix9+/Zl6NChbN++HVCfIqZNm0b//v35v//7P5YsWUKfPn3o06cP5513HiUlJeZ+sQJBPeX48eMAfP755+zfvz96DVEUJZJ/dZo1a9Yot9xyi1JZWakMGjRI/3zy5MnKvHnzFEVRlI8++ki54IILFJvNppw+fVpRFEUpLCxU2rdvrzgcDuXjjz9WbrvtNv3YoqIi5fjx40qnTp0Uh8OhKIqinDp1SlEURZk0aZKybNkyRVEUZf/+/UqXLl0URVGURx99VBk4cKBSUVGhFBYWKg0bNlQqKyuVNWvWKL1791bKy8uV4uJipUOHDsozzzyjKIqijBgxQtmxY4eiKIqyatUq5aKLLlIOHTqkTJ48WRk3bpxit9sVRVGU8ePHK8uXL1cURVFKSkoUm81myndpNIcOHYp2EwyjPtmiKPXLnmBsadOmjT63yQMPPGBiqxRF8aGrCdG7fdTEYrGYUq4S4DqiP//8M926dWP79u107drVbdvMmTN54oknaNy4MW+88QaKovCnP/2JpUuXEhcXh9VqpaCggJ49e3L//ffzwAMPMH78eIYOHYrdbiclJYXf/va3jB8/nvHjxwPw/fffs23bNr2O4uJiSktLARg3bhzJyckkJyeTl5dHQUEBK1as4IorriAlJYWUlBQuu+wyAEpLS1m5ciUTJ07Uyzp79qz+fuLEicTHxwMwePBg7rvvPm644QZ+85vf0KJFixC+UYFAcOLECf3966+/zqOPPkpqamrE2+FXxCVJagJ8CtiAKuAGWZaPuGx/GhgE7AOmyLJsM6ep5rFhwwZuueUWDh06RIMGDXj55ZdRFIU+ffronZjPPPMMV199tX7MW2+9RWFhIevWrSMxMZE2bdpQUVFBp06d+Pnnn/n66695+OGHGTlyJI888ghr1qxh0aJFfPzxx/zzn//khx9+wOFwsGrVKlJSUmq0KTk5WX8fHx/vM57tcDho0KABGzZscPvcarUCkJ6ern/24IMPMm7cOL7++msGDx7MggUL6NKlS0jfm0BwrlJZWUlJSQnx8fGcd955yLLMvHnzuPnmmyPelkBi4seBIbIsDwfeAX6rbZAkqTeQL8vyUGA7cHXtRQSGr0eGcP780adPHzZs2ECnTp348ccfGTFiBAsWLGDDhg1e76ynT58mLy+PxMREfvzxRz0mdvjwYdLS0rjxxhuZOXMmP//8M6WlpZw+fZpLL72UF154gY0bNwIwZswYXn75Zb1MTxH2ZPDgwcyfP5+KigpKS0v58ssvAcjKyqJt27bMmzdP/x61OjzZvXs3PXv25IEHHqBfv3567FwgEASO5oU3atSICRMmALB169aotMWvJy7LsuvcjJmAa0sHAQud778FbgU+MKx1EaSwsJCcnBzi4uLYvn073bp187n/DTfcwGWXXUbPnj2RJEn3Zjdv3szMmTOJi4sjMTGR2bNnU1JSwhVXXEFFRQWKovD8888D8NJLL3HnnXfSq1cv7HY7w4YN45VXXvFaZ79+/bj88svp1asXTZo0oWfPnmRnZwPw3//+l9/97nc88cQT2Gw2rrvuOn7729/WKOMf//gHP/74I3FxcXTv3p1LLrkk1K9MIDhn0To1c3NzadSoEQAnT56MSlssgXiqkiT1AV4FGgBjZFne7/z8T8A2WZY/kySpA/AXWZav9zh2KjAVYPr06X1Hjx5tqAFGY7PZSExMjHYzvFJWVkZ6ejrl5eVcddVVPP300/Ts2bPWfeu6LcEgbKm71Cd7ArVl5cqVXHPNNfTv359bb72VadOmcckll/D666+b0q78/HyvHYYBdWzKsrwB6C9J0jXAH4Fpzk1FQJbzfTZQ41Yky/JrwGvOfwPrYYwiVquV/Pz8aDfDK9dffz3btm2joqKCyZMnM3bsWK/71nVbgkHYUnepT/YEaouWhNG8eXM6dOgAQHl5eVS+h0A6NpNkWdbGlp4GzrhsXgnchxorvxhYYXgLBW68//770W6CQHDO4xoTb9iwIRC9cEognngfSZKeRc1MqQCmSJL0D+CPsixvkCSpQJKkZcAB4FnzmioQCAR1A03Ec3NzdRE/depUVNoSSMfmGmCYx8f3umyfaXCbBAKBoE6jdWzWBU9cDLsXCASCIHENp2RkZBAfH09ZWZnbILtIIURcIBAIgsQ1xdBisUQ1pCJEHNi3bx89evQIeP9bbrmFjz/+GIDbbrvNbei8xltvvcX06dMNa6NAIKg7uHriQFRDKnVq7pRYZM6cOdFugkAgiDCunjhEV8SFJ+6kqqqK22+/nREjRjBmzBjKy8vZsGEDAwYMoFevXkyYMKHWR6ULL7wQWZYB+M9//kOnTp244IIL9GllAebPn0///v0577zzGDVqFAUFBTgcDjp27EhhYSGgzn/SoUMHCgsLmTdvHj169KB3795uc5oLBIK6gTdPXIRTosjOnTu58847+eGHH2jQoAGffPIJN998M08//TSbNm2iZ8+ePP74416PP3LkCI8++igrVqxg+fLlbiGWIUOGsGrVKtavX891113H3//+d+Li4rjxxhv573//C6gzGvbu3ZvGjRvzl7/8hQULFrBx40a++OIL020XCASBY7fbKSoqwmKx0KBBA0CEU3QswxymlKss9X+v0pZfs1qt9O3bl927d1NUVMTw4cMBmDx5sttUr56sXr2aCy+8kMaNGwNw7bXXsmPHDgAOHTrEtddey5EjR6isrKRt27YATJkyhSuuuIJ7772XN998k1tvvRVQJ7q65ZZbuOaaa/jNb34Tlu0CwbmM3W4nPj7e0GmuNaFu2LChPsVzTk6O27ZIIjxxJ55TvxYVFRlW9l133cX06dPZvHkzr776KhUVFQC0bNmSJk2a8MMPP7BmzRp9MqpXXnmFJ554goMHD9K3b1+3eYsFAkFgFBQU0LFjR32WQaPwDKWA8MR1AvGYI0V2djY5OTksW7aMoUOH8u677+peeW3079+fe+65hxMnTpCVlcW8efPo3bs3oE5bq82p8Pbbb7sdd9ttt3HjjTdy00036Xf13bt3079/f/r3788333zDwYMH3S4YgUDgn/vvv599+/YZ7gR5dmqCEPE6y9tvv820adM4c+YM7dq14z//+Y/XfZs1a8Zjjz3GwIEDadCgAX369NG3PfbYY0ycOJGcnBxGjBjB3r179W2XX345t956qx5KAXUVoZ07d6IoCiNHjtRvBgKBIDC+//57vb+ppKTE0JkW65onLtbY9CDS6wWuXbtWGTJkiClln6trH9Z16pMtilL37KmoqFA6duyor38JKAUFBQEdG4gtr7/+ugIot956q/7Z119/rQDKmDFjQm63H7zqat2JX5yDzJo1i6uuuoqnnnoq2k0RCOoNS5cuZefOnXTs2FFPIjDSQ/bliYsUw3OMBx98kP379zNkyJBoN0UgqDccOaIuAXzBBRfQtGlTAEPj4q6TX2lEMztFxMQFAkG94tixYwDk5eXpWWZmeOJ1pWNTeOICgaBe4SriZohrbeEUbdBPUVERVVVVtR1mGkLEBQJBvaKgoAAwT8S1qTJcPfGEhASys7NRFIXTp08bVlcgCBEXCAT1CrM9cavVClBjPc1ohVSEiAsEgnqFJuJNmjTRhdWojk2Hw8Hhw4cBdZFkV6KVoSJEXCAQ1CtcPXEtbm2Ud3zs2DHsdju5ubmkpKS4bYtWhooQcYFAUG9QFEUX8caNGxse4jh06BAALVq0qLFNhFMEAoEgTE6fPk1lZSUZGRmkpaUJERcIBIJYwjUeDsYLqybinp2aZtQVKELEBQJBvcE1Hg4Y3rGpZabUJU/c74hNSZIuAF4EbIAVuFmWZZtz24XAu8BuoEqW5ZHmNVUgEAh845ojDuqU0nFxcRQXFxsyk2Eg4ZS6mJ1yEBghy/IwYB9whcf2D2VZvlAIuEAgCJQPP/yQXr16uU3LbASennhcXJyeNWLEQi++RFwL4Wj7RAq/Ii7L8hFZlsud/1YCnmuoXSVJ0jJJku4xvHUCgaDecebMGe6++242b97Mt99+a2jZniIOxoY5fMXE27dvD6iLukSSgGPikiS1BsYA810+loHOwEhgrCRJfY1tnkAgqG+89tprutgaHXrw7NgE40RcURSfMfE2bdoQFxfHgQMHOHv2bFh1BUNAsxhKkpSFGvu+RYuHA8iyXOqyz3ygN7DO49ipwFSA6dOnM3r0aAOabR42m00/UbGOsKVuUp9sgeDsqaioYNasWfr/Bw4cMPS72LdvH6DOZaKVm5aWBsCOHTto1aqVz+N92XLq1CnKy8vJzMykuLiY4uLiGvvk5+dz8OBBVq9erXvmRlCb568RSMdmAjAXeFyW5V89tmXJsqxZMgR4xfN4WZZfA15z/qsE2OaoYbVafX5hsYSwpW5Sn2yB4OyZPXu23vkI6mr0Rn4XJSUlAHTp0kUvVxseb7FY/NblyxYtw6Vly5Ze9+ncuTMHDx6kpKQkYuc4kHDKJKA/8GdJkhZLknStJEmvOrddI0nSGkmSVgJWWZaXmtZSgUAQ87z11lsATJw4ETA+Ha+2mLhRQ+99xcM1OnToAMCuXbvCqisY/Hrisiy/ixpKceVD57Y5wBwT2iUQCOohe/bsAeCKK65g3rx5MRUT9xUP14iGiIvBPgKBICKcOXOG48ePk5SURJcuXQBjOzYrKys5deoUcXFxunCDcSLuK71QQxPxSGaoCBEXCAQR4eDBg4AaU9ZCHEaKuLZYQ+PGjYmLq5Y2o0ZtBiPiwhMXCAT1jgMHDgDQqlUrU6ZtrS0eDsZ74r5i4u3atQNg79692O32sOoLFCHiAoEgIriKeGZmJnFxcZSWlmKz2fwcGRha1otrPBwiGxNPTU2lRYsW2O123V6zESIuEAgigquIGz0cHuDo0aNATU/ciOyUAwcO6CGSli1b+tw30iEVIeICgQCADRs28OijjzJ8+HBefPFFw8vfv38/gD7gxuiQijbQp3Xr1m6fG+GJ33fffZw9e5aJEye6dZrWRqRFPKARmwKBoH7z008/MWjQIP3/Xbt2cc89xk6H5OqJQ7WIG9W5qaUvanFpjezsbCwWC0VFRdjtdhISgpO9hQsX8sknn5Cens7zzz/vd3/hiQsEgojz008/ATBw4EAsFgtHjx41vGNOE3HNUzZaxLUZET1FPD4+Xq8r2AwVRVH0m9kjjzziMx6uoYn4zp07g6orVISICwQCfv1VnVHjuuuuo0mTJjgcDj3GbAQOh8MtxRCMn39b88Tbtm1bY5tWp9aGQDlw4ADbt2+nUaNG3HvvvQEd06ZNm5DqChUh4gKBgO3btwPq3B9aCp2R82IfO3aMyspKcnNz9QmpjIyJV1RUcPjwYeLj42vteNRCOMFmjPzyyy8A9OrVi6SkpICOadasGYChN0FfCBEXCAS6J96lSxc9ZGDk7IKe8XAwNpyidWq2atWq1pi3FsIJVsS3bdsGQNeuXQM+Ji8vD4vFwrFjxyKSKy5EXCA4xykqKqKgoIDU1FRatmypi7iRnrhnZgoYG07x1qmpodWrtSNQNBHv1q1bwMckJCTQuHFjFEXRR5GaiRBxgeAcR/PCO3bsSFxcnCkibrYn7q1TUyPccEownjhUh1SOHDkS1HGhIERcIDjHcQ2lAKbExH2JuBExcV+dmq71BiPiiqKE5IkDNG3aFBAiLhAIIoAm4p07dwYwNSbuOhDHyHCKP088lJj40aNHKSoqIicnp8ZQfn9EsnNTiLhAcI7j6YnHYjjFnyfetGlTEhMTOXbsGOXl5bXu44lrKMVisQTVHuGJCwSCiOGaXgjV4RSr1YqiGLOiopYz7TpYxqhwiqIofj1x11h/oPnboYZSoKYnfskll3D11Vdz/PjxoMvyhxBxgeAcpqqqSh8e3qlTJ0BdWDgnJ4fKykpDRMdms3H8+HHi4uLcwhJGeeInT56kuLiYzMxMfbKr2gg2Lh5qpya4e+IVFRUsWLCAzz77jMzMzKDL8ocQcYHgHGb//v2cPXuW/Px8N4ExMqRSWFiIoig0btyY+Ph4/fP09HQSExMpLy/n7NmzIZfvGkrxFfYIVsSN8MSPHDnCzp07URSFdu3akZycHHRZ/hAiLhCcw3iGUjSMFHEtLqx5pxoWi8UQb9xfKEUj2M7NUAb6aLiGU8Lx6ANBiLhAcA7jGUrRMDLNUIsLe4o4GBMX99epqRGMJ37ixAmOHTtGenq63/nDa8M1nKKJuNZxbDRCxAWCc5jDhw8DNRc6MDLNUBNxzTt1xYg0w1WrVgHQvXt3n/v5EvE1a9bQoUMHvvjiCwA2bdoEqN6z63qdgZKRkUFGRgYVFRWsWbMGECIuEJyzfPLJJzz44INhxY29oYl48+bN3T43MpwSiCceqojbbDZ++OEHAEaPHu1zX29D76uqqpg2bRq7d+/m7bffBmDlypUADBgwIKR2QbW9y5YtA8wTcbEohEBQx7nnnnuwWq0cOXKEt956K+icZV94E3EjwyneYuIQfjhl9erVlJSU0KVLF7cc9NrQth88eBCHw6F72G+//Tbr168H4Oeff6a0tFQX8cGDB4fULlCfPHbt2kVJSQkQRRGXJOkC4EXABliBm2VZtjm3xQOvAx2BdbIs32tKKwWCc5RTp07pIY133nmHjh078vDDDxtWvlZ2LHniO3bsYNu2bVxxxRUsWLAAgDFjxvg9Lj09nUaNGnHixAkKCwtp0qQJJSUlPPTQQ4CaWnnmzBmWLl2qL5LhutpRsLiGj5o0aaLbajSBhFMOAiNkWR4G7AOucNk2Hjgsy/JQIF2SpIHGN1EgOHfZunUroMaOLRYLf/7zn5Fl2bDyAwmnhDvgx+iY+G233caECRN44403WLhwIQAXX3xxQMdqCzZonaH//ve/OXr0KAMGDOCuu+4C4F//+henTp0iPz8/pE5NDdebllleOAQg4rIsH5FlWRunWgk4XDYPAhY6338LhP7sIRAIaqCJ+GWXXcZNN90EqCEEIygtLaW4uJjk5OQaXmJ2djbp6emUlZWFvRq9r3CKNvgnmA5ULaPmD3/4A2vXriUxMZHhw4cHdKyWhaNNNaB9l3fddZceU//6668BNZQSTujK9aZlpogHHBOXJKk1MAZ4wuXjHKDY+f40UGMZaEmSpgJTAaZPn+638yHa2Gw2Qyf+iSbClrpJMLZomRctWrTA4VD9p40bNxryXWjeaJMmTXSP3JXmzZuzc+dOZFn2OeDFlz2Kougi7nA4auzXoEEDALZs2RKQTVVVVRQUFADqTQigX79+FBUVBXSz0YRVlmVGjx7Nli1bAGjUqBGtW7cmKSmJyspKQB3kE8737Dqwp1mzZmGVpfVR1EZAIi5JUhbwLnCLFg93UgRkOd9nAzV6J2RZfg14zfmvMRMxmIjVavX5hcUSwpa6STC2aJkUgwYNoqysDICCggJDvgvNo23ZsmWt5bVt25adO3dSWVnpsz5f9pSUlFBeXk5qaiqdO3eu4dlqMecDBw4EZFNBQQEOh4PMzExSU1M5duwYl112WcDfhyRJgBpGatKkib4i0JAhQ0hPT6dfv36sWLECgEsvvTSs79n1xjdgwADTrl+/4RRJkhKAucDjsiz/6rF5JTDK+f5iYIWxzRMIzm20cEr37t1p3749UO1Bh4u3eLhGqAspuOIaD68tNNGyZUuSkpI4fPiw7ln7QvPqW7duzWeffcaUKVO44447Am6PNjJ1x44d7Nu3D5vNRsuWLUlPTwdUMQdITU2lT58+AZdbG3UmJg5MAvoDf5YkabEkSddKkvSqc9uXQCtJkpYBFbIs/2RWQwWCc43CwkKOHTtGRkYGrVq1chNxI2YXDFTEw1m13Vc8HCA+Pp4OHToA1U8GgZY3cOBA3njjjaCyPrSY+K5du/Rh9a5TDowaNYr4+HjGjBlDYmJiwOXWhtY5nJGREVYHqT/8hlNkWX4XNZTiyofObXbgFuObJRAIXL1wi8VCdna2niJ39OjRWrM9gsGfiGvCY4Qn7k3EQV0Wbtu2bezYscOv9+sr0yUQMjIyyM/Px2q16pktriLetWtXtm7d6rO9gdKoUSNmz55NXl5eSKM+A0UM9hEI6iiuIq7Rrl07Tpw4wZ49e0wXcaPDKd7QvOMdO3b4LU/zxMOxvVOnTlitVn2IvefkX57/h8O0adMMK8sbYti9QFBH0TInevTooX+mhVR2794ddvmBeuLhhFMC9cQBdu7cGXB54Yi4JtKaXWbGqyOBEHGBoI5SmyceSRF3HfBTVVUVUh3+YuIQmiceTrjDTM87GggRFwjqKFrHm2c4BcLPUFEUxa+Ip6amkpeXh91uD3nB30A8cU3EA/HEjQinuIp2amqq25JxsYgQcYGgDlJSUsKJEydISUlxE1mjPPHi4mLOnDlDenq6zyXDwg2pBBL+aNq0KRkZGZw4ccLvRFhGhFNc507v3LmzqZ2OkSC2Wy8QRBltdJ/RaIN8Wrdu7ZZfbZSIu3rhRi5p5kkg4Q+LxRJQXNx19Gc44ZQ2bdqQlJQExH4oBYSICwQhs2jRIpKTk3nttdf87xwk2khCbUkxjebNm5OcnMyxY8f0KU5DwdvshZ4EkyvucDh45513dKGtqqqisLAQgLy8PJ/HaiLuKy5eUlLCmTNnSEtLC2vBYdfcdCHiAsE5jDYN6t/+9reQO/684eqJuxIXF6cvQ6atLRkKmifubyh4MLniX331FZMnT2bChAkoisKCBQtwOBy0a9fO78AZX52bjzzyCLfeeqt+4/E2+jMYevfu7fYaywgRFwhCROtc3L9/vz5wxCi8iTiEFlJZunQp//73v/VJtPx1amoEE07ZvHkzoM4MuGjRIv7xj38ABDQs3ls45dixYzzxxBO89dZbvPfee0B4oRSNv//977z55ptceeWVYZcVbcRgH4EgRFxF9LXXXuOSSy4xrGxNxLX5r10JRcRvv/12duzYwcGDB3n88cf55ptvAGPDKa7D5qdPn86vv/5KWloat99+u99jtfCGp03ffPONPsXAP//5TyC8Tk2NFi1acOutt4ZdTl1AeOICQQgoiqJ74nFxccyfP7/W6VxDxVtMHIJPM3Q4HHroZdasWfTv35+lS5eSm5vL1Vdf7fPYYMIprgKszdd96623BjS3iSbiO3fudJsX5ssvv9TfFxers14bIeL1CSHiAkEInDhxguLiYjIzM5kwYQJVVVW88cYbhpVvZDjl2LFj2Gw2PZVuw4YNZGdns3DhQr8TMzVt2pTExEQKCwspLy/3ua/miU+ePFn/7O677w6ojY0bNyYjI4PTp0/raYaVlZV6mMp11KoR4ZT6hBBxgSAENC+4ffv2TJkyBYD58+cbUnZFRQUFBQUkJCTUGu4IVsS1dTJ79uzJX//6V7p06cJXX33Feeed5/fYuLg4PaTiqyO1rKyMw4cPk5iYyHPPPUe/fv24++673XKyfWGxWGqEVJYvX05xcTHdu3fnT3/6k76v8MTdESIuEISAJjTt2rXTFzbYtGkTNpvN12EBoYUuWrZsSXx8fI3tWpx8//792O12v+Vp8eyWLVvy8MMP88svvwS1irs2t8gvv/zi9vmRI0eYM2cOpaWl+k2tXbt2NGrUiDVr1vDiiy8GXAdQY0paLZQyfvx4rrzySrKzswHhiXsiRFwgCAFXT7xBgwa0a9eOs2fPsn379rDL9hVKAXWoeH5+Pna7PaAOR1cRDwVthRptGgCbzcazzz5L586duf3223nqqad04dWEOBQ8nzBcRTw1NZVnnnmGsWPHMmzYsJDrqI8IERcIQsDVEwc4//zzAfj555/DLttXp6ZGMCEVLZwSqoh37doVqPbEn3jiCWbOnKkPNvr222/11ECtXaHg6onv2bOHnTt3kpOTw4ABAwA1w+abb77RV+ERqAgRFwhCwNUTB2NF3J8n7lpvICKueeKhTvTk6YlrHvKcOXNo1aoVBQUFfPDBB0B4nrhrTHzJkiUADB8+nIQEkQntCyHiAkEImOmJByLiwaQZhhtO0TzxX3/9lbKyMjZt2oTFYuGaa67hiiuuANSMFzAmnLJr1y43ERf4Roi4QBAkFRUVWK1W4uPj9cwNLdNj/fr1+qjIUPE10EcjkuGUrKws8vPzqaio4NNPP8Vut9O9e3cyMzN1EdcIR8Tz8/NJTk6moKBAn9JAxL/9I0RcIAiSffv2oSgKrVq10ucEycvLo0WLFpSVlQU0L7YvjAynVFVV6XOO+JsnxRdaSOWtt94C4IILLgBUkdWyRuLj43222R9xcXG6XUePHiUrK6tezG1iNkLEBYIg8YyHa2jeeLAhlSNHjugTaNlsNg4dOoTFYvHpOWvhlN27d7uNcPSkoKAAu91O48aNSUlJCapdrmghlR9++AGA/v37A5CYmMiIESMA9aajTfEaKq7f6ZAhQ2pNsRS4I0RcIAgSz3i4hhYXX79+fcBlLVq0iObNm3P++efz5ZdfMmHCBBwOB23btvUpiI0aNSIrK0tfPMKTzz//nE8//TTsUIqG5olrNwzNEwe49NJLAfdRlaHiGo4R8fDAEN2+AkGQaCLu6YmH0rm5dOlSQB0odNlllwGQk5PDq6++6vM4i8VC+/btWb9+Pbt37yY3N1ff9u233+qz8z3++ONA+CKueeIAaWlpboI9duxY3n//fQYOHBhWHeD+nQoRDwzhiQsEQaJN7uQ5pNy1c9NXiMMVLfd69OjRpKWlMWDAANavX8+oUaP8HltbXPzgwYPceOON+v+zZs0CQk8v1NA8cYC+ffu6pf1ZLBYmTZrksyM2UDRPPD09Xb8pCnzj1xOXJCkb+A7oBgyQZXmLy7YLgXeB3UCVLMsjTWqnQFBn0ETcc1WYFi1a0KBBA06ePMnRo0cDmuNDE/Enn3ySXr16kZSUFPCCB55phg6Hg0mTJnHixAkGDx7M6tWr9UmrwvXEc3Nzady4MYWFhW6hFKMZMGAAHTt25NJLL/W7kIRAJRBP/AwwDvjYy/YPZVm+UAi4oC6xceNG1qxZY3i5FRUV7Nu3j/j4+BrhFIvFoocZtAUSfFFVVaWvZNOlSxeSk5ODWrFGW0hBuxGsX7+eFStWkJeXx2effeY2m2C4Ig7VMW9tBKUZZGdns2PHDn1BCYF//Iq4LMs2WZYLfexylSRJyyRJusfAdgkEIVNVVcWIESMYNGgQy5YtM7RsLRvEW8djz549AdiyZUuNbZ7s3buXyspKWrRoEdKakX369AGqO1K111GjRpGbm8sf//hHPbsj3HAKwHPPPceTTz7JhAkTwi5LYBzhdmzKgPZM+bkkSctlWV7nuoMkSVOBqaCu9jF69OgwqzQXm82m59XGOueqLXv27NHnpJ44cSILFixw6/gLh5UrVwLqije1tUcTy9WrV3ttr2bL8uXLATUsEsp5ysnJISEhge3bt7Nz5069vLZt22K1WklJSWHmzJmsXLmS/Pz8sK+FvLw8Jk+ezNGjR2u1pz5QV23xleMflojLslyqvZckaT7QG1jnsc9rgLYceGC9PVHEarWGNSiiLnGu2rJ69Wr9fUFBATNmzGDBggX6ogjhcPz4cUBdYLe29gwdOhRQbyTe2qvZcuzYMUD1qEM9T927d2fjxo0UFhbqMwkOHz5cL++pp54KqdxgOFevs7pCWFe1JElZLv8OAXZ521cgiBRaKOOGG24gNzeX77//3k3Yw8Fbp6aGFjfeunWrPoDHG9q0tdp83aGgZXDIsszGjRuB6jCL4NwgIBGXJOlrYAzwuiRJt0iSpCWxXiNJ0hpJklYCVlmWl5rVUIEgUDQRv/jii7n88ssBWLt2rSFlax2R3kQ8JyeH/Px8ysvLfa6EA9Udkq452MGiifjHH39MaWkp+fn5NG7cOOTyBLFHQOEUWZYv9fjoLefnc4A5BrdJIAgLLTOkR48elJSU8Oabb7Ju3To/RwWGP09cq9dqtbJ58+YaE0KtWLGC2bNn8/jjjxsq4loHrvDCzz3EYB9BvaKiooKdO3cSFxdH165dkSQJUMMN4XL8+HFOnjxJRkaGzyXCvGWozJ07lxEjRvDf//6XQYMGcfr0aXJycsjLywu5Tb1793ZLSxQifu4hRFxQr9i+fTtVVVV07NiRlJQUevXqpWdwlJWVhVW2qxfuK5+7tlzxt99+m0mTJlFZWUmTJk30Ts2uXbsGlRvuSXp6ultMPZDFjwX1CyHignqF5v1q3nBKSgrdu3fH4XDoCxeESiChFNe6XT1xbdHgJ598ksWLF+uzAGr7hoOrcAtP/NxDiLggKmzZsoXBgwczd+5cQ8t1jYdrGBFSsdvt+k3An4h37dqVuLg4duzYQUVFBQ6HQ89E+f3vf09mZiYLFizgxRdf5M9//nPIbdLQ4uKZmZm0bds27PIEsYWYxVAQcY4ePcq4ceM4cOAAcXFxXHfddYaV7emJgzph0xtvvBF05+bevXv54IMP+Oqrr1i7di02mw2oOfGVJ6mpqXTq1Int27ezbds2cnJyKC8vp2nTpjRo0ICysjKys7O5++67g7SudoYMGQLAoEGDDMmFF8QWQsQFEeXMmTNcfvnlHDhwAKhezswo8anNE+/bty9AUCLucDgYOHAgBQUF+mctW7ZEkiR9/mxf9O7dm+3bt7Nhwwa9EzScLBRf9O/fn4ULF5pWvqBuI27bgojywgsvsHbtWtq0aUNeXp4hy5lpnDp1ioMHD5KSkuI2OZXWufnLL79QWlrqo4Rq9u7dS0FBAQ0bNuR///sfp0+f5sCBA/zvf/8jKyvL7/HasmIbN27UUwldp3M1mtGjRxsyP4og9hAiLogo8+bNA+Dll1/WZ8MzYoV4gFWrVgGq5+26rFdKSgo9evRAUZSAOzc3bdoEqCvYTJgwISDhdqU2EReessAMhIgLIsbevXvZuHEjGRkZjB49OqSVcHyhTU41aNCgGtu0zs1Ap6fVhrD36tUrpLZoWSIbN25k27ZtgBBxgTkIERdEjM8++wxQ12RMTk6OqIhrXr/mrftD88RDXW29WbNm5ObmUlRUpA/5FyIuMAMh4oKIoYm4Nh+1q4gHupyZN+x2uz7JVW0irq3/GKiIh+uJWywW/QZgt9vJzs72OcpTIAgVIeKCiFBYWMjy5ctJTEzkkksuAaB58+bk5eVRVFTEvn37wip/06ZNlJWV0aFDh1qHsXfp0oWsrCwOHjzod77okpIS9uzZQ1JSkt+ccF+4evHdunULa2SmQOANIeKCGhw5ckT3RI3iiy++wOFwMHLkSLKzswHVWzUqpOIrlAIQFxenj5L05o1v3LiR/fv362mK3bp1C2udR1cRF6EUgVkIERe4UV5ezsCBA+nXrx8HDx40pExFUXjllVcA+M1vfuO2TRNxbWmxUNFEfPDgwV738RVS2bp1K5Ikcf755/Pll18CoYdSNISICyKBEHGBGy+88AL79+/HZrOxYsWKoI//6aefeOutt1ixYgXFxcUALFiwAFmWycvL44YbbnDbX5v3I1hP/MyZM27/+/PEobpz86effqqx7c9//jN2u52TJ0/qq+GE2qmp0bVrV92TFyIuMA1FUSL5V+c5dOhQtJtgGMHacvToUSUjI0NBXUZPuf/++4M6vqysTElNTdWPz8rKUr777jtl0KBBCqA8/fTTNY7Zu3evAig5OTlKVVVVQLZ8+OGHSlxcnPK3v/1NURRF2bVrl16frzJOnDihAEpKSopy9uxZ/fPVq1crgJKamqq0aNFCb/93330XlP21cfHFFyuZmZnK0aNHa7WlPlCf7KnDtnjVVSHiHtThkxg0wdoydepUBVCaNWumAMqwYcOCOn79+vUKoGRnZys9evRQACU+Pl4BlIYNGyrFxcW1Hte6dWsFUH7++eeAbLnjjjt0of3nP/+pdO/eXQGUiRMn+m1j586dFUBZs2aN/tmoUaMUQPm///s/ZeXKlUpCQoISHx+vHDt2LAjra6ekpMRNwD1tqQ/UJ3vqsC1edVWEUwSAOnHUnDlziI+P58MPPwTUuUb8rRPpijZV60UXXcTGjRu599579ePvvfdeMjMzaz3uoosuAuDHH38MqJ49e/bo76dPn87WrVvp1q0bs2fP9nusFlLRwi9r167l+++/JysriwceeICBAwfy/fff8/nnnxuyzFlGRgZNmjQJuxyBwBtCxAUAzJw5E4fDwbRp0xg6dCitWrWirKxMn0I1EFwX/o2Li+P5559n9uzZTJkyhXvvvdfrccGKuLZ25dixYwFo164d3333HY0aNfJ77LBhw9zq+vbbbwF1UeWGDRsC6mrx48aNC6gtAkG0ESIuYOHChXz77bdkZWXx6KOPAtCvXz8guAWGPRdNsFgsTJs2jTfeeMOrFw7VIr506VLsdrvPOqqqqti/fz+gzsPy5ZdfsmrVKpo3bx5QG0eOHAnA4sWLsdvtupiPGDEioOMFgrqGEPFzHIfDwYwZMwB46KGH9BBCKCLu6okHQ8uWLWnfvj3FxcV+Uw2tVis2m42mTZuSkZHBuHHjggp7tG7dmvbt23P69Gl++uknPaxy4YUXBtVmgaCuIET8HGfz5s1s3ryZZs2auS1SEKyIOxyOgJcvq41AQypaPLxdu3ZB16GheeNPPvkkZ8+epWfPnuTm5oZcnkAQTYSIn+No+dnDhg0jJSVF/1xbSGHjxo1UVlb6LcdqtXLmzBkaN25MTk5O0O2IhogvWLDArW6BIBYRIn6Oo4m4NnJSIzs7m86dO1NZWanP6OcLzQsPNpSioQnp8uXLfWbEaJ2a4awl6SnaQsQFsYxfEZckKVuSpDWSJJVKktTDY1u8JElvSpK0TJKkf5jWSoFpeBNxqF678YsvvvBbjhYPD3XCqGbNmtGmTRtKS0vZunWr27bS0lL9JmGEJ964cWN9NKbFYmH48OEhlyUQRJtAPPEzwDjg41q2jQcOy7I8FEiXJGmgkY1zRVEUbPbwpisVuFNVVaWvdKMNf3fl+uuvB+C9997zO1VsuJ441JzbpLCwkBkzZtCiRQtGjhzJvHnzDPHEoTqk0qdPn5DCPwJBXcGviMuybJNludDL5kHAQuf7bwHvsw+FwdxFCnHDFW5+0lwR/+OrDob+oTElZ8yr58hxhdYTHTz7QeB1rFu3jmuvvZYJEyZw3XXX1fBUa+Nv7yoMuKsxhUXe69mxYwdnzpyhVatWteZYbz15IfEDD7L3cJWexeFK+VmF7jc7uPel8Do1NTznNrnmmmt47rnnOJ18BVxwgL88O88QTxzg5ptvpmHDhkydOhUAu12h720OpsxyhFWuPz5ZrND3d3ms/cXca/mKPzoYea8j7HnafbFys0LzCQ4Wyskhl7Fis0KzKx3MX+G9nTc94WDg7xxUVZlny8Zdqi2frUjxv3MdI9zV7nOAYuf700BDzx0kSZoKTAV1dN3o0aODrqSkOAXI4dTpCqzWU6G31g+fLsll79FEFq8t5PwONlPq+G5dMgcKGvLpkgomDTsZ0DF/+MMfWLZsmf7/kSNHeP/9930e87/FjTh0PInvfzrOsF61d0x+//33gDo5U21zbH+6NIeqhOaQ2Y9XXnmFNm3a6NuOHTvG+59tYtu+m9izz0rcOnWyrAYNGvidr9sbmjAvX76ctWvXsnjxYlJSUuh72V9ZsSOfLTuyoKCApKQkFEUJuR6A3NxcPdZvtVo5WBjPzzvy2HekCutNR0Iu1x+fLsmioCidL5edpnlWmSl1KAp8saIZALv2HCEtxRzxm780nSMnsliyKZExUmjn4oslGRw9mckXS0s4v01Jrft8tqwJpeVxbNp+lLwG5txkv1yWxpET2SzemMiVg0O/rswiPz/f67ZwRbwI0FaQzQZqqJIsy68Brzn/DelqatHMOVVGXIpPY8LFrqgXSFZ2Y/LzzZnAP32HaotiSQ7IllOnTvHTTz8RHx/Pu+++y9SpU1m6dCmFhYX6Oo614UC1JSMrl/x8C2vXruWJJ57gmWeeoVOnTgD6QgyDBw+uvS0W5w8mLpWvvvqKOXPmkJyczLp16xg4cCC25N5w3k1UnAXOnCEvL48BAwaQkBDaZdW4cWOSk5PZtWuXPpLykksuQWnSAnYAcarH17p1a1q1ahVSHd4osavnpdIeb+o1Fp+gfqfJqdnk5zcwpY6Ks9rUMtAwtxmNss25lpNSVVtsVaF/Z0kpahnxiRnk59e+GPVZm7pPTsOm5Dczx5YU57xtNpPPvxmEm52yEhjlfH8xEPzcpQGQkqS+lp81o/RqtPLNrEevw3/WHgBfffUVdrud4cOHM2nSJG677TYAnnvuucDqOav2J9xxxx188cUXTJ06VX/E9tWp6drGlq07curUKb766isA3n//fWw2Gx27qJ2Dmdl5LFy4kPXr14cs4ABJSUl6auOzzz4LwJVXXqnbYklIA8IPpdRGsOcl5HoqtfrMCw242hCJa7kijO/MXxlVVQo2u/u+ZqC3wxZ7qy8FJOKSJH0NjAFelyTpFkmSXnVu+hJoJUnSMqBCluWaEzUbQKoz5BbOxRIIERXxAOvQ1qW88sorAbjnnnuIj49n7ty5PhdtqBYL9UagjYRcsmQJn332GYqi6J95FXFnG/v2U7NU3n33XQB90YTb77gLAJsjkdGjRwc89N0XWly8uLiY+Ph4xo8fr7ejc1e18zXcTs3a0OqoqsLUDvRIXmORqqeiMnTh8/d9RMyWSvWch2NLtAjIbZJl+VKPj95yfm4HbjG2STXRRDxSnriZN4tg6igvL+ebb74BqkW8TZs2TJw4kblz5/LSSy/xzDPP+KynvFLhL0/+BYALLriANWvWMGPGDCorKzl9+jRNmzalWbNmtZahtbF7z758ERfHV199xapVq9ixYwc5OTm069Bd309RFEPWkNQyVECdiKphw4ZUVKqP00MvHEP7xHF6Z6SRVHh4r4nhBhr91BOJayxS9ZwNw3v19324PVXUkd9lXSMmBvtEQsQVRdFPoJn1BFPH999/z5kzZ+jbty8tW7bUP9eGx3/44Ydesw+0etZv3M7atWvJy8vju+++o1u3buzZs4frrrsOQF93sja0NiYmZzF69GhsNhu//e1vATVWbauK1/c9a9DFr3niABMmTHBrR3pGQ7788sta0yHDxVUgIiF8kbjGIlVPWJ64n99DRYRuSLot9TWcEm30mLiJJ/FspOKIzsc2rY7S0lJ69+7N7bff7t6es2d5+eWXgWox0+jfvz9Nmzbl4MGDXhc01sr/cJ46UGfGjBlkZWXxr3/9i/T0dHr37s3DDz/Mv//9b+9t1b0ThZtuugmAbdu2AXDZZZe5P+oadG5atGhBly5dSElJ0Z8+6mMIIhJeZaTqMSKcEpAnXsdDQ9EiJkQ8EjHxSF8s2uvSpUvZtGkTc+bM0VPeTp06xcUXX8x3331HZmZmjXUp4+LiGD9+PADz58+vUYdrZ9DpkrNccMEF3HPPPYA6W19paSkbNmzgr3/9q884tusP7MorryQ9PR2AhIQExo4da5rwLVy4EFmWadGihVp2BJ6QIi7i9cgWU0U8hmyJFrEh4hHITgn1se3TTz/l6aef5umnn9bzrn3W4yzbXqUOMHFdtPfZZ5+loqKC0aNHs2TJEpo1a8bSpUvd8rM1NBHXOhldKSuvzqVNTm3ARx99RFJSUuBGebS1/Cykp6frK9UPHTqUBg0auH1PRt5gW7ZsSffu3WuUHYnH6UjVU59sMSIm7jWcEkO2RAuTum+MxTXF0KgONE/cO1AUwH8dmzZt0oUNVA9506ZNbgJUox6Pm4U2xBzggw8+wGazsW7dOtq2bcvixYu95kOPGjWK5ORk1qxZw9GjR2natCkAhw8f5tob7wQ+AWD0xZfRunVrv7Z4Yrcr2Kuq2wnw4IMPsm3bNh588MEatgjvNbh66oUtBtyQhCcePjHhiSckWEiIV0eiVZozkDKki+WTT1ShHDhwICNHjsThcHDffff5HOrsWnZpuYPVq1cDaiaG3W5n7ty5JCYm8tFHH/kc0JKenq7P/6HlbyuKwsUXX8zyFbK+X5NmbQIzxrOdtYSXunXrhizLjBkzxvm5UmMfo1EUJfJx5AgIX70QcSNTDIWIh0xMiDiYHxcPJS1Ly+F+5JFHmDt3LtnZ2SxcuFBPC/RXz5ZtuygpKaFVq1b64BaAWbNmIUmS3/ovu+wyoHqWwXXr1rFlyxZym1SLf6jfVyCPsZH4gdns6s3bzDrAI6MjxsMpkc60MTXFMOJPFRZT55sxg5gTcbNOZLBpWXv27GHTpk1kZmZy0UUXkZubq69Ped9992Gz1f7I4FrPqrVqZsmAAQOQJInHH3+cBx54wOeiwq5cfvnlxMfH8/XXX3P48GHmzZsHwKgx44OypTYC+fFEIl4ZuZzn6h9uhUnXmMOh6FlQIsVQxV94yf0aM09cXc+5WU/7ZiFEnJrlBlKH5oWPGzeO5GS1cXfeeSft2rXj119/ZcmSJX7rWbdeTdfTBrg88sgjzJo1i7i4wE5L8+bNmTBhAna7nVdeeYWPP1ZnCx5+0cVB2eKvndFM/4r04zSY54lHSlwj/Z3ZqiwhzzDoGlevzQOOtCdudj1mEDMirnVuRsLjC0bEtVxmUOf+0Do6Fy1aVHs9Lu3fuGkH4D7AJVjuuksd+v7ss8+yZ88emjRpos9p4llfMAQiapH4gdWnH3Gk87fVesyfQsDzfShlOBzoabFe66gHfSJmEDMiHqwnvn//fp5++mn+9re/8fzzz3P69Gmf+wfz2H7s2DFWrFhBUlISl1xyidu2UaPU+cC8pRu61rP3wBGSkpLCGoE4dOhQevXqRXl5OQBXXXUVlbbq02pITNzLd16fvNdI1BOpdLlIhIYg/Ni76yhpb2VEevyGZ52xQEykGIJLrngAX7CiKFx77bV65gfAhg0beOedd7weE8yP+JtvvsHhcHDRRReRleU+feaQIUNISkpi3bp1nDp1qsaqMeUVDvR7pyWFqVOn6uGYULBYLNx11136iM+rr76aIgMu/EBuavUrJm5+PZ7enlnpspHopLXbFVyXQg3lOrPZVQ9co6ISstLd94l0nrjZ9ZhBzHjiwUxHu2DBAlavXk1ubi4PPPAASUlJvPvuu6xdu9brMbVNtGO32zlw4ECNfbXsk0svvbTGtvT0dAYOHIiiKDVWbt+8eTN79x/V/7992j289NJL/g3yw/XXX0/btm3p2rUrw4YNM/QxF6IcTonwBEie782qw1v4wOh6InFeavs/oDLO+v5f/Syyaaxm1mMWMSPigaYYKorC448/DsDMmTOZNWuWnu3xhz/8wWv6UG0ncdq0abRu3ZoZM2bgcLoMVVVVLFy4EKBGKEVDC6m4xsXXrl3LBRdcgK2q+uFn+IUXG+KJpaWlsWXLFn7++Wfi4+MNF/Fopn+5lnu2Us3wMLses+b6DkS0jK4nEnWEWo/nMbWGUyJgi+fkbULETSLQmPh3333HqlWryM3N5fe//z0ADz30EHl5eaxYsUJPw/PEU7SOHDnC22+/DagLMEyaNImKigrWrFnDqVOnaN++PR07dqy1LG0Qjmtc/M0336SiooKE5Ey3eowiLS2NlJSUWm0JhUDCS5EQPs/2m/WoG+mYeG3/G0Uk8sQDEWB/eB5Tuyfue7sR1HiqECJuDp4ivnz58hoLBrt64TNmzCAjIwOArKws/vIXdU7tv//977WW75qDWn4W3njjDex2O+eddx5ZWVl89NFH3HfffXooxZsXDtCvXz8yMzPZsWOHvnCDFlpRLNXx77qS814bnkJQ2xNMpGPikaonEuLqWaeRVERA+AIRYH8Ecm4jcY15dv6KmLhJuMbElyxZwtChQ+nRowejRo3SFxFetGgRK1eupFGjRtx5551ux0+ePJmcnBzWrVvHhg0bapTv6VW+9tprgDp6ctGiRSQmJjJ79mz987Fjx3pta0JCAiNGjADg888/5/Dhw/z666+kpWdR5aj+ys2K8RoRRw4kfhvptLxI1WPaeYmULTFyXgKLibu8j/Gbq1nEjIi7xsSff/55/fNFixYxcuRIli9fzmOPPQbA/fffr3vhGikpKfqUrm+88UaN8l1PXFm5g4MHD9K+fXtGjRqFJEk89NBDABQUFJCcnMxFF13ks73aogvvvfceixcvBmDQkJFu+5jnVVZ7zVXO2RKDJZBH/0g86hrh8QVbT8yHUyKcaRNqPXXlGovUzdUsYkfEnZ74ocPHmT9/PsnJyfz666/cdttt2Gw2LrnkElasWEHDhg2ZPn16rWVoiwy/9957el61huuJq7SrK9ZMmzZNHz35xz/+kV69egHqZFVpaWk+23v55ZeTkZHB6tWref311wEYOHiER50R6kAzLXMgvDqMaoch9cSI9xpsPXXZlkA84KicFxFOMQfNE1+yfC2KonDDDTfQqVMnZs+ezejRoyktLQXUeUsyMzNrLaN379707duXoqIiPv30U7dtnl5Ai1YdmDZtmv5/UlIS77//PqNGjdKnYvVFWloaV111FYDuiffrP8Rtn7rsvXreYDzLrDFQI0I/sPrkvUZkgFQE6oAYj4l7PhEIT9wcUpLUVLwNG38B0NMGExIS+PDDD+nRowetWrXSh6F7Q/PGX3nlFaB6YNDXCxa77Tfr7y/WCMl0796d7777zm8oRePGG2/U32dlZdGuQw+37XXaS/JTRqWtenZBMDNe6X4zOde912Drqcu2BP20JzzxWokZET90cCcAtqoErrzySnr27Klvy8nJ4eeff2bXrl01RlB6cv3115OVlcWyZctYu3Yt33zzDR999BFFpyvc9hsx0nv2SaBcdNFF+kryw4YNc1tYGGI7XhkpQfL0isz4gbkuZwciJh5QHQbYUndj4mIqWsOZN28er/zrBQDatO/K+++/X2OfxMREEhMT/ZaVlZXFHXfcAaiTRj311FMA5DV1X4DBCLGIj49nypQpgDr3dzQ66UKtx9+NIBo5z2DOo27kxDUyTxXR6KQ1ot/FXzjFHmInvT8idf7NIqC5UyRJehoYBOwDpsiybHN+fiHwLrAbqJJleaS3MsKhefPmWBTVUx40ZCSpqfF+jvDN3XffzQsvvMBHH30EqJ58q7adOfZr9T5GXfyPPfYYY8eOZdCgQSzZ4L6tTj/qBul5x/KjbtRsiVAnrRlztNTuvQZXR7DhFFAFNsPgGZ/qfXaKJEm9gXxZlocC24GrPXb5UJblC80ScIDBgwfz3DNPAsYsZNqiRQuuv/56/f/p06frGSlxFvVOb9TdOCEhgSFDhhAXF6dfHNp04WZ7r+HY4m8AhF6H0xazPT7NFjPqqfC0xeQONKOvMVdc5wHR7DFjkQMjruWaHrD3+cTNPDeRupbNIpBwyiBgofP9t8Bgj+1XSZK0TJKkewxtmQft2qixZaO+4Pvvvx9Qs0juvvtuvdzsdPPEQiszx5k8Y3ZaXji2aG1LT3Uv07MO3RaTvdeInheTPWQzbdFmBoyPhwwv584IjPjOtPCSt2sMqr8zM89NpM6/WQQi4jlAsfP9aaChyzYZ6AyMBMZKktTX2OZVY/TKPr169WL+/PksWLCA3Nxc3StokOEwtB5XtDoamnyxGGGLfmFnuJfpWYdmi9mddJotZtRTHiVbzOhA09qemmTualia1xzOtezvGlOU6uXsvO1jBJG6ls0ikOhSEaClfGQDJ7UNsiyXau8lSZoP9AbWuR4sSdJUYCqoYYvRo0eH1NCS04lALqdLK7FaT4RUhifaYgxWq5Wy8jwgnuz0KiCBQ4dPYLUae/UfLkgFGpCRUgkkUVJqw2o9bmgdAKVljYEE3Rbr0VNYreX+DnOjuDQXSCQjxQYkcrjAvYyD1iSgkW7LmQoHVusR44xwUlTcEEjWbSkoLMZqLfV3WFDsP6ReW2nJlVgsiVTaLBw4aCXe4G7/U6dzgBTdlmMnSrFaSwyto7AoDmhCcmIVSfEKkMDeAwU4zlb5OzS4ek5kAen6+T9ZVI7VWhRcGSe1MtRr7MSpM1it1Yu3qDfXZiQnKiTG24FE9h88RnqcsXP4FhzPADJ1W04VV2C1njK0jnDJz8/3ui0QEV8J3Ae8A1wMrNA2SJKUJcuy5qUPAV7xPFiW5deA15z/hux6FJQqgIKDJJ8GhcpZu+odNchwPuJlNiI/39jOoJQ01YYmjZJgF9iVRFNsqaxytyUtI4f8/Ia+DqlBlaKWkdcwke0HITXNvYz0fe62VNji1A5ogzvQFIu7LYnJmeTnZxtax65C1ZbsjCRSklQPsVFuc9JTDV6wIc7DlqQM8vN9p8QGiy1OtSU9NZ50dVJLGjRsYvi1HJ+o2qKdf0t8Kvn56X6Ocichyf0ai0tMIz+/emzGyWLVltRkC1kZauZZZnae4bYkJrnbolhSTPldmoVfX0OW5Q1AgSRJy4DuwCeSJL3q3HyNJElrJElaCVhlWV5qVkPNfDR07QyqF7FXI2Liftqq/Z+RqsZfzVrkIBJxZK3MlKTgFh8JtR7dFhMzbUy3xYBYdaDXWKTOS6zGxANK1pFleabHR3c4P58DzDG6UbVhpojbq1w7g5zxygjE3mIhJt4wy71MzzpSk9X4a2m5+lmS/1T9kNphakzcWUdqsvp3qsTceiLR76LZYnY9DcPopA/qGgtwUZhQiPWYeEwM9gFzV7vXf8RJkJLo/pmx9agemJnZKa5zmmSnhSHiNTqUah+oYnYHmi586ebdXD1F3PUzM+rRbTGxjkjZYogn7qXT0s0W4Yl7JWZEPBIXZEoSJCeZl8Nb7YmpMb2zlbUvthAOWruTkyA1WbMl9KloczLVtvp61I2Ex2dmOEWrw+2x3USPT7PFzEwbV1vMvJa16yOcPHF/11hqMqRE5IZUezvqOkLE8bhYEjWxMD79S6snLUUVWTD+B2ZEHNHhqE7tauDNS3J51I1EvNLMEETEvNcIpLFG+glJC4UYERP35omnJLl44mammIZhSzSJGRFPTFBHVJkxf0KFmyCZ7/GZ+XjomidcfUMKrQw3L9vL6LrUZIup8UrPEITZ4bTUCHivZoZTohYTDydk56WMWmPiEbBFxMRNwmKxmPZ46OaJmxlOqWUgRl20pbbwgs94pUliYbcr2KvUm3d6aoRurpEIDUWqkzYi4ZTQ66gI0BNP9eFMGEGNmLgQcfMw60S6xcRD9F6DrcesEITrj1iL7wf7fQUi0JF41HW/mZh4XpxPFSlJFtPOi2saa1ZabF9jrmWG1bHpJ4wR6ZBdZhrExylUVYHNhNkSzSK2RNws4YvwxWKmx+f2Iw7xhuTuzavvfXnipt2Q3MJP5gufmedFW0QjMQHSU8zPE3ezxcSnSlcvOthO+qBi4slap6N5fVWpyeY6cWYRWyJu0g/MLY4cqZi42baEEd8PRNQikcPrlvoZgayhiNgSyX4XE4VPqyctpVr4gv3O/Hnzkc4TNzucahYxJeIxHxOPkliYGhM3MQui1huSyT/iSNpizjWmdTibK3xG3GC1/bPSak9aiHTOu9lP4mYRUyIe0RBEjA6Jdv1xJYc4cCmomHiEQkOh2hJsPWafl8j1u5gX36+qUvQ5ypNDtEdbEs9iUUf51uYsREpc3XPrRTjFVMwWC7MfdWvLHDArjpwSTjjFLbykvveaJx6hTtqInRezOs9dvq+kBFW8bHZVzMyqx+ynipQkLWss+HPj+p1bLLWnqWpPFSlJFtM6z107nFNNvsGaRUyKuNGPh1HJEzdJLIyI7wcS9oloTDzZPe5q9ChX95urNgLRvDoslsiEbSJRB4TWgV7uWUYtzkIk8sS1eZMS4iEhwWJqqMssYkrEI/moG6tDor0JXzDUOgzdV4qhLhbmDMJKSXL+yOLVDA+jlxsLxF4j63B9jcSIXTOvMQht9HGFSztdX12/d/e4u/MzE78v9VV44qZiXjilujOovqQYhtMZGGyKoea9mmmL66tpqYwmhiAiZkuErzEITfhcv3PXV7dwSgSeKrzaIjxxczB7UElqcmjxvUBwOKo7g8ycNMqIATLBphhGyuOLRNgmEnVAJK5l8+vQvddQwime4lnLdVbb9A9mhlKhugPdjOH9ZhFTIq6LhYkZHWbFxDw7g8wTi+o5TbQLstKm3kQCxfXCTnR2wgWU/mVifF+ry7Vuw+uJYBy5Pt2QQvnN1Pg+/GSnCE/cOzEl4mZnDqS4jtgyPfZmzkAMzw60ULxk17Z6zxyo3icSKYaur2aem0j0u7i+mpoua/ZIWmf5oWR0BHJuI5FiKGLiEcb0u3GS6nnGx2P4/AkRj4mG4b26evPgJYc3EvFKL95rfYgjR+I7q8veq9dQWW0dm5G0RaQYmotZw4i9PdoZeSIjUYdrPSlhiIW/G4Hdrk4SFB8PiQmRmV3StT0xHYIwOzQUAeGrmWljQEy8Fk88ojFx7alCpBiaSyx3oEWsk85LHDmUeKW3dDhvdRgvFu5PBGbU47qcXSRmZIzk+Y+FmHiKj+u01sFxZn1fYWTaRJuYEvGIx14NrCfS8d0aHo4BAzG0zz1tieXzoq1glJQIcXEW05YBq57uFrfXmIyJe+aJhzAlQiDXqduYB+f2s5XBddIH2g79WjZxZS+zECJOzQvKjHqiEd8NtR5/8cpIpctF5byYLnzmPVW412NiIoDXPPHAhc9beKnWfpck8xaFMSLnPdrEloibFE6JxKOut3Q5020JZTSdnyHRXr+vGEzLqwhATAypx4DzEmw9iQkWvZPeyCUNPa9lI1IM/Q27d3015Xfpox11nZgS8VhO/4pGiplbPSGmGEJNTzsaqX9u9ZjgiUftvBhYj+fMgG71mOC9aqGnkFIMa8TEayYtRON3aVaKsZkkBLKTJElPA4OAfcAUWZZtzs/jgdeBjsA6WZbvNaeZKmbniacmA4pJj+2RTjE0MJziOcgqltIlA64jWufFDHF1hh9A/e7KytVtmWkG1aN1OCdpKaihZKf4TmN1m13QzHDauRBOkSSpN5Avy/JQYDtwtcvm8cBh57Z0SZIGmtNMlYiJhYneSyyKuKfgRCPnGSJ7XoyeLbFmPcany3p+X67vIyJ8BuSJa5+7LmcXH29eP4LrvEkQmyIeiCc+CFjofP8tcCvwgcu2r1y2DQZ+MrKBrmhf9P6j8MJHxl38xWXV5Zedra7n48UKOw4aU8eKze4Xi/Z69KSxthw/7Sw/CbBX1/PFCoWjJwMr41Chexs1L+mLFQpHTsAv+zVPzH2/M2eNtWXPYffytdfF6xW9TeGy94j7eYmLs5CUqM5z8+xcSIg3xp7tB3CrR3tducW476yo1N0W1/evfqHQuIEh1bDmF/eytXOxZU/gtngrQ/5VLcMzVu36/j/fKLTMC7HxHizf7Czb46lix0Fjr2WNu36jTnlrJIGIeA5wxPn+NNDQY1uxl22Go63Fd6gQ7vunsV9wYoK6XmBZcXU9b30DYGw9WtkNMtTXwiLjbbFY1EdnV1vmLoK5i4KrR2ujVsYH38MH31eXoX2ufXdnKoy3xbWenEwLoLBwLSxca8550d4XnIT/m22CLR7f6ZINsGSDwbZkuLx31vPUe2D0taxdH9npDgA27wn+/FefW/V11VZYtbXmNQbVdr3wEZj1u9Rs2XnInGv5d1dYSAgoiB04gRRXBGQ532cDJwPcBoAkSVOBqQDTp09n9OjRITYVUoBZv01j1+H4kMvwRr/ONgqPVWCz2Zgy+hhJcWnY7MbWkZoMVw0sw2pVL5QXpqWydb/BZxTo1c5GWbFqy6RhBdjOpgfd296phZ14ezlWK9xwYRz2ynTOuszjnRAP1484g9VaBcC/piezYqtB7rELrZtU0SDpDDabjVG9jvCHq9IpOWOsJxMfBxOHl2O1qif8+TuS+HFDsp+jgqd5IwctG5Rhs9kY1OkIMyamU1RqrC0WC1zSrwKrVT1ZD09K5IufUjB4HQ1yMhT6tSvDalXo28HGQ9cnUnAquDyJhpkKUttSrFbo0xoeuDadE8XuZYw+/yxWq3rxzrw6gXZNUqlyGGYGAFlpCsO6qbZ0aWHjsZtPc6jQeI0BOHq0hMQQfvL5+flet1n8xf0kSeoD3CfL8s2SJP0J2CvL8gfObVcC58uy/IgkSa8B/5Fl2Vc4pc5n0FutVp9fWCwhbKmb1CdboH7ZU4dt8Xq393vrlGV5A1AgSdIyoDvwiSRJrzo3fwm0cm6r8CPgAoFAIDCYgBx7WZZnenx0h/NzO3CLwW0SCAQCQYDE1GAfgUAgELgjRFwgEAhiGCHiAoFAEMMIERcIBIIYRoi4QCAQxDB+88QFAoFAUHcRnrhAIBDEMELEBQKBIIYRIi4QCAQxjBBxgUAgiGGEiAsEAkEMI0RcIBAIYhgh4gKBQBDDnLMiLklSuvPV2Fn5o4AkSWnO1/pgS2vna32wpX99sANAkqRW0W6DUUiSlBPtNhjJOTfYR5KkMcDtwGHgaVmWD0e5SSHjXJTjRuAg8EyM25IG/B1oCVwty7LNzyF1Fufi4i8Cq4BHZFk2cGnnyCJJ0lhgOnAWdW3db2VZLo1uq0JDkqThwP3AceBfwFZZliui26rwORc98euBOcAWYJokSUOj3J6QkCRpPOqi1U+jLpP3gPPzmPT8ZFk+A1QCmah2xawtwFDgb7IsPwi0i3ZjQkWSpHhgGvAa8DggAekxfF6uBf6DejO6FLgqus0xBuMXeKxjOD28a4HlQAFwAFgD/Oj8vK8kSbtjwYt12jIJ+Ab4GbhNluVCSZJ2AHMlScqTZflYVBsZIC7nZaksy7udwrAL+B9wtyRJ38qyfCCqjQwQ12tMluWdwBlgrCRJDwJHJElaC8yXZXl3NNsZCE5brgOWAKXAZtSn1v1AHyAVSES94dZpJElKBR5BfXpYAuxFXfR9DVABjJMkqYssy9uj2MywqdeeuCRJk4DFQBqwR5blYqApMND5iLsedf3l7Kg1MkBcbEkBjsmyfNgp4HGo3uveGBJwzZZU1JsqsiwrQDfUc/E/4A5JklpGq42B4mHLPufHaUAzYAbwe9RQxLgoNC8oPG2RZbkAWIQasluPGoa4HbgzWm0MFOe18wGq46YtG2kB2qKu9bsN9drrEJUGGki9FXFJkrKAa4C/ol6IoyRJygVmA7dJkpQuy/IWoDXQJmoNDYBabLlQkqQuALIsO1BFw+7ct1Vdftz1sOUHYLgkSd2dm5egPmGUoQrH3c5j6uR1WostF0mS1Bz4BNVbbSnL8mlUcdfOT508N7VcYyMlSeooy/Ji4HvgX7Is34i6rm6SJElxddUWJwnAF6hP3HdJkjQIWAAMArrLsnwC1SFKhbp7XgKhXnVsOnvQZwBfASuAYcAfgCRgPnAzMByYinqSl6HGXz+RZfnLaLTZG35s+QLVlitkWd4nSdJvUS/O00Aj4M661PkUoC1jUNduvRA4hvoIXybL8p+j0GSvBHiNjUS1oxeqx3cpsEuW5cej0GSvBHheLkF9imiGKoLTgVOyLN8djTZ7w8WWL1D7u1o4/7eiOga3ALOAnkAWsB0YjxrOmxOFJhtGnfRwQkGSpBbAc6ixu6bAO7Isfw08A1wky/KzwDvA32VZfhr1or0D2FQHBdyfLc+hdtA87TykFaqI75RleXIdE/BAbHkHeAx4FnhTluXrZFm+rw4KeCDX2NuoWU/zUB/n+wMr66CAB3Ne3gR2Ot+vqYMC7mpLPvBvWZZlVIemUpbl/zq3jwHeRQ3XDQfWxrqAQz0QcUmShrk8CjWQZfk5WZbfBjIlSfqjLMsLUWNhAP8A0iRJynQ+Jk6WZfmFyLe6doK05Z84H9FRH3cHyrI8O8JN9kqQtryI6h0hy/J7zuPrzLUZgi1JkiRlybK8Dbg/xs9LOpAiy/IHqE9+L0eh2bXiw5ZsSZJuA54ELgCQZflboItzvy3A3XXJlnCoMz+UYJEkKUOSpO9Q43eXona6LJck6Q7nLsuAyyVJaiDLcpUkScOAz1AzIEoBZFm21yw58oRhyx4AWZaXybJcFPmW1ySc8+JMMwT0WH9UCcOW3c5OdGRZropC02sQ5nkpA6gr+e4B2LIUmOJ8XS5J0qPO/Q87960z58UIYjomLklSX9TBIRegJu83cL7uQxXqMlQvdSvwOuqj+ifRaKs/hC3CFrM5x2w5i3oT+glogtqZuTAKTTWdmBZxDUmSXkKN1b0nSVIz1EfzXcC9wH9lWT4azfYFg7ClbiJsqZv4seXdWEm7DYeYDaeAW1rQf1HTu/JkWT6Cmms8DzV9sKQuxVe9IWypmwhb6iYB2lIay6mDgVIvPHEASZLuAtoDp4DdwA5ZltdEt1WhIWypmwhb6ib1yZZQqPN3XH+4eA29UHNa98iy/F4snkRhS91E2FI3qU+2hEN98sSvAr6UZflstNsSLsKWuomwpW5Sn2wJhXoj4gKBQHAuEvPhFIFAIDiXESIuEAgEMYwQcYFAIIhhhIgLBAJBDCNEXCAQCGKYer88m+DcQJKkNqjLb4G6OPFfnZ+/gToZErIshzR6T5KkbqgLJix2zn6JJElvAZOBfs5pTwWCqCBEXFAfuUWSpCdQp1G9xoDyugGPOt8vNqA8gcAwRJ64oF7g4onvQV1hfgTqeor/Rp1+NB81fPgQ6jqRDQEZmC7L8lZJkh5DFeo5qKvyNEBdH3Mt1R6+xkWoK8VMRl1sYKKz7OtlWV5mioECgRdETFxQ3/gFWI0aQpmCOh1pkXPbrahrSG5CFfN+wOeSJCW6HD8UdcGNbNTlvApRFxMBde3MSahLrmkMQp22tQXqyjcCQUQRIi6oj7yJ6h0PRl3GTuNS5+t9siy/BHyOOnFSJ5d9npdl+UVUj76Nc0GEFc5tW2RZnusxveljsiw/gTp/dRvDLREI/CBEXFAfmQtUAYeA72rZrni8unLS+Wqn+vfhK+boun98cM0UCMJHiLig3uFcGm0KcIfHMm9fOV+fd05fegXOqUv9FHnK+TpUkqTrJElKNbTBAkEYiOwUQb1EluUPa/n4LdQOzttROz7XonZs2iRJ8lXcctT1HIc5j2tpaGMFgjAQ2SkCgUAQw4hwikAgEMQwQsQFAoEghhEiLhAIBDGMEHGBQCCIYYSICwQCQQwjRFwgEAhiGCHiAoFAEMMIERcIBIIY5v8BoJ/8XmI3ycEAAAAASUVORK5CYII=", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAGvCAYAAABih26MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUc0lEQVR4nO2dd3gU5fbHv7vZ9E4SkhBC6L1Ilw4CUlTAAhZQARWuoiJi4ee9KCqKyEXFchUBQQER9V5RFJSmgChIB+k1CSWUAAmpm92d3x/LvJnZnS2z2SmbPZ/n4WF2Znbm7Jt5Z75zznnPa+A4jgNBEARBEISKGLU2gCAIgiCI4IMECEEQBEEQqkMChCAIgiAI1SEBQhAEQRCE6pAAIQiCIAhCdUiAEARBEAShOiRACIIgCIJQHRIgBEEQBEGoDgkQnWCz2XDq1CnYbDatTdE91FbyoPaSB7WX91BbyYPaSwwJEIIgCIIgVIcECEEQBEEQqkMChCAIgiAI1SEBQhAEQRCE6pAAIQiCIAhCdUiAEARBEAShOiRACIIgCIJQHRIgBEEQBEGoDgkQgiAIgiBUhwQIQRAEQRCqQwKEIAiCIAjVIQFCEARBEITqkAAhCIIgCEJ1SIAQBEEQBKE6JEA04tKlSwgNDUVJSQksFgtiY2Nx9uxZtr1u3bowGAwwGAyIiopCy5YtMXfuXA0tJgiCIPSAxWLB8uXLsX37dq1NqRIkQDTizz//xE033YSoqCjs3LkTNWrUQEZGhmif1157DefPn8e+ffswbNgw/OMf/8Dy5cs1slh7zGaz1iYQBEFozty5c3HfffehR48eOH78uNbm+AwJEI34448/0K1bNwDA77//jq5duzrtExsbi7S0NDRs2BDTp09Ho0aNsGLFCgDAiy++iMaNGyMqKgr169fH1KlTUVFRwb67d+9e9OnTB7GxsYiLi0P79u2xY8cOAEB2djbuuOMOJCYmIjo6Gi1atMCqVavYdw8ePIjBgwcjJiYGqampePDBB3H58mW2vXfv3nj66afxwgsvoEaNGkhLS8O0adNEth8+fBjdu3dHREQEmjdvjnXr1sFgMDD7AeDs2bO49957kZiYiKSkJAwdOhSnT59m20ePHo1hw4ZhxowZqFWrFho3bgwA+Pjjj9GnTx9ERUUhNTUV99xzj09/A4IgiEBk9+7dAIDy8nIsXLhQY2t8x6S1Af6iQ4cOyMvLU/28aWlp7MHuiZycHLRu3RoAUFJSgpCQECxatAilpaUwGAxYvXo1Ro4ciY8//ljy+xEREUxkxMbGYtGiRahVqxb279+Pxx57DLGxsXjhhRcAACNHjkTbtm3x8ccfIyQkBHv27EFoaCgAYMKECTCbzdi0aROio6Nx8OBBxMTEAADOnz+PXr164bHHHsM777yD0tJSvPjiixgxYgQ2bNjAbPn888/x7LPPYtu2bfjzzz8xevRodOvWDf3794fNZsOwYcNQp04dbNu2DdevX8fkyZNFv6WkpAR9+vRBjx49sGnTJphMJkyfPh0DBw7Evn37EBYWBgBYv3494uLisHbtWnAchx07dmDixImYPXs2hgwZgmvXrmHz5s3e/rkIgiACnqtXr7LlxYsX4/XXX4fRGID+BK6akJGRwQFQ/V9GRobXNlZUVHCnTp3i9u7dy4WGhnJ79uzhjh8/zsXExHC//vort2nTJu7ChQscx3FcVlYW9+6777LvLVy4kAPA/ec//5E89ttvv821b9+efY6NjeUWLVokuW+rVq24adOmSW6bOnUqd+utt4rW5ebmcgC4I0eOcBzHcb169eK6d+8u2qdjx47ciy++yHEcx61evZozmUzc+fPn2fa1a9dyALjvvvuO4ziOW7BgAdekSRPOZrOxfcrLy7nIyEjul19+4TiO4x5++GEuNTWVKy8vZ/v897//5eLi4rh9+/ZxVqtV8jcQYqxWK3fy5ElqLy+h9vIeait5+Ku9+vTpI3oOrVu3zk8Wqku18YCkpaXp/rwmkwl169bF119/jY4dO6JNmzbYsmULUlNT0bNnT2RnZyM5OZnt/+KLL+Jf//oXysvLERYWhueffx7jx48HAHz77bd47733cPz4cRQVFcFisSAuLo5999lnn8Wjjz6KxYsXo1+/fhg+fDgaNGgAAHj66afx+OOPY82aNejXrx/uvvtu5pnZuXMnfv31V+YREXLixAkWBuH350lPT8fFixcBAEeOHEFmZqaobTp16iTaf+fOnTh+/DhiY2NF68vKynDixAn2uVWrVswbAgD9+/dHVlYWevfujUGDBmHQoEG48847ERUV5an5CYIgqgVCDwgALFq0CH379tXIGt+pNgLE2zCIlrRo0QLZ2dmoqKiAzWZDTEwMLBYLEw+1atXC4cOH2f7PP/88Ro8ejaioKKSnp8NgMAAAtm7divvuuw+vvvoqBgwYgPj4eHz11VeYPXs2++60adPwwAMP4KeffsLq1avxyiuv4KuvvsKdd96JRx99FAMGDMBPP/2ENWvWYMaMGZg9ezaeeuop2Gw23HHHHZg5c6aT/enp6WyZD+fwGAwG2Gw2AADHccxWV9hsNrRv3x5Lly512paSksKWo6OjRdtiY2OxY8cOLF++HPv27cPLL7+MadOmYfv27UhISHB7ToIgiOqAowD53//+h//85z9OL3R6JwCDRoHLqlWrsGfPHqSlpWHJkiXYs2cPWrZsiffeew+7du3CZ599Jto/OTkZDRs2RK1atUQP9C1btiArKwv//Oc/0aFDBzRq1AjZ2dlO52vcuDEmTZqENWvW4K677hIlK2VmZuIf//gH/ve//2Hy5MmYN28eAKBdu3Y4cOAA6tati4YNG4r+OYoBVzRt2hQ5OTm4cOECW+c4XKxdu3Y4duwYatas6XSe+Ph4t8c3mUzo3r07Zs6ciX379uH06dOi/BSCIIjqjKMAKSkpwbfffquRNb5DAkRFsrKyEBMTgwsXLmDo0KGoU6cODh48iLvuugsNGzZ0GobrioYNGyInJwdfffUVTpw4gffffx/fffcd215aWoonn3wSv/32G7Kzs7FlyxZs374dzZo1AwA888wz+OWXX3Dq1Cns2rULGzZsYNsmTJiAK1eu4P7778dff/2FkydPYs2aNRg7diysVqtX9vXv3x8NGjTAww8/jH379mHLli345z//CQBMSI0cORLJyckYOnQoNm/ejFOnTmHjxo2YOHEizpw54/LYP/74Iz744AMcPHgQ2dnZ+OKLL2Cz2dCkSROvbCMIgghkrFYrCgsLAUDk8fj888+1MslnSICozG+//YaOHTsiIiIC27ZtQ0ZGBmrVqiXrGEOHDsWkSZPw5JNP4qabbsIff/yBqVOnsu0hISHIz8/HQw89hMaNG2PEiBEYNGgQXn31VQD2C3jChAlo1qwZBg4ciCZNmuA///kPAKBWrVrYsmULrFYrBgwYgJYtW2LixImIj4/3Oss6JCQEK1asQFFRETp27IhHH30U//rXvwDYR/IAQFRUFDZt2oQ6dergrrvuQrNmzTB27FiUlpaKclkcSUhIwHfffYeRI0eiRYsW+OSTT7Bs2TK0aNFCVhsSBEEEIteuXWPL3bp1Yy9fGzduxKlTpzSyyjcMHMdxWhtB2HMisrOzkZWVFZjDqTywZcsWdO/eHcePH2fJsL5S3dvK31B7yYPay3uoreThj/Y6fvw4GjVqBAC4//770apVK7z00ksA7DWS/vGPf/jNXqWRnYT6xhtvYNOmTSgrK0NaWhqefPJJ9OjRw2m/srIyvPHGG9i4cSNiY2Px1FNPYeDAgX4xmtA/3333HWJiYtCoUSMcP34cEydORLdu3aosPgiCIIIZYf5HYmIiWrZsyT4LC0YGArIFyMiRI/H8888jLCwMBw4cwIQJE/DDDz84uc3nzp2LgoICrFq1CidOnMDEiRPRrFkzZGVl+c14Qr9cv34dL7zwAnJzc5GcnIx+/fqJRukQBEEQ8hGGYBITE0Wj/woKCtQ3qArIFiB169ZlywaDAWazGZcvX3YSIKtWrcLs2bMRExODNm3aoGfPnlizZg0ee+wxp2OazWaneT5MJpOo/kN1hx/Cyv8f6IwaNQqjRo1yWu+P31fd2kppqL3kQe3lPdRW8vBHe+Xn57PlhIQEUSLq1atXdfG38Da85FMdkLfeegsrV65EeXk5evXqhfr164u2FxYWIj8/Hw0bNmTrGjdujAMHDkgeb+HChWwYKM/w4cMxYsQIX8wLaHJzc7U2IWCgtpIHtZc8qL28h9pKHlVpL2GhRqvViqKiIvb5/PnzkiUZ1KZevXpe7eeTAJkyZQqef/557NixQ3ImPn6eE37EA2AvKFVSUiJ5vDFjxmDkyJFiw4LQA5Kbm4vMzExK5vIAtZU8qL3kQe3lPdRW8vBHewm/17BhQ9EIQLPZHFBpDj5XQg0JCUHnzp2xbNky1K9fH126dGHboqKiYLVaUVZWxkRIcXGxy3LZYWFhQSU23GE0Gqkjewm1lTyoveRB7eU91FbyqEp7CXNAkpKSEB8fD4PBAI7jUFhYGFB/hypbarPZnApHxcXFISkpSeQdOXr0qFOohiAIgiAI73EcBWM0GlkOplCcBAKyBEhJSQlWr16NkpISWCwWrF+/Hjt37kTbtm2d9h08eDDmz5+P4uJi7N+/H5s2bUL//v39ZjhBEARBBBtCAcKPgOH/D7RRMLIEiMFgwPfff4/Bgwejb9++WLhwIaZPn46GDRti9erVoqTR8ePHIyYmBgMHDsSUKVMwZcoU0QiaYKR379545plnfP7+tGnTcNNNN7HPo0ePxrBhwxQ9J0EQBKEfHD0gANj8WYHmAZGVAxIZGYlPPvlEchs/NTpPREQEpk+fXjXrCLfMmTMHVMiWIAgieOAFSEhICBuCy3tAysvLRbmXesfnJFRCezzNGksQBEFUL3gBkpCQwCb3FD4LCgoKAkaABE66bDXBZrPhhRdeQI0aNZCWloZp06axbWfPnsWwYcMQExODuLg4jBgxQjSlvSOOIZji4mI89NBDiImJQXp6umTl0SVLlqBDhw6IjY1FWloaHnjgAVy8eBEAwHEcGjZsiH//+9+i7/z9998wGo1s/Pm0adNQp04dhIeHo1atWnj66aer0CIEQRCEt/AChA+/ABBVQw2kMAwJEJX5/PPPER0djW3btuHtt9/Ga6+9hrVr14LjOPzjH//A1atXsXHjRqxduxYnTpzAvffe6/Wxn3/+efz666/47rvvsGbNGvz222/YuXOnaB+z2YzXX38de/fuxYoVK3Dq1CmMHj0agD3HZ+zYsVi4cKHoO5999hl69OiBBg0a4Ntvv8W7776LuXPn4tixY1ixYgVatWpV5XYhCIIg3GOz2ViiqVCAOHpAAoVqE4Lp8JgNeVfUP29aDWDHPO91XOvWrfHKK68AABo1aoQPP/wQ69evh81mw+HDh3HixAlWSGbx4sVo0aIFtm/fjo4dO7o9blFRERYsWIAvvviCjTb6/PPPUbt2bdF+Y8eOZcv169fH+++/j06dOqGoqAgxMTEYM2YMXn75Zfz111/o1KkTKioqsGTJEsyaNQsAkJOTg7S0NPTr1w+hoaGoU6cOOnXq5PXvJwiCIHyjoKCA5f1VBw9ItREgeVeAs5e0tsIzrVu3Fn1OT0/HxYsXcfjwYaSnpyMzM5Nta968ORISEnDo0CGPAuTEiRMwm82ignA1atRAkyZNRPvt3r0b06ZNw549e3DlyhU2b0BOTg6aN2+O9PR03Hbbbfjss8/QqVMn/PjjjygrK8Pw4cMB2Evkv/fee6hfvz4GDhyIwYMH44477oDJVG0uJYIgCF0iNQIGQMBOSFdtnhppNQLjvKGhoaLPBoMBNpsNHMexhCIhrtZL7eeJ4uJi3Hrrrbj11luxZMkSpKSkICcnBwMGDBBNBvjoo4/iwQcfxLvvvouFCxfi3nvvZVVsMzMzceTIEaxduxbr1q3DE088gVmzZmHjxo1Ov40gCILwH44z4fIIQzDkAdEAOWEQPdKsWTOcO3cOubm5LARz8OBBFBQUoFmzZh6/37BhQ4SGhmLr1q2oU6cOALtaPnr0KHr16gUAOHz4MC5fvoy33nqLeVp27NjhdKzBgwcjOjoaH3/8MVavXo1NmzaJtkdGRmLIkCEYMmQIJkyYgKZNm2L//v1o165dldqAIAiCcA15QAhF6NevH5o2bYoHH3wQ7733HiwWC5544gn06tULHTp08Pj9mJgYPPLII3j++eeRlJSE1NRU/POf/xTNC1CnTh2EhYXhgw8+wD/+8Q/8/fffeP31152OFRISgtGjR+P//u//0LBhQ1FYZ9GiRbBarejcuTOioqKwePFiREZGBtQESARBEIGIKwESqB6QwHYbVCMMBgM++eQTJCQkoGfPnujXrx/q16+P5cuXe32MWbNmoWfPnhgyZAj69euH7t27o3379mx7SkoKFi1ahG+++QbNmzfHW2+95TTklueRRx6B2WwWJa0CdqU9b948dOvWDa1bt8b69euxcuVKJCUl+fbDCYIgCK+obh4QA0elNHWBzWZDdnY2srKydDGb4ZYtW9C7d2+cOXMGqampWpsjQm9tpXeoveRB7eU91FbyqGp7vf3223jxxRcBAN988w3uueceAPbJXvkBB6NGjcLixYv9Z7SCUAiGEFFeXo7c3FxMnToVI0aM0J34IAiCCFaqmweEJCshYtmyZWjSpAkKCgrw9ttva20OQRAEcQPKASGqNaNHj4bVasXOnTuRkZGhtTkEQRDEDVwJkPDwcDb/C3lACIIgCKKasX37dvz000+azULuSoAAlV4Q8oAQBEEQRDVi69at6Nq1K26//XYsW7ZMExt4AWIwGBAXFyfaxueBkAAhCIIgiGoCx3F4/vnnYbFYAAB79uzRxA5egCQkJDiNouE9INevX2dTbOgdEiAEQRAE4YYff/wRv//+O/usVZ4FL0Acwy9ApQeE4zgUFhaqaZbPkAAhCIIgCBdYLBZMmTJFtE6LMIfNZmPnlRIgwpEwgZKISgKEIAiCIFzw+eef4+DBg6J1WgiQoqIiFlpx5wEBAicPhAQIQRAEQUhQUlKCV155xWm9Fg94dyNgAPKAEARBEES1YdmyZTh79iwAYMiQIZoOdfUkQMgDQhAEQRDVhCNHjrDlCRMmaDrUlTwgBEEQBBEk5Ofns+X09HTdCBCht0NqHXlACIIgCCKAEQqQ5ORk9pA3m80oKytT1RbygBAEQRBEkHD58mW2nJSUpKmXgXJACIIgCCJI4D0gsbGxCAsL07UAIQ8IQRAEQVQTeAGSlJQEQNtp78kDQhAEQRBBgM1mcxIggeIBIQFCEARBEAFKQUEBqzyanJwMQFsBcunSJbbM2yMkNjYWBoMBAIVgCIIgCCJgcUxABbQVIHl5eQCAyMhIxMXFOW03Go2aFkrzBRIgBEEQBOGAcAiulABR28tw/vx5AEBaWhrzdDjCCxDygBAEQRBEgOJYAwTQzgNSXl6OK1euALALEFdoWSjNF0iAEARBEIQDegrBXLx4kS27EyC8B0SLQmm+QAKEIAiCIByQ8oBoNdKEz/8A7CXhXRFoQ3FJgBAEQRCEA55yQLQSIN54QIDAyAMhAUIQBEEQDkiFYISjT/QoQMgDQhAEQRABjlQIxmQyITY2FoC6D3h+BAxAHhCCIAiCqNZIeUAAbUaakAeEIAiCIIIE3gMSERGBqKgotp5/yKvpYaAcEIIgCIIIEngB4lj2nBcgpaWlKC8vV8UWoQBJTU11uR95QAiCIAgigOE4joVghOEXQBsvAy9AkpKSEBYW5nK/QJuQjgQIQRAEQQgoKipCRUUFANceEECdhzzHcUyAuAu/ANqWivcFEiAEQRCErrh+/ToOHTqk2fmlaoDwqC1Arl+/jtLSUgDyBIjwN+gVEiAEQRCEbigrK0Pnzp3RvHlzvP/++5rY4GoEDKC+APF2CC4A1K5dmy3n5OQoZpO/kCVAzGYzXn31VQwePBi9evXCuHHjcPz4ccl9p02bhi5duqBHjx7o0aMHRowY4ReDCYIgiOrLV199xbwfP//8syY2SNUA4VFbgHg7AgYAIiMjUbNmTQBAdna2onb5A5Ocna1WKzIyMrBw4UIkJydj2bJlmDx5Mr7//nvJ/cePH4/Ro0f7w06CIAiimsNxHD744AP2Was8Bm89IGrY5+08MDxZWVm4ePEizp07B7PZ7DZpVWtkCZDIyEg8+uij7PO9996LOXPm4Nq1a6I/ilzMZjPMZrPYMJNJ1w3nb2w2m+h/wjXUVvKg9pIHtZf3+Lut/vzzT+zatYt9Ligo0OTvIBQgiYmJIhuE5divXr0qyz5f2ksYgqlZs6bH72ZlZWH79u3gOA7Z2dlo0KCB1+fyF0ajd8EVWQLEkX379qFGjRouxcfixYuxePFiZGVl4cknn0S7du0k91u4cCHmzZsnWjd8+PCgDNvk5uZqbULAQG0lD2oveVB7eY+/2mrmzJmiz1euXNEklHDixAm2bLPZRDYIp7nPzs72yT457XXkyBG2bDAYPJ4vMTGRLf/1118wmar0mPeJevXqebWfz5YVFRXhzTffxBNPPCG5/b777sOzzz6LyMhIrFu3DpMmTcLy5cslY1hjxozByJEjxYYFoQckNzcXmZmZXqvHYIXaSh7UXvKg9vIef7bV+fPnsXr1atG6oqIiZGVlVem4vmCxWNhys2bNRDZcunSJLXMcJ8s+X9qLHwEDAG3atPF4vlatWom+q0X7eYtPAqS8vByTJ09G9+7dMXToUMl9mjZtypYHDRqEVatWYdu2bZL7h4WFBZXYcIfRaKSbnpdQW8mD2kse1F7e44+2mj9/vujBD9iHoHIch5CQkCodWy5XrlxhyykpKaLfVqNGDbZcUFDg0++W017CHJBatWp5/J7Q+5Cbm6vra1i2ZRaLBS+99BJSUlLwzDPPeP09g8Eg91QEQRBEEGA2m/HJJ58AAEJCQtC8eXO27fr166rbo8dRMKGhoSLx4wqhx0PvI2FkC5A33ngD5eXlmDZtmltRsX79epSWlsJisWDNmjXYu3cvOnbsWCVjCYIgiOrHxo0b2YN22LBhaNGiBdumxUgYPgnVZDIhNjZWtE3tcufCKqjevMgLBcjp06eVMssvyArBnD9/HitXrkR4eDj69OnD1r///vvIy8vDwoUL8fXXXwMAvvzyS7z22mswGAzIysrCrFmzUKtWLf9aTxAEQQQ8p06dYsu33nortm/fzj5rIUCEE9E5PvRDQ0MRHR2N4uJixW2zWq0s58RTDRCeuLg4JCYm4urVq7r3gMgSIOnp6dixY4fL7YMGDWLLCxYs8N0qgiAIImg4d+4cW87IyMDRo0fZZy0mVXM1ER1PQkICiouLFbft0qVLbNittwIEsHtBrl69ijNnzsBisWgyEsYb9JudQhAEQQQFQgFSq1YtTWac5SktLWUjT1wJEN4+pQWInCqoQurWrQvAnrMpbFu9QQKEIAiC0JSzZ8+yZa0FiLsEVB4+EbW4uJjNmqsEvgqQQElEJQFCEARBaAr/lm4ymZCSkqKpAHFXhp1HrXLsciaiE0IChCAIgiC8gBcg6enpMBqNuvGAeCNAlAzDyJ0HhocPwQD6HglDAoQgCILQDLPZjIsXLwIAGympFwHiKQQDqCdAyANCEARBEH5E+JDNyMgAoK0A0VMIhgQIQRAEQSiE4wgYgDwgPEIBkpqa6vX3atSogZiYGAAUgiEIgiAISaQEiFoeBim88YCoUQ3VZrPh5MmTAOzFxaKiorz+Ll8AFABycnJYLRG9QQKEIAiC0AzhEFw+BBMXF8fWqS1AhILIlddBDQ/IV199hTNnzgAA2rVrJ/v7fCJqeXk5y7HRGyRACIIggpCjR49i+vTpuOeee7Bp0ybN7JDygISGhrI3frUFSG5uLgC7F4EXRI4oLUAqKirw8ssvs89Tp06VfYxAmBNGn/VZCYIgCEVYtmwZZs6cib1797J1x44dE31WEykBAtjDHCUlJZoJkNTUVISHh0vuo7QAWbhwIU6cOAEA6Nu3L2655RbZx3BMRL355pv9Zp+/IAFCEAQRJFy+fBkPPvggrFaraD3/sNMCxyqoPPHx8Th//ryqc8GYzWZW/CszM9PlfkoKkNLSUrz22mvs8xtvvOHTcYS1QPQ6EoZCMARBEEHCoUOHmPho2LAh6tSpA8BeUryoqEgTm3gPSFRUlCi5k18uKipyEkxK2sJxHADtBMjHH3/MRNmQIUPQuXNnn44TCCEYEiAEQRBBAj+qAgCefPJJdOvWjX0WDvlUE16A1KpVCwaDga0XipHCwkJVbOHDLwCYOJOiRo0aMBrtj09/thvHcZg1axYAew7K66+/7vOxAqEWCAkQgiCIIEEYamnQoIGouJVw3hG1KC4uZjkewvALoE0tkJycHLbszgNiMpnYCBl/zjabl5fHBM0tt9yC1q1b+3ysmjVrIiQkhB1Xj5AAIQiCCBKEHpD69euLBIgWDynhw9txxIkWAkToAXEnQIBKwZSXl+e3ENHx48fZcvPmzat0LKPRiJSUFADApUuXqnQspSABQhAEESQIBUjdunV1JUD04AHxNgQDVNprs9lw4cIFv5xfKEAaNmxY5ePxAuTixYsst0VPkAAhCIIIEngBkp6ejqioKNEMqyRAvA/BAGKPjb/CMEoJkPLycs2SjN1BAoQgCCIIKCoqYm/qDRo0AADNPSBSVVB5tPSACHM8XCEUTP4SIMeOHWPLjRo1qvLxatasyZb1WA2VBAhBEEQQcOrUKbZcv359ANoLEL15QHgBkpGRwRI4XSG0VyikqgLvAQkJCRGNYvEV3gMC6DMPhAQIQRBEEOCYgArYJ1vjH7RajIJxJ0DUnpCuuLgYV65cAeA5/wPwfwiG4zgmQLKyshAWFlblY5IHhCAIgtAcoQDhQzBGo5GFGrQOwWjtAZEzAgbwfwjm0qVLuH79OgD/5H8A5AEhCIIgdICUBwSoDMNcvHhRtYqjPPyDOzExEZGRkaJtgSRA/BGC8Xf+ByD2gJAAIQiCIDRBWIRMSoBYrVbk5+erZg/HcaIqqI7oXYAkJSWxMIk/PCD+HgEDiD0gFIIhCIIgNIH3gERFRYlGeGg1FPfq1asoKysD4DwCBhALEDUmpBMOwfUmB8RgMDDhFAgChDwgBEEQhOrYbDY2CqZ+/fqiOVe0GgnjLgEVAOLi4tiyHj0gQKXd+fn5TEz5ihIChJJQCYIgCE05d+4czGYzAHH4BYBm88F4EiChoaGIiooCoH8BAlS97fgcEKPRiHr16lXpWDwJCQkwmUwAyANCEARBaICr/A9Avx4QoDIMo4YA4UMwUVFRqFGjhlff8ddQXOEQ3Dp16iA8PNznYwkxGAyicuzC8+kBEiAEQRDVHKkhuDxaCRDhuYQ2CFFLgHAcxzwgmZmZohCVO/w1EiY/P5/9Rn+FX3iEE9LxwmPixImoV68e+vXrJypQpzYmzc5MEARBqIKrIbiAdgJEGBIQJksK4QVIUVERrFarx+qkvnL16lWUlJQA8D78AvivFogS+R88fNuazWYUFhYiPj4eR44cwenTp3H69GlER0f79XxyIA8IQRBENUfvAkSYLClEOBKmsLBQMVvkTEInxF8hGCVqgPBI1QLhQ3IxMTEuxZ8akAAhCIKo5vACxGAwoG7duqJtMTExiImJAaBfDwigbBhGmIDqzRBcHn+FYNTwgAD2NrdYLMjOzgZgD8d5G25SAhIgBEEQ1Rz+jTcjIwMRERFO23kviBYCJCQkBImJiZL7aCFAqlsIxnEobk5ODiwWCwDnfCC1IQFCEARRjbl+/Tp72DuGX3h4AXLt2jWUlpaqYhdvU1JSEoxG6UeRWhPS+SpAYmNjERsbC8A/AsRgMLj8G/mKowdEOCKKBAhBEAShGMJRDp4ECABcuHBBcZuASgHiLgdBLQ+IrzkgAPxSDZXPAcnMzJT0UFUFRw8ICRCCIAhCFYS5Ca7yG9RORC0uLmaeluoiQIqKinxKlL1y5QquXr0KwP/hF0DfHhAahksQBFGNERagEs4BI0RtASK0yVsBotR8MBaLBXv27AFgnxeHT8j1Fsc8EGEJeSFlZWWYMmUKSktL8eGHH7Kw0+HDh9k+SguQixcvikJsJEAIgiAIxRCGVFwNd1V7QjpvhuAC6nhA9u7di6KiIgBAjx49ZH/fcShu06ZNJfebMWMG5syZAwC45ZZbcO+99wIAdu3axfZp3bq17PN7wnEYLn89mEwm2d4ef0MhGIIgCAU4fPgwZs6c6ZeZUquCUIDoxQPizRBcQB0BsnnzZrbsiwDxZijutWvXmPgAgI0bN7JloQBp37697PN7Ij4+HqGhoQDEOSB169Zl88RoBQkQgiAIBRgxYgSmTJmCLl26sBi/FsgVIGpMSKcnAbJp0ya23LNnT9nf92Yo7pw5c0T2//nnn2x5586dAOzDkdu0aSP7/J4Qzgdz5MgRFBcXA9A+/AKQACEIgvA7BQUF2L9/PwB7guPYsWM1mwBMmG/hKtwRrB4QjuPw+++/A7AP+W3ZsqXsY3iqhlpQUID33ntPtG7fvn24fv06SktLceDAAQBA8+bNERkZKfv83sC3cVlZGVtHAoQgCKIaIiytDQArVqzAhx9+qIktvAckLCxM9EAXkpKSwipiBpMAOXLkCLOle/fuLuuRuMNTCOb9999nCbT8XDY2mw1bt27Fvn37YLVaAQDt2rWTfW5vkRKeSiS8yoUECEEQhJ9xFCAA8NxzzzF3u5rwAiQ1NdVl2e3Q0FAkJycD0JcAEY4o8YcAeeeddzBs2DD29xGGX3zJ/wDECbyOAqSwsBDvvvsuALv4ePnll9m2P/74Q3Q9KJH/wSPVxuQBIQiCqIYcPXqULd90000A7LORPvTQQ6qGYqxWK3vYu8r/4OEfpHl5eYrb6O0w3NDQUERFRQGougDJy8vDc889h++//x4jRoyA1WqtcgIqAISHhzMPg7CeCADMnTuX5f+MGjUKo0aNYtu2bNlCAkTOzmazGa+++ioGDx6MXr16Ydy4caIa9kLKysowdepU9OzZE7fddht+/vlnvxhMEAShd4QCZOHChWx45cGDB1VJ8uS5cuUKbDYbAPfDXYHKPBCz2ax40iwvigwGA5KSktzuy5djr6pNubm5TFjt2bMHn376KRMgkZGRVRIA9erVA2DPARHW2RAKnBdeeAFZWVns77B161b89ddfAACj0ciEqhJI/e39XfLdF2QJEKvVioyMDCxcuBAbNmxAz549MXnyZMl9586di4KCAqxatQpvvvkm3nrrLTYDH0EQRHWGFyAGgwHNmjUTvV2reR/0ZgQMjzCUoLRIEs4Dw+dFuIJP8szLy0N5ebnP5xR6XQC7IOD/FjfffDPCwsJ8PrbwYS78+/KzEIeHh6Np06YwGAxM6Fy/fh1///03AKBZs2bM06MEjh6QWrVqKZbwKgdZg4AjIyPx6KOPss/33nsv5syZg2vXrokmDQKAVatWYfbs2YiJiUGbNm3Qs2dPrFmzBo899pjTcc1mM8xms9gwk6lKF0Sgwb+l8P8TrqG2kge1lzyq2l4cxzEBUrduXYSGhopKoJ8+fRqdO3euuqFeIBQSNWvWdPubhALkzJkzaNasmcfj+9pWwnlgPH03KysL27dvB8dxOH36NBo1aiTrXDyOc9zwxccAe/ilKv2D94AA9onlGjduDI7jmADht9tsNrRr1w6rV68Wfb9du3aK9k8+v4enQYMGip7P22TeKlUh2bdvH2rUqOEkPgoLC5Gfny/Ksm3cuDEbbuTIwoULMW/ePNG64cOHY8SIEVUxLyARzspIuIfaSh7UXvLwtb0uX77M5gTJzMxEdna26G1z3759uPnmm/1ioycOHjzIlk0mk1vvi3AStP3796Nx48Zen0dOW5WVlbFaFLGxsR49QjVq1GDL27Zt8/nFVBgWc6RRo0ZV8kwJk2V37tyJFi1aiMqep6WlseN36NDB6ft169ZV1DPGj7ThqVmzpqLnEwoyd/gsQIqKivDmm2/iiSeecNpWUlKCkJAQ0QUdHR2NkpISyWONGTMGI0eOFBsWhB6Q3NxcZGZm+jQULJigtpIHtZc8qtpewodxq1atkJWVJRpief36dWRlZfnFVk8I33KbNm3q9rwtWrRgy2az2SsbfWkrYaJm7dq1PZ5HWJyrpKTE57azWCxseciQIfjhhx8A2J81Q4cORXR0tE/HBYCOHTuy5WvXriErKwtnzpxh61q2bImsrCzYbDaYzWZERESIanL069dP0WvCMcLQpk0b1a5Bd/gkQMrLyzF58mR0794dQ4cOddoeFRUFq9WKsrIyJkKKi4tdxrjCwsKCSmy4w2g00kPCS6it5EHtJQ9f20uYmN+kSRMYjUbUrVuXrcvJyVHt7yDMe0hPT3d7XmFBrby8PFk2ymmr/Px8tlyzZk2P3xOO1sjOzva57YRDf19//XWcOXMGu3btwtChQxEbG+vTMXmE3v5Tp07BaDTi9OnTbF2DBg2Y3WFhYejUqRMbAmwwGNCuXTtFrwlhoTneXj3cC2RbYLFY8NJLLyElJQXPPPOM5D5xcXFISkoSdcSjR4/qIuuWIAhCSYSufj6MkZ6ezubjcByqqSTeTETH401JcX/gbQ0QHqF4Ez7Uq3LeWrVqYdOmTfjpp5/w2Wef+XxMnoyMDPb3PXXqFACIpr13fPZ16dKFLTdt2lT2DLxyiYuLY/YB+hiCC/ggQN544w2Ul5dj2rRpLovaAMDgwYMxf/58FBcXY//+/di0aRP69+9fJWMJgiD0jrAIGS9AjEYjateuDUBdASL0gHgaBSN8S1ZSgHhTGl6IMFTAP9yrcl6j0YgaNWogOjoagwcPFuVv+EpISAiz8+TJk6IEVMBZgHTt2pUtK1n/g8dgMIjaOiAFyPnz57Fy5Urs3r0bffr0QY8ePdCjRw/s3r0bq1evFiWNjh8/HjExMRg4cCCmTJmCKVOmiJQsQRBEdYT3gISFhYlGv/DLV69exfXr11WxhfeAGI1Gj/U2wsPD2WgJPXlAIiIimHemKgKEP29ycrIi4QdeZBQVFeHy5ctuBUj//v3Rvn17xMbGYvz48X63RYrmzZsDsHuUhIm9WiIrByQ9PR07duxwuX3QoEFsOSIiAtOnT/fdMoIgiADDZrMxD0iDBg1ENS6EYiQnJ0eU9KkUvABJSUnxWG8DsIcmLl++jHPnzoHjOLdebl+RK0AA+0Pz3LlzuHjxIoqLi2UnjHIcxzwg3nhdfEEoMk6ePMkESFpamlP+Y3h4OLZv3w6z2Yzw8HBF7HHkww8/xPz58zF8+HBF/q6+oH0WCkEQRDUhNzeXFctyHMYqDCWoEYbhOI4JEG8furynoaKiQpQs6k98ESDCYZ2+DB8tLi5mo068PadchALk77//ZjVYXOU+GgwG1cQHYL8e3377bdGIHa0hAUIQBOEnpBJQeRw9IEpTWFjIhl96yv/gUSMRtaoCxJcwjNy8E18QCo0NGzZIrifEkAAhCILwE1IJqDxqCxA5Zdh51CjHLhQgnvJSeKoqQHwRPXIR2rhu3Tq2rJeETz1CAoQgCMJPeOsBUWM+GDlDcHnU9IAkJiaKhoa6o6pDcdX2gAjPRx4Q15AAIQiC8BNCAeI4Z0kgeEDUFCByhEAgeEASEhKQmJjotJ4EiGtIgBAEQfgJXoDExMQ4VZ+Mjo5mIQc1BIicGiA8SguQ8vJyNk+OHCGQmZnJRvFUNQdEKQECSIsNEiCuIQFCEAThByoqKlh4oHHjxpJDHXkvyJkzZ5wmCPM3egzB+OqJMJlMyMzMBFB1D4hSIRjAWWxERESI8moIMSRACIIg/MC5c+eYqHA1GygvQKxWq6LFvgDfQjCpqalMOOlJgACVeSDXrl3DtWvXZH1XKw9I/fr1dVNzQ4+QACEIgvADZ8+eZcvCid2EqFkLxBcBEhoayjwEehMgQlEnNxFVLQ+Io/Ck8It7SIAQBEH4AeH0664EiJqJqL6O/OBDBnl5ebDZbH61yV8CRG4Yhm+LkJAQJCQkyPquHKQ8IIRrSIAQBBHw8NVHtcQbD4iaAoT3gCQkJCAsLMzr7/F5IBaLBZcvX/arTf4IwQC+e0BSUlIUnYbeUXBQDRD3kAAhCCKgeeONNxAVFYVnn31WUzuEAoSf+dYRNWuB8ALE2/ALj78SUTmOc1pXlVCIrx4Q4TwwSuZ/APa/r1DgkAfEPSRACIIIaP7zn//AZrNhzpw5orwHtdFTDkhJSQmKiooAaCNAXn31VSQmJuKjjz4SrRf+ZrVCMNevX2cl6ZXM/wDsOTRCkUkCxD0kQAiCCFjKy8vZQ9Jms+Gbb77RzBZvBEjNmjVZOERJAVKVyp9VFSA2mw0zZ85EQUEBXnzxRRQUFACwi6Lvv/8egL0mimOhNk+kp6eztnMnQCwWC4YPH442bdrg2LFjqo2A4WnZsiUAICoqyuVoKMIOCRCCIAIW4UMfAL788kuNLKm0JTExEZGRkZL7GI1GVs9CSQHiywgYnqoKkIsXL6K0tBSAfRbaRYsWAQD++9//4vr16wCAe++912mKek8YjUbmQTp16pRkiAcAfv75Z3z77bfYt28fpk+frtoIGJ4333wTI0aMwIIFC1xeB4QdEiAEQQQsjg/xP//806dCVVWF4zgmQFx5P3h4F31BQQHzDvjK3r17MWLECCxfvly03l8CxJcJ6RwTRD/88EPYbDZ89tlnbN0jjzwi+7hAZSJqSUkJ8vPzJfdZv349W/7+++9FIlUND0irVq2wfPly3HfffYqfK9AhAUIQRMAi5UX46quvVLcjPz+fjcTxJED8mQfy0ksv4ZtvvsF9992Hn3/+ma0XzsorV4AIK3f64gFxTK49fvw4Pv74Y/z2228AgCZNmqBLly6yjwuIR8K4SuLdsGEDWy4oKMCyZcvYZzU8IIT3kAAhCCJgkXqACx84auHNCBgefw7FFU5+9+CDD+LcuXPYs2cPXn75Zba+RYsWso5Zs2ZNNpLDHwIEAJ555hm2PHbsWJ+rgwrFm9R5Ll26hH379onW8XkngDoeEMJ7SIAQBBGwCB/gNWrUAADs378ff//9t6p2eJOAyuNPASIMkVy+fBkjRozA0KFDUVJSAgAYNWoUunbtKuuYJpOJeU2qKkBCQ0MB2BNDAXshsIceekj2MXk8CRDeyyJEOOcOeUD0BQkQgiACFuED/Mknn2TLantB5AgQTw9Rb7l+/TqKi4tF67Zs2cLapFOnTpg3b55P3gY+DyQvL0/2pHnCHJAJEyaItt12221OswTLwVPbCfM/pDxR5AHRFyRACIIIWPiHbWRkJB5//HEWOli2bJnLURJK4E0Zdh5/eUCE3o/mzZuz6eoBu4D47rvvEBER4dOxeQFis9lEw1i9gRcG4eHheOmll0Q2jB071id7eDwJED7/w2QyYcaMGU7byQOiL0iAEAQRkHAcxx7gderUQVpaGvr27QvAPkxTmB+hNHI8IPwwXMB/AmTQoEF46623ANjrT6xYsUI0mkUuwu/m5uZ6/T2O45gwqFOnDlJSUjBx4kQA9tEhgwcP9tkm3i5eaDmOtsnNzWXJtzfffDPuvvtuREdHs+2hoaGIj4+v0vkJ/0IChCCIgOTq1assBMF7Fbp168a2HzhwQDVb5AiQyMhIFgqoSghGKEDS09Px3HPPYceOHTh06BA6duzo83EB8RwmJ06c8Pp7V69eZRVYeW/FjBkzsG3bNmzcuJHlhPiKyWRioRXHtvv111/Zct++fREZGYnbb7+drUtJSfE5+ZVQBhIgBEEEJELvAS9AhCM+1ExE5QVIWFgYkpOTPe7PP5zPnTuHiooKn87pKEAAoH379qIQj680bNiQLR8/ftzlfhzHseJigNgrwf9Gg8GATp06ITExscp2CY979epV0bmFw29vueUWAMA999zD1lH+h/4gAUIQREAiJUD4MtiANh6QjIwMr96yeXttNpvP861ICRB/4Y0A2bFjB9q2bYu2bdvi008/BSD2SghrdvgTqTwQjuOYAImMjETnzp0BAIMHD2ajo1q1aqWIPYTvkAAhCCIgkRIgDRs2ZPOFqOUBKS0txZUrVwB4Dr/w+CMRVUkBIpxEzVGAlJeX41//+hduvvlm7N+/HzabDe+//z4AsQARCgV/IiVAjh8/znJVunfvjvDwcAD2fJg1a9ZgxowZ+Pe//62IPYTvmLQ2gCAIwhekBIjJZELTpk2xb98+HD16FGazmQkSpZCT/8EjFCDZ2dno0aOH7PMqKUCio6NRq1YtnDt3TlRV1WKx4JZbbsEff/wh2v/QoUM4c+aMZgJEmP/Bh1942rdvj/bt2ytiC1E1yANCEERAIiVAgMo8EIvFospIGF8EiD/KsfMCJDIyEnFxcT4dwx38bLWXLl1ic9asWrWKiQ+TySR6sK9bt04yB8TfSAmQrVu3snU9e/ZU5LyE/yEBQhBEQCJ8cAuLTqmdB1JVD0hVBUh6eroiozuEeSD8SJjdu3ezdfPnz8c777zDPq9Zs4YJgpCQEK/bQi5SAmTbtm0A7KKobdu2ipyX8D8kQAiCCEj4B3dqaqqo2JXaI2G0ECBlZWW4evUqAP+HX3ikElH37NnD1nXt2hWdO3dGTEwMALEHpHbt2jCZlInwO4avCgsLcejQIQBAmzZtEBkZqch5Cf9DAoQgiICjoqKCjR5xHHaqpQfE00R0PCkpKUw0+VILJC8vjy2rKUD27t0LwJ4j0qBBA4SGhrIRJ5cuXWKiSKnwCwBERESwuWqys7OxY8cOVvWWt4UIDEiAEAQRcJw5c4Y9dBwFSL169dhbsF49IAaDgdmdk5Mju2y8kgmoPHwOCAAcO3YMBQUFOHXqFACgdevWrOy9VAKtUkNweXiBc/78eWzevJmt79Spk6LnJfwLCRCCIAIOVwmoAGA0GtG8eXMA9jf30tJSRW0RzgMjp/w5b3dRURGuXbsm65xqCBBhNdTjx4+Lprlv06YNW+7evbvTd5X0gDge/7///S9bJg9IYEEChCCIgMOdAAEq80A4jsPhw4cVtYX3gKSkpMga8luVPBA1BEhMTAybufb48eOi/I+bbrqJLderV080vw2gvAARelj2798PAIiPj0fjxo0VPS/hX0iAEAQRcHgSIMI8ECXDMDabjYkBuaM+HJMp5aCGAAEq80Dy8vKwZcsWtl7oATEYDOjXr5/oe2p6QHg6duzIwkJEYEB/LYIgAg5vPSCAsomoFy9ehMViASBfgFSlFojaAgQAfvrpJwB2weFY1txRgKiVAyKE8j8CDxIgBEEEHGp7QC5duoQnnngCb7/9NsrKytj6devWsWVvR8Dw6D0EA4gTUflZbhs1aiSa5h6wCxBhLRLHkIy/kRIglP8ReJAAIQgi4OAf2OHh4ZKznGZmZiI2NhaAfzwg77zzDj7++GO8+OKLaN++PXbs2IGPPvoIDz/8MNunY8eOso4pR4AcPnwYL7zwAst34AWIyWRCUlKSrPPKQegB4RHmf/AkJyejV69ebDs/F4tSkAekekBzwRAEEVBwHMce2HXq1JGsAmowGNCiRQts3boVp0+fRlFRESuY5Qt8/QsAOHjwIDp16iQaOnvffffhoYceknVMocfEXQ5Ifn4+evXqhYsXL+Krr77CiRMnmABJS0tTNO9BSoAI8z+ELF68GN988w2GDBmimD08cXFxSEhIYKOH6tSpwxJmicCBPCAEQQQU+fn5LBxQr149l/sJ80AOHjxYpXPypch5hOJjypQpWLp0KUJDQ2UdMyIigj003XlAJk6ciIsXLwIAcnNz8e2337LPSoZfAO89IIBdUE2aNEk0fFdJhF4Q8n4EJiRACIIIKE6ePMmW1RAgFouFFeBq1qwZXn31VZhMJoSGhmLu3LmYMWOGz14IPgxz/vx5mM1mp+0rV67E0qVLReumTZvGBJDSAiQuLg41a9YUrXPlAVEboQCh/I/AhAQIQRABhVCA1K9f3+V+TZs2ZctHjhzx+Xy5ubmoqKhgx3z55ZeRl5eHM2fOYNy4cT4fF6gUIBzHiSqqAsDVq1cxfvx49pkPIQln+FVagABiL0hycrKsYmtKIqz50bVrVw0tIXyFBAhBEAGFtwKkSZMmbLkqAkQYfuEfxklJSU6eAV9wVwtk8uTJLNdj8ODBePvtt52+r7YAadOmjSIz7/rCU089hQEDBmDSpEno0qWL1uYQPkBJqARBBBTeCpCsrCyEhYXBbDaLvAZy4SdiA+D3/AZhGOHUqVPo3bs3AODy5ctYtGgRAHsYZO7cuUhISMD//d//oaCggH1HbQHiKv9DC+rUqYOff/5ZazOIKiDLAzJ37lwMHz4cHTt2xC+//OJyv2nTpqFLly7o0aMHevTogREjRlTZUIIgtCU/Px9vvPGGaPIvLfBWgISEhLCH5/Hjx2G1Wn06n5QHxF8IvTT8lPKAvXYJn+fx8MMPo3bt2oiJicGYMWNE31dDgAi9C7xAIgh/IEuAZGZmYvLkyaLkLleMHz8emzdvxubNm/H111/7bCBBEPpg2rRp+Ne//oXevXtjx44dmtnBJ4QmJiYiISHB7b78A768vNynae8BZT0gwnupsGCaMGlWWFTtiSeeEH1fDQHSt29fLF68GJ9//jluu+02xc9HBA+yQjCDBw8GAHz22Wd+NcJsNjtlgJtMJlkTOwU6NptN9D/hGmorefirvfi5QGw2G8aMGYO//vpL8YJTjlRUVLAhq/Xq1fP4m4SJiocOHfKqRLhje/ECJDQ0FBkZGX697tLT0xEfH4+CggIcOHCAHVtYPK1p06ZsfYMGDTBo0CCsXr0aJpMJWVlZqvSDBx54AIA9WVY4BJn6ojyCpb28HRWmWA7I4sWLsXjxYmRlZeHJJ59Eu3btXO67cOFCzJs3T7Ru+PDhQRm6yc3N1dqEgIHaSh5VaS+O40SJnH///TdeeOEFPPvss/4wzWuys7PZzTs1NdWjV0NYJXTbtm1o3ry51+fKzc0Fx3FMgGRmZuLMmTM+WO2ehg0bYufOncjJycHff/+N2NhY7N69m22PiYkR/c6pU6ciOjoaXbp0QVFREauJoiXUF+VR3dvL3fB4IYoIkPvuuw/PPvssIiMjsW7dOkyaNAnLly93WaluzJgxGDlypNiwIPSA5ObmIjMzk2Z09AC1lTz80V5nz55FSUmJaN3HH3+M0aNHo23btv4w0yuEyaQtW7b0OOuqMH/h0qVLXs3SKmyvvLw8NvdLkyZNFJnltV27dti5cycA+3wrLVu2ZHkuqampTomfWVlZWL58ud/t8AXqi/Kg9hKjiAARjr8fNGgQVq1ahW3btmHo0KGS+4eFhQWV2HCH0WikC9NLqK3kUZX2OnbsGFuuUaMGrly5AqvVikceeQTbt2+XXQXUV06fPs2WGzRo4PH3NGvWjC0fPXpU1u83Go0s3wSwT8KmxPUmzPE4ePAgmjRpggsXLgAAmjdvHhDXOPVFeVB72VGlBfQybpwgCN8Qhl9effVVtG7dGoB9jpQ1a9aoZoe3I2B4kpKSWBjGl1ogwgRUf4+A4REmoh44cECUgConZEQQgYYsAWKxWFBeXg6O49iyVDLN+vXrUVpaCovFgjVr1mDv3r2yZ4okCEI/CB/eLVu2xJQpU9hnYb6C0gg9Et4IEKByJMzZs2dl50soOQKGR+gB+fvvv0mAEEGDLAEyffp0dOvWDbt378Yrr7yCbt26YdeuXVi9erUoYfTLL7/EwIED0a9fPyxduhSzZs3STflegiDkIxQgTZo0Ec0Hwk8Rrwa8B8RoNIqqiLpDWGtDGEryBiVrgPDUrFmTeWnIA0IEE7JyQKZNm4Zp06ZJbhs0aBBbXrBgQZWMIghCX/DJn7GxsUhLS0NycjKrMiqsX6E0vADJzMz0Ou9EOBT3yJEjspJmeQ+I0Wj0agivLxgMBrRs2RIbN27E+fPn8fvvv7NtJECI6gxlwRAE4Zby8nKW/Nm4cWMYDAaEhoayZPMjR46gvLxccTuuXr2Kq1evAvA+/ALImxNm+fLlaNu2LT755BPRENw6deoomigvzAPZtWsXAHv+SkpKimLnJAitoblgCIJwy/Hjx1mul/Bh3qpVK+zbtw9WqxWHDx9WfJp2X/I/ALHN7uaE+eKLLzB69GhwHId9+/YhJiaGzbuiVPiFR5gHwtO8eXNK4CeqNeQBIQjCLY75HzytWrViy2rkgcgdAcMjHK7rygOyZMkSJj54Xn75ZdExlERqegsKvxDVHRIgBEG4Reg1CEQBEh4eziozHjlyRCQyAHvY5eGHH2brpbwRSntASIAQwQgJEIIg3CL0GggTOh2HjyqNryEYoNLuoqIinD9/nq23Wq2YMGECCzFNmDABu3btwq233ir6vtIekKSkJKdK0d5M+kkQgQwJEIIg3OJKgGRmZiI+Ph6A+h4Qb+ea4HGViJqTk4P8/HwAQJ8+ffDBBx8gJCQE77zzDpu/ymg0Kp7fAjh7XsgDQlR3SIAQhM45ePCgaGim2vAP7Nq1ayM6Opqt54ePAvbJta5du6aoHbwAiYmJQXJysqzvuhIgwjofHTt2ZEmfUVFRWLVqFZ5//nl8/vnnsj0uviD0eCQkJLicO4sgqgskQAhCx6xduxZt2rRBjx49sHLlStXPf/nyZVy5cgWA+CHOI8wDUTIMU1hYyGaErV+/vuzRIcL5qQ4fPsyW3ZVaT0lJwdtvv41Ro0b5YrJshAKERsAQwQAJEILQKefPn8eoUaNgsVgAQBMBIkxAFYZfeJTKAyktLcX//vc/3H///ahXrx7i4+NRUVEBQH7+ByCelO7QoUNsWY25XrxFGOaRSoQliOoG1QEhCB1itVoxatQoXLx4ka1Ts+Ioj6shuDz+HglTUFCAZ599Fl9//bXLeVu6du0q+7g1a9ZEYmIirl69qlsB0rFjRzz66KPYs2cPJk2apKktBKEGJEAIQoe8+eab2LBhg2jdgQMHwHGcqq55tQXIp59+is8++0y0LiYmBi1btkSrVq3QtWtXjBw5UvZxDQYDmjVrhj/++AO5ubm4fv06YmNjmQAJDw9HRkZGle2vCgaDAfPmzdPUBoJQEwrBEITO+Ouvv9icS0ajkY34KCwsxJkzZ1S1xdUIGJ7ExET24N6/f79TjQ25CGfWHTlyJH7++WdcuXIFf/75Jz799FOMHj3a6zlgHBGGYQ4fPgybzcaSUIXFygiCUAfqcQShMxYsWMDqUkybNg333HMP23bgwAFVbeHDPuHh4cjKypLch89XuHbtGs6ePVul8/HhkZCQEHz22WcYMGCAz4LDEcc8kHPnzqGsrAyA8nU+CIJwhgQIQegIjuPwyy+/ALA/9CdPniwaHaFmHkhBQQELUbRp0wYhISGS+/lrJIzNZmMelwYNGvh98jdHAaKn/A+CCEZIgBCEjjh27BgbbtqjRw9ERUWJRkSo6QERhkPat2/vcj9/5YHk5uaitLQUgHjYrL8gAUIQ+oIECEHoiDVr1rBlvhx4s2bNWOKpmh6QnTt3smV3AqR169Zsec+ePT6fTzg6RQkBkpWVhcjISHYuEiAEoS0kQAhCR0gJkKioKFb74uDBgyw/RGl27drFlt0JkObNm7M8DaHXRC7CAmFCb4W/MBqNTNicOHECBw8eZNtIgBCE+pAAIQidYDab8euvvwIAUlNTRaENPg+kpKQEp0+fVsUe3gMSFhbmdl6SsLAwFiY6cuQISkpKfDqfUIAo4QEBKoWN1Wplw5xNJhPq1KmjyPkIgnANCRCC0Albt25lxbf69+8vGhaqdh7I9evXWRXU1q1be0wIbdu2LQB7Ium+fft8OqfSIRhA7FkpLi4GYJ/YzmSikkgEoTYkQAhCJ0iFX3jUHgmze/duVtPDXfiFhxcggDh0IwfeA5KWloaEhASfjuEJqdAOhV8IQhtIgBCEThAKkH79+om2qe0B8Tb/g0coQHzJA7ly5QorO69E/gcPCRCC0A8kQAhCB+Tn52PHjh0A7CGP9PR00fYmTZqwOhxqeECEI2DatWvncf82bdqwkTq+CBA18j8Au9hwrGdCAoQgtIEECEHcoLy8HOfOndPk3OvWrWMhjwEDBjhtDw8PZw/Kw4cPsxlylYIXIKGhoV7NzBoTE8NKte/fv5/NXOuOS5cusbofagmQsLAwJ8FBAoQgtIEECEEAKCsrQ+fOnZGRkaHJhGD/+9//2LJj/gcPLwTKy8vZHCZKUFxczARBq1atEB4e7tX3+DCM2WwWJZRKsXz5cqSmpqJt27bIz88X7a9kCEbq+CRACEIbSIAQBICFCxdi7969AIAlS5aoeu6zZ88yAVKzZk306NFDcj9hIqqSeSB79uyRlYDK420eSEVFBV544QVwHIcjR45g4sSJqnlAALEAMRqNqFu3rqLnIwhCGhIgRNBjNpvx1ltvsc/79u2r8qyucpg7dy4LqYwbN86lx0EYClEyD0Ru/gePtwLkm2++QU5ODvu8dOlSrFu3DgAQHR2N2rVryzFXNsKaJnXq1PH7nDMEQXgHCRAi6Fm8eLHogXjt2jW/Tns/ceJEZGZmonv37hg/fjz+85//oLCwEIA9nDJ37lwA9hlgx48f7/I4/h6Ku3fvXmzZssVpvbcl2B3xRoBwHIdZs2Y5rednpW3atClLZlUKoQeEwi8EoR0kQIigxmKxYMaMGU7rfS2m5cixY8fw/vvv48yZM9iyZQs+/fRTTJgwAR07dsSFCxfw7bffsuGnd911l9u3/8aNG7O5TP76668q29WhQwd0794d7777rmgbL0BMJpOoGqsnkpOTmf179uyRLBm/fv16Nl9Mhw4dMHjwYNF2pfM/AHteCy88hgwZovj5CIKQhgQIEdR89dVXLKEzOjqarfeXAOGriUqt79+/P2bPns3WPfXUU26PZTKZ0LFjRwBAdnY2zp8/77NdGzduZGGfF154Adu2bQMAzJs3j+WXtGrVChEREbKOy3tBCgsLcerUKaftQu/H888/j7lz5yIuLo6tUzr/A7CPhNm9ezf27duHJ598UvHzEQQhDQkQImixWq1444032OeZM2eyZT4htaqcPHmSLb/33nv47bffkJmZCcA+XJUPVbRp0wbdu3f3eLwuXbqw5a1bt/psV25uLlu2WCy499578cMPP+CJJ55g6ydPniz7uMKcEceKqHv37mXF1urVq8c8Pu+99x7bp3///rLP6QsxMTFo1aqV4uEegiBcQwKECFr++9//stEX3bt3x7hx41hCor88IMLhsjfddBN69eqFDRs2IC0tTbTfU0895dXD8Oabb2bLf/75p892CQUIYPeoDB06lHlFnnnmGYwcOVL2cd3lgbzzzjts+dlnn2Xzr4wZMwYbN27E77//jk6dOsk+J0EQgQkJECIosdlsmD59Ovs8depUhIaGshESR44cYYmRVUHoAWnQoAEAe+LjunXrkJSUBABISUnBAw884NXx/OUBESbdCkMggL0OiVSiqDcIPSDCPBWO4/DTTz8BAOLj4zFmzBjR93r27Ilu3br5dE6CIAITEiBEULJy5Urs378fANCpUyfm+m/dujUAu0A5ePBglc/DC5Dw8HDUqlWLrW/RogW2bt2Kl156CatXr2bJpZ5ITU1FvXr1AAA7duzwquKoFLwHJDo6WlT3pHHjxvjqq698nh02MzOTJaJu27aNeVSOHz+O/Px8AHZvkzDfhiCI4IQECBF0cByH119/nX2eOnUqC3/wAgSoehiG4zgmQOrVqwejUdzdGjZsiDfeeEPWUFegMgxTWlrqU64Kx3FMgGRmZuKOO+7AkiVL8I9//ANr1qxBYmKi7GMK6dq1KwCgqKiIiTxhuEgYRiIIInghAUIEHT///DMbanrTTTfhtttuY9v8KUDy8vLYXCf169ev0rGEVDUMc+XKFWYXnxA7cuRIfPzxx8jKyqqyfcJQyh9//AFALECE9hMEEbyQACGCCkfvx7/+9S9R8qc/BYgwAVUpAeJLIqow/6NOnTp+sUkI7wEBwAqd8ULJYDBQoilBEABIgBBBxubNm9lDu0WLFrjzzjtF21NTU1GzZk0A9mGjVSnJLpWA6g9at27N6nP44gERjoDhPSD+pE2bNoiKigJg94AUFRUxMdeyZUvExsb6/ZwEQQQeJECIoGL9+vVs+bnnnnPKywDsD1AAuHz5Mi5cuODzuYQCxJ8ekLCwMHTo0IGdg6+k6i1KC5DQ0FDm5cjOzsb333/PqqJS+IUgCB4SIERQIZxFVhgqECIMw1SlIJlSIRigamEYpQUIIG5bYbVXEiAEQfCQACGCCn4St/DwcJdhEX/lgSjlAQHEI0nkhmGUzgEBxImowoJkJEAIguAhAUIEDWVlZTh+/DgA+6RnISEhkvv5S4DwHpC0tDSWE+Ev9O4BkRpqm5iYiEaNGilyPoIgAg8SIETQcOTIEVitVgDiqe0dEYoTfuZWuRQXF7P8EX8moPKkp6cz8bB7927JmWddwQuQGjVq+F0Y8dSoUYNVleW5+eabJXNuCIIITuhuQAQNwvyPli1butwvPDycJaL+/fffTvOmeINwJlh/h194PM08K4XVasXZs2cBKOf94HHMsaHwC0EQQkiAEEEDn/8BuPeAAMDQoUPZ8ooVK2SfS8kEVB7hxG+OM8/ynD59GlOmTMFHH30Em82GvLw8Vh5dqfwPHse5XagCKkEQQmQJkLlz52L48OHo2LEjfvnlF5f7lZWVYerUqejZsyduu+02/Pzzz1U2lCCqirceEACi+iDfffed7HMpVQNEiLuZZ3NycjB+/Hg0atQIs2bNwuzZs7F8+XJV8j94hB4Qg8GAzp07K3o+giACC1kCJDMzE5MnT/b49jh37lwUFBRg1apVePPNN/HWW28hOzu7Sob6gxWbOUz7zIYpn9hw9brvBab8zeVrHOb+AORe8m0CMKU4eY7D3O855Bfop60AYMdh4NvN0Sgrl/c93gMSFRXlseR4jbQWSG71TyAsHZs2bWITqblj814OS9dwqLBwqntAhALkxx9/RKNGjfDpp5/avR1JdwKJA7Bw4UJVBUijRo2Yl6VDhw6iWXdLyzksWs1h5xF9XVv5Bfa+mHNRX33x/GUOn3zP4ewlfbXXoWzgq99iUFCk3Dl8+e2/76vsi3qB4zh8txn4dW+E1qboBlm9bPDgwQCAzz77zO1+q1atwuzZsxETE4M2bdqgZ8+eWLNmDR577DHJ/c1mM8xms9gwkwlhYWFyzPPIfzcCS9bYl8cM5hAfrY+L88n3gOUbgKaZKdj/uffJhEpzxxTg4Gng9/3A5y/53lYVFRUYPnw41q1bxyqLxsfH44MPPsDdd98t61jXrgN9nuFQUpYMLsSG5+737nvFxcUsT4IX0O4SNx9+A7ic8BrQuCesfw/A999/j9GjR7vc/8xFoM9EwGoDyivEIZi6devKShL1loyMDNSoUQNXrlwRJaK+++67rD9F1hqK0gbfAgDWb+uAli23sO/Xrl1bEbuELF++HF9++SUee+wx0bne/xaYMheIjgByv+UQH6OoGV7z9Bzgy3VA49opOPCFfvriwzOAtduB5euB9e/p475lsQADJnM4ezkJ5wo4zHlamfZ66E1g3Q7g6w3Aunc9//azl+x90WIFSs3A2MH6aK+1O4B7pgJAKlo0tqFjU60tUg5vk839LvMLCwuRn5+Phg0bsnWNGzcWub8dWbhwIebNmydaN3z4cIwYMcKvtlWU1wBgLwN9Kvscwqy+TWXub3YfSQcQhiNnQpGTkwPB1CSaYbMBB0/bvQS7DpuRnX3e52OtXbsWK1euFK0rKyvDxIkT0bZtW5fDYaU4kB2KkjL7tPbb/i5BdrZnzwRgH07Li586dep49MjtOV4bQAgQ3QoAsGzZMvTp08fl/pv3h8NqSwMALP7fbhy5UcAsIiIC5eXlinkAmzZtij/++AMXLlzA9u3bERMTg99//x0AUKtWLYx49kO89/2NnaNa4tNPP2XfDQ0NVdwzmZqaikmTJgGA6Fxb9ycBiEFxGfDn7nNoVkcffXHXjb549EwYcnKyddEXAWDvsQwAJuw9bkV29hmtzQEAXLluxNnLdi/azkPlyM72vWqwO+T+9i0HImCxpgIA/thTiL4tripil1w27YwFUMO+vOMKakYWa2uQgtSrV8+r/fwuQEpKShASEsLmqgCA6OholJSUuPzOmDFjMHLkSLFhCnhAkmtULtdIqgU/TPzpF/j3Bo4zIL1WJsLDtM8NLhWENzhDWJVmSRUOZW3cuDGuXr2KS5cu4fz58zh8+DDzrHnDeYGr1xQWjaws716df/vtN7Z88803e/w9FvtoXRhCIsAB+P3335GcnIzo6GjRfn///TeWLFmCz1deBlLm28+18Q/gvF2wNWjQAHXr1vXKRl/o0qULm3H20qVLuHz5MvN+3H777UhKrlW5szGczYILAB07dvTL7Le+YBJ07RrJ+umLwnfl1LRMREZo3xcBwHLjJlFhDdHsb+aI6ZLggzFcMbvk/vYDgnel8Mg4ZGXFud5ZRaIFt6ro2BrIykrWzhid4HcBEhUVBavVirKyMiZCiouL3dYbCAsL87vYkCIirNJFaLYYYDTq4/WmzCy0y6iLm57ZwoG/HZeZvXepSbF27VoA9jfunTt3YsOGDWyUyYIFC3D77bf7aJdBZNeGDRvwxRdf4NlnnxUVEwOAgwcPsuWWLVt6/D1lFfa/idEUCSvsHpu1a9firrvuYvv8+uuv6Nu3r92zknw3kHJjg7FSfPfu3VvR2hft2rVjy3v27BHlqgwYMAC7rwh2NoazRYPBgMzMTM3qcpQLr/kKHfXFCnFfjNZJ3RL+HlHVvuhPhH2xvMKgmF38by+v8O63myuEdumnvcqF11aFUTd2aYnfWyAuLg5JSUms4iQAHD16VLFEPDlECDROuT48vgDsNxWpZS0RJnhWxaaTJ0+ya6Fr166IiYnB4MGDUauW/c185cqVOH/e+/COq7YqKCjAsGHD8Pnnn+P22293yimSMwKG4ziU3/i6lau8aBxHwyxdupSFdQwhlQK7fcdueO+997BkyRLMnDnTq9/lK46JqGvW2JOcQkJCcMstt4j/doZKYZSeno7Q0FBFbXOHHq95QP92WayA1aqPnAY12orjOHZscwVgs3n+7br9G/rpnlqdkCVALBYLysvLwXEcW5ZKYhs8eDDmz5+P4uJi7N+/H5s2bUL//v39ZrSvRIRVvmXp6QIQiqFyndglsqkKYo33fgDArbfeCsAeXhs7diwAe2GshQsXem+XoH3MArsWLVqE69evA7BX+ly0aJHoe/wImLi4OGRkZLg9h9nh98bGJwGwjy6pqKjcyM+sGx4ejn+/8z5bX69BU0ycOBEjR450Ctn4m8aNGzPv4q+//so8PZ07d0ZCQoLobxcaXukDVnoEjCf8dX35G+H1pRe7LBYOwtusXuwStZVC9y2LFeAEmsOxb0qhx/spoN9rXktkCZDp06ejW7du2L17N1555RV069YNu3btwurVq0UJo+PHj0dMTAwGDhyIKVOmYMqUKYrGwb0lXOgB0dGFqUfF7i+b+DdyoFKAAMAjjzwCw40Mv/nz53s9GkPKLpvNhg8//FC035tvvsm8IIWFhWz4acuWLdl5vTkHAAwYOAQAcO3aNZZLcurUKZw+fRqA3bMTHhHv8vtKEhISwqq2Xr1amWzHt7XQlsbN2rBlrQWIHq95QJ92OdqhR7uUssnxuN48uPX4NwT0a5eWyBIg06ZNw44dO0T/OnTogEGDBuHrr79m+0VERGD69OnYvHkzfvrpJwwcONDvhvuCMASjlwvAZuNQYan8rBdl7A+1brFYmJcgKSlJFC6oW7cue0ieOnWK7eeLXT///LMo5AfYR1x88cUXAMThF081bBzPAQADB1dWReXDMEJ7+/btq+lbl7Bdefi2FdrSrMVNbLlpU23HAOrxbZDjOF3a5WiHXl6e1Ggrx9/qzX1bj14sQJ/XvNYEVRZMuCDkrRcB4ngh6sUuoR1Wq90NLJe//voLBQUFAIB+/fo5DbcV1oURDg/11i5++f33K8Mf//d//8eW33jjDVRUVMjK/3A8BwB079kP4eH2BM4VK1bAZrM5CRAt324cBUh8fDw6duzoZEtqWh289dZbePjhh/Hkk0+qaaITenwbrLCI3f16sYs8IJWQB6R6EVQCRI9JqIFwc5H67A2uwi88Q4YMQWqqfbz+Dz/84HaotpQdZWb7DLf8tAB169bF66+/zs51+vRp3HrrrZg8eTL7jjceEMffGmKKYjlM58+fx7Zt27BhwwYA9pySDh06oMzMufy+0jgKkL59+8JkMjnZUmY24MUXX8SiRYtYu2uFyC6ZFW2Vojr3RSXQQoB4cx4t+6I7SIA4E7QCRC8XgKOLUS/CyB92eRIgoaGhuOOOOwDYq+Fu2bLFaR8nuxzcmMLcjyeffBIhISF45ZVX2LrffvsNhYWFAOxDxNu3b+/5HBK/XTg3zPTp03Hx4kUAQK9evWAymTR1+7Zs2ZIJDkDc1np1++rRTR4IoQ6pz1ohtEOp0Tm+/E10m4SqQtJuoBFUAkQYgtHLBRAIbzeOnw8cOIAXXngBe29U+5Ti2rVr2LZtGwCgefPmqF27tuR+ffv2Zcve5IEI7SgutWL+fHvxr6ioKDaypmvXrhgwYADbLzY2Fg899BA2b96MhIQEWecA7NfKHXfcwcbtr1q1ysl+Ld9uwsPD0bx5c/ZZKED0+talR7scPTFkl3t8CY+ocQ49XluAfu3SEn3NuKQwEZV1mG646bQvfhQIbzeOnx966CHs2rULy5cvx4kTJ0Rv34B9aO1TTz3FRrZIeT94brnlFrbsjQApF7hXrxeVw1ZWBgB4/PHHkZiYyLYtX74cCxcuRGZmJgYPHozIyEiPx2bnkMjLSUlJQY8ePbBx40bRNl6AaO1pmDRpEh5//HGMGDFCVAZZa7tcIbaL+qI7dGuXhDiI8vM8az4loQbENa+dHXoiaD0gelGggeYBuX79Onbt2gXAPuX76tWrRftZrVaMGTMGS5YsAWAPszz88MMuz1OzZk20amWfb2Xnzp2ioaSe7LLBHlNr0KABXnvtNdF+8fHxeOaZZ3D33XfLEh+O5wAqbxbCMAxgn+eEzynR+u1m9OjRKCwsxOeffy5ar7VdUgiLSwH6sSvQ+qLWONmlQC4PeUCqN0ElQCgJ1Xtc3Vwcwy7CSQStViseeeQRLF68GIC94Ng333yDm266ye25eC8Cx3GiOVs82mUwAQjBggUL3Jb6l4urm96wYcNE62+55RZWU0QPNxepyqbCh4Jewo402kQeajzofUGN9pIKh8r5jl7+hoDYFr30Ra0JWgGilwvTyY1ZRbsKCwuxevVqrFy5EitXrsSaNWtQXCx/1kVXSai7d+8Wrf/pp59w5ox9hsoZM2awN3CTyYSvv/6azfniDjl5IMWlVtHncY8/jV69enk8hxxcuX2zsrJEc68Iw0e6TXzToV2BkuzpTdVNNdBtCEYFu3wpU6DHBGeAQjBSBFUOiCgJVScXgC8K3xVWqxVdu3YV1b0AgO7du2PTpk0eK4C6s4v/7ChAbDYbFi5ciHvuuQevv/46AHt1zq+++sopZOGKnj17IiQkBFar1a0AOX/+PFb+tAsIGcTWvfSv11zu7yvu/iZjx47Frl27EB0djdtuu03yO2VmuzdHTnsrhR7fBgPG00B2uUU43NX+WYlziD/LDcHw88foYbJDPfZFrSEPiMb48y1ix44dTuIDsE8lv3LlSr/YxQsQo9EoKqX+2GOPsdLnzz33HO6++26vzxUXF4dOnToBAA4fPoyzZ8867bNnzx506tQJ+VeKROtDw/w/14q7v8njjz+OVatWYceOHUhPT6/cx+F6Ela31RI9vnVV56HnShDMdvnkAdGrJ0unnhktCSoBIpwLpjrGUYV1N+6//35RtctXX32VzdzqnV3Obzdms5kJnGbNmrES+zk5OayGR4MGDUR1OLxFGIbhi3zxnDx5Ej169LCHeoziNHs13rqEn41GIwYNGuRUyly/b6nSy1oSCG0l9VkrgtmuqnpApD5rhR77otYElQCp7kmoQgEyY8YMvP/++6xK5q5du/DTTz9Vya4DBw6w2WDbtm2LcePGOX1v3rx5skedAO7zQBYuXIiiIrvnIz5RXMGTbnru0eNNLxDaSuqzVgSzXY4vinKTUKU+a4Ue+6LWBK0A0csF4K8QTEFBAf78808AQJMmTZCVlQWDwYCXX36Z7fPaa6957QWRShQU5n+0bdsWt912mygMMXbsWPTp08cn+7t06cKEy/r160V2Cgt/CSdU4+3yN1Wtvujtd5RGt9O4B0pSpQ7+hkBw21XVJFSpY2iB1crBIsif18vfUGuCSoDosg6In6oc/vrrr7Ba7Ve4sPDX0KFD2XTt27dvx88//+ydXRJvEXz9D8AuQEJDQ/HPf/4TANCwYUPMmjXLN+Nhr+bZvXt3AMCZM2ewc+dOAEBeXh47b9u2bVntD1d2+gNfkuv0+NalR5sAsksuznb5v+S5L1AIxnv0Oumo1gSVAAkJMcB0Y0JWPahiwH+dRRh+EZYhNxgMmDp1KvvsbS6IlF1CDwhf22PChAk4cuQIdu3ahRo1avhm/A1GjBjBlvnhvELBNHjwYG3cvhW+tZfWSNkkJw9IKfTYVoCe7VJ+tIkvqCNAxL+9uvTF8gp99EWtCSoBAlSGYfRwUQL+c0fzAiQ0NNSpLsadd97JpqHftm0bDh486Nkuh/YpLbexImR169YVlT1v3LgxYmNjfTNcwPDhwxERYU8yXbZsGcxmsyj8MmjQIP3WHtBhWMHRBo6DyA2sFf6ufeMv9Oi6B3RslxZ90YvBA3oMWUnZoJfROVoSdAKEHwmjh4sS8M/bzYkTJ3DixAkAQLdu3RATEyPabjQaReXQf//9dy/sEn8+l3eFFTRznP7dX8THx7PaIfn5+fj++++ZsEpMTETnzp3J7SsDKRv0aJcebAKC29PgC9QXvUevfVFrgk6A6N4D4oNda9euZcuuJn7r1q0bW5Y77T0A5J65wJaVEiAARELpueeeQ0FBAQB7WMlx2ntAR0moOnxLlbJBD8Jbj94igOySiyp90Yd+pcf2kuyLOrBLa4JOgPCJqHoRIE4K3we7fvnlF7bsSoC0a9cO4eH26YC9ESCOdp05n8+WlRQg/fr1Q61atQDY64vwDBo0SNIuteuASGGxcE6hDT1cX1Lual3YpcM3VMA/fVEJAqW99NAXbTbOKbShh/YiD4g0QVWKHaj0gFRVfV65cgU//PADSkpKANjDHLfccgsaN24s6zhV7cQVFRWscFdSUpJLcRAeHo6OHTvi999/x8mTJ5GXl4e0tDSv7Tp46ARbVlKAhISEYNSoUXj77bdF6/miZ3p0+0pt10OhO73e9IL5geoLTnbp4NoCXI3O8W/Jc7/0RR38HfXaF7UmaAVIVf74HMdh2LBh2Lx5s2h9QkICDh8+jNTUVBffdKaqrvudO3eisLAQgN17YDS6dmp169aN5X/88ccfuOuuu1zb5WBHSZn9Fb9Lly7MQ6EUDz/8sEiAdOzYETVr1gTHceokvvnhpqcH96pu7dJhuArQp+seCG675CahSnmt9NBeeg2Hak3QhmAqLHZ3nS9s2bLFSXwAwLVr1/Dvf/9b1rGq+tYlnL5eWE1Uiq5du7JlT2EYp45ujECXLl2wYsUKxSdZa968OTp06MA+8+EXx2ncAX24ffX6dhModlmt9jCW1gSMBySI7JLrAQmUa97VumAj6ASIP8qxv/POO2x58uTJWLBgAcuv+M9//oOLFy96fayqvkVs3LiRLXualt5bAVJeXo4z5y6J1mVmNcKGDRtQs2ZNeQb6yIQJEwDYQ1vDhw+326XSG73cJFR665JHwHhmdNBWQHB7jOSeQ7fXvE7vEVoTdAIkvIrl2E+ePIkVK1YAANLT0/Hmm29i7NixbF6UkpISzJ492+vjuXuLuHDhAp5//nmXc7hYLBYWUklLS0OjRo3cnis5ORlNmjQBYK9qWlpa6rTP5cuX0a9fPxQVi3tHm5s6sRodavDwww9jxYoV2Lx5M6thIv0W4f83Z3rrUhapv5k+7HL/WSuC2S7yRlZvgk6AiDwgPlwA77//PqtgN2HCBISF2Q/44osvsuWPPvoIly9f9up47jrYhAkT8O9//xu33347PvnkE6fv7tq1i03S1rt3b69CI/xw3IqKCmzfvl20zWw2o3fv3nZR4zjrrMpq3WAwYOjQoSKvjeSoDgUS8uimpyyBYpcebAL0aRfHcU73T0UEiFNVYg/7B8i15WpdsBHUAkTuBVBQUIAFCxYAACIjIzF+/Hi2LSMjA4899hgAoLi4WBSmcYcrF2N+fj5++OEHtv7xxx/Hp59+KtpXTviFx109kF9//RUHDhwAABhCxAJEF25MrUIwPrl9tc9p0KvbV7chmEBJ9tRBX5Sq4qmHmjzS17wO+qJOQ0NaE3QCpCoT0s2fP595HB566CEkJyeLtk+ZMoV5QT744APk5+c7HcMRV28333zzDSoqxFft+PHjMX/+fPZZmIDau3dvr36DOwHCz6YLAHAQIHpQ62q9RcitB6HXtxuySx569DQA+rRLq75I3sjqRdAJEF+TUC0WCz744AP2+ZlnnnHap3bt2njkkUcAAEVFRfjyyy89Htfx4Wa+MUnR0qVL2bp77rmHLY8bNw5//PGHKP8jNTWV5XZ4onHjxkw4/fHHH7AJ5muvFCAh4DjxpaGHt0HVPCAyb3qB8kbvap3aSL6l6uBm7GiDxWqfRl1r9OiZCSxvpP/s8RW9eiO1JugEiJQHJD8/H/fffz8ef/xxHD9+XPJ7P/74I7KzswHYh4U2bdpUcj9+9AYALF++3KM9Ug+3I0dPM3HRvHlzfP3113j22WcB2MXJ008/jV27drH6Hz179vR6aKzBYGB5FVevXsWhQ4cAADabDdu2bQMA1EzP8spOtdHMA+Ip7hwgFUddrVObQLJLDw8J8oBUQjkg1YugEyBSSaivv/46vvrqK3zyySdo2rQpxowZwyZ34xF6P55++mmXx2/RogWaN28OwB7iOHPmjFt7pC7CJcv+y5ZHjRoFg8GAt99+G61btwZgLz4mFDrehl94evbsyZb52WYPHz7M5l1p37Gb03f00FnI7SsPydEmOqiiqd/28m6d2khdj1pP5U59UR56HfmlNcEnQMIrl8vM9poXixcvZuusVisWLVqEFi1aYN26dQCAAwcOsHLnjRo1cjnfCs+9997Llr/55hu3+0op+uVfr2DLDzzwAAB7ifL33nuPrd+xYwdb9jYBlWfIkCFsmR9SLMz/aNvuZq/sVBs1XPdWq/O8LgFbCVWnb/S6bS8duu+lRptwHJyuUbVRoy9ynPO8Lh6TUAPp2tKBXVoTdAIkPLQyVFFmBn744QdcuXIFgN17kZCQAMAuTEaNGoWLFy/io48+Yt+ZMGGC23LnADBixAi2/PXXX7vdV0oFHz+ZCwDo0aMHsrIqwyF9+vRxKp+enJzMPC7e0qhRI/adP//8E3l5eSIB0qpNR6/sVBs13m6kbgp8Xo4rJO0iT4NLyC7vkRptAmhvlyp9UeJ4nvJy9Pg3dGWDEjWMAo2gEyCOSaifffYZ+zxnzhycPn0aAwYMAGAvBDZy5Eh88cUXAIDo6GiMHj3a4zmaNm3KwiVbt25luSNSSHaOGzU4Ro0a5bRp1qxZbKQNYPd++FIa/c477wRgf7CuXLkSW7duBQCYTCY0bNzSOztVRo2bi6vjuXvzopuePAKrvdS3w5vz69Eu1fqiG89BQOVj6eAlRWuCToAIk1DPns9nU9lnZWWhT58+iI+PxxdffMEmlFu3bh2Ki4sB2IfexsfHe3Ueb8IwFgsHwSCUSgzhiImJYSXIhdSvX58lpAL2Ceh8YdiwYWz5888/x8GDBwEAbdq0gTHEueJpuQ7izmq4MV0JDXfn0at7Vbd26XAUjM3GocLivF7r9nJ1fq3bS5W+6Oq3U1+sNgSdABF6QDZu3soeqmPGjGGhlZo1a2LRokVO333yySe9Po8wDONqNIxLZW6MwAsvvIDExETJzS+//DKefvppPPHEE2zYr1zat2+PjIwMAPZkWb4dunTp4tIuV+5gtdDtW5cO35xd2UB2SePq76u1XeQBkVjvxnOgx2vLlQ16sEtrglqAbN5iL0VuMBicQisDBw7EpEmT2Oe+ffvKyrVo2LAh2rVrB8CeMOo4qqaiogKHjp6S/G5icpro3I5ERkZizpw5+OijjxAaGupyP3cYDAaRF4Tn5ptv9unNQw3USKr05UEkVfVU67ZyZYPWb86APt8GffF8qUEg2VXuIVdK9jl88oBI9EU9XPM6TQjXmqATIMLJ6PKv2Kua9uvXT5TsyTNjxgzcd999aNmyJd59913Z5xKGYYSFxTiOQ58+fdCpcw/J7z340GOIiYmRfT65SAkQdx4QrRU75YDIg+zynkC65t2tVwup89ts/h2dQ97I6k/QCRChBwRG+5hcfg4XR8LDw7Fs2TLs378frVq1kn2u+++/n4V1FixYAKvV3js3bNhgL4NulJ5dtvctA2Wfyxd69erFRv0A9tBTvXr1dHzTU34sPd30lEePdvni7lcD/fZFeet9OoeLtnd3Dj1eW65s0INdWhN0AmTn9j8qPxgjMGbMGFGpc3+SmZmJgQPtYiInJwdr164FAHz88cc3zh8u+T0rZ1LEHkdCQ0Nx++23s89dunSBwWAIrMQ3FYbhAh5CMHoNdejU7SsdgtFfgrO79WoRSH0R8K9dvpwjoK55HdwjtCaoBMjKlSvx+mv/Yp9btGqPefPm+TSM1VvGjRvHlj/99FOcPXuWFf9KSsmQ/I6ayvjuu+9my3yF1EB66/J3VUjygCiLzeZcXAogT4MrgtkuX86hx2velQ16sEtr1HnV1gElJSUYN24crObabF2fWwYiJCRE0fPedtttSE9Px/nz5/HDDz8gNTWVhWKGDB2Ohbvt+0VH2FBcZteDairjoUOHYtq0abh48SLGjx/vdP6YSKCo1L6s9ZuE8PzC9qqwAGG+5eI6n0Pw2w0Ge9VJx/Xu7OLbS+u2Aipt0NPf0CzRVoD2dgXCNa9Xu0T3Lj/aJTyWqC96OQxXV33xxvUVHQEUl91YpwO7tCZoPCBRUVFYtWoV4mIr8y7KLcp5PnhMJhPGjh0LwF7m/ZNPPgEAGI1GDBg0lO2XGFv5p1BTGRsMBrzyyiv46KOPEB0d7XT+BEEurNaKXXj+uCib5Hq/niNaer3TdwRv73x7ad1WQhtiIgGjgROt04pAuLZ0ZZfEtQXowC5BPpbafdFbb6Qe+2J0JBAaoo++qAeCRoAAQNu2bfHfb5awz2p5GqRqddxxxx2IS6jJPsd7+bBTA+H543V106tcjo1U/qYX78NNj2+vCos93KAlvF0RYUBY6I2bno5CHXq9tqgvekZ4HandF70NwfDtZbXaiz5qCW9XeKigL5IACS4BAgCNGtRhy2pdAPXq1UP//v1F6x5//HHRQ014c9HaNSeyy8uHsBqUuxAgSiW+eXvT02173Th/RBgQfuOmpxebAH22FeDQF3WU7KnX9lKsL7p6GaC+WG2QLUCuXr2KiRMnolu3brjrrrvw119/Se43bdo0dOnSBT169ECPHj1ElUG1RDgMV00FKkxGbdCgAfr37+/G3a+1Wq88v+ghrKO355goTnK9P8+R4KUoFHlmoqTXa4Horcukj7euQPA06KsvVi4Hc1/09gXNlxCqGuixL+oB2UmoM2fOREpKCtavX4+tW7diypQpWLFiBeLi4pz2HT9+vFeTt6mJ42R0ajFkyBD06tULv//+O2bNmgWj0SiqoOmtwleDch86vhq4fOvyZ+Kbq9/uxVtXRJjD9aXh31E4jbv9reuGTTr6G5KnwTOB4CVVrC/64o28sS0sFIjU6F7vCMdx0h4QEiDyBEhJSQk2btyIlStXIiIiAr1798bSpUuxadMmUT0JuZjNZpjN4r+GyWQSzfrqL0IFg17KygGb5Gxw/sdkMmHdunWwWq0IDQ2FzWZDieAtJj6aA2BPii01q2eXFKUu3rpKyjlN8xpEcWdB4ltJmf/sKhWdQ7je9Tl4u4QPen/bJRfhzS08jGM3vTKNr62Sssplx4eKfuwS9EUV7xFSlIruEcL12vZFoV3CJFR/3iNE53DwSrnsi0LRLXh8aNkX7flg9mU99UUl4QtwekKWAMnJyUFMTAySk5PZukaNGuHkyZOS+y9evBiLFy9GVlYWnnzySTY3iiMLFy7EvHnzROuGDx+uSNjGPpTLXna9sKgc2dl5fj+Ht5y/EAugBgDAYCsEYJ9p93L+dWRnX9HMrstXkgDwGVwFzK5zefnIzi7SzK6CojQA4QgxcogKr7yZnM7NQ0qkf3zSFy4lgP+9Rtt1ALEAgLyLV5GdXSj5naLSDAAmmEKssJhLwbfdydNnYTBLTLGqAoUlBgD2fCfOWoawG8q7rJxDdnaOJjYBQHZOOIA0AICtogAGQxw4zoCC6xr3xTwXffGKtn0x72I8gAT7B0FfvHCpANnZ1zSyCrh6LQWAXaELXwbOnL2E7OwSv5zjwqXK3+51XyypBSAUoUYrKsqFffEcQiq0cYMUlTr0RZP94Vxm1rYvKkm9evW82k+WACktLWVDNXmio6NRVOT8ULrvvvvw7LPPIjIyEuvWrcOkSZOwfPlypKWlOe07ZswYjBw5UmyYQh4QwO6eM1cAnCFccg4YtYgWuFQz02PZcmh4LLKyYiW+oQ6hgmavUyueLcfEJiErK0kDi25wY9S00I0JAIk10uCvP2OEwOtRO63ybxAVk4isLOnZia037r/RESFIqlH5R01KyfCbXXK5eLVyOSEuAtdvuLXMFgPq1MmCgrX33HL0UuVyzeR4RITdeNM1atwXBd1NT30xUnA9CvtiRFQ8srLiJb6hDkaBp08YgomNT1G8L0ZGuemLN24LUZEhSBb1xVqa9cXL1yqXE+IiUG62vyxZrAbUrp0FhUtR6RpZAiQyMhLFxcWidcXFxYiMjHTat2nTpmx50KBBWLVqFbZt24ahQ4c67RsWFqaY2JAiIswGc4XdBeatq0gJ7OWn7T0mQVAHpLxCa7sqbyiJsQbwNpZXGGA0avTkAlBmttsVHmYQCRCzxX92CX97Qozwt7v+m/B2RYSL487+tEsuZkvlteXYXhUWAyLCNbJLcM1HhhsQEcahtJz6oitc90WN7TJX2iUMwfi1L5ql+6LZ4rkvhocCkYKZLswa3ruEfTEizICwMEFftBoQGqrdPVVrZF3BderUQVFRES5fvszWHTt2DPXr1/f4XSXLncuFTxTUOpHL5WgTnWRsA4526WNEQERYZSY54N8RAS4z772oPRAeKo47a/l3FJ7bqb10Yld4aGXOjPbXvP5Hfun1HhETqW5f9KYOiGM+lm6u+TAgzCS9LRiRJUCioqLQs2dPzJ07F2VlZdi4cSNOnDjB5hARsn79epSWlsJisWDNmjXYu3cvOnbs6DfDq4Jebnoux7nrKMNdjyMVHEMwamTeuzqHY4a7XkbBlDsIEKXaSy7CcwvbS1fXPPVFj/B2hZqAyDB1R8F4U4o9Ily7EY+OOF7zor5IAkQeU6ZMwYULF9C3b1/MmTMHM2bMQFxcHFavXi1KGv3yyy8xcOBA9OvXD0uXLsWsWbNQq1YtvxrvK/yFqbUACYS3Gz3aJawmKFzvz3MA3r11VVgq56iwv9EbPH5HDRw9Dbr0gAhGKujl2gL0ec0D+rRLi77o6qFtsXC4Mc3WDW8k9UW9I7sOSGJiIt5//32n9YMGDcKgQYPY5wULFlTNMgXRY00E0VwHWr/d3Di/0WifPImt10l7KeoBkemVcvVG72+75OL2rUtLuxw8M8wDopNrHhAPv9b8mte5l9Qx1GHPpfFXPlblsjfiy21fJG+kLgm6UuyA3T0HaK8+heePCtdPhTxhHFWYyKWlXcJp3O2eBhXeurwQhY65FlpV2nXEOddCH29drtqrzGwPZ2mF0K7IcCA81Oa0Xgt0O0meKNdC5b7o4qHteM3rsS8q2V6BSHAKkBsXps2m7SRFzslJ+hIgwiRB4XotcHy7UcqNKTcEI0y6E4YU/G2XXJySUEOVSRSUi6skVABMYGqBk5tcJ3liup2MThiCUbkveiNAdJuEqmDIKhAJSgGilwvTlZtca7ec3pMqw50SufwnIkUlpr1wxZPbVx52F72dQAhZaR4aEtgVFQ5WM0Lze4QLD4hSk9HFCfqiTyEYHV5bjtuCkaAUIHp0zelpmma9DytVI/HN23CKuzd63bSXjob+OSWh6rG9dDRhGH/+kBDAZDJUjuDTyfDgcEfvmgJ9MdQERAlz0bzpiwFwbTluC0aCUoCIk6a0s8PxLTVM7x6QIHiLKBfcWL25TgLhrcvJY6Sjaz4iXHqb2gSCN1L4v5Z2Wa0cLNZKe5QeEh8eahchfCkplx4Qd9eWXvsiCZDgQ28eEIPB3sHCdeYBiQjX6VuEColvEWGA0WhA6A3PgW9JqDrJLwqAJFTHbWrj6vrSTV90ECB6DB0DyvVFg6HS++NbEqo++iIloYoJegGipTIWhjoMBn24fYXTuIeHAiEhBphuxJ318oCIUDCkIPyb8Odyd45AcPs6JaHqxC49hqzCJPqiHkbn8O2khyKKwnOHqZCEyoeBwz14f9wmoWqZeO2QqK6XvqgHglKAiPIaNLwwHd2rvDK2WrUbnWN2eLsR/q8n173Sbt/Kv4n7c4jtMuhG3Oq1+qJuQ1YOnga+vTgOLNygBY52BXNf9PQyIL62AqQvUhJq8KE3ty8viMJ0cGE6vqEC+qhW6TaRS4H5JyJ8eOvSV9JuZfvoKfFN7x4Q3h69vKU6eUB02BdNIZ7zM6pyHqeXgUBOCA/VT0K4HghKAaKbJFQXHhDhNrVxVOvC//X05hwe5v+2Es7r4m0IhobhykPUXjqcr0OyL+rgunfsi+YK7UJDjte8waDMPaLcUXzJ8kbq6doSDz3Xy7WlB4JSgETobI4AqZueVnY5xlGF/+uhrQDlkiotVntxOsC3ty7dJlXqOgmV+qIrrFYOFRb7smNfBLR7eKlxj7BYxCNtvDmHYz6WHvsiJaGKCVIBUrmshwuTuX114Jpz7MSA/hLflKqEKvXbPcXcA8Ht65yEqn1SJSARstJBhdbKvqj9Q8Jx+Cagj+tLMkzr53uE6Lc7hJ+8TkLV2X0ekKphpF1f1ANBKUD0EIIRjjbRk9vX0Y0p/F8PLnKgMu4cYnTeVqVzSPx2/lqpsNjno/H0Hf24fSuX9VR7gD93qMk+zFlv7cXXjtBDyMpdONRxu5q4DdP6qy9KnIPvi66m0HC8R+jBW+R4bj2FQ/VAUAqQCB1MsCY12kQPrjl37lVXD2E1cOedUMID4piECkjfLAIhBKMnt6+ruhbCbWojnMZdV31R4BHSU3upEYJxdw5X56G+GHgEpQAReUD04F6VcPvq4e3G0b3quF1NJL0Tfk58k/rtnt6iHD0NYTpoK0Ciyq4Ori3huXV1bUn1RZ3eI3TRXm7CtEp4I6XCT1LncfSahJrc768Wjn9HvfRFPRCUAkQPyljybVsHytiXNw810MwD4iHmLozh8tVT9TCTqt6TUPV6bVFf9Iw7u8rN/hmd45sHRDD0PMxePVVvCfTkARFDAkQHnViqDogu7Aq1j1DQQ6KgO3GgSBKql2+cbhPydJBUCfBJqNLb1MapuqUO7JL6G+ohCdVdTR5AH31Ryi5/eIw8nkOqL0qErHRXN8UpIVwDg3REUAoQvbkxAyUJFdDSTS4urAUokPjmw1uXGgl5vuDo9tVL4ptTXQvRZHT6qGsB6KO9AiEJ1bFMuuN2f5xDyhvpMRyq0D3CF/RalVgPBKUAET9UtE+qJLevZ1RPfONHQ8hMQlXCLl/gz20KsU/lrodrS3huvV9bemivQOyLjtvVPIfe+6LRaO+Peri29EJQChB/uwt9ISDcvjp1k3s7RLYq5+DDT56SUPVeN4W3Xw/XlnC0iVSISw+jTXQbDmXXlvaF2zyFKv0tQLxNQlUjTOsL/PXlOOkoQAIkKAWIHt4iyO0rj3KJm56/7fLk9pUMwbhLyNOB21dyniEdXfO6uLb02hdF15aEINaFXeL/AT/1RYnfLmcUjFMIRsMHvWPYMUwno3P0AAkQPbxF6PWtS09vqRI3PX8nVnoaBeN1EqqO3L787wi54f4VbtPKJkC/15akN1JPyZ66aC/nfCwlPSBS+UIeQzCsoFzlNq3mzmGJ1zdsMRj04ZnRA0EpQHSRhOowdTSgk7cuqbdUUaKguvaw8/pQo8M/5zBIbpda5/g26Kpioxo4TuQFaO+ZCQwPCPVFT3j8OyrUF4XhJ8kkVA9eUn5eHbVx9IAIlykJNQjRhQdEasiYLjwg4roW9v/1FXdWM/HN07BHqbdUXVxfDh4Q4bLWNgGVD9IID+2rBpSEKg/N+qIPOSB6ai899UW9QAJEB51YejI6jdyFEgl5+nD7Vi5LigN/3PQ8/HZ3N72QEMBkco5Va91ewmtda7evx7oWOrJLDxOGBUJCuFJ2+SLs+XUGQ2UVVD1dX0Jb9BCm1QNBKUD8PWbdFzwmvunVvaqD9nKshOq43R/n8Pa3O04oqIRdcrFaK6cy11UIRoXkRV8Q2aWnyej02l4q3CMk74+e+qKgzL/B4N0oNqXhOI7N+yUZgqEk1OBDbx4Qcvt6Ro1Qhye3r7u3LlcCRIv2krp5C5f18Df0tn3VIHD7ovaeGVVCMF6G63TZFyXaSrhMHpAgxBRid9MB+vA0SLl99fB2I1mOXKv2unFe+zTu9mV/2+Wu2qqrczhOrgZo72GT8hYJl/V0zYeEGNjoHD1d86Khkpq1l/vRJlr3RUC5UuzlHkbauPWASIQdXX1HaaSuLeFyeYV2o3P0QFAKED1MUhS4b13q2uN4XiXfbjzlmbjLAXFplwaJlVIJzsJli1Wb0TlS7Stc1vraEtpCfdE1quRjVSEJVU8eEE/XvM0GFi4NRoJSgAB6uOmJZ24E9FEhT++JglJJlcLt/jiH8NjehmCk3m78ZZdcXN30tH4bFCcvGgTLztvVxGMdEB3Zpae+CKhUCVUy5OosoNW4R8hFKmEX0M/kkFoTtAJE6ALTgoCYjE4i9ip0C6uJVKhD0eqLXv52d2P8/WWXXFy6fbW2y8PboB5CHZVv9PoKh0pfj+raI3XeMKlQpRpJqFLhUImXAVHdFI37ost7BAmQ4EN7D4izLeT2dY1mIRg3byo2m6sMd23rpnhy+zruoxa6DcHotiZP5bJe+yKfS6d1HRCO41zcI6gv6pmgFSAsIU8HbxEBlYSqsV2u3Jj+fuvyJrnOLNxfR6EOT4lvgDZvXd4k5GmBVNKuMASjBy+prvqiVF0LkV1V95J6Gnbv+NAWVjnV1TUv8Td0XA7mobhBK0A0f+uSUMahgtE5WttlH23iPJZea7uUTPb09MbpeKPQ69tNoNql9bUltMUUYp8/x3G7mgSCB4TH731R0itVuY76YvUg6AVIuVmbYVBSyUl6mKRIMqlS484inMZdlGCmoNvXm+Q6qf2VsEsuUjUUAJ0l5Em8DVZY7GEttfH0d9RDiXg9JqEqmXgt97d7k3itq2teB39HPRC0AkR4MZj1mJCnsTtaTwlTrlz3aiS+uTuHXhPMxG7fyhi41gmMUkmVgM7s0mFfFNqidUgBUCfxWu6Ed+USL3RK2CUXqYkO7cuCfUiABB9au8D07o7Wk7vQOzdm1d+c+fOI5nVxc6PQq3tVv3Y5jzZxXNZje2ndF4HK69BoNLDcJ63tUishPMyL/Bf9XvPStmhtl14IWgGiW9ecTm4urhLM9NhWjvv4fJ5yeedQyy656NXtK5rsz5VdWhRuc/H2rJe+GCaY2wTQ1i7haBMlry3hfUhqXpdADIfq6Z6qF4JWgOhpfLjkhGFauVc9vN1o3VZKuu7lupY9hdH8ZZdcdBsa8sYuCocypPqi8LMWdlmsAJ8yp0YIxttCet5d8+rnF+n1HqEXgleA6EQZC939gH6qQgo7u9ZV+9RKMJP67aHCOUHcuH2l5lyx76Ofkudav3Xp3WNkMIDNSwPoxwMibB/hZ83/hir3RZPJwOaB8jYEo5dry9EWre3SC0ErQLRO5pJS+MLPWkxSJJzGXWiXwWDQtG6Kq7H0/n6jl/qbuJs3SLeehoBIyJNe1tKuiDBxqIO3y6zRhGHe3CPUxqs3en/0RQ/eH8dQnasJGPVybTnaonVVYr0QtAJELx4QVx2M48TFddTAVWcRftY6Rq9G4pvjb3c1i6zYLukMd63fupQctiwXvSbkeeqLgDZC0pNdevobKuUBceqLLorWBVpf1NouvRC0AkRrF5gr96qW4Q5X7kLhZ607sRq1B8J9uOnpyb1aJjGVueOy5n9HHbrJ9dQXhed06os6ESBCu0JCKsNXSoVghJ+d+qI3Cc5a90VX17xGdWb0QNAKEM1dc968dalslyv3qvCzntyY/mwrjpOe10X42acQTDVtL19w6b4Pl95HLTyFOoT7qAXHcZV2hYu38XZZrfYifWrijZfUH33R098kYPoiJaG6RbYAuXr1KiZOnIhu3brhrrvuwl9//SW5X1lZGaZOnYqePXvitttuw88//1xlY/2JXiYpcnfTU1sZi9yFLm56Wr91KeVedSe+vHP7Si9r317Sy/qyKwD6osp2WayAzeZsh+NntR9erv6Gws9VbasKi/RIGwAuc9G8uuarcfg4UDF53kXMzJkzkZKSgvXr12Pr1q2YMmUKVqxYgbi4ONF+c+fORUFBAVatWoUTJ05g4sSJaNasGbKysvxmfFUQusOWb+Bw4JS65y/14GIEgA/+xyFJ3KyKcumatOte+LmoFJi5VN23rn0npN2YQhf5qfNVs8vVsGjh5+sl4nP8ecCFe1WwfPC0+u311yFpW4S/67fdHMJk9/6qcTqvclk4ukho19e/cjiUrZ5NAFBcesMOFw87APjwfxyS49WzyexicjXHz7OWcYh0eFlQkpwLbu4RN9rrckHVrnnRb3fxMlDscB/aetBz2PFgtvp9cZuwL7oIDW3cw2HmUvVscmTiPUBEuMHzjgog6xZUUlKCjRs3YuXKlYiIiEDv3r2xdOlSbNq0Cbfffrto31WrVmH27NmIiYlBmzZt0LNnT6xZswaPPfaY03HNZjPMZrEMNJlMCAsLc9rXXwgvhiVrAED9LHfeDpvNBtuN1x37NOD2i2HWMu3sCjOB2QRUKvYKCzBlrjY2AfZZSivtsiEs1AhzBZBzwX92hYXK/+2hJo7NYyJ8sB/K1ra9QkMq2yss1Abe6blhF7Bhl3bXPMdxbGSJsC8uXQvosS/++yvt7HK8HoUPr1cXAXqwy2azISLUfm0VFvuxL7q4D1ms8vvikRyN+6Lg3hVmquyLv+4Gft2tnV2P3i6eid0fGI3eBVdkCZCcnBzExMQgOTmZrWvUqBFOnjwp2q+wsBD5+flo2LAhW9e4cWMcOHBA8rgLFy7EvHnzROuGDx+OESNGyDFPFg1TQmEwpIPjtFF+PO0aFCA7+xr73KrOZQApmtnD7Mi8hOzsEva5bf0EbD+s4iugBAYDh4Yp55Gba3dX5Obm4uamNbFpf6Rfz9Mm6wqys6+zz+0aJGDHEde/PczEoU78WWRn28cwcxzQql4a9p9S8dVUglpJFoRUnEVurv1zUvgZxEdnoKA4xP0XFebmZqXIzr7IPjfQS1+s79AXM/XRF9vWFV+PberE4jvU0NAiO81qXUBubhkAe1/s0KgGTpyL9es5bqon/u1t6yfgr0Ou+2JoCIesRHFfbFM/DXtPatsX02tYEGqp7Is1ws8gIToD1zTui4D9b1cYbfO8owzq1avn1X4GTsYA9927d+PVV1/FihUr2LqPPvoIRUVFePHFF9m6vLw8DB06FNu2bWPrvvvuO/z222+YM2eO03G18IAAdrf93uOKnsItyfFAt1b2Akg2mw25ubnIzMzEvhNGkbtaberXAlo3EK+z2YAtfwP5BdrYBAA3NQTqpovbymI14tfdQKmf4ru1koGOTe1/Ex5Pv71TM/v3hJSW299stJjoELCPSujVBoiLFrfX1etG/L6/MsauNpHhQJ+24vAZAJw+D+zRuC92bQkYjeL22n/SiFPntbMrPcl+fQmvR44DdhwBzl7Szq4mdYBmWeK24jgjNu0DCor8cw5XffGPv+1hHin02hd7tgbiY8Ttda3IiM37tOuLPINvdu6PVUURD0hkZCSKi4tF64qLixEZKX4DjYqKgtVqRVlZGSIiIth+UVFRkscNCwtTXGxI0SDD/k9PGI1GtGtiRLsmWlsixmgEet2ktRVijEYjIkxGDLpZ6fPI/+3RkcDtXRUxx2eMRiNSEo24s6fWljhTP8P+T08YjUa0bWxE28ZaW+JM5+ZaWyDGaDTCaDSib3ulzwP0vEned/TaF5MT9NkX1UTWKJg6deqgqKgIly9fZuuOHTuG+vXri/aLi4tDUlISjh+vfKU5evSo034EQRAEQQQnsgRIVFQUevbsiblz56KsrAwbN27EiRMn0LOns4wbPHgw5s+fj+LiYuzfvx+bNm1C//79/WY4QRAEQRCBi+w6IFOmTMGFCxfQt29fzJkzBzNmzEBcXBxWr14tShodP348YmJiMHDgQEyZMgVTpkxB3bp1/Wk7QRAEQRABiqwkVEI5bDYbsrOzkZWV5XUCT7BCbSUPai95UHt5D7WVPKi9xFALEARBEAShOiRACIIgCIJQHRIgBEEQBEGoDgkQgiAIgiBUhwQIQRAEQRCqQwKEIAiCIAjVIQFCEARBEITqkAAhCIIgCEJ1SIAQBEEQBKE6JEAIgiAIglAdKsVOEARBEITqkAeEIAiCIAjVIQFCEARBEITqkAAhCIIgCEJ1SIAQBEEQBKE6JEAIgiAIglAdEiAEQRAEQagOCRCCIAiCIFSHBAhBEARBEKpDAoQgCIIgCNUhAUIQBEEQhOqQAFGAuXPnYvjw4ejYsSN++eUXtr6srAxvvPEG+vfvj1tvvRWLFy8Wfa9Dhw7o3r07evTogR49euCzzz4TfXfq1Kno2bMnbrvtNvz888+q/R6lUaK93nnnHQwdOhQ9e/bEgw8+iF27dqn2e5REibbiOXfuHLp164Y333xT8d+hFkq11w8//IA777wT3bt3xz333IPs7GxVfo/SKNFeZ8+exYQJE9C7d28MGjQICxcuVO33KImvbVVUVITXXnsNt9xyC3r37o1//vOfou9W1/u8FCatDaiOZGZmYvLkyfjkk09E6xcsWIBz587hu+++Q1FRER5//HE0bNgQXbp0YfusWLECycnJTsecO3cuCgoKsGrVKpw4cQITJ05Es2bNkJWVpfjvURol2ismJgYffvghMjIysGHDBjz33HNYuXIloqOjFf89SqJEW/G88847aNKkiWK2a4ES7bVp0yYsWbIE//73v1G/fn2cPXsWsbGxiv8WNVCivWbNmoWMjAzMmTMHFy5cwCOPPIIWLVqgU6dOiv8eJfG1rV599VWkpqbihx9+QEREBI4fP86+W53v81KQB0QBBg8ejJtvvhlhYWGi9X/++SceeOABxMTEIC0tDUOGDMFPP/3k1TFXrVqFcePGISYmBm3atEHPnj2xZs0aJcxXHSXaa9y4ccjMzITRaES/fv0QHh6OnJwcJcxXFSXaiv8+x3Ho3Lmzv03WFCXaa/78+Xj22WfRoEEDGAwG1K5dG/Hx8UqYrzpKtNf58+dx6623wmQyISMjAzfddBNOnjyphPmq4ktbnThxAocPH8akSZMQExMDk8mEpk2bsu9W5/u8FCRAVEY4+TDHcU4dcdSoURg0aBCmTZuGa9euAQAKCwuRn5+Phg0bsv0aN25cLTqxJ3xpL0fOnTuHwsJCZGZmKmmq5vjaVhUVFZgzZw6eeeYZlSzVB760l9VqxZEjR3D8+HEMHjwYQ4YMwbx58xAMk4r7en0NHz4cv/zyC8xmM3JycrB//3506NBBLbM1wVVbHTp0CHXq1MHUqVPRt29fPPTQQ9i9ezeA4LzPkwBRkZtvvhnLli3D9evXce7cOfz4448oKytj2+fNm4cff/wRX375JcrKyvDaa68BAEpKShASEoKIiAi2b3R0NEpKSlT/DWria3sJsVgsmDZtGh588EHExMSoab6qVKWtli5dim7dulV7gSbE1/a6cuUKrFYrtm/fjuXLl+PTTz/F2rVrsXLlSq1+iipU5fpq06YN9u/fjx49euCuu+7C0KFDRQ/Z6oa7trp48SK2bduGTp064ZdffsHo0aPx3HPPoaCgICjv8yRAVOSRRx5BrVq1cM899+Dpp59G3759kZKSwra3bdsWJpMJiYmJeO6557BlyxZUVFQgKioKVqtV1OGLi4sRFRWlxc9QDV/bi4fjOEybNg2JiYkYN26cFj9BNXxtq4sXL+KHH37A2LFjNbRefXxtr/DwcADAww8/jNjYWKSlpWH48OHYsmWLVj9FFXxtL6vViokTJ2LYsGHYsmULfvjhB6xbtw7r1q3T8Ncoi7u2Cg8PR0ZGBoYNGwaTyYRbbrkFGRkZ2L9/f1De50mAqEhkZCT++c9/4pdffsG3334Lg8GA5s2bS+5rNNr/NBzHIS4uDklJSaJkpaNHj6J+/fqq2K0VvrYXz9tvv41Lly7h9ddfZ9urK7621cGDB3HhwgXcddddGDBgAJYsWYKffvoJTz31lJrmq05V+qLwwcuvr+742l6FhYW4dOkS7rnnHphMJtSqVQu9e/fGzp071TRfVdy1VYMGDVx+Lxjv89X7rqwRFosF5eXl4DiOLdtsNly4cAGXL1+G1WrF1q1bsXLlSjzwwAMA7MlJR48ehdVqRWFhIWbPno3OnTuzBKfBgwdj/vz5KC4uxv79+7Fp0yb0799fy5/pN5Ror7lz52Lv3r2YPXu2U5JYIOPvturatSu+//57LF26FEuXLsXdd9+Nfv364fXXX9f4l/oHJa6t22+/HV988QWKi4tx6dIl/Pe//0X37t21/Jl+w9/tlZiYiNTUVKxYsYIdZ+PGjW4fxIGCL23VoUMHcByHH3/8EVarFRs3bsTZs2fRqlUrANX7Pi+FgQsG+a4y06ZNw48//ihaxw/VeuWVV3Dt2jXUrVsXzz33HNq2bQsA2L59O2bMmIGLFy8iOjoanTp1wqRJk1CjRg0A9vHh06dPx8aNGxEXF4ennnoKAwcOVPeHKYQS7dWhQweEhYUhJCSEHfOll17CoEGDVPpVyqBEWwmZO3cu8vPz8dJLLyn/Y1RAifaqqKjAzJkzsXbtWkRFRWHYsGEYN24cDAaDuj9OAZRorwMHDmD27Nk4ceIEIiIicOutt+KZZ54R9c1AxJe2AoBjx47h9ddfx6lTp5CZmYnnnnsO7dq1A1C97/NSkAAhCIIgCEJ1KARDEARBEITqkAAhCIIgCEJ1SIAQBEEQBKE6JEAIgiAIglAdEiAEQRAEQagOCRCCIAiCIFSHBAhBEARBEKpDAoQgCIIgCNUhAUIQRMDRoUMHdOjQodrPQksQ1RkSIARBSDJu3Dj2oL///vtF265du4Zu3bqx7R988IHfz79y5Up2fIIgqh8kQAiC8MixY8ewa9cu9nnFihUoLy/X0CKCIAIdEiAEQbjFZDIBAJYvXw4AsFqt+Pbbb9l6IQUFBZg5cyZuu+02dO7cGbfeeiumTp2KvLw8ts/cuXPRoUMH3HHHHVi7di3uvvtudO/eHY899hhOnz4NwD7R16uvvsq+w3tC5s6dKzpfUVERpk2bhl69emHQoEGYP3++v38+QRAKQQKEIAi3NG7cGBkZGfjtt99w4cIFbNq0CXl5eejbt69ov/LycowbNw7ffPMNLl++jKysLBQXF2P16tUYM2YMrl69Ktr/4sWLmDp1KgwGA8rLy7F792689tprAIDatWsjIyOD7duyZUu0bNkSqampomN8+OGH2Lp1K0JDQ3Hp0iV88skn2Lp1q0ItQRCEPyEBQhCEW4xGI4YPH848H7wn5N577xXt98svv+DEiRMAgJkzZ+Lrr7/GggULYDQacenSJXz99dei/a1WK95++218++23LMdk3759KCsrw6OPPopHH32U7bto0SIsWrQIw4YNEx2jcePGWLlypcgjs337dr/+foIglIEECEEQHhk6dCgiIyPx9ddfY8eOHWjWrBlat24t2ufgwYMAgIiICPTu3RsA0LRpU2RlZYm288TExKBnz54AgPr167P1jp4Sd/Tv3x+hoaFISEhAjRo1AABXrlyR9+MIgtAEEiAEQXgkNjYWgwYNQnFxMQBn74evx+QJCQlhyxzHVekYcr5PEIR2kAAhCMIrRowYAQBISEjArbfe6rS9efPmAICysjL89ttvAIDDhw8jOztbtN1bIiIi2HJpaakvJhMEoWOc09gJgiAkaNiwIdavX4+QkBCEhYU5bR8wYACWLFmCkydP4sUXX0RWVhbOnj0Lm82GlJQUJmC8pW7dumx5+PDhSE5OxjPPPIObbrqpir+EIAg9QB4QgiC8Jj4+HjExMZLbwsPDMW/ePCYWsrOzER0djUGDBmHhwoVITEyUda5GjRrh0UcfRVJSEvLy8vD333/j+vXr/vgZBEHoAANHAVOCIAiCIFSGPCAEQRAEQagOCRCCIAiCIFSHBAhBEARBEKpDAoQgCIIgCNUhAUIQBEEQhOqQACEIgiAIQnVIgBAEQRAEoTokQAiCIAiCUB0SIARBEARBqA4JEIIgCIIgVIcECEEQBEEQqvP/WfeoJwOqLCoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -383,14 +455,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEPCAYAAABMTw/iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABXpklEQVR4nO2deZgcVbn/P92zr8lkTyZkI4QQCEnghMVAjEAQCIgi64VHEBVQI/eiInhdkU3ADfCKN4qi4lXEiyz3wgXZtygclh9CNsxGMskkM5mZJLNleqbr90fPqZyuruq1qnumcz7PkyfT1d11zqmu+tZb3/Oec0KWZWEwGAyG4iVc6AoYDAaDIViM0BsMBkORY4TeYDAYihwj9AaDwVDkGKE3GAyGIscIvcFgMBQ5Q1XoraH6r7m5ueB1MG0p/vYUU1uKrT1DvC2uDFWhH7IMDAwUugq+UUxtgeJqTzG1BYqrPcOxLUboDQaDocgxQm8wGAxFjhF6g8FgKHKM0BsMBkORY4TeYDAYihwj9AaDwVDkGKE3GAyGAOnp6aHQ08Eboc+Sr3/96zz33HM8/PDD3HrrrQBcdtllTJ8+nfnz53PUUUexcuXKAtfSYDAUkq1btzJ27Fj+7d/+raD1MEKfJX//+9857rjjeOGFF1i8eLG9/Y477uDtt9/m+9//PldeeWUBa5g9/f39ha6CwVAUvPnmm3R1dfHGG28UtB5G6DPkxhtv5Mgjj+T111/n+OOP55e//CWf//zn+d73vhf3ucWLF/PPf/6Tzs5OTj75ZI466ijmzp3LI488AkBXVxfLli1j3rx5HHHEETzwwAMAXH/99cyZM4cjjzySr371qwC0tLTwyU9+koULF7Jw4UJeeeUVAL773e9y+eWXs2TJEmbMmMFdd90VV89DDz2UE044gYsuuogf/OAHAKxfv57TTjuNo48+mnPOOYc1a9YAsaeRq666imOPPZavfe1rvPDCC8yfP5/58+ezYMEC9u7dG+yBNRiKkJaWFgAikUhhK2JZ1lD8N2TZunWr9dprr1nLly+3+vr6rA996EP2e5deeqn14IMPWpZlWX/605+sY445xopEItbu3bsty7KslpYW6+CDD7ai0aj15z//2frsZz9rf7ejo8NqbW21Zs2aZUWjUcuyLKu9vd2yLMu66KKLrJdeesmyLMvavHmzNXv2bMuyLOs73/mOdfzxx1u9vb1WS0uLNWrUKKuvr8967bXXrHnz5lk9PT3Wnj17rJkzZ1p33HGHZVmWddJJJ1nr1q2zLMuyHn30UesjH/mIXfdly5ZZ/f39lmVZ1plnnmm9/PLLlmVZ1t69e61IJOL/wfSZrVu3FroKvlFMbbGs4mpPJm255ZZbLMCaP39+gDWKw1VTSwt7m8mOUCgUyH6tNDtM3nzzTebNm8eaNWs47LDD4t679tpruemmmxg7diz33nsvlmXx7//+77z44ouEw2GamprYsWMHc+fO5Stf+QrXXXcdZ555JieeeCL9/f1UVlbymc98hjPPPJMzzzwTgKeffppVq1bZZezZs4fOzk4Ali1bRkVFBRUVFYwbN44dO3bwyiuvcPbZZ1NZWUllZSVnnXUWAJ2dnbz66qucd955QCzKiEaj9n7PO+88SkpKAFi0aBFf/vKXufjiiznnnHOYPHlylkfVYDhwGSoR/bAU+kLx9ttvc/HFF7Njxw7GjBlDd3c3lmUxf/58u+P1jjvu4Nxzz7W/c99999HS0sIbb7xBWVkZ06ZNo7e3l1mzZvHmm2/y+OOP881vfpOTTz6Zb3/727z22ms888wz/PnPf+anP/0pzz77LNFolL/97W9UVlYm1KmiosL+u6SkJKm/Ho1GGTlyJG+//TYATU1NNDY22u/X1NTYf19//fUsW7aMxx9/nEWLFvHkk08ye/bsrI+dwXAgMlSEflh69F6PJ7n+S8X8+fN56qmnmDVrFqtWreKkk07iySef5O2336aqqsr1O7t372bcuHGUlZXx3HPPsXnzZgC2bdtGdXU1l1xyCddeey1vvvkmnZ2d7N69mzPOOIMf//jH/L//9/8AOPXUU7n77rvtfSqh9mLRokU89thj9Pb20tnZyf/8z/8AUF9fz/Tp03nwwQft46jKcLJ+/Xrmzp3Lddddx8KFC20v32AwpM/OnTuBwgu9iegzZNeuXTQ0NBAOh1mzZg1z5sxJ+vmLL76Ys846i7lz5yKEsKPif/zjH1x77bWEw2HKysq455572Lt3L2effTa9vb1YlsWPfvQjAO666y6++MUvcuSRR9Lf38/ixYv5+c9/7lnmwoUL+djHPsaRRx7J+PHjmTt3LiNGjADg97//PZ///Oe56aab6Onp4ZJLLmHevHkJ+/jJT37Cc889Rzgc5vDDD+f000/P9pAZDAcsQyWiD6XrS+eZIVkpSLQ7hiqdnZ3U1tbS3d3N4sWLWbFiBUcddVTcZ4ZLW9KlmNpTTG2B4mpPJm2ZPHkyTU1NjB8/nubm5oBrBoBrB6aJ6IuUK664glWrVtHb28ull16aIPIGgyFYLMsaMhG970IvhDgeuHXw5STgf4EFQAkwANwrpfyd3+Ua4vmv//qvQlfBYDig2bt3L319fQD2/4XCd6GXUq4ElgAIIe4DHiYm9KdLKTv9Ls9gMBiy4eGHH6a8vJwzzjgjkP2rjlgowoheIYQoB44BLgeiwONCiA7gS1LKzUGVazAYDKno6enh/PPPp6qqit27dwdShrJtoPBCH2R65SnAM1LKKHCelHIx8EPg7uRfMxgMhmDZuXMnkUiEPXv2xA0a9LsMRTQaDaycdAiyM/Y84NcAUspdg/+/IIT4oduHhRBXAFcALF++nKVLlwZYteyJRCI0NTUVuhq+UExtgeJqTzG1BYZee9577z377w0bNniOg3Ej3basW7cu7vWmTZviBjgGgVc2UCBCL4QoAxYCnxl8XS+l3COEmAO0u31HSrkCWDH40qRX5oFiagsUV3uKqS2QXnu2b99Oc3MzCxYsCLw++kDBUaNGMWrUqLS/m+5v47Rrxo0bR21tbfqV9JGgIvpTgGcHbRuAZ4UQPYN/fzGgMg0GwzDm3HPP5bXXXmPz5s1MmjQp0LJ0/7y3tzfwMqCwmTeBCL2U8gngCe21CKIcg8FQPGzZsoX+/n5WrVoVuNDr/nm+hL6QHbLDcq4bg8FQfPT0xB76N23aFHhZ+Yjo9ZsJGKE3GAwGuru7gfwIvYnoDQaDwUHQImVZVsEielWu36ibiZpe3Ai9wWAYstx///3U1dXx7LPPBlZGX1+fPVV4MVg3+jw3qr/BCL3BYBiyrFy5kn379vHyyy8HVoaybaA4rJvdu3cTiUSora2lrq4OKGzWjRF6g8GQFGVtODsXgygDYovy7Nu3L7CyIPiIXu1fLToEJqI3GAxDGCXCzs7FIMqAmO3xwQcf5LS/hx56iCOOOIL3338/4b2urq64J4gghX7s2LFG6A0Gw9AnH0KvCy/kbt888sgjvPfee7zwwgsJ7znbEURnrHr6GTduHOXl5YAReoPBMITJt3UDuQu98sPdLCBnO4KI6Ds6OgBoaGgwEb3BYBj65Nu6Af+E3k3Ene0IQujVE0pNTY0ReoPBMPRRItza2hrYVLt+WzeFjui7uroAqK6utoXeZN0YDIYhixLCaDRKW1tbIGWom0lDQwMQrNDnM6LXhd5E9AaDYcii2ypB+fSqjDlz5gCwcePGnPaXjtCPGTMGMNaNwWAwxAl9UD69EsaZM2dSUlLC9u3bcxJgJarJrJspU6YAwWTdmIjeYDD4QjQaZcWKFaxduzbQcvIh9KqMuro6DjroIICccunT6YxVQh+0dWPSKw0GQ9a8+uqrXHnllVxzzTW+7O+5557jb3/7W8L2fFo31dXVtgBv2bIl6/2l0xmrbij56owtpNAHuWaswWAIEBWZuo3+zJR9+/ZxxhlnUF9fz44dO+ztlmXFCWHQ1k1VVRUjR44EYM+ePVnvLx2PPkihd7Nuim6FKYPBEDxKTLZs2UI0GiUczv4Bvauri97eXvbt24dlWYRCISBRKIOO6KuqquxJwDo7O7Pen5fQW5aV4NEfCJ2xvgu9EGIa8Dqgllk/D1gCXAP0AJdKKbf6Xa7BcKCh7IF9+/axc+dOJkyYkPW+lCBalkVfXx8VFRVAYkdl0B59dXW1vYD23r17s96fl9CrG1plZaWddWM6Y7PnBSnlEinlEqAd+DIxsf828K2AyjQYDij0QUa5TgKmC6Ie4eZL6HXrRkX0fgi9M1rXJxurqqpy/YwfDDWPPiihXySEeEkIcQtwCLBaStknpXwFODKgMg2GA4pCCP1wsW680itbW1uBWA69WvnJZN1kx3ZgJrAYGAecA+i9KiUBlGkwDEl6e3sD64RTUSPA5s2bc9qXLoi6uKu/R48eDQx/62bXrl1ArD35EPqi9eillPuAfQBCiIeAywD91jzg9j0hxBXAFQDLly9n6dKlflfNFyKRCE1NTYWuhi8UU1tg6LUnEolw1lln0dHRwUsvvWRf8Ol+N1Vb9Oh61apVObVdT2XcvHmzXVd1Axk/fjy7du2itbWVDz74gJKSzOK1VO1pb28HYjev/v5+AJqbm7NukxL6zs7OuH2oDKXq6mp7hsmurq6Myknnt1E34Y6ODlv029vbAz8/GxsbXbcH0RlbJ6VUt+ITgf8FrhJClAMCeMfte1LKFcCKwZeW3/Xyi6amJs+DOdwoprZAfHtyzULxg3vvvZd3330XiEV2Y8eOTfu76fw2KjMGoK2tLaffUp9yoL6+3t7X+vXrARg1ahSjRo2ira2NqqqqjNoCqdujJks76KCDKC2NyZJlWVm1SXUoq/3q+1Dr0k6ePJlp06YBMeHOpJx0fhv1hDJz5ky707e8vLxg11sQV8IJQog3hBAvAY3A74GfAM8DNw3+MxgCY+fOnYwfP57rr7++YHXo6+vjppv2n+pB2gPgr3Wj11X9XVlZaYt7ED69n9aNeiKAxOOuWzeqM9bvrJv+/n76+voIh8OUl5cXrXXzBPCEY/MDg/8MhsB59913aW1t5fnnny9YHX7zm9/EzcAYZGYH+NsZ6+bRV1VVMW7cONauXRuIT+9n1o3eJ1IIj17350OhUHEKvcFQaNSF65zjPF9Eo1FuueUWIGavOEeX+oXevl27dtHV1UVNTU1W+9LF0S3rpqqqyhasIITez6ybdIVejRXo7e2NGySWK3rGDTAkhN7MdWMoOtTFXSihb29vZ9OmTdTV1TF//nwgeOsGcovq04no/bButm3bxjHHHMMDD8Q/4Ptp3eiCmkzolbUC/k5P4BT6Yk2vNBgKihLVIEY8poOKREeOHGlH2EFaN/X19YB/Qu8V0Y8bNw7ILaJ/8cUXef311/nDH/4Qt70Q1g2Qln3T2dnJRz/6UX7729+mVb6J6A2GPFBo60YJfW1tbV5ytQ877DAgeKFX4pjLKlOqHOdNOCjrpr+/n4GB/RndTqFPZ3Tsa6+9xlNPPcU999zj+ZmnnnqKs88+m507d8aNigXSntTsvvvu4+ijj+auu+5K+rlsMEJvKDoKbd1kI/TRaJQvfvGL3H///WmXowTFb6H3sm78mJrA7Wmrv7+fSCRiWylKILu7u+NEOl2cgqq3zSuiT/b0p76vcv3d+MlPfsKjjz7Kk08+GdcZC+lH9Nu2bePNN99k+/btST+XDUboDXnll7/8JbfffnugZSgx6evry0oocsVN6FPZSGvXruVnP/sZ3/ve9xLee/rpp7n66qsThMIZ0eeSYplOeqUfQu8W0es3k1AoRDgctn36bKJ6L6Hv6+ujs7OTkpISRowYAaRn3ajjnkzo161bZ38mW+tGpYVmMrAuXYzQG/LKNddcw3XXXZfTXOOp8IpO80U2Eb2qp5uY3Hzzzdx99928+uqrcdtVRD979mxgeET0bk9behmKXOwbL6FX0fyoUaPsDJt0fh+1v7a2NnvAlfN9NeAsF6FX76sBY35ihN6QNwYGBuwLd/fu3YGVo1+0XvbNxo0bue222wLpIMtG6JUY7d69O0FM1LFSQ/YhdizVd2bOnAnEHv2zJR2PPuiIXgkjkFPmTSqhV7YNZCb0/f39cWMXFBs2bLBH9ra3tyd49Olm3QQZ0Zs8ekPe0C+SXMQiFclmX1T867/+K4899hgzZ87kk5/8pK/l60Kv52onQ4lJJBJJ+Ky6WenRrS6OKusml9keC+nR6xk3ilzKcgq9KjNXoYeYkDun1lC2DcTPbZOpR28iekNRoAtRkEKvi5ZbRN/f32+PmlXT1vqJamddXV3ac57rdXY+7agbpH789KhRCYpbtJkuQyGi98u6cQpqsog+nWkQnELvRBf6ZNZNqqwbVW/j0RsKwuOPP+7LuqT5EvpU1s1bb71ll5+LOHqRi3UD6Qm9HjXqQu/mIetEIhEefPDBhBtcOhG9H9MHD2frBnIT+nStGxPRG/LOhg0bWLZsGZdeemnO+yqE0LtFavocOLkIfXd3N48//njCoBzVtkyEXhcT3YtX5YB3RK8mztJ9ey8effRRzj///ITsnnxF9G4ZUUFbN7kKvS7QqYRet26y7Yw1Eb0h72zdGlved8OGDTnva6hYN88995xrnTLlpz/9KcuWLePXv/513HY/I3pdvL0iev3/VDcuNX2BPuGas3yv9MqKigpKS0uJRCIpbyheuJWT76yboCN6rwFTJr3SMGRR0WVLS4udWZAtQ8G66e/v56WXXrJf5xLRq5ugUzSzEXpdTHSh1+vvJvRKTJTVkao9SvSc0xikY92EQqGco3q3m3DQ1o069mpEby5C7xwVvHfvXrZv32530Lp1xqabdWM6Yw0FQwl9NBrNaeg7FCaid1o3b775pqsFkg36KkI6fkb0ev28rBtIP6JX9Ujm0XtZN5C+pdLf359wA3SWo/ZdSOsmnc7yZBG96ruaPXs2oVCIzs5O+/czEb1h2KCL2I4dO3La11CI6JVtM2rUqIQ6ZYr6rvPi91PoU0X0TusmVXtyieghfQG+7rrrmD59On//+9/jtrvdRIaCdZNt1o2ybWbPns3IkSOB/eMZss26MRG9Ie/oQp/rykJDQeiVbXPaaacBQyei9+qMTTeiz9S62b17t+d0vn5E9P/85z8B+Mc//uFavr5vv62bTNIrc/XoldAfcsghNDQ0ANjrwpqI3pAR+tJo+WY4RvTJrBtlJxx77LGAP0IfZETvJfTZdsbq9dDtG78jerW/dNI4h3rWTTpCP2vWLDuiV5OSmQFThrR59tlnqaury2hWQz8ptohe3axmzJiRUKdM8VPoM+2M9fLo07VuwFvo3bJu/BL6IKwb59gBt85Yy7Ky7oxNll6pC72K6NXn3SL6ZOMchtUUCEKIY4A7gQjQBHwKWDX4N8DNUsq/+l1usfLSSy/R29vLq6++yiWXXJL38vUT20+hz0VgU+El9P39/ezatYtQKMS0adOAoWPdpBPR6+KabUSvl6P79G6Rtr4EoprKIYiIPhfr5txzz2XLli08//zz9o3CLaLfs2cP/f391NbW2lkwkHtnrGrf+PHjbaFXqPaEw2HC4TDRaJSBgQHPiH24RfRbgJOklIuBTcDZwG4p5ZLBf0bkXbjppps47LDDEkRDXYxBRsDJKCbrpqWlBcuyGDNmjD0/TDpCf/XVV7Nw4cIEMdAjej1S06dACLozNlOPPh3rRn1GF3mVPpiu0KeT3aPakIt18+ijj/Laa6/x85//3N6mhFnNULlv3z5X2wYy74x1Zp7pNyll3Sj0G1c6KZbDasCUlHK7lFIdtT4gCtQKIV4QQvyXEGKU32UWAw899BBr1qzh9ddfj9uuLpQgI+BkFJN1o25U48ePz2h+mIceeggpJW+//XbcdtWegYEBez9qMFFJSQkVFRVpz0fvZd1kml6ZiXWjR/Rui4Mns1SCiOgztW4sy7LF8dZbb7U/q9qibn7pCH0mEb1+U9fr7ozo9YXa08m8GVbWjUIIMRU4FbgJeEFKuUsI8SngBuBLLp+/ArgCYPny5SxdujSoquVEJBKxe9W9eOKJJ/jVr37F7bffzvTp09Par7q433vvPebMmWNvV4NyWltbU5abKem0RV0gAFu2bMmpDvpF39HREVh79It2165ddjnvvfceAA0NDfbx7uzsTFkPJSCvvvoqBx10UMJ2gNWrVzNp0iT7xlhTU8O2bdvs111dXUnL0SPFXbt22W3Rpx7et28fmzZtoqyszD6WfX19NDU12dMJNDc3Jy1Hv4ls2LDB/qxzxafNmzfbN4KKigr7c0rktm3blrQcdSNS9VHt0W+827dvp6mpyW57b2+vvU99Omuvcpw3rRtvvJGrr77a3l9NTQ179+6ltbWVtWvXAjHx1/en229e5ehrJwwMDNDR0WE/Lajj1tbWljCrpT7vTUlJCRBbM0Cl9jpRn21ra8v62mhsbHTdHojQCyHqgd8Bl0kpI4BSiz8Dn3X7jpRyBbBi8GXymZkKSFNTk+fBVDz66KOsXLmSr33ta7z00kv2j5wM/XFZ3786ySKRSMpyMyWdtuiRW0dHR0510LOHuru7A2uPc3i+KkeVP2XKFKZPn05JSQmRSIRx48YljaLU/pqbm+19OeeVqaiooLGx0R49XFdXR2Njoy0IqX4/vfzOzk7KyspobGxMqNfIkSMZOXKkLbiNjY00NjYyadIkIOYHp3tc+/r67M86LYXRo0fb22pqauzP6ftOVo668ahzRv02ejnqmDnbAvFWlFc5zsVr/vM//5NvfOMbdn/CyJEjaW5upqyszL4GJ0yY4NkGr3KcAt7d3c0RRxzBwMCAHaEffPDBTJ06Ne4706dPt39/VacxY8YwceJE13LUZ/Xj4Be+WzdCiFLgj8ANUsq1QohyIUTF4NsnAv/0u8yhhoriVq5cyY9//OO0vqMiC+d6kSqqKoR1E41G4yLAdK2bvXv3ctFFF/H444/Hbc+HdRONRuMej72sm1AolJZ9E41G7Zvw6tWrXfcL+39zvSMW0rMGINGjV+LnrJvaf64DpsC9M1ZZQT09Pb5YN8ny9ZNZN7rQe029ofY1evRo5s+fz+7du3n77bft31/Vdd++ffbv4/TRM826UW3Sv6Omh9Ctm+rqalu4Ib0Uy+HWGXsRcCzwLSHE88AngFeFEC8CXwW+E0CZQwrd1/7mN7+Zcopfy7LsC1p/VLcsy35ET3Zh/eEPf+DLX/5yyilqM2Xv3r1YlmVnj3R1daXlaT///PP88Y9/5Ac/+EHcdl2E+vr6XP3KPXv28IUvfAEpZcpy3nnnHT796U/H3Ryd+/QSeiCtdUl1S0MXeudxUNkYfgj9wMBAQo65Qu0/2ykQ3NIrLcuyt6u1VHt7e+MmNFNkKvSw3/7Ty4HkWTclJSVUV1djWZbnKmHqt66oqLCj5L1797oKvRJn1T5FJlk3+nw2kNiJrN9E9LZAekI/rDx6KeXviNk2Og/4Xc5QRp1Uxx9/PCtXruShhx7iuuuu8/x8X1+f/SProtXR0WFvTyZG1113HVu2bOHyyy/niCOOSFq3H/7wh4wfPz6tVE0lXg0NDYRCIT744AN27tyZst9BPVI7fUZnG/bu3ZvQOfbzn/+ce+65h23btvHwww8nLWfFihXcd999HHHEEXzlK18BEi9YXaidQp+OOOois3HjRnp7e+2bnk46Eb1lWXFRno7zBqWOYboRfTZZNyqi7+/vx7IsSkpK7P35FdFD7IbS0NDgeRN2K0e1qbu7m71799rtcyujoqIirl6ZCH0mWTdjx45lx44d9r6c9dYjer0jFjLLuhkuEf0Bj7roTznlFCD1Wp76xakLvd556SX0vb29dodtqg6ctrY2vvrVr3LVVVelFf3rj7vjxo0D0rNvlAg0NTW5ph2qyMdNLJ544gkAVq1alXY5+qLYTn8+WUSfqdBHo1F7gIzz9/CK6MPhsH2RJ8u4cNZbCb1XRO9Mr8wlotcFU78xZSv0zsjdWY4i2chYvSyvcz+V0OtZN6mEPp2IXp036rpIJvReEX2hsm6M0PvMwMCAfZEeeuihQKLv7kQ/kbdt22aLozP9ze0k2bx5c1wmRDKUGHV1daWsE8QLvTrJ08ml1+0FJQiWZdnbJ0yYACSKxZ49e3j55ZcBWL9+fco5z5VA6ELvtd6qXvdMrBun0Cr7Jl3rBjJP4YP9x8Yrolfbc/XodVGuqKiIW1ovW6F3Rq2phN4rok9VltpfeXm5q9CrsRK9vb2+Cr0zoleinqt1YyL6YYQ6Kevr65k8eTKQWUSvn5TOGQbdLuL169fbf6cSbz1LQU06lQwl9A0NDVlF9EBc+p5lWVRVVXlG9E8//bQd1USj0ZR9G0qEt2zZYm9TF6y6oP20bsBb6L2sG0hPTJweuTOid96Uso3o9TpEIhH27t3re0TvFHQl9F62mptHD6lHx+r11j+bjXWTi9D75dEPqwFTBzrqgh8xYoTdQZRJRK9/Ph2h11d+SlWOnkGj3yC8cLNuMonoYf9NThdAL7FwZunonZ9uuEX06uJXj9HqM/39/bS0tBAKhRg7diyQndCvWbPG9TvOiF61ETITelU3Z0SvRMarMzbT2SvV51taWlwjej+FXp3Hfls3emesXi8lmG5C78y6SaczVu3PKfTOepeXlyfceBWF7ow1Qp8Dr776Khs3bozbpoujLvTJPHHnxekl9G4Xly70qZ4c9Ig+U6FXJ3m2Eb0u9G6RmmVZtj+vBsulK/QtLS22aKgLVhd6lb1kWRajR4+2L6RMrBslEM6IXl3QuUb0SrTUDdXZGasLvZ6Jkq11o542W1tbXSP6VNaNqkeyMhTJrBvLsnK2bnLpjFX57X5E9LD/vDPWTR7Ytm1bwjzYELMD/vrXvyYIaDL6+vp45plnEk7S1157jRNOOIELL7wwbrseOdTV1VFbW0tPT09cNO3EKfRKsP2O6LO1brLtjAV3oXe7gN955x22bdvGxIkT7WOaSuh1W0Z1SKsLtqamhrKyMizLoq+vL8G2UZ+B5FGwKmPBggUArF27Nm7KAyWYuXr06vxSx1kdGyXo+na1sHZpaaktIJlaN2pATrKI3i29srS0lMrKSqLRqGfaYyZC7zafjiJd68bLo09H6EtLSyktLWVgYMBThNPtjIXchN5E9Bly5plnsnDhwgSb4eGHH+bUU09l2rRpfO1rX0sqvopf/OIXnHLKKfzHf/xH3PZbb70Vy7LsR3mFbt0Aadk36Vo3bid8Jh59Mutm3759vPXWW3Hb8mndPPPMMwCcfvrp9hQQ6Ub0sN+nVxd/ZWWlfbF1d3dnLfSqjAkTJjBp0iR7GgLVHiWYSuhVm4KM6J3RPBDXVq8BRgMDAwwMDBAKheyRtJlG9JB+pK1wevRqlGp3d3dcCq+TXLNu1Lbe3t6E61In1e+j9qeSCLw6Y2H/k59T6E16pc80Nzfz1ltvsW/fvgShUKlx3d3d3HHHHXzpSwlT7iSgBFF/Qli9erWd471nz544oXB6geqCSibCXtaNukDUHd55wluWlWDdJLOIkkX0l156KUcddVTcwtnqItStm02bNvHcc8/FdYA6ySai37x5MwCHH344hx12GBCLnpMtSK4LvfLp9QgxldBnYt1UV1fb9VqzZk1CRO9XZ6xT6J0RvS70zgFGSpBTRdoVFRV2X4CX0Ht59JC90Kvt6tro6elJKvSp0lK9PHqn0Pf09MQlSThJV+j9iOi92hKNRu1xFulMmZIpRSf0r7zyiv23c3Hi5uZmAD7+8Y8D8OKLL6bcn5ogSd/X7bffHvcZ5yAn2H8yq4g+mX+uxEGdJE7rRs2d7hSknTt30t3dzahRo6ivr6evry9hvmwdXeg7Ojrsz7777rs88MAD9t9ubVEn+caNGznppJOYPXt2wlwjzvbobUkl9OqG0NjYaHdk9/b22jcAN1JF9HqqYK4RfXV1NVOmTLHbFJR1k05nrLN/IN326FbMmDFjAG/rxo+IXr+Z6NvVed7T02NfX24TfaWyO9KN6Hft2mWP8HYT0WQdssr6g/03W6/OWL1tmXbGBhnNQxEKvcrDBhJEQhf6srIyNm/enNLTVCei2ld7ezv3338/4XDYvvDdhD4T60bV4ZBDDon7rBJ6NRLVeWGpp40ZM2akVY5TmNXN65ZbbrG36XaRU+i//vWvs2TJEqqqquju7vYsK5uIXt0Q1BOQip6T2TfJInq/rZvq6mr70b25uTlOgEtKSuju7qavr8+3zti9e/cSjUZtsVWi6RXR62V6tSffEb2ytZzWjR7RJxN6JXpeS2mm69E7U26dJBsdOzAwgGVZhMPhuAXlvTqRsxX6IP15OECFfvLkybaoqulLvVCR2pYtWxgYGGDdunX09/dz9NFHs3DhQiA+Ws/GulHikEro1ef6+/uJRqO2bXPwwQen9eSg6qaG4W/evJl169bZ0bxeJsTn0UPshvDcc88xe/bsuPp4tUe1JRqNZhTRQ2qhj0QicReNiugzsW7SyVRJJfQ1NTX28eno6MhK6PVBS7p1owuJshz0iN4p9Knaowt6PiL60aNHU1FRQXd3Nz09PUkjejfrxq+IXuFMrXSW42arqLLLy8upqKigvLzcXnPAzaP/1Kc+xZlnnsk555yTUVtMRJ8BnZ2dcR2KXtbNhAkTbLFK1eGnTsT+/n62b99ui+uhhx7qKuLZWDfOiF5ZAz09PVRUVNgC09nZSWdnJ1OmTOHUU0+1+xxmzJiR1g1FRfSzZs0CYsfn5ptvJhqNuqZPes34l8rbVgJQUVHBwMAAO3fudBV6tS0ajdrHRx2vVELvjL5URO9l3ei/vbMdmUb027dvjxN6dXza29uTCr3XfCoqmispKbEFT+/7qampiTvmbp2x+utsrZvy8nJfI3r9htLe3p7Uo88lok+VR6/wiuiTibASf9VfoG64zhux4qijjuKxxx6zr+V0ytC3m4g+Df7+978zMDBgnzReEf3EiRPTsgYgfkGITZs22UI/a9YsV7skF+tm4sSJVFVV0dXVZefnjx07Nu4kXrt2Ldu3b+eZZ56xp0DO1Lo56qijAHjuuee4//77KS0t5YYbbgC8rRudZEKvT3Uwc+ZMIBatJ4voW1tb6e/vZ9SoUfZFk+pGrMROCdOWLVsS1jj127pRx7i5udlujx8RvS5Y6rzZu3dvXNn6zdHLuknVHr0cPV02k/RKSC30+m+ghL6trc0up76+nlAoRF9fn32+ZePR652x+k1bnz5Yj5DzIfRepMq6MdZNBijb5rzzzgNiF7/K2lC57GVlZTQ0NKQl9JZlxXVubt682VXo/bJuamtr7c+/8847QEzodWHVI271PV3o07FulNC/8cYbRKNRPvOZz3DccccB+4VezdkTCoUSMhWSRcJqgFJlZWVc52UyoVe2jWo7YK/k5JW3r8Ru/Pjx1NbW0tnZye7du109+lSdsblYN7W1tbbQp4roU2V1VFRUxE0P4RXRe3XGpnpC0QVYn7soqPRKp9Drv43ap/rtc+2MDYfD9vFQ5ZSVldkDoqCwQp8q68ZYNxmghH7p0qWMGzeOSCRiC6z+6B4KheJS5bzQfUWICb2KtGfNmuW7dVNbW2t/Xhd6/cJSQqyfELpHn05Erwb/QOwi+eY3v2l3zqn9q8/W19cnDGRJJpDq4q+rq7OPT6qIXh0bfVWdVPaQbl/oNxQ366atrY2dO3dSUlLiml6ZS2esbt3oEX0mUyDo1okSkr1799r7qq6udrVusvXoKysrqa+vp6Kigq6uLvup1dkZq64Z51TS2Qq925OD+u3dPPpMOmP1ein8FHr1GV3ovaZuyLQMMBF92liWZU+CtWjRIntZL+XTOz1aNbPk+++/73kiOVd837Bhg72/Qw45xFVcnSPw6uvrbTvG68LQbQC1zzvvvBPwjug/+9nPcvzxx3P00UczefLkjDz6OXPm2BfHF77wBSZPnmxfkK2trUSj0bgceifJRFgXdCXc2UT0qcRE7whT0f+2bdtcrZvVq1djWRZTp06Nu0FmMjJWiW11dTU9PT32cdatm9bWVnp6egiFQnEXf6r5VHQBLC0tZezYsUSjUXusQ7oRfSbWTSgUsm96qiPb2Rmrd/br+Cn0fkX0er3Ud0OhUEZC76YD6UT0zhtusjJMZ2yOhEIhNmzYwNq1a5kwYYIt9Mqndwp9TU0NU6dOJRKJeM774hT6F198kb6+PiZNmhQXfevRujOi10cheomwfuEuWbIE2C8KJ554YtxFriLugw46iJdffpnXX3+dkpKStJ4clNA3NDRw2mmnMWnSJK6//nogdiKPGDGCgYEB2tvbPf15SC70fkX06uLxWkrOLb+9qanJdWSsGhswY8aMuH1k4tGr5eLU+aMESo/o1TQMtbW1cQuMpGvdKDFR/RNqla3q6mq7/O7ubjug0Z9OVLnJ2qPfBPXvq45sPaL/4IMP6OrqYuTIkQnRdr6tG69ATLe89HrB/mOZa0SvZ91A7taNieh9IBwO2xklapCRl9BD6swO56g9dYGpMtQEWR0dHfYETW5DrVOJsC6CX/jCF2hpaWHr1q20tLRw5ZVXulo348aNIxwO24KSagK13t5e+vr67MyKhx9+mFdeecXulFP7hJh9k63QZxrRW5blGtGrpeTAfaSnLvRuEb0uJkronZFppiNjgYSFnfWIXkXGztWQMumMhf3n5RtvvGGXoXvQTz/9NIDdr6LXJVl79Jsg7L8WdKFXx0wt/OI8ZpB71o1ejtpHsqybbCJ6Jcx6R3Kq9Mp8ePRFH9ELIW4TQrwkhPidECKY25aG07pR0bR+oabK7FAR/fz58+O2K6EPhUJxAtvT00N/fz+VlZVxkUQq/9z5KD5mzBgaGxvti8TNulGeuqKuro6amhp6enpcR6zqnruquzN6UPvcuXNnQg69TrLI0S2i37RpU9wcMMo7HRgYoLe3NyGHXm+Tvk8dN6FvampytW7UTT5ZRO81dYRT6PVAQbVHHSPVr5Kp0DvFRAm9ShV2Lhe4du1awuEwxxxzjGd73HAKY7KIXrXbeczAX+tGkUsevZtH71dEny+hL4qIXggxD2iUUp4IrAHODbrMVNYNpI7oldBPnTo17kRUQg/xIu4VBadr3bitiwnxkzvpEb2OftNxe3JwCr0beoesylJxdsRB8shRj9xnzpxJdXU1a9assW0I1UZdLNysG/2zbuXolooS+ubmZlfrRuEUrZKSEioqKuLSMr3KcRP6UChEZWWlnUaqnhxyjeidA9Kcc84DzJ07N6HzMVvrRvUr6UKvcBP6VE9C6Qi987dxi7YzyaOH/Au9V6e4G6nm7SmWiP5DwFODf/8fsCjoAjMReq/MG314ttofpBZ65wmVKqLXO2Pd0Kdr9YroU5XjNU2rjm7dKJtKiZhbfVJ59PX19fzpT3+Ku9jchN7NutE/myqiVzeI7du3x4mZM9JysyHSze5xE/qamhpCoRAnnXQSjz32mJ22qvoMFNlaN3o5el0htvC8k0ytG6fHn+4xU9/3WurRbaqFXbt2udpqEBN5tzloMsmjh8TOWP098D/rZjhF9MHcPhJpAJT67AYSDDkhxBXAFQDLly+3F5/IFnXANm3axNatW+3H05KSEltYVBSxatUqtmzZkpBGqL5TWload1GMGDHC3oc6eVatWmXftaurq+MW6tazP5wLeCv7IhQK0dbW5jopmToJOjs77b/7+/sT9qV8zn/84x92VpFCdThXVFTY34tEInH7UBfw+vXr7dk6R40alVCOupBbW1sT3lMdkqFQiKamJubPn89vfvMbPv3pT9tD/ZuamuyyVq9eTWtrKyUlJQn1URfpxo0bE0RJ3cyi0ajdT7F9+/a4CeCcQlRZWZlQX73NbtGWio7VTVwXjqqqKnt/CxYs4JFHHuGtt97i4IMPjitH34fbAu7qiUb1V4TDYaqqqmwhUb+1Xvbs2bMz+l1g/5gEdZydotLd3W23U1FfX5+wL/V0qN+kdXbt2gXEMneUsLW1tdn7dj5x6NeTjgpOvMpxvq93gIfD4YTv6Dahjqrjzp07E95Xv000GqWpqYmBgQEgPsXW63fVSfVZ/XxOta9kOJ+KFfkS+g5AeQYjgDbnB6SUK4AVgy+959pNk8bGRkaOHElHRwfl5eV2dD537lz7YDQ2NjJ+/Hh27NjBwMCAbQEo1AkwdepU9u3bx5NPPklJSQnHHXecLeoq4u3p6bEvnHHjxsUd8BNOOAGIpWc6fwh10dTU1NgzIbpRWVlJb28v3d3dlJeXc+ihh8ad2BCb4veRRx6hra0toRwlEmPHjrXfa2pqivucekzv7e21OxaPPfbYhH2pp5v+/v6E91RkNmHCBPu9Cy64gIULF7Jnzx57aPjEiRNZvXq17WtPmDAhIRJWN66qqqqEcvRjfeihhzJixAh2795ti8zkyZPjbIhRo0YlRMqwX8jq6upcLxIltjNnzqSiosKeKx9w/Y7bb6h/xq0MFYnW19fb78+cOdO+2U6cOJHGxsa4DsszzjgjYV/q/I1Go67lqHNA9QE5j8eECRPseZUUxxxzjOc5OzAw4FqO+m3Gjx/PEUccAcQ6Y/XEAb0tqj5O1NNTaWmp6/tqf5MmTaKxsTGu/0096elR/KxZs1z3oz6jJxA431O/jX7uqxvrjBkzPDt6FerJpry8PGkdampqPMU6F/Jl3bwKnDL490eBV/JRqN4h62bdQEz4AdcVqdysm4MOOsgWeUjPupk9ezbhcJh169YlRJmp/HmF/v7YsWMTRB7233TcVo9Kx7pRJ2Nzc7OdQ52pdeM2YAhiF4Peqf3JT34SgB/+8IeAuwCma93AfoHVn1z0R2o3rzlVW/r7++nr6yMcDtu/udtcOanItDMW4o+707oZM2ZM0t8l085YhdOjLy0tTQh+9PZ4zd2jW0SVlZXU1tYSiUTs/iXnb+OWcQO55dGbzth48iL0Usq3gR1CiJeAw4H/zke56uJ++umniUQijBgxIuFHURGHPg+7Qhd65cs7LRG9AzTZAsQzZ85kYGAgoT8glT+v0EXF2RGrUH6q27iAdDpj1X7feOMNIpEIkyZNcq1XsuwOtxWW3Lj44ouprq62j7HTn4fkKww5B6sooVfbnZ2xbl5zqrboZagbq9OjT4dMPXogblIsZ2fs8ccf73qjz2T2Skjt0TsHmGXbHtUhqywJp0efSuj96ox1Bh/OcjIR+ra2NiKRSFwQkIxCp1fmy7pBSnltvspSfOITn+Avf/mLPfmXM5qH5BG9PrPeggULuOeee+wbg0LPqEmWez537lzWrVvHu+++y7x58+ztXqMcnegnqVtHLOyPArMVerVfNc2DcwY+RbqdsckYMWIEF110Effeey+QPKJPlnXjFHqFM7PDK6JPR+h1UdJvskEKvVtErzKgFi1yz2XIZPZKiJ2n5eXlcZ2aeh28jlk2Qr9p0ybb73b+Nm6plZA6jz6TAVP19fWeKzdlI/QqK00NZEtFqqyboojoC8W5555LQ0ODvfCBm9CnE9E3NDRQUlLCVVddleBh6tZNMnvEq5xsrBuviF7Nftna2pqwHm4mQq9wswf0uqRKr0zFlVdeaf/tFtFnY90onFFjKqFP52YCsQtRRah+Cb2bdeMW0f/rv/4rN998M1dddZXrfjK1bvRpENR2fdoAP4Veb6ff1k06efTJLMtshF7ZUOnYNqnK0LcP9/TKglBVVcWll15qv3YTetW5tmbNmoQfIdnqN4qxY8dSVlbGrl277NGEbhG9Enrnk0O61k06EX0oFPK0b9Lx6NUFqfCK6HVxdA40SjeiBxBC2BOsOTti9X1kE9Gna92kmolTL0Ohbu6ZCn0qT1uPpqdNm2Zf9KqcyZMn8+///u+ev2Gm1g2QIPSwX7y8jpn63L59+1wHmnkJvf79dIQ+lzx6Z3plrkLvTK9U2Td+Cb2J6HPkiiuusP92E/ra2lpmzJhBJBKxF/KA2IFX0/QmO0nC4TBnn302AI8++ijgbd2APxG9l9DD/ovT2SGbTkSvz4cO3kJfXl5OeXk5AwMDCZ3LmUT0oVCIX//611xzzTV256xOugOmIBjrxkvo1XkUZGdsWVmZ/USVbjmZWjfgLvTqfa9jFg6H48TeSSqhz9Sj92MKhGyF3jnXTXV1dVwadjqDpVKVoW83EX2WHHbYYZx44olA4jwlCjdbRZ8CwJlf7+Tb3/523Gu3k+rggw+moqKCzZs3x01R4GdnLHj79OkIPcTfRLysG/AWlUwieoB58+bxox/9yDUySncKBHCP6FUdy8rKPFNXM7VuIH5ivHTIxqMHuPXWW/n85z9vD8RKp5xwOExfX5+roKQb0at2eQm9Kgvcn1Iyjei9PPpMJzXTr5GgrJtQKBR3bpuIfghx5513cu6553LJJZe4vu8m9MnWsnQyd+5czj13/6wOXsO5Vd7ye++9Z29PN6JPx7oB78ybdKwb576TCb1XtO2VXpkNuXTGVlZWMnLkSL761a9y8803e3bEZVKGwu+I3kvoP/7xj/Ozn/0s7SgvFAolbU+6Qn/dddfxuc99Li5pwEmyNjmnWnATev2YprJuhpJHD/G/u98evRH6HFiwYAEPPvig50AEt8ybdPx5ne985zv2314nldsNJd2sm0wj+mysG33fjY2NSR9LvQQl3fTKdMhEhEeMGGH/HQ6HbZG44447uPZa74QvdSN3TkntVobi4osvZunSpa52kxtKbPr6+lynXHYTk2xJdszStW4+97nPsWLFiqRPssmEvpisG7+FvtjnuhnSuAlwskWLvfZxww03cM4557iOwAR3nz5dTztTjz5X68bLn3fWJ8iIPhPrRp/UzTkxVzKcK2slK0Mxb948nnrqqaQRr46a/AzS87RzIdkxSzeiT4dchD7TrBs36yYajSbYHbp/roT5tNNO47jjjuOCCy7wbEuyJwc3oc/Guin0mrF5y6MfysyaNYvS0lI2bNjAnj17qK+vzziih0Sv3olb5k02efTJIvopU6ZQWlrK1q1b6enpsU9EJfTpWjfJbBtwF/q+vj76+vrsWSFzJVNbZeLEiaxfvz6jsvWJ3NIpI1vUFBa9vb0J4uBnRJ8voU+2apZfHn0yAXaulgX7ras9e/bYx3LOnDmsXLkyaVtyiehNZ+wwory8nOOOOw7LsvjTn/4EZObRp8vhhx8OxE+LnGlnbEVFRdLov7S01J7YSw18sizL9uhTRdqnnXYakydP5pxzzkn6ObdOTD2aT2cQSSqSCb3bMm75iuizIZMIOBf8sG7SIduIvqSkhJKSElvonTaOTqYCDPvP70wi40zSK/UywHTGDjs++9nPArBiRWxetWwi+lQcdNBBVFVV0dzcbAtvpumVXvPc6Djtm97eXvr7+xNGPrqxePFitmzZwumnn55WffSsGz/9ecjMuoHchF7N7KiTyVwmqciX0Gca0espx5k8UWSSdaNfQ+p76pgmu76S5dF7HTPV/kzakkl6JQTbGWsi+oA5//zzGTlyJK+//jpvvfWWPUWxn0KvL3W4du1aIPMBU8lsG4WzQzZdfz4T3CLHTFMrsykDYhdFf38/JSUlcRGQEvpMBHPUqFGEw2Ha29sTLsJ8RfT5tm70G2FDQwMLFizguOOOS5lGrJPJjausrMy2DNW26dOnM2nSJHuNZDeSiWO+hN4vj95E9EOEqqoqPvWpTwGxrIpf/epXAGnnMKeLmhRNCX26Ef3hhx9OZWUlH/rQh1KWoSwi5U2mm1qZCW4inMlgqXSoqqoiHA7bTySKVCNWM4noS0pK7Dlk1BTHqcrJhqFk3ejlhEIhXn/9dV5++eWMyvFqT39/v71GgB6dqoBJz9XftGkT999/v2cZKiU2Go0mZCsVUuhNRD/MUXOvKA/97rvv5sMf/rCvZahl4tQslul2xk6dOpWWlhbuuuuulGV89KMfBeCpp56iv7/fXsbPbcrZbMlHRO+VF+4lwHPmzKG8vNwz68kLL5++WCN6pzgq3zwTvNrj1kkKiUIPMfFLZkPqNwunfeMcLKXId0Sf7rmhvu+1KpfJuskjc+bMYenSpTz99NOsWLHC9u39xCn0mUTB6UbKM2bM4NBDD2Xt2rWsXLmSP/zhDwBp532ng94Zu3r1an784x/bF79fEb3a1549e+js7LQHonkJ8KRJk9i2bVvGTy5ePr2fQq/EwbmCE+Tfo8/kiccLr6wbr7Yooc+07LKyMvr7+4lEInFi6xwspRiqEb06HoUaMGWE3sFf/vIXWltb49aI9RMv6ybd4fTpcvrpp7N27Vruv/9+nnzyScLhcNzo3VzRI+3bb7+d++67z37Pr4heL0cXrmQC7LaYeSq8Uiz9FHo1clet3KVTSOsmW9KJ6HXcIvp0KCsro6enJyGi9ypH9U9l8vSaj6wbPaK3LCvhScZYN3mmpqYmMJGH/QuLv//+++zevdteY9XPTl+ILTUH8Itf/IJIJMLJJ5+csNBELuhZNyq7R92s/LSI3Gaw9FOAIT/WjZqdU3Xy6+TDulHeuT5qOBe8sm68BFilKWcq9F659F7lfP3rX+ett96yJxpMh3xk3ejH3S2LyFg3RUZtbS2TJ09m69at3HnnnfT29rJo0aKsItFkLF68mOrqalusLrroIl/3r0eOSujfeOMNtmzZ4rkwRq7lKIaj0KubX9ARvZfQ+2nb6PvJR0QPieLoVU55eXnckpWZlBGkR6/2odaadQq6ieiLEOXTq5Wv/BZhiF0AJ598MhA7wT7xiU/4un8lwC0tLWzbto3S0lIOPvhgTjnlFF/yzhVuwuU2WCoXlHUTpEefr4jey7rx07aB1ELvvKFk69F7RfR+HrN8ePQQP+eRk2EV0QshjgHuBCJAE/ApKWVECPH+4GuAm6WUf/Wz3OHG7Nmzefrpp+no6PDdO9c566yzeOyxx1i2bFnKVeozRdk0at4er/VFc8VE9JmRKqL3S+gz7YxVK4hlalF6ibCf7clHHr2+D7fMm+G2ZuwW4CQpZY8Q4lbgbODPwG4p5RKfyxq26AuM++2d61x++eWUlJSwbNky3/etBFhN/ua1GpFf5bgJvV9PDl5C7+fIWF3olVeuOBCsm0WLFnHvvffykY98JKNyMrVussFE9BkipdyuvewD1CiHWiHEC8Si+uVSysQ5YQ8glHUDcOGFFwZWTklJCZdffnkg+3amUCZbpCIX3IRrOEb0NTU1jBo1ira2Nnbu3Bk39UAxWjduufrZnIuZdsZmQ6ZCr2fIDZeIPhCPXggxFTgVeGxw0yIp5YeB/wNuCKLM4YQa0FNeXp5y8rChSr6EXheulpYWNmzY4LvQ58Ojh/0+vdO+Gc4RfbpZN9niJcL58ujd8ttLSkrs8zLTzlgYRhG9EGIC8EeXty4EuoHfAZdJKSMAUko1tvzPgOsoJCHEFcAVAMuXL2fp0qXZVC1wIpEITU1NqT+Ygu9///s0NDTQ1dXlucZn0OTSFmfEOGLECF+OixO1CPP27ds55ZRTWLdunZ06NzAwEFdmtu0ZGBggFArR1tbG5s2bKS0tpb293W5je3u7L7+RuqG89dZbtmcN+y/8lpYWW6CzbYuq8549e+K+rzqBQ6GQL7+Tugm2t7fH7W/btm1AbMZUP34bfb/6Ogw7duzwZb8Ara2tQOwm5dyXemLZtWtX3NNFfX09nZ2ddHZ2pl2+suu2bNmSMCuu+t12796dU3u8FlfKSuillM3AEud2IUQp8Chwg5Ry7eC2ciAkpdwHnAj80/m9wX2uAFYMvkxcWn6I0NTU5HkwM+G6667zoTa5kUtblAArjjnmGF+OixM10KilpYV33nkHiA1qg9gUu3qZubRn9OjRtLa2UllZyfjx47nnnnsYGBjglFNOYfr06Tm2IsYhhxzCU089RXd3t11Py7JsoZ8+fbotBtm2Rc0J09PTw4QJE+ypDdQEd3V1db78TupGFQqF4vanbI0RI0b48tsoa6ShoSHu+2r76NGjc26PejoZGBhI2JeKtKdOnWqnQDc1NXHHHXewevVqFi5cmHY56tiMHDkyoRz1O02YMCGQ68hvQ+gi4FjgW0KIbwH3AM8DjwshuoB9QDCmsSGvqDnF1aO7X2LoRD0iP/vss/Y2JYx+WSoQi7ZbW1tpaWmhpKSEO++8E4Dvfe97vpXhlmKpj7zMZPZIL8LhMDU1NfaTopqx1G/rJtOsm2wZip2xAP/yL/+ScTmqrsk8+iFl3XghpfwdMdvGydF+lmMYGtTW1tLT08Po0aN9nRnTWQa4zxHjp9Dr89389re/pbOzk9NPP53jjz/etzLcUiz99JoVdXV1dHV1sXfvXlvoC90Zmy1DMY8+W5J59MOyM9ZwYKBEOKjUSkicN+fjH/+4/XcQQv/uu+/y05/+FIAbbvA3b8AtovdbGME988bvcgrdGZuPiF631fyItJNF9GY+esOQRQlKUBk3ehmKO++80x785ecIXCX0N954Iz09PXzsYx/LyH9Nh3xG9BCfeVPoPPpsyYd14zXvvSqzpKTEF1vNRPSGYYnqXMqX0M+cOZMpU6Zw6623cvjhh3PiiSf6Vo7KiFEZGH5684pJkyYRDodpbm62L/YgIno3oS8268bPckKhkGtU7zahWS6YiN4wLMm3daP88quuuop3333X1xHFeureueeey7x583zbt6K0tJRJkybFpR4OV+tmqHTG+iXCbkLv99NWOhG9EXrDkGPJkiXU19ezePHiwMrQI3o/O0adKKEPhUJ897vfDawcp09vrJvkpBowFWQ5fv826UT0xroxDDm+8Y1v0NbWZi/2EAR6RJ/OernZcswxx1BVVcUXvvAFe83dIFA+/caNGwFj3aQiH9YNmIjeYEhKpmuNZkp5eTmzZ89m+vTpHHHEEYGVM23aNDo6Orj77rsDKwP2LzZ/xx130NvbG0hE72bdqL4Hv2YxVQLb09ODZe0f3zgcO2MB10VBTERvMOSRN954g/feey8vN5Vki1X7wZe+9CUOPfRQVq1axXe/+13ee+89IPiIft26dcD+Fc5ypbS0lNLSUizLiouC8x3RG48+PcwKU4Yhj5/58oWmqqqK++67j0WLFnHbbbfZ29VUD37gts6u30IPMfums7OT3t7ehJkZg47o8+HR+y2+6YyMNRG9wVAkHHfccVx77bVAbK6WG2+8kZ/97Ge+7d+5zm4kEmHDhg2EQiFfM6TcMm+G44Apr3LyGdEPydkrDQZDbtxyyy2cddZZzJs3L2FQWK44rZuNGzcyMDDAtGnTfMu6AfcOWb+ze4qpM7aQEb0ReoOhAITDYV8XUddxWjfvv/8+4K9tA8mFfrh1xhYyotdH5AbVD2WsG4OhyHBaN8qfP+SQQ3wtx22+m3xbN8OpM9Yrotdtm6CSAYzQGwxFhtO6CaIjFtwjerVAi1/zEKWavbIYIvqgUyvBCL3BUHQ4rZughN6tM1YNBJs6daovZRTSusnXXDdBp1aCEXqDoejwsm6Cjujb2tpob2+npqbGniQuV5wR/dtvv01nZ2dePXq/BLiQEb3pjDUYigzduunq6mLr1q2UlZX5FmUrnEK/fv16IDbLqF9esx7Rr169mgULFnDCCSfkxaNX6+IWQ0RvhN5gKDL0KRBUxs3MmTN9z+jwEno/c/V1AVa20Msvv2y/H2REv3r1agDf5nJyRvSRSISdO3faGTfGozcYDGlTWlpKZWUllmXx9ttvA/7bNpCYdaMWIPdzkjvdunGuZhUKhXwTRzehf+uttwCYP3++L2U4I/pPf/rTTJkyxb4ZD5uIXggxDXgdeG9w03lSyhYhxHnANUAPcKmUcquf5RoMhnjq6uro7e3ljTfeAIIV+nxE9P39/QlCX1FR4btFpIRev0kuWLDAlzKcEf2aNWuIRqN2OcPNo39BSnmueiGEKAW+DHwYWAh8C7gygHINBsMgtbW1tLS08MADDwDBCL0z6yaIiF4XYCX0I0aMYPfu3b7O+OkU+u3bt9PS0kJDQ4O9hkCuOCN61QegFqEZNhH9IIuEEC8BLwHfAA4BVksp+4BXhBA/CKBMg8GgoTpkW1pamDJlCqeeeqrvZeQjotenD1bCeOGFF9Le3u7rADCn0Ou2jV9PDc6IfjgL/XZgJtAN/AI4Z3DbHu0zrj1CQogrgCsAli9fztKlS32umj9EIhH7hxnuFFNboLjak2tbTjvtNHp7e7nsssu44IILKCkp8f3YKMHauXMn77//Ptu3b7dHdzrLyrY9e/bssf9vbm4GYt78j370IwDf2qTa0tLSQlNTEy+++CIQezrxqy3t7e1AbFBZU1OTnf66adMmgLglJrOlsbHRdXtWQi+EmAD80eWtC6WUzYOfeQg4DlgN1GufGXDbp5RyBbBi8KXl9pmhQFNTk+fBHG4UU1uguNqTa1tuu+22uGmQg0DlypeXl9tR/YwZM1ytjmzbo9YFLi0ttSPi8ePH+/47qwVZampqaGxsZMOGDQCccMIJCWVl2xaVLx+NRmlsbLSPWUtLCxCbjjuo8zcroR8U8yXO7UKIOu3licRE/n3gMCFEOSCAd7Ip02AwDC30rJsgbBtw74z1a3oFt3Kc1o1fHbGw36Pv6+vDsqwE62Y4dcaeIIS4iZh1sxH4lpSyXwjxE+B5oBe41OcyDQZDAdA9+iA6YsG9MzZood+zZw/r16+3l7H0C31xlt7eXnsJRtU5O2w8einlE8ATLtsfAB7wsyyDwVBY9KyboCJ6PY9eRcBBC/0778RMhyOOOMJX8dU7Y1VbdIZTRG8wGA4Q9Ih++/btQHARfT6tmyBsG4hPr3QTejOpmcFgGHK4WTdBefT5tG5UR6yftg3sj9gHBgbi1vN1vh8ERugNBkNWKKHfsGEDmzZtoqKigmnTpvlahp5Hr4Q+iMXinR497M/E8YtQKGRH9R0dHZ51CAIj9AaDISuU0L/77rtYlsVpp53m2yRjikJE9CraVoPO/ET59EboDQbDsMApuOeff77vZeSrM1YvRw1k8nvRdtjv06vBU251CAIj9AaDIStURA8xATvrrLN8L6MQnbHFGNGbrBuDwZAVutCfccYZgQijLsADA7FB9cNZ6AsV0RuhNxgMWaEL/XnnnRdIGXpnrBL6oDtjizGiN9aNwWDIirq6OsLhMJWVlZx55pmBlKELcL4GTOUzop84caL9nonoDQbDkKOhoYHf/OY3jBkzJhBRhOLPupk2bZo92Mx49AaDYUhyySWXBLp/FeXu27fPnkpYt4z8QolsT08Pvb29hMPhQG4ozoh+2rRprFy5EjBZNwaD4QBFCXBXVxcQE3m/FgJxK0cJcG1tbSDlOCP66dOnJ9QhCIzQGwyGIYszyg2iIxYShT4oK8rNo1dlG6E3GAwHJE7xC8JO0ctpa2sDghN6FdEroa+pqbEXcDHWjcFgOCAJhUKUlOxffTRooc9XRL97924g9oSihN5E9AaD4YBFj3SDFnq1GEjQEb1CF3oT0RsMhgMWPdINWugVQUf0ChPRGwwGA/mN6BX5jOjPOOMMxo4dy3HHHRdImeBzHr0Q4njg1sGXk4D/lVJeI4R4HigBBoB7pZS/87Ncg8FQvOgiHHTWjSKImSvBPaK/8MILueCCCwJJ51T4vWbsSmAJgBDiPuBh7e3TpZSdfpZnMBiKn2KybpwRfU1NDUCgIg8BWTdCiHLgGOClwU1R4HEhxKNCiKlBlGkwGIqTYrJu3CL6fBBUN+8pwDNSyujg6/OklLuEEB8G7gY+5vyCEOIK4AqA5cuXs3Tp0oCqlhuRSISmpqZCV8MXiqktUFztKaa2QG7t0aPdaDQayHFpbW2Ne52snFza0tvbG/e6o6PDzvTxg8bGRtftWQm9EGIC8EeXty6UUjYD5wG/VhullLsG/39BCPFDt31KKVcAKwZf+tdyn2lqavI8mMONYmoLFFd7iqktkFt79Ch+zJgxgRwXZ2Q9efJkz3JyacvYsWPjXs+cOTPBzgmCrIR+UMyXuL0nhCgDFgKf0bbVSyn3CCHmAIkz7hsMBoMHunWTr87YfHj0JSUlgaZU6gRh3ZwCPKvZNgDPCiF6Bv/+YgBlGgyGIqWYOmN1j766ujrwTliF70IvpXwCeMKxTfhdjsFgODAoRGdsUOmVekSfr45YMAOmDAbDECcfEX04HCYc3i+H+Yro84UReoPBMKTJh9A7y8mHR2+E3mAwGAbJR2csGKE3GAyGgpGviF6/oeTDulGjYvOBEXqDwTCkybd1U1JSEsi6tGAieoPBYHAlH1k3sF/o6+rqAkt7NJ2xBoPB4EK+I/qgbBswEb3BYDC4ku+IPqgcejARvcFgMLiSj/no9XJMRG8wGAx5ppisGxPRGwwGgwuF6IwNChPRGwwGgwsmos8dI/QGg2FIowQ4FAolrNAURDkmojcYDIY8o6ybqqqqQKf1NRG9wWAwFAglwEHaNno5QaZX6hG9mQLBYDAYBtEj+iDJR0QfDoft9piI3mAwGAbJd0QfpNDD/qjeCL3BYDAMki+hP+iggwA4+OCDAy1H+fT5FPqslxIUQowA/grMAY6TUr47uP084BqgB7hUSrlVCDEbWDFY3reklM/kXHODwXBAkC/r5vvf/z6XXXYZ8+fPD7Sc4RbRdwPLgD+rDUKIUuDLwBLg28C3Bt+6BfgMcBrwvRzKNBgMBxgqog9aGKuqqliwYEHgC3ZPmDCBkpISxo4dG2g5OlkLvZQyIqVscWw+BFgtpeyTUr4CHDm4fZKU8n0p5R6gTQgxJttyDQbDgUW+rJt88ec//5nnn3+e0aNH563MrK0bDxqAPdrrksH/9RvKbmAU0Opz2QaDoQjJl3WTL2bOnMnMmTPzWmZKoRdCTAD+6PLWhVLKZse2DqBeez0w+H9U2zYCaHMp5wrgCoDly5ezdOnSVFUrCJFIhKampkJXwxeKqS1QXO0pprZAbu3p7+8HYp2YQ+GYDOXfprGx0XV7SqEfFPMlaZbzPnCYEKIcEMA7g9u3CyEOBnYCo6SUCdG8lHIFsQ5bACvN8vJOU1OT58EcbhRTW6C42lNMbYHc2vOpT32Krq4uPvGJTwyJYzIcf5ucrBshxOPAfOBQIcR/SinvE0L8BHge6AUuHfzoN4D7iFk538mlTIPBcGBRXV3NV77ylUJXY1iTk9BLKc9w2fYA8IBj2yrgxFzKMhgMBkN2mAFTBoPBUOQYoTcYDIYixwi9wWAwFDlG6A0Gg6HIMUJvMBgMRY4ReoPBYChyQpY1ZMcmGQwGg8EHTERvMBgMRY4ReoPBYChyjNAbDAZDkWOE3mAwGIocI/QGg8FQ5BihNxgMhiLHCL3BYDAUOUboXRBC1Az+H+wqwXlCCFE9+P+wb48QYurg/8O+LQBCiGOLqC1TCl0HPxFCNBS6Dn5hBkxpCCFOBT4HbANuk1JuK3CVckII8XHgEmALcMdwbs/gzep24CDgXCllpMBVygkhxDzgTuBvwLellH0FrlLWCCFOA5YD+4A/AP8npewsbK2yRwjxYeArxNa1/g/gPSllb2FrlRsmoo/nX4BfAu8CVwkhhu1iKUKIM4FPA7cRW8v3usHtwzJ6lFJ2A31AHbF2Ddu2DHIicIuU8npgRqErky1CiBLgKmLLgN5AbAnRmmH+21wA/JrYTesM4JOFrU7u5LTC1HBnMEq8AHgZ2AF8ALwGPDe4/WghxPrhEgkPtuci4AngTeCzUsoWIcQ64I9CiHFSyp0FrWSaaL/Ni1LK9YPC8U/gIeBqIcT/SSk/KGglM0A/16SU7wPdwGlCiOuJran8OvCYlHJ9IeuZDoNtuRB4AegE/kHsKXgzsaVFq4AyYjfmIY8Qogr4NrEnkReAjcB2YlrQCywTQsyWUq4pYDVz4oCN6IUQFxFb27Ya2CCl3ANMAI4ffIx+C6gERhSskhmgtacS2Cml3DYo8mFiUfDGYSTyqi1VxG6+SCktYA6x3+Mh4EohxEGFqmMmONqzaXBzNTAR+CrwBWK2x7ICVC8jnG2RUu4AniFmEb5FzO74HPDFQtUxEwbPoT8QC/RWDm4OAdMBC1hF7BycWZAK+sQBKfRCiHrgfOBGYifpKUKIMcA9wGeFEDVSyneBqcC0glU0TVzas0QIMRtAShklJir9g5+dMpQfqx1teRb4sBDi8MG3XyD2pNJFTFiuHvzOkD2PXdrzESHEJOC/iUW9B0kpdxO7AajfaEj+Pi7n2clCiEOklM8DTwP/IaW8BPgfoFwIER6qbdEoBR4l9hT/JSHEh4AngQ8Bh0spdxELnqpg6P42qThgOmMHMwK+Cvwv8AqwGLgGKAceAz4FfBi4gtiP/xIxL/i/pZT/U4g6JyNFex4l1p6zpZSbhBCfIXbi7gZGA18cSp1labblVOBKYAmwk5hV0CWl/FYBqpyUNM+1k4m15UhiUeMZwD+llDcUoMqepPnbnE7saWQiMZFcDrRLKa8uRJ2TobXnUWJ9cZMHXzcRCyIuA74PzAXqgTXAmcQsxF8WoMq+MGQjIT8RQkwGfkjMQ5wA/FZK+ThwB/ARKeUPgN8Ct0spbyN2Ql8JvDNERT5Ve35IrDPptsGvTCEm9O9LKS8dYiKfTlt+C3wX+AHwKynlhVLKLw9RkU/nXPsNsayuB4nZBscCrw5Bkc/kt/kV8P7g368NUZHX29MI/ExKKYkFP31Syt8Pvn8q8DtiFuGHgdeHs8hDkQu9EGKx9qg1Ukr5Qynlb4A6IcTXpZRPEfPjAH4CVAsh6gYfRS+VUv44/7X2JsP2/JRBK4DYY/XxUsp78lxlTzJsy53EoiuklPcPfn9InbtZtKdcCFEvpVwFfGWY/zY1QKWU8g/EniLvLkC1PUnSnhFCiM8CNwPHAEgp/w+YPfi5d4Grh1p7smFIXSx+IYSoFUL8lZiPeAaxDqKXhRBXDn7kJeBjQoiRUsoBIcRi4GFiWR2dAFLK/sQ9F4Yc2rMBQEr5kpSyI/81TySX32YwxRKw+x4KTg7tWT+YAICUcqAAVU8gx9+mC2AojQdIoz0vApcP/v+yEOI7g5/fNvjZIfPb5ErRevRCiKOJDa45htigh5GD/28iJuZdxCLd94BfELME/rsQdU2HYmpPMbUFiqs9xdQWSKs9+4jdrFYC44l1wD5VgKoGStEKvUIIcRcxz/B+IcREYhbAP4F/A34vpWwuZP0ypZjaU0xtgeJqTzG1BVK253fDJfU4W4rSuoG4NKjfE0tpGyel3E4sD/tBYqmTe4ea1+tFMbWnmNoCxdWeYmoLpN2ezuGaNpkuRR/RAwghvgQcDLQD64F1UsrXClur7Cmm9hRTW6C42lNMbYHia08mDIu7crZoUceRxHJ9N0gp7x+uP24xtaeY2gLF1Z5iagsUX3uy4UCJ6D8J/I+Ucl+h6+IHxdSeYmoLFFd7iqktUHztyYQDQugNBoPhQKaorRuDwWAwGKE3GAyGoscIvcFgMBQ5RugNBoOhyDFCbzAYDEXOAb2UoOHAQggxjdgycRBbkPvGwe33EpvcCillViMkhRBziC3K8fzg7KcIIe4DLgUWDk6HazAUBCP0hgOVy4QQNxGbYvd8H/Y3B/jO4N/P+7A/g8E3TB694YBBi+g3ADOAk4itDfozYtPSNhKzM79BbN3TUYAElksp3xNCfJeYmP+S2OpQI4mt9/o6+58UFB8htlrRpcQWszhvcN//IqV8KZAGGgweGI/ecCCyGvg7MbvmcmLT1HYMvvdpYmuivkNM8BcCjwghyrTvn0hsYZcRxJadayG2cA3E1oK9iNjygIoPEZvSdzKxFZgMhrxihN5woPIrYlH2ImLLLirOGPz/y1LKu4BHiE2ENUv7zI+klHcSezKYNrjoxiuD770rpfyjY9rb70opbyI29/k031tiMKTACL3hQOWPwACwFfiry/uW43+dtsH/+9l/DSXzQPXPl2RWTYMhd4zQGw5IBpfxuxy40rEs4f8O/v+jwWltz2ZwStsUu2wf/P9EIcSFQogqXytsMOSAyboxHLBIKR9w2XwfsU7ZzxHrrH2dWGdsRAiRbHcvE1ubdPHg9w7ytbIGQw6YrBuDwWAocox1YzAYDEWOEXqDwWAocozQGwwGQ5FjhN5gMBiKHCP0BoPBUOQYoTcYDIYixwi9wWAwFDlG6A0Gg6HI+f92p74I9xR5pQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAGvCAYAAACXeeU8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVM0lEQVR4nO2deZgU1fX+316mZ9+BAYZhABFBUUERVDY3FDAKLuCCGwaXiBFRoybGr6hEo0ZiYjQSVEwU94WAsrkCQUVABBQRGGAYYBgYBph9eqvfH/Ory63qquqq7uqq6pnzeR4eerqru07fqq771nvOvdclCIIAgiAIgiAIh+O2OwCCIAiCIAg9kGghCIIgCCIpINFCEARBEERSQKKFIAiCIIikgEQLQRAEQRBJAYkWgiAIgiCSAhItBEEQBEEkBSRaCIIgCIJICki0JBnhcBg7d+5EOBy2O5SkgNrLGNRexqE2Mwa1lzGovaSQaCEIgiAIIikg0UIQBEEQRFJAooUgCIIgiKSARAtBEARBEEkBiRaCIAiCIJICEi0EQRAEQSQFJFoIgiAIgkgKSLQQBEEQBJEUkGghCIIgCCIpINFCEARBEERSQKKFIAiCIIikgEQLQRAEQRBJAYkWgiAIgiCSAhItBEEQBEEkBSRakoiDBw8iNTUVTU1NCAaDyMzMxO7du9nrPXr0gMvlgsvlQkZGBvr374/Zs2fbGDFBEAThFFatWoWFCxciHA7bHUrMkGhJIr755hsMGDAA6enpWLduHQoKCtC9e3fJNo899hgqKyuxceNGjB8/HrfffjveeecdmyK2H7/fb3cIBEEQtvPLL79g+PDhuPTSS/Hxxx/bHU7MkGhJIr7++mucffbZAFoV89ChQyO2yc7ORufOndG7d2/MnDkTxx9/PObPnw8AeOCBB9CnTx9kZGSgV69eePjhhxEIBNh7N2zYgHPPPRfZ2dnIycnB6aefjrVr1wIAysvLcckllyA/Px+ZmZk46aSTsGjRIvbezZs3Y+zYscjKykJRURGuv/56VFdXs9fPOecc3HXXXbj//vtRUFCAzp07Y8aMGZLYt2zZgmHDhiEtLQ0nnngiPvvsM7hcLhY/AOzduxdXXXUV8vPzUVhYiHHjxmHXrl3s9Ztuugnjx4/Hk08+ia5du6Jv374AgH/+8584/vjjkZaWhqKiIlx55ZUxHQOCIIhkZO3atRAEAQCwadMmm6OJHa/dAdjJoEGDsH//fsv327lzZyYGorF7926ccsopAIDGxkZ4PB7MnTsXLS0tcLlcyMvLw7XXXosXX3xR8f1paWlMmGRnZ+O1115D165dsWnTJtxyyy3Izs7G/fffDwCYNGkSBg4ciH/+85/weDz44YcfkJKSAgCYOnUq/H4/VqxYgczMTGzevBlZWVkAgMrKSowcORK33HILZs2ahaamJjzwwAOYOHEivvjiCxbLv//9b9xzzz1YvXo1vvnmG9x0000YOnQoRo0ahXA4jPHjx6N79+5YvXo16urqcO+990q+S2NjI84991wMHz4cK1asgNfrxcyZMzF69Ghs3LgRPp8PAPD5558jJycHn376KUKhEDZu3Ihp06bh9ddfx9lnn42amhqsXLlS7+EiCIJIempqathj/mY16RDaMcXFxQIAy/8VFxfrjjEQCAg7d+4UNmzYIKSkpAjff/+98OWXXwpZWVnC8uXLhZ07dwoHDx4UBEEQSktLhb/+9a/sfXPnzhUACC+++KLiZz/99NPC6aefzv7Ozs4WXnvtNcVtTz75ZGHGjBmKrz388MPChRdeKHmuoqJCACD88ssvgiAIwsiRI4Vhw4ZJtjnjjDOEBx54QBAEQVi8eLHg9XqFyspK9vqnn34qABA++ugjQRAE4ZVXXhFOOOEEIRwOs21aWlqE9PR0YenSpYIgCMKNN94oFBUVCS0tLYIgCEIoFBJefPFFIScnR6itrVWMnzhGKBQSduzYIYRCIbtDSRqozYxB7WUMs9rrkUceYX3QQw89ZFJ01tOunZbOnTs7fr9erxc9evTAu+++izPOOAOnnnoqPvjgAxQVFWHEiBER2z/wwAP44x//iJaWFvh8Pvzud7/DbbfdBgB4//338dxzz2H79u2or69HMBhETk4Oe+8999yDKVOm4PXXX8cFF1yACRMm4LjjjgMA3HXXXfjNb36DZcuW4YILLsAVV1zBHKB169bhyy+/ZM4LT1lZGfr06QMAbHuRLl264MCBAwBa860lJSWSthk8eLBk+3Xr1mH79u3Izs6WPN/c3IyysjL298knn8xcFwAYNmwYSktL0atXL4wePRqjR4/GZZddhoyMDLVmJwiCaFMcOnSIPU5mp6Vdixa9KRo7Oemkk1BeXo5AIIBwOIycnBwEAgGEQiFkZWWhtLQUP/30E9v+d7/7HW666SZkZGSgS5cucLlcAIBvv/0WV199NR599FFcdNFFyM3Nxdtvv41nn32WvXfGjBm49tpr8cknn2Dx4sV45JFH8Pbbb+Oyyy7DlClTcNFFF+GTTz7BsmXL8OSTT+LZZ5/Fb3/7W4TDYVxyySV46qmnIuLv0qULeyymmkRcLherYhcEgcWqRjgcxumnn4558+ZFvNaxY0f2ODMzU/JaVlYW1q5dixUrVmDZsmX4v//7P8yYMQNr1qxBXl6e5j4JgiDaAnx6KBgM2hhJfFAhrsNZtGgRfvjhB3Tu3BlvvPEGvv/+e/Tp0wd//etf8cMPP0iKYQGgQ4cO6N27N7p27SoRAatWrUJpaSkeeughDBo0CMcffzzKy8sj9tenTx9Mnz4dy5Ytw+WXX465c+ey10pKSnD77bfjww8/xL333os5c+YAAE477TT89NNP6NGjB3r37i35JxcQavTt2xe7d+9GVVUVe27NmjWSbU477TRs27YNnTp1ithPbm6u5ud7vV5ccMEFePrpp7Fx40bs2rVLUm9DEATRlmkrTguJFodTWlqKrKwsVFVVYdy4cejevTu2b9+Oyy67DL1790Zpaamuz+nduzd2796Nt99+G2VlZfj73/+Ojz76iL3e1NSEO++8E1999RXKy8uxatUqrFmzBv369QMA3H333Vi6dCl27tyJ77//Hl988QV7berUqaipqcE111yD7777Djt27MCyZctw8803IxQK6Ypv1KhROO6443DjjTdi48aNWLVqFR566CEAYOJr0qRJ6NChA8aNG4eVK1di586dWL58OaZNm4Y9e/aofvbnn3+O559/Hj/88APKy8vxn//8B+FwGCeccIKu2AiCIJIdXrSQ00IklK+++gpnnHEG0tLSsHr1ahQVFaFr166GPmPcuHGYPn067rzzTgwYMABff/01Hn74Yfa6x+PBoUOHcMMNN6BPnz6YOHEixowZg0cffRQAEAqFMHXqVPTr1w+jR4/GCSecwEYsde3aFatWrUIoFMJFF12E/v37Y9q0acjNzYXbre8U83g8mD9/Purr63HGGWdgypQp+OMf/wigdQQUAGRkZGDFihXo3r07Lr/8cvTr1w8333wzmpqaJLU5cnJycvDRRx/hvPPOQ79+/fDSSy/hrbfewkknnWSoDQmCIJKVtjJ6yCUI/3/gNpEUhMNhlJeXo7S0VLcgSFZWrVqFYcOGYfv27awg2Cjtqb3MgNrLONRmxqD2MoZZ7ZWXl4ejR48CaJ3Pik/9JxPtuhCXcBYfffQRsrKycPzxx2P79u2YNm0ahg4dGrNgIQiCIFrTQaJgAZLbaSHRQjiGuro63H///aioqECHDh1wwQUXSEY3EQRBEMY5fPiw5O9krmkh0UI4hhtuuAE33HCD3WEQBEG0KfgiXCC5nRZKKBIEQRBEG4ZEC0EQBEEQSQE/cghI7vQQiRaCIAiCaMOQ00IQBEEQRFIgFy3ktBAEQRAE4UjIaSEIgiAIIiloSzUtlg95Hj58uOTvpqYmPPXUUzj//POxcOFCzJw5Ez6fj73+3nvvoXPnzlaHSRAEQRCGqampwZ133omuXbvimWeeibp6vRW0JafFctGycuVK9njbtm246aabcOaZZ7LnBg8ejOeff97qsAiCIAgibubOnYu33noLAHDFFVfgrLPOsjmitlXTYuvkcosXL8bIkSORmZkZ0/v9fj/8fr/kOa/XK3Fq2hrhcFjyP6ENtZcxqL2MQ21mjLbeXrt27WKP9+/fH/f3NKO95OmhQCDgyPbXs7aSbaJFEAQsXboUDz74oOT5DRs24Pzzz0dBQQGuuuoqXHnllaqfMXfuXMyZM0fy3IQJEzBx4sSExOwkKioq7A4hqaD2Mga1l3GozYzRVttr9+7d7PHevXtRXl5uyufG014HDhyQ/N3U1GRaXGbSs2fPqNvYJlq+//57NDc3S6yz0047DW+//TY6d+6MzZs347777kNhYSHOPfdcxc+YPHkyJk2aJHmuPTgtFRUVKCkpoRVSdUDtZQxqL+NQmxmjrbdXS0sLe5ydnY3S0tK4Ps+M9jpy5EjEc/HGZRe2iZYlS5Zg1KhR8HqPhVBcXMwe9+/fH1dffTW+/PJLVdHi8/natEDRwu12t8kffKKg9jIGtZdxqM2M0Vbbi0/FBAIB075jrO3V1NSEpqYmyXPBYDBp296WqAOBAD7//HOMHj1aczsnVF0TBEEQhF74olfedbELeT0LkNyjh2wRLatWrUJWVhZOPfVUyfNff/01W0J7y5YteOeddyKGSBMEQRDtk4qKCtx7771YunSp3aGowosEJ4gW+cghgEYPGWbx4sW46KKLIpyU1atX45FHHkFzczM6duyIG264AaNGjbIjRIIgCMJhPPLII5g7dy5efvll7N+/H+np6XaHJCEYDErqR5qbm+0L5v/T1pwWW0TLU089pfj89OnTMX36dIujIQiCIJIBcThxbW0tdu/ejRNOOMHegGSImQIRclrMJzkrcQiCIIh2B+9c7Nmzx8ZIlJG7Gk4VLcnstJBoIQiCIJICp4sWuUBwgmhRSg+R00IQBEEQCYYfukuiRR9KTosgCAiFQjZEEz8kWgiCIIikgJwW4/AxFRYWssfJ6raQaCEIgiCSAqeLFifWtPAxFRUVscfJWtdCooUgCIJICpwuWpzutPCihZwWgiAIok2wYcMG3HTTTfj000/tDkVCsokWJ8zTIsaUkZGBrKws9nyyOi22rT1EEARBOJP7778fy5Ytw7Jly7Bv3z67wwHQWjzKi4Dq6mo0NzcjLS3NxqikODE9JIqWwsJCyVp/5LQQBEEQbQLRxaisrIxYbM8u/H5/xHN79+61IRJ1nJYeEgSBCanCwkKkpKSw15LVaSHRQhAEQUjgHQ2lIbN2oJRqcVqKyGmipa6ujjkqBQUF5LQQBEEQbQ8nihYlx8dposVp6SH5cGdyWgiCIIg2By9alGZUtQO7nJY9e/Zg9erVEAQh6rZOc1r4Y0c1LQRBEESbhO9sneK02CFajhw5gr59++LMM8/E+++/r7ltc3MzGhsbJc/ZLVr4Y1dQUEBOC0EQBNH2cGJ6yA7RsmnTJjQ0NAAAVq1apbmtUjs5SbSQ00IQBEG0OYLBoGRdmvacHuJHLCmNXuJRaie752nhYyKnhSAIgmhzyN2B9uy08B17NNHiRKelvr6ePc7OzianhSAIgmhbyMWBk0VLVVVVVDERD7xoiSZAnCha+BFX6enp5LQQBEEQbQu5OHBKekhpyLMgCKisrEzYPo04LUrtFAgEEA6HTY9LL3LRQk4LQRAE0aZIBqeF73wTmSKKNz2k532JhG8zcloIgiCINkcy1LT07NmTPXaiaElNTWWP7UwRkdNCEARBtGmSwWnp3bs3e2yVaIkmPvj0UNeuXXW/L5FQTQtBEATRplGqadEzG2yisVu0GHFanCpayGkhCIIg2hTyTjYUCqG2ttamaI7Bi5bjjjuOPXaiaOnSpQt7bOdcLeS0EARBEG0apU7WCSkiPq5evXqxx4kULbFMLpeZmYmcnBz2PDkt5kKihSAIgmAoiRYnDHvm48rNzUVRUREA59S0iMKuoKDAsYW45LQQBEEQccFPme8EnOq08B1wWloaunXrBgCorKxMmGugNz0kCAJro8LCQseJFp/PB7fbTU4LQRAEETtPPfUUcnJy8PTTT9sdCkOpk3WCaOHFFC9aQqEQqqqqErJPvaKlrq6OiQAnipb09HQAIKeFIAiCiJ1//OMfaGxsxKxZsyzbZ2VlpWYnnwzpobS0NEmx6/79+xOyT72iRb4wodNES1paGgCQ00IQBEHETl1dHYDWNXSsuPP9+eef0b17d5SUlGDHjh2K2zg1PSQXLdnZ2ezvhoaGhOxTb00L3z6FhYVMJER7X6IR24ycFoIgCCJu+DqNRK6hI/LFF18gGAwiEAjgq6++UtwmWdJDmZmZ7G8rRIuW0yIXLU5zWkTRQk4LQRAEEROhUEjSEe7bty/h++T3p9aZJkt6yEmiRSs95IR5WtqS0+KNvglBEARhNvLOzGrRotaZJkN6KD093XLREggEIAgCXC5XxHZyp8XIUOlEEQgE2Mg0cloIgiCIuOBTQwCwd+/ehO8zVqfFSaJFHLprhWiRuytqbosT00PyOVqAtuG0kGghCIKwgcbGRsnfTkkPObWmhR8J43K5LHdaAHXR4sTRQ0qihZwWgiAIIibsdlqMpIecVNMijsxxkmjhRZ2TRUtbcFpsqWm59dZb8eOPP8Lj8QAABg4ciL///e8AgNdeew1vvPEGwuEwxo0bh7vuuksxh0gQBJHMyEWLU5wWXrR07NgRBw8exJEjRxAMBiV36lbjZNFy5MgR9rigoMARQ57bqtNi2xn4yCOP4KKLLpI897///Q/vv/8+XnvtNaSlpeE3v/kNevTogXHjxtkUJUEQRGJwqmjhny8uLsbBgwcBAIcPH0bHjh0TG6AGThAtam12+PBh9jgvL4+clgTiqNFDixYtwpVXXsmmZ77uuuuwePFiVdHi9/sjlK/X64XP50t4rHYRDocl/xPaUHsZg9rLOLG2mbyj3bt3b8LbnXdRmpqaFPfHd3ZdunTBDz/8AACorq5GYWFh3DHE2l68aAmHw6wjBoD6+vqEtJ28f2lublbcj+i0ZGRkwOv1SsSB2nv0Ysb5JbaZ232sIiQQCDjud87Hp4ZtouWZZ57BM888gz59+mD69Ok4/vjjsXPnTowdO5Zt06dPH7zwwguqnzF37lzMmTNH8tyECRMwceLEhMXtFCoqKuwOIamg9jJGW26v7du349NPP8Vll12Gzp07m/a5RtusvLxc8ndtbS02b94scRDMhncEampqImIApKmOnJwc9vinn36SpD3ixWh78aOHysvLJd/l4MGDit8lXsQZi0V27dolcVFEqqurAQDZ2dkoLy+X1ACZFVs851dLSwvKy8tx4MAB9tyRI0cS0mbx0LNnz6jb2CJa7rrrLvTq1QtutxvvvPMOpk2bhvfffx+NjY3Iyspi22VmZkZU2PNMnjwZkyZNkjzXHpyWiooKlJSU6FKl7R1qL2O09fZqbm7G8OHDsXfvXmzevBkLFiyI+zNjbTN+GnqRlJQUlJaWxh2TGrwD4PF4FPfF1xCecMIJpscWS3sFg0FWg5Gbm4vS0lKJoBIEISHtJq/hKSwsVNyPKG46dOiA0tJS1NfXs9d8Pl9cscV6fm3atIk97ty5M0pLSyXHNjU1NaHnWqKwRbT079+fPb7xxhuxYMEC/PTTT8jIyJAc7IaGBmRkZKh+js/na9MCRQu3290mO5VEQe1ljLbaXu+++y4bpVNWVmbqdzTaZkq1DpWVlRKhYDbyGV6V4hXj8nq9KCoqYs8fOXLEtvbi405LS4Pb7ZaIvsbGxoScr/K6j2AwGLEfv9/Pbq7z8vLgdrslqSu1djZKPOdXRkYG3G63xCVS+i7JgCMiFhuuZ8+e2L59O3t+69at6NWrl11hEQTRhhAEAc899xz72841YYDIQlwg8cW4RkYPpaamoqCggD1v51wtfFuJKSqfz8ecEP5m10z0jB7i01T5+fkA4NhC3LYweshy0VJXV4dvv/0Wfr8fgUAA8+bNQ21tLfr164exY8figw8+wN69e1FdXY158+ZhzJgxVodIEISM+fPno0ePHnj88cftDiVmli9fjg0bNrC/27toiTZPS1pamqTw1k7RIl93SESs/7FzRly+BigvLw+Ac0ULjR6KgWAwiBdeeAG7du1CSkoK+vTpg7/97W/IysrCsGHDsG3bNtxwww0Ih8MYP348Lr30UqtDJAhCxnPPPYfy8nLMnDkTDz30UFLayrzLAjhTtCR6gjkjQ57losXOCea0RMvRo0dtHfKs5LTQPC2Jw3LRkp+fj9dff1319cmTJ2Py5MkWRkQQRDRqa2sBtHZ6LS0tkpx9MlBWVhZRdGu3aFEaZOCk9FBaWppj0kN2OS160kO80+L09FBbcFqS73aJIAjL4S+8Sg6B03n++echCILkObtFi9PTQ6mpqe0+PWS0pkVMD/EDRJwkWtqC00KihSCIqPAXXrXOzqn4/X68+uqrAFov3n369AFg/+RaTk0P8U5LVlYWuzt3SnqId/lE0RIIBBLiHMTqtLhcLiZc7Pq9KIkWj8fDhj2T00IQRJuFv1gnm9NSVVXF5tEYNWoUunTpwl5TW0vGCvh2FO+A9+3bF+EImUk00RIKhdgduLiaspgiSrTT8tprr2HWrFmKxySa0wIkxm0xWtMiOi3AsRSRk5wW4Ni5Rk4LQRBtlmR2WvjaEaesCwNIOxVxJtCWlhZJJ2g20dJDfHuI7SSmiBIpWtauXYvJkyfj3nvvxYcffhjxutKQZ8B60aLXaQGcK1pE54ycFoIg2izJLFr4ziwjI8ORouW4445jjxOZIormtCg5GqJoaWxsTNix37FjB3vMz9WlFRfgDNFittNSWVmJyy+/HPfff39crptam5HTQhBEmyeZ00O805KZmel40ZLIYlwjTovY0fEjiBJV1xJNFDtZtKg5LWKcRs+xuXPn4qOPPsIzzzyD77//Xvf75PVZZjstgUAAdXV1aGpqQigUMvReMyHRQhBEVMhpMR++U+nduzd7bJXTEg6HI+62lcQBP12+FZO4OUW0CIJgS02LuPgioP9cmDt3LgoKCvD73/+ePWd2Tct///tf5OTkICMjI2LOIysh0UIQhCahUEhyF9fenZZQKIRffvkl7oJZsR1dLhd69OjBnrfKaQEivz8vDsR24oVBoqbLd6LTotSpa6WHPB6PRODFKlp4oXT06FFd73n22Wdx9OhRzJo1i52XZjstfHvIF5K0EhItBEFootWxJQNmOy2XXHIJ+vbti0ceeSSuuMROJT09HcXFxez5RIqWaMdSSRwkOgUDGHNalIY8JyI2pU5dKz2Ul5cXsYqy+DlGhtYbFS2CILCaIL/fz9pBrXg5VqeF397j8Rh6r5mQaCEIB1FdXY3//Oc/qKqqsjsUhryja89OiyAIWLx4MQBg4cKFqtuFw2EsWLAA3377bdS40tPT0bVrV/Z8otJDcscMiPz+SjUtWVlZ7DkniBarnBa9okV0WvjUEBD7rLhGRUtVVZXkNynOXi0+Jw5dFyGnhSAI05g8eTJuvPFGXH311XaHwpBfqJPZaYlXtPAXenHuFyU+/PBDjBs3DkOHDsXOnTsVt+GdlqKiIraeU6KcFqUOV8t5UXJanJYeSqSgUurU5e0VDoeZsOCLcAHrRIv8/JKLFvmSG2Y4LSRaCIIAAKxfv17yvxOg9NAx9IoW8fiFw2Fs2rRJcRu+U/F6vSgqKgJgrWjRSg8p1bTY5bTYMU+LHqelrq6OuVd2OS1y0SK+R020kNNCEIRpiBfehoaGhM6MagRKDx2D77S0RAvfRmqdqbxTEVNE+/fvT8jyAnqcFkoPHUOPaFEb7gyQ05IoSLQQhIMQO9hgMGjrFPM8saaHnnnmGQwePBgrV65MRFi6MdNpkc9Xo3bhjyZawuEw23dGRgYAIDc3l72WCGHYFtNDdosWteHOgDROI+cZv49EOy1GboxItBAEIUEuVBJ1V2uUWJyWgwcP4oEHHsCaNWvwzDPPJCo0XSTKaQHU3Ra+jfj9iyiNhhHFi9p74iWZ00NOES3y88UJTgs/mzDQ6rQIgsDaTM1pASInpNOCn1CORAtBEBEdlVNFix6n5dtvv2V3cYleaC8aiappAdRFC38slY6j0hwadogWPU6L09JDThryrOW02FnT4vf72e9PzWmR7ysa5LQQBCFBftFNlBVvFPmFWo/Twg/1TUQHbAQnOi1OFS1KNS1WOC1OTA8ptVesNS1GiteNiJZgMIiKigrJc7W1taqFy4BUcBipayHRQhCEhLbmtIjYLVoSVdMCHCt6lBOtpsUposXo5HKJEtLJkh5ymtNSUVERsQ7Q0aNHVWfDBchpIYg2zUcffYS33nrLkpE88otusoqWUCiE7777jv1tt2jh92+2aHGS03LgwAH8/e9/x9atWxVfN5oeEtvJaekh/vi19ZqW+vp6zcUJleYAkjstWjUtyei02LdngnA4q1evxuWXXw6g9S5qzJgxCd2fvKNK1vTQ5s2bJbHbPURa7Mx8Ph+8Xq8lNS2xOC185xKLaJk2bRrefvtt9O3bFz///HPE62Y4LXalh8T28vl8bBI+oFUYuN1uhMNh252WRIgWQHtovZJoIaeFINopGzduZI+tmOytrTgt8qnrE+m0lJWV4cYbb8S8efNUtxH3L3a+Vjgt/HdW+v78c0pOSyxCb/PmzQCALVu2KB4jM2parEgPKR0T8fvI6zNcLheLz27Rkoj0EKCdImqPTguJFoJQga9X4JeLTxTJUtMSrUOVi5ampqaETJYGAE888QT+85//4Ne//rVqfYnYjqIoaKs1LXxsfGeq9LqIntFDKSkp7O7civRQMBiM6EzVRAsAS0WLkfRQrPO0xCtayGkhiHYK3yFZMWzXqU6L0cnllBYJTNTU/3v27AHQ2ikcOHBAcRstp8VoXE6uaeE7Rr2iRc88LcCxuhYr0kNKf6vNOQJYK1qc7LSI+yOnhSDaKXY7LU6paTHitBw5coSlKXgSlSLiP1ft4m6m05LImhYznZaamhrN10X0pIeAY8LAivQQoC6m7HZa1IY8Z2ZmShwMIPbzTL4PPaKlc+fO6NChAwBjooWcFoJoQ1jttDg1PWTEaVmzZo3i81aIFqVUTSAQYBdmq2paBEGIWtPCdyqiWDHTaVESLUrfVU96CEicMBAxQ7Q0NzdrjrQxihGnRe6yAObM0wKoi5bGxkbs378fANCzZ0/k5OSw7fWmh8hpIYg2hNVOi1PTQ0YKcfnUUKLnHZF/rtLFXT7cGUh8TUsgEJDU8DjZaYklPWR0+H8wGMSyZctU03eA9jnGT0mvJVrE+MxCjzMlOi3yehbAvPSQWt3Url272OOePXuytavq6+sl7UBOC0G0E+x2WpIxPfTNN9+wx8OGDdP1nnjgP1fp4i6fDRdIvNMi/65WDXk2Iz0UzWkJhUKG2+yxxx7DRRddhKFDh6o6IVpOC/+alaIlmtPS0tLCjmM0pyURNS18PQvvtACta3+JkNNCEO0EvhM8cuSI4aXcjeJUp0VvekgQBOa0dOjQAf3792ev2eW0yGfDBWIf1QHoq2mRi5ZYCnGNijxBEGIqxDVa0wIYPy9Xr14NANi+fTtLZ0SLjT/HtKakjzc2LZRESzAYZC6a1sghwF7Rwrez1jT+5LQQRBtCfueudPdqJk6taVFyWpRSBDt27GCd5ZlnninpTOyqaeHb0C6nRanWwuz0UCgUkhyTeNNDHo9H0jHFMytutKHYgLbjo+b+iFgpWvjntSaWAxI/5JkXLb169WLpIQCoqqpij8lpIYh2grwTTHRdi1MXTJRfcAVBULyg79u3jz3u06dPwmta5AWv0WpaEiFaoqWkRORCxmzRIv8e8aaH+DYC4hMGekSLltPiNNEithnvtJiVHpKLTyB+p4VqWgjCIFas25MI5B1SoutanOq0KHV2SukLXtR17NjRkgUA+XMrmtMixuN2u9lF1wqnRR4HEH1GXKPtJY8rVqdFbA+5OIhnVlwzRYvWPC2ANaJFjDWa0xKLaFHaZzTR4vF40K1bN3JaCCJeBEHANddcg27dumHVqlV2h2OIcDgc0SFZ7bQ4RbRoTavOw7dPhw4d4i4sjYb8M/U6LcCxDsWKmhalWJ3utGiJlnicFqW4wuGw6gy48sd2OS38uSx+n0Q4LUqiRW30kChaunfvDq/XS04LQcTLtm3b8Pbbb2Pfvn145ZVX7A7HEEpDO9ur0xKraEm00yL/TL1OCxC7aJF3/PX19RFLFOhxWswePRSr06JXtMRT0xLvTL2JFC27du1SnSCQ79D5fcTitOidp0Wv09LY2MieLykpAQCJ08LHRk4LQeiEn5eBvytJBpQ6wPZa0xJLekguWhIx5Fn+mXqHPAPmiRZBEDRTP2rPKYkWt9vN4opXtMQ7jb9WTYvZ6SG7RMtbb72Fnj17YuDAgarz7Yjwok08Z7Sm8AcSmx7izx8xNt5p4SGnhSDQWjC2cOFC/PDDD6rb8Hd7iVzpNxEoXcTIaTmG0p0jPzeEGU7Lzp078c4776i+V096KNFOCxCZIorVaeFjNCrylCY9k49YMjLkOVHpISXREu38StSQ56VLlwJoXSl8zpw5Ea9Hc1oSMeRZ6RgpnddKQo53WnjIaYkTv9+PRx99FGPHjsXIkSNx6623Yvv27QCAhQsXYsiQIRg+fDj7pzaun7CXefPm4dJLL8WZZ56JyspKxW140eKUDlgvTnBaGhsbE7Y6shGULrhGnRajoiUYDGLYsGG4+uqr8eijjypuoyc9lOiaFkCfaNFyWviOWGyzeJ0WQRAiOrtooiUcDrNtzEwPOdVp4b/7c889F3Fs+biipYcS6bTU1dVFXAeU2sRKp8Xj8eh+n9lYLlpCoRCKi4sxd+5cfPHFFxgxYgTuvfde9vrgwYOxcuVK9q9z585Wh0joYN26dQBaf4zr169X3IZ3JtqCaLHaaREEIWEzyRpBT1oBOCZa3G438vPz4xItBw4cYEOov/zyS8Vt2oLTkp6eDpfLFRFjvIW4QGRdS7TjyH9Ge0gP8fvds2cP3nvvPcnr8TotPp+PPY5HtCilIO10Wjwej+SctRrLPZ709HRMmTKF/X3VVVfhb3/7W0w1D36/P+KE93q9kpOlrSEqbrvvwPkfUWVlpWI8ctFiR8yxtpfS+VhdXZ3Q76B0wa2rq1Mc5pkolNpL6YKrdDxF0VJQUACXyyXpYIwef74ttm/frvheeXvV1tYiFApJLqjyNVjEz+FFi/w9Wii1xdGjR9GxY0f22UqCQ16wy4sW/nletBhpLzUR2atXL8XYvV4vgsEgWlpa2H54sZWamirZP38OKhUfayEfPSQ/x5REXlNTk2J7yuOKJzZ53/GXv/wFV111FTsX1JwWMTZegOXm5iruNzU1FS0tLZJ21kJN3MjdFqU24d0wEbfbDY/HI3mv233Mq/D7/brbSxQtXq83YddBPjY17EtM/X82btyIgoICZq9t2LAB559/PgoKCnDVVVfhyiuvVH3v3LlzI3KREyZMwMSJExMZsiOoqKgw/J4tW7bg4YcfxoABA/CHP/whLrXM1y9s3boV5eXlEdvwz9XW1ipuYxVG24ufuElk//79CfsO8onSRLZu3WqL28K3l9LoioqKioi2EM+J3NxclJeXS+70q6urDbXdjh072OPDhw9jw4YNERb87t27JX+Hw2H8/PPPkg6GTy8fPXqUxSCODBMEAWVlZZK7Ty2UnIKdO3eid+/erM34SfZE5O0luhU+n0/yvGi7t7S0YMeOHbpteKXze8uWLSgqKmJ/805UZmYmWw1Y3D//mxYEQTFeoPUmxcix5Dv/AwcOsFjF//mF//jtxH3w7dnQ0BCxb/57VVVV6Y5N7qauX78eb7/9Ns4++2wA6oMH9uzZg/LycjbQwOPxoLq6WtGJTUlJQUtLC+rr63XFJT+nRerq6iTHmG8zv9+P8vJyxZue1NTUiM/k24tv52iI1yePx5Ow62DPnj2jbmOraKmvr8cTTzyBO+64AwBw2mmn4e2330bnzp2xefNm3HfffSgsLMS5556r+P7Jkydj0qRJkufag9NSUVGBkpISXaqU509/+hPWrVuHdevW4ZxzzsG1114bcxz8vgOBAEpLSyO24a3OlpYWxW0STaztpXQOHT16NGHfQS0dkJuba2m76W2v7OxsSVzihRkAunTpgtLS0giHyMj34DtQoPXCLH8/n+4RycvLQ9euXdnffKffu3dv9hm8ld65c2fFu1QllM4L0bUR20yeWgFaLXw+frEjz8rKkjzPpxk6deqkO64ff/wx4rmUlBTJZ/NtkZeXh6NHj0ralR/in5+fL3kv39G53W7dxzIUCkkKguvr61FSUiI5x+THGmhtZ3EfvAgtLi6O2Dd/1+9yuXTHpiQI33jjDVxzzTUsBpFOnTqxx3l5eSgtLWW/2by8PPTo0UNxH+np6cz90RMXPykcT11dneQ3KdaBirGVlpZCEAS43e4I506+X77kQv471kLct/y8shrbREtLSwvuvfdeDBs2DOPGjQPQekKK9O/fH1dffTW+/PJLVdHi8/natEDRwu12GxYt/MXhwQcfxPjx43VfFOXwd/8HDx5UjIW/K21oaDAcr5kYbS8ld+Hw4cMQBCEhRWhq8zg0NTXZ0m58eylZ1i0tLZK4+GPdoUMHuN1uybll9HvIrfsdO3ZgyJAhkueU2qyurk6yH14MZmVlsdd4YREIBHTHplRzIIo1sc2U4pJ/fz49xD/PC7Hm5mbV4ko5SrUJR44ciUgFiGRnZwNoPY4ulwsulytiNWX+veL2QGub6m0v+blz+PBh5vCK7aXUpvz5xX9GRkZGxL5jjY3/vt27d8fu3buxZMkS/PLLL+jXr5+kTfl9BINBuN1u5tTk5OSo7lM8z5qbm3XFpbYKtnhei5/Bx86fQzk5ORKHSH5+8TGJ+9PbXnxNi63Xcjt2GgwG8Yc//AEdO3bE3XffrbqdncU+bRHeDt27dy+efPLJmD+L7wz4+Vh4+PSA3+9P+CrJZsK3ldj5CoKgOg25Hqqrq7F161bF19ScFicUMOspxJUPdwaktQZGU1zy7cvKyqJuA0Ra/tFGDwHGinHNKMTlC6zlblSsE8wZLcQVO2FBENjvUm2FZyD20UPy9goEAhHfy+5CXLfbjalTp7LnV65cyWIVUZqnRTzuvKCRY7Tgm98nf47KzzG1NpEX4yrVw8U7esjO4c6ATaLlT3/6E1paWjBjxgyJMPn6669Zp7Blyxa88847GD58uB0htknkJ/6zzz4rqR0wgh7RIs/xOqED1gvf+fF51lhHEB0+fBi9evXCCSecgCVLlkS8rtY2TphgTs+QZ/lwZ6D1jizWydLkn8/b4SJKnykfQRRt9BBgjWjhY9VaSyfWCfmU4lITLW63W9LRi/FoiQMzRuiIyIV/NNESbZ4Wvg1jic3n80nSO+JvTmv0UCAQYOdNokSL+DsC9IsWuTOnJFpiHT0kukDtTrRUVlZi4cKFWL9+Pc4991w2H8v69euxevVqTJw4EcOHD8cf/vAH3HDDDRg1apTVIbZZ5HehYoouFow6LfL3qCEIAj744AMsWLAgprjMgm8rfgRGrHO1fPfdd+zCoyRa4nFa1qxZg3/9618xi8I1a9bg1VdfVe0k9UwuJ18sUSTWIbzyz9crWtScFo/HI0klxypa9MzTohQXf2zUJpYDYl9/yIho8fl8it9fS7TwcRkR0nriinZ+RXNa3G43iy8W0ZKSkqIoyrREC3/MtVJ4YrxWiZb24LRYvvcuXbpg7dq1iq8NHDgQ06dPtzii9oN4Qe/YsSO8Xi8qKysxf/58bNq0CSeffLKhz5KLFkEQJK5ZIBCI+KHpuaAsW7aMjRj75ptvcOaZZxqKyyzMdlr4765UbMe/XlBQwC7s0dqsuroa5513Hurr67F7927MnDnTUFxHjhzByJEj0dTUhIMHD+J3v/tdxDZ6pvFXclqA1ovm4cOH43Za9KaH1JyWjIwMyflpp9OSCNGi9B3UHA2fzyfp6MQOUGueFrfbjfT0dDQ1NZnitPCdq5H0kNrw/8zMTDQ2NsbstPDpH1GU8XHxr/v9fsn1QY/TEgwGEQ6Ho9aC8Pt0mtPiFNFC0/i3I8QTv6ioiI3YAlpTcUbhL6jBYDBieKBS7YeeC8o333zDHosT2BmhqakJ9957Lx577LGIBQ+NkEjRojTLM9+evFMRrc2++OILdpGNZSXtHTt2sE70u+++i3hdEARdNS1qoiVWp0Xe8e/fvz/iDl+P0yK2H3+nDJgrWuT7jFbTkoxOC3Cs47Y6PRQtLuDY8Y1VtBhxWlpaWiQiQo9oEd8XDXJaokOipZ0QDAbZRTA7O5utDAqop3e0kF9Q5Z+htMqsngsKP6dALHG98847mDVrFh555BF8/vnnht8vInZEaWlp6NKlC3s+1vSQEaeFH14ZzYr/6quv2GMlNyIa/MVPaX4RtbvNRIsWpRE48u+np6ZF3EY+PLo9OC1mixax4zaSHtLjAMWbHuJjS4Rocbvdkv3K00OJEi38zQs5Lccg0dJOkOdg+Y7RqDhQmghN/hlKjoSei3C8ooWf9Ehp7gq9iJ1fTk6OpBNOVHqIbxv+2ES7CPOipaKiIq5ROtFEC38Xpzc9JHbCzc3NhmbRVPoeekRLop0WsVPh20LNAUpNTWUpKTWnRS6mrHJalNJDfEeoNNdMPMKAR+7KmuG0iILayEzCaqJFXoibkpIiqYeySrSQ06IMiZZ2gpmipaWlJSL14hSnhe9A4pm1kZ+DobCwkD1vhtNSU1MTcbFQc1q02qyqqgo///yz5DmlmXy14C9+lZWVEceVv9DyF0SjTovSe/TGJSIvxo1W0xIOh9nnmJ0eSk9PZx2CmtOSnp7O9qvXaYl1yLOaaOGPp7hNamqq4vfXGvIMxCcMeBKZHgL0j7oSf4Pymha50yIXLbGmh/Sc/04ePUSihbAUeeFYPKJF6WJqhmgRBEEyVXUsooX/cccqWgRBkIgWs50WIPK7qTktWlb88uXLI54zmiLiL/CBQCDi+6mJFnnHIM7T4vP5JBfxWJ0DM5wW/nWz00P891SracnIyFAc1aI3PWTENeO/g9gpBQIByX7NSg8B+o+lHtFiZnoI0O8E6U0PydtLXoirNXooHqclKyuLiSVyWo5BoqWdIHda+HypU0RLdXW15Mdol9PS1NTE5iRIhNMCRKaIYnFa+NSQiNLQYC3kHaM8RaSWHlJzWjp06KC4ajEQv2iRf7doNS1qE8sB5ogWsbMy02kxIz3ET9POCwQj6SGzJnEzkrbiUZqnxe12q3aYRmPjC8zFmdXFma6dkh5KSUlhv7lYnRal4xiL0xIOh5lrR6KFsAS505KWlsZOcKeIFvnCXvE6LWqLj0WDb6vc3FykpqYy+9gsp0UuWmIZPaQkWow6LXLxIRctepwWQRAkooUn1nSHnvSQ+Hn8hZk/dmoTywHx17SkpKSwzqqurk6ShuFFi5LTwrdDIgpxedEi/g7D4TDroNScFq0hz0Bss+KamR5KT09XnSXdqGjhO2ufzweXyxUxOsoM0cKfm3aIFrOcFr69SLQQlqBkZ4p39FaJlmgXYbnIOHLkiOIFTQveaamuro5pwjWlthLdFrOcFvmwZ6Ojh/h6Fn7yO7OdFv5Cy18Q+YtmQ0MD204uWsxwWsRFBCsqKiTxiNtkZWWxDsdKp0XsrILBIHueL1KXOy2isLHSaRF/h3znZEZ6SO8IIj2FuHrTQ2qpIXlsen7zfFyiIJEXGptd0xKPaKmvr5cI43jSQ7E4LSRaCMtRmsFR7ByNigM9okXJkTDqtACRq/1GQ35HEovboiRaxM64pqbG0CgYEXmbaTktBQUFbBIqtTbj61kmTJjAOu14RYtcTMkX0RMvkPxFU60IFzBHtPTv3x9AqyDgC4354czixTrRTouSaAGOnXfyxf3E/QqCwNos0aKFH6IvihZ5J21VesjIpHfAsfXmgsEg6yiNihY9gorfp9iJy4d08zPmymtarBYt4XBY8r3IaSGSGkEQ8H//93+45pprFCcuAyLTQ4D0jt6IOFC6mMo7YTPSQ0qfGw35BSuWuhYtpyUUCkXMBaIHIzUtmZmZUYeX8qmhc889F7179wbQ+n2NFNcZSQ/xnR3f8SZCtPBx8bM186KMFy3icVIrxDXDaQmFQkyw8jUtwLHjJBckSh19oudpUXJa5KIlXqclUekhXgDI40q002IkPZSoQly5mOKdE36f5LQQSc2CBQvw+OOP4+2338ZLL72kuI1WeggwliKyqqbFaFxApNNilmiJdwSRkZoWI6LF4/Fg6NChOO644wC0XlyMuEtG0kOpqansIhiL02JkNIyS0wJIa3b4UTq8jS4WUZvttMjvgvkOVk2QKImQRA95VirE1eO0WFnTwqc6og2rF9vLqvRQIBBg/wBnFOIC0tQnOS2ELhoaGnD22WejX79+2LNnj+p2CxcuROfOnTF27Fhs2rQprn1+++23KC0txXXXXac6Lf0///lP9njXrl2K22ilh4D4Rcvhw4clFwIzalqMxgVEOi1mpYfiHUFkxGnJyMhgHYSS1c3Xs5xxxhnIyspiTgtgLEUkd1oqKyslf6t1dmpOC19ELH4XkVidlpNOOok9Fr8b36mkp6dLLtbiuW620yJvC76zEo+TvMg2Hqcl1iHPSukhuWNmZ01LMBhUHIoNRNZN8dtqORpmihag9fvZPU+Lz+eLKlo8Ho/EOSGnhZDw3nvv4ZtvvsGWLVvw5ptvqm73/PPPo6qqCosXL8aAAQNw++23G67NEJk9ezZ2796NefPmKa4RtGPHDixdupT9rdbJR0sPGUnDqHU+fOclXiz5H1GinRZBEHSnh4LBIHbt2qUoBO12WjIyMjSdlvXr17PHw4YNAwCJaDEygkjeMcpFi/zuW6mmhT+3za5p8fl86NOnD3te/G7yWWWVLu5mOy16REu8TkuiCnGdkB7iR/7wHbCWaOF/i3l5ear7MSr2ookWfr9aNS38CtNKJNppkR+n1NRUicAip6Wds2bNGvZY6w6ev/CHw2HMnj0bAwcOjGkkCy8ElPY5e/Zsyd96RIuZTgv/oxA/IxgMsh8Yv8aR1vdvaWlh9Tj8SqhG4mppaYm4c1A7TldccQV69uyJ3//+9xGvWeG0yGuP+KnfPR4Pu4AqfSf+vaWlpQDA0kOAMadFSbTwhcb8xZ1PD+mtaYk13cGnBIqKilh7iN9NLvL4zk48fol2WqLVtPDiU2sbHrPTQ0YKcROdHuJ/Q/xvTCs9xI80krsIPEbdA7mjAUi/H79frfRQVlaW6jBswLwhz4A+0QJI20lJtHg8HknBsx5ItCQpvGjZu3ev6nbinWd6ejr7IezduzemVYv5H498ny0tLXj11Vclz6l18kp2ZlFRUdT3KcFfTMVOk/8MvtCuW7du7LHWhY5Pt5144okxxaVkWSs5Ld999x0WLFgAAPjwww8jXo/mtCxYsADPP/885s2bp/viLd/u0KFDkguUfI0crbta3qUROyiz0kPBYFCS2lMrxOVHdySyEFecm6NHjx4AWoc9C4Jgi9NiRU0LvzhfLIW4brdbkqJLlNMSS3qIv97odVr47bREC9+R6umIozkt/DVMnHhO7Oj5Qlyt1BBgvdMCSNtQSbQAx9qLnJY2jN/vx4YNG9jfajUt4XCYXcT79u2LJ554gr1mdDgqID1R5fv84IMPIu76Dxw4oDvlYYbTInYm/GfwnV7Hjh3ZD1erg+en7x80aFBMccmLcIHWwlL5D/P5559nj5Vqb6I5LR9++CHuuusuXHfddbj77rujxhUOhxUtaz6tIl+NWOuulhctYkdQXFzM2jme9BAgbXO1Qlz+tUQOeRb3J56rzc3NaGhoiHD77HBa9KSHjNa0ALGtjM0Pxc7IyGAdsd3pIbVRTbGIFq30kNmiRe60uFwuth1f06JVZwOYK1qURg/F4rSInw2Q09Km+fHHHyUnuprTcuTIETZ6oWPHjjHXGvCfp7ZPvgC3oKAAQGSRmIj4HH/BskK0FBQUKE5lLodP45x66qlsSu14nZZwOCzp5KuqqvDuu++yvw8fPhwx74qSaDn99NMV76p4900Nte/NxxWr0yKKFrfbzSaZKysr0z2XjFJxIN/m8vQQf5EUO99EihZxf7x7cPDgwYj0kFNqWuRiyqjTwscai9MiriwtXg+MjB4S/1ebLj/e9JCaaDEjPWSGaNFKDwHHzpnm5mZ2vBPttCgVmIsxANGdFrURV+S0tAPWrl0r+buqqkrxx8HfPctFS7xOCy9aKioq8L///Q9AazrlwgsvZK8pdfRKdiY/iZkRccBfdHv27BmxXzXRonWh40VLjx49WCcVr9MCSNvt5ZdfllywwuFwxLwrSqIlPz8fmzdvxrx58/DGG2/oEmIiat+bFx9yp0XLilcSLcCxFFFLS0vE0GU1lJwW/vPl6SG+kxUvnKJoycrKirhIxjoahk8PAdFFi5LTIp/7hsfOmhatafz552J1WoBjswgrOS3RVnkWhY8cK9JD/PXJTqeFTw+JokXcjn8t0aKFF1JKk8spiRK+neTnPf/ZADktbRr5HXU4HFacyI0XLZ06dUJpaSkTBkZFSygUknSgfOfLjyS6+OKLo9an8KsWi/D5byucFr2ipXv37pIlBtSGesvhf9T89xTbLRAISNwpEfloILWJo7p164Zrr70WkyZNYhcGM0QLP3xXbCs96aHU1FRJfLEU4xpND2k5LXKXBYjNaQmFQpLhzECkaJG7FUpOi9mrPCeipkWp04knPSR+L9Fpqa+vh9/vN5QeSsRKykB00eL1eiXtZbXTole08NeLaKKFLxDW42roES18PZnSsbruuuvg8/lw3nnnSWoKechpaQfInRZAua5F7rT4fD5WrFpWVqa7AwYinQNetPDTmffq1StqqkctBxuLOIgmWvgfdWFhoWTROH4f/GM10aKW7lKC346fkExst//+97+KaT15XYsoWuRDHXmUFsJTg9+GvwsSRa9S56rVQYjv69y5s+SOOBZXTyk9xDstWumh5uZmhMNhdrzNEi1KtRVOdFrirWlJTU2VjJTjv4+4PzHVHA3xO4gdqyhagMg5lKKlh9RES7zpITXRwjs88riscFpEYREtPSS2LX9MjIgWo6Oa5MJYvL5Fqz264oorUF1djc8++0x1ZBM5LW2cpqYm/PjjjxHPK3WActECHOtMjh49amiOD/nCYgcPHmQ/cH4SuZ49e2qKlpaWFvY++Y8sFnHAdxjdunWLSDGpOS38HfTLL7+M1NRU3HTTTRAEgYmW9PR0FBYWxlRvwzst/IRk4nHiC3CHDh3KHqs5LTk5OVFXlTXqtPCLG4riQKn2Qk20BINBFi/fCQCxzdUidqD891RzWuTpoaamJkkNl5JoiWUIr1LNRyw1LWY7LfHWtMhFi1qRZCwpNXl6iBctNTU1upwW8X89Tkss6aFohbhKYspJTovSDUy0Qlyjc6LIxZSS0xJNtACt13mtodjktLRxNmzYwA4af2LrFS2xzqGhtMaNWKvAOy1y0SKfuExpNlyRWMQBf2HOzs5mnVU00QIcu3DPnj0bgUAA//73v/Hee+8x0dK9e3e4XK6Y4tJyWtatW4cVK1YAaB3VNWHCBPa6mtOidUHi74ajXSSjiRalUS5queyDBw8yh0ouWuJJD3Xp0oVd5PSmh5qbmzWLcIHYnBY9okVeO2LUaeHvgBNV0yJ3WuTpIT2iRW+b8W4FIBUthw4dMpQeUnMXeWcoXqeFT8FqiRanjB7it+OJ5rQYjUsrPSS2uR7REg1yWto4fGpo9OjR7LGe9BAQ+2ylSqJFFEqi0+JyuVBaWqrZyWtNOR2vaElPT49IMekRLXw73Xnnnex5cTK6eJ2WkpISyRw5s2bNYq9Nnz5dMoRZy2lRw0jHYqbTolaEC7TOmSOOujKaHsrKymKfpzV6SO60RBMtsTgtRtNDempa5ALB5XJJRoPoQd6hpKamsou/WiFuvE6LnjYTBCHCaZHP4KwlWvSmh1wul676NB5eEHbs2JEJY73pIbucFrNES7yT3qWlpTGhaMRpiQY5LW0cXrSMGzeOPTaaHgKMOS3y9BC/T9Fp6dq1K1JTUzU7ea0VSeMRLT6fD16vl31GU1MTGhoadIkWfhu+zbp37x4Rl94lBnjRkp2dzWqJ9uzZg/feew9A6zG5/vrrJaJFPpmaeBHVu9aJEdHSpUsXdqHRclpiES0pKSnMgtfbZnwHKq5Zc/DgQZbyUZtcDtDntHg8HtZBmuW0HDhwwFBNS0ZGhqJVLsYVq9MCHOu07HRagsEgc9/E78Qfi4MHD0bE7vV6mcBtaWmBIAhR00NA5ErI0eD3y4tL/tqm12nRK1qMpmGiDXkWX4/XaTFSiOtyudiEdvJ1yMhpIaIijhzyer0YM2YMe96u9FBDQwPbjzjk2A7RIl5c5Z8hOhdutxu5ubkRF2H5Kqk8SqIllvRQVlYWEy3BYJB1wlOnTkV6enqEfa70GWY5LXJRIooNvU4LL8b4EWty0QIcu/DqvUMXO6r09HR07doVQGvtkXh+aU0u19zcrHi+yxG/k976DKXRNYWFhUx4KNW0ZGRksE5Y7rSoDfs0U7ToLcTlZ/M1S7QoxcWLlurqasVt+HWkok3hLyJ+n1hqWnw+HxuKrTc9JIoHt9stERVy4knDxFPTkqj0EO/QiPvQW4irB3Ja2jD19fVsRd2TTz4ZHTp0YIpfS7TwsxnyKQEj6SElp2XPnj2S2WPFz87MzGQXQavSQ0qipaqqijkX+fn5cLvdERdu3tkQOxqReESLmtMikpaWhjvuuAMAVJ0W/mKqdWcXa3qIFy3V1dUIBoNRa1rUnBa+sFEel547YfnFTxQtwLH1s6JNLsf/BpREFB9TLOkh8Zz2eDxMaCrVtLhcLiYylZwWJcwQLeI+9U4u5/f7mSuiFpfRlFqsooX//vxvjBf0coymh+T7FT+7traWtYOe0UO5ubm6CkuBtpEe4t+XaKdFz6hRfsQUiRaHs379enZQzzjjDACtU6YDrQJCfsDFH3+HDh3YjywjI4N1CPE6LXv37pXU0ohOC1+8arfTIooA8QIlFy28s3HllVdKRF0inBaRm266ibkBak6LVlvxGJmzQk20CIKAgwcPmlbTwr8vGAxKLsxKyF0BXrSIBd/R0kO8gJa3t/w7xZMeAo45OUo1LcAxkZkop0Ve0wIcO0fEtGK0mpZos+GK7xPR404puSS866VHtPBTDqgdR+BYB+r3+2MaDSM6LaFQCHV1dRH1OGpOi1YRLmD+jLj8b05LtJg9eiiaaBEEwVSnBYCuYfXktCQRe/bsYRcXcU0cUbQ0NzdLbESxEwIirXKxruXgwYOSjlELJadl3759ko6Cn5FW7OgPHTokOckSNXpISbRcf/31LG410cI7G8XFxXj11VeRlZWFAQMGYNiwYTHHpeW0uFwuTJ8+nf2dl5fHRGUsosUMpwVoFSHRalr476VXtMj3q4SW06IkWpQKceXz6yhhdIZXtYuy+JuSC1/xWPBOiyAIljgt/ORd5eXlEaJEvgBitNlw5fGa5bTIxScgTQ/pOY6A8QnmxNjE9XtE0QK0pmD465RctDQ1NUmcFi3Mdlp47Bg9pCRaQqEQWlpaTHVa9MbFbyN3x62GREsUrrnmGtTW1mLDhg0YP348gGOiBZCmiGpra9lJpyZaAP0pIjWnJZpoEQRBtSPWSg/pKd4Mh8PsRyNeXHlxwAsksZ3kd5vyyedGjhyJo0ePYt26dawjyczMZBeRWJ2W448/nv19ySWXoE+fPuxvt9sdMdU5YI9oUXJa9KSH4hUt8g5WLMQF9KWH+M4uMzNT0iHxiN9JnIwuGtGcFkA6GaH4+WLH1tLSIkk/JLKmRV6vphQ7n1LhzzW1uIyKFiWnJT8/n4lyo05LIkSLfHkBoFW0aA2pP3LkCLueWuG08EXjPPHUtJiRHpLfwJjttOhxgMhpSTK8Xi9OOeUUdtHk76540aJVlBhLMS7vtIg/Wj2iBZB29FodsVYtjBJy+xsAzj//fNx0003o1asX+3fWWWfh97//PduHSGNjY4RoAVpFhHx2ULV0lxqiI+Hz+eDz+XDaaafh9ttvx1lnnSUZ8izfd7xOi9H0EF+Losdp4d8vFuL6fD7Fu08jo5q00kOiaIk2uZx8fh0ljKY79IiW8vLyiG344yXGL98/j3jBDwaDusSUUkcnvxnhJ+sTOzk+PcavFH/iiScq7scMp8Xr9TKBYKZoMTorrnz+GLlo0Zqply86T6TTouRq8JjltMSaHpLPimu302K3aLF370kK77Tw9SXydYd44nVaTjzxRHz99dcIBALYuHEjgNYTj+9o1NYf0koPibUw5eXlusSB0iyjHo8Hc+fOVX2PvAPmc6haRX+dOnXCzp07Wbor2o9F/J7ihcflcuGFF15AeXm5Yp5e3PfRo0fZ58dS02Jmeija6CHRaSkqKlIUCUbElJ70kFansnfvXha7Vkcn74TVHAa1uER40aIkSviOje/wojktQGvnqpauEVGqaeFvRsrKylh7pKWlsePDOy3ff/892/60005T3I8ZogVoTRHV1NQoDnkWYwRavzsvAvU6LXpGEBmdqZc/3ryraIXTArR+P/m8TVamh/h0moh8oklyWgjDqKWHtJyWWOZqEZ0Wl8uFfv36ReyHn0wM0Oe0KP3I1GphlNCaGl0NrUJcfhSPWlzydJcaepeLV9q3WJtkd3pIbKuUlJSIicuCwSCbF0Vp5BD/fvl+lZA7Gp06dWJul7ymRaxJ4Dv2rVu3ssd6RUs8Tov8RkC+jVGnxehU/tGcFj49xO+TH9G1bt069vzAgQMV92NGegg4VtdSW1srERjiNvy24jUpNTVVdeg6EH96SL4mklZ6yCqnRS5a5Dhl9BBgnmhJZqeFREsMxCJaYkkPiU5LTk4OmymWh08NAbGlhwBIRrNEEwd2iBZAX4pIvDBrzefAozTsmXe3EpUe4kXL/v37VdtUPpFXdXW16hT+/OfrjUt+8fN4POxzxQ5Dbu/zF8lffvmFPTbitERDbRVkpc6UnzGU79h40aLXaYmGUkfXpUsXJpr49BAvtvi1t8SJKouLi1WPoRlDngFpMS7fHvL0EADs2LEDgHQtMSXMFi1aTgsvtKx0WuQotRfQepyideBmjh4CyGkBSLTERCyiJTc3l11E9KaHRKclNzdXsk8RvaJFa54WrfcpEYtokXdavGiJlh7SG1c4HGYXUb1Oi9KwZ160aH1OrOmhjIwMiUuycuVKyeKX/OfK58SIVoRrNC4lR4OfUTccDrOLu5Jo4c93JVEtYlS0KM3TAiiLFv51XmTOnDlTcf88ZogWl8vFbkh27tzJOlo+LiWBq5Yakm8fj9PCt5fonPGx88dS7JS0xCegviaWGlqFuErpIa/XqyiarHJajNS06LnO8E64EadFLSZyWhwoWg4fPoxp06Zh6NChuPzyy/Hdd9/ZHVIEHTt2ZAddraZF6QIrWsl79uzRZZOLHWheXl5cokVvekj+PiXMcFr4ERRmOS28MIjHaeFFKD+aRk4s6aHU1FR4PB7k5ubi7LPPBtA6CmbJkiWKnyuffTTabLjy9xtNDwHHREsoFJIMlRUvomp1H1qdnVHnQE8hrgj/fc877zx2QeWnIjDLaVGqaQGOuaiBQID91pScFh69okXPdUKP06IkWpRGw0QTLfLRY3pjU6tpkQsul8ul2BGbLVqUZsQFjKWH9IgWl8vFYosWVzgcZgXhiS7EJafFRJ566il07NgRn3/+Oe666y48+OCDuuc1sQq3282KFvU6LYA0RSTasWrwU2vn5uZKRiyJGBUt6enpkh9DtPcpYWZ6KC0tTfMzjMQlH+6sByWnRXQ9vF6vpDBVTiyihW+Ht956S1GI8tvw6SFBEAw7LUbTQ4C0Vmb//v2a6SEeM9NDegpxlT77zDPPxOrVqzF8+HDJNmodnhlOCyCta1GKS+kcV6tnkW9vVnqIdzeVnBYRI6IlWpspLeQYrRBXLa5o6SF+9KFVNS16HV29U+arieJEDHlOZqfFUaOHGhsbsXz5cixcuBBpaWk455xzMG/ePKxYsQK/+tWvIrb3+/0Rs356vV7FgimzKS4uRnl5OQ4dOoTGxkakpaVJOtbCwsKIYZS8aNm2bZukuFYOf6eYm5ureNffo0cPyT74C8KBAwfYa2KHnp2drTi0k7+4iWkBNXhLOD09XddQUf6us76+nl1ACwoKNN/Px7V//37NbXlhm5WVxbaV/8/DW9WHDh1COBxmokUcwqu2T/l30oqNFy3idt26dcPixYsxYsQIydD2tLQ0tg1fC9Hc3CxxWjp16qS4z1jiAlo78HA4LBEt+/btk6SHwuGw6ro0Xbt2NaWtAGlHLe4XUE4lZmRkSD5vwIAB+PLLL/HBBx/gscceg9/vx2WXXaa4T/460dTUFDUuvpP2er1se/nNAyD9bSiJlgEDBqjuj++IGhoaosbFuzE+n0+zvfjYla6T3bp109wf39lFm3cnEAhIFnIMh8MS8VFTUyPpgFNSUhAOhxU7YrVrl/x7+f1+XUPY1Y6lkmjxeDyK7ZWTk6Pr+sc7LVrb8zGJbSGPqa6uTvV4G4FPW7W0tET9DF5Qud3umPapB616KhFHiZbdu3cjKytL0lkdf/zxqq7E3LlzMWfOHMlzEyZMwMSJExMaJyBV/t999x1KS0uZ6+LxeCIq9uXvWbNmDU499VTVz+e/szgUNzU1NeLHxg9VFPdx5MgR7N27l70mdorp6ekR28v5+eefNbfh53Nobm6O+nmAtBOqqalhoiU7O1vz/fzQ6G3btmluy49kEQQhYlt+bhsR/u5hx44d2LRpE2uroqIizf3xorK6ulpzW37+GH67rKws/Otf/8L111+PlpYW5OXlobKykg2V5Yc0//zzz9i2bZvkc5X2yQsR/hxQgi/OrK+vR3l5uUSU/Pjjj5JOpby8XHHK744dO0oElRz+M3bv3h31nOFXjq6pqZFsn5OTIxGobrdb8fPOOOMMLFy4UBK7HP63VF5errhKNQ9/zA8ePBgxEy8Pfw7K72QLCgoQCoVU24FPnx46dChqe/HHsa6ujm2v1rHs378fR48eVVzmIS0tTXN/vKNZWVmpuS3/uxe/ryAI8Pl88Pv9OHDggOL1ROlOvqmpKWo7iB1xY2Nj1G35c2j//v3sb6U2E89B+fXc4/Houv6JcUX7Dnw9XTAYZNvyImXv3r2avw+98L/JiooKzdpCQPs3aSZKNwByHCVampqaIpRuZmamasHX5MmTMWnSJMlzVjktffr0waJFi9jfpaWl7MQvLCxUbPyzzjqLPT5w4IDmGh98KqC4uBg9evRASUkJG3kkTnsvn6ujc+fOOHLkCGpqalBaWgpBEFj7FRYWKu6TXz9p//79mnHxd43FxcWa24rwF4K6ujp2sezSpYvm+3lb//Dhw5rb8sWsXbt2ZduGw2FUVFSgpKQkQsXzP8RQKCSJs2/fvpr7k9d2qG0rCAK7eOfl5UVsV1paig4dOmDWrFmYNGkSevTowV7j0yH5+fmSi9cpp5yiuE/+/T6fT/d3KCkpQWlpKfr27cue49cv4pdFSElJkdx59ezZU3M/fBosMzMz6jnD3wUed9xxEpexqKhI0uHk5+frOgeVkLdvtM/hrys9evRgqRQle72goIB9ntwlPf300yXHSSsuQHstIECaDuV/U2qT1/Xu3Rter1cx3TZo0CDdxzIjI0NzW17k5eTksG0LCgqwf/9+1NfXS9zOjh07orS0VDG9G+33CLSel01NTXC73YbOsd69ezMHSWkqgW7duqG0tDQiJdupUydd5x5/3mhtzzv1/O+Nv+HyeDwSUderV6+Yzn++3Tt06GDoHOOvr3bgKNGSnp4ekYdvaGhQLf4TZz61A77GpLKyEm63W7LukJLNxXcI27Zt07TC+DuavLw8uN1uFBcXM9HSs2dPxTUgOnXqhC1btrDF2dxuN7s7zs7OVtxnjx49mIuzdetWzbh4hZ6VlaXLznO73cjIyEBjY6PkB1hQUKD5/oKCAnZnXV5errktf94ofU+lGXf5O+uamhrJXV/Pnj0198fnsxsbG1W35S30zMxMxe3OPfdcnHvuuRHP853d2rVrJRe1Ll26KH6W3rjE2ETE2Pg6nr1797LYU1NT2WelpaVJREv37t0198Nf8Jqbm6OeM0pxiXTs2FHiOGVkZOg6B5Xg0xCBQCDq5/DfmR9qXVpaGiHk+LjlN2Knn3665r7kNS3R4uJFEx+X0rw2LpeLzbmjlIYpLS3V3B9/Lfb7/Zrb8nHx509+fj7279+PmpoaxW2U4op2rQCkaZho28prWsSbP6U6FbW4cnJy9KUzdMbFu5g+n49tyzt59fX1EodQ7ZoSDb7fDIfDUT9DLTY7cFQhbvfu3VFfXy+5A962bZtkFWCnIB/2zK/gqjY5U15eHruQ8HNcKKE0hT+/T7U7Nf5CJV+cUW3eEbfbzdbpKSsr0yzM0rNKrRLihZu3QLVGDonwdxt6a21imVzu0KFDErdG604Y0D8iRmmKfr2Ia10BwJtvvimZwl+tMNHMQlzeAuYvcvKLd7TiTbPmaQEif1tGzkE5ZhXier3eiEJ5rdFDWiOHAEQsshhrXErpLr6DltcnFRYWRj1HjbSZWlxiKqK+vl5x0rtYRg8B0D1Kh49NFHAiWoW48vbSe50R3x8tLrVCXH4/NE+Lw0RLRkYGRowYgdmzZ6O5uRnLly9HWVkZRowYYXdoEcin8o82ckhEXLSPz6MqwXfu4g+W36da7k8+4ibaHC0iJ5xwAoDWE5jvvOXEMnoIUL4YGBEtfr9fs24iltFD2dnZ7AdYU1NjSLTo7ViUZrvVy8iRI5nbsmjRIiYiOnXqpLrOTzwz4gLqooW/YMuFgtYcLfLtjYwe4tfvEZH/toycg3LMEi1ApHBTm6cFiC5a+PfoGfKsNk9Lbm5uRAejJT6jHUf558cqWvjUBP+bVhs9lJ6erstRj0W0yD/XztFDetZDSsToIRItcfLggw+iqqoK559/Pv72t7/hySef1JyZ1C74O6vt27dLrHst0SKKA0BaPCpHyWnh96lXtOidlp6PS8sFilW0KG0brfgLkOaA9RS7AvovJi6Xi8Vg1GkBpNOzqxGPaPF4PLjqqqsAtF7QxGOpNoW/fB+xTC6XmZnJLpJqosUqp4Vfv0fETtGidicMRJ4vak5Lbm6uLueYX2QxGmriwOVyRbgt/OtyQRjtOMrfE6/TAugTLXpcFiBxokXcRmn0kJlxqZ1fWqJFbTSf3pj0xCXfhkSLjPz8fPz973/HqlWr8OGHH2LIkCF2h6RI9+7dmUD47LPPJFPzq62RAugXB0pOy/jx45GXl4ecnBxcdtlliu+TL5qoV7SIDhCgLabscloA6cglObxo0eu08DHwTku0OVpExO+UKKcFAK699tqI59TmaAHiWzBRROzo+HOQv2DLnRazRYsYl9JdpFOcFrlokRcmqjktSsXzShgRLWpOCxCZIopXtBiZp0UtLjXRopYeslK0mD0jLv/+WEULX6fEixav1xuzgCCnpR3C3wW3tLTgX//6F3tNT3oIMO60dO/eHRUVFfj2229Vrdx400NAYpyWWEULfyHVOxRT78UEkObXxQLP7t27KxY5y9HTscQrWgYNGiSZ3wcwT7QYWZjQDqdFqV7FCTUtSlPNy9uA/858J3366afris0MpwXQFi1GjyNgT3oo2sRyIolOD8Va0xLL5HJyx0w8H/gZcWNNDfExAeS0tCv4u+Dly5ezx3rTQ0adFqD1YqZ1ssaaHkoGp0VveigWpwU41snrSQ0B1ogWl8sV4bZoiRa328068lidFqXzV62mJdqqwEDsqzzrES12OC1K9RVa6aGzzz4b48ePx8CBA3HXXXfpik38XuJkaXriUorN6ekhpYUcrXBalNb4ARJb0xKr0wIcu6bxTks8ooWclnbKkCFDFGtLtC7ivXr1YnfxWqJFyWnRQ6yipaCggF3gkrGmJZZCXLUY9IoW8QIXCARUf/jxihYAuOaaayR/a4kWfj+xOi1K56/aHbo4c7AWbSU9pLQCr0hxcbHEfeHb0+Px4KOPPsL333+ve34LI0LPSHooHsdM/v5oaw8ZdVrU0kNWOi2JTA+FQiHJnFhytESLeD6YJVrIaWmnuFyuiA4F0BYtPp+PCZ2tW7eqnsRqTks0eNFSWVlpKG0iukD79u2TvI/HaqelqKiIXSzMLsRVi8Go0wKod8ZmiJZ+/fphwIAB7O9ookVvakFtaHE0p0UuWqJhRLQIgpCUTktqaqokZRtP2kr+/mhtlsxOCz8BnVMLcdVEi9FC3Gix6RUtfKF6rJDT0o5RKpSMZpeLqZjGxkbJgos8otOSmppq6OTMzc1lF6r//e9/klRPtB8ZnyKSTxkvwl9AjcSldDHQ47S43W52MRWnAVfCDqfFqGiJp4P99a9/zR7zAkYJvU6LeMcmnyzKSHpIT0dnpAPm12dxak2L2vBbfuHEeI61/P3xOC3y9lITLV6vV3NUmtJ7zBAtSrG11ZqWaLFpiRZ+HTLxhpacFiImTjrpJJxyyinsb5fLFdVB0DPsWTwxjbgs4v7FDs7v9+ONN95gr+l1WgD1FJHY6aSnpxuaFVF+McjOzla02ZUQLfW6ujpJ2oyHd1qMOBrxOC165kQxw2kBgDvuuAOvvvoqPvnkE8nMylpxiatDq6HmaCgV4mqlh6LhdrvZBT9W94d/jj+PneK0AJAMZY7XaTHiTplRiNutWzddxeeJFC1mjR4SBEFzIkp+yQ4r00NA/E4LcGx2WnJaiJjh3ZaCgoKoP3494kAULUbqWUSmTp3KYuAvLNGcFiOixWhnIe+w9aSGRPTUtYhOi9Fpra10WuIRLW63G5MnT8bYsWOjbivuRxAEzboDNZvZiNOiZ0IyILaUlVrHz8fnlJoWALj00ksBtLb/oEGDYo4LsEa08N9f73F0u92s04p1yDNf06IUW7xOC6AtDrSGrqenp0fUaJlViAtoCwQ9TgsPOS1EzFx99dXssdYcLSJ8GkZJHITD4ZidFqD1AnTllVdGPG8kPaTmAMUqWuTbGxEteoY9i06LkXoWpTj0ztECWCtajKB3gjlR0MjFgdr070qfr8dpAfSLFj2zffKixUnpobFjx+Knn35CWVmZrtSnFkaGrsc6T0ssxxE4dlxidVpyc3MVi7fNqmkB9IsW+bHkhxcDrSJNvAHk29bj8egWDWaIKbNFCzkt7ZzS0lLcfvvt8Hg8uPXWW6NuHy09VF9fz2z9WJwWALj77rsjnovWoR933HHMpUi002Lkom7EaTFSz6IUh945WgBr00NG0NvhqaWHlNxC/oI9ceJE5OfnY+DAgRg5cqShmJLZaYkmWoDWlZWjFUrrwQqnpW/fvhgxYgSys7MlNVPRENstVtHi8XgUb6DMSg8B2h2xVnsB0t8p37nz22ZnZ+uaJFD+GWakh0TIaSHi4p///CcaGhoUxYKcLl26sM5VSRzwdRuxOC0AcOaZZ0bMJhytQ09NTY06ssnu9JDarLhmOS16U0NAcjgtWqJFbeikx+OJcAz5Dn7QoEGorKzEunXrdK+yzi95oKfOBlAXLXwqw8h5JMeIaBEEQXVuj0RgZA2pWJ0Wt9uNr776CgcPHlRcZVyNeEULoHwzZkd6SOlY8tdJNdFiZGkZJ6aHyGkhAOhfB8LlcrFUzK5duyJ+/LEOd5bDC6isrCxdDoIYV319vWTiJ0A6H4mTalr8fj+Ly6jT0l5FSygUYm2mJA7kI0nkF/fU1FTdd5rAsToGv9+vK2UFqF+U77rrLgwfPhz33XdfXCvAGxEt/EVbbwF5PBgRLWInzKcyRDIyMiTHVykdYnT9GnH7WOdpAZSva05IDwH6nRa9mDnkmcdKp0Us/pW/1w5ItNiEmCIKh8MoKyuTvBbrxHJyrrjiCnZXqndSK61iXP4u2Mr0ULdu3VgHqSRaYp3CH2jtsPmLdlsTLWpxRRulIxctsS7MJsKLw5qaGtXt9Dgtffv2xYoVK/DMM8/EFZMZI2ESRSxOi1pcfDrNjNjNcFqUhIhZk8sB+sWBEdHC17vJl9bQIpb0kJ6h2HY4LS6Xy9BAh0RAosUmtIpxzXJaUlJS8N///he33XYbXnnlFcNxyettYp1YTml7I06Lz+djFwsl0RLrFP5A5BB1I6JFT8fCt5mTalr4u2Q9Tku8ooUXqYcOHVLdLlpcZtJWRIsYm9ox4lNEThYtTnFa1NJDAPDmm2/irrvuMiSYnZgeirWmxW6XBQDsj6CdolWMa5bTAgADBw7ESy+9FFNccjEVj2iJJz0EtDpFe/fuxYEDB9DU1CTp0GKdWE6koKAA+/btA5A4p8Xj8VjS2QH6OrxojkaXLl0kf8cbO3+8tURLNAfITNqaaFGLK1Gixe/3QxAE1TShVq2N3poWl8tl+iRusaaHAGDkyJG6i8+NxmVleihWp8UJooWcFpvgHY1NmzZJXjPLaYkFq0SL0SGh/JBMeTFurFP4i8TqtBgRLZmZmYZqQOJBT4cXrXbEyekhszAy54hWh5II+GPIn99KiLFb5bTw5wsvAOQYKcTljwX/+Tk5ObrTEVaIllgwY/SQU5wWvSMrEwmJFps46aSTmCvw8ccfSy6aZjotRunatSvrLOS1NnY7LSLyFFG8Tos4KdjgwYPRrVs33e8zMuTZqtSQfF+xOi3yYbt2pIcS7bQA5qQ6EkEyOC2AdrsZSQ+pzdRr5PpnRXooFsxID5HTcgwSLTaRlpaGyy67DECrs7J48WL2mp1Oi8vlYiMydu7cKZkO266aFkBbtMTrtNxzzz3Ytm0b/ve//xlyQ4w6LVahJy4700NOcVqAtiFaohXi8qIlXvEp/4xEixYj179EOC1mHGsz1x7iaa81LSRabIRfIfqtt95ij+10WoBjlfF+v1+yoKOd6aFEOi1A62J3Ru+qnCpanJge0uu0kGhpJRkKcYHYRYv8uqa2iniinRal33x7SA+R00LExAUXXMAuKAsWLGCdr51OCyBd+G3Hjh3scTyiJTU1leWm3W63YTGWSKclVqJ1LKFQiF3U413118y4gOjiwK6aFqemh+ysadESLYIgRE0P8XVaSks0GIU/F7TmaonVacnLy2NtXFxcrDsup9a0xDJTr9PmaSHRQgBoPTEnTpwIoPXHP3/+fAiCgD179rBt7HRaAKloiWeeFpfLxS4G+fn5hsf66xUtsTotsRDNabFjjhb5vvSIFqWLX2ZmpkQAxnuHTk6LMfSKlmAwyGYYVhOWF154IX7zm9/gmmuuwYQJE+KOLRFOi3zitueeew5jx47F73//e91xJUNNCzkt8WN/BO2ca6+9Fi+++CKA1hRRWVkZvv76awCtiy8amS7aLHinhS/GjcdpAVpHTK1btw4nnXSS4fdmZWWhqKgIVVVV2LhxI0KhEKtkj2dyuXhIBtGilrbSMx9K586dWduamR7S67S0Z9Hi8/ng8XgQCoU0RYueuDweD7vGmEEsoiXakGf563fccQfuuOMOQ3HpTcMk4+gh0anmawzJaSFs4ayzzmLDeZcsWYJHH32Uvfbcc8/ZMvugmtPCd4CxdCj//ve/8cc//hH/+te/Yopr+PDhAFrTZxs2bGDP19bWssdWOi38RcNJokXP5HJ6HA2+GDde0eLz+dixcco8LYBUtGitiWS1aHG5XKy9tEQLLxqsmgdIr2jRik1+M2ZXwauT0kNaooU/H0Taq9NCosVm3G43K8jlL5p//etfJYW6VtKjRw82isZMp+Wkk07C448/LpkLxgjnnHMOe/zVV1+xx6IzBehfrsAM3G63ZCFAOU5wWmItxAXAJtEqLS01pRZCrGtx4ughfkFEJayuaQGOHUe9TosZI4P0wJ8vsaaHUlNTJdcQK0VLMqSHlOKSu8gkWgjbuPbaayV/33///bpWi04UqampbL4SswpxzUBJtOzbtw9r164FAAwYMIBN928VYjs4yWkxoxAXAP74xz9i8eLFWL16tSmTSokpopqaGlVXw+pCXH4fsRaVJgqjosVpTku02PiUoRmCy6mFuGakh4BIFzkeUc9/bxIthGFOPvlkXHzxxQCA2267DX/+859tjuhYXUt1dTVLv9gtWk488UR2x79ixQqEQiF8/PHH7PVLLrnE8pjkomX79u249NJLMW3aNIlLZaVoSUtLY05ZrIW4QOuFbfTo0RETzcWK6LQEg0FJSk8tLiucFr7jrK6uVt3OqaJFa6r8RGFUtLhcLkXRy7e9k5wWJ6aHgEjRYpbTojWrsYiTRIv9ERBwuVxYsGABDhw4EDHU1C6OO+44LF++HECr2zJgwADbRYvL5cI555yD999/n9W1LFy4kL0uzmxrJfKO5S9/+YskJvl2VuByuZCRkYGGhoa4CnHNRj7sWWk4v9WihXfm9u3bJylC57FTtAQCAQQCAcWOLBmcFp/Ppzhpo1NFCx+XGYX9ZoweAswVLR6PBy6XSzJkXg1BEBAKhQA4Q7SQ0+IQ3G63YwQLoDxXi92iBZCmiBYtWoTPPvsMQGvR6GmnnWZ5PLzTIghCxOKXIlaKFn5/8aSHzEbPsGer00Ny0aKGnTUtgPpxtLsQV09KTS2u/Px8xc+MFbNES69evXDLLbegb9++uPXWW+OOy6z0kPwaEs/vw+Vyse8eLT0kChbAGaLF/ggIR8KPIBLTHHy6w475YwCpaJk1axa7aP7qV7+yZaSVKFpCoRACgQBbzFG8kxEvUvJp8RONEdFihTgA9E0wJ8bl8XgsEQf8camsrFTdzk6nBWg9jkq/OTsKcY06LWpx8aLFLqdF7RyLdYRjtLjiSQ+ZWYgr7qOlpSWq08K3JYkWwrHInZYDBw7g22+/BdA6Cqhjx462xCXWtVRXV+Pw4cPseTvqWYDI1XgrKioAAP369cMHH3yAWbNmwefzWR5fNNFiR3rIiNNiVUx6nRYniBYlnJweirYmklPTQ2ZjlpgyMz0EHPvuJFqINoHcafnkk0/YiA+7BAIgrWsRSU9Px/nnn29LPHyabNeuXewC0L17d/Tp0wcvvfSSrXE1NTUhHA5HuFBOd1qsiinZRUsyFOLqES1OSg+ZTSzpISVxYLZoEeOKlh5ymmihmhZCkYKCAjYB1I4dOyTFpXaKFkCaIgJa13Cyq8aG3++WLVvYY3HCQLvgOzxeoIg41WkRY7XDadFKDzm1psUOMWV0nhY9NS3txWnRkx7yer2Khcty0WLGhI9A8jktJFoIRVwuF0sRlZeXY9myZQBaF1wbMmSInaFFiBY7RRTfsThVtCh1eHYU4upxWkQxZZXTkp2dzYRnsjstTksPGXFa2oto0eO0qIli+aR38c6dpLcQl0QLkTSIKaJgMMgumhdffLEpE43FAz9fC9BahGsXvNPy888/s8fJJFqsEghOdFpcLhdzW5JRtCRDIa5ae/Ei1ozjbdbMs2ZjND2kJlr4QlwzfrPifshpIdoMSnNW2DEXihyXy4V7770XLpcLN998s+Ujc3iSIT2k1OGJjobL5bKss+M7KSXRIgiC5YW4wLEU0dGjR1XntUkG0eIkp4VfFkEtrrPPPhv9+/dHTk4OrrjiirjjSganRU96SC0m/nwwQ7Qka3rI/ggIx8IX4wKtJ/mFF15oUzRSHnzwQdx5552WLpCoBC9a+Dla7BYt0Vag5gtelfLniYAfsquUHuI7QKvcHyCyrkV+3gPOrWmxuxBXbZ4Wvr3U4kpNTcXGjRvR3NxsqdPSFtJDZoqWZEsPWRrBrl278Nxzz2HTpk1wuVw466yz8Lvf/Y4VfM6YMQNLly5lDdOlSxe8++67VoZIcMidlnPPPdd2kcDjhFj4jkW8GLrdbsvXQJKj12mxUhx4vV7k5eXhyJEjik6LHXU2gHSuln379imKFnJajqHHadFba+NyuUw71k4VLWalh8wWLeJ+QqEQQqGQatrfaaLF0vRQfX09LrjgAvz3v//FwoULEQgE8Nxzz0m2ue2227By5UqsXLmSBIvNyC/edo8aciJKo5a6du1q2d24GnprWqwUB4D2Ss92jGgC9A17dqpocWohrh3t5VTRYjQ9ZLXTEi0up4kWSyPo378/+vfvz/4eP348/vrXv8b8eX6/PyIf5/V6LfuR2EE4HJb8n0iKi4vh8XjYNM5jx461ZL9mkuj2Urp4dO/e3fZ24sVUXV1dRDx8eoh/LdHtVVBQgLKyMhw+fBiBQEByd8d3zKmpqZa1Ib98xt69exX3y3fOXq/XkjbjhVt9fX3UuFJSUixpM75TbW5uVtwnL0DlcSWqvfi5iPx+v+rn832Gx+NJeJvxcQUCAdX98aJFqb3kNS3xxs0fx5aWFtV+08r20jOrua2yaePGjREpiNdffx2vv/46SktLceedd2quJzN37lzMmTNH8tyECRMwceLEhMTrJMSZVxPNgAEDsG7dOpxxxhkAWoc/JyOJai+lepGCggLb24lPtVRUVGD79u2YP38+iouLcfbZZ7PXvV6vYqyJai9RTAmCgB9//FFS58IvExEKhSxrQ/5C+csvvyju98iRI+zxgQMHFOs0zG4zfiXs/fv3K8Z14MABSYxWtBm/GrbaPvfu3cseB4NBS84xPuV46NAh1baoq6tjj/ft25fw0ZAHDx5kj7WOkShABUFQ3IaPG4j/Wsw7KGVlZZJ5c3j27NnDHjc1NSX0HOvZs2fUbWwTLb/88gveeecdyRoPV199Ne655x6kp6fjs88+w/Tp0/HOO++oLiQ4efJkTJo0SfJce3BaKioqUFJSYslaO/Pnz8cnn3yCX/3qV7aO0omVRLdXaWlpxHN9+/ZVfN5KSkpK2OP09HQsW7YMDzzwADweD9atW8fuhHNyciSxJrq9+FRMRkaGZN/iuk1A63xAVrUh7wrU19cr7pe/K+3ZsyeKi4vZ34lqM955crvdinHxbkxJSYklbcYLTbW4+LvzvLw8S84xXgRlZmaqtoVYeO7xeFRX9TYT/vxKTU1VjUsUEfLYxfY6/vjj2XO5ublxH2t+lfWioiLV6/v+/fvZ4/z8fNuvbaaKlqlTp2L9+vWKr918882YMmUKgFYVfs899+Dhhx+W1E307duXPR4zZgwWLVqE1atXY9y4cYqf6fP52rRA0cLtdlsiWrp164bbbrst4ftJNIlqL6Vi4NLSUlsWb+Th53RobGxk60aFQiHMmTOHWbxpaWmKsSaqvfj5dY4cOSLZx7///W/2+NRTT7WsDbt168YeV1ZWKu6Xz/lb1WbyYxhrXGbDCyW/36+4T/4uPjU11ZL24vuCUCik+tn8/DFWtJeeuARBYGn4lJQUxW06deqEQYMGYe3atRg9enTcsfNuoVZ78ekgtdisxFTR8sILL0Tdprq6GlOnTsWvf/3riJlN5Vg1FJMgYkW+XDxg/3BnILKI8/vvv2d/v/HGG+yx1YW4ahPM7d+/H/PmzQPQemcud1ATSXZ2NrKyslBfX0+FuDrg96OnENeqodhGC3Gtai89o4f0DKl3uVxYtWoVysrK0K9fP1Pj0pqrxWmFuJaPHvrtb3+Liy++GJdffnnE659//jmampoQDAaxbNkybNiwgdVSEIQTURo95ATRwse1e/duSerl6NGj7LGVQ54B9QnmXnzxRXbhvO222ywfzi5a42rrDzl1nhY7xIHb7WZtoDZPix1iyuh8KHbEpTZKR+/55fP5TBEs4meJJJNosTSCr776Ctu2bcOePXvwn//8hz2/cuVKAMCbb76Jxx57DC6XC6WlpXjmmWdsn++CILRwqmjhO7xVq1apbmen0yIOe25qasKLL74IoPWieOedd1oaE9Baa7Nt2zbU1taivr4+QjTZtTChy+WCIAiOclqAVoEUCASSesizk+KyQxTTkGcd/OpXv9JcJ+aVV16xMBqCiB+5aMnMzFStwrcSXrRs375ddTu75mkBjjktr7/+Ont81VVXSWpMrEI+Ky5f9Agc6+hcLpdla2+5XC5kZmaivr4e9fX1itvY4bSI+6qvryfRogOj6SE74komp4XWHiKIOJDXtHTv3t0RtVhKtTYAMGzYMMnfVqeH5E5LOByWzNU0ffp0S+MRiTbBHN/RWXl8xePopBlxgWMCiURLdJLBaSHRQhDthNTUVEkn5oTUEKAsWtLS0jBz5kzJc3Y7LUuWLGELTY4cORKnn366pfGI8MM9lepaos1WmiiiiRa70kOi2CXREh0za1rMJJb0kFUuoxYkWggiDlwulyRFxM+PYidKtTannHIKRowYIZmbws5C3JqaGsyaNYv9fc8991gaC48Rp8VKjDgtVqeHABItejBr9JDZUHqIINopvKvhFKfF5/NF3BWddtppcLlcuO6669hzVjstOTk5bJ6HtWvX4vPPPwcA9O7dW7PeLdE4XbS0tLSweTx47CzEle+fx6lDnsPhMHvNKnHA/w6dJFooPUQQ7RTe1XCKaBGLOHnEJTFuvfVWdOjQAampqRg9erSlcbndblbXwi+aOH36dFsnrZKv9CxHvKjblR4ClN0Wu50Wv98PQRAiXrdDTDm14JUv3lZLw/DH0Q6nJZlGD5FoIYg4caJoASLrWgYOHAigdSHMnTt3oqKiAoMHD7Y8Lr4YF2idGvzGG2+0PA4evTUtdjktgLZocbvdltYbRFvp2anpIbsKl0WBQE5L/JBoIYg4cWJ6CJCKKa/XK1lhPSsrCx07drQjLEldCwDcfvvtqqOdrCI7O5tNm+/E9BCgLFpEwWB1XCRajCHG5lTRQk4LQbQjxHqIzMxMW+YYUYPv8E466STLi27V4J2WlJQUWyaTU0I8jskkWsS4rEwNyfdHoiU6YmxOGj2UrIW49kdAEEnOjBkz4PF4MGHCBMs7Dy34Dk+sZ3ECvNNy9dVXO2bW6y5duuCXX35BfX096urqJAsWOrWmxS6nhRfAySRa7KhpASg9ZCb2R0AQSc6AAQPwwQcf2B1GBHyHJ9azOIETTzwRQGsdhp3DnOXIZ8UVRUsoFGIr3VotDvjlBMhp0YYv5Haq0+JU0ZJM6SH7IyAIIiHwNS1Oclp++9vfsoXfBgwYYHc4DF60/Pzzz+jTpw8A++7OAec6LUZEi1WCyuVywev1IhgMOla06EkP0TT+2lBNC0G0UcQp+7t37+4o0ZKRkYHp06dbPtw6GvyK8o888gibF8Wujg7QFi1+v58NG5ePyEo00USLXfPHRHM0aPTQMZI1PUSihSDaKPfddx+WL1+O7777zvJJ5JKRK664gqXRNmzYgDlz5gCwZw4NES3Rsnv3bjZHSs+ePS2Ny4npIcC5ooXSQ+ZBooUg2igulwsjRoxAUVGR3aEkBR6PB88//zz7+6GHHkJNTY1k3hYnOS07d+5kj+0ULc3NzRGvO1Uc2CVAafSQeZBoIQiC+P8MHToU1157LYDWGXsvuugiyQR8fGGsFSSDaCGnJTpOFFOUHiIIgmgDPP3000wsrF27ljkJ+fn5uO222yyNRUu07Nixgz0m0dKKU0WL02taKD1EEASRpBQXF+MPf/gD+9vn8+Hee+9FWVkZhg4damksTnVanDhPC+Bc0cLHpbRWE6WH9GN/BARBEA7j/vvvRygUwtGjRzF16lTLRYGIHtHicrlQWlpqaVxOHPIMOF+0AK3z/sg7f7udFhItBEEQSYzX68XDDz9sdxi6REvXrl0dN7mcU4c82z0jLtAam9NEC6WHCIIgiLhREy319fWorq4GAPTq1cvyuKimxRh8Z68kECg9pB8SLQRBEA5FTbTYWc8CGBMtThpa7ATRoiSo7HZaSLQQBEEQccNPCuhU0aI1T4vH44HH47EsLqc6LfL0kBw70laUHiIIgiBMxe12szWknCpatJwWqyfjc6poSeb0kLicBUCihSAIgoiCmCJKJtEixsoPjbYCsVMNh8NsZW4eJ4gWSg/FB4kWgiAIB+NE0aI1T0s4HEZFRQWA1jlvrEQ+tFiOXbU2RtJDdjgtlB4iCIIgTEFJtIiz4aakpKBr166Wx6TltFRVVTFx0L17d0vjiuZoOMFpURIIdogpGj1EEARBmI4oWhobGxEOhyEIAnNaSktLLS10FdESLeXl5eyx1ZPeJYNocYrT4nK52L5ItBAEQRCmwA97bmpqQnV1NXNd7JqpV0u07N69mz12gmj56aef8Oc//xn79+9PitFDdqStkik9ZH8EBEEQhCryuVp27drF/naiaHGa03LJJZdg586dWLRoEU4++WT2entPDwGtbdDY2JhUTov9ERAEQRCqyEULX4Rrx2y4gPY8LU4SLaFQiLXXypUrcfjwYfa6k9JD/DpSRUVFlsUltkEyOS2UHiIIgnAwvGipr6+3feQQkDxOizy2H3/8kT12SnooHA7j559/BtAqQvkJBa2KS6/TYkf9lBwSLQRBEA5Gy2lxsmjx+Xzo3LmzpXHJRYvSbL0iTkkPVVRUsBqlE0880bKYgGNtwIuWzz//HL169cK9994L4Jho8Xg8cLlclsanBIkWgiAIB5OsoqWkpARut7VdTDKIFrnTsnnzZvbYLtHCC6l//OMf2LlzJ2bNmoVDhw6xeJ2QGgJItBAEQTgaNdGSlZWFwsJCW2JyuVysw+NFy5EjR1BbWwvA+tQQ4FzRopUeslO0KKWHjhw5wh4fOHBA4rQ4AWdIJ4IgCEIRXrTU1dUxJ6Nnz5622vWpqanw+/0S0cLXs1g9sRwQKQ4EQdC1baLRSg85wWnhRUtTUxN7TE4LgEGDBmHYsGEYPnw4hg8fjldffZW91tzcjIcffhgjRozAxRdfjCVLllgdHkEQhKPgRcvjjz/OOj27UkMiYopITbQ4zWkZO3asxC1wSnrop59+Yo/79u1rWUzAsTbgBR7fZtXV1Y4TLbZEMX/+fHTo0CHi+dmzZ+Po0aNYtGgRysrKMG3aNPTr18+Wk58gCMIJ8KLll19+YY+HDRtmRzgMUbTwnZzTRAvvavTt2xddu3bFyy+/jH79+tkySkeMS0QQBOa0lJaWIisry7KY5HEFAgH4fD7HOy3OiOL/s2jRIjz77LPIysrCqaeeihEjRmDZsmW45ZZbFLf3+/0RQ7W8Xq/ly6FbibhyqdIKpkQk1F7GoPYyTqLbjBctAJCfn48ZM2bgjjvusPU48U6LGAc/8V1JSYlifIlsL95J8fv9kg44NTUVzz//PMaNG4chQ4ZAEATN9FGi4uLba8+ePairqwPQmhqyur34vrK5uRler1fSZnKnJdHnm57CbVtEy3XXXQeXy4UhQ4bg7rvvRl5eHmpra3Ho0CH07t2bbdenTx+JdSZn7ty5mDNnjuS5CRMmYOLEiQmL3SmIq6gS+qD2Mga1l3ES1WY9evRAp06dcOjQIVx33XWYNm0a8vLybD9GYgfT3NzMHJYtW7aw171er8R5kZOI+BsbG9njPXv2SBaZbG5uRmVlJU466STU19ejvr7e9P2rcfToUfa4qqqKtcvKlSvZ8926dbO8vXjXZ8eOHcjNzY1YmFMt/ZcI9KQ8LRctc+bMwcknn4y6ujo89dRTeOyxxzBr1iw0NjbC4/FIljzPzMyUnIRyJk+ejEmTJkmeaw9OS0VFhS3DCZMRai9jUHsZx4o2KysrgyAIEa6LnYipDL/fz1JB1dXVAFpHF5155pmK1+JEtldBQQF73KFDB4nD0blzZ9tKDfhZbnNzc1kc8+fPZ88PGTJEMb5EtldOTo4kxqKiIolICQQCzI1KS0tzRKmGqaJl6tSpWL9+veJrN998M6ZMmYKBAwcCaLU477vvPlx88cUIBALIyMhAKBRCc3MzEy4NDQ3IyMhQ3Z/P52vTAkULt9tNnYoBqL2MQe1lnES2mdW1DnoQr9Ni3Yjb7WZ34l26dJHcgCqRiPbiazTC4bCkfCA9Pd22c5rvp0KhEItDnAkXAPr3768ZXyLai59vJxgMwu12S2qUampqJOkhJ1wTTBUtL7zwgqHtxQYQBAE5OTkoLCzE9u3b0b9/fwDA1q1bbVtbgyAIglCH7/BEcVBVVQXAniJcQHv0UDQRlUjURg/xw5379etnaUyAVEwFAgEEAgGEQiH2nBNHD1kqm8rKyrB161aEQiHU1tbi2WefxZAhQ1jDjR07Fi+//DIaGhqwadMmrFixAqNGjbIyRIIgCEIH8llxd+/ezf4m0SJFafQQP3KoW7duklSNHXHJC5cBGj2EmpoaPPnkkzhw4AAyMzMxePBgzJgxg71+2223YebMmRg9ejRycnLw4IMPokePHlaGSBAEQehALlrsnlgOcK5oUZpcbv/+/WzVaasnlRPhnRYSLQqcccYZ+PDDD1VfT0tLw8yZMy2MiCAIgogFXrTwI4gAclrkKKWH7JwJV0Q+T4t82YNDhw6xQtx2KVoIgiCItoGW00KiRYpSesgJoiWa08LPy+IU0WJ/KTBBEASRdJBo0Y9SeigZRAsPiRaCIAgiaeFFAIkWbZIlPZQMosUZURAEQRBJhdroofz8fGRnZ9sSk1NFi1J6aPv27QCATp06IT8/35a45E6L1jwsJFoIgiCIpIUXLY2NjdizZw8A+1wWIDIN4xTRopQeEtcc4mfxtRr5PC1aazGRaCEIgiCSFl60fPfdd8xBOO644+wKybFOizwuQRDYGj92Ls0gn6eFXxVbDokWgiAIImnhRQs/lcUFF1xgRzgAnCta5OkhfqVnO0WLPD2ktYoziRaCIAgiaeFFy7p169jjsWPH2hEOAOeKFnl6iF9J2SmiJRAISNZqkuMU0UKjhwiCIAjD8KJFpH///rbNhgskh2gJBoOor69nf9u5GKY8PSSfXI6HRAtBEASRtCiJlosvvtiGSI6hJlrcbretna48PeREp4XmaSEIgiDaLErOhVNFS1paGlwul11hJU16iEQLQRAE0SaROy15eXk466yzbIqmFS3RYifyuJwiWqKt8sxDooUgCIJIWuSi5aKLLrK9Y3OqaJGnh/iaFqc4LVTTQhAEQbRZ5KLF7tQQ4FzRopUesrMQVys9VFhYKNmWRAtBEASRtPCixeVyYfTo0TZG00oyiJZkSQ9169ZNsi2JFoIgCCJp4UXL4MGD0bFjRxujacWpoiUZRw+VlJRItiXRQhAEQSQt/fr1Q0ZGBgDgxhtvtDmaVviOtaWlhU1Lb7doScbRQ051WpwRBUEQBJFU5OXlYcOGDdixYwdGjRpldzgApB0rLwycJFqSZXI5Ei0EQRBEm6J3797o3bu33WEw+I6VFwZ2ixaXywWPx4NQKJQ06aHi4mLJtk4RLZQeIgiCINoEvHPgJNECHOv0nZQe4tuLTw+lpKSgU6dOkm1JtBAEQRCEiTjVaQGOxZYMTkt6enrEkGePx2NpbGqQaCEIgiDaBE4WLaKr4WTRIta0KIkWcloIgiAIwkScLFr49JATC3H59FB6ejo6dOgg2ZZEC0EQBEGYSDKIFrnTIg4btwOt9FBubq4kJUSihSAIgiBMxMmiRSk9lJaWZmutiJpoEVfFLigoYK+TaCEIgiAIE+E71lAoxB47QbQojR6ys54FkKaHmpqaEAwGAbQ6LQAkKSISLQRBEARhImodq5NECz+5nJ31LADgdruZ01NbW8ueF0ULX4xLooUgCIIgTEQt1eIE0aKUHrLbaQGOpYhItBAEQRCEhbjdbrjdkd2aE0SL2On7/X40NjYCcIZoEcXU0aNH2XNie5FoIQiCIIgEotS5Okm0tLS0QBAEAM4QLaLTIgopgGpaCIIgCMISnCpa+KJXESeJFh5RtPTp04c9J1+LyC6cIZ0IgiAIwgScKlqU4rK7EBdQFlOiaJk0aRLKyspQUFCAwYMHWx2aIiRaCIIgiDZDMokWpzstaWlpeOKJJ6wOSRNKDxEEQRBtBqeKlmRKDzmhvdSw1GlZv3497rrrLvZ3OByG3+/HsmXLkJ+fjxkzZmDp0qXspOvSpQveffddK0MkCIIgkhinihanOi1a6SEnYqloGThwIFauXMn+fvvtt/HZZ58hPz+fPXfbbbfhpptusjIsgiAIoo1AosUYWukhJ2JrTcvixYtx6aWXxvx+v98Pv98vec7r9SoehLZCOByW/E9oQ+1lDGov41CbGSPR7aUkDnw+n+3HR020RIsr0e2l1F+mpqba0l5Kc+zIsU20VFRUYOvWrbjgggskz7/++ut4/fXXUVpaijvvvBOnnXaa6mfMnTsXc+bMkTw3YcIETJw4MSExO4mKigq7Q0gqqL2MQe1lHGozYySqvcQ5UHiqq6ttv5mV32ADQHNzM8rLy3W9P1Htxa/RJNLQ0KA7LjPp2bNn1G1sEy2LFy/GWWedhdzcXPbc1VdfjXvuuQfp6en47LPPMH36dLzzzjvo3Lmz4mdMnjwZkyZNkjzXHpyWiooKlJSU6FKl7R1qL2NQexmH2swYiW4vpdRG79690bFjR9P3ZYScnJyI50pKSlBaWqr5vkS3V3Z2dsRz3bp1ixqXXZgqWqZOnYr169crvnbzzTdjypQp7O8lS5bgN7/5jWSbvn37ssdjxozBokWLsHr1aowbN07xM30+X5sWKFqoTVdNKEPtZQxqL+NQmxkjUe2llIbJyMiw/dgo9VXZ2dm640pUeynFlZmZaXt7qWGqaHnhhRd0bffTTz/h0KFDGD58uOZ2LpfLjLAIgiCIdkIyFeI6YXK5ZCvEtUVKLVmyBOeee27EifT555+jqakJwWAQy5Ytw4YNG3DGGWfYESJBEASRhMjFgdvtdsS6OTR6yBwsP5KhUAjLli3Do48+GvHam2++icceewwulwulpaV45pln0LVrV6tDJAiCIJIUuThIS0tzhGvv1MnlaJ6WKHg8HixdulTxtVdeecXiaAiCIIi2hJJocQLJ5LQ4pc2UcGalDUEQBEHEAIkWYyRbeohEC0EQBNFmcKpoUUrDOKEQN9nSQyRaCIIgiDaDU0WLktPiBHFATgtBEARB2ESyiBYnzB0DUE0LQRAEQdiGPN3hlA5YHpcT6lmAyLi8Xq8jhoirQaKFIAiCaDMki9PihHoWINJpcXJqCCDRQhAEQbQhkkW0OMVpIdFCEARBEDbhVNGSLOkhEi0EQRAEYRFOFS3ktJgDiRaCIAiizUCixRhy0eKU9lKDRAtBEATRZnCqaJGnYZxSiEvpIYIgCIKwCaeKlmRxWki0EARBEIRFkGgxBokWgiAIgrAJp4qWZBk95JT2UoNEC0EQBNFmcKpoIafFHEi0EARBEG2GZBEtVIgbGyRaCIIgiDaDU0WLU9ND5LQQBEEQhE04VbRQesgcSLQQBEEQbQa5OHBKJ+xU0UKFuARBEARhE051Wpw6uRw5LQRBEARhE04VLU51Wki0EARBEIRNkGgxBo0eIgiCIAibINFiDHJaCIIgCMImnCpakmXIs1PaSw0SLQRBEESbwamihSaXMwcSLQRBEESbIRlEi8vlckxclB4iCIIgCJtwqmjhHY3MzEy4XC4bozkGiRaCIAiCsAmnihY+LqfUswCAx+ORCCgSLQRBEARhEckgWpxSzyLCuy1OaS81SLQQBEEQbQZeHHg8nggRYxfy9JCT4EULOS0EQRAEYRG8SHGSa+DU9BAgFVQkWgiCIAjCIpwqWtLT03HKKacAAIYOHWpzNFKSyWlxhm9GEARBECbgVNHicrmwfPlyrF27FiNHjrQ7HAkkWgiCIAjCBpwqWgAgLy8PF1xwgd1hRCCmh5xUA6QGpYcIgiCINgNfn+E00eJUcnNzAQD5+fk2RxIdU0VLMBjE7373O4wZMwaDBg1CdXW15PXm5mY8/PDDGDFiBC6++GIsWbJE8vrChQsxduxYjBw5Eo8++igCgYCZ4REEQRBtHCc7LU7lwQcfRJ8+fTBjxgy7Q4mK6U7LaaedhqefflrxtdmzZ+Po0aNYtGgRnnjiCfz5z39GeXk5AGD79u3461//ir/85S/45JNPsG/fPrzyyitmh0cQBEG0YUi0GGfChAn45ZdfMHXqVLtDiYqpySuv14trrrlG9fVFixbh2WefRVZWFk499VSMGDECy5Ytwy233IIlS5Zg1KhROPHEEwEAU6ZMwcyZM3H77berfp7f74ff74+IQT4tcVsiHA5L/ie0ofYyBrWXcajNjJHo9nK7j92Lp6WlJf1xaU/nF3/s1LCs4qa2thaHDh1C79692XN9+vTBTz/9BADYsWMHzjrrLPba8ccfj71796K5uVlVLc+dOxdz5syRPDdhwgRMnDgxAd/AWVRUVNgdQlJB7WUMai/jUJsZI1HtVVVVxR6Hw2Hm5ic77eH86tmzZ9RtLBMtjY2N8Hg8EgGSmZmJxsZGAEBTU5Nkwh1xmuOmpiZV0TJ58mRMmjRJ8lx7cFoqKipQUlKiS5W2d6i9jEHtZRxqM2NY2V55eXkoLS1N6D4SDZ1fUgyJlqlTp2L9+vWKr918882YMmWK6nszMjIQCoUkzklDQwMyMjIAtI4Nb2hoYNvX19ez59Xw+XxtWqBo4Xa76QQ2ALWXMai9jENtZoxEtVf37t3Rq1cv7NixA+eff36bOSZ0frViSLS88MILMe8oJycHhYWF2L59O/r37w8A2Lp1K3r16gUA6NWrF7Zv386237ZtG4qLi6mQiiAIgtCNx+PBDz/8gO3bt2PAgAF2h0OYjOmyze/3o6WlBQAQCATYYwAYO3YsXn75ZTQ0NGDTpk1YsWIFRo0aBQAYPXo0PvvsM2zZsgX19fV49dVXMWbMGLPDIwiCINo42dnZGDhwIFwul92hECZjek3LFVdcgcrKSgDAJZdcAgBYu3YtAOC2227DzJkzMXr0aOTk5ODBBx9Ejx49AAC9e/fG3XffjenTp6OhoQHnnXcebr75ZrPDIwiCIAgiSTFdtCxcuFD1tbS0NMycOVP19UsuuYQJHYIgCIIgCB6q6iEIgiAIIikg0UIQBEEQRFJAooUgCIIgiKSARAtBEARBEEkBiRaCIAiCIJICEi0EQRAEQSQFJFoIgiAIgkgKSLQQBEEQBJEUkGghCIIgCCIpINFCEARBEERSQKKFIAiCIIikgEQLQRAEQRBJgUsQBMHuIAiCIAiCIKJBTgtBEARBEEkBiRaCIAiCIJICEi0EQRAEQSQFJFoIgiAIgkgKSLQQBEEQBJEUkGghCIIgCCIpINFCEARBEERSQKKFIAiCIIikgEQLQRAEQRBJAYkWgiAIgiCSAhItNjJ79mxMmDABZ5xxBpYuXcqeb25uxp/+9CeMGjUKF154IV5//XXJ+wYNGoRhw4Zh+PDhGD58OF599VXJex9++GGMGDECF198MZYsWWLZ97GCRLTZrFmzMG7cOIwYMQLXX389vv/+e8u+T6JJRHuJ7Nu3D0OHDsUTTzyR8O9hFYlqrwULFuCyyy7DsGHDcOWVV6K8vNyS75NoEtFee/fuxdSpU3HOOedgzJgxmDt3rmXfxwpibbP6+no89thjOO+883DOOefgoYcekry3LV/3ebx2B9CeKSkpwb333ouXXnpJ8vwrr7yCffv24aOPPkJ9fT1+85vfoHfv3jjrrLPYNvPnz0eHDh0iPnP27Nk4evQoFi1ahLKyMkybNg39+vVDaWlpwr+PFSSizbKysvCPf/wDxcXF+OKLL3Dfffdh4cKFyMzMTPj3STSJaC+RWbNm4YQTTkhY7HaQiPZasWIF3njjDfzlL39Br169sHfvXmRnZyf8u1hBItrrmWeeQXFxMf72t7+hqqoKv/71r3HSSSdh8ODBCf8+VhBrmz366KMoKirCggULkJaWhu3bt7P3tvXrPg85LTYyduxYnHnmmfD5fJLnv/nmG1x77bXIyspC586dcemll+KTTz7R9ZmLFi3CrbfeiqysLJx66qkYMWIEli1blojwbSERbXbrrbeipKQEbrcbF1xwAVJTU7F79+5EhG85iWgv8f2CIGDIkCFmh2wriWivl19+Gffccw+OO+44uFwudOvWDbm5uYkI33IS0V6VlZW48MIL4fV6UVxcjAEDBmDHjh2JCN8WYmmzsrIybNmyBdOnT0dWVha8Xi/69u3L3tvWr/s8JFocCr/4tiAIET/a6667DmPGjMGMGTNw5MgRAEBtbS0OHTqE3r17s+369OnTpn7wWsTSZnL27duH2tpalJSUJDJURxBrewUCAfztb3/D3XffbVGkziCW9gqFQvjll1+wfft2jB07FpdeeinmzJkj+ay2Sqzn14QJE7B06VL4/X7s3r0bmzZtwqBBg6wK21bU2uznn39G9+7d8fDDD+P888/HDTfcgPXr1wNof9d9Ei0O5Mwzz8Rbb72Furo67Nu3Dx9//DGam5vZ63PmzMHHH3+MN998E83NzXjssccAAI2NjfB4PEhLS2PbZmZmorGx0fLvYDWxthlPMBjEjBkzcP311yMrK8vK8C0nnvaaN28ehg4d2i6EnUis7VVTU4NQKIQ1a9bgnXfewb/+9S98+umnWLhwoV1fxRLiOb9OPfVUbNq0CcOHD8fll1+OcePGSTrktopWmx04cACrV6/G4MGDsXTpUtx000247777cPTo0XZ33SfR4kB+/etfo2vXrrjyyitx11134fzzz0fHjh3Z6wMHDoTX60V+fj7uu+8+rFq1CoFAABkZGQiFQpKLQ0NDAzIyMuz4GpYSa5uJCIKAGTNmID8/H7feeqsdX8FSYm2vAwcOYMGCBbj55pttjN56Ym2v1NRUAMCNN96I7OxsdO7cGRMmTMCqVavs+iqWEGt7hUIhTJs2DePHj8eqVauwYMECfPbZZ/jss89s/DbWoNVmqampKC4uxvjx4+H1enHeeeehuLgYmzZtanfXfRItDiQ9PR0PPfQQli5divfffx8ulwsnnnii4rZud+shFAQBOTk5KCwslBRobd26Fb169bIkbjuJtc1Enn76aRw8eBCPP/44e70tE2t7bd68GVVVVbj88stx0UUX4Y033sAnn3yC3/72t1aGbznx/Cb5zlp8vq0Ta3vV1tbi4MGDuPLKK+H1etG1a1ecc845WLdunZXh24JWmx133HGq72tv1/22f3V2MMFgEC0tLRAEgT0Oh8OoqqpCdXU1QqEQvv32WyxcuBDXXnstgNaCrK1btyIUCqG2thbPPvsshgwZwoq6xo4di5dffhkNDQ3YtGkTVqxYgVGjRtn5NU0lEW02e/ZsbNiwAc8++2xEcVyyY3Z7nX322fjvf/+LefPmYd68ebjiiitwwQUX4PHHH7f5m5pDIs6vX/3qV/jPf/6DhoYGHDx4EB988AGGDRtm59c0DbPbKz8/H0VFRZg/fz77nOXLl2t22slGLG02aNAgCIKAjz/+GKFQCMuXL8fevXtx8sknA2j7130el9AeZL9DmTFjBj7++GPJc+IwuEceeQRHjhxBjx49cN9992HgwIEAgDVr1uDJJ5/EgQMHkJmZicGDB2P69OkoKCgA0Dpef+bMmVi+fDlycnLw29/+FqNHj7b2iyWQRLTZoEGD4PP54PF42Gf+4Q9/wJgxYyz6VokjEe3FM3v2bBw6dAh/+MMfEv9lLCAR7RUIBPDUU0/h008/RUZGBsaPH49bb70VLpfL2i+XABLRXj/99BOeffZZlJWVIS0tDRdeeCHuvvtuye8zmYmlzQBg27ZtePzxx7Fz506UlJTgvvvuw2mnnQag7V/3eUi0EARBEASRFFB6iCAIgiCIpIBEC0EQBEEQSQGJFoIgCIIgkgISLQRBEARBJAUkWgiCIAiCSApItBAEQRAEkRSQaCEIgiAIIikg0UIQBEEQRFJAooUgiHbBoEGDMGjQoDa/wjJBtGVItBAEYRq33norEwfXXHON5LUjR45g6NCh7PXnn3/e9P0vXLiQfT5BEG0PEi0EQSSEbdu24fvvv2d/z58/Hy0tLTZGRBBEskOihSAI0/F6vQCAd955BwAQCoXw/vvvs+d5jh49iqeeegoXX3wxhgwZggsvvBAPP/ww9u/fz7aZPXs2Bg0ahEsuuQSffvoprrjiCgwbNgy33HILdu3aBaB1IbpHH32UvUd0XGbPni3ZX319PWbMmIGRI0dizJgxePnll83++gRBJAgSLQRBmE6fPn1QXFyMr776ClVVVVixYgX279+P888/X7JdS0sLbr31Vrz33nuorq5GaWkpGhoasHjxYkyePBmHDx+WbH/gwAE8/PDDcLlcaGlpwfr16/HYY48BALp164bi4mK2bf/+/dG/f38UFRVJPuMf//gHvv32W6SkpODgwYN46aWX8O233yaoJQiCMBMSLQRBmI7b7caECROYwyI6LldddZVku6VLl6KsrAwA8NRTT+Hdd9/FK6+8ArfbjYMHD+Ldd9+VbB8KhfD000/j/fffZzUzGzduRHNzM6ZMmYIpU6awbV977TW89tprGD9+vOQz+vTpg4ULF0qcnzVr1pj6/QmCSAwkWgiCSAjjxo1Deno63n33Xaxduxb9+vXDKaecItlm8+bNAIC0tDScc845AIC+ffuitLRU8rpIVlYWRowYAQDo1asXe17uyGgxatQopKSkIC8vDwUFBQCAmpoaY1+OIAhbINFCEERCyM7OxpgxY9DQ0AAg0mWJ9TNFPB4PeywIQlyfYeT9BEHYB4kWgiASxsSJEwEAeXl5uPDCCyNeP/HEEwEAzc3N+OqrrwAAW7ZsQXl5ueR1vaSlpbHHTU1NsYRMEISDiSzlJwiCMInevXvj888/h8fjgc/ni3j9oosuwhtvvIEdO3bggQceQGlpKfbu3YtwOIyOHTsy0aOXHj16sMcTJkxAhw4dcPfdd2PAgAFxfhOCIJwAOS0EQSSU3NxcZGVlKb6WmpqKOXPmMIFRXl6OzMxMjBkzBnPnzkV+fr6hfR1//PGYMmUKCgsLsX//fvz444+oq6sz42sQBOEAXAIlcwmCIAiCSALIaSEIgiAIIikg0UIQBEEQRFJAooUgCIIgiKSARAtBEARBEEkBiRaCIAiCIJICEi0EQRAEQSQFJFoIgiAIgkgKSLQQBEEQBJEUkGghCIIgCCIpINFCEARBEERSQKKFIAiCIIik4P8BY/ERjEEVQFgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -415,14 +495,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEFCAYAAAAc33cJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4ZklEQVR4nO3deXwN1//H8ddNxBqxb00XOyEhZFBLbD9BUUvtpaSqtqp+tSqCCBGRWFrVLZZairYoWkp9u0mppTWqVVWqtUVQS8UWkeWe3x+T3G+QWJIbV+Z+no9HHslM7sycc2/yzuTM3POxKKUQQghhDi6OboAQQgj7kVAXQggTkVAXQggTkVAXQggTkVAXQggTeRhCXWX348yZM9neNq9+OGOfnbXfzthnZ+13NvucqYch1LMtNTXV0U144Jyxz+Cc/XbGPoNz9tuefc7ToS6EEOJmEupCCGEiEupCCGEiEupCCGEi+XKysaZpFYHdwO9pq3oCLYHRwHVgoK7rJ3NyDCGEEPcuR6Ge5ntd13sAaJqWD3gVaAE0AEKAoXY4hhBCiHtgj1BvqmnaNmAbsAz4Q9f1JGC7pmmz7LB/IYQwnZQURb58FrvvN6ehfhqoCiQAC4BngMsZvu+a2Uaapg0BhgCMHDmSgICAbB08OTmZuLi4bG2bVzljn8E5++2MfQbz9/v6DVj4ZRGWfVOEzRHnKOmhstVnT0/PzL+hlLLLh5+fXwc/P79Vfn5+izKs23kP22bbyZMnc7J5jjz11FPq4sWL6uLFi+rdd9+1rd+yZYvq2LGj3Y7TuHHjm5bvpc8hISHq66+/tlsb7scTTzyhzp07Z/f9pvf71KlTd3x+jx49qmrXrp3p9zI+L1u3blW1atVSdevWVTt27FAbN2687za1aNFC7d69+7b19/scLF68WL300ku3rb+fn+8NGzaokJCQe378w8yRv9e5KTnZquavt6oKXVMV/sbHe+usSqls9znTTM3R3S+aphXNsOgPbAS8NE3Lr2laE2BfTvb/MNu0aRPFixcnPj6e9957L9eOs2PHjvveJiwsjDZt2uRCaxzvjTfe4MUXX8zWthmflxUrVhAcHMwvv/zCoUOH2LRpkz2b+cB17NiRDRs2kJCQ4OimiFsopVi3VeETqBgyU3H6AvjVgG/etDC8q/2HX3J6S2MzTdP2pI2pewIrgDlADBCe9pHnzJw5k7lz5wIwevRoWrduDcB3331Hv379AKhYsSLnz59n3Lhx/P333/j6+vL6668DcPXqVXr06EHNmjXp168fKpPqUi1btmT06NFomoaXlxe7d+/mmWeeoVq1akycONH2OHd3dwBOnz5N8+bNadu2Ld7e3mzbto3U1FQCAwPx9vbGx8eHN998E4DAwEA+/fRTWztDQ0OpX78+Pj4+HDx4EIBz584REBBA7dq1GTx4ME888QTnz5+/qY3R0dG2PgEsWbKEkSNHAtC1a1f8/PyoXbs28+fPv61/x44dw9vb27Y8a9YsJk+eDMDff/9N+/bt8fPzw9/f39am1atX4+3tTd26dWnevHmmr82aNWto3749AL///jsNGzbE19eXOnXqcPjwYcB4y/WLL75I7dq1adu2LdevX7/peVm4cCGrVq0iJCSEvn37MmnSJFauXImvry8rV67k2rVrDBo0iIYNG1KvXj0+//xzAK5fv06fPn3w8vKiW7dutv1mZsaMGfj4+NCwYUP++usv23PevXt3GjRoQIMGDdi+fXumz1vr1q2pU6cOvXv35sSJE6SmplKpUiWUUsTHx+Pq6srWrVsBaN68OYcPH8ZisdCyZUu++OKLLNskHrwf9imavaR4ZqLi4Amo/Ah8HGrhp3kW/s/P/oEO2G/4JQcfd/7/Ipcm0LmTnTt3qh49eiillGrWrJlq0KCBSkpKUpMnT1bR0dFKqf/9i33rv/tbtmxRHh4eKjY2VqWmpqonn3xSbdu27bZjtGjRQo0dO1YppdScOXNUhQoV1KlTp1RiYqLy9PRU58+fV0opVaRIEaWUUrNmzVLh4eHq5MmTKiUlRV2+fFnpuq7atGlj2+fFixeVUkoNHDhQrV692tbOuXPnKqWUevfdd9ULL7yglFLqpZdeUhEREUoppb788ksF3DZkcPbsWVWlShXbcvv27W19uXDhglJKqYSEBFW7dm1be7N6XmbOnKlCQ0OVUkq1bt1a/fnnn0oppXbt2qVatWqllFLK29vb9m9oel/SnTx5Uh05ckTVr1/ftm7kyJFq+fLlSimlbty4oRISEtTRo0eVq6ur2rt3r1JKqZ49e6ply5bd9rxk/PrW4Y/g4GDbNhcvXlTVqlVTV69eVbNnz1bPP/+8UkqpX3/9Vbm6umY5/BIeHq6UUmrp0qW24aK+ffvanr/jx4+rmjVr3nb8Tp06qSVLliiljNe8S5cuSiml2rVrp/bv3682bNigNE1T4eHhKjExUVWsWNF23OXLl6uRI0fe1p68xgzDL78ftarO4/43zFLm6VT19qdWdSPJmunj7Tn8Yo+7X0zHz8+PPXv2cPnyZQoUKED9+vXRdZ1t27bZzuDvpGHDhjz66KMA+Pr6cuzYMZo1a3bb4zp37gyAj48PtWvXpkKFCgBUrlyZ2NhYSpUqZXtsgwYNGDRoEBcuXGDAgAH4+vpSuXJljhw5wssvv0zHjh1p27Ztpu155plnbP1au3YtAD/88APr1q0DoH379pQoUeK27cqUKUPlypXZtWsX1apV4+DBgzRt2hSAuXPn2raPjY3l8OHDN7U3K1evXmXHjh307NnTtu7GjRsANG3alMDAQHr16mVrc0anT5+mTJkytuXGjRszbdo0Tp48afsvB6BSpUr4+vra+nzs2LG7tiujr776ivXr1zNrlnHzVmJiIidOnGDr1q2MGjUKgDp16lCnTp0s99G3b1/b59GjRwPwzTffcODAAdtjLl++zNWrV2/abufOnbbXqHv37kyfPh0Af39/tm7dytGjRwkODmbBggW0aNGCBg0a2LYtW7Ysp06duq++Cvs6eVYxebFi8ZdgtUKRQvBabxjTx0LRwrl0Zn6Lh/4dpVn9NVJKcfLkyWz/h3Anbm5uVKpUiSVLltCkSRP8/f3ZsmULf/31F15eXndtc4ECBWxfu7q6kpKScsfHubi43LSNi4vLbds0b96crVu3Ur58eQIDA/nwww8pUaIEv/76Ky1btiQ6OprBgwff8Th3aktW+vTpw6pVq1izZg3dunXDYrEQExPDN998w86dO/n111+pV68eiYmJN22XL18+rFarbTn9+1arleLFi/PLL7/YPv744w/AGO4JDw8nNjYWPz8/Lly4cNM+CxUqdNNxnn32WdavX0+hQoXo0KED33333U39zW6flVKsWbPG1r4TJ07c0+uekcViue1rq9XKrl27bPuNi4uzDa/dTfPmzdm2bRs//fQTHTp0ID4+npiYGPz9/W2PSUxMpFChQvfVTmEfF68oxkVbqfas4oON4GKBEV3hr48sTBnk8sACHfJAqDuKv78/s2bNonnz5vj7+xMdHU29evVu+mUFKFq0KFeuXMn19hw/fpxy5crRr18/Bg8ezM8//8z58+exWq10796d8PBwfv7553veX9OmTVm1ahVgnJlevHgx08d169aNzz//nI8//pg+ffoAcOnSJUqUKEHhwoU5ePAgu3btum27cuXKcfbsWS5cuMCNGzdsY70eHh5UqlSJ1atXA0aA/vrrr4Ax1t6oUSPCwsIoU6YMsbGxN+2zevXqN511HzlyhMqVKzNq1Ci6dOnCvn3Zuy5/62vYrl073n77bdsf/7179wJGsH700UcA7N+//47HW7lype1z48aNAWjbti1vv/227TG//PLLbds1adKETz75BIB169bZQrthw4bs2LEDFxcXChYsiK+vL/Pmzbvp2sOff/5503UMkfsSbyhmf6Ko0kcR9REkJkHPVnDgQwvvvupC+VIPLszTSahnwd/fn9OnT9O4cWPKlStHwYIFbzorSleqVCmaNm2Kt7f3TRcV7S0mJoa6devSrl07Vq5cySuvvEJcXBwtW7bE19eX/v372/5VvxehoaF89dVXeHt7s3r1asqXL0/RokVve1yJEiXw8vLi+PHjNGzYEDCGa1JSUvDy8mLcuHE8+eSTt23n5ubGpEmTaNiwIQEBAdSsWdP2vRUrVvDBBx9Qt25dateubbsQ+frrr+Pj44O3tzdNmjShbt26N+2zSJEiVKlSxXbhcdWqVXh7e+Pr68v+/fsZMGDAPfc/o1atWnHgwAHbhdKQkBCSk5OpU6cOtWvXJiQkBIDhw4dz9epVvLy8mDRpEn5+flnu8+LFi9SpU4e33nrLdgF77ty56LpOnTp1qFWrFtHR0bdt9/bbb7N48WLq1KnDmjVreOuttwDjv4/HHnvM9lz7+/tz5coVfHx8bNtu2bKFjh07Zus5EPcnNVWx9EtF9X6KMe8pLl6BFr7wY7SFVVNcqPbYgw9zm+wOX9jxI9vMcEHlftmrz4mJiSo5OVkppdSOHTtU3bp17bLf3JLe77Vr16oJEyY4uDUPxv281mfOnFGtW7fOxdY8OA/z77XValUbd1iVz8D/XQT1GZiqNu20Kqs184ug90IulIocO3HiBL169cJqtZI/f34WLFjg6Cbdk27dut021i6M13P27NmOboap/XRAETRPEWOMxvF4OZj6goV+AeDq6sAz81tIqDupatWq2caK85qsLgg7s4x3wQj7OhyrGL9A8WmMsVzSAyY8Z2FEVyhY4OEJ83QS6kIIkYkzFxRhSxXzN0BqKhTMD//pCUHPWihe9OEL83QS6kIIkcHla4pZnyhmr4SERHBxgRc6wpRBFjzLPLxhnk5CXQghgKRkxbz1MHWp4ly8sa5LM4gYYqFWxYc/zNNJqAshnJrVqlj5HUxcqDiS9obcJt4QNcxCszp5J8zTyX3q2ZT+rr5bZ2mMiYmhU6dOdjlGTExMtmZpzGjw4ME3vTX9Xqxfv57IyMgcHTe7Mk5GJkRu+0ZXNBiieDbMCPSaj8Nn0yz88G7eDHSQM/VsS5+q9dixY7z33nuMGDHC7seIiYnB3d2dJk2aZHsfCxcuvO9tOnfubJuXRggz2vunIiha8bVuLD9S2hgzD2xPrlQjepDkTD0TuTX17rfffku9evXw8fFh0KBBtoms0vcFoOs6LVu25NixY0RHR/Pmm2/i6+vLtm3bbmrj5MmTGThwIP7+/jzxxBOsXbuWsWPH4uPjQ/v27UlOTgaMKX51Xc9ymt65c+dSq1Yt6tSpY5sGIOMUu4GBgYwaNYomTZpQuXJl21m01WplxIgR1KxZk4CAADp06HDbGfbBgwdt70IF4w9g+jsgw8LCaNCgAd7e3gwZMiTT+XgyPi/pc9wAWU6Nm9VUvEKkO3pK0S/MSv3BRqAXczfGzA9/ZGFwJ0ueD3TIA2fqlubWO3y3AnCn72dNbc3675m/vz+zZ89m1KhR6LrOjRs3SE5OZtu2bbfN8x0ZGcn+/ftt83jExMSwd+9efv/9dx555BGaNm3K9u3b0TSNwMBAvv32W6pXr86AAQN4//33+c9//pNpGypWrMiwYcNwd3dnzJgxmT7m77//ZsuWLRw4cIDGjRuzZs0aZsyYQbdu3di4cSNdu3a1PTZ9Aqn9+/cDEB8fb2v/0aNHKVCggG3drU6fPs0PP/zAwYMH6dy5Mz169GDt2rUcO3aMAwcOcPbsWby8vBg0aNBN29WsWZOkpCSOHj1KpUqVWLlyJb179waMMoaTJk0C4LnnnuOLL77g6aefzuolucm0adNo3bo1ixYtIj4+noYNG9KmTRuio6N55ZVX6NevH0lJSaSmpt7T/oT5nYtXTPtQ8d5nkJwC+d1gZDcY/5yFUsXyfpBnJGfqmbh16t3GjRvbpt7NbP6XW6VPvevi4mKbevfQoUNUqlSJ6tWrAzBw4EBboYPseuqpp3Bzc8PHx4fU1FRb8QgfH5/bppvNOE3v5s2b8fDwAIwpZPv168fy5cvJly/zv/Fdu3bFxcWFWrVq8c8//wDG1L09e/bExcWF8uXL06pVq0y37dWr102TW6WH+pYtW2jUqBE+Pj589913/P777/fc76+++orIyEh8fX1p2bKlbWrcxo0bExERQVRUFMePH5cZCwXXrhthXqWP4q1PISUVnmsHf66wMHuki+kCHfLAmfqdzqjj4uKyLr6aA7dOvVunTp1cmXo3XcZpam+dwvZejuPi4oKbm5ttBsnMpu5Nn6b3v//9L9HR0axatYpFixaxceNGtm7dyoYNG5g2bRq//fbbHfuT2TDJnfTu3ZuePXvyzDPPYLFYqFatGomJiYwYMQJd13nssceYPHlypv3O+LykD1Wlt2HNmjXUqFHjpsd7eXnRqFEjNm7cSIcOHZg3b55t6Ew4l+QUxaKNMHmx4sy/xrqnGsH0oRbqVjVfkGckZ+pZsPfUuzVq1ODYsWO2GQaXLVtGixYtAGOoZc+ePYBRru1+930vMpum12q1EhsbS6tWrYiKiuLSpUu3FW3IStOmTVmzZg1Wq5V//vmHmJiYTB9XpUoVXF1dmTp1qu0sPT3AS5cuzdWrV7O82yXj85KxhmhWU+PaaypekXcppVgTo/AeqBg22wh0rSZ8+6aFTTNdTB/oIKGeJXtPvVuwYEEWL15Mz5498fHxwcXFhWHDhgHGNLivvPIKmqbh6upq2+bpp59m3bp1mV4ovV+ZTdObmppK//798fHxoV69eowaNYrixYvf0/66d+/Oo48+Sq1atejfvz/169enWLFimT62d+/eLF++nF69egFQvHhxXnzxRby9vWnXrl2W85Zk9bxkNTWuvabiFXnTtl8VTUYoekxS/BkLVT1h1RSjHmjr3KoH+hCy3O+/07kg2w3IreGXh9nD1OerV6/i7u7OhQsXaNiwIdu3b6d8+fK5cqyHqd8PijP2Ge6/3/uPKILnK75Ie0tHuZIQGmhhcCdwyyN3s2Tztc60cw/9mLp4eHXq1In4+HiSkpIICQnJtUAXIjOx/yhCFyuWbjbqgboXMmqBvtYb3B9g+biHjYS6yLasxtGFyE0XryimL1fMXQM3kiCfKwzvBiEDLZQr6bxhnk5CXQiRJ1y/oXh7DUxfrohPu57fqxVMe9FC1UclzNNJqAshHmqpqYoP/wuTPlCcPGesa13fmHBLqylhfisJdSHEQ0kpxcadMG6e4vejxjrfahA11EJAA267vVgY7BLqmqb1Bebqul5G07SewGjgOjBQ1/WT9jiGEMJ57PrdmHBr66/G8hPlIXywhWfbgIuLhPmd5DjUNU1zBXoCsZqm5QNeBVoADYAQYGhOjyGEcA6HTihGzy3Olz8ZdzqXKgYTn7MwvCsUyC9hfi/scabeF1gNvAZUA/7QdT0J2K5p2iw77F8IYXKnzyumLFEs3AipqYUoVABG94KxfS0Uc5cwvx85CvW0s/ReQFeMUC8BXM7wENdMNkPTtCHAEDBm6wsICMjW8ZOTk4mLi8vWtnmVM/YZnLPfztDnKwkW3t9QhAVfFuH6DRdcXRR9Wl5jTM9rlC9p5eoluHrJ0a20v+3bt7NkyRLeeecdChQokK3XOqs3K+X0TL0/sErXdaumaQDxgEeG72c696mu6/OB+WmL8o7S++CMfQbn7LeZ+3wjSRH9OUz9UHEhLbS7+UPEEBeK5rti2n7/+uuvjBs3js2bNwPw5Zdf8tJLL9n1tc5pqNcC6mma1h9j6OVlwEvTtPyABsiMSkIIG6tV8cm3MGGB4tgZY12zOsYdLU18jGEWM/5zcvz4cUJCQli+fDlKKYoWLcrYsWMJDAy0+7FyFOq6rgelf61pmq7r+nBN03oDMUAiMDBnzRNCmMXXu407WvamFaSqVREih1ro1MS8tydeuHCBiIgI3nnnHZKSknBzc2PEiBFMmDCBMmXK5Mox7Xafuq7rWtrnlcBKe+1XCJG37TmkGDdP8U1aPVDPMhA2yMLA9uDqas4wT0hIYO7cuURGRnLpkjG+9OyzzzJ16lQqV66cq8eWNx8JIXLFkVOKiQsVH39jLBd3h3H9LIzqAYUKmDPMU1JSWLp0KaGhobYLnwEBAURFRVGvXr0H0gYJdSGEXZ29qAj/0LgQmpwCBfLDqO5GoJf0MGeYK6VYv349wcHB/PHHHwDUr1+fqKgo2rRp80DbIqEuhLCLqwmKN1bBzI8VV6+DxQKBT8GUQRYeL2fOMAc4duwY/fv3Z/v27YBRDzg8PJzevXvj4vLg6xBJqAshciQ5RbHwC5iyRPFPWj3Qjo1h+hALPlXMG+bpypQpw19//UXp0qWZNGkSQ4cOJX/+/A5rj4S6ECJblFJ8GgPj5yv+SrsNsVEtY/bEFr7mD/N0RYoUYcOGDdSoUQMPD4+7b5DLJNSFEPctZq9xe+JPxvAx1R41zsyfaWHe2xPvJKs6u44goS6EuGf7/laMi1Z8+aOxXK4kTH7ewgsd8049ULOTUBdC3NXxM4pJHyiWfQVKQdHC8HpfC6N7Onc90IeRhLoQIksXLhn1QN9eC0nJ4JYPhneBiQMtlCkuYf4wklAXQtwmIVEx91OI/EhxKa0e6LNtYOpgC5UfkTB/mEmoCyFsUlIUSzdD6GJFXFo90DaaMeFW/RoS5nmBhLoQAqUUG7ZD8HzFgWPGunrVjNsTAxpImOclEupCOLkdvymC5il+SJsou1IFox5on/+TeqB5kYS6EE7qj2OK8QsUn20zlksXg5CBFoZ2lnqgeZmEuhBOJu6cYvJixaJNYLVC4YLwWm8Y08eCRxEJ87xOQl0IJxF/RTHjY8Wc1XD9Bri6wtDOEBpooUJpCXOzkFAXwuRuJCneXQfTlin+TSsL36MlTHvRQvXHJMzNRkJdCJNKTVV89A2EfKA4nlYPtHldmDHcQqNaEuZmJaEuhMkopfjvTxAUrdj3t7HOuxJEDrPQ4UnnnHDLmUioC2Eiu/8wZk/cstdYfqwsTH3BQv+25q0HKm4moS6ECfx1UjFhgWLVFmO5RFEI7m/h5WegoEnrgYrMSagLkYf9868ibIli/gZISYWC+eGVHhDUz0KJohLmzkhCXYg86EqCYvYnilkr4dp1cHGBQR2Muc0fM3E9UHF3EupC5CFJyYoFGyBsqeLsRWPd001g+lALtStJmAsJdSHyBKtVsXoLTFio+DutHmjj2saEW/51JczF/+Qo1DVNKwesA5KBVKAfUAWYAViB4bqu/5bTRgrhzL7boxgbrdhzyFiu8bhRD7Srv9yeKG6X0zP180AzXdetmqYFAi8AAUBHoCgQDXTI4TGEcEoHjufjhTet/PcnY7lCKZgyyMLzT0E+qQcqspCjUNd1PTXDYlHgb6C1rusXgYuappXMyf6FcEbHTitCPlCs+Lo0SoFHERjb18J/ekKRQhLm4s5yPKauaZovMA8oDrQFemf4doqmafl1XU+6ZZshwBCAkSNHEhAQkK1jJycnExcXl61t8ypn7DM4R78vXrEw9zN3ln5VhKQUC/nzwcC2V3m5y1VKeiji/4V4RzfyAXCG1/pW2emzp6dnpustSil7tAlN03oBbYCquq63Tlu3S9f1J++yabYbEBcXl2XHzMoZ+wzm7ndCojFzYtRHisvXwGKBfgHwUqezPOlb3tHNe+DM/FpnJZt9zvTftpxeKM14Fn4JuArk0zStOMZwzL852b8QZpaSolj8JYQuUpy+YKxr1xAih1rwrWYhLi71zjsQIhM5HX7x1TRtFsadL4nAIKAasAnjDHxEDvcvhOkoZVQbCp6vOHTCWOdXA2YMs9DaT8bMRc7k9ELpT0DzW1afBprkZL9CmNUP+xRj31fs/N1YrvyIMa95r1ZSD1TYh7z5SIgH4MAxRfA8xfrtxnKZ4jBpoIUhnSG/m4S5sB8JdSFy0cmzitBFiiWbjXqgRQrBmN7wWh8LRQtLmAv7k1AXIhdcvKKIWqF461NITIJ8rjCsK0wKtFCupIS5yD0S6kLYUeINxTtrIWK54uIVY12vVhA+2EI1qQcqHgAJdSHsIDVVsfwrox5o7FljXat6xoRbDbwkzMWDI6EuRA4opfhyF4ybp/jtiLHOp7IR5u0byYRb4sGTUBcim348YNQD/f4XY/nxcsYwy7NtpB6ocBwJdSHu0+FYxfgFik9jjOWSHjDhOQsjuko9UOF4EupC3KMzFxRhS416oKmpUKgA/KenMYNicakHKh4SEupC3MXla4pZnyhmr4SERKMe6OBORj1QzzIS5uLhIqEuRBaSkhXRn8PUpYrzl4x1XZoZVYe8KkqYi4eThLoQt7BaFSu/gwkLFEdPG+uaeMOM4Raa+kiYi4ebhLoQGXy9WzFunuLnP43lmo8bU+F2bia3J4q8QUJdCODnQ0aYf60by4+UNuqBBraXeqAib5FQF07tyClFyELFR98Yy8XcYdyzFkb1gMIFJcxF3iOhLpzSuXhF+FLF+59Dcgrkd4OR3WD8cxZKFZMwF3mXhLpwKteuK95cBTM+VlxJMOqBDmgHYS9YeKK8hLnI+yTUhVNITlEs2giTFyvOpFXOfaoRRA6zUKeKhLkwDwl1YWpKKdZ+D+MXKP6MNdY1qGlMuNWqvoS5MB8JdWFaW39RjI1W/HjAWK7qadQD7dlKbk8U5iWhLkxn/xHj9sSNO43lsiUgNNDCi0+Dm9yeKExOQl2Yxol/jHqgSzeDUuBeCF7va+HVXuAu9UCFk5BQF3nev5cVkSsUc9fAjfR6oF0gZKCFsiUkzIVzkVAXedb1G4q318D05Yr4q8a6Pv9nFKqo4ilhLpyThLrIc1JTFR/+FyZ9oDh5zlj3f37GHS1+NSTMhXOTUBd5hlKKL3ZA8HzF70eNdXWrwoxhFgIayB0tQkAOQ13TtIbAW0AyEAcMALoCo4HrwEBd10/msI1CsOdPN/pOV2zbZyxXLG8Ms/RtAy4uEuZCpMvpmXos0FrX9euapk0HugCvAi2ABkAIMDSHxxBO7NAJxfj5irVbSwNQqhhMfM7C8K5QIL+EuRC3siil7LIjTdOmAElAFV3XB6Wt26nreuNMHjsEGAIwcuRIv4CAgGwdMzk5GTc3t+w3Og9ylj6f+deFN9e688mWwqRaLRTMb2VIh2sMe/oaHoXt8zP7sFFKsXv3bho2bAg4z2t9K2fsd3b67OmZ+d0AdhlT1zTtCaAtMA4ok+Fbrpk9Xtf1+cD8tMVs/4bGxcXh6emZ3c3zJLP3+dJVxcyPFW+uNuqBurrC0M7wYrtz+PlUAIo5uom5YsuWLQQFBbF792527NhB48aNTf9aZ8UZ+23PPuc41DVN8wCWAYEYIe6R4dupOd2/cA43khTvfwbhyxQX0uqBdvOHiCEWaj5hIS7O6tD25ZZ9+/YRFBTE5s2bAShfvjznz593cKtEXpbTC6X5gE+AKbquH9I0zQ3w0jQtP6AB++zQRmFiVqvi429g4kLFsTPGumZ1jDtaGnubd8z82LFjTJo0ieXLl6OUomjRogQFBfGf//yHIkWKOLp5Ig/L6Zl6X6AREKJpWgjwPjAHiAESgYE53L8wKaUUX++GoHmKXw4b62pVNOqBdmpi3tsTL1y4QEREBO+88w5JSUm4ubkxfPhwJk6cSJkyZe6+AyHuIkehruv6Moyhl1utzMl+hbntOaQIilZ8u8dYfrSMUaRiQDtwdTVnmCckJDB37lwiIyO5dMkYX+rXrx9Tp06lUqVKDm6dMBN585F4YP6OU0xcqPjkW2O5uLtRPm7kM1CogDnDPCUlhaVLlxIaGkpcXBwAbdu2JTIyknr16jm4dcKMJNRFrjt7URH+oSI6rR5ogfzw8jMQ3N9CSQ9zhrlSivXr1xMcHMwff/wBQP369YmKiqJNmzYObp0wMwl1kWuuJijeWAUzP1ZcvW7UA32+A0x53sJj5cwZ5gDbt28nKCiI7du3A1C5cmWmTZtGr169cHFxcXDrhNlJqAu7S05RLPwCpixR/JNWD7RjY+MiqHdl84b5gQMHGD9+PJ9//jkApUuXZtKkSQwdOpT8+fM7uHXCWUioC7tRSvFpDIyfr/jLGD6mUS1j9sQWvuYN87i4OEJDQ1m8eDFWq5XChQvz2muvMWbMGDw8PO6+AyHsSEJd2EXMXsXY9xW7DxrL1R8z6oF2b2He2xPj4+OJiopizpw5JCYm4urqyvDhw5k0aRLly5d3dPOEk5JQFzmy72/FuGjFlz8ay+VLwuTnLQzqaN56oImJibz33ntMmzaNf/81xpe6d+9OREQE1atXd3DrhLOTUBfZcvyMYtIHimVfGfVAixaGsX0tjO4FRQqZM8xTU1NZsWIFISEhnDhxAoAWLVoQFRVFo0aNHNw6IQwS6uK+XLikmL5c8fZaSEoGt3wwvAtMHGihTHFzhrlSis2bNzNu3Dj27TNmvvDx8SEyMpKnnnrKtMNLIm+SUBf3JCFRMfdTiPxIcSmtHuizbWDqYAuVHzFvqP30008EBQURExMDwOOPP87UqVPp168frq6ZTkIqhENJqIs7SklRLN0MoYsVcWn1QAM0446WetXNG+aHDx9m/PjxfPrppwCUKFGCCRMm8NJLL1GwYEEHt06IrEmoi0wppVj/g1EP9I/jxrp61YwwD2hg3jA/c+YMYWFhzJ8/n9TUVAoWLMioUaMYN24cJUqUcHTzhLgrCXVxmx2/KcZGK7b/ZixXqmDcnti7tXnrgV65coVZs2Yxe/Zsrl27houLCy+88AKTJ0/m0UcfdXTzhLhnEurC5o9jivELFJ9tM5ZLF4OQgRaGdYH8buYM86SkJObPn09YWBjnzhnjS507dyYiIoLatWs7uHVC3D8JdUHcOcXkxYpFm8BqhcIF4bXeMKaPBY8i5gxzq9XKqlWrmDBhAkeOHAGgSZMmREVF0axZMwe3Tojsk1B3YvFXFFEfKeashsQkox7o8K4QMsBChdLmDHOAb7/9lqCgIPbsMSZ0r1mzJhEREXTt2lVuTxR5noS6E0q8oXjvM5i2TPHvZWNd9xZGPdDqj5k31H755ReCgoL46quvAKhQoQJhYWEEBgaSL5/8KghzkJ9kJ5KaqljxNYR8oDjxj7Guha9xR0ujWuYN86NHjxISEsKKFSsA8PDwYNy4cbzyyisULlzYwa0Twr4k1J2AUorNP8K4eYp9fxvrvCtB5DALHZ4074Rb58+fJzw8nPfee4/k5GTy58/PiBEjmDBhAqVLl3Z084TIFRLqJrf7D+P2xJi9xvJjZY16oM+1NW890GvXrjFnzhyioqK4cuUKFouF/v37M3XqVCpWrOjo5gmRqyTUTepwrGLCQsXqLcZyiaIwvr9RD7SgieuBLlq0iMmTJ3P69GkA2rdvz/Tp0/H19XVs44R4QCTUTeaffxVhSxTzN0BKKhTMD6/0gKB+FkoUNWeYK6X47LPPCA4O5tChQwD4+fkxY8YMWrdu7eDWCfFgSaibxJUExexPFLNWwrXr4OICgzrAlEEWHi1rzjAH2LZtG2PHjmXXrl0AVKlShYiICHr06CH1QIVTklDP45KSFfPXQ9hSxbl4Y13npsbtibUrmTfM9+/fT3BwMF988QUAZcuWZdKkSbz44otSD1Q4NQn1PMpqNcbLJyxU/J1WD7RxbZgx3EKzOuYN89jYWEJDQ1m6dClWq5UiRYrw+uuv8+qrr1K0aFFHN08Ih8tRqGuaVgz4GqgFPKnr+n5N03oCo4HrwEBd10/mvJkio2/3KIKiFXuM4WNqPg7Th1ro0sy8tyfGx8fz1ltvMXfuXG7cuEG+fPkYPnw4ISEhlCtXztHNE+KhkdMz9QSgIzATQNO0fMCrQAugARACDM3hMUSaX/9SvDKnBN/vUwBUKJVWD7QD5DNxPdB33nmH8PBwLl26BECvXr2YNm0aVatWdXDrhHj4WJRSOd6JpmlLgFlAKvC6ruuD0tbv1HW9cSaPHwIMARg5cqRfQEBAto6bnJyMm5tbdpudZ8Sec2XmKnfWbS+EUhaKFrIyovNVBj91jUIFHN263JGamsqaNWuYNWsWp06dAqBp06aMHz+eunXrOrh1D4az/Hzfyhn7nZ0+e3p6ZnomZ+8x9RLA5QzLmdb70nV9PjA/bTHbf1Xi4uLw9PTM7uYPvfPximnLjHlakpIhvxsMaHOV6cOLUrp4caC4YxuYC5RSbNq0iXHjxrF//34A6taty5gxY+jXr59ph5cyY/af76w4Y7/t2Wd7h3o84JFhOdXO+3cK164r3voUoj5SXL4GFgv0bwtTX7DgZr1C6eIed99JHrRr1y6CgoLYunUrABUrViQ8PJy+ffty+vRppwp0IbLL3qF+GPDSNC0/oAH77Lx/U0tJUSz+EkIXKU5fMNa1bwSRQy3UrWoEWlycAxuYSw4dOsSECRNYs2YNAKVKlWLixIkMHz6cAgVMOr4kRC7JcahrmrYJ8AVqAPOAOUAMkAgMzOn+nYFSRrWh4PmKQyeMdVpNiBpqobWfec9OT58+zZQpU1i4cCGpqakUKlSI0aNHM3bsWIoVK+bo5gmRJ+U41HVd75DJ6pU53a+z+GGfYuz7ip2/G8tVPCHiRQs9Wpq3Hujly5eZOXMmb7zxBgkJCbi6ujJkyBBCQ0N55JFHHN08IfI0efORg/x+VBE8T7Fhh7FcpjhMGmhhSGfz1gO9ceMG8+bNY+rUqZw/fx6Arl27EhERgZeXl4NbJ4Q5SKg/YCfPKkIXKZZsNuqBFikEY3rDa30sFC1szjC3Wq188sknTJw4kaNHjwLG7YkzZsygSZMmDm6dEOYiof6AXLyiiFph3NWSmAT5XGF4NwgZaKFcSXOGOcDXX39NUFAQe/caE7rXqlWLyMhIOnXqJHezCJELJNRzWeINxTtrIWK54uIVY12vVhA+2EI1E9cD/fnnnwkKCuKbb74BwNPTk7CwMAYMGCD1QIXIRfLblUtSUxXLvoJJHyhizxrrWtUz6oE28DJvmB85coSJEyfy8ccfA1C8eHGCg4N5+eWXKVSokINbJ4T5SajbmVKKTbtgXLRivzF8TN2qxr3m7Rqad8Ktc+fOMXXqVKKjo0lOTqZAgQKMHDmS8ePHU7JkSUc3TwinIaFuRz8eMGZP/P4XY/nxcsYwS78A896eeO3aNd544w1mzpxpqwc6cOBAwsLCePzxxx3dPCGcjoS6HfwZqxg/X7Hme2O5pAdMHGBheBfz1gNNTk7mgw8+YMqUKZw5cwaADh06EBkZiY+Pj4NbJ4TzklDPgTMXFFOWKBZ8AampUKgA/KcnjO1robiJ64GuXbuW8ePH8+effwLQsGFDoqKiaNmypWMbJ4SQUM+Oy9cUsz5RzF4JCYlGPdAXn4bQQAueZcwZ5gDff/89Y8eO5aeffgKgWrVqTJ8+nWeeeca01wqEyGsk1O9DUrIi+nOYulRx3qjXQFd/4239XhXNG2pXrlyhb9++bNy4EYBy5coRGhrK4MGDnW7eayEedhLq98BqVaz8DiYsUBw9baxr6gMzhllo4mPeME/n7u5OfHw87u7ujB07ltGjR+Pu7u7oZgkhMiGhfhdf7zbuaNl72Fj2esK4PfHppua9PfFWFouFRYsWUbx4ccqWLevo5ggh7kBCPQs/H1KMm6f4WjeWHykNUwZZCGxv3nqgd1K9enVHN0EIcQ8k1G9x5JRi4kLFx8a72ynmDuOetTCqBxQu6HxhLoTIWyTU05yLV0z70KgHmpxi1AN9+RkI7m+hVDEJcyFE3uD0oX7tuuLNVTDjY8WVBKMe6IB2EPaChSfKS5gLIfIWpw315BTFBxthymLFmX+NdR2ehOlDLdSpImEuhMibnC7UlVKs/R7GL1D8GWusa1ATZgy30LKehLkQIm9zqlDf+otibLTixwPGcrVHIWKIhe4tnOf2RCGEuTlFqP/2tyJ4vmLjTmO5XEnjLf2DO4GbE96eKIQwL1OH+ol/jHqgSzeDUuBeCF7va+HVXuBu0nqgQgjnZspQ//eyYvpyxdtr4UYSuOWDYV2M6XDLlpAwF0KYl6lC/foNxdtrYPpyRfxVY12f/zMKVVTxlDAXQpifKUI9NdUYYpm0SBF3zlj3f35GPVC/GhLmQgjnkSuhrmlaFNAEOAYM0nU9OTeOoxRs2G5cBP09rR6obzWIGmqhbUMJcyGE83Gx9w41TasLeOq67g8cBHrY+xgAO/creoSVpHOwEegVy8OKEAt7FkigCyGcV26cqTcBvkr7ejPwPPCxPQ+w/TdFs5cUUIBSxSBkgIVhXaBAfglzIYRzy41QLwGklZLgElDy1gdomjYEGAIwcuRIAgIC7usAT5SAJrVKUq9qIi91uY5HYcX5czlsdR6RnJxMXFyco5vxwDljv52xz+Cc/c5Onz09PTNdnxuhHg94pH1dDPj31gfouj4fmJ+2qLJzkB/eV5w69W+WHTOruLg4p+szOGe/nbHP4Jz9tmef7T6mDuwA2qR93Q7YngvHkLf1CyFEJuwe6rqu/wL8o2naNqA2sMbexxBCCJG5XLmlUdf113Njv0IIIe4sN4ZfhBBCOIiEuhBCmIiEuhBCmIiEuhBCmIiEuhBCmIiEuhBCmIiEuhBCmIiEuhBCmIiEuhBCmIiEuhBCmIiEuhBCmIiE+j06fPgwCQkJjm6GEELckYT6XZw5c4YRI0bg5eXF3LlzHd0cIYS4o1yZpdEMLl++zKxZs5g9ezYJCQm4uLhw7pyTlFcSQuRZEuq3SEpKYt68eUydOtUW4p07d2b69OnUqlXLwa0TQog7k1BPY7VaWb16NePHj+fIkSMANGnShKioKJo1a+bg1gkhxL2RUAe+/fZbgoKC2LNnDwA1a9YkMjKSzp07S9k8IUSe4tQXSvfu3Uu7du1o06YNe/bs4ZFHHmH+/Pn89ttvdOnSRQJdCJHnOOWZ+tGjR5k4cSIfffQRAB4eHgQHBzNq1CgKFy7s4NYJIUT2OVWonzt3jmnTpvHee++RnJxM/vz5GTlyJOPHj6dUqVKObp4QQuSYU4T6tWvXmDNnDlFRUVy5cgWLxcJzzz1HWFgYFStWdHTzhBDCbkwd6ikpKXzwwQdMnjyZM2fOANC+fXsiIyOpW7eug1snhBD2Z8pQV0qxbt06xo8fz6FDhwBo0KABUVFRtGrVysGtE0KI3GO6UN+6dStjx47lxx9/BKBq1apERETQo0cPuZtFCGF6prmlcf/+/Tz99NO0aNGCH3/8kbJly/Luu+9y4MABevbsKYEuhHAK2T5T1zStGPA1UAt4Utf1/WnrewKjgevAQF3XT9qjoVmJjY0lNDSUpUuXYrVacXd3Z8yYMbz22mu4u7vn5qGFEOKhk5PhlwSgIzAzfYWmafmAV4EWQAMgBBiakwZm5eLFi0ybNo3FixeTmJhIvnz5GDFiBBMnTqRcuXK5cUghhHjoZTvUdV1PBs5pmpZxdTXgD13Xk4DtmqbNymH7sjo2AQEBxMfHA9C7d2/Cw8OpWrVqbhxOCCHyDHtfKC0BXM6w7JrZgzRNGwIMARg5ciQBAQH3d5ASJShSpAheXl5MmDABX19fAOLi4rLT5jwlOTnZKfp5K2fstzP2GZyz39nps6enZ6br7xrqmqaVBz7J5Ft9dF0/c8u6eMAjw3JqZvvUdX0+MD9tUd2tDZnZs2cPycnJPProo9nZPM+Ki4vL8sU0M2fstzP2GZyz3/bs811DPS24W97j/g4DXpqm5Qc0YF/2m3Zn5cqVc7q/5kIIcTc5uqVR07RNQFtggaZpgWnj7HOAGCA87UMIIcQDkqMxdV3XO2SybiWwMif7FUIIkT2mefOREEIICXUhhDAVCXUhhDARCXUhhDARCXUhhDARi1LZeu+PEEKIh5CcqQshhIlIqAshhIlIqAshhIlIqAshhIlIqAshhIlIqAshhIlIqAshhInYu/LRA6NpWhTQBDgGDEqb9td0NE1rCLwFJANxwACgKw+wuLejaJrWF5ir63qZB13Q3FE0TWuJUdvXBZgLnANmAFZguK7rvzmudfanaZoLsAioAliAwUBpTNhnTdOKAV8DtYAndV3fn9nPtaZpNTGKCOUDQnRd//Z+jpMnz9Q1TasLeOq67g8cBHo4uEm5KRZoret6c4w/YF0winu3BCZhBIDpaJrmCvQEYjMUNG+JuftcCHgNeErX9Va6rq8DpmEUeH8WiHJk+3KJL1Ag7Xc5GON1NmufEzD69SnAHX6uI4AXgPZA2P0eJE+GOsYZ+ldpX28GmjqwLblK1/XTuq5fT1tMAmqQVtxb1/XtQB3HtS5X9QVWY5yt2Qqam7zPjTHO2DZomrZO07QKQKqu6xd1XT8BlHRs83LFScCiaZoFo8bxNUzaZ13Xk3VdP5dhVVY/14/oun5Y1/XLwL+appW+n+Pk1VDPWOD6EiZ64bOiadoTGFWmfuAeinvnZWln6b34X7GVeypobgLlgKrA08ACYAo39zslrVSkmZzHGFo8CLwNvIn5+5wuq5/rjLl83/mWV0M9nv8VuC4G/Ou4puQ+TdM8gGVAIMYY612Le+dx/YFVuq5b05bjMX+fwejndl3Xk4BvgXrc3O98ad8zk7ZAiq7rNYDuwGzM3+d08WT+c23NsO6+8y2vXijdgTEW9SHQDtju2ObknrRxt0+AKbquH9I0zY0HVNzbgWoB9TRN64/xL+rLmL/PALuB19KGInyBA0AlTdOKA0Ux58mLBbiQ9vV5jH7mM3mf0x0m85/r05qmVQHOAiV1XT9/PzvNk6Gu6/ovmqb9o2naNuAEMMvRbcpFfYFGQIimaSHA+/yvuHciMNBhLcsluq4HpX+taZqu6/pwTdN6Y+I+A+i6fl7TtHXA94ACBgGewKa05REObF5u+RoI1DTte6AAxslaPkzaZ03TNmH8wa4BzCPz3+UJwBKM4ZjQ+z2GTL0rhBAmklfH1IUQQmRCQl0IIUxEQl0IIUxEQl0IIUxEQl0IIUwkT97SKMT90jStMDAWOKbr+hJN0wKBxcDruq6b+ZZY4WTkTF04i8IY9/wGpi1/j/EegA2OapAQuUHO1IWz0NM+t9A0TQHHgSeA14FDmqYdw5jydSnGNAU/AO/wvylQn9d1fXPau/8iMP4gFMF488yIWyZqEsJh5ExdOIvxaZ//wAjkzIZciqR93gl0wHj37kygLBCZ9r1gjOlxN2C8G/ApIDpXWixENkioC2eRPlXzWV3XPwGuZvIYK0bBgjVpy8t0XZ8LnAIqpa3rlPZ5KMZwThEgIFdaLEQ2yPCLcBb3Mh/GdV3XkzRNS6+idSntcyo3T/ebghHu6bPqycmReGjID6NwFpcxzsSraprWD2M8PTu+wDgZGgg8jlGdZqhdWiiEHUioC6eQVsN2JlAcWE7252SfnrYff4wLqU9h3EkjxENBZmkUQggTkTN1IYQwEQl1IYQwEQl1IYQwEQl1IYQwEQl1IYQwEQl1IYQwEQl1IYQwkf8H9tZ7h5scToQAAAAASUVORK5CYII=", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGvCAYAAABvmR7LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkiUlEQVR4nO3dd1gUV9sG8HsWpKNgbyhgiTXWmBgVrFGxYDeKDRsqCIrEFnvviopC1EASUeOrxhJrLFii0dh7sCCiYsdCL3u+P/Zj1o2oRLcB9++6ckWe3Z09+7CwNzNn5khCCAEiIiIiI6Aw9ACIiIiIMjGYEBERkdFgMCEiIiKjwWBCRERERoPBhIiIiIwGgwkREREZDQYTIiIiMhoMJkRERGQ0GEz+n1KpRFRUFJRKpaGHkuux1/rDXusPe60/7LX+GKLXDCZERERkNBhMiIiIyGgwmBAREZHRYDAhIiIio8FgQkREREaDwYSIiIiMBoMJERERGQ0GEyIiIjIaDCZERERkNBhMiIiIyGiY6mrDgwcPxuXLl2FiYgIAqFWrFpYuXQoACAsLw9q1a6FUKuHu7g5fX19IkqSroRAREVEOobNgAgCTJ09Gy5YtNWrHjh3Dpk2bEBYWBgsLCwwdOhSOjo5wd3fX5VCIiIgoB9BpMMnKrl270KVLF5QuXRoA0KtXL+zevTvLYJKamorU1FSNmqmpKczMzLQ+rswFirgolO6x1/rDXusPe60/7LX+aLPXCkX2Zo9IQgjxyc+WhcGDB+P27dsAgIoVK2LkyJGoUKECevToAW9vbzRs2BAAcO3aNfj5+WHfvn1vbSMkJASrVq3SqHXt2hXdunXTxZBzhE2bNmH69Om4cOHCe+/n7OyM4OBgfPPNN0Yxng/566+/0LNnT5w/fx758+fX0uh0Y8mSJfjjjz+wc+dOg47j9u3b+Pbbb3Hw4EHY2Ni8977Z6W9Wr2vJkiUIDw/Hs2fPtP5+atSoETw9PdG/f/8sb//uu+/w6tUrhISEfPRz6Pp99fPPP+Po0aNv/Z4iorc5OTll634622Pi6+sLZ2dnKBQK/Prrr/Dz88OmTZuQmJio8UvU2toaiYmJWW7D09MTHh4emgPW4R6TmJgYODg4ZDvVGcKwYcPQu3dvFC1aFAAwdepUbNu2DWfPnn3rvkWKFEHZsmX1Op7syKrXJUqUwP3791GsWDGjn29kZ2cHMzMznff2QwICAjB8+HBUrVr1nffJ7HXm98fBwQF2dnZZ3nf69OmYMGECChUqBED1R8PSpUuxefNmfPXVV7C3t0flypXh5+cHPz+/Tx6/qakpChYs+M4+WltbIy0t7ZP6HBUVBeD9r/tTjB49GsHBwYiJicHXX3+dI36H5AY55fd1TvP8FTA2BPi8HODTSVUzRK91FkyqVasm/7tv377Yvn07rly5AisrK8THx8u3JSQkwMrKKsttmJmZ6SSEvI9CoTDqN7q1tTWsra3lrzM/xLMasz5ey7/H81+8OT4LCwuULFlSm0PTmff1XF/u3buHHTt2IDAwMFvjeHPM77r/v/coZH6od+zYUSMsSpKktdf+vm1JkvTJz5X5WF39LFhaWqJnz54ICgqS9wIb+++Q3IS91g4hBH7ZC4wKEnj6ErC1Ajq7SihVRP1zr89e6+07mvmCnJyccPPmTbkeGRkJZ2dnfQ3D6OzYsQN2dnby8bvz589DkiR899138n28vLzQo0cPAKozmjL/8gsLC8PUqVNx4cIF+Zd4WFiY/LinT5+iY8eOsLKyQoUKFbB9+/b3jsXR0REzZsxAnz59YGNjg7Jly2Lbtm148uQJ3N3dYWNjg+rVq+P06dPyY94cDwBcuHABTZo0ga2tLfLnz486derI94+Ojka7du1QqFAhVK1aFdWrV8euXbsAABEREZAkCS9evNDY7t69e1G5cmXY2NigVatWiI2NlZ8rPT0dvr6+sLOzQ6FChTBmzBj07dsXHTp0yPL1vXz5EpaWltizZ49GfcuWLbC2tpYD85gxY1CxYkVYWVnB2dkZEydORFpa2jv71rhxY4wYMUKj1qFDB/Tr10/+OjU1FaNHj0apUqVgbW2NL7/8EhEREfLtmb2xt7eHtbU1qlatKvcmKxs3bkSNGjXkuVrZ3caZM2dQt25dWFlZ4euvv8Y///wj3zZlyhTUrFlT/ne7du0AqH52JUlC48aNER0djZEjR8rvt0zHjx+Hi4sLLC0t4eDgAF9fXyQkJMi3P378GO3atYOlpSWcnJwQHh7+ztf2b1OnTkXRokWRP39+eHl5acw7E0Jg3rx5cHZ2hqWlJWrUqIFNmza9d3ubN29G1apVYW5uDkdHRyxcuFC+bdmyZahevbr89datWyFJEoKCguRay5YtMW7cOPnr9u3bY+vWrUhKSsr2ayIyFv/cFWg2QqDvLFUoyXTxluHGpJM9Jq9fv8aVK1dQu3ZtSJKEjRs34tWrV6hcuTJSUlIwd+5ctGjRAubm5ggPD3/rcI021a1bFw8fPszWfTMyMuTTmz9V8eLFNT7A38XFxQWvX7/GuXPnUKdOHRw+fBiFCxfG4cOH5ftERERg5MiRbz22e/fuuHz5Mvbs2YP9+/cDAAoUKCDfPnXqVMybNw/z58/HsmXL4OHhgejoaBQsWPCd41m8eDFmzZqFiRMnYvHixejduzcaNGiA/v37Y/78+RgzZgz69OmDK1euZHnIxcPDA7Vq1cLKlSthYmKC8+fPI1++fAAAb29vpKamIiIiAi9evMDLly/fOzciMTERCxYswC+//AKFQoFevXohICBA/lCbO3cuwsPDERoaisqVKyMwMBBbt25FkyZNstxegQIF0KZNG4SHh6NVq1Zyfd26dXLwAgBbW1uEhYWhZMmSuHTpEgYNGgRbW1uMHj36nWP9EE9PT9y5cwcbNmxAyZIl8dtvv6FVq1a4dOkSKlSoIPfmyJEjsLa2xtWrV9/bmyNHjqBu3boatexs4/vvv8fChQtRpEgRDBkyBP3798eff/751vYDAgLg6OgIT09POQyamZmhRo0aGDx4MAYNGiTf99KlS2jZsiWmT5+ONWvW4MmTJ/Dx8YGPjw9CQ0MBAP369UNMTAwOHjwIMzMz+Pr64vHjxx/s24EDB2BhYYFDhw7hzp078PT0ROHChTFz5kwAwIQJE7BlyxasXLkSFSpUwJEjR9CrVy8UKVIErq6ub23vzJkz6NatG6ZMmYLu3bvj+PHjGDZsGAoVKoR+/fqhcePG8PPzw9OnT+Wfw8z/e3t7Iz09HcePH9f4eaxbty7S0tJw6tQpODo6fvA1ERmD5BSB2eECc8KB1Df+7uraBFjso7m3RO+EDjx//lz06tVLNGzYUDRp0kR4eXmJa9euybf/+OOPomnTpqJx48ZiyZIlQqlU6mIYQgghSpUqJQDo/b9SpUple4y1a9cWCxYsEEII0aFDBzFz5kxhZmYmXr16JWJjYwUAuX+hoaGiQIEC8mMnT54satSo8dY2AYgJEybIX8fHxwtJksTu3bvfOY6yZcuKXr16yV9nPvfEiRPl2okTJwQAERsbm+V4bG1tRVhYWJbbr169upgyZYrIyMgQt2/fFhkZGfJthw4dEgBEXFycvF0A4ubNm/J9goKCRLFixeSvixUrJubPny9/nZ6eLsqUKSPc3d3f+Rq3bNkibGxsREJCghBCiJcvXwoLCwuxc+fOdz5m3rx5ok6dOvLX/+65q6ur8PPz03iMu7u76Nu3rxBCiJs3bwpJksT9+/c17tOsWTMxbtw4jd5kV40aNcS0adM0alltI7PXBw4cEADE/v375dt27twpAIikpKQsX9dvv/0m/v0romzZsmLx4sUatd69e4vBgwdr1I4ePSoUCoVISkoS//zzjwAg/vrrL/n2a9euCQBvbetNffv2FQULFpS/V0IIsXLlSmFjYyMyMjJEfHy8sLCwEMePH9d43IABA0SPHj2EEG+/r3r27ClatGihcf/vvvtOVKlSRQghhFKpFIULFxabNm0SQghRs2ZNMXv2bFG0aFEhhBDHjx8Xpqam4vXr1xrbsLe3Fz/++ONb72vSjax+h1D27TulFOW/zRBopP7PsWuG2Hn87c9iQ/RaJ3tM7O3t8csvv7zzdk9PT3h6euriqd9SvHjxbN9X23tMsqtx48aIiIiAv78/jh49ihkzZmDz5s04duwYXrx4gWLFiqFSpUr/eQyff/65/G9ra2vY2tp+8K/UNx9TrFgxANDYtZ1Ze/z4cZav0d/fHwMHDsQvv/yC5s2bo2vXrihXrhwA1YTooUOHYt++fahTpw769+8vHzrIipWVlfxYQDVBNnP8L1++xKNHj1CvXj35dhMTE9SpU+e9p7W1adMGpqam2L59O7799lts3rwZtra2GmebbNq0CUuWLMHNmzcRHx+P9PT0Tzqj4+zZsxBCoGLFihr1lJQUeaLpm71p3rw5OnfurPG9+LekpCRYWFho1LLaxptzvQDN72+JEiUAqL6XZcqU+ejXd+bMGdy8eVPj8IwQAkqlElFRUYiMjISpqanGHp5KlSplazJqjRo1NOag1a9fH/Hx8YiJicHjx4+RnJyMFi1aaDwmNTUVtWrVynJ7165de+vSBA0aNMCSJUvkn38XFxdERESgWbNmuHLlCoYMGYIFCxbg2rVriIiIQO3atd/aE2VpafnOSfxExuLhMwH/IIH1+9U1UxPgux7AhD4SrCyM48QDvV/HRN+yczgFUM08jo6ORtmyZfU+mapx48ZYs2YNLly4AIVCgSpVqsDV1RWHDx9GXFxclruksyPzEEomSZI+eC76m4/JPFSTVe1d25kyZQp69uyJnTt3Yvfu3Zg8eTI2bNiAjh07YuDAgWjZsiV27NiBbdu2oV69eli4cCGGDx+e7fGLf53d/u/DSf++/d/MzMzQpUsXrFu3Dt9++y3WrVuH7t27w9RU9aPw119/4dtvv8XUqVPRsmVLFChQABs2bNCYh/BvCoXired9c06KUqmEiYkJzpw581bwzfyAy+zNzp07sW/fPsyePfu9vSlcuDDi4uI0alltY8GCBfJcEeC/fS+zS6lUwsvLC76+vm/dVqZMGXkeizbPtnrzvbxz506UKlVK43Zzc/MsHyeE+OB7pnHjxvjhhx9w9OhR1KhRA3Z2dnBxccHhw4cRERGBxo0bv7Xd58+fo0iRIp/wioh0R6kU+GEHMDZE4KX63BM0/BwIHiWhqpNxBJJMnM5sBDLnmSxZsgSurq6QJAmurq6IiIhARETEe4OJmZkZMjIy9DjaD8u8bs2+ffvQqVMneZ4BoDptc8iQIQgODoa/v/9HX/+hQIECKFasGE6dOiXXMjIycO7cuQ8+1sPDA3v27MGVK1dw6NAhjTlOf/75J8qWLYvvv/8edevWRYUKFRAdHf3e7RUpUkRjUm5GRgYuX74sf12rVi1kZGTg8ePHKF++vMZ/b+51yuzNli1bMGrUqPf2platWrh69epb9X9vY/Xq1R/sx3+R1futdu3auHLlyluvrXz58jAzM0PlypWRnp6u8UfCP//8I090fp8LFy5oTCr966+/YGNjg9KlS6NKlSowNzfH3bt333peBweHLLdXpUoVHDt2TKN2/PhxVKxYUQ6NjRs3xpUrV7Bp0yY5hLi6umL//v04fvz4Wz+Pt27dQnJy8jv30hAZ0oWbAl8PExi6UB1KCuYH1oyRcHip8YUSgMHEKBQoUAA1a9bE2rVr5V+ELi4uOHv2LCIjI7P8Cy2To6MjoqKicP78eTx9+hQpKSn6GXQWkpKS4OPjg4iICERHR+PPP//E33//jcqVKwMARowYgb179yIqKgqXL1/GoUOH5Ns+xvDhwzF79mxs27YN//zzD/z8/BAXF/fBv8xdXV1RrFgxeHh4wNHREV999ZV8W/ny5XH37l1s2LABt27dwtKlS/Hbb7+9d3tNmzbFzp07sXPnTly/fh3Dhg3T+NCtWLEiPDw80KdPH2zZsgVRUVH4+++/MXfuXPmsmTd7c/bsWRw8ePC9vWnZsiVOnDihERKy2sbHHAJ8H0dHRxw5cgT379/H06dPAajOYjpx4gS8vb1x/vx53LhxA9u3b5f39nz22Wdo1aoVBg0ahJMnT+LMmTMYOHAgLC0tP/h8qampGDBgAK5evSrvgfPx8YFCoYCtrS0CAgIwcuRI/PTTT7h16xbOnTuHoKAg/PTTT1lub9SoUThw4ACmT5+OyMhI/PTTT1i+fDkCAgLk+1SrVg2FChVCeHi4/LPXuHFj+cybzNOCMx09ehTOzs4ahx2JDC0+USAgSIk6gwROvvE3TN9WwPW1Evq3kaBQGF8oARhMjEaTJk2QkZEh/yK0t7dHlSpVUKRIkfd+QHXu3BmtWrVCkyZNUKRIEaxfv15PI36biYkJnj17hj59+qBixYro1q0bWrdujalTpwJQ7Unw9vZG1apV4enpiYoVK2LFihUf/XxjxoxBjx490KdPH9SvXx82NjZo2bLlW3Mv/k2SJPTo0QMXLlx464wwd3d3jBw5Ej4+PqhZsyaOHz+OiRMnvnd7/fv3R9++fdGnTx+4urrCycnprTODQkND0adPH4waNQqfffYZ2rdvj5MnT8p/2Wf2pnLlymjVqhU+++yz9/bGzc0N+fLlk8/Getc23jzNVRumTZuGO3fuoFy5cvKhi88//xyHDx/GjRs30KhRI9SqVQsTJ06U57Bkvn4HBwe4urqiU6dOGDx4cLYuytesWTNUqFABLi4u6NatG9q1a4cpU6bIt0+fPh2TJk3C7NmzUblyZflQ4buuMFm7dm1s3LgRGzZsQLVq1TBp0iRMmzZN49TuzD2WgOrqtJmvsUCBAqhVq9Zb843Wr1+vcZYSkaFtOypQpY/Awl+BzL9dPisDHAqUEDZegSJ2xhlIMunskvQ5jSHnmOQ1uuq1UqlE5cqV0a1bN0yfPl1r2zVWK1aswLZt27B379533ofva926fPkymjVrhsjISNja2rLXesL3ddZiHgkMDxTY9sbRSgsz1cTWgG8Bc7P/HkgM0etcP/mVcq/o6Gjs27cPrq6uSElJwfLlyxEVFYWePXsaemh6MXjwYMTFxeH169ewtbU19HDypAcPHuDnn39GgQIFuKAcGUx6usDSzcCkHwUS3rjO3zdfACv8JZQrZdx7SP6NwYRyLIVCgbCwMAQEBEAIgWrVqmH//v2fNG8lJzE1NcX3339v6GHkabpeJJPoQ05eFfBaIHBBfUF1FC8ILBkuoVtT7Z4Npy8MJpRjOTg4ZHnVUiKi3O7Fa4HxqwSCtwGZEzIkCRjqDswcJMHONucFkkwMJkRERDmEEAIbDgAjlws8eq6u1ygPhARI+LJKzg0kmRhMiIiIcoCb9wSGLRL4443rhlpbAtMHSBjeCTA1zfmhBGAwISIiMmopqQLz1gMzfxFIUS+ujQ6NgKW+EhyK5Y5AkonBhIiIyEhFnBMYslDgn7vqWpliwDI/Ce0b5q5AkonBhIiIyMg8eSEQECTw8xuXKTIxAUZ2BSb3k2BjlTtDCcArv+Y4YWFh2VqVVZIkbN26Vefj0aV+/fqhQ4cOn7ydKVOmvHcVY2PSuHFjjBgxwtDDICIDUSoF1vwuUKmXZij5qipwdrWE+cMUuTqUAAwmOU737t0RGRkpf23oD11dBqDAwECEhYV98nYCAgJw4MCBTx8QEZEOXYkScPUVGDhP4PkrVc3ORrUC8J9BEj4vl7sDSSYeyslhLC0ts7X4WW5QoEABrWzHxsYGNjY2WtkWEZG2JSYLTP9JYMEGIP2Nxbs9WgALvSUUK5g3Akkm7jExsB07dsDOzk6+nPX58+chSRK+++47+T5eXl7o0aMHAM1DOWFhYZg6dSouXLgASZIgSZLGHoanT5+iY8eOsLKyQoUKFbB9+3aN5z58+DDq1asHc3NzlChRAmPHjkV6erp8u6OjI5YsWaLxmJo1a8qLqDk6OgIAOnbsCEmS5K//7c6dO5AkCRs3bkSjRo1gbW0Nd3d3REZG4u+//0bdunVhY2ODVq1a4cmTJ/Lj/n0oZ9OmTahevTosLS1RqFAhNG/eHAkJCQCAiIgI1KtXD9bW1rCzs0ODBg0QHR0N4O29SpnbXbBgAUqUKIFChQrB29sbaWlp8n1iY2PRpk0bWFpawsnJCevWrcuyH5n27t0LCwsLjVWFAcDX11deEO7Zs2fo0aMHSpcuDSsrK1SvXv2Diy5mtUfKzs5O4/t8//59dO/eHfb29ihUqBDc3d1x584d+fa//voLX331VZa9ISLD2nVCoGofgTnh6lBSoTTwxyIJaycq8lwoARhMDM7FxQWvX7/GuXPnAKjCQuHChXH48GH5PhEREfKH25u6d++OUaNGoWrVqoiNjUVsbCy6d+8u3z516lR069YNFy9ehJubGzw8PPD8ueqKPPfv34ebmxu++OILXLhwAStXrsSaNWswY8aMbI/977//BqBaOTY2Nlb++l0mT56MCRMm4PTp0zA1NYWHhwdGjx6NwMBAHD16FLdu3cKkSZOyfGxsbCx69OiB/v3749q1a4iIiECnTp0ghEB6ejo6dOgAV1dXXLx4ESdOnMDgwYPfeynmQ4cO4datWzh06BB++uknhIWFaXzY9+nTBw8ePEBERAQ2b96MH374AY8fP37n9po3bw47Ozts3rxZrmVkZGDjxo3yCsbJycmoU6cOfv/9d1y+fBmDBw9G7969cfLkyff27X0SExPRpEkT2NjY4MiRIzh27Jgc8lJTU5Geng4vLy+4uLhkuzdEpHv3nwh0mahEmzECdx6qamb5gEn9gIuhEprXzbs/o7n+UE7dQUo8fP7h+0EAGRmlYGICQPr0xbiKFwROr/pw7itQoABq1qyJiIgI1KlTBxERERg5ciSmTp2K169fIyEhAZGRkWjcuPFbj7W0tISNjQ1MTU1RvHjxt27v16+fvKdl1qxZWLZsGU6dOoVWrVphxYoVcHBwwPLlyyFJEipVqoQHDx5gzJgxmDRpUrZWkcxc9t7Ozi7L5/+3gIAAtGzZEkqlEv369YOfnx8OHDiABg0aAAAGDBjwzjklsbGxSE9PR6dOnVC2bFkAQPXq1QEAz58/x8uXL9G2bVuUK1cOAD64Xo69vT2WL18OExMTVKpUCW3atMGBAwcwaNAgXL9+Hfv375f35gDA6tWrUaFChXduz8TEBN27d8e6deswYMAAAMCBAwcQFxeHrl27AgBKlSqFgIAA+THDhw/Hnj178L///Q9ffvnlh9qXpQ0bNkChUGD16tVy2AgNDYWdnR0iIiJQu3ZtvH79Gm3atMl2b4hIdzIyBJZvASasFoh/Y8G9JrWAlaMkfFYm7waSTLk+mDx8Dtx/8uH7qRimHY0bN0ZERAT8/f1x9OhRzJgxA5s3b8axY8fw4sULFCtWDJUqVfrP2/3888/lf1tbW8PW1lb+q//atWuoX7++xl/ODRo0QHx8PO7du4cyZcp8+gt7z3gKFy4MQB0uAKBYsWLv3CtRo0YNNGvWDNWrV0fLli3xzTffoEuXLrC3t0fBggXRr18/tGzZEi1atEDz5s3RrVs3lChR4p1jqVq1KkxMTOSvS5QogUuXLgEA/vnnH5iamqJ27dry7eXLl4e9vf17X5+Hhwfq16+PBw8eoGTJkggPD4ebm5v8uIyMDMyZMwe//vor7t+/j5SUFKSkpMDa2vq9232fM2fO4ObNm2+tLpycnIxbt26hefPm6Ny5M1q3bp3t3hCRbpy+rlpw76z6/AUUsVPNI+n1Tc5ccE8Xcn0wKV4wm3cUQEZGOkxMTAEtvDey/bxQBZM1a9bgwoULUCgUqFKlClxdXXH48GHExcVleRgnO/Lly6fxtSRJ8lwWIcRbPwTi/1eCyqwrFAq5lunNeRifMp7M5/h37V1Lx5uYmOCPP/7A8ePHsW/fPixbtgzff/89Tp48CScnJ4SGhsLX1xd79uzBr7/+igkTJuCPP/7AV1999cGx/Pu5//2aM72rnqlevXooV64cNmzYgKFDh+K3335DaGiofPvChQuxePFiLFmyBNWrV4e1tTVGjBiB1NTUd25TkqT3fg+USiXq1KmD8PDwtx6buUdr/vz5GDduHPbt25et3hCRdr1KEJiwWiDoN+DNX3GD2gFzvCQUzM9A8qZcH0yyczgFUP2Cj46+j7Jly2brMIY2Zc4zWbJkCVxdXSFJElxdXTF79mzExcXBz8/vnY81MzNDRkbGO29/lypVqmDz5s0aAeX48eOwtbVFqVKlAKg+2GJjY+XHvHr1ClFRURrbyZcv30c9/8eQJAkNGjRAgwYNMGnSJJQtWxa//fYb/P39AQC1atVCrVq1MG7cONSvXx/r1q37qA/fSpUqIT09HefOnUOdOnUAADdv3nxrYmtWevbsifDwcJQuXRoKhQJt2rSRbzt69Cjc3d3Rq1cvAKr33I0bN957aOXf34MbN24gMTFR/rp27dr49ddfUbRoUeTPn/+tx2eGrVq1aqFOnTqf3Bsiyj4hBDZFAH5LBWKfqevVnIDgAAkNqjOQZIWTX41A5jyTtWvXynNJXFxccPbs2XfOL8nk6OiIqKgonD9/Hk+fPkVKSkq2nnPYsGGIiYnB8OHDcf36dWzbtg2TJ0+Gv7+/HMyaNm2KX375BUePHsXly5fRt29fjcMfmc9/4MABPHz4EHFxcR/1+rPj5MmTmDVrFk6fPo27d+9iy5YtePLkCSpXroyoqCiMGzcOJ06cQHR0NPbt24fIyMiPnktRqVIlNG/eHIMHD8apU6dw7tw5DB48GJaWlh/c1erh4YGzZ89i5syZ6NKlCywsLOTbypcvL+/1uXbtGry8vPDw4cP3bq9p06ZYvnw5zp49i9OnT2PIkCEae3s8PDxQuHBhuLu74+jRo4iKisLhw4fh5+eHe/fuISoqCvPmzdNab4goe6IeCLQZLdBtsjqUWJqr9pCcXcNQ8j4MJkaiSZMmyMjIkEOIvb09qlSpgiJFirz3Q6Rz585o1aoVmjRpgiJFinzw9NNMpUqVwq5du3Dq1CnUqFEDQ4YMwYABAzBhwgT5PuPGjYOLiwvatm0LNzc3dOjQQZ5AmWnhwoX4448/4ODggFq1av33F55N+fPnx5EjR+Dm5oaKFStiwoQJWLhwIVq3bg0rKytcv34dnTt3RsWKFTF48GD4+PjAy8vro5/v559/RrFixeDi4oKOHTti0KBBsLW11QgaWalQoQK++OILXLx4UT4bJ9PEiRNRu3ZttGzZEo0bN0bx4sU/eGXbhQsXwsHBAS4uLujZsycCAgJgZWUl325lZYUjR46gTJky6NSpEypXroz+/fsjKSkJ+fPnh5WVFW7fvo2uXbtqrTdE9G6paQKz1wpU6SOw+40T7trUB67+LGGMh4R8uWQVYF2RxIcOnOcRqkM50QY5lJPX5MRe37t3Dw4ODti/fz+aNWtm6OFkW07sdU7FXuuPsfb62EXVgntX3jjiXaqIagXgji45c3KrIXqd6+eYEH2MgwcPIj4+HtWrV0dsbCxGjx4NR0dHuLi4GHpoRGRknr0UGBMssGanuqZQAMM7AdMHSrDN5WvbaBuDCVEW0tLSMH78eNy+fRu2trb4+uuvER4e/tbZPESUdwkh8PMeIGCFwNOX6nrdSkDIKAm1P2Mg+RgMJkRZaNmyJVq2bGnoYRCRkboerTpsc/i8umZrBcwaJGFoB8DEhKHkYzGYEBERZVNSisCsXwTmrgPS1EuLoVsTYPFwCSULM5B8KgYTIiKibNh3SmDYYoFb99U1pxLACn8Jrb5kINEWBhMiIqL3ePhMYORygQ0H1LV8psB3PYDve0uwsmAo0SYGEyIioixkZAiEbAfGrxJ4Ga+uN/pcdeXWKo4MJLrAYEJERPQv52+oFtw7dU1dK1QAmD9UQr/WOfOaJDkFgwkREdH/i08UmPyjQOBm4M1lwPq1VoWSwnYMJLrGYEJERARg61GB4UsE7j1R1yqXBVaOkuBak4FEXxhMiIgoT4t+KOAbKLD9T3XNwgyY0EfCdz0As3wMJfrEYEJERHlSWrpA4P+AyaECicnqest6QNBICeVKMZAYAoMJERHlOScuq67cevGWula8ILBkuIRuTTm51ZAYTIiIKM+Iey0wLkTghx2AEKqaJAFD3YGZgyTY2TKQGBqDCRER5XpCCKzfD/gHCTx6rq7XrAAEj5LwZRUGEmPBYEJERLnajRjVpeT3n1bXrC2B6QMkDO8EmJoylBgTBhMiIsqVUlJVi+3NWiuQkqqud2wEBPpKcCjGQGKMGEyIiCjXOXRWNbk1MkZdK1MMWD5CQrsGDCTGjMGEiIhyjcdxAgErBH7Zq66ZmAD+3YDJ/SRYWzKUGDsGEyIiyvGUSoE1O4ExwQJxr9X1+lVVC+59Xo6BJKdgMCEiohzt8m3VYZs/L6lrdjbAvKESBrQBFAqGkpxEocuNX7x4EV988QXCwsLkWlhYGJo3b46mTZsiMDAQIvNEciIiov8gIQkYs1KJWgM0Q0mvb4B/wiUMaicxlORAOttjolQqsWjRIlSpUkWuHTt2DJs2bUJYWBgsLCwwdOhQODo6wt3dXVfDICKiXOjgeUtMXwdEP1LXKpRWLbjXrA7DSE6ms2CyZcsWVKtWDfHx8XJt165d6NKlC0qXLg0A6NWrF3bv3s1gQkRE2XL/iYBvILDlSFG5ZpYPGOcBjPWQYGHOUJLT6SSYvHz5EuvXr0doaCgWLVok16OiouDm5iZ/XbFiRQQFBb1zO6mpqUhNTdWomZqawszMTOtjViqVGv8n3WGv9Ye91h/2WrcyMoAVW4GJa4DXiep609pA0EigogMACCiVnB6gTdp8XysU2Zs9opNgEhQUhB49eiB//vwa9cTERNjY2MhfW1tbIzEx8d8Pl4WGhmLVqlUata5du6Jbt27aHfAbYmJiPnwn0gr2Wn/Ya/1hr7XvYpQZJoQWxOVoc7lWyDYD3/eIg/vXCZCUQHS0AQeYi9y8eRMmJiZwcnLSqGvjff3vbb6L1oPJ9evXceXKFYwZM+at26ysrDQO7SQkJMDKyuqd2/L09ISHh4dGTZd7TGJiYuDg4JDtVEcfh73WH/Zaf9hr7XsZr9pDsmKresE9ABjYVsDb7QGqVSoFhaKwwcaXmyQlJWHWrFmYP38+6tevj4MHD0KSJIO8r7UeTM6ePYu7d+/Kh2zi4+NhYmKCe/fuwcnJCTdv3kTDhg0BAJGRkXB2dn7ntszMzHQSQt5HoVDwl4qesNf6w17rD3v96YQQ2BQB+C0ViH2mrld3Vi2491VVIDpayV5ryd69ezFs2DDcvn0bAHDkyBH8+uuv6Nmzp3wfffZa68GkU6dO+Oabb+SvFy5cCAcHB/Tu3RsXLlzA3Llz0aJFC5ibmyM8PPytPSJERJR33X4g4LNYYPdJdc3KApjiKWFEVyCfqcR5JFoSGxuLkSNH4tdff5Vr+fLlw+jRo9GxY0eDjUvrwcTCwgIWFhby1+bm5rCysoKtrS0aNmyIGzduoE+fPlAqlejQoQPat2+v7SEQEVEOk5omsPBXYFqYQPIb5zy0/Vq1vk3Z4jzbRlsyMjIQHByM8ePH49WrV3LdxcUFwcHBqFy5sgFHp4crv06ZMkXja09PT3h6eur6aYmIKIc4ekF15dard9S1UkWAZX4SOjQCJImhRFvOnTsHLy8v/P3333KtUKFCWLBgAfr27WsUveYl6YmIyCCevhAYEyzw4y51TaEA/LoAU/tLsLUy/IdkbvH69WtMmjQJS5cu1Tj1t3///pg7dy4KFzaeScQMJkREpFdCCPy0BwhYIfDspbr+RSUgJEBCrYoMJNoihMDWrVvh6+uLe/fuyfXKlSsjODgYLi4uBhxd1hhMiIhIb67dUR22OXJBXctvDcweLMGrPWBiwlCiLdHR0fDx8cHvv/8u1ywsLDBp0iSMGjVK72e9ZheDCRER6VxSisDMnwXmrQfS0tX17k2BxT4SShRmINGWtLQ0LFmyBFOmTNG4iGmrVq0QFBT03st0GAMGEyIi0qm9pwSGLRK4/UBdcy4JrPCX0LIeA4k2nThxAl5eXrh0Sb3ccokSJRAYGIguXboYxeTWD2EwISIinYh9KjByucCvB9W1fKbA6B7A930kWHLBPa2Ji4vD2LFj8cMPP8g1SZLg7e2NGTNmoECBAgYc3X/DYEJERFqVkSEQsh0Y94PAqwR13aUGsHKUhCqODCTaIoTAunXr4O/vj8ePH8v1WrVqISQkBF988YUBR/dxGEyIiEhrzt8Q8FogcOqaulaoADB/qIR+rXlNEm07fvw4evXqJX9tY2ODGTNmwNvbG6amOfMjnosMEBHRJ4tPFPBfrkSdQZqhxNMNuP6LBE83iaFEBxo0aIBOnToBADp37ozr16/Dz88vx4YSgHtMiIjoE209KjB8icC9J+papTJAcIAE15oMI7oWGBiI/v37o02bNoYeilYwmBAR0UeJfijgGyiw/U91zcIMmNBHwnc9ALN8DCX6ULp0aZQuXdrQw9AaBhMiIvpP0tIFAv8HTA4VSExW11t9CQSNlOBckoGEPh6DCRERZduJy6ort168pa6VKAQE+kro0piTW+nTMZgQEdEHxb0WGBss8MMOdU2SAO+OwIyBEgrYMJCQdjCYEBHROwkhsO4PwD9I4HGcul67omrBvbqVGEhIuxhMiIgoSzdiBIYuEjhwRl2zsVTtIfHuCJiaMpSQ9jGYEBGRhpRUgTnhwOxwgZRUdb2zq2ouSakiDCSkOwwmREQkO3hGtZckMkZdK1tcdbZNm/oMJKR7DCZERITHcQKjggTW7lPXTE0A/27ApH4SrC0ZSkg/GEyIiPIwpVJgzU5gTLBA3Gt1/etqQPAoCdXLMZCQfjGYEBHlUZduqa5JcvyyumZvC8wdImFAG0ChYCgh/WMwISLKYxKSBKaFCSzaCKRnqOu9WwILhkkoas9AQobDYEJElIf8flzAZ4lA9EN1raIDsNJfQtM6DCRkeAwmRER5wL3HAn5LBbYcUdfMzYDxvSSM7gFYmDOUkHFgMCEiysXS0wWCfgMmrBaIT1LXm9VR7SWp4MBAQsaFwYSIKJf6+5pqcuvZSHWtqD2wyFtCzxZccI+ME4MJEVEu8zJeYMJq1Z4SIdR1r/bAbC8J9rYMJGS8GEyIiHIJIQT+dwgYsUwg9pm6Xt1ZdU2Sr6szkJDxYzAhIsoFbj8Q8F4ssOekumZlAUzxlDCiK5CPC+5RDsFgQkSUg6WmCSzYAEz/SSD5jQX32n0NLBshoWxxBhLKWRhMiIhyqCPnVZNbr0Wra6WLqAKJe0NObqWcicGEiCiHefpCYHSwQOgudU2hAPy6AFP7S7C1YiChnIvBhIgohxBCIGw38N1KgWcv1fV6lVWTW2tVZCChnI/BhIgoB7h2R3XY5sgFdS2/NTB7sASv9oCJCUMJ5Q4MJkRERiwpRWDGzwLz1wNp6er6t81UF0orUZiBhHIXBhMiIiO156TqFODbD9Q155LACn8JLesxkFDuxGBCRGRkYp8KjFgmsPGQupbPFBjTExjfW4IlF9yjXIzBhIjISGRkCARvA8avEniVoK671lQtuFfZkYGEcj8GEyIiI3AuUsBrgcDf19W1QgWAhcMk9GnFa5JQ3sFgQkRkQK8TBSatEVi6GVAq1fX+bsC8oRIKFWAgobyFwYSIyACEENh6FPANFLj3RF2v4qi6JkmjGgwklDcxmBAR6Vn0QwGfJQK/H1fXLMyASf0kjOoOmOVjKKG8i8GEiEhP0tIFlvwPmBIqkJisrrf6EggaKcG5JAMJEYMJEZEeHL+kunLrpdvqWolCQKCvhC6NObmVKBODCRGRDj1/JTAuROCHHeqaJAE+nYAZAyXkt2YgIXoTgwkRkQ4IIRD+B+C/XODJC3W9dkUgJEBC3UoMJERZYTAhItKyyBiBoQsFDp5V12ytVHtIvDtywT2i99FZMJk5cyaOHDmC5ORkFC9eHD4+PmjUqBEAICwsDGvXroVSqYS7uzt8fX15fJWIcryUVGBqKDBnnUBqmrre2VU1l6RUEf6eI/oQnQUTDw8PfPfddzAzM8OVK1fg7e2N7du34+LFi9i0aRPCwsJgYWGBoUOHwtHREe7u7roaChGRzh04AwyeVxJ3HqlrjsWB5SMltKnPQEKUXToLJo6OjvK/JUlCamoqnj59il27dqFLly4oXbo0AKBXr17YvXt3lsEkNTUVqampmgM2NYWZmZnWx6v8/0suKt+89CLpBHutP+y17j16DgSsANbtB4B8AABTE8C/GzCxL2BlIaBUCoOOMbfh+1p/tNlrhUKRrfvpdI7JnDlzsGPHDqSkpMDV1RXOzs6IioqCm5ubfJ+KFSsiKCgoy8eHhoZi1apVGrWuXbuiW7duOhtzTEyMzrZNmthr/WGvtU+pBH49bIO5G+3wKtFErtepkIwZ/Z7js9JpePLoPRugT8b3tf5oo9dOTk7Zup9Og8nYsWPx3Xff4fTp07h58yYAIDExETY2NvJ9rK2tkZiYmOXjPT094eHhoVHT5R6TmJgYODg4ZDvV0cdhr/WHvdaNS7eBoQuBE1fUNXtbgdFdnsPfwx6mpiUNN7g8gO9r/TFEr3V+Vo6JiQm+/PJLrF+/Hs7OzrCyskJ8fLx8e0JCAqysrLJ8rJmZmU5CyPsoFAq+0fWEvdYf9lo7EpIEpoYJLNoIZGSo671bAvOGSEh6FQ9T00LstZ7wfa0/+uy13r6jSqUS9+7dg5OTk7z3BAAiIyPh7Oysr2EQEX2UHX8KVOkjMH+9OpRUdAAOLpHw8/cKFLU37PiIcgudBJPExETs3r0biYmJSE9Px4EDB3DmzBnUqlULbm5u2Lx5M+7fv4+nT58iPDwcrVu31sUwiIg+2b3HAp2+V6L9OIG7/z9nxNwMmNpfwsVQCU1q84wbIm3SyaEcSZKwbds2zJ07F0IIODg4YMaMGShfvjzKly+PGzduoE+fPlAqlejQoQPat2+vi2EQEX209HSBZVuASWsE4pPU9eZ1gRUjJVRwYCAh0gWdBBNLS0sEBwe/83ZPT094enrq4qmJiD7ZqasCXgsFzt9Q14raA4t9JPRozgX3iHSJl6QnIvp/L+MFxv8gsHIbIP7/0iOSBHi1B2YNlmBvy0BCpGsMJkSU5wkh8OtBYOQygYfP1fXPy6kW3PuqKgMJkb4wmBBRnnbrvsCwRQL7/lbXrCyAqZ4S/LoC+UwZSoj0icGEiPKklFSBBRuAGT8LJL+x8kX7BsCyERLKFGMgITIEBhMiynMOnxcYskDg+l11zaEosMxPgnsjBhIiQ2IwIaI84+kLgYAVAj/tUddMTAC/zqrrkthYMZQQGRqDCRHlekIIhO4Cvlsp8PyVuv5lFSB4lISaFRhIiIwFgwkR5WpX76gO2xy9qK4VsAFmD5YwuB1gYsJQQmRMGEyIKFdKTBaY+YtqbZu0dHW9R3NgkbeE4oUYSIiMEYMJEeU6e06qTgGOilXXypVSXUr+m3oMJETGjMGEiHKNB08FRi4T2HhIXctnCoz1AMb1kmBpzlBCZOwYTIgox8vIEFi5Ffh+tcCrBHW9cS1gpb+ESmUZSIhyCgYTIsrRzv6jWnDv9HV1rXABYKG3hN4tueAeUU7DYEJEOdLrRIGJqwWWbQGUSnV9YFtgjpeEQgUYSIhyIgYTIspRhBDYchjwWyZw/4m6XtVJdU2Shp8zkBDlZAwmRJRj3IkV8FkisPOEumZpDkzqK8G/O2CWj6GEKKdjMCEio5eWLrDoV2BqmEBSirre+ksgaKQEp5IMJES5BYMJERm1Py+prtx6OUpdK1kYCPSV0NmVk1uJchsGEyIySs9fCYwJFlj9u7qmUADeHYEZAyXkt2YgIcqNGEyIyKgIIbB2HzAqSODJC3W9dkUgJEBC3UoMJES5GYMJERmNf+4KDF0ocOicumZrpdpD4t2RC+4R5QUMJkRkcMkpArPDBeaEA6lp6npnV9VcklJFGEiI8goGEyIyqP2nVXtJbt5X1xyLA8tHSmhTn4GEKK9hMCEig3j0XMB/ucC6/eqaqQkQ8C0wsa8EKwuGEqK8iMGEiPRKqRRYtQMYGyLwIl5db1BddeXWas4MJER5GYMJEenNxVuqa5KcuKKuFcwPzBsiwdMNUCgYSojyOgYTItK5hCSBKaECi/8HZGSo631bAfOHSShix0BCRCoMJkSkU9uPCQwPFLj7SF37rIzqsE3jWgwkRKSJwYSIdCLmkYDvUoGtR9U1czPg+94SRvcAzM0YSojobQwmRKRV6ekCSzcDk34USEhS11vUBVb4SyhfmoGEiN6NwYSItObUVQGvhQLnb6hrxQoCS4ZL6N6UC+4R0YcxmBDRJ3vxWmD8KoHgbYAQqpokAUPcgVmDJNjZMpAQUfYwmBDRRxNC4NeDwMhlAg+fq+s1yqsW3PuyCgMJEf03DCZE9FFu3hPwXiyw7291zdoSmNZfgm9nwNSUoYSI/jsGEyL6T1JSBeavB2b8IpCSqq67NwSW+kkoU4yBhIg+HoMJEWVbxDnVgnvX76prDkWBZX4S3BsxkBDRp2MwIaIPevJCICBI4Oe96pqJCeDXGZjaX4KNFUMJEWkHgwkRvZNSKRC6CxgdLPD8lbr+ZRXV5NYa5RlIiEi7GEyIKEtXogSGLBQ4dlFdK2ADzPGSMLgdF9wjIt1gMCEiDYnJAtN/EliwAUh/Y8G9Hs2BRd4SihdiICEi3WEwISLZ7r9UpwBHxapr5UupLiXf4gsGEiLSPQYTIsKDpwJ+SwU2RahrZvmAsR7AOA8JFuYMJUSkHwwmRHlYRobAiq3A96sEXieq641rASv9JVQqy0BCRPrFYEKUR535R8BrgcCZf9S1wgWART4Sen3DBfeIyDAYTIjymFcJAhNXCyz/DVAq1fVB7VRn3BTMz0BCRIbDYEKURwghsPkw4LdU4MFTdb2aExAcIKFBdQYSIjI8nQST1NRUzJ49GydPnkRCQgI+++wzjB49GuXLlwcAhIWFYe3atVAqlXB3d4evry93GxPpUFQs4BsosOsvdc3SHJjcT4J/dyAfF9wjIiOh0MVGMzIyUKpUKYSGhuLgwYNwcXHBqFGjAADHjh3Dpk2bEBYWho0bN+LYsWPYvn27LoZBlOelpQMrf8+P6v2gEUrcvgKu/CRhjIfEUEJERkUnwcTS0hIDBw5EsWLFYGJigu7du+PBgwd48eIFdu3ahS5duqB06dIoXLgwevXqhd27d+tiGER52rGLAnUGAvP/Z4+kFFWtZGFg0zQJv8+V4FSSgYSIjI9e5phcvHgRBQsWhJ2dHaKiouDm5ibfVrFiRQQFBWX5uNTUVKSmpmrUTE1NYWZmpvUxKv9/FqDyzdmApBPstW49ewmMDQF+3KWuKRQCPh0lTO0P5LcWEEI154S0h+9r/WGv9UebvVYosrcvROfBJD4+HrNmzcKwYcMAAImJibCxsZFvt7a2RmJiYpaPDQ0NxapVqzRqXbt2Rbdu3XQ23piYGJ1tmzSx19olBPDbn9aYtcEez1+byPVqjimY2e85qjulIu4pEPf0PRuhbNu/fz/q1KkDe3t7jTrf1/rDXuuPNnrt5OSUrfvpNJikpKRg1KhRaNiwIdzd3QEAVlZWiI+Pl++TkJAAKyurLB/v6ekJDw8PjZou95jExMTAwcEh26mOPg57rX3/3AW8lwCHzqlrtlbA9AFKtKn9EI5l2WttuXv3Lvz8/LB9+3b0799f/uOJ72v9Ya/1xxC91lkwSU9Px/jx41GkSBGMGDFCrjs5OeHmzZto2LAhACAyMhLOzs5ZbsPMzEwnIeR9FAoF3+h6wl5/uqQUgdlrBeauA1LT1PWuTYAlwyUUL6hAdDR7rQ3p6ekIDAzE5MmTkZCQAAD48ccf4evrixo1asj3Y6/1h73WH332WmfPMnPmTKSkpGDKlCkapwK7ublh8+bNuH//Pp4+fYrw8HC0bt1aV8MgyrX++Fugej+B6T+pQ4lTCWDXPAkbpypQsjAnt2rLX3/9hbp16yIgIEAOJcWLF8eGDRvw+eefG3h0RLmLTvaYxMbGYseOHTA3N0eTJk3k+tKlS9GwYUPcuHEDffr0gVKpRIcOHdC+fXtdDIMoV3r4TMA/SGD9fnXN1AT4rgcwoY8EKwsGEm2Ji4vD+PHjERISIk8WliQJQ4cOxcyZM2FnZ2fYARLlQjoJJiVKlMDp06ffebunpyc8PT118dREuZZSKfDDDmBsiMBL9TQtNPocWDlKQlUnBhJtEUJg/fr1GDlyJB4/fizXa9asiZCQENSrV8+AoyPK3XhJeqIc4MJN1YJ7J6+qawXzA/OHSujXGlAoGEq05caNGxg2bBj271fvkrK2tsb06dMxfPhwmJry1yaRLvEnjMiIxScKTAkVWLIJyMhQ1/u1VoWSwnYMJNqSkpKCuXPnYtasWUhJSZHrnTp1wpIlS+Dg4GDA0RHlHQwmREZq21GB4YECMeojCahURrXgnmtNBhJtOnToEIYMGYLIyEi5VqZMGSxfvhzt2rUz4MiI8h4GEyIjE/NIFUi2HVPXLMxUE1sDvgXMzRhKtOXx48cICAjAL7/8ItdMTEzg7++PyZMnw9ra2oCjI8qbGEyIjER6usDSzcCkHwUSktT1b74AVvhLKFeKgURblEol1qxZgzFjxiAuLk6u169fH8HBwTwFmMiAGEyIjMDJq6rJrRduqmvFC6ouktatKTSuBUSf5vLlyxgyZAj+/PNPuWZnZ4e5c+di4MCBvGAXkYExmBAZ0IvXAuNXCQRvU611AwCSBAx1B2YOkmBny0CiLQkJCZg2bRoWLVqE9PR0ud6rVy8sWLAAxYoVM+DoiCgTgwmRAQghsOEAMHK5wKPn6nrNCkDIKAn1qjCQaNPOnTvh7e2N6OhouVahQgWsXLkSzZo1M+DIiOjfGEyI9OzmPYFhiwT+eOMahNaWwPQBEoZ3AkxNGUq05d69e/Dz88OWLVvkmpmZGcaNG4exY8fCwsLCgKMjoqwwmBDpSUqqwLz1wMxfBFJS1fUOjYClvhIcijGQaEt6ejqCgoIwYcIEjdXMmzZtihUrVuCzzz4z4OiI6H0YTIj0IOKcwJCFAv/cVdfKFAOW+Ulo35CBRJtOnz4NLy8vnD17Vq4VKVIEixYtgoeHBycSExk5BhMiHXryQiAgSODnveqaiQkwsiswuZ8EGyt+SGrLy5cvMWHCBAQFBckL7gHAoEGDMGfOHBQsWNCAoyOi7GIwIdIBpVIgdBcwOljg+St1/auqQPAoCTXKM5BoixACmzZtgp+fH2JjY+V6tWrVEBwcjAYNGhhwdET0XzGYEGnZlSjVYZtjF9U1OxtgjpeEQe244J423b59Gz4+Pti9e7dcs7S0xJQpUzBy5Ejky5fPgKMjoo/BYEKkJYnJAtN/EliwAUh/Y8E9jxbAQm8JxQoykGhLamoqFi5ciGnTpiE5OVmut23bFsuWLYOjo6PhBkdEn4TBhEgLdp0Q8F4scOehulahtOpS8s3rMpBo07Fjx+Dl5YWrV6/KtVKlSmHp0qXo2LEjJ7cS5XAMJkSf4P4TgRHLBDZFqGtm+YBxHsBYDwkW5vyQ1JZnz55hzJgxWLNmjVxTKBTw9fXFtGnTYGtra8DREZG2MJgQfYSMDIGg34AJqwVeJ6rrTWur9pJ8VoaBRFuEEPj5558REBCAp0+fyvW6desiJCQEtWvXNuDoiEjbGEyI/qPT11UL7p2NVNeK2AGLfCR4tOCCe9p07do1DB06FIcPH5Zr+fPnx+zZs+Hl5QUTExMDjo6IdIHBhCibXsYLTFit2lPyxmUyMLgdMGeIBHsuuKc1SUlJmDlzJubNm4e0tDS53r17dyxevBglSpQw4OiISJcYTIg+QAjVHBK/pQKxz9T1ak5ASICEr6szkGjTvn37MGzYMNy6dUuuOTs7IygoCK1atTLgyIhIHxhMiN4j6oHqbJvdJ9U1S3NgiqeEkd2AfFxwT2sePnyIkSNHYsOGDXItX758GD16NL7//ntYWloacHREpC8MJkRZSE0TWPQrMO0ngaQUdb3t16r1bRxLMJBoS0ZGBkJCQjB+/Hi8fPlSrru4uGDlypWoUqWKAUdHRPrGYEL0L8cuqq7ceiVKXStVRLUCcEcXTm7VpvPnz8PLywunTp2Sa4UKFcL8+fPRr18/9pooD2IwIfp/z14KjAkWWLNTXVMoAN/OwLQBEmy54J7WxMfHY9KkSQgMDIRSqZTrnp6emDdvHgoXLmzA0RGRITGYUJ4nhMDPe4CAFQJP1UcSULcSEDJKQu3PGEi0aevWrRg+fDju3bsn1ypXrozg4GC4uLgYcGREZAwYTChPux6tOmxz+Ly6ZmsFzBokYWgHwMSEoURboqOj4evri+3bt8s1CwsLTJw4EQEBATAzMzPg6IjIWDCYUJ6UlCIw6xeBueuAtHR1vVsTYPFwCSULM5BoS1paGpYsWYIpU6YgMVF9mdyWLVsiKCgI5cqVM+DoiMjYMJhQnrPvlMCwxQK37qtrTiVUl5Jv9SUDiTadOHECXl5euHTpklwrXrw4lixZgm7dunFyKxG9hcGE8oyHzwRGLhfYcEBdy2cKjO4BjO8twcqCH5LaEhcXh3HjxiEkJESuSZKEYcOGYebMmShQoIABR0dExozBhHK9jAyBkO3A+FUCL+PV9UafA8EBEqo4MpBoixAC69atg7+/Px4/fizXa9asiZCQENSrV8+AoyOinIDBhHK18zdUC+6duqauFSoAzB8qoV9rXpNEmyIjIzFs2DAcOKDeJWVjY4Pp06fDx8cHpqb8dUNEH8bfFJQrxScKTPpRIHAT8MZlMtCvtSqUFLZjINGWlJQUzJkzB7Nnz0ZKivoyuZ06dUJgYCBKly5twNERUU7DYEK5ztajAsOXCNx7oq5VLgusHCXBtSYDiTYdPHgQQ4cORWRkpFwrU6YMgoKC0LZtWwOOjIhyKgYTyjXuPlIFku1/qmsWZsCEPhK+6wGY5WMo0ZbHjx9j1KhRWLt2rVwzMTHBqFGjMGnSJFhbWxtwdESUkzGYUI6Xli4Q+D9gcqhAYrK63rIeEDRSQrlSDCTaolQqsWbNGowZMwZxcXFyvX79+ggJCUH16tUNODoiyg0YTChH++uKanLrxVvqWvGCwJLhEro15eRWbbp06RKGDBmC48ePyzV7e3vMnTsXAwYMgEKhMODoiCi3YDChHCnutcD4H1SnAQuhqkkSMKwDMHOQhAI2DCTakpCQgGnTpmHRokVIT1dfJrd3795YsGABihYtasDREVFuw2BCOYoQAuv3AyOXCzxWH0lAzQqqBffqVWEg0abff/8dPj4+iI6OlmsVK1bEypUr0bRpUwOOjIhyKwYTyjFuxKguJb//tLpmYwlMHyDBpxNgaspQoi337t2Dn58ftmzZItfMzMwwfvx4jBkzBhYWFgYcHRHlZgwmZPRSUlWL7c1aK5CSqq53cgECfSWULspAoi3p6elYvnw5Jk6ciPh49WVymzVrhhUrVqBixYoGHB0R5QUMJmTUDp4RGLpIIDJGXStTTHW2TduvGUi06e+//4aXlxfOnTsn14oWLYpFixahZ8+enEhMRHrBYEJG6XGcwKgggbX71DUTE8C/GzC5nwRrS35IasvLly/x/fffY8WKFRCZM4kBDB48GHPmzIG9vb0BR0dEeQ2DCRkVpVJgzU5gTLBA3Gt1vX5V1YJ7n5djINEWIQT+97//YcSIEYiNjZXr1atXR3BwML7++msDjo6I8ioGEzIal24JDFkocPyyumZnA8wdImFgW0ChYCjRltu3b8Pb2xt79uyRa1ZWVpgyZQpGjBiBfPnyGXB0RJSXMZiQwSUkCUwLE1i0EUjPUNc9WgALvSUUK8hAoi2pqalYsGABpk+fjuRk9WVy27Zti+XLl6Ns2bIGHB0REYMJGdjvxwV8lghEP1TXKpRWLbjXrA4DiTYdOXIEQ4YMwbVr1+RaqVKlsGzZMnTo0IGTW4nIKOjkGtIhISHo2rUrvvjiC+zdu1fjtrCwMDRv3hxNmzZFYGCgxmQ7yjtin5ugyySg3Vh1KDHLB0zuB1wMZSjRpufPn2PAgAFwdXWVQ4lCocDIkSNx7do1dOzYkaGEiIyGTvaYODg4YNSoUQgODtaoHzt2DJs2bUJYWBgsLCwwdOhQODo6wt3dXRfDICOUkSGwbDMwYXVJJLyx4F7T2sAKfwmfleEHpLYIIRAWFoaAgACNBfe++OILBAcHo3bt2gYcHRFR1nQSTNzc3AAAP/74o0Z9165d6NKlC0qXLg0A6NWrF3bv3v3OYJKamorU1FSNmqmpKczMzLQ+ZqVSqfF/0r7T14Ghi4CzkUDmzroidsCCYar5JJIkoFRyD5o2XLt2DcOGDcORI0fkWv78+TFr1iwMHjwYJiYmfK9rGX+H6A97rT/a7HV2F/rU6xyTqKgoObQAqjU3goKC3nn/0NBQrFq1SqPWtWtXdOvWTWdjjImJ+fCd6D95lShh0WY7/HLAFkKo94j0aPIao7u+QAFrJe7eNeAAc5Hk5GQEBQXhhx9+QFpamlxv27YtJkyYgKJFi+LevXsGHGHux98h+sNe6482eu3k5JSt++k1mCQmJsLGxkb+2traGomJie+8v6enJzw8PDRqutxjEhMTAwcHBy7friVCAP+LAPyXA7HP1PVqzgKTez5Ch6ZFoVDYGmx8uc3evXvh4+OD27dvyzVnZ2dMmjQJHh4efF/rGH+H6A97rT+G6LVeg4mVlZXG+hsJCQmwsrJ65/3NzMx0EkLeR6FQ8I2uBbcfCHgvFthzUl2zsgCmekoY3hl4cD+FvdaS2NhYjBw5Er/++qtcy5cvH8aMGYOxY8fi8ePH7LUesdf6w17rjz57rddg4uTkhJs3b6Jhw4YAgMjISDg7O+tzCKRjqWkCCzYA038SSH5jelDbr4HlIySULS5xHomWZGRkIDg4GOPHj8erV6/kuqurK1auXInKlSvzGDwR5Tg6iT/p6elISUmBEEL+t1KphJubGzZv3oz79+/j6dOnCA8PR+vWrXUxBDKAoxcEag0Q+H6VOpSUKgJsmSFh+2xVKCHtOHfuHOrXrw8fHx85lBQqVAhhYWE4dOgQKleubOAREhF9HJ3sMZkxYwZ+//13AKpfoJMnT0ZwcDAaNmyIGzduoE+fPlAqlejQoQPat2+viyGQHj19ITA6WCB0l7qmUAB+XYCp/SXYWjGQaMvr168xadIkLF26VGNvSP/+/TFv3jwUKlTIgKMjIvp0kuAVzgCoJvhER0ejbNmyPGaZTUII/LQHCFgh8Oyluv5FJSAkQEKtilkHEvb6vxNCYOvWrfD19dU4q6ZKlSoIDg5Go0aNsnwce60/7LX+sNf6Y4he85L09FGu3VEtuHfkgrqW3xqYNUjCEHfAxIR7SbQlOjoaPj4+8l5IALCwsMCkSZMwatQovU8QJyLSJQYT+k+SUgRm/iwwbz2Qlq6ud28KLPKRULIwA4m2pKWlYcmSJZgyZYrGafWtWrVCUFAQJ44TUa7EYELZtveUwLBFArcfqGvOJYGgkRJafclAok3Hjx/HkCFDcOnSJblWokQJBAYGokuXLlzbhohyLQYT+qDYpwIjlwv8elBdy2cKjO4BfN9HgqU5PyS15fnz5xg3bhx++OEHuSZJEry9vTFjxgwUKFDAgKMjItI9BhN6p4wMgeBtwPhVAq8S1HWXGsDKURKqODKQaIsQAuHh4fD398eTJ0/keu3atRESEoK6desacHRERPrDYEJZOhcp4LVA4O/r6lqhAsD8oRL6tQYPJWhRZGQkhg0bhgMHDsg1GxsbzJgxA97e3jA15Y8pEeUd/I1HGl4nCkz+USBwE/DmRUM93YB5QyQUtmMg0Zbk5GTMmTMHs2fP1lhFu3PnzggMDESpUqUMODoiIsNgMCEA/3+djKOAb6DAPfWRBFQuCwSPkuBSk4FEmw4ePIihQ4ciMjJSrpUtWxZBQUFo06aNAUdGRGRYDCaE6IcCPksEfj+urlmYARP6SPiuB2CWj6FEWx4/foxRo0Zh7dq1cs3U1BT+/v6YNGkSrK2tDTg6IiLDYzDJw9LSBZb8D5gSKpCYrK63rKc6BbhcKQYSbVEqlVi9ejXGjBmDFy9eyPUGDRogODgY1apVM9zgiIiMCINJHnXismpy66Xb6lrxgkCgr4SuTTi5VZsuXboELy8vnDhxQq7Z29tj3rx56N+/Py+pTUT0BgaTPCbutcDYYIEfdqhrkgR4dwRmDJRQwIaBRFsSEhIwdepULFq0CBkZGXK9d+/eWLBgAYoWLWrA0RERGScGkzxCCIF1fwD+QQKP49T1WhVUC+59UZmBRJt+//13+Pj4IDo6Wq5VrFgRwcHBaNKkiQFHRkRk3BhM8oDIGNWl5A+cUddsLIHpAyT4dAJMTRlKtOXevXvw9fXFb7/9JtfMzc0xfvx4jBkzBubm5gYcHRGR8WMwycWSUwTmrgNmrRVITVPXO7mo5pKULspAoi3p6elYvnw5Jk6ciPj4eLnevHlzrFixAhUqVDDg6IiIcg4Gk1zq4BmBoYsEImPUtTLFVGfbtP2agUSbTp06hSFDhuDcuXNyrWjRoli8eDF69OjBicRERP8Bg0ku8zhOYFSQwNp96pqJCeDfDZjcT4K1JT8kteXly5f4/vvvsWLFCgghAKjOZvLy8sKsWbNgb29v4BESEeU8DCa5hFIpsGYnMCZYIO61ul6/qmpya/VyDCTaIoTAxo0bMWLECDx8+FCuf/755wgJCcFXX31lwNEREeVsDCa5wKVbAkMWChy/rK7Z2wJzh0gY0AZQKBhKtOXWrVvw9vbG3r175ZqVlRWmTZsGPz8/LrhHRPSJ+Fs0B0tIEpgWJrBoI5CuvkwGercEFgyTUNSegURbUlNTMX/+fMyYMQPJyerL5LZv3x7Lli1DmTJlDDg6IqLcg8Ekh/r9uGp9m2j1kQRUdABW+ktoWoeBRJsuXLiAHj164Nq1a3KtdOnSWLZsGTp06GC4gRER5UIMJjnMvccCfksFthxR18zNgPG9JIzpCZibMZRoS+aE1kKFCiEmRnV6k4mJCfz8/DB16lTY2NgYcnhERLkSg0kOkZ4usHwLMHGNQHySut6sjmovSQUHBhJdkCQJpUuXxowZM7Bu3TqEhISgZs2ahh4WEVGuxWCSA/x9TbXg3rkb6lpRe2CRt4SeLbjgnq682VcfHx/4+PjAxMTEgCMiIsr9GEyM2Mt4ge9XCazYCvz/UQUAwOB2wJwhEuxtGUj0hYGEiEg/GEyMkBACGw8CI5YJPHyurld3Vl2TpH41BhIiIsqdGEyMzO0HAt6LBfacVNesLICpnhL8ugL5uOAeERHlYgwmRiI1TWDBBmD6TwLJqep6u6+BZSMklC3OQEJERLkfg4kROHJedeXWa9HqWukiqkDSoREDCRER5R0MJgb09IXA6GCB0F3qmkIB+HUBpvaXYGvFUEJERHkLg4kBCCEQthv4bqXAs5fq+heVVJNba1VkICEioryJwUTPrt1RHbY5ckFdy28NzB4swas9YGLCUEJERHkXg4meJKUIzPhZYP56IC1dXe/eFFjsI6FEYQYSIiIiBhM92HNSdQrw7QfqmnNJYIW/hJb1GEiIiIgyMZjoUOxTgZHLBX49qK7lMwXG9ATG95Zgac5QQkRE9CYGEx3IyBAI3gaMXyXwKkFdd62pWnCvsiMDCRERUVYYTLTsXKRqwb2/r6trhQoAC4ZJ6NuKC+4RERG9D4OJlrxOFJi0RmDpZkCpVNf7uwHzhkooVICBhIiI6EMYTD6REAK/HQF8lwrcf6KuV3EEgkdJaFSDgYSIiCi7GEw+wZ1YgeGBAr8fV9cszIBJ/SSM6g6Y5WMoISIi+i8YTD5CWrrA4o3A1DCBxGR1vfWXwPKREpxLMpAQERF9DAaT/+j4JdXk1stR6lqJQkCgr4QujTm5lYiI6FMwmGTT81cCY0MEVu1Q1yQJ8OkEzBgoIb81AwkREdGnYjD5ACEE1u4DRgUJPHmhrteuqFpwr24lBhIiIiJtYTB5j3/uCgxbJHDwrLpmY6naQ+LdETA1ZSghIiLSJgaTLCSnCMwJF5gdDqSmqeudXVVzSUoVYSAhIiLSBYUhnjQuLg5+fn5o0KABOnXqhFOnThliGFk6cAb43FNgapg6lDgWB36fK2HTdAVDCRERkQ4ZZI/J3LlzUaRIERw4cAB//fUXxo4di61btyJ//vyGGA4A4NFzYGRwIWw7oa6ZmgCjuquuS2JlwUBCRESka3oPJomJiTh8+DB27NgBCwsLNG7cGOHh4Thy5Ajatm2rcd/U1FSkpqZq1ExNTWFmZqa18SiVwOqdwLgQgRfxNnK9QTVghT9QzRkABJRKobXnzOuU/3/NfuWb1+4nnWCv9Ye91h/2Wn+02WuFInsHafQeTO7evQsbGxsULlxYrlWoUAG3b99+676hoaFYtWqVRq1r167o1q2b1saTlg4s+bUEXsSrwk4B6wyM7fYCXV3ioVAA0dFaeyr6l5iYGEMPIc9gr/WHvdYf9lp/tNFrJyenbN1P78EkKSkJ1tbWGjVra2vEx8e/dV9PT094eHho1LS9xwQAVo8FXIYLdPw6ActHWaFYwUIACmn1OUhNqVQiJiYGDg4O2U7Q9HHYa/1hr/WHvdYfQ/Ra78HE0tISCQkJGrWEhARYWlq+dV8zMzOth5CsNPwcuPqzEubKZyhW0IZvdD1RKBTstZ6w1/rDXusPe60/+uy13r+jZcqUQXx8PJ4+fSrXbty4AWdnZ30PRUNFB4M+PREREcEAwcTKygouLi4ICQlBcnIyDh8+jFu3bsHFxUXfQyEiIiIjY5B9YGPHjsWjR4/QrFkzBAYGYvbs2QY9VZiIiIiMg0GuY2Jvb4+lS5ca4qmJiIjIiHHWEBERERkNBhMiIiIyGgwmREREZDQYTIiIiMhoMJgQERGR0WAwISIiIqPBYEJERERGg8GEiIiIjAaDCRERERkNBhMiIiIyGgwmREREZDQYTIiIiMhoMJgQERGR0WAwISIiIqPBYEJERERGg8GEiIiIjAaDCRERERkNBhMiIiIyGgwmREREZDQYTIiIiMhoMJgQERGR0WAwISIiIqPBYJKDvHjxAtHR0YYeBhERkc4wmOQAQgisX78elSpVQq9evaBUKg09JCIiIp1gMDFyN2/eRMuWLdGzZ088evQIx44dQ2hoqKGHRUREpBMMJkYqJSUF06dPR7Vq1fDHH3/I9Q4dOqBFixYGHBkREZHumBp6APS2iIgIDB06FNevX5drDg4OWL58Odq3b2/AkREREekW95gYkSdPnqBv375o0qSJHEpMTEwQEBCAq1evMpQQEVGuxz0mRkCpVOLHH3/E6NGjERcXJ9e/+uorBAcHo0aNGgYcHRERkf4wmBjY5cuXMWTIEPz5559yzc7ODnPmzMGgQYOgUHCnFhER5R381DOQxMREjB07FrVq1dIIJT179sT169fh5eXFUEJERHkO95gYwK5du+Dt7Y07d+7ItfLly2PFihU844aIiPI0/kmuR/fv30fXrl3Rpk0bOZSYmZlh0qRJuHTpEkMJERHledxjogcZGRkICgrChAkT8Pr1a7nepEkTrFy5Ep999pkBR0dERGQ8GEx07MyZM/Dy8sKZM2fkWpEiRbBw4UL06tULkiQZcHRERETGhYdydOTVq1fw8/NDvXr1NELJoEGDcP36dfTu3ZuhhIiI6F+4x0TLhBDYvHkz/Pz88ODBA7lerVo1BAcHo0GDBgYcHRERkXHjHhMtioqKQtu2bdG1a1c5lFhaWmLu3Lk4e/YsQwkREdEHcI+JFqSlpWHhwoWYNm0akpKS5HqbNm2wfPlyODo6Gm5wREREOQiDySc6duwYhgwZgitXrsi1UqVKYenSpejYsSPnkRAREf0HPJTzkZ49e4aBAweiUaNGcihRKBTw8/PDtWvX0KlTJ4YSIiKi/4h7TP4jIQR+/vlnBAQE4OnTp3K9bt26CAkJQe3atQ04OiIiopyNe0z+g+vXr6NJkybo16+fHEpsbW2xbNky/PXXXwwlREREn4jBJBuSkpIwceJEfP755zh8+LBc79atG65fvw4fHx+YmJgYcIRERES5Aw/lfMC+ffswbNgw3Lp1S645OTlhxYoVaNWqlQFHRkRElPtwj8k7PHz4ED169EDLli3lUJIvXz6MGzcOly9fZighIiLSAe4x+ZeMjAwEBwdj/PjxePnypVxv1KgRgoODUaVKFQOOjoiIKHfT6h6T9PR0fPfdd2jdujXq1q2rcdYKACQnJ2PixIlwcXFBmzZtsGfPHm0+/Se7evUqGjZsCG9vbzmUFCxYEGvWrEFERARDCRERkY5p/VBO7dq1MW/evCxvCwkJwcuXL7Fr1y7MmjULc+bMQXR0tLaH8J/Fx8cjICAA7u7uOHXqlFzv27cvrl+/jv79+0Oh4FEvIiIiXdPqoRxTU1P06NHjnbfv2rULCxcuhI2NDWrUqAEXFxfs27cPgwYNyvL+qampSE1Nfes5zMzMtDbm1NRU1KxZU2Nya6VKlbBixQq4uroCAJRKpdaej9T9ZF91j73WH/Zaf9hr/dFmr7P7B77e5pi8evUKz549Q/ny5eVaxYoVNS7l/m+hoaFYtWqVRq1r167o1q2bVsfWunVrLF++HGZmZvDx8cGgQYNgbm5uFHtzcrOYmBhDDyHPYK/1h73WH/Zaf7TRaycnp2zdT2/BJDExESYmJrCwsJBr1tbWSExMfOdjPD094eHhoVHT9h4TAJgzZw7i4+PRp08fNGrUiIdtdEypVCImJgYODg7stY6x1/rDXusPe60/huj1fwom3t7eOHfuXJa39e/fHwMHDnznY62srJCRkYHk5GQ5nCQkJMDKyuqdjzEzM9N6CMmKtbU11qxZg+joaCgUCr7R9YS91h/2Wn/Ya/1hr/VHn73+T8EkKCjoo58of/78KFSoEG7evIlq1aoBACIjI+Hs7PzR2yQiIqLcRevxJzU1FSkpKQCAtLQ0+d8A4ObmhtWrVyMhIQGXLl3CkSNH0KJFC20PgYiIiHIorc8x6dy5M2JjYwEA7dq1AwCcPn0aAODl5YUZM2agVatWyJ8/P8aOHQtHR0dtD4GIiIhyKK0Hkx07drzzNgsLC8yYMUPbT0lERES5BGcNERERkdFgMCEiIiKjwWBCRERERoPBhIiIiIwGgwkREREZDQYTIiIiMhoMJkRERGQ0GEyIiIjIaDCYEBERkdFgMCEiIiKjIQkhhKEHQURERARwjwkREREZEQYTIiIiMhoMJkRERGQ0GEyIiIjIaDCYEBERkdFgMCEiIiKjwWBCRERERoPBhIiIiIwGgwkREREZDQYTIiIiMhoMJgDi4uLg5+eHBg0aoFOnTjh16pShh5QrpKamYurUqXBzc4OrqysGDx6MmzdvyreHhYWhefPmaNq0KQIDA8HVEbTj4sWL+OKLLxAWFibX2GvtCwsLQ5s2beDi4oKePXvi9evXcp291q7r16+jf//+cHV1hbu7O7Zv3y7fxn5/vJCQEHTt2hVffPEF9u7dq3Hb+/p65coV9OjRAw0aNMDgwYMRGxur3YEJEmPGjBHTp08XSUlJ4tChQ6JJkybi5cuXhh5WjpeYmChWrVolHj58KNLT08Uvv/wi2rdvL4QQ4ujRo6JNmzYiJiZGPHnyRHTp0kVs3brVwCPO+TIyMkTfvn1Fnz59RGhoqBCCvdaF9evXi0GDBokHDx4IpVIpbty4IZKTk9lrHenatatYvXq1yMjIENeuXRONGjUSd+7cYb8/0c6dO8WJEydE3759xZ49e+T6+/qakpIi3NzcxNatW0VycrIIDAwUAwcO1Oq48vwek8TERBw+fBhDhgyBhYUFGjdujHLlyuHIkSOGHlqOZ2lpiYEDB6JYsWIwMTFB9+7d8eDBA7x48QK7du1Cly5dULp0aRQuXBi9evXC7t27DT3kHG/Lli2oVq0anJyc5Bp7rV0ZGRkIDQ3FhAkTUKJECUiShPLly8Pc3Jy91pGHDx+iVatWUCgUqFSpEhwdHREdHc1+fyI3Nzd89dVXMDMz06i/r69nzpyBpaUl3N3dYW5ujkGDBuHq1ata3WuS54PJ3bt3YWNjg8KFC8u1ChUq4Pbt2wYcVe508eJFFCxYEHZ2doiKikL58uXl2ypWrMief6KXL19i/fr1GDx4sEadvdaux48fIyUlBfv378c333yDTp06YdOmTQDYa13p1q0bdu3ahfT0dFy+fBmPHj1CtWrV2G8deV9fb9++rXGbpaUlSpcurdW+m2ptSzlUUlISrK2tNWrW1taIj4830Ihyp/j4eMyaNQvDhg0DoNpTZWNjI99ubW2NxMREQw0vVwgKCkKPHj2QP39+jTp7rV2PHz9GfHw87t27h+3bt+P+/fsYNmwYHB0d2WsdqV+/PiZPnozVq1cDAMaPH4+CBQuy3zryvr6+6zMzKSlJa8+f54OJpaUlEhISNGoJCQmwtLQ00Ihyn5SUFIwaNQoNGzaEu7s7AMDKykoj/CUkJMDKyspQQ8zxrl+/jitXrmDMmDFv3cZea5e5uTkAYPDgwbCwsEC5cuXg5uaGP//8k73WgRcvXsDf3x9TpkyBi4sLoqKi4Ovri3LlyrHfOvK+vurjMzPPH8opU6YM4uPj8fTpU7l248YNODs7G3BUuUd6ejrGjx+PIkWKYMSIEXLdyclJ4wydyMhI9vwTnD17Fnfv3oWbmxtatmyJP/74Az/++CNmzJjBXmtZ2bJlkS9fvixvY6+17/79+7CxsUGTJk1gYmKC8uXLo06dOjh79iz7rSPv66uzs7PGbUlJSbh3755W+57ng4mVlRVcXFwQEhKC5ORkHD58GLdu3YKLi4uhh5YrzJw5EykpKZgyZQokSZLrbm5u2Lx5M+7fv4+nT58iPDwcrVu3NuBIc7ZOnTrht99+Q3h4OMLDw+Hi4oJvv/0Wfn5+7LWWWVpaolmzZlizZg1SU1Nx584d7N69Gw0aNGCvdaBs2bJISEjAkSNHIITAnTt38Pfff6N8+fLs9ydKT09HSkoKhBDyv5VK5Xv7WqdOHSQlJWHHjh1ITU3FmjVrUKVKFZQoUUJr45KE4EnfcXFxmDx5Ms6cOYNixYphzJgx+PLLLw09rBwvNjYW7dq1g7m5ORQKdQZeunQpatWqhdDQUKxduxZKpRIdOnSAr6+vRnihjzdlyhQ4OjqiX79+AMBea9nr168xbdo0nDx5EgUKFEDfvn3RpUsXAOy1Lpw4cQLLli3DvXv3YGtri86dO6N///4A2O9PMWXKFPz+++8ateDgYNStW/e9fb1y5QqmT5+OmJgYVKlSBdOmTWMwISIiotwpzx/KISIiIuPBYEJERERGg8GEiIiIjAaDCRERERkNBhMiIiIyGgwmREREZDQYTIiIiMhoMJgQERGR0WAwISKdOn36NOrWrYu6deviwYMHhh4OERk5BhMi0popU6agbt26GDx4sFyzsbFBtWrVUK1aNZiZmRlwdESUE5gaegBElLtVqlQJYWFhhh4GEeUQXCuHiLSiXbt2iI2NfaseHByMIUOGAAC2b9+OkiVLyouHlShRAl5eXli5ciXi4+PRvn17eHt7IygoCNu3b4etrS369esnL5AHAE+ePMGKFStw4sQJvHjxAsWKFUO7du3Qr18/mJryby2inI4/xUSkFZ999hmSkpLw4sULWFtbw8nJCQBw/fr1dz7m6dOnmDNnDgoXLoyEhASsX78ef/31Fx4/fgwbGxs8fPgQ8+bNQ506deDk5IQXL16gX79+ePTokfwct2/fRnBwMO7fv4/Jkyfr6+USkY5wjgkRacWCBQvQsGFDAKqQEhYWhrCwMFSqVOmdj0lLS8Py5cuxZcsWFCtWDAAQExOD9evXY9OmTTA3N4dSqcSZM2cAABs3bsSjR49QqFAhbN26FevXr8fcuXMBAL///jtiYmJ0/CqJSNe4x4SIDCZ//vyoWbMmAKB48eJ49OgRypUrh5IlSwIA7O3t8fDhQzx//hwAcOXKFQDAs2fP0KJFC41tCSFw+fJlODg46O8FEJHWMZgQkcFYW1vL/zYxMXmrJkkSAFXoePP/bx4qepOFhYXOxkpE+sFgQkRakxkMkpOTdbL9qlWr4vjx4zAxMcGsWbPkPSsJCQk4dOgQmjRpopPnJSL9YTAhIq1xdHQEAFy9ehXdu3eHpaUlBg0apLXtd+vWDdu2bcPjx4/RuXNnODk5ISEhAY8ePUJ6ejratm2rteciIsPg5Fci0pr27dujadOmsLGxwa1bt3D58mUolUqtbd/e3h6hoaFo164dChQogFu3biElJQW1atWCv7+/1p6HiAyH1zEhIiIio8E9JkRERGQ0GEyIiIjIaDCYEBERkdFgMCEiIiKjwWBCRERERoPBhIiIiIwGgwkREREZDQYTIiIiMhoMJkRERGQ0GEyIiIjIaDCYEBERkdH4P7LNRf6mmhyTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -456,14 +544,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABI1UlEQVR4nO2dd3xUVfr/35OENAgJCZBAKKH3fmBBRIplAcWCfW2o2Fld3aLrfsWy6v521bWyuriyWHZXURfBvjZEUJQjSO8hQEJIgTQgPff3x507mdSZydxJJuF5v17zujO3nHtOZvKZZ57znOdxGIaBIAiC0PoJaekOCIIgCPYggi4IgtBGEEEXBEFoI4igC4IgtBFE0AVBENoIIuiCIAhthJYUdCPYH0eOHGnxPshYZCyt5SFjabZHg4iF3giVlZUt3QXbkLEEJzKW4KS1jkUEXRAEoY0ggi4IgtBGEEEXBEFoI4igC4IgtBFE0AVBENoIIuiCIAhtBBF0QRAEPzEMg4qKRkPEmwURdDfy8/P529/+5vN1s2fPJj8/v9FzFi5cyOeff97EngmCEKxUVhoMv87gjF8aVFW1rKiLoLvRkKBXVFQ0et1HH31EXFxco+c88sgjnHXWWf50TxCEICS3ALanwXfb4NutLdsXEXQ37rvvPvbt28fo0aMZP348c+fO5fzzz2fo0KEAXHjhhYwbN45hw4axePFi13UpKSnk5uaSlpbGkCFDuOmmmxg2bBjnnHMOxcXFAMybN4933nnHdf6DDz7I2LFjGTFiBDt37gQgJyeHs88+m2HDhjF//nx69+5Nbm5uM/8VBEHwhfzj1c//9ZlY6EHD//t//49+/frx008/8cQTT7BlyxaeffZZdu/eDcCSJUv48ccf0Vrz3HPPcfTo0Tpt7NmzhzvuuINt27YRFxfHu+++W++9OnfuzIYNG7jtttt48sknAXj44YeZMWMG27Zt45JLLuHgwYOBG6wgCLbgLujLvoKy8pYT9aAVdIfDEZCHL4wePZo+ffq4Xj/33HOMGjWKiRMncujQIfbs2VPnmj59+jB69GgAxo0bR1paWr1tz507t845a9as4YorrgBg5syZdOrUyaf+CoLQ/LgL+rFC+PSHlutL0Ap6MBAdHe16vmrVKj7//HO+++47Nm3axJgxYygpKalzTUREhOt5aGhog/5367zGzhEEIfjJL6r5uiXdLmHenKSUmgY8gPkF8ByQA/wFqAJu01pvUUolAa8B7YEXtdZv+NMxw2j+P0pMTAxFRUX1HisoKKBTp05ER0ezc+dO1q1bZ/v9J0+ezLJly7j33nv53//+R15enu33EATBXiwL/Zzx8L/1sHItnCg2aB/lm0fADjwKulIqCvg1MEtrXebc9zVwLhADvATMBu7FFPlVwDdKqXe01nVN2CAmISGByZMnM3z4cKKiooiNjXUdmzlzJi+99BJDhgxh0KBBTJw40fb7P/jgg1x55ZW8/vrrTJo0iaSkJGJiYmy/jyAI9pHntAFH9YfUw7A3A9JzYFCv5u+LNxb6JKAYeF8pdRK4HajUWucBeUqpeOd5E4Bfa62rlFIaGA7oQHQ6kPz73/92Pc/IyHA9j4iI4OOPP673GssH3rlzZ7ZurY5b+s1vfuN6vnTp0jrnAyilWLVqFQCxsbF8+umnhIWF8d1337F+/foaLhxBEIKP/OOmNyGug4O4GPN5wfHGrggc3gh6ItAfmAicBTwMFLodr1BKhQPttNZVzn0FQDy1UErdDNwMsGDBAs4++2w/uh54ysvLa4h6oElNTeW2226jqqqK8PBwHnvsMdvu39xjCSQyluDkVB1LRlZHoD1U5BMRGglEsO9ALsmxZQHpW3JycoPHvBH0fGCt1rpMKfUFpqC7O5rDnMfKlVIhTlGPBY7VbkhrvRiwArhbfp2sBzIyMhr949lNcnJyDQvfTpp7LIFExhKcnKpjKTdMOzalRxxd95qy1i6qM8nJze9D9ybKZT0wRCnlAEYD24EwpVScUqon1cK9HpimlAoDxgHbAtBfQRCEoMKaFI3rALEdzOdB63LRWucqpZYDX2Na1TcAycBHzte3O0/9M2aUy6PAS1rr4oD0WBAEIYiwJkU7xUBse/N5wYmW6YtXYYta60XAIrdd+4DTap2TCQS3U1wQBMFm6rPQC08YQHC6XARBEIQGqCHo7U0RbykLXQTdDzp0ML+ODx8+zCWXXFLvOdOmTUPrxqM3n3nmGU6ePOl67U06XkEQWh7DMKoFPQhcLiLoNtC9e3dXJsWmUFvQvUnHKwhCy1NSBmXlEN4OIsOhoyXoLTQpKoLuxn333ceiRdVTBU899RSPPvooZ555pivV7YoVK+pcl5aWxvDhwwEoLi7miiuuYMiQIVx00UWu9LkAt912G0ophg0bxoMPPgiYCb8OHz7M9OnTmT59OlCdjhfgr3/9K8OHD2f48OE888wzrvs1lKZXEITmI99tQtThcLS4hY5hGC31CDo2bNhgnHHGGa7XAwYMMA4ePGgUFBQYhmEYOTk5Rr9+/YyqqirDMAyjffv2hmEYxv79+41hw4YZhmEYTz31lHH99dcbhmEYmzZtMkJDQ43169cbhmEYR48eNQzDMCoqKoypU6camzZtMgzDMHr37m3k5OS47mu91lobw4cPN44fP24UFRUZQ4cONTZs2GDs37/fCA0NNTZu3GgYhmFceumlxuuvv97o2NLT0/362wQTMpbg5FQcy7b9VQZTKo1BV1UahmEY67aZr9VNlYHsXoO66lWUS0vgOKPK80lNwFjd8I+SMWPGkJ2dzeHDh8nJySE2NpakpCTuvvtuVq9eTUhICBkZGWRlZZGUlFRvG6tXr+bOO+8EYOTIkYwcOdJ1bNmyZSxevJiKigoyMzPZvn17jeO1WbNmDRdddBHt25tf+3PnzuWbb77h/PPP9zpNryAIgcOy0OOc0S2xLexyCVpBbykuvfRS3nnnHY4cOcKcOXP417/+RU5ODj/++CPt2rUjJSWl3rS5nti/fz9PPvkk69evp1OnTsybN69J7VjUTtMrLhdBaH7cI1ygWtALT9Z/fqAJWkFvzJIOJJdffjk33XQTubm5vPnmm3zzzTd07dqVdu3a8dVXX3HgwIFGrz/jjDP497//zYwZM9i6dSubN28GoLCwkPbt2xMbG0tWVhYff/wx06ZNA6rT9nbu3LlGW1OmTGHevHncd999GIbB8uXLef311wMybkEQfKeOoAf7StFTjWHDhlFUVERycjKJiYlcddVVzJkzhxEjRqCUYvDgwY1ef9ttt3H99dczZMgQhgwZwrhx4wAYNWoUY8aMYfDgwfTs2ZPJkye7rrn55puZOXMm3bt356uvvnLtHzt2LPPmzWPChAkAzJ8/nzFjxoh7RRCCBEvQOzmzXEdFQFioFf1iEN6ueRcXOYwWKCThRJJzNSMyluBExtJ8VFUZhIR4J7DejuWx1wz+7x8G910Ff7rF9CoknFfFsULIXumgS1xABL3BRiVsURCENs/y1QYxMw2Wr7bXjnTPhW7RkhOjIuiCILRpysoN7n7B4GQJrNpot6CbW8uHDm5+9BaIRRdBFwShTfPKh3DgiPncbpGtV9DFQhcEQbCf4lKDR1+rtsoDJuhupX9bMnRRBF0QhDbLy+/D4Vwz+gTst5pdUS71uVzEQhcEQbCP1ZtM6/yG2eZruy10q7hFfRa6+NAFQRBs5KiznP2wPoHJU16fD72jCLogCIL9HHMKet/u5tZON4jhlgvdssrN584vj+PNv9RGBF0QhDaLZaH37WZuC06YQmwHJ4qhstL0z0eE1xOHLha6IAiCfVgWercEiAiH8gooLrWn7drL/i2q64racx9fEEEXBKFNUlxqUFxqVhNqH2V/fHhugbmNry3oYqELgiDYi2WdxweomlBWnrlNjK+5XwRdEATBZiz/eUKsubV7SX7WMXOb2KnmfolDFwRBsBl3Cx3sd7k0ZKF3jHbeRyx0QRAEezjq9HFbFnqczRb6kaNmtExip5rZbCU5lyAIgs0cc67irGOhB9iH3iEKHA4zrLGionlj0UXQBUFok9S20O32bbsEvZYPPSTE4VotWtTMpX5F0AVBaJMcKzKt4/gY0yVireDMt2kFZ0OToua9zG1zT4yKoAuC0CapY6E3k8slEPfyFhF0QRDaJHV86Da6XCorDdfCoq71WegtFLoY5ukEpVQKsB7Y5tx1KTANuBsoBq7TWqcrpQYDi51tPqC1/iIQHRYEoW3x/XbTBfKzofYWVA6khZ5bAFVVZtvtwur228qPbsXCNxceBd3J11rrSwCUUmHAPcBUYDzwAHAL8DhwI5AFfAyIoAuC0ChZxwym3mkQGQ7HPjAnFO3CstATOppbO8MWG5oQtejR1dym5/h/L1/w1uUyWSn1jVLqcWAAsENrXaa1XguMdJ7TXWu9R2tdCBxTSnUORIcFQWg7LPkISstM18RxmyNCLAs93inodrpBGpsQBejV1fxiOpjVvGGL3ljomUB/4CTwMjAXcP8hEercun85FADxQK57Q0qpm4GbARYsWMDZZ5/dtF43E+Xl5WRkZLR0N2xBxhKcnMpjqayCF5d3wZKhXfuO0D2hypa+GAYcLUgCHBQfP0xGGRQfDwW6cqyggoyMxk1nT2PZsS8KiKNjZDEZGfl1jncIjwQ6sSut/uP+kJyc3OAxj4KutS4FSgGUUv8F5gHu33GVzq37OxELHKunrcWYfnaA5s/+7iMZGRmN/vFaEzKW4ORUHsvH6wwO5VTLQHRMEsnJ9rhcjp80KK80iIqA/n3MPoW3NwCD46VhHvvpaSzlmG2lJEeRnNy+zvHRg83jOUX1Hw8U3kyKxmitnd4opgAfArcqpcIBBWx2HstUSvUDsoF4rXVu3dYEQRBMXlpR06azMyLElZirY/U+a1I0/7hZ5MLhaPqXR1aec9l/fP1t9Eo0twezmnyLJuGNy+V0pdSjmC6X/ZiToCXAKuf2Oud5fwCWYrpgHrS7o4IgtB2y8ww++A7ahcHQFNi0FwpP2te+KzGXm6CHt3MQGW5QUgYnS8wc6U3Fkw+9ewKEhEDmUSgrNwhvZ28ET0N443L5GDNqxZ23nA/387ZjWvCCIAiNsuugGfY3YQj06OIUdBsX4dRnoYM5MVpyzIx08UvQG1lUBBAW5iC5s8GhbMjIgT7dm34vX5CFRYIgNDuZR81t94TArKqsz0IHt9BFP907RzxY6ODmdsn2716+4G0cuiAIgm1Ygt4twSwRB81kodv05eHJ5QLQ0xmL3px+dBF0QRCanUxnLvFuCQ7KnSlmC08agD2+5oYsdDsEvarKIKeRZf8WvVpA0MXlIghCs+Nuocd2MEXc3igX80sioWMDxSf8uNfRQqisNN03EeENfwH1Smz+xUVioQuC0OwcdhN0w6l3gY5ygZqhi03F5W5pYELUQnzogiCcErhb6CdKzOeBjkMHe1wu3kyIQsvEoovLRRCEZsdd0K2iynZa6NnOsMIucTX3x8VY7p2mu0H+87l57bA+jZ/nLuiG0TxuFxF0QRBqUF5ezttvv81FF11Ev379+OGHH2xtv7TM4FghhIaagmuVa7MzysXKcmhlPbTw10JPPWzw6qdm3++5rPEJ3LgOZn3R48X+uXh8QVwugiDU4K677uLFF190vV6xYgUTJkywrX3LZZEUb6bLjW1vWq92xaGXVxhkHjULNXdLqHnMX0F/7DWDykqYNwv692hc0B0OB70SDbanmVZ6p5im3dMXxEIXBKEGlkU+adIkALKy7HUCu7tbwH4L/chRc6I1Kb5u8QlrYVFeUT0XesDdOv/DNd6FVza3H10EXRCEGuzfvx+Aa6+9FgigoDujROxeKepyt3Spe8yKTMmqkwvWMyvXmOGKl07zbJ1bWH1orkIXIuiCILgoLCzk2LFjREZGMnKkWbsm0BZ6+yjTPXKyBCoq/J88bEzQrXtaYZO+sDfD7NuEId4vfrImZa36o4FGBF0QBBdpaWkApKSk0K1bN8B+QT+ca60SNV87HA6X26XIhqpFDU2IgumGAdNCr6ry7ctj32Fz27eb99d0iTPFPzdfolwEQWhmLHdLnz59SEw0HcBZWVm2ht1VW+jVlq7L7WJDNEh6ttnXHl3qWtIR4Q7iO0JFpe9Wc6pT0Pv5UI+ks7NAdY5Y6IIgNDfuFnp0dDQdOnSgtLSUwkL7ytfXdrmAvbHojblc3O+b6YPbpbLSYH+m+byvD6lwXS6XfO+v8QcRdEEQXLhb6EANK90uMp0Tkt3dyshbOVbsiHQJhKCn50B5hemyiY703ocuFrogCC1Gswh6Ixa6HZEujfnQ3e/ri6A3xd0CYqELgtCCWC6X2oJ+5MgRW9qvqDDIzjOjWtxzodgVi15ZaXDYWc24e0L951j7D/tQ9diaEO3nY+Uhy0LPLWie5f8i6IIgAKbgWBZ6SkoKYL+Fnp1vLvrpEmeWabOwKxY9O8+c8OwSB5ER9btGrMlYKye7N6QeNs/t2923fO3toxxERUBJGZywIYLHEyLogiAAcOzYMYqKioiJiSE+3ozvs1vQ63O3gH0Wuif/ufu9fXG57Mswt766XKCmlR5oRNAFQQBqulscDtMStVvQs9zyuLjTsb15v8IT/rklAiboTXS5QLUfPScfNu01uPqPVbz8fmDcLyLogiAA1HG3gP2CnpNvbmuntbXL5eJpQhT8mxT1JWTRwt1C37QX/vUZfLVRBF0QhABSO8IFICkpCbBP0C23gyVyFra5XBpZVGThvvzfm4nKvCKDvCIzRUFjNUQbwt1Ct3zxfXxYbeoLIuiCIAB1I1zAfgs9t8AUtM6xtWp92m2hN+JyaR/lICYaysq9y7ro8p93x+WK8gV3C921OKmbPcWwayOCLggCUL+Fbvfyf8tCr+1yac5JUahe1OSN28UfdwtU53PJyTdIdQq6WOiCIASU9PR0AHr27Ona16FDB6KjoykuLub4cf8TrTTocrFp6f8hZ0Hmxnzo4Jsf3Z8JUahpofv75eAJEXRBEADIzjbV0LLKLex0u1iTorUF3Vr6709yrrwiM99KeDvondj4uY0J+rNvG1z5WDxFJ81fJLsOmltvc6DXxvo1kp5jLmYKDfX8C6KpiKALQiti3bp15Ob6sMTRS6qqqlztdu7cucYxOwXdZaHH1dxvh4W+bpu5VYPMrIqNYRXXqC3oR44a3Pt3g2+2RvDJ9+a+n/aa21H9mtYv68tL7zS3vRNrLqqyExF0QWgl7Nixg0mTJjFx4kSKippQQ60R8vLyqKyspFOnToSHh9c4Zufy/4ZcLi4L3Q8f+totpiV92nDP51qrRa3c7BZPLzMoLTOfr9tmUFpmsG2/mapgZBMFvXaRi0D5z0EEXRBaDRs2bABg3759/OpXv7K1bcvd0qVLXV+AXRZ6ZaXBsUJTHONrFUyODIewUCgtg9Kypk2+rt1qbieP8Gz91udyySsy+Nt71a/XbYftaWYqgYE9zeiYplD710ig/Ofgg6Arpa5USuU4n1+qlPpWKfWFUqqHc99gpdRq5/4zA9VhQThV2bt3r+v5kiVLePfdd21r2xL0rl3rzibaJeh5RWYel04xdV0ONaoWeel2MQyDB/5RxXvfGJRXGPyww9zvnYVubt0FfdF/4XgxTBhivv5xN3zvbHPMAO/6VB/xMeaXmEWfAIUsgpeCrpQKBS4FDimlwoB7gGnAQuAB52mPAzcCM4FHbO+pIJziWII+adIkAFut9MYE3a7FRQ25Wyx8jUXfkgqPvgZXPmzw/lqzJumAHtC1k2fB7Okc5sHs6n0vrjB/GTx+s4P+3SsoLYOlH5v7RvdvugiHhppVkix8KWHnK95a6FcCbwNVwABgh9a6TGu9FhjpPKe71nqP1roQOKaU6txAW4IgNAFL0P/0pz8RGRlJenq6LaGEADk5ZgB3Yxa6vz70hiJcLKz9Vr4XTxxxWtclZXDDn733nwP0SjSt5vQcM6VvwXEz7W5UBMwYC2MHmI7077eb5/tjoQN0cRtzi/rQndb5ZcBbzl2dAPd6VKH1tFUA1Eq/IwiCP1iCPmDAAHr06AHAoUOHbGm7MR+6VSzaX0H3ZKH3Nn8IcMDLHwLu2QutcEdv/OdgRsF07wyVlaaopzmHlpJkun/G9i+vcf5oPwXd3Y8eSB96mBfnXA0s01pXKaUA8gG3HxBUOrdVbvtigTrfs0qpm4GbARYsWMDZZ5/dhC43H+Xl5WRkZLR0N2xBxhKceDuWgoICcnNziYyMpKqqiq5du7J37142btxIx44dPV7vCWuVaHh4eJ3+WMvd09PTG+2rp7HsSYsC4ogOP0lGRt1csgntY4AObN5VwBlDPPtd9hyIBmKJDDcoKTP72L9rNhkZFR6vBegen0BGTjjrt+ZSeMIBxNOtUwkZGXmM6AOmjEFip0rKT2aT4UdIZYeITkAk7SOrKDmeRYYf0TzJyQ3n8PVG0IcCY5RSV2O6W34JDFFKhQMK2Ow8L1Mp1Q/IBuK11nWCZbXWi4HFzpeBL9/hJxkZGY3+8VoTMpbgxNuxWNaxZZ3379+fb7/9luLiYlv+FidPmmo1cODAOu1ZudFzcnLo3r17g/lMPI2lMsQADHp3iyY5uUOd48P6m8fzijuSnBznsc8VThtywVwHK9aYC4qmju9KSIh3VvrAXlWs3wXHyztTVAZgMDglkuTkZCoqM2gfZRalGDco1O+/cc8ks6/9kkPo0SNwn12Pgq61vtd6rpTSWuvblFKXA6uAEuA65+E/AEsxXTAP2t5TQTiFsdwt/fv3B6qX5zeHyyUqKorY2FgKCgrIy8tzCbyv5ObXn5jLIsVHl4vlk+/TzcGWpRAagtdibl5nbtOOGOQXVbcFZgjl+MGwaqP//nOojkUPpP8cvLPQXWitlXP7FtU+devYdmCKfV0TBMGiuQS9vklRMP3oBQUFZGZmNlnQrcr3teOyLVw+dC9d9e651T2tDK2PlCQHYJCWWZ110V1wr5/lYGuqwSXT/A8zNL8oDIb38XiqX/gk6IIgtAyBFvTGolzADF3cuXMnmZmZDBs2rEn3sCrfNzgp6sy/knbEjDH3lKrW0ySrJ1Kc4r0/E/Kdk6rugn7tTAfXzrQnZvyacyA+xsFZypbmGkQEXRBaAXv27AECI+gVFRUcPXqUkJCQBq1vK9IlMzOzyfdpKHWuRWwHB7EdDAqOm+c2dJ5FQ9WPvMVy8bgLekqAXCIR4Q7mTg1M2+7I0n9BaAU0ZqH7m6fcSsqVkJBAaGhovefYEbrojUWd4oPbxV8LvWdXCAkxwxaPF5s52TvFeL4umBFBF4Qgp6ioiKysLCIiIlzx57GxsXTo0IETJ06Qn5/vV/ue/OdQvVrUDgu9MQF2d7s0RlWVwVHnapiEJgp6eDsHyW7LH/t0a1pFomBCBF0Qgpx9+/YB0LdvX0JCzH9Zh8PhstIPHjzoV/ue/Ofgv8ultMyg6KQZPWLlbKkPbydG84qgqgriOkA7P1LRWr8IIPARKM2BCLogBDmpqakA9OtXM3+rXX70xkIWLfx1ubhb541ZwWbkCRzIatyN5K//3MJdxN3FvbUigi4IQY61+tK9NJz7a7sEPZAuF08TohYul4uH2/jrP7dwnwQNZBbE5kIEXRCCnMOHzUKU3bvXTAJil6A3h8vFWwH2Np+LXRa69YsAxOUiCIKTzz//nD/96U9UVVV5PtlHGhL0Xr16Ac1joVuVjAoLC11pAnzBFYMe1/h53gq6bRZ6Uv3PWysi6IJgA3fddRf3338/H3/8se1tB9pC98aH7nA4XG4Xb/zo//7MYOovq1wl3qy8454EuHMsREea2RPzi+r60UtKDaqqjID40MVCFwQBwzBIS0sD4O2337a9/eYS9MYsdPDN7fL3lQarN8Ezb5ui/M4qcztlZON+aofD4fKj17bSt6cZxJ1rcN/fDXI85IXxlp5dzfJyE4dBh2jxoQvCKU9eXp7LDfHee+9RWlpqa/ueBD09Pd1rV49hGPzlL39h7dq1rn3e+NDBN0E/6BTjJR/B5n1mebiO7eFCL7I9NRS6+O7XZs3Rl9+vLh3nr4UeGupg66sO1rzQ+sUcRNAFwW/cLeSCggI+//xz29o+efIk+fn5tGvXjoSEhBrHoqOjiY+Pp6yszCXKnli3bh333nsvs2bNYv/+/aSnp5Oeng54FnRvXS6VlQbpzu4cLYBfPGJa05dOg6gIz8LZy9mNQ9k193/9k9lO/nH4+HtznyefvDe0C3MQGiqCLggCdV0ey5Yts61tyxpuKA+5r24X67yioiKuvvpqLrnkEkpKSpg5cyZxcXGNXuuthX7kGFRUVr/eZtbO4JqfeyeavRLN8w66xaKXlRt8u7X6nEJngYgufk6KtjVE0AXBTywL9/TTTwdgxYoVtrld3AW9PnwtReduXX/77bd8//339OrVi9dee83jtd4KuuVuGdQLOkSZz3snwZSRDV/jTn0FnNfvhOLS6vYs7LDQ2xIi6ILgJ5aYnnnmmYwcOZKCggK++uorW9puyH9u4e5H9wZL0M8880wcDgcRERG8++67jUa4WHi7uMhylQztDdf+3Hx+3Uzvi0/0SqzZDsDXP5nbq8+BHm5d9deH3tYQQRcEP7EEvWfPnsyYMQOAn376yZa2vRV0Xy30yy+/nLVr17J+/XqctYI9YsW9WxE9DWFZ6L0S4S+3OXj9/xzcf7X3PmpL0A+6RblY/vNpox2uidXwdnUt9lMdyYcuCH5iWcc9e/Z0RZts377dlrYDJehJSUlMmjTJp7707dsXMAtKV1VVuRKFVVUZ/Ptz+OS7jiz9g8HBbFN8eyU6aB/l4OpzfLqNKwNiRi5UVBgYwFqn/3zqaOgS5+CF/xokdmr92RHtRgRdEPzE3UKPjo4GYMeOHba07UnQLR+6ry4Xy33iCzExMXTt2pXs7GwOHz5Mjx49KCwspGPHjjz0zyr2ZbTnrstqWuhNISLcQVK8wZFjZnji4aNmseZBvSApwUHXTgb3XwPD+4iY10ZcLoLgB4ZhuMS0R48eDBkyBDAF3Y40AIG00JuCZaXv27cPwzDo27cvSUlJnDa0BIAvN7gJeuNRkI3icrtkw+pN5vOpo8xtSIiDx24K4cqzRNBrI4IuCH6Qm5tLSUkJsbGxxMTEkJCQQGJiIidOnLClPJy3FnpGRgaVlZX1nmNRVVXl9arQhrBS+O7bt48jR45w9OhRSkpKmDUpEoAvNxiu6JSmWujgFumSBet3mi6cScNFwD0hgi4IfuDuP7dwt9L9xZOgR0ZG0qVLFyoqKlxi3RBHjx6lsrKS+Ph4IiIimtQfS9BTU1PZsmULACNHjmTGWFNsV28yFxOFt4OunZp0C6BmpIveaT5Xg5re3qmCCLog+IG7/9xi6NChgP8To0VFRRQVFREVFUVsbMMraLyNRbfcLYmJTTed3V0ulqCPGDGCxHgHg3qUU1JmnmfW62y6Rd2rq3ntxj0G+zPNhF2DezW5uVMGEXRB8ANLRC1RBfssdE+rRC289aP76z+Hmi6XzZs3A6agA0weXlbdJz/851BtoX/4nbkdMwDC/Cg1d6oggi4IfhBIC92Tu8WiJQS9tssFYPKw6tWx/kyIQvUXQpEz9bq4W7xDwhYFwQ/q86G7C7phGE2OlfZV0D2FLtoh6ElJSURFRXH06FEKCswqE8OHDwdg4pAyQkLM4s3+TIhC3evVYLHOvUEsdEHwg/pcLomJicTFxZGfn09WlofSO2588MEH3HjjjaSlpWEYBp999hlQnUOlIXz1ofsj6A6Hw+VHr6iooHfv3nTs2BGA2PYGYwea51kJtppKlziICK9+LRa6d4igC4If1OdycTgcTXK7PPzwwyxZsoSRI0cye/Zsli5dSlhYGHPnzm30usZcLhs3bmTAgAH84x//sEXQodrtAtXuFovfX+Vg8giYc5pftyAkxOHK2RITbRahEDwjgi4ITaSysrJelwtUu118mRjdt28fYEa3fPLJJ0RHR/P+++8zZUrjVSEacrmUl5dz/fXXs3fvXhYuXOgSfH8F3bLQoXpC1GLuVAdrFoWQlOC/i8Tyw48b5F/EzKmECLogNJHDhw9TXl5OYmKia8m/xeDBgwHYuXOnV23l5+eTl5dHdHQ0r7zyCrNmzeLLL79k5syZHq9NTk529cd9cdHTTz/Npk3mMsvMzEzWrFkD2Guh1xZ0O7H86OJu8R6Pk6JKqURgOVAOVAJXAf2AvwBVwG1a6y1KqSTgNaA98KLW+o2A9VoQggAr62BKSkqdYwMGDABgz549XrW1f79ZBaJv377ccMMN3HDDDV73Izw8nMTERLKyssjMzKRHjx6kpqby0EMPAXD++eezcuVKDMNccelPHLrVR4vaLhc7uepsB+t3Glw3U6xzb/HGQs8FTtdaT8UU7BuBx4BzgV8Af3aedy+myE8F7lBKRdrfXUEIHuwU9NTUVKCmWPpC7dS2L7/8MsXFxVxxxRX885//JDLS/HcMCQmhc+fOTbqHhWWhh4eHu8YZCM4e72DbayEM7yuC7i0eBV1rXam1trIMxQD7gEqtdZ7W+iAQ7zw2AfhSa10BaGB4IDosCL6wd+9ekpOTefrpp21v27Kq+/TpU+dY3759CQkJIS0tjbKysjrHa+OvoA8aZPolLBfPtm3bALj44ouJj4/niiuuAMwcLqGhoU26h8WAAQOYP38+Dz74IO3atfOrLcFevPKhK6VGK6W+BxYA3wKFbocrlFLhQDs34S+gWugFocX46KOPOHz4ML/73e/YunWr5wt8oDELPSIigl69elFVVeUS/sbwV9BrR9VYwm758m+//XYcDodrFas/hISE8PLLL3P//ff73ZZgL14tLNJa/wT8TCl1GfAHoKN7G1rrMqVUuVIqxCnqscCx2u0opW4GbgZYsGABZ599tr/9Dyjl5eVkZGS0dDds4VQdy8aNGwEzZvq6667jvffecxVm8Jddu3YB0KFDh3r706tXL9LS0li3bh0dOnSotw1rLFY0TGxsbJPeJyt74saNG0lNTSU1NZWQkBCio6PJyMige/furFy5kqSkpIB9Dk7Vz1hzY02C14c3k6LhWmvrN2MBcBwIU0rFYbpgLOFeD0xTSq0GxgG/q92W1noxsNj50qh9PNjIyMho9I/XmjhVx2LlQ3E4HGzYsIH333+f22+/3ZZ+WG0rpertz/Dhw1m9ejXHjh1rsL/WWCzxGD9+fJPeJyu0MTU1lZKSEiorK+nfv38Niz/Q7/+p+hkLJrwxVUYrpVYrpb4CfgU8Afwf8BHwJvB753l/dj5fDbyktS62v7uC4BvWpOTDDz8MwPPPP29LuxUVFRw8eBCA3r1713uOtxOjlZWVjbpvvKFv376Eh4dz8OBB1q9fD1S7W4RTB48Wutb6B+CMWrszgdNqnZcJBLcPRTilKCsrIy0tjZCQEO666y4eeughdu/eTUlJiSvqo6lYBSW6devWYFveCnp6ejoVFRV0796dqKimVT0OCwtj4MCBbN26lffeew8QQT8VkYVFQpvFKmbcq1cvOnbsSP/+/amqqmL37t1+t+2NRT1woJnYpCFBr6yspLS01O8JUQtrYvSTTz4BRNBPRUTQhTaLJaSWpTxs2DCgOqTPHxoLWbRISUkhNDSUgwcPUlJSUuNYeno6Q4cO5fTTT+fLL78E/Bd0K4LFupcI+qmHCLrQZqkt6JYFa4ege2Oht2vXjj59+mAYhssKB8jOzuass85i9+7dZGZm8uijjwL2WegWIuinHiLoQpslkBa6t5OYtf3olZWVzJ49m127djFixIga19tloQN07tyZhIQEv9oTWh8i6EKbxfKVt5TLxf3eVl+2b9/Ojz/+SNeuXfnss89YsmQJMTExQPVqz6YycOBAV4y9HQuIhNaHCLrQ4uzYsYNnn322RqZAO6htoQ8aNIjQ0FD27dtXx6ftK0210C3Xy7hx40hMTGTgwIGsWrWKl156ifHjx/vVp4iICFeeFXG3nJpICTqhRTl69ChnnnkmmZmZ9O3blzlz5tjSbklJCYcOHSI0NNRlRUdERNC/f3927drFrl27GDVqlE9tHj9+nA8//JAffviB9PR0HA5HnTzotbEiXaxVpfVFtIwdO5axY8f61JeGGDp0KHv27PHb2hdaJyLoQothGAY33XSTa8Xl5s2bbRP0ffv2YRgGffr0qZFAaujQoezatYtt27Z5LegFBQUsWLCAd999l+Li6vVyo0ePJiIiotFrLUvZEnSriIW//vKGuPvuuykvL+fqq68OSPtCcCOCLrQYr7zyCsuXL3e99qVcmydqu1sshg0bxvLly33yo//3v//ljTfM9P6TJ09m5syZjBo1iqlTp3q8tkePHkRFRZGVlUV+fr7LQncvEmEnU6dO9apfQttEfOhCi2AYBgsXLgRw5VbxpVybJyyLuD5BB98mRq1+LVy4kDVr1vB///d/zJkzx1UcuTFCQkJquF3sWkQkCPUhgi60CNu2bSMzM5Nu3bq54rB37txJVVWVhyu946effgKo41axBN2XXwNWhErtOG9vsdwuO3bs8Do6RhCaggi60CJ88cUXAMyYMYNOnTrRrVs3iouLOXDggC3tW2lzR48eXWP/wIEDXZEuJ0+e9Koty9pv6kSjdd2XX35JWVkZiYmJDabTFQR/EEEXWgRL0M8880ygOm7aDj/6iRMn2L17N2FhYS6L3CIiIoLBgwdTVVXllduloqLCNZHZ1HJrlqBbOVbE3SIEChF0odmpqKjg66+/BqoF3XJn2OFH37JlC4ZhMHTo0HqjUCw3zKZNmzy2lZaWRnl5OT169KB9+/ZN6o8l6Dk5OYAIuhA4RNCFZkdrTWFhIf3793cVN7bTQrfcLWPGjKn3uC+CbvnP/Ynrrn1toCJcBEEEXWh2artbwF4L3ZoQre0/t/BF0P31n4NZos69+o1Y6EKgEEEXGqW8vNz2NusTdHcL3TD8q07Y0ISohSXomzdvbvBepaWlQLWgW6GHTcX9C0EEXQgUIuhCg+zevZvExEQWLFhgW5u5ubmsXbsWh8PB9OnTXfu7du1KfHw8hYWFHD58uMntV1RUsGXLFqBhQU9KSqJr164UFBTUG1Xz9ttvExUVxaJFi2xxuUDN3CrichEChQi60CCPP/44eXl5rFixwrY2ly5dSllZGbNmzaJz586u/Q6Hw2Wl++N22bVrFyUlJaSkpBAXF9fgeSNHjgTqul0Mw+Chhx7CMAx++9vfuqx9fwXduj4yMpKkpCS/2hKEhhBBF+rl4MGD/Otf/wLM6jr5+fk+XX/o0CHOOeccLrnkEh555BFXObjFixcDcOutt9a5pikFKHbu3MmqVatcry3/eUMTohYN+dE///xz18RscXEx+fn5REREuCZvm4ol6H369HGluBUEu5FPllAvTz75JBUVFa7XvuYQf+utt/jss8949913efDBB/nZz37G3//+d/bs2UOPHj2YNWtWnWssF8mPP/7o9X0uvvhipk+fzsqVKwFc5dwacrdYNCTozzzzDAB33nmny8Lv378/oaGhXvepPqZOncrFF1/Mfffd51c7gtAohmG01CPoSU9Pb+ku2IYvY8nKyjIiIyMNwBg/frwBGC+99JJP97v99tsNwLjyyiuNqVOnGoDr8fDDD9d7zfr16w3AGDRokFdjqaioMMLCwgzA6Ny5s7Fo0SIDMEJDQ40NGzY02samTZsMwOjXr59r365duwzAiIyMNHJycoxXXnnFAIzrr7/ep7H7wqn6GQt2gnwsDeqqWOhCHZ5//nlKSkqYM2cOl112GQBbt271qQ0rZ8nll1/Ohx9+yM9+9jMAQkNDufHGG+u9ZuTIkURERLBr1y6vXDzZ2dmuXxG5ubnccccdADzxxBMeXS6DBw+mXbt27Nu3j6KiIgBeeuklAK655ho6d+7MDTfcwPr163n66ac9D1gQggARdKEGx48fZ9GiRQDce++9DB8+HGi6oPfp04f27dvz4Ycfcu6557Jw4cIaMdnuhIeHu4RYa+3xHhkZGQD07t3bVT/z8ssv51e/+pXHa8PDw10To9a9LF/8VVdd5TpPKUVsbKzH9gQhGBBBF2qwZMkS8vLymDRpEpMnT3YJurWc3hsMw6hToi0hIYEPPvjAlTK3ISZMmADADz/84PE+6enpAIwYMYLPPvuMxx57jFdeeQWHw+FVPydOnAjA999/T3FxMZs3byYkJASllFfXC0KwIYIuuKioqHC5F377298CkJycTGxsLEePHiUrK8urdo4cOUJJSQnx8fFe5Qx3pymC3qNHD8aMGcP999/vU74VS9DXrVvHxo0bqaysZPjw4U3O2SIILY0IuuBi+fLlpKWlMWDAAM4//3zAjA/31e3iT85vS9C///57j78I3AW9KbgL+vfff1/j/oLQGhFBF1x89dVXANx44401wvR8FXTL3dIUQe/fvz9xcXEcOXLEJdgN4a+g9+vXj4SEBLKysnj77bcBEXShdSOCLriwVmjWrvLTnBa6w+Hw2u3ir6A7HA6Xlf7dd98BIuhC60YEXXBhrZC0luBbNKegA64Qx0ALOlS7XQCio6PrFMQQhNaECLoAwNGjR8nOzqZ9+/b07NmzxjFL0Ddv3kxJSYnHtvwVdCt0sbH0toZhuAS9oTBIb3AX9HHjxhEWFtbktgShpfH46VVKTQCeBcqBDOBa4ELgbqAYuE5rna6UGgwsdrb5gNb6i0B1WrAfy90yZMiQOrlGOnfuzNixY9mwYQNffPEF5557bqNt+SvoDS3LP3HiBEuXLiUsLIyLL76Y0tJS4uLi/KrPOX78eBwOB4ZhiLtFaPV4Y6EfAmZorc8A0oALgHuAacBC4AHneY8DNwIzgUfs7qgQWBpyt1hYUS9WzpSGqKio4ODBg4C54KcppKSkEBMTw5EjR8jOzgbg1VdfpX///ixYsIDbbrvNFZXij7sFIDY21pUUbPz48X61JQgtjUdB11pnaq2LnS/LgEHADq11mdZ6LTDSeay71nqP1roQOKaU6lxfe4J/PPvss1xwwQVccMEF3HPPPTUSaPmDZaFb4lYbS9Dff/99qqqqGmwnPT2dyspKunfvTmRkZJP6EhISUiO97ebNm5k3bx5HjhwhIiICwzB48sknAf8FHcw0wfPmzXONURBaK147DJVSvYFzgPuALm6HrPg29y+HAiAeyK3Vxs3AzQALFizg7LPPbkKXm4/y8nLX8vJgIDc3t86y9qFDh9abubA2nsZi5f3u2rVrved16dKFbt26kZmZyccff1wjm2FFRQXffvsta9eudV2bnJzs19+uf//+rF27ltWrV7vi0S+44AJmzZrFrbfe6lqm36lTJ7/fo3HjxjFu3DiOHTvmVztNIdg+Y/4gY2keGpsz8krQlVIdgdeBeZgC7r78r9K5dTfbYoE6/x1a68WYfnYwM+8FNRkZGX5NuNnNN998A5ihdePHj2fRokWsXLmS+fPne7zWfSw7duzg+PHjNVwMqampAEyZMqXBMV900UX87W9/Y926dS4/+n//+19uv/32OqtIR40a5dff7rTTTuPVV18lLS2NnJwcwMzTctFFF/G73/2OwsJCwCwNF0zvka8E22fMH2QsLY9Hl4tSKgx4E3hYa70L2AMMUUqFK6VOAzY7T81USvVTSsUA8Vrr3AaaFJqIVYtz7ty5LFy4kLCwMD766COOHDnidRsnT55kypQpnHbaaezZsweAoqIiDh06RHh4eKMTmRdccAFQ04/+2GOPkZWVRf/+/bnvvvt44oknePbZZ3n00UebMkQXlstl/fr1rF69GoDp06cTGRlZ4xeJHS4XQWgreGOhXwn8DHhAKfUA8CLwDLAKKAGuc573B2AppgX/oM39FKhZXLlr167Mnj2blStX8sYbb/Cb3/zGqzbefPNNjh49CphpZhcvXszOnTsBs6pOY2F7U6dOJSYmhs2bN5OWlkZcXBwbN24kPDycTZs2ER0d7ecIqxkxYgQOh8NVpHnYsGGu0m1z587lrbfeAkTQBaEGjSVLD/Aj6AmmJPepqakGYMTFxRkVFRWGYRjG8uXLDcAYOnSoUVVV1ej11liUUq5CE+Hh4UZGRoaxdOlSAzAuu+wyj/24+OKLDcB44YUXjJUrVxqAMWXKFP8HWA8DBgxw9fXOO+907T9w4IDRs2dPAzD27NkTkHs3F8H0GfMXGUuzIQUuWjuWdT59+nRXnpVzzz2XLl26sH37dq/yh2ut0VrTqVMn5syZQ1lZGY8//rir7YYiXNyZM2cOYEa7WBOTU6dObcqQPOKeguDMM890PQ8NDeXDDz9k+fLl9O/fPyD3FoTWiAh6K8Hd3WLRrl07Lr30UgA++eQTj21YFXnmzZvHww8/DMCiRYt4/fXXAc91OAFmz56Nw+Hgq6++4qOPPgJg2rRpXo/DFyxBDwkJqfOlMWLECC688MKA3FcQWisi6EHEgQMHWLBgAZmZmTX2V1RUuIofuws6wIwZM4DqajsNkZqayhtvvAHALbfcwpgxY7j44osBM3fKSy+9xHnnneexj126dGHixImUlZWxc+dO2rVrx6RJk7wan69YhSYmTpwoVYMEwRsa88cE+BH0NLcfbcGCBQZg3HDDDa59lZWVxtVXX20ARp8+fer4yrOzs12FjUtKSuptt6qqypg8ebIBGNdee61rf2lpqZGdne1zPx9//HGXb/v000/3+XpvqaqqMl588UVj+/btNfYHuX/TJ2QswUmQj0V86K0Ba3HPsmXLOHHiBIZhcMcdd/DGG2/Qvn17/v3vf9cpr9alSxeGDx9OSUlJg9kJX3vtNdauXUtCQgJPPfWUa394eDhdunSp95rGcLfkA+VuATO97a233tpgOgJBEGoiqeVs4uDBg/zpT3+iuLiYsLAw7rjjDo+V592pqqpi82YzpP/48eO8++67gOn3joiI4P3336+RGdCdadOmsXXrVlatWsWUKVNqHPvpp5+45557APjrX/9K587+Z2QYPnw4KSkppKWlMX36dL/bEwTBJhoz3wP8CHp8+dl12223udwQgDFq1CiPoYTuWGGJ1mP8+PFGly5dDMBYsmRJo9e+8847BmDMmDGjxv5PP/3U6NChgwEYZ511lk/98cTatWuNZ555xtY2vSXIfw77hIwlOAnysTSoqyLojeDLm2rFTD/66KNGUlKSARgfffSR19dbMeUTJ040oqKiXMI+ZcoUj6JZnx9969atRlhYmAEYv/jFL4x9+/Z53ZdgJ8j/2XxCxhKcBPlYxIceSA4ePMiePXvo2LEj9957r8vF8fjjj3vdhpX7e8qUKa7ok7CwMF588cU6fvPa1OdHf/vtt6moqOCyyy7j9ddfJyIioilDEwShFSGCbgNWjPjUqVMJCwvj1ltvJS4ujjVr1rBmzRqv2rAEfdSoUdx9993ExMTwyCOPeF0SzfJlf/jhhwD873//A+Dqq6+uU7BCEIS2ifyn20DtRT8xMTH88pe/BMx8Kd5gCfrIkSMZO3YsBQUF/P73v/e6D5ZV/+abb3Ls2DG+//57wsLCAhqFIghCcCGC7ieGYdS7ivPWW28F4Msvv6SysrLeay0KCwtJTU0lPDycwYMHA3h0s9RmypQp9OzZkwMHDvDHP/6RqqoqJk+eTExMjE/tCILQehFB95MdO3Zw5MgREhMTa7hHunfvTkpKCsePH2fbtm2NtrFlyxbAzKXSrl27JvUjJCSEK6+8EoDnnnsOgHPOOadJbQmC0Do5JQQ9MzOTtWvXsnbtWg4dOmRr25Z1PmPGjDpWtbUkft26dY22sWLFCqBmMqqmcNVVVwG4SsT9/Oc/96s9QRBaF21e0PPy8hg2bBinn346p59+OoMHD+bAgQO2tW/lUKmdYwVwLQRqSNCrqqq4++67XX72uXPn+tWXkSNHMnz4cAASEhJ8WtgkCELrp80L+j//+U/y8vJISkqiV69enDx5ssbyd38wDMNVFu6MM86oc9wS9O+++67OsZKSEi6//HKeeeYZ2rVrxxtvvGFLkeKrr74agJkzZ0p0iyCcajQWpB7gR8CprKw0+vbtawDGihUrjM2bN7sW4GRlZXm83n1xwX/+8x/jvffeq3F8586dBmAkJibWu/intLTUiIiIMADj2LFjrv25ubmuZFkdO3Y0vvjiCz9GWfeezz//vHH48OEGx9LakbEEJzKWZuPUXFj08ccfk5qaSkpKCueeey4jRozgvPPOo6SkhGeffdbrdvbt28eVV17JhRdeyJIlS1z7rRjz008/vd6olPDwcMaNGwdQI3HWtddey9q1a+nRowdr1651pcC1g/DwcBYsWEC3bt1sa1MQhNZBmxb0F154AYDbb7/dVeXn/vvvB8zCDgUFBV61Y9WvBJg/f77rteVuqZ0Qy53abpeysjLXROqaNWtcPm9BEAR/aROCXlJSUmff3r17+eSTT4iMjOSGG25w7Z80aRJTpkyhoKCAd955x6v2LQGfNWsWhmFwzTXXsGvXLp8E3ZoY3bx5M6WlpQwaNIjevXt7N0BBEAQvaPWC/sILLxAVFcWFF15YI9578eLFAFxxxRUkJCTUuOaaa64BcKWobYzt27ezefNm4uLieO+997juuusoLy/npptuIjU1lQ4dOjBy5MgGr7dCF7/99lvKy8tdrpcJEyb4NlBBEAQPtGpBr6qqckWsrFixghEjRvD3v/+d0tJSl6/bWrHpzgUXXEBISAiff/45+fn5jd7Dss7nzp1LeHg4jz/+ONHR0S7r/LTTTiMsrOG08j169GDo0KEUFRXxzTffiKALghAwWrWgr1mzhrS0NHr06MHtt9+OYRjcdddd/PGPf+To0aOMHj26XuHs2rUrU6ZMoby83JXMqj4Mw+DNN98ETEsfzBWgv/71r13nNOZusZgzZw4AH3zwgQi6IAgBo1UL+muvvQaYUSOLFi3ixhtvpLS0lMceewwwrfOGcqJYyawac7t8+umn7N69m27dutWozPPb3/6Wrl27AtSpRl8fVsm2t99+m507dxIeHu73qlBBEIQ6NBbTGOCHX5w8edKIiYkxAGPHjh2GYRhGQUGBkZKSYgBGhw4djMLCwgavT09PNwAjKirKOH78eJ3jlZWVxqBBgwzAeP755+sc37Bhg/Hyyy97VbGnvLzciI+PdxWtmDBhgg8jtYcgj6v1CRlLcCJjaTbaXhz6W2+9RVFRERMmTHBlKOzYsSOvvfYaHTp04Fe/+lWjmQaTk5OZOHEixcXFLrdLdnY2l19+OX/+859ZunQpu3btolevXtx00011rh8zZgzz58/3KitiWFgYs2fPdr0Wd4sgCIGgVRaJXrNmDXfccQcAN954Y41jU6ZMIT8/3xV33hhXXHEF69at49VXX+Wyyy7jqaeeYtmyZSxbtsx1zsKFC22p9nPeeefxxhtvACLogiAEhlZnoW/YsIFzzz2XkydPMm/ePObPn1/nHG/EHOAXv/gFYWFhfPLJJxw4cIClS5cCuCz+vn37cu2119rS75///OeuaBgRdEEQAkGrstCtGpmFhYVceuml/OMf//ArAVWXLl2YM2cOy5cv56qrriI7O5uhQ4eyZcsWvv32W6Kjo5ucn7w2cXFxvPDCCxw5coSBAwfa0qYgCII7rUrQw8LCWLZsGU8//TSvvPKK15Z4Y1x//fUsX76ctWvXAnDTTTcREhLC6aefTkZGht/tu3PLLbfY2p4gCII7HgVdKRULfAYMBSZqrbcqpS4F7gaKgeu01ulKqcHAYmebD2itvwhEh8eOHcvrr79uW3uzZs0iMTGRrKwswsPDXatIBUEQWhve+CtOAucC7wAopcKAe4BpwELgAed5jwM3AjOBR+zuaKAICwtz+cnnzp1bJ02AIAhCa8Gjha61LgdylFLWrgHADq11GbBWKfWkc393rfUeAKXUMaVUZ611biA6bTcPPPAA8fHxNZJ4CYIgtDaa4kPvBBS6vbYc2e7WfgEQD9QQdKXUzcDNAAsWLODss89uwu0DwzXXXEN5eXkNv3nt160ZGUtwImMJToJ5LMnJyQ0ea4qg5wMd3V5XOrdVbvtigWO1L9RaL8b0s4O5ajKoycjIaPSP15qQsQQnMpbgpLWOpSmCvgcYopQKBxSw2bk/UynVD8gG4luLu0UQBKGt4JWgK6U+AkYDg4C/A88Aq4AS4DrnaX8AlmK6YB60tZeCIAiCR7wSdK317Hp2v1XrnO2A51yygiAIQkBodUv/BUEQhPoRQRcEQWgjiKALgiC0ERyGEfTRg4IgCIIXiIUuCILQRhBBFwRBaCOIoAuCILQRRNAFQRDaCCLogiAIbQQRdEEQhDaCCLogCEIbQQQdUEq1d24dLd0Xf1FKRTu3bWEsvZ3btjCWn7WFcQAopXq1dB/sQinVqaX7YCen9MIipdQ5wE3AYeDPWuvDLdylJqOUuhC4GjgEPNHKxxIN/AXoCVzirJrVKlFKjQKeBdYBC52VvlolSqmZwAKgFPgP8InW+njL9qppKKWmAr/GLMKzCNimtS5p2V75z6luof8C+AewFbhVKdUqs0Uqpc4Drgf+jFmA5F7n/lZpEWqtTwJlQAzmuFrtWDAzkD6utb4P6NvSnWkqSqlQ4FbMAjUPY9ZCaN+K35fLgX9ifjHNBi5u2e7YQ1MKXLRanJbf5cAaIAs4CPwAfOXcP04pta81WLfOsVwJfAxsAOZrrXOUUruBN5VSXbXW2S3aSS9xe19Wa633OUViL/Bf4E6l1Cda64Mt2kkvcf+MOWvsngRmKqXuwywCsx54X2u9ryX76Q3OsVwBfA0cB7Zg/po9gFkfIQpoh/nlG9QopaIwi9p/orX+GtgPZGL+/5cA5yqlBmutd7ZgN/3mlLHQlVJXYhbliAZStdaFQBIwyfkzeCMQiVk+L6hxG0skkK21PuwU8xBMq3Z/KxJzayxRmF+waK0NYCjme/Ff4BalVM+W6qO31BpLmnN3NNAN+A1wO6a74twW6J5P1B6L1joL+ALTrbcR01VxE3BHS/XRW5yfnf9gGnHfOXc7gD6YpTC3Y372+rdIB23klBB0pVRH4DLgj5gfyrOUUp2BF4H5Sqn2WuutQG8gpcU66gX1jGWaUmowgNa6ClNAKpzn9grmn8S1xvIlMFUpNcx5+GvMXx4nMEXkTuc1QfmZrWcs05VS3YF3Ma3YnlrrAkyht96foHxv6vmMnamUGqC1XgV8DizSWl8NfACEK6VCgnUsTsKAlZi/xH+plDoN+BQ4DRimtT6KaRxFQfC+L97QZidFnTPxvwE+BNYCZwB3A+HA+8C1wFTgZsw3/BtMf+27WusPWqLPDeFhLCsxx3KB1jpNKXUj5ge1AEgA7gimiSsvx3IOcAswDbNG7WHghNb6gRbocoN4+Rk7E3McIzEtwdnAXq31wy3Q5Qbx8n2ZhfnrohumIC4A8rTWd7ZEnxvCbSwrMefHejhfZ2AaCfOA/weMwCx4vxM4D9Pl948W6LJtBKW14y9KqR7AU5i+viTgNa31R8ATwHSt9ZPAa8BftNZ/xvwA3wJsDkIx9zSWpzAnd/7svKQXpqDv0VpfF2Ri7s1YXgMeAp4Elmitr9Ba3xOEYu7NZ+xVzOiptzF/8v8M+DYIxdyX92UJZqH4h4AfglDM3ceSDPxNa60xjZsyrfW/nMfPAV7HdOlNBda3djGHNiboSqkz3H4uxWmtn9JavwrEKKV+r7X+H6bvDMxC19FKqRjnT8nrtNZPN3+v68fHsbyA82c85k/iSVrrF5u5yw3i41iexbSa0Fq/4bw+aD6nTRhLuFKqo7Pm7q9b+fvSHojUWv8H8xfh8y3Q7XppZCyxSqn5wGPABACt9SfAYOd5W4E7g2ks/hA0/yj+oJTqoJT6DNPfNxtzwmaNUuoW5ynfAOcrpeK01pVKqTOA9zAjKY4DaK0r6rbc/PgxllQArfU3Wuv85u95Xfx5X5yhi4BrbqBF8WMs+5wT8GitK1ug63Xw8305ARAs8fRejGU1cINzu0Yp9aDz/MPOc4PmfbGDNuNDV0qNw1yIMgFzoUCcc5uGKdonMK3XbcDLmD/n322JvnpCxiJjCTSn2FhKMb+QvgMSMSdC/9cCXQ04bUbQLZRSz2H69t5QSnXD/Pm+F/gV8C+t9ZGW7J8vyFiCExlLcOJhLK+3llBef2gTLheoEWr0L8yQsa5a60zMWOa3MUMSi4LJH9sQMpbgRMYSnHg5luOtORzRW9qchQ6glPol0A/IA/YBu7XWP7Rsr5qGjCU4kbEEJ21pLE0h6L99fcHNmhiJGTObqrV+ozW+oTKW4ETGEpy0pbH4Q1u10C8GPtBal7Z0X/xFxhKcyFiCk7Y0lqbQJgVdEAThVKRNuVwEQRBOZUTQBUEQ2ggi6IIgCG0EEXRBEIQ2ggi6IAhCG+GUKkEnnBoopVIwS4yBWZj5j879r2AmakJr3aRVg0qpoZjFH1Y5s3SilFoKXAeMd6ZqFYQWQQRdaOvMU0o9ipn69TIb2hsKPOh8vsqG9gTBNiQOXWhzuFnoqUBfYAZm/ci/YaZMTcZ0N/4Bsy5mPKCBBVrrbUqphzBF+x+Y1YbiMOuBrqfa8reYjlkB5zrMwgmXOtv+hdb6m4AMUBAaQHzoQltmB/A9ppvlBswUqvnOY9dj1szcjCns44EVSql2btdPwSweEotZsiwHszAKmLVCr8QsK2dxGmaq2R6YFX0EoVkRQRfaOkswrebJmKX6LGY7t/dorZ8DVmAmdRrods5ftdbPYlr6Kc7iDmudx7Zqrd+slZL1Ia31o5j5t1NsH4kgeEAEXWjrvAlUAunAZ/UcN2pt3Tnm3FZQ/b/SmI/S/fxQ37opCP4jgi60aZzl324AbqlVyu5D5/avzpSrF+BMt+qhyTzndopS6gqlVJStHRYEP5AoF6HNo7V+q57dSzEnR2/CnDRdjzkpWq6Uaqy5NZj1K89wXtfT1s4Kgh9IlIsgCEIbQVwugiAIbQQRdEEQhDaCCLogCEIbQQRdEAShjSCCLgiC0EYQQRcEQWgjiKALgiC0EUTQBUEQ2gj/H17p0QoAkxZXAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7LUlEQVR4nO3deXgT5fo+8DvpmqZ7gUIXSmvZSmWRssim7IsHigjKJooCRz3uivp1ReB4BFeOGwhI/SmKCAehLHJEBAGVTQRO2bdSSqEUaOmSNm2T3x9hJjNt2mbSTNLl/lyXF5NkmpmMQG6e93nf0ZjNZjOIiIiI3ETr7hMgIiKixo1hhIiIiNyKYYSIiIjcimGEiIiI3IphhIiIiNyKYYSIiIjcimGEiIiI3IphhIiIiNyKYaQOMplMOHv2LEwmk7tPpV7g9VKG18t+vFbK8Hopw+tlxTBCREREbsUwQkRERG7FMEJERERuxTBCREREbsUwQkRERG7FMEJERERuxTBCREREbsUwQkRERG7FMEJERERuxTBCREREbsUwQkRERG7FMEJERERuxTBCREREbsUw0kC0atUKH374od37b9u2DRqNBrm5uaqdExERkT083X0Cjdmdd96Jzp07KwoRVdm7dy/0er3d+/fq1QtZWVkICgqq9bGJiMh9snLM+HEPMLIX0CRY4+7TcQjDSB1mNptRVlYGT8+a/zc1bdpU0Xt7e3ujefPmjp4aERHVEckvm7H3GDCsB7DpnfoZRjhM4yYPPvggtm/fjgULFkCj0UCj0SAlJQUajQabN2/GqFGjoNPpsGPHDpw+fRrJyckIDw+Hv78/unXrhi1btsjer+IwjUajwZIlS3D33XfDz88PrVu3xrp168TXKw7TpKSkIDg4GJs3b0b79u3h7++PYcOGISsrS/yZsrIyPPnkkwgODkZYWBhefPFFPPDAAxg9erSal4qIiKpgNpvx1ynL9uY9wOVrZveekIMaZGUkKSkJly5dcvlxmzdvjn379tm174IFC3DixAkkJiZi9uzZAIC0tDQAwEsvvYSZM2fi9ttvR2hoKC5cuIARI0Zg7ty58PX1xZdffomRI0fi+PHjaNmyZZXHePPNNzF//ny88847+OijjzBp0iSkp6cjNDTU5v5FRUV499138dVXX0Gr1WLy5Ml4/vnnsXz5cgDAvHnzsHz5cixbtgzt27fHggUL8MMPP6B///5KLhMRETlJiREoLbNsm81A6m/AtL+595wc0SDDyKVLl5CZmenu06hWUFAQvL294efnJw6XHDt2DAAwa9YsdO7cGTExMdBqtQgLC0OnTp3En507dy7WrFmDdevW4fHHH6/yGA8++CAmTJgAAHjrrbfw0UcfYc+ePRg2bJjN/UtLS7Fw4ULccsstAIDHH39cDEoA8NFHH+H//u//cPfddwMAPv74Y2zcuLEWV4GIiGrjRpH88Q87zJj2t/o3VNMgw4i7eiGcddykpCSUlZWJjwsLC/Hmm29i/fr1uHjxIsrKymAwGHD+/Plq36djx47itl6vR0BAALKzs6vc38/PTwwiANCiRQtx/7y8PFy+fBndu3cXX/fw8EDXrl1hMpkUf0YiIqq9G4Xyx1v2AwVFZvj71a9A0iDDiL1DJXWVXq9HXl6e+HjmzJnYvHkz3n33XcTHx0On02Hs2LEwGo3Vvo+Xl5fssUajqTY42NrfbDZXek6q4utEROQ6FcNIiRH4715gzB3uOR9HsYHVjby9vVFeXl7jfjt27MCDDz6Iu+++G7feeiuaN2+Oc+fOqX+CEkFBQQgPD8eePXvE58rLy3HgwAGXngcREVlVHKYBgLU7698/EhtkZaS+aNWqFXbv3o1z587B39+/yqpFfHw8/vOf/2DkyJHQaDR47bXX3DI08sQTT+Bf//oX4uPj0a5dO3z00Ue4fv16pWoJERG5RsXKCACs/x0oKzPD07P+/N3MyogbPf/88/Dw8EBCQgKaNm1aZQ/IBx98gJCQEPTq1QsjR47E0KFDcdttt7n4bIEXX3wREyZMwJQpU3D77bfD398fQ4cOha+vr8vPhYiI5JUR7c1v9Gs3gJ2H3XM+jtKYOehf55hMJqSnp4uzaeoqk8mE9u3b495778WcOXPceh714XrVFbxe9uO1UobXSxlnXK9P15jxjw8sX+NDuln6RQDg6XHAB0/Un/8H9edMye3S09OxePFinDhxAocPH8ajjz6Ks2fPYuLEie4+NSKiRilPMkwzYZAGnh6W7bU769cEA4YRsptWq0VKSgq6deuG3r174/Dhw9iyZQvat2/v7lMjImqUbhRaA0dMONCzg2X7bJbtfpK6yqEG1pSUFHz//ffIz89HVFQUFi1ahICAAKSkpODrr7+GyWRCcnIynnzySbG5MS0tDXPnzsX58+fRoUMHvPnmm2jRooVTPwypKzo6Grt27XL3aRAR0U3SwBGoB5oFWx/nFwFB/i4/JYcoroysWLECv/32G5YsWYLt27dj9uzZ8Pb2xs6dO7Fq1SqkpKRg5cqV2Llzp3gvFKPRiBdeeAHjx4/H1q1bkZiYiNdff93pH4aIiKgxkTawBvoBAX7Wx/k2pv3WVYoqI+Xl5Vi2bBkWL14sVjXi4+MBABs3bsTYsWMRFRUFAJg8eTI2bdqE5ORk7N+/HzqdDsnJyQCA6dOnY9CgQcjKyrJZHTEajZUW9PL09IS3t7fyT1gPCdN2ubKpfXi9lOH1sh+vlTK8Xso443pJe0b8dWb466SvmWEyub9vxJ7mXEVhJDs7GyUlJdiyZQtWrFgBf39/TJw4EWPHjsXZs2cxYsQIcd82bdrgk08+AQCcOXNGDC0AoNPpEBUVhTNnztgMI0LgkRo3bhzuvfdeJadb72VkZLj7FOoVXi9leL3sx2ulDK+XMrW5XleuhgOwLK+Qe/U8TKVBAIIAAKfOXka4X7ETzrB2YmNja9xHcRgpKCjAhQsXsG7dOmRmZuKxxx5Dq1atUFRUBH9/6+CUXq9HUZGlRmQwGKDX62XvpdfrYTAYbB5n6tSpmDRpkvxEG1llJCMjA9HR0ZweZwdeL2V4vezHa6UMr5cyzrhexptFFU8PoE18S0RJ/n3vFxCOmBgnnKgLKAojPj4+AIAZM2bA19cXt9xyC0aMGIFdu3bBz88PBQUF4r6FhYXw87MMXul0OhQWytt6CwsLodPpYIu3t3ejCR7V0Wq1/AOtAK+XMrxe9uO1UobXS5naXK8bhZY0EqgHPDy0CPQzA7AMzRQWa6DV1o9VWBV9+piYmEo3UxPExsbi1KlT4uMTJ04gLi4OABAXFyd7zWAw4MKFC+Lr5JhWrVrhww8/FB9rNBr88MMPVe5/7tw5aDQa/PXXX7U6rrPeh4iIakdoYA282bhaXxtYFYURnU6HgQMHYunSpTAajTh37hw2bdqE3r17Y8SIEVi9ejUyMzORk5OD5cuXY/jw4QCArl27wmAwIDU1FUajEUuXLkVCQgKn9jpZVlaWeM2d5cEHH8To0aNlz0VHRyMrKwuJiYlOPRYRESkjTO0NvNkJUV/DiOJ1Rl588UXMnj0bgwYNQlBQEKZNm4akpCQAwMmTJzFlyhSYTCaMHj0ao0aNAmAZdpk/fz7mzJmDt99+GwkJCZg9e7ZzPwmhefPmLjmOh4eHy45FRES2GUvNKL458dR2GDEDaIDDNAAQEBCAd955B7/++itSU1MxduxY8bWpU6fi559/xi+//IKnnnpKdjfXDh06YMWKFdi1a5dsanBjtWjRIkRGRlaa0jVq1Cg8+OCDSE9Px+jRoxEeHg5/f39069YNW7ZsqfY9Kw7T7NmzB126dIGvry+SkpJw4MAB2f7l5eV4+OGHERsbC51Oh7Zt22LBggXi67NmzcKXX36JtWvXQqPRQKPRYNu2bTaHabZv347u3bvDx8cHLVq0wEsvvYSysjLx9TvvvBNPPvkkXnjhBYSGhqJ58+aYNWuW8gtHREQA5AueBdXzygg7jNxk3LhxyMnJwS+//CI+d/36dWzevBkTJ05EUVERhg8fji1btuDAgQMYOnQoRo4cWeWdfSsqLCzE3/72N7Rt2xb79+/HrFmz8Pzzz8v2MZlMiIqKwsqVK3HkyBG8/vrrePnll7Fy5UoAlrsK33vvvRg2bBiysrKQlZWFXr16VTpWZmYmRowYgW7duuHgwYP47LPPsHTpUsydO1e235dffgm9Xo/du3dj/vz5mD17Nn766Sell46IiFBhwTNbYcT2hNU6yaHl4Ou6pOkmXLrm+uM2DwX2LbYv34WGhmLYsGH45ptvMHDgQADA999/j9DQUAwcOBAXLlzAsGHDxA7ruXPnYs2aNVi3bh0ef/zxGt9/+fLlKC8vxxdffAE/Pz906NABFy5cwKOPPiru4+XlhTfffFN8HBsbi99++w0rV67EvffeC39/f+h0OpSUlFQ7LPPpp58iOjoaH3/8MTQaDdq1a4eLFy/ixRdfxOuvvy5+ho4dO+KNN94AALRu3Roff/wxfv75ZwwePNiua0ZERFaypeDreQNrgwwjl64BmVfcfRY1mzRpEmbMmIFPP/0UPj4+WL58OcaPHw8PDw8UFRXhxRdfxIYNG3Dx4kWUlZXBYDDYXRk5evQoOnXqJE6vBoDbb7+90n4LFy7EkiVLkJ6eDoPBAKPRiM6dOyv6HEePHsXtt98uG5br3bu3uCZNy5YtAVjCiFSLFi2QnZ2t6FhERGRR8b40AMNIndI8tH4cd+TIkTCZTNiwYQO6deuGHTt24P333wcA/Otf/8Lvv/+Od999F/Hx8dDpdBg7dmylZfKrYs+to1euXIlnnnkG7733Hm6//XaxH2j37t2KPofZbJYFEenxpc9XnBau0Wi4bDQRkYPk96Wx/F0bIFm+i2HEzewdKnE3nU6HMWPGYPny5Th16hTatGmDrl27wmQyYe/evXjggQdw9913AwAKCgpw7tw5u987ISEBX331FQwGg7i43B9//CHbZ8eOHejVqxcee+wx8bnTp0/L9vH29kZ5eXmNx1q9erUslPz2228ICAhAZGSk3edMRET2s1UZ8fTUwNfbMsumPoWR+vGt3YBNmjQJGzZswBdffIHJkyeLz7dq1Qpr1qzBX3/9hYMHD2LixImKqggTJ06EVqvFww8/jCNHjmDjxo149913ZfvEx8dj37592Lx5M06cOIHXXnsNe/fule3TqlUrHDp0CMePH0dOTg5KS0srHeuxxx5DRkYGnnjiCRw7dgxr167FG2+8gWeffZarMBIRqcRWAytgHaopqEcNrPymcLMBAwYgNDQUx48fx8SJE8XnX331VYSEhKBXr14YOXIkhg4dittuu83u9/X390dqaiqOHDmCLl264JVXXsG8efNk+zzyyCMYM2YM7rvvPvTo0QNXr16VVUkAyx2W27Zti6SkJDRt2hS7du2qdKzIyEhs3LgRe/bsQadOnfDII4/g4YcfxquvvqrwahARkb1sNbAC1jBSnyojGrM9zQXkUiaTCenp6YiJiWFlwQ68XsrwetmP10oZXi9lanu9Xl1swj+/smz/9L4Gg5Isw+Sdpppw6DTg4w0Ub6kf/x/qx1kSERGRjLyB1botVEZKjEBpWf2oNzCMEBER1UN5BdbtIH/rdn2c3sswQkREVA/VVBkBGEaIiIhIRbam9gL1c60RhhEiIqJ6SKiMaLWAn6/1eVZGiIiIyCWEykign3y1a4YRIiIicgkxjOjlzwf4WYMJwwgRERGpRhimkTavAhUqI/VkFVaGESIionqmrMyMomLLduXKiHWblREiIiJShbTiUSmMcDYNERFRw5dXYMYbX5jw4273rHBa1X1pgIqVkfqxAqunu0+AiIiovnnsfTO+2QL4eJtxaQ0QHKCp+YecSBpGpKuvAhymISIiavDOZZmxYqtlu8QIZOa4/hzy7K6MuOZ8aothhIiISIEFq8wwmayP3fGFL199VV6VkYaRAs6mISIialhy881Ysl7+nDQYuEpV96UBWBkhIiJq0Bavr1xtcH9lRP6aXrI0PNcZISIiakCMpWYsWFV5doo7vvCrCyMeHhrxXjWsjBARETUgK38BMq9YtnU+1ufdUhmRTNmtOEwDWIdqGEaIiIgakEXrrAHgsdHW5+vaMA1gXfiMYYSIiKgBOXXB8muLMGBET+sMlhuFrl9YTNbAaiuMSCojZnPdX/iMYYSIiMgOuQWWX5sEuX/GSnUrsALW8ysrt6yFUtcxjBAREdWguMSM4ptf6iEB8mqEuxtYK67ACtS/O/cyjBAREdVAqIoAQLB/HaiM3DymRiOfyitw9/kpxTBCRERUg+rCiDsWPcu7eT4BfoBWW/m+OAwjREREDUzFMCJbWMyNlRFb/SKAdTYNwDBCRETUIMjCSIClGuHOtTyEaoytmTQAKyNEREQNjrwyYhkWEcOIixtEy8vN4pL0VYcR69ANwwgREVEDUHGYBnDfKqfV3SRPwMoIERFRA5Obb90OCbD86q6FxXJyrdtNg23vwzBCRETUwFzPt4YNsTJys0nUbAYKXThUk5Nn3W4SZHsfrjNCRETUwNgappEtfObC6oM8jFSe1gvIw0hBEZeDJyIiqveq6xkBXFt9kIWRYNv7yKb2sjJCRERU/9UYRtxWGbG9D3tGiIiIGhghjGg01uEZafXBlauw5uRah10YRoiIiBoJIYwE6q3Lr7trLQ97KiP+XIGViIioYRHCSIjkDrl1o4HV9j56naWKAzCMEBER1XtmsxnXb64zEhxgfd5dDaxXcq3bYVWEEY1GI1ZHGEaIiIjqOUMJUFpm2Q6WVEbc3cAa7A94edqe2gu4b7l6RzCMEBERVcPWTBpAHkZuFLpwBdabYaSqIRqBO2/kpxTDCBERUTWqDCNuaBItK7MOGVW1xohACCMFBtcuV+8IhhEiIqJqSO9LE+zmBtZrknOpsTJyMyyZTEBRsXrn5AwMI0RERNWQV0asPRruaGC1ZyaNoD6tNcIwQkREVA1pGAmpajaNi77spXfsZRghIiJqJK5XMUwjb2B1zblIp/VWdZM8AcMIERFRA1FVA6uXpwY+3pZtl1VGHB2mqePTexlGiIiozjKZzPh0jRnf/OS+2SC5BdZjS8MIAAS6ePqskjAirZxkX1fphJzE090nQEREVJWFa4F/fGAJA+1aAre1rX5oQg2yykiA/LUAP8vQiesaWK3BqGlw9ftGNLFuX8xR53ycRXFlZMaMGejVqxf69u2Lvn374sknnxRfS0lJwaBBgzBgwAAsWLBANq85LS0NEyZMQO/evTFjxgxkZWU55xMQEVGD9cVG6/fIiQvuOYeqhmkA1y8sJquMBFe/b0SYdftiTgNcZ+SNN97Ajh07sGPHDvz73/8GAOzcuROrVq1CSkoKVq5ciZ07d2LdunUAAKPRiBdeeAHjx4/H1q1bkZiYiNdff915n4KIiBqc4+fN2H/c+thdTZj2hBFjKVBiVP8LX8kwTWRT6/bFq+qcj7M4bZhm48aNGDt2LKKiogAAkydPxqZNm5CcnIz9+/dDp9MhOTkZADB9+nQMGjQIWVlZaNGiRaX3MhqNMBqN8hP19IS3t7ezTrdOM5lMsl+perxeyvB62Y/XShlnX6/lP8kf5xeZYTK5/l/4wqJnWi2g95Wfg7RJNK/AjCbB9p+fI9dLmNqr1QKBftVfj+ah1u2LOe77fazV1lz3cCiMvPPOO3jnnXfQpk0bPPPMM2jdujXOnj2LESNGiPu0adMGn3zyCQDgzJkziI+PF1/T6XSIiorCmTNnbIaRZcuWYfHixbLnxo0bh3vvvdeR0623MjIy3H0K9QqvlzK8XvbjtVLGGdfLbAb+348RALys73sxF+npeVX/kEqu5FrOI1BXjvPn5WNFHuYmACxLsR47lYnopmWK31/J9cq6GgnAEyH6cmRk1DxupfeNRmGxFulZpUhPv6j43JwhNja2xn0Uh5Enn3wScXFx0Gq1+O677/DUU09h1apVKCoqgr+/tX6l1+tRVGSpqRkMBuj1etn76PV6GAy2O36mTp2KSZMmyU+0kVVGMjIyEB0dbVeibOx4vZTh9bIfr5Uyzrxee44C6Zflz3n6BCMmJrhW7+uIgptfVaFBHoiJiZG9Fi5pEg0MiUSFl6vlyPUShoyahVY+F1simwInMoDsPC+79ncXxWEkMTFR3H7ggQewbt06pKWlwc/PDwUF1oG1wsJC+PlZ6lc6nQ6FhfIVYQoLC6HT6WCLt7d3owke1dFqtfwLUAFeL2V4vezHa6WMM67Xip8rDykUGOwr+TuT2WxG7s078gb7Vz5+oN56noXFGmi1ymf72Hu9DCVmFBZbzqVJkH3XIqKJCScyLP02hcUaBPi5fjaSPWr9f1W4GLGxsTh16pT4/IkTJxAXFwcAiIuLk71mMBhw4cIF8XUiIiJBWZkZK7ZWft4dDayFBqC83LJdsXkVcO0qrFcVNK8KpDNqsupwE6uiMJKfn48//vgDRqMRpaWlWL58OW7cuIH27dtjxIgRWL16NTIzM5GTk4Ply5dj+PDhAICuXbvCYDAgNTUVRqMRS5cuRUJCgs1+ESIiatx+OQBcvmbZ7mUtxovDJa5U3UwaAAiUVBrUDktKpvUK6staI4qGacrKyvDJJ5/g3Llz8PLyQps2bbBgwQL4+/ujT58+OHnyJKZMmQKTyYTRo0dj1KhRACzDLvPnz8ecOXPw9ttvIyEhAbNnz1blAxERUf22apt1hsjfR2nw2/8sj91RGakpjLjy/i9KpvUKIppoAFiuX4MJIyEhIfjqq6+qfH3q1KmYOnWqzdc6dOiAFStWKDs7IiJqdE5LJn2M6g1oNJbZNe6ujIQEVH7dXWGkabB9vR/yhc+cfEJOxI4sIiKqU4T7qPh6A0H+gN7X8tj9lZHKAUDWM6Ly+cnv2Gvfz8iGaa7W3VVYGUaIiKhOyc61/NosBNBoNOIXvjsqI9fzrds1D9Oo+2UvvS+NQ2GElREiIqKamUxmsQLQLMTyq//NVSDcXhmxMUwT6MphmlzrtiNhJJNhhIiIqGbXbgDCquXNgi2/Sisj0huwukJ9b2DV+WjEXhdWRoiIiOwgDNEAlSsjZeVAibHSj6gqN98afupUGAm2/+eE6sjFHNeHOXsxjBARUZ0hNK8ClSsjAJDv4r4RJZURtRtYhTDi7WUNaPYQZtQUG+Wfpy5hGCEiojpDGkaE6avSL94CF/eN1BRGdD6WO+gCrquMNAmyNPbaqz40sTKMEBFRnSGrjNwcpqkrlRFb64xoNBqxiVXNMGI2Wxt77e0XETCMEBERKZCda+1psBVG3FUZ8fQA/Hxt7xPggjCSXwSUllm2mwYr+9mIMGsVhWGEiIioBtKFvYSeEekwjasrI8I6I8H+VQ+NiGFExXNzZCaNQL7wmXPOx9kYRoiIqM6wPUxjDQHuqozY6hcRCGHEcodfdWarOLL6qkC21sgVzqYhIiKqlnRqrzAc4a7KSFmZWQwjtvpFBLJhJJXOb/1v1hDRMtz+5lWAPSNERESKCJWRIH/Ax9vypeuunpHsXMsN+gCgRVjV+6m9CmtxiRkL11q2PT2ASYOV/bz03DlMQ0REdVJhYSGWLFmCPn36oEePHkhPT3fbuQhhROgXAdxXGbkk+eJuHlr1fmovfPbNFmvPyLj+QGRTZZURL0+NOOTFyggREdUpRUVFePbZZxEREYHp06dj165d2LNnD77++mu3nI+x1DosInx5Aq69GZ3UpWvW7eoqI2qGEbPZjA+/t37mp8YqCyICYagm66rl/j91DcMIEVEjtXTpUnzwwQe4ceOG7PmsrCy3nI+0SVM6fTVAuuiZCysjWdLKSFjVIUDNVVi3HQAOn7Fs9+wA9EhwMIzcDFNl5fKZOXUFwwgRUSN15MgRcXvYsGHidk6Oe2r5tpaCBwB/F97/RUpaGal+mMYaEJx9fs6oigB1v4mVYYSIqJHKyMgQtz/88ENx221hJNe6LRumcVNl5NI1axCobphGOtNGWJfEGc5cNCP1N8t2ZFPgnjscfy+GESIiqpMuXLgAAPD09ER8fDy8vLwA1JHKSIi1CuCuykiWnQ2s0iqO9DPU1s/7rbN5HhmlgZen45WRFpJhpqw6OKOGYYSIqJESKiORkZHw8PBA06ZNAdSRMBJs3fZ3W2XEul1tGJFUcaTL2ddW+iXreyW1q917hQVat51ZvXEWhhEiokaoqKgI165Zvm2jo6MBAE2aWGr5OTk5MJtdP+Piio370gCWqak+3pZtd1RGQgKsa57YIgsjTqyMnM+2brcMr917hUrCyLV8zqYhIqI6QBiiAYCoqCgA1jBSUlKCwsJCl59TVT0jgLVvxFWVEbPZLFZGqquKAOoN05y/bN2Obla79wqRLGd/7UbV+7kLwwgRUSMkDSMVKyMAcOXKFZefk6370giEoRpXVUYKDEBRsWW7uuZVwLJarJenZVsaqGor/ZLl15AA+YwdR8grI7V6K1UwjBARNULSmTQVKyOAe/pGhDCi1QKhFe4FI94Z10VhxN7mVcByN18hPDmrMlJebsaFm3kwpnnt308WRlgZISKiuqCmyohbwkiu5dewQMDDQ14JEMJIsdFyAzu12bsUvEAYqrmSC6f021y6ZlmgDABa1nKIBrBcPw8PyzYbWImIqE6oa5URs9lsvS9NSOXXXT2jRloZaVHN6qsCYcXYsnKIS9rXhrRfpLbNq4CleiNUm1gZISKiOsFWZUSY2gu4PowUGgBDiWVb2hAqkN251wVhRDatt4aeEcD5M2rkYaR2/SICYaiGPSNERFQnCJURLy8vNGtmGQdwZ2Wkupk0QIU797qgb8Te1VcFzp5RI5vW64RhGsDah3OjECh1wVCXEgwjRESNkFAZiYyMhFZr+SpwaxipZiYN4PrKiJIGVkC+Yqwzwoh0wTNnDNMA8mXrnTGU5EwMI0REjYytBc8A907tla++WnlYwvWVEeu2fWHEuu2M6b3SYRpnzKYB6vaMGoYRIqJGxtaCZwAQFmYdj3B1ZeRKrnXbdmXEGlBc2TPi5Sn/Eq+K03tGsq3HtycM2SNUpRv6OQPDCBFRIyOdSSOtjOh0Ouj1egB1r2ckwMU3yxOGaZqHWmai1ETeM1L7fgyhMhLVFNBqndXAan0fVkaIiMitqqqMAPL707iS9Avc1mwa2TCNypWRsjKzWKmxp3kVcO4wTX6RWaxcOKtfBKjbq7AyjBARNTJVVUYA6/Teq1evwmQyueycpEMbwpodUrIGVpUrI9m5gLBumb1DJNJzlg45OSLDiTfIk5IO07AyQkREbmVPZcRkMiE3N9dl56Roaq9B3WmpSldfBQA/X414jrXtGRHuSQMAMWpVRm5wai8REblRdZURd03vzcmz/OrlCQTqK7/uysqIdCaNvcM0gDVE1XaYRo0FzwD51F7pMM26nWbsPmLGpavuCygMI0REjYx0wTPpqquA+6b3CsMGoYG2G0Zd2TMiW2PEjqXgBUIYuZpXu/vnnM92/hojgLwyIvSkFJeYkfyyGT0fMePuVxlGiIjIRYRhmqioKHHBM4G7KiNiGAmw/borFz1TusaIoGmQdVuo9DhCVhlx0uqrgO2ekQuSvOnMYynFMEJE1IgUFhbi+nVLU0PFfhHAPWGktMwsBoyQKsKIKxc9U7oUvMBZM2qkYSTaiQEh2N+6LQzTSJtlnXkspRhGiIgaEVs3yJNyRxiRLsBV1QJjrqyMKF0KXuCshc/Sb4aR0EDA3895PSOenhoE3QwkQmVEHkacdyylGEaIiBqR6ppXAffcuVc6zbSqyoivN+DhYdlWvzJi3VYURoJrf3+a8nKzOHTizJk0AmGoxnYYcf7x7MUwQkTUiFQ3rReoA5WRKsKIRmOdOqt2GBEqIyEBgI+38gZWwPEwknUVKC+3bDuzeVUgVJ6u5QMmkxkZkmZZhhEiInKJmioj7ggj12TDNFV/+QfcDCNqDtOYzWaxMqL0njDSMHIlz7GZKfJpvQ69RbWEypPJZAl1ai2wphTDCBFRI5KZmSluR0ZGVno9NNT6Deyqqb3SykhVwzQAXFIZKTAARcWWbSXNq4BzKiPnpeFAhR6OijfLE8KPt5ftlW9dhWGEiKgRkVY7wsMr/1PY09MTISEhlfZVk7RnpKphGsDaxFpgsFQw1OBo8ypQ8WZ5jh1f7cqIfBVWIONm3nTmDfkcwTBCRNSIXL1q/bYNC7P9T39X3yxPujS5PZURs9lavXC2/52xbse2UPazTSTrjNQ0tTcn14zPfgDOXfaUPX82S50FzwTSMJJ+GcgrsGy7s18EYBghImpUhDDi4+MDnU5ncx8hjOTl5aG0tFT1c7Jnai/gmum9+45bw0DXtsoqBZ6eGoTdDCQ1VUYmzzXj8Q+Bqe81g7TIczTdut22paLD2yU0wPqZDp6qG82rAMMIEVGjIoSRsLAwm8uuA/LpvdJKilquORBG1Oob2X/cup3UVvnPC0M11YWRI+fM2LzHsp1+2Us2NJN21vJrizAgJECFnhHJ9T142rrtzuZVgGGEiEh1JSUlSE5ORv/+/WVTa13NbDbLwkhVXD2jxp51RgD5KqxqVEbMZjP2n7BsNw0GohyoFghNrJZGWNt9LZ/9IH/+wEnLr1dyzeIy8gmtlB/bHtKenIOnrNvuXPAMYBghIlLdjz/+iHXr1mHbtm2YPn26as2XNSkqKkJJSQmAuhVGZLNp/KveT+3KyPnLlpvcAUDXtrZv2FcT6YyUK7mVXy8oMuPLH+XPCaHgyDnrc2qFEWnYO5tl3eYwDRFRA3fqlPWfoD/++CO+//57t5yHPc2rgOvv3CsM0wT4WfouquKvs76mRhiRDtF0bePYe0hn1NgKI99sqXzuB27+9hCGaACgQyt1KhVVDYMxjBARNXDp6emyx08//TTy8mpxW1cHORJGXFkZqa5fBFC/gXX/CcebVwXNQqpeEt5sNuOTNdZjeN5c3v6vm8M0R85ZX1NtmIZhhIiocTp37pzscVZWFl577TWXn0ddDCNms1nsGalujRHA+Xfu3X3EjOPnrQFAVhlxoHkVqP7Ovb//Dzh0s2m0RwLQK9GynZENXM0zu3yYRuCvk9/R1x0YRoiIVCZURjw9PeHnZ/nn/ccff4x9+/a59DzqYhgpMABlN+/FUl3zKuDcysjaHWb0fMSMLg+b8b8zZpjNZuy7GUaaBDleKQiXhJGsChORPltrDT6PjdagU7z1tb9OAWnnLNvNQoCwIHWGaXQ+Guh85M9FN3OsP8aZGEaIiFQmVEZiYmLwxhtvALBUBD766COXnkddDCP2rjECOLcysut/lmBgKAFmLTM7pXkVACKts6KRecUaPsrKzFi1zbIdGgjc2x/oLAkjW/aZxWGdDq0cOrTdKl5ndw/RALUII4cOHUK3bt2QkpIiPpeSkoJBgwZhwIABWLBggaxjPC0tDRMmTEDv3r0xY8YMZGVl2XhXIqKGJTc3FzduWMYhWrVqhSeeeEJ87cyZM1X9mCrsDSPSdUbUbmC1d1ovAATprdvX82s3I0l63NXbIZvh4sj6IoIoSRi5ILl0WVeBYqNlu29HwNdHgy6tra9/s8W6rdYQjaDicFi9DSMmkwnvv/8+EhISxOd27tyJVatWISUlBStXrsTOnTuxbt06AIDRaMQLL7yA8ePHY+vWrUhMTMTrr7/unE9ARFSHSftFYmJioNPpxHu/uPofZfaGkaCgIHh5eQFQP4zIKiM1hJEIa8EGmbUs2EiPCwBzvqx98ypguZ+Nx83GVGkYkW4LX/7tYwBvT8txpQufJag0k0ZQMfS1DHfvEA0AeNa8S2X/+c9/kJiYiIKCAvG5jRs3YuzYsYiKigIATJ48GZs2bUJycjL2798PnU6H5ORkAMD06dMxaNAgZGVloUWLyov/G41GGI1G+Yl6esLb29uR0613TCaT7FeqHq+XMrxe9nPGtTp71jpfMyYmBiaTCS1atMD169dx8eJFlJeXu2y8XhpGQkJCqv1cTZs2xcWLF5GdnW3353fkeuVIJhWFBFT/s9K76GZeqd3/F2llBLD2rQBAl9ZmmEyOVV40GiAizNKUmpFtPcd0SdiIamp53tPDhNaRpUhLlzdxtI9x/Pj2qBhGIpuqezyttua6h+IwkpeXh2+//RbLli3D+++/Lz5/9uxZjBgxQnzcpk0bfPLJJwAspcj4eOvgmE6nQ1RUFM6cOWMzjCxbtgyLFy+WPTdu3Djce++9Sk+3XsvIyHD3KdQrvF7K8HrZrzbX6sCBA+K2Xq9Heno6goODAQAGgwH/+9//EBhYQ7OEk0hXfy0qKqo05VgqKCgIFy9exJUrV3Du3DlFgUnJ9Tp1zh+AJWWYjFeRnl5Q7f7B+ijkFnog/VIp0tMv2n2cii5dbQGg8j9wQwPKYTJcQDWXpkZNA8ORke2L7OvAiVPp8PECDp8IAGC5DbCP5grS0y1NLwkxYZXCSIBHBtLT1fvHgrc2DIB1+oy3+TLS01W68yCA2NjYGvdRHEY++eQTTJgwodIfnqKiIvj7Wz+cXq9HUZHlYhsMBuj1etn+er0eBoPtduipU6di0qRJ8hNtZJWRjIwMREdH25UoGzteL2V4veznjGuVn28dD+jatStiYmIQFxeH3377DYDl77aYmBinnG9NpH/nduzYER7CeIINkZGROHr0KEpLSxEcHCwGqOo4cr20kr/W41uFISam6uEjAIgOB3LPAJdzvdCyZQwcLSoV3PzuDQ0EPLTWBcqS2nmgVava/f+IiwL+vLmQmZc+BjEtgELJ/Qa7JDRFTIzlenVomQvpEnhNgoDbbo2u1fFr0rJCDSApMRwxKtyUTwlFYeTYsWNIS0vDiy++WOk1Pz8/2bBNYWGhOIVNp9OhsLBQtn9hYWGVd4z09vZuNMGjOlqtll8WCvB6KcPrZb/aXCtp9SE2NhZarRYRERHic5cvX0aHDh1qfY72EIZpgoODxZ6QqjRrZu1qvHr1KkJDQ+0+jpLrdT3fWgEIC9RAq60+XUQ2NeHwGcBYClzL16BpsGNp5NrN47YIA6YM1eDFhZZhiu7t7RtWqE50M+tnupijwS2RGmTmWJ9r2cz6ORNi5C0JHWJrf/yahAWZAViHZWKa13zd1aYojPz55584f/68OBxTUFAADw8PXLhwAbGxsTh16hT69OkDADhx4gTi4uIAAHFxcVizZo34PgaDARcuXBBfJyJqqIQw4uHhgcjISACQDU+7sonVnpvkCaRhJDs7G61bt65mb8fZe8deQZRs6qz8XjD2Ki4xo0iojAQAT9wD7D1mmfHySHLtv5SjmmogfNkLjasZ2dbXpdN/20UbodEAwuRTtWfSAPJG4bAgwM+3njWwjhkzBkOGDBEfv/fee4iOjsb999+PgwcPYt68eRg8eDB8fHywfPlycaila9euMBgMSE1NxdChQ7F06VIkJCTY7BchImpIhNk0UVFR8PS0/JUrrYxcvOh434MS5eXlyM3NBWBfGJFO783Ozq5mz9pRss4IAERWmFHT2YGMVPGYOh8Nvp/tvC9kW9N7hV/DQwFvL+ux/HVmxEcCJ2+28yTEqB8MpNe5LkzrBRSGEV9fX/j6+oqPfXx84Ofnh4CAAPTp0wcnT57ElClTYDKZMHr0aIwaNQqAZdhl/vz5mDNnDt5++20kJCRg9uzZzv0kRER1TH5+Pq5duwYAsr4Qd1RGrl+/Lq79pLQyoub0XiXrjABApLTq4GBGUlqNUUoaRjKyzSgrs67GauvLv3NrSRhp5fzzqUgWRppWvZ8rOTS1VzBr1izZ46lTp2Lq1Kk29+3QoQNWrFhRm8MREdUr0n6RVq1aidvSyoirwoi9a4wIXF0Z8fSQr7BaFXllxAxAeSVBGoBqWtvEEdLAcSHbEkSEWchRNr78HxoBrN0JtI4Cet/q/POp7vzaurlxVVCrMEJERFWThpGqKiOuGqZRGkZcVhmR3LHXnunDUZIv0kwHT0sWRgKdPyzSPAzQai0B5MIVeb+IrcrIkG7AlXUa6H0BDw/1h2naRGswdxpw8LQZT49zf78IwDBCRKQa6eqr0sqIn58fAgMDcePGjUZfGRGCgT1DNEDlnhGHjqnyMI2XpwbNQ824mGMJI9LVVy3NrZUF6l0bCl6ZooEjVSW1cF4fEZFKqqqMANahmsZcGSktM4s3vLN3uCQ0EPC5ufLDBQdPS9rAGuJf9X61IQzHXLoGnJH8L64rDaN1DcMIEZFKquoZAaxDNYWFhbKF0dSiNIwEBASI6z2pVRnJlSy2am9lRKPRiNURx4dprGtsqFEZAaxhxGwG9hw1V3qe5BhGiIhUIgzTaDQaREfLV9V09YwapWFEo9GI1RG1KiNKp/UKhC/03AKg0KD8nipqD9MA8tDxe5p1m5UR2xhGiIhUIlRGIiIiKq0q7eq1RpSGEcDaN3LlyhVVbqzo6KwW6aJhjvSNqD2bBgCimln7MS5ZZndbbqLXpIofaOQYRoiIVGAwGHD5suVWrbbuPePqyoiw3glgfxgRKiPSBdOcek4K1xgRyJpYHSjayGfTKP95e9iqgISHyBc8IyuGESIiFZw/f17crtgvAtT9YRpA/Rk18mEa+7+kpTNSHKqM3DyuhwcQqK9+X0fZ6g3hEE3VGEaIiFQgndZrqzLirmEab29v8SamNVF7Ro20d0NRZaTC/WkUH1eYTuxv39omjrAVRti8WjWGESIiFVQ3rRdwX2UkLCzM7i9gtSsjjg6XSIdpLlxxvIFVrSEawHZvCCsjVWMYISJSwaVLl8Rt4W69Uq5ehVXJHXsFaldGrudLpti6qDJSVmZG3s0pxWqGEW8vDcJD5c9Jm1pJjmGEiEgFQvMqAISHh1d6PSAgAP7+lhW31K6MFBUVobi4GICyMKJ6ZcTBYZoWYZaZKYDynhHp2iZqzaQRVByWYWWkagwjREQqkIYRaYVBSqiOqB1GHGleBVxRGbFuK6lSeHlqEB5i2VYaRlyxxoigYhhhz0jVGEaIiFQgrSTUFEZu3LiBwsJC1c7F0TDiyp4RJZURwDpUk3XVMvRir+sOVmMcUbESwspI1RhGiKhBKS8vR0lJibtPQ6yMBAQEQKfT2dxHOqNGzepIXa2MCGHEX2epdighNLGaTMDl68qPCbhimMb6mbjgWfUYRoiowSguLkanTp0QEhKC33//3a3nIlQSbPWLCFw1o8bRMKLX6+Hr6wtApXVGatFIGuVgE6t8Bo+6DaXSc2weqjxwNSYMI0TUYOzatQtpaWkwGAz44IMP3HYeJSUl4oql1YURV6014mgYccb9acrKzJjxjgn3vWHCjUKz7HlxvQ8HKhSRDi585tKeEcmwDPtFqscwQkQNhvQLffPmzSgtLXXLedjTLwLU/coIYO0bycnJcej+NP/dCyxOBVb+Asz/xhpGdhwCSsss222jq/jhasjXGql6v6JiMz77wYxdhy3HduUwTavmku0WVe9HDCNE1IBIv9Bv3LiBXbt2ueU8pGHE3mGaulgZAaxhymQyye5vY68zko/1zRbAbLaEgv/8ag0md/dTPnwhX2uk6gbWed+Y8dj7Zgx6xoyLOWZcuyFZ20TlykhMcw0eHwO0iQaeGcchmuowjBBRg1GxurBx40a3nEdNa4wI6noDK1D7GTUXr1q//M9mAX+kASaTGWt2WJ7z9gJG9FT8tvKekWqGaX7cbfm12Ahs+sO1wzQA8NHTWhxfrsXtiQwj1WEYIaIGo+IX+oYNG9xyHvasMQI4f5jm0UcfRWJiIv744w/Z847csVdQ2xk1FysEheU/mbH3mLXpdHASEKhX/kUtnZlS8RiCEqMZf52yPt681+zSYRqyH8MIETUYFb/Qjxw5IrthnavYO0wTGBgoTvut7TDN2bNnsXDhQqSlpWHChAkoKioCYBkWycjIEPcLCQlR9L61roxUCArfbQVWbpUM0fR1rGIQ4AfodbaPIfjrFGCUtA1t2QdcybU+DvZ36NCkAoYRImowbFUX3DFUY29lRKPROG0VVmmYOXfuHObMmQMASElJwaFDhwAArVu3hqenp6L3rXVl5Kr8cU4e8PEay7ZWC4zqo/gtAViuXcTNIk9WFa0su4/IH1/PB/48adkO8gc8OdW2zmAYIaIGQ/hC9/HxEZ9zdxiprjICWIdqcnNzYTAYHD5mxaDw7rvvYtOmTXjqqadkzynl7MoIYK1W9OsENA12PBAIQzV5BUChoXIT6x9HKj9XXm75lUM0dQvDCBE1CPn5+SgosKyi1bNnT/FLfuvWrbX6kneEvcM0gLxvRHqnX6VycuTf+mVlZbjrrruQn2/p2HzwwQcxatQoxe9bm8qIocQsLr/evX3lYZExDsyikZL2jWRdrfy6UBnx9Kj8mtpLwZMyDCNE1CBIhzkiIiIwYsQIAIDBYMC2bdtcei5CZcTb2xuBgdVP2XDWjBppUPDwsHz7CtNoW7ZsiQ8//NCh961NZUQaEGJbAOP6y18f7eAQjaBFqHW7YgXmSq5ZnFbcvT3QtqX8dVfMpCH7MYwQUYMg/SJv0aIF7rrrLvGxq2fVCGEkPDwcGk31//p31owaaRh59dVXZa+lpKQgKCjIofetTRiRBoSIJsCkwdZr0a0dEB1e28qI9ecr9qbsOWrd7pEADO0mf53DNHULwwgRNQgVw8igQYOg1Vr+iqs41VVN5eXl4pBJdc2rAjXCyPjx4/Hiiy/C19cXb731Fvr371/NT1ZPr9fD39/fofOThZEwDfp2BMb0szSPvv5g7ZtHq5veu1vSL9KjvQZDusuPx8pI3aKsrZqIqI6qGEYCAgLQsmVLnDt3DqdOnYLZbK6xSuEMV69eFZdNr6lfBFAnjDRt2hRvv/023n77bYffTyo6OhpHjx5FRkaGoutYsTKi1Wqweq4GJpMZWq2zw4gZgPU9pTNpenYAwgIBL0/rEvQMI3ULKyNE1CBUDCMAEB8fDwDIy8uTrUKqJiXNq4DzwohQjdFqtYrXEqlJTEwMAMtdkSs2ylZHuvqqNDg4I4gAEKf2AvL+FJPJLA7ThIcCLcMBfz8N+txq3Sc0gNN66xKGESJqEGyFkdatW4vPnTx50iXnYe8aIwJnV0bCwsLE4SlnadnS2v15/vx5m/vsP27GW18BD73fVFxYrGJlxNlaSMKItGfk5AUg1zKxCj3aQ6zkDOlmDSDhkuZXcj+GESJqEKqrjADAqVOnKv2MGpSsMQJYwoOXlxcA54QRacOps0jDSHp6us19vt1ixmtLgW0H/fB7muU5aRhpoWwVerv4+2kQqK98rD/SrNs9EqwB5JFkoH8Xy3/JtZzJQ87FMEJEDYLwRe7r6yvOHHFHGFE6TKPRaNC8ueVe846GkcLCQnEtFbXDiLQykp+fj5KSEgBAL8mN4IQwIFQrAvyAAD91hkWEoRppGNl9VNK8mmB9PjhAg60LtNi6QKva+ZBjGEaIqEEQvshbtGghluXdXRmxZ5gGsFZyrly5gtLS0hr2rkzax+HKMDJv3jz4+fkhPj4evqV/ic9XrIyoMUQjECouBQYgv8gSQoR+EY3GMoWY6j6GESKq94qLi3H9+nUA8h6MuLg4MZi4o2fEnsoIYD1ns9ks+3l7VZxJ42xVhZFjx47BZDLh9OnTaNMqAK0sBR7sPQZczzcj33KvPlmjqbNVnN5bVmZG2lnL49ZRjt0RmFyPYYSI6j3pMurSMOLr64vo6GgA7hmmUVoZARwbqlE7jERFRYmhThpGjh8/DgDw8vJCq1at0LOD5XlDCbBJsrSLmpWRimHkVCZQbLQ87niLescl52IYIaJ6z1bzqkAYqrl+/TquXavi9q5OJFQ2tFotmjSx71vYmWHE3mMq4eXlJS5bLzSwlpeX48SJEwCsdwPu1cH6M6u22Z7W62wRYdbKR9ZV4PAZ62u3xrEqUl8wjBBRvWdPGAFcUx0RwkiTJk3Ee8TUpK5XRgDrUE12djYMBgPOnTsHo9FSgmjbti0A4PZE6/6bdlu3pYHB2SpWRg6dtoYgVkbqD4YRIqr3qgsj0rVG1A4jZrNZHKaxd4gGqH0YUbuBFZD3jVy4cEEcogGAdu0sXaId4wCdt2X1WWGoBHDhMM1Vc4XKiHrHJediGCGies/eyojaTaw3btwQp7ra27wK1K/KCGDpGzl27Jj4WAgjnp5ApzhjpZ91Zc/IodOWbb3Ocqdgqh8YRoio3qsrwzSOTOsF6kcYEZaEByxhRFoZEYZpAKBLfEmln3XF1F4AOJ4BnL15+RJjnbfsPKmPYYSI6r3qwkhcnLVWr3YYUbrgmaBZs2bibJW62MAKVF8ZkYaR21pXDiNqrL4q0PloEGy5qTD+khS+OERTvzCMEFG9J3yBe3p6Vvoy9vPzQ1RUFADXVkaUhBFPT0+xklKbMBIcHCwuLe9sFZeEFyoj4eHhCA4OFl/rcos8jIQEWAKDmmxVXjrewqpIfcIwQkT1nvAFHh4ebvMmccJQTU5ODnJzc1U7D0fWGBEIU2cvX74Mk8mk6GeFBla1qiKAPIwcOnRIDF5Cv4ggNMCENtHWx2oO0VR3DFZG6heGESKq18rKysQQUHGIRuCqvhFHKyOA9dzLyspks2NqUlpaKgYstfpFAEvVxd/fMh7y559/is9Lh2gEt0vWG1Fz9dXqjsEwUr8wjBBRvXb58mWYzZa1JVwVRvbt24cXXngBhw4dEp8zm82yL2lHwwigbKjGFdN6AcsN/YTqiHC9gcqVEQDiSqyAeyojEU2AsCAO09QnDCNEVK9V17wqcPZaI/fddx/eeecd9OjRA19//TXMZjNmzpyJ1NRUAIBer5cd0x5Kwsj58+dx8OBBAK6ZSSOQzqgR2Aojg5MA75utK93aqR8KIprIj8GqSP3j6e4TICKqDekXt9B3UZEz1xq5ceMGzpyxrKxVXFyM+++/H59//jl27NgBwFJBWLRoEYKCghS9r71h5NixY+jZsyfy8vLw/fffIyQkRHxN7TAi7RsR2BqmiW0BbP1Qg9OZwPiBqp4SgMqzdbjyav3DyggR1WsXL14Ut6uqjNxyi/XbqbaVkYyMjErPCUEEABYtWoRJkyYpfl97w8gLL7yAvLw8AMAHH3zgsmEaoHIY8fHxsVktAYDet2owZZgG3l4uqIxUCCO8J039wzBCRPXahQsXxG3hDr0V6fV68cu+tpUR6V1rb7vtNnh6WgvMH374IaZPn+7Q+9oTRrZv3y4OBQHAb7/9hj179oiP1ZxNA1QOI61bt7b7/jtqqtgzwmGa+ofDNERUr0nDiLCeiC233HILsrKycOXKFRQUFIgzQ5SSVkb+/ve/IzExEZ9++ilGjBiBiRMnOvSeQM1hxGQyYebMmZWeX7p0qbjt6sqIrX4Rd5AO03h4AO1tF2uoDmNlhIjqNWk4qC6MxMbGitvp6ekOH09aGWnZsiV69eqFr7/+ulZBBACaN28ubtsKIytXrsTevXsByD+LMGQDuL6B1Va/iDv4eGsQd7Nd6LbWlsdUvzCMEFG9JlRG9Hq9bCXQilq1aiVunzt3zuHjScNPVcNCjvDx8UFoaCiAymGkpKQE//d//yc+/vTTT9G7d+9K76F2GImIiJAtKldXKiMA8OXLGswYCXw+k0GkPuIwDRHVW2azWQwjUVFR4v1dbHFWGJFWRpwZRgDLUM21a9eQlZUFs9ksfp7vvvtOPOdBgwZh6NChOHv2LHbt2iX7ebXDiJeXFyIiIsRrXpfCSJ+OGvTpyCBSX7EyQkT1Vl5eHgoLCwFUP0QDyMPI2bNnHT6mEEaCg4MRGBjo8PvYIvRkFBcXy1ZzlS6mNnPmTGg0GowbN07WPOvn5wc/Pz+nno8two0HtVot2rRpo/rxqHFQHEb++c9/YujQobjjjjtw3333yaa0paSkYNCgQRgwYAAWLFggW6UvLS0NEyZMQO/evTFjxgyHbgZFRHXH7Nmz0bFjR/zyyy9uOwd7m1cBeZ+Fo5URk8kkHtPZVRFAvjibdNbP6dOnxe2EhAQAlpkzQ4cOFZ9XuyoieOWVV5CQkIA5c+Y4PYxR46U4jEyaNAmpqanYvn07Xn/9dbz22mu4ceMGdu7ciVWrViElJQUrV67Ezp07sW7dOgCA0WjECy+8gPHjx2Pr1q1ITEzE66+/7vQPQ0SukZubizfffBOHDx/G5MmTUVRU5JbzsLd5VXhd6HdwNIxkZ2fDaDQCsL0AWG1VtWy9EEZ8fHxkC7tJm2bVntYrGDJkCNLS0vDyyy+75HjUOCjuGZGWOjUaDYxGI3JycrBx40aMHTtW/Ath8uTJ2LRpE5KTk7F//37odDokJycDAKZPn45BgwYhKyvL5iJFRqNR/AMvnqinJ7y9vZWebr0k3LFT6Z07GyteL2Wccb1Onz4t/vzFixfx/vvvu+XLSdq/ERkZWe1n8vDwQFRUFM6fP49z587Z9fkrXitpiImOjnb67zlhCASwVEZMJhNMJpO44qvwunDckSNHokmTJsjJyUHHjh3d/meAfxaVaSzXy9adtCtyqIH17bffRmpqKkpKSnDHHXcgLi4OZ8+exYgRI8R92rRpg08++QQAcObMGVni1+l0iIqKwpkzZ2yGkWXLlmHx4sWy58aNG4d7773XkdOtt2yt9EhV4/VSpjbXS5hiKpg3bx6GDh3qsn+dC9LS0sRtb2/vGqfstmjRAufPn8fVq1eRlpZm91ojwrWS9m74+/vXaoqwLTqdTtw+dOgQ0tPTkZWVhZKSEgCW8694zC+//BK7d+/G6NGjnX4+juKfRWUa+vWSDpFWxaEw8tJLL2HmzJnYt2+fWEosKiqS/cHW6/Vi6dZgMECv18veQ6/Xw2Aw2Hz/qVOnVlpOubFVRjIyMhAdHW1XomzseL2Uccb1qjgsU1BQgJSUFHz00UfOOEW7FRQUiNu33XZblUuTC9q2bYvdu3cDsFyHmvaveK2Ki4vF1zp27FjjzysVEREBDw8PlJeXIysrCzExMbJqTGJiYqVjxsTEYNiwYU49D0fxz6IyvF5WDk/t9fDwQI8ePfDtt98iLi4Ofn5+sr8YCgsLxc5unU4ndrxLX5f+K0DK29u70QSP6mi12kb/G1QJXi9lanO9bPVcfP7553jqqadcOsMiMzNT3G7ZsmWNn0f6L7Tz58+jU6dOdh1HuFbSf8G2atXK6b/ffHx80KpVK5w+fRonT56ERqORzfyJj4+vF7/H+WdRGV4vJ0ztFbrLY2NjZQ1XJ06cEMc34+LiZK8ZDAZcuHBBNj5KRPWHNIzMmDEDAFBWVoZXXnnFpechzGzx9fUVFwyrTm3XGlFrwTMpYUg7Pz8fV65ckc2kkd7wj6ghURRGioqKsGnTJhQVFaGsrAw///wz9u/fjy5dumDEiBFYvXo1MjMzkZOTg+XLl2P48OEAgK5du8JgMCA1NRVGoxFLly5FQkJClXfYJKK6Tfgi9/b2xrvvvotmzZoBAFJTU13ajCeEg5oWPBNIKyOOrDUiNMxqNBpERkYq/nl7VJxRwzBCjYGiYRqNRoO1a9di3rx5MJvNiI6Oxty5cxEfH4/4+HicPHkSU6ZMgclkwujRozFq1CgAlr+w5s+fjzlz5uDtt99GQkICZs+ercoHIiJ1mc1m8Ys8JiYGAQEBuP3227F27VqUlJQgIyPD6b0Utty4cQP5+fkA7K9SOKsyEhERAS8vL8U/b4+qwohGo5GdP1FDoiiM6HQ6LFy4sMrXp06diqlTp9p8rUOHDlixYoWysyOiOufatWtif5jw5VhxsS5XhBElC54JIiMjxQZRpWGkpKQEly5dAqDeEA1QdRiJjo6Gj4+PasclcqfG3TFDRIpJv8SFYQ9p0+qJEydcch6OhBFPT08xSCgNI9LjqbHgmUAa7Pbs2YPr168D4BANNWwMI0SkiPRLvKrKiCs4EkYAa4C6fv068vLyqt03Pz9fnLEjbV5VM4xIZ+ls375dfJ5hhBoyhhEiUkTa+Fkfw4i9fSPp6elITExE37598emnn6p6t14pHx8f2Q3zBAwj1JAxjBCRIrYqIxEREeK6Qq4KI45Os7UnjBQUFGDUqFFi4HnuueeQmpoqvq5mZQSQ941U9xxRQ8EwQkSK2OoZ0Wg0YnXkzJkzKCsrU/081KqMmEwm3H///Th06JD4nNFoxKpVq8THalZGANvBg5URasgYRohIEWGYxtfXF+Hh4eLzQhgpKytz+K64SghhxNvbW9E9cWpaa+SNN97ADz/8AAAICgqSDUEJ1K6M2Domwwg1ZAwjRGQ3s9ksBo2YmBjZQmOu7hsRwoi9C54JqquM7N+/H3PnzgVgWaL722+/xccffwxfX19xH19fX9VvCFixMtKkSRMEBgaqekwid2IYISK75eTkiDfJq7gAlyun9xYUFCA3NxeAsiEawNLf4ulpWWKpYhiRzl554403MHToULRu3RrvvPOO+HzLli0VhR9HVAwjrIpQQ8cwQkR2s9UvInBlZUTaL6K0f8PDw0McZqkYRqQzZgYMGCBuP/roo5gxYwZ8fHzw5JNPOnDGysTFxckCD8MINXQMI0T1iMlkwtq1a2U3nnQlW9N6Be4KI0orI4A1SOXl5YmLigHyMCLtC9FoNFi0aBHy8/Pxj3/8w5FTVsTX11f2uRhGqKFjGCGqR/7+979j9OjR6Nevnzhc4kq2pvUKmjZtKvY11JcwAlhm/wiEMKLVahEREVHp59S6H40t0nDHMEINHcMIUT2xbds2LFmyBACQlZWF//3vfy4/h+rCiEajEftG0tPTUVJS4tRjp6en4+2338bo0aMxc+ZM8XlHwoj0y10aRqQ3whP6StxF2oNja3YNUUPi3j9tRGSXkpISPPLII7LnTp06he7du7v0PKTDNBV7RgDLl+a+fftgMplw5swZtG/fvlbHM5lM2LBhAxYuXIhNmzbBbDZX2ichIUHx+8bFxYnbQhgxGAzIzs4GoP7UXXs89thj2LJlCxITE9GzZ093nw6RqhhGiOqBd955B8ePH5c9546+EaEyotPp0LRp00qvV+wbqW0YefTRR/H5559Xej4oKAhJSUmYPHmyrIJgL2kYEe6K66ob4dnr1ltvddlqtkTuxjBCVMedOnVKXPui4vOuJF1jpFWrVjant0rDiDOm937//ffidsuWLTF9+nSMHTsWbdq0EW8m5whblZGqmleJSH0MI0R13MyZM8X+i8ceewyffvopANfdA0Zw+fJl8cZtFftFBNIqRW3PLzc3V5zp0qtXL/z666/w8PCo1XsKQkNDERwcjNzcXIYRojqADaxEdVhJSQk2bdoEAAgPD8e8efPEhk1XV0ak4UJaWZBy5vReaX9K+/btnRZEBMJnOH/+PEpLSxlGiNyIYYSoDjtw4IBYFRkyZAj8/f3F1TlzcnLEVUhdIS0tTdyuqmk0JCQEYWFhAGo/TCOd5VJV+KkN4T3Ly8tx/vx5hhEiN2IYIarDdu3aJW736tULgHypcKH50hWOHDkibnfo0KHK/YShmszMzFqthSINI7Zm7tRWxem9DCNE7sMwQlSH/fbbb+J27969Abj+hnQCaRipbjqts5pYpcM0alZGAHkY8ff3R3BwsNOPR0RVYxghqqPMZrNYGQkMDBQDgLQy4sq+EWGYpkmTJjan9QratWsnbh87dszh46ldGZGGkVOnTolhxBU3wiMiOYYRojrq7NmzuHz5MgCgZ8+eYgOnO8LItWvXcOnSJQDVD9EAkK0tcvToUYePKYQRvV5fbfhxlDSM7NmzR5wpxCEaItdjGCGqo2wN0QDyXgdXhRFpqKhpxVNnhJHy8nKkp6cDqHwHW2dp2bKlGPD++OMP2fNE5FoMI0R1lK3mVcBSKWjRogUA1/WM2NsvAljCknBDOUfDyMWLF2E0GgGoM0QDAJ6enoiJiQEA8VgAwwiROzCMENVRQmVEq9WiR48esteEJtHs7GzcuHFD9XOxZ1qvwNPTUzy/EydOoKysTPHx1J7WW917M4wQuR7DCFEdlJeXh8OHDwMAOnbsiICAANnrrp7ea++0XoEwVGM0GmWzYuyl9kwagXTIS8AwQuR6DCNEddDu3bvFO9RK+0UErm5iFcJIaGgomjVrVuP+te0bUXsmjYCVEaK6gWGEqA6SNq9K+0UE0jCidt9Ibm4uMjMzAViGaOxpJpVO761tGHHlMI1Go0FkZKRqxyMi2xhGiOogafOqrcqIdGExtSsj0jBhzxANUPvKiHSYpqqb8jlDxTDSvHlzeHt7q3Y8IrKNYYTIhrNnzyIxMRH9+vWDwWBw6bENBgN+//13AEBERITNYQNXTu9VMpNG0LZtW3HbnjAya9YsxMTE4LvvvgNgrYw0b94cfn5+Sk5XkYo9IxyiIXIPhhEiG2bNmoW0tDTs2LEDGzZscOmxN2zYgMLCQgDA4MGDbQ6LBAQEIDw8HID6YUTJTBqBXq8Xp80eO3ZM7H+x5cyZM3jzzTdx/vx5TJs2DefOnRMXWFNziAYAgoKCEBoaKj5mGCFyD4YRogpycnLEf6EDtVvS3BHLly8XtydNmlTlfkLfSFZWFgoKClQ7H0cqI4B1qObGjRvIysqqcr8vv/xS3C4oKMDUqVPFx2qHkYrHYBghcg+GEaIKli1bhpKSEvFxbW72ZktpaSlKS0ttvnb9+nVs3LgRABAeHo4BAwZU+T7SvhE1p/cKYSQ4OFhcbM0e9vSNmEwmpKSkyJ7btm2buK3mTBqBdKiGYYTIPRhGiCRMJhMWLlwoe86ZYWT//v0ICwuDv78/unXrhkcffRRr164VhzFWr14trgY6fvx4cblyW6Qzamp7jiUlJVixYkWlmTk3btxARkYGAPtn0gjsCSNbt24Vb1Cn0+kqve6Kyog0jAhDS0TkWgwjRBL//e9/ZdNKAeD48ePV9jwo8d133yE/Px9GoxH79u3DwoULMXr0aLzxxhsAgG+++Ubct7ohGkA+s+XQoUO1Oq9XXnkFEyZMQPfu3cVpvICye9JUZE8Y+eKLL8TthQsXIiIiQva6K8LIgw8+iOjoaCQlJWHo0KGqH4+IKvN09wkQ1SWfffaZuO3v74+CggLk5uYiJyfHKXeOFaoAFc2ZMwfNmjUThyji4+ORlJRU7Xt16tRJ3P7rr79qdV579+4FYFlT5KmnnsKqVasAAEuWLBH3sXdar6CmMHL9+nX85z//AWBZTO2+++5DaWkppk2bJu7jimGa1q1b49y5c9BoNKrckI+IasbKCNFN6enpWL9+PQAgKipKVpk4fvy4U45x4cIFcfvy5ct48803xcdPPPGEWIGZNGlSjV+MrVq1QmBgIADg4MGDtTovaYPp6tWrsWHDBmzYsEEMI3q9Hvfcc4+i9wwLC0OTJk0A2A4jK1asEHtzJk+eDB8fHzz44INITEwEADRp0qRSpUQtWq2WQYTIjRhGiG76/PPPYTKZAAAzZsyQDUs4q29E6L9o0qQJmjVrhtdeew3jx4+vtN/EiRNrfC+NRoOOHTuK73vt2jWHz0uYSiv4xz/+IatQvP/++4iOjlb8vkJ15NKlS8jNzZW9tmzZMnH7oYceAgB4eHhg3bp1eOqpp7B69epqe2aIqOFgGCGCZYaL0L/g6emJadOmyRbuckYYKS8vF/sxhC92jUaDJUuWiKECAJKSktCmTRu73lM6VONo30hhYSHy8/Nlz6Wnp4sBZfjw4Zg+fbpD7y0dqpFOET516pQ4NNSlSxfZ54iNjcWHH36Ifv36OXRMIqp/GEaIAKxfv1788k1OTkaLFi1kgcAZwzSXL19GeXk5AMswkECv1+OHH34Q74ny4osv2v2e0i9xR4dqpFWRrl27ypZDDwkJwZIlSxwewrj11lttnp8QRABgzJgxDr03ETUcDCNEABYtWiRuz5gxA4BlzQkfHx8AzqmMCEM0ACoNecTGxuLo0aPIyMjA2LFj7X7Pzp07i9vOCCN9+vTB//3f/4mPP/3001r1bUjPT9pkKz3XLl26OPz+RNQwcDYNNXpnz57Ff//7XwCWptBBgwYBsPQvxMfHIy0tDadOnUJ5eXmtehiqCyOAZYn3gIAARe+ZmJgIrVYLk8nk8IwaaRhp0aIFZs6cidjYWISFheFvf/ubQ+8p6NSpEzQaDcxmMw4cOCA+Lw0j0uoOETVOrIxQo7d06VJxFsv06dOh1Vr/WAhDNUajEenp6bU6jnQmjXSYpjZ0Op14jmlpaVWu7Fod6Uya5s2bQ6vV4oEHHqh1EAEsAUtYnO3w4cMoKysDYA0joaGh4vAUETVeDCPUqFVsXBVmdQic2cRaU2XEUUJlwWg0OtTbIq2MNG/e3GnnJRCGYYqLi3Hs2DFkZ2eLAUionBBR48YwQo3ahg0bxC/GUaNGVfoydmYTqxqVEaD2TawVh2mcTdoT8tdff3GIhogqYRihRk261oXQuCqlVmWkLoWRisM0ziZtYj1w4IDsHKWvEVHjxQZWatT+/PNPAJYprIMHD670ujMrI0IYadasmThLxxlquyy8UBnx8PAQV0x1Jmll5MCBA8jOzhYfszJCRAArI9SIGQwGceikbdu2ssZVQZMmTRAaGgqgdpWRsrIysQLhzKoIAERERIghojbDNOHh4TavQW2Fh4eLwz8HDhwQZ9V4enrKFkUjosaLYYQaLendeYUZH7YI1ZGMjAwUFRU5dKxLly6JC545s3kVsKziKlQYsrOzKy3tXp3y8nJcvnwZgDpDNAKhOpKbm4u0tDQAltVZnVkhIqL6i2GEGq1Tp06J2/aEEQA4efKkQ8dSq19E4GjfyNWrV8WQ5IowIsUhGiISMIxQoyUNFtWFEWc0sUpn0ji7MgI4fo8atWfSCGw1qrJ5lYgEDCPUaDlSGZHe7E0JtdYYEXTo0EHcPnr0qN0/p/ZMGgErI0RUHYYRarSkYaR169ZV7te1a1dxe9u2bQ4dS+1hGmn1RkkYUXvBM0FsbCwCAwNlzzGMEJGAYYQaLSGMhISEiDNmbImNjUVcXBwA4LfffkNhYaHiY6k9TOPv7y++77Fjx8Tl7SsyGAz45ZdfkJ+fD0BeGVFzmEar1cqGZVq0aIGmTZuqdjwiql8YRqhRKikpwfnz5wFUP0QjEG6eZzQasXPnTsXHk1ZGanMX3OoI02Rzc3PFGTICs9mMtWvXon379hg0aBCmTJkCs9nsssoIIB+qYVWEiKQUhRGj0Yg333wTI0aMwB133IEZM2bISt0pKSkYNGgQBgwYgAULFsj+dZaWloYJEyagd+/emDFjhuxfZESudubMGfH3p5IwAgBbtmxRfDwhjISHh6s2nVW6Zod0qOb8+fMYOXIkRo8eLd7s7+DBg0hLS3NpGJFWRhhGiEhKURgpLy9HZGQkli1bhq1bt6Jfv3547rnnAAA7d+7EqlWrkJKSgpUrV2Lnzp1Yt24dAEuIeeGFFzB+/Hhs3boViYmJeP31153/aajeKC4uxuXLl8X/hLu5uoq9zauC/v37izd0UxpGSktLxfCtxhCNwFYYMZlMGDVqFDZs2FBp/7Vr17qsgRUA7r77bsTHxyMsLAxTp05V9VhEVL8oWg5ep9Nh2rRp4uP77rsPCxYsQG5uLjZu3IixY8eKzXmTJ0/Gpk2bkJycjP3790On0yE5ORmA5TbtgwYNQlZWls1xaqPRCKPRKD9RT094e3sr/oD1kclkkv3a0GzZsgVjxoyR9V5ERETgt99+c+jL2pHrJZ3We8stt9T4s6GhoejSpQv+/PNP/PXXX7h8+bLdPQ+ZmZliFSYyMlK1/6/SJtYjR47AZDIhLS1NXHckPDwcL730Ep555hkAljAi9I4EBARAp9Op+nsuICAAR48eRXl5Oby8vOrF7++G/mfR2Xi9lGks18uelZ1rdW+aQ4cOITQ0FMHBwTh79ixGjBghvtamTRt88sknACwlcem/PnU6HaKionDmzBmbYWTZsmVYvHix7Llx48bh3nvvrc3p1jvSPoOG5J133qnUBHrx4kXMmzcPM2fOdPh9lVwvYUlywNL8KQxfVCcpKUm8l813332HkSNHVrt/Tk4OCgoKZNOBg4OD7TqWI/z9/cXtAwcOID09HevXrxefe+ihh5CcnIzFixfjyJEj2L9/P7y8vAAAYWFhqp1XQ9BQ/yyqhddLmYZ+vWJjY2vcx+EwUlBQgLfeeguPPfYYAKCoqEj2l6FerxeXzjYYDNDr9bKf1+v1MBgMNt976tSpmDRpkvxEG1llJCMjA9HR0arcK8SdzGazeDM3Pz8/DBgwABs3boTJZMJPP/2Ejz76SBwOsZcj10va4NmnTx+7qhz33HMPPv/8cwCWnovHH3+80j5GoxFr1qzB559/bnMacPv27RETE2PXOSrVsmVLhIaG4tq1azh37hxiYmJw7Ngx8fW77roLMTExuOeee8SAVFpaKv6sWudVnzXkP4tq4PVShtfLyqEwUlJSgueeew59+vQRh178/PxQUFAg7lNYWAg/Pz8AlkpIxX8JFxYWQqfT2Xx/b2/vRhM8qqPVahvcb9ATJ04gJycHgKUPIzU1Ff3798e2bdtw6tQppKWloWPHjg69d8XrVVBQgPLycgQFBVXaV+gZCQwMRLNmzewKQH379oWPjw9KSkqwZcsWaDQa2c+tW7cO06dPl92VtqLOnTur+v+0ffv22LVrFy5evIiCggL8/vvvACx/ppKSkqDVapGcnIw5c+bIfq558+YN7veaMzXEP4tq4vVShtfLgam9ZWVlePnll9G0aVM8/fTT4vOxsbGypsATJ06IazPExcXJXhPuliq8To3Hrl27xO1evXoBAMaOHSs+9/333zvlOOfPn0d8fDyioqKwf/9+2WtGo1EckoiPj7e7EqPT6dCnTx/x/U+fPi17febMmbIg0qZNG0yaNAmTJ0/G5MmTsWDBAgwZMqQ2H6tG0ibWHTt2iL0xSUlJ4iyezp07V5perHbzKhFRdRSHkX/+858oKSnBrFmzZH+JjxgxAqtXr0ZmZiZycnKwfPlyDB8+HIBlBUuDwYDU1FQYjUYsXboUCQkJqi6yRHXTb7/9Jm4LYWTMmDHi76Xvv/++ygW7lFi4cCEuX76MgoKCSlWAc+fOiQ1j1a28aktVU3xzcnLE+9bccsst2Lp1K44dO4avv/4aX331Fb766is8+eSTioeglJKGkaVLl4rbvXv3Frc1Gg0GDx4s+zn+WSQid1IURrKyspCamooDBw6gf//+6Nu3L/r27YsDBw6gT58+GDNmDKZMmYJx48ahd+/eGDVqFABLiXj+/PlYvnw5+vfvj4MHD2L27NmqfCCq24Qw4uHhge7duwOwfBEKFYfjx4+Lt5h3lMlkwvLly8XHqamp4gJngPJpvVJVhZHdu3eL26NHj5ZNBXYlaRhJTU0Vt4XgJ5B+DoCVESJyL0U9Iy1atMC+ffuqfH3q1KlVrh/QoUMHrFixQtnZUYNy7do1sXGyS5cuYk8RYJkttWPHDgDAqlWrkJiY6PBxdu3aJQsfJpMJn3/+OebOnQvA/rv12tKlSxcEBwcjNzcXv/zyC0wmE7RaLf744w9xn549ezp87rUlDSPStVsqhpHu3buLnwNgGCEi92rcHTPkUtIvbOmwAWAZqhHUtm9EWhURLF68WFy7pjaVEQ8PD/Tv3x+AJVwJa3hIP1uPHj0Un7OztGzZUhbyAMtnbNasmew5Ly8v3HXXXeJje6beERGphWGEXMZW86ogMjJSDChHjhyRrc2hhNFoxMqVKwFYZngJfUvZ2dlYs2YNgNqFEQAYMGCAuP3zzz+jvLxcHKaJiIhQ5a689tJqtbLFz4DK11owd+5cjBgxAq+++mqlnyEiciWGEXIZW82rUtJZNatXr3boGJs2bcL169cBWHo3pIuoffrpp8jJyRF7Uvz9/REeHq74GAMHDhS3f/75Zxw7dkxcybRnz55u6RWRateunexxxSqUoGXLltiwYUOlBl8iIldjGCGXKC0tFasHLVu2tFk9GD16tLgt9I8oJR2imTRpEu68807xy/nXX39FVFSUuNqhkmm9Uu3atRNnn+zYsUN2ru4cohFI+0aAqisjRER1BcMIucTBgwfFFXer+pd6TEyM+CW/e/duxfdryMvLE2eQNGnSBIMHD4ZGo8Gjjz4q7lNSUiJuP/LII4reX6DRaMTqSGFhIT766CPxNXc2rwqkYSQoKAgJCQluPBsiopoxjFCt/f7771i5cmW14aGmIRrA8iUvfJnfuHFDtpS5PRYtWoTi4mIAlps4CvddmTJliliJCQ4OxrPPPouTJ0/i73//u6L3l5L2jQj9LR4eHujatavD7+ks0vBx++23N/qVHYmo7uPfUlQrZ8+eRd++fXHfffdh4cKFNvcxGo2y4ZOqKiOAfJhDunZHTa5du4Z//etfACxNnNJqSHBwMHbv3o1ffvkFmZmZeO+99xxqXJWS9o0IOnbsWOkeTO7Qvn17TJgwAeHh4XjhhRfcfTpERDViGKFa2blzJ8rLywFY7rZckdlsxmOPPYY9e/YAsEwhvfXWW6t8P+kwh3S6bE0+/vhj3LhxA4BlvZsOHTrIXo+IiMCdd95Zadqro1q2bFkp0NSFfhHAUmH65ptvkJWVJU5DJiKqyxhGqFakQyn79u3D2bNnZa//+9//Fpcl9/X1xcqVK+HpWfVae8LN3AD7w8jp06fFyoufn5/LVveVDtUAdaNfRMrds3qIiOzFMEK1cvToUdlj6ZTc//73v3j22WfFx1988QWSkpKqfT+9Xi/etfd///uf7E7QVXn55ZdRWloKAHjuuecq3QROLRWHaupaGCEiqi8YRhq49PR0bN68Wfzv8OHDTn3/imFk1apVAICCggJMmTJFbGp9+eWXMWHCBLveUxjuMJlM1d5+AAC2b98uHrNZs2aydUXUJh0CCQ4OVnzTPSIismAYacD27t2L2NhYDBs2TPyvY8eO+Prrr53y/qWlpbLVTAFL0+n58+exYMECXL58GQAwbNgwRQtr2ds3smfPHvFmjADw+uuvIyAgwO7j1FbTpk0xbtw4AMBDDz3EWStERA7i354N2Lfffguz2Vzp+bfeesvm80qdOnVKvBmbtD/h888/x/z58wFYprt++OGHir6o7Qkj+/btw5AhQ8Sm1V69emH69OmKP0Ntfffdd0hPT8e7777r8mMTETUUDCMNmHRtj1dffVWcYXL06FFs37691u8vHaIZP368uP3Pf/5TDAkPPfSQ4vuetGnTBsHBwQAsYaRicDp48CAGDx6MvLw8AJbhksWLF1fbGKsWjUaDli1bslmUiKgWGEYaKIPBgD///BOAZfnyOXPm4NVXXxVf//TTT2t9DGkYSU5OrjRl19fXF6+//rri99VqtejevTsA4PLlyzh//rzs9ZkzZyI3NxcAcMcdd2Dt2rXQ6XSKj0NERHUDw0gDtW/fPnGGibDi6ZgxY8Rbya9ZswZZWVm1OoY0jLRv3152ozsAeOKJJxy+g21VQzUlJSXivWAiIyOxfv36OrHQGBEROY5hpIGSDtEIK556e3tj2rRpAICysjIsWbKkVscQwohWq0WbNm3EZk7Ack+Ul156yeH3loaR33//Xdzet2+fuOT7gAED4O/v7/AxiIiobmAYaaB27dolbkvvBTNjxgyxmXTRokViA6pSJpNJXPAsNjYWvr6+aN++PR555BGEhIRg0aJFCA0Ndfj8e/ToIfZhbNmyRXxeeofcfv36Ofz+RERUdzCMNEBms1msjISGhqJNmzbiazExMfjb3/4GAMjMzMT69esdOkZGRgaKiooAyO8S+9lnn+HatWu47777HD19AJbzFqojaWlpOH36NAB5GOnbt2+tjkFERHUDw0gDdOLECVy9ehWApSpScVrtY489Jm4LS7UrJV0GXhpGnCk5OVncXrt2LcrLy8WKT7NmzWQhi4iI6i+GkQZI2i8iHaIRDB48GE2bNgVge+qsPSo2r6ph9OjR4vYPP/yAw4cPi9N5+/bty+m0REQNBMNIAyTtFxGaV6W0Wi26dOkCAMjJyUFmZqbiY7gijLRt21Zco2TXrl1Ys2aN+BqHaIiIGg6GkQZIqIx4enpWeWM6IYwAwIEDBxQfwxVhBLAO1ZhMJrz//vvi8wwjREQNB8NIA3Pt2jUxKNx2223w8/OzuZ+zwkiLFi0QFBTkwJnaR9o3ItzBNyAgAJ06dVLtmERE5FoMI05kMpnE/5xx7xdHSNfksNUvIqhNGNm9ezdycnIAqFsVASxTfMPDw2XP9e7dGx4eHqoel4iIXIdhxAkMBgP69+8PDw8P8b+goCCsWLHC5edibxiJj48XFwxTEkb279+PYcOGiY/VXuvDw8MDI0eOlD3H9UWIiBoWhhEnWLFiBbZt2yZ7Lj8/H88995y4JLur7NmzR9yWrmJakVarRefOnQEA6enpuHbtWo3vfeDAAQwePFi8L0y/fv3w/PPP1+p87SEdqgHYL0JE1NAwjDjBl19+KW5369YNkZGRAICLFy8iNTXVZedhNpuxb98+AEB4eHiN94WRDtX89ddf1e77119/YdCgQbh+/ToASyDYsGGDS+4LM3DgQLH3xcfHB926dVP9mERE5DoMI7V07tw5bN++HYBlKuru3bvxxRdfiK874+649jpz5owYFrp161bjOhz29o0cOnQIgwYNEqsnvXv3xsaNG112XxidTodXXnkFPj4+eP755+Hj4+OS4xIRkWswjNTS119/LW4/8MAD0Gg0GDRoEOLj4wEAP//8M44fP+6UY504cQJfffWVeKO4ivbu3StuVzWlV8qeMHL48GEMHDhQXNH19ttvx6ZNm1x+g7qXX34ZBQUFmDt3rkuPS0RE6mMYqQWz2Yz/9//+HwBAo9Fg0qRJACz9GI888oi438KFC2t9rKKiItxxxx2YMmUKhg4dCqPRWGkfaRixZygjISEBXl5eAIA///yz0utnz57FwIEDxZkzPXv2xI8//oiAgABHP0ateHp6uuW4RESkLoaRWvjjjz9w8uRJAED//v3RsmVL8bUHH3wQvr6+AICUlBTxpnKO+vnnn3Hp0iUAwK+//orHH3+80vRhpWHE29sbiYmJAIDjx49XOscPPvgAV65cAQB0794dP/74IwIDA2v1OYiIiCpiGKkFaePqAw88IHstLCxMvHNtbm5uraf5Vry77uLFi/Hxxx+Lj8vLy8XqRkxMjHjvmZoIQzUmkwmHDh2SvSY0wwJAamqqqoubERFR48Uw4qDi4mJ89913AAA/Pz+MGTOm0j7Su+N+9tlnDh/LbDaLYUS62NczzzyDn376CYDlLrqFhYUA7KuKCKrqG5GGk5iYGDRr1szh8yciIqoOw4iD1q9fL663cc8999hs6OzWrZu4lse+fftw4cIFh4514MABXLx4EQAwbNgwvPTSSwAs1ZAHH3wQxcXFiptXBVWFkTNnzojhRvgMREREamAYseHQoUN49tlnsXXr1ir3Wb58ubh9//3329xHo9HIFuzavHmzQ+cjHaL529/+hn/+858YPHgwAMtaJikpKYr7RQSdOnUSpwBLm1gPHjwo24eIiEgtDCMVmM1mjBs3Dh988AEGDhyI8ePHIzMzU7bP9evXsXHjRgBA8+bNMWDAgCrfT7p0+o8//ujQOUkXTrvrrrug1Wrx1ltvic/NmzdPtgx8165d7X5vf39/tGvXDoBlYbP8/HwADCNEROQ6DCMV/PXXXzhx4oT4+LvvvkO7du2wdOlS8bnVq1eLU2vHjx9f7U3bunXrhtDQUADATz/9hLKyMkXnk5WVJTaSdu7cGdHR0QAsQzFDhgwBYFl4TRhiadu2reJG0/79+wOwDPv8+uuvABhGiIjIdRhGKvjPf/4jbgsho6CgANOmTROrD9988424z8SJE6t9Pw8PDzE05OXl4Y8//lB0PkIFBrAM0Ui98sorlfZX0i8iGDhwoLj9888/A7CGEX9/f8TGxip+TyIiInsxjFSwZs0aAJZ+j0OHDsmm7D7++OM4f/68eFO81q1b2/XlX5uhGukQTcUw0q9fP/Tp00f2nCP3bbnzzjvFvpGff/4Zubm5SE9PB2Cpimi1/G1CRETq4beMxPHjx5GWlgYA6NWrFxISErBkyRJ07NgRgKXB8+677xYXG5s4cWKN938BIFZGAGVh5OrVq2LTa7NmzWwGjZdffln22JEwEhoaKs6qOXToELZs2SK+xiEaIiJSG8OIhFAVAYC7774bgGUJcuniYtIZJzUN0QhatGghTo/dv38/srOz7fq5hQsXivehmTBhgs0KxbBhw3DbbbcBAPR6vcPTcKVDNQsWLBC3GUaIiEhtDCMS0n4RIYwAQN++fStN301KSkKbNm3sfu/hw4eL2/ZM8S0pKRFDkFarxVNPPWVzP41GgxUrVuDhhx/GihUr4OfnZ/c5SUnDyM6dO8VthhEiIlIbw8hNGRkZ4lodnTt3RlxcnOz1+fPny+7LItwUz15K+0Z++OEHsYIyduzYaptIW7dujSVLllTqKVGiT58+4k3zBBqNRrx3DRERkVoYRm764YcfxG1bS7s3b94c7733HgDLsIvSMHL77beLd7vdvHkzysvLxdfMZjOWLVuGJUuWoKSkBCaTSTaV+LnnnlN0LEfo9Xr07NlT9lzr1q2h1+tVPzYRETVuDCOwLGIm7ZOwFUYAYNq0aTh+/DgOHTpk943oBF5eXuKqqVevXsWuXbvE11avXo2HHnoI06dPR8eOHfHmm2/i1KlTACwVi+7duyv9SA6RDtUAXAaeiIhco9GHkbKyMtx77704ffo0AKBHjx5ISEiocv82bdqgSZMmDh1LGnK+//57cVt6998TJ05g7ty54mNXVEUEFcMI+0WIiMgVGn0Yee6558SprE2bNsV3331n13RdR4wcORLe3t4ALNUQk8mE69evV9nQ2rp1a4wcOVKVc7Gle/fusgZYhhEiInKFRh1GFi9ejH//+98ALMMo//nPfxATE6Pa8QIDAzF06FAAlmXef/vtN6xZswalpaUAgKeeegrLli0Th4DmzJlT7VLzzubt7S0uDa/RaGR39CUiIlKLp7tPwF127tyJxx57THz82WefVVrNVA3jxo0TV1VdtWoVjhw5Ir42ceJEdO/eHePHj8fhw4cV3fDOWd5++22UlpZi6NChiIiIcPnxiYio8Wm0YSQ+Ph7dunXD77//jqeffhoPP/ywS447cuRIeHl5obS0FN9++y2uXr0KAIiNjRVXT/X29na4L6W2EhMT7VoHhYiIyFka7TBN8+bN8csvv+D999/HO++847LjBgcHi8vDZ2dni1N877vvPtV6VYiIiOqyRhtGAMDHxwfPPPMMPD1dWyAaO3ZspefGjx/v0nMgIiKqKxp1GHGXUaNGyQJQ27ZtxZvxERERNTaKwsiiRYswbtw4dOvWrVJfQUpKCgYNGoQBAwZgwYIF4p1tASAtLQ0TJkxA7969MWPGDGRlZTnn7Oup0NBQDBo0SHw8fvx4DtEQEVGjpSiMREdH47nnnkOHDh1kz+/cuROrVq1CSkoKVq5ciZ07d2LdunUAAKPRiBdeeAHjx4/H1q1bkZiYiNdff915n6CeevTRRwFYlmF/4IEH3Hw2RERE7qMojIwYMQI9e/YUF+4SbNy4EWPHjkVUVBSaNGmCyZMnY9OmTQCA/fv3Q6fTITk5GT4+Ppg+fTqOHDnS6Ksjo0aNwl9//YUjR45UexM8IiKihs4pnZtnz57FiBEjxMdt2rTBJ598AgA4c+YM4uPjxdd0Oh2ioqJw5swZtGjRwub7GY1GGI1G+Yl6elYKQfXdrbfeCgAwmUyy54XHFZ8n23i9lOH1sh+vlTK8Xso0luul1dZc93BKGCkqKoK/v7/4WK/Xo6ioCABgMBgq3flVr9fDYDBU+X7Lli3D4sWLZc+NGzcO9957rzNOt97IyMhw9ynUK7xeyvB62Y/XShleL2Ua+vWyp/rvlDDi5+eHgoIC8XFhYaF4jxOdTofCwkLZ/oWFhdDpdFW+39SpUzFp0iT5iTbAykhVTCYTMjIyEB0dbVeibOx4vZTh9bIfr5UyvF7K8HpZOSWMxMbG4tSpU+Jy6idOnEBcXBwAIC4uDmvWrBH3NRgMuHDhgvi6Ld7e3o0meFRHq9U2+t+gSvB6KcPrZT9eK2V4vZTh9VLYwFpWVoaSkhKYzWZx22QyYcSIEVi9ejUyMzORk5OD5cuXY/jw4QCArl27wmAwIDU1FUajEUuXLkVCQkKV/SJERETUuCiqjMydOxfr168HABw4cABvvPEGFi5ciD59+uDkyZOYMmUKTCYTRo8ejVGjRgGwVDnmz5+POXPm4O2330ZCQgJmz57t/E9CRERE9ZLGLF2djOoEk8mE9PR0xMTENPrSnT14vZTh9bIfr5UyvF7K8HpZNe5PT0RERG7HMEJERERuxTBCREREbsUwQkRERG7FMEJERERuxTBCREREbsUwQkRERG7FMEJERERuxUXPiIiIyK1YGSEiIiK3YhghIiIit2IYISIiIrdiGCEiIiK3YhghIiIit2IYISIiIrdiGCEiIiK3YhghIiIit2IYISIiIrdiGCEiIiK3YhhxgUWLFmHcuHHo1q0bNm/eLD5fXFyMf/7znxg8eDCGDBmCr776SvZzSUlJ6NOnD/r27Yu+ffviiy++kP3sa6+9hn79+uGuu+7Cjz/+6LLPoyY1rtX777+P5ORk9OvXD/fffz/+/PNPl30etalxvQQXL15E79698dZbb6n+OVxFreu1bt063H333ejTpw/Gjh2L9PR0l3weNalxrTIzM/GPf/wDd955J4YPH45ly5a57POozdHrVVBQgNmzZ2PAgAG488478corr8h+tiH+PW+Lp7tPoDGIjo7Gc889h4ULF8qeX7p0KS5evIg1a9agoKAAjz76KOLj43H77beL+/zwww9o0qRJpfdctGgR8vLysHHjRpw+fRpPPfUU2rdvj5iYGNU/j5rUuFb+/v74+OOPERkZia1bt+L5559Hamoq9Hq96p9HbWpcL8H777+Ptm3bqnbu7qDG9fr111/x9ddf491330VcXBwyMzMREBCg+mdRmxrX6p133kFkZCQWLFiAy5cv4+GHH0aHDh3QvXt31T+P2hy9Xm+++SbCw8Oxbt06+Pr64tSpU+LPNtS/521hZcQFRowYgZ49e8Lb21v2/O+//46JEyfC398fzZs3x6hRo7Bhwwa73nPjxo2YMWMG/P390alTJ/Tr1w///e9/1Th9l1LjWs2YMQPR0dHQarUYNGgQfHx8cP78eTVO3+XUuF7Cz5vNZvTo0cPZp+xWalyvJUuW4Nlnn8Utt9wCjUaDqKgoBAUFqXH6LqXGtcrKysKQIUPg6emJyMhIdO7cGWfOnFHj9F3Oket1+vRpHDt2DM888wz8/f3h6emJdu3aiT/bUP+et4VhxM2kN002m82V/mBOnjwZw4cPx6xZs5CbmwsAuHHjBq5evYr4+HhxvzZt2jSYP9RVceRaVXTx4kXcuHED0dHRap5qneDo9SotLcWCBQvw9NNPu+hM6wZHrld5eTmOHz+OU6dOYcSIERg1ahQWL16Mhn4zdEd/b40bNw6bN2+G0WjE+fPncfjwYSQlJbnqtN2mqut19OhRtGzZEq+99hoGDhyIKVOm4MCBAwAa39/zDCNu1LNnT3z77bfIz8/HxYsXsX79ehQXF4uvL168GOvXr8c333yD4uJizJ49GwBQVFQEDw8P+Pr6ivvq9XoUFRW5/DO4iqPXSqqsrAyzZs3C/fffD39/f1eevsvV5notX74cvXv3bhSBTeDo9bp27RrKy8uxd+9efPfdd/j888/x008/ITU11V0fRXW1+b3VqVMnHD58GH379sWYMWOQnJws+7JtiKq7XtnZ2di9eze6d++OzZs348EHH8Tzzz+PvLy8Rvf3PMOIGz388MOIiIjA2LFj8eSTT2LgwIFo2rSp+HqXLl3g6emJkJAQPP/889i1axdKS0vh5+eH8vJy2V8AhYWF8PPzc8fHcAlHr5XAbDZj1qxZCAkJwYwZM9zxEVzK0euVnZ2NdevW4aGHHnLj2bueo9fLx8cHAPDAAw8gICAAzZs3x7hx47Br1y53fRTVOXqtysvL8dRTT2H06NHYtWsX1q1bhy1btmDLli1u/DTqq+56+fj4IDIyEqNHj4anpycGDBiAyMhIHD58uNH9Pc8w4kY6nQ6vvPIKNm/ejFWrVkGj0SAhIcHmvlqt5X+V2WxGYGAgwsLCZI1OJ06cQFxcnEvO2x0cvVaC+fPn48qVK5gzZ474ekPm6PU6cuQILl++jDFjxmDo0KH4+uuvsWHDBjzxxBOuPH2Xq82fRekXsfB8Q+botbpx4wauXLmCsWPHwtPTExEREbjzzjuxf/9+V56+y1V3vW655ZYqf66x/T3f8P9WrgPKyspQUlICs9ksbptMJly+fBk5OTkoLy/HH3/8gdTUVEycOBGApbHpxIkTKC8vx40bN/Dee++hR48eYnPUiBEjsGTJEhQWFuLw4cP49ddfMXjwYHd+TKdQ41otWrQIBw8exHvvvVepuay+c/b16tWrF9auXYvly5dj+fLluOeeezBo0CDMmTPHzZ/UOdT4/fW3v/0N/+///T8UFhbiypUrWL16Nfr06ePOj+kUzr5WISEhCA8Pxw8//CC+z/bt26v9Qq5PHLleSUlJMJvNWL9+PcrLy7F9+3ZkZmbi1ltvBdBw/563RWNu6DG+Dpg1axbWr18ve06Y/vXGG28gNzcXrVq1wvPPP48uXboAAPbu3Yt//etfyM7Ohl6vR/fu3fHMM88gNDQUgGX++dy5c7F9+3YEBgbiiSeewLBhw1z7wVSgxrVKSkqCt7c3PDw8xPd8+eWXMXz4cBd9KvWocb2kFi1ahKtXr+Lll19W/8O4gBrXq7S0FPPmzcNPP/0EPz8/jB49GjNmzIBGo3Hth3MyNa5VWloa3nvvPZw+fRq+vr4YMmQInn76admfzfrKkesFACdPnsScOXNw9uxZREdH4/nnn8dtt90GoOH+PW8LwwgRERG5FYdpiIiIyK0YRoiIiMitGEaIiIjIrRhGiIiIyK0YRoiIiMitGEaIiIjIrRhGiIiIyK0YRoiIiMitGEaIqF5LSkpCUlJSg75TLlFDxzBCRDWaMWOG+KU/YcIE2Wu5ubno3bu3+PpHH33k9OOnpqaK709EDQ/DCBEpcvLkSfz555/i4x9++AElJSVuPCMiqu8YRojIbp6engCA7777DgBQXl6OVatWic9L5eXlYd68ebjrrrvQo0cPDBkyBK+99houXbok7rNo0SIkJSVh5MiR+Omnn3DPPfegT58+mD59Os6dOwfAcgOyN998U/wZoUKyaNEi2fEKCgowa9Ys3HHHHRg+fDiWLFni7I9PRCphGCEiu7Vp0waRkZHYtm0bLl++jF9//RWXLl3CwIEDZfuVlJRgxowZ+P7775GTk4OYmBgUFhZi06ZNmDp1Kq5fvy7bPzs7G6+99ho0Gg1KSkpw4MABzJ49GwAQFRWFyMhIcd/ExEQkJiYiPDxc9h4ff/wx/vjjD3h5eeHKlStYuHAh/vjjD5WuBBE5E8MIEdlNq9Vi3LhxYkVEqJDcd999sv02b96M06dPAwDmzZuHlStXYunSpdBqtbhy5QpWrlwp27+8vBzz58/HqlWrxJ6UQ4cOobi4GNOmTcO0adPEfVNSUpCSkoLRo0fL3qNNmzZITU2VVWr27t3r1M9PROpgGCEiRZKTk6HT6bBy5Urs27cP7du3R8eOHWX7HDlyBADg6+uLO++8EwDQrl07xMTEyF4X+Pv7o1+/fgCAuLg48fmKFZTqDB48GF5eXggODkZoaCgA4Nq1a8o+HBG5BcMIESkSEBCA4cOHo7CwEEDlqoij7ynw8PAQt81mc63eQ8nPE5H7MIwQkWL33nsvACA4OBhDhgyp9HpCQgIAoLi4GNu2bQMAHDt2DOnp6bLX7eXr6ytuGwwGR06ZiOqwyi3wREQ1iI+Px88//wwPDw94e3tXen3o0KH4+uuvcebMGbz44ouIiYlBZmYmTCYTmjZtKoYZe7Vq1UrcHjduHJo0aYKnn34anTt3ruUnIaK6gJURInJIUFAQ/P39bb7m4+ODxYsXi8EhPT0der0ew4cPx7JlyxASEqLoWK1bt8a0adMQFhaGS5cu4X//+x/y8/Od8TGIqA7QmDmoSkRERG7EyggRERG5FcMIERERuRXDCBEREbkVwwgRERG5FcMIERERuRXDCBEREbkVwwgRERG5FcMIERERuRXDCBEREbkVwwgRERG5FcMIERERudX/B2sJYS58dqPAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -491,16 +587,32 @@ "execution_count": 14, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/dennisbader/miniconda3/envs/darts310/lib/python3.10/site-packages/statsforecast/utils.py:237: FutureWarning: 'M' is deprecated and will be removed in a future version, please use 'ME' instead.\n", + " \"ds\": pd.date_range(start=\"1949-01-01\", periods=len(AirPassengers), freq=\"M\"),\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABJ2UlEQVR4nO2dd3hUZfbHP5OEVAIhQBKqgKEIhFBemoiIqCs2XFzBgqAoVtZd3V3r2tZe9ofooggLi4qrYKHYcG2IgCAvonREQtCEQAiEQCB1cn9/3NzLpM4kM8NMwvk8T54wd+5973syw3fOnPe85zgMw0AQBEFo+IQEegKCIAiCbxBBFwRBaCSIoAuCIDQSRNAFQRAaCSLogiAIjQQRdEEQhEZCIAXdCPafffv2BXwOYovY0lB+xJaT9lMj4qHXgtPpDPQUfIbYEpyILcFJQ7VFBF0QBKGRIIIuCILQSBBBFwRBaCSIoAuCIDQSRNAFQRAaCSLogiAIjQQRdEEQBC8xDIPS0tJAT0ME3RuWL1/O6tWrvRqjadOmPpqNIAiBwOl00rt3b84++2zKysoCOhcRdC/whaALgtCwycnJYevWrXz33XcB1wMR9Gq4/PLLGTBgAOeeey6zZs0CYNmyZfTv35/U1FRGjRpFeno6M2fOZNq0afTt25dvv/2W66+/nvfee88ex/K+8/PzGTVqFP379yclJYUlS5YExC5BEHzP4cOH7X+/9dZbgZsIEBbQuwcpc+fOJT4+nl9++YXLL7+cMWPGMGXKFFasWEHnzp05dOgQ8fHx3HrrrTRt2pS//vWvAMyZM6fa8SIjI1m0aBHNmjUjJyeHIUOGcNlll+FwOE6mWYIg+AFXQV+4cCHTp08nPDw8IHMJWkH3l9h50kP1pZdeYtGiRZSUlJCZmcmsWbM4++yz6dy5MwDx8fF1vucDDzzAihUrCAkJITMzk/3795OUlFQvGwRBCB5cBf3QoUN89tlnXHrppQGZi4RcKrF8+XK++OILvvvuOz7//HP69etH3759Pbo2LCzMXhQpKyujuLgYML+GHThwgPXr1/Pjjz+SmJhIYWGhv0wQBOEk4iroENiwi0ceulLqHOAhzA+Al4ADwHNAGXCb1nqTUioJeAOIAV7VWs/3ZmKeeNL+IC8vjxYtWhAdHc26detYs2YNhYWFrFixgt27d1cIucTGxnLkyBH72k6dOrF+/XrGjRvH0qVLKSkpscdMSEigSZMmfP311+zZsycgtgmC4HssQb/gggv43//+x9KlSzl27BgxMTEnfS5uPXSlVBTwF2C01nqk1noR8CRwMXAN8Gz5qfdiivwI4A6lVKR/puxfLrzwQkpLSznjjDN4+umnGTJkCK1bt2bWrFmMHTuW1NRUxo8fD8Cll17KokWL7EXRKVOm8M0335Camsp3331nv6DXXnstWmtSUlJ444036NGjRyBNFATBh+Tm5gKQmppKcnIyBQUFZGRkBGQunnjoQ4EC4EOl1HHgdsCptc4FcpVSVkB5EPAXrXWZUkoDvQHtj0n7k4iICD799FMAMjMzadeunf3c6NGjK5zbrVs3Nm7cWOHYmjVr7H8/+6z5WdeqVSu+++67au+Xn5/vk3kLghAYLA89Li6OuLg4wPxWHgg8EfREIBkYApwHPAYccXm+VCkVDjTRWltZ9XlAlZVDpdTNwM0AU6dO5fzzz/di6v7HWhRtDIgtwYnYEpzUxRbX8yIiIgDYtWtXBWfQl9Q2rieCfhhYpbUuVkp9iSnoR13HKH+uRCkVUi7qzYFDlQfSWs8CZpU/DEyQvA5U9tAbMmJLcCK2BCd1scVaK+vUqRMJCQkANGnSJCB/C0+yXNYBZyilHEBfYCsQppSKU0p14IRwrwPOUUqFAQOALX6YryAIQlDhGnJp3rw5EMQhF611jlJqEfANplc9GWgHfFL++PbyU5/FzHJ5ApiptS7wy4wFQRCCCGtRtEWLFsEv6ABa6xnADJdDu4AzK52TBQR3UFwQBMHHVOehu6Yzn0xkY5EgCIIXBFPIRQRdEAShnhiGIYLemJg5cyZvvPGG1+McOHCAwYMH069fP7799lsfzMw7Dh8+zCuvvFLj8wUFBYwYMQKn00l6ejq9e/e2n5s9ezYDBgywY4u1cfDgQUaOHEnTpk2ZOnVqhefOO+88j8YQhEBRWFhIcXEx4eHhREZG0qxZM0AEvcFy6623MnHiRK/H+fLLL0lJSWHDhg0MHz7co2ucTqfX960Jd4I+d+5cxo4dS2hoaIXjb775Ji+//DKfffYZLVq0cHufyMhIHn/8cV544YUqz1133XW1zkEQAo3lnbdo0QKHwyEeejCRnp7OGWecwZQpU+jVqxfXXHMNBQVmss7s2bMZOHAgqampXHHFFRw/fhyARx99lBdeeIHt27czaNCgCmOlpKQAsH79ekaMGMGAAQP43e9+R1ZWVoX7/vjjj9xzzz0sWbKEvn37UlBQwNtvv01KSgq9e/fm3nvvtc9t2rQpf/nLX+zyAvPnz2fQoEH07duXW265xRb5yvXbAb7//nuGDh1Kv379OPPMM9mxYwcAW7Zsscfo06cPO3fu5L777mPXrl307duXv/3tb1X+Vm+99RZjxoypcGzhwoU888wz/O9//6NVq1Ye/c1jYmI466yziIysWinisssu4+233/ZoHEEIBNY3SGuHaKAFHcMwAvVTKwx3+uWnNnbv3m2EhoYaGzZsMAzDMC655BLjzTffNAzDMHJycuzzHnzwQeOll14yDMMwHnnkEeP55583DMMwUlNTjbS0NMMwDOOZZ54xHn/8caO4uNgYOnSokZ2dbRiGYbzzzjvGDTfcUOXe//nPf4w77rjDMAzDyMzMNDp06GBkZ2cbJSUlxsiRI41FixaZfxcwFixYYBiGYWzdutW45JJLjOLiYsMwDOO2224zXn/9dSM7O9to3769PZeDBw8aGRkZRl5enlFSUmIYhmF8/vnnxtixYw3DMIypU6ca8+fPNwzDMIqKiozjx48bu3fvNnr16lXt36moqMhITEys8Hdr2rSp0bp1ayMjI6PCuc8995yRmppa5eePf/xjjfa7kpycXOFvbxhGlXs0ZMSW4MRTW1atWmUAxuDBgw3DMIxt27YZgNG1a1d/Tq9GXQ3aeuiBonPnzna53JSUFNLT0wHYvHkzf//73zl8+DD5+fn87ne/q3LtuHHjWLBgAffddx8LFixgwYIF7Nixg82bN9tlDpxOJ23atKl1DuvWreOcc86hdevWgFnca8WKFVx++eWEhoZyxRVXAGaYZv369QwcOBAw49oJCQmsWbOmSv32zMxM8vLymDRpEjt37sThcNg73IYOHcqTTz5JRkYGY8eOpWvXrrXOLycnx/ZILFq3bk18fDwLFy7krrvuso//7W9/q9bD95SEhAT27t1Ly5Yt6z2GIPgL1wVRIOBpi0Er6MaKwESDrFoMAKGhoXYn7+uvv57FixeTmprKvHnzWL58eZVrx48fz5VXXsnYsWNxOBx07dqVTZs20atXrxqLc9WVyMhIO25tGAaTJk3i6aefrnDOhx9+WO21Dz30ECNHjmTRokWkp6dzzjnnAHDNNdcwePBgPv74Yy666CJee+01unTpUuMcoqKiqtRzj46O5pNPPmH48OEkJCRw7bXXAvD8889XWx/67LPP5qWXXnJrb2FhIVFRUW7PE4RAUJOgSww9yDl69Cht2rShpKSkxgL2p59+OqGhoTz++ON2id3u3btz4MABW9BLSkrYsqX2qgiDBg3im2++IScnB6fTydtvv82IESOqnDdq1Cjee+89srOzAbNbyp49exgyZIhdv906DuabzKovMW/ePHuctLQ0unTpwp133smYMWPYuHEjsbGxHD16lOpo0aIFTqeziqgnJCSwbNkyHnjgAT777DPA9NB//PHHKj+eiLlhGOzbt49OnTq5PVcQAoHroiiYzk5YWJid/XKyEUH3kMcff5zBgwczbNiwWuuZjx8/nvnz5zNu3DgAwsPDee+997j33ntJTU2lb9++bjuDt2nThmeeeYaRI0eSmprKgAEDqixAAvTs2ZMnnniCCy64gD59+nD++eeTlZVVY/32e+65h/vvv59+/frZ3zzAXMzs3bs3ffv2ZfPmzUycOJGWLVsybNgwevfuXW3I5IILLmDlypVVjnfu3JmlS5cyefJkvv/++1rttOjUqRN333038+bNo3379mzduhUwF5OHDBlCWFjQfpEUGhBWNzFfUnlR1OFwBDZ1sbYAu59/gp5TcZHHU9avX29MmDDBp2NW5s477zS++OKLKsfldQlOgtmWDz74wIiOjjY++OADj8731Ja//vWvBmA888wz9rHOnTsbgLFz5856zdUDatRV8dCFetG/f39Gjhzp11z43r172ymXglBfiouLueuuuzh+/Hi1a1/eUDmGDoGNo8t3WaHeTJ482a/jT5kyxa/jC6cGc+bMsfv4+lpkg03QxUMXBKHRUlBQwBNPPGE/PpmCHojURRF0QRAaLbNnz2bv3r126qu/BN21zIV46IIgCH5gxYoVwInwoK9FtnKWC4igC4Ig+IWDBw8C0KtXL+DkhFwCmbYogi4IQqPF2lRn7Xz2pcgaLrXQLa/c9d8i6IIgCD7E8tBdBd0wDJ+MfezYMZxOJ1FRURVKhoigC4Ig+AHLQ2/Tpg0RERGUlJTYJbG9pboFUZAsF0EQBJ9TUFBAQUEB4eHhxMTE+NxzzsnJAcxqpq6Ihy4IguBjLO88Pj7eL92E9u/fD0BiYmKF4yLogiAIPsaKn1u19EXQBUEQGiiuHjqcPEGXtEVBEAQfU9lDt3LFfSW0+/btA8RDFwRB8DuB8tCbNm2Kw+Hg2LFjFfoOnAxE0AVBaJQEKoYeEhJih11q6vrlL0TQBUFolNTkoVv5495Sk6C73utkh11E0AVBaJQEykP3x708RQRdEIRGiT9j6E6n095YlJCQUOX5QAm6245FSqlOwDrAalV/JXAOcBdQAEzSWmcopXoAs8rHfEhr/aU/JiwIQuNi7dq1AAwePNin4/rTQ8/JyaGsrIyWLVvSpEmTKs9b5QCsOZwsPG1B943W+g8ASqkw4G5gBDAQeAi4BXgKuBHYD3wKiKALglAr+/fvZ8SIEURGRnLo0CFCQnwXNLA8dH+kLdYWbgFo3749ABkZGV7fqy54+tcbppT6Vin1FNAV2Ka1LtZarwL6lJ/TVmu9U2t9BDiklGrljwkLgtB4mDt3LkVFReTl5ZGfn+/TsS3v2B8hF3eC3rFjRwB+/fVXr+9VFzzx0LOAZOA4MBsYC7iWEQst/+364ZAHxAM5rgMppW4GbgaYOnUq559/fv1mfZIoKSkhMzMz0NPwCWJLcHIq2+J0Onn11Vftxzt27KBt27Y+mYthGLagFxQUkJmZaVdZPHTokNt5urNl27ZtgLkrtLrzmjZtCpg2+fr1bdeuXY3PuRV0rXURUASglPoAuB5w/Sh1lv8ucznWHDhUzVizMOPsAL4pSuxHMjMza/3jNSTEluDkVLbl008/5bfffrMfR0dH++xvkZ+fT0lJCVFRUSQnJwMQHh5uP+fuPu5sKSkpAaBTp07Vnte3b18ADhw4cFJfX08WRWO11lZ2/HDgY+BWpVQ4oICN5c9lKaVOB7KBeK11TtXRBEEQTGbOnFnhsS8zQioviELFPHTDMHA4HPUevyGHXM5SSj2BGXLZjbkIWggsL/89qfy8B4F5mCGYR3w9UUEQGg/Z2dl89NFHNGnShJ49e/LTTz/5tCFE5ZRFMD30yMhICgsLOX78ODExMfUe352gt23blpCQELKysiguLra/HfgbT0Iun2JmrbiyoPzH9bytmB68IAhCrezYsYOysjIGDRpE+/btfS7o1XnoYHrphYWF5OXl+VXQw8LCaNeuHb/99huZmZl07ty53veqC7KxSBCEk05WVhZgerL+2IRTnYcOvktdrKnSoiuBCLt4mocuCILgMyxBb9OmjR2OOFkeOngv6O48dIAOHToAIuiCIDRyXAXdyhjxdwwdfCPoZWVlHDhwAKh+279FIDx0CbkIgnDScRV0f4Rc/OmhHzx4EKfTSVxcHBERETWeJyEXQRBOCfbu3QuYgm4Y5paUk+mhe1NC15NwC4igC4JwiuDqoR87dgxoOB66JwuiICEXQRBOEVwF3eru40sPPTs7G4DWrVtXOO6LLJe3334bgF69etV6nqugW99C/I0IuiAIFSgpKeHdd9/l97//Paeffjrff/+9T8cvKiri0KFDhIaG0rp1a78IulXl0Kp6aOGth56Wlsbrr79OaGgod999d63nxsXF0bRpU/Lz833WJckdIuiCIFTgT3/6E+PGjWPx4sWkpaWxZMkSn45vhSySkpIICQnx+aJoSUkJWVlZOBwO2rRpU+E5b+/15JNP4nQ6ue666+waMTXhcDhOethFBF0QhApYHvnQoUOBE4uAvsI13AL43EPft28fhmGQlJRUpfmEFXLJzc2t87iu3vmDDz7o0TUi6IIgBJTdu3cDMHHiRMD/gu5rD72mcAucWMisj01Lly7F6XRy5ZVXuvXOLU52owsRdEEQbI4cOcKhQ4eIjIykTx+zd42/BT0mJgaHw8Hx48cpLS31evzaBN26p5U2WRd++eUXAAYNGuTxNdairNV/1N+IoAuCYJOeng6Ydb4t8fO1oLvmoIMZa7bCLkePHq3xOk+pTdCTkpIA06aysrIqz9fGrl27AOjSpYvH14igC4IQMKxwS+fOnSuEJ3yZdlfZQwffhl1qE/SIiAji4+MpLS2ts8impaUBcPrpp3t8TatWZidOq1SAvxFBFwTBxtVDj46OpmnTphQVFfk0pbA6Qfflwmhtgu56X2senuB0Ou0PO/HQBUFoELh66ODdImJNuJbOtbA89GAV9IyMDEpKSkhKSiI6Otrj68RDFwQhYJxMQa/OQ/d3yMX1vnUR9PqEW0A8dEEQAogVcqks6NZmIG8pLS0lOzsbh8NRoRaKr0IuTqfTXnR1/QbginW8Lpku1oJoXQXd8tBzcnJOyvZ/EXRBEAAwDMP20Dt16gT43kPPzs7GMAxat25NWNiJ2oC+WhTNzs6mtLSU1q1bExkZWe053njodYmfg5mSGRUVRWFhoV2EzJ+IoAuCAJglZ48ePUpsbKxddtbXgl5duAV856G7C7e43rsugl5fDx0qeun+RgRdEASgYrjF4XAAvhd0axwrH9yiMQu6FUc/cOAAP/30ExMmTGD27Nl1HscTRNAFQQCoEm4B3wu6le1Ruaytr0Iu/hL0+oZcoKKH/tNPP/HWW2/x9ddf13kcTxBBFwQBqJrhAhV3VvoCK+xgiZxFIDz0vXv3erRQmZubS25uLjExMbX2EK0JVw/d+mBw/Rv7EhF0QRCAqhku4HsPvSZBP5keekxMDLGxsRQXF3tUddE13GKFouqCq4den81JdUEEXRAEoHoP3dfb/y1BrxxyOZkeOpxIXfQk7OJNuAXEQxcEIQBYYtihQwf7WNOmTYmOjqagoID8/Hyv7+HvkMtvv/0GuBf0usTRvVkQhYoeurcfDu4QQRcEATjRh7Ny82Nfhl2sRVF/hFxyc3PZvXs34eHhnHbaabWeW5ugT58+nauvvtqu/Lhjxw4Aj2ugV8by0DMyMti7dy+hoaFuP3Dqiwi6IDQg1qxZ45d85rKyshq9Z18Kuj899DVr1gCglCIiIqLWc2sS9H379nHvvffy7bffsmzZMgB+/PFHAFJTU+s1L8tWrTUAp512WoVNVb5EBF0QGgjbtm1j6NChDBkyxCd1w13Jzc3F6XTSokULwsPDKzzny+3//lwUXbVqFQBnnnmm23NranQxbdo0ioqKAPMDoqioiC1btuBwOOyGH3Wlcj0Xf8XPQQRdEBoMP/zwA2DGdP/85z/7dGwr3FJ5sRJ856E7nU4OHTqEw+Gwd6JaREZGEhYWRlFRkS2odcUS9GHDhrk9tzoPPTc3l1deecV+vGbNGrZu3UppaSndunUjJiamXvOq/OHlr/g51EHQlVJXK6UOlP/7SqXUaqXUl0qp9uXHeiilVpQfH+WvCQvCqYrVAg1g7ty5vP/++z4b2xL06vKsfSXoubm5GIZBixYtqoQc6tO1yDAMHnroIRYvXkxJSYnd3LouHrqroM+YMYP8/Hy7xdz69etZu3YtAP369fNoTtURHx9fId0x4B66UioUuBL4TSkVBtwNnAM8DDxUftpTwI3AhcA/fD5TQTjFsQR96NChAD710msTdF9tLqop3GJR17DLpk2beOKJJ7j66qv58MMPOX78OF27dvVo84+VyfPrr7/ax1599VUAnnrqKZKTkykqKmLevHkA9O3b16M5VUdoaGiFbyTB4KFfDbwLlAFdgW1a62Kt9SrACiy11Vrv1FofAQ4ppap/1QRBqBeWoD/99NNERkaSkZHhk1RCOJF9UpuH7m0MvaYMFwvruKcfHNZ8CgsLmTx5MuCZdw7QsWNHHA4HGRkZlJaWkpeXx969e4mKiuLcc8+lf//+AD7x0KFiKCugHnq5dz4OWFB+qAXguhQdWs1YeUDFIJkgCF5hCXrXrl3ttDcrd9xbaouhW+EJbwXdnYdupRru2bOnTuPBCa/ek/g5mL1F27Zti9PpJCMjo0LrPYfDYQu6hTceOlS02Z8euie5MxOAhVrrMqUUwGGgmcvzzvLfri20mwOHKg+klLoZuBlg6tSpnH/++fWY8smjpKSEzMzMQE/DJ4gtwYmntuTl5ZGTk0NkZCRlZWW0bt2aX375hQ0bNhAbG+v1PKxdouHh4VXmY8V/MzIyap2rO1t27twJQHR0dLXntWzZEoCNGzdy9tlnu52zNV5kZCSFhYWAmSvu6Xujbdu2ZGZmsm7dOjtdsk2bNmRmZpKSkmKfl5iY6PV7rmnTpoBZdqCwsNCrsdq1a1fjc54Iek+gn1JqAma45Y/AGUqpcEABG8vPy1JKnQ5kA/Fa6yrJslrrWcCs8of+b9/hJZmZmbX+8RoSYktw4qktlndseefJycl89913FBQU+ORvcfz4cQC6detWZTwr/nvgwAHatm1bYz0Td7Y4nabvd9ppp1V7Xq9evQBz8dQTm0pLSwHTOVyyZAnh4eGMGDGCkBDPIsndunVj3bp15Ofn2wuxPXr0oF27dpSWlhITE8OxY8cYMGCA139jK2Z/+umn+21TEXgg6Frre61/K6W01vo2pdR4YDlQCEwqf/pBYB5mCOYRn89UEE5hrHCLtVvREghrq7u31BZyiYqKonnz5uTl5ZGbm1sl5dBT3IVcrLK9noZcrJh8586d2bRpE6GhoR6LuXUdmEXJDh8+XOFYWFgYAwcOZPny5V7Hz+HE39Wf8XPwzEO30Vqr8t8LOBFTt57bCgz33dQEQbA4WYJeU4ZImzZtyMvLIysrq96C7m5RtK4xdNfa6u52hlaH9QGSnp5uV110FdwbbriBzZs384c//KHOY1fGGrd3795ej1Ub/tl/KgiCT/G3oNeW5QJm6uL27dvJysqyQyN1xdNF0fT0dAzDcFuq1t147rAEfffu3VU8dICJEycyceLEeo1dmeuuu474+HjOO+88n4xXEyLogtAAsBYA/SHopaWlHDx4kJCQkBq97/p0+alMTaVzLZo3b26HdnJycmo8z6Km7keeUp2gu3Zr8iURERGMHTvWL2O7Ilv/BaEBUJuH7m2dcktoW7ZsSWhoaLXn+CJ10ROPui5xdG899A4dOhASEmLn8zdr1owWLVrUa6xgQQRdEIKco0ePsn//fiIiIuwMibi4OGJiYsjPz/e6y4+7+Dmc2C3qCw+9NgF2DbvURllZGQcPHgROpDvWlfDw8ArZK67NsRsqIuiCEORYDRa6dOliZ3E4HA7bS/d2c5G7+Dl4H3IpKiri6NGjhIWF2TVbqsPThdHc3FzKysqIi4ujSZMm9ZoTVAyx+DsD5WQggi4IQY7V5aZyxxxfxdFrS1m08Dbk4uqd1+YFexpy8TZ+buEq4v6Kn59MRNAFIcixdhW6toaDE23WfCXo/gy5uFsQtfA05OJt/NxCPHRBEE4qVhMGq7Gxha889JMRcvFUgD0NufjKQxdBFwShCl988QVPP/00ZWVl7k+uI/4WdE88dKuT0ZEjR+wyAXXB14LuDw9dQi6CIADwpz/9iQceeIBPP/3U52OfLEGvzdt1OBx22MWTOPp///tfRowYYc/dqjvuToBbtWpFdHQ0eXl5dm64K4WFhZSVlfklhi4euiAIGIZhx3zfffddn48fDB461C3s8tprr7FixQpefPFFAN577z0Ahg+vvTqIw+Go0UvfunUrcXFx3HfffW7LCHhKhw4d6NatG0OGDLErIjZkRNAFwUtyc3PtMMTixYvr3ROzJjwRdE83FxmGwXPPPWf33wTPYuhQN0G3PPK5c+eyceNGvv/+e5o1a8bll1/u9tqaBP3999+nqKiI2bNn23Pw1kMPDQ1l8+bNrFy50qtxggURdEHwElcPOS8vjy+++MJnYx8/fpzDhw/TpEmTKhtoYmNjad68OYWFhfYmG3esWbOGe++9l9GjR7N7924yMjLsPHZ3gu5pyMVqGgFw8OBBrrnmGgCuvPJKoqKi3M6xY8eOQNVvHt988w0Ahw8ftkNb3nroAE2aNKlxh2xDQwRdELyksvAsXLjQZ2NbnmhNdcjrurnImuvRo0eZMGECf/jDHygsLOTCCy8kLi6u1ms99dD37dtn1yoH2LJlC2AWqPIES9Bd+30WFxezevVq+7HVkMJbD72xIYIuCF5iielZZ50FwJIlS3wWdnEV9Oqoaxzd1btevXo1a9eupWPHjrzxxhtur/VU0C0h7t69ux2XPu2009zGzy2qa+C8bt06CgoKqsS5feGhNyZE0AXBSywxHTVqFH369CEvL4+vv/7aJ2PXFD+3qK+gjxo1CofDQUREBO+//75Hnq6nm4usufTs2dMuPztp0iSPm09UF3Kxwi0TJkyo0PFHPPSKiKALgpdYwtOhQwfOPfdcAH788UefjO1O0Ou6W9QS9PHjx7Nq1SrWrVtHea9gt1hC624Xp+VZd+zYkeeee44333yTBx54wKN7uN7H1UO3BP2cc86xF1bDw8MbRWaKLxFBFwQvsUIuHTp0oGfPnoCZYucL/OWhJyUlMXTo0ArNkN1hdavfvXt3lQ1Uq1ev5oMPPgAqCnpMTAwTJkyoU0chqwJiZmYmpaWllJSU2Fk5I0aM4Pe//z1gNm9u6NURfY00uBAEL3H10KOjowHYtm2bT8b2p6DXldjYWBISEsjOzmbv3r20b9+eoqIiHnzwQf75z38CcOaZZ1YQ9PoQERFBUlIS+/btIysri71793Ls2DG6d+9OUlISCQkJPPDAA35v59YQEUEXBC8wDMP20Nu3b2+n/m3bto2ysrI6NS2ujmASdDC99OzsbHbt2kW7du24+OKL+fLLL2G4EwB1F8AHMByufAl4qZ6lELpmQlfoeC1AOxjuZAfgONsa73H4Fq551felFkzaAP4a28RY4fsAiYRcBMELcnJyKCwspHnz5sTGxtKyZUsSExM5duyYT9rDeRpDz8jIcFtHpqyszONdoTVhlfDdtWsX+/fv58svvyQmJqZeYwm+Rzx0QfAC1/i5xRlnnMH+/fvZtm2bveuxvrgT9OjoaFq2bMnBgwfJzs6u1fM+ePAgTqeT+Pj4OsW0XbEEPS0tjY0bNwLQv39/3n33AElJSURGRlJYWEh4eDgFBQX1/oZy9913M23aNJ599llmzpzJ7t272bRp00kLs2RmZlboZtRQEA9dELzANX5u4auF0aNHj3L06FGioqJo3rx5jed5Gnaxwi2JiYn1npO1MLpr1y42bdoEQEpKComJiXTv3p3CwkJ7Tt6Em6z4+4YNG9i9ezfR0dH06NGj3uOdKoigC4IXWCLqmht9xhlnAN4vjLrbJWrh6W5Rb+PnUDHk4iroYC6IVp5TfbEE/eOPPwagX79+hIVJQMEdIuiC4AX+9NDdhVss6uqh+0LQXUMuffr0AWDYsGH2efXNcLGwbDp69CiAx7nypzrykScIXlBdDN1V0A3DqHeudDAKelJSElFRURw8eJC8vDwAO649dOhQQkJCKCsr81rQK18vgu4Z4qELghdUF3JJTEwkLi6Ow4cPs3//fo/H+uijj7jxxhtJT0/HMAw+//xz4EQNlZrwdLeoLwTd4XDYcfTS0lJOO+00mjVrBkDz5s3p378/4L2H3rp16woLtyLoniGCLgheUF3IxeFw1Cvs8thjjzF37lz69OnDRRddxLx58wgLC2Ps2LG1Xlebh75hwwa6du3Kv//9b58IOpwIu8CJcIvF/fffz7Bhw7j00ku9ukdISIj9QRUbG0u3bt28Gu9UQQRdEOqJa93vyouAlqDXZWF0165dgBk3XrZsGdHR0Xz44YduqxTWJOglJSXccMMN/PLLLzz88MP2894KuuWhA1VKB4wdO5aVK1d6fQ844eUPGDDA6w1apwryVxKEerJ3715KSkpITEy0t/xbWCl227dv92isw4cPk5ubS3R0NHPmzGH06NF89dVXXHjhhW6vtfKl9+7di9PptI9PmzaNn376CTAzZqyuPL700OtSC6auWIIu4RbPcbsoqpRKBBYBJYATuBY4HXgOc2/sbVrrTUqpJOANIAZ4VWs932+zFoQgwKo6WF23+K5duwKwc+dOj8bavXs3YHq/kydPZvLkyR7PIyIigsTERPbv309WVhbt27cnLS2NRx99FIDLLruMpUuX2m3qvMlDt+ZoUTnk4kuuvfZa1q1bx6RJk/x2j8aGJx56DnCW1noEpmDfCDwJXAxcAzxbft69mCI/ArhDKRXp++kKQvDgS0FPS0sDKoplXahc2nb27NkUFBRw1VVX8Z///IfISPO/Y0hIiNdNISwPPTw83LbTH5x//vls2bJFinDVAbeCrrV2aq2tIhGxwC7AqbXO1Vr/CsSXPzcI+EprXQpoQF4FIeD88ssvtGvXjmnTpvl8bMur7ty5c5XnunTpQkhICOnp6RQXF7sdy1tB7969O3AixGO1fbviiiuIj4/nqquuAswaLt72z+zatSs33XQTjzzyCE2aNPFqLMG3eBRDV0r1VUqtBaYCq4EjLk+XKqXCgSYuwp/HCaEXhIDxySefsHfvXu655x42b97s07Fr89AjIiLo2LEjZWVltvDXhreCXjmrxhJ2K5Z/++2343A47F2s3hASEsLs2bPr1LRCODl4tLFIa/0jMFgpNQ54EGjmOobWulgpVaKUCikX9ebAocrjKKVuBm4GmDp1Kueff7638/crJSUlZGZmBnoaPuFUtWXDhg2AmTM9adIkFi9e7LOMiR07dgDQtGnTaufTsWNH0tPTWbNmTY2ddSxbrGyY5s2b1+t1sqonbtiwgbS0NNLS0ggJCSE6OprMzEzatm3L0qVLSUpK8tv74FR9j51saisa5smiaLjW2vrOmAfkA2FKqTjMEIwl3OuAc5RSK4ABwD2Vx9JazwJmlT80PJx/wGioFdeq41S1xaqH4nA4+OGHH/jwww+5/fbbfTIPa2ylVLXz6d27NytWrODQoUM1zteyxRKPgQMH1ut1slIb09LSKCwsxOl0kpycXMHj9/frf6q+x4IJT1yVvkqpFUqpr4E/A88Dfwc+Ad4B7i8/79nyf68AZmqtC3w/XUGoG9ai5GOPPQbAyy+/7JNxS0tL7c48NZXI9XRh1Ol01hq+8YQuXboQHh7Or7/+yrp16wCkOuEpiFsPXWv9PXB2pcNZwJmVzssCgjuGIpxSFBcXk56eTkhICH/605949NFH+fnnnyksLLSzPupLZmYmTqeTNm3a1DiWp4KekZFBaWkpbdu2JSoqql7zCQsLo1u3bmzevJnFixcDIuinIrKxSGi0WM2MO3bsSLNmzUhOTqasrIyff/7Z67E98ait7eo1CbrT6aSoqMjrBVELa2F02bJlgAj6qYgIutBosYTU8pR79eoFnEjp84baUhYtOnXqRGhoKL/++qvd+MEiIyODnj17ctZZZ/HVV18B3gu6lcFi3UsE/dRDBF1otFQWdMuD9YWge+KhN2nShM6dO2MYhu2FA2RnZ3Peeefx888/k5WVxRNPPAH4zkO3EEE/9RBBFxot/vTQPV3ErBxHdzqdXHTRRezYsYOUlJQK1/vKQwdo1aoVLVu29Go8oeEhgi40WqxYeaBCLq73tuaydetW1q9fT0JCAp9//jlz584lNjYWOLHbs75069bNzrH3xQYioeEhgi4EnG3btjF9+vQKlQJ9QWUPvXv37oSGhrJr164qMe26Ul8P3Qq9DBgwgMTERLp168by5cuZOXMmAwcO9GpOERERdp0VCbecmkgLOiGgHDx4kFGjRpGVlUWXLl28boxgUVhYyG+//UZoaKjtRUdERJCcnMyOHTvYsWMHqampdRozPz+fjz/+mO+//56MjAwcDofbZshWpou1q7S6jJb+/fvbnX68pWfPnuzcudNrb19omIigCwHDMAymTJli77jcuHGjzwR9165dGIZB586dKxSQ6tmzJzt27GDLli0eC3peXh5Tp07l/fffp6DgxH65vn37VmiTVh2Wp2wJutXEwtt4eU3cddddlJSUMGHCBL+MLwQ3IuhCwJgzZw6LFi2yH9elXZs7KodbLHr16sWiRYvqFEf/4IMPmD/fLO8/bNgwLrzwQlJTUxkxYoTba9u3b09UVBT79+/n8OHDtofu2iTCl4wYMcKjeQmNE4mhCwHBMAwefvhhALu2Sl3atbnD8oirE3So28KoNa+HH36YlStX8ve//51LL73Ubo5cGyEhIRXCLr7aRCQI1SGCLgSELVu2kJWVRZs2bew87O3bt1NWVubmSs/48ccfAaqEVSxBr8u3AStDpXKet6dYYZdt27Z5nB0jCPVBBF0ICF9++SUA5557Li1atKBNmzYUFBSwZ88en4xvlc3t27dvhePdunWzM12OHz/u0ViWt1/fhUbruq+++ori4mISExNrLKcrCN4ggi4EBEvQR40aBZzIm/ZFHP3YsWP8/PPPhIWF2R65RUREBD169KCsrMyjsEtpaam9kFnfdmuWoFs1ViTcIvgLEXThpFNaWso333wDnBB0K5zhizj6pk2bMAyDnj17VpuFYoVhfvrpJ7djpaenU1JSQvv27YmJianXfCxBP3DgACCCLvgPEXThpKO15siRIyQnJ9vNjX3poVvhln79+lX7fF0E3Yqfe5PXXflaf2W4CIIIunDSqRxuAd966NaCaOX4uUVdBN3b+DmYLepcu9+Ihy74CxF0oVZKS0t9PmZ1gu7qoRuGd90Ja1oQtbAEfePGjTXeq6ioCDgh6FbqYX1x/UAQQRf8hQi6UCM7d+4kISGBqVOn+mzMnJwcVq1ahcPhYOTIkfbxhIQE4uPjOXLkCHv37q33+KWlpWzatAmoWdCTkpJISEggLy+v2qyad999l6ioKGbMmOGTkAtUrK0iIRfBX4igCzXy9NNPk5uby5IlS3w25rx58yguLmb06NG0atXKPu5wOGwv3Zuwy44dOygsLKRTp07ExcXVeF6fPn2AqmEXwzB49NFHMQyDv/3tb7a3762gW9dHRkaSlJTk1ViCUBMi6EK1ZGRk2NvdMzIyOHz4cJ2u/+2337jgggv4wx/+wD/+8Q+7HdysWbMAuPXWW6tcU58GFNu3b2f58uX2Yyt+XtOCqEVNcfQvvvjCXpgtKCjg8OHDRERE2Iu39cUS9M6dO9slbgXB18g7S6iWF198kZKSEvtxXWuIL1iwgM8//5z333+fRx55hMGDB/Paa6+xc+dO2rdvz+jRo6tcY4VI1q9f7/F9rrjiCkaOHMnSpUsB7HZuNYVbLGoS9BdffBGAO++80/bwk5OTCQ0N9XhO1TFixAiuuOIK7rvvPq/GEYRaMQwjUD9BT0ZGRqCn4DPqYsuhQ4eMpk2bGoDRt29fAzBmzpxZp/vdfvvtBmBcffXVxogRIwzA/nnssceqvWbdunUGYHTv3t0jW0pLS42wsDADMFq1amXMmDHDAIzQ0FDjhx9+qHWMn376yQCM008/3T62Y8cOAzAiIyONAwcOGHPmzDEA44YbbqiT7XXhVH2PBTtBbkuNuioeulCFV155hfz8fM477zyuvfZaADZv3lynMayaJePHj+fjjz9m8ODBAISGhnLjjTdWe02fPn2IiIhgx44dHoV4srOz7SycnJwc7rjjDgCef/55tyGXHj160KRJE3bt2sXRo0cBmDlzJgDXXXcdrVq1YvLkyaxbt45p06a5N1gQggARdKECBQUFTJ8+HYB7772X3r17A/UX9M6dOxMTE8PHH3/MxRdfzMMPP1whJ9uV8PBwW4i11m7vkZmZCcBpp51m988cP348f/7zn91eGx4ebi+MWveyYvHWhxiAUormzZu7HU8QggERdKEC//nPfzhw4AADBgxg1KhRtqBb2+k9wTCMKi3aWrZsyUcffWSXzK2JQYMGAfD999+7vU9GRgYAKSkpfP755zz55JPMmTMHh8Ph0TyHDBkCwNq1aykoKGDjxo2EhISglPLoekEINkTQBZvS0lJeeOEFwPTOHQ4H7dq1o3nz5hw8eJDs7GyPxtm3bx+FhYXEx8d7VDPclfoIevv27enXrx8PPPBAneqtWIK+Zs0aNmzYgNPppHfv3vWu2SIIgUYEXbBZtGgRu3fvJjk5mbFjxwJmfrirl+4J3tT8tgR97dq1br8RuAp6fXAV9LVr11a4vyA0RETQBZuvv/4agJtuuqlCml5d4+hWuKU+gp6cnExcXBz79u2zBbsmvBX0008/nZYtW7J//37effddQARdaNiIoAs21g7Nyl1+6iro3njoDofD47CLt4LucDhsL/27774DRNCFho0IumBj7ZC0tuBbnExBB+wUR38LOpwIuwBER0dXaYghCA0JEXQBwF70jImJoUOHDhWeswR948aNFBYWuh3LW0G3UhdrK29rGIYt6DWlQXqCq6APGDCAsLCweo8lCIHG7btXKTUImA6UAJnAROBy4C6gAJiktc5QSvUAZpWP+ZDW+kt/TVrwPVa45YwzzqhSa6RVq1b069ePDRs28NVXX3HRRRfVOpa3gl7Ttvxjx44xb948wsLCuOKKKygqKiIuLs6r/pwDBw7E4XBgGIaEW4QGjyce+m/AuVrrs4F0YAxwN3AO8DDwUPl5TwE3AhcC//D1RAX/UlO4xeLSSy8F4MMPP6x1nNLSUn799VfA3PBTHzp16kRsbCz79u2zUyVff/11kpOTmTp1KrfddpudleJNuAWgefPmdlGwgQMHejWWIAQat4Kutc7SWheUPywGugPbtNbFWutVQJ/y59pqrXdqrY8Ah5RSraobT/CO6dOnM2bMGMaMGcPdd9/tswYUloduiVtlXAW9tnTCjIwMnE4nbdu2JTIysl5zCQkJqVDeduPGjVx//fXs27ePiIgIDMOw8+W9FXSAp556iuuvv57LLrvM67EEIZB4HDBUSp0GXADcB7R2ecrKb3P9cMgD4oGcSmPcDNwMMHXqVM4///x6TPnkUVJSYm8vDwZycnKqbGvv2bNntZULK+POFqvud0JCQrXnJSYmkpiYSGZmJp999hkpKSn2c6WlpaxevZpVq1bZ17Zr186rv11ycjKrVq1ixYoV9gfImDFjGD16NLfeequ9Tb9FixZev0YDBgxgwIABHDp0yKtx6kOwvce8QWw5OdS2ZuSRoCulmgFvAtdjCrjr9j9n+e8yl2PNgSr/O7TWszDj7GBW3gtqMjMzvVpw8zXffvstYKbWDRw4kBkzZrB06VJuuukmt9e62rJt2zby8/MrhBjS0tIAGD58eI02jxkzhlmzZrF27VouvPBCAD744ANuv/129u/fX+Hc1NRUr/52Z555Jq+//jrp6ekcOHAAMOu0/P73v+eee+7hyJEjgNkaLpheo7oSbO8xbxBbAo/bkItSKgx4B3hMa70D2AmcoZQKV0qdCWwsPzVLKXW6UioWiNda59QwpFBPrF6cY8eO5eGHHyYsLIxPPvmEffv2eTzG8ePHGT58OGeeeSY7d+4E4OjRo/z222+Eh4fXupBphSRc4+hPPvkk+/fvJzk5mfvuu4/nn3+e6dOn88QTT9THRBsr5LJu3TpWrFgBwMiRI4mMjKzwjcQXIRdBaCx44qFfDQwGHlJKPQS8CrwILAcKgUnl5z0IzMP04B/x8TwFKjZXTkhI4KKLLmLp0qXMnz+fv/71rx6N8c4773Dw4EHALDM7a9Ystm/fDphddWpL2zv33HOJiopi/fr1ZGZmEhMTw4YNGwgPD+enn34iOjraSwtPkJKSgsPhsJs09+rVy27dNnbsWBYsWACIoAtCBWorlu7nn6AnmIrcp6WlGYARFxdnlJaWGoZhGIsWLTIAo2fPnkZZWVmt11u2KKXsRhPh4eFGZmamMW/ePAMwxo0b53Yel112md3wYunSpQZgDB8+3HsDq6Fr1672XO+88077+J49e4wOHToYgLFz506/3PtkEUzvMW8RW04a0uCioWN55yNHjrTrrFx88cW0bt2arVu3elQ/XGuN1poWLVpw6aWXUlxczFNPPWWPXVOGiyuuYRdrYXLEiBH1McktriUIRo0aZf87NDSUjz/+mEWLFpGcnOyXewtCQ0QEvYHgGm6xaNKkCVdeeSUAy5YtczuG1ZHn+uuv57HHHgNgxowZvPnmm4D7PpxgfoiA2Uz5008/BeCcc87xzIg6Ygl6SEhIlQ+NlJQULr/8cr/cVxAaKiLoQcSePXuYOnUqWVlZFY6XlpbazY9dBR3MuDac6LZTE2lpacyfPx+AW265hX79+nHFFVcAZu2UmTNncskll7idY1JSEoMGDaKoqIht27bRpEkThg4d6pF9dcVqNDFkyBDpGiQIHiCFK4KIF154gRkzZlBQUMCcOXMAKCsr44YbbiA7O5vOnTvTvXv3CtecffbZAKxevZqioiIiIiKqjGsYBvfffz9FRUVMnDjRHuO///0veXl5tG7duso1tXHZZZfZhbMGDx7s08VQV373u9/x6quv+i2kIwiNDfHQgwhrc8/ChQs5duwYhmFwxx13MH/+fGJiYvjvf/9bpb1a69at6d27N4WFhTVWJ3zjjTdYtWoVLVu25J///Kd9PDw8vM5iDid2jYL/wi1glre99dZbayxHIAhCRcRD9xG//vorTz/9NAUFBYSFhXHHHXe47TzvSllZGRs3min9+fn5vP/++4AZ946IiODDDz+sUBnQlXPOOYfNmzezfPlyhg8fXuG5H3/8kbvvvhuA//u//6NVK+8rMqSkpNCpUyfS09MZOXKk1+MJguAjakuB8fNP0FOX1KXbbrvNTrEDjNTUVLephK5YaYnWz8CBA43WrVsbgDF37txar33vvfcMwDj33HMrHP/ss8+Mpk2bGoBx3nnn1Wk+7li1apUxbdo0n47pKUGeUlYnxJbgJMhtqVFXRdBroS4vqpUz/cQTTxhJSUkGYHzyySceX2/llA8ZMsSIioqyhX348OFuRTM7O9sAjMjISKOwsNAwDMPYvHmzERYWZgDGNddcY+zatcvjuQQ7Qf6frU6ILcFJkNsieej+5Ndff2Xnzp00a9aMe++91w5xPPXUUx6PYdX+Hj58uJ19EhYWxquvvlolbl6Z6uLo7777LqWlpYwbN44333yz2sVSQRAaFyLoPsDKER8xYgRhYWHceuutxMXFsXLlSlauXOnRGJagp6amctdddxEbG8s//vEPj1uiWbHsjz/+GID//e9/AEyYMKFKwwpBEBon8j/dB1Te9BMbG8sf//hHwKyX4gmWoPfp04f+/fuTl5fH/fff7/EcLK/+nXfe4dChQ6xdu5awsDC/ZqEIghBciKB7iWEY1e7ivPXWWwH46quvcDqd1V5rceTIEdLS0ggPD6dHjx4AbsMslRk+fDgdOnRgz549PP7445SVlTFs2DBiY2PrNI4gCA0XEXQv2bZtG/v27SMxMbFCeKRt27Z06tSJ/Px8tmzZUusYmzZtAsxaKk2aNKnXPEJCQrj66qsBeOmllwC44IIL6jWWIAgNk1NC0LOysli1ahWrVq3it99+8+nYlnd+7rnnVvGqrS3xa9asqXWMJUuWABWLUdWHa6+9FjBz2sHcaSkIwqlDoxf03NxcevXqxVlnncVZZ51Fjx492LNnj8/Gt2qoVK6xAtgbgWoS9LKyMu666y47zj527Fiv5tKnTx969+4NQMuWLeu0sUkQhIZPoxf0119/ndzcXJKSkujYsSPHjx+vsP3dGwzDsNvCWTVVXLEE/bvvvqvyXGFhIePHj+fFF1+kSZMmzJ8/3ydNiidMmADAhRdeKNktgnCqUVuSup9//I7T6bQ3/HzwwQfGxo0b7Q04+/fvd3u96+aCt99+21i8eHGF57dv324ARmJiYrWbf4qKioyIiAgDMA4dOmQfz8nJMYYNG2YARrNmzYwvv/zSCyur3vPll1829u7dW6MtDR2xJTgRW04ap+bGoq+++oqdO3fSrl07Lr30UlJSUrjkkksoLCxk+vTpHo+za9curr76ai6//HLmzp1rH7dyzM8666xqs1LCw8MZMGAAQIXCWRMnTmTVqlW0b9+eVatW2SVwfUF4eDhTp06lTZs2PhtTEISGQaMW9FdeeQUw639bvTIfeOABwGzskJeX59E4Vv9KgJtuusl+bIVbKhfEcqVy2KW4uNheSF25cqUd8xYEQfCWRiHohYWFVY5lZGSwZMkSwsLCuOmmm+zjQ4cOZfjw4eTl5fHee+95NL4l4KNHj8YwDK677jp27NhRJ0G3FkY3btxIUVER3bt357TTTvPMQEEQBA9o8IL+r3/9i6ioKC6//PIK+d6zZs2irKyMsWPHVgk/XHfddQB2idra2Lp1Kxs3biQuLo7FixczadIkSkpKmDJlCmlpaTRt2pQ+ffrUeL2Vurh69WpKSkrs0MugQYPqbKsgCEJtNGhBLysrszNWlixZQkpKCq+99hrFxcXMnj0bgNtvv73KdWPGjCEkJIQvvviCw4cP13oPyzsfO3Ys4eHhPPXUU0RHR9ve+ZlnnmmHc6qjffv29OzZk6NHj/Ltt9+KoAuC4DcatKCvXLmS9PR02rdvz+23345hGPzpT3/iqaeeYt++ffTs2bPadMKEhASGDx9OSUmJXcyqOgzD4J133gHgqquuAswdoH/5y1/sc2oLt1hYHX4++ugjEXRBEPxGgxb0N954AzCzRmbMmMGNN95IUVGR3dH+9ttvr7EmilXMqrawy2effcbPP/9MmzZtKnTm+dvf/kZCQgKAR/0urebL7777Ltu3byc8PNzrXaGCIAhVqC2n0c8/XnH8+HEjNjbWAIxt27YZhmEYeXl5RqdOnQzAiImJMfLy8mq8PiMjwwCMqKgoIz8/v8rzTqfT6N69uwEYL7/8cpXnf/jhB2P27NkedewpKSkx4uPj7aYVgwYNqoOlviHI82rrhNgSnIgtJ43Gl4e+YMECjh49yqBBg+wKhc2aNeONN96gadOm3HXXXTRr1qzG69u1a8eQIUMoKCiwwy7Z2dmMHz+eZ599lnnz5rFjxw46duzIlClTqlzfr18/brrpJo+qIoaFhXHRRRfZjyXcIgiCP2iQTaJXrlzJHXfcAcCNN95Y4bnhw4dz+PBhQkND3Y5z1VVXsWbNGl5//XXGjRvHP//5TxYuXMjChQvtcx5++GGfdPu55JJLmD9/PiCCLgiCf2hwHvoPP/zAxRdfzPHjx7n++usr5JhbeCLmANdccw1hYWEsW7aMPXv2MG/ePADb4+/SpQsTJ070ybx/97vf2dkwIuiCIPiDBuWhWz0yjxw5wpVXXsm///1vrwpQtW7dmksvvZRFixZx7bXXkp2dTc+ePdm0aROrV68mOjq63vXJKxMXF8e//vUv9u3bR7du3XwypiAIgisNStDDwsJYuHAh06ZNY86cOR574rVxww03sGjRIlatWgXAlClTCAkJ4ayzziIzM9Pr8V255ZZbfDqeIAiCK24FXSnVHPgc6AkM0VpvVkpdCdwFFACTtNYZSqkewKzyMR/SWn/pjwn379+fN99802fjjR49msTERPbv3094eLi9i1QQBKGh4Um84jhwMfAegFIqDLgbOAd4GHio/LyngBuBC4F/+Hqi/iIsLMyOk48dO5aWLVsGeEaCIAj1w62HrrUuAQ4opaxDXYFtWutiYJVS6oXy42211jsBlFKHlFKttNY5/pi0r3nooYeIj49n8uTJgZ6KIAhCvalPDL0FcMTlsRXIdvX284B4oIKgK6VuBm4GmDp1Kueff349bu8frrvuOkpKSirEzSs/bsiILcGJ2BKcBLMt7dq1q/G5+gj6YcB1x46z/HeZy7HmwKHKF2qtZ2HG2cHcNRnUZGZm1vrHa0iILcGJ2BKcNFRb6iPoO4EzlFLhgAI2lh/PUkqdDmQD8Q0l3CIIgtBY8EjQlVKfAH2B7sBrwIvAcqAQmFR+2oPAPMwQzCM+naUgCILgFo8EXWt9UTWHF1Q6ZyvgvpasIAiC4Bca3NZ/QRAEoXpE0AVBEBoJIuiCIAiNBIdhBH32oCAIguAB4qELgiA0EkTQBUEQGgki6IIgCI0EEXRBEIRGggi6IAhCI0EEXRAEoZEggi4IgtBIEEEHlFIx5b8dgZ6Ltyilost/NwZbTiv/3RhsGdwY7ABQSnUM9Bx8hVKqRaDn4EtO6Y1FSqkLgCnAXuBZrfXeAE+p3iilLgcmAL8BzzdwW6KB54AOwB/Ku2Y1SJRSqcB0YA3wcHmnrwaJUupCYCpQBLwNLNNa5wd2VvVDKTUC+AtmE54ZwBatdWFgZ+U9p7qHfg3wb2AzcKtSqkFWi1RKXQLcADyL2YDk3vLjDdIj1FofB4qBWEy7GqwtmBVIn9Ja3wd0CfRk6otSKhS4FbNBzWOYvRBiGvDrMh74D+YH00XAFYGdjm+oT4OLBku55zceWAnsB34Fvge+Lj8+QCm1qyF4t+W2XA18CvwA3KS1PqCU+hl4RymVoLXODugkPcTldVmhtd5VLhK/AB8Adyqllmmtfw3oJD3E9T1W3mP3OHChUuo+zCYw64APtda7AjlPTyi35SrgGyAf2IT5bXYPZn+EKKAJ5odvUKOUisJsar9Ma/0NsBvIwvz/XwhcrJTqobXeHsBpes0p46Erpa7GbMoRDaRprY8AScDQ8q/BG4BIzPZ5QY2LLZFAttZ6b7mYh2B6tbsbkJhbtkRhfsCitTaAnpivxQfALUqpDoGao6dUsiW9/HA00Ab4K3A7Zrji4gBMr05UtkVrvR/4EjOstwEzVDEFuCNQc/SU8vfO25hO3Hflhx1AZ8xWmFsx33vJAZmgDzklBF0p1QwYBzyO+aY8TynVCngVuEkpFaO13gycBnQK2EQ9oBpbzlFK9QDQWpdhCkhp+bkdg/krcSVbvgJGKKV6lT/9DeY3j2OYInJn+TVB+Z6txpaRSqm2wPuYXmwHrXUeptBbr09QvjbVvMdGKaW6aq2XA18AM7TWE4CPgHClVEiw2lJOGLAU85v4H5VSZwKfAWcCvbTWBzGdoygI3tfFExrtomj5SvxfgY+BVcDZwF1AOPAhMBEYAdyM+YJ/ixmvfV9r/VEg5lwTbmxZimnLGK11ulLqRsw3ah7QErgjmBauPLTlAuAW4BzMHrV7gWNa64cCMOUa8fA9NgrTjj6YnuBFwC9a68cCMOUa8fB1GY357aINpiBOBXK11ncGYs414WLLUsz1sfbljzMxnYTrgWeAFMyG99uBSzBDfv8OwJR9RlB6O96ilGoP/BMz1pcEvKG1/gR4HhiptX4BeAN4Tmv9LOYb+BZgYxCKuTtb/om5uPNs+SUdMQV9p9Z6UpCJuSe2vAE8CrwAzNVaX6W1vjsIxdyT99jrmNlT72J+5R8MrA5CMa/L6zIXs1H8o8D3QSjmrra0A17RWmtM56ZYa/1W+fMXAG9ihvRGAOsauphDIxN0pdTZLl+X4rTW/9Ravw7EKqXu11r/DzN2Bmaj62ilVGz5V8lJWutpJ3/W1VNHW/5F+dd4zK/EQ7XWr57kKddIHW2Zjuk1obWeX3590LxP62FLuFKqWXnP3b808NclBojUWr+N+Y3w5QBMu1pqsaW5Uuom4ElgEIDWehnQo/y8zcCdwWSLNwTNfxRvUEo1VUp9jhnvuwhzwWalUuqW8lO+BS5TSsVprZ1KqbOBxZiZFPkAWuvSqiOffLywJQ1Aa/2t1vrwyZ95Vbx5XcpTFwF7bSCgeGHLrvIFeLTWzgBMvQpevi7HAIIln94DW1YAk8t/r1RKPVJ+/t7yc4PmdfEFjSaGrpQagLkRZRDmRoG48t/pmKJ9DNN73QLMxvw6/34g5uoOsUVs8TenmC1FmB9I3wGJmAuh/wvAVP1OoxF0C6XUS5ixvflKqTaYX99/Af4MvKW13hfI+dUFsSU4EVuCEze2vNlQUnm9oVGEXKBCqtFbmCljCVrrLMxc5ncxUxKPBlM8tibEluBEbAlOPLQlvyGnI3pKo/PQAZRSfwROB3KBXcDPWuvvAzur+iG2BCdiS3DSmGypD0H/6VsXXLyJPpg5s2la6/kN8QUVW4ITsSU4aUy2eENj9dCvAD7SWhcFei7eIrYEJ2JLcNKYbKkPjVLQBUEQTkUaVchFEAThVEYEXRAEoZEggi4IgtBIEEEXBEFoJIigC4IgNBJOqRZ0wqmBUqoTZosxMBszP15+fA5moSa01vXaNaiU6onZ/GF5eZVOlFLzgEnAwPJSrYIQEETQhcbO9UqpJzBLv47zwXg9gUfK/73cB+MJgs+QPHSh0eHioacBXYBzMftHvoJZMrUdZrjxQcy+mPGABqZqrbcopR7FFO1/Y3YbisPsB7qOE56/xUjMDjiTMBsnXFk+9jVa62/9YqAg1IDE0IXGzDZgLWaYZTJmCdXD5c/dgNkzcyOmsA8EliilmrhcPxyzeUhzzJZlBzAbo4DZK/RqzLZyFmdilpptj9nRRxBOKiLoQmNnLqbXPAyzVZ/FReW/79ZavwQswSzq1M3lnP/TWk/H9PQ7lTd3WFX+3Gat9TuVSrI+qrV+ArP+diefWyIIbhBBFxo77wBOIAP4vJrnjUq/XTlU/ruUE/9XaotRup4fWrdpCoL3iKALjZry9m+TgVsqtbL7uPz3/5WXXB1DeblVN0Pmlv8erpS6SikV5dMJC4IXSJaL0OjRWi+o5vA8zMXRKZiLpuswF0VLlFK1DbcSs3/l2eXXdfDpZAXBCyTLRRAEoZEgIRdBEIRGggi6IAhCI0EEXRAEoZEggi4IgtBIEEEXBEFoJIigC4IgNBJE0AVBEBoJIuiCIAiNhP8H2nY6KEi55T4AAAAASUVORK5CYII=", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8EklEQVR4nO3deVxU9f4/8NewD6AioCCLiCEqorngklupqGm5ZK5plqZWtpgtdm9lmXbv1+W22KqpSbc0Nb2pmEuZabnvS5gigqCIIioo6wAzvz/mdz6egQHmDLMBr+fj0aMz6zlzVObF+/P+fI5Kp9PpQERERGQnTvY+ACIiIqrbGEaIiIjIrhhGiIiIyK4YRoiIiMiuGEaIiIjIrhhGiIiIyK4YRoiIiMiuGEaIiIjIrhhGHJBWq0VKSgq0Wq29D6VG4PlShufLdDxXyvB8KcPzdQ/DCBEREdkVwwgRERHZFcMIERER2RXDCBEREdkVwwgRERHZFcMIERER2RXDCBEREdkVwwgRERHZFcMIERER2RXDCBEREdkVwwgRERHZFcMIERER2RXDCBEREdkVwwiV8/TTT2P48OH2PgwiIqojGEZqqDlz5qB9+/b2PgwiIrKzjIwMrFy5EllZWfY+FLMxjBAREdVgw4YNw+TJk/Hkk0/a+1DMxjBiR9u3b0fPnj3h4+MDPz8/PProo7h48aJ4/MqVKxg7dix8fX3h5eWFmJgYHDp0CHFxcXj//fdx6tQpqFQqqFQqxMXF4dKlS1CpVDh58qR4j+zsbKhUKuzevRsAUFpaimeeeQbh4eFQq9Vo2bIlFi9ebONPTkRElqDT6cTP/B07duD69ev2PSAzudj7AKwhJiYG165ds/l+AwMDcfToUZOfn5eXh1dffRVt27ZFXl4e3n33XTz22GM4fvw48vLyMGzYMAQHB2Pz5s0IDAzE8ePHodVqMWbMGPz111/Yvn07du7cCQBo0KCBSX8JtVotQkJCsG7dOvj7+2P//v2YNm0amjRpgtGjR5v92YmIyPaKiopQXFwMQB9M4uPjMWXKFDsflXK1Moxcu3YN6enp9j6MKj3++OMGt1esWIHGjRvj7Nmz2LJlC27cuIEjR47A19cXABARESGe6+3tDRcXFwQGBirap6urK95//31xOzw8HPv378e6desYRoiIapg7d+4Y3N64cSPDiKNQ+gVtr/1evHgRs2fPxsGDB5GVlQWtVgsASEtLw9mzZ9GhQwcRRCxpyZIlWL58OVJTU1FQUACNRsNmWCKiGqhsGNm5cydyc3Ph7e1tpyMyT60MI0qGSuxpyJAhCA0NxbJlyxAUFAStVovo6GhoNBp4eHgofj8nJ30LkE6nE/dJ5TvJunXrMHPmTHz44Yd44IEHUK9ePSxatAiHDh2q3ochIiKbKxtGioqK8Msvv2DEiBF2OiLzsIHVTm7evIm///4b77zzDvr164fWrVvj9u3b4vFWrVrh5MmTuHXrltHXu7m5obS01OC+Ro0aAdBP85LIm1kB4M8//0T37t0xffp0dOjQAREREQZNs0REVHOUDSMAsGnTJjscSfUwjNhJw4YN4efnh6+//hpJSUnYtWsXXn31VfH4kCFDEBgYiOHDh2Pfvn1ITk7Ghg0bcODAAQBAs2bNkJKSgpMnTyIrKwtFRUVQq9Xo1q0b5s+fj7Nnz+KPP/7AO++8Y7DfiIgIHD16FDt27EBiYiJmz56NI0eO2PSzExGRZRgLI1u2bEFJSYkdjsZ8DCN24uTkhDVr1uDYsWOIjo7GzJkzsWjRIvG4m5sbtm/fjsaNG2Pw4MFo27Yt5s+fD2dnZwD65teHH34Yffr0QaNGjfDDDz8AAL755hsUFxcjJiYGM2bMwAcffGCw3+eeew4jRozAmDFj0LVrV9y8eRPTp0+33QcnIiKLkYcRaaj+1q1b2Lt3r70OySwqnbzBgByCVqtFamoqwsLCxF8uqhjPlzI8X6bjuVKG50sZS5yvL7/8Ei+88AIAYMCAAfjll18AAK+88go+/vhjix2rtfFvCxERUQ2Vk5MjtseNGwcXF/28lE2bNqEm1RoYRoiIiGoo+TBNWFgYunXrBgBISUkx2k/iqMwKI3FxcXjkkUfQu3dvPPHEE7h79664PzY2Fn379sXixYsNUllCQgLGjRuHHj16YNq0aQYzPoiIiEg5eeCoX78+GjduLG5L3801geIwsmbNGuzfvx/Lly/Hnj17MHfuXLi5uWHv3r1Yv3494uLisG7dOuzduxebN28GAGg0GsyaNQtjx47Frl27EB0djXfffdfiH4aIiKguKRtG6tWrJ27XpDCiaNGz0tJSrFy5EsuWLUOTJk0A3FuifOvWrRg5ciRCQkIAABMmTMC2bdswbNgwHDt2DGq1GsOGDQMATJ06FbGxscjIyBDvI6fRaKDRaAwP1MUFbm5uyj9hDSStxCr9nyrH86UMz5fpeK6U4flSxhLnS94z4u3tbbDyak5OjkP8WZjSnKsojGRmZqKoqAg7d+7EmjVr4O3tjSeeeAIjR45ESkoKBg8eLJ4bGRmJL774AgCQnJxscF0VtVqNkJAQJCcnGw0jUuCRGzVqVJ27dsrly5ftfQg1Cs+XMjxfpuO5UobnS5nqnK8bN26I7ezsbIPwkZSUhICAgGodmyWEh4dX+RzFYSQ3NxdXrlzB5s2bkZ6ejunTp6NZs2bIz883SGReXl7Iz88HABQUFMDLy8vgvby8vFBQUGB0P5MmTcL48eMND7SOVUYuX76M0NBQTo8zAc+XMjxfpuO5UobnSxlLnC9pFMHFxQWRkZFidAIAPD09ERYWZpFjtTZFYcTd3R0AMG3aNHh4eOC+++7D4MGDsW/fPnh6eiI3N1c8Ny8vD56engD0lZC8vDyD98rLy4NarTa6Hzc3tzoTPCrj5OTEf9AK8Hwpw/NlOp4rZXi+lKnO+ZJ6RurXrw9nZ2fUr19fPJaXl1dj/hwUHWVYWBhcXV2NPhYeHo6kpCRxOzExEc2bNwcANG/e3OCxgoICXLlyRTxOREREysnDCIAa28CqKIyo1Wr069cPK1asgEajwaVLl7Bt2zb06NEDgwcPxoYNG5Ceno6srCysWrUKgwYNAgB06tQJBQUFiI+Ph0ajwYoVKxAVFWW0X4RMFxcXBx8fH6vvZ+PGjYiIiICzszNeeeUVq+/PEWg0GkRERGDfvn12PY4tW7agQ4cODtGERkSOp06GEQB48803kZ2djdjYWLz00kuYMmUKYmJi0LNnT4wYMQITJ07EqFGj0KNHDwwdOhSAfthl4cKFWLVqFfr06YNTp05h7ty5Fv8wdc2YMWOQmJho9f08++yzGDlyJC5fvox58+ZZfX/WMmfOHLRv396k53799dcICwtDjx49xH0qlQobN24Ut4uLizF27Fg0adIEp0+fNuuYZsyYgU6dOsHd3d3osT366KNQqVRYvXq1We9PRLWXRqNBYWEhgJofRhT1jAD6Dyq/oJvcpEmTMGnSJKOPtWnTBmvWrFG6O6qEWq2usO/GUnJzc5GZmYmBAwciKCjI7PfRaDQ1qg/os88+w5w5cyp8PD8/H48//jgSExOxd+9e3HfffWbtR6fTYfLkyTh06FCFgWbSpEn47LPPMGHCBLP2QUS1k3yNkQYNGgCouWGkZnS21EIPPfQQXn75ZcyaNQu+vr4IDAws9+X38ccfo23btvDy8kJoaCimT59u0CQsH6Y5f/48VCoVzp07Z/AeH330EZo1ayZWwz179iwGDx4Mb29vBAQE4Mknn0RWVpbRY9y9e7f4i923b1+oVCrs3r0bALBhwwa0adMG7u7uaNasGT788EOD1zZr1gwffPABnn76aTRo0ABTp04FAOzfvx+9e/eGWq1GaGgoXn75ZYPm5qKiIsyaNQuhoaFwd3dHixYtsGLFCgD6dW6eeeYZhIeHQ61Wo2XLlli8eHG5Y+7SpQu8vLzg4+ODHj16IDU1FXFxcXj//fdx6tQpqFQqqFQqxMXFGf3cx48fR1JSEh555BGjj2dnZ2PAgAFIT0+vVhABgE8//RQvvPBCpf1TQ4cOxeHDh5GcnGz2foio9im74BlQc8OI4spITRAzVYtrt2y/30Bf4Ogy0/Pdt99+i1dffRWHDh3CgQMH8PTTT6NHjx7o168fAH2H9aeffopmzZohJSUF06dPx6xZs/Dll1+We6+WLVuiU6dOWLVqlcFQyurVq/HEE09ApVIhIyMDDz74IKZOnYqPPvoIBQUFePPNNzF69Gjs2rWr3Ht2794d58+fR8uWLbFhwwZ0794dvr6+OHbsGEaPHo05c+ZgzJgx2L9/P6ZPnw4/Pz88/fTT4vWLFi3C7Nmz8c477wAAzpw5g4EDB2LevHlYsWIFbty4gRdffBEvvvgiVq5cCQCYOHEiDhw4gE8//RT3338/UlJSRFjSarUICQnBunXr4O/vj/3792PatGkICAhA165dUVJSguHDh2Pq1Kn44YcfoNFocPjwYahUKowZMwZ//fUXtm/fjp07dwK495tEWX/88QciIyMNutIl165dw4MPPggvLy/s2bMHDRs2NHh80KBB+PPPPyv8MwdgEChNERYWhsaNG+PPP/9k0zcRCQwjDu7aLSD9RtXPs7d27drhvffeAwC0aNECn3/+OX777TcRRmbMmCGmZYWHh2PevHl4/vnnjYYRABg/fjw+//xzEUYSExNx7Ngx/Pe//wUAfPXVV+jYsSP+/e9/i9d88803CA0NRWJiIiIjIw3ez83NTVznQKreAPpqS79+/TB79mwA+gXuzp49i0WLFhmEkb59++L1118XtydOnIgnnnhCNMG2aNECn376KR588EF89dVXSEtLw7p16/Drr78iNjYWAAy+fF1dXfH++++L2+Hh4di/fz9+/PFHdO3aFXfu3EFOTg4effRRUa1o3bq1eL63tzdcXFzE56jIpUuXKhySmjFjBpo3b44DBw6Iqetyy5cvr3D9nOoIDg7GpUuXLP6+RFRzMYw4uEDfmrHfdu3aGdxu0qQJMjMzxe3ff/8d8+fPx9mzZ3Hnzh2UlJSgsLAQeXl55RaRA4CxY8fijTfewMGDB9GtWzesWrUK7du3R1RUFADg2LFj+P333w0Wp5NcvHixXBipyN9//y2W9pf06NEDn3zyCUpLS+Hs7AwAiImJMXjOsWPHkJSUhFWrVon7dDodtFotUlJScObMGTg7O+PBBx+scN9LlizB8uXLkZqaioKCAmg0GtH46evri6effhoDBw5E//79ERsbi9GjRyuetVVQUAAPDw+jjw0ZMgQ//fQTli5dipkzZ5Z7PDg4WNG+TKVWq8UigkREAMOIw1MyVGJPZddsUalUYgpneno6Hn30UTz33HOYN28efH19sXfvXjzzzDMoLi42+n5NmjRBnz59sHr1anTr1g0//PADnn32WfG4VqvFkCFDsGDBAqOvNZVOp4NKpSp3X1llA5NWq8Wzzz6Ll19+udxzmzZtarAWjTHr1q3DzJkz8eGHH+KBBx4QzdSHDh0Sz1m5ciVefvllbN++HWvXrsU777yDX3/9VVxW2xT+/v44c+aM0ccmTJiAoUOHYvLkySgtLTWo/ADWGaYBgFu3bqFRo0aKX0dEtZexMOLi4gIPDw8UFhYyjFD1nT59GiUlJfjwww/FUM26deuqfN348ePx5ptvYty4cbh48SLGjh0rHuvYsSM2bNiAZs2awcXF/D/6qKgo7N271+C+/fv3IzIyUlRFjOnYsSMSEhIMrlMk17ZtW2i1WuzZs0cM08j9+eef6N69O6ZPny7uu3jxYrnndejQAR06dMA///lPPPDAAyKcubm5obS0tMrP16FDB3z11VdGQxegH25ydnbGU089Ba1Wi1mzZonHrDFMU1hYiIsXL6JDhw4WfV8iqtmMhRFAXx0pLCw06xcfe6kZJYQ6KCwsDCUlJfjss8+QnJyM7777DkuWLKnydSNGjMCdO3fw/PPPo0+fPgbDBi+88AJu3bqFcePGidkZv/zyi/gt31SvvfYafvvtN8ybNw+JiYn49ttv8fnnn5erEpT15ptv4sCBA3jhhRdw8uRJXLhwAZs3b8ZLL70EQD8D56mnnsLkyZOxceNGpKSkYPfu3SKERURE4OjRo9ixYwcSExMxe/ZsHDlyRLx/SkoK/vnPf+LAgQNITU3FL7/8gsTERNE3IjUCnzx5EllZWSgqKjJ6nH369EFeXh4SEhIq/Czjx4/Hd999h7feegvz588X9wcHByMiIqLS/+SSkpJw8uRJXLt2DQUFBTh58iROnjxpcNXqgwcPwt3dHQ888ECl55eI6pbKwghQs4ZpGEYcVFRUFD788EMsWLAA0dHRWLVqFf7v//6vytfVr18fQ4YMwalTp8pdbDAoKAj79u1DaWkpBg4ciOjoaMyYMQMNGjRQdP2Cjh07Yt26dVizZg2io6Px7rvvYu7cuQbNq8a0a9cOe/bswYULF9CrVy906NABs2fPNhgi+uqrrzBy5EhMnz4drVq1wtSpU8XU3+eeew4jRozAmDFj0LVrV9y8edOgSuLp6Ylz587h8ccfR2RkJKZNm4YXX3xRDFU9/vjjePjhh9GnTx80atQIP/zwg9Hj9PPzw4gRIwx6W4wZN24cVq9ejdmzZxs0BSsxZcoUdOjQAUuXLkViYqKo6ly9elU854cffsD48eONNswSUd1VURiR+gJrUhhR6YwN9pNdabVapKamIiwsrMZc5MierHG+zpw5g9jYWCQlJRk0hNnajRs30KpVKxw9etSky3Cbgn+/TMdzpQzPlzLVPV8vv/wyPvvsMwDAoUOH0KVLFwBAz549xaUsNBpNhdeUcyT820JkRNu2bbFw4UK7T6dNSUnBl19+abEgQkS1R05OjtiWr5tUE2fUsIGVqAJPPfWUvQ8BXbp0Eb/tEBHJVdUzAujDiK+vnda7UICVESIiohrI1DBSEzCMEBER1UBSGHFycjJocGcYISIiIpuQwkj9+vUN1kRiGCEiIiKbkIcROYYRIiIisgmGESIiIrKbkpIScfFMhhEiIiKyOXnIYBghIiKqg3JycvDee+9h+/btdtl/RdN6gZoZRrjoGRERkULTp0/H6tWr4e7ujmvXrsHHx8em+5eHEfnqq0DNDCOsjBARESlw6dIlrFmzBgBQVFSE9PR0mx+DfCn42lAZYRghIiJSYPHixdBqteK2Pb7wTR2myc3NtdkxVQfDCBERkYmys7OxfPlyg/vkwcBWalvPCMMIERGRiZYtW1au2uBolREvLy+xzTBCRERUi2g0GixevLjc/Y4WRpydncW1ahhGiIiIapF169aJZlW1Wi3ud7QwAtwbqmEYISIiqkWWLl0qtqdPny62GUaqj2GEiIjIBElJSQCAJk2aYPDgweJ+R2tgBQzDiE6ns9lxmYthhIiIyATZ2dkAAH9/f7vPWDE1jJSUlKCoqMhmx2UuhhEiIqIqFBYWorCwEADQsGFDgwBg7zBSdgVWoOZN72UYISIiqoJUFQEAHx8fu3/ZS2FEpVIZTOWV2Pv4lGIYISIiqkJlYcQePSPScvD16tWDk1P5r3KGESIiolqmbBix98JiUgAy1i8CMIwQERHVOmXDiJOTk12nzzKMEBER1TFlwwhgv7U8SktLxZL0DCNERER1hCOFkaqm9QIMI0RERLWOPIw0bNgQgP0WFsvKyhLbjRo1MvochhEiIqJa5vbt22K7bGVEp9MhLy/PZsciDyP+/v5Gn8MwQkREVMsYG6ax18JnSsOI1F/iyBhGiIiIqlBZzwjg2GGElREiIqJagGHEuhhGiIiIqiCFEZVKJYZn7LUKK8MIERFRHSSFkfr164vl1x25MuLt7S22GUaIiIhqASmMSNN6AcduYPXy8oJKpQLAMEJERFTj6XQ6MbVX6hcB7FcZuXHjhtj28/Mz+hyVSiWqIwwjRERENVxBQQGKi4sBOEYYkSojPj4+cHV1rfB59rx2jlIMI0RERJUwNpMGsH8Da0VDNBKGESIiolrClDBiqy/8kpISMWRkahjJzc216XL15mAYISIiqkRFYcQeDay3bt0S26aGEa1Wi/z8fKseV3UxjBAREVXCkSojpsykkdSktUYYRoiIiCph7Iq9AMOIJTGMEBERVcLYFXsB+zSwyqf1MowQERHVERUN07i6usLd3R0AKyPVxTBCREQOS6vV4ssvv8Tq1avtdgwVhRHgXhOrI4YR+eOZmZlWOyZLcLH3ARAREVVkyZIleOGFFwAArVq1QseOHW1+DJWFkXr16uHGjRt2CSONGjWq9LlBQUFi++rVq1Y7JktQXBmZNm0aunfvjl69eqFXr154+eWXxWNxcXGIjY1F3759sXjxYoN5zQkJCRg3bhx69OiBadOmISMjwzKfgIiIaq1vvvlGbCcmJtrlGKoKI4BjVkZqdRgBgPfeew9//vkn/vzzT3z66acAgL1792L9+vWIi4vDunXrsHfvXmzevBkAoNFoMGvWLIwdOxa7du1CdHQ03n33Xct9CiIiqnXOnz+PY8eOidv26nswJYxoNBoUFRVZ/ViUhJHg4GCx7ehhxGLDNFu3bsXIkSMREhICAJgwYQK2bduGYcOG4dixY1Cr1Rg2bBgAYOrUqYiNjUVGRgaaNGlS7r00Gg00Go3hgbq4wM3NzVKH69C0Wq3B/6lyPF/K8HyZjudKGUufr1WrVhncvnv3rl3+LKQw4uTkBC8vL4NjkDeJ5uTkVBkQ5Mw5X1IYcXJyQv369St9bWBgoNi+evWq3f4eOzlVXfcwK4wsWrQIixYtQmRkJGbOnIkWLVogJSUFgwcPFs+JjIzEF198AQBITk5GRESEeEytViMkJATJyclGw8jKlSuxbNkyg/tGjRqF0aNHm3O4Ndbly5ftfQg1Cs+XMjxfpuO5UsYS50un0+G///1vufdNTU2t9nsrJU2nrV+/PtLS0gwec3Z2Ftvnzp1DaGio4vdXcr6kFoeGDRua9DovLy/k5eUhNTXVLucOAMLDw6t8juIw8vLLL6N58+ZwcnLC2rVrMWPGDKxfvx75+fnicsWA/gRIy88WFBTAy8vL4H28vLxQUFBgdB+TJk3C+PHjDQ+0jlVGLl++jNDQUJMSZV3H86UMz5fpeK6UseT5Onz4cLkvTxcXF4SFhVXrfc2Rm5sLAPD19S23/4CAALFdv359RcdnzvmSqjSNGzc2aV/BwcFITExEZmamXc6dqRSHkejoaLH91FNPYfPmzUhISICnp6f4AwOAvLw8eHp6AtBXQvLy8gzeJy8vD2q12ug+3Nzc6kzwqIyTkxN/ACrA86UMz5fpeK6UscT5WrNmTbn7cnNzbf7noNPpRADw8fEpt3/59Wny8vLMOj5Tz1dBQYH4LvX39zfpNUFBQUhMTMTdu3eRl5dnMKzkSKr9pyqdjPDwcCQlJYn7ExMT0bx5cwBA8+bNDR4rKCjAlStXxONERESSkpISo2HEHg2seXl5KC0tBVC+eRWw7SqsN2/eFNum9qbIZ9Q48ixWRWHk7t27OHjwIDQaDYqLi7Fq1SrcuXMHrVu3xuDBg7Fhwwakp6cjKysLq1atwqBBgwAAnTp1QkFBAeLj46HRaLBixQpERUUZ7RchIqK67ffff8f169cBAN27dxf3y6vvtlLZTBrAtlfuVTKTRlJTpvcqGqYpKSnBF198gUuXLsHV1RWRkZFYvHgxvL290bNnT1y4cAETJ06EVqvF8OHDMXToUAD6YZeFCxdi3rx5mD9/PqKiojB37lyrfCAiIqrZ1q9fL7afffZZ7N+/H4B9KiNVhRFbLrnOMPL/NWzYEN99912Fj0+aNAmTJk0y+libNm2Mlt2IiIjkLl68KLaHDh0KlUoFnU5n98qI/Iq9EnuFkapWX5XUlDDCjiwiInIo0nVUPDw80KBBAzEb09ErI9buGVFyxV4JwwgREZEZpDDSuHFjqFQq8YVvj8rI7du3xTaHaayHYYSIiByGVqsVFYDGjRsDgFjDyhErIzWpgTU9Pd3ix2QpDCNEROQwbt26JZYtl8KIvDIivwCrLdT0Bla1Wi16XVgZISIiMoE0RAOUr4yUlJTY5GJ0cjU9jAD3qiNXr161eZgzFcMIERE5DGNhxJZf+GU5UgOrFEbc3NwMLr9SFSmMFBYWGnweR8IwQkREDkMeRqTpq/IvXls3sVYVRtRqtViJ3FaVEX9/f6hUKpNfVxOaWBlGiIjIYThyZcTYOiMqlUo0sVrz2HQ6nWjsVTJEAzCMEBERKVJVGLFXZcTFxUVc/LUs6fisGUbu3r2L4uJiAKYveCZhGCEiIlJAvrBX2QZWwPaVEWmdER8fnwqHRmwRRsxtXgUYRoiIiBRx1MqIsX4RiXR88iv8Wpo5q69KasJaIwwjRETkMKpqYLVlZaSkpESEEWP9IhJbhKUtW7aI7aZNmyp6LSsjRERECkhhpEGDBnB3dwdgv8pIZmamWJejSZMmFT7P2quwFhYWYsmSJQD0vSvjx49X9Hr5sTOMEBGRQ8rLy8Py5cvRs2dPdO3aFampqXY7Fvl1aST2qoxcu3ZNbAcGBlb4PGvP9lm9erXoGRk1ahSCg4MVvd7V1VWcT4YRIiJyKPn5+Xj11VcRFBSEqVOnYt++fTh8+DC+//57uxyPRqMRwyLyMGKvqb3yMFJZZcSax6fT6fDJJ5+I2zNmzDDrfaShmoyMDLHcviNhGCEiqqNWrFiBjz/+uNzKoRkZGXY5HnmTpnz6qr2GaeTnwdTKiKVXYd29ezfOnDkDAOjWrRu6du1q1vtIYaSkpMRgZo6jYBghIqqjzp49K7YffvhhsW2vLytjM2mAuj1MY4mqCOD4TawMI0REddTly5fFtvxLz9HCiL0qI6YO08hn2kjrklhCcnIy4uPjAQDBwcF4/PHHzX4vhhEiInJIV65cAaCfoREREQFXV1cAjhdG7FUZMXWYRn6s8s9QXb/99puYzfPcc8+JPx9zyMOUvYbhKsMwQkRUR0mVkeDgYDg7O4s+DUcOI/aqjNgjjMhnNcXExFTrvfz8/MS2Jas3lsIwQkRUB+Xn5+PWrVsAgNDQUAD3VvbMysoSv5HbkrGl4AH91FRpzRF7VEYaNmwo9m+MtcJIWlqa2Fa60FlZvr6+Ylv6c3ckDCNERHWQNEQDACEhIQDuhZGioiLk5eXZ/JgqqowA9/pGbFUZ0el0ojJSWVUEsE0YkQKjueR9LQwjRETkEORhpGxlBDCsUthKZWFEGqqxVWUkNzcX+fn5ACpvXgX0q8VK/RzWGKZp2LChQROvOVgZISIihyOfSVO2MgLYp29E+iJ3cnIy+PIEbHNlXDlTm1cBQKVSifBkqTBSWloqAmNYWFi1349hhIiIHE5VlRF7hhE/Pz84OzsbPCaFkcLCQpSUlFj9WExtXpVIYeTGjRsW6be5du2a+JzV7RcB9OdPOqdsYCUiIofgaJURnU5n9Lo0ElvPqJFXRqoapgHurRgrv9JvdViyeRXQV2+k6ggrI0RE5BCMVUbkS7DbOozk5eWhoKAAgPEwYuuFz8ytjACWGaqxdBgBwDBCRESORaqMyK/oas/KSGXNq4DtFz4zdfVVSU0KI3fu3EFxcbFF3tNSGEaIiOogqTISHBwMJyf9V4EjhxFbV0aUNLAClg8j8gXPLBVG5NN7LTGUZEkMI0REdYyxBc8A+07tdeTKiL2HaSwxmwZw7Bk1DCNERHWMsQXPAMMlw21dGalo9VWJvXpGXF1dy00zNsZaYcTV1dWkMGQK+edwtBk1DCNERHWMfCaNvDKiVqvh5eUFwLGHaWxRGZGGaQIDA6FSqap8vrXCSEhIiBhGqy5WRoiIyGFUVBkBDK9PY0uONExTUlIiKjWmNK8Clg0jd+/eFZULS/WLAAwjRETkQCqqjAD3pvfevHkTWq3WZsck/wKXTzGW2HKYJjMzUyxcZuoQifyYq9tvI//zYRghIqJayZTKiFartemMC0eqjChtXgUAT09PcYzVrYzIZ9JYqnkVYBghIiIHUlllxF7Te6V9ubq6on79+uUet2VlROkaIxJLXZ/GGmuMABVfuXfz5s04dOiQwee2NYYRIqI6Rr7gWdkhEXtN75W+HH19fY02jNqyMqJ0jRGJFEZu3rxZrevnWCuMGJtNU1hYiGHDhqFbt2547LHHLLYvpRhGiIjqGGmYxthMDXtVRuRhxBh7VUaUhBFLLadvizAinW/5kJ0l96UUwwgRUR2Sl5cnfisu2y8C2CeMFBcXi4AhH0qQs1fPiDnDNED1hmrkYaTsMFp1+Pj4iG0pjFQ2ZGdLDCNERHWIsQvkydkjjMgX4HKEykh1h2mA6oURqYHV19fXIIRVl4uLCxo0aACAYYSIiOyoqi8fe1y5V95MWVFlxMPDA87OzgAcczYNYJkwUlpaKgKjJWfSSMpeuZdhhIiIbK6yab2A41ZGVCqVqBLYqoG1YcOGcHd3N/l1lggjGRkZKC0tBWCdHg55GNFqtQwjRERke1V9+dgjjMgrI5VdB0YaqrHmMI1OpxOVEaXXhJGHEXNnIlmreVUiVZ60Wi3u3r1rtQXWlGIYISKqQ9LT08V2cHBwucflYcBWU3vllZGKhmkA2KQykpubi/z8fADKmlcBy1RGrB1Gyk7vlfbn5uZmdOVbW2EYISKqQ+TVjoCAgHKPu7i4iEDgyJURabl2SzO3eRWoeWHk1q1bojJiyQvymYNhhIioDrl586bY9vPzM/ocW18sz5QGVuBeZUSn04nqhaX99ddfYjs8PFzRa+VDXFWFkaysLHz11Ve4dOmSwf0pKSli29phJDU1FTk5OQDs2y8CMIwQEdUpUhhxd3eHWq02+hzpSzUnJwfFxcVWPyZTGlgB20zvPXr0qNju1KmTote6uLiIgFdVGJkwYQJefPFFTJo0yaDK8/fff4vtli1bKtq/KeTn99SpU2KbYYSIiGxGCiN+fn5Gl10HDKf3yisp1qJ0mAawXt/IsWPHxHZMTIzi15tyfZqzZ89ix44dAPTVCfnQTEJCAgB9v0plVSJzVRRG7Nm8CjCMEBFZXVFREYYNG4Y+ffoYTK21NZ1OZxBGKmLrGTVKh2kA61RGdDqdCCONGjUyOvW5KlIYkTfClvXVV18Z3D5x4gQAfcOwdL6joqIU79sUrIwQEdVR27dvx+bNm7F7925MnTrVas2XVcnPz0dRUREAxwojps6msXZlJC0tTYS1Tp06VVg5qoy8qmRsNlJubi6+/fZbg/ukUHD27Flxn7XCiPz8yvtTGEaIiGq5pKQksb19+3b8+OOPdjkOU5pXAdtfuVeqjNSrVw8uLi4VPs/a16eRD9Eo7ReRVLXWyOrVq8sdu1QZkYZoAKBNmzZm7b8qFQ2DMYwQEdVy0rVGJK+88oqYxWBL5oQRW1ZGKusXAazfwGrpMFK2b0Sn0+GLL74Qt6XgdfLkSQC2qYwwjBAR1VFlp29mZGRg9uzZNj8ORwwjOp1OVEaqCiOWrowcOnQI58+fF7etHUYOHDiA06dPAwC6du2K7t27A9Cvinvz5k2bD9NIvL29Da7oaw8MI0REViZVRlxcXODp6QkA+Pzzzw2mkdqCI4aR3NxclJSUAKi8XwSwbGVk06ZN6NatGzp06IC//voLOp1O/Hn4+/ubXSmQLyQnX0ANMGxcnT59Ou6//35x++TJk2KYpnHjxpX++VSHWq0uN6U7NDTUrP4YS2IYISKyMqkyEhYWhvfeew+AviLw6aef2vQ4HDGMmLrGCGDZysi+ffsAAAUFBZgzZ45FmlcBwyX25Uvvl5SUYP369QD0n3P06NFo3769eHznzp2ikmKtfhFJ2fNs7yEaoBph5PTp0+jcuTPi4uLEfXFxcYiNjUXfvn2xePFig47xhIQEjBs3Dj169MC0adPKJUYiotooOzsbd+7cAQA0a9YML730kngsOTnZpsdiahipakaIJZk6rRcAGjRoILblIaa6+92wYYPBDBdz1heRyKcDy6dxZ2RkoLCwEADQq1cveHh4oEOHDuLx1atXi21rDdFIak0Y0Wq1+OijjwxO2N69e7F+/XrExcVh3bp12Lt3LzZv3gwA0Gg0mDVrFsaOHYtdu3YhOjoa7777rmU+ARGRA5P3i4SFhUGtVovxeVv/UmZqGGnQoAFcXV0BWD+MKKmMBAUFiW151aG6+wWAefPmiW1z+0UA/fVsnJ2dARiGEfm29OXfunVruLm5ATC8Jo21w0jZ0GfvBc8AoOI5VJX43//+h+joaIMxu61bt2LkyJEiFU6YMAHbtm3DsGHDcOzYMajVagwbNgwAMHXqVMTGxiIjI8PoVRE1Gg00Go3hgbq4iD+02k6r1Rr8nyrH86UMz5fpLHGu5Gs5hIWFQavVIigoCNnZ2cjIyEBpaanNxuvlYaRhw4aVfq5GjRrh6tWryMzMNPnzm3O+5MNAVR2T/PsiPT29Wn8u8soIANG3AgAdOnQw+71VKhWCgoJw+fJlXL58WbyPfEZVSEgItFotXFxc0KJFC4MpvYA+pFjz32fZMBIcHGzV/ZlyAT7FYSQnJwc//PADVq5ciY8++kjcn5KSgsGDB4vbkZGRYgpTcnIyIiIixGNqtRohISFITk42GkZWrlyJZcuWGdw3atQojB49Wunh1mjS1RTJNDxfyvB8ma4650paQwIAvLy8kJqaKiojBQUF+Ouvv1C/fv3qHqJJ5L+d5+fnl5tyLNegQQNcvXoVN27cwKVLlxQFJiXnS74Gi1arrfSYAMDHxwfZ2dlITU2t8rmVuXbtmtH7fX19TTqOyjRq1AiXL19GZmYmEhMT4e7ujjNnzojH3d3dxftHRUWVCyP16tWr1v6rUvYXezc3N6vuz5QLDioOI1988QXGjRtX7h9Pfn6+QXORl5eXWAq3oKAAXl5eBs/38vJCQUGB0X1MmjQJ48ePNzzQOlYZuXz5MkJDQ+16SeeagudLGZ4v01niXMkbLTt16oSwsDCEh4dj//79APQ/28LCwixyvFWR/8xt166dGE4wJjg4GH///TeKi4vh4+Nj0tRPc86X/HkRERFVnovQ0FBkZ2fj+vXraNq0qdlVJamy7+vrC2dnZzEcFRMTg2bNmpn1npLmzZvj+PHjAABXV1eEhYUhLy9PPN6hQwdRJWvTpo3BInj+/v7o2LFjtfZflbLDMjExMTb7O1gRRWHk3LlzSEhIwJtvvlnuMU9PT4Nhm7y8PDGFTa1WG/xBSI9XdMVINze3OhM8KuPk5MQvCwV4vpTh+TJddc6V/DfO8PBwODk5GfQ+XL9+3eqzJyTSMI2Pj4/oCamIfL2MmzdvVtnPIafkfMl7N/z8/Kp8XXBwMM6cOQONRoNbt24ZNNsqIQ3TNGnSBBMnThTfa126dKn2vwt5Q+jVq1dx3333GfS4NG3aVOyjbH9ImzZtrP7vsmy/UFhYmN1/FigKI8ePH0daWpoYjsnNzYWzszOuXLmC8PBwJCUloWfPngCAxMRENG/eHIA+Jf7000/ifQoKCnDlyhXxOBFRbSWFEWdnZzHtUz48bcsmVlMukicpu3hXixYtrHJMpl6xVyKfrZKenm5WGCksLBSVe19fX7z00ks4cuQIMjIy8Nxzzyl+v8qOURoakw9dyaf/tmrVCiqVSsw+tXbzKmB4nv38/EThwJ4UhZERI0ZgwIAB4vaHH36I0NBQPPnkkzh16hQWLFiA/v37w93dHatWrRJDLZ06dUJBQQHi4+MxcOBArFixAlFRUUb7RYiIahNpNk1ISIhY/lteGbFVGCktLUV2djYA08KI/Eu+7EqilqRkNg1Qfh0P+Vod5u5TrVZb9HpBxsKI9P+AgACDyr+3tzciIiJw4cIFALYPI44wrRdQGEY8PDzg4eEhbru7u8PT0xP16tVDz549ceHCBUycOBFarRbDhw/H0KFDAeiHXRYuXIh58+Zh/vz5iIqKwty5cy37SYiIHMzdu3fFb/7yMXn5L2JXr161ybHcvn1b/PattDJizem9StYZAQzDiLwh19x9Khl+MpU8jFy+fBklJSUidBr78m/fvj3DSHVePGfOHIPbkyZNwqRJk4w+t02bNlizZk11dkdEVKPI+0XkTZH2GKYxdY0Ria0rIy4uLgaTICpS0QqnSlg7jMi/4K9cuYKMjAwxdVYeVCSTJ0/Gpk2b0KJFC/To0cPix1PZ8bVs2dLq+zNFtcIIERFVTB5GKqqMOGoYsXVlxNfX16SZMWV7RqqzT2m/lhYYGAgnJydotVpcuXLFoF/EWCViwIABuHHjBry8vCqd4WQpkZGR+OCDD3Dq1Cm88sorVt+fKRhGiIisRL76qrwy4u3tDW9vb+Tm5jpsGLFVZUQKBqYM0QA1ozLi6uqKwMBAXL16FVeuXDEYTjJWGQFgs7VmJG+//bZN91cVzusjIrKSiiojwL0mVkcNI7aojBQXF4t1WEwNBb6+vnB3dwdgfs+IvIHV1BCklBQ6rl27ZnANIkfp0XA0DCNERFZSUc8IcG+o5u7duwZrNFmL0jBSr149MevDWpURaXYPYHooUKlUojriqJUR4F4Y0el0OHz4cLn7yRDDCBGRlUjDNCqVqtxvxLbuG1EaRlQqlaiOWKsyonRar0T6Qs/Ozi63oKYpbBlGAODAgQNim5UR4xhGiIisRKqMBAUFlVtV2tHDCHCvb+TGjRtWuZCauaGgun0jtg4j0nVwpIvoUXkMI0REVlBQUIDr168DKN8vAtg+jMi/gE0NI1JlRL5gmrWOSUnvRk0II8YqIGUXPKN7GEaIiKwgLS1NbBu78JqtV2GtTmUEsE7fSHWHaYDqhRFnZ2erzWIx1hvCIZqKMYwQEVmBfFqvI1RGpDDi5uZm8rVIrD2jxt6VkYYNG5p91d+qGAsjbF6tGMMIEZEVVDatF7D9kvDyi+SZ+gVs7cqIJXpGzJneK19ozVqM9YawMlIxhhEiIiuQmhYBwy9Pib0qI6YO0QDWr4yYO0xTncpISUkJcnJyFO9TKTc3NwQEBBjcx8pIxRhGiIisQGpeBVDuSwkAGjRoIC48au0wkp+fj8LCQgDKwogtKyNKhmmaNGkiqjtKw4i8EdeaYQQoHz5YGakYwwgRkRXIw4i8wiCRT/O0dhgxp3kVcNzKiKurqwh4SsOILWbSSMqGEVZGKsYwQkRkBfJKgrEwAtwbqrl9+7aoXFiDuWHEUSsjwL2hmoyMDJSUlJj8OlssBS8pWwlhZaRiDCNEVKuUlpaiqKjI3ochKiP16tWDWq02+hxb9Y04amVECiPe3t5wdXVV9FopjGi1WoMqlKn7BGxbGeGCZ5VjGCGiWqOwsBD3338/GjZsaLAEtz1IlQRj/SISRw8jXl5eoq/FmuuMmBMKzF1rxF5hJDAwUHHgqksYRoio1ti3bx8SEhJQUFCAjz/+2G7HUVRUJBola3IYscT1aUpKSjBt2jSMGTMGd+7cMbhfvt6HUubOqLFXGGG/SOUYRoio1pCv17Fjxw4UFxfb5ThM6RcBbLcKq7lhBLjXN5KVlWXW9Wl++eUXLFu2DOvWrcPChQvF/X/++af482nZsqXi9zV1rZH8/Hx89dVX2LdvHwDbhhH5yrvGVuGlexhGiKjWkH+h37lzR3wB2Zo8jNTkyghwL0xptVqDL3JTJScni+3Vq1dDp9MBAP73v/+J+x977DHF72tqZWTBggWYPn06YmNjcfXqVZuGkbCwMLz44ouIjIzEzJkzrbqvmo5hhIhqjbJf6Fu3brXLcVS1xojEVquwWqIyApjXNyL/XCkpKTh48CC0Wi1++uknAPrFwQYPHqz4fU3tGdm+fTsAfT/Rtm3bbBpGAOCzzz7D+fPn8cADD1h9XzUZwwgR1Rplw8jPP/9sl+Ooao0RiaUrI88//zyio6Nx8OBBg/vNuWKvpLozasqGrFWrVuHIkSMiQPTv39+si9XJh7gqCnJFRUU4efKkuL1jxw6bhxEyjYu9D4CIyFLKfqGfPXsWly5dsvl4vanDNH5+fnB1dUVxcXG1w0hKSgqWLFkCABg3bhwSEhLg6ekJnU6Hy5cvi+cpbRa1ZGUEANauXQt3d3dx25whGkA/ZdrLywt5eXkVhpGTJ09Co9GI2zt37kRERIS47ePjY9a+yfJYGSGiWsPYF7o9hmpMrYyoVCpRHaluGJF/IV+6dAnz5s0DAMTFxeH06dMAgBYtWsDFRdnvoJaujGRlZeHzzz8HADg5OWHo0KGK3xMwbQXbQ4cOGdy+ffs2jh8/DkC/HL/Sc0HWwzBCRLWG9KUk/83b3mGkssoIcG+o5saNG9Wa/VM2KPznP//Btm3bMGPGDIP7lLJ0ZQSAqFb07t3b4P2VksJITk4O8vLyyj1edrgK0C+KB3CIxtEwjBBRrXD37l3k5uYCALp16ya+5Hft2oWCggKbHoupwzSAYd+I/Eq/SmVlZRncLikpwSOPPIK7d+8CAJ5++mmzqhDVqYwUFBSIhc26dOlSblhkxIgRio9Hrqqp0VJlxFgFxNpLwZMyDCNEVCvIv4yCgoLEDI2CggLs3r3bpsciVUbc3NyqbM60VBOrPCg4OzsDgJhG27RpU3zyySdmvW91KiPyzxMeHo5Ro0YZPD58+HCzjklS2WykGzduiGnFXbp0KbeWCSsjjoVhhIhqBfkXX5MmTfDII4+I27aeVSOFkYCAAHGp+4pYI4y88847Bo/FxcWhQYMGZr1vdcKIPCAEBQVh/Pjx4nbnzp2rfeG4ymbUHD58WGx37doVAwcONHicYcSxMIwQUa1QNozExsbCyUn/I85Y74C1lJaWiiGTyppXJZZahVUeRsaOHYs333wTHh4e+Pe//40+ffqY/b5eXl7w9vY26/jKhpFevXphxIgRaNCgAd59912zj0n+nsb2BRg2r3bt2hUDBgwweJxhxLGwlZiIaoWyYaRevXpo2rQpLl26hKSkJOh0uiqrFJZw8+ZNsWx6Vf0igHUqI40aNcL8+fMxf/58s99PLjQ0FH///TcuX76s6DyWDSNOTk7YsGEDtFqtCIrVYWoY6datm8E0aoBhxNGwMkJEtULZMAJArCmRk5NjsAqpNSlpXgUsF0akaoyTk5PFmzPDwsIA6FcxLdsoW5myYURiiSBS9j3l506r1YphmoCAADRt2hTe3t7o2bOneA7DiGNhGCGiWsFYGGnRooW478KFCzY5DlPXGJFYakl4qTLi5+dnsS97SdOmTcV2Wlqa0ecUFxdjxYoV2LJli7ivojBiKRWduwsXLoirJnft2lVUcuRDNaYERbIdDtMQUa1QWWUEAJKSkmxyfRAla4wA+iEVZ2dnlJaWWmSYpjrrdlREHkZSU1PRqVOncvseNWoU9uzZAwBo06YN+vbtaxAQ5MHBUry9vVG/fn3cuXPHYF/yHqGuXbuK7eeeew6//PILAGDYsGEWPx4yHysjRFQrSF/kHh4eYuZI2TBiC0qHaZydncXzzA0jeXl5Yi0Va4eRspWR48ePIyYmRgQRAOILXwoI9erVQ7169Sx+XMC9ios8jJRtXpX4+Phg165d2LVrl9WOh8zDyggR1QrSF3mTJk1EWd4eYUTpMA2gP+arV6/i+vXrKC0tFeuEmErex2HLMHL48GE8+OCDKCws1N/R/hDgFoiP97vj+8e1uOrzK9BFhwIXF4Q8rrX4cQFAVqPdQP0i5AIIfqwEKicnZF6fDXT5BwBg4udBUH1pnX1Xmw4oLQ2GszMAlf2PMdAXOLrMPjUKhhEiqvEKCwvFSp/y4YDmzZtDpVJBp9PZpWfE1L4E6Zi1Wi1u3LiBwMBARfssO5PG0ioKI//5z39EEOnWrRsOq4KhdWkCDYD0GwDcggEAJdJtq2gE/P/V/69KPcpOAeXvc1j8GgZ4FoioFpAvoy4PIx4eHggNDUVaWppdhmmUVEYkV69edbgwEhISIkKdPIycPXsWgH6l2d9//x3Bj1zBrdwrAICGvr64fesWAEDt6Wm12Ss5OTnI/f9L3vs3agRnJycRCNVqNXz9/KyyX4vQAaWlJXB2dgGsP+u8SoF2nGDEMEJENZ6x5lVJREQE0tLScPv2bdy6dcvqUzqlL0InJyf4+/ub9JrqLnwmDyOm7lMJV1dXBAUFIT09HampqQD0i7tJ1aaIiAh4eHhgzvBtePnllwEADz32GH46/BMA4MU33sDChQstflwA8Mkn32LmzJkAgMWrVsHV1RWjR48GAPzj/fctsriatWi1WqSmpiMsLMziM6Bqmrr96YmoVqgqjEhsUR2Rwoi/v7/JvR/VXWvE2pUR4N5QTWZmJgoKCnDp0iVx9d1WrVoBgMFspW3btolta0zrNfbeV69exenTp8Xtdu3aWW2/ZFkMI0RU41UWRuRrjVg7jOh0OjFMY+oQDVD9MGLtBlbAsG/kypUrOHfunLgthZF27dpBrVYDwL2mVtg2jJw5c0bcbtu2rdX2S5bFMEJENZ6plRFrN7HeuXMHRUVFAJQtqlWTKiOAvon1/Pnz4rZ0RVwXFxfcf//95V5rj8qIl5cXwsPDrbZfsiyGESKq8RxlmMacab1A9VdhtUUYkZaEB/RhxFhlBAA6duxY7rXWDCPyc3f+/HmkpKQAAKKjo+t8H0ZNwj8pIqrxKgsjzZs3F9vWDiNKFzyTP1daG8URG1gB0yojANChQ4dyr7XG6qsStVoNHx8fAMDJkyfF/RyiqVkYRoioxpO+wF1cXMp9GXt6eiIkJASAbSsjSsKIq6urqGhUJ4z4+PjA1dVV8etNUXZJeKkyEhgYKFa8BcqHkYYNG4o+EmsxVnlh82rNwjBCRDWe9AUeEBBgtDQvDdVkZWWJC6hZgzlrjEik6sG1a9eg0+kUvVZqYLVWVQQwDCOnT58Wn1VeFQH0V8ONjIwUt605RFPZPlgZqVkYRoioRispKRFfjBUNB9iqb8Tcyghw79iLi4tx86bpy4YWFxeLgGWtfhFAX3Xx9vYGoL8ejUTeLyKRT/FlGCFTMIwQUY12/fp1UUmwVRg5evQoZs2aZbCmhU6nM/iSNjeMAMqaWG0xrRcAVCqVqI7IKzdlKyOAfml4iT3CSFBQEPwceeVVKodhhIhqtMqaVyWWXmtkzJgxWLRoEbp27Yrvv/8eOp0Ob7zxBuLj4wHop5XK92kKJauwpqWl4dSpUwBsM5NGIp9RIzFWGenfvz/c3NwAAJ07d7bqMQHlwwirIjUPl4MnohpN/sVd0W/hllxr5M6dO0hOTgagX9jrySefxNdff40///wTgL6CsHTpUoOmTlOYutbIuXPn0K1bN+Tk5ODHH39Ew4YNxWPWDiPyvhGJscpIeHg4du3ahYsXL2Ls2LFWPSagfAhl82rNw8oIEdVo8iGNiioj9913n9iubmXk8uXL5e6TgggALF26FOPHj1f8vqaGkVmzZiEnJwcA8PHHH9tsmAYoH0bc3d2NVksAoEePHpg4caKokFgTKyM1H8MIEdVoV65cEduhoaFGn+Pl5SW+7KtbGZFftbZjx45wcblXYP7kk08wdepUs97XlDCyZ88eMRQEAPv378fhw4fFbWvOpgHKh5EWLVqYfP0da2IYqfk4TENENZo8jEjriRhz3333ISMjAzdu3EBubq6YGaKUvDLy7LPPIjo6Gl9++SUGDx6MJ554wqz3BKpuYNVqtXjjjTfK3b9ixQqxbevKiLF+EXuQnztnZ2e0bt3ajkdD5mBlhIhqNHk4qCyMyK9Tkpqaavb+5JWRpk2bonv37vj++++rFUSAqisj69atw5EjRwAYfhZpyAawfQOrsX4Re3B3dxcr7Xbs2BHu7u52PiJSimGEiGo0qTLi5eUllgU3plmzZmL70qVLZu9PHn4qGhYyh7u7O3x9fQGUDyNFRUX45z//KW5/+eWX6NGjR7n3sHYYCQoKMlhUzlEqIwDw7bffYtq0afj666/tfShkBg7TEFGNpdPpRBgJCQkR13cxxlJhRF4ZsWQYAfTVkVu3biEjIwM6nU58nrVr14pjjo2NxcCBA5GSkoJ9+/YZvN7aYcTV1RVBQUHinDtSGOnZsyd69uxp78MgM7EyQkQ1Vk5ODvLy8gBUPkQDGIYR6cqu5pDCiI+PD+rXr2/2+xgj9WQUFhYarOYqX0ztjTfegEqlwqhRowyaZz09PeHp6WnR4zFGGg5xcnIyWPadqDoUh5F//etfGDhwIB588EGMGTPGYEpbXFwcYmNj0bdvXyxevNhglb6EhASMGzcOPXr0wLRp08y6GBQROY65c+eiXbt2+P333+12DKY2rwKGfRbmVka0Wq3Yp6WrIkDF66FcvHhRbEdFRQHQz5wZOHCguN/aVRHJ22+/jaioKMybN8/iYYzqLsVhZPz48YiPj8eePXvw7rvvYvbs2bhz5w727t2L9evXIy4uDuvWrcPevXuxefNmAIBGo8GsWbMwduxY7Nq1C9HR0Xj33Xct/mGIyDays7Px/vvv48yZM5gwYQLy8/PtchymNq9Kj0v9DuaGkczMTGg0GgDGFwCrropWipXCiLu7u8E0VnnTrLWn9UoGDBiAhIQEvPXWWzbZH9UNintG5KVOlUoFjUaDrKwsbN26FSNHjhQ/ECZMmIBt27Zh2LBhOHbsGNRqNYYNGwYAmDp1KmJjY5GRkWF0kSKNRiP+wYsDdXGxyeI5jkCr1Rr8nyrH86WMJc7XxYsXxeuvXr2Kjz76yC5fTvL+jeDg4Eo/k7OzM0JCQpCWloZLly6Z9PnLnit5iAkNDbX43zlpCATQV0a0Wi20Wq1Y8VV6XNrvkCFD4O/vj6ysLLRr187u/wb4b1GZunK+jF1JuyyzGljnz5+P+Ph4FBUV4cEHH0Tz5s2RkpKCwYMHi+dERkbiiy++AAAkJycblB/VajVCQkKQnJxsNIysXLkSy5YtM7hv1KhRGD16tDmHW2MZW+mRKsbzpUx1zpc0xVSyYMECDBw40Ga/nUsSEhLEtpubW5VTdps0aYK0tDTcvHkTCQkJJq81Ip0ree+Gt7d3taYIG6NWq8X26dOnkZqaioyMDBQVFQHQH3/ZfX777bc4dOgQhg8fbvHjMRf/LSpT28+XfIi0ImaFkX/84x944403cPToUVFKzM/PN/iH7eXlJUq3BQUF8PLyMngPLy8vFBQUGH3/SZMmlVtOua5VRi5fvozQ0FCTEmVdx/OljCXOV9lhmdzcXMTFxeGzzz6zxCGaLDc3V2x37NixwqXJJS1btsShQ4cA6M9DVc8ve64KCwvFY+3atavy9Uo1adIEzs7OKC0tRUZGBsLCwgyqMdHR0eX2GRYWhocfftiix2Eu/ltUhufrHrOn9jo7O6Nr16744Ycf0Lx5c3h6ehr8YMjLyxOd3Wq1WnS8yx+X/xYg5+bmVmeCR2WcnJzq/F9QJXi+lKnO+TLWc/H1119jxowZNp1hkZ6eLrabNm1a5eeR/4aWlpaG+++/36T9SOdK/htss2bNLP73zcPDA2FhYUhOTsaFCxegUqkMZv5ERETUiL/j/LeoDM+XBab2St3l4eHhBg1XiYmJYnyzefPmBo8VFBTgypUrBuOjRFRzyMPItGnTAAAlJSV4++23bXoc0swWDw8PsWBYZaq71oi1FjyTk5pY7969ixs3bhjMpJFf8I+oNlEURvLz87Ft2zbk5+ejpKQEv/32G44dO4YOHTpg8ODB2LBhA9LT05GVlYVVq1Zh0KBBAIBOnTqhoKAA8fHx0Gg0WLFiBaKioiq8wiYROTbpi9zNzQ3/+c9/0LhxYwBAfHy8TZvxpHBQ1YJnEnllxJy1RqSGWZVKheDgYMWvN4W8vy4pKYlhhOoERcM0KpUKmzZtwoIFC6DT6RAaGooPPvgAERERiIiIwIULFzBx4kRotVoMHz4cQ4cOBaD/gbVw4ULMmzcP8+fPR1RUFObOnWuVD0RE1qXT6cQXeVhYGOrVq4cHHngAmzZtQlFRES5fvmzxXgpj7ty5g7t37wIwvUphqcpIUFAQXF1dFb/eFBWFEZVKZXD8RLWJojCiVquxZMmSCh+fNGkSJk2aZPSxNm3aYM2aNcqOjogczq1bt0R/mPTlKF8f48KFCzYJI0oWPJMEBweLBlGlYaSoqAjXrl0DYL0hGqDiMBIaGsoLwFGtVbc7ZohIMfmXuDTsIW9aTUxMtMlxmBNGXFxcRJBQGkbk+7PGgmcSebA7fPgwbt++DYBDNFS7MYwQkSLyL/GKKiO2YE4YAe4FqNu3byMnJ6fS5969e1fM2JE3r1ozjMhn6ezZs0fczzBCtRnDCBEpIm/8rIlhxNS+kdTUVERHR6NXr1748ssvrXq1Xjl3d3eDC+ZJGEaoNmMYISJFjFVGgoKCxLpCtgoj5k6zNSWM5ObmYujQoSLwvPbaa4iPjxePW7MyAhj2jVR2H1FtwTBCRIoY6xlRqVSiOpKcnIySkhKrH4e1KiNarRZPPvkkTp8+Le7TaDRYv369uG3NyghgPHiwMkK1GcMIESkiDdN4eHggICBA3C+FkZKSErOviquEFEbc3NwUXROnqrVG3nvvPWzcuBEA0KBBA4MhKIm1KyPG9skwQrUZwwgRmUyn04mgERYWZrDQmK37RqQwYuqCZ5LKKiPHjh3DBx98AEC/RPcPP/yAzz//HB4eHuI5Hh4eVr8gYNnKiL+/P+rXr2/VfRLZE8MIEZksKytLXCSv7AJctpzem5ubi+zsbADKhmgAfX+Li4t+iaWyYUQ+e+W9997DwIED0aJFCyxatEjc37RpU0XhxxxlwwirIlTbMYwQkcmM9YtIbFkZkfeLKO3fcHZ2FsMsZcOIfMZM3759xfbzzz+PadOmwd3dHS+//LIZR6xM8+bNDQIPwwjVdgwjRDWIVqvFpk2bDC48aUvGpvVK7BVGlFZGgHtBKicnRywqBhiGEXlfiEqlwtKlS3H37l288MIL5hyyIh4eHgafi2GEajuGEaIa5Nlnn8Xw4cPRu3dvMVxiS8am9UoaNWok+hpqShgB9LN/JFIYcXJyQlBQULnXWet6NMbIwx3DCNV2DCNENcTu3buxfPlyAEBGRgb++usvmx9DZWFEpVKJvpHU1FQUFRVZdN+pqamYP38+hg8fjjfeeEPcb04YkX+5y8OI/EJ4Ul+Jvch7cIzNriGqTez7r42ITFJUVITnnnvO4L6kpCR06dLFpschH6Yp2zMC6L80jx49Cq1Wi+TkZLRu3bpa+9Nqtfj555+xZMkSbNu2DTqdrtxzoqKiFL9v8+bNxbYURgoKCpCZmQnA+lN3TTF9+nTs3LkT0dHR6Natm70Ph8iqGEaIaoBFixbh/PnzBvfZo29Eqoyo1Wo0atSo3ONl+0aqG0aef/55fP311+Xub9CgAWJiYjBhwgSDCoKp5GFEuiqurS6EZ6q2bdvabDVbIntjGCFycElJSWLti7L325J8jZFmzZoZnd4qDyOWmN77448/iu2mTZti6tSpGDlyJCIjI8XF5MxhrDJSUfMqEVkfwwiRg3vjjTdE/8X06dPx5ZdfArDdNWAk169fFxduK9svIpFXKap7fNnZ2WKmS/fu3fHHH3/A2dm5Wu8p8fX1hY+PD7KzsxlGiBwAG1iJHFhRURG2bdsGAAgICMCCBQtEw6atKyPycCGvLMhZcnqvvD+ldevWFgsiEukzpKWlobi4mGGEyI4YRogc2IkTJ0RVZMCAAfD29harc2ZlZYlVSG0hISFBbFfUNNqwYUP4+fkBqP4wjXyWS0Xhpzqk9ywtLUVaWhrDCJEdMYwQObB9+/aJ7e7duwMwXCpcar60hbNnz4rtNm3aVPg8aagmPT29WmuhyMOIsZk71VV2ei/DCJH9MIwQObD9+/eL7R49egCw/QXpJPIwUtl0Wks1scqHaaxZGQEMw4i3tzd8fHwsvj8iqhjDCJGD0ul0ojJSv359EQDklRFb9o1IwzT+/v5Gp/VKWrVqJbbPnTtn9v6sXRmRh5GkpCQRRmxxITwiMsQwQuSgUlJScP36dQBAt27dRAOnPcLIrVu3cO3aNQCVD9EAMFhb5O+//zZ7n1IY8fLyqjT8mEseRg4fPixmCnGIhsj2GEaIHJSxIRrAsNfBVmFEHiqqWvHUEmGktLQUqampAMpfwdZSmjZtKgLewYMHDe4nIttiGCFyUMaaVwF9paBJkyYAbNczYmq/CKAPS9IF5cwNI1evXoVGowFgnSEaAHBxcUFYWBgAiH0BDCNE9sAwQuSgpMqIk5MTunbtavCY1CSamZmJO3fuWP1YTJnWK3FxcRHHl5iYiJKSEsX7s/a03srem2GEyPYYRogcUE5ODs6cOQMAaNeuHerVq2fwuK2n95o6rVciDdVoNBqDWTGmsvZMGol8yEvCMEJkewwjRA7o0KFD4gq18n4Ria2bWKUw4uvri8aNG1f5/Or2jVh7Jo2ElREix8AwQuSA5M2r8n4RiTyMWLtvJDs7G+np6QD0QzSmNJPKp/dWN4zYcphGpVIhODjYavsjIuMYRogckLx51VhlRL6wmLUrI/IwYcoQDVD9yoh8mKaii/JZQtkwEhgYCDc3N6vtj4iMYxghMiIlJQVt2rRBr169UFBQYNN9FxQU4MCBAwCAoKAgo8MGtpzeq2QmjaRly5Zi25QwMmfOHISFhWHt2rUA7lVGAgMD4enpqeRwFSnbM8IhGiL7YBghMmLu3Lk4e/Ys9u7di59//tmm+/7555+Rl5cHAOjfv7/RYZF69eohICAAgPXDiJKZNBIvLy8xbfbcuXOi/8WY5ORkvP/++0hLS8OUKVNw6dIlscCaNYdoAKBBgwbw9fUVtxlGiOyDYYSojNu3b2PNmjXi9vnz5226/1WrVont8ePHV/g8qW8kIyMDubm5VjsecyojwL2hmjt37iAjI6PC53377bdiOzc3F5MmTRK3rR1Gyu6DYYTIPhhGiMr473//K5YGBywfRoqLi1FcXGz0sdu3b2Pr1q0AgICAAPTt27fC95H3jVhzeq8URnx8fMRia6YwpW9Eq9UiLi7O4L7du3eLbWvOpJHIh2oYRojsg2GESEan02HJkiUG91XnyrNlHTt2DH5+fvD29kbnzp3x/PPPY9OmTWIYY8OGDWI10LFjx4rlyo2Rz6ip7jEWFRVhzZo15Wbm3LlzB5cvXwZg+kwaiSlhZNeuXeICdWq1utzjtqiMyMOINLRERLbFMEIk88cff5S70uz58+cr7XlQYu3atbh79y40Gg2OHj2KJUuWYPjw4XjvvfcAAKtXrxbPrWyIBjCc2XL69OlqHdfbb7+NcePGoUuXLmIaL6DsmjRlmRJGvvnmG7G9ZMkSBAUFGTxuizDy9NNPIzQ0FDExMRg4cKDV90dE5bnY+wCIHIm8KuLh4YHCwkJkZ2cjKyvLIleOlaoAZc2bNw+NGzcWQxQRERGIiYmp9L3uv/9+sX3y5MlqHdeRI0cA6NcUmTFjBtavXw8AWL58uXiOqdN6JVWFkdu3b+N///sfAP1iamPGjEFxcTGmTJkinmOLYZoWLVrg0qVLUKlUVrkgHxFVjZURov8vMzMTGzZsAAA0atQIEyZMEI9ZaqjmypUrYvv69et4//33xe2XXnpJVGDGjx9f5Rdjs2bNUL9+fQDAqVOnqnVc8gbTDRs24Oeff8bPP/8swoiXlxcef/xxRe/p5+cHf39/AMbDyJo1a1BUVAQAmDBhAtzd3fH0008jOjoaAODv71+uUmItTk5ODCJEdsQwQvT/rVy5UjSWTp48GW3bthWPWaqJVeq/8Pf3R+PGjTF79myMHTu23POeeOKJKt9LpVKhXbt24n1v3bpl9nFJU2klL7zwgkGF4qOPPkJoaKji95WqI9euXUN2drbBYytXrhTbkydPBgA4Oztj8+bNmDFjBjZs2FBpzwwR1R4MI0TQz+pYunSpuD1t2jSDhbssURkpLS0V/RjSF7tKpcLy5ctFqACAmJgYREZGmvSe8qEac/tG8vLycPfuXYP7UlNTRUAZNGgQpk6datZ7y4dq5FOEk5KSxNBQhw4dDD5HeHg4PvnkE/Tu3dusfRJRzcMwQgTg119/FUuQDxw4EM2bNzcIBJaojFy/fh2lpaUAgJCQEHG/l5cXNm7cKK6J8uabb5r8nvIvcXOHauRVkU6dOhksh96wYUMsX77c7CEMeXVJfnxSEAGAESNGmPXeRFR7MIwQwbBx9bnnngOgX3PC3d0dgGUqI9IQDYByQx7h4eH4+++/cfnyZYwcOdLk92zfvr3YtkQY6dmzJ/75z3+K219++WW1+jbkxydvspUfa4cOHcx+fyKqHTibhuq8K1euID4+HoD+WjCPPvooAH3/QkREBBISEpCUlITS0tJq9TBUFkYA/RLv9erVU/Se0dHRcHJyglarNXtGjTyMNGnSBG+88QbCw8Ph5+cnzoW57r//fqhUKuh0Opw4cULcLw8j8uoOEdVNrIxQnbdixQoxfDJlyhS4uNzL6NJQjUajQWpqarX2I59JIx+mqQ61Wi2OMSEhocKVXSsjn0kTGBgIJycnPPXUU9UOIoA+YEmLs505cwYlJSUA7oURX19fMTxFRHUXwwjVaSUlJVi2bBkA/fRO+QwSABZtYq2qMmIuqbKg0WjM6m2RV0YCAwMtdlwSaRimsLAQ586dQ2ZmpghAUuWEiOo2hhGq07Zu3SpmuDz66KPlQoIlm1itURkBqt/EWnaYxtLkPSEnT57kEA0RlcMwQnXaihUrxLbUuCpnrcqII4WRssM0liZvYj1x4oTBMcofI6K6iw2sVKcdP34cgH4K64ABA8o9Lq+MWCqMNG7cWMzSsYTqLgsvVUacnZ3FiqmWJK+MnDhxApmZmeI2KyNEBLAyQnVYQUGBGDqJjIw0OlPG398fvr6+AKo3TFNSUiIqEJasigD6GUBSiKjOME1AQACcnCz/IyEgIEAM/5w4cULMqnFxcTFYFI2I6i6GEaqzkpOTxXaLFi0qfJ5UHbl8+TLy8/PN2te1a9fEjB1LNq8C+lVcpQpDZmZmuaXdK1NaWorr168DsM4QjUSqjmRnZyMhIQGAfnVWS1aIiKjmYhihOispKUlsS9NPjZEP1Vy4cMGsfVmrX0Ribt/IzZs3RUiyRRiR4xANEUkYRqjOkgeLysKIJZpY5TNpLF0ZAcy/Ro21Z9JIjDWqsnmViCQMI1RnmVMZkV/sTQlrrTEiadOmjdj++++/TX6dtWfSSFgZIaLKMIxQnWVqGOnYsaPY3rNnj1n7svYwjbx6oySMWHvBM0l4eDjq169vcB/DCBFJGEaozpLCSMOGDeHn51fh85o3b45mzZoBAPbt22dWE6u1h2m8vb3F+547dw46nc7o8woKCvD777/j7t27AAwrI9YcpnFycjIYlmnSpAkaNWpktf0RUc3CMEJ1UlFREdLS0gBUXhWR9OvXD4B+yfV9+/Yp3p+8MlKdq+BWRpomm52dLWbISHQ6HTZt2oTWrVsjNjYWEydOhE6ns1llBDAcqmFVhIjkFIURjUaD999/H4MHD8aDDz6IadOmGZS64+LiEBsbi759+2Lx4sUGv50lJCRg3Lhx6NGjB6ZNm2bwGxmRrSUnJ4u/n6aEkdjYWLH922+/Kd6fFEYCAgKsNp1VvmaHfKgmLS0NQ4YMwfDhw8XF/k6dOoWEhASbhhF5ZYRhhIjkFIWR0tJSBAcHY+XKldi1axd69+6N1157DQCwd+9erF+/HnFxcVi3bh327t2LzZs3A9CHmFmzZmHs2LHYtWsXoqOj8e6771r+01CNUVhYiOvXr4v/pKu52oqp/SKSvn37im2lYaS4uFiEb2sM0UiMhRGtVouhQ4fi559/Lvf8TZs22ayBFQAee+wxREREwM/PD5MmTbLqvoioZlG0HLxarTa4qumYMWOwePFiZGdnY+vWrRg5cqRozpswYQK2bduGYcOG4dixY1Cr1Rg2bBgAYOrUqYiNjUVGRobRcWqNRgONRmN4oC4ucHNzU/wBayKtVmvw/9pm586dGDFiBPLy8sR9QUFB2L9/v1lf1uacL/m03vvuu6/K1/r7+6Ndu3Y4ffo0jh07hqysLLEya1XS09NFFSY4ONhqf67yJtazZ89Cq9UiISFBrDsSEBCAf/zjH5g5cyYAfRiRekfq1asHtVpt1b9z9erVw99//43S0lK4urrWiL/ftf3foqXxfClTV86XKSs7V+vaNKdPn4avry98fHyQkpKCwYMHi8ciIyPxxRdfANCXxOW/farVaoSEhCA5OdloGFm5cqW4rLtk1KhRGD16dHUOt8aR9xnUJosWLTIIIgBw9epVLFiwAG+88YbZ76vkfElLkgP65k9p+KIyMTExOH36NHQ6HX788Uc8/PDDlT4/KysLubm5BtOBfXx8TNqXOby9vcX2iRMnkJqaii1btoj7Jk+ejGHDhmHZsmU4e/Ysjh07BldXVwCAn5+f1Y6rNqit/xathedLmdp+vsLDw6t8jtlhJDc3F//+978xffp0AEB+fr7BD0MvLy8x66CgoABeXl4Gr/fy8kJBQYHR9540aRLGjx9veKB1rDJy+fJlhIaGWuVaIfak0+nExdw8PT3Rt29fbN26FVqtFr/++is+++wzqFQqRe9pzvmSN3j27NnTpJkdjz32GL755hsA+iD+7LPPlnuORqPBTz/9hK+//hq7d+8u93jr1q0RFhZm0jEq1bRpU/j6+uLWrVu4dOkSwsLCcO7cOfH4I488grCwMDz++OMiIBUXF4vXWuu4arLa/G/RGni+lOH5usesMFJUVITXXnsNPXv2FEMvnp6eyM3NFc/Jy8uDp6cnAH0lpOxvwnl5eVCr1Ubf383Nrc4Ej8o4OTnVur+giYmJyMrKAgD06dMH8fHx6NOnD3bv3o2kpCQkJCSgXbt2Zr132fOVm5uL0tJSNGjQoNxzpZ6R+vXro3HjxiYFoIceegguLi4oKSnBrl27yv3ZbN68GVOnTjW4Km1Z7du3t+qfaevWrbFv3z5cvXoVubm5OHDgAAD9v6mYmBg4OTlh2LBhmDdvnsHrAgMDa93fNUuqjf8WrYnnSxmeLzOm9paUlOCtt95Co0aN8Morr4j7w8PDDZoCExMT0bx5cwD6dRrkj0lXS5Uep7pDPi22e/fuAICRI0eK+3788UeL7CctLQ0REREICQnBsWPHDB7TaDRiSCIiIsLkSoy3tze6du0KQP/3u2xp9Y033jAIIpGRkRg/fjwmTJiACRMmYPHixRgwYEB1PlaV5E2sf/75p+iNiYmJEbN42rdvX256sbWbV4mIKqM4jPzrX/9CUVER5syZY/BDfPDgwdiwYQPS09ORlZWFVatWYdCgQQCATp06oaCgAPHx8dBoNFixYgWioqKsusgSOab9+/eLbSmMjBgxQvxd+vHHHytcsEuJJUuW4Pr168jNzS1XBbh06ZJoGKvsar3GVDTFNysrS1y35r777sOuXbtw7tw5fP/99/juu+/w3Xff4eWXX1Y8BKWUPIysWLFCbPfo0UNsq1Qq9O/f3+B1/LdIRPakKIxkZGQgPj4eJ06cQJ8+fdCrVy/06tULJ06cQM+ePTFixAhMnDgRo0aNQo8ePTB06FAA+hLxwoULsWrVKvTp0wenTp3C3LlzrfKByLFJYcTZ2RldunQBoP8i7NmzJwDg/Pnz4hLz5tJqtVi1apW4HR8fLxY4A5RP65WTFj8DDMPIoUOHxPbw4cPRp08fqwcPY+RhJD4+XmxLwU8iD1UAKyNEZF+KekaaNGmCo0ePVvj4pEmTKlw/oE2bNlizZo2yo6Na5datW6JxskOHDqKnCNDPlvrzzz8BAOvXr0d0dLTZ+9m3b59B+NBqtfj666/xwQcfADD9ar3GdO3aFV5eXsjLy8POnTuh0+mgUqlw8OBB8Zxu3bqZfezVJQ8j8rVbyoaRLl26wMfHB9nZ2QAYRojIvup2xwzZlPwLWz5sAOiHaiTV7RuRV0Uky5YtE2vXVKcy4ubmht69ewPQX2ROWlxM/tmkvhJ7aNq0qUHIA/SfsXHjxgb3ubq64pFHHhG3TZl6R0RkLQwjZDPGmlclwcHBIqCcPXvWYG0OJTQaDdatWwdAP8NL6lvKzMzETz/9BKB6YQQoP1RTWloqhmmCgoKsclVeUzk5ORksfgaUP9eSDz74AIMHD8Y777xT7jVERLbEMEI2Y6x5VU4+q2bDhg1m7WPbtm24ffs2AH3vhnwRtS+//BJZWVmiJ8Xb2xsBAQGK9yHvt9i5cyfOnTsnVjLt1q2bXXpF5Fq1amVwu2wVStK0aVP8/PPP5Rp8iYhsjWGEbKK4uFhUD5o2bWq0ejB8+HCxLfWPKCUfohk/fjweeugh8eX8xx9/ICQkREzJVTKtV65t27bw9/cHAOzevRt79+4Vj9lziEYi7xsBKq6MEBE5CoYRsolTp06JFXcr+k09LCxMTDE9dOiQ4us15OTkiBkk/v7+6N+/P1QqFZ5//nnxnKKiIrH93HPPKXp/iZOTkxiquXPnjrjsAWDf5lWJPIw0aNAAUVFRdjwaIqKqMYxQtR04cADr1q2rNDxUNUQD6Ne/kL7M79y5Y7CUuSmWLl2KwsJCAPqLOErXXZk4caKoxPj4+ODVV1/FhQsXjC7nbip538iZM2cA6Kcrd+rUyez3tBR5+HjggQfq/MqOROT4+FOKqiUlJQW9evXCmDFjsGTJEqPP0Wg0BsMnFVVGAMNhDvnaHVW5desW/u///g+AvnIhr4b4+Pjg0KFD+P3335Geno4PP/zQrMZVubLrdABAu3btyl2DyR5at26NcePGISAgALNmzbL34RARVYlhhKpl7969KC0tBaC/2nJZOp0O06dPx+HDhwHop5C2bdu2wveTD3PIp8tW5fPPP8edO3cA6Ne7adOmjcHjQUFBeOihh8pNezVXeHh4uemwjtAvAugrTKtXr0ZGRgb69Olj78MhIqoSwwhVi3wo5ejRo0hJSTF4/NNPPxXLknt4eGDdunVwcal4rT3pYm6A6WHk4sWLovLi6elps9V95UM1gGP0i8jZe1YPEZGpGEaoWqRFvyTyKbm//PILXn31VXH7m2++QUxMTKXv5+XlJa7a+9dffxlcCboib731FoqLiwEAr732WrmLwFlL2aEaRwsjREQ1BcNILZeamoodO3aI/6RmS0spG0bWr18PAMjNzcXEiRNFU+tbb72FcePGmfSe0nCHVqut9PIDALBnzx6xz8aNGxusK2Jtffv2Fds+Pj6KL7pHRER6DCO12JEjRxAeHo6HH35Y/NeuXTt8//33Fnn/4uJig9VMAX3TaVpaGhYvXozr168DAB5++GFFC2uZ2jdy+PBhcTFGAHj33XdRr149k/dTXY0aNcKoUaMAAJMnT+asFSIiM/GnZy32ww8/QKfTlbv/3//+t9H7lUpKShIXY5P3J3z99ddYuHAhAP10108++UTRF7UpYeTo0aMYMGCAaFrt3r07pk6dqvgzVNfatWuRmpqK//znPzbfNxFRbcEwUovJ1/Z45513xAyTv//+G3v27Kn2+8uHaMaOHSu2//Wvf4mQMHnyZMXXPYmMjISPjw8AfRgpG5xOnTqF/v37IycnBwDQp08fLFu2rNLGWGtRqVRo2rQpm0WJiKqBYaSWKigowPHjxwHor1Uyb948vPPOO+LxL7/8str7kIeRYcOGlZuy6+HhgXfffVfx+zo5OaFLly4AgOvXryMtLc3g8TfeeAPZ2dkAgAcffBCbNm2CWq1WvB8iInIMDCO11NGjR8UME2nF0xEjRohLyf/000/IyMio1j7kYaR169YGF7oDgJdeesnsK9hWNFRTVFQkrlsTHByMLVu2OMRCY0REZD6GkVpKPkQjrXjq5uaGKVOmAABKSkqwfPnyau1DCiNOTk6IjIwUzZyA/poo//jHP8x+b3kYOXDggNg+evSoWPK9b9++8Pb2NnsfRETkGBhGaql9+/aJbfm1YKZNmyaaSZcuXSoaUJXSarViwbPw8HB4eHigdevWeO6559CwYUMsXboUvr6+Zh9/165dRR/Gzp07xf3yq/n27t3b7PcnIiLHwTBSC+l0OlEZ8fX1RWRkpHgsLCwMjz76KAAgPT0dW7ZsMWsfly9fRn5+PgDDq8R+9dVXuHXrFsaMGWPu4QPQH7dUHUlISMDFixcBGIaRXr16VWsfRETkGBhGaqHExETcvHkTgL4qUnZa7fTp08W2tFS7UvJl4OVhxJKGDRsmtjdt2oTS0lJR8WncuLFByCIiopqLYaQWkveLyIdoJP3790ejRo0AGJ86a4qyzavWMHz4cLG9ceNGnDlzRkzn7dWrF6fTEhHVEgwjtZC8X0RqXpVzcnJChw4dAABZWVlIT09XvA9bhJGWLVuKNUr27duHn376STzGIRoiotqDYaQWkiojLi4uFV6YTgojAHDixAnF+7BFGAHuDdVotVp89NFH4n6GESKi2oNhpJa5deuWCAodO3aEp6en0edZKow0adIEDRo0MONITSPvG5Gu4FuvXj3cf//9VtsnERHZFsOIBWm1WvGfJa79Yg75mhzG+kUk1Qkjhw4dQlZWFgDrVkUA/RTfgIAAg/t69OgBZ2dnq+6XiIhsh2HEAgoKCtCnTx84OzuL/xo0aIA1a9bY/FhMDSMRERFiwTAlYeTYsWN4+OGHxW1rr/Xh7OyMIUOGGNzH9UWIiGoXhhELWLNmDXbv3m1w3927d/Haa6+JJdlt5fDhw2JbvoppWU5OTmjfvj0AIDU1Fbdu3aryvU+cOIH+/fuL68L07t0br7/+erWO1xTyoRqA/SJERLUNw4gFfPvtt2K7c+fOCA4OBgBcvXoV8fHxNjsOnU6Ho0ePAgACAgKqvC6MfKjm5MmTlT735MmTiI2Nxe3btwHoA8HPP/9sk+vC9OvXT/S+uLu7o3PnzlbfJxER2Q7DSDVdunQJe/bsAaCfinro0CF888034nFLXB3XVMnJySIsdO7cucp1OEztGzl9+jRiY2NF9aRHjx7YunWrza4Lo1ar8fbbb8Pd3R2vv/463N3dbbJfIiKyDYaRavr+++/F9lNPPQWVSoXY2FhEREQAAH777TecP3/eIvtKTEzEd999Jy4UV9aRI0fEdkVTeuVMCSNnzpxBv379DFZ03bZtm80vUPfWW28hNzcXH3zwgU33S0RE1scwUg06nQ7//e9/AQAqlQrjx48HoO/HeO6558TzlixZUu195efn48EHH8TEiRMxcOBAaDSacs+RhxFThjKioqLg6uoKADh+/Hi5x1NSUtCvXz8xc6Zbt27Ytm0b6tWrZ+7HqBYXFxe77JeIiKyLYaQaDh48iAsXLgAA+vTpg6ZNm4rHnn76aXh4eAAA4uLixEXlzPXbb7/h2rVrAIA//vgDL774Yrnpw0rDiJubG6KjowEA58+fL3eMH3/8MW7cuAEA6NKlC7Zv34769etX63MQERGVxTBSDfLG1aeeesrgMT8/P3Hl2uzs7GpP8y17dd1ly5bh888/F7dLS0tFdSMsLExce6Yq0lCNVqvF6dOnDR6TmmEBID4+3qqLmxERUd3FMGKmwsJCrF27FgDg6emJESNGlHuO/Oq4X331ldn70ul0IozIF/uaOXMmfv31VwD6q+jm5eUBMK0qIqmob0QeTsLCwtC4cWOzj5+IiKgyDCNm2rJli1hv4/HHHzfa0Nm5c2exlsfRo0dx5coVs/Z14sQJXL16FQDw8MMP4x//+AcAfTXk6aefRmFhoeLmVUlFYSQ5OVmEG+kzEBERWQPDiBGnT5/Gq6++il27dlX4nFWrVontJ5980uhzVCqVwYJdO3bsMOt45EM0jz76KP71r3+hf//+APRrmcTFxSnuF5Hcf//9YgqwvIn11KlTBs8hIiKyFoaRMnQ6HUaNGoWPP/4Y/fr1w9ixY5Genm7wnNu3b2Pr1q0AgMDAQPTt27fC95Mvnb59+3azjkm+cNojjzwCJycn/Pvf/xb3LViwwGAZ+E6dOpn83t7e3mjVqhUA/cJmd+/eBcAwQkREtsMwUsbJkyeRmJgobq9duxatWrXCihUrxH0bNmwQU2vHjh1b6UXbOnfuDF9fXwDAr7/+ipKSEkXHk5GRIRpJ27dvj9DQUAD6oZgBAwYA0C+8Jg2xtGzZUnGjaZ8+fQDoh33++OMPAAwjRERkOwwjZfzvf/8T21LIyM3NxZQpU0T1YfXq1eI5TzzxRKXv5+zsLEJDTk4ODh48qOh4pAoMoB+ikXv77bfLPV9Jv4ikX79+Yvu3334DcC+MeHt7Izw8XPF7EhERmYphpIyffvoJgL7f4/Tp0wZTdl988UWkpaWJi+K1aNHCpC//6gzVyIdoyoaR3r17o2fPngb3mXPdloceekj0jfz222/Izs5GamoqAH1VxMmJf02IiMh6+C0jc/78eSQkJADQL3seFRWF5cuXo127dgD0DZ6PPfaYWGzsiSeeqPL6LwBEZQRQFkZu3rwpml4bN25sNGi89dZbBrfNCSO+vr5iVs3p06exc+dO8RiHaIiIyNoYRmSkqggAPPbYYwD0S5DLFxeTzzipaohG0qRJEzE99tixY8jMzDTpdUuWLBHXoRk3bpzRCsXDDz+Mjh07AgC8vLzMnoYrH6pZvHix2GYYISIia2MYkZH3i0hhBAB69epVbvpuTEwMIiMjTX7vQYMGiW1TpvgWFRWJEOTk5IQZM2YYfZ5KpcKaNWvwzDPPYM2aNfD09DT5mOTkYWTv3r1im2GEiIisjWHk/7t8+bJYq6N9+/Zo3ry5weMLFy40uC6LdFE8UyntG9m4caOooIwcObLSJtIWLVpg+fLl5XpKlOjZs6e4aJ5EpVKJa9cQERFZC8PI/7dx40axbWxp98DAQHz44YcA9MMuSsPIAw88IK52u2PHDpSWlorHdDodVq5cieXLl6OoqAhardZgKvFrr72maF/m8PLyQrdu3Qzua9GiBby8vKy+byIiqtsYRqBfxEzeJ2EsjADAlClTcP78eZw+fdrkC9FJXF1dxaqpN2/exL59+8RjGzZswOTJkzF16lS0a9cO77//PpKSkgDoKxZdunRR+pHMIh+qAbgMPBER2UadDyMlJSUYPXo0Ll68CADo2rUroqKiKnx+ZGQk/P39zdqXPOT8+OOPYlt+9d/ExER88MEH4rYtqiKSsmGE/SJERGQLdT6MvPbaa2Iqa6NGjbB27VqTpuuaY8iQIXBzcwOgr4ZotVrcvn27wobWFi1aYMiQIVY5FmO6dOli0ADLMEJERLZQp8PIsmXL8OmnnwLQD6P873//Q1hYmNX2V79+fQwcOBCAfpn3/fv346effkJxcTEAYMaMGVi5cqUYApo3b16lS81bmpubm1gaXqVSGVzRl4iIyFpc7H0A9rJ3715Mnz5d3P7qq6/KrWZqDaNGjRKrqq5fvx5nz54Vjz3xxBPo0qULxo4dizNnzii64J2lzJ8/H8XFxRg4cCCCgoJsvn8iIqp76mwYiYiIQOfOnXHgwAG88soreOaZZ2yy3yFDhsDV1RXFxcX44YcfcPPmTQBAeHi4WD3Vzc3N7L6U6oqOjjZpHRQiIiJLqbPDNIGBgfj999/x0UcfYdGiRTbbr4+Pj1gePjMzU0zxHTNmjNV6VYiIiBxZnQ0jAODu7o6ZM2fCxcW2BaKRI0eWu2/s2LE2PQYiIiJHUafDiL0MHTrUIAC1bNlSXIyPiIiorlEURpYuXYpRo0ahc+fO5foK4uLiEBsbi759+2Lx4sXiyrYAkJCQgHHjxqFHjx6YNm0aMjIyLHP0NZSvry9iY2PF7bFjx3KIhoiI6ixFYSQ0NBSvvfYa2rRpY3D/3r17sX79esTFxWHdunXYu3cvNm/eDADQaDSYNWsWxo4di127diE6Ohrvvvuu5T5BDfX8888D0C/D/tRTT9n5aIiIiOxHURgZPHgwunXrJhbukmzduhUjR45ESEgI/P39MWHCBGzbtg0AcOzYMajVagwbNgzu7u6YOnUqzp49W+erI0OHDsXJkydx9uzZSi+CR0REVNtZpHMzJSUFgwcPFrcjIyPxxRdfAACSk5MREREhHlOr1QgJCUFycjKaNGli9P00Gg00Go3hgbq4lAtBNV3btm0BAFqt1uB+6XbZ+8k4ni9leL5Mx3OlDM+XMnXlfDk5VV33sEgYyc/Ph7e3t7jt5eWF/Px8AEBBQUG5K796eXmhoKCgwvdbuXIlli1bZnDfqFGjMHr0aEscbo1x+fJlex9CjcLzpQzPl+l4rpTh+VKmtp8vU6r/Fgkjnp6eyM3NFbfz8vLENU7UajXy8vIMnp+Xlwe1Wl3h+02aNAnjx483PNBaWBmpiFarxeXLlxEaGmpSoqzreL6U4fkyHc+VMjxfyvB83WORMBIeHo6kpCSxnHpiYiKaN28OAGjevDl++ukn8dyCggJcuXJFPG6Mm5tbnQkelXFycqrzf0GV4PlShufLdDxXyvB8KcPzpbCBtaSkBEVFRdDpdGJbq9Vi8ODB2LBhA9LT05GVlYVVq1Zh0KBBAIBOnTqhoKAA8fHx0Gg0WLFiBaKioirsFyEiIqK6RVFl5IMPPsCWLVsAACdOnMB7772HJUuWoGfPnrhw4QImTpwIrVaL4cOHY+jQoQD0VY6FCxdi3rx5mD9/PqKiojB37lzLfxIiIiKqkVQ6+epk5BC0Wi1SU1MRFhZW50t3puD5Uobny3Q8V8rwfCnD83VP3f70REREZHcMI0RERGRXDCNERERkVwwjREREZFcMI0RERGRXDCNERERkVwwjREREZFcMI0RERGRXXPSMiIiI7IqVESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEbWLp0KUaNGoXOnTtjx44d4v7CwkL861//Qv/+/TFgwAB89913Bq+LiYlBz5490atXL/Tq1QvffPONwWtnz56N3r1745FHHsH27dtt9nmsyRrn6qOPPsKwYcPQu3dvPPnkkzh+/LjNPo+1WeN8Sa5evYoePXrg3//+t9U/h61Y63xt3rwZjz32GHr27ImRI0ciNTXVJp/HmqxxrtLT0/HCCy/goYcewqBBg7By5UqbfR5rM/d85ebmYu7cuejbty8eeughvP322wavrY0/541xsfcB1AWhoaF47bXXsGTJEoP7V6xYgatXr+Knn35Cbm4unn/+eUREROCBBx4Qz9m4cSP8/f3LvefSpUuRk5ODrVu34uLFi5gxYwZat26NsLAwq38ea7LGufL29sbnn3+O4OBg7Nq1C6+//jri4+Ph5eVl9c9jbdY4X5KPPvoILVu2tNqx24M1ztcff/yB77//Hv/5z3/QvHlzpKeno169elb/LNZmjXO1aNEiBAcHY/Hixbh+/TqeeeYZtGnTBl26dLH657E2c8/X+++/j4CAAGzevBkeHh5ISkoSr62tP+eNYWXEBgYPHoxu3brBzc3N4P4DBw7giSeegLe3NwIDAzF06FD8/PPPJr3n1q1bMW3aNHh7e+P+++9H79698csvv1jj8G3KGudq2rRpCA0NhZOTE2JjY+Hu7o60tDRrHL7NWeN8Sa/X6XTo2rWrpQ/ZrqxxvpYvX45XX30V9913H1QqFUJCQtCgQQNrHL5NWeNcZWRkYMCAAXBxcUFwcDDat2+P5ORkaxy+zZlzvi5evIhz585h5syZ8Pb2houLC1q1aiVeW1t/zhvDMGJn8osm63S6cv8wJ0yYgEGDBmHOnDnIzs4GANy5cwc3b95ERESEeF5kZGSt+UddEXPOVVlXr17FnTt3EBoaas1DdQjmnq/i4mIsXrwYr7zyio2O1DGYc75KS0tx/vx5JCUlYfDgwRg6dCiWLVuG2n4xdHP/bo0aNQo7duyARqNBWloazpw5g5iYGFsdtt1UdL7+/vtvNG3aFLNnz0a/fv0wceJEnDhxAkDd+znPMGJH3bp1ww8//IC7d+/i6tWr2LJlCwoLC8Xjy5Ytw5YtW7B69WoUFhZi7ty5AID8/Hw4OzvDw8NDPNfLywv5+fk2/wy2Yu65kispKcGcOXPw5JNPwtvb25aHb3PVOV+rVq1Cjx496kRgk5h7vm7duoXS0lIcOXIEa9euxddff41ff/0V8fHx9vooVledv1v3338/zpw5g169emHEiBEYNmyYwZdtbVTZ+crMzMShQ4fQpUsX7NixA08//TRef/115OTk1Lmf8wwjdvTMM88gKCgII0eOxMsvv4x+/fqhUaNG4vEOHTrAxcUFDRs2xOuvv459+/ahuLgYnp6eKC0tNfgBkJeXB09PT3t8DJsw91xJdDod5syZg4YNG2LatGn2+Ag2Ze75yszMxObNmzF58mQ7Hr3tmXu+3N3dAQBPPfUU6tWrh8DAQIwaNQr79u2z10exOnPPVWlpKWbMmIHhw4dj37592Lx5M3bu3ImdO3fa8dNYX2Xny93dHcHBwRg+fDhcXFzQt29fBAcH48yZM3Xu5zzDiB2p1Wq8/fbb2LFjB9avXw+VSoWoqCijz3Vy0v9R6XQ61K9fH35+fgaNTomJiWjevLlNjtsezD1XkoULF+LGjRuYN2+eeLw2M/d8nT17FtevX8eIESMwcOBAfP/99/j555/x0ksv2fLwba46/xblX8TS/bWZuefqzp07uHHjBkaOHAkXFxcEBQXhoYcewrFjx2x5+DZX2fm67777KnxdXfs5X/t/KjuAkpISFBUVQafTiW2tVovr168jKysLpaWlOHjwIOLj4/HEE08A0Dc2JSYmorS0FHfu3MGHH36Irl27iuaowYMHY/ny5cjLy8OZM2fwxx9/oH///vb8mBZhjXO1dOlSnDp1Ch9++GG55rKaztLnq3v37ti0aRNWrVqFVatW4fHHH0dsbCzmzZtn509qGdb4+/Xoo4/iv//9L/Ly8nDjxg1s2LABPXv2tOfHtAhLn6uGDRsiICAAGzduFO+zZ8+eSr+QaxJzzldMTAx0Oh22bNmC0tJS7NmzB+np6Wjbti2A2vtz3hiVrrbHeAcwZ84cbNmyxeA+afrXe++9h+zsbDRr1gyvv/46OnToAAA4cuQI/u///g+ZmZnw8vJCly5dMHPmTPj6+gLQzz//4IMPsGfPHtSvXx8vvfQSHn74Ydt+MCuwxrmKiYmBm5sbnJ2dxXu+9dZbGDRokI0+lfVY43zJLV26FDdv3sRbb71l/Q9jA9Y4X8XFxViwYAF+/fVXeHp6Yvjw4Zg2bRpUKpVtP5yFWeNcJSQk4MMPP8TFixfh4eGBAQMG4JVXXjH4t1lTmXO+AODChQuYN28eUlJSEBoaitdffx0dO3YEUHt/zhvDMEJERER2xWEaIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiIiKyK4YRIiIisiuGESIiIrIrhhEiqtFiYmIQExNTq6+US1TbMYwQUZWmTZsmvvTHjRtn8Fh2djZ69OghHv/ss88svv/4+Hjx/kRU+zCMEJEiFy5cwPHjx8XtjRs3oqioyI5HREQ1HcMIEZnMxcUFALB27VoAQGlpKdavXy/ul8vJycGCBQvwyCOPoGvXrhgwYABmz56Na9euiecsXboUMTExGDJkCH799Vc8/vjj6NmzJ6ZOnYpLly4B0F+A7P333xevkSokS5cuNdhfbm4u5syZgwcffBCDBg3C8uXLLf3xichKGEaIyGSRkZEIDg7G7t27cf36dfzxxx+4du0a+vXrZ/C8oqIiTJs2DT/++COysrIQFhaGvLw8bNu2DZMmTcLt27cNnp+ZmYnZs2dDpVKhqKgIJ06cwNy5cwEAISEhCA4OFs+Njo5GdHQ0AgICDN7j888/x8GDB+Hq6oobN25gyZIlOHjwoJXOBBFZEsMIEZnMyckJo0aNEhURqUIyZswYg+ft2LEDFy9eBAAsWLAA69atw4oVK+Dk5IQbN25g3bp1Bs8vLS3FwoULsX79etGTcvr0aRQWFmLKlCmYMmWKeG5cXBzi4uIwfPhwg/eIjIxEfHy8QaXmyJEjFv38RGQdDCNEpMiwYcOgVquxbt06HD16FK1bt0a7du0MnnP27FkAgIeHBx566CEAQKtWrRAWFmbwuMTb2xu9e/cGADRv3lzcX7aCUpn+/fvD1dUVPj4+8PX1BQDcunVL2YcjIrtgGCEiRerVq4dBgwYhLy8PQPmqiLnvKXF2dhbbOp2uWu+h5PVEZD8MI0Sk2OjRowEAPj4+GDBgQLnHo6KiAACFhYXYvXs3AODcuXNITU01eNxUHh4eYrugoMCcQyYiB1a+BZ6IqAoRERH47bff4OzsDDc3t3KPDxw4EN9//z2Sk5Px5ptvIiwsDOnp6dBqtWjUqJEIM6Zq1qyZ2B41ahT8/f3xyiuvoH379tX8JETkCFgZISKzNGjQAN7e3kYfc3d3x7Jly0RwSE1NhZeXFwYNGoSVK1eiYcOGivbVokULTJkyBX5+frh27Rr++usv3L171xIfg4gcgErHQVUiIiKyI1ZGiIiIyK4YRoiIiMiuGEaIiIjIrhhGiIiIyK4YRoiIiMiuGEaIiIjIrhhGiIiIyK4YRoiIiMiuGEaIiIjIrhhGiIiIyK4YRoiIiMiu/h+h+Vm4rswopgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -533,9 +645,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAEuCAYAAABbHsznAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAArfUlEQVR4nO3de5BkV2Hn+e/NenZ3dfX7IZUACySYNbMWmCNjNxJoxvTI4fGwY48gwo/wgMIh/UE7MMR4Y2IZb4R31uEgFgcmYmJm0UzEMvgPYQIMYwZWFhszSKLFejkYAQKDJFDrUd3V6q7qer8yK8/+cW9WZZeqn5m3M6vq+4lI5c1zb948VUcZ9etzzj03SykhSZKk8lQ6XQFJkqStzsAlSZJUMgOXJElSyQxckiRJJTNwSZIklczAJUmSVLLeTlfgKpS+bsXY2BhHjx4t+2N0jWyX7mObdB/bpDvZLt3nBrZJtlGhPVzAyspKp6ugDdgu3cc26T62SXeyXbpPp9vEwCVJklQyA5ckSVLJDFySJEklM3BJkiSVzMAlSZJUMgOXJElSyQxckiRJJWtp4dMQwh7ga8DPAr8YY3y6aV8P8B+B24Fvxxj/oCj/EPA+YBz4nRjjdCt1kCRJ6nat9nDNA/8U+PwG+34NOB1jvBvYFUL4pRDCQeA9wF3AXwIfbPHzJUmSul5LgSvGWI0xnrvE7mPAo8X2I8A7gDuBx2KMqalMkiRpSyvzXor7gMZw4RSw/xJlrxJCeAB4AODEiRMcP368xGrCww8/zG/+5m+W+hm6dtVqldHR0U5XQ01sk+5jm3Qn26X73Kg2GRkZ2bC8zMA1CQwX23uAiaLstnVlrxJjfAh4qHhZ+s2rT58+fclfkDpndHTUdukytkn3sU26k+3SfTrdJmVepfgk8O5i+17gJPAt4J3ryiRJkra0lnu4QghfBd4CvCmE8Cngl2KMDwL/FfjnIYQngO/EGL9ZHP+VEMJJ4ALw261+viRJUrdrOXDFGH91XdGni/Ia8P4Njv8E8IlWP1eSJGmzcOFTSZKkkhm4JEmSSmbgkiRJKpmBS5IkqWQGrhJ8+tOf7nQVJElSFzFwleDUqVOdroIkSeoiBi5JkqSSGbgkSZJKZuCSJEkqmYFLkiSpZAYuSZKkkhm4JEmSSmbgkiRJKpmBS5IkqWQGLkmSpJIZuDYJbxckSdLmZeDaJLxdkCRJm5eBS5IkqWQGLkmSpJIZuCRJkkpm4JIkSSqZgUuSJKlkBi5JkqSSGbgkSZJKZuCSJEkqmYFLkiSpZAaubcpbBUmSdOP0tnqCEMLHgGPAKeD+GGO1KP914EPFYa8H/izG+MkQwrPAaFH+JzHGr7VaB107bxUkSSpDvZ6o12GleDS26wlWVtY916G2kqjVYLmWly/X8vLeHnjbmzKyLOv0j9QWLQWuEMIdwEiM8e4QwkeB+4CHAWKMXwS+WBz334EvFW+bijHe08rnSpKkK2uEn3piw+eV5rL6WgiqN4LQClRrUFvJH3lAystWVqBWX3uu1tbem0Hxn/wpNZ4Ta4UUO4BKBbIMeornSgXmF+Gtt0NPzw38hZWo1R6uY8CjxfYjwAcoAldDCOEoMBBjfKEoGgohPEbey3UixjjRYh0kSepKVwo8V3quraTVnqLV3p9G0KldHHianxvHX5R2CqtZJ716f0prryvZWhBav91c1tcL/RlUBhvHtKdHamEpXfmgTaTVwLUPOFNsTwH7NzjmN4AvNL1+R4xxPITwu8AfA7+//g0hhAeABwBOnDjB8ePHW6zm5dXrdUZHR6984FWanp5u6/nKOGcZdWy3arXa9XXcbmyT7mObXJtGD0sq/pPWlzf9jW8+JqWmxwbljfc29g30Vfn+349eNvCsr9OGsrXjM2AQoCd/ZH0Xn3D1uK0xAseBHTA21r7z3ajvysjIyIblrQauSWC42N4DbNRbdR95zxcAMcbxYvPzwO9tdNIY40PAQ8XL0iNupVK55C/oegwPD7f1fGWcs4w6ttvo6GjX13G7sU26z1Zrk5TSWg9NU89ObeXi1yt1qNYS1RWoVteGtBrDXdWVi3uEqiuQ6sVnkIeSDYPPReNfeXl2FT09Fw2HZTCy5wznF27aMvOPOmFsIvHeezJ6etrzO+z0d6XVwPUk8BHgM8C9wMnmnSGEIzQNJ4YQ+oEsxrgE3A081+LnS5K6QL2eVuf3XPRohKCVxHI1D0PLteK5mj+qK2tltdrav7KbQ1Fzz1QjCzXCz6ueG9sZ7BiAnqy9Q11Xy7ClZi0FrhjjUyGEsyGEJ4AXgY+HED4VY3ywOGT9cOI+4KshhDlgCbi/lc+XJLVPrdFj1DxJunheriUWl/OAtNT8WM6fa7XiJM0hiYs3KpW8F6gRinqaAtLOAajsaPQWGVS09bS8LESM8Q/XFT3YtO8/rDv2LPC2Vj9TknR5Ka1dYdboRaoWvUgLS4m5RVhYgsUlWFiGxeU8WK1eXbZurlNWhKWeSn7VWGN7oB92DkJPxZAkXU7LgUuCfCHV97///Z2uhrTlVWtptVepMST39E/ra+Gpml9Ov7icD8M1huUaE7obc416Kvk6R709eWjaNQgVQ5NUGgOX2sKFVKXW1OtpNUQ1huoWlhIzCzC7AHMLMLe41guVZfnSAf/wFvjRmTw49fXkvU+7BmHPLofmpG5i4JKkkqWU90otLhfDeMuJ2UWYnc+D1Oxi3jt10eSnYtJ3bw/09+ZrHe0ffvXQXV8PHNprsJK6nYFLktqgXk+rgWphCWYXEpOzMDUH03Pr5kdR9Ej15oHJHilp6zNwSdJVqhVX6i0UwWpqLjE5kweq2YW1JQvqqZhQ3gf9fRv3TEnaXgxckraUrx74G351/N7rfn9KeaiaW8h7qS7MwORsHqoWlrloKebe3ny4b6APDu+zh0rSpRm41LU+97nP8eEPf7jT1dAW1QhW84tFsJqG89NwYaa4Bx35lX0D/Xkv1c5B2DNkoJJ0fQxc6lovvfRSp6ugLWKxWHdqfhEmptNqsKrWivvOpTxUDfQ7/CepHAYuSR3T7vXblpbz8b6XziYuzCTGp2F8ughW5KOB/b0wOAD7hmjbPdok6UoMXJI65nrXb1taznus5hZgcjZxfgompvP78e0BTj6d6O2BwX6DlaTuYOCS1LUuF6waPVZ9vXmw2jMEvT0Z88DR/QYsSd3FwKVtw9sPda/rCVaStJkYuLRtePuhzqrXEwtLML8EcwuJqVl4/kziC1+vG6wkbXkGLklX7WqW6liuJuYX82A1PXfxOlapWMMqFVcFVmvdH6we+etP8yvveX+nqyFpkzNwSbpqjaU66vU8VC0s571VF2bgwixMzuQ3Xm70VjVWWx/o33hh0P7e7g5bAGOnT3W6CpK2AAOXpA01bri8UCwOOjOfWK7BV79ZZ2Z+rbcK8t6q/j4Y3tX9AUqSOsHAJV2nzTAJ/2rqWK0VvVVLa7eyuTALU7NrN1xu9FbV6/mzt7GRpGtj4JKu02aYhN+o48rK2oT1+cW1eVUXGkOAjVSV5UOAg5dYcb2SwUC/QUuSrpWBS+oSrfaY1ev5vQEXlvIhwKm5xAtjiS+frDO7kPdUNTgEKEk3loFL6hJX02O20byqi64CXD0OentgcTnvsRra4RCgJHWSgUvqQsvVtNpTNbd48byqlTqryapSya8AHOiDQ3uhsm4IcKAP+vsMWpLUaQYuqUNSykNVvsJ64sx44r/9XX1taYWmnHS5eVWSpO5n4JJKtrKSisnq+VWAE9MwMZOvWZVgtbdqciaff+W8KknaegxcUps0lleYX4Tp+SJYTcPMAmuTq5quAlw/BLhjAHYNGrS2Oleul7YnA5d0jWq1xOxCftuaHzxfZ2Iq77GaX8qXTain/HmwP38ccc0qNXHleml7MnBJl7G4lIermfnEuSk4PwnT8/m+F87CD0/loWrHIOwZMlRJkjZm4JJYuzfg7AJMzibOTcL5qXxZhcaioAP9+bBfo8dq9w44tNeQJUm6spYDVwjhY8Ax4BRwf4yxWpTfA/wF8BNgJcb4y0X5h4D3AePA78QYp1utg3QtqrXE3EIersan8nA1Pr02zaqS5cFqaAfs222gkiS1rqXAFUK4AxiJMd4dQvgocB/wcNMhfxlj/FdNxx8E3gPcBfwW8EHgT1upg3Q5KyuJ6XmYmk2Mnkt85ck60/Nr9wfs783D1UZrWEmS1C6t9nAdAx4tth8BPsDFgetfhBDeDnw+xvhJ4E7gsRhjCiE8AvznFj9fusj8YmJ6Ds5PJcbGi56routqZj5fff3ofiexS5JurFYD1z7gTLE9Bexv2heBNxXb/yWE8I3i+OlLHL8qhPAA8ADAiRMnOH78eIvVvLx6vc7o6Gjbzjc9Pd3W85Vxzm4/H1y5XVLKrwhcWYFqDaorUK/n+7IMbt4Dt+xdO/4bQzO8bv+ZDc91PYb6Zzg6dLprz1fGOSuVetf/zD+Frq5ju8/X11Nt++9QrbNdWndgB4yNte981Wq17X+nNjIyMrJheauBaxIYLrb3ABONHTHG2cZ2COHLwB3AGHDbRsc3izE+BDxUvEwbHdNOlUrlkr+g6zE8PNzW85Vxzm4/H1zcLo1V2afn4FzRezXR1Hu1YwB2DkJf76V7rmaXdzM2e3Pb6tft5yvjnPV6pet/Zni6q+vY7vMdHTpdwu9QrbJdWjc2kXjvPRk9bVoIenR0tO1/p65FpcX3Pwm8u9i+FzjZ2BFCGG467i7gOeBbwDs3Ol5qtrKSSAmeP13nm0/X+dITib/+RuLr30n86IW8R+vwPjh6IOPogYw9Q9llw5a0VX3xrz7X6SpIugot9XDFGJ8KIZwNITwBvAh8PITwqRjjg8D7iqHBGnAyxvg4QAjhKyGEk8AF4LdbrL+2iJTS6lWDL70Cp8/nSzL87Q+9YlC6nNGXX+p0FSRdhZaXhYgx/uG6ogeL8v8E/KcNjv8E8IlWP1eb39JyfvubMxOJF8/C4lI+frxrEA7uhZ5K3oMlSdJm58KnumFWVhKTs3BuMg9Y49P58gz9fTC0E/a6UrskaYsycKk0KeULjI5PJ14+B6Pn8qsIK5V8iNDlGSRJ24WBS221tJy4MANj44kXzsJCMUy4cxAO7IEeFxeVJG1DBi61bHY+MT6V+Nq36pyfysv6e2H3Tm/oLEkSGLh0nZaWE2cvJH78Yn6T5zPjsFxzmFCSpI20ug6XtpGVlcTYeOLJp+t88fHEye/D0nIesoZ2wK7BzLAlbQGP/PWnO10Facuxh0uXlVI+J+uFscRPTsNyNZ+PdXifN3uWtqqx06c6XQVpyzFwaUMz84nRc4lnXoK5xfymz/t2Q2+bbrEgSdJ2YuDSqsWlxJnxxLMv52tkVTLYOwTDuwxZkiS1wsC1zdVqiXOT8JPTiZdfyZdw2L0TbnKFd0mS2sbAtQ2llJhfTHz7x3V+ehpqK7BzwHlZkiSVxasUt5lzk4n/9neJn4zC82fyeVk3HcjYM5QZtiSVwqseJXu4to3xqcT3fpI4PZ4v4bB7JxzcY8CSVD6vepQMXFvexHTi6ecTL70CQ4MwctCQJUnSjeaQ4hY1OZP4xvfq/N9/mxifgpsPeJsdSdLm8djffLrTVWgrA9cWMzWb+ObTdb76/yZeuZAHrX27XQFeklSuds/VOzf2QlvP12kGri1iZj7xtz+o85VvJk6fh5sOwP5hg5akrcdJ+N3JuXqX5xyuTW52PvGjFxPPvgR9ffl9Db3aUNJW5h92bUYGrk1qbiHx4xcTP34RenvhiEFLkqSu5ZDiJjO/mPjus3W+/GR+M+nD++HQXtfQkiRdPYdlbzwD1yZRrSW+95M6f/2NxI9fgkN786DVY9CSpJZttwDisOyNZ+DaBE6dqfPMS/D3p/KgdXifQUuS2qnbA8h2C4RbkYGri9Xrea/WN74Hg/1wZH9GT49BS5K63Rf/6nNtPV+3B0JdmZPmu1StlvjWj/J5WjcdhB6jsSRtGqMvv9TpKqjLGLi60MJS4uT3E+enYOQgrqUlSdImZ+DqMtNzia9/J7Fcg6P7DVqSJG0FBq4ucnaizmPfhYE+OLjHsCVJ0lbRcuAKIXwMOAacAu6PMVaL8n8G/BugCnw7xvihonwG+Hbx9t+PMX6/1TpsBafO1Dn5NOzfDTsGDFuSJG0lLU3FDiHcAYzEGO8GfgTc17T7u8A7Yox3AYdDCKEo/3GM8Z7ise3DVkqJ7/80vxLx0F7DliRJW1GrPVzHgEeL7UeADwAPA8QYX2w6bhmoF9tvCCE8DvwA+HCMcbHFOmxatVoi/jjx3GjjSkTDliRJW1GrgWsfcKbYngL2rz8ghHAncDjG+HdF0W0xxvEQwv8KfBD4sw3e8wDwAMCJEyc4fvx4i9W8vHq9zujoaNvONz09fcXzpQQzC7CrB8KtVz7nUP8MR4dOt6mG3X8+gEql3tV17PbzlXHObm8TgJ9CV9ex29sEuv9n9rvSfecr45yHhmcYG2vf+arValv/1l/KyMjIhuWtBq5JYLjY3gNMNO8MIdwC/Dnw642yGON4sfl54F9vdNIY40PAQ8XL1GIdr6hSqVzyF3Q9hoeHL3u+6bnEY08llqpXPzl+dnk3Y7M3t6uKXX8+gHq90tV17PbzlXHObm+T3NNdXcdubxPo/p/Z70r3na+Mc56b3s3Roze3bcHv0dHRtv6tv1atLqf5JPDuYvte4GRjRwhhN/BZ4MEY4ytF2a4QQk9xyN3Acy1+/qbzyoU6f/P/JerJKxElSdouWgpcMcangLMhhCeANwNfCCF8qtj9B8CtwL8LIXw9hPAu4HbgW8Ucrl8FPtnK5282p87U+X8iDO2APbsMW5IkbRctLwsRY/zDdUUPFuX/Fvi3G7zl51v9zM0mpcQPnk889Swc3g/9vYYtSZK2Exc+LVnjSsS1eyIatiRJ2m4MXCVaLO6J+Mok3HzAeyJKkrRdGbhK0rgScXEZbjpg0JIkaTtr9SpFbWB+Ma1eiXhor2FLkqTtzsBVgqk5yDKvRJQkSTkDV0mcGy9JkhoMXJIkSSUzcEmSJJXMwCVJklQyA5ckSVLJDFySJEklM3BJkiSVzMAlSZJUMgOXJElSyQxckiRJJTNwSZIklczAJUmSVDIDlyRJUskMXJIkSSUzcEmSJJXMwCVJklQyA5ckSVLJDFySJEklM3BJkiSVzMAlSZJUMgOXJElSyQxckiRJJett9QQhhI8Bx4BTwP0xxmpR3gP8R+B24Nsxxj8oyj8EvA8YB34nxjjdah0kSZK6WUs9XCGEO4CRGOPdwI+A+5p2/xpwuti3K4TwSyGEg8B7gLuAvwQ+2MrnS5IkbQat9nAdAx4tth8BPgA83LTvK0373gHsBR6LMaYQwiPAf27x81u2vLzMhQsXeOaZZ9p2zskL45x+6RnmhrK2nXNqcpyXXmhfHbv9fACTFy50dR27/XxlnLPb2wRgceVlBru4jt3eJtD9P7Pfle47XxnnnJke55lnnqGnpz1/S8+ePcuhQ4fo7+9vy/muVZZSuu43hxD+F+CHMcYvhRBuA/63GONvFfseAv59jPGpEMK7gX8MPA0cjjH+eQihF3g8xnhsg/M+ADwAcOLEibcdP378uut4JT/96U955zvfWdr5JUlSd3j88cd5/etfX+pnjIyMbJgQW+3hmgSGi+09wMQV9k0Ct13i+FUxxoeAh4qX158Ir8KhQ4d4/PHHOXLkSNvO+cPn67x8Dva0sYdrOzq48xXOzx/udDXUxDbpPrZJd7JdWnd+KvErv5C1tYfr7W9/e8d6uFoNXE8CHwE+A9wLnFy3793A48W+/wt4rjieDY7viP7+fl7/+tczMjLStnPOUac+CPuHDVytODo0xI7ZmztdDTWxTbqPbdKdbJfW9U0k3vjG9gWuXbt2dSxsQYuT5mOMTwFnQwhPAG8GvhBC+FSx+78Cry32LcYYvxljPAd8JYRwEvgt4N+38vmSJEmbQcvLQsQY/3Bd0YNFeQ14/wbHfwL4RKufK0mStFm48KkkSVLJDFySJEklM3BJkiSVzMAlSZJUMgOXJElSyQxckiRJJTNwSZIklczAJUmSVDIDlyRJUskMXJIkSSUzcEmSJJXMwCVJklQyA5ckSVLJDFySJEklM3BJkiSVzMAlSZJUMgOXJElSyQxckiRJJTNwSZIklczAJUmSVDIDlyRJUskMXCXoqcDScqdrIUmSuoWBqwRvfE3Gkf1wZjyRUup0dSRJUocZuEowOJDxzjsy3jACo+dhZcXQJUnSdmbgKklvb8ad/yDjrbfDmXFYrhq6JEnargxcJcqyjDffWuHuO2B8CuYXDV2SJG1Hva28OYTwMeAYcAq4P8ZYbdr3z4B/A1SBb8cYP1SUzwDfLg77/Rjj91upw2bwuqMVdg0mvv6dRLWW2DOUdbpKkiTpBrruHq4Qwh3ASIzxbuBHwH3rDvku8I4Y413A4RBCKMp/HGO8p3hs+bDVcHBvxr1vz+jtgXOT9nRJkrSdtNLDdQx4tNh+BPgA8HBjZ4zxxaZjl4F6sf2GEMLjwA+AD8cYF1uow6aye2fGL78Nnnw6cfp84qYD+bCjJEna2lqZw7UPmC62p4D9Gx0UQrgTOBxj/Lui6LYY4zuBM8AHW/j8TckrGCVJ2n6u2MMVQjgKfHaDXY8Cw8X2HmBig/feAvw58OuNshjjeLH5eeBfX+IzHwAeADhx4gTHjx+/UjVbUq1WGR0dLfUz1rtlDxzYAQuL0NsDdnS9Wl9PlaNDpztdDTWxTbqPbdKdbJfWHdgBY2PtO9+N+ls/MjKyYfkVA1eMcQy4Z315COEtwEeAzwD3AifX7d9NHtQejDG+UpTtAhZjjCvA3cBzl/jMh4CHipeldwGNjo5e8hdUthfG6pz8Puwdgp2Dpq5mR4dOMzZ7c6eroSa2SfexTbqT7dK6sYnEe+/J6Olpz9/GTv6thxaGFGOMTwFnQwhPAG8GvgAQQvhUccgfALcC/y6E8PUQwruA24FvFXO4fhX45PVXfWt43dEKx+/MmFuEqVmHFyVJ2oqyTXDrmS3dw9UwM5947DuJhWU4tNeeLvBfiN3INuk+tkl3sl1at4l7uDassAufdondOzPeHTIODHsPRkmSthoDVxdpXMF4603FFYx1Q5ckSVuBgavL9PZmvP1n83swjo3Dcs3QJUnSZmfg6kKNezDe9XNwftJ7MEqStNkZuLrY645WeHeAuUWYmDZ0SZK0WRm4utzhfRV+5e0Z+3bD6LnE1JzBS5KkzaaVeynqBtm9M+Mf/XzG+cnEU88lRs8ldu+E4V0uHyFJ0mZgD9cmcnBvxi+/LeP4nRk7BvIer9l5e7wkSep2Bq5NJssyDu/L1+x6d8jo6y2C14LBS5KkbmXg2qSyLOPI/ox/8gsZ/+jnoVLJg5dXNEqS1H2cw7XJZVnGzQczju5PnBlPPPUsnD6f2Lcbdgw4x0uSpG5g4NoiKpWMkUMZNx3IJ9V/51m4MGPwkiSpGxi4tphKJeM1RzJuPph4+VziqedgciaxbxgG+w1ekiR1goFri+rpyXjd0YxbDiVePJsHrwvTif3DMGDwkiTphjJwbXE9PRm33pzxmsOJF84mvvscTMwkDgxDf5/BS5KkG8HAtU309ma8YSTjtUcSp84kvveT/MbYg/0wvAt6KoYvSZLKYuDaZvp6M25/Tcbrb06cn4LnTydOjUFKiaGdMLQjv/JRkiS1j4Frm+rpyTiyH47sz3jrGxNnLySefRnGxqFSSQzv8upGSZLaxcAlBvozXnsk47VHYG4hcfp84pmX8vW8+nph71DeMyZJkq6PgUsX2bUjH3K87ZbE5Cy8dDbv+VquJQb6YM+Q870kSbpWBi5tKMsy9u2Gfbsz3nxrYnwanj+TeGEMVlYSu3bA7p3O95Ik6WoYuHRFPT0Zh/fB4X0Zb709cXYi8dxoPt8ryxJ7hpzvJUnS5Ri4dE36+/KV7F9zBOYXi/leL8OZ84lKBXYNws7BfMV7SZKUM3Dpuu0czLjtlow3jCSm5+D8VOKFs3DuAtRTorcnH3b0lkKSpO3OwKWWZVnGniHYM5TxhhGo1hIXZuDsRD7na2wmkYAdA7B7Rz5EKUnSdmLgUtv19a7N+fof35APPY5PJUbPwcvnobaSyIBdO/IhSCfeS5K2OgOXSrdzMGPnYD7vq15PTM3B+cnEi6/A2Yl8lfu+vrz3yxtrS5K2opYCVwjhY8Ax4BRwf4yx2rTvHuAvgJ8AKzHGXy7KPwS8DxgHfifGON1KHbS5VCpry03c/hpYrq4NP54agwuziZRg5wAcHep0bSVJao/rDlwhhDuAkRjj3SGEjwL3AQ+vO+wvY4z/quk9B4H3AHcBvwV8EPjT662DNr/+vrVbDP3cbflK9+PT+fBjbQXGxvMA1t+XX/042O8QpCRp86m08N5jwKPF9iPAOzY45l+EEJ4oerUA7gQeizGmy7xH29iuHRmvPVLhl/5hhX274deOZbzrrRm3jeT7z07kIWxsIjE9l6itpM5WWJKkq9DKkOI+4EyxPQXsX7c/Am8qtv9LCOEbxXumL/Me6SJDOzOGdsLNBzPuuD2/AnJ6DiZnE2fGYWwCarX8Ksi+3nwSvr1gkqRuc8XAFUI4Cnx2g12PAsPF9h5gonlnjHG26RxfBu4AxoDbLvWepuMfAB4AOHHiBMePH79SNVtSrVYZHR0t9TN07S7XLoPArQfyR70OK/V8CLJay58Bsix/VCpg/GqPvp4qR4dOd7oaamKbdCfbpXUHdsDYWPvOd6P+1o+MjGxYfsXAFWMcA+5ZXx5CeAvwEeAzwL3AyXX7h5smxN8F/J/A3xfvYaP3NH3mQ8BDxcvSx4xGR0cv+QtS51xvuzT3go1N5LcgqtbyfT09eQ/YjgHodT2wa3Z06DRjszd3uhpqYpt0J9uldWMTiffek7Vt7cZO/62/7iHFGONTIYSzIYQngBeBjwOEED4VY3wQeF/RU1UDTsYYHy/2fyWEcBK4APx2yz+BtE5fb8aBPXBgT74Qa0qJuQWYmc+vgjw/CecmYbmWrwdGVoSw/nxyvsORkqR2y1Lq+knH9nBtU2W2S0qJxWWYXYDpubUQNrOQDz8moL837wkb7PfekA3+q7372CbdyXZp3Sbu4dqwwi58qm0pyzJ2DOSB6tDevCcM8uHI2QWYnYeJ6cS5yTyINf5hUqmw+j6HJCVJV8vAJTXp620szAqvOZIHqno9Mb+Y94ZNzuYh7PwULC6n1d6wvl4Y7IOB/vwckiQ1M3BJV1Cp5EtTDO2Eowcy/sHr8vLFpcT8EswtwORcYmIaJqYvDmI9lXxIcrA/D2XOD5Ok7cnAJV2nwYGMwQHYPwyvaRqyX67mPWLzSzA1m5iYyYPYxAyQ0urofiOIDThRX5K2PAOX1Gb9fRn9fbB3d75ga0OtlveI5cOTifGpPIS9cmFtjlj+/vwx2O88MUnaKgxc0g3S25sx3AvDuwAybrslL6/XEwtLMLcI84uJyRm4MAuTs/nwZCXLO8YgnyM2UMwV6/HKSUnaNAxcUodVKhm7dsCuHQAZ3LS2r1rLw9j8IswtJi7MkAeymXxfJYN6yueKNYJYf6/LWEhStzFwSV2srzejr6lXrCGlxHI1nye2sJSvJTZZ9IqtLmNR9Iz19uRhzIn7ktQ5Bi5pE8qyLB9e7M+XsGieK9ZY1HV+MQ9jk7N5GLsw0zRxv9DXuzZM6XIWklQeA5e0xTQv6gpwy+G1ILWykg9RLizD3EJiajYPYY35YlljPQucLyZJ7WTgkraRnp61NcUO7b04RK2fLzYxTR7IpqG2kq8tdmAQXrmQGOjPF3r13pOSdHUMXJKAV88Xa9zuqHm+2NQE/Nwb8l6xC9N5z9j6JS0aPWMuaSFJawxcki6reb7Y/DT8zEhldV/jtkeNIcrGPLHJGViuXbzi/kBTGLNXTNJ2Y+CSdN2ab3t0aG/GzzQtabG0XAxRFldRXiiWs9hoodfBfueKSdraDFySSjHQn/eMrV9xv7HQa34fyjyIjU/lc8VWVvIgllIewAxikrYKA5ekG6p5odfmXrHGchZzC/mtjwxikrYSA5ekrtC8nMXBawhiWQb1ukFMUnczcEnqalcTxBrLWIxPX9wjBs4Rk9QdDFySNqWLghgZrzual6/vEZuYgYmpvFesntLqwq79ffl7B/q896Sk8hm4JG0pl+sRW1iCuUWYnc+D2Pg0nG8OYtnafScNYpLaycAlaVvIsoydg7BzMJ+sf2tRnlK+ltj8Uh7Ezk/la4mt3gScfLJ+X1+xllifNwGXdO0MXJK2tSy7+KrJW2/OyxvLV8wtwsJSYnouX9B1ai5fTyyxFsZ6e/Ihyv5ee8YkbczAJUkbaF6+Ai4OUPV6Pk9sYSl/zMwnJmfzMHZ+ClbqiUoG9QRZttYzNtCX389S0vZj4JKka1SprA1P5tZCVEqJpeX8dkf5zcDzpSymZvN7Ty7X8jCWyHvHMvIhyt7evIesr9f7UEpbkYFLktooyzIGB2BwAPbthvW9Y8vVxFIVlquwVIXF5cTsPMwuwuwCzMzDUnXtakpYux9lXxHI+nryZ4cupc3DwCVJN1B/X0Z/X3PJq0PTykpiuQZLy6yGs7nFxMx8PqdsbgEm5/KhzYM74OxEWusxy/JA1tsDPcVzb08e2JzoL3WOgUuSukxPT8aOnnxpizUXh6WUEtUanB2D43dmLFehWst7xxpzy+aL5+m5PLSRXdxzRgaki4NZc0CzB01qn5YCVwjhY8Ax4BRwf4yx2rTv14EPFS9fD/xZjPGTIYRngdGi/E9ijF9rpQ6StB1lWd5TVqnA/uHmYLRxSKrXE7WVPHhVV/JwVq3lQ5z5lZiwuAQL1TyoLVfzyf/rz5qaAluW5WGtp1I8mrcNbNJFrjtwhRDuAEZijHeHED4K3Ac83NgfY/wi8MXi2P8OfKnYNRVjvOd6P1eSdO0qlYz+CuuGM+FSAQ3WQtqlHsvV/GrNpWI+WmMI9GoCW2oqq1SKRyPAZU1llbXXDolqM2ulh+sY8Gix/QjwAZoCV0MI4SgwEGN8oSgaCiE8Rt7LdSLGONFCHSRJJbl0SGu4fABqDmwrdVgpnptf11YSy1VYruWPag2qVVgueuMWlvKy2go0j4deFOCKodG1wny7kq0FudXn7OKAlwc577Op8rUSuPYBZ4rtKWD/JY77DeALTa/fEWMcDyH8LvDHwO+vf0MI4QHgAYATJ05w/PjxFqp5ZdVqldHR0SsfqBvKduk+tkn32cxtUgH6yZfDuNq/Rqu3w1z/TFPvWVpbdmP10fQaLlHeHNyK49Z3qiW4eB4crz4uA3orVQ7tPL36uhEGs0u8R692YAeMjbXvfDfquzIyMrJh+RX/Fy96qD67wa5HgeFiew9wqZ6q+8h7vwCIMY4Xm58Hfm+jN8QYHwIeKl5u8L92e42Ojl7yF6TOsV26j23SfWyT9qnXE/V6vmDtSp3V7fXPKyvrX6fVnrtqLZ8j18cZZmo3rfbmNffq1etQa+rxW1nh1b10vLr/cDXsXSIYNnrrKtkGz5UNylfLujP5jU0k3ntP1rbFgjv9Xbli4IoxjgH3rC8PIbwF+AjwGeBe4OQGxxyhaTgxhNAPZDHGJeBu4LkW6i5JUttUKhmVyvW889WBYHQU3viGqztZSom0QbC72ufmwFdbKYZq62tDsesD31Lt4rJUT6s9G1lTT1wj4GXZq3sTs6bjm4Peq4Zw1w3ddnPAK9t1DynGGJ8KIZwNITwBvAh8HCCE8KkY44PFYeuHE/cBXw0hzAFLwP3X+/mSJG0FWZatBpfrPENLn59SenWv3QY9fBv17FVra711jR6+5rCXL1WSn69ay49LpFcNszbWkEvreu62kiylrv+pHFLcpmyX7mObdB/bpDvZLhtLKV0U4FbWhblG0Fup57nrpoPt6w27gW2yYaVd+FSSJN0QWZblS3+Q355qO7nuDkxJkiRdHQOXJElSyQxckiRJJTNwSZIklczAJUmSVDIDlyRJUskMXJIkSSUzcEmSJJXMwCVJklQyA5ckSVLJNsO9FCVJkjY1e7gkSZJKZuCSJEkqmYFLkiSpZAYuSZKkkhm4JEmSSmbgkiRJKllvpyvQaSGEjwHHgFPA/THGamdrpBDCzwDfAn5QFL03xniuczXavkIIe4CvAT8L/GKM8ekQwnuBDwMLwL+MMb7cyTpuN5dok2eB0eKQP4kxfq1jFdyGQgi/AHwSqJK3w+8C/xy/Jx11iXb5IR36rmzrwBVCuAMYiTHeHUL4KHAf8HCHq6XcYzHG+zpdCTEP/FPg/wAIIfQCHwHeBdwJ/BHwYMdqtz1d1CaFqRjjPZ2pjoCXgH8cY1wIIfwp8D/h96QbbNQuHfuubOvARd6z9Wix/QjwAQxc3eIdIYQngCeAj8YYXaG3A4oe33MhhEbR7cDfxxiXgZMhhI93rHLb1AZtAjAUQniM/F/uJ2KMEx2p3DYVYzzT9HIZeBN+Tzpug3ap08Hvynafw7UPmC62p4D9HayL1pwBbgPeCRwGfqOz1VGT5u8MQE+nKqKLvCPG+C7yfzj+cacrs12FEF4H/BPgG/g96RpN7fJlOvhd2e49XJPAcLG9B/BfhV0gxrgELAGEEP4K+EXgCx2tlBomWfvOAKx0qB5qEmMcLzY/D/xeJ+uyXYUQhoG/AN5PHrD8nnSB5nYpeoc79l3Z7j1cTwLvLrbvBU52sC4qhBB2N728G3iuU3XRqzwL/A8hhP4QwjHge52u0HZXtMVA8dLvSwcUcxs/C/xxjPHH+D3pCuvbpdPflW3dwxVjfCqEcLaYK/Qi4Dh7d7grhPC/k08Ofp58wqk6JITwVeAt5PNSPgX8OfB1YBH4l52q13a2rk2+BLwvhDBH3jN8f+dqtm39JvB24I9CCH8E/Af8nnSDjdrlf+7UdyVLybnIkiRJZdruQ4qSJEmlM3BJkiSVzMAlSZJUMgOXJElSyQxckiRJJTNwSZIklczAJUmSVDIDlyRJUsn+fz7yzX2h6ldnAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAGrCAYAAAD6qLfeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABLBUlEQVR4nO3de3Rc5X3v/8/eMxrNaGRZlm0sXyTbwqZgSMilXFIXQ7kE202Wm7T24SzoyjEFEpKzuBxyEh0aAiSUQNKUX2myEi/Xcc+PQ3qSQ07ocoMNhaR2esolBn7AcWKwLbDki2zL1m1uGs3s5/fH3jPSWBdL9lyl92utWTOzZ2v2I/FkMh8/z/N9LGOMEQAAAABAdqkbAAAAAADlgoAEAAAAAB4CEgAAAAB4CEgAAAAA4CEgAQAAAICHgAQAAAAAHgISAAAAAHgISAAAAADgISAVieM4ev/99+U4TqmbggpAf8Fk0WcwWfQZTBZ9BpNVqX2GgAQAAAAAHgISAAAAAHgISAAAAADgISABAAAAgIeABAAAAAAeAhIAAAAAeAhIAAAAAOAhIAEAAACAh4AEAAAAAB4CEgAAAAB4CEgAAAAA4CEgAQAAAICHgAQAAAAAnoIEpE2bNmn9+vW67LLL9Pzzz495XiKR0AMPPKBVq1bpj//4j7Vjx46c17dt26a1a9fq6quv1sMPP6zBwcFCNBcAAAAAJBUoIDU1Nem+++7TxRdfPO55mzZtUm9vr5577jk9+uijeuyxx3Tw4EFJ0v79+/XEE0/or//6r/WLX/xCR44c0ZYtWwrRXAAAAACQVKCAtHbtWl155ZUKBALjnvfcc8/pjjvuUG1trS699FKtWrVKL7zwgiRpx44duuGGG7RixQrV1tbqtttu0/bt2wvRXAAAAACQJPlLdeG+vj6dPHlSy5Ytyx674IILtGfPHklSW1ubPvGJT2RfW758uQ4fPqxEIqFgMDji/ZLJpJLJZM4xv99/xpBWLI7j5NwD46G/YLLoM5gs+gwmiz6DySq3PmPbExsbKllAisVi8vl8OWEnHA4rFotJkuLxuMLhcPa12tra7PHRAtLWrVu1efPmnGPr16/Xhg0bCtH8s/K1r31NjzzySKmbgQrS0dFR6iagwtBnMFn0GUwWfQaTVS59ZunSpRM6r2QBqaamRul0OmdEKBqNqqamRpIUCoUUjUaz50cikezx0WzcuFE333xzzrFyG0E6duyYmpqaJpxeMX05jqOOjg76CyaMPoPJos9gsugzmKxK7TMlC0h1dXWaPXu29u/fr0suuUSS9N5776mlpUWS1NLSov3792fP37dvnxYuXDjq6JEkBQKBsglD47Ftu6I6CEqL/oLJos9gsugzmCz6DCar0vpMQVqaSqU0MDAgY0z28WhzD9euXau///u/VzQa1TvvvKNdu3bphhtukCStXr1aL774ovbu3atIJKIf/ehHWrNmTSGaCwAAAACSChSQHnnkEa1cuVJvvvmmHnzwQa1cuVJvvPGGtm/fnrMm6POf/7xqa2u1evVqtba2qrW1VUuWLJEkLVu2TPfcc4/uvfderV27VvPmzdOtt95aiOYCAAAAgCTJMsaYUjdiOnAcR5/85Cf1wgsvVNQQI0rDcRwdPHhQixcvpr9gQugzmCz6DCaLPoPJqtQ+UzktBQAAAIACIyABAAAAgIeABAAAAAAeAhIAAAAAeAhIAAAAAOAhIAEAAACAh4A0hd15552lbgIAAABQUQhIU9jhw4dL3QQAAACgohCQAAAAAMBDQAIAAAAADwEJAAAAADwEJAAAAADwEJAAAAAAwENAAgAAAAAPAQkAAAAAPAQkAAAAAPAQkAAAAADAQ0ACAAAAAA8BCQAAAAA8BCQAAAAA8BCQAAAAAMBDQAIAAAAADwEJeXPnnXeWugkAAADAOSEgIW8OHz5c6iYAAAAA54SABAAAAAAeAhIAAAAAeAhIAAAAAOAhIAEAAACAh4AEAAAAAB4CEgAAAAB4CEgAAAAA4CEgAQAAAICHgAQAAAAAHgISAAAAAHgISAAAAADgISABAAAAgIeABAAAAAAeAhIq1p133lnqJgAAAGCK8Ze6AcDZOnz4cKmbAAAAULYcxyjtSI4jpb2bz5Zqglapm1bWCEgAAABAkTmOkeNIjtGIEJN9nD7T60bJlJRKS4NpKZV5nHKfO965jnFvxpFqa6RPXiYFqghJYylYQOru7tZDDz2k3bt3a968eWptbdXll18+4rwNGzbo6NGj2eeJREJ33323brnlFu3evVt33nmngsFg9vUnn3xSH/3oRwvVbAAAAEwzxgyFleH3aWfs5+O+ljYaTLsBZzDlvpa5T6Xd2/BrGUdKe8+N994m83xYOy2NfG7bkmW5I0OW5T7PPrYkv2/oeCIpxRPu+2NsBQtIjz/+uObOnauXXnpJr7zyilpbW/Xss8+qrq4u57yf/vSn2cc9PT1as2aNrr766uyx5uZm/exnPytUMwEAAFAGxgopY96P8drI4GLccOIFk0xIGX6fGanJCSdecMmOvpih9zwTS5JluwHFtnIf28PCi21LPsu9nX6O7T23rPyN9BhjlBjI29tNWQUJSLFYTDt37tS2bdsUDAZ1zTXX6Omnn9auXbv0qU99asyfe/HFF3XhhReqqalp0tdMJpNKJpM5x/x+vwKBwKTfqxAc739NzkT+V5Un7gcN16tEpegvqGz0GUwWfQajyYSU00OGYyTHG3Y40ZMeNcyY0QKL3PtU2ig9PJSkpZSTeS33ejnhRJIyxzX5oCINhZHR7q3Tnvt8UsA/MtRYXqixlP/QcmbmzKdMkG0Z2ZbkOJYcp/C/Q7l9ztj2xOrTFSQgtbe3q7a2VnPmzMkeW758udra2sb9ue3bt2v16tU5x44ePaobbrhBtbW1Wrt2rW699Vb5fL4RP7t161Zt3rw559j69eu1YcOGc/hN8q+jo6No14rH4zp48CDXq2DF7C+YGugzmCz6DCYr1ntozNdsjVIiOXOwqnBtwgTVu3fHO4t72XL5nFm6dOmEzitIQIrH4wqHwznHwuGwIpHImD9z5MgR7dmzR9/5zneyx5YsWaIf//jHam5u1gcffKDW1lbV1NTo5ptvHvHzGzduHHG8HEeQmpqaJpxez1UoFNLixYuLcq3pcL1ichxHHR0dRe0vqGz0GUwWfSZ/MpXC0qOsLRmx0D592nG5oyuDgyMX2qcc93HOlDJJxvu54deRGTnOYFm5x0dM+xp+b48x0mIPG12xHZ0/57A+OLVQku2NvrDQv5JE4u4Uu9VXWgpVF2cEqRI/ZwoSkEKhkKLRaM6xaDSqUCg05s/s2LFDl19+uRoaGrLH5syZkx2Famlp0V/8xV/omWeeGTUgBQKBsglD47Ftu2gdxLKsonbGqX69Uihmf8HUQJ/BZE3HPmPMadO9hlUMG+/5YMooOSglU1Jy0F10n0xJacdyw84oC+0zU8WMchfYW5Z7jvvYGrHuxB4WTjLH/f7RX3eDTOG/7Fpyr2HbPhlvnCh/k79QDI4xcozbX4rRZzIq7XOmIAGpublZkUhEXV1d2YCzb98+rVu3bsyf2bFjhzZu3Dju+1bSHxYAAORfJtykxrgNpoY/NhoYFmQy96nUsHLJxh3VSQ8b8TFjfOvPVAqzvbUq2UX2tlspzK4aCi3DK4oVf80KgHNRkIBUU1OjVatWadOmTbrvvvv06quv6sCBA1q1atWo57/77rs6evSorrnmmpzju3fv1qJFi9TY2Kj29nZt2bJFa9asKUSTAQBAkaTTZsyAc3rQGRg0GkhKA4PeLTk0upMd6fGej5ZrfPZQiMneewHH7xs65hs+elPEf1kHUH4KVua7tbVVDz74oK677jrNmzdP3/rWt1RXV6ft27dr69atOeW9d+zYoauvvnrEFLy9e/fqgQceUH9/vxoaGrR27dpRp9cBAIDSMMYNO5kpZ4NeuBn+PD5gFB+Q4gPuPiypUaayjTVyM3yEJhNkfD6pyp/73B2xIdgAOHcFC0izZs3Sk08+OeL4mjVrRowC3X333aO+xy233KJbbrmlIO0DJuvOO+/UD37wg1I3AwAKarTAk33sTVFLJI1iA+6Gk4mkN9qT2QAzNXITStuW/N4amkzYqa4aCjZDIzgEHAClV7CABEw1hw8fLnUTAOCspdMmO00tOeiGHEn63UGj+ICj2ICU8EZ5hldQy4z0DGfbUpVvaJpalU+qDgw99vkIOgAqFwEJAIAKN5jKXaeT9O7jA0aRuBSJu8Fn+CiQbRmtulDavdetr+b3Ak+VF3oIPACmKwISAABlyhiTDTuZAgWZABRNGEXjUiThHs9UaUulcve9qfIP3WqqpaqwO9XN701nW9JoyYgABAAZBCQAAErEcYwSyaHiBe69G3z641Is4QWfQW8D0fTQz9q2G3oCXviZUeMFId9EixWwgw0AjIaABABAATnOUAW3+IAUT0rRuFFPROqLDY0KDaaGNhP1+3JHfsJB997PVDcAKDgCEgAA5yidNtnwkwlCkbhRT787EpSZHpcZAbIst4pbdZUUqpbqa90ARJlqACg9AhIAABOQSpmcABQfkPpjRr1RqT82tDYoE4JseygEhYNSwwypyk8AAoByR0ACAFSEdCytyL6oapeH5avxFeQaxrhrgqJxKZpw1wD1x9zpcJH4UHW4TNlrnxeCAlXuGqDqKqbBAUClIyABACpCZF9U/+fal7Xyl5/QzEvrzvn9BpJG0cRQGOqJGJ3qcx9nNj+V3PVAAW8kqC6c2eCUEAQAUxUBCShTX/va1/TUU0+VuhlAxRtMmWwIiiak3ojRyT53RCgx4FaJM3KrvwUD7m1mrRRgOhwATEsEJKBMHTt2rNRNACpKOp07ItQfc4NQX9QtnjCQlIxxN0MNBqRQQJpR744OURwBAJBBQAIAnLU777xTP/jBD4p6TccxisRMdkQo4gWhnog7IpRISo4kW1Kw2g1DDTPce4IQAOBMCEgAgLN2+PDhgr23MW7p7Myo0KnDbmWEXW8bxU+5xRTSaa9ktjciNLNWOi8g+WyCEADg7BCQAAAldXrluGhCOtXnFkxIJN1bKi353pfmyn1cG5LmzqRYAgAg/whIAICiSQwMTY2LxqXeqDs9LhZ31wllKscFqtwpcTXVUkOdWzrbiVpKSJpVa8kOEYwAAIVBQAIA5F2mhHZsWOW4rt6hEtrJQUmWWzkuVO2uFapnI1UAQBkgIAHIKsWCe1Q2x0g9/WbcEtqSu5dQMOCuFZoZlgJVBCEAQHkiIAHIKuSCe1SuzBqhmDciFBuQ+qJG3f3SsVNGv3jFKDnoldC2hwomUEIbAFCJCEgAMEWc6+bC6bRRbGAoCEUTRj0Rt3x2PCElBofWCGWCkCVpdp1UTRACAEwRBCQAmCImurnwQDI3CPXH3NGgvpi7mWpiUHLcitoK+N0gFKyWZs6QAqetEaryWwoGpm4weuLRO3Xv/Uw7BYDphIAEAFOQ47h7CA0PQr1Rt3R2bMANQgOD7rmW5a0PqpLqwtLcKspnZ3QdP1LqJgAAioyABAAVLDnobaYaN5Kk/9vmqLtf6om61eIGvNLZlpVbKGFGiPVBAACMhoAEAGXOcYxiCXefoMxoUF/UqDvi7iWUGHTXD0nSm/skv18KVknhoLs+yM9oEAAAE0ZAAlAyU72s+GR+P2OMBpLu9Le4Ny0uEneLJPRGh/YOSqUlI3f/oOoqdzSoIegGIkla0mjJiEAEAMDZIiABKJmpXlZ8tN8vlTI5ISiaMOqNuFPiYglvSlzaLZltySuQEJBqQ1Jw5tijQRahCACAvCAgAZg2ijViZYy7Lig5KHUcM9l9g3qjUl/UK5CQcivFGeOuBQoG3Pu6GtYGAQBQSgQkANNGvkeskoMmu3FqplBCd//QlLhj3Ub/stu4G6j63Glw1QFpZq1777MJQQAAlBsCEgCMI53OLZcdHxgqlx0fcAskJJPuuiDLGto3KFTtjgq1LCAEAQBQSQhIAKY9Y4wSyaEAFBtwN0/tGbZ56sCglHLcdUF+r0BCMCDNDrmhyB5lNMhmmhwAABWHgARg2nCM1BsZKpkdjbulsvuiUjzhjgYNptxzh2+eOoPNUwEAmDYISACmnIGkyU6Ji3p7Bp3qk46dMvrFy245bcdItiVVeVPigtXu2qAqPwUSAACYzghIACpWYsANQtG4Oy2uN2J0ql+KxIemxUmSbbujQZakWTPcUaHRpsQBAAAQkACUteHrg6IJ974n4o4IRb19g5LetDifF4SCAWnGzJHlsqv8lkLVBCMAADA2AhKAspDZOygTgmIJqbvfXSMUi+euD/L7vPVBAWlmmGlxmDqeePRO3Xt/4ffqAgCMjYAEoOgSA0aRuBuC/m+bo56IdKrP3TsokXSDkOWtDwpm1gfNkAJ+QhCmtq7jR0rdBACY9ghIAArGGLdiXH/MXRfUGzU60eM+jw9IXb1Gr/1uaO+gmmp3jVAVQQgAAJQIAQlAXqTTRtFhYai736ir150yFx+Q0o5bNS5U7d7qa6Vw0GIjVQAAUFYISAAmbTDlTpHLhKGuXrdoQjzhTpFzjDs9LlQthaulOXXsIQQAACoDAQnAuBIDRv1xKRKT+mPuFLneqDsqlCmjHfDCUD0ltAEAQIUrWEDq7u7WQw89pN27d2vevHlqbW3V5ZdfPuK8hx56SM8//7z8frcp8+fP109/+tPs69u2bdMPfvADRaNRXXvttbr//vtVVVVVqGYD05YxRum01HnSjLpeaDAt2XLXCoWqpTmjlNEGAACodAULSI8//rjmzp2rl156Sa+88opaW1v17LPPqq6ubsS5n//85/Wf/tN/GnF8//79euKJJ/S9731Pzc3Nuu+++7RlyxZ94QtfKFSzgWljMGXUF5X6ou56oc5T0rFuox2vmVHXC1E4AQAATAd2Id40Fotp586d+sIXvqBgMKhrrrlG559/vnbt2jWp99mxY4duuOEGrVixQrW1tbrtttu0ffv2QjQZmNLcanJGR7uM3m03+vVbjrb9H6Ptrxj96k2jtw64a4l8ttQ0Vzp/gaWl8y01NliaGbYIRwAAYNooyAhSe3u7amtrNWfOnOyx5cuXq62tbdTzn3rqKT311FNavHix/vN//s/62Mc+Jklqa2vTJz7xiZz3OHz4sBKJhILBYM57JJNJJZPJnGN+v1+BQCBfv9Y5cRwn574YjDFcr0Kvd679JZ02isSk3pg3Va5b6olIsQHJcdypcTXV0rxZUqBqKPz4fZLfZySZfPwaE2BkqXj/Dafy9TLXKe7vJxX3b+pk74t3TfoMkEGfqXy2ZWRbkuNYcpzC/+NnKb7/jse2JzY2VJCAFI/HFQ6Hc46Fw2FFIpER59500036L//lvygUCunFF1/Uvffeq5/85CdqbGwc8T61tbXZ9z89IG3dulWbN2/OObZ+/Xpt2LAhX79WXnR0dBTtWvF4XAcPHuR6FXo9KT/9pc4n1c2RNOeMpypUFVdzffs5X3OiuF7+NdUfKur1ivk7xmck9IGkxhmdCtX3FOWa9BlgJPpMBat37453Fveyxfz+O56lS5dO6LyCBKRQKKRoNJpzLBqNKhQKjTj3wgsvzD5es2aNnnvuOb366qtat27diPfJBKzR3mfjxo26+eabc46V4whSU1PThNPruQqFQlq8eHFRrsX18mu8/uI4bhGFvqjUFzM6nhkdSkgpR6ryeeW1g25FuckUUYgPhtTe05zX34XrFed6mX/R7ehZJFOY2dOjKubvmO7vk9Suzv5G+XpGrmcthKneZ5rqDxW9z6By0WcqXyRulBiQVl9pKVRdnBGkjo6Oon7/zYeCBKTm5mZFIhF1dXVlp9nt27dP69atO+PPDv8y19LSov3792ef79u3TwsXLhwxeiRJgUCgbMLQeGzbLloHsSyrqJ2R6+WfbdtKpS31Rd3S2qf6jI51W+qPSvGkJFkKBqRwSGqcLflH2WtocpPlrCL/nx7Xyzcjewr/jnb2vnjXnNp95mtf+5ru+PL/y5ddTErxP2eQL44xcoy7HUcxt+Qo5vfffChIS2tqarRq1Spt2rRJiURCO3fu1IEDB7Rq1aoR57700kuKx+NKpVJ64YUX9NZbb+myyy6TJK1evVovvvii9u7dq0gkoh/96Edas2ZNIZoMlI3BlNGJHjfW/Ntbjv75342ee8XoX9802vOBW3J7Zq20pFFqWWBpwRy3kMJo4QgAxnPs2LFSNwEAyk7Byny3trbqwQcf1HXXXad58+bpW9/6lurq6rR9+3Zt3bo1u9fRj3/8Y33jG9+QZVlavHixvvOd72jBggWSpGXLlumee+7Rvffem90H6dZbby1Uk4GSMMaoPyad6pOOdxsd7pJiCTcgHTnp7jvUOFsKUEkOAACg4AoWkGbNmqUnn3xyxPE1a9bkjAJt2bJl3Pf59Kc/rU9/+tN5bx9QSgNJo1N90sk+o8MnpO5+KZqQbFuqq5HmNbjnzZ9tyYhgBAAAUCwFC0gAhjiO8dYQSZ0n3U1Z+2KSY6RwtTQj7IaizBo8i1AEAABQEgQkoEBiCXeUqKvXnTbXE5ESA1KVX5pRIzWdN3pRBQAAAJQOAQnIk1TKqCcineqXjnS5m7NGEpIxUm1IapghheYQiAAAAMoZAQk4S8a4+xGd6pNO9LijRH1RKTno7j80Iyw1z5R8RSyjCQAAgHNDQAImITlo1N0vnew1OnJSOtknReOSZbnT5s6rl6oDBCIAAIBKRUACzmAwZXS8W+rpN/rnf3dLcqfSUqjarTg3d6aKutkaAAAACoeABIzCcdwCC0e6jN7vdKfR9cfc1xbMkarYkwgAAGBKskvdAKCc9MeM9nUYvfS60Y5XjX7zrrumaNFcqSZoqaHOIhwBwFl64tE7S90EADgjRpAw7Q0kjY51S+3H3EILkZgUrJZmz5RC1YQhAMiXruNHSt0EADgjAhKmpXTaqKtXOnzC6INOd48iny3NmuEWWshs2AoAAIDphYCEacMYo96IdPSk0ftHpa5et9jCzLC0eJ7kY9NWAACAaY+AhCkvljA6dsqdQnekS4oNSOGg1NggBaoIRQAAABhCQMKUlEoZHe+RDh03aj8u9UakQJU7hW7+HEIRAAAARkdAwpRhjFuaOzOF7mSfZIxUXystnc9eRQAAADgzAhIqXiRm1HlK+qDTnUqXSEozaqSF7FcEAACASSIgoSKl00bxAenf33F06IS7iWswIDXUUZobAAAAZ4+NYlFRHMfo0HGjX71p1NVjtO+QVB2QWhZIC+dahCMAQA42pwUwWYwgoSIYY9R5Utrb7hZdsORu5rq4kUAEABgbm9MCmCwCEsqaMUYneqS9B90NXY2R5jVIwYAlm81cAQAAkGcEJJQtdwqdUdsRKZly9y1iCh0AAAAKiYCEstPdb7Svw+jAYSmedEeMwkGCEQAAAAqPIg0oG31RozfedfT8a0bvvC/V1kgtCyzCEQAAQJ5s/n++WOomlD0CEkouEjN6a7+j5181enOfFApI5y+wNKOGYAQAAKa2YldaPNV1uKjXq0QEJJRMLGG05313xOg3v5N8Prdc98xaghEAoDJRVhyTRaXF8sMaJBRdYsDog06jve1SV680q1Y6f6FkUZUOAFDh+LILVD4CEoomOWjUfkz67Qdu6e66sNQyX7JtghEAAADKAwEJBZdKuZu77j1odPSkFA5JS+ZLPoIRAAAAygxrkFAw6bTRwU6jl1432vn/GfVEpMWNUmODRTgCAABliXVkYAQJeec4Rke6pN8dNDp0Qgr4pUVzpSo/oQgAAJQ31pGBESTk1dEud7TopTfc6XQL50gL51qEIwAACoDRDiD/CEjIi/6Y0cleo3/Z7RZimDdLap5nKVBFMAIAoFCm+mgHARClwBQ7nLOTvUav/tYompDm1kuhakIRAAA4d1M9AKI8MYKEc3Kky2jXW0bHuqWaasIRAABT2de+9rVSNwEoOEaQcFaMMXr/qPTa74zSaWlJIxu9AgAw1R07dqzUTQAKjoCESXMco98dNHr9XSlU7ZbtBgAAAKYCAhImZTBl9PYBo7cPSLNmSPW1hCMAAABMHQQkTFhiwGj3u0bvtkvzGqTaEOEIAAAAUwsBCRPSHzN67bfuuqOm86TqAOEIAAAAUw8BCWeUKeN99JS0ZL7k9xGOAAAAMDURkDCuI11uOOqJuJXqfDbhCAAAAFNXwfZB6u7u1t13362VK1fqs5/9rF577bVRz/ubv/kbrVu3TqtWrdKf//mf64033si+tnv3bl122WW66qqrsrc333yzUE3GMMYYtR1x9ziKJQhHAAAAmB4KNoL0+OOPa+7cuXrppZf0yiuvqLW1Vc8++6zq6upyzqutrdX3vvc9LVy4UL/85S/15S9/Wdu2bVM4HJYkNTc362c/+1mhmolRUMYbAAAA01VBAlIsFtPOnTu1bds2BYNBXXPNNXr66ae1a9cufepTn8o594477sg+vv766/Xd735X7e3tuuiiiyZ1zWQyqWQymXPM7/crEAic/S+SR47j5NwXgzFm0tcbTBn93zajPR9I9bXSzLAlyUz0irJUvN9vKl8vc53i/n7SVP6bTvXrTY8+42Tvi3dN+kx+FfvvWYprTt3r0Wcq/3q2ZWTJ/T7qOIX/B/BSfP8dj21PbPJcQQJSe3u7amtrNWfOnOyx5cuXq62tbdyfO3LkiPr6+tTU1JQ9dvToUd1www2qra3V2rVrdeutt8rn84342a1bt2rz5s05x9avX68NGzac42+TXx0dHUW7Vjwe18GDByf9cw3V0lW/N/nrhariaq5vn/wPnqWpfj1Jaqo/VNTrTfW/6VS/njS1+0x8RkIfSGqc0alQfU9Rrkmfya9S/H5T/b8hfabyr1nU69VLM2viOt5Z3L9pMb//jmfp0qUTOq8gASkej2enyGWEw2FFIpExfyaVSumhhx7Sn//5n6u2tlaStGTJEv34xz9Wc3OzPvjgA7W2tqqmpkY333zziJ/fuHHjiOPlOILU1NQ04fR6rkKhkBYvXjyhc/tjRq+/a3SwU1o0VwpUTf5fFeKDIbX3NE/6587WVL5e5l+SOnoWyRRuqeAIU/lvOtWvNx36TLq/T1K7Ovsb5eupO+P5+UCfya9i/z1Lcc2pfD36TOVfLxI36o2FdF5js0LVxRlB6ujoKOr333woSEAKhUKKRqM5x6LRqEKh0KjnG2P00EMPadasWTlT7ubMmZMdhWppadFf/MVf6Jlnnhk1IAUCgbIJQ+OxbbtoHcSyrAldyy3jLR09ZWnxPLeM90Qn1Z12xaJ+MZv615OM7Cn+O3K9fJvafcbO3hfvmvSZ/Cr+7zf1/xvSZyr/msW7nmOMjDLfR4u3xryY33/zoSAtbW5uViQSUVdXV/bYvn371NLSMur53/72t3XixAl985vfHPePV0l/2EpxpMutVHesW1rayB5HAAAAmN4Kkjhqamq0atUqbdq0SYlEQjt37tSBAwe0atWqEedu2rRJb731lr773e+OGAHavXu3Ojs7JbnrmrZs2aI//MM/LESTp53RyngX818SAAAAgHJUsDLfra2tevDBB3Xddddp3rx5+ta3vqW6ujpt375dW7du1U9/+lNJ0ubNmxUIBLRmzZrsz95///1as2aN9u7dqwceeED9/f1qaGjQ2rVrR51eh8mhjDcAAAAwuoIFpFmzZunJJ58ccXzNmjU5YWj37t1jvsctt9yiW265pSDtm64GU0Zv7Td6p02aNUOqryUcAQAAABkFC0goP4kBo93vGr3bLjXOlsJBwhEAAAAwHAFpmuiPGb32W6P3j0pN50nVAcIRAAAAcDoC0jTglvE2OnpKWjKfSnUAAADAWAhIU9yRLjcc9UTcMt5UqgMAAADGRkCaooxxy3fvessonXbLeFsW4QgAAAAYDwFpijreLXX3G/lsyngDAAAAE1WQjWJReoMpKe1Ic+sJRwAAAMBEEZAAAAAAwENAAgAAAAAPAQkAAAAAPAQkAAAAAPAQkAAAAADAQ0ACAAAAAA8BCQAAAAA8BCQAAAAA8BCQAAAAAMBDQAIAAAAADwEJAAAAADwEJAAAAADwEJAAAAAAwENAAgAAAAAPAQkAAAAAPAQkAAAAAPAQkAAAAADAQ0ACAAAAAA8BCQAAAAA8BCQAAAAA8BCQAAAAAMBDQAIAAAAADwEJAAAAADwEJAAAAADwEJAAAAAAwENAAgAAAAAPAQkAAAAAPAQkAAAAAPAQkAAAAADAQ0ACAAAAAA8BCQAAAAA8BCQAAAAA8BQsIHV3d+vuu+/WypUr9dnPflavvfbaqOclEgk98MADWrVqlf74j/9YO3bsyHl927ZtWrt2ra6++mo9/PDDGhwcLFSTAQAAAExzBQtIjz/+uObOnauXXnpJd911l1pbW9XX1zfivE2bNqm3t1fPPfecHn30UT322GM6ePCgJGn//v164okn9Nd//df6xS9+oSNHjmjLli2FajIAAACAac4yxph8v2ksFtN1112nbdu2ac6cOZKk22+/XevWrdOnPvWpnHNvvPFGffe739Ull1wiSfr617+upqYm3X777fre976n/v5+/bf/9t8kSb/5zW/0yCOP6J/+6Z9GXDOZTCqZTOYc8/v9CgQC+f71zspHPvIRvfvuu2poaCjK9dKOO4pXN3NWUa4nSf193ZpRx/XyJdJ3SrV1xekvGVP9bzrVrzfl+0zKyPQmZc0MSH6rKJekz+RXsX+/Ulxzql+PPlPZ1zNGivR1q6FhlqzifIyqvr5e77zzjmy79Ct7JtoGfyEu3t7ertra2mw4kqTly5erra0t57y+vj6dPHlSy5Ytyx674IILtGfPHklSW1ubPvGJT+S8x+HDh5VIJBQMBnPea+vWrdq8eXPOsfXr12vDhg15+73OxeDgoGzbVjqdLto1/T5LPqt41/PZXC+fbNsu6vWkqf83nerXm+p9xlhGaUm2lZZVpP9np8/kV7F/v1Jcc6pfjz5T4dezJJ/PkuMU92/a0dFR1OuNZenSpRM6ryABKR6PKxwO5xwLh8OKRCI5x2KxmHw+X07YCYfDisVio75PbW1t9vjpAWnjxo26+eabc46V0wjSO++8o46ODjU1NRUlQR8+YfTLN4yWNBbpnweQV5YcNdUfUkfPIhlqqWACpkOfMYm0nI6o7KawrKCv1M2peNOhzyC/6DOVLxI3SgxIq6+0FKou/HdEx3GK+v03XwoSkEKhkKLRaM6xaDSqUCiUc6ympkbpdDpnRCgajaqmpmbU98kErNPfR5ICgUDZhKHx2LZdlA5iWUZpx8iIgFTJjGz+TwiTMqX7TNCWvbxekpT3ueHT2JTuMygI+kzlcoyRYyTbtmTbxfuOWKzvv/lSkJY2NzcrEomoq6sre2zfvn1qaWnJOa+urk6zZ8/W/v37s8fee++97HktLS05r+3bt08LFy4cMXoEAAAAAPlQkIBUU1OjVatWadOmTUokEtq5c6cOHDigVatWjTh37dq1+vu//3tFo1G988472rVrl2644QZJ0urVq/Xiiy9q7969ikQi+tGPfqQ1a9YUoskAAAAAULjx0dbWVh07dkzXXXed/vZv/1bf+ta3VFdXp+3bt+cUTvj85z+v2tparV69Wq2trWptbdWSJUskScuWLdM999yje++9V2vXrtW8efN06623FqrJAAAAAKa5gpT5xkiO4+jgwYNavHhxUeZgHjpu9MJvjFoWsAapElly1FzfrvaeZuZ5Y0LoM5gs+gwmiz5T+fpjbpGGT60sXpGGYn7/zZfKaSkAAAAAFBgBCQAAAAA8BCQAAAAA8BCQAAAAAMBDQAIAAAAADwEJAAAAADwEJAAAAADwEJAAAAAAwENAAgAAAAAPAQkAAAAAPAQkAAAAAPAQkAAAAADAQ0ACAAAAAA8BCQAAAAA8BCQAAAAA8BCQAAAAAMBDQAIAAAAADwEJAAAAADwEJAAAAADwEJAAAAAAwENAAgAAAAAPAQkAAAAAPAQkAAAAAPAQkAAAAADAQ0ACAAAAAA8BCQAAAAA8BCQAAAAA8BCQAAAAAMBDQAIAAAAADwEJAAAAADwEpCnMGMkYU+pmAAAAABWDgDRF1Yak2TOlDzqltENIAgAAACaCgDRF1c+wdNWHLc2b5YakwRQhCQAAADgTAtIUNnumpasutbRkntR+TEokCUkAAADAeAhIU9yMGksrP2TpwsXS4RNSJE5IAgAAAMbiL3UDUHjBaktXXCQFA0ZvH5BSaaP6WqvUzQIAAADKDgFpmvD7LX10uRQKGO1+V0oOGp03i5AEAAAADMcUu2nEti1dtMQt3mAkHTpuKAMOAAAADENAmmYsy9LSBW5ICocoAw4AAAAMl/eAtGfPHv3H//gftXLlSt1xxx06evToqOedOnVKra2t+uQnP6lrr71W9957rzo7O7Ovb9q0SVdccYWuuuqq7A35s2COpVWXUgYcAAAAGC6vASmZTOorX/mKbrrpJv3yl7/UJZdcoq9//eujnhuPx/WRj3xEP/3pT/X8889r0aJFevjhh3POWbdunX79619nb8iv4WXAD3ZSBhwAAADIa0B6/fXXFQqFtG7dOlVXV+v222/Xb3/721FHkRYuXKibbrpJ9fX1qqqq0vr167Vnz558NgcTkCkDftESyoADAAAAea1i19bWpmXLlmWfh0IhLVq0SG1tbZo/f/64P/v222+rpaUl59gLL7ygF198UY2Njbrtttt07bXXjvnzyWRSyWQy55jf71cgEDiL3yT/HMfJuS8ngSrpst8zCgaM9rwvOY40M0yFu1Ky5OTcA2dCn8Fk0WcwWfSZymdbRrYlOY4lxyn8d71y+/5r2xMbG8prQIrH4wqHwznHwuGw4vH4uD/X2dmpv/u7v9M3vvGN7LEbbrhBf/qnf6r6+nrt3r1bX/3qV9XY2KgVK1aM+h5bt27V5s2bc46tX79eGzZsOMvfpjA6OjpK3YQxNQSkq36v1K3AcE31h0rdBFQY+gwmiz6DyaLPVLB69+5457hn5V25fP9dunTphM6bVED60pe+pDfffHPU12699VaFQiFFo9Gc49FoVKFQaMz37O3t1V133aWNGzfqiiuuyB4fPpp05ZVX6sYbb9SuXbvGDEgbN27UzTffnHOs3EaQOjo61NTUNOH0WioHjxrtfs8olZLmz3Yr36G4LDlqqj+kjp5FMhSbxATQZzBZ9BlMFn2m8kXiRokBafWVlkLVxRlBqpTvv8NNKiB9//vfH/f1l19+WT//+c+zz+PxuA4dOjRi6lxGLBbT3Xffrauvvlo33XTTuO99pj9qIBAomzA0Htu2y76DLF0oVVcbvfpbo/c7peZ5ks8mJJWCkc3/CWFS6DOYLPoMJos+U7kcY+QYd29Mu4jf7Srh++9weW3pxz/+ccXjcW3btk3JZFJbtmzRihUrRl1/NDg4qP/6X/+rWlpa9KUvfWnE6zt37lQkEpHjOPrNb36j7du3a+XKlflsLsZBGXAAAABMR3ldgxQIBPTtb39b3/zmN/XYY49pxYoVOeuKHn30UUnS/fffr7fffluvvvqqgsGg/uVf/iV7zv/6X/9LjY2N2rFjhx5++GGlUiktWLBAf/mXf6kPfehD+WwuzsAtAy699luj949Ki84zCgYYSQIAAMDUZRljGBooAsdxdPDgQS1evLiihhglKTFg9MZ7Rr87KM1rkGpDhKRCs+Soub5d7T3NTGPAhNBnMFn0GUwWfaby9cfcNUifWlm8NUiV+P03ryNImJqC1ZYuv0iqDhi9fUBKpY3qawlJAAAAmHoISJgQv9/SR5dLoYDR7nel5KDRebMISQAAAJhaKmesCyVn25ZWLLV11YctGUmHjhsxQxMAAABTCQEJk7Z0gaWrPmwpHHIr3KUdQhIAAACmBgISzsqCOZau/ghlwAEAADC1EJBw1hrqLF11qaUl86SDnVIiSUgCAABAZaNIA87JjBpLKz8khardMuB1YaPZdSrq7swAAABAvjCChHPmlgF3g1KVX2o7Kp3spYADAAAAKg8jSMgLv9/ShYstLW40ajtitPegdOCw1FBnNGuGZFmMKAEAAKD8EZCQV6FqSxcvtbR4ntGBI0bvtUttR6Q5M41msrksAAAAyhwBCQVRW2Pp0mWWls432n/I6L1DUtcRo/Pq3XVLAAAAQDkiIKGg6sKWPvZ7lpYuMNrXYXTgsHSix+i8WVJtiKAEAACA8kJAQlHMmmHp8hWWzl9o9G670ftH3aDU2OBOywMAAADKAQEJRTV7pqVPXCItWyTtPWj0QadkjNG8BikYICgBAACgtAhIKDrLsnTeLGluvbR8kfRuh9HBY5Ild0QpUEVQAgAAQGkQkFAylmVp/hxpXoN0pEva22506ITkt90RpSo/QQkAAADFRUBCydm2pUXnSfNnS4dOuFPvDp2QqqvcYg5+H0EJAAAAxUFAQtnw+SwtbpQWzpE6jku/O2h0sFMKh4zm1ks+m6AEAACAwiIgoez4/ZaWLpAWzpXaj7lB6YOjUl3YaHadO+IEAAAAFAIBCWUrUGVp2SJp0Vzpg06jve1S21GpvtYNSpZFUAIAAEB+EZBQ9oLVli5cbGlxo1HbEaO9B6UDh6WGOqNZMwhKAAAAyB8CEipGqNrSxUstLZ5ndOCI0Xsd7ohSsMqooY4NZwEAAHDuCEioOLU1li5dZun8BUadp6T3jxod75YSSaMZNdKsGZQIBwAAwNkhIKFi1dZYWlYjnb9QOtUnHT1p9P5R6XCXZByj+hnSzDBFHQAAADBxBCRUPMuyNHumNHumpQubjY73SIeOG7Uflz7olPw+dwpebYigBAAAgPERkDCl+P2WFsyRFsyxdEmL0bFTUvsxoyNd0rFTRuGg1FDnVsgDAAAATkdAwpRVE3T3U1oyX+qNDE3B6zwlDaaM6mul+lp3g1oAAABAIiBhGrAsS/UzpPoZli5oMurqlQ6fMPqgUzp4TLJto4YZ0owaSoYDAABMdwQkTCs+n6V5DdK8BksXLzU61u1OwTvcJR3vlkJBNyxRMhwAAGB6IiBh2qoOWGqeJzXPs9QfM+o8KX3Q6a5bGkgZ1Xklw/1MwQMAAJg2CEiApBk1lmYMKxl+pMvo/U6p47gkGc2aIdXVUDIcAABgqiMgAcPYtqU59dKceksXLXE3oD10wqj9mPT+UanKb1QbkurCjCwBAABMRQQkYAxVfksL50oL51r6kFcyvPOU0dGT0qETUtoxqql2izuEgxR4AAAAmAoISMAEZEqGL11gKTlodKpPOtlndPiEdKrfLfBg20YzQm5gYp8lAACAykRAAiYpUGWpcbbUONvSiiVG/TGpu1863m105OTQPkvBgBuWakOsXQIAAKgUBCTgHFiWpbqwuyZpcaOlVMqoO+IWejh8wt1z6WSfJGNUW+MGpmCAsAQAAFCuCEhAHvn9lubWS3Prpd9rthSNu9PxTvS4o0sne6VE0qjK74aqGSF3byYAAACUBwISUEDhkKVwSGqaZ+nStFFv1B1dOnrS26T2uGSMUU3QLSMeqqbYAwAAQCkRkIAi8fksNdRJDXXSskWWEgNGp/qlk71Gh05IPf3S0VOS3zaaGTZqri91iwEAAKYfAhJQIsFqSwuqpQVzLF3SYtTnjS4d6zbqPOme8/5RI5/PKByUaoKsXwIAACi0vAekPXv26JFHHlF7e7suvvhiPfzww5o/f/6o537605/WqVOnZNu2JGnNmjW6//77JUmO4+iJJ57Qtm3bFAgE9LnPfU4333xzvpsLlAXLsjSzVppZ65YSTwwYHT0i/cEllk70SMd7vPVLg0a2JdVUu3svhYKSjwp5AAAAeZPXgJRMJvWVr3xFd9xxh1avXq1Nmzbp61//ujZv3jzmz/zwhz/Uhz70oRHHf/azn+mNN97Q//7f/1t9fX36/Oc/rwsuuECXXXZZPpsMlKXMPkrLFlm6oNlWKmXUF5M3ymTUeUrqj0sneiRHRsEqd4QpHJICfgITAADA2cprQHr99dcVCoW0bt06SdLtt9+u66+/XkePHh1zFGkszz33nD73uc+poaFBDQ0N+sxnPqPnnntuzICUTCaVTCZzjvn9fgUCgbP7ZfLMcZyce2A8p/cX25bqa91b8zy3sEM07oakvohbJe9Uv9TVIyUHJZ9vaJQpGKDww3Rgycm5B86EPoPJos9UPttyZ6I4jiXHKfx3g3L7/puZtXYmeQ1IbW1tWrZsWfZ5KBTSokWL1NbWNmZA+vKXvyxjjD784Q/rvvvuy553+nstX75cL7/88pjX3rp164iRqvXr12vDhg3n8ivlXUdHR6mbgAoykf4SlNRU796ApvpDpW4CKgx9BpNFn6lg9e7d8c7iXrZcvv8uXbp0QuflNSDF43GFw+GcY+FwWPF4fNTzH3nkEV144YUaHBzUD3/4Q9133316+umnZVnWiPca730kaePGjSPWKJXbCFJHR4eampomnF4xfeWjvziOUSTuTsvri7llxXsjUiwhpRypyueWFQ8HpeoqRpkqnSVHTfWH1NGzSEZ8xuDM6DOYLPpM5YvEjRID0uorLYWqizOCVInffycVkL70pS/pzTffHPW1W2+9VaFQSNFoNOd4NBpVKBQa9WcuvfRSSVJ1dbXuvfdeXXPNNTp8+LAWLVo04r3Gex9JCgQCZROGxmPbdkV1EJTWufQX25bqZ7g3SbpEUmLAXcvUG5FO9rmhqatPGkhKltzAlLll1kGhshjZfHHBpNBnMFn0mcrlGCPHSLZtyS5ikadK+/47qYD0/e9/f9zXX375Zf385z/PPo/H4zp06JBaWlrO+N6WZeX8C3ZLS4v279+f/dl9+/ZN6H0AjC1YbSlYLZ03S1ouS+m0UX9M6o1KPRGj493u475uKTloZFlSdUAKBdzQxHomAAAw1eV1it3HP/5xxeNxbdu2TTfeeKO2bNmiFStWjLr+qLOzU8ePH9eKFSuyU+waGxu1YMECSW7J76eeekqXXXaZ+vr69Oyzz+ob3/hGPpsLTHs+n5UdZVosN/gMJN2peZG41B8z6up192c61e+ONBkZBfxDI03BAKXGAQDA1JHXgBQIBPTtb39b3/zmN/XYY49pxYoVOaHm0UcflSTdf//9ikaj+qu/+isdPnxYwWBQH/7wh/U3f/M32eG3P/uzP1NHR4c+85nPqKqqSp/73Od0+eWX57O5AEZRHbBUHZBmz5TkhaZUaig0ReLSyV6jrj6pPyod73aH7H22WzkvE5z8PkITAACoPJYxxpS6EdOB4zg6ePCgFi9eXFFzMFEaldBfHMcompAiMTc0dfe7o02RuBQfkFJpdx1UZnoe65oKy5Kj5vp2tfc0szYAE0KfwWTRZypff8wt0vCplcUr0lDu32dGk9cRJADTh21bmlEjzajJHLFkjFF8YGikqS9qdKInd12T5E7Ly4Sm6ioVdaEoAADAeAhIAPLGsizVBKWaoFsIQmdY19Q9bF2TJSnoBSZ3tIm1TQAAoPgISAAKbrx1TbEBd2+mvqhRd79XUa9fSmSCk+WGpmDAvVVTFAIAABQQAQlASfj9Vs4+TcODU2xAinrhqT/mBqeeiLvpbaLHXf8kuWEpWDVUitxHYQgAAHCOCEgAyorfb6nOL9WFM0fc0JNO5wanaNzoVJ8bnNzKelLKcafqBfzudL1glXtPRT0AADBRBCQAFcHnG1kUQnJHk2IJZcNTNGF0qt+dphcdcPdvGky7wanK703Tq3JvgSo2vgUAALkISAAqmm1bqq2RamskDSsM4ThuRb3ho06n+ox6o5k1T9JgWjLGDU/V3hqngLfeiVEnAACmJwISgCnJti2FQ1I4JM2tzxx1S5EPJN3AFPcKREQTQwUiogm3wt5gyi0Q4fcNhabMyBNlyQEAmLoISACmFcuy3PVJ1TlHJeWOOsUSboDqi7pT9mKJkWXJq/xDI0/VVe5zpuwBAFDZCEgA4Bk+6jTEDTyDKW+tU0KKJ90iET1RqTcixRNusYjBlDtlz7aHjTh5lfaosAcAQGUgIAHABFT5Lc2slWbWZo64gccYo0RyaLpebECKeKXJ+2JSf0zqSroV9mROKxQRcCvuMWUPAIDyQUACgHNgWZZC1VKoWmqoyx6V5JYmP33KXm/ULU8eG5AifVIyKTkysi13rVN11dDeTlV+ghMAAMVGQAKAAvH5hlXYy3JDT3JwqDx5plBET7/UE/Uq7vVLqbS7Ia7PdgNTddVQpT0fo04AABQEAQkASiBQZSlQJdXPyBwZKhSRSA5N18sUiujudzfE7emXEoPueZblTtGrDkihgJHq3Sl/IjsBAHDWCEgAUEZs21JNUKoJDj86VChi+FqnWMKoJ+IWiBhIumcePCalHa9QRFXu/k6MOgEAcGYEJACoEFV+S1V+qS6cOTJUKCKesHSsU7r2Y5biSUv9mUIR0aFRp8ymuIFh1fVY6wQAQC4CEgBUOHdvJzfkLJxreVXx3OeplMmuc4oNuOXJuyNuaDp9rZPfN7TOKbPmiX2dAADTDQEJAKYwv99S3VijTjnT9YY2xY3GhyrsGblrnYYHJ/Z1AgBMZQQkAJiGLGvstU6nV9iLxN3per3RoX2d0o476pTZ1ykUkILVkp/gBACocAQkAECOsSrsnb6vUzThBqfMvk6Z6XrGeCNO1UPhiREnAEClICABACZk5L5OudP1oglvel7cnaqXKU3e1euVJZcU8KboZcITlfUAAOWGgAQAOCfDp+vNrZeG7+nkjjQNTdU71Sd1R6T+qHS82z3HtofWOIWq3cc2wQkAUCIEJABAQdj26CNO6bTxKuq54SlTkrwnMmwjXGNka2ikKRggOAEAioOABAAoKp/P0owaacZpwSlTkjwTnDJV9fqi7nS9Aa+qnm0PKwzhbYJLOXIAQL4QkAAAZWGskuSDqaGpetG41BczOtnrVdTrlQYGJcnI7xsabXKDE6EJADB5BCQAQFmr8luaWSvNrM0cGSpHnglN0YTUGzHq6vUeR91gZSRV+dy1TZngVOUnOAEAxkZAAgBUpEw58lnDypEbYzSQ9EabvPDU3e9O1Ysl3Kl6g2kjUYocADAGAhIAYMqwLMsNPdXS7JnZoxMqRZ5OG1mWVD1sfVM1pcgBYNohIAEApryJlCKPJqRIzOhkn1tRrzciJZJuRT1JqvK7o07VXkW9QBXhCQCmIgISAGDaGq8UeWb/pviAFE+6VfV6Iu6xnn5pIOUGLEny+9zAVD3sxpQ9AKhMBCQAAE7j81mqCw+vqCcNr6oXH1DOrT/mhqdI3C1LPjAopb3w5LOHRpwyo09+whMAlC0CEgAAk1Dlt1TlHz08pVJG8eTI8NQbdcuS98ekk4NSKu2GJ9seGnEKeLcqH/s6AUApEZAAAMgTv9/SDP/wTXCl4dP2MtP1MuEpEjfq6Zf6vVLlp/qkVFqShgJUlc9d/5S5BfzulD6b9U8AUBAEJAAAisDnO329kzS8WEQmNA0MurfkoBRLGEUSUiTmFoyIJqSeQWkwJRkZGSNZVm54Gh6mKCIBAJNHQAIAoMRs21I4JIVDp78yFHBSKZMNTwNJKZlyHycGjCJxd/1TbEBKDEh9MTdEZUqXS+6o0/DwFKxyR6mMMcMvAwDTHgEJAIAK4Pdb8vvHD1GOY3IDVHJoRCoaN+qPuaNQyZQ0kJB0ntR+TEp5BSUkd1qf33YDlc8LVX576LHPZo0UgKmNgAQAwBRh25ZC1VKoerRX3VBjjNFgSooPWDp1Qrru9y2l0paSg9Jg2h2Rig24U/piCXdNVMx7Le3dHJlsLLMsd50UgQrAVEFAAgBgGrEsSwGv1PgpSfNnW6cVfMgNM6mUUTLlTtkbTGnE48RAbvGJwZQbqFLpoZu7Ysp9Z8tyQ5PP593bozzPPiZYASg+AhIAABhTZmrf2CYXqJKDJmfqXyLphqjBlJRwvFEqx705ztBIVWYSoG1PJFi5Nyr9ATgbeQ9Ie/bs0SOPPKL29nZdfPHFevjhhzV//vwR53V2dmr9+vXZ58YYJRIJPfXUU7rooou0adMm/ehHP1IgEMie8+tf/zrfzQUAAHk02UAluUFoMJU76jTWbSCZW6xiwButGhiU0gNeuPJCljKV/jQUsKRMePLCluUGK9sadiwTsKyh54QtYPrIa0BKJpP6yle+ojvuuEOrV6/Wpk2b9PWvf12bN28ecW5jY2NO4Nm5c6e+853v6MILL8weW7dune6///58NhEAAJQZ27ZUHZBGXTo1Qm5QMcYofYZQlRmRSqVzR7gy666SXun0tDM0kuWkJccM/awxZszWjBawbGtoOqE1LGhlH1uZxwQvoNzkNSC9/vrrCoVCWrdunSTp9ttv1/XXX6+jR4+OOoo03I4dO7R69WoWcgIAgAmzLHfEavxRq5yfGPVoJmhlAlEmUKXT4z9Ppd0RrcHBoemEmSmDjnEfO8a7pSVHkuN4NzN28MqwMyNZwwJY9rF3b1le4BoWzIa/5h7j+xUwUXkNSG1tbVq2bFn2eSgU0qJFi9TW1jZuQIpGo9q1a5f++3//7znHX3jhBb344otqbGzUbbfdpmuvvXbM90gmk0omkznH/H5/zhS9UnIcJ+ceGA/9BZNFn8Fk0WdGygSQqjy8lzEmG4IyoSoTktJm6Pjw181p56bSxhv1cke6UmnvPjU0Mma8Ua5B77Fx3BBmzFAwM07uFMOxDIWpYSNglqTsCJij5nqpP5aWkRlxru2FNMl7LEbIyo1tuf/dHMeS4xT+v025fc7Ytj2h8/IakOLxuMLhcM6xcDiseDw+7s/96le/UnNzc064uuGGG/Snf/qnqq+v1+7du/XVr35VjY2NWrFixajvsXXr1hFT+davX68NGzac5W9TGB0dHaVuAioI/QWTRZ/BZNFnyocl94tZ9suZz7uVx7/1Zl284HCpm4CzVe/eHe8s7mXL5XNm6dKlEzpvUgHpS1/6kt58881RX7v11lsVCoUUjUZzjkejUYVCI3a1y7F9+3atXr0651hLS0v28ZVXXqkbb7xRu3btGjMgbdy4UTfffHPOsXIbQero6FBTU9OE0yumL/oLJos+g8miz2CyMn1m/vxFkmVnR8iy0wWdoVGr4ceH35vRjhsp7bijZU5m7Vim2MawUbVUeth7DBstU+b6ykxbHHpdlvt8PO5I1+gjaCOOjzKN0c6MslXAdMZI3CgxIK2+0lKoujgjSJX4OTOpgPT9739/3Ndffvll/fznP88+j8fjOnToUE7YOV1XV5def/11PfDAA+O+95n+qIFAoGzC0Hhs266oDoLSor9gsugzmCz6DCYrEPCVrM84jhk1eGXu08OPjXPe8PMz4Wy8Yh+Zgh2ZkOZoWCB0hgWzSU5nHLGWbFggG6vAx9CatMkHHMcYOcb92WJOf6y0z5m8TrH7+Mc/rng8rm3btunGG2/Uli1btGLFinHXH73wwgv68Ic/rMbGxpzjO3fu1Mc//nHV1NTo9ddf1/bt2/W9730vn80FAABABXG/2Of7Xc8cFDJFPEYNYsPWk435/LTANpgy2fA1fF1Z5rnj5Bb4MI63dm3YujMZM24YGx6mLK9yYjIlhcp/PKHk8hqQAoGAvv3tb+ub3/ymHnvsMa1YsULf+MY3sq8/+uijkpRTunvHjh36zGc+M+K9duzYoYcfflipVEoLFizQX/7lX+pDH/pQPpsLAAAAnFGmWmIe33HcV9Npk1vIw8l9nB39Gu2YMxTCBtNuhcVsEEtL1VVSlS+fv8vUY5kz1ZdEXjiOo4MHD2rx4sUVNcSI0qC/YLLoM5gs+gwmiz6DyarUPlM5LQUAAACAAiMgAQAAAICHgAQAAAAAHgISAAAAAHgISAAAAADgISABAAAAgIeABAAAAAAeAhIAAAAAeAhIAAAAAOAhIAEAAACAh4AEAAAAAB4CEgAAAAB4CEgAAAAA4CEgAQAAAICHgAQAAAAAHssYY0rdCAAAAAAoB4wgAQAAAICHgAQAAAAAHgISAAAAAHgISAAAAADgISABAAAAgIeABAAAAAAeAhIAAAAAeAhIAAAAAOAhIAEAAACAh4AEAAAAAB4CEgAAAAB4CEhF0N3drbvvvlsrV67UZz/7Wb322mulbhLK3B133KE/+IM/0FVXXaWrrrpKd911V6mbhDKyadMmrV+/Xpdddpmef/75nNf+4R/+Qddff72uvfZa/e3f/q2MMSVqJcrJWH1m27ZtuuKKK7KfNVdddZU6OztL2FKUi2QyqYcfflhr167V1VdfrTvuuEP79+/Pvs5nDU43Xp+ptM8af6kbMB08/vjjmjt3rl566SW98soram1t1bPPPqu6urpSNw1l7MEHH9SNN95Y6magDDU1Nem+++7TD3/4w5zj//Zv/6ZnnnlG//AP/6BgMKg777xTS5Ys0bp160rUUpSLsfqMJF1++eX6u7/7uxK0CuUsnU5r4cKF2rp1q+bMmaN//Md/1H333ad/+qd/4rMGoxqvz0iV9VnDCFKBxWIx7dy5U1/4whcUDAZ1zTXX6Pzzz9euXbtK3TQAFWrt2rW68sorFQgEco4/99xz+rM/+zMtWrRIc+bM0S233KLt27eXqJUoJ2P1GWAsoVBIt912m+bNmyefz6f/8B/+g44cOaKenh4+azCq8fpMpSEgFVh7e7tqa2s1Z86c7LHly5erra2thK1CJfjOd76j66+/Xl/84he1b9++UjcHFeD999/XsmXLss8vuOACPmtwRm+99Zauu+46rV+/Xs8880ypm4My9fbbb6uhoUH19fV81mBChvcZqbI+a5hiV2DxeFzhcDjnWDgcViQSKVGLUAnuuusutbS0yLZt/eQnP9Hdd9+tZ555RjU1NaVuGspYLBZTbW1t9nk4HFYsFithi1DuPvaxj+l//s//qcbGRv32t7/Vl7/8Zc2ePVt/9Ed/VOqmoYxEIhE9+uij+uIXvyiJzxqc2el9ptI+axhBKrBQKKRoNJpzLBqNKhQKlahFqASXXHKJampqFAwG9bnPfU6hUEh79uwpdbNQ5mpqanL+8SUajRKqMa6FCxdqwYIFsm1bl1xyiW666Sb96le/KnWzUEYGBgZ033336Q//8A+za4z4rMF4RuszlfZZQ0AqsObmZkUiEXV1dWWP7du3Ty0tLSVsFSqNbfM/VZzZ0qVLc6pMvffee3zWYFIsyyp1E1BGUqmU7r//fs2dO1f33HNP9jifNRjLWH3mdOX+WcO3rgKrqanRqlWrtGnTJiUSCe3cuVMHDhzQqlWrSt00lKn+/n698sorSiaTGhwc1NNPP62+vj5ddNFFpW4aykQqldLAwICMMdnHjuNo7dq1+tnPfqbDhw+rq6tLTz/9tNasWVPq5qIMjNVn/v3f/13d3d2SpL179+onP/mJrrrqqhK3FuXir/7qrzQwMKCHHnoo5wstnzUYy1h9ptI+ayxD4fqC6+7u1oMPPqjXX39d8+bN01e/+lVdccUVpW4WylR3d7fuuusuffDBB6qqqtIFF1yge+65RxdeeGGpm4Yy8dBDD+mf//mfc4798Ic/1O///u9r69at+h//43/IcRz9yZ/8ie66666y/5c6FN5YfebXv/61nnvuOSUSCc2dO1cbNmzQTTfdVKJWopwcPXpUn/70p1VdXZ0zi+HJJ5/URz/6UT5rMMJ4feZf//VfK+qzhoAEAAAAAB6m2AEAAACAh4AEAAAAAB4CEgAAAAB4CEgAAAAA4CEgAQAAAICHgAQAAAAAHgISAAAAAHgISAAAAADgISABAAAAgIeABAAAAAAeAhIAAAAAeP5/ifVfqjY/JGkAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -594,14 +706,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABU9UlEQVR4nO2dd3hUZfbHP5NeISSkB0wgFOnl0lQExIIVF1exYldWWdvq6uraViy76s+2loUVUXEVG4INOyIgyEWUjkgIkJBCSCEhbWZyf3/cuTczqZPMDJmE83mePMPc8paZ4TtnznvecyyapiEIgiB0fgI6egCCIAiCdxBBFwRB6CKIoAuCIHQRRNAFQRC6CCLogiAIXQQRdEEQhC5CRwq65u9/+fn5HT4GmYvMpbP8yVyO2l+ziIXeAna7vaOH4DVkLv6JzMU/6axzEUEXBEHoIoigC4IgdBFE0AVBELoIIuiCIAhdBBF0QRCELoIIuiAIQhdBBF0QBMFDNE3DZrN19DBE0D1hxYoVrFmzxqM2oqKivDQaQRA6ArvdzpAhQzj55JOpq6vr0LGIoHuANwRdEITOTVFREdu2bePHH3/scD0QQW+C888/n9GjR3PKKacwb948AJYvX86oUaMYPnw4U6dOJTs7m1deeYVnnnmGESNG8MMPP3DVVVfx/vvvm+0Y1ndFRQVTp05l1KhRDB06lKVLl3bIvARB8D6lpaXmv996662OGwgQ1KG9+ykLFiwgNjaW33//nfPPP5/p06dz/fXXs3LlSjIyMiguLiY2NpbZs2cTFRXFnXfeCcCrr77aZHthYWEsWbKEbt26UVRUxPjx4znvvPOwWCxHc1qCIPgAZ0F/9913ee655wgJCemQsfitoPtK7Nypofr888+zZMkSrFYrubm5zJs3j5NPPpmMjAwAYmNj29znvffey8qVKwkICCA3N5eCggKSkpLaNQdBEPwHZ0EvLi7miy++4Nxzz+2QsYjLpQErVqzg66+/5scff+Srr75i5MiRjBgxwq17g4KCzEWRuro6amtrAf1n2MGDB9mwYQO//PILiYmJVFdX+2oKgiAcRZwFHTrW7eKWha4oymTgfvQvgOeBg8C/gDrgT6qqblYUJQl4A4gEXlZVdZEnA3PHkvYFZWVl9OjRg4iICNavX8/atWuprq5m5cqV7Nmzx8XlEh0dzeHDh81709PT2bBhAxdddBHLli3DarWabSYkJBAcHMx3333H3r17O2RugiB4H0PQTz/9dL788kuWLVvGkSNHiIyMPOpjadVCVxQlHPgLcKaqqlNUVV0CPAqcDVwK/NNx6d3oIj8JuFlRlDDfDNm3TJs2DZvNxvHHH8/jjz/O+PHjiY+PZ968ecyYMYPhw4czc+ZMAM4991yWLFliLopef/31fP/99wwfPpwff/zRfEMvu+wyVFVl6NChvPHGGwwcOLAjpygIghcpKSkBYPjw4WRmZlJVVUVOTk6HjMUdC30CUAV8rChKJXATYFdVtQQoURTFcCiPBf6iqmqdoigqMARQfTFoXxIaGsrnn38OQG5uLqmpqea5M8880+Xa/v37s2nTJpdja9euNf/9z3/q33U9e/bkxx9/bLK/iooKr4xbEISOwbDQY2JiiImJAfRf5R2BO4KeCGQC44FTgYeBw07nbYqihADBqqoaUfVlQKOVQ0VRbgBuAJgzZw6nnXaaB0P3PcaiaFdA5uKfyFz8k7bMxfm60NBQAHbv3u1iDHqTltp1R9BLgdWqqtYqivINuqCXO7fhOGdVFCXAIerdgeKGDamqOg+Y53jaMU7yNtDQQu/MyFz8E5mLf9KWuRhrZenp6SQkJAAQHBzcIa+FO1Eu64HjFUWxACOAbUCQoigxiqL0ol641wOTFUUJAkYDW30wXkEQBL/C2eXSvXt3wI9dLqqqFimKsgT4Ht2qvgZIBT5zPL/Jcek/0aNc5gKvqKpa5ZMRC4Ig+BHGomiPHj38X9ABVFV9EXjR6dBu4IQG1+QB/u0UFwRB8DJNWejO4cxHE9lYJAiC4AH+5HIRQRcEQWgnmqaJoHclXnnlFd544w2P2zl48CDjxo1j5MiR/PDDD14YmWeUlpby0ksvNXu+qqqKSZMmYbfbyc7OZsiQIea5+fPnM3r0aNO32BKHDh1iypQpREVFMWfOHPN4ZWUlZ599NgMHDmTw4MHcc8895rnXXnuNBQsWtHNmguA9qqurqa2tJSQkhLCwMLp16waIoHdaZs+ezaxZszxu55tvvmHo0KFs3LiRiRMnunWP3W73uN/maE3QFyxYwIwZMwgMDHQ5/uabb/LCCy/wxRdf0KNHj1b7CQsL45FHHuGpp55qdO7OO+9kx44dbNy4kdWrV5sbvi6++GJeeOGFNs5IELyPYZ336NEDi8UiFro/kZ2dzfHHH8/111/P4MGDufTSS6mq0oN15s+fz5gxYxg+fDgXXHABlZWVADz00EM89dRT7Nixg7Fjx7q0NXToUAA2bNjApEmTGD16NGeccQZ5eXku/f7yyy/89a9/ZenSpYwYMYKqqirefvtthg4dypAhQ7j77rvNa6OiovjLX/5iphdYtGgRY8eOZcSIEdx4442myDfM3w7w008/MWHCBEaOHMkJJ5zAzp07Adi6davZxrBhw9i1axf33HMPu3fvZsSIEdx1112NXqu33nqL6dOnuxx79913eeKJJ/jyyy/p2bOnW695ZGQkJ510EmFhrpkiIiIimDJlCgAhISGMGjXK3E4dHh5Oeno6P/30k1t9CIKvMH6FGjtEO1rQ0TSto/5ahIl2n/y1xJ49e7TAwEBt48aNmqZp2jnnnKO9+eabmqZpWlFRkXndfffdpz3//POapmnagw8+qD355JOapmna8OHDtaysLE3TNO2JJ57QHnnkEa22tlabMGGCVlhYqGmapr3zzjva1Vdf3ajv1157Tbv55ps1TdO03NxcrVevXlphYaFmtVq1KVOmaEuWLNFfF9AWL16saZqmbdu2TTvnnHO02tpaTdM07U9/+pP2+uuva4WFhVpaWpo5lkOHDmk5OTlaWVmZZrVaNU3TtK+++kqbMWOGpmmaNmfOHG3RokWapmlaTU2NVllZqe3Zs0cbPHhwk69TTU2NlpiY6PK6RUVFafHx8VpOTo7Ltf/617+04cOHN/r785//3Oz8G1JSUqJlZGRou3fv1jRN03JycrS5c+dqTz31VJPXdyYavl6dmWNxLqtXr9YAbdy4cZqmadr27ds1QOvXr58vh9esrvptPvSOIiMjw0yXO3ToULKzswHYsmULf//73yktLaWiooIzzjij0b0XXXQRixcv5p577mHx4sUsXryYnTt3smXLFjPNgd1uJzk5ucUxrF+/nsmTJxMfHw/oyb1WrlzJ+eefT2BgIBdccAGgu2k2bNjAmDFjAN2vnZCQwNq1axvlb8/NzaWsrIwrr7ySXbt2YbFYzB1uEyZM4NFHHyUnJ4cZM2bQr1+/FsdXVFRkWiQG8fHxxMbG8u6773L77bebx++6664mLXx3sdlsXHLJJdxyyy306dPHPJ6QkMCOHTva3a4geAPnBVGgw8MW/VbQtZUd4w0ycjEABAYGmpW8r7rqKj766COGDx/OwoULWbFiRaN7Z86cyYUXXsiMGTOwWCz069ePzZs3M3jw4GaTc7WVsLAw02+taRpXXnkljz/+uMs1H3/8cZP33n///UyZMoUlS5aQnZ3N5MmTAbj00ksZN24cn376KWeddRb/+c9/XMSzIeHh4Y3yuUdERPDZZ58xceJEEhISuOyyywB48sknm8wPffLJJ/P888+3Ot8bbriBfv36cdttt7kcr66uJjw8vNX7BcGXNCfo4kP3c8rLy0lOTsZqtTabwL5v374EBgbyyCOPmCl2BwwYwMGDB01Bt1qtbN3aclaEsWPH8v3331NUVITdbuftt99m0qRJja6bOnUq77//PoWFhYBeLWXv3r2MHz/ezN9uHAf9Q2bkl1i4cKHZTlZWFn369OGWW25h+vTpbNq0iejoaMrLy2mKHj16YLfbG4l6QkICy5cv59577+WLL74AdAv9l19+afTnjpj//e9/p6ysjGeffbbRud9++80lskYQOgLnRVHQjZ2goCAz+uVoI4LuJo888gjjxo3jxBNPbDGf+cyZM1m0aBEXXXQRoC/ovf/++9x9990MHz6cESNGtFoZPDk5mSeeeIIpU6YwfPhwRo8e3WgBEmDQoEHMnTuX008/nWHDhnHaaaeRl5fXbP72v/71r/ztb39j5MiR5i8P0BczhwwZwogRI9iyZQuzZs0iLi6OE088kSFDhjTpMjn99NNZtWpVo+MZGRksW7aMa665xu1Fy/T0dO644w4WLlxIWloa27ZtIycnh0cffZRt27YxatQoRowYwX//+1/zntWrV/t9tk7BvzCqiXmThouiFoulY0MXW3Kw+/jP7zkWF3ncZcOGDdrll1/u1TbdZfny5R3Wt7eRz9jR4cMPP9QiIiK0Dz/80K3r3Z3LnXfeqQHaE088YR7LyMjQAG3Xrl3tGqsbNKurYqEL7WLUqFFMmTLFp7HwzVFcXMwjjzxy1PsVOie1tbXcfvvtVFZWNrn25QkNfejQsX50v10UFfyfa665pkP6Pfnkk7tM3m3B97z66qtmHV9vi6y/CbpY6IIgdFmqqqqYO3eu+fxoCnpHhC6KoAuC0GWZP38+Bw4cMENcfSXozmkuxEIXBEHwAStXrgTq3YPeFtmGUS4ggi4IguATDh06BMDgwYOBo+Ny6ciwRRF0QRC6LMamOmPnszdFVnPKhW5Y5c7/FkEXBEHwIoaF7izomqZ5pe0jR45gt9sJDw93SRkigi4IguADDAs9OTmZ0NBQrFarmRLbU5paEAWJchEEQfA6VVVVVFVVERISQmRkpNct56KiIkDPZuqMWOiCIAhexrDOY2NjfVJNqKCgAIDExESX4yLogiAIXsbwn8fFxQHeF1oRdEEQhKOEs4UOR0/QJWxREATByzS00I1YcW8JbX5+PiAWuiAIgs/pKAs9KioKi8XCkSNHXOoOHA1E0AVB6JJ0lA89ICDAdLs0V/XLV4igC4LQJWnOQjfixz2lOUF37utou11E0AVB6JJ0lIXui77cRQRdEIQuiS996Ha73dxYlJCQ0Oh8Rwl6qxWLFEVJB9YDRqn6C4HJwO1AFXClqqo5iqIMBOY52rxfVdVvfDFgQRC6FuvWrQNg3LhxXm3XlxZ6UVERdXV1xMXFERwc3Oi8kQ7AGMPRwt0SdN+rqvpHAEVRgoA7gEnAGOB+4EbgMeBaoAD4HBBBFwShRQoKCpg0aRJhYWEUFxcTEOA9p4FhofsibLEldwtAWloaADk5OR731RbcffVOVBTlB0VRHgP6AdtVVa1VVXU1MMxxTYqqqrtUVT0MFCuK0tMXAxYEoeuwYMECampqKCsro6KiwqttG9axL1wurQl67969Adi3b5/HfbUFdyz0PCATqATmAzMA5zRigY5H5y+HMiAWKHJuSFGUG4AbAObMmcNpp53WvlEfJaxWK7m5uR09DK8gc/FPjuW52O12Xn75ZfP5zp07SUlJ8cpYNE0zBb2qqorc3Fwzy2JxcXGr42xtLtu3bwf0XaFNXRcVFQXoc/L2+9tSgfRWBV1V1RqgBkBRlA+BqwDnr1K747HO6Vh3oLiJtuah+9kBvJOU2Ifk5uZ2meryMhf/5Fiey+eff87+/fvN5xEREV57LSoqKrBarYSHh5OZmQlASEiIea61flqbi9VqBSA9Pb3J60aMGAHAwYMHj+r7686iaLSqqkZ0/ETgU2C2oighgAJscpzLUxSlL1AIxKqqWtS4NUEQBJ1XXnnF5bk3I0IaLoiCaxy6pmlYLJZ2t9+ZXS4nKYoyF93lsgd9EbQaWOF4vNJx3X3AQnQXzIPeHqggCF2HwsJCPvnkE4KDgxk0aBC//vqrVwtCNAxZBN1CDwsLo7q6msrKSiIjI9vdfmuCnpKSQkBAAHl5edTW1pq/DnyNOy6Xz9GjVpxZ7Phzvm4bugUvCILQIjt37qSuro6xY8eSlpbmdUFvykIH3Uqvrq6mrKzMp4IeFBREamoq+/fvJzc3l4yMjHb31RZkY5EgCEedvLw8QLdkfbEJpykLHbwXuthcpkVnOsLt4m4cuiAIgtcwBD05Odl0RxwtCx08F/TWLHSAXr16ASLogiB0cZwF3YgY8bUPHbwj6HV1dRw8eBBoetu/QUdY6OJyEQThqOMs6L5wufjSQj906BB2u52YmBhCQ0ObvU5cLoIgHBMcOHAA0AVd0/QtKUfTQvckha477hYQQRcE4RjB2UI/cuQI0HksdHcWREFcLoIgHCM4C7pR3cebFnphYSEA8fHxLse9EeXy9ttvAzB48OAWr3MWdONXiK8RQRcEwQWr1cp7773HH/7wB/r27ctPP/3k1fZramr0zIoRmbz8aTx/+u8JMOAtrwq6keUwOSWNj37QuOjBOvrMrKOwZhDQfkHPysri9ddfJzAwkDvuuMM8nlek8dTbGsr1dUy9rQ6rTSMmJoaoqCgqKiq8ViWpNcTlIgiCC7feeqtL0qylS5cyduxYr7Wfn58PwQnUjfyVhxcCREDCxZQcfMor7VutVvLy8rBYLLz0WQpPvVNvHW/vcTzQfkF/9NFHsdvtXHXVVWaOmFqrxvBrNA6W1l+3cx8M6WOhd+/ebNu2jX379pk50n2JWOiCILhgWOQTJkwA6hcBvUVeXh5EDoOAMPqmQmy0nt+v9EjzESNtIT8/H03TSEpKYsNOXeImOLwjVTbdvVNSUtLmdp2t8/vuu888vjcfDpZCbDfop6dBp8DR/NH2o4ugC4Lgwp49ewCYNWsW4CNBD9O3wk8cBn2S9eOHq8O90r7hbklLS2OP7qpn1jQ9EVelVU9r2545LVu2DLvdzoUXXmha54DZx7C+MKKf/u8CR67Zo13oQgRdEASTw4cPU1xcTFhYGMOG6bVrfCLooccBkJ5kIbmnXlKhpq47NpvN4/YN8UxJ7c1+ff8PYwfqj8aXhhE22RZ+//13va0G7qdsPeiF9CRIdHhVDAvdWJQ16o/6GhF0QRBMsrOzAT3Pd3Kybjp7W9APHDhgWugZyZBohIoHJ1JeXt78jW5iCHpMwhDsdkjpCb0dEYbF5fqyYUFBAXV1dc010SS7d+8GoE+fPi7H9+TpPvqMZAtJsfovgYJi/ZgIuiAIHYbhbsnIyDDjrAsKCrwadqe7XNL1fpLrrVpCErwSi24Iemj3AWYfsd0gMBBKKyz0iEvCZrO1WWSzsrIA6Nu3r8txw+Xi/OVkWOg9e+qVOI1UAb5GBF0QBBNnCz0iIoKoqChqamq8GlLoLOjpSZDosGoJTvRKP4aga059BARYSIjRz8enDKofh5vY7Xbzy66xha4/On85GT50sdAFQegwnC10wMVK9xa5eSUQkkRQYB0pPSHJcLmEeFfQa9BdRhmORVejn5h43XJvi6Dn5ORgtVpJSkoiIiLC5VxLPnSx0AVB6DCOiqAf0v3YafF1BAZa6l0uwd51uRyu0RU8I1n/BWC4QyJ76C6Ttgh6c+6WI1UahSUQEqz76hu6XMRCFwShwzBcLg0F3chf4ik2m41DR/RY8MxUPbrFXBQNSfLYQrfb7WYES8Fh3ZI2LHTjiyM0Wo8Nb0uki7Eg2lDQDev8uETdrePscqmr00wLvaio6Khs/xdBFwQBAE3TTAs9PT0d8L6FXlhYaIYsZqQ4LGfTQk/02EIvLCzEZrMRHx/P3gJd3tKTcOknMCwFaJ+F3pL/HCAs1EK3SLDZoaQcIiMjCQ8Pp7q62kxC5ktE0AVBAPSUs+Xl5URHR5tpZ70t6M6bigxXSPcoCLTYICiaopJKj9o3Y9DTMjhQpEe29HLUoDAWX+sCe9aPxU2atdAbCDo070c/Gm4XEXRBEABXd4vF4rCevSzoBQUFLiGLABaLhahQ3XrNL2pbbHhDDEGPTR4JQK94CApy/SVQo8UA3hF0IwY9PcliHjP96A0iXQ4ePMivv/7K5Zdfzvz5893uuy2IoAuCANDI3QLeF/SDBw9CqN6+4QoB6BZerffT9hQrLhiCHhGrJ29Jd7acHUJ7xLH93xcuF2jZQv/111956623+O6779zuuy2IoAuCADSOcAFIStJV11uCXlRU5LJL1CA2Sq8rWnTYswSwhqAHRvZt1IchtEYSsAMHDri1UFlSUkJJSQmRkZGNaojucSyKOveT1IKFbnwxOL/G3kQEXRAEoHGEC3jfQs/JL4fgWIIDa0lwyibbs5uecbGkItiz9h2Cbg/Sk2IZfnqot9APlgUQHR1NbW2tW1kXnd0thivKwPShp9QfM3z1BSX6l4Wzhd7c5iRvIYIuCALQtIXu7e3/e/N1sesZdcRFHA1xP1wd5lH7hqAfseuWtLPlHNcNAgKg+DAkp+ihi+64XZpzt5SWa5RWQEQY9Oxef7y53aJioQuCcNQwxLBXr17msaioKCIiIqiqqqKiosLjPvKKdclJjKl1OZ4cpx+vqIn0qP39+/cDUFYdDdRHuAAEBlqIj9H/HZekF7pwR9CbWxDNcWz+7J2Ay5dTSz705r4cvIUIuiAIQH0dzobFj73pdikqcwh6g+I9aYm6q6XSUYCiPZSUlLBnzx5CQkI4XBXWZD/G82499cTlTQn6c889xyWXXGJmfty5cyeASw50gEKHYJsbo3B93nC3aE5ODgcOHCAwMNDMk+5tRNAFoROxdu1an8Qz19XVme0aFqWBNwW9tDIEgJR418XP3kn6QmWtI6SwPaxduxYARVE4WKZbzAnNCHpE93SgsaDn5+dz991388MPP7B8+XIAfvnlFwCGDx/ucm1hKS32YbhcjNdTVVUAjjvuOIKCfFP9UwRdEDoJ27dvZ8KECYwfP94recOdKSkpwW6306NHD0JCQlzOeXP7f0WNvh2/V5KrrzwjTXe12ALi2t326tWrARg7fiKHj0BQIMREuV5jWM/BkbpbqeH2/2eeeYaamhpA/4Koqalh69atWCwWs+CHgVFDNL67y2EXC13TtEb5XHzlPwcRdEHoNPz888+A7tO97bbbvNq24W4xxMcZb1nodrudaruusL2TXcvN9U7Sv0S0oARTUNuKIeiDR0wG9IXKgADXqJT63Ov6nJwt9JKSEl566SXz+dq1a9m2bRs2m43+/fsTGenq3y90RLEk9HDtIyLMQlQ41FqhtKLxLx5f+c+hDYKuKMoliqIcdPz7QkVR1iiK8o2iKGmOYwMVRVnpOD7VVwMWhGMVowQawIIFC/jggw+81rYh6A3jrMF7gl5SUgJBevvJcYEu52K7WUCzQlB3Dh5y79eHpmncf//9fPTRR1itVrO4dXq/MUBjVwjUhxTaHb8EnAX9xRdfpKKiwiwxt2HDBtatWwfAyJEjG7Vl+NCb7kd/LCiG2NhYl0XTDrfQFUUJBC4E9iuKEgTcAUwGHgDud1z2GHAtMA34h9dHKgjHOIagT5gwAcCrVnpLgu6tzUVFRUUQov8CaCiCAQEWAu2HAMja714Sq82bNzN37lwuueQSPv74YyorK+nXrx82S2yTfUD9ph9j+/++ffvMcy+//DIAjz32GJmZmdTU1LBw4UIARowY0agt04ce03w/BSUQGBho5sYB/7DQLwHeA+qAfsB2VVVrVVVdDRiOpRRVVXepqnoYKFYUpWczbQmC0A4MQX/88ccJCwsjJyfHK6GEUF+AoSUL3VMf+sGDByFYb78psQ0NKAVg5x73Mi4a46muruaaa64B4IQTTjB9200JreFyKa+JxGKxkJOTg81mo6ysjAMHDhAeHs4pp5zCqFGjAFq00E0fegv95B9yXOPkyupQC91hnV8ELHYc6gE4Jy02fjs5t1UGNAjmEQTBEwxB79evnxn2ZsSOe0pLPnSjWLTngl4EwXr7TYlgtzDdMt+R5V5CF+doHyPt7oknnmi6QprqI9mx5lpYEkBKSgp2u52cnByX0nsWi8UUdIMmLfQWXC5GP/kNIl3Atxa6O7EzlwPvqqpapygKQCngHCxqdzw6p0nrDhQ3bEhRlBuAGwDmzJnDaaed1o4hHz2sViu5ubkdPQyvIHPxT9ydS1lZGUVFRYSFhVFXV0d8fDy///47GzduJDo62uNxGLtEQ0JCGo3H8P/m5OS0ONbW5rJ5+14ICCXIUkVxUWmj8zERVeTXwtbfit16TXbt2gVAWFgY1dV6cq/MzEzeU8uBKMICD5Ob28B9U2sBkjhQVEf/lBRyc3NZv369WVgjOTmZ3Nxchg4dat6SmJjY5NwKihOBAGzVeeTmuu6ijQyOAqL5bW85ubnlREXpi8GRkZFUV1d79PlNTU1t9pw7gj4IGKkoyuXo7pY/A8crihICKMAmx3V5iqL0BQqBWFVVGwXLqqo6D5jneOr78h0ekpub2+KL15mQufgn7s7FsI4N6zwzM5Mff/yRqqoqr7wWlZV6HvL+/fs3as/w/x48eJCUlJRG+UwMWpuLsdknKqSyyeuOS85hRykcPBzk1pxsNhugG4dLly4lJCSESZMm8abuJSHzuO6kpsa43JOcrBEUqFF2JIA+mYNZv349FRUVZhjowIEDSU1NxWazERkZyZEjRxg9enSj8dRaNQ5XagQGwqB+yY2iafqna4BGRU0UqandzN23ffv29dmmInBD0FVVvdv4t6Ioqqqqf1IUZSawAqgGrnScvg9YiO6CedDrIxWEYxjD3WLsVjQEwtjq7iktuVzCw8Pp3r07ZWVllJSUuCzwtYUDhfp2/24RtU2ez0gNh+1QWOre0p7h98/IyGDz5s0EBgYSEBBAYYnuLGgYHw764mtSrEbOQYhPHQLoSclKS0vNtgCCgoIYM2YMK1asaNl/3kRoJDR2uRivqy/95+CehW6iqqrieFxMvU/dOLcNmOi9oQmCYHC0BL2pRVHQXRFlZWXk5eW1W9DzDulCGxtla/J8/wzddVR6xL0EXYagx8fHExoaah5vybcNutjmHIToWH37f3Z2tpl10Vlwr776arZs2cIf//jHRm240wdAnmNR1Gh3yJAhrc7LE3yz/1QQBK/ia0FvKcoF9NDFHTt2kJeXx+DBg9vVR9Fh3ZJtarESYGh/feHwiK0bmqY169ox22smVYEZ5dKK2IZE67VN9+zZ08hCB5g1axazZs1qso2WIlyc+zAE/YorriA2NpZTTz216Ru8hAi6IHQCjAVAXwi6zWbj0KFDBAQENGt9G5Eubany05DSihAIhpT4wCbPZ/aOAjS0oESKioqadP8442yhO9NcjhUDI0acEH1OzoLuXK2pJVrrIz5GT9VbVAZWm0ZoaCgzZsxwq21PkK3/gtAJaMlC9zRPuWHpxsXFERjYtNh6I3SxvFp3i6QmhDZ53hTa4ET27NnbantNWehHqjQqqyE0BKLCm77PsJ5rtVgCAgLMeP5u3brRo0czCt0A0+US0/T5wECLea6gUbyf7xBBFwQ/p7y8nIKCAkJDQ80IiZiYGCIjI6moqDBjsNtLa/5zqN8t6omFXmnTQ/fSUyOaPB8WaiHYUg4BwWzecaDJawzq6uo4dEj3Z8TF1Sf0chba5lw2yXH68cLSAJfoFefi2K1h5HGJj2n++oZul6OBCLog+DlGgYU+ffoQEKD/l7VYLKaV7unmotb85+C5y6WmpgabRbd+j0tuxnQGokL0uPFtv7e8uaikpIS6ujpiYmIIDq4vW9ea/xzqfwnkHXJ1sbQlAqUt/eSLhS4IgoFR5aZhxRxv+dFbClk08NTlUlRU5LTtv3mrNi5aD2ncva/llAat+c+bW6wE15BCZxF313/u3E9zLhfnfsRCFwTBxNhV6FwaDjDdL94SdF+6XHRBbzoxlzOGCO7NbzpW3aU9Gke4tObbdu7DEwu9pfQCTfVztBBBFwQ/xyjCkJKS4nLcWxb60XC5FDrlcenZxIYfg97J+oJpfnHLvuzmLHR3XCHOBSh6964Xce+7XPQ55BcfvU3xIuiC4AW+/vprHn/8cerq6lq/uI34WtDdsdCNSkaHDx820wS0heycw2AJJNhSQUhw82Ld7zh94bS4oulIGIPmLfSmi044ExJsIa471NVBTHx9ndB2uVzc+LUhFrogdDJuvfVW7r33Xj7//HOvt320BL0lH7rFYjHdLu740f/3v/8xadIkc+w7s/SVwYjglnOdZ/bSqwLVaj3M2HBnqqurqaur88iHDpDssNLDu7fdQj9SpXGkCkKCIbrpgB29DxF0Qeh8aJpmpl997733vN6+P1jo0Da3y3/+8x9WrlzJs88+C8CnX64HICm2ZclJ6emwrEOS2LvXNRZ927ZtxMTEcM8995iC3h4fOtSLbV1wEv3792f8+PFmRsTWcM633lKYY8N8LkcDEXRB8JCSkhLTDfHRRx+1uyZmc7gj6O5uLtI0jX/9619m/U1wz4cObRP03/PCodc9vPra22zatIkdu3UzdWDflvPAOO/ibCjoH3zwATU1NcyfP98cw88FE/l2Q/3c3fFtAyQ55UXfsmULq1atavba7DyNh1/TOFSmtauP/GI83vzlLiLoguAhzhZyWVkZX3/9tdfarqyspLS0lODgYJcNNADR0dF0796d6upqc5NNa6xdu5a7776bM888kz179pCTk2PGsbcm6O66XOx2O3khN0H6oxTH/J1LL70UovU6nck9m96JamBYtQQnNfrl8f333wNQWlqqu7YiBvH2ujGcfbfGtmyNg6UaWY7vmtbENtkpRjw4OLjZHbIATy/WeOg1jUv/oVFXp7Fum3t9hIda6B6lF4suPtzytd5CcrkIgoc0FJ53332Xs88+2yttG5Zoc3nIe/XqRVlZGTk5OY3cDy2Ntby8nMsvvxy73U51dTXTpk0jJiamxXvdtdDz8/PRQhw7MJOvZ2tuJaT+GYtFY+YpLduQ3aMgKMCKLSia3/fUf3HU1tayZs0a8/nhw4ehh/4LpboWLv2HRlw3KKuAE4dCr5a/mxy7RTXyDmlAyxE1+xylVL9cD3Oe1XjtM/35pae2vqs0OVYfU34xxLUQ3eMtxEIXBA8xLNyTTjoJgKVLl3rN7eIs6E3RVj+6s3W9Zs0a1q1bR+/evXnjjTdavdddQd+3bx+EJNUfSL0VLAE8fLWFySNbFkGLxUJMhP7a7dpbbh5fv349VVVVrn7u4Po+fv0dvv1Zt5oXP2RpdQt/UhsWLJ194C9/pH+BXHs2XHFG64Leln68gQi6IHiIIaZTp05l2LBhlJWV8d1333ml7eb85wbtFfSpU6disVgIDQ3lgw8+aDWzIbi/uWjv3v3mrtC0qB0A9I/byX2z3MuTkthDr2q5N89qHjPcLZdffnl9xZ8QvXj15JEQGKj/vfuwhdR4NyznNgitcc20cfqjMhD+fZt7cznakS4i6ILgIYaY9urVi1NOOQWAX375xStttybobd0tagj6zJkzWb16NevXr8dRK7hVevfuDWBG9DTH9t+LwBJIWGAFG948jltOW8m61/s0WdmnKdKTdU/wgUP1OVoMQZ88eTLnn38+AAFhulvnnAkW1r5sYd0rFiaNcK+P3g6XTHYrEZiappkW+rsPW/hwroWvnrYQFurdfryFCLogeIjhcunVqxeDBg0C9BA7b+ArCz0pKYkJEya4FENuDaNa/Z49exptoFqzZg0ffvghAL/t1VcAYyKqSYiL5Ln7JxPTreWNQs4M7qtXLCquisFms2G1Ws2onEmTJvGHP/wBgNBueoGKpFhQBloYPcA9kQXdxx4UCAeKoKqm+QiUQ2VgtUFMFERHWPjDyRZiot3vp2+qfu3u3KMT5SKLooLgIc4WekSEvtNk+/btXmnbl4LeVqKjo0lISKCwsJADBw6QlpZGTU0N9913H08//TQAJ5xwAntzqwGIj2nfrtkBvYMADUL7kJeXx4EDBzhy5AgDBgwgKSmJhIQE7r33XpbsHsf2A/V+6rYQFGQhPUnj91zYkweD0pu+zrDOk9vRB0Bfx9uW5cgGXGvVsNfpETC+QCx0QfAATdNMCz0tLY3jjz8e0AXdG2kA/EnQod5K3717N5qmcfbZZ5tiDnoKhNwi3Qee2kxlolb7MKYa3od9+/axaOlvoOyi7+gbAQgICODRRx+lLkj3ZyS1HNreaj+79dxnXPNEHWfeVYfNVm9NG75vj/twCPr3v0DUGRqX/sP7KSJABF0QPKKoqIjq6mq6d+9OdHQ0cXFxJCYmcuTIEa+Uh3PXh56Tk9PqF0hdXZ3bu0Kbw0jhu3v3bgoKCvjmm2+IjIzkrrvuAuDbb7+lqEwX8vSU5vOet9iHMdUwXdCX/xwL4X3IxbWEm1EJqL1i29cRWZl1AMor9XDE5etg/Y76awxBb6+F3tC1sznLkUPGvU2pbUYEXRA8wNl/buBspXtKa4IeERFBXFwcVqvVFOvmOHToEHa7ndjYWEJD3fdpO2MIelZWFps2bQJg1KhR/OUvfwFg5cqVVFqjAeiT1kKikxZIjYdAiw1Ckvh9Tz45Jbpi7ypMweqwnqtrNEorIDgIekS3qxv6pjj82wc0tmTVH/9Krf+3p4IeGGgh3fFjaE8ebM7Sxz+0j7hcBMHvcPafG3hrYbS8vJzy8nLCw8Pp3r35XSnuul0Md0tiYmK7x+Tsctm8eTMAQ4cOJTExkQEDBlBdXW3GoCfFtU+0AgIsxEXqC6trfs6jOkDPiFhZE8jarfo1BY6cLYk9cDt6ptFcnPzbm10Evd7lYqS+TW7nXKD+l8DuXNikF59iaJ92N9ciIuiC4AGGiJqx0XjPQm9tl6iBu6XoPPWfg6vLxVnQQV8QBcz48Pa6QgDSeuoFLr7bYIXgevP4y/W6wBqLle1ZEDVwFlrDcgb4cSuUV+qvt6c+dKj/4vhtP2zL1v8tgi4IfogvLfTW3C0GbbXQvSHozi6XYcOGAXDiiSfqFxkWugcimJmmS1NN1DQAAi36JiPDHZLvDaHVN76yJ1/faQoQGgJ2O/y4LQTw3OUC9a6dL37SqK6F3onQPUpcLoLgdzTlQ3cWdE+y7PmjoCclJREeHs6hQ4dMC33IkCEATJgwQS9iHWy4XNrdDUMyHf737pP1tvvtJzhIX7AsKa/f7OOJoEdFWEjoATW1ulUOMOsM/XHlZqNykv7cI0F3/BL4bqP+OKxv89d6igi6IHhAUy6XxMREYmJiKC0tpaCgwO22PvnkE6699lqys7PRNI2vvvoKqM+h0hzu7hb1hqBbLBbTj26z2TjuuOPo1q0bAFX2HowYNQ6CYwmw1BHXrd3dMKy/IwwkQN8teuqYSCYM1iNEvvsZrwg61EfU2OwQ2w2unKZbzj9s0QXdGxZ6H6c+wHfuFhBBFwSPaMrlYrFY2uV2efjhh1mwYAHDhg3jrLPOYuHChQQFBTFjxowW72vJQt+4cSP9+vXjv//9r1cEHerdLqC7W2pqNSbOqePE2xK49NpHAEiI0dq9WAnQL8313lNPSOQ0RT+2/CfNXKxMbKHUnDsY1jPolvPY46FbJOw+EMS2bI3ySt0N092DMMM+Db6PfRXhAiLogtBu7HZ7ky4XqHe7tGVhdPduPQSivLyc5cuXExERwccff8zEiRNbvK85QbdarVx99dX8/vvvPPDAA+Z5TwXdsNBBXxANDbEQEQo1VgsbCqcAkNLOTUUGGQ1EcFhfC+c41lzf+04PAQTP3DrgtIkJ3XIODrIwTU/dzhNvOSJcYluuTNQahmvHQFwuguCHHDhwAKvVSmJiornl32DgwIEA7Nixo6lbG1FaWkpJSQkRERG8+uqrnHnmmXz77bdMmzat1XtTU1PN8djtdvP4M888w6+//groETNGVR5vWuhGhMvs6brgvfONftxTV0h4qIXwQD02sXvoIaIjLIzoZ2HMQCit0HOTe6MfY8ES6i3nG87TH9/SPV4euVvq+9Efg4Ogf6+Wr/WEVnO5KIqSCCwBrIAduAzoC/wLqAP+pKrqZkVRkoA3gEjgZVVVF/ls1ILgBxhZB5uqFt+vXz8Adu3a5VZbe/bsAXTr95prruGaa65xexyhoaEkJiZSUFBAXl4eaWlpZGVl8dBDDwFw3nnnsWzZMnOB1pM4dGOMBkaEyzkn6GlvC0p0yzzRQ6EFXWy37IdRA+qzLs6ebmH9Dg1jrdlTQXe20A3LecpIyEiysSc/yCt9gO7a+XGrnjMmOKhjXS5FwEmqqk5CF+xrgUeBs4FLgX86rrsbXeQnATcrihLm/eEKgv/gTUHPytJ3tjiLZVtomNp2/vz5VFVVcfHFF/Paa68RFqb/dwwICHCrslFLGBZ6SEiIOc/gIAuXTKk0r/GGCI4eHAPAiSPqV1dnnuLqz/bWoijA4HT9MSDAwuVT6+fiDQvd+OLw5YIouCHoqqraVVU1kkREA7sBu6qqJaqq7gOMl3Qs8K2qqjZABYb4YsCC0BZ+//13UlNTeeaZZ7zetmFVZ2RkNDrXp08fAgICyM7Opra2ttW2PBX0AQMGAPUunq1b9Ti8Cy64gNjYWC6++GJAz+HSUv1Md+jXrx/XXXcdDz74IMHB9dbzpadUEuBQlKRYz63Q2dMtnDIKrj6rvq3IcIsZWhgZrvunPSEpDv58Adx3hWtbF55cSageiu7RLlGDK6dZmDIS5szwnXUObvrQFUUZoSjKOmAOsAZwLnlqUxQlBAh2Ev4y6oVeEDqMzz77jAMHDvDXv/6VLVu2eLXtliz00NBQevfuTV1dnSn8LeGpoDeMqjGE3fDl33TTTVgsFnMXqycEBAQwf/587r33XpfjKXF1/MGxfnv8cR53w/jBFr55NoA+Ka4iOHu6hcBA7/RhsVh4/tYA5l7vKoWx3TQuPVX/d3OpddtCnxQL3z4XwLhBvhV0t/Khq6r6CzBOUZSLgPsA5wjTIFVVaxVFsSqKEuAQ9e5AccN2FEW5AbgBYM6cOZx22mmejt+nWK1WcnNzO3oYXuFYncvGjfpuDpvNxpVXXslHH32kb37xAjt37gQgKiqqyfH07t2b7Oxs1q5d61oL0wljLkY0TPfu3dv1PhnZEzdu3EhWVhZZWVkEBAQQERFBbm4uKSkpLFu2jKSkJJ99DqxWK49emc8fTwzm+ORafPVx6x4MnzwSRI8ojdxce+s3tAOr1cq9M/OYOiyEMX18N5f2YCyCN4U7i6IhqqoavxnLgAogSFGUGHQXjCHc64HJiqKsBEYDf23Ylqqq84B5jqdHp4SHB+Tm5rb44nUmjtW5GPlQLBYLP//8Mx9//DE33XSTV8ZhtK0oSpPjGTJkCCtXrqS4uLjZ8RpzMUR2zJgx7XqfjNDGrKwsqqursdvtZGZmulj8vn7/c3NzSU9PYUCmT7sBwNcf5dzcXNJTU8ls7E3za9wxVUYoirJSUZTvgNuAJ4G/A58B7wB/c1z3T8e/VwKvqKpa5f3hCkLbMBYlH374YQBeeOEFr7Rrs9n06vbAccc1/dvf3YVRu93eovvGHfr06UNISAj79u1j/Xo9ps9wtwjHDq1a6Kqq/gSc3OBwHnBCg+vyAP/2oQjHFLW1tWRnZxMQEMCtt97KQw89xG+//UZ1dbUZ9dFecnNzsdvtJCcnN9uWu4Kek5ODzWYjJSWF8PD2FYUICgqif//+bNmyhY8++ggQQT8WkY1FQpfFKGbcu3dvunXrRmZmJnV1dfz2228et+2ORd2/f3+geUG32+3U1NR4vCBqYCyMLl++HBBBPxYRQRe6LIaQGpby4MGDgfqQPk9oKWTRID09ncDAQPbt26cXfnAiJyeHQYMGcdJJJ/Htt98Cngu6EcFi9CWCfuwhgi50WRoKumHBekPQ3bHQg4ODycjIQNM00woHKCws5NRTT+W3334jLy+PuXPnAt6z0A1E0I89RNCFLosvLXR3FzEb+tHtdjtnnXUWO3fuZOjQoS73e8tCB+jZsydxcV7Y4ih0KkTQhS6L4SvvKJeLc9/GWLZt28aGDRtISEjgq6++YsGCBURH61WOjd2e7aV///5mjL03NhAJnQ8RdKHD2b59O88995xLpkBv0NBCHzBgAIGBgezevbuRT7uttNdCN1wvo0ePJjExkf79+7NixQpeeeUVxowZ49GYQkNDzTwr4m45NnFrp6gg+IpDhw4xdepU8vLy6NOnD+eee65X2q2urmb//v0EBgaaVnRoaCiZmZns3LmTnTt3Mnz48Da1WVFRwaeffspPP/1ETk4OFoulUR70hhiRLsau0qYiWkaNGsWoUaPaNJbmGDRoELt27fLY2hc6JyLoQoehaRrXX3+9ueNy06ZNXhP03bt3o2kaGRkZLgmkBg0axM6dO9m6davbgl5WVsacOXP44IMPqKqq3y83YsQIQkNDW7zXsJQNQTeKWHjqL2+O22+/HavVyuWXX+6T9gX/RgRd6DBeffVVlixZYj5vS7m21mjobjEYPHgwS5YsaZMf/cMPP2TRIj29/4knnsi0adMYPnw4kyZNavXetLQ0wsPDKSgooLS01LTQnYtEeJNJkya5NS6hayI+dKFD0DSNBx54AMDMrdKWcm2tYVjETQk6tG1h1BjXAw88wKpVq/j73//OueeeaxZHbomAgAAXt4u3NhEJQlOIoAsdwtatW8nLyyM5OdmMw96xYwd1dXWt3Okev/zyC0Ajt4oh6G35NWBEqDSM83YXw+2yfft2t6NjBKE9iKALHcI33+jFJ0855RR69OhBcnIyVVVV7N271yvtG2lzR4wY4XK8f//+ZqRLZWVlE3c2xrD227vQaNz37bffUltbS2JiYrPpdAXBE0TQhQ7BEPSpU6cC9XHT3vCjHzlyhN9++42goCDTIjcIDQ1l4MCB1NXVueV2sdls5kJmQ/eNuxiCbuRYEXeL4CtE0IWjjs1m4/vvvwfqBd1wZ3jDj75582Y0TWPQoEFNRqEYbphff/211bays7OxWq2kpaURGRnZrvEYgn7w4EFABF3wHSLowlFHVVUOHz5MZmamWdzYmxa64W4ZOXJkk+fbIuiG/9yTuO6G9/oqwkUQRNCFo05Ddwt410I3FkQb+s8N2iLonvrPQS9R51wtSCx0wVeIoAstYrPZvN5mU4LubKFrmmfVCZtbEDUwBH3Tpk3N9lVTUwPUC7oRethenL8QRNAFXyGCLjTLrl27SEhIYM6cOV5rs6ioiNWrV2OxWJgyZYp5PCEhgdjYWA4fPsyBAwfa3b7NZmPz5s1A84KelJREQkICZWVlTUbVvPfee4SHh/Piiy96xeUCrrlVxOUi+AoRdKFZHn/8cUpKSli6dKnX2ly4cCG1tbWceeaZ9OzZ0zxusVhMK90Tt8vOnTuprq4mPT2dmJiYZq8bNmwY0NjtomkaDz30EJqmcdddd5nWvqeCbtwfFhZGUlKSR20JQnOIoAtNkpOTY253z8nJobS0tE3379+/n9NPP50//vGP/OMf/zDLwc2bNw+A2bNnN7qnPQUoduzYwYoVK8znhv+8uQVRg+b86F9//bW5MFtVVUVpaSmhoaHm4m17MQQ9IyPDTHErCN5GPllCkzz77LNYrVbzeVtziC9evJivvvqKDz74gAcffJBx48bxn//8h127dpGWlsaZZ57Z6B7DRbJhwwa3+7nggguYMmUKy5YtAzDLuTXnbjFoTtCfffZZAG655RbTws/MzCQwMNDtMTXFpEmTuOCCC7jnnns8akcQWkTTtI7683tycnI6egheoy1zKS4u1qKiojRAGzFihAZor7zySpv6u+mmmzRAu+SSS7RJkyZpgPn38MMPN3nP+vXrNUAbMGCAW3Ox2WxaUFCQBmg9e/bUXnzxRQ3QAgMDtZ9//rnFNn799VcN0Pr27Wse27lzpwZoYWFh2sGDB7VXX31VA7Srr766TXNvC8fqZ8zf8fO5NKurYqELjXjppZeoqKjg1FNP5bLLLgNgy5YtbWrDyFkyc+ZMPv30U8aNGwdAYGAg1157bZP3DBs2jNDQUHbu3OmWi6ewsNCMwikqKuLmm28G4Mknn2zV5TJw4ECCg4PZvXs35eXlALzyyisAXHHFFfTs2ZNrrrmG9evX88wzz7Q+YUHwA0TQBReqqqp47rnnALj77rsZMmQI0H5Bz8jIIDIykk8//ZSzzz6bBx54wCUm25mQkBBTiFVVbbWP3NxcAI477jizfubMmTO57bbbWr03JCTEXBg1+jJ88caXGICiKHTv3r3V9gTBHxBBF1x47bXXOHjwIKNHj2bq1KmmoBvb6d1B07RGJdri4uL45JNPzJS5zTF27FgAfvrpp1b7ycnJAWDo0KF89dVXPProo7z66qtYLBa3xjl+/HgA1q1bR1VVFZs2bSIgIABFUdy6XxD8DRF0wcRms/HUU08BunVusVhITU2le/fuHDp0iMLCQrfayc/Pp7q6mtjYWLdyhjvTHkFPS0tj5MiR3HvvvW3Kt2II+tq1a9m4cSN2u50hQ4a0O2eLIHQ0IuiCyZIlS9izZw+ZmZnMmDED0OPDna10d/Ak57ch6OvWrWv1F4GzoLcHZ0Fft26dS/+C0BkRQRdMvvvuOwCuu+46lzC9tvrRDXdLewQ9MzOTmJgY8vPzTcFuDk8FvW/fvsTFxVFQUMB7770HiKALnRsRdMHE2KHZsMpPWwXdEwvdYrG47XbxVNAtFotppf/444+ACLrQuRFBF0yMHZLGFnyDoynogBni6GtBh3q3C0BERESjghiC0JkQQRcAzEXPyMhIevXq5XLOEPRNmzZRXV3dalueCroRuthSeltN00xBby4M0h2cBX306NEEBQW1uy1B6Gha/fQqijIWeA6wArnALOB84HagCrhSVdUcRVEGAvMcbd6vquo3vhq04H0Md8vxxx/fKNdIz549GTlyJBs3buTbb7/lrLPOarEtTwW9uW35R44cYeHChQQFBXHBBRdQU1NDTEyMR/U5x4wZg8ViQdM0cbcInR53LPT9wCmqqp4MZAPTgTuAycADwP2O6x4DrgWmAf/w9kAF39Kcu8Xg3HPPBeDjjz9usR2bzca+ffsAfcNPe0hPTyc6Opr8/HwzVPL1118nMzOTOXPm8Kc//cmMSvHE3QLQvXt3MynYmDFjPGpLEDqaVgVdVdU8VVWrHE9rgQHAdlVVa1VVXQ0Mc5xLUVV1l6qqh4FiRVF6NtWe4BnPPfcc06dPZ/r06dxxxx1eK0BhWOiGuDXEWdBbCifMycnBbreTkpJCWFhYu8YSEBDgkt5206ZNXHXVVeTn5xMaGoqmaWa8vKeCDvDYY49x1VVXcd5553ncliB0JG47DBVFOQ44HbgHiHc6ZcS3OX85lAGxQFGDNm4AbgCYM2cOp512WjuGfPSwWq3m9nJ/oKioqNG29kGDBjWZubAhrc3FyPudkJDQ5HWJiYkkJiaSm5vLF198wdChQ81zNpuNNWvWsHr1avPe1NRUj167zMxMVq9ezcqVK80vkOnTp3PmmWcye/Zsc5t+jx49PH6PRo8ezejRoykuLvaonfbgb58xT5C5HB1aWjNyS9AVRekGvAlchS7gztv/7I7HOqdj3YFG/ztUVZ2H7mcHPfOeX5Obm+vRgpu3+eGHHwA9tG7MmDG8+OKLLFu2jOuuu67Ve53nsn37dioqKlxcDFlZWQBMnDix2TlPnz6defPmsW7dOqZNmwbAhx9+yE033URBQYHLtcOHD/fotTvhhBN4/fXXyc7O5uDBg4Cep+UPf/gDf/3rXzl8+DCgl4bzp/eorfjbZ8wTZC4dT6suF0VRgoB3gIdVVd0J7AKOVxQlRFGUE4BNjkvzFEXpqyhKNBCrqmpRM00K7cSoxTljxgweeOABgoKC+Oyzz8jPz3e7jcrKSiZOnMgJJ5zArl27ACgvL2f//v2EhIS0uJBpuCSc/eiPPvooBQUFZGZmcs899/Dkk0/y3HPPMXfu3PZM0cRwuaxfv56VK1cCMGXKFMLCwlx+kXjD5SIIXQV3LPRLgHHA/Yqi3A+8DDwLrACqgSsd190HLES34B/08jgFXIsrJyQkcNZZZ7Fs2TIWLVrEnXfe6VYb77zzDocOHQL0NLPz5s1jx44dgF5Vp6WwvVNOOYXw8HA2bNhAbm4ukZGRbNy4kZCQEH799VciIiI8nGE9Q4cOxWKxmEWaBw8ebJZumzFjBosXLwZE0AXBhZaSpfv4z+/xpyT3WVlZGqDFxMRoNptN0zRNW7JkiQZogwYN0urq6lq835iLoihmoYmQkBAtNzdXW7hwoQZoF110UavjOO+888yCF8uWLdMAbeLEiZ5PsAn69etnjvWWW24xj+/du1fr1auXBmi7du3ySd9HC3/6jHmKzOWoIQUuOjuGdT5lyhQzz8rZZ59NfHw827Ztcyt/uKqqqKpKjx49OPfcc6mtreWxxx4z224uwsUZZ7eLsTA5adKk9kypVZxTEEydOtX8d2BgIJ9++ilLliwhMzPTJ30LQmdEBL2T4OxuMQgODubCCy8EYPny5a22YVTkueqqq3j44YcBePHFF3nzzTeB1utwgv4lAnox5c8//xyAyZMnuzeJNmIIekBAQKMvjaFDh3L++ef7pF9B6KyIoPsRe/fuZc6cOeTl5bkct9lsZvFjZ0EH3a8N9dV2miMrK4tFixYBcOONNzJy5EguuOACQM+d8sorr3DOOee0OsakpCTGjh1LTU0N27dvJzg4mAkTJrg1v7ZiFJoYP368VA0SBDeQxBV+xFNPPcWLL75IVVUVr776KgB1dXVcffXVFBYWkpGRwYABA1zuOfnkkwFYs2YNNTU1hIaGNmpX0zT+9re/UVNTw6xZs8w2/ve//1FWVkZ8fHyje1rivPPOMxNnjRs3zquLoc6cccYZvPzyyz5z6QhCV0MsdD/C2Nzz7rvvcuTIETRN4+abb2bRokVERkbyv//9r1F5tfj4eIYMGUJ1dXWz2QnfeOMNVq9eTVxcHE8//bR5PCQkpM1iDvW7RsF37hbQ09vOnj272XQEgiC4Iha6l9i3bx+PP/44VVVVBAUFcfPNN7daed6Zuro6Nm3SQ/orKir44IMPAN3vHRoayscff+ySGdCZyZMns2XLFlasWMHEiRNdzv3yyy/ccccdAPzf//0fPXt6npFh6NChpKenk52dzZQpUzxuTxAEL9FSCIyP//yetoQu/elPfzJD7ABt+PDhrYYSOmOEJRp/Y8aM0eLj4zVAW7BgQYv3vv/++xqgnXLKKS7Hv/jiCy0qKkoDtFNPPbVN42mN1atXa88884xX23QXPw8paxMyF//Ez+fSrK6KoLdAW95UI2Z67ty5WlJSkgZon332mdv3GzHl48eP18LDw01hnzhxYquiWVhYqAFaWFiYVl1drWmapm3ZskULCgrSAO3SSy/Vdu/e7fZY/B0//8/WJmQu/omfz0Xi0H3Jvn372LVrF926dePuu+82XRyPPfaY220Yub8nTpxoRp8EBQXx8ssvN/KbN6QpP/p7772HzWbjoosu4s0332xysVQQhK6FCLoXMGLEJ02aRFBQELNnzyYmJoZVq1axatUqt9owBH348OHcfvvtREdH849//MPtkmiGL/vTTz8F4MsvvwTg8ssvb1SwQhCEron8T/cCDTf9REdH8+c//xnQ86W4gyHow4YNY9SoUZSVlfG3v/3N7TEYVv0777xDcXEx69atIygoyKdRKIIg+Bci6B6iaVqTuzhnz54NwLfffovdbm/yXoPDhw+TlZVFSEgIAwcOBGjVzdKQiRMn0qtXL/bu3csjjzxCXV0dJ554ItHR0W1qRxCEzosIuods376d/Px8EhMTXdwjKSkppKenU1FRwdatW1tsY/PmzYCeSyU4OLhd4wgICOCSSy4B4Pnnnwfg9NNPb1dbgiB0To4JQc/Ly2P16tWsXr2a/fv3e7Vtwzo/5ZRTGlnVxpb4tWvXttjG0qVLAddkVO3hsssuA/SYdtB3WgqCcOzQ5QW9pKSEwYMHc9JJJ3HSSScxcOBA9u7d67X2jRwqDXOsAOZGoOYEva6ujttvv930s8+YMcOjsQwbNowhQ4YAEBcX16aNTYIgdH66vKC//vrrlJSUkJSURO/evamsrHTZ/u4JmqaZZeGMnCrOGIL+448/NjpXXV3NzJkzefbZZwkODmbRokVeKVJ8+eWXAzBt2jSJbhGEY42WgtR9/Odz7Ha7ueHnww8/1DZt2mRuwCkoKGj1fufNBW+//bb20UcfuZzfsWOHBmiJiYlNbv6pqanRQkNDNUArLi42jxcVFWknnniiBmjdunXTvvnmGw9m2bjPF154QTtw4ECzc+nsyFz8E5nLUePY3Fj07bffsmvXLlJTUzn33HMZOnQo55xzDtXV1Tz33HNut7N7924uueQSzj//fBYsWGAeN2LMTzrppCajUkJCQhg9ejSAS+KsWbNmsXr1atLS0li9erWZAtcbhISEMGfOHJKTk73WpiAInYMuLegvvfQSoOf/Nmpl3nvvvYBe2KGsrMytdoz6lQDXXXed+dxwtzRMiOVMQ7dLbW2tuZC6atUq0+ctCILgKV1C0Kurqxsdy8nJYenSpQQFBXHdddeZxydMmMDEiRMpKyvj/fffd6t9Q8DPPPNMNE3jiiuuYOfOnW0SdGNhdNOmTdTU1DBgwACOO+449yYoCILgBp1e0P/9738THh7O+eef7xLvPW/ePOrq6pgxY0Yj98MVV1wBYKaobYlt27axadMmYmJi+Oijj7jyyiuxWq1cf/31ZGVlERUVxbBhw5q93whdXLNmDVar1XS9jB07ts1zFQRBaIlOLeh1dXVmxMrSpUsZOnQo//nPf6itrWX+/PkA3HTTTY3umz59OgEBAXz99deUlpa22Idhnc+YMYOQkBAee+wxIiIiTOv8hBNOMN05TZGWlsagQYMoLy/nhx9+EEEXBMFndGpBX7VqFdnZ2aSlpXHTTTehaRq33norjz32GPn5+QwaNKjJcMKEhAQmTpyI1Wo1k1k1haZpvPPOOwBcfPHFgL4D9C9/+Yt5TUvuFgOjws8nn3wigi4Igs/o1IL+xhtvAHrUyIsvvsi1115LTU2NWdH+pptuajYnipHMqiW3yxdffMFvv/1GcnKyS2Weu+66i4SEBAC36l0axZffe+89duzYQUhIiMe7QgVBEBrRUkyjj/88orKyUouOjtYAbfv27ZqmaVpZWZmWnp6uAVpkZKRWVlbW7P05OTkaoIWHh2sVFRWNztvtdm3AgAEaoL3wwguNzv/888/a/Pnz3arYY7VatdjYWLNoxdixY9swU+/g53G1bULm4p/IXI4aXS8OffHixZSXlzN27FgzQ2G3bt144403iIqK4vbbb6dbt27N3p+amsr48eOpqqoy3S6FhYXMnDmTf/7znyxcuJCdO3fSu3dvrr/++kb3jxw5kuuuu86trIhBQUGcddZZ5nNxtwiC4As6ZZHoVatWcfPNNwNw7bXXupybOHEipaWlBAYGttrOxRdfzNq1a3n99de56KKLePrpp3n33Xd59913zWseeOABr1T7Oeecc1i0aBEggi4Igm/odBb6zz//zNlnn01lZSVXXXWVS4y5gTtiDnDppZcSFBTE8uXL2bt3LwsXLgQwLf4+ffowa9Ysr4z7jDPOMKNhRNAFQfAFncpCN2pkHj58mAsvvJD//ve/HiWgio+P59xzz2XJkiVcdtllFBYWMmjQIDZv3syaNWuIiIhod37yhsTExPDvf/+b/Px8+vfv75U2BUEQnOlUgh4UFMS7777LM888w6uvvuq2Jd4SV199NUuWLGH16tUAXH/99QQEBHDSSSeRm5vrcfvO3HjjjV5tTxAEwZlWBV1RlO7AV8AgYLyqqlsURbkQuB2oAq5UVTVHUZSBwDxHm/erqvqNLwY8atQo3nzzTa+1d+aZZ5KYmEhBQQEhISHmLlJBEITOhjv+ikrgbOB9AEVRgoA7gMnAA8D9juseA64FpgH/8PZAfUVQUJDpJ58xYwZxcXEdPCJBEIT20aqFrqqqFTioKIpxqB+wXVXVWmC1oihPOY6nqKq6C0BRlGJFUXqqqlrki0F7m/vvv5/Y2Fiuueaajh6KIAhCu2mPD70HcNjpueHIdrb2y4BYwEXQFUW5AbgBYM6cOZx22mnt6N43XHHFFVitVhe/ecPnnRmZi38ic/FP/HkuqampzZ5rj6CXAs47duyOxzqnY92B4oY3qqo6D93PDvquSb8mNze3xRevMyFz8U9kLv5JZ51LewR9F3C8oighgAJschzPUxSlL1AIxHYWd4sgCEJXwS1BVxTlM2AEMAD4D/AssAKoBq50XHYfsBDdBfOgV0cpCIIgtIpbgq6q6llNHF7c4JptQOu5ZAVBEASf0Om2/guCIAhNI4IuCILQRRBBFwRB6CJYNM3vowcFQRAENxALXRAEoYsggi4IgtBFEEEXBEHoIoigC4IgdBFE0AVBELoIIuiCIAhdBBF0QRCELoIIOqAoSqTj0dLRY/EURVEiHI9dYS7HOR67wlzGdYV5ACiK0rujx+AtFEXp0dFj8CbH9MYiRVFOB64HDgD/VFX1QAcPqd0oinI+cDmwH3iyk88lAvgX0Av4o6NqVqdEUZThwHPAWuABR6WvTomiKNOAOUAN8DawXFXVio4dVftQFGUS8Bf0IjwvAltVVa3u2FF5zrFuoV8K/BfYAsxWFKVTZotUFOUc4Grgn+gFSO52HO+UFqGqqpVALRCNPq9OOxf0DKSPqap6D9CnowfTXhRFCQRmoxeoeRi9FkJkJ35fZgKvoX8xnQVc0LHD8Q7tKXDRaXFYfjOBVUABsA/4CfjOcXy0oii7O4N165jLJcDnwM/AdaqqHlQU5TfgHUVRElRVLezQQbqJ0/uyUlXV3Q6R+B34ELhFUZTlqqru69BBuonzZ8xRY7cSmKYoyj3oRWDWAx+rqrq7I8fpDo65XAx8D1QAm9F/ze5Fr48QDgSjf/n6NYqihKMXtV+uqur3wB4gD/3/fzVwtqIoA1VV3dGBw/SYY8ZCVxTlEvSiHBFAlqqqh4EkYILjZ/BGIAy9fJ5f4zSXMKBQVdUDDjEPQLdq93QiMTfmEo7+BYuqqhowCP29+BC4UVGUXh01RndpMJdsx+EIIBm4E7gJ3V1xdgcMr000nIuqqgXAN+huvY3ororrgZs7aozu4vjsvI1uxP3oOGwBMtBLYW5D/+xldsgAvcgxIeiKonQDLgIeQf9QnqooSk/gZeA6RVEiVVXdAhwHpHfYQN2giblMVhRlIICqqnXoAmJzXNvbn38SN5jLt8AkRVEGO05/j/7L4wi6iNziuMcvP7NNzGWKoigpwAfoVmwvVVXL0IXeeH/88r1p4jM2VVGUfqqqrgC+Bl5UVfVy4BMgRFGUAH+di4MgYBn6L/E/K4pyAvAFcAIwWFXVQ+jGUTj47/viDl12UdSxEn8n8CmwGjgZuB0IAT4GZgGTgBvQ3/Af0P21H6iq+klHjLk5WpnLMvS5TFdVNVtRlGvRP6hlQBxwsz8tXLk5l9OBG4HJ6DVqDwBHVFW9vwOG3Cxufsamos9jGLoleBbwu6qqD3fAkJvFzfflTPRfF8nogjgHKFFV9ZaOGHNzOM1lGfr6WJrjeS66kXAV8AQwFL3g/Q7gHHSX3387YMhewy+tHU9RFCUNeBrd15cEvKGq6mfAk8AUVVWfAt4A/qWq6j/RP8A3Apv8UMxbm8vT6Is7/3Tc0htd0Hepqnqln4m5O3N5A3gIeApYoKrqxaqq3uGHYu7OZ+x19Oip99B/8o8D1vihmLflfVmAXij+IeAnPxRz57mkAi+pqqqiGze1qqq+5Th/OvAmuktvErC+s4s5dDFBVxTlZKefSzGqqj6tqurrQLSiKH9TVfVLdN8Z6IWuIxRFiXb8lLxSVdVnjv6om6aNc/k3jp/x6D+JJ6iq+vJRHnKztHEuz6FbTaiqushxv998TtsxlxBFUbo5au7+pZO/L5FAmKqqb6P/InyhA4bdJC3MpbuiKNcBjwJjAVRVXQ4MdFy3BbjFn+biCX7zH8UTFEWJUhTlK3R/31noCzarFEW50XHJD8B5iqLEqKpqVxTlZOAj9EiKCgBVVW2NWz76eDCXLABVVX9QVbX06I+8MZ68L47QRcBcG+hQPJjLbscCPKqq2jtg6I3w8H05AuAv8fRuzGUlcI3jcZWiKA86rj/guNZv3hdv0GV86IqijEbfiDIWfaNAjOMxG120j6Bbr1uB+eg/5z/oiLG2hsxF5uJrjrG51KB/If0IJKIvhH7ZAUP1OV1G0A0URXke3be3SFGUZPSf778DtwFvqaqa35HjawsyF/9E5uKftDKXNztLKK8ndAmXC7iEGr2FHjKWoKpqHnos83voIYnl/uSPbQ6Zi38ic/FP3JxLRWcOR3SXLmehAyiK8megL1AC7AZ+U1X1p44dVfuQufgnMhf/pCvNpT34/bdvW3CyJoahx8xmqaq6qDO+oTIX/0Tm4p90pbl4Qle10C8APlFVtaajx+IpMhf/RObin3SlubSHLinogiAIxyJdyuUiCIJwLCOCLgiC0EUQQRcEQegiiKALgiB0EUTQBUEQugjHVAk64dhAUZR09BJjoBdmfsRx/FX0RE2oqtquXYOKogxCL/6wwpGlE0VRFgJXAmMcqVoFoUMQQRe6OlcpijIXPfXrRV5obxDwoOPfK7zQniB4DYlDF7ocThZ6FtAHOAW9fuRL6ClTU9Hdjfeh18WMBVRgjqqqWxVFeQhdtP+LXm0oBr0e6HrqLX+DKegVcK5EL5xwoaPtS1VV/cEnExSEZhAfutCV2Q6sQ3ezXIOeQrXUce5q9JqZm9CFfQywVFGUYKf7J6IXD+mOXrLsIHphFNBrhV6CXlbO4AT0VLNp6BV9BOGoIoIudHUWoFvNJ6KX6jM4y/F4h6qqzwNL0ZM69Xe65v9UVX0O3dJPdxR3WO04t0VV1XcapGR9SFXVuej5t9O9PhNBaAURdKGr8w5gB3KAr5o4rzV4dKbY8Wij/v9KSz5K5+sD2zZMQfAcEXShS+Mo/3YNcGODUnafOh7/z5FydTqOdKutNFnieJyoKMrFiqKEe3XAguABEuUidHlUVV3cxOGF6Iuj16Mvmq5HXxS1KorSUnOr0OtXnuy4r5dXBysIHiBRLoIgCF0EcbkIgiB0EUTQBUEQuggi6IIgCF0EEXRBEIQuggi6IAhCF0EEXRAEoYsggi4IgtBFEEEXBEHoIvw/CatJ1uSo4uIAAAAASUVORK5CYII=", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOY0lEQVR4nO3dd3xT5f4H8E/SdKTp3qWL1lKmyKiATIEylSGyQQQVVFQQB97rRNH7E7moOEFA6kAB4bKXIoKy97AIpbS0pS20pbtNm7Y5vz/CeXJORpukGR3f9+t1X/ckOU2eHJDz6fdZEo7jOBBCCCGEOIjU0Q0ghBBCSMtGYYQQQgghDkVhhBBCCCEORWGEEEIIIQ5FYYQQQgghDkVhhBBCCCEORWGEEEIIIQ5FYYQQQgghDkVhpBFSq9VIS0uDWq12dFOaBLpe5qHrZTq6Vuah62Ueul5aFEYIIYQQ4lAURgghhBDiUBRGCCGEEOJQFEYIIYQQ4lAURgghhBDiUBRGCCGEEOJQFEYIIYQQ4lAURgghhBDiUBRGCCGEEOJQFEYIIYQQ4lAURgghhBDiUBRGCCGEEOJQFEYIIYQQ4lAURoiemTNnYuzYsY5uBiGEkBaCwkgTtWjRInTp0sXRzSCEEOJgOTk5WLt2LfLz8x3dFItRGCGEEEKasDFjxuCJJ57AY4895uimWIzCiAPt3bsXffv2hY+PD/z9/fHwww/j+vXr7PWbN29i8uTJ8PPzg0KhQHx8PE6cOIHExES8++67uHDhAiQSCSQSCRITE3Hjxg1IJBKcP3+evUdRUREkEgkOHjwIAKitrcWTTz6J6OhoyOVytG3bFsuXL7fzNyeEEGINHMexf/P37duH27dvO7ZBFpI5ugG2EB8fj1u3btn9c0NCQnD69GmTzy8vL8dLL72Ee++9F+Xl5Xj77bfxyCOP4OzZsygvL8eYMWMQFhaG7du3IyQkBGfPnoVarcakSZPw999/Y+/evdi/fz8AwNvb26S/hGq1GuHh4di4cSMCAgJw9OhRzJkzB6GhoZg4caLF350QQoj9VVVVobq6GoAmmOzYsQNPPfWUg1tlvmYZRm7duoWsrCxHN6Nejz76qOjxmjVrEBQUhMuXL2Pnzp3Iy8vDqVOn4OfnBwCIjY1l53p4eEAmkyEkJMSsz3R2dsa7777LHkdHR+Po0aPYuHEjhRFCCGliSkpKRI+3bt1KYaSxMPcG7ajPvX79Ot566y0cP34c+fn5UKvVAICMjAxcvnwZXbt2ZUHEmlasWIHVq1cjPT0dSqUSKpWKBsMSQkgTpBtG9u/fj7KyMnh4eDioRZZplmHEnK4SRxo1ahQiIiKwatUqtGrVCmq1Gp06dYJKpYKbm5vZ7yeVaoYAcRzHnuPLd7yNGzdiwYIFWLZsGR544AF4enpi6dKlOHHiRMO+DCGEELvTDSNVVVX49ddfMW7cOAe1yDI0gNVB7ty5g3/++QdvvvkmBg8ejPbt26OwsJC93q5dO5w/fx4FBQUGf97FxQW1tbWi5wIDAwFopnnxhINZAeCvv/5C7969MXfuXHTt2hWxsbGiQbOEEEKaDt0wAgDbtm1zQEsahsKIg/j6+sLf3x/ffPMNUlJScODAAbz00kvs9VGjRiEkJARjx47FkSNHkJqais2bN+PYsWMAgNatWyMtLQ3nz59Hfn4+qqqqIJfL0atXL3z44Ye4fPky/vzzT7z55puiz42NjcXp06exb98+JCcn46233sKpU6fs+t0JIYRYh6EwsnPnTtTU1DigNZajMOIgUqkU69evx5kzZ9CpUycsWLAAS5cuZa+7uLhg7969CAoKwsiRI3Hvvffiww8/hJOTEwDN4Nfhw4dj4MCBCAwMxM8//wwA+Pbbb1FdXY34+HjMnz8f77//vuhzn3nmGYwbNw6TJk1Cz549cefOHcydO9d+X5wQQojVCMMI31VfUFCAw4cPO6pJFpFwwgEGpFFQq9VIT09HVFQU+8tFjKPrZR66Xqaja2Ueul7mscb1+uqrr/Dcc88BAIYOHYpff/0VAPDiiy/ik08+sVpbbY3+thBCCCFNVHFxMTueMmUKZDLNvJRt27ahKdUaKIwQQgghTZSwmyYqKgq9evUCAKSlpRkcT9JYWRRGEhMT8dBDD6F///6YOnUqSktL2fMJCQkYNGgQli9fLkplSUlJmDJlCvr06YM5c+aIZnwQQgghxHzCwOHl5YWgoCD2mL83NwVmh5H169fj6NGjWL16NQ4dOoT33nsPLi4uOHz4MDZt2oTExERs3LgRhw8fxvbt2wEAKpUKCxcuxOTJk3HgwAF06tQJb7/9ttW/DCGEENKS6IYRT09P9rgphRGzFj2rra3F2rVrsWrVKoSGhgLQLlG+e/dujB8/HuHh4QCA6dOnY8+ePRgzZgzOnDkDuVyOMWPGAABmz56NhIQE5OTksPcRUqlUUKlU4obKZHBxcTH/GzZB/Eqs/P+TutH1Mg9dL9PRtTIPXS/zWON6CceMeHh4iFZeLS4ubhR/FqYMzjUrjOTm5qKqqgr79+/H+vXr4eHhgalTp2L8+PFIS0vDyJEj2blxcXH48ssvAQCpqamifVXkcjnCw8ORmppqMIzwgUdowoQJLW7vlMzMTEc3oUmh62Ueul6mo2tlHrpe5mnI9crLy2PHRUVFovCRkpKC4ODgBrXNGqKjo+s9x+wwUlZWhps3b2L79u3IysrC3Llz0bp1a1RUVIgSmUKhQEVFBQBAqVRCoVCI3kuhUECpVBr8nFmzZmHatGnihrawykhmZiYiIiJoepwJ6HqZh66X6ehamYeul3mscb34XgSZTIa4uDjWOwEA7u7uiIqKskpbbc2sMOLq6goAmDNnDtzc3HDPPfdg5MiROHLkCNzd3VFWVsbOLS8vh7u7OwBNJaS8vFz0XuXl5ZDL5QY/x8XFpcUEj7pIpVL6D9oMdL3MQ9fLdHStzEPXyzwNuV78mBEvLy84OTnBy8uLvVZeXt5k/hzMamVUVBScnZ0NvhYdHY2UlBT2ODk5GTExMQCAmJgY0WtKpRI3b95krxNCCCHEfMIwAqDJDmA1K4zI5XIMHjwYa9asgUqlwo0bN7Bnzx706dMHI0eOxObNm5GVlYX8/HysW7cOI0aMAAB0794dSqUSO3bsgEqlwpo1a9ChQweD40WI6RITE+Hj42Pzz9m6dStiY2Ph5OSEF1980eaf1xioVCrExsbiyJEjjm5Kvb744guMHj3a0c0ghDhAiwwjAPDaa6+hqKgICQkJeOGFF/DUU08hPj4effv2xbhx4zBjxgxMmDABffr0Yf9Auri44KOPPsK6deswcOBAXLhwAe+9957Vv0xLM2nSJCQnJ9v8c55++mmMHz8emZmZWLx4sc0/z1YWLVqELl26mHTuN998g6ioKPTp04c9J5FIsHXrVva4uroakydPRmhoKC5evGhRm+bPn4/u3bvD1dXVYNsOHjyIMWPGIDQ0FAqFAl26dMG6detE58yePRunTp1qcntREEIaRqVSobKyEkDTDyNmjRkBNF9UuKGb0KxZszBr1iyDr3Xs2BHr16839+NIHeRyudFxN9ZSVlaG3NxcDBs2DK1atbL4fVQqVZMaB/T5559j0aJFRl+vqKjAo48+iuTkZBw+fBj33HOPRZ/DcRyeeOIJnDhxwmCgOXr0KDp37ozXXnsNwcHB2LVrF2bMmAEvLy+MGjUKgGYs19SpU/H555+jb9++FrWDENL0CNcY8fb2BtB0w0jTGNnSDD344IOYN28eFi5cCD8/P4SEhOjd/D755BPce++9UCgUiIiIwNy5c0WDhIXdNFevXoVEIsGVK1dE7/Hxxx+jdevWbDXcy5cvY+TIkfDw8EBwcDAee+wx5OfnG2zjwYMH2V/sQYMGQSKR4ODBgwCAzZs3o2PHjnB1dUXr1q2xbNky0c+2bt0a77//PmbOnAlvb2/Mnj0bgObm2r9/f8jlckRERGDevHmiwc1VVVVYuHAhIiIi4OrqijZt2mDNmjUANOvcPPnkk4iOjoZcLkfbtm2xfPlyvTb36NEDCoUCPj4+6NOnD9LT05GYmIh3330XFy5cgEQigUQiQWJiosHvffbsWaSkpOChhx4y+HpRURGGDh2KrKysBgURAPjss8/w3HPPGR0/9frrr2Px4sXo3bs37rnnHsybNw/Dhw/Hli1bROeNHj0aW7duNTpDjRDS/OgueAY03TBidmWkKYifrcatAvt/bogfcHqV6fnuu+++w0svvYQTJ07g2LFjmDlzJvr06YPBgwcD0Iyw/uyzz9C6dWukpaVh7ty5WLhwIb766iu992rbti26d++OdevWibpSfvrpJ0ydOhUSiQQ5OTkYMGAAZs+ejY8//hhKpRKvvfYaJk6ciAMHDui9Z+/evXH16lW0bdsWmzdvRu/eveHn54czZ85g4sSJWLRoESZNmoSjR49i7ty58Pf3x8yZM9nPL126FG+99RbefPNNAMClS5cwbNgwLF68GGvWrEFeXh6ef/55PP/881i7di0AYMaMGTh27Bg+++wz3HfffUhLS2NhSa1WIzw8HBs3bkRAQACOHj2KOXPmIDg4GD179kRNTQ3Gjh2L2bNn4+eff4ZKpcLJkychkUgwadIk/P3339i7dy/2798PQPubhK4///wTcXFxolHpvFu3bmHAgAFQKBQ4dOgQfH19Ra+PGDECf/31l9E/cwCiQGmJ4uJitG/fXvRcfHw8qqurcfLkSQwYMKBB708IaRoojDRytwqArLz6z3O0zp0745133gEAtGnTBl988QV+//13Fkbmz5/PpmVFR0dj8eLFePbZZw2GEQCYNm0avvjiCxZGkpOTcebMGXz//fcAgK+//hrdunXDf/7zH/Yz3377LSIiIpCcnIy4uDjR+7m4uLB9DvjqDaCptgwePBhvvfUWAM0Cd5cvX8bSpUtFYWTQoEF45ZVX2OMZM2Zg6tSpbBBsmzZt8Nlnn2HAgAH4+uuvkZGRgY0bN+K3335DQkICAIgqBs7Oznj33XfZ4+joaBw9ehS//PILevbsiZKSEhQXF+Phhx9m1QrhTdvDwwMymYx9D2Nu3LhhtEtq/vz5iImJwbFjx9jUdaHVq1fbtDqxadMmnDp1CitXrhQ9z1eCbty4QWGEkBaCwkgjF+LXND63c+fOosehoaHIzc1lj//44w98+OGHuHz5MkpKSlBTU4PKykqUl5frLSIHAJMnT8arr76K48ePo1evXli3bh26dOmCDh06AADOnDmDP/74Q7Q4He/69et6YcSYf/75hy3tz+vTpw8+/fRT1NbWwsnJCYDmt3WhM2fOICUlRTQAk+M4qNVqpKWl4dKlS3BycqrzZrpixQqsXr0a6enpUCqVUKlUbOCnn58fZs6ciWHDhmHIkCFISEjAxIkTzZ61pVQq4ebmZvC1UaNGYcuWLVi5ciUWLFig93pYWJhZn2WOgwcPYubMmVi1ahU6duyo97pcLmcLDRJCmj8KI42cOV0ljqS7ZotEImFL+WZlZeHhhx/GM888g8WLF8PPzw+HDx/Gk08+ierqaoPvFxoaioEDB+Knn35Cr1698PPPP+Ppp59mr6vVaowaNQpLliwx+LOm4jgOEolE7zlduoFJrVbj6aefxrx58/TOjYyMFK1FY8jGjRuxYMECLFu2DA888AAbTH3ixAl2ztq1azFv3jzs3bsXGzZswJtvvonffvuNbattioCAAFy6dMnga9OnT8fo0aPxxBNPoLa2VlT5AWzXTXPo0CGMGjUKH3/8MWbMmGHwnIKCAgQGBpr93oSQpslQGJHJZHBzc0NlZSWFEdJwFy9eRE1NDZYtW8a6ajZu3Fjvz02bNg2vvfYapkyZguvXr2Py5MnstW7dumHz5s1o3bo1ZDLL/+g7dOigN4306NGjiIuLY1URQ7p164akpCTRPkVC9957L9RqNQ4dOsS6aYT++usv9O7dG3PnzmXPXb9+Xe+8rl27omvXrvj3v/+NBx54gIUzFxcX1NbW1vv9unbtiq+//tpg6AI03U1OTk54/PHHoVarsXDhQvaaLbppDh48iIcffhhLlizBnDlzDJ5z/fp1VFZWomvXrlb9bEJI42UojACa6khlZWWDx6fZU9MoIbRAUVFRqKmpweeff47U1FT88MMPWLFiRb0/N27cOJSUlODZZ5/FwIEDRd0Gzz33HAoKCjBlyhScPHkSqamp+PXXX9lv+aZ6+eWX8fvvv2Px4sVITk7Gd999hy+++EKvSqDrtddew7Fjx/Dcc8/h/PnzuHbtGrZv344XXngBgGYGzuOPP44nnngCW7duRVpaGg4ePMhCWGxsLE6fPo19+/YhOTkZb731Fk6dOsXePy0tDf/+979x7NgxpKen49dff0VycjIbN8IPBD5//jzy8/NRVVVlsJ0DBw5EeXk5kpKSjH6XadOm4YcffsDrr7+ODz/8kD0fFhaG2NjYOv8nlJKSgvPnz+PWrVtQKpU4f/48zp8/z/abOHjwIB566CHMmzcPjz76KG7duoVbt26hoEA8Qvuvv/5CTExMg2b2EEKalrrCCNC0umnAEYcYMGAAN3/+fNFzY8aM4R5//HGutraWS01N5ZYtW8aFhoZycrmcGzZsGPf9999zALjCwkKO4zhu7dq1nLe3t957T5gwgQPAffvtt3qvJScnc4888gjn4+PDyeVyrl27dtyLL77IqdVqg+0sLCzkAHB//PGH6PlNmzZxHTp04JydnbnIyEhu6dKlotejoqK4Tz75RO/9Tp48yQ0ZMoTz8PDgFAoF17lzZ+6DDz5gryuVSm7BggVcaGgo5+LiwsXGxrLvUVlZyc2cOZPz9vbmfHx8uGeffZb717/+xd13331camoql52dzY0dO5b9bFRUFPf2229ztbW17OcfffRRzsfHhwPArV271uB35jiOmzx5Mvevf/1L9BwAbsuWLaLnNmzYwMlkMtF3MMeAAQM4AHr/S0tL4ziO4x5//HGDrw8YMED0PkOHDuX+7//+z6TP5P9+8deFGEfXyjx0vczT0Ov1xhtvsH8TfvvtN/Z8586dOQCcq6urtZpqcxKOM9DZTxxKrVYjPT0dUVFRTWaTI0eyxfW6dOkSEhISkJKSIhoQ1hj9/fffGDx4MJKTk41OVxaiv1+mo2tlHrpe5mno9Zo3bx4+//xzAMCJEyfQo0cPAEDfvn3ZVhYqlcronnKNCf1tIcSAe++9Fx999BFu3Ljh6KbUKzs7G99//71JQYQQ0nwUFxezY+F//01xRg0NYCXEiMcff9zRTTDJ0KFDHd0EQogD1DdmBNCEET8/B613YQaqjBBCCCFNkKlhpCmgMEIIIYQ0QXwYkUqlohWhKYwQQgghxC74MOLl5SVaE4nCCCGEEELsQhhGhCiMEEIIIcQuKIwQQgghxGFqamrYxpgURgghhBBid8KQQWGEEEIIaYGKi4vxzjvvYO/evQ75fGPTeoGmGUZo0TNCCCHETHPnzsVPP/0EV1dX3Lp1Cz4+Pnb9fGEY0V19uSmGEaqMEEIIIWa4ceMG1q9fDwCoqqpCVlaW3dsgXAq+OVRGKIwQQgghZli+fDnUajV77IgbvqndNGVlZXZrU0NQGCGEEEJMVFRUhNWrV4ueEwYDe2luY0YojBBCCCEmWrVqlV61obFVRhQKBTumMEIIIYQ0IyqVCsuXL9d7vrGFEScnJ7ZXDYURQgghpBnZuHEjG6wql8vZ840tjADarhoKI4QQQkgzsnLlSnY8d+5cdkxhpOEojBBCCCEmSElJAQCEhoZi5MiR7PnGNoAVEIcRjuPs1i5LURghhBBCTFBUVAQACAgIcPiMFVPDSE1NDaqqquzWLktRGCGEEELqUVlZicrKSgCAr6+vKAA4OozorsAKNL3pvRRGCCGEkHrwVREA8PHxcfjNng8jEolENJWX5+j2mYvCCCGEEFKPusKII8aM8MvBe3p6QirVv5VTGCGEEEKaGd0w4uiFxfgAZGi8CEBhhBBCCGl2dMOIVCp16PRZCiOEEEJIC6MbRgDHreVRW1vLlqSnMEIIIYS0EI0pjNQ3rRegMEIIIYQ0O8Iw4uvrC8BxC4vl5+ez48DAQIPnUBghhBBCmpnCwkJ2rFsZ4TgO5eXldmuLMIwEBAQYPIfCCCGEENLMGOqmcdTCZ+aGEX58SWNGYYQQQgipR11jRoDGHUaoMkIIIYQ0AxRGbIvCCCGEEFIPPoxIJBLWPeOoVVgpjBBCCCEtEB9GvLy82PLrjbky4uHhwY4pjBBCCCHNAB9G+Gm9QOMewKpQKCCRSABQGCGEEEKaPI7j2NRefrwI4LjKSF5eHjv29/c3eI5EImHVEQojhBBCSBOnVCpRXV0NoHGEEb4y4uPjA2dnZ6PnOXLvHHNRGCGEEELqYGgmDeD4AazGumh4FEYIIYSQZsKUMGKvG35NTQ3rMjI1jJSVldl1uXpLUBghhBBC6mAsjDhiAGtBQQE7NjWMqNVqVFRU2LRdDUVhhBBCCKlDY6qMmDKThteU1hqhMEIIIYTUwdCOvQCFEWuiMEIIIYTUwdCOvYBjBrAKp/VSGCGEEEJaCGPdNM7OznB1dQVAlZGGojBCCCGk0VKr1fjqq6/w008/OawNxsIIoB3E2hjDiPD13Nxcm7XJGmSObgAhhBBizIoVK/Dcc88BANq1a4du3brZvQ11hRFPT0/k5eU5JIwEBgbWeW6rVq3YcXZ2ts3aZA1mV0bmzJmD3r17o1+/fujXrx/mzZvHXktMTERCQgIGDRqE5cuXi+Y1JyUlYcqUKejTpw/mzJmDnJwc63wDQgghzda3337LjpOTkx3ShvrCCNA4KyPNOowAwDvvvIO//voLf/31Fz777DMAwOHDh7Fp0yYkJiZi48aNOHz4MLZv3w4AUKlUWLhwISZPnowDBw6gU6dOePvtt633LQghhDQ7V69exZkzZ9hjR417MCWMqFQqVFVV2bwt5oSRsLAwdtzYw4jVuml2796N8ePHIzw8HAAwffp07NmzB2PGjMGZM2cgl8sxZswYAMDs2bORkJCAnJwchIaG6r2XSqWCSqUSN1Qmg4uLi7Wa26ip1WrR/5O60fUyD10v09G1Mo+1r9e6detEj0tLSx3yZ8GHEalUCoVCIWqDcJBocXFxvQFByJLrxYcRqVQKLy+vOn82JCSEHWdnZzvs77FUWn/dw6IwsnTpUixduhRxcXFYsGAB2rRpg7S0NIwcOZKdExcXhy+//BIAkJqaitjYWPaaXC5HeHg4UlNTDYaRtWvXYtWqVaLnJkyYgIkTJ1rS3CYrMzPT0U1oUuh6mYeul+noWpnHGteL4zh8//33eu+bnp7e4Pc2Fz+d1svLCxkZGaLXnJyc2PGVK1cQERFh9vubc734IQ6+vr4m/ZxCoUB5eTnS09Mdcu0AIDo6ut5zzA4j8+bNQ0xMDKRSKTZs2ID58+dj06ZNqKioYNsVA5oLwC8/q1QqoVAoRO+jUCigVCoNfsasWbMwbdo0cUNbWGUkMzMTERERJiXKlo6ul3noepmOrpV5rHm9Tp48qXfzlMlkiIqKatD7WqKsrAwA4Ofnp/f5wcHB7NjLy8us9llyvfgqTVBQkEmfFRYWhuTkZOTm5jrk2pnK7DDSqVMndvz4449j+/btSEpKgru7O/sDA4Dy8nK4u7sD0FRCysvLRe9TXl4OuVxu8DNcXFxaTPCoi1QqpX8AzUDXyzx0vUxH18o81rhe69ev13uurKzM7n8OHMexAODj46P3+cL9acrLyy1qn6nXS6lUsntpQECAST/TqlUrJCcno7S0FOXl5aJupcakwX+q/MWIjo5GSkoKez45ORkxMTEAgJiYGNFrSqUSN2/eZK8TQgghvJqaGoNhxBEDWMvLy1FbWwtAf/AqYN9VWO/cucOOTR2bIpxR05hnsZoVRkpLS3H8+HGoVCpUV1dj3bp1KCkpQfv27TFy5Ehs3rwZWVlZyM/Px7p16zBixAgAQPfu3aFUKrFjxw6oVCqsWbMGHTp0MDhehBBCSMv2xx9/4Pbt2wCA3r17s+eF1Xd7qWsmDWDfnXvNmUnDayrTe83qpqmpqcGXX36JGzduwNnZGXFxcVi+fDk8PDzQt29fXLt2DTNmzIBarcbYsWMxevRoAJpul48++giLFy/Ghx9+iA4dOuC9996zyRcihBDStG3atIkdP/300zh69CgAx1RG6gsj9lxyncLIXb6+vvjhhx+Mvj5r1izMmjXL4GsdO3Y0WHYjhBBChK5fv86OR48eDYlEAo7jHF4ZEe7Yy3NUGKlv9VVeUwkjNCKLEEJIo8Lvo+Lm5gZvb282G7OxV0ZsPWbEnB17eRRGCCGEEAvwYSQoKAgSiYTd8B1RGSksLGTH1E1jOxRGCCGENBpqtZpVAIKCggCArWHVGCsjTWkAa1ZWltXbZC0URgghhDQaBQUFbNlyPowIKyPCDVjtoakPYJXL5WysC1VGCCGEEBPwXTSAfmWkpqbGLpvRCTX1MAJoqyPZ2dl2D3OmojBCCCGk0TAURux5w9fVmAaw8mHExcVFtP1KffgwUllZKfo+jQmFEUIIIY2GMIzw01eFN157D2KtL4zI5XK2Erm9KiMBAQGQSCQm/1xTGMRKYYQQQkij0ZgrI4bWGZFIJGwQqy3bxnEcG9hrThcNQGGEEEIIMUt9YcRRlRGZTMY2f9XFt8+WYaS0tBTV1dUATF/wjEdhhBBCCDGDcGEv3QGsgP0rI/w6Iz4+Pka7RuwRRiwdvApQGCGEEELM0lgrI4bGi/D49gl3+LU2S1Zf5TWFtUYojBBCCGk06hvAas/KSE1NDQsjhsaL8OwRlnbu3MmOIyMjzfpZqowQQgghZuDDiLe3N1xdXQE4rjKSm5vL1uUIDQ01ep6tV2GtrKzEihUrAGjGrkybNs2snxe2ncIIIYSQRqm8vByrV69G37590bNnT6SnpzusLcJ9aXILOSxZx+HtLQ8BHXcBUje7VkZu3brFjkNCQthxyk0OC79Wo/10NeZ+rLb5bJ+ffvqJjRmZMGECwsLCDJ6XlMZh3nI12k5T481Vava8s7Mz6/JqrGFE5ugGEEIIcYyKigq8+eabWLNmjWjBrh9//BFvvPGG3dujUqk03SLOwSgM/hzhj3KorgEAb8BvOOCT4LAwEhoaikvXObz0JYf9p7XnXMkAHm+v7Taxdvs4jsOnn37KHs+fP1/vnONJHF79msPhi9rn/m8d8No0Dp7umkG3rVq1Qm5uLnJycqBWq9naKI1F42oNIYQQu1mzZg0++eQTvZVDc3JyHNIeNkgz6j3kS4bcDSICLqF27aYRXoeQkBA8uUQcRHici7ZqYu1VWA8ePIhLly4BAHr16oWePXvqnTP1PXEQAQC1GsjVbjjMxo3U1NSIZuY0FhRGCCGkhbp8+TI7Hj58ODt21M2KDV51b8+eGy689zr7O6wyEhwcgst3e6+8FEDvToITZf7s0Nrtq68qoqzikHY3MwX6AN3bal/LL9YeN/ZBrBRGCCGkhcrMzGTHwpuew8OIawQAzc31jccEa3vIAuxaGRGGEQ+fcJQrNcc92gNTEwTtctZOteXXJbGG1NRU7NixAwAQFhaGRx99VO+cm9rJRxjcHRjVW9suCiOEEEIavZs3bwLQzNCIjY2Fs7MzAEeHESngqrlxRgQBAd6CE5wD7FoZEXbTqJ21N/PwQHG7JM7aFVGFU5Mb6vfff2ezeZ555hn25yN0U7v8iN71yi/SHgtn1DiqG64uFEYIIaSF4isjYWFhcHJyYut6ODSMuIQAEs3civBATXWEcXZcZaRSra1+RASJ21Uj1T6wZhgRzmqKj483eE6m4OPCAyWidgkrI/7+2q4ka1ZvrIXCCCGEtEAVFRUoKCgAAEREaLpF+JU98/Pz2W/k9pSXl8e6aADNTd/HA2ATP+w8ZoSvIPj6+uJWobYqER4oQYCP9jyVWju115phJCMjgx0bW+hMGEb0KiPF2j9DPz8/dsz/uTcmFEYIIaQF4rtoACA8PByANoxUVVWhvLzc7m3Kzc0FXMO17QqUwMlJAj/+Xm/HMSMcx7HKSEhICG7maW/sujf9imrtBnq2CiN8YNQlbFd4IEQhSVgZEa4gS2GEEEJIoyAMI7qVEUC8F4q9aLpptGEkQrNOl/bGb8cxI2VlZaioqACgGW+hW4Hw1y66iuJyZzaewxbdNL6+vqKF1YTqroxoj6kyQgghpNERzqTRrYwAjhk3olcZ4cOIz90nZF4oKauyS1t01xgRDhQNDwRcXSTwvFsQySvWbupnrTBSW1vLAmNUVJTR8/h2OcuAIF9xSMor0h5TGCGEENLo1FcZcVwYEY8ZAcS/7VfVeqCmRnc1NOvTXQqer0B4yAFvD3G78gVhJC8vzyrjbW7dusW+Z10b4/HtCgsApFKJKCQJKyOenp5wcnICQANYCSGENBKNrTLCcdzdMKLddyXsbnN0p/faY9yIuDISyioQ4YGARCIRtaugBAgICAYg3um3IUwZvFpRyaHg7oKvfBVJ2C5hGJFIJKw6QpURQgghjYKhygg/tRewfxgpLy+HUqlklZEgX01XCOCYMCKsjHj6RqKiUnMcYeCmz3GAd0Br9rw1umpMCSO6a4zotqugBKit1Z9RQ2GEEEJIo8BXRoQ7ujqyMqK5gTsBLprFucK1uQgB3uJVWO0xiFUYRpzctWFAVIHw0R57+GjHddgtjIjWGBG0SxCSCgWXig8jJSUlqK6ubnAbrYnCCCGEtEB8ZSQsLIzt4OrwMCJY8Ez4m7544TN/u3fTVEu1q5eK2iWo2Lh5agfeWiOMCBc8M22NEW1gM7bwmXB6rzW6kqyJwgghhLQwhhY8Axw7tVd3Jo2hbgcAdpveK6yMKNXamSjhgdqbfoCP9lgm1+7ca+3KiLHZNPV10wBNZ3ovhRFCCGlhDC14BoiXDLd3ZUR39VXRTd+BY0acnZ1RUK5gzxu76UtcrLs/DR9GnJ2dERISYvCczFzxgmesXT6GN8sThpHGNqOGwgghhLQwwpk0wsqIXC6HQqG58Tqkm8ZYZcRHcKKdxozw3TQhISH1js0AALVU2wVizTASHh7OutF06S54ZqhdVBkhhBDSKBmrjADi/WnsSXf1VWM3fXt009TU1LBuqtDQUJO6Q6o47YOGhpHS0lJWuahrjRHhgmfCcSLCdjWVhc8ojBBCSAtjrDICaKf33rlzB2q12m5tMrbgGQB4ugNO0rttsUM3TW5uLlu4THfBMy9tj43R/WkaOt5G+OdjyoJn4YGaBc8MtSu/qGlslkdhhBBCWhhTKiNqtdquMy50FzxrpR1LC4lEAm93leaBHSojwsGrwcHapeAjgrQLngHi7qOiMid4eGiWZm1oZUQ4k8bY4NVyJcem7QqrSAB10xBCCGkC6qqMOGp6b35+PquMBPtpFzzj+XrUag6cA1BaatvKiDCM+ATGQHl3Oxzdm76vB8Bnk3wr7k/TkAXPAPN37t2+fTtOnDgh+t72RmGEEEJaGOGCZ8JVVwHHTe+9U1BscMEznp/n3e4GqRsKS1Q2bYtwjREXj2h2rHvTl8kk8L27ma4wjNy5c6dB++eYG0Z0r5efpzgksecNzKaprKzEmDFj0KtXLzzyyCMWt7mhKIwQQkgLw3fTGJqp4ajKyJ1SF0Ci2chN96YPAIG+2krJnRKJ/glWJKwQcMLpxoba5aP5//xi6y2nb0oYMbbgGQA4OUng56VtF89QN42wy66u8Sm2RmGEEEJakPLycvZbse54EcAxYaS6uhoVNdouBEOVkWBf7e2qsNTJpu0RhpEaaTA71r3pA9rxGSXlgH+gdqXWhnTVCMOIbjcaTzTd2EBIMrRZno+PDzvmw0hdXXb2RGGEEEJaEEMb5Ak5IowUFhbqzKTRv+mHBDiz42Kls97r1iTspimvEa6+qn+ucLCop6919qfhB7D6+fmxQbG6hAueGaokCUOSqlpzrkwmg7e35gUKI4QQQhymvpuPI3buLSgoEM2kMXRzDfGXseNSpatN2yOsjBQptWGgrps+ALh5aq+npWGktraWBUZjM2mAugew6rbLUFcNhRFCCCEOU9e0XqBxVEYMVSACBUucl6vkNm0PXxnx9fVFdr72NllfZcTZveHdNDk5Oait1cwcMmWNERdnnUXhDLTLWBhRq9UURgghhNhffTcfR4QRTWXE8IJnPOHNVVmj0D/BSjiOY5UR4YJnnu6At4ehMSPa56Qu2oZbOhPJlMGrgPEFz7Tt0h7nF2mP+em9arUapaWlJi+wZmsURgghpAXJyspix2FhYXqvC2dc2Gtqb2FhIeDSij0WLnjGEy29Xmt4HIU1lJWVoaKiAgAQEhKKrLt5LMxAmwDxmh5qJ+21s7QyYkoYqajkUFRWT7sEIamu6b3857m4uOhN87YnCiOEENKCCKsdwcHBeq/LZDL227NdKyPOmruqwrUKLs51/6ZfDW+2XLu1CQevBgZHsgXPgv0Mny9ulxc7tmUYEYYLo+3yMXy+7vRevjJS14Z89kBhhBBCWpA7d+6wY39/f4Pn2HuzvIKCAkCmaYu3u+HFwkQ79zr7s+qFtf3999/sODisPTv29zJ0tu7+NNruo/rCSH5+Pr7++mvcuHFD9HxaWho7NhZG7gjChSntMhZG0tPTUVysedGR40UACiOEENKi8GHE1dUVcrnhgaB8GCkuLkZ1dbXt21RQBMh8AAA+HoYrHnJXCZyg1DyQ2W6zvNOnT7Pj1m26s2M/Izd94W65BaUSFvDqCyPTp0/H888/j1mzZomqPP/88w87btu2rcGfvVOiPTalXfnFhjfLu3DhAjumMEIIIcRu+DDi7+8v2vRNSDh2QFhJsZVb+VWARHM7Eo510OXmdDeA2HCzvDNnzrDj0Mh72bFJFYgi0/anuXz5Mvbt2wdAU50Qds0kJSVpPjs0VLSXjJC4MmL4eplSGRGGEUcOXgUojBBCiM1VVVVhzJgxGDhwoGhqrb1xHCcKI8bYe0ZNbmEtOw7ykxk9T+58t2vG2R8lJdavjHAcx8JIYGAgpC7a6+BvJCR5KQDZ3QVhhfvTCAfC6vr6669Fj8+dOwdAM2CYv94dOnQw2k5hZcTfwLRewPhsGqqMEEJIC7V3715s374dBw8exOzZs202+LI+FRUVqKrSjMhsTGGkQPCbe2iAi9HzPFwrNQcSGXLylFZvR0ZGBgtr3bt3R0GpNoAYq4xIJBJ2488rEleVDM1GKisrw3fffSd6jg8Fly9fZs+ZHEaMtEsYkvKM7NwrHJ9CYYQQQpq5lJQUdrx371788ssvDmmHKYNXAfvv3FtYpr0VBfoavy15yrW79WbnVVm9HcIumu7du5s0UBQQ7wMTGFj3WiM//fSTXhcTXxnhu2gAoGPHjkY/745gDIgpIclYZUSIwgghhDRz/F4jvBdffJHNYrAnS8KIPSojJYK9Zuq66fsIZtrculNr/EQL6YWREsFN30h3CKCd6VOpAnwDtGu36I4b4TgOX375JXssk2m6pM6fPw/AwspIXe0ShCS+GkdhhBBCWijd6Zs5OTl466237N6OxhhGOI5DeZWbtl11hBFfT20AyS1oeBg5ceIErl69yh7rhxHtuaZURgBA7mV8f5pjx47h4sWLAICePXuid+/eADSr4t65c8f0MGJqxcZH8/+VKqDibg+XoUGxHh4eoh19HYHCCCGE2BhfGZHJZHB3dwcAfPHFF6JppPbQGMNIWVkZ1FIf9tiU3/QBIL/E+Hmm2LZtG3r16oWuXbvi77//Bsdx7M8jICAAERER4pu+ie1yVWhXkhUuoAaIB67OnTsX9913H3t8/vx51k0TFBRU558PH5IkEsDX07R28TNq5HK53pTuiIgIozOr7IXCCCGE2BhfGYmKisI777wDQFMR+Oyzz+zajsYYRgoLCwFnbVvq+k0/SLBZXkFJw25fR44cAQAolUosWrRIb/CqRCJBgWBoh18dN33hmh4ugjAiXHq/pqYGmzZt0ryXnx8mTpyILl26sNf379/PKil1jRcBgIK7YcTHA3ByMh4ixGuNaI91u2oc3UUDNCCMXLx4Effffz8SExPZc4mJiUhISMCgQYOwfPly0YjxpKQkTJkyBX369MGcOXP0EiMhhDRHRUVFKCnR3D1at26NF154gb2Wmppq17aYGkbqmxFiTZql4AVhpI4KRGigdmzJndKGhZGCggJ2vHnzZtEMl/j4eM1n3L2Be3sAMpnxm75wbRSJi3aJfeE07pycHFRWavpK+vXrBzc3N3Tt2pW9/tNPP7HjurpoAG1lpK7gpmmX9jivSHvcbMKIWq3Gxx9/LLpghw8fxqZNm5CYmIiNGzfi8OHD2L59OwBApVJh4cKFmDx5Mg4cOIBOnTrh7bffts43IISQRkw4XiQqKgpyuZz1z9v7lzJTw4i3tzecnTU3fluHkcLCQkCmvTnWVYFo01o73uFOccO6FQoLC0WPFy9ezI67d9esvGrqTV9YgaiGN5ycNHNqhWFEeMzf/Nu3bw8XF81UZuHCZ3WFkdpa7SZ5xlZf1bZLe42EYUR33IijFzwDAOOry9Thf//7Hzp16iRajnf37t0YP348wsPDAWiWut2zZw/GjBmDM2fOQC6XY8yYMQCA2bNnIyEhATk5OQgNDdV7f5VKBZVKJXpOJpOxP7TmTq1Wi/6f1I2ul3noepnOGtdKuJZDVFQU1Go1WrVqhaKiIuTk5KC2ttZu/fXCMOLr61vn9woMDER2djZyc3NN/v6WXK/8/HxAFgsAcJLWQO4qg1pteB2WDm203UfFFa4N+nMRVkYATTcKr2vXrqiuVqPwbjeNv1fd30lcgZCgVatWyMzMRGZmJvs54Yyq8PBwqNVqyGQytGnTRjSlF9CEFGOfd6cY4Dsd/Mxo1+0Cjl1X3TASFhZm038PTNmAz+wwUlxcjJ9//hlr167Fxx9/zJ5PS0vDyJEj2eO4uDg2hSk1NRWxsbHsNblcjvDwcKSmphoMI2vXrsWqVatEz02YMAETJ040t7lNGr+bIjENXS/z0PUyXUOuFb+GBAAoFAqkp6ezyohSqcTff/8NL696fsW1EuFv5xUVFXpTjoW8vb2RnZ2NvLw83Lhxw6zAZM71SklJAZx7AgDcnZXIyCgweq5aDYALByROKFPJ62x/fW7dumXweT8/P6jValy6kgmOi2DtSk83vrx7dYUzAM1YkbSbpQgMDERmZiZyc3ORnJwMV1dXXLp0iZ3v6urK2t6hQwe9MOLp6Wn0u6XmyABopg+7OZUhPd34cv3qKjcAmm6jlIxipKcXAYDeL/YuLi4Nupb1iY6Orvccs8PIl19+iSlTpuj9x1NRUQEPDw/2WKFQsKVwlUolFAqF6HyFQgGl0vAKerNmzcK0adPEDW1hlZHMzExEREQ4dEvnpoKul3noepnOGtdKuMBV9+7dERUVhejoaBw9ehSA5t+2qKgoq7S3PsJ/czt37sy6EwwJCwvDP//8g+rqavj4+Jg09dOS6yWVStmOvT4e6nqvhYy7gxqJP6rhi8hIy2eB8JV9Pz8/ODk5se6o+Ph4tG7dGsmCPBUWLK+zXa7aWx8qajwRExODs2fPAgCcnZ0RFRWF8vJydk7Xrl1Zlaxjx46iRfACAgLQrVs3o5+VJRhUGxnqgagoD6PnlgpmP1epvREVpSmV6HbLxMfH2+3voDFmhZErV64gKSkJr732mt5r7u7uom6b8vJyNoVNLpeL/iD4143tGOni4tJigkddpFIp3SzMQNfLPHS9TNeQayX8jTM6OhpSqRStWmlnXNy+fbve2RPWwnfT+Pj4sDEhxvB7rPA/Z2yxLEPMuV65+WWAk+Ze4OfB1ftzbk6lKOP8AVkA7twpQFBQYJ3nG8N304SGhmLGjBnsvtajRw9IpVIUlnIANN0a/t51dzUE+mrPzS8GHhAMCM3OzsY999wjmlkTGRnJ3k93fEjHjh3r/CxhuwJ8JJBKjYexYD9xu/j31R0vFBUV5fB/C8wKI2fPnkVGRgbrjikrK4OTkxNu3ryJ6OhopKSkoG/fvgCA5ORkxMTEAABiYmKwZcsW9j5KpRI3b95krxNCSHPFhxEnJyeEhWnK68LuaXsOYjVlkzyeMIzk5uaiTZs2NmlTTr52fKC/T/1VDk95JcoqADi5IyUt1aIwUllZySr3fn5+eOGFF3Dq1Cnk5OTgmWeeAaC7/0vd7XKWSeDnxaGgBMgtBMLbhLPX+K4xYdcV//cAANq1aweJRMJmn5o6k0bTrjpPhb+XZi0SjtO0iycMlv7+/qxw4EhmhZFx48Zh6NCh7PGyZcsQERGBxx57DBcuXMCSJUswZMgQuLq6Yt26dayrpXv37lAqldixYweGDRuGNWvWoEOHDgbHixBCSHPCz6YJDw9ny38LKyP2CiO1tbUoKioCYFoYEU7v1V1J1JryBDv2BvsZ7zbi+XnUIufuZrj/pOSjd0/zP1M4k8bPzw9yuVxvvyBTVznlBfpAG0bC9cMI///BwcGiyr+HhwdiY2Nx7do1ACaEETPaJbsbku4UGw8jjWFaL2Dm1F43NzcEBASw/7m6usLd3R2enp7o27cvxo0bhxkzZmDChAno06cPRo8eDUDT7fLRRx9h3bp1GDhwIC5cuID33nvPJl+IEEIai9LSUtYdIOyTF/4ilp2dbZe2FBYWst++za2M2HJ6r3Axrrp27OUFCSaCXLtRZNFnCmfSGOt+MnX/F9YuH83/lymBwGDtDT4zMxM1NTUsdBq6+QsXP6u/MmLafjm67RLu3NsYw4hFU3t5ixYtEj2eNWsWZs2aZfDcjh07Yv369Q35OEIIaVKE40Vat27Njh3RTWPqGiM8e1VGisqlwN2taUJMCCOtAl2Au9vJ3MiqsOgzTQkjBcKbvomVEZ7cSxs8b968iZycHDZ1Vlg14T3xxBPYtm0b2rRpgz59+tTddjO6afh2/ZMOlCuBikoO7m4SUQBp27Zt/W9iBw0KI4QQQowThhFjlZHGGkbsVRkpqXBmYUS4kqkxrcO04xuyclV1nGmcTSojgoqNxCUQUqkUarUaN2/eFI0XMVSJGDp0KPLy8qBQKOqc4dTQduUVAVEhmqU33n//fVy4cAEvvvhi/W9iBxRGCCHERoSrrworIx4eHvDw8EBZWVmjDSP2qoyUVbmy47pWX+XFRmnvwLcLDS+OVh+zw4iZlZGCUhlCQkKQnZ2NmzdvitZ3MVQZAWDyWjPCMSOmXC9hu3ILNWEEAN544w2TPs9eaF4fIYTYiLHKCKAdxNpYw4g9KiPV1dVQqbXrZJjym35MuPZ8SzfLEw5g1V2NlGfqjr28IJ2l1/nQcevWLdEeRA0do8GHJBdnQGF4dQyddmmPhUvCNzYURgghxEaMjRkBtF01paWlojWabMXcMOLp6clmfdiqMlJUVMQWPANMq0AE+Wpv+iWVJtyNDTCnMuIsAzxMuekLMo1wRg3HcTh58iR7zVhlxFTC/XJMWfBNuD9NblGDPtqmKIwQQoiN8N00EolE7zdie48bMTeMSCQSVh2xVWWksLDQ5B17ecKbfjXnrbegpilMCiN3KyOm3/S1x3lFnCh0HDt2jB03uDIiaJcpdMeMNFYURgghxEb4ykirVq30VpVu7GEE0I4bycvLs8lGagUFBSbv2Mvz8QAkuLs2iUugaGVTsz6X/8x6KiOmBCRApzJSJK6A8PvgSCQS0Roz5qqo5FCpMq9d4jEjlo2xsQcKI4QQYgNKpRK3b98GoD9eBLB/GBHegE0NI3xlRLhgmtXbdDeMuMoqIZPVX4GQSiVwd75bDXG2TRhRVnFQVmmOTa1AiCsjhisguguemcvchdgAqowQQkiLlpGRwY51x4sA9l+FtSGVEcA240aE3TQerlUm/5yX/G55wDkIN29aHkacnJwMzmKx5KbPL70O6K/CyrPW4FXA0spIgz7epiiMEEKIDQin9TaGyggfRlxcXEzei8TWM2ry7xQCMs2v7t7u1Sb/XID33S4jqStS081vFx9GfH19DY4HEd70/UwMI05OEhZchLNphKw1eBUwPST5eQL8HnjCVVgbGwojhBBiA3VN6wXsvyS8cJM8UwZkAravjGTnVgASzW3I18P08QzBftpbV0pGSR1nGsaHkfoGrwKm3/QBbZdIbhEMjg2x1uBVTbtM+zMUhiSqjBBCSAvDD1oExLu08hxVGTG1iwawfWXkVr62GmLKjr28iGDtQmkZOUqzPrOmpgbFxZq7utGl4Eu1x/4mrArL47tEKiqB6lpnBAcHi15vaGVE3C7Tf44PSXlFYPsTNTYURgghxAb4wasA9G5KAODt7Q03N8066LYOIxUVFaisrARgXhixdWUkt6CGHQf71r9jLy8qTMGOc/Jr6jhTn3Agrq0qI4DhrhrrVkZM/zk+JCmrNHvUNEYURgghxAaEYURYYeAJp3naOoxYMngVsH1lRDgGwpRN8nih/trgYu4MEVvsS8MLFJxrKIw0fMyItqph6lgWoGmswkphhBBCbEBYSTAURgBtV01hYSGrXNiCpWHE5rNpyrS3oLBg01dTFc4QKa5wQU2N6dUR05aCN2/HXp5wddjcIv1KiKMrI3y7GiMKI4SQZqW2thZVVaZPE7UVvjLi6ekJudzwjdZe40Yaa2WkpMJZ+1lmdNMIu0M4WYCoClUfW1ZG6uqmaeiCZw1rl3jfnMaIwgghpNmorKzEfffdB19fX9ES3I7AVxIMjRfhNfYwolAo2LgWW1RGygU79lr6mz6cg8xa+MwWO/YaapfuWiMhISFwdnbW/yEziKYcm7BarbF2NUYURgghzcaRI0eQlJQEpVKJTz75xGHtqKqqYgMlm3IYscb+NDU1NZgzZw4mTZqEkpIS0fPKGu16J2b9pu8jeGDmKqzm7EsDNGRshnh/moaOFxG2y9sDJq1Wa7hdDW6GTVAYIYQ0G8L1Ovbt24fqatMX0rImU8aLAPZbhdXSMAJox43k5+dbtD/Nr7/+ilWrVmHjxo346KOP2PN//fUX1FJtv4Y5FQhvD8BJend/GudA3Lx50+i5FRUV+Prrr3HkyBEA5lVGvBSAsxk3fd0KhHDlXUOr8JpLuGOvOZrC/jQURgghzYbwhl5SUsJuQPYmDCNNuTICaMOUWq0W3chNlZqayo5/+uknts7F//73P8BZGwbMqYxIJBL4KO4OWq2nMrJkyRLMnTsXCQkJyM7ONm+TPDNv+rpjRqKiovD8888jLi4OCxYsMO/NdNTWcigstUK7GukqrBRGCCHNhu4Nfffu3Q5pR31rjPDstQqrNSojgGXjRoTfKy0tDcePH4darcaWLVsAmaYtzjIOHqZPptG0y/vub/jOgXXuT7N3714AmvFEe/bsqTeMqNWCm74ZAQkAfD0Bp7vjcPlZK59//jmuXr2KBx54wLw301FUBvDrlZnbLhozQgghdqQbRnbt2uWQdtS3xgjP2pWRZ599Fp06dcLx48dFz1uyYy+voTNqMm7mAR13AZ3/BFwjsG7dOpw6dUpTzbhbGfH3kpi8RD0vNFCmOZC6ICPb8K/7VVVVOH/+PHu8b98+7bVwjcKUJa0x9nU1yiq0XRfF5QDfG2VuBUIqlSDgblCwdGxGUhqHrk+qMX2xGtU12nYVWDioFhCHJBozQgghNqZ7Q798+bJowzp7MbWbxt/fn82waGgYSUtLw4oVK5CUlIQpU6agoqICgGb578zMTHaesbU1jGloZeTvrFDAbzjg3QdoswrrN2zAxo0bAakbIAsAYP5v+gAQ6i9jx1m5KoPnnD9/HiqV9rX9+/drA1XwYzh7TYZth4FFa7U3/UzBVzT3pg9oFz7LLbRs6fWV2zmcvwas+w34eIP2+Ya0SxiSqDJCCCE2ZuiG7oiuGlMrIxKJhFVHGhpGhN0hN27cwOLFiwEAiYmJuHjxIgCgTZs2kMlkBn/emIZWRnKLBJ/nOwR3JIPxxRdfAK3/Azhp+mba6+8jWH+7BJnqdoHhm/6JEydEjwsLC3H27FkAgItHa/b8p5uACykc1GoOCz7Xvle7KPOqNcJ2VaosW3o9S3CJ303kcCOHg6qawytfadvVvrUF7fLR/H9ecePcn4bCCCGk2eBv6K6u2vUrHB1G6qqMANqumry8vAbN/tENCv/973+xZ88ezJ8/X/ScuRpaGSks0wk/Mcug8hwBhGna5eYCLH7S/JtroGBjvXKVO8rLy/XO0e2uAjSL4gGATB4qeA54ZhmHzzcDBzRZBRFBwLxHzW5Wg1c7FXajKKuA5z/l8P73HM5d0zzXMRqYOdzydlWpgNIK83/e1iiMEEKahdLSUpSVlQEAevXqxW7yBw4cgFJp393BTO2mAcTjRoQ7/ZorPz9f9LimpgYPPfQQSks1ozFnzpyJ0aNHm/2+DamMKJVKVNYoxE+6hALtN7GH/zdH0qAKBADAOdBgZYmvjBiqBkldxRWr40nAgi+0FYO1/5bA26Nh7bJkfIZugNl1DHj/e82xzAn4/nUJ3Fzt3y5bozBCCGkWhDejVq1aYeTIkQA0N8SDBw/atS18ZcTFxQVeXnV38FtrEKswKDjdHa3Il+MjIyPx6aefWvS+DamM5OTkAM7an5fg7togEs2t54H2VZg33qJmiTalg3Og3mykvLw8Nq24R48eaNu2reh17u5MHqngLsj3XrzwKDC4u/k3fEBcsbFkfAYfFJwEq+Pz7XrrcQm6tbW0XdrjxjhuhMIIIaRZEN7IQ0ND8dBDD7HH9p5Vw4eR4ODgemeJ2CKMvPnmm6LXEhMT4e1twShRNCyMZGdnA84B7PGMgdrFyaRcOX5a5Aap1LKbq7gyEqQXRk6ePMmOe/bsiWHDholer5Fo3iAyCJgheCkuAvjwacvaBIhXOzX3pl9dw7FZM/FtgRE9ta/FtwP+Pd3iZiGogSHJ1iiMEEKaBd0wkpCQAOndX3sNjR2wldraWtZlUtfgVZ61VmEVhpHJkyfjtddeg5ubG/7zn/9g4MCBFr+vQqGAh4eHRe3ThBFNmHGS1mDlG1EIdTkF1BZj4diraB1q+U0/WLhEiEuoXhgRDl7t2bMnhg4dKnhViiq15jsF+gD/fU6CbnFAeCDw89sSuLtZp105d4yfZ4hwGfpgX+DrlyVoFwncEwb8+KbErNVg62yX+WvX2Zx5w6oJIaSR0g0jnp6eiIyMxI0bN5CSkgKO48xey8ISd+7cYcum1zdeBLBNZSQwMBAffvghPvzwQ4vfTygiIgL//PMPMjMzzbqOmjDSGwDgJVfB1cUF2ft7Qq1WQyqNb1CbwgIED1zDkZ19UvS6MIz06tWLTaOurq6+u76JJqgG+mi6Vs6sts7fjQhB/szM5QCY/r7C8SKBPkBUiAT//Oj4dtkDVUYIIc2CbhgBgNjYWABAcXGxaBVSWzJn8CpgvTDCV2OkUqnZa4nUJypKM/e2srJSb6BsXbKytN00fp7afW2k0obfelxdJAjyvrskvGuk6Nqp1WrWTRMcHIzIyEh4eHigb9++mhME41gCLOu9MipK8EeeYebkI2H3SZB1/wjF7bpt/DxHoTBCCGkWDIWRNm3asOeuXbtml3aYusYIz1pLwvOVEX9/f6vc7IUiIyPZcUZGhsFzqqursWbNGuzcuZM9l55VCEhdAADBvta/3USG3P3t3rUVbgoW6Lh27RrbNblnz56sksO6amTasopwYKc1+HsD8rszy8296QtnuQgHwlqDsDJCYYQQQmykrsoIAKSkpNilHeasMQJoulT42S/W6KYRDji1FmEYSU9PN/jZQ4YMwZw5czBv3jw2eykjRzululWQi9XbFd1KO+UkI1dbeRGOEerZUzsK9JlnnsHAgQPRsat2DI21b/oSiQSRd//Y02+bt8CYqDLiY9VmwcNdAj8vbbsaGwojhJBmgb+Ru7m5sZkjjggj5nbTODk5sfMsDSPl5eVsLRVbhxHdysjZs2cRHx+PQ4cOsed+/fVXAEBOnnYRt1YB1h+iGCn4bf9WoTbs6A5e5fn4+ODAgQN4fsEi9py1KyPCdpUrwTbdM0VekTa42KRdd/863szT7ALMu1PMOXxVVgojhJBmgb+Rh4aGsrK8oysjpnTTANpKzu3bt9kKoeYQjuOwZxg5efIk+vTpoxdQjh07BsC23Q4AEBmsfc9KdSBb4G3vGW8gPhkIexH333+/3s+J22X1ZrGbPiDuEln8HYd7Jqux/bDhG79wAKu1x4wA2pBUW6ud6aNWc4icwMFnJIeJ76iN/7CNURghhDR5lZWVKCzU1LiFYzBiYmJYMHHEmBFTKiOAts1qtdqi/V90Z9JYm7Ew8t///heVlZUANDNWwsLCAACnTp1CYWEhlDUe2nb5WL1Zops+XCOQnZ2Nmpoa3FDPAOT3QBL9f3B29dT7OdtXILQhiQ8j5UoOi9ZySM0G3lhlJIzYcACrpl3aY75dN/OAikqgpByorLL+Z5qKwgghpMkTLqMuDCNubm6IiIgA4JhuGnMrI4Blg1htHUbCw8NZqBOGkcuXLwPQrDT7xx9/oH///gA0q97u2bNHtOCZtWetAOIZInCNRHZ2Ni7/cx2c2z0AAE7igtNX9H9OWBmxdbv4m35yJnB3xjf+TgMKS/UDie3bJQhJd/+aXhUUtdpGwmEojBBCmjxDg1d5fFdNYWEhCgpsv9oTXxmRSqUICAio52yNhi58Jgwjpn6mOZydnVkb+QGstbW1rNoUGxsLNzc3PPDAA+xnNm3aJAojNq+MuEUhJycHvx9NAyTa8Sl/XdT/uXzB4mK2blf6bU3ouKIzCeno3/o/x1dGfDwAF2dbdGsJ2nU3vwvb1S7ScWuPUBghhDR5poQRwD7VET6MBAQEsFky9WnoWiO2rowA2q6a3NxcKJVK3LhxAyqVCgDQrl07ABCFEU1lRNsWW9z0/bwAVxm/1oimm+boefF6MocvGq9AOMsAL4Xeyw1mqDvkaoa4HX9dMNCuuyHJFtdKv113Q1K6th1UGSGEkAaoK4wI1xqxdRjhOI5105jaRQM0PIzYegArIB43cvPmTVy5ou3/4MNI586dIZfLAWjG8dg6jEgkEoT4agIRXCORlZWNpFTxAOCjSeKZI4A2jAT6wCar8oYL/gj47hDdysjhS+LHVSoOxZpNp20yXgTQCSN8N02m9rl2FEYIIcRyplZGbD2ItaSkBFVVmlGApg5eBZpWZQTQjBu5evUqe8zviCuTyXDfffdpf+huN41UwsFXfxypddrFj4NwcseNm6XIzHcXvV5cphmjweM4ThRGbMHVRYKQu3vB8JUR3TBy6op4wKitu44AIMRPUw0y1C5/byDABjOeTEVhhBDS5DWWbhpLpvUCjX8AK6BdEh7QhBFDlREA6Natm/aH7lZGfDzUcHKyzY0uNkK7vsjl1DKU1bbSO+ewYNxISTlQfbdnxxaDRHlRIZr/z7mjqXokZ4pfV1UDp7R5zqYLnvGkUglbiTXjNlBawYFfuLZthG0+01QURgghTV5dYSQmJoYd2zqMmLvgmfBcvrugMQ5gBUyrjABA165dtT90N4wE+druN+6YVtrBqsnplYC7JhhJoO2uOXxJ201j6zVGeHyXCMcBx5IA5d0qiHAY0RFBV42t1xjRbVdRGXBGEIYc2UUDUBghhDQD/A1cJpPp3Yzd3d0RHh4OwL6VEXPCiLOzM6toNCSM+Pj4wNnZ2eyfN4XukvB8ZSQkJISteAsIwohUDjhpRocG2WBfGtYu4WX2iAdkPgCANkE5UGiGr+Cvi9pl2e3RHQKIV4f99ZQ2DI3qrX1eOG7E1gvE1deutg6cSQNQGCGENAP8DTw4ONjgJnF8V01+fj7bQM0WLFljhMdXdG7dumX20tz8AFZbVUUAcRi5ePEi+67CqggA+Pn5IS4uzubTelm7hGHEdwg77BQjwQMdNcdZedqprHa76QvW9Pj1lPb5hx+QsMrH0UtA7d21R2y94Jm2XdpjYbuoMkIIIQ1QU1PDboy6XTQ8e40bsbQyAmjbXl1djTt37tRztlZ1dTULWLYaLwJoqi4eHpoVVc+ePcueF44X4T3wwAM2n0nDE1dGtONVenX2Rb/O2kDArzdi724aADibrD1uFwX0vVdzXFwOJN90vtsu264Kq22X9poI2+XIab0AhRFCSBN3+/ZtVkmwVxg5ffo0Fi5ciIsXtSMjOY4T3aQtDSOAeYNY7TGtF7i7G+3d6oiwcqNbGQE0S8MLw4gtB4pqptHeLS9ItLe07u0V7KYPaNcbsfUqpzxhd4iw0NUuEugrCEmnr7kCsM8AVkAckvh2yZyAGP1xv3ZFYYQQ0qTVNXiVZ+21RiZNmoSlS5eiZ8+e+PHHH8FxHF599VXs2LEDAKBQKESfaQpzVmHNyMjAhQsXANhnJg1POKOGx1dGams5HDgLfPCzLwYPHgIneYi2XTbsDnFxlsDbrUK/XVFAzw6aGy2gHZ9hrwpEVIj+cwHegL+3BP06a587nex2t13a52zaLgMZOTYMcJbRmBFCCLGY8MYtvKELWXOtkZKSEqSmpgLQLOz12GOPYcCAAVi2bBkATQVh5cqVokGdpjB1rZErV66gc+fO6NKlCzZt2mTXMCIcN8LjKyMzPuAw5CVgzV4v5JRHY+68t7Xt8rFpsxDkI97hzVlahVB/QCGXoFuc5rnLNzRBxF4DWP28AHc38XN8V0iXWLDBtaeuuoLjxLNpbFmxiTAwlMnRXTQAhRFCSBMn7NIwVhm555572HFDKyOZmZl6z/3111/seOXKlZg2bZrZ72tqGFm4cCGKizV31E8++cRu3TSAfhhxdXVl1ZLhPbW/Wf/8O+Dh21rbLh+bNkvvBhvuV8amSg8UzDT+3yH7VSAkEomoqwbQDhKVybTVkVuFMhy/rO2m8fPSvG4rCrkE/jphx9GDVwEKI4SQJu7mzZvsmN+hV5dCoWA3+4ZWRoS71nbr1g0ymXadi08//RSzZ8+26H1NCSOHDh1iXUEAcPToUZw8eZI9tuVsGkA/jLRp04btvzO2HyDXDH/AL38A2dqMZPMwck+YeDpz+9baW9ukQdob+7rftKuvSiSAn41WheVF6nSJCKfPCtv1835tSLLleBHWLp2Q5OhpvQCFEUJIEycMI/x6Iobw1ZG8vDyUlZVZ/HnCysjTTz+NQ4cOYdq0aVi3bh3mz59v8fvWN4BVrVbj1Vdf1Xt+zZo17NjelRHhTBpPdwlbQ+NOCbD1sPY8W4eR9jHi3e7u7+TFjru00f7m/9dF7V4s/l6w2aqwPN0wIqxAjOsPuN7NUD//DpQpNce2nNZrSrschcIIIaRJE4aDusJIdHQ0O05PT7f484SVkcjISPTu3Rs//vgjpk6davF7AvVXRjZu3IhTpzQLQwi/C99lA9h/AKvuTJqp2mU+2KZvgObGb0v3hMlEjztGax9LJBJMG6INHSXlmv+35bgMXlSwOOwIx2Z4KSR4+G54KyjRPm/r4KZpl/gxjRkhhJAG4isjCoUCPj4+Rs9r3bo1O75x44bFnycMP8a6hSzh6uoKPz/N7mq6YaSqqgr//ve/2eOvvvoKffr00XsPW4eRVq1aiRaV011jZNj9gI9CvGuul0KzcZwt1febvjAk8exx0xe2y1kGROsMaZqaoP8z9qmMaP88An0APy/qpiGEEItxHMfCSHh4eJ3bwVsrjAgrI9YMI4C2OpKTkyNay2PDhg2szQkJCRg2bJjBQbK2DiPOzs6iGUu6YcTFGRjRQzzN1t43fYkEaKNTIItpJUGvjuLn7N0uQ9NnR/QEvNzF4c3e7WoMXTQAhRFCSBNWXFyM8nJN3b2uLhpAHEbS0tKMn1gPPoz4+PjAy8u6/Q/8mIzKykrRaq7CxdReffVVSCQSTJgwQTR41t3dHe7u7lZtjyH8xoNSqVSz7LuOMb3KRY/tcXP19QS8NYvD4p5WgJurfiidliB+zh7tEi4k1qG1/uuuLsCI+8XhLciGa7Lw6muXI5gdRj744AMMGzYMAwYMwKRJk0RT2hITE5GQkIBBgwZh+fLlomSflJSEKVOmoE+fPpgzZ45Fm0ERQhqP9957D507d8Yff/zhsDaYOngVEI+zsLQyolar2WdauyoCGF8P5fr16+y4Q4cOADQzZ4YNG8aet3VVhPfGG2+gQ4cOWLx4scEwFh9XJZpqG2iHsRkSiQQfPi1Bu0jgg9mGb+YTB4l3zLVPBUKClyYC98YAC6cYbteYB+wf3rrFAbNGAl3bAPPHO76LBrAgjEybNg07duzAoUOH8Pbbb+Ott95CSUkJDh8+jE2bNiExMREbN27E4cOHsX37dgCASqXCwoULMXnyZBw4cACdOnXC22+/Xc8nEUIaq6KiIrz77ru4dOkSpk+fjooK/RUw7cHUwav86/x4B0vDSG5uLlQqFQDDC4A1lLGVYvkw4urqKuomEQ6atfW0Xt7QoUORlJSE119/3eDrUikwebD2cYCPXZqFZ8ZI8M+PUkwcZPjmGuQrwZB4Qbu87XMTXva8FBcTpejRwfDn9WhbhTDBH509xoxIJBJ8+y8pzq6Ron3rxhFGZPWfIiYsdUokEqhUKuTn52P37t0YP348+wdh+vTp2LNnD8aMGYMzZ85ALpdjzJgxAIDZs2cjISEBOTk5BhcpUqlU7D941lCZDC4uLuY2t0lSq9Wi/yd1o+tlHmtcr+vXr7Ofz87Oxscff2z05mRLwvEbYWFhdX4nJycnhIeHIyMjAzdu3DDp++teK2GIiYiIsPrfOb4LBNBURtRqNdRqNVvxlX+d/9xRo0YhICAA+fn56Ny5s8P/G+A/f/oQNT7ZKEVNLdA5pvH8tzlrBLD3hOb43hgOarV5uyNbm1qthlQKzBzB4YMfJHCWAW0jHN8uazO0k7Yus8MIAHz44YfYsWMHqqqqMGDAAMTExCAtLQ0jR45k58TFxeHLL78EAKSmporKj3K5HOHh4UhNTTUYRtauXYtVq1aJnpswYQImTpxoSXObLEMrPRLj6HqZpyHXi59iyluyZAmGDRtmt9/OeUlJSezYxcWl3im7oaGhyMjIwJ07d5CUlMR2oa0Pf62EYzc8PDwaNEXYELlczo4vXryI9PR05OTkoKpKs9x5aGio3md+9913OHHiBMaOHWv19ljK0ykT373qivTbzhjepQyNpFm4Pxr4bK5mXE1r34pG067HHsyAq8QDbcKqUVlahfRSR7fIuoRdpMZYFEb+9a9/4dVXX8Xp06dZKbGiokL0H7ZCoWClW6VSCYVCvCiNQqGAUqk0+P6zZs3SGyne0iojmZmZiIiIMClRtnR0vcxjjeul2y1TVlaGxMREfP7559ZoosmEi5d169bN4EZuQm3btsWJE5pfjdVqdb3n616ryspK9lrnzp3r/XlzhYaGwsnJCbW1tcjJyUFUVJSoGtOpUye9z4yKisLw4cOt2g5LCa9XVBT/d8vfoW3S9Zx1/8gahL9e90RH4I17Wva/XRaFEUBT8uzZsyd+/vlnxMTEwN3dXfQPQ3l5ORvZLZfL2Yh34evC3wKEXFxcWkzwqItUKqWbqxnoepmnIdfL0JiLb775BvPnzzc4w8JWsrKy2HFkZGS930f4G1pGRgbuu+8+kz6Hv1bCalLr1q2t/vfNzc0NUVFRSE1NxbVr1yCRSEQzf2JjY5vE33H6b9E8dL2sMLWXH10eHR0tGnCVnJzM+jdjYmJErymVSty8eVPUP0oIaTqEYWTOnDkAgJqaGrzxxht2bQc/s8XNzY0tGFaXhq41YqsFz4T4QaylpaXIy8sTzaQRbvhHSHNiVhipqKjAnj17UFFRgZqaGvz+++84c+YMunbtipEjR2Lz5s3IyspCfn4+1q1bhxEjRgAAunfvDqVSiR07dkClUmHNmjXo0KGD0R02CSGNG38jd3FxwX//+18EBWnmcu7YscOugxX5cFDfgmc8YWXEkrVG+AGzEokEYWFhZv+8KYTj61JSUiiMkBbBrG4aiUSCbdu2YcmSJeA4DhEREXj//fcRGxuL2NhYXLt2DTNmzIBarcbYsWMxevRoAJp/sD766CMsXrwYH374ITp06ID33nvPJl+IEGJbHMexG3lUVBQ8PT3xwAMPYNu2baiqqkJmZqbVx1IYUlJSgtJSzUg/U6sU1qqMtGrVCs7OzvWcbRljYUQikYjaT0hzYlYYkcvlWLFihdHXZ82ahVmzZhl8rWPHjli/fr15rSOENDoFBQVsfBh/cxSuj3Ht2jW7hBFzFjzjhYWFsQGi5oaRqqoq3Lp1C4DtumgA42EkIiICrq6uNvtcQhypZY+YIYSYTXgT57s9hINWk5OT7dIOS8KITCZjQcLcMCL8PFsseMYTBruTJ0+isLAQAHXRkOaNwgghxCzCm7ixyog9WBJGAG2AKiwsRHFxcZ3nlpaWshk7wsGrtgwjwlk6hw4dYs9TGCHNGYURQohZhAM/m2IYMXXcSHp6Ojp16oR+/frhq6++suluvUKurq6iDfN4FEZIc0ZhhBBiFkOVkVatWrF1hewVRiydZmtKGCkrK8Po0aNZ4Hn55ZexY8cO9rotKyOAeNxIXc8R0lxQGCGEmMXQmBGJRMKqI6mpqaipqbF5O2xVGVGr1Xjsscdw8eJF9pxKpcKmTZvYY1tWRgDDwYMqI6Q5ozBCCDEL303j5uaG4OBg9jwfRmpqaizeFdccfBhxcXExa0+c+tYaeeedd7B161YAgLe3t6gLimfryoihz6QwQpozCiOEEJNxHMeCRlRUlGihMXuPG+HDiKkLnvHqqoycOXMG77//PgDNEt0///wzvvjiC7i5ubFz3NzcbL4hoG5lJCAgAF5eXjb9TEIcicIIIcRk+fn5bJM83QW47Dm9t6ysDEVFRQDM66IBNONbZDLNEku6YUQ4e+Wdd97BsGHD0KZNGyxdupQ9HxkZaVb4sYRuGKGqCGnuKIwQQkxmaLwIz56VEeF4EXPHbzg5ObFuFt0wIpwxM2jQIHb87LPPYs6cOXB1dcW8efMsaLF5YmJiRIGHwghp7iiMENKEqNVqbNu2TbTxpD0ZmtbLc1QYMbcyAmiDVHFxMVtUDBCHEeG4EIlEgpUrV6K0tBTPPfecJU02i5ubm+h7URghzR2FEUKakKeffhpjx45F//79WXeJPRma1ssLDAxk4xqaShgBNLN/eHwYkUqlaNWqld7P2Wo/GkOE4Y7CCGnuKIwQ0kQcPHgQq1evBgDk5OTg77//tnsb6gojEomEjRtJT09HVVWVVT87PT0dH374IcaOHYtXX32VPW9JGBHe3IVhRLgRHj+uxFGEY3AMza4hpDlx7H9thBCTVFVV4ZlnnhE9l5KSgh49eti1HcJuGt0xI4Dmpnn69Gmo1Wqkpqaiffv2Dfo8tVqNXbt2YcWKFdizZw84jtM7p0OHDma/b0xMDDvmw4hSqURubi4A20/dNcXcuXOxf/9+dOrUCb169XJ0cwixKQojhDQBS5cuxdWrV0XPOWLcCF8ZkcvlCAwM1Htdd9xIQ8PIs88+i2+++UbveW9vb8THx2P69OmiCoKphGGE3xXXXhvhmeree++122q2hDgahRFCGrmUlBS29oXu8/YkXGOkdevWBqe3CsOINab3/vLLL+w4MjISs2fPxvjx4xEXF8c2k7OEocqIscGrhBDbozBCSCP36quvsvEXc+fOxVdffQXAfnvA8G7fvs02btMdL8ITVika2r6ioiI206V37974888/4eTk1KD35Pn5+cHHxwdFRUUURghpBGgAKyGNWFVVFfbs2QMACA4OxpIlS9iATXtXRoThQlhZELLm9F7h+JT27dtbLYjw+O+QkZGB6upqCiOEOBCFEUIasXPnzrGqyNChQ+Hh4cFW58zPz2erkNpDUlISOzY2aNTX1xf+/v4AGt5NI5zlYiz8NAT/nrW1tcjIyKAwQogDURghpBE7cuQIO+7duzcA8VLh/OBLe7h8+TI77tixo9Hz+K6arKysBq2FIgwjhmbuNJTu9F4KI4Q4DoURQhqxo0ePsuM+ffoAsP+GdDxhGKlrOq21BrEKu2lsWRkBxGHEw8MDPj4+Vv88QohxFEYIaaQ4jmOVES8vLxYAhJURe44b4btpAgICDE7r5bVr144dX7lyxeLPs3VlRBhGUlJSWBixx0Z4hBAxCiOENFJpaWm4ffs2AKBXr15sAKcjwkhBQQFu3boFoO4uGgCitUX++ecfiz+TDyMKhaLO8GMpYRg5efIkmylEXTSE2B+FEUIaKUNdNIB4rIO9wogwVNS34qk1wkhtbS3S09MB6O9gay2RkZEs4B0/flz0PCHEviiMENJIGRq8CmgqBaGhoQDsN2bE1PEigCYs8RvKWRpGsrOzoVKpANimiwYAZDIZoqKiAIB9FkBhhBBHoDBCSCPFV0akUil69uwpeo0fJJqbm4uSkhKbt8WUab08mUzG2pecnIyamhqzP8/W03rrem8KI4TYH4URQhqh4uJiXLp0CQDQuXNneHp6il639/ReU6f18viuGpVKJZoVYypbz6ThCbu8eBRGCLE/CiOENEInTpxgO9QKx4vw7D2IlQ8jfn5+CAoKqvf8ho4bsfVMGh5VRghpHCiMENIICQevCseL8IRhxNbjRoqKipCVlQVA00VjymBS4fTehoYRe3bTSCQShIWF2ezzCCGGURghpBESDl41VBkRLixm68qIMEyY0kUDNLwyIuymMbYpnzXohpGQkBC4uLjY7PMIIYZRGCHEgLS0NHTs2BH9+vWDUqm062crlUocO3YMANCqVSuD3Qb2nN5rzkwaXtu2bdmxKWFk0aJFiIqKwoYNGwBoKyMhISFwd3c3p7lm0R0zQl00hDgGhRFCDHjvvfdw+fJlHD58GLt27bLrZ+/atQvl5eUAgCFDhhjsFvH09ERwcDAA24cRc2bS8BQKBZs2e+XKFTb+xZDU1FS8++67yMjIwFNPPYUbN26wBdZs2UUDAN7e3vDz82OPKYwQ4hgURgjRUVhYiPXr17PHV69etevnr1u3jh1PmzbN6Hn8uJGcnByUlZXZrD2WVEYAbVdNSUkJcnJyjJ733XffseOysjLMmjWLPbZ1GNH9DAojhDgGhRFCdHz//fdsaXDA+mGkuroa1dXVBl8rLCzE7t27AQDBwcEYNGiQ0fcRjhux5fRePoz4+PiwxdZMYcq4EbVajcTERNFzBw8eZMe2nEnDE3bVUBghxDEojBAiwHEcVqxYIXquITvP6jpz5gz8/f3h4eGB+++/H88++yy2bdvGujE2b97MVgOdPHkyW67cEOGMmoa2saqqCuvXr9ebmVNSUoLMzEwAps+k4ZkSRg4cOMA2qJPL5Xqv26MyIgwjfNcSIcS+KIwQIvDnn3/q7TR79erVOsc8mGPDhg0oLS2FSqXC6dOnsWLFCowdOxbvvPMOAOCnn35i59bVRQOIZ7ZcvHixQe164403MGXKFPTo0YNN4wXM25NGlylh5Ntvv2XHK1asQKtWrUSv2yOMzJw5ExEREYiPj8ewYcNs/nmEEH0yRzeAkMZEWBVxc3NDZWUlioqKkJ+fb5WdY/kqgK7FixcjKCiIdVHExsYiPj6+zve677772PH58+cb1K5Tp04B0KwpMn/+fGzatAkAsHr1anaOqdN6efWFkcLCQvzvf/8DoFlMbdKkSaiursZTTz3FzrFHN02bNm1w48YNSCQSm2zIRwipH1VGCLkrNzcXmzdvBgAEBgZi+vTp7DVrddXcvHmTHd++fRvvvvsue/zCCy+wCsy0adPqvTG2bt0aXl5eAIALFy40qF3CAaabN2/Grl27sGvXLhZGFAoFHn30UbPe09/fHwEBAQAMh5H169ejqqoKADB9+nS4urpi5syZ6NSpEwAgICBAr1JiK1KplIIIIQ5EYYSQu9auXcsGlj7xxBO499572WvWGsTKj78ICAhAUFAQ3nrrLUyePFnvvKlTp9b7XhKJBJ07d2bvW1BQYHG7+Km0vOeee05Uofj4448RERFh9vvy1ZFbt26hqKhI9NratWvZ8RNPPAEAcHJywvbt2zF//nxs3ry5zjEzhJDmg8IIIdDM6li5ciV7PGfOHNHCXdaojNTW1rLxGPyNXSKRYPXq1SxUAEB8fDzi4uJMek9hV42l40bKy8tRWloqei49PZ0FlBEjRmD27NkWvbewq0Y4RTglJYV1DXXt2lX0PaKjo/Hpp5+if//+Fn0mIaTpoTBCCIDffvuNLUE+bNgwxMTEiAKBNSojt2/fRm1tLQAgPDycPa9QKLB161a2J8prr71m8nsKb+KWdtUIqyLdu3cXLYfu6+uL1atXW9yFIawuCdvHBxEAGDdunEXvTQhpPiiMEALxwNVnnnkGgGbNCVdXVwDWqYzwXTQA9Lo8oqOj8c8//yAzMxPjx483+T27dOnCjq0RRvr27Yt///vf7PFXX33VoHEbwvYJB9kK29q1a1eL358Q0jzQbBrS4t28eRM7duwAoNkL5uGHHwagGb8QGxuLpKQkpKSkoLa2tkFjGOoKI4BmiXdPT0+z3rNTp06QSqVQq9UWz6gRhpHQ0FC8+uqriI6Ohr+/P7sWlrrvvvsgkUjAcRzOnTvHnheGEWF1hxDSMlFlhLR4a9asYd0nTz31FGQybUbnu2pUKhXS09Mb9DnCmTTCbpqGkMvlrI1JSUlGV3ati3AmTUhICKRSKR5//PEGBxFAE7D4xdkuXbqEmpoaANow4ufnx7qnCCEtF4UR0qLV1NRg1apVADTTO4UzSABYdRBrfZURS/GVBZVKZdHYFmFlJCQkxGrt4vHdMJWVlbhy5Qpyc3NZAOIrJ4SQlo3CCGnRdu/ezWa4PPzww3ohwZqDWG1RGQEaPohVt5vG2oRjQs6fP09dNIQQPRRGSIu2Zs0adswPXBWyVWWkMYUR3W4aaxMOYj137pyojcLXCCEtFw1gJS3a2bNnAWimsA4dOlTvdWFlxFphJCgoiM3SsYaGLgvPV0acnJzYiqnWJKyMnDt3Drm5uewxVUYIIQBVRkgLplQqWddJXFycwZkyAQEB8PPzA9CwbpqamhpWgbBmVQTQzADiQ0RDummCg4MhlVr/n4Tg4GDW/XPu3Dk2q0Ymk4kWRSOEtFwURkiLlZqayo7btGlj9Dy+OpKZmYmKigqLPuvWrVtsxo41B68CmlVc+QpDbm6u3tLudamtrcXt27cB2KaLhsdXR4qKipCUlARAszqrNStEhJCmi8IIabFSUlLYMT/91BBhV821a9cs+ixbjRfhWTpu5M6dOywk2SOMCFEXDSGER2GEtFjCYFFXGLHGIFbhTBprV0YAy/eosfVMGp6hgao0eJUQwqMwQlosSyojws3ezGGrNUZ4HTt2ZMf//POPyT9n65k0PKqMEELqQmGEtFimhpFu3bqx40OHDln0WbbuphFWb8wJI7Ze8IwXHR0NLy8v0XMURgghPAojpMXiw4ivry/8/f2NnhcTE4PWrVsDAI4cOWLRIFZbd9N4eHiw971y5Qo4jjN4nlKpxB9//IHS0lIA4sqILbtppFKpqFsmNDQUgYGBNvs8QkjTQmGEtEhVVVXIyMgAUHdVhDd48GAAmiXXjxw5YvbnCSsjDdkFty78NNmioiI2Q4bHcRy2bduG9u3bIyEhATNmzADHcXarjADirhqqihBChMwKIyqVCu+++y5GjhyJAQMGYM6cOaJSd2JiIhISEjBo0CAsX75c9NtZUlISpkyZgj59+mDOnDmi38gIsbfU1FT299OUMJKQkMCOf//9d7M/jw8jwcHBNpvOKlyzQ9hVk5GRgVGjRmHs2LFss78LFy4gKSnJrmFEWBmhMEIIETIrjNTW1iIsLAxr167FgQMH0L9/f7z88ssAgMOHD2PTpk1ITEzExo0bcfjwYWzfvh2AJsQsXLgQkydPxoEDB9CpUye8/fbb1v82pMmorKzE7du32f/43VztxdTxIrxBgwaxY3PDSHV1NQvftuii4RkKI2q1GqNHj8auXbv0zt+2bZvdBrACwCOPPILY2Fj4+/tj1qxZNv0sQkjTYtZy8HK5XLSr6aRJk7B8+XIUFRVh9+7dGD9+PBucN336dOzZswdjxozBmTNnIJfLMWbMGADA7NmzkZCQgJycHIP91CqVCiqVStxQmQwuLi5mf8GmSK1Wi/6/udm/fz/GjRuH8vJy9lyrVq1w9OhRi27Wllwv4bTee+65p96fDQgIQOfOnXHx4kWcOXMG+fn5bGXW+mRlZbEqTFhYmM3+XIWDWC9fvgy1Wo2kpCS27khwcDD+9a9/YcGCBQA0YYQfO+Lp6Qm5XG7Tv3Oenp74559/UFtbC2dn5ybx97u5/7dobXS9zNNSrpcpKzs3aG+aixcvws/PDz4+PkhLS8PIkSPZa3Fxcfjyyy8BaEriwt8+5XI5wsPDkZqaajCMrF27lm3rzpswYQImTpzYkOY2OcJxBs3J0qVLRUEEALKzs7FkyRK8+uqrFr+vOdeLX5Ic0Az+5Lsv6hIfH4+LFy+C4zj88ssvGD58eJ3n5+fno6ysTDQd2MfHx6TPsoSHhwc7PnfuHNLT07Fz50723BNPPIExY8Zg1apVuHz5Ms6cOQNnZ2cAgL+/v83a1Rw01/8WbYWul3ma+/WKjo6u9xyLw0hZWRn+85//YO7cuQCAiooK0T+GCoWCzTpQKpVQKBSin1coFFAqlQbfe9asWZg2bZq4oS2sMpKZmYmIiAib7BXiSBzHsc3c3N3dMWjQIOzevRtqtRq//fYbPv/8c0gkErPe05LrJRzg2bdvX5NmdjzyyCP49ttvAWiC+NNPP613jkqlwpYtW/DNN9/g4MGDeq+3b98eUVFRJrXRXJGRkfDz80NBQQFu3LiBqKgoXLlyhb3+0EMPISoqCo8++igLSNXV1exnbdWupqw5/7doC3S9zEPXS8uiMFJVVYWXX34Zffv2ZV0v7u7uKCsrY+eUl5fD3d0dgKYSovubcHl5OeRyucH3d3FxaTHBoy5SqbTZ/QVNTk5Gfn4+AGDgwIHYsWMHBg4ciIMHDyIlJQVJSUno3LmzRe+te73KyspQW1sLb29vvXP5MSNeXl4ICgoyKQA9+OCDkMlkqKmpwYEDB/T+bLZv347Zs2eLdqXV1aVLF5v+mbZv3x5HjhxBdnY2ysrKcOzYMQCa/6bi4+MhlUoxZswYLF68WPRzISEhze7vmjU1x/8WbYmul3noelkwtbempgavv/46AgMD8eKLL7Lno6OjRYMCk5OTERMTA0CzToPwNX63VP510nIIp8X27t0bADB+/Hj23C+//GKVz8nIyEBsbCzCw8Nx5swZ0WsqlYp1ScTGxppcifHw8EDPnj0BaP5+65ZWX331VVEQiYuLw7Rp0zB9+nRMnz4dy5cvx9ChQxvyteolHMT6119/sbEx8fHxbBZPly5d9KYX23rwKiGE1MXsMPLBBx+gqqoKixYtEv0jPnLkSGzevBlZWVnIz8/HunXrMGLECABA9+7doVQqsWPHDqhUKqxZswYdOnSw6SJLpHE6evQoO+bDyLhx49jfpV9++cXogl3mWLFiBW7fvo2ysjK9KsCNGzfYgLG6dus1xNgU3/z8fLZvzT333IMDBw7gypUr+PHHH/HDDz/ghx9+wLx588zugjKXMIysWbOGHffp04cdSyQSDBkyRPRz9N8iIcSRzAojOTk52LFjB86dO4eBAweiX79+6NevH86dO4e+ffti3LhxmDFjBiZMmIA+ffpg9OjRADQl4o8++gjr1q3DwIEDceHCBbz33ns2+UKkcePDiJOTE3r06AFAcyPs27cvAODq1atsi3lLqdVqrFu3jj3esWMHW+AMMH9arxC/+BkgDiMnTpxgx2PHjsXAgQNtHjwMEYaRHTt2sGM++PGEoQqgygghxLHMGjMSGhqK06dPG3191qxZRtcP6NixI9avX29e60izUlBQwAZOdu3alY0pAjSzpf766y8AwKZNm9CpUyeLP+fIkSOi8KFWq/HNN9/g/fffB2D6br2G9OzZEwqFAuXl5di/fz84joNEIsHx48fZOb169bK47Q0lDCPCtVt0w0iPHj3g4+ODoqIiABRGCCGO1bJHzBC7Et6whd0GgKarhtfQcSPCqghv1apVbO2ahlRGXFxc0L9/fwCaTeb4xcWE340fV+IIkZGRopAHaL5jUFCQ6DlnZ2c89NBD7LEpU+8IIcRWKIwQuzE0eJUXFhbGAsrly5dFa3OYQ6VSYePGjQA0M7z4cUu5ubnYsmULgIaFEUC/q6a2tpZ107Rq1comu/KaSiqVihY/A/SvNe/999/HyJEj8eabb+r9DCGE2BOFEWI3hgavCgln1WzevNmiz9izZw8KCwsBaMZuCBdR++qrr5Cfn8/GpHh4eCA4ONjszxCOt9i/fz+uXLnCVjLt1auXQ8aKCLVr1070WLcKxYuMjMSuXbv0BvgSQoi9URghdlFdXc2qB5GRkQarB2PHjmXH/PgRcwm7aKZNm4YHH3yQ3Zz//PNPhIeHsym55kzrFbr33nsREBAAADh48CAOHz7MXnNkFw1POG4EMF4ZIYSQxoLCCLGLCxcusBV3jf2mHhUVxaaYnjhxwuz9GoqLi9kMkoCAAAwZMgQSiQTPPvssO6eqqoodP/PMM2a9P08qlbKumpKSErbtAeDYwas8YRjx9vZGhw4dHNgaQgipH4UR0mDHjh3Dxo0b6wwP9XXRAJr1L/ibeUlJiWgpc1OsXLkSlZWVADSbOPL7rsyYMYNVYnx8fPDSSy/h2rVrBpdzN5Vw3MilS5cAaKYrd+/e3eL3tBZh+HjggQda/MqOhJDGj/6VIg2SlpaGfv36YdKkSVixYoXBc1Qqlaj7xFhlBBB3cwjX7qhPQUEB/u///g+ApnIhrIb4+PjgxIkT+OOPP5CVlYVly5ZZNHBVSHedDgDo3Lmz3h5MjtC+fXtMmTIFwcHBWLhwoaObQwgh9aIwQhrk8OHDqK2tBaDZbVkXx3GYO3cuTp48CUAzhfTee+81+n7Cbg7hdNn6fPHFFygpKQGgWe+mY8eOotdbtWqFBx98UG/aq6Wio6P1psM2hvEigKbC9NNPPyEnJwcDBw50dHMIIaReFEZIgwi7Uk6fPo20tDTR65999hlbltzNzQ0bN26ETGZ8rT1+MzfA9DBy/fp1Vnlxd3e32+q+wq4aoHGMFxFy9KweQggxFYUR0iD8ol884ZTcX3/9FS+99BJ7/O233yI+Pr7O91MoFGzX3r///lu0E7Qxr7/+OqqrqwEAL7/8st4mcLai21XT2MIIIYQ0FRRGmrn09HTs27eP/Y8fbGktumFk06ZNAICysjLMmDGDDWp9/fXXMWXKFJPek+/uUKvVdW4/AACHDh1inxkUFCRaV8TWBg0axI59fHzM3nSPEEKIBoWRZuzUqVOIjo7G8OHD2f86d+6MH3/80SrvX11dLVrNFNAMOs3IyMDy5ctx+/ZtAMDw4cPNWljL1HEjJ0+eZJsxAsDbb78NT09Pkz+noQIDAzFhwgQAwBNPPEGzVgghxEL0r2cz9vPPP4PjOL3n//Of/xh83lwpKSlsMzbh+IRvvvkGH330EQDNdNdPP/3UrBu1KWHk9OnTGDp0KBu02rt3b8yePdvs79BQGzZsQHp6Ov773//a/bMJIaS5oDDSjAnX9njzzTfZDJN//vkHhw4davD7C7toJk+ezI4/+OADFhKeeOIJs/c9iYuLg4+PDwBNGNENThcuXMCQIUNQXFwMABg4cCBWrVpV58BYW5FIJIiMjKTBooQQ0gAURpoppVKJs2fPAtDsVbJ48WK8+eab7PWvvvqqwZ8hDCNjxozRm7Lr5uaGt99+2+z3lUql6NGjBwDg9u3byMjIEL3+6quvoqioCAAwYMAAbNu2DXK53OzPIYQQ0jhQGGmmTp8+zWaY8Cuejhs3jm0lv2XLFuTk5DToM4RhpH379qKN7gDghRdesHgHW2NdNVVVVWzfmrCwMOzcubNRLDRGCCHEchRGmilhFw2/4qmLiwueeuopAEBNTQ1Wr17doM/gw4hUKkVcXBwbzAlo9kT517/+ZfF7C8PIsWPH2PHp06fZku+DBg2Ch4eHxZ9BCCGkcaAw0kwdOXKEHQv3gpkzZw4bTLpy5Uo2ANVcarWaLXgWHR0NNzc3tG/fHs888wx8fX2xcuVK+Pn5Wdz+nj17snEY+/fvZ88Ld/Pt37+/xe9PCCGk8aAw0gxxHMcqI35+foiLi2OvRUVF4eGHHwYAZGVlYefOnRZ9RmZmJioqKgCId4n9+uuvUVBQgEmTJlnafACadvPVkaSkJFy/fh2AOIz069evQZ9BCCGkcaAw0gwlJyfjzp07ADRVEd1ptXPnzmXH/FLt5hIuAy8MI9Y0ZswYdrxt2zbU1tayik9QUJAoZBFCCGm6KIw0Q8LxIsIuGt6QIUMQGBgIwPDUWVPoDl61hbFjx7LjrVu34tKlS2w6b79+/Wg6LSGENBMURpoh4XgRfvCqkFQqRdeuXQEA+fn5yMrKMvsz7BFG2rZty9YoOXLkCLZs2cJeoy4aQghpPiiMNEN8ZUQmkxndmI4PIwBw7tw5sz/DHmEE0HbVqNVqfPzxx+x5CiOEENJ8UBhpZgoKClhQ6NatG9zd3Q2eZ60wEhoaCm9vbwtaahrhuBF+B19PT0/cd999NvtMQggh9kVhxIrUajX7nzX2frGEcE0OQ+NFeA0JIydOnEB+fj4A21ZFAM0U3+DgYNFzffr0gZOTk00/lxBCiP1QGLECpVKJgQMHwsnJif3P29sb69evt3tbTA0jsbGxbMEwc8LImTNnMHz4cPbY1mt9ODk5YdSoUaLnaH0RQghpXiiMWMH69etx8OBB0XOlpaV4+eWX2ZLs9nLy5El2LFzFVJdUKkWXLl0AAOnp6SgoKKj3vc+dO4chQ4awfWH69++PV155pUHtNYWwqwag8SKEENLcUBixgu+++44d33///QgLCwMAZGdnY8eOHXZrB8dxOH36NAAgODi43n1hhF0158+fr/Pc8+fPIyEhAYWFhQA0gWDXrl122Rdm8ODBbOyLq6sr7r//fpt/JiGEEPuhMNJAN27cwKFDhwBopqKeOHEC3377LXvdGrvjmio1NZWFhfvvv7/edThMHTdy8eJFJCQksOpJnz59sHv3brvtCyOXy/HGG2/A1dUVr7zyClxdXe3yuYQQQuyDwkgD/fjjj+z48ccfh0QiQUJCAmJjYwEAv//+O65evWqVz0pOTsYPP/zANorTderUKXZsbEqvkClh5NKlSxg8eLBoRdc9e/bYfYO6119/HWVlZXj//fft+rmEEEJsj8JIA3Ach++//x4AIJFIMG3aNACa8RjPPPMMO2/FihUN/qyKigoMGDAAM2bMwLBhw6BSqfTOEYYRU7oyOnToAGdnZwDA2bNn9V5PS0vD4MGD2cyZXr16Yc+ePfD09LT0azSITCZzyOcSQgixLQojDXD8+HFcu3YNADBw4EBERkay12bOnAk3NzcAQGJiIttUzlK///47bt26BQD4888/8fzzz+tNHzY3jLi4uKBTp04AgKtXr+q18ZNPPkFeXh4AoEePHti7dy+8vLwa9D0IIYQQXRRGGkA4cPXxxx8Xvebv7892ri0qKmrwNF/d3XVXrVqFL774gj2ura1l1Y2oqCi290x9+K4atVqNixcvil7jB8MCwI4dO2y6uBkhhJCWi8KIhSorK7FhwwYAgLu7O8aNG6d3jnB33K+//triz+I4joUR4WJfCxYswG+//QZAs4tueXk5ANOqIjxj40aE4SQqKgpBQUEWt58QQgipC4URC+3cuZOtt/Hoo48aHNB5//33s7U8Tp8+jZs3b1r0WefOnUN2djYAYPjw4fjXv/4FQFMNmTlzJiorK80evMozFkZSU1NZuOG/AyGEEGILFEYMuHjxIl566SUcOHDA6Dnr1q1jx4899pjBcyQSiWjBrn379lnUHmEXzcMPP4wPPvgAQ4YMAaBZyyQxMdHs8SK8++67j00BFg5ivXDhgugcQgghxFYojOjgOA4TJkzAJ598gsGDB2Py5MnIysoSnVNYWIjdu3cDAEJCQjBo0CCj7ydcOn3v3r0WtUm4cNpDDz0EqVSK//znP+y5JUuWiJaB7969u8nv7eHhgXbt2gHQLGxWWloKgMIIIYQQ+6EwouP8+fNITk5mjzds2IB27dphzZo17LnNmzezqbWTJ0+uc9O2+++/H35+fgCA3377DTU1NWa1Jycnhw0k7dKlCyIiIgBoumKGDh0KQLPwGt/F0rZtW7MHmg4cOBCAptvnzz//BEBhhBBCiP1QGNHxv//9jx3zIaOsrAxPPfUUqz789NNP7JypU6fW+X5OTk4sNBQXF+P48eNmtYevwACaLhqhN954Q+98c8aL8AYPHsyOf//9dwDaMOLh4YHo6Giz35MQQggxFYURHVu2bAGgGe9x8eJF0ZTd559/HhkZGWxTvDZt2ph0829IV42wi0Y3jPTv3x99+/YVPWfJvi0PPvggGzfy+++/o6ioCOnp6QA0VRGplP6aEEIIsR26ywhcvXoVSUlJADTLnnfo0AGrV69G586dAWgGeD7yyCNssbGpU6fWu/8LAFYZAcwLI3fu3GGDXoOCggwGjddff1302JIw4ufnx2bVXLx4Efv372evURcNIYQQW6MwIsBXRQDgkUceAaBZgly4uJhwxkl9XTS80NBQNj32zJkzyM3NNennVqxYwfahmTJlisEKxfDhw9GtWzcAgEKhsHgarrCrZvny5eyYwgghhBBbozAiIBwvwocRAOjXr5/e9N34+HjExcWZ/N4jRoxgx6ZM8a2qqmIhSCqVYv78+QbPk0gkWL9+PZ588kmsX78e7u7uJrdJSBhGDh8+zI4pjBBCCLE1CiN3ZWZmsrU6unTpgpiYGNHrH330kWhfFn5TPFOZO25k69atrIIyfvz4OgeRtmnTBqtXr9YbU2KOvn37sk3zeBKJhO1dQwghhNgKhZG7tm7dyo4NLe0eEhKCZcuWAdB0u5gbRh544AG22+2+fftQW1vLXuM4DmvXrsXq1atRVVUFtVotmkr88ssvm/VZllAoFOjVq5fouTZt2kChUNj8swkhhLRsFEagWcRMOE7CUBgBgKeeegpXr17FxYsXTd6Ijufs7MxWTb1z5w6OHDnCXtu8eTOeeOIJzJ49G507d8a7776LlJQUAJqKRY8ePcz9ShYRdtUAtAw8IYQQ+2jxYaSmpgYTJ07E9evXAQA9e/ZEhw4djJ4fFxeHgIAAiz5LGHJ++eUXdizc/Tc5ORnvv/8+e2yPqghPN4zQeBFCCCH20OLDyMsvv8ymsgYGBmLDhg0mTde1xKhRo+Di4gJAUw1Rq9UoLCw0OqC1TZs2GDVqlE3aYkiPHj1EA2ApjBBCCLGHFh1GVq1ahc8++wyAphvlf//7H6Kiomz2eV5eXhg2bBgAzTLvR48exZYtW1BdXQ0AmD9/PtauXcu6gBYvXlznUvPW5uLiwpaGl0gkoh19CSGEEFuROboBjnL48GHMnTuXPf7666/1VjO1hQkTJrBVVTdt2oTLly+z16ZOnYoePXpg8uTJuHTpklkb3lnLhx9+iOrqagwbNgytWrWy++cTQghpeVpsGImNjcX999+PY8eO4cUXX8STTz5pl88dNWoUnJ2dUV1djZ9//hl37twBAERHR7PVU11cXCwel9JQnTp1MmkdFEIIIcRaWmw3TUhICP744w98/PHHWLp0qd0+18fHhy0Pn5uby6b4Tpo0yWZjVQghhJDGrMWGEQBwdXXFggULIJPZt0A0fvx4vecmT55s1zYQQgghjUWLDiOOMnr0aFEAatu2LduMjxBCCGlpzAojK1euxIQJE3D//ffrjStITExEQkICBg0ahOXLl7OdbQEgKSkJU6ZMQZ8+fTBnzhzk5ORYp/VNlJ+fHxISEtjjyZMnUxcNIYSQFsusMBIREYGXX34ZHTt2FD1/+PBhbNq0CYmJidi4cSMOHz6M7du3AwBUKhUWLlyIyZMn48CBA+jUqRPefvtt632DJurZZ58FoFmG/fHHH3dwawghhBDHMSuMjBw5Er169WILd/F2796N8ePHIzw8HAEBAZg+fTr27NkDADhz5gzkcjnGjBkDV1dXzJ49G5cvX27x1ZHRo0fj/PnzuHz5cp2b4BFCCCHNnVVGbqalpWHkyJHscVxcHL788ksAQGpqKmJjY9lrcrkc4eHhSE1NRWhoqMH3U6lUUKlU4obKZHohqKm79957AQBqtVr0PP9Y93liGF0v89D1Mh1dK/PQ9TJPS7leUmn9dQ+rhJGKigp4eHiwxwqFAhUVFQAApVKpt/OrQqGAUqk0+n5r167FqlWrRM9NmDABEydOtEZzm4zMzExHN6FJoetlHrpepqNrZR66XuZp7tfLlOq/VcKIu7s7ysrK2OPy8nK2x4lcLkd5ebno/PLycsjlcqPvN2vWLEybNk3c0GZYGTFGrVYjMzMTERERJiXKlo6ul3noepmOrpV56HqZh66XllXCSHR0NFJSUthy6snJyYiJiQEAxMTEYMuWLexcpVKJmzdvstcNcXFxaTHBoy5SqbTF/wU1B10v89D1Mh1dK/PQ9TIPXS8zB7DW1NSgqqoKHMexY7VajZEjR2Lz5s3IyspCfn4+1q1bhxEjRgAAunfvDqVSiR07dkClUmHNmjXo0KGD0fEihBBCCGlZzKqMvP/++9i5cycA4Ny5c3jnnXewYsUK9O3bF9euXcOMGTOgVqsxduxYjB49GoCmyvHRRx9h8eLF+PDDD9GhQwe899571v8mhBBCCGmSJJxwdTLSKKjVaqSnpyMqKqrFl+5MQdfLPHS9TEfXyjx0vcxD10urZX97QgghhDgchRFCCCGEOBSFEUIIIYQ4FIURQgghhDgUhRFCCCGEOBSFEUIIIYQ4FIURQgghhDgUhRFCCCGEOBQtekYIIYQQh6LKCCGEEEIcisIIIYQQQhyKwgghhBBCHIrCCCGEEEIcisIIIYQQQhyKwgghhBBCHIrCCCGEEEIcisIIIYQQQhyKwgghhBBCHIrCCCGEEEIcisKIHaxcuRITJkzA/fffj3379rHnKysr8cEHH2DIkCEYOnQofvjhB9HPxcfHo2/fvujXrx/69euHb7/9VvSzb731Fvr374+HHnoIe/futdv3sSVbXKuPP/4YY8aMQf/+/fHYY4/h7Nmzdvs+tmaL68XLzs5Gnz598J///Mfm38NebHW9tm/fjkceeQR9+/bF+PHjkZ6ebpfvY0u2uFZZWVl47rnn8OCDD2LEiBFYu3at3b6PrVl6vcrKyvDee+9h0KBBePDBB/HGG2+IfrY5/jtviMzRDWgJIiIi8PLLL2PFihWi59esWYPs7Gxs2bIFZWVlePbZZxEbG4sHHniAnbN161YEBATovefKlStRXFyM3bt34/r165g/fz7at2+PqKgom38fW7LFtfLw8MAXX3yBsLAwHDhwAK+88gp27NgBhUJh8+9ja7a4XryPP/4Ybdu2tVnbHcEW1+vPP//Ejz/+iP/+97+IiYlBVlYWPD09bf5dbM0W12rp0qUICwvD8uXLcfv2bTz55JPo2LEjevToYfPvY2uWXq93330XwcHB2L59O9zc3JCSksJ+trn+O28IVUbsYOTIkejVqxdcXFxEzx87dgxTp06Fh4cHQkJCMHr0aOzatcuk99y9ezfmzJkDDw8P3Hfffejfvz9+/fVXWzTfrmxxrebMmYOIiAhIpVIkJCTA1dUVGRkZtmi+3dnievE/z3Ecevbsae0mO5Qtrtfq1avx0ksv4Z577oFEIkF4eDi8vb1t0Xy7ssW1ysnJwdChQyGTyRAWFoYuXbogNTXVFs23O0uu1/Xr13HlyhUsWLAAHh4ekMlkaNeuHfvZ5vrvvCEURhxMuGkyx3F6/2FOnz4dI0aMwKJFi1BUVAQAKCkpwZ07dxAbG8vOi4uLazb/URtjybXSlZ2djZKSEkRERNiyqY2Cpderuroay5cvx4svvminljYOllyv2tpaXL16FSkpKRg5ciRGjx6NVatWoblvhm7p360JEyZg3759UKlUyMjIwKVLlxAfH2+vZjuMsev1zz//IDIyEm+99RYGDx6MGTNm4Ny5cwBa3r/zFEYcqFevXvj5559RWlqK7Oxs7Ny5E5WVlez1VatWYefOnfjpp59QWVmJ9957DwBQUVEBJycnuLm5sXMVCgUqKirs/h3sxdJrJVRTU4NFixbhscceg4eHhz2bb3cNuV7r1q1Dnz59WkRg41l6vQoKClBbW4tTp05hw4YN+Oabb/Dbb79hx44djvoqNteQv1v33XcfLl26hH79+mHcuHEYM2aM6GbbHNV1vXJzc3HixAn06NED+/btw8yZM/HKK6+guLi4xf07T2HEgZ588km0atUK48ePx7x58zB48GAEBgay17t27QqZTAZfX1+88sorOHLkCKqrq+Hu7o7a2lrRPwDl5eVwd3d3xNewC0uvFY/jOCxatAi+vr6YM2eOI76CXVl6vXJzc7F9+3Y88cQTDmy9/Vl6vVxdXQEAjz/+ODw9PRESEoIJEybgyJEjjvoqNmfptaqtrcX8+fMxduxYHDlyBNu3b8f+/fuxf/9+B34b26vrerm6uiIsLAxjx46FTCbDoEGDEBYWhkuXLrW4f+cpjDiQXC7HG2+8gX379mHTpk2QSCTo0KGDwXOlUs0fFcdx8PLygr+/v2igU3JyMmJiYuzSbkew9FrxPvroI+Tl5WHx4sXs9ebM0ut1+fJl3L59G+PGjcOwYcPw448/YteuXXjhhRfs2Xy7a8h/i8IbMf98c2bptSopKUFeXh7Gjx8PmUyGVq1a4cEHH8SZM2fs2Xy7q+t63XPPPUZ/rqX9O9/8/1VuBGpqalBVVQWO49ixWq3G7du3kZ+fj9raWhw/fhw7duzA1KlTAWgGNiUnJ6O2thYlJSVYtmwZevbsyQZHjRw5EqtXr0Z5eTkuXbqEP//8E0OGDHHk17QKW1yrlStX4sKFC1i2bJne4LKmztrXq3fv3ti2bRvWrVuHdevW4dFHH0VCQgIWL17s4G9qHbb4+/Xwww/j+++/R3l5OfLy8rB582b07dvXkV/TKqx9rXx9fREcHIytW7ey9zl06FCdN+SmxJLrFR8fD47jsHPnTtTW1uLQoUPIysrCvffeC6D5/jtviIRr7jG+EVi0aBF27twpeo6f/vXOO++gqKgIrVu3xiuvvIKuXbsCAE6dOoX/+7//Q25uLhQKBXr06IEFCxbAz88PgGb++fvvv49Dhw7By8sLL7zwAoYPH27fL2YDtrhW8fHxcHFxgZOTE3vP119/HSNGjLDTt7IdW1wvoZUrV+LOnTt4/fXXbf9l7MAW16u6uhpLlizBb7/9Bnd3d4wdOxZz5syBRCKx75ezMltcq6SkJCxbtgzXr1+Hm5sbhg4dihdffFH032ZTZcn1AoBr165h8eLFSEtLQ0REBF555RV069YNQPP9d94QCiOEEEIIcSjqpiGEEEKIQ1EYIYQQQohDURghhBBCiENRGCGEEEKIQ1EYIYQQQohDURghhBBCiENRGCGEEEKIQ1EYIYQQQohDURghhDRp8fHxiI+Pb9Y75RLS3FEYIYTUa86cOeymP2XKFNFrRUVF6NOnD3v9888/t/rn79ixg70/IaT5oTBCCDHLtWvXcPbsWfZ469atqKqqcmCLCCFNHYURQojJZDIZAGDDhg0AgNraWmzatIk9L1RcXIwlS5bgoYceQs+ePTF06FC89dZbuHXrFjtn5cqViI+Px6hRo/Dbb7/h0UcfRd++fTF79mzcuHEDgGYDsnfffZf9DF8hWblypejzysrKsGjRIgwYMAAjRozA6tWrrf31CSE2QmGEEGKyuLg4hIWF4eDBg7h9+zb+/PNP3Lp1C4MHDxadV1VVhTlz5uCXX35Bfn4+oqKiUF5ejj179mDWrFkoLCwUnZ+bm4u33noLEokEVVVVOHfuHN577z0AQHh4OMLCwti5nTp1QqdOnRAcHCx6jy+++ALHjx+Hs7Mz8vLysGLFChw/ftxGV4IQYk0URgghJpNKpZgwYQKriPAVkkmTJonO27dvH65fvw4AWLJkCTZu3Ig1a9ZAKpUiLy8PGzduFJ1fW1uLjz76CJs2bWJjUi5evIjKyko89dRTeOqpp9i5iYmJSExMxNixY0XvERcXhx07dogqNadOnbLq9yeE2AaFEUKIWcaMGQO5XI6NGzfi9OnTaN++PTp37iw65/LlywAANzc3PPjggwCAdu3aISoqSvQ6z8PDA/379wcAxMTEsOd1Kyh1GTJkCJydneHj4wM/Pz8AQEFBgXlfjhDiEBRGCCFm8fT0xIgRI1BeXg5Avypi6XvynJyc2DHHcQ16D3N+nhDiOBRGCCFmmzhxIgDAx8cHQ4cO1Xu9Q4cOAIDKykocPHgQAHDlyhWkp6eLXjeVm5sbO1YqlZY0mRDSiOkPgSeEkHrExsbi999/h5OTE1xcXPReHzZsGH788UekpqbitddeQ1RUFLKysqBWqxEYGMjCjKlat27NjidMmICAgAC8+OKL6NKlSwO/CSGkMaDKCCHEIt7e3vDw8DD4mqurK1atWsWCQ3p6OhQKBUaMGIG1a9fC19fXrM9q06YNnnrqKfj7++PWrVv4+++/UVpaao2vQQhpBCQcdaoSQgghxIGoMkIIIYQQh6IwQgghhBCHojBCCCGEEIeiMEIIIYQQh6IwQgghhBCHojBCCCGEEIeiMEIIIYQQh6IwQgghhBCHojBCCCGEEIeiMEIIIYQQh6IwQgghhBCH+n8/cbmZTpjoaAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -629,14 +749,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABWlElEQVR4nO2deXxU5fX/35NlspOQhOxAgLCTsOSCoiAK1SqbikWkgiBqRaW2WLdWRa2o3/60RWutVqtFalsVFUG0WhUUAREu+y6GNQnZF7IvM/f3x507TPZJZpJMwnm/XnnNzF2e+zwzk889c57znGPSNA1BEASh6+PV2R0QBEEQ3IMIuiAIQjdBBF0QBKGbIIIuCILQTRBBFwRB6CaIoAuCIHQTOlPQNU//y8rK6vQ+yFhkLF3lT8bSYX9NIhZ6M1gsls7ugtuQsXgmMhbPpKuORQRdEAShmyCCLgiC0E0QQRcEQegmiKALgiB0E0TQBUEQugki6IIgCN0EEXRBEAQX0TSN2trazu6GCHpzPPvss2zcuJGPPvqIZ599FoCFCxfSr18/Ro0axZgxY/juu+86uZeCIHQmFouFESNGcNlll2G1Wju1LyLozbB7924uvvhivvnmGy677DL79ueee449e/bwf//3f9x5552d2MO24wnWhCB0B/Ly8jh06BDfffcdW7du7dS+iKA3wgMPPEBKSgp79+5l/Pjx/P3vf+euu+7i97//fZ3jLrvsMn788UdKS0uZMmUKY8aMITk5mbVr1wJQVlbGtGnTGDlyJCNGjODdd98F4OGHH2bYsGGkpKRw//33A5Cbm8sNN9zA2LFjGTt2LFu2bAHgiSeeYNGiRVx++eX079+fP//5z/brP/XUUwwePJgJEyYwd+5cnn/+eQDS0tK4+uqrSU1NZeLEiRw5cgTQf10sXryYiy66iAcffJBvvvmGUaNGMWrUKEaPHk1JSUn7vrGC0A0pKiqyP//Xv/7VeR0B3ffTSX8ezfbt27WFCxdq1dXV2iWXXGLfvmDBAm316tWapmnae++9p40bN06rqanRiouLNU3TtNzcXG3AgAGa1WrV3n//fe3222+3n1tUVKTl5eVpgwYN0qxWq6ZpmlZYWKhpmqbNnTtX+/bbbzVN07RTp05pQ4YM0TRN0x5//HFt/PjxWmVlpZabm6uFh4dr1dXV2vbt27WRI0dqFRUV2rlz57SkpCTtueee0zRN0yZPnqz98MMPmqZp2rZt27QrrrhCS09P1xYsWKBNmzZNq62t1TRN06ZPn65t3rxZ0zRNKykp0WpqatrlvXQ36enpnd0FtyFj8UxaM5Zt27bZ86yEh4drVVVV7dgzTdOa0VWfzr2dNI3JZGqXdjUna6ju2rWLYcOGceTIEYYOHVpn3wMPPMDy5cvp1asXb7zxBpqm8bvf/Y5Nmzbh5eVFRkYG2dnZJCcn85vf/IaHHnqI6dOnM3HiRGpra/H39+e2225j+vTpTJ8+HYAvv/ySQ4cO2a9x7tw5SktLAZg2bRp+fn74+fkRFRVFdnY2W7Zs4dprr8Xf3x9/f39mzJgBQGlpKVu3bmX27Nn2tqqqquzPZ8+ejbe3NwCXXnop9913HzfffDOzZs0iISGhDe+oIFzYOFroBQUFfP755/b/x47GYwW9s9izZw8LFy4kPT2dsLAwXnrpJTRNY9SoUfYJ0Oeee46f/exn9nNWrlxJbm4uO3fuxNfXl8TERCorKxk0aBC7du3i008/5dFHH2XKlCksW7aM7du389VXX/H+++/zl7/8hQ0bNmC1Wtm2bRv+/v4N+uTn52d/7u3t3az/22q1EhYWxp49e+psz8jIACAoKMi+7eGHH2batGl8+umnXHrppXz++ecMGTKkTe+bIFyoOAo66G6XzhJ0p3zoiqJcrijKV4qibFQU5XpFUSYoirJVUZTNiqIk246JURTlf4qibFEUZZ6rHWvuZ4Urfy0xatQo9uzZw6BBg9i4cSOTJ0/m888/Z8+ePQQEBDR6TnFxMVFRUfj6+rJx40ZOnToFQGZmJoGBgcybN48HHniAXbt2UVpaSnFxMVOnTmXFihXs3bsXgKuuuoqXXnrJ3mZ9Qa7PpZdeyscff0xlZSWlpaWsX78egB49etCvXz9Wr15tfx+Na9QnLS2N5ORkHnroIcaOHWv3tQuC4DyGoF911VUArFu3jrKysk7pS4uCrihKAPAb4BpVVa9QVXUN8DQwDfg58AfboQ8B/w+YBNyjKEpDU7OLkJubS8+ePfHy8uLIkSMMGzas2eNvvvlmVFUlOTmZVatW2a3c/fv3M27cOEaNGsWTTz7Jo48+SklJCdOnTyclJYUJEybwpz/9CYA///nPqKpKSkoKw4YN49VXX232mmPHjmXmzJmkpKRwzTXXkJycTGhoKKBbCG+88QYjR45k+PDh9kna+rzwwguMGDGClJQUfH19ueaaa1r7VgnCBU9hYSEAI0eOJCkpiYqKCtLT0zunMy1ZtKmpqZNTU1PfS01N/Tw1NXVNampqbGpq6gaH/dtsj1tSU1O9bM9fSk1NVVpo2+Px9EmekpISTdM0raysTEtNTdV27tzZ5LGePpbWIGPxTC7UsTz00EMaoD399NOaoigaoH3//fft2DvXJkWjgSTgYuAnwJPAOYf9tYqimAFfVVWNqPpiILx+Q4qi/AL4BcCSJUu48sor23wj6ghqamrsvmdP5J577uHYsWNUVVUxe/ZsoqOjm+yvp4+lNchYPJMLdSyOxxnzXWlpacTHx7dL35pr1xlBLwK2qKparSjKV+iC7hiw7GPbV6MoipdN1EOBgvoNqar6GvCa7aVz4SadSEZGRrt9KO7go48+cvpYTx9La5CxeCYX6lhqamoASExMJCoqCgBfX99OeS+cmRTdAQxVFMUEjAIOAT6KooQpitKb88K9A7hcURQfIBU42A79FQRB8CiMSdGwsDD7PFZxcXGn9KVFC11V1TxFUdYA36Bb1YuAeOBT2+u7bYf+AVgFLAdeVVW1ol16LAiC4EEYk6I9e/b0fEEHUFX1ZeBlh01pwCX1jjkLeLZTXBAEwc00ZqGfO3eumTPaD8nlIgiC4AKe5HIRQe8AgoODG92+bNkyvvzyS7dc4/LLL0dVVbe0JQiCc2ia5lGCLkv/O5H62RsFQehaVFZWUl1djdlsxt/fnx49egBioXsUq1atIiUlhSuvvJL58+dz8uRJJk+eTEpKClOmTOH06dOAno72rrvu4uKLL6Z///58/fXXLFq0iKFDh7Jw4cI6bS5dupThw4czZcoUcnNz7ee///77gB7y9Pjjj9tT8BrL8MvKyli0aBHjxo1j9OjR9lWfFRUV3HTTTQwdOpTrr7+eigqZgxaEjsawznv27InJZOp0C10EvR4HDx5k+fLlbNiwgS+++IIXX3yRX/7ylyxYsIB9+/Zx8803c++999qPLyws5LvvvmPFihXMnDmTpUuXcvDgQfbv32/Px1JWVoaiKBw8eJBJkybx5JNPNnrtyMhIdu3axV133WXPbf70008zefJktm/fzsaNG3nggQcoKyvjlVdeITAwkMOHD/Pkk0+yc+fOdn9vBEGoixHhEhYWBtDpgu6xLhfTZe1Tyknb1Pw9bMOGDcyePZvIyEgyMjIIDw/nu+++48MPPwRg/vz5PPjgg/bjZ8yYgclkIjk5mejoaJKTkwEYPnw4J0+eZNSoUXh5eTFnzhwA5s2bx6xZsxq9trE9NTXVfr3//e9/rFu3zi7wlZWVnD59mk2bNtlvLCkpKaSkpLT1LREEoY04+s9BBL3LYyz19fLyqpPm1svLq8k0t03lejfOd0yRq2kaH3zwAYMHD3ZntwVBcANNCbqELdZD2+TVLn8tMXnyZFavXk1+fj6gJ6y/5JJLeOeddwA9k+HEiRNbNRar1Wr3lf/73/9mwoQJTp/705/+1J6THfQ6p6CXv/v3v/8NwIEDB9i3b1+r+iQIguuIhe7hDB8+nEceeYRJkyZhtVoZN24cL730ErfeeivPPfccvXr14h//+Eer2gwKCmL79u0sX76cqKgoe21RZ3jsscf49a9/TUpKClarlX79+rF+/Xruuusubr31VoYOHcrQoUNJTU1t7VAFQXARx0lRgICAAHx8fOpEv3QkJs2Jog/thCTn6kBkLJ6JjKXjsFqteHk555RwdixPP/00jz76KA8//DDPPvssABERERQUFJCTk0OvXr1c6nMTNFmf02NdLoIgCO5izZo1hISEsGbNGre2W9/lAp3rdhFBFwShW1NdXc3SpUspLy/n66+/dmvbIuiCIAgdyBtvvGGv8+tukRVBFwRB6CAqKipYvny5/XVHCnpnhC6KoAuC0G15/fXXyczMJCAgAGg/QTeiXEAsdEEQhHZh06ZNACxatAhwv8jWX/oPIugezRNPPGFfdu/Iq6++yqpVqwA4cuQIo0aNYvTo0aSlpdkX/AiC0LkYCwSHDx8OdIzLpTMzLoqgt4Ha2loWL17MLbfcAujFmn/2s5+xe/duzpw5I4IuCB5CQYFe8rh///6Ae0XWMRe6YZU7Pu8MQZeVoo3w9NNP89ZbbxEWFsaAAQNITU3l8ssvZ9SoUWzevJm5c+dSUlJCcHAww4YN44UXXsDb25uvvvqKiooKDh8+zKhRo1iwYAFLly7t7OEIwgWLYaE7CrqmaU3mU2oNZWVlWCwWAgIC6uRxEkH3IHbu3Mk777zDnj17OH36NNOnT7cvq6+urrZXBXriiScAmDp1KosXLyY4OJj777+fr7/+mueff57169d31hAEQbBhWOixsbH4+flRVVVFRUUFgYGBLrfd2IToFzs09mfrGVc7I8rFYwX904jP26Xdqfk/bXb/t99+y/XXX09gYCAhISHMnDnTvs9IgSsIgudTUVFBRUUFZrOZoKAgQkNDycnJobi42C2CnpeXB0B4eDjllRr3/UXjb+sALgZzvPjQPZ2goKDO7oIgCE5iWOfh4eHtUk0oOzsbgKioGK68zxBzG369xeXiSEuWdHtx2WWXsXDhQn77299SWlrKxx9/zJ133un0+SEhIZSUlLRjDwVBcAbDfx4REQG437dtCHqPyMFsOAAhgTAgHvYcA8wxFBcfdct1WoNY6PUYM2YMc+bMYeTIkcyfP5+xY8e26vyUlBS8vb0ZOXIkK1asaKdeCoLQEo4WOrSfoJt7DAJgWCKMG2LbaY4RC91TeOSRR3jkkUfqpNC8//776xxjTIrWf+7r68uGDRs6opuCIDRDfQvdiBV3l9BmZWUBYApIBKBvNMRE2Hb6RlOcLz50QRAEt9BRFnqtdxwAfWMgJtwWDmmOoaysrMkylO2FCLogCN2SjvKhl1v0IhZ9o01E2yIYfQITADp8Pk0EXRCEbklTFroRP+4qhqAXVert6ha6vs/LX7faO9qPLj50QRC6JR1loeec02PaE2Mg0F/fp/lGufVaziKCLghCt8Sw0MN6hvPCexrPfrEQwta7RWQtFot9YVFmvjegW+heNhd6rUm/iXicoCuKkgjsAA7aNs0GLgeWAhXAAlVV0xVFGQK8ZmvzMVVVv2qPDguC0L34/vvvAbjooovc2m5+fj74hPP8p5PY/qMG9IDwGRQXb3S57by8PKxWKz2jBlNYZaJnCIQE6moeEqhRUu4H3qH2XwkdhbMW+jeqqv4MQFEUH+A+YBIwFngMuBN4BrgNyAb+C4igC4LQLNnZ2UyaNAl/f38KCgrw8nLftF5BQQH0fYLtP4ZjMoGm4bb4cMPdEhadQiG6dW4QEw4l5fq10tPTXb5Wa3D23btUUZRvFUV5BhgIHFZVtVpV1S1Aiu2YOFVVj6mqeg4oUBQlsj06LAhC9+HNN9+kqqqK4uJiSktL3dp2fn4+BOmJsh6ca9tojnaroAeGDwX0GHQDY2IUcwynT592+VqtwRkL/SyQBJQDrwOzAMc0Yt62R8ebQzEQDuQ5NqQoyi+AXwAsWbKEK6+8sm297iBqamrIyMjo7G64BRmLZ3Ihj8VisfDKK6/YXx89epS4uDi39EXTNF3Qe/cFYGh8ARAOvjEU5BW02M+WxnL48GH9iV8iVEBkcBkZGbos9ggIAwLAHMPRo0fd/vkaix0bo0VBV1W1CqgCUBTlQ2Ah4HgrtdgerQ7bQoGCRtp6Dd3PDqC1dO3OxnGlaFdHxuKZXMhj+e9//8uZM2fsrwMDA932XpSWllJTq4FfAiYTXH1pBDyngTmG0tLSFq/T0lhqamoA8AnuDxUwPCmY+PgQAPrF26TQN5rc3O0d+vk6MykaoqqqER0/EfgEWKwoihlQgH22fWcVRRkA5ADhqqrmNWxNEARB59VXX63z2p0RIfn5+WCOB5M3sREQ1RP8fDWq6EHhuWqXi1wYLpcqk+48r+tyMQGax7pcJiiKshzd5XICfRK0Evja9rjAdtwjwEp0F8zj7u6oIAjdh5ycHNavX4+vry/Dhg1j7969bi0IUVBQAP66u6VvNJhMJqLDTZzOBqt3JOXl5S6lwzYEvbRGD0+sPykKgDmWs6fOUl1djdlsbvO1WoMzLpf/oketOPKu7c/xuEPoFrwgCEKzHD16FKvVyrhx40hISHC7oOfn54OfTdBtYhsTDqezAV890sUdgl5QprtZEh0F3Zagyz+kD5WaRkZGBv369WvztVqDLP0XBKHDOXv2LABxcXFY/YdAwBC3ulwcLfREB0EH3BLpkpWVBd6hlFf7EhQA4T3O7zOu4x2gT/B2pNtFBF0QhA5HF3RvTptuY82px2HkJoqK28tC133ljuGErgp6dnY2+OmTnQm9qOOPN65j8daTdomgC4LQrcnIzILkz1BzrkbDC3wjyM53X6rZgoIC8OsDnJ+wrJOr3AVBt1qt5Obmgi1fS1RY3f1RtoyLVdZQwEsEXRCE7s3BU34QNpkgv0qC/coByGoQ6Nx28vPzz0+K2l0u53OVuyLo+fn5WCwWAsP09nuF1d3v62MiIhTbjSpSBF0QhO7NmRx9PWJK32ISehYBkFvs3cwZrSM/v7CBhW7kKscc41IKXWNCNLinPtFZX9Ch81aLiqALgtDh5JwLAKBfrBeRobqrpaDE123tZ+ZZwcuPHgFVBAXU86G76HIxSs/5h/QGWhL0WBF0QRC6N0WVYQAM6RdAVJi+aLyo3N9t7Wfk6xHZseE19m12H7qLLpf//Oc/AISE9wegV1jDBUqxdn+9bqFrWscsjBdBFwShDjU1NaxevZrrr7+eAQMGsH37dre2X1VVRZWm+0GGDQgmNkIXxNKqtseF1yerUF/I0y/uvMTVdbm0TdCPHz/OW2+9hbe3N336jwEat9DjbIJuDkmktLTUbVWSWkIEXRCEOvzqV7/ixhtv5KOPPuL48eOsXbvWre1nZWWBv+7f7hdjIiFKd7WU1fZo7jSnqampobBcb2twn/NWf1CACX/favDyI6+wpqnTm+Xpp5/GYrEwf/58KizBQOOCbtykgsIHAh0XuiiCLghCHQyLfPz48cD5SUB3kZl5ts4qzj6xujWth/m5jn7D0NvvF1d3ojU8uBqA7MLWt+tonT/yyCPkFunbjTBFR+JsycPNQfqNSwRdEIRO4cSJEwDccsstgPsF/ceTeeDTA28qCO8B/RP0mpw1pogWznSO9PT08xEuMXX3RYXpmRDPtiFEct26dVgsFmbPnk1SUpJd0Hs1ch8yBF3zjT3fpw5ABF0QBDvnzp2joKAAf39/UlL02jXuFvRDx8sA6OFXiMlkol+8HvGi+URRW+v64qL09HTw1X30cfXuEXGR+mRpTmHrMy3++OOPAIwbNw6rVSPftrA1MqzhscakaJWmm+9G/dH2RgRdEAQ7J0+eBCAxMZHYWN26dLuFfkb3X0cG68IeGWoCrRZ8I8kvKGnuVKfQBV1fdl/fv903zg+A4vIArFYrrSEtLQ2A/v37U1gCFguEBesLiepjCHppte7LF0EXBKHDMdwt/fr1Izpat3Kzs7PdGnZ3JkeXHSOk0NvbhLdFL6Z8PN31MnRnzjQt6PG9dAvd6tOr1SJ7/PhxAAYMGHDe3RLW+LGB/iZCg8GieYNPhJ4qoAMQQRcEwY6jhR4YGEhwcDBVVVVuTW2bXaxHniTGnLdsfdFnKU9mVLjc/skzueAdgK93LUEBdfc5ruA0Mj46g8Visd/s+vfv36Kgg4O7xxwrFrogCB2Po4UO1LHS3YU9pDDxfEihv3cRAKez2xZO6MipTD03TM/g2gZViWIcRLY1gp6enk5NTQ0xMTEEBgY6J+iRxrXixEIXBKHj6QhBL7PoSjdiYIh9W5Cv7jvPyHF9UjQjRw9NbGwFZ5zDatHWCLqjuwVwStBjxUIXBKEzMVwu9QXdyF/iKrW1tdR664UfRg8Nt2/v4a9b1dkFrvnqLRaLXWzjejXMDXNeZOPIzMx0ul1jQrQ1gm6/efjpgt4Ry/9F0AVBAEDTNLuFnpiYCLjfQj9xOhd8I8FaRXyv84t+woKqAMgpck2ScnJysHrpN4ro8IZt9QoDL5MVfCNJz3DeDWJY6P376/lbcos0W3tNhz/GRer7vAP7UFlZSVlZmdPXaysi6IIgAHpRiJKSEkJCQggPt4mimwV99yF9RY9Zy8bL67wYRoTovvN8FzMu6iGLukunfuEJ0CNqwgIrATiZ6fwEbAML3ZYKxhmXi7FatCPcLiLogiAAdd0txmSiuwX96EndSg32rbtUs1eoHhNeVOZaxsX09HQw65WEmrKeo8Is+rE5zseht8nlYpsU9fLXS9Xl5uayd+9e5s2bx+uvv+70tVuDCLogCAAN3C3gfkE/k6Vbxz3861rHRjKrc5WBLrXf3KIig/heuuxlt8K909Dlom9vbNm/gSHoFh/9PczLy2Pv3r3861//YuPGjU5fuzWIoAuCADSMcAGIidGTobhL0LPydes4LLhueKLhTy+rCXapfWcE3VgtWlDq79REZWFhIYWFhQQFBREVpVv/rYlyqdb0J7m5ufYbg+N77E5E0AVBABpGuID7LXRDCCN61BXSmF6BYK2kVgugtLzt0SCOPvQmBT1G99NbvHpRWNhy2kVHd4vJZELTNKcEPcDPRFgwWPEBnwjy8vLqLE5qD0TQBUEAGrfQ3b38v6BUt8RjwuumtQ0N7QHVemhkW1LbGjhjoTsu+HEmFr2+u+VcGdTUQnAA+Ps1n+Tr/LVixUIXBKHjMFK89u7d274tODiYwMBAKioqKC11Pc/KuXI993lcVN1olh49ekC1Lq5n89ve/pkzZ1oU9NhWrhZty4Row2vFkZeX1+Dm4G5E0AVBAPQYbjhvlRu40+1SVq1PevaOqZtkJTQ01G6ht1XQCwsLOXHqLHgH4+uj0aOJinaOC34aE/QXX3yRuXPnUlKir149evQoAElJSUDrBN1uofvFk56eTmZmJt7e3iQkJDg3qFYigi4IXYht27a1Szyz1Wq1txsZGVlnnzsFvdKiL/fvl1B38lO30PWVm5ltHN62bdscrHNTgzwuBs25XLKysnjooYf49ttv+eyzzwDYvWcP+EYycuRIAL4/pB8bE06L9Iu1PfHvj6qqAPTt2xdvb++mT3IBEXRB6CIcPnyY8ePHc/HFF9utR3dRWFiIxWKhZ8+emM3mOvvcufy/1hQGQFLfuvF+uoWui2tmXtt89Vu2bGnR3WLsM1aLnk6ve5NasWIFVVX6qtVt27ZRVVXFgfwr4OJs1u8fQ06hxpMr9f4tuLrlIhkDE2zHBCRRklfC5B53sLjm77x+x6lWj88ZRNAFoYuwa9cuQPfp/vrXv3Zr24a7pVevXg32uctCr6i0oHmHglZL/951C3H6+/vjVau3n57busITBs4KupeXiVBjtWhGpX17YWEhf/3rX+2vt23bxqFDh7AGpQLwzNu+TFyiUVQKV18E11/Wcp8GxGoMLyvkV2UxvN3z3/zG5waGl1Xjv809uXHq47SgK4oyV1GUXNvz2YqibFUU5StFURJs24YoirLJtn1Ku/RWEC5gjBJoAG+++SYffPCB29o2BN2Is3bEXYKedroIAJOlALPZp84+k8lEoI++nj49x+JUe5qm8dhjj/HRRx9RU1OjF7d2QtABokL1rI7pueev9fLLL1NaWsq4ceMA2LlzJ99//z2Yz88p/HAGzL7w53ubdukAVJyp4NjzaZTP38z/O6lyVVkVgaYgDnuX8+fYoWT/eoxTY2wtTgm6oijewGzgjKIoPsB9wOXAMuAx22HPALcBVwO/d3tPBeECxxD08ePHA7jVSm9O0N21uOjHU7pg+1Lc6P7QAD0tQIaTLpf9+/ezfPly5s6dy8cff0x5eTmRsUOB5ldwAiRE6T7szNzz13rllVcAeOaZZ0hKSqKqqoqVK1eCrz7+e2+AkED4vztNDOzdUMxrS2o5868Mtl27nY2jNnHs2R+pOlNBvtmPdyP7cWfZQ9wfHcTn4QkMGepazpqmcNZCnwusBqzAQOCwqqrVqqpuAVJsx8SpqnpMVdVzQIGiKJFNtCUIQhswBP3ZZ5/F39+f9PR0t4QSAvYCDM1Z6K760E/Yysv5ezfu/+9ls5pzCpyTJaM/lZWVLFq0CICYPsl6W81kQQTon6DnjMkrMVNbW0txcTGZmZkEBAQwefJkxozRLWhHC/2RW0wUrDex9MbzbWtWjbxN+exZvI8vh25k/70HKNhciJe/F7HXxzD2/VT+Mn0iq6KTSPcLgkD9hjO8fcLQWxZ0m3V+I/CubVNPwLEelTFd69hWMeDEHLAgCM5iCPrAgQPtYW9G7LirNOdDN4pFuyroRh6XYHN5o/sH9AkDazUllT6UV7ZspTtG+xQX61Z/WKQeWtiSy6V3tO7y0XyiSU9Pr1N6z2Qy2QUdky/4RuLtpRHRA3xsBaHL0sr44dljfJ36LduvV8lcfRZrhZWe43uS/MJwphy+nNF/H0mvKyIZYFjzwQr4xRNg1kiMaXF4bcKn5UOYB7ynqqpVURSAIqCHw37DCeU4kxEK1E2nBiiK8gvgFwBLlizhyiuvbEOXO46amhoyMjI6uxtuQcbimTg7luLiYvLy8vD398dqtdKrVy9+/PFHdu/eTUhISIvnt4SxStRsNjfoj+ErTk9Pb7avLY0l7bQuukHm8kaPi4yMgNNnwb8vuw9lkxjdvC/92LFjgD6hWlmp3yys3nqQubeWT0ZGVZPn+nsFAGFgjmPHjh32mqmxsbFkZGSQnKxb+vjqv1gie1jJSMug+ItzFKwppGz3+ZuSb6wv4TPD6DkzDL/eep6YnJIcsP0QieoRDIRAxAwAkuJqOOvC6qn4+Pgm9zkj6MOA0YqizEN3t/wSGKooihlQgH22484qijIAyAHCVVVtEE2qquprwGu2l+1fvsNFMjIymn3zuhIyFs/E2bEY1rFhnSclJfHdd99RUVHhlveivFwXqEGDBjVoz8iNnpubS1xcXJOTgS2NpaRSv2lEhXs1etzw4cNhWyb490XziSY+vnm3SW2t7qJZsmQJa9euxWw2o/nont4h/SOaPX94kgZoYI6ltDTLHgY6ZMgQ4uPjqa2tJSgoiHJTLMmlBcwpzuTwlBws5fpNxjvQm5gZ0cTfFEfEhHBMXk1fK3Wo7VqheljMyEHmdvv+tijoqqo+ZDxXFEVVVfUuRVHmAF8DlcAC2+5HgJXoLpjH3d5TQbiAMdwtxmpFY3n+mTNn3NJ+cy6XgIAAQkNDKS4uprCw0C7wrSX/nC56UU34txMTEx1i0Vtuz/D79+vXj/379+Pt7c2Q+fq+llwuCcZUgX8fTp7cRlFRkb0tAGuOlV/2+RUDslOIO7UT0F0RPcf3JGFuHLEzY/AJccYehiRDu0368cMTW45fbyvO9ciGqqqK7fFdzvvUjX2HgInu65ogCAYdJeiNTYqC7oooLi7m7NmzbRb0ojI9siM2snHZ6du3L1R/Azgn6Dk5uRC3hKzKYfj5+fHVTo20DI1Af0hoeF+qQ3+HFZzHT5yiuKiAAIJJTB/Etmu3U7C5kInoFnWujx85Y+O55y/xBCa2Pl/7wHqr/IcltroJp5GFRYLQBWhvQW8uygXOhy46k8yqKUoq9ciShGi/Rvfrgm5b/p/fskf2dF4QDHiRp9dN5N2vNO5ZoZ/z6C0mggKat4KDA01EBFdhMpmpOtiDsbsv4u2I9wn8px8Fmwsx+ZmIvSGGtF+MZtGgiRTMGNAmMQeICIXQoPPjaa8IF2ilhS4IQudgTAC2h6DX1taSn5+Pl5dXk9a3EeniiqBX1AaDFyTGN541KzQ0lADvIiqAExlVQECjxxnkFJshFKxWEzc9qQvm4D7wmzkt96XsRDm3FZ1k8PFcYmqm2bcfCAxj2KI4UuZq9BnShzdfsGI1QUx4290kJpMet64eAX8z7RbhAiLogtAlaM5C1zSt2VWLLWGE/0VERDSZNModoYvVmr7aZ0CfHk0eExMOJ4CTZ1sW9KIyPwiFIH8rZZW6s+EvvzZh9m38vag5V0vWx9lkvJtBwZZCJtm251DORutOvhj0MGf9ArkjGEaH6DeurILz/XKFpHhQj8DQvnqh6vZCBF0QPJySkhKys7Px8/Ozx5+HhYURFBREaWkpxcXFhIWFtbn9lvzn4LrLpbZWw+rdEzQrSX2bVse+sT6cOAdnW/ChW61WSm2peG+bBoN6mzD7wk+UumKpWfSFPxnvZJL1STbWCj262ivAi7wR0TyXE8f+wpVoldngp7e3fissm6ufbxf0CFzC8KO3p/8cRNAFweMxCiz0798fLy/dEjWZTPTu3ZsjR46Qnp7ukqC35D8H110umXnVgC/UFtCzZ9Mzlkl9gvj6AOSXmJs8BvREWpqP3t+4SG/umVVXyMvSykh/J5OM/2RQefZ8PHrP8T1JuCmOmJnRrN3lw75lGlQlgdf5XyZn82H/CR8SEiDLFi7uqoU+7yoT/9uhcefM9rPOQQRdEDweo8qNUTHHwBD0M2fOMGLEiDa331zIooGrLpdjJ4uAXnhrhZhMTd84hgyIgn1VVNb6U16pEejfuADm5uaCr74kP9omtjXnajj7YRbp72RStKPIfmxgYgDxN8URPzuuzsRmUrxtojIgCbx0907fGDiVBV/s8ueaiefL4bkq6IN6m9j2avuKOYigC4LHY6yqdCwNB9jdL65OjHaEy+XEmRKgF35e55o9LjGxrx6L7p/I2XwY0MT6m7y8PDBH46VpRJ3IZ8+dZ8lan421UnepeAfpC38Sfh5P+PiejS78sceH+w8AHz2d72/mmLj3RY0vd/lTVqFRUg5+ZpqsfuRpiKALgoeTmamH8sXFxdXZ7q5Il45wuZw6q69EDfJtPI+LgT100T+RjNymBT33hzx+XhbBT3O+hceqyLRtj5gQTsLP44meHoVPUPPyFhxoIjSgjOKKQDDHYvaxsGiqDw+9CvtP+KLqleeICcelSeeOROLQBcENfPnllzz77LNYrW0rztAc7S3ozljoRiWjc+fO2dMEtIajp/XHEP/KZo/r27cvVOoHn6h377CUW8h4P5PtP1MxP+jPzcXlRNZWYe4TwMCHB3D5rolctHYs8XPiWhRzgz69auzPB8RWExRgYsYl+utHXtddMq66WzoSsdAFwQ386le/4tChQ6SkpDBt2rSWT2gFHSXozfnQTSYTMTExnD59mqysrBar1s9/WOW9rQn8e5k3l4yKZN2ugQAMiToG/LTJ8yIjI/GxnKIW2J9Wiab5k7GxgG/+mEnE/mysZXouFc1bY3NQNJ+G92bHtnDMvm2zTYf09Wa/7WYzMklfyfrAXBPvbdTYsl/f3pUEXSx0QXARTdPs6VdXr17t9vY9wUKH1rldPt7qTTVRzF0ezNzfa1TV+kH+x8yb2nz8n8lkoldwMVHVFQR8mMY34zazb7ZKz22ZWMssHLUc4YdLjvDZtdv5v94j+TEsoM1iDpAy6LxzfORAXdCVISYmpZyPjOlKgi4WuiC4SGFhod0N8dFHH1FVVYWfX+PL29uCM4Lu7OIiTdN47rnnuPTSS7n00ksB53zo0DpBL6sJBl+osfrxzR7AUkFwzqNcd932Js+pLasle30OjxSm0K9kMwDlQFmQH+sDYtkWFcoPm68mbHMYF02+HYCwoCqg7TOWg/t4YSR+dYwRX3JtKd/s0z9DEXRBuIBwtJCLi4v58ssv3eZ2KS8vp6ioCF9fXyIi6lq3ISEh9iyI+fn5REa2XCRs27ZtPPTQQ4SEhLB37158fX3tRTJaEnQj0qWl0EWLxUKtyaaChf+DnlfB6SeZc+1FBATUXf2pWTUKvisk451Mzq7NwlJmoR8RVJq82B4WwX2v9uYnq8LZf9J2swoaTVHRbr7ddhQGQEQP5+qPNkWSw6SrY46Vi4dWc8kI2HoAEqK6xoQoiKALgsvUd3m89957bhN0wxpuKg957969KS4uJj093SlBN/paUlLCvHnzsFgsVFZWcvXVV7e4OMlZC/3UmSzwiQWtFg5MA78+UHWS+fO/th9TdqKcjHcyyHg3k4oz5ydKw5RQ9obu5f5Tsyj3i+DeUSaOPOOQqCtiOpTtprxGL+oR7UKOFdBXcAb4NcyxYjLB24+a+Md/NeZ2oZL3IuiC4CKGhTthwgQ2b97M2rVr3eZ2cRT0xujduzcHDhzgzJkzjBo1qsX2HK3rrVu3AtCnTx9WrVrV4rnOCvq+w1lALN7WQgKCAyktPUnfvn0ZP2o8Z/6VYc+lYuCf4E/87Dji58QRPDCIH1f9QPmKE+AXwWffQ03t+ba9el2L9fRT9jqf8b1ck7DgQBP/+yP4+TbMsdIvzsTvb+s61jmIoAuCyxhW75QpUzh37hz79u1j48aNXH311S633ZT/3KC1E6OGoE+ZMoUNGzZgNpv54IMPmo1wMXB2cdHhH/UEKMHmUm6efwubX9/MfXH3s2H4N3VyqcTOjCFhbhzhl9at+NOnTx+oTIMQhbWbdeu8f/hJjudGYQ0cTWzfMZw16YLeN9bfqXE3x4SUriXazSGCLgguYohp7969mTx5Mvv27WPPnj0dIuitXS1qCPqcOXN46qmnCA4OPl8/swX69OkDYI/oaYofT58jprqcG8pzuH7LbKb1mAlHwYqV8Et6En9THDEzYvDt0bj89OnTByo2AfCFqm+zntsBRf4QMYPBl/yGszurAegd03zOlwsNEXRBcBHD5dK7d2/7wqJDhw65pe32stBjYmIYP358q/pixJ6fOHECq9VqTxQGuvtm17Zd3JD0M1LXmbkhbwsAVYB/vD8Jc+NImOtcxZ/4+Hio0BOSVdiiBzN//ApqNIiYQaHPT8FXj5ZxJU95d0QEXRBcxNFCDwzUBevw4cNuabs9Bb21hISEEBUVRU5ODpmZmSQkJFBVVcWjv32U8r9VMsk8id1ee0nETJXJi5P9ArjlT0MbuFRaws/Pj/DAAgoctlUX7iYpAbIDYe/Jnvj1mkSVBaJ7tnoY3RpZWCQILqBpmt1CT0hIYOjQoYAu6O5IA+BJgg7nrfS0tDQ0TWPatGk8v+J5BvoMItgrhIrocv4VWcotgy7jxOzeREyMaJWYG/SNqqm7ofwwky8bw93X6S+rLLrvPLoLxYh3BCLoguACeXl5VFZWEhoaSkhICBEREURHR1NWVuaW8nDO+tDT09NbvIFYrVanV4U2hZHCNy0tjezsbL766iu90MZ157i7+E5e6/0q7/trlPr4MjAxtE3XAOiXEAy1embGQK9csJYxfvx4lt5owt/BbR4V1uZLdEtE0AXBBRz95waOVrqrtCTogYGBREREUFNTYxfrpsjPz8disRAeHt7mkEpD0I8fP86+ffsAGDNmDHf8v9s5ZTnFpk2bqNbCABjYt+lScy3Rt28fqNDrqGplBwBQFIXocBO3T9ePCQ0Gfz/xoTsigi4ILuDoPzcYNmwY4PrEaElJCSUlJQQEBBAa2rS166zbxXC3REdHt7lPji6X/fv17FXJyclER0czePBgKisr7YUnYiPaLrb20EWgIn8ngYGBDBkyBNCTZ/UMgXFD2tx8t0UEXRBcwBBRw/UB7rPQW1olamAIuvFroSlc9Z9DXZeLo6ADXHKJLe+sbdGPKxOWffr0gbw1YCmFvDWMHj0aHx89hqNPtIm0d0x8/H9inddHBF0QXKA9LfSW3C0GrbXQ3SHoji6XlJQUAD3Zl8kHfCMBK5Ftd6HrY8p7D7aGQsk2FEWps79niAk/swh6fSRsURBcoDEfuqOgO5sFsTE8UdBjYmIICAggPz+f4uJiAHs903EXjcfkF40GBPqW4+PTdh+6sYjJoL6gC40jFroguEBjLpfo6GjCwsIoKioiOzvb6bbWr1/PbbfdxsmTJ9E0jS+++AI4n0OlKZxdLeoOQTeZTHY/em1tLX379sXsF8L9L1u57qkkBidfCUBYUHWbrwF6sQ3HiVsRdOcQQRcEF2jM5WIymdrkdnnyySd58803SUlJYerUqaxcuRIfHx9mzZrV7HnNWei7d+9m4MCB/P3vf3eLoMN5twvo7hY/M3y5E46f9aHH8Kf0Y3oHu3QNLy8v+40qJCSEQYMGudTehYIIuiC0EYvF0qjLBc67XVozMZqWpkd1lJSU8NlnnxEYGMjHH3/MxIkTmz2vKUGvqanh1ltv5ccff2TZsmX2/a4KumP5ueTkZEwmE7+bp7uVtqfp7qHe0a7nWDHcLqmpqXXSDAhNI++SILSRzMxMampqiI6Oti/5NzBC7I4cOeJUW0VFRRQWFhIYGMgbb7zBNddcw4YNG5xK8BUfH2/vj8VyvuDDihUr2Lt3L6BHzGzerFcBcqeFbkS43DAJ+seez3PrjhWchqCLu8V5WpwUVRQlGlgD1AAW4GZgAPD/ACtwl6qq+xVFiQFWodeDekVV1bfbrdeC4AEYWQcTExMb7Bs4UC+KfOzYMafaOnHiBKBbv4sWLWLRokVO98PPz4/o6Giys7M5e/YsCQkJHD9+nCeeeAKAmTNnsm7dOjRNT0XrShy60UcDI8LF29vEPTNL+c3fwvRr9HQ9AuXmm29mx44dLFiwwOW2LhScsdDzgAmqqk5CF+zbgKeBacDPgT/YjnsIXeQnAfcoiuJ6omJB8GDcKejHjx8H6opla6if2vb111+noqKCm266iX/84x/4++v/jl5eXk5VNmoOw0I3m832cQJcP6GC3raMAu6ow3nllVdy8OBBexSN0DItCrqqqhZVVY0kESFAGmBRVbVQVdXTgPHRjQM2qKpaC6iAfApCp/Pjjz8SHx/PihUr3N62YVX369evwb7+/fvj5eXFyZMnqa5uOeLDVUEfPHgwcN7Fc/DgQQBuuOEGwsPDuemmmwA9h4u3t3ebrmEwcOBAbr/9dh5//HF8fX3t280+8I/fmrhhElw7waVLCG3EKR+6oiijFEX5HlgCbAXOOeyuVRTFDPg6CH8x54VeEDqNTz/9lMzMTB588EEOHDjg1rabs9D9/Pzo06cPVqvVLvzN4aqg14+qMYTd8OXffffdmEwm+ypWV/Dy8uL111/nd7/7XYN9U1JNvP+UF2EhsuinM3BqYZGqqnuAixRFuRF4BHBcMeCjqmq1oig1iqJ42UQ9FOqkMwZAUZRfAL8AWLJkCVdeeaWr/W9XampqyMjI6OxuuIULdSy7d+8G9JjpBQsW8NFHH7ktYuLo0aMABAcHN9qfPn36cPLkSbZt20ZwcONhfMZYjGiY0NDQNn1ORvbE3bt3c/z4cY4fP46XlxeBgYFkZGQQFxfHunXriImJabfvwYX6HetojEnwxnBmUtSsqqrxm7EYKAV8FEUJQ3fBGMK9A7hcUZRNQCrwYP22VFV9DXjN9lKrv9/TyMjIaPbN60pcqGMx8qGYTCZ27drFxx9/zN133+2WfhhtK4rSaH9GjBjBpk2bKCgoaLK/xlgM8Rg7dmybPicjtPH48eNUVlZisVhISkqqY/G39+d/oX7HPAlnTJVRiqJsUhRlI/Br4DngUeBT4B3gt7bj/mB7vgl4VVXVCvd3VxBahzEp+eSTTwLw0ksvuaXd2tpaTp8+DUDfvn0bPcbZiVGLxdKs+8YZ+vfvj9ls5vTp0+zYsQM4724RLhxatNBVVd0OXFZv81ngknrHnQU824ciXFBUV1dz8uRJvLy8+NWvfsUTTzzBDz/8QGVlpT3qo61kZGRgsViIjY1tsi1nBT09PZ3a2lri4uIICAhoU398fHwYNGgQBw4c4KOPPgJE0C9EZGGR0G0xihn36dOHHj16kJSUhNVq5YcffnC5bWcsamO5elOCbrFYqKqqcnlC1MCYGP3ss88AEfQLERF0odtiCKlhKQ8fPhw4H9LnCs2FLBokJibi7e3N6dOn9cIPDqSnpzNs2DAmTJjAhg0bANcF3YhgMa4lgn7hIYIudFvqC7phwbpD0J2x0H19fenXrx+aptmtcICcnBx+8pOf8MMPP3D27FmWL18OuM9CNxBBv/AQQRe6Le1poTs7iVnfj26xWJg6dSpHjx4lOTm5zvnustABIiMjiYiIcKk9oeshgi50WwxfeWe5XByvbfTl0KFD7Ny5k6ioKL744gvefPNNQkJCgPOrPdvKoEGD7DH27lhAJHQ9RNCFTufw4cO8+OKLdTIFuoP6FvrgwYPx9vYmLS2tgU+7tbTVQjdcL6mpqURHRzNo0CC+/vprXn31VcaOHetSn/z8/Ox5VsTdcmEiJeiETiU/P58pU6Zw9uxZ+vfvz4wZM9zSbmVlJWfOnMHb29tuRfv5+ZGUlMTRo0c5evQoI0eObFWbpaWlfPLJJ2zfvp309HRMJlODPOj1MSJdjFWljUW0jBkzhjFjxrSqL00xbNgwjh075rK1L3RNRNCFTkPTNO644w77ist9+/a5TdDT0tLQNI1+/frVSSA1bNgwjh49ysGDB50W9OLiYpYsWcIHH3xARcX59XKjRo2qUyatMQxL2RB0o4iFq/7ypli6dCk1NTXMmzevXdoXPBsRdKHTeOONN1izZo39dWvKtbVEfXeLwfDhw1mzZk2r/Ogffvghb7+tp/e/9NJLufrqqxk5ciSTJk1q8dyEhAQCAgLIzs6mqKjIbqE7FolwJ5MmTXKqX0L3RHzoQqegaRrLli0DsOdWaU25tpYwLOLGBB1aNzFq9GvZsmVs3ryZRx99lBkzZtCjR8tV7b28vOq4Xdy1iEgQGkMEXegUDh48yNmzZ4mNjbXHYR85cgSr1drCmc6xZ88egAZuFUPQW/NrwIhQqR/n7SyG2+Xw4cNOR8cIQlsQQRc6ha+++gqAyZMn07NnT2JjY6moqODUqVNuad9Imztq1Kg62wcNGmSPdCkvL3eqLcPab+tEo3Hehg0bqK6uJjo6usl0uoLgCiLoQqdgCPqUKVOA83HT7vCjl5WV8cMPP+Dj42O3yA38/PwYMmQIVqvVKbdLbW2tfSKzvvvGWQxBN3KsiLtFaC9E0IUOp7a2lm+++QY4L+iGO8MdfvT9+/ejaRrDhg1rNArFcMPs3bu3xbZOnjxJTU0NCQkJBAUFtak/hqDn5uYCIuhC+yGCLnQ4qqpy7tw5kpKS7MWN3WmhG+6W0aNHN7q/NYJu+M9dieuuf257RbgIggi60OHUd7eAey10Y0K0vv/coDWC7qr/HPQSdY7Vb8RCF9oLEXShWWpra93eZmOC7miha5pr1QmbmhA1MAR93759TV6rqqoKOC/oRuhhW3G8IYigC+2FCLrQJMeOHSMqKoolS5a4rc28vDy2bNmCyWTiiiuusG+PiooiPDycc+fOkZmZ2eb2a2tr2b9/P9C0oMfExBAVFUVxcXGjUTWrV68mICCAl19+2S0uF6ibW0VcLkJ7IYIuNMmzzz5LYWEha9eudVubK1eupLq6mmuuuYbIyEj7dpPJZLfSXXG7HD16lMrKShITEwkLC2vyuJSUFKCh20XTNJ544gk0TeOBBx6wW/uuCrpxvr+/PzExMS61JQhNIYIuNEp6erp9uXt6ejpFRUWtOv/MmTNcddVV/OxnP+P3v/+9vRzca6+9BsDixYsbnNOWAhRHjhzh66+/tr82/OdNTYgaNOVH//LLL+0TsxUVFRQVFeHn52efvG0rhqD369fPnuJWENyNfLOERnnhhReoqamxv25tDvF3332XL774gg8++IDHH3+ciy66iL/97W8cO3aMhIQErrnmmgbnGC6SnTt3On2dG264gSuuuIJ169YB2Mu5NeVuMWhK0F944QUA7r33XruFn5SUhLe3t9N9aoxJkyZxww038PDDD7vUjiA0i6ZpnfXn8aSnp3d2F9xGa8ZSUFCgBQcHa4A2atQoDdBeffXVVl3v7rvv1gBt7ty52qRJkzTA/vfkk082es6OHTs0QBs8eLBTY6mtrdV8fHw0QIuMjNRefvllDdC8vb21Xbt2NdvG3r17NUAbMGCAfdvRo0c1QPP399dyc3O1N954QwO0W2+9tVVjbw0X6nfM0/HwsTSpq2KhCw3461//SmlpKT/5yU+4+eabAThw4ECr2jBylsyZM4dPPvmEiy66CABvb29uu+22Rs9JSUnBz8+Po0ePOuXiycnJsUfh5OXlcc899wDw3HPPtehyGTJkCL6+vqSlpVFSUgLAq6++CsD8+fOJjIxk0aJF7NixgxUrVrQ8YEHwAETQhTpUVFTw4osvAvDQQw8xYsQIoO2C3q9fP4KCgvjkk0+YNm0ay5YtqxOT7YjZbLYLsaqqLV4jIyMDgL59+9rrZ86ZM4df//rXLZ5rNpvtE6PGtQxfvHETA1AUhdDQ0BbbEwRPQARdqMM//vEPcnNzSU1NZcqUKXZBN5bTO4OmaQ1KtEVERLB+/Xp7ytymGDduHADbt29v8Trp6ekAJCcn88UXX/D000/zxhtvYDKZnOrnxRdfDMD3339PRUUF+/btw8vLC0VRnDpfEDwNEXTBTm1tLc8//zygW+cmk4n4+HhCQ0PJz88nJyfHqXaysrKorKwkPDzcqZzhjrRF0BMSEhg9ejS/+93vWpVvxRD0bdu2sXv3biwWCyNGjGhzzhZB6GxE0AU7a9as4cSJEyQlJTFr1ixAjw93tNKdwZWc34agf//99y3+InAU9LbgKOjff/99nesLQldEBF2ws3HjRgBuv/32OmF6rfWjG+6Wtgh6UlISYWFhZGVl2QW7KVwV9AEDBhAREUF2djarV68GRNCFro0IumDHWKFZv8pPawXdFQvdZDI57XZxVdBNJpPdSv/uu+8AEXShayOCLtgxVkgaS/ANOlLQAXuIY3sLOpx3uwAEBgY2KIghCF0JEXQBwD7pGRQURO/evevsMwR93759VFZWttiWq4JuhC42l95W0zS7oDcVBukMjoKempqKj49Pm9sShM6mxW+voijjgBeBGiADuAW4DlgKVAALVFVNVxRlCPCarc3HVFX9qr06Lbgfw90ydOjQBrlGIiMjGT16NLt372bDhg1MnTq12bZcFfSmluWXlZWxcuVKfHx8uOGGG6iqqiIsLMyl+pxjx47FZDKhaZq4W4QujzMW+hlgsqqqlwEngWuB+4DLgWXAY7bjngFuA64Gfu/ujgrtS1PuFoMZM2YA8PHHHzfbTm1tLadPnwb0BT9tITExkZCQELKysuyhkm+99RZJSUksWbKEu+66yx6V4oq7BSA0NNSeFGzs2LEutSUInU2Lgq6q6llVVStsL6uBwcBhVVWrVVXdAqTY9sWpqnpMVdVzQIGiKJGNtSe4xosvvsi1117Ltddey3333ee2AhSGhW6IW30cBb25cML09HQsFgtxcXH4+/u3qS9eXl510tvu27ePhQsXkpWVhZ+fH5qm2ePlXRV0gGeeeYaFCxcyc+ZMl9sShM7EaYehoih9gauAh4FeDruM+DbHm0MxEA7k1WvjF8AvAJYsWcKVV17Zhi53HDU1Nfbl5Z5AXl5eg2Xtw4YNazRzYX1aGouR9zsqKqrR46Kjo4mOjiYjI4PPP/+c5ORk+77a2lq2bt3Kli1b7OfGx8e79N4lJSWxZcsWNm3aZL+BXHvttVxzzTUsXrzYvky/Z8+eLn9GqamppKamUlBQ4FI7bcHTvmOuIGPpGJqbM3JK0BVF6QH8E1iILuCOy/8stkerw7ZQoMF/h6qqr6H72UHPvOfRZGRkuDTh5m6+/fZbQA+tGzt2LC+//DLr1q3j9ttvb/Fcx7EcPnyY0tLSOi6G48ePAzBx4sQmx3zttdfy2muv8f3333P11VcD8OGHH3L33XeTnZ1d59iRI0e69N5dcsklvPXWW5w8eZLc3FxAz9Ny/fXX8+CDD3Lu3DlALw3nSZ9Ra/G075gryFg6nxZdLoqi+ADvAE+qqnoUOAYMVRTFrCjKJcA+26FnFUUZoChKCBCuqmpeE00KbcSoxTlr1iyWLVuGj48Pn376KVlZWU63UV5ezsSJE7nkkks4duwYACUlJZw5cwaz2dzsRKbhknD0oz/99NNkZ2eTlJTEww8/zHPPPceLL77I8uXL2zJEO4bLZceOHWzatAmAK664An9//zq/SNzhchGE7oIzFvpc4CLgMUVRHgNeAV4AvgYqgQW24x4BVqJb8I+7uZ8CdYsrR0VFMXXqVNatW8fbb7/N/fff71Qb77zzDvn5+YCeZva1117jyJEjgF5Vp7mwvcmTJxMQEMDOnTvJyMggKCiI3bt3Yzab2bt3L4GBgS6O8DzJycmYTCZ7kebhw4fbS7fNmjWLd999FxBBF4Q6NJcsvZ3/PB5PSnJ//PhxDdDCwsK02tpaTdM0bc2aNRqgDRs2TLNarc2eb4xFURR7oQmz2axlZGRoK1eu1ADtxhtvbLEfM2fOtBe8WLdunQZoEydOdH2AjTBw4EB7X++991779lOnTmm9e/fWAO3YsWPtcu2OwpO+Y64iY+kwpMBFV8ewzq+44gp7npVp06bRq1cvDh065FT+cFVVUVWVnj17MmPGDKqrq3nmmWfsbTcV4eKIo9vFmJicNGlSW4bUIo4pCKZMmWJ/7u3tzSeffMKaNWtISkpql2sLQldEBL2L4OhuMfD19WX27NkAfPbZZy22YVTkWbhwIU8++SQAL7/8Mv/85z+Blutwgn4TAb2Y8n//+18ALr/8cucG0UoMQffy8mpw00hOTua6665rl+sKQldFBN2DOHXqFEuWLOHs2bN1ttfW1tqLHzsKOuh+bThfbacpjh8/zttvvw3AnXfeyejRo7nhhhsAPXfKq6++yvTp01vsY0xMDOPGjaOqqorDhw/j6+vL+PHjnRpfazEKTVx88cVSNUgQnEASV3gQzz//PC+//DIVFRW88cYbAFitVm699VZycnLo168fgwcPrnPOZZddBsDWrVupqqrCz8+vQbuapvHb3/6WqqoqbrnlFnsb//73vykuLqZXr14NzmmOmTNn2hNnXXTRRW6dDHXkpz/9Ka+88kq7uXQEobshFroHYSzuee+99ygrK0PTNO655x7efvttgoKC+Pe//92gvFqvXr0YMWIElZWVTWYnXLVqFVu2bCEiIoI//vGP9u1ms7nVYg7nV41C+7lbQE9vu3jx4ibTEQiCUBex0N3E6dOnefbZZ6moqMDHx4d77rmnxcrzjlitVvbt00P6S0tL+eCDDwDd7+3n58fHH39cJzOgI5dffjkHDhzg66+/ZuLEiXX27dmzh/vuuw+AP/3pT0RGup6RITk5mcTERE6ePMkVV1zhcnuCILiJ5kJg2vnP42lN6NJdd91lD7EDtJEjR7YYSuiIEZZo/I0dO1br1auXBmhvvvlms+e+//77GqBNnjy5zvbPP/9cCw4O1gDtJz/5Sav60xJbtmzRVqxY4dY2ncXDQ8pahYzFM/HwsTSpqyLozdCaD9WImV6+fLkWExOjAdqnn37q9PlGTPnFF1+sBQQE2IV94sSJLYpmTk6OBmj+/v5aZWWlpmmaduDAAc3Hx0cDtJ///OdaWlqa033xdDz8n61VyFg8Ew8fi8ShtyenT5/m2LFj9OjRg4ceesju4njmmWecbsPI/T1x4kR79ImPjw+vvPJKA795fRrzo69evZra2lpuvPFG/vnPfzY6WSoIQvdCBN0NGDHikyZNwsfHh8WLFxMWFsbmzZvZvHmzU20Ygj5y5EiWLl1KSEgIv//9750uiWb4sj/55BMA/ve//wEwb968BgUrBEHonsh/uhuov+gnJCSEX/7yl4CeL8UZDEFPSUlhzJgxFBcX89vf/tbpPhhW/TvvvENBQQHff/89Pj4+7RqFIgiCZyGC7iKapjW6inPx4sUAbNiwAYvF0ui5BufOneP48eOYzWaGDBkC0KKbpT4TJ06kd+/enDp1iqeeegqr1cqll15KSEhIq9oRBKHrIoLuIocPHyYrK4vo6Og67pG4uDgSExMpLS3l4MGDzbaxf/9+QM+l4uvr26Z+eHl5MXfuXAD+/Oc/A3DVVVe1qS1BELomF4Sgnz17li1btrBlyxbOnDnj1rYN63zy5MkNrGpjSfy2bduabWPt2rVA3WRUbeHmm28G9Jh20FdaCoJw4dDtBb2wsJDhw4czYcIEJkyYwJAhQzh16pTb2jdyqNTPsQLYFwI1JehWq5WlS5fa/eyzZs1yqS8pKSmMGDECgIiIiFYtbBIEoevT7QX9rbfeorCwkJiYGPr06UN5eXmd5e+uoGmavSyckVPFEUPQv/vuuwb7KisrmTNnDi+88AK+vr68/fbbbilSPG/ePACuvvpqiW4RhAuN5oLU2/mv3bFYLPYFPx9++KG2b98++wKc7OzsFs93XFzwn//8R/voo4/q7D9y5IgGaNHR0Y0u/qmqqtL8/Pw0QCsoKLBvz8vL0y699FIN0Hr06KF99dVXLoyy4TVfeuklLTMzs8mxdHVkLJ6JjKXDuDAXFm3YsIFjx44RHx/PjBkzSE5OZvr06VRWVvLiiy863U5aWhpz587luuuu480337RvN2LMJ0yY0GhUitlsJjU1FaBO4qxbbrmFLVu2kJCQwJYtW+wpcN2B2WxmyZIlxMbGuq1NQRC6Bt1a0P/6178Cev5vo1bm7373O0Av7FBcXOxUO0b9SoDbb7/d/tpwt9RPiOVIfbdLdXW1fSJ18+bNdp+3IAiCq3QLQa+srGywLT09nbVr1+Lj48Ptt99u3z5+/HgmTpxIcXEx77//vlPtGwJ+zTXXoGka8+fP5+jRo60SdGNidN++fVRVVTF48GD69u3r3AAFQRCcoMsL+l/+8hcCAgK47rrr6sR7v/baa1itVmbNmtXA/TB//nwAe4ra5jh06BD79u0jLCyMjz76iAULFlBTU8Mdd9zB8ePHCQ4OJiUlpcnzjdDFrVu3UlNTY3e9jBs3rtVjFQRBaI4uLehWq9UesbJ27VqSk5P529/+RnV1Na+//joAd999d4Pzrr32Wry8vPjyyy8pKipq9hqGdT5r1izMZjPPPPMMgYGBduv8kksusbtzGiMhIYFhw4ZRUlLCt99+K4IuCEK70aUFffPmzZw8eZKEhATuvvtuNE3jV7/6Fc888wxZWVkMGzas0XDCqKgoJk6cSE1NjT2ZVWNomsY777wDwE033QToK0B/85vf2I9pzt1iYFT4Wb9+vQi6IAjtRpcW9FWrVgF61MjLL7/MbbfdRlVVlb2i/d13391kThQjmVVzbpfPP/+cH374gdjY2DqVeR544AGioqIAnKp3aRRfXr16NUeOHMFsNru8KlQQBKEBzcU0tvOfS5SXl2shISEaoB0+fFjTNE0rLi7WEhMTNUALCgrSiouLmzw/PT1dA7SAgACttLS0wX6LxaINHjxYA7SXXnqpwf5du3Zpr7/+ulMVe2pqarTw8HB70Ypx48a1YqTuwcPjaluFjMUzkbF0GN0vDv3dd9+lpKSEcePG2TMU9ujRg1WrVhEcHMzSpUvp0aNHk+fHx8dz8cUXU1FRYXe75OTkMGfOHP7whz+wcuVKjh49Sp8+fbjjjjsanD969Ghuv/12p7Ii+vj4MHXqVPtrcbcIgtAedMki0Zs3b+aee+4B4Lbbbquzb+LEiRQVFeHt7d1iOzfddBPbtm3jrbfe4sYbb+SPf/wj7733Hu+99579mGXLlrml2s/06dN5++23ARF0QRDahy5noe/atYtp06ZRXl7OwoUL68SYGzgj5gA///nP8fHx4bPPPuPUqVOsXLkSwG7x9+/fn1tuucUt/f7pT39qj4YRQRcEoT3oUha6USPz3LlzzJ49m7///e8uJaDq1asXM2bMYM2aNdx8883k5OQwbNgw9u/fz9atWwkMDGxzfvL6hIWF8Ze//IWsrCwGDRrkljYFQRAc6VKC7uPjw3vvvceKFSt44403nLbEm+PWW29lzZo1bNmyBYA77rgDLy8vJkyYQEZGhsvtO3LnnXe6tT1BEARHWhR0RVFCgS+AYcDFqqoeUBRlNrAUqAAWqKqarijKEOA1W5uPqar6VXt0eMyYMfzzn/90W3vXXHMN0dHRZGdnYzab7atIBUEQuhrO+CvKgWnA+wCKovgA9wGXA8uAx2zHPQPcBlwN/N7dHW0vfHx87H7yWbNmERER0ck9EgRBaBstWuiqqtYAuYqiGJsGAodVVa0GtiiK8rxte5yqqscAFEUpUBQlUlXVvPbotLt57LHHCA8PZ9GiRZ3dFUEQhDbTFh96T+Ccw2vDke1o7RcD4UAdQVcU5RfALwCWLFnClVde2YbLtw/z58+npqamjt+8/uuujIzFM5GxeCaePJb4+Pgm97VF0IsAxxU7Ftuj1WFbKFBQ/0RVVV9D97ODvmrSo8nIyGj2zetKyFg8ExmLZ9JVx9IWQT8GDFUUxQwowD7b9rOKogwAcoDwruJuEQRB6C44JeiKonwKjAIGA38DXgC+BiqBBbbDHgFWortgHndrLwVBEIQWcUrQVVWd2sjmd+sdcwhoOZesIAiC0C50uaX/giAIQuOIoAuCIHQTRNAFQRC6CSZN8/joQUEQBMEJxEIXBEHoJoigC4IgdBNE0AVBELoJIuiCIAjdBBF0QRCEboIIuiAIQjdBBF0QBKGbIIIOKIoSZHs0dXZfXEVRlEDbY3cYS1/bY3cYy0XdYRwAiqL06ew+uAtFUXp2dh/cyQW9sEhRlKuAO4BM4A+qqmZ2cpfajKIo1wHzgDPAc118LIHA/wN6Az+zVc3qkiiKMhJ4EdgGLLNV+uqSKIpyNbAEqAL+A3ymqmpp5/aqbSiKMgn4DXoRnpeBg6qqVnZur1znQrfQfw78HTgALFYUpUtmi1QUZTpwK/AH9AIkD9m2d0mLUFXVcqAaCEEfV5cdC3oG0mdUVX0Y6N/ZnWkriqJ4A4vRC9Q8iV4LIagLfy5zgH+g35imAjd0bnfcQ1sKXHRZbJbfHGAzkA2cBrYDG23bUxVFSesK1q1tLHOB/wK7gNtVVc1VFOUH4B1FUaJUVc3p1E46icPnsklV1TSbSPwIfAjcqyjKZ6qqnu7UTjqJ43fMVmO3HLhaUZSH0YvA7AA+VlU1rTP76Qy2sdwEfAOUAvvRf82eQq+PEAD4ot98PRpFUQLQi9p/pqrqN8AJ4Cz6/38lME1RlCGqqh7pxG66zAVjoSuKMhe9KEcgcFxV1XNADDDe9jN4N+CPXj7Po3EYiz+Qo6pqpk3MvdCt2hNdSMyNsQSg32BRVVUDhqF/Fh8CdyqK0ruz+ugs9cZy0rY5EIgF7gfuRndXTOuE7rWK+mNRVTUb+Ardrbcb3VVxB3BPZ/XRWWzfnf+gG3Hf2TabgH7opTAPoX/3kjqlg27kghB0RVF6ADcCT6F/KX+iKEok8Apwu6IoQaqqHgD6Aomd1lEnaGQslyuKMgRAVVUruoDU2o7t48k/ieuNZQMwSVGU4bbd36D/8ihDF5F7bed45He2kbFcoShKHPABuhXbW1XVYnShNz4fj/xsGvmOTVEUZaCqql8DXwIvq6o6D1gPmBVF8fLUsdjwAdah/xL/paIolwCfA5cAw1VVzUc3jgLAcz8XZ+i2k6K2mfj7gU+ALcBlwFLADHwM3AJMAn6B/oF/i+6v/UBV1fWd0eemaGEs69DHcq2qqicVRbkN/YtaDEQA93jSxJWTY7kKuBO4HL1GbSZQpqrqY53Q5SZx8js2BX0cKeiW4FTgR1VVn+yELjeJk5/LNei/LmLRBXEJUKiq6r2d0eemcBjLOvT5sQTb6wx0I2Eh8H9AMnrB+yPAdHSX3987octuwyOtHVdRFCUB+CO6ry8GWKWq6qfAc8AVqqo+D6wC/p+qqn9A/wLfCezzQDFvaSx/RJ/c+YPtlD7ogn5MVdUFHibmzoxlFfAE8DzwpqqqN6mqep8Hirkz37G30KOnVqP/5L8I2OqBYt6az+VN9ELxTwDbPVDMHccSD/xVVVUV3bipVlX1X7b9VwH/RHfpTQJ2dHUxh24m6IqiXObwcylMVdU/qqr6FhCiKMpvVVX9H7rvDPRC14GKooTYfkouUFV1Rcf3unFaOZa/YPsZj/6TeLyqqq90cJebpJVjeRHdakJV1bdt53vM97QNYzEritLDVnP3N138cwkC/FVV/Q/6L8KXOqHbjdLMWEIVRbkdeBoYB6Cq6mfAENtxB4B7PWksruAx/yiuoChKsKIoX6D7+6aiT9hsVhTlTtsh3wIzFUUJU1XVoijKZcBH6JEUpQCqqtY2bLnjcWEsxwFUVf1WVdWiju95Q1z5XGyhi4B9bqBTcWEsabYJeFRVtXRC1xvg4udSBuAp8fROjGUTsMj2uFlRlMdtx2fajvWYz8UddBsfuqIoqegLUcahLxQIsz2eRBftMnTr9SDwOvrP+Q86o68tIWORsbQ3F9hYqtBvSN8B0egTof/rhK62O91G0A0URfkzum/vbUVRYtF/vv8I/Br4l6qqWZ3Zv9YgY/FMZCyeSQtj+WdXCeV1hW7hcoE6oUb/Qg8Zi1JV9Sx6LPNq9JDEEk/yxzaFjMUzkbF4Jk6OpbQrhyM6S7ez0AEURfklMAAoBNKAH1RV3d65vWobMhbPRMbimXSnsbQFj7/7tgYHayIFPWb2uKqqb3fFD1TG4pnIWDyT7jQWV+iuFvoNwHpVVas6uy+uImPxTGQsnkl3Gktb6JaCLgiCcCHSrVwugiAIFzIi6IIgCN0EEXRBEIRuggi6IAhCN0EEXRAEoZtwQZWgEy4MFEVJRC8xBnph5qds299AT9SEqqptWjWoKMow9OIPX9uydKIoykpgATDWlqpVEDoFEXShu7NQUZTl6Klfb3RDe8OAx23Pv3ZDe4LgNiQOXeh2OFjox4H+wGT0+pF/RU+ZGo/ubnwEvS5mOKACS1RVPagoyhPoov139GpDYej1QHdw3vI3uAK9As4C9MIJs21t/1xV1W/bZYCC0ATiQxe6M4eB79HdLIvQU6gW2fbdil4zcx+6sI8F1iqK4utw/kT04iGh6CXLctELo4BeK3Quelk5g0vQU80moFf0EYQORQRd6O68iW41X4peqs9gqu3xPlVV/wysRU/qNMjhmD+pqvoiuqWfaCvusMW274Cqqu/US8n6hKqqy9Hzbye6fSSC0AIi6EJ35x3AAqQDXzSyX6v36EiB7bGW8/8rzfkoHY/3bl03BcF1RNCFbo2t/Nsi4M56pew+sT3+yZZy9Vps6VZbaLLQ9jhRUZSbFEUJcGuHBcEFJMpF6PaoqvpuI5tXok+O3oE+aboDfVK0RlGU5prbjF6/8jLbeb3d2llBcAGJchEEQegmiMtFEAShmyCCLgiC0E0QQRcEQegmiKALgiB0E0TQBUEQugki6IIgCN0EEXRBEIRuggi6IAhCN+H/Aw4GeMov/POzAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTUUlEQVR4nO3dd3hTdf//8WfSdO9BWzoBy0YUARdDQRBBBURQEERQ4HZv9P46EdRb3Nw/B4gI3oqiwq2CgigicIOKgizZUNpCKZRSCt0r+f0RzslJm7ZJ2iQd78d1eXmSc5JzclrIi/dn6UwmkwkhhBBCCA/Re/oChBBCCNGySRgRQgghhEdJGBFCCCGER0kYEUIIIYRHSRgRQgghhEdJGBFCCCGER0kYEUIIIYRHSRgRQgghhEdJGGmEjEYjR44cwWg0evpSmgS5X46R+2U/uVeOkfvlGLlfFhJGhBBCCOFREkaEEEII4VESRoQQQgjhURJGhBBCCOFREkaEEEII4VESRoQQQgjhURJGhBBCCOFREkaEEEII4VESRoQQQgjhURJGhBBCCOFREkaEEEII4VESRoQQQgjhURJGhBBCCOFREkaEEEII4VESRhqBU6dO4e3tTVFRERUVFQQHB5OZmanub9OmDTqdDp1OR0BAAN26dWPevHkevGIhhBCNRVZWFgsXLiQnJ8fTl+I0CSONwG+//cbFF19MQEAAW7duJSIigvj4eKtjZs6cSVZWFjt37mTkyJHcfffdfPHFFx66Ys8rKyvz9CUIIUSjMGLECO68805uv/12T1+K0ySMNAK//vorffr0AWDjxo1ceeWV1Y4JDg4mNjaWlJQUXnzxRdq3b88333wDwJNPPkmHDh0ICAigXbt2PPvss5SXl6uv3bFjBwMGDCA4OJiQkBB69uzJli1bAEhPT+fGG28kPDycwMBAunbtysqVK9XX7tmzh2HDhhEUFERMTAy33367Vfq++uqrefDBB3niiSeIiIggNjaWGTNmWF37vn376Nu3L35+fnTp0oU1a9ag0+nU6wfIzMzk1ltvJTw8nMjISEaMGEFaWpq6f9KkSYwcOZJ//etfxMXF0aFDBwDee+89OnbsSKdOnWjdujWjR4926mcghBBNkclkYvv27QCsXr2akydPevaCnGTw9AW4Qq9evThx4oTbzxsbG6t+ydclIyOD7t27A1BUVISXlxeLFi2iuLgYnU7HqlWrGD9+PO+//77N1/v5+amBIzg4mEWLFhEXF8euXbuYOnUqwcHBPPHEEwCMHz+eHj168P777+Pl5cX27dvx9vYG4L777qOsrIwNGzYQGBjInj17CAoKAsylv6uuuoqpU6fy5ptvUlxczJNPPsktt9zC2rVr1Wv5+OOPefTRR9m8eTO//fYbkyZNok+fPgwePBij0cjIkSNJSkpi8+bN5Ofn89hjj1l9lqKiIgYMGEC/fv3YsGEDBoOBF198keuuu46dO3fi4+MDwM8//0xISAg//fQTJpOJLVu28OCDD/Lxxx+TnJyMv78/mzZtsvfHJYQQTV5paan6XWAymVixYgVTpkzx8FU5wdQMxcfHmwC3/xcfH2/3NZaXl5uOHDli2rFjh8nb29u0fft206FDh0xBQUGmX375xbRhwwbTyZMnTSaTyZScnGx666231NctXLjQBJjee+89m+/96quvmnr27Kk+Dg4ONi1atMjmsRdeeKFpxowZNvc9++yzpmuvvdbquaNHj5oA0/79+00mk8l01VVXmfr27Wt1TO/evU1PPvmkyWQymVatWmUyGAymrKwsdf9PP/1kAkxff/21yWQymRYsWGDq2LGjyWg0qseUlpaa/P39TatXrzaZTCbTHXfcYYqJiTGVlpaqxyxbtswUEhJiysvLM6WmppoqKyttfg5hrbKyUu6XneReOUbul2Ma4n6dPHnS6nvo+uuvb8ArdJ9mWRmJjY1t9Oc1GAy0adOGL7/8kt69e3PRRRexadMmYmJi6N+/P+np6URFRanHP/nkkzzzzDOUlpbi4+PD9OnT+cc//gHA0qVLefvttzl06BAFBQVUVFQQEhKivvbRRx9lypQpfPLJJwwaNIgxY8ZwwQUXAPDggw9yzz338OOPPzJo0CBuvvlmtWKzdetWfvnlF7VSonX48GG1qUQ5XtG6dWuys7MB2L9/P4mJiVb35tJLL7U6fuvWrRw6dIjg4GCr50tKSjh8+LD6+MILL1SrJACDBw8mOTmZlJQU+vbty6hRo7j55psJCAio6/YLIUSzcO7cOavHa9asoaCgwObf241Zswwj9jaVeFLXrl1JT0+nvLwco9FIUFAQFRUVapCIi4tj37596vHTp09n0qRJBAQE0Lp1a3Q6HQC///47Y8eO5YUXXmDIkCGEhoayZMkS3njjDfW1M2bM4LbbbuP7779n1apVPP/88yxZsoSbbrqJKVOmMGTIEL7//nt+/PFH/vWvf/HGG2/wwAMPYDQaufHGG5k9e3a162/durW6rTT5KHQ6HUajETCXDZVrrYnRaKRnz54sXry42r5WrVqp24GBgVb7goOD+euvv1i7di3Lli1jxowZzJw5kz///JOwsLBazymEEM1B1TBSWlrKjz/+yKhRozx0Rc6RDqwesnLlSrZv305sbCyffvop27dvp1u3brz99tv89ddffPTRR1bHR0VFkZKSQlxcnNWX+6ZNm0hOTubpp5+mV69etG/fnvT09Grn69ChA4888oj6S7pw4UJ1X2JiInfffTf//e9/eeyxx5g/fz4Al1xyCbt376ZNmzakpKRY/Vc1GNSkU6dOZGRkWHWq+vPPP62OueSSSzh48CDR0dHVzhMaGlrr+xsMBgYNGsQ///lPtm/fTlpamlV/FiGEaM6qhhGAb7/91gNXUj8SRjwkOTmZoKAgTp48yYgRI0hKSmLPnj2MGjWKlJSUakN7a5KSkkJGRgZLlizh8OHD/Pvf/+brr79W9xcXF3P//fezbt060tPT2bRpE3/++SedO3cG4OGHH2b16tUcOXJErTIo++677z5yc3MZN24cf/zxB6mpqfz444/ceeedVFZW2nV9gwcP5oILLuCOO+5g586dbNq0iaeffhpADVXjx48nKiqKESNG8L///Y8jR46wfv16HnroIY4dO1bje3/33Xf8+9//Zvv27WRmZvKf//wHo9FIx44d7bo2IYRo6myFke+++46KigoPXI3zJIx40Lp16+jduzd+fn5s3ryZ+Ph44uLiHHqPESNG8Mgjj3D//fdz8cUX8+uvv/Lss8+q+728vDh9+jQTJ06kQ4cO3HLLLQwdOpQXXngBgMrKSu677z46d+7MddddR8eOHXnvvfcAiIuLY9OmTVRWVjJkyBC6devGQw89RGhoKHq9fb86Xl5efPPNNxQUFNC7d2+mTJnCM888A5hHBAEEBASwYcMGkpKSGDVqFJ07d+bOO++kuLjYqu9LVWFhYfz3v/9l0KBBDB48mA8++IDPP/+crl27OnQPhRCiqdKGEeXv5dzcXDZu3OipS3KKzmQymTx9EcKa0WgkPT2d5ORku7/0m5JNmzbRt29fDh06pHakrY/mfr8amtwv+8m9cozcL8c0xP167733uO+++wC49tpr+fHHHwFz1futt95qsGt1NfltES739ddf89NPP5GWlsaaNWuYNm0affr0aZAgIoQQLdnZs2fV7XHjxmEwmMelfPvttzSlWoOEEeFy+fn53HvvvXTq1IlJkybRu3fvJtnBSgghGhttM01ycjKXX345AEeOHLHZn6SxciqMLFq0iOuvv57+/ftz2223kZ+frz4/aNAgBg4cyJw5c6xS2e7duxk3bhx9+vRh2rRpZGVlNcwnEI3exIkTOXjwICUlJRw7doxFixYRGRnp6csSQogmTxs4QkJCiI6OVh8r381NgcNhZMmSJfz66698+OGHrF+/npkzZ+Lj48PGjRtZunQpixYt4ssvv2Tjxo0sX74cMC9q9sQTTzB27FjWrl1Lt27deO655xr8wwghhBAtSdUwop08simFEYcmPausrGThwoXMnz9fnfQqJSUFMM+bMXr0aBISEgCYMGECq1atYsSIEWzduhV/f39GjBgBwNSpUxk0aBBZWVlWk2cpysrKqq3KajAYrGbfbM6UCcOU/4vayf1yjNwv+8m9cozcL8c0xP3S9hkJCgqymnn17NmzjeJnYU/nXIfCSHZ2NqWlpaxZs4YlS5YQFBTEbbfdxujRozly5AjDhg1Tj+3QoQPvvvsuAKmpqWpoAfD39ychIYHU1FSbYUQJPFpjxozhlltuceRym7yjR496+hKaFLlfjpH7ZT+5V46R++WY+tyvU6dOqdt5eXlW4ePQoUPExMTU69oaQtu2bes8xuEwUlBQwLFjx1i+fDmZmZnce++9tGnThqKiIqtEFhgYSFFREWCeeKvqjJ2BgYEUFxfbPM/kyZMZP3689YW2sMrI0aNHSUxMlOFxdpD75Ri5X/aTe+UYuV+OaYj7pbQiGAwGOnTooLZOgHkOp+Tk5Aa5VldzKIz4+voCMG3aNPz8/LjgggsYNmwYmzZtIiAggIKCAvXYwsJCdcEyf39/CgsLrd6rsLAQf39/m+fx8fFpMcGjNnq9Xv5AO0Dul2PkftlP7pVj5H45pj73S+kzEhISgpeXl9VEkYWFhU3m5+DQVSYnJ1dbFE3Rtm1bDh06pD4+cOAA7dq1A6Bdu3ZW+4qLizl27Ji6X7hHWloaOp2O7du313jMunXr0Ol05OXlefxahBBC1E4bRoAm24HVoTDi7+/PNddcw4IFCygrKyMtLY1Vq1bRp08fhg0bxrJly8jMzCQnJ4fFixczdOhQAHr27ElxcTErVqygrKyMBQsW0KVLF5v9RYRnXXnllWRlZdW5QJ0QQgjPay5hxKFmGoAnn3ySmTNnMmjQIEJDQ5kyZQq9evUC4ODBg0ycOBGj0cjIkSMZPnw4YG52efXVV5k1axavvPIKXbp0YebMmQ37SUSD8PHxITY21tOXIYQQog5lZWWUlJQATT+MONyYFBwczGuvvcaGDRtYsWIFo0ePVvdNnjyZn3/+mV9++YWHHnrIaqn7rl27smTJEjZt2mQ1NLglMxqNzJ49m5SUFHx9fUlKSuKll14CYN++fQwaNAh/f38iIyOZNm2aVZ+cSZMmMXLkSF5++WViYmIICwvjhRdeoKKigunTpxMREUFCQgIfffRRtfPu27ePK6+8Ej8/P7p27cq6devUfVWbaRYtWkRYWBirV6+mc+fOBAUFcd1111WbtG7hwoV07twZPz8/OnXqpC62p/jjjz/o0aMHfn5+9OrVi23btjXQXRRCiJZJO8eIUs1uMWFENJz/+7//Y/bs2Tz77LPs2bOHzz77jJiYGIqKipg8eTJhYWH8+eeffPXVV6xZs4b777/f6vVr167l+PHjbNiwgTfffJMZM2Zwww03EB4ezubNm7n77ru5++67qw0bmz59Oo899hjbtm3jyiuvZPjw4Zw+fbrG6ywqKuL111/nk08+YcOGDWRkZPD444+r++fPn8/TTz/NSy+9xN69e3n55Zd59tln+fjjjwFzJ6obbriBjh07snXrVmbMmGH1eiGEEI6rOuEZNN0w4nAzTVPQa6qRE7nuP29sBGyZb1++y8/PZ86cObzzzjvccccdAFxwwQX07duXefPmUVJSwscff6z+Yr3zzjvceOONzJ49Wx03HhERwb///W/0ej0dO3bk1VdfpaioiKeeegowh51XXnmFTZs2MXbsWPXc999/PzfffDMA77//Pj/88AMLFizgiSeesHmt5eXlzJ07V13Y7v7777dqZps1axZvvPEGo0aNAsydmffs2cO8efO44447WLx4MZWVlXz00UcEBATQtWtXjh07xj333GP3vRVCCGFNwkgjdyIXMk/VfZwn7d27l9LSUq655ppq+/bt20fnzp2t5mbp06cPRqOR/fv3q2Gka9euVsO2YmJi6Natm/rYy8uLyMhIsrOzrd7/iiuuULcNBgO9evVi7969NV5rQECA1Qq7rVu3Vt/z1KlTHD16lLvuuoupU6eqx1RUVKhlw71793LRRRepQ72rXoMQQgjHSRhp5GIjGv95a5pjBcBkMln1t9HSPl91mLVOp7P5nD3TAdd0vprOoyyCqLz3/Pnzueyyy6yO8/LyAmhSy1gLIURTIWGkkbO3qcST2rdvj7+/Pz///DNTpkyx2te5c2cWLVpEYWGh+ou1adMm9Ho9HTp0qPe5f//9d/r37w+YKxhbt26t1h/FXjExMcTHx5Oamlpt1lxFly5d+OSTTyguLlZD2O+//+7cxQshhABshxGDwYCfnx8lJSUSRkTd/Pz8ePLJJ3niiSfw8fGhT58+nDp1it27dzN+/Hiee+45Jk2axAsvvMCpU6d44IEHuP322xtknYF3332X9u3b07lzZ9566y3OnDnDnXfe6fT7zZgxgwcffJCQkBCGDh1KaWkpW7Zs4cyZMzz66KPcdtttPP3009x1110888wzpKWl8frrr9f7cwghREtmK4yAuTpSUlJiNQKzsZMw4kHPPvssBoOB5557juPHj9O6dWvuvvtuAgICWLRoEa+99hq9e/cmICCAm2++mTfffLNBzvvKK68we/Zstm3bxgUXXMC3335LVFSU0+83ZcoUAgICeO2113jiiScIDAzkwgsv5OGHHwbMK0muWLGCu+++mx49etClSxdmz56tdqIVQgjhuNrCyKlTp5pUZURnkgb9RsdoNJKenk5ycnKTWVfAk+R+OUbul/3kXjlG7pdj6nu/nnnmGXVuqp9++olBgwYBcNFFF7Fz5058fX3VSdEaO/ltEUIIIZqg2iojAKWlpZSXl7v9upwhYUQIIYRogs6ePatua9cTa4ojaiSMCCGEEE1QXZURkDAihBBCCBeSMCKEEEIIj1LCiF6vt5rhWsKIEEIIIdxCCSMhISFWs2hLGBFCCCGEW2jDiJaEESGEEEK4hYQRIYQQQnhMRUUFRUVFgIQR4QJXX301jzzySI3709LS0Ol0bN++XX1u06ZNXHjhhXh7ezNy5EjXX6QQQgiP0oYMCSPC7RITE8nKyqJbt27qc48++igXX3wxR44cYdGiRcyYMYOLL77YcxcphBDN3NmzZ3n++ef54YcfPHL+mob1QtMMI7JQXhNSVlaGj48PsbGxVs8fPnyYu+++m4SEBA9dmRBCtCz33nsvn332Gb6+vpw4cYKwsDC3nl8bRrSzr0LTDCNSGfGgwsJCJk6cSFBQEK1bt+aNN96w2t+uXTtefPFFJk2aRGhoKFOnTrVqplG2T58+zZ133olOp2PRokW88MIL7NixA51Opz4nhBCiYaSlpbFkyRLAvP5LZmam269BOxV8c6iMSBjxoOnTp/PLL7/w9ddf8+OPP7Ju3Tq2bt1qdcxrr71Gt27d2Lp1K88++6zVPqXJJiQkhLfffpusrCxuvfVWHnvsMbp27UpWVpb6nBBCiIYxZ84cjEaj+tgTX/j2NtMUFBS47Zrqo1k202wc+Btl2aVuP69PtC99115h17EFBQUsWLCA//znPwwePBiAjz/+uFpTy8CBA3n88cfVx2lpaeq2l5cXsbGx6HQ6QkND1eaboKAgDAZDteYcIYQQ9ZOXl8eHH35o9Zw2GLiL9BlpAsqySynJcn8YccThw4cpKyvjiiss4SUiIoKOHTtaHderVy93X5oQQogazJ8/v1q1obFVRgIDA9VtCSMe5BPt2+jPazKZ7DpO+0slhBDCc8rKypgzZ0615xtbGPHy8iIgIICioiIJI55kb1OJJ6WkpODt7c3vv/9OUlISAGfOnOHAgQP079+/Xu/t4+NDZWVlQ1ymEEKI87788ku1s6q/vz/FxcVA4wsjYG6qaUphRDqwekhQUBB33XUX06dP5+eff+bvv/9m0qRJ6PX1/5G0adOGI0eOsH37dnJycigtbdxNVkII0RTMmzdP3b733nvV7cYaRqDpNNNIGPGg1157jf79+zN8+HAGDRpE37596dmzZ73f9+abb+a6665jwIABtGrVis8//7wBrlYIIVq2Q4cOAdC6dWuGDRumPt/YOrCCdRixt1uAJzXLZpqmIigoiE8++YRPPvlEfW769OkYjUbS09NJTU2tVilp06ZNtV+svLw8q8e+vr4sXbrUZdcthBAtkfJ3bVRUlMdHrNgbRioqKigtLcXPz89t1+YMqYwIIYQQdSgpKaGkpASA8PBwqwDg6TBSdQZWaHrDeyWMCCGEEHXQVqDDwsI8/mWvhBGdTmdz1KWnr89REkaEEEKIOtQWRjzRZ0SZDj44ONjmwAcJI0IIIUQzUzWMeHpiMSUA2eovAhJGhBBCiGanahjR6/UeHT4rYUQIIYRoYaqGEfDcXB6VlZXqlPRVw0hpmYnVf5jQ+USrzzWFMCJDe4UQQog6NKYwUtOw3mPZJkY8ZeKvAxAdPA64HzA1iTAilREhhBCiDtowEh4eDnhuYrGcnBx1u1WrVgBs3mOi9zRzEAHIzg8F72j1+ho7CSNCCCFEHc6cOaNuV62MmEwmCgsL3XYt2jASFRXFik0mrnrQxIncKgd6m4OKhBEhhBCiGbDVTOOpic+qhpEH55goLTM/9vXRHHg+jCj9SxozCSNCCCFEHWrrMwKeCyMhYTGknTBvd78Anp+ksxwolREhhBCi+WisYUTnl6Bud20LcZGaA72jAAkjQgghRLOghBGdTqc2z3hqFlZtGKn0ilW346OgVZjmQAkjQgghRPOhhJGQkBB1+vXGUBkpMVlKIfFRuiphRJpphBBCiGZDCSPKsF5oHB1YC8vD1O34VhClXcBXwogQQgjRPJhMJnVor9JfBDxXGTl16pS6faYoQN2u2kzj5WduwpEwIoQQQjRxxcXFlJeXA40jjCiVkbCwMLJOW77GE6Ih0B/8zg/v1fnKpGdCCCFEs2BrJA14vgNrVFQUmedbbHQ6aB1p7mCrVEdMBnN/EgkjQgghRBNnTxhx1xd+RUWF2mQUFRVF5vkWm+hw8DaY5xhRwkilLgzQUVBQ4Nbp6p0hYUQIIYSoRU1hxBMdWHNzLXO+R0ZGk3X+YXyU5Ri1E6vOAIYwjEYjRUVFbrk+Z0kYEUIIIWrRmCoj2pE0geHtqKw0b2vDSFMc3ithRAghhKiFrRV7Afz8PRtGvIPaqNvxrSzHSBgRQgghmpmqK/aaTCZe+dTEBRNCoesKwH0dWLXDevWaqeATWlnWpGkV1vTWpzF4+gKEEEKIxkxbGfEPjGDCLBOfrQHQQcQw8EvxSGWk0qu1ul1zZaRpTAkvYUQIIUSjZTQamTt3LmFhYdx2220euQY1jHjH8tzSfuzLrHKATzT5+cfdci3aMFKKdip4yzHWs7Cad2RnZ7v60upFwogQQohGa+7cudx3330AdOrUiUsuucTt16CGkZR32JcZXP0A71bk5+93y7XUNhW8wlafkePH3ROWnOVwn5Fp06Zx5ZVX0q9fP/r168eDDz6o7lu0aBGDBg1i4MCBzJkzx2pc8+7duxk3bhx9+vRh2rRpZGVlNcwnEEII0Wx99NFH6vaBAwc8cg1qGAm9yvy/ILh/lOYA71YeaabJKw5Ut+saTdPswgjA888/z//+9z/+97//8e9//xuAjRs3snTpUhYtWsSXX37Jxo0bWb58OQBlZWU88cQTjB07lrVr19KtWzeee+65hvsUQgghmp39+/ezdetW9bGn+j3k5eWB3g+8IwC4sB0MvETbSTSKsrIySktLXX4t2jCSk+8LmKeAD7HkkiYZRhqsmWblypWMHj2ahARz794JEyawatUqRowYwdatW/H392fEiBEATJ06lUGDBpGVlUXr1q2rvVdZWRllZWXWF2ow4OPj01CX26gZjUar/4vayf1yjNwv+8m9ckxD36/FixdbPc7Pz/fIzyIvLw984tXHcZEQGaKZ0dRgLkucPXuWqKgo7OXM/VLCiE6vV9elSYgyL+antEaEBICXHiqNwPkp4Y8fP+6x32O9vu66h1Nh5LXXXuO1116jQ4cOPPLII7Rv354jR44wbNgw9ZgOHTrw7rvvApCamkpKSoq6z9/fn4SEBFJTU22GkYULFzJ//nyr58aMGcMtt9zizOU2WUePHvX0JTQpcr8cI/fLfnKvHNMQ98tkMvGf//yn2vump6fX+70dderUKfBNVh8H+56jrDAfOB9Qzlcf9u3bR2JiosPv78j9Uro4hEUmcabEXJ2JCC4mPd26g2p4cAI5Z73Q+UZjAtLT0z1y7wDatm1b5zEOh5EHH3yQdu3aodfr+eKLL3jooYdYunQpRUVFBAUFqccFBgaq088WFxcTGBho9T6BgYEUFxfbPMfkyZMZP3689YW2sMrI0aNHSUxMtCtRtnRyvxwj98t+cq8c05D3648//qj25WkwGEhOTq7hFa5TUFAAPpY5PTq3C+GiLpap4JUwEhIS4tD1OXO/lP4r4TFdUWY/uSDBv9p5Y8Ih56zl2rKzsz1y7+zlcBjp1q2bun3HHXewfPlydu/eTUBAgPkHdl5hYSEBAQGAuRJSWFho9T6FhYX4+/vbPIePj0+LCR610ev18hegA+R+OUbul/3kXjmmIe7XkiVLqj1XUFDg9p+DyWQyB4DWcepzidE6IkPBy8tkno79/PDZwsJCp67P3vtVXFysfpcGhLdXn09oVb0ppFW4EdLApPMDfSD5+fkUFhZaTWHfmNT7p6rcgLZt23Lo0CH1+QMHDtCuXTsA2rVrZ7WvuLiYY8eOqfuFEEIIRUVFhc0w4okOrIWFhVRWVlr1GYlvBXq9jkilOHK++uDqWVhPnz6tbvsEWb4/46N01Y611Ym1MY9idSiM5Ofn8/vvv1NWVkZ5eTmLFy/m3LlzdO7cmWHDhrFs2TIyMzPJyclh8eLFDB06FICePXtSXFzMihUrKCsrY8GCBXTp0sVmfxEhhBAt2y+//MLJkycBuPLKK9XntdV3d1GH9fpqwsj5PqrqF76bZjnVjqTRaaeCj65+bCsbE5815hE1DjXTVFRU8O6775KWloa3tzcdOnRgzpw5BAUF0bdvXw4ePMjEiRMxGo2MHDmS4cOHA+Zml1dffZVZs2bxyiuv0KVLF2bOnOmSDySEEKJpW7p0qbr9j3/8g19//RXwTGVEDSM+lmaauPNhRJ3p1CsA9AFuDSNGQ6y6HW9jAE9TG97rUBgJDw/nk08+qXH/5MmTmTx5ss19Xbt2tVl2E0IIIbQOHz6sbg8fPhydTofJZPJwZcRciWgVBj7eOnVb5YaJz7RhpAzLlKva2VcVUaE6wKReGzTuMCI9soQQQjQqyjoqfn5+hIaGqqMxPVcZ0YOPuVtBQi3Trru6z4h2xd7CCnNZxsvLPHKmKluL5UkYEUIIIeykhJHo6Gh0Op06AsQTlZEzZ86AdzTozA0Jta0B487KSF6ReSqN2Ajw8rKvA6uEESGEEMIORqNRrQBER0eTfsJEQfw70O4NzuV7qJnGRudVgFah1lPCuy2M6AzkFflWux4tW2EkM7PqcsONh6zaK4QQotHIzc1Vpy03RFxF72km8v1HQjzk5/2AyWRCp6teCXAVcxixjFyJb2U5d1SY5kDvKPLzT7r0WtQwYrAkEFtNNGAdRrwDWlOOVEaEEEIIuyhNNMRM5o/ilzmVZ9ln9E5yy2J0WuZ1aSwjaWpbHddtlZHzC/YBRIbaPlb7vCHA3N/l+PHj6vo1jY2EESGEEI1GdnY2RI2BDh9irFq8d0NTSFVVF8nzZAdWJYwY/GPU5yJqmFDV26AjTFmh5XwzTUlJiWV0UCMjYUQIIUSjkZ2dDTGT1MdX99Ds9G7l9k6s1fqMaMOI1cRi7quMBIe3UZ+LDK25yUoJSxWEqc811qYaCSNCCCEajezsbPXL36Cv5L1H3NtJtKrammms+4xEuvTaTCaT2rE3MNTShyUipKZXWMJIuSkAdOb13iSMCCGEEHXIzs5Wm0WiQkqrNYV4pjJi/vIP8INQy+L01ZpCXBlG8vPzKS8vB8Av2BKOIu0IIwB4RwISRoQQQog6ZZ3MUztoxkYYiQgBHebRNZ6ojJw5c0YNRwmtqDaSR50S3sVhRDvHiLe2z4jdYaRxzzUiYUQIIUSjkXGyUt1OjPZCr9cR4FNifsIDlZEz5yrAYO4lWusaMIYwCovKzCv8uoB29lWdj+VCaurAanVtYJ64jcY714iEESGEEI1G1mlL5eGCBHM/hxA/SxhxZ2WkoqKCvGJLu4ytNWCqTrvuqrD03XffqdtevpYwUtPQXoDoMG1/G6mMCCGEEHY5dc5X3U6KNQ/tDQ0095XAK4DcvBK3XYu2/wrYtzquK8JSSUkJc+fOBcBgMFiNpqmtMhKtnRDtfGVEwogQQohGqbCwkA8//JC+ffty2WWXkZ6e7rFrySsKVLeVL//wIEvTx4lc1zSD2HLixAnrMNKqrjVgXNOn5bPPPlP7jIwZM4bCMnNg8zZAoH/Nr9OGkYCwtoCEESGEEI1MUVERjz76KHFxcUydOpVNmzbxxx9/8Omnn3rkesrKyigxWmYXVZpFIkMss4aeOuO+GURPnDgBvpaRKwk2mmmiQq2bQho6jJhMJt5++2318UMPPUTu+bnVIkOqd6jV0k4V7xecCEBWVpY63X5jImFECCFaqAULFvDWW29Vmzk0KyvLI9dz6tQpm4vSRYdbvnBP53u57XqysrIcbKaJavBZWNetW8euXbsAuPzyy7nssss4ff4UtY2kAevKiJe/+XNUVFRYjcxpLCSMCCFEC7Vnzx51+7rrrlO3PfVlZe6jYalExJ3/8o+NtASQMwXuCyPmyojt2VcVru4zUrUqUlJqouh8t5m6wkhUKKiFE29LkmqMTTUSRoQQooU6evSouq390vNoGDk/wVigdwE+3uZv0rhW3uox54p83HY92j4jep3J5gq5VcPImTNnGuz8qamprFixAoD4+HhuvvlmzmiyTm0TngF4eenUeVDKsFy8hBEhhBCNxrFjxwDzCI2UlBS8vc1f+p4KIydOnAIf8wqz4YHF6vPx0ZYAkl/i57brycrKUisjrcIqMRjq6MBqiLKsOtwAfv75Z3WV3bvvvhtvb2+1iQbqroyApammqNwyRNlTzXC1kTAihBAtlFIZiY+Px8vLi1atzO0QngojqccKQGcezhsdVq4+nxBrGTJSWB7gtuvJOnFSnZ8jPsr212WU1WJ5DRtGtKOaevXqBaB2XoXah/UqlGpOeaUBvMyBpCGrNw1FwogQQrRARUVF5ObmApCYaB5pERVl7leQk5Oj/ovcndKyLAFE21k0LsqgbpdUBOEumScKQWfuo9Iq3PbXZaC/Dj8fZbr6Vg0aRjIyMtTtpKQkAHK1zTS1rNirsDXXiPJzb0wkjAghRAukNNEAJCSY+2koYaS0tJTCwkL3X1O2JQC1aW0JINrqQ6nRjraJBmAymTiZawlHtTWJaNencVUYUQLj6bOW/fZURqLDNA+8zWvaSBgRQgjRKGjDSNXKCFivheIuJ/MsASQlydIc4+OtQ2c0t09U6MLcci0FBQWUlFuah2r74o+JOP9V6h3JyeyGu29KM014eDjBweYL0FZG7OkzEhOhqZ74SGVECCFEI6IdSVO1MgKe6TeSW2DpnNo+OdBqn7cpD4BKvY0hLS6QlZUF3pHq49rWgFE7seq8OJlT2iDnr6ysVANjcnKy+nzuOUv1qK7RNCDNNEIIIRqxuiojnggj50os5YekGOuvJx/9+Z6bhnCKSypcfi0nTpwAg2U22IjgmvtnaEfU5JzVN0h/mxMnTlBRYf6cSn8RwPHRNJpr0/nGAtKBVQghRCPR2CojJpOJYu1U8FVmO/X3sqyGm37c9f1ZzJURS1mhtsqItk9LpT6cvLy8ep/fVudVsB5NY09lJMZyS/E9PyW8VEaEEEI0CrYqI8rQXnB/GCksLMRoMP/L3YtiQqsMmgn0KVK3j54oxtXMlRFLM01tfUZahVmvT9MQnVjtCSOOVka8/c2z20oYEUII0SgolRFvb2+io819CTxZGTFPBW+u0AR4nam2AFyQb4m6ffREw/TLqE21ZppavvitR6xEuzSMKM00Pt4QYMf8b9o+I0ozzblz5ygvL6/hFZ4hYUQIIVogpTISHx+PXm/+KvBkGDmSkQMGc/kh1L+g2v7QgDJ1+0SO679Izc00ljBSW5OIVSdRn4apjGgnPLNVGalrxV5FoL+OwPODgoxelkpPQzQlNSQJI0II0cLYmvAMPDu0d98RSwCJDK5e+QgLsgSQE6crXX491ZppagkjMVVGrDR0ZcRqNE1+3ddTlVK5KdesT9PYmmokjAghRAtja8IzgMhIy5evuysjqccszTCtI6qHjcgQywiV7DzXzw5rDiPmL2+dDsJqmfjVevhsTIOGEW9vb2Jjzc0rViv22jHhmULpxFpqDFan229sI2okjAghRAujHUmjrYz4+/sTGGie38PdYSTjhCWAJEZX/2rSdhLNOVt380R9aZtpwoLMK+DWxBXNNEoYSUhIUJvRrKeCt/+9rPq0GMzVL6mMCCGE8KiaKiNgvT6NOx0/bfmybxvvW21/TLhl/5l8L5deS0VFhbmZ6nwzTV1NIgF+OgL9lPVp6t9Mk5+fr1YuahxJ40BlxDosNc6JzySMCCFEC1NTZQQsw3tPnz6N0Wh02zWdOuujbledfRWgdStvdftskXe1/Q0pOzsbk0kHhjDAzjVglC9875h697fR/nzqM+GZIqZKMxJIGBFCCOFh9lRGjEajW0dcnCm2BJCu7cOq7Y8K94dK81wj50qqV04akrm/SCjozF+R9jSJxKrr00RwMrt+X/TakTTWU8FbjokMsb+pKjpcOw+KVEaEEEI0ArVVRjw1vLeo/Hz5wVRJSmL13qLBwcFQbr6ewlL/avsbkiMTnim0TSEnc+s32qehJjxTVO3TAtZhZPny5WzevNn8uT1EwogQQrQw2gnPtLOugueG95YZzd/4OuNZvL2rfzUFBQVBufl6iisCMBpdN6Km6hwjds10qvnCP1Pgo64r44y6Jjyz95oUtppplD4pJSUljBgxgssvv5ybbrrJqettCBJGhBCihVGaabQjNRSeqoxU6MxtId6mszb3aysjJrw4k2/zsAZRdfZVu9aAqTLXSH3uXc2VEcdW7FXUtnKvtslOey53kzAihBAtSGFhofqv4qr9RcAzYaS4pFztLOrjZXsRPG1lBOBUnuuup/qEZ3X3z7Dql+FTvxE12jCibUbTDu11vpnGOozU1mTnThJGhBCiBbG1QJ6WJ8JI2rE8dTvAu8TmMebKiCWM5NguoDSIqiv2OrogXX2H9yodWCMiIswh7LzTms/syNDeyBBQCmBefq0BCSNCCCE8qK4vH0+s3Jt2zNIZIsjX9iJ4fn5+6CotnS5dXxlxsJkmQvOgHmGksrJSDYzakTTg/KRner2OVmHnH/hYD+2VMCKEEMLtahvWC56pjBw9UaRuhwTYHomi0+nw87J8G7syjJgrI/atS6Oo2hTibBjJysqistJ8D6r24VAqI74+4O/g6GalT4uyWF5ubi5Go1HCiBBCCPer68vHE2HkeHaxuh0eXPMomQBvS38SV4URk8lUrTJi19DeMM2Dekx8VlPnVdAskhds34q9Vtd3PoyYdL7gFYLRaCQ/P7/GCdbcTcKIEEK0IJmZmep2fHx8tf0REZYvYXcN7T2RY1mRt7bmh0AfSwXllIsWyysoKKCoqMi6mcaOJpGIEPDSn78mb+fXp6k1jJxvzXJkJI2iap8WMA/vVc7n4+NTbZi3O0kYEUKIFkRb7YiJiam232AwEB4eXu1YV8o+Y5mTIzqi5qneQwMs/UmyXbTobFZWlnnj/DwjOh2EVp+dvhq9XkdkyPnp8+vRTFNTGCkuNVF8/uM7MpJGYdWnRdNvRKmM2Brm7U4SRoQQogU5ffq0uh0ZGWnzGHcvlnf6rKXKERvpU+NxYQFl6vbxnPrNclqTv//+27xxvjISHlz7ir1asZHKlPDRnKwjjOTk5PD++++TlpZm9fyRI0fU7ZpmX3WuMqKdEt4cRtLT0zl71twRxZP9RQAMHj27EEIIt1LCiK+vL/7+tqdVj4qK4uDBg5w9e5by8nK8vV27MN2ZAsu/ixNiap7qPSzYC04Xg5c/J3Nd00yzZcsW88b5MOLIEFp1ZWG9LydOFNd67IQJE1i9ejXJyckcPnxYfX7v3r3qdseOHdVtZ6eCV8Rqc6eveXjvjh071Kc8HUakMiKEEC2IEkYiIyNr7ASp7TugraS4yrkiy7+Lk+JqbhMJCQmGcnPF4ZSL5hnZunUroLes2Ovk5GK1dbDds2cPq1evBszVCW3TzO7duwFo3bq12lwG8LelYOJUGGkTq3ng2wawDiOe7LwKEkaEEMLlSktLGTFiBAMGDLAaWutuJpPJKozUxN0jagpLLU0zyfE1f9OaZ2E1h5Ez+V5UVjZsdcRkMpnDiCHMsmKvk2vAFJUHmzvC2vD+++9bPd62bRtg7jCck1sE8Y8Q3ekOdX9lpYlZH1s+68BLHBtJA1XCiF8bwDqMJIcnYywzOvy+DUXCiBBCuNgPP/zA8uXLWbduHVOnTsVkct0ib7UpKiqitNTcC7IxhZHiigDzhqmC5PiwGo8LDg6GMnMYMZp0VgvHNYSMjAxzWNMO63WoMqLtlxFtczRSQUEBH3/8sdVzSijYs2cPxN0L7V5nR8VLLFpl/j355EfYa56UlSu7wZBL7b8mRUIr8PI6/8DXXAU5cuQIbb3a8lCbzcS80obZ92Q5/sYNRMKIEEK42KFDh9TtH374ga+++soj12FP51Vw/8q9ZUZz04yuMg9v75q7MmorI9DwI2rMTTQ4POGZourEZ7bu3WeffUZ+vvUqf0plZPfu3RB4kfr8tNdM/LzVxPMfWcLrv6bpHJ5jBMBg0JFwvvVN75vM5d6X83LwK7wT+j7XnjuDt8lE7MYMjwVlCSNCCOFiylojiocfflgdxeBOzoQRd1RGKjB/43uZai91mNensYSRk64KI1ZTwdv/xV915d6qw3tNJhPvvvuu+thgMAev7du3A+crI96W/jrlFTDkcRMZJ82Pr7sM+l/seBBRdAwrY/SpI3yYto9ng2dwkffF6r4CvYGi9uGYyiWMCCFEs1R1+GZWVhbPPvus26+jMYaR8nIjJi/zrGK++vxajw0KCoKyk+rj+lZGNm/ezP79+9XHtsKI05URG2Hkt99+Y+fOnQBcdtllXHnllYB5VtzTp0+fDyPWP5dKzQjml6c6F0Ty9+az6+G/ue+b/zE5+xAx5ZbFCI9xjvdad+KODv0wTe6I3sczsUDCiBBCuJhSGTEYDAQEmPtHvPPOO5ZhpG7SGMPIsZOWKd79DLUPh626cu/J3FoOrsO3337L5ZdfTo8ePfj7778xmUzqzyMwzDKyxJGhvVWbadQJ1M7Tdly99957uegiS5PM9u3bzc005ysjESHQUTPA5ZYB0KOD/WHEVGni5KpsNt/0J//r+ytHP8nEUGnpoPqn6QjP5T/D3cGH+D4ikRIvA+09OLpXwogQQriYUhlJTk7m+eefB8wl+3//+99uvY7GGEbSjlmqIYG+ZbUcaaPPSD2mhN+0aRMAxcXFzJgxw9J5FYhN6Kwe58jquFWnXNdOvV9RUcHSpUsB85T7t9xyCxdffLG6f82aNeZKyvkwEh8F372io1tb6JwMr95jXxApyy3j8L+PsK7nBrZO2MbpDZbEZvTz4puIJKak9GGG3062lm/BFNBe3d+++rqJbuN0GNm5cye9e/dm0aJF6nOLFi1i0KBBDBw4kDlz5lh1hNm9ezfjxo2jT58+TJs2rVpiFEKI5igvL49z58x9Idq0acMDDzyg7ktNTXXrtdgbRrTzjLi6A2v68QJ1O8S/vJYjITQ0tMGaaXJzLV/Sy5YtsxrhEh59gbrtSGXEz1dHsP/56oN3tNUw7qysLEpKzM0j/fr1w8/Pjx49eqj7P/vsM/AKAr0fAK3CICVBx66P9ez5RE9ybO1h5OyOc+x88G/WXrie/S8coPiopSkmoK0/XV7uhP/nVzG/dUeyfAPU4b34p5gv1wBJ0fZ/1obmVBgxGo28+eabdOnSRX1u48aNLF26lEWLFvHll1+yceNGli9fDkBZWRlPPPEEY8eOZe3atXTr1o3nnnuuYT6BEEI0Ytr+IsnJyfj7+xMWFgbg9n+U2RtGQkND1VlXXR1GtCv2hgXVPs9FXFxcg3VgPXPG+sWzZs1St/2DLSUCRycYi408Hxp8YqzCiHZbme20c+fO+PiY51jJyMiw6rzaKqzucxkrjGQtP8FvwzazaeBvHFucibHEcg9bDYqi15JLuOqPfrT5RzJtUzQjlXzbADrwM4eRdnHmETee4tR08P/973/p1q0bBQWWRLty5UpGjx5NQoL5hzhhwgRWrVrFiBEj2Lp1K/7+/owYMQKAqVOnMmjQILKysmjdunW19y8rK6OszLpcZzAY1B9ac2c0Gq3+L2on98sxcr/s1xD3SrvWSHJyMkajkbi4OPLy8sjKyqKystKpoZrO0IaR8PDwWj9Xq1atOH78ONnZ2XZ/fmfu1/Fsy7/gI0N0tb62devWUJ4DJiPo9GSfcf5no62MgLkZRaHzsQS18GATRqP9zUHRYToOHgMMYWSknlSvTzuiKiEhAaPRiMFgoH379uqsqxgszWNRoTV/trLcMjI/O076gqOUHCux2mcIMRB/WxxJkxIIvMA8ZNqECZPRRFwk6PVgNAJ+yeATB17mPkwp8a77O8GeBfgcDiNnz57l888/Z+HChbz55pvq80eOHGHYsGHq4w4dOqhDmFJTU0lJSVH3+fv7k5CQQGpqqs0wsnDhQubPn2/13JgxY7jlllscvdwmTVlNUdhH7pdj5H7Zrz73SplDAiAwMJD09HS1MlJcXMzff/9NSIgT83s7Qfuv86KiompDjrVCQ0M5fvw4p06dIi0tzaHA5Mj9OnLMMpzXz1D7NQGEhQWTV3EavFtx/FQF6emZtR5fkxMnTth8PiIigrzza+XodCbycjI450BH2UDfVoD5C/7UGRMHDhzA19eXXbt2qcf4+vqqn7NLly6WMKKpjBhMeaSnWw//LtlfQu6XeZz7IR9TqXVA8mnnQ8StYYQODUEfoCeHHHLSq/f3iQmLJyvXAL7J4G/pLxITco70dNcshdy2bds6j3E4jLz77ruMGzeu2h+eoqIic+ei8wIDA9WpcIuLiwkMtF5vIDAwkOJi2z2nJ0+ezPjx460vtIVVRo4ePUpiYqJHl3RuKuR+OUbul/0a4l5pJ7jq2bMnycnJtG3bll9//RUw/92WnJzcINdbF+3fud27d8dLnZKzuvj4ePbu3Ut5eTlhYWFqgKqNM/erpMISJlLahNd5LxITE8krM3f0PJ3vRVJSMs4UlpTKfkREBF5eXmpzVK9evThU6gtAeLCOtm0d+9m0jQfOjxDGJwZvb2+Sk5MpLLSMGurRo4daJevatatlEjxNGGnfJozk5DBMlSayV58ibV4GZ36tHhZaDY4ieVoSkVdF2BUYL4iHrFzAJ9pqgrWeXUJITnZPKLbFoTCyb98+du/ezZNPPlltX0BAgFWzTWFhoTqEzd/f3+oHoeyvacVIHx+fFhM8aqPX6+XLwgFyvxwj98t+9blX2n/pt23bFr1eb+77cN7Jkyfp2rVrva/RHkozTVhYWJ0r8UZHW3oznj59moiIiFqOtubI/dKu2BsfHVDn6+Lj49mVeRLoSnGpjuJSHUEBjqcRpZmmdevWTJw4Uf1eu/TSS/njfJiIDLGviUErJkLT1OEdzfHjx7ngggusRtYkJSWp76vte4m3pZkm2lBB2nuZpH90lOJ063+4G4INJIyPJ/nORLUpxl5tWhvZqBRpwgerz3dM0qHXN5E+I3/99RcZGRlqc0xBQQFeXl4cO3aMtm3bcujQIfr27QvAgQMHaNeuHQDt2rXj66+/Vt+nuLiYY8eOqfuFEKK5UsKIl5cX8fHxAFbN0+7sxGrPInkKbRjJzs6mffv2tRztvLOFlupMUlxAnccnJCRAmqVTbXYeBNX9MislJSVq5T4iIoIHHniAP//8k6ysLKZOu5sXzxfmnVkdNzpMB5xvQtGMqNE2XSm/BwCdOnVCp9OZR596R5FUUsCI0xkE3p3FvlLrPhyBKYG0+UcS8bfEYQhyqsun9YJ5of3VTU8O6wUHw8ioUaO49tpr1cdvvPEGiYmJ3H777ezYsYPZs2czePBgfH19Wbx4sdrU0rNnT4qLi1mxYgVDhgxhwYIFdOnSxWZ/ESGEaE6U0TQJCQnq9N/ayoi7wkhlZSV5eXmAfWFEO7y36kyiDanAzhV7FfHx8epieWCe+KxdXC0vsEE7kiYiIgJ/f3+1qSQnz4QSJhxZsVcRqy0g+cSqYUT5f0xMjFXlPygoiJQLUghIC2RUcWd6Hf6t2ntGDYyk7d3JRA2IQlfP6kWbWE1Y8jJXVfx8UNet8RSHwoifnx9+fn7qY19fXwICAggODqZv374cPHiQiRMnYjQaGTlyJMOHDwfMzS6vvvoqs2bN4pVXXqFLly7MnDmzYT+JEEI0Mvn5+WpzgLYvhPYfYsePH3fLtZw5c0ad+8nRyogrh/cWl59vrjdVkBQXVufx8fHxUG4ZoeTMXCPakTRVm5+OWwYcOVUZSYrRPPBL5ujRfVRUVKihUxnWC1BRUMGZpXk8XzqT8JBw0Eyzog8ykDQ+jqQ7kwhKcawppjbJsdWfuyAejzbRgJNDexUzZsywejx58mQmT55s89iuXbuyZMmS+pxOCCGaFG1/kTZt2qjbnmimsXeOEYW7KiOllYHmGa8qcgkOjqnzeHMY+cNybXmOn1MNI35t8Qu2ngN9zleWUSqdkx3/gm6jLfj7tuHYsTVkZWWpw2YTEhIoPFxI+kdHOfZZJhXnKgjHMo/8CW8/vo1M5otN8fiF1d6vxxltbIQRTzfRQD3DiBBCiJppw0hNlZHGGkbcVRkpV1bsNZ5Dp7PxTVlFQkJCtWYaR+Xm5kLoVdB9LQt2lnLbThN9u+vYl25i0Q/mY0KD4J6Rjr93VCj4+5ooLtWBXzLHjh3j6NGj6NDRM+hmBu6ezPpLN1Z7XUivYN4ubcPXldGEherxC3NN5/LEaNDpQDNBuoQRIYRozrSzr2orI0FBQQQFBVFQUNBow4g7KiPlFSZMevN86951rNirMFdGNFPC55kAxyoYubm5ED4UgLJKX2562sSfH8CzC0wo8349MU5HeLDjlRGdTkebWB170wHfZLJTT3FicTZzQ+eT4JUAmmYgvZ+e4GuD6PpQZ8IuDuP6oUaMhfbNvuosXx8dcVEmMjX5sn2CZ5toQMKIEEK4TE2VETB3Yj1w4ECjDSPuqIxk51YA5tE0fl5Fdr0mIiICH10eyhzdzvQZOXPmjNUw2pyzMPBhE0fO/yhiIuCh0Y6/r6JNLJw9UMj1uccYVPoGfkv8zUHkvJM+fvR5MpGkCXFk5WcRkhxCaZmJc+dnwIhyYHE+ZyTHUCWMuPZ89pBJBoQQwkVq6jMClqaa/Px8qzmaXMXRMBIcHKyO+nBVZSQ90zL7aqBPSS1HWuh0OuJaWf4d7cz6NLm5uVZhBFCDCMAzt+sI9He8WmAymTj1Sw63rP+L+Yd+ZWRuBkE6S+fTHYHhzEq8iCkpfTl+VVt8IiyjanI0k626sjIC1fuNNIYwIpURIYRwEaWZRqfTWY2igOr9Rlw1j4fC0TCi0+mIjjbPk+GqykhGViGc77wZ7F9R+8EaSfGRpFUUglcgJ04bcfTf1eYwol1/Bs6cbyVqEwvThjv0dlQUVnD8qyzS5qVTcKAQ7eK3pVTwp/5XlnhVcKTNv9Tnf95qor9lAlRO5Vm2XR5GNJ1sA/wgLqrmY91FKiNCCOEiSmUkLi6u2qzS7u7E6mgYAUu/kVOnTrlkEbWjJyxNM2FBlXa/ztxvxFytOZlr/yJ2itzcXHVRupCASpbN0uF7/sfz2r06fLztq4oUphay55l9rO22nr8f20PBActM4ye9/VgQ0547/Dfxr5yXORIQbfXan7dav5dbw0is5fOlxOO2hRprI5URIYRwgeLiYk6eNHe0tLXeirvDiHZuDXvDiNJvRJkwzZEp4e2RdcrSNBMRbP/r4uPjYc9J8GtLXqGeigoTBoP9X6jaZpqoUB0DLtGx/1PIL4Ju7Wp/H5PRxKm1OaR/mMGpNTnq/GHq57gynLLrk7hxcSuMOh2UnZ9t1d+68vXHPtQ+ImDdTBMV6tpwoG2m6ZBY83HuJGFECCFcICMjQ92u2l8E3D8La30qI2DuN9LQYcTcgfX8ucJrXrSvqoSEBCg3Nx2ZTDpyzkKsfR8JgNO5ZyHA/Fmiw80NBMmxtQeA8nMVHPs8k/T56RQdsV4rRu+rJ+7m1iRPSSL0ohBO5powfnY+pfidD6L+KVavqayEDTvgwvNZxZ2VkZ4dITjAHL4G9fR8VQQkjAghhEtoh/U2hsqIEkZ8fHzURUzrUnVETadOnRr0mk7lWZp+oiPs/zrSNtOAeeIzR8JITl4lnL8FUWG1H1t4pIj0DzM49ukxKgqsm5L8E/1ImpxI4u0JVp1Ro8PB19tIabkefJMBL/Crvhbb2r+0YcRSYnF1GIkI0bF1PqRmwaCerj2XvSSMCCGEC9Q2rBfcPyW8dpE8e/sIuHqukVzLYBrio/1qPrAK8/o0+9THJ3OBCxw4b76lCmNrGK3JaCLnlxzS5ttuionsH0GbqclED2mFzqv6vdTpdCTH6jhwFPBrA35JoDeHlYGXwLrtYDSaw8hDN5pfY1UZcfHQXoD2iTraN5ImGpAwIoQQLnHixAl1W7tKq8JTlRF7m2jA9XONnCuyhIKEWPvXX6lWGXFgeG9FRQUFJb7qY20YqSgwN8Wkzc+g6LD1vCd6Pz3xt8bRZloywZ2C6jxP29bnw4hXIARfqT7fuxOcK4It+2BXKuSc05NMlT4jYfZ/nuZCwogQQriA0nkVzCu1VhUaGoqfnx8lJSUuDyNFRUWUlJg7izoSRlxdGTlXbFl7Jal13V/witatW6t9RsCx9Wny8vKs5hiJCtVReKSIjI8yOPqpea0YLb8EP5InJ5I40boppi5Wc3mED1I3zbOdmthyvrDz2x4/el7o3j4jjZGEESGEcAFtGNFWGBQ6nY64uDhSU1NdHkac6bwKrq+MFJedb5oxVZAUH2b367y9vQkPKkcpiJiH99rX9KSOpDGZuKTwNO0XHGX9QzaaYvpGkDwtieghrdAbHJ8Fw9wh9vybhl2jPt8+AZJidMw+38H11z1+3I8ljAT6g79v4+hU6k4SRoQQwgW0lQRbYQTM/8JPTU3lzJkzlJSU4Odnf78JRzgbRlxdGSmpDDBniPJcIiIc6IEKtI7Uq2Hk+Gn75xrJzcnlKl1nxhz+nbalBWDp2mMeFTO6NW3+kUxIVwfGGttgVRnxtTTTtU+AsGDw9YHSMti42x+TyRJG3NFfpDGSMCKEaFYqKyupqKjA19e37oNdSKmMBAcH4+/vb/OYqv1G2rZt65JraYyVEZPJRLkpBHSgM+bh7V33ir1aybFe7DnfzyL1WBlg+x4rynLLOLY4k9x383iitAtgmYLfL96P5DsTSZiQgG+U/U0xtak65TpAkL+J2EgdOp2O/t1N/LQFMnMM/LwVTp/vzNsSm2hAZmAVQjQjJSUlXHTRRYSHh/Pbb7959FqUSoKt/iIKd3VidTaMBAYGqtWahq6M/PQnGPXmfiI+JseDTtukCKjIAyDtRM2VkbM7z7Hzwb9Ze+F69s04AKcsTSD7/UOIef0irv6rHxc83K7BggjYDiMpCTp1JNNd11uu4+VPwHT+I7h6kbzGSsKIEKLZ2LRpE7t376a4uJi33nrLY9dRWlpq7ihJ0w4jyvo04HxlpKCogtZD9hE2MI1N283VCJPJxP99YJljJMa0wuH3jY+Ph5I0AE6c8aGy0hJIKksr+XPecX69bjObBvzGscWZGEss59via+KfbXryaNtLaTMqxqk+IXWJiQBvg/UU+toF6W7qD7Hn55Bbv8PyvFRGhBCiidPO17F69WrKy8s9ch329BcB983C6mwYAUu/kZycHKfWp3ll3nZOFHfgbEUSQx8v58RpE8vWw18HzlcGCrZxWbuM2t/EBnMYMXf4qDTqyToNZafLOPRmKt92/B+nntpF3p95lhcEQpu7k9k5cTvPx4SzKzACvd68SJ4r6PU6EqKsJ0nThhEfbx1Tb6z+OgkjQgjRxGm/0M+dO8emTZs8ch3aMNKUKyNgCVNGo9FqfRt7HUzPV7fzy0IZ8ZSJZz7UNKukPcOoUSMdft/4+HgoTQOgXXE+ex/bzdru6znw0kH88kvV4wrCS3in8N+MPzWWsPtCyDIeV4f2hgZUoNe7buRKSoK31WPzsF6LqTeAl966ialVWMsbSQPSgVUI0YxU/UJfuXIlV199tduvo645RhTumoW1ISojYA5ZUVGOrTeflWNdnfpjr+bB2Q14F65l2LAvHHpPgPjYePoWbuHGI3/SrSiP8lTLPiPwe3ArVkQmUeA9h9TDKwFYtWqV1Yq9ESGOr/jriDatrR9rKyMA8a1g8CVF/LDFMuGb9BkRQogmrmoY+f777z1yHXXNMaJo6MrIPffcQ7du3fj999+tnndmxV5FfUfU5OTV8oWf9gzXDh5MSEiI3e9XdqaMw3NSOT7uBP9X3oNuRXnqPkOwgcCxSUxt34eXki5mZ2AEaXmWNWFWr17NqdP5YDC3zbQKd/XquNbvXzWMAEy4psDqsTTTCCFEE1f1C33Pnj1WC9a5i73NNJGRkXh7m0v59Q0jR44cYe7cuezevZtx48ZRVGSeztxkMnH06FH1uPDwcIfet75zjZwp0KzGm/oYmM73Ozn9PZzbxE033WTX+5z7+xy7HjaPitk/8yClx8vUfem+gWy/thMD/76K7NGdOOFjWQjQGHK1ur1mzRpOaCo1sQ4szueMZM2PPiTQdtC4onMJnZIsjyWMCCFEE2frC33lypVuvw57KyM6nU6tjtQ3jGibedLS0pg1axYAixYtYufOnQC0b98eg8GxL+D6VkbySzXzvZxYCLtvQJ/5LzgwEb1ez/Dhw2t8rbHcSNY3J/jthj/YeNVvHP0kE2Px+TCjg10+e3kq+RLuveAKfmmdiCHIwMFjVd7ELxn8zKvonTlzhl37LPfZ5ZURTTNNh0RsLlCo08GMO83bSTHQo71LL6nRkjAihGg2lC907YRnng4jtVVGwNJUc+rUqXqN/qkaFF5//XVWrVrFQw89ZPWco+pbGSmpOL/mjKkCKs/CmdUYU5+Bijz69+9v9f6K0uxSDr52iF8u2sC2u3Zw5jfLSniGIC+SpyZx1ea+rOzwDTv8vEGn48hxc0g5eMxGs5BmOnajl6Uy5Or+GR0Twft89qstZIy5Go4u1bHnPzr8WuBU8CAdWIUQzUR+fj4FBeb298svv5wDBw6QlZXF2rVrKS4urnEWVFewt5kGrPuNnDhxgsRE59Z1z8nJsXpcUVHB9ddfj+n8bFqTJk2qtQpRk/pURoqLi6nUhQHgzVkCw8LU+VcARo0aZXX8uV3nODI3naz/ZmEssw4VQR0CSZ6SRPwtcRiCzV9d8fFxsD8NDN3JOKnDaDRVr4wAuvBrMJ34wPzAYL1InitFhen4z9OwfruJp2+v/VwJ0S0zhCikMiKEaBa0zRxxcXEMGzYMMH8hrlu3zq3XolRGfHx86uyc2VCdWLVBwcvL3E9DCSJJSUm8/fbbTr1vfSojWVlZ4G1+vb93EWPGjLHaP3LkSHNTzLfnm2Ku/o3MJcctQUQPMddHc+nXvej3ax+S70pSgwicv3fn5xopr9SRdRo1jESFGtUZWr0iB9GhYyfzDm9LB153jFwZe42O9x/Tt/iwURcJI0KIZkH7Rd66dWuuv/569bG7R9UoYSQmJsZmPwEtV4SRZ555xmrfokWLCA117pu3PmEkNe0EeJk7k4b4lTF+/Hh131WXXEXpF2Ws67GBbXdWaYoJNdDugTYM+Ks/Pf/Tg6j+kTbvY1xcnDoLK8CuVMg+/zYxwXmQtx6ACl0YPftNMu/w1lZGHPo4woWkmUYI0SxUDSODBg1Cr9djNBqrDXV1pcrKSrXJpLbOq4qGmoVVG0bGjh1LSUkJc+bM4bnnnmPAgAFOv29gYCBBQUEUFBQ4fH0HjljmNwkPrqRfv37cde0Uwv+I4OrMARz41yGr44M6BJI8NYn4W+MwBNb99RQXFwelf6qPf/rT0rTjXZEGZ3+GqBEA+MfdAPxTwkgjJWFECNEsVA0jwcHBJCUlkZaWxqFDhzCZTHVWKRrC6dOn1WnT6+ovAq6pjLRq1YpXXnmFV155xen300pMTGTv3r0cPXrUoft4OMO8FK2XyUifgmL+GLGFUVtGm2vySl9dPcRcF03y1CQi+0U49DMyV0bS1cc/bbHsK8zZDnlr1cfH8jvg7e1NubbPSJjdpxIuJmFECNEsVA0jACkpKaSlpXH27FlOnz7t8OyhznCk8yo0XBhRqjF6vd7huUTqkpyczN69eykpKSEnJ8fmCBhbjh8tZmROOiNPp9OqohTtZPKGYAOJExNInpJEQJJznYvNlZE09fEuzSysmYfXQ9Fe9BUnMBpi2bTbiyv7XM36HKmMNEYSRoQQzYKtMNK+fXvWrFkDwMGDB90SRuydY0TRUFPCK5WRyMhI9PqG7Q6YlGSZlSsjI8NmGCkvL2fRokWUlJRw16i7OPZxJqO/j8O/4oDVcYHtA0m+K5GEsfFWnVGdYe7AmmZzX1HOdgDiAvZxrCyWwmJIvOQfsMHcgdVLX0lwgHwFNhbykxBCNAs1VUYUhw4d4oorrnD5dTgyxwiYm1S8vLyorKxskGYae6sWjtCGkfT0dHr27Fnt3GNGjyHn19Pc6DucdTP/B0bwxzL7avFFEVz1XDsir3KsKaY2QUFBBAdUkF9ZAF5B1jtLDgMw6MKTLNpqfupo5Y34BuVSinlBOnc02wn7yGgaIUSzoHyR+/n5qSNHqoYRd3C0mcbLy0s9ztkwUlhYSHFxMeD6MJKRkWG176+//qJXr1702nopr4a8Tj/f/uaV6oAKTKwJbc09F1xB4L96EXW17VEx9RFfZUQNQKDhDBjN9+O266NJiTc/v36HgXK9uVrVKky+/hoT+WkIIZoF5Yu8devW6heeJ8KIo800YKnknDx5ksrKSofPqZ3wzJ1h5I8//qBPnz5kZGSwo3y7+nyhVyEpj7djWlQmbyV0I8MvyGVrrmjnGlHoS81VEZ1Ox2WX9uaekZYAdL5vsfQXaWQkjAghmrySkhLOnDFPMKHtg9GuXTs1mBw8eNAt1+JoMw1YrtloNDq1/kvVkTQNraYw8vrrr1NSUgJAycXF/K3fxWsFs7mrYBKt7o7ipN7SdOKqL/+qnVgBik7vAMx9hkJCQpg0FPx8rF/XUheka6wkjAghmrwTJ06o29ow4ufnp06v7olmGkcrI+BcJ1ZXh5GEhAQ11GnDyJ49ewDzTLM/rf+J7YP/Yl3ZL+QX57Nq1Sq3zHZadeIzgMqCfQB0794dgIgQHbcNsn6dVEYaFwkjQogmz1bnVYXSVHPmzBlyc3NxNaUyotfr7R69U9+Jz7RhxBUjhry9vdVrTE83N4lUVlaq1aaUlBT8/PysOggvXbpUnWDMoCsnwK/BLwtQKiPW/VgoNgfPCy+8UH3q3pus+6rIHCONi4QRIUSTZ08YAfdUR5QwEhUVpa4RU5f6zjXi6soIWJpqsrOzKS4uJi0tjbKyMgA6dTKv+6INI6tWrVIXpQvyK3HZyBVblRGKzcOJlcoIQM+OOi7rYjnE1YvkCcdIGBFCNHm1hZH27S1rt7s6jJhMJrWZxt4mGqh/GHF1B1aw7jdy7Ngx9u3bpz5Wwkj37t3V1ZFLSkrUykhYYIVLrgls9RmphBLz7GfaygjAI2MsAaT7BS67JOEEmWdECNHk2VsZcXUn1nPnzlFaWgrY33kVmlZlBMz9Rvbv368+7tixIwAGg4GLLrrIvBaQVwjozb1Go8JcV4WIi4uD8hyoyAdDMIaKTCpMZQQGBtK2bVurY2+9RodeDzod9L/IZZcknCCVESFEk9dYmmmcGdYLjb8DK5inhFdkZGTYrIwAXHLJJeYNzYJ0sZGu+3eveu8yZmEw5lCROhOAbt262ZyJdswAHaOvlgnPGhupjAghmrzawki7du3UbVeHEUcnPNMeq9PpMJlMjbIDK9hXGQHo0aOHeUMTRhJinFt7xh7+/v6EhYWRl/kGFZlvqM9XbaIRjZtURoQQTZ7yBW4wGKp9GQcEBJCQkAC4tzLiSBjx9vZWKxr1CSNhYWF4e3s7/Hp7VJ0SXqmMxMbGqjPegiaMGNxTGQHr0UgKbedV0fhJGBFCNHnKF3hMTIzN0rzSVJOTk0NeXp7LrsOZOUYUSkXnxIkTmEwmh16rdGB15UKA2jCyc+dO9bNqqyIAERERdOjQwaoy4uo5PWyFEamMNC0SRoQQTVpFRYX6xVi1iUbhrn4jzlZGwHLt5eXlnD592u7XlZeXqwHLVf1FwFx1CQoyz6j6119/qc9r+4sAlFecH+LrhgnPFBJGmj4JI0KIJu3kyZNqJcFdYWTLli088cQT7Ny5U33OZDJZfUk7G0bAsU6s7hjWC+Z1XpTqiLZyo1RGtu43cecr0P+xeC7p1ce6MhLmsssCqoeRuLg4IiMjazhaNEYSRoQQTVptnVcVDT3XyK233sprr73GZZddxqefforJZGL69OmsWLECgMDAQKtz2sORWVgzMjLYscO8/oo7RtIotCNqFEplZM5SEx//ACfzDBQHDUfva2mmcndlRKoiTY+EESFEk6b94rZVroeGnWvk3LlzpKaaJ9UqKSnh9ttv56qrruKNN8wjOXQ6HfPmzbPq1GkPe+ca2bdvH927d+fiiy9m6dKlbg0j2n4jCqUycq9mZdylm1rR5+qR6mNXh5GqIVQ6rzY9EkaEEE2atkmjpsrIBRdYptusb2Xk6NGj1Z773//+p27PmzeP8ePHO/y+9oaRJ554grNnzwLw1ltvua2ZBqqHEV9fX7VaclkXuKSD+fkt+2H3sQj1OKmMiLpIGBFCNGnHjh1Tt5UVeqsKDAxUv+zrWxnRrlp7ySWXYDBYhq2+/fbbTJ061an3tSeMrF+/Xm0KAvj111/5448/1MeuHE0D1cNI+/bt1fV3dDodd4+w7Ms9Z/5/cAD4+rh2gjEJI02fhBEhRJOmDSPKfCK2KNWRU6dOUVBQ4PT5tJWRf/zjH6xfv57x48ezePFiHnroIafft64OrEajkenTp1d7fsGCBeq2uysjVUfSjLsGQgIqrZ5zdVUErO+dl5cXnTt3dv1JRYOSMCKEaNK04aC2MKJdpyQ9Pd3p82krI0lJSVx55ZV8+umn3HbbbU6/J9RdGfnyyy/5888/AevPojTZgPs7sFadYyTAD0b3K7R6zh1hxNfXV51p95JLLsHX19f1JxUNSsKIEKJJUyojgYGBhIWF1XhcmzZt1O20tDSnz6cNPzU1CznD19eXiAhzP4uqYaS0tJT/+7//Ux+/99579OnTp9p7uDqMxMXFWU0qV7UyAjB+YL7VY3eEEYCPP/6YadOm8cEHH7jnhKJBydo0Qogmy2QyqWEkISGh1sXPGiqMaCsjDRlGwFwdyc3NJSsrC5PJpH6eL774Qr3mQYMGMWTIEI4cOcKmTZusXu/qMOLt7U1cXJx6z22FkbaxFQzuDT+Zizgun2NE0bdvX/r27euek4kGJ5URIUSTdfbsWQoLzc0CtTXRgHUYOXLkiNPnVMJIWFgYISEhTr+PLUqfjJKSEqvZXLWTqU2fPh2dTseYMWOsOs8GBAQQEBDQoNdji9IcotfrzdO+23DvSMt2omOz4osWyuEw8tJLLzFkyBCuuuoqbr31VqshbYsWLWLQoEEMHDiQOXPmWM3St3v3bsaNG0efPn2YNm2aU4tBCSEaj5kzZ9K9e3d++eUXj12DvZ1XwbqfhbOVEaPRqJ6zoasiUPN8KIcPH1a3u3TpAphHzgwZMkR93tVVEcXTTz9Nly5dmDVrVo1h7MYr4f8mwE394J4Rrh1JI5oHh8PI+PHjWbFiBevXr+e5557j2Wef5dy5c2zcuJGlS5eyaNEivvzySzZu3Mjy5csBKCsr44knnmDs2LGsXbuWbt268dxzzzX4hxFCuEdeXh4vvPACu3btYsKECRQVFXnkOuztvKrsV/o7OBtGsrOzKSsrA2xPAFZfNc0Uq4QRX19fq2Gs2k6zrh7Wq7j22mvZvXs3Tz31VI3H6HTw8jQ9/31JT0K0hBFRN4f7jGhLnTqdjrKyMnJycli5ciWjR49W/0KYMGECq1atYsSIEWzduhV/f39GjDAPQp86dSqDBg0iKyvL5iRFZWVl6h949UINBnx8fBy93CbJaDRa/V/UTu6XYxrifh0+fFh9/fHjx3nzzTdr/XJyFW3/jfj4+Fo/k5eXFwkJCWRkZJCWlmbX5696r7QhJjExscF/55QmEDBXRoxGI0ajUZ3xVdmvnPfGG28kKiqKnJwcunfv7vE/A/Jn0TEt5X7ZWkm7Kqc6sL7yyiusWLGC0tJSrrrqKtq1a8eRI0cYNmyYekyHDh149913AUhNTbUqP/r7+5OQkEBqaqrNMLJw4ULmz59v9dyYMWO45ZZbnLncJsvWTI+iZnK/HFOf+6UMMVXMnj2bIUOGuO1f54rdu3er2z4+PnUO2W3dujUZGRmcPn2a3bt3q6vQ1kW5V9q+G0FBQfUaImyLv7+/ur1z507S09PJysqitLQUMF9/1XN+/PHHbN68mZEjRzb49ThL/iw6prnfL20TaU2cCiP//Oc/mT59Olu2bFFLiUVFRVZ/sAMDA9XSbXFxMYGBgVbvERgYSHFxsc33nzx5crXplFtaZeTo0aMkJibalShbOrlfjmmI+1W1WaagoIBFixbx//7f/2uIS7SbdvKySy65xOZCblodO3Zk8+bNgPk+1HV81XtVUlKi7uvevXudr3dU69at8fLyorKykqysLJKTk62qMd26dat2zuTkZK677roGvQ5nyZ9Fx8j9snB6aK+XlxeXXXYZn3/+Oe3atSMgIMDqL4bCwkK1Z7e/v7/a4127X/uvAC0fH58WEzxqo9frW/wvqCPkfjmmPvfLVp+LDz74gIceeqjGERaukJmZqW4nJSXV+Xm0/0LLyMjgoosusus8yr3S/gu2TZs2Df775ufnR3JyMqmpqRw8eBCdTmc18iclJaVJ/I7Ln0XHyP1qgKG9Su/ytm3bWnW4OnDggNq+2a5dO6t9xcXFHDt2zKp9VAjRdGjDyLRp0wCoqKjg6aefdut1KCNb/Pz81AnDalPfuUZcNeGZltKJNT8/n1OnTlmNpNEu+CdEc+JQGCkqKmLVqlUUFRVRUVHBzz//zNatW+nRowfDhg1j2bJlZGZmkpOTw+LFixk6dCgAPXv2pLi4mBUrVlBWVsaCBQvo0qVLjStsCiEaN+WL3MfHh9dff53oaPNkEitWrHBrZzwlHNQ14ZlCWxlxZq4RpcOsTqcjPj7e4dfbQ9u/7tChQxJGRIvgUDONTqfj22+/Zfbs2ZhMJhITE3nxxRdJSUkhJSWFgwcPMnHiRIxGIyNHjmT48OGA+S+sV199lVmzZvHKK6/QpUsXZs6c6ZIPJIRwLZPJpH6RJycnExwczBVXXMG3335LaWkpR48ebfC+FLacO3eO/Hzz1OP2VikaqjISFxeHt7e3w6+3R01hRKfTWV2/EM2JQ2HE39+fuXPn1rh/8uTJTJ482ea+rl27smTJEseuTgjR6OTm5qr9w5QvR+38GAcPHnRLGHFkwjNFfHy82kHU0TBSWlrKiRMnANc10UDNYSQxMVEWgBPNVsvuMSOEcJj2S1xp9tB2Wj1w4IBbrsOZMGIwGNQg4WgY0Z7PFROeKbTB7o8//uDMmTOANNGI5k3CiBDCIdov8ZoqI+7gTBgBS4A6c+YMZ8+erfXY/Px8dcSOtvOqK8OIdpTO+vXr1ecljIjmTMKIEMIh2o6fTTGM2NtvJD09nW7dutGvXz/ee+89l67Wq+Xr62u1YJ5CwohoziSMCCEcYqsyEhcXp84r5K4w4uwwW3vCSEFBAcOHD1cDz2OPPcaKFSvU/a6sjIB1v5HanhOiuZAwIoRwiK0+IzqdTq2OpKamUlFR4fLrcFVlxGg0cvvtt7Nz5071ubKyMpYuXao+dmVlBGwHD6mMiOZMwogQwiFKM42fnx8xMTHq80oYqaiocHpVXEcoYcTHx8ehNXHqmmvk+eef55tvvgEgNDTUqglK4erKiK1zShgRzZmEESGE3Uwmkxo0kpOTrSYac3e/ESWM2DvhmaK2ysjWrVt58cUXAfMU3Z9//jnvvPMOfn5+6jF+fn4uXxCwamUkKiqKkJAQl55TCE+SMCKEsFtOTo66SF7VCbjcOby3oKCAvLw8wLEmGjD3bzEYzFMsVQ0j2tErzz//PEOGDKF9+/a89tpr6vNJSUkOhR9nVA0jUhURzZ2EESGE3Wz1F1G4szKi7S/iaP8NLy8vtZmlahjRjpgZOHCgun3PPfcwbdo0fH19efDBB524Yse0a9fOKvBIGBHNnYQRIZoQo9HIt99+a7XwpDvZGtar8FQYcbQyApYgdfbsWXVSMbAOI9p+ITqdjnnz5pGfn899993nzCU7xM/Pz+pzSRgRzZ2EESGakH/84x+MHDmS/v37q80l7mRrWK+iVatWar+GphJGwDz6R6GEEb1eT1xcXLXXuWo9Glu04U7CiGjuJIwI0USsW7eODz/8EICsrCz+/vtvt19DbWFEp9Op/UbS09MpLS1t0HOnp6fzyiuvMHLkSKZPn64+70wY0X65a8OIdiE8pV+Jp2j74NgaXSNEc+LZP21CCLuUlpZy9913Wz136NAhLr30Urdeh7aZpmqfETB/aW7ZsgWj0UhqaiqdO3eu1/mMRiPff/89c+fOZdWqVZhMpmrHdOnSxeH3bdeunbqthJHi4mKys7MB1w/dtce9997LmjVr6NatG5dffrmnL0cIl5IwIkQT8Nprr7F//36r5zzRb0SpjPj7+9OqVatq+6v2G6lvGLnnnnv44IMPqj0fGhpKr169mDBhglUFwV7aMKKsiuuuhfDsdeGFF7ptNlshPE3CiBCN3KFDh9S5L6o+707aOUbatGljc3irNow0xPDer776St1OSkpi6tSpjB49mg4dOqiLyTnDVmWkps6rQgjXkzAiRCM3ffp0tf/Fvffey3vvvQe4bw0YxcmTJ9WF26r2F1FoqxT1vb68vDx1pMuVV17Jhg0b8PLyqtd7KiIiIggLCyMvL0/CiBCNgHRgFaIRKy0tZdWqVQDExMQwe/ZstcOmuysj2nChrSxoNeTwXm3/lM6dOzdYEFEonyEjI4Py8nIJI0J4kIQRIRqxbdu2qVWRa6+9lqCgIHV2zpycHHUWUnfYvXu3ul1Tp9Hw8HAiIyOB+jfTaEe51BR+6kN5z8rKSjIyMiSMCOFBEkaEaMQ2bdqkbl955ZWA9VThSudLd9izZ4+63bVr1xqPU5pqMjMz6zUXijaM2Bq5U19Vh/dKGBHCcySMCNGI/frrr+p2nz59APcvSKfQhpHahtM2VCdWbTONKysjYB1GgoKCCAsLa/DzCSFqJmFEiEbKZDKplZGQkBA1AGgrI+7sN6I000RFRdkc1qvo1KmTur1v3z6nz+fqyog2jBw6dEgNI+5YCE8IYU3CiBCN1JEjRzh58iQAl19+udqB0xNhJDc3lxMnTgC1N9EAVnOL7N271+lzKmEkMDCw1vDjLG0Y+eOPP9SRQtJEI4T7SRgRopGy1UQD1n0d3BVGtKGirhlPGyKMVFZWkp6eDlRfwbahJCUlqQHv999/t3peCOFeEkaEaKRsdV4Fc6WgdevWgPv6jNjbXwTMYUlZUM7ZMHL8+HHKysoA1zTRABgMBpKTkwHUc4GEESE8QcKIEI2UUhnR6/VcdtllVvuUTqLZ2dmcO3fO5ddiz7BehcFgUK/vwIEDVFRUOHw+Vw/rre29JYwI4X4SRoRohM6ePcuuXbsA6N69O8HBwVb73T28195hvQqlqaasrMxqVIy9XD2SRqFt8lJIGBHC/SSMCNEIbd68WV2hVttfROHuTqxKGImIiCA6OrrO4+vbb8TVI2kUUhkRonGQMCJEI6TtvKrtL6LQhhFX9xvJy8sjMzMTMDfR2NOZVDu8t75hxJ3NNDqdjvj4eJedTwhhm4QRIRohbedVW5UR7cRirq6MaMOEPU00UP/KiLaZpqZF+RpC1TASGxuLj4+Py84nhLBNwogQNhw5coSuXbvSr18/iouL3Xru4uJifvvtNwDi4uJsNhu4c3ivIyNpFB07dlS37QkjM2bMIDk5mS+++AKwVEZiY2MJCAhw5HIdUrXPiDTRCOEZEkaEsGHmzJns2bOHjRs38v3337v13N9//z2FhYUADB482GazSHBwMDExMYDrw4gjI2kUgYGB6rDZffv2qf1fbElNTeWFF14gIyODKVOmkJaWpk6w5somGoDQ0FAiIiLUxxJGhPAMCSNCVHHmzBmWLFmiPt6/f79bz7948WJ1e/z48TUep/QbycrKoqCgwGXX40xlBCxNNefOnSMrK6vG4z7++GN1u6CggMmTJ6uPXR1Gqp5DwogQniFhRIgq/vOf/6hTg0PDh5Hy8nLKy8tt7jtz5gwrV64EICYmhoEDB9b4Ptp+I64c3quEkbCwMHWyNXvY02/EaDSyaNEiq+fWrVunbrtyJI1C21QjYUQIz5AwIoSGyWRi7ty5Vs/VZ+XZqrZu3UpkZCRBQUH07t2be+65h2+//VZtxli2bJk6G+jYsWPV6cpt0Y6oqe81lpaWsmTJkmojc86dO8fRo0cB+0fSKOwJI2vXrlUXqPP396+23x2VEW0YUZqWhBDuJWFECI0NGzZUW2l2//79tfZ5cMQXX3xBfn4+ZWVlbNmyhblz5zJy5Eief/55AD777DP12NqaaMB6ZMvOnTvrdV1PP/0048aN49JLL1WH8YJja9JUZU8Y+eijj9TtuXPnEhcXZ7XfHWFk0qRJJCYm0qtXL4YMGeLy8wkhqjN4+gKEaEy0VRE/Pz9KSkrIy8sjJyenQVaOVaoAVc2aNYvo6Gi1iSIlJYVevXrV+l4XXXSRur19+/Z6Xdeff/4JmOcUeeihh1i6dCkAH374oXqMvcN6FXWFkTNnzvDf//4XME+mduutt1JeXs6UKVPUY9zRTNO+fXvS0tLQ6XQuWZBPCFE3qYwIcV52djbLli0DoFWrVkyYMEHd11BNNceOHVO3T548yQsvvKA+fuCBB9QKzPjx4+v8YmzTpg0hISEA7Nixo17Xpe1gumzZMr7//nu+//57NYwEBgZy8803O/SekZGRREVFAbbDyJIlSygtLQVgwoQJ+Pr6MmnSJLp16wZAVFRUtUqJq+j1egkiQniQhBEhzlu4cKHasfTOO+/kwgsvVPc1VCdWpf9FVFQU0dHRPPvss4wdO7bacbfddlud76XT6ejevbv6vrm5uU5flzKUVnHfffdZVSjefPNNEhMTHX5fpTpy4sQJ8vLyrPYtXLhQ3b7zzjsB8PLyYvny5Tz00EMsW7as1j4zQojmQ8KIEJhHdcybN099PG3aNKuJuxqiMlJZWan2x1C+2HU6HR9++KEaKgB69epFhw4d7HpPbVONs/1GCgsLyc/Pt3ouPT1dDShDhw5l6tSpTr23tqlGO0T40KFDatNQjx49rD5H27Ztefvtt+nfv79T5xRCND0SRoQAfvrpJ3UK8iFDhtCuXTurQNAQlZGTJ09SWVkJQEJCgvp8YGAg33zzjbomypNPPmn3e2q/xJ1tqtFWRXr27Gk1HXp4eDgffvih000Y2uqS9vqUIAIwatQop95bCNF8SBgRAuuOq3fffTdgnnPC19cXaJjKiNJEA1Rr8mjbti179+7l6NGjjB492u73vPjii9Xthggjffv25f/+7//Ux++99169+m1or0/byVZ7rT169HD6/YUQzYOMphEt3rFjx1ixYgVgXgvmhhtuAMz9F1JSUti9ezeHDh2isrKyXn0YagsjYJ7iPTg42KH37NatG3q9HqPR6PSIGm0Yad26NdOnT6dt27ZERkaq98JZF110ETqdDpPJxLZt29TntWFEW90RQrRMUhkRLd6CBQvU5pMpU6ZgMFgyutJUU1ZWRnp6er3Oox1Jo22mqQ9/f3/1Gnfv3l3jzK610Y6kiY2NRa/Xc8cdd9Q7iIA5YCmTs+3atYuKigrAEkYiIiLU5ikhRMslYUS0aBUVFcyfPx8wD+/UjiABGrQTa12VEWcplYWysjKn+rZoKyOxsbENdl0KpRmmpKSEffv2kZ2drQYgpXIihGjZJIyIFm3lypXqCJcbbrihWkhoyE6srqiMQP07sVZtpmlo2j4h27dvlyYaIUQ1EkZEi7ZgwQJ1W+m4quWqykhjCiNVm2kamrYT67Zt26yuUbtPCNFySQdW0aL99ddfgHkI67XXXlttv7Yy0lBhJDo6Wh2l0xDqOy28Uhnx8vJSZ0xtSNrKyLZt28jOzlYfS2VECAFSGREtWHFxsdp00qFDB5sjZaKiooiIiADq10xTUVGhViAasioC5hFASoioTzNNTEwMen3D/5UQExOjNv9s27ZNHVVjMBisJkUTQrRcEkZEi5Wamqput2/fvsbjlOrI0aNHKSoqcupcJ06cUEfsNGTnVTDP4qpUGLKzs6tN7V6byspKTp48CbimiUahVEfy8vLYvXs3YJ6dtSErREKIpkvCiGixDh06pG4rw09t0TbVHDx40Klzuaq/iMLZfiOnT59WQ5I7woiWNNEIIRQSRkSLpQ0WtYWRhujEqh1J09CVEXB+jRpXj6RR2OqoKp1XhRAKCSOixXKmMqJd7M0RrppjRNG1a1d1e+/evXa/ztUjaRRSGRFC1EbCiGix7A0jl1xyibq9fv16p87l6mYabfXGkTDi6gnPFG3btiUkJMTqOQkjQgiFhBHRYilhJDw8nMjIyBqPa9euHW3atAFg06ZNTnVidXUzTVBQkPq++/btw2Qy2TyuuLiYX375hfz8fMC6MuLKZhq9Xm/VLNO6dWtatWrlsvMJIZoWCSOiRSotLSUjIwOovSqiuOaaawDzlOubNm1y+Hzaykh9VsGtjTJMNi8vTx0hozCZTHz77bd07tyZQYMGMXHiREwmk9sqI2DdVCNVESGElkNhpKysjBdeeIFhw4Zx1VVXMW3aNKtS96JFixg0aBADBw5kzpw5Vv862717N+PGjaNPnz5MmzbN6l9kQrhbamqq+vtpTxgZNGiQuv3zzz87fD4ljMTExLhsOKt2zg5tU01GRgY33ngjI0eOVBf727FjB7t373ZrGNFWRiSMCCG0HAojlZWVxMfHs3DhQtauXUv//v157LHHANi4cSNLly5l0aJFfPnll2zcuJHly5cD5hDzxBNPMHbsWNauXUu3bt147rnnGv7TiCajpKSEkydPqv8pq7m6i739RRQDBw5Utx0NI+Xl5Wr4dkUTjcJWGDEajQwfPpzvv/++2vHffvut2zqwAtx0002kpKQQGRnJ5MmTXXouIUTT4tB08P7+/larmt56663MmTOHvLw8Vq5cyejRo9XOeRMmTGDVqlWMGDGCrVu34u/vz4gRIwCYOnUqgwYNIisry2Y7dVlZGWVlZdYXajDg4+Pj8AdsioxGo9X/m5s1a9YwatQoCgsL1efi4uL49ddfnfqyduZ+aYf1XnDBBXW+Nioqiu7du7Nz5062bt1KTk6OOjNrXTIzM9UqTHx8vMt+rtpOrHv27MFoNLJ792513pGYmBj++c9/8sgjjwDmMKL0HQkODsbf39+lv3PBwcHs3buXyspKvL29m8Tvd3P/s9jQ5H45pqXcL3tmdq7X2jQ7d+4kIiKCsLAwjhw5wrBhw9R9HTp04N133wXMJXHtvz79/f1JSEggNTXVZhhZuHChuqy7YsyYMdxyyy31udwmR9vPoDl57bXXrIIIwPHjx5k9ezbTp093+n0duV/KlORg7vypNF/UplevXuzcuROTycRXX33FddddV+vxOTk5FBQUWA0HDgsLs+tczggKClK3t23bRnp6Ot9995363J133smIESOYP38+e/bsYevWrXh7ewMQGRnpsutqDprrn0VXkfvlmOZ+v9q2bVvnMU6HkYKCAl5++WXuvfdeAIqKiqz+MgwMDFRHHRQXFxMYGGj1+sDAQIqLi22+9+TJkxk/frz1hbawysjRo0dJTEx0yVohnmQymdTF3AICAhg4cCArV67EaDTy008/8f/+3/9Dp9M59J7O3C9tB8++ffvaNbLjpptu4qOPPgLMQfwf//hHtWPKysr4+uuv+eCDD1i3bl21/Z07dyY5Odmua3RUUlISERER5ObmkpaWRnJyMvv27VP3X3/99SQnJ3PzzTerAam8vFx9rauuqylrzn8WXUHul2Pkflk4FUZKS0t57LHH6Nu3r9r0EhAQQEFBgXpMYWEhAQEBgLkSUvVfwoWFhfj7+9t8fx8fnxYTPGqj1+ub3S/ogQMHyMnJAWDAgAGsWLGCAQMGsG7dOg4dOsTu3bvp3r27U+9d9X4VFBRQWVlJaGhotWOVPiMhISFER0fbFYCuvvpqDAYDFRUVrF27ttrPZvny5UydOtVqVdqqLr74Ypf+TDt37symTZs4fvw4BQUF/Pbbb4D5z1SvXr3Q6/WMGDGCWbNmWb0uNja22f2uNaTm+GfRleR+OUbulxNDeysqKnjqqado1aoVDz/8sPp827ZtrToFHjhwgHbt2gHmeRq0+5TVUpX9ouXQDou98sorARg9erT63FdffdUg58nIyCAlJYWEhAS2bt1qta+srExtkkhJSbG7EhMUFMRll10GmH+/q5ZWp0+fbhVEOnTowPjx45kwYQITJkxgzpw5XHvttfX5WHXSdmL93//+p/aN6dWrlzqK5+KLL642vNjVnVeFEKI2DoeRl156idLSUmbMmGH1l/iwYcNYtmwZmZmZ5OTksHjxYoYOHQpAz549KS4uZsWKFZSVlbFgwQK6dOni0kmWROP066+/qttKGBk1apT6u/TVV1/VOGGXI+bOncvJkycpKCioVgVIS0tTO4zVtlqvLTUN8c3JyVHXrbngggtYu3Yt+/bt49NPP+WTTz7hk08+4cEHH3S4CcpR2jCyYMECdbtPnz7qtk6nY/DgwVavkz+LQghPciiMZGVlsWLFCrZt28aAAQPo168f/fr1Y9u2bfTt25dRo0YxceJExowZQ58+fRg+fDhgLhG/+uqrLF68mAEDBrBjxw5mzpzpkg8kGjcljHh5eXHppZcC5i/Cvn37ArB//351iXlnGY1GFi9erD5esWKFOsEZOD6sV0uZ/Aysw8jmzZvV7ZEjRzJgwACXBw9btGFkxYoV6rYS/BTaUAVSGRFCeJZDfUZat27Nli1batw/efLkGucP6Nq1K0uWLHHs6kSzkpubq3ac7NGjh9qnCMyjpf73v/8BsHTpUrp16+b0eTZt2mQVPoxGIx988AEvvvgiYP9qvbZcdtllBAYGUlhYyJo1azCZTOh0On7//Xf1mMsvv9zpa68vbRjRzt1SNYxceumlhIWFkZeXB0gYEUJ4VsvuMSPcSvuFrW02AHNTjaK+/Ua0VRHF/Pnz1blr6lMZ8fHxoX///oB5kTllcjHtZ1P6lXhCUlKSVcgD82eMjo62es7b25vrr79efWzP0DshhHAVCSPCbWx1XlXEx8erAWXPnj1Wc3M4oqysjC+//BIwj/BS+i1lZ2fz9ddfA/ULI1C9qaayslJtpomLi3PJqrz20uv1VpOfQfV7rXjxxRcZNmwYzzzzTLXXCCGEO0kYEW5jq/OqlnZUzbJly5w6x6pVqzhz5gxg7ruhnUTtvffeIycnR+2TEhQURExMjMPn0Pa3WLNmDfv27VNnMr388ss90ldEq1OnTlaPq1ahFElJSXz//ffVOvgKIYS7SRgRblFeXq5WD5KSkmxWD0aOHKluK/1HHKVtohk/fjxXX321+uW8YcMGEhIS1CG5jgzr1brwwguJiooCYN26dWzcuFHd58kmGoW23wjUXBkRQojGQsKIcIsdO3aoM+7W9C/15ORkdYjp5s2bHV6v4ezZs+oIkqioKAYPHoxOp+Oee+5RjyktLVW37777bofeX6HX69WmmnPnzqnLHoBnO68qtGEkNDSULl26ePBqhBCibhJGRL399ttvfPnll7WGh7qaaMA8/4XyZX7u3DmrqcztMW/ePEpKSgDzIo7KuisTJ05UKzFhYWE8+uijHDx40OZ07vbS9hvZtWsXYB6u3LNnT6ffs6Fow8cVV1zR4md2FEI0fvK3lKiXI0eO0K9fP2699Vbmzp1r85iysjKr5pOaKiNg3cyhnbujLrm5ufzrX/8CzJULbTUkLCyMzZs388svv5CZmckbb7zhVMdVrarzdAB079692hpMntC5c2fGjRtHTEwMTzzxhKcvRwgh6iRhRNTLxo0bqaysBMyrLVdlMpm49957+eOPPwDzENILL7ywxvfTNnNoh8vW5Z133uHcuXOAeb6brl27Wu2Pi4vj6quvrjbs1Vlt27atNhy2MfQXAXOF6bPPPiMrK4sBAwZ4+nKEEKJOEkZEvWibUrZs2cKRI0es9v/73/9WpyX38/Pjyy+/xGCoea49ZTE3sD+MHD58WK28BAQEuG12X21TDTSO/iJanh7VI4QQ9pIwIupFmfRLoR2S++OPP/Loo4+qjz/66CN69epV6/sFBgaqq/b+/fffVitB1+Spp56ivLwcgMcee6zaInCuUrWpprGFESGEaCokjDRz6enprF69Wv1P6WzZUKqGkaVLlwJQUFDAxIkT1U6tTz31FOPGjbPrPZXmDqPRWOvyAwDr169XzxkdHW01r4irDRw4UN0OCwtzeNE9IYQQZhJGmrE///yTtm3bct1116n/de/enU8//bRB3r+8vNxqNlMwdzrNyMhgzpw5nDx5EoDrrrvOoYm17O038scff6iLMQI899xzBAcH232e+mrVqhVjxowB4M4775RRK0II4ST527MZ+/zzzzGZTNWef/nll20+76hDhw6pi7Fp+yd88MEHvPrqq4B5uOvbb7/t0Be1PWFky5YtXHvttWqn1SuvvJKpU6c6/Bnq64svviA9PZ3XX3/d7ecWQojmQsJIM6ad2+OZZ55RR5js3buX9evX1/v9tU00Y8eOVbdfeuklNSTceeedDq970qFDB8LCwgBzGKkanHbs2MHgwYM5e/YsAAMGDGD+/Pm1dox1FZ1OR1JSknQWFUKIepAw0kwVFxfz119/Aea1SmbNmsUzzzyj7n/vvffqfQ5tGBkxYkS1Ibt+fn4899xzDr+vXq/n0ksvBeDkyZNkZGRY7Z8+fTp5eXkAXHXVVXz77bf4+/s7fB4hhBCNg4SRZmrLli3qCBNlxtNRo0apS8l//fXXZGVl1esc2jDSuXNnq4XuAB544AGnV7CtqammtLRUXbcmPj6e7777rlFMNCaEEMJ5EkaaKW0TjTLjqY+PD1OmTAGgoqKCDz/8sF7nUMKIXq+nQ4cOamdOMK+J8s9//tPp99aGkd9++03d3rJlizrl+8CBAwkKCnL6HEIIIRoHCSPN1KZNm9Rt7Vow06ZNUzuTzps3T+2A6iij0ahOeNa2bVv8/Pzo3Lkzd999N+Hh4cybN4+IiAinr/+yyy5T+2GsWbNGfV67mm///v2dfn8hhBCNh4SRZshkMqmVkYiICDp06KDuS05O5oYbbgAgMzOT7777zqlzHD16lKKiIsB6ldj333+f3Nxcbr31VmcvHzBft1Id2b17N4cPHwasw0i/fv3qdQ4hhBCNg4SRZujAgQOcPn0aMFdFqg6rvffee9VtZap2R2mngdeGkYY0YsQIdfvbb7+lsrJSrfhER0dbhSwhhBBNl4SRZkjbX0TbRKMYPHgwrVq1AmwPnbVH1c6rrjBy5Eh1+5tvvmHXrl3qcN5+/frJcFohhGgmJIw0Q9r+IkrnVS29Xk+PHj0AyMnJITMz0+FzuCOMdOzYUZ2jZNOmTXz99dfqPmmiEUKI5kPCSDOkVEYMBkONC9MpYQRg27ZtDp/DHWEELE01RqORN998U31ewogQQjQfEkaamdzcXDUoXHLJJQQEBNg8rqHCSOvWrQkNDXXiSu2j7TeirOAbHBzMRRdd5LJzCiGEcC8JIw3IaDSq/zXE2i/O0M7JYau/iKI+YWTz5s3k5OQArq2KgHmIb0xMjNVzffr0wcvLy6XnFUII4T4SRhpAcXExAwYMwMvLS/0vNDSUJUuWuP1a7A0jKSkp6oRhjoSRrVu3ct1116mPXT3Xh5eXFzfeeKPVczK/iBBCNC8SRhrAkiVLWLdundVz+fn5PPbYY+qU7O7yxx9/qNvaWUyr0uv1XHzxxQCkp6eTm5tb53tv27aNwYMHq+vC9O/fn8cff7xe12sPbVMNSH8RIYRobiSMNICPP/5Y3e7duzfx8fEAHD9+nBUrVrjtOkwmE1u2bAEgJiamznVhtE0127dvr/XY7du3M2jQIM6cOQOYA8H333/vlnVhrrnmGrXvi6+vL71793b5OYUQQriPhJF6SktLY/369YB5KOrmzZv56KOP1P0NsTquvVJTU9Ww0Lt37zrn4bC338jOnTsZNGiQWj3p06cPK1eudNu6MP7+/jz99NP4+vry+OOP4+vr65bzCiGEcA8JI/X06aefqtt33HEHOp2OQYMGkZKSAsDPP//M/v37G+RcBw4c4JNPPlEXiqvqzz//VLdrGtKrZU8Y2bVrF9dcc43VjK6rVq1y+wJ1Tz31FAUFBbz44otuPa8QQgjXkzBSDyaTif/85z8A6HQ6xo8fD5j7Y9x9993qcXPnzq33uYqKirjqqquYOHEiQ4YMoaysrNox2jBiT1NGly5d8Pb2BuCvv/6qtv/IkSNcc8016siZyy+/nFWrVhEcHOzsx6gXg8HgkfMKIYRwLQkj9fD7779z8OBBAAYMGEBSUpK6b9KkSfj5+QGwaNEidVE5Z/3888+cOHECgA0bNnD//fdXGz7saBjx8fGhW7duAOzfv7/aNb711lucOnUKgEsvvZQffviBkJCQen0OIYQQoioJI/Wg7bh6xx13WO2LjIxUV67Ny8ur9zDfqqvrzp8/n3feeUd9XFlZqVY3kpOT1bVn6qI01RiNRnbu3Gm1T+kMC7BixQqXTm4mhBCi5ZIw4qSSkhK++OILAAICAhg1alS1Y7Sr477//vtOn8tkMqlhRDvZ1yOPPMJPP/0EmFfRLSwsBOyriihq6jeiDSfJyclER0c7ff1CCCFEbSSMOOm7775T59u4+eabbXbo7N27tzqXx5YtWzh27JhT59q2bRvHjx8H4LrrruOf//wnYK6GTJo0iZKSEoc7rypqCiOpqalquFE+gxBCCOEKEkZs2LlzJ48++ihr166t8ZjFixer27fffrvNY3Q6ndWEXatXr3bqerRNNDfccAMvvfQSgwcPBsxzmSxatMjh/iKKiy66SB0CrO3EumPHDqtjhBBCCFeRMFKFyWRizJgxvPXWW1xzzTWMHTuWzMxMq2POnDnDypUrAYiNjWXgwIE1vp926vQffvjBqWvSTpx2/fXXo9frefnll9XnZs+ebTUNfM+ePe1+76CgIDp16gSYJzbLz88HJIwIIYRwHwkjVWzfvp0DBw6oj7/44gs6derEggUL1OeWLVumDq0dO3ZsrYu29e7dm4iICAB++uknKioqHLqerKwstSPpxRdfTGJiImBuirn22msB88RrShNLx44dHe5oOmDAAMDc7LNhwwZAwogQQgj3kTBSxX//+191WwkZBQUFTJkyRa0+fPbZZ+oxt912W63v5+XlpYaGs2fP8vvvvzt0PUoFBsxNNFpPP/10teMd6S+iuOaaa9Ttn3/+GbCEkaCgINq2bevwewohhBD2kjBSxddffw2Y+3vs3LnTasju/fffT0ZGhrooXvv27e368q9PU422iaZqGOnfvz99+/a1es6ZdVuuvvpqtd/Izz//TF5eHunp6YC5KqLXy6+JEEII15FvGY39+/eze/duwDzteZcuXfjwww/p3r07YO7gedNNN6mTjd122211rv8CqJURcCyMnD59Wu30Gh0dbTNoPPXUU1aPnQkjERER6qianTt3smbNGnWfNNEIIYRwNQkjGkpVBOCmm24CzFOQaycX0444qauJRtG6dWt1eOzWrVvJzs6263Vz585V16EZN26czQrFddddxyWXXAJAYGCg08NwtU01c+bMUbcljAghhHA1CSMa2v4iShgB6NevX7Xhu7169aJDhw52v/fQoUPVbXuG+JaWlqohSK/X89BDD9k8TqfTsWTJEu666y6WLFlCQECA3dekpQ0jGzduVLcljAghhHA1CSPnHT16VJ2r4+KLL6Zdu3ZW+1999VWrdVmURfHs5Wi/kW+++UatoIwePbrWTqTt27fnww8/rNanxBF9+/ZVF81T6HQ6de0aIYQQwlUkjJz3zTffqNu2pnaPjY3ljTfeAMzNLo6GkSuuuEJd7Xb16tVUVlaq+0wmEwsXLuTDDz+ktLQUo9FoNZT4sccec+hczggMDOTyyy+3eq59+/YEBga6/NxCCCFaNgkjmCcx0/aTsBVGAKZMmcL+/fvZuXOn3QvRKby9vdVZU0+fPs2mTZvUfcuWLePOO+9k6tSpdO/enRdeeIFDhw4B5orFpZde6uhHcoq2qQZkGnghhBDu0eLDSEVFBbfccguHDx8G4LLLLqNLly41Ht+hQweioqKcOpc25Hz11Vfqtnb13wMHDvDiiy+qj91RFVFUDSPSX0QIIYQ7tPgw8thjj6lDWVu1asUXX3xh13BdZ9x44434+PgA5mqI0WjkzJkzNXZobd++PTfeeKNLrsWWSy+91KoDrIQRIYQQ7tCiw8j8+fP597//DZibUf773/+SnJzssvOFhIQwZMgQwDzN+6+//srXX39NeXk5AA899BALFy5Um4BmzZpV61TzDc3Hx0edGl6n01mt6CuEEEK4isHTF+ApGzdu5N5771Ufv//++9VmM3WFMWPGqLOqLl26lD179qj7brvtNi699FLGjh3Lrl27HFrwrqG88sorlJeXM2TIEOLi4tx+fiGEEC1Piw0jKSkp9O7dm99++42HH36Yu+66yy3nvfHGG/H29qa8vJzPP/+c06dPA9C2bVt19lQfHx+n+6XUV7du3eyaB0UIIYRoKC22mSY2NpZffvmFN998k9dee81t5w0LC1Onh8/OzlaH+N56660u66sihBBCNGYtNowA+Pr68sgjj2AwuLdANHr06GrPjR071q3XIIQQQjQWLTqMeMrw4cOtAlDHjh3VxfiEEEKIlsahMDJv3jzGjBlD7969q/UrWLRoEYMGDWLgwIHMmTNHXdkWYPfu3YwbN44+ffowbdo0srKyGubqm6iIiAgGDRqkPh47dqw00QghhGixHAojiYmJPPbYY3Tt2tXq+Y0bN7J06VIWLVrEl19+ycaNG1m+fDkAZWVlPPHEE4wdO5a1a9fSrVs3nnvuuYb7BE3UPffcA5inYb/jjjs8fDVCCCGE5zgURoYNG8bll1+uTtylWLlyJaNHjyYhIYGoqCgmTJjAqlWrANi6dSv+/v6MGDECX19fpk6dyp49e1p8dWT48OFs376dPXv21LoInhBCCNHcNUjPzSNHjjBs2DD1cYcOHXj33XcBSE1NJSUlRd3n7+9PQkICqamptG7d2ub7lZWVUVZWZn2hBkO1ENTUXXjhhQAYjUar55XHVZ8Xtsn9cozcL/vJvXKM3C/HtJT7pdfXXfdokDBSVFREUFCQ+jgwMJCioiIAiouLq638GhgYSHFxcY3vt3DhQubPn2/13JgxY7jlllsa4nKbjKNHj3r6EpoUuV+OkftlP7lXjpH75Zjmfr/sqf43SBgJCAigoKBAfVxYWKiuceLv709hYaHV8YWFhfj7+9f4fpMnT2b8+PHWF9oMKyM1MRqNHD16lMTERLsSZUsn98sxcr/sJ/fKMXK/HCP3y6JBwkjbtm05dOiQOp36gQMHaNeuHQDt2rXj66+/Vo8tLi7m2LFj6n5bfHx8WkzwqI1er2/xv6COkPvlGLlf9pN75Ri5X46R++VgB9aKigpKS0sxmUzqttFoZNiwYSxbtozMzExycnJYvHgxQ4cOBaBnz54UFxezYsUKysrKWLBgAV26dKmxv4gQQgghWhaHKiMvvvgi3333HQDbtm3j+eefZ+7cufTt25eDBw8yceJEjEYjI0eOZPjw4YC5yvHqq68ya9YsXnnlFbp06cLMmTMb/pMIIYQQoknSmbSzk4lGwWg0kp6eTnJycosv3dlD7pdj5H7ZT+6VY+R+OUbul0XL/vRCCCGE8DgJI0IIIYTwKAkjQgghhPAoCSNCCCGE8CgJI0IIIYTwKAkjQgghhPAoCSNCCCGE8CgJI0IIIYTwKJn0TAghhBAeJZURIYQQQniUhBEhhBBCeJSEESGEEEJ4lIQRIYQQQniUhBEhhBBCeJSEESGEEEJ4lIQRIYQQQniUhBEhhBBCeJSEESGEEEJ4lIQRIYQQQniUhBE3mDdvHmPGjKF3796sXr1afb6kpISXXnqJwYMHc+211/LJJ59Yva5Xr1707duXfv360a9fPz766COr1z777LP079+f66+/nh9++MFtn8eVXHGv3nzzTUaMGEH//v25/fbb+euvv9z2eVzNFfdLcfz4cfr06cPLL7/s8s/hLq66X8uXL+emm26ib9++jB49mvT0dLd8Hldyxb3KzMzkvvvu4+qrr2bo0KEsXLjQbZ/H1Zy9XwUFBcycOZOBAwdy9dVX8/TTT1u9tjn+PW+LwdMX0BIkJiby2GOPMXfuXKvnFyxYwPHjx/n6668pKCjgnnvuISUlhSuuuEI95ptvviEqKqrae86bN4+zZ8+ycuVKDh8+zEMPPUTnzp1JTk52+edxJVfcq6CgIN555x3i4+NZu3Ytjz/+OCtWrCAwMNDln8fVXHG/FG+++SYdO3Z02bV7givu14YNG/j00095/fXXadeuHZmZmQQHB7v8s7iaK+7Va6+9Rnx8PHPmzOHkyZPcdddddO3alUsvvdTln8fVnL1fL7zwAjExMSxfvhw/Pz8OHTqkvra5/j1vi1RG3GDYsGFcfvnl+Pj4WD3/22+/cdtttxEUFERsbCzDhw/n+++/t+s9V65cybRp0wgKCuKiiy6if//+/Pjjj664fLdyxb2aNm0aiYmJ6PV6Bg0ahK+vLxkZGa64fLdzxf1SXm8ymbjssssa+pI9yhX368MPP+TRRx/lggsuQKfTkZCQQGhoqCsu361cca+ysrK49tprMRgMxMfHc/HFF5OamuqKy3c7Z+7X4cOH2bdvH4888ghBQUEYDAY6deqkvra5/j1vi4QRD9Mummwymar9wZwwYQJDhw5lxowZ5OXlAXDu3DlOnz5NSkqKelyHDh2azR/qmjhzr6o6fvw4586dIzEx0ZWX2ig4e7/Ky8uZM2cODz/8sJuutHFw5n5VVlayf/9+Dh06xLBhwxg+fDjz58+nuS+G7uzv1pgxY1i9ejVlZWVkZGSwa9cuevXq5a7L9pia7tfevXtJSkri2Wef5ZprrmHixIls27YNaHl/z0sY8aDLL7+czz//nPz8fI4fP853331HSUmJun/+/Pl89913fPbZZ5SUlDBz5kwAioqK8PLyws/PTz02MDCQoqIit38Gd3H2XmlVVFQwY8YMbr/9doKCgtx5+W5Xn/u1ePFi+vTp0yICm8LZ+5Wbm0tlZSV//vknX3zxBR988AE//fQTK1as8NRHcbn6/G5ddNFF7Nq1i379+jFq1ChGjBhh9WXbHNV2v7Kzs9m8eTOXXnopq1evZtKkSTz++OOcPXu2xf09L2HEg+666y7i4uIYPXo0Dz74INdccw2tWrVS9/fo0QODwUB4eDiPP/44mzZtory8nICAACorK63+AigsLCQgIMATH8MtnL1XCpPJxIwZMwgPD2fatGme+Ahu5ez9ys7OZvny5dx5550evHr3c/Z++fr6AnDHHXcQHBxMbGwsY8aMYdOmTZ76KC7n7L2qrKzkoYceYuTIkWzatInly5ezZs0a1qxZ48FP43q13S9fX1/i4+MZOXIkBoOBgQMHEh8fz65du1rc3/MSRjzI39+fp59+mtWrV7N06VJ0Oh1dunSxeaxeb/5RmUwmQkJCiIyMtOrodODAAdq1a+eW6/YEZ++V4tVXX+XUqVPMmjVL3d+cOXu/9uzZw8mTJxk1ahRDhgzh008/5fvvv+eBBx5w5+W7XX3+LGq/iJXnmzNn79W5c+c4deoUo0ePxmAwEBcXx9VXX83WrVvdefluV9v9uuCCC2p8XUv7e775/63cCFRUVFBaWorJZFK3jUYjJ0+eJCcnh8rKSn7//XdWrFjBbbfdBpg7Nh04cIDKykrOnTvHG2+8wWWXXaZ2jho2bBgffvghhYWF7Nq1iw0bNjB48GBPfswG4Yp7NW/ePHbs2MEbb7xRrXNZU9fQ9+vKK6/k22+/ZfHixSxevJibb76ZQYMGMWvWLA9/0obhit+vG264gf/85z8UFhZy6tQpli1bRt++fT35MRtEQ9+r8PBwYmJi+Oabb9T3Wb9+fa1fyE2JM/erV69emEwmvvvuOyorK1m/fj2ZmZlceOGFQPP9e94Wnam5x/hGYMaMGXz33XdWzynDv55//nny8vJo06YNjz/+OD169ADgzz//5F//+hfZ2dkEBgZy6aWX8sgjjxAREQGYx5+/+OKLrF+/npCQEB544AGuu+46934wF3DFverVqxc+Pj54eXmp7/nUU08xdOhQN30q13HF/dKaN28ep0+f5qmnnnL9h3EDV9yv8vJyZs+ezU8//URAQAAjR45k2rRp6HQ69364BuaKe7V7927eeOMNDh8+jJ+fH9deey0PP/yw1Z/NpsqZ+wVw8OBBZs2axZEjR0hMTOTxxx/nkksuAZrv3/O2SBgRQgghhEdJM40QQgghPErCiBBCCCE8SsKIEEIIITxKwogQQgghPErCiBBCCCE8SsKIEEIIITxKwogQQgghPErCiBBCCCE8SsKIEKJJ69WrF7169WrWK+UK0dxJGBFC1GnatGnql/64ceOs9uXl5dGnTx91///7f/+vwc+/YsUK9f2FEM2PhBEhhEMOHjzIX3/9pT7+5ptvKC0t9eAVCSGaOgkjQgi7GQwGAL744gsAKisrWbp0qfq81tmzZ5k9ezbXX389l112Gddeey3PPvssJ06cUI+ZN28evXr14sYbb+Snn37i5ptvpm/fvkydOpW0tDTAvADZCy+8oL5GqZDMmzfP6nwFBQXMmDGDq666iqFDh/Lhhx829McXQriIhBEhhN06dOhAfHw869at4+TJk2zYsIETJ05wzTXXWB1XWlrKtGnT+Oqrr8jJySE5OZnCwkJWrVrF5MmTOXPmjNXx2dnZPPvss+h0OkpLS9m2bRszZ84EICEhgfj4ePXYbt260a1bN2JiYqze45133uH333/H29ubU6dOMXfuXH7//XcX3QkhREOSMCKEsJter2fMmDFqRUSpkNx6661Wx61evZrDhw8DMHv2bL788ksWLFiAXq/n1KlTfPnll1bHV1ZW8uqrr7J06VK1T8rOnTspKSlhypQpTJkyRT120aJFLFq0iJEjR1q9R4cOHVixYoVVpebPP/9s0M8vhHANCSNCCIeMGDECf39/vvzyS7Zs2ULnzp3p3r271TF79uwBwM/Pj6uvvhqATp06kZycbLVfERQURP/+/QFo166d+nzVCkptBg8ejLe3N2FhYURERACQm5vr2IcTQniEhBEhhEOCg4MZOnQohYWFQPWqiLPvqfDy8lK3TSZTvd7DkdcLITxHwogQwmG33HILAGFhYVx77bXV9nfp0gWAkpIS1q1bB8C+fftIT0+32m8vPz8/dbu4uNiZSxZCNGLVu8ALIUQdUlJS+Pnnn/Hy8sLHx6fa/iFDhvDpp5+SmprKk08+SXJyMpmZmRiNRlq1aqWGGXu1adNG3R4zZgxRUVE8/PDDXHzxxfX8JEKIxkAqI0IIp4SGhhIUFGRzn6+vL/Pnz1eDQ3p6OoGBgQwdOpSFCxcSHh7u0Lnat2/PlClTiIyM5MSJE/z999/k5+c3xMcQQjQCOpM0qgohhBDCg6QyIoQQQgiPkjAihBBCCI+SMCKEEEIIj5IwIoQQQgiPkjAihBBCCI+SMCKEEEIIj5IwIoQQQgiPkjAihBBCCI+SMCKEEEIIj5IwIoQQQgiPkjAihBBCCI/6/28Dlfj7vnsxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -721,10 +849,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "model ExponentialSmoothing(trend=ModelMode.ADDITIVE, damped=False, seasonal=SeasonalityMode.ADDITIVE, seasonal_periods=12 obtains MAPE: 5.11%\n", - "model (T)BATS obtains MAPE: 5.87%\n", - "model Auto-ARIMA obtains MAPE: 11.65%\n", - "model Theta(2) obtains MAPE: 8.15%\n" + "model ExponentialSmoothing() obtains MAPE: 5.11%\n", + "model TBATS() obtains MAPE: 5.87%\n", + "model AutoARIMA() obtains MAPE: 11.65%\n", + "model Theta() obtains MAPE: 8.15%\n" ] } ], @@ -827,14 +955,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABRpklEQVR4nO2deXhU5fXHPzOZzGRPyA4JIUBYRDbhoiAgKtUCarVat4r7UkXq0tZq7c+ttdbWttaFarFS6lIXahHcaN2oAqJeQdm3YICELGRfJ5nl/v64cyeTfZKZJJNwPs+TZzL33ve975uZfOfMec97jknTNARBEISBj7m/ByAIgiAEBxF0QRCEQYIIuiAIwiBBBF0QBGGQIIIuCIIwSBBBFwRBGCT0p6Brof5TVFTU72OQuchcBsqPzKXPfjpELPROcLlc/T2EoCFzCU1kLqHJQJ2LCLogCMIgQQRdEARhkCCCLgiCMEgQQRcEQRgkiKALgiAMEkTQBUEQBgki6IIgCAGiaRpOZ6ch4n2CCLoPlZWV/OUvf+l2u0WLFlFZWRn8AQmCEPK4XBoTr9Y47ccabnf/iroIug8dCbrT6ey03bvvvktCQkIvjUoQhFCmtAp25cFnO2HTjv4di6V/bx9a3HPPPeTm5jJ16lTCw8Mxm82kpaWxZ88e9u3bxwUXXMCRI0ew2+3cfvvt3HTTTQBkZ2ejqiq1tbUsXLiQOXPmsGnTJjIyMlizZg2RkZH9PDNBEHqLytrm319+X2POZFO/jUUsdB8effRRRo8ezddff81jjz3G9u3beeKJJ9i3bx8AK1as4KuvvkJVVZ588knKysra9LF//35uvfVWdu7cSUJCAm+88UZfT0MQhD7EV9Bf/xiaHP3ndglZQTeZTL3y0x2mTp3KyJEjvc+ffPJJpkyZwsyZMzly5Aj79+9v02bkyJFMnToVgOnTp5OXlxfIn0EQhBDHV9DLq+E/X/TfWEJW0EOBqKgo7+/r16/ngw8+4LPPPuObb77hpJNOwm63t2ljs9m8v4eFhXXpfxcEYWBTWdPy+cvv95+F7pcPXVGU04H70D8AngSOAb8H3MAtqqpuVxQlHXgBiAaeUVX1pUAGpml9/0eJjY2lpqam3XNVVVUMGTKEqKgo9uzZw+bNm/t4dIIghCKGhX72DPjvl7B2I9Q1aERH9r0vvUtBVxQlEvgpsFBV1SbPsf8B5wCxwLPAIuBudJFfD3yqKMq/VFVta8KGMElJScyePZuJEycSGRlJfHy899yCBQt49tlnOeGEExg3bhwzZ87sx5EKghAqVHhswCk5cPAoHCiA/GMwLqvvx+KPhT4LaADeUhSlHlgCuFRVrQAqFEVJ9Fx3MvBTVVXdiqKowERA7Y1B9yb//Oc/vb8XFBR4f7fZbLz33nvttjH85MnJyezY0Ry39LOf/ax3BikIQshQWat7ExJiTCTE6r9X1XbWovfwR9DTgBxgJvAd4CGg2ue8U1EUKxCuqqrbc6wKSKQViqLcBNwEsHTpUs4666wAht77OByOFqI+kJG5hCYyl9CkO3MpKI4DosFZiS0sArCRe6iUjPimXhlbRkZGh+f8EfRKYKOqqk2KonyILui+jmaL55xDURSzR9TjgfLWHamquhxY7nna//tku6CgoKDTP95AQuYSmshcQpPuzMWh6XZsdmYCqQd0WQuPTCYjo+996P5EuXwJnKAoigmYCuwCLIqiJCiKMpxm4f4SOF1RFAswHdjZC+MVBEEIKYxF0YQYiI/Rfw9Zl4uqqqWKoqwG/oduVV8HZADvep4v8Vz6O/Qol4eBZ1VVbeiVEQuCIIQQxqLokFiIj9Z/r6rrn7H4FbaoquoyYJnPoVzg1FbXFAKh7RQXBEEIMu1Z6NV1GhCaLhdBEAShA1oIerQu4v1loYug+9DT9LmCIByfaJrWLOgh4HIRQfehp+lzBUE4PrE3QZMDrOEQYYU4Q9BDdVH0eKKz9Ln//e9/Offcc70bh/7whz9QW1vLgw8+SG5uLrfeeivHjh0jKiqK5557jvHjx/fzbARB6G0qfRZETSYT8dGejUWhvCh6vPDoo4+yY8cOvv76a9avX8+iRYt49dVXGTlyZKdZE2+66SaeffZZxowZw+eff86SJUv46KOP+m7ggiD0CxUeS/x7xw6x+4EmYuZkApEi6K0xnebu+qIeoH3iv5epdfrc9qitrWXTpk1cfPHF3mONjY09Hp8gCAOHyhqIcTq4YO8+vt0DLMvjzrihvJNxYr+MJ2QFPRTwTZ9rsVhwu5s/ZIzUuW63m4SEBL7++uu+Hp4gCP1MZS0kOXUDzhxpxu3Q+E5VIR+WjUTPXdi3hKygd8eSDhadpc9NS0ujpKSEsrIyYmJiePvtt1mwYAFxcXGMHDmSVatWcfHFF6NpGtu2bWPKlCl9PHpBEPqaylpI9Aj6ECUBR72L6q+qsFT3Th6XrghZQe8POkufGx4ezv3338/JJ59MRkZGi0XPl19+mVtuuYWHH34Yh8PBZZddJoIuCMcBlbWQ5NAF3ZZuw1LnohqIamiiyaFhDe/bzUUi6K3oKH0uwG233cZtt93Wps3IkSNZt25dr49NEISe43ZrmM3BFdiKGhjisdAj0m04avQQ5wRnI1V1kJIQ1Nt1icShC4Iw6Fn9iUbsAo3VnwQ3yWtlreb1odvSbdhS9BKUCc6mfolFF0EXBGFQ0+TQuPNpjXo7rN8abEFvttBtaTZsKVYAhria+iV0UVwugiAMap5/Bw4V6b8HW2Qra2G8w3C5RGAK0106/WWhi6ALgjBoaWjUePiFZqu8NwS92UK3ehMsJjibqK4P7r38QQRdEIRBy3NvwdFSiLRBQ2Pwc6xU1vj40NNs3jps4kMXBEEIMp98oyvsdYv058G20BvLHYRrGuYYC5ZoC1bvomhjv/jQRdB7kfXr13PuuecCsHbtWh599NEOr22d6fHo0aP84Ac/6PUxCsJgpsxTzv7Ekb2Tp9xUoW8gsqbpQm6JDcNlMROhuakp7/ssrSLoPcDlcnW7zfe+9z3uueeeDs+3FvRhw4bxr3/9q0fjEwRBp9wj6KOG6Y/BdINomkZ4te5uiRyqC7rJZMIVp0e62Iv7PqeTCHor8vLyGD9+PFdccQWnn346P/jBD6ivryc7O5u7776badOmsWrVKv773/8ya9Yspk2bxsUXX0xtrf5OWbduHePHj2fatGn8+9//9va7cuVKli5dCkBxcTHf//73mTJlClOmTGHTpk0tUvfedddd5OXlMXHiREDPG3PttdcyadIkTjrpJD7++GNvnxdeeCELFixgzJgx/PznP+/jv5YghDaGhT5qqP5YVacLcTCoa4CEJo+gp9u8x7V4XdCbjvX99n8R9HbYu3cvS5YsYf369cTFxXkt56SkJLZs2cJ3vvMdHn74YT744AO2bNmCoij86U9/wm63c+ONN/LWW2/x1VdfUVRU1G7/t912G/PmzeObb75hy5YtnHjiiTz66KOMHj2ar7/+mscee6zF9cuWLcNkMrF9+3ZeeeUVrr76am9ysK+//prXXnuN7du389prr3HkyJHe/eMIwgDCsNCHJoHNCg6nvjgaDCprIdEIWRzaLOjmRP13d3nfC3rIRrm8m/SfXul3Udl3u7xm+PDhzJ49m4KCAhYvXsyTTz4JwKWXXgrA5s2b2bVrF7NnzwagqamJWbNmsWfPHkaOHMmYMWMAWLx4McuXL2/T/0cffcQLL7wAQFhYGPHx8VRUVHQ4ng0bNvDjH/8YgPHjxzNixAj27dsHwPz58705ZyZMmMChQ4cYPny4X38LQRjMNDRqNDTq1YSiI/XycCVNutslKiLw/kurmhNz2dKaBT08WbfQtcq+d7mErKD3JyaTqd3n0dF6fSlN0zjrrLN45ZVXWlzXHyl0bbbmN1JYWJiUyxMED4Z1nuhTTaikQne7DE0OvP/iCh9B93G52FKsNAJh/ZBxMWQF3R9Lurc4fPgwn332GVlZWfzzn/9kzpw5bN261Xt+5syZ3HrrrRw4cICcnBzq6uooKChg/Pjx5OXlkZuby+jRo9sIvsH8+fN55plnuOOOO3C5XNTW1naaunfu3Lm8/PLLnHnmmezbt4/Dhw8zbtw4tmzZ0ivzF4TBQFk1zKsq5Ppvc/lm6RCm1g9lvzaEqrrgJOgqLm/OtBjhY6FHpdtoBMJrxIceEowbN45ly5Zx+umnU1FRwS233NLifEpKCitXruTyyy9n8uTJXndLREQEy5cv55xzzmHatGmkpqa22/8TTzzBxx9/zKRJk5g+fTq7du1qkbr3rrvuanH9kiVLcLvdTJo0iUsvvZSVK1e2sMwFQWhLeTXMqywiqb6BgleOcs2nX7GwIj9okS7FFT67RH0s9JihusvFVt/3gm4K1opvD+i3G3dGXl6etxh0QUEBGRkZ/T2koCBzCU1kLr3HG+s1Cq74jBx7DQlKPJVqFeuGZDD3uRO5+IzOrXR/5vLTp1yc9tCHhGsaZx+ejyVad3gc+bCM7Zeo7IlJ4CeHTgnafHzocPBioQuCMCgpr4Fkhx4NlnGJHog+xBG8HZwVRU7CNQ13pMUr5gDxmbq1HtvUiNPZt3arCHorsrOz2bFjR38PQxCEACkvc5PgcqCZTcRN0ut7Jjobg+ZyqT/qqSWaZG1xPNLjTx/ibKKmITj38hcRdEEQBiV1Bbp17oizETFUj1Mc4myisjY4VnNjiS7o4Skt17Ms8RYcJhNRbhcVpd3fVR4IIuiCIAxK7IW6oGvJNqypzVZzVU1wBN3YOBQ9tKWgm0wm6my61V5xpG8XRkXQBUEYlLhLdEG3pEQQZjPjjgknDA17ELbku1yaN848dpi1zfmGKP1YdUHfbi7qMg5dUZRs4Etgp+fQxcDpwJ1AA3C1qqr5iqKMB5Z7+rxPVdUPe2PAgiAMLj7fpVvMp0wIbgFnyjwhhYYFnWiDWgeu0iYgMqCuS6sgwdE2j4tBU7QNymuoLuhbC93fjUX/U1X1BwCKoliAnwDzgBnAfcCPgEeA64Fi4D1ABF0QhE4pLteYd5tGhBXK3wazOXiiHl6lC270cN1/bkm24T5ci1YeuNVcXKEXsQCwpba10M1DrHAEKvpY0P11ucxWFOVTRVEeAcYAu1VVbVJVdSMw2XPNMFVV96uqWg2UK4oShM21giAMZla8C42e/Cq1QY4IiazWXS7xWboFbU3ThTesIgiCXq774wFsqW0tdKNYdM3R0LPQC4EcoB54DrgQqPY5H+Z59P1wqAISgVLfjhRFuQm4CWDp0qWcddZZPRt1H+FwOCgoKOjvYQQFmUtocjzPxeWGZ1anYMjQ3twihiW5gzIWTYPYBs+iaHwtBQUFuOP0PEdhVQ1djrOruezOjWSIS/9gqKIKRytLPCxBv1ddYX3QX9/ONjx1KeiqqjYCjQCKovwbuAbwjeQ04nJ8X4l4oLydvpaj+9khRHeK+hJqO98CQeYSmhzPc3lvs8aRY80yEBWbTkZGcFwutfUaiU37ARg9fThRGZGUj3FwhGNENTi6HGdXc3Ggke6x0IefmEnEsJbpGzPGgp18TDXuPn19u3S5KIoS6/N0LvAOcIKiKFZFUU4FtnnOFSqKMtpzfaKqqqWt+xIEQTB4dk1Lmy6Y1YRKy90kegQ3wrNomTBcf4yubwq4yEVxmZs4T//WlLY+9LRs/Zi5jxN0+eNymaMoysPoLpdv0RdB7cB6z+PVnut+CaxEd8E8EOyBCoIweCip0Hj7Mwi3wIRs+OYAVNcHr//SvCbC0KixWjFbdbs1OkO3ohMcjdTb9RzpPaWyoIkwwB0Tjjm8rV08dJSVQ0BkQxNNDg1reJAjeDrAH5fLe+hRK7685vnxvW4XugUvCILQKXsPg9sNJ58AmSkeQQ9iAefyPN1/Xhfjk6fcsyia6NTzuQQi6PVFuuVtSmxrnUPz9v94ZxMFx2DksJ7fqzvIxiJBEPqcwjL9cViSXkkICFrSLICaI/qCZVOcr6Drvyc6G6kMcLeovcRwt7SfxtrqqVoU73RwqLjvlgtF0AVB6HMKyyDW2URWZBNxHkEPpoXe4Mnj4hrSvFhpibZgt1gI1zQqiwKr7OX2bFqKSm/fQg+zmWmyWrCgkX+w76qIhWzFIkEQBi+lhxtZsX8DkY+7qB8Wy253JtX1mXSS6rtbOIp0wTWltIw+qY+yElHtpDq/EWhfjLvC7W7e9m+kym0PZ2w41jInRd829fhe3UUsdEEQ+hz7vlqi3C5MGkQX1LCkcA/VlcGJQQdwl+oWenirTT+Nsfrzunz/NxfVHqhj1727afIk4yqrhvhOtv0bmBP0c2WH+y6fiwi6IAh9TtNRz7bQ2am4EmyEoeEoCZ7whVXogh7ZKj7c6fGpNxT5f6+8vx4i76+HyX3iW6D1LtGOLW9bcjgANYV9F7oogi4IQp9j8ljQMTnRkKqLrpEdMRhYjUyIw1ta0O4EXYAdx/wX9MZi/drCN4vQNI2iLrb9G0R7/OsNJSLogiAMYmweCzpxdAQWj6CbgpBjBUDTNKLq9L6SslsKbliyfi9Xqf/3airVBdmeb6dSreKVDzQSjOLQnVjoQ4br51zlgW9k8hcRdEEQWuBwOFi1ahXf//73GT16NF988UVQ+29s0oir1wU9ZUwEVk962/CK4FjozhoXVpcLu8nM8FEt4z4snjDD7nx4NJY2W9h7XirkH//xz0KP8+RJj7Q7qAziLtjOkCgXQRBacPvtt/PMM894n69Zs4aTTz45aP0XlUOKp3hzVFYU0cPqaAQiqoNjodcd1fuusNgYltwyaibCyLhY1Q0L3acgRsGbxZiGjyHe5QAzWJM686F7Ug44mzhcDENiO7w0aIiFLghCCwyLfNasWQAUFxcHtf+jpZpX0CMzIojxpLeNqguOhV64Txfrmkgb4ZaWgh49zJNKt9Y/v7ar0Y2z2onJYsIyLIKo2kZm15XofSRbMYV1HGbZvLlIF/S+QARdEIQWfPutHs1x1VVXAcEX9KJvHdg0N3abBUushSHZul87riE4FnpJbttdogYpI/VjEfX+CbrhP7cmWyk5MR2AOwt3Ac05zzvCSNoV72oi/5hftwsYEXRBELxUV1dTXl5OREQEkyfrtWuCLehlB/SQxcZ4T7Isz8LlkEY7Tmfgi4flhzwfDEPaCvqwbAsOk4kIhxNXg6vN+dYYgm5LsbJl4gj2RMYT7tDbdeY/B7B5LPQEZxOlVd2ZQc8RQRcEwUteXh4A2dnZDB06FAi+oFfn6YLu9kScRAzVs2QlOpuorg1c0OuO6oLeelMRwNAkE5VhnnDC4q6/ETR5omGsyVZ2V1n56cgZOH8xlZT5yYy4PqvTtuGJehx6rMtBaXnwNk11hgi6IAheDHfLyJEjSUtLA3RBD2bYXaMnz4rFI+RhNjPV4VbC0Cg7FLjbpalY79/wl/tis5qosenHSw52fa/GY80ul4NHAZOJURemMuP16aQtTO20rdli1tPrAtXFju5NooeIoAuC4MXXQo+KiiImJobGxkaqq6s7b9gNNM8GoqjM5l2c1VG6yFYFQdDxbNFPyGrfJWKP1i30km+79qMbLpfwJCvfFurHRnUjFa55iH4ve3HfbC4SQRcEwYuvhQ60sNKDhcUTbz5kVHNC8vpoXXxrjgQe6RLuCX9MHd2+oLvidZGt8CPHiiHoDZFWHE5IT4SoCP8TiIV7/OhNZSLogiD0MX0h6FHVuminjm220Bvj9N/rCwK30KM90TIZ49oXdHOi58OjoGuRNVwuFWZdmEd3szxopCfSxV0ugi4IQh9juFxaC3pRUVFQ+nc6NYbYdUEfdkKzoDsS9N+bCgOz0BurHER4dolmZre/b9IIN2zwIxmYYaEXuT2C3s3KQzGe3aJh1Y1omkbFl5V8cZFK7pPfdq8jPxFBFwQB0HOgGBZ6dnY2EHwLvajYxRBnE06TyVvjE4Ak3Wp2djPjYuHaIqp31nifH92rt6+22YiMaF/eoj2pBlyl/lvoRxr1iJVRw7qXrz3Gs04QZ2+krgHq9tdRur6MGp8xBxMRdEEQACgvL6empobY2FgSExOB4At6wW7dAq+OjMBkbhZHs1HKrdR/C70ut46t136DetkWNJcehXN0vy7ohk++PeI9GRhNlf5b6Adqe+ZyifDkS09yNlJaBXbPN5CIoZ3HsPcUEXRBEICW7haTSRfbYAt62X5d0BpiWwqaJV1fIDV3I0FX/WE9nt1+1E7p//QipaXf6iLtameXqEFKti7OXW3/1zTNK+i7K3vmcrGlN9cxPVYJBXv1+W0pF0EXBKEXae1ugeALevVhXdAcPrU+ASI9Fqu1qtHvmPcmnzzj+a8UAFDlKQ5tSu5YMIfmeHLHNHR+L2eNC3ejm7DoMPaWhAHdC1kEiBiqzzPRoVvo5Xn6+L6pEEEXBKEXaR3hApCerucvCZag2wt1QdOSWgp6bJKFWrOFMKcbR4V/m3AafYpUFL9TgqPSQYPh0uikNNyw4WHYTWZsbjfOmo4LOBu7RC1JVipqIDoSUof4NTQvvi6XY5Xg8OxOTcgWQRcEoRdpHeECwbfQXZ5dnJa0loIeHw1l4brI2Y/653Zp9Elr6250c3R1ES7PsdiMjgUzJspMldWzW/Tbjv3ohrvFFdPsbjFcUf5iibfgspiJcrsoL3Z6S+Ol50R00bJniKALggC0b6EHfft/WXPaXF/ioqHMootsox85VqDZ5ZJ0mr6Am/fXQ8QU69EjiSM7t4DrI3WRLsrt2I9ufGDYPdd2190C+geA01MsuuZQA7b6JtxA1nix0AVB6EXy8/MBGD58uPdYTEwMUVFRNDQ0UFsbeNmdcE9kSetan3FRUG5Y6IX+Cbrhcsm6dji2dBt1++tIrqoDmv3kHeHwLMp2ljvGsNCrwnu2IGqgeTYyabk1mDWoslgZndU70iuCLggCACUleuEGwyo3CKbbJarWs+1/ZCuXS0yzhW4v8lfQdcGNHB7Jqf+dydCbRlBrtlASHsGoaZGdttU8xaKrjrS10J/8p5Mf/9xGxR79w6HErceg52R2z91iEJ6izzX8oJ5DtyzcRmZKj7rqEhF0QRhAbN68mdLS0qD363a7vf0mJye3OBcsQXfZXUQ1OnBi8oYOGsRFQbnhcvHTQm861lyoOTIjgqLzx/HD8fP42wWziYrrvLqmkWOlrtWHR2Gpm7pfbOWGdV9RsPwQALn1+rVTRvs1rDYYC6NRR/QEZw3RNiyWnn04dIUIuiAMEHbv3s2sWbOYOXMmNTXB3WlYUVGBy+ViyJAhWK0txTZY2/8bPeJZHm4jZUhLQYuP8XG5FHW9KKq5NZpK9WgYqydEceN2DZfJzKzJXctaRJrepqnVztSX/6+QKbXl2E1mGmOt2IZFsK4pCZMJJvdQ0GMz9Xtl1eqvmTuxd/znIIIuCAOGLVu2AJCbm8sdd9wR1L4Nd0tKSltfQLAs9Lp8fSNQabiNxFYFkyOsUOmJPGnww0JvKneguTQs8RbCbLqMbdyhn5s9qWvrN84TBaNVNLtcSoscpL+5H4C/Dh3PHxbNI/GN0/g2PIaxwyE6smdWtRGiaNP0IhfWtN6JcIFuCLqiKJcrinLM8/vFiqJsUhTlQ0VRMj3HxiuK8onn+PzeGrAgHK8cOHDA+/uKFSt44403gta3IeipqW2LNgRL0Ms8BSWqIyPauBxMJhOOeP996Ia7pcZq5c1PNRxOjS926+dOndj1WBKz9G8hlurme6398UESHY0UDInj/YRhfLUPPvf0edKYrvvsiKRWETcxmf0s6IqihAEXA0cURbEAPwFOB+4H7vNc9ghwPbAA+FXQRyoIxzmGoM+aNQsgqFZ6Z4IerM1Fld+2v+3fwO0J73Mca/TmZumIRk/I4oE6K5c/pPHWRqi3w5hMSB3StSWdMV4X1ahaz0YnTSPuf3qUT/aD4xmd4aKxCVa+p49jak7Pfd5Rw1oKeGuBDyb+WuiXA6sANzAG2K2qapOqqhuByZ5rhqmqul9V1WqgXFGU5A76EgShBxiC/tvf/paIiAjy8/ODEkoIcOyYXpa+Mws9UB96jWdbvjOhfQs1cYiZijAruFtuGmoPI2Sx0mLD3gTX/U4XXn+sc4CRJ9pwYSK+qYmmehflRx1EuZw0mMOY/8N4po3R7//5Lv36QCx0W1pLAR/WQZ72YNCloHus80uA1zyHhgC+9ajC2umrCkgMxgAFQdAxBH3MmDFkZmYCcOTIkaD03ZkP3SgW3R1Bd1Q6qPiyssUx7w7Q5PYFfUS6byx65wujTR7Br7R4wg89n2v++M8BIiLNVHlqi+bttPPttuYskGazmWk5LdMPTA1A0C0xFuzhzVE3oyb2nsul89gencXA66qquhVFAagE4nzOuzyPvmWt44Hy1h0pinITcBPA0qVLOeuss3ow5L7D4XBQUFDQ38MICjKX0MTfuVRVVVFaWkpERARut5vU1FQOHDjA1q1biYuL67J9Vxi7RK1Wa5vxGNvd8/PzOx2r71wO35dPxZpKsp/IIv4MfXyNhXVEAc54rd1+kqJjKbfYGE0NR3cepS61428fpQf17IoVFisRVg17kz7GnNQSCgo6zs/iS120lcRGO9s/K6Ghwk0i0BAbTkFBAZNGgi5jkDbEhaO+hIJ6v7ptl/qocCKqnDSZzDjCSigo6LkLJyOj4xy+/gj6BOAkRVEWo7tbfgycoCiKFVCAbZ7rChVFGQ2UAImqqrYJllVVdTmw3PM0eGXEe4mCgoJO/3gDCZlLaOLvXAzr2LDOc3Jy2LRpEw0NDUH5W9TX62o1duzYNv0ZudGPHTvGsGHDOsxn4juXvEOHAah+vYYJi08AILxSjyBJHJVARkZUm/Yn5mjs98SiRztiOp1XaYNuL1ZYrCy90MSaDWANh3kzUjGb/RNLd9IxKK+mqcSGo1L/EAhLiyIjIwOnq4DoSKhrgOnjwgL+G7sSjkJVAzWRNoYPzwyor87oUtBVVb3b+F1RFFVV1VsURbkUWA/Ygas9p38JrER3wTwQ9JEKwnGM4W7JyckBmrfn94XLJTIykvj4eKqqqqioqPAKfGcY+VjKN1ZQvauGmDHRWGoacdMcl92a7HT43ONyaewiFr3Z5WJj5FAT21dCmBm/xRwgPN0G+6HqkB1HtZM0IMKzgGkJgxnjYf3WwPznBlqiDQ5BY3zv+c/BPwvdi6qqiufxNZp96sa5XcDc4A1NEASDvhL09hZFQfejV1VVUVhY2KWga27NG4UCcOj5w+TcOQqTBuUWK8lJ7S/djUj3f/u/sWhaGWYlJQFs1u67MKKH6+kBGo/acdfqFnp8drN/+9qFJnYc1PjB6YHv6owcZoOtEJ7ae/5zkI1FgjAg6G1B7yzKBZpDFwsLC7vsq6m0Cc2lYfaI7NHXC6nZpfvDS8MjSI5vv92ItOZF0cYuBN3Y4VlhsXbYX1ckjfJsLiq1Y/GktU0b2yy4Vy0wcewtM1PHBC7opyyIAUD5bkzAfXVGtyx0QRD6h/37df9zbwi60+mkrKwMs9ncofVtRLr4I+iGuyVqVDS2VCtln5Tz1VVbASizRHBqQvvt4mNMNHlKx9UWdCzomqbRWNoc5ZLSQX9dMWx8BIcBW6Udm0O30LMmdZ7Uq6eMuHQYCeNjiJsY2/XFASAWuiAMADqz0APNU24k5UpKSiIsLKzda7oTumj3CHpEuo0Jj4wnZnwMmkMfY4EtqlOLOjqj47BFe1EjX/xAZeP8zWgOjfowCw5zWI8t9KwTdWs8rqGRxCZ9zKljesfHbQozkTAtHrO1dyVXLHRBCHFqamooLi7GZrN548/j4+OJiYmhtraWyspKhgzpZm00H7ryn0P3XC6GhW5LsxF7QixzN5xKze5arryyko9sqfy5EwFOHm7FhYmwSgeuRrc3TwvArnt2U/pxmff5tzbdfZHUQ0GPzYjAZTIxxKVb+/XhFsJjwnvWWYggFroghDi5ubkAjBo1CrNZ/5c1mUxeK/3w4cMB9d+V/xy66XIpahZ0Y6y2nBjWRmdgt4UTF91x26xhJio8m4V8MyEWryuh6K1iwqLDOPkNhRNencEDWSeREAPhPUxFawozURvZbJE3xPXugmVfIIIuCCHOwYMHARg9umX+1mD50TsLWTTolsvFEHSfQs2lem0HkuM7r8uZnW5qri3qcbs4a53s/LmeJWvsvTkkn55E49ghNIRZeuw/N3AkNI/RnSiCLghCL2PsqvQtDef7PFiCHmyXS0Q7gt6VAI9I0xdOAexH9X7y/1mAvcBO3JQ4sm8c0aK/nvrPDUwpzSJuHSqCLghCL3P06FEAhg1rWdQyWIIedJdLcUuXC/gvwCPSoSRcF9b6w3r+9Np9eim4jEuGYgrTrftjlfr1gVroET6ZEGOzRNAFQQA++OADfvvb3+J2u7u+uJt0JOhZWVlA31joRiWj6upqb5qAjmhX0Cv1x+SEzscyIh2KrXroYMMRXdAbPIUxIoc3hxQGy0JP8NlIlJwjgi4IAnD77bdz77338t577wW979620P3xoZtMJq/bpTM/uqZpXkH/3u/DOVqqhyse1m/RpQAnx0NVtC6s1d96BN1jqUdlRWJv1HC7taBZ6L4biTIniKALwnGPpmnk5eUBsGrVqqD331eC3pmFDv65XRwVDtxNGo3hFj7aGcafV+mC/q/1+uPcyZ1HpJhMJizpurDWHmpA0zQa8vXF0UNaBAnnaNzzV41jlXp/yfGB7eLMOKFZxIeM6p1NRX2JCLogBEhFRYXXDfHmm2/S2Ohf1Xp/6UrQ8/Pz/Xb1aJrG73//ezZu3Og95o8PHfwTdMM6r/BEqqx4F7bl6uXh4qLhAj+yPcVk68LqOGrHUe7AVefCEmvhzS0WGpvgubeg0BOOHqiFHu1TDi5imFjognDc42shV1VV8cEHHwSt7/r6eiorKwkPDycpKanFuaioKBITE2lqavKKclds3ryZu+++m4ULF/Ltt9+Sn59Pfr5eeq0rQffH5WKELJaY9Fjysir44a90a/ri0yHS1rVFnZZpod4chsnuomqbXksnMiuC/32jn6+shfc+13/vyiffFbY0G0lzEkk/L63FJqaBiuwUFYQAae3yeP311znnnHOC0rdhDXeUh3z48OGUl5dz5MgRb6k4f8ZaU1PD4sWLcblc2O12FixYQEJCQqdtu2OhG1kTAXbqtTO48rv+uUey0s2UhEeS3VhL+aYKAGwZkWza0XxNtR74QkqgYYtmE6esmRFYJyHEwP9IEoR+xrBw58yZA8CaNWuC5nbxFfT26G4pOl/retOmTXz++edkZWXxwgsvdNm2Wy4Xi41xWRDjcUuPSIe5kzts1oLhqVDsCV0s36QXsqiOiaShsbk/g0At9MGGCLogBIghpvPnz2fy5MlUVVXx8ccfB6XvjvznBr5+dH8wBH3+/Pn6lnybjTfeeKPTCBeDzjYXHV1dyLF/lnHsIz3RV5nFxoQRcNV39fNXL/C/+ERWGpR4Qhcrv9LjE7916QK/+GzI9BlqoD70wYYIuiAEiCHow4cP58wzzwTg66+/Dkrf/gp6dy30Sy+9lI0bN/Lll1/iqRXcJUbcuxHR48uBx3I5+mgh5Rt0F0mJNYKsNPj9LSZe/D8T9y72PxolK615c5GRpfHrKv356VNN3oVVa3hbi/14R3zoghAghnU8fPhwb7TJrl27gtJ3bwl6eno6s2bN6tZYRo0aBegFpd1utzdRmNutUTI5nXxbHWfNsvGfXCtfFKRwUZqJ6EgTi8/u1m3ISIaS8JZK/UlxJJhh3lRISTDx9L810oZ0nhfmeEQEXRACxNdCj4rSix/v3r07KH13JeiGD727LhfDfdIdYmNjSU1NpaSkhKNHj5KZmUl1dTVxcXHcUzWKXBd8caWJT17UcBbqlnZPsFlNuJIjwGdKh90RjMuG9CQTqUM07r0SJo4UMW+NuFwEIQA0TfOKaWZmJiecoFe43717d1DSAPSmhd4TDCs9NzcXTdMYNWoU6enpnDpB3/zz0RY4XKxfm9V5FGSn2DKbLXSXNYzqsHDmTdGfm80mfnOjmcu/I4LeGhF0QQiA0tJS7HY78fHxxMbGkpSURFpaGnV1dUEpD+evhV5QUIDL5eq0L7fb7feu0I4wUvjm5uZSVFREWVkZdrudhbN0H/dHWzTvNv+eWugAScPDsZt0eaqOiQCTiVkTRcC7QgRdEALA139u4GulB0pXgh4REUFKSgpOp9Mr1h1RVlaGy+UiMTERm61npdYMQT948CDbt28HYPLkyZw5TRfbT77RNxNZwyG150WUyEo3ccyzMFpg0q11ZVzP+zteEEEXhADw9Z8bTJgwAQh8YbSmpoaamhoiIyOJj+94B42/seiGu8WfDUgd4etyMQR90qRJpCWaGJfpwK5Xc2N4qv9hiu2RlWryhi7muSOIioDxWT3u7rhBBF0QAsAQUUNUIXgWele7RA389aMH6j+Hli6Xbdu2AbqgA8ye2NQ8pgD856C7a4o8kS7F1khOGgOWHpaaO56QKBdBCIDetNC7crcY9IegHzx4EKfTCeguF4DZJzayYp1eMDSQBVHQPxDWJGXhMpn4KGEoV4u7xS9E0AUhANrzofsKuqZpPY6V7q6gdxW6GAxBT09PJzIykrKyMqqq9F2cEydOBGDmCU2YzeB2B7YgCnr7Als0fx06HgBlvFjn/iAuF0EIgPZcLmlpaSQkJFBZWUlxcbHffb399ttcf/315OXloWka77//PtCcQ6UjuutDD0TQTSaT14/udDoZMWIEcXFxAMRHa0wbq1+XlRaYAKckgM3a/FwWRP1DBF0QAqA9l4vJZOqR2+Whhx5ixYoVTJ48mUWLFrFy5UosFgsXXnhhp+06c7ls3bqVMWPG8Le//S0ogg7NbhdodrcY/OIKE7MnwXmnBnQLzGaTN2dLbBSMHd759YKOCLog9BCXy9WuywWa3S7dWRjNzc0F9OiWdevWERUVxVtvvcXcuZ1XhejI5eJwOLj22ms5cOAA999/v1fwAxV0w0KH5gVRgwvnmdiwzEx6UuAuEsMPP31cYBEzxxMi6ILQQ44ePYrD4SAtLc275d9g/Hjd97tnzx6/+qqsrKSiooKoqCief/55Fi5cyEcffcSCBQu6bJuRkeEdj+/moscff5xvvtGrQhQWFrJhwwYguBZ6a0EPJoYfXtwt/tPloqiiKGnAasABuIArgNHA7wE3cIuqqtsVRUkHXgCigWdUVX2p10YtCCGAkXUwOzu7zbkxY8YAsH//fr/6+vZbvQrEqFGjuO6667juuuv8HofVaiUtLY3i4mIKCwvJzMzk4MGDPPjggwB873vfY+3atWianrkwkDh0Y4wGrV0uweSKs0x8uUfj6gVinfuLPxZ6KTBHVdV56IJ9PfAb4Bzgh8DvPNfdjS7y84BbFUUZ+AX6BKETginoBw8eBFqKZXdondr2ueeeo6Ghgcsuu4y///3vRETo/45ms5nk5OQe3cPAsNCtVqt3nr3BWTNM7HzBzMRRIuj+0qWgq6rqUlXVyDIUC+QCLlVVK1RVPQwkes6dDHykqqoTUIGJvTFgQegOBw4cICMjg8cffzzofRtW9ciRI9ucGzVqFGazmby8PJqamtqcb02ggj5unO6XMFw8O3fuBOCiiy4iMTGRyy67DNBzuISFhfXoHgZjxozhhhtu4IEHHiA8PDygvoTg4pcPXVGUqYqifA4sBTYB1T6nnYqiWIFwH+GvolnoBaHfePfddzl69Cg///nP2bFjR9cNukFnFrrNZiMrKwu32+0V/s4IVNBbR9UYwm748pcsWYLJZPLuYg0Es9nMc889x7333htwX0Jw8WtjkaqqXwOnKIpyCfBLIM63D1VVmxRFcSiKYvaIejxQ3rofRVFuAm4CWLp0KWeddVag4+9VHA4HBQUF/T2MoHC8zmXr1q2AHjN99dVX8+abb3oLMwTK3r17AYiJiWl3PFlZWeTl5bF582ZiYmLa7cOYixENEx8f36PXycieuHXrVg4ePMjBgwcxm81ERUVRUFDAsGHDWLt2Lenp6b32Pjhe32N9jbEI3h7+LIpaVVU1vjNWAbWARVGUBHQXjCHcXwKnK4ryCTAd+HnrvlRVXQ4s9zzV/Bx/v1FQUNDpH28gcbzOxciHYjKZ2LJlC2+99RZLliwJyjiMvhVFaXc8EydO5JNPPqG8vLzD8RpzMcRjxowZPXqdjNDGgwcPYrfbcblc5OTktLD4e/v1P17fY6GEP6bKVEVRPlEU5WPgDuAx4P+Ad4FXgV94rvud5/dPgGdVVW0I/nAFoXsYi5IPPfQQAE899VRQ+nU6nRw+fBiAESNGtHuNvwujLperU/eNP4waNQqr1crhw4f58ssvgWZ3i3D80KWFrqrqF8BprQ4XAqe2uq4QCG0finBc0dTURF5eHmazmdtvv50HH3yQffv2YbfbvVEfPcUoKDF06NAO+/JX0PPz83E6nQwbNozIyJ5VPbZYLIwdO5YdO3bw5ptvAiLoxyOysUgYtBjFjLOysoiLiyMnJwe3282+ffsC7tsfi3rsWD2xSUeC7nK5aGxsDHhB1MBYGF23bh0ggn48IoIuDFoMITUs5RNPPBFoDukLhM5CFg2ys7MJCwvj8OHD2O32Fufy8/OZMGECc+bM4aOPPgICF3QjgsW4lwj68YcIujBoaS3ohgUbDEH3x0IPDw9n5MiRaJrmtcIBSkpK+M53vsO+ffsoLCzk4YcfBoJnoRuIoB9/iKALg5betND9XcRs7Ud3uVwsWrSIvXv3MmnSpBbtg2WhAyQnJ5OUlBRQf8LAQwRdGLQYvvL+crn43tsYy65du/jqq69ITU3l/fffZ8WKFcTGxgLNuz17ytixY70x9sHYQCQMPETQhX5n9+7dPPHEEy0yBQaD1hb6uHHjCAsLIzc3t41Pu7v01EI3XC/Tp08nLS2NsWPHsn79ep599llmzJgR0JhsNps3z4q4W45PpASd0K+UlZUxf/58CgsLGTVqFOedd15Q+rXb7Rw5coSwsDCvFW2z2cjJyWHv3r3s3buXKVOmdKvP2tpa3nnnHb744gvy8/MxmUxt8qC3xoh0MXaVthfRMm3aNKZNm9atsXTEhAkT2L9/f8DWvjAwEUEX+g1N07jxxhu9Oy63bdsWNEHPzc1F0zRGjhzZIoHUhAkT2Lt3Lzt37vRb0Kuqqli6dClvvPEGDQ3N++WmTp2KzWbrtK1hKRuCbhSxCNRf3hF33nknDoeDxYsX90r/Qmgjgi70G88//zyrV6/2Pu9OubauaO1uMTjxxBNZvXp1t/zo//73v3npJT29/+zZs1mwYAFTpkxh3rx5XbbNzMwkMjKS4uJiKisrvRa6b5GIYDJv3jy/xiUMTsSHLvQLmqZx//33A3hzq3SnXFtXGBZxe4IO3VsYNcZ1//33s2HDBv7v//6P8847z1scuTPMZnMLt0uwNhEJQnuIoAv9ws6dOyksLGTo0KHeOOw9e/bgdru7aOkfX3/9NUAbt4oh6N35NmBEqLSO8/YXw+2ye/duv6NjBKEniKAL/cKHH34IwJlnnsmQIUMYOnQoDQ0NHDp0KCj9G2lzp06d2uL42LFjvZEu9fX1fvVlWPs9XWg02n300Uc0NTWRlpbWYTpdQQgEEXShXzAEff78+UBz3HQw/Oh1dXXs27cPi8XitcgNbDYb48ePx+12++V2cTqd3oXMnpZbMwTdyLEi7hahtxBBF/ocp9PJ//73P6BZ0A13RjD86Nu3b0fTNCZMmNBuFIrhhvnmm2+67CsvLw+Hw0FmZibR0dE9Go8h6MeOHQNE0IXeQwRd6HNUVaW6upqcnBxvceNgWuiGu+Wkk05q93x3BN3wnwcS1926bW9FuAiCCLrQ57R2t0BwLXRjQbS1/9ygO4IeqP8c9BJ1vtVvxEIXegsRdKFTHA5H0PtsT9B9LXRNC6w6YUcLogaGoG/btq3DezU2NgLNgm6EHvYU3w8EEXShtxBBFzpk3759pKWlsXTp0qD1WVpaysaNGzGZTJxxxhne46mpqSQmJlJdXc3Ro0d73L/T6WT79u1Ax4Kenp5OamoqVVVV7UbVrFq1isjISJYtWxYUlwu0zK0iLhehtxBBFzrkkUceoaKigjVr1gStz5UrV9LU1MTChQtJTk72HjeZTF4rPRC3y969e7Hb7WRnZ5OQkNDhdZMnTwbaul00TePBBx9E0zTuuusur7UfqKAb7SMiIkhPTw+oL0HoCBF0oV0OHz7Myy+/DOjVdSorK7vV/siRI5x99tn84Ac/4Fe/+pW3HNzy5csBuPnmm9u06UkBij179rB+/Xrvc8N/3tGCqEFHfvQPPvjAuzDb0NBAZWUlNpvNu3jbUwxBHzlypDfFrSAEG3lnCe3yhz/8AafT6X3e3Rzir732Gu+//z5vvPEGDzzwAKeccgp//etf2b9/P5mZmSxcuLBNG8NF8tVXX/l9n4suuogzzjiDtWvXAnjLuXXkbjHoSND//Oc/A3Dbbbd5LfycnBzCwsL8HlN7zJs3j4suuoh77rknoH4EoVM0Teuvn5AnPz+/v4cQNLozl+LiYi0iIkIDtBkzZmiA9uyzz3brfkuWLNEA7fLLL9fmzZunAd6fhx56qN02X375pQZo48aN82suTqdTs1gsGqAlJydry5Yt0wAtLCxM27JlS6d9fPPNNxqgjR492nts7969GqBFRERox44d055//nkN0K699tpuzb07HK/vsVAnxOfSoa6KhS604amnnsJut3PeeedxySWXALBjx45u9WHkLLn00kt55513OOWUUwAICwvj+uuvb7fN5MmTsdls7N271y8XT0lJifdbRGlpKbfeeisAjz32WJcul/HjxxMeHk5ubi41NTUAPPvsswBceeWVJCcnc9111/Hll1/y+OOPdz1hQQgBRNCFFtTW1rJs2TIA7r77biZOnAj0XNBHjhxJdHQ077zzDueccw73339/i5hsX6xWq1eIVVXt8h4FBQUAjBgxwls/89JLL+WOO+7osq3VavUujBr3MnzxV1xxhfc6RVGIj4/vsj9BCAVE0IUWrFixgoqKCmbNmsXs2bO9gm5sp/cHTdPalGhLSkri7bff9qbM7YiTTz4ZgC+++KLL++Tn5wMwadIk3n//fX7zm9/w/PPPYzKZ/BrnzJkzAfj8889paGhg27ZtmM1mFEXxq70ghBoi6IIXp9PpdS/cddddAGRkZBAfH09ZWRnFxcV+9VNUVITdbicxMdGvnOG+9ETQMzMzOemkk7j33nu7lW/FEPTNmzezdetWXC4XEydO7HHOFkHob0TQBS+rV68mLy+PMWPG8L3vfQ/Q48O763YJJOe3Ieiff/55l98IfAW9J/gK+ueff97i/oIwEBFBF7x8/PHHAFx//fUtwvS6K+iGu6Ungp6Tk0NCQgJFRUVewe6IQAV99OjRJCUlUVxczKpVqwARdGFgI4IueDF2aLau8tOXFrrJZPLb7RKooJtMJq+V/tlnnwEi6MLARgRd8GLskDS24Bv0paAD3hDH3hZ0aHa7AERFRbUpiCEIAwkRdAGAsrIySkpKiI6OZvjw4S3OGYK+bds27HZ7l30FKuhG6GJn6W01TfMKekdhkP7gK+jTp0/HYrH0uC9B6G+6fPcqinIy8ATgAAqAq4ALgDuBBuBqVVXzFUUZDyz39Hmfqqof9tagheBjuFtOOOGENrlGkpOTmTZtGlu2bOHDDz/knHPO6bSvQAW9o235dXV1rFy5EovFwkUXXURjYyMJCQkB1eecMWMGJpMJTdPE3SIMePyx0I8AZ6qqehqQB5wP/AQ4HbgfuM9z3SPA9cAC4FfBHqjQu3TkbjEwol6MnCkd4XQ6OXz4MKBv+OkJ2dnZxMbGUlRURElJCQD/+Mc/yMnJYenSpdxyyy3eqJRA3C0A8fHx3qRgM2bMCKgvQehvuhR0VVULVVVt8DxtAsYBu1VVbVJVdSMw2XNumKqq+1VVrQbKFUVJbq8/ITCeeOIJzj//fM4//3x+8pOftEigFQiGhW6IW2sMQX/rrbdwu90d9pOfn4/L5WLYsGFERET0aCxms7lFettt27ZxzTXXUFRUhM1mQ9M0/vCHPwCBCzroaYKvueYa7xwFYaDit8NQUZQRwNnAPUCKzykjvs33w6EKSARKW/VxE3ATwNKlSznrrLN6MOS+w+FweLeXhwKlpaVttrVPmDCh3cyFrelqLkbe79TU1HavS0lJYejQoRQWFvLee++1yGbodDrZtGkTGzdu9LbNyMgI6G+Xk5PDxo0b+eSTT7zx6Oeffz4LFy7k5ptv9m7THzJkSMCv0fTp05k+fTrl5eUB9dMTQu09Fggyl76hszUjvwRdUZQ44EXgGnQB993+5/I8+ppt8UCb/w5VVZej+9lBz7wX0hQUFAS04BZsPv30U0APrZsxYwbLli1j7dq13HDDDV229Z3L7t27qa2tbeFiOHjwIABz587tcM7f//73+ctf/sLmzZu9fvR///vfLFmypM0u0ilTpgT0tzv11FP5xz/+QV5eHseOHQP0PC3f//73+fnPf051dTWgl4YLpdeou4TaeywQZC79T5cuF0VRLMCrwEOqqu4F9gMnKIpiVRTlVGCb59JCRVFGK4oSCySqqlraQZdCDzFqcV544YXcf//9WCwW3n33XYqKivzuo76+nrlz53Lqqaeyf/9+AGpqajhy5AhWq7XThczzzz8faOlH/81vfkNxcTE5OTncc889PPbYYzzxxBM8/PDDPZmiF8Pl8uWXX/LJJ58AcMYZZxAREdHiG0kwXC6CMFjwx0K/HDgFuE9RlPuAZ4A/A+sBO3C157pfAivRLfgHgjxOgZbFlVNTU1m0aBFr167lpZde4mc/+5lffbz66quUlZUBeprZ5cuXs2fPHkCvqtNZ2N68efOIjY1l27Zt5OXlkZCQwNatW7FarXzzzTdERUUFOMNmJk2ahMlk8hZpPvHEE72l2y688EJee+01QARdEFrQWbL0Xv4JeUIpyf3Bgwc1QEtISNCcTqemaZq2evVqDdAmTJigud3uTtsbc1EUxVtowmq1agUFBdrKlSs1QLvkkku6HMdFF12kAdrTTz+trV27VgO0uXPnBj7BdhgzZox3rLfddpv3+KFDh7Thw4drgLZ///5euXdfEUrvsUCRufQZUuBioGNY52eccYY3z8o555xDSkoKu3bt8it/uKqqqKrKkCFDOO+882hqauKRRx7x9t1RhIsv5513HqBHuxgLk/PmzevJlLrENwXB/Pnzvb+HhYXxzjvvsHr1anJycnrl3oIwEBFBHyD4ulsMwsPDufjiiwFYt25dl30YFXmuueYaHnroIQCWLVvGiy++CHRdhxNg0aJFmEwmPv74Y959910ATj/9dL/n0R0MQTebzW0+NCZNmsQFF1zQK/cVhIGKCHoIcejQIZYuXUphYWGL406n01v82FfQAc4880ygudpORxw8eJCXXnoJgB/96EecdNJJXHTRRYCeO+XZZ5/l3HPP7XKMKSkpzJw5k6amJvbs2UN4eDizZs3ya37dxSg0MXPmTKkaJAj+0Jk/ppd/Qp6+9qMtXbpUA7TrrrvOe8zlcmmLFy/WAG3kyJFtfOUlJSXewsZ2u73dft1utzZ79mwN0K666irv8cbGRq2kpKTb43zkkUe8vu05c+Z0u72/uN1u7ZlnntF27drV4niI+ze7hcwlNAnxuYgPfSBgbO55/fXXqaurQ9M0br31Vl566SWio6P55z//2aa8WkpKChMnTsRut3eYnfCFF15g48aNJCUl8cc//tF73Gq1kpKS0m6bzvC15HvL3QJ6etubb765w3QEgiC0RFLLBYnDhw/z29/+loaGBiwWC7feemuXled9cbvdbNumh/TX1tbyxhtvALrf22az8dZbb7XIDOjL6aefzo4dO1i/fj1z585tce7rr7/mJz/5CQB/+tOfSE4OPCPDxIkTyc7OJi8vjzPOOCPg/gRBCBKdme+9/BPydOdr1y233OJ1QwDalClTugwl9MUISzR+ZsyYoaWkpGiAtmLFik7b/utf/9IA7cwzz2xx/D//+Y8WExOjAdp3vvOdbo2nKzZu3Kj9+c9/Dmqf/hLiX4e7hcwlNAnxuXSoqyLondCdF9WImX744Ye19PR0DdDeffddv9sbMeUzZ87UIiMjvcI+d+7cLkWzPT/6jh07NIvFogHaD3/4Qy03N9fvsYQ6If7P1i1kLqFJiM9FfOi9yeHDh9m/fz9xcXHcfffdXhfHI4884ncfRu7vuXPneqNPLBYLzzzzTBu/eWva86OvWrUKp9PJJZdcwosvvojNZuvJ1ARBGECIoAcBI0Z83rx5WCwWbr75ZhISEtiwYQMbNmzwqw9D0KdMmcKdd95JbGwsv/rVr/wuiWb4st955x0A/vvf/wKwePHiNgUrBEEYnMh/ehBoveknNjaWH//4x4CeL8UfDEGfPHky06ZNo6qqil/84hd+j8Gw6l999VXKy8v5/PPPsVgsvRqFIghCaCGCHiCaprW7i/Pmm28G4KOPPsLlcrXb1qC6upqDBw9itVoZP348QJdultbMnTuX4cOHc+jQIX7961/jdruZPXs2sbGx3epHEISBiwh6gOzevZuioiLS0tJauEeGDRtGdnY2tbW17Ny5s9M+tm/fDui5VMLDw3s0DrPZzOWXXw7Ak08+CcDZZ5/do74EQRiYHBeCXlhYyMaNG9m4cSNHjhwJat+GdX7mmWe2saqNLfGbN2/utI81a9YALZNR9YQrrrgCwFsi7rvf/W5A/QmCMLAY9IJeUVHBiSeeyJw5c5gzZw7jx4/n0KFDQevfyKHSOscK4N0I1JGgu91u7rzzTq+f/cILLwxoLJMnT2bixIkAJCUldWtjkyAIA59BL+h///vfqaioID09naysLOrr61tsfw8ETdO8ZeFOO+20NucNQf/ss8/anLPb7Vx66aX8+c9/Jjw8nJdeeikoRYoXL14MwIIFCyS6RRCONzoLUu/ln17H5XJpo0aN0gBtzZo12rZt27wbcIqLi7ts77u54JVXXtHefPPNFuf37NmjAVpaWlq7m38aGxs1m82mAVp5ebn3eGlpqTdZVlxcnPbhhx8GMMu293zqqae0o0ePdjiXgY7MJTSRufQZx+fGovfee4+DBw+SnZ3NOeecw6RJkzj33HOx2+088cQTfveTm5vL5ZdfzgUXXMCKFSu8x40Y8zlz5rQblWK1Wpk+fTpAi8RZV111FRs3biQzM5ONGzd6U+AGA6vVytKlSxk6dGjQ+hQEYWAwqAX96aefBmDJkiXeKj/33nsvoBd2qKqq8qsfo34lwA033OB9brhbWifE8qW126Wpqcm7kLphwwavz1sQBCFQBoWg2+32NscOHDjAunXriIiI4LrrrvMenzVrFnPnzqWqqop//etffvVvCPjChQvRNI0rr7ySvXv3dkvQjYXRbdu20djYyLhx4xgxYoR/ExQEQfCDAS/oTz/9NJGRkVxwwQUt4r2XL18OwGWXXUZSUlKLNldeeSWAN0VtZ+zatYtt27aRkJDAm2++ydVXX43D4eDGG2/k4MGDxMTEMHny5A7bG6GLmzZtwuFweF0vJ598cvcmKgiC0AUDWtDdbrc3YmXNmjVMmjSJv/71rzQ2Nnp93caOTV/OP/98zGYzH3zwAZWVlZ3ew7DOL7zwQqxWK4888ghRUVFe6/zUU0/FYuk4rXxmZiYTJkygpqaGTz/9VARdEIReY0AL+oYNG8jLyyMzM5MlS5agaRq33347v/71rykrK2Pq1KntCmdqaipz587F4XB4k1m1h6ZpvPrqq4Bu6YO+A/SnP/2p95rO3C0G5513HgBvv/22CLogCL3GgBb0F154AdCjRpYtW8b1119PY2Mjv/nNbwDdOu8oJ4qRzKozt8t//vMf9u3bx9ChQ1tU5rnrrrtITU0FaFONvj2Mkm2rVq1iz549WK3WgHeFCoIgtKGzmMZe/gmI+vp6LTY2VgO03bt3a5qmaVVVVVp2drYGaDExMVp1dXWH7fPz8zVAi4yM1Gpra9ucd7lc2rhx4zRAe+qpp9qc37Jli/bcc8/5VbHH4XBoiYmJ3qIVJ598cjdmGhxCPK62W8hcQhOZS58x+OLQX3vtNWpqajj55JO9GQrj4uJ44YUXiImJ4Y477ug002BGRgYzZ86koaHB63YpKSnh0ksv5Xe/+x0rV65k7969ZGVlceONN7Zpf9JJJ3HDDTf4lRXRYrGwaNEi73NxtwiC0BsMyCLRGzZs4NZbbwXg+uuvb3Fu7ty5VFZWeuPOO+Oyyy5j8+bN/OMf/+CSSy7hj3/8I6+//jqvv/6695r7778/KNV+zj33XF566SVABF0QhN5hwFnoW7Zs4ZxzzqG+vp5rrrmGG264oc01/og5wA9/+EMsFgvr1q3j0KFDrFy5EsBr8Y8aNYqrrroqKOP+7ne/642GEUEXBKE3GFAWulEjs7q6mosvvpi//e1vASWgSklJ4bzzzmP16tVcccUVlJSUMGHCBLZv386mTZuIiorqcX7y1iQkJPD0009TVFTE2LFjg9KnIAiCLwNK0C0WC6+//jqPP/44zz//vN+WeGdce+21rF69mo0bNwJw4403YjabmTNnDgUFBQH378uPfvSjoPYnCILgS5eCrihKPPA+MAGYqarqDkVRLgbuBBqAq1VVzVcUZTyw3NPnfaqqftgbA542bRovvvhi0PpbuHAhaWlpFBcXY7VavbtIBUEQBhr++CvqgXOAfwEoimIBfgKcDtwP3Oe57hHgemAB8KtgD7S3sFgsXj/5hRde2CZNgCAIwkChSwtdVVUHcExRFOPQGGC3qqpNwEZFUf7gOT5MVdX9AIqilCuKkqyqamlvDDrY3HfffSQmJrZI4iUIgjDQ6IkPfQhQ7fPccGT7WvtVQCLQQtAVRbkJuAlg6dKlnHXWWT24fe9w5ZVX4nA4WvjNWz8fyMhcQhOZS2gSynPJyMjo8FxPBL0SiPN57vI8un2OxQPlrRuqqroc3c8O+q7JkKagoKDTP95AQuYSmshcQpOBOpeeCPp+4ARFUayAAmzzHC9UFGU0UAIkDhR3iyAIwmDBL0FXFOVdYCowDvgr8GdgPWAHrvZc9ktgJboL5oGgjlIQBEHoEr8EXVXVRe0cfq3VNbuArnPJCoIgCL3CgNv6LwiCILSPCLogCMIgQQRdEARhkGDStJCPHhQEQRD8QCx0QRCEQYIIuiAIwiBBBF0QBGGQIIIuCIIwSBBBFwRBGCSIoAuCIAwSRNAFQRAGCSLogKIo0Z5HU3+PJVAURYnyPA6GuYzwPA6GuZwyGOYBoChKVn+PIVgoijKkv8cQTI7rjUWKopwN3AgcBX6nqurRfh5Sj1EU5QJgMXAEeGyAzyUK+D0wHPiBp2rWgERRlCnAE8Bm4H5Ppa8BiaIoC4ClQCPwCrBOVdXa/h1Vz1AUZR7wU/QiPMuAnaqq2vt3VIFzvFvoPwT+BuwAblYUZUBmi1QU5VzgWuB36AVI7vYcH5AWoaqq9UATEIs+rwE7F/QMpI+oqnoPMKq/B9NTFEUJA25GL1DzEHothOgB/LpcCvwd/YNpEXBR/w4nOPSkwMWAxWP5XQpsAIqBw8AXwMee49MVRckdCNatZy6XA+8BW4AbVFU9pijKPuBVRVFSVVUt6ddB+onP6/KJqqq5HpE4APwbuE1RlHWqqh7u10H6ie97zFNjtx5YoCjKPehFYL4E3lJVNbc/x+kPnrlcBvwPqAW2o3+bPYReHyESCEf/8A1pFEWJRC9qv05V1f8B3wKF6P//duAcRVHGq6q6px+HGTDHjYWuKMrl6EU5ooCDqqpWA+nALM/X4K1ABHr5vJDGZy4RQImqqkc9Ym5Gt2q/HUBibswlEv0DFlVVNWAC+mvxb+BHiqIM768x+kurueR5DkcBQ4GfAUvQ3RXn9MPwukXruaiqWgx8iO7W24ruqrgRuLW/xugvnvfOK+hG3GeewyZgJHopzF3o772cfhlgEDkuBF1RlDjgEuDX6G/K7yiKkgw8A9ygKEq0qqo7gBFAdr8N1A/amcvpiqKMB1BV1Y0uIE7PtVmh/JW41Vw+AuYpinKi5/T/0L951KGLyG2eNiH5nm1nLmcoijIMeAPdih2uqmoVutAbr09IvjbtvMfmK4oyRlXV9cAHwDJVVRcDbwNWRVHMoToXDxZgLfo38R8rinIq8B/gVOBEVVXL0I2jSAjd18UfBu2iqGcl/mfAO8BG4DTgTsAKvAVcBcwDbkJ/wT9F99e+oarq2/0x5o7oYi5r0edyvqqqeYqiXI/+Rq0CkoBbQ2nhys+5nA38CDgdvUbtUaBOVdX7+mHIHeLne2w++jwmo1uCi4ADqqo+1A9D7hA/X5eF6N8uhqIL4lKgQlXV2/pjzB3hM5e16OtjmZ7nBehGwjXAo8Ak9IL3e4Bz0V1+f+uHIQeNkLR2AkVRlEzgj+i+vnTgBVVV3wUeA85QVfUPwAvA71VV/R36G/hHwLYQFPOu5vJH9MWd33maZKEL+n5VVa8OMTH3Zy4vAA8CfwBWqKp6maqqPwlBMffnPfYP9OipVehf+U8BNoWgmHfndVmBXij+QeCLEBRz37lkAH9RVVVFN26aVFV92XP+bOBFdJfePODLgS7mMMgEXVGU03y+LiWoqvpHVVX/AcQqivILVVX/i+47A73QdZSiKLGer5JXq6r6eN+Pun26OZen8XyNR/9KPEtV1Wf6eMgd0s25PIFuNaGq6kue9iHzPu3BXKyKosR5au7+dIC/LtFAhKqqr6B/I3yqH4bdLp3MJV5RlBuA3wAnA6iqug4Y77luB3BbKM0lEELmHyUQFEWJURTlfXR/3yL0BZsNiqL8yHPJp8D3FEVJUFXVpSjKacCb6JEUtQCqqjrb9tz3BDCXgwCqqn6qqmpl34+8LYG8Lp7QRcC7NtCvBDCXXM8CPKqquvph6G0I8HWpAwiVeHo/5vIJcJ3ncYOiKA94rj/quTZkXpdgMGh86IqiTEffiHIy+kaBBM9jHrpo16FbrzuB59C/zr/RH2PtCpmLzKW3Oc7m0oj+gfQZkIa+EPrffhhqrzNoBN1AUZQn0X17LymKMhT96/sB4A7gZVVVi/pzfN1B5hKayFxCky7m8uJACeUNhEHhcoEWoUYvo4eMpaqqWogey7wKPSSxJpT8sR0hcwlNZC6hiZ9zqR3I4Yj+MugsdABFUX4MjAYqgFxgn6qqX/TvqHqGzCU0kbmEJoNpLj0h5D99u4OPNTEZPWb2oKqqLw3EF1TmEprIXEKTwTSXQBisFvpFwNuqqjb291gCReYSmshcQpPBNJeeMCgFXRAE4XhkULlcBEEQjmdE0AVBEAYJIuiCIAiDBBF0QRCEQYIIuiAIwiDhuCpBJxwfKIqSjV5iDPTCzL/2HH8ePVETqqr2aNegoigT0Is/rPdk6URRlJXA1cAMT6pWQegXRNCFwc41iqI8jJ769ZIg9DcBeMDz+/og9CcIQUPi0IVBh4+FfhAYBZyJXj/yL+gpUzPQ3Y2/RK+LmQiowFJVVXcqivIgumj/Db3aUAJ6PdAvabb8Dc5Ar4BzNXrhhIs9ff9QVdVPe2WCgtAB4kMXBjO7gc/R3SzXoadQrfScuxa9ZuY2dGGfAaxRFCXcp/1c9OIh8egly46hF0YBvVbo5ehl5QxORU81m4le0UcQ+hQRdGGwswLdap6NXqrPYJHn8Seqqj4JrEFP6jTW55o/qar6BLqln+0p7rDRc26HqqqvtkrJ+qCqqg+j59/ODvpMBKELRNCFwc6rgAvIB95v57zW6tGXcs+jk+b/lc58lL7Xh3VvmIIQOCLowqDGU/7tOuBHrUrZveN5/JMn5er5eNKtdtFlhedxrqIolymKEhnUAQtCAEiUizDoUVX1tXYOr0RfHL0RfdH0S/RFUYeiKJ11twG9fuVpnnbDgzpYQQgAiXIRBEEYJIjLRRAEYZAggi4IgjBIEEEXBEEYJIigC4IgDBJE0AVBEAYJIuiCIAiDBBF0QRCEQYIIuiAIwiDh/wEiRA2eeAkxUgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLHklEQVR4nO3dd3wUdf4/8Nf2bHbTeyMkhgAhIihNaYIgxaOIoCCI4Al3dj3F82el6H3FztlA4Ih3ooBgoYoiioKAgDRDh5CEJKSQvtlsnd8fk5mdyW6S3c2WlPfz8fDB7O5kZnYE5sX70yQMwzAghBBCCPETqb8vgBBCCCGdG4URQgghhPgVhRFCCCGE+BWFEUIIIYT4FYURQgghhPgVhRFCCCGE+BWFEUIIIYT4FYURQgghhPgVhZE2yGq1IicnB1ar1d+X0i7Q/XIN3S/n0b1yDd0v19D9sqEwQgghhBC/ojBCCCGEEL+iMEIIIYQQv6IwQgghhBC/ojBCCCGEEL+iMEIIIYQQv6IwQgghhBC/ojBCCCGEEL+iMEIIIYQQv6IwQgghhBC/ojBCCCGEEL+iMEIIIYQQv6IwQgghhBC/ojDSQXTt2hXvvfeevy+DEEIIcZnc3xfQmd16663o06ePR0LEoUOHoNFoWn9RhBBC2pWiMgbf/Q5MuAWIDJX4+3LcQmGkDWMYBmazGXJ5y/+boqKifHBFhBBC2ppJzzM4dAYYOxDY8Wb7DCPUTOMnc+bMwZ49e7Bs2TJIJBJIJBJkZWVBIpFg586dmDhxItRqNX799VdcvHgRkyZNQkxMDLRaLfr3749du3aJjte4mUYikWDVqlW48847ERgYiG7dumHz5s0+/paEEEK8iWEYHLvAbu/8HSguZ/x7QW7qkJWRfv364erVqz4/b2xsLA4fPuzUvsuWLcO5c+eQmZmJxYsXAwCys7MBAM899xwWLFiAm2++GeHh4bhy5QrGjx+PV199FQEBAfj0008xYcIEnD17Fl26dGnyHIsWLcIbb7yBN998E++//z5mzpyJ3NxchIeHt/7LEkII8TuDETCZ2W2GAbb8Bjz4F/9ekzs6ZBi5evUqCgoK/H0ZzQoJCYFSqURgYCBiY2MBAGfOnAEALFy4EH369EFycjKkUikiIiJwww038D/76quv4uuvv8bmzZvx6KOPNnmOOXPmYMaMGQCAf/3rX3j//ffx+++/Y+zYsV78ZoQQQnyluk78+ptfGTz4l/bXVNMhwwj3cG+v5+3Xrx/MZjP/WqfTYdGiRdi6dSsKCwthNpuh1+uRl5fX7HF69+7Nb2s0GgQFBaGkpMQj10gIIcT/qnXi17uOALV1DLSB7SuQdMgw4mxTSVul0WhQVVXFv16wYAF27tyJt956C2lpaVCr1Zg6dSqMRmOzx1EoFKLXEokEVqvVK9dMCCHE9xqHEYMR+P4QMGW4f67HXR0yjLQXSqUSFoulxf1+/fVXzJkzB3feeScAoLa2FpcvX/by1RFCCGnrGjfTAMC3exlMGd6+KiM0msaPunbtioMHD+Ly5csoKytrsmqRlpaGr776CseOHcPx48dx7733UoWDEEKIXWUEALbuB8zm9jWqhsKIHz3zzDOQyWTIyMhAVFRUk31A3n33XYSFheGWW27BhAkTMGbMGNx4440+vlpCCCFtjbAyIm14opdXA3tP+ud63EXNNH6Unp6O/fv3i96bM2cOrFarqM9I165dsXv3btF+jzzyiOh142YbhrFPxZWVla27YEIIIW2KsDIy6ia2vwjANtXc2rf9NNVQZYQQQghpp6oEYWTGKAnkMnb7272O/1HaVlEYIYQQQtqpap0tcCTHAIN6sds5RY77k7RVboWRrKws3HHHHRg2bBjuvfde1NTU8O+PGjUKI0eOxLJly0SpLDs7GzNmzMDgwYMxf/58FBUVeeYbEEIIIZ2UMHAEa4DoUNvrGgcjbdoql8PIunXr8Ntvv2HVqlXYs2cPFi9eDKVSib1792Ljxo3IysrChg0bsHfvXn4tFKPRiGeffRbTp0/H7t27kZmZiZdfftnjX4YQQgjpTIQdWIMDgaBA2+v2FEZc6sBqsViwZs0arFy5EnFxcQDYYacAsH37dkydOhWJiYkAgFmzZmHHjh2YNGkSjhw5ArVajUmTJgEA5s2bh1GjRqGoqIg/jpDRaLSb0Esul0OpVLr+DdshbtguDd91Dt0v19D9ch7dK9fQ/XKNJ+6XsM+IVs1AqxZ+xsBq9X+/Eam05bqHS2GkpKQEBoMBu3btwrp166DVanHvvfdi6tSpyMnJwfjx4/l909PT8eGHHwIALl26xIcWAFCr1UhMTMSlS5cchhEu8AhNmzYNd999tyuX2+7l5+f7+xLaFbpfrqH75Ty6V66h++Wa1tyv0msxAAIAAJXX8mA1hQAIAQBcyClGTGC9B66wdVJSUlrcx+UwUltbiytXrmDz5s0oKCjAww8/jK5du6Kurg5arZbfV6PRoK6OrRHp9XpoNBrRsTQaDfR6vcPzzJ07FzNnzhRfaCerjOTn5yMpKcmpRNnZ0f1yDd0v59G9cg3dL9d44n4ZG4oqchmQntYFiYJ/3wcGxSA52QMX6gMuhRGVSgUAmD9/PgICAnDddddh/Pjx2LdvHwIDA1FbW8vvq9PpEBjINl6p1WrodOJuvTqdDmq1Go4olcpOEzyaI5VK6Q+0C+h+uYbul/PoXrmG7pdrWnO/qnVsGgnWADKZFMGBDAC2aUZXL4FU2j7mGnHp2ycnJ9stvsZJSUnBhQsX+Nfnzp1DamoqACA1NVX0mV6vx5UrV/jPCSGEEOI6rgNrcEPH1fbagdWlMKJWq3Hbbbdh9erVMBqNuHz5Mnbs2IHBgwdj/Pjx2LRpEwoKClBWVoa1a9di3LhxAICbbroJer0eW7ZsgdFoxOrVq5GRkeGwv0hncuutt+LJJ5/092UQQghpp7ihvcENPSHaaxhxeTr4f/7zn1i8eDFGjRqFkJAQPPjgg+jXrx8A4Pz585g9ezasVismT56MiRMnAmCbXd544w0sWbIEr7/+OjIyMrB48WLPfpMOiGEYmM1myOU0az8hhBAxo4lBfcPAU8dhhAHQPpppwBC/uP/++7mGPf6/NWvWMACY7du3M5mZmYxCoWB2797N3H///cykSZNEP//EE08ww4cP519brVZm6dKlTEpKChMQEMD07t2b+fLLL337pfzEYrEwly5dYiwWi78vpV2g++U8uleuofvlmtber9IKK4OhFgZDLcwdz7LH2P+n7b3H32s//x/on9x+smzZMpw7dw6ZmZl8lSg7OxsA8Nxzz2HBggW4+eabER4e7tTxXnzxRXz11Vf4+OOP0a1bN/zyyy+YNWsWoqKiMHz4cK99D0IIIf4hmvDMUWXE8YDVNqlDhpF+86y4Wu7788aGA4dXOtcNJyQkBEqlEoGBgYiNjQUAnDlzBgCwcOFC9OnTB8nJyU71sNbpdHjnnXewe/du3HzzzQDYTsN79+7FihUrKIwQQkgHJJoKvp13YO2QYeRqOVBQ6u+rcF+/fv1gNpud3v/UqVOor6/H6NGjRe8bjUb07dvX05dHCCGkDWi8Lg1AYaRNiXWuZaPNnlej0aCqqop/LZVK7ZaCNplM/DY3lfC2bduQkJAg2o+bG4YQQkjHIl6Xhu2oGiSYvovCiJ8521Tib0qlEhaLpcX9oqKi8Oeff4reO3bsGD/nS0ZGBlQqFfLy8qhJhhBCOglHlRG5XIIAJTvKhsIIcUrXrl1x8OBBXL58GVqttsnFkkaOHIk333wT//3vf3HzzTfjs88+w59//sk3wQQFBeGZZ57BU089BavViiFDhqC6uhq//fYbtFot7r//fl9+LUIIIT7gqAMrwDbV1BuB2nbUgbV9lBA6qGeeeQYymQwZGRmIiopCXl6ew/3GjBmDl156Cc8++yz69++PmpoazJ49W7TPkiVL8PLLL+P//u//0LNnT4wZMwZbtmxxaoEiQggh7Y+jDqyArd8IVUaIU9LT07F//37Re3PmzIHVahX1GQGARYsWYdGiRU0eSyKR4PHHH8fjjz/ulWslhBDStlTrbH0JhZURbUO/kfY0tJcqI4QQQkg7xDXTSBgGmio9GCsbTrjKiMEImMxMEz/dtlAYIYQQQtqhqlr216cL/kTF3b/i16G/4eqWYgSpbQGkvTTVUBghhBBC2qHqOgAMgyHVxQCA2jO1+GPOMczYehA96ioBUBghhBBCiBdV6wCN1QxFo3moIktrsCj3KGSMlcIIIYQQQrynug4IMRv518E3BCMgMQAAoLWaEWo2UhghhBBCiPdU64BQQRiJGByGqBER/Otgi6ndhBEa2ksIIYS0Q9U6INViCyPKSCUkCluNIbgdVUYojBBCCCHtUHWduDKijFRBIheEEYup3cw1QmGEEEIIaWfMZgZ19eI+I6ooJSSCzhfB5vbTTEN9RjqBrl274r333uNfSyQSfPPNN606pieOQQghxD1cxUNUGYlSQhmh5F8HW6iZhrRhRUVFCAsLc2rfhQsX4ptvvsGxY8fcPgYhhHQ0VbUM3tnA4OZeEowdKPH5+bl1aUIt4soILLZhviEWE2rqGAC+vz5XURhpJ4xGI5RKZcs7OiE2NrZNHIMQQtqrh99h8PkuQKVkcPVrIDTItw98PowIKyMRSlhNgvVq2lEHVmqm8ZNbb70Vjz76KB599FGEhoYiIiICL774IpiGyWuGDh2K1157DXPmzEFISAjmzZsHAPjtt98wbNgwqNVqJCUl4fHHH4dOZ1u6saSkBBMmTIBarUZKSgrWrl1rd+7GTSxXrlzB9OnTER4eDo1Gg379+uHgwYPIysrCokWLcPz4cUgkEkgkEmRlZTk8xsmTJzFy5Eio1WpERERg/vz5qK2t5T+fM2cOJk+ejLfeegtxcXGIiIjAI488ApPJ5MG7Sggh3ne5iMG63ey2wQgUlPn+Gqoa/trn+ozItTLI1DIoIxT8Pu1paC+FET/69NNPIZfLcfDgQfz73//Gu+++i1WrVvGfv/XWW8jMzMSRI0fw0ksv4eTJkxgzZgymTJmCEydOYP369di7dy8effRR/mfmzJmDy5cvY/fu3di4cSM++ugjlJSUNHkNtbW1GD58OAoLC7F582YcP34czz77LKxWK+655x48/fTT6NWrF4qKilBUVIR77rnH7hh1dXUYO3YswsLCcOjQIXz55ZfYtWuX6LoA4KeffsLFixfx008/4dNPP0VWVhYfbgghpL1YtpGB1Wp77Y8HPlcZCWsII8poFQBAHiQH5GyVJthiQi2NpvGfvSP3w1hi8Pl5ldEqDNl9s9P7JyUl4d1334VEIkH37t1x8uRJvPvuu/jrX/8KABgxYgSeeeYZfv/Zs2fj3nvvxZNPPgkA6NatG/79739j+PDh+Pjjj5GXl4cdO3bgwIEDGDhwIABg9erV6NmzZ5PX8Pnnn6O0tBSHDh1CeHg4ACAtLY3/XKvVQi6XN9sss3btWuj1evz3v/+FRsOuY/3BBx9gwoQJWLp0KWJiYgAAYWFh+OCDDyCTydCjRw/ccccd+PHHH/mqDyGEtHWVNQxWbRW/V61zvK83VdcBcqsVWqsZAKCKZJvxJRIJFGEKmEqN7aqZpkOGEWOJAfVFvg8jrho0aBAkEls7480334y3334bFosFANCvXz/R/keOHMGFCxdETS8Mw8BqtSInJwfnzp2DXC4X/VyPHj0QGhra5DUcO3YMffv25YOIO06fPo0bbriBDyIAMHjwYFitVpw9e5YPI7169YJMJuP3iYuLw8mTJ90+LyGE+NrKrbCrNvirMhLSaMIzjipSyYYRvgNr29chwwhXrmrv5xU+3AHAarXib3/7Gx5//HG7fbt06YKzZ88CgCjgtEStVrfuIsEGoqbOKXxfoVDYfWYV1joJIaQNM5oYLNto/3D3x8RijaeCV0bbwgjXb0TFWFFfYwUga/zjbU6HDCOuNJX404EDB+xed+vWTVQ9ELrxxhuRnZ0takYR6tmzJ8xmMw4fPowBAwYAAM6ePYvKysomr6F3795YtWoVysvLHVZHlEolX6lpSkZGBj799FPodDo+QO3btw9SqRTp6enN/iwhhLQXG34CCkrZbbUK0DcU4P1SGaljRGFEJaiMKMMFIy+rjADE/xBsi6gDqx/l5+fjH//4B86ePYsvvvgC77//Pp544okm9//nP/+J/fv345FHHsGxY8dw/vx5bN68GY899hgAoHv37hg7dizmzZuHgwcP4siRI3jwwQebrX7MmDEDsbGxmDx5Mvbt24dLly5h06ZN2L9/PwB2wrScnBwcO3YMZWVlMBjsm79mzpyJgIAA3H///fjzzz/x008/4bHHHsN9993HN9EQQkh7t2KzrSry8GTb+22tmUYYRiQ17WPEIoURP5o9ezb0ej0GDBiARx55BI899hjmz5/f5P69e/fGnj17cP78eQwdOhR9+/bFSy+9hLi4OH6fNWvWICkpCcOHD8eUKVMwf/58REdHN3lMpVKJ77//HtHR0Rg/fjyuv/56vP7663x15q677sLYsWMxYsQIREVF4YsvvrA7RmBgIHbu3Iny8nL0798fU6dOxW233YYPPvigFXeHEELalgtX2F/jIoDxg2xN0NU63/fLaLwujSrK1k1AGWmrhMh1Rn7KiLasQzbTtBcKhQLvvfcePv74Y9H7DMPg119/RXJyst3P9O/fH99//32Tx4yNjcXWreKu3vfdd5/d8YWSk5OxceNGh8dTqVQOP2t8jOuvvx67d+9u8rocDeEVTlFPCCFtXWXD1EmRIUBQoO19f1VGGk8Fz28LKiMaowkGIxDgn66UTqPKCCGEENKCegOD+oZnf1gQECwYX+CvDqwhTfQZUTSe+KwdzDVCYYQQQghpQaVtQmmEattAZaROvC6NqDIiXCyvncw1Qs00fvLzzz/7+xIIIYQ4qbkw4o9Jz6pqbc00EpkEilBbNUTYTNNepoSnygghhBDSgsZhRBNge+23ygg3FXykEhKprUOtcH2aEEv7qIxQGCGEEEJaIAojQYBUKuGrI34JI7UMP7RX2EQDNKqMmKkyQgghhHQI4soIW4Xgw4iPO4haLAygM0PRMKpR2HkVAGSBMlgV7OOdmmkIIYSQDqJxMw0Av1VGquvEI2kaV0YAwBrEvhdMzTSEEEJIx1BZY9sOC2J/FYYRX04sVlbZeMIz+zAiCWb7jQSbTajxw6RsrqIwQgghhLSgosb2QOcrIw0rbTAMoPNhU01ZVdNTwXOkoex7cjDQVZh9dm3uojBCCCGEtMBRM41o4jMfNoWUVQFhwmaaSPvpVeXhthE1xjKj3edtDYURQgghpAWVtcCEa3n48vRuVD15GFe3FCM4wMp/7stOrGVVjWZfjbavjKgEI2pMFW1/sTya9IwQQghpQWUtMP1aLgKtFugOlOOPA+WYrFWhODgV34cl+rwyIlqXxkEzTUCUAtwlWSqoMkIIIYS0e5U1DMLNBtF7AbUGPFZ4GsFmo09nYS2rZFrswKqJtjXTWKvafmWEwgghhBDSAmOFbV4PbQ8tgjLZITVSANEmvc8rIy11YNXG2N6T1FBlhBBCCGn/Km1VkZA+wYgZH82/DvXxYnTCZhqpVg5ZgMxun6BYW2VEXkOVEUIIIaRdYxgG0kphh1GVaNbTULPJpx1YSyttYcRREw0gHmGjqKPKCCGEENKu6Q1AsMFWGVHFKEWznvp6ltOKCiu0VnbukICmwohgaK9KT5URQgghpF2rrAXCBJ1X7SsjRlT7cJZT47Xm+4sAgEIwtDfAQGGEEEIIadfYMCJuplFG2B72IT7sM2I2M0ClLVwoIxQO95OppKiXs31JtCajT6erdweFEUIIIaQZlTWNw4i4mSbUh8005TVssxBHGIoaqw9gPwsym1BX7/VLaxUKI4QQQkgz7JppYlRQhCoAmQRAw2gaH3VgbTysV9FMGDGq2apJkMWE6hqqjBBCCCHtlrCZxqqQQh4sh0QqgaKhk6gvm2nKKtmVeDmqZsKIWcNenxRA1dW23W+EwgghhBDSjIoaW2WECVVCImErItyw2lCLEdW1vqk8lFY2row47jMCABatLahUF1EYIYQQQtqtyiorQizsw1wabpu/QxXFbisYBsZqs0+upaxKXBlprs8Igm1Bpba4bc81QmGEEEJIm2W1Mvjoawaf/+C/Pg/6q7b+IvJIYRgRTLle5ZuHfeM+I6omhvYCgFIwvLeyjVdGaNVeQgghbdbyb4FH3mWDSI8uwI3dJT6/BkOJLYwECNZ8EQ6rlfpoyvWyKgYxgsqIIrzpZhqtYLG8qjYeRlyujMyfPx+33HILhg4diqFDh+Lxxx/nP8vKysKoUaMwcuRILFu2TDSuOTs7GzNmzMDgwYMxf/58FBUVeeYbEEII6bD+s932HDl3xT/XYBZMMqaJs1VGRFOu1/quMsIN7ZUESCHXNF1TCI0XNNOUdMBmmldeeQW//vorfv31V/z73/8GAOzduxcbN25EVlYWNmzYgL1792Lz5s0AAKPRiGeffRbTp0/H7t27kZmZiZdfftlz34IQQkiHczaPwZGztte+nHJdpNxWGQlKsFVGhM00WoMRBqP3m5LKqoCQhsqIcJZVRyKTbGHEcK1tV0Y81kyzfft2TJ06FYmJiQCAWbNmYceOHZg0aRKOHDkCtVqNSZMmAQDmzZuHUaNGoaioCHFxcXbHMhqNMBrFKU4ul0OpbP7GdxRWq1X0K2ke3S/X0P1yHt0r13j6fq39Qfy6po6B1er7viNSQX+Q4AQl//0UEbZHaIjFiKpaBpGhzl+fO/frWgWD4IbOtKpIRbM/G9NFAa4Nwlxp8tvvY6m05bqHW2HkzTffxJtvvon09HQ89dRT6NatG3JycjB+/Hh+n/T0dHz44YcAgEuXLiEtLY3/TK1WIzExEZcuXXIYRtasWYOVK1eK3ps2bRruvvtudy633crPz/f3JbQrdL9cQ/fLeXSvXOOJ+8UwwH+/iwdg+9d9fmElcnOrWn1sV8mqbDOaVTDlqM9lX+vNtvdDzUacuVCApCjXR9W4cr8qi6MhAxt4rIEW5ObmNrmvyWqrhjBVhmb39aaUlJQW93E5jDz++ONITU2FVCrF+vXr8cQTT2Djxo2oq6uDVqvl99NoNKirY2tqer0eGo1GdByNRgO93vGUdXPnzsXMmTPFF9rJKiP5+flISkpyKlF2dnS/XEP3y3l0r1zjyfv1+2kgt1j8nlwViuTk0FYd1x2B+uP8dnLvZKiT1ACAOqYOl8EGiRCzEcFhCUhOdv647twvpkrHbwcnBiO5mRNaoi24gBwAgKLe3Oy+/uZyGMnMzOS377//fmzevBnZ2dkIDAxEbW0t/5lOp0NgYCAAthKi0+lEx9HpdFCr1Q7PoVQqO03waI5UKqW/AF1A98s1dL+cR/fKNZ64X+t+tG9SqNU7V/L3JIZhoK23NdMExKr5awiIDuDfD7UYoauXQCp1fbSPs/dLb2CgqBPPvtrcz0k1UphkUigsVgQaTdDVSxAU6PvRSM5o9f9V7kakpKTgwoUL/Pvnzp1DamoqACA1NVX0mV6vx5UrV/jPCSGEEI7ZzGDdbvv3/dGBVacHwkxsB1a9Ug6ZyvbYlGlksCjY1yFmI6p1Dg/hMdeq2PNwmp3wrAG3Pk2wxYSia167tFZzKYzU1NTgwIEDMBqNMJlMWLt2Laqrq9GzZ0+MHz8emzZtQkFBAcrKyrB27VqMGzcOAHDTTTdBr9djy5YtMBqNWL16NTIyMhz2FyGEENK5/XQUKC5nt2+xFeNR66PF6IQqahh+Kvh6jUr0mUQigbVhyvUQs8nrYUk4rBcAlM1MeMaxam2L5RWUtt3F8lxqpjGbzfjwww9x+fJlKBQKpKenY9myZdBqtRgyZAjOnz+P2bNnw2q1YvLkyZg4cSIAttnljTfewJIlS/D6668jIyMDixcv9soXIoQQ0r5t/Nn20PzbRAl++5N97Y/KSEWJBQEM22RkCrJ/+DMhSqCiHsEWI0pqGQDeawYRDusFxDOsNkUaogSuslPWF12xADe2zeZGl8JIWFgY/ve//zX5+dy5czF37lyHn/Xq1Qvr1q1z7eoIIYR0OhcLbdsTBwMSCTu6xi+VkXzbHCPWEJXd55IwJXAZkAGoKzUBsN/HU9ypjCjDbKORSvNMEI5OakvaZkQihBDSaZVUsL8GKIEQLaBp6Cfqj8pITYHt4S8Jtw8ackF1Ql/q3VlOSysbV0ZaDhaBUbZ9ygvb7iysFEYIIYS0KSWV7K/RYWy/jCB2YKZfKiO6QsEieQ46jAqrE6Yyg93nnlRWxbhcGQmKtYWR6qttdxZWCiOEEELaDKuVQWklux0dxv6qbZgFwh+VkXrBmi6qGPvKSEC0LRBYyr1beSirFFRGJIAitOXKSLhg+vq6Nrw+DYURQgghbUZ5NcDNWh4dyv4qrIwIF2D1BXOprdoRGGtfidAIVvFlKr0cRqrYaecBQBaqgETWcmdZYTONsbztVkY8tjYNIYQQ0lollUCqvhrzrp5DmFmJgi+jESGLAKCA2QIYjECA9/qI2mGEi+Ql2p9YG28LI9Jq74cRbl0aZ+YYAcQjbixVJjAMA4mk7U18RmGEEEJIm1FSAUwtu4zedRXAWeD434vxuESCvkHReCchEzV6mU/DiLTSFkZCk+xPHCIII7Ia74aRynIL1FYLACAg0rlRMQrBaJpAowmVtUBYkFcur1WomYYQQkibUVIBxJrEPVWlDIPh1cXoo7uGWh/3G5E3BAwLJAhPsA8AQYIwotR5phmkLk8Pc639gnuGMsFIGic6rwLiETdBFhMKy1p/fd5AYYQQQkibUVIBRDRMv27VyBFzRzT/WZSpHjU+HlEToGOvpUKuRHiIffOGKtJWLQnQt74ycnVrMX7u+wt+uXkfTNWCVXcZBuZy16aCBwCFIIwEUxghhBBCWlZSbkVYw/or0jg1ku5L5D8LMxt9WhlhrAzU9WwgqJIrERhgv49MJUWdnO3xEGhofRgp+b4UAFBfWI+S70r592vq2GYWjtNhJEQBpiFDBZkpjBBCCCEtqi40QgZ2xIwqRgVVtK3yEGY2+LQyYqowQdYwekcXoGyy46dOxQaDIGPrw4hJMOKFCyYANxW8sDLiXJ8RiVQCaG2L5RW20cXyKIwQQghpM+oEk4xpEgKgEszj4evKiEEwo2q9uulKhD6A/UxjMcNUZ2nVOY0VtnOW/lgGq4kd51xaaRvWCzhfGQHYYcBA214sj8IIIYSQNsNUYgsjIckqKKOUfDNDmNno08qI/qrtWhwtkscxaGyfVRS0rjoirIyYq82o+L0SALD1NwbBZtebaQBA1VBF0VjNKCq2tur6vIXCCCGEkDaDEUyprk0IgFQuBdMQBMLNBp9WRkrzbMFCGtb0w9+stTWZVF5pXRgxVohH5JR8X4p6A4Pl37pfGdEIJj6rbKNTwlMYIYSQTk6n02HVqlUYMmQIBg4ciNzcXL9di7zKFkZUsQ39RRom7gozG1BT57tmhnJBGFE1M5SWCbZ9VlPkfhhhGEZUGQGAkp2l+HxXw4RnwsqIk/OMAIBKMPFZbTGFEUIIIW1IXV0d/vGPfyA+Ph7z5s3Dvn378Pvvv+Ozzz7zy/UYTQw0unr+dUAcG0ZkEeyvCoZBnQ+nNK8RrHKriWumEhFi+0x31f0wYq42g7GIw5buvA7/zdKxpxFWRsKdr4wIh/fWXzPBam17/UYojBBCSCe1evVqvPvuu6iurha9X1RU5JfrKa1km2I4qlh2LK0yyvbgFa4V4211gj4jwQlNT/sqbMLRl7ofRppaOyb4FDseN1bGfi7TyCBTy5w+rrLRLKxlVW5fotdQGCGEkE7q1KlT/PbYsWP57bIy/0xGUVIBRDSEEatUws8eKlwt13LNdyvPGgXniujSdCVCIahSCGdJdZVJMKlZ+OAwfntADTvENxzs58JZVZ0hvL62OvEZhRFCCOmk8vPz+e333nuP3/ZbGKkEwhtmXzUFq9g5MgBoYgVViQrfVUaEq/DGpjQdRgIFw4+NrQhLws6r4beEQx7HVoaur6tAWpgJ0lrXFsnjCMOLlsIIIYSQtuTKlSsAALlcjrS0NCgU7EPLb2GkxIrQhlVpmXBbABGujCur9F1lRNawCm+NTI64mKYfl2GJtoe9sLrhKmHnVWWYApU9owCwfWVeKziGhrngXA4jwsXygi0mFLXBic8ojBBCSCfFVUYSEhIgk8kQFcU+/PwVRspzbVUPWZQtjAQn2rblNb6rjKjq2GBRKVMiNrzp/aKSbOGAaUVYElZGFBEKXOoRB24KNW1OJf9ZayojQWYTKmrcvkSvoTBCCCGdUF1dHcrLywEASUlJAIDIyEgAbBhhGN+PuKgtEI6ksS0Eo4m3hRFVrW8qI5Y6C1RmNgroVEqolI6nggeAmBgpdFJ2fRquKcUdpmvi0TKnAkLwapc+KFGIF8VRODkVPL9/mLjPSHkNjaYhhBDSBnBNNACQmMguRseFEYPBAJ1O5/Nrqi+yVT2CBNUQYQdWdZ1vKiMGweRrwhlWHYkOBarkbEBQ6jwzmkYRpkBeMfB7UBT+nnYLkh5PhVQpAaRA1G2RLh1XVBmxGFFe3czOfiL39wUQQgjxPWEYaVwZAYDS0lJotVqfXpNZMBV8WFdB00ywHCapFAqrFdp631RGKvNt5xFOauZIiBaokSsBox4BRjOsJiukCtf/rW8SNNMowxXIvcpuB4bIcP0r3dD9sWSYay0I7KJ26bgytQySACmYeiuCLCaUUzMNIYSQtkA4kqZxZQTwT78RSbktjEQIwohEIkFtw8q4wUbfVEaKLzs3FTzAXl+9WtiJ1b2mGqOg86ssRIErDYv2JseyvyrDlS4HEQ7XiTXYYmqTlREKI4QQ0gm1VBnxRxhRVNuCRmC8uJ9EnZoNJ0FmE4z61q2M6wzhVPDKZqaC55gFTTmGa+4FJq4yIpFLUGqUoaHLCrpEu3U4EVVDp9cgiwkV1dRnhBBCSBvQ1iojDMMgUCeYfTVOPONpfcPDXgqgopWL0TmjusB2LZq4pmdf5TDBtspIeb67lRH25xThCuSX2DrMdolx63Ai3CysCoaBrsL7Yc5VFEYIIaQTclQZ4Yb2Ar4PIzo9EGpgA4BRLoM8SNyl0RRkqzxU+SCM1BXbzhGS0HJlRCZoyrmW7971cZURZUPnVU6XmKZH8jhLuD6NqbLtLZZHYYQQQjohrjKiUCgQHc22A/izMlJSaVuXpl6rgkQifgBbQmzViZor3u83IhxmG5HcchhRCeb+qCx0PYxY9BZY6tiKhTJCibwS22eeaKZRCsKStMYEk7ltNdVQGCGEkE6Iq4wkJCRAKmUfBf4MI8UFZmisZgCAOcS+WYQRPEx1V70fRqwVgqngU1sOI8Ip4Wuvul55aDysN/eqLSx4oplGIRrea0JlbeuP6UkURgghpJNxNOEZYD+015dKLwkCRoR9GJEKpoevv+r9Zhp5DXsOk0SCuKSWZ8EIirM97N1ZuddUIZzwTNxMw42maQ3hXCPBbXCuEZpnhBBCOhlHE54BQEREBL/t68pIVZ4B3NkV0fZhRB5pe89Y6v3KCDcVfJVciYiQlvtshAumhHdnaK+4MqJEXm7DthzNTkXvLOEU8iGCKeEZhsGZl89CEa6ENl2D2Ds8UIZxA4URQgjpZIQjaYSVEbVaDY1GA51O5/MwUltgCyPqRsN6AfEsrOYy71ZGGCsDjYE9h06ltOu/4khkFyW49efcWZ+m8YRneb+z24lRgFTa+g6syihbGAk1G/jKiLnGjJyP2OQTMSzcb2GEmmkIIaSTaaoyAojXp/Elw1XbujTChfE4AYI+GVY35/EQYiwMijZfRfnBCrvP9CVG/uFo1Dq3KF1MvAymhtAirXE9jAgrIxaNgq9ceKK/CACoRGHEyM/CaiixXavKQUXKVyiMEEJIJ9NUZQSwDe+9du0arFarz67JImh6CU+xfygGhcpQyy1GV9n6MFL4dRGOzj2OgxMPoTpbPD96UY7tAW1tYSp4TnSYBFUydl931qcRjt6pktr6d3gujNjuaajZ1mfEWCoMI66tBuxJFEYIIaSTcaYyYrVaUVlZ6bNrEgaMmDT7MKJVAxVy9n1ZdeubaaqPs09jxsyg8MtC0WclOc5PBc8JDJCgRsHuqzaYXF712Chopimx2MJIsofCiCJCATS09oRajChvmIXVIFgPSBlFlRFCCCE+0lxlxF/De1XVjtel4QQFAhVy9mEvM1pgrjW36nzGa7aHf9HmYlF4qBBMWiZs3miJoWF9GhnDwFzt2vUJO70WmWzn9MSEZwAglUshCWGvL0zUTGO77/WBVBkhhBDiI8IJz4SzrgL+G94bqGcfijq5HPJA+7EVbGVEsP5LSeuaaoSL0ulz9ag+YWuqqRJMBR8Y63y1wCzoX1JX7Nr1GQVDe/P0tu/vqWYaAFA0jEgKNRv59Wl0Rbbr/Nc2hcOf8wUKI4QQ0slwzTSJiYn8hGccf1RGGIZBcMNU8LUBjh/+bGXE9pmw46U7jI1G5FzdfJXf1pe4NhU8hwmyPcxL81wb3iusjOTUCMKIB2Zf5QQ0VHmUjBU119jZXoVVoCAn1uDxFgojhBDSieh0OlRUsCNIGvcXAfwTRuqrzAho6Cyrb6KpwPOVEXFYEDbVCINKZBfnw0hr1qfh+ozIQ+TILbU9mpM8GEYCYwVzoZQ1hL9CQcdhF76rp1EYIYSQTsTRAnlC/ggjpTm2B6IpqJnKiEJQGWnllPDC0SsAUHepDjWn2DnShfOExDgxFTxHGWmrjFQWuBZGTA3NRspwBXIbZl8NDwa0gZ7pMwIAAYK5WiwN5+MqTFYAMV0pjBBCCPGB5jqvAv5ZufeaIIxYQh0/EAOUQJVSWBlxv5nGYrDCXGuxe59rqhGO1klwIYwECkajuLI+jdVshamS7fCqCFPgSkNXHU+NpOEIO+NKGgIX09BXpUqmRFKc/yIBhRFCCOlEmhvWC/inMlJ9RTiU1nFlRCKRwKgRVEZaMSW8SdB5NfSmEH7I69XNbEmCmwq+ViaHWitz+rjurk9jrrSNvLFqlLA05CRPdl4FxEN35TVGWCxWyBpGMVXKlR5tEnIVhRFCCOlEWqqM+COM1ApGdMibmevCHGT7l73RjcXo+J8V9BcJytAibFAYex3ndLi2vxxabir4JjrTNiU80XZ95nLnr084x0h9gOcnPOMIKyPBJiMqr5ohs7D9ZCrlSo+fzxUURgghpBMpKCjgtxMSEuw+Dw+3rcrmq6G99cW2B7ewX4OdYAW4OWENrQkjgv4iinAl4ibYnsIHJxyC2sqWJowa14a6RiYLpqx3YX0a4UiaWoUgjER7rr8I0Hh9GiPKLgtmfVWqEBXq0dO5hMIIIYR0IsJqR0yM/T+F5XI5wsLC7Pb1JpNgZIwmvuk+GhqtFDUy9mHdmpV7hQ9/ZYQSCdPjoemmYd8QTJzq7FTwnNgutrAkrXG+z4hJMMdIpUQ44ZlLp2+RcLr3MLMRFfmCvjrBSo8syOcuCiOEENKJXLt2jd+OiIhwuI+vF8uzltseiiEJTVdGtGq2OQFgO7C6OuU6R1gZUYYroAhRYPCuQeixKB1MiO2BLe2icem4UeESPiwp6pqvjJRVMvj4G+BysVzUbFRs9s6EZwCgjBSuT2NA8SVBX51w/42kAQD7ae4IIYR0WFwYUalUUKvVDveJjIzE+fPnUVVVBZPJBIXCuzNzSqvYh6JJIkF0QtPnCgpkw0iyQQerwQpzjQWKYNcfY8LZV5UR7ENYrpUj9dEU/AeJOLq8EOEmA6bM7erSceVyCXRKJUL0JgTWN18Zmb3IgsI9FYgOV+DdgbaVg3N0tu/fvYtLp2+RTCWFRS2HTG9GqMWIwgsGJDd8FuDHRfIACiOEENKpcGEkIiICEonjsrxweO+1a9cQGxvr1WtScCM6ZEr0DG26qSAokN2HYywzuBdGBOvSKMPF4edQjgzfh7Mde/91k+vNFvUBCkAPqCwWWPQWyNT2o3FOXWaQ8e0pPFpVBOQCuUdtn50pZxe0i4sAwoI832zChCgBvRmhZiPO5hn5MBLcTEXKF6iZhhBCvMxgMGDSpEkYMWKEaGitrzEMIwojTfHliBrGwkClZysVFXIVwoKa3le4ci/gfidWYWVEEWELNwzD4Mg5djsqFEh0Y6ircH2aqkLH17f24yqMrCqy/0ACnDUFAgAyurp+bmdwzTGBVgsshXr+/fBkCiOEENKhfffdd9i8eTN+/vlnzJs3z+2+Dq1VV1cHQ8MaMG0ljBjLjJA23I4KhRJh2qb3DQoEqgRTwhvdnPjMJKyMRNgqI3nFwLUqdvum7miyctQc4fo0Jbn211dbxyDwywv869+ColHaLx4x46KhfDIDxUq26cxbYUQh6DcSWWlbHDDWhcndvIHCCCGEeNmFC7aHz3fffYcvv/zSL9fhTOdVwLcr99YLVretDVBBLm86AGjVEr4DK+D+xGdcZUQil0AeZGvmOXLWts9N6W4dGtIW1qfZ+HEF+lax/x9KFAFYmng9Nt3YCzd91hfnetkmoevV1TsjW9QxtutLMtQBACwAEtMojBBCSIeWm5srev3kk0+iqqrK59fhThjxdmVEuOCdQdP8A5FduVfYZ8TNZpqGyogyQiGqfhw5Z6tY3dTdvTCgEjT7VBWIO7EyDIOaT2zBdH1MKsxSKY6dZ1+fumw7v7cqI9o42/XJGsYxV8uV6BLnv2G9AIURQgjxusuXL4teFxUV4aWXXvL5dbTJMCKojJhDmu+3IBzaC7i3Pg3DMPzQXrNGibN5tgAgqox0d/nQAIBAQeWh5qr4+n757zVcV8aOnLmmVaN+SBwAIL8EuFbF4NRl277eCiPBCfaBr1qhRGgzzWO+QGGEEEK8jKuMyOVyBAayHRQ/+OADHD582KfX0RbDSPUVWxhhQpsPI41H07jTTGOps8Baz05N9kexAn3/yuDPSwwYhsHhhjASGQK312kJFkzapm+0snDOWxf5beXsNFyfbnsEH7sAZF9mt6PDgIgQ71QqtHH297heo3Krf4wnURghhBAv4yojycnJeOWVVwCw/0J///33fXodbTGM1BTYqgeyyOabaRpXRtxZn0Y4+2q1TAm9AVi4hvFI51UAiLrO9rA3Cpugqs2ILqwEABQFBGLi/4tFnzTbz+06zKCkYbqRXl3dOrVTVNH2YcQa4t/+IkArwsiJEyfQv39/ZGVl8e9lZWVh1KhRGDlyJJYtWybqMZ6dnY0ZM2Zg8ODBmD9/PoqKHAxrIoSQDqayshLV1dUAgK5du+Kxxx7jP7t06ZJPr8XZMCKcZ8TbHVjrBNUDZTOL5AFAiAYwSWXQSdlOpwY3+owIZ1+tbpgtddMe4NPvbPv0c7OJBgAS0wXfocL23fLP2rbr4oOgDpSibzfbrp/vsm17q4kGEC+Wx5FFtNMwYrVa8c477yAjI4N/b+/evdi4cSOysrKwYcMG7N27F5s3bwYAGI1GPPvss5g+fTp2796NzMxMvPzyy575BoQQ0oYJ+4skJydDrVbza7/4+h9lzoaRkJAQftZVb4cRo6DPSGBs8w/F+IaCDVcdcWdor3Dq9Wq5bRjukk9b33kVABJS5DBK2Eerotp2fUXnbd9T2hC6eiYDSjl73rxi2zEyvDSSBhAvlsdRN7c4oY+4NQPrV199hczMTNTW1vLvbd++HVOnTkViIjs0adasWdixYwcmTZqEI0eOQK1WY9KkSQCAefPmYdSoUSgqKkJcXJzd8Y1GI4xG8W8yuVwOpdL/6c0XrFar6FfSPLpfrqH75TxP3KucnBx+Ozk5GVarFXFxcaioqEBhYSEsFovP2uuFYSQsLKzZ7xUVFYXCwkKUlJQ4/f3duV/mMgOkAGqlcoSEy5r92biG/FQhVyLBWAdzjRmmOhNkAfaznDbFUGYLBVWC/idmi22fvt0YWK3uzQUjlQI1KiUi6usRWGfgv0/xJQMCG/YJiFHBarVCLrOiW4IJ2bniMNAz2f3zt3h9ailMcikUZtt9DopXevXvA6m05bqHy2GkqqoKX3zxBdasWYN33nmHfz8nJwfjx4/nX6enp+PDDz8EwJYi09JsjWNqtRqJiYm4dOmSwzCyZs0arFy5UvTetGnTcPfdd7t6ue1afn6+vy+hXaH75Rq6X85rzb06etQ217dGo0Fubi5CQ0MBAHq9Hn/++SeCg4Nbe4lOEc7+WldXZzfkWCgkJASFhYUoLS3F5cuXXQpMwvvFMAyu/accVp0VUQ9FQqIQH4dpaMqokKtgNV5Dbm4tmhOqSRSFiJxjOVDEOb92TvkF2zowXDONUHiQBVb9FTRza1qkUysQUV+PILMJZ09fRkCgBFfP6ZHK7RBi4O99RnKEXRgJkuUjN9d74aBerYCiRlCpCdE1+3uhtVJSUlrcx+Uw8uGHH2LGjBl2f3jq6uqg1drGBmk0GtTVsROq6PV6aDTi1Q81Gg30ej0cmTt3LmbOnCm+0E5WGcnPz0dSUpJTibKzo/vlGrpfzvPEvaqpsc1yedNNNyE5ORmpqan47bffALB/tyUnJzf14x4l/Du3d+/ekMmarigkJCTg9OnTMJlMCA0N5QNUcxzdr2v7ynHmY3YijfCkCFz3ZFd+f3OtGacN7PzrFXIl0rpGIDm56eYjAEiKASrP254FUaoohCSHtHhtHCNjQjHYpqdquRLhwYBMCpRWsp/36yFD166t+//BhFUCFez/d4k+Bsk91ZBUnuc/T+kdieTkCFitVvTqUgnhFHiRIcCN1ye16vwtORBSDAjCSM8bY5Cc3Mw8/D7gUhg5c+YMsrOz8c9//tPus8DAQFGzjU6n44ewqdVq6HQ60f46na7JFSOVSmWnCR7NkUql9LBwAd0v19D9cl5r7pXwX5wpKSmQSqWIj4/n3ysuLkavXr1afY3O4JppQkNDW1yJNzraNrb12rVrCA8Pd/o8wvulz7EFoMJ1hUh7KpWvspjKbP03KuRKRARLIJU2X4FJiLI2mvjM5NL/G1O5md+ulikQFwHMHiPBP5ezzSIDejrXrNAcaYQSaOibfPWCET36aWARNA/Fdwvgz5GRLO6S0Cul9edvUZgSECyRlJwR4Pe/C1wKI3/88Qfy8vL45pja2lrIZDJcuXIFKSkpuHDhAoYMGQIAOHfuHFJT2aJUamoqvv76a/44er0eV65c4T8nhJCOigsjMpkMCQkJACBqnvZlJ1ZnFsnjCMNISUkJunXr1szeTRMOv9VdrEPl4SqE9Q8FIJ60rFyhQrgTrVWJUUBBK4b3ChfJq5YpEB8EPHYXcOgMUHQN+Puk1vffCYgN4LdLcxqmnq+0hZGkHrZmmR5JRkgkADf41JsjaTiycNv5LZAgJM7///h3KYxMmTIFt99+O//67bffRlJSEu677z4cP34cS5cuxejRo6FSqbB27Vq+qeWmm26CXq/Hli1bMGbMGKxevRoZGRkO+4sQQkhHwo2mSUxMhFzO/pUrrIwUFhb65DosFgsqKysBOBdGhMN7S0pK3D5v4ynbC9YXCsKI7QFdIXcujCREAqdaMQurKIw0NNOoVRJ8udhznYiDBLOcVuWz3zGgoVnEJJEiMNJWldKqGaQlAOcbKhUZyd7vzKwUzOdSp1JA0kI1yhdcqssEBAQgMjKS/0+lUiEwMBBBQUEYMmQIpkyZgtmzZ2PatGkYPHgwJk6cCIBtdnnjjTewdu1ajBgxAsePH8fixYu98oUIIaStqKmpQXl5OQCI+oX4ozJSUVHBz/3kamWkNcN7G88FUvR1ESwGtnOm4aowjCgR5kS3hYQoCSrkgonFylybhZVbl6ZeIoVBKnMqALkqItl2fXVFBpjNDIIM7H2oUdvPdtpHUHTyRWVEOITaoPX/sF7AzaG9nIULF4pez507F3PnznW4b69evbBu3brWnI4QQtoVYX+Rrl278tvCyoivwoizc4xwPFYZadSMYqo0o2RnCeImxoqqGlVKFbSOuxGKJEQ2nhLetcqIqaEyUt1QXQn3Qr/NuG4qcMvhmUsNKCiyItjChiBjkH2TyAPjgW/3At0SgcHXe/56GotMVuJqw7YkzP9NNABNB08IIV4jDCNNVUZ81UzjahjxVmUEYJtqAHEzDROqdGr4cGJ0oynhXWimYRfJY0MBN6w3PNjzTRTxgllYJRUG5J8RVG/C7SsRt/cHSjdLcPw/EqiU3m8y6drTdg1pmW2jMkJhhBBCvEQ4+6qwMhIYGMhPj9DhKyMNYSQgToWAhkXaSneVwVBmFK3YizDnHooJkYBeKoOhYZZTVxbLM9eYwZjZpipurhJvNNNoYlXgZglR1Rpw9YLtGhVNTHkfrJFAJvNN343g3sF8v5Hk8ZEt7O0bFEYIIcRLmqqMALammo5cGWEsDL8WjCpGhfhp7HdmzAxOPvEnas6y00GYIYEqwrmJy8KDAZVKYpsS3oX1abiqCGCbCj5M29Te7pPIJNAFsNcXVG9EySVbGNHE+78SIdfKMfzgEAzdNxjxd7WNgSQURgghxEua6jMC2JpqdDqdaGI0b3E1jAQFBfHzPblbGTFWmMCVCJRRSiTcY+srU/JdKerz6wGwzS5hTjaXSCQStt8IF0bKTbCanZutVBhcbM00Tv2oy7iOoaFmI4rO1vPvh3bxfxgBAEWoAkE9vJDE3ERhhBBCvIRrppFIJEhKEs+q6esRNa6GEYlEwldH3K2MCB/+ykglgnpokf5iN8iDxGMnrjk5xwgnMUrQb4RhJz5rillnxoV3LuH0K2dx+RNbOKz2YjMNADChbOiQgYHpom1C0Ojr2kYYaWsojBBCiJdwlZH4+Hi7WaV9PdeIq2EEsPUbKS0tdWshNaOgP4eqoY9C2lOpGJk9HL0/yIS8dyiqZAp8G97FpVEtCVHiETXGZvqNZD97GudeO4+cDy6j6Kur/PtcM403RtMAgFzQNySusprfFnZuJTatGtpLCCHEMb1ej+Jidl14R2vP+Loyws13AjgfRrjKCDdhmitTwgPikTRKwcNZrpEjcUYCTnSNx73/ZDuU3upKGIkESgRzjTgasQMA1Ser+ZE7QlYJcFzDfhdvVUYC42zX19Vgq4xoEwIc7d7pURghhBAvyMvL47cb9xcB2n4zDWA/osbVMCKcY0QVaT+fRYWgq4wrQ2wToyQ468Tw3jMLzwEN06ynPp6CyOERsBgsuPe/GhTkqyGTAcEahz/aaiGJSnA9RRQNk81ZJBIowp1fYbgzoWYaQgjxAuGwXkeVEX810yiVSn4R05a0dkSNqM9IlH0YKReEEWdmX+UkRInnGnE0vLf0pzKU/cx+Z3UXNbo9l4bIWyMQMyYaOWZ2drUwLZya28QdkSn2zTF6jf3sq4RFYYQQQryguWG9gP8qIxEREU4/EFs714ihUQfWxsptXSlcai4RjqYB7GdhZSwMWxVp0P3FbpCpbI87LgR5q4kGAGK72YcRcwj1F2kKhRFCCPGCq1dtnSW51XqFfD0Lqysr9nJaXRlpsZmG4bdb04FVNHkagIINhaj5k00cwTcEI+7OWP4zs5lBVUMXDm+GEUd9Q6QRFEaaQmGEEEK8gOu8CgAxMTF2nwcFBUGrZed58HZlpK6uDvX1bA8GV8JIaysjjYf2NuZuM01cBFCuFHRgvSoOI7n/yee3ey5KF61KW2nrS+q1kTQAoIq2/74BsfbvERaFEUII8QJhGBFWGIS46oi3w4g7nVeB1ldGuGYaeYgcUqX940bcgdX54yrkEgRFyKGXygAA9UXiMFJ3uQ4AoE4KQMRQ8fctd/OcrpIFyFCvEo8RCUqkkTRNoTBCCCFeIKwktBRGqqurodPpvHYt7oaRVldGGpppHDXRAOI+I65URgAgIVqCsobhvfWF9WC4ESt6C0zl7CRoAfH2D/8KN6sx7jAFiZtlIrpSZaQpFEYIIR2KxWKBweD84mnewlVGgoKCoFarHe4jHFHjzeqIPyojFoMV5hozAMcjaQBbGNGq2WqHKxIigWsKNmxY6iz8ueoFTTaOwoio06yXw4ik0Qq9NPtq0yiMEEI6jPr6etxwww0ICwvD/v37/XotXCXBUX8Rjq9G1LgbRjQaDQIC2Ae6q5URUX+RCMdhpKIVHUkTo4BrgonP6gsNDb/a1oEJiLN/+ItH8Hh3mK0iWnx+jYNwRFgURgghHca+ffuQnZ0NvV6Pd99912/XYTAYUFlZCaD5MOKruUbcDSOtWZ9GGEYOFChwzytWVOtso2fMZoYPBu40lyRESVCmEISRonrRr0ATlREf9RkBAG28OIQFxFJlpCkURgghHYbwgb5z506YTE0voOZNzvQXAdp+ZQSw9RspKytzaX0aY5mtueRAgRIbfgLe+NwWRn49AZjYlhV0T2r80y1LiASuyW1hw1YZETTTxAWgrp7Bx98w2HeSPbcvm2nCk23hwyqROBxRRFgURgghHYbwgV5dXY19+/b55TqEYcTZZpq2WBkBbGHKarWK1rdpiXAiMm5OkM93ge9o+tUvtmBy5zDXm0sSotjVfvnzNVREDKLKiApLP2fw8DsMRj3FoLCMQXm1YG4TL1dG4rrZwpIsQikaYkzEKIwQQjqMxtWF7du3++U6WppjhNPWO7AC7o+oETbTcLOl5hQBB7IBq5XB17+ynykVwPhBLl0SALbPiLCZRt8QQvSiPiMB+O4gu11vBHYc8G0zjSrGdn3BidRE0xwKI4SQDqPxA33btm1+uQ5n5hgBPN9M89BDDyEzMxMHDhwQve/Oir0cd0fUCMNIlWDq9rU/MDh0BihoONTofkCwxvWKQXyjZhpDw1wj3K+QAAhT4tgF28/sPMT4tJlGJegjoqL+Is2iMEII6TAaP9BPnTolWrDOV5xtpgkODuaH/ba2mSYnJwfLly9HdnY2ZsyYgbo6duIvhmGQn2+bkTQsLMyl47pbGXHUTAMA63cDG3YLmmiGutd0ERQImIKUMIP9eb4Da0NlRBmlxIk8KYyCbkO7DgOllbbXoVq3Tu00zXWBCBsYColcgoS741v+gU6MwgghpMNwVF3wR1ONs5URiUTisVlYhWHm8uXLWLJkCQAgKysLJ06cAAB069YNcrnc4c83xdOVkbIq4IOv2W2pFJg4xKXL4UkkEsRFSlCu4CY+M8BqtqK+YZ2agLgAHDwl/pmKGuCP8+x2iBaQuzi3iTvXOGjbAIw6NwJxk2Jb/oFOjMIIIaTD4B7oKpWtJO7vMNJcZQSwNdVUVlZCr9e7fc7GQeGtt97Cjh078MQTT4jec1VrKyNWADUyhegzrlox7AYgKtT9QMA21bD/r41lRtRfqWdPCHaOkQOnGLufsVjYX73dRMORSCRQhCha3rGTozBCCOkQampqUFvLzqI1aNAg/iG/e/fuVj3k3eFsMw0g7jciXOnXVWVlZaLXZrMZd9xxB2pq2B6bc+bMwcSJE10+bmsrI1VyJRiJBAN62jeLTHFjFI1QfKR4RE3l0Sp+OyDeVhmRy+x/1ttTwRPXUBghhHQIwmaO+Ph4jB8/HgCg1+vx888/+/RauMqIUqlEcHDzQzY8NaJGGBRkMvbpyw2j7dKlC9577z23jutOZYRhGD6McP1FUuKAaSPE+012s4mGExcOlAk6sVYesYURS5gKlxpargb0BLp3Ef+st0fSENdQGCGEdAjCB3lcXBzuuOMO/rWvR9VwYSQmJgYSSfP/+vfUiBphGHnxxRdFn2VlZSEkJMSt47oTRiy1FlgNbHsJ118kPhKYOdp2L/r3AJJiWlsZkYgqI1V/2MLIFastpAzMAMb0F/+sr5ppiHNc68lECCFtVOMwMmrUKEilUlitVruhrt5ksVj4JpPmOq9yvBFGpk+fjvr6eixbtgwvv/wyRowY0cxPNk+j0UCr1aK2trbZ6yv4shCXV+SivrYeuSbb6B1ujpH4CAmG9gamDAN+/AN4eU7rO482bqapOm4bt3u61tZpdmBPCbSBwL83+W7CM+IaCiOEkA6hcRgJCgpCly5dcPnyZVy4cAEMw7RYpfCEa9eu8dOmt9RfBPBOGImKisLrr7+O119/3e3jCSUlJeH06dPIz89v8j4arxlRdbTa7n2uGSU+EpBKJdj0qgRWKwOpB2YjjY8UN9NY623T1R8qs70/qBcQEQwo5LYp6CmMtC3UTEMI6RAahxEASEtLAwBUVVWJZiH1Jlc6rwKeCyNcNUYqlbo8l0hLkpOTAbCrIjfuKMuRKqWABJCoJJCHyKGMVqIyORTbwxMBsMGB39dD06LHR4grI0J78tn3Y8KBLjGANlCCIdfbPg8PoqnZ2xIKI4SQDsFRGOnWrRv/3vnz531yHc7OMcLxdGUkIiICUqln/2rv0sXW+zMvL8/x+W9OxB9vjcIbd92CGw6PwKjTI7D9zv4oVrKTugnDiKfERdiG9gpJtXIU69nC/8Ce4Cs5t/e3BZCYcM9fD3EfhRFCSIfQXGUEAC5cuGD3M97gyhwjABseFAp2HgpPhBFhh1NPEYaR3Nxch/us2w289B8Jfj4eiP3Z7HuFgiJKnGuz0DtFGyiBOkiGqsbzmITYAsrADFsA+fskYERf9r9JrRzJQzyLwgghpEPgHuQBAQH8yBF/hBFXm2kkEgliY9nZOd0NIzqdjp9LxdthRFgZqampgcHAznh6S6btoX+ACyMNLWNBgUBQoHeaRRw11ZSrxCNpOKFBEuxeJsXuZVKvXQ9xD4URQkiHwD3I4+Li+LK8vysjzjTTALZKTmlpKUwmUwt72xP24/BlGFm6dCkCAwORlpaGANMx/v3GlRFvNNFw2KaaANF7VyxsOJFI2CHEpO2jMEIIaffq6+tRUVEBQNwHIzU1lQ8m/ugz4kxlBLBdM8Mwop93VuORNJ7WVBg5c+YMrFYrLl68iPSuQejasPzKoTNARQ2DGnatPsR7oYmG03h4LwBcNLCvuyW6tyIw8T0KI4SQdk84jbowjAQEBCApKQmAf5ppXK2MAO411Xg7jCQmJvKhThhGzp49CwBQKBTo2rUrBvVi39cbgB2CqV28WRlhh/eKw8hVCVsp6X2d985LPIvCCCGk3XPUeZXDNdVUVFSgvLzc69fCVTakUikiI517CnsyjDh7TlcoFAp+2nquA6vFYsG5c+cA2FYDvqWX7Wc2/mybYMyrYSRCgmsKcTMNVym5PpWqIu0FhRFCSLvnTBgBfFMd4cJIZGQkv0ZMS9p6ZQSwNdWUlJRAr9fj8uXLMBrZ9We6d+8OALg507b/joO27fgI74WC+EigrFEzDdeHhCoj7QeFEUJIu9dcGBHONeLtMMIwDN9M42wTDdD6MOLtDqyAuN/IlStX+CYaAOjRg+0l2jsVUCvZWVDrjbaf9XYzTeMOrGV8ZcR75yWeRWGEENLuOVsZ8XYn1urqan6oq7OdV4H2VRkB2H4jZ86c4V9zYUQuB25INdr9rNfDiKAyYpJKUS1TQKNmVwom7QOFEUJIu9dWmmncGdYLtI8wwk0JD7BhRFgZ4ZppAKBvmsHuZ709tLdWKkedlG0SK5GrAIkEmSmem3aeeB+FEUJIu9dcGElNtdXqvR1GXJ3wjBMdHc2PVmmLHViB5isjwjByYzf7MOKN2Vc5apUEoUESrI9MQaVMgY2RXQFQE017Q6v2EkLaPe4BLpfL7R7GgYGBSExMxJUrV3xaGXEljMjlckRHR6O4uLhVYSQ0NJSfWt7TGk8Jz1VGYmJiEBoayn/W9zpxGAkLYgODN8VHAhtrU9gg0hDqel9HVZH2hCojhJB2j3uAx8TEOFwkjmuqKSsrQ2Vlpdeuw505Rjjc0Nni4mJYrVaXfpbrwOqtqgggDiMnTpzggxfXX4QTHmRFepLttTebaOzOIbEFEKqMtC8URggh7ZrZbOZDQOMmGo6v+o24WxkBbNduNptFo2NaYjKZ+IDlrf4iAFt10Wq1AIA//viDf1/YRMO5WTDfiDdnX23uHBRG2hcKI4SQdq24uBgMw06w5aswcvjwYTz77LM4ceIE/x7DMKKHtLthBHCt34gvhvUC7IJ+XHWEu9+AfWUEAD8TK+DjyojgdUQINdO0JxRGCCHtWnOdVzmenmvknnvuwZtvvomBAwfis88+A8MwWLBgAbZs2QIA0Gg0onM6w5UwkpeXh+PHjwPwzUgajnBEDcdRGBndD1A2dF3p38P7oSA+UnwOqoq0P9SBlRDSrgkf3Fy/i8Y8OddIdXU1Ll26BIBdoO++++7DJ598gl9//RUAW0FYsWIFQkJCXDqus2HkzJkzGDRoEKqqqvDll18iLCyM/8zbYUTYb4TjqJkmJQ7Y/Z4EFwuA6bd59ZIA2I/WoZlX2x+qjBBC2rXCwkJ+u6nKyHXX2Z5Ora2M5Ofn273HBREAWLFiBWbOnOnycZ0NI88++yyqqqoAAO+++67PmmkA+zCiUqkcVksAYPD1EsweK4FS4YPKSKMwQmvStD8URggh7dqVK1f4bW6F3sY0Gg3/sG9tZUS4au2NN94IudxWYH7vvfcwb948t47rTBjZs2cP3xQEAL/99ht+//13/rU3R9MA9mGkW7duTq+/402N+4xQM037Q800hJB2TRhGEhMTm9zvuuuuQ1FREUpLS1FbW8uPDHGVsDLyt7/9DZmZmfjoo48wfvx43HvvvW4dE2g5jFitVixYsMDu/dWrV/Pbvq6MOOov4g/CZhqZDOjpuFhD2jCqjBBC2jVhOGgujKSkpPDbubm5bp9PWBnp0qULbrnlFnz22WetCiIAEBsby287CiMbNmzAoUOHAIi/C9dkA/i+A6uj/iL+oFJKkNrQXejGbuxr0r5QGCGEtGtcZUSj0YhmAm2sa9eu/Pbly5fdPp8w/DTVLOQOlUqF8PBwAPZhxGAw4P/9v//Hv/7oo48wePBgu2N4O4zEx8eLJpVrK5URAPj0eQnmTwA+WUBBpD2iZhpCSLvFMAwfRhITE/n1XRzxVBgRVkY8GUYAtqmmvLwcRUVFYBiG/z7r16/nr3nUqFEYM2YMcnJysG/fPtHPezuMKBQKxMfH8/e8LYWRIb0lGNKbgkh7RZURQki7VVVVBZ1OB6D5JhpAHEZycnLcPicXRkJDQxEcHOz2cRzh+mTU19eLZnMVTqa2YMECSCQSTJs2TdR5NjAwEIGBgR69Hke4hQelUinS09O9fj7SObgcRl577TWMGTMGw4cPxz333CMa0paVlYVRo0Zh5MiRWLZsmWiWvuzsbMyYMQODBw/G/Pnz3VoMihDSdixevBi9e/fGTz/95LdrcLbzKiDuZ+FuZcRqtfLn9HRVBBBPziYc9XPx4kV+OyMjAwA7cmbMmDH8+96uinBeeOEFZGRkYMmSJR4PY6TzcjmMzJw5E1u2bMGePXvw8ssv46WXXkJ1dTX27t2LjRs3IisrCxs2bMDevXuxefNmAIDRaMSzzz6L6dOnY/fu3cjMzMTLL7/s8S9DCPGNyspKLFq0CCdPnsSsWbNQV1fnl+twtvMq9znX38HdMFJSUgKj0QjA8QRgrdXUtPVcGFGpVKKJ3YSdZr09rJdz++23Izs7G88//7xPzkc6B5f7jAhLnRKJBEajEWVlZdi+fTumTp3K/4Uwa9Ys7NixA5MmTcKRI0egVqsxadIkAMC8efMwatQoFBUVOZykyGg08n/g+QuVy6FUKl293HaJW7HT1ZU7Oyu6X67xxP26ePEi//OFhYV45513/PJwEvbfSEhIaPY7yWQyJCYmIi8vD5cvX3bq+ze+V8IQk5SU5PHfc1wTCMBWRqxWK6xWKz/jK/c5d94JEyYgMjISZWVl6N27t9//DNCfRdd0lvvlaCXtxtzqwPr6669jy5YtMBgMGD58OFJTU5GTk4Px48fz+6Snp+PDDz8EAFy6dEmU+NVqNRITE3Hp0iWHYWTNmjVYuXKl6L1p06bh7rvvdudy2y1HMz2SptH9ck1r7hc3xJSzdOlSjBkzxmf/OudkZ2fz20qlssUhu3FxccjLy8O1a9eQnZ3t9Fwj3L0S9t3QarWtGiLsiFqt5rdPnDiB3NxcFBUVwWAwAGCvv/E5P/30Uxw8eBCTJ0/2+PW4i/4suqaj3y9hE2lT3Aojzz33HBYsWIDDhw/zpcS6ujrRH2yNRsOXbvV6PTQajegYGo0Ger3e4fHnzp1rN51yZ6uM5OfnIykpyalE2dnR/XKNJ+5X42aZ2tpaZGVl4f333/fEJTqttraW377xxhubnJqc0717dxw8eBAAex9a2r/xvaqvr+c/6927d4s/76r4+HjIZDJYLBYUFRUhOTlZVI3JzMy0O2dycjLGjh3r0etwF/1ZdA3dLxu3h/bKZDIMHDgQX3zxBVJTUxEYGCj6i0Gn0/E9u9VqNd/jXfi58F8BQkqlstMEj+ZIpdJO/xvUFXS/XNOa++Woz8Unn3yCJ554wqcjLAoKCvjtLl26tPh9hP9Cy8vLww033ODUebh7JfwXbNeuXT3++02lUqFr1664ePEizp8/D4lEIhr5k5aW1i5+j9OfRdfQ/fLA0F6ud3lKSoqow9W5c+f49s3U1FTRZ3q9HleuXBG1jxJC2g9hGJk/fz4AwGw244UXXvDpdXAjWwICAvgJw5rT2rlGvDXhmRDXpF1TU4PS0lLRSBrhgn+EdCQuhZG6ujrs2LEDdXV1MJvN+PHHH3HkyBH07dsX48ePx6ZNm1BQUICysjKsXbsW48aNAwDcdNNN0Ov12LJlC4xGI1avXo2MjIwmV9gkhLRt3INcqVTirbfeQnR0NABgy5YtPu2Mx4WDliY84wgrI+7MNcJ1mJVIJEhISHD5553ReEQNhRHSGbjUTCORSPDtt99i6dKlYBgGSUlJePXVV5GWloa0tDScP38es2fPhtVqxeTJkzFx4kQA7F9Yb7zxBpYsWYLXX38dGRkZWLx4sVe+ECHEuxiG4R/kycnJCAoKws0334xvv/0WBoMB+fn5Hu9L4Uh1dTVqamoAOF+l8FRlJD4+HgqFwuWfd0ZTYUQikYiun5COxKUwolarsXz58iY/nzt3LubOnevws169emHdunWuXR0hpM0pLy/n+4dxD8fGk3X5Ioy4MuEZJyEhge8g6moYMRgMuHr1KgDvNdEATYeRpKQkqFQqr52XEH/q3D1mCCEuEz7EuWYPYafVc+fO+eQ63AkjcrmcDxKuhhHh+bwx4RlHGOx+//13VFRUAKAmGtKxURghhLhE+BBvqjLiC+6EEcAWoCoqKlBVVdXsvjU1NfyIHWHnVW+GEeEonT179vDvUxghHRmFEUKIS4QdP9tjGHG230hubi4yMzMxdOhQfPTRR15drVdIpVKJFszjUBghHRmFEUKISxxVRuLj4/l5hXwVRtwdZutMGKmtrcXEiRP5wPP0009jy5Yt/OferIwA4n4jzb1HSEdBYYQQ4hJHfUYkEglfHbl06RLMZrPXr8NblRGr1Yr77rsPJ06c4N8zGo3YuHEj/9qblRHAcfCgygjpyCiMEEJcwjXTBAQEICYmhn+fCyNms9ntVXFdwYURpVLp0po4Lc018sorr+Cbb74BAISEhIiaoDjerow4OieFEdKRURghhDiNYRg+aCQnJ4smGvN1vxEujDg74RmnucrIkSNH8OqrrwJgp+j+4osv8MEHHyAgIIDfJyAgwOsLAjaujERGRiI4ONir5yTEnyiMEEKcVlZWxi+S13gCLl8O762trUVlZSUA15poALZ/i1zOTrHUOIwIR6+88sorGDNmDLp164Y333yTf79Lly4uhR93NA4jVBUhHR2FEUKI0xz1F+H4sjIi7C/iav8NmUzGN7M0DiPCETMjR47ktx966CHMnz8fKpUKjz/+uBtX7JrU1FRR4KEwQjo6CiOEtCNWqxXffvutaOFJX3I0rJfjrzDiamUEsAWpqqoqflIxQBxGhP1CJBIJVqxYgZqaGjzyyCPuXLJLAgICRN+Lwgjp6CiMENKO/O1vf8PkyZMxbNgwvrnElxwN6+VERUXx/RraSxgB2NE/HC6MSKVSxMfH2/2ct9ajcUQY7iiMkI6Owggh7cTPP/+MVatWAQCKiorw559/+vwamgsjEomE7zeSm5sLg8Hg0XPn5ubi9ddfx+TJk7FgwQL+fXfCiPDhLgwjwoXwuH4l/iLsg+NodA0hHYl//7QRQpxiMBjw97//XfTehQsXMGDAAJ9eh7CZpnGfEYB9aB4+fBhWqxWXLl1Cz549W3U+q9WKbdu2Yfny5dixYwcYhrHbJyMjw+Xjpqam8ttcGNHr9SgpKQHg/aG7znj44Yexa9cuZGZmYtCgQf6+HEK8isIIIe3Am2++ibNnz4re80e/Ea4yolarERUVZfd5434jrQ0jDz30ED755BO790NCQtCvXz/MmjVLVEFwljCMcKvi+mohPGddf/31PpvNlhB/ozBCSBt34cIFfu6Lxu/7knCOka5duzoc3ioMI54Y3vvll1/y2126dMG8efMwdepUpKen84vJucNRZaSpzquEEO+jMEJIG7dgwQK+/8XDDz+Mjz76CIDv1oDhFBcX8wu3Ne4vwhFWKVp7fZWVlfxIl1tuuQW//PILZDJZq47JCQ8PR2hoKCorKymMENIGUAdWQtowg8GAHTt2AABiYmKwdOlSvsOmrysjwnAhrCwIeXJ4r7B/Ss+ePT0WRDjcd8jLy4PJZKIwQogfURghpA07evQoXxW5/fbbodVq+dk5y8rK+FlIfSE7O5vfbqrTaFhYGCIiIgC0vplGOMqlqfDTGtwxLRYL8vLyKIwQ4kcURghpw/bt28dv33LLLQDEU4VznS994dSpU/x2r169mtyPa6opKCho1VwowjDiaOROazUe3kthhBD/oTBCSBv222+/8duDBw8G4PsF6TjCMNLccFpPdWIVNtN4szICiMOIVqtFaGiox89HCGkahRFC2iiGYfjKSHBwMB8AhJURX/Yb4ZppIiMjHQ7r5fTo0YPfPnPmjNvn83ZlRBhGLly4wIcRXyyERwgRozBCSBuVk5OD4uJiAMCgQYP4Dpz+CCPl5eW4evUqgOabaACI5hY5ffq02+fkwohGo2k2/LhLGEZ+//13fqQQNdEQ4nsURghpoxw10QDivg6+CiPCUNHSjKeeCCMWiwW5ubkA7Few9ZQuXbrwAe/AgQOi9wkhvkVhhJA2ylHnVYCtFMTFxQHwXZ8RZ/uLAGxY4haUczeMFBYWwmg0AvBOEw0AyOVyJCcnAwB/LoDCCCH+QGGEkDaKq4xIpVIMHDhQ9BnXSbSkpATV1dVevxZnhvVy5HI5f33nzp2D2Wx2+XzeHtbb3LEpjBDiexRGCGmDqqqqcPLkSQBA7969ERQUJPrc18N7nR3Wy+GaaoxGo2hUjLO8PZKGI2zy4lAYIcT3KIwQ0gYdPHiQX6FW2F+E4+tOrFwYCQ8PR3R0dIv7t7bfiLdH0nCoMkJI20BhhJA2SNh5VdhfhCMMI97uN1JZWYmCggIAbBONM51JhcN7WxtGfNlMI5FIkJCQ4LXzEUIcozBCSBsk7LzqqDIinFjM25URYZhwpokGaH1lRNhM09SifJ7QOIzExsZCqVR67XyEEMcojBDiQE5ODjIzMzFs2DDo9Xqfnluv12P//v0AgPj4eIfNBr4c3uvKSBpO9+7d+W1nwsjChQuRnJyM9evXA7BVRmJjYxEYGOjK5bqkcZ8RaqIhxD8ojBDiwMKFC5GdnY1ff/0V27Zt8+m5t23bBp1OBwAYPXq0w2aRoKAgxMTEAPB+GHFlJA1Ho9Hww2bPnDnD939x5NKlS1i0aBHy8vLw4IMP4vLly/wEa95sogGAkJAQhIeH868pjBDiHxRGCGmkrKyM/xc60Lopzd2xdu1afnvmzJlN7sf1GykqKkJtba3Xrsedyghga6qprq5GUVFRk/t9+umn/HZtbS3mzp3Lv/Z2GGl8DgojhPgHhRFCGlmzZg0MBgP/ujWLvTliMplgMpkcflZRUYHt27cDAGJiYjBy5MgmjyPsN+LN4b1cGAkNDeUnW3OGM/1GrFYrsrKyRO/9/PPP/LY3R9JwhE01FEYI8Q8KI4QIWK1WLF++XPSeJ8PIkSNHEBERAa1Wi/79++Ohhx7Ct99+yzdjbNq0iZ8NdPr06fx05Y4IR9S09hoNBgPWrVtnNzKnuroa+fn5AJwfScNxJozs3r2bX6BOrVbbfe6LyogwjHBNS4QQ36IwQojA999/LxpWCgBnz55tts+DK9avX4+amhoYjUYcPnwYy5cvx+TJk/HKK68AAD7//HN+3+aaaADxyJYTJ0606rpeeOEFzJgxAwMGDOCH8QKurUnTmDNh5D//+Q+/vXz5csTHx4s+90UYmTNnDpKSktCvXz+MGTPG6+cjhNiT+/sCCGlLPv74Y35bq9WitrYWlZWVKCsr88jKsVwVoLElS5YgOjqab6JIS0tDv379mj3WDTfcwG8fO3asVdd16NAhAOycIk888QQ2btwIAFi1ahW/j7PDejkthZGKigp89dVXANjJ1O655x6YTCY8+OCD/D6+aKbp1q0bLl++DIlE4pUF+QghLaPKCCENcnNzsXXrVgBAYmKiqDJx9uxZj5zjypUr/HZxcTEWLVrEv37sscf4CszMmTNbfDB27doVwcHBAIDjx4+36rqEHUw3bdqEbdu2Ydu2bXwY0Wg0uOuuu1w6ZkREBCIjIwE4DiPr1q3j++bMmjULKpUKc+bMQWZmJgAgMjLSrlLiLVKplIIIIX5EYYSQBp988gmsVisAYP78+aJmCU/1G+H6X0RGRiI6OhovvfQSpk+fbrffvffe2+KxJBIJevfuzR+3vLzc7evihtJyHnnkEVGF4p133kFSUpLLx+WqI1evXkVlZaXoszVr1vDbDzzwAABAJpNh8+bNeOKJJ7Bp06Zm+8wQQjoOCiOEgB3hwvVfkMvlePDBB0UTd3kijFgsFr4/Bvdgl0gkWLVqFR8qAKBfv35IT0936pjCphp3+43odDrU1NSI3svNzeUDyrhx4zBv3jy3ji1sqhEOEb5w4QLfNNS3b1/R90hJScF7772HYcOGuXVOQkj7Q2GEEABbt27lH76TJk1CXFycKBB4opmmuLgYFosFANsMxNFoNPjmm2/4NVH++c9/On1M4UPc3aYaYVXkpptuEk2HHhYWhlWrVrndhHH99dc7vD4uiADAlClT3Do2IaTjoDBCCIAVK1bw2/PnzwfAzjmhUqkAeKYywjXRALBr8khJScHp06eRn5+PqVOnOn3MPn368NueCCNDhgzB//t//49//dFHH7Wq34bw+oSdbIXX2rdvX7ePTwjpGGg0Den0cnJy8P333wNgO4WOGjUKANt/IS0tDdnZ2bhw4QIsFkur+jA0F0YAdor3oKAgl46ZmZkJqVQKq9Xq9ogaYRiJi4vDggULkJKSgoiICPzlL39x65icG264ARKJBAzD4OjRo/z7wjAirO4QQjonqoyQTm/16tX8KJZ58+ZBKrX9seCaaoxGI3Jzc1t1HuFIGmEzTWuo1Wr+GrOzs5uc2bU5wpE0sbGxkEqluP/++1sdRAA2YHGTs508eRJmsxmALYyEh4fzzVOEkM6Lwgjp1Bp3XOVGdXA82Ym1pcqIu7jKgtFodKtvi7AyEhsb67Hr4nDNMPX19Thz5gxKSkr4AMRVTgghnRuFEdKpbdu2jX8wTpw40e5h7MlOrN6ojACt78TauJnG04R9Qo4dO0ZNNIQQOxRGSKcmnOuC67gq5K3KSFsKI42baTxN2In16NGjomsUfkYI6byoAyvp1P744w8A7BDW0aNH233uycoIF0aio6P5UTqe0Npp4bnKiEwm42dM9SRhZeTo0aMoKSnhX1NlhBACUGWEdGJ6vZ5vOunevbuo4yonMjIS4eHhAFpXGTGbzXwFwpNVEQCIj4/nQ0RrmmliYmIc3oPWiomJ4Zt/jh49yo+qkcvloknRCCGdF4UR0mkJV+flRnw4wlVH8vPzUVdX59a5rl69yk945snOqwA7iytXYSgpKbGb2r05FosFxcXFALzTRMPhqiOVlZXIzs4GwM7O6skKESGk/aIwQjqtCxcu8NvOhBEAOH/+vFvn8lZ/EY67/UauXbvGhyRfhBEhaqIhhHAojJBOSxgsmgsjnujEKhxJ4+nKCOD+GjXeHknDcdRRlTqvEkI4FEZIp+VOZUS42JsrvDXHCKdXr1789unTp53+OW+PpOFQZYQQ0hwKI6TTEoaRbt26NbnfTTfdxG///PPPbp3L2800wuqNK2HE2xOecVJSUhAcHCx6j8IIIYRDYYR0WlwYCQsL40fMOJKSkoLU1FQAwG+//QadTufyubzdTKPVavnjnjlzhp/evjG9Xo+ffvoJNTU1AMSVEW8200ilUlGzTFxcHKKiorx2PkJI+0JhhHRKBoMBeXl5AJpvouFwi+cZjUbs3bvX5fMJKyOtWQW3Odww2crKSn6EDIdhGHz77bfo2bMnRo0ahdmzZ4NhGJ9VRgBxUw1VRQghQi6FEaPRiEWLFmH8+PEYPnw45s+fLyp1Z2VlYdSoURg5ciSWLVsm+tdZdnY2ZsyYgcGDB2P+/Pmif5ER4muXLl3if3+6EkYAYNeuXS6fjwsjMTExXhvOKpyzQ9hUk5eXhwkTJmDy5Mn8Yn/Hjx9Hdna2T8OIsDJCYYQQIuRSGLFYLEhISMCaNWuwe/duDBs2DE8//TQAYO/evdi4cSOysrKwYcMG7N27F5s3bwbAhphnn30W06dPx+7du5GZmYmXX37Z89+GtBv19fUoLi7m/+NWc/UVZzuvckaMGMEv6OZqGDGZTHz49kYTDcdRGLFarZg4cSK2bdtmt/+3337rsw6sAHDnnXciLS0NERERmDt3rlfPRQhpX1yaDl6tVuPBBx/kX99zzz1YtmwZKisrsX37dkydOpXvnDdr1izs2LEDkyZNwpEjR6BWqzFp0iQA7DLto0aNQlFRkcN2aqPRCKPRKL5QuRxKpdLlL9geWa1W0a8dza5duzBlyhRR34v4+Hj89ttvbj2s3blfwmG91113XYs/Gx4ejr59++KPP/7AsWPHUFxc7HSfh4KCAr4Kk5CQ4LX/r8JOrKdOnYLVakV2djY/70hMTAyee+45PPXUUwDYMML1HQkKCoJarfbq77mgoCCcPn0aFosFCoWiXfz+7uh/Fj2N7pdrOsv9cmZm51atTXPixAmEh4cjNDQUOTk5GD9+PP9Zeno6PvzwQwBsSVz4r0+1Wo3ExERcunTJYRhZs2YNVq5cKXpv2rRpuPvuu1tzue2OsJ9BR/Lmm2/adQItLCzE0qVLsWDBAreP68r94qYkB9jOn1zzRXP69evHr2Wzfv16TJgwodn9y8rKUFtbKxoOHBoa6tS53KHVavnto0ePIjc3F1u3buXfe+CBBzBp0iSsXLkSp06dwpEjR6BQKAAAERERXruujqCj/ln0Frpfruno9yslJaXFfdwOI7W1tfjXv/6Fhx9+GABQV1cn+stQo9HwU2fr9XpoNBrRz2s0Guj1eofHnjt3LmbOnCm+0E5WGcnPz0dSUpJX1grxJ4Zh+MXcAgMDMXLkSGzfvh1WqxU//PAD3n//fb45xFnu3C9hB88hQ4Y4VeW466678MknnwBg+1w8+uijdvsYjUZ8/fXX+OSTTxwOA+7ZsyeSk5OdukZXdenSBeHh4SgvL8fly5eRnJyMM2fO8J/fcccdSE5Oxl133cUHJJPJxP+st66rPevIfxa9ge6Xa+h+2bgVRgwGA55++mkMGTKEb3oJDAxEbW0tv49Op0NgYCAAthLS+F/COp0OarXa4fGVSmWnCR7NkUqlHe436Llz51BWVgaA7YexZcsWjBgxAj///DMuXLiA7Oxs9O7d261jN75ftbW1sFgsCAkJsduX6zMSHByM6OhopwLQ0KFDoVKpYDAYsGvXLkgkEtHPbd68GfPmzROtSttYnz59vPr/tGfPnti3bx8KCwtRW1uL/fv3A2D/TPXr1w9SqRSTJk3CkiVLRD8XGxvb4X6veVJH/LPoTXS/XEP3y42hvWazGc8//zyioqLw5JNP8u+npKSIOgWeO3eOn5shNTVV9Bm3Wir3Oek89u3bx2/fcsstAICpU6fy73355ZceOU9eXh7S0tKQmJiII0eOiD4zGo18k0RaWprTlRi1Wo0hQ4bwx7948aLo8wULFoiCSHp6OmbOnIlZs2Zh1qxZWLZsGW6//fbWfK0WCTux/vrrr3zfmH79+vGjePr06WM3vNjbnVcJIaQ5LoeR1157DQaDAQsXLhT9JT5+/Hhs2rQJBQUFKCsrw9q1azFu3DgA7AyWer0eW7ZsgdFoxOrVq5GRkeHVSZZI2/Tbb7/x21wYmTJlCv976csvv2xywi5XLF++HMXFxaitrbWrAly+fJnvMNbczKuONDXEt6ysjF+35rrrrsPu3btx5swZfPbZZ/jf//6H//3vf3j88cddboJylTCMrF69mt8ePHgwvy2RSDB69GjRz9GfRUKIP7kURoqKirBlyxYcPXoUI0aMwNChQzF06FAcPXoUQ4YMwZQpUzB79mxMmzYNgwcPxsSJEwGwJeI33ngDa9euxYgRI3D8+HEsXrzYK1+ItG1cGJHJZBgwYAAA9kHIVRzOnj3LLzHvLqvVirVr1/Kvt2zZwk9wBrg+rFeoqTBy8OBBfnvy5MmiocC+JAwjW7Zs4be54McRfg+AKiOEEP9yqc9IXFwcDh8+3OTnc+fObXL+gF69emHdunWuXR3pUMrLy/mOk3379uX7FAHsaKlff/0VALBx40ZkZma6fZ59+/aJwofVasUnn3yCV199FYDzq/U60rdvX4SGhqKyshI//fQTrFYrpFIpDhw4wO8zaNAgt6+9tYRhRDh3S+MwMmDAAP57ABRGCCH+1bl7zBCfEj6whc0GANtUw2ltvxFhVYSzcuVKfu6a1lRGZDIZRowYAYANV9wcHsLvNnDgQJev2VO6dOkiCnkA+x2jo6NF7ykUCtxxxx38a2eG3hFCiLdQGCE+46jzKichIYEPKKdOnRLNzeEKo9GIDRs2AGBHeHH9lkpKSvD1118DaF0YAYCRI0fy2z/++CMsFgvfTBMfH++VVXmdJZVKRZOfAfb3mvPqq69i/PjxePHFF+1+hhBCfInCCPEZR51XhYSjajZt2uTWOXbs2IGKigoAbN8N4SRqH330EcrKyvg+KVqtFjExMS6f47bbbuO3f/zxR5w5c4afyXTQoEF+6Ssi1KNHD9HrxlUoTpcuXbBt2za7Dr6EEOJrFEaIT5hMJr560KVLF4fVg8mTJ/PbXP8RVwmbaGbOnIlbb72Vfzj/8ssvSExM5Gc7dGVYr1CPHj340Se//vqr6Fr92UTDEfYbAZqujBBCSFtBYYT4xPHjx/kZd5v6l3pycjL/kD948KDL6zVUVVXxI0giIyMxevRoSCQSPPTQQ/w+BoOB3/773//u0vE5EomEr47odDq8//77/Gf+7LzKEYaRkJAQZGRk+PFqCCGkZRRGSKvt378fGzZsaDY8tNREA7APee5hXl1dLZrK3BkrVqxAfX09AHYRR27dldmzZ/OVmNDQUPzjH//A+fPn8be//c2l4wsJ+41w/VtkMhluuukmt4/pKcLwcfPNN3f6mR0JIW0f/S1FWiUnJwdDhw7FPffcg+XLlzvcx2g0ippPmqqMAOJmDuHcHS0pLy/H//3f/wFgO3EKqyGhoaE4ePAgfvrpJxQUFODtt992q+OqkLDfCKd37952azD5Q8+ePTFjxgzExMTg2Wef9fflEEJIiyiMkFbZu3cvLBYLAHa15cYYhsHDDz+M33//HQA7hPT6669v8njCZg7hcNmWfPDBB6iurgbAznfTq1cv0efx8fG49dZb7Ya9uqtLly52gaYt9BcB2ArT559/jqKiIn4YMiGEtGUURkirCJtSDh8+jJycHNHn//73v/lpyQMCArBhwwbI5U3Ptcct5gY4H0YuXrzIV14CAwN9NruvsKkGaBv9RYT8PaqHEEKcRWGEtMrp06dFr4VDcr///nv84x//4F//5z//Qb9+/Zo9nkaj4Vft/fPPP0UrQTfl+eefh8lkAgA8/fTTdovAeUvjppq2FkYIIaS9oDDSweXm5mLnzp38fydPnvTo8RuHkY0bNwIAamtrMXv2bL5T6/PPP48ZM2Y4dUyuucNqtTa7/AAA7Nmzhz9ndHS0aF4RbxM2gYSGhrq86B4hhBAWhZEO7NChQ0hJScHYsWP5/3r37o3PPvvMI8c3mUyi2UwBttNpXl4eli1bhuLiYgDA2LFjXZpYy9l+I7///ju/GCMAvPzyywgKCnL6PK0VFRWFadOmAQAeeOABGrVCCCFuor89O7AvvvgCDMPYvf+vf/3L4fuuunDhAr8Ym7B/wieffII33ngDADvc9b333nPpQe1MGDl8+DBuv/12vtPqLbfcgnnz5rn8HVpr/fr1yM3NxVtvveXzcxNCSEdBYaQDE87t8eKLL/IjTE6fPo09e/a0+vjCJprp06fz26+99hofEh544AGX1z1JT09HaGgoADaMNA5Ox48fx+jRo1FVVQWAbS5ZuXJlsx1jvUUikaBLly7UWZQQQlqBwkgHpdfr8ccffwBgpy9fsmQJXnzxRf7zjz76qNXnEIaRSZMm2Q3ZDQgIwMsvv+zycaVSKQYMGAAAKC4uRl5enujzBQsWoLKyEgAwfPhwfPvtt1Cr1S6fhxBCSNtAYaSDOnz4MD/ChJvxdMqUKfxS8l9//TWKiopadQ5hGOnZs6dooTsAeOyxx9xewbapphqDwcCvBZOQkICtW7e2iYnGCCGEuI/CSAclbKLhZjxVKpV48MEHAQBmsxmrVq1q1Tm4MCKVSpGens535gTYNVGee+45t48tDCP79+/ntw8fPsxP+T5y5EhotVq3z0EIIaRtoDDSQe3bt4/fFq4FM3/+fL4z6YoVK/gOqK6yWq38hGcpKSkICAhAz5498fe//x1hYWFYsWIFwsPD3b7+gQMH8v0wdu3axb8vXCF32LBhbh+fEEJI20FhpANiGIavjISHhyM9PZ3/LDk5GX/5y18AAAUFBdi6datb58jPz0ddXR0A8SqxH3/8McrLy3HPPfe4e/kA2OvmqiPZ2dm4ePEiAHEYGTp0aKvOQQghpG2gMNIBnTt3DteuXQPAVkUaD6t9+OGH+W1uqnZXCaeBF4YRT5o0aRK//e2338JisfAVn+joaFHIIoQQ0n5RGOmAhP1FhE00nNGjRyMqKgqA46GzzmjcedUbJk+ezG9/8803OHnyJD+cd+jQoTSclhBCOggKIx2QsL8I13lVSCqVom/fvgCAsrIyFBQUuHwOX4SR7t2783OU7Nu3D19//TX/GTXREEJIx0FhpAPiKiNyubzJhem4MAIAR48edfkcvggjgK2pxmq14p133uHfpzBCCCEdB4WRDqa8vJwPCjfeeCMCAwMd7uepMBIXF4eQkBA3rtQ5wn4j3Aq+QUFBuOGGG7x2TkIIIb5FYcSDrFYr/58n1n5xh3BODkf9RTitCSMHDx5EWVkZAO9WRQB2iG9MTIzovcGDB0Mmk3n1vIQQQnyHwogH6PV6jBgxAjKZjP8vJCQE69at8/m1OBtG0tLS+AnDXAkjR44cwdixY/nX3p7rQyaTYcKECaL3aH4RQgjpWCiMeMC6devw888/i96rqanB008/zU/J7iu///47vy2cxbQxqVSKPn36AAByc3NRXl7e4rGPHj2K0aNH8+vCDBs2DM8880yrrtcZwqYagPqLEEJIR0NhxAM+/fRTfrt///5ISEgAABQWFmLLli0+uw6GYXD48GEAQExMTIvrwgibao4dO9bsvseOHcOoUaNQUVEBgA0E27Zt88m6MLfddhvf90WlUqF///5ePychhBDfoTDSSpcvX8aePXsAsENRDx48iP/85z/8555YHddZly5d4sNC//79W5yHw9l+IydOnMCoUaP46sngwYOxfft2n60Lo1ar8cILL0ClUuGZZ56BSqXyyXkJIYT4BoWRVvrss8/47fvvvx8SiQSjRo1CWloaAODHH3/E2bNnPXKuc+fO4X//+x+/UFxjhw4d4rebGtIr5EwYOXnyJG677TZ+Rtebb74ZO3bs8PkCdc8//zxqa2vx6quv+vS8hBBCvI/CSCswDIP//ve/AACJRIKZM2cCYPtj/P3vf+f3W758eavPVVdXh+HDh2P27NkYM2YMjEaj3T7CMOJMU0ZGRgYUCgUA4I8//rD7PCcnB7fddhs/cmbQoEH47rvvEBQU5O7XaBW5XO6X8xJCCPEuCiOtcODAAZw/fx4AMGLECHTp0oX/bM6cOQgICAAAZGVl8YvKuevHH3/E1atXAQC//PILHn30Ubvhw66GEaVSiczMTADA2bNn7a7x3XffRWlpKQBgwIAB+O677xAcHNyq70EIIYQ0RmGkFYQdV++//37RZxEREfzKtZWVla0e5tt4dd2VK1figw8+4F9bLBa+upGcnMyvPdMSrqnGarXixIkTos+4zrAAsGXLFq9ObkYIIaTzojDipvr6eqxfvx4AEBgYiClTptjtI1wd9+OPP3b7XAzD8GFEONnXU089hR9++AEAu4quTqcD4FxVhNNUvxFhOElOTkZ0dLTb108IIYQ0h8KIm7Zu3crPt3HXXXc57NDZv39/fi6Pw4cP48qVK26d6+jRoygsLAQAjB07Fs899xwAthoyZ84c1NfXu9x5ldNUGLl06RIfbrjvQAghhHgDhREHTpw4gX/84x/YvXt3k/usXbuW377vvvsc7iORSEQTdu3cudOt6xE20fzlL3/Ba6+9htGjRwNg5zLJyspyub8I54YbbuCHAAs7sR4/fly0DyGEEOItFEYaYRgG06ZNw7vvvovbbrsN06dPR0FBgWifiooKbN++HQAQGxuLkSNHNnk84dTp3333nVvXJJw47Y477oBUKsW//vUv/r2lS5eKpoG/6aabnD62VqtFjx49ALATm9XU1ACgMEIIIcR3KIw0cuzYMZw7d45/vX79evTo0QOrV6/m39u0aRM/tHb69OnNLtrWv39/hIeHAwB++OEHmM1ml66nqKiI70jap08fJCUlAWCbYm6//XYA7MRrXBNL9+7dXe5oOmLECABss88vv/wCgMIIIYQQ36Ew0shXX33Fb3Mho7a2Fg8++CBfffj888/5fe69995mjyeTyfjQUFVVhQMHDrh0PVwFBmCbaIReeOEFu/1d6S/Cue222/jtH3/8EYAtjGi1WqSkpLh8TEIIIcRZFEYa+frrrwGw/T1OnDghGrL76KOPIi8vj18Ur1u3bk49/FvTVCNsomkcRoYNG4YhQ4aI3nNn3ZZbb72V7zfy448/orKyErm5uQDYqohUSr9NCCGEeA89ZQTOnj2L7OxsAMAtt9yCjIwMrFq1Cr179wbAdvC88847+cnG7r333hbXfwHAV0YA18LItWvX+E6v0dHRDoPG888/L3rtThgJDw/nR9WcOHECu3bt4j+jJhpCCCHeRmFEgKuKAMCdd94JgJ2CXDi5mHDESUtNNJy4uDh+eOyRI0dQUlLi1M8tX76cX4dmxowZDisUY8eOxY033ggA0Gg0bg/DFTbVLFu2jN+mMEIIIcTbKIwICPuLcGEEAIYOHWo3fLdfv35IT093+tjjxo3jt50Z4mswGPgQJJVK8cQTTzjcTyKRYN26dfjrX/+KdevWITAw0OlrEhKGkb179/LbFEYIIYR4G4WRBvn5+fxcHX369EFqaqro8zfeeEO0Lgu3KJ6zXO038s033/AVlKlTpzbbibRbt25YtWqVXZ8SVwwZMoRfNI8jkUj4tWsIIYQQb6Ew0uCbb77htx1N7R4bG4u3334bANvs4moYufnmm/nVbnfu3AmLxcJ/xjAM1qxZg1WrVsFgMMBqtYqGEj/99NMuncsdGo0GgwYNEr3XrVs3aDQar5+bEEJI50ZhBOwkZsJ+Eo7CCAA8+OCDOHv2LE6cOOH0QnQchULBz5p67do17Nu3j/9s06ZNeOCBBzBv3jz07t0bixYtwoULFwCwFYsBAwa4+pXcImyqAWgaeEIIIb7R6cOI2WzG3XffjYsXLwIABg4ciIyMjCb3T09PR2RkpFvnEoacL7/8kt8Wrv577tw5vPrqq/xrX1RFOI3DCPUXIYQQ4gudPow8/fTT/FDWqKgorF+/3qnhuu6YMGEClEolALYaYrVaUVFR0WSH1m7dumHChAleuRZHBgwYIOoAS2GEEEKIL3TqMLJy5Ur8+9//BsA2o3z11VdITk722vmCg4MxZswYAOw077/99hu+/vprmEwmAMATTzyBNWvW8E1AS5YsaXaqeU9TKpX81PASiUS0oi8hhBDiLXJ/X4C/7N27Fw8//DD/+uOPP7abzdQbpk2bxs+qunHjRpw6dYr/7N5778WAAQMwffp0nDx50qUF7zzl9ddfh8lkwpgxYxAfH+/z8xNCCOl8Om0YSUtLQ//+/bF//348+eST+Otf/+qT806YMAEKhQImkwlffPEFrl27BgBISUnhZ09VKpVu90tprczMTKfmQSGEEEI8pdM208TGxuKnn37CO++8gzfffNNn5w0NDeWnhy8pKeGH+N5zzz1e66tCCCGEtGWdNowAgEqlwlNPPQW53LcFoqlTp9q9N336dJ9eAyGEENJWdOow4i8TJ04UBaDu3bvzi/ERQgghnY1LYWTFihWYNm0a+vfvb9evICsrC6NGjcLIkSOxbNkyfmVbAMjOzsaMGTMwePBgzJ8/H0VFRZ65+nYqPDwco0aN4l9Pnz6dmmgIIYR0Wi6FkaSkJDz99NPo1auX6P29e/di48aNyMrKwoYNG7B3715s3rwZAGA0GvHss89i+vTp2L17NzIzM/Hyyy977hu0Uw899BAAdhr2+++/389XQwghhPiPS2Fk/PjxGDRoED9xF2f79u2YOnUqEhMTERkZiVmzZmHHjh0AgCNHjkCtVmPSpElQqVSYN28eTp061emrIxMnTsSxY8dw6tSpZhfBI4QQQjo6j/TczMnJwfjx4/nX6enp+PDDDwEAly5dQlpaGv+ZWq1GYmIiLl26hLi4OIfHMxqNMBqN4guVy+1CUHt3/fXXAwCsVqvofe514/eJY3S/XEP3y3l0r1xD98s1neV+SaUt1z08Ekbq6uqg1Wr51xqNBnV1dQAAvV5vt/KrRqOBXq9v8nhr1qzBypUrRe9NmzYNd999tycut93Iz8/39yW0K3S/XEP3y3l0r1xD98s1Hf1+OVP990gYCQwMRG1tLf9ap9Pxa5yo1WrodDrR/jqdDmq1usnjzZ07FzNnzhRfaAesjDTFarUiPz8fSUlJTiXKzo7ul2vofjmP7pVr6H65hu6XjUfCSEpKCi5cuMBPp37u3DmkpqYCAFJTU/H111/z++r1ely5coX/3BGlUtlpgkdzpFJpp/8N6gq6X66h++U8uleuofvlGrpfLnZgNZvNMBgMYBiG37ZarRg/fjw2bdqEgoIClJWVYe3atRg3bhwA4KabboJer8eWLVtgNBqxevVqZGRkNNlfhBBCCCGdi0uVkVdffRVbt24FABw9ehSvvPIKli9fjiFDhuD8+fOYPXs2rFYrJk+ejIkTJwJgqxxvvPEGlixZgtdffx0ZGRlYvHix578JIYQQQtolCSOcnYy0CVarFbm5uUhOTu70pTtn0P1yDd0v59G9cg3dL9fQ/bLp3N+eEEIIIX5HYYQQQgghfkVhhBBCCCF+RWGEEEIIIX5FYYQQQgghfkVhhBBCCCF+RWGEEEIIIX5FYYQQQgghfkWTnhFCCCHEr6gyQgghhBC/ojBCCCGEEL+iMEIIIYQQv6IwQgghhBC/ojBCCCGEEL+iMEIIIYQQv6IwQgghhBC/ojBCCCGEEL+iMEIIIYQQv6IwQgghhBC/ojDiAytWrMC0adPQv39/7Ny5k3+/vr4er732GkaPHo3bb78d//vf/0Q/169fPwwZMgRDhw7F0KFD8Z///Ef0sy+99BKGDRuGO+64A999953Pvo83eeNevfPOO5g0aRKGDRuG++67D3/88YfPvo+3eeN+cQoLCzF48GD861//8vr38BVv3a/NmzfjzjvvxJAhQzB16lTk5ub65Pt4kzfuVUFBAR555BHceuutGDduHNasWeOz7+Nt7t6v2tpaLF68GCNHjsStt96KF154QfSzHfHveUfk/r6AziApKQlPP/00li9fLnp/9erVKCwsxNdff43a2lo89NBDSEtLw80338zv88033yAyMtLumCtWrEBVVRW2b9+Oixcv4oknnkDPnj2RnJzs9e/jTd64V1qtFh988AESEhKwe/duPPPMM9iyZQs0Go3Xv4+3eeN+cd555x10797da9fuD964X7/88gs+++wzvPXWW0hNTUVBQQGCgoK8/l28zRv36s0330RCQgKWLVuG4uJi/PWvf0WvXr0wYMAAr38fb3P3fi1atAgxMTHYvHkzAgICcOHCBf5nO+rf845QZcQHxo8fj0GDBkGpVIre379/P+69915otVrExsZi4sSJ2LZtm1PH3L59O+bPnw+tVosbbrgBw4YNw/fff++Ny/cpb9yr+fPnIykpCVKpFKNGjYJKpUJeXp43Lt/nvHG/uJ9nGAYDBw709CX7lTfu16pVq/CPf/wD1113HSQSCRITExESEuKNy/cpb9yroqIi3H777ZDL5UhISECfPn1w6dIlb1y+z7lzvy5evIgzZ87gqaeeglarhVwuR48ePfif7ah/zztCYcTPhIsmMwxj9wdz1qxZGDduHBYuXIjKykoAQHV1Na5du4a0tDR+v/T09A7zh7op7tyrxgoLC1FdXY2kpCRvXmqb4O79MplMWLZsGZ588kkfXWnb4M79slgsOHv2LC5cuIDx48dj4sSJWLlyJTr6Yuju/t6aNm0adu7cCaPRiLy8PJw8eRL9+vXz1WX7TVP36/Tp0+jSpQteeukl3HbbbZg9ezaOHj0KoPP9PU9hxI8GDRqEL774AjU1NSgsLMTWrVtRX1/Pf75y5Ups3boVn3/+Oerr67F48WIAQF1dHWQyGQICAvh9NRoN6urqfP4dfMXdeyVkNpuxcOFC3HfffdBqtb68fJ9rzf1au3YtBg8e3CkCG8fd+1VeXg6LxYJDhw5h/fr1+OSTT/DDDz9gy5Yt/voqXtea31s33HADTp48iaFDh2LKlCmYNGmS6GHbETV3v0pKSnDw4EEMGDAAO3fuxJw5c/DMM8+gqqqq0/09T2HEj/76178iPj4eU6dOxeOPP47bbrsNUVFR/Od9+/aFXC5HWFgYnnnmGezbtw8mkwmBgYGwWCyivwB0Oh0CAwP98TV8wt17xWEYBgsXLkRYWBjmz5/vj6/gU+7er5KSEmzevBkPPPCAH6/e99y9XyqVCgBw//33IygoCLGxsZg2bRr27dvnr6/ide7eK4vFgieeeAKTJ0/Gvn37sHnzZuzatQu7du3y47fxvubul0qlQkJCAiZPngy5XI6RI0ciISEBJ0+e7HR/z1MY8SO1Wo0XXngBO3fuxMaNGyGRSJCRkeFwX6mU/V/FMAyCg4MREREh6uh07tw5pKam+uS6/cHde8V54403UFpaiiVLlvCfd2Tu3q9Tp06huLgYU6ZMwZgxY/DZZ59h27ZteOyxx3x5+T7Xmj+Lwgcx935H5u69qq6uRmlpKaZOnQq5XI74+HjceuutOHLkiC8v3+eau1/XXXddkz/X2f6e7/h/K7cBZrMZBoMBDMPw21arFcXFxSgrK4PFYsGBAwewZcsW3HvvvQDYjk3nzp2DxWJBdXU13n77bQwcOJDvHDV+/HisWrUKOp0OJ0+exC+//ILRo0f782t6hDfu1YoVK3D8+HG8/fbbdp3L2jtP369bbrkF3377LdauXYu1a9firrvuwqhRo7BkyRI/f1PP8Mbvr7/85S/473//C51Oh9LSUmzatAlDhgzx59f0CE/fq7CwMMTExOCbb77hj7Nnz55mH8jtiTv3q1+/fmAYBlu3boXFYsGePXtQUFCA66+/HkDH/XveEQnT0WN8G7Bw4UJs3bpV9B43/OuVV15BZWUlunbtimeeeQZ9+/YFABw6dAj/93//h5KSEmg0GgwYMABPPfUUwsPDAbDjz1999VXs2bMHwcHBeOyxxzB27FjffjEv8Ma96tevH5RKJWQyGX/M559/HuPGjfPRt/Ieb9wvoRUrVuDatWt4/vnnvf9lfMAb98tkMmHp0qX44YcfEBgYiMmTJ2P+/PmQSCS+/XIe5o17lZ2djbfffhsXL15EQEAAbr/9djz55JOiP5vtlTv3CwDOnz+PJUuWICcnB0lJSXjmmWdw4403Aui4f887QmGEEEIIIX5FzTSEEEII8SsKI4QQQgjxKwojhBBCCPErCiOEEEII8SsKI4QQQgjxKwojhBBCCPErCiOEEEII8SsKI4QQQgjxKwojhJB2rV+/fujXr1+HXimXkI6OwgghpEXz58/nH/ozZswQfVZZWYnBgwfzn7///vseP/+WLVv44xNCOh4KI4QQl5w/fx5//PEH//qbb76BwWDw4xURQto7CiOEEKfJ5XIAwPr16wEAFosFGzdu5N8XqqqqwtKlS3HHHXdg4MCBuP322/HSSy/h6tWr/D4rVqxAv379MGHCBPzwww+46667MGTIEMybNw+XL18GwC5AtmjRIv5nuArJihUrROerra3FwoULMXz4cIwbNw6rVq3y9NcnhHgJhRFCiNPS09ORkJCAn3/+GcXFxfjll19w9epV3HbbbaL9DAYD5s+fjy+//BJlZWVITk6GTqfDjh07MHfuXFRUVIj2LykpwUsvvQSJRAKDwYCjR49i8eLFAIDExEQkJCTw+2ZmZiIzMxMxMTGiY3zwwQc4cOAAFAoFSktLsXz5chw4cMBLd4IQ4kkURgghTpNKpZg2bRpfEeEqJPfcc49ov507d+LixYsAgKVLl2LDhg1YvXo1pFIpSktLsWHDBtH+FosFb7zxBjZu3Mj3STlx4gTq6+vx4IMP4sEHH+T3zcrKQlZWFiZPniw6Rnp6OrZs2SKq1Bw6dMij358Q4h0URgghLpk0aRLUajU2bNiAw4cPo2fPnujdu7don1OnTgEAAgICcOuttwIAevTogeTkZNHnHK1Wi2HDhgEAUlNT+fcbV1CaM3r0aCgUCoSGhiI8PBwAUF5e7tqXI4T4BYURQohLgoKCMG7cOOh0OgD2VRF3j8mRyWT8NsMwrTqGKz9PCPEfCiOEEJfdfffdAIDQ0FDcfvvtdp9nZGQAAOrr6/Hzzz8DAM6cOYPc3FzR584KCAjgt/V6vTuXTAhpw+y7wBNCSAvS0tLw448/QiaTQalU2n0+ZswYfPbZZ7h06RL++c9/Ijk5GQUFBbBarYiKiuLDjLO6du3Kb0+bNg2RkZF48skn0adPn1Z+E0JIW0CVEUKIW0JCQqDVah1+plKpsHLlSj445ObmQqPRYNy4cVizZg3CwsJcOle3bt3w4IMPIiIiAlevXsWff/6JmpoaT3wNQkgbIGGoUZUQQgghfkSVEUIIIYT4FYURQgghhPgVhRFCCCGE+BWFEUIIIYT4FYURQgghhPgVhRFCCCGE+BWFEUIIIYT4FYURQgghhPgVhRFCCCGE+BWFEUIIIYT4FYURQgghhPjV/wekrU9zbeMw0AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -873,7 +1009,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0eff2362782e48238db87ae206484ad9", + "model_id": "a79efe8ce42046bfb3a06579eb5a7192", "version_major": 2, "version_minor": 0 }, @@ -893,9 +1029,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABd/klEQVR4nO2dd3hUVfrHPzPpCSmUNBJqkB5CuSBFBFRsWBC7Yi9rYdfVtbu2Xcvu6q6V1cWfim1XRQVR2LUXiiBXQHqoAdJ77zPn98eZe2cmdTKTkML5PE+eZO6ce+45M5Pvfec973lfixAChUKhUHR/rJ09AIVCoVC0D0rQFQqFooegBF2hUCh6CErQFQqFooegBF2hUCh6CErQFQqFoofQmYIuuvpPdnZ2p49BzUXNpbv8qLkcs59mURZ6C9hsts4eQruh5tI1UXPpmnTXuShBVygUih6CEnSFQqHoIShBVygUih6CEnSFQqHoIShBVygUih6CEnSFQqHoIShBVygUCh8RQlBfX9/Zw1CC3hqPPfYYzz77bLPPr1ixgl27dh3DESkUiq6EzWZj7NixnHzyydjt9k4dixJ0H1GCrlAc3+Tn57Nr1y5++ukn1q9f36ljUYLeBE8++STDhw/nggsuIDU1FYDXXnuNyZMnk5KSwoUXXkhlZSXr169n5cqV3HPPPYwfP54DBw402U6hUPRciouLzb/fe++9zhsIStAb8csvv/D++++zdetW3n77bTZt2gTAggUL2LRpE7/++iujRo3i9ddfZ/r06Zx33nk888wzbN26laSkpCbbKRSKnouroH/44YfU1tZ22li6rKBbLJYO+WmNNWvWcMEFFxAaGkp4eDjnnXceADt27GDmzJkkJyfz3nvvsXPnzibP97SdQqHoGbgKemFhIV988UWnjaXLCnpX49prr+Xll19m+/btPProo1RXV/vUTqFQ9AxcBR3c3S6bUwU3/MVOXnGLSRLbDY8EXdO02ZqmfaNp2neapl2gadpJmqat1zRtraZpyY42cZqmfalp2jpN0xb6OjAhRIf8tMbJJ5/MihUrqKqqory8nM8++wyAsrIy4uPjqaurc3vDwsPDKSsrMx83106hUPRMDEE//fTTAVi5ciUVFRUAvPSJ4I3VsHLtsRlLq4KuaVoI8AfgLF3X5+i6vhx4EpgHXAH81dH0PuBvwCzgdk3TgjtmyB3LxIkTufTSS0lJSeGqq65i8uTJAPz5z3/mxBNPZMaMGYwcOdJsf9lll/HMM88wYcIEDhw40Gw7hULRMykqKgIgJSWFYcOGUVVVRXp6OgC58ikqa47NWPw9aDMNqAI+0zStErgNsOm6XgQUaZrWx9FuCvAHXdftmqbpwFhA74hBdzQPPfQQDz30EBkZGSQkJJjHb7311kZtZ8yY4Ra2eOuttzbZTqFQ9EwMCz0qKoqoqCgASkpKACgolW1qjtE6qSeCHgsMA6YCpwGPA6Uuz9drmhYIBOi6bkTVlwB9aICmaTcDNwMsWrSIuXPn+jD0jqeuro6MjIzOHka7oObSNVFz6Zq0ZS6u7WxBIyAynAMHDpCQkEBOYTTgT15BKRkZ5e0yNlcjsyGeCHoxsE7X9VpN075BCnqZy/P+jufqNE2zOkQ9Eihs2JGu60uAJY6Hx2aVwAcaWujdGTWXromaS9ekLXOpq6sDYOCgwezxvwHGRlFe+yUJCQkUl0sbNygknISEyA4br4Eni6KbgFGaplmA8cAuwF/TtChN0wbgFO5NwGxN0/yBSYCK11MoFD0ew+VSUDOQKns0WAM4lCWorxcUO4zy6q7ictF1PV/TtOXAD0ir+nogAVjteHybo+lfgbeBJ4BXdV2v6pARKxQKRRfCWBTdkTHQPJZdYKfIxcPSlXzo6Lq+GFjscugAML1BmyygazvFFQqFop0xLPSf9/c1j+UWW8kvdrapqTs2Y1EbixQKhcIHiouLIaAf29OckdoFpf5mhAsoQVcoFIoujxBCCnrvsxDCmVqkuCKIghJnOyXonUBaWhpjx471uZ/vv/+ec845p8nj3qbXTEtL49///neTzx0+fJiJEycyfvx4xowZw6uvvurVNbxl69atrF692nzcWg55b7j22mv56KOP2rVPgKVLl7Jo0aJGx2tqajjttNMYP348H3zwQbtf1xueeuqpZp8TQnDKKadw+PBhxo8fz/jx44mLiyMhIcF8vHfv3jZ/vj1ND/3yyy/z/vvvt6nvnkB1dTW1tbVY+80DYGR8PgCl1aHkuwh69THaWKQE/RjSUYIeHx/PTz/9xNatW9m4cSN/+ctfyMzM9GWobaKhoPcEtmzZAsi5XXrppR6dY7PZOnJILQr66tWrSUlJYdCgQWzdupWtW7dyyy23cOedd5qPAwMD23xNTwX9+uuv580332xz/90d6T+3IqLk8uHZk3IAqKjrpVwuXYH6+nquvPJKRo0axc0332zmM//Tn/7E5MmTGTt2LDfffLOZF2b//v2cdtpppKSkMHHiRA4cOODW36ZNm8y0AK+++irPPfcc48ePZ82aNeTl5XHhhRcyefJkJk+ezLp16wD44YcfTKtqwoQJlJWVcf/997NmzRrGjx/Pc88953aNwMBAgoKCAGlZNlc1ZenSpcyfP5+5c+cyePBgXn75Zf7xj38wYcIEpk6dSmGhjEDdunUrU6dOZdy4cVxwwQXmKv7s2bO57777mDJlCsOHD2fNmjXU1tbyyCOP8MEHH7hZs7t27WL27NkMHTqUF198EYCKigrmzZtHSkoKY8eObdLybSmf/I8//sj06dOZPn26m7X+zDPPMHnyZMaNG8ejjz5qHp8/fz6TJk1izJgxLFmyxDz+5ptvMnz4cKZMmWK+5q7k5uaycOFCNm3aZOa5/+abb5gwYQLJyclcf/311NRIk2vw4MHcd999TJw4kWXLlvHll18ybdo0Jk6cyMUXX0x5ebn5OZg+fTopKSlMmTKFsrIy0tLSWLBgARMnTmTixInmzT4rK4uTTz6Z8ePHM3bsWNasWcP9999PVVUV48eP58orr2w05vfee4/zzz+/yffdFZvNxk033cSYMWM4/fTTqaqSwWgHDhzgzDPPZNKkScycOZM9e/a0Kd9/aGgoiYmJ/Pzzz62OoSdRVFQE/lEIvyiiesHU0fKmXm2LpKDEudXmWAl6hyXB8uCnRZhp65Cfljh06JAAxNq1a4UQQlx66aXimWeeEUIIUVBQYLZbuHChWLlypRBCiClTpohPPvlECCFEVVWVqKioEN99952YN2+eWLdunZg4caI4fPiwEEKIRx991OxPCCEuv/xysWbNGiGEEIcPHxYjR44UQghxzjnnmGMoKysTdXV1Zp/NceTIEZGcnCxCQkLEyy+/3Oj59PR08eabb4qkpCRRWloqcnNzRUREhHjllVeEEEL8/ve/F88995wQQojk5GTx/fffCyGEePjhh8Udd9whhBBi1qxZ4q677hJCCLFq1Spx6qmnCiGEePPNN8Xtt99uXuvRRx8V06ZNE9XV1SIvL0/06dNH1NbWio8++kjceOONZrvi4uJG48zPzzf/fuihh8SLL74ohBDimmuuERdddJGw2Wzi22+/FUlJSUIIIb744gtx0003CbvdLmw2m5g3b5744YcfhBDO96yyslKMGTNG5Ofni8zMTDFgwACRm5srampqxPTp093GbuD6eldVVYnExESRmpoqhBDiqquuMl+rQYMGib/+9a9CCCHy8vLEzJkzRXl5uRBCiL/85S/i8ccfFzU1NWLIkCHi559/FkIIUVJSIurq6kRFRYXYv3+/EEKIvXv3ikmTJgkhhHj22WfFE088IYQQor6+XpSWlgohhAgLC2s0ToOBAwea7VzfB9fP26FDh4Sfn5/YsmWLEEKIiy++WLzzzjtCCCFOOeUUsXfvXiGEEBs2bBBz5swxX/dly5a1+v4IIcS9994rnn322WbH2J1IT0/3qN26desEQYMFM21i4EU2sWlzqmCmTVhmlIrrn3bqzkm3t6w9baRZXfUobPF4YsCAAcyYMQOQRS3+/e9/c/fdd/Pdd9/xt7/9jcrKSgoLCxkzZgyzZ88mIyODCy64AIDgYOcq9+7du7n55pv58ssv6d+/f5PX+vrrr92+zpaWllJeXs6MGTO46667uPLKK1mwYAGJiYkejXvbtm1kZmYyf/58LrroImJjYxu1mzNnDuHh4YSHhxMZGcm5554LQHJyMtu2baOkpITi4mJmzZoFwDXXXMPFF19snr9gwQIAJk2aRFpaWrPjmTdvHkFBQQQFBRETE0NOTg7Jycn84Q9/4L777uOcc85h5syZjc7bsWMHf/zjHykuLqa8vJwzzjjDfG7+/PlYrVaGDx9OTo78avvll1/y5ZdfMmHCBADKy8vZt28fJ598Mi+++CLLly8H4OjRo+zbt4/s7Gxmz55NdHQ0AJdeeil79+5t8bVNTU1lyJAhDB8+3HxNFi9ezO9//3uzD4ANGzawa9cu8/NTW1vLtGnTSE1NJT4+3kz0FhERAchvLPfeey979+7Fz8/PHMfkyZO5/vrrqaurY/78+YwfP77F8YHMwx0eHt5quyFDhpj9Ge9heXk569evd3ufjW8gDWnp/enbt+8xdfV1BYqLi8FPvu7hodA/NhxsVQi/MA7nONt1mY1FnYX4sXO8QQ2LYFgsFqqrq7ntttvQdZ0BAwbw2GOPtZrnPD4+nurqarZs2dKsoNvtdjZs2OB2IwC4//77mTdvHqtXr2bGjBltSpjfv39/82u6n58fjz/+OOD0vxquGQCr1Wo+tlqtHlUtN9r7+fm12N71Okbb4cOHs3nzZlavXs0f//hHTj31VB555BG386699lpWrFhBSkoKS5cu5fvvv2+yT+FweQkheOCBB/jNb37j1s/333/P119/zU8//URoaCizZ8/usNz0YWFh5ljmzp3Lf/7zH7fnt2/f3uR5zz33HNHR0Sxbtgy73W5+Dk4++WR+/PFHVq1axbXXXstdd93F1Vdf3eIY/P39sdvtWK0t/980fF+qqqqw2+1ERUWxdevW1qba4vtTU1NDSEhIq330JIqLi8FfCnpEKERFRUJdFvgNYechZ7tjtbFI+dAbcOTIEX766ScAli9fzkknnWQKQb9+/SgvLzf9t+Hh4SQmJrJixQpAfqANn2JUVBSrVq3igQceMD/0DXOnn3766bz00kvmY+Mf6sCBAyQnJ3PfffcxefJk9uzZ0+hcV9LT001faFFREWvXrmXEiBFccMEF5oJYSkqKR/OPjIykd+/erFmzBoB33nnHtNabo6WxuZKZmUloaCgLFy7knnvuYfPmzY3atDWf/BlnnMEbb7xh+qozMjLIzc2lpKSE3r17Exoayp49e9iwYQMAJ554Ij/88AMFBQXU1dWxbNmyVq8xYsQI0tLS2L9/P9D8azJ16lTWrVtntquoqGDv3r2MGDGCrKwss5xhWVkZ9fX1lJSUEBMTg9Vq5Z133jEXVQ8fPkxsbCw33XQTN954o/k6BQQEmHlDmhrjwYMHW51LU0RERDBkyBDztRBC8OuvvwJty/d/8ODBdokS605IC11+4woPRd7Q6nIByHbJZqUWRTuJESNGsHjxYkaNGkVJSQm33norUVFR3HTTTYwdO5YzzjjD/OoM8p/7xRdfZNy4cUyfPp3s7GzzudjYWD7//HNuv/12Nm7cyLnnnsvy5cvNRdEXX3wRXdcZN24co0ePNsMNn3/+ecaOHcu4ceMICAjgrLPOYty4cfj5+ZGSktJoUXT37t2ceOKJpKSkMGvWLO6++26Sk5O9fg3eeust7rnnHsaNG8fWrVsbWdENmTNnDrt27Wo1xG/79u1MmTKF8ePH8/jjj/PHP/6xUZu25pM//fTTueKKK5g2bRrJyclcdNFFlJWVceaZZ1JfX8+oUaO4//77mTp1KiC/OT322GNMmzaNGTNmMGrUqFavERwczJtvvsnFF19McnIyVquVW265pVG76Oholi5dyuWXX864ceOYNm0ae/bsITAwkA8++IDf/va3pKSkMHfuXPNb37Jly0hJSWHPnj2mpf/999+TkpLChAkT+OCDD7jjjjsAuPnmmxk3blyTi6Lz5s1zs5bbynvvvcfrr79OSkoKY8aM4dNPPwXalu9f1/UunUG1uWABXygqKnJzuVgsFgJEQaN2x/2iaFfA04WR7oCaS9ekveaSmZkpTjvttHbpyxs2b94sFixY0GnXb41PPvlEhIaGmgEMreHp+3L33XcLYq8XzLSJ656WC5/hE95tFIwRd/6xWRRVFrpC0QOIj4/npptuorS0tPXGHUB+fj733HNPp1y7NWpra7nzzjuprKz06VtMU7gtijqWD0IDGrsfj9WiqBJ0haKHcMkll5gRNMeauXPnMmDAgE65dmu8/vrrHD58GHBWEgIoLhPYbL6VZXBdFA0Plccigp17J2J6y9/Kh65QKBQ+UlVVxRNPPGE+NgQ9u0AQf4Hg2qfbQdAdFnpEmIyQiwx1hnwm9JO/laArFAqFj7z22mtkZmaa4ZSGoO85It0g270LDDJpGIcO0Dfcqd6xfcBqBbsd6us7vkibEnSFQtFj+fHHHwGZawacgt5elYRklIszbBEgJsoZTdM3AoIC5N/HwkpXgq5QKHosBQUyhHDMmDFA+wu6m8vFIeixfZybE/tFOgX9WCyMKkFXKBQ9FiPh3NChQwEXQXcEolT5kNZWGLnQ/XoBTgs9uk8I2OQdo2+khWBHkktloSsUCoUPGBa6q6ALISgul/5sX6zmiooKbDYbloAowCnokZGRUCs3GPaNgCBD0JWFrlAoFN5jWOjx8fEEBQVRV1dHVVVVu7hcjFqi1oBIACLkRl+HoMvMXMqHrlAoFO1AVVUVVVVVBAYGEhYWJoUWaaUbgl5bB3a7d9En+fmyOpHF331jUWRkJBR/gx9VaCOVoCsUCoXPGNZ5nz59sFgsTQo6eC+0Rgpnu9Xdhx4ZGQlHHmdS3RkkJVhMl4taFFUoFAovMfznffv25UCGIDd6CYSObiTo3gqtFHQ/7ARjsUCYq4UOlJXIG0qw8qErFAqFb7ha6C9+JCjxOxnibmgs6F5GuuTk5LhFuBi1FIz0C0ZEjXK5KBQKhY+4Wug/7XQcDIhtNws9Ozu70S5RwM21A0rQFQqFwmcMCz0iKpYt+xwHA2Pa1+XiL63xCBdB79WrFxaLhYqKCurr652CrlwuCoVC4R2GhV4fPJZ6m+NgQAxFxSWUVjjb+SToTVjoVqvVdLuUlZURHOTbddqCEnSFQtEjMSz0YptLVaqAWHILqhAukYre7hZtTtDB3e2iXC4KhULhI4aFnl052HkwoB+5hTa3dr5Z6O6JuQyUoCsUCkU7YljoaYVxAFgQYLGSUeiuvt4Ius1mkxuLGiTmMmhS0I+By8W/tQaapg0GNgHGOvHFwGzgTqAKuEbX9XRN00YCSxx9Pqzr+jcdMWCFQtGz2LhxIwAnnnhiu/ZbUFAAgQkUlocQ1Qt6BZaRXhhBTlmkWztvBD0/Px+73U5oRCyVNLbQe/fubY4h6Bgm52pV0B38oOv6RQCapvkDdwGzgMnAw8BvgKeAG4Ac4L+AEnSFQtEiOTk5zJo1i+DgYAoLC7Fa289pUFhYCBFTAThxNOTm2UgvhMKqaLd23gi6sUs0LDK+SUFPTEwEID09neBQ76/TVjx99WZomrZG07SngBOA3bqu1+q6vg4Y52jTX9f1fbqulwKFmqb164gBKxSKnsMbb7xBTU0NJSUllJeXt35CGygoKIBwafVPHQ0xveVKaFldnFs7XwQ9JCwGcJafMxg4cCAAR44cIShAPldT1/EVizyx0LOAYUAl8BqwAHAtLe7n+O16cygB+gD5rh1pmnYzcDPAokWLmDt3rnejPkbU1dWRkZHR2cNoF9RcuibH81xsNhuvvPKK+Tg1NZX+/fu3y1iEEFLQTxgOQGKfQiJCqgGoxL2YdXZuMRkZlW7HWpvL7t27AbAGRkIN2Grd++jVS+4gTU1NJWVYCRBBQWE5GRllPs8tISGh2edaFXRd12uAGgBN0z4BrgVcb6XGkrHd5VgkUNhEX0uQfnaAjr9d+UhGRkaLL153Qs2la3I8z+W///0vR48eNR+Hhoa222tRXl5OXV0dluAEBDBueF/ScsphHdj83W8awaFRJCT0djvW2lzq6qRDPDgsGmpgQLx7H+PHjwcgLy+PmH6RgCAgqBcJCRHtMr/m8GRRNFzXdeO2MhNYBdyiaVogoAHbHM9laZqWBOQCfXRdz2/cm0KhUEheffVVt8fGVvn2wAhZtARJQe/fDwbGBbu1CQqUkSe+uFwsxk7RMPfn3V0u8tix8KF74nI5SdO0J5Aul0PIRdBq4HvH72sc7R4CliJdMI+290AVCkXPITc3l88//5yAgABGjx7Nr7/+Smmp9ORu3CVYvUHwx6stBPhbWumpaWTIoh92v35YLBDbBxJi/HF1DMT1gcPZUF0rgLZdxxB00aD8nEH//v2xWq1kZWXhb60H/LpGlIuu6/9FRq248oHjx7XdLqQFr1AoFC2SmpqK3W5nypQpJCYmugn6H/9P8LUOcybA7Ane9S9DFmPA4kd0FAT4W4jt7e7lNQTdm52ihqDbkEreUND9/f1JSEjg6NGjVJQXAtFqY5FCoeiZZGVlAdKSbZidMEt6SyjxIeilsLAQAqWvvL8j3i7W3U1OfF/52xtXSHa2rBlaa5NunIYbi8DpdikpygNUci6FQtFDMQQ9Pj7eTGRlWOj5Dld6pZc5VsCw0B2C7hDu6Cj3NnF95G9ffOjVddJB3tBCBxgwQEbTFBfJtl3C5aJQKBTtjaugGxEjpaWlCCGcgl7tff9NWejBQRb8KaMe6feO62MBRJsF3W63k5cnre7KGmkTNyXohoVelJ8JdK2NRQqFQtFuuAp6w1qfNkcgtM8WelA84BR0gGA/5xYaby30goICbDYbkVG9KauUi6m9Qhq3MwQ9P08KuvKhKxSKHklmphS5hi6X/GJnG2/T2kIDC72vM4IlLNDpmI9x+NTbKuiGuyUmbrDsMwT8/BpHyRiCnpeTDigfukKh6KE0Z6Hnu4SiV1Z7v/fQzYfuYqFHBEs/TqBfrWlVtybo2w4Irn7STkaeHI+xINonejAA4U1Y5+AU9JzsI4Cy0BUKRQ+luUVRN0H3wULPzc2FwMYul95hUr2D/KoIdmRBbE3QF38ieOcLeOxNKej/+c9/ABiQpAHQp5nNn4agZ2emAUrQFQpFJ1BXV8eyZcu44IILSEpK4ueff27X/mtqaigsLMTPz4/o6OjmBd2HRdH09PRGUS4AfSOkgz7AWuGxoBthlO99BVu3p/HWW2/h5+eHNut6AMYOafq8qKgoevXqRWVZoUfXaQ+UoCsUCjfuuOMOLrnkElasWMHBgwf59NNP27V/w2URFxeH1Wpt3uXipYVeV1dHZnY+BMZgtQrTVw7OjIv+oswU9NZ89TlFzna3PLoem83GVVddRXaZzLQ4/oSmd5laLBZppQt5AeVDVygUxxzDIp82bRrgXARsL1zdLYCbhZ5X7PSbe2uhZ2dnQ0AsIEMTXRcsB8nD+NnyPbbQDUEH2Hh0IlY/Px566CG27pfHUpKaP3fgwIFgdwi6crkoFIpjzaFDhwC4+uqrgY4X9I/W9oW4GxtZ6N5Gubi5WxpUZTh9ihX2306/iucICZLHWhJ0IQQ5jryxvYIqIWQ4J5/7GElJSfxqCPqw5s9PTExUgq5QKDqH0tJSCgsLCQ4OZtw4WbumIwX9YKbg94sDYdg/qayGvCIXC709BL2v+3OJCfGQ9SqFGT97ZKGXVcrnQ4NhdNT3AJSGLCA9F4rKoF9k45uGK9HR0abLpbZO3iA6EiXoCoXCJC0tDYDBgwebFrSroNvtvguSawz6v79yHLT4QcgwcgptZjtvXS5S0BtHuID024OcU6C/nEtLgm5Y57G9Iaj0EwD25CaxaY88njJM+sqbIzpalruzWuqBjvejK0FXKBQmhrtlyJAhxMZKh3NOTg5CCDLzBTHnCx553d5SF61iWOhxcfG895XLDSJkuLsPvV1cLu5iGxQURJ8+faivr6e8TJZsaFHQHf7z2D6Qk7YOKrZRWRvAPz6U42zJfw7Qr5+8o1iR/paOdrsoQVcoFCauFnpoaCi9evWipqaG0tJSft4NBSXw3RbfrmEIepXfCPYccXki5AQKSp2S5JOFHtS0ywWcvvu83Cz8/GSqgfr6pr95GBZ6TJSQN7v85QCs2y6PNxfhYmBY6BZxbPzoStAVCoWJq4UOuFnphrhVVPl2DUPQ9SMjAOgb6XgidAxlVX5mO99cLlLQ41sQ9KysrFb96IaFHhZYQV1dHX1Z4/Z8Swui4LTQzYVR5XJRKBTHihYF3SFuFT5s+AFD0K1886sUu3suc1i5EVMB8HNoepWX4peeng4BMkbcSMDlStsE3RG3bpe7i0YMqGWooyRpgD+MHNjyWAwL3W6Td8Gfd8Nlj9lZsrJjFkeVoCsUChPD5dJQ0LOzs8kplCLki6DX19fLbfm9kskp9mNgLFx9huPJYHnNRKmBXlnoNptNLroGSkGPbULQ+/eXipyZmdm6oDu+ldiq5ELusKQkFpwsj40ZAoEBLbtcDAvdXl8JwE87BR98C99tUYKuUCg6ECGEaaEPHjwYcLfQc4tlO19cLrm5uQghiIiZCMhFxbi+EGB1dmoIelVN26NqcnNzqa+3QYDspGFRC2jaQm8u5t3cJVqaBsDQoUO5YZ6F3uFw6ZzW65CGhYUREhKCsMm707YD8viIAR5Np82oAhcKhQKQKWfLysroFRFNdmlv+vZtf5eL4T8P6zuWUiApQYb99QkpIKciEYCYKAgJkiJrxIB7Snp6Ovj3AYs/vcObtqDdBF3WumjVQi/OSwUgKSmJkYMsFK7yvKh0v379OOrwoW8/KI+NGOhd8evWUBa6QqEAnO6WwFGLGXsN/LxLNCnodfVQ10xUSGsYMe1+vYYDMLS/FLaY8GKzTXQU5i7Otrpd5IKoHLNrDhdXXAW9td2ixpxz03cAUtDbSnR0tLkomu24QezUl7e5H09Qgq5QKADngqg9RO4Q3ZvetIUO3rtdjNJtNn+5mpjkWGBM6F1ptukXBaGGoLcxFt11QbRhUWgDb6JcMg79AkiXS1vp16+fKegGqVs/b3M/nqAEXaFQAE5Br7HI3ZRFZc6dlVk5RZQ4i/14veknP19u5qm0y36NiJGBMc4O+0VaTDdLW/O5tMVCz8zMJFjWeG5S0CuqBBVVEBQgKC44QlhYGDExMW0bEO7b/wGoyWB4Unyb+/EEJegKhQJwuFyswVTVhwNQXO600LPy693aemuhS0H3o6yuDxYLDJa6zrD+zt2n/SKdfnOvXC6OBdHmLPSwsDDCw8Opra3FzyJ3+jQl6IZ13ruXfDIpKanFbf7N0chCr0r1ytL3BCXoCoUCcFjogYnm46Iypw89r9hdyLxdGM3Pz4fggdiFlYR+EBwk+x3uskgYHeWry8Ww0JsXXyN0UdjlnalJQXf4u8MCKgDv3C3g7kMHoGqvGRba3ihBVygUgEMMg507ZYrKoFevXoSGhlJjj3Jr65ugS2E03C0A/WPCoFYumPpioR89erRVHzo43S62Oum7b8lCDxBS2b1ZEAXDQneZSKWy0BUKRQeTm5sLQe6CDg63i8MvbeDTomiwFMakBOfxyMhIyH6NoNqtjB3iYqG3QdCLioo4dOgQlmDpx2nOhw5OQa+vlQsDroL+wgsvcPnll3M4S17cVu3YVDSslX3+zdDQh26t2S/zpHcAStAVim7Ehg0bzIXF9sRut8t+g5w7Xoodi6CxsbGmX9qgXSz0eKdLJCIiAg4/SuShswgOsjjDFtvgctmwYQMAYVGOXa4eCHpdTSngXHzNzs7mvvvuY82aNazfJCtYlOTvAyAlJcXzwbjQ0Iee0KcSf/+O2QKkBF2h6Cbs3r2badOmMXXqVMrKytq176KiImw2G4ERTiu0RQvdF0EPkYLeyEJH1hUFvIpyWbduHQDWYCnWnljo1ZXyeoaF/txzz1ETNBnGrOaTTSfIMWfuxGKxmAU/2oqbD91ewwkDArzqxxOUoCsU3YTNmzcDcODAAX7/+9+3a9+5ubkA+Ic6fbtugu5YaDQsZ29cLjabjcLCwiZ96MHBwfj7+1NTU0NNTY1XLhdD0GtsskZpU3lcDAxBr6qUjvLqWnlTW7zkAxi9AvqcQb09kGHxVdjzP2P48OGEhYV5PhgX+vXr53S5VO0nKWmwV/14gseCrmna5Zqm5Tn+vljTtPWapn2jaVqi49hITdN+dBw/taMGrFAcr+zfv9/8+4033uDjjz9ut74NQRduUS7yt7TQ5ULjEEf4tDdx6EVFRQghsIQ4fOgugm6xWMxi0WVlZc5F0RauI4Tg4YcfZsWKFdTV1cni1tZQaur9CQ6EXiHNn2sIemW5zKJYXStYvHgxFf0ehIDeUPwNgVuG8Ic570D1QSZMmND2CTvo06eP00LvwAgX8FDQNU3zAy4Gjmqa5g/cBcwGHgEedjR7CrgBOBP4U7uPVKE4zjEEfdq0aQDtaqUbgm5sKgIor5KFH+Li4kwL3bCqvbHQ8/Pzwb8vwi+C8FCXPOgOXN0uTgu9+RQD27dv54knnuDyyy/ns88+o7KyksHDTwSkdd5SzPiAAXKtoLRIzru6Fl544yeIux5/q52Btc9QW36EpUuXAjB+/Pi2T9iBn58fvfwdZfxK13VYhAt4bqFfDiwD7MAJwG5d12t1XV8HGI6l/rqu79N1vRQo1DSthdKpCoWirRiC/vTTTxMcHEx6ejrl5eWtnOUZeXl5ENAPO4FE9YLecm+Rc3ORIxRwqMNCr2hBaFu8RrDTf95QcI1Uszk5OYQGy+dastCzs7MBqK6u5vrrrwdgdMpsQCb4aomBAwdisVgoLpJ9lJbVkh9+H1is3Hmplakp0gG/ceNGAJ8sdICE4I2w6QTIeL5zLXSHdX4J8IHjUG+g1KWJUWLEta8SoAUPlkKhaCuGoJ9wwglm2Ft6enq79O0asjgw1inoRWUQHRMPAf1A2BkUJ4W2tUXRojLBxl3uou+6IDokrvE5gwYNAuDw4cMe+dBdo32MxVRXC70lgoKC6N+/P6JeftU4nFUFkSdhEbU8fI2FiRMnurX3xUIHiO7XD6oPAqJDLXRPYmcWAh/qum7XNA2gGIhwed4o0+1aOTYSKGzYkaZpNwM3AyxatIi5c+d6MeRjR11dHRkZGZ09jHZBzaVr4ulcSkpKyM/PJzg4GLvdTnR0NPv372fLli2Eh4f7PI5Dhw6Zgh4TWY2w+wEB7D2Uh6gOBIsVq60AW60fEEVuQSUZGSXNzuWuVyP58IdQ3r0/n9kpMoRk3759EDRYXiOinIwM90idvn1lvbht27bRd8wZQBT5RY2vY7B37z4Y9BjWyKnY/aKh7GeCw+VNISyw+fMM+vfvT0aavGNs3ift0l6WNEqLwklOTjbbxcbG+vyZ69VL5ukNCwujurrap74SEhKafc4TQR8NTNA0bSHS3fJbYJSmaYGABmxztMvSNC0JyAX66LreKFhW1/UlwBLHw44p2dGOZGRktPjidSfUXLomns7FcC8Y1vmwYcP46aefqKqqapfXorKy0oxBHz4wGGEBDkFAcDSRfaT9Jmqy6R87Rp5gDSUhoVezc0nNkPbdKr0vV54tv7zbbDazKlHyCeEkJES4nT9mjOy7qKiIcXG9AYHFr/F1DNKLo2HgLU5Lstd49so1ToYmNn+ewfDhw9l0UO4ULayQbRN6F5CQMJL6+nrCwsKoqKhg0qRJPr/Ghs8+KSmpwzYVgQcuF13X79N1/XRd188E9um6fivwPPA98ITjB+AhYCnwBfBYB4xVoThuMdwtxm5FQyCOHj3aLv27u1wsbi6X0irp/xC12Qib9Nm35nJJk/cfVq5zLmzKTUVS0I1oGVeMKkmeulzScmQ89wnRmVxzppT1z9fL52KiWk+iNWTIEPct+cCIBPnY39+fyZMnA777z8FZW7Qj/efQxopFuq5rjt8f4PSpG8/tAma239AUCoWBIeixAydSWycaCfquNMGWvXDF3JajO5qjoQ/9gNztTlE51NQ5GtXmUl1RAPRqMcqlpFyYqXYrqmD1BrhotrEoOhhoWtDdfOgehC1mFYUCMDKxnIeu8uOt/zm/9LfmQwfHDcS+zu3YpJF+5t/XXXcdO3bs4KKLLmq9s1YwhHzs2LE+99USamORQtEN2L9/PwQNYsmW+7nqicaCfv1fBAufEOw46F3/eXl5pstlQAxEObwVxWVwKMvRqDqNyjJZoKIloT2c4/74/W+E4xqFECRFe3ALgp6WlkZIkDynJQu9oDIKkBEzJwywcIrLOmZLu0QNpKC7X+Dkic4Tr776avLy8nxeEAW46qqr+Pjjj7n33nt97qsllKArFN2Affv2Qa+J2IWVbQfcXS719YKtjj1HrlWFPKW+vp6CggIIln3KKBdp5ReVCQ5mOizf6kOUlUi1bslCT3PcAJIdwRyrfoKySkFmgRWsAfSLqCUkqPG3iMjISCIjI6mqqqK2qhho+cZRVifDHEcNkf6Z35zn7LOlPC4GjQS9+hDJozumenNQUBALFiwwN091FErQFYpuwP79+yFYWrB5Je6CvveooMaRi6Sssrkemic/Px8s/hAQh8UC8X1dwhbL4aBpoR+krFg+aMmHbljoM5LhpHFy085n6yC3TG6dHxhjb/Zcw49eWCCjQFrK5VKN3OWUMlz2O38mJEbLPDADPCgsNGDAACw4L+Bfs5PevT24E3RhlKArFF2csrIycnJy8AuVW+YLSyE8PJKwsDDKy8vZuNOp4qUVbe8/NzcXAvuDxUp8Xwjwt9DbcLmUw0GHP53qgxQ5hLZFQc+WFv2gWAsXzJRW89e/CIqrogAYlujX3Kmm2yUv5wjQvMulssqO3T8e7HWMGyFFODDAwtrFFja+aiGyV+vrCIGBgcTFOLer9g1K92r9oSuhBF2h6OIcOHAAgJDeIwEQAorLLaaV/tM2p4p7Y6G7+s8THVlyoxwWelYBZOaDn8UONekU5EqffUuCbkS4DIqDkx0ZZ3/YKqhG7iY6YWDz2QZNQc9KA5p3ufyaWiJj4+uOEhLs7G9QnIWxQz0X5YGJTlN+UHTLcevdASXoCkUX5+BBudJpCXGGvOUVO90u2/Y7oztKvRB0GeEiY6MNV4VhoW+VqcCJjaoGbOTnHAak5SxE01tJDJfL4DgYP0wmyTqYaYFwmYPGNQ96QwyXS1bmQfM6TbF1rwyjCSaz6QYeMnigc3V2zKC6Flp2D5SgKxRdHGNXYQ3O/fL5JZgbVPZnOdMKllW2fb+edLnIvgwL3fChlzsWPwfFSb93dnYGQYHyW0Jz/u3DLha6v7+F6UakXtQpQNMhiwaGhZ5+WK7yVtWA3d54TnsOyUWD8IC81qbXIsOGxEFdIVQfJmVElE99dQWUoCsUXZzMzEzwi6TW7hRu00L3C6egwrn13xsfunS5GBa6tJ57h7u3GeFwk2RlZRHmiBFvyu1SUSXIK4bAAIhzxIKfnOKwyC1SblzzoDfEEPQjR9LM3OtN1fvcnyFFvm+Yb26SpKEDYctE2DqdoUM7dtPPsUAJukLRDnz99dc8/fTT2O3NR3B4S2ZmprkhxyDfiHQJdd+oUuZBWtudhwSlFU6rV7pcnDHoAJENds2PHBxEYGAgpaWlhLYQI37E4W4ZEANWqxTymS6FfizUm98CmqLJzUWO6+xOEyReaOeBf9k5kidvMHFRXviYXBg8eDDUHIW6bNPd051Rgq5QtAN33HEHDz74IP/973/bve+mBN200MOkWhoC3Nqi6N6jgnHXCU67U5iuDFcfuiG2Af4WtwIRSQkWmRcdCPKXvuamLHTDfx5MNrNmzSIzM5Mpo8DPWg9AeEARfn7N+9D79etHaGgoJSUlBAfIm6Ph2rn7n4KMPPjLe7AnS/ptBsXUtzzhVnDdit/R2/KPBUrQFQofEUKQlpYGwLJly9q9/8zMTHNbvtXxH5tf4tgtGiazAk535MxqzeWy7QDY7bBpD/zna3msqUVRcHe7DI13Vvnxt0ofSFObi4wIl/yMzfz44488//zzsuhz/Q5H/7bGJ7lgsVhMK93fKm8clTXw3WbB6g2AXV673i6zliQl+BZmOGDAAIYPH87UqVPNjIjdGSXoCoWPFBUVyWyFwIoVK6ip8aI+Wwu4WuijpNa5WOjS5TLdke21NQvdiBEHeOj/BNU1gty8YgiIxWoRxPd1tnUT9P5OQbcKqeQNLfSqWvjVEXFTU5IKyFJ527Ztozx9NQBTxrXgb3FgCLoVeYHyKrj3Vce4j/yZwIL/k3/XZpEYH9Vqfy3h5+fHjh07WLt2rU/9dBXalJxLoVA0xjXjYUlJCV9//TXz5s1rl74rKyspLi7GkjAEAWgjYOch6UMPDw/HEjYGAYwZUApEtBq2+POvWYAU5sPZ8OTSYo7m2iHeSlwfO/7+TovXyOfSOxyiwp0uF+zyIhXV8MkPgg+/E/y6H/YejcMISCnNlVm1CwoKuOKKKyAzl+FjZ3LvFSe3OueBA+W3EYutEojknS8E+h4IpIDajOepFbUEnlBGbeHP9Ot3tQevYssEBDQfF9/dUBa6QuEjDVPYfvjhh+3Wd1aW3Gof0EvuEp08UgpuXrHMsyL8+4CtnFBkaGNrFvqhLMeibfZSAP7yrp1aiww7GRjnLgeGhW5EpRgWur1OxoAXlsLlfxJ88C3sOQIWC4weDJfNqcSet9zsZ+fOnVCXx5J7YOSg1l0khqDb6uV1/rVSHheHn5A3E1FP7d67If9DMy2tQqIEXaHwEaMM3EknnQTAp59+2m5uF0PQbQFS5DS5WZT8EjhgFL2p2k9xgdwq35oPPbvIYY1mL4HK3dRbehM29GaARtEnzQl6fa0MFfx1v6C2Tvrdf3nNwp43s9n5tpXfnbkdbGWMGDHC9EsPGjSImTM9y65tbJiqr5GVLqtrISKkjrr01xr5uY06pAqJEnSFwkcMC/3UU09l3LhxlJSU8N1337VL3zIGPRybJYLgQGkBg7TQ9xuCXn2QvJxDgPQ3N7URx6CgXOYQP2nyQMj/GIDaSJnvu2FCK1PQHRuBDJdLbZVM6bh5rzw+LgkmjrAQEigfG6/H6NGjufpq6RK55pprsFo9kxvDQq+pcqaOnBC/CexVLFy40K3ij7LQ3VGCrlD4iCFgAwYM4JRT5G7IrVu3tkvfMsLFkUM8Tm6jDwqUoXzbDjiEu2o/GelHzTDD8mZi0atqBJV1vcBey8JL5/L2P84DoM4mZSAx2t0dcuEsC9pIuHiOPG4IbUWpjE3c7EgLMHKg+3WOHDlitv/b3/7GO++8w4MPPujxnI3rVJXLenL+fiAy/wnA7NmzmT9/PiCTa/WEyJT2RAm6QuEjhstlwIABjB49GoBdu3a1S98ywkXGRw+Kk2F9/RwJAjfsdDSqPsjRo0cJl8Z3s370o7mOP2qO0j8+joUXpHCCS3nLhhb6jGQLm5ZYmTRCCrpRrb6kSLqBjKpEIwZaWL9+PZ988gngLuhhYWEsXLiQoKAgj+ds1O+sKJMDvmi2nV/WS0f6rFmzuOCCCwBZvLm7Z0dsb1SUi0LhI64WemioVNXdu3e3S9+ZmZkQMhyA4Y7aC9FRkJEHP+9xNKraz9GjNsITZXbE0gpIaMITYezipOYIcXFxWCwWLpotePpdebi1HOLh4eHExMSQW+O+3f6bzxdz85LfAjB9+nQ3QfeGoKAg4uLiyM56nfkX3cBlJ+7j/YoKRowYQVxcHDExMTz44IMdXs6tO6IsdIXCB4QQpoWemJjIqFGjACno7ZEGIDMzE0Jln6McESKGhW5u7Knez9GjR4mQdR6atdCdgn7U9IdfNMtp4ba0Jd9g6NChYHdfef3gzT+Zf3/99dc+C7p5buV27j73V/ZulzugZs2aBYDVauXJJ5/k8ssv97r/nooSdIXCB/Lz86muriYyMpLw8HD69u1LbGwsFRUVjcIZvUEKugxtMXzV0VHO5wMDBNRkkJ6eTrjDh95cPhdzU1HNEWJipDk+YTicOgmmjsFtU1FzJCUlgc3lAnWFhAZWcs899wDw7bfftougG5EuR44cYdOmTQBMmzbN6/6OF5SgKxQ+4Oo/N3C10n0lw81Cl8cMCx1kbvG+fXtTV1dHoJ8MlWwudHHfUbnzMtS/wPRpWywWvn7Oyk+vWFvMsWKQlJTkbqFXpTJp4kT+8Ic/APDjjz9SUFBAYGCgedPwBuNmcPToUXRdB0DTNK/7O15Qgq5Q+ICr/9ygvRZGy8rKKK8OBf8oonpBrCMdbXSUU3iTEpzXtgq5Stmcy+Vghkxk1TfMixy7DoYOHQo2l/MrU0lOTiY2NpYRI0ZQXS1vGgMGDPA4TLEpDEHfsmULhw4dIjQ0lJEjR3rd3/GCEnSFwgcMQXeNjW4vCz0rK8vNOjciOlwt9GEugi7q5Uac5iz0o3ny3z2+j/cZCpuy0JOTHQnCpk83D7ve4LzBEPRVq1YBMGHCBPz9VQxHayhBVyh8oCMtdFf/ueFuAXcfelKCs7ZoXXUh0LQP3W4X5JVIN8vAWO9D/aQP3V3Qx42TKXxnzJhhHvbFfw7O17OsrAxQ7hZPUbc8hcIHmvKhuwq6EMKrWOmfdwnSM5z+c9ccKA0t9ArHtWsqZDk2WbzC/Zq5RVBn84O6Agb0793m8RjExcURFGDDTGxQmWqGD06bNg2r1YrdbvdZ0BuerwTdM5SFrlD4QFMul9jYWKKioiguLiYnJ6e5Uxvx+eefc8MNN3DB/WWceIvgjRUFENKyhT4swXntilKZjLyhD72gRHDJo44Il8pdzqyJXmCxWBiY6AiHEfUMjKknIiICgMjISCZOnAj4bqFHR0e7bUZSgu4ZStAVCh9oyuVisVi8crs8/vjjvPHGG/z3w8cA+G7/iRDmHuECTgvdapW7R033RHEmAKWVUF8v+HSN4IY/ZxF31mHWbIMQv0LYv8gnQQcYMTgCKndDwWekjBvl9twDDzzAjBkzOPfcc326htVqNW9U4eHhDB8+3Kf+jheUoCsUXmKz2Zp0uYDT7dKWhdEDBw4AUHP4n1CbA+EaBCYQFCjzuBjE9IYrToM7LoLAAKcPvSj/MCAt9OeXwfyHBG98FUu9/0D8a3aQbLsZKnf4LOjDkgbBL8mw+yJzQdRgwYIFrF271udrgNPKnzRpkk8RM8cTyoeuUHhJZmYmdXV1xMbGmlv+DYwQuz179jR1aiOKi4spKioiNDSUl156ib/++7/srb0WgBEDcIsRt1gsvPeI87GR+6Qo7wjEyCiXn/c4XCy570P+R9QX/ZdNQnq+fRXbpKQkQPbfUNDbE0PQlbvFc1oVdE3TYoHlQB1gA64EkoC/AXbgVl3Xt2uaFge8DYQBr+i6/m6HjVqh6AIYdUSbqhZ/wgknALBv3z6P+jp0SKa/HTp0KNdffz0XXiIYeLGgtMLd3dIUQUFBxMbGklNZDEgLPT23FgiEjH9w3ikJrFxZjZFUNzY21qMxNYeRpAswI1w6giuvvJJNmzZxzTXXdNg1ehqefI/JB07SdX0WUrBvAJ4E5gFXAH91tLsPKfKzgNs1TQtu/+EqFF2H9hT0gwcPAk6xjOxl4c6L5XNTR3tY5ccmQ/yKyuBAhvzXvvDssbz55psEB8t/R6vV6nNRCGmhy/S1xjw7grlz57Jz506VhKsNtCrouq7bdF03sgyFAwcAm67rRbquHwEc+9eYAnyr63o9oAPqXVB0Ovv37ychIYHnnnuu3fs2rOohQ4Y0em7o0KFYrVbS0tKora1tta+Ggg7wyLUW1i62cNsFrY9lxIgR4NhYdDALbMIfqo9w2cXn0KdPHy677DIAYmJi8PPza73DFjjhhBO48cYbefTRR3tUPc6egEcrDZqmjdc0bSOwCFgPlLo8Xa9pWiAQ4CL8JTiFXqHoNFavXk1mZib33nsvO3bsaNe+W7LQg4KCGDhwIHa73RT+lmhK0K1WCzOSLQQGtG6hjx492rTQzSSPVXtMX/5tt92GxWIxd7H6gtVq5bXXXmtT0QrFscGjRVFd17cCJ2qadgnwEBDh2oeu67WaptVpmmZ1iHokUNiwH03TbgZuBli0aBFz5871dfwdSl1dHRkZGa037AYcr3PZsmULAPX19VxzzTWsWLGi3SImUlNTAejVq1eT4xk4cCBpaWls2LCh2co6xlyMaJjIyEiv3qeYmBiwlbsfrNpDaOhwMjIy6N+/PytXriQuLq7DPgfH62fsWGMsgjeFJ4uigbquG98ZS4BywF/TtCikC8YQ7k3AbE3TfgQmAfc27EvX9SXAEsfD5gsfdhEyMjJafPG6E8frXIwiyxaLhc2bN/PZZ59x2223tcs4jL41TWtyPGPHjuXHH3+ksLCw2fEaczHEY/LkyV69T7IAsx2LvQJhlYnRo8Py3Sz+jn7/j9fPWFfCE1NlvKZpP2qa9h3we+AZ4I/AauB94AFHu786/v4ReFXX9WayMisUxw5jUfLxxx8H4KWXXmqXfuvr682834MGNR2G4unCqM1ma9F94wlDhw4lMDDQTNAFMKx/nVd9KbovrVrouq7/DJzc4HAWML1Buyyga/tQFMcVtbW1pKWlYbVaueOOO3jsscfYu3cv1dXVZtSHt2RkZGCz2YiPj2+2L08FPT09nfr6evr3709ISIhX4/H392f48OHsqC+FwHgAJozwri9F90Vtv1L0WA4dOmQmioqIiGDYsGHY7Xb27t3rc9+eWNTGdvXmBN1ms1FTU9Pkgqg3uC6MUpfPxGTfUtgquh9K0BU9FkNIDUt5zJgxAOzcudPnvlsKWTQYPHgwfn5+HDlyxCz8YJCens7o0aM56aST+PbbbwHfBX3UqFFgc7hcKnerghDHIUrQFT2WhoJu5FdpD0H3xEIPCAhgyJAhCCFMKxwgNzeX0047jb1795KVlcUTTzwBtJeF7oh0qdyjBP04RAm6osfSkRa6p4uYDf3oNpuNs88+m9RUWenH9fx2sdAdi6Jh1qP07etB1WdFj0IJuqLHYvjKO8vl4nptYyy7du3il19+ISYmhq+++oo33niD8PBwwLHb0weGDx+OJfdNKFzNmFjfqiUpuidK0BWdzu7du3nhhRew2Wzt2m9DC33EiBH4+flx4MCBRj7ttuKthW64XiZNmkRsbCzDhw/n+++/59VXX2Xy5Mk+jSkoKIhh0Rmw81xSRvqWr0XRPVHpcxWdSkFBAaeeeipZWVkMHTrU58IIBtXV1Rw9ehQ/Pz/Tig4KCmLYsGGkpqaSmppKSkpKm/osLy9n1apV/Pzzz6Snp2OxWFothmxEuhi7SpuKaJk4caJZ6cdXRo8ezb59+3y29hXdEyXoik5DCMFNN91k7rjctm1buwn6gQMHEEIwZMgQtwRSo0ePJjU1lZ07d3os6CUlJSxatIiPP/6Yqirnfrnx48e7lUlrCmNh0hB0o4iFr/7y5rjzzjupq6tj4cKFHdK/omujBF3Rabz++ussX77cfNyWcm2t0dDdYjBmzBiWL1/eJj/6J598wrvvyvT+M2bM4MwzzyQlJYVZs2a1em5iYiIhISHk5ORQXFxsWuhGCtr2ZtasWR6NS9EzUT50RacghOCRRx4BMHOrtKVcW2sYFnFTgg5tWxg1xvXII4+wdu1a/vjHP3LuueeaxZFbwmq1urld2msTkULRFErQFZ3Czp07ycrKIj4+3ozD3rNnD3Yz96tvbN26FaCRW8UQ9LZ8GzAiVIw49rZiuF12797tcXSMQuENStAVncI333wDwCmnnELv3r2Jj4+nqqqKw4cPt0v/Rtrc8ePHux0fPny4GelSWVnpUV+Gte/tQqNx3rfffkttbS2xsbHNptNVKHxBCbqiUzAE/dRTTwUwCy+0hx+9oqKCvXv34u/vb1rkBkFBQYwcORK73e6R26W+vt5cyPS23Joh6P/73/8A5W5RdBxK0BXHnPr6en744QfAKeiGO6M9/Ojbt29HCMHo0aObjEIx3DC//vprq32lpaVRV1dHYmIiYWFhXo3HEPS8vDxACbqi41CCrjjm6LpOaWkpw4YNk8WNaV8L3XC3TJgwocnn2yLohv/cl7juhud2VISLQqEEXXHMaehugfa10I0F0Yb+c4O2CLqv/nOQJepcq98oC13RUShBV7RIfX19u/fZlKC7WuhC+FadsLkFUQND0Ldt29bstWpqagCnoBuhh97iekNQgq7oKJSgK5pl3759xMTEsGjRonbrMz8/n3Xr1mGxWJgzZ455PCYmhj59+lBaWkpmZqbX/dfX17N9+3ageUGPi4sjJiaGkpKSJqNqli1bRkhICIsXL24XlwvglspWuVwUHYUSdEWzPP300xQVFfHpp5+2W59Lly6ltraWs846i379nAmkLBaLaaX74nZJTU2lurqawYMHExUV1Wy7cePGAY3dLkIIHnvsMYQQ3HPPPaa176ugG+cHBwcTFxfnU18KRXMoQVc0SXp6urndPT09neLi4jadf/ToUU4//XQuuugi/vSnP5nl4JYsWQLALbfc0ugcbwpQ7Nmzh++//958bPjPm1sQNWjOj/7111+bC7NVVVUUFxcTFBRkLt56iyHoQ4YMwWpV/3aKjkF9shRN8vzzz1NX56wa39Yc4h988AFfffUVH3/8MY8++ignnngi//rXv9i3bx+JiYmcddZZjc4xXCS//PKLx9e58MILmTNnDitXrgQwy7k1524xaE7Qn3/+eQB+97vfmRb+sGHD8PPz83hMTTFr1iwuvPBC7r//fp/6UShaRAjRWT9dnvT09M4eQrvRlrkUFhaKXr16CUCMHz9eAOLVV19t0/Vuu+02AYjLL79czJo1SwDmz+OPP97kOZs2bRKAGDFihEdzqa+vF/7+/gIQ/fr1E4sXLxaA8PPzE5s3b26xj19//VUAIikpyTyWmpoqABEcHCzy8vLE66+/LgBx3XXXtWnubeF4/Yx1dbr4XJrVVWWhKxrxz3/+k/Lyck477TSuvPJKAHbs2NGmPoycJZdeeimrVq3ixBNPBMDPz48bbrihyXPGjRtHUFAQqampHrl4cnNzzSic/Px8br/9dgCeeeaZVl0uI0eOJCAggAMHDlBWVgbAq6++CsBVV11Fv379uP7669m0aRPPPfdc6xNWKLoAStAVblRVVfHCCy8AcN999zF27FjAe0EfMmQIYWFhrFq1innz5vHII4+4xWS7EhgYaAqxruutXiMjIwOAQYMGmfUzL730Un7/+9+3em5gYKC5MGpcy/DFGzcxAE3TiIyMbLU/haIroARd4cabb75JXl4ekyZN4tRTTzUF3dhO7wlCiEYl2vr27cvnn39upsxtjilTpgDw888/t3qd9PR0AJKTk/nqq6948sknef3117FYLB6Nc+rUqQBs3LiRqqoqtm3bhtVqRdM0j85XKLoaStAVJvX19Tz77LOAtM4tFgsJCQlERkZSUFBAbm6uR/1kZ2dTXV1Nnz59PMoZ7oo3gp6YmMiECRN48MEH25RvxRD0DRs2sGXLFmw2G2PHjvU6Z4tC0dkoQVeYLF++nEOHDjFs2DAWLFgAyPhwVyvdE3zJ+W0I+saNG1v9RuAq6N7gKugbN250u75C0R1Rgq4w+e677wC48cYb3cL02upHN9wt3gj6sGHDiIqKIjs72xTs5vBV0JOSkujbty85OTksW7YMUIKu6N4oQVeYGDs0G1b5aaug+2KhWywWj90uvgq6xWIxrfSffvoJUIKu6N4oQVeYGDskjS34BsdS0AEzxLGjBR2cbheA0NDQRgUxFIruhBJ0BYC56BkWFsaAAQPcnjMEfdu2bVRXV7fal6+CboQutpTeVghhCnpzYZCe4CrokyZNwt/f3+u+FIrOptVPr6ZpU4AXgDogA7gamA/cCVQB1+i6nq5p2khgiaPPh3Vd/6ajBq1ofwx3y6hRoxrlGunXrx8TJkxgy5YtfPvtt5x99tkt9uWroDe3Lb+iooKlS5fi7+/PhRdeSE1NDVFRUT7V55w8eTIWiwUhhHK3KLo9nljoR4FTdF0/GUgDzgfuAmYDjwAPO9o9BdwAnAn8qb0HquhYmnO3GJx77rkAfPbZZy32U19fz5EjRwC54ccbBg8eTHh4ONnZ2Wao5FtvvcWwYcNYtGgRt956qxmV4ou7BSAyMtJMCjZ58mSf+lIoOptWBV3X9Sxd16scD2uBEcBuXddrdV1fB4xzPNdf1/V9uq6XAoWapvVrqj+Fb7zwwgucf/75nH/++dx1113tVoDCsNANcWuIq6C3FE6Ynp6OzWajf//+BAcHezUWq9Xqlt5227ZtXHvttWRnZxMUFIQQwoyX91XQAZ566imuvfZazjvvPJ/7Uig6E48dhpqmDQJOB+4Hol2eMuLbXG8OJUAfIL9BHzcDNwMsWrSIuXPnejHkY0ddXZ25vbwrkJ+f32hb++jRo5vMXNiQ1uZi5P2OiYlpsl1sbCyxsbFkZGTwxRdfkJycbD5XX1/P+vXrWbdunXluQkKCT6/dsGHDWLduHT/++KN5Azn//PM566yzuOWWW8xt+r179/b5PZo0aRKTJk2isLDQp368oat9xnxBzeXY0NKakUeCrmlaBPAOcC1SwF23/9kcv+0uxyKBRv8duq4vQfrZQWbe69JkZGT4tODW3qxZswaQoXWTJ09m8eLFrFy5khtvvLHVc13nsnv3bsrLy91cDAcPHgRg5syZzc75/PPPZ8mSJWzcuJEzzzwTgE8++YTbbruNnJwct7YpKSk+vXbTp0/nrbfeIi0tjby8PEDmabngggu49957KS0tBWRpuK70HrWVrvYZ8wU1l86nVZeLpmn+wPvA47qupwL7gFGapgVqmjYd2OZomqVpWpKmaeFAH13X85vpUuElRi3OBQsW8Mgjj+Dv78/q1avJzs72uI/KykpmzpzJ9OnT2bdvHwBlZWUcPXqUwMDAFhcyDZeEqx/9ySefJCcnh2HDhnH//ffzzDPP8MILL/DEE094M0UTw+WyadMmfvzxRwDmzJlDcHCw2zeS9nC5KBQ9BU8s9MuBE4GHNU17GHgFeB74HqgGrnG0ewhYirTgH23ncSpwL64cExPD2WefzcqVK3n33Xe5++67Perj/fffp6CgAJBpZpcsWcKePXsAWVWnpbC9U045hZCQEH755RcyMjIICwtjy5YtBAYG8uuvvxIaGurjDJ0kJydjsVjMIs1jxowxS7ctWLCADz74AFCCrlC40VKy9A7+6fJ0pST3Bw8eFICIiooS9fX1Qgghli9fLgAxevRoYbfbWzzfmIumaWahicDAQJGRkSGWLl0qAHHJJZe0Oo7zzjvPLHixcuVKAYiZM2f6PsEmOOGEE8yx/u53vzOPHz58WAwYMEAAYt++fR1y7WNFV/qM+YqayzFDFbjo7hjW+Zw5c8w8K/PmzSM6Oppdu3Z5lD9c13V0Xad3796ce+651NbW8tRTT5l9Nxfh4oqr28VYmJw1a5Y3U2oV1xQEp556qvm3n58fq1atYvny5QwbNqxDrq1QdEeUoHcTXN0tBgEBAVx88cUA/O9//2u1D6Miz7XXXsvjjz8OwOLFi3nnnXeA1utwgryJgCym/N///heA2bNnezaJNmIIutVqbXTTSE5OZv78+R1yXYWiu6IEvQtx+PBhFi1aRFZWltvx+vp6s/ixq6CD9GuDs9pOcxw8eJB3330XgN/85jdMmDCBCy+8EJC5U1599VXOOeecVscYFxfHlClTqKmpYffu3QQEBDBt2jSP5tdWjEITU6dOVVWDFAoPUIkruhDPPvssixcvpqqqitdffx0Au93OddddR25uLkOGDGHEiBFu55x88skArF+/npqaGoKCghr1K4TggQceoKamhquvvtrs49///jclJSVER0c3OqclzjvvPDNx1oknntiui6GunHHGGbzyyisd5tJRKHoaykLvQhibez788EMqKioQQnD77bfz7rvvEhYWxr///e9G5dWio6MZO3Ys1dXVzWYnfPvtt1m3bh19+/bl73//u3k8MDCwzWIOzl2j0HHuFpDpbW+55ZZm0xEoFAp3lIXeThw5coSnn36aqqoq/P39uf3221utPO+K3W5n2zYZ0l9eXs7HH38MSL93UFAQn332mVtmQFdmz57Njh07+P7775k5c6bbc1u3buWuu+4C4B//+Af9+vmekSE5OZnBgweTlpbGnDlzfO5PoVC0Ey2FwHTwT5enLaFLt956qxliB4iUlJRWQwldMcISjZ/JkyeL6OhoAYg33nijxXM/+ugjAYhTTjnF7fgXX3whevXqJQBx2mmntWk8rbFu3Trx3HPPtWufntLFQ8rahJpL16SLz6VZXVWC3gJteVONmOknnnhCxMXFCUCsXr3a4/ONmPKpU6eKkJAQU9hnzpzZqmjm5uYKQAQHB4vq6mohhBA7duwQ/v7+AhBXXHGFOHDggMdj6ep08X+2NqHm0jXp4nNRcegdyZEjR9i3bx8RERHcd999povjqaee8rgPI/f3zJkzzegTf39/XnnllUZ+84Y05UdftmwZ9fX1XHLJJbzzzjtNLpYqFIqehRL0dsCIEZ81axb+/v7ccsstREVFsXbtWtauXetRH4agp6SkcOeddxIeHs6f/vQnj0uiGb7sVatWAfDll18CsHDhwkYFKxQKRc9E/ae3Aw03/YSHh/Pb3/4WkPlSPMEQ9HHjxjFx4kRKSkp44IEHPB6DYdW///77FBYWsnHjRvz9/Ts0CkWhUHQtlKD7iBCiyV2ct9xyCwDffvstNputyXMNSktLOXjwIIGBgYwcORKgVTdLQ2bOnMmAAQM4fPgwf/7zn7Hb7cyYMYPw8PA29aNQKLovStB9ZPfu3WRnZxMbG+vmHunfvz+DBw+mvLycnTt3ttjH9u3bAZlLJSAgwKtxWK1WLr/8cgBefPFFAE4//XSv+lIoFN2T40LQs7KyWLduHevWrePo0aPt2rdhnZ9yyimNrGpjS/yGDRta7OPTTz8F3JNRecOVV14JyJh2kDstFQrF8UOPF/SioiLGjBnDSSedxEknncTIkSM5fPhwu/Vv5FBpmGMFMDcCNSfodrudO++80/SzL1iwwKexjBs3jrFjxwLQt2/fNm1sUigU3Z8eL+hvvfUWRUVFxMXFMXDgQCorK922v/uCEMIsC2fkVHHFEPSffvqp0XPV1dVceumlPP/88wQEBPDuu++2S5HihQsXAnDmmWeq6BaF4nijpSD1Dv7pcGw2m7nh55NPPhHbtm0zN+Dk5OS0er7r5oL//Oc/YsWKFW7P79mzRwAiNja2yc0/NTU1IigoSACisLDQPJ6fny9mzJghABERESG++eYbH2bZ+JovvfSSyMzMbHYu3R01l66Jmssx4/jcWPTtt9+yb98+EhISOPfcc0lOTuacc86hurqaF154weN+Dhw4wOWXX878+fN54403zONGjPlJJ53UZFRKYGAgkyZNAnBLnHX11Vezbt06EhMTWbdunZkCtz0IDAxk0aJFxMfHt1ufCoWie9CjBf2f//wnIPN/G7UyH3zwQUAWdigpKfGoH6N+JcCNN95oPjbcLQ0TYrnS0O1SW1trLqSuXbvW9HkrFAqFr/QIQa+urm50LD09nU8//RR/f39uvPFG8/i0adOYOXMmJSUlfPTRRx71bwj4WWedhRCCq666itTU1DYJurEwum3bNmpqahgxYgSDBg3ybIIKhULhAd1e0F9++WVCQkKYP3++W7z3kiVLsNvtLFiwoJH74aqrrgIwU9S2xK5du9i2bRtRUVGsWLGCa665hrq6Om666SYOHjxIr169GDduXLPnG6GL69evp66uznS9TJkypc1zVSgUipbo1oJut9vNiJVPP/2U5ORk/vWvf1FbW8trr70GwG233dbovPPPPx+r1crXX39NcXFxi9cwrPMFCxYQGBjIU089RWhoqGmdT58+3XTnNEViYiKjR4+mrKyMNWvWKEFXKBQdRrcW9LVr15KWlkZiYiK33XYbQgjuuOMOnnrqKbKzsxk9enST4YQxMTHMnDmTuro6M5lVUwgheP/99wG47LLLALkD9A9/+IPZpiV3i4FR4efzzz9Xgq5QKDqMbi3ob7/9NiCjRhYvXswNN9xATU2NWdH+tttuazYnipHMqiW3yxdffMHevXuJj493q8xzzz33EBMTA+BRvUuj+PKyZcvYs2cPgYGBPu8KVSgUika0FNPYwT8+UVlZKcLDwwUgdu/eLYQQoqSkRAwePFgAIiwsTJSUlDR7fnp6ugBESEiIKC8vb/S8zWYTI0aMEIB46aWXGj2/efNm8dprr3lUsaeurk706dPHLFoxZcqUNsy0fejicbVtQs2la6LmcszoeXHoH3zwAWVlZUyZMsXMUBgREcHbb79Nr169uPPOO4mIiGj2/ISEBKZOnUpVVZXpdsnNzeXSSy/lr3/9K0uXLiU1NZWBAwdy0003NTp/woQJ3HjjjR5lRfT39+fss882Hyt3i0Kh6Ai6ZZHotWvXcvvttwNwww03uD03c+ZMiouL8fPza7Wfyy67jA0bNvDWW29xySWX8Pe//50PP/yQDz/80GzzyCOPtEu1n3POOYd3330XUIKuUCg6hm5noW/evJl58+ZRWVnJtdde6xZjbuCJmANcccUV+Pv787///Y/Dhw+zdOlSANPiHzp0KFdffXW7jPuMM84wo2GUoCsUio6gW1noRo3M0tJSLr74Yv7v//7PpwRU0dHRnHvuuSxfvpwrr7yS3NxcRo8ezfbt21m/fj2hoaFe5ydvSFRUFC+//DLZ2dkMHz68XfpUKBQKV7qVoPv7+/Phhx/y3HPP8frrr3tsibfEddddx/Lly1m3bh0AN910E1arlZNOOomMjAyf+3flN7/5Tbv2p1AoFK60KuiapkUCXwGjgam6ru/QNO1i4E6gCrhG1/V0TdNGAkscfT6s6/o3HTHgiRMn8s4777Rbf2eddRaxsbHk5OQQGBho7iJVKBSK7oYn/opKYB7wEYCmaf7AXcBs4BHgYUe7p4AbgDOBP7X3QDsKf39/00++YMEC+vbt28kjUigUCu9o1ULXdb0OyNM0zTh0ArBb1/VaYJ2mac86jvfXdX0fgKZphZqm9dN1Pb8jBt3ePPzww/Tp04frr7++s4eiUCgUXuOND703UOry2HBku1r7JUAfwE3QNU27GbgZYNGiRcydO9eLy3cMV111FXV1dW5+84aPuzNqLl0TNZeuSVeeS0JCQrPPeSPoxYDrjh2b47fd5VgkUNjwRF3XlyD97CB3TXZpMjIyWnzxuhNqLl0TNZeuSXedizeCvg8YpWlaIKAB2xzHszRNSwJygT7dxd2iUCgUPQWPBF3TtNXAeGAE8C/geeB7oBq4xtHsIWAp0gXzaLuOUqFQKBSt4pGg67p+dhOHP2jQZhfQei5ZhUKhUHQI3W7rv0KhUCiaRgm6QqFQ9BCUoCsUCkUPwSJEl48eVCgUCoUHKAtdoVAoeghK0BUKhaKHoARdoVAoeghK0BUKhaKHoARdoVAoeghK0BUKhaKHoARdoVAoeghK0AFN08Icvy2dPRZf0TQt1PG7J8xlkON3T5jLiT1hHgCapg3s7DG0F5qm9e7sMbQnx/XGIk3TTgduAjKBv+q6ntnJQ/IaTdPmAwuBo8Az3XwuocDfgAHARY6qWd0STdNSgBeADcAjjkpf3RJN084EFgE1wH+A/+m6Xt65o/IOTdNmAX9AFuFZDOzUdb26c0flO8e7hX4F8H/ADuAWTdO6ZbZITdPOAa4D/oosQHKf43i3tAh1Xa8EaoFw5Ly67VyQGUif0nX9fmBoZw/GWzRN8wNuQRaoeRxZCyGsG78vlwJvIm9MZwMXdu5w2gdvClx0WxyW36XAWiAHOAL8DHznOD5J07QD3cG6dczlcuC/wGbgRl3X8zRN2wu8r2lajK7ruZ06SA9xeV9+1HX9gEMk9gOfAL/TNO1/uq4f6dRBeojrZ8xRY7cSOFPTtPuRRWA2AZ/pun6gM8fpCY65XAb8AJQD25HfZg8j6yOEAAHIm2+XRtO0EGRR+//puv4DcAjIQv7/VwPzNE0bqev6nk4cps8cNxa6pmmXI4tyhAIHdV0vBeKAaY6vwVuAYGT5vC6Ny1yCgVxd1zMdYm5FWrWHupGYG3MJQd5g0XVdAKOR78UnwG80TRvQWWP0lAZzSXMcDgXigbuB25DuinmdMLw20XAuuq7nAN8g3XpbkK6Km4DbO2uMnuL47PwHacT95DhsAYYgS2HuQn72hnXKANuR40LQNU2LAC4B/oz8UJ6maVo/4BXgRk3TwnRd3wEMAgZ32kA9oIm5zNY0bSSArut2pIDUO9oO7MpfiRvM5VtglqZpYxxP/4D85lGBFJHfOc7pkp/ZJuYyR9O0/sDHSCt2gK7rJUihN96fLvneNPEZO1XTtBN0Xf8e+BpYrOv6QuBzIFDTNGtXnYsDf2Al8pv4bzVNmw58AUwHxui6XoA0jkKg674vntBjF0UdK/F3A6uAdcDJwJ1AIPAZcDUwC7gZ+YavQfprP9Z1/fPOGHNztDKXlci5nK/repqmaTcgP6glQF/g9q60cOXhXE4HfgPMRtaozQQqdF1/uBOG3CwefsZORc5jHNISPBvYr+v6450w5Gbx8H05C/ntIh4piIuAIl3Xf9cZY24Ol7msRK6PJToeZyCNhGuBvwDJyIL3e4BzkC6//+uEIbcbXdLa8RVN0xKBvyN9fXHA27qurwaeAebouv4s8DbwN13X/4r8AP8G2NYFxby1ufwdubjzV8cpA5GCvk/X9Wu6mJh7Mpe3gceAZ4E3dF2/TNf1u7qgmHvyGXsLGT21DPmV/0RgfRcU87a8L28gC8U/BvzcBcXcdS4JwD91XdeRxk2truvvOZ4/HXgH6dKbBWzq7mIOPUzQNU072eXrUpSu63/Xdf0tIFzTtAd0Xf8S6TsDWeg6VNO0cMdXyWt0XX/u2I+6ado4l5dxfI1HfiWepuv6K8d4yM3Sxrm8gLSa0HX9Xcf5XeZz6sVcAjVNi3DU3P1DN39fwoBgXdf/g/xG+FInDLtJWphLpKZpNwJPAlMAdF3/HzDS0W4H8LuuNBdf6DL/KL6gaVovTdO+Qvr7zkYu2KzVNO03jiZrgPM0TYvSdd2madrJwApkJEU5gK7r9Y17Pvb4MJeDALqur9F1vfjYj7wxvrwvjtBFwFwb6FR8mMsBxwI8uq7bOmHojfDxfakA6Crx9B7M5UfgesfvtZqmPepon+lo22Xel/agx/jQNU2bhNyIMgW5USDK8TsNKdoVSOt1J/Aa8uv8x50x1tZQc1Fz6WiOs7nUIG9IPwGxyIXQLzthqB1OjxF0A03TXkT69t7VNC0e+fV9P/B74D1d17M7c3xtQc2la6Lm0jVpZS7vdJdQXl/oES4XcAs1eg8ZMhaj63oWMpZ5GTIksawr+WObQ82la6Lm0jXxcC7l3Tkc0VN6nIUOoGnab4EkoAg4AOzVdf3nzh2Vd6i5dE3UXLomPWku3tDl775twcWaGIeMmT2o6/q73fENVXPpmqi5dE160lx8oada6BcCn+u6XtPZY/EVNZeuiZpL16QnzcUbeqSgKxQKxfFIj3K5KBQKxfGMEnSFQqHoIShBVygUih6CEnSFQqHoIShBVygUih7CcVWCTnF8oslSavciK+8s1TTtWmTK4XscaW4Vih6BstAVxwOhwKPIwgYgqyFdjixCoVD0GJSFrjge0B2/Z2maJpDFDwYB9wCpmqalAf2QBSkWIouIv4yscO8PXKfr+v80TQsEnkLeDMKAr4DbdF3PO4ZzUSiaRVnoiuOBBx2/dyPFuCk3S5jj90/IvNqvICv2xCDLlQE8APwBadk/j9xi/mqHjFih8AIl6IrjASP3da6u6+/jKGrSADuyhqaR8/sdXddfRBZCGOI4do7j92+QLpwwYG6HjFih8ALlclEcD3iS36JK1/VaTdPqHI9LHL9tgJ9Lu3qksBtVbpRRpOgyqA+j4nigFGmBD9M07Uqk/9wbPkcaQdcgi3GfibTWFYougRJ0RY9H1/U6pD88CngXp3XdVp529DMTuWh6FjJiRqHoEqhsiwqFQtFDUBa6QqFQ9BCUoCsUCkUPQQm6QqFQ9BCUoCsUCkUPQQm6QqFQ9BCUoCsUCkUPQQm6QqFQ9BCUoCsUCkUP4f8B1+3XEwQ0N88AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfBUlEQVR4nOydd3gUVdvG791symbTew8JIXQQqdIUCEVUQASliaCCvYv6WQBBfS2vBX1VEBAsKCKIFEEsCAooAtIMNQSSkISE9LbJJrvz/TGZMzO7m2R3syXl+V0XF2dmzsycOZtk7n3aUXAcx4EgCIIgCMJFKF09AIIgCIIg2jckRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRlogBoMBFy9ehMFgcPVQWgU0X9ZB82U5NFfWQfNlHTRfIiRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGCIIgCIJwKSRGWhg33HADnnjiCVcPgyAIgiCcBomRVsyePXugUChQUlLi6qEQBEEQLiI3Nxdr1qxBQUGBq4diMyRGCIIgCKIVM3HiRNx999248847XT0UmyEx4kIqKysxe/Zs+Pj4IDIyEm+//bbs+Jdffol+/frB19cXERERmDFjBvLz8wEAly5dwogRIwAAgYGBUCgUmDNnDgDgxx9/xNChQxEQEIDg4GDcfPPNuHDhglOfjSAIgnA8HMfh2LFjAIBdu3YhLy/PtQOyEZWrB+AI+vXrhytXrjj9vhERETh8+LDF/RcsWIDffvsNmzdvRkREBJ5//nkcOXIEvXv3BgDodDosXboUnTt3Rn5+Pp544gnMmTMHO3bsQGxsLDZt2oTbbrsNZ8+ehZ+fH9RqNQBe5Dz55JPo2bMnKisrsXDhQtx66604duwYlErSnwRBEG2Fmpoa1NbWAuCFybZt23Dvvfe6eFTW0ybFyJUrV5Cdne3qYTRKRUUFVq9ejc8//xyjR48GAHz22WeIiYlhfe6++24mHhITE/H+++9jwIABqKiogI+PD4KCggAAYWFhCAgIYOfddtttsnutXr0aYWFhOHXqFHr06OHgJyMIgiCcRVlZmWz7+++/JzHSUoiIiGjx971w4QJ0Oh2uu+46ti8oKAidO3dm20ePHsWSJUtw7NgxFBUVwWAwAAAyMzPRrVu3Rq/90ksv4a+//kJBQYHsPBIjBEEQbQdjMfLLL7+wL6ytiTYpRqxxlbgKjuMaPV5VVYVx48ZhzJgx+PLLLxEaGorMzEyMHTsWOp2u0XNvueUWxMbGYuXKlYiKioLBYECPHj2aPI8gCIJoXRiLkZqaGvz000+YPHmyi0ZkGxRA4CKSkpLg7u6Ov/76i+0rLi7GuXPnAPDWjYKCArz++usYNmwYunTpwoJXBTw8PAAAer2e7SssLMTp06fx4osvYtSoUejatSuKi4ud8EQEQRCEszEWIwCwZcsWF4ykeZAYcRE+Pj645557sGDBAvz666/4999/MWfOHBYjEhUVBQ8PD3zwwQdIT0/H1q1bsXTpUtk14uPjoVAosH37dly9ehUVFRUIDAxEcHAwPvnkE6SlpWH37t148sknXfGIBEEQhIMxJ0a2b9+Ouro6F4zGdkiMuJC33noLw4cPx4QJE5CSkoKhQ4eib9++AIDg4GB8+umn+Pbbb9GtWze8/vrr+O9//ys7Pzo6Gi+//DKee+45hIeH4+GHH4ZSqcT69etx5MgR9OjRA0888QTeeustVzweQRAE4WCkYkT4MltUVIR9+/aZ9L2czyGnoPEQAVeh4JoKXiCcjsFgQEZGBuLj4ykV1wJovqyD5styaK6sg+bLOuwxXx999BEeeughAMCYMWPw008/AQAef/xxvPvuu6zfv+kcet/NQakAznypQMdoRfMfwI7QTwtBEARBtFJKS0tZe/r06VCp+LyULVu2yBIlfj4MGAxAnR7Ye8zZo2waEiMEQRAE0UqRumni4+MxaNAgAMDFixdlx4rLRWGia4HhJDaJkbVr1+Kmm27C8OHDMWPGDJSXl7P9KSkpGDlyJJYtWyZTZampqZg+fTqGDBmC+fPnIzc31z5PQBAEQRDtFKng8PPzQ1hYGNsW3s0AUCw2oat1ytCswmoxsn79ehw4cACrVq3C3r17sWTJEnh4eGDfvn3YuHEj1q5diw0bNmDfvn3YunUrAL6s+TPPPINp06Zh9+7d6NGjBxYuXGj3hyEIgiCI9oSxGPH19WXbrUmMWFX0TK/XY82aNVi5ciUiIyMB8PUyAGDHjh2YMmUKK2c+a9Ys7Ny5ExMnTsSRI0egVqsxceJEAMC8efOQkpKC3Nxcdh0pOp3OpECXSqVidTXaOkLFVOF/onFovqyD5styaK6sg+bLOuwxX9KYER8fH1nl1dLSUnbtIokYqanlYDA4L3fFkuBcq8RIfn4+ampq8Msvv2D9+vXw8fHBjBkzMGXKFFy8eBHjx49nfZOTk/Hhhx8CANLT05loAQC1Wo2YmBikp6ebFSOC4JEydepU3H777dYMt9WTlZXl6iG0Kmi+rIPmy3JorqyD5ss6mjNfV69eZe2SkpJ68eEGQI+0tDSEh4cDAPILwgF4AQDyrpYgI6PU9GIOIiEhock+VouRiooKXL58GVu3bkV2djYefPBBdOjQAVVVVTJFptFoUFVVBQDQarXQaDSya2k0Gmi1WrP3mTt3LmbOnCkfaDuzjGRlZSE2NpbS4yyA5ss6aL4sh+bKOmi+rMMe8yV4EVQqFZKTk1GoHAMMfgso2Ahvb2/Ex8cDAKokrhlvTQDi4wOaO3y7YpUY8fT0BADMnz8fXl5e6NixI8aPH4/9+/fD29sbFRUVrG9lZSW8vb0B8JaQyspK2bUqKyvZkvfGeHh4tBvh0RhKpZJ+oa2A5ss6aL4sh+bKOmi+rKM58yXEjPj5+cHNzQ37MoYAbmog/E7kF33LrltcLrqCaussc504E6tGEx8fD3d3d7PHEhISkJaWxrbPnTuHxMREAEBiYqLsmFarxeXLl9lxgiAIgiCsRypGrpZwyCkNZsdyC8Qc3mLRVoCaFhjAapUYUavVGDVqFFavXg2dTodLly5h586dGDJkCMaPH49NmzYhOzsbBQUFWLduHW688UYAQN++faHVarFt2zbodDqsXr0a3bp1Mxsv0l644YYb8Pjjjzv0HnPmzMGkSZMceo/2zuLFi3HNNdc49Z6u/Fwt+bn95JNPmNn5vffec8q4XE1hYSHCwsJw6dIli89x5ed48uRJxMTEmFisidaHVIzsOSo/ll/MB6lqazjUSHJC2kSdkWeffRYlJSVISUnBI488gnvvvRf9+vXD0KFDMXnyZMyePRtTp07FkCFDMGHCBAC82+XNN9/EunXrMGLECBw/fhxLliyx+8MQ1uGIF+natWsREBDQZL99+/ZhyJAhCA4OhlqtRpcuXWSli1siCoUC33//vauH0aIpKyvDww8/jGeffRbZ2dmYP3++q4dkM3PmzMGtt95qUd///Oc/uOWWW9ChQwcsXrwYCoWi0X/WiJbGsPT3zZiePXtiwIABLf53jmgcnU6H6upqALwY+e2oPEOmoD5GVZrWC7SB1F4A8PX1bXDhtblz52Lu3Llmj3Xv3h3r16+39nZEG0Wj0eDhhx9Gr169oNFosG/fPtx3333QaDSt+gXW3snMzERtbS1uuummZlk+a2trG3QJtzS0Wi1Wr16NHTt2AACefvpp3H///ex4//79MX/+fMybN4/tCw0Ndfo4jZk7dy7uv/9+/N///R/c3NxcPRzCBqQ1Rvz9/fHbP/LjReW8vaGkQr6/TVhGCPtRV1eHhx9+GAEBAQgODsaLL74oq1r75Zdfol+/fvD19UVERARmzJiB/Px82TVSU1Nx0003sWI3w4YNw4ULF8ze78iRIwgLC8Orr76KtWvX4uWXX8bx48fZt7W1a9cC4HPT58+fj7CwMPj5+WHkyJE4fvw4u87x48cxYsQI+Pr6ws/PD3379sXhw4exZ88ezJ07F6WlpeyaixcvNjuWPn36YPr06ejevTs6dOiAWbNmYezYsfjjjz8anbMbbrgBjzzyCB5//HEEBgYiPDwcn3zyCaqqqnD33XfD19cXHTt2xM6dO2Xn7d27FwMGDICnpyciIyPx3HPPyZbYvuGGG/Doo4/imWeeQVBQECIiImRj79ChAwDg1ltvhUKhYNsCX3zxBTp06AB/f39MmzZNVmxo48aN6NmzJ9RqNYKDg5GSktKgeVyv1+Oee+5BQkIC1Go1OnfujGXLlpnt+9///heRkZEIDg7GQw89hNpa8euOUGgwOjoaGo0GAwcOxJ49e9jx4uJizJgxAzExMfD29kbPnj3x9ddfy65fWVmJ2bNnw8fHB5GRkXj77bfNjkNg7dq16NmzJwA+TkxqAfj444/RsWNHeHh4oHPnzvjiiy9k5yoUCixfvhwTJ06ERqPBK6+8AgDYtm0b+vbtCy8vLyQmJuLll1+WfW4lJSWYP38+wsPD4eXlhR49emD79u0AeNfJ9OnTG33Ghj6bxYsX47PPPsPWrVuRmJgINzc32fxJ2blzJ1QqFa677joAfK2HiIgI9s/NzY39Dkv3NfdzbOz3zZK/HWPHjkVhYSH27t3b6OdKtFykYsRdE4czmfLjpVW8oDe2jNTIy3i1CKy2jLQG+s0z4EqR8+8bEQQcXmm5vvvss89wzz334ODBgzh8+DDmz5+P+Ph43HPPPQD4P0RLly5F586dkZ+fjyeeeAJz5sxh38Cys7MxfPhw3HDDDdi9ezf8/Pywf/9+2R9rgT179mDSpEn4z3/+gwceeABarRb//vsvfvzxR/zyyy8AeGXNcRxuuukmBAUFYceOHfD398eKFSswatQonDt3DkFBQZg5cyb69OmDjz/+GG5ubjh27Bjc3d0xePBgvPfee1i4cCHOnj0LALJ078Y4evQoDhw4wF5CTc3bM888g7///hvffPMNHnroIQwbNgzTp0/HCy+8gHfffRd33nknMjMz4e3tjezsbIwfPx5z5szB559/jjNnzmDevHnw8vKSCY7PPvsMTz75JA4ePIg///wTc+bMwZAhQzB69GgcOnQIYWFhWLNmDcaNGyd7mVy4cAHff/89tm/fjuLiYtx+++14/fXX8eqrryI3NxfTp0/Hm2++iVtvvRXl5eX4448/0NBi2QaDATExMdiwYQNCQkJw4MABzJ8/H5GRkbI6O7/99hsiIyPx22+/IS0tDXfccQeuueYa9u177ty5uHTpEtavX4+oqChs3rwZ48aNw8mTJ9GxY0fU1NSgb9++eO655+Dn54cffvgBd955JxITEzFw4EAAwIIFC/Dbb79h8+bNiIiIwPPPP48jR4406Nq74447EBsbi5SUFPz999+IjY1FaGgoNm/ejMceewzvvfceUlJSsH37dsydOxcxMTEYMWIEO3/RokX4z3/+g3fffRdubm7YtWsXZs2ahffff5+JbMFqtmjRIhgMBtx4440oLy/Hl19+iY4dO+LUqVPss6murkbfvn3x7LPPmn3Gxj6bp59+GqdPn0ZpaSmWLFmCmJgYhISEmH3u33//Hf369Wvip9Y8zfkcG/t9a+pvB8C7z3v37o0//vgDI0eOtGn8hGuRipFy5bWmx7V8BqyJm6YFWkbAtUGiJ+s5DHP+v+jJeovHeP3113Ndu3blDAYD2/fss89yXbt25fR6PZeens7p9fLr/f333xwArry8nOM4jvu///s/LiEhgdPpdGbvcdddd3ETJ07kvv/+e87X15f76quvZMcXLVrE9e7dW7bv119/5fz8/Ljq6mrZ/o4dO3IrVqzgOI7jfH19ubVr15q955o1azh/f/8mn18gOjqa8/Dw4JRKJbdkyZIm+19//fXc0KFD2XZdXR2n0Wi4W2+9lc1Xbm4uB4D7888/OY7juOeff57r3LmzbK4//PBDzsfHh51jfF2O47j+/ftzzz77LNsGwG3evFnWZ9GiRZy3tzdXVlbG9i1YsIAbOHAgx3Ecd+TIEQ4Ad+nSJUumwywPPvggd9ttt7Htu+66i4uPj+fq6urYvqlTp3J33HEHx3Ecl5aWxikUCi47O1t2nVGjRnH/93//1+DP1/jx47mnnnqK4ziOKy8v5zw8PLj169ez44WFhZxareYee+yxBsd69OhRDgB38eJFtm/w4MHcvHnzZP2mTp3KjR8/nm0D4B5//HFZn2HDhnGvvfaabN8XX3zBRUZGchzHcbt27eKUSiV39uzZBsdjjPQZm/ps7rrrLm7ChAlm50rKxIkTubvvvrvB4/Hx8dy7775r9vrN+Rw5zvLfN+O/HQK33norN2fOnCbPt5SGfrYI8zR3vvbu3csB4ABwvW47YPJOirphF8dxHPf5jwbZ/jFPtrzPp01aRiKCWsd9Bw0aBIVCwbavu+46vP3229Dr9QB4a8GSJUtw7NgxFBUVsbK+mZmZ6NatG44dO4Zhw4Y16ls/ePAgtm/fjm+//daiYLwjR46goqICwcHBsv1arZa5f5588knce++9+OKLL5CSkoKpU6eiY8eO1j18PX/88QcqKirw119/4bnnnkNSUhKmT5+OP/74g2VjAcCKFStYIbxevXqx/W5ubggODkbnzp3ZPlZxsN4sffr0aVx33XWyuR4yZAgr4BcXF2dyXQCIjIw0MW2bo0OHDrL1IKTn9e7dG6NGjULPnj0xduxYjBkzBlOmTEFgYGCD11u+fDlWrVqFjIwMaLVa6HQ6E2tE9+7dZdaZyMhInDx5EgDwzz//gOM4JCcny86pqalhn6ter8drr72GDRs2IDs7GzU1NaipqWHFCS9cuACdTsdcDwAQFBQkm2dLOX36tEkc0JAhQ0zcT8bWhSNHjuDQoUN49dVX2T69Xo/q6mpUVVXh2LFjiImJMXlOad/XX38d33zzjdlntOWzMYdWq4WXl5dV5wg093NsiKNHj2Lx4sUN/u0QUKvVrDgl0fqQWkYuV3QCACgUHDiO/1tXVcf/rJu4adpCAGtrwBpXSUulqqoK48aNw5gxY/Dll18iNDQUmZmZGDt2LKu411DROCkdO3ZEcHAwPv30U9x0001NFpMzGAyIjIw06x8XovYXL16MGTNm4IcffsDOnTuxaNEirF+/3uLMAylCmeCePXsiLy8PixcvxvTp09GvXz8cO3aM9RMEBgAT8aVQKKBSqWTbwrMAAMdxMiEi7JP2bei6lqwZ0dh5bm5u+Pnnn3HgwAH89NNP+OCDD/DCCy/g4MGDZkskb9iwAU888QTefvttXHfddSxg/ODBgxbf02AwwM3NDUeOHDEJTBTM+KtWrcKqVavw3nvvoWfPntBoNHj88cfZzxbXgBvJVszNv/E+4yrNBoMBL7/8MiZPnmxyPS8vryZ//t9++228++67DT6jtZ9NQ4SEhKC4uNji/lKa+zmao7KyEmPGjGn0b4dAUVGRzV8kCNfDxIhHDIqq+G/Dg3sosP+EAVAoUaPnvyS1hmya1v/WbsX89ddfJtudOnWCm5sbLly4gIKCArz++usYNmwYunTpYvItvVevXvjjjz9kAW/GhISEYPfu3bhw4QLuuOMOWV8PDw9mhRG49tprceXKFahUKiQlJcn+SX3mycnJeOKJJ/DTTz9h8uTJWLNmTYPXtBSO41BTUwOAF1rSe0stD9bSrVs3HDhwQPaCPXDgAHx9fREdHW3xddzd3W16NoVCgSFDhuDll1/G0aNH4eHhgc2bN5vt+8cff2Dw4MF48MEH0adPHyQlJTUYkNwQffr0gV6vR35+vslnGBERAQA4dOgQJkyYgFmzZqF3795ITEzE+fPn2TWSkpLg7u4u+xktLi7GuXPnrH7+rl27Yt++fbJ9Bw4cQNeuXRs979prr8XZs2dNniEpKQlKpRK9evXC5cuXGxzTH3/8gYkTJzb4jEDjn42lP8t9+vTBqVOnmuxnLZZ8jubGeObMmSb/dgj8+++/6NOnj93HTjgHJkYCxNirUX0BhZ4Xx7XwBwAUl8u/XLTEmBESIy4kKysLTz75JM6ePYuvv/4aH3zwAR577DEAQFRUFDw8PPDBBx8gPT0dW7duxdKlS2XnP/zwwygrK8O0adNw+PBhnD9/Hl988QULZhMICwvD7t27cebMGUyfPp0FuHbo0AEXL17EsWPHUFBQgJqaGqSkpOC6667DpEmTsGvXLly6dAkHDhzAiy++iMOHD0Or1eLhhx/Gnj17kJGRgf379+PQoUPsxdKhQwdUVFTg119/RUFBQYMm4A8//BDbtm3D+fPncf78eaxZswb//e9/MWvWLHtPMx588EFkZWXhkUcewZkzZ7BlyxYsWrQITz75pFUlkTt06IBff/0VV65csfib8MGDB/Haa6/h8OHDyMzMxHfffYerV682+CJOSkrC4cOHsWvXLpw7dw4vvfQSDh06ZPEYAV4ozpw5E7Nnz8Z3332Hixcv4tChQ3jjjTdYAGN8fDx++eUXHDhwAKdPn8Z9992HK1eusGv4+PjgnnvuwYIFC/Drr7/i33//xZw5c2wqIb1gwQKsXbsWy5cvx/nz5/HOO+/gu+++w9NPP93oeQsXLsTnn3+OxYsXIzU1FadPn8Y333yDF198EQBw/fXXY/jw4bjtttvw888/4+LFi9i5cyd+/PFHAPxcCpYPc8/Y1GfToUMHnDx5Eunp6SgoKGhQ9I8dOxapqak2W0cawpLP0dzvW1xcXJN/OwDg0qVLyM7ORkpKil3HTTgPJkb8b2D7RvRRQMWVAAD0Ct7laJLa2wItI20ygLU1cP3113MPPvggd//993N+fn5cYGAg99xzz3EGg4EFNX355Zdchw4dOE9PT+66667jtm7dygHgjh49yq5z/PhxbsyYMZy3tzfn6+vLDRs2jLtw4QLHcWIAq0BOTg6XnJzM3X777VxdXR1XXV3N3XbbbVxAQAAHgFuzZg3HcRxXVlbGPfLII1xUVBTn7u7OxcbGcjNnzuQyMzO5mpoabtq0aVxsbCzn4eHBRUVFcQ8//DCn1WrZfe6//34uODiYA8AtWrTI7PO///77XPfu3Tlvb2/Oz8+P69OnD/fRRx81Gch1/fXXmwRQxsfHcy+++KLsXBgFm+7Zs4fr378/5+HhwUVERHDPPvssV1tb2+h1J06cyN11111se+vWrVxSUhKnUqm4+Ph4juPMBwG/++677PipU6e4sWPHcqGhoZynpyeXnJzMffDBBw0+X3V1NTdnzhzO39+fCwgI4B544AHuueeek93D+HPlOI577LHHuOuvv55t63Q6buHChVyHDh04d3d3LiIigrv11lu5EydOcHq9nvvnn3+4CRMmcD4+PlxYWBj34osvcrNnz5Zdt7y8nJs1axbn7e3NhYeHc2+++abZeZJiLoCV4zjuo48+4hITEzl3d3cuOTmZ+/zzz2XHjT8vgR9//JEbPHgwp1arOT8/P27AgAHcJ598wo4XFhZyc+fO5YKDgzkvLy+uR48e3Pbt29mxiRMnNviMTX02+fn5XEpKCqfRaDgA3G+//dbgcw8aNIhbvny52WONBbA253MUMPf79tVXXzX5t+O1117jxo4d2+Az2QIFsFpHc+frhRde4ANY+53jMEzPeY7Sc9pqA6e57hALVtVWG7gJz8kDW5NntLzPR8FxdnYOE83GYDAgIyMD8fHxLW4xo5YIzZd10HxZjqVztWPHDjz99NP4999/W8Wc1tTUoFOnTvj6668xZMgQu12Xfraso7nz9eijj+KDDz4AhlQCSi/0TAROrFUiZNhvKFRcDwBIX6/HXa+54Y8T4nkdIoCLG1rW59MmA1gJgiCcyfjx43H+/HlkZ2cjNjbW1cNpkoyMDLzwwgt2FSKE8yktLQXgBij5bC5fb36/2r0KqI8LycipQnG5POauJcaMkBghCIKwA0K8V2sgOTm5wZRoovVQVlYGuIlZaD71CWa+nlomRi5f0aK4Qi5GWmJqb8uy0xAEQRAEYRG8GBHTvDX15W781GIKd/ZVHaX2EgRBEAThGEwsI/VumgAf0Q9zOU+Pqmr5eS3RTUNihCAIgiBaIWVlZYDS1DIS5CsWa0y/Yrois67W/oUNmwuJEYIgCIJohTQUMxIaIPbJzPc0OY/jgDrbalM6DBIjBEEQBNEKaShmJCxQtIZkF3ubPbelxY2QGCEIgiCIVkZdXR1f4VoiRnzU/HpPESFiomxxpcbkXKDlxY2QGCEIgiCIVkZ5eX2KjNI0gDUk0BvQVzZ6fo2u0cNOh8QIQRAEQVhJaWkpFi1axNZCcjZsXRpJzIjgpvH19QVqrzZ6fkuzjFDRM4IgCIKwkgcffBBfffUVPD09ceXKFQQEBDj1/ubECCt65usL1BYAXh1k5/h6A+X1a5dSzAhBEARBtGIuXbqE9evXA+DX+cnOznb6GPhS8DAbwMrEiBHhgWK7pVlGSIwQBEEQhBUsW7YMBoNYy4PFbzgR0TIiDWDl/2/ITRMeJLYpZoQgCIIgWiklJSVYtWqVbB8TBk6E3dNMACtZRgiCIAiiDbNy5UpUVFTI9kktIxzH4YNNHF79nIOu1nFVTs1ZRgQ3jUajMWsZiZBYRlpazAgFsBIEQRCEBeh0Oixbtsxkv1SMHPgXeHQZL0ISoxSYnuKYsTQWwOrm5gYPZTmknhh3FRAgWby3pa3cS5YRgiAIgrCADRs2sGBVtVrN9kvFyPnLYv9LVxw3lsZSewFArZLXGQn0BTzdFWy7pVlGSIwQBEEQhAWsWLGCtR988EHWloqRMokGqNE5wU0jWSjPWyJGfDzlS/UG+AAeEl8IxYwQBEEQRCskLS0NABAZGYnx48ez/dIAVpkYcaD1wdgyolEDSqVo+fBT18j6B/oCnh7iNllGCIIgCKIVUlJSAgAICQnhM1bqkVlGqkRriHPECG8ZkbpoACBAIzd9BPrKLSMUM0IQBEEQrYzq6mpUV/Ouj8DAQPj5+bFjDbtpHDceY8uIj1p+PNAXAKeXbXu4i8fJMkIQBEEQrQzBKgIAAQEBjVhGxHOcYhlRmreM+Pn5ALWFbDuQYkYIgiAIonXTmBhxRcwIXw5eCbjxJhFjy4hxFVbjmBGqwEoQBEEQrQxjMaLRiCm1UstIuTMtI2ZqjAj4+voCdWIV1kBfBVlGCIIgCKI1YyxGlEols4406KZxdMyItPqqWcuIKEYCfChmhCAIgiBaNcZiBIB5MeIEN41er+dL0iubsIwYu2mkYqTOcTVQbIHECEEQBEE0QUsSI42tSyPg6+sLaC+w7YRIuWWEYkYIgiAIopUhFSOBgfzyt1IxwnG8pcEZbpqCgnr3i0SMmLWMXFkN5HyEm3vsQ59kihkhCIIgiFZNcXExaxtbRjiOQ2VlJWp0nCwWw1GWEVGMSNalMSdG9KXAhUcwIHIvAIoZIQiCIIhWjTk3jXHhM6lVBHCGGJFaRhSyPtLU44qKCgDGMSOOGZutkBghCIIgiCYwFiOXcjkcq34GiLgPQL0YkS+Ui2pHu2maCmCtR4hpkcWMtDDLiKrpLgRBEATRvjEWI49/xCGjahCQ1B8o/A7l5eUm3+4dHzMicdOYC2Cth4kRacwIiRGCIAiCaF0IYkShUMDPzw9/ptYfULgBnrEoKyuDm5v8HGfGjFhiGfFswTEjJEYIgiAIogkEMeLn54eqagXOX5bU6VCF8JYRT/k5zowZMQ5g9fERj5GbhiAIgiDaAIIYCQwMxPELACetGebOixGFkSBwuBhRNpzaq9FooFAowHGcWTFCAawEQRAE0YrgOI6l9gYEBODoOaMO7sHms2l0YPVH7MnVq/WVVRtx0ygUCmYdaQ0xIyRGCIIgCKIRtFotamv5t3dAQACOnjcSGPWWEeNsGgCodYAFQrCMuKsD2T7jAFbAtEIsWUYIgiAIopVinElz9LxRB1UwysrKUFZpagVxhKtGECMeXqIYMbaMAKZiRKFQwL3eOkLl4AmCIAiiFSEVI77+wfj3olEHwTJi5KYB7P/Sr6urYy4jNw9/tt84gBUQxUhFRQVzFwnWEbKMEARBEEQrQipG9J5dTF0vQsyIGTeNvS0jRUVFrK10FyvAenua9hXEiMFgQFUVr5SE9F6KGSEIgiCIVoRUjFQgybRDvWWk3JxlxM4vfZZJA7AAVm8vwM1NYdK3scJnLS21l8QIQRAEQTSCVIwU6zqYdlA5z00jFSMGhTcA88GrQOMl4ckyQhAEQRCtCOmKvVcqIlg7Lqw+YNU9BKVlZU5x07C0XgB6jvfNmAteBRq3jFDMCEEQBEG0IkTLiAJZRUEAgPgIoFNsvWtE6YHScoNTxIjUMlKr58WINZYRTw9+mywjBEEQBGEhBoMBH330Eb766iuXjYGJEXUSqmt500KfTkCImMyC0ip3J7tplNDp+bH4eJvvGxISwtr5+fkAWm7MCJWDJwiCIFosy5cvx0MPPQQA6NKlC6699lqnj4GJEU0ftq9PJwXyi8W6IuXVnjA40zLiJiqQhtw0UVFRrJ2TkwNAjBmpreOrwyoUpoGvrsBqy8j8+fMxePBgDBs2DMOGDcOjjz7Kjq1duxYpKSkYOXIkli1bJiuDm5qaiunTp2PIkCGYP38+cnNz7fMEBEEQRJvl008/Ze1z54zrsDsHJkZ8pGJEbhmpqtWgQmt6brWjLCOSdWkactOYEyPSlXsdUR3WVmxy0yxatAh//PEH/vjjD7z//vsAgH379mHjxo1Yu3YtNmzYgH379mHr1q0AAJ1Oh2eeeQbTpk3D7t270aNHDyxcuNB+T0EQBEG0Oc6ePYsjR46wbSHuwdmYEyPXJgMh/qJVoc4t2uy5jrOMNLwujUB0tDgmY8uII8bWHOzmptmxYwemTJmCmJgYAMCsWbOwc+dOTJw4EUeOHIFarcbEiRMBAPPmzUNKSgpyc3MRGRlpci2dTgedTi4nVSoVPDw87DXcFo3BYJD9TzQOzZd10HxZDs2Vddh7vtatWyfbLi8vd8lnIcaMJAMAgvyAiCAOQX6STl6JZs/V1nAwGMwvlmfLfAliROHuB+Gq3l7mrxERIWb+5OTkwGAwsHLwAFBdw0HjZf+F/IxRKpu2e9gkRt566y289dZbSE5OxhNPPIFOnTrh4sWLGD9+POuTnJyMDz/8EACQnp6OpCSxUIxarUZMTAzS09PNipE1a9Zg5cqVsn1Tp07F7bffbstwWy1ZWVmuHkKrgubLOmi+LIfmyjrsMV8cx+Hzzz83uW5GRkazr20tLJ3Wg3+5h/rpkJmZC32NF4Bw/phXgtlzc64UICPDTDCJBGvmSwhx8PWPRFn9PkNtGTIyis3212g0qKysREZGBjIyMqDXhQLg403SL11GRYDe4nvbSkKC+bmRYrUYefTRR5GYmAilUolvvvkGjz32GDZu3Iiqqiq2XDHAT4BQflar1UKj0ciuo9FooNWacbABmDt3LmbOnCkfaDuzjGRlZSE2NtYiRdneofmyDpovy6G5sg57ztfff/9tIjxUKhXi4+ObdV1bqKioANz8ACWfShsT5oH4+HgUSw34EjES4AOUVPBtH78QxMeHwBy2zJdgpfEPEsVIZJgf4uP9zPaPjo7GuXPnkJ+fj/j4eARI4lzCwmMQH2H2NKdjtRjp0aMHa991113YunUrUlNT4e3tzX9g9VRWVsLbm1dfarUalZVyZVhZWQm12ryjy8PDo90Ij8ZQKpX0B9AKaL6sg+bLcmiurMMe87V+/XqTfRUVFU7/HDiO4wWAh+iGCQ/inzE0gAMEZ4nETRMaIIqR2loFlMrGM1YsnS+tVsvepT7+oorw9W74HlFRUTh37hzKy8tRWVkJTw/RMFCrb3pszqLZn6owgQkJCUhLS2P7z507h8RE/sNJTEyUHdNqtbh8+TI7ThAEQRACdXV1ZsWIKwJYKysrodfrAfdwti+cr3uGYImVASqxwFhogLjbnkGihYWFrO3tE8raDQWwAvKMmtzcXFZnBGhZhc+sEiPl5eX466+/oNPpUFtbi3Xr1qGsrAxdu3bF+PHjsWnTJmRnZ6OgoADr1q3DjTfeCADo27cvtFottm3bBp1Oh9WrV6Nbt25m40UIgiCI9s1vv/2GvLw8AMDgwYPZfqn13Vmw4FX3MLYvLIC3Jnh7KeDuZvpGd5QYkVZf9dKIrp+GUnsB0/ReaWpvSxIjVrlp6urq8OGHH+LSpUtwd3dHcnIyli1bBh8fHwwdOhTnz5/H7NmzYTAYMGnSJEyYMAEA73Z58803sXTpUrz++uvo1q0blixZ4pAHIgiCIFo3GzduZO377rsPBw4cAGBqGfk3ncPJdGDycMDTwzHuBiZGPEQxIlhGAMDXqxpFle6yc+RihANgn7FJxYiHOpC1LbWM5OTktI3U3sDAQHzxxRcNHp87dy7mzp1r9lj37t3Nmt0IgiAIQsqFCxdYe8KECVAoFOA4TmYZKa/iMPRhDqUVwOv3KfDsTHNXaj7mLCPhog6An7oWRUbJMtJiaPYsBy8VI+5e4iA01ogRSS5JS1osjyKyCIIgiBaFsI6Kl5cX/P39WTam1DJyPgsordcmx9IcVytDtIyIMSNhEjES6GOaGhsaIFpC7Gl9kK7Yq3QXs2dstYy0JDcNiRGCIAiiRSGIkbCwMCgUCrb6rNQyUiwJH9HWOG4sxcX19TukAawSMRLsZyqEnBEzolCJpTSsESOe7qJQIssIQRAEQZjBYDAwC0BYGO8aEWpYSS0jRWXiOfZe/0WK6KYRs1eklpGQANN4EJkYcZCbhlOIC+VZGsCanZ0tjxlx4LxZC4kRgiAIosVQVFTESpsLYkRqGREWYJWKEUdaRozdNP4+8mDZsCA3k3OcYRnRQzSHNGYZUavVCAzk1VNOTo48tZcsIwRBEARhiuCiAUwtI3V1daip4ZVHsSSxxilipN5NI3XRAEBkiDyTBnCOGKkzeLJ2YwGsgGgd4WNGRLcSxYwQBEEQhBnMiRHBMgKIrpqicvGl6nA3jdILUPEBo8ZiJDrMU7bt5SG3VDjCTePh4QGtTrTINOamAUQxUl1djbraKnFsJEYIgiAIwhSpGAkN5eM0pOueCUGsTnXTSAueGYmRqFD50iV+Gl6QCNhTKAliJCQkBJXV/D61J+Dm1ngdE2ncSGWFuKAeWUYIgiAIwgyWWkakbhqHW0YayKQB5Gm8AODnDVmVU3tZHziOY4G9ISEhqKhfZ7YpqwggFyMVZUWsTTEjBEEQBGGGpsQIs4xIY0YcLUZk1Vfl4kNa4AwAfL15S4VbvRfFXmKkvLwctbX8xUJDQ5kYaSx4VUAqRspLxfVtyDJCEARBEGaQFvYyDmAFJDEjTkrtLS4ulllGjN00wX7ybb/6CqeCdcReMSPS4FWpm6ap4FVALkbKSsT5pZgRgiAIgjCDpZYR42waIeXX3phYRozEiKeHAkpOrAfv682Pg4kRK1/4Jy5w6D7bgOkvG1BXJz6TVKQFB4eiql6MWGsZKS7KY21dreMq11oLiRGCIAiixdBUAKuYTSOeYzAAtQ6If6irqzMJYDUWIwDgoRAH4+3BD8RWMbJqO4dTl4D1vwI//Cnu3759O2uHRiaxdrPECMWMEARBEIQpghjx9/eHpyefNmtsGanRcajUys9zhKsmPz+ft7g04qYBAC+VWJveU8UPxLM+o8ZaMZIrhnTgi594y0V1dTWWL18OAFCpVOg7bDrrkxiFJomMjGTtooJc1qYKrARBEESLobKyEqtWrcLQoUMxcOBAZGRkuGws0nVpBIwtI1IXjYAj0nuvXLnCN2QBrKb9NO6iMvJ04/0ntsaMFJSK7W0HgJJyDl999RWLGZk6dSoKq8TS9N3iG0/rBQB3d3c2nwVXRTFClhGCIAjC5VRVVeHJJ59EVFQU5s2bh/379+Pvv//Gl19+6ZLx6HQ6VvFUKkaMU3vNiRFHWEaYGKl30xgXNBPw8apmbXclL0xsddMUlIhtXS3w7R4O7733Htv32GOP4dQlMdajawfLriu4agrys2XXbymQGCEIgminrF69Gu+++y7Kyspk+3Nzcxs4w7FIgzSFeBHA1E1T5CTLCJuH+nVpwoMAhcLUEuGnFpWQEMxqq5tGahkBgA+/LcHJkycBAIMGDcLAgQNxWmK46hpv2XUFMaKXVGAlywhBEAThck6dOsXa48aNY21pGqkzMZdJA5i6aYrk2gmAI900boAqGID54FUACNDoWZuJkXrLiMEAWVZMY3AcZyJGjl8KADzjAPBWEQBMjGjUQGwYLIIFsXKicKLUXoIgCMLlZGVlsbbUFdDSxIixZcSpbhr3EEDBvyrNBa8CQK/4+hLrnAER3pcA2FaFtawSqNObORA6HdHR0bjtttugreFwsd5g0zXevKXGHEyMGMSJIjcNQRAE4XIuX74MgM/QSEpKgrs7/wZtaWLkbI4/oO4MwLmWkdzcXOaiARq2jAzuwQFHBwD/9IKyJg2AbWJEahW5rrvkQPgs3Hff/XB3d8e5LN7aAljuogEkGTWcOFEkRgiCIAiXI1hGoqOj4ebmxuI0WpIY2fEnh9ELfIC+JwCvxPqYEVO3h+MsIxIxYiaTho214ghQdZo9g6dksTxLM2qkYqRfFyDW7xK/4d0NgbEjAMAoXsQyqwgABAfzriaZZYRiRgiCIAhXUlVVhaIiftG02NhYAHyZcYAXI46qaNoY5krBr9pePw6FCvC/3qmpvbm5ufIVewPMv/ylVhwmRpppGQnxVyDKfQ/bTr3SCQBwOkOSSWOFZSQoqF5JUcwIQRAE0VIQXDQAEBMTA0AUIzU1NaisrDR7niMxtoxoazjsOiTp4NWBt4yYc9PY2TLCcRxvGWmixogwVoFmiZESsR3iDyiKdrDtQ2m8j0hqGenWwbLrAkBgYL2PiRPNIeSmIQiCIFyKVIwYW0YAuZXCWRiLkV+PgK3BAgDwSuBjRpwQwFpRUYGqqqomS8EDfLVYId7GrJvGJssIcCXzCFDJp/X+c94NhaUcTl/ij3u4A4mRptdoCGYZAaAEP1nkpiEIgiBcijSTxtgyAsjjRtbu5DD4AQN++tuxrhvhRa5UKhEUFIQt+4zuVy9GnOGmMa4xAjScTaNQKJh1RHgGL4kYqbZwbAWl4vMG+hp4wVj8EwCA44AfDwJn6z+2TjGASmV5zIhUjCjAqyMqB08QBEG4lKYsI4IY4TgOT3zA4c9U4OW1zhEjfLClElv3G3XwSkB1dTWKyhwfwCpWX206mwYQXTVXr14Fx3E2uWmulkg2agtQV1cHFO9iuz7ewrEFAa2JFwH49Gg3Nzd+g+MHRJYRgiAIwqVYahmp1AIl9evAyV6WdobjONm6NAdPAfnFRp08IgGlFwpLTcWIwywj7nyGkZsbEOTXcH8hE0lY6be5AazV5fWfT+k+qBS80tp/UjxuTbwIwFtvmHVEz/u+KGaEIAiCcCnmLCPSEuyCGJG+IB2RsSJQWVkJrZZf1yUsLEzmovH2knT0SkBJhal7QltjX6uNuEgebxkJ9QeUyobdIsZBrJ4eYl9bxEhZYTrf4GrQMfSySV9r0noFBDFi0PMfJFlGCIIgCJciWEakK7qas4zIxIgDYwyMg1e31LtolErgzjGSjpreMHD8i1gjWbTOcW4afm4aihcRMBEjUsuIlXVG/DRATraYNjMwudSkr7VuGkAUI1y9ZYRiRgiCIAiXIlhGoqOjoVTyr4KmxIgss8XOSMWIyq8Hzmby7SE9gP5dJFYAn2tZM1ocrmPcNG6+gJKPRA0NaLx/o2LESstIiD+QkSGKkXED5a9qhQJIjrXsmlLE9F55Ns2FbA7VdrYsWQuJEYIgiHaGuYJngPnUXmM3jaOKoUnFSL5+EGtPGqZAgjSF1acPa0ZJxIhDLCP1C+QBvEBoDFM3jXjMEjGi13OsfkqIP5CZmcmODe8XjvgIsW9iFKD2tN1NA0O9m6aWv2+XWRzUozmMedJg9TXtBYkRgiCIdoa5gmeApGQ4RMtIoZGHwBFl1wF5XZO8qo6sffNgGIkR0TISJQ7X7pYRtkhePcGNBK8CzXfTFJfz6buAXIy4u7sjMjICY/uLfW1x0QCmVVjr9EBmnrg4n4+6gROdAIkRgiCIdoY0k0ZqGVGr1dBoNACkbhq5JcRRQaxSy0hZTQAAwF0FJEUDsWGAUlH/rV0VwPpFi/G2dhdJfCl4UYyEBDTcF2i+m8a44JkgRmJiYqBUKjFuoGgJ6ZHQ9PXMIVpGxMk6Ixpg5KLPyZAYIQiCaGc0ZBkB5OvTAPKXJOC4uBGpGCms4AVRbBifwaJSKRCkMS1PHxUsvqDtKZLq6up4S43ETRPs17hbxJ5ixM+7FsXFfF5zXFwcAOCWwcD0FH413wcmWe+iAcyvTyMVI4lRtl3XHqhcdmeCIAjCJTRkGQH49N6MjAwUFhbCYDCYiBGHW0bcfFFezb+a4sR6YwgP0KKgwld2jjRmxJ6ZPvn5+XxsjLvlMSPStOirV69avWqvdJ5VnFhgRRAjKpUCXy1snlgwaxmRLLyXGNWsyzcLsowQBEG0M6SWkVJDMi5kiy8kwTJiMBhQUlJiahlxtBjxFMVRvESMRAebvtHDg/jUX8C+bhoxrVfipmlCjHh7e8PHxweAOctI00G/0nk21IjxM/HxNgaImKFpy4jdbmU1JEYIgiDaGcwyEjgec97rgq53csi+yr8wjdN7pSvJAo6zjAhuITeNGBAhtYzEhZlmegT7iWvA2HNcohiRuGmaECMAZOvTWO2mKZH0r8xhbcEyYg9Yaq+ZmBGFgoMn8ux2L2shMUIQBNHOEMSIMjgFAFBbBxw6wx8zTu8tLJOf66iYESHV2DuwC9sXFy66Jcx9aw/0BdSefNuelhFWCl5luWUEEMVIYWEh3Nz0bL9lbhrRelJZItYYsacYES0jonITSu5z1dmYfsetdruXtZAYIQiCaGcIbhq1v5hCW1YfHyoXIwWmMSMOSu0VxIiHbxLbFyfGhKJTrLvxKQhyuGVEXOm2qdReQB43oq0sYW1rA1hLC9JY2yFixGDmQ6xOt+u9rIXECEEQRDuisrKSZWq4eYvxGaVmxMjl3FK2SqyAIywjtbW1qKjgV+NTeokxElI3TZd4D9k5Xh584S+1Q8UIPxeeHvLS8w0hzaipKCtkbWvFyNWcM6xtHGDcHAICAvgGZ06MXLTrvayFxAhBEEQ7Qhq8alCJZT1L61fmlYqRzCtVJuc7ImZEEEcAoHcXU41jJZaRxFgfQC+OJ7A+scYZbpoQf37V26aQipHyUjEI1ZKxCWJEoQByMlMB8JYMISjWHqhUKvj7+7MKrDKq00mMEARBEM5BmtZbbRBXfyur4mMWpK6GnHzTl5YjsmkEFw0A1IA3hwT7Axq1KADUai+gRoylCKp3m0jdNPYqVW8cwGqJiwaQi5GyErFuijWpvYG+HLIv889pz0wagaCgIPOWES1ZRgiCIAgnwSwjbv6oM4iuD3OWkbxCPYxxrGVEiSo9L5Ck8SIAb5lQ1YlCKsjIMgLwa63YA36RPB9AyV/ckuBVQC5GSookYsQKN02ARg+9np93R8RwBAUFmY8ZqSExQhAEQTgJZhnxjJbtL6v3gMhSe0tNLQ2OiBlhlhGPSHBwAyCPFxHwRC5rC24aL0koiT2EEsdxJovkWZLWCxiJkWIxTbYpMVJbJ4pBjYeW7XeEGAkMDGzAMkIBrARBEISTyM7O5hse8lxZ4WXIMi4AFJWbviK0DlhqnllGPMWXoTkx4q0UX/CCm0ZqGbGHGKmoqEBVVZVVBc8EpGKkqECsFdKUGJEuRuipFHOpHWcZMZoovRbuiiKZi87ZkBghCIJoRwjFxYzFiGAZUalUrDhWmVaewQI4OGbESyJGwkwDRv08xNiSgPq4TqkYsUcQKwtebaYYuZp/BULMa1MxI9JMGkWdmIXjMDFibBmpTkds/YJ8roLECEEQRDuisLD+ZechX6JVsIwAoqumSmeaz+qImBEmRiSl4M1ZRiLV54Ba3ooyojc/EJmbxg5i5N9//+UbViySJyCv0SJWYTVnGSkoKMDHH3+MS5cuycRIrfYKazvOMmI0IBen9QIkRgiCINoVghhRestfPqWSRXGFl6qOM00jcWgAaxNumiA/DjicBBzqhIGdeXeGzDJih7EdPnyYb1ixSJ6ASqVCcDB/Xn5+Plssz5wYmTVrFh5++GHMnTtXFptTVpjO2p07d7Zu8BbAW0aMJorECEEQBOFMBDHioZGnjZZJSoqw2AHJC1nAoW6aJsSIr68vUFcCVKejvLwcgP0tI0eOHOEbVq5LI2BufRpjN82pU6ewa9cuAEBGRgbOXRTdT/nZpwAAkZGR4loydsRsNo2Lq68CJEYIgiAcTk1NDSZOnIgRI0bIio45G47jmBhReBll01QCBoPRYnkqUzHiDDeNuwqICDLtJy0AJlRstWcAK8dxTIx4+YqWAkstI4AoRioqKuCh4ufT2DLy8ccfixsKFf48XsI2K4ovAQC6detm+U2twHzMCFlGCIIg2jw//vgjtm7dij179mDevHl2K85lLVVVVaip4d/Y0uqrAMBxQGV92i4TI/VBnFLLgCNSe43dNLFhgFJpGqfh6+vL2oJlRO0h9mtuAGtmZiYTawEh4ro91ogRaUaKSsnX0peKkYqKCnz22WeARzTQZT0w6Cp2HBPvhVr+/o4SI4GBgWYtIyRGCIIg2jhpaeLCZz/++CO+/fZbl4yDBa9CAR1MrR4mhc/qxYi0LLvDLCNuPmxhOnMuGkBuGTHrpmnm2JiLBoCXr2g5ssVNAwBKhakY+eqrr1BeXgn02AmETgVUYlxOoHc5UHEUANC9e3drh28R5mNGLpEYIQiCaOtkZGTIth9//HGUlpY20NtxMDHiHgIOKpPjssJnbv6Agu8T6g8WjOmImJHi4mJ5Jk2Y+X5Sy4g5N01zLSNSMcLVu6g83AEfCxbJE5CKEUW9O0SIGeE4Dh9++CEQNhPQ1IuN2iJ4V2zGupcUmJKwlAkFh7pppJYRXR5gqCQxQhAE0da5dOmSbDs3NxcvvfSS08chpvVGmT0us4xI62wEwCGr4wL8C7qoqKjJ4FXA/paRgwcP4uzZs2xbKkaq9fy9gv0sWyRPQCpGBGFRp+fjcf7880+cOHkKiFso9jl9G6qOTsHYa4uQdvYfttuhbhppzEh1Onx8fMQVfV0EiRGCIAgHI1hGVCoVvL29AQD/+9//xDRSJ2FOjLi5iceF9F4TMeIvWiDsHTNSUVGBuro6IzFi/uVvT8vIli1bMGjQIPTp0wf//vsvOI5jn0dwSAhKKvmJsSZeBADCw0UlZagTS7vX1NYHrobfDagTAQCxPmeB0t8BAMeOHUNqKr9ab1hYGEsRtjdqtZpl+QBgwavWCC5HQGKEIAjCwQiWkfj4eCxatAgAbxF4//33nToOc2IkUVL7rEwqRlTSOhsKeHvxbXukz0oRg1cbL3gGmLeM2JpNs3//fv4crRaLFy+WBa9ec+0Q5lqxVoxER4uxJnqdmC9dqdXj203bgLgX2L7Z159n7V9++QX5+fzieo6KFxEIVufy7hkAKNzqchcN0AwxcuLECfTv3x9r165l+9auXYuUlBSMHDkSy5Ytk0WMp6amYvr06RgyZAjmz58vltwlCIJow5SUlKCsjC/Q1aFDBzzyyCPsWHp6ekOnOQQmRjxFBdJVUm5EsIyEhoaaWkaEmBE7W0bEtF5xIA3FjPj7i8pAEDFyN43lWUrsvgA2bdrEZ7jU07XnENa2JngVAGJiYlhbV1PO2hlZeagJvAvw5I9PGALcNkYUAV999RVrO8pFIxAcqAEOdwUOdwMKvm29YsRgMOCdd96RTdi+ffuwceNGrF27Fhs2bMC+ffuwdetWAIBOp8MzzzyDadOmYffu3ejRowcWLlzY0OUJgiDaDNJ4kfj4eKjVauafd/aXMnOWEakYESwj/v7+UHqJiiDEH6JlpAZ2TU1mlhEv8YUY24AYiYoSxy0s+Germ4bdt56lS5eydnxSX9a21jISEREBt3rfV41WDFLOyLwCxCxg20vuUaBr167w8ODVVGZmJjvmaDESGBgI6EsBLR8v4+qCZwDMhFNbwHfffYcePXownx0A7NixA1OmTGGqcNasWdi5cycmTpyII0eOQK1WY+LEiQCAefPmISUlBbm5uYiMjDS5vk6ng04n/6lSqVTsQ2vrGAwG2f9E49B8WQfNl+XYY64uXrzI2vHx8TAYDIiKikJJSQlyc3Oh1+ud5q8XxYjoSugseQ+VVHCs8Jm3XyyEv/CBvhyzjABAVTUHtaepILFlvsSF+2Lr7wV4e4njkCJ9X2RnZ8NgMMBD8harqrH83lLLCAA+bqWe0ChRDAT7Wfc8CoUCUVFRyMrKgrayBKgXM4dPlQGefQAAnUIuoWdiBxgMKnTq1InFigh07drVob+fxpVdo6OjHXo/Sxbgs1qMlJaW4uuvv8aaNWvwzjvvsP0XL17E+PHj2XZycjKfwgTeFJmUlMSOqdVqxMTEID093awYWbNmDVauXCnbN3XqVNx+++3WDrdVk5WV5eohtCpovqyD5stymjNXR48eZW2NRoOMjAxmGdFqtfj333/h52e6BowjYNVf6xfJc1Ny8HHLA8AXQLt8pQwZGbzFQKUWi6LpKrMBLggAn+N6Li0LAT4Nv7yk88VxwEfb/FCuVeLJ20pk4gEQarAomPsiPECHjIyGLUYBAQEoKSlBRkYGMjIyUFLkDoC3mBQUliMjo6jBc6VcuXLF7P6goCAUl4viUKEvQkZGudm+DREaGoqsrCxUV5UyMXLwXzGYNTaoABkZ/D26detmIkZ8fX1N0sHtifEXew8PD4feLyEhock+VouRDz/8ENOnTzf55amqqpIFF2k0GlRV8cE7Wq0WGo1G1l+j0UCr1cIcc+fOxcyZM+UDbWeWkaysLMTGxrp0SefWAs2XddB8WY495koItASAvn37Ij4+HgkJCThw4AAA/m9bfHx8Q6fbFfY315N/eUcEKdC1kyg6OKUf4uP5v+3u3llAvd6Ij/ZBUIBYbCM4NBYxZlwp5ubrt6PA25v448kd/PGE0XdKpVIJuIcBSv7ve2K0R6PzERsbi5KSEuTl5SEuLg41kkqtbh6+iI/3bfBcKeUVVUDoDHiGDgPnEQ0dwgBdPnpFfw6Fh1hFtVOHIMTHm6lN3wiJiYn4559/ZMXFLpeIEzaghy+zknXv3l1WBC8kJATXXnutVfezFmO3TL9+/Zz2M9gQVomRM2fOIDU1Fc8++6zJMW9vb5nbprKykqWwqdVqVFZWyvpXVlZCrTZfScbDw6PdCI/GUCqV9LKwApov66D5spzmzJX0G2dCQgKUSqUs9iEvL8/h2RMCvJvGDXDn01WiQoBAXwUA3iVSXiUxqbuHAMK7tLYQGi8xeKKmVmG2XLuAdL7OZHDs+lv2AU9Nk8+jScGz8MbN+tHR0Th58iR0Oh2Kiorg7RXCrl+ts8wlAABXMRro8gmME3C0wYEokhhCQgMaf1ZzsIBQg3j13DJRjAzs6cfGaRwf0r17d4f/XhqnDcfHx7v8b4FVYuSff/5BZmYmc8dUVFTAzc0Nly9fRkJCAtLS0jB06FAAwLlz55CYyOdSJyYmYvPmzew6Wq0Wly9fZscJgiDaKoIYcXNzY2mfUve0M4NYCwsLAY9wQMG/eKJCAD+J0bpU8p1RrwjgG3XlKC3Og9pT/HttTRXW7AIx9mP/v0BRGYcgP/Hlzhc8kwavNv7il2arZGdnI7qDmPVjaQBrdXU1dPXxG8ZcqhyIPImnx9oAVtkYJWKkvC4SqH+0YX1Fy0uXLl2gUChYULCjg1eB+iqs9QQHBzPDgSuxSgpNnjwZmzdvxrp167Bu3ToMHz4c06ZNw2OPPYbx48dj06ZNyM7ORkFBAdatW4cbb7wRAG+a1Gq12LZtG3Q6HVavXo1u3bqZjRchCIJoSwjZNDExMVCp+O9/UsuIs8SIXq9HSUmJLJMmKoQvdS7Ez0rFSI2h3t1RV4D8/Hx421jPI/uq2DYYgB8Pyo/zlhFRYDSUSSMgreORnZ1tUwVW/p6iq+KfVQrcMphv55W4YdsBsW+zxIh0DRgFn2GjrM1GcIA4aB8fH1lMpbPFSEtI6wWsFCNeXl4ICQlh/zw9PeHt7Q1fX18MHToUkydPxuzZszF16lQMGTIEEyZMAMC7Xd58802sW7cOI0aMwPHjx7FkyRKHPBBBEERLoby8nGVtSH3y0i9iOTk5ThlLcXEx/+1bKkaCFVAoFMw6IqT2Ggwcqmrr3ei1hbh69arNxcUuX5Vvb/9TniVjahlp/HpSMXL58mVZlo+llpGioiLAixcjStSidxIwc7RokckpEPtaW2cEMG8ZEfBRmgZDX3PNNazdXsWITam9AosXL5Ztz507F3PnzjXbt3v37li/fn1zbkcQBNGqkMaLdOjQgbUbc9NUVHHw8bZ/qq9Y8ExuGQEAfw2/Lo1gGSkuBziu/rtqbSFvGYkVY0usc9PIt3f+BdTVcVCp+Gc0tozEhKJRjC0jKpUCKjcOdXrLRRIvgHoAAPw8S6FUhuGWIRw0aqBSklfhrgJ8bfBgmIsZEQjVXDXZd/fdd2PLli3o1KkThgwZYnLc3kgFSOfOnR1+P0ug6DWCIAgHIRUjV9xux8LVBlTXcA2KkQ82cfAfz2Huf+xf88FcwTOpGAFEy4jMmqHL5i0jNrhDOI4zsYyUVAAH/hW3i4qKAA/LxYhxzAggVmG1dFyZOWWAijd5BGn4xAtvLwVuHSbvZ+0ieQIRERF8QChnOqC4kCqTfWPGjMHVq1dx/PhxeHp6mhy3N8nJyXjllVcwdepUPP744w6/nyWQGCEIgnAQrPqq3xD8lHYjln4GrN/NxwkIpRCkYuTj7zkYDMBnPwJ6vf2qnAKNixHBTaOtAWrrOGTmSU6syeQtI17iLktLwpdVipYGabKG1FUjddOEBgBeno2//I0tI4BYhdVSN82Fy7WsHR4gCobpo+T3tiVeBADc3d0REREBGEwH1DnOvND08/NjlVudwQsvvIANGzbI5tOVkBghCIJwEMwy4t2D7Tt/mX8RC0GsghipreOQxr9bwXFApZ3XgBHFiGiViazP8PSXZNSUVcJIjFy2OWZE6qIZN0AUJNvrA0Rra2tRXl7JXEdNxYsAfLyDYD0QirhZbRnJE8VQVLBYeXV0f3mMSEiAZdczR0xMjFk3TZ/OXmZ6EyRGCIIgHAQTI57it88ifs085qopLy9HRUUFLuYCteJ7ERXma0LajChG+CJnKjfeDQGYpvdm5UusMoJlRCJGLI0ZkWbS9OoIDK7XZKczgAvZXH12TySg4MMXLREjCoWCfZu31TJyuUC0QMRHiNYQd5UCU28Q+wU3ozBuTEyMqZtGl4euSRY8ZDuExAhBEISDYG4aSYCmsRgBeOvIGaNq3JUOEyP8fSOCwIp5SS0jpRVAZr7kxJpMu1hGokMUuPk68cW//YBpwTNLxAggxo2UlJSgsrJStIxYKEbySsSHSYpxlx2TZtXEhVt2vQbHaGwZqTrVYrJXWhokRgiCIByEYBnx9BULhgnVPU3ESKbsVAdZRtwAdz5CNFJShFPmpqky76bx8hCtJVXVlsWzXJaImpgw4KbrxO2fD3NWFzwTMI4bEYRSjQ5mF9gzprBCXLqkcwd5usyQnsDLdyswYQjw6G22ZzWZFSPaM7IaM4RIs1J7CYIgCPNotVrk5fFvdaVafOE2ZBk5myl/idpbjPBZK2Gs+qpUjPhpxLTd0gogq15EuKMUtQYt9AD0teUA+EJolltGxGeKDgG6J/Cr8haXA4fOAIWFRVYVPGPXMhEjYtGwmlrIrDjmKKsRA0O6J8l9MQqFAgvnAKxcqo3ExsaauGl83S7TUicNQJYRgiAIB5CZKZo6apWivV8QI8ZVWI0tIw4JYDUTvArILSPF5aJ7xcejmO2vqhBrpNsSMxIdyr/oB3Tlt/OLgbSsmma5aQDbqrBW6evTiHRXEBbimBWTzVlGogJKHXKvtgCJEYIgCAfA4kXcfFHHiYuCFtevJyqvwpqL00YxIw5x08jEiPjNXxrAeiaTg17Pt4O8xcVPtZWFYtvKmBE3NyA8kG/37yIeP37R0z6WESuqsOpqOdQqeDGi0ufYVEfEEngxIleUiRF2VphtCBIjBEEQDkDMpImR7S+t4CuQSsXIxcvlKC6XdXO4GIkQK4LLLCP/XhTbYf6i6qgoFQNALLWMCAXPIoMANzf+pT+gq/jyP5vtxwqeKcCxuidNYVwS3suK4Nrsq2CuKi9FfuOdm0FUVJTcTVNXgqQ4X4fdr7VDYoQgCMIBXLlyhW94mBaVKqmQW0YuXnE36VNhWqizWfBiJIJty2NGxPa/6WI7JlQs0FUuESOWWEZ0tRzy67080ZKqqlLLSEZRGHPTBPvWwl1lYwCrFW6a9Bw9a/u6FzfSs3l4eHggOEgiPqpOITY2puET2jkkRgiCIByAELxqbBkB+Iwaf39/eHnxBbBySkzjFuwZM1JVVYXq6mqLYkYuXRHbHSLFehwlRWKlWEsqsOaKXh1ESyweEcEK5o7Jq4xhAikqWA9LiYyMZO4VaTYN0LSb5sxFUeUFepc30rP5xIW7AbX1E1HyK6X1NgKJEYIgCAfAxIiHaSpnURkfzCkEsRZVmwZLVGjtVw6e1Rhxb0CM+MAsneLEWBepGLHEMiJdk8Z4vRkhiLWO82Iuk7gIy19H7u7uCA/ng4KtDWA9lyl2CPWzsy/MiLiYMOD4MODMLCDrdVngLSGHxAhBEIQDyM+vd2uYs4wYpffWKDqY9LFnzIhx9VWFAgiXxIxI3TRSunUUVUrB1Tx41HuTLIkZkWfSyN0v/buYumMSo01dVY0huGpyc3Ph6S4Kt6YsI5dyRddTZKCFVdJsJDY2FtCeBa5+DRiqyTLSCCRGCIJoU+j1etTUWLHGvYMQLCNu3vEmx0wKn3knm/Sxp5vGuPpqiD9k8Rl+3qbnuLkBPTqJ5pOrV6+ykvCWWEbk1VflxwTLiJT4COsWiRPEiMFgQJ1OkvVjNLaiMg6PLjNg7U5esGTli88d24wKq5YgtYRILWGEKSRGCIJoM1RXV6N3794IDAzEn3/+6dKxCJYRN+84k2PFUjGi8AC8+AqtgZJ4R1ssI3+lcvjfJg7VNXIXj7FlROqiAQBPDwU8jWpxRYcAfn4aFteSn5/PYjMsiRnJviopeGbkpunbmbfOSLE0rVdA+qKv0ZawtrFl5L7/cvhgEzD3Pxy+/Y3DlZL6B9VXIDpMDUciHWNERATc3a2z/rQnSIwQBNFm2L9/P1JTU6HVavHuu++6bBw1NTX8InAADCrzMSNAvRhRJwEK3irQt7PYx9psmtIKDqOe4PDIMg6PvW9GjKiCASX/IjYWI4A8iBXg12VRKBQIC+NVwtWrV+Fdv+CsJWvASGNGPl72Iu644w6UlfEP7qdRoEucfIzWihFpRo22UizIJrWMnMngsGmvuH3ffzlcLas3A9VkIjhY4qtyAFIxQvEijUNihCCINkNOTg5r79q1C7W1tS4ZB4sXUXiiThEAACzeAuBdB0B9LQq1mOvaTyJGrHXTnM0ULRaf7gAy88SXfWNpvQLGYkQQB6GhvFmjoKCApdBa66bZ8MU72LBhA9588022Ly4wT9a/OWKkoky8mVQovfk1B06ieYrLgTpD/Soo1VkICnKsGOnQoYPZNmEKiRGCINoMublixkdZWRn279/vknGIwauiVaRbB/G4LGZEEi/Sp5OCuS+sddPkSFJp6/TA2+uNxYj5gmcCxkGscfXiQLCMGAwGeKjqAPCih+Maz/YRAli9PapZJdKvvvqKnVd99Q/WV6kwmB1TY0jFSHmZaIaprhdKmXkcvthVv7O2GNDlQEZNhsPFSHx8PB5++GEkJyfjiSeecOi9WjskRgiCaDNIxQgA7NixwyXjENN6RdN8L3HhXiM3jWgZ6RoPaOpdIVaLkQL59srtQH4x/+JvrBS8gKmbhu8jWEYAwA2i2aGmEVcNx4mWEY2qhO2/ePEi/vrrLxgMBpz6+zO2PypErNBqKVK3R1mxaGURLCNvr+dQJ5Quyf0QODtHfoGaTIeLEQD44IMPcPbsWVx33XVNd27HkBghCKLNYCxGfvjhB5eMQyx4Jn57754gvmzllhHBN2NAUgzgUx9Tab0YkVsqtDXAso38Pn7F3sbdNMaWkVgjywgAKCH6jhpK7zUYgMNnAV29h8yDuyo7vm7dOhw6dAhXL/4K1PELx3VPsP5VJM1MKSkSK7VV6zhcLeGwcnv9Dn0lkP0+UPIrOnlLxGnFcaeIEcIyVK4eAEEQhL0wFiOnTp3CpUuXnO6vZ24aSSn4DhH8C7+sUrSMBAcHA/Xiw91wBWrPGPioeQFhdczIpQoA8upl//sOWDDNgKysLMBjFNtvaQArILeMcAZRIQlxI1cKOfyZChw6w+HvU8DfZ2JRLgm+5XTZsut+88038PT0BDgdcGYWrpv4Lt56oJPlD1qPr68vNBoNKisrUVyYDQSI43p/IyfGtVxZBdTxPqyrh+5BTPKLuJx1ESjegYCAAKvvSzgGsowQBNFmMBYjgGtcNeZKwUeHAsJSJUJqb4UWgKr+23n1JQCAxkbLSOaVOnGj4DsAvPC5d+ERnDhxosFS8AINiRGpZYSrq2Ttqmrgu70cYqdwmPwih/98Cfz6D1BeJX+tKEt/lW0XFBTgf//7X/2xH7HlzUD07Gj9yrnSuh2FV8V4kLJKYMVWvu2m0AOX32HHSorykXvoCSD7Xfj7+0Olou/jLQUSIwRBtBkEMeLpKS5W4loxIlpGYkKBoPolaIrK+QDQDMk6MLXlaaitrWVumhodv7qvpVwpqv9zbqgGLv4fwPEBE9/9WW/ZsMJNo1EDAfVGFqllRF8rruWi1QGf/SiJy6gnLKAOE4cCr81X4OByBSovrTG5l07HB3YMHz5cdn1rEcRIpSSAdcs+4GoJ3472OgToLsvO0ev5AZOLpmVBspAgiDZBeXk5Kir4SpyDBg3CuXPnkJubi927d0Or1UKtdmyBKynm3DSRwaIY0euB8iogQ5rdWpOBK1euwEctnlNZ3fC6McYUltfn3dbkANVpQMlvQGAKOI84wLsrfEM6o7yWFx3eXuYCWBUAePETFwa2EJ3UMlJXU8baVdXAhXqDhLsK+GaxAv06c6irykZ8fDyUSgW0Wi2Ki/mVcQcMGIBz586x+isAMHnyZMsergFY3IhB9GldEUuOQJe1AgCgUqlQV1cnPRWBgYHNujdhX8gyQhBEm0DqoomKisL48eMBAFqtFnv27HHqWIzdNOFBgIe7AtIV5YvKILOMoDoTubm5LJsGsNxVU13DoVJXf6IuB25ubkDxTnY8IGE6DG68qDBnFQHklhFpzQ+p5aJGW8raVdVAer0YSYgEbh2uMKm0Kv1MEhISMHXqVNnxSZMmNfFkjcPK6RtMJyo6RI8rp78EwAuhzp07y46TZaRlQWKEIIg2gfTFFxkZiZtuuoltOzurhhcjbsw1IqzNIlhGAF6MXLoiccPUZCA3N5e5aQDLxUiupMYIdDl48cUXgaIf2a7IXo+gspq3dDQkRqQxI0K8CCAXI9VVotnhYq4YxNqxgSVXpEXooqKiMHPmTLbdv3//Zi8cJ1pGTCdqWPJFAPyieAMHDsTYsWNlx0mMtCxIjBAE0SYwFiMpKSlQKvk/cX/99ZfTxqHX61FQUAB4hAMK3hMeU/8+l649U1RubBmxXYzkGImRadOm4ZlHJgI1GQCA05dFFdSQGImRWEM6x4puHI1GAx8f3ldUKal0+u9FUUglWihGhg0bhsmTJ8Pf3x8LFy5s6rGaxJybRiBELwrQgQMHYsyYMbLjJEZaFhQzQhBEm8BYjPj6+iIuLg6XLl1CWloaOI5jcRCOpLCwEAaDQRYvIoiRIF8xLqOozDhmJIsXI2KcKSotFCPZ0lIeNTkIDQ3FG2+8jvJ3DPj4e3nfhiqdDu4BPDuDFzb33iw/Fhsbi9OnT6OkOBeo1zX/XhSPd4w2P6/GYkSpVGLTpk0wGAxMKDaHhsTIiD7AuROiZWjQoEEIDg6Gu7s7WyKAxEjLgiwjBEG0CYzFCAAkJSUBAEpLS8WVax2MWApemtbLv6ylbppiqWVElwtwNXzMiFp8sVtsGZFUX1XUXWHBmTcONBUJ5qqvAnzA6uv3K/H5C0oE+Mr7xMfHA5AHsKZKxEhiJMxiLEYE7CFE5Nc0QAkxQHXOjcDff/8NAAgPD0dcXBx8fHwwdOhQ1ofESMuCxAhBEG0Cc2KkUyexmNb58+edMg6zNUbMxIzkFHJi5kc1707Jycmx0U0jukz8vCrZy37ktfIF+oCG3TSNERcXxzcksRnSOJWO0UBtbS1Wr16N7du3s/0NiRF7wQJYAbiBz6Ty9wF6R6exrJ2BAwcyi5jUVRMeLgmMIVwOuWkIgmgTNGYZAYC0tDSnrA/CxIhXR7avY73HRppNczxNbCt0WeAAk5gRS6uwSi0jIb7iojEatQLDe3P45bB4vFliRF9l9riPewFGj56KvXv3AgC6d++OkSNHysSIVDjYCx8fH/j5+aGsrAz+5SvgkfAsltytwLF//mR9Bg4cyNr3338/fvrpJwDAxIkT7T4ewnbIMkIQRJtAECNeXl7w9/cHYCpGnAFz06jFewvZJlLLyFGJocbbjVcTtqb2ZuWLlcciggyyY8auGntZRgSCfWtx/dB+TIgAYC98QYz4+vrC19fX5Fx7IFhcqtNeQ/Z3StxzswIHDx5kx6ViJCAgALt378bu3bsdNh7CNkiMEATRJhDESGRkJDPLu0KMiJYRfpleby8gol4ASMVIpiR4NUhTzs719hTFhKVi5HJ+/Tl15YgMk1dJu3GgvG/zxIipZaQo5zAyMzNl+/78k7dMCGLEES4aAcHiUlFRgfJyfh6FeBGFQoH+/fs77N6E/SAxQhBEq6e6uppV+pS6AxITE5kwcW7MiBLwSgDAW0WEMQQ28GU8IoAv2GEwGFCnK2H7K7WWlYPPE0rB63JMyqt3ieeLkgF8YbMACyu6ShHdNKbqiKu6AIDPWImO5v1Rhw4dQnFxMRMHjhQj0mvn5OSgrq4OqampAPiYIT8/v4ZOJVoQJEYIgmj1XLkiFuyQihEvLy9WWMupbhrPWEDJl2dPEjN8ofZUwMvD9Jy4MFF0VJWLebqWWEbKqzhU1rjxG7psEzGiUCjwv8cV6NsZePshhU3pzTExMfx5ZiwjqL4ADw8P/Pbbbxg+fDgAvurtzp1iBVhnipG0tDRUV/PBNr169XLYfQn7QmKEIIhWj7ngVQHBVVNcXIyioiI4mry8PHm8SLT8eJCZL+qd4kSFUlEm+m8sESPS4FXochESEmLSZ/x1ChxeqcS9N9tWZ8Xd3Z1/6ZuJGUH1RSQlJcHLy0sWILxx40bWdpYYyc3NxcmTJ9l2z549HXZfwr6QGCEIotVjiRgBnGMdycvLA7zEeyYZFQQLMnLVBPgAHWLFQI7yEvFZrBYjNaZuGnsRFxfXoGWkS5cuACATI66yjJw4cYJtk2Wk9UBihCCIVk9jYkRaa8TRYoTjON5No05k+5qyjMRHyMdcUigueW9Jaq/cMuJgMWImZgTadCZGevXqxVZHFlwlgHPFCFlGWickRgiCaPVYahlxdBBrWVkZampqjCwj8j4mYiRcPuaiq1msbZFlRLYuTa6DLSNGA9JXAbVX2Iq4KpUKvXv3NjnXFZYRjUaDhIQEh92XsC8kRgiCaPW0FDcNS+utt4y4q4DYMHkfYzeNsWUkLzcDQrV0y9w0kowbB1pG+JLwBsBQI+6sTgcAZhkBgGuvvdbkXGek9gLA2bNncfEiX6e+R48edis7Tzge+qQIgmj1NCZGEhNFl4mjxQgreFZffTUhEnBzM4oZMbGMKBAeHs6yXK5cEauwWrJQXraRm8ZcAKs9MFuFtZp/8QuWEQDo06ePybmOqL4qoFarERAQAAA4duwY208umtYFiRGCIFo9ghhRqVQmL2Nvb2/ExPDrxDjFMuIeAbhpAJi6aAAg0HgRugg+W0WwaEirsFobwOqv1sLd3b3hzs3AbBXW6guIiIhgFW8BUzESGBjI4kgchTnLCwWvti5IjBAE0eoRxEh4eLhZ07zgqikoKGALqDkCPni14bRewHzMCCBaD65cucIsI1aJkdpChAbbUNHMQsxWYa1Ol1lFAH413OTkZLbtSBdNY/cgy0jrgsQIQRCtmrq6OuYeacgd4Mi4EYOBw86/OHy3lzOpMWKc1guYjxkBxLHX1tbCy70OQNPZNCXlnBgz4sB4EYBf18XHx0duGZFk0kiRpviSGCEsgcQIQRCtmry8PHAc/0J2lhg5fPgwnnnmGfx16CSSZ3IY/wyHpz/icOTIMbYmDdC0ZUTtCYQGwGTs7ko+SFRXC+hqzZeELy7nMPopDjW19YKn6rRDxYhCoahP723cMgLwpeEFXCFGoqKiEBxswyI8hMsgMUIQRKumseBVAXvXGrnjjjvw1ltvYcTwAfBW8IvBXcwFtu/XGVlGTM+VWkbiwsV1a6QvVCUnWh/MWUdOns7C0PsrcfhM/Q5dPpCx2KFiBKjPqNHVz7e+Aqi+ZNYyMnr0aHh48FVlnbFQnbEYIatI60Pl6gEQBEE0B6kYaehbuD1rjZSVlSE9nU9pra6uxsldDwDdt/AHIx8APPhcXoUC6BBher7UMiLEiwBGQspQAYAPxK2o4hfYy77K4dcjwI59xdjwix6chzcAIECjQ8mRUYD2LEJDb23WszVFXFwcsHcRwNUABd8BXI1Zy0hCQgJ2796NCxcuYNq0aQ4dE2AqQil4tfVBYoQgiFaNsEw90LBlpGPHjqzdXMtIVlaWfEfRDqA6A/CKB4JuhLvKgFo9b/Xw9DCNGYmPAIb3BvadBO4aJx6Xjt1QW87aldXA36c4DH+UQ40OAAIAjwAAgDtXiBcnHMLTP54CAIdbRuLi4oCqFcCZGQAAT0/P+vojpgwZMgRDhgxx6HgEyDLS+iE3DUEQrZrLl8Xy6cIKvcZoNBr2sm+uZSQzM5O1r732WqhUSiB3Bb9DoUStnv+O17GBUAmFQoE97ytQsE2BGaPNi5HamhLWrtAC3+8ThEg9XB1Quhe1R4YjJ+1XtttRNUYEWEZNPZ06dYKbm5tD72kJJEZaPyRGCIJo1UjFiFBPxByCdeTq1auoqKiw+X5Sy8h9992HvXv34rahpXBT6mX9zMWLCCgUCpN6I1IxUlMl1niv0AIXsiUdT08DDgQBJ0YC2jNYvXo1O+QUy4gEc/EirkA6d25ubujatasLR0PYAokRgiBaNVJx0JgYka5TkpGRYfP9pJaRuLg4DB48GBu//hh3jJRbCJJiTF00jSF9oWorrrJ2ZTWQJogRTg8Ufo+EeLHGfGlpKWs7JYBVgrl4EVfg6enJKu1ee+218PT0dPGICGshMUIQRKtGsIxoNBpWFtwcHTp0YO1Lly7ZfD+p+JG6hR68VS4+GnLTNISnpyeCgoIAAJVleWx/eRWQdrk+vbc6A+Bq8dFHH5mNx3C0GImKipIVlWsplhEA+OyzzzB//nx88sknrh4KYQMUwEoQRKuF4zgmRmJiYliarDnsJUaklhGpGBncA+jVEThxgd9OathI0yCRkZEoKipCWXEuEMDvy7gClFXVP1f1BaSkpGDs2LG4ePEi9u/fLzvf0WLE3d0dUVFRbM5bkhgZOnQohg4d6uphEDZClhGCIFotpaWlqKysBNC4iwaQixFhZVdbEMRIQEAA/PzEPF2FQoG3HlDARw2MGwj0TGzoCg0jxGTUSQJYj6VJip5VX8CCBQugUCgwdepUqFTi90lvb294e3tbf1MrEdwhSqVSVvadIJqD1WLk1VdfxdixY3H99dfjjjvuwB9//MGOrV27FikpKRg5ciSWLVvGqiICQGpqKqZPn44hQ4Zg/vz5stoABEG0PpYsWYJevXrht99+c9kYLA1eBeQxI7ZaRgwGA7unucydMQMUKN2pwI43FY1aaRqC1UPRiwG2x6WZyNo0dOvWDQCfOTN27Fh2yNFWEYEXXngB3bp1w9KlS2VijCCag9ViZObMmdi2bRv27t2LhQsX4qWXXkJZWRn27duHjRs3Yu3atdiwYQP27duHrVu3AgB0Oh2eeeYZTJs2Dbt370aPHj2wcOFCuz8MQRDOoaSkBC+//DJOnjyJWbNmoaqqqumTHIClwavCcSHewVYxkp+fD52Oz7E1ziwRUCptEyKApFKsvpLtOyspa6Kqy5Slsc6YMYO1HZ3WKzBmzBikpqbi+eefd8r9iPaB1TEjUlOnQqGATqdDQUEBduzYgSlTprA/CLNmzcLOnTsxceJEHDlyBGq1GhMnTgQAzJs3DykpKcjNzTVbpEin07FfeDZQlYqVF27rGAwG2f9E49B8WYc95uvChQvs/JycHLzzzjsueTlJ4zeio6MbfSY3NzfExMQgMzMTly5dsuj5jedKKmJiY2Pt/jMnuECklhHpLeJCa2TjueWWWxASEoKCggL06tXL5b8D9LtoHe1lvsytpG2MTQGsr7/+OrZt24aamhpcf/31SExMxMWLFzF+/HjWJzk5GR9++CEAID09XVaOWa1WIyYmBunp6WbFyJo1a7By5UrZvqlTp+L222+3ZbitFpNKj0Sj0HxZR3Pm69ChQ7LtN954A2PHjnXat3OB1NRU1vbw8GgyZTcyMhKZmZkoLCxEamoqvwqtBQhz9c8//7B9Pj4+zUoRNodareYbBvN1UGJD60zu+dlnn+HgwYOYNGmS3cdjK/S7aB1tfb6kLtKGsEmMPPfcc1iwYAEOHz7MSitXVVXJfrE1Gg0z3Wq1Wmg0Gtk1NBoNtFotzDF37lzMnDlTPtB2ZhnJyspCbGysRYqyvUPzZR32mC9jt0xFRQXWrl2LDz74wB5DtBhp8bJrr722wdLkAp07d8bBgwcB8PPQVH/juaquFlet69WrV5PnW0tkZCTc3Nyg15sRIzWX0btPssk94+PjMW7cOLuOw1bod9E6aL5EbE7tdXNzw8CBA/H1118jMTER3t7esj8MlZWVLLJbrVaziHfpcfYtwAgPD492IzwaQ6lUtvsfUGug+bKO5syXuZiLTz75BI899phTMyyys8XSpHFxcU0+j/QbWmZmJnr37m3RfYS5kn6D7dChg91/3ry8vBAfH4/0zBLTg9o0JCUltYqfcfpdtA6aLzuk9grR5QkJCbIFqM6dO8f8n4mJibJjWq0Wly9fFv2jBEG0KqRiZP78+QCAuro6vPDCC04dh5DZ4uXlxQqGNUZza400VPDMnnTq1EkWM8KoviBb8I8g2hJWiZGqqirs3LkTVVVVqKurw6+//oojR46gT58+GD9+PDZt2oTs7GwUFBRg3bp1uPHGGwEAffv2hVarxbZt26DT6bB69Wp069atwRU2CYJo2Qgvcg8PD/z3v/9FWBhfnnzbtm1ODcYTxEFTBc8EpJYRW2qNCAGzCoUC0dGNLD7TDJKSkgBOBxhq5Qe0JEaItotVbhqFQoEtW7bgjTfeAMdxiI2NxSuvvIKkpCQkJSXh/PnzmD17NgwGAyZNmoQJEyYA4P9gvfnmm1i6dClef/11dOvWDUuWLHHIAxEE4Vg4jmMv8vj4ePj6+uK6667Dli1bUFNTg6ysLLvHUpijrKwM5eXlACy3UtjLMhIVFQV3d3erz7cEFuxvqASUAeKB6guy8RNEW8IqMaJWq7F8+fIGj8+dOxdz5841e6x79+5Yv369daMjCKLFUVRUxOLDhJcjq48B4Pz5804RI9YUPBOIjo6uDxDVWy1GampqcOXKFQCOc9EARoXPVAFsf4R/BS0AR7RZ2nfEDEEQViN9iQtuD2nQ6rlz55wyDlvEiEqlYkLCWjEivV9DBc/sgVj4TB430inWzUxvgmgbkBghCMIqpC/xhiwjzsAWMQKIAqq4uBilpaWN9i0vL2cZO9LgVUeKEZalIxUjunx0TqIYO6LtQmKEIAirkAZ+tkYxYmncSEZGBnr06IFhw4bho48+anC1Xnvj6enJix2DpBxCdRoFrxJtGhIjBEFYhTnLSFRUFKsr5CwxYmuarSVipKKiAhMmTGCC56mnnsK2bdvYcUdaRoD6uBHJ+jTQXpBVsSaItgaJEYIgrMJczIhCoWDWkfT0dNTV1Tl8HI6yjBgMBtx55504ceIE26fT6bBx40a27UjLCCCIEYmbhmqMEG0cEiMEQViF4Kbx8vJCeHg42y+Ikbq6OptXxbUGQYx4eHhYtSZOU7VGFi1ahO+//x4A4O/vL3NBCTjaMsIXPpNbRkiMEG0ZEiMEQVgMx3FMaMTHx8sKjTk7bkQQI5YWPBNozDJy5MgRvPLKKwD4Et1ff/01/ve//8HLy4v18fLycviCgElJSUBtHtsO8MiBn5+fQ+9JEK6ExAhBEBZTUFDAFskzLsDlzPTeiooKlJSUALDORQPw8S0qFV9iyViM7N27l7UXLVqEsWPHolOnTnjrrbfY/ri4OKvEjy0kJSUBuZ8ARTuBrDfROcb8oqIE0VYgMUIQhMWYixcRcKZlRBovYm38hpubG3OzGIsRacbMyJEjWfuBBx7A/Pnz4enpiUcffdSGEVtHYmIiFLpMIPVm4NL/kYuGaPOQGCGIVoTBYMCWLVtkC086E3NpvQKuEiPWWkYAUUiVlpaiuLiY7ZeKEWlciEKhwIoVK1BeXo6HHnrIliFbhZeXl+y5SIwQbR0SIwTRirjvvvswadIkDB8+nLlLnIm5tF6B0NBQFtfQWsQIwGf/CAhiRKlUIioqyuQ8R61HYw6puCMxQrR1SIwQRCthz549WLVqFQAgNzcX//77r9PH0JgYUSgULG4kIyMDNTU1dr13RkYGXn/9dUyaNAkLFixg+20RI9KXu1SMSBfCE+JKXIU0BsdcRg9BtCVc+9tGEIRF1NTU4P7775ftS0tLw4ABA5w6DqmbxjhmBOBfmocPH4bBYEB6ejq6du3arPsZDAb88MMPWL58OXbu3AmO40z6dOvWzerrJiYmsrYgRrRaLfLz8wE4PnXXEh588EH88ssv6NGjBwYNGuTq4RCEQyExQhCtgLfeegtnz56V7XNF3IhgGVGr1QgNDTU5bhw30lwx8sADD+CTTz4x2e/v749+/fph1qxZMguCpUjFyIULFwA4byE8S+nZs6fTqtkShKshMUIQLZy0tDRW+8J4vzOR1hjp0KGD2fRWqRixR3rvt99+y9pxcXGYN28epkyZguTkZH4xORsxZxlpKHiVIAjHQ2KEIFo4CxYsYPEXDz74ID766CMAzlsDRiAvLw/V1dUATONFBKRWiuaOr6SkhGW6DB48GL///jvc3NyadU2BoKAgBAQEoKSkhMQIQbQAKICVIFowNTU12LlzJwAgPDwcb7zxBgvYdLZlRCoupJYFKfZM75XGp3Tt2tVuQkRAeIbMzEzU1taSGCEIF0JihCBaMEePHmVWkTFjxsDHx4et3lpQUMCqkDqD1NRU1m4oaDQwMBDBwcEAmu+mkWa5NCR+moNwTb1ej8zMTBIjBOFCSIwQRAtm//79rD148GAAkC0lLwRfOoNTp06xdvfu3RvsJ7hqsrOzm1ULRSpGzGXuNBfj9F4SIwThOkiMEEQL5sCBA6w9ZMgQAM5fkE5AKkYaS6e1VxCr1E3jSMsIIBcjPj4+CAgIsPv9CIJoGBIjBNFC4TiOWUb8/PyYAJBaRpwZNyK4aUJCQsym9Qp06dKFtc+cOWPz/RxtGZGKkbS0NCZGnLEQHkEQckiMEEQL5eLFi8jL45eRHzRoEAvgdIUYKSoqwpUrVwA07qIBIKstcvr0aZvvKYgRjUbTqPixFakY+fvvv1mmELloCML5kBghiBaKORcNII91cJYYkYqKpiqe2kOM6PV6ZGRkAKhfwdYBloq4uDgm8P766y/ZfoIgnAuJEYJooZgLXgV4S0FkZCQA58WMWBovAvBiSVhQzlYxkpOTA51OB8AxLhoAUKlUiI+PBwB2L4DECEG4AhIjBNFCESwjSqUSAwcOlB0TgkTz8/NRVlbm8LFYktYroFKp2PjOnTuHuro6q+/n6LTexq5NYoQgnA+JEYJogZSWluLkyZMAgF69esHX11d23NnpvZam9QoIrhqdTifLirEUR2fSCEhdXgIkRgjC+ZAYIYgWyMGDB9kKtdJ4EQFnB7EKYiQoKAhhYWFN9m9u3IijM2kEyDJCEC0DEiME0QKRBq9K40UEpGLE0XEjJSUlyM7OBsC7aCwJJpWm9zZXjDjTTaNQKBAdHe2w+xEEYR4SIwTRApEGr5qzjEgLiznaMiIVE5a4aIDmW0akbpqGFuWzB8ZiJCIiAh4eHg67H0EQ5iExQhBmuHjxIrp3745hw4ZBq9U69d5arRZ//vknACAqKsqs28CZ6b3WZNIIdO7cmbUtESOLFy9GfHw8vvnmGwCiZSQiIgLe3t7WDNcqjGNGyEVDEK6BxAhBmGHJkiU4deoU9u3bhx9++MGp9/7hhx9QWVkJABg9erRZt4ivry/Cw8MBOF6MWJNJI6DRaFja7JkzZ1j8iznS09Px8ssvIzMzE/feey8uXbrECqw50kUDAP7+/ggKCmLbJEYIwjWQGCEII4qLi7F+/Xq2ffbsWafef926daw9c+bMBvsJcSO5ubmoqKhw2HhssYwAoqumrKwMubm5Dfb77LPPWLuiogJz585l244WI8b3IDFCEK6BxAhBGPH555+z0uCA/cVIbW0tamtrzR4rLi7Gjh07AADh4eEYOXJkg9eRxo04Mr1XECMBAQGs2JolWBI3YjAYsHbtWtm+PXv2sLYjM2kEpK4aEiME4RpIjBCEBI7jsHz5ctm+5qw8a8yRI0cQHBwMHx8f9O/fHw888AC2bNnC3BibNm1i1UCnTZvGypWbQ5pR09wx1tTUYP369SaZOWVlZcjKygJgeSaNgCViZPfu3WyBOrVabXLcGZYRqRgRXEsEQTgXEiMEIeH33383WWn27NmzjcY8WMM333yD8vJy6HQ6HD58GMuXL8ekSZOwaNEiAMBXX33F+jbmogHkmS0nTpxo1rheeOEFTJ8+HQMGDGBpvIB1a9IYY4kY+fTTT1l7+fLliIqKkh13hhiZM2cOYmNj0a9fP4wdO9bh9yMIwhSVqwdAEC0JqVXEy8sL1dXVKCkpQUFBgV1WjhWsAMYsXboUYWFhzEWRlJSEfv36NXqt3r17s/axY8eaNa5Dhw4B4GuKPPbYY9i4cSMAYNWqVayPpWm9Ak2JkeLiYnz33XcA+GJqd9xxB2pra3HvvfeyPs5w03Tq1AmXLl2CQqFwyIJ8BEE0DVlGCKKe/Px8bNq0CQAQGhqKWbNmsWP2ctVcvnyZtfPy8vDyyy+z7UceeYRZYGbOnNnki7FDhw7w8/MDABw/frxZ45IGmG7atAk//PADfvjhByZGNBoNbrvtNquuGRwcjJCQEADmxcj69etRU1MDAJg1axY8PT0xZ84c9OjRAwAQEhJiYilxFEqlkoQIQbgQEiMEUc+aNWtYYOndd9+Nnj17smP2CmIV4i9CQkIQFhaGl156CdOmTTPpN2PGjCavpVAo0KtXL3bdoqIim8clpNIKPPTQQzILxTvvvIPY2FirrytYR65cuYKSkhLZsTVr1rD23XffDQBwc3PD1q1b8dhjj2HTpk2NxswQBNF2IDFCEOCzOlasWMG258+fLyvcZQ/LiF6vZ/EYwotdoVBg1apVTFQAQL9+/ZCcnGzRNaWuGlvjRiorK1FeXi7bl5GRwQTKjTfeiHnz5tl0bamrRpoinJaWxlxDffr0kT1HQkIC3nvvPQwfPtymexIE0fogMUIQAH7++WdWgnzs2LFITEyUCQJ7WEby8vKg1+sBADExMWy/RqPB999/z9ZEefbZZy2+pvQlbqurRmoV6du3r6wcemBgIFatWmWzC0NqXZKOTxAiADB58mSbrk0QRNuBxAhBQB64ev/99wPga054enoCsI9lRHDRADBxeSQkJOD06dPIysrClClTLL7mNddcw9r2ECNDhw7F//3f/7Htjz76qFlxG9LxSYNspWPt06ePzdcnCKJtQNk0RLvn8uXL2LZtGwB+LZibb74ZAB+/kJSUhNTUVKSlpUGv1zcrhqExMQLwJd59fX2tumaPHj2gVCphMBhszqiRipHIyEgsWLAACQkJCA4OZnNhK71794ZCoQDHcTh69CjbLxUjUusOQRDtE7KMEO2e1atXM/fJvffeC5VK1OiCq0an0yEjI6NZ95Fm0kjdNM1BrVazMaampjZY2bUxpJk0ERERUCqVuOuuu5otRABeYAnF2U6ePIm6ujoAohgJCgpi7imCINovJEaIdk1dXR1WrlwJgE/vlGaQALBrEGtTlhFbESwLOp3OptgWqWUkIiLCbuMSENww1dXVOHPmDPLz85kAEiwnBEG0b0iMEO2aHTt2sAyXm2++2UQk2DOI1RGWEaD5QazGbhp7I40JOXbsGLloCIIwgcQI0a5ZvXo1awuBq1IcZRlpSWLE2E1jb6RBrEePHpWNUXqMIIj2CwWwEu2af/75BwCfwjpmzBiT41LLiL3ESFhYGMvSsQfNLQsvWEbc3NxYxVR7IrWMHD16FPn5+WybLCMEQQBkGSHaMVqtlrlOkpOTzWbKhISEICgoCEDz3DR1dXXMAmFPqwjAZwAJIqI5bprw8HAolfb/kxAeHs7cP0ePHmVZNSqVSlYUjSCI9guJEaLdkp6eztqdOnVqsJ9gHcnKykJVVZVN97py5QrL2LFn8CrAV3EVLAz5+fkmpd0bQ6/XIy8vD4BjXDQCgnWkpKQEqampAPjqrPa0EBEE0XohMUK0W9LS0lhbSD81h9RVc/78eZvu5ah4EQFb40YKCwuZSHKGGJFCLhqCIARIjBDtFqmwaEyM2COIVZpJY2/LCGD7GjWOzqQRMBeoSsGrBEEIkBgh2i22WEaki71Zg6NqjAh0796dtU+fPm3xeY7OpBEgywhBEI1BYoRot1gqRq699lrW3rt3r033crSbRmq9sUaMOLrgmUBCQgL8/Pxk+0iMEAQhQGKEaLcIYiQwMBDBwcEN9ktMTESHDh0AAPv377cpiNXRbhofHx923TNnzoDjOLP9tFotfvvtN5SXlwOQW0Yc6aZRKpUyt0xkZCRCQ0Mddj+CIFoXJEaIdklNTQ0yMzMBNG4VERg1ahQAvuT6/v37rb6f1DLSnFVwG0NIky0pKWEZMgIcx2HLli3o2rUrUlJSMHv2bHAc5zTLCCB31ZBVhCAIKVaJEZ1Oh5dffhnjx4/H9ddfj/nz58tM3WvXrkVKSgpGjhyJZcuWyb6dpaamYvr06RgyZAjmz58v+0ZGEM4mPT2d/XxaIkZSUlJY+9dff7X6foIYCQ8Pd1g6q7Rmh9RVk5mZiVtuuQWTJk1ii/0dP34cqampThUjUssIiRGCIKRYJUb0ej2io6OxZs0a7N69G8OHD8dTTz0FANi3bx82btyItWvXYsOGDdi3bx+2bt0KgBcxzzzzDKZNm4bdu3ejR48eWLhwof2fhmg1VFdXIy8vj/0TVnN1FpbGiwiMHDmSta0VI7W1tUx8O8JFI2BOjBgMBkyYMAE//PCDSf8tW7Y4LYAVAG699VYkJSUhODgYc+fOdei9CIJoXVhVDl6tVstWNb3jjjuwbNkylJSUYMeOHZgyZQoLzps1axZ27tyJiRMn4siRI1Cr1Zg4cSIAYN68eUhJSUFubq5ZP7VOp4NOp5MPVKWCh4eH1Q/YGjEYDLL/2xq//PILJk+ejMrKSrYvKioKBw4csOllbct8SdN6O3bs2OS5ISEh6NWrF06cOIEjR46goKCAVWZtiuzsbGaFiY6OdtjnKg1iPXXqFAwGA1JTU1ndkfDwcDz33HN44oknAPBiRIgd8fX1hVqtdujPnK+vL06fPg29Xg93d/dW8fPd1n8X7Q3Nl3W0l/mypLJzs9amOXHiBIKCghAQEICLFy9i/Pjx7FhycjI+/PBDALxJXPrtU61WIyYmBunp6WbFyJo1a9iy7gJTp07F7bff3pzhtjqkcQZtibfeeksmRAAgJycHb7zxBhYsWGDzda2ZL6EkOcAHfwrui8bo168fTpw4AY7j8O2332LcuHGN9i8oKEBFRYUsHTggIMCie9mCj48Pax89ehQZGRnYvn0723f33Xdj4sSJWLlyJU6dOoUjR47A3d0dABAcHOywcbUF2urvoqOg+bKOtj5fCQkJTfaxWYxUVFTgtddew4MPPggAqKqqkv0x1Gg0LOtAq9VCo9HIztdoNNBqtWavPXfuXMycOVM+0HZmGcnKykJsbKxD1gpxJRzHscXcvL29MXLkSOzYsQMGgwE///wzPvjgAygUCquuact8SQM8hw4dalFmx6233opPP/0UAC/E77vvPpM+Op0OmzdvxieffII9e/aYHO/atSvi4+MtGqO1xMXFISgoCEVFRbh06RLi4+Nx5swZdvymm25CfHw8brvtNiaQamtr2bmOGldrpi3/LjoCmi/roPkSsUmM1NTU4KmnnsLQoUOZ68Xb2xsVFRWsT2VlJby9vQHwlhDjb8KVlZVQq9Vmr+/h4dFuhEdjKJXKNvcDeu7cORQUFAAARowYgW3btmHEiBHYs2cP0tLSkJqail69etl0beP5qqiogF6vh7+/v0lfIWbEz88PYWFhFgmgG264ASqVCnV1ddi9e7fJZ7N161bMmzdPtiqtMddcc41DP9OuXbti//79yMnJQUVFBf78808A/O9Uv379oFQqMXHiRCxdulR2XkRERJv7WbMnbfF30ZHQfFkHzZcNqb11dXV4/vnnERoaiscff5ztT0hIkAUFnjt3DomJiQD4Og3SY8JqqcJxov0gTYsdPHgwAGDKlCls37fffmuX+2RmZiIpKQkxMTE4cuSI7JhOp2MuiaSkJIstMT4+Phg4cCAA/ufb2LS6YMECmRBJTk7GzJkzMWvWLMyaNQvLli3DmDFjmvNYTSINYv3jjz9YbEy/fv1YFs8111xjkl7s6OBVgiCIxrBajLz66quoqanB4sWLZX/Ex48fj02bNiE7OxsFBQVYt24dbrzxRgBA3759odVqsW3bNuh0OqxevRrdunVzaJElomVy4MAB1hbEyOTJk9nP0rfffttgwS5rWL58OfLy8lBRUWFiBbh06RILGGtstV5zNJTiW1BQwNat6dixI3bv3o0zZ87gyy+/xBdffIEvvvgCjz76qNUuKGuRipHVq1ez9pAhQ1hboVBg9OjRsvPod5EgCFdilRjJzc3Ftm3bcPToUYwYMQLDhg3DsGHDcPToUQwdOhSTJ0/G7NmzMXXqVAwZMgQTJkwAwJuI33zzTaxbtw4jRozA8ePHsWTJEoc8ENGyEcSIm5sbBgwYAIB/EQ4dOhQAcPbsWbbEvK0YDAasW7eObW/bto0VOAOsT+uVIhQ/A+Ri5ODBg6w9adIkjBgxwuHCwxxSMbJt2zbWFoSfgFRUAWQZIQjCtVgVMxIZGYnDhw83eHzu3LkN1g/o3r071q9fb93oiDZFUVERC5zs06cPiykC+GypP/74AwCwceNG9OjRw+b77N+/XyY+DAYDPvnkE7zyyisALF+t1xwDBw6ERqNBZWUlfvnlF3AcB4VCgb/++ov1GTRokM1jby5SMSKt3WIsRgYMGICAgACUlJQAIDFCEIRrad8RM4RTkb6wpW4DgHfVCDQ3bkRqFRFYuXIlq13THMuIh4cHhg8fDoBfZE4oLiZ9NiGuxBXExcXJRB7AP2NYWJhsn7u7O2666Sa2bUnqHUEQhKMgMUI4DXPBqwLR0dFMoJw6dUpWm8MadDodNmzYAIDP8BLilvLz87F582YAzRMjgKmrRq/XMzdNVFSUQ1bltRSlUikrfgaYzrXAK6+8gvHjx+PFF180OYcgCMKZkBghnIa54FUp0qyaTZs22XSPnTt3ori4GAAfuyEtovbRRx+hoKCAxaT4+PggPDzc6ntI4y1++eUXnDlzhlUyHTRokEtiRaR06dJFtm1shRKIi4vDDz/8YBLgSxAE4WxIjBBOoba2llkP4uLizFoPJk2axNpC/Ii1SF00M2fOxA033MBezr///jtiYmJYSq41ab1SevbsiZCQEADAnj17sG/fPnbMlS4aAWncCNCwZYQgCKKlQGKEcArHjx9nFXcb+qYeHx/PUkwPHjxo9XoNpaWlLIMkJCQEo0ePhkKhwAMPPMD61NTUsPb9999v1fUFlEolc9WUlZWxZQ8A1wavCkjFiL+/P7p16+bC0RAEQTQNiRGi2fz555/YsGFDo+KhKRcNwNe/EF7mZWVlslLmlrBixQpUV1cD4BdxFNZdmT17NrPEBAQE4Mknn8T58+fNlnO3FGncyMmTJwHw6cp9+/a1+Zr2Qio+rrvuunZf2ZEgiJYP/ZUimsXFixcxbNgw3HHHHVi+fLnZPjqdTuY+acgyAsjdHNLaHU1RVFSE//znPwB4y4XUGhIQEICDBw/it99+Q3Z2Nt5++22bAlelGNfpAIBevXqZrMHkCrp27Yrp06cjPDwczzzzjKuHQxAE0SQkRohmsW/fPuj1egD8asvGcByHBx98EH///TcAPoW0Z8+eDV5P6uaQpss2xf/+9z+UlZUB4OvddO/eXXY8KioKN9xwg0naq60kJCSYpMO2hHgRgLcwffXVV8jNzcWIESNcPRyCIIgmITFCNAupK+Xw4cO4ePGi7Pj777/PypJ7eXlhw4YNUKkarrUnLOYGWC5GLly4wCwv3t7eTqvuK3XVAC0jXkSKq7N6CIIgLIXECNEshKJfAtKU3J9++glPPvkk2/7000/Rr1+/Rq+n0WjYqr3//vuvbCXohnj++edRW1sLAHjqqadMFoFzFMaumpYmRgiCIFoLJEbaOBkZGdi1axf7JwRb2gtjMbJx40YAQEVFBWbPns2CWp9//nlMnz7domsK7g6DwdDo8gMAsHfvXnbPsLAwWV0RRzNy5EjWDggIsHrRPYIgCIKHxEgb5tChQ0hISMC4cePYv169euHLL7+0y/Vra2tl1UwBPug0MzMTy5YtQ15eHgBg3LhxVhXWsjRu5O+//2aLMQLAwoUL4evra/F9mktoaCimTp0KALj77rspa4UgCMJG6K9nG+brr78Gx3Em+1977TWz+60lLS2NLcYmjU/45JNP8OabbwLg013fe+89q17UloiRw4cPY8yYMSxodfDgwZg3b57Vz9BcvvnmG2RkZOC///2v0+9NEATRViAx0oaR1vZ48cUXWYbJ6dOnsXfv3mZfX+qimTZtGmu/+uqrTCTcfffdVq97kpycjICAAAC8GDEWTsePH8fo0aNRWloKABgxYgRWrlzZaGCso1AoFIiLi6NgUYIgiGZAYqSNotVq8c8//wDg1ypZunQpXnzxRXb8o48+avY9pGJk4sSJJim7Xl5eWLhwodXXVSqVGDBgAAAgLy8PmZmZsuMLFixASUkJAOD666/Hli1boFarrb4PQRAE0TIgMdJGOXz4MMswESqeTp48mS0lv3nzZuTm5jbrHlIx0rVrV9lCdwDwyCOP2LyCbUOumpqaGrZuTXR0NLZv394iCo0RBEEQtkNipI0iddEIFU89PDxw7733AgDq6uqwatWqZt1DECNKpRLJycksmBPg10R57rnnbL62VIz8+eefrH348GFW8n3kyJHw8fGx+R4EQRBEy4DESBtl//79rC1dC2b+/PksmHTFihUsANVaDAYDK3iWkJAALy8vdO3aFffffz8CAwOxYsUKBAUF2Tz+gQMHsjiMX375he2XruY7fPhwm69PEARBtBxIjLRBOI5jlpGgoCAkJyezY/Hx8bj55psBANnZ2di+fbtN98jKykJVVRUA+SqxH3/8MYqKinDHHXfYOnwA/LgF60hqaiouXLgAQC5Ghg0b1qx7EARBEC0DEiNtkHPnzqGwsBAAbxUxTqt98MEHWVso1W4t0jLwUjFiTyZOnMjaW7ZsgV6vZxafsLAwmcgiCIIgWi8kRtog0ngRqYtGYPTo0QgNDQVgPnXWEoyDVx3BpEmTWPv777/HyZMnWTrvsGHDKJ2WIAiijUBipA0ijRcRglelKJVK9OnTBwBQUFCA7Oxsq+/hDDHSuXNnVqNk//792Lx5MztGLhqCIIi2A4mRNohgGVGpVA0uTCeIEQA4evSo1fdwhhgBRFeNwWDAO++8w/aTGCEIgmg7kBhpYxQVFTGhcO2118Lb29tsP3uJkcjISPj7+9swUsuQxo0IK/j6+vqid+/eDrsnQRAE4VxIjNgRg8HA/tlj7RdbkNbkMBcvItAcMXLw4EEUFBQAcKxVBOBTfMPDw2X7hgwZAjc3N4felyAIgnAeJEbsgFarxYgRI+Dm5sb++fv7Y/369U4fi6ViJCkpiRUMs0aMHDlyBOPGjWPbjq714ebmhltuuUW2j+qLEARBtC1IjNiB9evXY8+ePbJ95eXleOqpp1hJdmfx999/s7a0iqkxSqUS11xzDQAgIyMDRUVFTV776NGjGD16NFsXZvjw4Xj66aebNV5LkLpqAIoXIQiCaGuQGLEDn332GWv3798f0dHRAICcnBxs27bNaePgOA6HDx8GAISHhze5LozUVXPs2LFG+x47dgwpKSkoLi4GwAuCH374wSnrwowaNYrFvnh6eqJ///4OvydBEAThPEiMNJNLly5h7969APhU1IMHD+LTTz9lx+2xOq6lpKenM7HQv3//JutwWBo3cuLECaSkpDDryZAhQ7Bjxw6nrQujVqvxwgsvwNPTE08//TQ8PT2dcl+CIAjCOZAYaSZffvkla991111QKBRISUlBUlISAODXX3/F2bNn7XKvc+fO4YsvvmALxRlz6NAh1m4opVeKJWLk5MmTGDVqlKyi686dO52+QN3zzz+PiooKvPLKK069L0EQBOF4SIw0A47j8PnnnwMAFAoFZs6cCYCPx7j//vtZv+XLlzf7XlVVVbj++usxe/ZsjB07FjqdzqSPVIxY4sro1q0b3N3dAQD//POPyfGLFy9i1KhRLHNm0KBB2LlzJ3x9fW19jGahUqlccl+CIAjCsZAYaQZ//fUXzp8/DwAYMWIE4uLi2LE5c+bAy8sLALB27Vq2qJyt/Prrr7hy5QoA4Pfff8fDDz9skj5srRjx8PBAjx49AABnz541GeO7776Lq1evAgAGDBiAH3/8EX5+fs16DoIgCIIwhsRIM5AGrt51112yY8HBwWzl2pKSkman+Rqvrrty5Ur873//Y9t6vZ5ZN+Lj49naM00huGoMBgNOnDghOyYEwwLAtm3bHFrcjCAIgmi/kBixkerqanzzzTcAAG9vb0yePNmkj3R13I8//tjme3Ecx8SItNjXE088gZ9//hkAv4puZWUlAMusIgINxY1IxUl8fDzCwsJsHj9BEARBNAaJERvZvn07q7dx2223mQ3o7N+/P6vlcfjwYVy+fNmmex09ehQ5OTkAgHHjxuG5554DwFtD5syZg+rqaquDVwUaEiPp6elM3AjPQBAEQRCOgMSIGU6cOIEnn3wSu3fvbrDPunXrWPvOO+8020ehUMgKdu3atcum8UhdNDfffDNeffVVjB49GgBfy2Tt2rVWx4sI9O7dm6UAS4NYjx8/LutDEARBEI6CxIgRHMdh6tSpePfddzFq1ChMmzYN2dnZsj7FxcXYsWMHACAiIgIjR45s8HrS0uk//vijTWOSFk676aaboFQq8dprr7F9b7zxhqwMfN++fS2+to+PD7p06QKAL2xWXl4OgMQIQRAE4TxIjBhx7NgxnDt3jm1/88036NKlC1avXs32bdq0iaXWTps2rdFF2/r374+goCAAwM8//4y6ujqrxpObm8sCSa+55hrExsYC4F0xY8aMAcAXXhNcLJ07d7Y60HTEiBEAeLfP77//DoDECEEQBOE8SIwY8d1337G2IDIqKipw7733MuvDV199xfrMmDGj0eu5ubkx0VBaWoq//vrLqvEIFhiAd9FIeeGFF0z6WxMvIjBq1CjW/vXXXwGIYsTHxwcJCQlWX5MgCIIgLIXEiBGbN28GwMd7nDhxQpay+/DDDyMzM5MtitepUyeLXv7NcdVIXTTGYmT48OEYOnSobJ8t67bccMMNLG7k119/RUlJCTIyMgDwVhGlkn5MCIIgCMdBbxkJZ8+eRWpqKgC+7Hm3bt2watUq9OrVCwAf4HnrrbeyYmMzZsxocv0XAMwyAlgnRgoLC1nQa1hYmFmh8fzzz8u2bREjQUFBLKvmxIkT+OWXX9gxctEQBEEQjobEiATBKgIAt956KwC+BLm0uJg046QpF41AZGQkS489cuQI8vPzLTpv+fLlbB2a6dOnm7VQjBs3Dtdeey0AQKPR2JyGK3XVLFu2jLVJjBAEQRCOhsSIBGm8iCBGAGDYsGEm6bv9+vVDcnKyxde+8cYbWduSFN+amhomgpRKJR577DGz/RQKBdavX4977rkH69evh7e3t8VjkiIVI/v27WNtEiMEQRCEoyExUk9WVhar1XHNNdcgMTFRdvzNN9+UrcsiLIpnKdbGjXz//ffMgjJlypRGg0g7deqEVatWmcSUWMPQoUPZonkCCoWCrV1DEARBEI6CxEg933//PWubK+0eERGBt99+GwDvdrFWjFx33XVstdtdu3ZBr9ezYxzHYc2aNVi1ahVqampgMBhkqcRPPfWUVfeyBY1Gg0GDBsn2derUCRqNxuH3JgiCINo3JEbAFzGTxkmYEyMAcO+99+Ls2bM4ceKExQvRCbi7u7OqqYWFhdi/fz87tmnTJtx9992YN28eevXqhZdffhlpaWkAeIvFgAEDrH0km5C6agAqA08QBEE4h3YvRurq6nD77bfjwoULAICBAweiW7duDfZPTk5GSEiITfeSipxvv/2WtaWr/547dw6vvPIK23aGVUTAWIxQvAhBEAThDNq9GHnqqadYKmtoaCi++eYbi9J1beGWW26Bh4cHAN4aYjAYUFxc3GBAa6dOnXDLLbc4ZCzmGDBggCwAlsQIQRAE4QzatRhZuXIl3n//fQC8G+W7775DfHy8w+7n5+eHsWPHAuDLvB84cACbN29GbW0tAOCxxx7DmjVrmAto6dKljZaatzceHh6sNLxCoZCt6EsQBEEQjkLl6gG4in379uHBBx9k2x9//LFJNVNHMHXqVFZVdePGjTh16hQ7NmPGDAwYMADTpk3DyZMnrVrwzl68/vrrqK2txdixYxEVFeX0+xMEQRDtj3YrRpKSktC/f3/8+eefePzxx3HPPfc45b633HIL3N3dUVtbi6+//hqFhYUAgISEBFY91cPDw+a4lObSo0cPi+qgEARBEIS9aLdumoiICPz2229455138NZbbzntvgEBAaw8fH5+PkvxveOOOxwWq0IQBEEQLZl2K0YAwNPTE0888QRUKucaiKZMmWKyb9q0aU4dA0EQBEG0FNq1GHEVEyZMkAmgzp07s8X4CIIgCKK9YZUYWbFiBaZOnYr+/fubxBWsXbsWKSkpGDlyJJYtW8ZWtgWA1NRUTJ8+HUOGDMH8+fORm5trn9G3UoKCgpCSksK2p02bRi4agiAIot1ilRiJjY3FU089he7du8v279u3Dxs3bsTatWuxYcMG7Nu3D1u3bgUA6HQ6PPPMM5g2bRp2796NHj16YOHChfZ7glbKAw88AIAvw37XXXe5eDQEQRAE4TqsEiPjx4/HoEGDWOEugR07dmDKlCmIiYlBSEgIZs2ahZ07dwIAjhw5ArVajYkTJ8LT0xPz5s3DqVOn2r11ZMKECTh27BhOnTrV6CJ4BEEQBNHWsUvk5sWLFzF+/Hi2nZycjA8//BAAkJ6ejqSkJHZMrVYjJiYG6enpiIyMNHs9nU4HnU4nH6hKZSKCWjs9e/YEABgMBtl+Ydt4P2Eemi/roPmyHJor66D5so72Ml9KZdN2D7uIkaqqKvj4+LBtjUaDqqoqAIBWqzVZ+VWj0UCr1TZ4vTVr1mDlypWyfVOnTsXtt99uj+G2GrKyslw9hFYFzZd10HxZDs2VddB8WUdbny9LrP92ESPe3t6oqKhg25WVlWyNE7VajcrKSln/yspKqNXqBq83d+5czJw5Uz7QNmgZaQiDwYCsrCzExsZapCjbOzRf1kHzZTk0V9ZB82UdNF8idhEjCQkJSEtLY+XUz507h8TERABAYmIiNm/ezPpqtVpcvnyZHTeHh4dHuxEejaFUKtv9D6g10HxZB82X5dBcWQfNl3XQfFkZwFpXV4eamhpwHMfaBoMB48ePx6ZNm5CdnY2CggKsW7cON954IwCgb9++0Gq12LZtG3Q6HVavXo1u3bo1GC9CEARBEET7wirLyCuvvILt27cDAI4ePYpFixZh+fLlGDp0KM6fP4/Zs2fDYDBg0qRJmDBhAgDeyvHmm29i6dKleP3119GtWzcsWbLE/k9CEARBEESrRMFJq5MRLQKDwYCMjAzEx8e3e9OdJdB8WQfNl+XQXFkHzZd10HyJtO+nJwiCIAjC5ZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpVDRM4IgCIIgXApZRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRgiCIAiCcCkkRpzAihUrMHXqVPTv3x+7du1i+6urq/Hqq69i9OjRGDNmDL744gvZef369cPQoUMxbNgwDBs2DJ9++qns3JdeegnDhw/HTTfdhB9//NFpz+NIHDFX77zzDiZOnIjhw4fjzjvvxD///OO053E0jpgvgZycHAwZMgSvvfaaw5/DWThqvrZu3Ypbb70VQ4cOxZQpU5CRkeGU53Ekjpir7OxsPPTQQ7jhhhtw4403Ys2aNU57Hkdj63xVVFRgyZIlGDlyJG644Qa88MILsnPb4t95c6hcPYD2QGxsLJ566iksX75ctn/16tXIycnB5s2bUVFRgQceeABJSUm47rrrWJ/vv/8eISEhJtdcsWIFSktLsWPHDly4cAGPPfYYunbtivj4eIc/jyNxxFz5+Pjgf//7H6Kjo7F79248/fTT2LZtGzQajcOfx9E4Yr4E3nnnHXTu3NlhY3cFjpiv33//HV9++SX++9//IjExEdnZ2fD19XX4szgaR8zVW2+9hejoaCxbtgx5eXm455570L17dwwYMMDhz+NobJ2vl19+GeHh4di6dSu8vLyQlpbGzm2rf+fNQZYRJzB+/HgMGjQIHh4esv1//vknZsyYAR8fH0RERGDChAn44YcfLLrmjh07MH/+fPj4+KB3794YPnw4fvrpJ0cM36k4Yq7mz5+P2NhYKJVKpKSkwNPTE5mZmY4YvtNxxHwJ53Mch4EDB9p7yC7FEfO1atUqPPnkk+jYsSMUCgViYmLg7+/viOE7FUfMVW5uLsaMGQOVSoXo6Ghcc801SE9Pd8TwnY4t83XhwgWcOXMGTzzxBHx8fKBSqdClSxd2blv9O28OEiMuRrpoMsdxJr+Ys2bNwo033ojFixejpKQEAFBWVobCwkIkJSWxfsnJyW3ml7ohbJkrY3JyclBWVobY2FhHDrVFYOt81dbWYtmyZXj88cedNNKWgS3zpdfrcfbsWaSlpWH8+PGYMGECVq5ciba+GLqtP1tTp07Frl27oNPpkJmZiZMnT6Jfv37OGrbLaGi+Tp8+jbi4OLz00ksYNWoUZs+ejaNHjwJof3/nSYy4kEGDBuHrr79GeXk5cnJysH37dlRXV7PjK1euxPbt2/HVV1+huroaS5YsAQBUVVXBzc0NXl5erK9Go0FVVZXTn8FZ2DpXUurq6rB48WLceeed8PHxcebwnU5z5mvdunUYMmRIuxBsArbOV1FREfR6PQ4dOoRvvvkGn3zyCX7++Wds27bNVY/icJrzs9W7d2+cPHkSw4YNw+TJkzFx4kTZy7Yt0th85efn4+DBgxgwYAB27dqFOXPm4Omnn0ZpaWm7+ztPYsSF3HPPPYiKisKUKVPw6KOPYtSoUQgNDWXH+/TpA5VKhcDAQDz99NPYv38/amtr4e3tDb1eL/sDUFlZCW9vb1c8hlOwda4EOI7D4sWLERgYiPnz57viEZyKrfOVn5+PrVu34u6773bh6J2PrfPl6ekJALjrrrvg6+uLiIgITJ06Ffv373fVozgcW+dKr9fjsccew6RJk7B//35s3boVv/zyC3755RcXPo3jaWy+PD09ER0djUmTJkGlUmHkyJGIjo7GyZMn293feRIjLkStVuOFF17Arl27sHHjRigUCnTr1s1sX6WS/6g4joOfnx+Cg4NlgU7nzp1DYmKiU8btCmydK4E333wTV69exdKlS9nxtoyt83Xq1Cnk5eVh8uTJGDt2LL788kv88MMPeOSRR5w5fKfTnN9F6YtY2N+WsXWuysrKcPXqVUyZMgUqlQpRUVG44YYbcOTIEWcO3+k0Nl8dO3Zs8Lz29ne+7f9VbgHU1dWhpqYGHMextsFgQF5eHgoKCqDX6/HXX39h27ZtmDFjBgA+sOncuXPQ6/UoKyvD22+/jYEDB7LgqPHjx2PVqlWorKzEyZMn8fvvv2P06NGufEy74Ii5WrFiBY4fP463337bJListWPv+Ro8eDC2bNmCdevWYd26dbjtttuQkpKCpUuXuvhJ7YMjfr5uvvlmfP7556isrMTVq1exadMmDB061JWPaRfsPVeBgYEIDw/H999/z66zd+/eRl/IrQlb5qtfv37gOA7bt2+HXq/H3r17kZ2djZ49ewJou3/nzaHg2rqMbwEsXrwY27dvl+0T0r8WLVqEkpISdOjQAU8//TT69OkDADh06BD+85//ID8/HxqNBgMGDMATTzyBoKAgAHz++SuvvIK9e/fCz88PjzzyCMaNG+fcB3MAjpirfv36wcPDA25ubuyazz//PG688UYnPZXjcMR8SVmxYgUKCwvx/PPPO/5hnIAj5qu2thZvvPEGfv75Z3h7e2PSpEmYP38+FAqFcx/OzjhirlJTU/H222/jwoUL8PLywpgxY/D444/LfjdbK7bMFwCcP38eS5cuxcWLFxEbG4unn34a1157LYC2+3feHCRGCIIgCIJwKeSmIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQiCIAjCpZAYIQjC7hw+fBj9+vVDv379kJOT4+rhEATRwiExQhBEs1i8eDH69esnWw3Zx8cHPXr0QI8ePdrcekAEQdgflasHQBBE26NLl/9v7+5dWofiMI4/UkGlVSkK1YJgcFBwUVxdFNxMF0XXLKLg5j/gJiqOvnQzW0BEtLi7qYtbFZe6FLGpL2QwqCj1DnKLF3HRtocL38+ScOD8zjlD4MlJSPrkuq7paQD4T/BvGgA/Ztu2bm5uvrSn02nNzc1JkjKZjJLJZPlHYp2dnZqdndXW1pYeHx+VSqU0Pz+vjY0NZTIZNTc3y3EcTU5Oluvd3t5qc3NTJycnCoJAiURCtm3LcRzV13NPBfzvuIoB/Fhvb6+enp4UBIGi0agsy5IkXV5eftvn7u5Oy8vLam9vVxiG8jxPp6enKhaLisViKhQKWl1d1dDQkCzLUhAEchxHvu+Xx7i6ulI6ndb19bUWFxdrtVwAVcI7IwB+bG1tTcPDw5I+gonrunJdV319fd/2eX191fr6uvb29pRIJCRJ+Xxenudpd3dXDQ0NKpVKOjs7kyTt7OzI9321tbVpf39fnudpZWVFknR4eKh8Pl/lVQKoNnZGANRUS0uLBgYGJEkdHR3yfV89PT1KJpOSpHg8rkKhoIeHB0nS+fm5JOn+/l5jY2P/1Hp/f1c2m1VXV1ftFgCg4ggjAGoqGo2WzyORyJe2uro6SR9B4/Px82OgzxobG6s2VwC1QRgB8Ct/w8Dz83NV6vf39+v4+FiRSERLS0vlHZQwDHV0dKSRkZGqjAugdggjAH6lu7tbknRxcaHp6Wk1NTVpZmamYvWnpqZ0cHCgYrGoiYkJWZalMAzl+77e3t40Pj5esbEAmMELrAB+JZVKaXR0VLFYTLlcTtlsVqVSqWL14/G4tre3Zdu2Wltblcvl9PLyosHBQS0sLFRsHADm8J0RAABgFDsjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjPoDcHQH4R4aE2cAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -932,7 +1068,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf0c34fd03b549c9859261eef2fffe9a", + "model_id": "f8c4ac31e00b46b4a3cfb9e8b2aebb6d", "version_major": 2, "version_minor": 0 }, @@ -945,9 +1081,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAEoCAYAAAAqrOTwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAdtklEQVR4nO3de5wcZZ3v8c+PEAk3EYUoDIpLQF/KSiLziFeUo0RFWcLxiIgo4g1YjXdRWBchLt6PxvsFXBURVNSFyCqu4aggeMEnR+TogmJiuASQi4AioCHU+aNqoKfpmXQy3T3TD5/369Wv6eqqeupXT9f0t6u6ujqqqkKSpNJsMt0FSJLUDwacJKlIBpwkqUgGnCSpSAacJKlIBpwkqUgG3AwXESdExFea+4+IiNsiYlYX8302Io6bZHwVEbv2sr4O4/aJiKunuowO7X4pIk7sdbvqv4j4akQc2Nw/PCIumGTacyLi5QMrbgAi4qERcWlEbDbdtdwfGHADEBGrI2LfqbZTVdWVVVVtVVXVui6mPaqqqn+b6jKHTa/CLyIe2bwJ2LQXdQkiYg9gPrCsm+mrqtqvqqpTumi3J2/WBqGqqj8CPwSOmO5a7g8MOGkAOgXlhobndIRtj5d5JHBaNURXl+hTn59G3RfqMwNuwMYOy0TE/46ImyPiDxGxX8v4f4iI8yLiLxGxHNiuZdw9exURcXBE5La23xwR327uj9uTiYijI+LaiLgmIl7ZNt+PIuLV7TW2DH8sIq6KiD9HxIqI2HsD1/lfIuLGZk/20JbHnx8Rv2zavSoiTmib72kR8ZOIuKUZf3iHtreOiB9GxMcj4kjgUODtzaHcs5tpdoyIb0XEDU1/v6Fl/r0iIjc1/DEiPtKMOr/5e0vT1pM7LHuTiDgmIlZGxE0RcUZEPLgZN/ZcvSoirgR+0PTrhRGxNCJuAk6IiG0i4stNbVdExL9GxCYtz8O46TvUMFH9E/bfhi4zIjZrttcrm2V8NiI2b6bfLiL+s1nGnyLix2NtdbAfcF6HdZjof+Ge7TIidm3+L25ttqWvN4+PPU+/ap6ng5vHXxMRv29q+nZE7NjS7rMj4rdNW59u2h1bTqf1nxcRP2ie4xsj4rSIeFBLe6uj/v+6JCL+GhH/HvWhyHOi/j8+NyK2bVnlnwO7RMTOE/STeqWqKm99vgGrgX2b+4cDa4HXALOAfwauAaIZ/1PgI8BmwNOBvwBfacY9EqiATYEtmnG7tSznF8CLm/tfAk5s7j8X+CPwj8CWwOlNO7s2438EvLqlncOBC1qGXwo8pFnuW4HrgDnNuBPG6uuw3vsAd7WszzOAvwKPbhn/OOo3Wns0NR7YjNu5Wb9DgNnN8he0rlvz2EVj69m+3s3wJsAK4F3AA4BdgFXAc1r6+2XN/a2AJ7X39STP6xuBnwE7Nev3OeCrbfN/uenzzZt+vQt4fdOXmzfjlwFbN/P8DnhVy/MwbvoONUxU/2T9t0HLBJYC3wYe3MxzNvC+Zvr3AZ9tljEb2JtmW26rc8umP7Zv284m+1/4Ec12CXwVeGfzfM4BntbSzj3bcjP8TOBGYM/mefkEcH4zbjvgz8ALmvV7Y1PDqydZ/12BhU1b21O/+flo2//3z4CHAiPA9cD/BR7f1PoD4Pi2/rgEOGC6X5tKv017AfeHG/cNuN+3jNui+Qd9GPCI5p9ry5bxp9Mh4JrhrwDvau7vRv2CtkUz/CXuDbgvAO9vafNRbEDAdVifm4H5zf0TWH/Ata7PGcBxE0z/UWBpc/9Y4MwJpvtSs06/Bo7uMK414J4IXNk2zbHAF5v75wNLgO3aphnX1xPUcSnwrJbhHahfLDdtmX+Xtn69smV4FvB34LEtjx0J/KjT9BPUMFH9HftvQ5cJBPWbknktjz0Z+ENz/93UYbnreuocafpjTlt/dPxfaN8uqUP5JGCnDm23B9y/Ax9sGd6qeV4eCRwG/LRt/a5ifMCtr88PBH7ZMrwaOLRl+FvAZ1qGXw+c1dbGhcBhky3H29RvHqKcHteN3amq6vbm7lbAjsDNVVX9tWXaKyZp53Tqd+gAL6H+J7q9w3Q7Uv8Td9PmfUTE26I+8+vWiLgF2IaWQ6fr0Wl9dmzafWLUhxdviIhbgaNa2n04sHKSdp9P/e76s+tZ/s7Ajs0htFua+v+F+t02wKuoA/+yiPhFROzf5XqNtX1mS7uXAuta2obx/d4+vB31Xk/r83EFdRhMNH+7ieqfqP82dJnbUwfPipb1/F7zOMCHgN8D34+IVRFxzAR13tL83brt8Yn+F9q9nTqMLoqI30TbYfY2O9KyflVV3QbcRL2O4/4Xqjpt2s/0HdfnzeHGr0XEmoj4M/Uby/bt/48t9+/oMNy+Tltzb5+oTwy4meVaYNuI2LLlsUdMMv1yYPuIWEAddKdP0u7DJ2nzr9QvYmMeNnYn6s/b3g68CNi2qqoHAbdSv9h0o9P6XNPcP5360NfDq6rahjqsxtq9Cpg3SbsnU7/Qfret/fYTGK6i3tt4UMtt66qqngdQVdXlVVUdAswFPgB8s2mvmxMhrgL2a2t7TlVVayapp3X4Ruo9i9bPYh4BTDb/+MYmrn+i/tvQZd5I/QK9e8s6blNV1VbN8v9SVdVbq6raBTgAeEtEPKtDnX+lDtxHTbY+k6zndVVVvaaqqh2p9zg/HROfOXlN6/o1/fGQZh2vpT6kPDYuWofHFtc2/N7mscdVVfVA6kP23W7/9xH1iSu7Ar/a2DbUHQNuBqmq6gogA0si4gER8TTgnyaZfi3wDep30Q+mDrxOzgAOj4jHRsQWwPFt4y8GXhARWzQvGq9qGbc19WHGG4BNI+JdwAM3cNXG1mdvYP+m5rG2/1RV1Z0RsRf1XuiY04B9I+JFUZ9U85AmyFstBn4LnD120gP1O+ddWqa5CPhLRLwjIjaPiFkR8Y8R8QSAiHhpRGxfVdXd3PuO+u5mfe9ua6vdZ4H3jJ0sEBHbR8SiLvuEqv66xxlNG1s37byFeg+hK5PU37H/NnSZTbsnA0sjYm6zzJGIeE5zf/+oTwAJ6jc+65rld/Jd6s9hN1hEHBQRY0F0M3XgjC2n/Tn/KvCKiFgQ9ffN3gv8vKqq1cB3gMdFxIFN0LyOljd0E9gauA24NSJGgKM3Zh1a7AWsbv7f1UcG3MzzEurPjf5EHURfXs/0pwP7At+oququThNUVXUO9edbP6A+nPSDtkmWUn8u80fgFOoXxzH/Rb2n9Dvqwz53sv7DZq2uo35BuqZp96iqqi5rxr0WeHdE/IX6JJAzWmq+Enge9Uktf6IO4flt61VRf5/oamBZRMyh/vzlsc3htLOaF/T9gQXAH6j3SD5PfZgV6hNwfhMRtwEfoz5J547mcNl7gAubtp7UYd0+Rr0H+v1mHX5G/dxtiNdT70GvAi6gfj6/sAHzT1T/ZP23oct8B/V287PmEN25wKObcbs1w7dRn/Dy6aqqfjhBOycBhzZhuKGeAPy8Wc9vA2+sqmpVM+4E4JTmeXpRVVXnAsdRfxZ2LfWe7IsBqqq6ETgI+CD1YcvHUr+p/Nsky15CfcLKrdQB+R8bUX+rQ1n/oXX1wNjZSpLUdxFxOnBGVVVnTXctUH/Vg/oN0qGTBHMvlzeX+qsSj6+q6s5+L+/+zoCTdL/SHF79OfVni0dTH6bcpaqqO6a1MPWchygl3d88mfqElxupP+M+0HArk3twkqQiuQcnSSqSASdJKpIBJ0kqkgEnSSqSASdJKtJMCriqF7frrruuJ+0M8jaMNQ9r3dZs3aXVPKx197DmCc2kgOuJdevWTXcJG2wYa4bhrNuaB2cY6x7GmmE46x5EzcUFnCRJYMBJkgplwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkjbarFmzWLBgAbvvvjvz58/nwx/+MHffffek86xevZozzzyz77UZcJJUiIjo6a0bm2++ORdffDG/+c1vWL58Oeeccw5LliyZdJ7Vq1dz1lln9WCNJ2fA9Vk3G9GKFSt6vmFOZYOVpI0xd+5cTjrpJD75yU9SVRWrV69m7733Zs8992TPPffkJz/5CQDHHHMMF110EQsWLGDp0qUTTjdVm/akFUmSgF122YV169Zx/fXXM3fuXJYvX86cOXO4/PLLOeSQQ8g58/73v58TTzyRc889F4Dbb7+943RTZcBJkvpi7dq1LF68mIsvvphZs2bxu9/9bkrTbSgDTpLUM6tWrWLWrFnMnTuXJUuW8NCHPpRf/epX3H333cyZM6fjPEuXLu1qug3lZ3CSpJ644YYbOOqoo1i8eDERwa233soOO+zAJptswqmnnnrPLwhsvfXW3HbbbffMN9F0U2XASZI22h133HHP1wT23Xdfnv3sZ3P88ccD8NrXvpZTTjmF+fPnc9lll7HlllsCsMceezBr1izmz5/P0qVLJ5xuqjxEKUmFqKpJf/+zLybb29ptt9245JJL7hn+wAc+AMDs2bM544wzGBkZuWdcp+mmyj04SVKRDDhJUpEMOElSkQw4SVKRDDhJUpEMOElSkQw4SVKRDDhJUpEMOElSkQw4SVKRDDhJUpEMOElSkQw4SVKRDDhJUpH69nM5KaVNgC8A84AAXp1zvqxfy5MkqVU/9+AWAJvlnPcGjgXe0sdlSZI0Tj8D7mogUkoBbAvc2MdlSZI0Tj9/0ftGYC1wGTAHeGoflyVJ0jjRr584Tyk9Fzg45/yKlFICjs45H9w2zRHAEQCLFy8eXbhw4ZSXu3btWmbPnj3ldnplxYoV651m3rx5rFy5cgDVwOjoaM/amml93Q1rHpxhrHsYa4bhrLtXNY+MjMRE4/q5BxfATc39G4Ft2ifIOZ8EnNQM9iRp16xZw8jISC+a6omddtppvdMsW7aMRYsWDaAa6OUbmpnW192w5sEZxrqHsWYYzroHUXM/A245cHhK6TxgMzzJRJI0QH0LuJzzXcDB651QkqQ+8IvekqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIhlwkqQiGXCSpCIZcJKkIm3az8ZTSvsAx1EH6cdzzmf2c3mSJI3pW8CllDYH3grsl3P+e7+WI0lSJ/08RPlk4A7g7JTSmSmlh/VxWZIkjRNVVfWl4ZTSIcDRwJOAfYEDcs5HtU1zBHAEwOLFi0cXLlw45eWuXbuW2bNnT7mdFStWTLmNbs2bN4+VK1cObHm9sscee8yovh4dHV3vNL3aPgZpGGuG4ax7GGuG4ay7VzWPjIzEROP6GXD7Ac/LOb8+pbQZcG7Oee9JZulJIWvWrGFkZGTK7URM2Gc9t2zZMhYtWjSw5fXK1VdfPaP6upttuVfbxyANY80wnHUPY80wnHX3sOYJX0D6eYjyF8BjUkoBLABW9XFZkiSN07eAyznfCJwJnAd8EHh3v5YlSVK7vn5NIOf8KeBT/VyGJEmd+EVvSVKRDDhJUpEMOElSkQw4SVKRDDhJUpEMOElSkQw4SVKRDDhJUpEMOElSkQw4SVKRDDhJUpEMOElSkQw4SVKRugq4lNJhKaWdW4YfklJ6Sv/KkiRparrdg/sisFfL8ELgx70vR5Kk3pj09+BSSgcAB1L/JPhrU0r7NaMeD9zZ39IkSdp46/vB08cDhwMV8IzmNua0PtUkSdKUrS/gTgK+A1wEvBP4PnXY3Zxz/kOfa5MkaaNNGnA552uBa4FNUkqbAg8FZgGklB6Rc76y/yVKkrTh1rcHB0BK6fXA+4E5LQ9X3c4vSdKgdRtQS6hPKjkfuKt/5UiS1BvdBtyVwOdyzp/pZzGSJPVKtwH338BxKaUdgZubx6qc89L+lCVJ0tR0G3Avbv6+s+WxCjDgJEkzUrcB90rqQJMkaSh0FXA55y/1uQ5Jknqq268JrOrwcJVzntfjeiRJ6oluD1HO5d5DlJtTX6T59r5UJElSD3R7iHKrsfsppQdQf+nb35KTJM1Y3R6i3LNtngcALwHe1IeaJEmasm4PUWbGn0UZ1BdgliRpRuo24L7MvQG3DlgNnNyPgiRJ6oVuP4M7PKU0C3hU89Dvcs7r+leWJElT09WJIimlxwCXAr9ubv/dPCZJ0ozU7ZmQnwJ2AL7a3HYAPtGvoiRJmqpuP4NLwLE5508CpJQWA+/tW1WSJE1RtwH3J2DflNJ3m+GFwE39KUmSpKnrNuA+D7wb+KdmOIB/7UtFkiT1QLcBdypwPfWeG8B/Acv7UpEkST3Q7Ukm5wIPzzkflHM+CNgZA06SNIN1G3Aj1F/uHnMFsFPPq5EkqUe6PUS5CnhbSmkN9edvb20eW6+U0iHAx3PO229ciZIkbbhuA+4DwCnAd5rhAF62vpmaq58cBFy1UdVJkrSRujpEmXM+FdgH+HBz2yfnfFoXsx4CfAO4e2MLlCRpY0RVVeufaiM0e29nAgcCF+WcU4dpjgCOAFi8ePHowoUL2yfZYGvXrmX27NlTbmfFihVTbqNb8+bNY+XKlQNbXq/MtLpHR0fXO02vto9BGsaaYTjrHsaaYTjr7lXNIyMjMdG4fgbcy4F1OeevpJRyp4Br05NC1qxZw8jIyJTbiZiwz3pu2bJlLFq0aGDL65WZVnc323Kvto9BGsaaYTjrHsaaYTjr7mHNE75Y9/NXuR8LHJZS+h6wW0rp431cliRJ43R7kskGyzm/Y+x+swf3hn4tS5Kkdv3cg7tHF4cnJUnqqYEEnCRJg2bASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKZMBJkopkwEmSimTASZKKtGm/Gk4p7QV8DFgLrAEOyzmv7dfyJElq1c89uKuAZ+acnw6sBhb1cVmSJI3Ttz24nPO1LYN/B+7u17IkSWoXVVX1dQEppZ2BrwFPbz9EmVI6AjgCYPHixaMLFy6c8vLWrl3L7Nmzp9zOihUrptxGt+bNm8fKlSsHtrxeGca6u6l5dHR0QNV055ZbbulZP/dq3br5/xjGvu7V68egDWPdvap5ZGQkJhxZVVXfbqOjow8cHR09f3R09NFdTN8TV199dU/aAQZ2W7Zs2UCXd3+uu5uaZ5pe9nOvlNrXvXr9GLRhrLuHNU+YK337DC6ltCn1ntuSnPNv+7UcSZI66edJJocATwSOSyn9KKV0cB+XJUnSOP08yeRU4NR+tS9J0mT8orckqUgGnCSpSAacJKlIBpwkqUgGnCSpSAacJKlIBpwkqUgGnCSpSAacJKlIBpwkqUgGnCSpSAacJKlIBpwkqUgGnCSpSAacJKlIBpwkqUgGnCSpSAacJKlIBpwkqUgGnCSpSMUF3IoVK4iIKd90/9WL7aeXt5m4bjOtnpm2Xr3UTd29et0rra+LCzhJksCAkyQVyoCTJBXJgJMkFcmAkyQVyYCTJBXJgJMkFcmAkyQVyYCTJBXJgJMkFcmAkyQVyYCTJBXJgJMkFcmAkyQVyYCTJBXJgJMkFcmAkyQVyYCTJBXJgJMkFcmAkyQVyYCTJBVp0342nlL6APAUYDXwypzz2n4uT5KkMX3bg0spzQdGcs57A5cBL+zXsiRJatfPQ5RPAb7f3P8e8NQ+LkuSpHH6eYhyW+Da5v6twIPbJ0gpHQEc0QwemXM+aaoLPeCAA6iqaqrNDNww1gzDWbc1D86w1j2TdNuH9vV99TPgbgEe2NzfBvhT+wRNoE051CRJatfPQ5Q/AfZt7j8HuLCPy5IkaZy+BVzO+WLgjymlHwO7A9/q17IkSWoXHreVJJXIL3pLkopkwEmSitTXK5n020RXSkkpzQJOBnYDVuSc3zRdNbZKKe0FfAxYC6wBDmupeR/gVGAlsC7n/KzpqrNdSumRwC+A3zQPHZRzvqEZN1P7+snA+5rBHYHv5Jzf3Ix7JBOsz3RIKW0DLAceCzwp5/zrlNJBwJuBO4CX55yvbpvnjcCLgJuAl+ac/zzgsu9TN3AFsIz6deUu4BU55yva5vkLsKIZfH3O+f8NruIJ+/py6v9HgPfknJe3zTOtfd2hn1cC5zSjtwBm55wf3zbPpOvUb51e64ADGfA2PbQB13qllJTSO6mvlPLVZvT+wDU551emlE5OKT055/zTaSv2XlcBz8w535FSeh+wCPhmy/iv55zfNj2lrdd5OedOV6OZkX3d1LAPQErpS8BZbZNMtD7T4Xbg+cCHAFJKmwJvAZ4BPAE4DjhybOKU0nbAAcDTgJcAr+PeMB+kcXVTv5i9NOd8TUrpOcDRwOK2eX6bc95ncCXeR3vNALdOVNMM6etxNeec7+DebftwYOcO80y4TgPS6bVu4Nv0MB+inOxKKTPyKio552ubjRPg78DdbZP8r5TSj5t3MjPNU5va3ptSipbHZ2Rfj0kpPQDYC/hx26iJ1mfgcs5r2/YgdwMuzTn/Ped8IbBH2yxPoA7oimns8/a6c8535pyvaQY7bd8A81JK56eUPpNSmjOQQlt06GuArVJK56WUTk8ptV+QYtr7eoKaxxwEnNHh8cnWqe86vNY9mmnYpoc54LYFxnZh26+UMtm4aZdS2hl4NnB2y8OZeiN4FvDclNLodNQ2gWuBXYGnA3OBF7SMm9F9Tf1dzP+Tc259sZ1sfWaC1j4FmDXJ+BnX582bihOAT3QYvWvO+enUz8HrBlnXJJ6ac34G9QvrkrZxM7avU0oPAh6Wc760w+jJ1mlgWl7rLmAatumhPUTJ5FdKmWzctEopPZD6s7bDW39dIed8W8s0ZwPzufezimmVc/4b8DeAlNJ/UH8OMPa9xluYoX3dOAj4YusD61mfmeAW7u1TgHUdxu/a3J+JfX4S8Omc8+XtI3LONzV3vwkcM9CqJtBW06vbRt/CzO3rRdSfed7HetZpIFpf66gDbeDb9DDvwU12pZQZeRWV5rOVrwFLcs6/bRvX+uQ/Dfj9IGubTEpp65bBvRlf24zsa4CU0mzqQx8XtD0+2frMBJcDj0kpPSCl9BTgkrbxv6De+4SZ1+fHA6tyzl/vMG7L5qQkmCH93vTxZs1gp5pmbF8zweHJLtap7zq81k3LNj3UX/ROKX2I+t33lcArgE/knI9sOvfzwDzglznnN0xjmfdIKb0M+CgwdubYZ6g/iD0ypfRq6gtP3wVcmHM+enqqvK+U0n7AidQfdv8BeCXwqZnc13BP3fuN1ZRS+ihwLPUH9OPWJ+d81zSVCUBK6bvAAuozET9HfabZG4E7qc84uyqldAz1iUh/SCm9mfrEqpuBQ3POt86Aur8LHM+9byh+mnM+dqxu6nfmXwBuo677sOmou63ms6jP3Psr9V79K2diX3fYPs6kPvSeWqY5HPgtsIr6uRi3TgOut9NrHQx4mx7qgJMkaSLDfIhSkqQJGXCSpCIZcJKkIhlwkqQiGXCSpCIZcNIMlVJanVK6bf1TSurEgJMkFWmYL9UlDY2U0hnU17zcIed8Q0rpg9RX238H8CZgO+B64OSc832uHZhSOoH6S9QH5Zy/mVL6NbB7zjma8cdSXyhgO+qry/xzznlV31dMmsHcg5MG4zTq6/H9z2b4hcCl1D8r8m/UIXcJcEJKaYOupJ5SejnwXuDnwPupr9T+jZ5ULQ0xA04ajHOoLyD7wuaXIv4B+Ar1rxm8B/gUsF8z7eM2sO39m78HU1+C7GHAntPxMynSTGLASQOQc/479V7V/6A+lFhR79V9hPrajAdS74UBdPqdtLGrr499rPCgDtMcCixsbs+hvtamdL9lwEmDcxp1QL2G+oLEN1EH3WbUe137Tzwrq5u/L2wuUDvSMu4/m78vBx5O/avJx+Wc7+xZ5dIQMuCkwbmA+mrwAXyl+Q3At1MH3DHc+8vonXwLWE7945F7UF8xHoCc8ynN/LtRX7X9EOD8PtQvDRV/TUCSVCT34CRJRTLgJElFMuAkSUUy4CRJRTLgJElFMuAkSUUy4CRJRTLgJElF+v9oJOmpYapXvwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAosAAAHrCAYAAACn9tfQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA95ElEQVR4nO3dd3xUVf7/8fekl4FgMCQBkYQmIIIoZQElhKJUYZGu0kRUUGwsCIvSrLi6+8WV8osaFFCwoFJE1BDQXUFBVhAEAenNhVATJIWc3x9sBobMCSEkmRBez8cjD8iZM/d+5tyTO+/cMnEYY4wAAAAAD3y8XQAAAABKLsIiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIuy8yZM+VwOLRmzZpCW+bOnTvlcDg0c+ZMV9v48ePlcDgKtLyYmBgNGDDgov2WL18uh8Oh5cuXF2g9hV2Pw+HQI488UqS1FHS9+/fv1/jx4/XTTz8VaS2ff/65xo8fX6TrQPF79913FRERoZMnT7ra8jvfc/Y5O3fuvKR1vvDCC/r0008vsdIrV1JSkpxOp/bt2+ftUlAKEBZxRRg8eLBWrlxZoOd+8skneuaZZwq5oqvb/v37NWHChGIJixMmTCjSdaB4nTp1SmPGjNGoUaNUpkyZS35+x44dtXLlSkVHR1/S8662sNi6dWs1btxYY8aM8XYpKAUIi7giXHfddfrTn/5UoOc2aNBA1apVK+SKUNqcOnXK+tgff/xxWcvOzMxUVlbWZS2jKJ05c0bp6enFsq533nlHKSkpGjx4cIGeHxERoT/96U8KDAws5MqKVl7zq6gMGzZMc+bM0Z49e4p93ShdCIsodAMGDJDT6dS2bdvUoUMHOZ1OVa5cWU899VSuN6T9+/erZ8+eKlOmjMLCwtSrVy8dPHgw1zIvPA3dtWtXValSRdnZ2bn6NmnSRLfccovre0+nfTdv3qx27dopJCRE1157rR566CG3U2J5PVeSWrZsqZYtW7q+P336tJ566indfPPNCgsLU3h4uJo2barPPvvMNkz5NmPGDNWsWVOBgYGqU6eO5s6d6/b4oUOHNHToUNWpU0dOp1MVKlRQq1at9O233+ZaVnp6uiZOnKjatWsrKChI5cuXV3x8vL777jvr+o0xGjNmjPz9/ZWQkKDly5erUaNGkqSBAwfK4XDI4XC4nS5es2aN7rrrLoWHhysoKEgNGjTQBx984LbcU6dOacSIEYqNjVVQUJDCw8PVsGFDvf/++5LOzqM33nhDklzryM/px6+//lqtW7dW2bJlFRISoubNmyspKcmtT858Wrt2rbp3765rrrnG9QtFTEyMOnXqpPnz56tBgwYKCgpyHd3csGGDunTpomuuuUZBQUG6+eab9c4777gtO+dyhlmzZumpp55SpUqVFBgYqG3btllrnjZtmurXry+n06kyZcqoVq1auY4I7du3T0OGDFHlypUVEBCgihUrqnv37vr9999dfXbv3q17771XFSpUUGBgoGrXrq1XX33V7eck5zKPyZMn67nnnlNsbKwCAwOVnJxcaNsuL9OmTVPnzp1Vrlw5j4/PmjVLtWvXVkhIiOrXr69Fixa5Pe7pNPR//vMfderUyfW6K1asqI4dO2rv3r2Szs6ftLQ0vfPOO655dP7Pb362qyRt3LhRd9xxh0JCQhQREaFhw4Zp8eLFuS5fadmyperWratvvvlGzZo1U0hIiAYNGiRJmjdvnu644w5FR0crODhYtWvX1tNPP620tDS3deXsRzdv3qw777xToaGhio6O1ksvvSRJWrVqlW677TaFhoaqZs2aHuvt3LmznE6nEhISrNsDyA8/bxeA0ikzM1N33XWX7r//fj311FP65ptvNGnSJIWFhenZZ5+VdPZoTZs2bbR//369+OKLqlmzphYvXqxevXpddPmDBg1Sly5dtGzZMrVp08bVvnnzZv3www+aMmWK9bm///674uLi5O/vr6lTpyoyMlJz5sy5rOsD09PTdeTIEY0YMUKVKlVSRkaGvv76a3Xr1k2JiYnq169fgZa7YMECJScna+LEiQoNDdXUqVPVp08f+fn5qXv37pKkI0eOSJLGjRunqKgopaam6pNPPlHLli2VlJTkelPMyspS+/bt9e233+rxxx9Xq1atlJWVpVWrVmn37t1q1qyZx9c1YMAALV68WAsXLlS7du104sQJJSYmauDAgRo7dqw6duwo6ezRX0lKTk5Wu3bt1KRJE02fPl1hYWGaO3euevXqpVOnTrnC95NPPqlZs2bpueeeU4MGDZSWlqYNGzYoJSVFkvTMM88oLS1NH330kdslCHmdfpw9e7b69eunLl266J133pG/v79mzJihO++8U0uXLlXr1q3d+nfr1k29e/fWQw895PZmvXbtWm3atEljx45VbGysQkND9euvv6pZs2aqUKGCpkyZovLly2v27NkaMGCAfv/9d40cOdJt2aNHj1bTpk01ffp0+fj4qEKFCh5rnjt3roYOHapHH31Uf/vb3+Tj46Nt27bpl19+cfXZt2+fGjVqpMzMTI0ZM0b16tVTSkqKli5dqqNHjyoyMlKHDh1Ss2bNlJGRoUmTJikmJkaLFi3SiBEj9Ntvv2nq1Klu650yZYpq1qypv/3tbypbtqxq1KhRaNvOZu/evfr555/18MMPe3x88eLFWr16tSZOnCin06nJkyfrz3/+s3799VdVrVrV43PS0tLUtm1bxcbG6o033lBkZKQOHjyo5ORk1y+AK1euVKtWrRQfH++6JKVs2bKSlO/teuDAAcXFxSk0NFTTpk1ThQoV9P7771v3GwcOHNC9996rkSNH6oUXXpCPz9ljM1u3blWHDh30+OOPKzQ0VJs3b9bLL7+sH374QcuWLXNbRmZmprp166aHHnpIf/nLX/Tee+9p9OjROnHihD7++GONGjVK1113nV5//XUNGDBAdevW1a233up6fkBAgJo1a6bFixdr4sSJeW4bIE8GuAyJiYlGklm9erWrrX///kaS+eCDD9z6dujQwdxwww2u76dNm2Ykmc8++8yt3wMPPGAkmcTERFfbuHHjzPnTNTMz00RGRpq+ffu6PXfkyJEmICDAHD582NVWpUoV079/f9f3o0aNMg6Hw/z0009uz23btq2RZJKTk63PzREXF2fi4uJytefIysoymZmZ5v777zcNGjRwe8y2zAtJMsHBwebgwYNuy61Vq5apXr36RdfdunVr8+c//9nV/u677xpJJiEh4aLrHTZsmElJSTG33XabqVSpUq6xWr16da5tlKNWrVqmQYMGJjMz0629U6dOJjo62pw5c8YYY0zdunVN165d86xl2LBhJr+7qbS0NBMeHm46d+7s1n7mzBlTv35907hxY1dbznx69tlncy2nSpUqxtfX1/z6669u7b179zaBgYFm9+7dbu3t27c3ISEh5tixY8YYY5KTk40k06JFi3zV/cgjj5hy5crl2WfQoEHG39/f/PLLL9Y+Tz/9tJFkvv/+e7f2hx9+2DgcDtfr2bFjh5FkqlWrZjIyMtz6Fua282TevHlGklm1alWuxySZyMhIc+LECVfbwYMHjY+Pj3nxxRddbTn7nB07dhhjjFmzZo2RZD799NM81x0aGurx5y6/2/Uvf/mLcTgcZuPGjW797rzzzlz7jbi4OCPJJCUl5VlTdna2yczMNCtWrDCSzLp161yP5exHP/74Y1dbZmamiYiIMJLM2rVrXe0pKSnG19fXPPnkk7nW8de//tX4+PiY1NTUPGsB8sJpaBQJh8Ohzp07u7XVq1dPu3btcn2fnJysMmXK6K677nLr17dv34su38/PT/fee6/mz5+v48ePSzp73dWsWbPUpUsXlS9f3vrc5ORk3Xjjjapfv/4lrzcvH374oZo3by6n0yk/Pz/5+/vrrbfe0qZNmwq8zNatWysyMtL1va+vr3r16qVt27a5TrFJ0vTp03XLLbcoKCjIte6kpCS3dS9ZskRBQUGu02F52bFjh5o2baoTJ05o1apVucbKZtu2bdq8ebPuueceSWePZuZ8dejQQQcOHNCvv/4qSWrcuLGWLFmip59+WsuXL7/s6wK/++47HTlyRP3793dbb3Z2ttq1a6fVq1fnOtV39913e1xWvXr1VLNmTbe2ZcuWqXXr1qpcubJb+4ABA3Tq1KlcN2DZln2hxo0b69ixY+rTp48+++wzHT58OFefJUuWKD4+XrVr17YuZ9myZapTp44aN26cqz5jTK6jVnfddZf8/f1d3xfHttu/f78kWY+yxsfHu930EhkZqQoVKrjtNy5UvXp1XXPNNRo1apSmT5/udkQ2P/K7XVesWKG6deuqTp06bv369OnjcbnXXHONWrVqlat9+/bt6tu3r6KiouTr6yt/f3/FxcVJUq59hcPhUIcOHVzf+/n5qXr16oqOjlaDBg1c7eHh4dZxqlChgrKzsz1e3gPkF2ERRSIkJERBQUFubYGBgTp9+rTr+5SUFLcglCMqKipf6xg0aJBOnz7tuoZv6dKlOnDggAYOHJjn81JSUjyuI7/r9WT+/Pnq2bOnKlWqpNmzZ2vlypVavXq1q8aCyqvOnFN+r732mh5++GE1adJEH3/8sVatWqXVq1erXbt2bm/ihw4dUsWKFV2nw/Lyww8/aMuWLerVq5fr9HJ+5Fw/N2LECPn7+7t9DR06VJJcYWjKlCkaNWqUPv30U8XHxys8PFxdu3bV1q1b870+T+vu3r17rnW//PLLMsa4TtnnsJ3S9tSekpLisb1ixYqux/Oz7Avdd999evvtt7Vr1y7dfffdqlChgpo0aaKvvvrK1efQoUMX3Q6XW19xbLuc+XjhviGHp1/yAgMD8wyjYWFhWrFihW6++WaNGTNGN954oypWrKhx48YpMzMzz3qk/I+bbX/lqU3yvP1TU1N1++236/vvv9dzzz2n5cuXa/Xq1Zo/f76k3DdSedqPBgQEKDw8PNeyAwICPO5rcp5/ub+M4erGNYvwmvLly+uHH37I1Z7f34BzjqIkJibqwQcfVGJioipWrKg77rjjouv1tA5PbUFBQR7vEj18+LCuvfZa1/ezZ89WbGys5s2b53YjzuXeYZpXnTlvrLNnz1bLli01bdo0t34X3rATERGhf/3rX8rOzr5oYOzVq5eioqL017/+VdnZ2Ro7dmy+6s0Zk9GjR6tbt24e+9xwww2SpNDQUE2YMEETJkzQ77//7jpS1blzZ23evDlf6/O07tdff9165/yFb+y2z+701F6+fHkdOHAgV3vO0bLz50Ney/Zk4MCBGjhwoNLS0vTNN99o3Lhx6tSpk7Zs2aIqVaooIiLC7UiyJ5dbX3Fsu5x1HDly5JI/+iYvN910k+bOnStjjNavX6+ZM2dq4sSJCg4O1tNPP53nc/M7buXLl3e7mSiHbX/lafsvW7ZM+/fv1/Lly11HEyXp2LFjedZ4OXJ+Qbpw+wOXgiOL8Jr4+HidPHlSCxYscGt/77338r2MgQMH6vvvv9e//vUvLVy4UP3795evr+9F17tx40atW7fuouuNiYnR+vXr3dq2bNniOh2Xw+FwKCAgwO0N4uDBg5d9N3RSUpLbG9SZM2c0b948VatWzXWkyeFw5PoYkfXr1+c6Ldq+fXudPn3a7cPO8zJ27Fj94x//0LPPPqvRo0e7PZazvguPVtxwww2qUaOG1q1bp4YNG3r88vTZepGRkRowYID69OmjX3/91fUxI7b1eNK8eXOVK1dOv/zyi3XdAQEB+XrtnrRu3dr1Zn++d999VyEhIQX+aKfzhYaGqn379vrrX/+qjIwMbdy4UdLZbZecnJxr3l1Y3y+//KK1a9fmqs/hcCg+Pj7PdRf2tvOkVq1akqTffvstz1oKyuFwqH79+vr73/+ucuXKuY2F7QhlfrdrXFycNmzYkOs094WfTnCx+nJqOd+MGTPyvYxLtX37dpUvX956BBTID44swmv69eunv//97+rXr5+ef/551ahRQ59//rmWLl2a72X06dNHTz75pPr06eO6c/diHn/8cb399tvq2LGjnnvuOdfd0J6OiNx333269957NXToUN19993atWuXJk+erIiICLd+OR+1MnToUHXv3l179uzRpEmTFB0dXeDTqtLZowGtWrXSM88847obevPmzW5vUJ06ddKkSZM0btw4xcXF6ddff9XEiRMVGxvr9tl+ffr0UWJioh566CH9+uuvio+PV3Z2tr7//nvVrl1bvXv3zrX+xx57TE6nU0OGDFFqaqqmTJkih8OhatWqKTg4WHPmzFHt2rXldDpVsWJFVaxYUTNmzFD79u115513asCAAapUqZKOHDmiTZs2ae3atfrwww8lnf2Io06dOqlevXq65pprtGnTJs2aNUtNmzZVSEiIpLNHjCTp5ZdfVvv27eXr66t69ep5DH1Op1Ovv/66+vfvryNHjqh79+6qUKGCDh06pHXr1unQoUO5jr5einHjxmnRokWKj4/Xs88+q/DwcM2ZM0eLFy/W5MmTFRYWVqDlPvDAAwoODlbz5s0VHR2tgwcP6sUXX1RYWJjrI4omTpyoJUuWqEWLFhozZoxuuukmHTt2TF988YWefPJJ1apVS0888YTeffdddezYURMnTlSVKlW0ePFiTZ06VQ8//HCuazA9Kcxt50mTJk0UHBysVatW5bpWuaAWLVqkqVOnqmvXrqpataqMMZo/f76OHTumtm3buvrddNNNWr58uRYuXKjo6GiVKVNGN9xwQ763a85+o3379po4caIiIyP13nvvufYb+bm8o1mzZrrmmmv00EMPady4cfL399ecOXNy/eJamFatWqW4uLgC/wUsQBJ3Q+Py2O6GDg0NzdX3wjuajTFm79695u677zZOp9OUKVPG3H333ea777676N3Q5+vbt6+RZJo3b+7xcU93H//yyy+mbdu2JigoyISHh5v777/ffPbZZ7nuaszOzjaTJ082VatWNUFBQaZhw4Zm2bJlHu+Gfumll0xMTIwJDAw0tWvXNgkJCR7rvpS7oYcNG2amTp1qqlWrZvz9/U2tWrXMnDlz3Pqlp6ebESNGmEqVKpmgoCBzyy23mE8//dT079/fVKlSxa3vH3/8YZ599llTo0YNExAQYMqXL29atWplvvvuu1zrPd/7779v/Pz8zMCBA113xL7//vumVq1axt/f30gy48aNc/Vft26d6dmzp6lQoYLx9/c3UVFRplWrVmb69OmuPk8//bRp2LChueaaa0xgYKCpWrWqeeKJJ9zuZE9PTzeDBw82ERERxuFwuN0Fa7NixQrTsWNHEx4ebvz9/U2lSpVMx44dzYcffujqk7NdDh06lOv5VapUMR07dvS47J9//tl07tzZhIWFmYCAAFO/fv1cd4Tn3A19/vry8s4775j4+HgTGRlpAgICTMWKFU3Pnj3N+vXr3frt2bPHDBo0yERFRRl/f39Xv99//93VZ9euXaZv376mfPnyxt/f39xwww3mlVdecW0zY87dDf3KK694rKewtp3NfffdZ+rUqZOr3dO8Myb3z8uFd0Nv3rzZ9OnTx1SrVs0EBwebsLAw07hxYzNz5ky35fz000+mefPmJiQkxEhy+/nNz3Y1xpgNGzaYNm3auO033nnnnVx3MsfFxZkbb7zR4+v/7rvvTNOmTU1ISIiJiIgwgwcPNmvXrs21z7PtR23L9jRvt23bluuOaqAgHMYYU7zxFABwtVqzZo0aNWqkVatWqUmTJt4u57INGTJE77//vlJSUi7rMoei8Mwzz+jdd9/Vb7/9Jj8/TiSi4AiLAIBi1atXL6WlpeX66ywl3cSJE1WxYkVVrVpVqampWrRokd58802NHTu2xH3o9bFjx1S1alW9/vrrro9DAgqKXzUAAMXq1Vdf1VtvvaWTJ096vGmmpPL399crr7yivXv3KisrSzVq1NBrr72mxx57zNul5bJjxw6NHj36sj8/FpA4sggAAIA88NE5AAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwmI+ZGdna8eOHcrOzvZ2KV7HWLhjPNwxHucwFu4Yj3MYC3eMh7uSOB6ERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFZ+3i4AAAAgPxwOR7GuzxhTrOsrqTiyCAAAUAgGDBggh8Mhh8Mhf39/RUZGqm3btnr77beVnZ2d7+V89NFHCg8PL8JKLw1hEQAAoJC0a9dOBw4c0M6dO7VkyRLFx8frscceU6dOnZSVleXt8gqEsAgAAFBIAgMDFRUVpUqVKumWW27RmDFj9Nlnn2nJkiWaOXOmJOm1117TTTfdpNDQUFWuXFlDhw5VamqqJGn58uUaOXKkjh8/7jpKOX78eEnS7Nmz1bBhQ5UpU0ZRUVHq27ev/vvf/xb5ayIsAgAAFKFWrVqpfv36mj9/viTJx8dHU6ZM0YYNG/TOO+9o2bJlGjlypCSpWbNmeuaZZ1S2bFkdOHBABw4c0IgRIyRJGRkZmjRpktatW6dPP/1UO3bs0IABA4q8fm5wAQAAKGK1atXS+vXrJUmPP/64qz02NlaTJk3Sww8/rKlTpyogIEBlypSRw+FQVFSU2zIGDRrk+n/VqlU1ZcoUNW7cWKmpqXI6nUVWO0cWr3I5h7jz+xUWFiZJCgsLu+TnFucXAAAliTHG9f6UnJystm3bqlKlSipTpoz69eunlJQUpaWl5bmM//znP+rSpYuqVKmiMmXKqGXLlpKk3bt3F2nthEUAAIAitmnTJsXGxmrXrl3q0KGD6tatq48//lg//vij3njjDUlSZmam9flpaWm644475HQ6NXv2bK1evVqffPKJpLOnp4sSp6EBAACK0LJly/Tzzz/riSee0Jo1a5SVlaVXX31VPj5nj9l98MEHbv39/f115swZt7bNmzfr8OHDeumll1S5cmVJ0po1a4qlfo4sAgAAFJL09HQdPHhQ+/bt09q1a/XCCy+oS5cu6tSpk/r166dq1aopKytLr7/+urZv365Zs2Zp+vTpbsu47rrrlJqaqqSkJB0+fFinTp3S9ddfr4CAANfzFixYoEmTJhXLayIsAgCAK4Ixpli/CuKLL75QdHS0YmJi1K5dOyUnJ2vKlCn67LPP5Ovrq5tvvlmvvfaaXn75ZdWtW1dz5szRiy++6LaMW2+9VQ8++KB69eqliIgITZ48WREREZo5c6Y+/PBD1alTRy+99JL+9re/FcawXpTD8LdsLio7O1u7du1SlSpVXIeMS4tLvRnE6XRq/fr1qlevnuszoUqi4prWpXluFATjcQ5j4Y7xOIexcMd4uCuJ41EyqgAAAECJRFgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAICVV8Pi5s2bNWjQIMXFxalLly5asGCBN8sBAADABfy8ufJnn31Wd955p958801t2bJFQ4YMUf369VWlShVvlgUAAID/8WpYPHjwoNq1aycfHx/VqlVLMTEx2rVrl8ewmJGRoYyMDLc2Pz8/BQQEFHmd2dnZbv+WJk6n85L6h4aGuv1bUhXXtirNc6MgGI9zGAt3jMc5jIU7xsNdcY+Hj8/FTzI7jDGmGGrx6J///KcCAwM1cOBAbd68WU899ZTef/99hYeH5+o7Y8YMJSQkuLX16NFDPXv2LK5yAQAASpXY2NiL9vFqWPzxxx81btw4HTp0SJI0ZswYdenSxWNfbx9Z3LNnjypXrpyvBH4lCQsLu6T+oaGhWrlypZo2baq0tLQiquryHT9+vFjWU5rnRkEwHucwFu4Yj3MYC3eMh7viHo/8rMNrp6GPHTumJ598UuPHj1eLFi20Y8cODR8+XNWqVVPdunVz9Q8ICCiWYJgXHx+fUjeRU1NTC/S8tLS0Aj+3OBT3diqNc+NyMB7nMBbuGI9zGAt3jIe7kjQeXqti3759cjqdio+Pl6+vr6pXr65bb71Va9eu9VZJAAAAuIDXwmKVKlWUlpamb775RsYY7dy5U6tXr1b16tW9VRIAAAAu4LXT0E6nUy+++KJef/11jR07VmXKlFHPnj3VrFkzb5UEAACAC3j1o3OaNm2qpk2berMEAAAA5KFkXDkJAACAEomwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIAAACsCIsAAACwIiwCAADAirAIAAAAK8IiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIAAACsCIsAAACwIiwCAADAirAIAAAAK8IiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIAAACsCIsAAACwIiwCAADAirAIAAAAK8IiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIAAACsCIsAAACwIiwCAADAirAIAAAAK8IiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIAAACsCIsAAACwIiwCAADAirAIAAAAK8IiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIAAACsCIsAAACwIiwCAADAirAIAAAAK8IiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALDyelicOXOmOnbsqBYtWqhv3746efKkt0sCAADA//h5c+Vz587Vd999pzfffFNRUVH67bffFBAQ4M2SAAAAcB6vhcUzZ84oMTFRCQkJio6OliRVr17d2j8jI0MZGRlubX5+fsUSLrOzs93+LU2cTucl9Q8NDXX7t6Qqrm1VmudGQTAe5zAW7hiPcxgLd4yHu+IeDx+fi59kdhhjTDHUksuBAwfUp08f9evXT3PnzpXT6VTfvn3VvXt3j/1nzJihhIQEt7YePXqoZ8+exVEuAABAqRMbG3vRPl47svjf//5Xqamp2rt3rxYsWKB9+/Zp6NChiomJUcOGDXP1HzhwoO655x63tuI8srhnzx5Vrlw5Xwn8coWFhRX5OgoqNDRUK1euVNOmTZWWlubtcrwuZzxK49w4fvz4JT+nuH9WSjLGwh3jcQ5j4Y7xcFcSx8NrYTEwMFCSNGTIEAUFBalatWrq0KGD/v3vf3sMiwEBAV6/ntHHx6dYNlxqamqRr+NypaWlXRF1FpfSODcu5/UU13hcCRgLd4zHOYyFO8bDXUkaD69VUaVKFfn7+3tr9QAAAMgHr4XF4OBgtW7dWm+99ZYyMjK0c+dOLVmyRM2bN/dWSQAAALiAV49vjho1SseOHVObNm306KOPavDgwR5PQQMAAMA7vPo5i2XKlNErr7zizRIAAACQh5Jx5SQAAABKJMIiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIAAACsCIsAAACwIiwCAADAirAIAAAAK8IiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIAAACsCIsAAACwIiwCAADAirAIAAAAK8IiAAAArAiLAAAAsCIsAgAAwKpAYbFLly4aOXJkrvY33nhDo0ePvuyiAAAAUDL4FeRJ+/fvV/ny5XO1//DDD9q0adNlFwUAAICS4ZLC4qJFi1z/P3r0qNv3p0+f1s6dO+Xv71941QEAAMCrLiksTpgwQQ6HQw6HQ/v27dPEiRPdHjfGqEaNGoVaIAAAALznkk9DG2PkcDhkjHFrDwwMVExMjEaMGFFoxQEAAMC7Liksrl69WpLUqFEj3XTTTXr77beLpCgAAACUDAW6wWX69OkKDQ0t7FoAAABQwhQoLN56663atWuX5s+fryNHjuQ6Jf3AAw8USnEAAADwrgKFxc8++0wvvPBCrpCYg7AIAABQOhQoLL799tvKzs4u7FoAAABQwhQoLKakpMjpdCohIUGxsbHy9fUt7LoAAABQAhToz/01bNhQZcuWVfXq1QmKAAAApViBjiy2adNGzz//vEaPHq127dqpTJkybo/fcssthVIcAAAAvKtAYTHnL7kkJSUpKSnJ7TGHw6Hvv/++UIoDAACAdxUoLEqy3gkNAACA0qNAYXHBggWFXQcAAABKoAKFxejo6MKuAwAAACVQga9ZtHE4HHr22WcLXBAAAABKjgKFxUWLFsnhcORqN8YQFgEAAEqRAoXFBg0auIXF1NRUbdu2TQ6HQzfffHNh1QYAAAAvK1BY/H//7//latu5c6cGDRqk22+//bKLAgAAQMlQoL/g4klMTIxq1qypefPmFdYiAQAA4GUFvmbxfNnZ2dq9e7d++uknBQYGFkphAAAA8L7L+gsuFzLG8Kf+AAAASpFC+wsu4eHhatSokZ544onLLgoAAAAlQ4HC4urVqwu7DgAAAJRABT6yKEnp6enavn27JKlq1apcrwgAAFDKFDgsvv3220pMTFR6erokKTAwUPfff78GDBhQWLUBAADAywr00TkLFizQtGnTdPr0aRljZIzR6dOnNXXq1Fx3SgMAAODKVaAjix988IEkqWXLlrrzzjslSUuXLtXy5cs1d+5cderUqfAqBAAAgNcUKCzu2LFDFStW1CuvvOJqa9Omje666y7t2LGj0IoDAACAdxXoNLSvr6/S09OVlZXlasvKylJ6erp8fX0LrTgAAAB4V4GOLNasWVPr16/XkCFDFB8fL4fDoWXLluno0aOqV69eYdcIAAAALylQWLzvvvs0YsQIbdiwQRs2bJB07kO6+/XrV3jVAQAAwKsKdBo6Li5OEyZMUGRkpOtu6KioKE2aNEktWrQo7BoBAADgJQU6srh161aFhobqzTffVEBAgCQpMzNTmzZt0tatW1WjRo1CLRIAAADeUaCw+Nxzz2nbtm1avHixypUrJ0k6fvy4xowZo5o1ayoxMbEwawQAAICXFOg09M6dO1W5cmVXUJSksLAwVa5c2fXn/wAAAHDlK1BYzMrKUkpKSq6PzklJSdGZM2cKrTgAAAB4V4FOQ8fExGjr1q0aO3as+vbtK0l6//33dezYMd1www2FWiAAAAC8p0BhsWvXrpo8ebKWLVumZcuWudodDoe6du1aWLUBAADAywp0GrpHjx7q0aOHJLk+OkeSevbsqe7duxdedQAAAPCqAh1ZlKSRI0fqvvvu08aNGyVJN954o6KjowutMAAAAHhfgcOiJEVHRxMQAQAASrECnYYGAADA1YGwCAAAACvCIgAAAKwIiwAAALAqEWFx/fr1atSokWbOnOntUgAAAHAer4fF7Oxsvfbaa6pTp463SwEAAMAFLuujcwrD/PnzVbduXaWmpubZLyMjQxkZGW5tfn5+CggIKMryJJ0NtOf/W9ScTmexrKcgQkND3f692uWMQ2mcGwV5TcX9s1KSMRbuGI9zGAt3jIe74h4PH5+LHzd0mJw/v+IFx48f16BBg5SYmKjXXntNMTExGjBggMe+M2bMUEJCgltbjx491LNnz2KoFAAAoPSJjY29aB+vHll844031KdPH5UtW/aifQcOHKh77rnHra04jyzu2bNHlStXzlcCv1xhYWFFvo6CCg0N1cqVK9W0aVOlpaV5uxyvK83jcfz48Ut+TnH/rJRkjIU7xuMcxsId4+GuJI6H18Li5s2btXHjRo0aNSpf/QMCAoolGObFx8enWDbcxU7JlwRpaWlXRJ3FpTSOx+XM9eL6WbkSMBbuGI9zGAt3jIe7kjQeXguLa9eu1e7du9WhQwdJZwOSr6+v9u7dq7Fjx3qrLAAAAJzHa2GxW7duuuOOO1zfv/rqq6pcubLuu+8+b5UEAACAC3gtLAYFBSkoKMj1fWBgoEJCQlSmTBlvlQQAAIALeP2jc3KMHz/e2yUAAADgAiXjykkAAACUSIRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYOXnrRVnZGToxRdf1Pfff6+0tDTdcMMNGjlypKpXr+6tkgAAAHABrx1ZPHPmjCpVqqTExEQtW7ZMLVq00FNPPeWtcgAAAOCB18JicHCwBg8erMjISPn6+qpXr17av3+/jh075q2SAAAAcAGvnYa+0Pr16xUeHq5y5cp5fDwjI0MZGRlubX5+fgoICCjy2rKzs93+LWpOp7NY1lMQoaGhbv9e7UrzeBRkvhf3z0pJxli4YzzOYSzcMR7uins8fHwuftzQYYwxxVBLnlJTU9W/f3/169dPXbp08dhnxowZSkhIcGvr0aOHevbsWRwlAgAAlDqxsbEX7eP1sJienq7hw4erVq1aeuKJJ6z9vH1kcc+ePapcuXK+EvjlCgsLK/J1FFRoaKhWrlyppk2bKi0tzdvleB3j4a6g43H8+PEirMo7cvYbxTU3inMMC7KPYm6cU9zvKSUd4+GuuMcjP+vw6mnorKwsjRkzRhEREXr88cfz7BsQEFAswTAvPj4+xbLhUlNTi3wdlystLe2KqLO4MB7uLnU8SvMbRHHNjeIcw8t5PcyNc4rrPeVKwXi4K0nj4dWw+Pzzzys9PV0vv/yyHA6HN0sBAACAB14LiwcOHNDChQsVGBio+Ph4V/uUKVPUoEEDb5UFAACA83gtLEZHR2vNmjXeWj0AAADyoWScDAcAAECJRFgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABg5eftAq4kYWFhSk1N9XYZQKnjcDi8XUKhczqdWr9+fbGtrzSOoVQ6X1dxz43iVJDtlTMevMeeVRLnB0cWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREAAABWhEUAAABYERYBAABgRVgEAACAFWERAAAAVoRFAAAAWBEWAQAAYEVYBAAAgJVXw+LRo0f12GOPqXnz5urWrZt++OEHb5YDAACAC3g1LL788suKiIhQUlKShg8frqefflonTpzwZkkAAAA4j9fC4qlTp7RixQo99NBDCgoKUsuWLVWtWjV988033ioJAAAAF/Dz1op3794tp9Opa6+91tVWo0YNbd++3WP/jIwMZWRkuLX5+fkpICCgSOuUpOzsbElSaGhoka+rpMsZA8biLMbDHeNxDmPhjvE4J2cMct5bShOn03nJz2FuuCvu+eHjc/Hjhl4Li3/88UeuiREaGqrU1FSP/RMTE5WQkODW9sADD+jBBx8sshpz+Pj4KDY2VgcPHizydV0pGAt3jIc7xuMcxsId41G6nTx5ssDPZW6UXF4Li8HBwUpLS3NrS0tLU3BwsMf+AwcO1D333OPWVhxHFQEAAK5mXrtm8frrr1dqaqoOHz7satu6dauqVq3qsX9AQICcTqfbF2ERAACgaHktLIaEhKhFixaaMWOGTp8+rRUrVui3335TixYtvFUSAAAALuAwxhhvrfzo0aMaN26cfvzxR0VGRmrUqFFq0qSJt8oBAADABbwaFgEAAFCy8ef+AAAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWPyfo0eP6rHHHlPz5s3VrVs3/fDDDx77nT59Ws8884xatGihjh076osvvijmSoteRkaGJkyYoA4dOiguLk5DhgzRtm3bPPYdP368mjZtqttvv1233367evbsWczVFo8hQ4aoWbNmrtc5fPhwj/1K+/zIef05Xw0bNlRSUpLHvqVxbsyYMUM9evRQo0aNtHTpUrfHZs6cqTZt2qhVq1b6v//7P+X1QRMLFy50/XxNmDBBmZmZRV16kbCNx8KFC9W3b1+1aNFCXbp00UcffWRdxpo1a9SoUSO3efWf//ynOMovdHmNR5MmTdxeY15/2q40zA/bWLzwwgtu49CkSRM98cQTHpdRmubGxd5XS/z+w8AYY8yoUaPMpEmTzB9//GGSk5NNfHy8OX78eK5+//jHP8yjjz5qTp48aX766ScTFxdndu7c6YWKi86pU6dMQkKCOXjwoMnKyjKzZs0yd911l8e+48aNM4mJicVboBc88MAD5osvvrhov6thfuTYsmWLadasmUlNTfX4eGmcG4sXLzYrV640/fv3d5sP3377renYsaPZs2ePOXTokOnevbv59NNPPS5j69atJj4+3mzcuNGcPHnSDBkyxEybNq24XkKhso3HRx99ZNavX28yMzPNtm3bTNu2bc2PP/7ocRmrV6823bp1K66Si5RtPBYsWGAeeeSRfC2jtMwP21hcqG/fvuaTTz7x+Fhpmht5va9eCfsPjixKOnXqlFasWKGHHnpIQUFBatmypapVq6ZvvvkmV9/PP/9cQ4YMkdPpVP369dWiRQt9+eWXXqi66AQHB2vw4MGKjIyUr6+vevXqpf379+vYsWPeLq3EuxrmR44lS5YoLi5OoaGh3i6l2HTo0EF/+tOfcv2p0c8//1zdu3fXddddp2uvvVb33nuvlixZ4nEZX3zxhdq2bas6derI6XRq8ODB1r4lnW087r77bt10003y8/NTtWrV1LhxY/3yyy9eqrL42MbjUpSW+ZGfsdixY4d27NihNm3aFGNl3pHX++qVsP8gLEravXu3nE6nrr32WldbjRo1tH37drd+J06cUEpKiqpXr+5qq1mzZq5+pc369esVHh6ucuXKeXx81qxZat26tQYNGqS1a9cWb3HF6JVXXlGbNm00dOhQbd26NdfjV9P8MMZo6dKlat++fZ79rpa5sWPHjnxv9+3bt7v1rVGjhvbt26fTp08XeZ3ecObMGW3cuFFVq1a19jlw4IDatm2rP//5z0pISNCZM2eKscLisW7dOrVu3Vo9evTI87T81TQ/lixZottuu01Op9Pap7TOjfPfV6+E/YdfkS79CvHHH3/kOjoSGhqq1NRUt7ZTp07J19dXQUFBbv1OnTpVLHV6Q2pqql544QUNHTrU4+O9e/fWk08+qeDgYH399dd64oknNG/ePEVFRRVzpUVr+PDhqlq1qnx8fDRv3jw99thj+uijjxQSEuLqczXNj7Vr1+r06dNq2rSptc/VMjeks9v+/De8vLb7hfubnOf98ccfbnOntJg2bZoiIiKscyUmJkbvvfeerr/+eu3cuVNPP/20QkJCdM899xRzpUXnlltu0dy5cxUVFaVffvlFI0aMUPny5RUfH5+r79U0P5YuXarHH3/c+nhpnRsXvq9eCfsPjizq7OHhtLQ0t7a0tDQFBwe7tYWEhOjMmTNuCT4tLc0tMJQm6enpeuqpp3TbbbepS5cuHvvUqlVLZcuWlb+/v9q3b6969erp+++/L+ZKi17dunUVEhKioKAg9e/fX8HBwdq4caNbn6tpfuScCvHzs/++ebXMDenstj//l8u8tvuF+5uc5124vykNPvroIy1btkyTJ0+Ww+Hw2Ofaa69VTEyMfHx8VLVqVd1///1avnx58RZaxCpVqqSKFSvKx8dHdevWVe/evZWcnOyx79UyP9atW6cTJ06oefPm1j6lcW54el+9EvYfhEVJ119/vVJTU3X48GFX29atW3OdNilbtqzKly/vdgfTli1b8jy9cqXKysrSmDFjFBERkedvfheyvSGUNj4+uX90rpb5kZmZqaSkJLVr1+6Snlea50ZsbGy+t3vVqlXd+m7dulWVKlUqdUeNvvzySyUmJuqf//yn9RIWTzz9bJU2ef0sXC3z44svvlDr1q0v6frOK31u2N5Xr4T9x5U98oUkJCRELVq00IwZM3T69GmtWLFCv/32m1q0aJGrb4cOHfTmm28qLS1NP//8s7755hu1bdvWC1UXreeff17p6ekaP358nju2pKQk/fHHH8rKytKXX36pdevWqVGjRsVYadE7efKkVq1apYyMDGVmZmrOnDk6ceKEateunavv1TA//v3vf7tu4MlLaZwbWVlZSk9PlzHG9f/s7Gx16NBBH3/8sfbt26fDhw9rzpw51us527Vrp6+//lqbN29Wamqq3n777Yte+1lS2cZj1apVeuWVV/SPf/xDFStWzHMZa9ascX2MzO7du/XWW2/ptttuK47yC51tPL777jsdPXpUkrR582bNmzdPt99+u8dllJb5YRuLnMe++uqri/7CWZrmhmR/X70S9h8OY/L4MJ+ryNGjRzVu3Dj9+OOPioyM1KhRo9SkSRMtWbJEiYmJ+uCDDySd/Ry95557TitWrFDZsmX16KOPXvIRlpLuwIED6ty5swIDA91+k5syZYoOHjzoNh7333+/tm3bJofDoSpVqmjYsGFq3Lixt0ovEkePHtXw4cO1c+dO+fv7q2bNmnr88cdVq1atq3J+jBo1Stdff72GDRvm1n7hWJTGuTF+/HgtWrTIrW369Olq2LChEhMTNXv2bGVnZ6tr164aPny46w3h9ttv15QpU9SgQQNJZz8nberUqUpLS1OrVq00ZsyYy7qD1lts45GQkKCffvrJ7TW1b99eY8aMkeQ+HrNnz9acOXN08uRJhYeHq0OHDho8eHCelziUVLbx+Pbbb/X555/r9OnTioiIUM+ePdW7d29Xn9I4P/L6WfnXv/6lF198UQsXLsx1tLC0zo283lcbNGhQ4vcfhEUAAABYcRoaAAAAVoRFAAAAWBEWAQAAYEVYBAAAgBVhEQAAAFaERQAAAFgRFgEAAGBFWAQAAIAVYREACtHChQvVsGFDNWzY0NulAEChICwCAADAirAIAAAAqyvvr3EDQBF4/vnn9cknn6hmzZp67733XO1DhgzR2rVrdccdd6h27dpasmSJDh48qLS0NJUtW1Y333yzHnnkEVWpUsW67JxldOrUSePHj5ckzZgxQwkJCYqOjtbChQslSdnZ2Zo3b54++eQT7d27V4GBgWrcuLGGDx+uSpUqFenrBwAbjiwCgKROnTpJkrZs2aKdO3dKkg4dOqSffvrJ9fiPP/6oPXv2qHz58oqJidGJEyeUnJysoUOHKj09/bJrmDx5sl599VVt375d1113nXx8fJSUlKRBgwbpyJEjl718ACgIwiIASKpfv76uv/56SdJXX30lSfr666+VnZ2tiIgINWnSRI8++qiSk5P14Ycfat68eZoyZYok6ffff9e6desua/379u3Txx9/LEkaP368PvjgAy1cuFCRkZFKSUnRvHnzLmv5AFBQhEUA+J8OHTpIOhcWv/zyS0lS+/bt5evrq4MHD+rBBx9UXFycGjVqpGHDhrmee+jQocta96ZNm2SMkXQ2LDZs2FAtWrTQ77//Lkn6+eefL2v5AFBQXLMIAP/TqVMnzZgxQ9u3b9e3336rDRs2uNr37t2rESNGKDMzU6Ghoapdu7aysrK0ZcsWSWevN7RxOBySpDNnzrjaUlNT3frkBEVJqlmzpgICAtwej46OvrwXBwAFRFgEgP+JiorSrbfeqjVr1ui5556TMUZ16tRR1apVlZSUpMzMTEnS66+/rnr16mnp0qX661//etHlhoeHS5L27NkjSTp9+rT+/e9/u/WpXbu2HA6HjDHq3Lmz+vTpI+lsiFy3bp1CQ0ML86UCQL4RFgHgPJ06ddKaNWuUkpIiSercubMkqVq1avL19dWZM2f06KOPKioqytXnYho1aqSvvvpKGzZsUL9+/XTs2DEdPHjQrc91112nrl276pNPPtGrr76quXPnKjg4WAcOHFBaWprGjRunGjVqFO6LBYB84JpFADhP69atFRISIkny9/fXHXfcIUmKiYnRM888o0qVKikrK0vlypXT888/n69l3nXXXerdu7fKlSunPXv2qEmTJurdu3eufqNHj9aTTz6p6tWr69ChQzpw4IAqVqyoe+65R7feemvhvUgAuAQOc/6FMgAAAMB5OLIIAAAAK8IiAAAArAiLAAAAsCIsAgAAwIqwCAAAACvCIgAAAKwIiwAAALAiLAIAAMCKsAgAAAArwiIAAACsCIsAAACw+v9VKz1iVBmb4gAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -986,7 +1122,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38076a207e3c48f8a3fd842dd11f9780", + "model_id": "8597bd530c3b4b8c8c3a32b19f4b819d", "version_major": 2, "version_minor": 0 }, @@ -1042,14 +1178,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACplklEQVR4nOydd3wU5faHn0mBhNA7hA5SRIryoiCCiB1Qrr0LNmzoVRDrVWzX3stV0Xt/XrGLXqNYwC5WeEEEpHcILbT0ssnO74/ZGTabTbKb7GY2yXk+n4XdqSfvzr7znXPOe17DNE0EQRAEQRCEg8S5bYAgCIIgCEKsIQJJEARBEAQhABFIgiAIgiAIAYhAEgRBEARBCEAEkiAIgiAIQgAikARBEARBEAIQgSQIQo1iGMZFhmHMq2D994ZhXBmB84w2DGNbdY8T5LiTDMP4KdLHFQQhthCBJAhCuRiGsckwjHzDMHIMw9hpGMbrhmE0rs4xTdN8yzTNkyJloyAIQjQQgSQIQmWcZppmY2AwcDhwh7vmCIIgRB8RSIIghIRpmjuBuVhCCQDDMIYZhvGLYRgHDMP40zCM0X7rJhmGscEwjGzDMDYahnGR3/Kf/LY70TCMVYZhZBqG8QJg+K271zCMN/0+dzMMwzQMI8H3+TLDMFb6zrHBMIyrQ/lbDMN4yTCMJwKWpRmGMdX3/nbDMNb7jrvCMIwzyjlOKXt8y0qFCA3DuNxn437DMOYahtHVt9wwDONpwzB2G4aRZRjGMsMwDgvFfkEQoo8IJEEQQsIwjE7AqcA63+dU4DPgQaAlcAvwoWEYbQzDSAGeA041TbMJcDSwJMgxWwMfAf8AWgPrgRFhmLUbGA80BS4DnjYM44gQ9nsHOM8wDMNnRwvgJOBd3/r1wEigGXAf8KZhGB3CsAvfcScAdwJnAm2A+b5z4zvfKKC37zznAnvDPYcgCNFBBJIgCJXxsWEY2cBWLEEyw7f8YuBz0zQ/N03Ta5rmV4AGxvrWe4HDDMNINk1zh2mafwU59ljgL9M0Z5um6QGeAXaGaphpmp+ZprnetPgBmIclbCpjPmD6bXs28Ktpmtt9x/3ANM3tvr/rPWAtcGSodvlxDfCwaZorTdMsBh4CBvu8SB6gCdAXMHzb7KjCOQRBiAIikARBqIy/+bxAo7Fu5q19y7sC5/jCawcMwzgAHAN0ME0zFzgPSyDsMAzjM8Mw+gY5dkcs4QWAac2evTXIdkExDONUwzB+Mwxjn+/8Y/3sKxffed4FLvAtuhB4y++4lxqGscTv7zoslOMGoSvwrN9x9mGFEFNN0/wWeAF4EdhtGMZMwzCaVuEcgiBEARFIgiCEhM9D8zpg5+5sBWaZptnc75VimuYjvu3nmqZ5ItABWAW8GuSwO4DO9gdfyKuz3/pcoJHf5/Z+2zYEPvTZ0840zebA5/jlMFXCO8DZPm/OUb5j4fv8KjAFaOU77vJyjpvr+z+ojVhtdHVAGyWbpvkLgGmaz5mmOQQ4FCvUNj1E2wVBiDIikARBCIdngBMNwxgEvAmcZhjGyYZhxBuGkeSrPdTJMIx2hmFM8OUiFQI5WCG3QD4D+huGcaYv0flGSguMJcAowzC6GIbRjNIj6BoADYEMoNgwjFOx8npCwjTNP4A9wGvAXNM0D/hWpWCF3zLASgTH8iAFO0YGkA5c7GuDy4Gefpu8DNxhGEZ/37GaGYZxju/9UMMwjjIMIxFLaBUQvI0EQXABEUiCIISMTxC8AdxjmuZWwE5CzsDylkzH6lfigKnAdqyw0rHAtUGOtwc4B3gEK0H5EOBnv/VfAe8BS4FFwBy/ddlYgup9YD9WmOyTMP+kt4ETfP/bx10BPAn8CuwCBvjbFISrsP7uvUB/4Be/Y/0PeBR41zCMLCxP1Km+1U2xPFX7gc2+/R8P035BEKKEYYXiBUEQBEEQBBvxIAmCIAiCIAQgAkkQBEEQBCEAEUiCIAiCIAgBiEASBEEQBEEIIKHyTSKDUqoZ8BVWvY9hWuvlSqlzgJuBfGCi1nqbUqovMNNn291a629qykZBEARBEASoQYEE5AHj8A1jVUolYA0DPhYYCtwNXI1Viv8KrOG1XwCVCaQ6Owxv586dtG/fvvINhQqRdqw+0oaRQdoxMkg7Vp963IahFpKtuRCb1tqjtc7wW3QIsFJrXaS1/hkY6FveUWu9VmudBexTSlWlvH+doKSkxG0T6gTSjtVH2jAySDtGBmnH6iNtWDk16UEKpAWQ5fc53ve/v2jLxJolfI//jkqpycBkgClTpnDiiSdG0Uz38Hg8pKenu21GrUfasfpIG0YGacfIIO1YfeprG6ampoa8rZsC6QBWJVkbW876l9pvhlWFtxRa65lYeUpQh0Ns6enpYX2ZQnCkHauPtGFkkHaMDNKO1UfasHLcFEhrgX5KqQaAwppKAGCHUqonsBtoqbXeU94BBEEQBEEQokGNCiSl1OfAYKAP8ArWxJffY03SONG32V1YM4bHAzNq0j5BEARBEASoYYGktR4bZPF7AdusAEbWjEWCIAiCELukp6dz/PHHM3XqVCZPnuy2OfUKKRQpCIIgCDHKb7/9xurVq/nf//7ntin1DhFIgiAIghCjFBQUAJCdne2yJfUPEUg1wB133MF3333Hxx9/zMMPPwzApEmT6N69O4MHD+aII47g119/ddlKQRAEIdawBVJOTo7LltQ/RCDVAL///jvDhg3jhx9+YNSoUc7yxx9/nCVLlvDII49w9dVXu2hh1SkuLnbbBEEQhDpLfn4+EPsepKKiIrdNiDgikKLI9OnTGThwIAsXLmT48OG89tprXHvttdx///2lths1ahTr1q0jJyeH448/niOOOIIBAwYwd+5cAHJzcxk3bhyDBg3isMMO4733rLz222+/nUMPPZSBAwdyyy23AJCRkcFZZ53F0KFDGTp0KD///DMA9957L5dffjmjR4+mR48ePPfcc875H3jgAfr06cMxxxzDBRdcwBNPPAHA+vXrOeWUUxgyZAgjR45k1apVgOX9uuaaazjqqKO49dZb+eGHHxg8eDCDBw/m8MMPj/kfsiAIQm2hNniQFi5cSNOmTXnhhRfcNiWymKZZ218VglVIMuKvUFmwYIE5ZcoUs6ioyDz66KOd5RMnTjQ/+OAD0zRN8/333zePPPJI0+PxmJmZmaZpmmZGRobZtWtX0+v1mrNnzzavvPJKZ98DBw6Ye/bsMXv37m16vV7TNE1z//79pmma5gUXXGDOnz/fNE3T3Lx5s9m3b1/TNE1zxowZ5vDhw82CggIzIyPDbNmypVlUVGQuWLDAHDRokJmfn29mZWWZvXr1Mh9//HHTNE1zzJgx5po1a0zTNM3ffvvNPO644xzbx40bZxYXF5umaZrjx483f/rpJ9M0TTM7O9v0eDwht09NsG3bNrdNqPVIG0YGacfIUJ/a8f777zcBMzk5OaLHjWQbvvTSSyZgXnjhhRE7ZhQJWV+4WSiyXrB48WIGDRrEqlWr6NevX6l106dP58EHH6RNmzb8+9//xjRN7rzzTn788Ufi4uLYuXMnu3btYsCAAUybNo3bbruN8ePHM3LkSIqLi0lKSuKKK65g/PjxjB8/HoCvv/6aFStWOOfIyspynjzGjRtHw4YNadiwIW3btmXXrl38/PPPTJgwgaSkJJKSkjjttNMA62nll19+4ZxzznGOVVhY6Lw/55xziI+3ZocZMWIEU6dO5aKLLuLMM8+kU6dO0WlMQRCEeobtQcrPz6ekpMTpd2MJOwxo/19XqPMCyTTdmYlkyZIlTJo0iW3bttG6dWvy8vIwTZPBgwc7CdmPP/44Z599trPP66+/TkZGBosWLSIxMZHOnTtTUFBA7969Wbx4MZ9//jn/+Mc/OP7447nnnntYsGAB33zzDbNnz+aFF17g22+/xev18ttvv5GUlFTGpoYNGzrv4+PjK8wf8nq9NG/enCVLlgRdn5KS4ry//fbbGTduHJ9//jkjRoxg7ty59O3bN9wmEwRBEAKwBRJYD67NmjVz0Zrg1FWBJDlIUWLw4MEsWbKE3r17s2LFCsaMGcPcuXNZsmQJycnJQffJzMykbdu2JCYm8t1337Ft2zYAtm/fTqNGjbj44ouZPn06ixcvJicnh8zMTMaOHcvTTz/Nn3/+CcBJJ53E888/7xyzPIFjM2LECD799FMKCgrIyclhzpw5ADRt2pTu3bvzwQcfAJbQtM8RyPr16xkwYAC33XYbQ4cOdXKVBEEQhOrhLzpiNQ+prgqkOu9BcpOMjAxatGhBXFwcq1at4tBDD61w+4suuojTTjuNAQMGoJSiV69eACxbtozp06cTFxdHYmIiL730EtnZ2UyYMIGCggJM0+Spp54C4LnnnuP6669n4MCBFBcXM2rUKF5++eVyzzl06FBOP/10Bg4cSLt27RgwYIDzhPLWW29x7bXX8uCDD+LxeDj//PMZNGhQmWM888wzfPfdd8TFxdG/f39OPfXUqjaZIAiC4Ie/BylWB8DYwigvL89lSyKL4VYIKoLU+j+gPGpqtuWcnBwaN25MXl4eo0aNYubMmRxxxBFRP29NIbNWVx9pw8gg7RgZ6lM7XnjhhbzzzjuANVpMKRWR40ayDa+//nr+9a9/cdhhh7Fs2bKIHDOKGKFuKB4kgcmTJ7NixQoKCgqYOHFinRJHgiAItRn/sFWse5AkxCbUOd5++223TRAEQRCCEJikHYuIQIoCSqk44D9ATyy315VAa+AxwAtcq7WOeX+dIAiCIEQDyUFyD7c9SIOBhlrrkUqpkcBUoA8wDmgCvAyMdc88QRAEQXAPCbG5h9sCaRtgKKUMoAWQC5RorfcD+5VSLV21ThAEQRBcpDaF2AoLC/F6vcTF1Y0KQm4LpD2AB1gFJAEjgef81hcrpRporUvNgqeUmgxMBpgyZQonnnhiDZlbs3g8HtLT0902o9Yj7Vh9pA0jg7RjZKhP7egvitLT0yP2d0eyDbOyspz3GzZsKLfWXywQzsg9twXSSUCx1rqPssYuPgk09VufECiOALTWM4GZvo8yzF+oEGnH6iNtGBmkHSNDfWpHj8fjvI+Li4vY3x3JNiwpKXHeN2/enNatW0fkuG7jtkAygL2+93uw8o4SlFLNfe/3uWSXIAiCILhObUrSDnxf23FbIH0FTFJK/QA0xErSTgA+x/IMXeeibYIgCILgKrUpBynwfW3HVYGktS4Gzguy6uiatkUQBEEQYo3aNIot8H1tp26kmguCIAhCHaOkpKRUDpJ4kGoWEUiCIAiCEIP4h9cgNj1IpmmWsrMuFYsUgSQIgiAIMUigQIpFD1KgjeJBEgRBEAQhqtQGD1KgIBKBJAiCIAhCVLHFRosWLYDY9CCJQBIEQRAEoUaxPUht2rQBLA+SacZWbeRAQSQ5SIIgCIJQBygoKMDr9bptRlBsgdSkSROSkpLwer1lwm5uIx4kQRAEQahj5OXl0b17d0477TS3TQmKLTaSkpJo3LgxEHt5SCKQBEEQBKGOsXHjRnbu3MnXX39daj6xWMH2FiUlJdGkSRMg9vKQRCAJgiAIQh1j//79ABQVFbF161aXrSmLLZCSk5NrjQdJcpAEQRAEoZZjCySAtWvXumhJcPxDbLYHKdYFkniQBEEQBKGW4y+Q1q1b56IlwfEPsdkeJAmx1RwikARBEAJYtGgR06dPr1PhAqEsse5B8g+xxboHqWHDhqU+1wUS3DZAKTUauBtLrD0HZACPAV7gWq31MvesEwShPvLQQw/x0UcfMXz4cM4880y3zRGixL59+5z3sSiQgo1ii1UPUqtWrdi+fXudeqhwVSAppZKBacCpWusi37IfgHFAE+BlYKx7FgqCUB/JyMgASnsYhLpHbfEgJSUlOQUiY9WD1LJlS7Zv3y4epAgyHMgHPlVK5QHXASVa6/3AfqVUS1etEwShXmJ7FmLtZiREFn+BtGHDBoqLi0lIcPu2eBD/EFt8fDwQux6kli1blvpcF3D7SmgH9AKGAScA9wFZfuuLlVINbO+SjVJqMjAZYMqUKZx44ok1ZG7N4vF4SE9Pd9uMWo+0Y/WJZBsWFBQwf/58jjnmGJKTkyNyzEizZ88eALZt2xbRa0euxcgQqXbcsWNHqWMuWLCArl27Vvu4kWL37t2AVYbA9iBt3749In97pNrQttH+LWdlZcX0NZ6amhrytm4LpAPAz1rrIqXUN1gCyf+RLSFQHAForWcCM30fY2timgiSnp4e1pcpBEfasfpEsg2ffvpppk6dyhNPPMG0adMicsxIk5mZCYBhGBG9durjtWiaJoZhRPSYkWpHO18mKSmJgoICsrOzY+r7SUxMBKBt27aOBylS12Sk2tD2uNnHKi4ujqk2rA5uj2JbCPRTShnAYGAFkKCUaq6U6gzsq2hnQRBqH4sWLQKsKsaxSEFBgRPayMrKqmRroTyWL1/OsGHDGDp0aExWqYaDIbYjjjgCiL2h/na4qjaMYmvVqhVQtwpFuupB0lrvUUr9D/gByxN0OZAKfO77fJ2L5gmCEAXWrFkDwN69e122JDj+eSmxdjOqDXi9Xp5++mnuvPNOioqsAMDWrVvp1q2bu4YFwf6ujzzySH755ZeYS9T2T9JOSUkBJAepJnE7xIbW+kXgRb9F64GjXTJHEIQoYpomq1evBmJXIPkP/RaBFB4ej4dTTz2Vb775BjgYukpPT485gWSaZimBBLE3ki3YXGyxdk3WZYHkdohNEGotM2fOJDU11bnhC5Wza9cuJ2zlL0RiCX8PkoTYwuOrr77im2++oVWrVnz66aeMHWtVadm2bZvLlpUlPz+foqIiGjZsyIABA4DYE0j+IbZYr4MkAkkQBId3332X7du38+uvv7ptSq3BX0yKB6nuYY9oGjduHOPHj6dTp04AMTmqyf6eW7ZsSc+ePQErL664uNhNs0pRmzxIzZs3xzAMPB5PTLVhdRCBJAhVxL7Zx1qHFcvUBoEkHqSqY3+ntjfBHs0UiwLJ/p5btGhBcnIynTt3pri4mE2bNrlrmB+1aS625ORkZ6h/XfEiiUAShCqQnZ3N9u3bnfdCaPgLpOzsbCeJN5YQD1LV8ffKAI4HKRZDbP4CCaBXr15AbIXZatMoNhFIgiAAB0diQex1WLFMYL5WLOYhiQep6tjfpz3ku7Z4kAAOOeQQILYEUrAQW017kCp7iPEXSI0aNSq1rLYjAkkQqoAIpKphCyS7uFwshtn8RVtBQUGdyaeoCcoLscWyB8m21RZIsVQLyV8gJSUlERcXV6PX5KxZs2jSpAlfffVVudsE8yDVlVpIIpAEoQoEhoqEyikqKmLjxo0YhsGgQYOA2PcggXy/4RAYYrMF0vbt2/F6va7ZFQzb1lj2IPmLD8MwatyL9Ntvv1FUVMT8+fNDslFCbIIgiECqAuvXr6ekpIRu3brRsWNHIPY9SBC7YbaZM2dy8sknk5ub67YpDoECKTk5mZYtW+LxeMjIyHDTtDLUthAb4CRq11SfY3uC/OesC0QEkiAIpRCBFD52m/Xp08fJUYlFgVQbPEibN2/mhhtuYN68efzwww9um+MQmIMExOxQ/0CB1KNHDwzDYNOmTXg8HjdNc7AFki08ajpRWwSSIAhhYZqm5CBVgdoikOybfLNmzYDY9CDNmDHDSZ7dtWuXy9YcJDAHCWI3DylQICUlJdG5c2dKSkpiYp5A0zQdoRHoQaqpEJstkOwRu4F4PB5KSkqIj48nMTHRSdKWHCRBqKekp6eXCmuIQAoNW1T26dPHuYHGokCyb5xdu3YFYu/7XbZsGW+88YbzeefOnS5ac5CioiJycnKIj4+nadOmzvJY9yD5i7lYCrMVFxfj9XqJj493BjXUtAfJFmjleZD8vUf+/4sHSRDqKfaN3n4yjrXCbbFKMA9SrCVp+8/PFasC6fbbb8c0TcfzESsCyV9wGIbhLI9VD1JgkjZAhw4dgNgQ7oHhNXDPg7R7925KSkrKrBeBJAhCKewbvVIKiL0baKxSG0Js2dnZlJSUkJKS4tgYSyG277//ns8//5zGjRszY8YMIHYEUmCCtk2se5D8BVIsDVMPDK+BezlIXq/XmUbGHxFINYBS6gKlVIbv/TlKqV+UUt8opTq5bZsgBGLf6IcMGQJYnZVpmm6aFPPs27ePPXv20LhxYzp27BizAsnfCxJrlYtN0+S2224D4NZbb2XgwIFA7OQgBcs/gtgtFhlMIMVSDk3gCDZwz4MEwcNsgQIpltovErgukJRS8cA5wFalVAIwFRgN3APc7aJpghAUWyANGDCABg0aUFxcTGFhoctWxTZ2m/Xu3RvDMGJWIPmHXew8mljxIG3dupUFCxbQvHlzbr75Ztq1awfUHg9SLIXY/EOpwQRSLHhAAsUHuOdBgtAEkniQIs8FwAeAFzgEWKm1LtJa/wwMdNUyQQiCf6go1rwMsYp/mwExm6Qdyx4k2wPTu3dvGjduTPv27YHYE0j+Q/whNj1Iubm5FBcX06hRIxo2bOgsj6UQW230INU1gZTg5sl93qNzgb8B04AWgP/jWnw5+00GJgNMmTKFE088MbqGuoTH44mpTqW2Esl2LCgoYNOmTcTFxdGwYUMaNWrE3r17Wbt2bUxOvBopqtuGWmvASoJNT093Ov99+/axbdu2Ukm9bmKPXkpKSnKSUnfs2BGx66c67bh8+XLA8nikp6djmiaJiYlkZmaybt26Up4GN9iwYQMADRo0KPU3mqZJcnIy2dnZrFq1yhGe1aG616O9b9OmTUsdx65/tHv3btf73i1btgAQFxfn2GJXI4/ENRlKG/oLpFWrVpXZfuvWraVstPvAjIwM19uvPGzBHgpVEkhKqeZAnta6uneEi4H3tdZeX8LrAaCp3/qyafOA1nomMNP3sc4mf6Snp4f1ZQrBiWQ7/vXXX5imSY8ePejRowfNmzdn69atpKSk1OnvqrptaNdRUUo5x0lOTiY/P5/mzZs7T8ZuExdnOdVTU1Pp0qULYN2UIvXdVqcd7TBu9+7dnWO0b9+erVu3kpCQ4Pr1ZwvKLl26lLGlU6dOrF27FtM0I2Jnda/HPXv2ANC6detSx7FHscXHx7venrZYb9asmWOLv03Vta+yNiwpKSmVOpCbm1tm+5SUFACaN29OampqTLVfJAgrxKaU6q6U0sAeYJRS6gel1P3VOP+hwKVKqS+xwms3AP2UUg2UUkcDS6txbEGIOIGholgLw8Qq/jWQbGIxD8k/BynWvls7xGHfhAAnDykWErXLy0GC2MtDCpZ/BLEfYqvJazIwTBZOiC0W2i8ShJuD9BLQETCwcoZ+BM6v6sm11rdprU/SWp8CrNVaXws8A3wPPOh7CULMUNsEkmmaQeuX1LQNmzdvBqzpHGxiUSD55yDFWpJ2MIEUS3lI5eUgQezlIZUnkGJpFJbbOUiBbSA5SJVzNPAI8IDv83ogIkPxtdbK9/97wHuROKYgRJraJJByc3M544wzWLFiBStXroxI7kdV2L9/Pzk5OTRp0sSZvgNiM1G7tnmQYkkglTfMH2KvWGSwKtogo9j8sQVSXFwcXq+3XgqkcD1Ie4DDfO/bYnmPgk/SIgh1kECBVNOza4dKQUEBf/vb3/jqq69IT08vNbluTWMnm3bt2rVUMnYsVtP29yzYNyPxIIVGKCG2WPEgBauiDbEVIooVD5Kdi7dz584y9d7Kq4NUXwXSq1iiyADeAk4EXom0UYIQi5imWaqeD8SmB8nj8XDeeefx9ddfO8vc9NLY4TW7o7WJxRCb/03eDrHFyndbmwVSbQuxxcIN3u0cJFsgtWzZkubNm+PxeMr8ViUHyQ+t9cPAZcBs4EPgMq3149EwTBBijT179rB//34aN27s3KRiTSB5vV4mTpzIJ598QosWLZxq3256afw9SP7EokAK5kGKhe+2uLiYjIwMDMOgbdu2zvJYKhZpf4/BcpBqS5J2LOUgVRRiqwkPkn3+Ro0aOf1dYJitrofYwh7mr7X+L/DfKNgiCDHNggULABg0aJATKoqlmyjAZ599xjvvvEPjxo358ssvef3111m0aJF4kELE3wuSkpKCYRjk5eVRXFzszKjuBrt27cI0Tdq1a1fKDtuD5PYotqKiInJycoiPj3c8b/7UFg9SLHlAKgqx1aQHqVGjRjRo0ICVK1eyfft2BgwY4GwjAskPpVSw4TCm1trVgpOCUBP8+uuvABx99NHOslgTSHPnzgXglltu4cgjj+STTz4BYtODFItJ2v43TsMwaNKkCVlZWeTk5NC8eXPX7LKf3Dt27FhqeayE2ALbLZB27doRHx/P7t27KSwsLFW92g1qQ5J2ZTlIpmlGtcCqv0Cyz1vfPEjh5iCtBFb4XtuxcpE2RtooQYhFaoNA+vbbbwE4/vjjgdhIhK4tHqTi4mKysrIwDMMZbRcridp2oU3//CMoLZDcnDC5oiH+YBUOLC9M4wblJWnHeogtPj6e5ORkTNOMuo3+AinUEFsstV8kCDcH6TCt9QDfqzNwB/B7dEwT6jMrV67kyiuvjKmb5++/W5f68OHDneU1mRNQGdu3b2flypWkpKRw5JFHArHhpaksBylWRrEdOHAAsKoC2xW1YyVRO1iCNlgehZSUFPLz8121saIh/jaxlIdUW0NsUHMPZVURSHXNgxRuiO3MgH0V1kg2QYgod911F//73//o168f06ZNc9scli9fTm5uLj169HASYyG2PEjfffcdACNHjqRBgwaA+yKkoKCAnTt3kpCQUObmHmsepGBhl1j5fssTSGCFrzZs2MDOnTuD5v/UBBWNYLOJpTyk8gSSLUaKioooKSkhPj7odKA1gi0yAgVS48aN2b17N9nZ2Y4HMRrYAik5OblKAinaIcCaINzcodmUnvvMAOZFzhxBsIap20PUbe+D2/zyyy9Aae8RxM4NFOCbb74BDobXwH0Pku0t6NSpU5mbTawJpGBhl1ippl2RQGrfvj0bNmxg165dTvmJmiYUgRQrHiTTNB1vYaBAMgyDRo0akZeXR35+vqtzBNoepMBJiO3wb7SvyXA8SLaIS0xMJD4+npKSEjwej/OgVlsJVyDdz0GBVAJswhruLwgR49dff3UEhz1btNsEyz+C2BFIpmlWKJDc8iCVl38EOEnPBw4ccP1pHWqvBykWErUry0GCgwnmdj6VW2RnZ1NSUkLjxo1JTEwssz45OZm8vDzy8vJqVCDt2rWLJk2aOHk85YXY/H830aQqITZ7++zsbPLy8uqXQNJa3xslO4RawBdffMHHH3/Mc889F9VRKF9++aXz3u2nTRvbgxSrAmnDhg1s2bKFli1bMmjQIGe52yE2WyAF5h8BJCQk0Lx5cw4cOMD+/ftp3bp1TZtXimAepFhJ0o51gRRKDlKsTKxbXoK2TaNGjdi7d2+N5tHs37+fXr16cfjhh/Pjjz8C5YfYbLttQR8tggmk7du3lwqdBRNIycnJZGdnk5+f7+rIz0gQkkBSSlXUO5ha62YVrBdcwOPxMHnyZI455hiuuOKKiBzzoYce4qeffuK0005j/PjxETlmML744gvnfSx4kHbt2sWGDRtISUnhsMMOK7UuVgSS7T067rjjnARjKN2Zer3eUutqAjtEGsyDBJaAO3DgAPv27XNdIAXzIMV6kjbEhkAKJcQWKwKpvPwjGzdGYi1ZsoScnBwWLlzoCJDyQmxueJCaNGlC48aNycnJITMz07GhPIHkv642E2pvuQ/YW84rNoagCKX49ddfef3117nyyit59dVXI3LMPXv2ALBq1aqIHC8YO3bsYMmSJSQnJxMXF8euXbsoKiqK2vlCwQ6vHXXUUWWKBQbWJYkWHo+HuXPnltsW9vD+MWPGlFqekJBAs2bN8Hq9ZGZmRs2+8qjIgwSxlYcUqx4kr9friIpgSbmxUE27LgkkN0ay2X1qQUGB089WFmKrSQ8SEDTMVtcFUkgeJK11t2icXCl1JPAs4AHSgUuBvwE3A/nARK11bMRYahn+F/E111xDy5YtOeuss6p1TLsTrI5Auvvuu1m0aBEff/xx0Pj0vHlWzv9xxx3H0qVL2bZtG9u3b6dbt25VPmd1sQVSYII2WAIkOTmZ/Px88vLySElJiYoNzz77LNOnT2fChAl89NFHpTxBXq+3TP0jf1q2bElmZiZ79+4t96YQLULxIEFsCKRY9SDt2bOH4uJiWrZsGTS0HQvVtCuaZsQm1gRSeWLOjWKRK1eudN5v3ryZNm3aBBUfcFDY1aQHCSyBtHbtWnbs2EG/fv2A8nOQ/NfVZsL2tyulhiulJiulbvS9bqjG+bcCY7TWo7ASvicAU4HRwD3A3dU4dr3GFkjt27fH6/Vy4YUXOmGYqmCaptOx+P+Yw6GkpISnnnqKL774gkWLFgXdxs4/OuWUU5xRLzUdZisqKsLj8Tify8s/sqmJMNvs2bMBSEtL44EHHii1bvny5WRkZNCxY8ego5jcTNSuzIPk9ig7fyryILkpkOyk5sAq2ja1JcTWpk0bwBJ8JSXBJmWoGWIxxOb/0Gk/VNR2D1Is1JKqLmEJJKXUPcBPwEvA077XM1U9udZ6h9balplFQB9gpda6SGv9MzCwqseu79gX8ZQpU7jhhhsoKirizDPPrPJTR25uriMaVq5cWaVw0po1a5wfzV9//VVmfUlJieNBOuWUU+jcuTNQswLJNE2OO+44WrRowf3338+BAwfQWgMwbNiwoPtE+ya6a9cuFixYQEJCAnFxcdx7772kpaUBlvfo/fffByzvUbC6I24lanu9Xue7s7/LQGLdgxQLIbaK8o+g9gikxMREWrVqhdfrdcJIbmC3Z2Uhtpr0gPgLJPuhojyBVFMeJP/JakFCbKFwFfAlcArwMDAemFtdI5RSXYGTgNuBNn6rgo77VUpNBiaDJQBOPLFu1qr0eDxVLqq2YcMGwPpxTZ8+na+//pqVK1fy1VdflesJqQh/O/bv38+yZcsqdKcHw65tBPD7779z6qmnllq/ePFi9u3bR9euXUlOTnY6gr/++qtaxeXCacetW7c6HqMZM2bw1FNPUVBQQK9evcjPzw96HDvssX79eqcziSTvv/8+pmkycuRIhg8fzkMPPcRFF13EJZdcwqeffurYNGTIkKD22R3W2rVrS000GQ5VuRbt/LGWLVty4MCBoB26Pcx68+bNrhcQtAVGcXGxY4v9UJCRkRER+6rSjitWrACs+jfB9i0uLgas9t66dWuNJ+LDQYFbUFBQ4d/XqlUr9u7dy9KlSzn00EOrfL6q9o2mafLmm28C0Lt376DHsB8ytm3bViPXZG5ubqmHwBUrVpCenk5ubi5gCSF/O2zv286dO6PaL9q/15ycHNLT052+be3ataSnp+P1eiksLASs799+wKjp9gsXu2BpKIQrkNoCc7AE0u/AFuA236tKKKWaArOASViCyL8UbFA/rNZ6JjDT99G9CYiiTHp6elhfpj92Qu6hhx5K586dGTp0KCtXrmT//v1VOmZGRkaZ4w8cGJ6Db9OmTc77zZs3l7HDTiYfN24cnTp1om/fvoD19F7VdoDw2tEWcUOGDAFwQoEjR44s9xj2U3NycnK17CyPn3/+GYCzzz6ba6+9lvXr1/Pee+/x8ssvA9CtWzeuvPJKrr322qB5Xf42VdW+qlyLdomGbt26lbtv9+7dASusGY22Cwf7htSnTx/HFjv3LVL2VaUdbU9Cz549y93XLpeQnJxc46MBi4qKyMnJIT4+nn79+lVYPTk1NZU1a9ZgGEaN/ab9+eWXX1izZg1t27Zl0qRJQX8v9u85KSmpRq7JwHSDvXv3kpqa6gzI6N69eynPXK9evQDLQxPNNrSFt/37tfvj7OxsUlNTnWhAw4YNS3mIbVsbNWrk+m+6uoQrkPYAXuAA8DzQ0PeqEkqpBOBd4D6t9WqlVCLQTynVAGsak6VVPXZ9J9At36dPHwBWr15dpeMFhmdWrlzJyJEjwzrG4sWLnffBQmz++UeAKyE2uwbJhRdeyE033cQ777zDhx9+yPTp08vdJ5ohtqKiIubOtZy048aNwzAM/v3vfxMfH098fDyTJk1i9OjRFXoN3ApjVZZ/BLGVgxQsNyUWkrQrC7GBFWY7cOAAu3btqnGB5N9ulU0t4Xaitv0QVp44gppPMrZzOjt37szWrVtDzkGq6STtwEKf5SWR19scJKx8owPAfUBnoDXwQAXbV8YFwFHA3Uqp74Ezfef4HnjQ9xKqgB0usPMTIi2Qwh3J5vV6HYGUkJDA9u3bS/3ADxw4wIIFC0hMTOS4444D3BVIo0aNIi4ujosuuoiPPvrIGbURjGgKpB9//JGcnBwGDBjgCI2UlBTeeust3njjDcaMGVNpSMWtJO3KRrBBbOUgBcujiYUk7VAFEriThxRK/pGNmwIpMzOT9957D4Arr7yy3O1qOknb7ktPPvlkwPrdmKZZaQ5STSdp297UNWvWAJULpPqYg/QosAJ4E+gG7NNa51b15FrrWVjhtUDeq+ox6zrvv/8+U6dO5b///W/QId1geR327NlDXFycM3IkUgKpdevW7NmzJ2yBtHHjRrKysujQoQMdOnRg8eLF/PXXX4wYMQKABQsWYJomQ4YMcWoL2QKppqppb9++nXXr1tG4cWMGDx4c8n7RvInOmTMHoFqFOd1K0g7FgxQrAmnlypUUFBTQqFGjUh1+LMzFVlsEUig5iW4KpLfffpv8/HxGjx7NIYccUu52Ne0BsfvSY489ljfeeIOMjAxH/DRo0KDMA5BbHqTu3bvTpEkTduzYwa5du+qFQArXg/QEkAw8BGwE5iilIlOmWaiUZcuWMWnSJNLT0/nww/KnwLM7n3bt2jnzW/Xs2RPDMNi4cWOVCi/anaCd4B2uQLK9R0cccQT9+/cHSofZgtUaateuHQkJCezevdtJBowm8+fPB2DEiBFlCkJWRLQEkmmafPrppwCcdtppVT6OW2GscDxIbk2FYvPgg5az+tJLLy0VJhIPUuWEMs2IjZsCyQ6vXXXVVRVuV90Q28aNG5k+fXrIf6MdYrPzRcFKhIay3iN7WYMGDSgsLIyqCAkUSHFxcc40Rn/++acIpEC01rdqrXti5Qe9BowCXomGYfWNefPm0a9fP5YuDZ52lZWVxVlnneVcdBV5gvxrINkkJyfTtWtXSkpKnBFu4WDfwIYOHUpCQgKbNm0q9wdgmmYZERaqQPIfSh8fH+/EvWvCi/TDDz8A1pNcONg30ZycnIjas2rVKjZs2EDr1q058sgjq3wct0Js4XiQ9uzZE9VK5BWxatUq3nnnHRITE7njjjtKrbMLf+bm5rpSu8c0zZAEkpvVtGtDiG3RokX88ccftGzZkjPPPLPCbasbYnv++ed54okneP311yvdtri42BFDffr0cR4m7P49UHyANUos2kP9PR4PHo+HuLi4UhP6Hn744QD88ccf5QqkitrPNE0mTpzIP//5z6jYHWnCrYPUSil1JZYH6TLAwCr2KFSTd999l1WrVvHGG2+UWWeaJldccQVr164t8wMKht1JBnao1Qmz2Z1g27Zt6dmzJ6ZpOrHoQP7xj3/QvHlzFi5c6CyzBdLhhx9eRiB5vV5+++03oGy16poMs/nnH4VDtLwMdnht7Nix1Zrp3q0wVigepMaNGztVg+3to8m8efN47LHHShUCffDBBzFNk8svv7yMrXFxcVETwKGwf/9+CgsLadKkSYVV2t2spl0bBJLtPbrkkkuCemX8qW6IzX4w2LhxY6XbbtiwAY/HQ5cuXUhJSSnTv5dna7SLRfrXQPL3qNqpB0uWLKmSB2nTpk288cYbPPTQQ649EIVDuCG2nVgeIwX8Bxilte4ecavqIfbIALsooT+vvfYas2fPpkmTJsydO5eGDRuSnp5ebodd3hOnLZDKEzYV4d8J2gnLwcJsHo+Hl19+mfz8fO677z7AEnh//PEHENyDtHr1ajIzM0lNTS1TUDBa1bSffPJJhgwZ4njT9uzZw19//UVSUhJKqbCOFW2BVN2Jgd3wIGVnZ7N//36SkpKcPLhgGIbhuO2XLFkSdbuuuOIKbrvtNiZMmEBubi6rV68u13tk42axyFC8R3BwhJEbkzuHMs2ITdu2bYGaFUimaTrFVCtKzrapbojNfpgL5buw+1C7T7W9rZUJpGh7kALDazbVFUj2956Xl8fu3bsjanM0CFcgfQScAXTQWl+rtf4pCjbVCubNm8d3330XsePZAmnx4sV4vd5S69566y0AnnnmGfr27evUwShP6JTXqdrTUFTHg9SyZUunHkawKUe+++47Z9vPPvuMpUuXkp6eTkZGBi1btqRLly507dqVRo0asXPnTvbt21fhXGfRGMlmmiZPPfUUixcv5txzz6WwsJCffrIu5WHDhgWd76oioiGQSkpKHK9adQuh+nemNRUm8vceVTb02+50//zzzyqf79VXX+X++++vcJvt27c7N68vvviCE044gdtvvx2v18vll19ebijQzaH+9m+5vGlGbOzfdjQnki6PcDxItkDavXt3mX4uWmzbto39+/fTunVrDjvssEq3r26IrSKBNHPmTO6//37He2J/X3afGkqIDaKfqF2eQDr00ENJSEhg9erVjjCuikACqpTqUdOENYpNa31etAypTeTm5nL66acTFxfHnj17IlI92a44mp2dzbp165wOz+PxsGDBAgBOP/10wPIE/fXXX6xevZojjjiizLECh/jbVCfE5j8Ng/1jDtYZf/DBB8DBwnWPPfYY5557LmB5jwzDwDAMDj30ULTW/PXXXyEJpEiG2DZt2uQI0kWLFjFt2jSnJkq44TWIjkBKT0+nqKiI9u3bO51hVYmPj3e+jwMHDoRdAb0q2OK9ovCaTXU9SFlZWVx//fV4PB4uuugievbsGXQ72zt72GGHkZ2d7QjQirxH4G6idqgepC5dupR66AhFrESKcARSUlISzZo1IzMzk/3799fItWh7qkMRR1C9EFtxcbHT/waGjL1eLzfeeCOFhYX06tWLCy+80HnItPtUW6RXlKQN0R/qX55ASkpKol+/fixbtsy5L4WTg+TvNdq4cWPQPj+WqPma9HWAzZs3OyMI7IukOhQUFJQKf/hXVrVHC/Tu3dspAFeZ0KksxBYpD1KgQPJ4PPzvf/8D4M033yQhIYF3333XGXHnL+b8w2zBErRtouFBsr1F/fv3p0GDBrz44ov83//9HxB+gjZE5wZq5y/YlaarSzTCbKZp8sADDzi1ZfyxhXIo7VldD9JXX33l5BRV5EGxc+LGjh3Lzz//7NwwL7vssgoTyWtDiC0uLs4J01R1MumqYj/chSrKajoPafny5cDBPqcyqhNi27lzp+MZy8zMLHXN7NixwxmNO23aNLKyssqE2OwHCnu7ynKQatqDBAd/r3a/XZc9SCKQqoD/lBn2zbY6+E/+B6XzkOxpJvznT6uqQEpNTaVRo0al6myESjCBtHr16lJu8u+//569e/fSp08fxo4dywUXXEBJSYmTeB5MIP3666+sWLGCxMTEoN6waOQg2d/ZxIkTefLJJwGro0lISCh3QtqKiIZAsjuPHj16ROR40UjUXr9+Pffccw8TJ04s1fFlZWU5QvmSSy6p9Dh9+vShYcOGbNiwoUoixM7VgorFgS2Qhg4dSmpqKj/99BPvv/8+zz33XIXHdyvEtmXLFmbNssrEhTJlgxsC6aeffuLnn38mOTnZGeFUGTUtkML1IFUnxBbo6fbvt/w9Sjt37mTGjBllPEiBOZiVhdgq68erGiYMnKjWH/88pGA2ikCq59ijFOBg7ZzqYId77FwNfw+SPXFqOAKpvBBbXFycUyAtnETtgoIC8vLySExMJCUlhWbNmtGhQwcKCgpKtYXtNTj33HMxDINbb7211HGCCaTZs2djmiZHHHFE0KelaITY7O/smGOO4frrr+ecc84BrBtnVcKlwQTStGnTaNasGX379uWkk05i8uTJYd24aoMHye7sCgsLef75553lH3zwAQUFBYwePbpCz4xNYmKicz2UV+aiPLxeL5999pnzuTwPkmmazoPH0KFDAWvy13POOafSnLOqepB+++03TjvttCrlBf30008opVi+fDm9evXioosuqnQfe/JXe3LbaOP1epk6dSoA06dPd/KLKiPWPUjVqeNTkUCy+8p+/foRFxfHs88+S2ZmJs2bN3faLjk5uVQ7VidJ+6mnniIlJcWppRYOoXiQ7LnawhFIgSG2WEcEUhXw9yD98ssvzoVSVWyBZHsv/BO1bYFkV5yG0gIpMNHRNM1yh/kH7hsq/vlHtogLDLMVFxc7XgNbcBx22GFOgcMmTZqUyg2xOyv7h1heLLpt27YkJiayZ8+eoD+4r7/+mo4dO4ZcV2PPnj2sXLmSpKQkhgwZgmEYvPbaa9x6662ONylcAgWSaZr85z//ISsri9WrV/PVV1/x6quvcuONN4Z8zNrgQdqzZ4/z/l//+pczqtL2GF566aUhHyvwqTRUFi5cSEZGhnNdlidCN23axN69e2ndunVIeVH+VNWDNGPGDObMmcMll1wSVnL8m2++yZgxY8jIyOCEE07g999/d0RFRdgCKRoepLVr1zJ9+nTWrVvnLHvnnXdYuHAhHTp0KPMwVBE1KZC8Xq8jGMMNsUXCg+TvNbLfn3LKKVx77bVOonbgBL/+DxVVHea/bds27r77bgBeeSX8UoWhCCSb8nKQxINUT/EXSDk5OWE/9QZiC6QjjjiC1NRUsrOzWbt2rTPqpnnz5o4gAevpoU2bNuTl5Tnxf5u9e/fi8Xho3rx50B9XVQRSsCTMQIH0/fffs2fPHvr06VPKlX3nnXcSHx/PcccdV6pkfpcuXZwpRSB4/hFYXi87vBDY+cyZM4fx48ezY8cOnn766ZCEqh2yPOqoo5zE7KZNm/Loo49WOWHQ/jvsG+jWrVs5cOAArVu3ZtmyZaSlpZGYmMi3335bJpxaHrXBg5SRkeG8379/P//+97/ZuHEjP/74I8nJyZx99tkhH8u/Qm842OG1M844A7DEQbD6Kv7htcpG1QVSlRDq3r17+eabbwArZP7iiy+GtF9ubi5XX301Ho+Hv//973zxxRch5/bYIbZoeJCefPJJnnjiCQ4//HBmzZpFXl4et99+OwAPPfRQhTWaAqlJgbRp0yby8vLo0KFDyO0YCYFkHyOYB6lr16488MADTvkL/74dSg9sKC/EVpkH6c4773Ts/+qrr8L2flYkkOzRyOXZWFGSu78HaevWrVWa1aEmEYFUBewL3R5uX90wmy1yUlNTGTJkCGCF2eyQwPDhw8vMx1Oe0CkvvBa4XzghtmACye6MX3rpJc455xz+/ve/A5b3yP8GNGzYMFauXFmmAKY9ks2mInESLFH7gw8+4IwzzqCwsJDExET27t0bUtkFO/9o5MiRlW4bKrZAys3Nxev1OoJ50KBBHHbYYZx++umMHTsWr9fLu+++G9IxI+1BioZAsj1Idgf/9NNPO8nuZ555piMsQqEyD9K2bds499xz6dOnT6lr3hZIV111FU2bNmX//v2lPFs2geG1cKhKiO3jjz+mpKTEGZ5/1113hZRH98UXX5CXl8eRRx7JM888E9aUNz169KBBgwZs2bIl4kUtbc9RTk4Ol156KUoptm3bxuGHHx6WpxAOCqSaqIMTbv4RlB8i+uyzz7j//vsr9Abafbld+T6YB6lLly60aNGCl19+mWbNmjni3iYcD1IwgbRgwQJmzZpFgwYN6NevH0VFRaXy9EKhIoEEpb1IVclBaty4MaZplkrRiEVEIFUB24Nk5wVUVyDZHqSOHTuWEkj2U69//pFNeQKpslEvkfIg2TeatWvXMnv2bFasWIFhGJx//vll9j/kkENo1qxZmeW2y7tjx45lkhP9CcxDevvttzn//PMpLi5m+vTpzpOsXQyuIvzzjyJFXFyc8wTt71EcOHCgs83FF18MHKxpVRF5eXns3LmTxMTEkJJzQyGaIbZLL72UPn36sHnzZh555BFnWTjYbbVs2bJSnsCSkhKee+45+vXrxwcffMCaNWu49NJLKS4uZtu2bSxZsoSUlBRGjx5dYX0u+7cUbhFQqFqIzc7Hu++++zjjjDPIycnhhhtuqHS/2bNnAwfD1OGQkJDg/L4jXQ/J9mjeeeedNGrUyGnjJ598sszDW2XUpAcp3PwjKO0B8fdG3nrrrcyYMYNPPvmk3H3tPsp+4CvPgwTWQ8T+/fvLzLPo750Jd5i/aZrcdNNNANx8881cc801AGXm7ly0aBHPP/98uWIvGgLJ4/Gwb98+4uLinHzUWM9DilmBpJR6VCk1Xyk1SymVWPkeNUN+fj67du0iISHBqe/z008/VatsenkCyU7WjqRAsusrrV27NuRCbcEE0rBhw5g/fz4ffPCB8/r999/D6ojsp7rhw4dXGPbwH8n27bffMnHiRLxeLzNmzODRRx/lvPOs8lwfffRRqSkkAsnLy2PRokXExcVFvP6GfxjGDhP5C6Tx48fTtGlTFi1aVKk4tQV4165dqzXFiD/R9CC1bduWadOmAVYn2LFjR44//viwjtW8eXO6detGYWGh493Mzs7mmGOO4e9//zs5OTmcccYZdO7cmQULFvDoo4/y+eefA1YhTbs+C5QVB16v1/ktVUUghetB2rdvH9988w3x8fH87W9/4/nnn6dJkyakpaXxxRdflLtffn6+86QfTnjSn1DCbMuXL3eEQygUFxc7N/e7776bxYsXM3bsWG677TaOO+64sG2sSYFUFQ9SYmIiiYmJeL3eUiEg2+NlT1sSDFsg2X12sFFs/gIoWL/n70EKt1Dke++9x6+//krbtm258847nXnnvvjiC3JzcwGr/MC4ceN49NFH+frrr4MePxoCyQ7Jt2nTxom+xHoeUkwKJKXUICBVaz0SWAVUrbeIAv4Xeb9+/Wjbti27du0qlbwYLsEEkl1EMT4+PuhEpZWF2MoTSE2bNqV9+/YUFBSEPPeVfVO1n1psjjnmGM4++2znFW744vLLL+fqq6/m3nvvrXA724P07bffcuaZZ1JcXMy0adO49957MQyD/v37c+ihh7Jv3z6+/fbbco/z+++/U1xczKBBgxyvQKTwF0jBPEhJSUmcddZZQOVepEiH1yC6HqQ2bdpwySWXODe+iy++uErCLrBg5BNPPMFvv/1GamoqaWlpfPTRR/znP/8BLM/MCy+8AByciqU8D9KaNWvIzs4mNTW10npCwfD3IG3ZsoWnn36ayy67jGuvvZZp06bxwAMPlMoF/PjjjykuLmbMmDG0bt2a1NRUHnroIeDgvG/BmDt3Lrm5uSil6NatW9h2QuUj2Q4cOMDw4cM56qijykxsW1RUxPTp0/noo49KLd+2bZsTLkxKSqJPnz589tlnjrcwXCoTSF6vl+effz4iJVSq4kGCsjd50zQdb82XX34ZtO/0er3OdWDnVG7duhXTNMnMzCQzM5NGjRpVWhwzFA9SsCRtr9frFDz95z//SdOmTenUqRNHHXUU+fn5jji/9957nbYv72EtUgLJ/1q3z9m2bVunbxOBVDWOBub53n8JjKhg2xrF/+neMAwnVFOdMJu/QGrfvj2pqanO7OGDBg0qlcxsU5kHqbwcJP99Q81DCqdSbjg0b96cl19+udKnO3+BlJmZyZlnnsljjz1Wahvbm+cfZvv000/p3bs3d999N+np6VHJP7KxBdLu3btZs2YN8fHxpXKs4GBI9q233qrQ4xjpBG0I7kHaunVrmST/cLAFUuvWrUlKSuLZZ59l5MiRIYWSguFfMHL37t3OqMJ3333XqSJ/wgkncN111+HxeFi2bBlgFX6EsgMHbPwTtKuC/d1+8cUXdO3alalTp/L666/z8ssv89RTT3HPPfdwzDHHOL9jO7zmHya79tpradOmDZs3by73pmSH16rqPYLKR7K9/fbb5OTkkJeXx1NPPVVq3UsvvcQTTzzhhGhs7OsxUoLdfz62YL+Djz76iBtvvDGkGloVUVxc7FwLgb/FyghM1M7OznbCUfYo1UAyMjLweDy0bNmS1q1b06JFCwoLC8nIyAhr6p1QPEh2ykJmZqYTCdi5cyebNm2iRYsWXHbZZc629vX04YcfsmzZslIlOcp7sLf/7vLO361bN8eGwG3i4+OdATAFBQXOclsgtWvXzrmWYj3EFtZUIzVIC8Ae7pMJlLozK6UmA5MBpkyZUu25qsLBfrpt27Yt6enpDBgwgI8++oh58+Zx8sknh328nJwcsrOzadiwIbm5ueTl5dG/f3/nxjVw4MCgN7GGDRuSkJDAli1bWLdunXOR2orcntA2GHbIKtSQmO02jouLq9YNtar416kZPHgwjz76aJnRYPYUIR9++CH/+Mc/WLp0Keeddx6FhYWsXbuWt99+2/EEHHrooRH/O+wOYd68eXi9Xnr37l3GW3PIIYfQrl07NmzYwKeffup4CwOxPVCtWrWKmJ12qCAjI4P09HTy8vIYNmwYcXFxzJ8/v9KEao/HU8YW2wNRUlJCeno6xxxzjPPAUBW7/a/L22+/ndzcXE444QS6d+9e6nh///vf+eyzz9i8eTMDBw50ntxtEbh8+fJS23///feA9WBQFbtsb1hRURHJyckcf/zxjBgxAq/XS35+Pp988glLly7l+OOP59///jdff/018fHxDBs2rNT5jjnmGP73v//x3nvvlZk0tbCwkLS0NMAq6VHV791uA3sOxEBefvll5/2//vUvLr30Ulq0aEFmZqYzufTWrVv566+/HC+FHZ5s165dxK7HRo0akZeXx6pVq0p5c03T5MEHHwSsh9Hff//duS78CXY9BrJ+/XoKCwudkcHh5JDZfc6GDRswTdMJlRmGgWmazJw5k8svv7yUp9QW7HY7dejQgf3796O1dsJLobShaZokJyeTn59PQUFBuds3btyYnJwcVq1aRbNmzZwHgS5dupTyDtolYj799FPWr19PSUkJPXv2ZP369WV+Kza2vUVFReWef9CgQfz444+Ypllmm6SkJIqKili/fr0TebAfDJo0aeLkbK5evbrG7ylh5XWaphlzryFDhlw3ZMiQS33vhwwZMuSFCravUe644w4TMO+77z7TNE1z4cKFJmD26tWrSsdbvXq1CZg9evRwlt1///0mYALm22+/Xe6+vXv3NgHzzz//dJYde+yxJmB+88035e73xBNPmIB5zTXXhGTjeeedV6kt0SQrK8ts3ry52bNnT3Pnzp3lbte/f38TMJ9++mmzZcuWJmBedNFF5vjx4532BMzt27dH3Eb7HBMmTDAB8/zzzw+63bRp05zt7rnnHvPUU081Bw4caC5evNjZxj7G+++/HzH79u7dawJms2bNTNM0zQ8//NBpjyeffLLS/bdt21ZmWbNmzUzA3Lt3b0Rs3LBhgwmYTZs2NRMTE03DMMylS5cG3fa3334ze/fubb711lvOsqKiIjMhIcEEzNzcXGf58OHDTcCcO3dulW17//33zdmzZ5s5OTll1mVkZJh9+vQxAbNVq1YmYJ5wwglltps1a5YJmCeffHKZdZ9++qkJmIMHD66yjaZpmgUFBWZ8fLwZFxdn5ufnl1r3xx9/mIDZvHlzc/To0SZgzpgxwzRN07z99ttL/Ua+//57Z7+77rrLBMx77rmnWrb506NHDxMwV69eXWr5999/X8qOWbNmBd0/2PUYiH2Njx07Nmz77L7Evv4WLVpkAubAgQPNnj17moA5Z86cUvukpaWVOp/dJ3z00Ufmiy++aALmVVddFdL5+/btawLma6+9Vu42Xbp0MQFz48aNpmma5htvvGEC5rnnnltm28MPP9xp0zZt2pjz5883AfOQQw4JeuyLL77YBMz//ve/5Z5/3bp15qxZs8ySkpIy6w455JBS7WeapvnYY4+ZgHnzzTebu3btcq5FFwhZi8RqiO0X4ATf+5OBn120pRT+ITawPBqNGzdm3bp1ZWL6oeA/xN/G37MQLEHbxn/KD5tQQmx2TtOPP/4Yko3RCrGFSpMmTVi3bh3Lli2rsGCeHWa7+eab2bdvH+PGjXNCIUuXLuWyyy7j3nvvrVIeSig2wsE6S/75R/7YYba0tDTuv/9+vvjiC5YuXcoTTzzhbBONHKRmzZphGAaZmZkUFxeXyjN55plnKkxuD0ZRURGZmZnExcVVezJdm27dutG0aVOysrLweDxcfPHFDBgwIOi2Rx11FKtXr+bCCy90liUmJjqV4u3fhMfj4Y8//gCqlqBtc84553DWWWcFrffTunVr5s2bR2pqquM1DDYK7aSTTgLghx9+KJPAGonwGliej169euH1esuE0O2w0EUXXeR4i5577jlWrFjBM888Axzse/xru0XjeiwvD+nxxx8HDvaHofZRwahq/hGUDbHZuT6tW7d2vH+Bydq2p932eNm5RFu2bCkzgq0y7O3Ky0GCsonaFYXm7fxHgEceecT5njdu3Bi0flxlOUgAPXv25OKLLw46itEeDOR/DfqH2Nq0aUNKSgoHDhyI2oS7kSAmBZLWegmwSyk1H+gPfFjxHjWHfaHbSZQJCQmOiLn66qudkQKh4p9/ZHPkkUeSkpJCr169Kqz6GywPKZTJLY866igaNWrEihUrQipc6LZAAivcVF483Mb/pjR06FDee+89p47MgAED+M9//sOMGTOiYp8tkOy8HDvhOJDBgwczZcoUjjvuOG655Ranym1aWpozrDgaOUjx8fFOh7pr1y5n+oGOHTuydevWkEok+GMLgVatWoU9zLs8DMNw2i0xMZH7778/7GME5iGtWLGCgoICevbsGdXrt0uXLsybN48WLVqQkpJSprYNWGH5gQMHUlBQwA8//OAsLyoqcsJrVRneH0iwkWwFBQW8+eabAFxxxRWMHDmSESNGsH//fo477jgKCgo477zzmDhxIlC6YGc0rsdgAumvv/7is88+Izk52fld+LdTuFRlBJtNYLFD/4EqkyZNIiEhgTlz5pTqP22BZIs7//ptdg5SqALp0ksvZfDgwRXmSwYO9a/oe7rgggtITk7m2GOPZdKkSSQnJ9OhQweKi4uDJpyHIpAqIlieqz0KsF27dhiG4dgZy3lIMSmQALTW07XWI7XWF2mtY6bcpu1B8h9l8uCDD9KiRQs++eQTRo8eHZYnKZhAat26NVpr3nnnnQoT+gIFUm5urpPPVNFTfYMGDZxZ1isa9WUTCwIpFPr168fZZ5+NUoo5c+aEVd23ugTm8JTnQTIMg+eff55vv/2Wxx9/nMmTJzNs2DByc3OZM2cOe/bsIScnh2bNmpUZNVhd7NEzs2fPJisriwEDBjgi5PHHHw+rVIV/gnYkOeqoowArqbkqI7kCh/q/9957QMWe2Ehx6KGH8tdff7FkyRKnSnIgo0ePBqyRUDZz587lwIEDDBgwwHnyrq4dUFogffzxx+zfv5/DDz+cww8/HMMwuOuuuwDrxpWYmMg///lP57r19yBFOkkbggsk24t6+eWXc9JJJ5GSksKaNWtK9ader5ePP/44pHIVkfAg2Z4+/z6wffv2nH766ZSUlDiFUeFgNCDQg7R161bnwTrUaW4uvPBC/vjjjwq3D8eD1KNHDzZv3syXX37pPNDYv69gidoVTVYbCvZ17P/w7j+KzbYJYnskW8wKpFiksLCQHTt2EB8fXyokNnToUH755Re6d++O1tqpHh0KwQQSWE/ClYWCAgWS/xD/ykZK2HVqyquD4U9tEUhgjSBauHBhyBNnRgp/gdSiRYuwEgHt4prvvvuu01l079497CkxKsP+/l577TXAKlR30UUX0a5dO/78809naoxATNMsExLyH+IfSe68807+7//+r8woxVDxH+qfk5PjJCVfe+21EbOxIjp06ODUeAlGoEDyer1OuKu6o7Zsgo1k+/e//w1Y3iObU045hcMPPxyA6667jp49ezoCafny5ZSUlJCbm8uuXbto0KBBmT6qOgQKpPT0dN566y3i4uKYOnUqiYmJjqj1HyH8r3/9izPOOIOHH364wuMXFRWxZs0aDMNwRHM4BIbYAvvASZMmATiePygbYrM9SFu2bAnbgxQK4XiQwPqt+ofsbFuCCaRoeJD8Q2wgAqnOYde06NSpU5kpAPr27ctvv/3GkUceyebNm7n88stDOmZ5AikU7Itw+fLlbNmyJaT8IxtbIH3zzTcVeg6Ki4vJzMzEMIyg1bAFC3+BNHDgwLDEjT09y+eff+6Mkozk07qN7UGyn6zPPPNMkpKSnEl07fwPf0zT5JJLLuGwww4r1ZFFy4NkhzD8Ry6Gg3+I7f/+7//Yv38/w4cPj3hh0KpyxBFH0KxZM1avXs3GjRuZPXs2ixYtokOHDlx//fUROUdgiG3p0qV88803NGzYsFTOlmEYvPnmm9x999088MADgNX+nTt3Jj8/n3Xr1pXKuYxUKBXKCqT7778fj8fDWWed5Vz79shUOw+puLjYKf1Q2Zx9K1asoLi4mB49elTpJh9YB8kWIbYoGTNmDImJiSxcuNART+UJpA0bNrB9+3bi4uIiKjL9PUgej4dt27ZhGEbIXirbg7R+/foy66orkIJ5kPxDbECtGOovAikMgoXX/Gnbti1ff/01DRs25Pfffw86J1Qg1RFIbdq04fTTTyc/P5/zzjvPeUoJJQl54MCBtG7dmq1bt1ZY5NJ237Zo0SKiHWRdw18glZd/VB4dO3bk2GOPpbCw0EmWjWS+h42/B7Bnz55OAvS1115LSkoK8+bNc4Z027zxxhu89dZbFBYWlnqSj5ZAqi62QFqzZo3TlrfccouLFpUmISGBE06wxp/MmTPHCXPNmDGjyjejQPr27YthGKxZs4YRI0YwaNAgTNPkrLPOKhO2PfTQQ7n//vuDXr9//vlnVMJrUFogvfbaa8ycOZMGDRo47QEHBZKdhzR79mynD163bl25k1Nv3LjRyeUqbxLsyqjMg5SSksIxxxyDaZp8/fXXmKZZRiClpqZiGAa7d+/GNE1SU1NJTIzcpBD+xSK3bNmC1+ulU6dOIT9cVBRiq65A6tChA40bN2bfvn3s3bsXr9frCCTb62z3ceJBqiOEMhKhSZMmzg+nvJCFP9URSGCNTOncuTO//fabMydZKAIpLi7OmSagojBbbQqvuUmgBylcLrjgAuBg7kw0PEj+3+GZZ57peLlatGjB5MmTneV2zZfNmzc73iUo3ZHGqkBq0qQJqampFBYWsmHDBnr27MmECRPcNqsUp5xyCmBN27Fu3ToOOeSQkD3OodCoUSO6detGcXExv/zyC8nJyZx33nk8/fTTIe3vn4fkH/KNJLZA+u2337juuusAq0aT/8PFkUceScOGDVm2bBl79+4t5eEsKioKemNfsmQJRx99NOvWrePwww93PE7hUplAgoOjEufNm8eBAwfIy8ujcePGTl2nxMTEUn1xqJ6dULHF7oEDB6qUSG9vGw2BZBhGKS/Svn37KCkpoXnz5o6AkxBbHaMyD5KNXbhy3rx5FW5n+hXYqqpAatWqlTNay76xhRJiA5wn2YqEXHnTjAilqa5AOvPMM0uFbaPhQfKf4sCeo8nmgQce4Oijj2bLli2cdNJJ7N69m8suu4ysrCxHBK1du9bZPlYFElAq5+Smm26K2Hx2kcIuKJuZmQlY00JE0rMAVrj0kksu4Z133mH37t28++67Iefl2devvwcpWgJp165deDwebr755lLVn8Ea4m4n7T/44IMsXryYNm3aMGbMGIAy88n9/PPPHHvssezcuZMxY8bw/fffV1gWpCIqC7HBwe9x7ty5ZbxHNv6iKJL5R1A6xFaV78m2Z/369WXm5ayuQILSeUiB4TU4eB/dvHlzuZPmuo0IpDAItZaF/WTx1VdfVZjfs3//fgoLC2natGnQ6URCZfjw4Tz66KPO51Dr/Nh5SN999125F6h4kELD/v7i4uKqNGqmdevWpSrCR9OD1LFjxzLz+6WkpDBnzhwGDhzIqlWr6N+/P9999x1t27Z1Enz9BZJdaTcWBZIdZgucciFW6Ny5s3ONKKWqXfsoGGeddRZvvPEG559/fth9i+3F8fcgRSvEBpbQKC8p3x5ta4dLp0yZ4kwZEyiQpk2bRlZWFueccw6ff/55teZbDMWDNGjQINq0acO2bdscL3ygQLLzkCB6HqT9+/dXSSA1btyYdu3aUVhYWKqatWmalU41Egr+HqTAEWxgtXH79u3LVEX3nyDYbUQghUGoHiT7h7N169YK5zurbnjNn5tvvplzzz0XwzBCnnOqR48edO3alX379jnJwYGIQAoNO67et2/fKj912aPZIPJPm3BwLrKrrroqaD5ZixYtmDt3Lj179nQ8RDNnznQSnNetW+cI/miNYosEtvCfPn16jZZ6CIerr76apk2b8swzz0R8tGJ16dWrF0lJSWzZssUpshlpD1KTJk0YPXo0SineeeedMoNebOw8JLBu1tddd51T18hfIBUWFrJ48WIMw+C1116rcpK/TSgCKS4uznkYth8iapMHCXBGXPqH2TweDyUlJSQmJlbLs1mZBwkOCu9JkyahlKJFixZcfPHFVT5npBGBFAahCqS4uDink64ozBZJgWQYBu+++y4ZGRkhJwkbhlFqNFswbNeyCKSK6devH88//3yZ6rrh8Le//Y1OnToxYsSICivoVpVhw4axe/du7rnnnnK3ad++PV9//TUjR45kxowZTJgwgdatWzsVrm3PUSyH2CZMmMCWLVucnLxY5IYbbuDAgQPOPFmxREJCgiNC7LB9pD1IhmHw3XffsWDBggrD98OHD3fE02WXXUbr1q2DCqRly5bh8Xjo06dPtTxHNqGE2OBgtMAuSlmRBynSAsnfg1TVXLFgAikS4TWo3IMEB8Ph3333HYsWLeLAgQPOfTEWEIEUIrYb0DCMoJMnBuIfZiuPSAoksDod/zyTUKgsD0k8SKFhGAZTpkypVkHCpk2bsmrVqpCKd1aVNm3aVDoasVu3bvz444/ce++9AKWq3todaSwLJMMw6Ny5c8x5ZgKJZfv88+iiUbTUprI2SElJYdy4cTRt2pSpU6cClpc2Li6OtWvXOrPFa62B6k0n44+/B6mwsJDc3FwSEhLKhCsDJ0oPrH/m70GKdIgtWh6kSAukdevWOSVoAj1I9913H08++SSzZs3il19+YdeuXaVGy7qNCKQQ2bZtG16vl9TUVGfm9oqwfzjfffddufNcRVogVQU74XH+/PkUFhaWWS8CqWZJSUkJ6fqqaWyvqZ2HFMsCSag+/l7oaAwYCIf333+fzZs307NnT8BK3u7evTter9cZ9RlNgeTvRQ8UdB06dCglJmsyB8kWSLt37yYjI6NKxTztNg0mkKqTfwRWGLVDhw4UFhaycOFCoKxASk1NZerUqVx88cUMHz6ctm3bxtSDgwikCtizZ4+TvBw4B1tldOrUib59+5KTk8Nvv/0WdJvqjmCLBO3ataN///7k5+c7nYw/IpAEKC2Q8vLyyM/Pp2HDhjGb4yNUD/+bfjQGDIRDgwYNykyd5F8kF3BuwKHmX1aGf4itspG8drQAygqk7t27ExcXR/v27ctMR1RdUlJSSEhIcOpBdevWLexaddH0IMFBL9Kvv/4KlA2xxToikCpg3LhxpKSkMHDgQKZPnw6EF0e2vUjlhdlsD1I401JEg8CKtf6IQBKgdM0Uf+9RLD3tCZHDXyC57UEKhr9AysvL46+//iI+Pp7BgwdH5PjleZCCYQ/3h7ICqVWrVnzwwQdhTwYdCoZhlBKOVfmebIG0fv16ZwBGJAWS/T3Zx6xq2QW3EIFUATk5ORQWFrJs2TLHu2J/4aFQWR5SLITYQASSUDl257t27dqYHsEmRIaWLVs6N3u3PUjB8BdIf/75JyUlJfTv3z9i1cj9BVJlHqRjjjmGDh060K1bt6A5oGeeeSYjR46MiF2B+NtUFYHUokULWrZs6cy5B9WfqNafwMmXa5tACj62soZQSh0JPAt4gHTgUq21Ryl1DnAzkA9M1Fpvc8O+v/76i6ysLFavXs2qVavYu3cvEydODHn/Y489loSEBBYsWMD+/ftLXcxZWVmOWzPUukXRwv7x/vzzzxQXF5cacisCSYDSAimWayAJkWPkyJG88847zoS2sYRd62r58uURzz+C4CG28vrApKQkFi9eTFxcXI17VKvrQQLLi7RgwQLWrVtH+/bto+JBspEQW3hsBcZorUcBm4AJSqkEYCowGrgHuNs167BGFg0dOpRLLrmEm266KazRHE2aNGHkyJF4vV6uvfZap1qp1+vl0ksvZd++fQwaNCgqNW/CITU1lZ49e5KdnV1mEkgRSAJYT5rNmzcnOzvbmQRVBFLd5oUXXuCnn36KmYl+/enWrRsNGjRg8+bNzqjPSAqkcEJsYJXHcOPmX10PEpTNQ4pGDhJYorM6BZHdwFWBpLXeobXO930sArzAIcBKrXWR1vpnIPx5G2KIZ555hiZNmvDee+9xxx13APDQQw+RlpZG8+bNmT17dkxMAhsszOb1emWqEQGw8h3sjtROuBSBVLdp2bJlTNZpAqtWk+1F+uyzz4DIJWjDQXEQSpK2m0TKgwTREUjdu3d3IhLt2rWrdTmLrobYbJRSXYGTgAeBoUCW3+oyEykppSYDk8EqPR9YiyKWaNWqFa+88gqXXnopjz32GJs3b+b999/HMAyeffZZkpOTS5VZ9yewBHs0sWd2nzt3Lueeey5ghQG9Xi8pKSlOJdTaSE22Y13F4/GQmpqK1pqff/4ZsEYXSbuGh1yLkcHj8dCjRw+WLl2Kx+MhMTGRli1bRqxtDxw4AFh5qFu2bAGsAsCx9t35V7pOSkoKyz77WrQ9Y0uXLiU9Pd3JjfWfK7Q6dOnShQ0bNtC8efOYaL9wBkXViEBSSrUH3g2y6nwgD5gFTPLlHx0A/EuhlpkkTGs9E5jp+1j+ZGcxwgUXXEBhYSGXXXYZ7733HmBNDnrppZdWuF96enqNjXA7/fTTmTp1KlprOnToQFxcHHPnzgWsWhluj7SrDjXZjnWV9PR0Bg0aRFpamtOB9ujRQ9o1TORajAzp6ekceeSRfPzxx4A16i6SyeS2aCgoKHDmBovF691OpG/atCn9+/cPy0NjX4t2cdt169aVqvPXpk2biPy9/fv3Z8OGDXTu3Dnm2q8yakQgaa13YuUUlcKXb/QJcJ/WerVv8Vqgn1KqAaCApTVhY7SZNGkSW7ZsYcaMGZx55pnceeedbptUih49etCxY0e2b9/OypUr6dWrl1NJ+dZbb3XXOCEmsF3xNhJiE9zEnnIEIhteA5ypfgoLC9m7dy8Q2yG27t27Vzl8NXDgQBo0aMCqVavIzMyMaIgNDuYh1bYRbOB+kvYFwFHA3Uqp75VS52mtPcAzwPdYIbcH3TMvstxzzz1s2LCBDz74ICbyjvwxDMPJQ5o/fz6vvPIKW7duZcCAAVxwwQUuWyfEAoccckipzzLMX3ATf4EUyQRtsPpDeySbHRaKxYEqtmirTq2qhg0bMnjwYEzTZOHChREXSGPHjiUlJcWZtaE24WoOktZ6FlZ4LXD5e8B7NW9R9InFoms2o0aN4t133+Xzzz/n999/B+DBBx+MOTEnuIN4kIRYomvXrqSkpJCbmxtxgQSWQMjPz49pgXTiiScydOhQJk2aVK3jHHXUUSxYsIAFCxZEXCCNGTOGzMxM4uPLpBPHPDGRpC3EBrYH6dNPPwWsH81pp53mpklCDNGqVSuaN2/uJLCKQBLcJC4ujqeffpp169aVqvwdKRo1asTevXud6z0WQ2w9evRgwYIF1T7OkUceCcDvv//ulCuIlEACaqU4AvdDbEIM0a9fv1KVYB966KFaNyxTiB6GYZQKswWrGiwINclVV13Fo48+GpV+KnCy1lgUSJHiqKOOAiyBlJubC0RWINVWRCAJDnFxcU5V7eOPP75WxoyF6GKH2Zo0aULDhg1dtkYQooe/QGjSpEmpIfV1jV69etGiRQt27drF6tXWeCkRSCKQhACmTZvGCSecwPPPP++2KUIMYnuQJLwm1HX8PUh12XsElnfYDrP98ccfQFkPWn1EBJJQimOOOYavvvqKfv36uW2KEIPYAklGsAl1HX8PSiwmaEcaO8xmmlZpQfEgiUASBCEMjjnmGBo1ahSzU1AIQqSorwLJRgSSjGITBCEMunXrxt69eyX/SKjz1KcQG5QttikCSTxIgiCESVJSkoxuFOo89c2D1KZNm1LTtYhAEoEkCIIgCGWobwIJSofZRCCJQBIEQRCEMtS3EBscLBgJIpBABJIgCIIglKG+e5BkmL8kaQuCIAhCGeqjQDr88MNp0aIFjRo1qrXTg0QSEUiCIAiCEEB9DLElJSWxcOFCEUc+YkIgKaUuAJ7TWrfxfT4HuBnIByZqrbe5aZ8gCIJQv6iPHiSAnj17um1CzOB6DpJSKh44B9jq+5wATAVGA/cAd7tmnCAIglAvqa8CSTiI6wIJuAD4APD6Ph8CrNRaF2mtfwYGumaZIAiCUC+pjyE2oTSuhth83qNzgb8B03yLWwBZfpuVCYYqpSYDkwGmTJnCiSeeGF1DXcLj8ZCenu62GbUeacfqI20YGaQdI0NNtGNeXh4ACQkJZGZmkpWVVcketYv6ei2mpqaGvG2NCCSlVHvg3SCr/g94X2vtVUrZyw4ATf22KQncSWs9E5jp+2hGztLYIj09PawvUwiOtGP1kTaMDNKOkaEm2rFLly6AFV7r1KlTVM/lBnItVk6NCCSt9U6snKJSKKUeBQ5XSl0MHKKUeg7Lk9RPKdUAUMDSmrBREARBEGzsHCQJr9VfXA2xaa1vs98rpbTW+kbf+2eA74ECYKIrxgmCIAj1lgEDBnDCCScwduxYt00RXCImhvkDaK2V3/v3gPdcNEcQBEGoxzRs2JCvvvrKbTMEF4mFUWyCIAiCIAgxhQgkQRAEQRCEAEQgCYIgCIIgBCACSRAEQRAEIQARSIIgCIIgCAEYplln6ywKgiAIgiBUCfEgCYIgCIIgBCACSRAEQRAEIQARSIIgCIIgCAGIQBIEQRAEQQhABJIgCIIgCEIAIpAEQRAEQRACEIEkCIIgCIIQgAikGEApleL733DbltqKUqqR739pw2qglOrq+1/asRoopY6SNqweSqkubttQF1BKtXDbhtqKFIp0EaXUScBVwHbgUa31dpdNqnUopf4GXAxsBR6XNqwaPoH5GNAZOFtr7XHZpFqJUmoQ8CzwG3CP1rrIZZNqHUqpU4ApQCHwDvCl1jrHXatqH0qpY4FpwB7gReAvrXWBu1bVLsSD5C4XAq8By4FrlFIjXbanVqGUGg9cBjwKHABu8y2XJ/cw0VrnAUVAE6w2lXasGiOBh7TWtwM93DamtqGUigeuAWYC9wEKSJFrsUqcB/wflsgcC5zlrjm1jwS3DahP+J7SzwN+AnYBW4AFwHe+5UOUUuvFC1I+vja8APgCWAxcqbXOUEqtAd5VSrXVWu921chagN+1+KPWer3vBrQO+Ai4USn1pdZ6i6tG1gL8f9Na67VAHnCKUup2YIdSaiHwqdZ6vZt2xjK+Njwf+AHIAZZhedU3A4OBZCARS8AL5aCUSgbuwfK4/QBsBHZg3WMKgHFKqb5a61UumlmrEA9SDaGUugD4HmgEbNBaZwHtgeE+N/wfQBLQzDUjYxy/NkwCdmutt/vEURyW52OjiKPK8WvHZCyRjtbaBA7Fuv4+Aq5WSnV2y8baQEA7bvItbgR0AG4BrsMKE41zwbxaQWAbaq13Ad9ghc3/wAoPXQVc75aNtQHfb/UdrAfvX32LDaA7YAIrsH7rvVwxsJYiAqkGUEo1Bc4FHsD68Z+glGoNvARcqZRK0VovB7oC3VwzNIYJ0oajlVJ9AbTWXqwbU7Fv2y7ikg9OQDt+CxyrlOrvW/0DllcuF+sGdaNvH+knAgjSjscppToCH2J5OzprrTOxhJN9Xco16UeQ3/TxSqlDtNbfA18DL2qtLwbmAA2UUnHShuWSAHyCFY24QSl1NDAXOBror7Xei/VgmQxyLYaKJGlHCd8IjFuAz4CfgVHAzUAD4FPgUuBYYDLWxT0fK/fjQ631HDdsjjUqacNPsNpwgtZ6k1LqCqzOIBNoBVwviZ0WIbbjScDVwGhgN1aII1drfbcLJsckIf6mj8dqw4FYT+1jgXVa6/tcMDnmCPFaPBXL69YB6yY/Bdivtb7RDZtjEb92/AQrh7WT73M61kPOJOARYADQFFgFjMcKqb/mgsm1EnkyjAJKqU7Ak1gx9PbAG1rrz4HHgeO01k8AbwCPaa0fxeoorgaWijiyCKENn8RKQHzUt0sXLIG0Vms9UcSRRYjt+AZwL/AE8B+t9fla66kijg4S4m/6v1ijUT/ACnccBfwi4sgizGvxP8Ba3/sFIo4OEtCOqcC/tNYa68GwSGv9lm/9ScAsrJD5scBCEUfhIQIpgiilRvm5LptrrZ/UWv8XaKKUukNrPQ8rLgzwDNBIKdXE51KeqLV+uuatji3CbMMX8IUvsFzyw7XWL9WwyTFJmO34LNZTJlrrN337S99AldqxgVKqqdZ6BTBNrscqtWEKkKS1fgfLQ/y8C2bHHBW0YzOl1JXAP4EjAbTWXwJ9fdstB26Udgwf6QQjgFKqsVLqK6w4+lisxMKflFJX+zaZD5yulGqutS5RSo0CPsYaNZQDoLUuLnvk+kM12nADgNZ6vtb6QM1bHltU51r0DfUHnLyueks12nG9bwAGWusSF0yPGap5LeYCSB2pkNrxR+By3/8/KaVm+Lbf7tu23l+LVUVykCKEUmoIVpG9I7GKcjX3/b8JSwTlYnk5/gJexQplfOiGrbGKtGFkkHaMDNKO1UfaMDKE0I6FWOLyV6AdVmL2PBdMrVOIQIowSqnnsGLmbyqlOmCFLtYBNwFvaa13umlfbUDaMDJIO0YGacfqI20YGSppx1lS5iSySIgtQvjFht/CGvLbVmu9A6uuzAdYQ/izJbejfKQNI4O0Y2SQdqw+0oaRIcR2zJHh+5FFPEhRQCl1A9AT2A+sB9ZorRe4a1XtQtowMkg7RgZpx+ojbRgZpB1rDlHtEcTvKWggVi2PDVrrN+XiDR1pw8gg7RgZpB2rj7RhZJB2rHnEgxQFlFJnAXO01oVu21JbkTaMDNKOkUHasfpIG0YGaceaQwSSIAiCIAhCABJiEwRBEARBCEAEkiAIgiAIQgAikARBEARBEAIQgSQIgiAIghCACCRBEARBEIQAEtw2QBAEIRClVDdgo+/jPVrrB3zL/401MSda6ypVDVZKHQqcC3yvtf7et+x1YCIwVGutq2O7IAh1AxFIgiDEOpOUUg8CKVjCprocCszwvf8+AscTBKEOInWQBEGIOfw8SBuAHsAYoDvwL2APkIqVInAXcBXQEtDAFK31X0qpe7FE0GvAaKzZz68DFnLQM2VzHDAJy4P0JHCO79gXaq3nR+UPFAQh5pEcJEEQYpmVwO9YYbXLgY+BA751lwEPAEuxhNJQIE0plei3/0jgBaxJPR8BMoBnfOs+BC4AVvhtfzTwKtAJuDeyf4ogCLUJEUiCIMQ6/8Hy6owA/s9v+Vjf/1O11s8BaViTePb22+YprfWzWJ6oblrrXOBn37rlWut3tda7/ba/V2v9IFAIdIv4XyIIQq1BBJIgCLHOu0AJsA34Ksh6M+B/f/b5/i/mYH9XUV6B//bx4ZkpCEJdQgSSIAgxjdY6Cyu8drXW2uu36jPf/08ppW4AJgDrgTWVHHK/7/+RSqnzlVLJETVYEIQ6gYxiEwQh5tFavxdk8etYydpXYSVxL8RK0vYopSo63E/AN8Ao336dI2qsIAh1AhnFJgiCIAiCEICE2ARBEARBEAIQgSQIgiAIghCACCRBEARBEIQARCAJgiAIgiAEIAJJEARBEAQhABFIgiAIgiAIAYhAEgRBEARBCEAEkiAIghDTGIbxsmEYd0foWF0Mw8gxDCPe9/l7wzCujMSxfcf7wjCMiZE6nuAeIpAEV/F1TvsNw2gYsPxCwzC0ryPb4et0jvGtu9cwDI9vnf261Z2/QBCE6mIYxibDMPINw8g2DOOAYRi/GIZxjWEYcQCmaV5jmuYDIR7nhIq2MU1zi2majU3TLImA3fcahvFmwPFPNU3zv9U9tuA+IpAE1zAMoxswEmvy0NP9lk8FngEeAtoBXYB/Yc21ZfOer5OzX4/VlN2CIESF00zTbAJ0BR4BbgP+HckTGIYh02sJISMCSXCTS4HfsObUmghgGEYz4H7getM0PzJNM9c0TY9pmp+apjndPVMFQagJTNPMNE3zE+A8YKJhGIcZhvG6YRgPAhiG0dowjDk+T9M+wzDmG4YRZxjGLKyHqU9tr7JhGN0MwzANw7jCMIwtwLd+y/zFUk/DMBYYhpFlGEaaYRgtfecabRjGNn/7bC+VYRinAHcC5/nO96dvvROy89n1D8MwNhuGsdswjDd8fRx+dkw0DGOLYRh7DMO4K7qtK4SDCCTBTS4F3vK9TjYMox0wHEgC/uemYYIguItpmguAbVheZn+m+Za3wfIw32ltbl4CbMHyRAV6lY8F+gEnl3O6S4HLgQ5AMfBcCPZ9ieXltr3Zg4JsNsn3Og7oATQGXgjY5higD3A8cI9hGP0qO7dQM4hAElzBl0/UFXjfNM1FwHrgQqAVsMc0zeJKDnGu7wnSfnWMssmCINQ824GWAcs8WEKmq8+7PN+sfNb1e33e6Pxy1s8yTXO5aZq5wN1Y/Ut89UwH4CLgKdM0N5immQPcAZwf4L26zzTNfNM0/wT+BIIJLcEFRCAJbjERmGea5h7f57d9y/YCrUPIFXjfNM3mfq/t0TRWEARXSAX2BSx7HFgHzDMMY4NhGLeHcJytYazfDCQCrUO2snw6+o7nf+wELM+XzU6/93lYXiYhBpCENaHGMQwjGTgXiDcMw+4cGgLNgR1AIfA3YLYb9gmC4D6GYQzFEkg/AUfZy03TzMYKs00zDOMwrLyihaZpfoM14CMYlXmYOvu974LlpdoD5AKN/GyKxwrthXrc7Viecv9jFwO7gE6V7Cu4jHiQBDf4G1ACHAoM9r36AfOxcgHuAV40DONvhmE0Mgwj0TCMUw3DkJFqglDHMQyjqWEY44F3gTdN01wWsH68YRi9DMMwgEysvsTrW70LK9cnXC42DONQwzAaYQ0Sme0rA7AGSDIMY5xhGInAP7Ae5mx2Ad3scgRBeAe42TCM7oZhNOZgzlJlKQRCDCACSXCDicD/+eqR7LRfWMmLFwHPAlOxOqMMLPf3FOBjl+wVBCH6fGoYRjbW7/0u4CngsiDbHQJ8DeQAvwL/Mk3zO9+6h4F/+PISbwnj3LOwRtPuxBokciNYI+qA64DXgHQsj5L/qLYPfP/vNQxjcZDj/sd37B+BjUABcEMYdgkuYlSe2yYIgiAIglC/EA+SIAiCIAhCACKQBEEQBEEQAhCBJAiCIAiCEIAIJEEQBEEQhADqgkAyQ33t3Lkz5G1j4SX2iq31xN7aRK39Dt08f33+2+X8MXfthUxdEEghU1JS4rYJYSH2Ro/aZCuIvXUBt9vEzfPX579dzl97r716JZAEQRAEQRBCQQSSIAiCIAhCACKQBEEQBEEQAnBlslqlVDPgK6y5uIZprZf7rYsHXsUqJ79Ia32TGzYKgiAIglB/ccuDlAeMI/hs7eOB7VrrkUCKUmp4jVomCIIgCEK9xxWBpLX2aK0zyll9NDDP9/5LYETNWCUIgiAIgmDhSoitEloAWb73mUDLwA2UUpOByQBTpkzhxBNPDOnA77zzDhdccEGEzIw+Ho+H9PR0t80Imdpkb22yFeq2vampqVG2RnATwzBIS0ujU6dOlW4rk6cLsUQsCqQDQFPf+2bAvsANtNYzgZm+jyH/orZv316rOuP09HSxN0rUJltB7BUEQahpYlEg/QKcAPwInAz8n7vmCIJQF1BKHQk8C3iAdCwv9Ke+1Y2ARK314S6ZJ9QxDMOI6PHC8a7dcccdnHTSSWRmZrJy5UouvfRSJk2axA8//ECzZs2Ii4vjxRdfZPhwSfGtCNeG+SulPgdOAl5VSk1SSr3iWzUH6KKUmg8UaK1/dctGQRDqFFuBMVrrUcAm4GSt9Wit9WjgX8DH7pkmCJHj999/Z9iwYfzwww+MGjXKWf7444+zZMkSHnnkEa6++moXLaw6xcXFNXYu1zxIWuuxAYte9y0vBibVtD2CINRttNY7/D4WAV6/z+cAt9SsRYIQWaZPn87cuXPZuHEjw4cPZ/369XzzzTecdNJJpbYbNWoU69atIycnhwkTJrB//348Hg8PPvggEyZMIDc3l3PPPZdt27ZRUlLC3XffzXnnncftt9/OJ598QkJCAieddBJPPPEEGRkZXHPNNWzZsgWAZ555hhEjRnDvvfeyZcsWNmzYwMaNG5k2bRo33ngjAA888ABvvvkmbdq0oXPnzgwZMoRbbrmF9evXc/3115ORkUGjRo149dVX6du3L5MmTSIpKYk//viDESNGMGHCBP7+978Dlqfuxx9/pEmTJhFvz1gMsQmCIEQNpVRXLO/1g77PzYH2WuuV5WxfpUEhgbidaO/W+dPS0ujZsydpaWmVbhst+9xu+0gQiv033XQTo0ePZvbs2cyYMYNzzjmHjz/+GI/Hw6233srevXtJT09nzpw59OnTh7179/Liiy/SpEkT9u3bx2mnncaQIUP4/PPPadasGTNnWqm+WVlZLF++nA8++IAffvgBwzDIzMwkPT2d66+/nokTJ3LkkUeSnp7ORRddxPfff09WVhZLly7l/fff58CBAxx//PGcfvrp/PXXX7z77rt8/vnnFBcXc8opp9CrVy/S09OZOHEiDz/8MD169GDx4sVcccUVvP/+++Tl5bFt2zY++OAD4uPjmTRpEvfeey9Dhw4lNzeXffv2kZWVFbRNAr/7cHIjRSAJglBvUEo1BWYBk7TWHt/iCUC5d++qDgoJxO3EdbfO36lTJ9LS0pgwYUKl20ZrFJvbbR8JQrV/zpw5jBgxguzsbAYNGkRqairp6ek0atSIRx55hJdeeok2bdowa9YsOnbsyM0338yPP/5IXFwcu3btIiEhgdGjR/PQQw/x3HPPMX78eEaOHElxcTGNGzfmnnvuYfz48YwfP54GDRrwyy+/sGnTJuf8eXl5NGvWjKZNm3LGGWfQo0cP0tPTad++PQkJCaxdu5azzz6bnj17AnDGGWfQrFkzmjVrxqJFi7jhhhucYxUWFpKamkqjRo0YN24cXbp0AeD444/n4Ycf5qKLLuLMM8+scIRkdb57EUiCINQLlFIJwLvAfVrr1X6rJLwm1HqWLFnCpEmT2LZtG61btyYvLw/TNBk8eDCzZ1s1mR9//HHOPvtsZ5/XX3+djIwMFi1aRGJiIt26daOgoIDevXuzePFiPv/8c/7xj39w/PHHc88997BgwQK++eYbZs+ezQsvvMC3336L1+vlt99+IykpqYxNDRs2dN7Hx8dXmD/k9Xpp3rw5S5YsCbo+JSXFeX/77bczbtw4Pv/8c0aMGMHcuXPp27dvuE1WKTIXmyAI9YULgKOAu5VS3yulzvNNe9Rea73KZdsEoVoMHjyYJUuW0Lt3b1asWMGYMWOYO3cuS5YsITk5Oeg+mZmZtG3blsTERL777js2b94MWCVxGjVqxMUXX8z06dNZvHgxOTk5ZGZmMnbsWJ5++mn+/PNPAE466SSef/5555jlCRybESNG8Omnn1JQUEBOTg5z5swBoGnTpnTv3p0PPvgAsLyJ9jkCWb9+PQMGDOC2225j6NChrFoVnZ+veJAEQagXaK1nYYXXAlE1bYtQ9/EPF9ZUiC8jI4MWLVoQFxfHqlWrOPTQQyvc/qKLLuK0005jwIABKKUcL8yyZcuYPn06cXFxJCYm8tJLL5Gdnc2ECRMoKCjANE2eeuopAJ577jmuv/56Bg4cSHFxMaNGjeLll18u95xDhw7l9NNPZ+DAgbRr144BAwbQrFkzAN566y2uvfZaHnzwQTweD+effz6DBg0qc4xnnnmG7777jri4OPr378+pp55a1SarEKMOVC4N+Q+YOnWq86XWBmpb3Lw22VubbIU6b29kC8ZEF8lBChO7knZ9zkGS85c+f05ODo0bNyYvL49Ro0Yxc+ZMjjjiiBo5N2H0N+JBEgRBEAShxpg8eTIrVqygoKCAiRMnRk0cVRcRSIIgCIIg1Bhvv/222yaEhCRpC4IgCIIgBCACSRAEQRAEIQARSIIgCIIgCAGIQBIEQRAEQQhABJIgCIIgCEIAIpAEQRAEQRACcG2Yv1LqUeBoYBNwuT1xpFIqGXgfaAoUAxdqrXe5ZacgCHUDpdSRwLOAB0gHLtVae5RSXYE1wBCt9XI3bRQEIXZwxYOklBoEpGqtRwKrgLP9Vp8KLNdaHwu8DlxR8xYKglAH2QqM0VqPwnows0s73wr87JZRgiDEJm6F2I4G5vnefwmM8Fu3DrCn7W0B7KlBuwRBqKNorXdorfN9H4sAr1KqO9b0IVvcs0wQhFjErRBbC2CH730m0NJv3VrgUKXUX1hzphwZuLNSajIwGWDKlCmceOKJIZ3U6/WSnp5eDbNrFo/HI/ZGidpkK9Rte2t6jihfSO0k4EHgeeAR4N4Ktq9SfxOI29+hW+dPS0ujZ8+epKWlVbpttOyrr20v5y977nD6G7cE0gGsHCOAZsA+v3UTgZ+01vcqpc4G7gZu899Zaz0TmOn7GPLshnFxcXV5wk/XqU321iZbQeyNFEqppsAsYBLQBUBrvUkpVe4+Ve1vAnG7Tdw6f6dOnWSyWjm/a+evzrndCrH9Apzge38ypeP/BgfDanuwBJQgCEK1UEolAO8C92mtVwODgP5KqS+BE4GXlVJJbtooCELs4IpA0lovAXYppeYD/YEPlVKv+Fa/DYxXSn0PPAA85YaNgiDUOS4AjgLu9vUviVrrkVrrU4CvgGu01gVuGigIQuzg2jB/rfX0gEVX+5ZnAqfUvEWCINRltNazsMJrwdZNqllrBEGIdVwTSIIgCELtxDAMt00QhKgjlbQFQRAEQRACEIEkCIIgCIIQgAgkQRAEQRCEAEQgCYIgCIIgBCACSRAEQRAEIQARSIIgCIIgCAGIQBIEQRAEQQhA6iAJglAvUEodCTwLeIB04FLg38CpWNOPvOCieYIgxBjiQRJiitdff91tE4S6y1ZgjNZ6FLAJmADcDgRW9RcEQRAPkhBbbNq0yW0ThDqK1nqH38ciwKu13q6UcsskQRBiGBFIgiDUK5RSXYGTgAdD3H4yMBlgypQpnHjiiVU6r8fjIT09vUr7RoJInj8tLS2s7Xv27BnSPtFqn7rU9nL+6p07NTU15H1FIAmCUG9QSjXFmrB2ktbaE8o+WuuZwEzfR7Oq505PTw+rc440kTx/p06dwto+LS2NCRMmVLqdaVa5eSukLrW9nL/mzi05SIIg1AuUUgnAu1gJ2avdtkcQhNjGNQ+SUupR4GisZMnL/Z/mlFLnY7m044A7tNa/umKkIAh1iQuAo4C7lVJ3Ay8Bg4HTgXilVE+t9c0u2icIQgzhikBSSg0CUrXWI5VSdwFnA+/41nXEGl1yvNY6Ov5WQRDqHVrrWVjhNX/eA+5wwRxBEGIct0JsRwPzfO+/BEb4rTsFKAS+UkrNUko1rmnjBEEQhJrHMIyQX4IQbdwKsbUA7CG3mUBLv3XtgNbAicC1wBTgEf+dqzqqxOv1uprJHy5ujzwIl0jYm5WVVSN/c31s25okHHvdTB4VBEEoD7cE0gGgqe99M2BfwLrvtNamUuob4B+BO1d1VElcXFyt6ozdHnkQLpGwt2nTpjXyN9fHtq1Japu9giAIgYQkkJRSA4ExwCdAKrBJa721Guf9BZgKvAGcDPzst+5nDla2HQxsqMZ5BEEQBEEQwqbSHCTfiLLFwJNAN+Ae4LnqnFRrvQTYpZSaD/QHPlRKveJbtxTYqpT6HrgceL465xIEQRAEQQiXUDxI9wHfACf4Ps8B7qzuibXWgfMfXe23rtrHFwRBEARBqCqhjGLrCHzr97kYSI6OOYIgCIIgCO4TigdpGXCp7/0lWMPw/4yaRYIgCIIgCC4TikCahhVWM4CJWCPObommUYIgCNFAKdUM+Ao4FBimtV6ulLoeq28DeFRr/aFrBgqCEDNUGmLzTfPRCxjvex2itf492oYJgiBEgTxgHDDbb9l1WMVrRxOB/EpBEOoGoYxiuxQ4Dat4Y2vgNN8yQRCEWoXW2qO1zghYvAErr7IJVh02QRCEkEJsrxO8GOMbkTVFEATBFT4DVgLxwBWBK6tauT8Qt6uhR/L8aWlpYW3fs2fPsPepjHD+lrrU9nL+6p07nAK2oQikWzkokFpgJWz/FIZ9giAIMYlSqinWlEaHAA2Ab5VSX/hPlF3Vyv2BuF1dPJLn79SpU1jbp6WlMWHChIic28Y0Q/8q6lLby/lr7tyVCiSt9RP+n5VSfwJ3V+lsgiAIsYUXyAcKAA+WSDKohhASwiCuETQfA02OhKRukNgOvPlQnAl5yyDrd8j+DUyP25YK9ZBKBZJS6pOA7YcAiVGzSBAEIYoopT7HmsaoD/AK8BHwK1ZO5otaa6971tUTmhwFqVOh1XgwEiH3TyjYCPmrIS4JElpCh2ug+6Pg2QO734Qdr0D+GrctF+oRoYTYxgd8LgBuj4ItgiDUAl5//XUmTZrkqg2+gSI/aK03+z63AvporX+pbF+t9dggix+LsIlCMBr1h57PQvPjIPMHWHMV7P8SivcF375BB2hzPrS/HDpOgZ3/gc33gWdnzdot1EtCEUjd/d6XALu01uLvFIR6yqZNm9w2AeD/gPOBzb7PJwJvYSVaCzGGpzgOuj1keY2yf4UlwyF7QeU7Fu2A9Kch/RlofQ50+ye0OQ/W3YBpmhiGEXXbhfpLuQJJKXVmBevQWn8UHZMEQRCCo5Q6HfgbVp7QdUqpU32rDsfybguxRsMu3PHu0dB+OKy9Gnb/twoHMWHP+7D3Y+g6A/q8zgX3mbx2KzRuJCJJiA4VeZBmEzxR0U5glCc1QRBqmsOBSVh90LG+l81bbhgkVECzUdBvNl4T+ENB4abqHc8sgk13wb4v+bH194y8weTTh6FTWxFJQuSpSCDdj4zkEAQhtpiJVbdoAXAXMA+rn9qvtd7opmFCAK3+Bn3fgozZPDK9JefM3hS5Y2fNZ8ErBqfdYXLk1SZfPgEDe4pIEiJLuQJJa31vNE+slHoUq7z/JuDywLwmpdTtwNlaaxVNOwRBqD1orXcAO4A4pVQC0A6fN1sp1UVrvcVN+wQfbS+B3v+2coc23kaDhI8jfopObQ3mPw9n32My5iaTr5+CwYeISBIiRyjD/DsA9wIDgCTfYlNrPaSqJ1VKDQJStdYjlVJ3AWcD7/itb+I7nyAIQhmUUjcAj3CwTwLLkxTKwBMhmrQ+1xJHm++Drf+M6qkaNzL4+J+WSDr+ZkskHd5bRJIQGSqdiw14Dav8/lFAf6z6Id0r2iEEjsZyjQN8CYwIWP934IVqnkMQhLrLfVhJ2fOAz32vL1y1SICW46HPG7D1saiLI5ukhgYfPmAwvD+cMt1kfbpkhgiRIZSnraOBh7FmuR4HnAnsreZ5W2C5yQEygZb2CqVUM2CA1vpBpYJH16o6N5LX63V1PppwcXv+nHCJhL1ZWVk18jfXx7aNFKF8R+HYW8VpALYAr2itX6rKzkIUaKyg7zuw42XY/I8aPXXDBgbv3wcn3Gxyyi0mP/8L2rYQT5JQPUIRSA2AjVij1wYD2VgenupMN3IAaOp73wzwrxJ2E/B8RTtXdW6kuLg4V+ejCRe3588Jl0jY27Rp0xr5m+tj20aKUL6jGrB3BXC3UqojsN+3zNRaP13RTr4HsK+AQ4FhWuvlSqm1gK3m/qm1/ipaRtdZGnaB/mmw/yvYMNUVExolGXz6CIy43uT0O0y+f9byLglCVQlFIG0CWgNLgUd9y1ZV87y/AFOBN4CTgZ/91vUChvu8R4cope7SWteMr1YQhNrC+b7/7/JbZgIVCiQgD8sT/rjfskyt9ejImVbPiGtkiaPCbbD6Yqzp7dyhVTODzx+DoZNNrn3K5D+3I8UkhSoTikA6FyjCivH/A6sTqpZg0VovUUrtUkrNx3KVP6GUekVrfbXW+hJ7O6WUFnEkCEIQLqcKZUh8o2UzAsL3jZVSP2B5kaZorcuZ90IIyiGvQmIb+GMoePPctoYeHa1w28m3mAzuBX8/x22LhNpKKALpKmCW1noRB5/aqo3WenrAoquDbCND/AVBKIPW+vUIHm6E1nqvb363+4AbInjsuk3HG6H1WbDsBGtakBjh+CEGT1wL0/5lMrQvdG1Z+T6CEEgoAulG4Aal1BrgTeAtrfWmqFolCIJQAUqpDUEWm1rrnuEeS2ttDzqZDVwZ5FxVGhQSiNuJ9pWdf9GiRSEfKy0tjVXbm3PHO0dz+eiVnHbrdCDwmfcgPXv2JC0tLRxzK6Wytjz7aPhmYXPOvrsBcx4o4WCaWc0T6999XT5/4LnDyY0MRSAdBpwDnAU8ANyvlPpFaz0yTDsFQRAiRVsOhtiSsUqWhB3fUUo1AAytdSEwElgXuE1VB4UE4naifWXn79SpU+gHi28GRyyGnDReu/9sXqtk87S0NCZMmBD68UPANCv/Kt6cYTLkKpPpr7bmq2eSiYtzJx8p1r/7unz+6py7UoGktV4B3KeUehW4A7gOa+i/IAiCK2itG9vvfSLnEUKr64ZS6nOsEbl9gI+Bc5VSuUAhVm6TUBmHvALEwdqr3LakQpo1Nnj/Xhh+bUOe/1DykYTwCKWS9k1Yla6HYXVA64G3o2uWIAhC+SiljvD7mIBVjuRCrDIhFaK1Hhuw6NGgGwrBaTcJWp8JS8dA8f5KN3ebI/oY3HpeNre90pQxR8AAmbNNCJFQQmxPARnAS8CbWuvfo2uSIAhCpWhKh7sMrAlshWjSsCv0eBq2PgxZP7ltTchMHpvLzyuactEDJgtekfpIQmiEIpDGAfO01iXRNkYQBCFE3uCgQCrBqtf2qmvW1AsM6P0fKFgHWx5025iwiIuD/95pMPAykxn/MXn0WhFIQuWEkoMk8xsJQj3CU2xS5IGiYqz/PZBXaJKTD3n5sG23+3Ndaa0nKaXigd6+RWvkIS7KdLwRmg6z6h2ZHretCZvO7Qye+ztMetjkjFEmw/qLSBIqRma+FoQYobjYxFMCnmLrVeQBTwkUFJrEFcOi1V5KSqDYCyXFvv9LSv9vE2yAj9dvvdcsvZ3zuZwiyHFxkBBvvTJzq/+3VhelVD8gDbCH9a9TSv1Na73SRbPqLkm9oNs/YdM9kLfCbWuqzMUnwezvLZH0x78hWUJtQgWIQBKEEPB6TbxeS0h4vVDi9764xPpcXOITKiUmhR5L5BQUWSLH3qe4xBIhtqjxmtbyQo9PnBhWMg1Y8SPTa4mT/qmweRfEx4FhQJwBRpzvfwMSEyDRb19/AmdaMALeGH7bffnJ65w64bIK2yFGeBHoALzj+3w61hyOJ7hmUZ3FgN4zIXcppFc2k0tsYxgGL0+D/hNN7vm3yePXiUASyqdcgaSUagrkittaiBSvv/46kyZNqtYxvF6T/dkHvSyeEpO8Aktg5Bda/xcUlvamQFmPyiFtYeH84O4Sf09LiU/IYGApFv/+1DwoPkzTbxsgPt4SL/HxfoKGg6IGLG+MEWctb9qICmu0JMRDy6bR78x37dgc9XNECAXcobV+AUApNQV4yF2T6igdroEmw+APhZvzrEWKDq0Nnr3R8iKdN8ZE9RWRJASnIg/SfuB8pdRXwGLgIq31rzVjllAX2bRpU7X2z84zWbjSZMdeS3iYPoES7wv/xPuFgRokVnysOAMaJ1d+TkfcyISXscY+4ARfTSOAE4G9FWwvVIUGnaDbw1ZSdi0OrQVy8Unw1ldwxaMm+lVITJDft1CWigSS4XvFA92wqtUKQo1TUmKybpvJH+ugQQKktql+Z2YYkBAvnWIt5jXgfuA032cDazJtIZL0ehEKN8G2x922JKIYhsErt1ihtsffgTsvqXwfof5RWQ6SWc57QagRDmSb/L7CZF8WtGkhokZwmAXsxvIcAcwFvnLPnDpI63Og5Vj4c0StHLVWGV3bGzx0Fdz6ssk5o+GQztK3CKWpTCA9AeRgiaPXfOX4wZoUclBULXOJSOTJCNWnuNhk5RaTZeshJdnKGxAEP74G3tVanwOglHoASyD1rmgnpVQz33aHYs0OsBlrNFwCUAxcprWuNYlYUSO+GfR8Bra/CNl1t/7m9WfArHlwzZMmXz8toXShNJXNXdQZ6Iflvu6ONXHtYcCAKNvlGtXNkxGqz54DJnMXmCzfAO1aQLOU0p3Wl5+87o5hQiyRilUc0mYzEMpsq3lYxW9n+z57gIu11qOwphwpf0r6+kT3h8Ashs13u21JVImPN5h5i8EPf8Kb89y2Rog1yvUgaa1DmvixqiilHsWa9HYTcLnW2uNbfhpWLoEHWKS1/ns07RDcwzRNCousofAFRZBfaLItw2TuQpNmjaBDq+BPczu3b6pZQ4VYZANwi1IqHesBbppvWYX4+pkMpZT9uQDY7ltdRF0YplVdmgyzRq6tOBtKst22Juoc3tvgprNNpr5gMnYYtGomXiTBoqJh/iOAgVrrl/yWGcDVwDKt9c9VPalSahCQqrUeqZS6C2syXLueyZ/ACK11sVLqHaWU0lrrqp5LCA/TNCn2K1Zov0q8wYsP+i8qKYbNO03fcaxlXt8brxf2Zpr8udZLVi5k5UFOvlUHyL8uT3YudGhZ8ZB3QcDy9vwX+Mz32QCqnGqrlGoA3AtcGWTdZGAywJQpUzjxxBMDNwkJj8dDenp6VU2sNpWdPy0tjeISg6mzRtK26S7umjYJw5gUkXP37NmTtLS0iBzLJpy2rOxvn3yKwTtft+GGpwp5fHJmJMwL6/zRpj6fP/DcqampIe9bUQ7SU8AS/wVaa9Mnbq7EqkNSVY4GbIfml8Bl+ASS1nqL33byRBdBvF7T8dYUFEFegUlmriVU8gqsOkJFdi6mX7VCE1+9n2ACyW/ZYZ1g+VoTw/ANwbdX+N7s2Avr0q0h+A0SoE3zskIouaGII6FytNazlFKbgfG+RXO01j9W45AzgX9prdcGOddM33qoxmCV9PT0sDrnSFPZ+Tt16gSpU6HraDZ/Poy//XdLuduGS1paGhMmTIjY8cB6mAuVUNr+pWkmE+6M5/qzUxgxILJ9UKx/93X5/NU5d0UCqT/wSpDlC6nGk5qPFsAO3/tMoGXgBkqpoUBbrfXiIOuq9ETn9XorVbFZWVmuKm1/gqlu0/S9OFjQ0PT9Y/qtd7blYBVn+7O/1kkCkpPBaESpKs5VITHew+Fdd5S7/qdm2fRPLX89QOMG2bRvvL3a21RGYryn2seoSWrK3lDatk2T7Ep/I+E8MVa18/IJouqIIgCUUjOADVrr96p7rFpNg07QdQZseQAKIyeOagunH2Mw4RiTa580WfSa1EYSKhZIRcAQ4D8By4f41lWHA0BT3/tmWEXfHJRSnYBngDOC7VzVJ7q4uLhKO+OmTZu6onS9XmuC0EL7VQQlRdvZm9PB8fDk5B+s6lzKoeN7YxjWtBR2cUM4OIdWg0RIjI/uKI32jbezM6djuetzippUuD6S21RGZbbGGjVlb2Vt6/WaZGQ3qfQ34vYTa0X4iksOBvr43t8N/KSUGgP8qrW+w037XKPnM1CwqdZPJ1Idnvu7Qb9LTJ6bDdPOd9sawW0qEkjfAlf7khnn+padhJWD9L9qnvcXYCrwBnAy4OQzKaWaAO8CV2utd1fzPNXGNE1nTq2CIku45BdWrskCp6zy/2x7fvIKIDvfEj75BaVDWSYwoBNs2W0Jm8QEaNkU4iX8JAjVQms9NmDRA64YEkN89qsJrc+AP4+1Rq/VU7q0M5gxCWb8n8l5Y6BTW+lv6zMVCaRbgZHAtcA1vmUGVnG226pzUq31EqXULqXUfGAL8IRS6hWt9dXATVglBV7wibMZWusfqnO+cMjMMVm23ktmLmT7EomLS0rn4BhG2QlAy6O87axKzpbwSW5ozcUV6N1JiIcWTeQHKghC9MgrMJnytAm7/gtZP7ltTsiE6g0PJ1cJ4KZz4L9fws0vmHxwv/S/9ZmKhvlvUEoNBKYAR2DJg0XAi5Hw7GitA+uNXO1b/gAuPdGZpsmWXbB6q5VE3CBRvDaCINRtHn7TGqzBxlvdNiUmaJBo8K+pMPpGky9/NznlKOn/6ysVVtLWWu/Cis87KKUOU0pN0VrfE1XLXMIwoLXUwRAEoR6weovJY+/AczcaXPP5HrfNiRmOHWxwyckm1z9tsvy/kNxQ7gn1kZCKQSql+iqlZiil/sKqU3RXdM0SBEEQoolpmkx5xmRQT7hyfOXb1zcev9ZgbxY8+pZMQ1pfqahQ5CHAucB5WEP+7Sycz7AmihQEQRBqKe99C98uhoWvGMTLJNBlaNfSmsx26osmF51oymS29ZCKPEirgfuxahS9CFyKJZJe01p/UAO2CYIgCFEgM8fk5udNrj8DjugjN/7yuPp0GNADrn/aDDvZW6j9VBZi8wI/YA35XxR9cwRBEIRoM+M/1s3+gStEHFVEfLzBS1MNvl4E73/rtjVCTVORQLoBq17RecCHwGKsENtQpVSrGrBNEARBiDCLV5s8/xE8NcWgWWMRSJWh+hpcf4Y17D8rV7xI9YlyBZLW+kWt9bFAZ6yijvaUH3cBO2vANkEQhKijlIpXSr2plPpOKfUfpVSFo3trMyUlJtc8aTLmCDj/eLetqT08eKWBacI/XhOBVJ+odBSb1nqH1vpZrfUIoCtwCxJuEwSh7nAGsFFrfRywCjjTZXuixstpsHQD/OtmI6rTDtU1mjU2ePoGgxf/B3qViKT6QkjD/G201tu01k9prYdFyyBBEIQapiewxPd+MTDKPVOix859cdz5qsntFyIjsqrAeWPghCFw9RMmxcUikuoDddaVLAiCECIrgFOwci1PAFr4r1RKTQYmA0yZMoUTTzyxSifxeDykp6dXz9JqcPfrzWjdtJhLjssgmBlpaWlRO3fPnj2jevyK+OSTT+jZsyeLFlUe+BgyZEiF6++5KJ7jp7fhn69ncuWpeSHb4PZ3X5/PH3jucCbRFoEkCEJ9Zw4wWin1LfAXATmWWuuZwEzfxyq7DtLT08PqnCPJnF9Mvlho8t2zBj27B7ehU6dOUTt/WloaEyZMiNrxI3X+yobyp6bCPZNMHn6zGZed1pwu7ULzxLn53df381fn3GGF2ITQ+PKT1902QRCEENFam1rraVrrMcBewB1XR5TIybOmzDjv2DxGHy6htepyy/nQrb3URqoPiAcpCuzcvsltEwRBCBGlVHvgHay6b99orX902aSI8o/XTPIL4R8XZQGN3Tan1tMg0eDVW+Ho60w++A7OHeO2RUK0EIEkCEK9Rmu9EzjObTuiwe8rTJ77EN6+x6BFE/F2RIph/Q2uP8PkxudMThwKLZqIZ64u4lqITSn1qFJqvlJqllIq0W95vK8WyXyl1DNu2SeUpraFDWubvYIQaYo8JsMuWYq5Zw4XnBDHokWLMAyj3JcQHg9NNmiQAFNfEOFZV3FFICmlBgGpWuuRWHVHzvZbPR7Y7luXopQa7oaNQmlqW9iwttkrCJHm4TeBhl1h3fVum1InadLI4JVbDF7/AuYuEJFUF3ErxHY0MM/3/kvgMqwcAHvdZ37rRgC/VveERUVF7N+/nzVr1pS7jWmaZGftZevm8rcJhcwD1T8GQH6j3ezJy6n2cSJBKH9TZfaGcoya2iaW2jYUasreytrN6/3/9u48PoryfuD4Z3JsCAlJQCBAQIHUo1It2qeieFu8qoJapFKt4Inan1oPUDxR8MajaLFqW9HWn/eRetSi/lqxeNQHqxavqnhxyhXCkWR3s8/vj2cSNkuS3SS7O7O73/frtdljZuf5ZmZn9rvPPPM8dh/paD8CWLVqFf369SMQCCQ7RJGA9z83zHrIwJfTILjU63Cy1pF7O5xyuOGsWw2LH7RJk8geXiVIvYEV7uMNQJ+YaXXtTAO61i/JkiVLmDdvHvPmzYs77/ya38adJ55nH+/+MvwmGf9TIstI5zxiW4mst52fjT/PggULGD58eNz5vLz8OBuFwobJNxoOHAmv/uN+r8PJenec57DrKYapcw2/u0QSpGziVYJUC5S5j8uBdQlOA7rWL0m/fv1YsGABlZWV7c5jjOHFNw19Kzr+kD/9yF0cP/G8RIrt1jL+9uRNHD7+sm4tJ5FykvH/QGLx+kUy1m2y5vHTZyGeSMRQuwmO3Lvjs/OrVq1i1KhRUoPkgRv/DJ8thWfmOQy70+tosl+fMof7LoFxlxuOP8Bw2F6SJGULrxKkN7AD4D4EHA4sjJk2BljgTnsgGQUGAgGGDx/e4a9VYwz//tYwYLuOP+A77/ojhuywU7fiKa/YLu4yKnr3jjtPvOUkUk4i8yQikXj9IhnrNlnz+OmzEE8kYuhZBzvt1HGCVFJSIsmRBxZ9apj5oOGuXzsMHShf1Okydj+HSUcYTr/Z8J95UCFXtWUFTxppa63fA1YppV4HRgBPKaXudSc/D2zvTmvQWne7/VGyHTF2stchCCFEK/WNhl/OMoxRMGWs19HknjvPczDA+XOkwXa28KwfJK311JiXprivh4HJaQ9I5JSqwUO8DkGIpLrifsPKdfDKHXLZvhcqejnMmw6HXmQ4eh/DhENkG2Q66ShS5KTjjp/Aysy5iC0hAwYN9TqEjKWUOgi4ClurPkdr/Yy3EXXO/H8Z7ngcHpvhMKivfDF7ZYxyuHCC4ezbDKN/AIP7y7bIZJIgCZEl5NRv1yilioGLgSO11kGv4+ms1bWGSTcYTv0pUmvhAzec6fCKNpxyveHl2yE/X7ZJppLBaoUQuW4foB54Tin1jDs2W0YwxnDaTYZePWHO+fJF7Ac9ihz+92qHNz+Emx72OhrRHVKDJJJG2vWIDFUJfA/YG3sF7Qzg7OaJXel3rS2hUIhly5Z1N9ZW7n2+hL+93Ytnr13LhvUhNqxvPb2mpqblcXV1davn6eRl2Z0pP1nbp3cRzDilmMv/UM6uVWvZozr5274zUvHZy5TyY8vuTL9rkiCJpMnGdj3ZRNootasWWKi1DiqlXgWmR0/sSr9rbVm2bFlSO8V8c7HhxkcNt/3K4acH9G9znsGDB7c8rqmpYdy4cUkrvzO8LLsz5RuTvCvQpv3S8O4XhvPn9uXFWSvZbeigpC27s5L92cuk8rtTtpxiEyJHSBuldr0DfF8p5QAjgSXehhPf2g2Gn88wjNsPzvuZ19GItjiOw31THXoE4Fd39aapSS7/zzSSIAkhcprWeg3wDPAacAtwnbcRdSwctslRoBD+cKlc0u9n5aUOT81yeOe/Aa75oyRImUZOsQkhcp7W+rdARgzed/n9hrc+grfucSgvleTI73avdrj5jA1cMLcCtYvh2P1lm2UKqUESQogM8cgrhlsfgQcuc/jBcPmizRQ/27+eC8bDybMMH3whNUmZQhKkDCcNb4XIDW8uNpx6k4FvbmDCIXk4jhP3JjonkXXa1XU7+1yH0SNg7HTD6lpJkjKBJEgZThreCpH9vlphOPYKwzGjga+v9joc0QUFBQ6PXetQVAjjphvqGyVJ8jtJkIRIManlE92xrs7w02mG7SvhwcsdutHTgPBY714OL97i8PkyOHmmkSvbfE4SJCFSTGr5RFdtaTAcfakhGIYXbnbo2UNOm2W66iqH529y+OvbcOHdJql9L4nkkqvYYgQKYeVagwEK8iFQAIUF9vUCGVMnp/ip5kd6Kc89wZBhwjWGL5bDG3Md+veW40+22GtXh8evheOuMPTuZbj2NNm2fuRJgqSUuhkYDXwFnKa1DkVNOwa4EggBi7TWF6QrLsdxOHwv2NIIDY2wsd6wcTNs3AJ1m6ExZHDcGu54bfSafxQ0z2cAJ2rapnpYsdbgYBOw5lugQAY39As/1fxIL+W5JRw2/OI6w8L/wP/d6VBdJceEbHP0aIeHroCTZhrKehouPrHz2zjRxuI1NTWe9qSdqdKeICmlfghUaa33V0pdAYwHHoma5X1gX611WCn1iFJKaa11uuIrKXYoKW5+1vrDFw4bGkMQDMdfTmytafRzY2DRK3DgSIeGoJuE1dukaf0mCIVt4tQUgZXrDMbY2qyWRCrfPs/Lk4OmENkmHDaccoNh/jvw8u0Oe+wk+3m2mjjGoW4znH2bIS8PLpwg29pPvKhBGg3Mdx+/BJxKVIKktf4mat4gEElfaB0rKHAoKICSJCyrpIfDoL4OsUkYbE3E3n4BDhrp0BiCzQ2GTVtgcwNsdhMpE7FZV+yPCNPyxyZeK9cZCvPtacLmU4aSXAlhKaUqsT1ph4Am4CSt9QovYgmGDCfNNLz0Nvz1VodRu8p+mu2mjHMwwDm3GcJNMHWibHO/8CJB6g00H3w2AH3amkkp9WOgv9b63TamdWl0ba9HNI5WV1cXNxZjIjQ1LKcAKC+E8nKgPHr61pqplgoqs/WxMfBWn42Mql5BU4SWWySy9ZSfMVBcuJG+xcttqubYhMsh/mnEWIX5IQaULu/cmzySrFhLAxu7vZxEluGnddu/BOLtRp3Z13xQ9b8G2E9rHVFKTQZOB2alO4j6RsMJV9vTai/f7rD3CPmizBVnj3PIz4Mpsw11mw3XnS79WPlByhIkpdQA4NE2Js0HytzH5cC6Nt47GLgTOK6tZXd1dG2vRzSOVlZWFjeWvLy8bsdbUVHGsKGtl2GMoTEIDe5tePUPyOsxkPpGqG+ExpBtg1UfhJB7OtFp+dO+EYNW8NHyga3LYmsitrV8KCjYWqMVKIT8NNdoDShdzspN3R9du7Tvbt1ezqZgr7jLSFa83RWJGNbWwQm7dHwBrJ/2tXi01k1RT3sBH6Y7hjW1hnGXGz5bCn//jcPIHeXLMdeceYxDaTFMusHw3XrD3IukParXUpYgaa1XAgfFvq6UGglcBDwEHA4sjJneC5tYTdFaf5eq+HKZ4zj0KIIeRfb51AtPa3feSMQQCkO4qd1ZWqxbA0ft47SqwWqp4XJrtkJhm5TVbTbUuY3f19VBuMk2gDcGKkqhuCgzDgx+asgtus49Lt0LVACHpbPsL5bZfo4iEXjzHmmQncsmjnHYrgyOv8rw7XeGR2dAWYl8HryS9lNsWuv3lFKrlFKvA98AswGUUvdqracAvwaGAXcrpQCu0Vq/lu44hZWX51AUgKIE5q3Ng9Keie7MrecLhgwNQdiwyaA/tQlUvwppKyXSQ2v9HjBKKTUBmA6c3Tytq6f0Y7V12nHBBwHOmdOb6kFhHrhkPT2IxD19WVNT06Xyq6uru/ze7vKy7FSV35nmGp055TyiCp6+uoDJt/ZhrzMj/PGS9exQ2fYv1ET/p+rqak+bl3jZvCW27M7UbHtymb/Wemobr01x72cCM9MeVJoNHTo07jxDhuRO3zeBQodAof21VNnHsHiJ4aOvoaLUUFosSZJIHaVUQGsddJ9uALZET+/qKf1Y0acdIxHDbY/BZfcaJh0Bcy8sokfRwDhLsAYPHtyl8mtqahg3blyX3ttdXpadqvI708FjZ085V1XBop0Nx11pOOrK/vzpSoejR297HEz0s1BTU8PYsWMTLj/ZvDzl3p2ypaNIj0yePDnuPBMmTEh9ID4UKHTYc2eHIZWGtz40rFhr6N87/e2URM4YqZSajb2CrQFo/5xzEqyuNUy63vDquzDnfIdzj0u8PxuROwb2dXhtDlz8W8MxlxmmTTTMPMMhUCiflXSRBEn4Vr8KhyNGwcdfGxYvgdJik5Xn4/3UY3cu0lr/CzggHWU9t9Bw1q2G0mJ4c679ISBEe4oCDndf6LDvboazbzPM14Y/XwkjhsnnJh1kLDbha4UFDrtX53HEKIdAAaxYYwhn2QCP0tA7+62uNVwwt5yx0w1j94V3/yDJkUjcxDEOHzzgUF4Ce55huG6eoTGYXcdBP5IapCyXSFunTNCnzOHQH8NnSw0ffAER9/x/SxcC7hVwjgP5efbWkX7FdpT0jjhun1B57s3Jc++dqPuW1+TLTmyrqcnw++dh+n2GkqIAf5vtcNhe235W5POTeTqzzWpqarrcdiymVBg4hWvuu5Fr7l4KFYdC7ctJWK7/dGb9pmrAX0mQslwibZ0yRX6+wy47OOw0xPY429z9QPR9qMmwpQGa4nRLEMiDYe20iY1E7WtNTRCOQFPYvXefB0P2PtzkdoFgjJut0dJdQXTS1tyBZ3MHnE5MopXvDh9TkGfvpf+TzGaM7Q172j2G/y6FqSfC5J+s5nvDM6NvKOFXBlb8Dtb+BYbPht1egrUvwFfTYUvau+/KepIgiYyTl+cQyLMdTG4rscRi2TLYsSo5Z5iNMTQ12V7Kw7H3YZtwRSLN96bV9Ij7uDFkO+lsCMKGzbbbg+aEC2C7Yli5tnkE5K2vN9didab38+Z5Wu5bJti7gnwZ76+7bn7Y1hqd+BOoudFh+CAn7uX7QiQsuBw++QUsvxuGzYY934PVj8O3s2DLx15HlzUkQRKimxzHjtFXQCL9RSWWcEQiW2vJgmGoWw8H7eG0SraamrYmW+GmbWvNIm3UOke/FnFHOWyunY4Ye2sI2vH+ajdBU8S0JF/GnV4oR424TjoUxigHtYskmCKF6t6A90dDn6Nhh2vgR4ttjdKyO2DD372OLuPJoU4IH4quJSsBttTBgO1iv2xT++VrjE3SgiFbwxUM2WStG10B5YwhlQ5DKr2OQuSMdc/bW8UYGHwJ7P4KbPkUVt4P3z0S//2iTXIVmxCiTY7jUFjgUFLs0KfMYcB2DttXOmxfKYeNRDiO0+q2aNGibV5rvgmRFLWvwOIjQH8f1r0AQy6DUd9w9ROjcAZOwQkMbPcz2NVbNpMjnRBCCJFN6v8LX06Ft6vgo+Mo7xmEYTfB3stg5L9gh1lQfjDkFXsdqa/JKTYhhBAiG5kwrHuBi4/6NwvuH2+Tot6HwXZjYfvpEAnCpndhk4aNGja/bxt5m5DXkfuCJEhCiJynlLoZGA18BZymtZZvCJFdTAhq59vbl0BhPyjbH8pGQa8fQ+VkyC+FSAgavrC1UPWfQ8MSaPgaGr+F4FIIr/f6P0kbSZCEEDlNKfVDoEprvb9S6gpgPCAtW0V2C62GtU/bGwAO9BgGJbtD8U7QcxebOPU7EYoGbX1fpBGCq+z7Q2s46boIvXtBRSmUlzqU9YTSYigphpIeUFwEGzcUUBs0FBVibwEIFNgrYgtauhTxX4epkiAJIXLdaGC++/gl4FQkQRI5x7i1RUu2neQEoKgKAlUQGAiBSijsC4X9CDfBp9/Chk2wYbNh4xbYVG9vWzu47kciV7/m5xvbUW4esM96IAKmyb7XROxzjLvgrbe/v2s4eM/kJ1fZkCAlvFaqqjKrF1uJN3UyKVaQeFOsN7DCfbwB6BM9USl1FnCW+3SK1vq+RBba1vAHqRoSIVFelp/L/7uU3xUVSVlKd45F2ZAgCSFEd9QCZe7jcmBd9EQ3IUooKRJCZA+5zF8IkeveAMa4jw8HFnoYixDCJyRBEkLkNK31e8AqpdTrwAjgKW8jEkL4gZN55yWFEEIIIVJLapCEEEIIIWJIgiSEEEIIESNnrmLLpJ5ylVJDgXeAD92XTtBar/Yuom0ppcqBl4Fdgb211ouVUicAFwL1wCSt9VIvY4zWTryfAcvcWa7XWr/sWYBRlFJ7Ab8BQtj4TgGOxb/rtq14P8KH69ZLSqmJwBytdT/3eVr2l7a2j9Y6lMby037s9cM+FL29031sVEodBFyFrQSZA6wGbsF2JHSO1vo/KSw7D/gjUI3thucMoG8qy0/0+0gptQv2itQC4Cqt9asdLTcnapCie8oFPsH2lOt3r2mtD3JvvkqOXFuAo4AnAZRSBcBFwEHA1did009axevaELWO/fQF/i1wiNb6AOyXyjj8vW7bitev69YTSql84ATsukr3/rLN9klX+R4eez3dh6K3d7qPjUqpYuBi4Eit9cFa62eA67HHv18AN6eyfGAkUORu8+nY/z3V5Sf6fXQDcDpwBHBdvIXmSg1SJvaUu697Vc3rwBVaa1+1pnd/Ba5WSjW/tCPwsdY6CCxUSs32LLg2tBEvQKlS6jXsL8z/0Vqva/PNaaa1XhH1NAjsjL/XbWy8EXy6bj00EXgC+8UFadxf2tk+6Srfk2OvD/ah6O2d7mPjPthak+eUUluAc4EmrfV6YL1Sqk+H7+6+pYCjlHKwnbBuTnX5nfg+GqS1/gxAKbVOKdVXa72mveXmRA0SdiPVuY+36SnXh1YA3wMOAPoDx3sbTkKi1zFAvleBdMK+WusDsQfua70OJpZSagfgMOCfZMC6jYr3OXy+btPJrU2YADwW9XLa95eY7ZOu8j099nqxD7WxvdO9rSux3x/HAPdj97/o8sNKqUAKy1+DPbX5CXAXcEeay4f213l0zhP385grNUi1dNBTrt9orRuBRgCl1NPA3vi/b5Zatq5jgCaP4kiY1nqt+/BJ7Hly31BKlQF/AiZjd25fr9voeN1fc75dt6milBoAPNrGpAeAx7XWkahfuLUkeZt2UP6J2FMQLdtHKZX08tsRXU5aj70e7kMn03p716ax7ObyFmqtg0qpV7EJ0sao6QVuzUqqHAaEtdY7K7sCbqP1/5/q8qH9dR6Jei3u5zFXEqQ3sOcjHyIDespVSvXSWjd/oPcHPvYyngR9Bnzf/WWggA88jqdDbpyOm4zuD3zucUgt3PPnjwLXaq0/VUoV4uN120a8vl23qaS1Xolt89CK20h5D6XUycCOSqk52FMvSd2mHZRfAPwFd/u4L6drf/Xk2OvxPrQrUdsbOC+NZYO9wOdi9xTXSOwFE8OUUhVAL1KfpDps/YG0xi2zII3lQ/uf7xVKqWrgO6BPR6fXIEcSJK31e0qp5p5yvwF81YajDfsppWZhf/V9if8a5QKglHoRuwPuDNwL3An8A2gAJnkVV3ti4n0WmKCU2oytrTvNu8i2MREYBVyllLoKuAd/r9u24p3m03WbdlrrS5sfK6W01vp89/GdpGebbrN9tNaPpaN8D4+9nu1DbWzvc5RSP09H2W75a5RSzwCvYYe7Pw2oAl50n5+byvKxV5NNdtsgFmET5IJUl5/g99EVwDxsjeI18ZYpPWkLIYQQQsTIlUbaQgghhBAJkwRJCCGEECKGJEhCCCGEEDEkQRJCCCGEiCEJkhBCCCFEjJy4zF/4mzs475fAC1rroz0ORwiRY5RSXwF9tdalXsci/ENqkIQQQgghYkgNkvAVpdQ04NdAX2xvp/drra91px0C/B4oBR4ELgEe1FpP9iRYIYTvKKUex45fOVBrvVopdQswFbiUdo4tMe+fge1E8ASt9ZNKqcXACK21406fDpzlLucN4Byt9ZKU/2Mi7aQGSfjNt8BM7IHsA2CGUmpfpVQR8DDQz50+2rMIhRB+9jC2p+Tj3OfjscM1tXls6cyClVKTgBuAt4GbgN2BJ5IStfAdqUESftMf++utd9RruwGbgAHAw1rru5RSnwDzPYhPCOFvf8WO9zVeKbUIGIYdYqK9Y0tnxodrbiP5c/cGMEAp1Udr7etB0EXnSQ2S8JMS4HZsMnQs9pcaQI+oeWRsHCFEu9yR4p8ADsaeCjPYWqV4x5ZmzSO/N1cgVLQxz0nAoe7tcOy4mSLLSIIk/KQJezArwtYWRV/R9gmwEhinlPoVMCPt0QkhMsXD2ATnTOCf2NHl2zu2xPrKvR+vlLoMO9Brs+fd+0nAEOBA4CqtdUPSIhe+IQmS8JMGYBr2IHYZUafQtNaN2F9ta91p77mTatMaoRAiE/wT+BpwgD9rrTfRzrGlDU9hR6Q/DNvGqKUBttb6Qff9OwL3ABOBBSmIX/iAY4ycsRCZQSk1DnvAqwcuwh7AjtFaP9/hG4UQQohOkkbaIpNsD1wN9MJWg/+PJEdCCCFSQWqQhBBCCCFiSBskIYQQQogYkiAJIYQQQsSQBEkIIYQQIoYkSEIIIYQQMSRBEkIIIYSIIQmSEEIIIUSM/wd6+VF2sFnJngAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAysAAAJjCAYAAAAMK47pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUVdvG790kmx5IARJCSAihdwgC0nuR3pQqIMUGqFiwUi2oIKK+iiCJIgKKCoIoRaRLkyqdENKAhJbed+f7Y785nNmWTbbO5vldFxezM5OZM3tmZ859nqYQBEEAQRAEQRAEQRCEk6F0dAMIgiAIgiAIgiAMQWKFIAiCIAiCIAinhMQKQRAEQRAEQRBOCYkVgiAIgiAIgiCcEhIrBEEQBEEQBEE4JSRWCIIgCIIgCIJwSkisEARBEARBEAThlJBYIQiCIAiCIAjCKSGxQhAEQRAEQRCEU0JihSAIQobEx8dDoVCwf+7u7ggLC8MTTzyBq1ev2uy88+fPh0KhMGvfqKgoTJo0yWZtKW97rIn4/d+4ccPu5yYIgqhMuDu6AQRBEETFiYuLQ8OGDVFYWIhDhw7h3Xffxd9//41Lly4hMDDQ6uebOnUq+vXrZ/XjEgRBEIQhSKwQBEHImKZNmyI2NhYA0K1bN6jVasybNw+bN2/G5MmTrX6+WrVqoVatWlY/LkEQBEEYgtzACIIgXAhRuKSnp0vWnzhxAoMHD0ZQUBC8vLzQqlUr/Pjjj5J98vPz8fLLL6NOnTrw8vJCUFAQYmNjsX79eraPIberkpISvPrqqwgNDYWPjw86deqEY8eO6bXNmMuWIZeqjRs3ok+fPggLC4O3tzcaNWqEuXPnIi8vr9zfyfLly6FQKHDt2jW9ba+99hpUKhXu3r0LANi1axeGDBmCWrVqwcvLCzExMZgxYwbbbgpjbm/dunVDt27dJOuys7PZd61SqRAeHo4XXnhB7/p++ukntGvXDlWqVIGPjw+io6MxZcoU8y+eIAhC5pBlhSAIwoVITEwEANSvX5+t+/vvv9GvXz+0a9cOX331FapUqYINGzbg8ccfR35+Phtgv/TSS1i7di0WL16MVq1aIS8vD//99x/u3btn8pzTpk3Dd999h5dffhm9e/fGf//9h+HDhyMnJ6fC13H16lUMGDAAL7zwAnx9fXHp0iUsWbIEx44dw549e8p1rPHjx+O1115DfHw8Fi9ezNar1Wp8//33GDRoEEJCQgAACQkJ6NChA6ZOnYoqVargxo0bWLZsGTp16oRz587Bw8Ojwtckkp+fj65duyI1NRVvvPEGmjdvjvPnz+Odd97BuXPnsHv3bigUCvzzzz94/PHH8fjjj2P+/Pnw8vJCUlJSua+fIAhC1ggEQRCE7IiLixMACEeOHBFKSkqEnJwc4c8//xRCQ0OFLl26CCUlJWzfhg0bCq1atZKsEwRBGDhwoBAWFiao1WpBEAShadOmwtChQ02ed968eQL/6rh48aIAQHjxxRcl+61bt04AIDz55JNG/1b3WhITEw2eU6PRCCUlJcK+ffsEAMKZM2fKPKYuw4cPF2rVqsWuVRAEYfv27QIAYevWrSbPm5SUJAAQtmzZYrLNkZGRkusV6dq1q9C1a1f2+f333xeUSqVw/PhxyX6bNm0SAAjbt28XBEEQPv74YwGAkJmZWeb1EQRBuCrkBkYQBCFj2rdvDw8PD/j7+6Nfv34IDAzEli1b4O6uNZxfu3YNly5dwrhx4wAApaWl7N+AAQNw69YtXL58GQDwyCOP4I8//sDcuXOxd+9eFBQUlHn+v//+GwDY8UVGjx7N2lARrl+/jrFjxyI0NBRubm7w8PBA165dAQAXL14s9/EmT56M1NRU7N69m62Li4tDaGgo+vfvz9ZlZGTg6aefRkREBNzd3eHh4YHIyMgKn9cQ27ZtQ9OmTdGyZUtJf/Tt2xcKhQJ79+4FALRt2xaA9rv88ccfkZaWZpXzEwRByAkSKwRBEDLmu+++w/Hjx7Fnzx7MmDEDFy9exJgxY9h2MXbl5ZdfhoeHh+Tfs88+CwAsHmPFihV47bXXsHnzZnTv3h1BQUEYOnSoyVTIootYaGioZL27uzuCg4MrdE25ubno3Lkzjh49isWLF2Pv3r04fvw4fvnlFwAwS0Tp0r9/f4SFhSEuLg4A8ODBA/z222+YOHEi3NzcAAAajQZ9+vTBL7/8gldffRV//fUXjh07hiNHjlT4vIZIT0/H2bNn9frD398fgiCw/ujSpQs2b96M0tJSTJw4EbVq1ULTpk0lMUQEQRCuDsWsEARByJhGjRqxoPru3btDrVZj9erV2LRpE0aOHMliMV5//XUMHz7c4DEaNGgAAPD19cWCBQuwYMECpKenMyvLoEGDcOnSJYN/KwqS27dvIzw8nK0vLS3Vi3Xx8vICABQVFcHT05Ot1w1e37NnD27evIm9e/cyawoAZGZmlvl9GMPNzQ0TJkzAihUrkJmZiR9++AFFRUWSjGn//fcfzpw5g/j4eDz55JNsvaHAfEN4eXmhqKhIb/3du3dZPwBASEgIvL29sWbNGoPH4fcdMmQIhgwZgqKiIhw5cgTvv/8+xo4di6ioKHTo0MGsdhEEQcgZsqwQBEG4EB9++CECAwPxzjvvQKPRoEGDBqhXrx7OnDmD2NhYg//8/f31jlOjRg1MmjQJY8aMweXLl5Gfn2/wfGKWq3Xr1knW//jjjygtLZWsi4qKAgCcPXtWsn7r1q2Sz2LGMF7QAMDKlStNX3wZTJ48GYWFhVi/fj3i4+PRoUMHNGzY0GrnjYqK0ru2K1euMDc7kYEDByIhIQHBwcEG+0P8nng8PT3RtWtXLFmyBABw6tQps9pEEAQhd8iyQhAE4UIEBgbi9ddfx6uvvooffvgB48ePx8qVK9G/f3/07dsXkyZNQnh4OO7fv4+LFy/i5MmT+OmnnwAA7dq1w8CBA9G8eXMEBgbi4sWLWLt2LTp06AAfHx+D52vUqBHGjx+P5cuXw8PDA7169cJ///2Hjz/+GAEBAZJ9BwwYgKCgIDz11FNYuHAh3N3dER8fj5SUFMl+jz76KAIDA/H0009j3rx58PDwwLp163DmzBmLvpuGDRuiQ4cOeP/995GSkoKvv/5ab3vdunUxd+5cCIKAoKAgbN26Fbt27TLr+BMmTMD48ePx7LPPYsSIEUhKSsKHH36IatWqSfZ74YUX8PPPP6NLly548cUX0bx5c2g0GiQnJ2Pnzp2YM2cO2rVrh3feeQepqano2bMnatWqhczMTHz66aeS+B2CIAiXx9ER/gRBEET5EbNR6WaUEgRBKCgoEGrXri3Uq1dPKC0tFQRBEM6cOSOMHj1aqF69uuDh4SGEhoYKPXr0EL766iv2d3PnzhViY2OFwMBAwdPTU4iOjhZefPFF4e7du2wfQ9m3ioqKhDlz5gjVq1cXvLy8hPbt2wv//POPwexYx44dEx599FHB19dXCA8PF+bNmyesXr1aL7PW4cOHhQ4dOgg+Pj5CtWrVhKlTpwonT54UAAhxcXEm22OKr7/+WgAgeHt7C1lZWXrbL1y4IPTu3Vvw9/cXAgMDhVGjRgnJyckCAGHevHlsP0PZwDQajfDhhx8K0dHRgpeXlxAbGyvs2bNHLxuYIAhCbm6u8NZbbwkNGjQQVCqVUKVKFaFZs2bCiy++KNy+fVsQBEHYtm2b0L9/fyE8PFxQqVRC9erVhQEDBggHDhww+3oJgiDkjkIQBMFxUokgCIIgCIIgCMIwFLNCEARBEARBEIRTQmKFIAiCIAiCIAinhMQKQRAEQRAEQRBOCYkVgiAIgiAIgiCcEhIrBEEQBEEQBEE4JSRWCIIgCIIgCIJwSpxSrKxcuRKjRo1C27ZtsWPHDsm2+Ph49OrVCz169MCnn34KPvPy+fPnMWbMGHTs2BHTp0/HrVu37N10giAIgiAIgiCshFOKlYiICMyZMwdNmjSRrD948CA2bdqE+Ph4/Pjjjzh48CB+++03AEBxcTFeffVVPPHEE9izZw+aNm2Kd955xxHNrxRoNBokJiZCo9E4uimEBVA/yh/qQ/lDfegaUD/KH+pD58QpxcqAAQPQvn17qFQqyfrt27dj5MiRqFWrFkJCQjB+/Hj88ccfAIB///0X3t7eGDJkCDw9PTFt2jRcuHCBrCsEQRAEQRAEIVPcHd2A8pCYmIgBAwawz/Xr18cXX3wBALh+/TpiYmLYNm9vb9SqVQvXr19HWFiYweMVFxejuLhYss7d3V1PJBH6iLMONPsgb6gf5Q/1ofyhPnQNqB/lD/WhbVAqLbONyEqs5Ofnw8/Pj3329fVFfn4+AKCgoAC+vr6S/X19fVFQUGD0eHFxcVi1apVk3ahRozB69Ggrttq1SUlJcXQTCCtA/Sh/qA/lD/Wha0D9KH+oD61LnTp1LPp7WYkVHx8f5Obmss95eXnw8fEBoLWk5OXlSfbPy8uDt7e30eNNnjwZ48aNk6wjy4p5aDQapKSkICIiwmLFTDgO6kf5Q30of6gPXQPqR/lDfeicyEqs1KlTB9euXUOnTp0AAFeuXEF0dDQAIDo6Gr/++ivbt6CgAKmpqWy7IVQqFQkTC1EqlfSDdgGoH+UP9aH8oT50Dagf5Q/1oXPhlD1RWlqKoqIiCILAljUaDQYMGICff/4ZaWlpuHv3LtatW4f+/fsDANq0aYOCggJs3boVxcXF+Oabb9C4cWOj8SoEQRAEQRAEQTg3TmlZWbx4MbZt2wYAOHXqFObNm4evvvoKnTp1wtWrVzFx4kRoNBoMHToUgwcPBqC1knz44YdYtGgRPvjgAzRu3BgLFy505GUQBEEQBEEQBGEBCoGvqkgQZqLRaJCUlITIyEgylcoY6kf5Q30of6gPXQPqR+tSUlKCU6dOoXXr1nB3t8/cOvWhc0I9QRAEQRAEQTgVTzzxBNq1a4epU6c6uimEgyGxQhAEQRAEQTgVf//9NwDgr7/+cnBLCEdDYoUgCIIgCIJwKgoLCwFAUrKCqJyQWCEIgiAIgiCcBkEQJGKFwqsrNyRWCIIgCIIgCKehpKSECZTS0lIUFxc7uEWEIyGxUom4c+cOPDw8kJ+fj9LSUvj6+iI5OZltj4qKgkKhgEKhgI+PD5o2bYqVK1c6sMUEQRAEQVQ2RKuKCLmCVW5IrFQi/vnnH7Rs2RI+Pj74999/ERQUhNq1a0v2WbhwIW7duoWzZ89i6NChePrpp7Fx40YHtdjx0GwOQRAEQdiXgoICyWdXFSvZ2dn4999/yc2tDEisVCIOHz6Mjh07AgAOHjzIlnn8/f0RGhqKmJgYLF68GPXq1cPmzZsBAK+99hrq168PHx8fxMTEYNmyZSgpKWF/e+bMGXTv3h3+/v4ICAhAmzZtcOLECQBAUlISBg0ahMDAQPj6+qJJkybYvn07+9sLFy5gwIAB8PPzQ40aNTBhwgTcvXuXbe/WrRtmzZqFV199FUFBQQgNDcX8+fMlbb906RI6deoELy8vNG7cGLt374ZCoWDtB4C0tDQ8/vjjCAwMRHBwMIYMGYIbN26w7ZMmTcLQoUPx/vvvo2bNmqhfvz4A4H//+x/q1asHLy8v1KhRAyNHjqxQHxAEQRAEYZrKYFkpLS1Fy5YtERsbi88//9zRzXFqnLKCvVyIjY3F7du37X7e0NBQJgLKIjk5Gc2bNwcA5Ofnw83NDfHx8SgoKIBCoUDVqlUxduxY/O9//zP4915eXkyQ+Pv7Iz4+HjVr1sSZM2cwdepU1KpVC6+99hoAYNy4cWjVqhW+/PJLuLm54fTp0/Dw8AAAPPfccyguLsb+/fvh6+uLCxcuwM/PDwBw69YtdO3aFdOmTcOyZctQUFCA1157DaNHj8aePXtYW7799lu89NJLOHr0KP755x9MmjQJHTt2RO/evaHRaDB06FDUrl0bR48eRU5ODubMmSO5lvz8fHTv3h2dO3fG/v374e7ujsWLF6Nfv344e/YsVCoVAG2axICAAOzatQuCIODEiROYNWsW1q5di0cffRT379/HgQMHzO0ugiAIgiDKQWUQK8nJyUhMTASgTdM8c+ZMB7fIeSGxYgG3b99GWlqao5thkpo1a+L06dPIzs5GbGwsjhw5Aj8/P7Rs2RK///47ateuzUQDT2lpKb7//nucO3cOzzzzDADgrbfeYttr166NqVOn4qeffmJiJTk5Ga+88goaNmwIAKhXrx7bPzk5GSNGjECzZs0AANHR0Wzbl19+idatW+O9995j69asWYOIiAhcuXKFWTeaN2+OefPmsWN//vnn+Ouvv9C7d2/s3LkTCQkJ2Lt3L0JDQwEA7777Lnr37s2OuWHDBiiVSqxevRoKhQIAEBcXh6pVq2Lv3r3o06cPAMDX1xerV69m4uWXX36Br68vBg4cCH9/f0RGRqJVq1bl7wyCIAiCIMqkMogV3tVN1+2NkEJixQLEQbEzn9fd3R1RUVH48ccf0bZtW7Ro0QKHDh1CjRo10KVLF739X3vtNbz11lsoKiqCSqXCK6+8ghkzZgAANm3ahOXLl+PatWvIzc1FSUkJqlSpwv72pZdewtSpU7F27Vr06tULo0aNQt26dQEAs2bNwjPPPIOdO3eiV69eGDFiBLP4/Pvvv/j7778NiqaEhASJWOEJCwtDRkYGAODy5cuIiIiQfDePPPKIZP9///0X165dg7+/v2R9YWEhEhIS2OdmzZoxoQIAvXv3RmRkJKKjo9GvXz/069cPw4YNg4+Pj7GvnSAIgiCIClIZxAp/jSRWTENixQLMdcVyJE2aNEFSUhJKSkqg0Wjg5+eH0tJSlJaWws/PD5GRkTh//jzb/5VXXsGkSZPg4+ODsLAwZoE4cuQInnjiCSxYsAB9+/aFv78/Vq5ciTVr1rC/nT9/PsaOHYvff/8df/zxB+bNm4cNGzZg2LBhmDp1Kvr27Yvff/8dO3fuxPvvv4+lS5di5syZ0Gg0GDRoEJYsWaLX/rCwMLYsupSJKBQKaDQaANqc7GJbjaHRaNCmTRusW7dOb1u1atXYsq+vr2Sbv78/Tp48ib1792Lnzp145513MH/+fBw/fhxVq1Y1eU6CIAiCIMpHZRArZFkxHwqwd3G2b9+O06dPIzQ0FN9//z1Onz6Npk2bYvny5Th9+rQkyB0AQkJCEBMTg5o1a0oG/4cOHUJkZCTefPNNxMbGol69egZd4OrXr48XX3wRO3fuxPDhwxEXF8e2RURE4Omnn8Yvv/yCOXPmYNWqVQCA1q1b4/z584iKikJMTIzkn65wMEbDhg2RnJyM9PR0tu748eOSfVq3bo2rV6+ievXqeufhLUSGcHd3R69evfDhhx/i7NmzuHHjhiSehiAIgiAI60BiheAhseLiREZGws/PD+np6RgyZAhq166NCxcuYPjw4YiJiUFkZKRZx4mJiUFycjI2bNiAhIQEfPbZZ9i5cyfbXlBQgOeffx579+5FUlISDh06hOPHj6NRo0YAgBdeeAE7duxAYmIiTp48iT179rBtzz33HO7fv48xY8bg2LFjuH79Onbu3IkpU6ZArVab1b7evXujbt26ePLJJ3H27FkcOnQIb775JgAw0TVu3DiEhIRgyJAhOHDgABITE7Fv3z7Mnj0bqampRo+9bds2rFixAqdPn0ZSUhK+++47aDQaNGjQwKy2EQRBEARhPpVBrJAbmPmQWKkE7N27F23btoWXlxeOHj2K8PBw1KxZs1zHGDJkCF588UU8//zzaNmyJQ4fPoznn3+ebXdzc8O9e/cwceJE1K9fH6NHj0b//v2xYMECAIBarcZzzz2HRo0aoV+/fmjQoAHLQFazZk0cOnQIarUaffv2RdOmTTF79mxUqVIFSqV5t6ibmxs2b96M3NxctG3bFlOnTmUJAby8vAAAPj4+2L9/P2rXro3hw4ejUaNGmDJlCgoKChAQEGD02FWrVsUvv/yCHj16oFGjRvjqq6+wfv16NGnSpFzfIUEQBEEQZVMZxApZVsxHIVAlGqICaDQaJCUlITIy0mxBYW8OHTqETp064dq1ayzQn5Aih34kTEN9KH+oD10D6kfr8e2332LSpEns85w5c/Dxxx/b/Lz27EP+GoOCgnDv3j2bnk/OUIA94TL8+uuv8PPzQ7169XDt2jXMnj0bHTt2JKFCEARBEDKiMlhW+GvUvV5CCokVwmXIycnBq6++ipSUFISEhKBXr15YunSpo5tFEARBEEQ5qAxiRdcNzJysppUVEiuEyzBx4kRMnDjR0c0gCIIgCMICKptYEQQBxcXF8PT0dGCLnBdyqiQIgiAIgiCchsogVnSvkYLsjUNihSAIgiAIgnAaKoNY0RUnJFaMI0uxcunSJUyZMgVdu3bFkCFD8Ntvv7Ft8fHx6NWrF3r06IFPP/0UlOyMIAiCIAhCPpBYIXhkGbPyzjvvoG/fvli9ejWuXLmC6dOno0WLFkhJScGmTZsQHx8PLy8vPPPMM4iKisKQIUMc3WSCIAiCIAjCDCqDWCE3MPORpVi5ffs2+vXrB6VSiYYNGyIqKgpJSUn4888/MXLkSNSqVQsAMH78ePzxxx9GxUpxcTGKi4sl69zd3aFSqWx+DXJHo9FI/ifkCfWj/KE+lD/Uh64B9aP10B245+bm2uV7tWcf5ufnSz7n5eW57L1jac0aWYqV0aNHY/v27Zg8eTIuXbqE9PR0NG3aFF9++SUGDBjA9qtfvz6++OILo8eJi4vDqlWrJOtGjRqF0aNH26ztrkZKSoqjm0BYAepH+UN9KH+oD10D6kfL0S2QmJOTg6SkJLud3x59qHuNiYmJqFatms3P6wjq1Klj0d/LUqx06NAB8+bNw+rVqwEAb7zxBoKCgpCfnw8/Pz+2n6+vr55y5Zk8eTLGjRsnWUeWFfPQaDRISUlBREQEVeqVMdSP8of6UP5QH7oG1I/WQ/f7Ky4uRs2aNeHh4WHT89qzD3WPX6VKFURGRtr0nHJFdmIlMzMTL730EubPn48uXbogMTERs2bNQt26deHj4yPxa8zLy4OPj4/RY6lUKhImFqJUKumh7AJQP8of6kP5Q33oGlA/Wk5RUZHeuoKCArvVIbFHH+rGrBQVFdF9YwTZfStpaWnw8/ND9+7d4ebmhpiYGLRp0wYnT55EnTp1cO3aNbbvlStXEB0d7cDWEgRBEARBEOVBdyAPaF3BXAnduBxD10xokZ1YiYyMRF5eHvbv3w9BEHDjxg0cP34cMTExGDBgAH7++WekpaXh7t27WLduHfr37+/oJhMEQRAEQRBmYmjg7moZwSgbmPnIzg3Mz88P77//Pj777DO89dZb8Pf3x+jRo/Hoo48CAK5evYqJEydCo9Fg6NChGDx4sINbTBAEQRAEQZhLZRArVGfFfGQnVgBtgH2HDh0Mbps8eTImT55s5xYRBEEQBEEQ1oDECsEjOzcwgiAIgiAIwnUhsULwkFghCIIgCIIgnIbKIFYoZsV8SKwQBEEQBEEQTkNlECtkWTEfEisEQRAEQRCE0+DqYqW0tBSlpaWSdSRWjENihSAIgiAIgnAKBEEwWBTSlcSKITFGYsU4JFYIgiAIgiAIp4AXKnxFd1cSK4aECYkV45BYIQiCIAiCIJwC3uoQHBzMlkmsVF5IrBAEQRAEQRBOAS9WQkJC2LIriRVDbmCG1hFaSKwQBEEQBEEQTkFlECtkWSkfJFYIgiAIgiAIp8CYWMnJyXFEc2wCiZXyQWKFIAiCIAhCRqSkpOCxxx7DK6+8AkEQHN0cq1IZLCuUDax8kFghCIIgCIKQEV999RW2b9+Ojz/+GP/++6+jm2NV+IG8r68vvL29AbiWWCHLSvkgsUIQBEEQBCEj0tLS2PKFCxcc2BLrw4sVLy8v+Pn5ASCxUpkhsUIQBEEQBCEjHjx4wJavXbvmwJZYH37Q7qpihdzAygeJFYIgCIIgCBmRmZnJll1NrJBlhdCFxApBEARBEISMcGXLijGxUlBQALVa7ahmWRVDwqSoqAgajcYBrXF+SKwQBEEQBEHIiMooVgAgLy/PEU2yOsYKQFJhSMOQWCEIgiAIgpARvBvYgwcPcP/+fcc1xsqYEiuu4grGW1YUCoXB9cRDSKwQBEEQxP9z6NAhREVF4amnnnJ0UwjCICUlJXqDdleyruiKFX9/f/bZFcVKlSpV2DJZVgxDYoUgCIIg/p8vv/wSSUlJWLNmDZKTkx3dHILQg7eqiLiyWHFFywp/jUFBQWyZLCuGka1YiY+Px2OPPYYuXbpg7NixyMnJYet79eqFHj164NNPP3W5yq4EQRCE7cjIyGDLruRaQ7gOJFbkDy9KAgMDDa4nHuLu6AZUhA0bNuDw4cNYvXo1QkNDkZCQAJVKhYMHD2LTpk2Ij4+Hl5cXnnnmGURFRWHIkCGObjJBEAQhA/jAZXESjCCcCf4eFaksYsVVfpMkVsqH7MSKWq1GXFwcVq1ahbCwMABATEwMAGD79u0YOXIkatWqBQAYP348/vjjD6Nipbi4GMXFxZJ17u7uUKlUNrwC10BMr0dp9uQN9aP8oT60LvxAMCsryy7fK/Wha2CvfjRk8bt27ZrL3D/8gF2lUsHX15d9zs7Otul12qsPjYmVvLw8l+lHHqXSMkcu2YmVjIwMFBUVYffu3diwYQP8/PwwduxYjBw5EomJiRgwYADbt379+vjiiy+MHksUPTyjRo3C6NGjbdZ+VyMlJcXRTSCsAPWj/KE+tA737t1jy4mJiUhKSrLbuakPXQNb9+PVq1f11l25csWu96otuXv3Llt+8OABioqK2OekpCS7XKet+5AXnB4eHmzZXtdnb+rUqWPR38tSrOTm5iI1NRW//fYb0tLS8OyzzyIqKgr5+fkSc6Gvry/y8/ONHmvy5MkYN26cZB1ZVsxDo9EgJSUFERERFitmwnFQP8ofe/ahWq3GjBkzcPv2baxZswbVq1e36fnsjSAIyM7OZp89PT0RGRlp8/PS79A1sFc/urm56a27d+8eqlatKsksJVfc3R8OTevUqSOxdnp5edn0N+mI32Lt2rXZsr+/v12eOXJDdmLF09MTADB9+nR4eXmhbt26GDBgAA4dOgQfHx9J8FVeXh58fHyMHkulUpEwsRClUkkvVxeA+lH+2KMPd+zYgbi4OADA2rVr8corr9j0fPZG18UkLy/Prr8L+h26BrbuR15QBwUFsVn6xMREtG7d2mbntRe8JcXHxwcBAQHss71+k7buQ/4ag4ODJevpGaCP7L6RyMhIicmMp06dOpIgsytXriA6OtpeTSMIgnBpzp8/z5Zv3rzpwJbYBt3AZVcJ5q1sZGRkYPLkyejWrRsSEhIc3Ryrw9+nbdu2ZcuuEmRfmbKBKZVKiRijAHvDyE6seHt7o2fPnvjmm29QXFyMGzdu4I8//kDHjh0xYMAA/Pzzz0hLS8Pdu3exbt069O/f39FNJgiCcAmuXLnCll0xrS+JFfmzc+dONG/eHPHx8di3b5/JuFW5wqcujo2NZcuuKFa8vb1dWqx4e3vD29tbbz0hRXZuYADw2muvYeHChejVqxeqVKmCqVOnsh/s1atXMXHiRGg0GgwdOhSDBw92cGsJgiBcAz6wl8QK4UwUFRXhzTffxNKlSyXrExMTHdQi20GWFfkjXqOXlxeJFTOQpVjx9/fHRx99ZHDb5MmTMXnyZDu3iCAIwvUhywrhjCQkJGDUqFE4deqU3jZXd1d0ZcuKQqGAh4eHS4oVY5YVXqgRD5GdGxhBEK5DaWkpDh8+bDJrH+Ec5ObmSgZ+fIpfV4HEijyZNGkSEyoqlQrLly9HjRo1AABpaWmObJpNEN3AlEolwsLC2LW6mljx8vKCQqGoVGKFLCuGIbFCEITDeO2119CxY0d0794dgiA4ujmECXQHQq5oWeFjAQASK3JBtPgFBATg6NGjmD17NsLDwwEAt2/fhlqtdmTzrI4oqqtWrQqlUskKY9+6dQt5eXmObJpV4MUKAJcUK+QGVj5IrBAE4TC2bt0KADh27JgklSPhfOgWort//77LCUyyrMgPQRBYv0VHR6Nly5YAgJo1awLQ1gbKyMhwVPNsAi9WADCxAsAlsp+JA3ZRrHh4eLCyFa4gVgRBkFhWxOsESKwYg8QKQRAOoaSkBNevX2efaWDo3PDxKoB2EOhqfUZiRX7k5eWhpKQEgLbmiIhoWQFcK25FEARmAQwMDAQgFSuu4Aqma1kBHlpXXEGs8BNz5AZmHiRWCIJwCDdu3JC4Z7jCS8iV0RUrgOu5gumKFbonnR++z8TBO/DQsgK4VtxKTk4OK1xaGcWKK0wg6GY7I7FSNiRWCIJwCLqDX1d4Cbkyum5ggOuLFbonnR/+HqwMlhU+rsqQG5irixVXmEDgBQlZVsyDxApBEA5BV6y4wkvIlamslhVXi8txNYyJFVe1rBiyJNWtW5etk7tYUavVzK3PkFjJy8tjliW5QmKl/JBYIQjCIejO1NMstvNy//59g6mKXS19sa5YEQTBJbIruTLG3MBc1bLCX69oWQkMDERwcDAA+YsVPp7DkFgB4JSp7vfv34/vvvuOCS1T8IKE3MDMQ5ZFIQmCkD9kWZEPvLD08fFhgwVXs6zopi4GtCKaHygRzkVls6zw9ygvzmJiYnDv3j2kpKSgoKBAMgCWE7rxHCK66Yud6TeZlpaGHj16QK1Wo7CwENOnTze5P3+N3t7ecHd3h7u7O0pLS0msGIEsKwRBOASKWZEPvFjhK2a7kljhU+Dy0H3p3PD3ID94Dw4OhkqlAuC6lhVdsSKSmJho1zZZE3PFijNx6dIllizm+PHjZe6v6wbG/09ixTAkVgiCsDv5+flISUmRrHO2FxDxEF5YtmvXji27kljJz8836MLhimKluLgYR48eRXFxsaObYjH84J23rCgUCmZdcVXLiugGBrhOkL0cxQrvlnb79u0y99d1AwMeihX++omHkFghCMLuGCpc5oqDQleBt6y0b9+eLbuSWDFkVQFc874cP3482rdvj+HDhzu6KRZjzA0MeBi3cv/+fZcZBJpjWSGxYl948WGOWNF1A+P/J8uKYUisEARhdwxllnK2FxDxELG/lEqly7qBVRaxcuDAAfz0008AgF27dsk+25mxwTsgjVu5deuW3dpkSwwF2AMkVhwJb1kx5z4jN7DyQ2KFIAi7Y0isuNqg0FUQBIH1V1RUFEJDQ9k2VxUrYqwD4Fr3pSAIeOONN9jn4uJiZGVlObBFlmOOZQVwHVcwYwH29erVY8uuIlb4JAFyESvp6ellplY25AYm/k9ixTAkVgiCsDuGCgw62wuI0JKens76pn79+lCpVGzg4Eqpi3mxEhERwZZdSazs2LEDBw8elKxLT093UGusgyhW3Nzc9DJE8ZYVVwmyN2ZJCgoKYpYWVxErvGXF39+fLTvbu4IXGKWlpWVO4phyAyspKWHB+sRDSKwQBGF3yLIiH/i+EmdvxRlsV7Ks8DPWtWvXZsuucl8KgoC33npLb73cxYo4eA8KCoJCoZBsc0XLijE3MIVCwYpDJiUlobS01N5NswpydwMDyo5bMeUGprud0EJihSAIuyMOgH19fdk6Z3sBEVp4K1j9+vUBSMWK3GMeRPhBoCuKlV9//RX//vuv3nq5ixVRMOu6gAGuaVkRRbWvry88PDwk28TCkBqNRrbFTM0RK872m9QVF2XFrZjKBmboeASJFYIg7ExmZibu3LkDAGjZsiVb72wvIEILb1nRFSslJSWyHRTp4spiRa1WS6wqo0ePZstyFiulpaXIzs4GoB9cD7i2ZYW3qojwA15nrPJuDpXBsmLKDQwgsWIIEisEQdgVfqa+cePG8PT0BOB8LyBCC99fum5ggOu4grlyzMoPP/yAixcvAgAeffRRTJ48mW2Ts1jhXfcqm2XFkDjz8fFhy3Id8MpRrOh+1+QGZn1IrBAEYVd0Z+rFl5ArDApdEbG/VCoVszi4ulhxJctKcXEx5s2bxz6/9957qFGjBvssZ7FiKhMYoHWVqlKlCgDXsKwUFRWxgawhseIKA145ihVLYlbIDcw8ZC1Wzp49i7Zt2yI+Pp6ti4+PR69evdCjRw98+umnLuNPTRCugq5YEbO8ONsLiND6vouZherWrQs3NzcAri9WXMmysnHjRiQmJgIAevfuja5du7qMWDFVY0VEtK7cvHlT9uMBY8H1IuQG5hh0v+uyYlbIDaz8yFasaDQaLFu2DI0bN2brDh48iE2bNiE+Ph4//vgjDh48iN9++82BrSQIQhfd7FJkWXFeUlJSUFRUBOBhvArwMJAXcJ30xa4qVk6dOsWW58yZAwCoVq0aWydnsVKWZQV4GLeSn58v+5oyxmqsiJAbmGOwthsY/x0QWmQrVn755Rc0bdoUderUYeu2b9+OkSNHolatWggJCcH48ePxxx9/OLCVBEHoIsZAKJVKREdHM8tKQUEB5Zd3MgwF1wOuaVnhsyz5+fnB3d0dgPzFCj9wElPbenh4MMHpKmKlLMsKIP+4lfJYVuQqVgy5SAHOLVbIDcz2uDu6ARUhKysL69evR1xcHJYtW8bWJyYmYsCAAexz/fr18cUXXxg9TnFxMYqLiyXr3N3dJdWLCcOIFVrLqtRKODf27kfdaugeHh6S9MXZ2dnMx5wwD1v2IS9W6taty87BD5Tu3bvnEs8BcSAYGBgIQRDg7++PBw8eICcnx+bXZ8s+5F1Sqlevzs5Ro0YN3Lt3D+np6VCr1Xo1SuQAL1aqVq1q8PsLCwtjyykpKWjYsKHN2mPr52lZ18sP7vPy8mT5u+QH6iqVil2Du7s73N3dUVpaitzcXJtdW0X60JBlxdTf8/t7enpCo9G4RN+ZQqm0zDYiS7HyxRdfYMyYMQgICJCsz8/Pl6hvX19fk36bcXFxWLVqlWTdqFGjJGkdCdOkpKQ4ugmEFbBXP965c4fNVEdERCApKYnFQQDApUuXEBoaape2uBq26MMTJ06w5SpVqiApKQmANmWxyI0bN9h6OSMOBH19fZGUlARvb288ePAAWVlZdrs+W/SheExfX1/cu3ePue2J78+CggJcuHBBr/q7HLh+/TpbLi0tNdhP/Iz1uXPnJBZCW2Gr5ymfmU8QBL3r5QfBycnJsvxdimntAe0EAn8NPj4+yM7O1ltvC8rTh7x7HqBt95UrV1imS1P737lzB7m5uZK+S01NlWXfmYL3gqoIshMrly5dwvnz5/Haa6/pbfPx8ZGYB/Py8iQ+nLpMnjwZ48aNk6wjy4p5aDQapKSkICIiwmLFTDgOe/djcnIyW27WrBkiIyNRvXp1tq5KlSqIjIy0eTtcCVv2Ie8i1KlTJ+ZSw7tGlZaWyr7PCgsLWWxOjRo1EBkZicDAQNy8eRP5+fk2vz5b9qEoTsLCwiTXUbt2bRw5cgSAdnZXjn3IB8w3aNDA4DU0adKELRcVFdn0Om39PBVdEwHt4E/3Wvi6Mr6+vrLsU77Qpe41BgQEIDs726b9WJE+LC0t1Vtn6jfF37f169eHUqmUWAB9fHxk2Xe2xCpiJTMzExs3bsS5c+cQFhaGxx9/HJcuXUJsbKzVZ0lPnjyJ5ORk5u6Vm5sLNzc3pKamok6dOrh27Ro6deoEQOvCEB0dbfRYKpWKhImFKJVKEisugL36UcwsBWgHF0qlUmIhzc/Pp/upgtiiD8WZXF9fX4SHhzNXoZCQELbPgwcPZN9nfOB1YGAglEoli6XKz8+HIAgSC6CtsHYfFhYWslnc0NBQybH5d/Pdu3ftYnGwNnwMR0hIiMHvjk+WcOvWLbvcq7Z6nvL3aXBwsN45eJfaoqIiWf4uxUkDQDto569BtP7l5uba/NrK04eGYkwyMjKMWhPEAHqVSsUEqCv0nS2xWKzcvHkTTz31FJu9adq0KXJzc7FgwQKMHz8es2fPtriRPMOHD0efPn3Y56VLlyIiIgITJkzAmTNnsGTJEvTu3Ruenp5Yt26dnuWEIAjHYShgm3c/kXswsyuhVqtx48YNAEBMTIwkpsHVAuwNBS6LYgXQDo7kGEvFB/rqThy6Qvpic7KB8QH2cq+1UplTFwOQpLkXBMFp4qwMfdemguxFccP3FwXYm8ZisbJixQrcvXsX1atXR0ZGBgCgZcuW8PX1xdGjRy1uoC5eXl6SG9jT0xM+Pj7w9/dHp06dcPXqVUycOBEajQZDhw7F4MGDrd4GgiAqhiGxojsoJJyD9PR05t7AF0kEtM9hHx8f5Ofnu0TqYkP1Ovj7MicnR/ZihXczAVxDrJhTZyU0NBQKhQKCILhUNrDKlroYeDixpdFoUFhYKBngOxJD37U5YoW/PhIrprFYrBw7dgxVq1bFpk2b0KVLF7Y+LCyszMI41mD+/PmSz5MnT8bkyZNtfl6CIMqP6FakUqmYe4YrW1ZKS0sxd+5c/PPPP/jyyy/RvHlzRzfJbPj4Il2xAmhnsvPz813CsmKofoWuWJEjlcWy4ufnJ4l14PHw8ED16tWRnp4ue8tKWXVWXGHAa6hgoojuu8IZxIpardbLKguYLgwpXiNZVszHYqe4oqIiBAcH6900+fn5BjuQIIjKiVqtZjErMTExLAbAVS0rgiBg2rRpWLp0KQ4fPoxPPvnE0U0qF3w2HN7vX0R0u7l//75LVQYnsSIfRLFizKoiIgae3759W9a1nCq7G5gz1lrhhQXvikhuYNbFYrESHh6O69evY/v27QC0tUs2bNiAmzdvUjYDgiAYxqqhu8Kg0BCvvvoq4uPj2We5uaDwlhVTYqWoqEj2L1dXFSv87K6riRVBEFi/GYtXERHjVtRqNXNXlyOiZcXd3V0SkC3iCgNeUay4ublJsp8BzilWeFHIB9Rb4gZGFez1sVisDBs2DIIgYP78+VAoFLhy5QqWLVsGhUJB8SIEQTD4eJV69eqxZVd0A/vwww/x8ccfS9bJzV2Kt6wYcwMTkdu16eKqYsVUzAqfMlyOYoX33ihLrPApfeU2acAj3qdVq1Y1GFzuSjErulYVwPnFSmRkJOsXY2KltLSUxQKSZcV8LBYrTzzxBEaMGAFAO9MhugMMGzYMTzzxhKWHJwjCReALmhmzrDjLC8gS1qxZI6kDJaaglNuA3lzLCiC/a9OlMogVXcuKl5cXSxogR7FiTnC9iKtkBBOv2dj1usKAV25ihf+eAwICWFp3YzErxmJyXKHvbInFAfYKhQJz587FxIkTceHCBQBAo0aNJDMZBEEQFy9eZMuualnZunUrpk2bxj6/++67iIuLw7Vr1ySDKzkgWlaUSqVksCfiqmLFUOpiud6XolhRKBSoVq2a3vYaNWogKytLlmLFnLTFIq5gWdFoNMjOzgZgnliRe8yKXMQK/z37+PggLCwMd+7cwe3btw2mV+aFCGUDMx+rVZ2pWbMmevXqhV69epFQIQhCj+PHj7NlPiuWq1hWNBoNnn76aWg0GgDACy+8gNdff50NpDIzM2UV3CuKlbCwMIOZloKDg9my3NMXu6plRZzdrVatmp7/P/AwbiUnJ0d2A6TyiBVXsKxkZWUxzxVDwfWAawx45SZW+O/Z29ubWTCLi4sl2dtEyLJSMSy2rAwZMsTk9i1btlh6CoIgZE5hYSFOnToFAGjYsKFkZtBVLCsXLlxgs7Zdu3bF0qVLoVAo2EBKEARkZWWVObByBoqKithsu6F4FcC1LCuumLpYEARmWdGNVxHRDbKPioqyR9OsQnncwFzBslJW2mJAOsCX64BXbmJF17LCu1vevn1br690xY2IK/SdLbFKBXtjOEt1UYIgHMvp06dRUlICAGjXrp1km6tYVvbu3cuWhwwZwmJVdAf1chArqampbNlQvArgWmJFHPjyRYflLlYePHjAfnO68SoichYrlc2yUlbaYkA75vL29kZBQQG5gdmJssRKo0aNJPsbcwNTKpVQqVQoLi4msWIAi8UK758NaG+ggwcPIi0tDWPGjLH08ARBuABHjhxhy+3bt5ds8/b2hlKphEajkeWgUIQXK926dWPL/MyaXOJWygquB1xTrPB9JXexYiq4XkTO6Yv5e64sy0pwcDAbCMrVsmKuJUkUK3Ic8PKZsuQiVnQtJZ6enuyzoSB7U0Uvvb29SawYwWKxMn36dL11zz77LB5//HHZKnuCcAYEQcDJkycRHh5udLAhF3ixomtZUSgU8PPzQ3Z2ttO8gMqLRqNhYqVq1aqSmBw5DurLSlsMyPO6jEFiRX5ihR+8l2VZUSgUqFmzJm7cuCFby4o5bmCAdnb//v37shzwinW4APmIFV3LCv/cMJS+2JgbmPg5KytLln1na6wWYM8jpkT866+/bHF4gqgUrFu3DrGxsWjYsKHBQD05cfToUQDah3GzZs30tosvITkOCgHg/PnzLMi8S5cucHNzY9vkOKivTJaVkpIS5OXlAXAtscLP6pobsyInyuMGBjyMW7l//74si+6Z4wYGPBwAy3HAa6p6PeCcLsPGAuyBssWK7jXKue9sjcWWlQULFkg+azQapKSk4OLFi2WaZgmCME5cXBwAbRaYEydOoFevXg5uUcVIT0/HjRs3AACxsbEGsxKJLyFneQGVF94FrHv37pJtchzUVybLirFBoNzFSmWyrJgz1uDjVm7evIno6GibtMtWlMcNDJBn6mJTA3nAOZOxlBWzoktZbmAAiRVDWCxWtm3bphdIL6bX69u3r6WHJ4hKSV5eHg4ePMg+y9V1AXhoVQH041VEeMuKodz0zo6xeBVAOqiXS8wKL1aMWVZ8fHzg5eWFwsJCWacuNjYIdHd3Z9fnLAOj8uDqYqWilhVAnmKFt66bY1kpKiqCRqNhiT7kQHksK2LNGUdjyrJiKGalLDcwALK0/Nkai8VKq1atJAMLhUKBwMBAPPLIIxg0aJClhyeISsn+/ftRXFzMPvPZmeSGqXgVEfElpNFoUFhYqPcQd2b4eJXAwEBJvIq4TkQuFgjRDczT09NgMUGRoKAg3Lx5UzbXZQhTsQD+/v4kVpwU8Z5zc3OTDGKNIfeMYOZaVnx8fNhyYWGh5LOzU5ZYqVKlClt2FtdoXctKlSpV2CRHRd3A1Go1SkpKDNa3qqxYLFa+/vpra7SDIAiOXbt2ST7LWayUx7ICaK0rchIr//33Hxs4denSRW8mU47uUqJlJSIiwqSVyxXEiqlBoJ+fH+7cuSNLscLP6hoTKz4+PvDz80Nubq7sxAqfFMEcSywftyO3awXMD7DXrWLvrGIlNTUVGo1G4mZalljx8PCAr68v8vLynFasKBQKhIaG4saNGxV2AwO0oobEykPkYx8kCBuyadMmrFixgtUlcDQ7d+6UfJarWFGr1Th27BgAoFatWhJXDB5nDJw0F1PxKoD8xEpWVhZzsTDmAiYiXptcU6UCpsWKnGOpxIGSt7c3AgICjO4nWlfkNoAXf0vm1i2qXr06W87IyLBJm2xJeQPsAeeNfbh48SKioqJQp04d/Pfff2y9qYG8iHjtziJWDLl1iZMDd+/e1RtTmOMGprsfUUHLyiOPPGLWfgqFQjKrShDmkp6ejpCQEElWJVtx/vx5jBo1CoD2YaFbO8jepKWl4fz583rr5MiFCxfYQM+YCxjgnIGT5mIqXgWQX50Vc4LrRXTjceRkERMxR6wUFRXJzi1DFCuhoaEmLQ81atRAQkICMjMzUVRUJKkT4ayo1WpkZWUBMC+4HpC3yxsgvU95dyhdeEuKsw54t27dCrVaDQDYsWMHmjZtCqBsywqgFStpaWms/x2NrmUFkFoy09PTUatWLfbZHDcw3f2IClpWBEEw+x9BlJdvv/0WoaGhaNGihUEzqrW5cOECWz58+LDNz1cWui5ggHwtK+a4gAHytaxoNBrs27cPgHbgbigts0qlgq+vLwB5WFbMSVssIjerkSFMzVjLNSNYcXExS3pQVo0mfhAvF4sDP6teWSwr4jX7+/sbzKgoIocB7+XLl9ky/7wxV6wA2iQ0zuAJYcqyAuhnBDNlWeGv2Vn7zlFUyLIyb948a7eDIBgbNmwAoLV4PPbYY9i7d69ZAZQVhR9k8Q9RR8GLFR8fH+Tn5+POnTuymfXkMSe4HnA+y4pGo8Hdu3clAxxDnDt3jt0/Xbt2NZp5JygoCHl5ebIY0FfUsiKHazOEOZYVQHtfmjswdjS85aC8YqUsgeoMlDcTGACEhISwZTmKFUOFSw2hG7PijPDvWf55Ux6xAmhdVvl+dQSGLCt8fJSuWClPzArxkAqJlYEDB1q7HQTB4H/cJ0+exKhRo7B161abuWDwg5UrV65Y/fg3btzAunXrMHz4cDRq1MjkvhqNhokVf39/9OzZE5s3bwagTbdZp04dq7fPloiWFTc3N7Rp08bofs5kWdFoNOjRowf27duHd955R6+WFE9ZLmAiQUFBSElJwf37950+NXNltqyUJVbkAv8MNVYQUkSO7lHlrbECaIOzg4KCcP/+fdmJFUEQmGXFVLwKII8BryWWFd2MYM4oVsy1rJAbmPlYnA0M0FYAPnPmDO7cucP8EEVI2BDlRffHvWPHDkybNg1xcXE2GeTxL7579+7h3r17CA4OttrxJ0+ejL1792L9+vWSYEJDiL8jAOjRoweioqLYttTUVFmJlezsbBZ707x5c5NZaZzJsnLy5Enm2rVw4UI0a9YMI0eONLhvecQKoHXPKSgocNoMPUD5LCv870SutVbKSl0s4uj7sjyYk7ZYRI5ipSKWFUDrCiZHsVJQUMBS2Zclzpw9ZuX+/fu4e/cu+2yJZcUZguzF79jNzY1NqFbUDYzEinEsFivJycl47rnnDD7kFAqF1cVKcXEx3n//fRw9ehR5eXlo0KABXn31VcTExAAA4uPj8f3330Oj0WDIkCGYNWuWU89iElLUajV7kVSvXh1ZWVkoKirCt99+i4iICCxatMjq59SdEb58+TIeffRRqxy7uLgYhw4dAqB1a8vMzDQ5M8ZnAevdu7fk4S23uJUTJ06wuDVT8SqAc1lWtm/fLvk8efJkNG3aFA0bNpSs5+NVgoODWZCoIXRrrchFrJBlxfXFCu/qWBnEyqVLl5Cbm+vUaX11KY8lydndwHRdrTMyMlBYWMhqk4jIRayI3zF/L5kqDEluYBXD4tTFn332GW7fvm23AHu1Wo3w8HDExcVhz5496NKlC+bMmQMAOHjwIDZt2oT4+Hj8+OOPOHjwIH777Tert4GwHffu3YNGowEAtG3bFuvWrWNic/Hixfjhhx+sfk7dDE3WjFu5cOGCJAjw4sWLJvfn41X69OkjySLizBnBnnvuOYSEhGDOnDnsBWJuvArgXJaVP/74Q/I5NzcXI0aM0BNRZ8+eZfeOqXgVQF6DetEto0qVKmXGisnpuowh9qGHh4fe4FWuYsWcGisicrSsVMQNDJAKM9GCLQfMrV4POP+A19D7VZyIk6NYEb9j/nsnNzDrY7Fl5cyZM3Bzc8OKFSvw3HPPoUGDBpg4cSI++ugjvPfee9ZoowRvb29MnTqVfX788cfx6aefIjMzE9u3b8fIkSPZAG/8+PH4448/MGTIEIPHKi4ullQJBwB3d3eoVCqrt9vVEAWF+L+1uHnzJluuUaMGhg0bhuXLl2P27NkAgM8//xxPPPGEVc+pK1YuXbpktes6efKk5PP58+eNDtzz8/Nx4MABAEBUVBSio6Mlg46UlBSrf9/W6MfU1FT873//AwAsW7YMa9euxcKFC5lFCdCmOzd1DjFbFqAdFFr7Os3l7t27LM6mQYMGcHd3x/nz53HhwgVMnToV69atg1qtxp9//omlS5eyv+vatavJNvMDqrt371r1+qz5W9RoNGzgULt27TKPyQ8c+IkGOcEHLutOsvH3ZVZWls2uz9rPU/65UaNGDZPHrVatGlu+ffu2LPqQdzmsWrWq2W3mxcrt27etnkzAVu9FPktlWf3JD4Dz8vKcrj8vXbqkty4pKQnR0dGSAbpKpTLYdr5m0P379x3+TuQtK+LfmPpN8dYuT09PyTa+7/Lz852u7yzB1GSeOVgsVrKzs1GnTh088sgjUCgUcHd3R58+fbBmzRrExcWhbdu2lp7CJGfPnkVQUBCqVq2KxMREDBgwgG2rX78+vvjiC6N/GxcXh1WrVknWjRo1CqNHj7ZZe10N3mXEGpw9e5Yte3t7IykpCYMGDcIHH3yAW7du4eLFi0hKSrLqOXVnE0+fPm21c4jiQ+To0aPo2bOnwX337dvHxHOHDh2QnJwscWG8cuWK1a9dxJJ+3Lp1q+TznTt38Mwzz7DPVapUgUqlMtl23mpx8+ZNm11nWWzZsoUNVrt27YrRo0dj6NChyM3NxcaNG5GVlYXTp0/rzZY1atTIZJv5frx8+bJNYo+s8Vu8c+cOuweDg4PL7Af+xZuamuqwfrMEceDr6+ur135+Mis5Odnm12et5+n169fZcmlpqcl2FxUVseWkpCRZ9CHfxqKiIrPbzE9Enjt3rsxsfxXF2u/FlStXsuX27dubvN68vDy27MhnqTFOnTplcF10dLTkXZyVlWWw7aWlpWzZlveruX0oPgPd3d0lbalatSoyMzP1not8fZiMjAyJdYjvu7S0NKfrO0uw9J1nsVjx9fVl6s/b2xs3btzAf//9h9u3b9vcxz43Nxfvvfcenn32WQDam4Z3J/H19TXpszl58mSMGzdOso4sK+ah0WiQkpKCiIgIixUzjxgDAGhntiMjIwFoB4O3bt1CZmYm/P39rZpCVNe9JzU1lZ3XUhITEyWf09LSjB77zJkzbHno0KGIjIyUZPLJzMy0WrtErNGPvFm/Xbt2eoVg27VrV+aDiv+dKhQKq1+nuRw/fpwtP/744+jWrRvi4uJY0dA///xTsn94eDhee+01owJUhL9+d3d3q16fNX+LfOAx//szBh9gX1RU5LB+qyhqtZr9/qtXr67Xfj7BhYeHh82uz9rPU95lrXXr1ibfaYIgsHiB7OxsWfQhP2Bt3Lix2W2uV6+e5LMzPk91uXz5Mv79918AQNOmTTFo0CCTcbi8tcjLy8vp+tPQuLCgoACRkZGS1PyRkZEG2y7GJwO2eVeUpw8FQWDWoCpVqkjaUrNmTWRmZuLOnTuoXbs26zNxMkyhUCAmJkbSl7zbt4+Pj9P1nSOxWKzUqFEDaWlpUKvViImJwblz5zBlyhQA2s6yFUVFRZgzZw46derE3Lx8fHwkA8+8vDyTAXQqlYqEiYUolUqrihV+sBQWFsaOXa9ePezZswcAkJCQYNV0hbpuYNeuXYMgCHBzc7PouIIg4PTp05J1Fy9eNPp97d69G4D2O+3VqxeUSiW8vLxQvXp1ZGRkIDU11arfNY8l/Xjw4EF2jJ07d+LMmTOYPXs2m0Hr06dPmcfmTfu5ubk2u05TqNVqluDA398fnTt3hlKpxMiRI/HKK6/go48+AqDN+vLYY49h2rRp6Nevn8kCbSL8/ZqZmWmT67PGb5EfSNSuXbvM4/n7+8PDwwMlJSW4f/++Q/rNEnRjH3Tbz6dJtcd9aa3nqegGFhwcbNT3n6dGjRpISkpCenq6LPqQ77eQkBCz28zHEty9e9cpn6e6fPvtt2x58uTJZb6XeNfFwsJCp+pPtVqNa9euAdBO2oiiMyUlBUqlUmLl8/HxMdh2fqIyKyvLoX1YXFzMMuDqtjc0NBQXLlxAQUEB8vLy2DuOj3HR7Utn7jtHY/E3MWDAALRu3RrJycmYMmUK3N3dWR2B6dOnW6ONepSWluKNN95AtWrV8MILL7D1derUYT8EQOs2Ex0dbZM2ELbBWBab+vXrs2Vr1kIpLS1Fdna2ZF1xcTFu3Lhh8bFv3LghMfkCWrM1b+oVuXnzJktr3LZtW8kDWZxtuXXrlmRG0RnIzMzEuXPnAAAtWrRAQEAAOnfujOPHj2Pjxo0slq0snCEb2IkTJ1hKzd69e0vq+rz//vtYuXIlli1bhuTkZGzZsgUDBw40S6gA8glEL0/aYkA7OyhaV+SYuthU2mJAngH2giCw52hZNVZExCD7e/fuOd0zxhDWCLCXQ/ri0tJSfPfddwC0g/vx48eX+TfOnLr4xo0bzLWSzxApPncqUmfFkZhKQ8z/9vgYMvEadffXXedsfedoLLasXLp0CY8//jiioqJQp04d/PTTT7h8+TKio6MlJnRr8u6776KoqAhLliyRmNAGDBiAJUuWoHfv3vD09MS6dev03LwI54YXK3yWGt58f/XqVaudz9jD7vLly6hbt65Fx9a1qgDagcTly5fRunVryXrRagRoLRE8tWrVwsmTJ6FWq5Geno7w8HCL2mVN/vnnH2bW7tSpE1vv5uZWrtgvZ8gGxmcB69+/v2Sbm5ubRZMvchQr5gYfBwUF4fbt2059XcYoa9ArR7GSnZ3NBkRlZQITEZ+1giDgzp07ZoscRyHea76+vuXyjpCbWNmxYwcb6A4cONCsGBtnTl3Muwx37NgRJ06cQGFhYbnEijNlAzNUEFKEn+y5cuUKGjRoAOChCDF0ffw6EitSLLas7NixA7NmzcLAgQPxxRdfoKSkRK+YnTW5desWtm7dilOnTqF79+7o3LkzOnfujFOnTqFTp04YPnw4Jk6ciFGjRqFjx44YPHiwTdpBlM3FixexePHicgWJ8QF29rCs8IMVfpbcGumLebHCZwAzlL6YT/PbpUsXyTZenDhb+mLRBQyQipXy4u7uzh7UjrKs8PVVdMWKpfADYV23Q2eCryZtjmUFeCjE8vLyJG4ccoBPX+sqYqU8NVZE5Ja+WBQr5Y1dlJtYiYuLY8uie31ZOPPsPP9ebdiwIZsQEZ87rmRZad68OVvm41ENpTo2dAxn6ztHY7FlpVWrVjhz5gwyMjLw7bff4ttvv0Xjxo0xaNAg9OnTp8w8/eUlLCwMJ06cMLp98uTJmDx5slXPSZSfhIQEtG/fHtnZ2Th8+LBeoT1jiC9aHx8fyWx7nTp1oFQqodForGpZ4QeOLVq0YIGM1hBEvFgZO3YsCzy/cOGC3r7iNoVCoZdBjw+6S01NxSOPPGJx26yFtcQKoB0YFhYWOmRQmJGRwZ4rzZs3t7r1Sm6WFYVCYfZ3wF/bgwcPzB4gOwN8PAAfuCsiR7FSnhorInISK4IgSNJNlwcxM2FxcbHTi5W7d++yOnGhoaFmT6A4sxsYL1YaNGiAiIgIXL16FTk5OcjKyjJZg0TE09MT3t7eKCgocLhYMWVZadGiBVvms5ySG1jFsNiy8vXXX+P333/HSy+9hCZNmgDQ1pJYsmQJ+vXrZ3EDCflRXFyMJ554gsWCHD582OwCoaJYCQ0Nlbj4qVQqZq27evWq1QqO8mKF96G1pmUlICBAklJb17JSWFjIZl4aNmwomTkC9MWKs1BUVIRjx44BAKKjoy1OqCGKU0dYVnbs2MHuKb6vrIWfnx+z3DmzWBFnOGvUqGG2e41chJguly9fxo8//ghAO+P++OOP6+3jDO6J5cXVLSsFBQXMgldey4pCoWDWFWe/znXr1rGCwhMmTDA7Ps6WA979+/fjpZdeQkJCQoX+3pBYEUlOTjbLsgI8dAVzJrGiKz7q1avHspuJ73c+e5ih6yOxYhyrpBoICQnBmDFjEBcXh2XLliE4OBiCIEgqdxPy5ejRo5g5c6ZkdsAUc+fOlVi/srKyWOCyKYqKithgx9BLVnQFy8nJsdqLhh9c1a1bl2VtslSs3Lt3jw38WrRogTp16rCHk65l5fTp0+y3YqhgpLNWsT958iR7uVhqVQEezmI7YlBoKl7FGigUCjawctYBfXFxMRvomusCBshXrHzwwQdMoM6ZM8fgTKdSqWQZeuQoVsobYA84/yC+osH1IqJYuXPnjtMW3RMEAWvWrGGfy+MtYquYFY1Gg1GjRuGTTz7BnDlzKnQM8b0aEhKCoKAgyXMmJSWl3GJFN4GNveEFha5lxd3dHU2bNgWgnWDNz8+XuMlaallJT0/Hl19+aZVkQHLAKmIlOTkZq1evxuOPP46XXnqJvbAMdQYhP5588kl8/vnneOqpp8rcd+vWrfjkk0/01pvjVsWb5Q2JFVsE2eu++MQguJs3b5o1ODl27Bj++usvvfW8j2rLli3h5ubGjn3t2jVJsTm+LokhscK74ziTZcWaLmDAw1nswsJCu2YkUqvV2LFjBwCtm0iHDh1sch5xUO+sMStpaWls8F6eyt58tWZnEtOmuHHjBtauXQtA+7vni5jq4kgRXRFc3bLCC+KK1NsSxYparXba3+KpU6fY5GD79u3RqFEjs//WVrPzGRkZ7B1t7sQlT3Z2NnNRFN+FxiwrHh4eJlM0i2IlJyfHodnrTLmBAQ/jVgRBwH///ScRY5aKlWnTpuHZZ5/FiBEjyt1uOWKxWBk/fjxGjhyJr7/+mlXNbdOmDebNm8cGAIR8KSkpYbMhJ0+eNJh2VyQlJQWTJk1in1u1asWWzRErxjKBidgiyN6YWDHnHKdOnULHjh3Rq1cvfP/995JtfLxKy5YtAWiLlwHalyQvtnixYigepbKIFUelLz527BgbAOmmLLYm4ixwdna2U1qdy5u2WES8rwGwNNbOwNmzZzF27Fj88MMPets+/PBDVh9h1qxZJmMrSaw4F9YSK4DzBtnzVhVzA+tFPDw8mMuYNcUKPxGRlpZWbqsU/z41JFZ4y0pZtYH4jGC6pQfsiakAe0A/bqWsmBz+GLywMYTovXLy5MlK4TJmsVi5fPkyBEFArVq18PTTT+O3337Dl19+iYEDB5pVjIpwbvgXl0ajMTqjolarMXbsWPYiGTZsGN5991223RxLSFkvWVtYVnRffLxYKcsV7Ntvv2WzOosWLZI8vA2JFX52jI9bEeM+vLy80KxZM73z+Pn5sYezvWeuc3JyMHXqVMyfP18yg6XRaHDo0CEA2sJzDRs2tPhcjooP4JM/2CJeRYQfWDna19oQfCaw8lhW+Hu2IjOutuLFF1/E+vXrMW7cOCxatIhZjW7evMkGg35+fpg1a5bJ44hiJTc312qxcrbE0gB7/u+dEWu5gQHOKVbUajXWr18PQDt4NRRLVRbioNeabmD8u6e4uNgs124e3XgVAEbdwMoaOzpLRrCyLCu8WDlz5kyZ4sbT05PF6poSIGKKcZHyZFyVKxZnAxs2bBgGDhwoSdNGuA66L65Tp04ZdJPZuXMnm2mPjIzEN998IxEC5lhCjKUtFrGHG5i51htBEPDLL79I9t22bRtLlS2KFXd3dzbzzM9Ai3Erd+/eZcGKbdq0MTqrHx4ejszMTKSmprKiq/Zg2bJl+Oabb9jn+fPnA9C+eMQigB07drRKexxlWeEtwLZMCqIb28G7TzkDFbWsREZGwt/fHzk5OTYTKxqNplzVnNVqtSQd+DvvvIOcnBwsWbIES5cuZb7jzz77bJmz8+J9WVpaiqKiIqefhBMnfVQqldmD+apVq6Jq1arIzMy0arZFW+DqlpXExER2jX369GGVz8uDt7c3cnJybGZZAbTPC3PqvogYEivG3MDKY1lxpFgpS3zw4+KzZ8+W6QamUCjg5eWFgoICk32XmZkpmTy8ceOGVSYMnRmLLStvvPEGCRU7IggC3nrrLfTu3RuDBw/GE088gaeeegqzZ8/GgQMHrH6+mzdvSj6fPHnS4H68S9AHH3yAwMBAREZGssF3ed3ADImV8h7PHEy5gZmyrPz777+SwR0AfPzxxwC05ltRjDRq1Ig9eA1ZVkSrCmA4XkVEDLIvKiqya6Xwv//+my0vWrQI+/btA2B9FzDAMZYVQRBYX8XExNi0GJ5uil9noyIFIQFtELpoXUlKSrJ60Ov69etRpUqVchXlvHTpkt6s8kcffYQpU6bgq6++AqAdEL300ktlHktu6YuNZVQ0hUKhYIOd5ORkk+6+jsZSscJbkZxRrPAJWAxZ2s1BnOW3pVgx5pL8+eefIyAgAG+++aZkvSGx4u/vz4RHRd3AnNmyEhQUxN7dZ86ckexv7BpFEWOq73Tv28TERPMbLVOsEmBP2I/du3fj3Xffxe7du7F161Zs3LgRa9aswYoVK9C/f3+r/3B1LSvGxAo/i9m5c2cAWqtCdHQ0AG1QeVk+rmWJFTc3N1ZV3pzjmYPui69u3bossM+UWOGtKuKM74EDB3Ds2DGcP3+e+cPzcTsxMTHMl1h8IZUVryLiiPTFJSUlEjGl0Wgwfvx43Lt3zyZixRGWlbt377KBmXiv2gp+ltsZs2bxrgTlESuAdAbR2nErCxcuRG5uLlatWiVxfTCFWC8JADp06MAG7fHx8WzAMG3aNIOxcbrISayUlpay76i89W74mVlrFt61NtZ0A3PG+BxerPDW+PJgzoC3vOhOXOpO1oksXboUOTk5eO+993D48GG2Xnyfurm5SZ614rMmJSWF/TZdRawAD5+NWVlZkt+VsQRUFRErlSEjGIkVmXH+/Hmj2/Ly8kwWzKwIumLlv//+k2SyArQuF+KgtlatWpKAcNGtqqCgoMx4C3MCQ8XjFRYWWmXQLr74xEJTKpUKderUAaB9YRvyURcEAT///DMArVBZtGgR27Z06VKD8SqA1i1DLDx3+fJlyfcGmLasOKKK/enTp/UemKmpqXjqqaeYFc/LywutW7e2yvkcYVnhH/JiHR9b4cgUv0VFRSZny/Py8pjVrGrVqmYN4nl03R2sRWJiIi5dusQ+m5tSnJ9UWbBgAdauXSvJLuTh4YFXXnnFrGPJqdZKRkYGe2ZZIlb479zZcHU3MGuKFVvFrACGJ83UarVExMyaNQsajQYajYYN1KOjoyU1nESxUlJSIjvLSlluYIA0boWfnLSmWCHLCuF08LOfmzdvRmJiIj766CO2zpjlo6LoipWSkhI9wXThwgU2E84XVgTKl8GrrGxggPXjVgxVQhZN1Hl5eQaFwcWLF9m1dOrUCS+99BJ7AW7atAm//vor25cXK8DDl09RURGuX7/OxEr16tURGRlptJ2OsKzws2JvvPEGgoODAQBbtmxhD8dHHnmEFb6yFEdYVviHvKuKlcLCQjRr1gxVq1bF7t27De6zZcsWJmZGjRpVrvgQwHaWFb7+DWC+WOEtK61bt8a4ceOwadMmNkiaNm2a2dYjOVlWKlJjRcRYAhBnQkwBK+LKYkWpVEren+VBHPCq1WqrZR40FLOiy+3bt5lXAaD9HcbHxyM1NZUNvnlXa8BwfFx5xIoja62YY1kxJlaMXaO4niwrUkisyAw+Y0/Lli0RFRUlCQrmX9LWQNf0C2iD7Hl4FzBriJWqVasaHQDbSqzwL72y4lZ4F7Dhw4fDy8sLM2fOBKB1lfr999/Zdv5BBUgHBFu3bmWD1nbt2pn0L3e0WBk1ahTi4uL09rGWCxjgeMuKaFGzFY6KWTl69CiuXr2K0tJSzJ0716C1cN26dWx53Lhx5T6HWPwMsK5lpSJiRa1Ws2dUZGQkE9lDhw7FqVOn8N133xmsBWUMuYiVwsJCfPjhh+xzea1jcrCs8IlcoqOjy5UIQoRPbOFsYkWj0TChGB0dXeFadfzA2VquYOZYVvjxicjrr7+O48ePs8+6YsXQpIErWVb4iRx+7GSOZcVY9kGyrBBOj2hZUSqVqFmzJgDtS0a8wW1tWTF0jn/++Yct62YKK4+4EP2HTbkvWLPWSnFxMZtN5i0rZZ2DFyvDhg0DADzzzDN6D5/atWvrzfzxZv34+Hi2bCpeBbB/FXtBEFhqYj8/PzRt2hSDBg1iokzEmmLFlGXl66+/xvTp07Fw4UJ8++232Lt3LxITEy2OW7KnG5ijYlb4FKP//vuvJN4I0FbyFjOiRUREsJiz8lClShX2/Z07d84q8WSFhYXYs2ePZJ05YuXKlSvsd92mTRvJtsaNG2PChAkSN5SysLZYycrKwo4dO8qso1AeMjIy0LNnT2zcuBGANmB+6NCh5TpGnTp1WAITZxQrGo0Gr732Gvv87rvvltsCCGhdfsXUt84mVpKTk9lsfUVdwADrV7HPz8/XEwWGxApvbREnHDMyMjB79my23lFi5a+//kKPHj3Yb8QamGNZqVevHrse3oW+LLECQFLxnkf3vr17965dM2g6AhIrMkOcuQgPD2cvFnd3dzaDf+3aNauaRUWxwqdPNGZZ8fDwkASUA+aLi9zcXPZjMyVWrGlZMRaoacqycuPGDXb9sbGxbGYvODhYr3iXrgsYILWs8O4ypuJVgPIXhnzw4IFF9RJSUlKYKGrfvj1LDPDhhx+ye83f3x+PPvpohc+hizHLyqFDhzBjxgysWrUK8+bNw6RJk9C9e3dER0ejSZMmFs2s8TNS9rSsOEqsAMDy5csln3/88UfmujFmzJgKDQCBhzOIOTk5Vsn7f+DAAb2Bljlihbcu64qVimBtsfL444+jX79+6NOnj8RlpqKcP38e7dq1Y5ZQHx8f/PLLL3rP4rLw8PBgMXVXrlyxStusybp163DmzBkA2n4dPXp0hY8lWp2cTaxYI14FsH4Ve0MTZKmpqXqTErxlZd68eUyw8H+vm2K3Im5g5a2zcv/+fYwcORJ///03Jk+ebLVsd/zzyZj4cHd3R5MmTfTWl5UNDDDed4buW1d3BSOxIiPy8/NZphfdHzgf5KwrJiqKWq1m1o569eqxwdzp06fZiywzM5OZrVu2bKn3g61ZsyabcTAlVsqqsVLe45lDRcQKH48yfPhwybYXXnhB4splSKw0aNDAoLtX27ZtTbY1MDCQfbdliZU9e/YgMjIStWrVwv79+03uawzRqgJAIki8vLywc+dOvPXWW9iyZYvkpWEpxiwrfFt0uXTpEtauXVvhc4oPeC8vr3LVDKgIjhIruqmuxVg3EUtdwESsHWTPF+sUSUhIKNMHn7f8OptYuX79OrNiHThwAKtXr7boeHv27MGjjz7K7uOaNWviwIED5baqiIiTKUVFRQ4Z/MTHx2Pq1Kl6cZGFhYV466232OcPP/ywwqIaeBi3kpWVZXT22hFYS6xY2w3MkDu4ocKQvGWlS5cuBpNYOMKy8u6777L9CgoKsHPnzjL/xhz479aYZQXQdwcHzLOsGOs7Q1kRSawQTgP/INANxubFirVcwTIyMtjMSc2aNdlMXX5+PrNq8NmsdONVAK07gmgNSUxMNDrQMCcTGKB1fxNn/65fvy4pjFRejGWVCQ0NZQMUXbGiG6/CExMTw9zCABic2fTx8dFzN2rYsKHk4WsIhULBXMFMuYHt3r0bjz32GHJycqDRaPDZZ5+ZPK4x+HgVXetJ9erVsWjRInTv3r1CxzaGMcsKH1C7fPlyLF++HM899xxbt2HDhgqdTxAE9oCPioqyeaFNvo/tGbOiO6DQaDRYsWIFAO1vSHTjbNq0qUU1s6wtVsR4FaVSid69ewPQpuYtyz9bN7jeUqwpVvjJDkDrz29uOmZdSkpKMGbMGGRnZwPQXuuxY8csumZHxq3cunULU6dOxTfffIO2bdvi22+/Zds+//xzNmvfr18/9OjRw6JzOWuQvS0sK9ZwA+PfOfxzUjfInresREREYO7cuRIX5qpVq+oVw+W9BkSsKVauX7+u9x7cvHmzyb8xF3PcwAAYfK6aI1aMuYoaumddPW6FxIqM4F0rdC0r/AyitcQK70YUFhZmUBDx2S0MiRXgoStYaWmpUfVvrlgBHrqCmTqeORizrCgUCjb7c+PGDfbAuH37Npvlb9y4sd4MEQAsWbIETZs2Ra9evTBgwACD59V9CZUVryIiPtSzs7PZAIVn165dGDRokOQBt3379gq9rESxolAojPartTFmWRHd5dzc3DBjxgzMnj0bn3/+OQvqPnz4cIXcjtLT09l3ZWsXMEDrDiC6UzrSsgIA33zzDbKzs/HDDz+wdZZYVQBpATtzxcqtW7eYaw9PYmIimyh49NFHJW6SplzBNBoNsyxHREToDYwqgjXFCj/ZAWifQXPnzq3Qsfbu3csGLZ07d8b+/fsNDvzKgyPFyqVLl5jFvqCgAJMmTcKUKVOQlpaG9957D4D2ebRkyRKLz+WsYoXPwmZJRXJbuoHxLk26Vn5RvIgxtb6+vpKkD4Y8Czw9PfXe+WWJFS8vL+ZiVpZYeeONN/QmSbdu3WqVLGnmBNgDhi0r5AZWPkisyAh+1kLXstK4cWMWNGqtjGC6YoW3FIgDAj4TmG5wvYg5cSvmpC02dDxL4lZMFRcThYggCIiJiUFUVBRatGjBsnPoWlVEYmJicO7cOezatctoEC8ftwKUHa8iYirIfseOHRKh4uvrC0A78yO6nZhLbm4uG0A2bdrUqq5epjBkWSktLWUvcD5QEQCeeOIJtvzjjz+W+3z2DK4XES14jhIrouUvJycH33zzjcQFbMyYMRadJyYmhvVPWWKlqKgI8+bNQ2RkJFq2bKmXnYvPAta/f/8yM/SJXL16ld071nABA6wnVm7dusUmAerUqcOE65o1a0y6OhqDt9LMnDmT/eYtwZFixdBgKy4uDg0aNGDP6gkTJlhk/RNxRrEiCAKzrERFRVnUn6YGvKWlpRgxYgQ6depkdrIWfj/+fWVMrNSsWZPFOT7xxBMYM2YMvL29MWvWLIPH13UFK0usAA+tK6bEytGjR1lAfbVq1dgE4oMHD1itMEsQJwJVKpWkjpMuFbWsGBIrpaWl7JnOizyyrBBOAz97rCtWVCoVm9m8fPmyVTJDmLKsnD59GhqNhllWqlevbnTAZ05QfEUsK6aOZw6miovx1o+0tDQkJSVJXmq8u1d50bWsWCpW/vzzTwwZMoT5Xg8fPhzr169n28UCluZy7NgxNsNpzQD6sjBkWbl27Rq7Ln7mHtAGKotUxBXMnsH1IrxYMZaW0tqIbmAKhQILFixg6xcuXMgGpJ07dzZZ58cc+EDSq1evGrXoHTlyBK1bt8bChQvZ7ObcuXMls8oVFSvWDq4HrCdWeNeT8ePH491332Wfn3/++XK5tGo0GnY8T09P9O/fv8Lt4uHFir1rrfBiZfLkyWywLgZDe3p6SgrwWoIzipWbN28yi7klLmCA6ZiVffv24ZdffsGhQ4ckzwNTGBMrvBtYYWEh+y55zw+FQoEffvgBeXl5GDt2rMHj63qKmJOyuSyxIggCXn75ZfZ5/vz5mDhxIvtszBXs/PnzZt/74ndbVnuDgoIk729Tf1OWWOHdelu1asVEEokVwmkw5QYGPHw5C4Jg0LWivPBBdWFhYQgNDWVC4uTJk0hMTGQzXu3btzfq82+OZcXcAHtzj2cOpiwr06ZNQ9euXdk1h4aGIiwsDLVq1cLLL79c7kw7PLxlxdPT0+yZQkMZwU6cOIFhw4axAf2IESOwYcMG9O3bl1lEtm7dWq4gUn6Wt2PHjmb/naV4eXmxoFlxUMhnTNMVKzExMYiNjQWgvR/Ley840rKiVqvtlmpSnIWrWrUqmjVrhr59+wKQvuTHjx9vlXOJ97IgCHpB0rm5uXjhhRfw6KOPSnzzAW2w7pQpU6BWq1FYWIi//voLgPZZ0LJlS7PFirWD6wHriRXeBWzEiBF45pln2HPk7Nmz+O6778w+1tGjR9lkUp8+fSRWSUvw9/dnzxlHWlZeeuklHD9+XOJyNHPmzArVVTGEM4oVa8WrAKZjVviJwQ0bNpiVGYsXK7zbMm9Z4ZcNBc2bigm0xLIixmfqsmXLFpamvX79+pg2bRr69+/PPB42b96sN2G0d+9etGrVCo899pheindDiN+tqXgVEV1XsIq6gfH3a82aNdl3R25ghNPAu4EZemjzlg9ruILxlhWxpot4jszMTGzbto1tNxXXUF43MHtZVkyJlWrVqmHv3r24desW+3fz5k2kpKTgo48+sigYu1GjRmw2JDY2lqWgLgvdwpBpaWkYMmQIc/0aMWIE1q9fDw8PD6hUKgwePBiANsZFHPyZg6ngeluiUCjYwFAcyPNihS88KMK7gpU3f749q9eLOKLWijgTFxISAkCbtY7Hw8MDI0eOtMq5jAXZq9Vq9O7dG59++ikbILRp0wZHjhxhz4cjR45gxYoV2L9/P3tJ9+/fHwqFAgEBAey5YK5lxRrB9YB1xMq9e/fw999/A9AW+2vevDnc3Nzwv//9j+2zfPlyg1mXDMG7gFli5TWEaF25d++eXnIGQ2RkZGDhwoU4ceKERefV/T02atQIR48exdtvv405c+Zg4cKFFh2fh3c1dnWxojvg5d97OTk5enFUhhDvy+DgYNStW5et5y0rZY1PTGGJWBEEQS+Gs6SkRFKTZ8mSJfDw8EBAQAB69uzJ2s5PbpSWluL5559nXgXi79UUolgxxxKkOylZUcsKf79Wr16deQVkZmY6tECmrXE5sfLgwQPMnj0bHTt2xPDhwyXZquSOaFkJDAyUvEBFrJ0RTNcNTPccvOuNKbESHBzMBmlliRWlUllmUGy1atWYv7e1LCu6bmC2pEqVKliyZAliY2NZ4Kg58GLl6tWrGDp0KHuJdOrUCevWrZMInxEjRrBlc13BNBoNyw5VvXp1REdHm90+ayDOEIuDQj4TmK5lBYCk1sL69evL5Vplz+r1IvZOX1xaWspeYGIl9759+0qsewMGDLDa/W9MrGzYsIHFt3l5eeGjjz7CkSNH0K5dO6xZs4aJ/zfffFMygOfdm0TrSkZGhsGXskajYc+98PDwcldwN4aPj4+exa+wsBCbN2/G22+/jcWLF+OTTz7B119/jXXr1uHatWt6x9i6dSsbBA0fPpxdb/v27TFt2jQAWoFuzvNAEAQmVpRKJQYNGmT5RXKUN25lwoQJmDdvHnr06GEwmQOgbfPXX3+NRYsWGQ0aFn+PISEh7Dng6+uLhQsX4uOPP65wNXdDlNeycu7cOXz33XdWyaxlDGuKFVNuYLqZCNesWWPyWBqNhr1nwsPD4efnx4QCb03hhYshy4opdMWNOWLFVK2VuLg4Njbo1KkThgwZwrbxab15V7Cvv/5aYg1OSEgosw3id1sRy4qx+5m/dnPECj/R5tLWFcHFeO2114RFixYJBQUFwt9//y10795dyMrKcnSzLKa0tFRwd3cXAAgtW7Y0uE9BQQHbp1mzZhaf85FHHhEACAqFQigpKREEQRB+/vlnAYDkn1KpFHJyckweq127dmz//Px8ve0RERECAKFGjRpmtS02Npadu7CwsPwXJwjCwIEDWZtu375doWPYk5s3b+p99wCEyMhIIT09XW///Px8wdfXVwAgBAcHsz4UycjIED777DNh69atglqtFgRBEM6dO8eOO2zYMLtcF0/Dhg0FAEJAQIAgCIIQExMjABC8vb2F0tJSg3/TqVMn1uazZ8+afa569eoJAARfX19Bo9FYpf1l8frrr7O27t692yrHVKvVwvXr11kf8qSnp7PzPfbYY2x9XFwcW79161artEMQtPeUeNxu3boJgiAIxcXFrB8BCLt27dL7u5kzZ+rd125ubsKDBw/YPtOnT2fbjhw5oneMK1eusO2DBw+22jUJgiAEBASw59OTTz7JPhv6p1QqhTVr1kj+ftCgQWz74cOHJdvu3r0reHl5CQCEiIiIMu9F/jcqfsfW5LPPPmPH//rrr03ue/36dcm1L1y40OB+GzZsYPt88cUXetuLiooEpVIpABBiY2Otch2muHfvHmtPv379TO57+/Zt1t+vvvqqyX1N/RbLgn+OWTpm+emnn9ixPvzwQ8m2F198Ue+eTUhIMHos/hnSv39/QRAEoVmzZgIAQaVSsft14cKFbL/NmzeXq71HjhyRtEf392MI/nlw6tQpybbhw4ezbQcPHpRsu3XrlqBQKAQAQpMmTQRB0N4PQUFBkjZ06tTJ5Pk1Gg3b95FHHimzvRcvXpQc/86dOwb3+/LLL01+D8uXL2fb161bJ/nef/nllzLbIVdcyrKSn5+Pffv24emnn4aXlxe6deuGunXrGi2MV1xczCqni/8KCwuh0Wic7l9aWhoLwIyIiDC4j0qlYj6+Fy5cQF5enkXnFGdTqlWrBqVSCY1GY7DQYbNmzeDj42PyWLzr1pUrVyTb1Go1s6zUqFHDrLaJtVY0Gg2uXbtWoevjZ5iqVKni8D4u619ISAjLsCLi5+eHLVu2ICQkRG9/T09Plv1EdEMRt2VkZKBDhw6YOXMmBg0ahBEjRuDs2bMSP90OHTrY/RrFGdXc3Fzk5OSw2a0mTZpAoVAY/Bs+0H79+vVmnae0tJRZKuvUqQNBEOxyfbwb2L1799j6nJwcfPDBB9i7d2+Fjiv+FnT/8TU8goOD2foJEyZg7dq12LhxIwYMGGC16wsODmZW2LNnz0KtViM+Pp5ZG3r06IEePXro/d3ixYv1XPE6dOiAgIAAtg/vTnrx4kW9Yxw/fpxtb926tVX7TbRkp6en49tvvzWYOlxEo9Fg+vTp+OOPP6DRaJCVlcWK0IWFhaFt27Z690Tnzp0BaGenDV0b/4932xk6dKjV71E+PqistvC1UABgxYoVyM3NlexTVFQkKeh4+PBhveMkJyez+zgyMtLq16T7LyAggD1L09PTTe77xRdfsP7etm1bmcc29ls09U+tVrNZ/Vq1asHPz8+i6xPT+gLacRG/zZBFNy4uzuixeItJzZo1odFoWFxTcXEx+/54N7Dw8PBytVc35bZKpSrzb3jLyv379yXbRAuDm5ub3u+tevXqzBPk/PnzuHz5MubPn6/3vSQkJJg8v27a4rLaGx0dLbGaeHp6lrvvNBqNJL43JCREYpVKTEy0+W+nov8sxb3sXeRDcnIy/Pz8mG82oI1vuH79usH94+LisGrVKsm6UaNGSVxLnAXeFzsoKMhoXYl69erhzJkzUKvV2Llzp0FxYQ4ajYYJiJCQEMn5qlSpgqysLPa5cePGZda54F27Dh06xNy4AK0JV8wKVKVKFbNqZvBm/EOHDpllhtVFNKd6e3tLXN6cmerVqzMRqVAo8MknnyAgIMDod9alSxf89NNPAIBvv/0WMTExKCoqwvjx4yVm7s2bN2PLli3MVQjQDuIrUr/EEkQ3No1Gg+3btzO3rqioKKNteeSRR5iYXrduHaZOnVpmTNHt27dRXFwMQPud2us6+Yf2tWvX2HnffPNNrF+/HiqVCjt37qxQILFugTYAErcGDw8PyXWKyROsfe316tXDrVu3cP/+fRw8eBDz589n25555hmj51u0aBEmTJjAPrdv317vuSNy/PhxdO3aVfL3+/btY8u1atWy6nUFBARIgoz9/PzQt29f9OzZEx4eHsjPz0d+fj6OHDmCLVu2oLS0FKNGjcKGDRtw48YNluCiZ8+eBvspNjYWu3btAqBNw/3kk08abQufprtNmzZW7z8+WP/UqVNGj6/RaPRciO7evYtly5ZJ+nH9+vUS17iTJ0/qHZOv12Xq/WZNgoKCkJGRgVu3bhk9X2FhIb744gv2+cKFCzh9+rRejKMuhvrYFHfu3GGTZ9Z47vJi+vbt25LjGYqL+uabb/Dkk08aTL8rlikAtG55SUlJkus/fvw4mjZtKnHJVigU5boGjUYDDw8PNg7Iyckp8+8FzuX36tWrEldeccwXFhZmMD1z165dmbvzW2+9xdwqvb29UaNGDdy4cQO3bt3CpUuXjLpr6bqemXO9DRs2xOnTp+Hl5YX09HSD3zef8ODmzZt6x+XHs6WlpZL2nT171u7vbHOx1NXapcRKQUGBXm5yX19fo1l3Jk+erFcIzd3d3Wh9DEfCBz03adLEaJrRLl26YNOmTQC0Nzrvq1ke7ty5wyw5tWvXlpyvTZs22LNnD/vcq1evMtOetm3bli1nZWVJ9uf9gKOiosxKoSpmgTJ0PHMR/c+Dg4MtTttqL+rXr89eNh988AGmTJlicv+JEyfilVdeYRmW4uLi8OSTTzLxW6NGDQiCgIyMDAiCwAJqVSoVHnvsMcksjz3gJxr4gNv27dsb7aPIyEh0794df/31F5KTk3Hnzh20bNkSZ8+exbFjx5CVlYWnnnpKIph5X+tGjRrZrf9FiyCgfaFHRkaipKQEf/75JwDtTOWvv/6KZcuWmX1McfYzIiKCxVaI8AON6Ohou1znI488wqzZH330Ebtf+/fvb7Q+EaDtx3379mH16tVwd3fHpEmTJO0VrQ+AdgCmey38gLh///5lJuooD/Pnz8eCBQvQpEkTPPHEE+jXr59Bv3q1Wo3Ro0dj8+bNyMvLw/Tp0yWWiieffNJgH4wcORLvv/8+AG2Gv3feecdgOxITE5kAbdOmjU0SYNSuXRt+fn7Izc1FcnKy0Xtm//79bFBer149luzk22+/xdy5c+Hu7o6CggLJYB/QzljXrFlTEl+3e/duttyiRQu73KdhYWHIyMjAvXv3ULt2bYMTHKtXr9abcU9OTjY6CWjqt2gKfgDaunVri6+fn3xTqVSS4/GZIXv27Im//voLt27dQkJCAnr37q13LL54ovis5OOaSktLERkZyd4dXl5eaNmyZbmT0ISHhzOLSERERJnfAW+J9fDwYPtnZ2czIRETE2PwOJMmTcIHH3wAAGy8BACvv/46Ll26xNqhVquNtoMXGkFBQWb12ccff4w33ngD48ePNxoPyr8jDJ2fHy+1aNGCxcIBWmu9XMYy5cWlxIq3t7deGr68vDyjylilUjmlMDEEP7iKiooy+iDkB/GnTp0q1wOThzc11qxZU3KcVq1aScTKo48+WuZ5+Ifb1atXJfvzAWNhYWFmtZkPEK7odYozWYGBgRX+nuzN22+/jaysLAwbNgyvvPJKmS+EgIAA9O3bF1u2bMHt27cxatQobNmyBYA2KHDr1q3w8/PD9u3b8cEHH7AXTvv27a0a0GoufOIIceYL0AZum+qjMWPGsIxnI0aMwL1791iWNEBbO4YPpuRnn6Kjo+3W/7wYe/DgAZRKJQ4fPixxSVyzZg0WLlwosT6ag1Kp1LsO/rghISF2uU4+kPT3339ny4sWLSrz/P/73/8QGxuL6OhoSdpaAKhbty6bfb1y5YrkWIIgsOD6sLAwlr3QWowePdosi7tSqcQPP/yAnj174p9//mGZBAHtgKZbt24Gv4MWLVogJCQEd+/exb59+1BaWmrw3fTbb7+x5eHDh9usPxs2bIgTJ04gMTERRUVFBp8Fa9euZcvz589HfHw8du3ahevXr+PXX3/F448/ji+//FJvJr+4uBgJCQmSIHLehahOnTp2uU9F63xJSQlycnJY0LiIIAj49NNP9f7u8OHDkiBtQxj6LZqCT2TQpEkTi6+fn7QtKCiQHE98Jnh5eeGZZ55hz834+HiW1pyHz9QpijA+gP7mzZtQKBSsD2vXrm2yQKIxateuzUQCn9TCGHxSkOzsbLY/b9UyNlZq0KABGjduLElqEBkZiZdffpmJGEA7OWAosQsgFX2+vr5m9VnPnj0lVkRD8C7z165d0zsu79pbvXp1uLm5sefijRs3ZDOWKS8udVW1a9dGbm6uJN3i1atX7Z7RyBaUVWNFhB/UWZIRTLfGCg+fEaxq1aoSX3Jj6Mas8JQnbbFIixYt2AN579695S6wV1BQwB42ZZn0nYkePXrg5MmTePvtt82eueKzgolCRaFQYN26dWjTpg28vLzw4osv4vr163j//fcxfPhwLF++3BbNLxNjYsXYC0Nk2LBhbKY2LS1NIlQAra85n6nIETVWAOkLVhw0iH0ikpOTU2aGHnPhn4W8ULIlhuoGDRs2zKy6Jx4eHpgxY4bBGV53d3eWNvXq1auSGcXr16+z2VRr1VepKN7e3vjtt98kzzwAGDJkiF7MmYhCoUCnTp0AaOO1xMxputgyZTGPOBkkCILB9PB5eXnMHc3f3x9Dhw6VpIr98MMPkZmZyaxFCoVCkmacz/IHOOb3WFb64p07d7LBLJ823Zz6G+XFmpnAAPNSFwcGBmLQoEHsufDrr7/qZQoDpDVWxNgSXqykpqYiKyuLebCUNxOYCP935UldDEDilm7uvaT7+/noo4/g7e0tcVcylRGMt3BUxA3dGJGRkew5Yei3J96rQUFB8PDwgFKpZNaUGzdu2K3YsL1xKbHi4+ODLl26YOXKlSgsLMS+ffuQkJCALl26OLppFmOqej2Pr68vs2L8999/5SoGyGOoxooIPxgQ4wXKws/Pj4ke3R9gRcSKh4cHe7nfunWr3CmMHZW22BEMGjRIr5bLRx99pDc76O/vj7lz5+Lnn3+2qOilJfD+8uIMUnBwcJlpaIOCgjB16lT2OTo6GmPGjGGDXrVaLbGsOKJ6vdhOEbGKvShW+NnIFStWSAbjFYUXaHw8ki1p2LChZFCuUCjMrpRdFqJLVVFRkWQ23hbFIC0hJCQEf/zxh8T10JQLHAD2PAPA4ld4MjIy2EC5QYMGEuuytSkrffGvv/7KBqejR4+Gj48PevTowSayTp48iREjRjAXqvHjx0vECl8/CZAOMO3lxlJW+uJPPvmELS9YsIBNyp04ccJo+uWKwosVa/SrKbEi9klgYCBUKhVzhS8qKsL69ev1jmVIrPBp9FNSUiTWjIoW7uzVqxcA7RjGHMHGixU+fsRcscL/Hjt37sxqTfF1ZIzFOwPQC7C3FvykjJg8iEe8V/n7V3yH5ebmGk0fLndcSqwAwNy5c5Geno6ePXvi008/xfvvv19udwpnRHwxe3p6Sm5SQ4gv65KSEr0ZLHMxVGNFpH79+njqqadQs2ZNzJ071+xjig973ToJFRErANC9e3e2bE4BJx7eD1lOlpWKULVqVVYICwBmzJiBl156yYEtMo6h+kHNmjUzy4q0YsUK/Pfff8jIyEBCQgJ++OEHLF68mG0XEw0AjrOs6BaFPHfuHGtLt27dmBtGYmKixOWnovCWFXuJFZVKJRnsPvHEE2VaxszFWCX7Q4cOsWVnECuAdtDz559/ol27dpg0aZKkZowhyhIrv/32G5s1taVVBShbrMTHx7PlSZMmAdCK0ldffZWtF12FPTw8sGDBAsk9YEysVK9eXS/u1FaYEivnz5/Hjh07AGgHgkOGDGExUyUlJVav3yaKldDQUKtMnvEz/bwFoLi4mH0Wn0WTJ09m2+Pi4vSOJYoVlUrFrDC6BYr5iYOKWlYmTpyIv//+G//9958kmYYxjNVZMVf4tm7dGsuXL8e4ceOwfv169o7hxYojLCvAQ0+U/Px8iZdLQUEBmyTg79/KUGvF5cRKYGAgVqxYgUOHDuGXX35Bu3btHN0kixEEgVlWzAncs0ZxSFNiRaFQ4Ouvv8bBgwf1MvKYgncX460rvFgpTyE3S8SKqer1rsiSJUvQpk0bPPvss/jss8/KHfxoL3jLioihyvWGcHd3R5MmTSSz2W3btmUvrL/++ouJVPGBHhAQoOerbku8vb1Z0oL79+9LXMCGDBkiqS5vDVc8fpbNXm5gwMNMY+7u7pJsYJZiSKzk5eWxFLoqlcomQecVpXXr1jhy5Aji4uLK9OOvXr06u9ePHz+u55Lzww8/sGV7ipWLFy9KtqWkpDAhUrduXdbXgNblVNftesaMGahTpw6ioqKYEOHFSnFxMRsQ23PigB/s8TGagPS3N2vWLLi5uUnEpCFXsMzMTMybNw979+4tVzvu3r3LxJI1XMAA45YVQ++9Fi1asDHDiRMn9CY4xb6pWbMme2/whSGtZVlRKpXo1q2b2feApZYVAJg9eza+//57SerkGjVqsO/PEZYVQOo2z4+VdONVRHjvAN5rwJVwObHiimRlZbHMVeaYyK0hVkzFrFQUY3ErFbWstG7dms3ElzdupbKJlebNm+PEiRP44osv9FzCnAljlpWKolAomHm/tLQUmzdvhlqtZjOBderUsatwUygUbOZUV6wMHjxYUl1+//79FsWdAVKxYk93x0WLFuHtt9/G77//blZMm7kYEitr165lg5WxY8fazYJkC0S3RY1GI0lisn//fjYhEx0dLUmkYgtiYmKYuNK1rKxdu5Y9a5988knJ78fd3R1z5sxhn318fFiNFaVSyZImXL9+nc0QJycnS1KU2wtjlpU7d+6w5AEBAQEs42JZYuX555/H4sWL8fTTT0ssmmXBi0FriRVjVdCNuT/zqbK3b98u+Vtxgke3FopoXUlNTZW4qVfUslJeyhIrbm5uEguQuSgUCnYNiYmJRt1x7WFZAaRiRbd6vQhZVginwNzgehE+rSJfn6U88JYVa6UA5QctvFgRZ7U8PDzKJRzc3d1ZPFJGRobE77cseDcwV49ZkROGLCuWuhCNGjWKLf/000+SAqv2HByJiPfbrVu32O+zZcuWiIyMhEKhwOzZs9m+vN+8IYqKirBgwQJ88sknBgtviYOmgIAAu2Y+rFatGhYuXIg+ffpY9bi6YkUQBKxYsYKtmzVrllXPZ29Ev30ArJCkIAiSoorvvPOOzTP+qFQq5g5z+fJldm8JgiBxAePrqYhMmjSJiZJFixZJrOX8b1lMwewol0xjYuWrr75isZ5Tp05lbuR169Zl13L48GHJIDYlJQUbNmwAoLUU8SnDy8LawfWAVhiKgqUsywoA9OvXjy3zaaRNxa6KA/ri4mLJpEpFLSvlxdvbm028GRIrtWrVMprQoizESWHe6qcLL1bsZVnh71Peg4AsK4RTwPuDmmNZCQgIYC/106dP66VzNgfxIRUcHGy1Wht84OCqVauYSVO0rISGhpZ7lruirmCVzbIiFwxZVnRT2JaXRx55hL1Ad+/eLXmx2jO4XkS83/jBDl8PacKECUzQbNy40WARN5E333wTCxcuxGeffYaff/5Zb7toWZGztYEnJCSEfTeXL1/Grl272Mx0586dHZYYwlp06dKFicqdO3dCEATs3r0bBw4cAKAVa7q1wWyF6ApWUFCAlJQUFBUVYfXq1WzwZMxlx8fHB0eOHEFCQoJebJyhuBVnEitXrlzBxx9/DEA74OfFL5+xLTs7W+LK9sUXX0h+z7quc6bg462sJVaAhwNoflBt7L1Xr149Jj4OHDjAsikaCq4X4a0WfPY6e1lWFAoFs66IYiU7O5tNRFpyL/HXYMwVjBeBZFmxPSRWZEB5LSsAWCxJSUkJe9GZiyAITKxYywUM0FpWxBmcW7duYdKkSSgpKWGipSIWHBIrroWuZSUyMtLiBBm6rmC8P7ojLSs8vFjx8fHBjBkzAGh/v//73/8MHufw4cOS4pGnT5+WbNdoNOzFbc94FVsjTsSkpaXhvffeY+t5i5Rc8fHxYQPiGzduICEhQWJVWbBgQYVni8sLH7cydepUhIaGYvr06WydGFhvCD8/P4MlA8oSK/acPNAVKzk5ORg2bBir/m6ogCdfmFR0BcvLy8PXX38t2c8cK78gCHj99deZy5lKpTI7Ps8cRLFijmVFoVAwq15hYSErQm1KrPADevE7CwoKsluCBAB6YoUfK1nybOfHWcaC7G3pBhYREcEmiXkvFGNihY+zIcsK4TDKa1kBIMn+xPs+m8ODBw+YGdyaYgXQZhsRf2Tbt2/H22+/zVwMKiJWWrRowR5Ye/fuNegKYwhyA3NOdC0r1soixbuC7du3jy07g1ipXbu2XkXs5557jg1Kly5dqucjX1BQgClTpkjitHRfqpmZmez34CqWFUDqCib2Ze3atSWCT87wrnOzZ89mmaeaNWsmuY9tDS9Wdu/eLXG1qWhbnMmy4u3tzZ436enpmDJliqSuCu9eKGIobuW7777TS4ZQlljRaDR49tlnJQUI33//fav+TssjVgCpC6LoCmauZUXEXlYVEfHdn52dDY1GY7V7iR9nGRMrtgywVyqVrJJ9QkICs9oZEysKhYJdr6vWWiGxIgMqYlnhLQ5ihVpzMeWnaimhoaH47rvv2OclS5aw5fJkAhNxc3NjViQxFaw5kGXFOdG1rFhrprFdu3YGfzuOcAPTFSuDBw/Wc38MDw9n1pXCwkIMGjSI+fgDwLx58ySpewH9l6oj0hbbA16siDz//PN2szjYGr4gJh/svGjRIrtWp9YV0L6+vpgwYQL+/PNPnDx5skKzydWqVWODLDHrFD8TbK8aKyJiWy5fvoxNmzYB0KbE/eWXXwzGz/HFiA8cOACNRiOx1IqD1gsXLhgdMJaUlGDChAn46quvAGgHmv/73/+snk5e7B9z3MAA6QSn3MSKRqNBbm6u1cSKOW5gtrSsAA9dwYqLi1m2NWNiBXh4vYWFhXrZ7VwBEisyoCKZNqpVq4YWLVoAAE6dOiWxJJSFqbTF1qBv3754+eWX9dZXNJC/Iq5gJFacE1tZVnhXMB5HWFZ07zfd4pwiy5YtY7PsmZmZ6NevH1JTU3HkyBEsXboUgNZ1RDxeQkKCZIDkqLTFtkZXrHh7e+Opp55yUGusT8uWLfX6KzY2FoMHD7ZrO1q1aoV3330X48aNww8//ID09HR899136Nu3r0XCUPxN37lzB+np6WyAybuy2AtDNcu+//57ScwAj7u7Ozp06ABAmzHzq6++Ym463bp1Y5aXBw8eGBwwFhcXY/jw4SwNtZubG77//ns888wzVrkeHvG7LCwsZM8FU++9GjVqsL45ceIEHjx4YLYbmIi9gutFdDOCWUus1KpVi00gmeMGZov71lDcirHUxYB04s0V41ZIrMgA0Q0sLCysXMHu4kyJIAjliuewtVgBgHfffRdt27aVrHOUWLFnnQ3CNLayrADQc1sJCgpySMFY3rJStWpVltFOF5VKhU2bNrEih6mpqejXrx8mTZrE3LsWLFjAtmdlZUkmJRxRvd4e6IqViRMnupQrp1KplLjkAMDixYsdUhvpjTfewPfff48xY8ZYLRaBn4A4ceIESyDhiIkD3QHf/PnzMXDgQJN/w7uCvfLKK2z5xRdflATI85ZQkTVr1mDbtm0AtAWef/31V4wdO7ZCbS8LfgAtBsyXNUkn3nfimIFP7qHrZeEMlhXdwpDWEisqlYpdizluYLa0rAAPxYpoWXF3d9cbt/DX64pxKyRWnJyioiImHso7a8GbdcvjCmaLGiu6qFQqrF+/XjKTXhE3MEA7oBUHY/v27TOaF51HHNQFBAS4jPuIK8CLFXd3d4nfvKW0a9dO8jJ1xOAIkIqVAQMGmKx74+/vj99//52lkT1//jxz/4qNjcXLL78sqbh87do1tsy7gbmSZaVu3boSdyi5pys2BB+30qlTJ6ungHYkvFj5/fff2bIjXDL599ugQYPw9ttvl/k3fJC9OLtet25dPPbYY5KMl4biVviCkZs2bcKgQYMq0myz4AfQ4sDaXLECaF3BRMtKYGCgnvWALwwp4mjLiuiFUtEaKzzic/XBgwd6MUmA/dzAAH2xEhISoucSqmtZEQQB6enpOHjwIOLi4oymYJYLJFacnNTUVLZcXn/eLl26sIF4ecSKLWNWeOrWrYtvvvkGnp6eCAoKQo8ePSp0HLHyLaCdXdbNimQI8eFDLmDOhZubG5vtbNq0qVVrg+i6gjlKrHTu3Bne3t5QKpV4+umny9y/Ro0a2LFjh2QWWKVSIS4uDu7u7hKxws8CuqplxdPTkw3eR40aZdV0r87CqFGjEBsbi5o1a+Lzzz93iFXFVvBiZevWrWzZEb/HadOmoWbNmujZsyfWrl1rVkxQu3btWMFMEbHKPZ9m3ZBlRUyb7uXlJaltYgt4cSEOrMsSK/yYYdeuXWziUtcFTERXEDgqZgWQWlYsqbEiwmezMxS3YssAe0C/Lp0gCEysGHJf5H8/H330EapUqYLQ0FB07twZU6ZMYRne5AqJFSenIsH1In5+fmjXrh0A7c3OCx9T2MMNTGTUqFFITExESkqKRa4c5XEFEwSBxIoT89lnn6FPnz6SwFVrMWbMGLbcvHlzqx/fHMLDw3H9+nVcv35dMktrirp162L79u3Mbe29995jLnLGxIqrWlYAYPPmzTh48KAkWYcr4efnh+PHjyM1NZXFHroKjRs3ZuKLfyc5Qqy0bt0aqamp2LVrl8SlyBS+vr5o3bo1+xwQEIDJkycDkNZJ0bWsZGVlsRnyFi1a2Nyizw+gdS0rXl5ekir3In5+fiwm59q1aywrqLlixZGWlZSUFDZBY417qSyxYmvLSlhYGHO9vHr1KrKzs1FcXAzAsFjhLSsPHjxATk6OZDufAlmOkFhxciqStpinIq5g9hQr4jks/bGXR6zk5uayCuau5OvuKowePRo7duxgWd6sSdu2bfHNN9/g5Zdfdqj7UGhoaLl/z23atMHly5dx8uRJzJkzh6035gbmqpYVQGtd6dixo8EBlyvhShYVEV9fX4M1WBxl6VQoFOX+nvm4lalTpzJ35qpVqzJ35vPnz0sSXvAWfzHOzJaYEiumJul046UA42KFt6QoFAqbemIYghcrZ86cYcvWFiuG4lZsbVlRKBQsfXFiYqLEPd+QWAkODsbw4cMBaL1NoqOj0bdvXzz//PP49NNPy4zFcnZIrDg5llhWgIqJFfFHUaVKFbtnZ6kojRo1Yi+JAwcOMDFiCMoEVrmZMmUKPvroI1n2fWhoqF6VdmMvVVdNXUzIH0NZ/hwRs1JRpkyZgoCAAISHh0smDgCwAeb9+/clqWb//fdftsxbZmwFPwGo6wZmLbHCW1Zq1qxpMv7OFvBihReD1kiBbcxiLcJbVmw1aSLGrZSWlrJ6S4BhsQJo46Bu3bqF/Px8JCQk4M8//8Rnn32GWbNmyd5CS2LFybHUstK+fXv20NqzZ0+ZxYJsVb3e1igUCha3kpOTI3kx6EJihXAlfH192curslhWCHljSKzY24XIEpo2bYrbt28jKSlJz5rAB0bzrmBivArgGMtKcXEx8vLyAJh+77Vt21YvhbwxiwkvVuwdrwJIxQpfY82ebmBeXl42q3/E30uHDh1iy8bEikKhQGhoaLmyxsoFEitOjqWWFZVKxfzi09LSyvRbzMnJYT9Ce5t0LYV3BTtw4IDR/XixQm5ghCsgPhvS09ORm5sL4KFY8fHxkY2FlKgc6IqVsLAw2bn0eXt76wXaA8bFijiBplKp7JIUQlesmDtJ5+HhwSb+RMxxA3OE2OTFipieGbCOWAkMDJTUsNJFdAOzRbyKSHnFiitDYsWJOHHiBP755x9kZmaydaJY8ff3r3A9kPK4gtk7XsWa8MHKBw8eNLofX4uCLCuEK8BbXcVZQNENzNWC6wn5oytWHBWvYgtENzDgYUaw3NxclnK8efPmVs1yaAzd1MXl8SjQdQUzJlZatGjBRKYYmG9PjCVFsNb9JLqCpaSksOB2EXFS15Zihc8IxgvfatWq2eyczgqJFSdi4cKFePTRRxEYGIjw8HD07t2biZXatWtXONiyPGLFHjVWbEXDhg3ZQ/jgwYNGXd7IDYxwNXixcu3aNQiCwCwr5AJGOBsxMTESVxVXEiuGLCunT59m7yN7xKsA+qmLbSFWqlevjgMHDmDt2rV45plnLGhtxTA0gatUKi2usSIiuoJpNBqJlwvw0LJiS6s1fy/xkGWFcCi8cr558yZ2796NkpISAJYFjLVs2ZI9nP7++2+TRRPlbFlRKpXo2LEjAK0LjDiTpQu5gRGuBu+CkZCQgOzsbJZkgsQK4Wy4u7tLXKHkFFxfFlWrVkVoaCiAh5YVe8erABV3AwO0CWvE97+np6fJmfzY2FiMHz/eIXESvr6+eq54tWrVslqgv6kge3tYVqpVq8bS1fOQWCEcygsvvIAZM2agc+fOeoPoAQMGVPi4SqWSxXM8ePDAZNFEexWEtBV8SkljrmDkBka4GvxkRkJCgiS4ntzACGdErBMEuJZlBQArDnn37l3cuXPH7pnAANNipaxJOoVCgUWLFiEoKAhz5861WQC5pSgUCj3rijXvJV6s8EH2arWa1aCxpWVFoVAYtK6QWCEcyvPPP4+vvvoK+/fvx927d5Geno69e/fin3/+MavStSnMdQU7cuQIW5abZQWQihU+II2H3MAIV0PXDYzSFhPODh9jaK8BvL1o1KgRW75w4QITK+7u7gYzodkC3dTF5X3vPfXUU7h79y7mz59vi+ZZDVuKFWNp4flgfltaVgB9VzBvb29WLLIyYdsSqlbmxo0bWL58Oc6dOweFQoEOHTrglVdeYWaywsJCvPvuu9i3bx/8/f0xc+ZM9OvXz8GtrhgKhQLVq1e3moLmxcpnn32GCRMm6ImRNWvWYNOmTQC05lU55uWOjY2Fp6cnioqKjFpWSKwQrkbVqlVRtWpVZGZmkmWFkAWTJk1CdnY2qlevbjfXKHvBu7gdP34cFy9eBKC1JtnLXUrXssLXHjP3vSeHoqT2sqzwYoWvsWLrTIu6YqV69eqy6BdrIyvLSm5uLnr16oUtW7Zg69atKCkpwfLly9n2lStXIisrC9u3b8d7772HDz74QC8oqrJSv359VhE8NTUVgwcPlvzgzpw5g+eee459XrlyZYWzjzkST09PxMbGAtDOMN++fVtvH94NjGJWCFdBzEKUnJwsceckywrhjHh4eGDOnDmYMGGCo5tidXixsn79emg0GgD2i1cBLItZkRO2FCvh4eEs/oV3A+Or19vassJnBAMqpwsYIDPLStOmTSV+rkOHDsUnn3zCPm/fvh1Lly6Fn58fWrRogS5dumDnzp2YNm2aweMVFxfrpaNzd3e3S1pBR7B+/Xq0b98eycnJOHHiBCZMmICNGzciJycHI0eOZKbNGTNmYMyYMewBawhxm6l9HEXHjh2ZC9iBAwcwYsQIyXbxoa1QKODn5+eU12AvnLkfCfMQ+y46OhonTpyARqPBiRMn2PagoCDqXyeHfoeugdh/DRs2ZOv44PpWrVrZrY/5ujX5+fmsICSgTfnrKveabvri2rVrW3Rt/G9RqVSiTp06uHLlCq5fvw61Wg2FQsFqWQFaUWjL75K37gBaS7kc+87SuCdZiRVdzp49y3wKs7Ozce/ePUmO8/r167NsHIaIi4vDqlWrJOtGjRqF0aNH26bBTsBXX32F0aNHIzc3F7/88gtmzpyJxMREVvm6adOmeOGFF8y2SKWkpNiyuRWCN5v+8ccfzNIicufOHQBAQECAU7bfEdD3IH94dy++KKparSYLs0yg36FrkJ+fj5CQEEnsGKBNWmOv3yJvScnIyEBWVhb7nJeX5zLPBN1sYB4eHla5NvG3GBYWhitXriAvLw///vsvqlWrJrGylJaW2vS71C2W6uPjI8u+szTjn2zFyuXLl7Fx40Z8/fXXALQPBzc3N0nH+vr6SlyddJk8eTLGjRsnWefKlhVAG4i7fv16DBkyBBqNBl999RXbVrVqVWzevNmsm0qj0SAlJQURERFOlylk6NChzJr233//SYKPs7KykJGRAUA7uLMkJbQr4Mz9SJiH2IetWrVi6y5dusSWGzVqVOnvc2eHfoeuAd+PzZo1w99//822ubm5oU+fPjaPcRDhSxS4ubmx7FWAtiin7iBYrvA1VZRKJdq1a2dR6mLd32LTpk2xb98+ANpxZmRkJFJTU9n+NWrUsOnzNTIyEkFBQcx9PTo6ulI+z51KrDz33HM4deqUwW1TpkzB1KlTAQBpaWl46aWX8PbbbzMTmY+PD9RqNQoLC9mPMC8vz6Q/oUqlcmlhYoyBAwfik08+wezZsyXr165dq2dyLAulUul0L9eQkBA0adIE58+fx8mTJ1FQUMCyZ6xYsYL5m3bv3t3p2u4onLEfifLBW5X5YNrq1atT38oE+h26BkqlEk2aNJGIlcaNG9s1ixN/rsLCQmZp8fLysnmchT3h429q1apltQQG4m+RTzR06tQpdOvWTS8bmK1/s/Xq1cPRo0cBaMVRZXxGOJVY+eKLL8rc5+7du3juuefw1FNPoVu3bmx9QEAAgoODce3aNRbXcuXKFUnqOeIhM2fOxOXLl/G///0PAPD6669j4MCBDm6V9ejYsSPOnz8PtVqNo0ePokePHnjw4AGWLVsGQGtBe/311x3cSoKwHsYmGijAniDsDx9kD9g/PbOx1MWuFFwPSAPsbWFxaNu2LVs+fvw4APsG2ANSsVJZA+xlJc9yc3Mxc+ZMPPbYYxg+fLje9gEDBmD16tXIy8vDuXPnsH//fvTu3dsBLXV+FAoFPv30U6xYsQKfffYZFi1a5OgmWRVDxSE/+eQTZGdnA9CmzSQhS7gSYWFhei4mnp6elTInP0E4GrEwpIi90zMbywbmymLFFsVFmzRpwrx1RLHChxfYQ6zw1p3yer+4Ck5lWSmLvXv34urVq0hNTcV3333H1ovBpDNmzMDixYvRr18/BAQEYO7cuS5XGdeauLu7Y+bMmY5uhk3QFSv3799naa7d3d3x5ptvOqhlBGEblEoloqOjJUlFgoODK2VOfoJwNI62rHh4eECpVEKj0SA7O5tlA3M1sVKtWjW2bIuBvIeHB1q2bIkjR47g2rVrePDggcSyYo8YpBkzZuDKlSsICwtDhw4dbH4+Z0RWYmXgwIEmXZW8vLywePFiO7aIcFaioqJQs2ZN3Lx5E//88w+WLFmCnJwcANrKvCRiCVekbt26ErFCBSEJwjGEhISgWrVquHPnDhQKBVq2bGnX8ysUCvj4+CA3Nxc3b95k611NrPTo0QN9+vRBeno6nnrqKZuco23btjhy5AgA4MSJE3a3rPj7+7NkUpUVWbmBEYS5KBQKdOzYEYDWfXDp0qUAtLMkb7zxhiObRhA2gw+yByhehSAcydixYwEAI0aMcIg7pjjrz6dQdjWxolKpsGPHDpw+fVqSGcya8HErumLFXtndKjskVgiXhXcFE9M4Tp06FbVr13ZUkwjCpui6QZBYIQjH8cknn+DatWvYuHGjQ85vaCDtamLFHugG2ds7wJ4gsUK4MLxYAbQzMGRVIVwZQ9WOCYJwDAqFAnXr1nVYqlkSK9ahfv368Pf3B6AVK2RZsT8kVgiXpXnz5vDz82Ofp0+fbjMzMUE4A+QGRhCEiKFZfxIr5UepVLJsbqmpqUhMTGTbyLJiH0isEC6Lu7s7S13t5eWFuXPnOrhFBGFbateuDTc3N/aZLCsEUXkhy4r14F3B9u/fz5ZJrNgHWWUDI4jy8vnnn6NJkyYYMGAAwsPDHd0cgrApHh4eiIyMxPXr1wGQZYUgKjMkVqwHL1Zu377NlskNzD6QWCFcmpo1a7pcwUuCMEVMTAwTK2RZIYjKi6FZ/6CgIAe0RP7wYoWHLCv2gdzACIIgXIiGDRuy5Zo1azqwJQRBOBKyrFiPyMhIg5ZqsqzYBxIrBEEQLsSsWbPQsWNHPP3002jevLmjm0MQhIMgsWI9FAqFQesKWVbsA7mBEQRBuBB169bFwYMHHd0MgiAcDIkV69K2bVv8+eef7LNCoYBKpXJgiyoPZFkhCIIgCIJwMXRn/b28vODl5eWg1sgfXcuKj48PFAqFg1pTuSCxQhAEQRAE4WLoWlbIqmIZsbGxks/kAmY/SKwQBEEQBEG4GCRWrEtYWJikBAIF19sPEisEQRAEQRAuBokV68O7gpFlxX6QWCEIgiAIgnAxdAfTJFYshxcrZFmxHyRWCIIgCIIgXAyyrFgfsqw4BhIrBEEQBEEQLgaJFesTGxsLd3dt1Y8aNWo4uDWVBxIrBEEQBEEQLga5gVmfwMBAfPnll+jfvz/eeustRzen0kBFIQmCIAiCIFwMsqzYhqlTp2Lq1KmObkalgiwrBEEQBEEQLgaJFcJVkK1YiY+PR2xsLM6dO8fWFRYW4u2330aXLl3w2GOP4c8//3RgCwmCIAiCIBwDiRXCVZClG1hGRgb+/PNPBAcHS9avXLkSWVlZ2L59OxISEjB79mw0atQIkZGRDmopQRAEQRCE/aGYFcJVkKVl5ZNPPsGMGTOgUqkk67dv347p06fDz88PLVq0QJcuXbBz504HtZIgCIIgCMIxkGWFcBVkZ1k5ceIEsrKy0L17dyxbtoytz87Oxr179xATE8PW1a9fH+fPnzd6rOLiYhQXF0vWubu764kgQh+NRiP5n5An1I/yh/pQ/lAfugbO1o+enp6Sz1WqVHGatjkrztaHroJSaZltRFZipbS0FMuWLcPChQv1tuXn58PNzQ1eXl5sna+vL/Lz840eLy4uDqtWrZKsGzVqFEaPHm29Rrs4KSkpjm4CYQWoH+UP9aH8oT50DZylH3XHPzk5OUhKSnJQa+SFs/Shq1CnTh2L/t6pxMpzzz2HU6dOGdw2ZcoU+Pr6omXLlhLriYiPjw/UajUKCwuZYMnLyzNZYXTy5MkYN26cZB1ZVsxDo9EgJSUFERERFitmwnFQP8of6kP5Q33oGjhbP/LWAS8vLzRo0MCBrZEHztaHhBanEitffPGFye1z5szBqVOn8NdffwEAHjx4gBdeeAGzZ8/G4MGDERwcjGvXrqFp06YAgCtXriA6Otro8VQqFQkTC1EqlfSDdgGoH+UP9aH8oT50DZylH5VKJVQqFYqLixEYGOgUbZILztKHhBanEitlMX/+fBQVFbHPTz75JF5//XXExsYCAAYMGIDVq1fj3XffxfXr17F//37Ex8c7qLUEQRAEQRCOIzIyElevXkXdunUd3RSCqDCyEiv+/v7w9/dnn5VKJapUqcLcvmbMmIHFixejX79+CAgIwNy5cxEVFeWg1hIEQRAEQTiOb775BmvXrsWzzz7r6KYQRIWRlVjRZevWrZLPXl5eWLx4sYNaQxAEQRAE4Tx07twZnTt3dnQzCMIiyCGPIAiCIAiCIAinhMQKQRAEQRAEQRBOCYkVgiAIgiAIgiCcEhIrBEEQBEEQBEE4JSRWCIIgCIIgCIJwSkisEARBEARBEAThlJBYIQiCIAiCIAjCKSGxQhAEQRAEQRCEU6IQBEFwdCMIgiAIgiAIgiB0IcsKQRAEQRAEQRBOCYkVgiAIgiAIgiCcEhIrBEEQBEEQBEE4JSRWCIIgCIIgCIJwSkisEARBEARBEAThlJBYIQiCIAiCIAjCKSGxQhAEQRAEQRCEU0JihSAIgiAIgiAIp4TECkEQBEEQBEEQTgmJFYIgCIIgCIIgnBISKwQAYOXKlRg1ahTatm2LHTt2sPWFhYV499130bt3b/Tp0wdr166V/F1sbCw6deqEzp07o3PnzlizZo3kb99++2106dIFjz32GP7880+7XU9lxBZ9uGzZMgwZMgRdunTBhAkTcPLkSbtdT2XEFn0ocvPmTXTs2BHvvfeeza+jsmOrfvztt98wbNgwdOrUCSNHjkRSUpJdrqcyYos+TEtLw3PPPYdu3bqhf//+iIuLs9v1VEYq2oe5ublYuHAhevTogW7duuHNN9+U/C2Na+yPu6MbQDgHERERmDNnDr766ivJ+m+++QY3b97Er7/+itzcXDzzzDOIiYlBhw4d2D6bN29GSEiI3jFXrlyJrKwsbN++HQkJCZg9ezYaNWqEyMhIm19PZcQWfejn54fPP/8c4eHh2LNnD15++WVs3boVvr6+Nr+eyogt+lBk2bJlaNCggc3aTjzEFv24f/9+fP/99/j4448RHR2NtLQ0+Pv72/xaKiu26MOPPvoI4eHh+PTTT5Geno6nnnoKTZo0wSOPPGLz66mMVLQPFyxYgBo1auC3336Dl5cXrl27xv6WxjWOgSwrBABgwIABaN++PVQqlWT9P//8g7Fjx8LPzw+hoaEYPHgwfv/9d7OOuX37dkyfPh1+fn5o0aIFunTpgp07d9qi+QRs04fTp09HREQElEolevXqBU9PTyQnJ9ui+QRs04fi3wuCgHbt2lm7yYQBbNGPq1evxksvvYS6detCoVCgVq1aqFKlii2aT8A2fXjr1i306dMH7u7uCA8PR8uWLXH9+nVbNJ9AxfowISEBly5dwosvvgg/Pz+4u7ujYcOG7G9pXOMYSKwQZSIIgmRZ9+E6fvx49O/fH/Pnz0dmZiYAIDs7G/fu3UNMTAzbr379+vRgdhAV6UNdbt68iezsbERERNiyqYQRKtqHJSUl+PTTT/HCCy/YqaWEKSrSj2q1GpcvX8a1a9cwYMAADB48GKtWrZIci7AfFf0tjho1Cjt27EBxcTGSk5Nx7tw5xMbG2qvZBIexPrx48SJq166Nt99+Gz179sTEiRNx6tQpADSucSQkVgiTtG/fHuvXr0dOTg5u3ryJbdu2obCwkG1ftWoVtm3bhh9++AGFhYVYuHAhACA/Px9ubm7w8vJi+/r6+iI/P9/u11DZqWgf8pSWlmL+/PmYMGEC/Pz87Nl8Apb14bp169CxY0cSmU5ARfvx/v37UKvVOH78ODZu3Iivv/4au3btwtatWx11KZUWS36LLVq0wLlz59C5c2cMHz4cQ4YMkQx8Cftgqg8zMjJw9OhRPPLII9ixYwcmTZqEl19+GVlZWTSucSAkVgiTPPXUU6hZsyZGjhyJWbNmoWfPnqhWrRrb3qpVK7i7uyMwMBAvv/wyDh06hJKSEvj4+ECtVkse4nl5efDx8XHEZVRqKtqHIoIgYP78+QgMDMT06dMdcQmVnor2YUZGBn777TdMmTLFga0nRCraj56engCAJ598Ev7+/ggNDcWoUaNw6NAhR11KpaWifahWqzF79mwMHToUhw4dwm+//Ybdu3dj9+7dDryayompPvT09ER4eDiGDh0Kd3d39OjRA+Hh4Th37hyNaxwIiRXCJN7e3njzzTexY8cObNq0CQqFAo0bNza4r1KpvZ0EQUBAQACCg4MlgWlXrlxBdHS0XdpNPKSifSjy4Ycf4s6dO1i0aBHbTtiXivbhhQsXkJ6ejuHDh6Nv3774/vvv8fvvv2PmzJn2bD7x/1jyPOUHxOJ6wv5UtA+zs7Nx584djBw5Eu7u7qhZsya6deuGf//9157NJ2C6D+vWrWv072hc4zho5EEA0Lr5FBUVQRAEtqzRaJCeno67d+9CrVbjyJEj2Lp1K8aOHQtAG4h25coVqNVqZGdnY+nSpWjXrh0LZhswYABWr16NvLw8nDt3Dvv370fv3r0deZkujS36cOXKlThz5gyWLl2qF6RIWB9r9+Gjjz6KLVu2YN26dVi3bh1GjBiBXr16YdGiRQ6+UtfGFr/FgQMH4rvvvkNeXh7u3LmDn3/+GZ06dXLkZbo01u7DwMBA1KhRA5s3b2bH2bdvn8nBMWEZFenD2NhYCIKAbdu2Qa1WY9++fUhLS0OzZs0A0LjGUSgEmp4hAMyfPx/btm2TrBPT/c2bNw+ZmZmIiorCyy+/jFatWgEAjh8/jvfffx8ZGRnw9fXFI488ghdffBFBQUEAtPnIFy9ejH379iEgIAAzZ85Ev3797HthlQhb9GFsbCxUKhXc3NzYMd944w3079/fTldVubBFH/KsXLkS9+7dwxtvvGH7i6nE2KIfS0pKsGTJEuzatQs+Pj4YOnQopk+fDoVCYd+LqyTYog/Pnz+PpUuXIiEhAV5eXujTpw9eeOEFyfOVsB4V6UMAuHr1KhYtWoTExERERETg5ZdfRuvWrQHQuMZRkFghCIIgCIIgCMIpITcwgiAIgiAIgiCcEhIrBEEQBEEQBEE4JSRWCIIgCIIgCIJwSkisEARBEARBEAThlJBYIQiCIAiCIAjCKSGxQhAEQRAEQRCEU0JihSAIgiAIgiAIp4TECkEQBEEQBEEQTgmJFYIgCKLSERsbi9jYWGzdutXRTSEIgiBMQGKFIAiCsAnTp09nomDMmDGSbZmZmejYsSPb/tlnn1n9/Fu3bmXHJwiCIOQJiRWCIAjC5ly9ehUnT55knzdv3oyioiIHtoggCIKQAyRWCIIgCJvi7u4OANi4cSMAQK1WY9OmTWw9T1ZWFpYsWYLHHnsM7dq1Q58+ffD222/j9u3bbJ+VK1ciNjYWgwYNwq5duzBixAh06tQJ06ZNw40bNwAA8+fPx4IFC9jfiBaWlStXSs6Xm5uL+fPno2vXrujfvz9Wr15t7csnCIIgLIDECkEQBGFT6tevj/DwcOzduxfp6enYv38/bt++jZ49e0r2KyoqwvTp0/HTTz/h7t27iIyMRF5eHv744w9MnjwZDx48kOyfkZGBt99+GwqFAkVFRTh16hQWLlwIAKhVqxbCw8PZvk2bNkXTpk1Ro0YNyTE+//xzHDlyBB4eHrhz5w6++uorHDlyxEbfBEEQBFFeSKwQBEEQNkWpVGLUqFHMoiJaWB5//HHJfjt27EBCQgIAYMmSJfjxxx/xzTffQKlU4s6dO/jxxx8l+6vVanz44YfYtGkTi4k5e/YsCgsLMXXqVEydOpXtGx8fj/j4eAwdOlRyjPr162Pr1q0SS8/x48etev0EQRBExSGxQhAEQdicIUOGwNvbGz/++CNOnDiBRo0aoXnz5pJ9Lly4AADw8vJCt27dAAANGzZEZGSkZLuIn58funTpAgCIjo5m63UtMKbo3bs3PDw8ULVqVQQFBQEA7t+/X76LIwiCIGwGiRWCIAjC5vj7+6N///7Iy8sDoG9VqegxRdzc3NiyIAgWHaM8f08QBEHYFhIrBEEQhF0YPXo0AKBq1aro06eP3vbGjRsDAAoLC7F3714AwKVLl5CUlCTZbi5eXl5suaCgoCJNJgiCIByMfioWgiAIgrABMTEx+Ouvv+Dm5gaVSqW3vW/fvvj+++9x/fp1vPbaa4iMjERaWho0Gg2qVavGxI65REVFseVRo0YhJCQEL7zwAlq2bGnhlRAEQRD2giwrBEEQhN2oUqUK/Pz8DG7z9PTEqlWrmLBISkqCr68v+vfvj7i4OAQGBpbrXPXq1cPUqVMRHByM27dv47///kNOTo41LoMgCIKwEwqBnHMJgiAIgiAIgnBCyLJCEARBEARBEIRTQmKFIAiCIAiCIAinhMQKQRAEQRAEQRBOCYkVgiAIgiAIgiCcEhIrBEEQBEEQBEE4JSRWCIIgCIIgCIJwSkisEARBEARBEAThlJBYIQiCIAiCIAjCKSGxQhAEQRAEQRCEU0JihSAIgiAIgiAIp4TECkE4gBUrVkChUKBp06ZG97l+/Tqef/551K9fH97e3vDx8UGTJk3w1ltvIS0tje03adIkKBQKg/+2bdtmj8shCIJwCeLj4yXPUC8vL4SGhqJ79+54//33kZGRIdl//vz5UCgU5TpHfn4+5s+fj71795br7wydKyoqCgMHDizXccrihx9+wPLlyw1uUygUmD9/vlXPRxBl4e7oBhBEZWTNmjUAgPPnz+Po0aNo166dZPu2bdvwxBNPICQkBM8//zxatfq/9u47vql6/+P46yRdaUtboLWssocgKrK8rAqCyAYREEVliKggS0AqghRkCIoKXoXKKN6fKCCKUoaggODFOhC0gFdllrJXKW060iTn90doILaFpk2apPk8H4+Q9OTk5P1NQpJPvt9zvvehKAoHDhxgxYoVbNq0if3791vX1+l07NixI9/93Hnnnc5tiBBClEHx8fHceeed5ObmcuHCBf773/8yb9483nrrLdasWUOnTp0AGD58OF26dLFr25mZmcyYMQOA9u3bF/l2xbmv4vjkk084ePAg48aNy3ddYmIi1apVc3oGIW4mxYoQpWzv3r38/vvvdO/enU2bNrF8+XKbYuX48eMMHDiQ+vXrs3PnTkJDQ63XPfjgg4wZM4b169fbbFOj0fCvf/2r1NoghBBlWePGjWnevLn170cffZTx48fTtm1b+vbty+HDh4mMjKRatWpO//KemZlJYGBgqdzX7cjnjHAFGQYmRClbvnw5AG+88QatW7dm9erVZGZmWq9/++230ev1fPDBBzaFSh5FUejbt2+p5RVCCAHVq1dnwYIFpKenExcXBxQ8NGvHjh20b9+eihUrotPpqF69Oo8++iiZmZmcOHGCiIgIAGbMmGEdbjZkyBCb7e3bt49+/fpRvnx56tSpU+h95Vm/fj333HMPAQEB1K5dm0WLFtlcnze87cSJEzbLv/vuOxRFsQ5Ja9++PZs2bSI5OdlmOFyegoaBHTx4kN69e1O+fHkCAgJo0qQJH330UYH38+mnn/Lqq69SpUoVQkJC6NSpE3/99detH3jh9aRYEaIUZWVl8emnn9KiRQsaN27MsGHDSE9P57PPPrOus23bNiIjI+3+BctoNNqcTCaTo+MLIYRX69atG1qtlt27dxd4/YkTJ+jevTt+fn6sWLGCr7/+mjfeeIOgoCAMBgOVK1fm66+/BuCZZ54hMTGRxMREpk2bZrOdvn37UrduXT777DOWLFlyy0y//fYb48aNY/z48axfv57WrVszduxY3nrrLbvb98EHH9CmTRsqVapkzZaYmFjo+n/99RetW7fm0KFDLFq0iC+++IJGjRoxZMgQ5s+fn2/9KVOmkJyczLJly/jwww85fPgwPXv2lM8rcUsyDEyIUrRu3TrS0tJ45plnAHjssccYN24cy5cvZ/DgwQCcPHmSJk2a2LVdvV6Pr6+vzbI2bdrw3//+1yG5hRBCQFBQEOHh4Zw5c6bA63/99Veys7N58803uffee63Ln3jiCevlZs2aAVCtWrVCf5QaPHiwdb+W2zlz5gz79++33l/Xrl25cOECr7/+OiNHjiQwMLBI2wFo1KgRYWFh+Pv7F+kHs9jYWAwGAzt37iQqKgqwFHRXr15lxowZPPfcczYjBBo1asTHH39s/Vur1TJgwAB++eUXGWImCiU9K0KUouXLl6PT6Rg4cCAAwcHB9O/fn++//57Dhw8Xe7s6nY5ffvnF5pQ33EwIIYTjqKpa6HVNmjTBz8+PESNG8NFHH3Hs2LFi3cejjz5a5HXvuusum8IILMXRtWvX2LdvX7Huv6h27NhBx44drYVKniFDhpCZmZmvV6ZXr142f99zzz0AJCcnOzWn8GxSrAhRSo4cOcLu3bvp3r07qqpy9epVrl69Sr9+/YAbRwirXr06x48ft2vbGo2G5s2b25waNGjg8DYIIYQ30+v1XL58mSpVqhR4fZ06dfj222+54447GDVqFHXq1KFOnTosXLjQrvupXLlykdetVKlSocsuX75s1/3a6/LlywVmzXt8/nn/FStWtPnb398fsAyRFqIwUqwIUUpWrFiBqqqsW7eO8uXLW0/du3cH4KOPPsJkMvHwww9z/vx5fvzxRxcnFkIIcbNNmzZhMpluecjhdu3akZCQQFpaGj/++COtWrVi3LhxrF69usj3Y8/cLefOnSt0WV5xEBAQAEBOTo7NepcuXSry/RSkYsWKnD17Nt/yvGFy4eHhJdq+ECDFihClwmQy8dFHH1GnTh127tyZ7zRhwgTOnj3Lli1bGD9+PEFBQYwcOZK0tLR821JVNd+hi4UQQjjXyZMnmThxIqGhoTz33HO3XV+r1XL//ffz/vvvA1iHZDm6N+HQoUP8/vvvNss++eQTypUrR9OmTQHL5JEASUlJNutt2LAh3/b8/f2LnK1jx47s2LEj3z48//nPfwgMDJT9UIRDyA72QpSCLVu2cObMGebNm1fgL3KNGzfm3//+N8uXL2f9+vWsXr2axx57jCZNmlgnhQT4448/rD00jzzySCm3QgghvMPBgwetR1a8cOEC33//PfHx8Wi1WtavX289/PA/LVmyhB07dtC9e3eqV69Odna2dYhv3kSS5cqVo0aNGnz11Vd07NiRChUqEB4ebi0o7FWlShV69epFbGwslStX5uOPP+abb75h3rx51p3rW7RoQYMGDZg4cSJGo5Hy5cuzfv36Ag/Ccvfdd/PFF1+wePFimjVrZh1mXJDp06ezceNGOnTowGuvvUaFChVYtWoVmzZtYv78+QUefl8Ie0mxIkQpWL58OX5+fgwdOrTA68PDw3nkkUdYt24d58+fp0ePHhw4cIAFCxawZMkSUlJS0Gg01KpViy5dujB69OhSboEQQniPvPdqPz8/wsLCaNiwIZMnT2b48OGFFipg2cF+27ZtTJ8+nXPnzhEcHEzjxo3ZsGEDnTt3tq63fPlyJk2aRK9evcjJyWHw4MGsXLmyWFmbNGnC0KFDmT59OocPH6ZKlSq8/fbbjB8/3rqOVqslISGBF198keeffx5/f38GDhzIv//9b+tQ5Dxjx47l0KFDTJkyhbS0NFRVLfSgAg0aNOCHH35gypQpjBo1iqysLBo2bEh8fLx17hghSkpRb3VYCyGEEEIIIYRwEdlnRQghhBBCCOGWpFgRQgghhBBCuCUpVoQQQgghhBBuSYoVIYQQQgghhFuSYkUIIYQQQgjhlqRYEUIIIYQQQrglKVaEEEIIIYQQbkmKFQcxm80cP34cs9ns6iilwtvaC9Jmb+Bt7QXvbLM78bTHX/I6l+R1Lk/LC56X2Rl5pVgRQgghhBBCuCUpVoQQQgghhBBuSYoVIYQQQgghhFuSYkUIIYQQQgjhlqRYEUIIIYQQQrglKVaEEEIIIYQQbskjipW4uDj69+9PixYt2Lp1a6HrZWdnM23aNKKjo+nevTtff/11KaYUQgghhBBCOJJHFCtRUVFMmDCBu+6665brxcXFkZaWxubNm5kzZw5vvPEGycnJpZRSCCGEEEII4Ug+rg5QFN26dQNgxYoVt1xv8+bNLFiwgODgYO69916io6PZtm0bzz77bIHrGwwGDAaDzTIfHx/8/Pzszpg3+Y2nTNpTUt7WXpA2ewNvay+UvM0ajUf85iWEEMJDeUSxUhTXrl3j8uXL1K1b17qsfv36HDp0qNDbxMfHs3TpUptl/fv3Z8CAAcXKMHXqVGbNmlWs23qqlJQUV0coddLmss/b2gvFb3OtWrUcnEQIIYS4ocwUK5mZmWi1WgICAqzLgoKCyMzMLPQ2Q4cOZdCgQTbLStKzcv78eaKiorzil0az2UxKSorXtBekzd7QZm9rL3hnm4V3UBSF4OBgkpKSCA0NJSMjo8i3VVXVicmEEPYoM8VKYGAgJpOJ7Oxsa8Gi1+sJDAws9DZ+fn7FKkxuRaPReNUHvre1F6TN3sDb2gve2WYhhBDur8wUKyEhIVSsWJEjR47QuHFjAP7++29q167t4mRCCCGEEGWDoiildl/SwyXAQ44GZjQaycnJQVVV6+WCdgbt1q0by5YtQ6/Xc+DAAXbv3s1DDz3kgsRCCCGEEMKVLl68iK+vL5mZmRiNRsqVK8fp06et19esWRNFUVAUhcDAQBo3bkxcXJwLE4uCeESxMmvWLNq0acP+/fuZPn06bdq0Yd++fWzZssVmZ/jnnnuO4OBgunTpQkxMDDExMdSsWdN1wYUQQpQ6g8HAjBkz6NatGw888AAjRozgyJEjAMyZM4d27dpZT/fffz/jx493cWIhhDMkJibSpEkTAgMD+fXXX6lQoQJVq1a1WWfmzJmcPXuWpKQk+vTpw/PPP8+aNWtclNj1/nmUXHfgEcVKbGwse/futTk1b96crl27snbtWut6AQEBzJo1i++//55NmzbRpUsXF6YWQgjhCiaTiapVqxIfH8+OHTuIjo5mwoQJAEyZMoXvv//eeqpbty4PPPCAixMLIZzhhx9+oE2bNgD897//pXXr1vnWKVeuHJUqVaJu3brMmjWLevXq8eWXXwIwefJk6tevT2BgILVr12batGnk5uZab/v777/ToUMHypUrR0hICM2aNWPv3r0AJCcn07NnT8qXL09QUBB33XUXmzdvtt72jz/+oFu3bgQHBxMZGclTTz3FpUuXrNe3b9+eMWPGMHnyZO677z6qVKlCbGysTfY///yTtm3bEhAQQKNGjfj2229RFMWaH+D06dM89thjlC9fnooVK9K7d29OnDhhvX7IkCH06dOHuXPnUqVKFerXrw/ABx98QL169QgICCAyMpJ+/foV6zlwhDKzz4oQQggBoNPpGD58uPXvxx57jIULF3L16lXCwsKsy48fP87x48fp1KlTodty5HxcBfG0uX08KW9wcDBBQUEA1vOiclX7POnxLQ3FeRxOnjxJkyZNgBtHil25ciVZWVkoisKWLVt44okn+OCDDwDLfjE3309AQAAGgwGz2UxwcDArVqygSpUqHDhwwDqCZ9KkSQAMGjSIJk2a8P7776PVavntt9/QarWYzWZGjhyJwWDgu+++IygoiD/++IPAwEDMZjNnz57lgQceYPjw4bz11ltkZWURExPDgAED+Pbbb61ZPvroI8aNG8cXX3xBcnIyzzzzDK1ateKhhx7CbDbTp08foqKiSExMJD093ZrLbDZjNpvJzMykQ4cOtG3blu+++w4fHx9mz55Nly5d+O233/Dz80NVVbZv3065cuXYunUrqqry888/M2bMGD766CNat27NlStX+O9//1uk56Og13BJD94ixYoQQogyLSkpiQoVKtgUKgBbtmyhbdu2BAcHF3pbR8/HVRhPm9vHE/ImJSVZLycmJtp12+TkZEfHsYsnPL6loTjPg9FoJCEhgfT0dPr06cPnn39OYGAgPXr0YPny5VSpUoXAwECSk5MxGo1cuXLFevnLL7/kwIED9O/fn+TkZJ588knrdu+55x6GDh3Kxx9/bP3/n5yczJAhQ9DpdAC0bNnSuvzo0aN06dKFkJAQAO6++27rde+88w4NGzZkxIgRgOUHlhkzZtCmTRt27txJ7dq1yc7Opn79+gwZMgSwzGl19913s379eurXr8+uXbs4evQo//nPfwgLCyMsLIwXX3yRp59+mosXL5KcnMzatWsxmUxMnTrVemCE6dOn06RJE9auXUu7du3Q6/UEBAQwdepU648we/bsQafTcc899wBQoUIFevXqZdfzcfNruKTzcUmxIoQQoszKyMhgzpw5jBw5Mt91W7duZdy4cbe8vSPn4yqIp81z40l5Q0NDCQoKIjExkVatWqHX64t827S0NCcmK5wnPb6loUaNGsW6XZ06dVi7di0tWrSgS5cu7Nmzh0qVKvHoo4/aPL4+Pj7Mnz+fd955h5ycHPz8/Jg4cSKvvPIKGo2GdevWsWjRIo4cOUJGRgZGo5GQkBBrrpdeeolXXnmFr7/+mo4dO9KvXz/q1KljvW7UqFH88ssvdOzYkb59+1q//B85coQff/zRWsDcLDs7mxo1aliHdkVFRVkz16hRg5ycHGrUqMHVq1eJioqiefPm1tuWL18egIiICGrUqEFycjLJycnW+82Tk5NDeno6NWrUICgoiHvvvZd69epZr3/iiSdYvHgxDz74IA8//DAPP/wwjzzyyC2nA8njjNewFCtCCCHKpJycHCZMmEDbtm3p3bu3zXW///47165ds45nL4wz5uMqiKfNc+MJeW+eBFKv19s1KaSr2+YJj29pKM5jcNddd5GcnExubi5ms5mQkBCMRiNGo5GwsDCqVKnCn3/+ad32pEmTGDJkCIGBgVSuXNnaA/Hjjz/yxBNPMGPGDB5++GFCQ0NZvXo1CxYssN52xowZDBo0iE2bNrFlyxZiY2NZvXo1jzzyCCNGjKBr165s2rSJbdu28cYbb7BgwQJGjx6Nqqr07NmTefPm5ctfuXJl6/b9/Pysl/NeE6qqWpcpimLzGBW0brNmzVi1alW++4mIiECj0VgnT715O6Ghoezbt4/vvvuObdu2ERsby8yZM/nll1/y9VAXxpGvYSlWhBBClDlGo5EpU6YQERFRYO9J3i+hpVGICCFKz+bNm8nNzaVjx47Mnz+fZs2aMXDgQIYMGULnzp25cOGCzfrh4eHUrVs333b27NlDjRo1ePXVV63LChoGVb9+ferXr8/48eN5/PHHiY+P55FHHgEgKiqK559/nueff55XXnmFpUuXMnr0aJo2bcrnn39OzZo18fEp3lfxO++8k5MnT3L+/HkiIyMB+OWXX2zWadq0KWvWrOGOO+6wDkcrKh8fHzp16kSnTp2YPn06YWFh7Nixg759+xYrb0lI2S6EEKLMmT17Njk5OcTGxuabxM5oNPLNN9/IESOFKINq1KhBcHAw58+fp3fv3lSvXp0//viDvn37Urdu3XyHLi5M3bp1OXnyJKtXr+bo0aMsWrSI9evXW6/PysrixRdf5LvvviM5OZk9e/bwyy+/0LBhQwDGjRvH1q1bOX78OPv27WPHjh3W60aNGsWVK1d4/PHH+fnnnzl27Bjbtm1j2LBhmEymIuV76KGHqFOnDoMHDyYpKYk9e/ZYC6u897xBgwYRHh5O7969+f777zl+/Di7du1i7NixnDp1qtBtb9y4kUWLFvHbb7+RnJzMf/7zH8xmMw0aNChSNkeTYkUIIUSZcvbsWRISEti/fz8dOnSwzqmyf/9+wDK8w9/fn6ZNm7o4qRCeR1VV68lkMnHs2DFMJpPNckediuu7776jRYsWBAQE8NNPP1G1alWqVKli1zZ69+7N+PHjefHFF2nSpAk//PAD06ZNs16v1Wq5fPkyTz/9NPXr12fAgAF07dqVGTNmAJZDqI8aNYqGDRvSpUsXGjRoYD0CWZUqVdizZw8mk4mHH36Yxo0bM3bsWEJDQ4s8dEqr1fLll1+SkZFBixYtGD58OFOnTgUsRzQDCAwMZPfu3VSvXp2+ffvSsGFDhg0bRlZW1i17WsLCwvjiiy948MEHadiwIUuWLOHTTz/lrrvususxdBRFLcmrQViZzWY6d+7Mtm3bvGKcqdlsJjk5mRo1anhFe0Ha7A1t9rb2gne22Z142uPvSXnzxuInJSVxzz332LXPiqu+GnnS4wuStzTYk3nPnj20bduWI0eOWHf0L23OeIxlnxUhhBBCCCE8zPr16wkODqZevXocOXKEsWPH0qZNG5cVKs4ixYoQQgghhBAeJj09nZdffpmUlBTCw8Pp1KkTCxYscHUsh5NiRQghhBBCCA/z9NNP8/TTT7s6htN5xoA9IYQQQgghhNeRYkUIIYQQQgjhlqRYEUIIIYQQQrglKVaEEEIIIYQQbkmKFSGEEEIIIYRbkmJFCCGEEEII4ZakWBFCCCGEEEK4JSlWhBBCCCGEEG5JihUhhBBCCCGEW5JiRQghhBBCCOGWfFwdQAghhHAkg8HA3Llz+emnn9Dr9TRo0ICXX36ZunXrWtcxGo0MGjQIo9HI559/7sK0QgghbsUjelZSU1MZO3Ysbdq0oW/fvvz8888Frnf69GlGjRpF+/bt6dq1K/Hx8aWcVAghhKuZTCaqVq1KfHw8O3bsIDo6mgkTJtiss3btWoKDg12UUAghRFF5RLEyb948IiIi2L59O2PGjCEmJoZr167lW+/NN9+katWqfPvttyxbtow1a9YUWtgIIYQom3Q6HcOHDycyMhKtVstjjz3GmTNnuHr1KgCXL19m/fr1DB061LVBhRBC3JbbDwPLzMxk165dJCQkEBAQQPv27Vm1ahW7d++mR48eNuuePXuWJ598Eh8fH6pWrUqTJk04duwYLVu2LHDbBoMBg8Fgs8zHxwc/Pz+7c5rNZpvzss7b2gvSZm/gbe2FkrdZo3H/37ySkpKoUKECYWFhALz33nsMHTqUgICA297WkZ8TBfG015wn5Q0ODiYoKAjAel5UrmqfJz2+IHlLg6dlLihvST8n3L5YOXnyJMHBwYSHh1uX1atXj2PHjuVbt3///mzdupV77rmHc+fOceDAAYYPH17otuPj41m6dGm+bQwYMKDYeVNSUop9W0/kbe0FabM38Lb2QvHbXKtWLQcncayMjAzmzJnDyJEjAUvhcvLkSaZPn86vv/5629s743OiIJ72mvOEvElJSdbLiYmJdt02OTnZ0XHs4gmP780kr/N5Wuab85b0c8Lti5WsrKx8v4gEBQWRkZGRb917772XdevW0a5dO0wmEyNGjLDZofKfhg4dyqBBg2yWlbRnJSoqyiN+aSwps9lMSkqK17QXpM3e0GZvay+U7Tbn5OQwYcIE2rZtS+/evTGbzbz11ltMnjwZRVGKtA1Hfk4UxNMef0/KGxoaSlBQEImJibRq1Qq9Xl/k26alpTkxWeE86fEFyVsaPC2zM/K6fbGi0+nyvcHo9Xp0Op3NMpPJxNixY3n66afp168fFy5cYNy4cdSuXZtOnToVuG0/Pz+HfeDk0Wg0HvFichRvay9Im72Bt7UXyl6bjUYjU6ZMISIignHjxgGWz44///yTl156CYDc3Fz0ej0PP/wwX331VYHDwpzxOVEQT3v8PSHvzT9q6vX6An/kLIyr2+YJj+/NJK/zeVpmR+Z1+2KlevXqZGRkcOnSJetQsMOHD9O7d2+b9a5du8bFixfp168fPj4+VKlShfbt2/Prr78WWqwIIYQom2bPnk1OTg7z5s2z9qIEBwezefNm6zpJSUm89957LF26FH9/f1dFFUIIcQtuX6IFBgYSHR1NXFwc2dnZ7Nq1i6NHjxIdHW2zXvny5YmMjOTLL7/EbDZz/vx5du3aRZ06dVyUXAghhCucPXuWhIQE9u/fT4cOHWjXrh3t2rXjt99+Izw83HoKCQlBo9EQHh5e5GFhQgghSpfb96wAxMTEMH36dDp27EhkZCRz584lJCSELVu2EB8fz9q1awHLIY4XLFjAe++9R0BAAJ07d+aRRx5xcXohhBClqXLlyuzdu/e26zVv3lwmhBRCCDfnEcVK+fLlWbRoUb7lXbt2pWvXrta/77rrLlasWFGa0YQQQgghhBBO4vbDwIQQQgghhBDeSYoVIYQQQgghhFuSYkUIIYQQQgjhlqRYEUIIIYQQQrglKVaEEEIIIYQQbkmKFSGEEEIIIYRbkmJFCCGEEEII4ZakWBFCCCGEEEK4JY+YFFIIIYQQ3kdRFFdHEEK4mPSsCCGEEEIIIdySFCtCCCGEEEIItyTFihBCCCGEEMItSbEihBt54YUXXB1BCCGEEMJtSLEihBs5ffq0qyMI4fEMBgMzZsygW7duPPDAA4wYMYIjR44AsG/fPp599lnatm3L6NGjXZxUCCHE7UixIoQQokwxmUxUrVqV+Ph4duzYQXR0NBMmTAAgICCARx99lCFDhrg2pBBCiCKRQxcLIYQoU3Q6HcOHD7f+/dhjj7Fw4UKuXr1Ko0aNaNSoEQkJCUXalsFgwGAw2Czz8fHBz8/PIVnNZrPNubsr7bzBwcElun1QUJDNeVG56vmQ14NzeVpe8LzMBeXVaErWNyLFihBCiDItKSmJChUqEBYWZvdt4+PjWbp0qc2y/v37M2DAAAels0hJSXHo9pyttPImJSU5ZDuJiYl2rZ+cnOyQ+y0ueT04l6flBc/LfHPeWrVqlWhbUqwIIYQoszIyMpgzZw4jR44s1u2HDh3KoEGDbJY5umclJSWFqKioEv/6WBpKO29oaGiJbh8UFERiYiKtWrVCr9c7KNWtpaWlFfu28npwLk/LC56X2Rl5pVgRQghRJuXk5DBhwgTatm1L7969i7UNPz8/hxUmt6LRaDzii0ie0sqbkZHhkO3o9XqHbet2HPG4yOvBuTwtL3heZkfm9ZxWCyGEEEVkNBqZMmUKERERjBs3ztVxhBBCFJP0rAghhChzZs+eTU5ODvPmzUNRFOtys9lMbm4uRqMRs9lMTk4OWq0WHx/5OBRCCHck785CCCHKlLNnz5KQkIC/vz8dOnSwLl+0aBEmk4nnn3/euqxNmzb06NGD2NhYFyQVQghxOx5RrKSmphIbG8vevXuJjIwkJiaGli1bFrjuhg0biI+P5+LFi1SqVIkFCxZQo0aNUk4shBDCVSpXrszevXsLvf5W1wkhhHAvHlGszJs3j4iICLZv386PP/5ITEwMX375JSEhITbr7d69m48//pi33nqL2rVrc/r0acqVK+ei1EIIIYQQQoiScPtiJTMzk127dpGQkEBAQADt27dn1apV7N69mx49etisu2zZMl566SXq1KkDQLVq1W65bUdO9uVpk/aUlLe1F0qnzaqqutVj6m3Ps7e1F0reZk86Oo0QQgjP4/bFysmTJwkODiY8PNy6rF69ehw7dsxmPZPJxF9//cWRI0eYOXMmPj4+9OzZk+HDh9vsXHkzZ0z25WmT9pSUt7UXnNvmrKwsl09GVhBve569rb1Q/DaXdLIvIYQQ4lbcvljJysoiKCjIZllQUFC+46VfuXIFk8nEL7/8wpo1a9Dr9YwZM4bIyEh69epV4LYdOdlX3q+SnjJpT0l52iRFjlAabdbpdG61j5W3Pc/e1l7wzjYLIYTwHG5frOh0unyzzur1enQ6nc0yf39/AAYPHky5cuUoV64c/fv3Z8+ePYUWK86Y7MvTJu0pKW9rLzi3zYqiuOXj6W3Ps7e1F7yzzUIIIdxfiT6ZLl26xLlz5xyVpUDVq1cnIyODS5cuWZcdPnyY2rVr26wXEhJCRESEzTJVVZ2aTQghhBBCCOE8xSpWNm/eTI8ePejWrRtTpkxh165dPP/88/z3v/91dD4CAwOJjo4mLi6O7Oxsdu3axdGjR4mOjs63bo8ePfjPf/6DXq/n4sWLfP7557Rt29bhmYQQQgghhBDOZ3exsn37dqZPn8758+etPRcNGzZk3759bNq0yeEBAWJiYjh//jwdO3Zk4cKFzJ07l5CQELZs2WKzM/yIESMIDw+nW7duPP300zz44IP5jhgmhBBCCCGE8Ax277MSHx+PoigMHDiQTz/9FIA77riDiIgI/vjjD4cHBChfvjyLFi3Kt7xr16507drV+revry9Tp05l6tSpTskhhBBCCCGEKD1296wcP36cGjVq8NJLL9ksDwsLs9mvRAghhBBCCCFKwu5ixc/PD71ebzOBmMFg4MyZMwQEBDg0nBBCCCGEEMJ72V2s3H333Vy6dImxY8cCcP78eUaOHIler+fuu+92eEAhhBBCCCGEd7K7WBkxYgRarZaffvoJRVG4ePEiv//+O1qtluHDhzsjoxBCCCGEEMIL2V2sNG7cmMWLF3Pffffh7++Pv78/TZs25YMPPqBx48bOyCiEEEIUWVxcHP3796dFixZs3brVutxgMDBz5kw6depEx44dmTZtGllZWS5MKoQQ4naKNYN9kyZNiIuLc3QWIYQQosSioqKYMGECS5YssVm+Zs0ajhw5wueff46Pjw8vv/wyK1eu5IUXXnBRUiGEELdjd7Gyb9++W17ftGnTYocRQgghSqpbt24ArFixwmb52bNnadOmDaGhoQC0b9+en3/++ZbbMhgMGAwGm2U+Pj74+fk5JGvewWpuPmiNOyvtvMHBwSW6fVBQkM15aSjJYyOvB+fytLzgeZkLyqvRFGsOeiu7i5XnnnsORVEKvE5RFH766acSBRJCCCGcoUePHixcuJDU1FR8fHzYsWMHHTt2vOVt4uPjWbp0qc2y/v3720xI7AgpKSkO3Z6zlVbepKQkh2wnMTHRIdspiuTk5BJvQ14PzuVpecHzMt+ct1atWiXaVrGGgeXNXC+EEEJ4imrVqlGuXDk6d+6Moii0aNGCPn363PI2Q4cOZdCgQTbLHN2zkpKSQlRUVIl/fSwNpZ03rxesuIKCgkhMTKRVq1bo9XoHpbq1tLS0Yt9WXg/O5Wl5wfMyOyOv3cXKhg0bbP7OyMjgm2++4aOPPmL27NkOCSWEEEI42htvvIFOp+O7775DVVXmzp3L22+/zcsvv1zobfz8/BxWmNyKRqPxiC8ieUorb0ZGhkO2o9frHbat23HE4yKvB+fytLzgeZkdmdfuYqVy5cr5ltWrV499+/axZs0aOnXq5JBgQgghhCMdOXKEiRMnWvdf6NWrFwsWLHBxKuE2dHdC8L0QUMdy0gaCKRPMmWA4A+m/WE6m4vecCCHsV6xhYDdTVZXk5GROnz7NtWvXHJFJCCGEKDaj0YjJZEJVVYxGIzk5Ofj6+tKwYUM2bdrEPffcg6qqbNy4kTp16rg6rnCl4GYQMQAq9gZdvaLdJmM/nF8JFz4B4xWnxhNCFKNYadmyZaHX1ahRo0RhhBBCiJKaNWsWGzduBGD//v1Mnz6dJUuWMHbsWN544w26d+8OwL333ssrr7ziyqjCVUI7QPUpEPag5W9zLqR+A2m7IfsoZB0BUzpodKAJBF0dKNcSyt0P5ZpD8H1Qaz5cWgfJsZB9zKXNEaIss7tYKWzn+sDAQMaOHVviQEIIIUrmhRdeYPHixa6O4TKxsbHExsYWeN38+fNLN4xwL4F3Qd33IbSd5e9rP8GZ9+HKxlsP70pPhAsfWy4H1ILIIRA5GO4YBOH9LdtImQ3GVKc3QQhvY3exMn369HzLKlSoQOPGjQkJCXFIKCGEEMV3+vRpV0colt69e9OgQYN8BcX777/PqVOnmDt3rouSCU+nKr5Q/TWIegU0fpC2C07Ohqvb7d9Y9nFIng7JM6HSM1AjFqqNh8in4PAIh2cXwtvZXaz06NHDGTmEEEJ4uTNnzlCxYsV8y3/++Wf+97//uSCRKAuOnfUhq8Eu0N0FuZfg7/Fw8RMHbNkE5z6Ei59CtckQNQkafcHzb5l5+0WFwICC56QTQtinSMVK3tjfopBiRgghhD1u/oxJTU21+Ts7O5sTJ07g6+vrimjCwxlDOtNnRmXMuqpw8TM4OhpyLzr2TkzpkDwVrmyABh8Tt6EOu39X2TAX6laTgkWIkipSsTJjxoxCZ62/maIoUqwIIYSwS95njKIonD59mpkzZ9pcr6oq9eoV8UhNQuSJiiG7xutocxT8UiZhOPG2c+8v/WfY34xB06+y6hto9YKlYGnVWAoWIUqiyLO1qKp625PZbHZmViGEEGVU3sFb/vm54ufnR4MGDW45caMQthSo8x7UnA2mVP7z8nn8Ln1YOndtSuf/pirMGaFwKQ0eHKfyxa6CD0wkhCiaIvWs/PLLL87OIYQQwkvlfca0aNGCu+++mxUrVrg4kfBcWqi/1HKkrqwjBB7rS6uGCaWaQFEUXnkSakTC0DdU+r2msiIGhnSVHhYhiqPEk0IKIYQQjrBkyRLr7PJC2E3xgQb/Z5nkMfMPONAZjV+6y+I88ZBClXDoEaMy7A0VHy082VkKFiHsVaxiZc+ePWzbto2LFy/aDP1SFMWrj+0vhBCi+Jo1a0ZycjJffPEFV65cyTev17PPPuuiZML9KVBvuaVQydgPB7tYjvzlF+zSVO3vU9g0D7pOUhk8R0Wrgcc7ScEihD3sLla2bNlS4FwrqqoWaSf84khNTSU2Npa9e/cSGRlJTEwMLVu2LHT9M2fO0L9/f7p3786UKVOckkkIIYRjffXVV8yZM6fQyYelWBGFqv0WRD4J+gNw4CG3mpzxgSYKG9+A7pNVnpylEqyDnm2kYBGiqIq8g32eTz/9FFVVqVatGqqqotPpqFixIiEhITRt2tQZGZk3bx4RERFs376dMWPGEBMTw7Vr1wpd/+2336ZBgwZOySKEEMI5VqxYgdlsLvQgLkIUqNpkqDoOsk/AwW5uVajkebCZwldzFDQKDJyhsvdPeT0LUVR296wcP36ckJAQVq9eTZs2bahTpw7vvvsuffr0oWfPng4PmJmZya5du0hISCAgIID27duzatUqdu/eXeBhkhMTE1FVlfvvv5/Lly/fctsGgwGDwWCzzMfHBz8/P7tz5g2H85Yjonlbe6F02uxuR9Xztue5rLTXntdRSdus0dj9m1ehLl++THBwMEuXLqVWrVpotVqHbVuUUXc8CbXmWOZOOdgFDGdcnahQnVsqLHsZhsxV6RGj8uNiqFlZeliEuB27ixWTyUSVKlXw8/NDo9GQmZlJSEgI4eHhLF26lO7duzs04MmTJwkODiY8PNy6rF69ehw7dizfurm5uSxcuJA333yTzZs333bb8fHxLF261GZZ//79GTBgQLHzpqSkFPu2nsjb2gvObXNWVhbJyclO235xedvz7OntLc7rqLhtrlWrVrFuV5DmzZtz/Phx6tat67BtijKsXEuoFwemTDjYA7IOuzrRbQ3uqnDiHMTGq3SdpPLDYihfTgoWIW7F7mIlJCTEOgSrQoUKHD9+nLlz55KcnIy/v7/DA2ZlZeU7OkxQUBAZGRn51l21ahVt2rQhKiqqSNseOnQogwYNsllW0p6VqKgoh/7S6K7MZjMpKSle014onTbrdDpq1KjhlG0Xh7c9z2Wlvfa8jtypzZ06dWL27Nm88sordOnShXLlytlc76yhxsID+VWBhp+DJgD+9zhk7HV1oiJ7bQicOAcrt8CgmSob54FGIwWLEIWxu1ipVasW+/btIzU1lebNm/P111+zfv16VFWlcePGDg+o0+nQ6/U2y/R6PTqdzmbZhQsX2LBhA//3f/9X5G37+fkVqzC5FY1G4/IP/NLkbe0F57ZZURS3fDy97Xn29PYW53XkDm3Om8l++/btbN++3eY6RVH46aefXJRMuBVNADT6HPyrwMnZcGmtqxPZRVEU4ibCnydVtvwEM1aqzBgmxYoQhbG7WBk7diynT5/GbDYzfvx4Ll++zKFDh6hbt65TjrxVvXp1MjIyuHTpknUo2OHDh+ndu7fNen/88Qfnz5+nb9++gGVfF7PZzNmzZ3nvvfccnksIIYTjOWJH+ri4OL799ltOnDjBrFmzePjhhwFISEhg1qxZNj9SffbZZ1SqVKnE9ylKUe2FliFgl76C5PxHJ/UEfr4K62ZCs2dVZq6E5g1UOUKYEIWwu1ipVq0ad955p/XvDz74wKGB/ikwMJDo6Gji4uKYMGECP/30E0ePHiU6OtpmvdatW/PVV19Z//74449JTU1l/PjxTs0nhBDCMTZs2OCQ7URFRTFhwgSWLFmS77qWLVvKD1ieLGIQVB4OmX/D34MBzz2qVtUIhbWx8OB4ladmq/wSB3WqujqVEO7H7mKlS5cutG/fnh49enD//fc7bW6Vm8XExDB9+nQ6duxIZGQkc+fOJSQkhC1bthAfH8/atWvx8/Oz2Qlfp9ORmZlJWFiY0/MJIYQoucqVKztkO926dQMsh0IuKUceNbIgnnYEutLOGxx8Y1JHs399MustBnM2upND0epU4NaTPubt8/rPfV+dyZ7Hpu098NYLMP7flkMaf/+evB6cydPygudlLihvSYcY212s5OTksG3bNrZt20Z4eDjdu3ene/fu1KxZs0RBbqV8+fIsWrQo3/KuXbvStWvXAm/z3HPPOS2PEEIIx5sxY0ah1ymKwmuvvVbi+/j999/p2LEjFSpU4LHHHqNfv363XN8ZR40siKcdga608iYlJQGQlaPwyMxK/H3Kj9lDLvN4h0/s2k5iYqIz4hXI3iPx9WoOm5tG8M2+QMa+k86Ux+X14Gyelhc8L/PNeUt61Ei7i5XXXnuNb775hp9//pmLFy/y0Ucf8dFHH9GoUSN69Ohx2zd+IYQQoiAbN24ssLdeVVWHFCtNmzZl9erVVKpUiT/++IOJEydSsWJFOnToUOhtHHnUyIK409HYisLevKGhoQ653+yodzCGD8PnymfMGTucuUW8XVBQEImJibRq1SrfwXqcJS0tze7brJoOTYfDsq9DaXNXNk92jyiTrwdX87S84HmZnZHX7mKlZ8+e9OzZk7S0NLZv384333zDvn37OHToEH/88YcUK0IIIYrlvvvusylWMjIyOHLkCIqi0KRJkxJvv2rVGzsENG7cmIEDB7Jz585bFivOOGpkQdzhaGz2KGregqYZsFuF7hA+DLKOYvxzOEaT/dvU6/WOyVIExXkeI8rDx9NUHhynMnFpOJ1ba6gSUfZeD+7C0/KC52V2ZF67i5U8oaGh3HnnnZw8eZKjR4+SmprqkEBCCCG804cffphv2YkTJxg2bBjt2rVz+P2Vxj6XooR8I6DeUlBN8NdgKEah4ikeaKLw6lMqr3+k5dk3YeM8VV6jQgB2lzxHjhzh/fffp0+fPgwZMoRPPvmE1NRUAgMDHT57vRBCCO9Ws2ZN6tevz5o1a4p8G6PRSE5ODqqqWi+bzWZ++OEH6w9rf/75J2vWrHFKESQcqN6H4BcJKW9Aeuntd+IqU5+Ce2rlsPlHWLHJ1WmEcA9296w8/vjjKIpiHUPcvHlzunfvTseOHQkICHBGRiGEEF5g48aNNn+bzWZOnjzJb7/9hr+/f5G3M2vWLOu29u/fz/Tp01myZAk//fQT06dPJzs7m4iICJ5++mkeeughh7ZBOFDkUKjYC9L3wsmZrk5TKnx8YMGIS/ScXpVx76l0bAY1K0vvivBuxRoGFhUVRffu3enWrZtMpiWEEMIh8maw/ydVVWnatGmRtxMbG0tsbGy+5c2bN5e5tzyFXzWovQBMWfDX06AaXZ2o1NSpYmTOs/DS+zD0DZXt74BGIwWL8F52FysrVqzg7rvvdkYWIYQQXu6fM9hXqFCBFi1aSJHhberFgU8oHJsEWX+5Ok2pG/0ofLUHvtsP//4Cxsixi4QXs7tYkUJFCCGEM/zyyy+ujiDcwR2DoUIXuPYjnH7X1WlcQqOBla8oNB6i8sqHKr3ayHAw4b2KfTQwIYQQpUtVVXKNYMgFgxFyDNfPcyHHoJKZDRlZcE2v3n5jbiwnJ4djx44BULt2bbv2VxEezq8K1HkbzNnw9zOAZ8za7Qw1KyvMHQFjFqqMeFNl6wI5gp3wTlKsCCEEYDKp5BgsX/LT0lVURcVsBrNKvnOTyfZvtYDaoMBlhVyfd9lsVq3rqeqNk8EI+izQZ0OuEXJNlnOj0XabPlrINliKGU+1YsUK4uPjycnJAcDf359nnnmGIUOGuDaYKB11/g0+YXD8Fcj609VpXG5kH1i9Hb7ZCx99DUO6ujqREKVPihUhhMdTVdvCQlVti4lc442TIe88VyUzB7Kun3JyLcVC0xqw9RcVo0m1bEMF1WxbFAAoef+oeX/kL1AUpeCipTDKPy7k/YiqUcDX5/pJCwH+Ny7/85fWs5c9t1dlw4YNLF682GZZdnY2H3zwAeHh4fTo0cNFyUSpqPgIhPeGjH1waoGr07gFrVZh2cvQ5BmV8e+pdGkJlSpK74rwLlKsCCFKxc0Fxc09E6brJ6PJstxouunv6+e5RhVDLuQYITf3xnKzajlXr28LbhQXZq73TJjBaL6xXh4F0GotvRG+PqDVgL+v5boKIZZzjcZSMGgU1w6/eGfOC4yfsvj2K3q4tWvXAtC+fXsefvhhALZu3cp3333H6tWrpVgpy7QhUGeRZfLHw88BJlcnchsNayq8NhimLlMZvVDls5lSrAjvUuRiZdeuXYSGhtKkSRMAMjIy8PHxkblVhLiFF154Id8vxc5iNKqWL/Z5Q4T+cW45WdYpOjPl/WD/YXOBw5bgph6HvKFM1wuIf55M14sPa6/H9ULClNcDcr1oKag3QlEsxYRW888CIv9lbQHXabXgo7n94T+V610a/r4KKu7zheDShTOujlAqjh8/TpUqVXjzzTetyzp16kSvXr04fvy4C5MJp6s5B/yrwKm3LT0rwsbLT8CaHbDuO9icqNKtlfu8PwnhbEUuViZOnMjdd9/NihUrAOjQoYPN30KI/E6fPu20bWdmq/wvWeVymmU/hXw9E+YbvQ15FEDRFP0+tBpoWx/+OJF/W3BjmNI/aRRLUZF3nlc0aK4XHMpN1yvXiwmtxvU9GMK1tFotOTk5GI1GfHwsH095M9BrtVoXpxNOU64VVHkBsk9A8nRXp3FLvj4KSyZAm1EqI99ROdQEgnTyXim8gwwDE8LDqKrKqQvw2xGV81cgONAylEmrsezLkHfZUgCU7MMsr6eh+h3u1dMgyqb69euTlJTEiBEj6NChA4qisGPHDlJTU7nnnntcHU84g+ID9a73Ph8ZBeZM1+ZxY63vVniul0rcBpi5UmXeC/KeLLyDFCtCeJCsHJWDx1T+l2wpRmpXkZmNRdnx1FNPMXHiRA4ePMjBgweBG5NEPv30066MJpylylgIuhsufgapX7s6jdub+5zC+u9V3l4LT3ZWubuOvP+Lss+OASFCCFdRVZXTF1V27FP5/YhlB/Cq4YoUKqJMeeCBB5gxYwaRkZGoqoqqqlSqVInXX3+d6OhoV8cTjuZXDWpMB2M6HHvJ1Wk8QvlyCu+OVjCa4Lm3VOvhzoUoy+zqWfnrr7/o3bt3oX8DfPXVV45JJoQAIDtH5dAJlT9OWPY5qVWl5MO7hHBHhw8fJigoiGXLluHn5wdAbm4u//vf/zh8+DD16tVzcULhUHXeBW0QHB0PBu84iIQjDOwIKzbDt3th5RYY1t3ViYRwLrt6VnJzczlz5gxnzljeVAwGg/XvM2fOcPbsWaeELKteeOEFV0cQbu7MJUtvym+HISwYqt2hSKEiyqxZs2YxZcoU/P39KV++POXLl8ff358pU6YwZ84cV8cTjlS+G4Q/Ahm/wZn3XZ3GoyiKwr/HKfj6wOQlKleuSe+KKNuK3LNy3333yVF6HMyZR4oSni3HoPLH9d4UkxlqVrJMDvZP3jL/hvAOJ06cICoqirCwMOuy0NBQoqKiOHbsWJG3ExcXx7fffsuJEyeYNWuWdc6WhIQEPv30U06dOkX58uV56qmn6Nevn6ObIW5HEwB1FlouHxmFzKlivwbVFSYOVJn7MUz5UGXJRPl+JsquIhcrH374oTNzCCGuO3dZ5fcjKqcuQkQYhAQV/iHkLfNvCO9gNBq5fPlyvkMXX758GZOp6F9oo6KimDBhAkuWLLFZbjAYeOWVV2jYsCHJycm88MIL1K5dm6ZNmzq0HeI2qk0CXW04txzSf3R1Go/16lMKq75R+TABnumu0qKhFCyibCpysZKTk0NqaioBAQE2v3oBXL16lezsbGuXvRDi9lRVJccAWQbIzrGcp2VYhn0Zb9GbIkRZVbNmTQ4fPszUqVN54oknAPj000+5evUqDRo0KPJ2unXrBpBvHrBHH33UerlOnTq0bNmSP/7445bFisFgwGAw2Czz8fGx7lNTUubrExiZC5rIyA3Zmzc4ONj29n41yYyaDMarBF2cjfKP6x0tKCjI5rw0lOS5tOfx1fnDOy/Co9Ng5NsqP3ygUtrTEZX116878LTMBeXVaEp2PK8iFysrV65k+fLlvPLKKzzyyCM213333XfMmTOHYcOG8fzzz5coUEFSU1OJjY1l7969REZGEhMTQ8uWLfOt9/bbb7Nr1y5SU1OpUaMG48ePl1/MRKnJO8Sqqt6Ygd2sQkamalOQZGarpGVAmh5ycsFw/aRiWRYUAKHBUqQI79OnTx/mz5/Pjh072LFjh3W5oij06dPHofdlMpk4dOiQtbApTHx8PEuXLrVZ1r9/fwYMGODQPCkpKQ7dnrMVNW9SUpLN38++E8H233TMHJLJkx13OiNagRITE0vtvpKTk0u8jaI+vk2ioP29EXz3eyBvfXyZge0zSnzfxVFWX7/uxNMy35y3Vq1aJdpWkYuV3bt34+vrS8+ePfNd16NHD9566y127drllGJl3rx5REREsH37dn788UdiYmL48ssvCQkJsVkvODiYf//731StWpUdO3YwceJEEhISSvUXFeFaqqqSa+TGyXTjsvH6ZUOuStb1wsGQe6OwsNlOAdvWKGbqRcC2n82YVUshkleYqNdvlHe7vOXnr6hsTFQx5FruHyxH9PLzAz8f8PeFkEDw9bHMlxIUoEihIrxW//79OX78OOvWrbMW/4qiMGDAAIfvW7J48WIiIiJo1arVLdcbOnQogwYNslnm6J6VlJQUoqKiSvzrY2mwN29oaKj1sjGkM9l1PkOT+RvzxndgPs7/pTgoKIjExERatWqFXq93+v0BpKWlFfu2xXk9LJkE9wyFBZ9X5NlHKlIh5Pa3cZSy/vp1B56W2Rl5i1ysnD59mmrVqlnHEdtsxMeHqlWrOuVoYJmZmezatYuEhAQCAgJo3749q1atYvfu3fTo0cNm3REjRlgvd+rUiQULFnDy5EkaNmxY4LYd2b1fnG46VVU9plvvn1zVLZk3dCr7+ilvGJU+S+VaFuizLEWByQymm85vLj4ULBMq+migKP+P8o4roVEsbc3MNttuT8E6t3veugqWbSsKhAaZ8fMFn9sexUsFVBS7PsDtXd8+edt25n24E/dtb9GfZ61ieXUW9f9mSf8vO/rD8+WXX+app57i0KFDANx1111UrlzZofexbt06duzYwYoVK2574Bg/Pz+HFSa3otFoPOKLSJ6i5s3IuP5Lv+IPd84FwPz3KPQZ15wZLx+9Xn8ji5M54nm05/XQoDpMHGhmzv/B9BXw/kul/zoqq69fd+JpmR2Zt8jFitFo5OrVq4Ven5aWhtFodEQmGydPniQ4OJjw8HDrsnr16t32yDBnzpzh2rVrREVFFbqOM7r37emmy8rKckh3sSu5Q7ekDtDpIFxXOvd3X42iH8UtJCCLOyOL/hjpfLOoHnbSaesXV1TYKaffhztxt/ba8zxXD4NAP/vfW4r7f7mk3fsFqVy5ssMLlDzbtm2zvvf/c/9L4UTVXgJdXTi3Unaqd4IpTyr852uVJRtgeA+V++pLD70oO4pcrFSuXJnk5GR27NjBgw8+aHPdzp07uXz5MjVr1nR0PrKysvIN4woKCrrlLyRGo5HY2FieeuqpfDv33cyR3ft5v0ra0+2l0+moUaOG3fflDv7ZzWc0qhiMlmFVOblYLhsgO1clKxsysiEz29Lrof5zCJUZzNguN9+034cKaBTw9wFf3xvDp3y0lOoM7gpmosJOkXK1GmoRpyjKytVx8mr1It+Hs9e3V3Ha7Mnctb32PM/nr6hkGor+3uJpQwyKwmg0YjKZUFUVo9FITk4Ovr6+/Pzzz7z55pt88MEHVKlSxdUxvYd/FERNAWManHjF1WnKpCCdwtsvwoDpKi++q/Lf95HpJkSZUeRipXXr1pw4cYKpU6fSr18/67wr+/fvZ926dSiKQtu2bR0eUKfT5Rtnqtfr0ekK/hldVVViY2MpX768zbCwgjije9+ebi9FUTziy4HZrFqGXOVadhK3nCv4A4kHIT0Lsg0KuSYwGi2Fyo39QBR8tJZ9Mnx9QHt96JVWsRQgiub6uVLAeREKEVdMhaWiseOLrGLnl15nr1889rXZ87lfe4v+PJuu/+ez973F04YY3MqsWbPYuHEjAPv372f69OksWbKE+Ph4rl27xrBhw6zrdu3alSlTprgqqneo9SZoAy0z1edecHWaMqtfe3iwKezYB6u+gSc7uzqREI5R5GLlqaeeYtOmTaSlpbF69WpWr15tvU5VVcLCwvL1UjhC9erVycjI4NKlS9ahYIcPH6Z3794Frj9//nwuXrzIe++9V2Y+eE0mS7FgWwTcUNCyW11X0Op56xly8/YHUcnIgmt6yMy5ccSqXKPl9lqNSvSdcPqSpfjw9bEcxcpXe2NncSGEcIXY2FhiY2PzLW/evHnph/F2oR0goj/oD8HZD1ydpkxTFIVFY+HeYSovL1bp3RbKBcpnsfB8RS5WwsPDee+994iJieHMGduJ6KpUqcIbb7xhs1+JowQGBhIdHU1cXBwTJkzgp59+4ujRo0RHR+dbNy4ujt9//50PP/ywVHaIdBSj8aaei+s7jmfl3CgW9NmWQiU317L+7XoTblW83GpdFcjbxzZvJ3S/68OuAv0hLPjG0Cvl+i7llSsqqMiboRBCCFu5RhXqvGv54+hYUB2/X6uwdVcthdF9Vd79DF7/SGX+C/L5LDxfkYsVgIYNG/L555/z448/cvz4cVRVpXbt2vzrX/8q8ChhjhITE8P06dPp2LEjkZGRzJ07l5CQELZs2UJ8fDxr164FYOnSpfj5+dG1a1frbadMmWLzt7vIyFRJTVf5+iczmdeLkZsPbwuWwiCvWAgKAN8gy7CpWynsbamgoav5FimglR4RIYQQDrD4SyCoMVxcB2mlN6eKq5VkXxGTyXT7lW5j+hDLzPbvfmaZ2b5BdflcF57N7grDx8eHtm3b5ts/5dy5c2zcuJHhw4c7LFye8uXLs2jRonzLu3btalOI7N271+H37SzpmZCRCVczLDuLB+vAL8QyjEp2ihNCCOHJLqSqvLZCBVMmHJ/k6jheJaycwhvPwTPzVMYuUtnypnyvEJ6tRN0h2dnZbN++nY0bN7Jv3z4ApxQrZVmlCvIGIoQQomx5dalKWgZwah7kOP/w6sLWkK4QtwG2/gwJe6CX449/JESpKVaxsn//fhISEti+fTtZWVmAZSf7srJDuxBCCCGKZ++fKss3Qc1KcGLPW66O45U0GoX3xsL9z6uM/7dK5xYQ4C8/jgrPVORiJW+Y18aNG6072KvX985WFIVJkybRoUMH56QUQgghhNszm1VGL1RRVXj7RYW+n2W7OpLXatlIYWg3lfjNsGANvPq0qxMJUTxF7grp1asXH374IadPn0ZVVerXr8/48eMJDAwEYMCAAURERDgtqBBCCCHc2/9thR8PQafm0Kedq9OIuSMUQoJgzscqKeddMTOZECVX5GIlrxelUaNGfPrpp3z88cc88cQTMvRLCCGEEKRlqEyOU/HRwqIxiuzU7QYiKyjEDlXIzIaJH0ixIjyT3ZXG//73P0aPHs3ChQs5fPiwMzIJIYQQwsPMXKly/gqMeRQa1pRCxV282Bca1YS1O+G7/VKwCM9T5GJl2rRpNGnSBIBLly6xatUqBg0aREZGBgDHjh1zSkAhhBBCuLf/nVBZ9DlEVoDpQ6VQcSe+PgqLxlqek9HvqhiNUrAIz2L3Pitffvklw4cPp3LlytahYQADBw6kX79+TgkphBBCCPekqipjFqkYTTDvOYWQIClW3E3HZgr92sPB4/DBl65OI4R97B4GVqVKFZ577jm++uorFi9eTLdu3QgICEBVVU6elGOpCyGEEN7ki13w7V74113w1MOuTiMKs2CUgs4fXluhciFVeleE5yjR3vHNmzdnxowZbN26lWnTpnHfffc5KpcQQggh3Jw+yzKPh6LA++MUNBrpVXFX1SMVpjypkJYBr8RJsSI8h0MO5aXT6ejVqxdxcXGO2JwQQgjhNH/99RfDhg0jOjqaJ554gj///NPVkTzW3I9VUi7Ac72gaQMpVNzdxIFQuwqs2Aw/HpKCRXgGOe6wEEIIr2E0Gpk0aRI9evRg586dDBkyhEmTJpGbm+vqaB7ncIrKm6uhYijMflYKFU8Q4K+wcIzluRr1jorJJAWLcH9SrAghhPAaJ06cIDs7m759+6LVauncuTO+vr78+uuvro7mUVQVxr2nYsi1TDxYIUSKFU/Ro7VCz9aw72/4MMHVaYS4PR9XBxBCCCFc7dixY/zrX//Kt9xgMGAwGGyW+fj44Ofn55D7NZvNNufuLi/nl9+b2fyjhuYNYEgXFbO54F/og4ODSzNePkFBQTbn7q60Xg9vvwjbfoFXl6r0jVaJCCvedjz19especHzMheUt6QTyEuxIoQQwmvUqFEDPz8/1q1bR58+ffj2229JSUkhOzu7wPXj4+NZunSpzbL+/fszYMAAh+ZKSUlx6PacKTNHYcxCM4qiMPXxc5w6ZSh03aSkpFJMVrjExERXRyiSvNeBs18PWuD57qEs/DKMMW+n88YzV0q0PU96/YLn5QXPy3xz3lq1apVoW1KsCCGE8Bq+vr689dZbzJ8/n8WLF9OyZUtatmzJHXfcUeD6Q4cOZdCgQTbLHN2zkpKSQlRUVIl/fSwNZrOZMW+nc+ayD8/1gp7tK99y/dDQ0FJKVrCgoCASExNp1aoVer3epVmKoiR509LS7Fp/9guw4SdYu7scYx4rR6u77Lo54JmvX0/KC56X2Rl5pVgRQgjhVe68805WrFgBgMlkok+fPtx5550Fruvn5+ewwuRWNBqNR3wR+TMZlm0JITwU5oy4/aGKMzIySinZren1erfJUhTFyWvv6ydIB++NU+kxWWXUO7D3QwUfn+Lte+Qpr988npYXPC+zI/N6TquFEEIIBzhy5AgGgwG9Xs+///1v6tevT926dV0dy+2pqsqYhZBrUnjjeWSn+jKgeyuFR9rB70fgvS9cnUaIgkmxUoa9M+cFV0cQQgi389VXX9G5c2e6devGpUuXiI2NdXUkj/DJN7B9HzSrm81gmam+zFg4RiFIB68tVzl1QQ5lLNyPDAMrwy5dOOPqCEII4XYmTJjAhAkTXB3Do6Smq7z0voqPFl4fcgWNpoqrIwkHiYpUiB0CkxarjP+3ymczpcdMuBfpWRFeTXqfhBDi9mKWqFxIhfED4M4omUCzrBnbHxrXgnXfweZE6V0R7sUjipXU1FTGjh1LmzZt6Nu3Lz///HOB62VnZzNt2jSio6Pp3r07X3/9dSknFZ5Gep+EEOLWlJDWlskDs4/zQYzl6F+hoaEoinLbk/AMvj4KSyZanq+R76jos6RgEe7DI4qVefPmERERwfbt2xkzZgwxMTFcu3Yt33pxcXGkpaWxefNm5syZwxtvvEFycrILEgvhnqQnSQhhj1yjCvU+sPxxZDSKOdO1gYTTtLlb4fnekHwOpq+QYkW4D7cvVjIzM9m1axfPP/88AQEBtG/fnjp16rB79+58627evJkRI0YQHBzMvffeS3R0NNu2bXNBaiHck/QkCSHs8dZqIOgeuLgOUre4Oo5wsrkjFCpVgHfXwf6/pWAR7sHtd7A/efIkwcHBhIeHW5fVq1ePY8eO2ax37do1Ll++bHP4yfr163Po0KFCt20wGDAYbGfeLe5kX02aNOGvv/6iatWqRVrfbIYrqak82tl5OymmX3Pu9rWKCZOqddr2S4O9j5G9bbZ3++62PpSN59ke7thee543sxn06alUrnzryfpuFhYWxoEDB4qVzZOO+y/s83eKyoyVKhivwtGxro4jSkFYOYVFY2HAdJVn31T5aQlotTKcT7iW2xcrWVlZBAUF2SwLCgrKN1lSZmYmWq2WgIAAm/UyMwvvso6Pj2fp0qU2y/r378+AAQPszpmbm4tGo8FkMhX5Nj5aBa1S9PXT09MpV65ckdfXapy7fWevXxr34ezHyN7tu9v64H6vC29bH+x73rRay5cLe96LAFJSUuxaP0+tWrWKdTvh3sxmlRFvquQYgGMvQ+45V0cSpaRfe+jRGjb+AO9+BhMGujqR8HZuX6zodDr0er3NMr1ej06ns1kWGBiIyWQiOzvbWrDo9XoCAwML3fbQoUMZNGiQzbLi9qwcOHCAlJQUoqKiivRL47nLKt/uValRqei/WEwZ14c5735pdzZnbF/BzMxJXXntzS2oRRxNWJz89t7GmY9Rcdrs6UrjeXan9d2xvfY6f0UlIgweuK9o+c1ms13vXcI7LNsIu36D9vfBd98vd3UcUYoUReGD8bDrN5Wpy1R6t4W61aR3RbiO2xcr1atXJyMjg0uXLlmHgh0+fJjevXvbrBcSEkLFihU5cuQIjRs3BuDvv/+mdu3ahW7bz8+vWIXJrWg0miJ94CuKismsomLPG4Di5C/J9m9fRWPHbYqT397bOPsxsrfNZYNzn2d3W9/d2msfk6qiYv/wrKK+d4my78wllUmLVfz94MOJCvUXuTqRKG1RkQrzX4AXFqgMn6+y413QaKRgEa7h9p9MgYGBREdHExcXR3Z2Nrt27eLo0aNER0fnW7dbt24sW7YMvV7PgQMH2L17Nw899JALUgshhBCeR1Utw7+u6SF2iEK9KPmC6q1G9IQHmlh62JYmuDqN8GZuX6wAxMTEcP78eTp27MjChQuZO3cuISEhbNmyxWb/kueee47g4GC6dOlCTEwMMTEx1KxZ03XBhRBCCA/yf1thUyK0uBMmyr4KXk2jUVg6SSHAzzK7/cnzcnQw4RpuPwwMoHz58ixalL8fumvXrnTt2tX6d0BAALNmzSrNaKUq/A7nHdlLCCGEdztzSWXsIhU/X4h/RcHHR3pVvF29KIVZw2HiByrD56lsXYBM9ilKnUf0rAiL8VMWuzqCEEKIMkhVVZ57S+VqBsQOVbirlnwhFRbj+kObu+GbvRC3wdVphDeSYkUIcUuRkZGujiCEcLKPvrYcqrb5nTBJhn+Jm2i1CvExCjp/Sw/LsTMyHEyULilWhBC3VJaHVjqCDM8Unu7EWZUxCy1H//poigz/EvnVi1KY/7yCPguGzlUxm6VgEaVHihUhhCgBGZ7pmVauXEn37t2Jjo7miSeeID093dWRXMJkUnl6tkp6Jsx7TqFRTSlURMFGPgId7oPdv8Pba1ydRngTj9jBXgghhHCU1atX88MPP7Bs2TIqVarE0aNHHT7nlqd4ey18nwQdm8HoR12dRrgzjUZh5RS4Z6jKlKUqnZrDPXVcnUp4AylWhBBCeA2TyUR8fDxLly6lcuXKANStW7fQ9Q0GAwaDwWaZj4+Pw4obs9lsc16afj8CU5dBWDCsmAxQ8PCe4OBg6+WgoCCbc3fnTXlL4zVULQI+GA+DXocnZqr8uNh1r9/icOX/t+LytMwF5S3phMNSrAhhB9nZXJSU7OPiWhcuXCAnJ4dvv/2W1atXExwczBNPPEG/fv0KXD+vsLlZ//79beb4coSUlBSHbu92MnMU+k2vjCHXl/nPXMSUlUlycsHrJiUl5VuWmJjo5ISO5Q15kwt7Ah2sVV3o07oiX/4QzKgFemY+Xfqv35LytLzgeZlvzlurVq0SbUuKFSHsMGvWLE5edXUK4clkHxfXunDhAhkZGZw6dYoNGzZw+vRpRo4cSc2aNWnevHm+9YcOHcqgQYNsljm6ZyUlJYWoqKgS//poj+Hz4dhZePphGD0w4pbrhoaGWi8HBQWRmJhIq1at0Ov1zo5ZYt6UNy0tzUmp8lsxBX4bDh9vL0d04yyG9g4v1ddvcbnq/1tJeFpmZ+SVYkUIIYTX8Pf3B2DEiBEEBARQp04dunXrxp49ewosVvz8/EplfxaNRlNqX0RWb1eJ36xSPwreH6+g0dx6p/qMjIx8y/R6fYHL3ZU35C3NL7LlQ2DVNJXo0SqTllXkodYaalZ2/y/SeUrz/5ujeFpmR+b1nFYLIYQQJVSjRg18fX1dHcNljp1RGfGmZZb61dMVggPl6F+ieFrfrfD6M5Cm1/LETMg1yuGMhXNIsSKEEMJr6HQ6OnbsyPLlyzEYDJw4cYItW7bQpk0bV0dzuqwclX7TLIcpnv+8wn31pVARJTPpcXjg7iwSD8HUpVKsCOeQYkUIIYRXmTx5MlevXqVTp06MHj2a4cOHFzgErKwZ/a7K/sPw6AMwpuDjCQhhF40G3hpxiSrhMP9T2PiDFCzC8WSfFSGEEF6lXLlyvPnmm66OUapWbFJZvgnqVYMVMQqKIr0qwjEqhphZNQ06vQRPzlLZ+yHUrSavL+E40rMihBBClGH7/1YZ9Y6Kzh8+f10hJEi+SArHir4X3nxBIS0DHnlVJSNTeliE40ixIoQQQpRRF1JV+ryqkm2ArKTB3FNXg6Iodp2EZ7D3eXX08zyuPzzeCQ4eh2fmqaiqFCzCMaRYEaVGJsMTQojSY8hVeXSaysnzwKl34MLHro4kyjBFUVg6SeGeOrB2J8z/xNWJRFkhxYooNTIZnhBClA5VVXnxXZX/JsFDzYHjk10dSXiBIJ3CF7MUKoTAKx+qfPm99K6IkpNiRQjhUaSHTojbe+9zWJoAdavCmhkKYHJ1JOEl6lS1FCw+Whj0usr+v6VgESUjxYoQwqNID50Qt/bl9yrj3lMJDYYNcxXKl5P9TkTpeqCJQtxEhcxs6PmKyplLUrCI4pNiRQghhCgjfjyk8vgMFR8trJ+l0LCmFCrCNYZ2U3j5cTh9Ebq9rJKWIQWLKB6ZZ8VFNBoI1MGxM5b/vIoCfr7g52N7rtXIB40QpSkyMtLVEYQolqOnVXrGWI789fFUhQ5N5fNDuNbc5xROnFNZuxP6vKry9Zvg7yevS2EfKVZcJCIM2jdRyDZAtgH0WSrpmXAtE3JyQZ8FBiOYTJZiRqOAr4+lqLFxm//z+VYvYP28RdkGlUtpKn4+lvuSYkkUh6fvUzJr1ixOXnV1CiHsc/qiykMvqVxKgzkjFAZ1lvdu4XoajcJ/XoWLV1V27oenZqusnm5ZLkRRuX2xcujQIcuXh5Mnueuuu5gxYwaVK1fOt96VK1eYP38++/btw2g0cu+99zJ58mQqVarkgtS3p9EoRFa4eYnlP66qqhhysRYx2QZL8ZKZrZKRBSqQ79Dl//j75uvVApbbXK/eWC+vRycnFzKuF0tm842eH1+tZR1fHwjwU615b1cwCe8i+5QIUbouXbUUKsfPwot9IWaQqxMJcYO/n8L62fDAGJXPdkLFEJUPXsIhc7vYu43g4GCSkpIIDQ0lPT29xPcvSodbFysGg4GXX36ZESNG0KVLF+Li4njttddYunRpvnWzsrJo0qQJMTExBAUFsWjRImbMmMHixZ71xUlRFPz9wN8PQm2vcfp9LwpT6NlGsSmWcvIu56hcy4RresvfGZmW25w8D8a8ggZLIePjg7V3xkdruazVSkUjhBCOlpah0mWSyv+SYXAXWDhGJnIU7ic0WGHLfGg3WmXJV5YfPN9+0TEFiyj73LpY+fXXX9HpdPTu3RuAZ599lk6dOnH27Nl8vStVq1Zl4MCB1r/79+/Pk08+Wap5y4KiFEtGo0pWjkIc0LG5giFXwWCErBxL748+C7IMkJ0DBhMYjWAyq6hcP6KDYunRUQBFYxnipigFnGvAYFTJyFItPTpaeWMTQog81/Qq3V5W+fUv6BsNy15WZHiNcFuVwxV2vAvRo1Xe/Qz8fVXmPief6+L23LpYOXbsGHXr1rX+rdPpqFatGseOHStwKNjNkpKSqF279i3XMRgMGAwGm2U+Pj74+fnZndVsNtuceyJVVYuUX6MBnb+lNyWyvIpGk/8IH2azZTibIRdyjFgvG01gNoMZy/44RhOYzGAygfGmc/P15QqQlWPmmh5yjTe27+tjKV78/a734viCj0YBVBSc8xzkbddZ23dHpdNm5z1n9m6/LDzHWkVFwfL/rChK+t6l0chBJV0hLUPl4YkqP/0BXe+HT15T8PGRL33CvVWPvFGwzPsEfLQqrw+XgkXcmlsXK1lZWQQFBdksCwoKIisr65a3O3fuHO+99x4zZ8685Xrx8fH5hpT179+fAQMGFC8wkJKSUuzbulpWVhbJycl23cae9moAmzJQe/10CyG6LJrXLPp96HyzqB52ssjrF0dU2Cmnbt8dObPNzn7OirN9T36Oq4dZzu38r1zs965atWoV63auNHv2bHbv3k12djaVKlXixRdfpF27dq6OVWRX01U6T1D55U/o0RrWzVTkCEvCY9SuYilY2o9Rmf1/kJmjsmCUFCyicC4tVkaNGsX+/fsLvG7YsGHodDr0er3Ncr1ej06nK3SbaWlpjBkzhqFDh3L//fff8v6HDh3KoEG2eyKWpGclJSWFqKgoj/2lUafTUaNGjSKtm/crrLPbe7tMuUbVum9NVg7cUbkuWVQnJ1clx2BZlpNrORlN13tsVKw9OmC7N9CtjgKv1ZhpU/80e/6uilnVWA9OoNx0O0Uh33KNBvyuH5zAzxf8fS378njCG7OCmaiwU6RcrYbqpGmZgsrX5eTV6k7ZNkBWrq7I2y+N9jrb+SsqEWHwwH1Fy18W3rvsNWjQICZNmoSfnx+HDh1i1KhRbNiwgZCQEFdHu61zl1W6vqzy22Ho3RbWxEqhIjxP/SiF3e9Bx/Eq76yFjCyVxS/J/q2iYC4tVt5///1bXp+YmMj69eutf2dlZXHq1KlCh3dlZmYyduxYHnjgAZv9Vwrj5+dXrMLkVjQajcd+4CuKYnd2Z7f3dpny9q/J88n/LSlwPbNZJddoGUqWa8J62WgqehZVVVCzoc3dWkBjLVBuPsrazUdXy/tbn61yTW85OEFmNqSmW460BpaCxsfHUsDkFTIBfu5XyKhonPblffyUxbcsEktOsTu7M9vrbCb1+v5hbvZ/2Z3UrFnTellRFAwGA5cuXSqwWHHkcOGC2DMM78gp6DIJjp+Ffu3h/14FXx/VetTGWwkODi5pVADraId/jnpwV5K36IozFLQkw0hrV4Hd78FDL8HSBMvQxpWvqDaf6bdj7+v65sfXU4bte9puBgXlLelni1sPA2vWrBlZWVkkJCTw8MMPs3z5cho1alTg/iq5ublMmjSJ2rVrM2rUKBekFe5Mo1HyFTb2MpsVkpOhRiV7pzMQuQAAG/9JREFUd2JVrt9etfYAZV/v9cnKsRQyVzMsy66kQ44BqkWo+Pm6V8EiRFnyxhtvkJCQQE5ODg888EChP4I5Y7hwQW43DO/AcT+GLbiDy+lanup4jdeeTOXsmaJvPykpqYQJbSUmJjp0e84meW/P3mHgNyvJEPiPJ2kY/FYka3f6ceJMNkvGXCQsuGhfzIv7uk5MTCxRe13B03YzuDlvSYcLu3Wx4ufnx/z583n99dd54403aNSokc1+KHPmzAFgypQpJCUl8dNPPxEQEMA333xjXeezzz5z27lWhHfRaBR0/qDzv3npjYIk12gpXA4eUzl6BkKCVMJDpWARwhliYmKYNGkSe/fu5ciRI4Wu58jhwgUpyjC8L3bD4DcsPbMzh8GUp0JQFPuGrIWGht5+pSIICgoiMTGRVq1a5Rum7Y4kb9GlpaXZfRtHDCOtUQMSl0D/6fDt3gCemBfFxnlQ69bHUQLsf13f/PieOWNHte9CnjZU1xl53bpYAbjrrrtYvXp1gddNmTLFerlZs2bs3bu3tGIJIDIy0tURyhRfH4WKodDmboisoHLgKBw/o1L1DvCTo/wI4XBarZb777+fTz/9lNq1a9OqVat86zhjuHBBChqGp6oqc/4Ppi5T8fWBFTEKQ7sV770gIyPDETGt9Hq9w7fpTJL39kryxbKkw0jDysHm+Soj3lRZuQX+9Tx8NlOh/X23fr0X9zHS6/Ue8cX/Zp42VNeReT2n1cLtzJo1y9URyiQfH4U7a2jo2FyhZmVIOQ9Xrjl3rw4hvJnZbObUKfc6AlxGpsoTM1WmLlMJD4Ud7xa/UBHCE/j6KKyIUZg1XOHyNej0ksqidSqqKp9/3k6KFWFVtWpVV0cQN6kQotDuHoXWjS0HBTh+ViXXKG/aQpREZmYmW7ZsITMzE6PRyPbt2/n111+57777XB3N6uAxlRYjVFZvh7trwy8fKrS9RwoVUfYpisKrTyskvKEQFABjF6k8NUslPVM++7yZFCvCavHixa6OIP7Bx0ehYU0NHZsqVL8DTp6H1HR50xaiuBRF4auvvqJbt2507NiR+Ph4Zs2aZTMBsauoqsrKLSotn1P58yQM7gI/LlGoWVkKFeFdurdS+OVDhUY1YdU30Gy4yq9/yWeft3L7fVaEEBAephDdBCqlWPZlOXFOpWq4pdtc3Fr4HVVcHUG4EZ1Ox5IlBR/i3JUuXoWRb6t8sdty+PLlkxWGdZf/38J71Y9S+DkOxr2nsmwjtHpBZe4IGNdf5mPxNtKzIoSH8PVRuKuWZV+WquGQfA6uZsgvTbczfor0GAr39u0+HfcOtRz1q0k9y7AvKVSEgCCdwtKXNayJVQgMgIkfqLR7UeXPZPns8ybSsyLcmuxHk19EmMIDTeDPZJVDx213vlcU0CjgowWtBrTaG5fzzu05OIeiWLada7LdybGgOSuVmy5oFPeb2FIId3P6osqYhfDF7jvQaODVp+C1IUqhcyzJ/ynhTMV5fQUHB5OUlERoaKjzj17mHwX1PiTxUGcaDsqC5Bmg+IKa69z7LUNK8h7iygMdSLEi3JrsR1MwP1+Fe+oqVI1Q0WdDrhGMJjDkqmQbIDvXMrlkVo7lupxcyxwNJjMUYbJrK60G6lSE81cst72VvPcxFVDNoN5mXnoFUDSWwkarBe31c41iKajyCivtTSeNRr6wCc+Xa1T5YD1MW66SngkNqhlY8Yofre+WwQ5CFConBQ52hcihUHsB1JoLkYPh6Fi4+q2r0wknkmJFCA9WMdQyN8sN+b/Im0yqtZjJNYG5aBMDA6CqCump8HBLpcBtA/lKElW13IfJbDk3q/+4bMo7V8k1WYopgxEMuZZTrtGyfk7uTevftL3bFUE3PxI3F0M+13uXfHyun2ssl7UaKX5E6VBVlYQ98PISlb9OQmAAzHse+rQ4S906NVwdTwjPcD4eUr+GWvPhjifg7q1waT2cmAJZf7s6nXACKVaEKOO0WgWttni3NZstxUqFEAWNw7/UF1L8qComk6U4Mf7z3Hijd8hsvl4YqTcKoZv/Npkt2zGaINsAmTmW3qZco6XHyWQt3tTr9ws+WpXqYXD6kmXYm2Id0mbp1bn58s3X3dzZU1CrbtUZlHed8o+/b96QpddJiipPduyMyjPzVL7bb/n78U4wd4RC1B0qycmuzSaExzGchb+egnNLoc4iCH8EKvaEc/FwciYYPGN2elE0UqwIIdyKoiiW3g/Av2RbyrdEVS29TIZcrL06tn9bblO7MuSasRY7NxdN6s3FkRnM3BgCd+OO8qf55zrqP85vvs3NQ+ogr1fpRlGl1YKvFnyv9xL5+lw/FbMoFc4XEgj7D0PrxvD2iwr3N7K81sz2jMsUQthK2w37mkHk01BjOlR+FiKfshQtp96EHPkloCyQYkUI4TUURcHPF/x8C77ebFZIToaWjTRoCjkSgdmsWouVvOFpeQra/7Cgr6JqQYXJPwqUm5ebzJaCKuf6ULnMHMu+SvosS69RVg5cy7T0POUaQVux0IdAuEh4mMIvcVC3mux3JYRjmSxDwy58AlVGQrVJUOUFS+Fy4VM4swgy9rk6pCgBKVaEEMIOGo1i1xHVnOPGl12TSbXu85NXzOhK1iUlnKRelBQpQjiNmgOn34Gziy074VebZOlliXwKrv0AZxajZm9zdUpRDFKsCCGEB9NqFXRaKVCEEAIAc7alYDm3FCr2tfS2hLaDkNbojVd5daUWU2CL6/slyg8InsDlvw8KIYQQ3kJRFJtTaKjlcH6hoaH5rvvnSQhhB9UIl9ZCUnvY1xTOfADApzvLkdXgWzT3n0CpvQAlpBWKornt/z9HnYT9pFgRQgghhBBll/53ODqaoIP1+feoi2ivbgK/SKg2HprsgfvPQP2PIGIg+N7h6rTiH2QYmBBCCCGEKPMUNYduLTOJOf4EGVkKVOgOFR+B8g9B5JOWE4D+EKTtsuzrkv4jZB93bXAvJ8WKEEIIIYTwLqZ0uLjaclJ8oFwrKP8whLWHci0g6C7L/i4AhguQsR/0+yHjd8g8CFmHQc11aRO8hRQrQgghvEpqaiqxsbHs3buXyMhIYmJiaNmypatjCSFcRTXCte8tp2RAEwQhrSHkX1DuX1CuJVR42HK6+TZZRyxFS9YRyD4C2cmWuV2yk8Gsd1lzyhopVoQQQniVefPmERERwfbt2/nxxx+JiYnhyy+/JCQkxNXRhBDuwKyHq99YTnn8q0PwfRB0LwQ2gsCGoKsPgXcWvA3jVTCcgZwzkHseci+C4QJLE1QqlIOKoVC+HIQFW07lAi2Hxhf5SbEihBDCa2RmZrJr1y4SEhIICAigffv2rFq1it27d9OjRw9XxxNCuKuck5bT5a9uWqiFgOoQUBd0dcC/hqWoCagOflUsywMb2WxmxJsFTRVsEaRTKaeDYB0E6SDQ33JSzRFUCAOdv5kAPwjwA//rExz7+Sj4+mA5aS3nPtobJ60WtBrLZSr2BUygmkA1A+Yb56jXL6v5L6Oy/2+V++q7ppiSYkUIIYTXOHnyJMHBwYSHh1uX1atXj2PHjhW4vsFgwGAw2Czz8fHBz8+vWPcfHBxs83dQUJDNubuTvM4leZ3LOXkvgvEipCdCuu01Kgr4VMDscweqTziqzx289e4KLl+DK9fgSjqk6eFahuU8PRPSs+DMZcjKAdVa1wTe4v4LL37yafSZnW27YdDrKgc/uv19mc1mm3MATQlnUpZixUE0Gg21atVydYxS423tBWmzN/C29oL3tTkrKyvfF5WgoCAyMjIKXD8+Pp6lS5faLHv22Wd57rnninX/6enpBS4/d+5csbbnKpLXuSSvc3laXk/ijM8UKVaEEEJ4DZ1Oh15vu+OrXq9Hp9MVuP7QoUMZNGiQzbLi9qoIIYSwn0wKKYQQwmtUr16djIwMLl26ZF12+PBhateuXeD6fn5+BAcH25ykWBFCiNIjxYoQQgivERgYSHR0NHFxcWRnZ7Nr1y6OHj1KdHS0q6MJIYQogKKqqh175gghhBCeLTU1lenTp/Prr78SGRnJ5MmTuf/++10dSwghRAGkWBFCCCGEEEK4JRkGJoQQQgghhHBLUqwIIYQQQggh3JIUK0IIIYQQQgi3JMWKEEIIIYQQwi1JsSKEEEIIIYRwS1KsOEBqaipjx46lTZs29O3bl59//tnVkZxqxIgRtG7dmnbt2tGuXTvGjBnj6kgOFxcXR//+/WnRogVbt261uW7lypV06tSJBx98kIULF1IWDqhXWHsTEhK4//77rc91u3btOHfunAuTOo7BYGDGjBl069aNBx54gBEjRnDkyBHr9WXteb5Ve8vy8+wJVq5cSfPmzTlw4IB1WXZ2NtOmTSM6Opru3bvz9ddfuzAhnDhxgnHjxtGxY0c6derEtGnTuHbtmvV6d8sL7v/Z7MnvQUlJSbRo0YKVK1dal7lr3pUrV9K9e3eio6N54oknSE9Pty53t7x//vknw4YN44EHHqB3795s2LDBep075C3ud6NDhw7x+OOP06ZNG0aMGMHZs2ftu2NVlNjkyZPV119/Xc3KylJ37typdujQQU1LS3N1LKd59tln1a+//trVMZxq06ZNamJiojp48GCbtn7//fdq9+7d1ZSUFPXixYtqv3791C+//NKFSR2jsPZu2LBBffHFF12YzHkyMzPVpUuXqufOnVONRqP6f//3f2qvXr1UVS2bz/Ot2luWn2d3d/78efWxxx5TO3furCYlJVmXv/vuu+ro0aPV9PR09bffflMfeOAB9cSJEy7LeeDAATUhIUFNT09XMzMz1cmTJ6szZsxw27yq6v6fzZ76HmQymdTBgwerTz/9tBofH6+qqvvm/fTTT9Vnn31WPXPmjGo2m9XDhw+r2dnZbpu3f//+6rJly1STyaT+73//U9u1a6eeOHHCbfIW57tRTk6O2q1bN/XLL79Us7Oz1YULF6rDhw+3636lZ6WEMjMz2bVrF88//zwBAQG0b9+eOnXqsHv3bldHEyXQrVs3/vWvf+Hn52ezfPPmzfTr149q1aoRHh7Ok08+yZYtW1yU0nEKa29ZptPpGD58OJGRkWi1Wh577DHOnDnD1atXy+TzfKv2Ctd55513eO655wp8rxkxYgTBwcHce++9REdHs23bNhelhMaNG9OjRw+Cg4PR6XT06dOHQ4cOuW1eT/hs9tT3oC+++ILGjRtTq1Yt6zJ3zGsymYiPj2fq1KlUrlwZRVGoW7cu/v7+bpkX4Ny5c3Tp0gWNRsOdd95JzZo1SU5Odpu8xflu9Ouvv6LT6ejduzf+/v48++yz/PHHH3b1rkixUkInT54kODiY8PBw67J69epx7NgxF6ZyvjfffJNOnToxcuRIDh8+7Oo4peb48ePUrVvX+nf9+vXL/HP9+++/07FjR/r378+6detcHcdpkpKSqFChAmFhYV7xPN/cXvCe59md7N27l7S0NDp06GCz/Nq1a1y+fNmtX4NJSUnUrl0bcM+8nvjZ7AnvQWlpaXz66aeMGDHCZrk75r1w4QI5OTl8++23dO7cmb59+1rf29wxL8CAAQPYvHkzRqORgwcPcv78eRo3buy2efPcKt+xY8dsrtPpdFSrVs2u/D6Oi+qdsrKyCAoKslkWFBRERkaGixI535gxY6hduzYajYY1a9YwduxY1q1bR2BgoKujOV1mZibBwcHWv4OCgsjMzHRhIudq2rQpq1evplKlSvzxxx9MnDiRihUr5vty5ekyMjKYM2cOI0eOBMr+8/zP9nrL8+xOjEYjb7/9NjNnzsx3XWZmJlqtloCAAOsyd3oN/vXXX6xZs4YPP/wQcM+8nvbZ7CnvQe+//z6PP/44ISEhNsvdMe+FCxfIyMjg1KlTbNiwgdOnTzNy5Ehq1qzplnkBWrVqxfTp01m2bBkAU6ZMoUKFCm6bN8+t8hX2fzErK6vI25dipYR0Oh16vd5mmV6vR6fTuSiR8zVu3Nh6efDgwWzYsIFDhw7RokULF6YqHYGBgTYfdnq9vkwXaVWrVrVebty4MQMHDmTnzp1l6ktsTk4OEyZMoG3btvTu3Rso289zQe31hue5tI0aNYr9+/cXeN2wYcMICgqiSZMmNr845gkMDMRkMpGdnW0tAJz9Grxd3uHDhwNw+vRpXnrpJaZNm0adOnVclvd2POmz2VPeg/78808OHTrE5MmT813njnn9/f0By0GBAgICqFOnDt26dWPPnj1umffq1au89NJLxMbGEh0dzfHjxxkzZgx16tRxy7w3u1U+R/xflGKlhKpXr05GRgaXLl2ydjcfPnzY+objDTQa7xlNWKtWLY4cOULbtm0B+Pvvv61DIbyBoiiujuBQRqORKVOmEBERwbhx46zLy+rzXFh7/6msPc+u8P7779/y+gkTJrB//362b98OWI5cNW7cOMaOHUuvXr2oWLEiR44csf445OzX4O3yAly6dIlRo0bxzDPP0L59e+vykJCQUs97O57y2exJ70H79u3j5MmTdOvWDbD0Bmm1Wk6dOuWWeWvUqIGvr2+B17lj3tOnTxMcHGz9kahu3bo0a9aMffv2uWXem90qX+3atVm/fr113aysLE6dOmVXfu/5lukkgYGBREdHExcXR3Z2Nrt27eLo0aNER0e7OppTpKen8+OPP2IwGMjNzWXVqlVcu3aNhg0bujqaQxmNRnJyclBV1XrZbDbTrVs3Pv/8c06fPs2lS5dYtWoVXbt2dXXcEiusvT/88AOpqamA5Ve1NWvW0K5dOxendZzZs2eTk5NDbGyszRf0svo8F9besv48u6PY2FjWrl3LqlWrWLVqFREREcyYMYPOnTsDltfgsmXL0Ov1HDhwgN27d/PQQw+5LG9GRgajR4+me/fu9O3bN9/17pbXUz6bPek9qG/fvqxfv976mo2OjmbgwIGMHTvWLfPqdDo6duzI8uXLMRgMnDhxgi1bttCmTRu3zFujRg30ej27d+9GVVVOnDjBL7/8Qt26dd0mb3G+GzVr1oysrCwSEhIwGAwsX76cRo0aUbly5SLfr6KqbnBgaQ+XmprK9OnT+fXXX4mMjGTy5Mncf//9ro7lFKmpqYwZM4YTJ07g6+tL/fr1GTduHHfeeaerozlUbGwsGzdutFm2ZMkSmjdvTnx8PB9//DFms5k+ffowZswYj/8lurD2fv/992zevJns7GwiIiIYMGAAAwcOdFFKxzp79iw9e/bE39/fpndw0aJF3HfffWXueb5Ve7/77rsy+zx7ip49ezJnzhzuvvtuwDJvyaxZs9i1axchISGMHj2aLl26uCzfxo0biY2NzTd04/vvvwfcLy+4/2ezp78HxcbGUrNmTYYMGQLglnnT09OZOXMmP/30E6GhoQwePJh+/fq5bd7ExETee+89Tp06Rbly5Xj00UcZNmyY2+Qt7nejQ4cO8frrr5OSkkKjRo2YOXOmFCtCCCGEEEIIzyfDwIQQQgghhBBuSYoVIYQQQgghhFuSYkUIIYQQQgjhlqRYEUIIIYQQQrglKVaEEEIIIYQQbkmKFSGEEEIIIYRbkmJFCCGEEEII4ZakWBFCCCGEEEK4JSlWhHCRnj170rx5c+Li4lwdRQghhAdKSEigefPmNG/e3NVRhHAaKVaEEEIIIYQQbkmKFSGEEEIIIYRb8nF1ACEEZGVlMXXqVA4fPsyVK1cwmUxUqlSJhx9+mGeeeQZfX18ADAYDb731Flu3bsXPz4/+/ftz+vRpNm3aROXKlUlISHBxS4QQQtzO7NmzWb9+PfXr1+eTTz6xLh8xYgT79u2jc+fONGzYkC1btnDu3Dn0ej0hISE0adKEF198kRo1ahS67bxt9OjRg9jYWADi4uJYunSpzeeE2WxmzZo1rF+/nlOnTuHv70/Lli0ZM2YMVatWdWr7hbCH9KwI4QZycnLYtWsXOTk5VK9enQoVKpCSksKyZcv44IMPrOu9//77fPHFF+j1egIDA/n000/ZsWOHC5MLIYSwV48ePQD4+++/OXHiBAAXL17kt99+s17/66+/kpKSQsWKFalZsybXrl1j586djBw5kpycnBJnmD9/PgsWLODYsWNUq1YNjUbD9u3bGTZsGFeuXCnx9oVwFClWhHADQUFBrF27lq1bt/LJJ5+wadMmunbtCsC2bdsAS+/LZ599BkCnTp346quv+OKLL6y9LkIIITzDvffeS/Xq1QH45ptvAPj2228xm81ERERw//33M3r0aHbu3Mlnn33GmjVrWLRoEQDnz5/n999/L9H9nz59ms8//xyA2NhY1q5dS0JCApGRkVy+fJk1a9aUaPtCOJIMAxPCDWg0GrZs2cL27ds5e/Ysubm51usuXrwIwKlTpzAYDIClWAEoX748zZo1Y+fOnaUfWgghRLF169aNJUuW8M033/Dss89af5jq2rUrWq2Wc+fOMWfOHI4cOUJmZiaqqlpvm/e5UFz/+9//rNuLjY21DhfLc+DAgRJtXwhHkmJFCDewcuVK4uPjAahcuTIVK1bkwoULXLhwAbPZ7OJ0QgghHK1Hjx7ExcVx7Ngxvv/+ew4ePGhdfurUKSZOnEhubi5BQUE0bNgQo9HI33//DXDLzwVFUQAwmUzWZRkZGTbr3Fz41K9fHz8/P5vrK1euXLLGCeFAUqwI4QbyPqSqV6/OF198gdlsZvz48Vy4cMG6TlRUFP7+/uTk5PDdd9/RqVMnUlNT+fXXX10VWwghRDFVqlSJZs2asXfvXmbNmoWqqjRq1IjatWuzfft2aw/7e++9xz333MPWrVt59dVXb7vdChUqAJCSkgJAdnY2e/bssVmnYcOGKIqCqqr07NmTxx9/HLAUMb///jtBQUGObKoQJSLFihBuoG7dunz//fecPHmSXr16YTQa8+1AGRAQQL9+/Vi1ahVff/01Bw8eJC0tzWbImBBCCM/Ro0cP9u7dy+XLlwHLZMEAderUQavVYjKZGD16NJUqVbKuczstWrTgm2++4eDBgzz99NNcvXqVc+fO2axTrVo1+vTpw/r161mwYAGrV69Gp9Nx9uxZ9Ho906dPp169eo5trBDFJDvYC+EGhg0bRvfu3SlXrhx6vZ7OnTvTr1+/fOuNGjWKvn37EhQUREZGBv3796d169YA+Pv7l3ZsIYQQJdCxY0cCAwMB8PX1pXPnzgDUrFmTadOmUbVqVYxGI2FhYcyePbtI2+zVqxcDBw4kLCyMlJQU7r//fgYOHJhvvVdeeYWXXnqJunXrcvHiRc6ePUuVKlUYNGgQzZo1c1wjhSghRb154KIQwq1dvnwZf39/goODAUhLS2PAgAFcvnyZzp07M2fOHBcnFEIIIYRwHBkGJoQHOXDgAK+99hp33XUX/v7+HDhwgLS0NHQ6HcOGDXN1PCGEEEIIh5JiRQgPUqVKFRo0aMBff/2FXq8nLCyMTp06MXz4cOrWrevqeEIIIYQQDiXDwIQQQgghhBBuSXawF0IIIYQQQrglKVaEEEIIIYQQbkmKFSGEEEIIIYRbkmJFCCGEEEII4ZakWBFCCCGEEEK4JSlWhBBCCCGEEG5JihUhhBBCCCGEW5JiRQghhBBCCOGW/h+GQ7hZzySQ+AAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -1080,7 +1214,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7ffad74cde1b46f0af21c2634b51af36", + "model_id": "c2532ef37ff2449b9dcfb45b50de2534", "version_major": 2, "version_minor": 0 }, @@ -1100,9 +1234,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABerElEQVR4nO2dd3hUVfrHPzPpPYQU0iAhoQVSgEuvitiwIFYUFbsiu7Z1bWvbVbfo/lBXVldXxboqKoq9IdIEuSrSAwQCpPfeM+f3x517M+mTzIQUzud58iRzy7nnzEy+973vec/7moQQSCQSiaT/Y+7tDkgkEonEOUhBl0gkkgGCFHSJRCIZIEhBl0gkkgGCFHSJRCIZIEhBl0gkkgFCbwq66Os/OTk5vd4HORY5lv7yI8dywn7aRVroHdDY2NjbXXAacix9EzmWvkl/HYsUdIlEIhkgSEGXSCSSAYIUdIlEIhkgSEGXSCSSAYIUdIlEIhkgSEGXSCSSAYIUdIlEInEQIQQNDQ293Q0p6J3xyCOP8NRTT7W7/6OPPmLv3r0nsEcSiaQv0djYyLhx45g9ezYWi6VX+yIF3UGkoEskJzcFBQXs3buXH3/8kS1btvRqX6Sgt8Hjjz/OyJEjueCCC0hNTQXgpZdeYtKkSSQnJ3PhhRdSVVXFli1bWLt2LXfffTcpKSmkpaW1eZxEIhm4lJSUGH+/9dZbvdcRpKC34ueff+add95hx44dvP7662zfvh2ARYsWsX37dn777TfGjBnDyy+/zPTp0znvvPN48skn2bFjB3FxcW0eJ5FIBi62gv7ee+9RV1fXa33ps4JuMpl65KczNm7cyAUXXIC3tzd+fn6cd955AOzevZtZs2aRmJjIW2+9xZ49e9o8397jJBLJwMBW0IuKivjqq696rS99VtD7GkuXLuW5555j165dPPzww9TU1Dh0nEQiGRjYCjr0rtvF1Z6DFEWZCzyIdgN4FsgH/gFYgFtUVd2lKMoQ4HXAB3heVdU3HemYEB1miewxZs+ezdKlS7nvvvuoqKjgk08+4aabbqK8vJzw8HDq6+t56623iIyMBMDPz4/y8nLj/PaOk0gkAxNd0E8//XS+/vpr1q5dS2VlJT4+Pie8L51a6IqieAF3AWepqnqKqqprgMeBBcDlwN+th96DJvJzgFsVRfHsmS73LBMmTODSSy8lOTmZK6+8kkmTJgHwl7/8hSlTpjBjxgxGjx5tHH/ZZZfx5JNPMn78eNLS0to9TiKRDEyKi4sBSE5OJj4+nurqajIyMnqlL/ZY6NOAauATRVGqgGVAo6qqxUCxoihB1uMmA3epqmpRFEUFxgFqT3S6p3nggQd44IEHyMzMbGZh33LLLa2OnTFjRrOwxVtuuaXN4yQSycBEt9ADAwMJDAwEoLS0tFf6Yo+ghwHxwFTgNOBRoMxmf4OiKO6Am6qqelR9KRBECxRFuRG4EWD58uXMnz/fga73PPX19WRmZvZ2N5yCHEvfRI6lb9KVsdgeV+ZxNkTPJy0trcfcrR21a4+glwCbVVWtUxTlOzRBL7fZ72rdV68oitkq6gFAUcuGVFV9EXjR+rJ3nORdoKWF3p+RY+mbyLH0Tboylvr6egBMvikcNM+HGBdKqr/olffCniiX7cAYRVFMQAqwF3BVFCVQUZRomoR7OzBXURRXYCIg4/UkEsmAR3O5mHh9y1QELgBkF9T3Sl86tdBVVS1QFGUN8AOaVX0tEAl8bn29zHro39GiXB4DXlBVtbpHeiyRSCR9iOLiYhhyPfuzAo1tBcW9s7jIrrBFVVVXAittNqUB01sckw30bae4RCKROJniknKIeQwAT9dqahq8KCrrnSLTcmGRRCKROEBRuQu4BRPkZ2Fs+BEAist7J+uiFHQb0tPTGTdunMPtrF+/nnPOOafN7d3Nxpaens7bb7/d5r6jR48yYcIEUlJSGDt2LC+88EK3rtFdduzYweeff2687izlcHdYunQp77//vlPbBFi1ahXLly9vtb22tpbTTjuNlJQU3n33Xadftzs88cQT7e4TQnDqqadSVqYFoLm4uJCSkmL8/O1vf3NqX6qqqrjiiitITExk3LhxzJw5k8rKSqdew5aW/zvtfR+ysrK46KKLun2d5557jldeecXu44UQlFZpfvOQQAiwriUqqeh2FxzCLpeLxDmsX78eX19fpk+f3vnBLdAF/fLLL2+1Lzw8nB9//BEPDw8qKioYN24c5513HhEREc7odqfs2LEDVVU5++yzT8j1TgS//voroI3NXhobG3FxcemhHmmCfv/997e57/PPPyc5ORl/f38AvLy8utT3rvLMM88QFhbGrl27AEhNTcXVtefkxN7/nYiICIdu/Ndeey0zZszgjDPOsOv4mpoaGoQfAIMDzAR6avmiyqt6x1aWFnoLGhoauOKKKxgzZgw33nijkf72z3/+M5MmTWLcuHHceOONRmqCQ4cOcdppp5GcnMyECRNIS0tr1t727duNVaQvvPACK1asICUlhY0bN5Kfn8+FF17IpEmTmDRpEps3bwbghx9+MCyr8ePHU15ezr333svGjRtJSUlhxYoVza7h7u6Oh4cHoFmW7SXZX7VqFQsXLmT+/PnExMTw3HPP8X//93+MHz+eqVOnUlSkBSzt2LGDqVOnkpSUxAUXXGCshJs7dy733HMPkydPZuTIkWzcuJG6ujoeeugh3n333WbW7N69e5k7dy7Dhw/n2WefBaCyspIFCxaQnJzMuHHj2rR8O0o/vGHDBqZPn8706dOb/dM++eSTTJo0iaSkJB5++GFj+8KFC5k4cSJjx47lxRdfNLa/+uqrjBw5ksmTJxvvuS15eXksWbKE7du3G2mRv/vuO8aPH09iYiLXXnsttbW1AMTExHDPPfcwYcIEVq9ezddff820adOYMGECF198MRUVFcb3YPr06SQnJzN58mTKy8tJT09n0aJFTJgwgQkTJhgWaHZ2NrNnzyYlJYVx48axceNG7r33Xqqrq0lJSeGKK65o1ee33nqL888/v83PXae0tJRRo0YZKaEXL17MSy+9BICvry933HEHY8eOZd68eeTn53fYVnZ2drOwvFGjRuHh4UF6ejqjR49m6dKljBw5kiuuuIJvv/2WGTNmMGLECH766SdAS2K1cOFCkpKSmDp1Kjt37mx3e3p6eqv/HWj6PgwfPtz4Ptg+Za9atYpFixZx5plnMmLECP74xz8a/X355ZeN78ANN9xgPKV5e3sTExNj3NA7o6SkBFy1JTdB/hAUoN3UKmt67sbeIUKI3vrpcxw5ckQAYtOmTUIIIS699FLx5JNPCiGEKCwsNI5bsmSJWLt2rRBCiMmTJ4sPP/xQCCFEdXW1qKysFN9//71YsGCB2Lx5s5gwYYI4evSoEEKIhx9+2GhPCCEWL14sNm7cKIQQ4ujRo2L06NFCCCHOOeccow/l5eWivr7eaLM9jh07JhITE4WXl5d47rnnWu3PyMgQr776qoiLixNlZWUiLy9P+Pv7i+eff14IIcTtt98uVqxYIYQQIjExUaxfv14IIcSDDz4obrvtNiGEEHPmzBF33nmnEEKIzz77TMybN08IIcSrr74qbr31VuNaDz/8sJg2bZqoqakR+fn5IigoSNTV1Yn3339fXH/99cZxJSUlrfpZUFBg/P3AAw+IZ599VgghxNVXXy0uuugi0djYKNatWyfi4uKEEEJ89dVX4oYbbhAWi0U0NjaKBQsWiB9++EEI0fSZVVVVibFjx4qCggKRlZUloqOjRV5enqitrRXTp09v1ncd2/e7urpaREVFidTUVCGEEFdeeaXxXg0bNkz8/e9/F0IIkZ+fL2bNmiUqKiqEEEL87W9/E48++qiora0VsbGx4qeffhJCCFFaWirq6+tFZWWlOHTokBBCiAMHDoiJEycKIYR46qmnxGOPPSaEEKKhoUGUlZUJIYTw8fFp1U+doUOHGscJIYTZbBbJycnGzzvvvCOEEOLrr78WU6dOFf/73//EGWecYRwPiDfffFMIIcSjjz7a5ntiy6+//ipCQkLE1KlTxQMPPCAOHDggMjIyxJEjR4SLi4vYuXOnaGxsFBMmTBDXXHONsFgs4qOPPhLnn3++EEKI5cuXi0ceeUQIIcR3330nkpOTO9ze8n/H9vuwZ88e4/tw5MgRMXbsWCGE9r2MjY0VJSUlorq6WgwdOlQcO3ZMZGZmimHDhonCwkJRV1cnZs6c2Wy8jz32mHjwwQc7HL/Onj17BKFXC2Y1iisfaxT3PnNIMKtRBE/70K7zu0m7utpnXS6m2T0zqSA2dPxQEh0dzYwZMwAtB/rbb7/NH/7wB77//nv+8Y9/UFVVRVFREWPHjmXu3LlkZmZywQUXAODp2ZS+Zt++fdx44418/fXX7bo+vv3222ZpA8rKyqioqGDGjBnceeedXHHFFSxatIioqKhOxxUdHc3OnTvJyspi4cKFXHTRRYSFhbU67pRTTsHPzw8/Pz8CAgI499xzAUhMTGTnzp2UlpZSUlLCnDlzALj66qu5+OKLjfMXLVoEwMSJE0lPT2+3PwsWLMDDwwMPDw9CQ0PJzc0lMTGRu+66i3vuuYdzzjmHWbNmtTpv9+7d/OlPf6KkpISKiopmj74LFy7EbDYzcuRIcnNzAfj666/5+uuvGT9+PAAVFRUcPHiQ2bNn8+yzz7JmzRoAjh8/zsGDB8nJyWHu3LmEhIQAcOmll3LgwIEO39vU1FRiY2MZOXKk8Z6sXLmS22+/3WgDYOvWrezdu9f4/tTV1TFt2jRSU1MJDw838gLpbpHKykr++Mc/cuDAAVxcXIx+TJo0iWuvvZb6+noWLlxISkpKh/0DzbL18/MzXrfncpk/fz6rV6/m1ltv5bfffjO2m81mYxxLliwxPuf2SElJ4fDhw3z99dd8++23TJo0iY8++oiYmBhiY2NJTEwEMCx+k8lEYmKi8Z3ZtGkTH3zwAQCnnnoqhYWFlJWVtbu9LfTvQ0JCgvF9aMm8efMICAgAICEhgaNHj1JQUMCcOXMICtIs64svvrjZdyA0NBRVtS9rSUlJCbgNAiDID0KDtCflmgYPu853Nn1W0HuLljnTTSYTNTU1LFu2DFVViY6O5pFHHuk0LW54eDg1NTX8+uuv7Qq6xWJh69atzW4EAPfeey8LFizg888/Z8aMGV3KrxwREWE8pru4uPDoo48CTRNqumsGtH9i/bXZbLaryK1+vIuLS4fH215HP3bkyJH88ssvfP755/zpT39i3rx5PPTQQ83OW7p0KR999BHJycmsWrWK9evXt9mmsLq8hBDcd9993HTTTc3aWb9+Pd9++y0//vgj3t7ezJ07t8dSGetZ9YQQzJ8/n//973/N9ut+5pasWLGCkJAQVq9ejcViMb4Hs2fPZsOGDXz22WcsXbqUO++8k6uuuqrDPri6umKxWDCbOzZYLBYL+/btw9vbm+Li4naNBXtqB/j6+rJo0SIWLVqE2Wxm3bp1XHvttQ5/x+ylre9DR8d09p3VqampafU/2R7NXS4mhgz2AqCu0cuu851Nn/Whiw3mHvnpjGPHjvHjjz8CsGbNGmbOnGkIQXBwMBUVFYa/zs/Pj6ioKD766CNA81/rPt/AwEA+++wz7rvvPkOUWqbaPf300/nXv/5lvNYtqrS0NBITE7nnnnuYNGkS+/fvb3WuLRkZGVRXa+u4iouL2bRpE6NGjeKCCy5gx44d7Nixg+TkZLve94CAAAYNGmT4Kd944w3DWm+PjvpmS1ZWFt7e3ixZsoS7776bX375pdUxLdMPd8YZZ5zBK6+8YviqMzMzycvLo7S0lEGDBuHt7c3+/fvZunUrAFOmTOGHH36gsLCQ+vp6Vq9e3ek1Ro0aRXp6OocOHQLaf0+mTp3K5s2bjeMqKys5cOAAo0aNIjs726h+VV5eTkNDA6WlpYSGhmI2m3njjTdobNRil48ePUpYWBg33HAD119/vfE+ubm5GcvM2+rj4cOHOx3LihUrGDNmDG+//TbXXHON0Z7FYjG+12+//TYzZ87ssJ3Nmzcbcyt1dXXs3bu3S0vdZ82aZXy+69evJzg4GH9//3a32/sds4dJkybxww8/UFxcTENDg/FEoKN/ZvbQTND9IDzUG4B6ceJT50IfFvTeYtSoUaxcuZIxY8ZQWlrKLbfcQmBgIDfccAPjxo3jjDPOMB6dQfvnfvbZZ0lKSmL69Onk5OQY+8LCwvj000+59dZb2bZtG+eeey5r1qwxJnaeffZZVFUlKSmJhIQEI9zw6aefZty4cSQlJeHm5sZZZ51FUlISLi4uJCcnt5oU3bdvH1OmTCE5OZk5c+bwhz/8wXjk7Q6vvfYad999N0lJSezYsaOVFd2SU045hb1793Ya4rdr1y4mT55MSkoKjz76KH/6059aHdPV9MOnn346l19+OdOmTSMxMZGLLrqI8vJyzjzzTBoaGhgzZgz33nsvU6dOBbQnp0ceeYRp06YxY8YMxowZ0+k1PD09efXVV7n44otJTEzEbDZz8803tzouJCSEVatWsXjxYpKSkpg2bRr79+/H3d2dd999l9/97nckJyczf/5846lv9erVJCcns3//fsPSX79+PcnJyYwfP553332X2267DYAbb7yRpKSkNidFFyxY0OxpRp9A1X/uvfdeUlNT+e9//8s///lPZs2axezZs3nsMW1BjI+PDz/99BPjxo1j3bp1xmf+wgsvtBkGm5aWxpw5c0hMTGT8+PEoisKCBQs6fS91HnnkEX7++WeSkpK49957ee211zrc3vJ/xxEiIyO5//77mTx5MjNmzCAmJsZwy4B2s5o9e7ZdbWkul6ZJUd3lIsx+vVOKriMHew//9HkyMjJ6uwtOQ46lb+KssWRlZYnTTjut2+d3NOFqL339c2lsbDT+Li8vF0IIUV9fL8455xwjsOGXX34RS5YssXssjz32mGDcl4JZjeKLrRaRmW8RzGoUTMkUeXl5zh+ERru6Ki10iWQAEB4ezg033NDuBOLJzpo1a/Dz8zMmyR955BEjLDQ2NpaFCxcCUFBQwF/+8he729VcLk2TooG+1h0uAb2SE11OikokA4RLLrmk2+fqcxADkbq6Ou644w6qqqpYv349F1xwQbsrmfUaDfbmQm8Zh+7lAYgGcPEiv7CM+HhnjMB+pIUukUgGNC+//DJHjx4FnF9JqKUP3WQy4WrSUiBk5fZcKoT2kIIukUgGLNXV1cbELzhf0IuKy8A1EBPCyOPibtYiznILeyZMtiOkoEskkgHLSy+9RFZWFl5eWly4swW9sFQLNfXzasTFRYvd93TVhDxPCrpEIpE4jw0bNgBa0i3oAQu9TFvQFOjbtLLdy10LV8wvPvFVi6SgSySSAUthYSGgpSAA5wu6njo3KKBpZa2Ph7YatajUeati7UUKukQiGbDoGUSHDx8OOFfQhRBUVLsBEBzQlF3Rz0uz1ot6ociFFHSJRDJg0S3045XjQDlIsZjYbt6XrlJZWYnFHAhAcGCTlPpbJ0dLeyESVMahSySSAUtRURG4BXPfq0PAy0Sj/3yqq6vx9vZ2uO2WmRZ1BvlZi1xUn3h7WVroEolkQFJdXU11dTXmEf+moNTq43Z13grOgoKCZouKdIKs7pfeKHIhBV0ikQxIioqKYPAFWAZf2LTRxd9pgp6bm9ssda5OcKDmV6+qc3PKdbqCFHSJRDIgKSwshJDLAJivWDe69pCg27hcjCIX9Se+yIUUdIlEMiApKioCDy1H+/xJVgva2Ra6W2uXS+hgrThGbS8UuZCCLpFIBiSFhYXgrlULGz3UutGJFnpOTk5TpkUbQY8I0SZcG4TjE69dRQq6RCIZkBQUFoF7OGAj6E5Ma9uey0WvWmQx+zm15J49SEGXSCQDkuPZVWB2x9OlirAg68YT4HLRwxZxCXBa2Tx7kYIukUgGJMfztJWaAV6V+HoBCHD1o6jYSS6X3FzD5TLIxkLXsy7iGkBJyYktciEFXSKRDEiytUWiDParxWw24emqJc0qKKp1Svs5+ZVgcsXH04K7W1PYoqeHCZOoA7MHeQUntoKUFHSJRDIgyS/V4sDDArUUt17umj+7oNTx4s2NjY0UWo1v2xh0HVesRS7yTmyRi06X/iuKEgNsB/ZYN10MzAXuAKqBq1VVzVAUZTTworXNB1VV/a4nOiyRSAYW27ZtA2DKlClObbeoUgsfjAjRBNfXq5HiKii25jB3hIKCAoSbFhIZGdJa0N1dqqm3DCIz58QmdLE3l8sPqqpeBKAoiitwJzAHmAQ8CNwEPAFcB+QCXwBS0CUSSYfk5uYyZ84cPD09KSoqwmx2ntOgvMYPPGFYuCZzfl5aUq6SCsezIObm5oJnLACx4a33e3vUU1kN6RlFDl+rK9j77s1QFGWjoihPACOAfaqq1qmquhlIsh4ToarqQVVVy4AiRVGCe6LDEolk4PDKK69QW1tLaWmp0wtVVzUEAjA8UrPUA3w1S7rUCV4QTdCHARAzpPV+f2/t5nE048ROitpjoWcD8UAV8BKwCLD19OsZaGxvDqVAEFBg25CiKDcCNwIsX77cqLDdV6mvr7e7+ndfR46lb3Iyj6WxsZHnn3/eeJ2amkpERIRT+iKEoJbBAAR6V5OZmYmXm+ZTL6uk0352NpZ9+/YZFnqgZwmZmdXN9gf61EEhHDpe4fTPNzIyst19nQq6qqq1QC2AoigfAksB21up7pCyfY4JAFo9a6iq+iKanx3AOUmJe5DMzMwO37z+hBxL3+RkHssXX3zB8ePHjdfe3t5Oey8qKirAXbPIp6REERlqIiKsCnZBdZ1bp9fpbCz19fXgoVno48cMIjIyqNn+UTHH+fkYFJZ7ndDP155JUT9VVfXo+FnAZ8DNiqK4Awqw07ovW1GUOCAPCFJVtaB1axKJRKLxwgsvNHvtzGpCuXmF4BYJwsKQIM2JEDzIHdCyIAohMJlaT2ba3X4nPvSRMd6wAQorTmw+F3tcLjMVRXkMzeVyBG0StAZYb/19tfW4B4BVaC6Yh53dUYlEMnDIy8vj008/xc3NjYSEBH777TfKypwXs33waDmYzLha8nF1DQNgkJ8LIBBmX6qqqvDx8em4kQ7IzikAjyhMCKJDW98YxsUHAFDVGERdXR3u7u7dvlZXsMfl8gVa1Iot71p/bI/bi2bBSyQSSYekpqZisViYPHkyUVFRThf0Q8e0mU9PczGgCbq/nivLuvzfEUE/mmMBkwuD/arxcG/dzrAh2s0D90gyMzOJjY3t9rW6glxYJJFITjjZ2dkAREREEBCgWbPOdLkcza4HwNe9KZdKgK/1DydULcos1CZYo4LbjmmPDrX+4RHNsWPHHLpWV5CCLpFITji6oIeHh+Pvr2W2cqaFfjxPE9pB3k0xii0tdEcoqNDuDsMj25bQkEAw0wBuwRw6fOKimKSgSySSE05PC3pOkSZtg/2alvk3WeiOCbrFYqG8TltmM2pY21WJzGYTfh7aeHYfLOn2tbqKFHSJRHLCsRX0nnC55Jdqk5BDgpqiqZ1loRcWFiI8tATrI6Lbn4YM9q8B4NCx6naPcTZS0CUSyQknKysL6DkLvaRKCxeMCG6SOH997tLFn5KSkm63nZubCx4xQNurRHWigq2rRXMcTzVgL1LQJRLJCSc7OxsCZiPch/aIhV5Rqwl69JCmcEHbPOWOXCsnJwc8Y4C2Y9B1YiO1a+eU2Jsyy3GkoEskkhNORqEXJH7Htc+OxMVdKxLhTAu9plHzrwyLaKo8YWuhOyLob7y1GjwiMdFIVEj7x40Zrjntiyt9EeLELIyXgi6RSJpRX1/P6tWrueCCC4iLi+Onn35yavu1tbWUNo4Ek5ncYhfe3JwAOFfQ64XmxkkYEWps8/YEs8kCLt4UlXSvNNzhw4d5c/UGACKDLbi6tr/adMRQ7SmhwRzmkIunK5y4ZwGJRNIvuO2225olzfr444+ZPHmy09rPyckBnyTj9ZqtoeA3ldLSYqe0X1FZjzD7gKWeEcObnNwmkwkvt3oq6zwoLO5ekYvHH38ci3sMAPHRbh0eq60gFeARxbFjxxg0aFC3rtkVpIUukUiaoVvk06ZNA6yTgE4kOzvbEPTxI0AIE8Q/5zQLfV9aHgBmSzHu7s1F19tTi08vKOm6oB8+fJjXXnsN06BTAZg4suPjmxYXRZ2wxUVS0CUSSTOOHDkCwFVXXQX0kKD7aoL++gMmPN0F+I6npLzeKe2nHsoHwN3cOr+6PjGaW1Bjd3s1tYJtewUff7yWxsZG/IddAsDZUztO7mW7uOhweo7d13MEKegSicSgrKyMoqIiPD09SUrSRNfZgn7gSDG4h+NmriEhBsKCNGGsbvCjoaHB4fYPHdVcNz7urUVbS9AFuYX2x4Y/9Q5MvVnw4bZI8BhKaUM0vl4wM6nj88xmE/7WxUVHMp1TmLozpKBLJBKD9PR0AGJiYggP12LynC3oO9O030P88jGbTYQGWne4hVFe3r3JSlvSMzXLPMCn9c0heJDmgikqs2Cx2Bcfviddi1D5KftUGHwBAPMVcHfrPP1ukK924ziWJ6NcJBLJCUZ3t8TGxhIWpmUpzM3NdWrY3cFsLaQwNlQT7zC9NoRbqFNi0TNzNREd7N96X6CfJnkWfCgosK9kQ36J9rtODIKYPwNw9jT7cqmHBWq++qzCExN/IgVdIpEY2Fro3t7e+Pr6Ultb69SQwswSLQ9KwjDNgg7Tgz/cw5xynZwia7uDW0ehGMv/Xf2N9AOdoQs6AC5abPlZU+zrS3SodiMsKD8xhS6koEskEgNbCx1oZqU7i6JarSTbpAQtsVWoLuhuoU4R9EKrkR8V5tlqX4DN4qIuC3qtlq4gKQ4iQ+yz0IdHapZ5cZX2uLAvXXDbMxbeW9czLhgp6BKJxKCnBb2uXlBj1tqekaIt+Q8bZBVHd+e4XMqqNBGNifRrtc/fx3otOwVdCEGB3qXDt4No5Nqz7S9dNzpWs8wrG7Wnkp8PwLMfwAc/SEGXSCQ9THp6Ovik8HXqNKprhSHoOTnOCbvbfbgRTO5QfYi4GC1Qu8mH7rjLpbGxkao6TUSHDw1otd82n4ueIKwjSiugvgE8XOuh4AMuj1nG7y+yvz/j4rWbSp1pCEIIDmVoQh4fZX8bXUGuFJVIJIBmjR45cgRi3uGlr8IZPsz5Fvqv+0qBQbg3HsHVVVuZ0xTlEkJp6QGH2s/Ly0O4aj6c8ODWdTz9m7lc9nfanu5u8XIppxYYGR/VpeLSo2O8AIFwj6a8vJJDmZoTPz6y+wWqO0Ja6BKJBICioiLKy8sx+Wq5VZ5+XzA4OAJwnqCnpmshhX7uTa4Vw0J3wqRoRkYGuA4G2o5yMSx0tyC7XC66oJsthQDExcV1qT8+XibMjQVg9mBfWjGHrMWL4iK61IzdSEGXSCSA1d1i9kS4af6A3CI4XKXVfXeWoB/N1sL4An2aFvYYUS5OcLlkZGSAm1XQW3tcGKandvEY1iVBb6zRXE5dFXQAT7RUBLsPlXPgmBaBs+2Ht7vcjj1IQZdIJIB1QtQzDkxmdK/C9wcmAGanCXqmNfQ7xKY0XJC/NQuiWxBFxa2X63eFY8czwOpyCWo9J8pw3TL2HE6WPYJufZCoLtNysQwfPrzLffJ1KwLg1wONFFe4QmMVv2z9rMvt2IMUdIlEAlgF3WsEAKdPgrhIyCn1hcHnO03Q86zFHsJsSsOZzSb8PLVl+vkljkV/pKUXgskFT9eaNlPb+vuYGOwvwMWLrHxLpwum8qwJIOsqMvHx8SE0NLTD49tisI/21PHTAWtR05pDDB8e2+V27EEKukQiAawuF6ugjxkGV51hFUS/KU4T9OIKLTY8KqS59Azy1RJz5Ze6ONT+kQxt9am/d/uJvuKsE5L1LtEUF3ecste4wdTnExcX16UJUZ3QAO1mtSfTejOoPtwtS98epKBLJBJAt9C1yJOR0aamiTvPGKct/y+r1fwgwyObR6AM9tPS2hZXdJxjvDMycqoACPJrv6+2bpfO/OjGoqL6gm6LcFSINjY9nJKaQ0acv7ORgi6RSADrhKLVQh8ZDTHWeplm7xiqq6upqHDMv11ZLaizeIOllmEtFv2EDtIEuKy69erOrpBdUGdtr31Lv+lGFdsFQc/v1oQoQGx4C5mtTpMWukQi6Vny8vKaLPQom4r2npo16ajbJbvQ+kddFiEhwc32DQnSpKi81pvuUlxcTG6hFkUSGdZ+7pThEVa3iWdcm4L+zDPPsHjxYsrLy5sJenx8fLf6NXKYR7PX5rrDREX1zMoiKegSST9i69atdmcJ7AoWi4X84jpwD8PLQxAZAuGDwc0VLC7BYPZ0WND1CBdqswgObi7okaGaq6Wqwbfb7W/duhXctKD20EHtS9vwDiz0nJwc7rnnHjZu3MiXX37ZTNCTk5O71a9hkYHQUGK8jhxcg6trz6zplIIukfQT9u3bx7Rp05g6dapT8obbUlxcjMVdcwOMiDJhNms/Q8OsB3gMc3j5f5Yu6HXZrQR9aLhmxdZa2gget5PNmzc3LSoKaH/y0nC5eA1vtfx/xYoV1Fr8wVfhxx+3Nk2KNhQYBT+6SkhICNSkay8sdYyI7rnMi1LQJZJ+wi+//AJAWloat99+u1PbtnW3jLDxBgyzEXRHLfTjedZQxbpMgoKCmu2LDNEsdItLCLW13avus3nz5qZFRW2sEtWJCAZXcyO4h3M8s8jYXlxczL///W8Y9Sak/MhX2+qprTdBYxWj4qPw8fFpv9EOCA4OhlprTdGaw8TFxXSrHXuwW9AVRVmsKEq+9e+LFUXZoijKd4qiRFm3jVYUZYN1+7ye6rBEcrJy6NAh4+9XXnmFDz74wGlta4LeNCGq0+RHj3FY0PUybF4uJa1cDkOsZehwC7H76UMIwYMPPshHH31EfX29VtzaaqEHd2Dou7iYGDJI60t6bpMlv3LlSiqqBKbAuWAys7/MKmP1+YwfP96uPrVFUFAQ1B7VXlSn9ViEC9gp6IqiuAAXA8cVRXEF7gTmAg8BD1oPewK4DjgT+LPTeyqRnOTogj5t2jQAp1rpzSZEo5tELiZcn0B03ELXl/0HeLWOlrHN52JvCt1du3bx2GOPsXjxYj755BOqqqrw8tfuRm0t+7dleITmSjme33Rjef755yFgJsKkbbMEnq3tqM8nJSXFrj61hYuLCz6m49qLqt09FuEC9lvoi4HVgAUYAexTVbVOVdXNgO5YilBV9aCqqmVAkaIowe20JZFIuoEu6H/961/x9PQkIyPD4VBCnfz8fPDSwvLac7k46kPPzNdEdLBva5dKSKD1D7cQsrPtu3Ho/ampqeHaa68FwNNPc5B35HIBSIjVwiMLKgJoaGigtLSUrKwsXIPnNx1ksoY+1hc4ZKEDRLp+B6lLIePJ3rXQrdb5JcC71k2DANsMOnrAp21bpUBzJ5lEInEIXdBHjBhhhL1lZGQ4pe28vDxw19ocarO6vcnl0jVBf/c7wWl3WMguaFrgk6sv+x/U2Op4dzcTbqYKMLmy54B9lYRso310q77BpNmRnQn6iGitL8IjhoyMDKP0nutgTdBDfW0iiRy00AFCg30h7w1oKO5RC92e2JklwHuqqloURQEoAWzfLv3TsS2hHQAU0QJFUW4EbgRYvnw58+fPb3lIn6K+vp7MzMze7oZTkGPpm9g7ltLSUgoKCvD09MRisRASEsKhQ4f49ddf8fNrIwtVF0k7fBTcwzAhaKzJRu+SBy5AKHgMIyMjo8O+2o7l6feC2LrPg4f/W87DV5YjBBSWhwAwyKemzXZ83EyU1PmyfccxzrHjPTl48CAAnp6e1NTUgHci5bVehAQ0Ql0eHTUR6OkBBIHncLZv365leXTxp8ZtDK4ugmVnpfPIau3m4O1W6fB3ztdXC8f08fGhpqbt8dtLZGRku/vsEfQEYLyiKEvQ3C2/A8YoiuIOKMBO63HZiqLEAXlAkKqqrYJlVVV9EXjR+rJnajA5kczMzA7fvP6EHEvfxN6x6Naxbp3Hx8fz448/Ul1d7ZT3orjCDUwu+HvXEDOsqb2wMIGL2UKjRyR5BaVERES0m8/Edix5pZp99+4Pvvzz937UN0CDRUBDGfGxYW32OTTwKCV5kF1ktmtMDQ3aIqLly5fz8ccfU+p/HXnAeTNdiI7u+PxJNQIQ4Dmciopt2kRswGzAhSkJcOU5YTzydh64hRI9xMvh9zg6WvPtx8XF9diiIrDD5aKq6j2qqp6uquqZwEFVVW8BngbWA49ZfwAeAFYBXwGP9EBfJZKTFt3doq9W1AXi+PHjTmk/s0AT6ZCA5kmtXF1NRIdak1mZwjpNZgVgsQiOaynAKauEVV/YxqBntopB14m2unqO5lja3N+S/Px8QKt/umvXLmImLgfg3OmdJ9CyXVx05Ei6lscmYC4Ap4wHD3dXotzXA5Ay0vHo7pCQEKOvPUmXliupqqpYf79Lk09d37cXmOW8rkkkEp2eFvT8UjcIgMg2tHbYEEjPATxjyM7ObhVD3pK8Yq0Op84z74umkmt1rVeJ6gyP8uC73ZBb0rp0XJvXySuA4U+zK1+huMKdn/YJPNzhNKXzc328TPh7VlJW483etDLqyo9A4FUAnDJe6+uj19Rz14Oncc8z/2dXfzpCF/Jx48Y53FZHyJqiEkk/oKcFvaTKGwJgWHjrbIcxQ+AHAA9N0MeOHdthW7p1nhSnWehpmXDpI1YPaxvL/nXGxmlTc8WV3gghOk1Vm14wCCJ/xwvfwbFKrf15EzSxtofokHr2HIcDxxuwlGRCQBJmk2DaOBNFBXDt0iu5dumVdrXVGVdeeSVBQUGcdtppTmmvPeRKUYmkH6BPAPaEoDc0NFBZrwVux0Z4tNpvlG3zHGpX2bZj1qjDmCFw/5WauJZXWXeWbjTcDy0ZMVRbEt/oGmFXvpq8sqbMjJ9v1X6fO8P+fOXxUVqAXka+O4ezXcDkQswQC14ezi/g7OHhwaJFi/D37yT8xkGkoEsk/YCOLHRH85QXFBSAhzbpFx3aWhJihuiLi2LtCl3ULfToULjhXBNFn5nI/NDE0KxJkPtypz50PCI5evRop9cprdYiRwJ9mnzu50zr9DSDxHgts2NxdSDVDAVgbKxjBTZ6G+lykUj6OOXl5eTm5uLh4WFESAQGBuLj40NFRQWlpaUEBgZ2u30tBl2bJYxsw3huyh8+nOzsXztt73iedoPRJ1MH+ZkY5AfFedpTRnuCHqULuns0R458gzVMuk0sFgsV9YEA3H4JgAlfL4gKtd+6HhHtghbpEgcWbbHTmGF2n94nkYIukfRx0tLSAK1AsdmsWdAmk4no6Gj2799PRkaGQ4Ken58PHppqR7ShtfF6lF07+cNbclwLPmnK1AjU1tZSXl6Oq6tru26HQF9wM9dS7+pHalrH1ykuLgZ37akiNtyFq87supskTo9E9IxFj6IePcz57pYTiXS5SCR9nMOHDwO0qpjjLD+6ZqFr6tZWlEv4YPBwbQT3UDKyO0+cpfvQo21WnOo+8eDg4HYnO00mE4HelQDsS+v4OtpNSOtzVNsu+U4Zbq3IhFcceI8G+r+FLgVdIunj6KsKdQHX0d0vjgr68axicA3AxVRPUBvGs8lkYmiYFp9+vKDtmp+/pAo+3qJNUtr60HV0QW9vQlQnfJAW75iW0XEK3YKCAiNVQVRoh4e2y5DB4GquB7dg8NYid6SgSySSHkUvwhAREWFs25su8AvWYpodFXQ9ra2/Z0W71vPIaE0q8spaK35BiWD+XYJb/zWI734WZBeCydTcfWNroXfE0CF65EnHro+8vHzw0AS9racKezCZTIT5W5Obmd0J8qkhwFe6XCSSk55vv/2Wv/71r1gs9q1y7Aq2gi6E4On3BIlLBa/vvAEwOW6h52rpmNrKgqgzOkZb7FNNBFVVVc323fsfQZE1Xd/jrwuE0MTczbVJHO0V9JHDtNDFgvKOi0WnZ1aA2QN3c6XdcedtMTSsKVFYfGRDB0f2D6SgSyRO4LbbbuP+++/niy++cHrbuqCHh0dw01OCO54TWCxQUuUD3gkOC3p2kSYDoYHtC9oIfaWnZ3yz0MUtuwQvf6bVHgX43hoE42UuYM6cOUbfjx3TKvZ0LuhaKGGtCKGkpKTV/pqaGiwWC4czrbnVPctaHdMVxsQ0rUpNGdk6Br+/IQVdInEQIYSRfnX16tVOb18XxdzqeF76BLw8YKyeEiRglsOCXlCmiVpUGzHoOkaki1fzSJffP6tFh/xxMUwaVWdsL8ndzYYNG3j66acBeP/99wGYNavj7CB6qCMeUa1i0TdtS8VnwgdcctMrHM/VnoQG+9Z0PLhOSBrZlKkyKd6+lAN9GSnoEomDFBcXG26Ijz76qNs1MdvDsHKLtSWbV50Bv1tkFb6A2V1aXCSE4B//+IdWf9NKaY1WKzM2on1BizdC/OINQS8uF/ycCt6e2orQi2c3uWLqyrWFUK+88go7d+7kp59+wt/fn4ULF3bYv6bFRa0Ffdk/a7EEL2bNb9OMZGJhgxxzk4yIapLA/j4hClLQJRKHsbWQS0tL+fbbb53WdlVVFSUlJbi5ubE/Q3NHTBxlYlaytt8UOIuamhoKCwvtam/r1q3cc889nHXWWRw5coSMjAzKazUrNX6od7vnRYWA2VQPHhEczdD84Ye1+wxxEeDtaeLcqTV4Wb0WFQX7ACgsLOTyyy8H4OKLL8bLq+OK90bEikc0x441va9fbBXsytEmgS2eY/jt6CCjX44wvGmemdFS0CUSSUuXx3vvvee0tnVrOCIigp8PaNsmjtSsyeAAEG4R4Dnc7spFx48fh6AFlNeHsGTJEi666CIsrprlP3JY+1XtXVxMBHlpVYH2p2uuFUPQrda7n7dg6Vna35bSrca5e/bsAbQEVZ0R6AvuLnXg4svBI1r8Y2W14JZ/Wieb67UbV4P/OQDEtJFMrCvEhsOQIK3sXvhgh5rqE0hBl0gcRBfTmTNnAvDxxx87ze2iC3poRDwHjmuTj2NjtZC7WXo1X6vbxR7UfQ0wdi1M2MGWg0PZ9vMhzN5afpi2lv3bEjFIc6mkZWmykWYtumMs0AGe+b2J9+7eAeVbGTVqlFGpZ9iwYZ36z0Eb12DfagAOHNWu98rncDTXBBW/4pF5t3agWRPy+KEdR8N0hoe7iZ//a2LTSlOn2R37A1LQJRIH0cV03rx5JCUlUVpayvfff++UtnX/uVewlnUqcbgmQgCzkq0C5G//xOi+Y9ZwFBcfGP0WTMnA4hqKh3vby/5tiRmi+auzCjW/SlqW5rePi2wSQjdXE6Ja858nJCRw1VVajvGrr77aSFvQGZHBWihheo4Wk67ut84PZL/EFWcGgmi6WSbEOZ69MCLYROig/i/mIAVdInEYXUyjo6M59dRTAdixY4dT2tYFXXinADBxVNO+2VY/OgEz7Rb04wWaGA8LysfFbMHk4saCafD1U6ZO08YmDNfOzS3TfO66y8XWDw1NIYpDhw7lH//4B2+88Qb333+/Xf0DSB6hCXlWqXaH2X3EuqNqF6fPm8Yw/0PGsXqYo0RDCrpE4iC6yyU6OpqEhAQA9u7d65S2dUEvZyQAE0Y2iW5yHHi61YFXPAfS7YvHzivXLNoLpmRy4G0X0t8z8+nfzcxO6dxCnZKkOZlLGyKxWCyk2UyKbtmyhQ8//BBoLug+Pj4sWbIEDw/7Y7xnpmi+/DJLLLW1DexNt1rolXuYM2cOF87VnjJMlop+v7LT2chsixKJg9ha6N7emsW4b98+p7StC3pelTbzOHFk0z5XVxNxQ6rZc9ydg5n2xVCX1IaAC4yL82R4RNfEcPZ4L0AgfCZy8HA2x/PCMZkE/15xH0+v+AcA06dPbybo3WHSGDdAgE8K23bmUVM3BGqPMyp+CEOGDOHua0N5/otKRkaUYTL1bMGI/oYUdInEAYQQhoUeFRVFaKgWd7dv3z4sFovdfuP2yMrKArM3OaUBuLpoPnRbxgyDPcchq7hzYRNCUIP1xjA2oMt9CfI34SUOUW2OY9WnZVgs4XiSZ4g5aCkQHBX0UdFgErUIz1i+3GJ1r1itc4Ahg83kfOKLp7tvt9ofyEiXi0TiAAUFBdTU1BAQEICfnx+DBw8mLCyMyspKp5SHy8rKAt8ULMLE2FjwbOHnnjDGWnWnNqzTPDL5xQLhEgANpYyO615Gqyi/dADWbNFuIDUle/Dx8eHuu7Xok3Xr1jks6K6uJgLdtDbWbrWu5KzazbRpTeWI/H1MuLtJd0tLpKBLJA5g6z/XGTNmDOAct0tWVhZ4awtqUuJb70+2Lle3eI7U8pp3gLpXiyN3qU/H07N7eUsSh5YAkJpjjVWsOcKECRO46667ANiwYQOFhYW4u7sbTyvdISpQW7y0N9PaRuXuDisYSTSkoEskDmDrP9dx1sRoeXk55eXluPhrgj6mjWo6xnJ17zGdPhHs2K8VjfAxZ3W7TzOTWmyoTiMxMZGwsDBGjRpFTY2WWyU6Otohd9OoKC0WXaCN2bPxEKNHj+52eycLUtAlEgfQRVQvNgHOs9D1RUXuAYlau20sTR82BMzUgns4qYeaF3BubBQcPC74Zrugokqw94hWpGKQZ1G3+zQpKRxqjjRtqDlCYqLWv+nTpxubWxbj6CoTR9kUaxYWUkZ74uoqp/w6Qwq6ROIAPWmh6xEuFk8ttKWtXCNms4kgT83V8vP+amP7Vz8JAs8WjLxCcPpdgsv/LEjL0qzdIYEV3e5TXFwclG5q2lCTRlKSZrbPmDHD2Nxd/7nOjBQ/ENZc5dWHmKK0fDSQtIUUdInEAdryodsKur1ZENtCi3DxoZYhuLk2X2JvS+QgzZWyL73pWh/+IKiohtBBWrrdT7bAr0e1BoaF1ne7T0OGDMGtelvThprDjBunuYSmTZtmuFkcFfSR8dFQbU1eU7VH+s/tRAq6ROIAbblcwsLCCAwMpKSkhNzcXLvb+vTTT7nuuutIT09HCME333wDXpp1PiJKi/5oC73STnpeUyZDfdHPq/ea+Mt12nm1DdpE6Mih3f+3N5lMDAvUIlCoL2BYpD/+/lrES0BAABMmTAAcF/SQkBDM1Tu1F1VyQtRepKBLJA7QlsvFZDJ1y+3y6KOP8sorr5CUlMTZZ5/NqlWrMPt1Xrw4KV7zLedVBBnb9MRZtaX7eP7BsQwJKNE2NJQRP9SxxTgJsS5w8GY4cK3hbtG57777mDFjBueee65D1zCbzYRbVkPx1/hUrGbkyJGdnySRgi6RdJfGxsY2XS7Q5HbpysRoWloaoEW3fPnll3h7e3Pp0ocAGN2BwTslUVskVNagLRqqqxccywOTSfDwvVeTdmgfdXuXaQdX/EJ4+BC7+9QWw4cPh5yXoOgzY0JUZ9GiRWzatIkhQxy7BsDI8BLYfRaTEkMcXqB1siDfJYmkm2RlZVFfX09YWJix5F9HD7Hbv3+/XW2VlJRQXFyMt7c3L7/8MmeddRbr1q2jzjUOaDtkUWf6+FAQDTS6RlNR1cjRHLBYIMCznF2/qQAUHX4XdkyF1CUOi21cXJzxd0tBdya620a6W+yn0zggRVHCgDVAPdAIXAHEAf8ALMAtqqruUhRlCPA64AM8r6rqmz3Wa4mkD6DXEY2JiWm1b8SIEQAcPHjQrraOHNFCAYcPH85pC65hY+5SEhJN7FupTXR25HLx8/XApf4Aje7xbPolD9zCACjL1So2n3feeaxduxbKtwOaj98Rhg9vyj/Q0uXiTK644gq2b9/O1Vdf3WPXGGjYY6EXADNVVZ2DJtjXAY8DC4DLgb9bj7sHTeTnALcqiuJY5nmJpI/jTEE/fPgwoInlNX8VrPoC/rBScNBaiGhUJ3OMAS6au+bbbeWG/9xSeZDLLruMV199FU9P7d/RbDYTHNy9Zf86uoXu7u5ujLMnmD9/Pnv27DGiaCSd06mgq6raqKqqniTCD0gDGlVVLVZV9Rigz8RMBtapqtoAqID8FCS9zqFDh4iMjGTFihVOb1u3qmNjY1vtGz58OGazmfT0dOrq6jpty1bQn/6dCTdXePETqG+AoWHg49Vx3pK4YC0Wfcsui1F4gpo0LrzwQoKCgrjssssACA0NxcXFpb1m7GLEiBFcf/31PPzww7i5OVYCTuJc7PKhK4qSoijKNmA5sAWwTb7coCiKO+BmI/ylNAm9RNJrfP7552RlZfHHP/6R3bt3O7Xtjix0Dw8Phg4disViMYS/I2wFPTHOxP1LmvZ1NCGqM3mMtghnX2agYaFTk2b48pctW4bJZDJWsTqC2WzmpZde6lLRCsmJwa61tKqq7gCmKIpyCfAAYBv35Kqqap2iKPWKopitoh4AtFpfrCjKjcCNAMuXL2f+/PmO9r9Hqa+vJzMzs/MD+wEn61h+/VXzIzc0NHD11Vfz0UcfOS1iIjU1FQBfX982+zN06FDS09PZunWrUVuzJfpY9GiYgIAAMjMzuXoevPNdMKnH3YgeXElmZscFLJLigI2VlNSG8OPuBsAVU+0RvL29yczMJCIigrVr1zJkyJAe+x6crN+xE01kZGS7++yZFHVXVVV/ZiwFKgBXRVEC0VwwunBvB+YqirIBmAj8sWVbqqq+CLxofdn9JXQniMzMzA7fvP7EyToWPR+KyWTil19+4ZNPPmHZsmVO6YfetqIobfZn3LhxbNiwgaKionb7q49FF49JkyYZx655XPDY64K7l/gSGenXYV/mzpkJ/9oGgaeSX6r9W8cOaWw2gdnTn//J+h3rS9hjqqQoirJBUZTvgduBJ4E/AZ8D7wD3WY/7u/XvDcALqqpWt9GWRHJC0SclH330UQD+9a9/OaXdhoYGI+/3sGFth6DYOzHa2NjYpvtmTIyJtx4yM2po53m/hw8fjrnyp6YN9fkkjHIsQZak/9Gpha6q6k/A7Babs4HpLY7LBvq2D0VyUlFXV0d6ejpms5nbbruNRx55hAMHDlBTU2NEfXSXzMxMGhsbCQ8Pb7ctewU9IyODhoYGIiIi8PLy6vDY9nB1dSXaP4Oj+obqNJlu9iRELiySDFiOHDmCxWJh6NCh+Pv7Ex8fj8Vi4cCBAw633dGEqI6+XL09QW9sbKS2trbZhKgjpMTXNr2oOSwF/SRECrpkwKILqW4pjx2r5UXZs2ePw213FLKoExMTg4uLC8eOHTMKP+hkZGSQkJDAzJkzWbduHeAEQR8bDVXWVAM10kI/GZGCLhmwtBR0Pb+KMwTdHgvdzc2N2NhYhBCGFQ6Ql5fHaaedxoEDB8jOzuaxxx4DHBf0hIQEKP5ae1GuSkE/CZGCLhmw9KSFbo+g215b70tjYyNnn302qampJCYmNjvfUUEfM2YMpD8Av81hsHkrgwcPdqg9Sf9DCrpkwKL7ynvL5WJ7bb0ve/fu5eeffyY0NJRvvvmGV155BT8/LSRx1KhRDvVp5MiRWjm6sk0kOGEBkaT/IQVd0uvs27ePZ555hsbGRqe229JCHzVqFC4uLqSlpbXyaXeV7lrouutl4sSJhIWFMXLkSNavX88LL7zApEmTHOqTh4eHkWdFultOTmTVVUmvUlhYyLx588jOzmb48OEOF0bQqamp4fjx47i4uBhWtIeHB/Hx8aSmppKamkpycnKX2qyoqOCzzz7jp59+IiMjA5PJ1GkxZD3SRV9V2lZEy4QJE4xKP46SkJDAwYMHHbb2Jf0TKeiSXkMIwQ033GCsuNy5c6fTBD0tLQ0hBLGxsc0SSCUkJJCamsqePXvsFvTS0lKWL1/OBx98QHV103q5lJQUPDw8OjxXt5R1QdeLWDjqL2+PO+64g/r6epYsWdL5wZIBhxR0Sa/x8ssvs2bNGuN1V8q1dUZLd4vO2LFjWbNmTZf86B9++CFvvqml958xYwZnnnkmycnJzJkzp9Nzo6Ki8PLyIjc3l5KSEsNCty0S4UzmzJljV78kAxPpQ5f0CkIIHnpIK6+m51bpSrm2ztAt4rYEHbo2Mar366GHHmLTpk386U9/4txzzzWKI3eE2Wxu5nZx1iIiiaQtpKBLeoU9e/aQnZ1NeHi4EYe9f/9+LBZLJ2fax44dOwBauVV0Qe/K04AeoaLHsXcV3e2yb98+u6NjJJLuIAVd0it89913AJx66qkMGjSI8PBwqqurOXr0aCdn2oeeNjclJaXZ9pEjRxqRLlVVVXa1pVv73Z1o1M9bt24ddXV1hIWFtZtOVyJxBCnokl5BF/R58+YBGIUXnOFHr6ys5MCBA7i6uhoWuY6HhwejR4/GYrHY5XZpaGgwJjK7W25NF/Qvv/wSkO4WSc8hBV1ywmloaOCHH34AmgRdd2c4w4++a9cuhBAkJCS0GYWiu2F+++23TttKT0+nvr6eqKgofHx8utUfXdDz8/MBKeiSnkMKuuSEo6oqZWVlxMfHM3SoVl/NmRa67m4ZP358m/u7Iui6/9yRuO6W5/ZUhItEIgVdcsJp6W4B51ro+oRoS/+5TlcE3VH/OWgl6myr30gLXdJTSEGXdEhDQ4PT22xL0G0tdCEcq07Y3oSoji7oO3fubPdatbVabnFd0PXQw+5ie0OQgi7pKaSgS9rl4MGDhIaGsnz5cqe1WVBQwObNmzGZTJxyyinG9tDQUIKCgigrKyMrK6vb7Tc0NLBr1y6gfUEfMmQIoaGhlJaWthlVs3r1ary8vFi5cqVTXC7QPLeKdLlIegop6JJ2+etf/0pxcTEff/yx09pctWoVdXV1nHXWWQQHBxvbTSaTYaU74nZJTU2lpqaGmJgYAgMD2z0uKSkJaO12EULwyCOPIITg7rvvNqx9RwVdP9/T05MhQ4Y41JZE0h5S0CVtkpGRYSx3z8jIoKSkpEvnHz9+nNNPP52LLrqIP//5z0Y5uBdffBGAm2++udU53SlAsX//ftavX2+81v3n7U2I6rTnR//222+Nidnq6mpKSkrw8PAwJm+7iy7osbGxmM3y307SM8hvlqRNnn76aerr643XXc0h/u677/LNN9/wwQcf8PDDDzNlyhT+85//cPDgQaKiojjrrLNanaO7SH7++We7r3PhhRdyyimnsHbtWgCjnFt77had9gT96aefBuD3v/+9YeHHx8fj4uJid5/aYs6cOVx44YXce++9DrUjkXSIEKK3fvo8GRkZvd0Fp9GVsRQVFQlfX18BiJSUFAGIF154oUvXW7ZsmQDE4sWLxZw5cwRg/Dz66KNtnrN9+3YBiFGjRtk1loaGBuHq6ioAERwcLFauXCkA4eLiIn755ZcO2/jtt98EIOLi4oxtqampAhCenp4iPz9fvPzyywIQ11xzTZfG3hVO1u9YX6ePj6VdXZUWuqQV//73v6moqOC0007jiiuuAGD37t1dakPPWXLppZfy2WefMWXKFABcXFy47rrr2jwnKSkJDw8PUlNT7XLx5OXlGVE4BQUF3HrrrQA8+eSTnbpcRo8ejZubG2lpaZSXlwPwwgsvAHDllVcSHBzMtddey/bt21mxYkXnA5ZI+gBS0CXNqK6u5plnngHgnnvuYdy4cUD3BT02NhYfHx8+++wzFixYwEMPPdQsJtsWd3d3Q4hVVe30GpmZmQAMGzbMqJ956aWXcvvtt3d6rru7uzExql9L98XrNzEARVEICAjotD2JpC8gBV3SjFdffZX8/HwmTpzIvHnzDEHXl9PbgxCiVYm2wYMH8+mnnxopc9tj8uTJAPz000+dXicjIwOAxMREvvnmGx5//HFefvllTCaTXf2cOnUqANu2baO6upqdO3diNptRFMWu8yWSvoYUdIlBQ0MDTz31FKBZ5yaTicjISAICAigsLCQvL8+udnJycqipqSEoKMiunOG2dEfQo6KiGD9+PPfff3+X8q3ogr5161Z+/fVXGhsbGTduXLdztkgkvY0UdInBmjVrOHLkCPHx8SxatAjQ4sNtrXR7cCTnty7o27Zt6/SJwFbQu4OtoG/btq3Z9SWS/ogUdInB999/D8D111/fLEyvq3503d3SHUGPj48nMDCQnJwcQ7Dbw1FBj4uLY/DgweTm5rJ69WpACrqkfyMFXWKgr9BsWeWnq4LuiIVuMpnsdrs4Kugmk8mw0n/88UdACrqkfyMFXWKgr5DUl+DrnEhBB4wQx54WdGhyuwB4e3u3KoghkfQnpKBLAIxJTx8fH6Kjo5vt0wV9586d1NTUdNqWo4Kuhy52lN5WCGEIenthkPZgK+gTJ07E1dW1221JJL1Np99eRVEmA88A9UAmcBWwELgDqAauVlU1Q1GU0cCL1jYfVFX1u57qtMT56O6WMWPGtMo1EhwczPjx4/n1119Zt24dZ599dodtOSro7S3Lr6ysZNWqVbi6unLhhRdSW1tLYGCgQ/U5J02ahMlkQggh3S2Sfo89Fvpx4FRVVWcD6cD5wJ3AXOAh4EHrcU8A1wFnAn92dkclPUt77hadc889F4BPPvmkw3YaGho4duwYoC346Q4xMTH4+fmRk5NjhEq+9tprxMfHs3z5cm655RYjKsURdwtAQECAkRRs0qRJDrUlkfQ2nQq6qqrZqqpWW1/WAaOAfaqq1qmquhlIsu6LUFX1oKqqZUCRoijBbbUncYxnnnmG888/n/PPP58777zTaQUodAtdF7eW2Ap6R+GEGRkZNDY2EhERgaenZ7f6Yjabm6W33blzJ0uXLiUnJwcPDw+EEEa8vKOCDvDEE0+wdOlSzjvvPIfbkkh6E7sdhoqiDANOB+4FQmx26fFttjeHUiAIKGjRxo3AjQDLly9n/vz53ejyiaO+vt5YXt4XKCgoaLWsPSEhoc3MhS3pbCx63u/Q0NA2jwsLCyMsLIzMzEy++uorEhMTjX0NDQ1s2bKFzZs3G+dGRkY69N7Fx8ezefNmNmzYYNxAzj//fM466yxuvvlmY5n+oEGDHP6MJk6cyMSJEykqKnKone7Q175jjiDHcmLoaM7ILkFXFMUfeANYiibgtsv/Gq2/LTbbAoBW/x2qqr6I5mcHLfNenyYzM9OhCTdns3HjRkALrZs0aRIrV65k7dq1XH/99Z2eazuWffv2UVFR0czFcPjwYQBmzZrV7pjPP/98XnzxRbZt28aZZ54JwIcffsiyZcvIzc1tdmxycrJD79306dN57bXXSE9PJz8/H9DytFxwwQX88Y9/pKysDNBKw/Wlz6ir9LXvmCPIsfQ+nbpcFEVxBd4BHlVVNRU4CIxRFMVdUZTpwE7rodmKosQpiuIHBKmqWtBOk5JuotfiXLRoEQ899BCurq58/vnn5OTk2N1GVVUVs2bNYvr06Rw8eBCA8vJyjh8/jru7e4cTmbpLwtaP/vjjj5Obm0t8fDz33nsvTz75JM888wyPPfZYd4ZooLtctm/fzoYNGwA45ZRT8PT0bPZE4gyXi0QyULDHQl8MTAEeVBTlQeB54GlgPVADXG097gFgFZoF/7CT+ymheXHl0NBQzj77bNauXcubb77JH/7wB7vaeOeddygsLAS0NLMvvvgi+/fvB7SqOh2F7Z166ql4eXnx888/k5mZiY+PD7/++ivu7u789ttveHt7OzjCJhITEzGZTEaR5rFjxxql2xYtWsS7774LSEGXSJrRUbL0Hv7p8/SlJPeHDx8WgAgMDBQNDQ1CCCHWrFkjAJGQkCAsFkuH5+tjURTFKDTh7u4uMjMzxapVqwQgLrnkkk77cd555xkFL9auXSsAMWvWLMcH2AYjRoww+vr73//e2H706FERHR0tAHHw4MEeufaJoi99xxxFjuWEIQtc9Hd06/yUU04x8qwsWLCAkJAQ9u7da1f+cFVVUVWVQYMGce6551JXV8cTTzxhtN1ehIsttm4XfWJyzpw53RlSp9imIJg3b57xt4uLC5999hlr1qwhPj6+R64tkfRHpKD3E2zdLTpubm5cfPHFAHz55ZedtqFX5Fm6dCmPPvooACtXruSNN94AOq/DCdpNBLRiyl988QUAc+fOtW8QXUQXdLPZ3OqmkZiYyMKFC3vkuhJJf0UKeh/i6NGjLF++nOzs7GbbGxoajOLHtoIOml8bmqrttMfhw4d58803AbjpppsYP348F154IaDlTnnhhRc455xzOu3jkCFDmDx5MrW1tezbtw83NzemTZtm1/i6il5oYurUqbJqkERiBzJxRR/iqaeeYuXKlVRXV/Pyyy8DYLFYuOaaa8jLyyM2NpZRo0Y1O2f27NkAbNmyhdraWjw8PFq1K4Tgvvvuo7a2lquuuspo4+2336a0tJSQkJBW53TEeeedZyTOmjJlilMnQ20544wzeP7553vMpSORDDSkhd6H0Bf3vPfee1RWViKE4NZbb+XNN9/Ex8eHt99+u1V5tZCQEMaNG0dNTU272Qlff/11Nm/ezODBg/nnP/9pbHd3d++ymEPTqlHoOXcLaOltb7755nbTEUgkkuZIC91JHDt2jL/+9a9UV1fj6urKrbfe2mnleVssFgs7d2oh/RUVFXzwwQeA5vf28PDgk08+aZYZ0Ja5c+eye/du1q9fz6xZs5rt27FjB3feeScA//d//0dwsOMZGRITE4mJiSE9PZ1TTjnF4fYkEomT6CgEpod/+jxdCV265ZZbjBA7QCQnJ3caSmiLHpao/0yaNEmEhIQIQLzyyisdnvv+++8LQJx66qnNtn/11VfC19dXAOK0007rUn86Y/PmzWLFihVObdNe+nhIWZeQY+mb9PGxtKurUtA7oCsfqh4z/dhjj4khQ4YIQHz++ed2n6/HlE+dOlV4eXkZwj5r1qxORTMvL08AwtPTU9TU1AghhNi9e7dwdXUVgLj88stFWlqa3X3p6/Txf7YuIcfSN+njY5Fx6D3JsWPHOHjwIP7+/txzzz2Gi+OJJ56wuw099/esWbOM6BNXV1eef/75Vn7zlrTlR1+9ejUNDQ1ccsklvPHGG21OlkokkoGFFHQnoMeIz5kzB1dXV26++WYCAwPZtGkTmzZtsqsNXdCTk5O544478PPz489//rPdJdF0X/Znn30GwNdffw3AkiVLWhWskEgkAxP5n+4EWi768fPz43e/+x2g5UuxB13Qk5KSmDBhAqWlpdx3331290G36t955x2KiorYtm0brq6uPRqFIpFI+hZS0B1ECNHmKs6bb74ZgHXr1tHY2NjmuTplZWUcPnwYd3d3Ro8eDdCpm6Uls2bNIjo6mqNHj/KXv/wFi8XCjBkz8PPz61I7Eomk/yIF3UH27dtHTk4OYWFhzdwjERERxMTEUFFRwZ49ezpsY9euXYCWS8XNza1b/TCbzSxevBiAZ599FoDTTz+9W21JJJL+yUkh6NnZ2WzevJnNmzdz/Phxp7atW+ennnpqK6taXxK/devWDtv4+OOPgebJqLrDFVdcAWgx7aCttJRIJCcPA17Qi4uLGTt2LDNnzmTmzJmMHj2ao0ePOq19PYdKyxwrgLEQqD1Bt1gs3HHHHYaffdGiRQ71JSkpiXHjxgEwePDgLi1skkgk/Z8BL+ivvfYaxcXFDBkyhKFDh1JVVdVs+bsjCCGMsnB6ThVbdEH/8ccfW+2rqanh0ksv5emnn8bNzY0333zTKUWKlyxZAsCZZ54po1skkpONjoLUe/inx2lsbDQW/Hz44Ydi586dxgKc3NzcTs+3XVzwv//9T3z00UfN9u/fv18AIiwsrM3FP7W1tcLDw0MAoqioyNheUFAgZsyYIQDh7+8vvvvuOwdG2fqa//rXv0RWVla7Y+nvyLH0TeRYThgn58KidevWcfDgQSIjIzn33HNJTEzknHPOoaamhmeeecbudtLS0li8eDELFy7klVdeMbbrMeYzZ85sMyrF3d2diRMnAjRLnHXVVVexefNmoqKi2Lx5s5EC1xm4u7uzfPlywsPDndamRCLpHwxoQf/3v/8NaPm/9VqZ999/P6AVdigtLbWrHb1+JcD1119vvNbdLS0TYtnS0u1SV1dnTKRu2rTJ8HlLJBKJowwIQa+pqWm1LSMjg48//hhXV1euv/56Y/u0adOYNWsWpaWlvP/++3a1rwv4WWedhRCCK6+8ktTU1C4Juj4xunPnTmpraxk1ahTDhg2zb4ASiURiB/1e0J977jm8vLxYuHBhs3jvF198EYvFwqJFi1q5H6688koAI0VtR+zdu5edO3cSGBjIRx99xNVXX019fT033HADhw8fxtfXl6SkpHbP10MXt2zZQn19veF6mTx5cpfHKpFIJB3RrwXdYrEYESsff/wxiYmJ/Oc//6Guro6XXnoJgGXLlrU67/zzz8dsNvPtt99SUlLS4TV063zRokW4u7vzxBNP4O3tbVjn06dPN9w5bREVFUVCQgLl5eVs3LhRCrpEIukx+rWgb9q0ifT0dKKioli2bBlCCG677TaeeOIJcnJySEhIaDOcMDQ0lFmzZlFfX28ks2oLIQTvvPMOAJdddhmgrQC96667jGM6crfo6BV+Pv30UynoEomkx+jXgv76668DWtTIypUrue6666itrTUq2i9btqzdnCh6MquO3C5fffUVBw4cIDw8vFllnrvvvpvQ0FAAu+pd6sWXV69ezf79+3F3d3d4VahEIpG0oqOYxh7+cYiqqirh5+cnALFv3z4hhBClpaUiJiZGAMLHx0eUlpa2e35GRoYAhJeXl6ioqGi1v7GxUYwaNUoA4l//+ler/b/88ot46aWX7KrYU19fL4KCgoyiFZMnT+7CSJ1DH4+r7RJyLH0TOZYTxsCLQ3/33XcpLy9n8uTJRoZCf39/Xn/9dXx9fbnjjjvw9/dv9/zIyEimTp1KdXW14XbJy8vj0ksv5e9//zurVq0iNTWVoUOHcsMNN7Q6f/z48Vx//fV2ZUV0dXXl7LPPNl5Ld4tEIukJ+mWR6E2bNnHrrbcCcN111zXbN2vWLEpKSnBxcem0ncsuu4ytW7fy2muvcckll/DPf/6T9957j/fee8845qGHHnJKtZ9zzjmHN998E5CCLpFIeoZ+Z6H/8ssvLFiwgKqqKpYuXdosxlzHHjEHuPzyy3F1deXLL7/k6NGjrFq1CsCw+IcPH85VV13llH6fccYZRjSMFHSJRNIT9CsLXa+RWVZWxsUXX8x///tfhxJQhYSEcO6557JmzRquuOIK8vLySEhIYNeuXWzZsgVvb+9u5ydvSWBgIM899xw5OTmMHDnSKW1KJBKJLf1K0F1dXXnvvfdYsWIFL7/8st2WeEdcc801rFmzhs2bNwNwww03YDabmTlzJpmZmQ63b8tNN93k1PYkEonElk4FXVGUAOAbIAGYqqrqbkVRLgbuAKqBq1VVzVAUZTTworXNB1VV/a4nOjxhwgTeeOMNp7V31llnERYWRm5uLu7u7sYqUolEIulv2OOvqAIWAO8DKIriCtwJzAUeAh60HvcEcB1wJvBnZ3e0p3B1dTX85IsWLWLw4MG93COJRCLpHp1a6Kqq1gP5iqLom0YA+1RVrQM2K4rylHV7hKqqBwEURSlSFCVYVdWCnui0s3nwwQcJCgri2muv7e2uSCQSSbfpjg99EFBm81p3ZNta+6VAENBM0BVFuRG4EWD58uXMnz+/G5fvGa688krq6+ub+c1bvu7PyLH0TeRY+iZ9eSyRkZHt7uuOoJcAtit2Gq2/LTbbAoCilieqqvoimp8dtFWTfZrMzMwO37z+hBxL30SOpW/SX8fSHUE/CIxRFMUdUICd1u3ZiqLEAXlAUH9xt0gkEslAwS5BVxTlcyAFGAX8B3gaWA/UAFdbD3sAWIXmgnnYqb2USCQSSafYJeiqqp7dxuZ3WxyzF+g8l6xEIpFIeoR+t/RfIpFIJG0jBV0ikUgGCFLQJRKJZIBgEqLPRw9KJBKJxA6khS6RSCQDBCnoEolEMkCQgi6RSCQDBCnoEolEMkCQgi6RSCQDBCnoEolEMkCQgi6RSCQDBCnogKIoPtbfpt7ui6MoiuJt/T0QxjLM+nsgjGXKQBgHgKIoQ3u7D85CUZRBvd0HZ3JSLyxSFOV04AYgC/i7qqpZvdylbqMoykJgCXAceLKfj8Ub+AcQDVxkrZrVL1EUJRl4BtgKPGSt9NUvURTlTGA5UAv8D/hSVdWK3u1V91AUZQ5wF1oRnpXAHlVVa3q3V45zslvolwP/BXYDNyuK0i+zRSqKcg5wDfB3tAIk91i390uLUFXVKqAO8EMbV78dC1oG0idUVb0XGN7bnekuiqK4ADejFah5FK0Wgk8//lwuBV5FuzGdDVzYu91xDt0pcNFvsVp+lwKbgFzgGPAT8L11+0RFUdL6g3VrHcti4AvgF+B6VVXzFUU5ALyjKEqoqqp5vdpJO7H5XDaoqppmFYlDwIfA7xVF+VJV1WO92kk7sf2OWWvsVgFnKopyL1oRmO3AJ6qqpvVmP+3BOpbLgB+ACmAX2tPsUbT6CF6AG9rNt0+jKIoXWlH7L1VV/QE4AmSj/f/XAAsURRmtqur+Xuymw5w0FrqiKIvRinJ4A4dVVS0DhgDTrI/BvwKeaOXz+jQ2Y/EE8lRVzbKKuRnNqj3Sj8RcH4sX2g0WVVUFkID2WXwI3KQoSnRv9dFeWowl3brZGwgH/gAsQ3NXLOiF7nWJlmNRVTUX+A7NrfcrmqviBuDW3uqjvVi/O/9DM+J+tG42AbFopTD3on334nulg07kpBB0RVH8gUuAv6B9KU9TFCUYeB64XlEUH1VVdwPDgJhe66gdtDGWuYqijAZQVdWCJiAN1mOH9uVH4hZjWQfMURRlrHX3D2hPHpVoIvJ76zl98jvbxlhOURQlAvgAzYqNVlW1FE3o9c+nT342bXzH5imKMkJV1fXAt8BKVVWXAJ8C7oqimPvqWKy4AmvRnsR/pyjKdOArYDowVlXVQjTjyAv67udiDwN2UtQ6E/8H4DNgMzAbuANwBz4BrgLmADeifeAb0fy1H6iq+mlv9Lk9OhnLWrSxnK+qarqiKNehfVFLgcHArX1p4srOsZwO3ATMRatRmwVUqqr6YC90uV3s/I7NQxtHEpoleDZwSFXVR3uhy+1i5+dyFtrTRTiaIC4HilVV/X1v9Lk9bMayFm1+LMr6OhPNSFgK/A1IRCt4vx84B83l999e6LLT6JPWjqMoihIF/BPN1zcEeF1V1c+BJ4FTVFV9Cngd+Ieqqn9H+wLfBOzsg2Le2Vj+iTa583frKUPRBP2gqqpX9zExt2csrwOPAE8Br6iqepmqqnf2QTG35zv2Glr01Gq0R/4pwJY+KOZd+VxeQSsU/wjwUx8Uc9uxRAL/VlVVRTNu6lRVfcu6/3TgDTSX3hxge38Xcxhggq4oymybx6VAVVX/qarqa4Cfoij3qar6NZrvDLRC196KovhZHyWvVlV1xYnvddt0cSzPYX2MR3sknqaq6vMnuMvt0sWxPINmNaGq6pvW8/vM97QbY3FXFMXfWnP3rn7+ufgAnqqq/g/tifBfvdDtNulgLAGKolwPPA5MBlBV9UtgtPW43cDv+9JYHKHP/KM4gqIovoqifIPm7zsbbcJmk6IoN1kP2QicpyhKoKqqjYqizAY+QoukqABQVbWhdcsnHgfGchhAVdWNqqqWnPiet8aRz8UauggYcwO9igNjSbNOwKOqamMvdL0VDn4ulQB9JZ7ejrFsAK61/t6kKMrD1uOzrMf2mc/FGQwYH7qiKBPRFqJMRlsoEGj9nY4m2pVo1use4CW0x/kPeqOvnSHHIsfS05xkY6lFuyH9CIShTYR+3Qtd7XEGjKDrKIryLJpv701FUcLRHt8PAbcDb6mqmtOb/esKcix9EzmWvkknY3mjv4TyOsKAcLlAs1Cjt9BCxkJVVc1Gi2VejRaSWN6X/LHtIcfSN5Fj6ZvYOZaK/hyOaC8DzkIHUBTld0AcUAykAQdUVf2pd3vVPeRY+iZyLH2TgTSW7tDn775dwcaaSEKLmT2squqb/fEDlWPpm8ix9E0G0lgcYaBa6BcCn6qqWtvbfXEUOZa+iRxL32QgjaU7DEhBl0gkkpORAeVykUgkkpMZKegSiUQyQJCCLpFIJAMEKegSiUQyQJCCLpFIJAOEk6oEneTkRNFKqf0RrfLOKkVRlqKlHL7bmuZWIhkQSAtdcjLgDTyMVtgAtGpIi9GKUEgkAwZpoUtOBlTr7zmKogi04gfDgLuBVEVR0oFgtIIUS9CKiD+HVuHeFbhGVdUvFUVxB55Auxn4AN8Ay1RVzT+BY5FI2kVa6JKTgfutv/ehiXFbbhYf6+8f0fJqP49WsScUrVwZwH3AXWiW/dNoS8xf6JEeSyTdQAq65GRAz32dp6rqO1iLmrTAglZDU8/5/Yaqqs+iFUKItW47x/r7JjQXjg8wv0d6LJF0A+lykZwM2JPfolpV1TpFUeqtr0utvxsBF5vjGtCEXa9yI40iSZ9BfhklJwNlaBZ4vKIoV6D5z7vDp2hG0NVoxbjPRLPWJZI+gRR0yYBHVdV6NH94IPAmTdZ1V/mrtZ1ZaJOmZ6FFzEgkfQKZbVEikUgGCNJCl0gkkgGCFHSJRCIZIEhBl0gkkgGCFHSJRCIZIEhBl0gkkgGCFHSJRCIZIEhBl0gkkgGCFHSJRCIZIPw/Airl4bVyZl4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACf20lEQVR4nOydd3xTVf/HP0m60qZ77xZKWQVk770UlSUoCKKo8CgOXKg/ByCoj4oLfVAUEFRQRBAFBFFEVKaAIMgqpaUtpXTvpk3bnN8ft/fk3jZtk7RJOr7v14sX5957cu+5J2nuJ991FIwxBoIgCIIgCDuhtPcACIIgCIJo25AYIQiCIAjCrpAYIQiCIAjCrpAYIQiCIAjCrpAYIQiCIAjCrpAYIQiCIAjCrpAYIQiCIAjCrpAYIQiCIAjCrpAYaYbo9XokJSVBr9fbeygtApov86D5Mh2aK/Og+TIPmi8DJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEYIgiAIgrArJEaaGSNGjMCTTz5p72EQBEEQhM0gMdKCOXDgABQKBfLz8+09FIIgCMJOpKenY/369cjOzrb3UCyGxAhBEARBtGAmTZqE+++/H/fcc4+9h2IxJEbsSElJCebMmQONRoPg4GC88847suMbN25Enz594O7ujqCgINx9993IzMwEAFy9ehUjR44EAHh7e0OhUOC+++4DAPz0008YMmQIvLy84Ovri9tuuw1Xrlyx6b0RBEEQ1ocxhtOnTwMA9u7di4yMDPsOyEIc7D0Aa9CnTx/cuHHD5tcNCgrCiRMnTO6/aNEi/Pbbb9i+fTuCgoLwwgsv4OTJk+jRowcAQKfTYfny5ejYsSMyMzPx5JNP4r777sPu3bsRHh6Obdu24Y477sClS5fg4eEBtVoNQBA5Tz31FLp164aSkhIsXrwYU6ZMwenTp6FUkv4kCIJoLZSXl6OiogKAIEx27tyJBx980M6jMp9WKUZu3LiBtLQ0ew+jXoqLi7Fu3Tp88cUXGDt2LADg888/R1hYGO9z//33c/HQrl07fPDBB+jXrx+Ki4uh0Wjg4+MDAAgICICXlxd/3R133CG71rp16xAQEIDz588jLi7OyndGEARB2IrCwkLZ9vfff09ipLkQFBTU7K975coV6HQ6DBw4kO/z8fFBx44d+fapU6ewbNkynD59Grm5udDr9QCAlJQUdOnSpd5zv/zyyzh69Ciys7NlryMxQhAE0XqoKUb27dvHf7C2JFqlGDHHVWIvGGP1Hi8tLcXNN9+McePGYePGjfD390dKSgrGjx8PnU5X72tvv/12hIeHY82aNQgJCYFer0dcXFyDryMIgiBaFjXFSHl5OX7++WdMnTrVTiOyDAogsBMxMTFwdHTE0aNH+b68vDzEx8cDEKwb2dnZeOONNzB06FB06tSJB6+KODk5AQCqqqr4vpycHFy4cAEvvfQSRo8ejc6dOyMvL88Gd0QQBEHYmppiBAB++OEHO4ykcZAYsRMajQYPPPAAFi1ahF9//RX//vsv7rvvPh4jEhISAicnJ3z44YdITEzEjh07sHz5ctk5IiMjoVAosGvXLmRlZaG4uBje3t7w9fXFp59+ioSEBOzfvx9PPfWUPW6RIAiCsDLGxMiuXbtQWVlph9FYDokRO7JixQoMGzYMEydOxJgxYzBkyBD07t0bAODr64vPPvsM3377Lbp06YI33ngDb7/9tuz1oaGheOWVV/D8888jMDAQjz76KJRKJTZv3oyTJ08iLi4OTz75JFasWGGP2yMIgiCsjFSMiD9mc3NzcfDgQXsNySIUrKHgBcLm6PV6JCcnIzIyklJxTYDmyzxovkyH5so8aL7Moynm66OPPsIjjzwCABg3bhx+/vlnAMATTzyB9957r8nGam3o00IQBEEQLZSCggLenjlzJhwchLyUH374ocFEieYEiRGCIAiCaKFI3TSRkZEYMGAAACApKcloPElzxSIxsmHDBtx6660YNmwY7r77bhQVFfH9Y8aMwahRo7By5UqZKjt37hxmzpyJwYMHY/78+UhPT2+aOyAIgiCINopUcHh4eCAgIIBvi8/mloDZYmTz5s04fPgw1q5di99//x3Lli2Dk5MTDh48iK1bt2LDhg3YsmULDh48iB07dgAQypo/++yzmDFjBvbv34+4uDgsXry4yW+GIAiCINoSNcWIu7s7325JYsSsomdVVVVYv3491qxZg+DgYABCvQwA2L17N6ZNm8bLmc+ePRt79uzBpEmTcPLkSajVakyaNAkAMG/ePIwZMwbp6en8PFJ0Ol2tAl0ODg68rkZrR6yYKv5P1A/Nl3nQfJkOzZV50HyZR1PMlzRmRKPRyCqvFhQUNIv3wpTgXLPESGZmJsrLy7Fv3z5s3rwZGo0Gd999N6ZNm4akpCRMmDCB942NjcWqVasAAImJiVy0AIBarUZYWBgSExONihFR8EiZPn067rzzTnOG2+JJTU219xBaFDRf5kHzZTo0V+ZB82UejZmvrKws3s7Pz4euUgn4zwIKDyIhIQGBgYFNMcRGER0d3WAfs8VIcXExrl27hh07diAtLQ0LFixAVFQUSktLZYrMzc0NpaWlAACtVgs3NzfZudzc3KDVao1eZ+7cuZg1a5Z8oG3MMpKamorw8HBKjzMBmi/zoPkyHZor86D5Mo+mmC/Ri+Dg4IDY2FgczZ0PdOoClKfC2eUkIiMjm3LIVsMsMeLs7AwAmD9/PlxcXNC+fXtMmDABhw4dgqurK4qLi3nfkpISuLq6AhAsISUlJbJzlZSU8CXva+Lk5NRmhEd9KJVK+oM2A5ov86D5Mh2aK/Og+TKPxsyXGDPi4eGB4xeVOHujehFV53Bk5R1rMe+DWaOMjIyEo6Oj0WPR0dFISEjg2/Hx8WjXrh0AoF27drJjWq0W165d48fbIiNGjMATTzxh1Wvcd999mDx5slWv0dZZunQpbrrpJpte057vqymf208//ZT/0nv//fdtMi57k5OTg4CAAFy9etXeQ2kVREVF1fvZuXr1KhQKBU6fPt2k133mmWfw+OOPN+k5rY0oRtw9PPDcanldkey8cnsMySLMEiNqtRqjR4/GunXroNPpcPXqVezZsweDBw/GhAkTsG3bNqSlpSE7OxubNm3CLbfcAgDo3bs3tFotdu7cCZ1Oh3Xr1qFLly5G40UI22GNB+mGDRvg5eXVYL+DBw9i8ODB8PX1hVqtRqdOnZp9tUCFQoHvv//e3sNo1hQWFuLRRx/Fc889h7S0NMyfP9/eQ7KY++67D1OmTDGp73//+1/cfvvtiIqKAmB4WBr7J10c0xaUlJTgueeeQ7t27eDi4gJ/f3+MGDECu3btsuk4jGHq90VNwsPDkZ6ejri4uCYdz7PPPov169cjKSmpSc9rTUQxovCZgD/+kR/LKaiww4gswyw3DQA899xzWLZsGcaMGQNPT088+OCD6NOnDwDg8uXLmDNnDvR6PSZPnoyJEycCENwub731FpYvX4433ngDXbp0wbJly5r2TogWhZubGx599FF0794dbm5uOHjwIP7zn//Azc2tRT/A2jopKSmoqKjArbfe2qgfGxUVFXVaYZsbWq0W69atw+7du2sd27dvH7p27Srb5+vra6uhAQAeeugh/PXXX/jf//6HLl26ICcnB4cPH0ZOTo5Nx9GUqFQqBAUFNfl5AwICMG7cOKxevRpvvvlmk5+/qdHpdCgrKwOgRKbrE7WO5xe2oMXyGGEXhg8fzh555BH2yCOPME9PT+bj48NefPFFptfrWVVVFUtMTGSff/456927N9NoNCwwMJDNnDmTZWRkyM7z77//sgkTJjB3d3em0WjYkCFDWEJCAmOMsXvvvZdNmjSJ9z1x4gTz9/dnr776Klu/fj0DIPu3fv16xhhj+fn5bN68eczf35+5u7uzkSNHstOnT/PznD59mo0YMYJpNBrm7u7OevXqxY4fP85+++23WudcsmSJyXMyZcoUNnv27Abn7dFHH2ULFy5kXl5eLCAggH388cfs33//Zffeey/TaDSsXbt2bPfu3bLXHThwgPXt25c5OTmxoKAg9txzz7GKigrZeR977DG2aNEi5u3tzQIDA2Vjj4yMlN1XZGQkY4yxJUuWsB49erAvvviCRUZGMg8PD3bXXXexwsJC/tpvv/2WxcXFMRcXF+bj48NGjx7NiouLjd5fZWUlu//++1lUVBRzcXFhsbGx7P3335f1Ed/XFStWsKCgIObj48MWLFjAdDod71NeXs4WLVrEQkJCmKurK+vXrx/77bffGGOMVVVVsZMnT7K77rqLhYaGMrVazeLi4thXX30lu05xcTG75557mJubGwsKCmJvv/02Gz58OFu4cKHRsRv7TCUlJTHGGPvoo49Yu3btmKOjI4uNjWVffPGF7LUA2Mcff8wmTpzIXF1d2eLFixljjO3YsYP16tWLOTs7s+joaLZ06VLZ+5aXl8fmzZvHAgICmLOzM+vatSvbuXMnY4yx7OxsNmPGjHrvsa73ZsmSJbXuRZy/mmzbto35+fnJ9iUlJTEA7NSpU0Zfo9fr2ejRo9n48eOZXq/n9xIeHs5eeOEFxhjjf0+7du1i3bt3Z87Ozqxfv37szJkzRs9ZF56enmzDhg319omMjGTLly/n73dERAT7/vvvWWZmJps4cSJzc3NjcXFx7Pjx47LXbd26lXXp0oU5OTmxyMhItmLFCpaYmMiqqqoYY4zl5uaye+65h3l5eTG1Ws1uvvlmFh8fL7s/Y98XkZGR7LXXXmNz585lGo2GhYeHs08++aTO+RXPtW/fPta7d2+mVqvZwIED2cWLF2XjXb58OfP392cajYY98MAD7LnnnmM9evSQ9dmwYQMLDw83a44tRfyuF+fLXLKysoS5C5jNMLSq1r+J937UxCO2HiRG7MTw4cOZRqNhCxcuZBcvXmQbN25krq6u7NNPP+Uf0DVr1rDdu3ezK1eusCNHjrABAwawW265hZ/j2rVrzMfHh02dOpUdP36cXbp0iX322Wf8D1AqRn777Tfm6enJPvpI+HCWlpayp59+mnXt2pWlp6ez9PR0VlpayvR6PRs8eDC7/fbb2fHjx1l8fDx7+umnma+vL8vJyWGMMda1a1c2e/ZsduHCBRYfH8+2bNnCTp8+zcrLy9n777/PPDw8+DmLiopMmo+///6bBQYGsjVr1jQ4b+7u7mz58uUsPj6eLV++nCmVSjZ8+HC2evVqFh8fzx5++GHm6+vLSkpK+Dy5urqyBQsWsAsXLrDt27czPz8/mdgYPnw48/DwYEuXLmXx8fHs888/ZwqFgv3888+MMcYyMzO5YEtPT2eZmZmMMUGMaDQaNnXqVHb27Fn2xx9/sKCgIP5AuX79OnNwcGDvvvsuS0pKYmfOnGGrVq2qc150Oh1bvHgx++uvv1hiYiL/XHzzzTe8z7333ss8PDzYQw89xC5cuMB27tzJPzsid999Nxs0aBD7448/WEJCAluxYgVzdnZm8fHxrKqqih0+fJi99dZb7NSpU+zKlSvsgw8+YCqVih09epSf4+GHH2ZhYWHs559/ZmfOnGG33XYb/8wao7S0lO3bt48BYH/99RdLT09nlZWV7LvvvmOOjo5s1apV7NKlS+ydd95hKpWK7d+/n78WAAsICGDr1q1jV65cYVevXmU//fQT8/DwYBs2bGBXrlxhP//8M4uKimJLly5ljAlf5AMGDGBdu3ZlP//8M7ty5QrbuXMnF6LXrl1jK1asqPMe63tvioqK2J133snGjx/Pjh07xtLS0lh5ebnR+164cCG7+eabZfsaEiPi+Ly9vbnYvOuuu1ifPn24qBQfsJ07d5a9B1FRUTLh2RAdO3Zkd955p0wg1yQyMpL5+PjI/obc3d3ZzTffzLZs2cIuXbrEJk+ezDp37szF04kTJ5hSqWTLli1jly5dYuvXr2dqtZq99dZb/OE6ceJE1rlzZ/bHH3+w06dPs/Hjx7OYmBim0+nq/b4Qx7Nq1Sp2+fJl9t///pcplUp24cIFo/MrzlX//v3ZgQMH2Llz59jQoUPZoEGD+D1u3LiRubi4sM8++4xdunSJvfLKK8zDw6OWGDl//jwDwK5evWryHFtKY8XIlStXBDHS6x8uQIYvyOftEdNWNfGIrUerFCO9H6xioVNt/6/3g6Z/oIYPHy77w2aMseeee4517ty5zg/oX3/9xQDwP9j/+7//Y9HR0XV+MYli5Pvvv2fu7u61fhWKv+ql/Prrr8zDw4OVlZXJ9rdv357/MnF3d6/zl9b69euZp6dng/cvEhoaypycnPiXWkMMHz6cDRkyhG9XVlYyNzc3NmXKFD5f6enpDAA7cuQIY4yxF154gXXs2FE216tWrWIajYa/puZ5GWOsb9++7LnnnuPbANj27dtlfZYsWcJcXV1lX/SLFi1i/fv3Z4wxdvLkyUZ/sS1YsIDdcccdfPvee+9lkZGRrLKyku+bPn06u+uuuxhjjCUkJDCFQsHS0tJk5xk9ejT7v//7vzo/XxMmTGBPP/00Y4yxoqIi5uTkxDZv3syP5+TkMLVaXacYYYyxU6dOySwijDE2aNAgNm/ePFm/6dOnswkTJvBtAOyJJ56Q9Rk6dCh7/fXXZfu+/PJLFhwczBhjbO/evUypVLJLly7VOZ6aSO+xoffm3nvvZRMnTmzwYTFp0iR2//33y/aJD0u1Ws3c3Nxk/6Tv25YtW5izszP7v//7P+bq6iq7F/EBa+w9kIrThvj9999ZWFgYc3R0ZH369GFPPPEEO3jwoKxPZGSkzCop/g29/PLLfN+RI0cYAJaens4YEwTv2LFjZed55plnWIcOHVhVVRWLj49nANihQ4f48ezsbKZWq9mWLVsYY3V/X9Qcj16v51ZQxuq3jIj8+OOPDADTarWMMcb69+/PHnnkEdl1Bg8eXOs7sKCggAFgBw4cqD2ZTUxjxYj494bBZQxDq1iXe6rYGxuyuRjpPaHlWEbMjhlpCdzIBdKyGu5nbwYMGACFQsG3Bw4ciHfeeQdVVVUAgFOnTmHZsmU4ffo0cnNzeSW9lJQUdOnSBadPn8bQoUPr9a0fO3YMu3btwrfffmtSMN7JkydRXFxcy6+t1Wpx5coVAMBTTz2FBx98EF9++SXGjBmD6dOno3379mbfPwD8+eefKC4uxtGjR/H8888jJiYGM2fOxJ9//skDoAHgk08+4bVnunfvzverVCr4+vqiY8eOfJ9Y5CczMxMAcOHCBQwcOFA214MHD+Y1cyIiImqdFwCCg4P5OeojKipKVoJZ+roePXpg9OjR6NatG8aPH49x48Zh2rRp8Pb2rvN8q1evxtq1a5GcnAytVgudTlcr0Lhr165QqVSya549exYA8Pfff4MxhtjYWNlrysvL+ftaVVWF119/HVu2bEFaWhrKy8tRXl7O6wFduXIFOp0OAwcO5K/38fGRzbOpXLhwoVYc0ODBg7Fy5UrZPjH2TOTkyZM4fvw4XnvtNb6vqqoKZWVlKC0txenTpxEWFlbrPqV933jjDXzzzTdG79GS98YYWq0WLi4uRo9988036Ny5s2yf9H2bPn06tm/fjv/+97/4+OOPjd6LsffgwoULJo9v2LBhSExMxNGjR3Ho0CHs378fK1euxCuvvIKXX36Z95N+/sW/oW7dutXal5mZiaCgIFy4cIFX1RYZNGgQVq5ciaqqKly4cAEODg7o378/Py7+rZoyful4FAoFgoKCGvx7lL5GjFnKzMxEREQELl26hAULFsj69+vXD/v375ftE0tOiHWymjOFhYWA0hVQCs+AQG/A18uZHy8uU9T10mZHqxQjQT4t/7qlpaW4+eabMW7cOGzcuBH+/v5ISUnB+PHjeZGbuuq0SGnfvj18fX3x2Wef4dZbb22wfoter0dwcDAOHDhQ65gY9b506VLcfffd+PHHH7Fnzx4sWbIEmzdvNjnzQIpYma9bt27IyMjA0qVLMXPmTPTp00eWtietIlhTfCkUCr5strgt3gsAMMZkQkTcJ+1b13lNKaVc3+tUKhV++eUXHD58GD///DM+/PBDvPjiizh27JjRqoRbtmzBk08+iXfeeQcDBw6Eu7s7VqxYgWPHjpl8Tb1eD5VKhZMnT8oefAB4YcK1a9di7dq1eP/999GtWze4ubnhiSee4J8t1sRLjxub/5r7ahZG1Ov1eOWVVzB16tRa53NxcWnw8//OO+/gvffeq/MezX1v6sLPzw95eXlGj4WHh8uqT9ektLSUv0+XL182+Zo1564hHB0dMXToUAwdOhTPP/88Xn31VSxbtgzPPfcc/06QfqbE8xvbZ8rfVc12zT6mjN+Sv8f6xivdV98Yc3NzAQD+/v4NjtHeFBYWAg6efNtTAwT6GoRxabnK2MuaJa1SjJxY0zKKvNRM8Tt69Cg6dOgAlUqFK1euIDs7G2+88QbCw8MBACdOnJD17969Oz7//PN6Mw/8/Pzw3XffYcSIEbjrrruwZcsW3tfJyYlbYUR69eqFGzduwMHBgacpGiM2NhaxsbF48sknMXPmTKxfvx5Tpkwxek5TYYyhvFzIi1er1fV+iZtDly5dsG3bNtmX4OHDh+Hu7o7Q0FCTz+Po6GjRvSkUCgwePBiDBw/G4sWLERkZie3bt+Opp56q1ffPP//EoEGDZL/gRIuUqfTs2RNVVVXIzMzE0KFDax3X6/U4fvw4Jk6ciNmzZ/N9ly9f5r/iY2Ji4OjoiKNHj3LLUV5eHuLj4zF8+HCzxtO5c2ccPHgQc+bM4fsOHz5cy2JQk169euHSpUt1fg66d++Oa9euIT4+3qhF4c8//8SkSZPqvEeg/vfG1M9yz549sXHjxgb7GePpp5+GUqnEnj17MGHCBNx6660YNWqUrI+x96BTp04WXU+kS5cuqKysRFlZmcUFJrt06YKDBw/K9h05cgTR0dFQqVT8GseOHcOgQYMACPVY4uPj+XvQmO8Lc+nYsSP++usv3HPPPXxfze9UAPj333/h6OhYKwuqOSKIES++7aUBvNxVEOKBAa2u5TziW8ZTu5WSmpqKp556CpcuXcLXX3+NDz/8EAsXLgQAhISEwMnJCR9++CESExOxY8cOLF++XPb6Rx99FIWFhZgxYwZOnDiBy5cv48svv8SlS5dk/QICArB//35cvHgRM2fORGWlkO4VFRWFpKQknD59GtnZ2SgvL8eYMWMwcOBATJ48GXv37sXVq1dx+PBhvPTSSzhx4gS0Wi0effRRHDhwAMnJyTh06BCOHz/Ov1yioqJQXFyMX3/9FdnZ2XWaOletWoWdO3fi8uXLuHz5MtavX4+3336bPziakgULFiA1NRWPPfYYLl68iB9++AFLlizBU089ZVZ1wqioKPz666+4ceNGnb+Ea3Ls2DG8/vrrOHHiBFJSUvDdd98hKyurzgdxTEwMTpw4gb179yI+Ph4vv/wyjh8/bvIYAUEozpo1C3PmzMF3332HpKQkHD9+HG+++SZPP42MjMS+fftw+PBhXLhwAf/5z39w48YNfg6NRoMHHngAixYtwq+//op///0X9913n0XVHBctWoQNGzZg9erVuHz5Mt5991189913eOaZZ+p93eLFi/HFF19g6dKlOHfuHC5cuIBvvvkGL730EgBg+PDhGDZsGO644w788ssvSEpKwp49e/DTTz8BEOZStHwYu8eG3puoqCicPXsWiYmJyM7ORkWF8ZoN48ePx7lz54x+JnJycnDjxg3ZPyEVE/jxxx/x2WefYdOmTRg7diyef/553HvvvbXOs2zZMtl74Ofnx4vepaWloVOnTvjrr7/qnMcRI0bgk08+wcmTJ3H16lXs3r0bL7zwAkaOHAkPD49634P6ePrpp/Hrr79i+fLliI+Px+eff45Vq1bhwQcfBAB06NABkyZNwrx583Dw4EH8888/mD17NkJDQ7l7x9Tvi6bgsccew7p16/D555/j8uXLePXVV3HmzJla1pI///wTQ4cONcnybG8KCwsBlcEy4qUB3F0Nx8srW0Z6PABK7bUXw4cPZwsWLGAPPfQQ8/DwYN7e3uz555+XpfZu3LiRRUVFMWdnZzZw4EC2Y8eOWhH6//zzDxs3bhxzdXVl7u7ubOjQoezKlSuMsdqpvdevX2exsbHszjvvZJWVlaysrIzdcccdzMvLS5baW1hYyB577DEWEhLCHB0dWXh4OJs1axZLSUlh5eXlbMaMGSw8PJw5OTmxkJAQ9uijj/IgMcYYe+ihh5ivr2+9qb0ffPAB69q1K3N1dWUeHh6sZ8+e7KOPPmowkMtYamlkZCR76aWXZK9FjWBTU1J7a5530qRJ7N577+XbO3bsYDExMczBwaFWaq+U9957jx8/f/48Gz9+PPP392fOzs4sNjaWffjhh3XeX1lZGbvvvvuYp6cn8/LyYg8//DB7/vnnZdeo+b4yJmR0DB8+nG+LWTlRUVHM0dGRBQUFsSlTprAzZ86wqqoq9vfff7OJEycyjUbDAgIC2EsvvcTmzJkjO29RURGbPXs2c3V1ZYGBgeytt96qN7WXMeMBrIyZltpbMziYMcZ++uknNmjQIKZWq5mHhwfr16+fLGsoJyeHzZ07l/n6+jIXFxcWFxfHdu3axY9NmjSpznts6L3JzMxkY8aMYW5ubvWm9jLG2IABA9jq1av5thhgaezf119/zTIzM1lgYKAsQLeiooL169eP3XnnnYwxQ1Dmzp07WdeuXZmTkxPr27evLM1evE59Y3v99dfZwIEDmY+PD3NxcWHt2rVjjz/+OMvOzuZ9IiMj2XvvvVfve2IsQ0hM7XV0dGQRERHsrbfeMpra6+npydRqNRs/fjxP7RUx9n1hbDw9evTgx+sKYM3Ly+P9jX0Wly1bxvz8/JhGo2H3338/e/zxx9mAAQNk14mNjWVff/11nfPZlDQ2gPXNN99k8L6ZB6wuWVfFEq7p+bZz92+beMTWQ8FYEzuHiUaj1+uRnJyMyMjIFrOugD2h+TIPmi/TMXWudu/ejWeeeQb//vtvk83pgQMHMHLkSOTl5VlUpdQetLTP1tixYxEUFIQvv/wSgGCtWrRoEc6cOSOLQ7MWjZ2vl156Ca99egXotAkA8N6jCtw9FgicJDzWlXm7UXX2tiYds7VoOQ4lgiCIZsqECRNw+fJlpKWl8RgvonlRWlqK1atXY/z48VCpVPj666+xb98+/PLLL7xPSUkJ1q9fbxMh0hTUctO4Ax4SN41e4dpiqhm3jBknCIJo5ojxXkTzRKFQYPfu3Xj11VdRXl6Ojh07Ytu2bRgzZgzvc+edd9pxhOZTUFAAOBjK4nu6Ac5OgAKVYHAAVO4oKiqCj4+dUkzNgMQIQRBEM2TEiBFNnmLdllGr1di3b5+9h9GkCNk0hswqL011qQNFGSqYBnDwaDFipPk79QiCIAiCqEWtOiPVpXqcVEKJBNEy0hIgMUIQBEEQLRAhZsSLb3tVF4J2cRAK+5EYIQiCIAjCqtS0jHgJBZahdqquiaNyQ34BiRGCIAiCIKxETTEiZtKonQ1VbbNytbYelkWQGCEIgiCIFoi0HLxGDTg4CNVkNS6GwOes3HJ7DM1sSIwQBEEQRAujsrJSKJ9fXWfEU2M45q42iJGcAp2th2YRJEYIgiAIooXBA1OrLSNeEjHi4WZYbyevwPiaSs0NEiMEQRAEYSYFBQVYsmQJX5jR1hQWFgIKB0Al5PNKxYinRsXb+UW2WRW5sVDRM4IgCIIwkwULFuCrr76Cs7Mzbty4YfP1g2qWghdrjACAl4dEjBTrbTksiyHLCEEQBEGYwdWrV7F582YAQHl5OdLS0mw+BqEUvBffllpGfDwNa9EUldhwUI2AxAhBEARBmMHKlSuh1xssDvYoLFZXjREA8PNy5u3iMgVaAiRGCIIgCMJE8vPzsXbtWtm+wsJCm49DmtYLyLNp/H0MYqSkrGU85lvGKAmCIAiiGbBmzRoUFxfL9tnNMiItBa8xWED8vF14u7S8ZYSGkhghCIIgCBPQ6XRYuXJlrf3NwU0jC2DVGB7tZRUkRgiCIAii1bBlyxYerKpWq/n+5iBG5HVGDO3ySicbjspySIwQBEEQhAl88sknvL1gwQLetp8Y8eLb4oq9AODuamjrqgzxI80ZEiMEQRAEYQIJCQkAgODgYEyYMIHvt1sAax11RqRipJKpwRhDc4fECEEQBEGYQH5+PgDAz88P7u4GU0SzsIxI3DRuhvhVMKUG5eXNf7E8EiMEQRAE0QBlZWUoKysDAHh7e8PDw4Mfs182jfGYEaVSARVKhQ0Hd7uMz1xIjBAEQRBEA4hWEQDw8vJqJpYRiZtGIz/upBSEE1QkRgiCIAiiVVCfGLFHzIi0HLyTI+BSI2nGyUEnNEiMEARBEETroKYYuZrpBsTtBSJesrtlxNMNUCjkZd9dHCqEhsodhYUkRgiCIAiixSMVIx4e3rh7GQDvMUDkK8grtn36rLQCq5em9nG1U6XQUKiQnVtqu4FZCIkRgiAIgmgAqRg5lzcU/yYZjhVqbVtYrKqqCsXFJdwyYkyMuLlU8XZWrtZWQ7MYEiMEQRAE0QBcjDj4Yu/FQbJjxTZejE6wimgAhXDdmsGrAKBRG2qLZOfrbDU0iyExQhAEQRANwMVI1DKU6uRumdJylU0Li2VnZ9dZY0TE3dUQQ5JDYoQgCIIgWj55eXmAW3cgaF7tg0o3lJSU2Gws2dnZdVZfNewziJG8wkpbDKtRkBghCIIgiAbIz88HIpcDChUAIDZcctDG6bOmWEY83VW8XVCst8GoGgeJEYIgCIJogPz8fMC9LwDAx70Kz86UpNKq3OwsRhS1+vh4OPB2QQmtTUMQBEEQLZ68vELA0Q8AEBkI+HpKDtrDMqKqu/oqAPh6GTJ8ikpJjBAEQRBEiye7gHEXTbCfChq15KBKY9MqrIJlxPi6NCJ+3oYg22Jt83/UN/8REgRBEISdyS02uD2CfAB3V8nBZhgzIhUjpeWq2h2aGSRGCIIgCKIBCkpdeDuwlhjR2EGM1J9NE+BjGK9WR2KEIAiCIFo0jDEUlRnUR6C3ooabxraWkaysLF4KHgC83Gv38ZCk9pZVONpgVI2DxAhBEARB1INWq0WVypdvB3g3LzeNMcuIdHy6KpfaHZoZJEYIgiAIoh7y8/MBx0C+HeiNGpYRt2YXwCoTI3oSIwRBEATRosnPzwecJGLEB3B0UMDJobqYmA0tI5WVlUI12GoxolDUsNJUI91XBbVNy9VbAokRgiAIgqgHY5YRAHB1FsWI7QJYc3Nzq68piBEPN0CprF30zNFBASXKhQ2lBqWlpTYZn6WQGCEIgiCIehAsIwEAAIVCDx8PYT931djQMpKdnS00qmNGjLloRBwUZULDxjEtlkBihCAIgiDqQWoZcXfWcksEXxnXhpYRc8SIk6pajDh4kBghCIIgiJZMbm4e4ChYRrzcyvl+T031I1TlioJC26zam5WVBShdAKVQ1MxYJo2Is0OF0CDLCEEQBEG0bNKzygClUKvD172S75fW8igoqqz1OmuQnZ0NOAXz7UCfuvuqHavFiNIZuXnFVh5Z4yAxQhAEQTRb9Ho9PvroI3z11Vd2G0N6jp63/b0M+6XpvYU2WoxOECNhfDvMv+6+GrVhTClpedYcVqNxaLgLQRAEQdiH1atX45FHHgEAdOrUCb169bL5GDIkz/FgX4M1RJo+W2xLMeIsFSO1M2lEPDUqIFNoX72Wa+2hNQqzLSPz58/HoEGDMHToUAwdOhSPP/44P7ZhwwaMGTMGo0aNwsqVK2V5zefOncPMmTMxePBgzJ8/H+np6U1zBwRBEESr5bPPPuPt+Ph4u4whp9CwtktogKG0utQyUlxmG0dDTTESHlB3X18vw1hTr+dbcVSNx6LZW7JkCf7880/8+eef+OCDDwAABw8exNatW7FhwwZs2bIFBw8exI4dOwAAOp0Ozz77LGbMmIH9+/cjLi4Oixcvbrq7IAiCIFodly5dwsmTJ/m2vYIw84qdeDsy2FDNVGoZqdS7oLy8HNamtmWk7r4Bvga1dD2jeQewNpmbZvfu3Zg2bRrCwoRJmj17Nvbs2YNJkybh5MmTUKvVmDRpEgBg3rx5GDNmDNLT0xEcHFzrXDqdDjqdTj5QBwc4OTnV6tsa0ev1sv+J+qH5Mg+aL9OhuTKPpp6vTZs2ybaLiors8l4UlqmBaiNDeJAzH4ObtMq6SoOCggL4+fmZfF5L5kuIGQnn2yF+DHq9cRdRaKBBLaVn6+z2OVYqG7Z7WCRGVqxYgRUrViA2NhZPPvkkOnTogKSkJEyYMIH3iY2NxapVqwAAiYmJiImJ4cfUajXCwsKQmJhoVIysX78ea9aske2bPn067rzzTkuG22JJTU219xBaFDRf5kHzZTo0V+bRFPPFGMMXX3xR67zJycmNPre5FJe7cjHCytORnCxkqVSUuQOoTmdRuePixYsIDw83fpJ6MGe+0tPTAf9QAIBSwaArTkGy1nhfjaMGgJACnJ7D7DJ3ABAdHd1gH7PFyOOPP4527dpBqVTim2++wcKFC7F161aUlpZCozFUX3Fzc+PlZ7VaLdzc5MnQbm5u0GqNz+DcuXMxa9Ys+UDbmGUkNTUV4eHhJinKtg7Nl3nQfJkOzZV5NOV8/fXXX7Ueng4ODoiMjGzUeS2hnF3g7Zu6hCCoegHf8FBJJ5UGHh4eZo3PkvnKz88Hqj0Qwb4KtG9X9/W6xhrahWVudpk7UzFbjMTFxfH2vffeix07duDcuXNwdXVFcbEhj7mkpASuroKJSK1Wo6REXhCmpKQEarUaxnBycmozwqM+lEolfQGaAc2XedB8mQ7NlXk0xXxt3ry51r7i4mKbvw+MMVSI1g+mR4C3ildg9XRjAKpdJCoNSkpKLBqfqfOl1WpRUloBOAUBAMIC6neBhPgZxqdj3igpKYG7u7vZ47MFjX5XxYmIjo5GQkIC3x8fH4927doBANq1ayc7ptVqce3aNX6cIAiCIEQqKyuNihF7BLCWlJTw6quOikI4OBhP7YVKg8LCQquOJScnB3AK4dv1ZdIAQLCvZMMpuFlnsZolRoqKinD06FHodDpUVFRg06ZNKCwsROfOnTFhwgRs27YNaWlpyM7OxqZNm3DLLbcAAHr37g2tVoudO3dCp9Nh3bp16NKli9F4EYIgCKJt89tvvyEjIwMAMGjQIL5fan23FXl5+XxdGrVKLjakqb22KLluTiYNAAR4AUB10KpTEK5fv26toTUas9w0lZWVWLVqFa5evQpHR0fExsZi5cqV0Gg0GDJkCC5fvow5c+ZAr9dj8uTJmDhxIgDB7fLWW29h+fLleOONN9ClSxcsW7bMKjdEEARBtGy2bt3K2//5z39w+PBhAPaxjKTdKARUgjXCzUkeblDTMmIbMWIIkK2v4BkAODgo4O6sRVG5G+AUjOvXD1l1fI3BLDHi7e2NL7/8ss7jc+fOxdy5c40e69q1q1GzG0EQBEFIuXLlCm9PnDgRCoUCjDG7WEaS0kp521NdJjtW2zKSZdWxCGLEEDXbkJsGAHzddYIYcQzCtbTmaxmhiCyCIAiiWZGZKdQwd3FxgaenJ8/GtIdlJOWGoZCZt6ZCdszWMSNZWVkmr0sjEuhTHWCrdERiSoGVRtZ4SIwQBEEQzQpRjAQEBEChUPAMEHtYRtIyDQLEz7NKdkxuGbGDm8YEy0i4pHz91etl9fS0LyRGCIIgiGaDXq8XLAAQxAgAXsPKHpaRGzmG6qZBPvIYDbWzUHgMgA0DWA0Fz2TZMnUQHWZQTNcyK601tEZDYoQgCIJoNuTm5vKy5aIYkVpGpAuw2oKsAoMACfFTyY4pFAq4uhjqjNgym8bfswqODvUHsAJARKDBMpKZr6qnp30hMUIQBEE0G0QXDVDbMlJZWWmTxeik5BYZHubhQbWLcbqrbWcZyczK52nGYQENCxFAXmskr9jF5mLOVEiMEARBEM0GY2JEWjXU1q6aglJn3o4Mrl013MOtWhTYIID1Rq4CUAiP7ahg06wcUjFSqfQTysk3Q0iMEARBEM0GqRjx9xfSRaTrntk6iLWo3JAyEx2uqXXc3bX6MarSoNDKQimryLBMsCmZNEDtKqzNtfAZiRGCIAii2dDcLCPayuprV+QhKMC71nGe3qtQobCootbxpoIxhvxSgxhqqOCZSJBMjASSGCEIgiCIhmhIjNjaMlLOPIVGZSZf/FWKNL23sNR68RhFRUWoUgXxbVPSegFA7ayA2rE6zoYsIwRBEATRMGJaL1A7gBWwrWWkopJBrxCu7cDyoVDUtkZIC58Vl9Y63GTUXJfGlOqrIj4andAgMUIQBEEQDSNYRlSA9wToFMJiqvayjORLLuWkNK40pJYRrU6Fqqoqo/0aS1ZWVo11aUx/bZCPIf04KSW7iUfWNJAYIQiCIJoNmZmZQORiIG4nJi4JQFY+s5tlJCvPICzUjsarl8pLwrtbTSzt2rWLFzxTgCHEz/TXhgUalqFLaqZVWEmMEARBEM2GzMxMwGs0ACArX4FXP2d2s4wkpuTxtoercYuHu6vEdWOlwmdlZWVYvXo1X5cmwEtvUsEzkXahhiyctEzrWG4aC4kRgiCINk5JSQnWrl2LIUOGoH///khOTrbbWDIyMwHXznz7o++BoopAvm1Ly8jVa/m87e1u/OFfe+Xeph/fV199heycAsBJCGCNCDKvkmqov6F/Zl7zfOw3z1ERBEEQVqe0tBRPPfUUQkJCMG/ePBw6dAh//fUXNm7caJfx6HQ6FJS4AA5efF9lFfDNX3F825ZiJDXdcC0/LwejfWqu3NvU42OM4f333wecgnnBM3PiRQAgyMfQzitx4eX2mxMkRgiCINoo69atw3vvvVercmh6erpdxpOVlQW4dqq1//dzgYB7PwC2ddOkZRiCVoP8nI32qblyb1NXYT1w4ADOnj0LOEfyfeZk0gDywmd6hwAhM6eZQWKEIAiijXL+/Hnevvnmm3nbXg+rzMxMmRjpI9Ul0W8CsK1lJDNXx9shAbVrjADWt4y8//77QsNjIN/XJcr0eBGgZVRhJTFCEATRRklNTeVt/tCDvcWIIV7kzf8oECtms3oOA9wH2NQykp1vCPaMCPEw2qdmzEheXp7RfpaQmJiInTt3AgCcA8fz/SN7mXceEiMEQRBEs+XatWsAAAcHB8TExMDRUVih1q5iRG0wh3RrDzw0SWIFUMfY1DKSJ7lUdLiX0T41LSPSCrKN5ddffxVW2VU4gLkPAiAIiw5hDbywBp4awFFVKWw4BdnNDVcfJEYIgiDaKKJlJDQ0FCqVii9M1xzcNBrncvh51vhV7+BrU8tIkdbwiGwf5Wu0T03LSGPFSHo2w9z/6vHeFmbIatL0ga7KCQAwsieMVoKtD4VCAW83sSR8UJNab5oK4+HBBEEQRKumtLQUubm5AIDwcMEX4ufnh+vXryM7OxuMMbMfeo3lWnohL3keFVgGhUINXw/Jei+Ofja1jJSWOwHVJTqCfJ2M9mlqy8gH2xg27AEAhrGB1Sf3HM6Pj+hp2Xvi51GJzEIAjn7Iyi5o1BitAVlGCIIg2iCiiwYAwsIEAeDnJ5T1LC8vR0lJic3HlHDd8Pu4Y7iQfurnKengaDvLCGMMZVXVYoBVyi0gEmpWYG2sGEnOMLRPZQwWGl4j+b6RPS07Ly8JD+BaVqVlJ7EiJEYIgiDaIFIxIrWMiEgXrLMVqdmGJ3u3GMESIRcjtrOMFBcXgymFoFVHRUmdViI3F8lGE1hGciRGi2w2CHBpD3gK8SKh/kD7UMvOGxpgKHx2I8e2Fi9TIDFCEATRBpFm0tS0jAD2iRvJKDZU5+rVSRAmvlIx4uBrMzGSnp4OOHgDAJwdtHX2U6kUcBUFSROIkVzp7SlUQIdPAaUbAMviRUQigw1upuzC5hehQWKEIAiiDdKQZcQeYqRAF8zbcdHC48nVRQG1WG/M0Q9lZWWorLS+m+H69Ru8Eqybs67evtyFo3JHVlaWkAFjIbk1a6Z5jeDNETdZbtGICjYUbcsrqcPnZEdIjBAEQbRBmptlhDGGMkUUAEDByhAZZDjGXTWOQkaLLeJGklKyePl1D9f6y6fzuBGVBpWVlcjPz7f4ujn1FHAdYWG8CACEBxiETGG5ez097QOJEYIgiDaIMcuImNoL2F6M5OWXgLm0AwC4Ka5BqTQ8PLkYcRDEkk3EyDVD8IZPHYvkiUgtIwAsdtVUVjIUVN+aq5PcGhMeALQLsei0AIR4E5HSSi/LT2QlSIwQBEG0QUTLiKOjIwIChMVO7GkZOf5vHqAQYhl81PKHOY8bUToCKg+bxI2kphsEj793/TEW3DKidAYUjhaLkXyJxgr3ugYUHefbIxoRLwIAoYa3FhWKAFRUVAAQLFLTF+vx6Ht6fPaj5e6lxkJihCAIog0iWkZCQ0OhVAqPAnuKkb8vGhalC/aU18GomVFjC8vI9UzDeAJ9jS+SJ1JzsTxLxYjURcN0OUDah3x7woDGZcB4agAVyoQN51DuSsovBrYeAFZtB77aR2KEIAiCsBHGCp4B9k3tPZdkWAcmKkCeveJnh4yazByDmyQ00PgieSJNVfhMGrxaUXoDyNoEJDyCJfcU4s6Rdb/OFBQKBVwdqiuvOoXy9z/5hqFPZGDjrtEYSIwQBEG0MaTxIs7+I3HhqvCL2NfXUPLc1paRhOuOvN0xXP4L3Ve6Rp2NLCPZBQZxVNeKvSLuTVQSXprWW1oovEeO2euw+AEPWQyNpXi6VM+bgweupQvWJ5kYCbJf/RESIwRBEG0MnknjOwn7spag14MM568yqNVquLkJNS1sLUbScqqf6EyPru3lbhE/T8lD0kaFz/KLDILI29QAVqBRYkRa8Kww9yoAIdNJdKM1Fh+NweJ0OUVoXyXLCEEQBGEPuGXEaxQAoEwH/O874eErumpsLUYKSquf6BVZCAvxkx3z85JsOPhYXYxUVlaiuMxQJMy7gUxYa7hptNWWkYiICIvOZYwArwrevnpdcEMlZxhElzSd2taQGCEIgmhjcMuIczTf9+VeoKiU8fTenJwc6PX119doKhhjKKnQCBsVGbIUY8D2AayZmZm84BnQsBjRqCWWk+rCZ5aQUyhxT1UIMR1NKUZCfCXr02QKbambJorECEEQBGEruGXEJYrvK9YCX+8zWEb0en2jineZQ0ExoEd1zIguk6cai9SMGbG2ZeTGjRsyMeKlqb+/rGS9Y0CTWEZQKYiRyMhIi85ljIhAw/o013OFx7+4MJ9SKa9FYmtIjBAEQbQxuGVEIkYAYPUPDL6+tk/vzcgztBWVWfDw8JAdt7VlRBAj3ny7IctIhDTWwjm8SQJYUZkjnLsJLSNRIZL1aQqEtmgZ8fcoR052hrGX2QQSIwRBEG2M1NRUwDEAULnJ9p+6DFS5GmqO2yq9NyPX0FarCmoV95Ivlmf9mBFhkTwvvu3pVndfAIiQGnKcI5CTk2PR+jnSAFZruGliowzBLXmlrijRMmRXXzMj+S9MmTKlya5lLiRGCIIg2hjXrl0DXAzxIlLLQ3yRoaCFPSwjGueSWsddXRRwcaqOX7GZZcQLAKB2qoCDQ/3ZNOFSMeIi1G2xZO5Ey4gCeqBK8Nk0qRiJ9ASYIJIKyz24iwYAUJbcpNcyFxIjBEEQbYiSkhLk5eXJxMgjU4QKnQBw9kZX/iC2lRi5nm2o6eGhLjPax9ejOvjSZjEjgpvGs4FF8gBA46qAj+hZchYe6Ja4asSYEQcUAhDuV1qUrrH4+noBOsEvo63ylgWvojy5Sa9lLiRGCIIg2hDGgle7Ritw73ihXVHlAPjdCcB2YiT5ukGA+GgqjPbx86q2Tjj4oqjIupaR69fTuRjx9jCtEBiPG3EKA6C0SIyI5eBZtYvGx8cHGk0D0bNm4ODgAFWloEAq4I2ENMnB8hQSIwRBEIRtMKT1RvF90cHAHcMlD13XTgBsJ0auZRpKr/t7GrdEBHhVP66Ujigotm7K8fWMXGHROwB+XvUvkifC40aUjoBTkNlipKKSobDaQ1VZJry2KTNpRJwV1e+pQomj5ySpxGVkGSEIgiBshMEyYnDTRAfXyAhxCgVgOzGSnmN4KAb5Gn8sSYNY80sdjfZpKq5nGCqV+nqa9piUZ9REmC1GpCv2Qtf0mTQibo6GKNlDZyUHyq+SGCEIgiBsQ820XndXwMcDkBU9dbatGMnKM1hlQgOcjPaRBtkWl9W/im5jYIwhM9dgqWkorVckPEBiWXKOMDsTSZZJU9n0mTQini6GeBt5AGsKBbASBEEQtiEtLQ2AkgdaRgcLK7o6OSoQIJbWqLaM2Cq1N6e42hVSkQ0/WR6vAen6NCU6tdE+TUFxcTHKKl34dkMFz0QaW2vEWMEza4gDX3cjAcK6G3ByZLUq39oSEiMEQRBtiOzsbMHyoRQsENHBhmNh4rPIOQSA0iaWEcYYCkqrLR26DPj4+BjtJ63Cqq10BWPMaL/GItQYkRY8MzGAVVZrxHwxkiMVIxXWc9MEeBmpf1KW3KQL8lkCiRGCIIg2RE5OTq14EZFQ0VWjcAAcA2wiRoq1QEVVdQxIRQa8vb2N9pMvlueL0tJSq4zn33//lYsRiywjDceMZGdn4+OPP8bVq1cB2M4yEupnRMTZOa0XAEwLEyYIgiBaBTk5OYBzL74dHWz45R8m+3UfhoKCE6ioqICjo/UCRqXVV6HLhI9PO6P9ZCXhHYTCZ25uDZRGtYATJ04ADoaLeZkYMxLsC6hUQFUVAJeGLSOzZ8/G3r17ERkZiStXriC3SGKBqRSqwHXs2NHc4TdIRKCRx76dM2kAsowQBEG0KQTLSBTflltGpEGYoYb+VkRafRUVdbtp5OvT+Fqt8NnJkyfNWpdGRKVSSNxc9VtGzp8/j7179wIAkpOTkZKSgpwC6Yq9OQgODq7TStQYggI8eKl5Trl9q68CJEYIgiCsTnl5OSZNmoSRI0caUmvtAGOsXjdNmDR+0UbpvXLLSN1umpor91qjJDxjrLYYMaPmGI8bcfRDcam+TlfSxx9/LNs+depUjUXyctGlSxfTL2wGPj4+gC5NvtPOBc8AEiMEQRBW56effsKOHTtw4MABzJs3z2rBlw1RWlqK8vJymWUkKshwXLaEvI3Se+WWkcy6xYgNLCMpKSmCWFN58X2mummA2hk1xrKRiouL8fnnn1f3iQCgwD///COPGanIsZoY8fb2BspriJEy+9YYAUiMEARBWJ2EhATe/umnn/Dtt9/aZRzc5VJtGfH3EtZVEZFbRsIAWD+9NyPXIMzUDoVwcDAeyujqooCjsrr+h4N11qc5efJk9fkttIzUCGI1NndfffWVMPbIZUC/JKDrDpw6dUqeTVOZi65du5o3eBMxbhmhmBGCIIhWT3Jysmz7iSeeQEFBQR29rUdOTg6gcAKcQgDIXTRATcuI0MeWlhFP1/J6+7o5V9fIcPS1ipuGixFHL77P1JgRAIgIlBc+qxk3whjDqlWrhI2g+4X/fSbgxL/ZBssIqwSqCq3rppFaRipygapiEiMEQRCtHTF9UyQ9PR0vv/yyzcchxItEAgrhq7+mGHF3VcBDTFCptozYMmbE191IDQwJ7i7VlhFHPxQWNt4ycuzYMVy6dIlvczFS7aZxdgJcnE2rMwIA4dJsJCMZNUeOHMGZM2cA50jAyTD56WU9kJ1fvXJxdXCpVd00uuuGHeXJ0Gg08PLyssr1TIXECEEQhJURLSMODg5wdXUFAPzvf/8T0khtiJDWazx4VYTXGrFRzMj17Cre9vesP5bGy61arCgckJWnq7dvQ/zwww8YMGAAevbsiX///ReMMf5+KJ19AZjnogFqFj6LEAqoSeCBqx4D5S/0Ho/s/Op7r8xFQEAAfH19zbu4iajVajhBIpLKhOBVhcJ00WUNSIwQBEFYGdEyEhkZiSVLlgAQTPYffPCBTcdRO5Om9gOIx42o3AAHL6uLkRviInkVefDzrd8n4u1uEC6ZeY1buffQoUMAAK1Wi6VLlxqCVwEoHH2qr2feOWsGsAql9wUqKyuxdetW4ZD/CPkLvUahVFcdK2PFeBERb+cMgFXPX8k/dnfRAI0QI2fOnEHfvn2xYcMGvm/Dhg0YM2YMRo0ahZUrV8oixs+dO4eZM2di8ODBmD9/fi3FSBAE0RrJz89HYaEQEBAVFYXHHnuMH0tMTLTpWOqrMSISWiO919oBrFkF1YKonuqrIr6S9Wkycioadd3cXIN/aNu2bYYMF6hQBcF6Zeq6NCKeGgXc1dUPeecIWRp3eno6ysqEmBd1wAj5C1WSC1VYL61XJMCjBIifC1x7G7i+suWKEb1ej3fffVc2YQcPHsTWrVuxYcMGbNmyBQcPHsSOHTsAADqdDs8++yxmzJiB/fv3Iy4uDosXL26aOyAIgmjGSONFIiMjoVaruX/e1j/KBDdNGN+W/ZKvRpZR4xxmVTFSWsZQWq4SNuopeCYSHmhYwO5ahpEF38wgLy9Ptr18+XKh4eDF95lrGQGAyKBqweQcjtRrBssIFyZKFxRWGa8yC8CqNUZEvL29gcyNQNJzQGW+3QueARaWg//uu+8QFxcni2bevXs3pk2bhrAw4YM+e/Zs7NmzB5MmTcLJkyehVqsxadIkAMC8efMwZswYpKenIzi4tjTX6XTQ6eT+QAcHBzg5GV9aurWh1+tl/xP1Q/NlHjRfptMUc5WUlMTbkZGR0Ov1CAkJQX5+PtLT01FVVWUzf31OTg7gaAhsCPBi0OvlcRrB0lAFp1BkZp41+f7rmq8v9gKFJcCCyYB0LbZ0aXFXnVBjpL5rRYYaLAg3ciob9b5ILSOA4EYBIEvr9dKY/96HByrwbxIApTOSr2v563lGlaY39BAE2MTBDDsOMh5QLAwkF50797Tq32dNC1RoaKhVr2fKAnxmi5GCggJ8/fXXWL9+Pd59912+PykpCRMmTODbsbGxPIUpMTERMTEx/JharUZYWBgSExONipH169djzZo1sn3Tp0/HnXfeae5wWzSpqan2HkKLgubLPGi+TKcxc3Xq1CnednNzQ3JyMreMaLVa/Pvvv/Dw8Kjj1U3LtWvXACehypmzox552anIr1Ht3QlqANWCxTkUWelZuHr1qlmCSTpfp684Ye5/he/5vLwczBlj+BH7T4ITgOpnQEUG9Hp9rTRoKQ7MFYBgusnMq79vQ9y4ccPofk3gQIgj1DgVIDk536zzeqt9AAgmlZwiNeLj4+Hs7IyzZ88KHdwH8L4DY3Nx8K9c5FZ0MJygIgfu7u6NureGqPnD3snJyarXi46ObrCP2WJk1apVmDlzZq0/ntLSUmg0BtXq5ubGS+FqtdpaCxq5ublBq9UavcbcuXMxa9Ys+UDbmGUkNTUV4eHhdl3SuaVA82UeNF+m0xRzJS3O1bt3b0RGRiI6OhqHDx8GIHy3RUZGNsl4G0Kr1QJOgm8myEeBqKja1+0pNUo7haKiogJeXl4mpX4am6+9ZwzHtx3yxUv3+0LUNaelGk+XgZiYm+qdi04Sj1FRmQsiIiIstiqJln0fHx+oVCrujvKOvgPF1XGytw31RGSkZ12nMErXGAC/VW84R8DR0RGRkZEoKSkR9kkyaW4e4o29B/7FgSSDGHFz0aFXL8NChtagplumT58+NvsM1oVZYuTixYs4d+4cnnvuuVrHXF1dZW6bkpISnsKmVqsNb4TkuFqtNnodJyenNiM86kOpVNLDwgxovsyD5st0GjNX0l+c0dHRUCqVCAkJ4fsyMjKsnj0hkp2TDwQJfphAH4XRe4oIZACqXTfV8SU5OTkNxnNIkc6XUGFVON/ZROB0ggK9OwoCIitfcq2KTPj6+tY7zyF+hv56lT9yc3Ph7+9fZ//6EN00wcHBmDNnDn+ulToNALSAgwoY0VMBpdI8sRMpnT+XCFy/fh3t27c3ZNZ4CJYRDzcgLlqJsX2qcMDgyUNEsMbqf5c104YjIyPt/l1glhj5+++/kZKSwt0xxcXFUKlUuHbtGqKjo5GQkIAhQ4YAAOLj49GunRCk065dO2zfvp2fR6vV4tq1a/w4QRBEa0UUIyqVCqGhQu0OqXvalkGs2QUKIFh46ATWkbji5wk4OQK6CvBKrZmZmejQoYPxFzTA9Wx5TMr63YyLEdm6NLqGA1jl8SzBSEtLs0iMlJWVccu9j48PHnvsMRw/fhxX0ytwQiucr19noQicudRM7xUDV1NTU2XFzvp3FuJnJgwLxItfZQOOQoGX9pFNv1JvTaTz7Ovryw0H9sQsKTR16lRs374dmzZtwqZNmzBs2DDMmDEDCxcuxIQJE7Bt2zakpaUhOzsbmzZtwi233AJAME1qtVrs3LkTOp0O69atQ5cuXYzGixAEQbQmxGyasLAwvu6K1DJiKzFSVVWFAq0hGyWojppaCoVCUvhMsIzUrCRqDuk1YlK+2geUlQsCRboujSnZND4egFJR7UNxDJTV8TAHaSaNj48P1Go1vv32Wzz2kuFH8+jeFp261vo0ohi5du0at4oAwMA44X9PDw3cK4/w/d1i/WBtpPPcHNJ6ATPFiIuLC/z8/Pg/Z2dnuLq6wt3dHUOGDMHUqVMxZ84cTJ8+HYMHD8bEiRMBCG6Xt956C5s2bcLIkSPxzz//YNmyZVa5IYIgiOZCUVERdwdIffLSH2LXr1+v9TprkJeXBzganpR1WUYASa0RR19A6dKo9N7rNcRIXhHww0GhXdMy0lCdEYVCAU91dayhU7Csjoc5SDNppA/mfScN4mh0b8tiUUL8AKVCdHNFIDU1FZWVlYLolAavdjWcf3D4fqDoOJC+BqMHBtU8ZZPTHMWIRam9IkuXLpVtz507F3PnzjXat2vXrti8eXNjLkcQBNGikMaLREVF8bY93DRCWq9UjNT9sA2rUfisKSwjCgUg1sFcv4fhrtEK2bo0KpYjS4KoC3/PSuSVAnAKQEqqZXMniBElEDAbhar+AISKuL9WL02jdgYGWFjqw9FBgUDvKqTnOnDLSHp6upA6K7GM9Jecf+H8W7B/0jB06NABQ4actOzCZiAVIB07drT69UyhUWKEIAiCqBupGKnLMmJTMeJkqDESWI9HJFTqKWhE4bOqKoYb1YLjphjBKnL1BvDzceDERYY0sdJ8ZSF8vVxNyowJ9VcivnrKrqRYtnJvbm4uEHA30HE9tl0CPt/D0L8LcL16PMN6AM5Oltd+iQpWIT0XgmC6liXEiygcALebAACdIgBvdwWv8TJu3DhkZWXBzc0NKpXK4uuaSmxsLF599VX8888/eOKJJ6x+PVMgMUIQBGElpNVXpZYRjUYDjUaD4uJiO1pG6u4b5q8AzwhphGUkKx8Qa2mF+gOThyqw5DMGxoC+8+XxIg25aEQig52B6nTh5PRyi8aVm5sLuPfl2w+9w3DvzYbjlrpoRCKDFDhyTminZOgFd5JzJKAUskS7ta/9GlvVmhF58cUXbXq9hqC8PoIgCCtRl2UEMASx2tYyYhAjdQWwAjXWp3G2fH2a65I19kJ8gXtvFlJma1F60eTU4agQZ95Oq5GpYypC/IwhNqNMB3yyw3B8dCPLfEhX780qdBXWIFIbCn+2DzHyojYOiRGCIAgrUVfMCGBw1RQVFclqNFkL8ywjko1GWEbSJTEhwb6CxWDbcgVmjwNmjAYmDSoH0j8BEp8x2TIS4mewWmQXWObSyM3NlQkzKT4ewE2WZTFzIgIllhXncPz111+Ai8EcEhNqm/L/LQly0xAEQVgJ0U2jUChqZS3UjBuxtI6HqUgtI46qKni41f31H9pEi+XJLCPVImLiEAUmDhHa8fGp+OHNBQAAH58BtV5vjCCJAUVb5YmSkpJaFb4bQhAjwvw7O+rh6qJEXnWh3JE9YXahs5rUrDVy5MgewHUR3xUTVvs1bR2yjBAEQVgJ0TISEhJSq6q0rYNYpZYRX4/6F+cL8QV4HKVzOLKysixaSE1aYyTYiFuorhTb+jBW+MxcBDEiuGnC/Kqw8SUFX8Bv1tjGWy1q1hq5ceMG4EJumvogMUIQBGEFtFotMjIyANSOFwFsL0ayc/J5lc/6XDQA4OAgKXzmEoWqqirk5+ebfU1p9dUQI7W8pGLEVDdNU4iRzJxSQCWkEQf7KTBhoAKn1ynw+wcKTBnWeDESWcMyAgBQCxXHXZyMz0Vbh8QIQRCEFUhJSeHtmvEigO2rsN7IqeRL1Yf6NxxrwR+ojn6A0tWiuJGGLCM1K6GaQqA3oOCZPkGWiZF8w/2HBwjuqm7tFRh2U9PEcnhqAFfnSmHDOQKAkseMtA9tvBuoNUJihCAIwgpI03qbg2UkK9/wdR/s17AYiZKu1uESaVHciFh9VakEArxqH7fEMuLgoICHujql11I3TZEjb9eXVWQpCoUCYX7Vbi2XCKGsvlLIAiIXjXFIjBAEQViB+tJ6AduXhM8tljyATTBCyF0NUY2yjAR4CSKi1pgsiBkRzmdYnyY11XwxUqA1rBgf5GMdK0V0aHWAsNJFVgY+JtQql2vxkBghCIKwAjdu3OBtcbVeKba2jBRKHsCBJjyAI4MkfSywjOj1huqrdcVIWOKmEc5XbdlROiHpWoFZ46qsrERppaHAmDH3UVMQFSR5vHqN5M2YMHLRGIPECEEQhBUQg1cBIDCwdk0LT09PuLgIq+haW4yUlpaiAgY3SEMBrAAQJV2vzTnCJMvItUwgu1B4rGTlA1XVBoy6HviWuGkAIDLEkJmUcqPC5NcBEAJxJQXPTLESWYKs1ojnCN4kN41xSIwQBEFYAakYCQgIqHVcoVDYrAqrUGPEvAewzE3jEtWgZeT30wwdZwOjFoUiPlUevNrUlpFQf8OjKz3HvCqs0hojgPUsI7L0XtdY3qQaI8YhMUIQBGEFpJaEmmKkXMeQcI1xV01eXh7KysqsNpaapeDrWyRPJFw65AYsI3o9wxMfMpTpgOIyJdb9KC941tSWkWBfg9Uht8gZlZWVJr82Ly/PbGFmCRG19SccVMzofoLECEEQrYyqqiqUl1u2gFpTIlpG3N3doVYb4jXOX2XocLfwr8TzXr7fmtYRc0rBi7g4KxDkU50R4lx/zMiW34DTlw3b2343ZNIAQIiv8TgJUYxoNBo4Ojoa7WMMqbhhjoEyK1RDSEvBKxVV8LHS+nQRRqrNRwUZD+QlSIwQBNGKKCsrQ48ePeDt7Y0jR47YdSyiJUEaL3LiIsOwxxhSq40M6VWj+TGrixEn4Se5SlkJT41pr+NBmM4huJGZb7RPRSXDy2vlrpKkdODHI4Z9dVlGRDeNOS6aWuczs9aI1E3j4VJqtZofof6AQiGvWkvBq3VDYoQgiFbDoUOHcO7cOWi1Wrz33nt2G0d5eTmvWCqKkd9PM4x6giFHkvyRrQ0DFIJFwFaWEU91Wb2l4KVESoJYM/KdjPb57EcgoVoLuLkY9u84ZGiv/+Q13HXXXSgsLOT7KisruWXEHBcNUMO1YmatkeycPMBRWHzHW6Mz67rm4OiggJ+7PLiWglfrhsQIQRCtBmm9jr1796KiwrxMi6aiZrxIWhbDhGcZikqFfeI6KFXMAXDrDsC6YiQzK5c/gH3dTY+vkAax5pW611qfRlvOsOxzgwVk48uAUiFsS7t+v+VjbNmyBW+99Rbf9+eff/L3p2PHjiaPCahtGbl27VqdfUtLS/Hxxx/j0CFBHaXeKAMUQmqwv2eVWdc1l5quGlqtt25IjBAE0WqQPtALCwv5A8jWSMVIYGAgdh8FSqvjU8f3A16fJ3koufcFYF0xkpZZzkvB+3uZvuBdVLBhnMwpQhZwCgCf/GAIVJ08FJg4GOjXUR6vowADdEJMx1dffQXGBLHy3Xff8T5Tpkwx/WYAuLooDOXWG7CMPLN4HRas7ozh9x1BWtp1pGUZ7j/YSsGrIh0inGXblElTNyRGCIJoNdR8oO/evdsu46hZY+TfRIP14Lm7FRh+k6SzRhAj1qzCej3bYAEwpRS8iDy9N7JWRs1vpwz3teQ+Qbjc3LdE1sfVsRiAcP2kpCQcPXoUer0e27dvBwA4OTlhwoQJJo9JJFAUVfWIEb2e4fOjYwHPYagKfgoffXkcGXkGgRVavS6NtaiZOUNumrohMUIQRKuhphj58ccf7TKOmjVG/k0yHItrB9wUAziImqAJLSMPP/ww4uLicPToUdn+rHzDAzg8wPSslUhZ4bPaGTUp1drEQQV0ExalxfjeWlkfZ4XcmrJp0yYcP36cC4ixY8fCw8P8lJawgOrHl0qDlLQ8o33W765AqdJQ4+OHP0qRXWgQY1EhzsZe1mRIC58pFEB0cD2d2zgkRgiCaDXUfKCfP39etmCdrajpphHFSIA34O+lgIuzAj1iqju4dgZUmkaLkaSkJKxevRrnzp3DzJkzUVoqBKgwxpCebXBNRIa41HWKWsgtI7VrjaRUa64wf0ClEh68gd5VGBxn6KOslKfdfvPNN9iyZQvfNtdFIxImsWpcy6wdG6QtZ3jxU3lMyKWMCOQWGQRIdKi65suaFGnMSHiAkC5NGIfECEEQrQZjD3R7uGqklhFH11BkVv9wj4s29OnbqbqhUAKa3o0WI1I3z9WrV7F8+XIAwIYNG5B6w5A1EmKGm0bjqoDGuTrYxVlehbW4lCG3OjmmZqDmHcMN7crSVNmx7Oxs/O9//wMAKJVKTJw40eTxSJGutpuRV/tRtvJbICNfbvmoVPfB9TxXvh3qb/pcWIJ0XshFUz8kRgiCaDWID3RnZ8NDyN5iJL/CsEieVIz06ywPYs3KympU9k9WVhagcACchKfe22+/jT179mDhwoVmV1+VEuhVHZDqHIobNwxiJFViJKkpRu4aBV5MrCLrp1rn1OkEcTRs2DD4+/ubN6BqpFVYS3QeKCkxxKpk5zP8d1N1PAurAvL2CW2lI5jPJMk5LLq0yXSKEOqNAMD4fmQVqQ8SIwRBtAqKiopQXFwMABgwYAAvtb5//35otdr6XtrkSN0ZNwoNT7y4doYHUr/Okhe49xP6Slb6NZeMzByg50mgfyrQ7j1UVupx6623oqioyOzqq1IiAqpdPAoHXE03iKWUesRIkC9wdoMCh1fpUHL1MwBAv3794OXlJes3depU8wYjoWZ6r9Sy9PpGhkJRm9xYD2XGx4a+DoYxWKsUvIizkwInPlVg//sKPDPDutdq6ZAYIQiiVSB9GIWEhPAMDa1WiwMHDth0LKJlxMnJCQnphhgNqWWkUwTgJoYsaPoAaFwQ679JANyqgzVCHwc6fQ0GJ0ClgZNXN97PXMtIuxCDKyMl0/DISJGEgkQE1P7VH+KnQKCbwXUUHR2N6dOny/pMnjzZvMFIkIuRYJmb6vs/qxv6MiBlKfp0KAaYvL6KA4psEsMR5KvAyF4KHlNDGIfECEEQrQLpgzw4OBi33nor37Z1Vo0oRoS0XsP+rhIxolIp0Ees9eUSCTgGNkqMJNc0qvhPA246DPS9Cp1zDwCA2hnwMrEUvEhslEFM3cgzuL9SMgxpvcbWYQHkcSwhISGYNWsW3+7bty/Cw8PNG4yEEKkYcQ7j1yorZ7gqzkXJGUCXjsH9uyFEkyJ7vVpVCKL5QGKEIIhWQU0xMmbMGCirS53WTHW1JlVVVcjOFiqB+UvSeiODAA83+a9juaumb6PEyPVcI+XaNTcBjoJfRqEAnp+lMLkUvEispHBXVpEh+FNmGTFRjAwdOhRTp06Fp6cnFi9ebNY4ahIdLFn7Rd2RX+vKdYCJOkkrrN7Xv39/jOwpt4y4O8vroRD2hcQIQRCtgppixN3dHREREQCAhIQEXvnT2uTk5PCy6Z7+cbwEvNRFI9K3kzyItTFiJFsiFF65rxR+nkLbQQXcdwtw4UsFFt9nvqsgSlJrpKDMi8+jNGYkvEZxL5GaYkSpVGLbtm3Izc3FbbfdZvZYpLg4KxDqU53p49oZaWnC3F2SGkBKLwEQYojunxohe72XW1mjrk80LdYtP0cQBGEjaooRAIiJicHVq1dRUFCAnJwc+Pn5WX0c0uBVlUcPoPoHuDExIrOMaPoiPX27xdctKPPm3+hzbnHFvIkK7D0OjOwJRAZZHq8gLXxW5RCK7Oxs+Pv7c8uIl6a2xUekphgRES1WjaVThB7XcgCoXJFwTQiujZdmEmsvIzAwEBEREQgNBRxQiEq4AwD8POyzbhFhHLKMEATRKjAmRjp06MD3Xb582SbjkKb1VjoZqn9KM2lEIgIBX49qV4PmpkaVhC/RV+eQsgqE+SsQ7KfAfbcoGiVEAEFsOCurFZVrF6SkpECvZzy1VxQrFRUVWLduHXbt2sVfW5cYaSpuijW4kBIzhGjgS6kSC5j2Evr37w+FQgEHBwU6BRnGE+xLj7/mBL0bBEG0CuqyjIgkJCTYZBxSMVKsj+JtY5YRhUKBzlHVYsEpENfSCyy+boVSeNg76jPg4NB0mRsKhQKhXtXKwzkEf5/LwI1coKI6BCMiQKhxMnbsWMyfPx+PP/44z16SihHxPWlKbupgiJO5USCkCdW0jPTv359vPnSnwVUzZbzULEXYG3LTEATRKhDFiIuLCzw9hYAJe4gRqZsmWytEdiqVQiqvMTqEKXDwjNBOy7FsrZTrmSWAgxCo6qrKAlDHxSyka0QJEquXmDn6byW69TYcUyuz0KdPP6SkGII1fv75Z4waNYqLEXd3d7i7uzfpmAB5dlK+ThA7l0QxUp4K6EvlYmSKKzIKGBQKYNoo65aCJ8yDxAhBEK0CUYwEBwfzjBH7WkaUSMsTRFGHsLrXJYkJVQAQXAs5pd6oqqqCSmVemfIzlwoACA9XLxfLrSt10a+zEjtPC+2zV9WyTJrvvl6JyhR52uyRI0cAGCwj1nDRAEDHCADQA1Ci0qkDrqYVIafATTiojYdCoUDfvn15f5VKgWUPUL2P5gi5aQiCaPGUlZUhL09YAEbqDmjXrh0XJjaPGVG3R0WVICqMuWhEpGuWMOd2tVbGNYVzVwxpqv4eTZ+yOqqfYVXd5Bx/mRipLBEKqQwYMAChoULp++PHjyMvL0+o/grriRG1swIah+r5cu2CI6clKwRrL6NDhw4WrQhM2B4SIwRBtHikZdSlYsTFxYUX1rK5m8bVsHRtfWIkJkyy4dLeoiDWhFTJQng+TZ8l0qdbMKATLE85uigkSwqeoSwFTk5O+O233zBs2DAAQtXbPXv2GMZkJTECAEHuOUJD5Ya9xySr9JZeQvfu3a12XaJpITFCEESLx1jwqojoqsnLy0Nubi6sjWgZUbh14vu6RtftGpCt5qpub1GtkavpBnEQGdj09VScnBzhUnEWAFCl8MD+vyUHy1MQExMDFxcXDBw4kO/eunUrb1tTjET6l/L2b2c9DQe0l9GtWzcjryCaIyRGCIJo8ZgiRgDbWEdEMeLs1dUwhtC6egNe7gponKsX8lPHWCRG0nIcebtDuGM9PS3H3yWZt89frW6wSkCXjk6dBOElFSO2sox0itDzdkqOZBVALVlGWhIkRgiCaPHUJ0aktUasLUYYY9xNo3Q1XLd9PWIEgKGSqHM4Uq6ZHzOSVVhdfZVVITbKzMVnTCTaP6f2zvJrAPRcjHTv3h1qtRBIW1ZmqHBqTTHSs6ORDCS9DihLJstIC4LECEEQLR5TLSPWDmItLCxEeXk5AKDKMQoA4O9Vd4VSkehgw6/7+BTzYz7ytNXuifJrCA6yTpXZ7tG62jvLhSyajh2FFf8cHBzQo0ePWt2sKUYGdPcCmF6+sywBbm4uiI6uJ1iHaFaQGCEIosXTXNw0PJNG6YJyCKKgIasIAHSOMhTvSrrRcFovY4yvEVNUylCur7aGlF+Fv7+/eYM2kU4x/oD2inxnuVDUQ7SMAECvXr1qvdaaYqRdVBBQdlW+s/Qy4uLimqzsPGF9qM4IQRAtnvrESLt27Xjb2mKEZ9K4GK7Z3oTncPdYN95Oz3etdZwxht1HgZ//Yjh1GTidAKidgd1vAc7SEJGyFPj5DbF0+PUSEREBFB0H1O1l1wMMlhEA6NmzZ63XWqP6qoharYZDRTwq1YY5h/YSug0mF01LgmQjQRAtHlGMODg41FoMz9XVFWFhQv6szSwjLgZrTH3BqyKdIg3WkNxSn1rHdxwEbnuO4YNtwJ9ngKJSIDMPePR9hquGrGY44wYcHa0TwBoREQEUH5fvLE9FUFAQr3gL1BYj3t7ePI7EWng61kiH1l6m4NUWBokRgiBaPKIYCQwMNGqaF1012dnZyM/Pt9o4uGVE8iu9fWjDFT+lgqVUH8xdMCKH/5VvO1bbtI+eAz7+3nDM0znPzBGbjmAZOSHfWZ4is4oAgI+PD2JjDQsEWtNFIxLoXiO4VnuJgldbGCRGCIJo0VRWVnIRUJc7wFZxIwbLiMGVYYplxNcTcIBQOZU5RyMnR/5wTZZUPP17rQKblxgEzu6jhmN+7k1ffVXEy8sLbogHmKSwWHmKLF5ERJriawsxEhVQKt+hjScx0sIgMUIQRIsmIyODWxJsJUZOnDiBZ599FmfOnOH7GGP4++/qamBqw/VMCWBVKBTwdM4WNlyikJwirzUiLb/eORKYMgzo2QG1CPY2kvHSRCgUCkSG+QGl5ww7jVhGAKE0vIgtxIhsEcKKPAT7O8LX19fq1yWaDhIjBEG0aOoLXhVp6lojd911F1asWIH+/ftj48aNYIxh0aJF2LlzJwBAUS1GNGohtdcUAjwKhYZChX8u5cuOiZaRQB9hwb3U1FTMHXVVfgKmR3igZfdjKpGRkcC1d4CqEiD9U6CqyKhlZOzYsXByEjKEpAvVWYuocD+g4A9hI38fupNVpMVB2TQEQbRopGKkrl/hTVlrpLCwEImJwuJwZWVluOeee/Dpp5/izz//FDooHaFQR4ExYd0ZcaG+hgj30+FCdb2zfxO0fL+ugiG92msTGQhcvHgRAwYMQEFBATpMy8LljOqAV10aggJqB782JREREcCeT4DMrwEI7hpjlpHo6Gjs378fV65cwYwZM6w6JqBahJ6fCngMBQr2o/vtD1v9mkTTQpYRgiBaNNKF5eqyjLRvb4jhaKxlJDU1tdY+LkQAvLriC+iZ8NVqSlqvSIcwg2i5fM0QlHotCxDjWSODgGeffRYFBQUAAMfrrxpOUJZktRojIhERoj9EECLOzs6CtcQIgwcPxpw5c7iFxJqEhIQAlXlA7g6gqpjiRVogJEYIgmjRXLt2jbfFFXpr4ubmxoVKYy0jKSkpvN2rVy84OBgMzO+//z76DrmLb5sjRrq2d+Ht1CzDAzxZkrqr0F3jriAAOH94Jbr5HwUqsoC0D2qlNTc1BjEi0KFDB6hUDRdpszY1LWIkRloeJEYIgmjRSMWIWE/EGKJ1JCsrC8XFxRZfT2oZ+c9//oPff/8ds2bNwqZNm7Bw4UIkpBn6xoSZ5qIBgF6dDbU6MgoN68tIg1ePHvim1utSfp0AHA0Ccrbb0DIiYCxexB5ILWIqlQqdO3e242gISyAxQhBEi0YqDuoTI9J1SpKTk+vs1xBSy0hERAQGDRqEjRs34u677wYAXEkzuFjMsYz06BwAVAkpqgXlBguHNK03Jf4gAPm9iC4bAFYXIzVdMsbiReyBs7Mzr7Tbq1cvODsbWTyPaNaQGCEIokUjWkbc3Nzg5eVVZ7+oqCjevnr1qsXXk4qf8PBwFJcyvLRGj8/3CCJEbhkx/bwuLs5QVSQBALQIRkWlcL7kG5KCZ+WCiProo48wePDgWuewthgJCQmRFZVrLpYRAPj8888xf/58fPrpp/YeCmEBlE1DEESLhTHGxUhYWFi9mStNJUaklhE3r3DEzhKyXQK8GaYMA65Ux9M6OQKhZoZwaBTJKEBXQOGEc0kMN3VQICVT0qE8BWPGjMH48eORlJSEQ4cOyV5vbTHi6OiIkJAQPufNSYwMGTIEQ4ZYZ10ewvqQZYQgiBZLQUEBSkqEqqP1uWgAuRhJSkqy+JqiGPHy8kJUqAfE9dgy84DXvmBIrBYj0cGASmV6zAgABLsb0pR/Oy7UHeEBrJVFQGUeFi1aBIVCgenTp8uCZ11dXeHqWnuRvaZGdIcolUpZ2XeCaAxmi5HXXnsN48ePx/Dhw3HXXXfJUto2bNiAMWPGYNSoUVi5cqVsfYVz585h5syZGDx4MObPny+rDUAQRMtj2bJl6N69O3777Te7jcHU4FVAHmdhqWVEr9fza4qZO289pIBT9dp072wBtOVC25Qy8DXpHG6oL/LnqRIwxgyWkWoXTZcuXQAAfn5+GD9+PO9vbauIyIsvvoguXbpg+fLl8PDwsMk1idaP2WJk1qxZ2LlzJ37//XcsXrwYL7/8MgoLC3Hw4EFs3boVGzZswJYtW3Dw4EHs2LEDAKDT6fDss89ixowZ2L9/P+Li4rB48eImvxmCIGxDfn4+XnnlFZw9exazZ89GaWlpwy+yAqYGr4rHxXgHS8VIZmYmdDqh5LqYWRIdosBTdwrHqyTLtpgTvCrSP84QeHkmUYXMPKBcrPBengpnZ2dZGqsYNAvA6mm9IuPGjcO5c+fwwgsv2OR6RNvA7JgRqalToVBAp9MhOzsbu3fvxrRp0/gXwuzZs7Fnzx5MmjQJJ0+ehFqtxqRJkwAA8+bNw5gxY5Cenm60SJFOp+N/8HygDg42KZ7THNDr9bL/ifqh+TKPppivK1eu8Ndfv34d7777rl0eTtL4jdDQ0HrvSaVSISwsDCkpKbh69apJ919zrqQiJjw8nO9/7m5g/W4gQ7JobrsQ8+c4rlMYsDkBUMcgOccLCWny4FXRRSKe9/bbb4efnx+ys7PRvXt3u/8N0N+iebSV+TK2knZNLApgfeONN7Bz506Ul5dj+PDhaNeuHZKSkjBhwgTeJzY2FqtWrQIAJCYmysoxq9VqhIWFITEx0agYWb9+PdasWSPbN336dNx5552WDLfFYqzSI1E3NF/m0Zj5On78uGz7zTffxPjx423261zk3DnDom1OTk4NpuwGBwcjJSUFOTk5OHfuHDQaTb39RcS54gvhAdBoNLLrPTFFg//7zLA4m7tjBpKTy0w6v4harQaKTwHqGFTqnfDtL/kAvISDZSkIjgiudY+ff/45jh07hsmTJzcqZbkpob9F82jt8yV1kdaFRWLk+eefx6JFi3DixAleWrm0tFT2h+3m5sZNt1qtFm5ubrJzuLm5QavVwhhz587FrFmz5ANtY5aR1NRUhIeHm6Qo2zo0X+bRFPNV0y1TXFyMDRs24MMPP2yKIZqMtHhZr1696ixNLtKxY0ccO3YMgDAPDfWvOVdlZQZx0b17d9nrn54FfPMHcLq62vywPoGINNNVExwcDEXpUjBMBwAcOOtlOFiegri4uFpjjoyMxM0332zehawE/S2aB82XAYtTe1UqFfr374+vv/4a7dq1g6urq+yLoaSkhEd2q9VqHvEuPa5Wq42e28nJqc0Ij/pQKpVt/gNqDjRf5tGY+TIWc/Hpp59i4cKFNs2wSEszFPWIiIho8H6kv9BSUlLQo0cPk64jzpX0F2xUVJTsekolsGkxw6PvMQzuBsSEmT+3Li4uCHS7DjGB5p8rkoPlKYiJGdgiPuP0t2geNF9NkNorRpdHR0fLFqCKj4/n/s127drJjmm1Wly7do0fJwiiZSEVI/PnzwcAVFZW4sUXX7TpOMTMFhcXF/j4NLxibWNrjdQseFaTLlEK7F+pxPIHLf9qlWbUyChLli34RxCtCbP+YkpLS7Fnzx6UlpaisrISv/76K06ePImePXtiwoQJ2LZtG9LS0pCdnY1NmzbhlltuAQD07t0bWq0WO3fuhE6nw7p169ClS5c6V9gkCKJ5Iz7InZyc8PbbbyMgIAAAsHPnTpsG44nioKGCZyJSy4gltUbEgFmFQoHQUAtyd02gS4dAoOyqfCerBHTXSYwQrRazxIhCocAPP/yACRMmYPTo0Vi/fj1effVVxMTEYMiQIZg6dSrmzJmD6dOnY/DgwZg4cSIA4QvrrbfewqZNmzBy5Ej8888/WLZsmVVuiCAI68IY4w/yyMhIuLu7Y+DAgQCA8vJymwXjFRYWoqioCEDdq/XWpKksIyEhIXB0dDT79aYQExMjBLFKKb8GhYLJxk8QrQmzYkbUajVWr15d5/G5c+di7ty5Ro917doVmzdvNm90BEE0O3Jzc3l8mPhw7NChAz9++fLlBgNDmwJzCp6JhIaGQqVSoaqqymwxUl5ejhs3hGgOU8WPJQhi5AjgN0Vy8WSEh4fTAnBEq6VtR8wQBGE20oe46PaQBq3Gx8fbZByWiBEHBwcuJMwVI9LriQXPrEGHDh2A4r/lO8tSyUVDtGpIjBAEYRbSh3hdlhFbYIkYAQwCKi8vDwUFBfX2LSoq4hk7UveTNcVIVFQUFKWn5TvLKXiVaN2QGCEIwiykgZ8tUYyYGjeSnJyMuLg4DB06FB999JGs2qs13TTOzs6IDHYByg33h3KyjBCtGxIjBEGYhTHLSEhICK8rZCsx0lCabV2YIkaKi4sxceJELniefvpp7Ny5kx+3pmUEMBLEWpYsq2JNEK0NEiMEQZiFsZgRhULBrSOJiYmorKy0+jisZRnR6/W45557cObMGb5Pp9Nh69atfNualhGgWozkCAuNorIIKD5BlhGiVUNihCAIsxDdNC4uLggMDOT7RTFSWVlp8aq45iCKEScnJ7PWxGmo1siSJUvw/fffAwA8PT1lLigRa1tGOnToAGSsB86MAU71BCpzSYwQrRqLy8ETBNH2YIxxoREZGSkrNFYzbsTabgVRjJha8EykPsvIyZMn8eqrrwIQSnR//fXXUKlUmDRpEl+XxsXFxeoLAgpzx4CC3wAAfn5+8PDwsOo1CcKekGWEIAiTyc7O5ovk1SzAZcv03uLiYuTn5wMwz0UDCPEtDg7C77CaYuT333/n7SVLlmD8+PHo0KEDVqxYwfdHRESYJX4soaaQI6sI0dohMUIQhMkYixcRsWVGjTRexNz4DZVKxd0sNcWINGNm1KhRvP3www9j/vz5cHZ2xuOPP27BiM2jXbt2MsFDYoRo7ZAYIYgWhF6vxw8//CBbeNKWGEvrFbGXGDHXMgIYhFRBQQHy8vL4fqkYkcaFKBQKfPLJJygqKsIjjzxiyZDNwsXFRXZfJEaI1g6JEYJoQfznP//B5MmTMWzYMO4usSXG0npF/P39eVxDSxEjgJD9IyKKEaVSiZCQkFqvs9Z6NMaQijsSI0Rrh8QIQbQQDhw4gLVr1wIA0tPT8e+//9p8DPWJEYVCweNGkpOTUV5e3qTXTk5OxhtvvIHJkydj0aJFfL8lYkT6cJeKEelCeGJcib2QxuAYy+ghiNYEZdMQRAugvLwcDz30kGxfQkIC+vXrZ9NxSN00NWNGAOGheeLECej1eiQmJqJz586Nup5er8ePP/6I1atXY8+ePWCM1erTpUsXs8/brl073hbFiFarRWZmJgDrp+6awoIFC7Bv3z7ExcVhwIAB9h4OQVgVEiME0QJYsWIFLl26JNtnj7gR0TKiVqvh7+9f63jNuJHGipGHH34Yn376aa39np6e6NOnD2bPni2zIJiKVIxcuXIFgO0WwjOVbt262ayaLUHYGxIjBNHMSUhI4LUvau63JdIaI1FRUUbTW6VipCnSe7/99lvejoiIwLx58zBt2jTExsZCqbTcy2zMMlJX8CpBENaHxAhBNHMWLVrE4y8WLFiAjz76CIDt1oARycjI4IW/asaLiEitFI0dX35+Ps90GTRoEP744w+oVKpGnVPEx8cHXl5eyM/PJzFCEM0ACmAliGZMeXk59uzZAwAIDAzEm2++yQM2bW0ZkYoLqWVBSlOm90rjUzp37txkQkREvIeUlBRUVFSQGCEIO0JihCCaMadOneJWkXHjxkGj0fDqnNnZ2bwKqS04d+4cb9cVNOrt7Q1fX18AjXfTSLNc6hI/jUE8Z1VVFVJSUkiMEIQdITFCEM2YQ4cO8fagQYMAyEuFi8GXtuD8+fO83bVr1zr7ia6atLS0RtVCkYoRY5k7jaVmei+JEYKwHyRGCKIZc/jwYd4ePHgwANtWOpUiFSP1pdM2VRCr1E1jTcsIIBcjGo0GXl5eTX49giDqhsQIQTRTGGPcMuLh4cEFgNQyYsu4EdFN4+fnZzStV6RTp068ffHiRYuvZ23LiFSMJCQkcDFii4XwCIKQQ2KEIJopSUlJyMjIAAAMGDCAB3DaQ4zk5ubixo0bAOp30QCQ1Ra5cOGCxdcUxYibm1u94sdSpGLkr7/+4plC5KIhCNtDYoQgminGXDSAPNbBVmJEKioaqnjaFGKkqqoKycnJAGqvYNtUREREcIF39OhR2X6CIGwLiRGCaKYYC14FBEtBcHAwANvFjJgaLwIIYklcUM5SMXL9+nXodDoA1nHRAICDgwMiIyMBgF8LIDFCEPaAxAhBNFNEy4hSqUT//v1lx8Qg0czMTBQWFlp9LKak9Yo4ODjw8cXHx6OystLs61k7rbe+c5MYIQjbQ2KEIJohBQUFOHv2LACge/fucHd3lx23dXqvqWm9IqKrRqfTybJiTMXamTQiUpeXCIkRgrA9JEYIohly7NgxvkKtNF5ExNZBrKIY8fHxQUBAQIP9Gxs3Yu1MGhGyjBBE84DECEE0Q6TBq9J4ERGpGLF23Eh+fj7S0tIACC4aU4JJpem9jRUjtnTTKBQKhIaGWu16BEEYh8QIQTRDpMGrxiwj0sJi1raMSMWEKS4aoPGWEambpq5F+ZqCmmIkKCgITk5OVrseQRDGITFCEEZISkpC165dMXToUGi1WpteW6vV4siRIwCAkJAQo24DW6b3mpNJI9KxY0feNkWMLF26FJGRkfjmm28AGCwjQUFBcHV1NWe4ZlEzZoRcNARhH0iMEIQRli1bhvPnz+PgwYP48ccfbXrtH3/8ESUlJQCAsWPHGnWLuLu7IzAwEID1xYg5mTQibm5uPG324sWLPP7FGImJiXjllVeQkpKCBx98EFevXuUF1qzpogEAT09P+Pj48G0SIwRhH0iMEEQN8vLysHnzZr596dIlm15/06ZNvD1r1qw6+4lxI+np6SguLrbaeCyxjAAGV01hYSHS09Pr7Pf555/zdnFxMebOncu3rS1Gal6DxAhB2AcSIwRRgy+++IKXBgeaXoxUVFSgoqLC6LG8vDzs3r0bABAYGIhRo0bVeR5p3Ig103tFMeLl5cWLrZmCKXEjer0eGzZskO07cOAAb1szk0ZE6qohMUIQ9oHECEFIYIxh9erVsn2NWXm2JidPnoSvry80Gg369u2Lhx9+GD/88AN3Y2zbto1XA50xYwYvV24MaUZNY8dYXl6OzZs318rMKSwsRGpqKgDTM2lETBEj+/fv5wvUqdXqWsdtYRmRihHRtUQQhG0hMUIQEv74449aK81eunSp3pgHc/jmm29QVFQEnU6HEydOYPXq1Zg8eTKWLFkCAPjqq6943/pcNIA8s+XMmTONGteLL76ImTNnol+/fjyNFzBvTZqamCJGPvvsM95evXo1QkJCZMdtIUbuu+8+hIeHo0+fPhg/frzVr0cQRG0c7D0AgmhOSK0iLi4uKCsrQ35+PrKzs5tk5VjRClCT5cuXIyAggLsoYmJi0KdPn3rP1aNHD94+ffp0o8Z1/PhxAEJNkYULF2Lr1q0AgLVr1/I+pqb1ijQkRvLy8vDdd98BEIqp3XXXXaioqMCDDz7I+9jCTdOhQwdcvXoVCoXCKgvyEQTRMGQZIYhqMjMzsW3bNgCAv78/Zs+ezY81lavm2rVrvJ2RkYFXXnmFbz/22GPcAjNr1qwGH4xRUVHw8PAAAPzzzz+NGpc0wHTbtm348ccf8eOPP3Ix4ubmhjvuuMOsc/r6+sLPzw+AcTGyefNmlJeXAwBmz54NZ2dn3HfffYiLiwMA+Pn51bKUWAulUklChCDsCIkRgqhm/fr1PLD0/vvvR7du3fixpgpiFeMv/Pz8EBAQgJdffhkzZsyo1e/uu+9u8FwKhQLdu3fn583NzbV4XGIqrcgjjzwis1C8++67CA8PN/u8onXkxo0byM/Plx1bv349b99///0AAJVKhR07dmDhwoXYtm1bvTEzBEG0HkiMEASErI5PPvmEb8+fP19WuKspLCNVVVU8HkN8sCsUCqxdu5aLCgDo06cPYmNjTTqn1FVjadxISUkJioqKZPuSk5O5QLnlllswb948i84tddVIU4QTEhK4a6hnz56y+4iOjsb777+PYcOGWXRNgiBaHiRGCALAL7/8wkuQjx8/Hu3atZMJgqawjGRkZKCqqgoAEBYWxve7ubnh+++/52uiPPfccyafU/oQt9RVI7WK9O7dW1YO3dvbG2vXrrXYhSG1LknHJwoRAJg6dapF5yYIovVAYoQgIA9cfeihhwAINSecnZ0BNI1lRHTRAKjl8oiOjsaFCxeQmpqKadOmmXzOm266ibebQowMGTIE//d//8e3P/roo0bFbUjHJw2ylY61Z8+eFp+fIIjWAWXTEG2ea9euYefOnQCEtWBuu+02AEL8QkxMDM6dO4eEhARUVVU1KoahPjECCCXe3d3dzTpnXFwclEol9Hq9xRk1UjESHByMRYsWITo6Gr6+vnwuLKVHjx5QKBRgjOHUqVN8v1SMSK07BEG0TcgyQrR51q1bx90nDz74IBwcDBpddNXodDokJyc36jrSTBqpm6YxqNVqPsZz587VWdm1PqSZNEFBQVAqlbj33nsbLUQAQWCJxdnOnj2LyspKAAYx4uPjw91TBEG0XUiMEG2ayspKrFmzBoCQ3inNIAHQpEGsDVlGLEW0LOh0OotiW6SWkaCgoCYbl4johikrK8PFixeRmZnJBZBoOSEIom1DYoRo0+zevZtnuNx22221REJTBrFawzICND6ItaabpqmRxoScPn2aXDQEQdSCxAjRplm3bh1vi4GrUqxlGWlOYqSmm6apkQaxnjp1SjZG6TGCINouFMBKtGn+/vtvAEIK67hx42odl1pGmkqMBAQE8CydpqCxZeFFy4hKpeIVU5sSqWXk1KlTyMzM5NtkGSEIAiDLCNGG0Wq13HUSGxtrNFPGz88PPj4+ABrnpqmsrOQWiKa0igBCBpAoIhrjpgkMDIRS2fRfCYGBgdz9c+rUKZ5V4+DgICuKRhBE24XECNFmSUxM5O0OHTrU2U+0jqSmpqK0tNSia924cYNn7DRl8CogVHEVLQyZmZm1SrvXR1VVFTIyMgBYx0UjIlpH8vPzce7cOQBCddamtBARBNFyITFCtFkSEhJ4W0w/NYbUVXP58mWLrmWteBERS+NGcnJyuEiyhRiRQi4agiBESIwQbRapsKhPjDRFEKs0k6apLSOA5WvUWDuTRsRYoCoFrxIEIUJihGizWGIZkS72Zg7WqjEi0rVrV96+cOGCya+zdiaNCFlGCIKoDxIjRJvFVDHSq1cv3v79998tupa13TRS6405YsTaBc9EoqOj4eHhIdtHYoQgCBESI0SbRRQj3t7e8PX1rbNfu3btEBUVBQA4dOiQRUGs1nbTaDQaft6LFy+CMWa0n1arxW+//YaioiIAcsuINd00SqVS5pYJDg6Gv7+/1a5HEETLgsQI0SYpLy9HSkoKgPqtIiKjR48GIJRcP3TokNnXk1pGGrMKbn2IabL5+fk8Q0aEMYYffvgBnTt3xpgxYzBnzhwwxmxmGQHkrhqyihAEIcUsMaLT6fDKK69gwoQJGD58OObPny8zdW/YsAFjxozBqFGjsHLlStmvs3PnzmHmzJkYPHgw5s+fL/tFRhC2JjExkX8+TREjY8aM4e1ff/3V7OuJYiQwMNBq6azSmh1SV01KSgpuv/12TJ48mS/2988//+DcuXM2FSNSywiJEYIgpJglRqqqqhAaGor169dj//79GDZsGJ5++mkAwMGDB7F161Zs2LABW7ZswcGDB7Fjxw4Agoh59tlnMWPGDOzfvx9xcXFYvHhx098N0WIoKytDRkYG/yeu5morTI0XERk1ahRvmytGKioquPi2hotGxJgY0ev1mDhxIn788cda/X/44QebBbACwJQpUxATEwNfX1/MnTvXqtciCKJlYVY5eLVaLVvV9K677sLKlSuRn5+P3bt3Y9q0aTw4b/bs2dizZw8mTZqEkydPQq1WY9KkSQCAefPmYcyYMUhPTzfqp9bpdNDpdPKBOjjAycnJ7Btsiej1etn/rY19+/Zh6tSpKCkp4ftCQkJw+PBhix7WlsyXNK23ffv2Db7Wz88P3bt3x5kzZ3Dy5ElkZ2fzyqwNkZaWxq0woaGhVntfpUGs58+fh16vx7lz53jdkcDAQDz//PN48sknAQhiRIwdcXd3h1qttupnzt3dHRcuXEBVVRUcHR1bxOe7tf8tNjU0X+bRVubLlMrOjVqb5syZM/Dx8YGXlxeSkpIwYcIEfiw2NharVq0CIJjEpb8+1Wo1wsLCkJiYaFSMrF+/ni/rLjJ9+nTceeedjRlui0MaZ9CaWLFihUyIAMD169fx5ptvYtGiRRaf15z5EkuSA0Lwp+i+qI8+ffrgzJkzYIzh22+/xc0331xv/+zsbBQXF8vSgb28vEy6liVoNBrePnXqFJKTk7Fr1y6+7/7778ekSZOwZs0anD9/HidPnoSjoyMAwNfX12rjag201r9Fa0HzZR6tfb6io6Mb7GOxGCkuLsbrr7+OBQsWAABKS0tlX4Zubm4860Cr1cLNzU32ejc3N2i1WqPnnjt3LmbNmiUfaBuzjKSmpiI8PNwqa4XYE8YYX8zN1dUVo0aNwu7du6HX6/HLL7/gww8/hEKhMOuclsyXNMBzyJAhJmV2TJkyBZ999hkAQYj/5z//qdVHp9Nh+/bt+PTTT3HgwIFaxzt37ozIyEiTxmguERER8PHxQW5uLq5evYrIyEhcvHiRH7/11lsRGRmJO+64gwukiooK/lprjasl05r/Fq0BzZd50HwZsEiMlJeX4+mnn8aQIUO468XV1RXFxcW8T0lJCVxdXQEIlpCav4RLSkqgVquNnt/JyanNCI/6UCqVre4DGh8fj+zsbADAyJEjsXPnTowcORIHDhxAQkICzp07h+7du1t07przVVxcjKqqKnh6etbqK8aMeHh4ICAgwCQBNGLECDg4OKCyshL79++v9d7s2LED8+bNk61KW5ObbrrJqu9p586dcejQIVy/fh3FxcU4cuQIAOFvqk+fPlAqlZg0aRKWL18ue11QUFCr+6w1Ja3xb9Ga0HyZB82XBam9lZWVeOGFF+Dv748nnniC74+OjpYFBcbHx6Ndu3YAhDoN0mPiaqnicaLtIE2LHTRoEABg2rRpfN+3337bJNdJSUlBTEwMwsLCcPLkSdkxnU7HXRIxMTEmW2I0Gg369+8PQPh81zStLlq0SCZEYmNjMWvWLMyePRuzZ8/GypUrMW7cuMbcVoNIg1j//PNPHhvTp08fnsVz00031UovtnbwKkEQRH2YLUZee+01lJeXY+nSpbIv8QkTJmDbtm1IS0tDdnY2Nm3ahFtuuQUA0Lt3b2i1WuzcuRM6nQ7r1q1Dly5drFpkiWieHD58mLdFMTJ16lT+Wfr222/rLNhlDqtXr0ZGRgaKi4trWQGuXr3KA8bqW63XGHWl+GZnZ/N1a9q3b4/9+/fj4sWL2LhxI7788kt8+eWXePzxx812QZmLVIysW7eOtwcPHszbCoUCY8eOlb2O/hYJgrAnZomR9PR07Ny5E6dOncLIkSMxdOhQDB06FKdOncKQIUMwdepUzJkzB9OnT8fgwYMxceJEAIKJ+K233sKmTZswcuRI/PPPP1i2bJlVboho3ohiRKVSoV+/fgCEB+GQIUMAAJcuXeJLzFuKXq/Hpk2b+PbOnTt5gTPA/LReKWLxM0AuRo4dO8bbkydPxsiRI60uPIwhFSM7d+7kbVH4iUhFFUCWEYIg7ItZMSPBwcE4ceJEncfnzp1bZ/2Arl27YvPmzeaNjmhV5Obm8sDJnj178pgiQMiW+vPPPwEAW7duRVxcnMXXOXTokEx86PV6fPrpp3j11VcBmL5arzH69+8PNzc3lJSUYN++fWCMQaFQ4OjRo7zPgAEDLB57Y5GKEWntlppipF+/fvDy8kJ+fj4AEiMEQdiXth0xQ9gU6QNb6jYABFeNSGPjRqRWEZE1a9bw2jWNsYw4OTlh2LBhAIRF5sTiYtJ7E+NK7EFERIRM5AHCPQYEBMj2OTo64tZbb+XbpqTeEQRBWAsSI4TNMBa8KhIaGsoFyvnz52W1OcxBp9Nhy5YtAIQMLzFuKTMzE9u3bwfQODEC1HbVVFVVcTdNSEiIVVblNRWlUikrfgbUnmuRV199FRMmTMBLL71U6zUEQRC2hMQIYTOMBa9KkWbVbNu2zaJr7NmzB3l5eQCE2A1pEbWPPvoI2dnZPCZFo9EgMDDQ7GtI4y327duHixcv8kqmAwYMsEusiJROnTrJtmtaoUQiIiLw448/1grwJQiCsDUkRgibUFFRwa0HERERRq0HkydP5m0xfsRcpC6aWbNmYcSIEfzh/McffyAsLIyn5JqT1iulW7du8PPzAwAcOHAABw8e5Mfs6aIRkcaNAHVbRgiCIJoLJEYIm/DPP//wirt1/VKPjIzkKabHjh0ze72GgoICnkHi5+eHsWPHQqFQ4OGHH+Z9ysvLefuhhx4y6/wiSqWSu2oKCwv5sgeAfYNXRaRixNPTE126dLHjaAiCIBqGxAjRaI4cOYItW7bUKx4actEAQv0L8WFeWFgoK2VuCp988gnKysoACIs4iuuuzJkzh1tivLy88NRTT+Hy5ctGy7mbijRu5OzZswCEdOXevXtbfM6mQio+Bg4c2OYrOxIE0fyhbymiUSQlJWHo0KG46667sHr1aqN9dDqdzH1Sl2UEkLs5pLU7GiI3Nxf//e9/AQiWC6k1xMvLC8eOHcNvv/2GtLQ0vPPOOxYFrkqpWacDALp3715rDSZ70LlzZ8ycOROBgYF49tln7T0cgiCIBiExQjSKgwcPoqqqCoCw2nJNGGNYsGAB/vrrLwBCCmm3bt3qPJ/UzSFNl22I//3vfygsLAQg1Lvp2rWr7HhISAhGjBhRK+3VUqKjo2ulwzaHeBFAsDB99dVXSE9Px8iRI+09HIIgiAYhMUI0Cqkr5cSJE0hKSpId/+CDD3hZchcXF2zZsgUODnXX2hMXcwNMFyNXrlzhlhdXV1ebVfeVumqA5hEvIsXeWT0EQRCmQmKEaBRi0S8RaUruzz//jKeeeopvf/bZZ+jTp0+953Nzc+Or9v7777+ylaDr4oUXXkBFRQUA4Omnn661CJy1qOmqaW5ihCAIoqVAYqSVk5ycjL179/J/YrBlU1FTjGzduhUAUFxcjDlz5vCg1hdeeAEzZ8406Zyiu0Ov19e7/AAA/P777/yaAQEBsroi1mbUqFG87eXlZfaiewRBEIQAiZFWzPHjxxEdHY2bb76Z/+vevTs2btzYJOevqKiQVTMFhKDTlJQUrFy5EhkZGQCAm2++2azCWqbGjfz11198MUYAWLx4Mdzd3U2+TmPx9/fH9OnTAQD3338/Za0QBEFYCH17tmK+/vprMMZq7X/99deN7jeXhIQEvhibND7h008/xVtvvQVASHd9//33zXpQmyJGTpw4gXHjxvGg1UGDBmHevHlm30Nj+eabb5CcnIy3337b5tcmCIJoLZAYacVIa3u89NJLPMPkwoUL+P333xt9fqmLZsaMGbz92muvcZFw//33m73uSWxsLLy8vAAIYqSmcPrnn38wduxYFBQUAABGjhyJNWvW1BsYay0UCgUiIiIoWJQgCKIRkBhppWi1Wvz9998AhLVKli9fjpdeeokf/+ijjxp9DakYmTRpUq2UXRcXFyxevNjs8yqVSvTr1w8AkJGRgZSUFNnxRYsWIT8/HwAwfPhw/PDDD1Cr1WZfhyAIgmgekBhppZw4cYJnmIgVT6dOncqXkt++fTvS09MbdQ2pGOncubNsoTsAeOyxxyxewbYuV015eTlftyY0NBS7du1qFoXGCIIgCMshMdJKkbpoxIqnTk5OePDBBwEAlZWVWLt2baOuIYoRpVKJ2NhYHswJCGuiPP/88xafWypGjhw5wtsnTpzgJd9HjRoFjUZj8TUIgiCI5gGJkVbKoUOHeFu6Fsz8+fN5MOknn3zCA1DNRa/X84Jn0dHRcHFxQefOnfHQQw/B29sbn3zyCXx8fCwef//+/Xkcxr59+/h+6Wq+w4YNs/j8BEEQRPOBxEgrhDHGLSM+Pj6IjY3lxyIjI3HbbbcBANLS0rBr1y6LrpGamorS0lIA8lViP/74Y+Tm5uKuu+6ydPgAhHGL1pFz587hypUrAORiZOjQoY26BkEQBNE8IDHSComPj0dOTg4AwSpSM612wYIFvC2WajcXaRl4qRhpSiZNmsTbP/zwA6qqqrjFJyAgQCayCIIgiJYLiZFWiDReROqiERk7diz8/f0BGE+dNYWawavWYPLkybz9/fff4+zZszydd+jQoZROSxAE0UogMdIKkcaLiMGrUpRKJXr27AkAyM7ORlpamtnXsIUY6dixI69RcujQIWzfvp0fIxcNQRBE64HESCtEtIw4ODjUuTCdKEYA4NSpU2ZfwxZiBDC4avR6Pd59912+n8QIQRBE64HESCsjNzeXC4VevXrB1dXVaL+mEiPBwcHw9PS0YKSmIY0bEVfwdXd3R48ePax2TYIgCMK2kBhpQvR6Pf/XFGu/WIK0JoexeBGRxoiRY8eOITs7G4B1rSKAkOIbGBgo2zd48GCoVCqrXpcgCIKwHSRGmgCtVouRI0dCpVLxf56enti8ebPNx2KqGImJieEFw8wRIydPnsTNN9/Mt61d60OlUuH222+X7aP6IgRBEK0LEiNNwObNm3HgwAHZvqKiIjz99NO8JLut+Ouvv3hbWsW0JkqlEjfddBMAIDk5Gbm5uQ2e+9SpUxg7dixfF2bYsGF45plnGjVeU5C6agCKFyEIgmhtkBhpAj7//HPe7tu3L0JDQwEA169fx86dO202DsYYTpw4AQAIDAxscF0Yqavm9OnT9fY9ffo0xowZg7y8PACCIPjxxx9tsi7M6NGjeeyLs7Mz+vbta/VrEgRBELaDxEgjuXr1Kn7//XcAQirqsWPH8Nlnn/HjTbE6rqkkJiZysdC3b98G63CYGjdy5swZjBkzhltPBg8ejN27d9tsXRi1Wo0XX3wRzs7OeOaZZ+Ds7GyT6xIEQRC2gcRII9m4cSNv33vvvVAoFBgzZgxiYmIAAL/++isuXbrUJNeKj4/Hl19+yReKq8nx48d5u66UXimmiJGzZ89i9OjRsoque/bssfkCdS+88AKKi4vx6quv2vS6BEEQhPUhMdIIGGP44osvAAAKhQKzZs0CIMRjPPTQQ7zf6tWrG32t0tJSDB8+HHPmzMH48eOh0+lq9ZGKEVNcGV26dIGjoyMA4O+//651PCkpCaNHj+aZMwMGDMCePXvg7u5u6W00CgcHB7tclyAIgrAuJEYawdGjR3H58mUAwMiRIxEREcGP3XfffXBxcQEAbNiwgS8qZym//vorbty4AQD4448/8Oijj9ZKHzZXjDg5OSEuLg4AcOnSpVpjfO+995CVlQUA6NevH3766Sd4eHg06j4IgiAIoiYkRhqBNHD13nvvlR3z9fXlK9fm5+c3Os235uq6a9aswf/+9z++XVVVxa0bkZGRfO2ZhhBdNXq9HmfOnJEdE4NhAWDnzp1WLW5GEARBtF1IjFhIWVkZvvnmGwCAq6srpk6dWquPdHXcjz/+2OJrMca4GJEW+3ryySfxyy+/ABBW0S0pKQFgmlVEpK64Eak4iYyMREBAgMXjJwiCIIj6IDFiIbt27eL1Nu644w6jAZ19+/bltTxOnDiBa9euWXStU6dO4fr16wCAm2++Gc8//zwAwRpy3333oayszOzgVZG6xEhiYiIXN+I9EARBEIQ1IDFihDNnzuCpp57C/v376+yzadMm3r7nnnuM9lEoFLKCXXv37rVoPFIXzW233YbXXnsNY8eOBSDUMtmwYYPZ8SIiPXr04CnA0iDWf/75R9aHIAiCIKwFiZEaMMYwffp0vPfeexg9ejRmzJiBtLQ0WZ+8vDzs3r0bABAUFIRRo0bVeT5p6fSffvrJojFJC6fdeuutUCqVeP311/m+N998U1YGvnfv3iafW6PRoFOnTgCEwmZFRUUASIwQBEEQtoPESA1Onz6N+Ph4vv3NN9+gU6dOWLduHd+3bds2nlo7Y8aMehdt69u3L3x8fAAAv/zyCyorK80aT3p6Og8kvemmmxAeHg5AcMWMGzcOgFB4TXSxdOzY0exA05EjRwIQ3D5//PEHABIjBEEQhO0gMVKD7777jrdFkVFcXIwHH3yQWx+++uor3ufuu++u93wqlYqLhoKCAhw9etSs8YgWGEBw0Uh58cUXa/U3J15EZPTo0bz966+/AjCIEY1Gg+joaLPPSRAEQRCmQmKkBtu3bwcgxHucOXNGlrL76KOPIiUlhS+K16FDB5Me/o1x1UhdNDXFyLBhwzBkyBDZPkvWbRkxYgSPG/n111+Rn5+P5ORkAIJVRKmkjwlBEARhPegpI+HSpUs4d+4cAKHseZcuXbB27Vp0794dgBDgOWXKFF5s7O67725w/RcA3DICmCdGcnJyeNBrQECAUaHxwgsvyLYtESM+Pj48q+bMmTPYt28fP0YuGoIgCMLakBiRIFpFAGDKlCkAhBLk0uJi0oyThlw0IsHBwTw99uTJk8jMzDTpdatXr+br0MycOdOoheLmm29Gr169AABubm4Wp+FKXTUrV67kbRIjBEEQhLUhMSJBGi8iihEAGDp0aK303T59+iA2Ntbkc99yyy28bUqKb3l5ORdBSqUSCxcuNNpPoVBg8+bNeOCBB7B582a4urqaPCYpUjFy8OBB3iYxQhAEQVgbEiPVpKam8lodN910E9q1ayc7/tZbb8nWZREXxTMVc+NGvv/+e25BmTZtWr1BpB06dMDatWtrxZSYw5AhQ/iieSIKhYKvXUMQBEEQ1oLESDXff/89bxsr7R4UFIR33nkHgOB2MVeMDBw4kK92u3fvXlRVVfFjjDGsX78ea9euRXl5OfR6vSyV+OmnnzbrWpbg5uaGAQMGyPZ16NABbm5uVr82QRAE0bYhMQKhiJk0TsKYGAGABx98EJcuXcKZM2dMXohOxNHRkVdNzcnJwaFDh/ixbdu24f7778e8efPQvXt3vPLKK0hISAAgWCz69etn7i1ZhNRVA1AZeIIgCMI2tHkxUllZiTvvvBNXrlwBAPTv3x9dunSps39sbCz8/PwsupZU5Hz77be8LV39Nz4+Hq+++irftoVVRKSmGKF4EYIgCMIWtHkx8vTTT/NUVn9/f3zzzTcmpetawu233w4nJycAgjVEr9cjLy+vzoDWDh064Pbbb7fKWIzRr18/WQAsiRGCIAjCFrRpMbJmzRp88MEHAAQ3ynfffYfIyEirXc/DwwPjx48HIJR5P3z4MLZv346KigoAwMKFC7F+/XruAlq+fHm9peabGicnJ14aXqFQyFb0JQiCIAhr4WDvAdiLgwcPYsGCBXz7448/rlXN1BpMnz6dV1XdunUrzp8/z4/dfffd6NevH2bMmIGzZ8+ateBdU/HGG2+goqIC48ePR0hIiM2vTxAEQbQ92qwYiYmJQd++fXHkyBE88cQTeOCBB2xy3dtvvx2Ojo6oqKjA119/jZycHABAdHQ0r57q5ORkcVxKY4mLizOpDgpBEARBNBVt1k0TFBSE3377De+++y5WrFhhs+t6eXnx8vCZmZk8xfeuu+6yWqwKQRAEQTRn2qwYAQBnZ2c8+eSTcHCwrYFo2rRptfbNmDHDpmMgCIIgiOZCmxYj9mLixIkyAdSxY0e+GB9BEARBtDXMEiOffPIJpk+fjr59+9aKK9iwYQPGjBmDUaNGYeXKlXxlWwA4d+4cZs6cicGDB2P+/PlIT09vmtG3UHx8fDBmzBi+PWPGDHLREARBEG0Ws8RIeHg4nn76aXTt2lW2/+DBg9i6dSs2bNiALVu24ODBg9ixYwcAQKfT4dlnn8WMGTOwf/9+xMXFYfHixU13By2Uhx9+GIBQhv3ee++182gIgiAIwn6YJUYmTJiAAQMG8MJdIrt378a0adMQFhYGPz8/zJ49G3v27AEAnDx5Emq1GpMmTYKzszPmzZuH8+fPt3nryMSJE3H69GmcP3++3kXwCIIgCKK10ySRm0lJSZgwYQLfjo2NxapVqwAAiYmJiImJ4cfUajXCwsKQmJiI4OBgo+fT6XTQ6XTygTo41BJBLZ1u3boBAPR6vWy/uF1zP2Ecmi/zoPkyHZor86D5Mo+2Ml9KZcN2jyYRI6WlpdBoNHzbzc0NpaWlAACtVltr5Vc3Nzdotdo6z7d+/XqsWbNGtm/69Om48847m2K4LYbU1FR7D6FFQfNlHjRfpkNzZR40X+bR2ufLFOt/k4gRV1dXFBcX8+2SkhK+xolarUZJSYmsf0lJCdRqdZ3nmzt3LmbNmiUfaCu0jNSFXq9HamoqwsPDTVKUbR2aL/Og+TIdmivzoPkyD5ovA00iRqKjo5GQkMDLqcfHx6Ndu3YAgHbt2mH79u28r1arxbVr1/hxYzg5ObUZ4VEfSqWyzX9AzYHmyzxovkyH5so8aL7Mg+bLzADWyspKlJeXgzHG23q9HhMmTMC2bduQlpaG7OxsbNq0CbfccgsAoHfv3tBqtdi5cyd0Oh3WrVuHLl261BkvQhAEQRBE28Isy8irr76KXbt2AQBOnTqFJUuWYPXq1RgyZAguX76MOXPmQK/XY/LkyZg4cSIAwcrx1ltvYfny5XjjjTfQpUsXLFu2rOnvhCAIgiCIFomCSauTEc0CvV6P5ORkREZGtnnTnSnQfJkHzZfp0FyZB82XedB8GWjbd08QBEEQhN0hMUIQBEEQhF0hMUIQBEEQhF0hMUIQBEEQhF0hMUIQBEEQhF0hMUIQBEEQhF0hMUIQBEEQhF0hMUIQBEEQhF2homcEQRAEQdgVsowQBEEQBGFXSIwQBEEQBGFXSIwQBEEQBGFXSIwQBEEQBGFXSIwQBEEQBGFXSIwQBEEQBGFXSIwQBEEQBGFXSIwQBEEQBGFXSIwQBEEQBGFXSIwQBEEQBGFXSIzYgE8++QTTp09H3759sXfvXr6/rKwMr732GsaOHYtx48bhyy+/lL2uT58+GDJkCIYOHYqhQ4fis88+k7325ZdfxrBhw3Drrbfip59+stn9WBNrzNW7776LSZMmYdiwYbjnnnvw999/2+x+rI015kvk+vXrGDx4MF5//XWr34etsNZ87dixA1OmTMGQIUMwbdo0JCcn2+R+rIk15iotLQ2PPPIIRowYgVtuuQXr16+32f1YG0vnq7i4GMuWLcOoUaMwYsQIvPjii7LXtsbveWM42HsAbYHw8HA8/fTTWL16tWz/unXrcP36dWzfvh3FxcV4+OGHERMTg4EDB/I+33//Pfz8/Gqd85NPPkFBQQF2796NK1euYOHChejcuTMiIyOtfj/WxBpzpdFo8L///Q+hoaHYv38/nnnmGezcuRNubm5Wvx9rY435Enn33XfRsWNHq43dHlhjvv744w9s3LgRb7/9Ntq1a4e0tDS4u7tb/V6sjTXmasWKFQgNDcXKlSuRkZGBBx54AF27dkW/fv2sfj/WxtL5euWVVxAYGIgdO3bAxcUFCQkJ/LWt9XveGGQZsQETJkzAgAED4OTkJNt/5MgR3H333dBoNAgKCsLEiRPx448/mnTO3bt3Y/78+dBoNOjRoweGDRuGn3/+2RrDtynWmKv58+cjPDwcSqUSY8aMgbOzM1JSUqwxfJtjjfkSX88YQ//+/Zt6yHbFGvO1du1aPPXUU2jfvj0UCgXCwsLg6elpjeHbFGvMVXp6OsaNGwcHBweEhobipptuQmJiojWGb3Msma8rV67g4sWLePLJJ6HRaODg4IBOnTrx17bW73ljkBixM9JFkxljtf4wZ8+ejVtuuQVLly5Ffn4+AKCwsBA5OTmIiYnh/WJjY1vNH3VdWDJXNbl+/ToKCwsRHh5uzaE2Cyydr4qKCqxcuRJPPPGEjUbaPLBkvqqqqnDp0iUkJCRgwoQJmDhxItasWYPWvhi6pZ+t6dOnY+/evdDpdEhJScHZs2fRp08fWw3bbtQ1XxcuXEBERARefvlljB49GnPmzMGpU6cAtL3veRIjdmTAgAH4+uuvUVRUhOvXr2PXrl0oKyvjx9esWYNdu3bhq6++QllZGZYtWwYAKC0thUqlgouLC+/r5uaG0tJSm9+DrbB0rqRUVlZi6dKluOeee6DRaGw5fJvTmPnatGkTBg8e3CYEm4il85Wbm4uqqiocP34c33zzDT799FP88ssv2Llzp71uxeo05rPVo0cPnD17FkOHDsXUqVMxadIk2cO2NVLffGVmZuLYsWPo168f9u7di/vuuw/PPPMMCgoK2tz3PIkRO/LAAw8gJCQE06ZNw+OPP47Ro0fD39+fH+/ZsyccHBzg7e2NZ555BocOHUJFRQVcXV1RVVUl+wIoKSmBq6urPW7DJlg6VyKMMSxduhTe3t6YP3++PW7Bplg6X5mZmdixYwfuv/9+O47e9lg6X87OzgCAe++9F+7u7ggKCsL06dNx6NAhe92K1bF0rqqqqrBw4UJMnjwZhw4dwo4dO7Bv3z7s27fPjndjfeqbL2dnZ4SGhmLy5MlwcHDAqFGjEBoairNnz7a573kSI3ZE/f/t3V9IU30cx/H3nklpW8YyWA0ElxdJGWSNgvCiIvuHSqQUdLWb/kAIFV7ZhcKiUtpdfxSCJBIhLNTWRXQR66KE8iJSCWN1IZZn0xjSKNFtz4U0lOq50G0nfT6vG8dx53d+v68753x29psnL49Lly7x9OlTurq6sFgsbN68+bfP/eef2T9VMpkkPz+fgoKCeROdhoeH2bhxY1b6bYaF1uqnlpYWIpEIPp8v9fvlbKH1GhoawjAMjh07xsGDB7l//z5Pnjyhrq4um93PusXsi3NPxD+XL2cLrdXk5CSRSITa2lpycnJwuVzs2bOH/v7+bHY/6/6rXsXFxX9c7/92nF/+R+W/wMzMDFNTUySTydTjRCKBYRiMj48Tj8fp6+vj8ePHnDx5Epid2DQ8PEw8HmdychK/38+uXbtSk6OOHDnCnTt3iMVivHv3jhcvXlBRUWHmMNMiE7Vqa2vj7du3+P3+XyaXLXXprtfu3bvp6emho6ODjo4Oampq2L9/Pz6fz+SRpkcmXl+VlZXcu3ePWCxGJBLh4cOHlJeXmznMtEh3rRwOB06nk+7u7lQ7wWDwP0/IS8lC6uXxeEgmkwQCAeLxOMFgkNHRUbZu3Qos3+P871iSyz3G/wWampoIBALzlv38+ldjYyPRaJSioiLq6+spKysD4PXr11y9epVwOIzNZmPnzp1cuHCBtWvXArPfP798+TLBYJD8/Hzq6uo4dOhQdgeWAZmolcfjYcWKFVit1lSbDQ0NHD58OEujypxM1GuutrY2JiYmaGhoyPxgsiAT9Zqenqa5uZlnz56xatUqjh49yunTp7FYLNkdXJplolaDg4P4/X5CoRC5ubkcOHCA8+fPz9s3l6qF1Avgw4cP+Hw+Pn36RGFhIfX19Wzfvh1Yvsf531EYEREREVPpYxoRERExlcKIiIiImEphREREREylMCIiIiKmUhgRERERUymMiIiIiKkURkRERMRUCiMiIiJiKoUREUm7N2/e4PF48Hg8fP782ezuiMhfTmFERBalqakJj8cz727Idrud0tJSSktLl939gEQk/XLM7oCILD8lJSW0t7eb3Q0RWSJ0bxoRWbCqqiq+fPnyy/LW1lbOnj0LQG9vLy6XK3UjsQ0bNnDmzBlu377Nt2/fqK6u5ty5c9y8eZPe3l5Wr16N1+ultrY21V4kEuHWrVu8evWKaDSK0+mkqqoKr9dLTo7eU4ksddqLRWTBNm3axPfv34lGo9hsNtxuNwDv37//4zrj4+Ncu3aNdevWEYvF6OzspK+vj3A4jN1uZ2xsjJaWFnbs2IHb7SYajeL1ejEMI7WNjx8/0trayujoKI2NjdkarohkiOaMiMiCXb9+nfLycmA2mLS3t9Pe3k5JSckf15menubGjRs8evQIp9MJwMjICJ2dnXR1dbFy5UoSiQT9/f0APHjwAMMwKCgooLu7m87OTpqbmwEIBAKMjIxkeJQikmm6MiIiWZWfn8+2bdsAWL9+PYZhUFxcjMvlAsDhcDA2NsbXr18BGBwcBGBiYoKKiop5bSWTSQYGBigsLMzeAEQk7RRGRCSrbDZb6rHVav1lmcViAWaDxtyfcz8Gmis3NzdjfRWR7FAYEZFF+RkGfvz4kZH2t2zZwsuXL7FarVy5ciV1BSUWi/H8+XP27t2bke2KSPYojIjIohQVFQEwNDTEiRMnyMvL49SpU2lr//jx4/T09BAOh6mpqcHtdhOLxTAMg5mZGSorK9O2LRExhyawisiiVFdXs2/fPux2O6FQiIGBARKJRNradzgc3L17l6qqKtasWUMoFGJqaoqysjIuXryYtu2IiHn0f0ZERETEVLoyIiIiIqZSGBERERFTKYyIiIiIqRRGRERExFQKIyIiImIqhRERERExlcKIiIiImEphREREREylMCIiIiKmUhgRERERUymMiIiIiKn+Be2R/W+9Jq1QAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1137,9 +1271,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACwU0lEQVR4nOydd5gUVdaH3+oJDGnIcVCSgiJJuAKCoIIYUVwVs4LoYljWtKLimnVdXXNYP8U165pdMaAYQEVE4KKoSBCQOOQ0MEzuqe+P6qqp6emZ6Z7p7uqeOe/z9NPdFc/trvCrc8491zBNE0EQBEEQBKEMn9cGCIIgCIIgJBoikARBEARBEIIQgSQIgiAIghCECCRBEARBEIQgRCAJgiAIgiAEIQJJEARBEAQhCBFIgiB4hmEYFxiG8XkV8782DOOyKOznGMMwNtZ2OyG2O8EwjO+ivV1BELxHBJIgCGFhGMZawzDyDcPINQxji2EYLxmG0aQ22zRN83XTNI+Plo2CIAjRQgSSIAiRcKppmk2A/sDhwFRvzREEQYgNIpAEQYgY0zS3ADOxhBIAhmEMMQzje8Mw9hiG8bNhGMe45k0wDOMPwzD2GYaxxjCMC1zTv3MtN9owjOWGYeQYhvEUYLjm3WkYxmuu710MwzANw0gNfL/EMIxlgX38YRjG5eG0xTCM/zMM46GgadMNw7g+8PlmwzBWB7a71DCMP1WynXL2BKaVCxEahjExYONuwzBmGobROTDdMAzjUcMwthmGsdcwjF8Nw+gdjv2CIMQGEUiCIESMYRidgJOAVYHvWcAnwL1AS+AG4D3DMNoYhtEYeAI4yTTNpsBQYHGIbbYG3gduBVoDq4FhEZi1DRgDZAKXAI8ahjEgjPXeAM4xDMMI2NECOB54MzB/NTAcaAbcBbxmGEaHCOwisN2xwC3AGUAbYE5g3wT2NwLoEdjP2cDOSPchCEL0EIEkCEIkfGAYxj5gA5YguSMw/UJghmmaM0zTLDVN8wtAAycH5pcCvQ3DaGia5mbTNH8Lse2Tgd9M03zXNM1i4DFgS7iGmab5iWmaq02Lb4DPsYRNdcwBTNeyZwHzTNPcFNjuO6Zpbgq06y1gJTAoXLtcXAH80zTNZaZplgD3Af0DXqRioClwCGAEltlcg30IghAlRCAJghAJpwe8QMdg3cxbB6Z3BsYFwmt7DMPYAxwFdDBNcz9wDpZA2GwYxieGYRwSYtsdsYQXAKY1kvaGEMuFxDCMkwzD+MEwjF2B/Z/ssq9SAvt5EzgvMOl84HXXdi82DGOxq129w9luCDoDj7u2swsrhJhlmuYs4Cng38A2wzCmGYaRWYN9CIIQJUQgCYIQMQEPzUuAnbuzAXjVNM3mrldj0zTvDyw/0zTN0UAHYDnwXIjNbgYOsL8EQl4HuObvBxq5vrd3LdsAeC9gTzvTNJsDM3DlMFXDG8BZAW/O4MC2CHx/DpgMtApsd0kl290feA9pI9ZvdHnQb9TQNM3vAUzTfMI0zYFAL6xQ25QwbRcEIQaIQBIEoaY8Bow2DKMf8BpwqmEYJxiGkWIYRkag9lAnwzDaGYYxNpCLVAjkYoXcgvkEOMwwjDMCic5XU15gLAZGGIZxoGEYzSjfgy4daABsB0oMwzgJK68nLEzT/AnYAfwHmGma5p7ArMZY4bftYCWCY3mQQm1jO5ANXBj4DSYC3V2LPANMNQzjsMC2mhmGMS7w+QjDMAYbhpGGJbQKCP0bCYIQJ0QgCYJQIwKC4BXgdtM0NwB2EvJ2LG/JFKxrjA+4HtiEFVY6GrgyxPZ2AOOA+7ESlA8G5rrmfwG8BfwCLAI+ds3bhyWo3gZ2Y4XJPoywSf8Fjgu829tdCjwMzAO2An3cNoXgz1jt3gkcBnzv2tb/gAeANw3D2IvliTopMDsTy1O1G1gXWP/BCO0XBCGKGFb4XRAEQRAEQbARD5IgCIIgCEIQIpAEQRAEQRCCEIEkCIIgCIIQhAgkQRAEQRCEIEQgCYIgCIIgBFEXBJIZy9eWLVtiuv14vJK9Dcluf11oQ7LbXxfakOz214U2JLv9daENMbC/UuqCQIopfr/faxNqTbK3Idnth+RvQ7LbD8nfhmS3H5K/DcluPyR/G+JpvwgkQRAEQRCEIEQgCYIgCIIgBCECSRAEQRAEIQgRSIIgCIIgCEGIQBIEQRDqFH6/n1GjRjFx4kSvTRGSGBFIgiAIQp1i5cqVzJo1i7fffttrU4QkRgSSIAiCUKf4/fffAcjLy6O0tNRja4RkRQRSHJg6dSqzZ8/mgw8+4J///CcAEyZMoGvXrvTv358BAwYwb948j60UBEGoG6xYsQIA0zTJz8/32BohWRGBFAfmz5/PkCFD+OabbxgxYoQz/cEHH2Tx4sXcf//9XH755R5aWHNKSkq8NkEQBKEctkAC2L9/v4eWCMmMCKQYMmXKFPr27cvChQs58sgj+c9//sOVV17J3XffXW65ESNGsGrVKnJzcxk1ahQDBgygT58+TJ8+HbBO8FNOOYV+/frRu3dv3nrrLQBuvvlmevXqRd++fbnhhhsA2L59O2eeeSZHHHEERxxxBHPnzgXgzjvvZOLEiRxzzDF069aNJ554wtn/PffcQ8+ePTnqqKM477zzeOihhwBYvXo1J554IgMHDmT48OEsX74csLxfV1xxBYMHD+bGG2/km2++oX///vTv35/DDz+cffv2xfaHFQQPMU2Tq666yvEGC4mHWyDl5uZ6aImQ1JimmeyvKiFG48GEy4IFC8zJkyebRUVF5tChQ53p48ePN9955x3TNE3z7bffNgcNGmQWFxebOTk5pmma5vbt283u3bubpaWl5rvvvmtedtllzrp79uwxd+zYYfbo0cMsLS01TdM0d+/ebZqmaZ533nnmnDlzTNM0zXXr1pmHHHKIuXHjRvOOO+4wjzzySLOgoMDcvn272bJlS7OoqMhcsGCB2a9fPzM/P9/cu3evedBBB5kPPvigaZqmOXLkSPP33383TdM0f/jhB/PYY491bD/llFPMkpIS0zRNc8yYMeZ3331nmqZp7tu3zywuLg779wmHjRs3RnV7XpDsbYil/fPnzzevuuoqMy8vL2b7MM3otWHTpk0mYDZs2NA5/+JBsh9Dphm/NrRp08a5Vv/8889R2678B94TA/sr1RepcVNi9ZQff/yRfv36sXz5cg499NBy86ZMmcK9995LmzZteP755zFNk1tuuYVvv/0Wn89HdnY2W7dupU+fPvztb3/jpptuYsyYMQwfPpySkhIyMjK49NJLGTNmDGPGjAHgyy+/ZOnSpc4+9u7d67iYTznlFBo0aECDBg1o27YtW7duZe7cuYwdO5aMjAwyMjI49dRTAeup6/vvv2fcuHHOtgoLC53P48aNIyUlBYBhw4Zx/fXXc8EFF3DGGWfQqVOn2PyYQp3k6quvZv78+YwcOZIzzzzTa3OqZceOHQDk5+eTm5tL06ZNPbZIcLN79262b9/ufJcQm1BTPBVISql2wP+AYsAPXAB0B/4FlAJXaq1/rc0+TLPKwXqrJTs7m6ysrIjXW7x4MRMmTGDjxo20bt2avLw8TNOkf//+TkL2gw8+yFlnneWs89JLL7F9+3YWLVpEWloaXbp0oaCggB49evDjjz8yY8YMbr31VkaNGsXtt9/OggUL+Oqrr3j33Xd56qmnmDVrFqWlpfzwww9kZGSUawNAgwYNnGkpKSlV5g+VlpbSvHlzFi9eHHJ+48aNnc8333wzp5xyCjNmzGDYsGHMnDmTQw45JOLfTKh/bN26lQULFgCWmE8GbIEEsGXLFhFICYY7vAYSYhNqjtc5SDuAo7TWRwOvAJcC/wBOAc4HHvDQtlrRv39/Fi9eTI8ePVi6dCkjR45k5syZLF68mIYNG4ZcJycnh7Zt25KWlsbs2bNZt24dAJs2baJRo0ZceOGFTJkyhR9//JHc3FxycnI4+eSTefTRR/n5558BOP7443nyySedbVYmcGyGDRvGRx99REFBAbm5uXz88ccAZGZm0rVrV9555x3AEpr2PoJZvXo1ffr04aabbuKII45wcpUEoTo+/fRT5yEmWZ703QJp69atHloihMLu4m8jAkmoKZ56kLTWftfXpsBqYKTWejewWynV0hvLosP27dtp0aIFPp+P5cuX06tXryqXv+CCCzj11FPp06cPSinHC/Prr78yZcoUfD4faWlp/N///R/79u1j7NixFBQUYJomjzzyCABPPPEEf/nLX+jbty8lJSWMGDGC2267rdJ9HnHEEZx22mn07duXdu3a0adPH5o1awbA66+/zpVXXsm9995LcXEx5557Lv369auwjccee4zZs2fj8/k47LDDOOmkk2r6kwn1jI8++sj5nJeX56El4bNz507nswikxCPYg5QswltIPIzahqBqi1KqP/As0Bw4Hnhca316YN53WIKpKGidScAkgMmTJw8cPXp0zOwrLi4mLS0tZtuPB9W1Yf/+/TRu3Jj8/HzOPPNMHnjgAfr06RNHC6umPvwHiU4s7C8sLKRv377ODezaa691emPGgmi14fHHH+fBBx8E4B//+Afjx4+v9TbDIdmPIYhPGyZNmsSMGTNo0qQJubm5/POf/+Siiy6KyrblP/CeaNuflZVlVDbP8yRtrfViYLBS6mzg70Cma3ZqsDgKrDMNmBb4GlOFV9McpESiujacf/75LF26lIKCAsaPH8+JJ54YR+uqpz78B4lOLOz/4osvyj3dp6amxvQ3ilYbiorKLkmFhYVx+1+T/RiC+LRh/fr1AAwYMIBvv/2WtLS0qO1T/gPviaf9Xidpp7sEUA6QC6QqpZpjhdx2eWVbfeK///2v1yYI9RA7361Vq1bs3LkzaUIhwUnaQuLg9/tZuXIlUCaQJAdJqCleJ2n3V0p9q5SaDVwLPAjcCswA3gSmemibIAgxwjRNJ//I7tqfjAKpruYgFRYW8t5775Ur7ZEMrF+/nsLCQjp06ED79u0BSdIWao7XSdoLgBFBkzcDQz0wRxCEOLFs2TLWrFlD69atOfbYY5k2bZokaScQ9913H3fffTdPPfUUf/nLX7w2J2zsHmw9e/akSZMmQPII77rAkiVLaNu2LW3btvXalKjgtQdJEIR6iB1eO/nkk506QslyI6sPHqSZM2cCJF3JDrsHW8+ePZ1abeJBig/Z2dkMGDCAM844w2tTooYIJEEQ4o4tkMaMGePcyJLFgxScg+R1T+Bok5uby6JFiwDYvHmzx9ZEhlsg2R4kEUg1Izc3l+HDh/PUU0+FtfyCBQsoLi5m1apVMbYsfohAEgQhruzcuZO5c+eSmprKCSecQKNGjYDk8CDZBVXT0tJo2LChM9xIXWLevHlOlf1NmzZ5bE1khBJIyXBcJSKLFi3iu+++49lnnw1r+V9++QWAXbt21ZmHBhFIgiDElc8++4zS0lKOPvpoMjMzHQ9SMtzI7PyjVq1a0a5dO6Duhdm++eYb53Mye5AkxFY7CgoKAFi3bl1YgscWSMXFxUlxLoeDCCRBEOLKl19+CViDJwOOBykZQmy2QGrdunWdFUjffvut83nTpk1J4w3Yv38/GzdudMaxlBBb7cjPzwdg37597Nmzp9rl3UNR7dpVNyr0iEAShCSnpKQkaW5igDPGYO/evQGSyoNk5x/VVYGUn5/P/PnzMQyDjIwMioqK2L17t9dmhYXdg+2ggw4iJSVFQmy1xPYgQdk5Wxm5ubmsXr3a+Z4sx0x1iEAShCQmNzeXbt26MW7cOK9NCRs7bNOhQwcguTxIboFk19mpS8UiFyxYQFFREX379qVLly5A8uQhubv4AxJiqyWRCKQlS5aU+y4eJEEQPGfevHls2LChXFgk0bEFRSiBVFpa6pld4VDXPUh2/tGIESOc/ydZ8pDc+UeAeJBqiVsgrV27tspl3eE1EIEkCEICMH/+fAD27NmTFGG2/Px89uzZQ1paGi1btgTA5/PRsGFDoPxFORGxBVJdTdK2BdLRRx9Nx44dgeQVSO7QbaIL70TEzkGC6j1IdoK2YVjjvopAEgTBcxYsWABYPUfcF7RExfYetW/f3rmYAknT1b8ue5CKioqYN28eAMOHD3c8SMkSYgsWSCkpKWRkZGCaZlKcG4lGJCE224PUt29fQHKQBEHwGNM0HQ8SEFZPE68Jzj+ySZZEbXcvtrqWg6S1Jj8/n0MPPZS2bdsmlQfJNM0KAgkkzFYbwhVIpmk6HqRjjz0WEA+SUE957bXX+O9//+u1GQLWwJzbtm1zvieDQHJ7kNwkS6J2XfYg2XlsI0ZYw2Mmkwdp8+bN5Obm0rJlS1q1auVMl0TtmhOuQFq3bh379u2jXbt2jjitKwLJ08FqlVKDgMeBYiAbuBg4HbgOyAfGa603emagUI6CggIuueQSDMNg3LhxpKWleW1SvcbtPQLIycnxyJLwSXYPUrgCacOGDfj9fqcnWDLgzj8CkipJ+48//gDg4IMPLjddaiHVHHdYcseOHezfv985T924w2t2XmFdEUhee5A2ACO11iOAtcBY4HrgGOB24DbPLBMqsGnTJkpKSiguLiY7O9trc+o9dv6RTTJ4kKoTSMniQWrVqhVNmzYlIyODvLy8cjdgv9/P0KFDGTx4MEVFRV6ZGhElJSV89913QJkHyQ6xJYMHacOGDQAceOCB5aZLiK3mBHeYWL9+fcjl7PBav379HIEkOUhRQGu9WWtty9QioCewTGtdpLWeC/T1zjohmI0by5x5lZ0sQmRs2bKFYcOG8cYbb0S8ru1Bat68OZDcAikZk7QNw3C8SO48pBUrVrBx40a2bduWNPlJixcvJjc3l+7du5OVlQWU9yAleg9J+3oULJAkxFZzggVSZWE2WyDVRQ+SpyE2G6VUZ+B44GagjWtWSiXLTwImAUyePJnRo0fHzLa64C2JVht+/fVX5/PixYvp3r17rbcZDnX5P/joo4/4/vvvgbIn93AoKSlBaw3A0KFDmTFjBmvXro3Z7xSt/8Cup5KWllZuez6f9ay2YcOGqOwnVDigtm3Iz88nLy+P9PR0cnJy2Lt3Ly1btmTdunUsWbLEKVXwxRdfOOssXryYlJSQl7GIieV58MEHHwCglCq3jyZNmpCbm8uyZcto1qxZrfcTqzYsW7YMgKZNm5bbfmqqdYtbv359VPZbl69FwdheoMaNG7N//35+/vln+vTpU2G5RYsWAVZeYWFhIQDbt29P+GuRjf1AEArPBZJSKhN4FZiAJYgyXbP9odbRWk8DpgW+xvTRJjs7u8ofMBmIVhvc4Y/c3Ny4/S5V2f/ZZ5/x0UcfMXHiRAYOHBgXe2pCZW1IT08HLGEQye/5888/U1BQQLdu3ejbty8zZswAqj7Za0O0jiH7otu7d+9y27MTazMyMmq9nwULFjB06FDuuecepk6d6kyvbRtsD2rr1q3p1KkTAAcccAA//fQTpaWlzrbtfBiwwm3R+k9idS164403eOihhwAYO3ZsuX107NjRqVAdjX3Hqg22x6Jv377ltt+6dWsAGjRokND2B2OaJrNnz2b+/Pn85S9/ITMzs/qVwiTcNthlOA455BAWLVpETk5OhfX279/P2rVrSU1N5eijj3bylkItGy3ieU/2NMSmlEoF3gTu0lqvAFYChyql0pVSQ4FfvLRPKI9btSdKiO3uu+/m6aefRinFcccdx8yZMxM+HODGDilt3LgxoiKJdnht0KBBdSLEFs0k7cWLF+P3+5k9e3att+XGHV6zCZWobT9RQ2Ln75SWlnLHHXdw/vnnU1hYyKRJkzj77LPLLZMsidp1JcTm9/t57733GDRoEKNGjeKWW27hggsu8KTQpS127J5poapp//bbb5imyaGHHkp6ejqZmZmkpKSQm5tLcXFxPM2NCV4naZ8HDAZuU0p9DZwBPAZ8DdwbeAkJgjsHyU6K9Jrt27cDlifmq6++4sQTT2TgwIEJf0G3sQWBaZqsWbMm7PXsBO3BgwcnjUDy+/1OWQJbWNhEM0l77969QPXDI0SKO0HbJlgg+f1+fvrpJ2d+ogqkvLw8zj33XO6++258Ph+PP/44zzzzTIVwYLIkatsC6YADDig3PZmStGfPnk2vXr0466yz0FrTunVrmjdvzscff8zdd98dd3vsBzZbIIXKQQouEGkYBi1atADqRqK2pyE2rfWrWOG1YN6Kty1C9SSiB8k+CZcsWcJ7773HI488wk8//cQnn3zCZZdd5rF11eN+sl21ahWHHnpoWOu5PUi2WE10gbR9+3ZKS0tp3bp1hRIR0UzStgXSunXrKC0tdfKbaksoD1Jwscjly5eXE3mJKizuuece3nnnHZo2bcpbb73FSSedFHK5ZPAg5ebmsnv3bho0aECbNm3KzUumbv733nsvv//+O507d+aGG25g4sSJfPfdd5x00kncddddDBgwgNNOOy1u9oQjkNw92GxatGjBjh072LVrF23bto2DpbHDaw+SkEQkWi+20tJSRyB17dqVm2++mSuvvBKovjR+ouAWBKtXrw5rnX379vHbb7+RmprK4YcfnjQepMrCaxAbD1JRUVFUBYq7irZNsAfJTpy3E5oTVSD98MMPALz00kuViiMgKappu7v4u4evgeQKsdne8P/9739MnjyZRo0acfzxx3PfffcBcNFFFznVwuOBLZAOOuggfD4fmzZtqlC2wt2DzaYu9WQTgSSEhd/vdy6SGRkZ7N271/PChPv27aO0tJSmTZs6vVXswnzRDq/ECrdAWrVqVVjrLFq0CNM06du3Lw0bNqwTAimaHiT3cRnN4yCcHCQ7/+jEE08EElcgrVy5EoD+/ftXuVwyVNOuLLwGyRViswWFO4QLcOONN3LWWWexd+9eTj/9dOcBINbYOUiZmZlkZWVhmma5h2TTNCuE2IA6VQtJBFIMmTZtGn369EmaWihVsXXrVvx+P23btnVEiNdeJPuCYp+QkNwCKVwPkp1/NGjQIKDMW5HoAqmyYUYgukna7htIJHld1RGOQLI9SHYoJBGFRW5uLtnZ2aSlpdG5c+cql002D1Iw8fQgTZ8+neeff77G61cmkAzD4MUXX+Swww5j+fLlPPvss7WyM1xsD1JGRoZznLg986tWrSInJ4c2bdqUO6fFgySExRtvvMGSJUuYM2eO16bUGvvJoVOnTs6FyGuBZD+h2EmBkNwCKVwPkp1/NHjwYCB5CkXGO8QGsRFI7huYOweppKSExYsXA3DCCSeQmprKrl27IuqdGA/s46x79+7V1mhKJg9SKIEULw+SaZpcdNFFXHbZZU5NpkjIz88nPz+f9PR0x5vqpkmTJlxzzTWAlW8ZDhs2bODkk0+uUHE/XKoTSO+//z4Ao0ePLhfatK/HIpCEKrFzFurCYJZ2gnZWVlbCCKRQHqROnTrh8/nIzs5OimEe3E+2a9eupaSkpNp1gj1IboGUyCUO4hVicwukWIfY3MONLFy4kPz8fLp160arVq0SNsHZDq/16NGj2mWToZp2OCG2WHuQNm/ezL59+wDLkxQp7mtZcB6VzUEHHQSE/yD1wgsv8Omnn/Lkk09GbA9UL5DefvttgAqlIcSDJISFLZDcI64nK4noQbJPQLcHKS0tjU6dOmGaZsKUIqgKtyAoKSmp9jf98ccf2bhxI5mZmRxyyCGAdQFr0KABRUVFCeetcFNXPEhugeQebsQu1mkXLE3ULvJ24cdwBFLTpk1p3LgxeXl5cct9iZRECLHZohNqL5Aqwx65INxQ/G+//VbBtnAxTdPJQWrYsGEFgbRq1Sp+/PFHmjZtygknnFBuXclBEqrFNM06JZDcHiT7Sc1rAWKfgMEXlWQKs9kCyRZ5VT0dmqbJ1VdfDcCll15arvt6MoTZqspBipUHKZoCKVQvNijLQ/rkk08Aa7gOSNz8nUgEkmEYCesJs0mEJG33eTt//vyIf6vK8o/cdOrUiQYNGrB161bHW1UVtkCy/+9IKCkpobS0lJSUFFJTUysIpHfeeQewKq9nZGSUW1c8SAIATz75JCeccELIp/a8vDxnXJq6EGIL14Nkn1jxoLKnrmQUSHYdkaqeDl9//XXmzp1L27ZtueOOO8rNSwaBFI4HKdoCacOGDVGr6BvKgwRlgs8uEJnoHiTbo3DwwQeHtXyiCj2gnKfYyxCb20tjmiYfffRRhWVKS0srvTba4rsqD5LP56Nr165A+eFsQlFUVOQIo927dzvbDxd3eA1wBJJ9Ta0svAaSgyQEePLJJ/n888/LDS1g4z4g65IHqTqBdPLJJ9O9e3dHHMaSUEnakNwCqTIP0r59+7jxxhsBuP/++ysMHJroAsk0zbBykGobYvP7/c7NsGPHjpSWlpbrmlwZa9asqXLfeXl55Ofnk5GRUSGJNrgq+IABA5z9Q+IJpEg8SJDYidrbt2+nsLCQli1bOmLITbxDbCNHjgQqhtlM0+Tss8+mU6dOIUOV4YTYIPw8pJUrV5bLZ4zUixQskOxr/oYNG1i+fDmLFy+mWbNmHH/88RXWFQ+SUK4mhF3gy439tAl1QyDZbc3KynIG6ty4cSN+f9l4wlu3buWLL76I6ajybuqCB8m+cNt1RCq78N17771s3ryZwYMHM378+ArzE10g5eTkUFBQQJMmTaq8kdXWg2T/nk2bNqVbt25A9WG23377jYMOOsgJX4bC3YMtOInWLZC6d+/uCPZEFBa7du1i586dNG7cOKRQDUUih9iqCq9B/ENs1113HYZh8NVXX5UTZbNmzeK9995j8+bNTujLTTghNgg/Dyl4H5EKJDv/yBZIjRo1ok2bNhQXF/PEE08AcPrpp9OgQYMK60oOksCePXucgyiUAHJ7kJI9xGaaZrkcpIyMDNq1a1eueCTA999/73yOx8kRKkkbKrqDExXTNB2vhS2QQl34VqxYwaOPPophGDz55JMhh86wBZLXxTsro6r8I4hekrbd/szMTCccUZ1A+umnnygtLeWTTz6ptKdWZeE1KC+Q7PwjSEwPkju8VllvqWASsR02VSVoQ3nhHavQv2majkAaNmwYQ4YMobCwkJkzZzrzb7vtNmf5UPeDaHuQbIFkD+kTaaK27UFq2LChM82+rr744otA6PAaiAdJoPywG9UJpH379jliKhnZvXs3+fn5ZGZm0rRpU4CQYbbvvvvO+RyPkyPZk7Tz8/MxTZOMjAwn3LF69epyF3LTNLn22mspLi5m4sSJHHHEESG3FUsP0h9//MFrr71Wq27eVYXXoHySdm32Y4cvmjVr5gik6o4DW7xt2bKl0nBcZQnaUF702flHkJjCItLwGiSHB6kygZSSkkJGRka5XlnRZvPmzeTl5dGqVStatGjB2LFjgbIw22effca8efOc5UMJpHBykCByD9KoUaOA2ofYoEwgFRQU0Lx5c4477riQ67pzkOKVjxorPBdISqlmSqkFSqlcpVTvwLRxSqnvlVJfKaU6eW1jKCIRSBA6DJcsuBO0bUIJpLlz5zqf4+lBCr6oJEstJNvt37hxYzIzM2nbti0FBQXlbkQ//PADn332Gc2aNXPGZApFLAXSn//8Z26++Wa++OKLsJYvKioqF2KG6gVSSkoKDRo0wDTNWpUqsAVSZmamI5Sr8yC5K91XVlSvrniQaiKQErEdNtWF2CD2YbbgpPfTTz8dgI8//pji4mLHe2QP3BpPD5JtSzQFEsCf/vQn0tPTQ66blpZGkyZNKC0tDau3XSLjuUAC8oBTgHcBlFKpwPXAMcDtwG2VrukhkQqkZA6zucNrNsFd/fPy8solq8fTgxQcYktPT3fGDvK6FEFV2DkKdhjAfjp0X/zs3iKXXXZZlSNjx0og7d27l2+//RaovueMzUUXXUSnTp1Yvny5M626EBtEJ1HbLZDCDbFFUyDZCdpg3ezS09PJyclJmLHAIikSaZPIHqTqQmwQ+0Rt+3y1BVLPnj3p2bMnu3fvZsqUKSxatIj27dtz/fXXA6HvF+HmIHXu3Bmfz8eGDRsq7QhTWFjIypUr8fl8zpA3K1eujMgzG5yDZO/bprLwmk1dyUPyXCBprYu11m73ysHAMq11kdZ6LtC3klU9JVKBlMyJ2uF4kBYuXFiu14SXHiRIjjCb24MEFZ8OS0tLeffddwEYN25clduKlUD68ssvnf81nBvk0qVLefvttyksLHTEnXvdqhKDo5GoHUoghRtig+oFUqgbWJcuXTjkkEM4+eSTy/UuNAwj4brI256EcLv4Q2J3868uxAbx8yDZ5y/ghNkef/xxAG655RbnmlQbD1J6ejqdO3fGNM1Khf/vv/+O3++nW7dudOjQgdatW5OXlxeRBzBUDpJtf8uWLZ3QXWXUlTykVK8NCEELwN0PssJgQUqpScAkgMmTJzN69OiYGVNcXByyR9aKFSucz5s2baqwjP1kk5aWRnFxMStWrKh25OxYUVkbwsUeWygzM9PZjn0z+/3338nOznaqCKemplJSUsK6deui1pMtlP1FRUXs37+flJQUcnJyKnSdtb0tP/30k1Nx2ktCtcG+wKWnp5OdnU2bNm0AWLx4MdnZ2SxatIiNGzfSsWNHsrKyqvw97Vj/5s2bo9qD8L333nM+r1q1qtpt/+Mf/3A+v//++1x66aVAWc5ERkZGpduwe8SsWbOm2jHCKsMuZGevn5KSwqZNm1i9ejUpKSkh9+32Mi5cuJD169dX2L+93dTU1JDb+PLLL8t1ZrBp3bo1a9eu5eeffy53s6kJVZ3HS5YsYc2aNZx66qmVrm+apnPdatKkSdjHiZ0nl5uby4oVK0L2QgyX2l6LgrHFb1paWqXbtUNBa9asqVaAVEco+3/99VfAEs/2vKFDhzrzO3TowMknn8yPP/4IWMdb8DbsB+iioqJqf59OnTqxZs0aFixY4OSEurHH/uzevTvZ2dl06dKFHTt2MHfuXIYNGxbWf+Ceb3/u0aMHgwcP5tRTT632gd/2Bv/+++8VymC4ufXWW9m6dSvTpk0Lu9NAtI8hd2QkmEQUSHuATNd3f/ACWutpwLTA15gOEJSdnR3yB3R7SHbv3l1hGdtFefDBB7N06VKKioqq/CNiSWVtCBdbfBx66KHOdg4//HDAOrGzsrL45ZdfADj66KP56quvKCkpiVp7Q9lvP4W1bNmynGfLplevXrz33nvk5OR49ru7CdUG+2bVokULsrKynPDM1q1bycrK4tFHHwVw6qdUhd2lvbCwMGrtNU3TCa+BdRxUte3t27c7A1imp6fz888/k5KSQvv27Z3eZb169ap0G5mZ1mnfpEmTGrfBFjYdOnSgc+fOHHjggaxZs4aSkhIyMjJCbtf2DmVmZrJ371727t1L7969yy1jP1EfdNBBEdnWpUsXtNYUFxfX+n+p6jw+9dRT+emnnxg4cGClifzuZOLg9lVHx44d+eOPPzAMo1btqO21yE1RURHbtm3D5/MxYMAAUlND387sEHzDhg1j8h/YHvZBgwY589q3b0/btm3Ztm0bd955Z7nacKHuF+7zozoBethhhzFnzpyQ24EyT9/AgQPJysqid+/eaK3Zs2eP86BV3e9gPwA3b9683LI//PBDlevZ2J5in89X6b727t3Lyy+/jGmapKamVhl+dxPNY6g6PA+xhWAlcKhSKl0pNRT4xWuDQuFWsDt27ChXD8ieBpaogOQOsYXKQXKH2Px+v9NLw36CjbVrtbIu/jbJHGJbvXo1pmmGHV6D2ITYfvvtt3Kh5OpCLM888wwFBQWMGTPG6eFiexbDyUGKRld/d4gNqDYPqbCwkF27dpGSkuJ4okOF2arKQaqKeIWn7Pywjz/+uNJlahJes0nERO3s7GxM06Rjx46ViiOIbYjN3cXf/bumpKTwwgsvcPvtt3PJJZcAZblqwSG2/Px88vPzSU9Pd86BqqiuJ5udoH3YYYeVsyuSRO1QOUiREE4OktbayYuKtNJ3vEgIgaSUmgEcDzwHXAA8BnwN3Bt4ecItt9zCsGHDmD17doV59o0jLS2N0tLSCoLA/sN79eoFJLdACpWD1KZNGxo0aMCuXbtYsGABOTk5dO7cmT59+gCxz0GqrIu/TTIIpKqStBcuXMi6devIyspiyJAh1W4rFgLps88+A+DYY48Fqr7JFxQU8NRTTwFw/fXXM2bMGKDshh1ODlI0xmMLFkjVHQf2edmuXTvnd46FQIqlsMjLy3M8EJ9++mmly9WkB5tNIiZqh5N/BLEdbsT2yrVu3do5B21OOeUU7rrrLqcWUYsWLUhNTSUnJ6dcgrX7WhZOmKm6nmzBAsn+vyOphRQqBykSwslBcp9niSqQEiLEprU+OcTkt+JuSBA7d+5k3bp1/Pzzz85NAqy6Rjk5OWRkZNClSxeWL1/Otm3bnBwSe12oux4kn89Hp06dWL16NW+88QYARx11VNzG4akuqTEZBFKwB6lVq1Y0a9aMnJwcnnnmGQDOPPPMkIUhg4mFQLJvthMmTGD27Nls3boVv98fMj/ojTfeYNu2bfTv359jjjnGEXtffPEFe/fuZffu3aSmplbZSyfaSdpQvQfJ7dkaPHgwULVAqq6XUTDxEEhu0bJw4UK2bdsWssdjTXqw2SSiBymcHmwQ215soRK0K8Pn89G2bVs2bdrEtm3bnJ7A4dZAsqnKg1RQUMCqVavw+Xz07NkTKPu/I/EghermHwnh3Afmz5/vfE5UgZQQHqRExfaG2Pk1Nu5xyewLkVsAFRcXs3fvXnw+n3NwJms3/7y8PHbv3k16enqFp2f7wvTWW5aWHTZsWNy6d1bWxd8mGWoh2ULAfsI1DMO5+L322msAnHXWWWFty+49FS2BtG/fPubMmYPP52PMmDG0aNECv99fob4RWGGGRx55BLC8R4ZhcOCBB9K3b19yc3Od46N9+/ZVir1ohNjclbQhMoE0YMAAfD4fv/zySzkbTNNMaA9SsFfHruAcTG1CbIk4bEo4NZAgtiG2UOG1qghVCyncHmw27iF0glM7VqxYQWlpKQcddJAjbtyhe3dP46qorUCqKx4kEUhVYA//YPdSsHGHnEIJJPcBb+dcJKsHye09Cnb/2gLJblsieZCSoRZSsAcJyi5mxcXFtG/fvlxvmKrIyMggPT2dwsLCWhVatJk9ezbFxcUMHjyYli1bOsd5qBDLl19+yZIlS+jQoQPnnHOOM90Os/3nP/8Bqs4/gtiE2Krr6u8WSI0bN6Z37974/X5++uknZ5m8vDwKCwtp2LBhhYFqqyOeAsk+P+28r2BqE2Kzz/XqakrFk3A9SLEMsUXiQYLQeUjh1kCyscfRKy4urnBtCw6vgXVederUieLi4pADjIci1jlIGzduLHdOiEBKQmwP0pIlS8opdffAraEEkv1nt2rVygm7bd++PSnLrofKP7JxX5iaNWvGYYcdRtOmTUlJSWH//v0x9dxU50GCmoXZtmzZwk033eR0644lwTlIUOY+Byu8Fm53d8Mwohpms8NrJ554IlB2YQ8lkOxaL3/961/LVde1BZL9pFjd4KjRTNK2PWrVVdMOTh4fNGhQOZuh5vlHEB+BZG/bHll95syZFTwLfr/fCcmEezN3Y4dr3OVNvCbcHKRoDYS8Zs0aZs6cWa7gYqQepKoEUiQlCCrLQwolkCDyMFusc5CCw9gikJKQFi1a0KFDBwoKCsrFe0N5kNxDibgFUnp6uhOeSMaiWeEKpKFDh+Lz+TAMwxEtsQyzhXNRsW+OkYidyy+/nH/96188+eSTtbIvHKryIEH44TWbaAkk0zQdgXTSSScBVOlBsnswXnzxxeWmDxo0qJyoqE4gxcKD1L59exo0aMCOHTtCbjdYIIXKQ3r55ZeB6m/EocjMzKRhw4bk5ubGbNgF+z8ZPnw4Bx10ELt37y6X3wGWmLBLjdSkjpF9g121alUF8eUVkYbYautBuvLKK7n00kvLXRuChxmpDlsghXqgjkQgVZaHVJlAirQnW6xDbPb5ZZ93dUogKaWaK6VCD8RSx7CTrN15SNXlIAUndIZaJlkIlaBt475hDBs2zPmcaAIpXA/S7Nmz+fDDDwHiEpYLzkGCsgtZ27ZtGT58eETbi5ZAWrFiBevWraNNmzbO4KuVCaTc3Fx27dpFgwYNHG+JTUpKiiOwoPoQWyyStH0+n3MchPpPq/MgLVq0iHvuuQfAeY8EdzXtWHmR3D0ETz7Z6u8S3JutNvlHUFabqqioKC7e1XCId5K2XTD3xhtvZMmSJeW6+MczxObeX6QepHB7ssU6SdsW8LaHuk4IJKVUV6WUBnYAI5RS3yil7o6NaYmBXYXZLZCqy0Fye5AguQVSVR4k95PbUUcd5XyOR6J2tENsfr/fGSsJ4tOdOZQHadiwYUyZMoXnnnsu4mrS0RJI9s31hBNOcJKqKxNI7ptUqC7KdpgN4htiswUSEJFA6tWrF40aNeKPP/5gw4YNXHTRRZSUlHDNNdeU68kaCfEUSLYgDc5Dqk0PNptECrPl5OSQk5NDw4YNq/W8RCNJ2+/3Ow+LhYWFXHDBBaxdu7bSLv6VEY0kbQjtQcrPz3cqxgf/zzUNscXCg+T3+9FaA2Ue6johkID/AzoCBlAKfAucG22jEgnbg+RO1I5UIFVWICwZqM6DlJ6eTkZGRrnqvfFI1I62B+nVV19l8eLFzk06Hr11Qgkkn8/Hv/71L2eQyUiIlkCy6x/ZT3dQeQ6S7U2o7Cn++OOPd4r4xTrE5h493D0Eg52oHSpBNVggpaamOl6zM844g2XLlnHIIYfwz3/+s0Y2QewFkr3djh07cvTRR9OwYUN+/PHHcmPM1SZB28ZeNxEEkvu4q652UGUhtrlz54ascReKLVu24Pf7adasGd27d+eXX35xQsqR5HTFMgdp+fLlmKbJwQcf7AzbYxNpiM1O0q5pDlLjxo1JS0sjPz+/QqeRZcuWkZubS+fOnZ37a10RSEOBp1zfVwNVj4GQ5IQKsbkFkp2EHUog2fkXXnqQZs6cyYwZM/j111+dgz4SqvIgNW7cmP/973989NFH5Xr3JJsHaf/+/dxyyy0A/Otf/wIsIRDJ6Nc1IVSSdm2IlkCyx4waMWKEM80+zoMFUnWJss2bN+fUU08lLS3N6RVaGbX1IO3fvx/TNGncuHE575stkII9SKZphqzwbechaa1JSUnhlVdeqdU4avH0IDVs2NDxdNlCd968ec7AwXXFg2SHu8IZZzFUiM3v93PyySdz0kknVRjHMRT2dbBz58689tprpKSk8N133wGRhS1jkYNkmialpaW89NJLQMXwGljnQEpKCuvWrStXpLIyautBMgyj0vuAHb4ePHiw40SoKwJpB2AP4tMWy3uUOIUxYkD37t1JS0vjjz/+IDc3l4KCAnbs2EFqaipt27ZN6BDb9OnTOfHEE5k0aRJ9+/alUaNGdO7cmTvvvDPsbVTlQQI4+eSTnWElbBLFgxRuLaSHHnqIzZs3o5TiiiuuoFGjRuTl5YV14awNoTxItcEWSHYtoJqwfft2duzYQdOmTcuJ4spCbOH0JHr11VdZtWqVI1Qqo7YepFDhNag8xJabm0teXh6NGjUqlwdm5yEB/P3vf690bLNwieVwI/ZQKampqc4DmZ2HNGPGDP79739z9NFHs3XrVo466ihOOOGEGu8rkQTS0qVLgbKRCqoiVIhtw4YN7N27l8LCQhYvXlztNuxjp0OHDgwZMoTbbrvNmVcTgVTbHKQWLVrQsmVL8vLyWLNmDeeeey5PPPEEPp+P8ePHV1g+PT2dLl26YJpmWDlktRVIto1Q8T5gC6RBgwY5bd61a1fMH0hrQqQC6TksUWQArwOjgWejbVQikZaW5niRlixZUk4w+Hw+mjdvXqF8fCKE2HJzc/nrX/8KWAPL9ujRg9TUVNavX8+9994b1k2ouLiYLVu24PP5wh5IEGLvQTJNMywPkl0LqbS0tNyYYm42bdrkeI0eeeQRfD5f3MbPCpWkXRui4UFy33jcoQt3iM19IQtHIDVu3DisHmC1TdKuTCBVlqDq9h6523r00UfTtGlThg4dyq233lojW9zE0oNkH6Pt2rVz8sXsvI53332XyZMnU1xczDXXXMOsWbPKlWGIlGQXSG4Pkjs0ZXtMq8ItkMASzkceeSRQNnB3OLRu3RrDMNixY4dTtLEmITYo8yINHz6cd955h8zMTD755BNnPMxg7PMgnFpW0RBIleUh2QnagwYNokGDBjRu3JiSkpKY9fKsDREJJK31P4FLgHeB94BLtNYPxsKwRMIODfzyyy8VQk4+n69crSNIDA/SHXfcwYYNGxg4cCAffPABK1asIC8vj379+uH3+1m4cGG129iwYQOmadKuXTtnPKFwiLUHKTc3l5KSEho3blztBb+6OjiPPPIIeXl5nHnmmU6vsXhVDY6VB6k2AskOXdgPBTaNGzemSZMmFBYWltt+uLVowsH2INU0xBZcRdumV69epKWlsWbNmnI3SVtcBIv/tm3bkp2dzezZsyM67isjHgLJ3YOwW7du9OzZ0wk3vvHGGzz22GO1bkvnzp1p0KABmzZt8vxmVllvrVCEEt5usRyJQLJ/59TUVGbOnMmnn37KKaecErbd9nA77ursNQmxQVke0qZNm+jWrRvz5s0rlzcYjC2Q7IGNq6K2OUgQ+kE5Ly+PX3/9lZSUFAYMGACQ0GG2iLv5a61f1lqfHXi9EgujEg27YOSvv/5arou/TXAtpHAF0qZNm3jsscf4+eefo2rv4sWLefzxx/H5fDz77LNOPkZaWprT2+z777+vdjs//PADgHMgh0usPUiRPHHZN/rgujA2dp6G7W2D+I3AnogCqaon81ADlkZTIMXKg5Senk6vXr0wTbNcLmGo/CObpk2b1srb4iYeAik4Af6ee+5hzJgxzJ8/n3PPjU4/mpSUFOemHMm4XtGmqKiIlStXYhiG49Wqiuo8SIsWLap2G8ECCaxj5MQTTwxrgFk37ohCfn4++fn5pKWlRXwdsK/LI0aMYP78+dV60+xQYDgCKVYepB9//BG/30/v3r3LjUEJdUAgKaX8IV7hDe4SIUqpB5RSc5RSryqlav8YVwtCeZDcOTnBAii4DlJlIbapU6dy3XXX0b9/fwYMGMATTzwRcqyrSPD7/VxxxRX4/X7+8pe/OD1ybOyhK8IRSHPmzAHKd+EPh1h7kMIJr9nYORehRjnfvHkzv/32G40bN3bc5RC/gTkTMUk7EoHk9/ud86G6Yn3hUNsk7eAq2m7sMIh7CBFbIFXXu662uD2S0c6zqEwgjRs3jo8++igsD0sk2ILES4G0atUqSkpK6Nq1a1hDv7iFt/37B/f+qk6UhxJINcWdqG1fy1q1ahWx0Lr66qv59ttv+fLLL8Oq8t67t5U+HM4DeaxykNwJ2jZ1RiABy4ClgdcmrFykqA/Oo5TqB2RprYcDy4HISgpHGfeYbPaJEsqDtG3bNkzTrJB0V5kHyRYgjRs35qeffuKaa66hY8eOfPLJJzW2ddq0acyfP5+OHTty7733VphvC6R58+ZVe7G2e2lEWrCwNh4kezTqqmyLxIM0atQoUlNTmTdvXgXh8NVXXwFWzonbWxDKUxJtSktLHTd2pON7VUa8BdLWrVspLi6mbdu2tXLF28QqSRuqFkiR5NfVhKZNm9K0aVPy8/NrlUAfClvEx1rk2SRCV/9I8o/A8nxlZGRgmqZzztkCqVGjRpSWllYYkDyYaAokdy2kmuYfgeUZHT58eNih08GDB9OgQQOWLl1arRiJlQfJnaBtU2cEkta6t9a6T+B1ADAVCB27qB1Dgc8Dnz8DhlWxbMzp0KEDLVu2LFfC3y2Q3F39c3Jy8Pv95Vz0mZmZpKenO71mwLo4r1mzhiZNmrB161befvtthg8fTnFxsTO0QXVs2LCBP/3pTxxxxBEMGjSIIUOGMGXKFMAaHyvUjaJz58506NCBXbt2VfkUuHv3bpYsWUKDBg1QSoVlj01tPEgXXnghBx98MEceeSTvv/9+yGENIvEgNWvWjKFDh+L3+/nyyy/LzbO/B/fCi7YH6ZtvvqmQA2UfB40aNapyhPtIqK1A2rNnD5s3b6Zhw4Z07ty5wvxggRTN8BpEz4OUaAIJyq4X0R7sNVQOUixJhETtSAUSlA+zlZaWOgUW7fyhqvKQiouL2bx5M4ZhON6f2uCOKNQ0/6gmZGRkOJ7yb775psplY5GDtHv3bqfuVLIIpNRIFlZKnRG0rsLqyRZtWgD243sOUO7oUUpNAiYBTJ48mdGjY2GCRXFxMZs2baJnz57MmzfPqQDaoEEDJx/JVtmrV692kgebN2/uzAer98KmTZv45ZdfOOCAA5yQT79+/dizZw9Dhw6lffv2jBgxglmzZrFhw4Yqb5y7d+/mjDPOCFk6/rjjjmPIkCHO/ouLi8vZcvjhh7N582Y++eSTSntQ2eKhX79+EYf93L353Putjl9++YX33nsPsHKGzjzzTLp168bll1/O+eef77ig7Yub+z+oiqFDh/Ltt9/y3nvvORcI0zSd/KM+ffqU2479RLZ27dqI7A/Fd999x7nnnkufPn3KhfnsfLWGDRvWeh829kVt165dNdqmnYvRvXv3Ct6z4uJix8OzcuVKsrOzne7Rbdq0iUobiouLAcuDtHHjxohDDna4zzCMCvbYDzFLlixh7dq1pKWlOfWx0tLSovYfVEa3bt1YtmwZ3377reNBiJTg8xjKBFd6enrM2wBlNz13j95ICNWGSLGP0w4dOoS9LfsavWrVKtauXUthYSFt27alb9++vPPOO8yZM4fTTz895LobN250OqsAtbbfFh2rVq1ywsGNGjWKy/83cOBAvv76az766KNyYa5g3NeS2g46np2dzfr165kwYQLbtm2jX79+5e6P9vV2zZo1Yf0G0TiG3FRWwgYiFEhYvdfcsQ+DMk9PNNkD2I+BzYByrgit9TRgWuBrTIsnZGdnk5WVhVKqXFjq8MMPd35YO3HRTrYDy43q/uE7dOjApk2b8Pl8ZGVlOd6bY445xlmuY8eOZGVlkZ2dzZ49e5zk8GByc3M588wzWblyJb1792batGn4fD5KS0sxDIP+/fuXc43abbAZNWoUM2bMYNmyZZUeHHZvplGjRlV5AIXCfiLYs2cPHTt2DPtGN3nyZACuuuoqDj30UB5++GH++OMPbrrpJjp16sT5559fbvlOnTqFZds555zD/fffz5w5cxx7li1bxtatW2nbti2jRo0qZ6MdUt25c2fEbXfj9/u57777AEtsubdlu7CbNm1aq324sW9ee/furdE2bcHYr1+/CutnZ2c7Rfn27dtHVlaWk0PVs2fPqLUhLS2N4uJi2rRpU6EacLhkZWWFtKdz586sW7eOvXv30rdvX8fTdthhh0XN/soYNGgQn3zySYVzMRJCrWs/nffu3TvmbYCym/uaNWsiOrdtatN+GzvJ+Kijjgp7W82aNWPjxo00bdrUeTjp0aMHI0eO5LbbbmPFihWVbssWoV26dCEtLa3W9tvJ0vn5+c7vV9kxG23Gjh3Lww8/zMKFC6vcn/2Q261btxr3frTLEOTn5/Pcc88xe/ZsWrVqxfTp08vlLNr10YqLi8P6DaJxDIVLpL79u12vO4CLgT9F2yjge8COe5wAzI3BPiLCXQU4uC6QO8couAdbqGWgbAR0d3KwYRiMHDkSgFmzZoW0o6ioiDPPPJP58+fTpUsXZs6cyZFHHsngwYM58sgjGTJkSLVx43ASte38o0gTtMF6WsvIyKC4uDjscMkvv/zCBx98QEZGBrfddhuTJ09m5cqVTJ06FYD333/fWTbSuH2/fv1o37492dnZLFmyBCgfXgu+yLtDSbVJqn3xxRed3IZ9+/aVq2Qe7R5sYP3u6enpFBQUVCjvHw7VhS5iHWKD2oXZqgqxQVmSqh1mi2eIzd0TNprEOwepZcuWtG7dmv3798fF4xFMSUmJE94Lp4q2jTvE5h5gtl+/fhiGwZIlSyo9Z+z8o2h0RIDo5SDVhEGDBpGRkcFvv/1WaV2+kpIS/H4/Pp/PGSaoJtht+uGHH7j33nvx+Xy8+eabFcL3iRxiizQH6U6t9V2B171a69e01pGPX1H9fhYDW5VSc4DDsGoueYpbILVv376cqnZ3869MILnjzkVFRU4doiFDhpRbzh4mIJRAKi0tZfz48Xz++ee0adOGzz//vEa5B4cffriTrBcqkbqgoICFCxdiGIYjpiKlqsEKQ2EnlE+aNKncuFh//vOfAUvQ1LSwmmEYTn0QO8xVWf4RWDfYRo0asX///hrXe9m3b59TZNAWYO4LUrSLRNr7sV32NUkGtr2GXgqk2iRqRyKQ/H6/87BS05BXJMRCIBUXF7N9+3Z8Pl9c2mDjZR7S6tWrKS4upnPnzhGdO+7hRuy0hIMPPpjGjRtzyCGHUFJS4jw8BROqY05t8CoHCay0BDv/5+uvvw65jDv/KFIPoRu3Rxvg/vvvD3m9TXqBpJTaW8Urut0yAmitp2ith2utL9Ba1y4IGgUOO+ww52AJPlEi9SAtXryYwsJCevbsWWE524P0zTffVEhQfvnll3nzzTdp2rQpn332WUQl7t24E6/tWkduFi5cSFFREX369Al7lOpg7ATqcHqyLV26lHfffZf09HRuvPHGcvO6du1Kt27dyMnJcXpARJKkbWMLpM8++4ySkhInWTDUCWsYRq17st1///1s3bqVI4880im14B48NBYeJKhdonakHqTqBqqtCbH0INld3hcvXszOnTvx+/20atUqavWOqqJbt25Ovlm06oPZgrtt27a1etKPFC8FUk0StKH8cCNuDxKU1ROqLFE7mqUsoLxAqskwI7XFfuitbKDeaPRgg/Kib9y4cdxwww0hl0t6gYSVA7SzklfsBtxKIBo3buzEVIMFkrsXW3ANJBu3QAoVXrPp3LmzIwjcPW7A6sIP8Nhjj0VcvDGYqsJstQmv2VTmQfrpp5947LHHyvWg+8c//oFpmlx66aUhY8tHH300UJYjUxO39OjRo/H5fHz33Xd89dVX7Nu3j549e1Z60atNT7Z169bx8MMPA1albltYJLJAys3NZd26daSnp9OtW7eQy7Ro0YIGDRqwb98+9u/fn3AepMoqadu4BVJlVbRjhc/nc/YfLS9SZTWQYo2XXf1rK5CCQ2yA8wBTmUCKVYjNfb+IlwcJyu47sRZILVq04Mgjj2To0KG88MILlXqjkl4gaa27aK27VvaKtZGJgh1mCxZIjRs3pmHDhuTn5ztP1cGFu9xPDVUJJCBkHtLSpUv54YcfyMzMjEpl3FgLpMo8SJdeeinXXXcdPXv2RCnFnXfeyZtvvklqaio33XRTyG0dc8wxAMycObPcNiPxILVs2ZLBgwdTXFzM3//+dyC098imNh6km2++mcLCQs477zyGDBni3ITdAinaRSJtaiqQli9fDuCM2RcKwzCctqxatYpdu3bRoEED5wEhGtSmmnZ1HqR27drRrl07cnJynHMwXgIJoh9mi3f+kY2XxSJrKpDs42rfvn1OL1j7gbc6D1K0BVJGRgbNmjWjpKTESTiPp0Dq27cvTZo04ffffw/5ABgtgeTz+Zg7dy7fffddleHQpBdIbpRSRyqlJimlrg68/lr9WnUDu2CiOx8JrBuH/VRg53FU5UGyRUll+T2h8pBeeOEFAM4777yoFBa0xdmCBQuc3B6wel7NnWvlxEdaINJNqGKRpaWlzgWuadOmLFq0iLvuusvJrQpVe8e2NT09nYULF7Jjx44aJzbag3ja3YSrEkg19SAtXbqUN998k4yMDO6//34gdCX1WOQgQc0FUrg3HvtmbNcDO/DAA6NWxwliG2KDsnpIdi5asgikoqIipyyBTbxrINl4GWKLZAw2N/Z5tnLlSvLz82nTpo2Tr9e/f3/A6ihil5pwE22BBGX3A/s3jKdASktLc67tobxI0aiBZGMYRrV5TJmZmfh8Pvbt21frkgLRJtKhRm4HvgP+D3g08Hos+mYlJpMnT+ann37ikksuqTDPPuDtJ/HKBNLPP//Mhg0byMzMrPRmZAuk7777jqKiIoqKinjlFWvYu4kTJ0alLe3ataN79+7k5uaWS0787bffyMnJoXPnzrVKSgxVLHLjxo0UFhbSvn17tm7dyrvvvssZZ5zB4MGDueOOOyrdVqNGjRg+fDimafLll1/WWCC5B3L0+XyOZyoUNfUg2XWyTjvtNCf0FMqDlGghtuoStG1CCaRoEo0k7VBDjdjYAsmuou6FQKosGbgqrrnmGo466ig+/7ysqopXIbbu3buTkpLC2rVra9Rbsqb4/X7n+ho8mHJ12ALJrt3lzt9s1qwZBx10EIWFhc6Dgk1hYSHbtm0jNTU1qseK/dBk/37xzEGCsntMKIEULQ9SuPh8vog79cSLSB/9/oxV2Rrgn8CvwENRtSiBSU1NpX///iGfmG0BZIdOKuvFZsecBw8eXOmTd4cOHTj00EPZv38/Cxcu5OOPP2b79u307t2bI444Imrtsb1I7jBbNMJrENqD5O490rBhQ84880zee+89fvjhh2qfzuwx1T7++GP27duHz+ejadOmEdk0cOBAJ/R5xBFHVJmAXlMPkp3fYOdpQHIIJPvGUN2NJ9YCqaYeJNM0HYFU1XFhCyT79/dKIEVSPiInJ8eprv/EE084070SSOnp6XTt2hXTNMuNaRZr1qxZQ2FhIZ06darSSxgK+7iyBZKdf2RTWZjNTtDu2LGjM+h3NAiuyB1PDxIklkCCxA2zRSqQ2gIfBz7PB57G43HSEoXgbrbBAik4J6my/CMbdx6SHV6bOHFirbpdBmOH+F544QU+++wzioqKajz+WjChPEi2QAq+OIWDLZCmT5/ubD/S0I7P53O8SNVVX6+pByk4ARTKLobxzEGKtJt/pCE2e/lE8SDl5eVRWlpKw4YNqyxsZ4dTbOIpkNq1a0ebNm3Iyclxwjbh8Pbbbzthj08//dRJjvcqBwm8CbPVNP8IyjxI9gNbuAIpFuE1KC+Q0tLSon4dqI7DDz+cZs2a8ccffzjHk40IpDIiFUg7gFKsStdPAndhDQtS76lOIKWlpZV7SqiuvpCt8N966y0+/fRT0tLSuPDCC6NkrcVxxx1HSkoKixYt4qSTTqJdu3Z8+OGHQOw9SJHSp08fOnTo4AiLSBK03dx3333ceOON/O1vf6tyuZp6kOwEUPcFuCoPUiLkIBUUFPDHH3+QkpJS7X9j34xtD0iieJDCyT8CKzzk9jDFUyBBzfKQXnrpJcA6p0pLS50HJq9ykMCbnmy1EUjBAsRrgeS+X7Rs2TKqD77hkJKSwogRI4CKXqRo5iCFS10RSI9hiaO7gAOA1sA90TUpOXH35ElLSwt543M/NVQ1Dg6U9dz67bffKC0t5bTTTotqbyGwhMqSJUu444476N27N3v27GH//v20bt064hh/MKE8SLZ3pSYCyTAMx4sENXdJH3DAATzwwAPV1neqrQfJ7iEDZTfhrVu3OsIikUJsv//+O6WlpRx00EHVDu8R7K2IlUCK1IMUrkDy+Xz069fP+R5vgWQXqwxXIK1YsYLvv/+eJk2aOKUjnn/+efx+v2chNihrh93hIR7YCdq18SDZBF+DbIG0ePHicvXn4uFBinf+kU1lRYnFg1RGpALpAeA2oBHQBWiutX402kYlI+4ngtatW4d8IrCX6dWrV7U36FatWpULB1x66aVRsTOYQw45hDvvvJNff/2V5cuX88gjj/Dee+/VumdStD1IQDmBVFMPUrg0a9aMhg0bkpubG3Y17V27drFr1y4aN25c7gLYpEkTGjVqRH5+vrOtRBJIkTyZBwuKRAmxhSuQoCwPCRLHg1RSUhLyP7Nzj84++2xGjRpF9+7d2bhxI5988onTKzIaI8xHiu19+OabbygtLY3LPu3jNNIebFBRILkfYMC63nbp0oW8vLxyoi/aVbRt3P9ZvPOPbIYNGwaU5WXZiEAqI9K74ENAQ+A+YA3wsVIqNnfuJMMtkCp7IrCXCXf4DlvhZ2Vlcfzxx9fSwurp2bMn1113nXPxqw3BHiS/31+h/kikjB492hGesb6ouKtphxtmc4fXggWy7f2zw2yJKJDC8RoGeyui/WRd0xBbdUUi3dgPHqmpqXG/OVUmkMaNG0f79u354osvnGl+v9/pvTphwgR8Pp8z9M4//vEPSktLad26dVwqgQfTvXt3srKy2Llzp+PZiSWlpaVOT8uaeLfd51mrVq1CPmCddtppgJXWYBMPD5JXAsm+HwVfK0QglRHpWGw3aq27Awr4DzACeDYWhiUb4Qgku2LrqaeeGtY2L7roIpo3b86tt94a1R4U8SDYg7RhwwaKioro0KFDjfNuWrVq5QyREo+Lip3bEW6YLVSCtk2wQEqkQpGReJDatm3reBfbtGkT9TyFeHiQ7HBKhw4dolrDKRxs78fy5cudmjszZszggw8+oLCwkLPPPtspwPjFF1+QnZ3NQQcd5OQETpgwgdTUVGfYHS/yj8B6gLAf4Cob0yuarFu3jvz8fDp06FAj77H7mlNZJ5HzzjsPsASS7RWL9jAjNsE5SF5Q2bXCFkiSgxR5HaRWSqnLsDxIlwAGEH53jDpMOALp+uuvZ8WKFc6TSnUcfvjh7N69myuuuCIqNsYT98lXWlpa6/CazdixYwFrjLZYE6kHKRyBZIdFEiVJe/PmzU6F8uAeXqFISUlxjvVoh9cg9knaAP369WPq1Kk88MADkRtYS5o0aUK3bt0oLi5mxYoVFBcXc/311wOWp3jPnj2cdtpp7Nmzx0nOnjBhguORbNeunXMOgDf5RzZ2nmRlQ1ZEk5rWP7IJRyANHjyYLl26kJ2d7fTmrcs5SJmZmRiGwd69e8vlXdlJ2uJBijzEtgXLY6SAF4ARtRlqRCnVTCm1QCmVq5Tq7Zo+Tin1vVLqK6VUdIO/McKdQF3ZAZ+WllauPk5dJiUlhczMTEzTJCcnp1YJ2m5uvPFG3nvvPa688spomFklkXqQQvVgs7FFRbxCbLt37w4rN+TGG28kNzeXsWPHhp3bYd+UYyGQ4uFBMgyD++67z/EYxBt3PaSnn36aFStWcPDBB/PLL7/Qt29fVqxYwRlnnMEHH3yAYRhcfPHF5da3w2zgrUCyPUjxyENas2YNQKXjBFaH+zyr7BpkGIYzjNMbb7xBXl4eu3btIj09PeodZJo0aeJ4aLzyIPl8Pud8sc8fkBCbm0gF0vvAn4AOWusrtdbf1XL/ecApwLv2BKVUKnA9cAxwO1ZSeMKTnp7uVPD16okg0XBXR61NDSQ3aWlpnHHGGVEZbqU6aupBCpVjZdfBirVAatiwIZ07d6agoIBvv/22ymXnzp3La6+9RoMGDXjkkUfC3of9u1Q2NExtiHUvtkTAFkhff/01d955JwAPP/wwLVu25MMPP6RNmzbMnj2bwsJCjjvuuArei9GjRzu/vZcCqWvXrhxwwAHs2rUrauPLVYY9xmWXLl1qtH44HiTAEUjvvvuuI8o6deoU9VCsYRiOF8krgQShPc4ikMqINAfpHK31h1rrigPW1ACtdbHWenvQ5IOBZVrrIq31XKBviFUTEttLIALJwj1gbbRCbPEkljlIsRJIhmE49bLsHlCh8Pv9TJ48GYApU6ZE9GRu9+iJpUCqaYitqmFGEgVbID377LPs2bOH0aNHM2bMGMD6Td9//32n2GWoYY18Ph9Tp04F4Oijj46T1RWJZx6SLZBqesy5z7OqBFLfvn059NBD2bFjhxPijHZ4zcYWSF7eL6oSSJKDBKGH7faWFsBe1/cK2clKqUnAJLDGR6uuKnJtKC4uJjs7O6xl7YMtJSUl7HXiQSRtiCb2Ren33393eqBkZmZGbItX9ts3qTVr1lS7/9zcXLZu3erUEQpe3n5KXLduHdnZ2U6Sdk5OTtQHaDzhhBP4xz/+wdtvv83UqVNDirBXX32VxYsX07FjR8aPH19t+9z/wbnnnkthYSEjR46M+v9i/y579uyJaNu2iC0tLa10Pa+Oo2Dc4Rqfz8dNN91UzkvZtWtXnn/+eRYsWMCRRx7p2Oy2f8yYMaxcuZKGDRt62ia7ptSnn37KWWdVP6hCTf8DO3G9UaNGNW5vkyZNyM3NpXHjxlVu4+STT2bZsmU888wzgHXzDvUf1JZDDjmEhQsX0qZNm7j+h+422CJo5cqVzgO+PRxWQUFB3OwqLCwErGjDxo0bnZy7efPmkZmZyaGHHup48aJ9HmdlZVU+0zTNmL8GDhzYfuDAgV+HeLUPzH9p4MCBvQOfew0cOPAF17rzqtl+TNm4cWPYy06cONEEzDlz5sTQosiJpA3R5KyzzjIB8/XXXzfT0tJMwMzNzY14O17Z/9tvv5mA2aNHj2qX/emnn0zA7NWrV8j5H330kQmYAwcONEtKSkzANAzDLC0tjbbZpmma5tChQ03AfPnllyvM27Fjh9myZUsTMN9+++2wthev/2DFihUmYB588MERrXfeeeeZgPnaa69VuoxXx1EwRUVFZnp6ugmYV111VdjrJYr9btasWWMCZosWLUy/31/t8jVtQ/v27U3AXL9+fY3WN03TfO2118xnnnmm2uXsY9B+TZ061ZkXzf/A7/eb27Zti9r2wsXdhrFjx5qA+f777zvTLr74YhMwX3zxxbja1bhxYxMw9+zZ40zr37+/CZhfffWVMy0G50Gl+iIuHiSt9RasnKJwWAkcqpRKx0oG/yVWdkWbRx55hIkTJ4Zd56iuY3tNfv75Z4qLi+nYsWPcxxyqDZHkIFUVXoPyITZ3eC1WQwxMmDCB77//npdffrlCku+tt97Krl27OPbYY8N66o8n8UjS9pq0tDTOO+88fvjhB+666y6vzakVXbp0oXPnzqxbt45ffvklrJ6QkVJQUMCWLVtITU2tVVmDCy64IKzlevTowYABA5xhR2IVYvP5fFFP/o6URMlBAstTt3//fnbu3EmzZs3Yvn07ixcvJiMjw7N7anyLgIRAKTUDOB54Tik1IZDf9BjwNXBv4JUUNGvWjGHDhsV9XJ1Exc5Bsmu2JFP+EVgXj4yMjHLVtDds2MCFF15YIQG6OoFkJ2lv3brV2VYsxeLZZ59NRkYGs2bNcvI3AL766iueeeYZUlJSeOKJJxLuWK0PSdpgja+2bNmyCoNYJyOx7u5vD6Z6wAEHxK0enLuHY6wEUiKQaAIJyvKQvvrqK8AaOD3etth4LpC01idrrTtqrY/UWr8UmPaW1nqo1nqk1lrqLCUptgdJaw0kn0ByV9PevHkzxcXFnHPOObz++uvceOON5Zatqos/WBeb5s2bU1JS4tRWiaVAatasGX/6058AK98IrGT58ePHA3D77bc742klEvGopJ0oJJo4rSmxTtSubYJ2TTj77LOdz9EeZiSRCCWQvBisFsoEkj36wpdffglYg6p7hecCSai72B4kO/G2tl38vcDdk+32229n3rx5AMyfP5+1a9c6y1XVxd/G7rVii6loF4kMxhZDL7/8MqZpctVVV5Gdnc2QIUO45ZZbYrrvmpKWlkZKSgrFxcVOpWmAtWvXOgP9hiLZPEh1CduD9M0335QrOBgt7PMsngLpwAMP5M9//jNDhgyp9cDdiUyiepBM03SG3RGBJNRJgut7JJsHCcrykF5++WXuv/9+fD6fk2fx9ttvO8tVF2KDsoFRbYEU63ys4447jo4dO7Jq1Squvvpq3nzzTRo3bsyrr75KamoidmC1vCrBXqSXXnqJrl27MmXKlErXE4HkHZ07d6Zr167k5OTw888/R337ta2BVFOmTZvGvHnznJ6pdZFEFUirVq1i/fr1FQZtjzcikISYETxmUjIKJNuD9OKLLwJw1113cccddwDw5ptvApZLeuPGjaSmplZZXdoWSH/88QcQe4GUkpLCRRddBMBTTz0FwKOPPprwnjx3orbf7+eee+4BrGKKocI4pmmKQPIY24sUizCbFx6k+kKiCiQ7vDZq1Ki4j5foRgSSEDOCPUhVhZ8SFXel4pEjRzJ16lROPPFEMjMz+emnn/j9998dwdO1a9cqPTPx9iBBWZgNrNHKL7vsspjvs7a4PUjvv/8+f/zxh5Oce8kllzhJ7jYFBQWUlJSQnp5ep5/2Exk7D+n111+P+rAjXnmQ6gOJmIO0c+fOhAivgQgkIYa4PUhZWVlxGR4k2tg9WNq0acOrr75KSkoKGRkZnH766YA18nc44TUoy0Gyl491DhJYg3ueddZZ9OjRg+eeey4pEoPdPdkefPBBwPIeDRgwgLVr11YItYn3yHv+9Kc/kZWVxY8//uh4W6OFF0na9YVE9CBt27aNWbNmAcS0CHQ4iEASYobbg5SM4TWwLvx/+9vfmDFjRrkaLPaYTZEIJNuDZA83Eq+aUO+88w7Lly93KuUmOraQnjFjBgsXLqR169b8+c9/5uWXXyY9PZ1nn32Wzz//3Fk+mYYZqas0adLEEbNTp04td8OtDXbVZMMw6nRvMq9IRIE0a9YscnJy6N69u+deQxFIQsxo0qSJExpJVoHUqFEjHnroIZRS5aYfd9xxtGzZkt9++43p06cD1YcQbYFkE8+imcngObKxf5eHHnoIsIYTatSoEb1793YKK1566aVs324N4ygepMTg3HPPZfjw4Wzfvt3J06stGzdupLS0lKysLNLT06OyTaGMRBRI9lAnXofXQASSEEMMw3DCbMkqkCojLS2NM888E4A5c+YA4XuQbJKpqng8sT1Iu3btomHDhvzlL39x5t1www0MHjyYjRs3csABB3DOOefw4YcfAiKQvMYwDJ588kl8Ph///ve/WbJkSa23KQnasSUzMxPDMNi7d69TosHrHCQbr8NrIAJJiDF2mC3Re07VhHPOOafc93BzkGzikYOUjLiF48SJE8tVm05NTeXNN99k9OjRFBUV8fbbb3P33XcDIpASgX79+nHFFVfg9/u5+uqrq6xdFQ6SoB1bfD6fc97s3buXkpIS/H4/Pp8v7qVA3CkZhmE4if9eIgJJiCn9+vUjPT2dI444wmtTos4xxxzjiB6fz1ftRbxNmzblQl3iQQqN/bv4fD6uv/76CvO7dOnC559/zrp167jvvvvo2bMnAAMGDIirnUJo7rnnHlq2bMns2bM55phjGDJkCD169KBdu3Y8+uijEW1LPEixxx1mc4fX4h2Wb9asmdOlf+DAgRV6QXuBCCQhprz++uts2LChTiZYpqSkOIO9HnjggdV2MU9LSyvnDRGBFJqmTZsCMG7cOLp161bpcgcccABTp05l2bJlbNq0idtuuy1eJgpV0LJlS+677z4Avv32W+bPn8/KlSvZtm0bTz/9dETj7IkHKfZUJpDijc/nc0RRIoTXQASSEGPS0tKSpvdUTRg/fjwpKSkMGTIkrOXdeUgikEJz6aWXcuGFF/Kvf/0rrOXtMfPiNZCpUD2TJk3is88+46OPPmLu3LksX76cI444gvz8fD755JOwtyNd/GOPWyB5lX9kY18fEyFBG8DT8QaUUoOAx4FiIBu4WGtdrJQaB1wH5APjtdYbPTRTECrliCOO4LfffitXULIq2rVrx6+//gqIQKqM3r17OwPsCsmJYRiccMIJ5aadf/75LFy4kDfffLPcYLBVISG22GMLpN27d3vqQQJ45JFH0FonRP4ReO9B2gCM1FqPANYCY5VSqcD1wDHA7YD4zYWEpmfPnmEnCLs9SJKkLdQnxo0bh2EYzJgxwynNUBV+v58NGzYAVDmEj1A7EiXEBlZoberUqQlTlsRTgaS13qy1zg98LQJKgYOBZVrrIq31XKCvZwYKQpSREJtQX8nKymLQoEEUFhY6tcOqYtOmTZSUlNCuXTvPQj71gUQSSIlGQgzprZTqDBwP3AscAbgfLyokFiilJgGTwCoiF8uELruSazKT7G1IdvuhrA3uC09ubm7StKsu/QfJSrLbDzBmzBjmz5/PSy+9xMiRI6tcVmsNWANGJ0q768J/ENwGu+fY+vXrHY9dSkpKwrYz2v9BVlZWpfPiIpCUUu2BN0PMOhfIA14FJgTyj/YA7niFP3glrfU0YFrga+0KbVRDdnZ2lT9gMpDsbUh2+6GsDXaXdIBu3bolTbvq0n+QrCS7/QCnnnoqd955J99++y0ZGRkVigO6ycvLA6wis4nS7rrwHwS3wQ5flpaWOmH/zMzMhG1nPP+DuAgkrfUWrJyicgTyjT4E7tJarwhMXgkcqpRKBxTwSzxsFIR4IDlIQn2mdevWjBw5ki+++IL//e9/XHbZZZUuKwna8UFCbJXjdZL2ecBg4Dal1NdKqXO01sXAY8DXWCG3e70zTxCii+QgCfUde6DnN98MFVQoQ2ogxQcRSJXjaQ6S1vpVrPBa8PS3gLfib5EgxBa78nZKSooMvinUS/70pz9xxRVXMHv2bLZs2VJhjEIb8SDFh1ACSZLiLbz2IAlCvaJ169acffbZXHrppQnTlVUQ4kmLFi048cQTKS0t5d133610OfEgxYdQhSLFg2QhAkkQ4ohhGLz11ls8++yzXpsiCJ5hD/T86quvhhzQ1jRN1q9fD4gHKdZIiK1yRCAJgiAIceW0006jZcuWLFiwgP/85z8V5m/dupWCggJatWolnRlijAikyhGBJAiCIMSVpk2b8tRTTwFw/fXXO+E0m9mzZwPiPYoHmZmZGIbBvn37yM3NBSQHyUYEkiAIghB3zj33XM4880xyc3OZOHEipaWlADz//PNcdNFFgFU3SYgtPp/PGSpp69atgHiQbBKikrYgCIJQvzAMg6effppvvvmGWbNm8X//939s3bqVe+65B4BbbrmF22+/3WMr6wfNmzcnJyeHLVu2ACKQbEQgCYIgCJ7Qtm1bnnnmGc466yz++te/YpomKSkpPP3000yaNMlr8+oNzZs3Z926dSKQgpAQmyAIguAZZ555Jueddx6madK4cWM+/PBDEUdxxk7UtgWS5CBZiAdJEARB8JRnnnmGPn36MGbMGPr06eO1OfWOYIEkHiQLEUiCIAiCp2RmZjJ16lSvzai32AKpuLgYEIFkIyE2QRAEQajH2ALJRgSShQgkQRAEQajHBAskyUGy8DTEppRqB/wPKAb8wAVa681KqaOAfwGlwJVa6189NFMQBEEQ6iziQQqN1x6kHcBRWuujgVeASwPT/wGcApwPPOCRbYIgCIJQ5xGBFBpPPUhaa7/ra1PgN6VUQ8Cvtd4N7FZKtfTGOkEQBEGo+4hACo3nvdiUUv2BZ4HmwPFAC2Cva5ESpVS61roo/tYJgiAIQt1GcpBCExeBpJRqD7wZYta5WuvFwGCl1NnAVOB6INO1TGqwOFJKTQImAUyePJnRo0fHxG6wuj1mZ2fHbPvxINnbkOz2Q/K3Idnth+RvQ7LbD8nfhmS3H0K3oaiovP9h9+7dpKSkxNOssIn2f5CVlVXpvLgIJK31FuCY4OlKqXTX1xwgT2udp5RKVUo1xwq77QqxvWnAtMBXM+oGu8jOzq7yB0wGkr0NyW4/JH8bkt1+SP42JLv9kPxtSHb7IXQb7PpHNl27dnUGsE004vkfeB1i66+UegirB1sBMDEw/VZgBpb4ucoj2wRBEAShziM5SKHxOkl7ATAixPRvgaHxt0gQBEEQ6heZmZkYhoFpmvh8PtLS0rw2KSHwupu/IAiCIAge4vP5nJBaRkYGhmF4bFFiIAJJEARBEOo5dphNwmtliEASBEEQhHqOCKSKiEASBEEQhHqOLZCkBlIZIpAEQRAEoZ4jHqSKiEASBEEQhHqOCKSKiEASBEEQhHqOCKSKiEASBEEQhHqO5CBVRASSIAiCINRzxINUERFIgiAIglDPEYFUERFIgiAIglDPGT16NEOHDuX888/32pSEwevBagVBEARB8JisrCzmzp3rtRkJRUIIJKXUecATWus2ge/jgOuAfGC81nqjl/YJgiAIglC/8DzEppRKAcYBGwLfU4HrgWOA24HbPDNOEARBEIR6iecCCTgPeAcoDXw/GFimtS7SWs8F+npmmSAIgiAI9RJPBVLAe3Q28JZrcgtgr+t7SlyNEgRBEASh3hOXHCSlVHvgzRCzXgTe1lqXKqXsaXuATNcy/hDbmwRMApg8eTKjR4+Oqr1uiouLyc7Ojtn240GytyHZ7Yfkb0Oy2w/J34Zktx+Svw3Jbj8kfxuibX9WVlal8wzTNKO2o0hRSj0AHI4VXjsSeBn4G/AtcDSgsJK0L/fMSEEQBEEQ6h2eCiQ3SimttVaBz+cA1wAFWAJpg6fGCYIgCIJQr0gYgSQIgiAIgpAoJEIvNkEQBEEQhIRCBJIgCIIgCEIQIpAEQRAEQRCCEIEkCIIgCIIQhAgkQRAEQRCEIEQguQhU9k5alFKNAu+G17bUBKVUW69tqC1Kqc6B92T9D7oH3pPV/sHJaruNUuokpVRHr+2oKUqpA722obbUgWtpC69tiAZKKU81Sr3v5h+ouTRGa32R17bUFKXU6cCFWAP+Pqi13uStRZGhlDoN+DOwH3gK+F5rXVr1WolF4IL6L+AA4CytdbHHJkVE4D+4HPhWa/2A1/ZEilKqH/A48ANwu9a6yGOTIkYpdRJWodxhwKFa67XeWhQZSqkTgclAIfAG8JnWOtdbqyJDKTUGuADYCDyitd7ssUkRoZQ6GusY2gH8G/hNa13grVWRoZQ6F7hQaz3Ga1vqtQdJKdUHa7DcAUqpiYFpSeVFCpzQlwAPYA3TclNgelI8+SilhmCJu38C/wOODww9kxT222it84AioCnW/5FM/8FI4E4scf2AUqqhxybVhOHAfVrrm4FuXhsTKUqpM4GJwF+BR4Fx3loUGYHr5hXANOAurFEQGifLOQCglEoDxgPPAKuAK5VSR3prVcScgzWE1xvAycCZ3poTGQHP6Z+AA133ZM+OoXrnQQo86Z8LzAK2aK0LAn/K+8Axge+G1jphf5hAG84DPg1MKtZab1dKNcMa82681nqbZwZWg+s/+BLYqrUuDExvh3WBvRbYmMhemEAbzsHyuKwOnMRXAr8AVwM3aK3Xe2ljVbj+g5lABnAGMBhoDuQATwBztdYlXtlYFa7f/zut9crAxbQ30B/YDCwEPtJar/bOyqoJOo9ztdZ7A9OPA4YCD9jnRiLiOoa+AXKxvEfTgZVYA5BfAWxKZG9eUBtKgWu11tcopdKBZ7G88k9orXd4aGalBB5mbsfy1n2jlJoCzAEWYHkiTwFe0lov99DMKgm04Q7gY631d4FpHYDXgHO8/O3rlQdJKXUe8DXQEMh2iaFNwFysp2gSXBzZbcgAtmmtNwXEkQ/Le7EmwcWR+z/Y7BJH3bFcwiYwBTjJKxurI6gN68E5ZnoBzbDE9uVKqQO8srEqguzfEhARy4DFWuvjgNexfv+E9MQE2b82MLkR0AG4AbgKK8xzigfmhUXQebzdFkcBGgPNtdaFXudgVEbwf6C13gp8heUN/gkrxPNn4C9e2VgdQW1Yo7VeA3RUSp0bEHXbsc7nhPSoBq4vbwBbgXmByQbQFes6uhTr+nSQJwaGgasNW7AeagAIhDbnYYULPSMhT75YoJTKBM4G7sE6kY9WSh3iEkP3AkcppVoppZoppTK8srUyQrThGKXUIQCBnJ1GQElg2QMTzb1d2X8QmL0N+IvW+nTgN6wLU8KFqYLaMAurDYcFZn8D/IiVS3UhlifJ80RDNyH+g1FKqW5a64+B+wG01u8DnYAenhlaCSF+/2MDHuD3gDTgAK11DpZwss+FRD6G7POgp2uRL7Da1TkRc/EqOYYO1lp/jeUV/rfW+kLgYyBdKeVLgv/geKVUK+BmoIdSagbW/bE1lvBORFKBD4HZwF+VUkOxPMJDgcO01juxBHhDSLzzIIC7DVcppU52zXsY6K+UOkAp1VEp1TrextXpEFugN8UNwCdYHqIRwHVAOtafcjEw1k6GVErdhXVTew8rRLIn/laXJ5I2KKUuxTo5coBWWILD0yTJGvwHrbGSbRdorR/3wuZgwmzD8VhJzsdgib1NwH6t9W0emFyOauz/CLiI8v9BJlYexgta6y+9sNlNGPZfDIzC+u37Yj05nwys0lrf5YHJFajBeXAnoAPC1XPCtP8kLK9dB6wb9WRgt9b6ai9sDibM82CM1nqDUqqV1nqnUuofWCGqlV7ZbeOy/0NgCdZDzA1ANtaD2QSsh5w+QCawHBiDlQbwHw9MrkA1bViE1YZ/A7O01vuUUn/HGrj+M+CmeCfNJ8yTbbRRSnXCUqDrgPbAK1rrGcCDwLFa64exktn+GVj+QGAA8A+t9WUJIo7CbYPd6+hALIG0Ums9PgHEUaT/wRisHKr5CSSOwmnDK1jh2YewRMW5WuvrE0QcVWf/Q5T/Dy4GZgA/JYg4Csf+l7Hydd7BctcPxuoJmSjiKNLzIB3r2pwQ+VMRngMvYOUg3Yn1kJMo4iic4+glrHMYoItSaiaQkyDiyG1/FvC01lpjPQgXaa1fD8w/HngVK8x/NLAwgcRRdW34L9b/MQooDeTUDsbqPHKxFz0K65xAUkqNcLkSm2utH9Zavww0VUpN1Vp/jhWnBatLuV8p1RgrsfPswIniKTVog51I+yVwpNb6/+JscjlqYH9poBfMcuBPWusnPDC7HBG24XGsJza01q8F1vf03Krhf2AAi4FTtNYPxt/qMmrw+6crpTK11kuBv3l9DkCNr0XNAvkvd2utl3lht00N/oPGQIbW+g0sb9iTHphdjgjb8CRQrJRqgHUTP1Nr/S8PzHaowv5mSqnLgH8AgwC01p8BhwSWWwJcneD/Qag2fIH1oN8uECo/28trUZ0RSEqpJkqpL7DiySdjJQl+p5S6PLDIHOA0pVRzrbVfKTUC+ABYrbXer7Uu1lrne2J8gFq04Q8ArfUcLz1ftfwP/FrrVVrrfZ4YH6AWbVilra7+gJMTFndqcwxprU2t9S+BC5Mn1PIY2gugtfZ7YLpDLduQA6A97D1Yy3NgP4D2uOdaLc+DQq31Di898GHY/y1WWYhvA9PvCCy/KbBsMpwHlbVhM7ATQHtcw6lO5SAppQZiFeobhBXHbB54X4vVDXU/lpflN+A5rHDIe17YWhnJ3oZktx+Svw1iv/ckexuS3X5I/jaEYX8hlqibB7TDSsz+3ANTKyXZ21CnBJKNUuoJrPj3a8qqp5CJVfjrWuB1rfUWL+0Lh2RvQ7LbD8nfBrHfe5K9DcluPyR/G6qx/1WdwGVdbJK1DXUmxAblujG+jtVNtm0gsasZ8A7QGdinEqjbdTDJ3oZktx+Svw1iv/ckexuS3X5I/jaEaX+uSszu+0Dyt6FOepAAlFJ/BboDu7F6g/yutV7grVWRkextSHb7IfnbIPZ7T7K3Idnth+RvQ7LbD8nZhoRUzrXB9TTQF6suxx9a69cS/Y9wk+xtSHb7IfnbIPZ7T7K3Idnth+RvQ7LbD8ndhrrsQToTa2yXhB3LqDqSvQ3Jbj8kfxvEfu9J9jYku/2Q/G1IdvshOdtQZwWSIAiCIAhCTalzITZBEARBEITaIgJJEARBEAQhCBFIgiAIgiAIQYhAEgRBEARBCEIEkiAIgiAIQhCpXhsgCIJQGUqpLsCawNfbtdb3BKY/jzXQJVrrGlXhVUr1As4GvtZafx2Y9hIwHjhCa61rY7sgCMmNCCRBEJKFCUqpe4HGWMKmtvQC7gh8/joK2xMEoQ4hdZAEQUhYXB6kP4BuwEigK/A0sAPIwkoV+DvwZ6AloIHJWuvflFJ3Yomg/wDHYI0mfhWwkDLPlM2xwAQsD9LDwLjAts/XWs+JSQMFQUhYJAdJEIRkYBkwHyusNhH4ANgTmHcJcA/wC5ZQOgKYrpRKc60/HHgKa5DM+4HtwGOBee8B5wFLXcsPBZ4DOgF3RrcpgiAkAyKQBEFIFl7A8uoMA150TT858H691voJYDrWoJg9XMs8orV+HMsT1UVrvR+YG5i3RGv9ptZ6m2v5O7XW9wKFQJeot0QQhIRHBJIgCMnCm4Af2Ah8EWK+GfTuZlfgvYSy615V+QXu5VMiM1MQhLqACCRBEJICrfVerPDa5VrrUtesTwLvjyil/gqMBVYDv1ezyd2B9+FKqXOVUg2jarAgCEmN9GITBCFp0Fq/FWLyS1jJ2n/GSuJeiJWkXayUqmpz3wFfASMC6x0QVWMFQUhqpBebIAiCIAhCEBJiEwRBEARBCEIEkiAIgiAIQhAikARBEARBEIIQgSQIgiAIghCECCRBEARBEIQgRCAJgiAIgiAEIQJJEARBEAQhCBFIgiAIQlJhGMYzhmHcFqVtHWgYRq5hGCmB718bhnFZNLYd2N6nhmGMj9b2hPghAknwnMAFabdhGA2Cpp9vGIYOXLw2By40RwXm3WkYRnFgnv260ZsWCIIQTQzDWGsYRr5hGPsMw9hjGMb3hmFcYRiGD8A0zStM07wnzO0cV9UypmmuN02ziWma/ijYfadhGK8Fbf8k0zRfru22hfgjAknwFMMwugDDsQYOPc01/XrgMeA+oB1wIPA01jhbNm8FLmz261/xslsQhJhzqmmaTYHOwP3ATcDz0dyBYRgy3JZQKSKQBK+5GPgBazyt8QCGYTQD7gb+Yprm+6Zp7jdNs9g0zY9M05zinamCIMQb0zRzTNP8EDgHGG8YRm/DMF4yDONeAMMwWhuG8XHA07TLMIw5hmH4DMN4FevB6iPbw2wYRhfDMEzDMC41DGM9MMs1zS2WuhuGscAwjL2GYUw3DKNlYF/HGIax0W2f7aUyDONE4BbgnMD+fg7Md0J2AbtuNQxjnWEY2wzDeCVwvcNlx3jDMNYbhrHDMIy/x/bXFapCBJLgNRcDrwdeJxiG0Q44EsgA/uelYYIgJA6maS4ANmJ5nN38LTC9DZa3+RZrcfMiYD2WJyrYw3w0cChwQiW7uxiYCHQASoAnwrDvMyyPt+3Z7hdisQmB17FAN6AJ8FTQMkcBPYFRwO2GYRxa3b6F2CACSfCMQD5RZ+Bt0zQXAauB84FWwA7TNEuq2cTZgadG+9UxxiYLguAtm4CWQdOKsYRM54CneY5Z/SjsdwY80/mVzH/VNM0lpmnuB27Dutak1M50AC4AHjFN8w/TNHOBqcC5Qd6ru0zTzDdN82fgZyCU0BLigAgkwUvGA5+bprkj8P2/gWk7gdZh5Ae8bZpmc9drUyyNFQTBc7KAXUHTHgRWAZ8bhvGHYRg3h7GdDRHMXwekAa3DtrJyOga25952Kpbny2aL63MelpdJ8ABJUBM8wTCMhsDZQIphGPYFoQHQHNgMFAKnA+96YZ8gCImFYRhHYAmk74DB9nTTNPdhhdn+ZhhGb6y8ooWmaX6F1fkjFNV5mA5wfT4Qy0u1A9gPNHLZlIIV2gt3u5uwvObubZcAW4FO1awrxBnxIAlecTrgB3oB/QOvQ4E5WPH/24F/G4ZxumEYjQzDSDMM4yTDMKSnmiDUIwzDyDQMYwzwJvCaaZq/Bs0fYxjGQYZhGEAO1nWlNDB7K1auT6RcaBhGL8MwGmF1GHk3UAbgdyDDMIxTDMNIA27FerCz2Qp0scsRhOAN4DrDMLoahtGEspyl6tIJBA8QgSR4xXjgxUANki32Cyth8QLgceB6rAvQdiyX92TgA4/sFQQhvnxkGMY+rHP/78AjwCUhljsY+BLIBeYBT5umOTsw75/ArYEcxRsi2PerWD1rt2B1GLkarB51wFXAf4BsLI+Su1fbO4H3nYZh/Bhiuy8Etv0tsAYoAP4agV1CHDGqz2UTBEEQBEGoX4gHSRAEQRAEIQgRSIIgCIIgCEGIQBIEQRAEQQhCBJIgCIIgCEIQdUEgmeG+tmzZEvayifBKNnuT0WaxN6HsTTY8/U+8PBbq476lzXV235VSFwRS2Pj9fq9NiIhksxeSz2axN7Ykm701was2evnb1sd9S5vrz75t6pVAEgRBEARBCAcRSIIgCIIgCEGIQBIEQRAEQQjCk8FqlVLNgC+wxuEaorVe4pqXAjyHVT5+kdb6Wi9sFARBEASh/uKVBykPOIXQI7WPATZprYcDjZVSR8bVMkEQBEEQ6j2eCCStdbHWensls4cCnwc+fwYMi49VgiAIgiAIFp6E2KqhBbA38DkHaBm8gFJqEjAJYPLkyYwePTqsDb/xxhucd955UTIz9hQXF5Odne21GRGRbDaLvbElEnuzsrJibI0gxA7DMMJeVgaJTw4SUSDtATIDn5sBu4IX0FpPA6YFvoZ9pG3atCmpLsLZ2dlJZS8kn81ib2xJNnsFQRBsErEX2/fAcYHPJwBzPbRFEAShxhiGEdVXJEydOpXZs2fzwQcf8M9//hOACRMm0LVrV/r378+AAQOYN29eLJotCHUCzwSSUmoGcDzwnFJqglLq2cCsj4EDlVJzgAKttZzBgiAIETJ//nyGDBnCN998w4gRI5zpDz74IIsXL+b+++/n8ssv99DCmlNSUuK1CUI9wLMQm9b65KBJLwWmlwAT4m2PIAhCXWDKlCnMnDmTNWvWcOSRR7J69Wq++uorzjrrrHLLjRgxglWrVpGbm8vYsWPZvXs3xcXF3HvvvYwdO5b9+/dz9tlns3HjRvx+P7fddhvnnHMON998M++//z4ZGRkcf/zxPPTQQ2zfvp0rrriC9evXA/DYY48xbNgw7rzzTtavX88ff/zB+vXrufbaa7n66qsBuOeee3jttddo06YNBxxwAAMHDuSGG25g9erV/OUvf2H79u00atSI5557jkMOOYQJEyaQkZHB/PnzOfbYYxk7dizXXHMNYHnqvv32W5o2bRrfH1uo0yRiDpIgCIJQQx588EHOPvtsXnnlFR555BGOOeYY5s61MhUmTJjgLPfRRx/Rp08fMjIy+N///kdmZiY7duxgyJAhnHbaaXz22Wd07NiRTz75BICcnBx27tzJ//73P2bNmkWnTp3Ys2cPANdccw3XXXcdRx11FOvXr+eEE05g2bJlACxfvpzZs2ezb98+evbsyZVXXsnixYt57733+PnnnykuLmbAgAEMHDgQgEmTJvHMM89w8MEHM3/+fK666ipmzZoFwMaNG5k+fToHHnggp556Kv/+978ZNmwYubm5ZGRkxOkXFuoLIpAEQah3hCpWq5TqBDwNNAW+1Vrf4aWNteHHH3+kX79+LF++nEMPPbTcvClTpnDvvffSpk0bnn/+eUzT5JZbbuHbb7/F5/ORnZ3N1q1b6dOnD3/729+46aabGDNmDMOHD6ekpISMjAxuuOEGzj77bMaMGQPAl19+ydKlS5197N27l9zcXABOOeUUGjRoQIMGDWjbti1bt25l7ty5jB07loyMDDIyMjj11FMByM3N5fvvv2fcuHHOtgoLC53P48aNIyUlBYBhw4Zx/fXXc8EFF3DGGWfQqVOn2PyYQr1FBJIgCPURu1jtg65pDwJXaq2Tp45CEIsXL2bChAls3LiR1q1bk5eXh2ma9O/f30nIfvDBB8uF21566SW2b9/OokWLSEtLo0uXLhQUFNCjRw9+/PFHZsyYwa233sqoUaO4/fbbWbBgAW+99RYff/wxTz31FLNmzaK0tJQffvghpBenQYMGzueUlJQq84dKS0tp3rw5ixcvDjm/cePGzuebb76ZU045hRkzZjBs2DBmzpzJIYccEulPJgiVkoi92ARBEGJKcLFapVQa0AV4WCk1Syk11DPjakH//v1ZvHgxPXr0YOnSpYwcOZKZM2eyePFiGjZsGHKdnJwc2rZtS1paGrNnz2bdunWAVRalUaNGXHjhhUyZMoUff/yR3NxccnJyGDVqFI8++ig///wzAMcffzxPPvmks83KBI7NsGHD+OijjygoKCA3N5ePP/4YgMzMTLp27co777wDWPWC7H0Es3r1avr06cNNN93EEUccwfLlyyP6rQShOsSDJAiCAK2B/sA5QBHwEXBE8EKhitRWVQxz48aNUTXSvZ/K9rtz504aNmzI5s2b+eWXX2jWrJmzXF5eHjt37iy33siRI3nllVc45JBD6NevHwcddBBbtmxh9erV3Hvvvfh8PtLS0rjvvvv4/fffmThxIgUFBQDcdtttZGdnM3XqVP7+97/zwgsv4Pf7GTx4MPfffz979+7F7/c7+yspKWHLli0ccMABHHPMMfTq1Ys2bdpw0EEHUVpaSnZ2Ng8//DBTp07ljjvuoKSkhNNOO83xhu3cudNp97333su8efMwDIOePXvSt2/fmBZRra7o6fTp08PeVqR2elUg1svCtPHad1V12ow6UNEz7AZcf/31PPLII7G0JaokY5G9ZLNZ7I0tEdobWaGfKKCUegl4CFgNLNBa9wlM/x4YEehVWxkmePefeHksRGPfubm5NGnShLy8PEaMGMG0adMYMGBAXPZdE6rbbywraSdqm+vIviv948SDJAhCvUdrna+U2qmUag4UAw2qEUdCLZk0aRJLly6loKCA8ePHhyWOBCGeiEASBKFeEihW2x/oGShUewtWaC0dSNoebMnCf//7X69NEIQqEYEkCEK9JESxWoDhcTdEEISERHqxCYIgCIIgBCECSRAEQRAEIQgRSIIgCIIgCEGIQBIEQRAEQQhCBJIgCIIghMAwDOe1aNGict+DX0Ldw7NebEqpB4ChwFpgota6ODC9IfA2kAmUAOdrrbd6ZacgCIIgCPUPTzxISql+QJbWejiwHDjLNfskYInW+mjgJeDS+FsoCIIgCEJ9xqsQ21Dg88Dnz4BhrnmrAHvI5hbAjjjaJQiCIAiC4FmIrQWwOfA5B2jpmrcS6KWU+g1rjJRBwSuHGjAyHOzBEJMFLwcKrCnJZrPYG1sisTeZxpgTBKHu45VA2oOVYwTQDNjlmjce+E5rfadS6izgNuAm98pa62nAtMDXsEf98/l8SXURTraBSSH5bBZ7Y0uy2SsIgmDjlUD6HrgeeAU4AZjrmmdQFlbbgSWgBEEQooZSqhnwBdALGKK1XhKY3hn4HRhoTxMEoX7iSQ6S1noxsFUpNQc4DHgvMFgkwH+BMUqpr4F7gEe8sFEQhDpNHnAK8G7Q9Bsp/8AmCEI9xbNu/lrrKUGTLg9MzwFOjL9FgiDUFwJlRbYrpZxpSqmuWCH79V7ZJQhC4uCZQBIEQUgwbgLuB+6sbIFQHUS8Spz3MmG/vux7+vTpzufu3buX+14bIrVfjrHYUVWOpAgkQRDqPUqp7gBa67Vur1IwoTqIeJWI7mUCfH3Zd6dOnZzP06dPZ+zYsVHZrmmG3bcIkGPMK2SoEUEQBOgHHKaU+gwYDTyjlMrw2CZBEDxEPEiCINRLlFIzgP5AT+DZQGV/lFIvAQ9prQu8s04QBK8RgSQIQr1Ea31yJdMnxNkUQRASEAmxCYIgCIIgBCECSRAEQRAEIQgRSIIgCIIgCEGIQBIEQRAEQQhCkrQFQRCEpMYwjLCXjbQGkVB/EQ+SIAiCIAhCECKQBEEQBEEQgpAQmyAIgiCES0ozyOgKDQ4AIxXMEijeCnkrwJ/jtXVCFBGBJAiCIAhVkXkU0746DAb8Ao0Ps6aZfjBLwZdWtlzBGtj1Gez6GHZ/DpR6Yq4QHTwTSEqpB4ChwFpgota62DXvXKwRs33AVK31PE+MFARBEOolRcUmdLgCOk6GRofy++Y9sPO/8Mf1kL8CCjcBfmvh9A7QsCdkDoEWJ0OHy6FwHWx6GjY/C6X7vWyKUEM8EUhKqX5AltZ6uFLq78BZwBuBeR2BscAorbV0NxAEIeoopZoBXwC9gCHAOmA61jWxBLhEa73OOwsFrzBNk7dmwS3TTOj6IGz5Dywbx0Nv3M/Yd24PvVLRZuuV8zVsuB8adIYOV8IBt0DWdbDuDtj6EuJRSi68StIeCnwe+PwZMMw170SgEPhCKfWqUqpJvI0TBKHOkwecArwb+F4MXKi1HgE8AEzxyjDBOzZuMzn1ZpML7jE5/ghA94A/roO8ZZFtqHAdrL0Z9EGw/U046N/Q7xvIOCgmdguxwasQWwtgc+BzDtDSNa8d0BoYDVwJTAbud6+slJqEFYJj8uTJjB49OqydlpaWkp2dXSvD40lxcXFS2QvJZ7PYG1sisTcrKyvG1pQRCOlvV0rZ3wuATYHZRcijfr3jgzkmE/5pktUa5j1tMKiXwbNTNle/YlWU7IE1U2DLc9DjJRjwoxWiE5ICrwTSHiAz8LkZsCto3myttamU+gq4NXhlrfU0YFrga9hhOJ/PF9eLcG3Jzs5OKnsh+WwWe2NLstmrlEoH7gQuq2R+hYczr0Srl2I50fY9ffr0sNcPXtdfCv96qyn//rAJE0/cz9/P30uDNMjOLr/d7t27R7SfYPylO3h3/kbeSHmGC+/ax93jrf2EgxxjsaOq61NYAkkp1RcYCXwIZAFrtdYbamHT98D1wCvACcBc17y5lLm3+wN/1GI/giAIkTANeFprvTLUzFAPZ16JQC/FZ6Ltu1OnTmGv766knVdgct5dJl8ugv/ebnDecU2BpiG3O336dMaOHVtzw21anMAnTWawdltjPvynQcvM6quAyzHmDdXmIAV6lP0IPAx0AW4HnqjNTrXWi4GtSqk5wGHAe0qpZwPzfgE2KKW+BiYCT9ZmX4IgCOGglLoD+ENr/ZbXtgixZ9dek9HXm/ywFL55wuC848IfrqRW7J7JgmcNNu+Eo/9qsmmH9EVKVMLxIN0FfAUcF/j+MXBLbXestQ5OgrzcNa/W2xcEQagKpdQMLC91z8Dn24DvlFIjgXla66le2ifEjh17TEZdZ7K/AL5/2qB7VpzEUYCDDzD47ik4cYrJsKtMZj8OXTrE1wahesIRSB2BFygTSCVAw5hZJAiCEAe01icHTbrHE0OEuLIzx+S4603yC+HbJw06tvZGmHRobfDNE3DCDSYjrzX55gk4oJ2IpEQinG7+vwIXBz5fhJU0/XPMLBIEQRCEWJDSlOP/ZpJXALMf904c2TRvavDZQwbNm8Co60w2S7gtoQhHIP0NaA8YwHggDbghlkYJgiAIQlQx0uHQd9m2G7561CCrTWJ4a1o0NfjiEYMGaXDyTSZ794tIShSqFUiBYT4OAsYEXgdrrefH2jBBEARBiA4G9HgRmgxg5sNGwoWyWjUz+PRBgx174KzbTGuYE8FzwunFdjFwKlbxxtbAqYFpgiAIgpD4dL4TWp8OS8fSq0tiiSObTm0tkbRgOVzxsFmuHIHgDeEkab9E6GKMr0TXFEEQBEGIMm3OhQNvheUXwd7vvbamSnp3M3j3bqt3W99ucO3ZXltUvwlHIN1ImUBqgZWw/V3MLBIEQRCEaNBkIPR4HtbfB9v/67U1YXGcMnh0Mlz7pEmvLnD8oMT0eNUHqhVIWuuH3N+VUj9j1QsRBEEQhMQktSUc+jbs/gLW3e61NREx+Qz4ZTWce5fJj/+xekYJ8adagaSU+jBo+YHI/yUIgiAkLD7o+RqYJbBiPBEM2ZkQGIbBU9fC4lUmZ91u8vbfvbaofhJON/8xrteJWAPV3BlDmwRBEMJCKXWxUqqz63srpdRQL20SEoADb4Fmw2HZOPDneG1NjWiQbvDOXQZ/bII7X8msfgUh6oSTg9TV9dkPbNVaF8fIHkEQhEh4ETgXWBf4Php4HUipaiWlVDPgC6AXMERrvUQpNQ64DsgHxmutN8bMaiF2NBsBB94OK6+A/b94bU2t6NLB4NVbYcxNjTllmMk5oyQfKZ5UKpCUUmdUMQ+t9fuxMUkQBKFqlFKnAadjFbC9Sil1UmDW4UBBGJvIA04BHgxsLxW4HjgaOAIrz/LyStcWEpPUVlZobfvbsPUFr62JCqccaTDp5H1MeqgJgw6Frh1FJMWLqjxI7xI6cGsEplf5hCYIghBDDgcmYF2Ljg68bF6vbuWAF3y7UsqedDCwTGtdBMxVSj1U6cpC4tLjeSjNh1VXem1JVLn5vH0sWt2E8+8x+fZJSEsVkRQPqhJId5NsmW2CINQXpgGfAAuAvwOfY12vdmut19Rgey2Ava7v8gCYbLSfBC1PgsXDwL/Pa2uiSnoqvHmHweGXmtzzssndl4pAigeVCiSt9Z1xtEMQBCFstNabgc2ALxAea0dA1CilDtRar49wk3sAdyasP9RCSqlJwCSAyZMnM3r0aIqLi8nOzo5wd7XHq/3Ga9+LFi0KOb179+4V5j394pdc98pwzhq8irOnVF2FJhK7p0+fXm6/7u+1IdLfrri4mIZpm7jzoobc9J9mqO7bGHhw7FOB6/oxBpCVlVXpvHC6+XfA6rXWB8gITDa11gNrY5RS6gFgKLAWmBic+K2Uuhk4S2utQqwuCIKAUuqvwP2UXZvA8iSF0wHFzUrgUKVUOqCAkNm9WutpWN4rez9kZ2dXeZGNFV7tN1777tSpU8jp06dPZ+zYsa4pKdD/Oyidz+v3H8vrobWtQyRDeLhtqLjfmhPpMCL27339BSZzlpr87dnW/PS8QZNGsfUk1fVjrDrC6eb/H+BSYDBwGNCf8j3bIkYp1Q/I0loPB5YDZwXNb4olyARBEKriLqyk7M+BGYHXp+GsqJSaARwPPAdcADwGfA3cG3gJycABN0GjXvD7BCpx/NUZDMNg2hSDvXkw5f8kAybWhPOUNRT4J3ALVq+PM4CdtdzvUKwLGsBnwCXAG6751wBPAU/Wcj+CINRt1gPPaq3/L9IVtdYnh5j8Vu1NEuJG435Wl/4/roWCP7y2Ji60bWEw7QY4/e8mZx5tcpySfKRYEY5ASgfWYPVe6w/swxIwtRlupAVW/gBADtDSnhGoT9JHa32vq4dJOULlAYRDaWmpZ/HUmuBl/LemJJvNYm9sicTeGrrTlwK3KaU6ArsD00yt9aM12ZiQRBhp0ONFyPkGNj/jtTVxZexwgwuPN7n0AZNfX4LMxiKSYkE4Amkt0BorJv9AYNryWu53D2UJkc2AXa5511KN5yhUHkA4+Hw+z2OakZAIMdhISTabxd7YEgd7zw28uwdjMAERSHWdA26BjK6wNDp5QcnG41cb9B5vcsPTJtOmiECKBeEIpLOBIqzY/q1YF59/1HK/32MVZXsFOAGY65p3EHBkwHt0sFLq71rr2u5PEIS6yUSkHEn9o3FfOGAqrP4rFG7w2hpPaJlpMG0KnHqzyTkjTUYNFJEUbcIRSH8GXtVaL6Lsaa1WaK0XK6W2KqXmYOUQPKSUelZrfbnW+iJ7OaWUFnEkCEJlaK1f8toGIb6U+A2rIGTON7DlOa/N8ZQxQw3OP87kz/8y+eVFYt6rrb4RjkC6GvirUup34DXgda312truWGs9JWhShbL+0sVfEISqUEqFysw1tdbd426MEBc+0N2g4YGwtK/XpiQEj19t0Otik78/Z/L4NSKQokk43fx7Y1XVLgbuAVYHPD+CIAhe0xZoE3gdCHTBKhop1EUaHsyb3/eAtX+HwrVeW5MQtG5u8OQ1Bk++D/OWSLQ5mlQrkLTWS7XWdwEnAv8OTB4aU6sEQRDCQGvdRGvdVGvdFGiEVcvoP95aJcQGAw5+lq5t98Kmf1e/eD3i7JEw5ki47F8mRcUikqJFOJW0r8Uq5DgES1CtBv4bW7MEQRCqRyk1wPU1FassyflYvWGFukT7P0PTI5l8/DyufrvUa2sSCsMwePp66HWxyf2vw+0TvLaobhBODtIjwHbg/4DXtNbzY2uSIAhC2GjK92IzsAawFeoS6R2g6/2w8QE6tznca2sSkk5tDe6/HK590mTcMXBoF8lHqi3hCKRTgM+11nW7hruQMLz00ktMmDDBazOE5OAVygSSH6tuW/3u2lQX6fYYFG2G9f8E3vbamoTlirHw+hcw6SGTb54An09EUm2oViBprcMa10gQosXatWu9NkFIErTWE5RSKUCPwKTfa/owp5TyAS8A3bE8UZdprWtbFFeoLS3HQJuz4JdjwSz02pqExuezaiMdfqnJ85/An0/12qLkJpxebIIgCOXw+01KSrxPBlVKHQosA5YEXksD02pCf6BBYBDtqVjFbAUv8TWG7k/Cluch51uvrUkKDutqcON51mC2m3d4f44mM+GE2OoVEt4RkgnTNPH7odgPxSXWq8QPpgmlZuC91IpBmSb4S01KS61pJYF3e5nSwDp+v/VeYm/TD8XF1vLFJVBSYm2vYQM45UhIS/XUjf9voANlg12fhjVU0XE12NZGwFBKGVjjRe6IioVCzelyN/gawJqbvLYkqbj1YoO3Z5tc95TJm3dKmK2mVCqQlFKZwP76lnsk4R0hUfD7TQqKIL8QCoogN9/EVwJzFpeSX1w23SwFDCsmBJbgwbDeDfsdaxqBafYLwOf67MwDfD7rc4oPUlMgPQ18De3lDbbsMq19eYsCpmqtnwJQSk0G7qvhtnZg1XtbDmQAwyrsLMRA2V4NIOzlwMXufS9atCjs9QYOHBj2sg8/+zVTXj+Ka0/+iaNvecmZ3r17d6ZPnx72doKJ5Ddz76e2+62pDYsWLaJ79+5h/c7u3/fe8emc849WnHLEDkb2rxiaDGd79n4j+d+iRbyO76rGiqzKg7QbOFcp9QXwI3CB1npelG0ThHpFaalZ5pkpKe+lKSg02ZsHOfthX54lfsASK6WmJVQOy7Lmp6RAowaQ2cgSK/WYXcBxSqkZge+jgZ013NbxQInWuqeyBoN8GDjHvUCogbK9GkDYy4GL3fvu1KlT2OuZYSrqkhKTv/3fJij5gkduPolHXPOmT5/O2LE1H6A2XBugfNtqu9/a2BDuvt3bPTsLPtGl3P5yS84cZdAoo/x1Ipz/zd5vJPZGi0QYmLsqgWQEXilY1WkbxsMgQYgVpmmFl0r84C8te+3ZV3bym86yZe92uMoJQ5XaISiTkhIr9OT3W9t1Xu7pgff8orLwlEHAu0OZh8cwLC9Neho0zoDmTSoKnxSfjLcUxH+wKv3b6agG1qDaNcGgTFztAJrVzjShpjz1PtCoF/wow4nUhof+YnDoRSZ3vWjywJVy3YiU6nKQzEo+C4KnlJSYFJWUeWKKS6CoBPILTfILLTGSXwhFxTjLlQSCxXboCRN6d4LvV5gEO2Gc8BSUHfmBdZx3rGV8vrIwlR2Wcr4HpqWlQkY6pKTUnYvUNzNf4owRl3htxqvANizPEcBM4IsabusLYIJS6hugAZKk7Qkbtprc+rwJ6++BglBD7Qnh0qa5wUNXWRW2LzjepG/3unP9iQfVCaSHgFys28F/lFL7A9NNrXW/mFomCFghqbwC2F8AObkmO/fCjhzru4NLtPgC+TL2y+ezkombuHJn3KSmQPtWctGoCdu3rPPaBIAvgTe11uMAlFL3YAmdHlWuFQKtdQlBITUh/lz9hEmX9vDbF49Uv7BQLeNPhJc+hUkPmnz/tNRGioTqBNIBrs9dY2mIkNjY4anql4PiQPfv4DAVWFqmNBDaKnWFueyeU/5S2L3PZNGKUnbkwJ59ZetiQMP0MsFTz3NvBIssrOKQNuuA8JNihITigzkmH8yB7/5tcNQrxV6bUycwDINnb4C+l5g8+yFcebrXFiUPlQokrXVMayQppR7AGvR2LTBRa10cmH4qVg5BMbBIa31NLO2oj5imSWGRlQRcWGyFpXLzrVBUUbHVpbuw2Eoctqf5/ZR1k6qCwzrCnOVmWTTKsPdZ9tn2+AT3ugKrR1b2dli3xRJCbZqHfuL57MOXOPG0CTX/EYS6wh/ADUqpbKyj6G+BaUKSsS/PZPJjJpNOhWF95OEnmvQ80OCWC+HmZ01OPwo6tJbfNxyq6uY/DOirtf4/1zQDuBz4VWs9t6Y7VUr1A7K01sOVUn/HGgzXrmPyMzBMa12ilHpDKaW01rqm+6ovlJSYToJwsTtR2A+FxSb78mBvHuTmwb58S5T4jDLvTEqKlQBsv3yB90YBb01KmG7ZtFToUMuQVZOG0DKz6m1s2bS2VvsQ6gwPAC8DnwS+G8BF3pkj1JRbn7OuYfdfITfvWHDzBfDfL+GaJ03evkt+43CoKsT2CLDYPUFrbQbEzWVY9UdqylDg88Dnz4BLCAgkrfV613JFQL0attn27hQWW+Jm4zaT4hKTwmKc6YVFlmenMJCAXFBU5qExKB/OsuvfpKcGXmnQroWEp4S6gdb6VaXUOmBMYNLHWmspuZxkLFxm8uT78N/bDVo0lWtTLGiQboXajr3G5JMTpc9VOFQlkA4Dng0xfSG1f0JrAWwOfM4BWgYvoJQ6Amirtf4xxLwKxdrCobS0tNrCU3v37g27OFW5HJsQ08LB78rHsXNywBI7GWnF7N2/yfmeAjROsTwsTojKCCvyFTfSUopp32RTrbbRJH1ftdsIZ5lwiIa98SSR7G2TuY9tWzdV6AHoJpJibzWteRIQRCKKkpSSEpNJD5mcMAjOGRn7/dXlh8Ow2nbwfxhzzbHgawSlebE3KompSiAVAQOxBm90MzAwrzbsATIDn5thFXtzUEp1Ah4D/hRq5VDF2sLB5/NVexHOzMwst0xRsZWfsz8fduaYbM+BXfssMeNUJ7ZxVS62KxnbhDpuzUDxv7RU65WeBmkpZQd5+5RN7CzoGG7zEoL2TTaxJbd2NucWNa12G+EsEw7RsDeeJJK92/c2pW27jqSnVX5RToRib0Ji89g7sGI9vH+PUafFS8Kw5kZQS6HzndZnoVKqEkizgMutgrLMDEw7HisH6X+13O/3WDVGXgFOAJx8JqVUU+BN4HKt9bZa7idi8gtNfl9fyvYcqzt5fqA7uQk0SLNq2bRpJl0lBUEQasuaTSa3v2By90SDrh3lmhoXSnbB6r9Bzxdh+5uQWyFIIwSoqqfajVhVZa/EEkT/A67CqjBbq5EDtdaLga1KqTlYobz3lFJ2OO9arJICTymlvlZKHV2bfUXKph2wcLkljho2sGrktG9l0KGVQctMq1y7iKPk4LMPX/LahKRFfjsh1pimyZWPmPQ8EK4d57U19Yztr8OeWXDws/x/e/ceHVV1L3D8e/Li/Sa8AgpEENGq1a0giLVW8dqHKBdQqiJaC1YRrYoVKb6x1Vqvgk+wFaEoPtuobQWvaxVQWuvWcn0DCgiEdyBACEnmce4f+wwMk0lmksycPUl+n7WyMnPOmdm/OXNmz2/23mcfM3hDxFPbaf7rlFInAlOAUzCNKB8BT6SiZUdrPS1m0WRv+X3AfQ19/obo3B5atZAkqLGTM93qT/adSLcX3oF3NHzwtENOjtS3vvv6F3DKJ1BwIxTLpJzx1DpRpNZ6OzAzeplS6gSl1BSt9Z1pjUw0STJ/kRBiV6nLTXNcfjkW1CBJjqyoWA/f3gVH3wMlfzb3xRESzaQNgFJqEGYK/nHAIG9xs02Q5Eu+/qRlQmQypdTZmB+FWcBsrXVDx1uKOG5+wqVda7jnakmOrCp+DPIvhWOehs/Otx1NxqltosgBmIToEsw4ocjkyH/FXCCy2ZIveSGaHqVUK8xM3BdorRt6pq6owd//5bJwCSx52KFNK0mQ7ArB2knw3Q+g25Ww43nbAWWU2gZprwbuxcxR9AQwAZMkPau1fsWH2IQQwk9nAAeBN5VSf1ZK9bAdUFOz74DL5IddJl4AI0+X5CgjHFgFmx+G/r+HXDnkoyXqYgsDyzCn/K9OfzhCCGFNd+AYYChwLnA3cG30BvEmqa3LZJipZKvc2LKLioqSftyl09dTdqAH5xUu4403ar8YbU3PW1hYWKcyUyWV5dblfSsqKkr7a64KZnHTglz6XKG5/cKPDs3bFym3KR/ftc3TVluCdAOHu9guxUwO6QKnKaXe11qXpDJIIYSwrBR4X2tdpZR6F5geu0G8SWptTYZpcxLO6LJ79+6d3IPaj4CT/gFfjOGyt+s/tKuoqIhRo0bV+/GZUK6b7KUWMPvXl9fcfhjFJy7jomsWwq5XgcOvuS7xpkomTDJbYxeb1voJrfX3gD6YSR0js0nNALb5EJsQQvjpQ+A476LcJwPr7IbThGS1hoF/gJ2vmDOmRObZtxK2PA6FcyC3q+1oMkJtY5AA0Fpv1Vo/prUeDhwN3IqZD0kIIZoMrfUuzIS4y4CHMGMwRSr0nQU57eGbKbYjEbXZMANC+6HwcduRZISkTvOP0FpvBh7x/oQQoknRWj+BOSlFpEr7EVAwFb68BAK7bEcjahMuhzU/M12hXjdbc5awBUkIIYSol+y2MPCPpmtNvnAbh30rzPxIxzxO6YE829FYJQmSaNb+/PrLtkMQounq9xBkt4avr7cdiaiLDTMgsJsn3znRdiRW1amLTYimpnjzJtshCNE0dTofek6Gz0dBUE56blTCB2HNRD5ss9JMINlMSQuSEEKI1MrpYs5a2/Yc7H7LdjSiPvb/m/8e8jUUPsqGrf6f5p8JJEESQgiRWgOegVA5rLvJdiQZyXGcpP9suuSMNXBwLZff7xIMNr8kSRIkIYQQqdP9KujyE1g9AUJltqMRDZCb7cLqK/h4Dfx2ke1o/GdtDJJS6kFgGLABuFprHfCWZwPzgAHAR1rrm2zFKIQQog5aDYDCR2HjA7D/X7ajEalwcDX/M8Xh+kddzjsNhgxuPtfQs9KCpJQ6CSjQWo8AvgLGRK3+MbDFW9dGKXWGjRiFEELUgZMHg16AslWw8X7b0YgUmnQh/PgMGH+Py96y5tPVZqsFaRiw1Lv9NnAV8GLUur9GrRsO/LOhBVZVVbFnzx7WrFlT63b79paweeMaWubVnCXvLS1h07e1P08qHGy9g13lmdNEveLd1xnxg9G1bpMo5mT2nZ/blO7Z48t7mSp+HRPJ7Lv9+0pYs2YNebk1f1a2b99Ofn4+eXnNez6VZqHfb6FFP/jPKUDIdjQihRzH4Q+/gpOvdpn0O5fFd2N9fJQfbCVInYCt3u29QOeYdftqWAfEv6J2IuvWrWP+/PnMnz8/4bZvvJJ4It2/vNw8J9ud9/gdDX6OZPadn9ssWjQ/4TbNUTL77jtFibdZvnw5/fv3T7id7QtTigbofCEU3AhfjIXKjbajEWnQpYPDC3fC2Te6zHvTtCo1dbYSpFKgvXe7A7A7yXVA/CtqJ5Kfn8/y5cvp3r17rdu990mYUJhaW5CS8fqLcxg9/oYGbbPk1d9y/pjb015OstskI5mYM0nX1jvYVd6t1m0S7Rs/34NUHBOpeq937XU5TzkJW5CGDBnSqFqQlFLjgdla63zbsTQKLfvBsc9B8Rwoed12NCKNRpzkcO/VMHW2y2mD4LsDm3Yrkq0EaSVwM7AAOB94P2bducByb91zqSgwLy+P/v37J/yVumFvmFAIWrVo2Bt/7OBT6XP0wFq36dCxS63bdOzUqcHPkcptkpFMzJmkR9u2tCrrVes2ifaNn+9BKo6JVL3XubtdBg6sPUFq06ZNY0uOsoGxgMwgmoTKKhcGLYaDa2D9bbbDET6Yfjm8/ymMudPlo3nQsV3TTZKsDNLWWq8CtiulVgDHA68ppZ7xVr8FHOWtq9BaN3j8kQ3/deFE2yEIIepuPPAKELYdSGMw9TEXWvaHLy8Ft8p2OMIHWVkOC3/tEAzBlQ+4hMNNd9C2tdP8tdbTYhZN9pYHgYm+BySEaNa81qNxwEXALTVsU238YyAQoLi42Lc4I2yVGyn7oQW7mfdWB+66dC2nTJ/tW9mFhYUUFRX5Vp7tcm2WHSn3jTfeqLZu6rkdmL54GFfM+JpLzlhbr+c/9dRTa1zn1/FdW6+SXItNCCGMy4GXtdZhpVTcDeKNfywuLrYywNxWuQBvLtvBzOc7MuvnDndcMczXsouKihg1apSvZdos12bZCcvtPpEXgvN4Ye5t9bqkjOvW3Ppk8/iOkJm0hRDCGAxMUEq9DQxQSvnXLNKIbN7hcs3vO/HjM+D2y2xHI6zaPh+2PgnHLoBWg2xHk3LSgiSEEIDW+leR20oprbWeajOeTHTgoMuoO1y6dgizYEZOs5gLRySw7hZoPRiOfwNWnQHBEtsRpYy0IImUKujdx3YIQjSY1jp+H1szFg67XPmAS/EueO7W3bRpJcmRANwgfDkO3BAMftXMqN5ESIIkUuri0eNshyCESIPbnnL56z/hL7McCrrKSX4iSnAPfHEhtD4BBsyzHU3KSIIkhBCiVnNec3nkZXjhToehx0vLkYjj4Fr4YjTkj4W+s2xHkxKSIAkhhKjRS++63Djb5dEbHC4+S5IjUYt9K2D1BOh9G/S8znY0DSaDtIVoZnr06ms7BNFILPm3yxWzXKZfDlPHSHIkkrDrVVjXAwofg+Be2LnIdkT1JgmSEE1MogRIZnlvnupyxpnrurz3icvoX7tc/UO4/xpJjkQdbHkccjrBsX+EcBmUNHySy7oev6kgXWxCNDGSAImG+udnLhdMc7noTHjil46czi/qbuN95gLGg16ETj+0HU29SIIkhBDisHan81/TXH44FJ6/wyE7W5IjUU/rb4Vtz5rT/ztdYDuaOpMESYgEEnVZyZge0WS0HwEnLOU8BX+a6ZCTI8mRaKBvpsK2P8Dg16CLnUu11JckSEIkkKjLSrq0RJPQcSSc8DcoKWLxXQ65khyJVPnmBtjyJBz3MuQ3nuvTSIIkhBDNXf5l5lIROxbCmonSciRSb/2tsPF+OHY+9LrBdjRJsXIWm1LqQWAYsAG4WmsdiFr3E+DXQAD4SGt9o9/xVQagRa5LVpbdSsLPy3ZIN5Fo7pRSpwOPYeqeYmBCdN3UZBXcAv0fgm/vgY332o5GNGUb74NAiZkCoMXRhMP2v2dr43sLklLqJKBAaz0C+AoYE7PJ/wHDtdZnAt2UUr5eE6l/T2jdEnaWwrYSl20lLjv2uOw74BIIpubUwWT5edkO6SYSgk3AOVrrszA/3hrXgIm6cnLNZSH6PQBrr5XkSPhj65Pw5VjoeS1jZrqUlfv7vVoXNlqQhgFLvdtvA1cBL0ZWaq03Rm1bBfh60Z9jemdxTG9zYcYDFXDgIJSWuewshV17oaLKxQFwABdczH/Hgaws8z87y9xOpDIABytd8nKo95ki0vIjRGporbdG3fW97vFVbjc4bjG0PhE++xGU/q/tiERzUvIX+PQc/tXtnwy7zqXoAejXK/NakmwkSJ2ASEW0F+gcbyOl1GlAN631x3HWTQImAUyZMoXzzjsvqYIDgQDFxcV1DrhdDrTrCv27gutCOGwSo8hcVJEkKeyaZW4kcUqgS9v99O28lVD48HNFEi8cyMkKkN96C45jFoNJwKJN/OlIYEut5bTN20+PtrVvkyq52QHfykoFv+JN5j1IZpusrHDG7N8urWDH9urHZLS6fOYKCgpSFFnDKKWOBkYC98dZV63uqW+90lB1LbeoyEzW92VxJx5681Ra5QW546IP6d35BuDIMSGJnje67Mjz+qWwsND3Mm2Wa7PsdJfbq992rnmkE6dck8Ps60s55+TKQ+tij++6xFGXz0Vt9U7aEiSlVA9gcZxVS4H23u0OwO44j+0NPApcHO+5tdZzgbne3aTb54qLizOmEgbo2rk9xw008QSCLpVVplWposq0LLmVWymt6klVwCyvDEBVgEMJ1aEvpqg94AJZDuRkQ3a2ac3ac7Adm/f2JMeH+Ux6tN3CtrJeaS8nVfyKt6yqXcJyktkmHM7KmP27bbfL6LMc8nJrPq4y7TOXiFKqPbAQmBhv/FG8usfWa6xrub1794GCm6Dvb8zMxmuv4fqi/XG3TTQTcXTZvXv3TjqGVCgqKmLUKP97P22Va7PsdJfrui7/etrlpjkuEx7szB1XwN1XmTMoY4/vuhxnqZpJO20JktZ6G3B27HKl1MnAzcAC4Hzg/Zj17TCJ1WSt9Y50xZdpcnMccnOg7aElDsXFMLywel9dOOwSDFHtLxA0/yurXNN9VwWVlZDtwP7yw92DjmNauxwH8nK8v1zTLZidVbcp3UVypCs08ymlcjB1zz1a69W240mlrbtcOOHv0OEsWD8NtsyxHZIQALRs4fD0rQ5nnuhy7e9d3v3IZeEMaJ0B59j73sWmtV6llNqulFoBbAQeBlBKPaO1ngzcBPQDHvfGZ9+ltV7md5yZLCvLIS/LJDXxHZngvFvgcPFZWYRCLhVVpoWqMgDlFS77yk3yVFZulgVCJgGLbp1ynKguwAS6tDQtC5FuQvBau7ywDt3m8Lit7Kyo297/vFx8afHyiwyCbxTGA0OAmUqpmcBTWuuXLMfUIK7r8qelcONsF1oUwKqhcOAT22EJUc3lIx3OOB4uv9/l5J+53H5Ja2ZcZfcsNyun+Wutp8VZNtn7fx9wn+9BWdC3b19fy8vOdmjTCtq0iiyJf+CFQi6hsOnKC4Yg5LVQhZNIkg7uh+9/1zk8PitqPJYbNUYrGHIJBE1CFgxClXc7FISqEOwtg8qASdTcMLTIg1YtoEUuGX1aaLr5OfVDc6O1XojpXmsS1m9xueExl79/ALdcAr+bchqEK2yHJUSNCgscVsyBB1+Ae+e3Z8nHLnOnweC+dup8KwmSMCZOnGg7hLiysx2ys+v32OJy6N45mYM58TYVleZMwv3lLrv3m7MId5Ye7l92MS1POdnV/5pqV+HFo8exrcx2FCKTHax0+f1imLXQZWAfWPmkw5DBDr+7TpIjkflychxmTIDhg3YxY34+J13lcuMYF7LbQSj+mLm0xeJracIKv1uqUqVlC4eWLaBLB4e+Pc2ycNilvALKK82A9aqgd7/CjLk6WAn7Dph1Lu4RZwDC4RatSO7UpRVs3324aSyyPDq3chwz8P2I/1kxy2LvN8HkTGS2cNhl8bswfa7Lnv3wm0kOU0Yjs2KLRmlAQZAVjzssWAK3PeWCWm3m6tr2LLhBX2KQBKkZyNSWqvrIynJo2xrato4siV/5u67pwguFTRfhoe7CqPuhMIQq4NRjzWPC3qw3ka7EQ/+9x1QFj3ye6OcLVB55HydqHFacKRwOTeUQ1eIVCJnuTbl6uqgL13Upeg/u+qPL5xvg2gvhrqsc8jvKcSQat6wsh4kXwMUjoON3noN+D0OvG2HTLNjxIhBKa/mSIIkmyXGcWgaxH1ZcDAUFqT9dIhx2CYdNkhWOGs8VOdMwEDRjrA5WmkHzFZWm5WlPmZny4dCg9jDkeGcZ5uUQfZqjaOYCQVi01OWhF10+XQc/PRdeuddhYB9JjETT0qGtAxtmwJan4Kg7zAzwfWZA8SPm+oFpGlsnCZIQaZCV5SQxm3r1sw3HnJ1FIOh6c2GZ5GnfAXO24b4DJrnaWuJWe3SkYSoy91VW1uEzB7OcmNtR3YhZjlkemf7hyO3kizZV6rIvE83hsmOPy7NvwROvd2PnXpcrRsJLdzsMOjp171eieIuKinyf/0gIqjbD19fBpt9A72nQ/xE4+l7YNs/8VW5KaXGSIAmRYSJzYrWL041YXAzjvu8cOgMwEDz8FxmPVRU03XyuC8GwN/N72LvtmtassDfZaMA7OzHsmsdEZoMPu+BG+hhjJiR1nCNmcRA+CARdlvwbnvuby5sroVM7GH92OdMub09BvrwTopmp3ATfTIVv74aek6HHJOhzO+xZAtsXUFHp0rJFwz8XkiAJkSGSHUwfOcuwZbU1qf2ijHQThqL/QoeTLNel1lm0RcNUBVz+8R94bZnLa8th9z4YeRosnOFw0QjYtbOMgvwOtsMUwp7gbtOatOlB6PxD6D4Rjl2AmuTy6fyGt4JLgiREhsi0wfSRbkKpJHzU4ijmvemy5N8uSz80k7gOPR5mTnAY+33o1VUSUiGqC8Put8xfThfmPrUzJUMEpO4TQggbnBxofTy0Gwrth5rLgLTsy61PuvzgFHj4OoefDIOekhQJkbxgCcO+k5rPjCRIQgiRRuGwCy2OglYDofVx0PoEaHsitDkRslpCoAT2fwBbn4a9K9i1eyW5MneRENZJgiSEEB6l1IPAMGADcLXWOtCQ59uz36XXxS6cvt4sqNgI5Z9D6T9g8/9A2cdQ8fURj5HkSIjMIAmSEEIASqmTgAKt9Qil1AxgDPBiQ56zY1t4/g6HSy48FSrWQkiuEyNEY5H6GfKEEKJxGgYs9W6/DQxv6BM6jsO4cxw48B9JjoRoZJpCC1LS7dEFBQXpjCPlGlu80PhilnjTq5HF2wnY6t3eC3SO3UApNQmY5N2drLWem8xrTDT5Y33Udd+mOoZ0vKZML1tes39ij28bcTSFBEkIIVKhFGjv3e4A7I7dQGs9F5jrY0xCCEuki00IIYyVwLne7fOB9y3GIoSwTBIkIYQAtNargO1KqRXA8cBrdiMSQtjk2OxTFUIIIYTIRNKCJIQQQggRQxIkIYQQQogYzeYstlTPkJtOSqm+wIfA596isVrrnfYiik8p1QF4BxgMDNVaf6aUGgv8EjgIXKm13mwzxmg1xLsWKPY2maW1fsdagDGUUqcDjwEBTIwTgIvI3P0bL94vyND9mypKqfHAbK11vnc/7Z8BpVR34M+YfR0CLtNab1VKnQk8BISBX2itP01xudXeY611wKfXXO3z6y33o2zfvj9s1qu26px4xzNQSBqP5WQ0ixak6Blyga8wM+RmumVa67O9v4xLjjzlwI+AVwGUUjnAzcDZwJ3ATGuRxXdEvJ69Ufs50768NwHnaK3PwlTMo8js/Rsv3kzevw2mlMoGxmJeu5+fgV3AmVrr7wELgJ95y2dhjvGfAg+modxq77GPr7na59ePsi18f9isV23VOfGO53Qfywk1lxak2Blyr6KBlxDwwXDvbJoVwAytdcaNpvd+Re1USkUWDQC+1FpXAe8rpR62FlwcceIFaKuUWob5tTRFa11t7htbtNZbo+5WAceS2fs3Nt4wGbx/U2Q88Apwi3ffl8+A1joUdbcd8LlSqhUQ0lrvAfYopapNdJmCcuO9x3695nifXz/K9vX7w2a9aqvOiXM8f4NJ1NJ2LCejWbQgYWbI3efdjjtDbobZChwDnAV0A0bbDSdp0fsZINtWIHUw3PvV8jZwj+1g4lFKHQ2MBN6jEezfqHjfpBHs3/ryWo/GAS9FLfbtM6CUOlkp9QEwBfg4TtlBpVRemsqOfo9tfu79KNv294fv+9dGnRNzPK/Ep2O5Ns2lBamUBDPkZhKtdSVQCaCUeh0YSuOYk6WUw/sZTF9yRtNal3g3XwWusRlLPEqp9sBCYCKmcsro/Rsdr/dLOKP3bzKUUj2AxXFWPQe8rLUOR/3aLyWF71EtZV/qzds0RCk1DpiO6QqJLjvH++Wf0nIxXUCH3mOlVCn+veZtMctSWnYNosuw8f0RXT6k+XNvq86JOZ5nkKJjuSGaS4K0ElN5LKARzJCrlGqntd7v3R0BfGkznjpYCxznZfoK+MRyPLXy4nS8hHQE8LXlkI7gjT1YDNyjtV6tlMolg/dvnHgzev8my/tSPjt2uTdw97tKqcuBAUqp2ZiutpS9R7WUHf1rei9QrrUuV0rlKKU6Yrop6v1FXku5OcAbeO+xtziln/uayq6BH3WO7e8P3+pVW3WOUiovKgHaC5QBKTmWG6JZJEha61VKqcgMuRuBjBq7EceZSqn7Mb/U1pN5g3EPUUr9DTgZ01f9DPAo8A+gArjSVlw1iYn3L8A4pdQBTIvd1fYii2s8MASYqZSaCTxFZu/fePHelsH7t0G01r+K3FZKaa31VO/2o6T/PTrZGw8S8sqJ7NtfA38DXOC6NJRb7T3WWr/k02s+4vOrlHpGaz0/3WXb+P6wWK/aqnPiHc8DSO+xnJDMpC2EEEIIEaO5DNIWQgghhEiaJEhCCCGEEDEkQRJCCCGEiCEJkhBCCCFEDEmQhBBCCCFiNIvT/EXm8y7Qux74q9b6x5bDEUI0Y0qpDUBXrXVb27EIe6QFSQghhBAihrQgiYyjlLoNuAnoCuwA5mmt7/HWnQM8C7QFngduBZ7XWk+0EqwQIqMppV7GXM+yp9Z6p1LqIWAa8CtqqGdiHn83cBcwVmv9qlLqM+B4rbXjrZ8OTPKeZyXwC631urS/MJF20oIkMtEm4D5M5fUJcLdSarhSqgWwCMj31g+zFqEQorFYhLmm2MXe/TGYyzfFrWfq8sRKqSuBB4APgN8CJwKvpCRqYZ20IIlM1A3zi61T1LLvYK7P0wNYpLWeo5T6ClhqIT4hROPxd8y1vMYopT4C+mEuhlpTPVOXa61Fxkte4v0B9FBKddZaZ/RF0UVi0oIkMk0b4BFMMnQR5tcZQMuobeT6OEKIpHgXQX0F+D6mK8zFtColqmciIlewjzQodIyzzWXAed7f+ZjraIpGThIkkWlCmAqsBaa1KPqMtq+AbcAopdT1wN2+RyeEaIwWYRKcnwPvASXUXM/E2uD9H6OUuh0oiFr3lvf/SqAP8D1gpta6ImWRC2skQRKZpgK4DVNx3U5UF5rWuhLzS63EW7fKW1Xqa4RCiMbmPeBbwAH+pLUuo4Z6Jo7XgHeAkZgxRocGYGutn/cePwBz5fvxwPI0xC8scFxXeitE46GUGoWp5A4CN2MqrZ9ord+q9YFCCCFEHcggbdHYHAXcCbTDNH1PkeRICCFEqkkLkhBCCCFEDBmDJIQQQggRQxIkIYQQQogYkiAJIYQQQsSQBEkIIYQQIoYkSEIIIYQQMSRBEkIIIYSI8f9yBUjaFTunPQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAysAAAJjCAYAAAAMK47pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUVfv3v7vZ9EYIJYWQhA7SCSAdBARCR8ECIiCCPkgTQX6igooFFR5R8RFBwAKIAkoxdKSIIiC9E0IJJY2QXjc77x/7zsmZbdm+s8n9uS4uZmc3s2fOzpw533M3hSAIAgiCIAiCIAiCIGSG0tUNIAiCIAiCIAiCMASJFYIgCIIgCIIgZAmJFYIgCIIgCIIgZAmJFYIgCIIgCIIgZAmJFYIgCIIgCIIgZAmJFYIgCIIgCIIgZAmJFYIgCIIgCIIgZAmJFYIgCIIgCIIgZAmJFYIgCIIgCIIgZAmJFYIgCDdnzZo1UCgU7J9KpUJ4eDiefvppXLt2zWHfu2DBAigUCrM+GxMTg3HjxjmsLZa2x56I/X/z5k2nfzdBEERlR+XqBhAEQRD2YfXq1WjSpAmKiopw5MgRvP/++/jjjz9w+fJlhISE2P37Jk6ciP79+9v9uARBEAQhQmKFIAiiktC8eXPExcUBAHr27ImysjLMnz8fv/32G8aPH2/376tTpw7q1Klj9+MSBEEQhAi5gREEQVRSROGSmpoq2X/ixAkMGTIE1atXh4+PD9q0aYOff/5Z8pmCggK89tpriI2NhY+PD6pXr464uDisX7+efcaQ21VpaSnmzJmDsLAw+Pn5oWvXrjh27Jhe24y5bBlyqdqwYQMef/xxhIeHw9fXF02bNsXcuXORn59vcZ989tlnUCgUSExM1Hvv9ddfh5eXFzIyMgAAe/bswdChQ1GnTh34+PigQYMGmDx5MnvfFMbc3nr27ImePXtK9uXk5LC+9vLyQmRkJGbMmKF3fr/88gs6duyI4OBg+Pn5oV69epgwYYL5J08QBOGGkGWFIAiiknLjxg0AQKNGjdi+P/74A/3790fHjh3x9ddfIzg4GD/99BOeeuopFBQUsAn2q6++ih9++AELFy5EmzZtkJ+fj/Pnz+PBgwcmv/PFF1/E999/j9deew19+/bF+fPnMWLECOTm5lp9HteuXUN8fDxmzJgBf39/XL58GYsWLcKxY8ewf/9+i441ZswYvP7661izZg0WLlzI9peVleHHH3/E4MGDUaNGDQDA9evX0alTJ0ycOBHBwcG4efMmlixZgq5du+LcuXPw9PS0+pxECgoK0KNHD9y5cwdvvPEGWrZsiQsXLuDtt9/GuXPnsHfvXigUCvz999946qmn8NRTT2HBggXw8fHBrVu3LD5/giAIt0MgCIIg3JrVq1cLAISjR48KpaWlQm5urrBz504hLCxM6N69u1BaWso+26RJE6FNmzaSfYIgCIMGDRLCw8OFsrIyQRAEoXnz5sKwYcNMfu/8+fMF/jFy6dIlAYAwc+ZMyefWrl0rABCef/55o3+rey43btww+J0ajUYoLS0VDh48KAAQzpw5U+ExdRkxYoRQp04ddq6CIAgJCQkCAGHbtm0mv/fWrVsCAGHLli0m2xwdHS05X5EePXoIPXr0YK8//PBDQalUCsePH5d8buPGjQIAISEhQRAEQfj0008FAEJWVlaF50cQBFGZIDcwgiCISsKjjz4KT09PBAYGon///ggJCcGWLVugUmmN6ImJibh8+TJGjx4NAFCr1exffHw87t+/jytXrgAAOnTogB07dmDu3Lk4cOAACgsLK/z+P/74AwDY8UVGjRrF2mANSUlJePbZZxEWFgYPDw94enqiR48eAIBLly5ZfLzx48fjzp072Lt3L9u3evVqhIWFYcCAAWxfWloaXnrpJURFRUGlUsHT0xPR0dFWf68htm/fjubNm6N169aS36Nfv35QKBQ4cOAAAKB9+/YAtH35888/4+7du3b5foIgCLlDYoUgCKKS8P333+P48ePYv38/Jk+ejEuXLuGZZ55h74uxK6+99ho8PT0l//7zn/8AAIvH+Pzzz/H666/jt99+Q69evVC9enUMGzbMZCpk0UUsLCxMsl+lUiE0NNSqc8rLy0O3bt3wzz//YOHChThw4ACOHz+OzZs3A4BZIkqXAQMGIDw8HKtXrwYAPHz4EFu3bsXYsWPh4eEBANBoNHj88cexefNmzJkzB/v27cOxY8dw9OhRq7/XEKmpqTh79qze7xEYGAhBENjv0b17d/z2229Qq9UYO3Ys6tSpg+bNm0tiiAiCICojFLNCEARRSWjatCkLqu/VqxfKysqwcuVKbNy4EU8++SSLxfi///s/jBgxwuAxGjduDADw9/fHO++8g3feeQepqanMyjJ48GBcvnzZ4N+KgiQlJQWRkZFsv1qt1ot18fHxAQAUFxfD29ub7dcNXt+/fz/u3buHAwcOMGsKAGRlZVXYH8bw8PDAc889h88//xxZWVlYt24diouLJRnTzp8/jzNnzmDNmjV4/vnn2X5DgfmG8PHxQXFxsd7+jIwM9jsAQI0aNeDr64tVq1YZPA7/2aFDh2Lo0KEoLi7G0aNH8eGHH+LZZ59FTEwMOnXqZFa7CIIg3A2yrBAEQVRSPv74Y4SEhODtt9+GRqNB48aN0bBhQ5w5cwZxcXEG/wUGBuodp3bt2hg3bhyeeeYZXLlyBQUFBQa/T8xytXbtWsn+n3/+GWq1WrIvJiYGAHD27FnJ/m3btkleixnDeEEDAMuXLzd98hUwfvx4FBUVYf369VizZg06deqEJk2a2O17Y2Ji9M7t6tWrzM1OZNCgQbh+/TpCQ0MN/h5iP/F4e3ujR48eWLRoEQDg1KlTZrWJIAjCHSHLCkEQRCUlJCQE//d//4c5c+Zg3bp1GDNmDJYvX44BAwagX79+GDduHCIjI5GZmYlLly7h5MmT+OWXXwAAHTt2xKBBg9CyZUuEhITg0qVL+OGHH9CpUyf4+fkZ/L6mTZtizJgx+Oyzz+Dp6Yk+ffrg/Pnz+PTTTxEUFCT5bHx8PKpXr44XXngB7777LlQqFdasWYPk5GTJ5zp37oyQkBC89NJLmD9/Pjw9PbF27VqcOXPGpr5p0qQJOnXqhA8//BDJycn45ptv9N6vX78+5s6dC0EQUL16dWzbtg179uwx6/jPPfccxowZg//85z944okncOvWLXz88ceoWbOm5HMzZszApk2b0L17d8ycORMtW7aERqPB7du3sXv3bsyaNQsdO3bE22+/jTt37qB3796oU6cOsrKysHTpUkn8DkEQRKXE1RH+BEEQhG2I2ah0M0oJgiAUFhYKdevWFRo2bCio1WpBEAThzJkzwqhRo4RatWoJnp6eQlhYmPDYY48JX3/9Nfu7uXPnCnFxcUJISIjg7e0t1KtXT5g5c6aQkZHBPmMo+1ZxcbEwa9YsoVatWoKPj4/w6KOPCn///bfB7FjHjh0TOnfuLPj7+wuRkZHC/PnzhZUrV+pl1vrrr7+ETp06CX5+fkLNmjWFiRMnCidPnhQACKtXrzbZHlN88803AgDB19dXyM7O1nv/4sWLQt++fYXAwEAhJCREGDlypHD79m0BgDB//nz2OUPZwDQajfDxxx8L9erVE3x8fIS4uDhh//79etnABEEQ8vLyhDfffFNo3Lix4OXlJQQHBwstWrQQZs6cKaSkpAiCIAjbt28XBgwYIERGRgpeXl5CrVq1hPj4eOHw4cNmny9BEIQ7ohAEQXCdVCIIgiAIgiAIgjAMxawQBEEQBEEQBCFLSKwQBEEQBEEQBCFLSKwQBEEQBEEQBCFLSKwQBEEQBEEQBCFLSKwQBEEQBEEQBCFLSKwQBEEQBEEQBCFLSKwQBEEQBEEQBCFLSKzIDI1Ggxs3bkCj0bi6KS6H+kIK9Uc51BflUF+UQ30hhfqjHOqLcqgvpFB/lCPXviCxQhAEQRAEQRCELCGxQhAEQRAEQRCELCGxQhAEQRAEQRCELCGxQhAEQRAEQRCELCGxQhAEQRAEQRCELCGxQhAEQRAEQRCELCGxQhAEQRAEQRCELCGxQhAEQRAE4SJSUlJw6dIlVzeDIGQLiRWCIAiCIAgXkJqaioYNG6JZs2bYvXu3q5tDELKExApBEARBEIQL2L9/P/Ly8tg2QRD6kFghCIIgCIJwAVevXmXb+fn5LmwJQcgXEisEQRAEQRAu4Nq1a2ybxApBGIbECkEQBEEQhAsgywpBVAyJFYIgCIIgCCcjCAJZVlxEeno6PD09UVBQALVajUceeQS3b99m78fExEChUEChUMDPzw/NmzfH8uXLXdjiqg2JFYIgCIIgCCeTkZGBrKws9prEivP4+++/0bp1a/j5+eHff/9FtWrVULduXcln3n33Xdy/fx9nz57FsGHD8NJLL2HDhg0uarHrKSkpcdl3k1ghCIIgCCtYunQp2rdvjwMHDri6KYQbwltVALCsYITj+euvv9ClSxcAwJEjR9CuXTu9zwQGBiIsLAwNGjTAwoUL0bBhQ/z2228AgNdffx2NGjWCn58f6tWrh7feegulpaXsb8+cOYNevXohMDAQQUFBaNeuHU6cOAEAuHXrFgYPHoyQkBD4+/vjkUceQUJCAvvbixcvIj4+HgEBAahduzaee+45ZGRksPd79uyJadOmYc6cOahevTrCwsKwYMECSdsvX76Mrl27wsfHB82aNcPevXuhUChY+wHg7t27eOqppxASEoLQ0FAMHToUN2/eZO+PGzcOw4YNw4cffoiIiAg0atQIAPDVV1+hYcOG8PHxQe3atfHkk09a9RtYgsrh30AQBEFUavLy8nD69Gk8+uijUKmqxmOluLgYc+bMQUlJCd577z307NnT1U0i3Aw+XgVwb8tKXFwcUlJSnP69YWFhTARUxO3bt9GyZUsAQEFBATw8PLBmzRoUFhYCAKpXr45nn30WX331lcG/9/HxYYIkMDAQa9asQUREBM6dO4cXX3wRgYGBmDNnDgBg9OjRaNOmDf73v//Bw8MDp0+fhqenJwBgypQpKCkpwaFDh+Dv74+LFy8iICAAAHD//n306NEDL774IpYsWYLCwkK8/vrrGDVqlCS19XfffYdXX30V//zzD/7++2+MGzcOXbp0Qd++faHRaDBs2DDUrVsX//zzD3JzczFr1izJuRQUFKBXr17o1q0bDh06BJVKhYULFyI+Ph5btmxhn9u3bx+CgoKwZ88eCIKAEydOYNq0afjhhx/QuXNnZGZm4vDhw2b1vy1UjacKQRAE4TBGjBiBPXv24Pnnn8eaNWtc3Ryn8ODBA+YWkZyc7OLWEO6IrmXFncVKSkoK7t696+pmmCQiIgKnT59GTk4O4uLicPToUQQEBKB169ZYuXIl2rdvj6CgIL2/U6vV+PHHH3Hu3Dm8/PLLAIA333yTvR8TE4NZs2Zhw4YNTKzcvn0bs2fPRpMmTQAADRs2ZJ+/ffs2nnjiCbRo0QIAUK9ePfbe//73P7Rt2xYffPAB27dq1SpERUXh6tWrzLrRsmVLzJ8/nx37yy+/xL59+9C3b1/s3r0b169fx4EDBxAWFgYAeP/999G3b192zJ9++glKpRIrV66EQqEAAKxevRrVqlXDP//8w9rr7++PlStXwsvLCwCwefNm+Pv7Y9CgQQgMDER0dDTatGlj+Y9hISRWCIIgCKu5desW9uzZAwBOWWGTCw8ePGDbaWlpLmwJ4a5UJsuKOCmW8/eqVCrExMTg559/Rvv27dGqVSscOXIEtWvXRocOHRAdHQ2lsjw64vXXX8ebb76J4uJieHl5Yfbs2Zg8eTIAYOPGjfjss8+QmJiIvLw8qNVqidB59dVXMXHiRPzwww/o06cPRo4cifr16wMApk2bhpdffhm7d+9Gnz598MQTTzCLz7///os//viDWVp4rl+/LhErPOHh4WwcunLlCqKioiR906FDB8nn//33XyQmJiIwMFCyv6ioCLdu3WKvW7RowYQKAPTt2xfR0dGoV68e+vfvj/79+2P48OHw8/OrqPttgsQKQRAEYTU7duxg2wUFBS5siXPhxUp2djaKiorg4+PjwhYR7kZlilkx1xXLlTzyyCO4desWSktLodFoEBAQALVaDbVajebNmyMmJgYXLlxgn589ezbGjRsHPz8/hIeHMwvE0aNH8fTTT+Odd95Bv379EBwcjJ9++gmLFy9mf7tgwQI8++yz+P3337Fjxw7Mnz8fP/30E4YPH46JEyeiX79++P3337F79258+OGHWLx4MaZOnQqNRoPBgwdj0aJFeu0PDw9n26JLmYhCoYBGowGgzTInttUYGo0G7dq1w9q1a/X2i25xgNaywhMYGIiTJ0/iwIED2L17N95++20sWLAAx48fR7Vq1Ux+py24ZYD9+++/j379+qFHjx546qmnJKt5a9asQZ8+ffDYY49h6dKlEATBhS0lCIKo3FRVscIHvALaVKgEYS66aYsBbRxUWVmZi1pU+UlISMDp06cRFhaGH3/8EadPn0bz5s3x3//+F9u3b8f27dsln69RowYaNGiAiIgIyeT/yJEjiI6Oxrx58xAXF4eGDRtKrBEijRo1wsyZM7F7926MGDECq1evZu9FRUXhpZdewubNmzFr1iysWLECANC2bVtcuHABMTExaNCggeSfrnAwRpMmTXD79m2kpqayfcePH5d8pm3btrh27Rpq1aql9z2GXOF4VCoV+vTpg48//hhnz57FzZs3JfE0jsAtxcro0aOxbds2HDx4EG+//Tbeeust5OTk4M8//8TGjRuxZs0a/Pzzz/jzzz+xdetWVzeXIAiiUlJcXIy9e/ey11VJrPCWFQCSiQFBVMS9e/cM3i/u7Aomd6KjoxEQEIDU1FQMHToUdevWxcWLFzF8+HDExMQgOjrarOM0aNAAt2/fxk8//YTr16/j888/x6+//sreLywsxCuvvIIDBw7g1q1bOHLkCI4fP46mTZsCAGbMmIFdu3bhxo0bOHnyJPbv38/emzJlCjIzM/HMM8/g2LFjSEpKwu7duzFhwgSzhWzfvn1Rv359PP/88zh79iyOHDmCefPmAQATXaNHj0aNGjUwdOhQHD58GDdu3MDBgwcxY8YM3L9/3+ixt2/fjs8//xynT5/GrVu38P3330Oj0aBx48Zmtc1a3NINLCYmhm0rFAqUlJQgIyMDCQkJePLJJ1GnTh0AwJgxY7Bjxw4MHTrU4HFKSkr08karVCqJf56zEc144v9VGeoLKdQf5VBflOPKvjhw4IBkwqVWq1FUVOSyMdSZfaFrWUlJSZHd9Uj3STly64vLly8b3J+bm2swXsGeyK0vnMn+/fvRvn17eHl54fDhw4iMjERYWBiSk5P1+kMQBIN9NHjwYMyYMQOvvPIKiouLER8fjzfffBPvvPMONBoNFAoFMjIyMHbsWKSmpqJGjRoYPnw45s+fD41GA7VajSlTpuDOnTsICgpCv379sGTJEmg0GoSFheHw4cOYO3cu+vXrh+LiYkRHR6Nfv34AIHH14tsmCALbp1AosHnzZkyaNAnt27dHvXr1sGjRIgwdOhReXl7QaDTw8fHBgQMHMHfuXIwYMQK5ubmIjIxEr169EBAQAI1GIzmmSFBQEDZv3owFCxagqKgIDRs2xNq1a9G0aVOrryc+TsgYCsFN/aQ++ugjbNu2DcXFxejRowcWL16MZ555BlOmTEHXrl0BAJcuXcL06dOxe/dug8dYvnw5M72JjBw5EqNGjXJ4+wmCINydhQsXYtWqVZJ9p0+frtCNoDLw/vvv49tvv2WvP/74Y6fUGyAqB+vXr2er3Tz79++XLMgShD04ceIERo0ahT/++MNsC5KziI2NrfAzbmlZAYC5c+di9uzZOHHiBBITEwFoXRD4FQl/f3+Tbgnjx4/H6NGjJfvkYFlJTk5GVFSUWWqzMkN9IYX6oxzqi3Jc2RdHjhzR2xcaGoqIiAintkPEmX3BF4ADgLKyMtlNAug+KUdufcG7EdavXx/Xr18HAAQHBzv8OpJbX7iaytgfv/76KwICAtCwYUMkJiZiwYIF6NKlC7p3727y7+TaF24rVgDAw8MDHTt2xPr161GvXj34+flJsmnk5+ebTKfm5eXlUmFiCqVSKasLxZVQX0ih/iiH+qIcZ/dFUlISrly5ore/qKjI5b+JM/oiMzNT8jo9Pd3l520Muk/KkUtfiIusANCmTRsmVgoLC53WPrn0hVyoTP2Rn5+PuXPnIjk5GTVq1ECfPn2wePFis89Pbn3h1mJFRKPR4M6dO4iNjUViYiJzA7t69aqk2A5BEARhH/gsYEqlkvkrV5UAYQqwJ2xBrLHi4+MjCU6uKvcP4VjGjh2LsWPHuroZdkM+sslMCgoKsGPHDhQUFECtVmPfvn34999/0aZNG8THx2PTpk24e/cuMjIysHbtWgwYMMDVTSYIgqh0JCQksG3etaCqZATTDbCnwpCEuZSVlTFLSoMGDSSF+UisEIQ+bmdZUSgU2LJlCxYtWgRBEBAVFYWFCxey/NDXrl3D2LFjodFoMGzYMAwZMsTVTSYIgqhUFBYW4o8//gCgLVTWuXNnHDhwAEDVEStkWbEeQRCwY8cOREZGolWrVq5ujtMRCxMCQMOGDSX1M9y5MCRBOAq3Eyu+vr74+uuvjb4/fvx4jB8/3oktIgiCqFocPHiQVTkeMGCAZLJVFcRKWVkZHj58KNlHlhXz+eGHH/D888/D09MTSUlJrNxAVYEvBtmoUSNJYiCyrBCEPm7nBkYQBEG4Ft4FLD4+XpLIpCqIlaysLOhm/U9PT6+SdSusYdOmTQC0GdX+/fdfF7fG+YjxKoC+ZYXEStVDo9Fg+vTpGDlypJ57KaGFxApBEARhEWJwvUqlQp8+fSRipSpMtnRdwACttUU3Qxihj0ajwZ9//slem6qWXVnRtayQWKna7NmzB59//jk2btyI77//3tXNkSUkVgiCIAizuXbtGku72qVLFwQHB1c5y4ohsQKQK5g5XL58WSLqUlJSXNga10CWlcrFjz/+iFGjRuHChQtW/f3JkyfZ9p07d+zVrEqF28WsEARBEK6DT1kcHx8PAFUuZoUXKwqFgrmEpaamolmzZq5qlltw+PBhyeuqbFkJDAxE7dq1cffuXfYeBdi7F0VFRZg8eTIKCgpQVlbGXBwt4dy5c2ybrLOGIcsKQRAEYTZ8vIqYGr6qWVZ4v/KYmBi2TZaViuFdwICqZ1kpKSnBzZs3AWhdwBQKBVlW3Jjc3Fw25l26dMmqY/BiRTdxB6GFxApBEARhFgUFBSxFcZ06ddC8eXMAqNIxK7wlhcRKxeiKlapmWUlKSmKJGBo2bAgAJFbcmKKiIrZ9+/ZtvcQbFVFSUoLLly+z1yRWDENihSAIgjCLP/74A8XFxQC0LmAKhQJA1bOs8GKladOmbJtqrZjmzp07zKogUtUsK3y8SqNGjQCQWHFneLGSn59vsdi4evUq1Go1e01ixTAkVgiCIAiz4ANBe/fuzbarcswKWVbMR9eqAmjFiqWr0e4MnwnMkGWFYlbcC16sAFrriiXwLmAAiRVjkFghCIIgzIJfBedjNaqyZYUXK2RZMQ0fXC9eM6WlpUazq1VGDFlWvLy8oFJp8x2RZcW9ILHiHEisEARBWMFbb72FgQMH4saNG65uitPgxUpYWBjbrsoxK02aNGHbZFkxjWhZUSqV6N+/P9tflVzBDFlW+CD7qnD/VCZsFSvnz5+XvC4oKGCutkQ5JFYIgiAs5OTJk1i4cCESEhKwbNkyVzfHafCWg9q1a7PtqmpZ8fHxQXBwMKpXrw6AxIopsrKy2Cpyq1at0LhxY/ZeVQqyFy0rNWrUQEhICNtPYsU9sbdlBSDriiFIrBAEQVjI0aNH2fa9e/dc2BLnIq6Ah4SEwNvbm+339fVl21VJrISGhgIAatWqBYDcwEzx119/sdiUrl27Ijw8nL1XVSwr+fn5rKaKaFURIbHintgiVnJzc/USTgAkVgxBYoUgCMJCjh8/zrazs7Nd2BLnIk4qeRcwQOvGIlpXKrtYEQSB1VnRFSv5+fk02TQCH1zfrVs3yTVUVSwriYmJbFuMVxEJCAgAQAH27oYtYkXXBUyExIo+JFYIgiAs5MSJE2y7qoiVvLw8NhHXFSsAqoxYyc/PR0lJCYByscK7xJErmGF4sdKlS5cqaVkxFK8iIlpWSktLUVpa6tR2EdZjL7FSo0YNtk1iRR8SKwRBEBaQn5+PixcvstdZWVmua4wTMRZcLyKKlcpuWeCD63UtKwCJFUMUFxfj2LFjAIB69eohIiKiSlpWDGUCE6FaK+6Jrli5d++e2WKTj1fp3r072yaxog+JFYIgCAs4deoUq0ANVB3LirlipbJbVgyJFd6yQnEr+pw4cYJlOOrWrRsA6TVElhUSK+6KbuYuQRBYXFJF8GJFvC8AEiuGILFCEARhAXy8ClA1LSv85FxEnGxVRbFClhXT8PVVunbtCkAboyHGaVRFy0qDBg0k71FhSPdE17ICmOcKJggCEythYWES8ZqZmWm/BlYSSKwQBICysjIMGTIEjRo1krj4EIQuumIlLy8PZWVlLmqN8zDXsqJWqyu1zz0vVkQ/c4pZMY1ucL2IGLdSVcSKaFmJiIhgQk2Ef02WFffBWrGSmprKxpLmzZtL0liTZUUfEisEAeDvv//Gtm3bcO3aNaxYscLVzSFkDB9cL5KTk+OCljgX3r3JlFgBKvdkqyLLiik3sKysLJa+t6qg0Whw5MgRAFpxx8dqiNdRTk5OpbfI5efnIz09HQBQv359vffJDcw9sVas8C5gLVq0YLWaABIrhnA7sVJSUoJ33nkH8fHx6NGjByZNmiRJB7hmzRr06dMHjz32GJYuXVrlHgyEdfCDi6G85wQBaCebvN85v7+yY65lBajcrmBi2mLAMjewJUuWICQkBGPGjHFsA2XGhQsX2P3RtWtXKBQK9l5Vygh2584dth0VFaX3PokV98ReYoUsK6ZxO7FSVlaGyMhIrF69Gvv370f37t0xa9YsAFpT88aNG7FmzRr8/PPP+PPPP7F161YXt5hwB/jCfsnJyS5sCWFv7Omi9e+//xrcXxWC7CsSK/xkqzKLFWsD7L/66isAwLp161BYWOjAFsoLYy5gQNUKsuefKyRWKg/WihU+bTGJlYpRuboBluLr64uJEyey10899RSWLl2KrKwsJCQk4Mknn0SdOnUAAGPGjMGOHTswdOhQg8cqKSlh+fJFVCoVvLy8HHcCFSBmGeKzDVVVnNkX/KpXcnKyLPufro1yzO2LHTt24Nlnn0Xfvn2xYcMGyaquNYjpVwHtREucYGVmZrrsd3HWdSGeq1KpRPXq1fW+j69in5eX55L+cEZf8JaVkJAQaDQa+Pn5wcfHB0VFRUhLS9P7/uzsbFy/fp29vnfvHmJjYx3WRhE5jBmHDh1i2507d5a0hRcrd+/edWg7Xd0X/AQ2MjJSrx28ZTInJ6dS94XcsKU/DC083L59u8JjiZYVhUKBJk2aQKVSwc/PDwUFBXj48GGlf57wKJUV203cTqzocvbsWVSvXh3VqlXDjRs3EB8fz95r1KgRli1bZvRvV69erRefMHLkSIwaNcph7TUXWt0vxxl9wbv2pKWl4erVq/D29nb491oDXRvlVNQXy5YtQ05ODjZt2oSDBw/aPEE8ePAg2+7YsSO2bNkCQFuZ2hmTT1M4+roQ03GGhoZKxL2IWq1m29evX0dwcLBD22MKR/YFn5a0oKAAt27dAqDtl7t37yIlJYXtE/nnn38kr0+dOmXWA9peuHLMEO8ZX19fVK9eXdI3np6ebPvixYuIi4tzeHtc1Rf8Srq3t7feNcKv0CcnJ+u97wjoWSLFmv7gLa2enp4oLS3FzZs3cfPmTaOLY2VlZex6qFu3LotlCgoKQkFBATIyMpzy+5vCmdeGOc9OtxYreXl5+OCDD/Cf//wHgPbBwWfU8Pf3N+mOMH78eIwePVqyTw6WleTkZERFRTn1YSZHnNkXum48KpUK0dHRDv1OS6Froxxz+4KfQBcXF9v8m166dAmAdmx57LHHmFjx9PR02fXijOtCo9Ewi0JkZKTBc+VXyYOCghzaH2lpafjuu+/Qu3dvtG3bVtJOR/eF+ExRKpVo0aIF+56IiAjcvXsXmZmZiIyMhEpV/nj99ddfJccQBMEp14urx4zdu3ezTF+dOnXSS9f7yCOPsO2SkhKH9omr+yI3N5dtt23bVu9c69aty7Z9fHwqdV/IDVv6w8PDg23Xr18fly9fRn5+PqpVq4Zq1aoZ/JvExEQmTtu0acN+6xo1aiAlJQXZ2dmV+nliDW4rVoqLizFr1ix07dqVuXn5+flJ8pPn5+dLTKu6eHl5uVSYmEKpVMrqQnElzugL3SJOd+/e1XuwyoWK+mPVqlX47LPP0KdPH8yaNQuRkZFObJ1zqagv+MWKGzdu2HQdpaWlMVeOdu3asXgFQDsRcfX96sj75OHDhywdce3atQ1+D+9zX1RU5ND+mDdvHlatWoWwsDDcvn1bskIPOLYvxJXUkJAQiSAR41YEQcDDhw8lcSynTp2SHCM1NdWp14srniffffedxGW7f//+em3gxyZn9Ymrnq38M6Zu3bp6bQgMDGTbBQUFlbovjJGTk4Ply5fjzJkzmDNnDlq2bOnU77emP/iikI0aNcLly5cBaF3L+QxfPBcuXGDbLVu2ZN8pxq0UFRWhpKQEPj4+FrXFnsjt2pBPSyxArVbjjTfeQM2aNTFjxgy2PzY2VpIZ7OrVq6hXr54LWki4E4IgSALsAfc2j8+bNw/nzp3Df//7X8TGxuplzKtK8IGqSUlJNh2LT1ncvn17iZtTZQ+wryi4HnBugL34sE9JSTHokuZIRLHCi1XAdPrikydPSl5X5roigiBgwYIFGDduHLNsDhw4EFOnTtX7LH8tVeY+AcqfKd7e3qhZs6be+1W5KGRmZibeeecdxMTEYM6cOVi7di0ef/xxt7gmePc9Pi23qSB7PhNY8+bN2TalLzaOW4qV999/H8XFxViwYIHEJzA+Ph6bNm3C3bt3kZGRgbVr12LAgAEubCnhDjx48EAv0YK7ihWNRiOZKJWWlmLFihVo3Lgxnn32WckgWRWwp1jhi0HGxcVJTPyVPXWxOWLFmamLeZcaZ6YaLykpYTV1xIKQIsbSF+fn57PVVhF3mIRZQ0lJCZ5//nm88847bN+UKVPw22+/GVwlrlGjBnOjqax9IiKK6jp16hiMZaiKRSHT0tIwd+5cxMTEYMGCBZIJempqKp566imJK68c4cUKX4XeXLHSokULtk0ZwYzjdmLl/v372LZtG06dOoVevXqhW7du6NatG06dOoWuXbtixIgRGDt2LEaOHIkuXbpgyJAhrm4yIXN0XcAAOH211l5kZ2ez2kK1atVCUFAQAK2IWb9+PVq3bo2EhARXNtGp8A99PhuTNfBipapZVioqCAk4tygkX4TTmYGomZmZbFvXsmKsiv3Zs2f1MutUxol5VlYW+vfvjx9++AGANsvRkiVL8MUXX0jc5XiUSiXrt8qcujgvL48taIjZSnWpaqmLt23bhpiYGCxatIgtPnh4eOD5559nfXT48GG88cYbrmxmhYhiRaVSSTx5TIkVMbje29tb4m5OYsU4bhezEh4ebrCCtMj48eMxfvx4J7aIcHd0XcAA97Ws8ANcr1698PXXX+Orr77Cf//7X2RkZECj0WDz5s2SrHmVGX6FPykpCYIgWJW+WBAENu6EhISgXr16EkFLlhXnWlZ4seJMy4qhGisixtzAdONVgMopVubOnYs//vgDgDZAfO3atRgxYkSFfxceHo579+4hNTUVZWVlkoDlykJFNVaAqidWvvzyS5b218vLCxMmTMDrr7+OmJgYHD16FN26dYNarcYnn3yCzp07Y9iwYa5tsBFEseLj4yNJkmBMrBQVFbHso82aNZMIeRIrxnE7ywpB2BtDlpXKIFZCQkJQrVo1vPHGG5K0ma5OiehM+Id+Xl6epEaGJdy5c4dNQOPi4qBQKKqUZUVOMSuCIEjcwJx5PZsSK8YsK7rxKkDlFCv79u0DoF0tPnDggFlCBSi/nviMc5UNfmHDHMtKVYhZEdP1enh4ICkpCf/73/8QExMDAHj00UexePFi9tlx48bZbBl3FLxY4YWoMbFy6dIlVqiYj1cBSKyYgsQKUeWprJYVfuCrVasW84k2p7puZaC0tJRlsBKx9oHHW3PFWhABAQHMSkNixXmWlfz8fObqCMjfsiKKFaVSyVL1pqeny94X3xJKS0tx48YNAEDTpk3RsWNHs/82PDycbVdGEQeQZcUQoktl9erVDWasnDp1Kqt5l52djSeffNJgAUZXw4sVX19fljzB2HPWWLwKIH1m8y6nBIkVgpBYVsQJ/YMHDxzuyuIIjIkVhULB8rbfvn1bMtmrrBh64FsbZK8brwJoJ5+idYXcwJwXs8JbVQB5ihXRslJcXMysmk2aNEH9+vUBaK1DuhnD3Jlbt26x1WI+yNgceLFSWeNWzBErnp6erJRCVRMrhlAoFFi5ciUaN24MADh9+rTBjHKuhhcrQHm9nLt37xpckOC9HEyJFbKsSCGxUgXQaDRYsmQJPv30U71AT0JqWeErKBtyD5M7xsQKACZWioqKJG4qlRVDD3xrLSu6mcBERLFSVSwr3t7eRivTO8uywserAFoXG2dZKUyJlRo1ajBLmyhELly4wKx7bdu2rbRWBD41uqX1qapC+mJz3MCAcuuKnMRKYWGh3YV1aWkpW3TQfU7xBAYGYuPGjWxs+fbbb7Fz5067tsVWjIkVjUZj0GvDXMsKiRUpJFaqALt27cKsWbMwe/ZsbN++3dXNkR2iKFGpVJJq2O7oCmaOWAGqRtyKvSwrfHB97dq1JZMNMX1xVbGs1K5d22iCAleJFbVabXBS4Aj4mApdseLh4cHSGYuLAXxwfWUWK2LAMGC5WCHLSjlyEysFBQVo0qQJwsLCsG3bNrsdlx8vjVlWRJo3b47//ve/7LUYG2UNGo3G7l4FxsQKoO8KVlhYiMOHDwPQLm5ERERI3qc6K8YhsVIF4HP8X7p0yYUtkSeiWAkPD5dM6CubWOEH0aogVgxNmK0RK9evX2cP1/bt20sm66KVoaSkRJJvvzKhVqvZJN2YCxjgvAB7XTcwwHnXM29Z0a2zApQH2aelpUEQBElwfZs2bSqtWOEtK5a6gVUly4qPj4+eyOUR7yG5BNj/9ddfbML9xRdf2O24fDxGRWIFAPr27cu2rXXlPXv2LMLDw9GlSxe9umrWolarmfujOWJl165dTIgOGTJEb+GHLCvGIbFSBeAHhqrg/mMJpaWlrE8iIiIkq17uKFb4FSuyrNjHDcxQcL1IVcgIlp6ezlYjTYkVZ8Ws6FpWAOfFrZhyAwPK41aKioqQm5srESutW7euEmKFLCv6iM8SYwUhRcSYSd0kEq6CHy8PHDhg8N6zBlOLaoaIiopiKX6tFSvffPMN0tLS8Pfff7MU27bCL1CZI1Y2bdrEtp944gm945FYMQ6JlSoAiRXj8BOGyMhItxcr5AZWjqEJ8927dy22gBgKrhepClXszQmuByCpUO5MNzDANZYVQ2KFT1987949nDlzBgBQv359VKtWrdKKFdENzN/f3+Q1YojKblnJyclh16wpFzCg3LJSVlZmt9V/W+DFSmlpKfbs2WOX41pqWVGpVOz5JdbLspSLFy+ybd5t0RYsESslJSXMlS44OBi9e/fWO56npye7BkisSCGxUgXgH7BibnNCC+/rHhkZKYlHcMcq9uaKlaqQvtjY6r4lq/B5eXlYt24de10VLSvmihWlUglfX18AzncDc7ZlJSAggGVu4uEzgh0+fJilWhVj4SqjWFGr1SxtcYMGDSwuuurj48NEf2XpEx5zg+sB+aUv5i1mAOwWt8I/p8wRKwBYdficnBzJnMZceLGie17WYolY2bdvH3tGDB48GN7e3gaPKT63KXWxFBIrVQCyrBiHz/gVERGBWrVqwdPTE4B7W1aUSiUCAwMl74WHh7Nzq2qWFV5UWOIK9tFHH7HJ+rBhwySTUYAsK7qIk63KblkxFnfAXx981qI2bdoAkCYoqCwT81u3brFsbJa6gImI11VldAMzN7gekF9hSN2xMiEhgcVo2AI/JzHHDQwoFyuA5a5gmZmZkoxmjrSs1KpViy1k8GKlIhcwEbE/yLIihcSKm6LRaHDkyBGzUgqSZcU4vFiJjIyEUqlkq1/uLFaqVasGpVJ6eyuVSvawrGpipWXLlmzb3AfdrVu38OmnnwLQmuc/+eQTvc+QZUWKGLdSGS0rgiCwSZYxscK7ge3du5dti5YVlUrFisZVFrFiS3C9iGhxys/PN/j7ujOWiBUxZgVwvWVFEAQ9sZKeno5jx47ZfGxL3cAAsBpFgOViRTexkCMsK6KlhH/OimJFrVbjt99+A6AVpP369TN6TFGsFBcXy7IIpqsgseKmLF++HF27dkXLli0rnBjoWlbkELgnF3g3MDGNoDjQZGVlGV3dKigowIkTJ2RXt0YUK8ZWq0QTdVZWlt2CJeUKf1/w+ezNfdDNnTsXxcXFAIDp06cbXDUmsSJFFCvOCrAXrRS3b992+L2YnZ3NVpXNsazw7RQtK0D5xDwlJUV244c12BJcL8JfV5XNuuKubmCpqamsDR4eHmy/qfIHxcXFuHTpUoVzDEsD7AGpZcXSRCm6YiUpKckutZkMWVaA8udsdnY2srOzcfDgQbZoHB8fz9xlDUHpiw1DYsVNEQPd0tLSKkxHzFtWSkpKKt3KlS3oWlYAVBhkLwgC+vfvj/bt22P27NmOb6SZaDQa5opk7AFQlYLs+Yc9L1bMedD99ddf+OmnnwBoU9S++eabBj9HbmBSnGFZ4UWAODkuKSmxapIrilFzMFVjRYS3rIjUqVNHImJEsaJWq63yvZcbttRYEamMsTwi1rqBuVqs8OPkiBEj2LYxsSIIAgYOHIhmzZpV+Fy0xrJiixsYH68CaO89e8RtViRWAO3vz7uAPfnkkyaPSRnBDENixU3hJ9mmXLv4SrEiFLdSjinLCmA4yD45OZkVdrJXdhR7kJuby1ZqSaxIH/YNGjRgZvqKHnQajQYzZsxgr9977z2jVdurmmXF0GScRxQrarWaVW63N/x4xotQS6/nadOmISAgAJ9//rlZn68oExgAvZgmQGpVASrfxNyebmBA5bOs8GLFnSwrvFjp3LkzOnToAEBbr8TQvbZt2zZWsHHr1q0mj+1ssWJoQdcermD8YocxsXLz5k38+uuv7DPx8fEmj0lixTAkVtwUc8WKoYwSFLdSjtiPAQEBCAoKAiB9oBiyrPz9999sW06DiTmm9aoqVgIDAxEbGwug4tSX69atY+mKmzdvjokTJxr9bFWyrAQGBkpqqRjCGYUhecsKL1YsiVspKyvDV199BbVajcWLF5v1NxUVhAQMixUxXkWksokV0bLi6+srOTdLqMzpi8UFL19f3won5nzMiqsD7PnJfP369TFo0CD2+vfff5d8VhAEvPvuu+x1RXMMa9zAgoOD2SKBpW5gupYVwD5B9uZYVn766Sc2hvbr10/yGxuC7w/KCFYOiRU3pKysTLL6ZKlYIctKOaJlRXQBAyp2A/vrr7/YtlzFCj+J5qlK6Yt5seLv789W5goLC42u3ubn52Pu3Lns9ZIlS1gxMkNUBcuKmMTDnPoZzigMKVpWFAoFHnnkEbbfEvGdkZHB4k9u375t1gKOOZYVPz8/vclIZRYrtqYtFqmslhVBENgzJCoqqsL+katlpUGDBhg8eDB7rZvCOCEhAf/++y97nZWVZbJOjDgvCQgIYBkqzUEcw+/cuWO2C2deXh571vHpxu1hWTFHrGzYsIFtm8oCJkKWFcOQWHFDUlNTJekDTYkPQz7RZFnRkpubyyY+ogsYULFY4S0r+fn5DnN3sRSyrEjhV/Z5sQIYdyP49NNPmbVt0KBB6Nu3r8nvkINlpayszGFZYwoLC5kIs1SsONqyEhgYiJiYGLbfEsuKbhbFEydOVPg35ogVQN+6UpnFSnJyMhv/rHUBAyqvZSUnJ4dZSCpyAQPkKVYUCgViY2PRqlUrdg779+9n5yUIAt555x29vzc1zxCfVea6gImIY7ggCGY/vy5fvsy2e/XqxbadJVbEQH5PT0+J4DMGiRXDkFhxQ3gXMIAsK9ZiKLgeMC1WCgsLcerUKck+uQwo5ogV/oFZ2cWKrmWlotSXd+/exaJFiwBoU8yKaYtN4WrLysOHD9G4cWN07NgRp0+ftvvx+Um93MRKUFCQLMUKH9dTo0YNydgCVC6xYo/geqBy9QmPJcH1gLzEijiZj4yMhI+PDxQKBXMFKykpYam5d+7cydxmeYzNM/gU4Oa6gIlYk76Yj1fp3bs3y8TlSDcwQ791nz59jHo88JBYMQyJFTfEErFClhXjGAquB7QTEXHg0Q2wP3HihF7KQ7kMKOaIFR8fHzbprGpipaLUlytXrmQWiilTpqBx48YVfoePjw9zLXCFWPn5559x48YN5OXlYePGjVYf5969ewZTeVqSCQxwTsyKaA0NDAxEjRo12OTDkuvZWZaVtm3b6rn+VKaJuT2C6wHteCXeR5XJDcwWseLKmJXs7Gx2vfMilI9b2b59u55VpXnz5mzbmFjhvRGstawA5set8PEqjzzyCDufpKQkmwtcGhMr/v7+emOEOS5gAIkVY7idWFm+fDlGjhyJ9u3bY9euXZL31qxZgz59+uCxxx7D0qVLK209EbKs2AdjlhWFQmG0MCQfryIil8Bqc4MWRVew+/fvW5S61d3gxYqvr2+FbmCbN29m26+99prZ3yOulrniOuDHQGsnvp9//jkiIyPRpUsXvYe3pWLF0TErGo2GTeKCgoKgUCiYdeXWrVtmj/m6E2JzxIo5qYsBqWVF1wUMqFxixV6WFYVCwa4vd+8THktqrADyKQrJCwHemvHYY4+xxYHt27dj9+7d+OeffwDoJyMxNs/gn1O2iBVrLCtNmzZl12lpaanNhZ+NiRVA6grm4eGBoUOHmnVMqrNiGLcTK1FRUZg1a5YksBIA/vzzT2zcuBFr1qzBzz//jD///LPC9HnuCm8RAMiyYi3GLCtA+SpYbm6uZMWcj1cRkcuAYqlYAQzH5FQWxIe9r68vlEqlyVW569ev4+zZswCAjh07mjWxEBFdwZxtWVGr1SxVKGDdinRhYSHL4nPs2DE9dw5bxIojLCv8arOYvU+8ngsLC80e23QtK/fu3dMbV3Ux17LCjyWGxIqPjw8TuO4+MbdHQUgR8frKyMiQTRygrbirG5huJjARX19f9OnTB4D2HnrhhRfYe2+//bZkjDAmVvgFVEvdwKwRK6JlxdfXF9HR0ZLr1FZXMHPFSo8ePYxmENSFLCuGMZ7mRqaIOapXrVol2Z+QkIAnn3ySTTLGjBmDHTt2mFSzJSUlehkrVCqVJGOEsxHrZJiqbKzrmpSenm7084bESlpamltUTjanL2yB78fw8HDJ9+jGdjRv3hyCIBi0rDx48MAp/VlRf/APgeDgYKOf4wfRGzduSB4A7oI514b4sPf394dGo2EucCkpKUhKSpL8LW9VGTZsmEW/pzjxzM7OhlqthlLpnDWgo0ePStL4WlMRfe3atZIxIiEhgdVTAKST6Vq1alV4fL4yc15ent3vC956FRAQAI1GIxHfSUlJeveyIQwJu2PHjmHIkCFG/0bsJ5VKxa4pQ4wePRrr169HREQEBg0aZPBz4eHhyMrKwv3791FWVmZ1Fq2KcPQYKk5qfX19ERYWZtP3iBNdQRCQkpKiF+tjK47uC0PwGRcjIiJcfv+IVNQXvFiJjY2VfG7gwIEsG5jondCsWTMMHz4cBw8eZJ9LTU01eHzeQhkSEmLROUZERMDT0xOlpaW4fv16hX9bXFzMFqaaNGkCQCq+rl69it69e1t9bfCJTby8vCR/z4vTESNGmH1scREG0D7TnT1Xc8V9Ys4z0+3EijFu3LghKbbTqFEjLFu2zOTfrF69GitWrJDsGzlyJEaNGuWQNlqCqRVv3VXhnJwcXL16lRW9M3YcpVIJjUaD+/fvu1W8gqNW//lVFd3sIvyA8e+//yIwMBC3bt0yuHJ7/fp1p/ansf7g3doKCgqMtol3NTh16pTNK6KuxNS1IcY2eHt7s76IjIxESkoKUlJScPnyZTY54NNLtm/f3qLfU1zcEAQBFy9eRGBgoMXnYQ2//PKL5PW9e/csarcgCFiyZIlk35YtWzB+/Hj2mr9HNBpNhcfnVxqTk5Ptfl/w7VEqlbh165bkXj116hTCw8MrHDMMtWv//v1o1aqV0b8RV4qrVatmMu23h4cHduzYAcC4tUsUuIWFhTh//rzkHBxBRf2hVqvx999/o0mTJqhZs6ZZxywrK2Or21FRUTaP07rjkqEYKnvgTGuybsapiu4HfiU9IyPD4c8VY31x5swZtu3v7y9ph6F7ZPLkyUhOTpb8ZklJSQbbf/XqVclrS88xMjISN2/exPXr13Hz5k2TQv/y5cts0l23bl3cunVLMj6fPHlS8v2WXhu89SgrK0tyrG7duuGbb75BjRo10LlzZ4vO09/fH/n5+UhLSzP774qLizFz5kzk5ubi888/t9hqpYsz7xOxBpopKo1YKSgokAx2/v7+FbohjB8/HqNHj5bsk4NlJTk5GVFRUUbVpqE4FH9/f4MrUXxMQr169ZCYmIjMzEzUrVvXYat59sKcvrAF3m0nLi5O8rvzboYlJSWIjo7GoUOHJJ8X/dyVSqVkdddRVNQf/G/dvHlzo4NV69at2XZ+fr5T2m5vzLk2xIlzcHAwO8emTZuyegBqtRrR0dG4f/8+2/fII49I0luaAx+jEBwcbJa7hz3Qddl68OAB6tSpAw8PD7P+/tChQ3qVnc+dOwc/Pz82YeXH0DZt2lS42s1bJP38/Ox+bfGT/4iICERHR0uuZ9FNrKIxw5DL3rVr10y2V7Tq1K5d2+bzio2NZS6lKpXKYfeguWPoG2+8gUWLFqFevXq4cOGCWc/AmzdvMs+Epk2b2nwOugH69u4TRz9PDCFaEfz9/dGiRYsKn7l8vEJZWZnLrgveTbJr166SrIfR0dFo164dGzObNGmCl19+GR4eHnpuoIbaz49P9erVs/gcGzVqhJs3b6KgoAB+fn4GC7GKiPE0gPaZHR0dLTnftLQ0REdHW31t8PdJTEyM5Fyio6PRp08f+Pv7W1RLBtBeB/n5+cjLyzO7f9auXYudO3cCAI4cOYIpU6ZY9J0irrhPzKHSiBU/Pz+JP3N+fn6F1Za9vLxcKkxMoVQqjV4ougH2gHaiYmiSJLoueHp6IjY2FomJiVCr1cjJybFZeTsLU31hC2I/1qpVS8/flB8g7t69C6VSiaNHj7J98fHxTKxkZWU59aY21h/iZEqhUCAkJMRom/hVjNu3b8tqQLIUY30hCILEDUz8DO8CcPPmTbRs2VJS4Gz48OEW9wd/H+Xk5DilP7OysiQPYkA7uXn48KHJhzfPl19+ybYbN26MK1euQBAE7NmzB2PGjAGgn7q4onPjF4wKCgrs3he6MStKpVLvegYqHjPE86pTpw4KCwvx4MEDnDhxAgqFwuCEsrCwkLl8hIaG2nxevOhLTU3Vi8G0NxX1h7gQk5SUhKNHj6Jnz54VHpO38Ddq1MjmPuFjfdLS0hx2HznqeaKLIAjM1djcRQRH3z+6GOsL8bcNDQ01OE8YMWIEEytvvfUWm4zXqFGDeXCkp6cbPDa/UCB+3hJ0x3BTsXR8jZVHHnkESqUSUVFR8PHxQVFREa5fvy75fkuvDX6B0M/PT+9vLU0gIBISEoLk5GQ8fPjQ6JikC794lZKSYvO146z7xFzk0xIbESfiIlevXnVLX/yKyMvLk/ipi1QUzFa9enXJJKaqB9mL7nCAfnA9IF0hFs2h4kqoUqlE//792ftyCYIT2xEcHGxykKkKhSGLiopYZih+0cJQnn4+XmXEiBEWf5craq3s27fPoE+xuUH2t2/fxq+//gpAK0J44ZKQkKB3vBo1api1OujoAHvRtQ8od9W0tNZKWVkZG//CwsLQvn17ANpVcGPuXeYG15uL3DKC8deNbpZNY9gzuB6ofIUhs7Ky2IKJudZWDw8PtnDmqgD7wsJCJrKM/a6vvfYa5s6di88++wzPPPMM2+/h4cECyR0RYA9Ix/CK0hfrZgIDtM9v8RjXr1+3KX2xqQB7WxD7paSkxOyCv7xYMeR94+64nVhRq9UoLi6GIAhsW6PRID4+Hps2bcLdu3eRkZGBtWvXYsCAAa5urkWcOnUKy5Ytw7x584ymQTVkVQGMiw/xIRsaGioRK1U9fXF6ejrzrzXk2qJbGDI3Nxfnzp0DALRo0ULyvtxSF1f0AAgODmYT7MoqVnRrrIjoZgR7+PAh/vjjDwDQcykyF1dUsd+9ezfbbteuHds2V6x89dVXTOy8/PLL6NGjB5v879q1C2VlZSzQGTAvExjgeLHCL9SIvue1a9dm8XqmYklE+IQYtWvXRlxcHHvPWApjc9MWm4ucxIogCJI28NeWKewtVuTUJ/bA0kxgIuJ45SqxcuPGDbbNCwMeLy8vfPjhh5g+fbreqr84z0hLSzOYSpyfSFtjebAkI5iYCczT01NyLuL1WlJSopewyBIcJVYsTV9cWloqKQpMYkUGLFy4EF26dMGpU6cwf/58dOnSBSdPnkTXrl0xYsQIjB07FiNHjkSXLl1MZnaRIytWrMC0adOwfv16nD9/3uBnjNUGMSRWioqK2IShevXqksDJqm5Z4fvRkGWlWrVq7KGRnJyMY8eOsQlO586dZZdeUBAENlE2Z7VKtK4kJye7RWY4SzFHrCQlJWH79u1MtI4YMcKqOC5nW1YEQWCr315eXhg5ciR7zxyxUlBQwBKLeHp6YvLkyfD09ETfvn0BaB90x48fR05ODnsYmytWHF0UkhcrorhSKpUsw93NmzcrrLXCu7bpihVDlbiBym1Z4X9nQBt0bM5iFp/swJaCkCL8NVYZCkNaWmNFRLyHXFUU0liNFXMRxUpRUZHBc7ClzgpgvlhRq9UsmL9hw4YSyzB/veomQbAER1tWAPPmFxcuXJC0xVAWWHfH7cTKggULcOLECck/8WEzfvx47Nu3D3/88YdBxS93+Oqv5ogVPiuHIfHBX+RkWZHC11QwZFlRKBRsNezOnTuSlMWdOnWCn58fVCptyJccxEpubi4zZ1siVkpLS10+WXIE/ESZn0CHhYWxDGBJSUnMFQrQxqtYg7PFSmJiIrOIdevWTRKzYc4kb+3atWzl7emnn2YJAnhL9I4dOyyusQI4viikITcwoNwVLC8vr8LfgD+v2rVrMzcwwLhlpTKLFUPXzJ49eyr8O3GS5+PjY5c0w3yiClf3iT2w1rIixq24yrJiL7ECGJ5n2OoGZm4V+6SkJJYAolmzZpL37FVrxRlixRwrie64RZYVwqHwYuXChQsGP8OLFd5lxZBY4R+wFLMixZiFikd8wBQUFOD3339n+zt37syC2AF5iBVzC0KK8LVWzHGdcTeMWVYUCgV72CUlJbHsKTVr1kTnzp2t+i5nu4HxbjqPP/64RSvSgiDg888/Z6+nTp3Ktvk4LHuIFWe5gQHSOKyK3Dp0kwZEREQw8XDixAmDlpnKLFYMfX9FcStlZWVsoli/fn27BOJ6eXmxvq0MlhVerFhjWcnPz6/QSugIbHXvM1eseHh4WJXmPTAwkHmJmLKsGIpXEeHPqzJYVnQtwiRWCIfCZ4QxJlZ4i0CbNm3YtiHxwV+woaGhEjcwsqwYr14vwj9gxMxLNWvWZJNddxYrlT3I3phYAcpX5vjgxWHDhpmd8lcXZ1tW+ImkrlipaOJ74MABZrXt1KmTxKoQGRnJrLXHjx/H2bNn2XtyFCuGLCuA8bg+EV03MADMOp+dnW1wtdbeYiUwMJBdl64WK4aEwe7duyssTCyuWtuzTpMo4u7du+f27qm8aLYmZkUQBMlk2FnY07JiyuMjJCTEau8XcQy/e/eu0T4S41UAfcuKvd3APDw8mKeFPbBVrJAbGOFQQkND2WB9/vx5g6sqlriBkWXFOJZYVnhEqwpQPqDk5OTYlFHEHpBYkcKLFd0U5oYewNa6gAHOtayUlJSwhAC1atVCy5YtLbKs8FaV6dOn673Pu4J9//33bJt30TGFo2NWeDcwe1hWxPPiRZuhuBV+LBWzHdmKONbLSayIfv2pqakSsaqLvYPrRcR7s6SkxKlF6RyBrQH2gGtcwUSx4u/vb/Z9z2OuZcXatL6A1BXMWAZAU5aVOnXqsKQc9nADs6dVBbBMrBQVFbHkPyJ5eXlsMaGyQGJFZojWlQcPHkgeqiL8JDs6OpqtLpJlxTLMsawYesB06tSJbfMDiqszgrlSrOTn52PlypV6lYldiTmWFZGgoCA89thjVn+XMy0rR48eZUGrffv2hVKpREBAABNkpsTKzZs3sXXrVgDaa95QmmZerPB+0OZaVviHtiMmWo62rACG41bsbVkBysVKTk6OQ4SdufBiadCgQWzblCuYvYPrDR3LlkmkHBDFSkBAgORarQi+1oqjguwFQZBkuBNRq9UsG1j9+vWtsnyYEitijTfANrFiTvpi0bKiVCrRqFEjyXtKpZI9B65fv261FU8OYuXMmTMsSQyPHDw+7AmJFZlRUZA9X8jQy8uLCRBzLCsBAQHspiLLirYfPT09ja6UGrOsiJBY0TJmzBi8+OKL6NWrl8FB0xVYIlYGDhzIVtmswZlihY9X6devH9sWxwFTYuX3339nD+WXXnrJYN2UTp06GZxYmStWlEolS2DgrDorgH4RV1PoBtgDpsWKIAiS4nL2FiuAa60rfH88//zzbNuUWHGUZYWfVMpp8cNS+IKQUVFRFk36HW1ZEQQBffr0QceOHfHpp59K3ktOTmZjuDUuYIBpscI/J20pSl1RRjCNRsPu2djYWDYm8YjCuLi42Or0xXIQK/x4xbsyVzZXMBIrMoOPW9EVK2VlZeyhJrouiZOUhw8forS0VPJ5XcuKQqFgn6/qlhVxQhMREWH0QaIrVlQqlWRSI6f0xZaKlVq1arEJui1i5dChQ/jtt98AaK1VhqyBrsBYNjBA/yFsTSFIHn7S7GjRyouVPn36sG1RcGdlZRn14eZ/5y5duhj8DJ/CmMdcsQKUu905MmaFL54HaO9j0WfcXDcwT09Pdq/UrFmTCZ5///1X4tb57bffMtew2NjYSidW+O/ms8v9+eefRlf2HSVWKotlJTMzk8XDWeICBjherCQnJ+PAgQMQBAH/93//x+IxAdvjVQDTYsXWGisiFYmV5ORk1ne68Soi9giyd5RYsaTOCu+2+uijj7LtyhZkT2JFZpiyrKSlpbGHqK5YAaBn1tW1rADlA0lGRobbBzBaS3FxMesbUyk3dR8ybdq0kazQ8LEK7iZW+NoUt27dsirrjCAImDNnjmSfq/3vRUxZVniXIW9vb0kWLGtQqVTMdcORlpUHDx6wVbSWLVtKJrv8OGBMMJrrQx8fHy95rVKpLJpYOEOsBAUFSRYZPDw82DmZ6wZWu3ZtyTHEhYj8/HxcuXIFgLbPZs2axT6zbNkyu2S+AuQjVkTLipeXF0JCQpjFrrS0FAcOHDD4N6KQ8Pb2tngyborKYlmxtsYK4HixwrdNo9Fg7Nix7F7lJ+2OECu21lgRqSh9sal4FRE5ixVLUheLzwSVSoVevXqZ/Xfuhl1G3aysLCxfvhyvvPIK3n//fSQmJmL79u2VIv2gs+FXAXTFiqGgcFOFHnUtK/zny8rKXD7BdhUV1VgRCQwMlKya66a2dWfLClCevjgvL88qi8CmTZskq3KAe4gVHx8fFpsxfvx4iY+4tYjC1ZGWlb179zJR+fjjj0ve4ycIxsZdc1Op6oq32rVrWzRBd2QFbtENzFDKU1GE5uTkGBWNZWVlbJzUDR7WdQUTBAGTJk1iAmn8+PGSmB5bkZtYCQsLg0KhkLgXGnIF02g0bIJYr149u4k3QNsn4vXjzpYVa4PrAel45YiYFV3L49WrVzFv3jwA0om/tRYz3t3clGXFFjewyMhIeHl5ATBsWTGVCUzEHhnBRLFiixuxIcxdCM3Ly2PCrEWLFpL5DLmB6XDv3j0888wz+Pbbb3Hs2DFcv34deXl5eOedd7BhwwZ7tLFKERAQwAa3CxcuSKwflooVU5YVoOq6gpkTXC/CP2j44HrA/cWKLXErpaWleOONN/T2y2WBwlQ2MADYsmULzpw5gy+++MIu3yfGrTjSsqJbX4WHHwcqEis1atQw6MMtEhERIck0aIkLGOA8y4ou5lzPDx48YNZpXbGiWxxyzZo1rA5PREQElixZYlvjdZCDWCktLWXPDfF3fuyxx5hLnSGxcufOHRQXFwOwrwsYoK2DJE4ik5KS9Fyb3QVra6wA0gB7R1tWRD777DMcOHDALm5gCoWCzTMc5QamVCqZu2JSUpKeZ4AzLCtqtZrF99jbsqJSqdiCjKm5xalTp9gcMS4uTtKnZFnR4fPPP0dGRgZq1qzJLpjWrVvD399fb9WVMA/RFJ6Xlycp2GetZcXHx4dNIEx9vqpgTtpiEd7cXNksK7aIlZUrV7KVT36V2x0sK4A2XqFly5Z2y40vipWCggKHTLAEQWBixcfHB127dpW8zyeJMCRWysrK2HVvzkovb0GwVqyo1Wq79oVarWZxAIbECu/eZyydqaFMYCJt27Zl27t27cLMmTPZ62+++Uay2mkP5CBW+Mmk2J6goCC2MHPt2jWWHUqEn9jZMxOY7jHLysqM/o5yhx9P7R2zcv78eTbvsgZerPAp28eNG8dS4KpUKpvc+0Sxkp6eLllwtZcbGFD+bC4sLNQb83jLijGxEhUVxawzxjKKmUIU7ID9xQpgXh03Pl6lffv2JFZMcezYMVSrVg0bN26U7A8PD5fNxMXdaNy4MdvmXcH4SbZoETBVO0W0rPAXMFlWDPejMV5//XW0adMG8+fP1xu85SpW+OxUprBWrIiWU5GPPvqIbcvlnq9IrNgbfiLrCOtKRkYGm2Q8+uijepaRiiwrKSkpzKJgziSEj1uxdGXYUYUhjdVYEeGvZ36Rh0e3ej1PSEgIW229evUq+x3Hjh2LgQMHWt9wI8hBrPDfy/cH7wrGW/Q0Gg02b97MXtvbsgJUjrgVPnsc/zw3B1NiRa1Wo3///pg+fTpeffVVq9rGi5VFixahR48eALTPAFGIxsbG2rSQI45HGo1GMmm2lxsYYDzIvqCggImVOnXqGBwrAG2cm3iMxMREi2N4HVW9XoQXK8ZiSvlMYGRZqYDi4mKEhobqPTwLCgoqXVEaZ8EP1rxYMRRrYY5lhc9e4y6WlcLCQgwfPhydO3dGjx49MHHiRHz66afYtm0brl69alMRRnNjVgBt1qSTJ09iwYIFeu/JMXVxcHCw2ZXYrRUrixcvZpO+J598EkOHDmXvycUNzFQ2MEfg6PTF/OSHzxgoUpFYsdSHvmvXrpg8eTLatGmDKVOmWNRWRxWGNFZjRcRWywogdQUDtILis88+s6yhZlK9enW2susqscJfK7x4MhS3kpubi5EjR2LZsmXsPV3XWHtQGTKCiW5Ivr6+LDbQXEzFrNy+fZsttu3bt8+qtukG/69evVovbs9aFzARY4ui9rSs8G0UxUpqaip69uzJnse8O6shRLFdVFRkcSZLZ1lWSktLjY6jomXF29sbzZs3l8z1KlvMis0+EJGRkUhKSkJCQgIAbeXZn376Cffu3XOIibgqYEysWOIGVlBQwJS/O1pWPvroI1bALiUlBX/++afk/ebNm+Po0aNWTUQtsayYQo6WFUtWq6wRK6mpqfjkk08AaF0FPvjgA9SqVQsKhQKCIJBlBY4RrhX5YPPjgKHfwFKxolAo8PXXX1vaTABSy4o9fe6N1VgRsYdYiYuLw/r169nr5cuX27wCbAyFQoGwsDDcvn1bFmKFt6y0bdsWNWrUQEZGBvbt24crV67giSeewIULFwBo275o0SK0bt3a7m1yd8tKSUkJcytq3LixxQkITMWs8O5K9+7dQ1pamuSZbg6iWAkNDYW3tzdiY2OxZMkSTJo0iX3G3mJFDHJ3pGXl0qVLiI+PZ/d+YGCgwUVGHt4yeOvWLUnq34pwtGVF10qi+xx7+PAhs4S1bt0anp6eZFkxxfDhwyEIAhYsWACFQoGrV69iyZIlUCgUGDJkiD3aWOWoV68eM8EaEis+Pj6S+gAivFgxlAnM1OflxPXr17Fo0SKTnzl//jx27Nhh1fEtsayYQi6piwVBsEqsREZGstSt5oqV9957jz1AJ02ahIYNG0oKa8rFsuJsseJMy0qTJk303ufvcUO/Ae8WZc9Us4ZwlBsYb1kx5NpRp04dVujS2CTXUEFInp49e7LtMWPGYPDgwdY21yxEa0ZGRoZLPBF4kcRbVpRKJau3k5OTg9atWzOhEhwcjO3bt2P27NkOaZO7W1YSExOZ5d9YvIQpTLmB6cZWnD592qJjl5WVsecf/3tPnDhRkgVQt+K7pRhbFLVXgD0gFStbt25F586dmVCpU6cOjhw5IsnwZwj+WrM0PspZbmCA4fnFv//+y7ZFi3BAQACbO5JY0eHpp5/GE088AUA7aRJ964YPH46nn37a1sNXSby8vNhgcenSJZZxQhQr/CSTFx/8oGAoExjgHpaVGTNmMBPriy++iMzMTBw7dgw//PADxo8fzz5nbQIHsR+Dg4NtmsgGBgayVTNXipW8vDz2cLRErHh5eTHLkjEff57ExEQsX74cgHZQfPvtt9l74qrs/fv3rarZYm/Eh7xSqWSuNo6EFyuOsKxUJFYqEoy2pFK1FGfErBiyrKhUKjY5vHz5ssHimBVZVtq2bYs1a9bgnXfeYde6I+EnjK4oqGrMsgJIXcHEvmzSpAmOHTumV4vHnoSGhrJxzB0tK7wV1NC9WhGOFCupqakGs+EpFAqsWrUKPXv2ROfOnTF27FgLWy3FHDcwe1pWTp48ycbdNm3a4J9//kGLFi0qPAZvWXE3saIbrwJof0dx4YrcwHRQKBSYO3cuxo4dy4KamjZtatOKNaH1S7948SJKSkqQmJiIqKgotmLL962vry/8/f2Rn59fKSwr27dvx/bt2wFoXbSmTp2K4OBgtG/fHu3bt8fjjz+O1atXAwCOHj1q8fGLiorYxNzSwGFdlEolqlWrhszMTJeKFVseANHR0bh79y7S0tJQUFBgMM2vyI8//siE86xZsyQPu/DwcJw7dw4lJSV4+PChzatmtiI+5P39/SWF/xyFowPsxQlQYGCgUdfFsLAwZGRkICUlBYIgSM6bFyuW+tBbiqssK4DWR/3s2bMoKyvDxYsXJRm+ANMB9iLPP/+8HVprHrpB9o4WkroYC7AH9NNjDx48GD/++KNBoWhPxPTFx44dQ3JyMgoLC02m2pYb5qTNNYUlYuXUqVMWHZuPV9H9vcPDw/HHH39YdDxjVGRZ8ff3t3kRyd/fH7Vr15bc0/Hx8diwYYPZtbN03cAswdViRTcTmEj16tWRmppKlhVjREREoE+fPujTpw8JFTugW8neVLpdUYDw4sOYZcXf359NJoxZVm7duoWEhASH5Hg3RWFhIaZNm8Zef/LJJ3qDTq1atdiKyokTJyxOjXry5EnmbqEbTGsN5qQXdDS2iBV+5a8i8bd//362PXHiRMl7/KRLDq5g4iTZGS5ggGPdwAoKCtiDtEmTJkbFlygei4uL9dogihWFQmFTnJY5OKoCd0UB9oA0oPbMmTN674sTG09PT4fFoliCqzOCmXKLCw8Px6uvvorQ0FAsWLAAv/32m8OFiojoWSAIglVpZV2JrWKFf+bpBtjbalnh5xGWpiS3hIrEir0Ws/h50ssvv4wtW7ZYVOS3bt26zHXU3Swroljx9/eXZJwT+zYvL69SJbmyWawMHTrU5D/COviMP+aKlczMTGbiNWZZAaQ50HXJzc1F27ZtMXDgQISHh+Oll15i1Zwdzccff8xy+vfq1QtPPfWUwc+JQXBFRUU4e/asRd/x119/sW3duinWIA4oWVlZFqc+tBe2iJU+ffqwbT5FqS75+flMzDRs2FDPKsU/+OQQZM9bVpyBIwPsr127xu4/U24lpgSjKFbCw8PZw9lRuMoNDABatmzJtg1N5ESxIiaFcDVyESvVq1c3WIV78eLFSE9Px/z58+1aqb4i3DluRXTZVCqVViUZMib2DQm3K1euWLQgwFtW+GvP3hgSK3xspb3Eyscff4wnnngCK1euxLJlyyxOt6xSqdji540bNyya3LtSrKSmprIxvV27dpIMoPx8rzJZV+xSwd7YPzlMWtwVaywrgiAwi4oxywr/+YyMDL0UwEeOHGEXeG5uLpYvX4727dujTZs2+PLLLx1mQbhx4war16FSqfDFF18YnUzwGTssdQU7cuQI27anWBEEQTKZcibOECtHjhxhVqzHHntM731XT7p0cbZYcaRlxdyVWl4w8mKlpKSETdKd4WbkajcwEV3LikajYRMnQ/EqrsCV9w2fvc/UxNUVos5dM4JpNBomVurVq2dQAFYE7/LGC5G0tDQ9YSIIAivkaA6m3MDsiaFYWr6chb2smm3btsXGjRvxwgsvWH2dih4WJSUlEteqinClWDEUryJSWTOC2SxWXnzxRcm/Z555BlFRUVAqlXj22Wft0UaLePjwIaZPn44uXbpgxIgROHbsmNPbYA/q1avHboCKxIqhwpDmWFYEQdC7mPmgdX4l7cyZM5g6dSoaNmxosW+nOcyYMYPd/NOmTTNYS0LEWrEiCAKzrAQHB1tlotdFDumL+ZV8Sx8CNWvWZH79p06dMuoayLuAVSRWXO0GVlZWxq4lV4gVe1tWKgquFzEmVu7evcssM+4sVsyxrNSoUYMJkTNnzkgswg8ePDAYXOxKXClWcnJy2H3iyImrNfAWCXcSK8nJyeyat/b5olQq2T3EixPeqsILGkviVpwlVry9vdmYKD5T7JkJzJ6IRTEB4NChQ2b/nTPFiu48jRcruu7sJFaMMGnSJMm/V199FevWrUNYWJhdH1TmsmjRItSsWRP79u3DtGnTMHfuXMmKnLvg4eHBcpNfu3ZNMlDp+pwbCpo3NTAYyyAGSMXKqVOnsHLlSok4ePDgAX755ReLzwfQioVff/0VS5cuxRdffIFly5bhq6++wttvv81qqoSHh2P+/Pkmj9OqVSu2YmWJWElKSmLn26lTJ7u4Ndg7ffHp06dRu3Zt1K1bF59++qmez7IhbM2wwmf92bt3r8HP8GKFT+8qIic3MH7cMZUwwJ44MsDeXLHCT8B5seLMTGCAc2JWjFlWgPI+ysrKkpy7OcH1zoYXK/xE0hmYygTmatzVDYy/V21ZDBPvIX785+cAAwYMYNuWxK04S6wA5Yui4jPXngUh7QkvVg4ePGj23zmzzoru3IJfhDdlWalMGcFszgZmCB8fHwQHB2Pfvn144403HPEVBikoKMDBgwexbds2+Pj4oGfPnli7di0OHTqEQYMG6X2+pKREz0dRpVI5JdWpMcS4B41Gg0ceeQQnT56ERqORVKsNDw+XxEeIKUsB7QNZo9EgIyOD7QsJCZF8nhcrqampbFAVBIGJlRo1auCRRx5B8+bNMX78ePzxxx/MZejAgQN49dVXLT63OXPmYPHixSY/8/HHHyMgIAAajUbSFzwqlQrt2rXDX3/9hcTERKSlpUn6wBh8YcnOnTvbJcaEn6Q+ePDA5mPOnDmTDe6zZ8/Ghx9+iGnTpmHKlCnsu3S/gxemwcHBFrehT58++PDDDwFoq1XrphzPyspiOd1btGiBGjVq6H0HP1G+f/++Q+N3rl69irFjx6J27drYtGmTnp8yvwLv5+fnlFgifvKcnZ1t1+8U3cBE/2rdY4uvjf0GvCW0Tp06Du8P/sGdn59vt+/jRaA4Ruii0WjQtGlTNuk4deoUi6/iRXStWrVcFmPGU7NmTQQEBCAvLw+XL1+2e5uMjaGAfrC1HPpDJCAggGV6unr1ql3aZqov7IWYERXQurJZ+10BAQFIT0+X3D9iAUAAGDZsGH799VcIgoDTp0+b/T2iWAkJCXH42FirVi1cu3YN2dnZKCwslMxJqlWrJpvrrV69eggPD8f9+/fx119/oaSkxKzYl8LCQrbt5eVl9/PhrfWZmZns+Dt27GBF2ENDQxEbGyv5bn7BMiMjw+J2OeM+0cWchWObxco777wjea3RaJCcnIxLly45PdvK7du3ERAQIJm4NmzYEElJSQY/v3r1aqxYsUKyb+TIkRg1apRD22kOycnJEncv/hxKS0slExDeV/PKlSu4deuW5MGcm5srEWX8jXjx4kXExsYC0MaNiBPfli1bSmpvxMbGIjQ0FA8ePMDBgweRlJQkCeqqiDVr1lQoVDp37ozOnTvruZnxq6MiTZo0YS5d27ZtM+iapMuuXbvYdr169ezuznb16lWbKv+eOnUKBw4ckOzLzMzEggUL8Mknn2D06NGSKsMi/O9UVFRk8XlFRETAz88PBQUF2LlzJ27evCm5pvbu3csGrnbt2hk8Pn993bx50yGugoBWUI8bN475Fm/duhXt2rWTfEa3Zoyj2qLbLg8PD5SVlSEtLc1u31lWVoYrV64A0Gau4QuaGmqDyPXr11kbeJ92b29vh/cHLxZTUlLs9n28FTg7O9vocfkV7UOHDrGge77Arqenp1OuC3OoX78+zpw5gxs3buDixYsOcV00NIby/eGM68JS6tati9TUVKSmpuL8+fMmrWmWYKgv7AUf8xASEmJ1n4pJMPLy8tgx+GQyNWvWRHR0NG7evIkzZ87g+vXrFU6wBUFgYkW0ejiyL/jr+NSpUxJ3PoVCIavrrV27dti+fTvy8/ORkJAgiX0zBj8W87+TveDjiVNTU3Hr1i3cvXsXY8aMYfsnTZqk97zjRUZSUpLV7XLktaGLOAc1hc1iZfv27XqBTeJDk3cvcQaFhYV6A72/v79RV5rx48dj9OjRkn1ysKwkJycjKioKXbt21Xu/Zs2aehlGeNeQsrIyREdHM/cLPz8/vWq0/GtBEBAdHQ0AOHz4MNvfs2dPtp/ft2nTJuTl5SErK0uvhoExNm/ejPfee4+9njdvHpo0acKsJ4IgwMfHB/Hx8ZIHEt8Xusq7b9++WLVqFQCtyNJtqyHEh7NSqcTgwYMtSnFoDP4mU6lUZrXDGNOnT2fbb731Fm7evIl169ahrKwM+fn5+Oabb3Do0CGcPXtWIhTF2icA0KxZM6va0LNnTyQkJCAtLQ15eXmSBA9i5WoAGDJkiNHji/V+Hj58aFM/mOL333+XuCqWlpbqfRfvLlSrVi2HtUWX4OBgZGZmorCw0G7feePGDVYgtUWLFgaPK94nrVu3ZvtycnLYZ/nxr23btg7vDz7LoK33BI/udW4oeFm0rIjcunWLfT//EG/SpInTrouKaNu2LUsGkJ+fz9x/7YGpMZTvz6ZNm8qmP0RatGjBJv/FxcWSMckaTPWFveCtVT179pRY3i1BXOgtLCxk7eXdGLt27Yq4uDjcvHkTxcXFKC4urnChLD09nS0qic8tR/ZFTEwM2/by8pI8s2JjY2V1vfXv35/Vd7t69SqGDBlS4d/wLsZ16tRxyPkEBQUhJycHBQUFCA8Px9NPP81iIgcPHox3331X7/czNr8zF2fcJ9Zgs1hp06aNRKwoFAqEhISgQ4cOGDx4sK2HtwhfX189H+n8/HyjBaW8vLxcKkxMoVQqJWk4RSIjI/UuIN79IyMjA0qlkllIQkNDzfo8IF0VevTRR/X+rlevXti0aRMA7Yqlrq+kIY4cOYLnnnuOCdh58+Zh4cKFFf4dj1Kp1GsLn8nrn3/+qfCmys7OZmKlVatWdqsXwCcvyMnJsfrmPn/+PLZt2wZAO/C9+eab8PLywjvvvINPPvkEq1atQnFxMS5fvozExETJhIwP6Db0e5tDv379mGl57969kmtPLBSmVCrRq1cvo8cPDw9HYmIiUlJSHDLIqdVqzJ07V7IvPT1d77t483xAQIDTBlyxQGhWVpbdvlO0qgDaCaWp44aGhsLT0xOlpaVITU1ln+X91KOjox3eH/wiQGFhod2+TxShXl5eJosExsbGwtfXF4WFhTh79iz7ft4yEx4eLpsHMT8Jv3TpEjp27Gj37zA0hvKT34iICNn0hwg/6bp+/bpd6mIBhvvCXogum2FhYTbFZfCLrsXFxfD392cxK+Hh4QgICGCZsABtMomKxBxvCRBdIx3ZF7rzDP45VaNGDVldb3wc5qFDhzBnzpwK/0ZcRAK0wsUR5xMSEoKcnBw8fPgQc+bMYbEqsbGx+O677wxa03g3/8zMTKvb5chrwxpsbsk333yD5cuXs39ff/01PvzwQwwfPtzinNe2UrduXeTl5Ul8I69du8byaLsbderU0ZtUGyq4qRtgz6cwNjRgGivYxAerG3owWBqIdvnyZQwZMoQFoo0dO1ZiYbGFqKgoFpx67NixCv0r//nnHyaYunTpYpc2APbLBrZo0SK2PWvWLCaiY2Nj8dVXX+Hdd99l7+sGwfPfa+1KHl+tmneXS09PZ+4Hbdu2NXl8MWAzKytLIhjsxXfffSfxCQekEy4RfsHCWdnAgHIf4+zsbLvVJTI3uB7QLhSJv4GhAHuVSuWULFiOCrAX3csqcgfy8PBgE7fExERmWZJjgD2gX1PLWcg5wB5wv/TFDx48YFZFWzNN6haGzM3NZc9q0YLCW1LNCbLnFy2cUbhbd54h1wB7QDu2iguPhw8f1ivpYAhHB9gD5fOL9PR0fPHFFwC0LpsbN240GmZB2cDcAD8/P3Tv3h3Lly9HUVERDh48iOvXr6N79+6ubppVKBQKvdUSc8RKfn4+q4mhm7bY0OcB7Y0nuiI0bdrU4KS0WbNmLB7o0KFDJm/olJQUDBgwgN0sffv2xYoVK+yWs1+hULAsZTk5OZJJnSHsXV9FxB5i5caNG1i/fj0A7e/14osv6n2mb9++bHvPnj2S98TvDQoKsiiOiKdx48YsU9ShQ4eY2OBjaCqKC3Jk+uKCggK8/fbbevsrEivOygYGlIsVtVptN7FmaXYhcdKZnp7O3HxEsRIZGWn19WEJjq6zYo5VVLQM8nUo+GtFLqmLARh1uXQ0fFyjIwsEWou7ZQSzVyYwQF/w8zGrhsSKOemLXS1W+Imzs+OZK0KhUKBDhw4AtOOMbo0mQzhTrPB8/vnnJl3wSaxwdOjQwax/jjBnV8TcuXORmpqK3r17Y+nSpfjwww/t5vLjCswRK/7+/uxmSU9PN1kQEjCcuvjUqVNM4Bj73ZRKJRN+WVlZRotRlZaWYvDgwbh58yYArdvVxo0b7e5yZ0m9FXtXrhexR+riTz/9lAm/adOmGbQGtGrViv1uBw4ckPibi99rrVUF0A7WonWlqKiIZU6rqL4KjyPFymeffcbcGPjrU06WFUdUsecLQjZu3LjCz4u/gSAISE9PR0FBARsPnJG2GHB8nRVzxnNDxSHFa1KlUslqshQREcGErjPFitgf3t7eNo0djqJ+/fpsccsdLCvmFm81B12xwqctFsVKeHg4E92nT5+u0JrLixXRDcyRmBIrcrOsAGBiBTDPc8QZYkW3n5577jmDi5k8AQEBLEFDZUpdbJVYEQTB7H/OJiQkBJ9//jmOHDmCzZs3u0Qw2RNzxIpCoWADQ3p6usmCkIA2tkc0M4uWFX6yb6rPeN9O3cxVItu3b2dFi+rWrYuEhASHCEZzxUpZWRl7PyIiAnXr1rVbG2y1rKSmprJEAQEBAXjllVcMfk6pVDKxkJuby3xXBUFg32vrBIx3BROr2YtiRaVSVeg+56haK+np6fjoo48AaPuBt9AZKmLJT5Bd4QYG2K/WirhaGx4eLjm+MXQLQzq7xgogLVhnL7EiBhEDFbuBAZDEXIliRRS2tWrVkpUvtkKhYK5gycnJdq/TYwzxHg0LC3NJlfqK8PX1Zdfs1atXXTKfsARerFTkslkR5ogVoNy68uDBA0lwvyH4910hVuTsBgbIU6zwz/RHHnkE//vf/yq8VxUKBevfymRZsSqopKKifYT90BUrugUhRWrWrInbt29L/GYB44NCrVq1kJeXxyZ7fIYlXgToohu3MmPGDL3PfPfdd2z766+/NtpmW2nXrh1LF2tKrJw/f575rXfu3NmuD2Z+AmlMrOTn52PTpk1o2LAhHn30Ucn3f/bZZ2zQmzx5sslBvE+fPtiwYQMArStY586dUVBQwCxitoqV3r17Q6FQQBAE7N69GzNmzGArmh07dqwwe5qjLCsLFy5kq+oTJ05EixYtEBoaioyMjEptWcnIyGDxd+au1OqKFXGFDXCeWFEqlSzA3V4xK+ZUr+fRFSsajYaNdXJyARNp3rw5s/5evHgRnTp1cuj3lZaWsmtLjvEqIo0aNcLt27eRlZWFBw8emFVPy1U4yrKSl5dnVKy0adOGxRjyNYUMoWtZsZf11xjGLCseHh52S0NtTxo3bozq1asjMzMThw8fhkajMbmo4QyxMmjQIKxcuRI1a9bEpk2bzH6eVa9eHampqSRWDBVYJByDOZYVoNy1q6ysTDKwGbKsiJ9PSkpCZmYm1Go1Eyt+fn4ms4o0b96c3dCHDh3Su6HT09Px+++/A9BOXvnVenvj7++Pli1b4tSpUzh//jxyc3MNDoJ8vIo9g+sB7cAbHByM7Oxso2Jl+vTp+PbbbwFo67uMGTMGY8aMQa1atfDVV18B0GY4qqjQpm7cyvz5822uXs8TGhqKuLg4HD9+HGfPnsW6devYe+bUseHFir0sK4mJiayP/Pz8sGDBAgDaCacoVgRBkAhAVwfYA/axrFgSXC+iK1Z4nCVWAO1vVVhYaDfLCi9WzJnoBAcHIyYmBjdv3sTZs2eRkZHBXC3lODnng+wvXLjgcLHCWyTl2B8iDRs2ZAlFrl27JmuxIt6vgYGBNi/Q8QtD5lhWAK0rmKkMrKJYCQgIQFBQkMPFSvXq1aFUKtlCAe8BIEdLnlKpRNeuXbF161ZkZmbiwoULaNGihdHPO0OsDB06FImJiQgNDbXIVVNc9MzLy0NJSYlss95agl1s4aWlpThx4gR27NiB7du3S/4RtlGzZk3JCkVFYgWQTnJMWVZELl68yOJL2rVrZzKLGx+3kpmZqZe9Zv369Sye4rnnnnN4QK9oBRIEQZJ6mcdR8SoiokgwNvjzYikpKQnvvvsuGjVqhBYtWrCg4bFjx1b4gIuKimKZ7Y4ePcpSGuq2wxZ4cSm6XgHmiRVHuIHNmzePXU+zZs1igkhcHS8qKpJMZAESKyK6bmD2dH+sCDFuxV5iha+dY65LqRi3kp+fj7///pvtl6NlxdkZweQeXC/iLhnBCgsL2TO0SZMmNk/GjbmBBQUFSRYg27Rpw7ZNBdnzBSHr1KnjFLGgVCrZvIS3rMgpXkwXSzKeOkOsAFpxamlMGX+NVBbris1i5fbt2xgxYgT+85//YP78+Xj33XfZP3ulqa3q9OrVC4B2Vd6Y+DAmVkxZVkTE+h6A6XgVEf6G1o1bWbNmDdt+/vnnKzyWrZgTtyKKFR8fH8lKlL0QB9+HDx/q+VWXlZWxTC5eXl6Sh4Q4kVQqlWbldQfACoWWlZXhwIEDDhUr4iDn4+Nj0jVQxN5uYNeuXcPPP/8MQHu9zp49m73HX7+6rmCuygZmbzcwa7ILySFmBbC/WLHUDQyQBtnz6bjlKFYclRGspKTEYNZGuactFnGXjGBXrlxhY7+tLmCAVKxkZWWxKuV80gEAaNCgAfusqfTF2dnZbFx0RryKiLgompqayhZw5BivIsJnjrVErBgqUOtKKmNGMJvFyhdffIGUlBTZBNhXRr744gt8+eWX2LFjh9EVEX7yxheSM8eywlvAzJmU8kH2/A197tw5troTFxdn10rMxqhIrNy/fx83btwAoK0d4whzqDhJVavVej76d+/eZVWDBwwYgOTkZHzyyScSn/px48ZJHsqmEMUKoK23Ym+x8uijj+rFpnTp0sWslaMaNWowS5o9LCsnT55k21OmTJG4//ATTlNixZ0tK9YE7MpFrIj9bq+YFd6yYq6/O78wISaMAOQpVmrVqsUWluwlVvbt24egoCCMGDFC73fgxQpZVmzHnmmLAem4dfHiRSY4davUK5VKJspv3LhhdJHE2ZnARMR5hvgMBOQtVlq1asXG8UOHDpmcw4piRaFQSGID5QCJFQOcOXMGHh4eWLZsGQBtkNL777+PatWqsX2EbdSsWRNTpkyRDNyGPiNy69Yttm3MssKLFT643hzLSosWLdgE/eDBg6wgIx9Y7wyrCqBdeRMn6UePHtUbXHgXMHvHq4iYygiWmJjItuvXr4/IyEi89tprOHPmDM6cOYNt27bh66+/Nvu7OnTowATBnj177C5WvLy8mCVPRPe1MZRKJZsI2kOs8H7avJsMYFqsuCobmKMsKwEBAWbXReD75f79+0ys+Pj4GB0LHIFoWVGr1SwBhC3Y4gYGSK8lOYoVPiPY/fv37TLBeOutt1BaWopz586xxBwi/P0pZ8tKTEwMG+/kbFmxZ3A9II1ZEYvyAvpiBZCKcmP1QVwtVnjk7Abm4eHBFgTT0tJM1m8TxYqPj4/sYnD4sb6ypC+2Wazk5OQgNjYWHTp0gEKhgEqlwuOPP47Q0FCsXr3aHm0kzIAXKzzmuI2JE/yIiAizBjIPDw9mLn3w4AEuXrwItVqNH3/8EQDg6emJZ555xqL2W4tCoWACKz09nVlRRBwdrwKYFiv8JKlBgwaS91q2bIlBgwZZtCoTFBTEzvfy5cuSWjf2egjoJkUwJ15FRFylTUtLM6sKsCn4vhNjdUT4h2BltKwUFhaya9kSH3g/Pz82mectK1FRUU59oNq71oo1bmAxMTEGrTBynZzb0xUsMTFREqfDu+cC7uMG5unpye79a9euydZbw55piwHpuGWJWDHmCiYnsSJnywpgftwKL1bkBllWDODv789W1n19fXHz5k2cP38eKSkpkpuMcCyWihVDg4g5LmAiunEru3btYpPGwYMHO3UVl2/35s2bJZNkXqw4KsOOJZYVe9CnTx+2/csvvxhshy3wYiUgIABxcXFm/6048SkrK2OpUa3FUNVmEbm7gdlqWeEnZpZOfsTf4ObNm2yS70wXMMD+YsUaNzClUilxtxSRo2UF0M8IZgviwpHIkSNHJO7B7hJgD5THreTn59u1fpM9EVfgPT097TLO8+MWv/Bh6NjmBNk7u3q9CIkV10BixQC1a9dGSkoKysrK0KBBAxQUFGDChAkoKCiQdZrByoYhsRIYGGh01d7Q5y0poKkbt+IKFzARXqzMnj0bkZGReOWVV7Bv3z78+++/ALS+z466Hq21rFgLL1b4mAR7iZWGDRuya2HUqFEWWX7sGWQv9l1oaKheQUR+wqlbGFIOAfa2WlasyQQmIv4GvPuVu4sVaywrgNQVTESuYoW3rNiSEUwQBPzwww96+3lPB/7elGt/iMg9bqWsrIy1q2HDhiazaZqLsUUWQ2KlefPmzFXOHSwrcnYDA7TiT+z/gwcPGrXmyVmskBuYAeLj49G2bVvcvn0bEyZMgEqlYnUPJk2aZI82EmZgaFAwZd0w9HlLxAofiLZv3z5s2bIFgFYEDRgwwOzj2IPu3btLhEBqaiqWLVuGPn36sAmbo1zAAOngq7uiLlpWVCqV3VLHdujQweDqsr0eAgqFArt27cL+/ftZjRNzsVetleLiYvaA1XUBA8yzrHh5edll4mAu9nQDs8UH3pBbj7PFim7qVVuxxrIC6IsVDw8P2a7s2suy8tdffzGrJJ+K/vvvv2dpwEWxEhoaKvsaDHzyETmKlRs3bqC4uBiAfVzAAMNixdPT06DQ8PHxYWPEhQsXWFt45CRW5Hr/iXh6erL41vv370sWHHnEfpajWCHLigEuX76Mp556CjExMejSpQt++eUXLFq0CBs2bEB8fLw92kiYQWBgoN5Dx9SgoGtlUCqVFrn7eHh4oFu3bgC01gQx28ezzz7r9MwYvr6+OHPmDH766ScMHz7cYBpBRwXXA8YtK4IgsIEuJibGbhNnT09Pg0Hv9lyxCg4ORq9evSxOyWivWis3b95kK1qGVhPNiVlxpgsYoBVHvr6+AGx3A7PFsiIHseJINzBbLCu1atUyWZXalYSGhjIRbotY4a0qU6dOZTFn9+/fx65duyAIArs35RyvIsJf/6ZqibgKe2cCA6CXkREAYmNjjdYtE+NW1Go1Ll68qPe+KFa8vb2d6qLtjmIFMM8VTM6WFRIrBti1axemTZuGQYMGYdmyZSgtLcVjjz2GmJgYOzSPMBeFQqHn2mVqUPL29pasBLdo0cLiyR1/Q4s42wVMxM/PD0899RQ2b96MtLQ0/PjjjxgyZAi8vLwQHR2N4cOHO+y7efcfXqykpaUhLy8PgP3iVUT4avaG2uEq7OUGZiq4HtBev+Kk1Vg2MGeLFaDcumIvNzAPDw+L3Qcro1ix1g2sefPmksQCcp+ci65g6enpeu6N5lBUVMQyf/n5+WH48OEYOXIke3/VqlXIyclhEy259wcgzYB46NAhF7dGH3tnAgMMj12mniF83Iro+szj7IKQIu7oBgZI5zZ//vmn3vsajYYt0MpdrJAb2P+nTZs2UCgUSEtLw3fffYdRo0Zh3Lhx2LRpk15lacKx6IqVilYw+M9b4gImwsetAFrB44iii5YSFBSE0aNHY8uWLcjLy8O1a9ccuppkzLLiiHgVET5uBdCuxMkh17u9LCumgutFROugXCwrQLlYscWyotFoWDB0/fr1LXbTqYxixVo3MH9/f4kbkdzjMypyBSsoKMCWLVuMXl+///47e2/EiBEICAhAjx492DWxdetWSeIbuQfXA9IkHxcvXkR6erqLWyTFEWLFUDpcU2KFf37zddMAIC8vjy2eONMFDHBfywr/OxpadONd7eQoVvj5AFlW/j/ffPMNfv/9d7z66qtsoL1w4QIWLVqE/v3729xAwnwssawA0oHEGrHSunVrycRh3Lhxsss37unp6fBJvDGx4ohMYCKNGzeWPHjkslplr5gVXuhVJFby8vIkE2JXihXRupWbm2t16ubbt2+jsLAQgHU+8HIQK/aOWeEXviwRK4A0tas7ixVBEDB8+HAMGzYMcXFxBichvAvY2LFjAWjj5cRttVqNTz/9lH3GHSwrgLSy+OHDh13YEn14sdK4cWO7HFOhUOiNX6aeIY8++ij7LXfu3CkR93fv3mXbzhYr/v7+zDVWRC7PKlPw1ltDVnK+er0cxYpCoWCikMQKR40aNfDMM89g9erVWLJkCUJDQyEIgl2KgRHmY6llhZ9YWpK2WESlUrEVfi8vLzz77LMWH6My4ArLikKhkLiCyeUBoFtB3VoqcgMDpHFXonWlpKSEBRG70rICwGrLsi3xKoD+BDQwMFAvm5qjcZRlxcfHx+LFBz5uRe5ixVStlW3btmH37t0AtPfHM888IxHEGRkZ+P333wFoa2bx9ZHGjRvHtrdu3cq23cGyAkjFipxcwQRBYPdr3bp17Trm6MatmBIrHh4eePLJJwFoV/23bdvG3nNVcD2gfU7pWlfk8qwyhUqlYv1vyIopd7EClM//yA2M4/bt21i5ciWeeuopvPrqq0zJ6SpqwrFYalmZMmUKIiMjMX78eKvN10uWLMGUKVOwadMmt1mlszfGYlYcaVkBIEux4uPjw/rDHm5gXl5eRusCGBIrrkpbLGKPKvZ8oU9r7kvd+9DZVhXAcWLFkngVETERCCAVA3KkWbNmbJtPX1xaWoo5c+ZIPrt7927MmzePvd6wYQMT6s8++6wkGLtx48YGk4y4y5jdtWtXZrWXk1hJTU1l97m9XMBELLGsAJDEJv38889s25ViBZB6cPj7+1uctMVVmIo/dAexIs7/8vPzDWaIczdsTk80ZswYlk5QTFncrl07DBw4UM+vnnAsllpWevXqJRnIrCEmJgZffvmlTcdwdzw9PREQEIC8vDzJBFW0DigUCqPWAVvo06cPvL29UVxc7BAxZC3h4eHIysqy2rIiCAITK7GxsUazN1UkVlxtWbEmyD4/Px9Lly5lr9u2bWvxMWrWrAmlUsmK9VYGsSJaqawVKytXrsSDBw/w1FNP2dwWR1KtWjVERkbi7t27uHDhAnumrly5ksUxNWrUCElJSVCr1Vi0aBHatm2LUaNGSVzAnnvuOb1jT5gwAUeOHJHscxexUq1aNbRq1QqnT5/G6dOnkZWVJYuEInwqZXu5gInojl+xsbEmP9+lSxeEh4fj/v37zBUsKChIVmJFLotq5hAcHIy7d++6rVjh538PHz50m3vdGDZbVq5cuQJBEFCnTh289NJL2Lp1K/73v/9h0KBBsv0RKyuWWlYI+yEOwoYsK5GRkQ65F2rWrImff/4ZU6dOxYIFC+x+fGsRXUvy8/OtcoVKSUlhMRumRJghscJPjF0tVqyxrHz66afMx3zQoEEGK7BXhIeHh2QscLVYsTVmRRAEZlmxNF5F5IUXXsCcOXNkX1MEKLf+PHz4ECkpKcjJyZHc39999x2WLFnCXo8fPx4bN27EP//8A0Dr9mbouhk5cqTePeEubmBAuSuYIAh6ostV3L59m21XJCYshf+tIiMjK/RU8fDwwBNPPAFA6w4ruvu5qnq9CC9W3CG4XkQUw/n5+XohDe4mVipD3IrNYmX48OH49ttvsXnzZrzwwgtur97cGV3fUHcaGNwdcWATxUpWVhbzFbV3vArPkCFD8Pnnn7tkQmoMWzOCmRNcD8jTssIvEIgr4eZy584dLFq0CIDWZ5oPhLYUfhJqr2KklsD3va2WlaKiIubeZI1lxd3gg+zPnz+Pjz/+mKUxHjVqFB599FG88sorLE18QUEBRo0axf7GkFUF0Ao9/nOA+1hWAHnGrfBixd73GX8PmWs553/fX375BYC83MDcaU7CLzzxCQsA9xArla2Kvc1i5Y033rBq9c8a1Go1Zs+ejQEDBiAuLg4ZGRmS94uKivDWW2+he/fuGDhwIHbu3OmUdskFS93ACPshWlaKi4tRWFho9oS7MmJrrRVzgusBeYqV3r17s+3169db9LdvvPEGsyhNmTLFJrcSfhLqasuKrWLFlkxg7ggfV7N7925mRfH09MSHH34IQOta+vXXX7OUvmIBVaVSaTLRyYQJE9i2t7e3LFypzIWPPZKLWLl16xbbjo6Otuux+QB7c58hoisYUJ4VTBQrKpXKYCphR+OubmCm4g/dQayQZcXFtG3bFh9//LHB95YvX47s7GwkJCTggw8+wEcffSQZTCo75AbmOnQzgjkyE5jcsTV9sTk1VgB5ipW4uDg0atQIAHDgwAHJyqspjh07xmIOqlevjrffftumdlQmsWJt9Xp3hbesLFmyhAnYV155RSLefXx8sHnzZsm437dvX5OuXV26dGFiqGXLlrJLNW+KWrVqsSD2EydO2CUltq04y7JibsyjUqlkWcFEVzBRrEREREiSLjiLymBZ0Y1bIbHifGwOsHcmKpUKzzzzjNH3ExISsHjxYgQEBKBVq1bo3r07du/ejRdffNHg50tKSlgVUv47XOnXLAbFiv9bgq44CQoKsuo4csGWvnA2/CrMgwcPcO3aNfY6NjbWLufgLv3BP5zu3btncXv5LGrG+k6j0Uiu99TUVGg0GskqvK+vr0v6avTo0Zg/fz4AYN26dXpZnHQRBAEzZ85krxcsWIBq1aqZ3XZD10Xv3r2xZs0ahISEoG3btk7vB/4Bnp+fb9P38xOFwMBAk8dyl3vEFHy6avE8qlWrhjfeeEPvvCIjI7FhwwbEx8ejuLgY06dPl3zGUH9s3rwZGzZswMiRI92un7p164ZLly5BrVbjyJEjFiXxccS1IYoVX19fVK9e3a7H5gW/Jc+QJ554Al988QUA4Pvvv2ceKHXq1NHrA2f8/vzzIDQ0VJbXnKH+4MVKZmam5D1+Acbb21uW58TPSTIyMmx6njgaY0l0eNxKrJgiJycHDx48kKxiN2rUyGAVYJHVq1djxYoVkn0jR47U8+t1BcnJyRb/jSAIUKlUUKvVCAoKkhSDcmes6Qtnw69YXbp0CWfOnGGv/f397Wrhk3t/8APPlStXLD53vs6Ih4eH0b/39fWFv78/8vPzcefOHdy6dUvSN8XFxS6xrPbo0YNtr169GqNGjTK5gr19+3b89ddfALSWpH79+lnVbv7cO3fujK1bt6J27drIysqyOo2ytfAreRkZGTb9DrzwFwTBrGPJ/R6piDp16khiDf7zn/8gNzfXYMKKmJgY7N27F4WFhahfv77B/uH7Q6VSYfTo0QDgdp4HfHrg7du3o2HDhhYfw17XhiAIuHnzJgCtNdlcK6q58FbEmjVrmv1b1alTB7Vq1UJaWhr27NnD9oeEhOgdwxn3SXR0NFq2bIl79+6hZ8+esr7m+P7gJ+uJiYkSKz9/bxYUFMjynMQ4PwC4ceOGXhs/+ugj1KxZE507dzaYdtuZY6g5ySkqjVgpKCiAh4eHZEXP39/fpAvC+PHj2aAtIgfLSnJyMqKiosxSm7o0aNAAly9fRoMGDezuQ+tsbO0LZ8L3tY+PD3NLArQ1AuzhvuIu/cG7ZxQUFFh8HfJuC8biNsS+CAsLw/Xr15GZmYno6GjJ/V+nTh2X3APR0dHo3Lkz/vrrL1y9ehXZ2dmSwoQ8hYWFkkD6pUuXWuw2aOy6iImJsar99oB30QNs8+c/e/Ys267oN3WXe6QiWrZsye6DmJgYvPnmmybrUxjrk8rSHyIjRoxgVsizZ89adF3Zuy8yMzPZ/KJevXp2H2tef/11FBYWomnTphaXgRg1apReSYFGjRqxNjr7ujh58iQ0Go1L3NDMwVB/8OOnp6en5Pfl44nCw8NlOdfiF4zKysokbczNzcWqVaugVqvRuHFjXLx4kb0n1zFDVmJlypQpOHXqlMH3JkyYgIkTJxr9Wz8/P5SVlaGoqIhNWPLz800WhvPy8pJtKkulUmnVhfLNN99g5cqVePnll2V1odmCtX3hTHj/0OzsbBazUrNmTbsHscq9P/j0mKmpqRa1NTc3l2U+qlevXoV/W7t2bVy/fh3Z2dkoLS1l/v2A1mXIVf00ZswYZi1Zt24d2rRpY/Bzn332GVuR7d+/PwYOHGj1d8rputDNBmZLu3jxGxwcbNax5NQX1tC+fXskJCQAAD788EObCyy7e3+I1K1bF/Xq1UNSUhKOHj2KkpISi2MG7NUX/Op6dHS03fu3Zs2aWLZsmVV/a0isGJp8OvO6kKtQ4eH7g49Dzc3NlfQTHz7g5+cny3uLXzDKzMyUtPGvv/5ilpfHHnvMYPvlNmbISqxYe2MCWpNpaGgoEhMTWQDh1atXHVKMT85069ZNkjWFcA68ILl37x5zwatqmcAAbV+IxSotDbC/ceMG2zan73h/6LS0NJcH2IuMGjUK06ZNg1qtxrp16/DRRx/pPayTk5NZdicPDw8sXrzYFU11CEqlEj4+PigqKrJrgH1VyAYGAFOnTsX9+/fRoEED2ReydDbdu3dHUlISiouLcfz4cZc97xyZCcxW+AKRIq5IW+zOuHs2MD6mUzfAfv/+/Wz7sccec1qbbEE+sslMSkpKUFxcDAAoLS1l2wAQHx+PlStXIj8/H+fOncOhQ4fQt29fVzWVqELwqzAnT55k21UtExigTasqZqPSFSvJyckYPHgwJk2aJPGpFbE05XPt2rXZdmpqqmzESmhoKOLj4wFoxeuBAwck7wuCgIkTJ7L2Tp48Gc2aNXN2Mx2KaNW2NWsTH6dRFbKBAdrrZ/ny5Zg9e7ZbZexyBnKpt+LITGC2wmcFEyGxYhnung3M398fnp6eAEyLlZ49ezqzWVbjdmLliSeeQJcuXQAAgwcPZtuA9oEfEBCA/v37Y+7cuZg7d65L/baJqgMvVo4fP862q6JlBShPX5yRkcGq/6rVaowaNQrbt2/HihUrWNEyHnNrrIiYEiumXECdwZgxY9j2jz/+KHnvm2++we7duwFo3ebef/99p7bNGYhikSwrhD3hE1iQWDGObqIgEiuW4e5iRaFQMPd0XqxkZmaycItWrVrpxRfKFVm5gZnDtm3bjL7n4+ODhQsXOrE1BKGFFyu8K1NVtKwA0lorqampqFOnDt577z0cPXqU7d+4caNeKnJza6yI8G5gqampkomxKy0rADBo0CAEBQUhJycHmzZtwrJly+Dn54cbN25g1qxZ7HPffvutWxXnMxdRLFKdFcKexMbGIjIyEnfv3sWRI0dQWlrKVpCdiZzdwABtRsCIiAjcu3cPKpVKUnuJqBhz3cBMJb5wNaGhoUhNTZVUsD948CArIusuLmCAG1pWCEKOGKvMW1UtK/yD8f79+zhy5IjeQkJCQgLy8vIk++xpWXG1WPH19WWuGLm5udi2bRs0Gg3Gjx/P2vniiy+iX79+rmymwzAlVlJTUyUixBRV0Q2MMI5CoWCuYPn5+UaT8jga0bKiUCgkSUXkglKpxKefforw8HC88cYbLhF07oy7W1aA8sQ/+fn5LGTCHeNVABIrBGEXjIkVsqxoa62MGTOG5a0XhUxRURHLeCQiWlYCAgIklbmNIWexAui7gi1btgwHDx4EoF2NrUxB9bqIYqW0tJS5AgLA3r17ERERgZiYGNYXpiA3MEIXOcStiGIlLCxMtqvrzzzzDO7du4d33nnH1U1xO/z9/VlSFHcMsAekWUofPnwIoFyseHh4SO4juUNihSDsgLe3t1560cDAQLfxB7U3vGVl5syZrHha165d8f3337P3+LgVtVrNPle/fn2zAovlLlZ69OjBfMV37tyJ119/nb23atWqSj351k1fDGgTC8ybNw8ajQYPHz5E//79sX37dpPHIcsKoYur41b4TIdydAEjbEehUDDrirtbVgDgwYMHSElJYTVV4uLi3Go8JbFCEHZCN+6gQYMGVTaTD29ZycjIAKCdaP7444/o1asXE3EJCQlMYCQnJ7MMYeamHDclVmytTWEPlEolnn32WQBaMSbWgZkyZYpbmeCtgU9wIIqVv//+G8eOHWP7i4qKMHz4cKxbt87ocXjLCl+Mjai6NGnShI0hhw8fRllZmVO/n6+xIsfgesI+iM90d7Ws6KYv/uOPP9hrd3v+kFghCDuh6wpWVeNVAKlYEfn6668RHR0NlUqFESNGANBOYnfs2AHA8uB6QDt5FUUJL1b8/PxkIxR5VzBAK8QWLVrkotY4D0Ni5b///S/bJ6ZqVqvVGDNmDL766iuDxxHFCu+WQVRt+LiVrKws7Nmzx6nfL/dMYIR94C0rYlA64D5ihbesZGZmum28CkBihSDshq5YqarxKgD0Ms+MGTNGkvmLrwGwceNGAJbXWAG0kxbRusJnA5ODC5hIixYt0KpVKwDa9q5Zs0ZW7XMUumLlxo0b2Lx5MwDt9XHixAm89NJLALTuYVOmTMEHH3wgmRQA5W5g7uSyQDiekSNHsu3Zs2cbrNvkKPhMYCRWKi+iZUWtVksShbijWHnw4AETK15eXujcubOrmmUVJFYIwk6QZaWc2rVrMzeNmJgYfPnll5L3e/bsyUzU27dvR2FhocSyYq4bmPhdgHYwFn2L5SYG1qxZg2HDhuGHH35wWcVtZ8OLlfz8fHz++ecsycIrr7wCX19ffPXVV/i///s/9rl58+bh9ddflwgW0bJSmeN7CMsZNWoU2rdvDwA4f/48Vq5c6bTv5i0rFLNSeTGWEcxdxArvBnby5En2jO3UqZPL65BZCokVgrATZFkpR6VS4aeffsK0adOwf/9+yaAPAJ6enhg2bBgA7UR2586dVllWAGncilj8Sm5ipXXr1vj1118xevRoVzfFafC/wf3799lk0sfHB5MnTwagtTR98MEH+Pjjj9lnP/nkE0ydOhUajQaCIJBlhTCIUqmUuBW+/fbbeoHQjoLcwKoGxmqtiGmAAa2VQq7wlhXRqg24nwsYQGKFIOwGWVak9O7dG0uXLkVsbKzB93VdwUSx4uHhYdEEgBcrInITK1URfuXuiy++YDV1nn/+eb0sebNnz8by5ctZnNGyZcvw4osvIjc3l1ljyLJC6NKlSxc89dRTAID09HS8//77TvlecgOrGlRkWfHx8ZFNbKQheLEiZq8DSKwQRJWGFyve3t6yLBQmJ3r37s36bOvWrUhMTASgffhbUsCMxIo84cUKn4VmxowZBj8/adIkfP/991AqtY+lVatWYdSoUex9sqwQhli0aBGrc/LZZ59JLLSOQrSsBAQEGK2xRbg/5ogVOcO7gYn4+fmhQ4cOLmiNbZBYIQg7wZuM69WrxyZdhGE8PT0xdOhQAEBeXh5z97HUImVIrLibP25lxNBvMHDgQDRp0sTo34wZMwYbNmyASqUCAOzatYu9R2KFMER0dDRmzZoFQFuAdM6cOQ79PkEQmFipW7eurFfWCdsw5gbmLmKFt6yIdOvWTdaua8ag2RRB2Al+ha0qx6tYAp/RR8SS4HoAqFWrlt4+sqy4HkO/wcyZMyv8uyeffBK//vqrXlVwcgMjjDF37lyWgXDz5s04ePCgw74rPT2dTVbJBaxy4+6WFX9/fz0vBXd0AQNIrBCE3eBXMap6vIq59O7dWy/43h6WFRIrrkfXstKyZUuzH5SDBg3C9u3bJYU9ybJCGCMwMBALFy5kr2fOnAm1Wo2HDx8iMTER//zzD3bs2IGrV6/a/F2UCazq4O6WFYVCoecKRmKFIKo43bp1Q82aNaFSqSS+9oRxvL29MWTIEMk+Sy0rJFbkia5YefXVVy1ymenTpw927dqF6tWrw9PTE4MHD7Z3E4lKxLhx49C6dWsAwKlTp+Dl5YXq1aujYcOGePTRRzFo0CD0799fEj9lDRRcX3Vwd8sKIF1EDQ4ORps2bVzYGushsUIQdqJatWq4efMm7t+/j06dOrm6OW6DrisYWVYqB7xYCQsLw9NPP23xMbp164Y7d+7g7t27blfEjHAuHh4eklTGusVFRZYvX27T91Da4qqDIcuKIAgsdbG7iZWePXvCw8PDha2xHpWrG0AQlQk/Pz8K7raQvn37IjAwkAXYW2pZqVatGry8vFBSUsL2kVhxPc2aNYOnpydKS0sxe/ZsvRgUc/H19ZW4gxGEMXr27Il3330Xa9euRUBAAEJDQ9m/tWvX4uHDh/j9999RUFBg9ThNbmBVB0OWFb7GiruJld69e7uwJbZBYoUgCJfi4+OD//znP1i0aBH69OmjF8NSEQqFArVq1cKdO3fYPhKMrqdmzZo4fvw4bt26RS5chNN466238NZbb+ntLywsxLfffouCggLs2LEDTzzxhFXHJzewqoMhy4q7VK8XiYmJYdt9+vRxXUNshNzACIJwOR988AGuXLmCHTt2WPX3uq5gZFmRB61atcKQIUMovSvhcnSL0FqLaFlRKpWIiIiwuV2EfDFkWXE3sfLqq6/i6aefxtKlS9G0aVNXN8dq3MqycvPmTXz22Wc4d+4cFAoFOnXqhNmzZ7MsMUVFRXj//fdx8OBBBAYGYurUqejfv7+LW00QREUolUo0atTI6r8nsUIQhCl69eqFatWqISsrC9u2bUNhYaFV7oWiWImMjLSoeC3hfnh6esLPzw8FBQVuK1aio6Oxfv16VzfDZtzKspKXl4c+ffpgy5Yt2LZtG0pLS/HZZ5+x95cvX47s7GwkJCTggw8+wEcffSQx2RIEUTkhsUIQhCk8PT3Rt29fAEB+fj527txp8TEKCgqQnp4OgFzAqgqidcVd3cAqC24lVpo3b45BgwYhICAAvr6+GDZsGC5cuMDeT0hIwKRJkxAQEIBWrVqhe/fu2L17twtbTBCEMyCxQhBERcTHx7Nta1zBkpOT2TaJlaqBGLfirpaVyoJbuYHpcvbsWZY5KCcnBw8ePJBUDm/UqJFEzOhSUlIiySAEACqVCl5eXo5psBloNBrJ/1UZ6gsp1B/l6PaFbhV7X1/fKtNPdF2UQ30hhfqjHI1Gg06dOklcwQoKCiyacN68eZNt161b1237la4LKab6Q7Ss5ObmorS0FAUFBew9b2/vSteHrrg2lMqK7SZuK1auXLmCDRs24JtvvgGgNc96eHhIBh5/f3/JhaXL6tWrsWLFCsm+kSNHyqKgH7+CU9WhvpBC/VGO2Be6g112dnaVcwGl66Ic6gsp1B9avLy80Lt3b2zatAm5ubn48ccfmWuYOZw6dYpt+/v7u/0YQ9eFFEP9wS9eX7hwQfKbFxcXu/01YAxnXhuxsbEVfkZWYmXKlCmSwYBnwoQJmDhxIgDg7t27ePXVV/HWW2+xAnJ+fn4oKytDUVEREyz5+fkmU5iOHz8eo0ePluyTg2UlOTkZUVFRZqnNygz1hRTqj3J0++KRRx6RvN+gQYMqUwOBrotyqC+kUH+UI/bF888/j02bNgEADh06xOYV5pCfn8+2W7du7bZjDF0XUkz1R1hYGNsODAyUZAirXbu2214DxpDrtSErsbJs2bIKP5ORkYEpU6bghRdeQM+ePdn+oKAghIaGIjExEc2bNwcAXL161WSBOS8vL5cKE1MolUpZXSiuhPpCCvVHOWJfhIeHS/YHBgZWuT6i66Ic6gsp1B/l9O3bF8HBwcjOzmaJeswtWMqvNsfGxrp9n9J1IcVQf/C1VnJzcyWhAz4+PpW2/+R2bcinJWaQl5eHqVOnYuDAgRgxYoTe+/Hx8Vi5ciXy8/Nx7tw5HDp0yCITL0EQ7gkF2BMEYQ5eXl4YOnQoAG2sqyVJeKggZNVDtzAkBdi7BrcSKwcOHMC1a9fw/fffo1u3buyfyOTJkxEQEID+/ftj7ty5mDt3rqR6J0EQlZPq1avDw8ODvSaxQhCEMUaOHMm2LckKJtZYCQ4OZvXdiMqNbmFIEiuuQVZuYBUxaNAgDBo0yOj7Pj4+WLhwoRNbRBCEHFAqlahVqxbu37/v8rgzgiDkTd++fREUFIScnBxs2bIFxcXFFbqCib78AFlVqhJkWZEHbmVZIQiCMEaLFi0AQJK+nCAIQhdvb28MGTIEgHa1fO/evRX+TUpKCkpLSwGg0gVVE8Yhy4o8ILFCEESl4KuvvsK8efOwfv16VzeFIAiZ8+STT7Jtc1zBRBcwgCwrVQneskJixXWQWCEIolJQv359LFy4EK1bt3Z1UwiCkDn9+vVDYGAgAOC3335DYWGhyc+TWKma8JYVcgNzHSRWCIIgCIKoUvj4+DBXsKysLLz77rsmP89nAiM3sKoDWVbkAYkVgiAIgiCqHG+88QZLxvHJJ5/g5MmTRj9LlpWqCVlW5AGJFYIgCIIgqhzNmjXDW2+9BQAoKyvDhAkTWBA9T25uLg4fPsxek1ipOlCAvTwgsUIQBEEQRJXk9ddfR8uWLQEAZ86cwccffyx5Py0tDb169cKZM2cAADExMQgPD3d6OwnXEBAQwCq5Z2Vlobi4mL1HYsV5kFghCIIgCKJK4unpiVWrVrGisu+++y4uXrwIAEhKSkKXLl3w77//AgBCQkKwbt06SQFaonKjVCpZAVCyrLgOEisEQRAEQVRZ2rVrh9deew0AUFJSgokTJ+LkyZPo3LkzEhMTAQB16tTBn3/+iU6dOrmyqYQLEIPsKWbFdZBYIQiCIAiiSjN//nw0bNgQAPD333+jQ4cOSE1NBQA0bdoUf/31F5o1a+bKJhIuQoxbyc7OlqS4JrHiPEisEARBEARRpfH19cW3337LXpeVlQEAOnXqhD///BNRUVGuahrhYkTLSklJCbKysth+EivOg8QKQRAEQRBVnm7duuE///kPez1o0CDs3bsX1atXd2GrCFfDZwQTrW0A4O3t7YrmVElUrm4AQRAEQRCEHFi8eDFCQ0MREBCAV199FSoVTZOqOnxhSFGseHt7Q6FQuKhFVQ+6CwmCIAiCIKB17amomj1RteAtK2LMCrmAORdyAyMIgiAIgiAIA/CWFRESK86FxApBEARBEARBGIC3rIiQWHEuJFYIgiAIgiAIwgBkWXE9JFYIgiAIgiAIwgBkWXE9JFYIgiAIgiAIwgAkVlyPW4mVgoICvPDCC+jduzd69eqFl19+GTdv3mTvFxUV4a233kL37t0xcOBA7Ny503WNJQiCIAiCINwacgNzPW6VutjLywtvvvkmoqOjAQAbN27E/Pnz8d133wEAli9fjuzsbCQkJOD69euYPn06mjZtyj5PEARBEARBEOZClhXX41aWFZVKhdjYWCiVSgiCAKVSiXv37rH3ExISMGnSJAQEBKBVq1bo3r07du/e7cIWEwRBEARBEO4KWVZcj1tZVkSefvpp3LhxA4IgYNq0aQCAnJwcPHjwAA0aNGCfa9SoES5cuGD0OCUlJSgpKZHsU6lU8PLyckzDzUCj0Uj+r8pQX0ih/iiH+qIc6otyqC+kUH+UQ31RDvWFlIr6IzAwUG+fl5dXpew/V1wbSmXFdhO3FCs//fQTioqKsGPHDtSsWROANp7Fw8NDonb9/f1RUFBg9DirV6/GihUrJPtGjhyJUaNGOabhFpCcnOzqJsgG6gsp1B/lUF+UQ31RDvWFFOqPcqgvyqG+kGKqP7y9vVFcXMxel5WV4datW85olktw5rURGxtb4WdkJVamTJmCU6dOGXxvwoQJmDhxInvt4+ODYcOGoX///vjll1/g5+eHsrIyFBUVMcGSn58PPz8/o983fvx4jB49WrJPDpaV5ORkREVFmaU2KzPUF1KoP8qhviiH+qIc6gsp1B/lUF+UQ30hxZz+qFatGlJTU9nr0NDQShkPLddrQ1ZiZdmyZRZ9XhAEFBQUICMjA/Xq1UNoaCgSExPRvHlzAMDVq1dRr149o3/v5eXlUmFiCqVSKasLxZVQX0ih/iiH+qIc6otyqC+kUH+UQ31RDvWFFFP9oStWfH19K3Xfye3akE9LzODq1as4efIkSktLUVhYiGXLliEwMBB169YFAMTHx2PlypXIz8/HuXPncOjQIfTt29fFrSYIgiAIgiDcFd2MYBRg71xkZVmpCLVajU8//RR37tyBp6cnmjVrhqVLl0Kl0p7G5MmTsXDhQvTv3x9BQUGYO3cuYmJiXNtogiAIgiAIwm3RzQhGYsW5uJVYadasGdatW2f0fR8fHyxcuNCJLSIIgiAIgiAqM2RZcS1u5QZGEARBEARBEM6ExIprIbFCEARBEARBEEYgNzDXQmKFIAiCIAiCIIxAlhXXQmKFIAiCIAiCIIxAlhXXQmKFIAiCIAiCIIxAlhXXQmKFIAiCIAiCIIxAlhXXQmKFIAiCIAiCIIxAlhXXQmKFIAiCIAiCIIxAlhXXQmKFIAiCIAiCIIxAlhXXQmKFIAiCIAiCIIxAlhXXQmKFIAiCIAiCIIwQGBgIhULBXpNYcS4kVgiCIAiCIAjCCEqlEoGBgew1iRXnQmKFIAiCIAiCIEzAu4KRWHEuJFYIgiAIgiAIwgR8kD2JFedCYoUgCIIgCIIgTFC/fn0AQI0aNeDt7e3i1lQtVK5uAEEQBEEQBEHImY8++gi1a9fGiBEjoFTSWr8zIbFCEARBEARBECZo3Lgxvv76a1c3o0pC0pAgCIIgCIIgCFlCYoUgCIIgCIIgCFnitmJlzZo1iIuLw7lz59i+oqIivPXWW+jevTsGDhyInTt3urCFBEEQBEEQBEHYglvGrKSlpWHnzp0IDQ2V7F++fDmys7ORkJCA69evY/r06WjatCmio6Nd1FKCIAiCIAiCIKzFLS0r//3vfzF58mR4eXlJ9ickJGDSpEkICAhAq1at0L17d+zevdtFrSQIgiAIgiAIwhbczrJy4sQJZGdno1evXliyZAnbn5OTgwcPHqBBgwZsX6NGjXDhwgWjxyopKUFJSYlkn0ql0hNBzkSj0Uj+r8pQX0ih/iiH+qIc6otyqC+kUH+UQ31RDvWFFOqPclzRF+akgXYrsaJWq7FkyRK8++67eu8VFBTAw8NDUlXU398fBQUFRo+3evVqrFixQrJv5MiRGDVqlP0abSXJycmuboJsoL6QQv1RDvVFOdQX5VBfSKH+KIf6ohzqCynUH+U4sy9iY2Mr/IysxMqUKVNw6tQpg+9NmDAB/v7+aN26tcR6IuLn54eysjIUFRUxwZKfnw8/Pz+j3zd+/HiMHj1ask8OlpXk5GRERUVV+aJD1BdSqD/Kob4oh/qiHOoLKdQf5VBflEN9IYX6oxy59oVCEATB1Y0wl1mzZuHUqVPw9PQEADx8+BCBgYGYPn06hgwZgn79+mHx4sVo3rw5AODtt99GVFQUXnzxRVc2myAIgiAIgiAIK3ArsZKbm4vi4mL2+vnnn8f//d//IS4uDj4+Pli6dClu3LiB999/H0lJSZg6dSrWrFmDmJgY1zWaIAiCIAiCIAirkJUbWEUEBgYiMDCQvVYqlQgODmZuX5MnT8bChQvRv39/BAUFYe7cuSRUCIIgCIIgCMJNcSvLCkEQBEEQBEEQVQf5RM8QBEEQBEEQBEFwkFghCIIgCIIgCEKWkFghCIIgCIIgCEKWkFghCIIgCIIgCEKWkFghCIIgCIIgCEKWkFghCIIgCIIgCEKWkFghCIIgCIIgCEKWkFhxIMuXL8fIkSPRvn177Nq1i+0vKirC+++/j759++Lxxx/HDz/8IPm7uLg4dO3aFd26dUO3bt2watUq9t4vv/yCZ599Fh07dsSaNWucdSp2wRH9sWTJEgwdOhTdu3fHc889h5MnTzrtfGzBEX2xfPlyDBw4ED169MDw4cOxdetWp52PLTiiL0Tu3buHLl264IMPPnD4edgLR/THggUL0KlTJ/beqFGjnHY+tuCoa2Pr1q0YPnw4unbtiieffBK3bt1yyvnYgiP6YtSoUWx/t27d0L59e/z4449OOydbcER/3L17F1OmTEHPnj0xYMAArF692mnnYwuO6It79+7hlVdeQY8ePTBixAgcPXrUaedjC9b2RV5eHt5991089thj6NmzJ+bNmyf527feegvdu3fHwIEDsXPnTqedjy04oi9cNQd1qwr27kZUVBRmzZqFr7/+WrL/22+/xb179/Drr78iLy8PL7/8Mho0aIBOnTqxz/z222+oUaOG3jFr1qyJl19+2W0mojyO6I+AgAB8+eWXiIyMxP79+/Haa69h27Zt8Pf3d/j52IIj+mLAgAEYO3YsfH19cfv2bUyaNAmPPPII6tev7/DzsQVH9IXIkiVL0LhxY4e13RE4qj8mT56McePGObLpdscRfXHo0CH8+OOP+PTTT1GvXj3cvXsXgYGBDj8XW3FEX/z8889sOysrCwMGDECPHj0cdxJ2xBH98cknnyAyMhJLly5FamoqXnjhBTzyyCPo0KGDw8/HFhzRF2+++Sbi4uLw2Wef4ezZs5g9ezY2bdqEatWqOfp0bMLavnjnnXdQu3ZtbN26FT4+PkhMTGR/u3z5cmRnZyMhIQHXr1/H9OnT0bRpU0RHRzv13CzFEX3hqjkoWVYcSHx8PB599FF4eXlJ9v/999949tlnERAQgLCwMAwZMgS///67Wcfs2bMnunXrJvvJuCEc0R+TJk1CVFQUlEol+vTpA29vb9y+fdsRzbcrjuiLunXrwtfXl70WBAH379+3a7sdgSP6Qvx7QRDQsWNHezfZoTiqP9wRR/TFypUr8eqrr6J+/fpQKBSoU6cOgoODHdF8u+Lo62Lv3r1o0qQJoqKi7NVkh+KI/rh//z4ef/xxqFQqREZGonXr1khKSnJE8+2KvfsiPz8f586dw4QJE6BSqdC2bVs0bdoUf/zxh6NOwW5Y0xfXr1/H5cuXMXPmTAQEBEClUqFJkybsbxMSEjBp0iQEBASgVatW6N69O3bv3u3U87IGR/SFq+agJFZchCAIkm3dAXHMmDEYMGAAFixYgKysLCe3zvnYoz/u3buHnJwct3nYGsOWvlizZg26du2KESNGICwsDO3bt3dGkx2GtX1RWlqKpUuXYsaMGU5qqXOw5dr44Ycf0Lt3b0yYMMFt3CVNYU1flJWV4cqVK0hMTER8fDyGDBmCFStWSI7ljthj/NyxYwf69+/vyGY6DWv7Y+TIkdi1axdKSkpw+/ZtnDt3DnFxcc5qtkOw5dqo6G/dDWPnc+nSJdStWxdvvfUWevfujbFjx+LUqVMAgJycHDx48AANGjRgf9uoUaMq2ReuhMSKC3j00Uexfv165Obm4t69e9i+fTuKiorY+ytWrMD27duxbt06FBUV4d1333Vhax2PPfpDrVZjwYIFeO655xAQEODM5tsVW/ti3LhxOHz4MNasWYPu3bvDw8PD2adgN2zpi7Vr16JLly5uL1x5bOmPp59+Gr/++it27tyJkSNHYubMmUhJSXHFadgFa/siMzMTZWVlOH78ODZs2IBvvvkGe/bswbZt21x1KjZjj/Hz3r17uHDhAvr27evMpjsEW/qjVatWOHfuHLp164YRI0Zg6NChkkmqu2FtX/j7+6N58+ZYtWoVSktLceLECZw8eVLyt+6Gqb5IS0vDP//8gw4dOmDXrl0YN24cXnvtNWRnZ6OgoAAeHh7w8fFhx/L390dBQYGrTsVmrO0LV0JixQW88MILiIiIwJNPPolp06ahd+/eqFmzJnu/TZs2UKlUCAkJwWuvvYYjR46gtLTUhS12LLb2hyAIWLBgAUJCQjBp0iRXnILdsMe1oVAo0Lx5c2RkZGDLli3OPgW7YW1fpKWlYevWrZgwYYILW29/bLk2mjRpgqCgIHh6emLAgAFo2bIl/vnnH1edis1Y2xfe3t4AgOeffx6BgYEICwvDyJEjceTIEVedis3YY8zYuXMnOnTogOrVqzu7+XbH2v4oKyvD9OnTMWzYMBw5cgRbt27F3r17sXfvXheejW3Ycm289957uHTpEvr3749Vq1bp/a27YaovvL29ERkZiWHDhkGlUuGxxx5DZGQkzp07Bz8/P5SVlUmEWn5+Pvz8/Fx1KjZjbV+4EhIrLsDX1xfz5s3Drl27sHHjRigUCjRr1szgZ5VK7U/k7m4KprC1Pz7++GOkp6fjvffeY++7K/a8NgRBwJ07dxzWVkdjbV9cvHgRqampGDFiBPr164cff/wRv//+O6ZOnerM5tsde14bCoXCYe10Btb2RVBQkN6Ey93HVntcFzt37sSAAQMc3lZnYG1/5OTkID09HU8++SRUKhUiIiLQs2dP/Pvvv85svl2x5dqoU6cOvvzyS+zbtw9fffUV7t+/b/Rv3QFTfWEqCU1QUBBCQ0MlQeZXr15FvXr1HN5mR2FtX7gS957ZyRy1Wo3i4mIIgsC2NRoNUlNTkZGRgbKyMhw9ehTbtm3Ds88+C0Ab3HT16lWUlZUhJycHixcvRseOHVmAlHicsrIyybY74Ij+WL58Oc6cOYPFixfrBZHJGUf0xW+//Ybc3FxoNBr8+++/2LFjB9q1a+fK0zQLe/dF586dsWXLFqxduxZr167FE088gT59+uC9995z8ZmahyOujX379qGwsBBqtRq7d+/GmTNn3CKeyRF9MWjQIHz//ffIz89Heno6Nm3ahK5du7ryNM3CEX0BAFeuXMH9+/fRs2dPF52Zddi7P0JCQlC7dm389ttv7DgHDx6U7eSNxxHXxo0bN1BYWIiioiKsX78ehYWF6NKliytP0yys6Yu4uDgIgoDt27ejrKwMBw8exN27d9GiRQsA2kD1lStXssQDhw4dcguXSUf0havmoArB3ZeVZMyCBQuwfft2yT4xhdz8+fORlZWFmJgYvPbaa2jTpg0A4Pjx4/jwww+RlpYGf39/dOjQATNnzmTm+eXLl2PFihWSY86fPx+DBw92whnZhiP6Iy4uDl5eXpLYjDfeeEP2q4SO6IvZs2fj5MmTKC0tRVhYGJ5++mmMGDHCuSdmBY7oC57ly5fjwYMHeOONNxx/MnbAEf3xwgsvIDExEQqFAtHR0ZgyZYrs07ECjumL0tJSLFq0CHv27IGfnx+GDRuGSZMmyd7a5Kj7ZOnSpUhPT8fChQuddzJ2wBH9ceHCBSxevBjXr1+Hj48PHn/8ccyYMUP2sX+O6IsffvgBa9asQWlpKdq1a4fXX38dYWFhzj0xK7CmLwDg2rVreO+993Djxg1ERUXhtddeQ9u2bQFo65IsXLgQBw8eRFBQEKZOneoWySgc0ReumoOSWCEIgiAIgiAIQpaQGxhBEARBEARBELKExApBEARBEARBELKExApBEARBEARBELKExApBEARBEARBELKExApBEARBEARBELKExApBEARBEARBELKExApBEARBEARBELKExApBEARBEARBELKExApBEARRpYmLi0NcXBy2bdvm6qYQBEEQOpBYIQiCIBzOpEmTmCh45plnJO9lZWWhS5cu7P0vvvjC7t+/bds2dnyCIAjCfSCxQhD/r717j5Ox/P84/rpnz0eLleM6k6RSlISNyPmUkNJJiVI5pCIpq6To8C0dEKFfKaRUTlEUfftSiSI6OO6u83nZ2fPO/ftj7Nixu+xhdmdm9/18PIaZ677mvj/XzOzMfOY63CJSonbu3MnmzZsdt7/88ktSU1PdGJGIiHgqJSsiIlJifH19AVi4cCEAmZmZLF682FGeXUJCAlOmTKFbt260aNGCjh078txzz3H48GFHnZkzZ9K8eXN69OjBt99+y+23307r1q156KGH2LdvHwAxMTFMnDjRcZ+sHpaZM2c6HS8xMZGYmBhuvvlmunTpwuzZs13dfBERKSAlKyIiUmIaNmxI9erV+eGHHzhy5Ajr16/n8OHDtG/f3qleamoqQ4YM4bPPPuP48ePUqlULq9XKypUrGTRoEKdOnXKqf/ToUZ577jkMwyA1NZUtW7bwwgsvAFCjRg2qV6/uqNukSROaNGlC5cqVnfbxzjvvsHHjRvz8/Dh27BgzZsxg48aNxfRIiIhIfihZERGREmOxWOjXr5+jRyWrh+WOO+5wqrdq1Sp2794NwJQpU1i0aBEffPABFouFY8eOsWjRIqf6mZmZTJ06lcWLFzvmxGzdupWUlBQGDx7M4MGDHXXnzZvHvHnz6N27t9M+GjZsyNKlS516en799VeXtl9ERApGyYqIiJSoXr16ERQUxKJFi9i0aRNXXHEFV199tVOdHTt2ABAYGEjbtm0BaNSoEbVq1XLaniU0NJTo6GgA6tat6yi/sAfmYm699Vb8/PyIiIigQoUKAJw8ebJgjRMREZdSsiIiIiUqLCyMLl26YLVagZy9KoXdZxYfHx/HddM0i7SPgtxfRERcT8mKiIiUuP79+wMQERFBx44dc2xv3LgxACkpKfzwww8A/P3338TGxjptz6/AwEDH9eTk5MKELCIibpBz+RUREZFiVr9+fdasWYOPjw/+/v45tnfq1ImPP/6YPXv2MGbMGGrVqsWBAwew2WxUqlTJkezkV+3atR3X+/XrR2RkJCNHjqRp06ZFbImIiBQn9ayIiIhblCtXjtDQ0Fy3BQQEMGvWLEdiERsbS0hICF26dGHu3LmUL1++QMdq0KABgwcPpmLFihw+fJg///yTs2fPuqIZIiJSjAxTA3JFRERERMQDqWdFREREREQ8kpIVERERERHxSEpWRERERETEIylZERERERERj6RkRUREREREPJKSFRERERER8UhKVkRERERExCMpWREREREREY+kZEVERERERDySkhUREREREfFISlZE3GjatGkYhkGTJk3yrLNnzx4ee+wxGjZsSFBQEMHBwVx55ZWMHz+eAwcOOOrdf//9GIaR62XZsmUl0RwRkVJn3rx5Tu+ngYGBVKlShXbt2vHyyy9z9OhRp/oxMTEYhlGgYyQlJRETE8MPP/xQoPvldqzatWvTvXv3Au3nUj755BPefPPNXLcZhkFMTIxLjyeSna+7AxApy+bMmQPA9u3b+fnnn2nRooXT9mXLljFgwAAiIyN57LHHuPbaazEMg23btjFnzhyWL1/Oli1bHPWDgoJYu3ZtjuM0atSoeBsiIlLKzZ07l0aNGpGens7Ro0f573//y5QpU3jttddYuHAhHTp0AGDw4MF07ty5QPtOSkpi4sSJALRt2zbf9yvMsQrjk08+4c8//2TkyJE5tm3YsIEaNWoUewxSdilZEXGTTZs28ccff9CtWzeWL1/OBx984JSs7N27lwEDBtCwYUO+//57ypUr59h2yy23MHz4cJYsWeK0T4vFwo033lhibRARKSuaNGlC8+bNHbdvv/12Ro0aRevWrenTpw87d+6kcuXK1KhRo9i/vCclJREcHFwix7oUfeZIcdMwMBE3+eCDDwB45ZVXuOmmm1iwYAFJSUmO7W+88QZWq5X33nvPKVHJYhgGffr0KbF4RUTEWc2aNXn99dc5e/YsM2fOBHIfmrV27Vratm1LxYoVCQoKombNmtx+++0kJSWxb98+KlWqBMDEiRMdw83uv/9+p/1t3ryZvn37Ur58eerVq5fnsbIsWbKEq6++msDAQOrWrcu0adOctmcNb9u3b59T+Q8//IBhGI4haW3btmX58uXExsY6DYfLktswsD///JNevXpRvnx5AgMDadq0KR9++GGux/n000959tlnqVatGuHh4XTo0IF//vnn4g+8lClKVkTcIDk5mU8//ZTrr7+eJk2a8MADD3D27Fk+++wzR53Vq1dTuXLlAv9qlZGR4XTJzMx0dfgiInJO165d8fHxYf369blu37dvH926dcPf3585c+bwzTff8MorrxASEkJaWhpVq1blm2++AeDBBx9kw4YNbNiwgeeee85pP3369KF+/fp89tlnzJgx46Ix/f7774wcOZJRo0axZMkSbrrpJkaMGMFrr71W4Pa99957tGrViipVqjhi27BhQ571//nnH2666Sa2b9/OtGnT+OKLL2jcuDH3338/U6dOzVF/3LhxxMbGMnv2bN5//3127txJjx499NklDhoGJuIGixcvJiEhgQcffBCAO+64g5EjR/LBBx9w3333ARAXF0fTpk0LtF+r1Yqfn59TWatWrfjvf//rkrhFRMRZSEgIkZGRHDx4MNftv/32GykpKbz66qtcc801jvK77rrLcb1Zs2YA1KhRI88fqO677z7HvJZLOXjwIFu2bHEcr0uXLhw9epQXX3yRYcOGERwcnK/9ADRu3JiIiAgCAgLy9eNZTEwMaWlpfP/990RFRQH2hO706dNMnDiRoUOHOo0WaNy4MR9//LHjto+PD/379+fXX3/VEDMB1LMi4hYffPABQUFBDBgwAIDQ0FD69evHjz/+yM6dOwu936CgIH799VenS9ZwMxERKR6maea5rWnTpvj7+zNkyBA+/PBD9uzZU6hj3H777fmue+WVVzolRmBPjs6cOcPmzZsLdfz8Wrt2Le3bt3ckKlnuv/9+kpKScvTK9OzZ0+n21VdfDUBsbGyxxineQ8mKSAnbtWsX69evp1u3bpimyenTpzl9+jR9+/YFzq8QVrNmTfbu3VugfVssFpo3b+50ufzyy13eBhERsbNarZw4cYJq1arlur1evXp89913XHbZZTz66KPUq1ePevXq8dZbbxXoOFWrVs133SpVquRZduLEiQIdt6BOnDiRa6xZj8+Fx69YsaLT7YCAAMA+XFoElKyIlLg5c+ZgmiaLFy+mfPnyjku3bt0A+PDDD8nMzKRTp04cOXKEjRs3ujliERHJy/Lly8nMzLzoksNt2rRh6dKlJCQksHHjRlq2bMnIkSNZsGBBvo9TkHO3HD58OM+yrOQgMDAQgNTUVKd6x48fz/dxclOxYkUOHTqUozxrmFxkZGSR9i9lj5IVkRKUmZnJhx9+SL169fj+++9zXEaPHs2hQ4dYuXIlo0aNIiQkhGHDhpGQkJBjX6Zp5li6WERESk5cXBxPPvkk5cqVY+jQoZes7+PjQ4sWLXj33XcBHEOyXN2bsH37dv744w+nsk8++YSwsDCuu+46wH7ySICtW7c61fv6669z7C8gICDfsbVv3561a9fmmMPzf//3fwQHB2seihSYJtiLlKCVK1dy8OBBpkyZkuuvcE2aNOGdd97hgw8+YMmSJSxYsIA77riDpk2bOk4KCbBjxw5HD81tt91Wwq0QESl7/vzzT8cqi0ePHuXHH39k7ty5+Pj4sGTJEsfywxeaMWMGa9eupVu3btSsWZOUlBTHcN+sE0mGhYVRq1YtvvrqK9q3b0+FChWIjIx0JBQFVa1aNXr27ElMTAxVq1bl448/5ttvv2XKlCmOyfXXX389l19+OU8++SQZGRmUL1+eJUuW5Logy1VXXcUXX3zB9OnTadasmWPIcW4mTJjAsmXLaNeuHc8//zwVKlRg/vz5LF++nKlTp+a6FL/IxShZESlBH3zwAf7+/gwaNCjX7ZGRkdx2220sXryYI0eO0L17d7Zt28brr7/OjBkziI+Px2KxUKdOHTp37szjjz9ewi0QESmbst63/f39iYiI4IorrmDMmDEMHjw4z0QF7BPsV69ezYQJEzh8+DChoaE0adKEr7/+mo4dOzrqffDBBzz11FP07NmT1NRU7rvvPubNm1eoWJs2bcqgQYOYMGECO3fupFq1arzxxhuMGjXKUcfHx4elS5fy2GOP8fDDDxMQEMCAAQN45513HMOSs4wYMYLt27czbtw4EhISME0zz0UFLr/8cv73v/8xbtw4Hn30UZKTk7niiiuYO3eu49wxIgVhmBdbwkJERERERMRNNGdFREREREQ8kpIVERERERHxSEpWRERERETEIylZERERERERj6RkRUREREREPJKSFRERERER8UhKVkRERERExCMpWXERm83G3r17sdls7g6lxKjNZUNZbDOUzXaXxTa7ijc9dt4Sq7fECd4Tq+J0PW+J1VvizI2SFRERERER8UhKVkRERERExCMpWREREREREY+kZEVERERERDySkhUREREREfFISlZERERERMQjeUWyMnPmTPr168f111/PqlWr8qyXkpLCc889R3R0NN26deObb74pwShFRERERMSVvCJZiYqKYvTo0Vx55ZUXrTdz5kwSEhJYsWIFkydP5pVXXiE2NraEohQREREREVfydXcA+dG1a1cA5syZc9F6K1as4PXXXyc0NJRrrrmG6OhoVq9ezUMPPZRr/bS0NNLS0pzKfH198ff3L3CMWSfZ8caT7RSW2lw2lMU2Q9lsd1HbbLF4xe9fIiLiRbwiWcmPM2fOcOLECerXr+8oa9iwIdu3b8/zPnPnzmXWrFlOZf369aN///6FimH8+PFMmjSpUPf1ZvHx8e4OocSpzWVHWWx3Ydtcp04dF0ciIiJlXalJVpKSkvDx8SEwMNBRFhISQlJSUp73GTRoEAMHDnQqK0rPypEjR4iKiiozvy7abDbi4+PV5lKuLLYZyma7y2KbRSRvhmEU+r6mabowEinLSk2yEhwcTGZmJikpKY6ExWq1EhwcnOd9/P39C5WYXIzFYilzH/Jqc9lQFtsMZbPdZbHNIiLimUrNp1F4eDgVK1Zk165djrJ///2XunXrujEqERGR8wzDKNGLiIi384pkJSMjg9TUVEzTdFzPbQJo165dmT17NlarlW3btrF+/XpuvfVWN0QsIiLi3Y4dO4afnx9JSUlkZGQQEhJCXFycY3vt2rUdSVFwcDBNmjRh5syZboxYREojr0hWJk2aRKtWrdiyZQsTJkygVatWbN68mZUrVzpNhh86dCihoaF07tyZsWPHMnbsWGrXru2+wEVERLzUhg0baNq0KcHBwfz2229UqFCBmjVrOtV54YUXOHToEFu3bqV37948/PDDLFy40E0Ru9+FK4yKSNF5RbISExPDpk2bnC7NmzenS5cuLFq0yFEvMDCQSZMm8eOPP7J8+XI6d+7sxqhFRES81//+9z9atWoFwH//+1/H9ezCwsKoUqUK9evXZ9KkSTRo0IAvv/wSgDFjxtCwYUOCg4OpW7cuzz33HOnp6Y77/vHHH7Rr146wsDDCw8Np1qwZmzZtAiA2NpaePXvStGlTwsLCuPLKK1mxYoXjvjt27KBr166EhoZSuXJl7rnnHo4fP+7Y3rZtW4YPH87TTz9NhQoVqFKlCjExMU6x//3337Ru3ZrAwEAaN27Md999h2EYjvgBDhw4wB133EH58uWpWLEivXr1Yt++fY7t999/P7179+aVV17hxhtvpFGjRgC89957NGjQgMDAQCpXrkzfvn0L9RyISCmaYC8iIiJFExcXx9VXXw2cX2Vz3rx5JCcnYxgGERER3HXXXbz33nu53j8wMNCRkISFhTFv3jyqVavGtm3beOihhwgLC+Ppp58GYODAgVx77bVMnz4dHx8ffv/9d/z8/AB49NFHSU1NZcGCBTRo0IC///6b0NBQAA4dOsTNN9/MQw89xBtvvEFycjJjxoyhf//+rF271hHLhx9+yBNPPMHPP//Mhg0buP/++2nVqhW33norNpuN3r17U7NmTX7++WfOnj3L6NGjndqSlJREu3btaNOmDevXr8fX15dJkybRuXNntm7d6ligZ82aNYSFhfF///d/VK1alU2bNjF8+HA++ugjbrrpJk6ePMmPP/7owmdJpGxRsiIiIiIAVKtWjd9//50zZ87QvHlzNm7cSGhoKE2bNmX58uXUrFnTkTRkl5GRwccff8y2bdt45JFHAPu5x7LUrl2b0aNHs3DhQkeyEhcXx1NPPeXojWjQoIGjflxcHH369KFRo0bUqlXL6Rxq06dP57rrrmPy5MmOsjlz5hAVFcW///5Lw4YNAbj66quZMGGCY9/vvPMOa9as4dZbb2X16tXs3r2bH374gSpVqgDw0ksvOc1zXbBgARaLhdmzZzsWK5g7dy4RERH88MMPdOzYEbCfJmHWrFkcOnSIWrVq8eWXXxISEkL37t0JCwujVq1aXHvttYV9SkTKPCUrIiIiAtjPNVa7dm0WLVrE9ddfzzXXXMNPP/1E5cqViY6OzlF/zJgxjB8/ntTUVPz9/XnqqacYOnQoAIsXL+bNN99k165dJCYmkpGRQXh4uOO+TzzxBIMHD+ajjz6iQ4cO9OvXj3r16gEwfPhwHnnkEZYtW0bXrl3p27evo8fnt99+4/vvv881adq9e7dTspJd1apVOXr0KAD//PMPUVFRjkQF4IYbbnCq/9tvv7Fr1y7CwsKcylNSUti9e7fj9lVXXeV0GoRbb72VWrVqUbduXTp37kznzp257bbbLnoqBRHJm1fMWRERESmsmTNn0q9fP66//npWrVrltG3btm3cf//9tGnThq5du/Ltt9+6KUrPcOWVVxIaGso999zDL7/8QmhoKO3bt2ffvn2EhoZy5ZVXOtV/6qmn+P3334mNjSUxMZGpU6disVjYuHEjAwYMoEuXLixbtowtW7bw7LPPOk1Aj4mJYfv27XTr1o21a9fSuHFjlixZAsDgwYPZtWsXvXv3Ztu2bTRv3py3334bsJ+8tEePHvz+++9Ol507dzolVFlDyrIYhuFYSdQ0zUsu7Wyz2WjWrFmO4/z777/cddddjnohISFO9wsLC2Pz5s18+umnVK1aleeff55rrrmG06dP5/NZEJHs1LMiIiKlWlRUFKNHj2bGjBlO5cePH+fpp5/m2Wef5cYbbyQxMZHExEQ3RekZVqxYQXp6Ou3bt2fq1Kk0a9aMAQMGcP/999O5c+ccCUBkZKTTEK0sP/30E7Vq1eLZZ591lMXGxuao17BhQxo2bMioUaO48847mTt3Lrfddhtgf94GDhzIuHHjePbZZ5k1axaPP/441113HZ9//jm1a9fG17dwX2MaNWpEXFwcR44coXLlygD8+uuvTnWuu+46Fi5cyGWXXebUI5Qfvr6+dOjQgQ4dOjBhwgQiIiJYu3Ytffr0KVS8ImWZkhURESnVunbtCtjnNWQ3f/58unfvTuvWrQGIiIggIiIiz/2kpaXlWJrW19cXf39/xy/2uZ0DzJ1yi+disUZFRXH48GGOHDlCjx49sFgs7Nixg969e1OtWrUc9zNNM9f91K1bl7i4OD755BOuv/56VqxY4eg1sdlsJCcn8/TTT3P77bdTp04d9u/fz6+//kqfPn2w2WyMGjWKTp06ERoayrFjx1i7di2NGjXCZrPxyCOPMGvWLAYMGMCTTz5JZGQku3btYuHChbz//vv4+PjkGptpmo6y9u3bU69ePe69916mTJnC2bNnHYlVVp0777yTV199lV69ehETE0ONGjWIi4tjyZIlPPnkk9SoUcNpn1ltW7ZsGXv37qVNmzaUL1+eFStWYLPZaNCggdtfHwV9neY21K6gxyrKfd39eOWHt8TqqXFaLJce5KVkRUREyqQdO3ZwzTXX0L9/fxISErjhhht46qmn8vwVfe7cucyaNcuprF+/fk7n+4qPj7/oMffs2VP0wAsgt96MLHnFunTpUq666iqOHDnCL7/8wmWXXUZ6enqOfWVkZHDy5Mlcj9G0aVMeeOABHnvsMdLS0mjXrh3Dhg3jrbfeIjY2lrS0NOLi4rj77rs5ceIE5cuXp1OnTjzwwAPExsZy+vRphg0bxqFDhwgLCyM6OpqxY8c6jrVgwQKmTJlCp06dSEtLo3r16kRHRxMfH49hGKSkpHDmzBmn2JKTk/Hz83OUvfPOO4wdO5YWLVoQFRXF2LFj+fnnn53u9/HHHzNlyhT69OlDYmIiVapU4aabbuL06dNkZmZitVpJTk52PJbx8fGkpKTw6aefMmHCBFJTU6lduzZvvfUWoaGhF30+StKlXqdZtm7dWuhjuKKt+Y3TE3hLrJ4WZ506dS5ZxzBN0yyBWEo9m81Gx44dWb16db6yxNLAZrMRGxtLrVq11OZSrCy2Gcpmu0t7m4cMGcLtt99Op06dAOjTpw8ZGRm8/fbbXHbZZbz44ov4+fkxceLEXO9/qZ6V+Ph4oqKiPP6x85ZYSzrOn376iejoaP7991/HRP/8Kq2Pably5Qp9rISEhELf11seT/CeWD01TvWsiIiI5CEgIIAuXbpQq1YtwD6pe8iQIXnW9/f3d1r1KTcWi8WjvghcjLfEWlxxLlmyhNDQUBo0aMCuXbsYMWIErVq1clpCuaBK22NalDlcrngcvOXxBO+J1VvizE7JioiIlEkX/nqugQZly9mzZ3n66aeJj48nMjKSDh068Prrr7s7LBG5gHelViIiIgWUkZFBamoqpmk6rttsNrp3787SpUvZv38/KSkpzJs3zzHZXkq/e++9l507d5KSksL+/fuZN28eFStWdHdYInIB9ayIiEipNmnSJJYtWwbAli1bmDBhAjNmzODGG2/krrvu4sEHHyQjI4Mbb7yRp556ys3RiohIdkpWRESkVIuJiSEmJibXbQMGDGDAgAElG5CIiOSbhoGJiIiIiIhHUrIiIiIiIiIeScmKiIiIiIh4JCUrIiIiIiLikZSsiIiIiIiIR1KyIiIiIiIiHknJioiIiEgpZBiG06VcuXIAlCtXLse23C4inkDJioiIiIiIeCQlKyIiIiIi4pG8Ilk5deoUI0aMoFWrVvTp04dffvkl13oHDhzg0UcfpW3btnTp0oW5c+eWcKQiIiIiIuIqXpGsTJkyhUqVKrFmzRqGDx/O2LFjOXPmTI56r776KtWrV+e7775j9uzZLFy4MM/ERkREREREPJuvuwO4lKSkJNatW8fSpUsJDAykbdu2zJ8/n/Xr19O9e3enuocOHeLuu+/G19eX6tWr07RpU/bs2cMNN9yQ677T0tJIS0tzKvP19cXf37/AcdpsNqf/ywK1uWwoi22GstnuorbZYvGK379ERMSLeHyyEhcXR2hoKJGRkY6yBg0asGfPnhx1+/Xrx6pVq7j66qs5fPgw27ZtY/DgwXnue+7cucyaNSvHPvr371/oeOPj4wt9X2+lNpcNZbHNUDbbXdg216lTx8WRiIhIWefxyUpycjIhISFOZSEhISQmJuaoe80117B48WLatGlDZmYmQ4YMoX79+nnue9CgQQwcONCprKg9K1FRUWXm10WbzUZ8fLzaXMqVxTZD2Wx3WWyziIh4No9PVoKCgrBarU5lVquVoKAgp7LMzExGjBjBvffeS9++fTl69CgjR46kbt26dOjQIdd9+/v7FyoxuRiLxVLmPuTV5rKhLLYZyma7y2KbRUTEM3n8p1HNmjVJTEzk+PHjjrKdO3dSt25dp3pnzpzh2LFj9O3bF19fX6pVq0bbtm357bffSjpkERERERFxAY9PVoKDg4mOjmbmzJmkpKSwbt06du/eTXR0tFO98uXLU7lyZb788ktsNhtHjhxh3bp11KtXz02Ri4iIJ5g5cyb9+vXj+uuvZ9WqVTm2Z2RkcMcdd3D77be7IToREbkYj09WAMaOHcuRI0do3749b731Fi+//DLh4eGsXLnSaTL8lClTWLFiBe3atePee+/lhhtu4LbbbnNj5CIi4m5RUVGMHj2aK6+8MtftixYtIjQ0tISjEhGR/PD4OStg7zWZNm1ajvIuXbrQpUsXx+0rr7ySOXPmlGRoIiLi4bp27QqQ6+fDiRMnWLJkCSNGjOA///nPRfdzseXuvWmpa2+J1VviBM+N9cIkPGvBogsXLioORXksPPXxzI23xOqpceZnfqRXJCsiIiLF4e2332bQoEEEBgZesm5+lrv3pqWuvSVWb4kTPC/WrVu35lq+YcOGYj92bGxskffhaY/nxXhLrJ4WZ36WvFeyIiIiZdLWrVuJi4tjwoQJ+VqM5WLL3XvTss/eEqu3xAmeG2u5cuWcboeEhLBhwwZatmyZY6VVV0tISCj0fT318cyNt8TqLXHmRsmKiIiUOTabjddee40xY8ZgGEa+7pOf5e69adlnb4nVW+IEz4s1t3PSgf0UEHltcxVXPA6e9nhejLfE6i1xZqdkRUREyhyr1crff//NE088AUB6ejpWq5VOnTrx1Vdf5WtYmIiIFD8lKyIiUqplZGSQmZmJaZpkZGSQmppKcHAwK1ascNTZunUrb7/9NrNmzSIgIMCN0YqISHbe1Q8kIiJSQJMmTaJVq1Zs2bKFCRMmOK5HRkY6LuHh4VgsFiIjI/M9LExERIqfelZERKRUi4mJISYm5qJ1mjdvzueff14yAYmISL6pZ0VERERERDySkhUREREREfFISlZERERERMQjKVkRERERERGPpGRFREREREQ8kpIVERERERHxSFq6WERERKQYFeXcPaZpujASEe+jnhUREREREfFISlZERERERMQjKVkRERERERGPpGRFREREREQ8kibYi4iIiJQ1fpdByFUQWBcCa4NveTAz7JfMs5C8E5L+gqS/wWZ1d7RShilZERERESkDMkNu5JWFESRd/iMEX52/O5kZkPAjnFwGJ5ZCyu7iDVLkAkpWREREREornzC4bCBUfYTkkCa8vwIIagJnfoazG+3JR8o+SD8Ohg/gA34VIOhyCG4EYS0gop39Uvd1OPUdHHgTTn0DaFllKX5KVkRERERKmZRUE6qPhqhnwK88mDZ8Elbxn2eu45mHr8eaEJ//nQXWgwrdofLdUL6D/ZL0F+x7Hk58UXyNEMFLJtifOnWKESNG0KpVK/r06cMvv/ySZ92vv/6a2267jdatW9O3b19iY2NLMFIREfE0M2fOpF+/flx//fWsWrXKUb506VLuuusuoqOj6dWrF4sXL3ZjlCKuYZomn35n0ugeE+pOBYs/7H8dNl1O0J7+dG+RhJF5qmA7TdkNB9+CLdfD1nZw/Ct7z0vjz+Cq7yD4quJpjAhe0rMyZcoUKlWqxJo1a9i4cSNjx47lyy+/JDw83Kne+vXr+fjjj3nttdeoW7cuBw4cICwszE1Ri4iIJ4iKimL06NHMmDHDqTwtLY1nnnmGK664gtjYWB555BHq1q3Ldddd56ZIRYrm8AmTh141WfY/sFiAwx9A7ARIO2SvEBpa9IMkrLdfQq6Fev+xDw+77jfY/5r9WGZ60Y8hko3HJytJSUmsW7eOpUuXEhgYSNu2bZk/fz7r16+ne/fuTnVnz57NE088Qb169QCoUaPGRfedlpZGWlqaU5mvry/+/v4FjtNmszn9XxaozWVDWWwzlM12F7XNFotndtZ37doVgDlz5jiV33777Y7r9erV44YbbmDHjh1KVsQrLf7B5OHXTU4kQLPLYc5Yg2vqDym+A1q3wNa2ENnfPpclagxEdIB/7obkf4vvuFLmeHyyEhcXR2hoKJGRkY6yBg0asGfPHqd6mZmZ/PPPP+zatYsXXngBX19fevToweDBgzEMI9d9z507l1mzZjmV9evXj/79+xc63vj4AowBLSXU5rKhLLYZyma7C9vmOnXquDiSkpOZmcn27dsdiU1uLvYDlzclt94Sq7fECZeONbQIPRqXan9GBjw1HaZ9Dr4+EDMIxg4EP18zx3FDQkKc/neJlBWY/2wkpeY0MiN6wHW/ERA3skjPW2l67j2Fp8aZnx+5PD5ZSU5OzvFHFRISQmJiolPZyZMnyczM5Ndff2XhwoVYrVaGDx9O5cqV6dmzZ677HjRoEAMHDnQqK2rPSlRUlMf+uuhqNpuN+Ph4tbmUK4tthrLZ7rLY5izTp0+nUqVKtGzZMs86+fmBy5uSW2+J1VvihLxj3bp1a6H3ebG5t6cSLTz2biQbdgRRPTKDdx87xtV10jh44OLH3bBhQ6HjyYtpwqJ1J5g4vzwptd/n0VcTeLLvaYryVlIanntP42lx5udHLo9PVoKCgrBanU9GZLVaCQoKcioLCAgA4L777iMsLIywsDD69evHTz/9lGey4u/vX6jE5GIsFkuZ+5BXm8uGsthmKJvtLmttXrx4MWvXrmXOnDl59sTDxX/g8qZEz1ti9ZY44dKxlitXrtD7TkhIyLX871joOwn2HoK2TWFhjC+REVUvetyQkBA2bNhAy5Ytc3y3chUj6BqMup8yY3l1Dp4ux0fPQmhwwfZRmp57T+EtceamSMnK8ePHycjIoEqVKq6KJ4eaNWuSmJjI8ePHHUPBdu7cSa9evZzqhYeHU6lSJacy09T63yIikrfVq1c7ekwiIiIuWjc/P3B5U6LnLbF6S5yQd6wXjgYp6D4v9Ns/Jp2fNDmeAI/eBv953MDPN2einddxrVZrkWK6qMSfIKEFze/bz9c/QYcn4JvXDCqE5/1DQF5Kw3PvabwlzuwKFe2KFSvo3r07Xbt2Zdy4caxbt46HH36Y//73v66Oj+DgYKKjo5k5cyYpKSmsW7eO3bt3Ex0dnaNu9+7d+b//+z+sVivHjh3j888/p3Xr1i6PSUREvEdGRgapqamYpum4brPZ2LhxI6+++ipvvvkm1apVc3eYIvmy/neTdiPsicorQw3eGWXJNVFxq7RDrJtm0Ks1/Po3tBthcvSUfkCWwilwsrJmzRomTJjAkSNHHD0XV1xxBZs3b2b58uUuDxBg7NixHDlyhPbt2/PWW2/x8ssvEx4ezsqVK53GCg8ZMoTIyEi6du3Kvffeyy233JJjxTARESlbJk2aRKtWrdiyZQsTJkygVatWbN68mblz53LmzBkeeOAB2rRpQ5s2bZg8ebK7wxXJ0+pfTDo9aZKYDDNGG4wZ6GFJSjbBgQafvWBwZwfYuhuiHzc5cEwJixRcgYeBzZ07F8MwGDBgAJ9++ikAl112GZUqVWLHjh0uDxCgfPnyTJs2LUd5ly5d6NKli+O2n58f48ePZ/z48cUSh4iIeJ+YmBhiYmJylDdv3rzkgxEppPW/m/R+1iQ9Ez553mBAe89NVLL4+Rp89CwEB5h8sBzaDjf58R2oUtHzYxfPUeCelb1791KrVi2eeOIJp/KIiAiOHz/ussBEREREBH7ZYdJtjElKGvzfOO9IVLL4+Bi8/5TB0J6w6wB0etLk1Fn1sEj+FThZ8ff3x2q1Oq3TnJaWxsGDBwkMDHRpcCIiIiJl2dbd54d+vf+UwV23ek+iksViMXh3lMGA9vYhYd2eNrEmK2GR/ClwsnLVVVdx/PhxRowYAcCRI0cYNmwYVquVq666yuUBioiIiJRJ/tXp+rTJ6UR483GDwd29L1HJ4uNj8H/PGnRrCRu2Q5/xJukZSljk0gqcrAwZMgQfHx9+/vlnDMPg2LFj/PHHH/j4+DB48ODiiFFERESkbPEJgyuXcuCY/Yz0I/p5b6KSxc/XPum+9dWw+ld47D+mTjMhl1TgZKVJkyZMnz6da6+9loCAAAICArjuuut47733aNKkSXHEKCIiIlJ2GL7QaCGEXsMdt8BLD3l/opIlKMDgy5cM6leH95fCGwvdHZF4ukKdFLJp06bMnDnT1bGIiIiISN03oUInSPiRec9EY7GUnmQFoGI5g+VToeUjJk9NN6lXHXq3KV1tFNcpcLKyefPmi26/7rrrCh2MiIiISJlW+UGo9ggk74YdfQgMOOHuiIpFwyiDJZOgwxMmA1802TgdrqqnhEVyKnCyMnToUAwj9xeTYRj8/PPPRQ5KREREpMwJuxHqvw2ZibCjD2ScdHdExSq6qcH0J2DwVJPbxptseh8iwpSwiLMCz1kBME0zz4uIiIiIFJB/VbjiM7AEwL8PQtKf7o6oRDzY3X4Olt0H4O5JJjabvkuKswL3rHz99ddOtxMTE/n222/58MMPeemll1wWmIiIiEjZ4AONPoWAahD/Chxf7O6AStRbww1+32WyfAO8MM/k+fvdHZF4kgInK1WrVs1R1qBBAzZv3szChQvp0KGDSwITERERKRNqTYRybeDUd7DvOXdHU+IC/A0WvwDNHjJ54UNo2QQaVnJ3VOIpCjUMLDvTNNm3bx8HDhxgx44drohJREREpGwo3wlqPgOpB+GfuwGbuyNyixqXGXz6vH2+yr0vwbHTRf6KKqVEgXtWbrjhhjy31apVq0jBiIiIiJQZ/tXg8g/BzLQnKunH3B2RW93SzGD8vSYvfggjZ0ay7m2wKGcp8wr8EshrYn1QUBAjRowojhhFREREShkLNPoY/CpBbAwkrHN3QB7h+fsMoq+BDTuCeGW+u6MRT1DgnpUJEybkKKtQoQJNmjQhPDzcJUGJiIj06tWLyy+/nKlTpzqVv/vuu+zfv5+XX37ZTZGJuECNp6DczXB6jX1SvQDg62vw8XiTawZlEjPPh/bNTG66SssZl2UFTla6d+9eHHGIiIg4OXjwIBUrVsxR/ssvv/DXX3+5ISIRFwltZp9Un34S/rmfsjpPJS/VK8HUwSd46M3LuOclk9/nQFiwEpayKl/JyrJly/K9QyUzIiJSFNk/c06dOuV0OyUlhX379uHn55fv/c2cOZPvvvuOffv2MWnSJDp16uTYNm/ePD7++GNsNhu9evVi+PDheZ74WMQlLMFw+Udg8YO/h0LaQXdH5JHaX5vMQz1g1lIYOc3kg7H6uyyr8pWsTJw4MV9v3oZhKFkREZEiyfrMMQyDAwcO8MILLzhtN02TBg0a5Ht/UVFRjB49mhkzZjiV//e//2Xx4sXMmzePwMBAHnnkEWrXrk2vXr1c0g6RXNV9HYIvh8Nz4cQX7o7Go70+DH7YAnNWQI9WJr3bKGEpi/I9DCw/Z6fXGexFRMQVTNPEMIwcnysBAQHUrl2bJ598Mt/76tq1KwBz5sxxKl+xYgV9+/alRo0aANx9992sXLkyz2QlLS2NtLQ0pzJfX1/8/f2x2ezDeLL+92TeEqu3xAmXjjU0NBSAjPAOpFQdgpG6l+Aj4zHOledn34UResH+Q0JCnP4vTkWJO+u+QQE2/u9ZC60fhcFTTG5oZFIl58hQt/KW16mnxmnJx3Jv+UpWfv311yIHIyIikh9ZnznXX389V111VY4kw1X27t3rSGQAGjZsyLvvvptn/blz5zJr1iynsn79+tG/f3/H7fj4eNcHWky8JVZviRPyjnXr1q0kWC10HleV1ASTBS8EcX3D/+Vrn7GxsYWOZ+vWrbmWb9iwodD7zK+ixJ0lPj6eysHwWM9yvPVlBPe/lMSM4cfwxJGa3vI69bQ469Spc8k6BZ5gLyIiUhJmzJhRrL8AJyUlOf3yHBISQlJSUp71Bw0axMCBA53KsvesxMfHExUVla9fCt3JW2L1pDjLlSt30e0hISFs2LCBli1bYrVac62TUmsGGRXuxO/o2zzYd3y+j52QkFCgWLO7MO78xOkqRYn7wud+ymPw4w74dnMwP+2sxcBbXRhoEXnS6/RivCXO3BQqWfnpp59YvXo1x44dc+pOMgyD6dOnuyw4EREpu5o1a0ZsbCxffPEFJ0+ezDEk7KGHHirS/oODg0lMTHTctlqtBAcH51nf398ff3//i+7TYrF4zRcBb4nVE+LM/jq5GKvVmnvdir2gwp2Q9BfpO8eSbkvJ97GL0va84s4zThdyxXOW9dwH+MO8Z0yaPWQyYhq0b2ZQLdKzulc84XWaH94SZ3YFTlZWrlyZ67lWssYXF4dTp04RExPDpk2bqFy5MmPHjuWGG27Is/7Bgwfp168f3bp1Y9y4ccUSk4iIFK+vvvqKyZMn5zkfsqjJSp06ddi1axetW7cG4N9//6Vu3bpF2qdIDr4VoP70c2epHwQFSFTkvKvqGcQMgmdnmQx9zeTrl9HKfWVEgVOrTz/9FNM0qVGjhuPM9RUrViQ8PJzrrruuOGJkypQpVKpUiTVr1jB8+HDGjh3LmTNn8qz/xhtvcPnllxdLLCIiUjLmzJmDzWbDNM1cL/mVkZFBamoqpmk6rttsNrp27crnn3/OgQMHOH78OPPnz6dLly7F2CIpk+q+Af6VYf+rkKg5wEXx9J3QvBEs+x98tMrd0UhJKXCysnfvXsLDw1mwYAEA9erVY+HChZimSY8ePVweYFJSEuvWrePhhx8mMDCQtm3bUq9ePdavX59r/Q0bNmCaJi1atHB5LCIiUnJOnDhBaGgon376KRs3buTXX391uuTXpEmTaNWqFVu2bGHChAm0atWKzZs307p1a/r06cO9995Lv379aNWqFT179izGFkmZU74LVL4Hkv6G2BcuXV8uytfXYN4zBn6+MOodkyMntQptWVDgYWCZmZlUq1YNf39/LBYLSUlJhIeHExkZyaxZs+jWrZtLA4yLiyM0NJTIyEhHWYMGDdizZ0+Ouunp6bz11lu8+uqrrFix4pL7vtgylAXlqUvCFSe1uWwoi22GstnuorbZ1eOgmzdvzt69e6lfv36R9hMTE0NMTEyu2wYNGsSgQYOKtH+RXPmEQYPpYNpg50Ngpro7olLhyjoG4++FCXNMhr9lsnCihoKVdgVOVsLDwx1DsCpUqMDevXt5+eWXiY2NJSAgwOUBJicn51gNJiQkJNeJYfPnz6dVq1ZERUXla9/5WYayoDxtSbiSoDaXDWWxzVA2213YNudnCcqC6NChAy+99BLPPPMMnTt3JiwszGl7cQ09FnGJOq9AQBQceBvO5G+ZYsmfsQPhs+9h0fdwZwedLLK0K3CyUqdOHTZv3sypU6do3rw533zzDUuWLME0TZo0aeLyAIOCgnIsr2e1WgkKCnIqO3r0KF9//TUfffRRvvd9sWUoCyrrl0hvXBKusLx5GbzCUpvLRpuhbLbb09qcdSb7NWvWsGbNGqdthmHw888/uykykUsIbw1VH4aUvbDvWXdHU+r4+xl8MAZaDjMZ9oZJ26YQEaaEpbQqcLIyYsQIDhw4gM1mY9SoUZw4cYLt27dTv379Yll5q2bNmiQmJnL8+HHHULCdO3fmOMPwjh07OHLkCH369AHsc11sNhuHDh3i7bffznXf+VmGsqC8cUm4olKby4ay2GYom+32pDYXZCK9iEcw/KHBDPv1ncPAVrznMymrbmhsMLKvyRuLYMwMk5lPKVkprQqcrNSoUYNGjRo5br/33nsuDehCwcHBREdHM3PmTEaPHs3PP//M7t27iY6Odqp300038dVXXzluf/zxx5w6dYpRo0YVa3wiIlI8vv76a3eHIFJwUWMg+Ao4Oh9Or3Z3NKXaCw8afL7e5P2lcE8nk9ZXK2EpjQr801nnzp0ZP348GzduLLFfvMaOHcuRI0do3749b731Fi+//DLh4eGsXLnSMb/E39+fyMhIxyUoKIiAgAAiIiJKJEYREXGtqlWrXvQi4mlsAQ0h6hlIPwF7Rrs7nFIvJMhg+hP2BGXoayZp6eqJLY0K3LOSmprK6tWrWb16NZGRkXTr1o1u3bpRu3btYgjPrnz58kybNi1HeZcuXfJcE3/o0KHFFo+IiBS/iRMn5rnNMAyef/75EoxG5OJsNkip+SZYAmDnI5B+zN0hlQldbjS44xaThWth6icw/j53RySuVuBk5fnnn+fbb7/ll19+4dixY3z44Yd8+OGHNG7cmO7du9O3b9/iiFNERMqYZcuW5XqGatM0layIx/nsx1Bsoa3g9Fo4+qG7wylT3nzcYNUvJi/+n0n/W6BhlIaDlSYFTlZ69OhBjx49SEhIYM2aNXz77bds3ryZ7du3s2PHDiUrIiLiEtdee61TspKYmMiuXbswDIOmTZu6LzCRC5i+FZmyMAJsqbBrmLvDKXOqVDSY+ggMedXkkddNvvsPuf7QId6pwMlKlnLlytGoUSPi4uLYvXs3p06dcmVcIiJSxr3//vs5yvbt28cDDzxAmzZt3BCRSO5Sq72I1eqD35GppCfvdHc4ZdKD3WDeSli7GT79Du661d0RiasUOFnZtWsXq1at4ttvv+XgwYOAvUs+ODiYW265xeUBioiIZKlduzYNGzZk4cKF3H333e4ORwTK3UxGxYHUrpzOsd//Q7q74ymjLBaDGaPhusEmo94x6XIjlNe5V0qFAicrd955J4ZhOMYMN2/enG7dutG+fXsCAwOLI0YRESmDli1b5nTbZrMRFxfH77//TkBAgJuiEsnG8IP67wLwwn0nGfZNqpsDKtuuqmfwRH+TqZ/Cs7NM3ntCyUppUKhhYFFRUXTr1o2uXbtSpUoVV8ckIiLiOIP9hUzT5LrrrnNDRCIXqDEagq/A9+RntL7yBndHI8Dz9xssWGsy4yu4r7NJi8ZKWLxdgc+zMmfOHD7//HMeeOABJSoixeSRRx5xdwgiHsE0TadL+fLl6dSpE+PHj3d3aFLWBdSGqPGQkYD/gXHujkbOCQkyeGekgWnCI6+bZGbq3CversA9K1dddVVxxCEi2Rw4cMDdIYi43a+//uruEETyVu9N8AmCXU9jyTjq7mgkmx6tDHq2Mvn6J5j+JTx2u7sjkqIocM+KiIhISUpNTeWvv/7ir7/+IjVVcwLEA1ToARV7QOJmODTD3dFILt4abhAUAM/ONjl8Qr0r3kzJioiIeKw5c+bQoUMH7rvvPu677z46dOjAvHnz3B2WlGWWIHuvimmDncMAm7sjklzUrmow/l6DM1Z4arqSFW+mZEVEpBQxTfsY7bR0k+RUk4wM7/2Q/vrrr5k+fTopKSmOOSspKSm89957OVYKK4q///6bBx54gJtvvplevXrx9ddfu2zfUgpFPQuBteHwLEjUUEVPNvoOuLwmfLwaftjive+FZV2hTwopIiLn2Wwm6RlgM8E0wWYDE+frNpv9dvbrWfUdF3LeP+tiO1eeaYP0DJP0TEhPx/5/xrlLpr1O1qVaJWh1lXeuhrNo0SIA2rZtS6dOnQBYtWoVP/zwAwsWLKB79+4uOc7zzz9Pp06dmD17Nv/++y9DhgzhmmuuoVatWi7Zv5QiQQ3tK4ClH4N9z7o7GrmEAH+Dd0dBh1Emw94w+WMu+Pl65/thWZbvZGXdunWUK1eOpk2bApCYmIivr6/OrVIEjzzyCNOnT3d3GCKSC5vN/ivcGatJ5rlEJC3jfFKQlm6SlArJ5y6p6fYkwrTZB4WYpv26ybnLBcmH7dwGEzAMe9mF8irP2uZjAYsBFov9kv22ry+cPmuPzVvt3buXatWq8eqrrzrKOnToQM+ePdm7d6/LjnP48GE6d+6MxWKhUaNG1K5dm9jY2BzJSlpaGmlpaU5lvr6++Pv7Y7PZhwJl/e/JvCVWT4ozNDQUE0ip9x6ZFn8C4mPwC0wHQgEICQlx+t+VitL+0NBQp9vFGeeFihK3K5/7dtfCHbfAwrXwn0UmTw5wbQ+LJ71OL8ZT47RYLj3IK9/JypNPPslVV13FnDlzAGjXrp3TbSk4rfgk4l72oVKQkma/JKdCYrJJQiIkpZg0qQ6rfzZJyTDJzLQnFlkMwMcHfLNd/HztyYJx7mI59wNeVhnnygzO18ntPCKukpzi3cMefHx8SE1NJSMjA19f+8dVRkYGqamp+Pj4uOw4/fv3Z8WKFQwaNIi///6bI0eO0KRJkxz15s6dy6xZs5zK+vXrR//+/R234+PjXRZXcfOWWD0hzq1bt7L852Aef68S19VPYdHcp7FYns5Rb8OGDS4/dmxsbKHvu3Xr1lzLiyPOCxUl7iyueu5H9PBh2f+qMXEutL78IFUrZLpkv9l5wus0Pzwtzjp16lyyjoaBiUipYpomGdmHRWXguJ2abk9CziRBghVSzvWIpGXYh0yBvXfC3w8C/ey3y4VBeYs9GSnOxEJyatiwIVu3bmXIkCG0a9cOwzBYu3Ytp06d4uqrr3bZcVq2bMmECROYPXs2AOPGjaNChQo56g0aNIiBAwc6lWXvWYmPjycqKipfvxS6k7fE6klxhpevTtIVv4JfJn8t60DTz7Y5bQ8JCWHDhg20bNkSq9Xq0mMnJCQU+r7lypVzul2ccV6oKHFXq1atSHFeeOxatSBmEDw1Hf7zVQ0WxuR93wsfs0vJ/pgePHiwwLGWFE/6eyooJSsi4jY2m2mfW2Hah1BlXc+al5H9ts2EzEzn2xmZ53pH0uyJR1YPSUam8yV7r4hhgJ8PBPiDvy8EB9qTEx+LcyJiYL8d6G9goiTFHe655x6efPJJ/vzzT/7880/AnowC3HvvvS45xunTp3niiSeIiYkhOjqavXv3Mnz4cOrVq5ejd8Xf3x9/f/+L7s9isXjNFwFvidUT4rRWHAX+1eDANJKP5d0rYbVaSUxMdOmxi9L2vGIpjjgvVJS4sxKUwsaZ27FH9DOZ943J4h/gu00GHW/I/X29sI+L1Wp1++s0Pzzh76mglKyIlFE2m0mm7fyXecd12wW3M00swL9xJhimYw5F1pd/x+1s/5um6UgmsicM6ef+zzi3b6dJ5ufmetgyz835sOWcrJ4l+1yOrLkbPj7gazk/NCvY9/x1HwtYLGUz4XjrlWF0WOyd54G4+eabmThxItOnT+fw4cMAVKlShUcffZTo6GiXHOPAgQOEhobSrl07AOrXr0+zZs3YvHlzrkPBpOzZvteEaiMg7TDETnB3OFJIfr72yfZth5s8/pbJ1rn2Cfji+QqUrPzzzz/06tUrz9sAX331lWsiE5ECyczMZRK4YzI4pKabJKWcmxCeZi/PWjEq0waZpvPtLD4Wk+hG8PNf9onmWYmCwbnJ4TgnEpwrc8zPyPrfAj5Zty3nyy3nyrPq+mTblr2OhmAVzvGj3js3bufOnYSEhDB79mxHj0Z6ejp//fUXO3fupEGDBkU+Rq1atbBaraxfv542bdoQGxvLr7/+SpcuXYq8b/F+pmny2JsmWPxgz9OQecbdIUkR3NzU4O6OJh+vhjcWwTN3uzsiyY8CJSvp6elO4/HS0tKcbuvLhEjxy8gwsaZAYjJYU+D0WZPjCfa5Fxnn5mdk2OzXL+yN8PWxD4HyOdfb4Otj/wz2sWRbUeqC5CBrOFTtKhoOJSVr0qRJ7Nq1i+XLlxMREQHYx6KPGzeOhg0bMnfu3CIfIzQ0lJdffpm3336b8ePHExYWRv/+/bnpppuKvG/xfgvWwA9bgIT1cGy+u8MRF3j1EYOvfzJ58UOTuzpArSr6XPN0+U5Wrr32WiUjIiXINO0rVVlTIDHJvkrV8QQ4dfb83AywJxqB/vaVqAIDzg17OjckqqwOfZLSYd++fURFRTkSFbBPfo2KimLPnj0uO07Lli1p2bKly/YnpcMZq8nod018fCBz1+PuDkdcpEpFgxcegJFvm4x62+SLl/Q56enynay8//77xRmHiFvYz/adcxhTXrLOvZGeYWJkn79hOs/huHAeR9YE8qy5II6hV7bz5Vl1MjJMTp01WbnRJDHZnpSkZ4IF8PeHIH8oHwYBfkpGpHTLyMjgxIkTOZYuPnHiBJmZrl96VCS7mLkmh07AqP7wnx/+dHc44kKP3gZzVsCSH2HlRpMuN+qz1JPlO1lJTU3l1KlTBAYGOv3KBfbVVFJSUihfvjwBAQGujlHkkjIyTEdvQ9bJ+bImddsneJuknZu7kXZuqdqs+RwFOT+SxTC5JgpWbDCxmabjJH9ZmUq2q07l2Vewyrp+MYnJ9ktQgD0x0Rl3pSyqXbs2O3fuZPz48dx1110AfPrpp5w+fZrLL7/czdFJabZtt8m0z6FqRYgZZPAfdayUKr7nJtu3ecw+2f7PayEwQJ+znirfycq8efP44IMPeOaZZ7jtttuctv3www9MnjyZBx54gIcfftjlQYpkT0bOn8DP5IwVziTZJ41nJSMZ535wdUwEP/e/07yMbBeLhXzPxMjqyPD1sa9YBedP8Jd1PWtnhnF+v04Txy1Zk8fzPmpwgMFl5fP/xvmfyY8watz0fNcX8Qa9e/dm6tSprF27lrVr1zrKDcOgd+/e7gtMSjXTNBn2H3uv++uPGoSH6EtsadT6aoP7Opt8+A28ugCeu8/dEUle8p2srF+/Hj8/P3r06JFjW/fu3XnttddYt25dsSQrp06dIiYmhk2bNlG5cmXGjh3LDTfckKPeG2+8wbp16zh16hS1atVi1KhRXHfddS6PRwrPZjMdS9lmnawv+/Xz/59PTqznVrDK6hHJnoz4+djPkeHvB2HB9vNmFGcvRNZk8/AQz5psfvyo556ISqSw+vXrx969e1m8eLHj/CqGYdC/f3/69u3r5uiktPpoFfx3K7S7Fga0d3c0UpymPmLw1X9NJn9kcvetUKea53yuy3n5TlYOHDhAjRo1HOOGnXbi60v16tU5dOiQS4PLMmXKFCpVqsSaNWvYuHEjY8eO5csvvyQ8PNypXmhoKO+88w7Vq1dn7dq1PPnkkyxdupSQkJBiiasss9lMklLsXx6OJ5hkZpo5TsSXnmGSkm4flpWadj7ZyDrPRtYQrUzb+bkdWQzOrVh1bqJ4gD+Eh9iTEl8fvZmIlBVPP/0099xzD9u3bwfgyiuvpGrVqm6OSkqr02dNnppu4usD74wytLBQKXdZeYOXHoJH/2MyfJrJ0lf0fHuifCcrGRkZnD59Os/tCQkJZGRkuCImJ0lJSaxbt46lS5cSGBhI27ZtmT9/PuvXr6d79+5OdYcMGeK43qFDB15//XXi4uK44oorct13WloaaWlpTmW+vr6XPENxbmznJiHYCjABwjTNAtUvSVk9G2np5+aBpEFKuok1Gc4mQ1IKZGTYuLYWrNmUSVpGzinqjoQjazncc9f9fSHI5/yJ/OxL5RbkDSK/0+Fdzzg3+MuguJ83s4DHKGj9/Cu5NnuW0tBuH8Pe/5ff95nCvI9lV1xnRa5ataoSFCkRz31gcvQUPH0nNK6tL65lwdCe8MFyWPY/WPqT+75fSN7ynaxUrVqV2NhY1q5dyy233OK07fvvv+fEiRPUrl3b1fERFxdHaGgokZGRjrIGDRpcctnKgwcPcubMGaKiovKsM3fuXGbNmuVU1q9fP/r371/oeOPj4/NdNzk5mdjY2EIfqyT5ACEGhATDZcHO226s770nnSusqIj9xbr/IL9kakbEFVv9wijuNnsqb253zQgI9i/4+0xB3seyq1OnTqHuJ5JfxdrTEXItXPszpB1k6mNXMnWYtfiOVQDq3Sm4Aj9mYTfANT/Rc1QsWILAllw8gUmh5DtZuemmm9i3bx/jx4+nb9++jvOubNmyhcWLF2MYBq1bt3Z5gMnJyTmGcYWEhJCYmJjnfTIyMoiJieGee+4hNDQ0z3qDBg1i4MCBTmVF7VmJiorK96+LQUFB1KpVK0d5eoa9ByMxGazJcOqsycmz9nkbGdmWuL1w6FQWI/tZwy/4e73Un69h2M/X4ed7bv6HH/jm0ethYCMqYj/xp2tgUjy/qHqakmpzcnoQcadrFlv9giiLzzOUjnYfPWmSlJb7+0xubDYb8fHxBXofEykdDKj/Lhg+sPsJsHlGoiIl5OwvcHg2VB0CUc9A7PPujkiyyXeycs8997B8+XISEhJYsGABCxYscGwzTZOIiIgcX/xdISgoCKvV+U3DarUSFBSUa33TNImJiaF8+fJOw8Jy4+/vX6jE5GIsFku+P+QNwyAt3XAsU3s2yeTYaTidaJB8bugV2CeMBwVAcJB9QnnWalIldY6NS3WKmli89stcYRV/m40C7r+g9QuuLD7P4N3tzjy3vHZBE4+CvI+JlApVBkN4Czj5DZz4wt3RiDvsexYib4MaT8HRjyH5X3dHJOfk+9MoMjKSt99+m2rVqmGaptOlWrVqTJs2zWmolqvUrFmTxMREjh8/7ijbuXMndevWzbX+1KlTOXbsGC+++KJHf9hmZpqcSDBZ+j+TFRtN1mw22fQ3HD5p792oGA51qkLdagZRlxlEljMICTTw9zPw9TF0MkARERFX8IuE2pPBlgK7h7s7GnGXjJOwdyxY/KHe2+6ORrLJd88KwBVXXMHnn3/Oxo0b2bt3L6ZpUrduXW688cZcVwlzheDgYKKjo5k5cyajR4/m559/Zvfu3URHR+eoO3PmTP744w/ef/99l/eYuFp6hn2VLJvNftIpnfRPSpLOy+Kd9LyJFIPar4BfBYidCCm73R2NuNORD6HyICjfASoNgGMLLn0fKXYF7nrw9fWldevW3HPPPdx77720bt0aX19fDh8+zOzZs4sjRsaOHcuRI0do3749b731Fi+//DLh4eGsXLnSaTL8rFmz2LdvH126dKFNmza0adOGlStXFktMrhIUoERFSp7Oy+Kd9LyJuFh4a6gyCJJ3wf6p7o5G3M6EXY+BmQF1XwOf8EvfRYpdkbpDUlJSWLNmDcuWLWPz5s0ADB482CWBZVe+fHmmTZuWo7xLly506dLFcXvTpk0uP7aIiIiUQoaffVI9wK7H7cPARJK2wYFpUOMJqP0i7B7h7ojKvEIlK1u2bGHp0qWsWbOG5GT78m6maXr0HBERd9LwHRERD1N9JIQ0gWML4fRqd0cjniQ2Bir1g6rD4MhHkKgfw90p38nK4cOHWbZsGcuWLePgQftQBPPc2rmGYfDUU0/Rrl274olSxMtp+I6IiAcJqAU1n4eMM7BntLujEU9js9p7VBp/AQ2mw5YbgUx3R1Vm5bsrpGfPnrz//vscOHAA0zRp2LAho0aNIjjYfobA/v37U6lSpWILVOy/zouIiOvNmzePbt26ER0dzV133cXZs2fdHZIUp3rTwCcYYsdD2iF3RyOe6MRXcGIphF4H1fT9y53y3bNimiaGYdC4cWOee+456tevD5DjDPBSfPTrvIiI6y1YsID//e9/zJ49mypVqrB7926PX1FSiqBiH6jYHc5ugoManisXsXs4RNwCtV6E40sg7YC7IyqTCjzJ5K+//uLxxx/nrbfeYufOncURk4iISInIzMxk7ty5jB8/nqpVq2IYBvXr1ycgIMDdoUlx8AmHem+BmQk7HwZs7o5IPFlqHMS9AL7nXjfiFvnuWXnuuedYtmwZv//+O8ePH2f+/PnMnz/f0eOyZ8+ePE/UKCIi4omOHj1Kamoq3333HQsWLCA0NJS77rqLvn375qiblpZGWlqaU5mvry/+/v7YbPYvvVn/ezJviTW3OENDQ4u0z9QaU0gPqIbf0XcIMHZCEfeXJSQkxOl/T1WScRbl9eVJj6d5ejbJSQOxRd5GYPX++CascNqePVZP/pvy1L/7/CzOle9kpWfPnvTs2ZODBw+ydOlSVqxY4ZhoDzBgwABq1qzJ4sWLCxetiIhICTt69CiJiYns37+fr7/+mgMHDjBs2DBq165N8+bNnerOnTs3x9Dnfv36OZ3vKz4+vkTidgVviTV7nFu3bi30frbs8qfvpCpUq5DBqpk9CQns4YrwnGzYsMHl+ywOJRFnbGxsoe+bFZ+nPJ5/7Panz4smEc0+YtXLBwkLMnPU2bBhQ5HaXFI87e++Tp06l6xT4KWLq1WrxtChQxk6dCibNm1i6dKlfP/99yQnJxMXF1eoQEVERNwha7jXkCFDCAwMpF69enTt2pWffvopR7IyaNAgBg4c6FSWvWclPj6eqKgoj1/G31tizS3OcuXKFWpfJr4kN/oBM6gqJ3+5i5Y3rHJlqISEhLBhwwZatmyJ1Wp16b5dqSTjTEhIKPR9q1Wr5nGPp2/1KRw2H6Z5nxUEHBjjKM/+mGb/Ed/TeMvffW6KdFLI5s2b07x5c8aOHcu3337L8uXLXRWXiIhIsatVqxZ+fn75quvv73/JifcWi8Vrvgh4S6zZ40xMTCzcTqLGQtBVcGwxKQc/d2F0zqxWa+FjLEElEWdRXltZCYpHPZ67xkC5bqRXGkL6wQ/h7C9Om61Wq9f9PXkLl0QbFBREz549mTlzpit2JyIiUiKCgoJo3749H3zwAWlpaezbt4+VK1fSqlUrd4cmrhLUEGo+B+mn7Ks7iRRGZiLsehwMCzR4H4z8/cghReddqZWIiIiLjRkzhtOnT9OhQwcef/xxBg8enGMImHgrAxrMBEsg7H0K0o+4OyDxZieXwrFFEHIVRI25dH1xiSINAxMREfF2YWFhvPrqq+4OQ4pDlSFQLhpOr4Ejc90djZQGu0dARAeIehaOfw541oT10kg9KyIiIlL6+NeAOq9AZjLs1BnIxUXSj8Ke0WDxhwbvY+qrdLHTIywiIiKlT4MZ9pP5xU6AlN3ujkZKk6P/B6dWQ/hNpFca4u5oSj0lKyJySePHj3d3CCIi+XfZvVChC5z5GQ78x93RSGm082HITCSt2gT2HdGsiuKkZEVELunIEU1KFREv4VcF6r4BtlTY+SDgWWfsllIiNRb2jgFLMGM/qIiJ4e6ISi0lKyIiIlJ61H8P/MpD3AuQ9Je7o5HS7NBMfM6u55d/AkmPfNDd0ZRaSlZERESkdKg0ECJ7QeJm2P+au6ORUs8kIO5xgvxtpFWbyJ6DprsDKpWUrIiIiIj3868O9afZh3/9MwjMDHdHJGWAJW0fT/c/DT6hDHrZxGZTwuJqSlZERETE+zWYBb4R9tW/kv50dzRlnmEYhb54m3van8Xn7HrW/wFvfubuaEofJSsiIiLi3ao8BBU6wZkNsP91d0cjZYzFAgGxwwgLhnGzTHbsU++KKylZEREREe8VWAfqvgaZSfDvILT6l7iDJT2eaSMMUtPg3pdM0jOUsLiKVyQrp06dYsSIEbRq1Yo+ffrwyy+/5FovJSWF5557jujoaLp168Y333xTwpGKiIhIyfGBy/8PfELty8gm73R3QFKG3dcZeraC3/6BSf+nZMVVvCJZmTJlCpUqVWLNmjUMHz6csWPHcubMmRz1Zs6cSUJCAitWrGDy5Mm88sorxMbGuiFiERERKXY1n4Hwm+DkN3DoPXdHI2WcYRi8/5RBpQiY9H/wv21KWFzB40+5mZSUxLp161i6dCmBgYG0bduW+fPns379erp37+5Ud8WKFbz++uuEhoZyzTXXEB0dzerVq3nooYdy3XdaWhppaWlOZb6+vvj7+xc4zqZNm/LPP/9QvXr1fNU3TTh58hT3965OfueSnT1zits7VitwbMXJx8gk0/RxdxhFYk08Q0hoeL7rF6bNBX3uPK1+4pmT9OlYI9/1SwtPe30X9Hmz2cB69hRVq1bN930iIiLYtm1bYcLDYvGK37+ktAi7AWo+B+nH4F+d40I8Q+UKBnOfge5jTAa+aPLHXAgP8b5FAzyJxycrcXFxhIaGEhkZ6Shr0KABe/bscap35swZTpw4Qf369R1lDRs2ZPv27Xnue+7cucyaNcuprF+/fvTv37/Acaanp2OxWMjMzMz3fXx8DHwtBahvMfAx8l8f4OzZs4SFhXlt/ZI4hoGtQI9rYdpQ0OfO0+pbLBa99jygfoGfZx/7+0xB3pcA4uPjC1Q/S506dQp1P5ECs4TYh38ZvrBzKKQfdndEIg7dWhoM623y3pfw2Jsm//eskpWi8PhkJTk5mZCQEKeykJAQEhMTncqSkpLw8fEhMDDQqV5SUlKe+x40aBADBw50Kitsz8q2bduIj48nKioqX78upqSarPzZJMAPwoKL70U8bmRvJr/5ZbHUN7DxwlNdeP7VlZj5HFFY0HgKc5/CHCO/CtNmb2dgIypiP/GnaxSozcX9vBV3/ZJ4fRfnaxXg6EmTChHQ7tr8xW+z2Qr0PibiNvXfhqAGcGg2nPjK3dGI5PDqMIPvt5h8tAq6tDC5s4MSlsLy+GQlKCgIq9XqVGa1WgkKCnIqCw4OJjMzk5SUFEfCYrVaCQ4OznPf/v7+hUpMLsZiseTrQ95iMbGZJjYTTIrzBWwU8Et1QeuDiaUA9yn4/kuiDQVVsDaXDgVvc3E/byXzuije13fxvlYzTRPTLPjwrPy+j4m4RaWBUPk+SPoL9oxydzQiuQoONPjkeWjxsMnQ10xuuALqVVfCUhge/2lUs2ZNEhMTOX78uKNs586d1K1b16leeHg4FStWZNeuXY6yf//9N0c9ERGRC23dupXrr7+eefPmuTsUuZjA+lD/XbClwN93gS3v0RMi7ta0gcGrjxicTYI7YkxS0zThvjA8PlkJDg4mOjqamTNnkpKSwrp169i9ezfR0dE56nbt2pXZs2djtVrZtm0b69ev59Zbb3VD1J4j8jLPmpAvIuJpbDYbb7zxBo0bN3Z3KHIRqWkmNPoEfMNgz2iwbnV3SCKX9Pjt0Ku1fTnjsTOVrBSGxw8DAxg7diwTJkygffv2VK5cmZdffpnw8HBWrlzJ3LlzWbRoEQBDhw5l0qRJdO7cmfDwcMaOHUvt2rXdG7ybjRo33d0hiIh4tC+++IImTZrkmAt5oYutIGmz2U9EmPW/J/OWWC+Mc/S7QFgzfE4vJfDsxxihoW6MzlnW3NoL59h6GsXpetljzetvavbTsPlfePMzuLmpjZ6tSjJCO0/9u8/PkGOvSFbKly/PtGnTcpR36dKFLl26OG4HBgYyadKkkgxNRES8WEJCAp9++ilz587ljTfeuGjd/KwgWdiV1NzBW2KNj49n6cZg3l1SiRqRGSx9rynlQjyzV2XDhg3uDiFfFKfrbdiw4aLn9ntjSAADJlfmvpdsfD3xMDUvyyjB6M7ztL/7/Kwi6RXJioiISHF49913ufPOOwkPv/S5li62gqQ3raTmLbFmxZloi2LcXAv+fnDiv+1p0/J3d4eWQ0hICBs2bKBly5Y5FgXyJIrT9QoSq89lj3Gm+kvc8uhxgv7tiGGmuCyOhISEi273lr/73ChZERGRMunvv/9m+/btjBkzJl/187OCpDetpOYNsSalGgyYbMGaAjOfNBja67/uDumirFbrJYcTegLF6Xr5ijXxFQhohi2yD9Yqk2HnEJcdP79/y97wd38hJSsiIlImbd68mbi4OLp27QpAYmIiPj4+7N+/n/Hjx7s5OjFNGPtBRXbsg3s6wUM9YKi7gxIpvIwBZAAAJFRJREFUqn8fgOAmUOVBOLMRjsxxd0QeT8mKiIiUSX369KFjx46O26+//jpRUVHcc889boxKsry2AJb9HMI19WD6EwaGoXNUSCmQeRb+6gtNN0D9dyBpO5z92d1ReTTv6gcSERFxkcDAQCIjIx2XgIAAgoODCQsLc3doZd43P5s88z5EhGTy+SQICVKiIqVI0nb4dzBYAuCKxeBf1d0ReTT1rIgUUOXKld0dgogUg5iYGHeHIMCu/SZ3TjQxDHj70ePUqar3XCmFji+CuKuh5jP2hGXrLWCmujsqj6SeFZEC0vLYIiLF49RZk+5jTU4nwtSHodWVrlstScTjxD4PJ5ZD+I1Q/z13R+OxlKyIiIiI26VnmPR73uSfOBjUFUb2c3dEIsXNBv/cDUl/QZX7ocbT7g7IIylZEREREbcyTZPH/mOy5je4uSnMGG2g+fRSJmSege09If0Y1HkZIpWlX0jJioiIiLjVGwvh/aVQvzp8/qKBv58yFSlDUvbAjj5gS4XL50FYC3dH5FGUrIiIiIjbfPqdyZPvmZQPg2VTDCqWU6IiZdCZ/9nPwWIJhMZfQmB9d0fkMZSsiIi4SeRl1dwdgohbrfnN5L7JJoH+sPQVg8trKlGRMuzYAtg7DvwvgyYrwU8r4YGSFRERtxk1brq7QxApMMMwCn3J7o9dJrc9a5Jpg08nGLS6SomKCPunwMF3IKguNFkBPuHFfkhX/U0XFyUrIiIuop4Skfz5N96k42iTs0nw3iiD3m2UqIg47B4FxxZBaFNo/IV9aFgZpmRFRMRF1FMicmmxh006jDI5egpeeNBgaC8lKiLObPDPfXB6DUS0gys+A8PP3UG5jZIVERERKRGHjpu0H2USfxSeuhPG3+vuiEQ8lJkG22+zT7yv0BUafQL4uDsqt1CyIiIiIsXPrzLtR5nsPgCP9IYpD5fcmHcRr2Szwp/d4OwmiOxjX9a4DH51L3stFpESUdD5G5rvIVKK+VWBq9fwVyzc3wXeGalERSRfMs/An13Aug0uuwsu/5Cy1sOiZEVEikVB529ovodIKeVfDa5eC8FX8EBX+GCMgcWiREUk3zJOwrZbwbrVnrA0mg+Gr7ujKjFKVkRERKR4BNSGq7+H4Mvh0CxmPa1ERaRQ0o/B1g6QuAUq9YNGi8Dwd3dUJULJioiIiLhe8JVwzY8QVB8Ovge7HlGiIlIUGSfsPSxnf4XIXnDlUvAJdXdUxU7JipulZ4Bpmu4Oo9AqV/a8s6tq7oOIiJuFtYCrf4CAahA3CXY/DnjvZ52Ix8g4Bds6wunvoXwHuGoN+FVyd1TFyuOTle3bt3PnnXfSqlUrhgwZwqFDh3Ktd/LkScaOHUvHjh255ZZbGDVqFIcPHy7haPPP1wfKhUBqOuw7DHsOmsQdMTl22iQx2SQz0zve1CdNmuTuEHLQ3AcRya+0tDQmTpxI165dufnmmxkyZAi7du1yd1jerUJPuOpb8KtgP7ld7AR3RyRSumSesa8SdvwLCGsOV69n9wHv+N5YGB6drKSlpfH0008zYMAA1q5dS5MmTXj++edzrZucnEzTpk1ZtGgRq1atokaNGkycOLGEI84/X1+DW64z6NbSoOP1Bq2uMmgYBUEBYE2B+GP2BGbvIZPDJ00SrCZpGaZX98KAej1ExLNkZmZSvXp15s6dy9q1a4mOjmb06NHuDst7VXscGn9uP4HdP/fBwWnujkikdDJT4a874ND7ENyQGx82+Wmbd39HzItHLyXw22+/ERQURK9evQB46KGH6NChA4cOHaJq1apOdatXr86AAQMct/v168fdd9990f2npaWRlpbmVObr64u/f8EnLNlsNqf/88NigbBg+yWLaZokpdgTlsQkSEgyOZkAZ5Ph+GnIyMi7I904t0+LBSwG+BjnCgsgLcPkjDUTP1/sF5+8d2Bgc/o/P54Y9y4UoL6dWaBjFKfCtNnbeW6bC/q6KFh9z213/vkYJoYB+X1bKsz7WHYWi0f//pWroKAgBg8e7Lh9xx138NZbb3H69GkiIiKc6l7sM6Ooj11JKmqsoaE5x8ib+JBWfTLplz0MGacJ3DsQ36T/wgV1C3LM3OLM7dieICQkxOl/T6U4Xc/dsZqHnyLdPMhxYrhlpMnsp00G3pqz3sX+7ovyd1XU97z8fG54dLKyZ88e6tev77gdFBREjRo12LNnT45k5UJbt26lbt26F60zd+5cZs2a5VTWr18/+vfvX+iY4+PjC33fC/kAFfyhQgkORSwXlMxV1QvWhqiI/cUUjV2QXzI1I+KK9RgFVdxt9kSe1uaCvi4K+zrytHYXRM0I+/+xsQW7X2Hfx+rUqVOo+3mSrVu3UqFChRyJCuTvM8OVnwHFrbCxbt261en2ybMWHn8vkg07goiqlM6cJ6zUq/ZerveNLeiL8YI4Lzy2p9mwYYO7Q8gXxel67o51xa/HGD2zIve+ZOF/vycwuu9pfHLJA3L7uy/K31Vh/qazy8/nhkcnK8nJyTky1ZCQEJKTky96v8OHD/P222/zwgsvXLTeoEGDGDhwoFNZUXpW4uPjiYqK8spfF7MEBQVRrXpNUtPs82lS0yE1DVLSISnZ5EwyWJMhPd3e5uZ1D/DTv9XJtDm32cdy/mLJuu5zvszXJ6v80l0/yelBxJ2uWVxNLhADG1ER+4k/XQPTs0dRuoyntrmgr4uC1s/qUfG0dhfE0ZMmFSKg3bX5i7+0vI8VVmJiIpMnT2bYsGG5br/YZ4Y3PXZFjbVcuXKO65lBV5NS52PMgCB8zq7n5Lb7uW31iTzvm5CQUKQ4sx/bk4SEhLBhwwZatmyJ1Wp1dzh5Upyu5ymxJiQk0OxKuP05mLG8HLuOlGP+eIiMsG+/2N99Uf6uCvI3XVhuTVYeffRRtmzZkuu2Bx54gKCgoBxPvNVqJSgoKM99JiQkMHz4cAYNGkSLFi0uenx/f/9CJSYXY7FYPP6D6mIMwyDA34eAizwsNptJajokpxgknISbm/qQabOQkQkZmZCeYTqSnKyEJy3dvi01DTJt9uuZNvvwlAuHtflkS258fSAtAxJTDPx97bc94azHJhav/QJbWJ7XZqOA8RS0vp3ntTv/Mk0T0yz48Cxvfx8rjNTUVEaPHk3r1q0dQ48vlJ/PDG967Aoba2Jiov1KlcFQ903wCYIDb5K552msZF7ymEWJ03FsD2W1Wj0+RlCcxcHdsVosFm68En6bZdJ/gsl3m+CGh2HxCwbNGxlO9S78OyxK3CXxfufWZOXdd9+96PYNGzawZMkSx+3k5GT279+f5/CupKQkRowYwc033+w0f0Vcy2IxCAqAAD97slK90oUn+cqZTJimSWYmpJ9LaOxJTc7r6RmQmm6Skgop55IdgLNJ5xMe+9wD8PUFf1/w97PPr/H3Az8PSWak+GmxBnGVjIwMxo0bR6VKlRg5cqS7w/F8PmFQfwZcNgAyrfaJ9Ec/dndUIgJUqWiw5k148l2TaZ/DTcNMXh4CI/q6O7LC8+hhYM2aNSM5OZmlS5fSqVMnPvjgAxo3bpzrfJX09HSeeuop6taty6OPPuqGaOViDMPA19eeYOSjttOt6RUMetxkkJKG45KcanI2Cc5Y7YsRWFPg1Fl7MpO1YpphgGk6D0VzDEm7oCy/6Y3FsO87OdXEzNYnlJUfGdmuY5zfr8U4dxwlUi6jJarFVV566SVSU1OZMmWK/kYvYeN2E679FYIagHUb/H0nJP3l7rBEJBs/X4O3Rhi0ucZk8FSTJ98z+XYTvHC3hVruDq4QPDpZ8ff3Z+rUqbz44ou88sorNG7c2GkeyuTJkwEYN24cW7du5eeffyYwMJBvv/3WUeezzz6jSpUqJR67uI5hQEiQQYjT6L/zXygyzg07y0pkUtMh09GDY5KWYe+VSUu3DylLy7D34Nhs9rk3BTmlTdbiaGet9vuZ5vlhbKbjnwvKz9WzmTlPAJqVUGVd97HY//f1gUB/zvVgKckRKS6HDh1i6dKlBAQE0K5dO0f5tGnTuPbaa90YmWdJSzeZOM/klfnYE5VDs2HPSLBdfA6piLhP37YGzS+Hu14wWfUL/PpXNd4bDXfc4u7ICsajkxWAK6+8kgULFuS6bdy4cY7rzZo1Y9OmTSUVVqlVvXp1d4dQYL6+9l6bkFynMuX+Jd9mM8m02ZOaTNv5hOFSbDaDE8egUwsDw2I47peVkIA9ScleDvZEJetYWXN1sq5nZtq3p2eYpJ9LpJJS7b1GJ87Y5/mYmPj52JOXIH8IDADfiywrLa5RuXJld4cgxaxq1ar67LiEzf+YPDDF5I9dcFl5OPrf2+Dk1+4OS0TyoXZVg3Vvw6QPTSZ/bGFADHyxzsa7owwiI7zje4THJytSsqZPLxtDaywWA4vFPtelIGw2gxNAaPCF83RcwXl/6Rkm1mRIPHc5nWhyPAGSUuxJTEamicVi73kJCrDP1/E9twiBj4acucSkSZOIO+3uKETcIzHJ5Pk5Jm8ttv/A0icaZjxpcFl5JSoi3sTP12DCIJPmdQ8zbl5VFn0PazabvPoI3N/F3dFdmpIVEQ/l52sQEQYRYVklhvNJQ5PhbJLJ8dOQYLX3xmQknVtpLROnOTUWiz2ZyVphzc/n/Hwdi9NcHiU4ImWdaZosWQ+j3jGJOwJVK8K0EQa336wfQUS8WZPaafwyE16eD6/MhwdeMZm7Agi+EpK2uzu8PClZEY/njUPTioth2OfuhATZh2Nk9cZkZJikZ9rn5aRnm5eTlm5fgS051SQpFZJT7PN67KuunRuOZp4fimaz5RwP52MxqRkBcUdNMm2mo/8nt+8sFy40YBj2xQWMcwsMZL9uGPY5QEb28mzb7GX6YiRSkv7YZTLybZMfttj/Dh/pDS8PMSgXqr9FkdIgwB9eeNDCXR1Mhr1h8v0W4LotcHgWxE6A9OPuDjEHJSvi8crK0LSiyJq3ExSQV43zXzRM03QsGZ21EEHW/JmsMufb9vteWfvc/Tk/RydrUYGs645yE2xkX+jg3P4yspIi+/+p5/43bfb65rnbWWVmjrPwXNCqc4sRZF2yn5/H99zJR300t0fkkuKOmMTMNfnwG/vfZ6ur4K3hBs0u19+PSGnUqJZ9ieNPvoW7nzsIVR+GSndC/Mtw8B2PWjxDyYpIGWMYBn6++Z+vY7MZxMZC0wZFP9mdee4khVkLDGRPXGzZFh/IXn6+1+fc7Wx10tJNklMh+dx5ebJ6lJJTsydi9oTHmmKy56BpPyePr/3XJX9f+5wfJTRSVh05afLyxybTv7L3xNaqAlOGGvS/RT2bIqWdYRgM7Ah3d7kCqj8BUWOgzitQfSTET4ZDs8BMc3eYSlZEpOQYhuEYBuaaNx/nL1M22/kV1dIvONno/HCDG66wr7J2Jsm+UMEZ67mlrm1ZZ3q3n1w0wA8C/UyIgAybicUw9cVNSpUDx314bQnMWWGSkmYfVjr+XoMhPSDAX691kTLFlgzxL8HhD6DmM1BlCNSbBjWehv1vwOHZYLO6LTwlKyJSalgsBgH+9l6TC4UEQZO653uG0jPMcycYPX+OnsQkkzNJ55MYgMMnsq47nwTUL2voWfZFC3zOz7cha94N5+fvKOGR7Ir6erjwvE358ds/Jm9+BgvWVCcjEypFwPP3Gzzex77KYXErSJtDQ0PZunUr5cqVIzExsRijEhEA0g/D7hGw/3WIehYq3wv13oCa4+HQu3Bwhr1OCVOyIiJlkp+vfThcWHD2UvsXKdM0SU4xOHIYbr3eICPTcFqwICX13PCzc8lO1rlxMjLPzd2x5Zzbc+EcHAOcZuRceDs3BucXJHCs5macX83twtsZmUV/nMT7paaZLPkR3vnC5Kdt9rKqFTIZM9CXh3oYBAcqiRaRbFLjYNdQiHvRPiSs6kNQ8zmoMRaOf25PXM78r8TCUbIiImVCQVaVMwyDwAD7F7jIcrmdU8f5dtZqbOkZ9vk0WYlK1nXbuROP2rIvQGA618m+OEH2+2TflmkzHcPa0jMhPf389YxM+30ysub32OyJjb/e5cusP/eYzFlh8n+r4ESCvazllfD47dCs1gHq16tVDOeLEpFSI20/7H3SPkSsyoNQdRhcNsB+SdoBh+dy5KRJ5QrF+z6ijzERKROKc1W5S6/G5ip5fyCYpum0klumzb7IQG5D4qT0ijtismANzP/WZOtue1loEDzUAx7qbnD9FQY2m43YWPfGKSJeJOMU7H/NPn+lYg/7nJbyHaHuq9S43WRhDPS5ufgSFiUrIiKlgGHYEya9qZctpmmyYx98+SMs+dHkt3/s5YYBba+Fu281uOOWkpmPIiKlnQ1OfGW/+NeAyvdQL3oSNzUp3qPqc01ERMSb+JaHcjcz9FUb3/wCcUfOb2rRGPrebDCgPdS4TAmKiBSTtP0Q/zJ/ffRSsS8eo2RFRETEk/lXhbCWEH4TRLSFkGvAsPD+Ugj0h84toHtLg95toHolJSgiUnJKYpVLJSsiIiKewu8yezISeh2ENYPQZhBY+/x20wbWP+D0D6z45AnaXgtBAUpQRKT0UrIiIiJSwg4dNyGiPQQ1hOBGEHwFBF8F/pc5V8xMgoR1cGYDnNkIZ/5rn+wKdLlxtBsiFxEpWUpWRESkTDt16hQxMTFs2rSJypUrM3bsWG644YZiPebQ10y4arVzYfoJOP0DWLdB4hZI/A2S/gJ0whwRKbuUrIiISJk2ZcoUKlWqxJo1a9i4cSNjx47lyy+/JDw8vNiO2au1wdLP3oLkfyDpb/vFDWeGFhHxdBZ3ByAiIuIuSUlJrFu3jocffpjAwEDatm1LvXr1WL9+fbEe98HuBuwZBYdmQMIPSlRERPKgnhURESmz4uLiCA0NJTIy0lHWoEED9uzZk6NuWloaaWlpTmW+vr74+/tjs9kAHP/nR2hoaCGjpsDHyu1+hb1/UePOr5CQEKf/PZm3xKo4Xc9TYr3U3/PF/u6L8jdd2PeRLBbLpftNDNM0zSIdRURExEtt2bKFiRMn8uWXXzrK3n33XRITExkzZoxT3ZkzZzJr1iynsoceeoihQ4eWRKgiImWSelZERKTMCgoKwmq1OpVZrVaCgoJy1B00aBADBw50KvP39y/W+EREyjrNWRERkTKrZs2aJCYmcvz4cUfZzp07qVu3bo66/v7+hIaGOl2UrIiIFC8lKyIiUmYFBwcTHR3NzJkzSUlJYd26dezevZvo6Gh3hyYiImjOioiIlHGnTp1iwoQJ/Pbbb1SuXJkxY8bQokULd4clIiIoWREREREREQ+lYWAiIiIiIuKRlKyIiIiIiIhHUrIiIiIiIiIeScmKiIiIiIh4JCUrIiIiIiLikZSsuMCpU6cYMWIErVq1ok+fPvzyyy/uDqnYDRkyhJtuuok2bdrQpk0bhg8f7u6QXG7mzJn069eP66+/nlWrVjltmzdvHh06dOCWW27hrbfeorQsqpdXm5cuXUqLFi0cz3ebNm04fPiwGyN1nbS0NCZOnEjXrl25+eabGTJkCLt27XJsL43P9cXaXJqf6+I2b948mjdvzrZt2xxlKSkpPPfcc0RHR9OtWze++eYbt8WXlJTEgw8+SPv27WnXrh2PPPII+/bt87hY9+3bx8iRI2nfvj0dOnTgueee48yZMx4XJ0BGRgZPPfUUXbp0oXnz5k4nFwXPitVTv6t4y2ett31WvPTSS3Tq1Imbb76ZO+64gx9//NGxzdNivSRTimzMmDHmiy++aCYnJ5vff/+92a5dOzMhIcHdYRWrhx56yPzmm2/cHUaxWr58ublhwwbzvvvuc2rrjz/+aHbr1s2Mj483jx07Zvbt29f88ssv3Rip6+TV5q+//tp87LHH3BhZ8UlKSjJnzZplHj582MzIyDA/+ugjs2fPnqZplt7n+mJtLs3PdXE6cuSIeccdd5gdO3Y0t27d6ih/8803zccff9w8e/as+fvvv5s333yzuW/fPrfEmJ6ebu7Zs8fMzMw0MzMzzYULF5r33nuvx8W6bds2c+nSpebZs2fNpKQkc8yYMebEiRM9Lk7TtD+mn3zyibl161azWbNm5rFjx5y2e1KsnvpdxVs+a73ts2Lv3r1mamqqaZqm+eeff5o333yzmZCQ4JGxXop6VoooKSmJdevW8fDDDxMYGEjbtm2pV68e69evd3doUkRdu3blxhtvxN/f36l8xYoV9O3blxo1ahAZGcndd9/NypUr3RSla+XV5tIsKCiIwYMHU7lyZXx8fLjjjjs4ePAgp0+fLrXP9cXaLIXzn//8h6FDh+b6fjFkyBBCQ0O55ppriI6OZvXq1W6J0dfXlzp16mCxWDBNE4vFwsGDBz0u1iZNmtC9e3dCQ0MJCgqid+/ebN++3ePiBPtjeuedd3LVVVflut1TYvXk7yre8lnrbZ8VtWvXdjymhmGQlpbG8ePHPTLWS1GyUkRxcXGEhoYSGRnpKGvQoAF79uxxY1Ql49VXX6VDhw4MGzaMnTt3ujucErN3717q16/vuN2wYcMy8Xz/8ccftG/fnn79+rF48WJ3h1Nstm7dSoUKFYiIiCgzz3X2NkPZea5dZdOmTSQkJNCuXTun8jNnznDixAmPew0NGDCAm266ialTp3LfffcBnhsr2F+fdevWBTw7zgt5Uqze+F3F099/veGz4pVXXqFVq1bce++9tGzZkrp163psrBfj6+4AvF1ycjIhISFOZSEhISQmJropopIxfPhw6tati8ViYeHChYwYMYLFixcTHBzs7tCKXVJSEqGhoY7bISEhJCUluTGi4nfdddexYMECqlSpwo4dO3jyySepWLFiji9n3i4xMZHJkyczbNgwoGw81xe2uaw8166SkZHBG2+8wQsvvJBjW1JSEj4+PgQGBjrKPOE1tGDBAlJSUli5ciWVKlUCPDfWf/75h4ULF/L+++8DnhtnbjwpVm/8ruLJ77/e8lkxduxYnnrqKTZt2uSYX+OpsV6MkpUiCgoKwmq1OpVZrVaCgoLcFFHJaNKkieP6fffdx9dff8327du5/vrr3RhVyQgODnZ6g7daraU+SatevbrjepMmTRgwYADff/99qfoCm5qayujRo2ndujW9evUCSv9znVuby8JzXRCPPvooW7ZsyXXbAw88QEhICE2bNnX6pTJLcHAwmZmZpKSkOL6wFudr6FKxDh482HE7MDCQ3r1707lzZz777LMSjTW/cR44cIAnnniC5557jnr16gGe/ZheqKRjvRhv/K7iqe+/3vZZ4ePjQ4sWLfj000+pW7euR8eaFyUrRVSzZk0SExM5fvy4o3t1586djhdwWWGxlJ0RhXXq1GHXrl20bt0agH///dcxRKGsMAzD3SG4VEZGBuPGjaNSpUqMHDnSUV6an+u82nyh0vZcF9S777570e2jR49my5YtrFmzBrCvuDRy5EhGjBhBz549qVixIrt27XL8wFOcr6FLxXoh0zRJSkri+PHj1K1bt8RizU+cx48f59FHH+XBBx+kbdu2jvLw8HCPfkyzK+lYL8Ybv6t44vuvN39W2Gw29u/f7xWxXqjsfMMsJsHBwURHRzNz5kxSUlJYt24du3fvJjo62t2hFZuzZ8+yceNG0tLSSE9PZ/78+Zw5c4YrrrjC3aG5VEZGBqmpqZim6bhus9no2rUrn3/+OQcOHOD48ePMnz+fLl26uDtcl8irzf/73/84deoUAH///TcLFy6kTZs2bo7WdV566SVSU1OJiYlx+nJemp/rvNpc2p9rV4uJiWHRokXMnz+f+fPnU6lSJSZOnEjHjh0B+2to9uzZWK1Wtm3bxvr167n11lvdEuu///7L5s2bSU9PJzk5mXfffZewsDBq1qzpUbEmJiby+OOP061bN/r06ZNju6fEmSUtLY3U1FQA0tPTHdfBc2L15O8q3vRZ6y2fFUlJSaxcuZKkpCQyMjJYs2YNv/32G9dee63HxZofhml6+uLKnu/UqVNMmDCB3377jcqVKzNmzBhatGjh7rCKzalTpxg+fDj79u3Dz8+Phg0bMnLkSBo1auTu0FwqJiaGZcuWOZXNmDGD5s2bM3fuXD7++GNsNhu9e/dm+PDhpeIX6Lza/OOPP7JixQpSUlKoVKkS/fv3Z8CAAW6K0rUOHTpEjx49CAgIcOohnDZtGtdee22pfK4v1uYffvih1D7XJaFHjx5MnjzZsTpUSkoKkyZNYt26dYSHh/P444/TuXNnt8S2Y8cOJk2axP79+/Hz86Nx48YMHz6cBg0aeFSsy5YtIyYmJscQpazzRHhKnFl69OjBoUOHnMo2bdoEeFasnvpdxVs+a73psyI5OZlRo0bx999/Y5omUVFRPPjgg47hvJ4Ua34oWREREREREY+kYWAiIiIiIuKRlKyIiIiIiIhHUrIiIiIiIiIeScmKiIiIiIh4JCUrIiIiIiLikZSsiIiIiIiIR1KyIiIiIiIiHknJioiIiIiIeCQlKyJu1qNHD5o3b87MmTPdHYqIiHi5pUuX0rx5c5o3b+7uUERcQsmKiIiIiIh4JCUrIiIiIiLikXzdHYCInJecnMz48ePZuXMnJ0+eJDMzkypVqtCpUycefPBB/Pz8AEhLS+O1115j1apV+Pv7069fPw4cOMDy5cupWrUqS5cudXNLRESkIF566SWWLFlCw4YN+eSTTxzlQ4YMYfPmzXTs2JErrriClStXcvjwYaxWK+Hh4TRt2pTHHnuMWrVq5bnvrH10796dmJgYAGbOnMmsWbOcPjNsNhsLFy5kyZIl7N+/n4CAAG644QaGDx9O9erVi7X9InlRz4qIB0lNTWXdunWkpqZSs2ZNKlSoQHx8PLNnz+a9995z1Hv33Xf54osvsFqtBAcH8+mnn7J27Vo3Ri4iIkXRvXt3AP7991/27dsHwLFjx/j9998d23/77Tfi4+OpWLEitWvX5syZM3z//fcMGzaM1NTUIscwdepUXn/9dfbs2UONGjWwWCysWbOGBx54gJMnTxZ5/yKFoWRFxIOEhISwaNEiVq1axSeffMLy5cvp0qULAKtXrwbsvS+fffYZAB06dOCrr77iiy++cPS6iIiI97nmmmuoWbMmAN9++y0A3333HTabjUqVKtGiRQsef/xxvv/+ez777DMWLlzItGnTADhy5Ah//PFHkY5/4MABPv/8cwBiYmJYtGgRS5cupXLlypw4cYKFCxcWaf8ihaVhYCIexGKxsHLlStasWcOhQ4dIT093bDt27BgA+/fvJy0tDbAnKwDly5enWbNmfP/99yUftIiIuETXrl2ZMWMG3377LQ899JDjR6ouXbrg4+PD4cOHmTx5Mrt27SIpKQnTNB33zfqMKKy//vrLsb+YmBjHcLEs27ZtK9L+RQpLyYqIB5k3bx5z584FoGrVqlSsWJGjR49y9OhRbDabm6MTEZHi1L17d2bOnMmePXv48ccf+fPPPx3l+/fv58knnyQ9PZ2QkBCuuOIKMjIy+PfffwEu+hlhGAYAmZmZjrLExESnOtkTn4YNG+Lv7++0vWrVqkVrnEghKVkR8SBZH0w1a9bkiy++wGazMWrUKI4ePeqoExUVRUBAAKmpqfzwww906NCBU6dO8dtvv7krbBERcYEqVarQrFkzNm3axKRJkzBNk8aNG1O3bl3WrFnj6G1/++23ufrqq1m1ahXPPvvsJfdboUIFAOLj4wFISUnhp59+cqpzxRVXYBgGpmnSo0cP7rzzTsCexPzxxx+EhIS4sqki+aZkRcSD1K9fnx9//JG4uDh69uxJRkZGjkmTgYGB9O3bl/nz5/PNN9/w559/kpCQ4DRkTEREvFP37t3ZtGkTJ06cAOwnDgaoV68ePj4+ZGZm8vjjj1OlShVHnUu5/vrr+fbbb/nzzz+59957OX36NIcPH3aqU6NGDXr37s2SJUt4/fXXWbBgAUFBQRw6dAir1cqECRNo0KCBaxsrkg+aYC/iQR544AG6detGWFgYVquVjh070rdv3xz1Hn30Ufr06UNISAiJiYn069ePm266CYCAgICSDltERFykffv2BAcHA+Dn50fHjh0BqF27Ns899xzVq1cnIyODiIgIXnrppXzts2fPngwYMICIiAji4+Np0aIFAwYMyFHvmWee4YknnqB+/focO3aMQ4cOUa1aNQYOHEizZs1c10iRAjDM7IMURcQrnDhxgoCAAEJDQwFISEigf//+nDhxgo4dOzJ58mQ3RygiIiJSdBoGJuKFtm3bxvPPP8+VV15JQEAA27ZtIyEhgaCgIB544AF3hyciIiLiEkpWRLxQtWrVuPzyy/nnn3+wWq1ERETQoUMHBg8eTP369d0dnoiIiIhLaBiYiIiIiIh4JE2wFxERERERj6RkRUREREREPJKSFRERERER8UhKVkRERERExCMpWREREREREY+kZEVERERERDySkhUREREREfFISlZERERERMQj/T+v5PxIuKXbRQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1190,14 +1324,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEPCAYAAACneLThAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABYiUlEQVR4nO2deXhU5fXHPzPJZLKRhEAS9k02WQO8qCgoqLgr/dlqtbZ1a92rVrFaq3Wpra1brdqqdNHW1tZWrdZ9wV0UeWUHUVaBEEIgZN9m+/1x5965s4fsCefzPDxz59537pwZJt977nnPe44jEAggCIIg9E6cXW2AIAiC0HGIyAuCIPRiROQFQRB6MSLygiAIvRgReUEQhF6MiLwgCEIvJjXZAKVULvAWMAE4Qmu9Vil1FvBjoAE4X2u9Uyk1HlgUPOetWuvFSqks4CmgEPif1vqeJG8Xls+5e/duBgwYcMAfqivpiTZDz7RbbO4ceqLN0DPtboPNjngHWuLJ1wOnAs8CKKVSgeuAucDPgVuD434FXAycBNwZ3PcD4FWt9WzgWKXU4AOx2ufzHcjwbkFPtBl6pt1ic+fQE22Gnml3R9icVOS11h6tdblt1xjgC611s9b6Y2BKcP8grfVGrXU1UKGU6g8cCbwZPP4WMKsdbRcEQRCSkDRcE4O+QLXteUrw0X7BqALyI8aa+8JQSl0CXAJw1VVXMX/+fOuYx+OhpKSkFSZ2HT3RZuiZdovNnUNPtBl6pt2ttXnw4PhBktaIfCWQY3tu3l/4bftygQrb2Mrgvq8jT6a1XoQRy4eImHxJSUlC47sjPdFm6Jl2i82dQ0+0GXqm3R1hc2tEfiNwqFIqDVDA6uD+UqXUIcAeIF9rvVcptQQ4HvhL8PGH7WCzIAiC0EJaJPJKqVeBYmAc8DjwIPAe0AicHxz2M+BJjPDNbcF9fwL+rpS6CHhZa72zfcwWBEEQWkKLRF5rfUqM3c9EjFkPzInYVwt8o7XGCYIgCG1DFkMJgiC0kspmDx6/P/nALkREXhAEoRVUNXsY97/3OXHxZy0av2Z/DS/uKOtgq6IRkT9AfvrTn/Luu+/ywgsvcPfddwNwwQUXMHLkSIqLiznppJP45JNPuthKQRBMmiuaqVi6v93Pu76qFo8/wMr9NTT7knvzx7z1KRd+spqVFdVJx7YnIvIHyNKlSzniiCN4//33Ofroo6399957LytXruSnP/0pl156aRda2Hq8Xm9XmyAI7c6nZyzj01M+Y+8H+5KObfD6eH77bqqbPUnHem1d9TZU17bYnpX7ReTj4nA4OuRfS7jhhhuYMmUKy5YtY9asWfzpT3/i8ssv58477wwbd/jhh7Np0yZqa2s57rjjmD59OpMnT+bFF18EoK6ujlNPPZWpU6cyadIknnnGmL++6aabmDBhAlOmTGHhwoUAlJeX881vfpOZM2cyc+ZMPv74YwBuv/12LrroIubOncuoUaN46KGHrPf/xS9+wbhx45g9ezbnnnsu9913HwCbN2/mpJNOYsaMGcyZM4cNGzYAxl3IZZddxmmnncZPfvIT3n//fYqLiykuLmbatGnU1NS04X9MELqe2i8MAS59YXfSsfes38IPPl3DD5euTTq22hNyilbvT/x3Ym+zuq+pOem525PW5MkflNx7772cffbZ/O1vf+OBBx5g7ty5luhecMEF1ri3336byZMnk56ezn//+19ycnLYu3cvRxxxBGeccQavv/46gwYN4pVXXgGgqqqKffv28d///pcNGzbgcDiorKwE4JprruHHP/4xs2fPZvv27Zx44ol88cUXAGzYsIF3332Xmpoaxo0bx+WXX87KlSt57rnnWLVqFR6Ph+nTpzNjxgwALrnkEh577DHGjBnD0qVLueKKK3jnnXcA2LlzJy+++CLDhg3j9NNP5/e//z1HHXUUtbW1pKend9I3LAgdS1NZU9IxL+/cA8BbpXuTjq1qDon8msrEIl9vC+fsrG9Meu72pEeJfFc3HV++fDlTp05lw4YNHHrooWHHbrjhBu666y5ycnL485//TCAQ4Oabb+aDDz7A6XRSUlJCWVkZkydP5vrrr+fGG2/ktNNOY86cOXi9XtLT07n44os57bTTOO200wDjgrF+/XrrPaqrq6mtNbySU089FbfbjdvtprCwkLKyMj7++GMWLFhAeno66enpnH766QDU1tayZMkSzjrrLOtcTU2hH/xZZ51FSopRneKoo47iuuuu47zzzuPMM89kyJAhHfNlCkIbCAQCLb4LN2nak9yD7uNKSTrGxO7JJxP5Slv4Z0ttfYvfoz3oUSLfVaxcuZILLriAnTt30r9/f+rr6wkEAhQXF1uTrPfeey/f+ta3rGXJTz75JOXl5Xz++ee4XC5GjBhBY2MjY8eOZfny5bz66qvccsstHHfccfz85z/ns88+Y/HixTz77LM88sgjvPPOO/j9fj799NOY3rTb7ba2U1JSEsbT/X4/eXl5rFy5MubxrKwsa/umm27i1FNP5dVXX+Woo47ijTfeYPz48a385gSh/fF7/Sw5YSlZh2Qy7Y9Tk441aSpN7kHnuFwttqPKExLu7XUNScaG/j431XSuyPeomHxXUVxczMqVKxk7dizr16/n2GOP5Y033mDlypVkZGTEfE1VVRWFhYW4XC7effddvv7aKNuza9cuMjMz+e53v8sNN9zA8uXLqa2tpaqqilNOOYXf/va3rFq1CoATTjiBhx9+2DpnPJE2Oeqoo3jppZdobGyktraWl19+GYCcnBxGjhzJf/7zH8Dwgsz3iGTz5s1MnjyZG2+8kZkzZ1qxe0HoLjTsaKR6VTWlz+/G70mc1eKtColrY2kT3prEyQVO281BVZLJV7snX9bYjM8fP9JgP1dpQxP13s4rgywi30LKy8vp27cvTqeTDRs2MGHChITjzzvvPLTWTJ48mb/97W+WN7xmzRoOO+wwiouLueOOO7jllluoqanhtNNOY8qUKcyePZsHHngAgIceegitNVOmTGHChAk89thjCd9z5syZnHHGGUyZMoWTTz6ZyZMnk5ubC8A//vEP/vznPzN16lQmTpxoTQRH8uCDDzJp0iSmTJmCy+Xi5JNPPtCvShA6FF99SCDrv07sQXsqw4W6bnNdwvH2OPvXybxz21hfIMDeBBOqdk8eOjcu7+jqOHcEUoWyjdTW1pKdnU19fT1HH300ixYtYvr06Ulf19V2twaxuXPobjbv+7iCpWcsA0D9czqFJxTEHFdSUkLW7iyWnLDU2jfj79MoOrkw7rmnv/IR24Li/rcjp3LakPhjv//xKl4u2WM9f+f4wynOz4k59l/bdnHFZ+us5y/OncGcwqjK6235ruNOUEhMvpdxySWXsH79ehobGzn//PNbJPCC0JOwh2DqttQBsUUewFMV7kEny7CptMXZk3nyZrjG5XTg8QcobWikmNgib/f6AXY3JM/0aS9E5HsZTz/9dFebIAgdiqcqJMR1mxNPYkaGaxp3xxdXfyAQJsa7GhKHVMyJ1/E52ayprEko3PaLB3SuyEtMXhCEHoWnOiTE9VsOTOQTefLVHm9YvHhPY+KUS9OTH5djZKftSiDc5sWjMD0NgN2NIvKCIAgxsQt3/bZkIm+Ia9YYQ4gTifz+iGyaPUmE2BRuU+RLE4l80JM3x5aJJy8IghAbry1c01jWlHCRpBnayR5niGuicI0p8mnBPMqyBJ58IBCwefLZQBKRD14QxvbJSnru9kZEXhCEHoV9MtXf4MdbEz/n3PT6+4w3hLgpgchXNoeLdiJPvt7nxxsIkJ7iZHiWsVYmUQhmX7PpyRvnlph8N0ZKDQtC1xIVZ9+TQIy3GuGc7HFBkS9vIuCL7fmbnvzI7AxSHQ4qm700+mJfQFZWVAEwNDOdARnG6vN4wl3W0ITeV0WKw8G8AUbaZJnE5LsvUmpYELoWb3X477S5PHboo3FrExUf78eZ4aTg2P6k9U8DPzTFGb8qWAJ4ZHYmBcEJ0vI4YZWXgoXMTh5USD+3C5fTwf5mT8yLwjNfl+ILBDhxYH9GZWeSkeKk1uujxtM5f289KoXScXTHtNkKfJD8WnfDDTfwxhtvsHXrVmbNmsXmzZtZvHgx3/rWt8LG2UsNL1iwgP379+PxeLjrrrtYsGABdXV1nH322ezcuROfz8ett97Kt7/9bW666Sb+97//kZqaygknnMB9991HeXk5l112Gdu3bweM1ahHHXUUt99+O9u3b2fLli1s376da6+9lquvvhowSg3//e9/p6CggKFDhzJjxgwWLlzI5s2bufLKKykvLyczM5M//vGPjB8/ngsuuID09HSWLl3KvHnzWLBgAddccw1glHb+4IMP6NOnTzt/44IQTUNJI+kD3TiciQuPmXH2zBEZ1G9riOvJV/zXaBQy+FsDceW5cBel0by3maayJtIHuKPGL95t1Js/dkA/3i/bR2lDE2WNzQzNCi9dEggErEVQpw0pxOlwUJTuZmd9I2UNzQzPDh//Xplx3m8NH4jD4WBQRjqba+vZ1dDIOFd2sq+lzfQoke9KpNSwIHQc5YvLWXb2coZfPJSJ9yQuGWJlzIzOSijyzSWGF97v6H4AuIvc1KyrjZlhs6u+kS+qaslKTeHwfnkUpbuBmphx+Rqvj10NTWSkOJkeXOE6IMMQ+dKGxiiRrwvWqTHDOoMy3YbI1zdZMfqOpEeJfEs87o5ESg0LQsew9TGjgN/Xf96RVOTN7JqsMVmUv703bglhf4Nx55+SZfy20wcYDkvj7uhFTjoYYz+ifx5pKU4K0w1BjpXq2BSsDZ+ZmoIzWO54QHB8aYyLQmNwfEaKoV+DMgw7ki22ai96lMh3FVJqWEoNCx2LuyA6fBILX4MPb60PnJA1KhOIP/FqinxqliFz7iLjPWJ58rUew9sucBuxeHPRUqxURzPunp4Sqj0/MMHkqyny6UGRH5xp/D2XdFKRMpl4bQFSalgQDpzyxeV8fv6KqGyYWKT2Cfmbnur4DkvlcsPj7jOhj+WZx5t4tTz5TEOM3UWGcDftTiTchiQWBT3zWOGaBlO0nSH5TJRhY53badgxKDg20QrZ9kQ8+RbSmlLDp59+OpMnT0YpFVZq+IYbbsDpdOJyuXj00UepqalhwYIFNDY2EggEwkoNX3nllUyZMgWv18vRRx+dsNywvdRwUVFRVKnhyy+/nLvuuguPx8M555zD1KnRDRcefPBB3n33XZxOJxMnTpRSw0KrWXb2cgC+LNjIpPuShGBsdd7rNtWRNz035rj9SysByD88D3ehIdrxFjj568NFPlG4xhRud9A7L8poiSffUpEP9+QHBT35XZ3kyYvIt5CCggJrsvTTTz8NO/bkk09Gje/fv3/MfPkRI0Zw4oknRu3/7LPPYp7DbPRt5/bbbw97vnZtqOnwwoULuf32261Sw+bE68iRI3n99dejzmXaXlJSAhB25yAI7UH12uTN4MOKjiUUeSNjpu8RfUkfFBTtXbHFMhSuCXryA+KHa0zhNuPmVkw+QYzdHq4pssZHXxQaIs5tevIl4skLrUFKDQsdyZe/+Aq/J8Chd45r8WuaYnjOkdhDOrVfxW/sUfm5Ea7pe3ge7gFuHC4HzeXN+Bp8pGSE92f1NxiLnkLhGlPkY3nn4d72gASiHTmRCtDfbbQN3BejcUjkRWGwePJCW5BSw0JH4ff62fzgVgBGXzcKV17L+qEmqhdjYqZFAjTsjF3HPeAP4NlvXAzSB6bjcDrIGJxO/bYGGnY2kj0mK2x8dEw+KPJ7mgj4A2H5+JFCbE687mlsimoabnr9bpvI5wcnbCsiipx5/Ub5A6fDqDsPkJ/mwu10UuXxUuf1kZXa8ubhrUEmXgVBaBH2Zh3J2u4BOFyGqAU8AXwNiXua2j35ePVl/I2GEDvdTkug04cYXnHkhcHv9RPwBMABznRD5lLcTlx9XQS8AZr3hXvckeGajNQUclypePyBqOqUDZYnHxJn05Pf29QcVjCt0TbWvFA4HA5bDL/jvXkReUEQWkRYid+vE5f49XuCIhskWW9Ve0w+nufvazSEOCUjJFsZQ4zstoYd4SJv9oFNyUwJ88LjpVE2xIyzx558bfKHh3bM12WnpuDxB8LKFUSGgUzsE7X7mzz8edMO3i7dG/NztxUReUE4yGlpn2d79ceGJJ68PVsGEnv+via/FVqB+J68LzjGmR4S4oyhhsg37gz3iH11QZHPCg+FmOUMIi8ksTJm4qVRNnijxwLkm3F5m+dvhXacESIfPPfuxiY219Zzw/IN/GrtJjoCEXlBOIip21rPOxPfY+uj25KOtXvb9dsSi3xkb9V4uewQWsGa1s+F0+3EW+PFWxudK2+GfMI8+aHBcM2OCJEPevKpmeEiH8+Tj+Vxx1sQFSu7BqB/MC6/Nzj52ujz8V5ZhWFnxFjTky9taLLGF6S3bEHYgSIi3wJSUlIoLi5m0qRJnHXWWdTXJ75VbQvbtm1j0qRJHXZ+QbCz4687aCpr5otbvkw6Nixcsz3x34C9sQckLgdsnjc1z5UwzdFvhWtsnvzgYLhmZ/xwjR1L5HcnD9eYohtZiTKW1w/QLyjy+5qMz3P9519wtV4fc+xAm8ibdwrmRaK9EZFvARkZGaxcuZK1a9eSlpaWcEFST0JKCwv2laamMMbDngGTbOI10pOPV1/GPtaVkxo3nAKxwzXpA4PjbRcFX72PbYuMyq2RIh/v/E3+8IlXgH7B8EuFLS3yZyu/5I41RlglUrgj0yj/ua009L4Rnrwp8o9+tZ3ff2mshjfvHNqbHpVC+Wq/NzrkvKfsi16cFI85c+awevVqKioquOiii9iyZQuZmZksWrSIKVOmcP/99zNo0CAWLlwIwKRJk6zyAieffDKzZ89myZIlDB48mBdffJGMjAw+//xzLrroIsAoZWCybt06LrzwQpqbm/H7/Tz33HOMGTMmzJ7s7Gx++MMf8uabbzJgwAD+9a9/UVBQkLS08IoVKzjqqKOs1bUAPp+PG2+8kddffx2n08kPf/hDfvSjH7F48WIWLlyI1+tl5syZPProo6xevZq7776b559/nhdffJFzzjmHqqoq/H4/EyZMYMuWLa3+/xA6D19jKBZetaaa/MP7xh0b1nZvR0NUamHY2OpIkU/gyQfTIl15LlJzDEmKFZePFa4xPfNmm8ivvX49Jf/eZYyN9OQj7hQqmz28V1bBkvJKIFyM+6WFx9gDgQCPfrXdOh4ZgslPC3ny/oh5jow4E68AG2uMu6IC8eS7Hq/Xy2uvvcbkyZO57bbbmDZtGqtXr+ZXv/oV3//+95O+fuPGjVx55ZWsW7eOvLw8nnvuOQAuvPBCHn744ah6Mo899hjXXHMNK1euRGsdsyJkXV0dSinWrVvHMcccwx133AEYi6IefvhhPv/8c+677z6uuOIK6zU7d+5kyZIlYQIPsGjRIrZt28bKlStZvXo15513Ho2NjVxwwQU888wzrFmzBq/Xy6OPPsq0adOsWjoffvghkyZNYtmyZSxdupTDDz/8gL5XoevwVISEuypYFybuWFu4xt8cylmPObY6WPN9pBFOSeTJV68xmnVkjsgMedql0amFZgqlPVyTmptqxPFrfXjrjAuLKfCQIFwTFPmd9Y1c9Mlq63iYJ59uirZhe+QK1cjJVHsa5Zba8HBWVHZNjPh7gXjyB+ZxtycNDQ0UFxcDhid/8cUXc/jhh1sifeyxx7Jv3z6qq6sTnsdsEQgwY8YMtm3bRmVlJZWVlVaXqe9973u89tprAMyaNYtf/vKX7Ny5kzPPPDPKiwdwOp18+9vfBuC73/0uZ5555gGVFrbz9ttvc9lll5Gaavws8vPzWbVqFSNHjmTs2LEAnH/++fz+97/n2muv5ZBDDuGLL77gs88+47rrruODDz7A5/MxZ86cpN+p0LEk8rLtNFeExLd6TeLyA1EhmLIm0vJjC5M5Nmt0FvVbG2guj+/JVywxShX0m51vpUI2lsbw5IMxeTPvHYycc3dhGg07Gmna00zqyHBJS5ZdE+k92xc4WZ58MMb+VXV4Gmikd27G5D/fV2U17LbeN064xk5Behp42z9vXjz5FmDG5FeuXMnDDz9MWlr8K25qaip+f+gWuLEx9J92IOWBAb7zne/wv//9j4yMDE455RSryUciHA5HWGlh85/ZbATCSwu3haOPPprXXnsNl8vF8ccfz0cffcRHH30kIt/F7HhqJ2+NfMeq2JgIuyefKKQCMXqrxigPYGKGa8xVqE17mmOmavo9fvYvqwQgf1bfuIubwDaZmh7hnReGVrL6PeHd41LcsT35xp2NbLjjK/q5XdgvhXYxzo+YSI0U+fSIlaqzC/uSnuLkk72V1oRr6LzhUpvtSuUfR00l23aOwu4UrlFKOZVSTyqlPlRKfaSUGq+Umq2UWhJ8Pjk4boBS6k2l1MdKqe+2r+ldy5w5c/jHP/4BwHvvvUf//v3JyclhyJAhLF9uVN9bvnw5W7duTXievLw88vLy+OijjwCscwJs2bKFUaNGcfXVV7NgwQJWr14d9Xq/38+zzz4LGCUNZs+efUClhe3Mnz+fxx9/3Lr4VFRUMG7cOLZt28amTcZk01NPPcUxxxxjfQcPPvggs2bNoqCggH379vHll19KdlAXs+badXhrvCz9xrKkY+2efOQq0EisCdK+hocbKwPGxIzfpw9Kx5nhxFfvw1cbPbFbvaYGX52PrNFZuIvc1uKmxpJwj7Z2Yx27/mNMZCYKwZiNu2N9PjBCPRnDjPfY8tBWPjtlGTkeW0pmjIlXM1zzZXVt2LkihXtEdiYPzAhvJhRvLMDJgwv5weih1vP+HRSuaa0nXwy4tdZzgJ8C1wG/BE4FvgP8JjjuRuAe4BjgSqVUr+kld/vtt/P5558zZcoUbrrpJv76178CcMopp1BRUcHEiRN55JFHrDBHIp544gmuvPJKiouLw7ydf//730yaNIni4mLWrl0bM+6flZXFZ599xqRJk3jnnXf4+c9/DhgXiz//+c9MnTqViRMn8uKLLya14wc/+AHDhg1jypQpTJ06laeffpr09HSeeOIJzjrrLCZPnozT6eSyyy4DjH62ZWVlVqhpypQpTJ48uUVhAqHjMOum++p8+L2J+yI37wt55817E9d9Nz357HGGd96YQOQbgiKd1j8t5GnHCNmY+zKDDUAyBqeHvd7kgyM+Yu97Rq/UlPRw2TLP/9VdG9nzVviq0ciLBcBhz86wtiuXVZJTFfqbC/Pkg+Ga/c0efP5AtCfvjJbPUdmZUfsgOn5vMjQzJIn9EkQI2oKjpavd7CilCoGHgHOB04F5wFSt9bHB459qrY9QSn0MzNFa+5VSDwN/1VrriHNdAlwCcNVVV82YP3++dczj8eBytawIUnehs20eO3YsX331VZvPI99159AZNn951iYavzTE7ZA/jyB7Zuw+ooFAgDVqvVV+wOF2MPmzCVEXadPmL075kuadHvK/2ZeK5/bT/3v9GHzDwJjnXj9/A54yL+NeHMOO20qoX1nPIX8ZSbYKDxVWvlHF1zfsIPeEHEbcN4yAL8DqmevAC5OXTcDpNsRx1ZRQOe2Ci/oz6NoB1vPdj+2h7A97YtqRe1wOI347LGr/V+dsomG98R3dfWsK6wYZ38GqIw+1WvoBHLV0A9VePx8cNpZvr9pKaVPoQvj4xGEcmRf+3e5u8jBfb4x6v/8rzOPOMYOi9r9aXsWNXxllvtccNaHVv4/BgwfH9axaO/G6F/AAG4B0YA6G6Jt4lVJpgEtrbboSVUB+5Im01ouARcGnYVccs5VeT6KzbXY4HO3yfvJddw6dYfOXtaHl8Zl1WXHfz1vjZbVnHSlZKQT8AfwNfgbkDSA1O1wWSkpKGDRgEGsrjHmdAaqIiuf246pzxTx3Y2kjnjIvqX1SGXXkSKpH1FC/sp5sTzaDB4cLXSAdYAfZ+dnWuTYO2kLD9gbyySdrsHFRWEVI5PMKc8Pe1zvKTxnhIj/8h8Oorall6s8mW3Xn7ZQOLbNEPjfVBRghmaERGWwF6duorq3nP1VN7PWEz6ENLSxkcEF4ymmh349DbyTSdQ643TG/q7MKCvnFlt0cXZjP4MGDO+T30dpwzQmAV2s9DvgmcD+QYzueqrVuBjxKKfM9coGKVlsqxMRs7C0IJvbUxsiMGDtmvNrV12VlycSLy9durMNX7yN9SDrZYw3vNd5EbdUKI8ssd1oODqeD9EHByc5dCXLf7fVorMlXQ4QjF2lFTry6cqN91fwj+zLk5kExBR6wukoB5Lji+7rmsYe//BqPP1y6IzNmAFxOJ31inK/OG3uhWV6aiw1nHMPfjoru0tZetFbkHcC+4PZeoA+QqpTKU0oNJSTmy4C5SqlUYAawri3GCsLBStXqavZ9uC/pOF+jL0wUvQn6qzZXmDVj0kjrHxT5vbFFvmqlkamTW5wTWlAUo1dq2NhpRnenRB2czMVYKZm2io7m+KDIR06eOiNi8gNOK2Lo98K9XzO2Hw9zshagT3r88Mj2+vAsH3MyFmJPpgI4YwRO6hJk0mWmpoSFiNqb1or8W8BQpdT7wL+AO4FbgFeDz38aHPeb4PYHwGNa6+RFqAVBiOLjeZ+w9Bs6aQOOyAVKiTx5MxMlfaCbtH6GeDVXxL4oVK8KeudTcy0vOF52TVPwQpE53MhiSQ8KbqxJ0NAqVlupAnPyNXhRsE8OQ3R2jTPNyeQHJ1kXHyCuB29iTtYC5GTGF/kfjx8Z9nxcTmhOISWOMDttSZlmPnxx35yYYzuDVsXktdZe4NsxDh0ZMa4UmB9jnCAILSRgCxPUfllrLeiJRXOkyCfw5KtXG8KdMzmH+m2G4Mf15E2RL87B1deFw+XAW+PFV++LEl2rzG9QuNMHJvDk680FTjaRt+4UjItIZAgpMlxj4i5Ms17jLnTD7pjDjOM2Tz43x23MGMbginHDGZjp5uJP1gDhK1XjhXnsnvwbx87k+R1lXHRI9Gr1zkIWQwlCF+D3+ln/0y/Y81Z50rH2srt1WxJXf4zy5Kvje/LmCtecyX1I65c4Jm8WJMsemxVcZRpagBRJpHduhV9iliowq0VG16Mx7xQibYoM11jYPGtHSuLwh13kJxT2STjWvnq1KMPNO8cfzjNzplEUY9UqwFEFRn7JxNxshmRlcPX4EWQniPt3NCLyLUBKDQvtTdkre9i2aDv6nOVJx9qrP9Z9lXii3VzBai5YiheTDwQCVK81RD53Sk5I5ON48r7ghcYsIGbvlxo1tiFcuNMHuHGkOGja04y/2R8xNroeTZTIVyQO15gcSFjbnIMAOGPcQH4+eTSvzFMxxw7LyrC2C91pFOfnMH9g/7jnvm/GeK47dCRPzy5uuUEdiIh8C5BSw0J7E9k5KRH2kEvNl0na6AXHZo4whMlTFVvkm0qbaN7bjCsvlfQh6aE4e4zmHoFAAK8ZggkKbLpZHiBBSWBTuB0pDkO4A9HjY5UqsEoPmCIfceFxpsWWrbSCli8mMu8uUvukkpqZyrWHjmRWQewKnPZsmZasKurnTuOWyaMZars4dCU9qkBZ/r/f6pDzVpzd8mkDKTUspYbbA0dqyO30VHtw5cSf/LOHYJJ58mYmSuaoTKpWVIfdBdgxa8NkjgqGX+J0TALwNwQgAM4MJ85UQ2DTiuJPvsZq2JE+yE3jrkYadzWSOSwkfqbX77SVDzYvIM17mggEAlHZNf6m2Kt4J/xyPCv2rGbMDYfEPG4nxe3k+I3zcLoOzM8d1k2E+0AQT/4AkFLDUmq4vbDXW49sXRdJWJPr0qaEzT1MrzdrhLG83iz5G4mv3hDK1GCVxoQib7bSsy2SSrfCNdGevyXyMTJm7JOvfo/fFtoJjU3JTCG1T6pVztgTkV1jz3G3k3VIFrPfmUXRyYUxj0eSlp8W1jQlEYuPP4zbJo/mG0OLWjS+O9GjPPkD8bjbEyk1LKWG2xv7hGjD9gZyJsaf/IucTG2uaCYjM7ZHWbXazILJxZHqwN/gx9fkJ8Ud7s9Fimt6IpGvC14Qsm0hlcL442MJtzX5Gkyj9NZ4+WD2x1YufFRlySI33hov2x7/2qpvc+hd43APcJMzqfPTEafl5zItP7fT37c96FEi31WYMfmWcCClhhsaEi8b+M53vsPhhx/OK6+8wimnnMLjjz/Osccem/A1kaWGY9FRpYYvuOACfD4f9957b7ucv6fh9/ipXl1tCGyS7A57lyWzhno8ItMgm/d5rGqNYe/v9VurTfNm5uLKc9G8txlvlYeUwvBMkEghTuufBk7j3P5mf1jc2/T6U7JCcpE4vGOGYGKIfNCT3/NWuSXwEN7tyTh/GnWb6th0XyjsV3Bsf7LHxa7DI8RHwjWtREoNS6nhSL688yuWnLCULQ8n/j+H8EVKyUU+PK4eGaM2qf2iFl+dj8wRGbgL3KQGl/vHypWPTHN0pDhwF8SuFhnTk0+YXRMcb/PkMyIWOFXqyrDXRGbMxMrycQ+Mvz5AiI+IfCuRUsNSajiSrX8wGjJ/+cvoKoSR2OPs9dsPzJOP13ZvvzZW9OSpPABcua7ge0VPvoYWLNny0yMWIZn4zfh9drQnb+/g5Gvys+MfO20LnGKUKgiGa/Z+EF7GyhkRrhl+cXjlSDNOLxw48q21gFhFwPLz83nhhRei9mdkZPDmm2/GPM/ataFKemb2DRjxebunfc899wBw0003cdNNNyW1L3ICFYz4/+uvvx61/8knn4x7ntTUVB544IGo8x133HGsWLEianxGRkZYrH/RokVRYw4mUvukGqmRiUu4A+C1CW9zgv6nEBJ5V18Xnv2euKUHzDuC7LFGOC4tmCsfa4FTrLh5KAQTPt68IISLfDC8U95shXc2/mYTW35n3MU4M5w4bEs/7UXKPNVear8I/5uyT9KCIfIpWSmsvtL4m3EPcB+0zkNbEU9eEBKw6bdbWHbu8qi2crFwJyg3EIl94jWyFEHUWDP3fWQwY2Z/7IuCGQs3+5qGhDVWzRizMJgtbh5Mi4xsBuK3YvKhsc5UZ9Tk686nS6zjkaLtLnKD0xjbsD16MaF9xatJn0NDk9GJSjkIiRGR7+FIqeGO5au7NlL+ZjnlER2HYmEPJ8SLm5vYJ14T1ZexH88Kdk+KLNhlYlV0DIY+rEJfO1tWGCzeZGooXBPRFHtQRCEx20KqSJF3pjqt8R8d80mUPbHq0Zglh+HALqBCOCLygtACGmJ4w5HYV7HWfpVkZaotXOPZ74nZ5BqM0sF1mw3Pt08wzTJeTD4yPz19UOx+qfaxziQiX72uhrJFRn2dyGYi6cGJ0KbSprAiahC79MDEX8fufwrgcEWHYlz5oQViqVnR5xNahoi8IMTBLlzJmlxD+AKnuk3xRT4QCFgTrw6Xg4A3ELPJNcDe9/bhq/ORM6UPfQ410gfj3SVErh41PeHIcM3Wx79m+192ALE9eXvpgY+OXoKvKjwMZGL35CMbaEf2YQUoOrmQvoflhXbYdD1WvN2+LxB//ZeQBBF5QYiD1ya8DUkyYCB8dWm8Ql+AIeh+QzTNtMV4IZvdL5UBRmMMcyLVE2fi1d8YXjMmPUZT7Ka9zXxx8wbreVizjghP3hdRPiCeJ9+4o4HqdTXhn7Ex9hxGhq2kQdbolq/XiLfKVUiOiLwgxMFbY0tz3Jq48qjf48ffEBK2RJOp5sXAlZOKq29qwvFmzff+8/rjMitFxhH5yDh7hm0BknlXUrshIqvFnl0TkUJpvrdJlMgHz79t0XZWXBi+DsMbp8SxXeTzpidfQaqemU7RaYWMunpk0rFCbCSFUhDi4K0JefJ1SUQ+UtTixc0hFK93D0y3POl4483qj0YfVtOTjxOusSo6GudMyUzBle/CU+GhubwZd5Gb2i/jpy5a2TLlTQR8gegFS3HCNTHtro0t8ma3KIABZxSRPiidnEnxSzoUHl9A4fEFcY8LyRFPXhDi4LWHX/Y0JywPHNmcI15IBaBiyX4A8mf1xZUXFO444RorRz0zhdScVBypDry1PnyN0UFqM0TijLXSNBiyqYn05G0i70xzGpOdfiPcVLk8vF1S5OfPmdTHqi8fz+5IMoaGRN5d6GbcLWMY+I0BMccK7YOIvCDEIVK4Yy3hN4n05Jvj5LIDVHxsrPbMP7JvKM6eLGMmMwWHwxFquJ1ogVOs6o9BkY/y5DNj5LNj5Mo3fB0+D5F/VH7Yc1eui/mbjrVi8y3B7sm7iyTO3hmIyAtCHCI910QhGNPrdyURbX+j3/CQHck9+YA/EFWb3R1sjNEco7mH1UovRjkBMwU0KiYfURjMnHz97Jva6us67sUxHLtublgdeBNHioPMQzKt5/1mGxeCnKmxK0WaFx2AtP6S+94ZSExeEOIQ5Z0nWLRkev2ZwzOo2u+JO5Hq2eMh4AmQMSwDV64rdFFIUETMmeG0qlom9OTro1exZtg8eW+tN2ohVUpmuASYdwH2cFPaEFfCFaduW4XL6X8t5us/bWfwuYNijnW6nEx7YioBbyCq/LHQMYjIC0Icojz5BHF284KQMTyDqpXV1gKnyPxvX60hxK5ghUhT5GNdFEwv3l7N0RR5e5u+gC9A6f92W/bGC9fEau0XWU4gc2S4t57WPy1p9yR7WWJXnovRCxN3Zhp4hsTgOxO5lApCHA4kY8Yc6y5wk5KZQsATe4GTP7jPLIGQ1jd+A+1YbfSscI1t/I6ndrLyB8Ey1M7w1aP2iddYcwqR5QdGXj6CPBVKbTTr3yTCXOCUrIa+0DWIJy8IcTBDMKnZKXhrfQnDNaaAuvoaIRhfvY/m/Z6o8rg+szZ7MCvFKiIWo/RAZPNssIVrbCJfvjhUVyclIyXs7sH05Ou31lO/xUgDTStMsypfRnrp6YPSmfHUNBYf+p7xfGD8NEmTod8dgq/eR/95/ZOOFTof8eQFIQ5m+CMjmBGSyJM3JylzJvZJOPnqqwkv22t2eGqIVV8mpsibueyxs3ciPXNTpJv3NrP6KqNsr1mKOB5pBaGsF3vD8Xg4UhyMvHwEfcZL16buiHjyghAHMwSTOSyTmnW1cUU+EAhYOeW503NCddxjLFqyuiyZ4ZqCNBwuB54KD756nyXogYAtsyYrcbgGW20wZ0TNGHu83KTfUflkDsskfUhsL91+JxAv313oOYgnLwhxsE+mQnxPvn5LPd4qL+6iNNIHpZMWLD8Qa6LWjNOb4RqH0xGV5ghGqYDPztTGWFtv1VgTr/bVpQFPdDXLolMKw567i9xMeXgSY28cHfPzAOQGSw4UzJcQTE9HRF4Q4tCwM9hpaYwR3oiXFml58dNyjQVLBbGbb0Aou8Yeq8+IWLAERBQRi+HJ20TeXhrY3lbQpPhPUxn7szGhcxQmn0xV/5xO8Z+mRLXhE3oeIvKCEIP67Q3Ub2sgNSeV/Fl9gfilB0xxNqsqxmu+AeCPIfKR/U8ja8uHxeQLTE8+VMPdXhrYH6P6Y4rbSf95/aznLano6O6fxqD/G5g0fVLo/sj/oCDEYN8H+wAjfm2GSJIVBjMbW1gle3fH8uSDBcdsNV+sksDBcE3jrvDX2UU+JT2FtH4uAp4AzeXN+Op9cSs+2jFr0UMo5CMcHMjEqyDEYN+HRn2ZfsfkkxpcuOSp8hLwBaLywb2RpQcGxPfkfXXJwzU1X4TXZo+sL5M+KJ3mfR4adjVaZRGSkZKewqhrRtKwvSGs3K/Q+xGRF4QYmE1Ccibl4Ex1hkr27muOimlH1ZdJGK4JXwwF0UXEataH15dJjRT5welUr6mhsaQxZngmHuN/PrbFY4Xeg4RrBCEGZsZKap9gCGZAdGs8k8h8dnslRzvN+5tp2mGEfOwleiPLAUe2DozMVTdz3xt3NVqt/czzjf5J4pICwsGHePKCEANrtWkwfdE9wE3N+lojzj4lfGwoJh/Mfc93GXXfq7z4GnykZKQQCAT45MSleMvNi0cMTz6YzRMZy4+c8E23dXwy7Rz6vSGMXjgKV07LwjfCwYN48kKv4aPVAY6+ys/GHdG54geK1azDnEw1vefdCcoPBMc6nI5Ql6VguYPmfR7qNoe6S9lF3tXXhTPDibfWh6faE/Ue0SJvnHvLw9vY8dROADKGpovACzERkRd6DefcEeDD1TD3mraLvLfOrFsTrDFjhmtKY4RrYhUSCzbEMOPykT1i7SLvcDhC/VhLGi1PftBZAwEYfsnwsNdm2Gqym4097B2XBMGOiLzQa3AGQ9e79iYelwy/N9iU22HUcofoJtd2fPXBEr82kbc8/+BFwSwOBlBwXP+oWupmyGb7Ezto3ufBkeJg6h8mc+KO48mZEN4DNX1ItKBLxowQDxF5odcwaWRoe/e+1nvz9rx3s45L+gAzXNMyTz5jaHAydYfhaZuNwAt/WMDMf8+IOocp8l//eQdgTN46nI6o9EmAzBEZjL5+VNi+jBjCLwjQholXpdRc4FaMC8VDQDlwD+AHLtdar1FKDQD+BmQBj2qt/95miwUhDh5bLa0PVsHZx7buPOaCpZTs0J9HyJOPUS0yRnMPM3xipmKa4Rr3sNgLkSKrR7oTdGJyOByMvXkMTeXN7PibEZN3xWmoLQit8uSVUhnA9cDJWut5Wuv/Ar8ETgW+A/wmOPRGDOE/BrhSKZW8OLUgtJJaW9/pPftbfx4rfdJW/TFWTN5T7UGft5ymMiMtMiU7hsjvDKZFmrXch8YW+cL5BWHPXXnJRTt3Wuw+qoJgp7WX/1lAA/CSUqoeuALwaa33A/uVUmZb98OA67XWfqWUBiYB2n4ipdQlwCUAV111FfPnz7eOeTweSkpKWmli19ATbYaeaXekzZXV/QEjw2TXnipKSurivDIx9duMq4U/zW+dP+ANQIpRGGzHlh043U52/XY35a+HJgDK9pfhqDHCO/XpxjmqN1dTUlJC7RZjgZNzgDPm9xyYEGD8q2PZcMpXANRsq036/+Gc66DwkgKyVVaH/t/1xN8G9Ey7W2vz4MGD4x5rrcgXAaOBI4DjgTuAattxr1IqDXBprc0leVVAPhForRcBi4JPwwKpJSUlCY3vjvREm6Fn2h1pc5M3tPozNS2HwYPzDvicNRtq2feKcRuQkZ8Rdv6NQ7bQ8HUDfb19yR6VTcnWUuuYM83BkOFDrOfNmc1sZDOeUi9FOUWsqlyLM91JxsD0+N/zENgzu5yKj/Yz8PiiFv1/DLl7SNIxbaUn/jagZ9rdETa3duK1EvhYa90MLAamAfZ7x9TgMY9SynyPXKCitYYKQjLs4Zq6hvjjErH10W3s/LvhSaVkhftAmSMyAagPpi3Wf21Li4yoZ+PKc5GSlYKvzsfb494FjMnRyMbekai/T2fivYcy9pYxCccJQktprcgvAw5VSjmAYmA9kKqUylNKDSUk5suAuUqpVGAGsK6N9gpCXMJEPnp+tEVkjw61xrPH5MHIagFjErWpvIn6raE39DeE15BxOByYeu5vMo6ZGTeJSO2TyvCLhoU1ChGEttCqX5LWeq9S6r/A+xghlouAwcCrwedXBIf+BiO75i7gMa11K/0rQUiMzxegwZbd2FqRzzrEJvLZkSJvePJf3rUx5qKoSEZcNpxN922xnksuu9AVtNpd0Fr/Hvi9bddm4MiIMaXAfAShg4kU9daGa7IOybS2o8M1hkj76nxseWhr0nON/ekYMoZmsOYa4wZWctmFrkAWQwm9gtoIUW+tJ58xIiTyTld4/DzTdqyl5EwJTVVlDJMMYqHzEZEXegXtJfL2cgP2ZtkAWSOjRT4lK3pFqp3scbaOTP2kI5PQ+YjIC90evSHAeysSlymoDa//1WqRt+OJaNyd2ieVI145jNzikHc+/Ymp5Ezuw5RHJsU8R4rbSeFJBaQVppE3I6/tRgnCASJT+EK3pqY+wMxLDIGvexMy02OnIJqefEEelFe2PiYPMPHeQ9lw+1eMXhjdgCP/iL4MPnsQVSuNZSF9D+/L7PeOjBpnZ/pfi8EPzjQn1CQcKgjtjoi80K359zuh7cpayIwT1jZFvqhvUOTb4MkPv2gYw84fGtXL1cRs2gGhUsSJcKbKDbPQdYjIC92aJ18PhWki4+52LJHPh7Vb2x6uiSfwAIUnFlB0aiF9D8tr25sIQicgIi90a9bZMhUThWDsnnyysW3FmeZkxt+mddwbCEI7IveRQrclEAhQY5tQTeSdmyKfnwMpKeD1QbOn7R2iBKGnIyIvdFsamw2xNmmJyPfJhKz05OMF4WBBRF7otlRHVApOFIKpqjW89pxMR0jkpYiGIIjIC92XKJFP4JnvN8q107ePePKCYEdEXui21EQscEqUXVMR7GbQtw9kBUvE1IvIC4KIvNB9qY5cxZpA5PcHFxmJJy8I4YjIC92WAwrXiMgLQkxE5IUuobEpQCCQOMUxMlxT1xh/fJjIB8M1MvEqCCLyQhew4esA/U4PcM1DiUX+gMI1tonXnGCxyMraNhgpCL0EEXmh07nh0QD1jfDwc4nHmeGa/rnGY7zwi88XoCoo6LlZUBhc9Vpe2WZTBaHHIyIvdDrvLG/ZuOp6w9Mf2M94Hi+7pip4McjNhpQUB0V9jbozZftlxasgiMgLncqe/QErtdH0uONhxuRNkY/nyVvx+Ozw8+7Z33o7BaG3ICIvdCpfbm/5WDNcY4l8HE/ePukKIvKCYEdEXuhU9lWHtpOlOEaJfDJP3hT5PONxT2VrLBSE3oWIvNCp7KsKbdc3kjCNstoK1xgx9haLvHjygmAhIi90KhW29neBgFFpMh5mTH5AvvEYb+I1UuQL8ozHPZXg98vkq3BwIyIvtAtbt27liSeeoK6uLuG4fVXhopuovoyZ5z6ov/EYLya/fptxTvNi4E5zkJsNPl/oAiAIByvSGUpoM6+88gqnnXYaAA0NDVxxxRVxx1ZEiG5dI/TLjT12bzC0M2JAaGwkHm+Afy42tr8xJ9SyrzAPqmqNkE288wvCwYB48kKbefvtt63tkpKShGPtMXmI7517vQEqqsHhMCZeU1PA44Wm5vA7gbeWGYueJoyA6WND+4uCXn2ZxOWFgxwReaHN7N6929quqKhIODbSk69vSjzOaOfnsOLtkeGX9duMx/kKHI6QJ58fZ7wgHGyIyAttxi7y+/cndp1NTz47SRExsyRBQTDU0i8n+Prq8HG79hme/eACR9j+3ODCqKrEUwSC0OsRkRfazAGJfFCkhxYaj/HSIk2R759nPJpx9chwT+k+43FQv/D9uVnGY5UUKRMOckTkhTZTWlpqbScTebOD07Ai4zFedk2kJ2+GXyLDPbv2Go8D44m8ePLCQY6IvNAmGhoaqKoKudeJRL6+MUBjM7jTkleWNDNrzJz3eJ68KfJmmqVJXrYRvqmslTx54eBGRF5oE2VlZQC43W4gscibXny+rXtTvInXyHCN6cnbY/KBAJQG53mjPPlgTP63/4bf/SfA7n0i9sLBiYi80CbMePyhhx4KQGVlZdxSBQfSvam80jhHQa7hkfcLPlZUh85d2+CgrgEy0yEnK/z1ubbn1z4ckNrywkGLiLzQJkyRHzp0KFlZWfh8PmpqYuctWnXfs5L3YY0M1+THyK7ZU2n8fAf1C0+fhJAnbxLp6QvCwYKIvNAmTJEfMGAAffsalcHihWzszT0y0w1Rro/TtzUquyYo8hU2kd+9PwWILeB2T96VKqtehYMXEXkhJoFAgKamOAFzG/v2GTmM/fv3Ty7ythZ9yTz5HXuMR1PA7XnyZRUBxpzr5+pH8oDoSVfzPUwG5Ed7+oJwsCAiL8Tk4osvZvDgwWzatCnhuMrKSgDy8vJa7slnGXF0iC3yjU0BNpWA0wljhxj7rHBNFfz6H8bxskrDkx81KPocebZwjVm4TBAORtpUoEwpdS7wkNa6QCl1FvBjoAE4X2u9Uyk1HlgUfJ9btdaL22yx0Ck88cQTAHzve9/jk08+iTsulsjHK21gevI5Nk8+Mk9+W2mA3z0bwO+HsUMh3R2ceDXDNTXw7orw14weHO2l22PyEo8XDmZaLfJKqRTgLGCHUioVuA44BpgJ3ApcCvwKuBgoA14DROR7AH6/39r+9NNP2bVrF4MGxXCXOTBP3mzMnZvliBuuuejXAUvEJ40M7Tdj6rv2hnLjTUYPjn6vDHdo27wLEISDkbaEa84F/gP4gTHAF1rrZq31x8CU4JhBWuuNWutqoEIpFSN6KnQ39u4NV9Gvv/467li7yOfnG3GRpDH57FA4pSKiFo3dS59oE/nMdAd9MmPbMHpI9D57DD7THX1cEA4WWuXJB734s4FvANcDfQH7n2tK8NF+EakC8oEwBVFKXQJcAnDVVVcxf/5865jH40laura70RNthnC7165dG3bsiy++YNiwYTFfV15eDkBzczMulwswLgqxvoPS8jwgA3/zfhzeZqCQknIvJSXl1phxQ/vz5Q7jPDnuSkpKQon0/XMKqKmP/sn6G3cR+ysfCIDPW0tJSfcoR9kTfx890WbomXa31ubBg2PczgZpbbjmu8C/tdZ+pRRAJWC/KfYFH/22fblAVLBWa70II24PEJZPV1JSktD47khPtBnC7V6xIjzo7ff7434msxPU2LFj2blzJ2AIfqzxnoDxcxgxpC9TxgME2FudGjbW4zPGzJoIV57Vlwx3aNZ0SKGfrbuJYsiQeN+3ca6i/tkMHtw9YjY98ffRE22Gnml3R9jcWpGfAExTSn0XI1TzI+BQpVQaoIDVwXGlSqlDgD1AvtZ6b8yzCd2KXbt2hT3fs2dP3LGxwjXJJl5zs43JV3easeK1riFAVoYRXjEzcF74lYMMd/iE6gDbBOpPzoWPVzfx/ZPT49r2vRPhqTfg/JMkfVI4eGmVyGutbzS3lVJaa325UurbwHtAI3B+8PDPgCcxwje3tclSodMwbxczMzOpr6+3QjKRBAIBS+Rzc3OTi7wthdLhcFDUN8D2MqN706gM43z2XPpI7KmQY4c6uPqMioRez19vdvD7H0OfTBF54eClzT1etdYq+PgM8EzEsfXAnLa+h9C5mCJfXFzMkiVL4nry9fX1eL1eMjIycLvd9OtnuNpJRT446VrUF0PkK4xc94Ym8PogPc1oxh3JgHwHZkRvQAvSIh2O+JO1gnCwIIuhhCjMcM3UqVMB4nry9lAN0PJwTdBLj+zDag/nxMLuyQ+UBU6C0CJE5IUoTFGfPHkyED8mH0/kzVIHdgKBANX1xrZZMbLISKunLHhNsIdzYlFkE/aWePKCIIjIHzR4vV5OP/10brst+dSIKdLjx48HWu7JZ2dnk5qaSn19PY2NoVVOekOAxZ+D32+UM3ClGqGYSE++MkE8HkKNRiBUnVIQhMSIyB8krFixgpdffpk777wzTIBjYS6Gsot8ZI14r9drLXoyRd7hcFhxefOY3x9g5iUB5l9nvL4wL3SOor6G2JdVBHjn8wCzLg+uiI0TrrGXJzAvFIIgJEZE/iDB3qLvs88+izuuubmZmpoaUlJSKCoqok+fPng8nrDXf/311/Tt25cLL7wQCIk8RMflKyMaac+dFtq2wjX74ezbQxeReJ78sCIH/7zNwXsPicALQksRkT9IsIdc3n///bjjTHHOz8/H6XRSUFAAhMflP/zwQ2pra6M8fvN19vPsiahwMF+FBNoM15RXhl8M8uJ48gDnHOfgmGIReUFoKSLyBwktFXkzHm+GXUyRt7++vr4+7DVXX321tR05+Rop8ser0HZh0JPftRfssl0bpyWgIAgHTpvz5IWegV2kv/jii7jjWiLy9hTJN998MyxcU1hYCBgNvl/4MMBNj4fCML+9ykFh35Ccm/H5TRGlOraEL7gVBKENiMgfJNhFurS0lObmZtLS0qLGmSGY/v2NgqGmaNtfb06q3n333WEF5QAGDjSKgt122234iv+PvfXGeS49A649OzzMkp9jNAaxVTbG6YR7LpdwjCC0FxKuOUiwx9QDgYBVTCySA/Hkzfrxdsy682VlZezd9pa1vzB6KE6nIywt8pbvg+cdB3OnicgLQnshIn+QEJnrHq9GfDyRt18k7JOzkYQ1F6kNVbMszIst3PaUyvHDHDidIvCC0J6IyB8kmCJfXFwMwPbt22OOa4knb4ZrYom8Ga4BSG1aZ23H8uQj94+LXbJeEIQ2ICJ/kGCKdLD+f5QnHwgE2LNnjyXyiWLyLQnXAAzvH0qt6ZcbNdR4H9v+sUNb9FEEQTgAROQPArxeLxUVFTgcDqZNM1YjRXryf/zjHykqKrIaeBcVFQHh4Rq/38/PfvYzVq1aBcT25M3XAYwaGmrU0S9Oz44mT2g7J0tCNYLQ3kh2zUGAmTHTr18/Ro40GqdGevIfffSRtT1lyhSOO+44IDxc8/zzz/OrX/3KGhdL5M0WgABZWVksvtvB2q1QPCa2gEeuiBUEoX0RT/4gYPduo2fewIEDrV6tO3bsCBtjtvEbMWIEL730EhkZGUC4yN9zzz1hr+nTp0/C93W73Rw7w8HV34rvoZ9+pHFszpS4QwRBaAMi8j2YkpISvvOd77B69eqE40yRLyoqsjopRTYLLisrA+C1114La9qdkZFh1a9ZtmxZ2GscjtjibXrzs2bNSvoZrv4WPHungxd+JaEaQegIROR7ML/5zW/45z//ydSpU6OqRNoxRX7AgAHk5uaSmZlJbW0t1dXV1hgzRdKeHWNiF32TlJSUuO+3cuVK7r33Xq688sqkn8GV6uCbcx3k54jIC0JHICLfg6mpqbG2P/jgg7jj7CLvcDgYMmQIgLUgqqamhvr6ejIyMsjJiZ4htYv8ggULeP311xPePUyYMIGFCxeSmipTPoLQ1YjI92DMfHWAl156Ke44u8gDUSGb0tJSwPDiY4Vghg8fbm0PGzaME088kQkTJrTRekEQOgMR+R6MvTTBtm3b4o6LJ/I7d+6ktLSUc845B4gdqoFokRcEoecgIt+DsU+eJhJ5c1LVFHkzXLNjxw6+8Y1vsGKFUX7AnuNuR0ReEHouEjTtoXg8Hku8oXWe/COPPBK2ktXj8US/mHBhHzpUlqUKQk9CPPluyP3338+xxx5r5a7HorS0lEAgwIABA3C73ezbt4/a2uiVReXl5WzYsAGIFnlT4KdNm8aIESO49tprY76XePKC0HMRke9mbNq0iYULF/Luu+8mzJgxQzVDhw61RDhyFeuvf/1rKzSTkZFh1ZqJ9MYvuOACPvroI4499tiY72WP1ZsXCkEQegYi8t0Me9mAyAVLdsxjgwcPtkTeHrIJBAL88pe/pLm5mWOOOYannnoKp9P4744U+bDywDFISUlh48aNbNy4MWF+vCAI3Q+JyXcz3n33XWs7Xs13gK1btwJGKMXsuWoX+crKSmpra3G73bz77rthqZEFBQWkpaXR3NwMxM+qsTN69OgD+hyCIHQPxJPvRlRUVIQJdSKR37RpE2CIr1l0zBR+CKVXjhw5Mir33el0WmEcaJnIC4LQMxGR70asXLky7Hm8xh4QLvKjRo0CYPPmzdZxswBZvGwYEXlBODgQke9GLF++HIDjjz8eaLknf8ghhwCwZcsW67jpyccT+czMTGvbrDgpCELvQ0S+E6ivr2f69Omce+65CcdprQGjPgwYQu3z+aLGNTY2smPHDlJSUhg+fHiYJx8IBLj55pu59NJLgXCP3Y7UlRGEgwP5S+8Enn/+eVasWMGKFSt46qmnwgR2+/bt/PrXv+aQQw6x6s+ceOKJFBUVUVZWxq5du8K88ddee42UlBQCgQAjRozA5XKRn59PXl4elZWV7Nixg7vvvtsaH8+TF5EXhIMD8eQ7geeee87ajkyL/MMf/sCjjz7KwoULqa+vZ9y4cYwZMyZmnH3dunWccsopnHjiiQBWmMa+vWjRorDzxytVcOedd+J2u/nFL37Rhk8mCEJ3R0S+g6msrOTVV1+1ntszYCBa9OfPnw/A+PHjAazVqgAbN24MG/t///d/1rZ5Ubj//vutfaNHj2b27Nkx7Zo8eTJVVVXccsstLf4sgiD0PETkO5gXX3zRykeH6BozZpnfs88+m0MPPZQf/ehHQGyRr6iosLYnT57MD37wA+v52LFjASNeD7BkyRI2btxorXKNhdvtbs1HEgShByGB2Q7mmWeeAYwFSOXl5VGevFk87Oabb2bq1KnW/lgibzbknjp1Kq+//npYXP3QQw8NO6/5ekEQDm7Ek+9AfD4fixcvBuC6664Doj35yAqRJrFE3iwods4550SNtzfxKCoqSujBC4Jw8CAi34GUlpbS3NxMUVERM2fOBMJj8s3Nzezbt4+UlBT69+8f9tqRI0ficrn4+uuvrWqUpsgXFBREvde4ceOsbfuErCAIBzetCtcopQ4Dfgd4gBLg+8A3gB8DDcD5WuudSqnxwKLg+9yqtV7cHkb3FMzFTMOGDbMmRr/66isCgQAOh8OqB19YWBhV+MvlcjFq1Ci+/PJLNm/ejN/v5+OPPwaIuiBA+OImSY8UBMGktZ78DuBYrfXRwDZgAXAdMBf4OXBrcNyvgIuBk4A722Jod2Pjxo2sWrUKv98fd4xZlmD48OGMGDGCfv36UVZWZol/vFCNiemRX3TRRUybNs1a5RrLk7eTrKqkIAgHD60Sea11qda6Ifi0GRgHfKG1btZafwxMCR4bpLXeqLWuBiqUUtEuaA/krbfeYuzYsRQXF/PLX/4y7jhTzIcPH47D4WDWrFmAkfmyY8cOrrnmGiC+yJve/+effx62P57Iv/7668ybN48HHnjgwD6QIAi9ljbd1yulhgMnADcBduUxYw/2i0gVkA/sjTjHJcAlAFdddZWVJw5GO7pENdW7ihdeeMHafvrpp7nooous5x6Ph7vuuoulS5daNWFycnIoKSlh0qRJvPzyy/zpT3/ikksusWLthYWFMT9nrLAMGLH8WOMnTZrEU089hd/vP+Dvrbt+14kQmzuHnmgz9Ey7W2uz2e0tFq0WeaVUDvAUcAGGqOfYDpsFV+yxjFygggi01osw4vYAAfuxkpKShMZ3FfZFSWb2i2nnli1buPXWW8PGT506lcGDB3PSSSfx61//2qoZX1RUxE9+8hPOO++8mCtTp0+fbm1nZWVZF4UJEyZElQ9uK931u06E2Nw59ESboWfa3RE2typco5RKBf4F3KG1/hLYCByqlEpTSh0JrA4OLVVKHaKU6gPka633xjlljyEQCFjVIs289jfeeMM6/umnn0a9xuzcpJQKm2C95ZZbuO666+KWHrBnydx4442AMYnb3gIvCELvpbUTr+cChwO3KqXeA84EHgTeA+4K/gP4GfAk8AZwe6ut7AZ88sknbN26lR07drBv3z7y8/O58MILAaysF4A333wz6rUjRowADG98ypQp1n774qdYmM1AwCg/vG3bNqtSpSAIQktoVbhGa/0URqgmkmcixq0H5rTmPboTW7Zs4cgjjwSwJlpnzJhhhVNWrVoFQFVVFc8//zwAp512GpWVlSxcuJC8vDzrXEopVqxYARAm+LHIyMhg3rx57Nixg+nTp0sZAkEQDhhJqA6ybt06Hn/8cfr168fNN9+My+UKO2bys5/9DIDrr7/eEum1a9fi9Xp5+OGHqampYe7cuVbZ4EhMrx4gNzc3qV1vv/02fr9fct8FQWgVohxBbrzxRl555RXAEOLzzz/fOhZZiuCiiy6yyv2OHDmSrVu38vjjj3P77bcDRh2aeFx22WW88MILnH322S2yy+l04nTKwmRBEFqHqAfGZOqyZcus508//XTYcXtNd4CbbrrJ2jbj6ldddRU+n49LL700LA00kvz8fD777DMWLlzYHqYLgiAkREQeo8bMnj17AKMkwOLFi63nEN479aqrrmLMmDHWc3uaI8B5553XwdYKgiC0HBF5Qg20586dyzHHHIPP52PJkiXWcdOTX758OQ8//HDYa+fNm2dt5+bmhsXcBUEQuppeLfIvvPACP/7xj/nvf/+bcJyZ7TJ9+nRrMvWLL74AjEYdpidvlhmwc9hhh1nbAwYMkPi5IAjdil478bp//37OPvtsPB4PjzzyCLt27Ypb82XlypUAFBcX09TUBMD69evxeDx861vforGxkSOOOCJmNkxaWpq1LYXBBEHobvRat/OVV17B4/EA4PV6efbZZ8OOL126lFGjRvHMM8+wZs0awMhbN5tvrF+/nuuuu453332XAQMG8O9//zvue73zzjsopfjDH/7QQZ9GEAShdfRakTeLiJnhlMiMmfvuu4+tW7dyzjnnsHHjRlJSUhg/frzVRm/t2rU89thjgNGndejQoXHfa968eSxbtkxa7gmC0O3oVSL/u9/9DqUUb775Jq+//joAf/nLX3C5XCxZsoSqqiprrBmHNxk7dixut5u+ffsyYMAAmpub8Xq9DBs2LCzuLgiC0JPoNSIfCAS49dZb+fzzzznxxBOpq6tj6tSpTJw4kRkzZuD3+62MmR07dkTlvg8ZMsTaLi4utrbFOxcEoSfTa0R+7dq11NTUhO07/fTTATj66KMB+PDDDwF4+eWXAaO+jFm+YPTo0dbrzOYeICIvCELPpteIvFn90Sw3ACGRnzPHqJH21ltvccUVV3DFFVcAcM4557BmzRouueQS7rjjDut1RxxxhLUtIi8IQk+mV6RQlpeXc++99wJw4YUXcs0117BlyxZmzpwJwOzZs3E6nWitrVK9KSkpnHnmmWRkZPD444+Hne/www+3tu3lfgVBEHoavULkL730UsrKypg7dy5nnXVW1IKkvLw8jjjiiLBVrPfcc4/Vni+S3NxcZs2axbp168IEXxAEoafRK0T+Rz/6ERs3buTJJ5+Mu+L0hBNOsER+/fr1VqpkPN5++22ampro27dvu9srCILQWfSKmPy8efNYtWqV1WYvFvZYfUvi7JmZmSLwgiD0eHqFJw8krRlzxBFH8MILL3DIIYdIj1RBEA4aeo3It4QFCxZ0tQmCIAidSq8I1wiCIAixEZEXBEHoxYjIC4Ig9GJE5AVBEHoxIvKCIAi9GBF5QRCEXoyIvCAIQi/GEQgEutoGQRAEoYMQT14QBKEXIyIvCILQixGRFwRB6MWIyAuCIPRiROQFQRB6MSLygiAIvRgReUEQhF6MiLwgCEIvpluIvFJqWFfbcKAopTKDjz2mzZRS6vCeZC+AUqpH9mBUSo0PPnaLv7GWoJQa09U2HCg98fehlJrbmXZ36YpXpdRJwFVAE/BP4HWtdW2XGdQClFLfAL4L7ADu1Vrv6lqLkqOUmgr8DvgU+LnWurmLTUqKUuoY4HpgL/B7YJ3WurFrrUqOUioNuBk4C5iutW7qYpOSopQ6DvgJUAt8BPxda13etVYlRim1ALgA2A88AqzSWvu61KgkKKXGAn8CPgZ+obWu74z37TIvQymVAlwGLALuABSQ1Z09TaXUacCFwG+ASuDG4P5ua3OQOcCvtNY3AaO62pgW8m3gCYyL/ynAN7vWnJYRvIDWAD5gIfSI38cPgSeB7wG5wOAutSYJSqkjMAT+18CHwNlAelfa1EJmYjiGPwUmKqVcnfGmndrjVSnlBr6B4S00AuuAXcDXQDGQAbiAbuNpBsMy5wKvAcuBH2ity5VSXwH/UkoVaq33dKmREQRt/jbwkdZ6I1APnKSUugkoVUotA17SWm/uSjvtKKUygJ9j3M29D2wFSoHPMH4rpyqlxmutN3ShmVHY7H5Fa/1RcPdXwCXA75RS/9Zab1RKObTW3aJQlP27xvAql2P83TmAo4BnlVI5WuvqrrMynKDNvwM08EfgCq11qVJqLfBfoC9Q14UmRhG0+UGMu9CHML7fbymlrgG2ABXB38fyjrSjsz35EzE+9DFa630YP7LvAiswbst/CFzZyTbFRSl1LvAehpewR2u9KyjwTqAPsLUbCrxpcwawLbg7ExiI4VlegREeO7ULzIuJUmoohsdeBnwS3O0ARgIBYD2wHRjdJQbGIcLuZbZDczEcqLuA25VSY7uRwNttXqK19gL/BqYAS4E9wOkYd6vdAqXU94HngELgbK11ICjwLsCD4SSWdKWNkdhsLgIWBHfvw9CS+7XWlwBrgPM72pZOEXnb7WoJ8ApQqJSapbX+EHgL+L3W+rvAy0CaUsrZ1be4SqkcjNvAXwCLgbnmZJrW2o8hnN7g2GFdbW/QDrvN7wDzlFKDMH5sLmCo1roKQ/xN27vcbgxB/B/wLvAjpdSRwBvAkcDEoEOQjnHh6i42Q7jdVyilTg/ufxXjQloGHAv8DLrNJGzkd32K1nob8CzG3ch5wKNApVKqT9eZaaCUygMOAa7XWn8D+Ch4oUJr7cEIL7m01gGl1CHd1OaPlVL9MCIXZcC44NBPgLKO1rsOC9cEM2YWYvygNmPcfmcC2Rhe+1SMD3kIhrAfgeFl7g+KaKdjs/kVjNvYPwI/BtIwPsf9SqkFwT+KORhzCA8A/TDuQDp90jiJzS8B9wHHAc8Yw1UmRox7E0BXeJgRv421GN/fCcBEjNDBHRjx1s3AmUqpCRjhvOqushmS2v05hmh6MOaXDgOqMOacRoDlHHQ3m68NCkxfoCmYWLAA8Gutazrb3gibXwHWaK1vC+4fDszAiAaYzAbcSqkHgQLgWow5kU4lic3TAZ/WertS6iXgOKXUtcA0YF9H/y46xLNQSg0B7se4jRqIMfsNhrC8ihFXG6iUuh4j42MrcBvwmdb66o6wKRkRNg8A/qa1fhW4F5intb4fYyLQvI0dhuFpbtRan98VWUEtsPk+4K/Ab7TW/8G4TT8c4zb9js62N4bNg4E/aK01hvg0a63/ETx+AvAU8DxwDLBMa/2nrrAZWmT308ADGKLzL+BJrfX3tNa3aa07/Ja8DTbfj+GwvIPh3X8f0Frri7uBzYUYF0kwjPoa2E14iKMfxm/6S631eV2RFdQCm0sxEjYA3saYW8jEmDO7rqPta1eRV0odbbvtyNNa36+1fgpwKaUWYtw5zMTwbE4DvgOUa63/BSzQWj/cnva0wea/An2UUj/VWr+JER8G42LlDW6/DczSWj/aySYfqM2/w7hTytFar8e4hexONucqpX4A/BLD+0Vr/TowPjhuLXB1V/w2Wmn3FMCjtX4++PqUbm7zG8ChgFtr/S7wba3177uJzaZ23GIb+hyQYvtePwOKu9FvOp7NjqDNDq11KXC31vqPnWFnu4i8UipbKfUWRuz6FIxwzEdKqUuDQz4GzgQqMDzg84G7MW7L94CVetZptMDmD4EzlFJ5WmufUupo4AWMWXG01h9qrSt7iM2bzUyJzs4lboHNHwAXBR8/UkrdFhy/Kzi2021uo90lGOm1QOfa3sbvuiJor6ez7G2hzR9jZFblBZ8PB0aY36vWenVnZwG1xWYzNNOZIcd2WwyllJoBDMXwEH4P5AUft2HEqhswJtNWd5eMlBbYXIfhsa/DiHX/RWv9XFfYatJLbW7CuBh9gpGNMDF4N9Kl9ES7e6nNdcD7WutXlVL5wBHBsGSX0ZNsbvcVr0qphzBi639XSg0EcjAm0K4BnjIFXinl7KoJ1kji2LwJYxLnH1rr3V1pXyx6oc1PdZeLfyQ90W6xuXPoCTa3W0zeFpv6B0bqXmEw9pSLkYc7DKg1x3UHgU9i838wbrNqVPdIfQN6tc21qvukRgI9026xuXPoSTZ3SO0apdSPMFIj92N48V9prT9r9zdqR8TmzqEn2gw9026xuXPo7ja3d3aNeb4pwMnAFq3137vTB45EbO4ceqLN0DPtFps7h55ic0d58t8EXtY9oAKfidjcOfREm6Fn2i02dw7d3eYuLTUsCIIgdCzdZnJOEARBaH9E5AVBEHoxIvKCIAi9GBF5QRCEXoyIvCAIQi+mU9v/CUJXoZQagVHSGoxm5r8I7v8zRtEutNatWp2ojHr3ZwPvaa3fC+57EqMQ30yttW6L7YLQFkTkhYORC5RSdwFZGOLcViZg9EMAo/WiIHQbJE9eOCiwefJbgFEYbflGAn/AKBU7GCN8+TOMXsP5GM1trtJar1NK3Y4h5H/C6OGah9HJbBmhOwSTecAFGJ78/cBZwXN/RxstLwWh05CYvHCw8QVGw+qLgv9eIFT//UKM/rirMcR+JvCiMhpGm8zBaB6Ti9GisJxQO7rngHMxGo+bHIlR8nkIcHv7fhRBSI6IvHAw8hcM7/oojJaOJqcEH6/TWj8EvIhReGqsbcwDWuvfYdwRjNBa12E0iQBYq7X+V0R52du11ndh1HEf0e6fRBCSICIvHIz8C/ABO4G3YhwPRDzaqQg+egn9/SSKedrHd3orQEEQkRcOOoLt4i4CLo3oa/BK8PGBYPnYBQRLxyY55f7g4xyl1DlKqYx2NVgQ2oBk1wgHJVrrZ2LsfhJjAvaHGBOzyzAmXj1KqUSn+wij3+fRwdcNbVdjBaENSHaNIAhCL0bCNYIgCL0YEXlBEIRejIi8IAhCL0ZEXhAEoRcjIi8IgtCLEZEXBEHoxYjIC4Ig9GL+H3kyodGRY9C6AAAAAElFTkSuQmCC", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGwCAYAAABo5yU1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACk+0lEQVR4nOydd3wUdf7/X9t7ekiBFELoKEgTpCMIcipIE1ERVCygiAXwTgVEOTvfk1PQH3KCyh16IpwgCioGBBsdBKmBhIQSIAlJdjfbf39sdtrO7M6GQJbk/Xw8fDg7M5/PzHzYZF55V4XP5/OBIAiCIAgiSlHW9w0QBEEQBEGEgsQKQRAEQRBRDYkVgiAIgiCiGhIrBEEQBEFENSRWCIIgCIKIakisEARBEAQR1ZBYIQiCIAgiqiGxQhAEQRBEVENihSAIgiCIqKbBihWv14sTJ07A6/XW963UO7QWLLQWLLQWLLQWLLQWLLQWLPW9FhGJlQ8++ABjxoxBt27dsGHDBt6xZcuWYdCgQRg4cCDeeecdcKv4HzhwAHfffTd69eqFhx9+GGfOnGGOVVdX48UXX0Tfvn3xl7/8Bd9+++1lPhJBEARBEA2JiMRKRkYGnnnmGbRv3563f+vWrfjiiy+wbNkyfP7559i6dSu++uorAIDT6cTMmTMxbtw4bNq0CR06dMDs2bOZsR988AEuXbqE9evX4+9//ztee+01FBQU1MGjEQRBEATREIhIrAwbNgw9evSAVqvl7V+/fj1Gjx6NZs2aISkpCffeey+++eYbAMDOnTthMBgwfPhw6HQ6TJ48GQcPHmSsK+vXr8fDDz8Ms9mMjh07om/fvti4cWMdPR5BEARBENc66rqY5MSJExg2bBjzuVWrVnjvvfcAAPn5+cjNzWWOGQwGNGvWDPn5+TCZTLh48SLveKtWrXDgwAHJazmdTjidTv5DqNVBAirgVyNfI60FF1oLFloLFloLFloLFloLliu1FkqlPJtJnYgVm80Gs9nMfDaZTLDZbAAAu90Ok8nEO99kMsFut8Nms0GlUkGv14uOFeOjjz7CkiVLePvGjBmDsWPHip5/6tSpiJ+noUJrwUJrwUJrwUJrwUJrwUJrwVLXa9G8eXNZ59WJWDEajaiqqmI+W61WGI1GAH5LitVq5Z1vtVphMBhgNBrh8XhQXV3NCBbuWDEmTZqEe+65h/8QEpaVU6dOISMjQ7Zya6jQWrDQWrDQWrDQWrDQWrDQWrDU91rUiVhp3rw5jh07ht69ewMAjhw5gpycHABATk4OVq9ezZxrt9tRVFSEnJwcxMTEIDExEceOHUOHDh2Cxoqh1WqDhEkolEplo/+SBaC1YKG1YKG1YKG1YKG1YKG1YKmvtYjoim63Gw6HAz6fj9n2er0YNmwYVq1aheLiYly4cAErVqzArbfeCgDo0qUL7HY71q5dC6fTiaVLl6Jdu3ZIS0sD4A/a/fDDD2G1WrF//35s2bIFgwcPrvsnJQiCIAjimiQiy8orr7yCdevWAQB2796NOXPm4P3330fv3r1x9OhRTJgwAV6vFyNGjMAdd9wBwG8JeeONN/Dyyy/jtddeQ7t27TBv3jxmzkceeQSvvPIKhg4dipiYGDz33HPIzs6uuyckCIIgCOKaRuHjVm9rQHi9XhQUFCArK6vRm+9oLVhoLVhoLVhoLVhoLVhoLVjqey0a9+oTBEEQBBH1kFghCIIgCCKqIbFCEARBEERUQ2LlGuD8+fPQaDSw2Wxwu90wmUwoLCxkjmdnZ0OhUEChUMBoNKJDhw744IMP6vGOCYIgCKLuILFyDfDLL7+gU6dOMBqN2LlzJxISEpCZmck7Z968eThz5gz27duHESNG4NFHH8Vnn31WT3dc/whbMhAEQTQkfr9QjrVF5+BtmDkyQZBYuQb4+eef0atXLwD+DteBbS4WiwWpqanIzc3FK6+8gpYtW2LNmjUAgOeeew4DBw6E2WxGTk4OXnzxRbhcLmbs3r17MWDAAFgsFsTExKBLly7YsWMHAKCgoAC333474uPjYTKZ0L59e6xfv54Ze/DgQQwbNgxmsxkpKSm47777cOHCBeZ4//79MW3aNMycORMJCQlITU3F3Llzefd+6NAh9O7dG3q9Hu3atcP3338PhULB3D8AFBcX46677kJ8fDwSExMxfPhwnDx5kjk+ceJEjBgxAq+++irS09PRqlUrAMCiRYvQsmVL6PV6pKSkYMyYMbX6NyAIgogWCq12DPtxO+7/eR9WFZ6t9TyHK6pwofra+MOuTirYEnVPYWEhrr/+egBgeigtW7YMdrsdCoUCcXFxGD9+PBYtWiQ6Xq/XM4LEYrHgzTffROfOnXHgwAFMnjwZFosFM2fOBADcc889uOGGG7B48WKoVCrs2bMHGo0GADB16lQ4nU5s2bIFJpMJBw8eZPpAnTlzBv369cPkyZOxYMEC2O12zJo1C2PHjsWmTZuYe1m+fDmefvpp/Pbbb/jll18wceJE9OrVC4MHD2bq8mRmZuK3335DZWUlnnnmGd6z2Gw2DBgwAH369MGWLVugVquZ2jz79u1jKhr/8MMPiImJwXfffQefz4cdO3Zg2rRp+OSTT3DTTTehtLQUW7ZsqcN/JYIgiKvPl4Vn4a0xqDzy2x8Yk5UW8RwbT5/HuK17YNGosXtYLyTo5FeGrw8apVjp2rUrzp6tvRqtLampqYzFIhzp6enYs2cPKioq0LVrV/z6668wm83o1KkTvv76a2RmZvKaRwZwu9349NNPsX//fjz22GMAgOeff57Jj8/JycEzzzyDzz77jBErhYWFmDFjBtq0aQMAaNmyJTNfYWEhRo0aheuuuw4AeK0QFi9ejM6dO+Pvf/87s+9f//oXMjIycOTIEca6cf3112POnDnM3O+++y5++OEHDB48GBs3bsTx48eRl5eH1NRUAMD8+fN5VYxXrlwJpVKJDz/8EAqFAoC/oWVcXBzy8vJwyy23APA3wfzwww8Z8fLll1/CZDLhtttug8ViQVZWFjp27IiCggJZ/wYEQRBCvG4vSreVIbZjDDRxmnq5hzjt5V/3ie0HAQCVLjeWHDuFWe1bXPacV5JGKVbOnj2L4uLi+r6NkKjVamRnZ+Pzzz9Ht27d0LFjR2zbtg0pKSno27dv0PmzZs3CCy+8AIfDAa1WixkzZuCRRx4BAHzxxRd44403UFRUhKqqKrjdbsTExDBjn376aTz00EP45JNPMGjQIIwZMwYtWvi/uNOmTcNjjz2GjRs3YtCgQRg1ahRj8dm5cyd+/PFHUdF0/PhxnljhkpaWhpKSEgDA4cOHkZGRwQgVAOjevTvv/J07d+LYsWOwWCy8/dXV1Th+/Djz+brrruP1jRo8eDAj0IYOHYqhQ4di+PDhUktOEAQRlsMvHcGJRQWwdLCgd15P5g+oq4lHEKfi8/kivo9yTijAaZujTu7rStIoxQr3xRit123fvj0KCgrgcrng9XphNpvhdrvhdrthNpuRlZWFAwcOMOfPmDEDEydOhNFoRFpaGvPF/fXXXzF+/HhMnz4dY8eORXx8PFauXIm3336bGTt37lyMHz8eX3/9Nb755hvMmTMHK1euxJ133omHHnoIQ4YMwddff42NGzfi1Vdfxdtvv40nnngCXq8Xt99+O15//fWg+w/0fgLAuJQCKBQKeL1eAPJ+yLxeL7p06YIVK1YEHUtOTma2TSYT75jFYsGuXbuQl5eHjRs3Yvbs2Zg7dy6++OKLkNcjCIKQ4sQiv2W28o9KOM46oE/TRzzH5wVnsKrwLGa1z0HnhNiIx1e53LzPRbZqZJgMEc2RoNXgXE28SpnTFebs+qdRihW5rpj6ZP369XC5XLj55pvxxhtvoEuXLhg3bhwmTpyIoUOHBgmApKQk5ObmBs2zbds2ZGVlYerUqUyZZDE3SKtWrdCqVSs89dRTuPvuu/HRRx/hzjvvBABkZGTg0UcfxaOPPoq//vWvWLJkCZ544gl07twZq1atQnZ2NtTq2n2V2rRpg8LCQpw7dw4pKSkAgO3bt/PO6dy5Mz777DM0adKEZxGSg1qtxqBBgzBo0CDMmTMHcXFx+Pnnnxm3FkEQRG2xnbRHLFbcXi8e/e0PAMCWc6U4M/rmiK9b6fbwPh+qsEYsVmI5YqX8GhArlA0UpWRlZcFsNuPcuXMYPnw4MjMzcfDgQYwcORK5ubnIysqSNU9ubi4KCwuxdu1aHD9+HAsXLsTq1auZ43a7HY8//jjy8vJQUFCAbdu2Yfv27Wjbti0AYPr06diwYQNOnDiBXbt2YdOmTcyxqVOnorS0FHfffTd+//135OfnY+PGjXjggQfg8XhE70fI4MGD0aJFC9x///3Yt28ftm3bhueffx4AGIvLPffcg6SkJAwfPhw//fQTTpw4gc2bN+PJJ59EUVGR5Nzr1q3DwoULsWfPHhQUFODjjz+G1+vlxd0QBEHUFmu+LeIxFRyriKPGwhwpQsvKoUtVEc9hUqmY7YskVojLIS8vD926dYNer8dvv/2Gpk2bIj09PaI5hg8fjunTp2Pu3Lno3Lkzfv75Z7z44ovMcZVKhYsXL2LChAlo1aoVxo4di1tvvRUvvfQSAMDj8WDq1Klo27Ythg4ditatWzMZSOnp6di2bRs8Hg+GDBmCDh064Mknn0RsbKzsRlcqlQpr1qxBVVUVunXrhoceeggvvPACAH9GEwAYjUZs2bIFmZmZGDlyJNq2bYsHHngAdrs9pKUlLi4OX375JQYOHIi2bdvi/fffx4oVK5hYGoIgiMvBdiJysXJJIDRqUyel0i0QKxXWiOeo4lhnimzViPaextR1uRFwra3Ftm3b0Lt3bxw7dowJ9K0rrrW1uJLQWrDQWrDQWrAI18Lr9OLbtO+Y42kjUnHD0o4Rzbm3rAIDvvuN+fzn7X2RYtBFNMeEbXuxrriE+dw5IQbfD7oxojnar92CM3Y2sPb48P6I10lnGdX396JRxqwQ0cXq1athNpvRsmVLHDt2DE8++SR69epV50KFIAjicnBX8i0a1lpYVioElpXT9uqIxYrQsnK8MvL7qBTcR6HNHlKs1DeNWzYTUUFlZSWmTJmCNm3aYOLEiejWrRv+97//1fdtEQTRwKg6UoXNPbZi53274fNE7lRwVfBf8LZ8W8Tuk0tO/hzFtUgbrnLxYwIvudyolhknCAAer4/nBgL8VXGjGbKsEPXOhAkTMGHChPq+DYIgGjh/PHsQ1qNWWI9acfrLM2g6JrIYQLdArLgr3XBedEGXJL/6q5hlJVKElhUAuFDtRDOZGUFVIuMLrZHfx9WELCsEQRBEo6B0WxmzfWlvRcTj3RXBWTORBtkKxUqxLXKRIMwGAsCkIctB6AICot+yQmKFIAiCaBQoDewrz1UWebqu0A0EANbjkWXiXHLxr3vaHrkbSFhnBQDOO+SLFaFgAvwZQdEMiRWCIAiiUaCNZ901rvLIxYrQDQQA1acjExuXa1nx+XyilpWSavn3USEidi5EIHbqAxIrBEEQRKNAE8eGabpK60asOC9cnliJNGbF6vZALKT3fERuoOBnJ7FCEARBEFEANwPIXhS520OYugwAjguRveSF2UBn7I6ICsNxs3hS9KylqCQCsVLhEnEjRTC+PiCxQhAEQTQK3JXsS7r6TDW8zsjK3btExIqzJLKXvDC41eX1RWgVYcfnmI3MdiRiRSzAtsrtgV3EPRQtkFghCIIgGgU8y4gPsBdHZl0RcwNFalkRC249E0GQLTdtuTlHrJx3RBCzInIPQHS7gkisXAOcP38eGo0GNpsNbrcbJpMJhYWFzPHs7GwoFAooFAoYjUZ06NABH3zwQT3eMUEQRHTh8/rgruK/pO0FkaXrisesROgGusx4EW5BuBS9Fma1vyFhbS0rLXiCh8QKcRn88ssv6NSpE4xGI3bu3ImEhARkZmbyzpk3bx7OnDmDffv2YcSIEXj00Ufx2Wef1dMd1z9OZ/T+0BEEcfVxV3kgjEy1n4pMrLg4dVaMzf0F2JwXnRFVwxWzalyMQCRwLStmjRrJNXErEYkVnnWGLSR3IYrjVkisXAP8/PPP6NWrFwBg69atzDYXi8WC1NRU5Obm4pVXXkHLli2xZs0aAMBzzz2HgQMHwmw2IycnBy+++CJcHHW/d+9eDBgwABaLBTExMejSpQt27NgBACgoKMDtt9+O+Ph4mEwmtG/fHuvXr2fGHjx4EMOGDYPZbEZKSgruu+8+XLhwgTnev39/TJs2DTNnzkRCQgJSU1Mxd+5c3r0fOnQIvXv3hl6vR7t27fD9999DoVAw9w8AxcXFuOuuuxAfH4/ExEQMHz4cJ0+eZI5PnDgRI0aMwKuvvor09HSms/KiRYvQsmVL6PV6pKSkYMyYMbX6NyAI4tpGLDjWVlh7y4qxeY1Fwgs4ZdZs8fl8QV2XAeCCQ35mEjdt2aJWo4ne31eoIoKS+7y4F8u1YVmhcvtRSmFhIa6//noAgM1mg0qlwrJly2C326FQKBAXF4fx48dj0aJFouP1ej0jSCwWC95880107twZBw4cwOTJk2GxWDBz5kwAwD333IMbbrgBixcvhkqlwp49e6DR+BtaTZ06FU6nE1u2bIHJZMLBgwdhNpsBAGfOnEG/fv0wefJkLFiwAHa7HbNmzcLYsWOxadMm5l6WL1+Op59+Gr/99ht++eUXTJw4Eb169cLgwYPh9XoxYsQIZGZm4rfffkNlZSWeeeYZ3rPYbDYMGDAAffr0wZYtW6BWq/HKK69g6NCh2LdvH7Ra/18WP/zwA2JiYvDdd9/B5/Nhx44dmDZtGj755BPcdNNNKC0txZYtW+rwX4kgiGsFMbFir6VYUZlU0KWwzQedF5yySu5Xe7xweYOtMBFZVjhuILNGhWQde125Jfe5c3DdQNFsWWmUYqXrZC/Oll7966YmADuWyDNmpaenY8+ePaioqEDXrl3x66+/wmw2o1OnTvj666+RmZnJiAYubrcbn376Kfbv34/HHnsMAPD8888zrb1zcnLwzDPP4LPPPmPESmFhIWbMmIE2bdoAAFq2bMnMV1hYiFGjRuG6664DAOTk5DDHFi9ejM6dO+Pvf/87s+9f//oXMjIycOTIEca6cf3112POnDnM3O+++y5++OEHDB48GBs3bsTx48eRl5eH1NRUAMD8+fMxePBgZs6VK1dCqVTiww8/hEKhAAB89NFHiIuLQ15eHm655RYAgMlkwocffsiIly+//BImkwm33XYbLBYLsrKy0LFjRxQUFMj6NyAIouEgJlYijTcJzKGJUfPEifO8A2gT/PtYCNcFlGUyoKCmxH1EMSscF45Fo0YTTvryOdliRSpIl8RKVHG2FCg+X993ERq1Wo3s7Gx8/vnn6NatGzp27Iht27YhJSUFffv2DTp/1qxZeOGFF+BwOKDVajFjxgw88sgjAIAvvvgCb7zxBoqKilBVVQW3242YmBhm7NNPP42HHnoIn3zyCQYNGoQxY8agRYsWAIBp06bhsccew8aNGzFo0CCMGjWKsfjs3LkTP/74o6hoOn78OE+scElLS0NJSQkA4PDhw8jIyGCECgB0796dd/7OnTtx7NgxWCwW3v7q6mocP36c+XzdddcxQgUABg8ezAi0oUOHYujQoRg+fLjUkhME0YARBtcCgLM0spdzoNy+OkYNbRPWsiI3I+iSix8rEhArFyNwA3GFhlmtYmJWAPliIyCalAq/aGLGk2UlukhNiP7rtm/fHgUFBXC5XPB6vTCbzXC73XC73TCbzcjKysKBAweY82fMmIGJEyfCaDQiLS2NsUD8+uuvGD9+PKZPn46xY8ciPj4eK1euxNtvv82MnTt3LsaPH4+vv/4a33zzDebMmYOVK1fizjvvxEMPPYQhQ4bg66+/xsaNG/Hqq6/i7bffxhNPPAGv14vbb78dr7/+etD9p6WlMdsBl1IAhUIBr9df38Dn8zH3KoXX60WXLl2wYsWKoGPJycnMtslk4h2zWCzYtWsX8vLysHHjRsyePRtz587FF198EfJ6BEE0PMQtK/JFgs/jg8fqd5+oYzR8y4rMWisVAotG3jm/iT8Siwa3KJxFo0YTHbcwnLz05UCArT/mJXKxUx80SrEi1xVTn6xfvx4ulws333wz3njjDXTp0gXjxo3DxIkTMXTo0CABkJSUhNzc3KB5tm3bhqysLEydOhVZWVlQKpWibpBWrVqhVatWeOqpp3D33Xfjo48+wp133gkAyMjIwKOPPopHH30Uf/3rX7FkyRI88cQT6Ny5M1atWoXs7Gyo1bX7KrVp0waFhYU4d+4cUlJSAADbt2/nndO5c2d89tlnaNKkCc8iJAe1Wo1BgwZh0KBBmDNnDuLi4vDzzz8zbi2CIBoHomnHpU5ZfzABfLGjiVFDm8y+5OVaVrhiJUGrQaxGjUsud0QxK5d4lhU1kvWshUeOZcTp8eJsTV2XWK0aMRo1NEoFXF4f1VkhIicrKwtmsxnnzp3D8OHDkZmZiYMHD2LkyJHIzc1FVlaWrHlyc3NRWFiItWvX4vjx41i4cCFWr17NHLfb7Xj88ceRl5eHgoICbNu2Ddu3b0fbtm0BANOnT8eGDRtw4sQJ7Nq1C5s2bWKOTZ06FaWlpbj77rvx+++/Iz8/Hxs3bsQDDzwAj8yo9MGDB6NFixa4//77sW/fPmzbtg3PP/88ADC/QO655x4kJSVh+PDh+Omnn3DixAls3rwZTz75JIqKiiTnXrduHRYuXIg9e/agoKAAH3/8MbxeLy/uhiCIxoGYZcVb7WWsJeGoPsMWkFMLY1Zku4FYS06sVo2kGqtIJNlA2y+W++9BoUC6Qcd3A8kQK3nnLjLWmZ5J8VAoFOx9RLEbiMRKFJOXl4du3bpBr9fjt99+Q9OmTZGenh7RHMOHD8f06dMxd+5cdO7cGT///DNefPFF5rhKpcLFixcxYcIEtGrVCmPHjsWtt96Kl156CQDg8XgwdepUtG3bFkOHDkXr1q2ZDKT09HRs27YNHo8HQ4YMQYcOHfDkk08iNjYWSqW8r5ZKpcKaNWtQVVWFbt264aGHHsILL7wAwJ/RBABGoxFbtmxBZmYmRo4cibZt2+KBBx6A3W4PaWmJi4vDl19+iYEDB6Jt27Z4//33sWLFCiaWhiCIxgNXrKhMKmbbeVHeC/rMmrPMduwNsdDyAmxlzmFj3TRxGg0SdX4LeaXLDYcnfOn//EobTlT541x6JMXBrIncjbPm1Dlme3iG35qdzBFNkfQpupo0SjfQtcK4ceMwbtw4AECfPn1w9OhR0fO49UbEeP311zFlyhTGDQT4LSYAoNVq8Z///Edy7D//+c+Qc7ds2RJffvml5PG8vLygfdz6KYDfFbR161bm87Zt2wCA59ZKTU3F8uXLJa+zbNmyoH29e/cOur7X66VsIIJohHDFirG5EZV/VAIAnBddMIYxVPu8PhR/fsb/QQmkj0qDNpF1xTvOy4sV+fVCObPdKSEG355mMz0uOpxIN+pDjv/hLFvD6ubURADgpS6Hs6w4PF6sr7mmRaPGgJSaOWoEj9vnQ5nThURd+DTsqw2JFaLeWb16NcxmM1q2bIljx47hySefRK9evZiMJIIgiMuFJ1ayDRyxEt4aUfZbOVOTJal/IvSp/jgRTbwGrjKXLDeQz+fDLxfKAACxGjXaxph5ouCiwyVDrFxktm9OSwLgr2JrVClh83hREsay8uuFMiZu5tb0ZOhU/j9em3DiXs5VO6NSrJAbiKh3KisrMWXKFLRp0wYTJ05Et27d8L///a++b4sgiCjDXemWbcUIHsvGphiz2doicsTK+e9Zi0bTsawrXtfE/1J3lPgDdUNxuMLKpCj3TI6DSqngxZuEC251eb3YWuLPHkrRa9E+li0ZEQiyDWdZ4V6jUzzrQk/l1mqJoKni1YQsK0S9M2HCBEyYMKG+b4MgiCjGWebE5q4/wVXhRs/1NyK+W1xE43l9fXhiJXxwq/sSe465NSsSdE10qDpshcfmgafKA7VF+pX68/kyZrtnUjwAMDErQPgqtmVOF2w1cS2d4mN4GUzJei0KrHaUOV1web3QSMQMVnPiYvQq9hyuZUVu+vPVhiwrBEEQRNRz6uMiuMrdgBfYNXFPxON5lpUsthCaHBeOx86+5FUGNjiXW3LfURL6Jc8VK72a+MVKErdUfpiMICdPaKh4x+TGrXCDeHUcsZJi4LuBohESKwRBEETU43WyL1rH2cj/+g/ErKiMgr4+MqrYeuys0FEZ2ddmwA0E+F1BoThcYQUAaJQKXB/nr8adqJPvBqr2iltFAMh2Jzk4c+g41heuG+hslLqBSKwQBEEQUU8oF4scAmJFbVFBmxhZjRQv17Ki51hWmsi3rARcMCa1CuoaoZDEcQOFEytcq4hW4OZJ5lWxjdyyQm4ggiAIgqgDPFX84m3hAlp5Yx1eRkxoErTQJrAiwVUaPmbFU82xrBgkxMq5MGKlxqqh5wgNfjZQGLESwrIit9YKN2aFa1khNxBBEARBwF+L5Ny3JTyXSiQIGxHKLcQGAJUHK+Fz+cVN7HUxUGqVUMf4LTUOGdlA3JgVpZ59bWojcAMFYk60HKERScyKlFUEgOyS+04JwWNSq2BW+0XYObKsEARBEI0Rn8+HX2/fjp337Mbhl4/Uag6XoLePrcAue+ylPRXMdmwnf8puoKibS4ZY8dZYVpR6JRRKNgsnkgDbgGVFp+RYZlRKWDR+0RSu1L1UvAnAt6yEcuNUh3AlpdQIHrKsEA2G/v37MxVwCYIgwuGucMN61B9gevKDwlrPwcV2wiZ77KU9l5jt2BsCYsX/gneVu+F1hS5177H5xQrXBQREFrPiqOmXJnThBOJWIolZCbKsyM0GCuFKSjH456h0uWFz1876dSUhsRKlTJw4EQqFAgqFAhqNBjk5OXj22WdhtVrr+9YIgiAiQujC8Xkj7z8jbERoOxmJWKmxrCiBmA5+sRKJ0Ai4gYRiRZuggUKtqJlDWiR4fT44a55ZaNEIuIIuudxweaVFk1S8CSA/ZiWU4EnhVbGNPlcQiZUoZujQoThz5gzy8/PxyiuvYNGiRXj22Wfr+7aiEpdLftdSgiCuLtwaJwC/g7HsOYIsK/LcQB67B1V/VgEALG3MUBn9gkOfxr6cq0+HfjkzbiAD/5WpUCqgS66pYhsiwFYqVgTgx61cDBG3wp1DKDRiNGqoaorElTul5wjtSoruIFsSK1GMTqdDamoqMjIyMH78eNxzzz1ME0CHw4Fp06ahSZMm0Ov16N27N7Zv386MXbZsGeLi4njzrVmzhlf1cO7cuejUqRM++eQTZGdnIzY2FuPGjUNlZSVzjtVqxYQJE2A2m5GWloa333476D4XLVqEli1bQq/XIyUlBaNHj5Z8psB9rVmzBq1atYJer8fgwYNx6tQp3nlr165Fly5doNfrkZOTg5deegluN/vLSqFQ4P3338fw4cNhMpnwyiuviF7P4XBg5syZyMjIgE6nQ+vWrfHZZ58xxzdv3ozu3btDp9MhLS0Nzz33HHOdtWvXIi4uDt6aH/A9e/ZAoVBgxowZzPhHHnkEd999t+TzEkRDwOv24uLWUl4V2EgIsorky7eKBAiOWZE3R8UflfB5aoJrO8Uy+3VpbB+ecOJJyrICANoaC43zvFPSYhTKopEoM305lGVFoVAgTuuPfSlz8tdJ7n1Ee8l9EivXEAaDgbEgzJw5E6tWrcLy5cuxa9cu5ObmYsiQISgtLY1ozuPHj2PNmjVYt24d1q1bh82bN+O1115jjs+YMQM//vgjVq9ejY0bNyIvLw87d+5kju/YsQPTpk3DvHnzcPjwYXz77bfo27dvyGvabDbMnz8fy5cvx7Zt21BRUcF0lwaADRs24N5778W0adNw8OBBfPDBB1i2bBnmz5/Pm2fOnDkYPnw49u/fjwceeED0WhMmTMDKlSuxcOFC/Pnnn1i0aBFMJhMAoLi4GMOGDUO3bt2wd+9eLF68GEuXLmWET9++fVFZWYndu3cD8AubpKQkbN68mZk/Ly8P/fr1k7PUBHHNcmj2Yfw2fDt+v3NHRCnDAYRixRpBvInUHLaT8iwrXHeRpR1bKp9rWQlVZM7n8cHrqBEr+uBXZiDI1ufxwSmRBs0rcx+iRkrIgm4SpfIDxGv9oqcshGWl2sNauPRKvvDipy9Hn1hplL2Btg78Bc4wPsorgbaJDr039azV2N9//x3//ve/cfPNN8NqtWLx4sVYtmwZbr31VgDAkiVL8N1332Hp0qW8v/zD4fV6sWzZMlgs/oqK9913H3744QfMnz8fVVVVWLp0KT7++GMMHjwYALB8+XI0a9aMGV9YWAiTyYTbbrsNFosFWVlZuOGGG0Je0+Vy4d1338WNN97IzNm2bVv8/vvv6N69O+bPn4/nnnsO999/PwAgJycHL7/8MmbOnIk5c+Yw84wfP15SpADAkSNH8Pnnn+O7777DoEGDAADZ2dnIzc0F4LcIZWRk4N1334VCoUCbNm1w+vRpzJo1C7Nnz0ZsbCw6deqEvLw8dOnSBXl5eXjqqafw0ksvobKyElarFUeOHEH//v1lrzdBXIsEgmIv7amA+5IbmjhNmBF86sKyInQDOS/4LRnc7BwxAkIDAFQm9gWtT+VaVkKIFScrzsQsK/wqtg7okoI7FnNdONogy4q8WiuOEHMAQFyNWKlwueH2epnCc/z7YJ9FaFlpIjP9ub5olGLFWeII+eWMFtatWwez2Qy32w2Xy4Xhw4fjn//8J44fPw6Xy4VevXox52o0GnTv3h1//vlnRNfIzs5mhAoApKWloaSkBIDf6uJ0OtGzJyuwEhIS0Lp1a+bz4MGDkZWVhZycHAwdOhRDhw7FnXfeCaORbRQmRK1Wo2vXrsznNm3aIC4uDn/++Se6d++OnTt3Yvv27TxLisfjQXV1NWw2GzM3dw4x9uzZA5VKJWn5+PPPP9GzZ0+ea6xXr16oqqpCUVERMjMz0b9/f+Tl5eHpp5/GTz/9hFdeeQWrVq3C1q1bUV5ejpSUFLRp0ybkfRBEQ8JeXB25WKm6PMuKz+sLDtL1+OAqc/Gq0YrhqeaIFR1HrHBjVkK4gbzc8UYRsZIsKAzXzhJ0TijLShI3OLY6RLxJiDkA1rIC+IN1uSKIvQ/WshI6/ZnESlSg5USBR/N1BwwYgMWLF0Oj0SA9PR0ajf/LeObMGQDgvWQBfy2DwD6lUhlkrhULQg3MGUChUDAxGnLMvRaLBbt27UJeXh42btyI2bNnY+7cudi+fXtQzIzwOlL7vF4vXnrpJYwcOTLoHL2e/Wso4M6RwmAwhDzOXS/uPu699O/fH0uXLsXevXuhVCrRrl079OvXD5s3b0ZZWRm5gIhGR3VxNWLaB7+QQxFkWYlQrLirPIDIryPHeWdYscK1rHALunFjVhyhLCsO9sJKETdQoF4LIF0N1xEiODapjiwrXLFS5nSJipXAHGqFAiqBRYp7H+cd0ffHfKMUK7V1xVxtTCYT47LgkpubC61Wi61bt2L8+PEA/EJkx44dTP2T5ORkxlUReGnv3bs3ouvn5uZCo9Hg119/RWZmJgCgrKwMR44c4b2k1Wo1Bg0ahEGDBmHOnDmIi4vDpk2bRMUGALjdbuzYsQPdu3cHABw+fBjl5eWMhaJz5844fPiw6LNHwnXXXQev14vNmzczbiAu7dq1w6pVq3ii5eeff4bFYkHTpk0BsHEr//jHP9CvXz8oFAr069cPr776KsrKyvDkk09e1j0SRLQj/KPFXiS/GFuAYLFiF/1jQXq8hAgoccDSxix6LICXUyqfKzY0MWqoTCp4rB5Uh4hZ8VaHdgPx+gxJFJhzhAiOldsfKJxlJRBgC0jHrQTmEIt5SdJpoIBfE5JlhagTTCYTHnvsMcyYMQMJCQnIzMzEG2+8AZvNhgcffBAAcOONN8JoNOJvf/sbpk6divXr12P58uURXcdsNuPBBx/EjBkzkJiYiJSUFDz//PNQcn5Q1q1bh/z8fPTt2xfx8fFYv349vF4vz1UkRKPR4IknnsDChQuh0Wjw+OOPo0ePHox4mT17Nm677TZkZGRgzJgxUCqV2LdvH/bv3y+Z9SNGdnY27r//fjzwwANYuHAhOnbsiBMnTuDgwYOYMmUKpkyZgn/84x944okn8Pjjj+Pw4cOYM2cOnn76aeYZA3Ern376Kd555x0AfgEzZswYuFwuilchGjxcNwjgt6xEijB12WPzwHHWAT3HuhFyfIV4houcJoRSbiAA0KfqYD1uk+8GEhUrrNiQCrANZVlJlJm6XO3luHBUwffBtaxIpS8H7kNY6wUA1EolEnQaXHS4eDErn+YX40ilFfEaNQZqQhfPu5JQNtA1ymuvvYZRo0bhvvvuQ+fOnXHs2DFs2LAB8fHxAPyxJZ9++inWr1+Pjh07Yu3atZg9e3bE13nzzTfRt29f3HHHHRg0aBB69+6NLl26MMfj4uLw5ZdfYuDAgWjbti3ef/99/Oc//0H79u0l5zQajZg1axbGjx+Pnj17wmAwYOXKlczxIUOGYN26dfjuu+/QrVs39OjRAwsWLEBWVlbE97948WKMHj0aU6ZMQZs2bfDII4/AZvOboJs2bYr169fj999/R8eOHfHoo4/iwQcfxAsvvMCbY8CAAfB4PIwwiY+PR7t27ZCcnIy2bdtGfE8EcS0hFAr22oiVqmCxEcqaETSeY5nRcgJYHTL6A0m5gQAwYslj9QSlRgfw8Swrwa9MTUL4Ds7VIVKG+e6XEH19QlhnAKEbSPxZAvchvIcAgcyk8w4nY1H75vR5vHu4AC//cRyOWhTzqyvIshKlLFu2LORxvV6PhQsXYuHChZLnjBgxAiNGjIDX60VBQQGysrLwyCOPMMfnzp2LuXPn8sZMnz6dV0rfbDbjk08+wSeffMLs42Yb9e7dG3l5ebKeicvIkSMl3USAX7AMGTJE8rjc9Em9Xo8FCxZgwYIFAMCsRYB+/frh999/DznHW2+9hbfeeou3b8+ePbKuTxDRgOOCE5oYNZTayP8+dQlcONWna2NZCX55SrlMRO+BIyRMLYyMKJCT1clzA+n4z6/jpi+fqYYmJtilFM6yws3+cZaKP5MzRDG2QH+gSpdbdsyKmNjgiRUJC03gPsTcQIA/I+hQhRXVHi8q3R7EaNS8e4pTBz//1YIsKwRBEA2Y8z9ewKb2edjcYyvcVumCYVIEWVaK6kisyHDhiI035rCZhg45biBu6rKEZQWQTl/mWlaUImJFk8BxA0kIsFCWFUBef6BwdVbiBAG2Qnw+HzOHmBsIAJI5GUGBxoqBuSxqFTRh0sSvJCRWCIIgGjB/PHMQPrcP9gI7iv5dHPF4oVipPl0dcW8fUbEiEd8R7h5MOWwWoFOOG4hjGRFaVnjpy2fFRRivTouIG0htUjNl+J0XpQJbpYuxAWzcSrnTXyNFdA5uNlAYN5AwZuW5XYeQ+7/NqHKLN1MMwC1QV1IjnAJxNGLZRVcTEivEVWXixIkoLy+v79sgiEaDvYDN3qk8WBXxeKHQ8Ll8skRCqDmACC0rHLFibG4Aav7AD9eAEBDErAgCbHWp4avY+sJkAwGAtiZupbaWFWGNlHBziFewFc8GKql24P8dO8XbJxbzAvAtK+erHfB4fcw47j3WByRWCIIgGjD6dNbVUZu0Y7HA00iDbN1VnqB9Lon4DtHxHLGjidMw6cJyAmw9ISwj3IJuUkLD65AhVmoyglwXXaLxdKGaEAJAnIYVGkKryOGKKjy14yB+OHuRnSNsgC07x+EKa9C54QJsAWDLuVIcqqhiyttwexjVByRWCIIgGjDaJPYlw7WyyEWsxkmkoicgNrhdi50X5LuBuIJJY1EzGUHOC86wwfZeu3SALS/tWHA/XpcXu+7fg3NvlLDjRYrC+efx34/P4xNNsw7VhBAInclz9097sDyf774TExuxGvE5DpYHW9OkLCvcKrZLjxehz8Zfmc8JZFkhCIIgrhRcq4b1hA0ee7CVI+R4ERdOJO1KfD4fM4cxiw2OjSQbiCsA1DFq6JL9L1VvtTeohosQvhtIIFa4adAX+M9UsvE8Staf5+0TK7cPCArDibi3KjiunUiDY09a+cJQo1RAKVJMT6VUILbGQsO1zhy8FCxW9CJ1WgC+G0hIAllWCIIgiCuFq5zz8vMClX9GFrciZimIJN7E6/DC5/JbP7QJGqhj/C/USMSK/RT7wtYmaaHlNA90ng8tnAJuIIVaAaWa/8rTxGmgUClq7ocvEqxHg90n0jEr4oXh5u07imarfsDbf55gzxWtPsuJWeEIjUqR+BUpqwgg3nn5zwoRy4qUG0gv3RKGLCsEQRDEFcHn88F9if/CqzxQGdEcl1sjhWvZUVvUjOtF7hxetxeX9lQAAAwZemgTtPzmgWGEU6DOitCqAgAKpQKawP0I5hFrtihMfQ4gZVlRKhSwefjZPZEEx56sCna3SQkN/zz+Zyl3ueD1+eD1+XBIxLIimbocIuOHLCsEQRDEFcFd6YHPw4/pqPgjMrEiFmAbSTYQV+z4xYr/hegqd8PrCl++vepQFTw2v+CI6xIHAIwbCKjpdByCgBsonNAQxr+INVuUcgNpEsULw4ll0IQt6MYRK/lVwfcQyrISsNB4fX6rzClrNZOuzEUqdTmUEErUUuoycY3Rv39/XpVbgiCuHF63N0hwyIXnAqpBqp6IFKJuoEgsK1yxYlbzrBCusvBBtuU7LjHbsV1iAchLOQ4Q6A0kTFsOEKhA63V44eFYgWz5ImIlTDYQwHcniWXQiDUhjOXVSGHX64SYWAkhKLjWjxf3HsH+cnFhGkrwDEtPDjt3fUBiJUqZOHEiFAoFFAoFNBoNcnJy8Oyzz8JqDfajEgTRMHFXurHlpm34vvWPqDoceY0UMbEiti/cPQRQmfwvazmVY8XGqy0qWV2KuZTvZMVKXI1Y0adyKs+GESsBy4pSpKAbwA+yDdyPx+YRDSJW6sMH2B5+6QjOfHUWgLhY0YaxrJRfhmVlbFYas/3pidN47cBx0fNCCZ4lPa7Dqr6dg1xCFLNCSDJ06FCcOXMG+fn5eOWVV7Bo0SI8++yz9X1bUYnLFdkvYIK4Fjjzv7OwHbfBVebCjvt2RzxeVKzIsGZwCVhWVCYVY9Gobal8v2VF3AohRfnOcgD+ANnY62MARGpZ8VtLVCIxKwBfaATqttgKgkUCAKiM4ecAgH1T/4DH4UW8iOtEzLIi5QY6IRKzIuXCAYDBaUlY0IVtriqWCQSEFjwGtQoDUhPRJtbE29+gLCuHDh3CAw88gH79+mH48OH46quvmGPLli3DoEGDMHDgQLzzzjs83+CBAwdw9913o1evXnj44Ydx5syZurytaxadTofU1FRkZGRg/PjxuOeee7BmzRoAgMPhwLRp09CkSRPo9Xr07t0b27dvZ8YuW7YMcXFxvPnWrFkDBSflbe7cuejUqRM++eQTZGdnIzY2FuPGjUNlJWs6tFqtmDBhAsxmM9LS0vD2228H3eeiRYvQsmVL6PV6pKSkYPTo0ZLPFLivNWvWoFWrVtDr9Rg8eDBOnTrFO2/t2rXo0qUL9Ho9cnJy8NJLL8HtZn/pKRQKvP/++xg+fDhMJhNeeeUV0es5HA7MnDkTGRkZ0Ol0aN26NT777DPm+ObNm9G9e3fodDqkpaXhueeeY66zdu1axMXFwVtT0GnPnj1QKBS8Ro6PPPII7r77bsnnJYjLwW3luCWO22Q38AwgLlYi6w8UiFlRW9TQ1byU3Zfc8DrDx5sA/I7L3JgVILxlxW11o+qI35psaW9h3DD8MvniYsV50YnzP16A1x5wA0kIjeTg+7GKuIAAQCVhWTFmGqC2sEGyHpsH2/r/jMLHDgadqxNJG47jBNiWczKAxCwrUsGxAQalJYU8DoQWPAEyjAbe5wZlWZk9ezZ69eqFH3/8Ea+//jreeustFBQUYOvWrfjiiy+wbNkyfP7559i6dSsjZJxOJ2bOnIlx48Zh06ZN6NChA2bPnl2Xt9VgMBgMjAVh5syZWLVqFZYvX45du3YhNzcXQ4YMQWlpaURzHj9+HGvWrMG6deuwbt06bN68Ga+99hpzfMaMGfjxxx+xevVqbNy4EXl5edi5cydzfMeOHZg2bRrmzZuHw4cP49tvv0Xfvn1DXtNms2H+/PlYvnw5tm3bhoqKCowbN445vmHDBtx7772YNm0aDh48iA8++ADLli3D/PnzefPMmTMHw4cPx/79+/HAAw+IXmvChAlYuXIlFi5ciD///BOLFi2CyeT/i6G4uBjDhg1Dt27dsHfvXixevBhLly5lhE/fvn1RWVmJ3bv9f9Fu3rwZSUlJ2Lx5MzN/Xl4e+vXrJ2epCSJifG6+OLEeF3+JSiHMBAIAZ1ntSuVrYtSiLpNwuDipvEFiJYyFxlXuQqCEqjGTfXmqY9h+PA6RGByf14dfhv2O7aPZ31VyXDiBZxILrgUAhUa8kZ/KqEKP9d2ZNGgAqDpihefniqBzdSLNADVKJcw1HY0DlhWb24Mz9mAhJlUjJUCojJ4A4QQPAGSY9LzPGhljriTq8KfI5+zZsxg6dCiUSiXatGmD7OxsFBQU4Ntvv8Xo0aPRrFkzAMC9996Lb775BsOHD8fOnTthMBgwfPhwAMDkyZMxaNAgnDlzBmlpaaEuV2sGfvcrzlVH9gNbF6Totdg0uEetxv7+++/497//jZtvvhlWqxWLFy/GsmXLcOuttwIAlixZgu+++w5Lly7l/eUfDq/Xi2XLlsFisQAA7rvvPvzwww+YP38+qqqqsHTpUnz88ccYPHgwAGD58uXMvyMAFBYWwmQy4bbbboPFYkFWVhZuuOGGkNd0uVx49913ceONNzJztm3bFr///ju6d++O+fPn47nnnsP9998PAMjJycHLL7+MmTNnYs6cOcw848ePlxQpAHDkyBF8/vnn+O677zBo0CAAQHZ2NnJzcwH4LUIZGRl49913oVAo0KZNG5w+fRqzZs3C7NmzERsbi06dOiEvLw9dunRBXl4ennrqKbz00kuorKyE1WrFkSNH0L9/f9nrTRCR4L7Et4xc+OECzLkmibODEbOseO1eeOweyWBRLj6PD54a645aRKxwuxZLUcmJtTHmGHkBu84wJfd5TQg52TwKhQL6VB1sJ+yilhXHWQesx/jxfdJuINZisH/aAVQeqGSCcoUoRIqxBYhpZ0GL6c1x7O18Zp/RDii9gJdzaTHLCuDP5Klye5iYFWExOHZ8aNGgUykRr9WIdl4OUBvLSn1Tp2Jl7NixWL9+PSZNmoRDhw7h3Llz6NChAxYvXoxhw4Yx57Vq1QrvvfceACA/P595eQB+60GzZs2Qn58vKlacTiecTv4XXK1WQyvwDQZM916RDpbnqp2iivVqIHY/Yvh8Pqxbtw5msxlutxsulwt33HEH3nnnHRw9ehQulws9e/Zk5lOpVOjWrRsOHjwIr9fLe/7AdsCEzP2cnZ0Nk8nE7EtNTUVJSQm8Xi+OHj0Kp9OJG2+8kTkeFxeH1q1bw+fzwev14uabb0ZWVhZycnIwZMgQDBkyBHfeeSeMRiPE8Hq9UKvV6Ny5MzNnq1atEBcXhwMHDqBr167YuXMntm/fzrOkeDweVFdXo6qqipmbO4cYu3btgkqlQp8+fYK+D16vFwcPHkSPHj3g8/mYtenZsyeqqqpQWFiIzMxM9OvXDz/++COmT5+On376CfPmzcOqVauwZcsWlJeXIyUlBa1atZL97xpNhPoZaWxE61o4BWKj5PvzyJycIX88x4qiMquYbBdHmQN6nbjQ4K6Fh1MdVmVWQ8MpflZd4oBZxnpxU6XNbU2o4hRbc5xzhFxzt40VNkqdkneuLsUvVtyX3HBVuXhpxc6KYBGk0ClEr8V9JgA4+UEhNPHiLo9w3w+1YC4FgBiXAuU61kKmhk90nnitGkU2f4Ctx+PBOZt41pZWIf4cXJrotSHFilYZfo50vfx36uWglGmxqVOx0rNnT8yZMwcffvghAOBvf/sbEhISYLPZYDabmfNMJhNsNr+ZzW63M2Z57nG7XVxVfvTRR1iyZAlv35gxYzB27FjR84WxEAAQpwA8mvB/VdQ1cQqgoKBA1rlWqxU9evTAyy+/DI1GgyZNmkCj0cBut+P06dMA/G4MLjabDVqtFgUFBSgrK4PH4+Fd7+xZf4R6YF95eTl8Ph/vnLKyMjidThQUFDDXKSoq4vnKnU4nKioqmHGrVq3Cr7/+iq1bt+KFF17Aiy++iP/973+IiYkJeq6LF/3NuAoLC3lfUq/Xi9LSUhQUFMDj8WD69OkYMmRI0Phz584x42w2W8j1rKqqYp5Xo+H/Ejl16hRsNhvUajVvDu7a+nw+tGvXDh9++CG+/fZbAP7vZqdOnbB27VpUVFSga9eusv9NoxWxn5HGSrStRfnpct7nsr3lEX3fSovKmG11uhqeI37xUXCgEHqHdLVSwL8WrjPsC8+pdsCqYq0kpw+fhrV56Awln9eHigN+V4imqQbFpcW8YPiyk6Gfx36SfQ9YXVbeuR4LK6Tyd+dD24x9udoOBb8/qj3VotdyuIKFTSAIWaFTwNzLhMpNVbAMMIdd+wpfsNuHK1a0CgUKCwtFx+o8/udxen04fOIk/iwXz/x0V9vD3keMjy8osvUanKxm172itBQFitDBzW7BH/SBn426/hlp3ry5rPPqTKyUl5fj6aefxty5c9G3b1+cOHEC06ZNQ4sWLWA0GpkXB+B/EQf+OjYYDEHpuFarFQaDuAlq0qRJuOeee/gPIWFZOXXqFDIyMoKU209ZWbV+zquFyWRCYmKiaDxEUlIStFotTp48iZtuugmA37Vy8OBBPPnkk8jKykKbNm1gtVqRlJQEg8GAU6dOoaioCACQVfP8cXFx0Gq1zGcASEhIgFqtRlZWFhITE6HRaFBUVMRcp6ysDCdPnsSgQYN441q0aIF77rkHVqsVCQkJOHr0KEaOHBl074mJiXC73Th//jy6d+8OADh8+DAqKirQq1cvZGVloUuXLigpKQkbC5KcnMy7ByEDBw6E1+tl7hfgfy+6dOmCL7/8EpmZmYx5d/369bBYLLjxxhuhVCoxatQoPPLII/j888/Rv39/ZGdn47bbbsPrr7+OsrIyTJs2LeQ9RDOhfkYaG9G6FhfcpQA4tTLsvoi+b2WeSwD8qb9xrWJx7oi/KV+yIRkJWfGiY7hrUV58CYC/VHx8ZjziWsbiHPz9cmJ8MWHvxXrcikP2o/7xHeOQlZUFb5oXx2rmVFWpQs5RWlSKk/C/HOOSY3nn2lpUo+I7/9okKpN4z1Ny+DwKwH+pWhIsotdyWpzIx0nR6+tTdEiflwrLEzFI6BYvGaQb4GLbiziNs7x9CWoNCuF/8SsUCsnnTTt9Caj0i6z9agM8ZiWAc0HnJVjEn4NL5tlKbK9kBVtuXAxOcro2N0tpgqymTULP4fNh0AUbtpSUYnH39shIT67Xn5E6EyvFxcUwm80YMGAAACA3NxddunTBrl270Lx5cxw7dgy9e/cG4I8lyMnJAeCPR1i9ejUzj91uR1FREXNciFarDRImoVAqlVH1y0cugRorYvdusVjw2GOPYdasWUhKSkJmZibeeOMN2Gw2PPTQQ1AqlejZsyeMRiNeeOEFTJ06FevXr8fHH38MgDW7BV7Q3Gtw98XExODBBx/ErFmzkJycjJSUFDz//PNQKpXMva1btw75+fno27cv4uPjsX79eni9XrRt21b03pVKJTQaDZ588kksXLgQGo0Gjz/+OHr06IEePfzxPLNnz8Ztt92GzMxMjBkzBkqlEvv27cP+/ft5WT/h/m1zcnJw//3346GHHsLChQvRsWNHnDhxAgcPHsSUKVMwdepUvPPOO3jyySfx+OOP4/Dhw5g7dy6efvppqNX+H434+Hh06tQJK1aswDvvvAOlUon+/fvjrrvugsvlwoABA67J7xeXa/Vn5EoQbWshLMjmsXkBD6DUyLtHdzk73tScdc26L7nDPqdSqYT1MPuHpKWdBfpk1nXkKg0/R9Wf7PiYDjH+9dUroUnQwFXqguOcM+QcPs4f/yqDmneuIZ39g9ZZwp+H+9zseJXotXQJ0hYmXYoOSr0SSb0TZX0vdMnBrrUEjQaoESsOr1dynnhOYOxjvx+QvIZSKf5e4JJi4D+TsOePQS2+FkI+79sZNrcHRrWKcf/U189InV0xKysLVqsVW7Zsgc/nw8mTJ7F9+3bk5uZi2LBhWLVqFYqLi3HhwgWsWLGCCQzt0qUL7HY71q5dC6fTiaVLl6Jdu3ZXLLi2ofDaa69h1KhRuO+++9C5c2ccO3YMGzZsQHy8/6+LhIQEfPrpp1i/fj06duyItWvX1irL6s0330Tfvn1xxx13YNCgQejduze6dOnCHI+Li8OXX36JgQMHom3btnj//ffxn//8B+3bt5ec02g0YtasWRg/fjx69uwJg8GAlStXMseHDBmCdevW4bvvvkO3bt3Qo0cPLFiwoFYWjMWLF2P06NGYMmUK2rRpg0ceeYRxQTZt2hTr16/H77//jo4dO+LRRx/Fgw8+iBdeeIE3x4ABA+DxeJhA2vj4eLRr1w7Jyclo27at8JIEUWe4RLJ5uKnAYccHYl4UgIGTTSO3MFzlQdYibmlnhjaJUyPlQvi4P24foph2FmZbl+J/eTpKHCHTsXkBtgKrhj5ErRWxdZMKsFUoFbzGiFx0TUK7yoQI660AQIKM7BwAiNPISw2u9oSPGUkRiJMmgvgTOdlAAYzqqx8yIUadWVbMZjNeffVV/POf/8QLL7wAi8WCsWPHMu6Do0ePYsKECfB6vRgxYgTuuOMOAH5LyRtvvIGXX34Zr732Gtq1a4d58+bV1W1dsyxbtizkcb1ej4ULF2LhwoWS54wYMQIjRoyA1+tFQUEBsrKy8MgjjzDH586di7lz5/LGTJ8+nVdK32w245NPPsEnn3zC7ONmG/Xu3Rt5eXmynonLyJEjRd1EAQLBulLIrTeh1+uxYMECLFiwAACYtQjQr18//P777yHneOutt/DWW2/x9u3Zs0fW9QnichBmAwF+a4s2Xt4L0FUzXhOnibjMPQBUHmLFhqWNGR47+6J0Xgg/Bze41tKBI1aa6FD1ZxW81V64K9zQxIq/qAMF3QBAJahAyy0MJ8wIEnu+UC6c9q+3xfH/y0fFPn55ep2EiJGCm1kUIMmkDXjiQmIKIQo0SgVcXv/vPJtIrx8hQstKkkAwKSCd1RSt1HmAbc+ePUWPTZo0CZMmTRI91r59e95f1gRBEA2Bgo9O4dy6c2j9YkvEdoqNeLxYE0GxLshSOEsDYkXNy3BxloYXGj6fj7Gs6JvqoYnVQGVkxYqckvuBeiVKvRLGLNayo0/hW0WkxArfssJ/mYe0rIiJFYk6KwCQdkcq0u5IxYbM75lUbQDQpkRmWVFqlNDEqeHiuKGSYvWyxEqsVvp1nGk04HhNgTirDLEitKQIP1d7ws8RbUSPc5YgCKIB4ba6ceDZg7iQdxG/3rE9/AABXpeX9+Jk5q2U96JxXHAyReEMzQzQcsSKHDdQ9WkHEzNjaefP5lRqlFDH+l+qcorCBSwxaosaCk4xNF0Kp8R9ibQ7iWdZEXRN1qWEECsizxcuOBbgW2uAyC0rQLArKDk+fC0aABianoxYTbBgidWoeUJGnlgRxqxoeYIlSR/5c9U3JFaIq8rEiRNRXl5e37dBEFcc7gtTTHSEHS8SdwEArgp5Lhxu40NzGzPPsiLHDVT1JydepQ1beiLQpdh5XoZYqREbQqHAFRrV56TFSqAJIcAvCgf4exUxVWwFwklMrAjFjhh6oViJ0LIC8BsjKrUKxJrkCYNMkwF7b+uD6W2yefuT9Vqei8gmwyqSIhAjyTotvujbGe1izbg/pyk6J0Ru5atvSKwQBEFcAYIyeRyRFdMSi1cB5LuBqg5xxEprMzRxkYmVSq5Y4QTHBl7G7kp32GcK9OUR9tThWUXOSYseboyMcA6FQsFYMYRl+yN1A4ndl9hnOXDFCpSKkLEoQmI0arSO4dcdS9Rp8dcObOHUeR1bhp0nXtDHJ1mvRYc4C7YO6Yn/69pO9v1EEyRWCIIgJHCWOiNuHhhAGG9il+jkKzmeY1lRm9kXnlAEScG1rFjamKEyqZjeNrLcQKfYOh2mFmzaM/dl7ArjCmI6HguDY7liJYQbyOtgrQhCywrAsfJcdMLn4RSuFLOsyHEDCcVKLdxAajPrslEoFTCpIwsNbWbku42SdVr0SIrDZ31uwPKbrsfAlMSwcygFbQESIyj3Ea2QWCEIghAh/58n8H3LH7HnkX21Gi8UFVaJ5nhSuDiWFX0zNjhVrmWF25PH3NoEhULBuIKcMiwr3I7P6hj2L3WuWAkVZOvz+OBz+QWE0KrBTQkWxptw4fboERMbTMdkL/+Z3GIxK5G6gRQCK4lcuNpWAdwQH8O4ZWa0E68fxqWZoCdPos6/9oPTknB7s5SQ/Ym4DG+WAgDomhgLlUjzxGuNOs0GIgiCaCgcmnsEAHBm1Vlcv7BDkBsiHEKxItXJV3I8x7JiaKZn3DpyA2yrDvkLsmmbaKFN8L8stXEaOEucstxAHhsnuJXTd0cns/Oyxy4zODZUzAqvkWHw+vMaK15wQpekhc/rExVjsgJsOfelTdTKLr7Hxedl1YpCqYBOpcT6gd2wr6wSQ9OTw45PC5N2LJd/dG2L25olo0+ThFqNjzZIrBAEQYTBcdYBY7Z4c04phG4gW37tLSsGrmVFRoCt44KTieOwtGKDYwNN+zxWDzwOb0jXCFesqE2sUOBmu4QKsuVaRZSCDs9qiwoqowoem0d2NlAoNxDAxq24q9yASCiNnABbrljhZixFgr4p68Yx1wQmNzcb0dws7/ujFXRETq5l5k6sVoNRmQ2nuCq5gQiCIMJQfSbyLu1CURG5G4hjWclgX4ByLCvCTKAAAQsLICPexCpuWWFcLwhtWfGGSDtWKBRMPIhcy4qY2BBaVgDwapxwEdZpEYPrBoq0em2AnCeyoW2ihcqkwnX/kK7kLReLSDpzY4RWgSAIIgzVp6sjHnP5biBuzAqnJ48My4qdGxybIx4c67zohD5dugZIwLKiUCug1LJCgWtZcYSyrITI5AH8VgzbSTtc5W54qj2i5/AsKyJigxc/c94veqRcXHLcQMbmRhiyDLAX2JHUP3wgqxjaeC0G7OkHn8vLC7atLS5vZFlkDRWyrBAEQQgQpuRWn4lcrARlAxVWw+uS/+LhW1Y4biAZvYF4QoHzwuQJjTAVaN01YoVrVQGCBY8UvEweg4gLh2O5kHInceusCDOKAECXLGJZkRArXmf4tVdqlOi9qSdu2nAjmk/NDnu+FCqd8rKEyqudWgMAdEqlrDiXxgBZVgiCIAQIM27qwrLi8/hgL6rmdT8OBTdmRddEB4VaAZ/bJ8sN5JXoqcNrRBjODSQhVsTiRETH20O7cHiF4c46eIIsgNcu3cgQALRJHMFT06vIJVGfRmWQFyCtidMgrmscAPk9yOqaSS2aIU6rRguLKagabWOFLCsEQRACgsRKLWJWxPr6yG0gCADW4zVuI4W/3oc6xv+3pZwAWykXDC849mLoeRixYuK/5ANBukBoseLlBceKu4ECCONW3FY3zn1TwrNoibmJ+GnUwW6gpuPSoU3UIGVYE8TeECN5r9GGVqXEXdnp6Jp47VWavVKQZYUgCEJA3VhWgsWA1F/9QrwuL6r+9HcANuWaoDapobao4Sp1RWxZ4bpgeGIljBsoIFbUArGi1CihidfAVeYKbVmpDuPCCdEf6MCsP1H8n9PMZ4VGAYUquFYIV6xYj9lgL67mNWlMubUJrv9nB15fIuLahMQKQRCEgLqwrIhVmpVTORbwZ/N4nX4XRMz1/lL3aksElhWHDMtKaYiCbm62oJvQDRSYJ6xYsYcOjpWyrPg8Pp5QET4Db79OCbVFDXelG1WHqpB3wxaY27Dl6rXJWhIqDQRyAxEE0SCpOlwl25IhRChWHGcdvHLuchB1A0mk1Qqp2FfJbMde73dfaGrcQF6nT0ZPHvH6JLyYlVAuHK4bSUys1AS2uqs8vIwd3hxh0o71EmKFW3k3QKjqs9xUap/Hh8oD7HhuAC5xbUNihSCIBseZNWex5aZt2HzjVtnl6bkIx/g8vpBpuqJzXIZlpWJ/BbMdc51frAQsK2L3J4Tvgok8ZiWsWEkMH6jr4QX5ilhWuCX3S9g5yn4rDzo3VEG3UGvBDcAlrm1IrBAE0eDY86i/n4/zvBPF/z0d5uxgxF6AkcSt+Lw+0TmkOikLubSPI1YEbiAgvCvII1GQTaVXMQGzIS0rNtaKpDYGRwvokmSkHXMzeaQKutXsrub0Byr7rSzo3FAF3aSaDSr1SqgtkbVIIKIXEisEQTQ4AvEWAGA/VYvgWDGxEkGtFXeVh2lox3VTcGunSOHz+lCx3+8GMmTooY33j+dbVkIH2fKFgnidlNDVZ8NYVpqErtfiKnfBxVlDsZgThUoBXbJf9HDdQOXby4POFQvQDZD1YKbofl2yVnbTPyL6IbFCEESDg/uXfKCyaSSIiYFQ3YGDx3P7+nCqz8pwAznOOZhS95Z2FmY/V6yEi8WRsqwArCvIVeaSjMPxcd1ApjAunHN8sVL6cym+b/0jjr56jNknVhQOYDOCnOed8Hl9cJxzwHbSHnReqOqzmfdnoO/PvaBL5bt8atUxmYhaSKwQBNHg4FVZjTDWBBC3rIgFzEqO55xryGSLnckRK9wsmkBtFUC8D44U/G7FQrFSE2/ig2h3YgDw2lkRI2ZZ4bpehDVSdozfDZ+bL4KksnkCGUE+jw/Oi05UHbOKnheu47W5tRnmVibevtr29iGiExIrBEFEHaU/l+LchpJaVxDVcF7y9qK6cQPJjTcB+O4efZqeqREixw3EKzHPERq8uiQhmv8BHMGjCLZKyKm1Ei7Alh8cKyjoJrJ2UgGywvRlKddUqGygAPpUfp8jsqw0LEisEAQRVVQeqsKvt2/HzvG7UbLxfK3mCBQ0AwDbSRt83shET11aVjSxaqhja2qkyBA8Hol4E72gPH3IOWosK0q9MihuQ05vn7CWlRRpsSKGUqLUPVf02IuqJTOU5DQhFLqBKG25YUFihSCIqKJgSSGzvfvBvbWaw13FihVvtTfiom6ilpUIxAq3M7I6Rg1NnN/1IscNJGlZ4VgOwsXPBCrYipaoTwwvVnwcN5JaTKwkc6vPsnNINUeUsqzoOQJjz8P7ULSiSHy8jL4+emHMCrmBGhQkVgiCiCq4AZ1cd0QkCDsT207YIhsvZlmJxA3EKfmutmigqbGsuC65w1p5uMGxXItCqF46QXPUrJuYSIjYDSQSYKsyqJh4Gq5lxXpUPOZErDcQACQPTmZiaDxWDy7trhA9T5ZlJU1gWSE3UIOCxApBEFEFN96kNnjdXl6AKVB7scJ9UbtlxJsE4BY2M7c0QhPLBrWGK+jGD45lr6+2qBiXTDg3UMCyIuZ+4VpFxMTK6f+ewcXlbK0TMTcQwLpwnBzhVHUkuPosIG1ZMWYa0Ofn3tDEhf43lyNWgiwr5AZqUJBYIQgiqvC6axdUG8BTFZx2bD0u/he/FAHLjCZOw6QMy41Z8bq9uJB3AQCgjlUjtnMs4wYCwgfZSrmBFAoFE5cRyrLi87Hl+EUtKxIuHAAo/bUM+6b8AU85JyNJxLICsAG/7ioP3Fb/M1UdkbKsSL9qdElaGLKMkscBBGUXic4jCLClbKCGBYkVgiCiCqELR6r3jOR40YJukcas1HQctnCCY2U0EASAS7srmB5ASf0ToVQroeZYDsLFrfAbAPJ/RQdcQe4KNy+IOMD+pw/g+1Y/Mm4cMfcLL+1YUIMmf+GJoPPDWVYANj1c0rISJubEkM4XGgqNApp4VuAJvxOi95NCdVYaMiRWCIKIKjyCF1N1cWSpx2IvtkgyebxuLyME1BY145aSk3YMAOd/uMBsJ9+cBACsGwjhxYpXomMyIMgIElhX7KfsOLW8iBcvI1b5lRezIqhBIyaApMUK10LjvxexmBWlVhG287E+XSA0ErT8ir0i1rKg+xSmaCdoJM4krkVIrBAEEVUIX0yRlssXe7FFUiOF60ZSW1RQ1wgNb7U3bLdjALi4+SKznTygRqzEyRcrvABbgfuEm54rdAXZTgbH5YhlA6n0nOBYgVgRnUPKDcSxrJR8dwGuCpd4TRtV+JL3eoFlRZuo4fX1EQpYKZL6JwIAYjrGhBVIxLXF5UWyEQRB1DFCy4j9VHD59UjGA/KtIgDfjaS2qKHUsgLFXeGCKjl0LEQg+FWbpGVewtwA0nCBury+PAKxESojyJofLDSkAlN1yVq4K9w8y4qzzCkqDOW4gY4vyEfxZ6eZfkhc5GR06ZsKxYoW+mZ6VB7wu5UMWQaxYUFc/88OOLv2HJoMTZZ1PnHtQJYVgiCiikBfnAARixWxtGMZ9U0CcEWAJlYj6MkTXvQEYk64L3meGyhcXx+HdKn8UIXhRMWKRE+eQA0Sd6WbseQEmicKUYl0XQb4FXWByN11XIItK1q0ndcahiwD9M30aP1CK9nzZD+SBWOYgF3i2oMsKwRBRBXBlpXIXoJi2UCRFHQr33WJ2ba0t/DiMOTM4w2IFY7Q4IkViX48wvGASIAt1w0kFCsifXUke/Ik8+NWDBkGVOyTqHGiFXen1GW2jSHIsqKBNkGL/jv6AD4w7QqIxgtZVgiCiCqCYlaKLt8N5LF54HXKKzBXvpMVK3FdYnnNBMNZRXw+H1OQjVvjRMMJ9nRGFGArng0EiMSsiFhWJHvyJAcHx0pZVoTl+gOYck1BGTgBYq6ziO6XQpcm3tdHoVSQUCEAkFghCCLKCLKsRJoNJFF0TW5GUMCyotQpEdPewlSfBcJbVnwuH3wef+AG1w3EzUzhZuuIwXcDCbKBUsXdQD6PTzQ4VqonD6/WSk3cipgbKRQqgwo9v70RzcY3DTpmbm2ObC6BBUmTQGnHBB8SKwRBRBVCN04k8SYA3zKj55Rgl5MR5Cx1MhaKmOtjoNQqeS6ccGKFWyOFmzbMrRniLBUvcR+AG5AqdAOpY9VMHAvXsmIvssPrDI5ulbasBNdICVhYtEkamPuYAACpd6SEvFdjpgGZE5sF7Te1NIUcF45wFW2Jxgd9IwiCiBp8Hl9QrQ93hb+fjtxUVK5lRt9UzxSEkyN6Lu1i4zbiusQCQERuIG7HZG68iMqoglKnhNfhlWFZERc8QE0V2xQd7AV2nlixHhe3ikj15NEK3EA+nw/OgFhpokPT+amIOR+DhJ6JIe8VAAyZwZk65tzLEyuIrA4g0QggywpBEFGD2yrylvLJq2AagGuZ4abEynEDXdrNj1cBhGIlAssKxw2kULAVWZ1hxAqvN5AuWGwEMoJcZS4mk0eqnYBYUTiAHxx75O/H8PvIHYxlRtdEC6VRicS+iUHuGTG0SVpe1pHKqEJCz3jms9w04qZ3pzPbcd1iZY0hGg9kWSEIImqQKv7lvuSGJkZeRVKusDE0Y//ql9OIkFvUzNzGH3dRF24gwB+34jjrgKvMBZ/PJxm46uHWWRERC7yMoBInjJkGVJ8WbycgJxsIAC5uKWWPRZjlo1AoYMwwMH2BdKk66FJ06LysE0p/LkXOE81lzdP2pdbQxGkQ08ECU85lWmaIBgeJFYIgogYpC4rrkguGDHmFwYRuIO4c4eBaZQJl9iNxA3l5YoUvFAIZQV6Hv5y/2iT+69fLcQOJ1UnhZQSdrYYx0wDnRfE4GKkGgqE6EnPL6MtFk6gF4BcrAXdd6u0pSL09dMwL754StWj3SpuIr000DsgNRBBE1CDqBkKEFWglAmzlzBHoHgywZeYjyQbixqwI40W08awIkKq14vOyqc8KlQJKdWixEsgIkhIrUg0EpYQSwBaMiwSlhrUS+dzyUsQJIhJIrBAEETWEcgPJJZC6rDarIurJ478+py+QKWBZiaD6LC9mRZCOm8jNCAqe59SKInyXswkVe/1BvlJWEb1IfyBhQ8IAUuX2AYimHAPBLiI5KLXsdcSykgjiciGxQhBE1CBtFYmkEaFfrKjMan68iSzLiv/6Sq2CeQGrdErGyuK8GIFYMUhbVsQsISffL+DViJFMOxapYhuYT5jyKxWzAgDXLWyP/rv6AILQmdq4gZqOZYNjsyZnRjyeIMJBMSsEQUQNkmnHEZTLZy0rap4Lx1Uhx7LCCh0uuhQdbPk2phaJFNwaKVIxK4C4G0hYkVYsEyhwLwGqA5aVC36xok3UwlXOrpVUbyCgJjA2ywhDMz2vpYHfDVQlOU6MtDtTUXW4Cu5KN7JJrBBXABIrBEFEDTzLSroegD+VWE5BN8D/wg/MoU/T8dxAkVhW1CZBt+MmWtjybXBf8jf+k7JYhLasSLuBvG5v0D4pocF1A9kL7HBXupln1iZreTVXuO4ZKYxZRp5Y0TXRAuKV9yVRKBVo9beWkQ0iiAggNxBBEFGDhxPgyu3EKzfAtuIA+5a1dLAIOibLsKxYJSwrTYIrvoqOt0tn8vAtK/w5XBddgCDUQ6rGiSZewzQXLP25DBuzf2COaRP5LhxuzRYpjM35WVZcgUcQ0QKJFYIgoga3REE3uV2TKzliJaa9BQqVghEsXPeIGP7quf6Xe7BlRbqBIBdu9d0gywqn342wiq3jQrAAkgqOVSgUkhk72iQt0kamMp/NrcPXKzFmG/nzy6wUTBBXE3IDEQQRNfAKukVYIwUAKv7giJUO/s6/6lg13JXusDEr3HgTdZBlhVuePoRlpTpEzEoIN5CYtUYq7RgAqk+LN3fUJmrR+oWWMOWaEN8tjieQpJBbv4Yg6hOyrBAEETVwU5e5biC5qcsBN5BCrYCpVaACrV94uMv9lWOl8NrZYyqzwLLCLcQmEmTrqnDj0LwjKPxXITuHUWhZkW5m6DgfPGeotGOpYmvaJC20CVq0mpWL5IFJkuN5YxKpwzER/ZBYIQgiauC6gXTJWihqio3JyuRxeGE96q+iam5lYmI+AinDXqcPHomicwDgtXIsKybpmBUxsXLszWPIf+cEz9UkTD3WxGqYNGGhG8gZgRsIALIfzoKphTFovzYx8niT+J7xjMut7SutIx5PEFcDEisEQUQNXAuDOoatkyInwLbqcBV8br91xNLewuznlpYXEwUB+G6g4Gwg5h7PBc9xYlFB0D6lwI2jUCmY4FWnIHXZEaEbKKFHPPr93gcZE5rx9tfGSqLSKdH7x57o+e2NyH40K+LxBHE1ILFCEERU4HV7cWm3v3qrPl0PbYIW6oALR0bMStVhtjZIDFesJMkUKxzLiipCy4oYYmIj4ApyCYrCicWshLKsBAg0W2TuM6l2Lh1tohbx3eIkmysSRH1DYoUgiKig8kAV46aJvzEOANtM0FXhhs8buow7t/or15rCfYGLZd0E8NqkLSvc+YRixesSTw8WltsH2L477ioPL3NINBtIooItF0trvljR1lKsEES0Q2KFIIiooOz3MmY7vlscALDl8r38eBYxuE0EucGtsi0rHLEirLOi1CiZeBBhNpCtwC46n1jhOH5WESt6nCIBtqFK5QcQpiZTsCzRUCGxQhBEVFD2ezmzHbCsqGO4HY8j6MujFxcrYrEhAUJZVgDWKuIocfCyiqzHrKLziVlG9BJZRaHuKxTcPkGAvIq1BHEtQt9sgiCigoBYURlVTIAsr7dPmCBbL6/UPfurjRdgK9JAkBlvYwWIMBsIYONWvNVenstJTKyojCrR+A9eX5+aJoQ+n0/U4uOW6EDNRaFQIOeJbADUQJBo2FBROIIg6h1HiQPVRf5CZ7GdY6DU+MWGmtM12VVeu47H3JiVUKXy+W6gYMsKzypy1gFNjP/eRMWKRF8fXr2Wmkq4niqPaFl8riAKRZu5rZEzrbmsAnAEca1ClhWCIOodbhdiQzO2oio3BiOUVQTgx6wouTErtUldFrOspHDTl1kXTtUxW9C5kChZzy8u578XsYJwgHyxAoCECtHgIbFCEES945boqcPL5AlR5h4Q9OXhxIuoLWqm8V/IbCBr6JgVXRpbUbf6DCswxCwrUr2MxCwrUvEqppzwfX0IorFAYoUgiHqHF2/CaSKobcJ14YSub+KpFhc8CoWCsdCEdANxs4lMIm4gTjBr9Rm/y8rj8IrO6XWIpzOLle13nGWfK+eJbJhaGGFqYUTujBaS90oQjQ2KWSEIot7hWVY4LhxdMuflHiZjxiuRugz4XUHVZxxwXnTC5/Pxgl9dFW78evvvqOQ0QRQ2MgQAfRo/ZgUI7VYSQ5uggUKtgM/tYywr3KaElvYWtJ7TCvBR92OC4EKWFYIg6h2PlBuIG28Szg0kEWALsOnLPrcvqCnimdVneEIFkLCsiLiBwll7hCiUCuaZGLHCcSnp0/VQKBQkVAhCAIkVgiBE+X6HD1MXeHH0VOjKsXWBR8KywqscG8aKwcyhBNMAMYAuSdpCI5V6LISXdlzjBuLOZRRpLChGYB7HOScq9lfAfootKse13hAEwUJuIIIggvB6fRj5gg+VNuDrX304+fmV/UufK1bUHKGg1CihidfAVeaSEbPidwOpDME1ToIyglqywati9VvEaqQotUpok7RwXnByLCusWIntFAPbcZHMIAFc0bO1/y+8Y1zrDUEQLGRZIQgiCFs1UFnz3i04CzhdV9a6wrOsCFwwjNskTMxKwA0kZhUJlMoHguNM7IXi5fLFCFg+HOcc8Hl9vLTj1NtSkDQwESqTCl0/6yw5B1escNHEa0J2WiaIxgxZVgiCCMImMGLsPgrc2O7KXS9kvEmyFjhihcfqgdvqFq2Bwp1DtNtxknTXZHsRX6wESv2LoUvTA/sr4XP7q85yBZSuiQ7d/9sVHocXqhAdk9UW8fvXp5MLiCCkIMsKQRBB2Kr5n3/+48peL9BtGQi2jHAzgkJXoK0RK2I9edKCy9wDgM/rQ3Ux+7BZkzPQ4W1pVcad5+QHBbzA3EAQbyihAgCWNmbR/eQCIghpSKwQBBGEVSBWtu2/im4gkbTjAKFcQYGYFaWIZYUnVs6wD+c454DX6X82cx8T2v69DSxtLZLX4M5z/B8ncPGnUuYzt6NyKFJvT0H66LTgudNJrBCEFHUuVpYtW4a//OUv6Nu3L8aPH4/Kykpm/6BBgzBw4EC88847vK6lBw4cwN13341evXrh4YcfxpkzZ+r6tgiCiAChZWXbfvB+ZusaT4gaKdz0ZaELJ4DX5YXP7RMdD/CFQPVpdg57EfugmtTwXnF9qrigUGoVku4dIWqLGp0+uB43bbyRPzdlAhGEJHUqVlauXImff/4ZH374ITZv3ox58+ZBq9Vi69at+OKLL7Bs2TJ8/vnn2Lp1K7766isAgNPpxMyZMzFu3Dhs2rQJHTp0wOzZs+vytgiCiBChZeVsKVB47spdL5RlJdDtGJAuwsaLeRFxA6lj1EzgLrcIGze4VpOuCRonRCchKLTJOtEMolBY2vEtOGRZIQhp6kyseDwefPTRR3jhhReQlpYGhUKB3Nxc6HQ6rF+/HqNHj0azZs2QlJSEe++9F9988w0AYOfOnTAYDBg+fDh0Oh0mT56MgwcPknWFIOoRoWUFAM6VBu+rK6Qq2ALh3UA+n48XyyIWYKtQKJhy+Q6OG4hb40STFl6sSAkKrvVHLkGBxNSMkCAkqbNsoJKSEjgcDnz//fdYuXIlzGYzxo8fj9GjR+PEiRMYNmwYc26rVq3w3nvvAQDy8/ORm5vLHDMYDGjWrBny8/ORlhbs13U6nXA6+b+w1Go1tFr+D7rX6+X9vzFDa8FCa8ESai2qRLJ5rdU+eL1XxhXksbG1TpR6Be+eNEmsiHCcc/CO+Xw+7Bi7GxfzLrLjDUrRZ9Kl62E9boO7ygPnJSfUFjVsXLGSqg77vTC1MiK+RxzKfi3n7dcmaWv1nYq5zoKK/X5XuT5TFxXfS/oZYaG1YLlSa6FUyrOZ1KlYqaqqQlFREb766isUFxdjypQpyM7Ohs1mg9nMRsCbTCbYbP4iDna7HSYTv7uoyWSC3S5e++Cjjz7CkiVLePvGjBmDsWPHip5/6tSpy3msBgWtBQutBYvYWhQWmwAk8fadLDyH7HgRk0sdYCtjf95PlZzi9+5xupjtspNlKCgoYD7bD1XzhAoA2D023jkBPBZ2nvyd+dA116H0CGsu0qRrZH0vUhYmI8WbjEM9jjL7HCqH6DXDkTQ3Ee75bhiu06PUVIrSgitovooQ+hlhobVgqeu1aN68uazz6kys6HR+E+vDDz8MvV6PFi1aYNiwYdi2bRuMRiOqqqqYc61WK4xGf2lqg8EAq5Vf7tpqtcJgMIheZ9KkSbjnnnv4DyFhWTl16hQyMjJkK7eGCq0FC60FS6i1MOwJPt8Sl4KsrCtzL6c8xQAAlVGJ7Oxs/n2meXFMcQLwAcpyJbI4N1H8y+mguWKSYnnnBHC0dOIS/FaMBCQiKSsRp8r845U6JVTxqoi+FyebnUJ1TYCuqlItes2wZAGt+raMfNwVhH5GWGgtWOp7LepMrGRlZUGjEff5Nm/eHMeOHUPv3r0BAEeOHEFOTg4AICcnB6tXr2bOtdvtKCoqYo4L0Wq1QcIkFEqlstF/yQLQWrDQWrCIrYW92geA7/KpdiqgvEIN9gJ1VlRGddC9KPVK6FJ0cJx1oLq4mne8Yh+/ASEAqEXmAAB9OvsHkOOME0qlkolf0aX5A2Qj+V6kDU/FifdOAgDiu8Q2uO8T/Yyw0Fqw1Nda1NkVDQYDbr75ZixduhROpxMnT57EN998g169emHYsGFYtWoViouLceHCBaxYsQK33norAKBLly6w2+1Yu3YtnE4nli5dinbt2onGqxAEcXUQVrAFxINuL5ftd+/Cj523wH6qxkIhknYMAIZm/sBWxzknPA7WZ35pT0XQuSqj+K81Ayc41n7KDo/NA1e5P1amNmnDLWe0QHyPOMR0jEHzqdkRjycIQj51Wm5/1qxZmDdvHgYNGoTY2Fg89NBD6Nq1KwDg6NGjmDBhArxeL0aMGIE77rgDgN9S8sYbb+Dll1/Ga6+9hnbt2mHevHl1eVsEQUSI1R4cSGsP3UewVtiOW2EvYONVVAYJodHMgPIdlwD4U49NzY3wur2o2C8iViT663DTjo+9eRyF/ypkPtemeqzaokbPr28MfyJBEJdNnYoVi8WCN998U/TYpEmTMGnSJNFj7du3x8qVK+vyVgiCuAxELStXQKwYs42wcjoVS1pWMvhWEVNzI6oOW+GtDs5MUOol5hCkHTsvsgG31JeHIKIbcsIRBBGEmMvH7qj7tGVDJj+QXthxOYC+KacCbU1Q66U9l0TPlbKsaEPUQtFJVKYlCCI6ILFCEEQQwgq2wJWJWTFmC8SKUdzYa2jGnld1pAqOC05UHaoSPVcqZkWhVCBtRKroMbKsEER0Q2KFIIggxC0rdX+dIMuKZMwKa/nI/+dJ/HhdHs78T7z+v5RlBQA6LbkeN33fI2g/9eUhiOiGxApBEEGIWlauUMwKF6mYFX0zvpvG6/Shuljc1KOSiFkB/NaVuBtig8rmU18egohuSKwQBBHE1UpdNmbxLStqCbGiidNAqRP/daVL5VtFpNxAXMxt+FWztU2oLw9BRDMkVgiCCOJquYE0sfxCklKWFYVCAa9DvCdJUNxLCDdQAHNrM++zUk2/CgkimqGfUIIgggi4gXQcg8OVcAMJUWqlfyWZ25hF93ODbwEAqvBVds25prDnEAQRPZBYIQgiiIBlJSmW3XclLCtCnGUuyWOt/pYLpUgAriHDAF0K6woSWmvE4KZCEwQR/ZBYIYgGzKUqH0orIq+PErCsWAyAtubdf6UsK9z6J87zTsnzUv+SgltO3owWT/P7hhky9ei+qgsS+yag9YstYZAhRJL6JcLUwh/ce/17HWp55wRBXC3qtIItQRDRw+FCH7pM9guVXR8CrTLkNyEMWFaMesCoA5yuK2dZyby/GY69lQ8ASBqYGPJcpVoZ5MIxZBhgaWvBjau7yb6mUqtE7y03wVHihDHTAK9XPB6GIIjogMQKQTRQRr3og7Wm7c7yb32YP1meWHG6fHD7myDDpAcMOqC86spkAwFAi6dbwFHiBJRAs3FNw55vyuWnOwfFrMhEpVfBmFm7sQRBXF1IrBBEA8Tr9eHACfazUr5RhSdKjHr/f8CVcwOpdEpc93/tZZ9vaimwrDSj+BOCaOhQzApBNEB+PcD/rNVE4ALiiBKTHjDUhJRcjQBbOWhiBOnOMlKVCYK4tiGxQhANkP/m8YNqbdXyg2wDriNAYFmpBny+um9mWBs6/b/rEXOdBR0/uK6+b4UgiKsAuYEIogGydT//cyRWEa5lxajzx6wEcDgBfRS00UkflYb0UWn1fRsEQVwlyLJCEA2QS4KGxJHEm3AtKyaDX7DUZh6CIIi6gsQKQTRAquz8z5Fk8ggtK0ZO/Gq0xK0QBNG4ILFCEA2QyxErfMuKgucGulLpywRBEKEgsUIQDQyfzxckVuzShWGDCLKscMRKJPMQBEHUFSRWCKKBUe0EhEk7EVlWOOeaDCDLCkEQ9Q6JFYJoYAitKkBkgbHc4NwYIz9mhcQKQRD1AYkVgmhgVNmC90UiMi5ZWbNMrBkw6NiCcuQGIgiiPiCxQhANDDHLSiRZPFzLSqxJkLpMlhWCIOoBEisE0cC4bDeQld2OMfFjVih1mSCI+oDECkE0METFSgQWkQqOWIk1CWJWSKwQBFEPkFghiAZGXVpWhG4gsqwQBFEfkFghiAaGmFjxeACXW14TwoBYUakodZkgiOiAxApBNDDExAogX2gEAmxjjIBCoRC4gaKj6zJBEI0LEisE0cC4bLFSY1mJNfn/b9Cyx8gNRBBEfUBihSCiFIfTh4KzkVsyquzsmMRYdr/cuBVGrJj9/6eicARB1DckVggiCnG6fOgy2YfssT4s+yYywcItCtckjt2WIzSqHT44Xf7tGKP//xYje5wbfEsQBHG1ILFCEFHI6i3AgRP+7SkLIhQrHDdQk3h2W44Lh5cJVGNZSeJYZy5eiuhWCIIg6gQSKwQRheTtYQVKpHEiUmJFjhtImLYM+AvDqVX+7QskVgiCqAdIrBBEFPLzH+x226zIxnLFSjI3ZkWGG0hYah/wZwQlxPi3L1ZEdi8EQRB1AYkVgogyLlX5sD+f/Rxwx8jFyhElyXHsdsSWFc51A64gEisEQdQHJFYIIsrYvAfwccJUIs3A4VpWkmI5HZNliBV+qX12bGKNZcVq9wfhEgRBXE1IrBBElPHrQb4YqG3MiskAmDmZPLLcQBKWFW4KNFlXCIK42pBYIYgo43w5/3NtxYrZwC/oJssNJBKzArCWFYDECkEQVx8SKwQRZZRX8T/bnZGN54qVSAu6cS0rMRyxQunLBEHUJyRWCCLKEIqV2sasCMWKXUasySUrew7PssKJfaH0ZYIgrjYkVggiygiyrDgAn09eUKvL7YOjxhJjNgBGbsdkcgMRBHGNQmKFIKKM8srgfQ6ZriArJxPIbAAMXLFyOQG2XLFClhWCIK4yJFYIIsooqwreJ7cJYZVArPBiVmpZwRYAkuLY7QuXKHWZIIirC4kVgogifD5fkBsIkJ8RFCRWIrSslNVYdRQKfgNDcgMRBFGfkFghiCvAiRMnsHTpUpw9ezaicVY74PEE75crVoTZPPwA29BjSyt82HPMv52TDiiVnKJwlA1EEEQ9QmKFIOoQr9eLv/3tb2jdujUeeughjBo1KqLxYlYVQL5YKeVYPRJjFPyYlTBzrN3GCqURvfnH4jnxK5QNRBDE1YbECkHUIT///DNeffVVuFwuAMDevXsjGi8lVuTGrHBdNAkxgJ5bFC6MG2jVZjYWZWRfBe+YWq1AvCX4GgRBEFcDEisEUYecPHmS99lqtcLtdsseX5eWlQSLv2NywBVkDSFWqmw+bNzh305LBHq0Dz4nELdCbiCCIK42JFYIog45f/580L6KCvmmiDJO2rJaxW7LFyusdSShRlzE1bhwLkkIIQA4cJJNjx7Wgx+vIpyvvArweikjiCCIqweJFYKoQy5XrHAtK+lJ7LbcKralHLEjFCtiKdEBSsrY7azUYKEC8LODuFlHBEEQVxoSKwRRh4iJlUuX5PtNuGIlLZHdltsfSOgGAlixYrX7K9yKwRUrTeLE547hiJVKm7z7IQiCqAtIrBBEHXLFxEptYlZqLCuBwFhA2hV0jiNWUhLEz7GQWCEIop4gsUIQdUhJSUnQvojESiVr+UivjVjhuIECFpU4TtqxVABvSRl7XSnLCokVgiDqCxIrBFGH1KVlJT2JjR2RHbNSY1mJMwMqlYLZFpufS0k5u90kXvwcEisEQdQXJFYIog65XLHCzQbix6zIy74JWFYSOOXxuWKlTKRJIgCcK2W3pdxAMSZWPFWQWCEI4ipCYoUg6gin0ykqTK5WzIrX62PECF+ssCJD2g3k/79e6+8pJIaFs58sKwRBXE1IrBBEHXHhwgVmOzaWbaZTG7GiVgFJnH48ctxAFVbA6/VvJ3CCarkBtuHcQE3i/YXkxCA3EEEQ9QWJFYKoI7guoNzcXGa7NnVW4syRNSEExGusBOYSzs/F42H7/aRIxKsAJFYIgqg/SKwQRB0hJVZqY1mJNYPXhFBOnRWxGisAEMezrATHvlysYC0yUsG1AF+sPPeBD9ljvRjxN2/4GyMIgrhM1PV9AwTRULhcseLz+RiLRYwRMHCaEMqyrIjUWAHCB9jyCsKFECsxJv7ngrNAclz4+yIIgrhcyLJCEHUEV6y0aNGC2ZYrVhxOwO3xb1uMfDeQnJgVvhuIjTsJ5wbipS3HSc/PtazIOZ8gCKKuILFCEHUEV6ykp6fDYPCnz8gVK5WcfjsWo8ANFKllRSrAVsSywq9eKx5cC/CzgQKEssQQBEHUFSRWCKKO4IqV5ORkxMT4fTGyxQonaNViBDRqQFnzExppzEoiJ5OI29NHzLJyXkZfoMA9CSE3EEEQVwMSKwRRR1y8eJHZTkpKYtKXaytWFAoFjDXWFXluIDZ4lmtZUasVjNDgihWfzx9YK6d6LSBef6VJnLQlhiAIoq6gAFuCqCO4KcpxcXGMWKmsrITX64VSGfpvA55YqREGBh1QZZfnBiriFM8VWjzizP75AwG258t96DMVsNqbol1z9jyp6rWAX/QY9T6ecCLLCkEQVwOyrBAEh8OHD2Px4sURpRsH4IoVs9nMiBWfz4eqKolqbByElhWAjVuRI1aOFvn/r1YB2Wn8Y4Eg24BlZdb7Phw+BRRdUGPjdva8jCahryF0BVHMCkEQVwOyrBBEDR6PBzfffDOKi4uxYcMGrFmzJqLxAbFisVigVCqDqtgGYlik4IsVv3uFESthYlZ8Ph+OnPJv56QDGjXfPRMIsq12AtUOH5Z/GzyHxcjPHBLDYgDOcT6TZYUgiKsBWVYIoobz58+juLgYAPC///0Pf/zxR0TjA2IlIEoiLbkvZlmRG7Ny+gJ7Tstmwce5IuTwKbYIHJesFOlS+8L7CkCWFYIgrgZXRKzs27cP3bp1w7Jly5h9y5Ytw6BBgzBw4EC888478PnYYMADBw7g7rvvRq9evfDwww/jzJkzV+K2CCIk586d431+6623Ihp/JcRKwLLicgMeT3D1WbvDh0ff8uKWZ9hjrTKC5+aKlRXfiXdwFrqOxBCKFbKsEARxNahzseL1erFgwQK0a9eO2bd161Z88cUXWLZsGT7//HNs3boVX331FQB/p9qZM2di3Lhx2LRpEzp06IDZs2fX9W0RRFiEYuXf//43SktLZY31er2orPRHr9ZarAjqrADha638byvwwVfAwZPsvlYZwdYRbq2VjzeIXz8rJewtBlWxNegoG4ggiCtPnYuVL7/8Eh06dEDz5myKwfr16zF69Gg0a9YMSUlJuPfee/HNN98AAHbu3AmDwYDhw4dDp9Nh8uTJOHjwIFlXiKuOUKy4XC4cO3ZM1lir1cpYC8XESnl5edg5Km2sxSMgVkycKrZVdgSxZW+wlaSViBsomZNifE5Cf2WlhhceYrVWCIIgrjR1GmB76dIl/Oc//8FHH32EBQsWMPtPnDiBYcOGMZ9btWqF9957DwCQn5/P66NiMBjQrFkz5OfnIy0t2C7tdDrhdPKjDdVqNbRaLW+ft8Yp7xVzzjcyaC1YQq2FmEA+f/68rHXjihGLxQKv18sLqC0rKws7T4WV3TbpffB6fbwePyVlPjSJ54uT5FgE0aKpfyyXhNCxvQCAzJTgcUL0Wv52Q/lO0c8IC60FC60Fy5Vai3AlHQLUqVh57733cPfddwdlPdhsNpjNrNPcZDLBZvM76O12O0wmvm3ZZDLBbhf5MxLARx99hCVLlvD2jRkzBmPHjhU9/9SpUxE/R0OF1oJFbC2OHj0atO/IkSM8l6YUXAuMUqlEQUEBXC4Xs6+goAAFBQUh5zh7PhGA/+ekoqwYBQVuaBVxAPyK5MCRs7Co+L6g4nPxAPg/b25rAYIu5TIACJ2XrPOeQUFB6LSj0jL2HrVqDwoKikKef61BPyMstBYstBYsdb0WXC9MKOpMrBw6dAgHDhzArFmzgo4ZjUZenQmr1Qqj0W9PNhgMsFqtvPOtVivTV0XIpEmTcM899/D2SVlWTp06hYyMDNnKraFCa8ESai3EBLJSqURWVlbYec+ePctsp6enIysrCy1btmT2KRSKsPN4ObfTJrcpUhOBFpnsPpU+FcIpFIKf4NYZQPPmwddpJxIyE2vy4ZKVdf3c2CktZFE4AFBq2G2TQSVrba4F6GeEhdaChdaCpb7Xos7Eyq5du1BYWMi4e6qqqqBSqVBUVITmzZvj2LFj6N27NwD/X6s5OTkAgJycHKxevZqZx263o6ioiDkuRKvVBgmTUCiVykb/JQtAa8EithYlJSVB55WWlspaM64Yj42NhVKpREIC++a/dOmSjAq2rHk11qyAUqlAcpwPgN81U1rp38e7rp0dE28B/u+J4HMAICWenSdAj/YKbPid/ZyaqAibuuxwstfTa+WbcK8V6GeEhdaChdaCpb7Wos7EysiRI3HLLbcwn99++21kZGTgvvvuw969e/H6669j8ODB0Ol0WLFiBWMd6dKlC+x2O9auXYshQ4Zg6dKlaNeunWi8CkFcSbjWkQDcfj+h4FavDbhB4+LimH3yAmz9/1cqAWNNYG0SJyblgsgU3DiXwysUvEBaLmIpxu2ywRMr4YSKcJ6c9LCnEwRB1Al1Jlb0ej30ejZ1QafTwWg0wmKxoHfv3jh69CgmTJgAr9eLESNG4I477gDgt5S88cYbePnll/Haa6+hXbt2mDdvXl3dFkHIRpgNBFyeWIk8G8j/f7OBFQ48sXLJB0AhOgZg+wmJEW/xiyBubFxyLPDu4+ex+udkzLpHXgryvAcV+GKzDx4PsPhpSlsmCOLqcMXK7c+dO5f3edKkSZg0aZLoue3bt8fKlSuv1K0QRFg8Hg8uXLgAAGjZsiUTbCu3zoqYWOEGmkciVrjpwVyxcl5kikBtFo0a0IXwjiqVCiTG+HhzJMcDN7e34bHREHUdiZGZokDxKsDrA+ItJFYIgrg6kBOOIABcuHCBSclr2bIlVCoVAPmWFW7Rt4BIUalUzHZEYoVjIUmK49yjSJAsV+CEc+MIXUG1rT4ba1aQUCEI4qpCYoUgwHcBpaamIj7e3/TmctxAABu3Ek6seL0+pugb17ISZwZqdFNYsRKOILEiUqOFIAgiGiGxQhDgB9empqYiMTERwOW5gQD5YsXKaVTIFR4KhYJxBYUUKyHiVQLUlWWFIAjiakNihSDAt6ykpKQwYqWiooJX3E2KcGLF4XCgulq6dbJYE8MAUmLF7fYx/YLkWFaSBJYUEisEQVwrkFghCPDdPcnJyYxYAeRZV8KJFSC0dUWOWLFVA7ZqtlYKt/GhsMGgGEJxQn1+CIK4ViCxQhDw9+4JEB8fzyvoJiduhStWLBa2xTFXrITqvCxHrAB860qoMWIIa7DIKKtCEAQRFZBYIRoM5eXl+Pjjj2vVu4IrVuLi4mptWTEYDNBo2Jr0tbKsCOJPpArDRSpWhG4ggiCIa4UrVmeFIK42jzzyCD7//HNcf/312LNnj6yKrAGElhWuWInEsiJs4hlOrPznex+27fehU0v2Xi1G/n3LsqzICLDV0k87QRDXKPTri2gwfP755wCAffv24dSpU8jMzAwzgoUrJK6WWDlf7sM9L/vg8wHcvj2JQYGwCuZ4QKw8v8SLv3/CniMnZoU7L7U5IQjiWoJ+ZRENkt9++y2i84VuIDkxK9XV1di4cSMqKipqJVaOF6NGqPC5sS3/s7CK7YnTPp5QAYKtMWL07QgMuMHvMtr4NgWsEARx7UBihWgQuN1u3ufaihWj0QitVisrZuXuu+/GkCFDMGTIEHg8HgCRiZVLVgRhNgDXt+Dv41pELlb48GdB8Dg5MStKpQI//EOBC2sVuLkLiRWCIK4dyA1ENAi4lhGg9mIlULlWjhtozZo1AIBff/2V2ZeUlMQ7J5RYEeuifFMHQK3mC4lEjv65eAk4VBg8Tm4askKhgFYT/jyCIIhogsQK0SAQWj927twJl8vFy8wJRUBIBMRKODeQT8x/A2DcuHG8z6E6L1+sQBC9rw+2ePAtK4DLE3ztGKqZQhBEA4bcQESDQCgo7HY7/vjjD1ljHQ4H7HZ/hTUxy4qYG0isGm2rVq1w55138vaFsqxcrAgWHX2uD74/nmWlArV2AxEEQVyrkFghGgRigmL37t2yxgqDawF/vRSdTgdA3LIiVuBtwYIFQenSXLEidFVdFEyRGAt0FwTXAv5MH7WKHUNihSCIxgaJFaJBICYoioqKZI0V1lgB/LEdoZoZcq0kKpUK69atw1/+8peg8+Li4qBW+72t58+fB+Dv6XO40If1bKgLpo0CvntbAaM+2A2kUCgYV9ChwmCRA5BYIQiiYUMxK0SDQExQFBcXyxorrLESICEhAadPnw5rWZkyZYqoUAEApVKJ5ORknDlzBufOnYPH40PCbT5eQTcAmPegArFm6QydxBjgXCmYxoVCEmLE9xMEQTQEyLJCNAjEBMXp06dljRWzrABs3Ep1dTUT0xKAK3C4QbRiNGnSBIBfPN111xhofWd4x9Wq8EXdEkXEyOTb/bVT/v6wIqjvD0EQREOCLCtEg+ByLCtiMStAcEZQs2bNmM9cywp3jBgBsQIAq1atAtqMBpLHMvsSYxG2NYCwqi0A3DWQ6qUQBNE4IMsK0SAQs6zURqyIWVaAYDHEFSvhLCspKSn8HbYDvI9iVhMhYufkNg0/jiAIoiFAYoVoEHDFRNu2/pSakpISOJ3OsGOlYlZCFYbjjonEsgIAsB7kfayNWFGrgGbJ4ccRBEE0BEisEA2CgJhQq9Vo06YNs//MmTNSQxikLCtcN9DlWFaCxIpNIFZCD685h+/uyUoFVCpyAREE0TggsUI0CAJiIiEhgRdbIscVJBWzIteyErEbqPoY72OSDLEiPKd5WvgxBEEQDQUSK0SDICAmEhIS0LQpG8whJyPoci0rkbqBNILeP7FhMoGAYDdQDokVgiAaESRWiGsep9OJqqoqAH5rSHp6OnMslGXl3LlzcLlctYpZuRw3ULNmzaDk/OSVVYYc7r8XwSVy0skFRBBE44HECnHNw7V6CC0rUmJl1apVSEtLQ3p6OvLy8gAAWq0WBoOBN5fwGh6PB19++SW2bt3KHIvUDZSRkYFeHdjP8ZaQwwEEW1bIDUQQRGOCxApxzcMVK4mJibLEyhdffAGfz4cLFy4w+wYPHsyrdyJmWXnjjTcwatQoxnWk0+mg1+tD3l9yMj9tJyMjAx/OUsCgA+LMwDN3hbeSBFtWwg4hCIJoMFBROOKahys45LqB8vPzeZ9jY2Px3nvv8fYJLSsulwt/+9vfgsaFQyhmMjMz0SpDgZL/+T+bjeHFSoLA+kKWFYIgGhNkWSGueQINAgG/FcNiscBi8b/dpVKXueXztVot/vWvfyErK4t3jk6ng8nkj369ePEivvrqq6B5wgXXipGRkQHAL1LkCBUAUAuCcqkXEEEQjQkSK8Q1j1CsAEBqaioA4OzZs6JjSkpKAADp6ekoLS3FyJEjRc8LWFdKS0vx/vvvBx2XY1kREpTKLJO7Bvr/f8/g8OX5CYIgGhIkVoiowOfzIS8vD0ePHo14bCixUlFREdSE0OPxMK6jpk2bMtYTMZKSkphrbNq0Kei4nKJzQrgZR5Hw6QsK7FiiwLK/klAhCKJxQWKFiAqWL1+OAQMGoEuXLigoKIhoLFesBMRFQKwA/hRlLmVlZfD5fABEqssKSEvzB4d4PB54vd6g40VFRbLu8eOPPwYAtGnTBn369JE1RoharUCX1ooglxBBEERDh8QKERW8++67AIDKyko8/fTTEY0NZVkBgl1B3Jop4cQKN1g3QNeuXZntyZMny7rH++67DydPnsTevXuhVlNcO0EQRCTQb00iKuDGYHz55ZdwOp3QarWyxnKzgQJihRsXcjlihZsGHWDUqFG466678Ntvv+H555+XdY8AggJ4CYIgCHmQWCGigoBbJsCXX36JcePGyRobsKxoNBrExPjTZOrKsiImVtLT0zFhwgRZ90YQBEFcPuQGIqICoaBYt26d7LEBsZKcnMxYaK60WCEIgiCuHiRWiHrH6/UGBcGeOnVK1lifz8eIlUBwLRA6wJZb8bY2MSskVgiCIK4uJFaIeqe0tBRut5u3T26WTUVFBVwuFwB+WXspy8quXbuYXkDCMWKQZYUgCKL+oZgVot4RK9xWXFwMn88XtviZWCYQwLeYBOZft24dhg8fzktBDmdZSUpKglarhdPpBAAYDIZaFYIjCIIgag9ZVoh6R+imAQCHw8GLLZFCLBMI8AfbBhoRnj17FlarFRMnTgyqlRLOsqJQKHiWlPT0dKoeSxAEcZUhsULUO1Il8aWaEHKRsqwA/JL7r7/+uqj4kZMeLRQrBEEQxNWFxApR73DFSuvWrZltOXErcsRKdXU1U0GWSyDNORzcuBUSKwRBEFcfEitEnbF161aMHz8eW7ZsiWgcV6xwq8NGKla42UAAP8g2UMI/IyMDo0aNAgDZBd1IrBAEQdQvFGBL1Al2u53pebN79278+eefssdyxUqXLl2wYsUKAOHdQD/88AOee+455rOUZYVLSkoK3nzzTSxfvjxkA0Mu5AYiCIKoX8iyQtQJy5cvZ7YPHToEj8cje2yklpXKykrcfvvtGDRoEG9/RkYG77OYsAgIGoPBIPv+evfuzWzfdNNNsscRBEEQdQNZVojLxuPx4O233+btKykpYToWhyMgVnQ6Hdq1a8fsl7Ks/Pe//+VVuLVYLJg6dSpycnJ454ldP1yqshg9e/ZEXl4efD4fiRWCIIh6gMQKcdls2bIFx44d4+0rLi6OWKykpKQgISEBer0e1dXVkpaVEydOMNvz58/HjBkzoNFogs6rK7ECAP369avVOIIgCOLyITcQcdns3r07aN/p06dljbXZbEytlIyMDCgUCiagVUqscN1Gw4YNExUqgLgbqLZihSAIgqg/SKwQl80ff/wRtE9OjRQAKCwsZLazsrIAAM2aNQPgL6VfWVkZNObMmTPMdijrjdixcEXgCIIgiOiDxApx2Rw4cCBon1yxcvLkSWY7OzsbAD9QVqyhYUCsKJXKoHRlLhaLJSjjhywrBEEQ1x4kVojLwufz4eDBg0H75YqVQP0TgLWsBP4P8C0vAQJiJSUlBSqVKuT8QlcQiRWCIIhrDxIrxGVRWFiIqqoqAPy0XrkxK2JiJTMzU/Q44M88CvQSkhPAKzyHxApBEMS1B4kV4rLgxqv06dMHOp0OQO0sKwE3EFesCC0r58+fZ5oR1kasUMwKQRDEtQeJFYLB7XbD5/NFNIYbr9K+fXsmk6c2MSsBkRJKrHBjWGojVuQ0LiQIgiCiCxIrBADg+++/R1xcHG655RbGciEHrmWlQ4cOjFgpLy+HzWYLOz5gWWnSpAlTVVZMrHg8Htx6663o3r07c0yOWKHy+ARBENc+JFYIAMDgwYNhtVrx/fffY8+ePbLG+Hw+bN68GQCg1+vRtm1bXtO/cHErTqeTOYcbVGs2m5GQkACAFTO//vorvv32W954OWIlMA9BEARx7UJihUBZWRnvcyiR8f3332PkyJF4/vnn8fXXXzOWj169ekGv1/MsGVKuoOLiYmzevBmnTp1i3E6BeJUAAetKUVERPB4PNmzYEDSPHLESLluIIAiCiH6o3D6Bb775hvdZqnIsAEyZMgVHjx7F6tWreftvvvlmAPwaKWJpxzabDR07dsTFixdxyy23MPu5lhXAL1b27NkDj8eDM2fOBFlVAHlihVsmf8qUKWHPJwiCIKIPEisEvvrqK95nKbHi8/l4AbFcBg4cCAC8ZoLHjx8POu/PP//ExYsXAQAbN25k9rdo0YJ3HjduZefOndixY0fQXHLESvPmzfHf//4Xu3fvxjPPPBP2fIIgCCL6ILHSyHE6nUGWFbGqsYC//L3L5RI91qVLFwDhxYrQ5QQARqMRI0eO5O3jWlo+/PBDxl1kMBhgt9vRvXt3nhUnFKNHj8bo0aMBIKLgYYIgCCI6ILHSyNm6dSsqKip4+6QsKyUlJcx2WloaU0l21KhRUKv9X6VwYqW0tDRo3+OPPx5UrI1rWeGKqbVr16J169ZISUmBQqGQfC6CIAii4UBipZGzbt26oH1SYuX8+fPM9pgxY9CpUyf8+OOPeOWVV5j9RqORETJyxEpsbCyeffbZoPNyc3OZbY/Hw2y3b98eqampIZ6IIAiCaGhQNlAjJyBWVCoVIwK4WTpcuGIlOTkZkyZNwscff8yzggBs/ElJSUlQ12SuWBk4cCC2bt0qWlVWGMMC+IVQSkqK3EcjCIIgGggkVhoxR44cwdGjRwEAvXv3xnXXXQcAsNvtorElXLESqscOV2icOHGCd4wrVubMmYMOHTqIzhEbGxskYnJycsj1QxAE0QghsdKI+fHHH5ntv/zlL7yAVbEgW6FlRQquWBG6grhiJVzBNq4rSDgvQRAE0XggsdKI4TYR7NixI5o1a8Z8FotbIbFCEARB1AckVhox3AqzTZs25VlWroZYiY+PD3l/JFYIgiAIgMRKo4ZbVj89PZ1nWakrN1B+fj7vWECsGAwGpnGhFCRWCIIgCKAOxYrT6cRLL72EYcOGoV+/fnj44Ydx7Ngx5viyZcswaNAgDBw4EO+88w4v2+TAgQO4++670atXLzz88MNM/Q7iyhKwrBgMBsTFxaF58+bMsT///DPo/IBYUalUiIuLk5w3MTERRqMRACt6nE4nfvnlF0YgyWkwSGKFIAiCAOpQrHg8HjRt2hQfffQRNm3ahL59+zLlzbdu3YovvvgCy5Ytw+eff46tW7cyJd6dTidmzpyJcePGYdOmTejQoQNmz55dV7dFhCAgVpo2bQqFQoHc3FyYTCYAwK5du4LODxSFS05OhlIp/dVRKBRMOnNBQQGOHz+Ozp0746abbmKyjOSIlZYtWzLbKpUqqH8QQRAE0TioM7FiMBjw0EMPISUlBSqVCnfddRdOnz6N8vJyrF+/HqNHj0azZs2QlJSEe++9l6lKunPnThgMBgwfPhw6nQ6TJ0/GwYMHyboiE7vdjjVr1uDjjz/G3r17ZY+rqqpiKtc2bdoUgF8Q3HDDDQCAkydPMj18AH9foIBlJZQLKEBArNhsNrRt2xYHDhzgHZcjVuLj45naL7m5udBoNGHHEARBEA2PK1bBdt++fUhISEBcXBxOnDiBYcOGMcdatWqF9957D4A/poFr7jcYDGjWrBny8/NFG9U5nU44nU7ePrVaDa1Wy9sX6AHT0HvBPPTQQ/j3v/8NwG/R+O2335g+PQHE1oIbQJuWlsYcu+GGG7B161YAfiE5aNAgAMAff/wBh8MBwC9Wwq0rN1hXrJ9QfHy8rH+b//u//8N7772HGTNm1Mm/ZWP5XsiB1oKF1oKF1oKF1oLlSq1FKCs9lysiVqqqqvD3v/8dU6ZMAeD/69psNjPHTSYTbDYbAL9lIOB64B632+2ic3/00UdYsmQJb9+YMWMwduxY0fOlmvI1BHw+H9auXcv7/NFHHyEpKUn0/FOnTsHr9UKpVPLcPBaLhUlj5laj3bRpE9RqNebPn49NmzYx+41GIy/tWYzY2NiQx7Vabdg5AODGG2/EjTfeCACyzpdLQ/5eRAqtBQutBQutBQutBUtdrwU3VjIUdS5WHA4HnnnmGfTu3RvDhw8H4H+5VVVVMedYrVYmANNgMMBqtfLmsFqtkpkikyZNwj333MPbJ2VZOXXqFDIyMmQrt2uN4uLioHL2e/fuDYrtCKzFkSNHMG7cOPTp04fX5bht27bMmFtuuQUzZswAABw7dgwrVqwISmPu0aNH2PiRQDVcKTIzM+slBqUxfC/kQmvBQmvBQmvBQmvBUt9rUadixe12429/+xuSk5Mxffp0Zn/z5s1x7Ngx9O7dG4C/zHugO29OTg5Wr17NnGu321FUVMTr3stFq9UGCZNQKJXKBvslE8vY2b59O6qrqxkxyOWxxx5DeXk51q5di+rqamZ/06ZNmTVq164dDAYD7HY7Vq9ezZj8kpOTMXz4cLRu3RqPPvpo2DXNzs7mfTYajYw1DfBbXurz36Uhfy8ihdaChdaChdaChdaCpb7Wok6vOH/+fDgcDsydO5fXw2XYsGFYtWoViouLceHCBaxYsQK33norAKBLly6w2+1Yu3YtnE4nli5dinbt2onGqxB8uEGrarVfd7pcLvz2229B5zocDl6fnu+++47ZDgTYBua5/vrrAfB9k5MnT8aSJUvw7LPP8lx6UgibG7Zr1473WaqzM0EQBEEIqTOxcubMGaxduxa7d+/GgAED0KdPH/Tp0we7d+9G7969MXLkSEyYMAFjxoxBr169cMcddwDwW0reeOMNrFixAgMGDMDevXsxb968urqtBg1XrDz22GPM9ubNm4PO3blzp+Q8XLECAJ07dw46p23bthHdG7fAHAC0b98e8+fPZz5LxRgRBEEQhJA6cwOlpaVhx44dkscnTZqESZMmiR5r3749Vq5cWVe30mj4448/mO1HH30U//znPwEAP/30U9C5P//8s+Q8QitWIH2ZS6RiReiqa9++PaZPn47q6moYDAYMGDAgovkIgiCIxssVS10m6p6LFy9Cq9XCYrHA5/Ph4MGDAPzxIe3atUNqairOnj3LEzEBtm3bJjpndnY2dDodb5+YWGnTps1l3XugTgpZzQiCIIhIoYiha4Q//vgDTZs2RXp6Ok6ePIn8/HwmE6h9+/YAWOtHSUkJr6Bbfn4+UzAuNjaWybRq06YNU6OFS4cOHaBSqZjPmZmZQenlcgjUaAGATp06RTyeIAiCIACyrFwzvPrqq3A4HHA4HJg1axZPTHTt2hWAX6z8+OOPAPyZQoHsK25dmueeew633347Tpw4gSFDhohWhdXr9UhISGAq1srNgxeyaNEiPPfccxgwYECt5yAIgiAIEiv1jN1uR2lpKeLi4kJaL7gdkj///HNmOyEhAY8//jgAflxJQKw4HA589NFHAACNRoNJkyYhJSWFscZIodfrmW2PxxPZQ9XQsmVLrFq1qlZjCYIgCCIAuYHqkZ9++gnJyclo1qwZEhMTsW7dOslzhXElAV5//XWmYq1QrADAe++9x1hI7rzzTqSkpMi6t3vvvZfZvu2222SNIQiCIIgrAVlW6pElS5Yw1XsdDgfeeustSWEgVuK4RYsWeOCBB5jPQrGyc+dOPPfcc8y+adOmyb63v/71r9i9ezdUKhWeeOIJ2eMIgiAIoq4hsVKPCDsRb926FRcvXkRiYiJvv8/nQ2FhYdD4hx56iFdJMC0tDTExMaioqMDBgwcxa9Yspong5MmT0bNnT9n3ZrFYmM7YBEEQBFGfkBuonvB4PEzqMXefmEAoKyvj9VYKMHHiRN5nhULBWFcKCwvxww8/APAXfXvmmWfq6M4JgiAI4upCYqWeOHHiBNOfh9sl+auvvgo6V8yqMmHCBKSmpgbtF5a1B/wVaSPpp0QQBEEQ0QSJlXqC6wKaPHky4/r55ptv4Ha7eedyxcqUKVOwevVqLF68WHTeG2+8MWhfuA7IBEEQBBHNkFipJ7hi5frrr0e/fv0AAFVVVSgoKOCdyxUr3bp1w4gRI0S7KgNAr169gvaRWCEIgiCuZUis1BNcsdKhQwe0atWK+Xzs2DHeuVzxIuxmLKRdu3aIjY3l7SOxQhAEQVzLkFi5DD777DM89dRTeP7554MERjgC/XvUajVatWqF3Nxc5hh3Lp/Phz179jCfs7KyQs6rVCqDsn5atmwZ0b0RBEEQRDRBqcu1ZMuWLRg3bhzzef369di9e7essR6PB4cPHwbgFxJarZYnVo4ePcpsL1++HN9//z0AfyBuOMsKAHTp0gXffvst81mtpn9mgiAI4tqFLCu1ZM2aNbzPe/bswZEjR2SNLSgogMPhAMB2M+ZaPwKWlcOHDzOl9AHg3XffFe3lI4QbZCsWcEsQBEEQ1xIkVmrJxo0bg/aJpR0HmDdvHm677TYcO3aMsaoAQOvWrQH4C7oFuiEfO3YM1dXVGDduHFPh9qGHHsJdd90l696GDRuGO++8E1lZWVi0aJHsZyIIgiCIaITESi04ffo0EyAbHx/P7JcSK3v37sWcOXPw9ddfY+jQobxicAGxolAoGFdQfn4+Fi1axMSqtG3bFu+8847s+1OpVPjyyy9x8uRJdO7cOaJnIwiCIIhog8RKLfjuu++Y7ccff5wRHNu2bcOFCxeCzt+6dSuzffz4cTz77LPM58BYgHUFuVwufPHFF8z+Dz/8UDJVmSAIgiAaOiRWZFBVVYVNmzbBbrcD4LuAbrnlFtxxxx0AAK/Xi02bNgWN/+WXXyTn5ooVbpBtYIxCoUCXLl0u7wEIgiAI4hqGxIoMRo0ahZtvvhmdOnXCoUOHGEFiNptx4403om/fvsy527dvDxr/66+/is6blJSEhIQE5jNXrARo1qwZdDrd5T4CQRAEQVyzUE5rGEpLSxlLypEjR5hGgQDQt29faDQadOvWjdknFCslJSU4fvy46NxcqwrgLw4nJCcnp9b3ThAEQRANAbKshGHbtm2Sx26++WYAQEpKCjIyMgAAO3fuhMfjYc757bffmO3p06fzxjdp0oT3+frrr4dSyf8nadGiRa3umyAIgiAaCiRWwsANjhUSECsAGOtKVVUVDh06xOzfsGEDs927d28MHjyY+Sy0mphMpiBrC4kVgiAIorFDYiUMXLEybNgw3jFuz53u3bsz2wFXkMfjwapVqwAAOp0OgwcPxvvvv4/4+HjExsZiypQpQde74YYbeJ9JrBAEQRCNHRIrIbDb7YzwaNWqFV5//XXm2D333MNz2XDjVrZt24YxY8ZArVbj7NmzAIAhQ4YgJiYGOTk5OHPmDIqKikTjUUisEARBEAQfCrANwaJFi+ByuQD4XTgdOnTAxx9/jM2bN2P27Nm8c7t27QqlUgmv14sPP/wwaK6xY8cy2zqdTjLDh8QKQRAEQfAhy4oERUVFmDNnDgB/rZPHHnsMAHDffffhww8/DGooGBMTg06dOonOpdPpcPvtt8u6rlCscCvkEgRBEERjhMSKBE899RTTl+fRRx9F165dw47h1lsJoFKp8PzzzyMmJkbWdRMSEtCzZ08AwMiRIyO4Y4IgCIJomJAbSASn08lsN2nSBPPnz5c1rl+/fvjHP/7BfO7Tpw82b94MhUIR0fXXrFmDvLw8DBkyJKJxBEEQBNEQIbEiglarxX//+198++23cDgcsl0xffr04X0eMGBAxEIF8AskbowLQRAEQTRmSKyEYOjQoRGdn5iYyPvcr1+/urwdgiAIgmiUUMxKHfPaa68B8Bd869WrVz3fDUEQBEFc+5BlpY6ZMWMGBgwYgJYtW1IDQoIgCIKoA0is1DFKpZJXzZYgCIIgiMuD3EAEQRAEQUQ1JFYIgiAIgohqSKwQBEEQBBHVkFghCIIgCCKqIbFCEARBEERUQ2KFIAiCIIiohsQKQRAEQRBRDYkVgiAIgiCiGhIrBEEQBEFENSRWCIIgCIKIakisEARBEAQR1ZBYIQiCIAgiqiGxQhAEQRBEVENihSAIgiCIqEbh8/l89X0TBEEQBEEQUpBlhSAIgiCIqIbECkEQBEEQUQ2JFYIgCIIgohoSKwRBEARBRDUkVgiCIAiCiGpIrBAEQRAEEdWQWCEIgiAIIqohsUIQBEEQRFRDYoUgCIIgiKiGxApBEARBEFHNNSFWPvjgA4wZMwbdunXDhg0bmP3V1dWYP38+Bg8ejFtuuQWffPKJ6Phly5aha9eu2L9/P7OvuLgYU6dORf/+/XHrrbfio48+uuLPURfUdi26du2K3r17o0+fPujTpw/+9a9/MccWLFiA4cOHo2/fvrjvvvuwa9euq/Y8l8OVWAsA+Oqrr3DnnXeid+/eGD16NAoKCq7K81wOtV2LqqoqzJs3DwMHDkT//v3x/PPP88a++OKL6Nu3L/7yl7/g22+/vWrPc7lcifUIcPr0afTq1Qt///vfr/hz1AVXYi0a0+/P3bt3M78r+vTpg169eqFbt24oKysD0Lh+f4ZbC+DK/f5U18ksV5iMjAw888wzeP/993n7ly5ditOnT2P16tWoqqrCY489htzcXPTs2ZM5p6SkBN9++y0SExN5Y9988000bdoU77zzDs6dO4cHH3wQ7du3R/fu3a/KM9WWy1mLNWvWICkpKWhOs9mMd999F02bNsWmTZvw7LPPYu3atTCZTFf8eS6HK7EWW7Zswaeffoq33noLOTk5KC4uhsViueLPcrnUdi1eeuklpKSk4KuvvoJer8exY8eYsR988AEuXbqE9evX4/jx43jyySfRtm1bZGVlXdVnqw1XYj0CLFiwAK1bt74qz1EXXIm1aEy/P2+44Qb89NNPzLkrV67E999/j/j4eACN6/dnuLW4kr8/rwnLyrBhw9CjRw9otVre/l9++QXjx4+H2WxGamoq7rjjDnz99de8c/7v//4PjzzySNDYM2fO4JZbboFarUbTpk3RqVMn5OfnX/FnuVwuZy2kePjhh5GRkQGlUolBgwZBp9OhsLDwStx+nXIl1uLDDz/E008/jRYtWkChUKBZs2aIjY29Erdfp9RmLY4fP45Dhw7hqaeegtlshlqtRps2bZix69evx8MPPwyz2YyOHTuib9++2Lhx41V9rtpyJdYjMN7n8+HGG2+8as9yuVyJtWjMvz+/+eYb3Hrrrcznxvz7U7gWV/L35zUhVkLBbRrt8/l4PzA7duzApUuXMGDAgKBxY8aMwYYNG+B0OlFYWIj9+/eja9euV+WerxSh1gIA7r33Xtx6662YO3cuysvLRec4ffo0KioqkJGRcSVv9YpTm7XweDw4fPgwjh07hmHDhuGOO+7AkiVLcK03Jpdaiz///BOZmZl48cUXcfPNN2PChAnYvXs3AKCiogIXL15Ebm4uM7ZVq1bXxAspHLVZDwBwuVx45513MH369Kt9y1eM2q5FY/z9CQCnTp3CkSNHMGjQINE5GsvvTyB4La70789rWqz06NED//nPf1BZWYnTp09j3bp1qK6uBgC43W4sWLAATz/9tOjYjh07Yv/+/ejTpw9GjhyJ4cOH834xX2uEWgsAWLJkCdatW4d///vfqK6uxrx584LmcLvdmDt3Lu677z6Yzeareft1Sm3XorS0FB6PB9u3b8dnn32G//f//h++++47rF27tr4e5bIJtRYlJSX47bff0L17d2zYsAETJ07Es88+i0uXLsFms0GlUkGv1zNzmUwm2Gy2+nqUOqG26wEAK1asQK9eva75F1GAy1mLxvb7M8A333yDnj17iloLGsvvzwDCtbjSvz+vabHy4IMPIj09HaNHj8a0adNw8803Izk5GQDw3//+F506dRL9AfJ4PHjyyScxYsQIbNu2DV999RW+//57fP/991f7EeqMUGsBADfccAPUajXi4+Px7LPPYtu2bXC5XMxxn8+HuXPnIj4+Hg8//HB9PEKdUdu10Ol0AID7778fFosFqampGDNmDLZt21Zfj3LZhFoLnU6Hpk2bYsSIEVCr1Rg4cCCaNm2K/fv3w2g0wuPx8H5JWa1WGI3G+nqUOuH/t3d/IU21cRzAv3NqM838kwhZTKykxKJiZJSVUW6tkiSzqLti7U5YIASGNDOKCbuqi0ZGEnrRWmDOaCKB82pgf+iPEsoqL4T90TJr5Ki590J2aNnrW3PLs3ffz9Vxz3Oenecne/j6nFOLtB4ejwddXV04c+bMIs8geiKtRSKunyE2my3stkdIIq2fIT/XItbrZ1yHlbS0NFy4cAE9PT2wWCyQSCQoKSkBMHsLyGazQaVSQaVSwe12Q6fToaurC1NTU/B6vTh27BiSk5OxcuVKVFRU4OnTp4s8o8jNV4ufJSXN/tp/3J5raWmB1+tFc3Oz0B6vIq1FZmbmnA9lvN8Cmq8Wa9as+dfzMjMzkZubG/ZQ5fDwMIqKimJ+zbEUaT2Ghobgdrtx9OhRqFQqtLe34+HDh6irq/tblx51kdYiUdfPwcFBTExMYNeuXXPOT7T181e1iPX6GRdV/f79O/x+P4LBoHA8MzMDt9uN8fFxBAIBOBwOWK1WnDp1CgCg1+thNpvR0dGBjo4O5OXloampCUqlEtnZ2cjPz0dnZ6cwjt1un/cDKhaR1MLpdGJ4eBiBQABTU1MwGo0oKysTHqwymUx48eIFjEbjnIetxCwWtTh8+DDu3LkDn88Hr9eL+/fvo7y8fDGn+VsiqYVCoUAwGER3dzcCgQDsdjvGxsawceNGALMP4LW2tsLn8+HVq1fo7+9HZWXlYk7zt0W7Hjt27MCDBw+E9aSmpgb79+9Hc3PzIs/0v0W7Fom2fobYbDbs3bs37NYokFjrZ8i/1SKW66ckGAd/Our1enR3d4e9FvrnVhcvXsTk5CQKCwtRX1+PLVu2/HKMqqoqXLlyRViIBwcHYTQa4XQ6IZPJoFQqodPpIJVKYzuZBYqkFgMDA7h69So8Hg/S09Oxbds2nDt3Djk5OQBmF6bU1NSwuTc0NPxyu1NMYlGLb9++wWAwoLe3F0uXLkV1dTW0Wi0kEsnfndwfivQzMjIygubmZrx79w6rV69GfX09tm7dCmD2/1u4fPky7HY7MjMzUVdXhwMHDvy9SS1ALOrxI5PJhImJCTQ0NMR2IlEQi1ok0voJzD46cPDgQTQ1NWH79u1h5yfS+gnMX4tYrp9xEVaIiIgoccXFbSAiIiJKXAwrREREJGoMK0RERCRqDCtEREQkagwrREREJGoMK0RERCRqDCtEREQkagwrRPS/plAooFAo4voLKYkSHcMKES2YVqsVQsHJkyfD2iYnJ7Fz506h/dq1a1F/f6vVKoxPRP8/DCtEFFUjIyN49uyZ8HNnZyf8fv8iXhERxTuGFSKKmuTkZADA3bt3Acx+j4jFYhFe/9GnT59gMBhw6NAhlJWVQalUorGxES6XS+hjMpmgUChQVVWF3t5e1NTUoLy8HGfPnsX79+8BzH7HSVNTk3BOaIfFZDKFvd+XL1+g1+uxZ88eqNVqtLa2Rnv6RBQjDCtEFDXFxcUoKChAX18f3G43+vv74XK5sG/fvrB+fr8fWq0W9+7dw/j4OORyOXw+Hx49eoTTp0/j48ePYf09Hg8aGxshkUjg9/vx/PlzXLp0CQCwatUqFBQUCH1LS0tRWlqK/Pz8sDGuX78Oh8OBlJQUeL1e3LhxAw6HI0aVIKJoYlghoqhJSkpCbW2tsKMS2mE5ceJEWL+enh44nU4AgMFggNlsxq1bt5CUlASv1wuz2RzWPxAIoKWlBRaLRXgm5uXLl5ienoZGo4FGoxH6trW1oa2tDdXV1WFjFBcXw2q1hu30DAwMRHX+RBQbDCtEFFVHjhxBWloazGYznjx5gg0bNmDTpk1hfYaGhgAAMpkMFRUVAID169dDLpeHtYdkZGRg9+7dAICioiLh9Z93YOZTWVmJlJQUZGVlIScnBwDw4cOHP5scES0KhhUiiqply5ZBrVbD5/MBmLurEumYIVKpVDgOBoMLGuNPzieixcOwQkRRd/z4cQBAVlYWlErlnPaSkhIAwPT0NPr6+gAAb968wejoaFj775LJZMLx169fI7lkIhKxuY/oExEt0Nq1a/H48WNIpVKkpqbOaVepVGhvb8fbt29x/vx5yOVyjI2NYWZmBnl5eULY+V2FhYXCcW1tLVasWAGdTofNmzcvcCZEJAbcWSGimFi+fDkyMjJ+2bZkyRLcvHlTCBajo6NIT0+HWq3G7du3kZ2d/UfvtW7dOmg0GuTm5sLlcuH169f4/PlzNKZBRCIgCfKmLREREYkYd1aIiIhI1BhWiIiISNQYVoiIiEjUGFaIiIhI1BhWiIiISNQYVoiIiEjUGFaIiIhI1BhWiIiISNQYVoiIiEjUGFaIiIhI1BhWiIiISNQYVoiIiEjU/gFWMmm1ef8CigAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -1232,14 +1374,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEPCAYAAAC0r/QVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABZzklEQVR4nO2dd3gc1bn/P6vemyXLttww4IB7zBCKY5IAxgQM5hIDoQRMN8E3VBOSmxByQ3IvgRCSQABz+UFCKMmFm0IJvRgwYMaO6TZgWy7rbjWrr6T5/XH27M7OTltpJe1K5/M8erbMzM4cafXdd7/nPe8bMAwDhUKhUKQnGYN9AQqFQqHoPUrEFQqFIo1RIq5QKBRpjBJxhUKhSGOUiCsUCkUao0RcoVAo0pjBEHEDMHbu3GnI++n+o8aSmj9qLKn5M1TGMsDjcGTQIvHu7u7BOnXSUWNJTdRYUpOhMpZUGYeyUxQKhSKNUSKuUCgUaYwScYVCoUhjlIgrFApFGqNEXKFQKNKYLK8dNE0rBV4EpgBH6rr+kWlbJnA/cDCwWtf1q/vpOhUKhUJhg59IvBU4GXjCZtsCYLuu63OBQk3TjkrmxSnSm+bmZtrb2wf7MhSKAWFvg8FglPb2FHFd10O6ru9x2Hw08EL4/nPAnGRd2GDxgx/8gFdffZW//e1v/Nd//RcAixcv5oADDmDWrFnMnj2bt99+e5CvMvVZtWoVY8aMYc6ctH9LKBSevPG+QdWpBktuH3gR97RTPCgHmsL3G4EKu500TbsMuAxg6dKlzJs3j1AoRDAY7OPpk8+KFSu4+OKLefTRRzn55JMJBoO0trZy4403smDBAl5//XUuuugiXnrppcgxqToWK11dXWRluf/JkzGWtrY2jj32WFpaWlizZs2g/W7S5e/iBzWW1MM8jl/+qQzIZ/lTcNM5yR9bTU2N47a+ingDUBK+XwrU2e2k6/pyYHn4oQEQDAZdL2ygWbZsGc8//zybNm1i0aJFbNiwgXfffZdFixZRUFDAiBEjqKmp4fTTT+eSSy6htLSUhQsXUl9fT2trK7feeisLFy6kpaWFM888k23bttHd3c2Pf/xjzjrrLG688Ub+8Y9/kJWVxQknnMDtt9/Onj17WLJkCVu2bAHgzjvvZM6cOdx8881s2bKFjRs3smXLFq6++mq+973vAfCzn/2MP/3pT1RVVTFu3DgOO+wwrr/+ejZs2MCVV17Jnj17KCgo4P777+eQQw5h8eLF5OXl8a9//Ys5c+awcOFCrrrqKgACgQArVqyguLg48ntIxt/l008/paWlJfJ4zJgxBAKBPr1mb0i191hfUGNJPczjGDmiJ/L8QI+tryK+EjgeWAHMBx7s6wX11z+7l1d12223ceaZZ/LHP/6RO+64g69//eu89dZbgLBTJE899RTTp08nLy+Pv/71r5SUlPDhhx/yb//2b5x66qk899xzjBkzhmeeeQaAxsZG9u3bx1//+lfWrVtHIBCgoaEBgKuuuoprrrmGr371q2zZsoX58+fz6aefArBu3TpeffVV9u/fz5e+9CWuuOIK1q5dy5NPPsn7779PKBRi9uzZHHbYYQBcdtll3HvvvRx88MG8++67fPe73+WVV14BYNu2baxcuZLMzExOOeUU7r77bubMmUNzczN5eXnJ/DUDxAg4QEdHR7+cR6FIFYryB+/cvkRc07RngVnAlzRNuw84Stf1y4GngdM0TXsD+Jeu62ltFq9Zs4aZM2eybt06Dj300Jhty5Yt45ZbbqGqqooHHngAwzD44Q9/yIoVK+ju7iYYDLJr1y6mT5/Oddddx/e//30WLFjA3Llz6erqIi8vj4svvpgFCxawYMECAF566SU++eSTyDmamppobm4G4OSTTyY3N5fc3FxGjhzJrl27eOutt1i4cCF5eXnk5eVxyimnAGICceXKlZxxxhmR1+ro6IjcP+OMM8jMzARgzpw5XHvttZx77rmcfvrpjB07Num/RzkGSXt7uxJxxZCmuCB63zCMAf3m6UvEdV0/yfLUQ+Hnu4DFybygwZjdXbt2LYsXL2bbtm1UVlbS2tqKYRjMmjUrMol52223sWjRosgxDz30EHv27GH16tXs3r2bOXPm0N7ezuTJk1mzZg3PPvssP/rRjzjuuOO46aabWLVqFS+//DJPPPEEd911F6+88go9PT288847tgKXm5sbuZ+ZmUlXV5fj9ff09FBWVsbatWtttxcWFkbu33jjjZx88sk8++yzzJkzh+eff55DDjkk0V+ZK9ZIXGWoKIYTTS1QWjRw51OLfYBZs2axdu1aJk+ezCeffMKxxx7L888/z9q1a8nPt/+e1NjYyMiRI8nOzuatt95i8+bNAGzfvp2CggLOO+88li1bxpo1a2hubqaxsZGTTjqJX//617z//vsAnHDCCfzud7+LvKaTCEvmzJnDU089RXt7O83NzTz99NMAlJSUcMABB/C///u/gPgglOewsmHDBqZPn873v/99Dj/8cNatW5fQ78oPdpG4QjGUaYt+8WV3/cCeu6+e+JBhz549lJeXk5GRwbp165gyZYrr/ueeey6nnHIK06dPZ8qUKZFo9sMPP2TZsmVkZGSQnZ3NPffcw/79+1m4cCHt7e0YhsEdd9wBwG9/+1uuvPJKZsyYQVdXF8cccwz33nuv4zkPP/xwTj31VGbMmEF1dTXTp0+ntLQUgEceeYQrrriCW265hVAoxLe//W1mzpwZ9xp33nknr776KhkZGUydOpVvfvObvf2VOaIiccVwo60zen93Axw8bgBPbhjGQP8YhmEY27ZtM4YKAzmW/fv3G4ZhGC0tLcZhhx1mrF69Oqmvn4yx/OY3v4kpaL9mzZokXFniqPdYajJUxmIex+JfdBvMFT//93pPf5zOUVNVJJ5mXHbZZXzyySe0t7dzwQUXMHv27MG+pDhUJK5IZ7q7DY75d4Ppk+De6/05zspOUfjm0UcfHexL8ER54op05tPNsPIj8XPv9f6OiRHxhn65LEfUxKYi6ahIXJHOZGVG74e6/GXLxUbiA5thp0RckXSUiCvSmY5Q9P6+Rn/HxExsDrCdokRckXSUnaJIZ8xR9V6/Im46Zk9DUi/HEyXiiqQjI/Hy8nJAibgivTAL8r4m5/2cjtnfltzr8UKJeJjMzExmzZrFtGnTOOOMM2htbe23c9XW1jJt2rR+e/3BRkbiI0aMAJSIK9KLdpM1srfB3zFmEW9qcd6vP1AiHiY/P5+1a9fy0UcfkZOT47roJp1wW67fX8hIvLKyElAirkgv+mqn7O+/+M8WJeI2zJ07ly+++IK6ujpOO+00ZsyYwZFHHskHH3wAwM0338ztt98e2f+4446jtraW2tpaDj30UC699FKmTp3KCSecQFub+G61evVqZs6cycyZM7n77rsjx3788cd85StfYdasWcyYMYPPP/887nqKioq45pprmDp1Kscddxx79ogeHRs2bODEE0/ksMMOY+7cuZEl9IsXL2bJkiUcccQR3HDDDTGv1d3dzfXXX8+0adOYMWNGZNn/yy+/zJe//GWOO+44LrroIjo6Onjvvfc4/fTTAfj73/9Ofn4+nZ2dtLe3M2nSJMffn4rEFelMr+wUU/Q+0CKecnnigWN6vHfqBcYKf59XXV1d/POf/+TEE0/kJz/5CV/+8pf529/+xiuvvML555/vWd/k888/57HHHuP+++/nzDPP5Mknn+S8887jwgsv5K677uKYY45h2bJlkf3vvfderrrqKs4991w6Ozvp7u6Oe82WlhY0TePXv/41//mf/8lPf/pT7rrrLt/lZ80sX76c2tpa1q5dS1ZWFnV1dbS3t7N48WJefvllCgsL+cEPfsA999zD0qVLI+N94403mDZtGu+99x5dXV0cccQRjr8DFYkr0pkYO6XRALwrEpqFv7kNenoMMjIGppKhisTDtLW1MWvWLDRNY/z48Vx88cW8+eabfOc73wHg2GOPZd++fTQ1uX80yzZuAIcddhi1tbU0NDTQ0NDAMcccAxB5TYCjjjqKX/ziF9x6661s3rzZtuBWRkYGZ511FgDnnXceb775Zkz52VmzZnH55ZezY8eOyDHm8rNmXnrpJS6//PJIh5+KigrWr1/PAQccwOTJkwG44IILWLFiBVlZWRx44IF8+umnrFq1imuvvZYVK1bwxhtvMHfuXMffgYrEFelMonZKd7dBZwgCgWhd8eYBnNxMuUjcb8ScbKQn7oesrCx6eqLfGMwiZS0hK+0UJ8455xyOOOIInnnmGU466STuu+8+jj32WNdjAoFAQuVn+8IxxxzDP//5T7Kzszn++ONZvHgx3d3d3HbbbY7HqEhckc6YI3E/eeJS9PNyRF3x5jYxuVmSnH9BT1Qk7sLcuXN55JFHAHjttdeorKykpKSEiRMnsmbNGkA0kti6davr65SVlVFWVsabb74JEHlNgI0bNzJp0iS+973vsXDhwojvbqanp4cnnngCEMvuv/rVryZUftbMvHnzuO+++yITnnV1dXzpS1+itraWL774AoCHH36Yr33ta5HfwZ133slRRx1FVVUV+/btY/369Y7ZNd3d3bS3txMIBFSKoSItaYuxU/zvn58bFe6B9MWViLtw8803s3r1ambMmMGNN97IH/7wBwC+9a1vUVdXx9SpU7nrrrtcJ/kkDz74IFdeeSWzZs2KaXzxl7/8hWnTpjFr1iw++ugjzj///LhjCwsLWbVqFdOmTeOVV17hpptuAsSHwQMPPMDMmTOZOnUqf//73z2v45JLLmH8+PHMmDGDmTNn8uijj5KXl8eDDz7IGWecwXHHHUdGRgZLliwB4IgjjmDXrl0RK2jGjBlMnz7dsXOJjMILCgoi1pAScUU60dYR/f/0JeLhSLwgN9rhp2kgJzfdShz2049hGEOnHKVh9P9YCgsL+/X1zfR1LNu3bzcAo7q62nj88ccNwDjzzDOTdHWJod5jqUmqj+Wa30XLypZ+s9txPzmOdZt7DOZ2Gwef3W0ce5U47sX3kl6O1lFTVSSuSCpyUrOwsDDSdk5F4op0wjyx2dgsJi797J9visSVnaKIwVqLJJWRK10LCgqUiCvSErOIA7R22O9n3d/siQ/kqk0l4oqkIgU7Pz9feeKKtMScnQLeUXVMJJ7v75hkokRckVQ6OsQ7Ojc3V0XiirTEGol7irjMTskZnIlNJeKKpCIFOy8vT4m4Ii2xRuJeC3di7RSRtbW/deAaQygRV3jyyCOPcO2119qWBLCiRFyR7iQcidtMbA6kJ55yKzYVqcd5550HiJxxufzfCTs7xWvVqkKRSkh7pLJU5Il7ReKyk09JIZTI7JQBfMurSFzhmxUrVnjuoyJxRbrTHo6sq8rErVck/s4nwjrRvhRQKYaK1Gb16tWe+6iJTUW6IyNxKeJekfjbH4vbo6aqFENFCmJuKrF27dqISDuhInFFutOWQCS+dZdBcA+UFcGXxqvFPooUxLzQqKOjw7ZAlxmziGdnZxMIBAiFQr4mRRWKVEBmp4wU9dtcBVlG4UdOhYyMQMQTVymGipRh//79MY8bG90rApntlEAgoKJxRdphjcSb25zTBb8IitsZ4Rp4KhJXpBxWEfdqIG2OxAG1alMx6Pz+rwan/bCHzpB37rZhGJFIvKpU5nw77y9fMz/cRiBlUww1TbsVOBqoBS7SdT0Ufj4f+AtQAnQB5+i6vqt/LlUxGFjrtshSs06YI3FApRkqBp0rfy2E9snX4ezj3fftDIFhQHYWlBaJ59wmNjvDU0Y52ULwzZ19BqpFm2ckrmnaTKBG1/W5wDpgkWnzN4GPdF3/GvAQcHF/XKRi8FCRuGKosKfBex/zwp0iH3VQOkPiNiccDmdmBigc4BZtfuyUo4EXwvefA+aYtn0ByCZE5cDe5F2aIhWwRuKJiriKxBWpgh9RbTd16ZHWiL9IPPpcyQD74n7slHJAduBtBCpM2z4Hpmia9jGiJfRX7F5A07TLgMsAli5dyrx58wiFQgSDwV5feCoxlMeyefPmmO07duxwHWt9vVi+1traSjAYjDRk3rJlCxUVFY7H9QdD+e+Szgz8WEYDsH3XfoLB/a57btmdCYwkO6OL1uYGoJJ9jZ0Eg/vi9g2FQtQ3tACFtDY3EAwK1c7PqQKy+GLTLuhMTlZWTU2N4zY/It6A8LwBSoE607YLgDd1Xb9Z07RFwI+B71tfQNf15cDy8EMDIBgMul5YOjGUx5KdnR2zPTs723WsGRniy93o0aOpqamhpES8dYqLiwf8dzSU/y7pzMCPJdzUPLOImpoS1z2DjQZgUFWexYETqgCDjlCO7fUGg0Gyc4URMbKqjJoakZNYUdrDxh2QX1RNTU0KeOLASkBOB8wH3jJtCxC1UPYiRF4xhFATm4p0xtyVx0/udu1OcTtxVOwkpROhsJ2SbQqHIzXFU8UT13V9LbBL07Q3gKnAk5qm3Rfe/CiwQNO014CfAXf003UqBgk5sVlZWQmoiU3F4LJjr8EvHjaoa/JX6tVcVnZvg/f+m8O5dRNHm3K+3Txxy8QmDHyaoa8UQ13Xl1meujz8fCNwYrIvSpE6yEi8urqavXv3eoq4jMTVxKaiPzjzZoM3P4B3PoZ//Le3VWEuK7vHR+f62h3iw2FCdSAmEjcMg0Ag/ny2E5vhVI+BmthUi30UrshIvLq6GvAfiUs7RUbiSsQVyeDNcNWHZ97xt3+MiDd472+2U3KyA+RkQ3d3fI1xSSQSN4n4QEfiSsQVrkgRHzlyJKDsFMXgkpsjbnt6/O1vtlP8iLjZTgFR2AqgwaFXeSQSN3kaA11TXIm4whWznQLeIq4mNhX9iZw09EubScRb26G13dlLNwwjEolPEG93yovFraOI20biA9uiTYm4whWrneKVneIUiSsRVyQD6Tf7xWqDuEXj+xqhpU0sty8rFkIcicQd0sttI/EBrimuRFzhSqKeuNPEprJTFHas32K4RsdW+irispWaHVvCVoqMwsGHnRKOxLNtslPUxKYiJZB2SqKeuJrYVHjx3qcGh5xncOQS/yJeZLJTenq8j7OK+L4m531lPrj5g0LaKfUOkXjIJjtFWj4DVVNcibjCld6KuJrYVHjx3Cpx++FG/8eYJzSdhNVMIp3rQ+EV8tmZ0ed6NbGpUgwVqYQUbb+LfdTEpsIv+TmJH2PONnGzRiRWEXfzqe1WX/q1U1SKoSJlkeLrR8S7urro7u4mIyMjUvhK2SkKJ2QjhUQwi/LuBh/7d8Y+drM47ES8PDzB2dBsb92oSFyR0nR3d9PZKf4LiouLycrKoqurK/KcFfOkplzdpiY2FU6Yo9dQV+LL6HsTibvaKS6RuJN1YxuJp1rtFMXQIxQK+drP7G8HAgEKCsT3RKdo3DqpCSoSVzhjFmQnu8JKTCTeKzvF+cOiV3aKSjFUDDT33Xcf+fn5rFixwnNfKbxSiP2KuIy+zccqEVdYMQtsnUvWiJmYSLzBO3qP9MssE7eudorNxGZvFvtYW7T1N0rEhxlLliyhu7ubSy+91HPfREXcOqkJyk5ROGMWcT+ZJhAr4v6yU4SIVotS367RcZcU8UTsFJvoXbZoMwxoGYC3vRLxYcrevd6d9KSIS/FWkbgimbR3RqNUP5G4uRM9+Gu3Jj8oqsNNpZKZndLTI4pjAWRlxm6L+OIDMLmpRHyYUldX57lPMiNxJeJDn64uI6YJgxcxdoqPqLrDMp/uRyAjIh6OxN0mG+2zU8StnYhL+yUnm7gytQOZZqhEfJhRWuq/+ZJVxAsLxYyNtX7K7t27Of/883n99dcB+0hc2SlDG8MwmH2JwZTzDQzDn5An6om3W0TcVyQePiahSNwUVZeaInHruEJdQrjNk5qSgUwz9NUUQjF0qKyspLHRR3V8nCNxq4j/6le/4uGHH+bhhx8GVHbKcKSjM7rysqE5GsG6Yc7hFp163Js8JJIuaD1mZFkAMBK2U7KzAhTmG7S0ifOZl+TbLbmXDGT9FBWJDzPMUbKXmDuJuFWQrRHKoYceGnc+FYkPbcwTeNt2+zsm0YnNXkXiVk/cT3aKJbR18sU73SJxaacoEVckG7MAb9261de+Xp54VVVVzOP58+dH7qtIfHjQahLxrb0QcT+euBRxOYnYG0+8qSU+6JDYReLgPEkZsVNUJK4YSMwCvGXLFtd9/Yq4VaC/8Y1vRO5nZWWRkZFBd3e370VGivQjJhLf4++YRD1xuX9leFonEREvLRJdgbq64yN6iVw1mp1lP0lpPZ9deqFkIBf8KBEfZiQi4nJfLxG3WiVlZWWR+4FAQE1uDgNiI/FeTGwmEImPDEfViUxs5ueY2qY5iL/dxCbYi/jq9QYX3S48Gjs7RaUYKvoNswDv3LnTdV+/kbgU57KyMtauXRv3Ok4TooqhQ6tJkH1H4uZl9wmIeEUJBALiQ6DLo+ZKe/i68nK90/6kiMflfNuI+APPGHyxXai3vZ0iovmmAWjRpkR8GBEKhejq6oo8bmpy/w6bqJ3y85//nJkzZ8a9TlGRmBlSIj50aemjJ+6nWJQ5qpZL271WRMomEKWF3haH08SmnYjvMi2zGOwUQyXiwwir+PY2O8UpEjdnvpiRIi4bTCiGHq298MTN3rQfsZNRdX6uv4nD5laDPQ3CCx89wjtjxHFi0+Zc5jK4amJTMWBYxTdZkbgUcbmfFSXiQx9rJO5nwU9MJN7qfYyMxPNyYotMObFph7idOAoyMgKR6LjR4W3omZ1iOpe5gqJriqGa2FQkk95G4l61U+R+KhIfvpgj8dZ2Z6E0YxZxwxCd5t1oN4m4n0hXivgBo8VtqbRTEo7EA+FzRT9kYkTcLRIfgMxaJeLDiP6OxL1E/MQTT2TatGm2k5+K9KbV4k0nkv4nV3d6HWO2U/xE4hu3i9tJYRH3qg1uV4oW4j8wOkNGzGuoFEPFgCHFV9ZASbYn7mSnFBdH12B//PHHZGSot12q8/lWgwee9l8HxTrB6DXh2NVl0NUNGRki2wS8o9a2BCPxjTvEtR8wWkTSniLu0xPf0xC73TbFUHniiv5Aiu+oUaOA5GeneEXiEnMeuSI1OWKJwSW/NHjgGX/7t3bEir2XiEcyTXxOUkLv7ZRJY8RtWVG4X+b+BFdsWs5l7SgU6iIO6Yl/uhmOu7rH+SKTgBLxYYQU39GjxffLgc5OkSRSSVExOMhaJn9/02ck3ub+2Iq0UvJz/C+MkfXH83MDCdkp0hMv8+jS41vEG2K3N9pYJhUl0XzzV9Z457P3BSXiwwgpviNHjiQQCNDS0kK3rGpvQ7KzU0Cs4DTbK4rURgqhF+bFPuAjEpeLcHxG1XHH+BD+YLjvyfhqcetmp7R3GN4iHv7AsEbidiJemB/gmVujy/ev/LXB0l/3sMdHS7lEUSI+jJDiW1RUFBFSN0vFqZ54X+yU0tJS5YmnEX5FPC4S9yniidgpcnthPhSFj2lucxbFdpNlA9HsFKvobtxuULHA4EVdPLZObEaifgc7xSkT54SvBKgJ14a7/2m4+6/RnpzJxFc9cU3TbgWOBmqBi3RdD5m2fRu4DPGB8ANd199O/mUqkoEU34KCAkpKSmhqaqKpqYny8nLb/fsjEld+eHpQWiTEqb0TursNMjPda33LSLwoX1gcvu2UBEQ8GF5ENGYENLeK+uBux1gja6dI/MMNsemOTpF4Q7Ooe767PvaDwy4Sjxwb/peQ88PmeuTJwjMk0jRtJlCj6/pcYB2wyLRtDLAQOE7X9a8rAU9tzCIufWk3X7w/PHEl4umBORrd4CMalymGsjiVVyTe3ouJTbmcf9xI7zzsnh6DnvB8ovSmnUTceq1OIr5tD1SeYrD6s9jtriJeEL0fCECh/b9In/DzvfZo4IXw/eeAOaZtJwIdwIuapj2saVqR9WBF6mCNxCExO8Xc4KGnJzrjrkR86GH2uD/e5L2/FMKqstjHTpgj8Uh1QRdrBKLL+ceOjLZN87P6Uva/dJrY9BRx0xdMw4CXV4v7k0aLk1xzhvM1m0W8uECsHE02fuyUciCcrEMjUGHaVg1UAvOAK4ClwH9bX0DTtMsQlgtLly5l3rx5hEIhgsFgHy49dUiXsezatQuArq6uSAu1jRs3csABB0T2MY9FrrBsaGiI+Nj5+fm0tbWxYcMGCgoKInXCMzIy2L17d1zDWIitN56bmztgv6t0+bv4YSDHYhjQ2j468njT1nqCQXd/pHF/JZBNSV47kMeO3U0Eg/YKGwqF2Lp9H1BBwGinJ9QJlLBjdzPBoH05w5b2AA3No8jNNuho3kGoPReoYNe+doLBetv9YRRZmT0Eg0K+RP3v0TTsN9i2LYh8q27fVQBEM6bq9u0mGIzmDQorJPr7kPzkvDrKSzKYcUAIpz9NdkY5IIKborzuyLUkSk1NjeM2PyLeAITT8SkF6izbXtV13dA07WXgR3YvoOv6cmB5+KEBEAwGXS8snUiXsWRmiu+Vo0aNYuTIkQBkZ2fHXHswGOTDDz+ksrIyEmFPmjQpMqlZWFhIW1sbZWVlVFVVRSoT5uXlMXbsWNvzTpo0KXJ/9OjRA/a7Spe/ix8GcixtHQbhf1MA8grKqampcD4A6OwW38zGjxaClZldTE2NfSppMBikKzACMBhXncfY0fmAgZFRRE1Nie0x6zaLaxo7MsDYsTUcWC8ed3Tn2f5e6veL7TnZGTHb83N7aOsIUD5iDIX5QsWzc2PHO3bMSGpqrMFIfK53ZWkGJx0z0vZ6JVUV0ePKSzL75W/ox05ZCRwfvj8feMu07S1gVvj+LGBjsi5MkXz8eOL19fV885vf5PDDD6ejo4Nx48ZFvHB5rHytnp4e/u///g9wtlJA2SnphnUJvbVBsdsxfu0Umf5XU+Vd5xuiVsq4sGb6tlMsmSZ2vnhLe6yNY7eM3o7iAu9FPGY7paTAeb++4Cniuq6vBXZpmvYGMBV4UtO0+8LbPgC2apr2GnAR8Lv+uUxFMjB36nHyxOvrY7+aLl68OMYiMYv4T3/6U84///zIazphTTFUpDa9EnHZVb5cvFe8slOCe4Rw1lQGfE1syknNseGUPad0QYlM5fPT9Nh6rX5FvKTAO+fb7Kf3R2YK+Ewx1HV9meWpy03bfpjUK1L0G9LjLioqcozErY0bLrzwwpjHZhG/5ZZbIs+rSHzoYO64Ix4bgPuEXKITm3aRuFvtFMdI3KNLj7XCoJ2IWxcq2Yn407cGOOtmI0bw/UXiIhUS+k/E1aqLYYQU6MLCQsdI3Czi99xzT8ykJ8TbKRI3EZd+OqhIPB2wRuLtHpF4d7dBR6dIoRsRtrS9+l9KER9b5W/1pezbObZKfJgU5YviWS1t9kvanSoS+onEre3ZAE4+KsDdV0c/yHKyIdemBK2VInMkPlh2imLoYBZxuWJz//79tvuceOKJLFmyJO41pIh//vnnMc/n5OQ4njc7O/pud7NdFP1DW4fBIy8Y4ck+b+LsFIfu8BIZdRfmRfOgPSPxcGRdU+kvT7wuHGvITveBQMC1U4/TEvpImqHpbe+VYhg51pRAXeozqo7xxFUkrugrUqDNy+6tIi7TAa1FqyRSxF9++eWY5/fs8deTKyvLp+GoSBo//h+D824xWPRjnyJuiby9PPGd4Xy1URViSTy4e+IdIVHONTNTLA7yI+LS4zZHv26Tm04iLoXfbMPEibhNJG4+H/RSxFUkrugr0hP3E4l7ifjKlStjnt+2bZuva5BpjoqB4+nwOupX1vjbP9GJze1ha2T0CH+R+K568R4YXQGZmf4mNu2aGLtNbibSL9PvxGZMJO5zWaNZxEuLkr/QB5SIpzWGYfDuu+961gWXJGKnOIm49NL9irbk0ksvZeLEiZxwwgkJHafoO8UJRoAyEpdi1u5hp0gRH1PpT8R31gnZkcWhCvKEv93e6Vyy1U6U3US80ykSL4xvteZnYtN8Put9N1QkrnDlhRde4Mgjj2TevHm+9vcj4uZKh3bIicmuLptK+C4sX76cDRs2xExyKgaGogSnIWQkLicp/UbiYyr92SkyEq+pFI8DgWh9cKcMFWmn5CRop1i77thNolqv1WlpfJmpgrLyxBVJ4dVXXwVg1apVnvv29PRERLygoKDPkbhk8eLFAFx55ZWe16BK0A4OiYq4FO0RpbGPndi+T0S1Y0YEfEXiTa1CJMtNouhlqdhlm/TFTjFPhnpNwkpKYqwRf8coEVe4Yl0u74a5mFVmZqZjB/pERfy8886jtraW3/72t4ldvKJXGIbBf/3J4PlV/psLmEW8p8f7OGkvVIRF1is7xRyJ52SLCctQF4QcrJHOLiHi5klKrzRD20hcingiE5uF8efxK+Jm/17ZKYqkYM7pfuedd3ztK+2M3kbi1jzvkpISJkyYoKLsAeLtj+CHyw1OvN6/iJvS+R1bk5mRdkpFL+yUQMAUjTtaI2ERN2Wlekbidp64y4Ifp2X31vMYhuFbxCEq3r4j8QFYsan+89IYswC//bZ7KXeriOfm5pKVlUUoFKKjI/pfKj1xJ+/aGolbHyv6Fz8ibMUswtauNHa0hmuJSE/cc2Jzn7gdE/a4vSwVKbAxkbiHiHfaeNyl4UnKhmaXxT4e2SmhLnDpUBiHFG95bi9yc6KLh1QkrojDLOJr1rjnj5mX3ENsr0vz6/QmElcMHHmm6NUw/EXjZjvEl4gn4IkbhhGTYgjegtxhZ6d4FMFKNBJ3qp1iXSCUSBQO0TRDv1F1IBDgwBqxf2VZYufyixLxNMYsvvv27XPd1xqJg72l4pWdoiLxwaXbZI14FZmSmPO+rZ3a3fYfUSLE1k3EG5vF9uICWSfER1QdtlNysqPRbMSrdhiTa4qhW3aKZWm89dr8/g4lcjK2PIH2N6/9JsC/HgiQn9s/eeJq+VwaYxZftzZrkDwRN0fiGRkZMWVqFf2P2dqo3x9tGOxGwnaKnNj04YnvsyyHB//WSEITm7Z2iri19cQdaqfEiXiCkfjVZwQoLTSYdzjsb/B3zKgR/SPeEiXiaUwiIm61U8BexBPJTikpKbHt5KPoP8yCWt8M46oTO0Y0+XX/m0VSDE2euGEYtn9ru+Xw3oLsbKckfWLTJcXQMIyEI/HjDgtw3GHhBUMNiR3bXyg7JY0xi29TU5OrR+onEn/sscfYsGED4F/EFQOLNRL3Q4wn3uC9v7RTivKjdkSHw+Sm3QSitEbsClOBU3ZK/ErK2GPEbV9TDHOyA+TmiMnM9s741ZrpiBLxNMac493T0xOX823GS8Rff/11zjnnnMg2JxHPzc2N9OdUIj7wmKPqBr8ibjqmzkeFBllGtiBPNDIG51xxO3HtTaaJ78U+faydArHfFKSdcugEcXviEfbnT2WUiKcx1hxvtxoqXiL+5z//OWZ/t+Xx0hdXIj7wxETiPtMNzRObfrr0BE3ZJjIbxuk4O7H0O7GZSJ545MPCb3aKQ564+VxNLdGJzcnjYP9zAZ65Nf3sQSXiaYwU8REjRG6Xmy/u5ok3NjZGemVKzDXArUjxVg0eBp4YT7wXdoqXfdDVZcQ0bMj3EHE7sfS0RhL0xLu7DQxDNJ3IzIyKbFG+eM7cGMIwDM64qYcfLhePrdkpELtq01wLvagg4Fg3JZVRIp7GSBGXXebdRNwtEn/11VfZtWuX7/OqSHzwaO+MCqOfJg+hLiNmMYvXRN6OfcIvHj0CcnMCETvFacGPXSqfW7MGcMhOcWnR5mSNZGQE4vz3uiZ44rXoPtlZ8aIsz/XbJ41Ic4r+Wk05EKjslDSls7OTzs5OMjMzGTlSNB7srYjLLj0zZ87k/fffZ/r06a7nluKtRHzgifHEfdgp1gjaKxLfEm5IPD6c9RLxxJ0icZtFNb2yU1wyWuw8dElpoZjYbGwWKZEbLCWE3Dzxh/4Jsv9louV6UwkViacpMgovLi52bHpsxtwQQiJFfMeOHQBMmTKFd999l9dee8313CoSTx6GYdDd7b8OSqLZKXEi7pEXvXmnuJUi7tcTT2SSUtopfo9xm6S0Tm5+YRVxG0/cLuouKUg/G0WiRDzFOOecczjllFM8l1QnKuJ2+d9ShOVxRUVF1NTUUFFR4XpuFYknj1N/YHDg2QYdnYkvofcj4lK0ZUMlz0g87KqND3eV94rEXVMMHZbQ2+aWu4i4XQaMxDq5uWF77HY74d9hs7hZ2SmKpLB161Yee+wxAOrr613FNBER37p1Kx9//DFgH4lLnNIKrVRXizCtqqrK1/4KZ54Od7n7cCNoh3jvn3AkHt5/RIlYrenliW8Jd5UfXy0i017ZKV4NHrqcs1Nsmx47rL6E+FzxL7bFfhjaibjdB4UScUVSeP311yP3m5qakiLin332GV//+tfZsWMHeXl5HHJIVCmskbRfEb/qqquoqqqKyStX9A2nqNVKbz1xKeK+I3GLJ+45sdkLO8UciZszRqyrQ10jcS87xUbh7rkuwJFLYsW+vyoMDgTKTkkhzF601zJ6vyJ+6aWXsmPHDubOncvHH3/MwQcfHNnWWxGvqalh2bJlKsWwj5gtM7tcZzt664mXF4t0vM6Qcx9LgK3hic1x0k6RnrjTYp9e5YmLW7MoZ2eJTJienthvC93dBtv2xJ9DYm3RZrVT7CZDj5gS4P0HYz3wdI7ElYinENZI3A2/Ii4zTx5++GEmTZoUs623dooiOUgxA9jr/pkdwRyJN/uo+yE98fzcaJ1vt0498jVlydUCjwYPtimGnp54fCQO9iswF91k8I2rwjnfHhObza0Gu+pit/vpXA8qO0WRBJqamvjiiy8ij5MVicv9ysvL47b1NhJXJAdzVO2nuqD1GD+rL+U+BblRQXbLULF63G5L22P2j1nsI273t9nXPLezU8Be/P/2RvS+fXZKIHx9BnU230z8iriyUxR9ZufOnTGPvSLx+nrxX19eXu4o4uZ6KnYCrUR8cIkVcZ/ZKSbh7up27mMZ2T98jvxcIeTgXn7VOolYWhQWSZvuOeb9rdaIuciUlchin5zY570+MLzsFDv7xknE5WpPibJTFH3GKuJekbgfETcLuF0PzMLCwpgJJCXifeOV1QYLvt/Djr3+BDlGxBv8ncMqil7RuNye7zMSt+Zkl1lS+Lz2l7gu3gnF54lDVJBlJG5t6uxpp9hYPk4inpERiGl2rERc0Wesy94TicTLysoAaGhosH0Np3xuc4s2UCLeV467xuCZt+Gq3/VCxH3aKYku3umriEuhc8qE6QwZMftLnHzxnh6DULfs7GM5JmxpyA+MfZZ/AbdIPLjXIRK3SUuUyA+oQCA6X5COKBFPEfoSiTuJuNk3d8Is8ErEk8OmHf7264snLgXNKxK3m9h0SzO0TlS6VQoEk51iqVHilKFifn1rkwnruayLcuxSDKcdIBYyvfkBkaJXXsdIyoqj15qOha8kvkRc07RbNU17Q9O0hzVNi/u1aJp2o6ZpevIvb/ggI/HKStEyvLd2Sk9PtAmjjMSViA8szQ6pdVbMIr7HZ3aKPEa2TvPK+97fJoStoJeeuIxWnSPx8P4eXeUlHTarNSWllujdKuJ2UfWEUQH+3/eFAL+3LvbcdtdlRo4tnTNTwIeIa5o2E6jRdX0usA5YZNleDLhXTFJ4IkV88uTJQGJ2SlZWFsXFxRiGEVNjXN53Wx6v7JTk47dvY4yIN8R7wHbIyLuiOPaxE+u3iNuDxgY87RRRx0Xcl8v03brngP1iH3CuZOgm4iURf1v8HvxE4gBf/3Ls4zGV0ft+7JR0zkwBf5H40cAL4fvPAXMs268C7krmRQ1HpJ0iRTyRSByIWCryeVCR+GDRGxHv6fHuumMYRuQY2XXdyxP/aJO4nXaAtydu9sOl1eEZiXv0sjRH4is/NKg53bnOt0wXlJH4Tmsk7hBVl1ve3qNHeB8DJhFP40lN8LfsvhyQLl8jEFkLrmlaKTBd1/VbNE1zfAFN0y4DLgNYunQp8+bNIxQKEQwGHY9JJ5Ixlq1btwLRuiR79uxxfc19+8Q7vL29nWAwGBHgzz77LNLQYcsWEYZlZWU5vpbcNxAIUFdXR1dXl/q79JrRALS0Gb7OG9yRi+nfiY8+283BNV22+4ZCITbWbgdGk5NlkJ3RCeSydfteglX2q3c6u2D9llEEAlCavROjqxgoZPuuBoLBeM+ntT0AjCIrs4dgcEd4LOK5hubocxLDgIbGUqCA5uZ6gsFoekiGIZ7fsj36/CPPFxPqEu/TrIwugrKYd5juznygjB27WwkGG/l8SwkQVdhQp3jeimFAZsYounvCHzwFbYBIj6mr200waP87zaIYKCI3s4NgsM52HzcG8v1VU1PjuM2PiDcAMlwrBcyjvRr4ndcL6Lq+HFgefmgABINB1wtLJ5Ixlro68WuVH4bt7e2Or2kYRiRSnzJlCnl5eVRVVfHpp5+Sk5MTOS4z/J24urra8bVkLfKioiLGjh2r/i59QsxHdIQCvs5buM5A1rMGKCoZSU2N/QRbMBikrGQMYJCfF6CsRBjcBUWVjsd8tNGgq9vgwBo4+MAxjBwhri87t4yamvjFX6LJhEFOdkbk+g3DICPDoK0jg5HVYyJNFppaDGZeaFAbno+vriqnpib6gTSqSpwrKyf6fH1rdL6mIC8r7nc0caw4f8gooKamiP0dPTHby0rE83ZUlPSwp0HcP2hcfuT5sWOcf6c11eL1qypye/U+SZX/FT92ykrg+PD9+cBbpm0HAT/SNO054GBN0/4jydc3LDAMIyFPvLW1lVAoRF5eHnl54juynZ3ixxOX25SV0ncK8733MWPN+fabLpiXE7VG3Dxxs5UCJjvFq1+myUcOBAK2vvhjLxERcOsxYPbEox9SW0xZtNaFPmCa2Ax/SYib2HQJOc2WypjKqGjb5ZZLysILmYb8xKau62uBXZqmvQFMBZ7UNO2+8Lbv6Lp+oq7rJwKf67r+83692jRD13WWLVtGa6t7ukJDQwOdnZ0UFRUxatQowN0Tt/rh5vsyzfDvf/87v/zlLwF/nrgS8b5jzjX2qgcPNiLuMUkp98/PiRamcjvm403iGqIiLkSrtd1h9aWDv223ktK6sMbqcUf7bEafM4u4nbiWWD4s9ln+BdwE2Szi1aYvGTZr3CIcr4kGyQu/mr7pheCzFK2u68ssT11us4+zKT5MOfzwwwEYNWoU1113neN+mzaJkGnChAmRdMGmpqa4kpwSOxE3R+KGYXDaaadFtvnJTlEi3nfMut3YHM1DdiLh1Zfh/c2RuFv0LidKR1WI95BMMfSMxC2qUFYM7Iyd3LRO3npNbJobMIO9uMoPi/fWwQNPG3GTqW6ReIXpd22OrLu64/eVTJsUYP0j6S3goOqJDwi7d+923S4LXx188MHk5uaSk5NDZ2cn7e3t5OfHf0eX0badiDc0NETarUlUJD4wmEV5b2PiIp7I6kuvZg0QX6PEb0VCx0jcJKrWaN5JxGWmyfZ9IgNHYldGt9T0Frzkl/HfFvzaKcUF8P1zRG3xSWOcjxkqKBHvJ8yetl1zB8MwePHFF5k8eXJExA866CBA9LDcs2cPTU1NtiLuZaesX78+Zn/liQ8MZlHe1yQmjPzuD952yvZwJFtdYY6qDcA+mozU7Q7/l3ut2HTqoGNXP8UqwnF54qYmDxBrpYB96V27fO3srOiHi5tDZRbxonz47yXDZzG6EvF+4tNPP43cl4WozKxcuZL58+fHPCdFvKysjD179lBfXx9JOQRYsWIFP/7xj/nqV78KONspVhF3i8Q1TaO4uJhjjjnG58gUdnR3GxGxgXg/1452S19Nr0h8Y7jhwQGjIT83ABi+InHpV/emNjjY10/ZZSkT4FgAK3yuzTtjt9vlxNtNDJcVEck6ceouBNEVrJD+E5WJokS8n/jkk08i9601TQC2b98e95wU8REjRvD5559HcsEl5513Hlu3bmXFihWAs51iFXG7CoaSyZMnU1dXR1aWeiv0BbkSUWIt3mSHFKXcHOjo9I7EN+0Qoj9pdCBikfipDS6j5KKwSDotRnK0UyzdcyBexK2RuNUT3+LuKAIiE+bWJfD9e6MfbmYRt/6OzZQXiw8187mHC8PnO8cAYxZxu0wTu+hctk4bMUIsObOKeFdX7KKF2bNnR+672SlTpkxxvVYl4H0nTsR9ReLitiKy+tI9oyU2Ehf3E4nEpZ3i1BHIcWIzsmozen1eHXSsVQx37PNX2fGGcwJcfHL8ucE9ErfaKcMJJeL9hFck3tISXxZu7NixQNRDt4r4rFmzYh7Pmzcvct/OTnnnnXfYvHlzJG1R0X+0W8TUz9L7RJfQy+qIk8Z4Z5pAfC9Lr0i80yZPHMzdc6LPxUXicSmG4lZG4lLM539F3F59hvN1V5pat5rF2U3EzWKfzmVle4MS8X7CbyQ+d+5cQKyclLaHUyRutUXGjIlOvctIfN++fdTW1gJC9MePH9+XYSh8Ep8u6D9PXPq5br0vDQM2mkQ8oUjcYqf0NhKXIt7SZsR94DimGLbFHnvpggDv/m4Xv7rSObVvRGl0m1mcO1x+P+aCWpmZ6Z82mAhKxPuB1tZWNm/eHHnsFokff/zxvP7667z99tuRbU4i3tYW/e8766yzYrbJY3bu3ElPTw9lZWXk5ub2bSAK3ySaaWI+psJHJL63MYPWdhGZlhZ5VySE+Ei8sJciLj3xhnBGijUKh/joPS9HVELs6BSNI2QkXlIINZU9rvW7zZG4XzvFLf1wqKNEvB9Yv349hmFERNQtEi8sLOSYY46J6UQvBVnWU5HIlZ/nnHMO999/f8y2goKCyBJ882soBoZEc77Nx/ipDb5lj1BJmfcsV2y6Re9OkXiv88TDQmz1wyHeTgkEApGUwcdeih5rbonmhFXE/+M74v5/nO8s/EdMEdfwtVnerz/UUCLeD8j0wiOPPBKwF3EZidvlZztF4lLEly1bZps2KBtKmF9DMTBYJzb9dKJPJBKvaxL/qqPCSw4SabUmBTY/V7Qia+8UKZFO+zvlicsUQ79d5aWlsvi/DFaH59pL49/ucYwwpQuWFwe45dIMWl4IMGe6s4gXFwRofDbAK3cOLysFlIj3C3Yibu64A7GRuBUvES8osM+hUiI+ePTJTimRNU2c9+0INxfOC0fgvjxxS9edQCAQmfSzm9yMLPZxSjEMR9N2vSzt6prYXZufBgyVZdH7ctWrrPviRl5uIK3brPUWJeL9gBTxadOmUVhYiGEYcSmFvYnEpSdut4rTfJz1vqL/6W87xSrivrJTbLruuE1uek5sht/Ctg2JbURc5nebSTQSL/Ox/3BHiXg/sHHjRkAspHFqYuwWiTulGCYSidst9Vf0H1KQpUj6slMsrdbcI3Fxa43EE5nYNF+fm4i7rdg0DMO3iGuHxD7OzIxetxvDOV2wNygR7wekYFdUVMQ0MTbjNxI3lzT1EnEViQ8ecTnfCdgpfo6RkXiuZQl9opF4ocPk5gurDJY/Jd5rVk88NydAXo6oCNjWEY3ER5niBDs75Yn/DHDa3Ojj0sL4Dvd2mFMELS6kwgYl4v2AFOzS0tJeReIFBQXk5ubS0dEREe7u7m46OsR/rDkLxYzyxAePDqs10gs7xd3fjrVTCk0Tm04NlhOJxC/5pcG74aUNdlF1qWlys7lNnK/aJOKZmfHHTBgV4IqFUUHuTUPiyeMSP2a4oUQ8yRiGEalgWFJS0qtIPBAIxKUZSj+8oKDAMZpRkfjgYY2qE8pO8SH8EU88bEdkZgYoLhCLgJriF/8CiXniZv/aVsRN5WhlJG5OBXR6T1aVmV4jAX/780cDvHhHgEMnDr+JykRRIp5k2tra6OrqIjc3l9zcXEcRd4vEId4X95rUBBWJDyYREQ8LlZed0tNjRIRUiqGrnSJrg2dHRc2u444Zu0jcLjsl1GXETMzaibh51aadiDsRI+IJdJU/aGyA4zUl4H5QIp5kzFE4RMV47969Mfu5ReIQ327Nyw8HFYkPJolE1QC764XHXFkq8qkzMoTodnXZWyMdnbF2CsTnb5sxDMM228QuErdOVLpF4g0OkbgTZhEfbtUFB4phvFi1fzD74RCtb2IuPdvd3e0ZWVu9dD8irrJTBo9E6qAAbA2XZh07UlgRBbkiMm/rhGKb/0rrxCbYl4iVmAXcbHVERNwk3FY7xjqxCdF87UU3GZHtfkQ8NydaItZH21FFL1CReJKxRuI1NTUAbNu2LbKPFOTCwkLHWt/mSPx//ud/IuVk/Yq4isQHlo6QUKjSwgCBgJjotFsVKdm2R9yOqxK3Xiswpb9tjsTd7BQ7KwVM2Smm8zTFReLxNoY8V0tbNPI/cqrYL8tG9O2QY1AkFxWJJxlrJC7LywaDwcg+Xn44RCPxlStXxtRJcfPEq6qqyMzMJC8vT7VbG2BkJJ6XI3KhW9vF5GaRw2euORIH0+IdBxFP1E6xm9QEKMoXkbHIMInvSA/uS+jNTKiGLf8b8G2TuFUhVPQeJeI+MAyDtWvX0t3dzezZs1075chIXIq4jMTNIi79cDcRl5G4XaErJwoKCvjDH/7gmsGi6B/MIl4gRbzTWcS37RFR+riR4U70HnnfETvFHIm72ClOkbhdTfE4O8VGFTZuj3+uKB/GVft/n6lIvH9QdooP7r//fmbPns3hhx/Obbfd5rqvjMTt7BS5cMdrUhOikbgVNxEHOPfcc/m3f/s3130UyccaiYP75GYkEg/bKV7HdHb5j8SbWgyeCVc2tvrbdt194iJxG3vku6fFi7XfCFx2+Zky0d/+isRQkbgP3n///cj9VatWue5rjcRLSkooKiqiubmZ+vp6AoEA11xzDeAvErfiJeKKwSEmEvdRYTDiiYftFGsnHKfXj5nYLBTWSGNLbMf7U39g8Ppacd8pEjeLuNUTtx4DcMJXAtQ9A6NOMyJRvt82aO/cE+D+pw3+4zvq22F/oCJxH+zcGW3VLeuiOGGNxCHqi69bt4558+bx6quvxjxvh1Mk7uaJKwYPuYw9Pzfqb7st+LFG4pHu8A4ibi2ABc6RuBRwsPPEY68X/NkpIMrCmlddZtlMgNpx6MQAdyzNiOnYo0geKhL3wa5duyL3N27ciGEYMZ6zYRh8+9vfJhAIROwTGYmDsFTWrVvHbbfdxurVqxk7diw33HADZ5zh3GjQLOIykgcIhVxafisGjdrw5/z4apM14iDiPT0GwXAkHhFxSzszK3Z2irVErB1O2SnmDws/E5uS4gLY66MJtGLgUCLuA7OINzU1UV9fH5OHvW/fPv785z8DsHDhQiA2EpfCvnLlSgAuu+wy/v3f/931nGY7ZdSoUXzxxRcA7Nmzpy9DUfQDhmGwITzxd2CNt53S0i4W+hTmixrYEBVxpyX0MjvFbKdYS8Ta4djAOCYSj02FtPPErccrUgdlp/hA2ikTJkwA4i2VTZs2Re7LXpnWSBxg927xHXrkyJGe5zRH4uZu9fI1FKnDrjphT1SUCMvBy06RnrJZkOXkn5OdEskTN5VyNa+ilFiLYVntFHMNFEl8nrj9NZivU5E6KBH3oKWlhebmZnJycpg1axYQL+KyuzxERdYuEpdUV1d7ntcciVdXV0e8cD/HKgaWL8LZoweG+196pQtG0v9MYllcIHO2HZbd23jidnbKvqbY45xqg5uPSchOUVMyKYcScQ+klTJq1CgOPPBAwD0Sl9hF4hI/kbg5/bCiooJ33nmHs846i9///vf+L14xIGwIi/hB4Xlqr3RB2QbNLLCeE5sudoo5Et8Z20ckPhK3EX6/E5sAo9RC4JRDeeIeSBGvrq6OdKT3I+JukbgfETdPnObl5TFjxgwef/xx/xeuGDC+CIro+aDwn9mvnRIbiYtbq7Uh6bCb2LSxRnbVxx5njcTzc8Uy+Y5O6Og0yM0JxE2muon4LZcEWL3e4NozVaZJqqBE3ANzJD5unKhQby5mBbF2CggBNtsevRFxM7m5PnpaKQaNqJ3ib/Vlp011QS9PvMPGRy/IE4LcbhLknXWxx1kj8UAgQGmRwb5GEY2PzImPxDNdvp+PqQzw/oNKwFMJXyKuadqtwNFALXCRruuh8POnAD8CQsBqXdev6qfrHDTkpGZ1dXVEfM2Ti4ZhRCLxnJwcOjs7ufHGG2OE2nw/IyOD4uLihK5BiXhqIxfujA9/bstIvKU9dhGOxG5JvNdiH7vaKXaCHGen2CzcKS1EHNMMI8vjRbxTZbGmFZ6euKZpM4EaXdfnAuuARabN7wNzdF3/KjBS0zStfy5zYHn88cf51re+RVtbW0wkLsXYnHK4adMmmpubqays5B//+AcPPvggP//5z2NeLysr+lnZ09Pju67JFVdcQUZGBpdeemlfh6ToR2RhJxmBlxTaF5aSJGqndHUZ9BgBMjPjF9hY0wx31lnSBd269ITF22qn+OlKpEgd/ETiRwMvhO8/B1wIPAag6/oW036dwJBoa3r22WcDcO+99/Luu+8CMGnSpIhFsnv37siCn3feeQeAI488kvnz5yf1Ou6++27uuOMOx56aitTAanVIa8SzbZrPSNxuyb3EmmZo9cTtKgeaJzcNw4i7TnORLUXq40fEy4Ed4fuNQFy3AU3TDgdG6rq+xu4FNE27DLgMYOnSpcybN49QKBRT2S8VeeONN3jppZfIyMhg9uzZNDQ0kJ+fT1tbG5999hlFRUW8+OKLAEyZMsV1PBkZGfSEW3en8rjT4e/il4EaS2tbFZBFfd1ugsEuutrzgHJ27W0jGGyI23/7jhxgBEZ3B8GgMLFb92cCI2nY30UwGLugq64pAIwiJ6uHYHBHzLb87Aoglw2b9zKmpJOtO8uB6Id+XWM7wWCssudmin02bqljQnk7oa7R5GYb3HppI29/ksOUMY30569tqLzHBnIc1nk1M35EvAGQqRalQMzUiaZpY4E7AcfSebquLweWhx8aIITM7cJSgb/+9a8AHHvsscycORMQ3nhtbS2ZmZnU1NTw0UcfATB//nz3X3RWFp2dIixK5XGnw9/FLwM1lm5DfDiPHzuSmpoAE8cZgEHIyKemJn51TMk2sb24KDdyfXlF4rmW9qz4a84R2wryMuInySvEubPyKqmpCdDZHftluIe8+HUKI8LH5FaQXwxgUF4c4KpvVyAmtfq3Fv1QeY+lyjj85ImvBI4P358PvCU3aJpWDDwOXK7retosJXzyySe54447+OSTT+K2GTY9pL71rW9F7pstlZaWFtauXUtGRgaHH3646znPP/98AE4//fS+XLoiBbE2YCjxWELv5onvb4t9D+6uN/jGVeKxrZ1i8cStnrpdhoz5GGnDlCc2165IITxFXNf1tcAuTdPeAKYCT2qadl9489XAAcBdmqa9pmna1/rrQpPF2rVrWbRoEddddx1nnnlm3HbZ+9LM174WHZY5Q+WJJ56gq6uLWbNmeWac/PrXv+bBBx/kgQce6OMIFKmG9J2llxzxxD2W0Js98ZzsADnZ0N1NTOf5mx80+Dzc2S/Pxqu2Lvixeup2C47Mnevr98c+p0g/fKUY6rq+zPLU5eHnfwb8LNkX1Z+YF+p8+umntLW1xZR3lY2JJcXFxRxyyCGRxzIS37VrF3/84x+B6ESoG0VFRSxevLgPV65IVeIica+JTYeuOyXhCoFNLdFVn+Yvhu6ZJiKd0XpOOxE31yGv3y+yXVQknr4Mu2X35vTAnp4e1q9fH7O9vj52EmjixIlkZkbLuslIfNWqVaxcuZKioiJOPfXUfrxiRaoTyU4JR8peqy+d+l/aZaiYo2+7FmllRUKEG5vDmSYJ2ClPvQVvfSg+JZSIpy/DTsTNDR6AOF/cGolXVVXFPJYiLlMLZ8+e7dqhRzG0MQwjzuOWdVCaWuznWJwicTsRNxe0arapNV5qslNa26GnR+Sr/+lHAbKz4A8/dO5c/0UQbn1U3Fcinr4MOxGXkbisB24VcWskvmTJkpjH0k6Rx40ePbpfrlORHnR1C8sjMxMyM4VgZmUFKMgTz7fYCK/dxCY4iLhHAwazvy2tlOICOPeEAG0vBjhecxZxu9dRpB/DTsRlJP6Nb3wDcI7ETzrpJN5666247jvWlCJzrW/F8MNJkEtcLBW7iU3zMU6lZe9Y6izIDc3Rc8nXkR8qVuxqgpcXq3oo6cqwE3EZiR977LEAfPzxxzHbpYhPnDiRo48+Ou542RhCoiLx4Y1dYSpwn9x0Ev6ysKVhLi0rI/HXbt/NNTaVA82RuIzgvRo3jLYpJ6vslPRl2Im4jMSlQG/ZsiXGt5R2ilO3+TFjxsTUQlGR+PDGMdPETcQdIvHysCDLtD+IRuLlxfbNIqQnvvZzuPVRsY+5mbEdE0YFePGOAF8+OPqcslPSl2El4oZhRCLxAw88kLy8PNrb22ltjX7nlZG4U7f5rKysSElaUJH4cMcxEnezU0JCbHMsxazKLZF4d7cRuV9aaF+WyCy+T7wmbv30wTxeC3C8qVydisTTl2El4s3NzbS1tVFQUEBRUREjRojvlfv2Ret3eok4CKtFokR8eNOXSNya9y196fr9RvhWTI6WFYm64XbYWSd++2COHxn9EFEinr4MKxE31wYPBAJUVlYCsHfv3sg+XnYKxPriyk4Z3vQmEg852CllFjtFWikjSnEkOyveJ/eyUyTjTe1alZ2SvqS9iL/77rvceuutPPXUU577mmuDA3EibhhGJFvFmh9uxizcMppXDE86ehOJO0xsymg4IuLhSc0RJSSE70jcJOIqEk9f0ro9m2EYLFiwICLCtbW1cdkjZmRHHrlgx2qnrFy5kvXr11NdXc1RRx3l+DrmZfoZGWn/OajoA50JZqfU7jDYEXbv4iY2LZ54JBL3EPH7bwjwi4cNNu2Q5/aXLjjO1CXQj4+uSE3SWsR37NgRY4W8//77vkRcRtnWSHz5clEt96KLLiI726ZkXBhzLRXF8KbDMU9c1CfZ3xpt0VbXZHDAWdEsE89I3IedAnDJggBHTYVpF4jXLs53318yojTAjy8wKMoP+O42pUg90jqM/Pzzz2MeW3O+rezZI4rt24l4fX09f/nLXwC4+OKLXV9n0aJF/PSnP2XFihW9um7F0CESiVsqDMrUv3pTzvcHG2L3cYrEpYjX+YzEASaapmaKEoiq//PiDG44Rwl4OpPWIv7ZZ5/FPLarD757926uv/56tm/fHifiZjvlkUceob29neOPP54DDzzQ9bwZGRncdNNNzJ07NxnDUKQxThObFWFBrjOtuLQuoY9b7GMR/romWZzKW2QL86P7NDsU3lIMTYaEiJ900kmAfSS+bNkyfvWrXzFnzhzXSPyhhx4CUE2JFQnhNElZEY6ezSK+eVfsPnYFsDIyRL2VUJfR64YNXvaLYmgxJER84cKFgKgP3t3dHbOPLDVbW1sb6YcnJzbNIi73mzdvXv9fuGLIYC1DK5EWSJ1p9WXtzthVl1YRz8gIxDR5kLaKXxF/8+4AP74Azvi6v/0VQ4O0ntiUIn7EEUcwevRoduzYQW1tbYwdYs4keeONN4B4O2XHjh00NzeTmZnpushHoTAz57s9rBQtVh0jcbOFUhvb4zjuGBCCXdckBDxREZ8zPcCc6crfHm6kbSTe3d3Nhg1ipuiggw5i8uTJQGznHoDNmzfHHWu1U+SHQUVFhZqlV/jG3JPYGolX2ETiXnYKRAX7S+cavP6+uK8W4ijcSCsR7+7u5oorruBPf/oTW7ZsIRQKMWbMGAoLCyP1TLZu3Rqz/7Zt2+JexyriXV1iCZ1auKNIhEqT92yNqovyxbL61nZo7zAwDIPa2H4ktpF4himGkK3V1EIchRtpJeJvv/029957L9/5znd44oknADj4YFGKzU7Ed+7cSSgUIicnGibl5+eTmysaGBYWFlJUFA1zlIgrEqGqLHrfmp0SCARiovGG5viFP3aR+K76+OeUiCvcSCsRN1slN9xwAyCsFLAXcWmlzJgxI/KctZu9ucmDEnFFIsRE4jaCbE4z3Lo7frtdJP7LJfF2nhJxhRtpJeKbNm2Ke85NxLds2QKIglVOharGjBkTua9EXJEIlaVRwbVG4hBN9dtZB3sb4rfbCf+ZxwZY8TvT6+ZAfq6ap1E4k1bZKXYi7manyMh9woQJbN26Na5JMqhIXNF7zHZKTna80MpIfN61BoeMjz/eWopWMqYyel9Naiq8SMtI/Ctf+UrkObtIXHbq+fDDDwGYOnUqy5cvp7CwkDvvvDPmNZWIK3qL2U5xi8QB1okvhRGfHOztFIhtn6ZEXOFFWkXitbW1AJx77rmsWrUKIJITXl5eTkFBAc3NzTQ2NlJWVsYHH3wACE985syZNDY2kpkZW11fibiit/j1xM0cVAOrmpyPASjIE8WzAHrsG/ooFBHSJhIPhUJs27aNQCDAOeecQ3Z2NtOnT49klwQCgZhovL6+nvXr15ORkcHUqVMB4gQcYj3xioqKARiJYqjglp0CUFoUb7EcGI0ZHCNxM20diV+XYniRNiK+adMmenp6GDt2LJWVlQSDwcgKTMn48cJ4vOaaa6ioqKC7u5vJkyfHrNq0oiJxRW+pLIvet4uqt+6Ob258kFnEnasdR2hVIq7wIG1E/NlnnwWifnhVVRWlpbGVfiZNmgTAyy+/HHnOHGnboURc0VtKPTroXLrAJhIfE33OaWLTTHtnolelGG6kjYjLxT2LFi1y3EeKuJn58+e7vq459dD6oaBQuJFhWl6536b86+GHBtj2ZIDZk6PPTRojj8W1xMNMMV/PrIOScaWKoUxaTGwGg0Heeust8vLyWLBggeN+BxxwQMzj22+/ncsvv9z1tbOzsznxxBPZvn17TFSuUCSCnYgD1FQFGFtlsCZc+r6qDBr/GcCrRM/ffh7gl48Z3HC2yhFXuJMWIi476Hzzm9+MWSZvxRyJjx49muuuu87X6z/77LMYhqH6ZSp6zSiXOXHztspSfz0wJ44O8PtrlYArvPEl4pqm3QocDdQCF+m6Hgo/nwncDxwMrNZ1/er+uMizzz6bOXPm0Nrq3rLELOJe3XnMBAKqx6Cid7x7b4Bn3zH4jotrZ85iUUvoFcnGM/TUNG0mUKPr+lxgHWA2pRcA28PbCjVNc24R30fGjx/v2aC4vLw8Ug88ERFXKHrLV6YEuPmiDLKznIOA3JzotsxMFSwokosf/+Bo4IXw/eeAOT63DQrSF1cirkgVsuOXJygUScOPnVIOyJ4kjUCFZVuTw7YImqZdBlwGsHTpUubNm0coFIq0S0smEyZM4F//+hfV1dX98vp29NdYBgM1luQzriIHEOmrvb2eVBlLMhgqYxnIcbglXfgR8QZAVnwoBep8boug6/pyYHn4oQHizdwf2SC/+c1vOOmkk7jwwgvJyhqYedv+GstgoMaSfM4ZY2BkwWGT3f8Z3UiVsSSDoTKWVBmHHztlJXB8+P584C2f2waF8ePHc+mllw6YgCsUXgQCAc47IcChE5Ufrkg+niKu6/paYJemaW8AU4EnNU27L7z5aWB8eFu7rutv99uVKhQKhSIOX+GqruvLLE9dHn6+C1ic5GtSKBQKhU/U6haFQqFIY5SIKxQKRRqjRFyhUCjSGCXiCoVCkcYoEVcoFIo0JiCbCisUCoUi/VCRuEKhUKQxSsQVCoUijVEirlAoFGmMEnGFQqFIY5SIKxQKRRqjRFyhUCjSGCXiCoVCkcb0u4hrmja+v88xUGiaVhC+TevC0JqmHZHuY5BomlY+2NeQLDRNOyR8m/bBlaZpBw/2NSSLVH+P9dtiH03TTgSWAh3AY8Bzuq4398vJ+hlN004DzgO2Arfpur59cK+od4SbXv8GeAe4Sdf1zkG+pF6jadrXgOuAvcDdwMe6rrcP7lX1Dk3TcoAfAmcAs3Vd7xjkS+o1mqYdB9wANANvAn/SdX3P4F5V79A0bSGi1HY9cBfwvq7r3YN6UTb0yye+pmmZwBJES7afAhpQmI7Rn6ZpC4ALgVsR7ei+H34+7cYCzAV+oev6jcCkwb6YPnIW8CAiQDgJ+NbgXk7vCX+Y7ge6geshbd9fAJcCDwHfQbRsHPz+Zb1A07QjEQL+38AbwJlA3mBekxNJ62GmaVoucBri07cd+BjYDmwGZgH5QDaQ8tFf2DY5G/gnsAa4RNf1PZqmfQY8rmnaSF3Xdw/qRfogPI6zgDd1Xf8caAVO1DTtRmCHpmnvAU/pur5hMK/TD5qm5QM3Ib7RvQ5sQjTwXoV4v52sadohuq6vG8TL9IVpLM/ouv5m+OnPEM3Ef6Np2l90Xf9c07SAruspXRfD/HdBtGdcg/g/DwBzgCc0TSvRdb3J+VVSg/BYfgPowP3Ad3Vd36Fp2kfAXxGN4VsG8RJtSWYkPh+4E/iaruv7EH/U84B/Ib7yXgpcmcTz9Quapp0NvIb41N2t6/r2sIBnAMXApjQRcDmOfKA2/HQBMBoR7X0XYXWdPAiXlxCapo1DRNy7ANkCMAAcgGi8/QmwBThoUC4wASxjec+06euIoOoW4GZN0yangYCbx7Iy3OnrL8AM4F1gN3AK4ltsSqNp2vnAk8BI4Exd142wgGcDIUQwOjCt7ROkzyJu+toXBJ4BRmqadpSu628ALwJ367p+HqIfZ46maRmp+lVR07QSxNemnwEvA1+Xk026rvcgRLArvO/4NBnHK8A3NE0bg3iTZgPjdF1vRIi7HE9KjiVMFvAP4FXg3zVNOxp4HjgamBoOGvIQH1jpNJbvapp2Svj5ZxEfqruAY4H/gJSf5LT+XU7Sdb0WeALxLeNc4B6gQdO04sG7THc0TSsDDgSu03X9NODN8AcUuq6HELZQtq7rhqZpB6baWHplp4QzTq5H/AE3IL7aFgBFiKh7JiJiOhAh3EciIr/6sBimDKaxPIP4Ong/cA2QgxjfrzRNWxh+c85FePt3ACMQ3yxSYrLWYxxPAbcDxwF/FrtrBQgv+QuAVIr6LO+vjxC/6xMQjbrXIOZZ/hvx3jtd07QpCMuuCdJqLKsR4hdCzBt9BWhEzCVNhEjwkBL4GMvV4Q/QcqAjnBCwEOjRdX3/oFy0A5b/lw91Xf9J+PkJwGEIV0HyVSBX07Q7gSrgasQcRkqQ8Ke8pmljgV8hvl6MRszaghCDZxF+0mhN065DZEFsAn4CrNJ1/XvJuOhkYRnLKOCPuq4/C9wGfEPX9V8hJs/k18HxiOjvc13XL0iVbBsf47gd+ANwq67r/4v4CnwE4ivwTwfpsm2xjKUG+L2u6zpCMDp1XX8kvP0E4GHg/4CvAe/puv4/g3PV9vgYy6PAHQiReBx4SNf17+i6/hNd1y8YrOu2w+dYfoUIdF5BROfnA7qu6xcPzlXbYxnLSMSHJgC6rm8GdgLm3/8IxP/Lel3Xz021bBvfIq5p2jGmr6lluq7/Stf1h4FsTdOuR0T1hyMiiAXAOcAeXdcfBxbquv675F5673EYyx+AYk3TfqDr+gsIzxXEh1RX+P5LwFG6rt8zwJdsS4Lj+A3iW1GJruufIL46psQ4wHUspZqmXQL8HBGpouv6c8Ah4f0+Ar6XJu8vp7HMAEK6rv9f+PjMwbhuOxIcy/PAoUCuruuvAmfpun73oFy4DR4a9iPTrk8Cmaa/wypgVir9v5jxFHFN04o0TXsR4RGfhLBL3tQ07fLwLm8BpwN1iEj1AuC/EF95d0MkhWrQ8TGWN4BTNU0r03W9W9O0Y4C/ARsBdF1/Q9f1hoG/8lj6MI4NMksgVfJdfYxlBXBR+PZNTdN+Et5/e3jfoTCWICJ9FUiN8fTx71IHET950PGpYSeHvXGACcBE+XfQdf2DVM6u8bXYR9O0w4BxiE/cu4Gy8G0twhNuQ0w0fZDqmRs+xtKCiLg/RvjK/0/X9ScH41rdGCrjAF9j6UB8CL0NVCMmM18YhEv1RI0lbcfSAryu6/qzmqZVAEeGLcmUJ6EVm5qm/Rbhbf9J07TRQAlicukq4GEp4JqmZaTShIwdDmP5AjFp8Yiu6zsH8/r8MlTGAZ5jeTjVAwQzaiypyVAai8SXJ27ykR5BpKuN1HV9ByL15i8IG6VZ7pfKAu4xlv9FfJXar6V2ateQGQf4Hkuzltqpg4AaS6oylMZiJeHaKZqm/TsidbAeEYV/puv6qn64tn5nqIxlqIwD1FhSFTWW1CWR7BS57wzgm8BGXdf/lI6DHypjGSrjADWWVEWNJfXpTST+LeBpPY0rrUmGyliGyjhAjSVVUWNJXfqtFK1CoVAo+p+Un/RSKBQKhTNKxBUKhSKNUSKuUCgUaYwScYVCoUhjlIgrFApFGpO09mwKxWCiadpERNljEE2gfxZ+/gFEoSZ0Xe/VajxN1Cs/E3hN1/XXws89hCj2dni4JKtCMSgoEVcMRRZrmnYLUIgQ374yBVETH0TLO4UiZVB54oohgSkS3whMQrQ4OwD4PaL0aA3CPvwPRL/XCkQDk6W6rn+sadrNCKH+H0S/yzJEN6r3iEb4km8gOqFfgGgucEb4tc/RRVtChWLAUJ64YqjxKaJJ70Xhn78RrdV9IaLv6AcIMT8c+LsmmuFK5iIagZQiWsDtIdqq60ngbERjZsnRiFK/Y4GbkzsUhcIbJeKKocj/Q0THcxDt9SQnhW+v1XX9t8DfEYWQJpv2uUPX9d8gIvqJuq63IJoGAHyk6/rjlnKlN+u6fguitvbEpI9EofBAibhiKPI40A1sA1602W5Ybs3UhW+7iP5/uHmO5v1Tpq2aYvigRFwx5Ai30roIuNxS2/6Z8O0d4XKkCwmXIvV4yfrw7VxN076taVp+Ui9YoegDKjtFMSTRdf3PNk8/hJjgvBQx8fkeYmIzpGma28u9iejPeEz4uHFJvViFog+o7BSFQqFIY5SdolAoFGmMEnGFQqFIY5SIKxQKRRqjRFyhUCjSGCXiCoVCkcYoEVcoFIo0Rom4QqFQpDFKxBUKhSKN+f9juYObgDKjcgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAGvCAYAAABih26MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACbbklEQVR4nO2deXwU9f3/X7PZ7J2ThHCFAAKKF6iAWiSichiPoii0Xlgr9WireKH86gFqrVe1aq3KFxHqUa+qVCkCigLVVgEFS1E5NQlHDnLf2WN+f2xm5jOzM7Mzs0c2yfv5ePDIZHbms58dsjuvfb2PD8fzPA+CIAiCIIgkYuvuCRAEQRAE0fcgAUIQBEEQRNIhAUIQBEEQRNIhAUIQBEEQRNIhAUIQBEEQRNIhAUIQBEEQRNIhAUIQBEEQRNIhAUIQBEEQRNLpEQIkFArhhx9+QCgU6u6ppDx0rcxB18s4dK3MQdfLOHStjNObrlWPECAEQRAEQfQuSIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0SIAQBEEQBJF0TAmQJUuWYPbs2ZgwYQLWrl2reVx7ezvuvfdeFBcX4/zzz8eaNWtinihBEARBEL0HUwKksLAQt99+O4477jjd45YsWYKGhgasXr0af/jDH/DII4+gtLQ0pon2Nqqrq5Geno7W1lYEAgF4vV6UlZWJjw8bNgwcx4HjOHg8Hhx//PFYsmRJN86YiBcNDQ145ZVXcPjw4e6eCkEQvYSmVh6vruPx42G+u6diGLuZg8877zwAwEsvvaR73OrVq/HEE0/A5/Nh7NixKC4uxrp16/CrX/1K9fjOzk50dnbKJ2a3w+FwAABCoZDsZ2/g888/x7hx4+ByufDll18iNzcXQ4YMkb3G+++/H/PmzUNzczP++te/4oYbbkBmZiZ+9rOfaY7bG6+VQGdnp/g3ES+Sfb1qamrwk5/8BHv37sUZZ5yBjRs3JuV540Fv/ttKBHS9jEPXyjha12rBc8CS94GiAmDv6zxs3ZhgYTP45KYEiBEaGxtRU1ODkSNHivtGjx6NnTt3ap6zfPlyLF26VLZv9uzZmDNnjmxfeXl5fCfbjaxZswbHH388SktLsWrVKowbN07mEgUCAfj9fnR0dCA9PR3z5s3D3/72N/ztb3/DaaedhkceeQTr1q1DRUUF8vPzMXPmTNx0001IT08HAKxbtw4PPvggduzYAY7jMGzYMPz+97/HiSeeiIMHD2LRokXYunUr/H4/hgwZgoULF+Kss84CAOzZswd/+MMfsGXLFrjdbkyePBn33HMPcnNzAQCXXXYZjjnmGDidTrz55ptIT0/H5ZdfjltuuUWc/759+7Bw4ULs2LEDQ4cOxX333Ye5c+fihRdewPTp0wEAFRUVeOihh/Cvf/0LNpsN48ePx3333YchQ4YAABYsWIDGxkaMHTsWL7/8MtLT0/Gvf/0Lr7zyCl566SUcPnwYGRkZmDBhAp577rmY/j+S8bfV0dGBq666Cnv37gUAfPbZZz3SGexN78NkQNfLOHStjKO8VkveLwIAlFYCO74rR7av+8Tc8OHDDR0XdwHS2tqKtLQ0uFwucZ/X60Vra6vmOddccw2uuOIK+cQUDkh5eTkKCws1ldXEiRNRUVERh1dgjgEDBmDz5s2Gji0rK8O4ceMASNfpvffeQ1tbGziOw0knnYTLLrsMf/nLX2C325Gbm4uioiLx/IyMDDgcDhQVFWHIkCF45ZVXMGjQIOzYsQPXX389hgwZgttvvx3l5eW48847MW7cOCxbtgxpaWnYvn07hg4diqKiIvz2t7+FzWbDpk2b4PV68e233yIzMxNFRUU4fPgwrrjiCsybNw/PPfcc2trasHDhQixYsAAff/wxAMDlcuG9997Drbfeii+//BL/+c9/8Mtf/hLnnXcepk2bhlAohJKSEhQWFuKLL75AU1MTFixYAADIz89HUVERWltbMWPGDJxxxhnYtGkT7HY7HnroIfzqV7/C9u3b4XA44PV6sXbtWhQUFODjjz8Gz/Oorq7GAw88gL/+9a/4yU9+gtraWnz22Wey62QGI39b8eKNN97A1q1bZfuszrs7SOa16g3Q9TIOXSvjGLlW3qxCFA1J8sQsEHcB4vF4EAwG0d7eLoqQlpYWeDwezXMcDocha91ms2le8IqKChw8eNDapGPE6BtmyJAh2L59OxobGzF+/Hh88cUX8Pl8GDduHP75z39i6NCh8Pl84ngcx8FmsyEQCODVV1/Fjh07cOONN8Jms+Hee+8Vxx0xYgR2796NN998U7zRl5WVYcGCBTj22GMBAEcffbR4fHl5OS655BKMHTsWAGRu1ZIlS3DyySfj4YcfFvctX74chYWF2Lt3L0aPHg0AOPHEE7F48WJx7Oeeew6ffvopZsyYgXXr1mHfvn3YsGEDBgwYAAB46KGHMG3aNPH/8K233oLNZsOyZcvAcRwAYMWKFcjOzsamTZswffp0cBwHr9eLZcuWiX8f7777LrxeL376058iIyMDw4cPxymnnGLwf0obvb+teKHldvS0D9xkXKveBF0v49C1Mk7ktZIcj7pmDjYbl/xJmSTuAiQzMxP9+vXD3r17cfzxxwMAdu/ejREjRsT7qWQIN7pkY+Z57XY7hg0bhrfeegsTJkzA2LFj8fnnn6OgoADFxcURx991112455570NHRAYfDgQULFuD6668HAPz973/HU089hb1796K5uRmBQACZmZniubfeeivmzZuHV155BVOnTsXs2bNx1FFHAQBuvvlm3HjjjVi3bh2mTp2KSy65BCeeeCIA4KuvvsKnn34Kn88XMZ99+/bJBAjLwIEDUVVVBQDYtWsXCgsLZddm4sSJsuO/+uor7N27FxkZGbL97e3t2Ldvn/j7CSecIBOn06ZNQ1FREUaMGIFzzz0X5557Li6++GJdgZsqqLmAHR0dcLvd3TAbgiB6KzUN3T0DY5gSIIFAAMFgEDzPIxAIiPkJSsV63nnn4cUXX8RDDz2E/fv3Y9OmTVixYkU85x2B0tpORY477jiUlpbC7/cjFArB5/MhEAggEAjA5/OhqKhIliuzYMEC/OIXv4DH48HAgQNFp+CLL77Az3/+c9x///2YMWMGsrKy8MYbb+CJJ54Qz120aBGuuOIK/POf/8SHH36IRYsW4Y033sDFF1+MefPmYcaMGfjnP/+JdevW4eGHH8YTTzyBm266CaFQCBdeeCEeffTRiPkPHDhQ3BZyTQQ4jhOTonieF+eqRSgUwimnnILXXnst4rH8/Hxx2+v1yh7LyMjA119/jQ0bNmDdunW47777sHjxYmzZsgXZ2dm6z9ndkAAhCCIZ1DR29wyMYcrr+v3vf49JkyZh27ZtWLRoESZNmoSvv/4aH374oSxh9Prrr4fP58O5556LhQsXYuHChRg2bFi8597jWL16NbZv344BAwbg1Vdfxfbt23H88cfjqaeewvbt27F69WrZ8Xl5eRg5ciQGDRoku6F//vnnKCoqwt13343x48dj1KhRqvb+6NGjceutt2LdunWYNWsWli9fLj5WWFiIG264Ae+++y5uv/12MQn45JNPxs6dOzFs2DCMHDlS9k8pBrQ45phjUFZWhsrKSnHfli1bZMecfPLJ2LNnD/r37x/xPFlZWbrj2+12TJ06FY899hj++9//4scff8Qnn3xiaG7diZYAIQiCiCdHeqMDsnjxYjHur6SkpETcdrlc+P3vfx/TxHojRUVFqKioQGVlJWbOnAmbzYZvv/0Ws2bNwqBBgwyPM3LkSJSVleGNN97AhAkT8M9//hPvvfee+Hh7eztuuukmzJ49G8OHD8eBAwewZcsWXHLJJQCAW265BSUlJRg9ejTq6urwySefYMyYMQCA3/zmN1i6dCkuu+wyLFiwAHl5edi7dy/eeOMNLF26FGlpaVHnN23aNBx11FG4+uqr8dhjj6GpqQl33303AIhC6oorrsDjjz+OmTNn4oEHHsCQIUNQVlaGd999FwsWLBArYZSsWrUK+/fvR3FxMXJycrB69WqEQiFZjkuqQgKEIIhkUNPAA0j9HBDK9kkyGzZswIQJE8T+H4MHDzYlPgBg5syZuPXWW/Hb3/4W48aNw7///W9ZUqrNZkNNTQ3mzp2L0aNHY86cOSgpKcH9998PAAgGg/jNb36DMWPG4NxzzxWTSAFg0KBB+PzzzxEMBjFjxgwcf/zxmD9/PrKysgwnh6WlpWHlypVobm7GhAkTMG/ePNxzzz0AICYmezwebNq0CUOHDsWsWbMwZswY/PKXv0RbW5ssl0VJdnY23n33XZx99tkYM2YMXnjhBbz++utRm+OlAiRACIJIBDwvbz7WU0IwHK+ceQoSCoVQWlqKoqIiypCOQqpeq88//xxnnHEG9u7dKybDpgLJvF7nn39+RJhtx44dYrJ2qpOqf1upCl0v49C1Mo7atero5OGaKt3KZ58FvHV/6l/HuFfBEAQAvPfee/D5fBg1ahT27t2L+fPnY9KkSSklPpINOSAEQSSCdnkj8d5ZBUMQRmlqasKdd96J8vJy5OXlYerUqbIqnb4ICRCCIBJBh1/+e08JwZAAIRLC3LlzMXfu3O6eRkpBAoQgiETQUx2Q1A8SEUQvgQQIQRCJQClAekoZLgkQgkgSagKkvb29G2ZCEERvQilA2juB1vaUry8hAUIQyYIcEIIgWL4v5XHhwhCefDM2sdCu8jHSE8IwJEAIIkmQACEIguVni3ms+jdw+1947DtoXYQoHRCgZySikgAhiCTg9/sRCAQi9pMAIYi+y3+ldTexu9z6OCRAiB7NlClTcMstt3T3NHotbW1tqvtJgBAEAQCtMaSDqQoQCsEQLL/4xS/AcRw4jkN6ejpGjBiBO+64Ay0tLd09NSLBqIVfABIgBEGEaY3ho6CnOiDUByTJnHvuuVi+fDn8fj/+9a9/Yd68eWhpacHzzz/f3VNLOfx+P9LT07t7GnGBFSBer1cUnSRACIIAgLZ4CxByQAglTqcTAwYMQGFhIS6//HJcccUVWLlyJYDwzejmm29G//794XK5cMYZZ8iWsV+xYgWys7Nl461cuVJcYRYA7r//fpx//vl45ZVXMGzYMGRlZeHnP/85mpqaxGNaWlowd+5c+Hw+DBw4ULVD6XPPPYdRo0bB5XKhoKAAl156qeZrEua1cuVKjB49Gi6XC9OmTUN5uTyo+cEHH+CUU06By+XCiBEjcP/998vyIjiOwwsvvICZM2fC6/Vqrqjc0dGBO++8E4WFhXA6nRg1ahSWLVsmPr5x40ZMnDgRTqcTAwcOxMKFC8Xn+eCDD5CdnY1QKAQA2L59O0aMGIE777xTPP/666/HZZddpvl6rcAKkJycHNlrIQiCaIjBCFd2QgWAIw1UhktEwe12w+8P//XceeedeOedd/DXv/4VX3/9NUaOHIkZM2agtrbW1JhlZWX4xz/+gVWrVmHVqlXYuHEjHnnkEfHxBQsW4NNPP8V7772HdevWYcOGDfjqq6/Ex7du3Yqbb74ZDzzwAHbt2oU1a9aguLhY9zlbW1vx0EMP4a9//Ss+//xzNDY24uc//7n4+Nq1a3HllVfi5ptvxrfffoslS5ZgxYoVeOihh2TjLFq0CDNnzsSOHTvwy1/+UvW55s6dizfeeAPPPPMMvvvuO7zwwgvw+XwAgIMHD+K8887DhAkT8M033+D555/HsmXLRDFTXFyMpqYmbNu2DQCwadMm5ObmYtOmTeL4GzZswJlnnmnkUhuGBAhBEHrUNcW3CqauKXJfqtFrQjDjfxVChbn7dFwYkAtsXWpNx23evBl/+9vfcM4554hhmBUrVqCkpAQAsHTpUnz00UdYtmwZFixYYHjcUCiE5cuXIysrCwBw1VVXYf369XjooYfQ3NyMZcuW4eWXX8a0adMAAH/9618xZMgQ8fyysjJ4vV5ccMEFyMjIQFFREU466STd5/T7/Xj22Wdx6qmnimOOGTMGmzdvxsSJE/HQQw9h4cKFuPrqqwEAI0aMwIMPPog777wTixYtEse5/PLLNYUHAOzevRtvvfUWPvroI0ydOlUcS+C5555DYWEhnn32WXAch2OOOQaHDh3CXXfdhfvuuw9ZWVkYN24cNmzYgFNOOQUbNmzANddcgz//+c9oampCS0sLdu/ejSlTphi+3kYgAUIQhB6xCAY1AdLSA3oc9hoBUlELHKzu7llEZ9WqVfD5fAgEAvD7/Zg5cyb+/Oc/Y9++ffD7/Zg0aZJ4bHp6OiZOnIjvvvvO1HMMGTIEGRkZ4u8DBw5EVVUVAGDfvn3o7OzE6aefLj6em5uLo48+Wvx92rRpKCoqwogRI3Duuefi3HPPxcUXXwyPx6P5nHa7HePHjxd/P+aYY5CdnY3vvvsOEydOxFdffYUtW7bIHI9gMIj29na0traKY7NjqLF9+3akpaVpOhTfffcdTj/9dFlYatKkSWhubsaBAwcwdOhQTJkyBRs2bMBtt92Gzz77DDfeeCM+/fRTfPbZZ6ivr0dBQQGOOeYY3XmYhQQIQRB61MaQNKomQJrVC+9Sil4jQAbk9oznPeuss/D8888jPT0dgwYNEpMsDx8+DACyGycA8Dwv7rPZbOB5uU0nhG9Y7Hb5fyvHcWLOg/J8NTIyMvD1119jw4YNWLduHe677z4sXrwYW7ZsichBUT6P1r5QKIT7778fs2bNijjG5XKJ216vV3dubrdb93H2erH72LlMmTIFy5YtwzfffAObzYZRo0ahuLgYGzduRF1dXdzDLwAJEIIgIkm3A/6uNLjYHJDIz3USIEnEahgk2Xi9XowcOTJi/8iRI+FwOPDZZ5/h8ssvBxAWF1u3bhX7c+Tn54thAuFGvX37dlPPP3LkSKSnp+OLL77A0KFDAQB1dXXYvXu37MZrt9sxdepUTJ06FYsWLUJ2djY++eQTVQEBAIFAAFu3bsXEiRMBALt27UJ9fb3oJJx88snYtWuX6ms3wwknnIBQKISNGzeKIRiWY489Fu+8845MiPz73/9GRkYGBg8eDEDKA3nqqadQXFwMjuNQXFyMRx99FHV1dZg/f35Mc1SDBAhBEEoc6YwAabY+jlordhIghGG8Xi9uvPFGLFiwALm5uRg6dCgee+wxtLa24tprrwUAnHrqqfB4PPjd736Hm266CZs3b8aKFStMPY/P58O1116LBQsWoF+/figoKMDdd98Nm00ScKtWrcL+/ftRXFyMnJwcrF69GqFQSBamUZKeno6bbroJzzzzDNLT0/Hb3/4Wp512mihI7rvvPlxwwQUoLCzE7NmzYbPZ8N///hc7duzQrHZRY9iwYbj66qvxy1/+Es888wzGjh2L0tJSVFVVYc6cOfj1r3+Np556CjfddBN++9vfYteuXVi0aBFuu+028TUKeSCvvvoqnnrqKQBhUfKzn/0Mfr8/7vkfAAkQgiAi6WQM7LjngPQAAdIzbIM+wiOPPIJLLrkEV111FU4++WTs3bsXa9euFW9Yubm5ePXVV7F69WqccMIJeP3117F48WLTz/P444+juLgYP/3pTzF16lScccYZOOWUU8THs7Oz8e677+Lss8/GmDFj8MILL+D111/Hcccdpzmmx+PBXXfdhcsvvxynn3463G433njjDfHxGTNmYNWqVfjoo48wYcIEnHbaaXjyySdRVFRkev7PP/88Lr30Uvz617/GMcccg1/96ldiX43Bgwdj9erV2Lx5M8aOHYsbbrgB1157Le655x7ZGGeddRaCwaDo+uTk5ODYY49Ffn4+xowZY3pO0SABQhAESyjEi+4HEH8B0hMcEI43khTQzYRCIZSWlqKoqEj2TZ2IpDuu1YoVK3DLLbegvr4+Kc8XT5J1vX7/+9/j3nvvBQC8+uqruPLKKwEA06dPx9q1axP2vPGE3ofmoOtlnL54rdo6eHimSbdfmw3wf8LBZovMpWNRu1ZXPBDC3z4OP+5IDzsrPjfQtDa1r2Vqz44gegnkgBAEwaJ0LUIhoNFiMzJ2rLxw9wW0tBsrOuhOSIAQRBIgAUIQBEtHHJuHsZ1QBQHC87G1d08GJECImPnFL37RI8MvyYQVID6fTyyVJgFCEH2TeHYvVXNAgNTPAyEBQhBJgBUgHo8HTqcTAAkQguirqK3fYrUUlxUg/UiAEATBwgoQt9tNAoQg+jiJcEDS0oAsppcjCRCCIMgBIQhCRjxzQAQB4nKEq18EUr0XCAkQgkgCJEAIgmBJhAOiFCDkgBAEgba28CdBWloa0tPTSYAQRB9HLQekttFa2SwrQLwuqY8ICRCCIEQHxOPxgOM4EiAE0cchB4QECEEkBVaAAJAJkFRvFkQQRPxRFSAxVsG4HIDPI+1vabc2XrIgAUIQSUBLgADhVY8JguhbqIVg6uPtgLSqH58qkAAhiCSgJ0AoDEMQfQ/VFWwtOBaBAI9gMLwdzgGRHmtuS213lQQIQSQYnudFAeJ2h7+ekAAhiL6NWhmuFQHCOimUA0IQhIxgMIhQKAQAcLnCX09IgBBE30bVAbEgGNhxIvqAUA4IQfRtWIEhCA8SIATRt1HLAbEiGJQCxEsOCEEQAp2d0ieEw+EAQAKEIPo67Z2R+RmxChBnOoVgCIJgIAeEIAglWjkgZsvy9UIwJEAIoo/DCgxyQAiCAOTCwZEe/hkMAp0mq/IjQjBMFQytBUMQfRw2BEMOCEEQgDwHpF+mtG02DKMUIGlpHFzh7znkgBBET2fTpk14++23LXcspRAMQRBKWOGQywoQk6JBJkC6PlaEMAwJEILowezduxdnnnkm5syZg1deecXSGJSEShCEksQ4IOGF6EiAEEQv4P333xe3r776aktjkANCEIQSTQfEpAA5UCVt5/jCPwUBQn1ACKIH069fv5jHoCRUgiCUsFUw/WIIwXy9WwoNjxsV/in0AmltB4LB1G3HTgKEIHRQioPKykrTY1ASKkEQSuLlgHy9J/yT44CxI8PbbCluawp/vJAAIQgdWlpaZL9/+eWXpsdQC8EILdmVjxME0Tdgc0ByMzhx24wA8Qd47Ngf3h5dCGR45DkgQGqviEsChCB0iLcAoRAMQRCA5IDY04BMr7TfTAjmu1IplHPSKGl/T1kPhgQIQegQDwFCIRiCIJQIDohT2TzMhGD4ere0ffJoyUVhBUgTOSAE0TNRCpDNmzcjGAyaGoMcEIIglAgOiHIBOXMCREowPXm0tJ8ECEH0ApQCpKmpyXQiKjkgBEEoEUInznRl+3TjVSvb9kjbbAhGyAUBUrsXCAkQgtBBKUAAoK3N3Ds6Wh+Q9vYUDtISBJEQZA4II0DMVK3sORD+OSgPyM2UREeGRzqGHBCC6KHEW4BQCIYgCEDKAYkIwZj4eBFcFDbkovy9iRwQguiZxEOAqIVgqAyXIHomza08FjwXwpNvxtbgq10rBGOmDLcrHS3dLt/fUxwQe/RDCKLvoiZAzIZM1BwQVoBQCIYgeg6PvMbjj28AAI9jhwHnnspFOSOSUIiHPxDeVoZgzPUBCf/UEyCUA0IQPZREOSAUgiGInskTb0rb72y0uEI204TMGUMIRhQgafL9cgeEWrETRI8kUUmo5IAQRM/Easksi3wFW2sOSDAI8F3aIsIB6a1luHV1dZg/fz4mTZqEWbNmYfPmzarHHTx4EL/5zW8wZcoUlJSUYPny5TFPliCSDSWhEgTB4pHeumi1KEDYheic6YAjHUjrcjGMChDB/QDC57P4emsI5tFHH0V+fj7Wr1+Pm2++GQsXLkRjY2PEcY8//jgGDx6Mjz/+GC+++CLefPNNTbFCEKlKMpJQyQEhiJ6D1XwNFqUDwnGcOK7REEwnI0AiQjA9xAExlYTa2tqKjRs34oMPPoDL5cKUKVPw2muvYdOmTbjgggtkxx4+fBhXXnkl7HY7Bg8ejHHjxmH//v2YOHFixLidnZ2yD2kAsNvt4rfFUCgk+0loQ9fKHHrXKxQKobU18t3b2tpq6vqyAsNutyMUCsFul956HR0dPeL/i/62zEHXyzg96VrJm4ZZm3MbY3o60sNjeF1AY0tY1OiNKTzW0RmC4CHY7fJz2Dk2tSb/utpsxrwNUwKkrKwMPp8PeXl54r5Ro0Zh//79EcfOnj0ba9euxYknnoiKigrs2LED8+bNUx13+fLlWLp0acT5c+bMke0rLy83M90+DV0rc6hdLzXxAQCHDh1CaWmp4bHr6+vF7erqalFYOxwOdHZ2orGx0dR43Q39bZmDrpdxesK1SuMKAITv8HWNnSgtPWx6jB/K0gEMAgAEOppQWloLh30QgHQ0tQRRWnog6hilZQcBFIbH6GxFaWm1+FgoBHDcUPA8hyN1HSgtrTA9x1gYPny4oeNMCZC2tjZ4vV7ZPq/Xi+bm5ohjx44di7///e+YPHkygsEgrrvuOowcOVJ13GuuuQZXXHGFfGIKB6S8vByFhYWGlVVfha6VOfSuV1VVleo5brcbRUVFhp8jLU3yR0eMGIEBAwYACIdjOjs7wfO8qfG6C/rbMgddL+P0pGuVnSltB0IOS+/dsgZpuyA/A0VFGcj2AaWVQFtnmu6YwrXKLxgs7svM8ESc43WF8z/8IWfKfr6YEiButzsiJt7S0gK3W96GLRgMYv78+Zg7dy4uvfRSVFVV4ZZbbsGIESMwderUiHEdDocoNvSw2Wwp/8eZKtC1Mofa9WJzPfLy8nDkyBEA4ZCKmWvLhhfdbrd4rsvlQlNTk+nxuhv62zIHXS/j9IRrFWTCGS3txsMNLIdreADhEpbBeRxsNg4eV1doxQ/wPIe0NP3+IsGQ9LyO9Mh5ZHhCaG4Lh2BS9ZqamtXQoUPR3NwsfhADwJ49ezBixAjZcY2Njaiursall14Ku92OQYMGYcqUKfjqq6/iM2uCSAKs2GbDjvFIQmW3qQqGIHoObA8Pq0moBxhzdUj/8E+z5b1+nSRUQOoF0mtasXs8HhQXF2PJkiVob2/Hxo0bsW/fPhQXF8uOy8nJQUFBAVauXIlQKITKykps3LgRRx11VFwnTxCJJF4CRK0MF5AqYagKhiB6DmwFS3NbuKupWQ4ekc4Zkh/+qUxujYZMgKjEMkQB0grwfGo2IzPtyyxcuBCVlZU455xz8PTTT+Phhx9GZmYmPvzwQ1nS6KOPPorVq1fjrLPOwty5czFx4kRcfPHFcZ08QSSSeDsgNptNVv1CDghBJI99B3n8b3/sN+J25u0aCgENkZX6UTkg5YticNdHi9nyXmEdGCCyDwggLUgXCslFUyphei2YnJwcPPPMMxH7S0pKUFJSIv5+3HHH4aWXXoptdgTRjbACpF+/fuK2VQdEmedEDghBJIf9h3iMvoJHKAR8/hfgJyeYX79FQHkzr20EcjLMjcEKkEGCAElQCAYIuyBuZ+Qx3U1qZqYQRAoQ7xAMm//B/h4MBhEIBCLOIwgiPjz0clh8AMDlD8bmgrA5IABQ06B+nB4HuwRI/xzA6QiLIbMhmE5mHnohGCB1m5GRACEIDeIdglEKELYbKoVhCCI5HLEgGFgiHJAmc+cHgzwO1YS3B0sfKzGFYFQFCOOopGo7dhIgBKGBlgAxGzLRCsHQejAEkRx8FlebVUMtBGOGyrrwQnKAlIAKAJleKSxkxLGIloTq6wHt2EmAEIQGrADJzs4Wa+njFYKh9WAIIjl43dGPMYpSgNSYFCAH2QRUmQCRthtNC5DInBYKwRBED4YVIF6vV2y4ZzUEo+eAkAAhiMThcVpPOmUJhXjZjR8w74CwCahD8qV5ZTKCoSGyuXgE0ZNQzTkq3QEJEILQIF4CxIgDQiEYgkgcwTitxaZMQAWAmkZzSa0HZQJE2s7ySduGHJBoOSCMoKEcEILoYcRDgPA8r5mESg4IQSSHDn98GnGp9dMw74BIc5GFYBjB0NgSfb5GG5EB5IAQRI9DKUAEx8KMAPH7pa9MWn1AAHJACCKRKIVDMGhNkLSrvE3N5oAc0HBAZDkgBpqbsQJErxEZQAKEIHoc8XBAWGFBDghBdA8dCgFSZ7J0ViAeDshBaSk1bQfEgGDoNNWIrJe0YieIvoKWAOno6DC8tgK7EB05IARhjnc28LhnaQh1TXFuHmZSNGiNY2Ws+q4EU0e6PFHUrAMSMBGCSdUcENOt2Amir6AlQICwY8H+roWeA0JluAShTWkFj0vvCwuPA9U8VvzOeiVLPLqXAuoOiNnwhhA6UYoGVoAYWV/GVA5IigoQckAIQgNBgDidTqSlpckEh9EwDOuA6IVgyAEhCDlf7JS2/7omtrFi7d2hNQ5g3l0IdFWv2BVhk3Q7J67XYjYHhBqREUQvQxAZgvCwIkBYYaEXgiEHhCDkuBzRjzGKMgckngKktd1cUqsgQNTyNgQXxHQZroHF6FIREiAEoYEgCgThwQoGKwKEHBCCMI4zngIkTiEYtRwQAGg18fYVnAulAwJIiajxcEDYtWVSNQeEBAhBaCAIEEF4xBqCIQeEIIwTr+ZhgFoIJn5luIA5h0ErBAPIHZBoie7RBIjNJoV0WlP044UECEFoEA8BQg4IQVhD62ZvBaVzYXVFXLUQDGDOYRBDMCqiQXBAgsHooiFaHxBAckGMrK7bHZAAIQgNBFGgJkCMOhZ6SajkgBCENlo3eysksgoGAJpNOCB6IRhZO/YoYZhofUAAaRE+EiAE0YMIhUKieIiXA6K3GB05IAQhRykaAgHrvUDilYTKzikvS9q24oDo5YAA0RNRo4VgAMYBoRwQgug5qIVO4h2CIQeEILRRug1GemMYHSseDki/GAWIagjGRDMyIwLEw4RgjDZPTCYkQIheCc/zaG21XnvGCgJBKFipgtFLQiUHhCC0iacAiVcnVHZOVh0Q3SoYVoBEc0CirIYLSA4Iz8c3pBUvSIAQvY5gMIhTTz0VeXl5WL9+vaUx1AQIOSAEkTyUN8x6i+u3AOoCxIojEKsA4Xk+SghG6vba0Kw/lpkQDJCalTAkQIhex4YNG7Blyxa0tbVh6tSplsZIhgAhB4QgtOnwywVCPEMwnX5rN2R2TlYESIgpLVYTDbIkVDM5IFGSUIHUTEQlAUL0Ovx+jW5BJoiXAKE+IARhDWUZbn0UR0APZRIqYO2GzM6pX6a0bVSAsKIhahJqHHJAWAckFRNRSYAQvQ7ljd4K0QSIUcFg1AEhAUIQcuKVAxIMSmEPFis3ZFkIJlsKlzS3GQvnsPOImgMSTYAYyAHxMB855IAQRBIw6k7okWwHhEIwBCEnXjkgWu3TLTkgMeaABKKIBnkZrr6o6WRel2YjMgrBEERyUboJwqq2VseIpQqGHBCCsIZSOFh1QFJJgPjj6IAEjOSAuCSXhkIwBJEElOLg8OHDpsdghQMloRKEceqbePzrG97UCrFqRDggzdbGU8v/AKzdkFkxYyUHJBAlBySLESDRBJeZMlzA3IJ5yYIECNHrUIqDQ4cOmR4jlhDM999/j2uuuQYrV67UDcHYbDakp6dHPB9B9FRCIR6n3sCj+CYeD70S21iRAsTaOAlzQLKlbaOt2KOGYOLciEwWgiEHhCASj/JmnmwBcuutt2LFihW4+OKLUV1dLe5XOiDs2OSAEL2Bg9XA7vLw9qKX4uuAROuLYXQcgVQMwWRYaMVus4VXvlWDklAJIsnE2wEx24p9zZo14jbbCI3NIVGOTQ4I0RtQqzaxSsIdkBirYDI9kvNgJQlVTYA40jm4uoxSow6IlvsBUBIqQSSdZIRgjAqG8vLw18H09HSMHj064nFyQIjeRFsCV7C1nITKzCmXyduwckMW5pSWBtjtHHxdHwnxEiCAFIYxmgOilYAKKPuA0FowBJFwEiVAjFbBpKVFfiJMmDBBJmCUY5MDQvQG2hQ6ujlKKake8XJA2HFyM6TtWBqRObvKXs0KECPdS4Uxozk0hhwQSkIliOSSqByQ9PR02Gzht4yeABk2bFjEvsmTJ6seK4RgyAEhegNKAXK4xvpYyk6o8SjDlTkgFhwBQcwIYZJEOCCCaIgmkIQ+IFo9QABKQiWIpJMoB4TjONHF0HMs1FrBawkQckCI3kRcBYiKA2JlATmt0tlYklDVBIiRuRkSIF1jtnVAt5TZSAiGklAJIsmoCRCzH1xqAgSQ8kD0HBClmOA4DpMmTVI9VnBAgsEgAmyTAILogcRTgChzQIJBiwvIJSAHRClAeD7ytasRrQyXHRPQD5tQEipBpCBKcdDS0oKmJnN9nLUEiLCtJ0CU4ZQTTjgB2dnZqsdSO3aiN5FIBwSwlgfSriVAYqiCUeaAAMbCMNEWowOiLyDX0Ql8W5ouhmCM5oBQCIYgkoBaOOPgwYOmxlDrhAoYc0CUQuKiiy7SPJbasRO9CWUVzOGa+CWhAtYEiDwEw7Qmj0cIhunbYUSAmMkBASLnyPM8ZtwBXHDfIDEnxrAAScGPF52pE0TPRE0c1NbWmhojWghGSyzwPC8KELfbjRdffBGzZs3SfB4r7d0JIlWJcEDMve1EeJ5XFSDRemOooZmEavKGHArxooOhDMEA5gVIul29eZhXZ8zWduBf/5Xv0xMgTke4UVkoRFUwBJEU1G7kzc3mvjoZESBqeSV+v1/cf8opp+Dyyy9XbUAm4PVKvZdbWw32cyaIFCVeIZhAMJxXoSSW0llAUYZrUu+zr82pJkAMvH2NhGB8OpUrNY2Rx+sloXIcJyaiUgiGIJKAmgCJdw6I8hgBrdCNFh6P5OFaWbWXIFKJeAkQzfbpMS4g53FJ4sGsmGFfS//s8M9YHBArIZiahsjj9RwQQHJUUjEEQwKE6HWoCYNYHBA2TyNayERv9Vs1yAEhehOtHXLbosJiCCae67ewAsSZLt3gzVbUlFdJ20MLwj99bimMYj4Eo36M16U9ppoDotcHJDxe+CcJEIJIAol0QKK1YzcrQMgBIXoTSgekpgHo9Fto+KWRr2C04RdLB/P8Tof1GzIrQAr7h0VCIqpgfDqls6oOiE4IBmBeL4VgCCLxxFuAmHFAtM7TghwQojeh1gvDigvCuhasUxBrDogrBgFSViltF/YP/2TFQpOBt6+ZRmSAwRwQgyGY9k79xmbdAQkQotcRzxCMw+EQ268D0deDoRwQoi+jJkCs5IGwIZh+MfbuiAjBMDkRZhoUlldJxwohmIwYynC1QzDaY1oRIGw3VCPN0pIJCRCi1xFPB0QpIuIdgiEHhOhNqN3gKi04IDIBkiVtN1tYv0UrByQYlNZTMYI8BBP+mSm9fdFoYOG9WEMwR+ojnyOqA5LCvUBIgBC9imAwiM7O8KcX2300EQIkHiEY1gH53//+h88++wz//e9/TTs2BJEKqAkQK/0nNB2QGJqHAfIQjNnxBAHidAD52eHtTMYBMdKjxHwIRi44YgnBACRACCKhsAIgPz9f3DZ7QxecDLMCJBYH5C9/+QsmT56MsWPH4t///rep+RJEKqDshApYXL9FYwE5a0mo0rbTYX2F2LIuATIkP9xfA1A4ICYFSNxCMAaTUIHUS0QlAUL0KlgB0r9/f3E7Xg5IInNAgkHp0ykzM1PtcIJIadQcECt5B6xrkZctbVsqw2XGYkMwZsZrbOFFgTFU+liROyCJaEQWjz4gFIIhiOTAigLWAekJOSAsJECIZLJsFY9jrgzhbx/FViURtxAMc06sSajxCMGo5X8A8iTUuIVg9BqRWUlCZcZTO787IQFC9CpYAeLz+UQBYSYEw/N80nJASIAQqcC8x3jsKgOueDABAiTGvA12AbmYQzDp1kIwWgLE6wa6ojGmy3A1QzAmy3AdUR0Q6fpdcBePBc+FoswyeZAAIXoVrChwu93IyAgv/mDGAWHXc4klB8RsCIZFmDdBJBtl4qMZ1EMwFhqRMQIk0wukdbkFsXZCdaTLb8hGx2N7gAwtkM7nOE7MAzEUgmH6cBgJwbCCKxDg0aDyPcpMEioArPgwyiSTCAkQoleh7GAq3MjNOCB6LoaZHJBYHBCfzxf1XIJIBHsOWD9XNQnVQgiGFQ1upxSWsOSAdM0p3Q7YbJwsJGE8BCMJB9YBAaQ8kHiFYBzpnPgYO79aje9Q0QTI8cPlv2uN0x2QACF6FUoHRLiRm3FAtNqwC2OqHScQSyt2AZ/Ph7S0KKntBBEnAgG5Q7G73PpYauGWWEMwznTJFYglB8TVtQidlaqQA9XSdoQAMeGABJgkVL3qFbUF5I6oJKAC0QXI1PHAyock1yYUAppb+ZToikoChOhVaIVgOjo64Pcb6zpkVIDEuw+IAOV/EMlE6VrEIkCEEAxbnhprFUws7dMByU1xdi3aZiUJlRVRGYq3rOCAtLTptzqvaeDhN+CAAJLgYh0ftQoYAEi3c+oPdMFxHGZO5jB9grTv4nt42M/i4ZkWwsHq7hMiJECIXoWWAAGMh2FiESBmc0DS09ORni5fzpIECJFMlAJh9wFrN6RAgBdDDGzlirVGZNIcXEzvDishGEFkuLu+D1hpzMWWzyodByPt2O9bFkLehTz+9Ja0T0+AqC0gp1XBEjKYU8oKr4qu9vhtHfL9yYYECNGrUIoHNpfCaBhGT4DEOwcEiMwDIQFCJJP2ODkgrJPCtk+34oB0KBwQwRHwBwB/wLhACgR4VNWFtwtywz/lIRhjY+nlbhhpRvb6x5H79EInao6PlgPSZKAFPAD4GKHELhDoc0cemyxIgBC9Cj0HJB4CJN45IEBkGIYqYIhkohQIu8rMLdKmNk4u8yccaw5IRO8OEy5IVT0gvJSBagLEqAOiUz5rpBmZ2vMYCcH4A0CnP/wCtBwQI7kngPx1C2O5HIA9SggnkZgWIHV1dZg/fz4mTZqEWbNmYfPmzZrHvv/++7j44otxxhln4NJLL0VpaWlMkyWIaMQjBKMXRol3DghADgjRvSgdkPpm7YRHPVgBkuUDhEWkY10LxunQLk2NRgWzEu/AfuGfVkIwsTogatdANwTDzPHEa3g883ceNQ3qotBI/xFALkAEUdad7gcARMmfjeTRRx9Ffn4+1q9fjy+++AILFy7EypUrIz40N23ahFdffRV//OMfMWLECBw8eJC+2REJhxUAbBUMEH8HJB45IECkA0IChEgmaiGS3eXSgmtWxnE7wsvAN7fFNwkVMJeIepgJNQgCxEjOhhK/TvWKfEVc9fPVroGREAwQdqTmP8Nj7gz1Y40KEDWx0aMESGtrKzZu3IgPPvgALpcLU6ZMwWuvvYZNmzbhggsukB374osv4rbbbsNRRx0FABgyZIjmuJ2dneIKpuLE7HY4HOG6qVBXlk3IaLZNH6avXyt2SXuHwyETIA0NDRHXRe16sWM4nU7ZY8LfJBAWIMrxWPGSnp5u6P9B6YBkZGSk5P9fX//bMktPuV5qN/TvSnmcfpy5MAw7jtsZbgHe3BYOwUS7BsprxQoQh52X9e5obOERChmb20GmfLYgNzw+e3NvaDb2/8OWz9o4+fNnMDfx+ubIuQWDQKdKAZ5yHBaPyncX9rXMndqIlz8Of1G55Exjr0FtzAxPYv4+bTZjwRVTAqSsrAw+nw95eXnivlGjRmH//v2y44LBIHbt2oW9e/figQcegN1ux4UXXoh58+aJqwiyLF++HEuXLpXtmz17NubMmSPbV14eQ31YH6OvXquKigpxu7GxUSZsS0tLNcOA7PU6cEDqxNTa2io7h3U46uvrI8arqZE83yNHjhgKOyrfrDzPp3S4sq/+bVkl1a9XWbkLQIFs3/f761Baam7hkB9KnQAGAAD8HY1IT/MAsKOpNYjSUmPdzYRrVdeQDyBsVVRXlSPkzwQQzmzd/2MF8lzGbJXv92cByAYA2INVKC1tQ0s7B2BoeOy6NpSWVmmeL9DcOgBAOKR64EAp2NtYZ5sPQNhe+bH8CEpL5XEY9vlYKioOgOsMRuwHAD6QC0AeMSit6AQQ/gL025kNcDt52G3A5KPrYeTjor1VmqdAuq0dpaWV6ifEwPDhw6MfBJMCpK2tLeLbmtfrjYit19bWIhgMYsuWLXjzzTfR0tKCm2++GQUFBfjpT38aMe4111yDK664Qj4xhQNSXl6OwsJCw8qqr9LXrxXrUAwbNkzW+8PpdKKoqEh2vNr1Yl2TQYMGyc7heR4cx4HnefA8HzGe3S69pUaMGKHr/Ank5ubKfi8sLIwYNxXo639bZukp1ytD5ebl8eagqCjH1Dh7j0jbBfmZyPQCB48AnYG0qH/PEdeKCXOMHF6IgUzzL1/2ABh9e7Qx9/cTjumPoqJw/gPHhX8GQm5D77W0rre1PQ0YNkx+/LBCadvhykNRUZ7s8ep69TGHFw0RK3OUDMiP3FfVIH22ZXlCePb2jK6/q6zIg1UoHBS5Lzfb1a2fNaYEiNvtRkuLQt21tMji4oCUfHf11VcjIyMDGRkZmD17Nj7//HNVAeJwOGQ3Di1sNltKv5FTib56rViHwuv1IitLenM2NzdrXhP2erGuidvtjjjH5XKhra0NbW1tEY+x53o8HkP/B8q265mZmSn9f9dX/7askurXK1xlIQ8FdHQat9HFc5hxPE4OHld4u7XD+FjCtaptDIcF0tKALB/XlavQNV47B5vNWOVGRa0UXhicJ53nc4fQ1BrOnzAyN38gPE64nbv8+Gyf9Lqb2iLnFu5pEhlqcaRrvw6fO/IcIcHVmS7Nw8z/UaYncsxMj/n/53hi6pmHDh2K5uZmHDkiSd09e/ZgxIgRsuMyMzNlS6ED1sq6CMIsbGIouxYMoF8F09DQgMWLF+Pvf/87Ghsl61mtkkVILk1UGS4loRLJRC1BUlkZY3Yct1Nq/BUMmuvdAUh9KvpnA2lpnKyHhakkVKYKhnUbhETUJoNJqEIVjFrlirwKJvJ1aiXhGinDVUPZidUoykXpoj1PMjDlgHg8HhQXF2PJkiW4/fbb8eWXX2Lfvn0oLi6OOPaCCy7Ayy+/jKOPPhqtra145513cOWVV8Zt4gShhtZaMIB+Fcyzzz6L+++/HwAwcOBAcf+YMWMijnW73airq6MyXKJXoHaD7DC2aoHmOG5nuApGoLU9XJprhFCIR2WXAFFvHmZ8ToIAycsKOw4CogAxWEEiVMGoVa5Eq4KxIkDUxIKAZQGikYTanZj2XhYuXIjKykqcc845ePrpp/Hwww8jMzMTH374oSxp9LrrrkNeXh7OO+88zJ07F2effXZEpQxBxBurfUBeeeUVcfvw4cMAwjkcJ510UsSxQsiRfa6tW7di1qxZ+OyzzwCE119QtljXghwQojtRczusOCCtGg4IYK4ZWV2T5DgM6BIgVvqA8DwvOikD5bmX4o23uc2YO6/rgLCNyFT6gGj1QdErw9UTRlZFQ48vwwWAnJwcPPPMMxH7S0pKUFJSIv6enp6Oe+65B/fcc09sMyQIEyh7eBjthDpmzBjs2bNHtm/27NmqVVtqAuTcc8+VVcA4nU7Vc9UgB4ToTpSL0QFxckCYb9xqz6EF2yZ8gJoD0s4DiP7eqmuSyl8jBEjXjTcUCosjPccBkDqhqokGVhCoCQcrDohLJyUyw6JoUA/BdF8XVIBasRO9DLaHh8fjMRyCUauFV5aBC7A5IDzPw+/3y8QHYDz8IsyThQQIkUzYhd+kfebHUWtEJmDGAWEFSEFXIY7XggPC5n8MUFSbsGETI2EYPQeEFSBGQzAcB91E2rkzgKEF6o/5+nIIhiBSGUGA2O12pKenGw7BKPM5jjrqKNXwCyA5IKFQCH6/H99//33EMWYEiFojMoJIFvFLQpWETCwhmEqZAyJUrUj7jOaAHFZpwy4QzbVQIuaAqAgQRzonOhaqIRiV164XfgHClT97/sbh4z9FipTeFIIhAUL0KgQhIbgKbIm3ngPCOifFxcVYsWKFZghF2Y5927ZtEccYbcPOzlWAHBAimagmocahCoZ1QCyHYIT1Wyy0YpcLEPl7OZproUTPAQEkR0VNgKi9dr3wi4AjnUOeSouPeCahdrcAMZ0DQhCpjCAk2Ju61+tFZ2dnRA8bFuExl8uFjRs36j6HEQESiwNi5lyCiJV4JaFG5oBwkHp3GB+nolZyUmJJQmWFjFYOCGDSAdG4Y2Z6gKo6dTGj9tqNCBBhXCVWc0Dsdg6OdF7WFp5CMAQRR7QECABdAaJ2nhasu9He3o6vv/464phYBIjR5FWCMLomih7xCsHEqwqmMkoOiFEHpKVNujaZ8rcYMjzSeyzWHBB2/MaWyKoaswvRsagJhFhEg9Lx6G4HhAQI0avQEyB6OSDCeUoxoAbrgLS2tmL79u0Rx8SShEoQRnhjPY/s83j89k+xLSamJjasVMEcaZC287LiG4JhxzKaA+Jn2rArhYOZHBCe56M6IMJ4gWDk9VQTIEYdkHgLEGUYhgQIQcQJnudFIcGKBKESpqWlRbPmX3BHjIgBduxvv/1W1jlVwEwOiBHRQxBKLrufR1Mr8Jf3gOZW604Ie4N0dLWuseKACM4FxwH9Mq07IIIAcaQD2V1FbGlpnDie0RCMn1nBVikczAgQtkBOSzjoJcm2dkT+3xgVIE4HJ/6fiM8VRwFCIRiCiBMdHR2iwFBzQILBoGytFhYzIRhWgPznP/9RPcbI2kYC7AJ2BGGFOu386qiwYkO44VtxQKrqwz/zssL5BrI+IMYWrwUgCZCCHHk4Urh5Gg3BBBgHRFm9YkaA6AkZ5dyASIGkGoIxKECASJFgNQcEiBQv5IAQRJxQ9gARYB0GtTwQv98vrpprxI1gx963b5/qMXV1ddEn3EVamolPI4JQoSbShDOMcIPkOOlmZ9YB4XmpfXr/rrwNWR8QgwIkGJRCOcreHUIeSNwdkDZ99yigE8oR8OnkqMQSggEiE1HjGoIhB4Qg4gPby0NLgKjlgWidpwXbp6OiokL1GK39aowZMwYnnngiAOAvf/mL4fMIQiAeAsTtlDpwmhUgTa3SOULiqDwEYyxEVF0vhTyUAkS4yRt1QFgBEksOCJtLouWA6FXpqIkvMwIkwgGJowBRK81NJiRAiJRh5cqVuPLKK7Fz505L52s5IGw3VDUHhG3fblaACOvGAMCoUaPEbTMChOM4bN68Gbt27cKvf/1rw+cRhMCReuvnCsLB5ZAEiNk+IFWM4ScsIGclBKOWgCog3Cxb241V/8QrB8SIA+LVyQGJpQoGUKvgMX6uElYoed363ViTAQWfiZQgGAzi4osvBgCsWbMGR44cMT2G1RAMe56REAwraFgBMnLkyIj1ZIzidDoxevRoS+cSREwOSJfYYB2QQBAIBHjY7cZuUJWMAOmfHf5pJQTDjiM4KQLCzZPnwzf1aOu3BHScCzN9QGRCRjMEI/U8iXBAYugDAkTmfMSSA8Jes1jGiRfkgBApARsaqampUV2bJRqskGATRaMJkFhCMELuCACceeaZ4vbJJ59sYMYEER9iESCCA+J2AE6m4sJMIqrcAQmLFitVMA3M2zMnQy5+zHZD1QudsK6CWvdSFpkDYiAJNe45IHF0QNh5dncCKkAChEgRlMJg//79pscw4oCo5YCwIRgjDojWWi2zZ8/GVVddhWOPPRbLly83NGeCiAc1DbGX4bIhGMCcAFF1QCyEYNgunU5F+anZBekM54BEGcuYA6I9N7UeKGZCMInKAenuBFSAQjBEiqAUBtu2bcPIkSNNjWE1B0TrPC3Y8VgyMjLw8ssvG5or0Xepa+KR6Qn3trBKICAXHFYdEJ7nZUmo7E3fTCKqrHtprjSegNEQTCdzs4/of2FyQTo94eBIl9qSxzsHxEgIJs3EV39lFYzPDRivsVOeK4WKKARDEF0ohYHa+irRsJoDEksSqpH9BCGw5kseBTN5jPslHyEizKB0J2oa1I+Lhj8QzqkAuhwQRjSYESBVddJrKVArwzUYgmEdEIfi67HZEIxeDgggOQnx6AOiJ47U3B92btFgHY9w4qjxc5WwQolCMATRhVIYqK2vEg0jZbjxTkIVSEtLo0XkiKiULAi39f7fD8A/PrM+jlIcWHVAlAvIyUIwZhwQNgSjUoZrNATj13FAYgnBqAqQrvHi4oDIGpFFXwuGdXqiwa5bE6trkWohGBIgREqgFoLRapuuhZEk1Hj3ARHw+Xy0iBxhiiMWXQsg8qZmVYCwQsbliCEEoyJA0tKkNuKGQzA6Dkg4fBDGbAhGTTgkzAFRuDNqr73TRH4Nm4Qaa+t0H1XBEEQkSmeiqqpKVuJqhGT1AVFzQLTyQghCCyvtzgWU4sCqmNF1QCxUwWR4ALdTEgpCGMZwCEbPAUlQCKa9MzKnRmscI51QjbRiN+eAqG9bgapgCEIFNWFgNg8kWX1A0tPTI8ItlP9BmCWeAqShWf8mqoWeALHigCh7dwiVMEa7l8ocEJ0kVEMhmCjCwWgljKG1YDQcEDbJl8WUAxJHAZKfzW53v2NLAoRICdSEQbwckHj3AQEiBQc5IIRZrKw4q3durYUF6eIRguno5NHQFdnsrxAgZheQ69SpXDHdB6RrLJtNveOn0W6oph0QZiyta9hdDshpxwG/KAHOOin8s7uhMlwiJVDLzWhqMveJaiQEE60PiBkBwnZrJQFCmKWjkwdg7Vuo2o2tpiFSAEQj0gGRyjSNJqFWGeheaiRnA0hMEqqWa2FFgJhdDVcr+ba7ckBsNg7L/1/3Ox8C5IAQKYGaMxEvARLvEAwQKThIgBBmibcDYiURVemAWAnBVNVL2xEOSJdoCASBTn/0EJEsByQiCVXabomygq3wnIB28zCj7djloRz1m7cjXXJHWHdGK/fFjAMyulAKnUw6PnXEQzwgB4RICeIhQNhQiplW7FYdEL3fCUINjpP6bjRGqb7QQ8sBMQvbpdPt5OC0IEDYm6wysVEZNlG6Gkr0ckCshmC0XAuj7dgDBjqhchwHrzscioq3A+J2cvjmJWDPAeCME42f1xMgB4RICRIZgmG349EJFSAHhLAGm2MRbQ0SPeLlgLA3SKut2PVCFDLRYCBsYrQTqpkQjFbeBttfw7gDon2cGG5ixJFaG3bAnAMCAAPzOBSP47p99dp4QwKESAkSGYJJS0sTHZFofUCMhmAoCZWwAnuDb0gBAcKO47YYgtGrEtGqDtFCtxOqybHEEIyRHBAdQWMkBwSQxBYrjrRCMEETnVB7MyRAiJQgkQIEkISF8nn8fn9cQjAkQAgjOBLogBypj70M10oVjF6ORDwdELNj+c0IED0HJEpDMwE24VZoomi0A2xfhQQIkRLEU4DY7Xakp8s/vdQEyDvvvIPs7Gx88cUXAMJxXJfLBSNQCIawAvttOiYHROXGFo8yXEshGD0HxGTehn4nVGnbVBVMjEmoRh0QnyzhNrzNChC2B0dhf+1x+hIkQIiUIJ45IGwCqoAgQNjneeSRRyLcD6Pt1CkJlbACe1NviPyTN4yaO2G014bsHOZG7nZCkYRqzFFhHZCI3h1mQzA6DogjHUhTqTTRnFfUHBBpu6lV+7UadUDUSnHZNuzzL+VwzNDw877zYO/K5bAKVcEQKYHgTKSnp8Pj8aChocGyAFELowgORWtrK3ieR1VVFbZu3So7xmj4hR1P63eCUIPtrRHvKhgrdn9FLbOKba78MaN9QPRu0F6X1FfEUAiGEWhKt4HjOHhdPBpbjDkgpnJA4uGAMOO1tAP9suT/J9k+YOfLHNo7AY+LBAhADgiRIggCxOfziW6C1TJcNSEhOCA8z6OtrQ1r166NOMaMAKEcEMIswSAvu5k1tQKhkPm8DUDdnbAiQA5KvfQwOC8BSagWS2eByBAMYK6xWbwakcXkgDCv2eMKNwIj8SFBDgiREgihEa/Xa1mA6Dkgyl4gq1evjjhGLXSjBQkQwizKnAqeD9/4siz86cTLATnECJCB/eTOglEBoluGazIEE23dFaOt3Xmej9kBKa3g8chrPL7Zqz8nAXmjtPBPZZIvIYcECJESCA4IK0Cam5sRCoVgs0U36nieNyxAGhoasG7duohjfvjhB8PzVQoOygEhoqF2Q29sSQ0B0i8LcDo4uBySs2I0CdWwA2IiBGNPU1+/RbjJRwvBGFm/JVoZ7pxFPDZ/J99n1gFhhZLXWH57n4JCMES3w/O8qgAB1Ktj1Ojo6BBL3/RyQABg06ZNqKurizimo8P4Jzg5IIRZ1HIqrFbCxEOA8DyPQzXh7UH9wj9jDcFE5oBI22aSULU6pgqOij8A+HVW/zWSt8E6Fmol0UrxoTdWeDxJMH1XCrS282hmWsYru8QSJECIFKCjowPBrs48bA4IYDwMw/YA0auCAYB9+/aJ29OnTzc9X4AECGEeNUchrgLE5NoytY2S4zAoL/zTSit24yEYA2vBdM1HLf8DMO6oyFwZDdfCZuPE+enlgLDoOiDMa/3Nn3gcO5dHLdMcjgRIJCRAiG6HdTmUDogVARItBFNVVSVuz5gxA+PHjwfHcVi2bJnhOVMVDGEWrRBMvMYy64AoE1ABRR8QC43IIspwLTYi03JAjPYCMZo4mtn1UaEUIM0aZblaYkY5NwAorQA++Vr7cYJyQIgUoDsFiNfrxRtvvAGfz4eCggLDc6Y+IIRZEuWAZPuA+mbzAoRNQB2kIkC6owrGlAOiM57R0tkMD3C4JjIHpLRS/XijOSACdUyvlwzjRXZ9BnJAiG4nHgKEXc8lWg6IUoDYbDbk5+ebmjM7nt1uh8Ph0Dma6Ol0dPKWS2YFEuWA5HS9XWITIOH8BXtaeMVe5XPooec2+Cw2IouWAwIYd0CiCRAg7IAIOWRA2L1Qw2gVjAC7QjE5IJGQACFixu/348ILL8QJJ5yAvXv3Rj9BAdudNB45INEESGVlpe6xRmDn6PP5DHdQJXoeO3/gMWgWj2Ou5NHSZl2EJCoJVRAg7Z3ym2g0ZAKkKwmV4zjRBTG+Gq70nLo5ICaqYLQcELVSVzXMCpBQSC7grDgg0QSGlwRIBCRAiJh5/vnnsWrVKvzvf//DokWLTJ8f7xCMWhKqngNiBafTCbvdHjE20fuY91g4mXDPAeCPb1gfR81RaGi22ogs/DMtTW7tG3UtAOBQjfTcgxkDUBAg3RKCidI8zMs08dIbz2+gDBfQXg+mtEIjB0RvNVwdgeF0AOl2+pKihAQIETPvv/++uL1p0ybT58cqQILBINavXy/+Hs0BYZ/PqgPCcRyGDh0KAOJPoneyq0za3nswBgdExVGw2o5dEAcuh7zBlSkBopIDAkgr4sajD4jZ9VtEByTGJFQzOSACMgFiwQFxaswZoPCLFiRAiJjZuXOnuH3ccceZPp8NwZgVIIFAABdddBEefvhhcd/AgQMjjtNyKaw6IACwdOlSXHXVVXjqqacsj0GkPkZbdkdDNQnV4oJ0MgHCpB+ZyQMRqmBsNqB/trTftAOi4zaE128Jb0cLwYRCQDAU3jYSgjGcA6LngGgJEAs5IMcOkws5FhIg6lAVDBETwWAQFRXSu9VKOIJ1JMzkgPA8j5tuugmrVq0S911zzTW44oorIo7VmpdVBwQAzj77bJx99tmWzyd6BmaXgddCNQQTYw6I0gExI0AEB6QgB7Az4QGnSQES0CnDBcJhmMaW6A4IK2SMOCBG129JlgPiSOewYwXw9qfADU/InTISIOqQACFi4ttvv5X9zroZRrEaglm3bh1eeOEFAOFVdD/44APMmDFD9Vg9ByQQCKg+RhBA/ASIWhJqrFUwVgVIMMijoja8rfzWLiahxiEHBDC+fos/IIkgLQck3gvIZXik1XqFcFinn8fhGvXj9cQMAORmcjjr5MgwHQkQdUiAEDHx5Zdfyn43u4AcYF2A/Oc//xG3//jHP2qKD0DfAWlsbFR9jCCAxDogamuQmBnLqgBpbA2HPAAgP1v+GBuC4Xk+aoVXtJu9kJwZ7dr5g4wA0XBAWAESbnMun1unn8drHwFljINh1gEprwovFKiGnpgRyFQxVUmAqEMChIiJL774Qva7FQFiNQeEFS4nnXSS7nPoOSAkQAg91BYZs4JaDki7hQXkgNgFiN6y9x7FeJ4oi6hFS/gUrl+nHwgEeFm4Rz6n2B2QF/4BzH9Grh7MCpAyjfBLtLHUxhQgAaIOJaESMbF161bZ78kMwSj7h+ihlmyalpaG9HSd1HWCgNSYC0iAADG5fgsQvol3LZ0El0PevdToejB6q8WaTbo1GoIBopTOsqLIYg6IUnxozUlArQy3Tuc7lBEHxOMKJ/aykABRhwQIERMHDhyQ/W7FAWEdiMzMzIQIELvdDpdL/lXO4/FQAzEiKqxwiC0EE3lztCJA2HPCDoj0N2zFAVHeoFkBYiRHJaoAMdgNtTNgLgRjfAE57fd4JvO9pKlr/Re9OepV1AhwHBcRhiEBog4JEMIywWAQtbW1sn1WBEhDg9SvOCsrCw6HQ2xtblSAGCmnVYqUWEpwib4DK0A6THYblY0ThxVsARUBYqEMV88Bkd+Uo48VremX8RVsJaGgdaOX54BEn5veWMrxhNeqJ0CMOCCA/BoCJEC0IAFCWKa2tjbiw7ijowN+v8EORl2wDkhWVhYAqdW50RwQI+W/ymNiKcEl+g5K4WC1F4ia2xEfB0T63YoDEhGCYW6WRhqlGc0BAYx3LzUUgjEqQIzmgHSNpyeSjOSAAJGJqCRA1CEBQljmyJEjqvvN5oGwDoggEowIEHJACC1CIR53PR/Cr58MobU9tkXklLkbRxrUjzMzjtAdtLsEiJ5oyPRKToTpHBCdKhggWg5I9CRUm40TxzMegtF+zKwDoszt0CLSAaFQrxokQAjLaAkQs2EYQYBkZGQgreuT2YwAcbvd4nl6kAPSd3hjPfDY68DzK4EHVsRXgNTEQYBkd/0pBoOAP2Bufgl3QBKZhKoXgjFQhgtIboJyblrX0WwVjNaCg+l2GM4ZU1bC+OijRhUSIIRlqqurVfebdUCEEIwQfgHCyagA0N7erhnSEZ7HaPdVckD6Dms2SzeRpat0DjRAp1KAWKzaZoVDtk99v9lxIgSIle6lEQ6ItG0kBBO1D4jRBeQMJKECUohIKUCO1Ksfb7QKpqI2nN+jNcc0E3dLygExBgkQwjKsA8K6CVYdEFaAsNtafToEAWJUSCiPIwek98ImZrYaWARNj7g5IIw4yGL+FOMpQNQqbdTQLcM12O5cORbHAWkqFSfGQzDStkNn5VjBXVAmoVbVqx+vJ0CcDmBgv/D2V7uAu5fKBQjbpC1kwqiiHBBjkAAhLMM6IMOHDxe3zQgQv9+P1tbwp5zgeii3tQSIkIRKDgihhG2eZSXPgiVCgMTZATGzfovyeKtVMHp5GzIHpCX6XVdIHtW60bM3X6NVMLoOiEc4HuhgBFd1vfrxejkgHMfhid9Iz/vwq8C//yc9XpAjbSudMD3IATEGCRDCMqwDwgoQMyEYtQoYQC5A2CRVgWAwKAoXqwKEHJDeS7TunWZQVsHUNFosw1XJAQHMCyTW0XE5uJiTUO06fUDM5IBoCRCjVTCdwehJqIB2M7KqOvXjo/XuuGwqh/93pfT77nJpu39O5PFGIAfEGCRACMtoCRAzDogRAaLmgAjiAyAHhIjE7Yhf1UEiklCzYhAgPzJLxQ/Ot5iEqrOCrawRmYkQjJbT4LMSgjHggAAGBYiB0tnjh6v/vRTkRj9XDbaSCCABooVpAVJXV4f58+dj0qRJmDVrFjZv3qx7/KFDhzBp0iT84Q9/sDxJIjWJRwhG2YRMbVtNgJgtwQXIAelLxFb3IifeIRibTX5DMhuC2V0uvbqjCxWt2C01IpPfLDOtOiAGBIjQbVR9HKYRmcHKFTYPpLrBfBWMQJbKdxiOA/plRu43QkQVDAkQVUwLkEcffRT5+flYv349br75ZixcuFB3Ma8nn3wSRx99dEyTJFITwQFJS0tDYWGhuN9MCIYVIGZyQMw2IVM7jgRI76XDYDJmNAIBXlw1VsByH5AuAeJMl+dtmHVAdjEhgtGFiS3DNdOK3UgOiFr3Up7n8fp64J9fSl8k9EIwZh0QI91Ls1S+w3hd1oUDhWCMYUqAtLa2YuPGjbjhhhvgcrkwZcoUHHXUUdi0aZPq8f/5z3/A8zxOPfXUuEyWSC0EB6Rfv34ywRAPByRaDoiZdWC0jqMQTO9FbeG3eI1jNQSjtYKtWQEi5CjkZAD9suJfhms1B0QzBBOlffrqL4ArHwQ27pDu0kb6gADybqixhGBUBYjbegMxSkI1hsHGsmHKysrg8/mQl5cn7hs1ahT2798fcazf78fTTz+Nxx9/HKtXr9Ydt7OzE52d8neO3W4X1wMJdX0FCSm/ihARJPNaCQ5IXl6e7Gbe2Nho+Pnr6+vF7czMTPE8dkG6hoaGiPFYV8Tr9Rp6PqXj4Xa76W/LBD3pWimFQ1t7CE6H+rF6qDkKtY3GroHyeglzcqaH/wm0tPEIGazxbG0HyqvC20cXht0Ddqy2dmNzk3Vltcmfn+PCSbyt7WEHJNp4AaYKRu1YDyOQmlojj9n8beSY9jTta8LezBuapeO0qmCUr08NZcgECDsgXpf8PKN/++wc02xAut34/3E0esL70GawZawpAdLW1hbxrdHr9apa7q+99homTZoks+a1WL58OZYuXSrbN3v2bMyZM0e2r7y8HIQxEn2t2traZFUorOtRUVGB0tJSQ+P88MMP4rbf7xfPa2uTvtqUl5dHjMeK3kAgYOj52DGF34XrRH9bxukJ1+pIbS4AScTu+L4c+VnmP7Cr6tMADJHta24NorT0gPoJKgjXq7V9CIA0pNkCaG1pBBDOcDxwqBqlpcb6in9Xlg5gEABgUE4zSktrAABptqEIhjg0NHWgtLRCZ4QwlZVeAOEvko2NNSgtlX+Ge52D0dpuR11TAKWlB1XHaO3g0NLGocM/GIAN4P0oLT0UcVxzGwdgKADgSG0bSkurZI/v/lH+fwUADXVVKC1Vr9ntbPMBCDfvKD1wBKWl4TjRoepBACKtk5ojFSgt1Y9NNbZKcxRIt3WivaVJfC4Ahj/Xmhuk/yePK4Sysvi/Z1L5fcjmBOphSoC43W5Z7B0Ix+Ldbrm/VFVVhffffx+vvPKKoXGvueYaXHHFFfKJKRyQ8vJyFBYWGlZWfZVkXauysjJxe8iQIRg9erT4O8/zKCoqMjSOnakBHD58uHheVZX8Q0o5HiuEBw8ebOj5lG+KwsJCFBYW0t+WQXrS+9DhlP/uyyqEwT9JGbyKa9IRSDP096a8XkKowue2YyBTXuHLzDc8ty2SXsdJx/hQVBQOK7qd4fBGEE5Dc8vcKW33z++HoqJ+ssezM4DqBqC1w646XkMzMPEKoK4JCHbpOo8rXfXYIBPuCcIdcUyjijYYPKi/5jUpYvSg05OHoqKwkKrVSD0bMnhA1OsbCoWdH3ZtzZxMBwqHyK+L0c81MH9/mR6b8fMM0JPeh9EwJUCGDh2K5uZmHDlyRAzD7NmzBzNnzpQd9+2336KyshKzZs0CEM4dCYVCOHz4MP785z9HjMsuv66HzWbr8Rc8WST6WtXW1orb+fn5svyN5uZmw8/NhlJycnLE83JypAL8pqamiPHYMtyMjAxDz8fmlSjPo78t4/SEa9UZUITsWjnYbObj+f4gD2VNTVuncYsZkK5Xhz88J6dDaE/Od83V+Nz2HJDmc0yRdJ7bGUJzWzhkZGRu4XBAeBxneuTzZ3jCc21qCzfrUq6B8ud3eRxRVJ3Y7erPbbOFXYDW9rBIUh5zuCbSmXI5tK9Jpkeae3Nb+Lj2Dl6zwkbt9anNMcMTkiXdet3y/6fwccb+37N80hx9HnN/L0bpCe/DaJgSIB6PB8XFxViyZAluv/12fPnll9i3bx+Ki4tlx/3kJz/BP/7xD/H3V199FXV1dbj11lvjM2ui22FLcPPz82U5G/FuRBatDJeqYAglyq6VdeZWBxBRS0INBsPVMXadduFKeJ6XJaFaKZ0F5CW4o5notpCIajQJNdr6LUISZTAYTpJ1KxylwzWRN3u9hl8+dzinRC2p9VBN5D7jVTA8AE4z/wMwloQKhJvDyQSIS56rYwZ2jpSAqo1p+bRw4UJUVlbinHPOwdNPP42HH34YmZmZ+PDDD8WcDYfDgby8PPGf2+2G0+lEdnZ2vOdPxEAwGMThw4ctncs2IcvLy4PD4UB6evjdmugqmOrqatnzUxUMoUQpHOrNrY8ojaNxQzd6oxdgb/jOdLkAMVMFs5tJPRk5WNoWBYiFPiBqN2h2PRi1Uly159G70Qs3YWUVjD/Aq1avGG1EJoyn9/9rpAwXiKyE8bqtC5B0O4dLzgxvzzkrfk3xehumHBAgbI0/88wzEftLSkpQUlKies71119vfmZEQgmFQjj99NOxdetWLF++HFdffbWp81nh0r9/fwDhkEZtbW1cBIjb7UZaWhqCwaDMAdm0aRPOOeccBALSJzo1IiOUKIVDPB0QICwa1ConjIzjVF1AzthNSsgvHZQHeJhVZoXxjIoZvcXoAHkZaVNrZEfQeAmQihp53oWRsdTKhPU6thp1QJTNyLwuWKqcEnj7AQ6VtcCAfiRAtOjZASTCMl9++SW2bNkCnufxi1/8wvT5bDa4kGAlhGGshmBY14PjOFGQsMf85je/kYkPgBwQIpK4OSAaAsRs91LlCrZWQzDCfLyKtW6ExmadfiAYNLCAnM5idED0ZmStKnPWcxoEAdLeGQ5fCaiFXwDjIZg1m4F3N/K6/7+GBYjSAXHJ/5/MwnEciY8okADpoxgtJ9Pixx9/FLeHDRsGQLrBW3FAXC5XRCKyIEhYl+R///sflBgVIE6nE2lp0qckOSC9F6VwqGuyuICcVgjGpABhx4klBCPktihvqmbH01uMDlC0Y1ephjXrgLCigV0P5tCRyGMB443IKmuBS+7l8X/vS/+/SiEUbTE6AbUQzHHDJBfktjkRpxAxYjoEQ/QODhww3sdADUHAOBwODBgwAIDkgLS2tiIYDMpu9loI4oINvwgIAoR1QDIyMiIEjlEBwnEcfD6f+JwkQHoviUxCBcx3L2Vv2M50wGWxE6qfafrFomzH7o2S+OgPat+wASDDI1V/qDogKovKRUtCFWhuk8IdmgLE4Gq4Au9/Lm0PygPKKqXf1QSWGsoQjMfJweXksO1FYPN3wKVTjI1DGIcckD7Knj17LJ/L87zogAwdOlQsBWMrYZT9YrTQEyDCvo6ODnR0dCAUCkV0zAWMCxDlsSRAei+pFoI5zIQa+ufI14IxM5bWuitm14ORJaEayAFRUqsi6IyEYJTjHVKppgH0HZC0NA561aeD8uS/W3ZAusJcY4ZxuLqEg9diW3ZCGxIgfZS9e/eK20L1ih5vv/027rzzTnz//feor68XXQgh/ALIb+5GwjA8z4vuhrJHh3JfU1MTDh06hI6OyE9XM7kcgkhyu909voae0CYyBGNxHEbvst+QzTogQvt0ABhawFkKwYRC0sJ4SofA7How0cpwZTkgKgJEbUE+I0mogDwR1UoIBkDEAoEsAxUJs8ZzQOQCI5qLRMQOfQL3UVgHJJoAqaqqwmWXXYbHH38cY8aMkVU1sR3+WBdDbQE5IFx9s3jxYtx6662oqakB35UCrxeCEcZTW3MIQEQnXj0uvfRS2U+id6LM3YiHA5LNCBCzDggrQAr7WwvByBJHFTdVdr0VtfCIkqhluDoL0gWDPGpVFkC3IkAOVkceC+iHYKIxUN68NKYqGCKxUA5IH4RdAwWInrNx8OBBBJl+ym+//ba4zTogbPfSujr1pSk3bNiA+++/HwBw6JC0bkQ0AdLY2KgpQMw4GQ8++CBuvPFGDBw40PA5RM+jU14oFZccENaiNytAyqqkUENhf2shGF0BwtwsjYwXtRGZrApGXiZc32y+dDa8qqzQvVTar1kFE8UBmX0W8Pan6o8N7CfvXmq5DwgJkIRDDkgfZN++fRH79EImbNtzJawAYRvNsavcsqxfv17cfuutt1TPFWBFiZ4AMcugQYMiWksTvYtEhGCy4xWC6W+tCqZTp3SWFSBqJbJKYnFA1MIvgPEcELUQjPLmH80BeekuDm8sUn8PK3NAjLa5j3BAKASTcEiA9EHUElCtChA2BGPEAdFaJfHEE0+M2Gc0BEMQSpQhmIYWWFoOPV4OiCBA0u3hpl52OwfBcIxPCEa6yRoJwRhtxQ5E5oBoCRCjZbiCAOn086IwPHaY/Pi0NH3R4PNw+Nk5nKwdvYBSgBiFHJDkQwKkD6ImQNTWWxGIpwOiVsUCAJMnT47YpxeCef755zF27FhZOIgggHBys9IB4fnILpxG6PBLoiWbWTHedAimqyx0cJ70jVwIw8RFgDA3y5YE54AcqVcf03AZrtC9lCmUY6+tGXIjc9dRkBO5zwhqfUCIxEICpA8SiwOiTFgdNGiQuM0KEC0HpK0t8i6QkZGBsWPHRuzXCsEMHDgQN9xwA7Zv307JpEQEgaB6joLZsAkQnxBMS5sUAirsL+0XwjDxyAFhv62bTUKNlgNiNASjmwOi0tiMFYQZbmDcUeELcRSzxk00chRhkwyP3L0xQzYloSYdEiB9ELYEV8CoALn44otlj7GJq2wIRssBaW+P/HScNGmSagIs64AcOnQIlZXhr5EjRozQnCtBKJuQCZh1LQCdEIwJASIvwZW2XWYdEEY0KHMkPCYFiJ6YAeSOhbIRWcw5IK1hdcgKmwwP8Nxvq/H4jcCHjxnPz8pROCeZXuvCgapgkg8JkD6ImgAxGoKZPn26KAxmzZolO86qA6IWfgHkDsh3330nbg8dOlRzrgQRr+6lyrGyfdKNMbyAnDHKmVJTNQck7mW4JpNQ1YSD3c6JvUUiHRD11262DJcd1+cGBuQGcdvPgFGFMQgQj/XQibLDKoVgEg+V4fYx2traVNuwG3VAcnNzsXbtWqxatQrXXXed7DirDoiWAGEFzQ8//CCbA0FoobV+S6wCJMtiHxC2LXhh/8gVbI2OxTo7ejkgre3RV9eNloQKhN2Etg4zSajaz6kmQGQhGItNidUcEFaMmSGcmyOJK6vjEMYhAdLHYG/kLEYdEI/Hg9NOOw2nnXZaxHFGklCVDsjAgQMxYcIE1WNZQcPOm91PEEri1T4dUHRCtVgFc8BACIbn+ail4YlyQLSciww3UIk45YBEcUCsCxC5aMj0CBU01hYfZIlWiUPEDoVg+hhs+OWkk04St406IHpdRz0ej5ikqhWCYR2QhQsXYuPGjXC51IOtWo6KWs8QghBQNiETiD0EY22saCEYnpeLCy38Ouu3yKpgDFT7+KOEYAApmbOxFWLHYgCoiVMfEHaVXavhDmUVjDBnoax3uvp3G01KTg3/POVoa/MhzEEOSB9DKUC2bdsGwLgA0VvAjeM4ZGdno7q62pAD8qtf/Uo3oTQjIwM2mw0hxcIP5IAQemiFYOKahGrGAdEQIMoF5KJ1/zRahmvaAdEQDoIrEQyGBZcwX00HxKAAWbcFuHBhCKOGMM9lUYAoq2CE/6N1T3BY8yUw8wxz4/31bg7vfwbMmGhtPoQ5SID0MdguqKwDYiYEo0dOTg6qq6sNOSBazoeAzWZDdnY2amtrZfvJASH0iGsSKluGy+QbmBmrlfmmz4oYZTfUyMUI5LACRClWzJbhGsoBkbVjh2ZSqoBeCCYtjYPbyYvCbdW/5Y/HMwcEAAbnc7j2AvPj5WdbO4+wBoVg+hisA3LyySeL2/FwQABJHDQ2NkY4F4DcATGyiJxawik5IIQerABhb67d5YAIY9hs8rwCs+3Y5Q6IPD8hFgdEYwkozWZkWg3doq25oqwyMfqYHloChOgZkADpYwgCJCMjQxb+iKcDAoRjxmor4ppxQNjxWMgBIfSQJY7GsH4LEF8B4lS4FqwAMTKe7lowJlfDFcSMPQ2aya8ZCgcECL+vtTqtRlt1Vq+vRtwcEA8ljvYkSID0Ifx+P0pLSwEAI0eOlDX6ircDAqhXwrAOiFUBQg4IoQd7o45lATlAEg/pdsDpAIR7tZmxhPJZZdiEzQEx74Boj2XGAdETDaybICSMhit2wtvKRaijCRA2F0ZJvEMwRM+ABEgforS0FMFg+JNn5MiRcLvd4lL28aiCAaI3IxMcEKfTaWhFWnJACLPEo3RWOZYzPewUmG2fDhhzQGIVIDabNDcjVTCCANELm2QwboIQgmHH7p8tPz6aAGHDPkqshmA8Lrmwy7QoZIjugQRIH6KsrEzcHjZsGDiOQ0ZG+CuEkRCM0+lUbZnOEq0ZmeCAGMn/UI4HhG8CrHNDEEq0wiaxOCDOrpu74DSYGSsZAgSQ8kCMOCBsCEYLZRIqIF/orr/iu0G0HJBTj9V+zGoVDMdxMhdE2U6dSG1IgPQhWJEhuAjCzdyIAxIt/MKOC+g7IEbCL0CkAMnKyhJdG4JQQ7t7qfnmVErxIHYvjUsIRnIYjDgq/ijNw4QcCzOL0em5FmpJqGwCqlKA6JXhAsAff81p9tew6oAA8lJcckB6FvRJ3odobm4WtwXnw4wDYkSAJNoBofALEY3OeDogTAgGML+CLRC/JFRZGa5FB+Rf3/B45FUelV3fDXQdEObaNcYhBHPGiRy2LrXhYsXKCy4HYI+hIQTrgFAOSM+C+oD0IViXQxAeggPS0tKCUCik6i5YdUDUBEisDggloBLRiEflioCQ0Co6ICYXkGPnoxQgZktn9daCAaRKGC0HpKWNx/l38bKSWuMOSHh9Gb0QTDQBIqDsXmo1AVVtPBIgPQtyQPoQrAPi84V9S0GIKB9nEVwLsw6IWgiGHBAi0WiFYOKRA+JiFpBj25NrwbZZV4ZgtPpsaGE0B8QfAPyByLkdOhL5PLHkgORmypPIo+WACPSLswCZcxYHjgNOO07eaZZIfcgB6UPoOSBAOAyjTPAMBoPo6Ah/PYvVAQkEAggEwp+i5IAQiULWvdQnLUxmJm8DCAsMZQhGcEAEYRGtfTpbEqx0QNjES0MCJEr7dGUvEGVCplr/Dr28DTWBxIZglHkbxh0Q+WJxseR/AMDccznMmAjkZ2v3NCFSE3JA+hBqAoR1QNQSUdm+HbE6IGwTMnJAiEShWQVjMgTjVxEPyvVbotEZkG6ISgHiY95OzW3R3RSjDgigHoZR62CqX4YrbTeqJKEqG4sZFSD9FD3nY3VAAKAgl4PNRuKjp0ECpA8RLQSjlohqpgkZEK5SEVB2QjXbBRUgB4QwTycTfoilEVk9E5EUbpLmE0elm2JECMasA8K8Lr0qGEA9p0RNgBhuRCY4IIywiRAgBkMwuYrmYfEQIETPhARIH8JICEaJWQGiN57ZdWAAckAI82i1YjcbgjlcI20P7Bf+abZ7aadf2wGJJQdELfQTdweEeYuq5YB4FW9ho5UsyiTUWEMwRM+FBEgfQk2A5OXlifuqqyN7JZsVIE6nE05n+FNaKUCsOCAZGRmyyhxyQIhosCEYNpHSrAOiJkDMr9/CCBCH/DGzAkRvLRhAkQMSBwfEbuciVsBtYUJFSgckzeDdJN5JqETPhQRIH0ItBDNgwABxX0VFRcQ5ZgUIILkgyhCMFQfEZrPJXA9yQIhosALE5ZRu/GbLcFkBMiA3LCRiWb9F2buD/eavtcKs1liWckBURE60yhVBHPxYAXz6NY+GFukxpQBhy4T1iCjDJQekz0JVMH0IwQGx2+2iS5EoAVJdXR0XBwQIux61tbXiNkHowYZgnOlh16KjMz4OSDyTUONfhitVl6hVvJgNwQBhB6mqLnzu2bfIE2V9io8D1qHRIyIEQw5In4UckD6E4IBkZGSI5WqJdEAaGxvB8zwOHjyI448/Hqeeeqp4jFEHBJCLDnJAiGgoS1/dlh0Q6YarGoIxmwOiCME4HZwoJJri4YAoynCVtLRHVtpEq1zRC494XcAD14ZfX0EucNIo/bEE2Bb0AJDhpuqVvgo5IH0IwQERwi8AUFBQIG5XVlZGnGNFgAiVMIFAAO3t7bjggguwc+dO2TFmHRC1bYJQg3VAHOmSaDDrgFTUStuSAyK5DIaSUINMFYzKp22GB6httNAHJFoIxmAOiNEQjBpeF3DX5cCJIziMGwU40q0JCcoB6buQA9KHEAQIW3qbnZ0NhyP8CR1vBwQAVq1ahe3bt0ccY8YBGTUq/NXK5XJh0KBBhs8j+iZsDogz3doKtoAyByT803QSqo4DAkh5IGZzQNTEjNdCFUxMDog7LDpmTuZQNMC6i0FVMH0XckD6CKFQCC0t4QwyVoBwHIcBAwagrKwsIQLk17/+teoxZhyQu+++Gw6HA2eeeaaszwhBqKEUIFYWkAMkAZKTAbi6wgZuRkQYckBk4aDIm7RwgzdUBRNtLZg4l+ECQHmV9mNsyCcWaHHrvgsJkB5CMBjERx99hNLSUuTk5OCCCy4wLAgAiOIDkIdgAIgCpLq6GoFAAHamoD+WEAwAHDlyRPUYMw7IoEGD8Kc//cnw8UTfhr1ROx2SAPEHgGCQR1pa9G/rPM+LAkRwPwDzSaiyRmQaIRggLBiizc1UDkgcynABuZhjcTth6DoawWj1DNH7IO3ZQ1i6dClKSkpwww034Gc/+xluvfVWU+ezJbisAwJIiag8z0f0AonVAdHCjANCEGZgb5r2NPOls0C48ZYgMIT8DyC+fUAAeQlqtDCMmRyQFpXW7lYckP93hbrIUJbgxoKyoRnRdyAB0kP47LPPZL9/+umnps5nm5ApHRA2EVUZhkmUADHjgBCEGdgVbDmOk4kGowJErQQXkN8stZa9Z9HrhAoY6wXyl3d5jLkyhDVfSvvi1ogsigCZey6w6c8cbrxIvj9W0bD2jxzsacBRg4FZxbGNRfRcKATTQ1A6E+Xl5eB53vDqj2pdUAXYUly2EmbFihV46KGHxN+thGC0IAeESBQRK9iaDJsAOgKE+bMNLyCn//7TWwsGMNYL5LdPGSufjZYD0mLBAeE4DpPHhhuRPb9SuwuqWaZP5HD4vXCr/HQ7h1Ao+mJ8RO+DHJAegjKXor29XTO/Qg0jIRhAckD+/Oc/45prrpEd5/V6YQRyQIjuRHRAum74sTsgkohgHQu1Zl8Rc1FZUZclmgBRC6UAyVmMjqW/ovo9HiGYvGwO6XbqAdKXIQHSQ1Bbp6W8vNzw+XohGKUAWbNmDW655RbZMSeddBKOP/54Q8+lJkAKCwtlv5MDQiSKmq4GvMJqrlZyQNR6gADy0IOR0tlOg0mogLoAqa6P3JeWBtWl5xNRBSNQoBAgVDpLxAMSID0ENbejrKxM95xly5ZhypQp+Ne//mU4BFNRUYE//OEPCIVCAIAFCxZg9+7d2Lp1K9LSjH1aqQmQcePGyX4nB4RIBPVNvLhya1FXapPZxFFA3gWVrYIxv35LtD4g0uNq4x1piNynlbeRiEZkAkoBQomjRDwgAdIDaG1tlS3kJqDngPj9ftx0003YuHEj/t//+3+6IRhlEmppaSkAoF+/fnjkkUcwatQo2Yq00VDLAVEKEHJAiERQyjTzLerS1VYckKo6aVtLgKjlVCiJloRqxQHRCpuwSajKuXX6eVkZb7SxlORly3+PZxUM0XchAdIDYMMv/fpJfrCeA1JeXi6Klm+//dZwFUxlZSVqasIB8P79+5sSHgLkgBDdRSlTxFVUEL75W3FAWKHCChh5Emr0cfxBE0moKuOZESBpaVLFj1LMaM3VqAOizNUgAULEAxIgPQA2/HLyySeL23oOiOBiAEBdXZ3sd6UD4vP5RFHy448/ik3LWLFjBiMChBwQIhGoOyDSzdOoAyJre84IB7cTEArPjCShdiq6siphBUizigOiGoLRcS2EvBelmNESIFaTQCkEQ8QDEiA9ANYBYW/keg7Ijz/+KPt927Zt4rZSgACSC8Kel5eXZ3KmYZQCxGazYdiwYbJ95IAQiaC0QsrdGNYlQKw4IFpNv2w2Tsy1MJuEGq0PSJNKxUt1vUoJro5rodXaXStcZNQBIYhEQAKkB8A6IEOGDEH//v0BGHdAAODrr78Wt5UhGEAehhGw6oA4HA6Zw9GvX7+IUA45IEQikDkgKkmoRh0Q2boripu0IBqMOCCx9gFRC8GojaMcz2gIxmgOCCAPRRnJfyGIaJAA6QGwDkh+fj6GDh0KADh06BD8fvWFFJQOCLsWjJ4DwmLVAQHkLkh+fj4AYPr06eK4JECIRCDkgNhswJCwTreUhKq37oo3jg5IPJNQAam1uz8AdHRK7kmsOSCA+R4oBBENEiA9ANYBycvLE3tqhEIhHDp0SPUcpQPCoiZA2FJcAasOCBB2QQQEIfPyyy/jsccew/r16y0ltxJENH7sEiCD+kn5DfEMwQCMA2JAgHREq4KJUtZrpgwX0BY0mg6ICQFiNgGXIKJBd4EeACtAWAcE0A7DKB0QFqMhmFgckM5O6aumME5BQQEWLFiAE0880fK4BKFFazsvOgZFjJ52WwjB6DkgggBp7wQCAf0W4qyQiVcIRtcBMSlA7CZCMH/8tSSm7ryMOpgSsUNrwfQA2BAM64AA6omofr8fBw4cUB3LZrOprukSzxwQQC5AjK4hQxCxUKaS/wEALnYtmM7o67cAkgCxpyFivSXWCWhpD69nooWZxejiLkAY0RGPEMysM4FX7uHgsAOTxxo/jyC0IAHSA1CGYAYOHCj+XlVVFXF8ZWWl2MlUic/nU13ALpEOCBuOIYhEoVaCCygcEKMhmC4BonazV+ZC6AqQKJ1QnY6wCAgEIwWIP8CjvjnyHKMCpFFK+9IUIGkmPHCO43DldOPHE0Q0KATTAxAcEJ/PB5fLJXMmhKZhLFruBwCUlJSo7o93DggrQJxOp86RBBEf1JqQAYocEKNVMDoCxMx6MP4oa8FwHCeKBuVYNSr5H1rjCGiFYLTyVdS6oxJEsiAB0gMQHBDBkWCdiWgCZOTIkeJ2WloannvuOdXniLcDEghIn2zkgBDJoJJpnz6I+dONtkibGoYdkCgCpDNKGS6gXTqrFn7RmpM4FrO2jDwHRD1XpUO9iI4gkgIJkBQnGAyitja8NKdQzso6E2qL1LEVML/73e9wzDHH4LjjjsPOnTuRm5sbcTwQKUA4jkN2drbleQsltwAwdiwFjInE0+mXbrKs62GlfFQUICo5EmaqQYQcEEd6ZC6JgCBAGuMhQEwmoRpNyiWIRGBagNTV1WH+/PmYNGkSZs2ahc2bN6se9+STT2LmzJkoLi7GVVddJWuERWizdOlSjBgxAsuWLQMQvt5CPodRB+Tbb78Vt6dMmYLvvvsOO3bswNFHH635vF6vV1Ydk5uba3j1WzVeeOEFjBs3DhdeeCHmzp1reRyCMIpW5YrZFWzZsYzkgBgZRy9sktklGlrb5VU1aiW4WnMSx/JK20YESAcJEKIbMS1AHn30UeTn52P9+vW4+eabsXDhQjQ2NkYc5/P58Oyzz2LDhg24+uqrcccdd8iaYRHqXHfddfjhhx8wb948AMDu3bvFxwSXwuv1imENNQdEECDZ2dliC3Stb18srAsSS/4HAAwfPhzbtm3D+++/H5OQIQijdLLrt8QqQLrKZ9XCJj4mzBHVAekKwagloAqwSaxs5UrMDoiBKpj2Tv0yYoJIJKaqYFpbW7Fx40Z88MEHcLlcmDJlCl577TVs2rQJF1xwgezY6667TtyeOnUqnnjiCZSVlWHMmDER43Z2dsqSFgHAbreLN1nBAdCq7OittLW1YfXq1eLvkyZNkrkhhw4dQk1Njey6VFRUoLIyXA4wbtw48DwPnjf2IVNQUIB9+/aJ4/eF691X/7askOrXiv02b0/jEQqF/+7T7eFqj2AIaGoxNn82BKM83s2EYJpapedREgqFJAGSrv28rGiob+KR5Q2PV1WnejjsKnMSYMNDjS3S3Fg35IKfAKv+Hd4+/fjU+P9M9b+tVKInXCujjSZNCZCysjL4fD5ZCGDUqFHYv3+/7nmHDh1CY2OjrH8Fy/Lly7F06VLZvtmzZ2POnDmyfXprn/QG2MRNANi8eTP+8Y9/iL8ff/zxYn6H0M20uroaP/74o+hwbNq0STx+xIgRuh1RlbAhGLfbbercnk5v/9uKJ6l6rWrrcgGE3xdHqg+h1C1lWHpchWhqtaGuyY/SUvXuwSwdnYUAbOBDnSgtPSx/rMULIPwZWHawBqWlKrWyXXQGhgAAbAigtPSg6jG2kDTv7/ceEjNDyw7lAIhcWbqzvRmlpZGhVwBobnAACJfpH6psQmlpOH+sunYAgHA12qLLyuG05WBgbgBjChqQSm/zVP3bSkVS+VoNHz7c0HGmBEhbWxu8Xq9sn9frRXOz9hswEAhg8eLFuOqqq1Q7cALANddcgyuuuEI+MYUDUl5ejsLCwl7dwltINhU4dOgQ/ve//wEATjrpJEycOFF8bODAgdi1axc6OzuRn58v/r8cPCh9yJ155pkoKioy/PwjRowQtwsLC02d21PpK39b8SDVr5WTCbUUDR0E9s830xN2ATr86Yb+rgNdIRivxxFx/FDmhu1090NRkXq4MuyAdI3jtms+7yAm/9uXJc2b06iaycn2oahI/bO0k412pmWgqCgsbNqFebiAk08oxFsnCAdlqz9Jkkn1v61UojddK1MCxO12R+RxtLS0aC6tzvM8Fi9ejJycHFlIRonD4TBUqmmz2Xr8BddDKeRefPFFcfu8886TvXbWhaqtrRUdke3bt4v7TznlFFPXi+0FkpeX16uvtZLe/rcVT1L1WvkDkiXtcnCw2aRcDZ8n/Fhze3R7mOd5BJnwjfL4TA8PIPx4a4f+eJ3+8PM60rWPC4dchFCJNO+WNnWLneOMjdXcJh3X2BoeK8tn3B7vDlL1bysV6Q3XytTshw4diubmZlni4549e2TfnFkee+wxVFdX48EHH+zxFyoZKJN5P/nkE3Fb2UBMqxnZtm3bAISXu9erelGDTUKNpQcIQXQHWkmoAGTNvqLlROmtAwMYa0TG8zz2HgA6/OHPPd0kVMZUboyxdFarDLeh67tNJq2KQKQQplSBx+NBcXExlixZgvb2dmzcuBH79u1DcXFxxLFLlizBN998gyeeeKLPNqIKhUJ46aWXcOutt+J3v/sdvv/+e93j1aqJgPB1P/XUU2X71Epx6+rqsHfvXgDAiSeeCLuZlaYQDtkIuSRq/6cEkcoYWUAuGIxeeurXETLsWIB2I7LbnuVx9JXS72rrwAiwpbNa7dP7ZUnbeiv6elyA8F1PqIIJBnlxLL228QSRbEyvBbNw4UIsWrQI55xzDgoKCvDwww8jMzMTH374IZYvX4633noLQLifhcPhkH1z/93vfqfZCrw38v777+Paa6+V/S7kdKjR0KBe+K8mJtSakb333nvivkmTJpme75gxY7Bz5050dHRg3Lhxps8niO6kk+nqqSyfVZbisgvUKYnmgBgp633qbfnvun1AoggQexqQ7ZNas+sJEI7j4HPzaGyRHBDWCSEHhEglTAuQnJwcPPPMMxH7S0pKZOJi69atsc2sF8DmYwDAzp070djYiMzMyMx2QNsBURMDag7I66+/Lu5TVhAZRa1MmiB6AnohGOWqs3nZxsZRDcEoVsM1gl4IhhUFDS3Sar2CAPG55Qvq6QkQIByGYQUIG9YhB4RIJSgxI4GoNQkTQiRqmBEgSgekoqJCzBkZOnQoJkyYYHK2BNGzMRKCAYwsIMeMo9JDL9pYan1B9EIwrChQc0B8brljE619uiBohLEamNz2LG/k8QTRXZAASSBqAmTPnj2ax2sJELW1VJQOyNtvvy02prngggsMdT4liN6EnnNhWYCoOCCeKA5Ig0rDZ62F6AC5A6KWhKp0QKIJEDbhNhTiZfPJJAFCpBCmQzCEcaqrqyP26QkQrRyQE044IWKf0gEpKysTfz///PPNTJMgegVCDog9DbISXCC+AsRm4+Bx8WhtB5pbIx+vb4rcZzYJleelxFGfR764npEQjMCz78pDRlle+mJCpA4kQBJIvBwQZfM3INIBEcQLx3EYNWqU2akSRI9HbwG5DA8Htj+G7jhBaVvLufC6wovHqY1VpyJA9AxJVoAIbkV7JyB02va5gQfncfhoa3j+f7pJX0SwAmT+M/JwEDkgRCpBAiSBCAIkOzsb9fX1AKwJEDUyMzNht9sRCARQU1ODurrwwhG5ubmmy28JojcghGDUF5CTtmPNARHGq65XD8HUqzSG3nNA+/m8rrBA4XnJAWHn6HMDpx7L4aMnw+7H9CjpXRk6lS6UA0KkEnSnShA8z4shmKKiIng8Hhw6dEg3CVUtBLNo0SLVYzmOQ25uLqqqqnDkyBGxEqZ///5xmD1B9DyEEEy03h1NKmETlmghGHY8ow7Izh+0n89m45Dp5dHQLOWAsKEd4bmmjjcWPslQb0wNgAQIkVqQAEkQTU1N8PvDn4h5eXnIzs7GoUOHUF1djYaGBmRlZUWcwzogixYtQlNTE+666y7N58jPz0dVVRUOHTokLmSXn58f51dCED0Df5wcELafiJYAEbqhtnWEG32lpUniQM0Bue5C/efM9ISrVbQcEDPoOSAUgiFSCRIgCYLN/8jPz4fP58PGjRsBhMMw48ePjzhHECA2mw2LFi2KWskyZMgQ7Ny5U7aKLrVQJ/oqQggmeums1GtDDTYHJJoDAoTDMOyNnXVARg/uxIRjHbjzcv33snC+6IDEIECCOqu0kwNCpBJUhpsg2AqYvLw8WWKoVh6IIEAyMzMNldEOHjw4Yh+FYIi+ihiCiWMOiFYHU/ZG3qBwPOqbpcTPuy+vw8t3A/1zogiQLteipQ0IBPiECRByQIhUggRIgmAdEKMCRMgB0eqUqmTIkCER+ygEQ/RVxCRUtRwQJixhrgxXXThoLSAHyB2QLK+OGmDHY5qRNbUpHRBzpbPXns9pVu+QA0KkEiRAEgTrgOTn58vEQmVlpeo5ggOilh+ihpoAIQeE6KvoleHGsw8IoCidVTggdWznUY8xAcI2I9u+B6hlCuLMOiDHDefww5sc1vwxUrhQK3YilaAckAShdEBycnLE34WSWRa/34+2tvAno1EHRC0EQzkgRF+E53ndJFQ2MVOteRiLEQGSpdK7Q4BtRJZp0AFhBc3Zt8h7d5gVIAAwKI9Dmk0+Tloa4NZZhI8gkg05IAlCmYQaTYA0NUmfWrGEYMgBIfoi0fI2ZGW40apgDPQByWQ6ijYqBAjrgGS4zTsgSqwIEADIzw6LDoEsL2iJBiKlIAGSIJRJqNnZ2eLvagKE7QFCOSAEYY5oroXLAdi6Pu3iEYIx4oBkeMJt4Y2QqdMi3acjTvSw2TgMzGWew+I4BJEoSIAkCGUIJi0tTcztqK2tjTie7QFiNAckJycHLpdLto8ECNEXYV0LtRAMx3FS8zATIRjNZE4ml0IpQAQHJCdD/3lk4+kkh1p1QABgEBOR9cYwDkEkAhIgCUIpQACIYRg1B4QVIEYdEI7jZC4Ix3GyReoIoq/ANg/TKp3V617KYqQPiGwF2xZ5roXQiCzHRMKnXnlsLAKkH/NR0qrSNp4guhMSIAlCCMFkZWUhPT38NYoVIDwv/9CyIkAAeRimX79+SEsz6PkSRC8i1vbpmmNpvJ20HJC2Dh4dneHtbBMCRE9k6HU2jTquifJjgkg2JEBUaGtrw9dff41vvvkGwWAw+gkqCA4IW5UiCJBgMIjmZnnt3jfffCNum6lkYSthKAGV6KtEC8EAcgGi/ALAYjYHhE1CZStgsk2EYELa04nJAfEyEVq1hfMIojshAaKgvr4ew4cPxymnnIJx48bh9NNPRyhkLJNdIBAIiGEWNQECRIZh3njjDXG7pKTE8HOxDgjlfxB9FSMhGMFJCATlx+uNZagPCCNA2AoYMw7I9AnaQiMWAcKeSyEYItUgAaLgo48+kjUK27JlC3bt2mVqjPr6enGbzcnQEiA7d+7Ejh07AACnn346hg0bZvi5yAEhCGOJo0ZWxK1p4OVluCZbsbNdUM0koeZmctj9Gof/LucwbIC0n+Ni691xytFSdc2MidbHIYhEQAJEwQ8/RK6bvXfvXlNj1NTUiNu5ubmq26wAYd2Pyy67zNRzkQNCEMZ6d0TrhvrKWh79Z/JY9JIUD9FyUzwuqccG24qdXQnXjAABgIF5HE44ikMh8z2C42Lr3XHVdODiycC4UcBzt1EPECK1oE6oCtQEiNbaLVqwZbbRHBCe5/H6668DCK+CO3v2bFPPNXHiRDgcDnR2duL00083dS5B9BZkIRiLDsjchyITMbQcEI7jkOnhUdek7YCYCcGwsALEZPQ3grQ0Du8+RMKDSE1IgCiIhwDRckBYASKIlK+++gr79u0DAEyZMgUDBjD+qwEGDx6MLVu24MCBA5gxY4apcwmit2BkBVs2b0MrBKNES4AA4TBMXZM8B4RNQrW67srQAmvnEURPgwSIgmQ7IIL7AZgPvwiceOKJOPHEEwHAdMIsQfQGjORtZPs4AGGXo75Z/RglegJEEDRsCIYVI9YdEGmeBNGboRwQhlAohB9//BEAcNxxx4mCIZoA2bVrF375y1/ivffeA2DMAamrq0MoFMKbb74JAEhPT8esWbPi8joIoq8hD8GohxxYQaAUIE2t6jd8rXwSQEpE7egEOjrD5zcwTcn0upvqMSA3+jEE0RsgAcJw+PBhdHaGuwgNHz4co0aNAgCUl5ejvV27hu3uu+/G8uXLMWvWLNTW1hp2QD777DMcPHgQADBjxgyZWCEIwjidBkIwegLkYDVU0Q3BqDQjY/NBrK69YjZ5lSB6KiRAGNjwy/DhwzFy5EgA4URRIU9DjXfeeUfc/uijjww7IGvXrhV//9nPfhbb5AmiD2OkeZieADmgIUC0EloBZTv2rp9MOMZqDsj4Y6Tt2+ZYG4MgegKUA8KgFCCseNizZw+OO+64qGN8+OGHMreEdUCUZbjsirknnHCC5XkTRF/HSBWMXIDwAKRQTSIckCwv0NSpfb4WGR4OX74A/Gcn8AvjPQkJosdBAoRBKUBaWqSMMq08kNZWeTr9hx9+KBMTrOjIysoCx3HgeR51dXWyNV+ys7NjnT5B9Dk6/TxqG4Hte6P37mBboxt1QIzkgACS8GAdkAwP0BS57qQhJh7LYeKx1s4liJ4CCRAGVoAMGzZMzAcBtJuRCTkcAlVVVVi/fj0AIC0tTSYybDYbsrKyUF9fj9raWtljbHiGIAhj3PpnHs+tlO+zEoI5eEQjCVW3CkaqVhGEhyBEPC79cwmCIAEiQ+mAsAvRqZXnAsChQ4c0x8vNzY3oYpiTk4P6+nrU1dWJrofNZoPPZzFgTBB9GLWETUMhmCb5Yweq1M+J1gdE4PmVPAr7S6EYqwmoBNGXIAHCIJTg5uTkICsrCzzPw+l0oqOjA4cPH1Y9R+mAsLD5HwI5OTn44YcfRBcECIdfbDbKByYIs+RmRvbM0ArB+NyAzRbuLmo4BGNQgKzbAmz8hkdHl2lqNQGVIPoSffaux/M8Pv74Y+zevRtAeAXbAwcOAIC4GBzHcRg4cCAAWBIgamW1QqglGAyivLwcAOV/EIRVcjMj92k5IDYbJ4qGyBCM+jlaYgaQd1YFIIoPgBwQgjBCnxUg//d//4dp06bh5JNPxu7du3Hw4EEx5MKuRisIkJqaGnR0dESMEy0Eo4R1Rfz+cOo+5X8QhDVyVUIweq6FEIZhBUhHJ48qjWRRow5IxGPkgBBEVPqsABFaoLe0tODSSy8Vwy8AUFRUJG4PGjRI3K6oqIgYh3VAzj77bNljaiEYtbVeyAEhCGuo5oAYFCA8Hw7dHK5RP5bjwou5aaF0QFisdkEliL5EnxUgzc3SV6AdO3bg//7v/8Tf1RwQQD0Mwzog06ZNkz2m5oAUFESuNEUOCEFYw0wIBpAEiD8AtHUZmlbyP4DwonFax+iJE4IgwvRZASIsBifwt7/9Tdw2I0AEB6Rfv344+eSTZY+pOSBqAoQcEIKwhmoIRqd3B1sJU9dVCWMl/AKEE2BXPsThwp9EPkYOCEFEp08KkFAoJCacqsGGYPQECM/zogMyePBgHHusvHOQmgOiFoIhB4QgrGGmDBdQb0amtTKukYWlzzudw/O3R4ZpyAEhiOj0SQFSXV0tazKmRMsBUSac1tTUiOMMGjQIgwcPlj1ODghBJBaXk4PbKd9nJAQDAHsPALWNvOiEKGk32EY9PztyX5ZXO3eEIIgwfVKA6LkfWVlZMkHAJqEqHRChjBYIOyDKpmPp6ZGfhJQDQhDxRZkHoheCycmQ3qMX3c1j6GweO/ZLfURYMcGrN0eNwJHORTgx5IAQRHT6pABhhcOMGTNkj7HhF0A/BPP999+L26NGjQIAnHLKKeK+oUOHRjx3//79I/aRA0IQ1lHmgRh1QACgpQ346xrp96LICKkhChTfISgHhCCi0ycFCOuA/PSnP5U9xoZfgHAYxW4PZ6PpCZBjjgmvof3mm29iypQpuO2222RiRMDpdEY4HuSAEIR1lA6IkTJcLYoiDUpD9CcBQhCm6ZOt2FkHZPTo0bLH8vPzZb/bbDYMGDAABw4cMCRAjjrqKHz66ae6z19QUCCrwiEHhCCsowx/GGlEpsUwqw6IIt+cQjAEEZ0+6YCwAqSwsBBut1v8vbW1NeJ4IQxTVVWFQCAg7hcESHp6OkaMGGH4+ZV5IOSAEIR1YgnBKBlaYC15tH+2/HdyQAgiOn1SgLAhmCFDhmD58uXi7zfccEPE8UIiKs/zqKysBBBey2XXrl0AgJEjR6omnGqhLMUlB4QgrBOvEEyGR72xmREKcuXChRwQgohOnw7B5OTkwOv1Ys6cOaivr4fb7cbkyZMjjlcmou7duxf79+8X14YRwi9GUTogJEAIwjrKFXGtOiDZvvCKuVagJFSCME+fEyCBQEDsXlpYWAggvOrt9ddfr3kO29/jrbfewuOPPy57PFYB4nQ6NY4kCCIapnJAVBqXseN4LL4VlUmoXrfxMl6C6Kv0uRDMF198Ia5Cq+xcqoUgVADgpZdeinh8zJgxpuag1guEIAhrKHNAlP14WPQcjmwf4HFZm4PSAdGbA0EQYfqcAFm9erW4fe655xo6h+3nUVMTuXSmWQdErR07QRDWMJO3wXEcHr2Bw4hBkY/lZCCiq6pRlFUwBEFEhwSIAVgHRI2jjz7a1BzUWrQTBGENtQXp9Ljzcg773rDhIkW6V04GMJp5q19ypvExlVUwBEFEp0/lgBw8eBDffPMNAGD8+PGGQyFDhgzRfOznP/85MjPNpc7n5eWZOp4gCG3UFqQzQl6W/PdsH5Dh4bDxGWDDduCGmcbH8nk4jB3J45u9wLXnW5sPQfQ1+pQAWbNG6rlcUlJi+DyXy4X+/fujqqpK3DdixAhs27YNGRnmP/1GjhyJK6+8EqtWrcKrr75q+nyCICSsls4qF5ET1okpHseheJz58dY8zuGzHUDJqdbmQxB9jT4lQNjwy3nnnWfq3KFDh8oEyNChQ007HyyvvPIKQqEQbLY+FwUjiLhitedGfra8fDdak7JoDOjH4dIpsY1BEH2JPnX3Gz58OIYMGYJ+/fphwoQJps5V5oEoF62zAokPgogdtuJErwRXSaQDEp/5EARhjD51B/zjH/+IsrIyfPPNN0hL01mzWwXlyrZqK90SBNE9bHiGwy9KgM//Yrz8VZkDQgKEIJJLnwrBAOFvS2xjMaMkwgEhCCI+nDmOw5njzPXeUDogsYZgCIIwR59yQGJB6XiQACGIng2FYAiiezEtQOrq6jB//nxMmjQJs2bNwubNm1WPa29vx7333ovi4mKcf/75sgqUnojSAaEQDEH0bNTKcAmCSB6mQzCPPvoo8vPzsX79enzxxRdYuHAhVq5cGVERsmTJEjQ0NGD16tXYt28f5s+fjzFjxvRY50ApOKI1JyMIIrXxuDh4XDxa28O/kwNCEMnFlABpbW3Fxo0b8cEHH8DlcmHKlCl47bXXsGnTJlxwwQWyY1evXo0nnngCPp8PY8eORXFxMdatW4df/epXEeN2dnais7NTPjG7HQ6HAwAQCoVkP7uD/Px82O12BAIB9O/fH06ns1vno0UqXKueBF0v4/TGa5WfBZS2h1fQdabzCIXit4Jcb7xeiYKulXF6wrUyWuFpSoCUlZXB5/PJOnmOGjUK+/fvlx3X2NiImpoajBw5Utw3evRo7Ny5U3Xc5cuXY+nSpbJ9s2fPxpw5c2T7ysvLzUw37hQXF+OTTz7B5MmTUVpa2q1ziUZ3X6ueBl0v4/Sma/WTMbkorczA6WPaUFZWFf0EC/Sm65Vo6FoZJ5Wv1fDhww0dZ0qAtLW1weuVd/3xer1obm6W7WttbUVaWhpcLpfsuNbWVtVxr7nmGlxxxRXyiSkckPLychQWFnZr74xVq1Zh27ZtGD9+POz21CwgSpVr1VOg62Wc3nit/novcNMcYNxIN5yO+IaHe+P1ShR0rYzTm66Vqbuo2+1GS0uLbF9LSwvcbvka1x6PB8FgEO3t7aIIaWlpgcfjUR3X4XCIYkMPm83WrRfc7XbjJz/5Sbc9vxm6+1r1NOh6Gac3XSubDTj9+EQ/R++5XomGrpVxesO1MjX7oUOHorm5GUeOHBH37dmzByNGjJAdl5mZiX79+mHv3r3ivt27d0ccRxAEQRBE38SUAPF4PCguLsaSJUvQ3t6OjRs3Yt++fSguLo449rzzzsOLL76IlpYW7NixA5s2bcK0adPiNnGCIAiCIHoupv2bhQsXorKyEueccw6efvppPPzww8jMzMSHH34oSxq9/vrr4fP5cO6552LhwoVYuHAhhg0bFs+5EwRBEATRQzGdSZmTk4NnnnkmYn9JSYlsiXuXy4Xf//73sc2OIAiCIIheSc/OYCEIgiAIokdCAoQgCIIgiKRDAoQgCIIgiKRDAoQgCIIgiKRDAoQgCIIgiKRDAoQgCIIgiKRDAoQgCIIgiKRDAoQgCIIgiKRDAoQgCIIgiKRDAoQgCIIgiKTD8TzPd/ckCIIgCILoW5ADQhAEQRBE0iEBQhAEQRBE0iEBQhAEQRBE0iEBQhAEQRBE0iEBQhAEQRBE0iEBQhAEQRBE0iEBQhAEQRBE0iEBQhAEQRBE0iEBQhAEQRBE0iEBQhAEQRBE0km6AFmyZAlmz56NCRMmYO3ateL+9vZ2PPTQQ5g2bRqmT5+OV155RfX8FStWYPz48dixY4e47+DBg/jNb36DKVOmoKSkBMuXL0/460gWVq/X+PHjccYZZ2Dy5MmYPHkyXnrpJfGxJ598EjNnzkRxcTGuuuoqfP3110l7PYkkEdcKAN5//31cfPHFOOOMM3DppZeitLQ0Ka8n0Vi9Xs3NzXjggQdw9tlnY8qUKbj77rtl5957770oLi7G+eefjzVr1iTt9SSSRFwrgUOHDmHSpEn4wx/+kPDXkQwSca3oM15+vbZt2yZ+Xk2ePBmTJk3ChAkTUFdXB6DnfMbbk/2EhYWFuP322/HCCy/I9i9btgyHDh3Ce++9h+bmZtx4440YOXIkTj/9dPGYqqoqrFmzBv369ZOd+/jjj2Pw4MF4+umnUVlZiWuvvRbHHXccJk6cmJTXlEhiuV4rV65EXl5exJg+nw/PPvssBg8ejE8++QR33HEHPvjgA3i93oS/nkSSiGu1adMmvPrqq/jjH/+IESNG4ODBg8jIyEj4a0kGVq/X/fffj4KCArz//vtwuVzYu3eveO6SJUvQ0NCA1atXY9++fZg/fz7GjBmDoqKipL62eJOIayXw5JNP4uijj07K60gGibhW9Bkvv14nnXQS/vWvf4nHvvHGG/j444+Rk5MDoOd8xifdATnvvPNw2mmnweFwyPb/5z//weWXXw6fz4cBAwbgpz/9Kf75z3/KjvnTn/6E66+/PuLcw4cPY/r06bDb7Rg8eDDGjRuH/fv3J/y1JINYrpcW1113HQoLC2Gz2TB16lQ4nU6UlZUlYvpJJRHX6sUXX8Rtt92Go446ChzHYciQIcjKykrE9JOOleu1b98+fP/997j11lvh8/lgt9txzDHHiOeuXr0a1113HXw+H8aOHYvi4mKsW7cuqa8rESTiWgnn8zyPU089NWmvJdEk4lrRZ7z+59aHH36IkpIS8fee8hmfUjkg7MK8PM/L/sC2bt2KhoYGnHXWWRHnzZ49G2vXrkVnZyfKysqwY8cOjB8/Pilz7k70rhcAXHnllSgpKcHixYtRX1+vOsahQ4fQ2NiIwsLCRE6127FyrYLBIHbt2oW9e/fivPPOw09/+lMsXboUfWEBaa3r9d1332Ho0KG49957cc4552Du3LnYtm0bAKCxsRE1NTUYOXKkeO7o0aN7zY1CCyvXCgD8fj+efvpp3HLLLcmecrdh9VrRZ7z65xYAlJeXY/fu3Zg6darqGKn8GZ8yAuS0007D66+/jqamJhw6dAirVq1Ce3s7ACAQCODJJ5/Ebbfdpnru2LFjsWPHDkyePBmzZs3CzJkzZR+CvRG96wUAS5cuxapVq/C3v/0N7e3teOCBByLGCAQCWLx4Ma666ir4fL5kTj+pWL1WtbW1CAaD2LJlC95880383//9Hz766CN88MEH3fVSkoLe9aqqqsKXX36JiRMnYu3atfjFL36BO+64Aw0NDWhtbUVaWhpcLpc4ltfrRWtra3e9lIRj9VoBwGuvvYZJkyal5I0hEcRyregzPvJzS+DDDz/E6aefrurMpvpnfMoIkGuvvRaDBg3CpZdeiptvvhnnnHMO8vPzAQBvv/02xo0bp/oHFwwGMX/+fFx00UX4/PPP8f777+Pjjz/Gxx9/nOyXkFT0rhcAnHTSSbDb7cjJycEdd9yBzz//HH6/X3yc53ksXrwYOTk5uO6667rjJSQNq9fK6XQCAK6++mpkZGRgwIABmD17Nj7//PPueilJQe96OZ1ODB48GBdddBHsdjvOPvtsDB48GDt27IDH40EwGJR9SLa0tMDj8XTXS0k4Vq9VVVUV3n//ffzyl7/s5leQPKxeK/qMV//cElizZo0s/CLQEz7jU0aAuN1u3H333Vi7di3+/ve/g+M4HHvssQDC4Zc1a9ZgxowZmDFjBiorK3HLLbfg/fffR2NjI6qrq3HppZfCbrdj0KBBmDJlCr766qtufkWJRe96KbHZwv/NrJ332GOPobq6Gg8++KD4eG/F6rXKzMyMeMP3hfCL3vU66qijNM/LzMxEv379ZMmDu3fvxogRIxI+5+7C6rX69ttvUVlZiVmzZmHGjBl49dVX8c9//hM33XRTsqaedKxeK/qM1/7c2rlzJ2pqajB58uSI83vCZ3zSZxUIBNDR0QGe58XtUCiEyspKHDlyBMFgEF988QU++OADXH755QCAxYsX46233sJrr72G1157Dfn5+bj//vsxffp05OTkoKCgACtXrhTH2bhxo+4fdE/CyvXat28fdu/ejWAwiMbGRjzxxBM49dRTxSSnJUuW4JtvvsETTzwRkfjUk0nEtbrgggvw8ssvo6WlBdXV1XjnnXdwxhlndOfLjBtWrtf48ePB8zxWrVqFYDCIjRs34uDBgzjhhBMAhBPqXnzxRbS0tGDHjh3YtGkTpk2b1p0vMy7E+1r95Cc/wT/+8Q/xM+2SSy7B1KlT8eCDD3bzK42deF8r+oyPvF4Ca9aswVlnnSULewI95zOe45P8lW7x4sVYtWqVbJ9QfrRo0SLU19dj2LBhuOOOO3DSSSepjnHhhRfiD3/4g/iht3PnTjzxxBPYt28fXC4Xpk+fjltuuQVpaWmJfTFJwMr12rJlCx5++GFUVVXB6/Vi4sSJuPXWW5Gbmwsg/GZ3OByy6/O73/1O1cbrSSTiWvn9fjz66KP46KOP4PF4cNFFF+G6664Dx3HJfXEJwOp7cc+ePXjwwQfxww8/oLCwEHfccQdOPvlkAOHeBb///e+xceNGZGZm4qabbsK5556bvBeVIBJxrViWLFmCmpoa/O53v0vsC0kCibhW9Bkfeb2CwSDOO+883H///TjttNNk5/eUz/ikCxCCIAiCIIjUDAwRBEEQBNGrIQFCEARBEETSIQFCEARBEETSIQFCEARBEETSIQFCEARBEETSIQFCEARBEETSIQFCEARBEETSIQFCEARBEETSIQFCEESPY/z48Rg/fnyvX5mYIHozJEAIglDluuuuE2/0l112meyx+vp6TJo0SXz8z3/+c9yf/4MPPhDHJwii90EChCCIqOzZswdff/21+PvKlSvR0dHRjTMiCKKnQwKEIAhd7HY7AODNN98EEF4E6+9//7u4n6WhoQGPPvoozj//fJx66qmYPn067r33XlRUVIjHLFmyBOPHj8eFF16Ijz76CJdccgnOOOMM/OpXv8KPP/4IILxA1/333y+eIzghS5YskT1fc3MzFi9ejDPPPBMlJSV48cUX4/3yCYJIECRACILQZfTo0Rg8eDA2bNiAyspKbNq0CRUVFTjnnHNkx3V0dOC6667D22+/jSNHjqCoqAgtLS348MMPcc0116Curk52fFVVFe69915wHIeOjg5s27YNDzzwAABgyJAhGDx4sHjs8ccfj+OPPx4FBQWyMZ599ll88cUXSE9PR3V1NV544QV88cUXCboSBEHEExIgBEHoYrPZMHv2bNH5EJyQn/3sZ7Lj1q5di3379gEAHn30Ubz11ltYtmwZbDYbqqur8dZbb8mODwaDeOyxx/D3v/9dzDH573//i/b2dsybNw/z5s0Tj12xYgVWrFiBiy66SDbG6NGj8cEHH8gcmS1btsT19RMEkRhIgBAEEZWZM2fC7XbjrbfewtatWzFmzBiceOKJsmO+/fZbAIDL5cKUKVMAAMcccwyKiopkjwv4fD4UFxcDAEaMGCHuVzolekybNg3p6enIzs5Gbm4uAKC2ttbciyMIolsgAUIQRFQyMjJQUlKClpYWAJHuh9UxBdLS0sRtnudjGsPM+QRBdB8kQAiCMMScOXMAANnZ2Zg+fXrE48ceeywAoL29HRs2bAAAfP/99ygtLZU9bhSXyyVut7W1WZkyQRApTGQaO0EQhAojR47E+vXrkZaWBofDEfH4jBkz8Oqrr2L//v246667UFRUhIMHDyIUCiE/P18UMEYZNmyYuD179mzk5eXhlltuwbhx42J8JQRBpALkgBAEYZisrCz4fD7Vx5xOJ5YuXSqKhdLSUni9XpSUlGD58uXIyckx9VyjRo3CvHnz0K9fP1RUVOB///sfmpqa4vEyCIJIATieAqYEQRAEQSQZckAIgiAIgkg6JEAIgiAIgkg6JEAIgiAIgkg6JEAIgiAIgkg6JEAIgiAIgkg6JEAIgiAIgkg6JEAIgiAIgkg6JEAIgiAIgkg6JEAIgiAIgkg6JEAIgiAIgkg6JEAIgiAIgkg6/x9w/07JARIX0QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -1286,7 +1436,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "GPU available: False, used: False\n", + "GPU available: True (mps), used: True\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n", @@ -1307,12 +1457,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f57c5a9cfc7e4f209cfb642f790cb81f", + "model_id": "08dca7a092e94e4aa1bd96a077734d64", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Training: 0it [00:00, ?it/s]" + "Training: | | 0/? [00:00" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAIMCAYAAADYexzcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADes0lEQVR4nOydd3gc5dn1z+xKu1r1bslqtizcCwZjMDaYDjHNoRNKMAl+U0kggTdvAoQAIQRCTfgIoRkSguNQEqoJ4AA21TYY494ly029rVZaaXe+P2Zn5plt2tkd2Svr/K6LS7Mzs/PMzshizp77Obcky7IMQgghhBBCCBlG2A71CRBCCCGEEELIwYZCiBBCCCGEEDLsoBAihBBCCCGEDDsohAghhBBCCCHDDgohQgghhBBCyLCDQogQQgghhBAy7KAQIoQQQgghhAw7KIQIIYQQQgghww4KIUIIIYQQQsiwY1gIIb/fj507d8Lv9x/qUyER4D1KfniPkhven+SH9yj54T1KfniPkpuhdn+GhRAihBBCCCGEEBEKIUIIIYQQQsiwg0KIEEIIIYQQMuygECKEEEIIIYQMOyiECCGEEEIIIcMOCiFCCCGEEELIsINCiBBCCCGEEDLsoBAihBBCCCGEDDsohAghhBBCCCHDDgohQgghhBBCyLDDlBB6/PHHcfHFF+OYY47B22+/bdi2aNEinHbaaTjllFPw8MMPQ5Zlbdv69etx+eWXY/bs2Vi4cCH27dunbevp6cGtt96KE088EWeffTaWLl2a4EcihBBCCCGEkOiYEkIVFRX42c9+hkmTJhnWr1ixAi+++CIWLVqEJUuWYMWKFXj11VcBAF6vFzfffDMuu+wyLFu2DJMnT8Ztt92mvffxxx9He3s73nzzTdx999245557UFtba8FHI4QQQgghhJDwmBJC8+bNw3HHHQeHw2FY/+abb+Kiiy5CeXk5CgsLceWVV+Ktt94CAKxevRoulwvnn38+nE4nrrvuOmzYsEFzhd58800sXLgQmZmZmDZtGk488UT85z//sejjkcHgmmuuwfz58wfc76qrrsLdd98d83E//fRT2O12tLW1Rd3v5z//Oa6//vqYj0sIIYQQQkgwKVYcZOfOnZg3b572euzYsXj00UcBADt27EBNTY22zeVyoby8HDt27EBGRgaam5sN28eOHYv169dHHMvr9cLr9Ro/REpKiDgT8fv9hp/Dgd/85jf497//jS+++MLyY8uyDFmWo17PtWvX4o033sCf/vSnmK673+/HUUcdhd27dyMrKyvqe37+85/jiCOOwE9+8hOMHj06rs9AzDMc/x0NJXh/kh/eo+SH9yj54T1KbpLl/thssXk9lgih7u5uZGZmaq8zMjLQ3d0NAPB4PMjIyDDsn5GRAY/Hg+7ubtjtdqSlpYV9bzieeeYZPPHEE4Z1F198MS655JIBz3P37t0xfZ7Dgba2Nni93kEpM3S73fB4PFGP/fvf/x5nnXUWWlpa0NLSEtNxHQ4H+vr6UFdXF3a7z+eDJEmw2WyYPXs27r33XvziF7+I6zOQ+BlO/46GIrw/yQ/vUfLDe5T88B4lN4f6/sT6RbklQig9PR1dXV3aa7fbjfT0dACKA+R2uw37u91uuFwupKenw+fzoaenRxND4nvDsWDBAlxxxRXGDxGDI7R7925UVFTErBAPNUuXLsXdd9+NdevWwW6347jjjsNDDz2EMWPGaPvU19fjpptuwjvvvIPe3l5MmDABf/zjH7Fx40Y88sgjAIDq6moAwFNPPYWTTjoJY8aMwerVq3HkkUcCUARTQUEB3nvvPZx00knw+Xz4n//5H/z3v//F/v37UVlZie9///uGUrSMjAz09fWhqqoq7Ln7/X4sXboUzz33nGGfv/3tb3jkkUewefNmZGRk4OSTT8aDDz6I4uJi+P1+/POf/8S3vvUtNDc3Izc3F4sWLcKNN96I5557Dr/4xS+wZcsWbN68GVVVVbj00kvx61//Go899pjVl55EYCj+OxpO8P4kP7xHyQ/vUfLDe5TcDLX7Y4kQGj16NLZt24Y5c+YAALZs2aI9gFdXV+OVV17R9vV4PKivr0d1dTWys7NRUFCAbdu2YfLkySHvDYfD4YgqeqJhs9lgs9kwY8YM7N+/P65jJEJJSQlWrVoV074ejwc33ngjpkyZArfbjdtuuw0XXngh1qxZA5vNhq6uLpx88skoKyvDq6++ipKSEq0M7vLLL8eGDRuwdOlSvPvuuwCAnJwcHDhwAIB+HdRlcZ3P50NFRQWWLFmCwsJCfPzxx1i4cCFGjhypuW6SJGnOTDjWrl2LtrY2zJw507BPf38/7rzzTowbNw4NDQ244YYbcO211+LNN980vF89F5vNhu7ubvz+97/Hk08+iYKCApSUlMBms+G4447D7t27sXv37oiCjAwO4u8PST54f5If3qPkh/co+eE9Sm6Gyv0xJYT6+/vh8/kgyzL6+/vR29uL1NRUzJs3D7///e9x+umnw+l04vnnn9dcm6OPPhoejwevvfYazjzzTDz11FOYOHEiSktLASgBDE8++SR++9vfYseOHfjwww+xaNEiyz+oyP79+7Fnz55BHSNRLrzwQsPrp556CsXFxdiwYQMmT56Mv//972hsbMTKlSuRn58PAIa5VpmZmUhJSUFJSYmpcVNTU/Gb3/xGez169Gh8/PHHWLJkSUzlhwCwa9cu2O12FBcXG9Zfe+212nJ1dTUeeeQRzJw5E11dXRFdwL6+Pvy///f/MG3aNMP6srIybSwKIUIIIYQQYhZTQuiuu+7C66+/DgD48ssv8etf/xp//vOfMWfOHGzduhVXX301/H4/5s+fj/POOw+A4uDce++9uPPOO3HPPfdg4sSJuOOOO7Rj/s///A/uuusunHXWWcjOzsYvfvELjBo1yrpPGAaz4uBQjLt9+3bceuut+PTTT9HU1KRNOqurq8PkyZOxZs0aTJ8+XRNBVvLnP/8ZTz75JGpra+HxeOD1erVSuljweDxwOp2QJMmw/ssvv8Ttt9+ONWvWoKWlxfCZxo8fH/ZYDocDU6dODVnvcrkAIOp8MkIIIYQQEjtt3j48urkWZelpuGZM+aE+nUHHlBC6/fbbcfvtt4fdtmDBAixYsCDstkmTJmHx4sVht6WlpeGuu+4ycxoJE2t52qHk3HPPRUVFBZ544gmMHDkSfr8fkydP1hLzVCFgBtWiFJvd9vX1GfZZsmQJbrjhBtx///2YNWsWsrKycN999+Gzzz6LeZzCwkJ0d3fD6/VqZYxutxtnnHEGzjjjDPztb39DUVER6urqcOaZZ4akAIq4XK4QQQVAC2AoKiqK+bwIIYQQQkh42rx9OO3dz7CjywMAmFmYi4k5mQO8a2iT/MV7w5Dm5mZs3LgRt9xyC0499VRMmDABra2thn2mTp2qOSvhcDgc8Pl8hnWqaFB7OAHAmjVrDPssX74cxx9/PH7wgx9g+vTpqKmpwfbt202dv+oebdiwQVu3adMmNDU14Z577sEJJ5yA8ePHo6GhwdRxRdatW4fU1NSQ5r6EEEIIIcQcbd4+XPDBak0EAUBt1+FfdUMhlITk5eWhoKAAf/nLX7Bt2zYsW7YMN954o2Gfyy+/HCUlJZg/fz4++ugj7NixAy+99BI++eQTAMCoUaOwc+dOrFmzBk1NTejt7YXL5cJxxx2He+65Bxs2bMCHH36IW265xXDcmpoarFq1Cm+//Ta2bNmCW2+9FStXrjR1/kVFRTjqqKOwYsUKbV1lZSUcDgf++Mc/YseOHXj11Vdx5513xnmFFMF2wgknxOWMEUIIIYQQndvXbsWa1k7DOne/L8Lehw8UQkmIzWbD4sWLsXr1akyePBk33HAD7rvvPsM+DocD//nPf1BcXIx58+ZhypQpuOeee2C32wEoYQtnnXUWTj75ZBQVFeGFF14AADz99NPo6+vDjBkz8JOf/CSkLPF73/seLrjgAlx66aU49thj0dzcjB/84AemP8PChQvx/PPPa6+LioqwaNEi/POf/8TEiRNxzz334A9/+IPp46q88MILuO666+J+PyGEEELIUOHTpjac/M6n+PVXWyw/tizLeGdfU8j6rmEghCRZnDBymOL3+1FbW4uqqqohEeV3ONDT04Nx48Zh8eLFmDVr1oD7m7lHb7zxBm666SasXbsWKSmWJMCTGOC/o+SG9yf54T1KfniPkp/heI8OeHox4bUPtdebz5uLorT4WsmEo87twZFvrAhZf8e0I/CjcaNMHWuo3Z/kP0MyJElLS8Nzzz2HpqbQbxgSxe1245lnnqEIIoQQQshhjV+W8f3P1xnWNfdGDpmKh8+a2rTlGQU52nJX3+HvCPFJkgwac+fOHZTjxtrPiBBCCCFkMOnw9uHd/c04aUQ+8p3WuTQqj22pw/sHjMFYnf39lo7xuSCETh5RgFXN7QA4R4gQQgghhBASgWs+WYvvfvo1Ll2+ZlCO//+21Ias67TYqfmsuQ0AYJOAk0bo/SndFguuZIRCiBBCCCGEEJN80tiquTWrW9ph9bT7ll4v9nl6Q9Z39FknUDr6+rGhvQsAMCknCyUup7ZtOIQlUAgRQgghhBBikvs37jS87vX7LT3+lg63tiz79ebynRYKodXN7fAH9JunPhufrNGlAUvjCCGEEEIIIQbWtHRg2f5mwzqrS9Y2dXRpy/379BADK4WQGJSw5uNc/M/v7NprCiFCCCGEEEKGCI1tMr7aJltephbMA0FuEAB09PVZOsa6Ft0R8h3I1patDEtQ5wcBgG9fDro6bVC9py7OESKEEEIIIST56XDLGPstGUdeK2PJssEbp7OvH2/ubQiz3loHZX2rLoT69w+OI7QpMD9I6kmFvzMNgAQnFFeIc4QIIYQQQggZAqzeDLQFqsle/nDwHKFat0ebVyNidaz1drcihPyeVPjbXfo4Fgkun19GY6Ankb9LEUEAYPcr3XVYGkdIGK655hrMnz9/wP2uuuoq3H333QmNtWjRIuTm5mqvb7/9dhx55JExn8uf/vQnnHfeeQmdAyGEEEKSn+YOfXnt9sEbZ2dHt7Zsl/VHaSudmnZvH5r6lMQ4X0sGZK/e+tOq1LgWb58m6Pq79B5I/r6AI2Th50lWKIQOU4IFw8Fm7dq1eOONN/DjH/84oeNceuml2LJlS9zvv+6667By5UqsWLEiofMghBBCSHIT6AMKANhSD3h6B8cVWtfk0Zbt7ZnaspVCaLOQGOdvzYDcqwshq5ynxh49mtvfrQuhPo8ihNz9vkGfa3WooRAig8Kf/vQnXHzxxcjKykroOC6XC8XFxXG/3+l04lvf+hb++Mc/JnQehBBCCEluREfI7wc27Bqccba160LIs09/zrGyv48ohHwtGZD7BCFk0TgNgbI4APB7dCHU41aEUL8sWx4JnmxQCCUpS5cuxZw5c5Cbm4uCggKcc8452L7d6PPW19fjsssuQ35+PjIyMjBjxgx89tlnWLRoEX7zm9/gq6++giRJkCQJixYtwq5duyBJEtasWaMdo62tDZIk4f333wcA+Hw+fOc738Ho0aPhcrkwbtw4PPzww6bO3e/345///GdISdqoUaNw11134eqrr0ZmZiaqqqrw73//G42NjZg/fz4mT56MadOmYdWqVdp7gkvjBmL16tUoLi7Gb3/7W23deeedh3/961/weDxR3kkIIYSQoUxzu9G9GKzyuDp3j7bcs190hKybU7NZiM72tWQAsgTZaw+MY5UjpAshuTu0NA44/OcJpQy8y+HHjOv82N9y8MctyQdWPRGb9nS73bjxxhsxZcoUuN1u3HbbbfjmN7+JNWvWwGazoaurC3PnzkVZWRleffVVlJSU4IsvvoDf78ell16KdevWYenSpXj33XcBADk5OThw4MCA4/r9fpSXl2PJkiUoLCzExx9/jIULF6K0tBSXXHJJTOe+du1atLW1YcaMGSHbHnzwQdx999249dZb8eCDD+Kqq67C7Nmzcc011+AnP/kJ/vjHP+Lqq6/G+vXrIUlSmKNH5v3338f8+fPxu9/9Dt///ve19TNmzEBfXx8+//xzzJ0719QxCSGEEDI0EB0hAFi7XQZg7lkiFvb2Kl+syv02+NvStfVWhiVsCnKEAEDus0Ny+NBpkThpEISQWBoHr1EIFTgtGS4pGZZCaH8LsKfxUJ9FdC688ELD66eeegrFxcXYsGEDJk+ejL///e9obGzEypUrkZ+fDwCoqanR9s/MzERKSgpKSkpMjZuamorf/OY32uvRo0fj448/xpIlS2IWQrt27YLdbg9b0jZv3jz8z//8DwDgtttuw2OPPYZjjjkGF198MWpra3HzzTdj9uzZOHDggKlz//e//42rrroKjz/+OC6//HLDtoyMDOTm5mLXrl0UQoQQQshhSqgQsn4MWZbR5FOEkL8zzRBiMBhzhPw9KZC7HcjJhDJWhhftXmv6FTUIc4RER0gswzvcAxOGpRAqyU/+cbdv345bb70Vn376KZqamuAP1GjW1dVh8uTJWLNmDaZPn66JICv585//jCeffBK1tbXweDzwer2mghc8Hg+cTmdYR2fq1Kna8ogRIwAAU6ZMCVnX0NAQsxD67LPP8Prrr+Of//wnvvnNb4bdx+Vyobu7O+w2QgghhAwudQdkuJxAUa71Do2KGJYAAF9tV4SL2QqTaDT0eNEH5ZnM3+EaFCHk7vdhT7dSfudvzQAg4dgJwCe9eqy1X5ZhS/BzNUZwhGShNO5w7yU0LIVQrOVph5Jzzz0XFRUVeOKJJzBy5Ej4/X5MnjwZXq/yS+tyuQY4Qig2m/K5xQSQvqAuyEuWLMENN9yA+++/H7NmzUJWVhbuu+8+fPbZZzGPU1hYiO7ubni9XjgcDsO21NRUbVn9wxRund/E5LwxY8agoKAATz/9NM4+++yQMQGgpaUFRUVFMR+TEEIIIdawcqOM474vw5ECbPobUFUyOGKopdP4urkd2N8MlBZaN0atW59v7GsPcoQsKo3bbRhDed6bOgb4uFsZS4YihrJSE3uMF8MSZI9e/yZ7h88coeRXBMOQ5uZmbNy4EbfccgtOPfVUTJgwAa2trYZ9pk6dijVr1qClJfxkJ4fDAZ/P+MurCoF9+/Zp68TgBABYvnw5jj/+ePzgBz/A9OnTUVNTExLSMBCqe7RhwwZT74uXwsJCLFu2DNu3b8ell14aIu62b9+Onp4eTJ8+/aCcDyGEEEJ03lmlpLj1eIE3Px28cYIdIQBYu8PaMeoEkeLvdBlEg1Wpcbu7xTHSIEnA5NGSwamxwn1SHSFJliD3KKJKkoJK4yxuEptsUAglIXl5eSgoKMBf/vIXbNu2DcuWLcONN95o2Ofyyy9HSUkJ5s+fj48++gg7duzASy+9hE8++QSAktC2c+dOrFmzBk1NTejt7YXL5cJxxx2He+65Bxs2bMCHH36IW265xXDcmpoarFq1Cm+//Ta2bNmCW2+9FStXrjR1/kVFRTjqqKMOau+e4uJiLFu2DJs2bcLll1+OfuEf7vLly1FdXY0xY8YctPMhhBBCiEJLh16JsrF2cPrS+P1yiCMEWD9PSHSE/B0uwGeD7FMcLqtS43YLqXT+zjTkZgJVJbDcfVL7CDn6HVBDJSaPBjCMUuMohJIQm82GxYsXY/Xq1Zg8eTJuuOEG3HfffYZ9HA4H/vOf/6C4uBjz5s3DlClTcM8998BuV355L7zwQpx11lk4+eSTUVRUhBdeeAEA8PTTT6Ovrw8zZszAT37yE9x1112G437ve9/DBRdcgEsvvRTHHnssmpub8YMf/MD0Z1i4cCGef/75OK9AfJSUlGDZsmX4+uuvccUVV2iO2AsvvIDrrrvuoJ4LIYQQQhREgbKxdnDGaHcrrhMAjBCmTyvJcdZhFEJpACRNoFg1R2h3t1EI5WcDlSNgqfvkl2U09ioVNHavPqVg9hTjHKHDXQgNyzlCQ4HTTjstpLQsuLtvVVUVXnzxxbDvdzqdYbdNmDBBc43CHdfpdOKZZ57BM888Y9jnd7/7nba8aNGiAc//29/+Nu6++2588sknmDVrFgAlTS4YdWx1TtCoUaMM53PNNdfgmmuu0V7ffvvtuP322yOeS2lpKTZv3qy9XrduHdasWYMlS5YMeM6EEEIIsR6xZG2wmpyKY8yZAvxrBeDzWT+e2EPI36HM35G9KYCrz7I5QnVBrlNeKVBWCMi9YjBDYgKl1dsHX+B5Sw40U7XbgaljJMhfC2EJh3lqHB0hMiikpaXhueeeQ1NT0yE9j7179+K5555DTk7OIT0PQgghZLgiOkJ7m4D2LuvL48To7NICYGSBslxvcbuUXW4lgdbfmwK5Vwl7srrRqcER6nIiLxNwOiRkpliXUHdASIzr71KEUH4WUFHM1DhCLCEZevacccYZh/oUCCGEkGFNS1B/n011wLETrR1DdIQKsoHyImB3A9DQCvR6ZTgdiSfV9fv92NOtzKtRyuIU1NI4r19Gr88Ppz0xn6E+4Aj53Q7AZ0d+trI+35UCVde19SbWS6hR6CHU2xEQQoHrJs5FOtxL4+gIEUIIIYSQQSNYCA1GeZzoCBXkSCgXerrvtag4ZU93r1ZO5u9wYWyFsl4UDonO3enx+bA/4Nb4OxWxlZelbCtK152aPW2JCRSxh1BPQAipAtLoCLE0jhBCCCGEENPIcmia22Akx4VzhFR2N1gzxpZOt7bsb3fhmPGAzQZLm6ruEcviOoxCqDRbH2dPe2LjNIRpppqfDRTkAA4Mn7AECiFCCCGEEDIodPcA3qAqrsFIjmsWIroLcoDyIr0Uzqp5QuvadEXna8rCyEKgstiY5pZoYIIhjKFTCWPIy1I+S3mu3oD+QFdi4zSKzVS79TlCkiShNEfsI0QhRAghhBBCiGmCy+KAwRJC+nJBtjLpX8UqIfS1IIT6mzJRmCOhcgQACx0hsZmqL1Aalx9whKry9XGauq13hAoCuVIVeUJMdy9L4wghhBBCCDFNuCanO/YCnl5ry+OilcbVN1oz1tetyoeR+23wt6ajIBsoK7K2NC64mSqgl8ZVF+kCpS1BgSKGJeiOkOI8VRbqTWLbeugIEUIIIYQQYppwjpAsA1t2WzuOMSwhSAhZMEeos68fO7qU6GxfcwYg21CYE+jvYyiNS0w4BDdTBXQhdMQI6/oIqaVxNkiQe5SSO9UREgMTOhIcJ9mhECKEEEIIIYOCKITUGGjA+vI4VQil2IGsdKCkQAkyAIDdFpTGbWjvguor+ZoUZVKYC5QVSsbUOG+ijpDQTFUtjQtct5piIdbab01pXLqcCkBxf9QSvPIiCQgIITdT48ihQJZlLFy4EPn5+ZAkCWvWrDnUp3RQWLZsGcaPHw+/3x/ze0aNGoWHHnoo6j5ff/01ysvL4Xa7o+5HCCGEEOsQS+OOn6wvb9g1OKVxBTnKhP/UFAkl+co6KxwhY1BCpjJWuNK4BIWD6gil9qcCfcpxVUco1W4D+hWB4kX84/hlWYvPdvod2npVcIm9hHr8dITIIWDp0qVYtGgRXn/9dezbtw+TJ08e+E1JSixCReUXv/gFfvWrX8Fmi/1Xc+XKlVi4cGHUfaZMmYKZM2fiwQcfjPm4hBBCCEkM0RE6Zrye5GZVpLWK6ggVCK6TGphwoBXw9iUmvAxBCY0BRyhcaVwCc4T6/H7s9ShCKKVHb9iqCiEASPEpY/lT+uH2xPeZ2rx96A/0Q0r16kJIvXYVxXppnBc+yLL1cefJAoVQkrJ9+3aUlpbi+OOPR0lJCVJSUgZ+UxCyLKN/CFmaq1evxtatW3HxxRebel9RURHS09Mjbu/rU3I7FyxYgMceeww+3+H97QYhhBCSLLQIsdaTR+vrrWpyCgA9vTLUqTWiEFLnCckysK85sTE0R0gGfM2ZkCRFoFgZlrDP0wt/4HJJbkUIpdiBTJe+jxOBsRy+uMVkm1C+J/fqkdyaIyQIIUhAty/2Kp2hBoVQEnLNNdfgxz/+Merq6iBJEkaNGgUA6O3txfXXX4/i4mKkpaVhzpw5WLlypfa+999/H5Ik4e2338aMGTPgdDqxfPlyyLKMe++9F9XV1XC5XJg2bRpefPFFw5jr16/H2WefjezsbGRlZeGEE07A9u3bASiOy+mnn47CwkLk5ORg7ty5+OKLLwzvv/3221FZWQmn04mRI0fi+uuvBwCcdNJJqK2txQ033ABJkiBJEiLx+uuv4/TTT0damv4tyPbt23H++edjxIgRyMzMxDHHHIN3333X8L5gx0mSJPz5z3/G+eefj4yMDNx1110AgDPPPBPNzc344IMPYrwThBBCCEkEMcSgphxwBgyIPRYKoeCgBBVjclz8x+/3+7GhvQsAYOtyAX0pyMsC7HYJpQXBpXHxf9laLwQl9LfrQQnis1O6XRlLcvSj7kB8Tk2HINZ8Pfq5q9euMAeQ+sWmqkPnS3WzmLcZDgNWnPIJvA29A+9oMY5iJ+YsmzXgfg8//DDGjBmDv/zlL1i5ciXsduWX8eabb8ZLL72EZ599FlVVVbj33ntx5plnYtu2bcjPz9fef/PNN+MPf/gDqqurkZubi1tuuQUvv/wyHnvsMRxxxBH48MMPceWVV6KoqAhz587Fnj17cOKJJ+Kkk07CsmXLkJ2djY8++khzkzo7O/Htb38bjzzyCADg/vvvx7x587B161ZkZWXhxRdfxIMPPojFixdj0qRJ2L9/P7766isAwMsvv4xp06Zh4cKFuO6666J+7s8//xxXX321YV1XVxfmzZuHu+66C2lpaXj22Wdx7rnnYvPmzaisrIx4rF//+tf43e9+hwcffFC7fg6HA9OmTcPy5ctxyimnDHgfCCGEEJIYLUH9fUYWADv3WesIBfcQUlGaqipiIZF5Qts6u9ETcEW0oISAaHCkSihIt2szdhJxhNqEzrM9nYpiFMviACA7NQWNMiBJwLYDPpwRh6chzmPyditSQHSebDYJLnsK1LPp6vOhOA2HJcNSCHkbetGz7+ALoVjJyclBVlYW7HY7SkpKAAButxuPPfYYFi1ahG984xsAgCeeeALvvPMOnnrqKdx0003a+++44w6cfvrp2vseeOABLFu2DLNmKSKsuroaK1aswOOPP465c+fi0UcfRU5ODhYvXozUVMUiHTt2rHa8YNHw+OOPIy8vDx988AHOOecc1NXVoaSkBKeddhpSU1NRWVmJmTNnAgDy8/Nht9uRlZWlfZZI1NfXo7S01LBu2rRpmDZtmvb6rrvuwiuvvIJXX30VP/rRjyIe61vf+hauvfbakPVlZWXYtWtX1PMghBBCiDWIYQn52cDIQkUItXYqvYRczsiVIrES3ENIpVxoqprInCQxKKFnf1bIOCOzU1AXWG4XxIxZugQ3qadL+RI3WAjlpdmBQLDcjqY+AKkwi+gIdbQqUkANmVDJSrGjJbDc5O5HddB5HC4MSyHkKHYOuXG3b9+Ovr4+zJ49W1uXmpqKmTNnYuPGjYZ9Z8yYoS1v2LABPT09mjBS8Xq9mD59OgBgzZo1OOGEEzQRFExDQwNuu+02LFu2DAcOHIDP50N3dzfq6pR/9hdffDEeeughVFdX46yzzsK8efNw7rnnmp7X1NvbayiLAxQh95vf/Aavv/469u7di/7+fng8Hm3sSIjXQMTlcqG7u9vUeRFCCCEkPlRHKM0BuJwSygr1cq69TcCYssTHaGjVlwty9If5CkEIKU1V4xNd+zz6l+e+dsU2KRRL8ApsqPVJkOwyWhNoQCq6SXIgMa5qhHGfQleKJoRqW+IbSxRC3QHBNXeacZ8cpy6Edjb1Y2b077KHLMNSCMVSnpZsqIkdwXNsZFkOWZeRkaEtqzHUb7zxBsrKjH9tnE5FmLlcLkTjmmuuQWNjIx566CFUVVXB6XRi1qxZ8HqV6MWKigps3rwZ77zzDt5991384Ac/wH333YcPPvggorgKR15eHlpbWw3rbrrpJrz99tv4wx/+gJqaGrhcLlx00UXa2JEQr4FIS0sLxowZE/M5EUIIISR+VEdInYg/slDfZpUQ+ts7urg6olxfb9UcoW4hZEkNESjMFcYJ9BKSXH1oT6CPUJcohAJJdBedZHzGG5GVAlWh7GmPbyyD4OpVpMCPLjCOk+eyY2dgeXecgmsowLCEIUJNTQ0cDgdWrFihrevr68OqVaswYcKEiO+bOHEinE4n6urqUFNTY/ivoqICADB16lQsX75cS1cLZvny5bj++usxb948TJo0CU6nE01NxuJel8uF8847D4888gjef/99fPLJJ/j6668BKHNzYklqmzhxYoi7tXz5clxzzTX45je/iSlTpqCkpCSh0rZ169ZpThghhBBCBhfVEVKbdY4s1B+4rZgntG6HjNc/VpYrRwDnHK9vKy1Q5tIAiQkhtxiAEBBC1aX65ygrkjThkkgfIbE0Tu6zIzvD+HkAoDhD9zD2dcY3VodBcKVgWg0wZ6pxnyJhnPq2w1cIDUtHaCiSkZGB73//+7jpppuQn5+PyspK3Hvvveju7sZ3vvOdiO/LysrCz3/+c9xwww3w+/2YM2cOOjo68PHHHyMzMxPf/va38aMf/Qh//OMfcdlll+H//u//kJOTg08//RQzZ87EuHHjUFNTg7/+9a+YMWMGOjo6cNNNNxlcpEWLFsHn8+HYY49Feno6/vrXv8LlcqGqqgqAkur24Ycf4rLLLoPT6URhYWHYcz3xxBPx+uuvG9bV1NTg5ZdfxrnnngtJknDrrbeaarYqsmvXLuzZswennXZaXO8nhBBCSOx4emWoVWWqI1QmOkIJRloDwL0v6G7Qzy5VGqmqOFIljMiTsb8lsTlC3f2hjtC5+kwFpZfQLuWR2pNAA1JRRMneFFw0FyFzqAqcet+fxh5v2MqgAccJEkI/viQ01XdEth0IzL3aF6fzNBSgIzSEuOeee3DhhRfiqquuwlFHHYVt27bh7bffRl5eXtT33Xnnnbjtttvwu9/9DhMmTMCZZ56J1157DaNHK4H+BQUFWLZsGbq6ujB37lwcffTReOKJJ7Sytqeffhqtra2YPn06rrrqKi3CWyU3NxdPPPEEZs+ejalTp+K9997Da6+9hoKCAgBKeMOuXbswZswYFBUVhZ5ggPnz52PDhg3YvHmztu7BBx9EXl4ejj/+eJx77rk488wzcdRRR8V1/V544QWcccYZmkAjhBBCyODRGhSUABhL4/Y0Jtaos3a/jL8HOmoU5ADfOTt0H3We0L7m+JuqBguhqhJgqlBlL/YS6ocfvXH23ensE8bx2nHlGaECRxRC/al9hlS+WGnx6MImKyUFl4f5frgyT/dK9ncdvkKIjlCS8tOf/hQ//elPDevS0tLwyCOPaDHWwZx00klhu/9KkoTrr79e6+0TjqlTp+Ltt98Ou2369OmGfkUAcNFFF2nL8+fPx/z58yMe+7jjjtPitKORk5ODH/7wh3jggQfw+OOPA1DcpGXLlhn2++EPf2h4HVwqF+4a9Pb24rHHHsMLL7ww4HkQQgghJHHEh3S9NE5fl6gj9PSbMtTK+x9fICHDFSocqkqAlZuUpqp7GoHRI82PE1yyNv8045ztskKhASkUx8Vpd8AsLd264CjJSsHcI0P3KXTqc68llxd1B4y9k2KhSRjn+PEpSE8LvW5ji1KBXcpyQ3f8SXjJDh0hklT88pe/RFVVVUxzisxQW1uLX/3qV4bUPUIIIWQ409Ih49Yn/Xjlw8ScmcjH15c1R6hAX5foHKG6A/ryhXPD7yOmrtUeCL/PQIhhCei3Y/4JRuFQVgTIHl34NPVGD3SKhDjn57yZdthsoQKlUHCEbGl9cZX8tQulcbmO8J5IRY4uuNr6D18hREeIJBU5OTn45S9/aflxx44da+iNRAghhAx3Hlwi467ngBS7jO2LgcoRiff0ERF7CBVkK8fOTJeQnSGjw604NInQKXTDyAkfFhv4TIrQq90f5zhCElyuy445U4zbczMBu1eYu9Prxfg4xhFDGSrywz+ii6VxqiNkFjEsIcdhD7tPQZre8sXt98Lvl8MKs6EOHSFCCCGEkGHIpkBLvn4fsGqT9ccP5wgBuiu0tzl8OXusdHn05az08PuIjlBdnIEJDV2KQJF9Es491oaUFKMgkCQJ2TZdoDT09CIePH5FoMh9NmSmhX9ELxBK42yuPuxuMH/9uvqFcZzhx8l36OPIaX3YZ0GwRTJCIUQIIYQQMgwRhcq6nZH3s+L4BiEUmCfU3QN0uOM/viiEMiK0RKwUS+P2xye6Or0BIdRnx6lHh3dFChy6ENrdEV9pXHcgcU72piA9Lfw+qTYbsuyKWyS5vNgdh6vm9vUL44T/POkpdtj9ikywpfXF7aYlOxRChBBCCCHDkGZBqHy9w/p5Qi2d+jHVsARAmVOjsieBeUJqaZzTAUNstkhVib4c7xyhXjlQstZnR15W+H1KXLoQ2tkanxDqlVWnxg5XlKyFwjRlo+Tqi6s0ThRcLmfk/TKkwDhpfdhFIUQIIYQQQg4Xmtv15XU7rD+++JAuJptZFZigOkJZEdwgAMjLAjJdoedjBi90RyiSU1ORLThCXeZL42RZ1gRXNEcIAIrSlLI1m7MfdY3morr9soweWXCEogihnEAbFSmtD7sODE6gxqGGQogQQgghZBgihhls3QP09Fr3sCvLMj5Yoyy7nMAEoYXfyELdvbFCCGVGEUKSJGnlcXUHzM9JkmUZ/aoQ6rdHFA5j8vQNBzzmHaFevx9+STm3aIILMCbH7XP3weeL/TN19fug7i17o4+jCi7JLmPb/sOzlxCFECGEEEJIEtHSIePP/5axuW7wvoXv6ZXR3aO/9vmAzbutO/7WeqA+MH/lhKmAI9XYd0dlsIUQoAcm9HiBhlZzY/T4/JADpy732SOWktUUpkL2Kzu2eM0LIWMz1ehOjZgcJzu8poIMOoXEuIGcp5GZemDCjjjL/ZIdCiFCCCGEkCTixj/J+P79Ms76uQy/f3DEkDg/SOVrC8vjln2hLwcHDIhNVfc0xff5fD5oQi4zQmKcijhPyGx5nKGHULTSuGIJskcRDh2yedGgJrmp40Sbu2NsqmpunlBHsBCKMk5ppi646tsPz15CFEJJiizLWLhwIfLz8yFJEtasWXOoT+mgsGzZMowfPx5+v7ma12AkScK//vUvAMCuXbsM1/D999+HJEloa2sL+96GhgYUFRVhz549CZ0DIYQQEg9fblV+7toP7Ng7OGO0hBFC6ywMTHhvtX6sU44ybjMIoTh7CbkFNyvaHCHA2B/JbGBCt9DbR+6LXBpXVgj4uxXh0GPzwm+yBK/L4AhFL1kL7iVkpqmqwRHqje4IiVHd+7v7Eoo6T1YohJKUpUuXYtGiRXj99dexb98+TJ48+VCfUtyMGjUKDz30UEz7/uIXv8CvfvUr2GyJ/Wru27cP3/jGN+J6b3FxMa666ir8+te/TugcCCGEkHgQRcra7YMzRjhHyKoIbb9fxn+/VJZzM4HpRxi3jywE7IE+nvGmkYnR2bGWxgHmm6p2BQuhCMKhpACQuxWVJEsy2rzmHBTREZL7ojs1amocoPYSin2cYEcomvOUL0SC99n70NgW+zhDBQqhJGX79u0oLS3F8ccfj5KSEqSkhO8wHA1ZltHfP3Qmt61evRpbt27FxRdfnPCxSkpK4HRG+dc9AAsWLMDzzz+P1laTxcSEEEJIgrR26ctrtw9SaVx76DqrhNDa7frxT5oO2O3G0rjUFAmVxcry9r3xNVVVo7OBgUvjxF5CdSbTz2J1hFJTJDh9YlNVc+VxBiE0oCMklsZ5sa859s/UGTxONCEUVIK3a1/MwwwZKISSkGuuuQY//vGPUVdXB0mSMGrUKABAb28vrr/+ehQXFyMtLQ1z5szBypUrtfepJV9vv/02ZsyYAafTieXLl0OWZdx7772orq6Gy+XCtGnT8OKLLxrGXL9+Pc4++2xkZ2cjKysLJ5xwArZvV76GWrlyJU4//XQUFhYiJycHc+fOxRdffGF4/+23347Kyko4nU6MHDkS119/PQDgpJNOQm1tLW644QZIkgRJCp/zDwCvv/46Tj/9dKSl6f/6b7/9dhx55JF4+umnUVlZiczMTHz/+9+Hz+fDvffei5KSEhQXF+O3v/2t4VhiadxAeDwenH322TjuuOPQ0tICAJgyZQpKSkrwyiuvxHQMQgghxAq8fTLcgtsxWI6QmBinUrsf6HAnLrzE+UGnHBX+//vVI5WfHW6gNcy5DETcjpDJ0ji3IITQb4czSn+fLElMczMXod0RFJYQfY6Q0RE6YOI72w5v7GEJBsGV5o27D1MyY95mOAw45Z1PccCkUreCEWkOLDv9uAH3e/jhhzFmzBj85S9/wcqVK2EP+Mc333wzXnrpJTz77LOoqqrCvffeizPPPBPbtm1Dfn6+9v6bb74Zf/jDH1BdXY3c3FzccsstePnll/HYY4/hiCOOwIcffogrr7wSRUVFmDt3Lvbs2YMTTzwRJ510EpYtW4bs7Gx89NFHmpvU2dmJb3/723jkkUcAAPfffz/mzZuHrVu3IisrCy+++CIefPBBLF68GJMmTcL+/fvx1VdfAQBefvllTJs2DQsXLsR1110X9XN//vnnuPrqq0PWb9++HW+99RaWLl2K7du346KLLsLOnTsxduxYfPDBB/j4449x7bXX4tRTT8Vxxw18fUXa29txzjnnIC0tDe+99x4yMjK0bTNnzsTy5ctx7bXXmjomIYSQw5Ner4wvtgBHjzOmoFlJsChYOwj9fQCjI1SUC63saf1OYFaC1fjLvtDF1KlHh9+neiTw3mplecdeID/b3BiiEBpojpBaiufzxTFHSAhLSJHtUb/QLUh1QL2s21q8OHlk7ON0iSVrAzRUDZ4jdMDEPCszYQkFQYLrcGyqOiyF0IEeL/Z5zDe7Oljk5OQgKysLdrsdJSVK1Inb7cZjjz2GRYsWaXNfnnjiCbzzzjt46qmncNNNN2nvv+OOO3D66adr73vggQewbNkyzJo1CwBQXV2NFStW4PHHH8fcuXPx6KOPIicnB4sXL0ZqoHnW2LFjteOdcsophvN7/PHHkZeXhw8++ADnnHMO6urqUFJSgtNOOw2pqamorKzEzJkzAQD5+fmw2+3IysrSPksk6uvrUVpaGrLe7/fj6aefRlZWFiZOnIiTTz4ZmzdvxptvvgmbzYZx48bh97//Pd5//31TQujAgQO49NJLMWbMGLzwwgtwOIx/dcrKyvDll1/GfDxCCCGHNxfeKuONT4CrzwSe/dXgCKHgEIPte4CubhmZ6daO19yhi5UTpwEvfaAsb9iVuBBSAx7S04z9g0SqSyUg0NFmx15gxnhzYxgcoQGujd0uobxIRu1+86lxbqGULFW2R9232OWAqlt3tJgtjdMFl92fgpSUyJ/JkBqX1ocDLbGPYyyNi+4I5TuM49TulwEMzu/9oWJYCqERaVFkdpKOu337dvT19WH27NnautTUVMycORMbN2407DtjxgxtecOGDejp6dGEkYrX68X06dMBAGvWrMEJJ5ygiaBgGhoacNttt2HZsmU4cOAAfD4furu7UVdXBwC4+OKL8dBDD6G6uhpnnXUW5s2bh3PPPdf0vKbe3l5DWZzKqFGjkJWVpb0eMWIE7Ha7IVBhxIgRaGgwMVsQwGmnnYZjjjkGS5Ys0Vw3EZfLhe7u7jDvJIQQMtyQZRnvBhyM1z8ZvHHClYmt2wkcN8nacUTBdcx4CS99oIiSuobEH3bVRLfsdER0UKoFtySeZDzDHKEBHCFAKY+r3a98bjPCUiyNc0jRhVB5lm6v1HWa+8JdnCPkHEBwpdntyEyxo6vfB5vLa640zkRqXH6Q4DIrIocCw1IIxVKelmyoEwmD/6DIshyyTizvUmOo33jjDZSVlRn2U8MEXK7of0GuueYaNDY24qGHHkJVVRWcTidmzZoFb6BhWEVFBTZv3ox33nkH7777Ln7wgx/gvvvuwwcffBBRXIUjLy8vbDhB8DEkSQq7zmzk9tlnn42XXnoJGzZswJQpU0K2t7S0oKioyNQxCSGEHJ54eoHewJf8LR1Ac7uMghzrvx0PN3dn7XbrhZCYGjetRl82k0AWCbW/T7SH7DHCI8mOfebFl6E0boCwBCDQS0ip2kddAzBxVGzjiELIOYAQGp3rAAICbX+3SUdImCPkjOHxvMDpQFe/B5KrD03tgM8nh4RShKMzKKY72nf0aXY70u12dPt8sKX1YXecUefJDMMShgg1NTVwOBxYsWKFtq6vrw+rVq3ChAkTIr5v4sSJcDqdqKurQ01NjeG/iooKAMDUqVOxfPly9PWFj3pcvnw5rr/+esybNw+TJk2C0+lEU5OxFbTL5cJ5552HRx55BO+//z4++eQTfP311wAAh8MBn9iQLMq5Brtbg8k999yDb3/72zj11FOxYcOGkO3r1q3TXDNCCCHDm+CUta31gzNOOEdoMJLjDEJojL5siRAKmCHR5p+IjtD2ONr2uU2EJQBKnx+VvU2R9wtGTI1z2aILobGFuqpo8poTQmLJWtoA4wB6kIGU1ge/LKMpTApg2HEER8iJlKhzngzjuLyHpSNEITREyMjIwPe//33cdNNNWLp0KTZs2IDrrrsO3d3d+M53vhPxfVlZWfj5z3+OG264Ac8++yy2b9+OL7/8Eo8++iieffZZAMCPfvQjdHR04LLLLsOqVauwdetW/PWvf8XmzZsBKCLsr3/9KzZu3IjPPvsMV1xxhcFFWrRoEZ566imsW7cOO3bswF//+le4XC5UVSmFwaNGjcKHH36IPXv2hAgokRNPPBEfffSRFZcrZv7whz/giiuuwCmnnIJNmzZp67u7u7F69WqcccYZB/V8CCGEJCfBfXcGSwiFa3Q6GMlx6jgZLqUHjureJCqE/H5Zc4QyogiUvCwJuZnKclylcSaF0MhC/YHfjBDq8OpCKC1MGb3IuBGpkP3KOB0+s46QLlDSbQM7QmpynCQF5gnFWB4nCiFXDOPogqsfLR0yunsOr6aqFEJDiHvuuQcXXnghrrrqKhx11FHYtm0b3n77beTl5UV935133onbbrsNv/vd7zBhwgSceeaZeO211zB69GgAQEFBAZYtW4auri7MnTsXRx99NJ544gmt/Ozpp59Ga2srpk+fjquuukqL8FbJzc3FE088gdmzZ2Pq1Kl477338Nprr6GgoACAEt6wa9cujBkzJmqp2fz587FhwwZNgB0sHnzwQVxyySU45ZRTsGXLFgDAv//9b1RWVuKEE044qOdCCCEkOQkWKFt2D84DYWtn6HHX7oiv1040VGFXkK2Ul1cE/rde35jYWGIobzRHCNBdoboGoK/f3Jhm4rMBYGSBvmxGCHUKQsg1QGlcRZEE2aM8O3VL8YcluAYQXECY5LgYAxPUOUKyH0iPYZx8VXDZZEjOfkscw2RiWM4RGgr89Kc/xU9/+lPDurS0NDzyyCNajHUwJ510Utg/XpIk4frrr9d6+4Rj6tSpePvtt8Numz59uqFfEQBcdNFF2vL8+fMxf/78iMc+7rjjtDjtaOTk5OCHP/whHnjgATz++OMAlD5Ct99+u2G/RYsWhbz3/fffN7wWr8OoUaMMr8Ndp+Dr+uCDD+K2224b8JwJIYQMDw6aIySUxhXmAE3tQHuX4tSIjUETQZZlrdSvIBBbXVEMbK5TSs7auoC8rMjvj4YalABEnyMEKELoiy2A36+kuY0pi76/iNk5QiPF0rjm2OckdfTqAiUjNbpwyM4A4HECGV70pXrhl2XYBig908YR+vtkxhA2JSbHmeklpAkhbwoy0gY+t+DkuN0NDoyrNO7T2CZj4y7lGpcWYEhBR4gkFb/85S9RVVUV05yiwaKhoQEXXXQRLr/88kN2DoQQQpKLYCG0ZffgjCPOEZozdXDG6/IAqgGRLwghlUS+9e8WhFDGQEJI6JhhtjzOtCMU5xwhMVxgICEkSRKcvoBTY5PR5g0/9zoc7QEhJPskZDoGfjw3OEJpsTtC6lykgXoIqQQnx4X73Xj/S2Du9TKO+JaMR4dYH3oKIZJU5OTk4Je//GXYOOuDRXFxMW6++eYBJxASQggZPgSXxm2tt75cLXicqUKIgZmH94EQgx8KBlEIDeQIjSnT/z9rVgiZjc8u0fvOm7qWYppbVsrAzyaZ0AXKjtbYI7TVceQ++4DXDdDnCAGqIxT9d3FdWyc+bWzVBZc3Ba4YhFCBwzhOuN8N8XqK13koQCFECCGEkCFNY5uMzzbI8PsHbyJ3c7vx2F0emGpkGSuiIzSxKr4J/gMhulsFOcrPimJ9rESEkNuMI2ToJTS4c4ScDgmFgc+6tzn2ccSGqlmOgYVQXqouHDY1xD5PqCtQCROrQCkWcq+lrJ6ov4vr2zpx0jufYt5/V6FXbTXijU1wFRgcIS/qDoTep33N+jqWxhFCCCGEHCS6e2RM/raM474n4y+vDd44waVxwOCUx6lzhLIzAr1vAuxttk7kia5TfmAukNERin8sM46QQQjtMzeO2fhsQC+P29sUu5vX3a8IB9mPmErWSpy6itnY1BNlTyWa+7dfb8PT23ajWxVcffaYStZqhIlR9tzuqHOEXqtvQPB3BLGXxomhDOEdoX2CsKQQIoQQQgg5SKzfCTQEHgL//s7gOULhYq0HIzBBdYTysozzWvZY2MzS6AgpTlC5EOpqlSM00IN2RTGgVsKb7SWklsa5nIipkSigX8++/tC+UMG4+31Y39aJbl9AoPTbkZE28GPzqExdoGwT6/fC8OyOety/cSd+/sUm9MoBweVNicmpqUh3Ic2mnI893x1VCC0PYxf52tJjGkcMS7BFmCNEIUQIIYQQcghoaNOXP98E9HoHRwyFd4SsHUuWZU1w5WcFzWsxUc41EAdrjlCGK7pASU2RUBkYd6dJR0gtjYvVDQKCIrSjXM/Ll3+JqleW4dR3P4PbH5hTE+PcnXE5uhDa3RNdCH3S2BayTvbG5gjZbRJqspWxbNke7G/1h92vx+fDysAvr689Dcc3TkH3x2PQs3J0TOMYSuNcXuxuAFp7vXhuRz12BISeKoScDmi9oYYKFEKEEEIIGbKIz5K9XiWOeTA4GI6QOyjNzZEqoShXeW3lHCExoltNjcvOkJT4ZyQohIR8gFgetFUnqq0Lppp1qkIoluhslViT4zJS7PDLgNcvo92vzPORYyxZm1CQBtmnCMAGX3Qh9GVr6C+V3JcClzM2h2tslnLDJLuMZtkTdo7cquZ29EMRSf178uDeUozeL0ZB7k2N0XnSd7IXuNHlAX62cjN+umojLvhwNXx+WROVIwuUBq9DCQohQgghhAxZGoJKglZ8PTjjqI5QeRGQGmjzYrUQEgWK2senLCAU9jXDsjAIMfhBdYQAWNJU1UwfIUD/fEBs5X+9gfyBuByhwtjCJ6bmZYesi9URGllgg79DOal2Wzf8Ea5jQ08v9nSHziGSYwwxAIAjVOUKADlubGjowXM76tEodLVdIfwD6d+TZ3DeYgllyHak4oiA4LIXdgJ2H97Zr1y8OncPvm7uQkuHDFtO95AriwMohAghhBAyhGkIig1esdb60jhZljWRUpwHjAlM8t+2xzpxAhgT49QQA7Wcq69faa5qBeFS4wBdCPV6jU6bGcz0EQKMc5P2DOB6/fppP7K/Adz3z1yoz/pxl8ZFFUJhusnG6AgV5yrzbwDAZ/Njryd8hPZXYdwgALCle2MaBwDGCkLInufGd1atwU9XbcQPP1+nrf9wvz4/qG9PHuoFsRnrOEcHbEPJLsMx9oBWLggA79S1wV7QhZyrPsGuWR/j2R0mJ3sdYiiECCGEEDJkEecIAcBH66wVJwDQ4QbUPt8F2UBNubLc4zVOFE8UsfxOfRaPtxForOPkC8/8VswTMu0ICS5NfRRHSJZlPPRPpXTwybd0x8acI6QvR0vhm5obKoTkPntMDkp+NiC36/V6Ozq74fX5US/G3AH4UrgJfo8+D6e/MStmR2hcli6EUsc0Ymt3FwDg48ZW+GUZPT4fVreq84NckLvSIParT0+LrY7taEEtO6cZoxKX7W5HSpXyj8Dj9MDrDz9XKVmhECKEEELIkCW4NK65HdhcZ+0YooOSn20UDFamuRkESrbykGq1EJJlGet2KstOhy64AGMvofo4hZA4zycWRyjW0rja/YogBYA+n36egzFHqLs9Fa4+48nL/bGVrNlsEjK8ujrb3NGFM977HFPfWIGnt+kiYo3gCHX9ezrkvXnwtabDu7k0JsEFANVZ6ZAClzulWLcTu31+1Hf3YFVzO/oCaXT99Xkh74/VEToqXxeeKYVdhm3ru9qROkq/mKeVDK36OAohQgghhAxZwpVwfbQudF0iBKesiS7GQOVcZmgVnjG1OUIWj7W5Dqg7oCyfONUYPW2FI2SmjxAAlIkR4U2RXZq128OvN+MIjcjTJ/NHE0I3/1lGe53RFYo1LAEA8qGrs+d37sXaNkWk/Gv3AW396iZFCPl7U+BrykTby0eh4/lZ8LelxzxOmt2OAnv4C7C5owsfNYrzg3JD9onVeZqUkwWHFF4ydDm6kVKi/AMpktIxOtOEMk0CKIQIIYQQMmQJdoQA6+cJiSEGBTnmJ/jHPE6YkjWrHaH/rNSXzzjGWBolCqG6OJuqmukjBMR+La0QQikpEkYEjJFI8dl9/TLe+ATwNRlzoGMNSwCA0hRdDKgiCAB2Bsrj9nl60OhVJjn5GrIAGO9DrOMAQGVaRtj1m9rd+EJQ8P37ckP2iXUch92GyWHKBVVUjTQjszDiPskKhRAhhBBChiSyLGtzhMZVAmrvx1WbrR1HdITysyTDBP/6RivDEvRj5QWFJQDA3iiOSay8/bl+jDNmGreNKtGXzfb1URHjszNiECmlQuRyNMdr7Y7wn91MaRygC8v9LYDPF3rMj74OzAlrDEqOMyGEyjKdkPtCH7H3dveg1+fHGkHx+hpCE+pidYQAPUI7mM0dbqxqVkSY35MKf2foybscsY9zTGGO4bWvPfTmnlZCIUQIIYQQclDocAPePmW5olgvs7IywAAITVkzlnNZN05L0FwkIMgxSXCsXq+M99coyyX5wJRq4/bKEYAt8GQYrxASMwFieaB3pEooDrg00cISIjtC5hrXqELI5wtfVvnGJ4o46m8MdYRiFQ4leZKWHGc4BoA6twdfCDe6vyHUaYl1jhAATC0MrwTfP9CM1r6A69SYhTRH6HUy4zzNKDAKNufWCsNr2WvHGVW5sR8wSaAQIoQQQojleHplnPwTP47+rh97LHRNRMSyuOJc5eEeUASFt8+6MUWBUpA9eKVx4eYIFeUCdruynGhp3Mfr9Dk8ZxwDSEHdL1NTdLfrYDlCgC4sI7k03T1yxJ5NZkrjAKPD9ti/Zfz1bdkw5pufKj9lt1GNxBqWAAAj8iX4wwghANjl9hiis8M6QiYEylEjdMEm99ng71LOW4zt7m/IxmkzQt9rapx8oyM0zl8MX4d+gP76fJTmDj1ZMfTOmBBCCCFJz79XAO9/CXyxBfjWHYMkhNr05eI8YES+sC3M3KF4ae7Qzz8/G8jOkLSSrGguhlnCOUI2m4TSwOeKNK8lVgxlcceEd1JGl+rn0t5l/r6JYQmxOihlgktzIMx9W78TiJTKbFoICeETdywCrv6tjL+8przetU/Ghl3qVuP1kRz9MQsHsZdQMLu6urG+TVG8/p6UsCVrZkrjxudkwmVXHufl+oKQuU2AMg9pzpQwjpCJcUZluFAasKqOyErH5FInfPt1EZfRVAibzZw7lwxQCBFCCCHEckRH4cOvlEnoViOWNhXn6RPhgfAP1PESnBoH6A/ve5qUuUpWoDZUtduND/hqOVdDa2LXUQxKOP2Y8PtUj9SX43GF1LAER6oSThAL5QPEkYtlcUW5xm1m5wiNKQtd9+VW5Zq+8Ylxva/VePC0GIXdiHwYHKEUwXlb09qBfT2KW+NrzkSw4ALMlcZlp6bgyeOm4Ls1FZjQMBa+1tA5Q/6mbBx5ROh7zThCkiTh0ZmTML9iBB6eMRHjKyX0bhoJWQb8bgfKuosGPkgSYqkQ2rRpE6699lrMnTsX559/Pl599VVt26JFi3DaaafhlFNOwcMPP2z4o7F+/XpcfvnlmD17NhYuXIh9++L0YwkhhBCSFKhzd1TeWRl+v0QILo0THaEDLdaNE5waB+jlcd09QHtX6HviGifgCOVnGcvWVNEly8D+OF0hWZaxdoeyPHGUIhzDMbpUXx+rEHr/Sxn/97gf9Q2y5gjF0kNIZaCI8LXb9WfGS042bjPrCF1wIrDwXOCc4/V1qvh681OjyHQvnQzZJ0H22mHbWhZSShiJ4lylMarKxVV6CsVSob7R15yJFHvo+80IFAD4Rlkx7j1qPI7IT4OvxSiE/N2pGOF0Gua1aeOYEFwAcNKIAjw9ayqOK8rD+Cqgv64A7c/MQftfj0d5TurAB0hCLBVCt912G2bPno3//ve/+P3vf48//OEPqK2txYoVK/Diiy9i0aJFWLJkCVasWKGJJK/Xi5tvvhmXXXYZli1bhsmTJ+O2226z8rQIIYQQcpBpbDM+VP7tHesdIVEIFeUCI4SH+8FwhCQJyAk8ZxqT4xIfw9MrayJAdLaAoAjtOIVQr1cpPQOAoAAwA2ppHBCbEOr1yrjgFhn3PA/88glZc4TMPMyLc67CNXJVBRwAXH6acZtZIZSeJuHxm2z4990SUlOUdep1X7lJ+amWWfqas9D+zAlof3Y20n2xf6AR+YC/JRPu9yag4kAVfj99PByBsrFW4RsCX1MmZk0yvtduh3ZeZqksRogQ8jVko7JYMnxJoGLGeQpmfKXyU+52Av12lA6tPqoalgqh/fv346yzzoLNZsP48eMxatQo1NbW4s0338RFF12E8vJyFBYW4sorr8Rbb70FAFi9ejVcLhfOP/98OJ1OXHfdddiwYQNdIUIIIWQI09RufP2v5UBnt7ViqEEQW8V5RgFhpSOkpsblZekNSK1McwOAlRuBvn5leeYE4zZxXku84Qxif59obo1RCA18v/a36CV9X+/Q5wiZcRtEt2JLvYwfPejHbU/5Icuy4mQFSuNKC4CZ44E0hz5hyKwQUrHZJE1g7mlUhKhaallTpocqyD2pkHtTTYkGtXzPu3EkMjbUIDM1BZVhkiN8zZk4PWiuVrozNMQiVqpKpJDSuP6GLFQUKyWd9iD3yazzJFJRbBRS4u/oUCJOzRmeSy65BG+++SYWLFiATZs24cCBA5g8eTIee+wxzJs3T9tv7NixePTRRwEAO3bsQE1NjbbN5XKhvLwcO3bsQGlpacgYXq8X3kATKu1DpKTA4YhcuOkPzLDzR5ppRw45vEfJD+9RcsP7k/wMt3sUHE3s6QVe+kDG1WdaJ4ZEsVOYI2tCAgD2Ncvw+82NFekeqSVrBdn6NtGl2d1gfqxglq/Vl4+fYjwHcaza/fGN1dmtL6enRf49FHsJ7dg78O+rGFW+r0lPjcuIMkYwopvwx5f05ZOnyxhboV//ydWAJPlRM7IP63YpT+EZrvivfVkhULtfEe1bduvHqCgGOroBbNX3TXfG/nlS7Ipobu1UXEu/349RGS5sE26CLANSWwaOHms8d5eJcYKpKAbgTYG/ywlbZmAeUmM2ykcBgIyiHEW4qjhSEvu9HVcBrNmmLI/IV46VLH/nbLbYvB5LhdCsWbPw61//Gk8++SQA4Je//CXy8/PR3d2NzEw9xSIjIwPd3covg8fjQUaGUb1mZGTA4/EgHM888wyeeOIJw7qLL74Yl1xyyYDnt3v3blOfhxx8eI+SH96j5Ib3J/kZLvdoT0MpAOOXlC8tc2PueOsa7+w+UAxA+aa9p7MO/R47AGU2/I56N2pr4xtLvEf9PqCtqwoAkOHsRW3tfgCAw+8CoMzyX7+1DbW17SHHMcO7K4sAKBPsR+fvQW2trupccAJQFMrXWztQW2u+7m/b3hSo1wa+LtTWhq+xk2XAmVqB3j4bttR5UVsbvUJn3Rb9OjS0yZBlxRmwowe1tQdiOjd/jwSgMmT98i+a0dzUB/Wzl2R3YPfuVsyakIt1u5zISvfD112P2tr4HuZzXYUAlGfQN5c3A1AUWU5aO+R+GwB9nk+KTb/3sZCfORKtnanY3+JHbe1uFPj7Ddv97S4UZwLw7gWgJ1Q47P2ord0T1+dJ6Vfusa85QxNC/Q1ZyEhpQW1tJ/IyS7G/Rfk3mebwJ/y3qLygEGu2KdfP7mtAba3+7H6o/86NHj06pv0sE0JtbW248cYbcfvtt+PEE0/Ezp07cf3112PMmDFIT09HV5c+k9DtdiM9XfnH7nK54Ha7Dcdyu91wucJ7nQsWLMAVV1xh/BAxOEK7d+9GRUVFzAqRHFx4j5If3qPkhvcn+Rlu96gj8EykfjMOAF29GaiqCk21ipfOwBguJzBhbCUqhO9Q3V7zY4W7R+KclZFFTlRVKaLoSKHUzN2fi6oEmkn6/cCXgW/Wi/OAuTPLIFZHSUIJU7M7G1VVob1nBqJJON/iwkxUVYXGLKuMLgU21QF7mh2orKxCtEoteZ2wLOs75uWmadcqFjJdQFfQd+Cd3gL0CmNPPiIbFRWZ+PH59ZgyNgvHTbRh/NhQARUrR1QBCIR4bD2g21KTa3JC5pjlZjlNfZ6yYmD7PsDdY0PRiCpM7pXwjwZdLPuaMzGqNAVHTR5peF92ZoqpcUSKRig/PStHQ3L1oW9nIWR3GqaOS0NVVT7KRwAb65R9MtJscY+jcvYc4PXPlDlNZx5fjLKiofd3zjIhtGfPHmRmZuLkk5U4j5qaGhx99NH44osvMHr0aGzbtg1z5swBAGzZsgXV1Uo74+rqarzyyivacTweD+rr67XtwTgcjqiiJxo2m21I3JThDO9R8sN7lNzw/iQ/w+EeybKMpnblW/qqEqVcqterpK9Z+dkb2pTym+I8wG63ITtDhsspw9OrhCXEO5Z4j1ZukgEon2XqGP2YlSP09XubEvtc63fKaHcrx5o9WfksIhXFMlLsMvp9QO2B+Mby9Ornm+mKfozRpX5sqlPKGRvbJJQURFZCyn0OdWQy0sydZ3GeP0QI1R4ACrIl7fijSyXYbDZkumT88JuJ/zsqL9LP/dP1+vqqEikwn0b/XOkmP8+IfL007IstEvYfMEZx+5ozUVYEFOVKsNtlLcjC7DgimelAUa4fjftz0blkpv55Rkiw2SSUCOeUyDgq3z1bRl4mMKoUqBhh/B0ZKn/nLDvDqqoquN1ufPjhh5BlGbt27cLKlStRU1ODefPm4aWXXsKePXvQ1NSE559/Ht/4xjcAAEcffTQ8Hg9ee+01eL1ePPXUU5g4cWLY+UGEEEIISX7au/SJ/0U5Shw0oIcOWIHPJ2uBDMW5yk9J0nsJWZUa98l6/WF41iT9Ya8oV0/3SjQ1bsXX+vKcqaGiw26XUBn4tn9X7NVZBsSwhIGCDMz0EjrQEr4szexE/B17Q9ft3AfUHtCPXzXC3DEHQgy82FirL1eOQEgKmtmENfV3EgDmXi/j7seMF8TXlInyIuXeivvG2oQ2EpVhrlFFoE+TGCaSSGKcSkqKhEtPlXDsxKEZlABYKIQyMzPxu9/9Dn/+858xd+5c/PCHP8Qll1yC448/HnPmzMEFF1yAq6++GhdffDFmz56N8847D4Di8Nx77714/vnncfLJJ+Orr77CHXfcYdVpEUIIIeQgIybGFeYC+YFKrhYLhVBLp1JSBhibbKoxwc3t1jRx/URwCo4Too5tNkl7WI43yU3lo6/185wzJfw+aohBexfQ1mn+cxlS41zRH1zFXkLhBIpIJMFppo8QoPT2CWbXPiXMQEVox2MJ5RF6gFYUAyVBcdNmhd2IfOM19ncYp3z4mjO1/kniWIkkuQGhYjE1Rf83IcbLJzrO4YLlYQmzZs0Ku23BggVYsGBB2G2TJk3C4sWLrTwVQgghhBwixMS4ohwlbQ1QSq08vTJczsS/QRbHKBa+6RYfKhtajd/6m8XbJ2P1FmV5TFloE9LyIqDugCL8enplpMX5uVRHyOUEpo8Nv4+Y5rZzHzA9K/x+kXALZWcDiRQzvYQaIgghs806f36ZhH3NMmZNlvDWpzKWr1Wu67qdyvY0h3KfZQsT2MP9bqSnKcI92BEy+3mCe0Gh3w7Z7YSU0QvZa4e/3aUJMYMQStCpCRaLZYWKaAeMDYcTHedwIfmL9wghhBBiKR1uGd4+6xucqhiEUK6kOUKAda6Q+AAulhZZ2Uvoy63K3CYAIY0vAeODdLyNTvc3y5rrcexEIDUlvJgSXZp4yuPUWGvArBCK/nsSyREy6zgcUSHh1Xts+L8rJcP4uwNhFVUl8ffXicTIME1AK4uVcRJ1hIqDhRAAzxeVsPvs6Fk9CoCk/f6UCOeRqFNTWWy8RmpZHGD8t0FHSIFCiBBCCBlGfLlFRuk3ZYy6REZLx+CIoeDSuIJBEELbhIRhsZmj+K13ovOEPhES0cT5QSpiI9B4y+NE0ThmZMTdMEoQB/EIIYMjNEATUiscoYy0+EXLqDDTxK2eHwQAaU4JBTnGdapwSHNKyBNcN7MOytiK0HW9X1VCWjw3IIQQ1hFKdO5OsCNkEEJ0hEKgECKEEEKGEa8sl9HdozTCfP3jwRkjuDTO4Ah1WjPGZxt0EXf0OH29OA8iUSH06QYxKCF0e3mRPtaeONsjGebuRPmW3lgal9gcoYEegnOzJGQHksejBUH098sG0SuSiOMgul8qoyyeH6QiilnAGDZQanBqzAm7iaMk/PlnEv73W8DvFurvbWzVl9VGuSXCfKJEBUpwWIIohEaX6iK4piyxcQ4XLJ0jRAghhJDkRnxwXbtdBmB94lNjm/6gXpQL5GfpEcjNifUd1fh8o/LTbgemH6GvNzhCCZbGqUEJGS5gSpiuHmJpnNhvyAyiQMlMj7yf6NLsGsClCT+Ofk8GcoQAxa3Y4FaEkCzLYcvSmjsiz9kxG5YgEk70VJUMTjJZWSGwdrv+ulKIgS4tADbsUpbjcWr+53wJgIR3VoZepOI8wJEamLtjYclasHMmivXsDAn/vhv46GvgB/MTG+dwgUKIEEIIGUY0G4TQ4IwRUhonlB9Z4Qh1dcvaJPrJo40paIY5Qq3xC729TTLqDijLx4xXooKDEVPH9jTFN1ZXt74crZystEBJAOvrt6A0LoaH7fIiRQR4epWGuPlherhGc9wSeaAPK4QGoTQOCA1MEB0UgyOUgFMzLkzPV/F356ixgM2mpCBOHp2Y4CvIUa59d0Bgi58HAE49WsKpRyc0xGEFS+MIIYSQYYTYy2ftjsEZwxiWoPcRAqxxhL7YokdnHzvBuE2cb7E/AUdozVZ9OXgMFbGsKt5eQgZHKIpTY7NJmhjYtV9xacxgJiwBCHK7Iny2SPODgMSEg9Jfx7jO6uhsfSyj8IhcGpfIGKGOkvi7c0SFhHful/DXWyRcekr84wBK0EOlIH6ChRAxQiFECCGEJAG9Xhn/eE/Ghl2Dl+YGGIXQgZbIDTETQRVCkqSIIIMjZEFAw2cb9eWZE4wPslaVxrUKzlVZUfhv6UdaEJYQ6xwhQA8R6Ow2Hzph7CM08P7lMZT9Rbu+sYwRiZQUCRVBTs2gzREKGkcUEaOEcryCMI5YrNhsEo4oN64rDxIopxwt4cozpLDOo1nUsWy28METRIdCiBBCCEkC7nsBuOw3Mk74kYzO7sETQ01txtdfD4IrpJbG5WcDdrtkeVjC5xv16zMzyK3JSld6zgCJhSV0CCVr2RHm7jgdktbMNd6whK4409zMlseZL40bOAiioU1fDnZsEp30Lz7Ap9hD+/pYRXBYgihQrjgd+MaxwIVzgbOOTWyc4BS5ssLBmfMEAL+8SsLMCcBd35WQnz144xwOUAgRQgghScCqzcrDfUsH8PUgzd0BjI4QMDjzhFRHqCjgBFldGqcGJWS4gImjjNskSdJcoUQcoQ63vqwmqIVDdRT2NgF+fxxpboJAiVYaBxgdCrOBCYbUuBjnCKnUN4b/XKKbeGSNcVsijhBgFH0VxYqgHgxER6goF4ZmvzmZEt68z4YX77TB6Uhs/HFBQqg8gUa/A3HcJAmfPa70ZCLRoRAihBBCkgCx1Gn73sEZo7tHhqfXuE5JjrOOnl5ZczlUt8TKsIT9zXqIwYxx4R+Q1XlCTe1AX398n6/drb8vJ5oQCjgK/b7oc2YiYUhzG6g0zhChbXYc5ack6Y5ZNERnJGJpnPB5g4VQwo6QIPoGqywOMDpCgzmfZlyl8fc0uCSPHBoohAghhJAkQBQI2/cMTmlcODfGakfIkBgXEEAup6Q9fCfaUPVzYX5QpBCDkUIZ1b7m+MaJ1REyJseZH6fLhCNkLI0z9zuiOk8ZaQgbhR1MucmwhGk1xmMmGgMtip/BCkoAlPLNU45Sli89ZfAclODSuMF0hEjsMD6bEEIISQIOhiMUXBYHAOt3KY0xrZikDYQmxqnkZyvlY+HOwQxfbNEFwDETwp+z+G373qbQJpOxYJgjFLU0Tu+RVN9gbO4aC2ZCDERBUHvA3DhqalysJWt5WYpz1OONLIRUR8hmU2LMRRLpIwQARwq9oY6sGTyBIkkS/nO/8hkHq1cREGaOEIVQUkBHiBBCCDnEyLIc5AgNzjjhRIi3D9hSb90YoiMkCiE1dStRR0i8TpURSplGChPR401zMzhCURqdiqVViTpCA4mHknyllxAA1MYZlhCrQJEkSXMtBnKEinJDH+wTdYSmjpHw9C8k/Poa4LpzEzvWQNjt0qCKIADIy5JQHOhxlZMJZKVz/k4yQCFECCGEHGI8vUCvV3+9bbCEkCBSxCQ3K8vjREeoMEd/2FPH6/Eqc5XiJZaUNVGc7D2opXGDG5Zgs0naPJa6CPN2Io4TcJ7MzN1R5wl1uBGSZCjLsuYIFecC6WmS4TrFMg9pIBbMk3D7tTakR2k0O5T42aUSnA7gpxcd6jMhKhRChBBCyCGmNShAoLEt9MHTCkS35qQj9WUrexdFKo0T+7Ak4grFIhyM/X3i+2xqaZzdHtoMU6Qshn470TDTRwiA1lS1vQto74rts/n9ekiGmTQ3g8gLcoU63IqbCOi9m1SRlpupiDZi5OZvSehaqog7khzwThBCCCGHmHDCYDDK48TSOHFyeyIx08F8uVV/OBfntFjVSygW4WCFI9TepfzMTo8eLmBVWILNBjhjcFHimSfUbVJsqUQLTBAT44pzlZ+/vFJC5QjglqspgiJh1Vw8Yg0UQoQQQsghJpwwGBQh1K6LlAlV+nrRxUmUD79SfjodwDHj9fVW9RKKpTTO6AjFN47qCEWLzgaUsjn1POIZS3W4Ml2xpbmJwQ91UYSQzyfjijv8mHqNH6s26+vNCSH9fIKFkJgYpzpC3zpdQu0/bfjZZXzYJ0MDCiFCCCHkEBPOERqMeUJiadz4Sn25oc2a4+8+IGv9bY6bCEMTygJhvlBCpXEBd8NmizwPxSBO4nBpAH2OULT5QYAiXlQHKlKoQDTUzxOrQKkaoV/HaIEJ/1kJ/P1d4OsdwAP/EHoVmSiNE8v+duyV8dTrMlYHGv+Koq8kn8KHDE0Yn00IIYQcYsKWxu2VAVj7gCmWxo0sVB7yO9zWOUIffKUvzz3SuM2y0rgY+uEo4kTGlt1KfLZZvH1KqAMwsBAClBKyLbsVt6rDLSM7I/b71iU4QrFgLI2L/Dvyxie6+Fm/S18fb2ncnc8CgIzcTGDXEmC3MB9qMBuREjKY0BEihBBCBmAwggtEgsMSgMEqjVN+2mzKhHZ1bodY5pQIH6zRr9PcacYHdDEswYrSuIEe6NXyuM5u8/evU+whFCU6W6UsSqjAQGiOUIxCSIwMj1QaJ8sy3vhEf71LcI7MxFqHa/rZ1gWs2wnsbtCvKYUQGapQCBFCCCFRuOUJP7LPkvGzP/kHbYyWztAH9cFoqqqWxuVlKb1T1FS3ti7A25e42PtgjfIzNQU4bpJxm9ERin8sVTgM5KAYAhNMukKxNlMNN5aZ8ri+fllLXovVqRFFR6SwhI21RvHjF351zThCat+bYHbuoyNEDg8ohAghhJAoLFqq/Hzs38oE9MFALI1Tk8N2NwC9XmvHU0vjVHdGjLduSsClAYB9TTK2BhqzzpyAkN4vVoUlxOqgJBKYoCbGAbE5QmKogJk5SWZ6CKmkOSWUBMIJIs0RevOT8OsBIMNET55IEdg79wG7A9dUkozXmpChBIUQIYQQEgVVpHh6B8elAYxzZo6sUX76/cZv9ROlr1/WAgBUISR+45/oPKFo84MAoCBHX453jlB/v6w1nh3I2Sgr1B/izUZom3WExBKy3SZ6CZntIaSiJsftaw4vlt/4NLKANhOWAADnHB+6buc+WfucpQVAKiOhyRCFQogQQgiJQK9Xb0QJAGu3D844oiMkRk5bOU9IHKMwIEpERyhRIfThV5HnBwFKOV64czGDKBwGclAScYRUwQgAOTEEH4iR1rX7B3bxtuyWsXGXbIgCj9URAoyBCcGleO1dMlasjfxeM4ILAB69QcKt3wbee1C/Dptq9d5TLIsjQxkKIUIIISQCwSEGa7cPTmmcOo7dDkweHb+TEQ2x9E11Z4pz9bESDUxQY7MB4KixodtdTkmbqB+v6DLjoIjzdvY0mbtvZh0hUZhE6+0DAF9vlzHxauW/DwUXzYxTU2UQXsZt764C+n3KsssZ+l6zQqhyhIQ7vmPDKUdL2jwvsS8RhRAZylAIEUIIIREIFUKDM47qkORnBc3babNuDHFeTrg5Qok6Qt2CSMmKMK9GLSGra1CSzcxicFAGmLszMpGwBMERikUI5WXpjk6kAAOVf60AfAGh8u8VQn8fU6VxuoCtCyrF21irL4crazOTGhdM9UjlZ1+/vo5CiAxlKIQIIYQMWeJ5mDbDQRNCgXHys/WyNQBoarfu8zUbSuOUB2lRCDW0JTaW6tbY7YAjNfw+owLOidsTX3mcGC4Qa3w2YL6pqkEIxRCWIEmSVh5XdyD67+WqTfq2zXX6+kxX7PNsojlCe5v148+aFHpMs46QyOjS0HUVxZwfRIYuFEKEEEKGJD/7kx+l35Tx7+WDJ4bauoyvd+5TGmZaiRhikJcFFObq2xJNchMJWxpnYViCKlLSnZEbnYolZPEEQXSZEEKOVD0efLDjswFdnPR4o19Lsaxsp3ANzAiU0KaqOuJ8qGMnhL7XbFiCyOiS0HV0hMhQhkKIEELIkMPtkfHgP5UJ27//++AJoXCNTtftsHYMUWzlZwU7QtaNM1BpXKJzhLRY6ygP9FVCSVek6OdYxgBiCxdQXaG9TYDfH/vviVlHCAgSJxE+294m2SDK1BI5wJxAEcMZ/vsF8J/PZc2FUueV2WzAkUeEvjchR2hkqMClECJDGQohQgghQ47WTkCtPtpYO3glcuGE0FqLhZA4Rn62sd+OpUKoQ79Gg5Ea1x1I14v2QD8qQUfIUBoXQymZGpjQ7zN3LUVHKCcztveI83YizRNavTn8esBcalxupu7m7doPnPlzGd++OyCEAkJrRJ7Syym4Kar1pXHxH4+QQw2FECGEkCGHKB7auhJ3MyKO0xW6zurkOHGuTH4WkJIiaVHTVgohsb+NWhrnSJW0B/2EHSGhNC4SRtcksbCEWB7o443QjssRElyaSMlxqzZH6e9jQqBIkoSn/lcyCMu//UdxSvcHYq3LAsEUYo8jIMGwhCAhlGJXBBchQxUKIUIIIUOO4Lk74qRzK2ntDH1wtTowwSCEshVXQXVsrBJC3T0y3vhEWc7JBGrK9G3FucrPxgTG8vlk9KiNTgfTETJZGldepLs0sTQ63b4HcPdI6IxnjlAMIm/VpsjvN+MIAcA5x0vY9oKEcwPJcLIMfLpBacQLACMLlJ/BQigRR6hyBCBO/yorAux2hiWQoQuFECGEkCFHsBDaNEhCSBzHFvg/5tc7rC3FawkqjQN0IdTepYQpJMqrH+luysUnAU6H/vCqlse1dykNZONBbDob7UG7tEBxEYCBY6bDYaaPEGAs2xpICP39HRljrwDO+L+RWnmZzRa7g1IpjBXus8mybAhKCCaeEAO7XcJ0oWeT2NRWdcNChFACYQlOh2TozxR8bEKGGhRChBBChhyhQmjw5wgdWaP87HCbK7MaCNERUkvixMCEZgtcob++rV+fK88wfoNv6FsU51iiQIlWGme36zHTsYYlePtkvP+ljA63jC6P0Hcnhgd6MVRgd0P035Fn3lK272tJ0YR1dnrkBLxgRhbqIi9caVx9Q/Tyw3idmpoy/fw+WCOej7K+XIi3Tk0BUlMSc3DEeUKcH0SGOhRChBBChhzBIQabasPvZ+U4U6r15QMWzkkyhCWoQihXX5doeVxDq4y3VyrLFcXACVON262I0DY4NQMIFHUuTVsX0N41sID93z/LOPknMuZeLxvCEmIpJYvVEerrl/HxutD1sZbFAYrIUx2ScI6Q6AaVhXFSzJbGqYhljp9uEMYI4wglUhanojZVBSiEyNCHQogQQsiQ42CVxqkixZFqfOhLNGFNpEVIcwsujQMSF0L/WKbHNF9xOmCzRXaE4g1MMNPodJTgKMRSHvfKcuXnmq1AveDEmS2Nq4sihFZtArp7QtfHGpSgojpQLR1AV7dR5IlBCefPDn1vvCLliHJ9uderL4crjUukLE5ldKn++8NmqmSoQyFECCFkyNEW5CTs2g94eq0vj1MFV14WUJSrP/RZKoTCzhHSx0pUCC35r35drjg99MG12ILP1R3jHCHA2Eto177o+7Z1yoYSui27hXFieKhPT5O0axrNERJLykRijc5WEQMT6hqMc8nEQI9vHBd6HzJNii6Vgpzw56kKIdF9ila2GCunz1B+ShJw0pGJH4+QQwmFECGEkCFHcGmcLANb6wdvnLxMa+bShCM4Phuwdo6QKiSK84DJ1aEP4AZHqC2+MURHaKBwATE5biBH6KughL4twj2OtZRMdYX2NCrpduH44Kvw6007QoIDNf+XMorOk/FsYO7Rjr3KersdmDUp9L3xihRJkgzlcSpqaZwYbmCFI3T8FAkr/yLhy6ckTBlDR4gMbSiECCGEDDmCS+MA6yO0+/tlLUZZcYT0bY1t1rlPovjIDXyzb2VpnPoZciLMdzHOEYrvcxnT3KI/HIuuya590cdbszVoHJN9hABdCPX7ws/t6u+XsWJt+PeamSMEAFUl+mffWq+I2Lv/JkOWZWwPCKGqEYrzJ4qSNEdiMdTBQsiRqruLGS4JpxylLJ8xI+4hDMwYL2FaDUUQGfqkHOoTIIQQQswSTghZPU9IHCM30yhOrCqN6+yWtYf9mjKlmSoQLIRkAPE9dMqyrMVmZ0VwN6yYI9RtIizBjCO0ZlviDUgrgwITxCarAPDlVj1avHqk7twAcQihEaHrtuwG9jfrTVqrRyouTnmRrIn3eIMSVMR5QoDSQ0hMu3vrPgkba4GpYxIbh5DDDTpChBBChhzBpXEAsKnW2jlC4hjBjpBVpXHvf6k4FQBwxjH6eqtS43q9+vEjPWyrDVWB+NPwYo3PBpQ5K2pPpoGaqq7ZFn6906GLxoEQJ/SHi7UW5wf96JuAI0X/PTJbGie6XSJLP9eXqwNhEVaWrIkR2kCo2HOkKg5OrFHghAwXKIQIIYQMOVS3JjdTf6geTEcoL2twHKG3P9cfus84Rn9ILcjW90lECHUJpWTRHCH1+Xh/S3zjmInPTk3Rm3JG6yXk7ZOxYVf4bWYS1gaK0BbnB51+DDCpSo9ey84wJxzGVgAnTzeWpgHAG5/oY1SPVI5ZZmGsdU2QIxQunpsQEgqFECGEkCGHKlJG5OsNHsVEMSsIdoScDkkTE1YJof8E+vuk2IGTj9LXiwLPKiEUyRFKSZG0eUL7m+Mbx+zcHbU8rqk9NGZaZVMd4O0L/34zpWRGIRQ61tc7lJ85mcCEKmB6jR6BZ9YRkiQJ7z0koek1CU/cpIso9T4Deh8e0RFKtDQueI7QyILEjkfIcIFCiBBCyJDC75e1+Ra5mfoDZZcH6O6xrjxOFEK5mcpDrVoeZ0Vp3M69spZ0N2uS0X2w2yUtQa6pLf4x1KAEIPrDdkm+8vNAq3J9zdItRJcPlBoHGHsJRSqPCw5KELHKEfL5ZK030ehSxRk7eZqu6qbEMadGkiRkpUuYOEpfJ94HVQiVF+n3O1FHqDjPeH9HFrIEjpBYoBAihBAypGh3K3HZgCKExLk7iUZNi7QGlcYB+lgtHUraWCK8s0pfPnNm6IOrWoo32KVxgC6E+vqNcd6xYtYRqhaE0M4IvYSiBiWYcFDKivTSv2AhtLdJbzarhirMntSDl+4E/nmHnrYWD2PKFKcvGM0REsrXEnWEJEkyBCaUFUbelxCiQyFECCFkSNFmcGoGZ+4OEFoaBwT194lDMIgY5weFblcDE7o8QE+czWJjdYRKhVKqeOYJGeOzB95/dKku/CIKIcEROnqccZsZ4eBIlTShFyyE6oTXYtDB/BOAi05KLFwgNUUKSXPLzQTysgJzhCzu7yPOEwoOSyCEhIdCiBBCyJAiWoiBlY1O2zp18RHsCCU6lizLWPaFspyfDRw1NnQfK0SX0RGK/FCvCgUA2BfHPKFufVpNTKVxow2OUHiRpzZTLS0Aph9h3Ga2lEwtj9vXDJz3Cz/GX+nH+p2yIayhstj6crIJVcbXqhsEAJNG6z2cZk1KfOyzAq5idkbo9SKEhId9hAghhAwpWkMcIQmA8jBtpRBqDeojBAQ3VY3/2J3duqCbfkT4ZprBAi+eJLBYwhIAoLRAv4ZxOUImS+NEIST27VHpcMtaid74ylCHIx4h9PlGZfm1j5WfD/xDxhHl+nWPFH2dCBNHAS9/qL8WhVB6moQvn1JCPk6clvhY13xDidEeVQrkZnGOECGxQCFECCFkSGFsdCpZJk6CCV8apwuGRMYSP4MYsyxihdMllsbFMkcIsKA0LoYyr5GFSsS0ty98adzeJn25rAgYKQg1wPycGjEwQeXrHYAjVT9mZZhmqIkyocp43uLcKEAJNbCqjM1mk3DikdYci5DhAkvjCCGEDClCSuNy9ddN7YOTGmd1aVxbGLcpGEV0BcZqi2+c2B0hfXlfcxypcSYaqgKKA1YVEB479ymlgiJ7RCFUGMYRMimExIQ2lfW7jIl1VYMihIyvx5TRqSEkmaAQIoQQMqQILY3TX1s6RyggVux23U2xyn0KDnwIhzWOUGwuSjyOkCzL2LlXhizLmiNktytOTyyo5XFdntC0vz2N+nJZUahrYtYRCjdnprsH+OhrZdmRqs/XsZJxlXpiHWAsjSOEHHpYGkcIIWRI0dalP9wHx2cPRmlcbia09DBjQp0MIL5v+IPL+8IhOl3xjhVzfLbBEYrt2Ff/Vsbf/gNcf6FeGpeRhpiT1oLnCYmfN8QRCmoQmpFm7lqcfBTwp59K6O5VruV9Lyjr1dLBymKltCyeHkrRSE+TMKpE1sr/KIQISS7oCBFCCBlSHKzUOFEIqRzM0jgxXjk49jlWYo3PzkqXtHKz/TEIIVmW8c/3leUl/9XDEsyEGESL0N7TqAuSkYWKW2MTnljMhiVIkoQfXiDhpsslHD02VEQNxvwglTlTlZ8l+eHnKhFCDh10hAghhAwpgkVEepoEl1OGp9c6IeT3y2h3K8vq/CDAwtK4GISQ+HBeeyC+cWJ1hADlQX37nthK45ragV6vsnygVRdZsURnq4juSIgQCnKE7HYJJfmyFqKQOcBnicaUMaHrBiMxTuUPP5AwtRo49WiltxAhJHmgI0QIIWRIYZgjFBRiYJUQ2lgL+P3KcrkQW52VDqQGvkIcbCGUl6ULjDoLhNBA82rUwIS2LsAzQAPX3cL5yLLuPJlzhPTl4F5C6hwhSdLL9sR5QmYdIZEjyvV7qFI5iE5NcZ6En18uYXoYJ4oQcmihECKEEDKkCCci1PK4pnZYMs9DnUQPALMn6w+wkiRZIrrEeU45EYSQJEmaU1HXEN/nijU+GzAGJhwYwBWqbwy/Pl4htGMf8P6XMv7zufIZVUdoRJ7uoojzhBIRQqkpEsZXGtdVjqBIIWQ4QiFECCFkSKEKoQyX/pCsCiGfD1pJWyKs+FoXHeocDxVVCDW2hcY+x0osjhCgOxW9XqCh1fw4qiOUmgI4UqM/7JeaCEyIJITMlMblZ+vi7N1VwMk/kXHmz2W89amsleeJTWQNjpDJ1LhgplQbXw9maRwhJHmhECKEEDKkGDDEoC3xMVasVX6mOYCjxhq3qWP19QMdcYquWOKzAeMDejzlcaojFEvcdEm+LpQGmie0uyG8ADTj1EiSZHCFVJ54TdbKEsXAiG8cq5xfdgZw9NjQ95lhcrVRFA5maRwhJHmhECKEEDKkUN0UUUAYY60TO/6eRj3ueOaEUCfFipS6WB2hKqFkK57ABNURGqgsDjDXSyhiaZxJp2ZEmN49Sz/Xl0VH6Lw5EtY9K2Hr3yXkZiVWyjZ5tPE109wIGZ5QCBFCCBkyePtkdAd61ohpboU5+oNxooEJ4vyg4LI4wJrkOFUIpdijl5MZkuP2x3Zsv19GQ6vi2KhCKBZHyFgaN0BYQoQ473RnLGeoM7k6dJ2nV18uKzQKnkmjJRTnJT6fRyyNG5EPpDk5R4iQ4QiFECGEkCFDJCdFbMaZuBAS5gdNCX1ALs6NvYQsEqKrFa0BqaE0LkI5mojfL+OEH8kYcb6MJ1+XD74jZDLE4KozJDgdwKgSYO6RodtFR8hKKkfoc46OrBmcMQghyQ/7CBFCCBkyRBJCRRaWxq0IOEKSBMyaFLpdfDjfE0EQDES48r5wVJl0hDbsAj5epyw//qounMw7QpH3k2XZstK46WMltL4BSACeegP4YI1R7IlzhKzEZpPw4h3ASx/I+J/z6AYRMlyhECKEEDJkWL1ZXxb7+xgdIRnKo7V5OrtlrNmmLE8ejbBzUcRx6xvNj+X368l2uVnR9y0tUMrn+n2xzRH6cqu+vH6nvhyLI1SUC9hsyvlFc4TEZqrBpMdRYuYKvOfYiaGO12A5QgAwa7KEWZMpgggZzrA0jhBCyJDhjU/0h+UzjtEfYq0IMACAr7bpjVSPnxx+H6MQMj9Gl0cfYyBHyG6XtPFiSY37Yot+fcS5NrE4Qna7hOJcZXlvU+T9dkc5j0RiraeOAZwO47rBcoQIIQSgECKEEDJE8PlkLVEsKx2YPUXfZojPTqjRqb5cVhTeLSgXEsbiKY2LNTFORZ0n1NqpOFbR+GJL+PWxOEKAnp62r1kJpgiHKP6Cpzcl0ujUkSph+hH66/Q0JSqbEEIGCwohQgghQ4LPNwLNAZFzxjHGWOt8ocQskTlCargAAGRFcDey0iXtAT0eR8isEIo1Oc7vlw2lcSKxOEIAMCrQ10eWIyfDiesnjjJuS0QIAcDM8fpyWWH0IAlCCEkUCiFCCCFDArEs7uxZxgfklBRJi9NOxBFSG5ACQGYUF0UtV6tvVMIDzGDaERKEULTyuB17jecvkumKTVDEEs6gzItSCA6TiBYFHgszJ+jnOZjzgwghBKAQIoQQMkR441N9+RvHhm5Xy+MSEUKiIxTNRVHnrnh6lZI1M6hBCQCQmzmwQKkqia2paqSyOCD20rhRwli7Igohffm4icbzT9QROn6yXm43tjyxYxFCyEBQCBFCCEl69jTKWBMo+zp6HFBSECog1MCE9q7I81sGQnRUookHcZ6Q2fI406Vxwli1+yN/LjEoIZhYS+PEvkW1B8IfTyyNmxUUKJFIWAIAjB4p4Y8/kXDJycD/XsGyOELI4EIhRAghJOlZ9oW+fPas8PtYkRzX5Ymt944hOS7CXJpItMcZlgAAdVHGssYR0pd37Qu/jyr8cjKBI8qVyG2VdGds40TjhxdI+MdvbKgeSSFECBlcKIQIIYQkPQeEvjaTR4d/QB4pRC3H2+g0lrAEACgXEuX2RImaDofBERqgjxBgDEvYGUGcyLKMLwKOWXGe8VoA8TpC4cdRhVBFEZCaIqEkX9+eqCNECCEHEwohQgghSU+n4NREilSuKNbFSaTEswHHMRmWABjDA2LBbGmcyymhtEBZ3rE3/D71DXqi3lFjgeqRxu2xOkJZ6XroRLg5QmIzVbU8sEIo3Ut0jhAhhBxMKIQIIYQkPR1CwEAkp0Z8II9XCMXqCJUlUBpnVggBwJgy5WdDK9AVppfQV9v15elHAKNLjdtjdYQAvTyuvhHo7zeOJZbLqdd75gTlZ1GusZ8TIYQkOxRChBBCkh5RCEV2hPTluggT/QciPkfI3BjxCKFqQdiEK48To65ryiTD/oA5IaSWx/l8wN5m47Zte4zjAMAd1yoBB/+5XzL0diKEkGQn5VCfACGEEDIQnYJTE4sQ2m3BHKFoZV752UCaA+jxxiaEer0yLrgFaGgZga4efX3MQmikBEARdzv2AlPGGLeL5XkVxYDdpu8PxF4aB4QGJohzlLYLQmhMoPwuN0vCjy6M/fiEEJIsUAgRQghJegylcREe6kWXJtHSuAwXYLNFdjckSUJ5kYxte2ILS3j9Y+DNTwFAV1cp9tgbkIpzfnaEcYTEz1tRDDhTjdtNOUIjdBEVHJiwfa8urtRyPUIIGaqwNI4QQoYxPp/vUJ9CTMQyR8jpkDAikGCWaFhCLMJBDQto7wI6w8zbEVm/K3RdbqYiqGJhjCiE9oaOFSyEgucImQkxGCW8NzgwweAIUQgRQoY4FEKEEDJMueGGG5CVlYXHH3/8UJ/KgKgCJT0NSEmJLB7U8rh9zaET/WNBdYSiBSWoiA7UQHHdm+pCzyXWsjggyBEKkxynCqG8LCDDJWFkIeAIuELpaYDdHvvcnSqhFG7LbhmPvCjjlQ+V898eGLsoV0mYI4SQoQyFECGEDEP8fj8eeugheDwefO9734MsxxcucLDoCAihgea6VATEid8fOtE/FjRHKIY5NWVCr56B5gltqg1d5zdxyUfkA65As9JgIeT3C719AkLQbpcwebSyLAqbWBAdob/9B/jJIzIuvFXGJ+tk7A2UAdINIoQcDlAIEULIMMTtdhtef/nll4foTGJDLY3LHkgIGZLjzI3h7ZPR168sx1QaJzRVjSaE/H4Zm3eHro/UEygckiRprtDO/coxVRpaoZ23+Pkfu1HCNd8AHv+5OecmNzNUcMoy8OgrwvygoD5FhBAyFKEQIoSQYUhHR4fh9ZtvvnmIzmRgZFnWUuMiJcapJNJUVYzOjqk0Lsa+RfWNQHcgKW5suVdb/73zzZ2fGond64XmzASPLQqhmRMlPPN/NpwwzZwQijRv6aUP9GU6QoSQwwEKIUIIGYZ0dnYaXr/xxhuH6EwGxtOr9LQBYiiNS6CpqhidHUtpnBgzHS7AQEUsiztpqgdv3Qf86irg9gXmBIooPkQ3SfycokuVCCcdGbquR9dwGDOS84MIIUMfxmcTQsgwJFgIffbZZ2hsbERRUVGEdxw6DM1UTQkhGUDsD+yiEIrFERKFiZimFoxYFldd2oczjgHOOtb895BiL6F/r5Bxz/Myzpxp/Hzi50+En1ws4ZP1Mk6Yqrx+ZblxOx0hQsjhAB0hQggZhgSXxsmyjKVLlx6is4mOWLI2UGmc2PwzkdK4WOYIZaVLKMpVlrdHme+zqVZ3i6pL+s2dlICYHPfAEuCtz4Cf/lHGB2uMzVSt4NSjJTS8KuHl39pwxsxQMck5QoSQwwEKIUIIGYYEO0JA8s4T6hDn7gzgCJUWAHa7sjzYpXGA7ozsbQI8veHL4zbVCfuP7DN3UgLVpeHXv/axvmyVEAL0uUJzpxnXZ7ig9WsihJChjOVCaNGiRTj77LNx4okn4lvf+pb2P9tFixbhtNNOwymnnIKHH37YENW6fv16XH755Zg9ezYWLlyIffvCtM0mhBBiGeGE0Ntvv52UMdpmSuPsdgkjC5TlxMISYiupq4kwb0dEFUKFOUBept/cSQkEN0lV6Rd64pYPQmXj+CqgOE9/XV0aeyNYQghJZiwVQosXL8bHH3+MJ598Eh988AHuuOMOOBwOrFixAi+++CIWLVqEJUuWYMWKFXj11VcBAF6vFzfffDMuu+wyLFu2DJMnT8Ztt91m5WkRQggJIpwQam1thcfjCbP3ocVYGjfwA7jqijS2RXZpwmFwhGIojQOMJWLb6kO3d7j13jvjK2M+lbCkOaN/9qLcgfeJB0mScKLgCnF+ECHkcMEyIeTz+fDMM8/glltuQWlpKSRJQk1NDZxOJ958801cdNFFKC8vR2FhIa688kq89dZbAIDVq1fD5XLh/PPPh9PpxHXXXYcNGzbQFSKEkEEkeI6QSjiBdKgxUxoHGMvD6gdwhfr7ZTzwDxnPLZWNYQkxl8bpwiPcPKHNQlncuASFEAD89GLl54nTgItOMm6zsiwumLlCBDfnBxFCDhcsS41raGhAb28v3n33XSxevBiZmZn41re+hYsuugg7d+7EvHnztH3Hjh2LRx99FACwY8cO1NTUaNtcLhfKy8uxY8cOlJaG1gF4vV54vV7DupSUFDgcjojn5vf7DT9J8sF7lPzwHiU3Zu+PKISKi4vR0NCgrU+25Lj2Ln050yUbmomGQywPqz0gY0xZ5P3/8hrwM+V/RwZhkZ428DiAsVxt257Q92wQorPHVST+b+je7wHXzgPGVQB/ewd48X19W3nR4P37/OaJwK1PKe7c/BMO378D/DuX/PAeJTfJcn9stti8HkuFUFdXF+rr6/Hqq69iz549+MEPfoBRo0ahu7sbmZmZ2r4ZGRno7la+4vN4PMjIMMYAZWRkRCzPeOaZZ/DEE08Y1l188cW45JJLBjzH3bvDtPYmSQXvUfLDe5TcxHp/9u7V7YuCggJNCG3duhUpKcnVWaFubzYAZZJKr7sBtbXRy/eyUrMAKLP5V61rxpiCroj7/nNZEQDF/lm22gdASVrwdB5AbW3PgOfm8NsAVAAA1m/3oLbWaEF9/nUugBwAQJ5LqZFL9N9Qpg3YsweYWGoHUK6tz3V1oLa2NaFjR+ODP0jw9NpQnOVDbe3A+w9l+Hcu+eE9Sm4O9f0ZPXp0TPtZ9n87p9MJAFi4cCHS0tIwZswYzJs3Dx999BHS09PR1aX/j8jtdiM9Xfkfj8vlgtvtNhzL7XbD5QpfoL1gwQJcccUVxg8RgyO0e/duVFRUxKwQycGF9yj54T1KbszeHzEUobKyEhs3bgQAZGVloaqqatDOMx7swp/36qpiDHR6x04D8DdlucVTgKqqgrD79fUDq7bor1s67fo4o0YMOA4AVMpARhrg7gH2trhCrl2joMFmTSsEYN2/oaoqYPJoYN1O5fWE6mxUVWUnfNzhDP/OJT+8R8nNULs/lgmhqqoqpKamht02evRobNu2DXPmzAEAbNmyBdXV1QCA6upqvPLKK9q+Ho8H9fX12vZgHA5HVNETDZvNNiRuynCG9yj54T1KbmK9P+KXU2Vl+uz37u7upLu/nd16iUVupgSbLXogwPhKGWrj0S27I5dIrN4so8sTvvwtO2PgcVTGlPmxdjuwaz/g90tISdHft2Ovcu42G1A90ob9+6z9N3TGMX5NCI0qjf2cSXT4dy754T1KbobK/bHsDF0uF0499VQ89dRT8Hq92LVrF9566y3Mnj0b8+bNw0svvYQ9e/agqakJzz//PL7xjW8AAI4++mh4PB689tpr8Hq9eOqppzBx4sSw84MIIYRYgxiKMHLkyLDrDyUbd8lY/J6Mu/8qG+OzB2ioCihNVZ2B78u2RKnOWPZF5G1ZMabGAXqEdr8PqAsKZ9i+R/lZUayfk5X8+EIJo0qAqWOAs2dZf3xCCDmcsbQQ/H//939xxx134LTTTkNOTg6++93vYsaMGQCUuvOrr74afr8f8+fPx3nnnQdAcXjuvfde3HnnnbjnnnswceJE3HHHHVaeFiGEkCDEsISSkhJtWXSKDiU/fFDGf79UlsXo5ljS3Gw2CUeUyVi3E9i2R0mGE10alfe+iByGEGtDVcAYJ71yI/DlFhmnHA3IMtAWuJyDlbQ2qlTCjn8oy+ztQwgh5rBUCGVlZeG+++4Lu23BggVYsGBB2G2TJk3C4sWLrTwVQgghUVCdn/T0dOTk5Gjrk0UITRwFTQit2qyvj8URApSo6nU7lXlAu/YDNeXG7Z5eGR+vi/x+M47QmJES1FK8y36j/Dx7FvDra4TI6UHsvUMBRAgh8ZH8xXuEEEIsRxVC2dnZhlTPZBFCk0brD/fdgfA2SVKCCWJB7NkTrjzuo68Bb1/499rt5srYwomctz8H1u8S9hlJsUIIIckGhRAhhAxDVCGUlZWVnEJoVOi6TBdiDgMYW67vtzmMEFomlMUdOzF0HDMuS7iyt34f8OL7+hiD6QgRQgiJDwohQggZZsiyrM0RysrKQlZWlrYtWcISJo4KXRdrWRwQ7AiFzgX6bIO+/J2zjaLHTFkcAFSVANOPUJbFZq5vf64vD9YcIUIIIfFDIUQIIcMMj8ejdf1O1tK4wlwJxXnGddkmAgzGVujLm+uA1z+W8ZOH/ag7oIiiTXWBcXKAOVOM7800KYRsNgkf/z8J65+T8O+7dVHV79P3oSNECCHJR3K1DyeEEDLoiK5PspbGAUp5XEOr/jqWxDiV/GwJhTkymtqB1VuAb/5KRr8PaGiT8fjPgb1Nyn7jq4DRpcr8I7XHrJlxVNKcEiaOAvr6ZaQ5gB6vvq0wR+lL5PdHTqkjhBBy8KEjRAghwwwxOjuZhVBweZyZ0jhAL4/rcOvuzEdfKw6RyvhKRcSUFerrzDpCIqkpEo4aa1xHN4gQQpITCiFCCBlmiI5QcGlcsswRAozJcYC50jjAWB6nsrsBWL5Wfz2+UhlDjNdORAgBoeELnB9ECCHJCYUQIYQMM4JL45xOJ1JTUwEklyMUnBxntmRtXEX45LfF7+klauOrlJ+iWImnNE5k5gTjuHSECCEkOaEQIoSQYUawEAKguULJJIQSLY0L5wgBwMpN+vL4QPncmDJdvCTqCM2cYHzNHkKEEJKcUAgRQsgwQ5wjlJ2dDSA5hVBwcpxZp2bWJCAt0Bh1wbzQ7Y5UYFSJsmylIzS6VAlIUKEjRAghyQmFECGEDDOGiiMEGMvjstPNOSslBRJWPSHhrfsk/OXnElxO4/YjygG7XTnmidOA9DRl/ewpiTk4kiTh+MnKss1m7GlECCEkeWB8NiGEJDFerxcOh8PSYw4khGRZhiQlRznXxFHAf79Uls2WxgFK4MKk0cry1DGyoZHqeEGglBRI2PCcEtd9zITEP/td35Xg6ZUx7zgJRbnJcS0JIYQYoSNECCFJyre//W2kp6fjz3/+s6XHDY7PFn/Ksozu7m5Lx0uEY8brIqJyRGLHCo61Hh/k1FSVSJaIIACYMkbCfx6w4aeXUAQRQkiyQiFECCFJyKpVq/Dcc8/B5/Phl7/8paXHDo7PBpC0vYS+dTrws0uBX1wBnDUzsWMdNdYoSsZXUaQQQshwhqVxhBCShPzxj3/UlltbWy09drTSOEARQiNGJGi/WERqioQ//NAawXLUEcbXwY4QIYSQ4QUdIUIISTIaGhqwePFi7XVeXl6Uvc0TrjQuWR0hK5k0GkgVvv5jiAEhhAxvKIQIISTJePLJJ+H1erXXfr/f0uMPVBonbj+ccDoknDBVWZ5WA2SZTKEjhBByeMHSOEIISSL6+/vx2GOPGdZ1dnZamuQWrjRO/Qkcvo4QACz6PwlL/gucP+dQnwkhhJBDDYUQIYQkEWvWrEF9fb1hnd/vR09PD1wulyVjqELI6XQiNTUVwPAojQOAihESfnbZoT4LQgghyQBL4wghJIloamoKu97KcjV1jpBaFgcMHyFECCGEqFAIEUJIEtHe3h52vZXiRBVVYjnccJgjRAghhIhQCBFCSBIhCiG73a4tWylOBhJCdIQIIYQMByiECCEkiWhra9OWy8vLtWWrxElvb6+WSCeWxg2XsARCCCFEhUKIEEKSCNEREoWQVY5QuMQ4gI4QIYSQ4QeFECGEJBGiECorK9OWrRInFEKEEEKIAoUQIYQkEZEcIavESXNzs7acl5enLTMsgRBCyHCDQogQQpKISHOErBInohAqKCjQlukIEUIIGW5QCBFCSBIx2KVxkYQQwxIIIYQMNyiECCEkiVCFkNPpRGFhobbeKkeopaVFWxaFkMPhQGpqKgAKIUIIIcMDCiFCCEkiVCGUk5MzKOVqkRwhQC+PoxAihBAyHKAQIoSQJEIUQmK52mDPEQJ0IcSwBEIIIcMBCiFCCEkS/H6/JoRyc3PpCBFCCCGDCIUQIYQkCV1dXZBlGcChcYTU8dxuN/x+vyXjEUIIIckKhRAhhCQJYmLcYM8RstlsyM3NNWxTx5NlGR6Px5LxCCGEkGSFQogQQpKEYCGUkpKCtLQ0ANYLoby8PNhsxv8FsKkqIYSQ4QSFECGEJAliM1XVrbE6wEAVQsFlceJYAOcJEUIIOfyhECKEkCQh2BECrA0w6OvrQ0dHBwAKIUIIIYRCiBBCTLJ161a88cYb8Pl8lh43nBBSAwyscIQiNVNVEcMZxHMhhBBCDkcohAghxASNjY049thjcc455+Dhhx+29NjRHCGPx5Ow8IqWGAcAxcXF2vKBAwcSGosQQghJdiiECCHEBPfffz9aW1sBAHfddZelx47mCAGJl6sNJIRKS0u15f379yc0FiGEEJLsUAgRQogJXn/9dW1ZnFNjBdHCEoDBF0IlJSXa8r59+xIaixBCCEl2KIQIISRGGhoasH79eu11TU2NpccfyBFKdJ4QHSFCCCFEh0KIEEJi5OWXXza8drvdlh4/2hwh4OCWxtERIoQQcrhDIUQIITGyZMkSw2urI6YP5hyh/Iz8kO35+flITU0FQCFECCHk8IdCiBBCYqChoQEffPCBYZ3VQkicIxTOEbKqNO73WX9AzzV9OPBmg2G7JEnaPCGWxhFCCDncoRAihJAYePfdd+H3+w3rBqs0Lj09XXNmrHaEymzlmJw6GegHap+pC9lHFUKNjY3o7+9PaDxCCCEkmaEQIoSQGNi7d2/IusEqjVPdIMB6RyjLJjRNXdMBWZYN+6jzhGRZZi8hQgghhzUUQoQQEgONjY0h63p7e9HX12fZGAMJISscoUxJP15fSx88u3sM+zA5jhBCyHCBQogQQmKgqalJWy4rK9OWrSqP8/l8muMjCiGr47NFIQQA7WvaDa/ZS4gQQshwgUKIEEJiQHSERo0apS1bVR7X0dGhLavNVAHrHCFZlsMLoS87DK/pCBFCCBkuUAgRQkgMiEKoqqpKW7ZKCIWLzgasc4Q6OzvR39+PTCnLsD7YEWIvIUIIIcMFCiFCCIkBtTQuLy8PeXl52nqrSuMiCSGrHCE1OjvTFlwaZwxMYGkcIYSQ4ULKoT4BQggZCqiOUGFhoaUBBiptLW04x3kuXFI6ilKLtPVWxWdrQiioNK6/ox/dO7uRUZ0BgKVxhBBChg8UQoQQMgBer1dzbIqKigZFCHV80oHvZ/wQACAvlrHWvg4T7hxnWXx2JCEEKK6QKoRGjBihracjRAgh5HCGpXGEEDIAqogAFCGUkZGhvbZKCHl29WrLEiTUP78H2x/eifT0dEiSlPBY27ZtAxBZCKk4HA4UFBQAoCNECCHk8IZCiBBy2PD111/jq6++svy4jY2NcMCBGzJ+hm/sPBtZDmvK1US6m7pD1jUsbYAkSZorFK8jJMsynnzySQBAhiqEJH17+5fhAxP27dsX0nCVEEIIOVygECKEDGlkWcY//vEPHHvssZg6dSqOPPJIvPfee5aO0djYiPlp38RpztNRUV+JvPX52jarhFBPS0/Iuq7NbnTXebR5QvGO9emnn2LNmjUAgII05dydxQ6klaUBANq/6oDsCw1M6O3tRVtbW1xjEkIIIckOhRAhZEjz7LPP4rLLLsPnn3+urVuxYoWlYzTtb8I5aedpr521adqyValxfW192nLGqenacuO7jQk7Qo899pi2nGXPBgCkZKci92glnc7n9qFzsy6yGJhACCFkOEAhRAgZ0nz88cch68Q5PVbg+aAHBbYC7bV9u11btsoR8nf5teWyi0Zqy43vNhmEkNlStebmZixZsgQAUJhXCFuv8mc/NTcVuUfpMd3tq/XyOPYSIoQQMhygECKEDGn27NkTss5KISTLMtI/NAYMyI1AgaQII6uEkOTRJ+1UnlkB5wgnAKDpw2YU5hQCAHw+n+nxFi9ejN5eJYjh2suu1dan5qZojhAAtK1u05bZS4gQQshwgEKIEDKkGWwh1PpZGzIbQ5PWJqROBGCdELL3Kt0M/PAjNTsVRacp4sfv8WOSbZK2n9rPKFbWr1+vLZ9z8rnacmpOKrKnZUOyKwKs7QvdESoq0vsYWe2uEUIIIckChRAhZEijCqHy8nLYbMqfNCsf3hvfbdKWP+h9X1uemKKIEyuEkN/vh7PfAQDosfVAkiRNCAFAjXusttzU1BTy/mjU19dryyVZutOTmpuKlIwUZE4IlN1t7EJ/Vz8AIC8vT9uvtbXV1HiEEELIUIFCiBAyZOnt7dWEQXl5OfLzlUQ0K4WQt9WrLS/tfVNbnphinSPU0tKCDEnpTdSXqoxXeFKB9he6qE13aMw6Qrt37wYApKSkIMuux36n5ioOlDZPyK+kxwFGIcTUOEIIIYcrFEKEkCHL3r17teWysjKtEaiVQqi/o19bbnd0IHO84qBU28fACaclqXH79+/X+vv40pTQhNTsVDiLlHlCTo+eUmdWCKmO0MiRI+Hv0AMZUnNTAcAwT6g9UB5HR4gQQshwgEKIEDJkEecHiUKoo6MDfX19kd5mClEIufLTkHdsLgDALtkxLmWcJY7QgboDSJEUhyZgDAEAnCWKELJ32WEL/Lk2Uxrn8XgMjllfu35NUnNChVDbagohQgghwwcKIULIkCWSIwQo5WZWIIqHzKJM5B2Tq72ekDLJEiHUWKu7PClZKdpyWkAISbKEHEkRLGYcIVEolpeXo69NF3WqI5Q5NhP2DCUOXBVCubm52n4UQoQQQg5XKIQIIUOWYEdInSMEWFce1xuYI+SRPSgoLjA4KFX2KmvmCO3WRZsjz6EtqxHaAJAf6GNkRgiJQQkVFRVGRygwR0iyS8ieqjRZ7dnbg76OPqSlpSEtTSnHoxAihBByuEIhRAgZskQqjQOsE0LedkUIuWU3CgsL4Sp3adsKbAWWCKH2fR3asqtAP75RCCkiz0xpnBqUAKiOkC6EUgKOEACkj9LH9OzuAaCXx1EIEUIIOVyhECKEDFkOhhDydfkAAN2yG0VFRbCn25GSo7gp+QEhJMtyQmN0HejUljNH6D2L1NI4ZSxFCCXkCLWJc4T0Erz0SkEI1XkAUAgRQgg5/KEQIoQMWQZbCPn7/YCiC+CWu7VGo2mlStlYga0Afr8fvb29CY3T3eTRlnNK9dI70REamV4GwJwQCnaE+sU5Qjm6I+SqEB0hoxDq7u6G16tHiBNCCCGHCxRChJAhiyqEcnNzkZ6ebrkQ6u/UhUO3XymNA3Snxik5kSllJlwe19umC41cUQgJjlCpqxSAudK4SHOEpBRJC0gAogshgL2ECCGEHJ5QCBFChiSyLGtCaOTIkQBgvRASorO75C7NEXKW6gLFinlCPmEcMSwhTXCEilKUsdvb22N2aMRmqiNGjNBK41JzUyFJkrafSyiN664LFUIsjyOEEHI4QiFECBmStLS0aCVpZWVK2dhgCqFuuVtwhPQGpwW2woSEkCzLkIWerGLJmqPYAQT0Si5ytfWxukJiM1W73a7FZ4vzgwAgbaQTkl0ZSA1LCI7QnjdvHi644AL8+te/jmlsQgghJNmhECKEDEmC5wcB1guhPkEIuWW35pKkCY5QvpSfkBBqa2uDy687MimCSLGl2OAoUhyirP4sbX0sQqinp8fQTFX2yVqpX6qQGKeOkzZS+UzhSuMaGhqwdOlSvPLKK1i6dKmpz0cIIYQkKxRChJAhycEQQkZHyK25JGpYApC4I3TgwAFk2DK01yFuTaA8Lq3XBSlgD8USmBAyP6hD7CGUGrK/Ok+or6UP/Z39BiG0ceNGLRlPvdaEEELIUIdCiBAyJAknhNLS0pCeng7AIkdIaEAqOkJiiEGBLR9utzvkvbFy4MABZEp6ZHZqtlGkqGNJsoQcSQlSMCuElB5CuqhLyU0J2d8QmFDvMQihr7/+2nAsQggh5HCAQogQMiTZu3evtiy6FKorZLUj1GPr0URWmiEswQJHSFIcIVmSYc+0G7bH21RVjM4O7SEUxhEKCkwQhdC6deu0ZTpChBBCDhcohAghQ5JwjhBgFEKJNjoVhZCUIWlJa44iB2RJOXaiqXGKEFIcIdklG9LcAGNT1TwTTVVDHaHYSuMApamqKIQ2bdpkOBYhhBByOEAhRAgZkuzbt09bVuOzAV0I9ff3o7OzM6Ex+oQ+QvYs3amxpdggZytCKN8SIaQ4QrbM0D/JoiNUICmfLRYhFOwINS9v0V6HE0Lplfq8J099j0EIiQ1j6QgRQgg5XKAQIoQMSVpa9Ad7MSTBysAEcY6QI6iczFagODe5Ui66OuIXQrW7arU5QuEEihjVnRelNO6LL77A448/joaGBgBGIZT2kQs7Ht6pvc4/Pi/k/cGOkBifLUJHiBBCyOFC6IxZQggZAqhCKDMzEw6H3oQ0WAiNHj067jE8TR5t2ZHrNGxLKUxB/w4f7JId3sa+4LfGzMY1m2CXFLcpszgjZLtzhPDZIpTGdXZ24swzz0RLSwvq6urw97//Hdu2bQMAzEg/BvW/1edTjb9jHHKn54SMkzYyTflqzB9aGidCR4gQQsjhAh0hQsigUF9fjxtvvBFvvPHGoBxfFUL5+fmG9VY6Qj2tPdqyq8Bl2OYo0QWK3OyP7/g9PdizRZ/L48xzhuwjJtQVphYBCBVC//jHP7TrsXz5cvT19WlC6NK8y4DAVKnqn4xG9Q9HhT0Xm8OmxYJ7dnuQnp6O1FSjQ5Wfnw+XyxXu7YQQQsiQg0KIEDIo3HLLLXjwwQdx/vnnG+KXrUCWZe3BP9i5sFIIedu82nJGQbphm0voJSS3xnf89evXw+nXj5OSE2rSO4t1IVScWgwgtDTuqaee0pbr6+uxcuVK9Pf3I1PKxLie8cpxRjgx7ldHRD0fNTnO29wHX7cv5NrSDSKEEHI4QSFECBkUVPHj8/nwk5/8JOEENxG3242+PqUcbTAdof5AWEK37EZegVEUZFToZWy2dmPkdaysWbMGmZLYTDV0jpAt1QZHoeI+5Un6HCG/X3Gh1q1bh08//dTwnn/+858AgOMdc2CXlXMrvaAEkt2YSBdMujhPaHdPiBDi/CBCCCGHExRChJBBoa6uTlv+73//i5dfftmyY4tBCYMphPxdithw+7tDREFWZZa2nNoVKmAi4fF4sHz5cni9XqxZs0aLzgaA1Ozw0zbV8rgsfxYkSPD5fGhrawNgdINUVCF0kuMkbd3IC0sHPDdXldBLaEfoZ6YjRAgh5HBiUITQ2rVrccwxx2DRokXaukWLFuG0007DKaecgocfftjw7fD69etx+eWXY/bs2Vi4cKEhFpcQMvTweDwh5Vs33ngjPB5PhHeYo7VVr0UbTCEkdys/3bI7JEUtd5QeOODsDp3bE4mzzz4bJ554Ir7zne+ECKFwpXEA4CpTyufssh35gQjthoYG9Pb24rnnngvZf8+ePSiQCjAlZSoAIH1MOnKOzB7w3DKP0N2pri1ddIQIIYQc1lguhPx+Px544AFMnDhRW7dixQq8+OKLWLRoEZYsWYIVK1bg1VdfBQB4vV7cfPPNuOyyy7Bs2TJMnjwZt912m9WnRQg5iIjRzSp1dXV4//33LTn+wXCE/H1+2PqUP5Fu2R0iCtLL9TlD6T3G+UMRj+n347///S8A4G9/+xs+//zzAUvjAH3uDgCU2EcAUPooffrpp9q1OOeccwzvOcE5FzZJOf+RF5aGNGoNR+ZYUQiFij86QoQQQg4nLBdCL7/8MiZPnmyIrH3zzTdx0UUXoby8HIWFhbjyyivx1ltvAQBWr14Nl8uF888/H06nE9dddx02bNhAV4iQIYxYFicKiPr6+nC7myaaECosLNSWExFC/R16M9XuMEIoJTsFvVAajWb0hcZeh6Ojo8Pw2uv1xuQIpQslayNsJQAU10e8zqeeeiqqqqq010elHKUtj7xg4LI4AMioyQACeomOECGEkMMdS/sItbe344UXXsAzzzyDBx54QFu/c+dOzJs3T3s9duxYPProowCAHTt2oKamRtvmcrlQXl6OHTt2oLQ09H/eXq8XXq/XsC4lJcXQRyQYdVKx+pMkH7xHyY+Ze1RbW6stz5gxA++88w4AxcWw4h6LZXe5ubmGY2ZlZcFut8Pn86GxsTHu8cTEOLfsRnZ2dsixulI64ex3ItuXjb6+Ptjt0UMTRAGnUmTThVtKlj3s+aZV6slyohAS9y0tLcW4ceO0a59rywUASKkSXNVpMV0HySnBVemCp9aDrq1u5M7MNWwvLS3lv9EE4N+55If3KPnhPUpukuX+2GyxeT2WCqFHH30Ul19+ObKzjbXo3d3dyMzUv/XMyMhAd7dSfO/xeJCRYfw2NSMjI+JcgmeeeQZPPPGEYd3FF1+MSy65ZMDzC1euQ5IL3qPkJ5Z7JMZljx07VhNCW7duNYikeNmxY4e27PP5Qo6Zl5eHpqYm7N+/P+7xPFv0HkJu2Y3u7u6QY3mcHqAfyLRlYfXHqzGickTUY27YsMHw+vjU2TjDeZbywgY0p7Sgo7Yj5H09qb3acoldEUKbNm0y/I8mJSUF48ePx3/+8x8AQLakzGGy59gMztFA2MptQC3g6/LB4TZ+wSTLsiX3b7jDv3PJD+9R8sN7lNwc6vsTazN1y4TQpk2bsH79evzv//5vyLb09HR0dXVpr91uN9LTlZp6l8sFt9tt2N/tdkds2rdgwQJcccUVhnWxOEK7d+9GRUVFzAqRHFx4j5IfM/dILAE77bTTNAfY7XYbyrfiRQxbGTt2bMgxS0pK0NTUhLa2trjHa65rwS4oAqJbdmPSpEkhZXjIA6D++WoDqk6IPtb27du15QkpE/DzzJu1eTxjbhiNmhljwr6vv6AfO6EIkBE2RWx1dHQYrsP06dMNjVazbcoXUmnFLlPXwDOtF+6PlA9V7azW1qenp2PKlCkxzTUi4eHfueSH9yj54T1Kboba/bFMCH3xxReoq6vTSuC6urpgt9tRX1+P0aNHY9u2bZgzZw4AYMuWLaiuVv4HW11djVdeeUU7jsfjQX19vbY9GIfDEVX0RMNmsw2JmzKc4T1KfmK5R+JcoGOPPVZbbmhosOT+qtHRgDInKPiY6jwhj8cT1nWOBV+nT1t2y0qUdPA4KUUpQOCjNm1rHvCztbe3AwCOTj0av8y8FU5JSZsbeUkpxv7fERFFhiPbgdT8VPS19GmlccFlhmVlZRg/PtA8FU7t2I78VFPXPGuc7t7nuHMNxx+o9I/EBv/OJT+8R8kP71FyM1Tuj2VC6IILLsAZZ5yhvb7//vtRUVGBq666Cl999RV+//vf4/TTT4fT6cTzzz+vuTpHH300PB4PXnvtNZx55pl46qmnMHHixLDzgwghQwO1FCs9PR0lJSXIzc1FW1sb9u/fb8nxo4UlAMbAhKampriEkBiW4E/zhRUBrlIX8KWy3LqzNWR7MK2trZiVejx+kflLpEjKn9/8E/Mw9eHJAzot6ZUutLf0odBeiBSkGOYIFRcXIzU1FRUVFcjIyEC6R0+xc+Sb++JITI5La9HnJjEogRBCyOGGZVItLS0NhYWF2n9OpxPp6enIysrCnDlzcMEFF+Dqq6/GxRdfjNmzZ+O8884DoDg89957L55//nmcfPLJ+Oqrr3DHHXdYdVqEkIOMLMuaEKqsrIQkSSgpUVyMgyWEioqKtOXgfkax0tepCyFESMfOFpqqdtV3hd9JoLW1FQvTv6eJoBHnFOOYF46GzTHwn2K12akNNhTZirB3714tXVONtbbZbJg9e7Y2PwiIRwjpjpD9gP5dGYUQIYSQww1LwxJEbr/9dsPrBQsWYMGCBWH3nTRpEhYvXjxYp0IIOYi0tLRoYSeVlZUAlDk7mzZtgtvtRldXlyE8Jd4xAOWLFHW+oYjoCInzZqKx4//tQstHLZhwxzhkjMlAX3ufti0lK3xJWEFNAVrQBgDwHvCG3UekrakNk+xKk1OpCjjq6SMh2WObc5NeaYzQ3tevtxgQ+/s89thj+Ned/wKUVm1wFITvTRSJ1NxUOIod8DZ4Ie+Rcfrpp2PlypX47ne/a+o4hBBCSLKT/MV7hJAhhZhQVlFRAQCaIwQABw4cSHgMVQjl5+eHLSkLLo0biN7GXmy6bTMaljbio1M+geyX0dOsp8alZIcXE6UT9M8lhyZjh+A+0K0tO0Y6YhZBAJA+Shd8anKciiiERo0ahUvPvkx7nVpgfk6lWh7nberD64tfR2NjI0488UTTxyGEEEKSGQohQoiliEJIdIRUrCiPE4VQOMyWxvXu7wUCAWz9XT7s+9d+dDfraZbOXGfY95VO1OcypnQNbLD3NOltAdKK0qLsGYorTFNVFVEIAUBfs+5mOfLNOUIAkHmE7th1bXEjJWXQigcIIYSQQwaFECHEUsTeAaoQGjFC76+TqBDyer1a5H5eXl7YfcyWxvW19Rleb75zK7r36o6QqyC8aHFkO9ADZT9XT4SJRALeFn2c9OKB9xcxlsYZ+xUFCyFvi16m50jAEQKArs0Dz30ihBBChiL8mo8QYikDlcYlKoRaW/V0tkiOkNnSOG+rUQh56jyA0IM0vTCyaOlK7UJaXxpy5Bz09/dHdU987Xokd1aJuXlSaeUuQAIgRy+NAwBvgo5Q1iQ9BKJjXafp9xNCCCFDATpChBBLGag0LtE5QgMlxgHmS+P62/sjbtvWvxXZxdkRt/em9wIA0qV07Nu1L+J+ACALmsKsU2N32pBWqjhTA5XGJeoIZU/WhVAnhRAhhJDDFAohQoiliKVxauSylY5QLEKooKBAW45FCImlcVkTM2FPt6NvtBf/z/0oftHxv8jLD1+CBwByjt7UdM/6vVHHkbr1cARHnnmBos4TyrXlIg16uV60OUKpeeYdodScVLgCpXgd6zsh+2XTxyCEEEKSHQohQoil7NmzB4BSnuZyKQ/TVs4RikUIuVwurYlqLHOExNK4Cb8djzN3n4baq3fijd7X4EE3cnNzI743pVAvhfv/7d15fBN1/j/wV5Ledws9QykUKNBWkEMoS7kR5VArUFE8EJfFdX2s64HrirICrigu6tfrp1wCq8ghKvchqIDAFrmECgillFJaSkttgZ5pk/z+yM6nM22apkl65vX8ZyeTmU8mDot5+f583pN3Lq/O44xGI1zLq4+1JaB4yRomhGlMjRo8PT1rXZ9UEVK7q6HxNt/6uz5+/5sepy/Ro/RSaT1HExERtT4MQkTkUHl5pjAQEhIi9gUHB4s2100RhIDqdUJWVYRkzwxyDTAFlKKiIrGvrqYMAOAVUR1OijKK6jyuuLgYPqiecuZqw9od787Va5Ui1BEATNUglUqFGydv4vrK31GRVyHWCLkFuZptL24N39u4ToiIiNo2BiEicpiSkhLxMFX5Oh0XFxfxuinWCMk/v6CgAAaDoc7jAKCqqHqNkNv/KjXypgyWKkJ+HavXD5Vk1105KSwshK+qOly42VIRiq4OQuH/qwhptVoYKg049tAJ5H90HWdfPScqQrY8Q0giXyd0M5VBiIiI2h4GISInU1ZWhh9//FEEFkeST0OTV4SA6nVCubm5MBptX3PS0IqQwWBQhBpz5FPjXPwbVhFq1616PZLumq7O42oGIdeghocU72h5Rci0Lkir1aL0Uhl0+abPzv/uOoyVpn++tnSMkygaJpxmECIioraHQYjIySQlJWHkyJH44x//6PCxpWlxgLIiBFSvE9LpdIqQ0VDyUGMpoDSkhbZolqA2Ap7GBn1OeI/qRhDGwroDnikImapHepcqaNwb/tevl3xqnKZ6alzJheqHv+pLqlt029IxTuLZ0RMuvqY1TawIERFRW8QgROREDAYDfvzxRwDAhg0bUFzs2IdlyitCNYOQozrHNXRqHFB/ENIVmaopN6puYMGCBQCAS5cuifctTY0LkwUh1+LaFZjU1FR88803uH79OvzU/2tA4Gl5ql5dXP1d4dbO9BnhsjVCxWklZo+3pyKkUqng9791QuU55YqW3ERERG0BgxCREyksLERlpan6UVlZib179zp0fGumxgH2rRNq6NS4mtdlTkWB6VlAxcZiLFmyBJcvX8bJkycBAP369YOHh0ed57r5uaEMprVBnhXKB6/m5eUhISEBkyZNwuvzXxcVIfjYPjXQK9rUDS9YEwx3uGPYsGGKipCcPWuEAD5YlYiI2jYGISInUrMS89133zl0fEtT42ytCG3atAnLli0TDQ+kIKRSqeDv71/nedZOjTMajDCWmIJJsbEYOTk5mD17tnj/nnvuqfcai11NQSTAGACdrrpysn//fpSWmkJSWmoaXFSmqWZqP9v/6pV3jtu3YT9uv/12lDRCRQiAqAgBDEJERNT2MAgROZGalRhHByFLU+NseZbQ6dOnkZSUhD/96U+YN28eAFMXOMC0bketrvuvMGunxlXdrAL+V6C5ZTD92F+9erV435ogVO5tajzhofLA1d+uiv1Hjx5FgmsCpng8hBBNdYXMlmcISby6VAehKPcoAEBxHRUhNxsaMsj5xVd3xPv9wO8WjiQiImp9XOo/hIjaipoB5Ny5c8jMzERUVJRDxrd2apy1QejUqVNie/78+QgNDcXFixcBAB06dLB4rrVT4+Qd44qNyjVTWq0Wffr0qfc6dcE6oMi0nXM0B1G9TP88zx88j9k+c6BRadBT11Mc725HQJFXhEozSqEr0KHy90qzx9ryrCI5v3hfeIS7o/xqBfK/v46K6zq4t7cvXBEREbUUrAgRORFza3McWRWydmqctWuEara9fvrpp8X2c889Z/Fca6fGiY5xqB2E7rnnHqseSKrWVv9V+vtp0zUbjUbofq2ERqUBAPR17SeO8QxRriVqCHnnuJKLpYpqkMpdea32dI0DAJVGhYjJpucVGauMuLrRvofhEhERtSQMQkROxFwlxpFBSKq8qFSqWo0MbKkI1RVg7rzzTkybNs3iuZaCUP6P1/HLn09h/+CDyP+++r1bRuU6GGumxQGAVxdPsV16wbQmKD09HVpdddVKCkQA4BvuY9W45sifJVR6sVTRKMF3mHJcqcOcPSIeiBDbOetz7B6PiIiopWAQInIi8gAiVTr27NkDvV5f1ykNIgWh9u3bQ6PRKN4LDAyEi4tLreuwRFoPJOfl5YXFixfXW6kJCgoSx9QMQqUZpcj56iqKfyvG9b3Vn1FsLIarq6v4nJEjR1p1nUHx1c8ZqsoyNXU4evQoumm6mT3eL8LP7H5ruAa4iilvJRdLFY0S/Mb4QuVS/c/FLdD+aWx+sb7wjTMFrKJjN1CSbn49EhERUWvDIETkRORT0hITEwEARUVFyMrKcsj40tS4mtPiAECtVouGCbZUhPr16wdvb28sWbIEnTt3rvdcjUYjqkJXr15VvOd3W3UQKTpaJLb17lWYPXs2PD098corr1hsmy0XGhOKYoNpWp3rdVNIOfbzMUS7dDF7vEd768ati7ROqDynXPGwU48e7vDvY/pu7qHu0HhpzJ7fUFpZVSj7q6sWjiQiImo9GISInIgUQFxdXTFgwACxPz093e6xS0pKUFZm6p5mLggB1dPj8vPzrapCyYPQ7t27UVxcjIcfftjqa5IaKuTk5Cg+zy/OV/ztZ6ysfqaPa4Ar5s6di+LiYkUL7fpERETgisEUJr1KvFBVUoWMQ5fgoTIfeOzpGgcAXrLpcVJFS+2phkuIC+IW9USHR7To/cltdn2GXMTEcOB/haacr3JgNNr+HCQiIqKWgkGIyIlIFaHQ0FB07dpV7Jc6sdnDUsc4iRSE9Hq92WlvNUnHaDQai88MqktkZKT4PHkVKjM3EwVutT/fM9i01sdSW25zQkNDkaWvrqoVpxWj4mxFncfbG4Tk64Tk+1RqFXxjfdHr/Xi0H9bOrs+Q84jwQLuh7eAZ6YHwieEwVBgcNjYREVFzYRAichJ6vV5MXQsNDUV0dLR4zxFByFLHOElDnyUkVYSCgoIaHE4AZYvtK1euAAAOHTqEgQMH4tSNk7WO9wmxrYmBu7s7Ctyrg9WFn9LRsaqjeK32VF67vQ86DbgjoNY+727edo1Znz5Le2H48aHo/ko3aDwcM+WOiIioOTEIETmJ69evw2Aw/Zf8sLAwhwchSw9TlTS0c5xUEZJ3gGsIqSIEAFlZWTh+/DhGjhyJ69evI11/odbxAR0aXnWSlAeUiu3M/2aiq0uMeB1xf3j1gSrA1d++IBQ8oj1uX9ILHtrqqXfS2qDG4tbODSp1/a3EiYiIWgs+UJXIScgbJYSGhqJjx45Qq9UwGAxNPjUOqD8IlZeXo7jY1IDA1iBUsyK0a9cuVFSYpqylV9VeFxUUGVRrn7UMYUbxUNWiX28gWvO/hg7hRrQf3g5XvswGALj6u0ClsT9QREwKR+i4EGStzkZloQ6R0yKRff2K3eMSERE5CwYhIichDx5hYWFwc3NDZGQkMjMzHdIswZqpcQ15qKp8DVG7dratd6lZETp37px47RvnA8ia5VUadQiLDIOtPKM8UHW2Ci4qF4Rkh4rnBvn38UdA/+pKk2uQ/S2tJRpPDTrNME3BMxgMQN3PjSUiIqIaODWOyEnIg4cUSKTpcYWFhSgsLLRrfGumxjVkjZA8CDmqIpSWlgbAVLEaMnYIrumr/5ncMhYjLNz2IBQaEYqrBtMDRzWoXkMTPigcnh094dPDtP7Iv3fjTmEjIiIi6zAIETkJefCQAkmXLtXPucnIyLBrfEdPjZO3zrY1CGm1WrF99uxZ8ZndunXDgAEDFOuEio23EB4eXmsMa4WHhys6xwFAsaYY2uRwqFQq3LGuL3p9GI/4RbE2fwYRERE5DoMQkZOoOTUOgEMbJjR0alxDgpCtU+M8PDzEtaSmpor9MTExpiAkWydUbChWXF9DhYWF4UzVafH6sC4F+0b/CPdgdwCAZwdPdJiqhWuAfY0SiIiIyDG4RojISdRslgAog5C964SkipBKpUJQkPmmA76+vvD09ERZWVmD1gjZWhECTNPj5NUqwFQR0mq1KAooBHSmfcUosTlwAaYgtLV8C8qN5bhuuI4jlT/jnf7v2DweERERNS5WhIicRGNXhKSw0b59e2g05p8zo1KpRAhriqlxgLJhgiQmxtTaOrBfAHRGUxIq8iy06VlFkvDwcFSiEjsqtuNI5c8AgLi4OJvHIyIiosbFIETkJKQKjIeHB/z8TAv2G2NqXF3T4iRSCCsoKIBOp6vzOEdMjQOUDRMk3bp1AwD0HtIbC4r/hbVla3BCe8zmzwBgdlodgxAREVHLxSBE5CSkCkxoaChUKtNzbIKCgkQoakgQys3NRe/evfGHP/wBZ8+eRUpKCsrKygBYH4QA5bqimhw1Nc5cRahr164AgAEDBuBI5c/4vGwV/LT2dXMLDAyEm1t1a2w/Pz9FswYiIiJqWRiEiJxAZWWlqLDIg4hKpRKd4zIzM1FVVWXVeKtXr8apU6fw3//+F7GxsZgwYYJ4b9iwYRbPtfQsodTUVHTu3BnDhg3D5cuXxX571wjVfO3l5QUASEhIQMeOpufw3HnnnTZ/BmD6Zyn/brGxsSJwEhERUcvDZglETkBeeZE/ywcwTY87ceIE9Ho9Ll++rJguV5fMzEzFa6l6M2LECMyePdviuXU9S8hoNOKpp57CpUuXcOnSJbFfrVbD398ftqpZEZKmxQGAp6cnjh8/joyMDPTr18/mz5CEhYWJAMdpcURERC0bK0JETiA7O1ts15yuZcs6oStXrtTa17t3b3z77bdwd3e3eG5dLbR37tyJgwcP1jq+Xbt2djUxqFkRkholyMfv37+/Q6o38ucQMQgRERG1bKwIETmBnJwcsV0zCHXq1Els16z01EUehN577z1kZWXhpZdesqpyYy4IGY1GvPrqq2aPt2daHFD7+8orQo7GIERERNR6MAgROQF5RSgiIkLxnrRGBoBiXY4lUhCKiIjAs88+26BrMbdG6Ntvv8Xx48fNHm9Pxzig+qGqUnvvxgxCDz/8MD7//HNER0fXu1aKiIiImhenxhE5AUsVoaioKLFtTUWosrJSVHLMtaaujzwISde1bNkyse+1115THG9vRQhQXmfNqXGOlJiYiLy8PJw8ebLeKYJERETUvBiEiFqIBQsWYMiQIXVWRuzhyIrQ1atXYTQaAdgWhLRarVjzIzVFOH/+PADA19cXr732mmK6nr0VIcDUHQ4wTV2zphmEPby8vNgtjoiIqBVgECJqAfLy8vDqq6/iwIEDePTRR6HX6x06vqVmCf7+/mJtjzVBSL4+yJYg5OrqKsJXenq66FYHAJ07d4ZKpcLkyZPF8Y6oCL355ptYvHgx9uzZo3jWDxERETkvBiGiFuDixYuiynLmzBmsWbPGoeNLU9A8PDwQEBBQ630pmGRlZcFgMFgcy94gBFR3qisqKsKvv/6KyspKAKYgBACPP/64CCwDBw606TPk/P39MXPmTMTGxto9FhEREbUNDEJELUDNSszcuXNFOHAEqSKk1WrNTtuSgpBOp6v1kNO6xgLsD0IA8P3334ttKQjFxcXh559/xg8//ICkpCSbPoOIiIjIEgYhohagZpOC9PR0rFy50iFjl5SU4MaNGwBqT4uTNKRhgiMrQoD5IASYnks0YsQIrrchIiKiRsEgRNQCmFub89577zlkbHnHuJqNEiQNaZjg6CC0b98+sS0PQkRERESNiUGIqAWQV2Gkh3KeO3cOFRUVdo9tqXW2pCEVIUsd6KzVpUsXsV1SUiK2GYSIiIioqTAIEbUAUhXGxcUFiYmJAACDwSDaS9vDmuBiS0UoODjY5mfl1NXCWt42m4iIiKgxMQgRtQBSFSYyMhLdunUT+9PT0+0e21LrbIm8ImQuCBmNRhw9ehQ3b94UFSZbp8UBQGBgoGjZLQkODoaPj4/NYxIRERE1BIMQUTO7efMmioqKAJgqM/JpY44IQtasEQoLC4OLiwuA2lPjjEYjpk+fjoEDB2LIkCHiGUf2BCGVSlWrKtTYDzolIiIikmMQImpm8gpMVFQUunbtKl43VUVIo9GIYFOzIvTRRx9h1apVAIBbt26J/fYEIaB28OH6ICIiImpKDEJEzUwePJqrIgRUT48rLCwUgefgwYN4/vnnzR5vbxCSf0+AQYiIiIiaFoMQUTOTT0WLiopCeHg4PDw8AAAXLlywe3ypIhQUFCTGNcdcw4Qnn3wSVVVVAIA+ffoojq+rumQtVoSIiIioOTEIETWzmhUhtVotQkJGRgYMBoPNYxuNRlERqi+41GyYUFpaitOnTwMAYmNjcejQIcUx3bt3t/m6AAYhIiIial4MQkRWSklJwfz583H16lWHjluzIgRUTxurqKhQrPFpqIKCAuh0OgD1P/NHXhHKzMxUfG7v3r3h5uaGtWvX4oEHHsDLL7+MgQMH2nxdAIMQERERNS+X5r4AotYgKysLo0aNQmlpKc6ePYs1a9Y4bGx5RSgyMhIAajVMkPY3RH5+Pr7++mvxur6KkPwZPpcuXUJWVpZ4La0HCg0NxZo1a6BW2//fUKTql8FggFqtVgQxIiIiosbGihCRFV588UWUlpYCAI4fP+7QsaWKUHBwMLy8vADAroYJhw4dwpQpUxAeHo6nnnpK7K+vIlQzCEkPTgXsb4xgjqurK2677TYAQFxcHFxdXR3+GURERER1YUWIqB779+/HunXrxOuMjAzo9XpoNBq7x66srBRreOQVEXkQakjDhMWLF+PPf/5zrf3e3t64//77LZ7bsWNHqFQqGI3GJglCALB8+XJ89tlnmD59eqOMT0RERFQXBiEiC/R6PZ555hnFvsrKSmRnZztkKld2drZohlBXEGpIRUg+FS4kJASPPPIIhgwZgiFDhqBdu3YWz3V3d0dERASys7ORkZGhCEK2TM2zRr9+/dCvX79GGZuIiIjIEgYhIgv279+PkydP1tp/8eJFhwShS5cuiW15R7aoqCixfqYhQUgaz8fHB5cvX4a7u3uDrqdTp07Izs5GXl4ezp07J/Y3VkWIiIiIqLlwjRCRBYcOHRLb/fv3F9sXL150yPjnz58X2926dRPbbm5uIhilp6fDaDTWO5bBYBCNFzp16tTgECSdJzl8+DAAwMXFBSEhIQ0ei4iIiKglYxAiskAKAwDw8MMPi21HBaHffvtNbPfo0UPxnjQ97saNGygoKKh3rGvXrqGiogKAMtA0hLyFdUlJCQBTkwVHrIciIiIiakkYhIjqYDQaRRAKCAjAXXfdJd5raCe3ulgKQvIW2mlpafWOJZ9mZ2sQMndeY60PIiIiImpODEJEdcjMzEReXh4AYMCAAejcuTNUKhUAx1eEfH19ER4ernive/fuYls+ha4uda03aghzQYjrg4iIiKgtYhAiqoN8WtzAgQPh4eEhHkrqiCBUVlYmwkuPHj1EyJLExMSIbXnjgro0VkWIQYiIiIjaIgYhojrIg1BCQgIAIDo6GgBw/fp13Lx5067x09LSRBOEmtPiAGVFyJogJD2YFbA9CEVGRkKtVv61wCBEREREbRGDEFEd5EFowIABAKqDEGB6sKo95OFGHnokUVFRcHV1BdDwqXG2BiE3NzdR9ZJwjRARERG1RQxCRGZUVlbi+PHjAEzd29q3by+2JfZOj7PUKAEwta2WGiakpaVBr9dbHE8KQl5eXvU+PNWSmiGKFSEiIiJqixiEqNXLzc3FiRMnHDrmqVOnUF5eDsC0PkgirwjZ2zmuviAEVK8TqqioQFZWVq33y8rK8PPPP0On04mpcZ06daq13qgh5C20AQYhIiIiapsYhKhVy8/PR69evdC3b1+sWrXKYePu3btXbNcVhBxVEVKr1YpW2XL1rROaOnUqBg4ciNGjR4vgZuu0OIn8fI1Gg7CwMLvGIyIiImqJGISoVVu1ahXy8/MBANu3b3fYuBs2bBDb8ucHOSoIGQwGEYSio6Ph7u5u9jh557ia64TS0tKwceNGAMBPP/0k9tvaOlsiD0J8mCoRERG1VQxC1GoZjUZ89tln4vWFCxcaPEZGRgaWLFmCvXv34tatWwCAy5cvIyUlBQDQq1cvRVUmODgY3t7eAOwLQtnZ2SgtLQVQ97Q4wHJFaPXq1WbPsbciJJ8ax2lxRERE1FYxCFGrdfjwYZw9e1a8vnDhgmhHbQ2j0YjRo0fjySefxIgRIxAQEIAXX3xRUQ1KTk5WnKNSqUTDhIyMDOh0Oqs+a8WKFQgPD8f8+fMBWLc+CKi7ImQ0GvHFF1+YPcfeINStWzexLW8OQURERNSWMAhRqyWvBgHAzZs3cf36davPLyoqUlR1DAYDFi1ahLlz54p9NYMQAMTGxgIAqqqqrGprDQALFy5Ebm4uXnvtNaSkpCjWIFkKQsHBwQgICACgrAilpKSIZg0hISGKc+wNQlqtFm+++SZGjRqFf/zjH3aNRURERNRSMQhRq1RSUoK1a9fW2p+Wlmb1GNnZ2WK7Y8eOYluaIldzWpzktttuE9u//vqrVZ8lDzFPPPEEFi1aBMDUKGHo0KF1nqdSqURV6PLlyygrKwMARTVo4cKF4jlH8pbb9vjHP/6BPXv2IC4uzu6xiIiIiFoiBiFqlb7++msRWLy8vMT+hqwTkgehRx55BM8995zifXPVIACIj48X26mpqfV+jhReJGfPnhVT6mbNmqWYimaOPIylpaWhsrIS69atAwB4enpi4sSJ+PLLL5GcnIxPPvkEQUFB9V4TERERkbNzae4LILKFfFrc3/72N7z55psAbA9CWq0WM2bMwKFDh3D48GFoNBpMmTLF7HkNrQhdu3bN7P6uXbsqpuHVRT517vTp09Dr9SgoKAAAjB8/Hn5+fvDz88P69evrHYuIiIiITFgRolbnwoUL2LdvHwBTSHj00UcV71mrZhByc3PD1q1b8dJLL2H9+vV1VmqioqJE5zhrKkJ1BaGlS5fC09Oz3vPlwSs1NVURvqQpcURERETUMKwIUauzcuVKsf3EE08gOjoaKpUKRqPR5jVCWq0WANC+fXu89dZbFs9Tq9WIj4/H4cOHkZGRgeLiYvj4+NR5vDwIvfjii/D19UWfPn0wfPhwq66zV69eYvvUqVOoqqoSr+UhiYiIiIisx4oQtSp6vV4EIY1Gg0cffRTu7u6i2UFaWprVLbTNBSFrydcJnT592uKx8iDUpUsXzJkzBxMmTLD6szp27Ag/Pz8ApiAkrwjJr4OIiIiIrMcgRK3K7t27RYAZP348wsLCAEB0Srtx4wZ+//13q8aSxtFoNLVaUNenIeuE8vLyxHZoaGiDPgcwdY6TqkJZWVniYa8BAQENDnBEREREZMIgRK3Ktm3bxPb06dPFtrxltLXrhKQgFB4eDo1G06DraEjnOHlFyJYgBCinxxUWFoprUKlUNo1HRERE5OwYhKhVkR4iCgCDBg0S2/LGBtasE9LpdKJSY0tVpSEVIUcHIXPXQEREREQNwyBErcrFixcBmJ4dJJ/O1tCK0NWrV8W2LUEoJCQEwcHBAJq+IiTh+iAiIiIi2zEIUathMBiQkZEBAKJTnKShQcieRgkSqSKTl5eH/Pz8Oo+TgpC3t7dou91Q5kIPK0JEREREtmMQolYjJycHOp0OgCkIyclf//bbb/WO5YggFBsbK7bPnTtX53FSELK1GgQAvr6+tb4zK0JEREREtnNYENLpdJg3bx7GjRuHYcOGYebMmYr/Mr9y5UqMHj0aI0eOxPvvv69ocXz69Gk89NBDGDx4MGbOnKmYtkQkka8P6tKli+I9T09P9OzZEwDwyy+/4NatWxbHckQQiomJEds1g1B5eTnS0tKg0+lEcwN7ghCgnB6n1WoRGBho13hEREREzsxhQUiv10Or1WLFihX44YcfMHToULzwwgsAgAMHDmDDhg1YuXIl1q9fjwMHDmDz5s0ATAHq73//Ox588EH88MMPiI+Pxz//+U9HXRa1IdL6IKB2RQiAeECpXq/HoUOHLI7liCDUvXt3sS0FIaPRiK+//hqdO3dGTEwMZs2aJY5xZBBiNYiIiIjIPg4LQp6enpgxYwZCQ0Oh0WgwZcoU5OTkoKioCNu3b8fkyZPRoUMHtG/fHo888gh27NgBADh27Bg8PT1x3333wd3dHX/6059w5swZVoWolvqC0LBhw8T23r17LY4lD0IdOnSw6XrkFaHz58/DaDRi2rRpmDx5MnJzcwEAn3zyiTjG3iDUu3dvsc31QURERET2cWmsgU+dOoWgoCAEBAQgIyMD48aNE+/FxMTg448/BmD6cStf6O7p6YkOHTrg4sWLCA8PrzWuTqcT60QkLi4ucHNzq/NaDAaD4n+p8Zw+fRp/+ctfRBDo06cPVq5cCQ8PD4vnWXOP5FPjOnXqVOvYIUOGiO19+/ZZHEsehMLDw236s9GhQwe4u7ujoqIC586dw44dO/D5558rjqmqqhLbISEhdv0ZvPvuuzF48GBkZ2djxowZTf7nmf8/atl4f1o+3qOWj/eo5eM9atlayv1Rq62r9TRKECouLsaCBQvwl7/8BQBQWloKHx8f8b63tzdKS0sBAGVlZbU6aXl7e6OsrMzs2CtWrMDSpUsV+5KTk/HAAw/Ue11ZWVkN+h7UcC+//DIOHDggXl+4cAG9evXCww8/bNX5lu6RvAmCWq1GZmZmrWO6dOmC9PR0HDlyBGfOnFH82TIajUhJScG5c+dw5swZAICfn5/Fjm/1iYqKwvnz55Geno5NmzaJ/fHx8bWeL+Ti4mL2mhvi888/h9FohEqlsnssW/H/Ry0b70/Lx3vU8vEetXy8Ry1bc9+fzp07W3Wcw4NQRUUFXnjhBSQmJuK+++4DYHrmS3FxsTimpKQEXl5eAEwVoJKSEsUYJSUl8PT0NDv+9OnTa/2otqYilJWVhcjISKsTItnm5MmTtfb99NNPmD17tsXzrLlHUhVHq9UqpqXJjRo1Cunp6aiqqsKVK1cwZswYGI1GfPbZZ3jvvfdw9uxZxfGRkZGIioqy5quZFR8fj/Pnz6OyshLfffed2P9///d/GD16tOLYnj172vVZzY3/P2rZeH9aPt6jlo/3qOXjPWrZWtv9cWgQqqqqwuzZsxEcHIxnn31W7O/cuTMuXLiAxMREAKb1FNIaj+joaHz77bfi2LKyMly5csXsGhAAcHNzsxh6LFGr1a3iprRW2dnZuHLlCgBT44KLFy/i8uXL+PHHH3Hr1i34+/vXO4ZarYbRaMRjjz2GlJQUrF27FnfccQeKi4uRl5cHwPRnpq77OGLECCxZsgSAKYDdfffdWLduHWbOnGn2+FGjRtn1Z6JHjx5i+9KlSwCAiIgIjBo1Cl27dlV0TgwPD28Tf/74/6OWjfen5eM9avl4j1o+3qOWrbXcH4de4RtvvIGKigrMnTtX8bDLcePG4euvv0Z2djauX7+O1atXY+zYsQCAfv36oaysDFu2bIFOp8Py5csRGxtrdn0QtWyHDx8W2wkJCaIiWFlZKZpjWOP777/Hl19+iYsXL+K5554DoGyUULN1tpy5hgk//PCD2Dd48GAsWbIEq1evxo4dO7Bo0SKrr8scc5WpgQMHAoBiXRxgf7MEIiIiInIch1WErl69ii1btsDd3R0jRowQ+z/44AMkJiYiLS0Njz32GAwGA5KSknDvvfcCMFV43n77bbz++ut46623EBsbi/nz5zvqsqgJyYPQwIED4efnhw8//BAAsGnTJjz44INWjbN+/XqxffDgQZw9e7bejnGS8PBwxMTE4Pz58zhy5AhKSkpw5MgRAKb/OrFz507FejV7yVtoS6QgNH78eHzwwQdiP4MQERERUcvhsCAUHh6Oo0eP1vn+9OnTMX36dLPvxcXFYe3atY66FGomNYNQ+/btERgYiMLCQmzfvh06na7eaY2VlZX45ptvFPs+++wzRYXQUhACTNPypHU7P/74I1JTUwGY1ug4MgQBlitCw4YNg7e3N0pKSuDh4QFfX1+HfjYRERER2a7lT96jVkGv14sgHBkZifDwcLi6umLChAkAgJs3b9b7bB/ANC2usLBQsW/VqlWKjnH1BSH59LgPPvhAtLC+4447rPouDREUFIT27duL12q1Gv379wcAuLu745lnngEATJs2TTFdlIiIiIiaF4MQOcTp06dF9z+pIgJArBMCgG3bttU7zldffSW2pSpQfn6+4vk8DQlCu3fvFttSQHE0eVUoPj5eUXVasGABCgoK8OmnnzbKZxMRERGRbRiEyCFqTouTjBw5UmxLa3XqotPpsHHjRgCAj48PFi9eLN4rLy8HYOrIFhISYnEcrVaLbt261drfGBUhQLlOSP7dJUFBQY3yuURERERkOwYhslpJSQmSkpIwadKkWs9+SklJEdsJCQliOzAwUHR5O3HiBCorK+scf9OmTSgqKgJgqiSNHz8ecXFx4v1x48Zh+/btVk0xk1eFAMDV1RW9e/eu9zxb9OzZU2zLvzsRERERtVwMQmS1tWvXYtOmTfjmm28U1ZpffvkFX375JQDTw2379u2rOE+qxJSXl+P06dNmx66oqFB0WHvyySehVqvx3XffYeXKlThz5gy2bdtmdZgZPny44vVtt90Gd3d3q85tqGnTpqFfv34YMWIEpkyZ0iifQURERESOxSBEVpOHmE2bNgEACgsLMXHiRDF17amnnoKXl5fiPPmUtLo6Cy5fvhzZ2dkAgLvuugtDhgwBYJoKN23aNEXVxRo1K0KNNS0OAEJCQnD06FH88MMP8Pb2brTPISIiIiLHYRByIuXl5bhx4wZu3rxp0/nnzp0T2wcOHEB+fj6mT5+OjIwMAMCAAQPw73//u9Z58iYF5tYJlZaW4o033hCv//Wvf9l0fXIdOnRQPHi1sRolEBEREVHrxCDkJD755BP4+/sjICAA/v7+SExMFFUca8mDkMFgwIsvvigqQ+3atcNXX31ldvpZ3759xbqemkHIYDDgySefRG5uLgAgKSnJYaFl9OjRYvsPf/iDQ8YkIiIioraBQchJLFy4EDqdTrw+ePAgNmzYYPX5Op1OVH4kq1atEtvvvfceOnbsaPZcHx8fMbUtNTVVBDCj0YhnnnkGX3zxBQDAzc0Nr7/+utXXVJ9//vOfePDBB7Fo0SLExsY6bFwiIiIiav0YhJxAbm4uMjMzAQABAQFi/7Jly6weIz09HQaDwex7MTExmDp1qsXzpTU6VVVVOHnyJABg8eLF+PjjjwEAGo0GH374oUMDS0REBNasWYMXXnjBYWMSERERUdvAIOQE5M/4mTlzpnjuzb59+5CWlmbVGOfPnxfbGo1G8d4///nPWvtqkjcrkKbHyStKy5cvx5133mnVtRARERER2YtByAnUfNjpjBkzxOvPPvvMqjHk64Meeughsd29e3c8+OCD9Z5fs2FCeXk5jh07JsZ49NFHrboOIiIiIiJHYBByAjWD0GOPPQYXFxcAwMqVKy0+5FQirwg9/fTTmDBhAkJCQrBkyZJ6q0EA0Lt3b9FI4fvvv8fRo0fF57KRARERERE1NQahNk6v14upaFqtFlqtFiEhIbj33nsBmNYP7dq1q95x5BWh2NhYbNmyBdeuXcPQoUOtug4PDw+MGDECAJCdna14ICuDEBERERE1NQahNu7s2bO4desWAFM1SPLwww+L7UOHDtU7jlQRCgsLg5+fn03XMn78eLG9evVqsT1o0CCbxiMiIiIishWDUBtXc1qcpF+/fmL71KlTFscoKipCXl4eAIhGC7aQByGj0QgA8Pf3F621iYiIiIiaCoNQGycPQgkJCWK7Y8eOorJTXxCST4uzJwh17ty5VugZNGgQ1Gr+MSQiIiKipuXS3Bfg7I4dO4ZVq1ahoqICLi4umDp1KgYPHuyw8aUgpNFoFFUglUqFXr164cCBA8jKykJhYSECAwNrnW80GrF06VLxOiYmxq7rGTduHM6ePStec30QERERETUHBqFmpNPpMGHCBOTm5op9n3/+ObKysuDv72/3+KWlpfj1118BAHFxcfD29la8LwUhwFQVGjZsWK0xZs+ejeXLlwMwhalx48bZdU3jx4/HO++8I14zCBERERFRc+CcpGa0Z88eRQgCgFu3bmHNmjUOGT81NRUGgwGAck2QpHfv3mLb3PS4t99+G2+99RYAUwXpP//5j93reRITE8WUPLVajQEDBtg1HhERERGRLRiEmtG6devE9ksvvSS2ly1b1uCxLl68iN9//12x7/jx42K7b9++tc7p1auX2K4ZhJYsWaK4po8//hhTp05t8HXV5Orqiueffx4A8MQTT8DX19fuMYmIiIiIGopBqJmUl5dj48aNAAA/Pz/MmzdPVG2OHTuGX375xeqxNm3ahC5duiAmJgZnzpwR++sLQvHx8WJbHoQ2btyIP//5z+L1G2+8gaeeesrq66nPa6+9hhs3bijWHhERERERNSUGoWaya9cu3Lx5EwCQlJQEd3d3zJgxQ7wvrcuxxqeffgoAKCgowKRJk8Rzg6QgpFKpFNPgJD4+PujSpQsA0zQ6vV4PAHj11VdFe+sXX3wRL7/8ckO/Xr1sfRYREREREZEjMAg1E/m0uClTpgAAHnroIXh6egIAvvjiC5SVldU7TllZGfbu3Ste//bbb3jiiSdQUVGB1NRUAECPHj1qNUqQSAGprKwM6enpKCsrE13d4uPjsXDhQqhUqoZ/QSIiIiKiFoxBqBmUlpZi8+bNAICgoCCMHj0agOnhosnJyQBMDzHds2dPvWPt378f5eXlin0bNmzAq6++isrKSgBAnz596jy/5jqhs2fPigYLffv2ZQgiIiIiojaJQagRbdu2DREREUhKSsKlS5cU+0tKSgAAEydOhJubm3hv4sSJYtuaILRr1y6x/dhjj4lteYtqc+uDJPIg9Msvv4gqEgDcdttt9X4+EREREVFrxCDUiObMmYOrV69i06ZNiIuLw//7f/8PgPlpcZLhw4dDrTbdFmuC0M6dOwGYnvHz/vvvIyEhAQDEGh/AchCSt9U+ePCgeO4QoGymQERERETUljAINZIrV67gxIkT4nVpaSmefvpprF69Gtu2bQMABAcHY/jw4Yrz/P39xbN1zpw5g5ycnDo/IzMzU6znSUhIQEBAAGbNmlXrOEtT4zp27IhOnToBAFJSUnD06FHxHitCRERERNRWMQg1kq1bt4rt7t27i+0nnnhCrOlJTk6Gi4tLrXOlNUMA8P3339f5GVI1CADuvvtuAKYOdNHR0WJ/dHQ0AgICLF7rsGHDAJhaeu/btw8AEBgYiIiICIvnERERERG1VgxCjWTLli1i+8svv8TQoUMBADqdTuyvOS1OIg9ClqbHrVixQmyPHTsWgGmK3HPPPSf2W6oGSaQgBFRPqYuPj2ejBCIiIiJqsxiEGkFJSYmo5Gi1WvTp0wfvvvuuIlhEREQgMTHR7PkJCQnw8vICAOzevVux3kdy5MgRHD58GICpBbZ8HdD06dNx++2313o2UV3kQUjCaXFERERE1JYxCDWC3bt3o6KiAgAwYcIEqFQq9OvXT9HVLTk5WTRFqMnd3V1UkK5evSrWAd24cQP79u1DRUUFPvzwQ3H8X//6V0XI8vb2xvHjx1FQUCCmzFnSuXNndOjQQbGPjRKIiIiIqC1jEHIwo9GomLJ27733iu233noL/fv3R8+ePc02NZCTT4/buXMnDAYDhg8fjuHDh6NXr16i81xQUBCmTp1a63yVSlXnQ1TNHVuzKsSKEBERERG1ZQxCDvbhhx8qHpY6YsQI8V5YWBiOHDmCM2fO1KrA1DRu3DixvWnTJhw5cgS//PILAOD8+fNirdGMGTPg6elp93XXDEJxcXF2j0lERERE1FIxCDnQwYMH8cILL4jXy5Ytszmk9OjRAzExMQCAAwcOYPHixbWOUavVeOqpp2y72BrkQahDhw4IDAx0yLhERERERC0Rg5CD5ObmIjk5GVVVVQCAv//977j//vttHk+lUiEpKQkAYDAYxHQ7jUaDBQsWoE+fPli0aJF4BpC9unXrJhoujB8/3iFjEhERERG1VAxCDlJQUAB3d3cAwIgRI/DGG2/YPeZ9991Xa9+wYcPw8ssv4/jx44o22fZSqVTYs2cP9uzZgw8++MBh4xIRERERtUQMQg4SFxeHY8eO4fHHH8fatWvNPii1oQYOHIjQ0FDFvkmTJtk9bl0CAwMxatQouLm5NdpnEBERERG1BAxCDhQUFIQVK1YgJCTEIeNpNBpF1zmVSmXXdDsiIiIiIjJhEGrhpHVCADBo0CCEh4c338UQEREREbURDEIt3OjRo5GQkAA3Nzf84x//aO7LISIiIiJqE+xfyEKNys3NDYcOHUJ5eblDnhdERERERESsCLUKKpWKIYiIiIiIyIEYhIiIiIiIyOkwCBERERERkdNhECIiIiIiIqfDIERERERERE6HQYiIiIiIiJwOgxARERERETkdBiEiIiIiInI6DEJEREREROR0GISIiIiIiMjpMAgREREREZHTYRAiIiIiIiKnwyBEREREREROh0GIiIiIiIicDoMQERERERE5HQYhIiIiIiJyOgxCRERERETkdBiEiIiIiIjI6TAIERERERGR01EZjUZjc18EERERERFRU2JFiIiIiIiInA6DEBEREREROR0GISIiIiIicjoMQkRERERE5HQYhIiIiIiIyOkwCBERERERkdNhECIiIiIiIqfDIERERERERE6HQYiIiIiIiJwOgxARERERETmdVhmEFi9ejOTkZNxxxx3YtWuX2F9eXo433ngDd955J8aMGYPPP//c7PkrV65E//79kZqaKvZlZ2fj6aefxvDhwzF27FisWLGi0b9HW2Xr/enfvz8SExMxZMgQDBkyBJ999pl4791338V9992HoUOH4tFHH8Xx48eb7Pu0RY1xjwBg8+bNuP/++5GYmIjJkycjMzOzSb5PW2TrPSouLsb8+fMxcuRIDB8+HK+88ori3Dlz5mDo0KEYP348du7c2WTfpy1qjHskycnJweDBg7FgwYJG/x5tVWPcH/5WcCxb7tGJEyfEv4OGDBmCwYMH44477kBhYSEA/l5wtMa4R0DL+b3g0iyfaqfIyEi88MIL+PTTTxX7ly9fjpycHHz77bcoLi7GU089ha5du2LQoEHimLy8POzcuRPt2rVTnPvvf/8bWq0W77//Pq5du4Y//vGPiIuLw4ABA5rkO7Ul9tyfjRs3on379rXG9PHxwUcffQStVosffvgBs2bNwpYtW+Dt7d3o36ctaox7tH//fnzxxRdYtGgRoqOjkZ2dDV9f30b/Lm2Vrfdo3rx5CA0NxebNm+Hh4YELFy6IcxcvXowbN25g+/btSE9Px9/+9jf07NkTUVFRTfrd2orGuEeSd999F927d2+S79FWNcb94W8Fx7LlHvXp0wc//fSTOHbt2rXYs2cPAgMDAfD3gqM1xj1qSb8XWmVFaNy4cUhISICbm5ti/3//+19MnToVPj4+CAsLw7333ott27Ypjnnvvffw5JNP1jr36tWrGDNmDFxcXKDVanH77bfj4sWLjf5d2iJ77k9dZs6cicjISKjVaowePRru7u64fPlyY1y+U2iMe7Rs2TI8//zz6NKlC1QqFTp06AB/f//GuHynYMs9Sk9Px2+//YbnnnsOPj4+cHFxQY8ePcS527dvx8yZM+Hj44PevXtj6NCh+O6775r0e7UljXGPpPONRiMGDhzYZN+lLWqM+8PfCo7liH8X7dixA2PHjhWv+XvBsRrjHrWk3wutMghZYjQaFdvyv6COHj2KGzduYMSIEbXOS05Oxq5du6DT6XD58mWkpqaif//+TXLNzsTS/QGARx55BGPHjsXcuXNRVFRkdoycnBzcvHkTkZGRjXmpTsuWe6TX63Hu3DlcuHAB48aNw7333oulS5cqxiLHqesenT17Fh07dsScOXMwatQoPPbYYzhx4gQA4ObNmygoKEDXrl3FuTExMfwR10hsuUcAUFlZiffffx/PPvtsU1+yU7H1/vC3QtOp799FAJCVlYXz589j9OjRZsfg74XGZcs9amm/F9pUEEpISMCaNWtw69Yt5OTkYOvWrSgvLwcAVFVV4d1338Xzzz9v9tzevXsjNTUVQ4YMwcSJE3HfffcpfjCQ/SzdHwBYunQptm7dii+//BLl5eWYP39+rTGqqqowd+5cPProo/Dx8WnKy3cKtt6j33//HXq9HkeOHMG6deuwZMkS7N69G1u2bGmur9JmWbpHeXl5OHz4MAYMGIBdu3bh8ccfx6xZs3Djxg2UlpZCo9HAw8NDjOXt7Y3S0tLm+iptlq33CABWr16NwYMH84dbI7Ln/vC3QtOo799Fkh07dmDQoEFmqwn8vdC4bL1HLe33QpsKQn/84x8RERGByZMn45lnnsGoUaMQHBwMAPjqq69w++23m/0LS6/X429/+xuSkpJw8OBBbN68GXv27MGePXua+iu0aZbuDwD06dMHLi4uCAwMxKxZs3Dw4EFUVlaK941GI+bOnYvAwEDMnDmzOb5Cm2frPXJ3dwcATJs2Db6+vggLC0NycjIOHjzYXF+lzbJ0j9zd3aHVapGUlAQXFxeMHDkSWq0Wqamp8PLygl6vV/yLqqSkBF5eXs31VdosW+9RXl4eNm/ejCeeeKKZv0HbZuv94W+FplPfv4skO3fuVEy5kvD3QuOz9R61tN8LbSoIeXp64pVXXsGuXbuwYcMGqFQqxMbGAjBNi9u5cyfuuusu3HXXXbh27RqeffZZbN68GTdv3kR+fj4mT54MFxcXREREYPjw4Th27Fgzf6O2xdL9qUmtNv3RlJdK3377beTn5+P1118X75Nj2XqP/Pz8av0FyGlxjcPSPerSpUud5/n5+aFdu3aKhd/nz59HdHR0o1+zs7H1Hp05cwbXrl3DxIkTcdddd+GLL77Atm3b8Ne//rWpLt0p2Hp/+Fuh6Vjz76LTp0+joKAAQ4YMqXU+fy80PlvvUUv7vdAq/3RUVVWhoqICRqNRbBsMBly7dg3Xr1+HXq9HSkoKtmzZgqlTpwIA5s6di/Xr12P16tVYvXo1goODMW/ePIwZMwaBgYEIDQ3Fxo0bxTj79u2z+Bci1c2W+5Oeno7z589Dr9fj5s2beOeddzBw4ECxOG/x4sU4efIk3nnnnVoL9qjhGuMeTZgwAf/5z39QUlKC/Px8fP3110hMTGzOr9mq2XKP+vfvD6PRiK1bt0Kv12Pfvn3Izs7GbbfdBsC06HXZsmUoKSlBamoq9u/fjzvvvLM5v2ar5uh79Ic//AGbNm0S/56aNGkSRo8ejddff72Zv2nr5Oj7w98KjmfLPZLs3LkTI0aMUEz3Bfh7wdEa4x61pN8LKmMr/M+2c+fOxdatWxX7pLZ+r732GoqKitCpUyfMmjULffr0MTvGPffcgwULFogfCKdPn8Y777yD9PR0eHh4YMyYMXj22Weh0Wga98u0QbbcnyNHjuDNN99EXl4evL29MWDAADz33HMICgoCYPqXk5ubm+J+zJ4922xJnOrXGPeosrISCxcuxO7du+Hl5YWkpCTMnDkTKpWqab9cG2Hr33NpaWl4/fXXkZGRgcjISMyaNQt9+/YFYHruw7/+9S/s27cPfn5++Otf/4q777676b5UG9MY90hu8eLFKCgowOzZsxv3i7RRjXF/+FvBsWy9R3q9HuPGjcO8efOQkJCgOJ+/FxyrMe5RS/q90CqDEBERERERkT1a5dQ4IiIiIiIiezAIERERERGR02EQIiIiIiIip8MgRERERERETodBiIiIiIiInA6DEBEREREROR0GISIiIiIicjoMQkRERDA9iLF///7YsmVLc18KERE1AQYhIiJqMjNnzhSB46GHHlK8V1RUhMGDB4v3P/zwQ4d//pYtW8T4RETk3BiEiIioWaSlpeH48ePi9caNG1FRUdGMV0RERM6EQYiIiJqci4sLAGDdunUAAL1ejw0bNoj9cjdu3MDChQsxfvx4DBw4EGPGjMGcOXOQm5srjlm8eDH69++Pe+65B7t378akSZOQmJiIP/3pT7h06RIAYO7cuZg3b544R6oMLV68WPF5xcXFmDt3LoYNG4axY8di2bJljv76RETUAjAIERFRk4uJiYFWq8XevXtx7do17N+/H7m5uRg1apTiuIqKCsycORNfffUVrl+/jqioKJSUlGDHjh2YPn06CgsLFcfn5eVhzpw5UKlUqKiowIkTJzB//nwAQIcOHaDVasWx8fHxiI+PR2hoqGKMjz76CCkpKXB1dUV+fj4+/fRTpKSkNNI/CSIiai4MQkRE1OTUajWSk5NFJUiqDE2ZMkVx3K5du5Ceng4AWLhwIdavX4/ly5dDrVYjPz8f69evVxyv1+vx9ttvY8OGDWIN0qlTp1BeXo4ZM2ZgxowZ4tiVK1di5cqVSEpKUowRExODLVu2KCpUR44ccej3JyKi5scgREREzeK+++6Dp6cn1q9fj6NHj6Jnz57o1auX4pgzZ84AADw8PDB8+HAAQI8ePRAVFaV4X+Lj44OhQ4cCAKKjo8X+mpUjS+688064uroiICAAQUFBAIDff/+9YV+OiIhaPAYhIiJqFr6+vhg7dixKSkoA1K4G2TqmRKPRiG2j0WjXGA05n4iIWgcGISIiajYPPPAAACAgIABjxoyp9X5sbCwAoLy8HHv37gUA/Pbbb8jMzFS8by0PDw+xXVZWZsslExFRG1G7PQ8REVET6dq1K77//ntoNBq4ubnVev+uu+7CF198gYsXL+Kll15CVFQUsrOzYTAYEBwcLIKUtTp16iS2k5OT0b59ezz77LO4/fbb7fwmRETU2rAiREREzcrf3x8+Pj5m33N3d8fSpUtFaMnMzIS3tzfGjh2LFStWIDAwsEGf1a1bN8yYMQPt2rVDbm4ufv31V9y6dcsRX4OIiFoZlZETn4mIiIiIyMmwIkRERERERE6HQYiIiIiIiJwOgxARERERETkdBiEiIiIiInI6DEJEREREROR0GISIiIiIiMjpMAgREREREZHTYRAiIiIiIiKnwyBEREREREROh0GIiIiIiIicDoMQERERERE5HQYhIiIiIiJyOv8fZglmE0uuFIwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -1463,9 +1621,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhEAAAEfCAYAAAD/fJT/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABe4UlEQVR4nO29eZwsVXn//67Z933mzp2Zu7AIyCKLBQgK8lUWt4hbErcokggmEvEXkrgLLhCNGo1R4x5FBENi3BURFdmFApHlgiyXe+/c2fd97/r9UVV9a3q6e7qr65zu6nner9d93Z6urvrUU+fUOc95zlOnDNu2EQRBEARByJaSfJ+AIAiCIAjRRJwIQRAEQRACIU6EIAiCIAiBECdCEARBEIRAiBMhCIIgCEIgxIkQBEEQBCEQRelEGIZxkWEYd6TZfpZhGH9SpK3s2Bnqf9kwjA/lSz8IhmG83zCMr2vW/FvDMIYMw5g1DKM15GOvq3+uxuFhauRCPq53IZLNvRLF+yobDMP4hWEYb83zORiGYfyXYRgThmHcq0gjbd8Qslbe7nud2kYxrhNhGMZFwN/Ytv0C928beJZt20/l9cQSSDxP3ftvVQzDKAemgefZtv3HJNuPAj4FnAmUAvcB77JtOyPnUMolPxiGsQ/nut+S73MpZlRdZ8MwzgJuAI62bXsuhOPtBp4Bym3bXnW/uwi5N0OlKCMR+cIwjLJ8n0PUyNM12wZUAY+m2N4E/Bg42v3tvcCPtJyZIGjEHf0XSj+wC9gXxIGIWttrGEapouPqvw62baf9BzwbuBWYxGl0X+nb9i3gi8DPgBng98ARvu3HAL8CxoE/AX+RRudW4OPAXcAs8BOgFfguzqjxPmC3+9vdgA2UJez/N+7ni4A73M+3ub+dc4/7l8A5wEF3+3uA/004l38HPu9+fhvwmGvfXuBS3+/OAQ66xxgEvuM/tvub9wJPu/vvAV7tu66LwJp7XpPu95XAp4EDwBDwZaA6Rbkk2/9bwMcTzu+fgWFgAHgV8DLgCbdc3u87ZonvfMeAG4GWFOXVBvzUrRfjwO1AibutC/g+MIIzEniXb7+rgP8FrnPL9W/c767z/eZ5bj2YBP4InOPbdpFbDjPusd+U4vwqgc8B/e6/z7nfHeXWBdu9br/J4B5ocX/fmmJ7K47TMY3jcHwMt/65223gSF/5fAn4hat/J9Dpnt8E8Dhwsm/fza7ljcC17vV4FDB9298D9Lnb/gS82Lef/3q/0t13Euc+erZv2z7gH4GHgCngv4GqzepABtf0QuBB95o9DbzEZ++P3eM9Bbw9E3tx7r0YsOBe1392v/8fnHtzCqctOC6h/Uq8V67g0L3ytoC/bcVpv7x26+P++pDkWryAQ/W9F7jI/b7RtXUE2A98EOcerXR/e7zvGO2u7R1As1suIzh16qdAT0JbeTVO3VsAjmR9+3kE8BucNmAUpw1u2uQ653TPAn/N+vbsI+73b3frwThOvehKuK/eCTwJPJPkmAc4dJ/PAme453IHThs74Z7PS337NALfcMu0zy270hTldhpwt2vzAPAFoCLNff+fwM9x2p9zkxwv5XUCLsbphyaAXwK70l2HBO2UfQo53MNx/U1u9HK3AN8PVAAvcg082ndhxtyLWeZWtu+522pxboi3udtOxqmQx6bQutXVOsItyD04Hd257v7XAv/l/nY3GToRiRfU3wi4n3cB80C9+3epWyGe5/79cvecDOCF7m9P8R1nFfikW1DVbHQi/hynYSzBcWDmgO3JztP97rM4N0sLUI/TGP1LimuWbP9vsb6xWwU+7Jbl23EaluvdYx+H0xgc5v7+cuAeoMe15yvADSm0/wWnMpa7/85yr1EJcL+rWQEcjnNjXODrCFZwnJkS95pdhdupAd04depl7vbz3L/bcerUNIfq33Z8nULC+X3UtaXD3fcu4GOp6s8m98GrgIE027+H07nVAsfjND7pnIhR4Lk40ZDf4DQYb8Gpex8Hfuv+NpNrueheq1K3TO5xtx2Nc/91+Ww+wrefd709p+o8txz/Gec+rHC378NxjLpw6uRjwDvS1YEMrudpOJ36ea6N3cAx7rbbcJysKuAknPr6os3s9Z3ruQlaF+PUdc+pfHCTe+Wjri0vw7nXmwP89nvuvxrgWLcckjoROO3PDPAG91itwEnutmtxImD1bvk9Afy1u+2bwNW+47wTuMn93Aq81tWvx3GkfpjQVh7Auf/LXN1bOdR+HumWTSXOvXMb8LlU15nw7tmLWH/fvAjnXjnFPZf/AG5LuK9+hVMvkw20drOxn7gIp/15O04d+lucQYY3tf8DnHavFqftuBffwDHh+M/FcZ7KXK3HgHenue+ngOe716gq4VgprxOOw/0UzsCxDMeZvCvddUjQTtmnkOYexrkPv7Tp/bzJzX4Wjhdf4vvuBuAq34X5um/by4DH3c9/CdyecLyvAFem0LoV+IDv788Av/D9/We4DUCKynErAZwI9+87gLe4n88Dnk5zTX4IXO47zrK/QiQeO8n+DwIXpjhPA6dB90dzziCJl51sf1+Z+Bu7BVxP2q1ANnC67/f3A69yPz+GO1r1VeQVknS2OA3oj/zX1f3+dOBAwnfv45ADeBW+hsD3ndepvQf4TsL2XwJvxbnRJnEayA2NRsI+TwMv8/19AU6oNGn9SXOcHhyn4A0ptpe61+gY33fXpKp/bvl8zbft74HHfH+fwKGoUibX8hbftmOBBffzkTij5HNx5oRTXe8PATf6tpW49p7j/r0PeLNv+78CX05XBzK4pl8BPpvk+x04I9F633f/AnxrM3t957phhOfb3uSWRWOae8XfpgxzaDCR0W999eFo37aUkQi3PH+Qol4t4xt0AZcCt7qfz8XXTuFEFd6SQuMkYML3963ARxN+cytu+5lk/1cBf0h1nQnvnr2I9ffNN4B/9f1d517b3b776kVpjreb5E7EU76/a9zfdOJMXS75zxPHuftthvX63f6yZON9f22afVNeJ5yo5V/7/i7BcVp3pboOnjab9CkEvIf9/zabC+sCem3bjvm+24/jeXoM+j7PuwUNjod9umEYk94/4E1uYaViyPd5IcnfdajhepzKAvBG928ADMN4qWEY9xiGMe7a8DKcEJDHiG3bi6kObBjGWwzDeNB3DY5P2N9PO06lvt/3+5vc74MyZtv2mvt5wf0/1XXdBfzAp/0YTqO+LclxP4XjHd9sGMZewzDe6ztGV0K5vz/hGL1pzncX8OcJ+78AJ3ozh+OcvgMYMAzjZ4ZhHJPiOF04ddVjv/tdxhiG0Q7cjOON35DiZ+04owO/TftT/NYj03qeybVMvP+qDMMos50k4nfjdLzDhmF8zzCMZPavu07uvd5LZvd4qjqwGTtwnLxk5zJu2/aM77vN2puqVPPAhmGUGobxCcMwnjYMYxqn84PU99+Y7Sbg+Y6fqs1J9dtk9SFdfU91LdpwRoaJddi7Fr8FagzDON1NIDwJZxSNYRg1hmF8xTCM/a7dtwFNCfPwKc/JMIxtbn3pc/e/jtTXDMK7ZxNJrJuzOBEOf31Id21TEa9Dtm3Pux/rXDvK3fP07PgKTkRiA4ZhHGUYxk8Nwxh0r9M1pL9OKc91k+u0C/h33zmN4zgHmVyHzfqUoPdwnM2ciH5gR0LizU6ckcpm9AK/s227yfevzrbtv832JJPgJd7U+L5L55xsxv8A5xiG0QO8GteJMAyjEmc++tPANtu2m3DmtAzfvnaqgxqGsQv4GnAZznx6E/CIb//EfUdxOpHjfNes0bbtVA1ZSu2A9OLMD/rLrMq27Q3lbdv2jG3bV9i2fTjOnPo/GIbxYvcYzyQco9627ZdleN69OKMa//61tm1/wtX9pW3b5+FESR7Hub7J6Me5+Tx2ut9lhGEYzTgOxI9t2746zU9HcELbOxK0wiCTa5kS27avt50s9F041/yTSX627joZhmHg2LLpPZ6mDmxGL84UYbJzaTEMo973XabtDWysV2/ECQWfizNFutv93kAdXn3o8X23I8VvIfW1GMUZdSfW4T4Ad2BwI87g5w3AT33O1xU401mn27bdAJztfp9Ru4XTGdrACe7+b95k37Du2UQS62YtzlSNvz6ksyPb9rEXJxLR5rOjwbbt41L8/j9x7HmWe53eT/q6lfZ80lynXpwpFf/1rbZt+64Mjp22T8nhHo6zmRPxexwP+58Nwyg3DOMcnGmF72Vw7J8CRxmG8VfuvuWGYZxqGMazsznBZNi2PYJTkd7sjjYuJvmN6DGEM5+c7ni3Av+F02g/5m6qwJmLGwFWDcN4KXB+Fqdai1O4IwCGYbwNJxLhP68ewzAq3POI4VSczxqG0eHu020YxgVp7IrvHwJfBq52nR8Mw2g3DOPCZD80DOMVhmEc6XY6UzgRixjOHOKMYRjvMQyj2i2f4w3DODXDc7gO+DPDMC5w960yDOMcwzB63BHShW5jsoSTLBVLcZwbgA+6NrTh5BVcl8kJGIbRgBOOvdO27bSeuduY/x9wlTsCPBYnjBsGga+lYRhHG4bxItcRXsRpSJJdqxuBlxuG8WLDefT1Cpxre1eS3yZqpKoDGIbxLcMwvpVi128Ab3M1S9w6foxt272u7r+45f4cnIS7jMqNjfd5vWvLGM6A45oMjxOYJPXhGJx8l1R8FzjXMIy/MAyjzDCMVsMwTvI5CVcbhlHv3pP/wPprcT3O6PVN+KKnOHYvAJOGYbQAV2ZpRj3OvTVlGEY38E8J2xOvc1j3bCI34NSTk9x6fA3we9u292W4/4irldF6CbZtD+AMHD5jGEaDWzePMAzjhSl2qcfJY5h1yznwAHmT6/Rl4H2GYRzn/rbRMIw/z9CmtH1Kuns4U9I6EbZtL+M4DS/F8Wi+hDPv9ngGJz+D0+G+HsejHORQAmIYvB2nco/hJAila/SuAr7thnP+IsVvrscZscRvRteGd+HczBM4I5sfZ3qCtm3vwcntuBvnxjsBZ+7S4zc4GeaDhmGMut+9Bye8dI/hhMhuwRlVJCPZ/rnw7zj23WwYxgxOYuLpKX77LPfcZnHs+5Jt2791G79X4IRXn8GpN1/HGQluituRXIjj1Y/geOH/hFNXS3Aa0n6ckN4LSX3jfhywcJ4qeBh4wP0uE14NnIrTgM36/qWKMFyGEw4dxJn7/K8MddKS47WsBD7h7jOIE5J9XxKNP+GMNP/D/e2fAX/m3vubkbQOuNt2sL6u+zXvxUm4/ixOw/U7Do0434ATMejHCc9faWe+HsG/4DiOk4Zh/CNOYuJ+nAHHHpz6rIPLcMrIe2LrBpyOYQO2bR/AmSK9AqdOPwic6G7+e5yo616cvK3rcRIqvX1/727vwpk39/gcTsLyKI7NN2V5/h/BSWacwnny7v8Stq+7ziHes+twy/1DONHgAZyB4uszNcKdqrgauNM91+dlsNtbcAaPe3Da/P/FiQwk4x9x+oQZnI76vzM9tySkvE62bf8Ap+/8ntsnPILTJ2dKuj4l5T1sOAusfXmzgxflYlOCIOQPNzL2R+A5tm2v5Pt88o1hGJ8EOm3bDitCJQgFQ6EsMiIIQpFg2/aybdvP3qoOhGEYxxiG8RzD4TScKZkf5Pu8BEEFkVrlSxAEIQLU40xhdOFMY34GWfFUKFJkOkMQBEEQhEDIdIYgCIIgCIEQJ0IQBEEQhECIE1EY2IX+b3BwMO/nILaILVH5J7Zo+yfkGXEihIxYW1vb/EcRQWwpTMSWwqSYbBHCR5wIQRAEQRACIU6EIAiCIAiBECdCEARBEIRAiBMhCIIgCEIgxIkQBEEQBCEQsux1QEzTbAR+BRwLPM+yrEd820px3ur2LOB+y7LenZeTFARBEASFiBMRnHng5cCnkmx7BdBvWdbFpml+zTTNMyzLulvv6eXO0tIS5eXllJSoDVgtLCxQXV2tVGN5eZmSkhLKytRWeR22rK2tsbq6SmVlpVIdHbbEYjGWl5epqqpSqqPDFtu2WVxcVK6zsLBAVVUVhmEo0/DbMjZdQqws/CUZbGyeeOJJdu7o5qjddaEfX9CDTGcExLKsFcuyRlJsPhO42f18E/B8PWcVHrOzs+zevZvXvOY1oR53cnKSL33pS/G/L7/8cmpra7njjjtC1fGzvLzM0Ucfzfnnn69MA+DHP/4x9fX13HDDDUp1XvjCF3L88ccrfX7/t7/9LfX19Xzta19TpgHw8pe/nCOPPJLFxUVlGk888QTNzc188IMfVKYB8Hd/93d0dHQwMDCgTOPgwYO0t7dz+eWXK9MAeO9730trayv/+u0hTrx0Gzv/3A79364/h/M+8CyOef24UlsEtUgkQg3NwLT7eQpoSfyBaZqXAJcAXHbZZZx33nn6zi4D/vjHPzI4OMh9991HX18fKysr9PX15Xzc3t5ePv/5z3PhhRcCcM8992DbNrfffjuHHXZYzsdPxt69e9m3bx/j4+Oh2pLIz372M9bW1rj99ts5++yzQz8+wOLiInfeeScAf/rTn6ipqVFiy09+8pO4LS972ctCPz44UYjf/va3LC0t8dBDD9HR0aGsXJaWlrjrrruUHN/j5ptvZnZ2lrvvvptTTjlFidYvfvEL5ubmuOeee5Ta8stf/pKFhQV+9LsZoJ2muhjVFeFGI1ZWlhkdHaWyZIK+vtJAx+ju7g71nITsESdCDZNAg/u5EdjgaluW9VXgq+6fBbd86+9//3sAhoeH+cAHPsBtt93GGWecwdve9jauvPJKhoeH+e53v8uRRx7JxRdfzN69e6mpqeGrX/0qz3nOc7jqqqs4cOAAe/fu5cCBA7z73e/mXe96F1dccQX79+/n5S9/Oeeddx6Tk5MA3HjjjXz729/muc99Ltddd12oodrHHnsMcEK03d3d9PX1KWl8xsedYq6trVXWuD311FPxz52dnSwsLCjR8sqlurpamS1DQ0MsLS0B0NHRQXl5uRKtmZkZACoqKpTZYts2/f39ALS2tiqzZW5uDoCysjKlHagXTZlabATgfz5ayrlmuNMnP/jBT3nNa17Dua94Bd3dPwn12II+ZDpDDXcB57qfLwDuzOO5BOLAgQMArK6ucsUVV/C73/2Oxx9/nOuvv5477riDT3/601xzzTVceeWVnHzyyTz00ENcc801vOUtb4kf4/HHH+eXv/wl9957Lx/5yEdYWVnhE5/4BEcccQQPPvggn/rUpxgeHgbg1a9+NXv27GHv3r3xkXbYtqhevleHjqehS0dsyYzR0dH4lEzUbVlYWIjflyPTTq7Krm3h63i27Ny5M/yDC9oQJyIHTNP8OXA+8DXTNC8yTfMr7qafAjtN07wdWMw1qdIwDCX/0uHd4KWlpZxwwgmUlJRw3HHH8eIXvxjDMDjhhBPYt28fd9xxB3/1V38FwIte9CLGxsaYnnZmcl7+8pdTWVlJW1sbHR0dDA0NrdNYWFiIj3jr6+spKSnhpJNOYt++fblcrpS2iBORvY7Ykp2GLh2VGgcPHnQ/lTA26ySJ7ugIX0eciOJApjNywLKsxMnib7nfrwIX6T6fMPE3ih4lJSXxJwJKSkpYXV2lvLw85TH8Tw+Ulpayurq6bvuhxupQo5jsd7mio+FdWlpicHBQuY6Ozsq2bel4A2ro0tFiS0UXa7ESOprWqKpMfZ/nqiNORLSRSEQEsG1byb90eDf4Zr8766yz+O53vwvArbfeSltbGw0NDSl/X19fH5+jLqaGN5lDpAId12xkZCSeqxB1W8QhCq5B1S4AutvUaIkTURxIJEJISrJIRDKuuuoqLr74Yp7znOdQU1PDt7/97bS/b21t5fnPfz7HH388O3bsiH+vo1HMxHnKVQOcpw5UkahTWhosqz0bDVXo0BkbG2NhYQHQ50SosmVxcTE+JailXCpdJ6JVzXXr7e0FWNcOCNFDnAhhA0tLS/HGyr8I0Le+9a345927d/PII84inT/84Q83HOOqq65a97f3W4Drr78egI985CPcdNNNwKFG8Qtf+ELO5+/Htu14Y+XXCRvdI1FPJ910UlgaqtChkw+HSJUt2qNdVU6EoLs9fK2lpSUGBgYoKSmhq6sr9OML+pDpDGEDuhorf+euSsefNa9SR4ctiQ5RlG3RpSO25KDjRiJ6FExneGtcdHd3K19FVlCLOBHCBop1JKpLR5XG+Pg48/PzynV02OIPzavUKda6rMUWhU6E5EMUD+JECBso1oZXl47Ysjn+aJdKHR22eKF51Tq6E1Hj0xniRAhpECdC2IC/sVKVjLiusUI63mw1dOmILZuTuPx0lG3xJ6JS6XTwPQpyIsSJKB7EiRA2kNjAq0hIW9dYKdIAPbYkOkRRtiVRR2zJTkOXjnKNslYoraW6fImGmvAHEeJEFA/iRAgb0DFKzMdIVJXOxMRE/J0GqjRAjy3+RbNUaUBxRSKK0hZ3jYjmmhmlOuJERB9xIoQNiBNReBq6dPKRq6BKZ3l5WXuugiod7dN/blJlU/WUUh1xIqKPOBHCOvyNlfd+jTAbLO9YKjX86NARWwpTp6+vD9u2i8IW78kcXbZ4kYimqunQNfxtjDgR0Uce0BXW4TVW9fX1LC0tsby8HG+wPvCBD9DR0cHy8jI33ngjS0tLvPrVr+YjH/kIAK961avo7e1lcXGRyy+/nEsuuQSAuro6Lr30Um655Ra++MUv8oIXvCDeiHR3d3Pw4EGlofnS0lLa2toYGhpibW2NkpJwfWcdtujSEVsKUyeZxvyiTd9IuDqP7l2GqiOpaT+deaCxagroDFXDm/6rq6ujsbEx1GML+hEnQliHfyna3t5elpeXicVixGIxvve973HNNdfw61//mnvvvRfbtnnlK1/Jbbfdxtlnn803v/lNWlpaWFhY4NRTT+W1r30tra2tzM3Ncfrpp/OZz3xmg87u3bs5ePCgkkQxL2vevyJeLBYL3YnQYcvKykp8hb8dO3Yo09Fhi3/RLJU6OjR06SRqrNllHPWm8J0I+Byc+jm81UgaKyfDFljXxmz2NmGh8BEnIgIYZ6tp/OzbNnam+/fvB2DXrl3xxYD+8Ic/0N/fz8knn8x9993HzTffzMknnwzA7OwsTz75JGeffTaf//zn+cEPfgA4DcWTTz5Ja2srpaWlvPa1r02qc/jhh3PHHXcoGb35bfHm+tfW1kJfIU+HLQcPHsS2bbq7u+NvR1V5zVTaMjY2xvz8PA0NDbS0tADRtcW2ba112dNYLdtJ3whUlMPOEF/T/cwzz7C2tkp9fQMzY3/isOangdPDE2D9fSlEH3EihHX4b/D7778fgBtuuIGhoSHe8Y538Otf/5r3ve99XHrppev2u/XWW7nlllu4++67qamp4ZxzzokvN11VVbXhRVGezmGHHQao7UR27doVT7BTqaPLFu9aii2Z6ai0ZXx8nLm5OW0OUdyWsm4AznoO3PLZcCJrS0tLVFUdSWlpKe9673u5+uqrqXj1laEc2484EcWFOBERIFnEQBX+hCevgf/Nb37D6uoqF1xwAWVlZXzoQx/iTW96E3V1dfT19VFeXs7U1BTNzc3U1NTw+OOPc88996TU8OcqeG/wUzmPvHPnTu677z7lOocffrhyjZ07dzI2NqZcR5ctKp2IoralvAeAXdvC0/Cidd3d3VRUVDg6iq+ZEH3EiRDWkWyUeMYZZ9DY2EhpaSnnn38+jz32GGeccQbgJE1ed911vOQlL+HLX/4yz372szn66KN53vOel1LDmxPt6elR2ljpGPF6jxGqdoj8tkxOTirR8WfN64pEqHSIijmqYpc7dW1XZ3g5BbptkUhEcSBOhLAOrxPZtWtXPAHxgQce4Ctf+Ur8N5dffjmXX375hn1/8YtfJD3m7OzsphoqRzx+nbCT3vy5Cp5DpCKxzm/Lww8/rERndHSUhYUFmpqaaGpqUqIB622ZmJhQoqPLIdJRx/w6u3fvdr5wH8EMMxKh2xZxIooDWSdCWIc3Sti5c2e80T3zzDPjYdSwNbwRj4rGKplO2B2JDg1dOsVki5e82djYSHNzMxDdOra4uMjg4CBlZWV0dXU5Hbz7XotdIT59mY/yF6KPOBFCHO/1zKWlpXR1dVFdXQ3Ae97znlB1/CMRVY1V4oI2qnR02KJLR2wpTB0vV6Gnp4fS0lJHx41E7FQUiVBliz8fyv/otRBdxIkQ4vhzFeKNFdEc8Q4PD7O0tERLSwt1dXWRtkWXQ1RMkYhitQWgpKwSKrowDJuedjU6qmzx2pju7u7QH7UW8oM4EUKcxLnKKI8Si8mWkZERFhYWaG5upr6+PtK2LCwsMDIyQnl5Odu3b4+0Lbp0EutySdVOMErZ3mJTUR5eYmU+bBGijzgRQpzEEU+UR4mpbAl7XlxHfkfiI3HFYEtPTw8lJSVabPGvUBqmjjf9V1ZWRmdnpxZbAAx3KmNHR3iv6I7FYkmjXaptEaKPOBFCnMRHr1RkaCc2VqqywFPZospZUfmkidgSnk6Y9cyrxzt27KC0tFSbLV5SZU9beDre9F9rayu1tbX6bBEijzgRQhwdUwDDw8MsLy/HGyvVYVOVURXdyZuqI0TFaosqnXzZYrtORHeITkS+bBGijzgRQhwd0xmJIxHV0xmqHSKdyZsqbZmbm2N0dJTy8vJ1ofko2qJLJ1+22BXOQlNdrSvKNHTZIkQfcSKEODoiETISLUwd/5sV/bkKUbTFn7zZ2dmpTEeHLbFYbF3ZAMTiTsRqaDoSiRCCIk6EACRvrIpp9KYiUUyHhi6dYrLFn6vgze3rrMth2jI0NMTy8jJtbW3U1tY6x3ffm9HVoj4SoSofSiIRxYM4EQKQvLFSmYymMuFtdnaW8fFxKisr6ejoWKejYiSaryTBKNqiQydZR6WzLqu0JRazWXXf4NnZvKxMR4UtiflQQnEgq30IQPJHr1SO3nRNMxiGoUxHhy1zc3OMjY1RUVERd4iiasva2prWaFe+6vLq6hp7B0qZWMr9EczbH5iAmuNo6no+j+y1mZgBjEpYGaOqPLzpDJ35UDKVUVyIEyEAyUdvKjt4HXkXxWSL/3HYqNoyODjI6uoqHR0d8SXVo1r+/um/xI73j2Pnc/Y/dABhrONwPjz3IX49CSdc5Dve0n7W1hpCOL5Dvu5LIfqIEyEAybOmozrizfdIVGXyniqdYi4XFTqDg4OsrKzQ3t6+wSEaWnBeVrdzG9TX5KYzMDDA+NgYnZ2dtLa1AfDkk39iue/fWVt7f24Hd/Gm/6qqqmhvd9bRlkiEkCniRAiAnoZ3ZmaGiYkJbY1VMocoasmIYku4OmHVs3Qac6utAHz/YwbmMbktS/3KV/4tP3ngJ3zx+9/nNa95DQDHHfc69gzvIRZ7b07H9vDf+4nTf6rLRYg+klgpAOmT0cJqeJPlKqhMRvM7RGHr+JM3PYcoqrasra3F3xTp5Sp45WPbNrYdzvLKOmzRpZNOY3bViRiE8ZrufNuiulyE6CNOhACkj0SENRopppGorlwFHbb09/eztrbGtm3bqKqqAhwnIuyORIctyZI3/TrK63JpPSt2LVUVNm2NCnWIVrmk0hGij0xn5IBpmp8EzgT2ARdblrXifl8N3Ag0AKvAGy3LGsrXeWaCjmQ0XfP7OnTylaugQifVCLG0tJRYLMba2loor23Wcc2SJW+q0ElpS6Vz/3S3rWEYpTlpTE9PMzk5SXV1NW1uPkRch+jVZYlEFCcSiQiIaZonAt2WZZ0FPA68zrf5pcAjlmW9EPgW8Nf6zzBzdDVWOkY8q6ur9PX1YRhG0pFolGwBPc5dqhFiFK9Z3m1x37AZxsuxkk3/xXWIVrn486G8R5WF4kCciOCcCdzsfr4JeL5v21OAt5pKMzCq8byyRldjpaND9ELz27dvp6KiQpmODltWV1c35Cqo0En16F0Ur1nebQnx5Vh5t0WBRmIbI0Qfmc4ITjMw4H6eAlp8254EjjVN81HAAE5L3Nk0zUuASwAuu+wyzjvvPLVnm4YHHngAgM7OTvr6+uLfLy4uAjAyMsLKysq6bUF48sknAaiuro4fa3h4GIDl5eWcjw9gWRaw0ZaFhQUAxsfHQ7HlscceA6C+vj5+LH8C4sGDB3NuLD2HqKOjg9HRQ37o7OwsAFNTU6HYsmfPHgAaGhrWHcs7/4MHD9LQkNuaBFNTU0xPT1NdXc3CwkJcZ3p6GnBGqmHY8tBDDwHQ0tKy7lheZzgwMEBzc3NOGgD79u0DoLy8PK4zMTERn87Y3pJ7ff7jH/8IQGtr67pjra46i0wNDQ2Fcs/s3bsXgIqKivjxxsbGAKcNCKNc7r//fgC2bdsWyjl7dHd3h3YsIRjiRARnEifnAaARGPdteytwh2VZV5mm+TrgQ8B7/DtblvVV4Kvun+Gkvwdkbm4OgGc961nrbsr6+noAmpqaKC8vz/mGHRwcBMA0zfixvEQ3wzBCaRA8ZyHRFq8TrK+vD8UWr1M/6aST1h2rpKSEWCxGZ2dnznkEzzzzDACHHXbYOg2vE6ypqQnFFq/DOPHEE9cdyzv/bdu20dLSknTfbDV2795NT09P/PvWVudxyKqqqlBsmZqaAuC4445bdywvYbStrS0UjenpaWpqajj++OPjzlZHRwdUVQKwsyP3Ds5zsI499th1x/JyPVpaWnLWWF1dZXBwEMMwME0zHr3zv7gsjHKZn58H4KijjpKOv8iQ6Yzg3AWc636+ALjTt83g0BTGKI6TUbDomEf2RjOJzoKq+d1kSYJR00mX8BiWBuixpVjLZcP0nzud0dOe+5LUOmzp6+sjFospn/6ThaaKF3EiAmJZ1oPAkGmatwPHAd83TfMr7ubrgVeYpnkr8DHg3/Jykhmio7Pq7+8nFovR1dWlPVchbB1/8qZ/VB22jg7nzrZtLTr5nN8PWyethudERCQnIt/lIkQfmc7IAcuy/inhq0vd76eAl+g/o2Do6ESKaSTqT96srKxUpqPDlsnJSWZnZ6mtrd2QKxA1W3TppNJYs8ugsgtYY1tz7utRbIUIkRB9JBIhpLzBw1xsKJWjomNBI79OGIsNpVs0J0ydVKM3VbYkJoLquGZhakxOTjI9PU1tbe2GHA4ddXl0xslVqLSHKcttiQhWVlbo7+9PGu2KWrmk0xGijzgRW5x0jVWYq/xtNmUShoZt21qmZtItmhO1UaIuW3SXS6JDpKMuj0w7TkQFgzlreLkKXV1dlJeXr9sWtXJJ18YI0UeciC3OwYMHsW1beWOlY8pkfHycubk5GhoaaGpqUqaTblQVlo7fIdIxzaTSlnQ6xWTLsOdExHJ3IvJti47kTaE4ECdii5Mu4SlqI558j6rD1JmYmGB2dpa6ujqlDpEOW5aWlhgYGKCkpISuri4lGpD/8h+edB4jLY8NbNgnLA0orvtSiD6SWLnFKaYRT75tCVPH79ylCs1HxRZv1c3u7u68RLv8OmPTJViPB1+WZWVlhb7p7RgNXQzOdjPqO9aTA84iteVr/YGP76Er2pXv+1KIPuJEbHF0jHh0heYziaqoTHgMUyeTTiQqthRMuZQ2cvF/nsXCci5ru5XBSb/HBs74O1i/TpyzHEzZWu4rMuq4ZuPj48zPz9PY2Ehj4/qlbHSVixB9xInY4mTypEGuHfzY2Fi8sUpcPtnTsG0b27ZzWio63WNkYdniH72p1NGhoUunYGypeTYLy2XUVcPRASPrMzMzPPGnP1FbV8cxxxyzbtvCwgJ7HriJqpL7gh3cx1YpFyH6iBOxxckkEqFyJGoYBoZhYNs2sVgsrhm2Tpi5CqmSN8PU0WHL0tISg4ODlJaWbshVCFNHd95NSh33DZsXnAb/+7Fg6WDXXvsj3vrfb+XCN76R737tu+u27dmzn+OOex12gnMRBB3XrBDKRYg+kli5xdEx97rZSESHjtiykd7eXsDJVUj2no8o2bK8vMzAwEB6h8hdTXLXtuA6OmzZLNoVpXLZTEeIPuJEbGHSrasA4TdWqUYiOnSiZouOUWIxlUtvby+2bad3iNw3bO7clvuUmUpbRkdHWVhYoKmpKenbU6NULumSN4XiQJyILYyuxmqzR7zC0FlYWGB4eJiysrL4GwiTaYQ1NbOZLWElVuqYZlJti84ps7S2uNMZuzZWj1B0pFw2MjY2xsLCAg0NDRuSN4XiQJyILcxmI4SwE7hU6nih+R07diTNq4iSLYuLiwwNDaUMzUfJllgslraz0mpLiNMZKhORC+G+1GWLEH3EidjCFMKIJywdHdEOXTqeQ9TT05PUIYqSLSMjIywtLdHc3Ex9fb0SDdjclpKSQ9MZQSMRuqb/CqEu67JFiD7iRGxhCmFOPCwdsaUwdQrFljWjAcrqqSxboXmjL5MRIyMjLC4uKneIdFwzb/qvvLyc7du3K9EAiURsBcSJ2MLoylUYGRmhvLw8aa5CWDqFMHoLS0dsCV9nwW4HoLVuNvBaJIViS9jRLm/qImwNkEjEVkCciC2MjhGP14js2LEjaWMVlk6mtuQyZeLlKpSVlSUdvYWlo8MWf66CSh0dtmSiM7/mOBHNNTPKNHTZUkzlIkQfcSK2MJvPI+eeXJXJQjM6dHQkb4alo8OW4eFhlpeXaW1tpba2VpmODls2y1UAmFttBXJzInTYokunUGwRoo84EVsYnSOedOFMHTphRjsysUWljtiynuHhYZaWlmhpaaGuri7pb+bW2gBorp4OrKPDlvn5eUZGRqioqGDbtuSPkegol8Tl6FXpCNFHnIgtyvz8PKOjo8obq0xGIrnqxGKxeJRAx/y+Slsy0RFbstMAmF1pAaCpekqZTpi5Cqqn/zazxTCMnKMR/nyoVNN/QvQRJ2KLojtXQeWId3BwkJWVFdrb26murlaiAXps8TtEO3bsUKIBxRWJyMQWz4lorAzuRBSKLVHR8dqYVMmbQnEgJbtFySThSUfCYxg62WioTEYLQ2dwcJDl5WXa2tpS5ipExZbZ2VnGx8eprKyko6NDiQZkZsv0sudETCrTiUq56NKRpMqtgTgRW5RMHr0KM4FLpY7YUpg6mUS7dNgyv2izsFoHsRVqyoPlRMzNzTE2NkZFRUVKhygq5bK2tsbBgweB1NEuv05QJ0Ie79wayKvAtyg6IgRra2ubhubD0NmqUZVismV1rYT7nyxn33j2SXwPPFUNDWeyUH4ydz68cf+Dw+6HpV7s2GrWx4f1HeJmDlEuyYg6ysWb/uvo6Eg5/ReGjkQitgbiRGxRMhklhBGaX11dzbixUjni0ZGrEIaODlt06WSjMdbycS78cBsQpPO9Bk6ED/0v8L9p9l/ar7SOecmIsVisoMs/0wiBLh0h2ogTsUUplJGoLp0wkzdramqU6eiwZWZmhomJibS5CmHoZGPLSuVzADj5WVBdmZ3Ovffey+rKCqeedhrl5eVJf3Owdx8HHvk0a2unZ3dwl2zqci5ORCHel5ITIaRDnIgtylYb8YgtyTXSLQGt1ZayHgB+9W8GrY2ZL0s9OztLff0ZVFZWcs8f5lNONXz0o9dx5U9vYm3NzPjYfrIp/5WVlUAdb6a5CsVUl4XoI4mVW5BsE6tybUQ2G4no0AkrSSxTW1TqFJ0tZU3YpfXUVMZoachOw78+SLrHCHXX5SDXzJv+27ZtG1VVVUo0QI8t/jZGnIjiRpyILcjAwEBGjVVYYVOVI57p6WkmJyeprq6mtbVViQbosSVTnaKzxX1Fd3fbWtYvxyokW3LVKVRbgjpEm63dIhQH4kRsQbINZ6p+xCsXnUIKzeeq4zlEVVVVtLe3K9EAPbasrq7S19cHZBCa9zkR2VKodTnINSu0aQYdtgjRR5yILUim4cywGiuVOrps0ZEk6g/N63CIVNoyMDDA2toanZ2dVFamzpQsLS2FKsfJ6MnBiVBpS6bTf36dXBziYqjL8uKtrYM4EVuQQg2bFnIIWMfobcuWixuJCOJE6LAl0+m/XHV02DI1NcXU1NSm039+nSAOkbx4a+sgTsQWRMeIx2usampqMm6sdEQiVCej6RyJFo0t3nRGe2FGIrIZVRd6+XvRrl27dm2af6LDFiH6iBOxBcl0lJBLRnumuQq56uiwxVtXoaqqira2NmU6Omzx5yr09PQo08nKlirnNyojETps8euoHL3rtkW1jhBtxInYguhOeNwMHTphJYllOnor1MS6/v7+jHIVctXJ6jFCLxLRmt2S1P5chc0cIt11uVDLv9BsEaKPOBFbkEINARdqYmU2K+8Vui26y2WzTmRxGajYBrEVWhtWstLwJ2+qzFXQcc10Tf8FqcsynSGkQ1aszAHTND8JnAnsAy62LGvFt+31wCU4jtr7LMu6Oy8nmYC/sWppaUn7Wx1JYrnorKys0NfXh2EYdHd3K9EAfaO3Qkp41KXT63s5FnZ2Y5pCs8Wvk23HW2jRrlx0/Gu3bDb9J0QfiUQExDTNE4Fuy7LOAh4HXufb1gVcCLzYsqxzCsWBgPUjBB2NlcrRW39/P7FYjK6uLioqKjLSyGWuWuXozctVMAxDS2hepS22bWd8zfYPuh+WDgTueAslQuTX0WFLodblbBwiIfqIExGcM4Gb3c83Ac/3bXsJsAT8yjTN75imWaf75FJRiIlVQXV02ZLN6C2oTl9fH7FYLKNchUIvl8nJSWZnZ6mtraW5uTn9+Qy5HwI4EVKX9dRlleUiRB+ZzghOMzDgfp4C/HMD24A24Dzgb4HLgE/4dzZN8xKc6Q4uu+wyzjvvPNXnC8BDDz0EQGtrazxLPxWjo6MALC0txacOMuWZZ54BoKKiYtP9lpeX43rZaDz44IMAtLe3b7rfyMhIXCtbW5566ikAqqurN91vfn4egImJiaw07r//fgA6Ozs33c+27fj/y8vLWek88cQTANTW1m6639zcHOA4Bdlo7NmzB4Du7m76+/vT/vaRJ+uAeljaz+LiKVnpPPbYYwA0NDRsut/U1BTg2JSNxvT0NNPT01RXV7OwsLDpvl6Hu7S0lJXOo48+CkBTU9Om+01OTgLZ27KyskJ/f388OrDZvp6Tkq0t2bQxubLZNKagHnEigjMJeK8LagTGE7b91rIs2zTNXwMfTNzZsqyvAl91/7TVneZ6pqenATj22GM3vQG9hrekpITy8vKMb9iVlRWGhoYwDAPTNFO+ntmjrs4J1DQ2NmbVKMzOzgJwzDHHbLqffzSVjS3gJPABmKa56X5NTU2A00lno7GwsADAs571rIz2KykpIRaLUVJSkpXO8LCThHDKKadsup8XRaipqclK44EHHgDg8MMP33S/8Xm3XBYPZG3L2NgYACeeeOKm+3nLiFdUVGSlMT7u3Na7d+/edJoJiCd4ZmvLxMQEACeccMKm+3mvb8+2Hu/bt49YLEZ3dzeHHXbYpr/33nmRSc6Rn2zaGCH6iBMRnLuAfwCuBS4A7vRtuxP4J/fzScBerWeWBh3JaF5ovru7e1MHIhcdHbb4cxUyaRB12OLpxGKxrHT8uQrZXLPh2VZ+fX/mfu7N965C04sobT1/0/0e8e6Mpf1Kw+Y6y0W1TlCNbB+7DJoTIdMZWwtxIgJiWdaDpmkOmaZ5O3AA+LRpml+xLOtSy7IeMk2z1zTNW3FyI96U15P1oSM7O2hjpVInaIPoOUTbt2/fNFchF50g12xlZSUrnWxyFTwNqo/h2kf/mWv/v2yCZRfCCRfyswPws0z3W9yn9JoVeseroy4HdYhU12Uh2ogTkQOWZf1TwleX+ra9X/PpZEQ2WeBBE7iyfUZch04x2eLXyaaBz+bJnLhG3ckAdLbAsbsz03nkkUcYHh7i2GOPo7Ozc9Pf3/PrLzO/+HRW12xqaorp6Wlqa2s3fVQZCrtc/LkKmUyZFFtdFqKNOBFbCK+xynS+tpBDwEFD84UaVdFxzQJpVDq/ffP58Km/y+xhrjPOuJThh+/hy1+8jbPO6tr09z091zBPdh2v35ZMHKJCLhdd03866rJ/7ZZMHCIh+sgjnlsIr7Hq6urKqrFS+cx7UJ2JiQnm5uZoaGiIJzNmohG0E8nWlmwdoqDXLBudQBpVzm93bsv8eX8dnZWOOpaLjg5bdNXlbK6Zt3bL9u3bN127RSgOJBKxhSjEJLGgOrps0dEhTkxMMDs7S11dXUYOkV8n6Og9Y41KJ2K1a1tmGsvLywwMDGT1dEIhl7+OPIJiqsuSVLn1kEjEFqIQEx6D6hRqpnkQnSAr/OWqk7GG+4bNXZunNgBw8OBBbNumu7ubsrLMxijabCH70Hw2039+HR22ZKOR7fRfUB1Jqtx6iBOxhdCRWBUkNB9Ep1CTxHTYokvHMA69YTPTSESQTiTXJNFsNLLNVbBtO+Ppv6A6OmwZHx9nfn4+4+k/v47KchGijzgRWwgdYdPx8fF4rkJjY6MyHV3Jm4UaAtYRNl9YrYHSWsqNeZrqM4uQZDvvDoVb/rmUS6HZEsS5k+kMIRPEidhC6EhGCzIS0aHj1/CWjd4ML1ehvr4+61wF1ZGIbHWWlpayzlWYmK8HoKZ0NOPz0tVZSV0O1rmrdu4kErH1ECdiC7GVR2+GYcTzDTJt4HPJVSi0a3bw4EGArHIVxued5chrSkcyPq9cOqtMy2V5eTmeq9DVtfkjpH6NQiuXXHIVdEUiVEa7hOgjTsQWQVdoXvdIVKWOLodIRwMfRGN81nEiqo3MnQgd5RIkV6FQ65g/V6GQpv+C6ARpY4ToI07EFsFrrBobG5U2VrpC84ODg5SWlmY8EvXrZNvxFlo4O4hOEI1Rz4koGc54H50OUSGG5j2dTKfMiqmOeWu3ZDP9J0QfcSK2CEFGIkGywHXo9Pb2AtDT0xNv6LLRybRR1GGLP1chG4coW50gtozO1ABQxVBGvw86Ei3EctGlU6y2ZDr9J0QfcSK2CLk07rZtZz2yKrTQvF8n00ZRRzg7SK5CEJ0gtoy4TkRFhk7E6OgoCwsLNDU10dDQkLGOznLJtI4FdYgKsY7lqqP6vhSijTgRW4Qg4UzDMLIeJeoINQfNANeho9sWleUyMl0NQKU9oEwDCrNcgkz/+XUK6X5ZXFxkaGgo8PSf6rosRBtxIrYIQbOms2lIFhcXGRwcpKysjO3btyvRgNxtURk2122LKp25BZvphQqILVG6NqZEw0PKRa0tQaf/dF0zIdqIE7FF0DFK9ELzqhsrHaP3Qk7ezFYnSGh+vzeDsXQA21YXmofCHL0XcoRIdx1TmSQqRB95AdcWIegoIZvpjFw1VI94stHxRm/Z5ipotaW0gfueasW4O30jPzk5yWL1i6htr+X2R+uBzTuFB590PyzuZ602O1uy7USyuWZB1lXIVgMKuy4Xky1C9BEnYougIxmxkBMes9WJhC1Hf5uP/t/p8H+bOQWNcPxPmANe8Z7MRpVxlvYXVLmMjY2xsLBAY2NjwSVv+nUycbr9uQoqp/8KvS4L0UaciC2A11hlm6sA2TWKQUei2WjEYjEtDXyutmQ7egukU3sSAC9+LlSmWXNpcHCQBx54gI6ODkzTzFhjbmaM393/H6y11WX0ex3lr0MjDJ1sol07duzQkqug8pp5+VDZTv8J0UeciC1A0MQqyK4h0THiGRkZYWlpiZaWFurqMuvcgujosCWXFf6Mkgqo7MbA5uf/WkJFeern8j/72f/mge/8A39+zjv5wr+elrHGPfc8zRlffpi1tcz2kQjR1rUl6KPKQvSRxMotQNCRCGTXkOgYvYVhS6GMeIeHh1laWqK5uZn6+vqsdFZLt4FRSlPtQloHAvTYMj8/z8jICOXl5XR2dirTiUSEiMySEaMSVVFZLkL0ESdiC5DLXGU2yVVBdXRo+HVURlV02bJkOB11W92cMp0giag7duyI75etTqGUy8LCAsPDw5SVlWXtEBXa/RKLxeJlU6h1WYg24kRsAXSM3sPIVdAViSiGqMoyTufWUru5E1HothRauQTNVchWR4ctQ0NDLC8v09raSm1tbSAdiUQI6RAnYguQy/PbmTYkw8PDLC8v09bWprSxCsOWzRrfXEZvQebEg9jiRSJaa2eV6eiyRYeO7jqmUieb5egLvVyE6CNOxBYgl+e3M21IdGiEpZOJQ6QjeTMXWxbtDgCaa6bT/m5ubo7R0VEqKirYtm1bVhqFVi656Oi2RaWOfzn6YrgvhWgjTsQWQMdopNDD2X6dzTqrQh+JwiEnoqV2Ju3vcslVKLTR+8LCQs7Jm4VSx3KJdmWjE0a5ZJIkKpGIrYs4EUWOv7HasWNH1vtnmvRW6Mmb2ejkMqrKxpZcdOZj7QA0V6d3IqJgS6Y6XtnnkrxZKHXMy1Voa2ujpqZGmY6OcsklH0qIPuJEFDmDg4MsLy/T3t4eqLEqpEjE7Ows4+PjVFZW0tHRoUyn0KMqtm2zsNYGQGPVpBINKLzEyijZspnTnWsiYiFds1ySN4XoI05EkZPrCCHbsKmO0OzOnTsxjPRrI4SlE1QjU4eooqIia4doeALWqICVMcpLltL+Vocta2tr8cWGgkS7dJSLP3KRaTKiymsW1n2pUkdHuQjRR5yIIiesEY/KkZWOUZUunSCNe7ah+f2D7oel/QVRLgMDA6yurrJt2zaqqqqU6eRiS6bJiGHlKmyluiyPd25txIkocqI04tE1eiu0qEq2xF/TvdgbeVvyoZOung0ODrKyskJ7ezvV1dWBNVRGO/w66a7Z9PQ0k5OTVFVV0d7erkQDJBKx1REnosjJdZSQyehtZmaGiYmJwI1VtkliudqicvSuwxZ/JEKlTjGVi18nnT06NHTp5Dr9p6tchGgjTkSRo2PE488AzyVXQWWmeaY6nkNUWVmZ0+hNZVRl/5A7yt3EiQgrV6EY5vcz1dFRx3TpRKVchGgjTkSRo2PuNddnxLNtrHTYEiRXIVMNCCkSsXggrXPX39/P2tpaQecqZKqztraWU65Cpjph1TGV6zf4dVRGVSQnQsgEeWdrkaOjUYxC8mamOmFdr/nyk/m/36WeF3/gwC5ofTUH5p6b9nfJ2LPf/bC0n7W1k1P+LmrOXbpyGRwczCl5M1MdHR2vl6tQXV1NW1ubMp2oOERCtBEnoojxN1atra2BjlEoYdPV1VX6+vowDIOenp6cdDKdmgms0XAmY90/4LUfSuccfAyOhatuBG7MzomIs7hPvS1k7tzpmjILis66nImjGnT6L1MdHeWSaz6UEH3EicgB0zQ/CZwJ7AMutixrJWH7e4HXWZZl5uH01o0QdDRWKkdvfX19xGIxurq6qKioUKYTyuit9jkAHN4FJx6x8Te2bfPDH/0IbJsLL7ww0LTJ6N6fcPvqmJaoSiFNM+Uy2tU5BaDyfvHr5HuaMQyHSIg24kQExDTNE4Fuy7LOMk3zA8DrgBt82+uBE/J1fhDO6C3bLPBC1chUJ9drVlJSApVOo/22lxp88K0bG9YDBw7ww395LZ2dnfzwX14bSOeKK27jdjTYsonG5OQk09PT1NbW0tzcrExH6nL2OjrKX168JUhiZXDOBG52P98EPD9h++XAF7SeUQK6Rjw6IhFh2qI8qlLl7LsrxTuiirVcCjna5ddJZc/U1BRTU1PU1NQonf7TYcvKygr9/f3apv8kH2LrIpGI4DQDA+7nKaDF22CaZiNwgmVZHzfN5DMZpmleAlwCcNlll3HeeeeFfoKPPvooAE1NTfT19QU6xsrKSvz/ZMfwN1ZAIJ3R0VEAlpaWUu7/8MMPA9Dc3BzYluXl5fj/qY7xzDPPAFBRURFIZ2ZmBiqdUVlN6Sh9fcsbfvPggw8C0N7eHtiW+fl5IHW5AOzduxeAqqqqQDregkm2bXPw4MGkTsIf/vAHADo6OgLbMjc3B6S35YknngCgtrY2sI5Hf39/vIP0s2fPHgC6urro7+8PdOypqSngUA5PMh5//HEA6uvrA9videz9/f00NTVt2N7b6yxEtm3bNkZGRgJpTE5OAultCaONyYXu7m7tmsJ6xIkIziTQ4H5uBMZ9294N/Ee6nS3L+irwVffPgJl16Rkfd07phBNOCHyzeS/UMQwj6TH27XOS+7q7uznssMMCaXiNVUlJScrz9H5z/PHHB7alrq4u/jnZMVZWVhgcHMQwDEzTpLKyMmuNubk5qHR0zOPb6O7c2PHOzDhv3jzmmGMC2+LvOJIdw7bteKN+6qmn0tLSsuE3mVBSUkIsFqOzs5Oyso3NxezsLABHH310YFu8aRDbtlMeY2jIWabzlFNOCazj5dK0t7cnPYbnEB1xxBGBNbzkwnS2eJ36SSedFFjHe0Klra0t6TGeeuopAA4//PDAGt47Xbz7OxlhtDFCtJHpjODcBZzrfr4AuNO37Ujgg6Zp3gQ8y82Z0E4Yc6+bhU11Zc2HqZNqSeL+/v54hxnEgQBYXSuFyi6wV+lO8fRemOWSKtQ8OTnJ7OxsTrkKmeiEaUu6paKjVpd1PWlSDOUiRBtxIgJiWdaDwJBpmrcDxwHfN03zK+62v7Is6yWWZb0EeNKyrKvzcY5hzFdutvRtGFnz2SSjqdQJ43r1j7u31HIfZWXJcwTCLJdMbMkla17HNdtMw5+8GTSikomOjjrmTf+VlJQEzlXIREdHuYSlI0Qbmc7IAcuy/inhq0uT/CYvj3f6G6tcwoyZjt5UJonZtq1FJ4xO5OCIO9e+eABIPr0T5uOKKp07v47Ka5aNRi4Okc66nKpcDh48GJ/qKC8vz1knn+USRvKmEH0kElGkeI1VV1dXKI2VjrBpKo3x8XHm5+dpaGigsbFRmU4YYebeYbeTW9yfNAzsd4gKPTSvS0dHuWSio2PKJKzwfyGUi7d2y/bt2wOv3SJEH3EiihRdI1EdEYKwQqY6Rm8HvNd0p3g51sTEBHNzc9TX1yfNqs8UHbZsprO0tMTAwAClpaV0dXUp0QCpy0F0dEeIhK2LOBFFiozeUuuoHPHujzsRvUl1cn3jqcdmSW86yt97Q2h3d3fSJzfC0AA9UZXl5WUGBgYoKSkJxSFKVS466nLY0S7V5SJEG3EiipSwRgnpkqvCylXQkSTm11GZR3DoDZvJIxE6ykWXTtgaqvM70tkSVq6C7rqcTGdsbIyFhQUaGxtzmv7TVS5CtBEnokjRMXobHR2NN1YNDQ0btoehAXpsCWv0tn+T6Ywo5SpspiO2ZKehSydqtgjRRpyIIiXsuddko5EoPQGwmc7Y2Fg8eTNorkIsZtM77P6xdCBtA6+yXBYXFxkcHMw5V8Gvo8OWfOYRhF3H8vnUTNTKRYg24kQUKTrmXnXlXejQCeN6DYzByioYqyMQW0jbWakcJYaVq7CZjo46Flby5mY6uqJdOspfVw6RLDQlgDgRRYm/sYrS6E1XJCJdJxLGkxklKweV6oB6W3Tq6Eje9OvkKxLhTf81NTXlNP23mY6OcgkrH0qIPrLYVBHiNVbNzc3U19fndKx0yVU6ksQWFhYYHh6mvLyc7du3565TuZNHhk7g+l+tz56/6Y4qaH8DS43nbtiWKfc+5uxXutLHGvlLRgwz4U1nYqVKjc10dCTvhtnp5rtcwkreFKKPOBFFSJgJTzrDpsk0ent7Aejp6Yk3ajnpHP9zfr732fz8Y4mOwgVwzAXc0gu3bNiWHWVrvSyz0Z7FxUWGhoYoKyvL2SHSkViXTicWi2kp/2Kqy2GG//OdWClJlYKHOBFFSJijt3wncIU5erONcqg+GoMYrz93vUNyx+130Nvby5nPPzMnrZpK+Ol/fod5Ntrjd4iSvYo6G3SE5tPpjIyMsLS0RGtra/xNr7lqqI6qpLJFV66CimmmfE3NyOOdgoc4EUWIitFbssVzwh7x2LaNbdvrFmEK05bZlWYwSqgtH+f6D69/xeapp15B758sPvXNOznzzGCvNPfY9aUBYGMDr6JcVCYJ+nV02KIrEpF4zYaHh1lcXAxl+i/f5TI/P8/IyAjl5eV0dnYq0QCJRAiHkMTKIkTH6G1+fp7R0dFQGivDMOKOQ2LjG6Yt00vOK7Hrysc3bFNxzVTaonv0Xky2JNblKNuSqONFu3bs2BHO9F8SDZBIhHAIcSKKkDBHCamSq7xGJIzGKp1OmLZMLToJYIlOhJe8WVZWlrNDBHpsSaURZq5COh0VtqgeveezXHTpRLFchGgjTkQRomPuNeyRiA6dqcUmAGpLR5Nq7NixI+dcBdh8CkBluQwNDbG8vBxKrkI6HR22hO0Q6YxE5CtXRVfehTzeKXiIE1GEqGh4E0cjYY9EdMy9Ty46z+anciJU26KjXKJsS6rkzZaWFurq6pTp6Mi7mJubY3R0lIqKCrZt2xaaTj7KJWwdIdqIE1FkqGqsVM6Jp9JZW1uLLzYUihOx4DgRNaUj674Pe1SVz1FilG1J5aiqrGOgJ0IQZq5COh0d5eJP3sz1UWUh+ogTUWR4jdXOnTsj01il0hkcHGRlZYWOjg6qq6tz1piYdzLva0qSRyJUdlaxWGxd2ajQAD22hK2j2xZxiHLTCNshEqKN1IAiQ9U0Qz6mM8LUiMVsJuadkHiVMbxumw5bPIeora2Nmpqa0DTyUS6zs7OMj49TVVVFe3u7Eg2I5pRZMU3/6SoXIdqIE1FkhD162+zpDJU6YWoMjsNqrBSWhzHshXXbomZLKg1dOv75cP+aHrlqqI5EJLPFc4gqKyvp6OhQogF6bPFP/+3YsSM0DdXlIkQbcSKKDB0jnrAbq1Q6Ydqyf9D9sHQg8lGVVBq6dIrJlrAfVc6nLQMDA6yuroY2/SeRCCETxIkoMnTMiXuN1bZt26iqqgpVR9Xofb/7hk2WDqR0iHR0VlGaE/fr6LAlH48RS7lkp6FCR4g24kQUGTpyIlSMRFTrxCMRi/vXaXi5Cu3t7aGM3kDPNUumMTMzw8TERGi5Cql0op53I7ZkhheZ8ZajV6UjRBtxIoqMKI54dOjsH3IbwaX1TkQUbdlMI6xchc10VI7ew85V8OvoLhdd039h22IYRtK8CIlECH7EiSgi/I1VT09PKMdM1oioGIkkSxRTlROhcn4f1Nvi14h6uaTSUOEQ5atc+vv7WVtbC3X6T4ctyXTW1tbWPeIpCOJEFBH9/f2srq7S2dmpNFdBxZK3iTqTk5NMT09TU1NDa2trzsc/4OVELO7XbosKnXyViwodsSU6OmEnbwrRR14FXkRENTQPUFJaCa2v4X9ur6P7aZveg9Ow7W00bt/Of/0cYOOryLPhmXgkYj+x2KHwuI5rNjU1xdTUFNXV1bS1taXbNbAG6LFldXWVvr4+DMMILdqVbDojqnW5WKb/UunIVIaQiDgRRYT/cbWwSNfAh6kzU/1ncOzH+fB3wHEYeuCorzMA/PUnc3MgPGorV5hbnUj5iF9YJDa8/vBv2LkKqssl0Zb+/n5isRjbt2+noqJCiQboqctra2v09fUB4U//ecmIhmFoKRfQU/4qNIRoI05EERH2o4qQvLNSobNcfhQAx++a59Tjanj88T9x9113cdRRR/H8Fzw/FI3tlY9wzS3JO16V1yzK5ZIvW1SWi9chDg4OxnMVKisrQ9HwkhFjsRixWIzS0lIt12x6eprp6Wmqq6tDmf5LpSMv3hISESeiiAg7qRI2JlbNzs4yOTlJZWVlqI3VSkkXAK8/a5gPXHI4H/zgd7n7yat545uu4sr3nhWKxk03OS/e8ndWKpLEEq+ZjnLRpaNSoxjKxdOJxWKsra2tcyJUlos/ohJWtCuZjiRVColIYmURoaKxShy9qWqsVkqctwF2NC4CemyZm5tjYmKCioqK0NZVSKajwxbbtuM63d3dynR02AJqOisdtujSybct4kQIHuJEFBEqO5HEcHaYGgDLnhPRsKBMJ13DG+bbCHV2Il65jI6Osry8THNzM7W1taHrJNqislxisZiSzkqHLbp08uVESCRCSESciCJCR2elQmNhyWbVaIHYCs116iMRni2qGsStMBJVWS4jIyMsLy/T0tISyhtPU+nouGbLy8sMDQ1RUlJCZ2enEg0QJ0LIH+JEFAkrKysMDAxgGAbbt28P7bg6Gqte783cS71gr60LzUfZiVDZWenuEPNhSxSdO79OLBajv78fgO3bt1NWFl4KWj7Kf2lpieHhYcrKykJ1iIRoI05EkTA4OIht23R2dlJeXh7acROT3lQ0VomrSU5NTTE3N0dtbS2NjY2h6aRKElORWOfXURHOTlUuYYfm85EkqrtcVOro0AA95e9pdHV1xZ0LQZCnM3LANM1PAmcC+4CLLctacb//M+CDwApwv2VZl6s+F13hzLCfq4fEN2z2KEve1BWa9evMzs4yNTUV+tMsOsolUWdtbS0+su7q6gpdQ/c0k45rpkMD9NoiUxmCH4lEBMQ0zROBbsuyzgIeB17n2/xH4PmWZb0A6DBN01R9PlGeE98/eOjlWCpHb/norHQ5RDrKf2hoiLW1NTo6OkJbVyFRA/SUSywWi5eNysTKKN+XiTqSDyEkQ5yI4JwJ3Ox+vgmIr4hkWdYBy7JW3T+XgRiKifKceDwSsXhAa8Oro7OKcrn4dYqtXLynWcJO3kzU0XHNFhYWGBsbo7y8PNRHlRN1xIkQkiHTGcFpBgbcz1NAS+IPTNM8FeiwLOuBJNsuAS4BuOyyyzjvvPNyOpnHH38cgPr6+vgIKwzGx8cBpxF5+umnGRkZoaysjJWVldB0ntjfAlTC0n5GRkbYs2cPAI2NjaHaMjo6ChyKEHir75WVlYWqs7joPGEyPj7Oww8/DEBLS0uoGjMzMwDxEfW+ffsAKC8vD1Vnfn4ecF6I9sc//hGAtra2UDVs247/f/DgQZ5++mkAqqqqlFyzmZkZHnjAuSW3bdsWqoaf/v5+nnzySQBqampC1ZmamgKcxd/uv/9+ADo7OxkYGEi3W9Z4TurAwICyNiYXwo4iCdkjTkRwJoEG93MjMO7faJpmD/A54NXJdrYs66vAV90/c345xOTkJADHHntsqDeWN/qIxWLxcPz27dtDXfZ2cNIN1Czup6mpienpaQCOOeaYUG3xrpFt29TX1zM7O0t1dTXHHXdcqFMNDQ1Otaivr493XEcddVSotszNzQGOQ9TV1cXgoJOd+tznPjfUZNSmpiYAamtrWVhw1vA44ogjlCTwee/kGBpyQlOnnHJKqDpeTkpVVRXLy8sA7N69O3RbvHeKtLe3MzY2BsAJJ5wQqo4XcaisrGR11Ql67tq1K3RbvLcBt7W1MTExAcDxxx8vnbcQR6YzgnMXcK77+QLgTm+DaZr1wPeASy3LGk6yb+iozgL3LwAUpsbqqs3BEfePpV5tGe0qXoqVTEdHuXhPs9TV1cUdmLB1VNri1/FHuKL41IQunXzYItMZQjLEiQiIZVkPAkOmad4OHAd83zTNr7ib3w0cBnzBNM1bTdN8oerz0ZGdraKxGhiDtTWoNCbBXtI2j6yyQdQ9J+7XCNsh0vGkgV+nr69PSfKmX0N1x+vpLC8vx6cXwnyaxa+hyxZxIoRUyHRGDliW9U8JX13qfv8x4GO6ziPKmeZeUmVt2ShLCnVgfTKiqrUI/Dr5cCLCRreOl9tRDLb09/cXjUM0MzPD+Ph46O+ZEaKPRCKKgOHhYVZXV2lra4vPYYaFv+NVskaEu9BUbZmT9DgzM8Pk5CQVFRW0tbWFpgPJnQiVkQhV1wwOhZlVre7p4bdFpxMR1XLx63iJu6rLRYct+/fvj2uE+Z4ZIfpIJKIIUN6415zAeOWruO3Jbtj+DvZMnM1//jDnXFAAbrGc49SVOXmp/oZXZWhehxMxPz8ff5qlo6MjVA3DMOLJiDo6q9XVVWWrIvp1vM4qqtNMfh1/x6tKw1u/Q7WOynIRoo04EUWA1yGqaNwNowRO+CUjFdsYmQWOhG/8Dr7xu3CcCI+Gcie70musVNjiT0ZU6UR4Ol7n3tXVpWT05jkROq7Z0NAQy8vLNDU1hfqW0EQdlZGIZMmIKq+ZjnLxO8QqdVSWixBtxIkoArzGateuXaEfe3qhHCq2YcQWqJq+kYWFBd785r+iri68jqS5HvbfeS+/B/bu3QuoscU/elN5zTwdlbZ4Oqurq1qumQ5bVOt4GkNDQ8zPz9PY2Bjq47CJOjpsmZubY2hoiLKyslBfvJeoo7r8hegiTkQR4I14Vdzgg5NOQljJyjMsPHwxZWVlfOuDl1JaGu7I+m/uXQHgmWeeAdQ2vKurq/FrFuZ6F4k6xdTxqiyXZDoqy0WXLTrKxR8hUPFSrERbVJSLEG3EiSgCvFG1iht8cMJZOGdt1mlEenp6lDZW3gueVHYi3qJTLS0t1NXVKdNRaYsunXzZorLjFVuC60gkQkhE0myLAJWh+YFx97XiS+o0gA2OicqGV6VGvnRUO0QeOmypqKigs7NTqQboK3+Vzp1H1OuyEF3EiSgCVDoRfaNusGpRrRORmHioQkeHRr50ismWHTt2KEtE9aPDlvLyciW5CvmqyzKdISQiTkTEmZubY3R0VNnorX/MdSKWnAxwGb0Vpo7Ykp2GLh1VDlE+bGlvbw/9jadC9BEnIuJ4CYKqGquDo24jonE6Q1VjVUzh7ESdYup4xZbsNHTpyFSGkAxxIiKOyqkMgIMjbhVRPJ1RrA2vytGb7mtWVVUV+qJZyXSKqfzFFqHYESci4qh8vHNuwWZ8pgRiS7AypEwHpOEtVB2/xs6dO0NfRTSZjg5bKisri8ohUrUIlDgRwmaIExFxVEYiDrgvx2LpAOCsUKmqsdKRJJjYAUY54VGXTj5sUTX9k6ih6h0Qusuls7Mz9HfmJNORpEohGeJERByVToT3hk1vKmPbtm3KGqvEEa8qPJ2amhpaW1uVaoAeW1Tq5MMWXVEVVYgtwlZCnIiIo3KhKe8Nm04kIvqheb/Orl27Ih2a9+tUV1eH/sbTRA3QY4thGJEPzet2IqJuixBtxImIOGojEe5LtorUiVCtoUunmByi7du3U1FRoVQDxCEqNB0huogTEWFWVlbo6+tT1ljFIxGL4kQE0dClI7Zkp6FLp5gcorq6Opqbm5XpCNFFnIgI09fXRywWU9ZYHRh2PyyrdyK8BC7VjZWnE/WER7+O2JKdhi6dYrNFVbRLiDbiREQYlY93wqFIROnKQaU6oCc0n6ijWkO1Q6TTlpKSErq7u5XrFFMkQmwRtgLyFs8I85v7ZqHrchZbT+azN9qhHtu2oW8UDANK1wZYozgaK50NfDE5RN3d3ZSXlyvX0eUQ9fT0KNcRJ0LYCogTEWHueLQKjvg3/jAFf/hCuE6Ex+5OmKmtZHJlgd27dyvRAOJvoDzyyCOVaXg6o6OjHH744Uo1QI8tqnWK0ZZdu3YpdYh02FJdXU1JSQktLS00NjYq09FV/kJ0ESciwpx7eiNj079j967d7N6tZqTwqrMM5i66lt7eXhoaGpRoAPzlX/4lk5OTvPGNb1SmAfD1r3+dRx55RMmbFT3OOeccPvOZz/DSl75UmQbApz/9aX7xi19w2mmnKdM47bTT+NznPsc555yjTAPg6quv5uSTT+ZFL3qRMo3t27fzjW98Q3mHeMUVV1BfX88b3vAGZRoNDQ1ce+21ylbd9HjnO9+JbdtcfPHFSnWE6GLYtpoRrJAVBV8IfX19SufEdSK2FCZiS2FS4LZItmeekcRKQRAEQRACIU6EIAiCIAiBECdCEARBEIRAiBMhCIIgCEIgxIkQBEEQBCEQ4kQIgiAIghAIcSIEQRAEQQiErBMhCIIgCEIgJBIhCIIgCEIgxIkQBEEQBCEQ4kQIgiAIghAIcSIEQRAEQQiEOBGCIAiCIARCnAhBEARBEAIhToQgCIIgCIEQJ0JYh2mate7/Rr7PJVdM06xx/y8GW3a5/xeDLacXgx0ApmnuzPc5hIVpms35PgcheshiUwIApmmeD7wd6Ac+aVlWf55PKTCmab4KeDPQC3wq4rbUAP8K7ABeZ1nWSp5PKTCmaZ4I/DtwD/Bhy7KW83xKgTFN8yXAZcAScANwk2VZs/k9q2CYpvlC4ApgFPgi8KhlWYv5PSshKkgkQvB4I/B14BHgHaZpnpXn8wmEaZqvAN4GfBKYBN7jfh/Jka9lWfPAMlCPY1dkbQHOAq6xLOu9wOH5PpmgmKZZCrwD+CrwEcAEaiNcLn8J/BeOM/Qy4LX5PR0hSpTl+wSE/OCOcP8SuAMYAg4A9wK/db9/rmmaT0dhFO/a8gbgF8ADwN9YljVimuYTwPdM0+ywLGs4ryeZIb5yuc2yrKfdjukp4P+Ad5mmeZNlWQfyepIZ4q9jlmU9CcwDLzFN873AgGma9wE/sSzr6XyeZya4trwe+B0wCzyME7XbD5wEVAPlOA5fQWOaZjXwYZzoye+AZ4ABnPt/EXi5aZrHWJb1eB5PU4gIEonYgpim+QbgVqAG2GtZ1jTQCZzhhpj/AFQBjXk7yQzx2VIFDFuW1e86ECU4o/dnIuRAeLZU4zh1WJZlA8filMX/AZeaprkjX+eYKQm27HO/rgG2A/8I/B3OVMDL83B6WZFoi2VZQ8CvcabM/oAzDfB24J35OsdMcevODTgDh7vdrw3gMMAG9uDUvSPzcoJC5BAnYothmmYD8BfAx3AawnNN02wD/hP4G9M0ay3LegTYBezO24lmQBJbzjFN8xgAy7JiOJ3WqvvbnYUcbk6w5TfAC03TPM7d/DucCMscTsf1Lnefgrx/k9jy/0zT7AK+jzNa32FZ1hSOc+GVT0GWTZI69mLTNJ9lWdatwC3AFy3LejPwU6DCNM2SQrXFpQz4MU7E8e9N0zwT+CVwJnCcZVljOA55NRRuuQiFgyRWbgHcDPJ/BH4G3AmcDfx/QAXwE+AtwAuBS3Aamdtx5t+/b1nWT/NxzqnYxJYf49hyoWVZ+0zT/GucxnEKaAXeWUjJbxnacj5wKXAOMIwTQp+zLOtDeTjllGRYx16MY8dzcEa8LwOesizrI3k45ZRkWC4vxYmibMfphC8DJizLelc+zjkVPlt+jJPv1OP+3YfjmF4EfAI4AWgAHgdegTOd9vU8nLIQMQpyJCOEh2maPcBncOZuO4FrLcv6OfAp4P9ZlvVp4FrgXy3L+iROo3kp8FABOhCb2fIZnASxT7q77MRxIp60LOutBeZAZGLLtcBVwKeBb1qW9XrLsv6hAB2ITOrYt3Ge+vkfnHD66cBdBehAZFMu3wSedD/fW4AOhN+WbuBLlmVZOA71smVZ33W3nw98B2e67IXAfeJACJkiTkSRYprm2b5QZJNlWZ+xLOvbQL1pmu+zLOtmnLlQgM8BNaZp1rth2rdalvVZ/WednCxt+QJuiBwn3HyGZVn/qfmUU5KlLf+OMzrEsqzr3P0L5p4NYEuFaZoNlmXtAa6IeLnUAlWWZd2AE/n6jzycdlLS2NJomubfAFcDpwFYlnUTcIz7u0eAdxWSLULhUzANkhAOpmnWmab5K5z525fhJH3dYZrmpe5PbgdeaZpmk2VZa6Zpng38EOcJgFkAy7JWNx5ZPznYshfAsqzbLcua1H/mG8mlXNzHPIF4rkdeycGWp90kXizLWsvDqW8gx3KZAyiU9S4ysOU24GL3/ztM07zS/X2/+9uCKRchOkhORBFimuZzcRYnOg1n8Zgm9/99OI7CHM4o/VHgazih8u/n41w3Q2wRW1SzxWxZwnGC7ga24SRT3pyHUxWKBHEiihjTND+PM1d7nWma23FC408B7wa+a1nWYD7PLxvElsJEbClMNrHlO1F57FkofGQ6owjxzYd+F+fxug7LsgZw1hr4H5zHN2cKaX49FWJLYSK2FCYZ2jIrj24KYSGRiCLHNM2/B44AJoCngScsy7o3v2cVDLGlMBFbCpNiskUoXAresxaC4Rs1PQfnmfa9lmVdF8VGRGwpTMSWwqSYbBEKH4lEFDmmab4W+KllWUv5PpdcEVsKE7GlMCkmW4TCRZwIQRAEQRACIdMZgiAIgiAEQpwIQRAEQRACIU6EIAiCIAiBECdCEARBEIRAiBMhCIIgCEIgyvJ9AoIgqMM0zd3AM+6fH7Ys62Pu99/AeRkTlmUFWr3QNM1jgb8AbnXf/oppmt8C3gqc6r52WhCEIkacCEHYOlxkmubHcV5j/RchHO9Y4Er3860hHE8QhIgh60QIQhHji0TsBQ4HXgQcBnwJ5/XP3TjTmh8A3g60ABZwmWVZj5qmeRWOo/B14Byct0L+HXAfhyIcHv8PuAgnEvEZ4M/dY7/RsqzblRgoCEJekZwIQdgaPAb8HmcK42Kc10FPutveBnwMeAjHmTgV+JFpmuW+/c8CvoDzIqdPACPA59xt3wfeAOzx/f5MnNdm9wBXhWuKIAiFgjgRgrB1+CZOdOD5wH/5vn+Z+/8/WJb1eeBHOC9uOsr3m3+zLOvfcSIauy3LmgPudLc9YlnW9xJeL32VZVkfB5aA3aFbIghCQSBOhCBsHb4HrAEHgV8l2W4n/O9n3P1/lUPtRrq5UP/vS7M7TUEQooI4EYKwRbAsaxpnKuNSy7Jivk0/c///N/f10Rfivjp6k0NOuP+fZZrm603TrA71hAVBKHjk6QxB2EJYlvXfSb7+Fk6C5dtxEi/vw0msXDFNM93h7gB+DZzt7rcj1JMVBKHgkaczBEEQBEEIhExnCIIgCIIQCHEiBEEQBEEIhDgRgiAIgiAEQpwIQRAEQRACIU6EIAiCIAiBECdCEARBEIRAiBMhCIIgCEIgxIkQBEEQBCEQ/z9v4CLpAcjGkQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAHECAYAAAAKxP0CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsWklEQVR4nOydd5xU1fn/PzM7dfvO9p0twIIQkaIioEhRVAQsqEDsYDRoNHYTiRrBStTIz5LkKzawoGIsBBBFxIhGUSQaVCwg3e29787OzPn9sdy7d2Zndu+dueXM7vN+vXw5O9y585nnnvKc5zznHBNjjIEgCIIgCIIgCE0wGy2AIAiCIAiCIPoz5HATBEEQBEEQhIaQw00QBEEQBEEQGkION0EQBEEQBEFoCDncBEEQBEEQBKEh5HATBEEQBEEQhIaQw00QBEEQBEEQGkION0EQBEEQBEFoCDncBEEQBEEQBKEh5HDLZOnSpTCZTAHv/eMf/8CqVat6XHvgwAGYTKaQ/6YHq1atgslkwoEDBxR/9rPPPsPSpUtRX1+vqqbvv/8eS5cuDalp4cKFGDRokKrfFwt89NFHMJlM+Oijj4yWEpKvv/4aU6dORUpKCkwmEx577LGQ15WVleGuu+7CiSeeiIyMDCQnJ+P444/H008/DZ/PF/H3h7JPfykrRrcRscQrr7wStuzJZdq0aZg2bVpEnw3V9hO9E03b1ltfoQdr1qzByJEj4XQ6YTKZ8L///U+z7+rtt06bNg3HHHOMZt+tlGj8Cr3htp9ghCyWLFnCgs01cuRINnXq1B7Xtre3s23btrHKykqd1AVSWVnJtm3bxtrb2xV/9pFHHmEA2P79+1XV9M9//pMBYP/+9797/NvPP//MvvrqK1W/LxZoaGhg27ZtYw0NDUZLCcnYsWPZsGHD2MaNG9m2bdtYWVlZyOvWr1/PCgoK2J133sneeecd9v7777Obb76Zmc1mdsUVV0T8/f/+9797lJn+UlaMbiNiidmzZ7OioqKo7rFr1y62a9euiD57+PBhtm3btqi+f6ARTdvWW1+hNZWVlcxqtbKzzz6bffTRR2zbtm2spaVFs+/r7bdOnTqVjRw5UrPvVko0foXe8NpPWIx09vsrdrsdEydO1P1729ra4HA4kJmZiczMTN2/P1KKi4uNlqArnZ2dMJlMSE5ONqScyOW7777Db3/7W8ycObPX6yZNmoS9e/fCarWK751++unweDz4+9//jnvuuQcFBQWqaOovZcWoNmKgcvTRR0f82fz8fOTn56uopv8SK21bOHbv3o3Ozk5ceumlmDp1qir3bG1tRXx8vCr3MhK5foWRv1f4bm77CaUe+ieffMJOPfVUlpiYyJxOJzvxxBPZhg0bAq5ZuXIlA8A+/PBDds0117D09HTmcrnYeeedx0pKSnrc87XXXmMTJ05k8fHxLCEhgZ1xxhmyRifC92zZsoVdddVVzOVysaSkJHbZZZex5uZmVlZWxubNm8dSUlJYTk4Ou/XWW5nH4xE/HyqCxhhj+/fvZwDYypUrxfeCI9xFRUUMQMB/QhQm+PNvv/02A8A++OCDHr/hH//4BwPAdu7cyRhj7Msvv2S//vWvWVFREXM4HKyoqIhdeOGF7MCBAyF/+6ZNm9gVV1zBMjIyGADW1tYm/ps0Sv3++++zc845h7ndbma321lxcTFbtGgRq6qq6vEbg/+T2ieSZyXoCf5PsM+CBQt6RLAAsOuuu449//zz7KijjmIOh4Mdf/zxbNu2bczv97OHH36YDRo0iCUkJLBTTjmF7dmzp8f3bt68mZ166qksKSmJOZ1OdtJJJ4V8BsH4fD523333id+bkpLCRo0axR577LGA63bv3s0uuugilpmZyWw2GxsxYgT729/+FnCNUMZefPFFdsstt7C8vDxmMpnYDz/8ELb8ffnll+zss89maWlpzG63s7Fjx7I1a9YEXNPS0sJuvfVWNmjQIGa321laWho7/vjj2SuvvNLn7/v222/ZOeecw1JTU5ndbmdjxoxhq1atEv893PNSygsvvMAAsM8++6zPa3/44Qc2Y8YM5nQ6WXp6Orv66qvZunXretjHyLIi1I/vvvuOXXjhhSw5OZllZWWxK664gtXX1wdc+/rrr7Px48ez5ORk5nQ62eDBgwOi/aHaGMbUb1+3bNnCpk6dylwuF3M4HKygoICdf/75EUftfvjhB3bhhReyrKwsZrPZWEFBAbvssssCol59lS/GuuvFK6+8wu644w6Wm5vLkpKS2PTp09mPP/4oXjd16tRey+LSpUvZ+PHjWVpaGktKSmLHHnsse/bZZ5nf7w/4vqlTpwbMRgr2f+SRR9ijjz4qlo+JEyf2iGaHmt0sKipis2fPZu+++y479thjmcPhYMOHD2fPPfdcD5t98sknbOLEicxut7O8vDx21113sWeeeUb2TOLnn3/OzjrrLOZyuZjdbmdDhgxhN954Y4/v6K3c/O9//2MA2LPPPtvj/hs3bmQA2L/+9S/GGGN79uxhCxcuZEOHDmVOp5Pl5eWxs846i33zzTcBn1Patsnp2/rqKxiTV1crKyvZb3/7W5afn89sNhvLyMhgJ510Etu8eXNYOy9YsKDH90rLzL/+9S82ceJE5nQ6WWJiIjvttNN6tG1CWfnvf//LLrjgApaamspycnJCfl9fv1WIcG/fvp2dfPLJYjuybNky5vP5Au7V0NAg9gdWq5Xl5eWxG2+8kTU3N4f9vQJyfAOpXmmZFTRu3bqVnXjiiczpdLJf//rXYb9r79697Ne//jXLzc1lNpuNZWVlsVNPPZV9/fXXAdfJ8TMWLFjAEhIS2DfffMNOP/10lpiYyCZOnCj+W3A/4ff72d///nc2ZswY5nA4WGpqKrvgggvY3r17A6776quv2OzZs8V+PTc3l82aNYsdPny4T1v2haJe9KOPPmJWq5Udf/zxbM2aNWzt2rXsjDPOYCaTib322mvidcKDGTJkCLv++uvZpk2b2LPPPsvS0tLYKaecEnDPBx54gJlMJvab3/yGbdiwgb311lvsxBNPZAkJCX1OAQrfM3jwYHbrrbey999/nz300EMsLi6OXXTRRey4445j999/P9u8eTO7/fbbGQD26KOPip+PxuH+6quv2JAhQ9ixxx7Ltm3bxrZt2yYWiODPd3Z2sqysLHbJJZf0+A3jx49nxx13nPj3P//5T3b33Xezt99+m23dupW99tprbOrUqSwzMzOgAgi/3e12s0WLFrF3332XvfHGG8zr9YasGP/3f//Hli1bxtatW8e2bt3KXnjhBTZmzBg2fPhwcRBy+PBhdv311zMA7K233hJ/lzAtGOmzqqysZA8++CADwP7+97+L9xWm08M5UUVFReykk05ib731Fnv77bfZUUcdxVwuF7v55pvZueeeyzZs2MBWr17NsrOz2ejRowM62ZdeeomZTCY2Z84c9tZbb7H169ezs846i8XFxfXpdC9btozFxcWxJUuWsC1btrD33nuPPfbYY2zp0qXiNbt27RId8RdffJG9//777NZbb2VmszngOqGMud1uNnfuXLZu3Tq2YcMGVlNTE7L8ffjhh8xms7HJkyezNWvWsPfee48tXLiwR3m8+uqrWXx8PFu+fDn797//zTZs2MD+8pe/sCeffLLX3/bjjz+ypKQkVlxczF588UX2zjvvsIsuuogBYA899JD4vLZt28YAsLlz54rPSykLFixgFouFVVdX93pdeXk5y8rKYm63m61cuZJt3LiRXXLJJaywsFC2w61HWRHagOHDh7O7776bbd68mS1fvpzZ7fYAZ/qzzz5jJpOJXXjhhWzjxo3sww8/ZCtXrmSXXXaZeE2oNkbt9nX//v3M4XCw008/na1du5Z99NFHbPXq1eyyyy5jdXV1fT2+Hvzvf/9jiYmJbNCgQeypp55iW7ZsYS+//DKbP38+a2xsZIzJK1+MddeLQYMGsUsuuYS988477NVXX2WFhYVs2LBhzOv1Msa66tmkSZNYTk6OWA6lZXHhwoXsueeeY5s3b2abN29m9913H3M6neyee+4J0B7O4R40aBA788wz2dq1a9natWvZqFGjWFpaWsAAKpzDnZ+fz44++mj24osvsk2bNrF58+YxAGzr1q3idTt37mQOh4ONHj2avfbaa2zdunVs1qxZbNCgQbIc7vfee49ZrVY2evRotmrVKvbhhx+y559/nl144YXiNXLLzbHHHssmTZrU4zvmz5/PsrKyWGdnJ2OMsa1bt7Jbb72VvfHGG2zr1q3s7bffZnPmzGFOpzNgMKS0bZPTt/XVV8itqzNmzGCZmZns6aefZh999BFbu3Ytu/vuuwPsEczPP//M/v73vzMA7MEHH2Tbtm0T+7XVq1czAOyMM85ga9euZWvWrGHHH388s9ls7JNPPhHvIZSVoqIidvvtt7PNmzeztWvXhvy+vn7r1KlTWXp6Ohs2bBh76qmn2ObNm9m1117LALAXXnhBvE9LSwsbO3Ysy8jIYMuXL2cffPABe/zxx1lKSgo79dRTeww+g5HjGzAW3uF2uVysoKCAPfnkk+zf//53QPkPZvjw4Wzo0KHspZdeYlu3bmVvvvkmu/XWWwPKiVw/Y8GCBcxqtbJBgwaxZcuWsS1btrBNmzaJ/xbcT/z2t79lVquV3Xrrrey9995jr7zyChsxYgTLzs5m5eXljDHGmpubWXp6Ohs3bhx7/fXX2datW9maNWvYNddcw77//nvxXsJzVpr2pMjhnjhxIsvKymJNTU3ie16vlx1zzDEsPz9ffLDCg7n22msDPv/www8zAGIu6KFDh5jFYmHXX399wHVNTU0sJyeHzZ8/v1c9wvcEf37OnDkMAFu+fHnA+2PHjg1wbqNxuBkLn8Md6vO33HILczqdAQ35999/zwD06iR5vV7W3NzMEhIS2OOPP97jt19++eU9PhOqYkjx+/2ss7OTHTx4MCCywVj4HO5on1VvuWrhnKicnJyAEfratWsZADZ27NiARuSxxx5jAMQITEtLC3O5XOzss88OuKfP52Njxoxh48eP71XrWWedxcaOHdvrNTNmzGD5+fk9chR///vfM4fDwWpraxlj3WVsypQpPe4RqvyNGDGCHXvssWLnJ9WUm5srRjaOOeYYNmfOnF41huLCCy9kdrudHTp0KOD9mTNnsvj4+IDyKUSOI2HTpk3MbDazm2++uc9rb7/9dmYymdj//ve/gPdPP/102Q63HmVFaAMefvjhgGuvvfZa5nA4xO/561//ygD0iHpLCdVGqN2+vvHGGwxAD7tGyqmnnspSU1N7zTuXW76Esj9r1qyA615//XUGIMCplpvD7fP5WGdnJ7v33ntZenp6wHMP53CPGjVKdO4ZY2z79u0MAHv11VfF98I53A6Hgx08eFB8r62tjblcLnb11VeL782bN48lJCQEBEt8Ph87+uijZTncxcXFrLi4mLW1tYW9Rm65eeKJJxgA9tNPP4nX1dbWMrvdzm699daw9/d6vczj8bBhw4YF1GelbVuo+4bq28L1FUrqamJiIrvpppvCfnc4BN3//Oc/A+6fl5fHRo0aFRBZbmpqYllZWeykk04S3xPKyt133y3r+/rK4QbAvvjii4D3jz76aDZjxgzx72XLljGz2cy+/PLLgOuE+r9x40ZZWhjr3TcI53ADXVkGfVFdXc0A9JgplqLEzxBmJJ5//vke9wnuJ4QAkjTgylhXkNHpdLI//vGPjDHGduzYwQCEHSQJ3HPPPSwuLo599NFHvV4XjOxdSlpaWvDFF19g7ty5SExMFN+Pi4vDZZddhl9++QU//fRTwGfOOeecgL9Hjx4NADh48CAAYNOmTfB6vbj88svh9XrF/xwOB6ZOnSp7hfNZZ50V8PevfvUrAMDs2bN7vC98t9785je/QVtbG9asWSO+t3LlStjtdlx88cXie83Nzbj99tsxdOhQWCwWWCwWJCYmoqWlBT/88EOP+15wwQWyvr+yshLXXHMNCgoKYLFYYLVaUVRUBAAh7xuMWs9KCaeccgoSEhLEv4XnOnPmzIBdA4T3hWf72Wefoba2FgsWLAjQ6vf7ceaZZ+LLL79ES0tL2O8dP348du7ciWuvvRabNm1CY2NjwL+3t7djy5YtOO+88xAfHx/wHbNmzUJ7ezs+//zzgM/IeU4///wzfvzxR1xyySUA0OO+ZWVlYh0bP3483n33XSxevBgfffQR2tra+rw/AHz44YeYPn16j5zqhQsXorW1Fdu2bZN1n9746quvMH/+fEycOBHLli3r8/p///vfGDlyJMaMGRPwvrRe9IWeZSVUu9be3o7KykoAwAknnAAAmD9/Pl5//XWUlJT0qV+L9nXs2LGw2WxYtGgRXnjhBezbt69PHeFobW3F1q1bMX/+/F7zOJWWr75+Q198+OGHOO2005CSkoK4uDhYrVbcfffdqKmpEZ9Hb8yePRtxcXERff/YsWNRWFgo/u1wOHDUUUcFfHbr1q049dRTkZGRIb5nNpsxf/78Pu+/e/du7N27F1deeSUcDkfIa5SUm0suuQR2uz1gZ5xXX30VHR0duOKKK8T3vF4vHnzwQRx99NGw2WywWCyw2WzYs2dPVH2Q0r4tGCV1dfz48Vi1ahXuv/9+fP755+js7JSlMRQ//fQTSktLcdlll8Fs7naZEhMTccEFF+Dzzz9Ha2trwGfk2qQvcnJyMH78+ID3Ro8eHVDGNmzYgGOOOQZjx44NsMuMGTNk7RQTrW+QlpaGU089tc/rXC4XiouL8cgjj2D58uX4+uuv4ff7A66JxM+QY+sNGzbAZDLh0ksvDbhvTk4OxowZI9536NChSEtLw+23346nnnoK33//fcj73X333fB6vYrz/GU73HV1dWCMITc3t8e/5eXlAQBqamoC3k9PTw/42263A4DoHFRUVADo6qCsVmvAf2vWrEF1dbUsbS6XK+Bvm80W9v329nZZ91SbkSNH4oQTTsDKlSsBAD6fDy+//DLOPffcAJ0XX3wx/va3v+Gqq67Cpk2bsH37dnz55ZfIzMwM6VSFeh7B+P1+nHHGGXjrrbfwxz/+EVu2bMH27dtFp1COs6bWs1KCkucKQHy2gta5c+f20PrQQw+BMYba2tqw3/unP/0Jf/3rX/H5559j5syZSE9Px/Tp07Fjxw4AXeXc6/XiySef7HH/WbNmAUAPe8h5ToLu2267rcd9r7322oD7PvHEE7j99tuxdu1anHLKKXC5XJgzZw727NnT63fU1NQoqsNK+frrr3H66adj2LBh2Lhxo1jn+9KUk5PT4/1Q74VDz7LSV7s2ZcoUrF27Vuw48vPzccwxx+DVV18Nq1+L9rW4uBgffPABsrKycN1116G4uBjFxcV4/PHHw+roTZ/P5+tz8aDS8tXXb+iN7du344wzzgAAPPPMM/j000/x5Zdf4s4775R9j2i+P/izwueln62pqUF2dnaP60K9F0xVVRUA9GpzJeXG5XLhnHPOwYsvvihu17lq1SqMHz8eI0eOFD93yy234M9//jPmzJmD9evX44svvsCXX36JMWPGRNwHAcr7tmCU1NU1a9ZgwYIFePbZZ3HiiSfC5XLh8ssvR3l5uSytUgT7hbOx3+9HXV1dwPtybdIXcspYRUUFvvnmmx42SUpKAmOs175ZDd9A7m81mUzYsmULZsyYgYcffhjHHXccMjMzccMNN6CpqUn8LYB8PyM+Ph7Jycl9fndFRQUYY8jOzu5x388//1y8b0pKCrZu3YqxY8fijjvuwMiRI5GXl4clS5ZENWgTkL1LSVpaGsxmM8rKynr8W2lpKQAEjOLlIFz/xhtviCMqPRGiBh0dHQHva+E8AsAVV1yBa6+9Fj/88AP27duHsrKygMhCQ0MDNmzYgCVLlmDx4sXi+x0dHWEdRDn7w3733XfYuXMnVq1ahQULFojv//zzz7K1G/2slCBoffLJJ8OulO+tw7NYLLjllltwyy23oL6+Hh988AHuuOMOzJgxA4cPH0ZaWpoYQbruuutC3mPw4MEBf8t5ToLuP/3pTzj//PNDXjN8+HAAQEJCAu655x7cc889qKioEKPdZ599Nn788cew35Genq5qHZby9ddf47TTTkNRURHef/99pKSkyPpcenp6yI4wks5RKdGWlXCce+65OPfcc9HR0YHPP/8cy5Ytw8UXX4xBgwbhxBNP7HG9Fu0rAEyePBmTJ0+Gz+fDjh078OSTT+Kmm25CdnY2LrzwQtn3cblciIuLwy+//NLrdVqWr2Bee+01WK1WbNiwISACvHbtWtW+I1rS09NFJ0KKnLItzCT0ZnOl5eaKK67AP//5T2zevBmFhYX48ssv8X//938Bn3v55Zdx+eWX48EHHwx4v7q6GqmpqT2+R07bFknfFoySupqRkYHHHnsMjz32GA4dOoR169Zh8eLFqKysxHvvvSfr+wQEpzecjc1mM9LS0gLe13Pf9oyMDDidTjz//PNh/z0cavgGSn5rUVERnnvuOQBdMzivv/46li5dCo/Hg6eeekqxnyH3uzMyMmAymfDJJ5+EDAJJ3xs1ahRee+01MMbwzTffYNWqVbj33nvhdDoDym4kyHa4ExISMGHCBLz11lv461//CqfTCaBrhPTyyy8jPz8fRx11lKIvnzFjBiwWC/bu3avaFIwShI3Rv/nmG8yYMUN8f926dbI+HzzS7IuLLroIt9xyC1atWoV9+/bB7XaLERqgq/AwxnoUiGeffTaqA0SEQhl83xUrVvS4NlyEJ9pnpSRyFC2TJk1Camoqvv/+e/z+97+P6l6pqamYO3cuSkpKcNNNN+HAgQM4+uijccopp+Drr7/G6NGjxahptAwfPhzDhg3Dzp07e3R2vZGdnY2FCxdi586deOyxx3rdlmn69Ol4++23UVpaKkbAAODFF19EfHx8xFt5/e9//8Npp52G/Px8bN68uUcH1BunnHIKHn74YezcuTMgreSVV16JSIsS1CwrobDb7Zg6dSpSU1OxadMmfP311yEdbi3aVylxcXGYMGECRowYgdWrV+Orr75S5HA7nU5MnToV//znP/HAAw+E7cS1KF/h2lmTyQSLxRKQEtLW1oaXXnpJ8XdoxdSpU7Fx40ZUV1eLNvP7/fjnP//Z52ePOuooFBcX4/nnn8ctt9wS0lFQWm7OOOMMuN1urFy5EoWFhXA4HLjooosC7mkymXp81zvvvIOSkhIMHTpUsQ2Ee8rt28L1FZHW1cLCQvz+97/Hli1b8OmnnyrWPnz4cLjdbrzyyiu47bbbxP60paUFb775Jk488cSIt8FTo18866yz8OCDDyI9Pb1HoKcvlPgGanPUUUfhrrvuwptvvomvvvoKgHY+4VlnnYW//OUvKCkpkZXOBXTZZsyYMfh//+//YdWqVaLGaFC0D/eyZctw+umn45RTTsFtt90Gm82Gf/zjH/juu+/w6quvKh7VDRo0CPfeey/uvPNO7Nu3D2eeeSbS0tJQUVGB7du3i1E8rcjJycFpp52GZcuWIS0tDUVFRdiyZQveeustWZ8XRkJr1qzBkCFD4HA4MGrUqLDXp6am4rzzzsOqVatQX1+P2267LSAnLDk5GVOmTMEjjzyCjIwMDBo0CFu3bsVzzz0XMrIglxEjRqC4uBiLFy8GYwwulwvr16/H5s2bQ/4mAHj88cexYMECWK1WDB8+POpnJZyY9fTTTyMpKQkOhwODBw8OOWUWLYmJiXjyySexYMEC1NbWYu7cucjKykJVVRV27tyJqqqqHlEdKWeffTaOOeYYjBs3DpmZmTh48CAee+wxFBUVYdiwYQC67HPyySdj8uTJ+N3vfodBgwahqakJP//8M9avX48PP/wwIu0rVqzAzJkzMWPGDCxcuBButxu1tbX44Ycf8NVXX4kd9YQJE3DWWWdh9OjRSEtLww8//ICXXnqpz8Z/yZIl2LBhA0455RTcfffdcLlcWL16Nd555x08/PDDsqPSUn766SecdtppAIAHHngAe/bsCUhtKS4u7jXv96abbsLzzz+P2bNn4/7770d2djZWr17da6ReLaItK6G4++678csvv2D69OnIz89HfX09Hn/8cVit1l5z/tRuX5966il8+OGHmD17NgoLC9He3i5GwYTnBXTlV7/wwgvYv39/r6ezLV++HCeffDImTJiAxYsXY+jQoaioqMC6deuwYsUKJCUlaVK+Ro0ahbfeegv/93//h+OPPx5msxnjxo3D7NmzsXz5clx88cVYtGgRampq8Ne//lVWGpNe3HnnnVi/fj2mT5+OO++8E06nE0899ZSYayxt/0Px97//HWeffTYmTpyIm2++GYWFhTh06BA2bdqE1atXA1BWbuLi4nD55Zdj+fLlSE5Oxvnnn9/jmZx11llYtWoVRowYgdGjR+O///0vHnnkkaj2IlfSt/XWV8ipqw0NDTjllFNw8cUXY8SIEUhKSsKXX36J9957L+zMYW+YzWY8/PDDuOSSS3DWWWfh6quvRkdHBx555BHU19fjL3/5S8R2UaNfvOmmm/Dmm29iypQpuPnmmzF69Gj4/X4cOnQI77//Pm699VZMmDAh5GeV+AbR8s033+D3v/895s2bh2HDhsFms+HDDz/EN998I0aOtfIJJ02ahEWLFuGKK67Ajh07MGXKFCQkJKCsrAz/+c9/MGrUKPzud7/Dhg0b8I9//ANz5szBkCFDwBjDW2+9hfr6epx++uni/e69917ce++92LJli7I8bkVLLFn3fp8JCQnM6XSyiRMnsvXr1wdcI6xmDV41G27l8tq1a9kpp5zCkpOTmd1uZ0VFRWzu3Ll9bt8W7nuElcLB+0gK+zZKKSsrY3PnzmUul4ulpKSwSy+9VFyp2tcuJQcOHGBnnHEGS0pKErcCYiz8HruMde15iSP7be7evbvHv//yyy/sggsuEPeVPfPMM9l3333HioqK2IIFC/r87dJ/k64m/v7779npp5/OkpKSWFpaGps3bx47dOgQA8CWLFkS8Pk//elPLC8vj5nN5h7PK9JnxVjXDhGDBw9mcXFxAfbpbW9lKdK9c6WEWlnOWNf2VrNnz2Yul4tZrVbmdrvZ7Nmze1wXzKOPPspOOukklpGRwWw2GyssLGRXXnllj73Q9+/fz37zm98wt9vNrFYry8zMZCeddBK7//77+9Qm/bfg+rBz505xqy6r1cpycnLYqaeeyp566inxmsWLF7Nx48aJe3UPGTKE3XzzzX1uwcdY1z7JZ599NktJSWE2m42NGTMmZFkN9QxCEW4/WeG/UPcORiifDoeDuVwuduWVV7J//etfsncp0aOshGtXguvbhg0b2MyZM5nb7Rb3mp01a1bA9mF97cOtRvu6bds2dt5557GioiJmt9tZeno6mzp1Klu3bl3A5y644ALmdDplbRX4/fffs3nz5rH09HSxbixcuLDHPtx9la9wzyGUXWpra9ncuXNZamoqM5lMAe3w888/z4YPHy7WgWXLlrHnnnsu5G4K4fbhDia4TextH+5ggr+Hsa5nOmHCBGa321lOTg77wx/+wB566KE+d7IR2LZtG5s5cyZLSUkR90kO3v1HTrkR2L17t1g3Q+1LXVdXx6688kqWlZXF4uPj2cknn8w++eSTHr9Nadsmt29jLHxfwVjfdbW9vZ1dc801bPTo0eI++MOHD2dLlizpc//53n7T2rVr2YQJE5jD4WAJCQls+vTp7NNPPw24Jlwb0Rvhfmu4kyZDtYHNzc3srrvuYsOHD2c2m03csvbmm28Wt7wLh1zfoLd9uOVQUVHBFi5cyEaMGMESEhJYYmIiGz16NPt//+//BewUxJg8PyOUP9ebjRjrai8mTJgg1pPi4mJ2+eWXsx07djDGurY1veiii1hxcTFzOp0sJSWFjR8/vsc5ApFuC2hijDH57jlBEATRn8jJycFll12GRx55xGgpA4YzzjgDBw4cwO7du42WQhCETtDR7gRBEAOUXbt2obW1FbfffrvRUvott9xyC4499lgUFBSgtrYWq1evxubNm8XFYwRBDAzI4SYIghigjBw5ssc+84S6+Hw+3H333SgvL4fJZMLRRx+Nl156CZdeeqnR0giC0BFKKSEIgiAIgiAIDZF98A1BEARBEARBEMohh5sgCIIgCIIgNIQcboIgCIIgCILQEHK4CYIgCIIgCEJDyOEmYh6/34/9+/fD7/cbLSUmIHspg+wlH7KVMsheyiB7EbEMOdwEQRAEQRAEoSHkcBMEQRAEQRCEhpDDTRAEQRAEQRAaQg43QRAEQRAEQWgIOdwEQRAEQRAEoSHkcBMEQRAEQRCEhpDDTRAEQRAEQRAaQg43QRAEQRAEQWgIOdwEQRAEQRAEoSHkcBMEQRAEQRCEhpDDTRAEQRAEQRAaQg43QRAEQRAEQWgIOdw6smLFCsybNw8nnHACNm3aFPa69vZ2/PnPf8aUKVMwe/ZsvPfeezqqJOSwdOlSjB071mgZBEEQBEHEAORw60hBQQFuvfVWjBw5stfrVqxYgYaGBmzcuBEPPvgg/vKXv+DgwYM6qSSCMZlMWLt2rdEyCIIgCIKIUSxGCxhIzJo1CwDw/PPP93rdxo0b8eijjyIxMRFjxozBlClT8P777+O3v/2tHjIJgiAIgit8Poa3PgZ27EpGWipgMjGjJSHODNx2kcloGUSMQA43ZzQ2NqKmpgZDhw4V3zvqqKOwa9eusJ/xeDzweDwB71ksFthsNs10GsGpp56KY445BnFxcXjxxRdhs9lwzz334KKLLsIf/vAHbNq0CVlZWXjiiScwc+ZMAMDWrVtx++23Y+fOnXC5XLj88stx3333wWKxiPccNWoUHA4HnnvuOdhsNlx99dVYsmQJAGDIkCEAgPPOOw8AUFRUhH379oGxrsb+hRdewJIlS1BXV4czzzwTTz/9NJKSkvQ2jSL8fn/A/4neIXvJh2ylDLKXfF7eDCx8EADSjrxjvMNttwK3/Fp9HWYzJR/0R8jh5ozW1lbExcXB4XCI7yUkJKC1tTXsZ1auXIlnnnkm4L158+Zh/vz5muk0gvb2drzwwgtYtGgR3nzzTbzzzju47rrr8Nprr2HGjBm49tpr8fzzz+Oyyy7Df/7zHzQ0NGD27Nm44IIL8OCDD2Lv3r2444470N7ejptuukm856pVq3DllVfijTfewNdff40//OEPKC4uxuTJk/HGG2/ghBNOwMMPP4ypU6fCbDbj4MGDqK+vx88//4xXX30VTz31FBoaGnD99dfjjjvuwG233WasoWRy+PBhoyXEFGQv+ZCtlEH26ptN21wA+ApmMDAcPHhI9fsOHjxY9XsSxkMON2fEx8fD5/Ohvb1ddLpbWloQHx8f9jNXXHEFLrnkkoD3lEa4x48fj/Ly8shER0hOTg62b98u+3qHw4GxY8fikUceAQBMnjwZK1asQH5+Pi688EIUFBRgxIgRWL16Nerr67FhwwYUFhZi1apVMJlMOPXUU+H1erF48WI8+uijMJvN4j2XL18OAJg2bRrWrFmDXbt24dJLL0VRUREAoLi4GOPGjRO1pKamgjGGNWvWiBHtHTt24JNPPhE/wyt+vx+HDx9GQUEBRVJkQPaSD9lKGWQv+dRJYk4rF/uRnGC8vcxmE/ftPcEP5HBzRnJyMtLT0/Hzzz/jmGOOAQDs3r1bTG0Ihc1mizp9pLy8HCUlJVHdIxKUdjKjR48WP2M2m5Geno7Ro0eLf+fm5gIAqqur8eOPP+LEE09EXFyc+PmTTz4Zzc3NKC0tRWFhYY97AkBubi6qqqoC3jObzQF/m0wmDBo0CCkpKeJ7eXl5qKysjJmOM/g3Eb1D9pIP2UoZZK+++aWyK+3GZmW4bIYZcXFkLyK2IIdbR7xeL3w+Hxhj8Hq96OjogNVq7dHQzpo1C88++yweeOAB7Nu3Dx9//DFWrVqlqbacnBxN76/Wd1qt1oC/TSZTwHsmU9cCFr/fD8aY+LeAkHstfT/UPeXkVEb6OYIgCEIZhyq7/p+b5oXJZO39YoLgEHK4deT+++/Hhg0bAABff/01lixZgqeeegpVVVVYuXIlXn/9dQDA1Vdfjfvvvx9nnnkmkpOTsXjxYgwaNEhTbTt27ND0/kZw9NFH48033wxwvD/77DMkJSXB7XbLvo/VaoXP59NKJkEQBNELjS0MjS1dr/PSfQDI4SZiD3K4dWTp0qVYunRpyH8TdtUAunKV77//fp1U9V+uvfZaPPbYY7j++uvx+9//Hj/99BOWLFmCW265RdH07aBBg7BlyxZMmjQJdrsdaWlpfX+IIAiCUIXDld2vc11e44QQRBRQEhTRb3G73di4cSO2b9+OMWPG4JprrsGVV16Ju+66S9F9Hn30UWzevBkFBQU49thjNVJLEARBhOJQRffrXBfNNhKxiYkJSa0EEaP4/X4cPHgQRUVFtPBIBmQvZZC95EO2UgbZSx5Pr2O4+q9drsoDC2uweGE62YuIOajEEgRBEATBLYcquuOClFJCxCrkcBMEQRAEwS3SHO6uRZMEEXuQw00QBEEQBLcELJpMpwg3EZuQw00QBEEQBLcIe3AnJwBJTlp2RsQm5HATBEEQBMElfj/DL1VdrwuzjNVCENFADjdBEARBEFxSVQ90eLpe55PDTcQw5HATBEEQBMEl0vztAnK4iRiGHG6CIAiCILhE6nBTSgkRy5DDTRAEQRAEl0hPmaSUEiKWIYebIAiCIAguOVzZvSsJpZQQsQw53ARBEARBcMkhSikh+gnkcBNEGHw+H/x+v9EyCIIgBizSHO78TON0EES0kMNNxAQvvvgi0tPT0dHREfD+BRdcgAULFgAA1q9fj+OPPx4OhwNDhgzBPffcA6+3+1Sy5cuXY9SoUUhISEBBQQGuvfZaNDc3i/++atUqpKamYsOGDTj66KNht9tx8OBBfX4gQRAE0QPB4c52AXabsVoIIhrI4SZignnz5sHn82HdunXie9XV1diwYQMWLlyIjz/+GJdffjluuOEGfP/991ixYgVWrVqFBx54QLzebDbjiSeewHfffYcXXngBH374If74xz8GfE9rayuWLVuGZ599Frt27UJWFs1hEgRBGEGnl6G0uus15W8TsY7FaAEEH4z7rR/ltfp+Z44L2PGMvDGf0+nExRdfjJUrV2LevHkAgNWrVyM/Px/Tpk3DiSeeiNtvv12Mdg8ZMgT33Xcf/vjHP2LJkiUAgJtuukm83+DBg3Hffffhd7/7Hf7xj3+I73d2duIf//gHxowZo9KvJAiCICKhtBpgR9ZMFlA6CRHjkMNNAADKa4GSKqNV9M5vf/tbnHDCCSgpKYHb7cbKlSuxcOFCmEwmfPfdd/j222/x4IMPitf7fD60t7ejtbUV8fHx+Pe//40HH3wQ33//PRobG+H1etHe3o6WlhYkJCQAAGw2G0aPHm3UTyQIgiCOIN0SsDDbOB0EoQbkcBMAuqLNvH/nscceizFjxuDFF1/EjBkz8O2332L9+vUAAL/fj3vuuQcXXHBBj885HA4cPHgQs2bNwjXXXIP77rsPLpcL//nPf3DllVeis7NTvNbpdMJkMkX1uwiCIIjoCTxl0gSAhb2WIHiHHG4CgPzUDqO56qqr8P/+3/9DSUkJTjvtNBQUFMDv9+OYY47BTz/9hKFDh4b83I4dO+D1evHoo4/CbO76ra+//rqe0gmCIAgF0LHuRH+CHG4iprjkkktw22234emnn8bVV1+N9vZ22Gw2XH/99bjqqqtQWFiIefPmwWw245tvvsG3336L+++/H8XFxfB6vXjyySdx9tln49NPP8VTTz2lur7PPvsMNTU1mD17tujYGw1jDOvXr0d6ejomTZpktBwRr9eLtWvXYsiQITjuuOOMliPS1NSEtWvXYvLkyRg0aJDRckTKysrw/vvv4+yzz4bLZcCUVBh+/PFHfPXVVzj//PNhs/GzjcTOnTvx008/4bzzzoPVajVajsiHH36Izs5OnHHGGUZLERHq4uDBg3H88cfjo68ZvvjeaFXAv/7jBRAHgK+UkqeffhoVFRUoKCjAhRdeCIfDYbQkIhZgBBFjXHTRRcxkMjEAbOnSpczn87F9+/axjRs3spNOOok5nU6WnJzMxo8fz55++mnxc8uXL2e5ubnM6XSyGTNmsBdffJEBYHV1dYwxxlauXMlSUlIi1vXTTz8xs9nMALC33347uh+pIm+99RZD11ws27Nnj2gvn89nqK6nn36aAWA2m41VVlYaqkXKddddxwCwwYMHM5/Px429Tj75ZAaAnXvuuYbqkNLa2sqysrIYAHb33XdzY6vq6mqWkJDAALAnnnjCUC1Stm/fLtbFjz76iBt7PfvsswwAs1qt7INtVQyTfdz9d6icn7p44oknis+xvb3dUC1E7MBHCI4gFLBv3z6wI0vXv/vuO/H9GTNm4NNPP0VraysaGhrwxRdf4Le//a347zfffDNKS0vR2tqK9957D5dddhkYY0hNTQUALFy4EPX19RHr+vzzz8WDcqS6jOY///mP+Pr77zkIWx1B0OXxeLBnzx6D1XQj6Nq/fz/a2toMVtOF1+vFtm3bAPBVtn7++WdUVnbN+/Oka+fOnWhpaQHAl65PP/1UfM2TLqHMd3Z2YuN/6o0VE4rm/yHZ0WK0CpHDhw8DALKysmC32w1WQ8QKlFJCxAy1tbV4//338eWXX4rv+Xw+AxUFIjTCAOmSA+mST3l5uaiFF00An7YCSJdSpLrK6rrTb+690oRRQ4xQ1MXlly9AU0MN0PARGCsxTogEr9eLsrIyAEB+fr7BaohYghxuImY47rjjUFdXh3PPPRdvv/02AL46rV9++UV8Tbr6hkddra2tqK3t3pCeF1082gogXUqJBV2V9d15+POmASOKjNm1qb29HU0HXhL/5sVe0sEvOdyEEiilhIgZDhw4gIaGBowYMUJ8T0jh4AFplIh09Q5jjEtdUscD4EcXj7YCSJdSeNQVXBcrG7pTJIzcGYTXuijVVVBQYKASItYgh5uIOWIhSsSLLun0J8CPrtraWrS3t4t/86IruJPnURcvmgDSpRQeddXX16O1tVX8u+KIw+1KBhKcxp1JEAt1kSLchBLI4SZiDh47LYDP/Ezp9CfAjy6prQDS1RdU5pXBo718Ph9KS0sD/uaBwDJvRk1Tl8Nt9L7XvNZFqS6KcBNKIIebiDl4nJYNzv3lRVcsTMsCpKsveCzzQKC9eNLFo72CB7+86Aoo87Yc+PxdboHRDjevdZEi3ESkkMNNxBSMMS6jV7xOf8ZClAggXX3BY5kPzv3lRRevC195LVsBuuzdEdtCinCHhCLcRKSQw03EFDU1NZT7qwDSpQxedfHo2Abn/vKii9dnGBO6JA53QZZx+dtAbNgrLy/PQCVErEEONxFTxMI0I0C6+oJ0ySd44SsPmgA+bQWQLqWEc7iNPkqdV3sJg9/MzEw60p1QBDncREzBa9QjFqY/AdLVFzzqqqiooIWvCqA2QhnhUkqMzuHm0V7SwS+lkxBKIYebiCl4bIQBfjt50iWf4NxfgA9dVOaVQfZSRviUEgPEHKG9vR3V1dUB7/FgL+nglxZMEkohh5uIKXifZhQgXeEJXmwH8KEruGwBfOriQRPAZ9kCyF5K6FEXjzjcJhPgzjRIFPiti7RgkogGcriJmIKiV/IJzv0F+NAVfOgNwIeuUJ08D7qozCuD7CWf4IWvgsOdmw5YLfwcegPwYS/aEpCIBnK4iZiCx04L4LOTD973F+BDV7CtANLVG7EQ7QP4sBXAZxsRfOiN8J7RBDxDkw2w5QDgL38b4M9e5HATSiGHm4gpeJwuDpX7y4MuXh010qWMWNHFgyaAT12hBr886ArM3+52IHnboQTgz16UUkIohRxuImYIlfvLQ9SjpKSkx3s86IqFaVkB0hUeHqN9wQdQAcZrAroGvzU1NQHv8aCL17IVdsGkgfnbAL/2ogg3EQ3kcBMxA6+5vzw6RADpUgqvunh0Purr69HS0hLwntGaAH4Hv7yWrcAFk4XiS6MPveHVXtK66Ha7DVRCxCLkcBMxQ6hGmLdpRgHSFR7SJZ9Qub+A8bp4tBVAbYRSKKVEGYIuOvSGiARyuImYgcdIH8BvNIZ0KYNHXaFyfwHjdfFoK4DaCKXEyqE3gPH2kg5+KX+biARyuImYgdfOlHQpg0ddoRa+AsbrCmUrgE9dRmsCSJdSAiPc3SklRka4Qx16AxhvL+ngl/K3iUggh5uIGXidLiZd8gm18BUwXlc4x9ZoXaFsBfCpy2hNAOlSQs9Db7qcyDizF5mpxmgCYqMuksNNRAI53ETMEBNRoiMYrSvUoTeA8bpCLXwFjNcVS5FkgE9dRmsCSJcSwh16k+JohtnM16E3gPH2oi0BiWghh5uIGaQRBpfLBcD4RhjobojT09PF94zWVVFRIWrgSZe00yJdfSMt8zzpCmUvozUB3fayWq1ITEwEYLwuae4vr88wLbMIsKQCAFIcDQYp6oLXukinTBLRQg43ETMIDV5ycjLS0tIAGN8IS/f9LSoqEt83WpfUUYsFXTxNF/NkL2knz5MuwV4JCQlcDn7dbjesVisA43VJc395LfM5hSeIr5PtxjrcvNZFqS6KcBORQA43ERNID9rIz8+H2dxVdI3utKT7/hYWdi86MlqX1FGLBV1Gd6axYC9pJ2+kruC6GBcXZ7gmAGhraxMHvzy1EbFQ5lOzjxFfJ9sbjZAjEgt1kSLcRCRYjBZAEHKora1FW1sbgK7G7tChQwCM77SkUY9BgwaJr0lXaEiXMgRdmZmZiI+PF983Upf00Jv8/HyUl5cbrgno6RDt3r0bgPG6eitb3+4DXtuUjJQUwGRiuup6/9MiIP8PAIBqy9ni+0m2Ol11BMN7XQTo0BsiMsjhJmKC4EifEFk2uhHmdco/1nTxEr2yWCzIzc0V3zfSXsH7/gqRZOHfjCK4LlZVVQHgq2xJ7cWTLmmZ7/A5MOV6oLEl7cg7+jrcwOnA4NMBAHskPnai1ViHW7BXXFwc8vLyxPd5eY506A0RKZRSQsQEwVsy8TJdLNXF0/RnrOkyujMVdLndblgs3XEII+0VvO+vUOYBY3XFQl3kVZe0zDd05qOxxQhFveCtR17iQUMlCPbKy8sT8/ABY5+jdPBL6SREpFCEm4gJghes8BK9CtZlNpvh9/u50sVThFvQlZSUJC62A4zVJT30hqdIcnDZkm7hxpMuXusij7oGDx4svm7xdu/A8ZtZwNmT9N2K77rrrkNpaSnsdjv+/Oc/46477wSaPoP15Ct01SGlra1NPPSGp7pYVlYmfj8tmCQihRxuIiaIhc5U0MWTw52VlcVN7q90sV1wZ8pLxJanTj5Y188//yz+zZMunusiwJcuaYS7zZ8hvj79BGDOZP0cbsYYLv55FdDWhsEjRmDaqAagdh0AvtKVeK2LBBEJlFJCxAShIskAP9PFVqsVWVlZXOiSHnojtRVgrK7q6mrx0JtgXTx1przYK9Z0McbAmN55yN3w3kZkZWXB6XSK70sd7oIsfTVJF6HHQtkC+NJFEJFADjcREwi7kgCBkQ9eOnmhc+AhqlZaWip2TrxGiQoLC7nUxZO9wpV5gB97BT9HI50iwV42mw2ZmZlc1MXOzk5x8Btsq3aWKb4u1Nnh5rXMx4ougogEcriJmEBo8NLS0pCYmMhFQ9zU1IT6+noA3Y0wD5281FHjybHtzYHkwVED+LIXrwMUwV7JyclITk7mRlesDX4Fh9sSx5DjCvlxzeC1zMeKLoKIBHK4Ce7x+/0Bub8AuJhqDBX14GEaO1amZSmlpHcEXSaTCXl5eVzoCs7DB/ioi01NTWhoaAipi4dnCPQsWx3oCmtnpfog8SsN18WrvXjSRRCRQA63ztTV1eHGG2/EpEmTcP7552P79u0hryspKcF1112HadOmYebMmVi5cqXOSvmhsrISnZ2dAHpGkgHjnLVQjTAPUbVYmZYlXb0j6MrNzYXVauVCV1VVFTo6OgBQXZRDWAfS7ITXlAoAyEv3Gq6Lh2cI8K9LGPwSRCSQw60zDz30EDIzM7FlyxbccMMNWLx4MRobex6l+8gjj8DtduODDz7As88+izVr1oR1zvs7vXWmAHXywfDeaQF8pZQIuhwOB9LT07mwl8fjQUVFBYDYKfMAn7p4KvPAEV327r2cc1366+O9jbDb7QF5+AAfuoTBL0FEAjncOtLa2oqtW7fimmuugcPhwLRp01BcXIyPP/64x7VlZWU444wzYLFY4Ha7MXbsWOzbt88A1cbTW+oGQCklwcTCtGzwQS5GdaaMsYDcX5PJxIW9SkpKxMXAsVLmAT518VLmA3TZu/OAeYhw8/AMgW5d+fn53NTFjo6OHoNfgogE2odbRw4dOoTExERkZHRvBzVs2LCQjvS8efOwadMmjB49GuXl5fj2229x1VVXhbyvx+OBx+MJeM9iscBms6n7AwxCumDF7XbD7/cHNMRCuoneDXIoXdKomtHOh9lsRnZ2triwE+jaMlDQpbc+QVd6ejocDgdMpu59h6W69KS+vh7Nzc0AujpTv98fVpee+g4e7D7tLz8/P2SZN8JeVBfV0dVp73bccl36l33pInSn08lFXWxsbBRne3mqi8GBAj2+W1qniP4DOdw60tbWhoSEhID3EhISxA5fypgxY/DGG29g8uTJ8Pl8WLRoEYYOHRryvitXrsQzzzwT8N68efMwf/589cQbyK5du8TXNpsNBw8eDBhgHDp0CC6XK6Bh1IM9e/YE/H3w4EExKunxeAKcJj0Rvjc7OxslJSXiYjIAaGlpEe2kp718Ph9KSkpEXQcPHkR5ebn4701NTYbY68cffxRfp6Wl4eDBg+Kpk0DX3uFG2Ovrr78WXyckJODgwYMB7URpaakh9pJTFzMyMnSviz/88IP4Oi4uDgcPHoTX2x053r9/vyFOjBBMMZvNYpvQFeHuTinJc/l0tZff7++1LjY2NhpStnbv3i2+5qku7tixQ3ydkpKii22kJ5IS/QdyuHXE6XSipaUl4L2WlpaAwxCALufkxhtvxOWXX465c+eisrISN910E4YMGYLTTjutx32vuOIKXHLJJQHv9acIt9RhHDduHIqKigIGLrm5uejo6OgxNao1whHE8fHxGD16NEwmk2hzk8kUcKS6XrS3t6OmpgYAMGjQIBQVFQXYz2azoaCgAIcPH9bVXiUlJWLayJAhQ1BUVBTgEDkcDkPsJXUgR4wYgaKiImRnZ4vvpaSkGGIv4YAgABg9ejSKioqQlpYmvpeZmWmIveTUxc7OTt3rYl1dnfh6woQJYuRWoKCgABaL/t2dkIqQl5eH4uJiAEIOd2BKiZ72KisrE2cihLoojdo6nU5DypZ00MRTXfzkk0/E1yNHjjTENkT/gBxuHSksLERzczOqq6vFtJI9e/bg3HPPDbiusbERVVVVmDt3LiwWC/Ly8jBt2jT897//Delw22y2fuNch0J63G9hYSHMZnNA5ylElc1ms26NcHDurzB9LZ3GNiKiVlpaKr4WOiXpIh9pCoCe9hIiakD3MwynS0+U6NLTXtIyX1RUFLLMG2EvHuuiVFdCQgJcLhdMJlPAgjsj7NXe3o6qqioAgXnSXQ63JKUk3Ud1UaEuo+1FEJFAJUdH4uPjMWXKFKxYsQLt7e3YunUr9u7diylTpgRcl5aWhuzsbKxduxZ+vx8VFRXYunWrGCEZaEiPRrbb7QCM3xmhrq4Ora2tAAIX0hi9M0Is7iIB8LXYLhbsZbSu9PR0xMfHc6Er1MJXHnRJByc92ogjKSVOO5CaYEz+tlSX0bYCYksXQUQCOdw6s3jxYlRUVGD69Ol4/PHHsWzZMiQnJ+Pdd98NyLl+6KGHsHHjRpxyyim4/PLLMX78eJx33nkGKjcGr9crRm2ljZ3Rq9fDNcJG74wQi7tIAHx1pjzZy2KxiNPqRuuS5uHzVBfDDX6N1hWujTBJdikpzAIk6wIN02W0rYDY0kUQkUApJTqTlpaGJ554osf7M2fOxMyZM8W/R44cieeff15PaVxSVlYWcDSyQHDkQ+9pvnCNMEW4Q0O6lCHocrvdPdKVjNJVXl4ufm9vdVHvXOm+6qKgS2/CDsqtLiAuEQCQn6W7LO7LPMCnLunglyAigSLcBNfEWmdKDndoeE8pSUpKQkpKSg9dRtirtbVVXPgaS2UeIF1SwkZGJfnbBeRwiwi6EhISkJqaCoAvXdLBL0FEAjncBNf0lboB8DVdzGNKiXQvW6N1mUwmuN1uAManlDDGxDxbnspWuNxfo3XFal0E+NLlt7rF14UGO9z5+V255EbbKlwevtG6Wltbxa0JKZ2EiBZyuAmuibXoFS8RbqvViqys7t6cF13Z2dnijjpGP8Pq6mpx+71YKlsA6ZISa7qkDreRKSU8LUKvra1FW1sbgNh4hgQRCeRwE1wjPaktFhpiXhzb4KPTjdTl8XjEgzXCPUOeIpBGl61YLfMA2UtKuMGv39p96E2hzinBXq8XZWVlAPi0FRAbuggiEsjhJriG9+ni1NRUJCUl9dBlhKbm5mbxGPfgzsFIXaWlpeL+zIWF3Qd+GJ1SwnvZAvjVFe45Gq2LR3sFH9Lis+SKrwsy9dVUWloachE6L7YCYkMXQUQCOdwE1wgNntlsRl5envi+kZEPv98fMvc3WJfeHURvnYOREe5Yi16RrtCEysPnSVdqaioSExO50NXb4NcbJ3G4dU4p4b1sAbGhiyAigRxugmuEBi83NzdguzEjG+Kqqip4PB4AvTvceuuKZYebp+gVr508L7pycnICTgCMhcEvT3XRG3ckcOCtRYITusJ72QJiQxdBRAI53AS3dHR0oLKyEkD4FAmAr0gy77p4cmwppSQ0gi6Hw4GMjAwudIXLwzdaV2VlJTo7O7nTFXbBpJ/Ba+4Ka5s8v/T4nFG6eCnzQGzoIohIIIeb4JZw26MB/EaveNfFq2PLky5eomr5+fkBWzoaqUuahx9rZR7gR1dFLcBMR2YHOg4Hf0xzwp5+aTKJZY3qYjfhBr8EEQl00iTBLeEWaQHGNsThdkUA+NEVzl487SJhMplgNpvh9/sNiV4JutLT0xEfHy++b+QzbGhoQFNTEwAq83KQ20b8UmXCe98wtHv00bX5kwIg/w8AgC9Kp6JxdddgpbSadV9kgMPdVxvh9XoNbSPS0tK4ycNnjIm6pHuDE0SkkMNNcEssp24AfOoyclrWYrEgJyenhy6/3697Z+rz+VBSUgIg9p4hQLoE5Oq69u/52F3CoB+nAYNPAwC8sBXA1p7fzdoP9XhPa6SL0HNzcwP+zag2wu/3c1kXGxoa0NzcHFIXQUQCpZQQ3BJr08UAH7ri4+ORlpYWUpeR07J5eXk9jkY2Sld5ebn4nTw+Q4B0yUGWrrhE7C5x6ClLHrWbxDQdvZDWRekidMC4ulhRURE2D5/XskUQkUARboJbYqGTF45GFjBKV7ijkYN16W2r1tZW1NTUiLqCEXTxFBnlpWyRrr6Rpcve/f6pxwHXX6B9asB11/0epaUlsNnseO21VwPq45/+9Cf8+N9/Au37dC337e3tqKqqAtB7XeTyGYIvXQQRCeRwE9zC+zR2ZmYmHI7AyJlRuurq6tDa2gogdOdg1HRxbwtfgW5dPHWmPJQtgHTJobfBr6jL1q134khgzmRtHW7GGC7ZuwpobcXg4cNx3pTAieTl5s/wY/s+APqWe7l1kcpWF+RwE2pDKSUEt4Q7GhkwLvLh9XpRWloKoPcokd66+uoceIxeAXzq4jWqxoOuUHn4POjKysqC3W4PrUsS4S7I0j663dfgl9qIQHgv8wA53IQ6kMNNcIt0ezRppAMwriEuKysLeTSy0bpisTMFKKUkGN519ZaHr7cu2YNfR/e/FepwsqPcMg/oW+5jsY3gocwD5HAT6kAON8ElLS0tqKurA9D79CfAV6fFuy6eHFuAUkqCEXQlJSUhJSWFC1195eEbpauvwW+olBI9jlJX0kbwNCjnsY3goS4C5HAT6kAON8ElSqJEPHVavOviybEFjNdlMpngdrtDatJbV/DC12CM0tVX7i/vZV4a4ebB4ebdXrQIvYveBr8EEQnkcBNcEuudFsCnLl4dbqOiV9nZ2bDZbCE1Afraq6amBu3t7QBis2wBnOo6EuFOigdSEntcZpwu8DULZnQb0Wsevs66GGPiQJOi24RakMNNcEmsp24AfOoyyrG12+3IzMwMq0vPztTj8aC8vBxAbD5DgHQBCnQdWTRZkAVdTgvkPaUk1CJ0qS49n6HX60VZWRkAvspWdXV1r4NfgogEcrgJLuntKGkgBqJqMEZXSkoKkpKSwuoyKnqVn58f0tkxQldpaal44AhPz5DKvDJk2cuaAcQ5AQCF2fro4tVevS1Cl+rSuy7G4iJ0gogEcrgJLuG90zKbzcjLy+NCl9/v73P604jOtLGxEY2NjQCAwsLCXnXxFBk1umwB/OoK9Rx50BXWXjovmAS6daWmpvY6+AX0K/fNzc2or68HwFcbEQtlnhxuQi3I4Sa4hPdp7NzcXFitVi50VVVVwePxAAjfOUh16XWctJxOy4iUEt7LFkC65NDX4NdsNuu+B7ecwa8RKSVK6iKVLXK4CW0gh5vgEqHBczqdcLlcPf7diMhHR0cHKioqAPQdJdJTl5zOgXddPDncvEbVjNblcDiQkZHBna7c3FxYLD0PTY6Li9N9D245g1+qi93wXuYBcrgJ9SCHm+CO4O3Resv9BfRriEtKSsTXsdqZAnzq4il6xWsnb7SuvvLw9dTV0dGByspKAH2ULc724AaMSSkhh1sZ5HATWkAON8Ed9fX1aGlpASBvWpanTot0dUMpJcoQdLlcLsTHx3OhS5qHz1PZ6mtvcCBUSonmshTXRZ4GvzymlEgHeDzpIohIIIeb4I7+ELEFSBfvUbW4uDjk5ub2+HcjHCKfzyfOoMTqMwT4GszFxcUFONz5nDjcvD9Hnhahm0wmQwfl4Qa/BBEJ5HAT3BHznfwReOxMAT51GRG9ysvLC7BLKF162aqiogJerxdA7D5DgENdRxzuZEc7nHbj9+AWdR2Bx7aLpzx8I3TJGfwSRCSQw01wR39IkQCM0RV8NLKAkboSExPDHo2sd/Sqra0N1dXVAHrvTPWeXo+FshVruhjiALsbAOBKbOVGl5EpJeEWoUt16fUM5eThG6FLzuCXICKBHG6CO2I+qnYEvXVlZGTA6XRyoUvOwlepLr/fr8t2hXJyf6W6qGzFrq5mTxJg6tLmSmjWXVe4wS/vdRHQx7mN5bpIEJFADjfBHX0dtAEY08kLJ9tZrVZkZ4c+tk5vXV6vV5z+DGcrI3TV1NSgra0NgLzOFNBnf3Dp6YRy7GVEJ89jmQf4dbjD2auxI1l8nRavj8Mt2CszMxMOhyPkNXo7tnV1deIidJ7aCF7rolxdBKEUcrgJ7uB9Gtvtdoc8GtkIXWVlZb0ejWyULrlRIr2n15Xq4ilFgtfUDSN1Wa1WZGWFXg1Z15okvtbD4fZ6vSgtLQUQ22Ue4LON4KnME0QkkMNNcIfQ4KWkpIQ8GhnQPxrT0tKCuro6APIjtjx1pqSrC6W6eJrGNjKS3FsevpG68vPzww5+69u6245UR5PmmuQOfnkv8wCfuniqiwQRCeRwE1zBGOvzaGSA/84BIF0CcnXxFFUzqpM3mUxwu929atJLVyS5vzwNfutbE8XXKc5GzXX1lzIP8NlGkMNNxDrkcBNcUVVVhY6ODgCxPf0JkC6BWJ5e13saOzs7GzabrVdNeumqqalBe3s7gNgsWzUtCeLrFAc/DjfvZR7g6zkaVRd7G/wSRCSQw01wRX+JxgCkS4BHXXa7HZmZmX3q0kNTZ2cnysrKAPBpKyA2ddUKDjfzItGmfUpJrNvLKF295eFLdekd4e5t8EsQkUAON8EVvHcOAOmSA+/T6/n5+WFTJKS69LBVaWmpuENLrD9DnnTVthw5IbCjFMzv1VoW92Ue4PM59paHL9WlhyaPx4Py8nIAlE5CqE/oo50IwiDkbEMGGDv92dtWUUbpMplMIY9GNlqXy+VCQkJC2Ov0nF5vbGxEY2NXakFfname09j9qcw3tcfjxc1JsMcDJpM22zxu/iQfyP8DAGB76VQ0re75PX4GNLYd2Zav4xC39tLTse1tEXqwLq3t1dzcjPr6egB81UW5g1+CiARyuAmu4D0aA/CpKzc3F1arlQtdfr9f9tHIeupSshhKz6ga72ULkK9r/Z75OPRf4SRDrfZVPw0YfBoA4IWPAXzcx/d0/KKrvcxmc6+DX73ropxF6HrrivW6SBCRQCklBFfw7nz0djSy3ro6OjpQUVEBgK/OtKKiAp2dnYp1aR3BivVOPhYc7pKmQVpKioy693Qf/Fos4WNZepb5qqoqeDweAHy1EbFeFwkiEijCTXCFnKORAX2nP+Vuj6a3LiGKLOjqDT11Kem09Jxej0QXTzm2vO8iAWsmfKxrlmXccODOy8PXk2j4/e9/j5KSEthsNrz22mth6+OXO3bgwT8vAlr+B7//Pk20CCgZ/PJe5gE+2wieyjxBRAI53ARXCA1eRkYGnE5n2Ov0jMY0NDSgubnrpLpYjxIBpAuIzaiaURFul8uF+Pj4vnXZu7UfexQwZ7L6DjdjDJfufQFoacGgo47CeVPCT9Lam6uBlv8B0N5eSga/vJd5gE9dPNVFgogESikhuMHn88k6Ghngv3MASBdAKSVyEHTFxcUhNze3T0166IooD1/icBeE33ExKurr69HS0qJMF6jMA7FvL3K4iViHHG6CG8rKysRGNdanPwHSBcT+9Lqe09h5eXkBTk84TXroUpKHL+qSOtzZ2uiiMq+M/mQvPetiX4NfgogEcrgJbuhP0RiAdAF86kpISEBqamqv1+oVVWtra0N1dTWAvm1lMpnEfGUun6HU4Q5/jklU8F62ANIlB7mL0KW69Ixw9zX4JYhIIIeb4AbeOweAdMlBqquvo5H1ml5XsvBVqktrWwlbtgm6+kIvXZE53N17T2uVUhILZZ7XlJLeFqED+tmL17qoZPBLEJFADjfBDf1p+hPQT5fFYkF2du9z+Eboys7Oht1ul61Lyw61trYWbW1tAOR1pnpNYyvNGeVRV3dKSbdDl8+Bwx0LbYReA4G+FqEH69LSXkry8KW6GGPioTRaoHTwSxBKIYeb4Ib+Fr3SS5fb7e5z+lMvXV6vF2VlZQCURWy11qXUsRV0ad3JR6qLyzJ/JKUkPdkHR+/jLH11QT97Wa3WPge/eulSsghdT12RlnlA24EALZgktIYcboIbeO9Mk5OTkZyczIWu1tZW1NbWAuCrMy0tLRU7xVjuTHl3PvhzuOMAW9fpinnpXo50daHn4FcaKe5Ll5ZlXski9GBdPJZ5gC9dBKEUcrgJbhAaPJPJ1Gfur17Tn4wx2Ucj66kr0lQEgF9dPHWmvNtLzxQJWXXRngeYuhyjXJf2z1HO4FevZ6h08Etlvn/oIgilkMNNcIPQ4OXk5MBqtfZ6rV5Rj+rqarS3twOI7WgM6epfuvSK2MrJw4+LiwvYoSTPpU2EW+ngl/dnCJCuWNZFEEohh5vgAo/HIx6NXFhY2MfV+jXChw4dEl/z1DlIdfUXe2kZveLVXkInb7fbkZnZ90pDPRzuzs5O5bm/kh1KtEopqaqqQkdHBwC+nmE0ZV7L9QG8lvn+oosglEION8EFJSUlYucTy9OMpItSSpQg6MrPz+8z91eqS0tNpaWlyuuiZIcSrVJKeH+GAJV5OfCuS+7glyCUQg43wQX9ZZqRdPGtKy0tDQkJCVzoamxsRENDAwD5U9h6RLgjeoaSlJJcjSLcvJctgHTJQdCVkpKCpKQk7nTl5+f3uTc4QUQCOdwEF/CauiHttHia/uS9M5V7NLIeKSV+vx8lJSUAlDu2gHb2iiRnVG+HW3aZl6aUaBTh7o9thB4RW5PJhLy8PEW6tLKX3+9XlIevl67GxkY0NjYq0kUQSiGHm+AC3qcZAT51ORwOpKenc6crLy8PFotFkS6tOtOKigp0dnYCkN+Z6mGvSBxuPVJKIirzR1JKTPAiM5WPAUostBF6DARyc3P7XIQerEsre1VVVcHj8QCI/bpIEEohh5vgAt4jtkDfRyMD+uhSejSyXrra29tRVVUl6pID75FkgE9d3M2eHIlw21GDOI16Fd7bCKfTCZfLxYWujo4OcRF6fynzAF+6CEIp5HATXMD76WNyjkYO1qVV59DQ0IDm5mYAfHVakRyNrMdz7E+dPI8Od0dnHGDNAADYUamLrv4y+NWqzAspVIIuOfBe5gG+dBGEUsjh1pm6ujrceOONmDRpEs4//3xs37497LXr1q3Deeedh5NPPhlz587FwYMHdVSqL0KDZ7FY+jwaGdBnmtHn8ynO/eV1+jMWdPHUmfJuLz0GmXLz8Mtqu22lh8Mtd/CrxzOMZPBLZb6LWNdFEErpO8mSUJWHHnoImZmZ2LJlCz7//HMsXrwYa9eu7XFq2scff4yXX34Zf/3rXzFkyBCUlJTIWtEdq0iPRpZGNMKhR9SjvLxc0dHIeunqT1GiWNElZ8s+PXXpEeHOy8uTVRdLqruvsbFyAENV1+Tz+RTtDQ7ETtnSgv6sS87aED10EYRSyOHWkdbWVmzduhXr16+Hw+HAtGnTsHr1anz88cc466yzAq599tlnccstt6C4uBhA71OoHo9HXIgiYLFYYLPZ1P8RGhB8NLKcKIZ06tbr7dqGTO3oh3RGIT8/PyJdWkRkpLrcbjc39pLuIiFXl9SR1cpe0erq7OyE3W5XXZvQySckJCA5OVnW/aUOtxa2Cs7Dl/Mdv1R1ly2LvxyA+mWrpKREdAJ5rYuR6BJ+E291sbOzk9u6aLFYNKuLSnRpiRYDfMJ4yOHWkUOHDiExMREZGRnie8OGDcO+ffsCrvP5fPjpp5/w888/495774XFYsHZZ5+Nq666KmSO4MqVK/HMM88EvDdv3jzMnz9fmx+iMtLfn5aWJit1RtogCkevSxtNNfj666/F14mJibJ0CQuVgK7pZi3SgHbt2iW+ttvtsr6jrq5OfF1TUwNAfXt9//334muLxSJLl7APNdBlOy3stXfvXvG1z+eT9R1tbW3i65KSEgwZMkRVezHGROcjJycnwBHpDWGwJPd3KOXAgQPia5fLJes7vtuTAiAVAGDq6MrjV7tsffXVV+Lr1NRUWbqEQTwAtLS0aGKvnTt3iq/j4+NlfYcwoAG666WWddFqtcrSVV9fL76urKzUvC76/X7FdbG0tBTFxcWq20vog+Lj49HQ0CBuEWgUgwcPNvT7CW0gh1tH2traehy6kZCQIOYACtTW1sLn8+HLL7/EmjVr0NLSghtuuAHZ2dk455xzetz3iiuuwCWXXBLwXixFuPfs2SO+HjFiBIqKihR9Xoj6FRQUqBoZEBx5ABg1apQsXdKGOj4+XvFvkYP0O44//nhZ35GVlSW+FtKX1LaXtMMeP368rFx86eAzLS1NE3tVVnblFWdlZeGoo46S9RlpipdgOzXtVVNTI5avwYMHy/7dQu6y3+/XxFbSwe/w4cPllfmO7tcOU5et1S5bX3zxhfj66KOPlqVL+gxtNpsm9mptbRVfjxkzRtZ3SAc1Qn+gZV084YQTZO3DLT1dUeu6mJGRgeHDh8v6jPQ5ChrVtBdjDOXlXTMzhYWFGDRokCr3JYhgyOHWEafTiZaWloD3WlpaeiwAstvtAIAFCxYgKSkJSUlJmDdvHj799NOQDrfNZosZ5zoU0hX1hYWFshvSuLi4gKl1s9msaqcl3XWjqKhI1r2l+936/X5Npgaj1SUc262VvWw2G7Kzs2XdOzgfU217eb1elJWVAVDWSUt1aWGvaMo8oF1eeSS6fqnqnm2y+LocF7XLViS6qC52lePc3FzFdZExprq9gvPweamLNTU1YhRd7YEPQUihkqUjhYWFaG5uRnV1tfjenj17MGTIkIDrkpOTA6INQHdD0x+JdMGK1js28L6iPikpCSkpKdzpys/Pl91pab1jQ2lpqfh7IylbgDb26k9l/rCwMYmvFSZ/Xa/XRgrvdRHgc5cSuYvQg3VpYa+ysjLFi9D10EULJgm9oAi3jsTHx2PKlClYsWIFbr31VnzxxRfYu3cvpkyZ0uPas846Cy+++CKGDx+O1tZWvPnmm7j00ksNUK09kTZ4cXFx6Ozs1LzTMplMcLvdsjUJaKGLMab4aGQ9dDU3N4vT2DzpiqZsCXCpyxyP597xo7q+732flbD+6xFA/h8AAB/uHofdq/se6B8oP/Ki4xD8HO9uoQWCruTk5B47TRmlK3gRuly4L/PgSxdBKIUcbp1ZvHgxlixZgunTpyM7OxvLli1DcnIy3n33XaxcuRKvv/46AGDRokV46KGHMGvWLMTHx2POnDk9djLpL0TbEGvdmebk5Mg6GlmqSStd1dXVYu5vf+i0tD4EpL918qKuontx1UMAoPbM13nA4PMAAH97R+H9O36hwa9CXVTm+4ZXXQShFHK4dSYtLQ1PPPFEj/dnzpyJmTNnin9brVbcdddduOuuu/SUZwhCg+dwOAIW0fWFltPrHo9HXEjTH6Y/Y0EXT50p9/ZKPkltSdFT9y78idqmbigZ/Gr9DCMd/FKZ7x+6CEIp5HAThiPN/ZVzNLKAlhHu0tJSMW++P0RjSFc/0+UoBABkpADP/FG9tJJLLr0UrS0tyM7OxlNPPSX7cwsunoHGks3wDVX/0BuPxyNut9mvniFIlxx41UUQSiGHmzCUhoYGNDU1AVDe2GnpcPe3ziEWdPEUvdLLXqmpqUhMTFSmy2QFrF1bLha7gTmT1XG4m5ub0XroFQDAiGOmKrqvw7MTjdDGViUlJRENfk0mE0wmExhjVOZlEAttBE+6CEIptEsJYSjRNHZappT0t+nPWNClZWdqNptl7UUcSpfa9vL7/RHl/oq6bG7A1KWvIKuPDyigv9VFgE9dAz2lREkevp66lA5+CUIp5HAThhJNZ0oRbtLVF4Ku3NzcHnt+G6WrsrISnZ2dACIs80fSSQCgkBOHm8e6CPCpa6DXRSV5+FrrimbwSxBKIYebMBTqTJXBu674+HikpaVFpEvt6FVHR4d4sl2kZQtQ315Rl3lb92cKstTL3+5vdRHgU5deKSVKF6FrWeYjzcPXWlc0g1+CUAo53IShqDFdzFNnqtd0scvlQnx8PBe6GGOiroKCAkULX7XUJT0FMNKyBfDlcJvNZsAhdbhVk8VtXVTjOWrdRuTn5yvWBGirS+kidC11RZqHr7Uuyt8m9IQcbsJQpJ2pkk4L6I58aBElEnTFxcUhJydHsSYtdPn9fvGI60htpYWuhoYGtLS0RK1LS4ebJ3tFrcve7RgUZqsmi9u6GKljC+jTRigd/GpZ5hsbG8VF6P2qzB+BJ10EoRRyuAlD4X26OC8vT/bRyFJNWuiqqKiA1+sFwNe0rBrPEFC/M1VLF3f2svEX4dajLsbFxSE3N5cLXdLBL5X5vumPughCKeRwE4YiNHgJCQlITU1V9Fmtpovb29tRVVUFoP9Mf5KufqTrSEqJzcKQJT9dXrYup9MJl8ulXBf4GvxqqauioiLi3F+uy9YRSBdBqA853IRhRJP7C2g3XRxNzmgsRK941cVTZ6qXvSKaXj8S4c5J88JsVmfRJK91sa2tDdXV1aIupWili8q8MvqjLoJQCjnchGHU1taira0NQHSdKa+dFunqG147Uz3slZGRAafTqeizflMCYO0Ka+e4vKppamhoQHNzMwC+6mI0g1+A/zZioJV5gF9dlMNNaA053IRhRBtd0Gq6OBpd0sggT7p4nZbVQ5fFYkF2trLVhVrp8vl8KC0tBRBZmW/zd2/zlpPWqZqu/lgXAT51DeS6GEkevh66Ihn8EoRSyOEmDCPazpTH6WKTyaTZ6XYUVVOGoMvtdivO/dXKXmVlZeLvjKTMt0sd7lSParr6Y10E+NQVC5FkrewVSR6+VrqiHfwShFLI4SYMQ63OlKdOC9BHF0/b7wm6kpOTkZycHLEuNTvT1tZW1NbWAojuGQLq2ivastXqTxdfZ3HocFNKiXxNgHaObSSL0LUq82rl4autK9rBL0EohRxuwjD643QxoL2urKws2O32iDSprYsxFtXRyFrpUusZAnzpavVJHO6UDlU0AerZizEmHnDCky4t2wi32x2RJkBdhzvaha9alfloB0281kWCUAo53IRhqBW9AqBqJy/ostlsyMzMjFiXmp2p1+tFWVkZgOhtpaaumpoatLe3q6KLp05eK3tFq6vFq43Dzau9eE0pEeyVnZ2tePCrVZmvq6tTZRE6wFeZ51UXQSiFHG7CMKJdIa71tL/b7Q6IrijVpfb0p9DZ8GgrIHpdWjlq/cleLd7u/bEzk9tV0QTwby+r1RrV4FdNTV6vV8z9pTLfN/1VF0EohRxuwjCEBi8lJQVJSUmKP6/FVGNLSwvq6uoARB710GIau7+mSJAuZTR3pna98DbCaVU/hzspKQkpKSmKP69VmoSgKz8/P6LBrxZ1UTr47U9li3QRhLaQw00Ygt/vjyr3F9AmpUSNRliLaWy1ptYBfnXx1JlqbS+TyaQ495cxhibPkaMlOw6DMXV0Bef+RoIW9mpubkZ9fT2A/lUXeXUgY6GN4Gl9AEEohRxuwhCqqqrg8XRF6NTo5NXquNR0uHntTHnVxWsnr4Wu7Oxs2Gw2RZ+tbgB8zNr1R8dh1Z5jtHn4ANVFpfA4EIiFNkILXZEMfgkiEsjhJgxBzU4LoE5eriZgYOmy2+1R5f6qqcvj8aC8vBxAZLY6XCH5Q0WHW+26qJYT2V/rIsCnLj3y8LOysrjTFcnglyAigRxuwhDU6LSkU7M8pZRocfCNmtPYvOrSojPNz89XvD1asC617FVaWiqW04gc7krJHx2HuXJstbCXGrtI8FgXAf7XefCYh6+mrmgHvwQRCeRwE4ZAEW5lSKc/8/LyItaklS6Xy4X4+PiodKnVmTY2NqKxsRFA/ypbh4Icbl50AXzaC+A/8q6FYxvpInQtnqGaefiAerqiHfwSRCSQw00YwkDo5LVwbHNzc2G1WiPWpKYuv9+PkpISAP33GQL86DpcKZnF4djh5tGxBdR/jmazOaLBr1SXmnVRzUXovJYtnnQRhFLI4SYMQc3pYkC9lBJBl9PphMvl6uPq3nWpOf1ZUdGVwMuTrSorK9HZ2amaLrU6U7XLFi8pElqllPBqL95TXXJzc2GxWKLSpVaZr66ujnoROo9lHuBXF0EoJbLWgiCiJJqjkQW0jHxEmvsr1aWWJiGKLOiKRhOgTZRIDV1aOGrR6zLjm9JhaHgnGWmpgMkU+WDlX/89Csj/AwDgo5/HY/9qZffa/oPkD88v3D5HtXU5HI6IB79q65IOfqM5LEXtlBLenyHQ/3QRhFLI4SYMQWjw0tPTI8r9BdR31hoaGtDU1AQguqiH2g53f56W5V5X1mVY880FwDfCv0QzO3AOMPgcAMD/vRfFvTyVgL9ddXulpaUhISEhonuoXReD9waPdvALqFO+SkpKVMn9pTZCPrzqIgilUEoJoTs+ny/q3F9A/alGtRphtVNKeJ1aV1sXT52pqCv5JDUkqUvdewDUeY5q5P4C6pevhoYGNDc3c6dL7TaCyzIPftsInnQRhFIowk3oTnl5udjRqBElAtTpuNRqhCl6JR/uF9s5CsX3XrwTSIqPLNIKAAsWLEBjYyPS09Px7LPPRnSP9975J1Y8dBUAdZ6jGnn4AP91EeBTF5dlHvy2EVosfM3NzVXlngTRF+RwE7qjRWfKU/SKR4fbZDLBZDKBMcaVLi070/j4eKSlpUWny96V32m3+nHxaWbExUXmcLe3t6Nx/0sAgKOOOhFzJkd2nwP/LQXQZSceHUhAnbqo1qI23h3ugVIXHQ4H0tPTudOVl5cX8cJXglAKpZQQuqP2tCzAl8PNY0oJoK2uSBceqZ1Solbur6jL1mXvXJcPEd4KgHoOJO9lHiBdctAypUSNushTHr7autrb21FVVSXqIgi9IIeb0J2BMl2sdmdqsViQk5PDna6srCzY7faoNAHqdKZ1dXVobW0FoMIztKQClq4DRPLSvVHpGihlHiBdctAqpUStRehq2EqtPHy1ddGWgIRRkMNN6A6v09hadKZq7Hktnf6U/uZIdanRaXm9XpSWlgLgqzNV9Rnauj+f64pO20BxIAE+6yKgrr0sFguys7Oj1qWGJrUWocdC2eJJF0EohRxuQnd4ny5OSkpCSkqKKrqidbhbW1tRU1MDIPrOQc2UkrKyMvE+aj1DnjpTs9kcsGCSlwg37ykSwMDQ5Xa7oxr8qplSotYi9IH2DAFyuAl9IYeb0B3plF6kRyMD6kY+GGOirmgPQlBTlxqH3gioGVWTPkM1DgAB1F9sF7Uue3dnnBdlhFsLe6n9HCM9gArQLsKdmJiI5ORkVXRFa6+2tjZx8KtWXeSuzB+B1zaCJ10EoRRyuAndETrT7OzsiHN/AXU7+draWrS1tQGIPuqhZgehZjRGTYe7v08Xd6WUdHfGuZxEuLWyV2ZmJhwOBxe61Fpsp7YuNXN/eayLvM428dpGEIRSyOEmdKWzsxNlZWUA1EuRAKJ3uNVshHnXxdO0rNSZ4qkz1SqlxGq1RpX7q2bZ8vl8quThq62rpqYG7e3t3OnSoi7yVOaFrUMBvtoISikh+gvkcBO6UlpaqsrRyAD/kWSAT128dfI8DgS6UkokEW6VFk263e4AByIiXUeI9jmWlZWpkvsbrCva56hFJBngsy7yVOYBPtsIrSLc0Q5+CUIp5HATuqKVY8tT9Ir3Tp6nzhTQRldycnL0ub9HdimxmVuQ4Ih88WtLSwvq6uoA9P+yBZAuOQykupiYmBjVInStHO5oB78EoRQqbYSuDKTUDYBPXWpG1UwmU1QLX6W61Fz4Gv1UsVmMcCfE1UR1p4FUtgDSJQdBF2Ms6p2MpLqiWfgq1RWtrdTMw1fzGao5+CUIpZDDTejKQIpeAerpstlsyMzMVEWXmlGi3NxcWK1WVXRF25lWVVWho6MDQPTPsK7FBphtAAAnRw53LJR5nhzbgWSvaBehS3VFays18/B5fYYEoRRyuAld4b3TAvjsIPLz86Oe/lSrM/V4PKioqACgTqelli41n2FlvU187TSTw90XA0mX3W5XbfAbrS41F6FLdfX3ZwiQw03oDznchK7wPl2clpaGhIQELnQ1NTWhoaEBgDqdg1rTxSUlJaotfJXq4qkzLavrjto7zVVR3Yv3Mg+QLjlIB7/RpEioqUvNRehSXf39GQLkcBP6Qw43oStCjq3ZbEZubm5U91Ir8uH3+1U5GlltXWru1gCoF73SShdPu1uUSxxuhyk6h5vXXTcEXWrk4Wsx26TG4Fcte6k9+FXLXgOhjeB1L3WCUAo53ISuSHN/LRZLVPdSq9OqqqqCx+MBoM7JY2p1ENJojJq61Iwk91ddZbXdZdOOyqjupaYuLabXc3JyVMvDj1aX3+9X7cRXNXWpfTohtRHKNQF86SIIpZDDTehGR0cHKiu7nBc1pz+B6BxutacZedfF27QsjyklpTXdDrdDJYfb4XAgIyMjqnupVbY8Hg/Ky8sB8FXmq6qq0NnZyZ0uaiOUQSklBNETcrgJ3dBq+hNQL0o0EHTx5NgC6qWUqJrDXXvkGTI/rEydHG41cn/VKltq5/6qNds00OoiwKe9eGojtIhwqzH4JQilkMNN6MZA67QAPjt5njpTQH1dLpcL8fHxUd2rpPpI0+gpB/N3RHyfhoYGNDU1ARgYZQsgXXLgXZdadTE1NRWJiYmqaFJTlxqDX4JQCjnchG4MtGlZgE9dakWSLRYLcnJyVNMVTWfq8/lUW/jq6WSorD/SGXcc5vIZAnyWLYB0yUFtXWazOeqFr1Jd0WiS5uHzZCu1B78EoRRyuAndoAi3MgRdTqcTLpdLNV1qRYny8vICfmu0uqJ5hhUVFfB6vQCif4YlVQBjRxxuzy/9umwBVBflwLu91FiELtUVja0qKytVzcPntWwRhFLI4SZ0IxY6U152IFDzaORQuiLtuNra2lBdXS3qUgM1Onk1y9Yh6RrJ9kPc6AJiw4Hsz7ri4+ORlpbGhS61F6FLdfXnZwiQw00YAznchG7wPi2bmZkJh8PBha76+nq0tLQAUK9zUEOXFvvYqpFSombZOix1uCmlRBZa6FJj8KuGLi0Gv7zXxf5etsjhJoyAHG5CN4QOwmKxIDs7O+r7qRGx9fl8KC0tBaB+lEi4fyRo0ZnyrouXA0ACHG7PL1weXgSos690XFycKnn4ak/7qzX4VcNeDQ0Nqg9+1bCXlnWxP5d5gBxuwhiiT/oiCJkInanb7Q6IWkSKGg1xeXm5+Fm1DkJQQ5cWBzSo0clrqcvjPAkPrWYR3WPD9mIg/w8AgE/2T0RJhPcBgHe2ST7bfgg+X+R56jymKwHa5eFHo0s6+B1IdZFHXTyl6En7Cp50EYRSyOEmdKG1tRW1tbUA+EqR0GKakXQpw2w2AwnHomP4RixeEamjPBsYPBsA8PRmAIjc4Q6g4zD8/sKIPy7YKyEhAampqVHLUeMZtre3o6qqa29xnsqWdPDLk64BVxej0ARop8vv93OniyCUQCklhC5o0dipHbHlKXVjwOlKPlGVe6lK8/+AznJuF77ymBYEUF2UA+/24i2SrKYutQa/BKEUinATujBQO1NedXHXydu7o8j3X2XCyMHK7nHllVeitrYWKSkpWLVqVdSabBZgzqnT0YnIn2FtbS3a2toADKyyRbr6hnddfr8fjLGIBomCroyMDDidTtV0dXZ2cjX4JQilkMOtM3V1dVi6dCl27NiB7OxsLF68GOPHjw97fWlpKebNm4fZs2fjjjvu0FGpugzEaVmg/+qy2WzIzMxUT5e9+zfOPwUYViC/Q/R6vajf+wLg92PooOMxZ7I6nWkc2tGJ/vsMAW10CUfGK2Wg2itaXWotQg/WFYnDrcUidKmuSG2lxeCXIJRCKSU689BDDyEzMxNbtmzBDTfcgMWLF6OxsTHs9cuXL8fw4cN1VKgNAy5ie4Roo1dJSUlISUnhTld+fr4qC19FXfbuqef8LGWfLy0tFZ+/mp1ptNPYvJctgHTJgfe2y+12q7LwNVhXJPYqKytTPQ9fqounZ0gQSiGHW0daW1uxdetWXHPNNXA4HJg2bRqKi4vx8ccfh7x+27ZtYIxhwoQJOitVH14700OHDgEATCYT3G43F7qCpz/VItpOvqmpCfX19QA00HUkpSQzlcFpVxZV06oz5bGTV7PMA6RLDoKu5ORkJCcnq64rkrrY0tKi+iL0YF2R2Gsg1UWCUAqllOjIoUOHkJiYiIyMDPG9YcOGYd++fT2u7ezsxOOPP45HHnkEGzdu7PW+Ho8HHo8n4D2LxQKbzaaOcBU4ePCg+Do/Pz+q1eahiHQFu/Ro5Li4OFV0SadhvV6v4ntWVlaio6MDQFfnoJatpLoisZf0GaqrywLY8wAA7gym+L4HDhzQRFfwNHY09tKizPt8vojuKXVstdDFmPJnCHTXRZPJhNzcXNV1RVIXGWPiItPCwkJN6mIkz1GruiidtYrEXgO1LqqNWrOHBF+Qw60jbW1tSEhICHgvISEBzc3NPa5dvXo1Jk2aJGs0vnLlSjzzzDMB782bNw/z58+PTrCK7N+/HwBgt9vR3NwsHiQRDTU1NeJrv98fEMWQg8fjQUVFBQAgKysroFGOBmmKUHl5ueL7fvvtt+LrtLQ01XQJTjwQmb3++9//iq+Tk5NV09XcmQxYupoiV0ILDh6sVfR5qb0cDodqugSnSLCbUnv9+OOP4uu4uDhVdJWXl4uvm5qaIrqnMMC32WxobW1VRZe0Lvp8PsW2ArqdtaysLDEPOFqEGRkAqKqqUvxbq6urxeefnp6uWtmStn+R1MUdO3aIr9Wsi9LAzf79+5GYmKjo87zWxe+++058bbPZVNOlFYMHK1w1TsQE5HDriNPp7OFotrS09FjJXVlZiXXr1uGll16Sdd8rrrgCl1xyScB7PEW4GWOio1BYWIhBgwapct/c3Fzxtc/nQ0FBgaLIwP79+8UFXsXFxSgqKlJFl3QGw+VyKb7v119/Lb7+1a9+pZqupKQk8XUk9pI67CNHjlRNl9lZBHR2vR5aYFd8X+mA9dhjj1VNl9VqBdDd2Su1V11dnfh6woQJPQbbkWC32wNeR/JbhUFmQUEBN3XR4/GguroaADBo0CDVnmFWVveCgNTUVMX3FTQBwFFHHaWarrS0NPG13+9XbK8tW7aIr4855hjVdEnLqNvtVrx9Hq91URoEGTdunGq6CEIJ5HDrSGFhIZqbm1FdXS06ZXv27MG5554bcN3333+PiooKnH/++QC6cr/9fj/Kysrw5JNP9rivzWbjxrkORX19vdgQK20oe8Ni6S6+fr8fZrNZ0b1LSkrE14WFheouApSg9L566IrWXkVFRarp8pi6d1hwZ/gV31e6r7SauoKnsZXaS4jCpaWlBQx2okFa5hljin9rU1MTGhoaAGhXFwVdSu5dVlYmDn611qUEPeqiz+frN20Xr3VRK10EoQRyuHUkPj4eU6ZMwYoVK3Drrbfiiy++wN69ezFlypSA60466ST861//Ev9++eWXUVdXh5tvvllvyaqg9UIaILKFR3ro4nHhEcCXvTym7iikOyNye5nN5oBIa7REs1DL7/eLTtFAK1ukq294rYtq2ctkMiEvL091XdEumkxLS1NlpokgIoGGeTqzePFiVFRUYPr06Xj88cexbNkyJCcn49133xVzrm02GzIyMsT/nE4n7HZ7zJ6OxXvnAJAuOWilq4N1O9w5aV7Fnxd05eXlBUQ0oyWaTr6iogKdnV15MgPhGZIuZfR3hzs3N1dMA1FTF0+DX4JQCkW4dSYtLQ1PPPFEj/dnzpyJmTNnhvzM1VdfrbUsTdGqc4j28IhY0KXW0ciAerrUPhq5jXUfoJOT1qnos+3t7aiqqgKgfmcazWEbsVC2tNIVycE3A9le0Ti2DocD6enpmuhSaq+Ojo6A9QFqEk1d1GrwSxBKoQg3oTkUJVKGoCs9PR3x8fGa6IpkezStjkZuFxxu5kVmirIItzQ3U+3ONJqoGu9lCyBdctBq8MtrXYzGXtK88oFQFwlCKeRwE5rDe2eq5tHI0ery+XyaTX9Go6uurg6tra2a6GrzH4nQdZTCBGW6tOxMeezkY8Gx7Y+DXyG1TwtdSu3V0NAQsAhdTaKx10CriwShFHK4Cc3hfRpbzaORg3Up7UzLy8s1ORo5Wl1aPcO2DoYO/5Gj6zsOc9XJU0qJfNTSpfbgNxpdWg5+o0kp0aPMA/y0EQCfdZEglEION6E5QoOXlJSElJQU1e4bTTSmtbVVPKxjoEWJAH46018qJX90HOZGF8BnVE2tiK3aefhq6VJ78BuNLi0HvzzWRYD/tounukgQSiGHm9AU6dHIPHUOeuT+Anx2WgA/ug4HOdy86ALU6+S1WviqVJdeub9KHUga/JLD3RfkcBP9AXK4CU2prq5Ge3s7AG2nP5WmlAzkaVmAH12HpA63hy+HW41p7KysrIDTIaPFZDKJjrJSXVrm4UdTtrQc/PJY5gFKKVGKWiklag5+CUIp5HATmjKQozEAv7p46UwDItztkaeUWK3WgGO81SDSqJrX60VZWRkAbSJqkeoa6GWeV1281EVAHXupnYcv1RVNhFvtwS9BKIUcbkJTeO8cANIlB+0cbsnMRBQpJfn5+aof1xxpJ19aWio6UQPR4e5vDiRA9pKDVnn4Ul2MMUWzmVoPfglCCeRwE5qi1/Rnf0spMZlMcLvd3OlKTU1FYmKiapoOVUj+6DikqJNvbm5GfX09AG0600jLl9Y5o5FOr/Ne5oGBqStSx1btRejBupTYq7W1FbW1tQC0r4tKdGk9+CUIJZDDTWgKr9GYQ4cOia950iXYKzs7GzabTTNdSjotv9+v2cJXMaXE1wZ4axTp0tqxjfQ56qWrv5R53nVpMfiNtC5quQg9WBePZR7gSxdBKIEcbkJTeHW4pUcjZ2RkcKHL4/GgvLwcAF+dVlVVFTwej+q6GGPdEe6Ow4p1DdROnlJK5KNGG5GTkwOr1aqZLiX20nIRerAuHss8oMxe5HATPEEON6EpvKeU5Ofnq7o9WrAupdOfwu/gaVpWq2fY0Aw0tx35o6MrmshTJ08pJco1AZHr0mLwG6kuj8eDioqu0aDWZYvXMs9DGyHAqy6CUAI53ISmCA2ey+VCfHy8qveONBrT0NCApqYmABQlkoM+e3B3TZPzoEuA9+cYacRW7Tx8qaZodGkx+I1UV0lJiaaDX97qogDvZR7gSxdBKIEcbkIzpEcjFxYWqn5/NTotrXVF2jkMBF2Hg/bgBvjQJRCtvcxmM/Ly8jTTpUSTNA+fp7ooHfzy+AwBvuzFe5kHBpa9CEIJFqMFEP2XiooKeL1eAANrmpF7XUkTsGnXaDS8AphMfadKvPP5ECD/DwCA/xw4EaWrlaXvhGPHT5L7tPOXwx1tSkleXh4sFvWb2EhSSiorK9HZ2QlggJZ58KuL1zLPq72U6BIWvprNZuTm5qquiyCUQA43oRla7j4A8DvNGKkuXexlHwSM+Rj/+saCf30DAHIcyVnA4FkAgKc3y/2MQo4smoykM42Pj0daWprqkiJ5ju3t7ais7ArdazWFHUmEm9cyT7qUDeZ4bVMFXQ6HA+np6dzo0nrwSxBKoJQSQjMGWk6yANedfPIEwMRXx+OwtAFNXwCQby/GmGivgoIC1XN/gcieo5bHlAvw7nBTXewbNXRpcUx5JLr0rotyy1d7ezuqqqpEXQRhNHz1vES/gtdpRt51WSwW5OTkaKPL3v17/3ARcNIxfXeOV111FWpqapCSkoJVq1apqskE4D/v/h1//XcDAPmdfF1dHVpbWwFo15lGklKixyKtSFJKeC/zwMDVFYnDnZ6ervoi9GBdcu3V0NCA5uZmAPrURbm69Bj8EoQSyOEmNCMWokQ86srLy1P9aGRRl8ThPmcScPLo3h1ur9eLup9XAX4/hg46HnMmqx+9+uajDvG13M5UD8c2kueopy5eyzxPjm20ddFisSA7O1tTXXIHc9JF6AO1zAN86SIIJZDDTWgG7528FkcjB+uS2zm0traipqYGgMadlq07cl6Y1fdnysrKND8amdfONJLyRQ53/9Lldru1G/wq1FVeXi5eS3Wxb8jhJniDcrgJzRAaPC2ORgYim2YMzjfUAl6nP81mM+DourfZ5EeujLVNeqZIAHx18pE8x1hIKdEi9zfa1A2tBr+R6NJj8EtlXhm86iIIJZDDTWiG0OBlZ2fDZrOpfv9IojE1NTWaHo0cqS7dokRHUkqS7E2QE7gbyNErrp+jAk1At66srCzY7XbNNAF8DX55X/gK8LU+gPcyD/CliyCUQA43oQkejwfl5eUAyFGTgx66vMwGWDMBACn2Rm508WqvaMqX1WpFVpaMnJ0odMm1ldfrRWlpKQDtbGUymcTdKWjw2zekSxm8tvUEoQRyuAlNKC0t1fRoZAAB20/x1AjzOv1Z39p9nHeyo0HWZyilpAulzzE/Pz/g81rokqtJjzz8SHTx/gwBKvNy4F2XloNfglACOdyEJugVXVAa7RvIUaL6tm6HO8lWL+szvEevUlJSkJSUpLkuOc+xubkZ9fX1AAZemQe6dfHkqPFaF/tjSolWefjR6tJy8EsQSqBSSGgCdfJd8NTJ17ZE7nCbzWbk5eVpIUuxvfx+v5hnq0fZEr6zL4wo83KcNRr8dtFfdGm1CD0SXYwxLuuiXoNfglACOdyEJujVyfe3aWy73Y7MzExNdNW2JIivlTrcubm5mh2NrHR6vaqqCh6PB4A+ZQvgy+FWeiAPr3VR62PKpZqA/tNGaLUIPRJd1dXVmufhR6KL8rcJHiGHm9AEXiPcenTy0U5/anE0MgDUtnSfTJdore3z+o6ODlRUVADgK3qld9kC5D1HXnXpUeaB/jPbJNjL4XAgIyNDc11y7KXHIvRgXbyWeZ7aCIJQAjnchCbwPo3tcrk0ORpZqkmursbGRjQ2du0aoqWtqpu7f298XN8Ot3CqHUCdPE+dPO/26i+pG1oOfpXq0mMReiS6BnqZJwglkMNNaILQ4MXFxSE3N1ez71Eyja3H0chSTXJ16dU51DQ5u174WuGIa+nzeiNSJHjqTHl9jpHq0jIPX6pLaYRby8GvUls1NDSgqakJAJ/PECBdPOkiCCWQw01ogtDg5eXlaXI0soCSaeyKigp4vV4AAy8awxhDteBwdxyG38+HLoAiyUqJVJeWefhSXTwNfpXuD05lnv8yz5O9CEIJ5HATqtPW1obq6moA2jd2SqaxB3KnVd8MtHmOOFsdh7nqtHi0FxB5J+90OuFyuXTR1Ze9Ojo6UFlZCYCvuqjX4FepLirzpIsgtIIcbkJ19DgaWUCYauSpEeYxReJwpeSPjsPc6AKis1d+fr4mmgBluoKPKdcq91epLiPqIk+DOYD/NoIne/HYdgGR69J68EsQSiCHm1AdaSNcWFio6XcJkQ+l26NpqSua6U+tdB2qkPzBcYRbia7MzEw4nU4udNXX16OlpSsvXq8yL0eXEXWRp7IFRK5roLURQOS60tPTNcvDD9bVV1uv5+CXIJRADjehOkZ0pjxFY3ic/gyMcP+iqDO1Wq3Izs7WRBegzF4+nw+lpaUA9CtbgDLHVk9dfdkrFuqiXgMBXuqiVBOgTJfFYkFOTg4XuvTKw1eqS8/BL0EogRxuQnWMmC7mKaoW6fRnYmKiZkcjH66URIU6DinSpfXRyErsVVZWJl6jV9mSo8uIMg/wqYunugj0r5QSrRehKylbeubh81rmCUIJ5HATqsP7dLGWRyNLNcnRpdf0p9KUkpaWFtTW1oq6tCQWIsmkq2/6U0pJUlKSZoNfqSY5uoxYhC5Hl1Flvq+UEr0OeiIIpZDDTaiOng1eJNPFWh6NLNUkR1dNTQ3a2toAaGur4EWTvHamfdnLiLIF9O18GKWLp2hfJHVR68GvEl3Bg189NMnRRXWRX3sRhBLI4SZUR2jw7HY7MjMzNf0uudPYnZ2dKCsrAzAwpz9Fh7uzFvC3cKML4NNeQP/SZbVakZWVpYsuJZFkrQe/Ul1yBr/t7e0A9H2GPA1++1OZB8jhJviCHG5CdfQ4GllA7nSxXkcjSzXJ0aVH5+D3M/xSdeSPjsPc6BLgzV4C/UmX1nn4Ul08DX6V6OL9GQKkC+g7pYQcboJXyOEmVKWxsRGNjY0A9O1MeYp68BaNqagFOr1H/uDc4ebBXgKROB8pKSlISkrSTVdv9mppaUFdXR0AvhxbPQe/Ul28li3S1Te86iIIJZDDTaiK3o2d3Glso3Tx0DkE528DfOgSiGSAYjKZkJeXx4Uuv98vHjCjZ9nqS9dALvNSeNTVn1JK9MjDj8Reegx+CUIJFqMFEP0LvTtTHqeLgS5dfnsxyswX4aHV4adAN+0aDeT/AQDw3q7R+Kqy7wN8lPLDwcAtAQG+7BVJJDk3NxdWq1U3Xb1NY1dVVcHj8QDQt8wDvduL6mIXPOqKhdQNubr0yMOXq0vvwS9BKIEcbkJVjOpMeYpeAYDZ4gRG/xsltlwsXtGbE30hMPhCAMDytwBAfYc7gI6uzkhuZ6rH0chyp4s7OjpQUdG1v6Heji1PkWTedTHGeh2g6L1tG49tRCSOrR6L0OWWLY/Hg/LycgB8lXm9B78EoQRKKSFUxajpYoCvaJ/JWQzYcjX/HiXYrX6g4SMAvXdaeh+NLHcaWzjVTtClNbynbgCkSw68p5TI1aXHInS5uvTOw+e1nScIJVCEm1AVI6N9vTXEQlQtLi4OubnaO8ImR/eRwvNPAS46rWdH6fczzJ8/Dz6fD0VFRXjsscc01ZSTUIoTjy898t3hbdXQ0IDm5mYAfD1DI8tWbxFb3ss8wJcuXlNKBHu5XC7Ex8froqkvXUYtQu9LF69lnhxugmfI4SZUhffpda2PRhaxd//2U44zYc7kng53WVk5fJVvAQCOmTg75DVqIvG/uOq0eE+RAEiXHJTq0mvwKyelxOfziTMoA9mB7C9lCyCHm+APSikhVEVo8BISEpCamqr598mZAtXzaGQBZssXXxeEOW+Epvy7IF3KUKpLjzz8SHTpNfiVk1JSUVEBr7dr70xdUs4kqSGxXLYASikhCLmQw02oht65v4C8SJGwal3QpQfM1v09hZw43LGeIhEL9srPzw97nVrIsRevddGIwa+clBIjHDUedcVCXeRJF0EogRxuQjVqa2vR1tYGQP9OCwgfkTGiEWa27n1peYlw8zot2190ZWRkwOl0cqGrvr4eLS0tAPiqi0YMfuWklJDDHagJ4MtekejSY/BLEEogh5tQDSM6LTlToEbo8lm6HG6TvxkpiaGvoeniLpTqslgsyM7O5kKXz+dDaWnXQtSBXuZ51+X3+8POVBipK5brol55+EpTSvQa/BKEEsjhJlTDyCgREL4h1lsXYwx+S9cpiHHekrDT+bGQIsHjdLHb7dYl91eOvcrKykTHZCCXeSA2dPHkcPMe4ZajS688fDm6jBj8EoQSyOEmVEPaORQWFvZypXooTSnRQ1dNA8DMDgCAubM07HVG5v7KiV4lJycjOTmZC12tra2ora0FMLDLFtB/dPGU6mKkveQ4tomJibosQpdjK2kePk9ly4jBL0EogRxuQjVoGruLQxXdr02eX8JeJz0a2W63ay1Llq0YY7ofjczjMwRIl1L6gy6TyQS32x3yGq109VYX9V74KsdWRuThy0kpoQWTBO+Qw02ohtHRq74aYj2ORgaAw5Xdr82doR1ur9eLsrIyAHxNrVdXV6O9vR2AMdErnjpT3lMRAH7tJUcXj+UrOzsbNptNV13hNBm9CJ3KFkGoCznchGoY3RD3Fb3S42hkINDhRkdoh7u0tFTsOHi0FUC6SJcylOjSa/ArR1dnZ6fug1+pLl4d21gtWwBFuAk+IYebUA2hwUtLS0NCQoIu39nXFGhTUxMaGhoA6NcIH6rsjoay9kMhrzF6ap2nTj4WUhFi1V4pKSlISkriTpdeg185ukpLS8UZDD0dtb5SSngvWwDVRYJQAjncOlNXV4cbb7wRkyZNwvnnn4/t27eHvG758uU499xzMWXKFFx22WX46quvdFaqDL/fr3vuL9D3VKMRjXBghPtw6Gs4nZY9JDn/nSddvNpLmvubl5fHhS4j8vDl6DJi8CtHl1GOmqCL0pX6hte2iyCUQA63zjz00EPIzMzEli1bcMMNN2Dx4sVobGzscV1iYiL+9re/4aOPPsKCBQtw2223iQdZ8EhlZSU6OzsBGNeZhorIGO1w+9v4iXCbTCYxqshT9IrX6WIlunJzc2G1WrnQVVVVhY6ODgBUFwH+dcVqmQf41KXn4JcglEAOt460trZi69atuOaaa+BwODBt2jQUFxfj448/7nHtokWLUFBQALPZjNNOOw12uz1gBM8bRnVafU2BGqFL3KXEUwm/N/QgyWh78RS9UjKN7XA4kJ6erruuUPbq6OhAeXk5ACrzAOlSSqynlOiZh68kpUTPwS9BKMFitICBxKFDh5CYmIiMjAzxvWHDhmHfvn29fq60tBSNjY1hG12PxwOPxxPwnsVi0W21PQAcOHBAfJ2fn9/r3rJqIm2IvV5vj++VDlLcbrfmurxeoLT6yB8dh+H3+0N+58GDB3XVJRAXFwefzxdWl7STz8vL00WXNJdX0CaFMSY+x4KCAjDGej24RwtdoewVvI86L2VeWrZ41aVnmeetjRCQppSE+k4jdPVV5qW68vPzuamLHR0dqKjoinQUFBTo9gy1Qlpmif4DOdw60tbW1mMxYUJCApqbm8N+xuv1YunSpbjsssuQmBj6jPCVK1fimWeeCXhv3rx5mD9/fvSiZfLNN9+Ir51OZ0DnqiXCtllA18AkJSUl4N9/+OEH8XVcXJzmukpr4uDzHznEpuMX+P1+HDhwoMcCMWGQZTab4fF4dLOXNKomdRgF9u/fDwBwuVyorKzs8e9aIH2GLS0tPWzR2Ngo1pGMjAzdbFVVVSW+DmWvHTt2iK9TUlJ001VfXy++rqys7PG9RtXF1tZW8XVpaSnS0tIC/v27774TX9vtdt10Cek1QJfTL6S+CezevVt8bTKZdNMlOIV91cWUlBRUV1eLh81oidRWoepiU1OTmAKZmZlpSF30+/097CUdnLhcLt10acXgwYONlkBoADncOuJ0OnvkYbe0tMDpdIa8njGGpUuXIi0tDYsWLQp73yuuuAKXXHJJwHt6R7ilv2vs2LEoKirS5XulJyFmZGT0+N66ujrx9YQJE3o4AWpT0iT5o6M7Kht8/LEQjcnLy0NxcbGmmqRItyITUpYEfD6fqKuoqEi3Zyjs+w0ANputx/d+++234uthw4bppktIFwFC2+uTTz4RX48cOVI3XdIZstTU1B7fKx3A61kXpYPdUHVRulbl+OOP102XNFCRm5vb43sFRzYuLg4nnHCCLkeVAxAPu/L5fD3Klt/vN6QuSmdKrVZrj+/dtWuX+Hro0KG66ZIO/kPZSzrDOnz4cN10EYQSyOHWkcLCQjQ3N6O6ulrsNPfs2YNzzz035PUPP/wwqqqq8OSTT/Y6xWSz2XR1rkMhPX2sqKhItykxiyWwCAd/rxAJSUhIgMvl0nwrspIqBuDIFKtkhxKprvb2djFiE9xxaI3U4TabzQHfHXw0sl66pPmWgi4pJSUl4uvCwkJDdUm/mwddQM8yz2td5FWX0Ebk5eXpmvsrTSkJLlsVFRUBi9CpLvJZFwlCCVQqdSQ+Ph5TpkzBihUr0N7ejq1bt2Lv3r2YMmVKj2tXrFiBnTt34tFHHzXcmZZDcD6rXvS2et2Io5EPhdgSMFiXEUcjC/S2M4LRuzUApEsOSnTxUheBwMFvamqqXrJ61dXW1iZGuKku8rvAlNetHQlCCeRw68zixYtRUVGB6dOn4/HHH8eyZcuQnJyMd999NyDn+plnnsGBAwcwc+ZMTJ48GZMnT8a7775roPLeERq8rKwscapUD3rrIIw4Gvmw5NCbcA63kZ1Db7uUGKUreNFkMDw4HzzZS65TlJGRETZdTW9dRgx+5egycvDLa13sbetQ3ss8QA43wS+UUqIzaWlpeOKJJ3q8P3PmTMycOVP8W7ogi3e8Xq8hRyMDvUc+jN6DW3C4edAl0Ntx0kZ28mazWdbOKTxG1SwWC7Kzs7nQ5fP5UFpaCoCvumjE4FeOLqqLPYmLiwu5mwvAf10EyOEm+IUi3ETUlJaWio2gkZ0pD5FkYQ9uE3yAp4wbXQI8TmMDfOqSmyLhdrt1W2jXl67gPHw94a0uCvCui6cyD/Cpi9fBL0EogRxuImp4SJEA+OhMhQi33VQLwMeNLgEep7GB3g8BEXQlJSX12PZRD01AT3u1traitrYWAJV5AdKlDEFXqL2sedDFUx6+3JQSvQe/BKEEcriJqOEhGgMYP13c1sFQVd/12mnu3jPXaF1S5Exjm0wmuN1uLnQxxsQ824FctqSQLmXEui49F74CvddFo/Lwe7OVkYNfglAC5XATUWN4p2XNAjLm4rX/FOLrqu5I0Xu7RgP5fwAAbNo1JuDftKC+ufv+8XE1EHYADxdVs1qtyMrK0lRTMHIc7pycHN2PRg43jV1dXS3u002pCF2QLmXEii5pnTNqEbpUFw+L0IM1AXwNmghCCeRwE1FjeKc14hUg9RSs/AjAR1Kn+tfA4F8DAJa/DYj7Y+tAgqVGfB2uk8/Pz9d9v9hwnWlnZ6d40IsRnVY4XYaXrSPw1MnHigMphXddNpsNmZmZXOgychG6VFesPUOAHG6CbyilhIga6aEDek9/wmQGkk/S9ztlkGvvPl5b6qy1tLSIR3PrbiuEz+EuLS0V80h50mVk2eoth5t09aQ3XdLt93jSJdjL7XbrPvgNp6u8vFz8m+pioCaAr7JFEEqgCDcRNdKGODc3V9fvbvclA+auKddhOXV4+HoXgK58w1//+tfo7OxEfn4Bnnyy51aMWjGiELhn8Y/i39KIjLBlGwDd86SB8Cklhg6aED6qJtVlVF450Lu9jNTVm73y8vJ00wTI05WcnIykpCQudLW1taGurivxy8i6GKzLyLIFxHZdJIeb4BlyuImoEZzIrKws3U/FbPKkiq8HZdZhzuR0AEBdXT06y98AAPzquNMxZ7J+C3yA8J0pLw53bweA8ORwG2mv3hxI3nVlZGQYlvsbrEu68NXIshWsi5e6CPCpK1bKvNFtF0HIhVJKiKjw+/1ivqHeETUAaGxPFl+nJ7SKr42M9AHhp0B50cVTxBaQp0tve8lJRTCbzbovfA2ny+/3i04RT2W+rq5OXPhqZNkK1sVLXQT41BVrdREwpnwRhFzI4SaioqqqCl6vF4AxjV1DR/e+zK6EZvE1L1EigM/oFW95kLxH1ULlvANdO7pYLPpOFIYrWzU1Nejs7ATAV5nnpWwBfNZFgE9dsVIXhfIVFxdHh94QXEMONxEVRkdjGiQR7lRnt8NttC45+ZlG6uIpPxPoW5fNZkN6erohmoJ1eb1eVFR0HSlKZasb3nOSgdizF49thNVqRUZGhiGaetOVm5tLh94QXEMONxEVRkdj6tu6F2ClxfMT4Q43BcqLrt4i3DzpkqZI6HnQhlRTsK6Kigrxbypb3YTTZXSEO9bsxYuucHUxNzfX0B1dpKdydnR0oLKy63hfyt8meIccbiIqjI7GiA438yPZ0SS+b7QuOdErvXd0AcJPzQq60tPT4XA4DNMltVV7eztqarr2Mzf6GfKUY8t7ZBSgCLcc+tLldDqRkpLS43N66ZJq6ujoQFVVFQC+bCWsHwIof5vgH3K4iagwOhpT35rY9aKzAmZ0iu8brauv/EyXywWn08mFLr/fL3byRkWJQnXyRnemvOfYArGhy+gItxx78eRECrrcbrfuszpSXVJNwqFYgi6jNAF8lS2CUAI53ERUGBkl8nQyNLTFd/3RfihkFNJsNhuykCbUdDFjzNBdJMLpqq6uNnSxnVQXT5Fk3neRAGJPF0+pG4Ku1NRUxMfHc6GrpaUFDQ0NAIxvI3gtW9KUEqPLFkEogRxuIiqMjKqVVgMMRyJAnl9CRomys7N130UCCB2Rqa2tRUdHBwDjOodQuniIEoWKqvEUseUpxzbWItzSha96L7YLp0s6+OWpLhr9DAE+66LU4Q6XFkQRboJ3yOEmokK6cl3vXSQOV0r+6DgsOkVer1ecAjUqShSqMzU6SgT0rYunTt5oe5lMJnFKnyddfTm2FosFmZmZhuoKtWjS6BQJoNte0r3Bea2LRuviqcwDoXUZvdibIJRADjcRFdIUCb1Xrh+qkPwhSSmprKw0dBcJIPR0sdFRIiC0Lh46rVDT2DzZiyddfe1uYcQuEuF0tba2Gnp8ejhdRj9DgH9dPJV5oFtXuJQSinATvEMONxExHR0dqK6uBmBMIxwQ4ZaklPAUjQH4jCQDoXXxlFLCk71C5bM6nU6kpqYapgnotpfH4xG3R+O1zBtdtgA+I8kAn22E3+8XnVuedIWLcBv1HAlCLuRwExFj9Cr/w5XdkQ50HOYyDxLgv5PnIcLdVydvtL1CDQSM2Btcqkmqy+hdJAD+HUiAz1xpgN82Qhho8qQr1OA3IyPDkO1MCUIJ5HATEWN0p3VIGuGWpJTw0DnwPl0MhO5MjYpChtqFQLBXSkoKEhISDNUlaJLuIsHrM+SpzPOwIDeW7MVrGyHoSkpKQlJSUsjP6aVL0CTdzpTyt4lYgBxuImKM7rTElBK/B+isoOiVDHqLcMfHxxty0EYoXYyxgEiyUQRHuI2e1ZFqAmIrYsuTrliwlxEHYwGxUxerqqrg9XoBUP42ERvov18a0W8wutMSF016SgAw7h1bwV5xcXHIysriRpf00BsjUiRC6WppaUFbWxsAY6NXvTncvDpqPJV5HiLcsWQvoXwZdeJrKF1NTU1oaWkBwEdd5GmxN0EogSLcRMQY2Wm1tDHUCSe5dxwCwP+0rGCvnJycgE7NSF2NjY1oauoypJGdVrAuHhwioGdKCQ+6YikVgYcId2/2MupgrFC6eDgYC+C/LvKUCkcQSiCHm4gYIzv5wD24uyIdwdEru92OtLQ0XXUJBEeJOjs7xV0keIgSAV26eOm0gnXx4EACFOFWQm8RbpPJxE2KBNBtL6MOxgqlq6amBh6PBwAfZR7guy5ShJuINcjhJiLGyE4+eA9uoKdTZNRBG0DPTqu8vFyMkvKQBwl06eKl0+ptIMCDvXh3bHlwivpybK1WKxe6vF4vKiq6GhAq8z3hXRdFuIlYhRxuImKETj45ORmJiYm6fnfwHtxAV0Pc1tYmHrTBw/Qn0KWLB4cI6H262MhOi3d7Be+cAvCVIiE8x4SEBMN3kRB0SU985alsVVRUiHajNqInvOuiHG4iViGHm4gIo1euB+/BDfA5/QnwGSUCKMIth94i3DylSPA6q2P0ia8A/ykSAJ9lHuBTF0+HKhGEEsjhJiKisbERra2tAPjYgxvgs3MAYqeTpxzungRPYwu6XC4XnE6noZqA7l0khIWvPJV5HnYoAfh3IAE+yzzAp67gCHdCQgKSk5MN00UQciGHm4gIozutwJSSrgg3j9OfAJ8r/YEuXbxEuMPZy2QyGbaLBBA4jc3rLhKxUOZ50hUL9uKpfEl15eTkGCEJQPhdSozczpQglEAONxERRndagsPttPkAbz0Ail7JIVy0z2KxGLY3OBDeXkYutgMCp7Fra2vR0dEBgM9nCPBV5nmdPeHVXry2EYKurKws2Gw2o2QF1MXGxkY0NzcDoPxtInagg28I2bz+IcP+sq7X//1vKpD/BwDArsbZeGg1C/9BDTjYtRYL2akeHDjyHs+dFq+dvBDhzs3NNWxvcCBQl8fjERfbGWkrIHAam9dnyGuZ52X2JFbsJZSvuLg4ZGZmGiUrQFdnZyfKyroafZ7qIi/pSgShBHK4Cdk8v5Fh03bhr+OAwccBANZ/C6z/Vl+HWyAnrVN0uHlyisJNyxp5fDoQqKutrQ1VVVUAjI8SSXWVlZWJC6N40cVzigTvZR4ge4UinC6jB79SXeXl5eLx6VQXCSI6KKWEiGkmHd0kvuY5qiboMnIXCSBQ1+HDh8XXRkeJpLoOHjwovja6M5VOY/NStqQOEU+6gss8L+UrXF10Op2GHYwFBOpqbW3l4mAsIFDXoUOHxNe86PL7/dyULYJQAkW4CdncvcCEa87tev3AAw9gx44dAIDnnn8eLgM6rrx0wN5Zh0eP/O3z+cQOIiMjw7BdJIDATqumpkbMNywsLDRKEoBAXQcOHBBfk67QhJvGNlKXyWSC2WyG3+8PKPNG6wp2bAVdLpcLCQkJRskKq6ugoIDLwS8vZR4A9u/fL77mRVfwYM5oXQQhF3K4CdmcNKq7c1pS9k+g5htYrVYsPCsVZrMxHdd333VH+zo7O8X8zIKCAkP0CEijkFIHknSFhnddfr8/wLHlQZff7w+I9sXFxRm2N7igSaCzs1Oc9ufBVgI1NTVoaWkBwJcuHss8wKeu4Ai30boIQi6UUkJEhNDg5efnBzTQeiONxvzyyy9i7q/RUQ/eI7ZAYOoGT7p4tFdw6gZPuoS66Ha7uVn4WlpaKub+8mIrgM+yBfCri8c2gjHGzawOQSiBHG5CMc3NzeLx6UZHF8J1Djzp4ilKRPZSRqh81qSkJEMXvgLdupqbm1FdXQ2AL1tR2eobspcyQtkrISEBqampBikiCGWQw00ohqf8OWl0nadoTKzpMrozDaXLZDIZvlArlC6jbQV06+Ip0hdrZZ50hSacLqMXJ4ari3ToDRErkMNNKIan/LngPWMFSFdoQumy2WyGHnoDhNaVk5Nj6EEbQGhdRjtEQLcu3ssWQLrCEUu6srOzYbfbjZIEgN+6SBByIYebUAxPi8fC5aySrtCE0mV0Hj4QWpfRtgJIlxJiqcwDfOqy2WyGHnoD8Fm2AH51EYRcyOEmFMNrSokUHnWlpaUhMTHRADXdhNLFQ6dFupQRShePZR7gV5fRzzFc2TJ68BtLZZ4HXQQhF3K4CcXwmlIiYDabDd0eDeA3GhNKl9EOEUC6lMJj+QqlyWQycXMkuBQeBr88PkMgtso8D7oIQi7kcBOK4T2lxO12w2Ixdot5XjuHWOrkSVd4eCxfoTTl5eXBarUaoKYbHm0FxJYuXss8D7oIQi7kcBOKESLciYmJhm/JxOs0Yyzp4qGTJ13KCNbldDrhcrkMUtNFLJV50hWeWCnzAB+6CEIu5HATimCMiQ43D1sy8Rr1IF3KiCVdRm+PBvTURXUxPKRLGbGki4e6SBByIYebUERNTQ3a2toA8NsI8xD1iCVdvD5HHnVlZmbC4XAYpKabYF28li3SFZ5Y0sVjXUxPT0d8fLxBaghCOeRwE4rgaYcSILamZXnVxeNztFqtyM7ONkhNN8G6eLAV0FMXr2WLdIUnVnRZLBbk5OQYpKYbXusiQciFHG5CETztUALETjQG4FMXD8eUAz118bA3OBA6dYMHeNQVK2UeIF29EazL7XaH3ctcT3gs8wShBON7NCKm4OkoaSB2pmV5OKYc4LfTIl3KoJQS+cSKruTkZC4Hv7yWeV50EYRcyOEmFMFbhDtWpmV5OKYc4HdalnQpg1JK5BOsi5fBL4/PEIidMs+LLoKQCznchCJ4c7iDox4OhwMZGRkGqemGxwgkwG+UiHQpg8fyZTKZAnZKsdvthh9TDvS0VW5uruF7gwN8PkMgdso8L7oIQi7kcBOK4OnQG6BnJ8/D9mgAv50D6VIG6VKGVBfl4fcO6VIGr7oIQi7Gt4ZETCFEuDMyMuB0Og1W04W0U+elEabpYmWQLmVIdaWlpSEhIcFANd1QXZRPrOjiscwD/OgiCLmQw03IxufzoaSkBAA/nQMQGPngpRGm6WJlxIKuuLg45ObmGqimGx7LPMCnrlipi7zq4rEums1m5OXlGaiGIJRDDjchm7KyMvh8PgD8dA5AYEPMY+cAkK6+iAVdeXl5XGyPBvBZ5gE+dcVC2QJIV19IdeXm5sJisRiohiCUQw43IRveFkwKSKcaeRkI8Dr9GayLl6ORpboSExORmppqnBgJPJYtgHQpIVbqIo+64uPj4XK5DFTTDY9liyCUQA63ztTV1eHGG2/EpEmTcP7552P79u0hr2tvb8ef//xnTJkyBbNnz8Z7772ns9Ke8LZgUoCiavKR6srMzOQmDz/4GfKw8BXouQiQF3gs8wCfumKhLgL8lC+qiwShDTQnozMPPfQQMjMzsWXLFnz++edYvHgx1q5di+Tk5IDrVqxYgYaGBmzcuBF79+7FjTfeiF/96lcoKioySDl/x7oL8N7JW61WZGVlGaimGx5tBZAupZAu+fC6OFFqq6ysLNjtdgPVdMPjMwT41UUQcqEIt460trZi69atuOaaa+BwODBt2jQUFxfj448/7nHtxo0bsWjRIiQmJmLMmDGYMmUK3n//fQNUdxMLKSW86ArWxMP2aACftgL4nS4mXcrgUZd061CbzcbN4JdHWwGkiyC0giLcOnLo0CEkJiYGHMwybNgw7Nu3L+C6xsZG1NTUYOjQoeJ7Rx11FHbt2hXyvh6PBx6PJ+A9i8Wi+smGBw8eFF/n5+fD7/erev9IESIfqampSEhI4EJX8N7gPGgCAnXx9Ax51SXt5N1uN+nqA6EuJicnIzExkStdXq9XTEXgQRevZZ5XXbyWeS3gJUBDqAs53DrS1tbWY7/chIQENDc3B7zX2tqKuLg4OByOgOtaW1tD3nflypV45plnAt6bN28e5s+fr5LyLvbu3QugqzHweDwBDriRjBs3Dhs3bsSUKVO40eT3+1FcXIy9e/di4sSJ3OjKyspCfHw8WltbccIJJ3Cjq6ioCBaLBV6vF2PGjOFG14gRIwB0LeQsKiriRtfo0aPx/vvv46ijjoLf7+dG1/HHH48NGzZwVRcBYPz48fjss89w8sknc6PLYrEgOzsbFRUVmDBhAje6CgsLYbVa0dnZiWOPPZYbXcOHDwfQVRcHDRrEjS4tGDx4sNESCA0wMcaY0SIGCj/++COuv/56bN68WXzv4YcfhsPhwA033CC+19jYiFNPPRX/+c9/RKf75Zdfxq5du7Bs2bIe99Urwr1r1y7s27cP1dXVuOKKK1S9dzR4PB689957mDFjBjd5kADQ3NyMn376Cccddxw3C4+Aru0df/jhB0ybNo2rSMrhw4fR2dmJIUOGGC0lgO+++w4ejwdjx47lxl6MMXz11VcYPnw4EhMTjZYjwmtd7OjowM6dO3H88cdzs7UjANTW1mL79u04/fTTudJ1+PBheDweFBcXGy0lgF27dqG9vR3HHnssN3VRC/rzbxvIUIRbRwoLC9Hc3Izq6moxrWTPnj0499xzA65LTk5Geno6fv75ZxxzzDEAgN27d4d1RGw2m+rOdShGjRqFUaNGaf49SrHZbBgzZgzsdjtXDVVycjJOOOEEo2X0IDc3Fx6PB2azmSt7GbkguDeOOeYYHDx4kDt78Vi2eK2LTqcTEydONFpGD1wuF371q18hLi6OK3vxWhdHjhzJZV0kCDlQidWR+Ph4TJkyBStWrEB7ezu2bt2KvXv3YsqUKT2unTVrFp599lm0tLTg22+/xccff4zTTz/dANUEQRAEQRBENJDDrTOLFy9GRUUFpk+fjscffxzLli1DcnIy3n333YCc66uvvhqJiYk488wzsXjxYixevBiDBg0yTjhBEARBEAQREZTDTcQ8wqKxoqIimmaUAdlLGWQv+ZCtlEH2UgbZi4hlqMQSBEEQBEEQhIaQw00QBEEQBEEQGkION0EQBEEQBEFoCDncBEEQBEEQBKEh5HATBEEQBEEQhIaQw00QBEEQBEEQGkION0EQBEEQBEFoCDncBEEQBEEQBKEh5HATBEEQBEEQhIaQw00QBEEQBEEQGkION0EQBEEQBEFoiIkxxowWQRAEQRAEQRD9FYpwEwRBEARBEISGkMNNEARBEARBEBpCDjdBEARBEARBaAg53ARBEARBEAShIeRwEwRBEARBEISGkMNNEARBEARBEBpCDjdBEARBEARBaAg53ARBEARBEAShIeRwEwRBEARBEISGkMNNEARBEARBEBpCDjfBHStWrMC8efNwwgknYNOmTeL77e3teOCBB3D66afjjDPOwEsvvRTwuXHjxuHkk0/G5MmTMXnyZDz//PMBn/3zn/+MKVOmYPbs2Xjvvfd0+z1ao4W9li9fjnPPPRdTpkzBZZddhq+++kq336MlWthKoLS0FJMmTcKDDz6o+e/QC63stW7dOpx33nk4+eSTMXfuXBw8eFCX36M1WtirpKQE1113HaZNm4aZM2di5cqVuv0eLYnUVs3Nzbj33ntx6qmnYtq0abjzzjsDPttf23ki9rEYLYAggikoKMCtt96Kp556KuD95557DqWlpXj77bfR3NyM3/3udxg6dChOPPFE8Zq1a9ciIyOjxz1XrFiBhoYGbNy4EXv37sWNN96IX/3qVygqKtL892iNFvZKTEzE3/72N7jdbnz44Ye47bbbsH79eiQkJGj+e7REC1sJLF++HMOHD9dMuxFoYa+PP/4YL7/8Mv76179iyJAhKCkpQVJSkua/RQ+0sNcjjzwCt9uNxx9/HBUVFbjyyisxcuRIjB8/XvPfoyWR2uqee+5BdnY21q1bB4fDgZ9//ln8bH9u54nYhyLcBHfMmjULEydOhM1mC3h/27ZtuPjii5GYmIicnBycc845eOedd2Tdc+PGjVi0aBESExMxZswYTJkyBe+//74W8nVHC3stWrQIBQUFMJvNOO2002C323Ho0CEt5OuKFrYSPs8Yw4QJE9SWbCha2OvZZ5/FLbfcguLiYphMJuTn5yMlJUUL+bqjhb3KyspwxhlnwGKxwO12Y+zYsdi3b58W8nUlElvt3bsXP/74I26++WYkJibCYrFgxIgR4mf7cztPxD7kcBMxBWMs4HVwx3PppZdi5syZWLp0Kerr6wEAjY2NqKmpwdChQ8XrjjrqqH7RafVFJPYKprS0FI2NjSgoKNBSquFEaqvOzk48/vjjuOmmm3RSygeR2Mvn8+Gnn37Czz//jFmzZuGcc87BM888E3Cv/kqk5WvevHnYtGkTPB4PDh06hG+//Rbjxo3TS7YhhLPVDz/8gMLCQvz5z3/G9OnTcfnll+Prr78GMLDbeSI2IIebiBkmTpyIV199FU1NTSgtLcWGDRvQ3t4u/vszzzyDDRs24JVXXkF7ezvuvfdeAEBrayvi4uLgcDjEaxMSEtDa2qr7b9CTSO0lxev1YunSpbjsssuQmJiop3xdicZWq1evxqRJk/r9gERKpPaqra2Fz+fDl19+iTVr1uDpp5/G5s2bsX79eqN+ii5EU77GjBmDb7/9FpMnT8b555+Pc889N8Cp7G/0ZqvKykp88cUXGD9+PDZt2oSFCxfitttuQ0NDw4Bt54nYgRxuIma48sorkZeXh7lz5+KGG27A9OnTkZmZKf77scceC4vFgrS0NNx222349NNP0dnZifj4ePh8voAOrqWlBfHx8Ub8DN2I1F4CjDEsXboUaWlpWLRokRE/QTcitVVlZSXWrVuH3/zmNwaq159I7WW32wEACxYsQFJSEnJycjBv3jx8+umnRv0UXYjUXj6fDzfeeCPmzJmDTz/9FOvWrcMHH3yADz74wMBfoy292cput8PtdmPOnDmwWCw49dRT4Xa78e233w7Ydp6IHcjhJmIGp9OJO++8E5s2bcIbb7wBk8mEo48+OuS1ZnNX0WaMITk5Genp6QGLa3bv3o0hQ4bootsoIrWXwMMPP4yqqircd9994r/3VyK11ffff4+Kigqcf/75mDFjBl5++WW88847uP766/WUrzvR1EWpoym839+J1F6NjY2oqqrC3LlzYbFYkJeXh2nTpuG///2vnvJ1pTdbFRcXh/3cQG3nidihf/eiREzi9XrR0dEBxpj42u/3o6KiAtXV1fD5fPj888+xfv16XHzxxQC6FtPs3r0bPp8PjY2NePTRRzFhwgRxQc6sWbPw7LPPoqWlBd9++y0+/vhjnH766Ub+TNXQwl4rVqzAzp078eijj/ZY1BTLqG2rk046Cf/617+wevVqrF69GhdccAFOO+003HfffQb/UnXQomydddZZePHFF9HS0oKqqiq8+eabOPnkk438maqhtr3S0tKQnZ2NtWvXivfZunVrr45nrBCJrcaNGwfGGDZs2ACfz4etW7eipKQEo0aNAtC/23ki9jGxgRBeIGKKpUuXYsOGDQHvCVtHLVmyBPX19Rg0aBBuu+02HHvssQCAL7/8EsuWLUNlZSUSEhIwfvx43HzzzXC5XAC69me9//77sXXrViQnJ+P666/HmWeeqe8P0wgt7DVu3DjYbDbExcWJ97zjjjswc+ZMnX6VNmhhKykrVqxATU0N7rjjDu1/jA5oYa/Ozk489NBD2Lx5M+Lj4zFnzhwsWrQIJpNJ3x+nAVrYa9euXXj00Uexd+9eOBwOnHHGGbjpppsC6mYsEomtAGDPnj247777sH//fhQUFOC2227DcccdB6B/t/NE7EMON0EQBEEQBEFoCKWUEARBEARBEISGkMNNEARBEARBEBpCDjdBEARBEARBaAg53ARBEARBEAShIeRwEwRBEARBEISGkMNNEARBEARBEBpCDjdBEARBEARBaAg53ARBEAOIcePGYdy4cVi/fr3RUgiCIAYM5HATBEGozKJFi0TH9qKLLgr4t//fvv2EwrfGcRz/+PczQsa/LEaNhJBkoSwIJaNJojSs1bC2s5oadmxZEDILG2MWahaS1GSliJKkRCzU+JM/MZlZDHdxr9Od63bDz/n9Fvf9Wj1znu95nvPM6tO3c+7v79XY2GjMT05Ofvv+wWDQWB8A8PsRuAHARMfHx9rd3TV+r6ysKBaL/cYnAgD8agRuADBJamqqJGlpaUmSFI/HFQgEjOt/9/DwoPHxcXV2dqqhoUEOh0Mej0fhcNiomZmZUX19vbq6urS+vq7e3l41NTVpcHBQZ2dnkiSv16vR0VHjnrdO98zMTMJ+T09P8nq9amlpkdPp1Nzc3HcfHwDwFwI3AJikoqJCNptNoVBIl5eX2tzcVDgcVltbW0JdLBbT0NCQlpeXdXNzI7vdrkgkotXVVQ0MDOju7i6h/urqSh6PR0lJSYrFYtrb29PY2Jgkqbi4WDabzaitqalRTU2NioqKEtaYmprS1taW0tLSdH19renpaW1tbZn0TwDA/xuBGwBMkpycLJfLZXS23zrd/f39CXVra2s6OTmRJI2Pj8vv92t+fl7Jycm6vr6W3+9PqI/H45qYmFAgEDDeEd/f31c0GpXb7Zbb7TZqfT6ffD6fenp6EtaoqKhQMBhM6Lhvb29/6/kBAH8icAOAibq7u5WRkSG/36+dnR1VVVWptrY2oebw8FCSZLFY1NraKkmqrKyU3W5PmH+TlZWl5uZmSVJpaalx/Z+d8P/S3t6utLQ0Wa1W5eXlSZJub28/dzgAwIcQuAHARNnZ2XI6nYpEIpLed7e/uuablJQUY/z6+vpTa3zmfgDAxxG4AcBkfX19kiSr1SqHw/Fuvrq6WpIUjUYVCoUkSUdHRzo/P0+Y/yiLxWKMn5+fv/LIAIBv9P5TeQDAtyorK9PGxoZSUlL048ePd/MdHR1aXFzU6empRkZGZLfbdXFxoZeXFxUWFhqB/aNKSkqMscvlUkFBgYaHh1VXV/eTJwEAfAUdbgD4BXJycpSVlfWvc+np6ZqdnTXC8fn5uTIzM+V0OrWwsKDc3NxP7VVeXi632638/HyFw2EdHBzo8fHxO44BAPiCpFde2gMAAABMQ4cbAAAAMBGBGwAAADARgRsAAAAwEYEbAAAAMBGBGwAAADARgRsAAAAwEYEbAAAAMBGBGwAAADARgRsAAAAwEYEbAAAAMBGBGwAAADARgRsAAAAw0R+vJKcbCnmoTgAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1515,7 +1673,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "GPU available: False, used: False\n", + "GPU available: True (mps), used: True\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n", @@ -1536,12 +1694,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "131580853d4d4680b3b001edb5135e5d", + "model_id": "6820e91ae03f45aa97cac6a0329d7ca1", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Training: 0it [00:00, ?it/s]" + "Training: | | 0/? [00:00 output_chunk_length`: using auto-regression to forecast the values after `output_chunk_length` points. The model will access `(n - output_chunk_length)` future values of your `past_covariates` (relative to the first predicted time step). To hide this warning, set `show_warnings=False`.\n", + "GPU available: True (mps), used: True\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n" @@ -1592,12 +1751,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "01b945b214d14f7cbf0d211d407729a9", + "model_id": "5fd8dba034254616b3abfcf49b3f29a8", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Predicting: 0it [00:00, ?it/s]" + "Predicting: | | 0/? [00:00 output_chunk_length`: using auto-regression to forecast the values after `output_chunk_length` points. The model will access `(n - output_chunk_length)` future values of your `past_covariates` (relative to the first predicted time step). To hide this warning, set `show_warnings=False`.\n", + "GPU available: True (mps), used: True\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n" @@ -1616,12 +1776,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e115095f4944ea98181e1d260b76daa", + "model_id": "5ef9c1d31cda42b181f051ec2c421cac", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Predicting: 0it [00:00, ?it/s]" + "Predicting: | | 0/? [00:00" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAIMCAYAAADYexzcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADe+klEQVR4nOydd3gc9bn9z+yudrXqvRdbNu4FY1OMDaYX00xCDYHg5OJ7QxISchNubkIIISQ4QCCQEAKmmCRc/CNAEqodiAMugDE2Nm64yFZvVi+70kra+f0xmpnvbJG2jOyVdT7Pw6PZ2d35zu7YZo7O+55XkmVZBiGEEEIIIYSMIyzH+wQIIYQQQggh5FhDIUQIIYQQQggZd1AIEUIIIYQQQsYdFEKEEEIIIYSQcQeFECGEEEIIIWTcQSFECCGEEEIIGXdQCBFCCCGEEELGHRRChBBCCCGEkHEHhRAhhBBCCCFk3DEuhJDX68WRI0fg9XqP96mQIPAaxT68RrENr0/sw2sU+/AaxT68RrHNWLs+40IIEUIIIYQQQogIhRAhhBBCCCFk3EEhRAghhBBCCBl3UAgRQgghhBBCxh0UQoQQQgghhJBxB4UQIYQQQgghZNxBIUQIIYQQQggZd1AIEUIIIYQQQsYdFEKEEEIIIYSQcQeFECGEEEIIIWTcQSFECCGEEEIIGXdQCBFCCCGEEELGHRRCJGxuvfVWLFu2bMTX3XzzzfjVr34V8nE//vhjWK1WtLe3D/u6H/zgB7jjjjtCPi4hhBBCCCG+UAidoNx77704+eSTj9v6n3/+Od566y185zvfCfk9p5xyCmpra5Gamjrs6+666y48//zzOHLkSLSnSQghhBBCxikUQmRU+P3vf49rr70WycnJIb/HbrcjLy8PkiQFfH5wcBBerxc5OTm46KKL8Mc//tGs0yWEEEIIIeMMCqEYZe3atVi8eDHS0tKQmZmJyy+/HOXl5YbX1NTU4IYbbkBGRgYSExOxYMECbNmyBatXr8bPf/5z7Ny5E5IkQZIkrF69GhUVFZAkCTt27NCO0d7eDkmS8P777wNQxMY3vvENTJw4EU6nE1OnTsVjjz0W1rl7vV789a9/xZVXXmnY/5e//AULFixAcnIy8vLy8JWvfAVNTU3a876lcatXr0ZaWhrefPNNzJgxAw6HA5WVlQCAK6+8Ei+99FJY50UIIYQQQoiK7XifwPFgwYIFaGhoOObr5uXl4dNPPw3ptT09Pfj+97+P2bNno6enB/fccw+uvvpq7NixAxaLBd3d3ViyZAkKCwvx+uuvIy8vD9u3b4fX68X111+P3bt3Y+3atXjvvfcAAKmpqWhsbBxxXa/Xi6KiIrz88svIysrChx9+iBUrViA/Px/XXXddSOf++eefo729HQsWLDDs93g8+MUvfoGpU6eiqakJd955J2699Va8/fbbQY/lcrnwwAMP4JlnnkFmZiZycnIAAKeddhqqq6tRWVmJ0tLSkM6LEEIIIYQQlXEphBoaGlBbW3u8T2NYvvzlLxseP/vss8jJycHevXsxa9Ys/N///R+OHj2KrVu3IiMjAwAwefJk7fVJSUmw2WzIy8sLa924uDj8/Oc/1x5PnDgRH374IV5++eWQhVBFRQWsVqsmWlS+/vWva9tlZWV4/PHHcdppp6G7uxsJCQkBj9Xf348//OEPmDt3rmF/YWGhthaFECGEEEIICZdxKYTCFQfHY93y8nL89Kc/xccff4zm5mZ4vV4AQFVVFWbNmoUdO3Zg3rx5mggykz/+8Y945plnUFlZCbfbDY/HE1bwgtvthsPh8Ov1+eyzz3Dvvfdix44daG1tNXymadOmBTyW3W7HnDlz/PY7nU4AimNECCGEEELC5/O2Trx4pA43TijAyRkpx/t0jjnjUgiFWp52PLniiitQXFyMVatWoaCgAF6vF7NmzYLH4wGgC4FwsFiUljBZlrV9/f39hte8/PLLuPPOO/Gb3/wGCxcuRHJyMh566CFs2bIl5HWysrLgcrng8Xhgt9sBKKV+F110ES666CL85S9/QXZ2NqqqqnDxxRdrnykQTqczYHhCa2srACA7Ozvk8yKEEEIIITrf37YP21s78VFzGzZctPB4n84xh2EJMUhLSwv27duHu+++G+effz6mT5+OtrY2w2vmzJmjOSuBsNvtGBwcNOxTRUN9fb22TwxOAICNGzfizDPPxO2334558+Zh8uTJfiENI6G6R3v37tX2ffHFF2hubsbKlStx1llnYdq0aYaghHDZvXs34uLiMHPmzIiPQQghhBAynqnodgMA9nf2wCv8ony8QCEUg6SnpyMzMxNPP/00Dh06hPXr1+P73/++4TU33ngj8vLysGzZMmzevBmHDx/Gq6++io8++ggAMGHCBBw5cgQ7duxAc3Mz+vr64HQ6ccYZZ2DlypXYu3cvNmzYgLvvvttw3MmTJ+PTTz/FunXrcODAAfz0pz/F1q1bwzr/7OxsnHLKKdi0aZO2r6SkBHa7Hb/73e9w+PBhvP766/jFL34R4TekCLazzjorImeMEEIIIYQAPQPKL837vTJa+/pHePWJB4VQDGKxWLBmzRps27YNs2bNwp133omHHnrI8Bq73Y5//vOfyMnJwdKlSzF79mysXLkSVqsVgBK2cMkll+Dcc89Fdna2FjX93HPPob+/HwsWLMB3v/td3H///Ybj/td//Re+9KUv4frrr8fpp5+OlpYW3H777WF/hhUrVuDFF1/UHmdnZ2P16tX461//ihkzZmDlypV4+OGHwz6uyksvvYTbbrst4vcTQgghhIxn+r1e9A31awNAY2/fcTyb44Mkyye+D+b1erWYZbVPhowuvb29mDp1KtasWYOFC0euOQ3nGr311lv44Q9/iM8//xw227hsczsu8O9RbMPrE/vwGsU+vEaxD6+ReXR4+jHx7+9rj/969jycn5cV1THH2vWJ/TMkY5L4+Hj86U9/QnNzs+nH7unpwfPPP08RRAghhBASId0Dxl7yBrfiCFX1uNHuGR9lcmEJoaeeegrXXnstTj31VKxbt87w3OrVq3HBBRfgvPPOw2OPPWZIJtuzZw9uvPFGLFq0CCtWrDA06/f29uKnP/0pzj77bFx22WVYu3ZtlB+JxApLlizBFVdcYfpxr7vuOpx++ummH5cQQgghZLzQPTBgeNzo9uCDxhac/NYmzHtrE1r6gqf6niiEJYSKi4vx3//9335JXZs2bcIrr7yC1atX4+WXX8amTZvw+uuvAwA8Hg/uuusu3HDDDVi/fj1mzZqFe+65R3vvU089hY6ODrz99tv41a9+hZUrV6KystKEj0YIIYQQQggJRI+vI9TbhzdrlETfjv4BbGgKnEx8IhGWEFq6dCnOOOMMbTaMyttvv41rrrkGRUVFyMrKwle/+lW88847AIBt27bB6XTiqquugsPhwG233Ya9e/dqrtDbb7+NFStWICkpCXPnzsXZZ5+Nf/7znyZ9PEIIIYQQQogvfkLI3YdD3fqg+vKuE39ovSlNFkeOHMHSpUu1x1OmTMETTzwBADh8+DAmT56sPed0OlFUVITDhw8jMTERLS0thuenTJmCPXv2BF3L4/H4DeC02Wx+4kzEO5SI4RWSMUhswWsU+/AaxTa8PrEPr1Hsw2sU+/AamUeXTx9Qg7sXDb36Pfahzp6wv+dYuT6hBjWYIoRcLheSkpK0x4mJiXC5FBXpdruRmJhoeH1iYiLcbjdcLhesVivi4+MDvjcQzz//PFatWmXYd+211+K6664b8Tyrq6tD+jzk+MFrFPvwGsU2vD6xD69R7MNrFPvwGkVPZUuX4fGRzh60Ci7R3pa2iNtVjvf1mThxYkivM0UIJSQkoLu7W3vc09ODhIQEAIoD1NPTY3h9T08PnE4nEhISMDg4iN7eXk0Mie8NxPLly3HTTTcZP0QIjlB1dTWKi4vHRJTfeITXKPbhNYpteH1iH16j2IfXKPbhNTIP52AtgEbtcYtPqVy1ZxAlJSWQJCnkY46162OKEJo4cSIOHTqExYsXAwAOHDiAsrIyAEBZWRn+9re/aa91u92oqalBWVkZUlJSkJmZiUOHDmHWrFl+7w2E3W4fVvQMh8ViGRMXZTzDaxT78BrFNrw+sQ+vUezDaxT78BpFj2tw+PK1jv4BtPUPIis+/PvusXJ9wjrDgYEB9PX1QZZlbdvr9WLp0qV49dVXUVtbi+bmZrz44ou49NJLAQDz58+H2+3GG2+8AY/Hg2effRYzZsxAfn4+ACWA4ZlnnkFPTw927dqFDRs24MILLzT/kxJCCCGEEDIG+KCxBXfv2I+aHveoreEblhAIMTzhRCQsIXT//fdj0aJF+Oyzz/Czn/0MixYtwvbt27F48WJ86Utfwi233IJrr70WixYtwpVXXglAcXAefPBBvPjiizj33HOxc+dO3Hfffdox//M//xNJSUm45JJL8KMf/Qg/+tGPMGHCBFM/JDGXW2+9FcuWLRvxdTfffDN+9atfRbXW6tWrkZaWpj2+9957cfLJJ4d8Lr///e+1P4uEEEIIIbFOv9eLmzfvxB8OVGH5R7tGbR3fOUKBKO/qGfE1Y5mwSuPuvfde3HvvvQGfW758OZYvXx7wuZkzZ2LNmjUBn4uPj8f9998fzmmQELj33nvx97//HTt27Dgu63/++ed466238Ic//CGq41x//fWGRMJwue222/DLX/4SmzZt0ko3CSGEEEJilda+fnQPuTXbWjsgy3JYfTqhEoojdKJHaMd+8R4Zk/z+97/Htddei+Tk5KiO43Q6kZOTE/H7HQ4HvvKVr+B3v/tdVOdBCCGEEHIs6PJxao50uyHLMvZ1dIckXkIl2LFsgug6RCFEjgdr167F4sWLkZaWhszMTFx++eUoLy83vKampgY33HADMjIykJiYiAULFmDLli1YvXo1fv7zn2Pnzp2QJAmSJGH16tWoqKiAJEkGl6i9vR2SJOH9998HAAwODuIb3/gGJk6cCKfTialTp+Kxxx4L69y9Xi/++te/+pWkTZgwAffffz9uueUWJCUlobS0FP/4xz9w9OhRLFu2DLNmzcLcuXPx6aefau/xLY0biW3btiEnJwe//OUvtX1XXnkl/v73v8PtHr06W0IIIYQQM+jsNwqhba0d+OPBKixa9xHOffdjDJg0oyeYEDolIwVxFkUMlZ/gPUKmpMaNNRbc5kVD67FfNy8D+HRVaNqzp6cH3//+9zF79mz09PTgnnvuwdVXX40dO3bAYrGgu7sbS5YsQWFhIV5//XXk5eVh+/bt8Hq9uP7667F7926sXbsW7733HgAgNTUVjY2NI6yqiJiioiK8/PLLyMrKwocffogVK1YgPz8/pFlNgFIW197ejgULFvg99+ijj+JXv/oVfvrTn+LRRx/FzTffjEWLFuHWW2/Fd7/7Xfzud7/DLbfcgj179oRtA7///vtYtmwZHnjgAXzzm9/U9i9YsAD9/f345JNPsGTJkrCOSQghhBByLPETQi0deKfuKADFoTnY5cL01KRAbw2LYD1CJ6Ukor1/AAc6e3C4ywWvLMMyCqV5scC4FEINrUDt0eN9FsPz5S9/2fD42WefRU5ODvbu3YtZs2bh//7v/3D06FFs3boVGRkZAIDJkydrr09KSoLNZkNeXl5Y68bFxeHnP/+59njixIn48MMP8fLLL4cshCoqKmC1WgOWtC1duhT/+Z//CQC455578OSTT+LUU0/Ftddei8rKStx1111YtGgRGhsbwzr3f/zjH7j55pvx1FNP4cYbbzQ8l5iYiLS0NFRUVFAIEUIIISSm6fIRQn+takCbp197XNFtjhAK5ghNTkpAW18/DnT2oM/rRa2rF8WJzqjXi0XGpRDKy4j9dcvLy/HTn/4UH3/8MZqbm+EdskGrqqowa9Ys7NixA/PmzdNEkJn88Y9/xDPPPIPKykq43W54PB5DUttIuN1uOByOgI7OnDlztO3c3FwAwOzZs/32NTU1hSyEtmzZgjfffBN//etfcfXVVwd8jdPphMt1Ytu7hBBCCBn7+DpCoggClJ4hM1CFUILVAqfNipY+ZZ2y5AS0Cmse6nJRCJ1IhFqedjy54oorUFxcjFWrVqGgoABerxezZs2Cx+MBoNzYh4s62EqWZW1ff7/xL9fLL7+MO++8E7/5zW+wcOFCJCcn46GHHsKWLVtCXicrKwsulwsej8dv+G1cXJy2rQqlQPu8YdS/Tpo0CZmZmXjuuedw2WWXBRy429raiuzs7JCPSQghhBByPPAVQr5UmjRbSC2NS7TZkB1v14TQpOREg/g63O3Cucg0Zc1YI/YVwTikpaUF+/btw913343zzz8f06dPR1tbm+E1c+bMwY4dO9DaGrjZyW63Y3DQaHmqQqC+vl7b5xuvvXHjRpx55pm4/fbbMW/ePEyePNkvpGEkVPdo7969Yb0vUrKysrB+/XqUl5fj+uuv9xN35eXl6O3txbx5847J+RBCCCGERMpIQuiISQEGqiOUaLNiWkoiACA5zoaJiU4UJ+i/cK9x9ZqyXixCIRSDpKenIzMzE08//TQOHTqE9evX4/vf/77hNTfeeCPy8vKwbNkybN68GYcPH8arr76Kjz76CICS0HbkyBHs2LEDzc3N6Ovrg9PpxBlnnIGVK1di79692LBhA+6++27DcSdPnoxPP/0U69atw4EDB/DTn/4UW7duDev8s7Ozccopp2DTpk3RfRFhkJOTg/Xr1+OLL77AjTfeiAGhAXDjxo0oKyvDpEmTjtn5EEIIIYREgm+PkC8VJjlCohC6Z85J+K+TSvD8wjlw2qwoSojXXldLIUSOJRaLBWvWrMG2bdswa9Ys3HnnnXjooYcMr7Hb7fjnP/+JnJwcLF26FLNnz8bKlSthtVoBKGELl1xyCc4991xkZ2fjpZdeAgA899xz6O/vx4IFC/Dd737Xb5jtf/3Xf+FLX/oSrr/+epx++uloaWnB7bffHvZnWLFiBV588cUIv4HIyMvLw/r167Fr1y7cdNNNmiP20ksv4bbbbjum50IIIYQQEgmBHCHZCxQ4HQCAqh43Br2y32vCYcDrRe+g0oaQaLOirT4e+145CTU7lN7zwnEihCRZbBg5QfF6vaisrERpaanWJ0NGl97eXkydOhVr1qzBwoULR3z9aF2j3bt34/zzz8eBAweQmppq2nHHI/x7FNvw+sQ+vEaxD69R7BMr16i1z4Pd7d1YlJ0Oq8XcaOlbP9yJ12uaAAADNemwFbWhb18+zj19AB92KrHHn1+2GEVRBBh0evox4e/vAwDOzc2E/M+T8beNgMMOHH1dQnKChEl/fx9tnn6UJMZjx2VnhXTcWLk+oRL7Z0jGJPHx8fjTn/6E5ubm43oedXV1+NOf/kQRRAghhIwDPtot48/rZPQPjN7v+b/o6MaZ6z7Csg+2YcWWXTDbUxAdoe63Z6PjT2fC9a/pQJcufI5EWR7XLURnJ9qsqGhQtvs8wN4KZbswQXGg6t198J6gvsm4TI0jx4ZYmNlz0UUXHe9TIIQQQsgxoL5ZxpI7ZPQPAG1dEu64xvw19nd2Y9kH29DUq6T4/q26EXPSkvHd6RNNW0MUQnK/DbJHSdftaIgHlCkjqOh24yz/cY0hI84QSo6zoqVTf27PEeD0GUChMx6727vR75XR1OtB3lBp3okEHSFCCCGEEDLm2X0EUDXEu5+a72D0DXpxzYbPNBGkct+uQ/hXg3kVMF39Q/N9LFZA1svuKg8laNsVUSbHdQuhUok2m48QUr47sU/oRE2OoxAihBBCCCFjHvFmfuch84+/o61TCw6QW5LQu71E2Qbwv5/tN22drqExIE7JWLhVe9i80jjREYqXLBAPt7dS+TkeAhMohAghhBBCyJinuV3frm4CWjrMdYXEIaO9B3Pg/nAyrB1JAIBDXS6DuIgGtTTO7tPB4u2Kh+oPVXabJ4SkAavhuT1HlJ/jIUKbQogQQgghhIx5mn2Ej9mukCiE5N44ABLcDUnavmoT5vv0e71wDcVax3l9Wvm9FiR5FXFypCfa0jhdCMn9xnWqm4DOHtnoCLkphAghhBBCCIlJxNI4ANhhthDq04WQt08RD4OduliodkUvhLr7dYFiGfTPNJOHkuPaPQNoF4RZuPQIPUKDHqvf83srlLAEFTpChBBCCCGExCjNHcbHOw+NXmmc4ggB3k69b6eqJ3qxICbGSQEESmeD0CcURWCCWBo30BtYCOU7HVopXq2rL+K1YhkKIUIIIYQQMubxFUKmO0KiEOpThZDumlSaUBpniM726I7QVCWXAX2tuhCKRpyIQqjP5S+E9hyRYbdakBNvBwDUsTSOHEtkWcaKFSuQkZEBSZKwY8eO431Kx4T169dj2rRp8Hq9Ib9nwoQJ+O1vfzvsa3bt2oWioiL09PREeYaEEEIICYdul4yvr/Tizt954fWO3mDOFh8htLcC6POYt55BCLmHhFCX6AiZIYT0NQbcuhBaMFX56e3RZ/lEI07EErw+l38J3p4K5afaJ9Tg7oNnMPR7s7EChVCMsnbtWqxevRpvvvkm6uvrMWvWrON9ShETilBR+dGPfoSf/OQnsFhC/6O5detWrFixYtjXzJ49G6eddhoeffTRkI9LCCGEkOh56V/A828Dv/0r8OaHo7eOryM0MAjsqzTv+KIQ8qqOULdDyc8GUG1yaZxHEEInT5b09Yaoi8oR0tdxdfvfc6nJcQVDfUIygIbeE688jkIoRikvL0d+fj7OPPNM5OXlwWbzV+sjIcsyBoQ/6LHOtm3bcPDgQVx77bVhvS87OxsJCQlBn+8f+u3K8uXL8eSTT2Jw0Jx4S0IIIYSMTEWD7spsPzB6jpCvEALMLY/TwglkCVD7d7wWSC5FLJhRGtcllKz19ij3fgnxwJTioeW6zXGExNK4ni69NC4zVflZc1RJjjvRI7QphGKQW2+9Fd/5zndQVVUFSZIwYcIEAEBfXx/uuOMO5OTkID4+HosXL8bWrVu1973//vuQJAnr1q3DggUL4HA4sHHjRsiyjAcffBBlZWVwOp2YO3cuXnnlFcOae/bswWWXXYaUlBQkJyfjrLPOQnl5OQDFcbnwwguRlZWF1NRULFmyBNu3bze8/95770VJSQkcDgcKCgpwxx13AADOOeccVFZW4s4774QkSZAkCcF48803ceGFFyI+Xv9LV15ejquuugq5ublISkrCqaeeivfee8/wPl/HSZIk/PGPf8RVV12FxMRE3H///QCAiy++GC0tLfjggw9CvBKEEEIIiZZWIc1NLbkyG1evDPeQYREn/O54x0HzhFfrkBCy9tsA6PcznvZ47fmu/uh+Ad3p0d/v7lQ+SEYyUJqn7BNL4+rdkTs0Ynx2Z6cuhM6ao79mb8WJP1Q1fJvhBGDTeR/B03Ts7T17jgOL1y8c8XWPPfYYJk2ahKeffhpbt26F1ar8Ab3rrrvw6quv4oUXXkBpaSkefPBBXHzxxTh06BAyMjK099911114+OGHUVZWhrS0NNx999147bXX8OSTT+Kkk07Chg0b8NWvfhXZ2dlYsmQJamtrcfbZZ+Occ87B+vXrkZKSgs2bN2tuUldXF772ta/h8ccfBwD85je/wdKlS3Hw4EEkJyfjlVdewaOPPoo1a9Zg5syZaGhowM6dOwEAr732GubOnYsVK1bgtttuG/Zzf/LJJ7jlllsM+7q7u7F06VLcf//9iI+PxwsvvIArrrgC+/fvR0lJSdBj/exnP8MDDzyARx99VPv+7HY75s6di40bN+K8884b8ToQQgghJHrEWGu15Mr0NQQ3aOFMYINyG4Kd5eat0aaKlKGyOBVvlxih3YsZqUmIFLE0rlsVQilASe7Qzn4brAM2DNoGTHOEOtp0OXD6dAl/36iIx4oGoHAKhdAJh6epD731sVvnmJqaiuTkZFitVuTlKb8C6OnpwZNPPonVq1fj0ksvBQCsWrUK7777Lp599ln88Ic/1N5/33334cILL9Te98gjj2D9+vVYuFARYWVlZdi0aROeeuopLFmyBE888QRSU1OxZs0axMUpf7mnTJmiHc9XNDz11FNIT0/HBx98gMsvvxxVVVXIy8vDBRdcgLi4OJSUlOC0004DAGRkZMBqtSI5OVn7LMGoqalBfn6+Yd/cuXMxd+5c7fH999+Pv/3tb3j99dfx7W9/O+ixvvKVr+DrX/+63/7CwkJUVFQMex6EEEIIMQ9RpBysATz9MuxxwStEIkEsi5tWAuw+ojhRFfXmHL/f69XcnkG3jxASIrSre9ymCSHPUJpbRgqQlgQkJwBdLgAuB5AygDpXH2RZHrbaJhhij1Bbu1IglpIITBRuw6qbgHNO1h2o2igcqFhlXAohe45j5BfF2Lrl5eXo7+/HokWLtH1xcXE47bTTsG/fPsNrFyxYoG3v3bsXvb29mjBS8Xg8mDdvHgBgx44dOOusszQR5EtTUxPuuecerF+/Ho2NjRgcHITL5UJVVRUA4Nprr8Vvf/tblJWV4ZJLLsHSpUtxxRVXhN3X1NfXZyiLAxQh9/Of/xxvvvkm6urqMDAwALfbra0dDPE7EHE6nXC5opvGTAghhJDQER2hgUFFDM2cOHprZKYCxTmKEKptBgYHZVit0QmvDqFkrd8nZc3MCO2uAf/47Ixkpey/JFfGniOAp8MBa0oP+rxetHr6kemwh72O6gjFWy1o7VCEUKboPAGoajT2CFWb0AMVa4xLIRRKeVqsIcuKTemr+gP9JiAxMVHbVmOo33rrLRQWFhpe53AowszpdGI4br31Vhw9ehS//e1vUVpaCofDgYULF8Lj8QAAiouLsX//frz77rt47733cPvtt+Ohhx7CBx98EFRcBSI9PR1tbW2GfT/84Q+xbt06PPzww5g8eTKcTieuueYabe1giN+BSGtrKyZNmhTyORFCCCEkOsQeIUApjzNbCImOUFaqhJIcGTsPAf0DQGMbUJAV3fFbxcS4oWGquRlAY6u5EdqGOUJ9ym16erLyuDRX+e4GOuOhdvXUufqiEkJJNivKu5R9qoBUqW4CcuMdsFskeLwyqk/A0jiGJYwRJk+eDLvdjk2bNmn7+vv78emnn2L69OlB3zdjxgw4HA5UVVVh8uTJhv+Ki5UIkjlz5mDjxo1aupovGzduxB133IGlS5di5syZcDgcaG5uNrzG6XTiyiuvxOOPP473338fH330EXbt2gVA6c0JJaltxowZfu7Wxo0bceutt+Lqq6/G7NmzkZeXF1Vp2+7duzUnjBBCCCGjT4uvEKowPzmuuV3fzgpwQx8thhlCQ0Jo4UzlsegIVUUZoR1ooGpGivJYdWvMmCXUPeQ8OS02qKMbM1OA/ExgqLUa1U2ARZK0wAQKIXLcSExMxDe/+U388Ic/xNq1a7F3717cdtttcLlc+MY3vhH0fcnJyfjBD36AO++8Ey+88ALKy8vx2Wef4YknnsALL7wAAPj2t7+Nzs5O3HDDDfj0009x8OBB/PnPf8b+/fsBKCLsz3/+M/bt24ctW7bgpptuMrhIq1evxrPPPovdu3fj8OHD+POf/wyn04nS0lIASqrbhg0bUFtb6yegRM4++2xs3rzZsG/y5Ml47bXXsGPHDuzcuRNf+cpXwhq2KlJRUYHa2lpccMEFEb2fEEIIIeHR2yfD9/55NAITRLGlCCG9WsYMIdQeQAiV5QN5GUOR1l5lPVMdIa00Tjl2aa7/LKFIk+NUR8gh6YlxWamA1SqhIFN5XNWo/CxOUO75uvoH0OEJ/EvzsQqF0Bhi5cqV+PKXv4ybb74Zp5xyCg4dOoR169YhPT192Pf94he/wD333IMHHngA06dPx8UXX4w33ngDEycqvnRmZibWr1+P7u5uLFmyBPPnz8eqVau0srbnnnsObW1tmDdvHm6++WYtwlslLS0Nq1atwqJFizBnzhz861//whtvvIHMTOVv0n333YeKigpMmjQJ2dnZQc9z2bJl2Lt3rybAAODRRx9Feno6zjzzTFxxxRW4+OKLccopp0T0/b300ku46KKLNIFGCCGEkNHF1w0CRkcINXfoLlNmqm+vS/THNzhCQyVrWWkSygoAyBYMDomTKleUPUJDQsgGC+BVbtP9HCFBCEWS5DboleEeVH6pHCcLM4R81mnuANx9Pn1CJ5grNC57hMYC3/ve9/C9733PsC8+Ph6PP/64FmPtyznnnKP1EolIkoQ77rhDm+0TiDlz5mDdunUBn5s3b55hXhEAXHPNNdr2smXLsGzZsqDHPuOMM7Q47eFITU3Ft771LTzyyCN46qmnAChu0vr16w2v+9a3vmV47FsqF+g76Ovrw5NPPomXXnppxPMghBBCiDn49gcBwMFaoM8jw2E3LznO2CMEiMZFdZMMce5PJLQF6BHKSgWKhn6/6+2MhzWlF+2eAXR6+pFiD71HWkR1hByyfouuCiF9lpAuTOoicIR6hHYFq1ccpqp8R2JZYU0TUJxoDEyYlZYc9pqxCh0hElP8+Mc/RmlpaUg9ReFQWVmJn/zkJ4bUPUIIIYSMLoEcocGh5DhT1/ERQmb3CLX2iY6QInKy0wQhJAQmRBMzrQohm1cQQkO6o2ToM8nd0fUIdQvld5ZBf0fI97tTS+MAOkKEjCqpqan48Y9/bPpxp0yZYpiNRAghhJDRRxQoaUlAe7eyvecIMKvMvHVUR8hmVebhJMQDkgTIsjmlcYF6hLJSgaIcCYDsV642PYJZQl5Z1krjLAP+jlBBlhJkMNhngzRggWzzos4VvujqEISQJKyTmar8LB76TABQ1QRMKhYdoRNLCNERIoQQQggho4LoCC2eo2+bnRynCqHMVKUlIM4mIX+o6X+0UuMMpXFRujQA0D0wCO1b6dedGlUIWa3S0HoSZJeyXn2Ia9W4elHe1QMAxsCDPr2ET+sR8nOExB6hE2uWEIUQIYQQQggZFUQhdPp0vU/HDJdGRBVCWan6PrXEq7EN8PRHJ7zahIGqcq/iohhK47qFvp0IXBpAD0oA9EAGQC+NA5RZQgDQPxTZ3T0waEiaC0RltxunvLUJp77zIba2tKNdeP2gW3CEApbGyShwxmsdVjUnWGkchRAhhBBCCBkVWjt1ATJHmGdec9S8NVy9MtS2HPVmHtBv6GUZqI1yvTZ1kLusxFpbLEqpnyqExL6d2ggdIVHQDAwJlDgbkCjMvQ+UHFc3gjjZ0NSKgaEgqQ8aWw1lfh5XgNI4n8Q9u9WCPKeyHkvjCCGEEEIICQHREZpUqPTuANELE8MaPkEJKmKJV1WU5XGqIyR54gBIyEhWStXyMgGLxSfJLUJHSBRCHrc+TFWSdCetNJAQGiGcoalXf765z4N2wd3q7fYvjctKBeLtyrZaVqiWxx3t88A9YG6g1fGEQogQQgghhIwKokjJTAEKs5Tt2uDz1cPGNzpbxcyhqmqPkNetJ8YBQJxNQl7GULncgHJbHWmPkCiEervVYarG15TmKZ9JNpTiDb9eY69H227u9RgcIVenso49TneeJEnS3DRNCAm21IlUHkchRAghhBBCRgXREcpI0UvJulxAZ485gQniGllp+rZZEdoDXq8mUgaH+oNEwaUGGKhDVSMZcgoEEUIpxtcEKo0bKdK6QXCMWvr60d6vC6HaWkXY5aYbnSf1u+tyAR3dsk9gAoUQIYQQQgghw6IOVE1yAvY4CYXZ+nNmlccdrtO3M1P8b+YBoKoxctElxk2LiXEqvoEJoQQYBKJTTKbzKEJoWonxNWpp3GBHgrbv0FAaXDB8S+M6xNK4LmWdqxYb32P87nyS43pOnOQ4CqEYRZZlrFixAhkZGZAkCTt27Djep3RMWL9+PaZNmwav1xvVcSRJwt///ncAQEVFheE7fP/99yFJEtrb2wO+t6mpCdnZ2aitrY3qHAghhJDxjurWqI34amkcYE55nNcr4/FXdZFz2nT9uRKh6T8aR0gcpupVhVCa/nzACO0IXJOOAKlxN18sGV6jChRvhxOQlecOdbmGPa5YGtfSZyyNk/tskCTgji8HXgdQvrsilsaRY8natWuxevVqvPnmm6ivr8esWbOO9ylFzIQJE/Db3/42pNf+6Ec/wk9+8hNYLNH90ayvr8ell14a0XtzcnJw880342c/+1lU50AIIYSMZ2RZ1hwhtRG/KFu/4TYjOe4fm5ThrABw5ixg0Wz9uZx0JXUNiE4IBZohNO8k/XMUDfUiiRHakSTH+QqhCXnAWXOMr0l0Soob5bVAGlrvUFcPvHJgx0uWZTQKjlCLp9/4efricPlC4KRioxAqyRWizv1mCVEIkVGmvLwc+fn5OPPMM5GXlwebzTbym3yQZRkDA+Fbs8eLbdu24eDBg7j22mujPlZeXh4cDsfILwzC8uXL8eKLL6KtrS3qcyGEEELGI509gBowpva6mFkaJ8sy7v+TLgDuvkUy9LlYLJLm1kQztyiQg3L1WfrzgR2h8JPjOg1CKA5fu0T5DL6oTpenOREA4B70BnWguvoH0DuoV9n0e2VNyMj9FsBrwZ3X+a9RKrhpFfWyISyBpXFkVLn11lvxne98B1VVVZAkCRMmTAAA9PX14Y477kBOTg7i4+OxePFibN26VXufWvK1bt06LFiwAA6HAxs3boQsy3jwwQdRVlYGp9OJuXPn4pVXXjGsuWfPHlx22WVISUlBcnIyzjrrLJSXlwMAtm7digsvvBBZWVlITU3FkiVLsH37dsP77733XpSUlMDhcKCgoAB33HEHAOCcc85BZWUl7rzzTkiS8R8oX958801ceOGFiI/Xf+tw77334uSTT8Zzzz2HkpISJCUl4Zvf/CYGBwfx4IMPIi8vDzk5OfjlL39pOJZYGjcSbrcbl112Gc444wy0trYCAGbPno28vDz87W9/C+kYhBBCCDHSKoQYqI6QsTQuurCEtVuA7QeU7flTgUtO93/NhDzlZ3u30vQfCb6O0KLZQF6m4AgFmCUUSXJch0+P0C2XBL5n0vqE2vQ+oQNByuMahLI4lfqh8AS5Lw5zJgHnzPN/38R8fbuiAUi0WZHliBtaqwdyEAdqrBG+zXACcN67HxvqJY8VufF2rL/wjBFf99hjj2HSpEl4+umnsXXrVlitVgDAXXfdhVdffRUvvPACSktL8eCDD+Liiy/GoUOHkJGRob3/rrvuwsMPP4yysjKkpaXh7rvvxmuvvYYnn3wSJ510EjZs2ICvfvWryM7OxpIlS1BbW4uzzz4b55xzDtavX4+UlBRs3rxZc5O6urrwta99DY8//jgA4De/+Q2WLl2KgwcPIjk5Ga+88goeffRRrFmzBjNnzkRDQwN27twJAHjttdcwd+5crFixArfddtuwn/uTTz7BLbfc4re/vLwc77zzDtauXYvy8nJcc801OHLkCKZMmYIPPvgAH374Ib7+9a/j/PPPxxlnjPz9inR0dODyyy9HfHw8/vWvfyExMVF77rTTTsPGjRvx9a9/PaxjEkIIIWMFd5+MeDuG/UVlpLQEEkImOkJvfqjfjP/vTYF/2TohH8BnynZlIzAnKfx12jxGp+ZLFwXp2+mObpZQTYe+zhkn2VBWEPialGhCSL9nOdTVg/PyMv1eK5bF+SL32TBnUuBrX5ILSJIyjPZIvbJvQWYq1tY1o6WvH1909mB6qvJlugYG4RoYRLo9Dub/KRpdxqUQauz1aGo4FklNTUVycjKsVivy8pRfZfT09ODJJ5/E6tWrtd6XVatW4d1338Wzzz6LH/7wh9r777vvPlx44YXa+x555BGsX78eCxcuBACUlZVh06ZNeOqpp7BkyRI88cQTSE1NxZo1axAXp6j9KVOmaMc777zzDOf31FNPIT09HR988AEuv/xyVFVVIS8vDxdccAHi4uJQUlKC0047DQCQkZEBq9WK5ORk7bMEo6amBvn5+X77vV4vnnvuOSQnJ2PGjBk499xzsX//frz99tuwWCyYOnUqfv3rX+P9998PSwg1Njbi+uuvx6RJk/DSSy/Bbrcbni8sLMRnn30W8vEIIYSQscS7W2Us+4mMOZOAjb8DbDZzb2MNQmgoLCEvA7BagcHB6HuE2rv17bmTA7+mNFcCoAiminpgzqTw1+kU4qa9fTZ86Wzj8wVDLpdYGhdJj1Brry6ELpgT/BZdmSUkY7Bdd4QOdgZOjmsaRgh5e+OQEKSLwGGXUJAlo/aoLoQWZ2dgbZ2ScLG5qU0TQv+sb8bXP/ocEoBfzp2Ci+2BjxmLjEshlBt/fK5QNOuWl5ejv78fixYt0vbFxcXhtNNOw759+wyvXbBggba9d+9e9Pb2asJIxePxYN48xQvdsWMHzjrrLE0E+dLU1IR77rkH69evR2NjIwYHB+FyuVBVVQUAuPbaa/Hb3/4WZWVluOSSS7B06VJcccUVYfc19fX1GcriVCZMmIDkZH2iWG5uLqxWqyFQITc3F01N4XVCXnDBBTj11FPx8ssva66biNPphMs1fBILIYQQMlZ58V0Zrl7g4z3Ax3uBxXNGfk84GIepKiLLapWQl6HcYEebGidWgyUnBH7NBOF3sBUNka1T3aYLlKl5Nm2oqYo9TkJuhozG1jhg0AJYg/fsDEfPoLKO7LEixRm8e6VEdaDaxAjtIKVx7uAVUHKfDYnDOGQT8xXX7mg70OOWsTgnXXtu49FW/MdJxQCUJDpAkZtJcVYA0SX/HkvGpRAKpTwt1lBrMX3tS1mW/faJ5V1qDPVbb72FwsJCw+vUMAGn04nhuPXWW3H06FH89re/RWlpKRwOBxYuXAiPR/mDX1xcjP379+Pdd9/Fe++9h9tvvx0PPfQQPvjgg6DiKhDp6ekBwwl8jyFJUsB94UZuX3bZZXj11Vexd+9ezJ492+/51tZWZGdnB3gnIYQQMvY52q5v7zpsvhBq9RmmqlKYpdxgN7UBnn4Z9rjInKguoWc/qBAy9LrIQATFW/sbdSF04cmBb52LsoHGVgnebgcsqW7URVB51ONVnCe5z4aEYQRK6ZC4k3vtsA/GwWPtx4Egs4SGL42LQ4J/NZ3GxHxg0+fKdkUDMLM0GalxNnT0D+DDo23wyjIskqQJIQDItNsBwUGLdRiWMEaYPHky7HY7Nm3apO3r7+/Hp59+iunTpwd934wZM+BwOFBVVYXJkycb/isuVpT8nDlzsHHjRvQH+YO7ceNG3HHHHVi6dClmzpwJh8OB5mbjr3GcTieuvPJKPP7443j//ffx0UcfYdeuXQAAu92OwcHBET/jjBkz/Nyt0WTlypX42te+hvPPPx979+71e3737t2aa0YIIYScaIila5+Xm9/8HqhHCBDCBWSgviXy46smiMUCOIOUeImOUGWEjlCXkOY2oyC4EAKAwS7lRDr7BwzvCwW3rDpCtqAla4BxPpLdpSjAendfwPWahumJl/tsSIgPLgzF7+5IPWC1SDgzW3GF1D4hdVtFDVQYK1AIjRESExPxzW9+Ez/84Q+xdu1a7N27F7fddhtcLhe+8Y1vBH1fcnIyfvCDH+DOO+/ECy+8gPLycnz22Wd44okn8MILLwAAvv3tb6OzsxM33HADPv30Uxw8eBB//vOfsX//fgCKCPvzn/+Mffv2YcuWLbjpppsMLtLq1avx7LPPYvfu3Th8+DD+/Oc/w+l0orS0FIBS2rZhwwbU1tb6CSiRs88+G5s3bzbj6wqZhx9+GDfddBPOO+88fPHFF9p+l8uFbdu24aKLLjqm50MIIYQcK8TStc/LzT/+0XZdXKk9QoB5gQndQ45QkjN42ENhltKTBEReGuf26gIjM354IWQITAijT8gz6EX/UEmZt8+GBP9OAY3sNEDtthCT48oDlMc1DuNMyX3DC66J+fp3WjHUJ7QoWy+P29ykJO02C45QBoUQGS1WrlyJL3/5y7j55ptxyimn4NChQ1i3bh3S09OHfd8vfvEL3HPPPXjggQcwffp0XHzxxXjjjTcwceJEAEBmZibWr1+P7u5uLFmyBPPnz8eqVau08rPnnnsObW1tmDdvHm6++WYtwlslLS0Nq1atwqJFizBnzhz861//whtvvIHMTMVvve+++1BRUYFJkyYNW2q2bNky7N27VxNgx4pHH30U1113Hc477zwcOKDkcP7jH/9ASUkJzjrrrBHeTQghhIxNmgUhtOsw4PWa6wp9tEffLivQtwuz9BvsaPqE1Pv+YGVxgBIAUTx06xGxEJJ1IZThDCaEhoaq9giBCWEkxxlmCHmGF0KSJGmuUFeDMTnOl4ah0rhAMlHuixt2HTFC+0i98mfjrBw9pXjTUaWdodXgCI2hpASM0x6hscD3vvc9fO973zPsi4+Px+OPP67FWPtyzjnnBMx1lyQJd9xxhzbbJxBz5szBunXrAj43b948w7wiALjmmmu07WXLlmHZsmVBj33GGWdocdrDkZqaim9961t45JFH8NRTTwFQ5gjde++9htetXr3a773vv/++4bH4PUyYMMHwOND35Pu9Pvroo7jnnntGPGdCCCFkNDhYLWNivvlJbioDA7Ihda3LpZSOTSwI/p5waG6X8dlBZfvkk4DsNP+5O0B0jpAmhIZvdUZpniKCWjuBzh4ZKYnhfad90EMMkp2B31ukBhh06Cezr6M7YKS1SkufB9/Zugd58Q58c0qptl/uC57mplKaCxyoBnqbEqC2EwXqE1JL44oT41Hn6sOAcP8j99mQOIwQ8i2NA4CZaUlIs9vQ7hnA5qY2yLKsOUJ2i4QkmxWtw596TEFHiMQUP/7xj1FaWhpST9Fo0dTUhGuuuQY33njjcTsHQggh45f7VsuYcpOMi/5bHrXBla1d/vvMLI/71zalBwgALlxgfE4sjas5Gtnnk2WhNG4YRwiIvk+oTxq5d0frETqqp9x+3tYZ+MVDrC6vwdq6Zqw+XIu3avXkW3mE0jhAmCVkiNA2lsb1DXq1YbB58Q5k+pStjeQIFWX7lxVaJAknpysNX62efrR7BtA6tEamwz4q86hGEwohElOkpqbixz/+ccA462NFTk4O7rrrrjH3l5kQQsiJwT82KeLg359FFyYwHGJ/kMrnh807/ruf6gLngvnG/58WZunbkZbGuXp1oTWSI2QQQo3hr9VvGRJCfTYkBllLE0ItSZBk5fPuaAugNgX2C7N/trXqF2QkpwaAFuHt7XDCNnQ7v7fDuJ44QyjX6fArW/P2Di+4xLJC1RECgAKn/qZ6d6/mCPkKrbEAhRAhhBBCSAwhxk7vPDQ6a7QEMCvMSo6TZRnvfqpsO+zAWXONzxfpbcYR9+2EMkNIZUKApv9Q6fd64bUoIQbDOUKay+W1wNGtFKsd6upB9zDJcUe69fzvzwXRNFKPEKDPEoJsQQ7U9VzoGdArahqFxLjceH8hNFJYAqD3CbV3A+1dyp+PfCGi74vOHvQP9ZZljrH+IIBCiBBCCCEkphDL1naMkhBqDuQImVQad6gGqBpyXhbPBpwOoyPkdEiacDhUE9kaocwQUjEOVQ1P7HX368JiOIHidEhaMp5aHicD2N0e3BU60q2ruWphAGsoAkUUkym9Sdp6oiskzhDKjbeHXRoH+AYmKD8LBCEkfr5MOx0hQgghhBASIf0DMoSKKew4ODo9QoFK4w7WAK7e6NdT3SAAuHBB4DLzSUOhDM0dSoBBuIiOUFIYpXHhOlCGNLc+qxZbHQi1PK6rWu8T2hmkPK7D06/11vgSSo9Qnh7ehrguffrqbmE9MTo7mCM0UgmewU0b+u7yhZMThdBYS4wDKIQIIYQQQkJiYEDGjoMyBgdHR5wAMCS5AcDOUZjvAxhL49KG7qNlGdhzJPpjvyf0B/kGJahMLtS3y2vDX6M7DEeoMFsZugpEJ4QsgzZYLMH7h1Uh5GnUp8fuDBKYIJbF+SJ7bEEHxKqIQmhACGjY1S46QkJpnNNuKF2TByzAoDUiRyg/mCNEIUQIIYQQcmJy3c9kzPuGjP/6zegJIV+n5kA10OM2f73mDv2YS07W9+82QQh9UaX8dDqU6OxATCrUBcWhCISQsUdo+HCjOJukiZTwhZDu2sR5h586owcmJMI6NLlnZ5DSuCM9/sNPVayDNsSNEJuengzEDZ1OV63uCO0SlLQYlpAT70CWUBon9ylvDrVHCNBnCYlCqEEQWwxLIIQQQgg5AZFlGe9sUbZf2zB667T6GAiyrAw7NRtRcJ0xQ7/prgyzhyYQPUPtLimJCOqgROsIhROWAOjlcS0dQLcr9M8oOkJx8khCaOizDlpRYFMGne7v7IZrwH8kyJGu4I5QPEYWFBaLhNx0ZbvpqA1lQ/WBezu6MDgUXqCmuQFAtsOOLKGuT+5V1hjJEQoUPZ7lsCMuwHWlI0QIIYQQcgLi6gXUX363dioDQ0eDQPN9RiM5TgxLmDdF365q8n9tuKh9/8P1n0wShNCh2gh6hAQdMVKPEKAMVVUJJ0JbFEKOEYRQsRBgkD2olMd5ZWBPh/9FPdwd3BFyYvh1VNRZrUfbgZmpSnmce9CL8qFjNwluTZbDbujhUR2h4XqeAKUEzzY00UT9s2GRJOTG+1tJWXSECCGEEEJOPHzjpvdXj846vo4QAOw4ZL7oEj/PPKF8rSqCOTu+qI7QcGVXalgCAJTXRbBGGD1CgF62BgC1R0Nfp0tIjXOMIFDEJDdnt16utjOAuq0YpjQuwRqiEBrqE/J6gYkO/z4h1RFKs9tgt1oMjo13KDFuuJ4nALBaJU3giX828gM0MWXQESKEEEIIOfEI1LszGgQWQuavo36e5AQgO00XE9EKIa9XhhpWFmz4KACkJetx08eiNK4wS7/hD2eIa1uf3iPktITWIwQA3mY9MGF3AEcoWFiCPGBBkj2023MxMCFP0oWQGmBwdMgRyh4SKBMSnSgaqoUbqEsbsT9IpSRX+dnWBXS5/PuEVJgaRwghhBByAuI7d2d/1SjFWnf6H3fXYZieVKd+nswUQJIk7Wa3qknph4oUYRzOiNHMqitUcxTo7QtvTYMQCqE0rjBCR6i1Vy+NS7BYh18jS9/urEvUtveLeegAXAODqB9Si4U+TTqhRGerqD1CAJDaJwYmdME9MIjuod4kVaDYrRb8+8LTEffufPR9VhLyOuqfDUAXygVO45slAOn20JysWIJCiBBCCCFkBI5HaZxaktTjjqx8LBher6z1ImWlKT9Lhtbq8yg9J5HSE4YQUgMTZFmPZg6VcOYIAUaRUtscuuhqE4RQ0ggla0kJkhZFXldv0waPftHRbRCXFUJd38KsNNiF8rRQhqmq5GXo7+trdyB9aKDp/s4eY1CC0AiU6bCjtyYNgBTyOqUBhJCvI+SQ4/DSuxIORjgg93hBIUQIIYQQMgLN7cbHo1YaJ1RRnTVH346kfCwYHT1KXwmgOEJA4N/6R4LBERpBoBgDE8JbJ5w5QkDkjlC7RxBCtpEdD7U8ruYoMDVFcYU6+gcMM32OCEEJZUkJKE7QvyjZE7ojpIYlAEBjm4TSIeVZ7+5FnTBMNdunZE29RqE7Qrrg0hwhHxXV0x6HW34p4+2PQjtmrEAhRAghhBAyAr6O0KFa88vVAKMjNGdSZH0tIyGKOl0I+d/sRoLoCI3kOEwq0NcMV+h1hSmEctMB61BlWzjfZacghFLiQhBCQ86apx8ojdfL1b7o1Of7GIRQcgJKBMUYniOkbze0yigaElReGfhcGOQqxmb3D8hQ07xHcuxURJFc2aj2CBnf7HUrblR+FsYUFEKEEEIIGdO8vF7GD//gRWuA/hqz8O3d8fSHP5wzFFRHyGIBZkzQ99c0mffZRFGXNRRYYJYj1BOGIzS5SN8urwvv83WHGZZgtUqacAhLCA3oQig1FCEkOE8ZXqFPqEPvExKDEiYmOVEiKJJweoSMQggoFo6zQxBCOYIjJDp2ITtCQhpesNI42a2sUZCJMcXY62oihBBCCBmivlnGV34hY3AQ8PTLeOy7w8cBR4pvWAIA7K8ylneZgZrmlp7sE/lspiMkfJbMVOX7MtzsNslQ2t/DR4y1DjUsAQi/NE7tEZKk0G/oC7OUsrimNsUZibMF/ozbWzuwqakNNa5edA8JIbnfgqT4kf0DZaiqIuoS3boQEh2hSuFLmpCYgFLREfLEISEttM/jK4SWCCV221uNjlBDi4xeD2AXRv2EmxoH6EIoz2eOkDqgtSALQD/GDHSECCGEEDJmUUrUlO1/bh29dXzjs4HR6RNSHaHMFONcmnD6WkZC/Cxm9wgZwxKGF1O5GbprdCjMJnvVVElyKql3oaAGJsgyUN8S/HU/2LYP935+EM8eqkZzv9JrI3tsI34eAMgXHBFrd+DkuIah/h27RUKWIw7FvqVxIQq7pARJ+/4aW6FFYwPAAWG9/i47Jl4vo+wGGe9/pr8/1HUSnXrUuTpU1WmzauEMgF4aN9YcIQohQgghhIxZGtv07S+qgKa20Yq19t+3v9rctQYGZHQMGQcZKUrZmnqvaaYjFKg0rjBbKccDzAtLGOlGW5IkTMwbWrNJSbMLFdURCqUsTiXUwISF2UoutQzAJQ85QiGGGIiR1p1tcVoJ2RedenJcY68ihHLiHZAkCYuz0+GQlC+/vzY9ZIEC6K6Qb2mc+E1u2W5Hr0cRgH/fpD8Tao8QoDuGNUeVP6eAsTxOdtuRkQLEh+gyxQoUQoQQQggZszS1GR9v2Dk666jlZELfOfZXmbtGu149hYxkRSiov2GvMdERau7Qb4bV3/TH2fS11N/6R0I48dmAHhHu6Q9cfhgMNSwhLCEU4lDVhVnpfvtkT2ghBmKSW0OrjGkpSmBCu2cATb0eeAa9aBka0pobb8dzb8nYtsOOX2YuQsf/nY6BqsyQnCdtvSEh1NYF5MQFPsFde3Tn5rAQwx6O4CodEqyDg4qbNjAg+wihuDHnBgEUQoQQQggZwzT6OEAbdo6SIzR0kz4hT3dRzJ4lJEZnZwyVrKkuRmsn4A5z6GgwxNI49bMAenlcY2v4A05VwglLAIzlfzUjCLA9R2T8ZBWwvybOUBoXKqE6Qmeow5UEQi1ZEx2hxjY9QhtQXKEmYb5PX6cD3/i1jMv+R0Z5uR3eVkU0hdq747uepzsOiTbj0FeHxYItu/R9kQohsYfsJ8/IcF4o49BB/US9vXalP2iMQSFECCGEkDFLY6vx8Wg4Qn0eWbvxzkwFphQr23XNQLfLPOElRmdnJCs/xcCEOpPK48TSOLVHCDD2CUXqQIUTlgCo4QKhrfnV+2WsfBG4/XfZ2hyk8BwhfXu4oapZ8XaDgAEA2WMNSaDk+gQYTEs19gk1CvN9Opt1e3HzLv19kZTGAUBjq2ToEwKANFscWjv077hNENsJjtCdJzFe/c/rgIFBYO9HQyWE/RYMNiVTCBFCCCGEHEt8S+M+Lwfausx1hXx7asqEtDMzS9YMAmUozU28eTdrLfE4maIjFCAmOVx6esPrQSkWHaFhPl9nj4wdB5XtIw16qVfyKDhCXq+MSdY0wz7ZYwvJ4XI6JKgaqrEVmJoizBLq6Nb6gwCgrVFXVuIcpbCEUKYuUBpagWKfN8cN2H3fEtE6okhW8RzIxTV9p6BzzemQ6QgRQgghhBxbGn2EkCwbf7tuBr4pa6JLUx1FP40vgRyhQsExMSM5rr1Lxqf7le0pxUCC0I9iGKoa4ecKd06N8bsMLmA/Lw+8PykMR6jA4AgFf90j/w94+f+lGfaF2iME6C5NYxswTXCWDna5DI5QU70uUsTzCac0zn+WkFGt9XcHF0LhhCWUBhBCgIT9n6TD26FchILM0B2mWIFCiBBCCCFjFl9HCDC/T8jo1ADFOaGXc4WDQQipPUIh3ryHyruf6nHjl55ufE78rX9lhMNiww1LEIXQcN+l6gb5Eo4jlJwgaaV0w4nKp9+QMVCXZtgXamocoPftdPYAdtmGTIfiYB3udqGhV+8RGugSwgaEP7IRl8a1wa80rr159BwhAPhoj75NR4gQQggh5BiiOkJi0/+mz81do9kQLiCNniMklPSpQsg4Syh6gffOFv0Yl55h/A2+mgwGABUNxyEsYTghdCjw+YTTIwTowrK2GVqctcj+KhkHawC5Ox6DHUIcdRjzfXINfTtA2ZBtVe/uQ0W3Sz+mK7BIidgRapH9SuM6jg4jhMJYJyfdOIxVpX9A36YQIoQQQgg5Rrj7ZG2ezPRSvQekIkI3IxjDlcbVmCBOVAKWxpnYIyTLMtZuUbadDmDJXOPzZfn6ttizEg7hhiUkJ+g9NcOlxu0MUhqXnBBeOZb6Z8TdZ4wrV3l9s749UKdHskVSGgco5WqThPq9j5vbtW1vT+ADRuoIvbAO+GiL8c1etzmOkMUiaQ7iNecETutjfDYhhBBCCJSG8/99yotvP+o1LfbZF7EsLjdDvylsagcGB81bs9knbrpYTFcz0RHyLcEDQu9rCYWdh5QZMABw3ilAvE9qWFKChJyhe//D9ZGt0RNmjxCgBybUHA3s0gwMyNh1OPB7w4nPBozCcv02YG+Fcb03NuuP+4/oLx5sSQrJ4QKA3HT9e21sBcoE26pabaKSlSGkgQhHoBRmA3MmKds9buDR543iSnYpNs4ZMwOsE+bw07/eJ2HLHyX85W4J00v9n8+jECKEEEIIAdZvB1a+CDzxN+Chl0ZnDTE6OydNF0KDg0ZRES0tncYBpFmpgGPoHnbUwhKGSuPscbo4iTYs4Z0t+valpwd2UtREvNqjkc0tculZACE346sOW6/H6L6p7K8GhPE7BsIujRPcvGvukTHzFhn/2Kh8zpYOGZt368/3H85G99pZ6H5zDgabUkJ3hARB0Niml8aJyG47IAe+BuEIFItFwobfSfjmsqHjuhyAVz+u6ghdMN//vaEKO5U4m4TTZkhw2P2FUE668vxYg0KIEEIIIaYjDm58Ya0c8Df90dJocIQkv5Iks/AtjZMkvU9oNMISJAkQxs9oLkZ9S3RO1zsfi/1BgV8zSYgGr4jAFVJL42xWRcSFwkiBCWJQgq+4ClcIicl4Kv/cqnwvb38MbT6RgoT+Q7nor1BO0BmiQBGHnDa0ApMCnORgd/CDhStQUpMk/OH7FsX1kSUMiiEMQ31IC6b6f+5wHSGRGROMxyscg/1BgMlC6IsvvsDXv/51LFmyBFdddRVef/117bnVq1fjggsuwHnnnYfHHnvM8A/inj17cOONN2LRokVYsWIF6usj9GMJIYQQEhOIZWuH68wPMPBdIzfdt3HcvHUMpXFpyk/15r2927yhqq1Dwy7Tk5Xf9KuoLsbAYOCUvFCQZRlb9inbkwqBsoLhHSEAKK8L+BI/dpXL+N2rMlo7Za00Lpyb+ZGE0M5y/fv90hLjc+EKoS+dDZw2PfD8otc3B7+O8XbjNRkO45BTObAjFCQoAYhcoEwYCrvwdulq0eu2IzfDGIShrRNGCZ4vvo7QWAxKAEwWQvfccw8WLVqEf//73/j1r3+Nhx9+GJWVldi0aRNeeeUVrF69Gi+//DI2bdqkiSSPx4O77roLN9xwA9avX49Zs2bhnnvuMfO0CCGEEHKMOdpuvKlc/c7oOkI56UBehnG4pFmIZXbpQ/MxQ419DhVPv6yVvmWnGZ8zI0Lb06/853s8XyYJAulwCEKof0DGxT+QccdjMv73KUEIhXGTLcaRByo1FB2hr15ofC7cHqGcdAlbnrLgyP+TYLUq+9Trp86fSksyDpoFwhMNuT7OZHKcDTnxRuGjBiUsmGZ8r8USOJ0tFFQh5NlbACsk9B/JguxyoCTHKM5UKIRMFkINDQ245JJLYLFYMG3aNEyYMAGVlZV4++23cc0116CoqAhZWVn46le/infeeQcAsG3bNjidTlx11VVwOBy47bbbsHfvXrpChBBCyBimqd34+K/vA65ec8VQY6t+vNx0Y2/GaJTGpSUBtqE+iECOQjR8+oXSIwMojoVIkQlDVUOd72NwhGpHvl71LXoAw6f79YGq4bgaYoT2wRoZP3jCiwf+opRTyrKMHYeU57LTgCUnA3abfl7hOkIqVqukpZzVHAV6+2Ttc0wtMQpdIDxhl5Omb6ti3dcV8g45QpecZnxvgkMpvYyE0jzlfZ4D+VjecTa635oDQJkBlJ2miCzftSJlYr7eJweMzcQ4ALCZebDrrrsOb7/9NpYvX44vvvgCjY2NmDVrFp588kksXbpUe92UKVPwxBNPAAAOHz6MyZMna885nU4UFRXh8OHDyM/P91vD4/HA4zF2zNlsNtjtwS1G71DBp9dY+EliCF6j2IfXKLbh9Yl9xts1OupTwtXlAl79QMZNF5onhkRHKDtNxsCg/ri+RYbXG95awa6RWhqXlao/J7oqlY3hr+XLBzv07cWzjecg/ra9oiGytbr08TVIiA/+53CiGKFdN/Kf13qhBLGuGQZHKNQ/6+JN9KMvq1syzpwFnFQIHG1X9syZBFgtXkwuGMDeKvvQOpF/90XZigPV1KYIMJWSXOX72nlIf22CI/TPY49TRHN7t1Ki6fV6UZbkNERnyz0O2Kz+aW7DXZuRKBEE5Uc79Fv84hxAkmRkpxr/zjjiIv/uLBZgShG0NL+8TOW8Y+XfOYuv6guCqUJo4cKF+NnPfoZnnnkGAPDjH/8YGRkZcLlcSEpK0l6XmJgIl0v5G+l2u5GYmGg4TmJiItxuNwLx/PPPY9WqVYZ91157La677roRz6+6ujqsz0OOPbxGsQ+vUWzD6xP7jJdrVNOUD8D4S8qX3+vB4ilRZkALVNXnAlB+Vd/bVYXBXiuAQgBAeXUPKisjW0u8RgODQHu3UgeUFN+HykplSJEDTgDKneeeg+2onBEg7iwM1m3JAaDUeU3KrkVlpT6pMsHiAKDUPe3c34nKyvAbhQ7V2aB+NxjsRmVl4CYqrxdwxBWjr9+C/ZUeVFYOX6Gz6wv9e2hskyEPJaHZpF5UVjaGdG7eXglAid/+Dz5twdGmfqifvTC9E9XVbThjejr2VtmR5PRi0F2DysrIbubTE7IAKPegb21oAaAosnRnB6RBC4Bk7bU2i37tQyEjuQDt3XFoaPWisrIaGQPGX+J7XXbkpg9A8jQB0G04u3UAlZWRDXGye/Vr/Mk+GYByLZLiWlFZ2YWM5Hw0til/J+Pt3qj/LSrNzsKuw8r3Z/M2obJSv3c/3v/OTZw4MaTXmSaE2tvb8f3vfx/33nsvzj77bBw5cgR33HEHJk2ahISEBHR361Orenp6kJCgWIROpxM9PT2GY/X09MDpDFz0uXz5ctx0003GDxGCI1RdXY3i4uKQFSI5tvAaxT68RrENr0/sM96uUceQA5GRoqehdfUmorQ0MfibwqRz6L7L6QBmTC0xDPOMZK1A10i89y3McaC0VBFF84SY6C5PGkpL0yL5CACUuO/tQ+5DXgZwzmmFEKujLMItUUtPCkpLU8Je46jw3eRmJaG0NCnoa8sKgH2VQE2zHcXFpX4lVSLeXfq2LMRBp6fFa99VKCQnGF0rAOjozYRQ0YfZJ6WguDgJ3726BrNOSsLCmRZMn+IvoEJlygTg7a3K9hf1ui01+6RUxTnZoL82LdkR1ucpzlFmMfX0WpCVU4r5VidQo4tPb48DE/JsOGVWgeF9KUm2sNYRyRECETwD+rWYOy0DpaUZKM4F9lUp+xLjLRGvo3LFWcCbWxQH7JJFOSjIGnv/zpkmhGpra5GUlIRzzz0XADB58mTMnz8f27dvx8SJE3Ho0CEsXrwYAHDgwAGUlZUBAMrKyvC3v/1NO47b7UZNTY32vC92u31Y0TMcFotlTFyU8QyvUezDaxTb8PrEPuPhGnm9Mo52KL+lL81VyqX6PErogJmfvbFNKb/JTQesVgtSkoBEpxc9bqVHKNK1xGu0ZZ8MQPks807Sj1mSq++vPRrd59pxUEbXUPLc2XOVzyJSlC0jziajfwA4Uh/ZWm6Pfr5JzuGPManQi32VSs9SY5uEwuzgPStKKIa/I5MYH955ZqZ4/YRQRQOQmSppx5+YL8FisSDZKeO710T/96g4Rz/3D4X5QaV5Emw2QPxcCWF+ntwMvTTsnS0SPm1KMHTmyy47inOV8AabVS/rDHcdkUSnsq44XwsAJuRJsFgk5AnnFM06Kt+4TEZWqpJIV5Rj/DMyVv6dM+0MS0tL0dPTgw0bNkCWZVRUVGDr1q2YPHkyli5dildffRW1tbVobm7Giy++iEsvvRQAMH/+fLjdbrzxxhvweDx49tlnMWPGjID9QYQQQgiJfdq7FZcDUNLcMocMDDOHnA4MyNrx1IGjgJ6OZVZYwuZd+s3wotn6zV52mp7uFW1Ywoad+vbZc/1Fh9UqaYlgR+oR0Uwm0S1LdA7fjF8m3IKNlBzX0Br4XMIJFwCA6gDf4eF64Ei9fvyJJt8aioEIB2v07dI8IN8nZS3chDUxpe36e2U89LSx0snb40BRthLJLabMRRNgACi/ePClJNf/nKJJjFOxWiV8aYmE+QFmFI0VTBNCSUlJeOCBB/DHP/4RS5Yswbe+9S1cd911OPPMM7F48WJ86Utfwi233IJrr70WixYtwpVXXglAcXgefPBBvPjiizj33HOxc+dO3HfffWadFiGEEEKOMWpzO6AIhqyhKOKWzshu4gPR3AGoh8oNIITau5UksGhRI5UlCVgoNLaLQ1UDRT6Hw4ad+nmePTfwa1QR0O02zjUKlVBT4wBgUqF+YzvSLCGx+V4k3KGg3/mSvq2mkR2uU4SfygSThZCY/CdSmusfBx2usMvN8BEHA1ZY3cpBvD12wGvRYsPzhbCIcNfxZUKe8bHDrsex52Xq5xTtOicKpoclLFy4MOBzy5cvx/LlywM+N3PmTKxZs8bMUyGEEELIcUIc+pmTpjtCnn7FmQgwXzJsxBtw8TfqhmGWbYEHSYZKl0vGznJle9ZEIDXJeHNbnKPcrKtDVZMSwv/NuCzL2DA0bDY9GZgZpMdbjLU+XOc/a2gkugVHaKTZO8a19Kb7QAQbXBvujfaPbpIgSTJOmy7hmTdl/Gsb0NkDLTo7JVH5fkzS0QD8I7IBIDVJuc4FWcaFwnVQRHGu4v6oDLnnVKBmi9LXpAqxfBOdGl8hVJKjx3Gb7QidCMR+8R4hhBBCTMPrlfH2RzK27DV/wKmK0RGSDMMpzSqPE/sgApXGAdGXx23Zq6SoAcCi2f7PmzFUtbJBn1O0aLZSKhWIifn6/iPDB7kFxFgaN/xrjbOEhn9tMEcobOGQIeGRb1tww/mSYX31u5mQF/l8nWDkZfrP1lFLy3LTYQisCLdkLTfDf1/P3nxM2bYQnr1Kspv650ecfxW1EMo3fkclQqlcnokleCcKFEKEEELIOOIfm4DL/kfGom/J+CLC2OGREIepij1CgH5jGy3q/BLAKBLyhJKkYG5FqGwWEtHE/iAVM4RQhxCcW5gV/HW+jlC4hFMaJ/bijCS6gpbGxUcuWibm+7/X7P4gAIizSQZxAOjCwWaTDK5OuALllCmAzapsi6JI7AfTHCFRCEUpUHwdodJgQoiOEAAKIUIIIWRcoTpBg4PAe5+Ozhq+PUKj4Qh9tEcXcWfM0PeLv12P1hHaJAQlLA7gCBULSVmRCqFQS9aM4iSCsIRe/T0jCSGnQ9JK74brf+rtk9HRHfi5aHpQygKIHt8bfLPwLY8ThYPYJ5QQprAryJKw9WkJb/1awgMr9Pe6hgRpnE13MvOF3p1oBYpvKWhJrn7syUX69xgolGM8YmqPECGEEEJiG7HRfseh4fs/IqWpTb/pVhwhPQLZLCH08V7lZ3ICMF0Yh2JWadzAgIyP9yjbBVmBe43Em+hIAxNCFULROkLh9AgBiltxtB2oa1G+C5vN/89JMDcICD8sQSSQ+xPIJTKDomzgk33649I8fZ1oQwxOPknCyScBH+/xF66FWXoZZIGJYQm+qXFiaVycTcL2Z4ED1cBp06Nb50SBjhAhhBAyjjAKodFZw88RMrk0rrpRRu2QA3PadCXGVyXf4AhFXvq3+4guHhbNDtyfIqaO1TRFtla3MDtnuFjr9GQJqUMzUEe7RwjQP5vXC9QHKTEcTmhG5QgV+O8bLUfINzkuuCMU+RpTA8x8Fdc99xTlcUI8cNXi6ARfolMyBGmU+Aij9GQJp8+QTO+3GqtQCBFCCCHjCFEI7T6i/LbfbPxS40wujVPdIMAYaQ2Y5wiJIQHzTgp801gk3MyOtiME6CVjVU1Af5jXLZweIcB4ox7ss/kO7hSJptclM9X/uzA7OlulyGdYrOj8FZjUu5OeLPmFJ4h/dpITJJSvkVD/NwkLpkUvUETRWBIkIpwoUAgRQgghMcDWfTJmfc2L7/zWO/KLo0AUQn0eYH+1+WuojlC8XXEfjI5Q9MJLLDU6Y6bxxlFMkItGCIkhBhnJgV+TlRr9UFVRoIwkhNSSscHB8IVX+EJo5P4nsTTO6SMUoimNkyTJzxUatR4hH6EgCofFc/Tv4OSToltnmo8rVOzTmxRnk5CSaI5Lc9Yc5WdhdnTx8eMBCiFCCCEkBvjdazL2HAF+/xpwsHr0oq19h3HuOGj+GkeH1shOU25qzXaEPtqjb5/u0+sQZ5O0Aa7RpMaJQkgtSfPFYtGHqo52WAJgLBkLtzwu0tI4ILjoEoXmnEnG56LtdRH7hNKT/Wc4mYXY52WPMya8nT8fWPuwhA8elzBnUnTr+wqhopzRK0277xsSXvyphPcfk2CPYwnccFAIEUIIITGAeNM+Gi4NAAwOymj1ESJKYIJ5eL2yJrZUd8bgCEUphPo8MrYPibeTioCsNP8bPbU8rr5VGVgaCZ2CEEoZZgCseiPd1gX0uMNfq1t4z8hCSP+s4QYmiIIr/NK4wJ+rUejBmufjmETjCAFG0Tca0dkqohAqyTHOcZIkCRefJuHsk6MXE9NK/IfxjhaJTglfuVDC5CKKoJGgECKEEEJiAFEgHKwZnTXaugBfXWB2YEJbl1K6BUBr2k5L0odTRhuWsOOQUtIHAGfMDPwaNTChz6OcTyR09OhfVDBHCPAJTIjAFQpHoEQToa2WxsXbjeESwQjXETplivGY0c7DKRNS4karLA5QAhHSh0offV0tM5k+wfjYN7abHB8ohAghhJAYQHRqDtWMTmmcb1kcAOw8FLlrEgjfoARAufHOGHKFonWEPhbK4hbOHDnEIOJBp8J8nNTE4K+LNkLbUBo3jPMEGIVQuI6QKoRCdWoKsnTxGjQsQbjWfo5QlKVxkwr17UApcmZhj5Pw1/sk3PFl4KHbR89B8esRYohBTEAhRAghhMQArYJzMVqOUCAhdLQ9eDxyJPhGZ6tkmiSEKht10TZrYuDXFAqxx7URCqFOIdY6ZVghFN1Q1Z4weoTEaOfKxsjWCVWgxNkkrcRwpNS41CR/sRJtadx5pyiJgAVZwPKlo1vidf58CY9912IoPTSb4hw9UMIeZ/y7QY4fFEKEEELIcaZ/QDb0pByqDf7aaBCFkJp2BpgbmNDUrm/npOs3lqoQ6ugOP/pZRHRQgpWsRStOgNAdIeMsofDXCScsId6hi5OKMMMSusMUQoD+2RrbAE+//zVTS+Ny05XyModdfy5aR8hhl/DhkxZUvyJhxoSx3+tisUi4cIGyvXi2sReJHD8ohAghhJDjjG8fS2Vj4BvPaBGFkDh/Z2e5eWsEdYSE5DjfwIZwCKWnplAoV6s5Gtn3KKbGJQ8XlhBCqMBwhCOEAH2eTkMr0NsX2nqyLGulcaGsoaIKIVkG6pqNz7l6ZXQNuWZ5GUqwgDp3xxFiH1IonEiC4YUfS3jlPqUUj8QGFEKEEELIccY3QMDrDT8eORSa2/XtM2bo27URioVAfFGpH6tAKFEzKzkulFIysW8n4tK4ISGUnDD8zXiRQXSFv44qhCTJfxZPIMTggKoQHahejx6SEU7J2nCBCeIwVTVy+uqzlJ+XnRH6GuOJtGQJXz5HQkYKhVCsQCFECCGEHGdaAySbjUafULMwzHTmRP1mTCxni5Z/f6b8tFiMM36MQ1UjP34oDkq04gTQHaHhyuIAxfVSywyjCUtIjFdclZEQhdBI5XG/+rOMr9znxSHhz1J4pXH6+fgJISEoQS3Xe/hbEr74Cx0PMnawHe8TIIQQQsY7gYTBoVERQvr29FJ9W0x6i4aj7TJ2HVa2T5mi/AZcJTNVAqAIsWgcoVAclMxUpTyrzxO5I6QJoWGiswHFLSrMknGkPsKwhDBL1ibk6d9jRUPw123eJeMnq1ThqwvgSHqEAKCqEXh3q4wpxUBpnmQolcvLUK6zJEmY6pOORkgsQyFECCGEHGcCO0IyAHN/sy4KodI8pUyqx22eEPpgh7597jzjc2Y7QonxwUvWJEkRJ4frIhMn/QOAa0igjOQIAYpgOFKvD1VNdIZ+3dTPE6oQKhUdoYbgf0b+vlEXP9sP6PsjLY3736eV4+VnAgf/TxFG2jnlgpAxCUvjCCGEkBFwh9iUHikBHaFRSI5ThZAkAelJ+pyfRpOE0Prt+vd07jzjDboYlhBVj1CI83DUCO32bkWchENXiNHZKtGU4mlCaIQZQiqG0rhhHKE3PtS3y4U/S5GEJYjUtwC7DgNVQjBECYUQGaNQCBFCCCHD8PPnZSRdLON/n/KO2hqtXf436qPTI6T8TE8GbDZJa3Jv7Ywu0lrl39uVnzYrsHiO8TmjIxR9fPZIN/Rimlttc/DXBUJMjAvFEYpUCA0MyOjzKNuhlqyJjlBlECG0v0rG/iphnUF9O5zSOLX3x5fDdUZHiEKIjFUohAghhJBhWPWmDK8XeOwVYHBwdJwhMU5abbwfjQhtVQhlDbkzqiMEGBPlIqG+WcYXQzffp04DkhNGxxEKVQhFM1Q11BlCKsOFCgyH6m4BoTs1TocuYIM5Qm9sDv7+xPjQy/aCRWCXC0LIYjGmAxIylqAQIoQQQoZBLVtz943eoFNRGMw7SflpdoR2/4Cs3eBrQihdfz7a5Lj3d+jb557i/7wZ8dn9goMyoiMUxVDVzjBL43xDBUIl3BlCKmp5XF0z0OfxF8tvfBhcQIfTIwQAX17iv+9wnaxFdxdkAnE2psSRsQmFECGEEBKE3j4ZvR798Y6Do7OO6AiJkdNmlseJfUiBhJA4FyYS3v8seH8QYE5YQigzhFSi6dsxlsaFEGmdr29XNozs4m3YIeO9T2VDL1IkQgjwF14tHTI27Qr+3nBK4wDgt9+R8KsVErb8Uf8e9lbof15YFkfGMhRChBBCSBDafNLcdhwandI41SGxWYFZZfoNZ12YvS3D0RxICKWZN0uoUrghV10tkXiHpN3sR7qWWEo20g19oWGoanjXzVAaN0J8NmBMTRsuwAAAPtotY8kdMi78voy3PtL3hyOEhlvvn1sVNxFQhsH6Es46AFCUI+F/vyrhtBkSstOUfduEFDoKITKWoRAihBBCguAba73z0CitMySEMlOh3WwCwNF289YIJIRyhWb4aCO0RZES6AYc0G+aKxsAWQ5fVIZTShaNI9QpOEIpIaS5pSVLmmAaSQi9+ZH+uf+5NbL5PhPydQHru97+Kv2Yy87yf2+4jpBIWYHyc1AIXygJkCxHyFiBQogQQsiYZGBAxuG60Y219neERmcd1RHKSDYKoeYo0tV8EUVV1pATJIYlNLVFt5ZatmazAva4wOVkaklXryeyUrxwhFBehtLID4SfGif2CIXiCAH6Z6tqHD5U45N9+vYXQrJbUkLofTYTDMlxxrXEz3rmLP9jhtsjJDKpwH9fSS77g8jYhUKIEELImEOWZZx/p4xJN8hY+ZfRE0OtPk399S1AY6u56/V5ZE1EHGtHyNAjZJIjNNyN9kShlyaSIIhwhJDNJmnxzzVhJLkB4afGAbo4GRgMXtLo9crY+oX+WOzvibRHyNcREt2vM2b4v9cMR0iEpXFkLEMhRAghZMzR0Q1s2Klsv/Sv0RNCvo4QYH55nCi2fB2hYymEzCqNG+5Ge6JQ0hWJEBLDEhKdIzsRaoR2Y1t4c5LEsIRQUuMAH5cmSHLcwRqjyBIJq0dIWOvvm4DvPe5FfbPy+dSocHscMGui4tBFuo4vkwr9v3MKITKWoRAihBAy5hAFyv7q0ZvvE1AIlZu7htiHlJmqOBDWoZvX5gjT1QLR3K5/R6oQykzRy8eiDUtQRcpwQmg4JyMUwo2bVvuEZFlx80LFUBoXshAK3rejIpbF+RKOU5MQL2HmRGW7x63MuLrwv4eE0JAbVZCpuGK+M36iKY0ry/ffRyFExjIUQoQQQsYcokDp85g7b0ektctfYO04aK7o8nWELBZJEypmOkKigFNDEqxWfa1o47NDGXRqLI0b3bAEACgSGvnDGXQabmocYHRpKoL8edz6RfDPHK5T89avJfzH5UC8XXm85whQ1yxrf57U1DwxNAKIrjRuUqHxcZITSAvx+yEkFqEQIoQQMuZo8ykv2lc5SusEcITMDkwQh4tmpiquQrYghCJJV/PlSJ2MD3Yo21OKjYJEDUxoimItT7+MgaEksWF7hIQek9HuEQKAkhzdpRlJCLV1yfjRU8AbHyeEnRoH+Lpdgb/H4RyhcIVQaZ6EVXdZ8LVL9H3vf6Zvq2WBxT6pbtEIofxMwGHXH5fkApLEsAQydqEQIoQQMubwFSh7K0ZnHdGtUXtFvqgC3H3muUK+jhCg9wn1eox9MZHy53/q27deKhluXtU+oT4PDAM+wyHU+T5pSfr3eCxK48SyLd/Bo77ct1rGQy8Bd/4xC3sqlH0OO+Cwh3ajLw5VDfTZPP0yPhtmIG+kvTsnFenn9/4O/c+l6gT5CqGEKISQxSIZyuNYFkfGOhRChBBCxhy+Qmhf5ej3CJ05S/np9SpzcMzC6AgpP7PS9H3R9gnJsowX1irfjyQBN19kfN6MWUKGEINhbrQlSdLcqJFiplW27JVx8X97sfodGT29wtydMIWQb8y0L+9sUX56ZUm77qH2BwEji7zPywFPv7JtCXD3lRSi8+TLlGJ9+9/b9e3CbEUgFQuuWEK8ImaiQUyO4wwhMtahECKEEDLm8BdCo7SOUII3VbjhNLN3p7VTv0HXHKFU89ba9DlwuE7ZvmA+UJRjvBEWZwlFGqFtcIRGEChqCVn/QGjzfe56UsY/twK3PyIb3LOwHaFhSuPqmmXsr/LfH2pZHKCIPHGWkNdrFF5iWdzi2f7vj7Rk7aQifftQrb4dqDQumrI4FXGWEGcIkbEOhRAhhJAxR5tPiMG+SnN6aXxRb7xTk4D8TP2mL9qoaZFAjpCZEdqr39G/l69d4n/jmpMe/ecK1RECjP1JwUIFVAYH9bk77j4lflolFCGUlwHE2ZTt4UrjRCdFJNSgBBVR5Pmm1H0mhGx86Wz/6xBpaVxZQWCHSQ2KMFsITSvVz903PIGQsQaFECGEkDGHryPU5dLnp4zGOulJPuLExFjrwD1C+s1mtKVx6rwlpwO4+mz/582YJRRqjxAQ3iyh/dWKAFI5UK1vhyIcLBZJEwLDCqHPAovocErjAGNy3KsfAD99xosjdcqxRbfmggX+741UCNnjJENQg0pARyiK6GyVr14EXH4m8OUlwNVnRX88Qo4ntuN9AoQQQki4BEpz21thjEuOFlmWtRk/GSlGITTajlCWiaVx6nDQ3HRl/owvuaIQinCtSErjADVCO3h51WcHjI/F5LdQhUNJrlIa2N4NdPbISEn0X+/fnwV4I8IXQsosIUX4fPdx5ecn+2Ss+42E8iEhlJkKTCtRZkUNDiXt2azKANRImVKslz+qqPODstOU/462m9PTk5wg4Y2VLIkjJwZ0hAghhIw5Agkhs/uEut36jWp6stE5OdpuThme1ytj92FlOyVRcW0A39K46NZSk+CSg/S7iJ+rsTWytYylccPfJE8cIV1NZPuB4OcTapmXePMfyBWqbJA1EeHwESMpYQsh/32bdyspgzVDjuWkAmV+U74QUpHkjC6GWuwTApRrao9TjmexSPjL3RK+cRnw4DcpYAgRoRAihBAy5mjv9t9ndnKcKLbSk83t21H59Au99O28U/SbYbPWGhiQ0etRtoMKIWGtSMMSusPoERJjpkcqjdseJG7aajXOsxkOsVwtkBAS3aBvXGZ8LnxHyH9fjxv4YAegtrBNHuqrMbNkbUqRUeCoZXEqF50m4Zn/sWBWGYUQISIUQoQQQsYcqkgRb4bNniXk27sjCgazSuPUyGYAuPR0/SZVLI2LpkeoSxAowYRQXqa+7dvgHyrhlMYlJ0haCeBwQkiWg8/dCcdBEZPNAiXH/Xu7LqCvPReYmNevPQ43LGFaqS5ixVK31zfra6gBA2IZZ6T9QSonFRsfF2ZHdzxCxgsUQoQQQsYcaqx1YZaSDAaYXxrn6wglOoH4IeFlliP0zhb9BvnS0/X94hyhaNbqFgakBhNCToeEtKEbfjOEUCg39Wp5XM1RZdBoII7UAx0BnL9Q11ARS+MCzRJSY60dduD06cD8k/R0hpSE8ByUhHgJG38vYc3PJDxxp/7e1zfrr5lUoOwvEsRKtEJoik9pnK8jRAgJDIUQIYSQMYUsy1ppXHqyflPd3BH8pjoSDI5QigRJkrR+mkhDBUSa22XtJnzWRKBYcC7ibLo4iUYIheIIAUD+kCtU3xJZDHmPWxh0GkLvTtnQNZPl4Glu2w8E3g+EKYTEWUI+a8myrPUpleUrYmjh9N6A7w2VqSUSrj9fwikn6fvERMPJQ6KlKFu/3tEKoZJcowMlHpsQEhwKIUIIIWOKLpcxxEDsp4k2alpEHKaarsVa6+v4DswMl39u1ftGLj3D/3lxrUjpEh2hYW62VSHk7gvuwgxHOPHZgDL7RqW8LvBrxLk7voQzD2e4oapNbdB6qNT+nivO6MGd1wF3fBm4anHo6/gyrRQIVL2nDiQtNrE0zmqVDINOWRpHSGhQCBFCCBlTHIsQg0DrAPpaXq/RMYoEY1mc/x2z2ifU3g30D0QmurpCKI0D9KhlILLyuHB6hACgrED/vL6xzyqiIzS1xPhcOMIhIV7SvktfR0hMrVNDHGxW4OHbgce+a4HDHrmzkhAvGRLyAOW7yR0q5RRL48wYdDpF6BNiaRwhoUEhRAghZEwhCpQ030Gn7eat09qpiw910KkYmBDNWrIsY90nynaSE1g02/81BqcrwrWMQij4TX1+lIEJPWGkxgEwuBfltYFFnhqUkJkKLJxpfC5cB0V1haoagf/4tReLv+XF4ToZlYIQKs01v5xs5gTj40kFesjDjAm6OJ0zKfq1z56rHMNhB+ZOjvpwhIwLOFCVEELImMLg1CQB2Wn6EMtj5QgBSp/Q9AiP3e3Wz/XUafrMFxGDwOsA8iP4Lb8ohIYTD/mZ+ncYtSMUZmlcIEeo2yWjsVXZnjnB3+EIVwiV5uoO07NvKT8f/D/Z4EwFir6OlpkTgTc+1B+LAjA1ScL7jwE7y4Hrz4t+rW9drfSyTSsBcjPYI0RIKFAIEUIIGVMYBYp0TErjMlKUnznp5ogu8diZqYFfY74jFPx1BYIjVHcMSuOKc5QStIHBwD1Ctc3G1xZm6997qGuIBAo9+OwgYLHox5yQ7/+aaJk50XjeanS2yilTJZwy1Zy1HHYJt15qzrEIGS+wNI4QQsiYYvgeIRNT40ZwhKIRQuJA2LQgs2qyUvXf6ke6VqhCyFgaF/53GM5AVUBp7lcdmMN1/kl1NULKWlF29I5QcY6/Q7L7iNGNKo0gIW4kZpQaH08upFNDSCxBIUQIIWRM4SuEzOrbCbaO1aqLCDU+G4huqGqgsjtfzBBd3UKstdlhCX0eGR/tltE/IGs9QlarMcZ5OFR3RCwTVKkR0t2KsiW/FLRwhdCCafq2muTm6gU271K24+16iIGZ+CbH+TpChJDjC0vjCCGEjCnauvWbe19HKBpx4ouaCpeepDe4ZwtlbIr7FNlv+NsNgQ+Bj2HsR4psrUgcobrm4K8TueYeGW9+CNx8sV4alxivf1cj4dsnJIpMgyOUE8gRCu+7WHKyhKd/qIifxjYZD/xF2a86WSW5ynlHMkNpOBLiJZQVyCivVR6LPUKEkOMPHSFCCCFjimFL48ycI9Slr6HiG5YQ8bEDzCjyRZwzE2zo6EiEOlA10Slpz4fiCA0O6ql3a7foQigcp2aSEFSgCgWVmqO6ICnMUkSSzao/H8ncnduukPDdayUsmOovokYjKEHlgvn6GpEMaCWEjB50hAghhIwp2n1ERLxDQpJTDlhiFSn9AzI6evQ1VETXwqywhGA9QqXCzbk47yYcQh2oCijlcfurQhNCjW1A/4CyfbQdcDqU7XDm4RgcoXrjc749QhaLhPxMGdVN4a/jy5xJ/vtGUwg9dLuERbOViHSrlT1ChMQSdIQIIYSMKYaLtTZLCH12AFCrpMS+jkSnpN30R1OG1+5T3heI5ARJS5QzRQgN4wgBenlctxvocg1fIlbdZHzs7lN+hpPmJn6vvrOEVCFks+riU+wTisQRUikrABJ8hFRp3ugJlOQECTdfLBmiugkhsQGFECGEkDGFKIRSE5WfqhBq7QQGBqLv89iwU99WB1WqqDfmZjlCwYQQoCeZ1RyN7HOFOkcICG+oarBSvXCcmolCXPXeCuDuVV788A9e9A/IWlhCQZbuooh9QkkjiLrhsFgkzC4z7htNR4gQEruwNI4QQsiYQhURqUn6TbLYu9PSGX0C2Iaduug4e67xuew0oLIBaO5QemUiKXcKJT4bUG7Qtx8ABgcVMRTurBtVCMXbAZtt+PMs8BFCU4qDv9bXEVIJRwglJ0jISZfR1AZs/UL5D1DEX/NQr1eR4AKJPVOqAI6UOZOALXv1xxRChIxP6AgRQggZU2ghBoKAMHOoqtcrY+PnynZWKjDdZxaMGtcty8ZZQ+EQqiMk3qBXRhCYoAqhkcriACA/UxdKIyXHVTUGdqfC7d0pC5Ci9n/v6ccWhdDXl0rIzwQWzwHOmBHeOr7MKTOKwlIKIULGJXSECCGEjBlkWdZERFqQNLdohdDuI7pjc9Yc/zho37XEx6ESsiOULwFQhEFFPbDk5PDWUeOhQxNC+vZIpXFBHaEwe3dEF0rloz36tiiEZk+SUPOqUtoWLWJgQpzN+NkJIeMHOkKEEELGDD1uYGBQ2TY6QvrNcbRCaMMOfdu3PwgwJsc1tka2hirmEuIBe1zwG/sJESTHvf+ZjJ8950Vjq6zFZ4cihIxDVYfvR6oyoTQOABZMG17UFOUYnzdDBAHAbEEIleSad1xCyNiCjhAhhJAxQ7CSMjMdoQ2fB+8PAtQSMuU1oQ4f9UVztYZxgwBfITTyUNXOHhlX/EiJEq9qlNHnUfaH6wiN9LnM6BECgNuXAfsqgfwMoNcDPP6q8XnRETKT9GQJl5wuY+0W4OqzRmcNQkjsQyFECCFkzFAnlGxlpOjbRiE0smAIhizLWmJccgIwd7L/a8Sb82CCYCTU0rjh+oOA8GcJffqFXg73/mf6/pFmCAGhl8b1eeSgTli4pXGpSRL+9BPlWr36vozHXzU6UaMlhADgjQckHKwBppWO/FpCyIkJS+MIIYSMGdZ9om+fMkUXO9mp+v5oHKGDNXq52+IgAzDF9LLqpvAjrT39gKtX2R7JEUpJlDSxVFE//GsB4NP9+rYonEJxhJITdCFTN4wQEoed+pIYH3mJ2Rkz/feNphCy2SRMnyD59YARQsYPFEKEEELGDK9v1oXHFWfq+8W+naMdkR9fFBvzpgR+jVEIhb+GGJQwkiME6OVx1SHMEtq2P/DzoQghSZK0WT3VTYo7FohgM4SA6AadFmZLhu/WYgHyGGJACBlFKIQIIYSMCWqPytg25HjMO8nYSG9Wj5A4gDQ1MbBTkJcB2KzK9nDuSDBCjc5WUYXQ4ODwTg1gdIREQhUo6pBTV68+y8cXUfyJ5YlA+KVxvoiuUF4GEDfC7CNCCIkGCiFCCCFjgjc/1LevXGR8LtEpwelQtqMSQm59O5iLYrVKWsJaJI6QKIRGKo0DjENUhyuPa+2Ucbgu8HOhOEKAMZzhSJBjiY7QmbOMz4UbluDLwpm68BnNsjhCCAEohAghhIwRDGVxi/ydAtUVamqLfA3RERpOPKglXM0dgLsvvD6hcEvjSnP1zzpcYMK2IG4QACQnhOasTMzXX3ckiOgS+6IWzTIeN1ohJA5KpRAihIw2FEKEEEJinh63jH9tV7YLsoBTAvTvqEKopRPwesMPMQCMQmi4cjKxl6UmTFeozTBMdWSBEuosoeGFUAgnBr00bri1xBlCi+cYn4u2NO7UacCi2YA9DrjlYpbFEUJGF8ZnE0IIiXn+tQ3aTJwrzkTApC9VCHm9QGsnkJUW/jpdLl1ADScefCO0TyoOfY2wwxIM4iR4NPinQYISgAhL4+oDr6WWxsXblV4tkWgdIZtNwsbfK4Nzk0J0sQghJFLoCBFCCIl5xN6Xs+YEvkE2DAQdIVQgGIbSuGEdIf0cwu0Tag+3R8ggToK/Tg1KSHT6C6xQ5ggBwMSC4deSZVkTQsU5Sm9WphBdHq0QAhSRSxFECDkWUAgRQgiJeToFgRLMRSkRytWGi3geju4QwhIAn9K4MJPjwnWEUpN0sVFeG/g1ze0yKodK2U45CZhcaHw+VEcoKxVIGBIzgUrjOrr176gkV/kpfhfRlsYRQsixhEKIEEJIzNPRrZd9pSQGfk2JECoQqRAKNywBCH+oarjx2QAwacipqTkK9AYIZ/jsoL49fypQVmB8PlQhJEmS1idU0eDfa1UpfK+qEJo1UfmZEA9k+sRpE0JILMMeIUIIITGP6AgFF0L6duUwvTTDEZkQCm+NcOOzAWBSIfDJPkCWlZK16ROMz4ulg9NKJCTEGwVMqEIIUAIT9hwBPP1AfQtQKPRDHazRtycXKt/vfV+XEG+XcfFpEhKdLGkjhIwdKIQIIYTEPJ09+nZKkJt6UQhVRTDfBzDOERouNS47TUk28/SHJoT6B2R87VdAw9FstIRZGgcYS93K6/yFUJXgSpXmATarBEDfF+pAVcA/pU4UQocMQkj5ObFAwqq7KIAIIWMPCiFCCCExTyiOULEJPUKqI5QQrwxODYbFIqEoWxlgGooQeusj4KX3AEBXcVZr6AJlUoEubEQxolLlU7IWbzc+H54jpK91pF6Js1Y5WKOLK98+JEIIGWuwR4gQQsYxvb29x/sUQiIUR8jpkJCTrmxHK4RCEQ5qhHZ7N9DtGr5P6PNy/31pSYFjwAMxuUjfLq/zX8sghHL8e4TCcYTEWUK+yXGHhLAG8ZwIIWQsQiFECCHjlP/8z/9EYmIiHnvsseN9KiPSMSSEEuKVWTPBUMvj6lqUcrRwUYVQKMIhnOS4fZX+5xJqfxCghyUAgZPjVCGUkaLM3ynMUkr3gJHdLV/E0rjdh2X8/HkZq98ZcqOG1s5JB1ISWQ5HCBnbUAgRQsg4xOv14umnn4bX68X3vvc9DA4OHu9TGhbVEQrmBqmoEdpeL1AbZqy1LMthOULhBCbsrfDf5+kP+dSQm6FHUx/yEUKDg7ImxFQhaLVKmDtJ2S7LR1iIjtDL/wbufV7G8gdk/Hu7jLpmZT/L4gghJwIUQoQQMg7p7u42PP7kk0+O05mEhtojFKw/SKVUcDPCLY/r8wADQ3owlAGkoQ5VHRyUsb/af39jW+jnJkmS5gpVNAADgtvV0KqftzhLadVdEr51NfDs/4Tn3KQlS0gN4Fb97lV9zZNYFkcIOQGgECKEkHFIZ2en4fHrr79+nM5kZGRZ1h2hEYRQiSBOwk2OC3WYqooxnCF4GV5FgyKyAOCUyb1a2d23rg7v/FQXpn/AKLx8gxJU5k6W8Ps7LThtRvglbPYAUUpvfCieC8viCCFjHwohQggZh/gKoTfeeOM4ncnI9LiV+TkAkDqSEDLMEgpvnVBnCKlMEsrDfMvVRMSyuIXT+/DB48CT/y3hvq+HJyYm+URoy0NfilEImSNQzjvFf9+AUD1JR4gQciLA+GxCCBmH+AqhPXv2oLy8HJMmTTpOZxScjhAS41QMs4Qawxuq2hWmI1SWD0iSItKGE0L7KvXtSQX9OPkk4JSp4QsWMUL7gb/I+PJPgYtOlbFAOJZYGhcNP75ZQl2zjLPnKqV3z75lfJ6JcYSQEwE6QoQQMg7xFUJA7LpChujscHqEwiyNC9cRindIWnncwQCzfVTExLiTCj3hnZSAKD7Wb1e+l1feB/6+ST++KASjYc4kCRt+b8H9t1lw/nx/0cawBELIiQCFECGEjEO6urr89sWsEAphmKpKVqo+TDTcsIRwhRCgC4LWTqC1M3CfkFoaJ0lAWd5AeCclMKkg8P6P9+jbZgkhkXNONj7OTgNSk9gjRAgZ+5guhFavXo3LLrsMZ599Nr7yla9o/7NdvXo1LrjgApx33nl47LHHtNpmQCnJuPHGG7Fo0SKsWLEC9fX1wQ5PCCHEBAI5Qhs2bIjJGO1QhqmqSJKkiYHKRhj+XzMSohBKcoY46FTsEwrgCsmyrJXGleYCTkf4s41Uikcoe7NZgbyMiA8flPwsCdNK9Md0gwghJwqmCqE1a9bgww8/xDPPPIMPPvgA9913H+x2OzZt2oRXXnkFq1evxssvv4xNmzZpCUUejwd33XUXbrjhBqxfvx6zZs3CPffcY+ZpEUII8SGQEBoYGPCL1Y4FjKVxIwsUVQj1uIE2f+PLD1mWDTOEgNAdoZOK9PMJ1CdU16wLrOkTQjtmMKxWCTMn6o8zUozPF2WHNzg1HMTwBAYlEEJOFEwLSxgcHMTzzz+PVatWIT9fmcY2efJkAMDbb7+Na665BkVFyr+eX/3qV/HOO+/gqquuwrZt2+B0OnHVVVcBAG677TZccMEFqK+v144j4vF44PEYa6xtNhvsdnvQc/N6vYafJPbgNYp9eI1im3CvT0dHh7Ztt9u1f1c7OjqQnJxs/glGQbsghJITZHi9w7sqYmBARb2MtKTgrz9cB1z4faXc6+qz9P2J8SOvAwBlQrnagWr/9+w+om9PK1aei+bv0P3/AfzsOeA/LlNiuR95WX+uJHf0/n6eNx/4w9+V7WklJ+6/A/x3LvbhNYptYuX6WCyheT2mCaGmpib09fXhvffew5o1a5CUlISvfOUruOaaa3DkyBEsXbpUe+2UKVPwxBNPAAAOHz6sCSYAcDqdKCoqwuHDhwMKIVVsiVx77bW47rrrRjzH6uoAE+1ITMFrFPvwGsU2oV6fmhq9jisnJ0d7fODAgZgrj6uoTgag1Hx5XEdRWeka9vUpjlQAaQCArbuakG53B33tL19MR0VDCioagG6XB4DyS7Xe7iZUVgZ/n0qiJQ6AooZ2HuhGZWWL4fkPP9PPPSe5FUB0f4fmFgF/Hyqa2LwnHoDeFJSR6L++WcwtAm48NwNH2624aG4LKitP7JtQ/jsX+/AaxTbH+/pMnDhx5BfBZCHU3d2NmpoavP7666itrcXtt9+OCRMmwOVyISlJH1OdmJgIl0v5H5nb7UZiorH7NTExEW534P8BLV++HDfddJPxQ4TgCFVXV6O4uDhkhUiOLbxGsQ+vUWwT7vWRJCFyuaREE0LJyckoLS0dtfOMBJtD3y4rzcZIp3fKDAB/U7Y7PDnDvv6TA/r2wVr9/yNlE4Z/n0qOkFJX35aE0tIkw/NHBTdr4cnpALpN+zuUlw/81+NAT6/yeHqZ//pm8pefqVsh1g2OQfjvXOzDaxTbjLXrY5oQcjiU/1OtWLEC8fHxmDRpEpYuXYrNmzcjISHBUHfe09ODhATlH1Kn04menh7DsXp6euB0OgOuY7fbhxU9w2GxWMbERRnP8BrFPrxGsU2o10dMjSss1Lvfe3p6Yu76drl09yEtSYLFMnwfzIwJMtR5O/urgpdI1B6VsbdCL2UTB4amJo68DgAkOoHiHC+qm4BDdf5rHarRz31aiQWuDvP+DjnjgfPne/H6ZuVxaW5o50xGhv/OxT68RrHNWLk+pp1haWkp4uLiAj43ceJEHDp0SHt84MABlJWVAQDKysoMz7ndbtTU1GjPE0IIMR8xLEEUQrEUluD1yqhulMOKzwaAqcX69hdVwV/33qfBnws1LAHQU9RaOoC2LmOPkBqgkJKoRHubzfXn6cLntOnmH58QQk5kTBNCTqcT559/Pp599ll4PB5UVFTgnXfewaJFi7B06VK8+uqrqK2tRXNzM1588UVceumlAID58+fD7XbjjTfegMfjwbPPPosZM2YE7A8ihBBiDqIQKijQO/4DzRc6Htx8vxcpl8oou0FGc7u+f6T4bABISpBQlK1s76sMHqH97qfBwxDCEUJiitqhGmBwUDmup19GZaP+GmkUzJobLwD+7x4Jb/5awrwpdIMIISQcTCuNA4D/+Z//wX333YcLLrgAqamp+I//+A8sWLAAAHDw4EHccsst8Hq9WLZsGa688koASqnbgw8+iF/84hdYuXIlZsyYgfvuu8/M0yKEEOKDKoTsdjuysrK0/bEihGRZib8GgE++0PenhtgCM60UqDmqxGc3dyipcMbjy3hvW/D3h+UIFUlQS/EWf1uGRQLuXQ4sOwtQg5NGa/aOJEm48YLROTYhhJzomCqEkpOT8dBDDwV8bvny5Vi+fHnA52bOnIk1a9aYeSqEEEKGQRU8ycnJhrjsWCmNmzVRFxe1R/X9oQqUaSV66dsXlf5CaNdhoLE1+PsT40M+VYMj5OlXfq58UcaMCVLA1xBCCIkNYr+LiRBCiOmojlBKSooh1TNWHKFZAdpEnQ4gzhZa+de0Ev11gfqE3t2qbxdmG59LdCKs0IFAbk97N/Dmh7LwGpatEUJIrEEhRAgh4xBRCImOUMwIoQAjIEIJSlCZJkRff1Hp3wu0Yae+77bLjSIlOXBoaVAmF+pBCGIf0Mv/Fl5DR4gQQmIOCiFCCBln9PX1wePxAPAXQrFSGleaByT5CJJQghJUppXo2/sqgb0VMp59U0aXSxFAeyqU55KcwBVnGt8bTn8QAMQ7JKx9WMLDt0v4f/fqSqhd+CpZGkcIIbGHqT1ChBBCYh8xMS5WS+MkScKsMhkf79H3hRqUAAAFWYrI6XYD2w4Ai26X0d4NbD8APPwt4HCd8rpppcBJxcb3hiuEAGD+VAnzpwI9bhlWKzAozCRKTlB6lIKE1xFCCDlO0BEihJBxhih2fMMSYkUIAf7lceE4QpIkaeVxTW26O/Pup8CBal2UTC8FkhMk5Gbo741ECKkkOiXM8elvUqKz2SNECCGxBoUQIYSMM3wdoVgsjQOA2WVG8RBOjxBgLI9TOVgDfCS4TDNKlTXE0rVohBAALJxpfDxa0dmEEEKig0KIEELGGb5CyOFwwGq1AjhxHCHAmBwn8pd/6jVq04dcI1GsRCuEzphpXJdBCYQQEptQCBFCyDjDVwhJkqS5QjElhHxKzMxwhABg8y59e/oE5edJRbp48Q1pCJczZhgfi8cmhBASO1AIEULIOMNXCAHQhFAslcblpEuGQajhCqEzZwH2OGX7Kxf4P2+PA8rylW2DIxSlEJpcBGSmCo9ZGkcIITEJhRAhhIwzfMMSAGjJcbHkCAHAbMEVSk0Mz1nJz5LwyVMS/vErCat/LMHpMD4/pQiwDQ1oXXKyMkgVAM6eG52DI0kSzpqjbFutwNQgzhQhhJDjC+OzCSEkRunr60NNTQ0mTZpk6nFHcoS8Xi8sltj4PdmsicD67cp2uI4QAMydLGHuZGV73kkyPtytPzdjgr6dmyFh35+Ao+3AKVOjL2X75W0SBgZlXHq6hOw0lsYRQkgsEhv/pyOEEGJAlmVceumlmDx5Mu69915Tjz2cEAIAl8tl6nrRsGi2LiKiLTFbMNX4WA1KUCnOlUwRQQAwY4KEN1ZacPvVFEGEEBKrUAgRQkgM8s9//hP//ve/AQA///nPTT12ICEUi0NVAeCac4CHb5fw2B0Szp8f3bHm+4ic6aUUKYQQMp5haRwhhMQgjz766KgdeyRHqKurC/n5+aO2fjhYLBL++wZzjrVgmvGxWBpHCCFk/EFHiBBCYoy9e/di3bp12uPs7GxTjy86PoGEUCwlx5nJ1GI9EMFiAaYUH9/zIYQQcnyhECKEkBjjscceMzw2u2dHdYQusF+Iiv+sRsvm1pgtjTMTq1XCNUuU7UtOAxx2lsYRQsh4hqVxhBASQ7S3t+NPf/qTYV9PT4+pSW6dnZ2wwopvJn4LnR934sD9B5F8prE07kRl1V0Sbl8GnHzS8T4TQgghxxs6QoQQEkPs2rULvb29fvvNLFfr7OxEgaUQ8VK8cuxDPeOiNA4A4mwSTpshwR5HN4gQQsY7FEKEEBJDtLe3B9xvpkvT2dmJEqs+5bO/tR/JcePDESKEEEJUKIQIISSGOBZCqKurCyVW4xCdlL6UUVmLEEIIiVUohAghJIYQhVBqaqq2bZY48Xq96OrqQqmPEEpwJZq+FiGEEBLLUAgRQkgMIQqh4mI939msvp2enh7IsoxioTQOABxd8aavRQghhMQyFEKEEBJDBBNCZrk0amJcobXQsD+uTQ8RpSNECCFkPEAhRAghMURHR4e2PRpCqL29HQWWAsRJccYnmvUUNQohQggh4wEKIUIIiSFG2xFqbm72C0oAAG+TrG2zNI4QQsh4gANVCSEkhmhvb0eRpQi51lwUFRRp+80VQiV++/trPaavRQghhMQyFEKEEBJD9Lf047HU3yNeiod0QHdpzBInLS0tBkfIketAX2MfBjoHkWRJQre3m0KIEELIuIClcYQQEkOktaQjXlIS3Gz79T6e0XCEZKuMrCWZ2nOliRMAsDSOEELI+IBCiBBCYohEYZ4PGswPMGhpakGhVSm5sxZakDApQXuuNKHU1LUIIYSQWIZCiBBCYgRZlpHSqw9RHawd1LbNEifuGreWGBdfFo+EYqf2XIG90NS1CCGEkFiGQogQQmIEl8uFHClHe+zt8SJVUoSRWeKkp7lH207MTYSzRBdCedZcAEppnCzLfu8lhBBCTiQohAghJEZob29HniXPsK/Aaq5L42p1a9sJGQkGIZSFbACA1+uF2+32ey8hhBByIkEhRAghMUJbWxtyrUYhVGJXgg3MEkK9Hb3atj0lDvF5DkhxSi9S+kCG9hzL4wghhJzoUAgRQkiM0F7VDqfkNOybED8BgHlJbp5OfV6QNckGySrBWaSk1KV4UrTnmBxHCCHkRIdCiBBCYoTOQ51++4psxQDMcWj6+/sBl/7YlmgFADgLFfFlH7DDiQTT1iOEEEJiGQohQggJk88++wx/+ctf0NfXZ+pxeypcfvvyJKVUzgxh0traqs0oAgBbkjJT25Hn0PalW9IAAB0dHVGvRwghhMQytuN9AoQQMpaoq6vD2Wefje7ublRXV+N///d/TTu2p8aDRJ99WQNKgIHb7cbAwABstsj/2W5uboZT0ucGWZMUR8iRY9f2pVvSUeetQ0NDQ8TrEEIIIWMBOkKEEBIGK1eu1PpnfvWrX5l6bG+jHlktpyrbdtmOdEkJMYi2b0cRQoIjlDjkCOUIjtDQWnV1dVGtRQghhMQ6FEKEEBIGb7zxhradl5c3zCvDx9Ji1bbj5unbBdYCANGXx/k6QjbNERJL49IBAPX19VGtRQghhMQ6FEKEEBIi5eXlqKio0B4XFRWZenxHh1Ki1uXtQuIsvUiu0GLOLKGWlhZDKp11yBGy+5TGAXSECCGEnPhQCBFCSIisWbPG8NjMiGlvvxfxLkWkNHobkDo1VXvOXEdIF0KaI5QrOkJKaRwdIUIIISc6FEKEEBICg72DwB8suCvxR7BjyLkxMWLaXdMLy9A/yQ3eBmTNzNSeK7Ca4wj5CyH/HqEsWxYAOkKEEEJOfCiECCEkBD59chvm9Z6CJY5zcIHjQgDmOkLuSre23ehtQNb0LEg2CQCQZzEnQrulpQXxhtI4xRGyZ8RBsiprZduVlDo6QoQQQk50KIQIISQEjnxYoW1Pt80AYLIQqu3VtjvtnbDZbdp8nyyL4tKY4ghBEUKWBAskiyJ+JIsEe7bicqVJSo9QR0cHXC7/uUaEEELIiQKFECGEhMBAfb+2PcU2FYAiTGRZDvaW8I7fpR9fTlCOGZ+vRF2nWtIQhzhT4rMThhwhNTpbRe0TShxMhARFINEVIoQQciJDIUQIIaHQov9zWWQtQpKUBK/Xi97e3mHeFDoDXQPatiVRWSu+QO/dybRkmloaZ0v2EUJDyXEW2YJkKQUA+4QIIYSc2FAIEUJICDg67YbHqitkVnlcb2ufth2XEgcAiC/Qh59mWrJMDUtQE+NUOEuIEELIeINCiBBCRsDr8cLZm2DYN9VqrhBytej9OPY0RXSJQigrSiHU39+Pno4exEmKyLL6lsaJQkjiLCFCCCEnPhRChBAyAr11erS1itgnZMoa7XqJXXy6IoCcJjpCra2tAWcIqTgMQ1U5S4gQQsiJD4UQIYSMgKvK7bdvqsmlcZ52j7adkKkIFke+MN8nSiGklMXprpY6Q0jFOFSVjhAhhJATHwohQggZAVelf4x0qiUNeZY804RQf6celpCYlQjA6AiZI4T046kzhFRYGkcIIWS8QSFECCEj0HawXdtuTGjQtqfapplWGjfYPQgAcMtupGWkARhyaZQk66iFUENDw/COkFAax6GqhBBCxgMUQoSQEwqz5vqIdJR3aNt1JbXa9hTbFNMcIbnHCwBwyS5kZCg9Oha7RRMo0fYIvfzyy4iH7gjZhnGEchy5AOgIEUIIObGhECKEjHkqKyvx4x//GPn5+SgoKMCBAwdMPb5b6BFyTdfL5AoshaYJIbgV68clu5Cfn6/tVoeqpkvp6OnsiejQlZWV+Pvf/44EwRGy+jhC1iQrrAmKOMqwKkKso6MDLpd/WSAhhBByIkAhRAgZ07z//vuYMmUKHnjgATQ0NKChoQGvvvqqqWsMNCj9Ox3ediRPSoJsU1ynHEuuKUJI9sqw9SvCxCX3IC8vT3tOFUJWyQpLlzXg+0fiySefhNfrHTY1TpIkzX1K9iZr+1keRwgh5ESFQogQMqZ55ZVX4PF4DPuOHj1q2vG9Hi/Qprg1Td4mZOdkQ8pWHudac9HVGX2P0MBQfxCgOEK5ubna4/gCvWQt3hWPcHG73Vi1ahUAINGWqO23+cwRAvTyuPj+eNigzBuiECKEEHKiQiFECBnT1NTU+O1raWkx7fi9db2QZEX4NHobkZOTA1u+IiKckhN9LX1RrzHQ1a9tu2QXsrOztcfiUNXUwVS43f5R3sPxyiuvoLW1FQBw+pzTtf3WJH93yS4EJqRZUgGwT4gQQsiJC4UQIWRME0gINTc3m3Z8cYZQ02AjsrOzEV+oCwbZBPNpoEt3hLwOL6xWXaTE+0Roh+t2fb7xc9yXdD++k3AH5s+Yr+0fzhECgHRJ6RMy010jhBBCYgkKIULImEYVQnl5eZAkxbkxUwi5q3u1bdURSijVS8wsLdH/M9rfoTtCUqJkeE4UQpmWLDQ1NYV17ORtKZhvX4BL4pfCtlsXcL49QgBgz9KfT7GkAIDmJhFCCCEnGhRChJAxi8fj0YRBaWkp0tOVQaDmCiHBEfI2ITs7G8llSdq+uI64qNdor2/Xj5diPF58vu7SROIIoUUXVn3lehmfb2ocANjT9bVTJKU0rq2tLbz1CCGEkDEChRAhZMxSX1+vzQ0qKipCVlYWAHN7hDwtehBDT1wPkpKSkD45TdsX3+0M8K7waKnWz9eRZjc8p6bGAZE5QtZuwfkRRiwFcoTiMkQhpCTH0REihBByokIhRAgZs4j9QaIQ6ujoQH9/f7C3hYVYtuZIt0OSJCSXpWj7ktxJgd4WFm2CI+TMMAora4IVcqIybDVcR8jtdiOhPyHgc7ZAjlCGLsKSh0rj6AgRQgg5UaEQIoSMWYIJIcA8V6i/TRdCzixFpMTnOuCRFacoxZMS8H3h0NXYqW0n5yT7PW/JUtybTEsmmhpDd4RqamqQJqUHfM6aGMARSqcjRAghZPxAIUQIGbOIQqiwsBCZmZnaY7OEkLtFD0tIyVNEj2SR0GpRBEL6YIZWnhcpPc092nZqXqrf846hEIM4KQ5tDaE7NFVVVUizpPnttzgssMT5//NvF0rj0myKgKIjRAgh5ESFQogQMmYZzhEyKzDB06oEDPR4e5CVox+/I64dABCPePS3RleG19umi630Qn8Hx5mpl8t11nf6PR+MmgM1cEgOv/2B+oMAIC5dL43LsCvx2RRChBBCTlQohAghY5ZjIYQGOgYAAN1yN3JycrT93fFd2rar0hXVGh6hDym7JNvv+YRsvc+n52joazUeDFxGZw0wQwgAbMlWSDYlZS5laKAqS+MIIYScqFAIEULGLKIQKigoMJTGmSGEZFmGt1spe+uWu5CdrYsUV6IuSNoPdUS1jrfbq23nTsj1e94uJMm5W9x+zwej9UhgERPMEZIkSUuOS5aUEIje3l643aGvSQghhIwVKIQIIWMWVQjl5OTA4XCYHpYw2DMIyas4JL6OUF+KPpOnozz0crWACDojsyjD7+m4FN3BEVPsRqK7tjvg/kCJcSpqcpxzUHehWB5HCCHkRIRCiBAyJhkYGEB9fT0ApSwOgOmlcaLo6Ja7DY7QYNqAtt1T2YNosPQp/xR74Q0oUmxpeoiBzROHnp7Q1utt6g24P1BinIoamBDnjUMclO22tjbU1dWZFklOCCGExAIUQoSQMUljYyMGBwcB6ELI7NK4/nZd7HR7uw1CC0Irj7sq8tKxgYEBxA0qLozH0gfJIvm9Ji5VF0dJUmJIs4RkWYbcHvi54RwhY4S2kpLX2tqKmTNnwuFwYOHChSOuTQghhIwFKIQIIWMS36AEAKaXxvW3Gx2h9HQ90S0uK06bJdTfELlTcvToUSRKicpxbAMBXxOXqouTJCkpJCHU3t6OxCDDVENxhAAgZWioanV1Ndrb2yHLMux2e7C3EkIIIWMKCiFCyJjEd4YQAKSnp0OSFEfFHEdIFEJdBiGUlJyETlnpDfJ2ev3eGyoNDQ1IkBTBIscHPo5NcIQSLUloahp5qGp1dTXSLPr5xhfE68cb1hHShU7ykCO0a9cubZ8qOgkhhJCxDoUQIWRMUltbq22rN+dWq1UTK2YIITU6G/B3hJKTk+GWleQ4OYr07PqaBsRLikiREvzL4gCjI5QYYmmc7zDVtPn6oNZgqXGAjyM0JIQ+//xzbV9xcfGIaxNCCCFjAQohQsiYJFBpHKCXx5lSGieEJQw4BhAXJ5SoJSWhR1ZCC6Q+CfKgHPbxe+t60VShuzvW5MBOjZgalySF5ghVVVUhTVKEmzdhEImTE/V1gswRAqDFZwNAsiUZAIUQIYSQExMKIULImGQkIdTR0RF1yplYGiclGt0aRQjpVtBAd+D+nmAc/kMF1s/+AGmP6HHZjrTA/TeG0rgQHaHqqmqkD5XGWTKsSJio9wvFpQ0Tny2UxqmOULDvmhBCCBnLUAgRQsYkoiuSm6sPIRWT46J1hUQhZEsxlpMlJSVppXEAMNAVnhCqe0WJ/rZ36sIjPj0+4GutCVZgSLskBnGEZFlGZ6c+z6juSD0ckgMA4MyNR94VuUg9OQVJ05OQd7n/0FYVoyOU4vc8HSFCCCEnChRChJAxiSpybDYbUlL0G3YzZwm5W/Q5POqgUZXk5GT0ePV5Pv2doQshWZbhOuLfWJRemB7g1YAkSbANlccFis+WZRmXX3455s2bhyeeeAIA0HxIf01yUTLiUmxY9K+FOGvjmXDkOIKem12Iz06Wkv2epyNECCHkRIFCiBAyKsiyjE8++QStra2jcnz1uBkZGVpSHGBuhLa7WZ8PFJ9hdGuSkpLgQmSOUH9bPwYCCKfUvNQAr1awD5XNBXKENm7ciLVr18Iu27Fq1SrIsozmcl0EJuTrZXHidxWIuABhCSoOh8MwVJYQQggZy1AIEUJGhV/+8pc4/fTTMX/+fHR0dJh+fFXkiKVwvo+jdYT6Wj3adkK2cSZPUlKSwREKJGyCEcgNAoC4IGEJgD5UNUFKQHOT8XP98Y9/xF2JP8Jf019D0aFiVFRUIM6lO1iOnNBn/4gDVdPjjA5VUVHRiEKKEEIIGStQCBFCRoV169YBACoqKnDPPfeYeuy+vj709CgiJCMjw/CcmaVxao+QS3YhLTPN8Fw0PUKuCnfA/bZhhZAiUKySFd3N3ZBlJaWuubkZ77y6Fksc58AqWXGe7Xy8+uqrhhlCjuzgpXC+WGwWrQwv1Wp0qFgWRwgh5ESCQogQMipUVlZq27///e+xY8cO044tltv5OkJmlsZ5u5QBp93ebj/BlZycrMVnA+E5Qp0HuwLuH04Iiclxlj6rJgRXr16N1EG9hC3dko6XXnoJ6cIMIXsYjhCgzxJKgrFHiEEJhBBCTiRGRQh9/vnnOPXUU7F69Wpt3+rVq3HBBRfgvPPOw2OPPab9NhMA9uzZgxtvvBGLFi3CihUrUF9fPxqnRQg5RgwMDBgGnnq9Xnzzm9+E1+s15fiiEBotR0iWZWBI5/gOUwWAxMREuCJwhL7zne/g6fufDvhcKI4QoAQmNDU1wev14umnn0aWRf/MaZZ0bN++XZshBITnCAF6eZzT64RF+N8EHSFCCCEnEqYLIa/Xi0ceeQQzZszQ9m3atAmvvPIKVq9ejZdffhmbNm3C66+/DgDweDy46667cMMNN2D9+vWYNWuW6WU0hJBjS21trZ/o+fjjj7F582ZTji86PaPVI+R1eyENKv0wgYSQ3W6Hx6b3EIWSGifLMn7/+98jz5If8HlLfPB/kuMMs4SSUFdXh+3bt+PgwYPItOgBBk7JCQccSBMcoXB6hAA9IU+ChCQpSdtPR4gQQsiJhOlC6LXXXsOsWbMwceJEbd/bb7+Na665BkVFRcjKysJXv/pVvPPOOwCAbdu2wel04qqrroLD4cBtt92GvXv30hUiZAwjlsU5nU5t+9ChQ6YcP1RHKJTBo8EQZwh1y11+QggALEn6P6GhOELd3d0AgHyrIoTavK24p+sn8MKLpGlJSJsfPDXO5uMI1dbWat+n6AgBQJolDRkW/XuxZ4UnhAyzhITkOAohQgghJxLB6zAioKOjAy+99BKef/55PPLII9r+I0eOYOnSpdrjKVOmaLMuDh8+jMmTJ2vPOZ1OFBUV4fDhw8jP9/+tqcfjgcfjMeyz2Wyw24P/j179zbRZZTnEfHiNYp9wrtGRI0e07VNPPRUbNmwAANTX15tyjUWBk56ebjhmWloaLBYLvF4vjh49GvF6fW36vzPdcjfS0tL8jpWckwwM/c7G0+EZca2WlhY44ECmRXGt6gfrsa1/Gz762ib8fOXPAWvw71cc6JooJaG6ulorMc6UjK5YmpSOdEkRQvasuGGPGwgxOS7FkozaobcWFBTw72gU8N+52IfXKPbhNYptYuX6WCyheT2mCqEnnngCN954o2G4IQC4XC4kJenlFYmJiXC5lNp6t9uNxMREw+sTExPhdgdOVXr++eexatUqw75rr70W11133YjnV11dHdLnIMcPXqPYJ5Rr9Pnnn2vb06ZN04TQgQMHDG5RpBw+fFjb9nq9fsdMT09HS0sL6uvrI17PtV/v/+n2dsPlcvkdy5Fm14RQS3XLiGvt3bsXeVb9Fzz1XuXNBZMKUF07/Pfa4enUthOlROzbt0/7H42vI5RuSUf6UGqclC6F/R30WPQQiGSfWUJmXL/xDv+di314jWIfXqPY5nhfH7EybThME0JffPEF9uzZg//5n//xey4hIUErCQGAnp4eJCQoMzmcTqeWfiQ+L5bTiCxfvhw33XSTYV8ojlB1dTWKi4tDVojk2MJrFPuEc406O/Wb9gsuuABPP62EA3R3d6O0tNSUc1GZOnWq3zFzc3PR0tKCtra2iNdr2teEStQAUByhWbNm+fUjFZ1UBOxTtmWXPOJahw8fRr7QH1Q/qAihiy66aMT3Hp3UjDo0AFAcoc7OzqBCqNhagjhJcXWSi5LD/g6kiRY0Q+nDUoeqxsfH4+STT+YcoSjgv3OxD69R7MNrFNuMtetjmhDavn07qqqqtBK47u5uWK1W1NTUYOLEiTh06BAWL14MQPmtcFlZGQCgrKwMf/vb37TjuN1u1NTUaM/7YrfbhxU9w2GxWMbERRnP8BrFPqFco6qqKm174cKF2nZjY6Mp17etrU3bzsrK8jtmdrYSHuB2uwO6zqEw0DGobXfLSny27zr5pfkYlAdhlazwtPeP+Nna29u1/iAAaPDW45RTTsHkyZNHFBj2dP3fvSRLInbXHg4qhCZa9d+ExefHh/2dO3L0lDk1dOHppGewaeGHSDk5BfOenhvW8YgR/jsX+/AaxT68RrHNWLk+pgmhL33pS7jooou0x7/5zW9QXFyMm2++GTt37sSvf/1rXHjhhXA4HHjxxRc1V2f+/Plwu9144403cPHFF+PZZ5/FjBkzAvYHEULGBmr5VEJCAgoLC5GWlob29nbTQlCGS40DdCEEKP1EkQih/g49LMHrHITVavV7TUFhAVyyC8lSMga6Rw5LaGtrMzhCv169ErOWzQrJZYlL0f+5TpKStWQ+BxxIshjn/ZTZJmnbjtzworMBY9x2miUdNsQh05uFnnIX7JmR/SKKEEIIiTVME0Lx8fGIj4/XHjscDiQkJCA5ORmLFy/GwYMHccstt8Dr9WLZsmW48sorASgOz4MPPohf/OIXWLlyJWbMmIH77rvPrNMihBxjZFnWHKHS0lJIkoT8/HxNCMmyHHV51XADVQF/ITRhwoSQj133Wj2OPFFhiMOWEgOfb2FhIRrko0hGMuCSA77G97zzrQXa4zkXzoXDGZqwiEvTAwwSpUTU1dVBlmXkWvL8z8tSqG07csMXLmLcdpqUFtVwVkIIISRWMTUsQeTee+81PF6+fDmWL18e8LUzZ87EmjVrRutUCCHHkObmZi3sRO1NycvLw759++ByudDd3Y3k5OThDjEiqiPkcDgC9hP6CqFQkWUZe3+0D56WfsN+a6q/GwQoQuiwrLhflr7ArxFpa2vDZMsU5YETsGfGDf8GAZvPHKGBAUWoZdmy/F5rkfRyhEgcIbvgCE3NnYqp7qlAn/I4PoLjEUIIIbFI7BfvEULGFGKqWElJCQAYSl3NKI9THaHMzMyA7lKkQqin3OUnggDAnhbYBSkoKIBLVsJerF4rBvuGjwttbWlFtiUHAGArsIXljFnjrbA4lH+ykyS91M+3P8iX+LzwhYst2aoNd52SNxV/XfWK9pzYP0QIIYSMZSiECCGmIgoh1RH6/+3dd2BUZb4+8GdaeiCdVBJKQpUmIAGCgBgWVIoSFXRREHHVVXFld138qZRFr7i46xWvoEhRUZqr0ouCoCBVlNAEEkggjQRCQnoymd8f43lzTjKZTKakzDyff+6ZM+e8c+YehHn2+77fY+8gJFWEaj9MVWJtECo4XmByv2eQh8n9QUFBKFXVtPpv6KGqJddKoVUZKztWBZTfq0LeqprHETQUhKypCKlUKhF4KnLLUX6t5plK7lZcNxERUUvEIEREdmUqCIWG1qxjyc7Otmn80tJSlJWVATC9PggAQkJCxHZjglD+sZt19hVV34JXsJfJ41UqFSDLSFWFdatJcpW5Ne97hze+gYOujXEqnXc9FSGVW90KkzVBCADcg41VsIrrlSjLKKvZz4oQERE5CQYhIrIrR1eE5B3j7F0RuilVhFSA+5s67CrficXF/4JfoF+956h9asJHyfWSeo8DgOr8mqlzPpFWBKHfK0JeKi+oYPzcQFkQco9VhhRtWy00Hg2vXTLFLbhmOuCtM7dqPoNrhIiIyEkwCBGRXcmfIeSIINRQxzjAuiCkL9Xj1mnjD36fOG8UBhfg3eJ/40jlYfj7+9d7nlvbmsCQfSmnzvsGgwHVFcYApC6wrYmBNDVOrVLDS2WsUkkVIZVGBY9Y5VomWxobyK+vMFkWhNg1joiInASDEBHZlVQR0mg0IgDZc2qcJRUheUCyNAgVJhfCUGVsge13u58icNX3OQDgEVDTtS43XflZ1VXVOHTPEXwbtxc3fsqHrqSmS5w1QUjeQtvn93VCUkXIvZ0btMHKRqC2VG/cZRWhsszfp8aplJUiIiKi1oxBiIjsSqr4hIaGQqs1/jBv6oqQVqsV4cXSIHRT1ijB7/a2yM/PF6/NVYR8gmqmuOVn5Cveyz98E/mHb6LqVhXSVqfDs6JmrZFVba0D5M/3MT7o1F9tvDb3cA9o/O0XhOQttMW+IDeotfxng4iInAP/RSMiu6murhbBo127dmK/n58f3N2NP6ybYo0QUDM97tq1axaNa20QahPWRmwXZhcq3iv6rajmvfO34K+qGceaaWseYTXnBKoDEagOULynDVCuB7Klw5upKXBcH0RERM6EQYiI7CY/Px96vR6AsnObSqUS0+NsnRpnSUUIqAlCRUVFosucOVIQ0nhp4NPNx+IgFBBRE0aKcosU7xWdq3ldmlqKAFlwsab7mkdYTYu6QHWQomOcR5gHtIG1gpAtU+NMXB/XBxERkTNhECJyMevWrcOwYcOwfft2u48tr77IK0JAzfS4vLw8VFRUwFryipAlQQhoeHpcxfUKlKYbnwfUtk8bqLVqRRAyV3kKiqoJI6U3lIHrlqwiVH2rGtGaGABApa4SGq/Gd3Nzl1WEgtSBCFLXfEePSA9oApRT42xqlsCKEBEROTltw4cQkTN54YUXkJOTg8uXLyMtLc34LBw7kQcheUUIUK4TysnJQVRUlFWfYWkTg9pByNznlV6peShqSVtjC+y8vDyxz1xFKLRjKDJgnO5XWes5QkW/FStet1Ebp9FVeZt/8Gp95A9hDVQHochQE7Q8IzxgCNQrjretWYKpihCDEBEROQ9WhIhcSGlpKXJyjC2er1y5glOnTtl1fGlswHwQsmV6nCMqQldPXxXb3x3/FuXl5Th06BAAY9hq06ZNfafCN9hHbFcX1QSRiusVqMg1XfkytK02ub8hyqlxgQiuVRFSe6sVD1W1ZY2QxkcDtafynwhbKkxEREQtDYMQkQupHUDsPT3OXEVI3kK7MQ0TioqKFNPUrK0ImZNzvua6T1w6gU8//RRFRcZqy3333Qe1uv6/KrVtZIX1UhUMBmMLbnmjhNrUAdb91av11ULrY5xSF90mBr2j+oj3PCM8oFKpFJUcW4KLSqWqUwHi1DgiInImDEJELqQ5g5A1LbRv3LiBzp07IywsDN9++y2AmoqQt7e36ERnSmOCUGF6Tbe3/OobmD17tng9YcIEs+dqfWuCkIfBEzdv3gQA3DpXfxCy5Vk87r9XhQLUAega1A0AoNKpxJg+XYztvD0iPRTXZtVn1bpOBiEiInImDEJELqR2APnxxx9RWFhYz9GNZ2kQsnRq3L59+5CTk4Py8nLcfffdOHPmDFJTUwEAQUFBZs9tTBAqyapZI5RfnY+CAmMHOU9PTyQmJpo9V61To0ptXPPjpfIS/z8uMhOEPGVT3BpLaqGtL9ajJMW4BskzwgMqtXFKXLc3uqDDM9Hou7y31Z8hqb1OiF3jiIjImTAIEbmQ2gGkqqoK3333nd3GN9c1zpqpcfKGBQAwaNAg0Qq7oUpNY4JQZW5Nk4Mbhpqpd4mJifDy8jJ1ikK1u3FtkLfKC5mZmQCUjRLyq28ojveN9G1wzPrI1wlVVxin4XlE1uzz7uSNbgu6wn+An9WfIXFrV6sixGYJRETkRBiEiFyIqQBiz+lx8iAkDyKAdVPjagehW7duAQCio6OxYMECs+c2JgihoKbBQH71TbHdUNgSfs9K8opQwdnC38fLx7mqc4rD20a3tWxcE0w1QPCM8LR6PLOfJasIabw1Nk+1IyIiakkYhIhciKkpadu3bxcL/G0ldY3z8/ODm5uymhASEiJadVs6Na52EJKsWLECvr7mqyqNCUJuxToAQGF1IapgrA6p1Wrce++9Fl2n5veA4KXyRlZGFiquV6DqunG6XLo+DRn6q4rjAzvV3+2uIR5hJoJQpPVT7cyRrxHitDgiInI2DEJELkReienZsycA4OrVq2I6l62kilDt9UEAoNVqRTixpiIkdW6bPXs2Ro4c2eC5bm5u8PPzA2A+eBkMBnhWGEs6BbiJiRMnAgAefPDBBtchSdzDjCFBrVIj/+JNRce4dH0ain1rPU8oyj5T48Q+RwUh2VQ4NkogIiJnwyBE5EKkQKBWqzF8+HCxPyUlxeaxy8rKROMFU0EIqJkel52dbVEVSl7JuXjxIpKTk7Fo0SKLr0l6iOrVq1dRXV332T3lOeWovFEJNxiDTIlbCdatW4cTJ4wttC3l26km2JReLsUt2fqgdH06Rj4yQryuQhV0ATqLx67NdEXIMVPj3ELkFSEGISIici4MQkQuRKrEtGvXDnFxcWK/PYKQPLQ0FIQqKysVzwOqj1QRUqlUaN++PXr27Cmm11lCCkIVFRWK9Uun3j+NdZEb8F3373FxfarYX+ldCZ1Ohz59+kCrtXw9TFD3msqRPrsaxRdrglBx22KM/9ME8bpIU9So71CbqYqQZ4RjKkK+XX3Ec4v8B/o55DOIiIiaC4MQkYuorq4Wa3hCQ0PRqVMn8d7FixdtHt9c62xJYzvHSUEoMDAQGo2m0dfUvn17sX3lyhUAwLFjxzB/wXz4lrYxvn7/WM0JVvYw8IurOVGXr0Vuck0oDOsbhnaxISjzNXa78+xiW2hxC3Gr8ze3h4OCkK6tDvE7B6Hvyt6IntG+4ROIiIhaEbYAInIReXl50OuNbZ7DwsLQuXNn8Z49KkLmWmdLaneOk9Yp1UeqMlm6Vqc2qSIEAOnp6dDpdEhISIB/hT8e95sOAPDPChDH6IKt+yvRK7pmappXsTcKLxRCAy3KDGXoObQHVCoVRm0egeytOYicEmnVZ0jUWjXcg91RnlNuvGZ/HbQ+WpNT/+zBt6sPfLv6OGRsIiKi5sQgROQi5A0DQkNDERMTA7VajerqarsEIanaBDQ8NQ5ouCJUVlaGoiJj0wFrg1DtitDOnTtRVlaGLGQhv/oG/NUB0KCm0uQV2vAzg0zxjPRENaqhhhqhhlCoco0lm0x9Bvrd3g8A0Oa2NmhzWxurxq/NI6wmCDmqYxwREZGz49Q4IhchDx5hYWFwc3MTQaE5psY11EJb3jGu9jOJLFW7InT27FnxOtO3bqe8NtHWBRW1mxolniUAgBhNB6gNxr9aM/QZuO2226wa0xz5OiFHTYsjIiJydgxCRC6idkUIgFgndPPmTYuaF5hjSRBqTEVIHoTsVRE6f/68uA7PPnU7rQXZ8HyfSr8KAMYW2pLrujxERERYPWZ93GWd4xzVMY6IiMjZMQgRuYjaFSEAdm2Y4MggZG1FKCIiQnRoO3nypLjGLl26oMPo6DrHh3YNrbPPUqp2dTvBaSO1NnWIq4+8IsSpcURERNZhECJyEfKKkBRI7Nkwwd5T4+TtuK2tCLm5uYnPlKpBABAXF4eBkwaixFDT5rrSUIGIOOurNx5RdQOJX1cr29A1wK9fzbh+/f0c8hlERETOjkGIyEXIKzC1p8YB9qsIabVa+Pn5mTzG29sbvr6+da7HFHtMjQOU64QkXbp0QXC7YKS5pYl9Nw034e/vb/XntI2tu76o/UDHtJwOvDMAfVf2Rr9P+iAg3vprJiIicmUMQkQuwtQaIXtWhKSucSEhIVCr6/+rRapGNcXUOEC5TkjSpUsXAEBlh0qxr0hXbNM0tpAeymu8VX0L3QZ2s3o8c1QqFcLGhSL0HtNtyomIiKhhDEJELkIKHm3atIGXl7FNdMeOHcX7ja0IXbx4EVevXgUAGAwGURGqb1qcRApht27dQnFxcb3H2WNqHFB/RQgAgofWjFvhWWH1ZwBAZD/l84Eyqx3TMY6IiIjsg88RInIRUkVI3rDAx8cHoaGhyM7OblRF6PDhwxg0aBDUajXeeecdlJaWoqqqCoByHZAp8s/Pzs5WTM8DgIMHDyIgIMBhFSGdToeYmBgAQJ9JvXH4w2OI0cYgNzrHxNmW84vyQ4mhBF4qY8i84XYDAQEBDZxFREREzYUVISIXUFxcjFu3bgGoG1SkIJKdnS0eYNqQ7du3AwCqq6sxa9Ys/OMf/xDvPfHEE2bPNdc5bvny5RgyZAj69++PY8eOif32rAh16tQJWq3xfwPqN7AfDvxhP2brXkTi/Lut/gzAOF0tXytrQR5qsGk8IiIiciwGISIXkJlZ8/DQ8PBwxXvydUKpqakWjXflyhWT+998801MmjTJ7Lm1K0KSwsJCEaiKi4tx6dIlAICHh4eYymeN2hUhaVocYAwva9atwems0xg+fLjVnyEp9q6Z6ucb62vzeEREROQ4DEJELkBaywMAkZHKtSzyqWmWTo8zFYTmzJmDl19+ucFz5RUpeUVo8eLFiulwkuDgYJuaGNSuCMXFxdU5xl7P+ikJKQEAVBuqERZv/TOJiIiIyPG4RojIBWRkZIjtiAjls3Kk9TIAkJaWBktIQcjLywtpaWnIzs5Gz549LTrX1NS47OxsLF682OTxtkyLA4zNG9zc3FBRYWyGIK8I2Zvhbj3WJn+BK/p0vH/PEod9DhEREdmOFSEiF2CuItTYIGQwGJCeng7AWG0JCgqyOAQBpoPQokWLRAe5Dh06KI63pVECAKjVasV3dmQQeualZxD8dCAeeX8Kunfv7rDPISIiItsxCBG1ECkpKVi3bh0qKysbPriR5EGodkUoOjpabF++fLnBsfLz81FSYpwCZqo1dUPkny8Fqv379wMwhpbt27dDp9OJY2ytCAHKcOXIIOTv74/FixdjxowZDvsMIiIisg8GIaIWoLy8HPHx8Xj44Yfx7LPP2n18+dS42hWh8PBw0UXNkiAkXx9kTRDy9/eHv78/gJo1SVKThqioKHTp0gVjxowRx9sjCP31r39FTEwM/vrXv9pcYSIiIiLnwCBE1AJcuHBBPEB0+fLlSE5Otuv4UkVIrVbXaZ+t1WpFoLFkapw8CNXuyGYpqUFDeno6cnJykJ+fr9g/ZcoUcay8YmWt0aNH49KlS1i0aJHNYxEREZFzYBAiagHklRiDwYA5c+bYdXypIhQaGiqqP3JS2MjPz0dBQYHZsWytCAE1LbsNBgO+++47sb9jx44AgEmTJuGFF17Agw8+iKlTp1r1GURERETmMAgRtQC1KzFbtmwR62ZsVVlZKZ7XU3tanKQxDRPk642sDULylt27du0S21IQ0mg0+M9//oN169bZZWocERERUW0MQkQtgKm1Oa+//rpdxs7OzobBYABQt1GCpDFByJ4VIQDYvXu32JYHJCIiIiJHYhAiagHk4cPHxwcAcPDgQej1epvHNtc6W9KYznH2rghlZmaKbakiRERERORoDEJELYAUPlQqFYYNGwYAqKioUIQOa5lrnS2xpiLk5+cnQltj1Vf5YRAiIiKipsIgRNQCSOEjIiJC8SDOCxcu2Dy2udbZEksqQtnZ2YpwZm01CDA+VNXT01Oxz8/PDwEBAVaPSURERNQYDEJEzaykpATXrl0DYAwksbGx4r2LFy/aPL4lU+MiIyOhVhv/OjAVhObMmYOIiAiMGTMGFRUVAGwLQiqVqk5ViNUgIiIiakoMQkTNTD4VLSYmRtFIwN4Vofqmxul0OhGSak+NW716Nd58800AwKVLl8R+W4IQoGyYADAIERERUdNiECJqZvLg4eiKUH1BSPpsAMjLy0NxcTEA4MiRI3jqqadMHm9rEKpdEWLHOCIiImpKDEJEzUw+FS0mJgYRERHw8PAAYN+KUEBAQJ11OXKmGibMmDED5eXlAIBu3bopjrd3EGJFiIiIiJoSgxBRM6tdEVKr1SIkpKSk2NRCu7q6WgSh+tYHSeRB6PLlyygpKUFycjIAYwg6duwY2rdvL47p0qWL1dcFcGocERERNS8GISILbd26FU8//bRdpqvJ1a4IATUhwdYW2nl5eaK5gblpcUDdznHyB6f27dsXHh4eWLduHR5++GG88sorGDhwoNXXBXBqHBERETUvbXNfAFFrcPbsWUyYMAFVVVXIzs7GV199Zbex5RUhqeJSe52QPKRYwmAw4MiRI/j666/FvoYqQh06dBDbly5dQnp6ungtTYNr164d1qxZIzrM2aJ9+/bQarWoqqqCRqOxeaodERERUWOwIkTUAIPBgGeffRZVVVUAgF9//dWu40sVodDQULE2yNrOcVVVVVi6dCl69eqFQYMG4X/+53/Eew0FDXkQSk1NVVSEHBFStFotBgwYAADo378/tFr+7zJERETUdPjLg6gBa9euxd69e8XrtLQ0VFRUwM3Nzeaxy8vLkZWVBUC5RkcehBozFW/u3LlYuHBhnf1RUVGYPHmy2XOjoqKg0Wig1+tx6dIlRRCSrw2yp08//RQbNmzApEmTHDI+ERERUX1YESIyo7i4GC+99JJiX3V1dZ1n7VhLPv1MPv3N2hbaP/zwg9gePHgwli5dipMnTyI1NbVOc4LatFqtCDypqakmp8bZW6dOnfDyyy83eG1ERERE9saKEJEZu3btEhUbqVoCGMOJPKxYKyUlRWzLK0KRkZFwd3dHeXl5o6bGSQ88DQwMxIEDBxp9PR07dsSlS5dQUFCAkydPiv1cv0NERETOhhUhIjN++uknsX3PPfeIbXmAscXZs2fFdteuXcV27Rba1dXVDY4l7zAnX+/TGPLzfv75ZwCAl5cXAgICrBqPiIiIqKViECIyQx6EHn30UbFtrxbaZ86cEdvdu3dXvCdNFysvL1es16lPeno6DAYDAOuDkPxZPlL4ioqKgkqlsmo8IiIiopaKQYioHhUVFTh69CgAY0AYPHiweM/RFSFA+cDS3377rcGxpGlxgH0qQhJOiyMiIiJnxCBEVI9ffvkF5eXlAID4+HiEhYWJ9tb2qAgZDAZREYqIiECbNm0U78uD0blz5xoczx5BSF4RkjAIERERkTNiECKqh3xaXHx8PNRqtQgKqamponGCta5du4b8/HwAdafFAc0ThEyd56jW2URERETNiUGIqB61gxBQs26noqICGRkZNo0vnxbXrVu3Ou83RxAKCgqCj4+PYh8rQkREROSMGISI6iEFIS8vL/Tq1QsARCc3wPZ1QuYaJQBAQEAAQkJCAFgWhC5fvgwAUKlUimcSNYZKpaoTohiEiIiIyBkxCBGZkJGRIR4oOnDgQGi1xkduyR/8aes6oYYqQkBNVSgrKwsFBQVmx5MqQuHh4XB3d7f6umqvE+LUOCIiInJGDELUqun1ekybNg39+vXD6dOn7Tau/GGk0rQ4wL4VocYEIcB057iVK1eiZ8+e+PDDD3Ht2jUAygezWoMVISIiInIFDELUqm3evBmrVq3CiRMn8N5779lt3P/+979i+8477xTbjpgaFxQUhODgYJPHmFsnVFhYiGeffRanT5/GU089JfZbuz5IIq8I+fv7w9vb26bxiIiIiFoiBiFq1T788EOxbck6mtqqqqqQnp6Oqqoqsa+oqAibNm0CAAQGBmLkyJHivejoaGg0GgC2TY27efMmsrKyANRfDQKUQUheQQKADRs2oLS0tM45tgYh+fmcFkdERETOikGIWq20tDTs2LFDvD5//nyjx5g4cSKio6PRpk0bDB06FFu2bMGmTZtEwEhKSoJOpxPH63Q60Yjg4sWLMBgMFn3OsWPH8Oijj2L37t0ALJsWB5ivCK1evdrkOfasCHFaHBERETkrBiFqtVasWKEIIllZWSgqKrL4/JKSEmzZsgUAUFpaigMHDmD8+PFYsGCBOObhhx+uc57U4a2oqAhpaWkWfdZzzz2HNWvWIDExEenp6Th+/Hid8Uxp3769eIirPAilpKTghx9+AACo1cr/jG0NQl27dkVCQgK0Wi2mTp1q01hERERELRWDELVKVVVV+Pjjj+vsv3DhgsVjXL16VWxLXeGqq6tF4AgPD0dCQkKd86RW2gBw8uRJiz7r0KFDYvvJJ5/EvHnzxOsBAwbUe55Go0FcXBwAYwWqsrISAPDJJ5+IY1577TVERESI1/J1TNZQq9XYt28f8vLykJSUZNNYRERERC0VgxC1Stu3bxcPNJVXRBozPU4ehF544QX84Q9/ULz/0EMP1am2AI0PQlJ4kezatQt5eXkAjFPz5F3pTJGmx1VVVSE1NRXV1dViWpxarcaTTz6JFStWIDw8HE8++aRdprOpVCq0bdvW5nGIiIiIWiptc18AkTXkTRIee+wxrFy5EoD1FaHo6GjMmTMHt99+u3gw6eTJk02eJw9Cv/76a4OfI7W1ri0wMBAffPABVCqV2fPl64ROnz4NvV4vpuSNGjUK4eHhCA8PF8GQiIiIiBrGihC1OlevXsW2bdsAAJGRkXj++efFe9ZWhCIjIxEQEIBt27Zh3LhxePPNN+udshYbGyseWGpJRSg7O9vk/iVLlqBdu3YNnl87eMk/c9iwYQ2eT0RERER1sSJErc6KFStQXV0NAHjiiSfEGhrA+opQZGQkAGMHt2+++cbseVqtFj179sTx48dx4cIFlJSUwMvLq97j5UFo5syZqKysRL9+/fDQQw9ZdJ19+vQR27/88gsqKirEa3lIIiIiIiLLsSJErYper8fy5csBGNfHTJ8+HV5eXmJdjC0VocaQAojBYMDp06fNHisPQn379sWKFSvw5z//ucEpcZIOHTrA19cXQN2KEIMQERERkXUYhKhV2blzJ65cuQIAGDNmjHjgp1QVunHjBq5fv27RWFIQ0mq1CAkJadR1NKZhgjwIhYaGNupzAGPgkz4vLS0NP/30EwCgbdu2fOApERERkZUYhKhVkdYGAcCMGTPEtjXT46QgFB4eDo1G06jraEzDhJycHLFtTRAClNPj8vPzxTVYWlUiIiIiIiUGIWpV5CFn8ODBYjs2NlZsWzI9rqysDLm5uQAaPy0OAG677Tax7eiKEKAMQhJOiyMiIiKyHoMQtSoXL14EAPj6+iI4OFjsb2xFKDMzU2xbE4SCg4MRFhYGwBiEDAZDvcfKg5AlXeJM6d27d519DEJERERE1mMQolajsrJSPD+nU6dOimlh8iBkSUXIlkYJEimc5Ofnm32GjxSE2rZtC09PT6s+q2fPnnUe7sogRERERGQ9BiFqNdLT06HX6wEAnTt3VrwXExMDrdbYDT45ObnBsewRhLp37y62z507V+9xUhCythoEAJ6enooHq6pUKvTs2dPq8YiIiIhcnd2CUEVFBebNm4exY8fizjvvxMyZM8U0JgBYtWoVRo0ahZEjR+Ldd99VTCU6ffo0Jk+ejCFDhmDmzJnIysqy12WRE5H/eerUqZPiPZ1Oh379+gEAzp49q2hQYIo9gpA8mNQOQocPH8b777+PzMxM3Lp1C4D164Mk8ulxnTp1go+Pj03jEREREbkyuwUhvV6PiIgIrFy5Env27MGwYcPw0ksvAQB+/PFHbNy4EatWrcL69evx448/YtOmTQCMAepvf/sbHn74YezZswc9e/bEa6+9Zq/LIieSkpIitmtXhABg5MiRYnvv3r1mx7J3EPrtt98AALm5uXj88ccxaNAg/PnPf8aUKVPEMbYGIXnDBE6LIyIiIrKN3YKQp6cnZsyYgXbt2kGj0eChhx5CZmYmbt68iW3btmHSpEmIjIxEUFAQHn30UWzfvh0AcPz4cXh6emL8+PFwd3fHk08+iTNnzrAq1IqlpaXhyJEjOHLkCG7evGm3cc1VhABlENqzZ4/ZsewRhLp16ya2z507h4KCAgwcOBCrV68W+/ft2ye2bQ1CgwYNEtsDBw60aSwiIiIiV6d11MAnT55EQEAA/Pz8cOnSJYwdO1a8FxcXh/fffx8AkJqaqvhf9z09PREZGYnU1FTRlUuuoqICFRUVin1arRZubm71Xkt1dbXi/5LjrF69GtOnTxevvb298fPPP5us4MhZco/kQahDhw51jo2Pj4dOp0NlZSX27NljdiwpCKnVaoSEhFj1ZyMgIACBgYG4fv06zp07h40bN+Ly5cv1Ht+uXTub/gwOGTIE//znP3H16lX86U9/avI/z/zvqGXj/Wn5eI9aPt6jlo/3qGVrKfendoOp+jgkCBUVFeGNN97AM888AwAoKSlRrGfw9vZGSUkJAKC0tBTe3t6K8729vVFaWmpy7JUrV+Kjjz5S7EtKSsKDDz7Y4HVduXKlUd+DGu+DDz5QvC4uLsa///1v/O1vf7PofHP3SFqH4+bmBr1eLzrIyfXt2xdHjhxBSkoKDh48iIiICADG/yAPHjyItWvX4vz58+Lc4OBgRSvtxoqJicH169dx9epVfPPNN2L/5MmT8cUXXyiO1Wq1Jq+5MaSpdjdu3MCNGzdsGsta/O+oZeP9afl4j1o+3qOWj/eoZWvu+9OhQweLjrN7ECovL8dLL72EoUOHYvz48QAALy8vFBUViWOKi4vh5eUFwFgBKi4uVoxRXFxcb5vhadOm4ZFHHlHss6QidOXKFURFRVmcEKnxKisrcerUKQBAYGAg8vPzUV1dje+++w5LlixRtLuurfY9OnXqFM6dO4f7778farVavA8AHTt2rPcP+JgxY3DkyBEAxjbagwcPRkZGBsaOHSuuTa5Tp06Ijo62+jv37t0bx48fBwDs3r0bAKDRaLBo0SJs2LABVVVV4tgePXrY9FnNjf8dtWy8Py0f71HLx3vU8vEetWyt7f7YNQhVVVVhzpw5CA4OxqxZs8T+Dh064OLFixg6dCgA4w/Ujh07AjD+qP3qq6/EsaWlpbh69ap4vzY3NzezoccctVrdKm5Ka5WcnCwqeYmJicjMzMS+fftw4cIFnD171qJ2z2q1Gjk5ORg2bBgKCgrw6quvYv78+cjMzERZWRkAY6OE+u7jXXfdhXnz5gEAvv/+e0yfPh2rV69WhCAPDw+4ubkhICAAr7zyik1/JuTrhKTr6927NyIjIzF8+HB8++234v2wsDCn+PPH/45aNt6flo/3qOXjPWr5eI9attZyf+x6hQsXLkR5eTnmzp2r+F//x44diy+//BIZGRnIy8vDmjVrMGbMGADA7bffjtLSUmzevBkVFRX4+OOP0b17d5Prg6hl++mnn8T24MGD8cADD4jXX375pcXjrF27FgUFBQCAJUuWoLS0VNExzlSjBMkdd9whqol79uyBwWDAoUOHxPurVq1CYWEhCgoK6qxds4a8c5wkPj4eADBu3DjFflubJRARERGR/dgtCGVlZWHz5s04ceIERowYgYSEBCQkJODEiRMYOnQo7r//fkydOhVJSUkYMmSI+JHo5uaGRYsWYc2aNRgxYgR+/fVXzJ8/316XRU1IHoTi4+Nx//33i9eNCULytTX5+fnYuHFjg62zJW5ubkhISAAAZGRk4Pz582KqXEBAAKZOnQqdTmfxtTTEXBC67777xD6VSoXg4GC7fS4RERER2cZuU+PCwsJw7Nixet+fNm0apk2bZvK9Hj16YO3atfa6FGomUhDy9PREr169oNPpMGjQIBw6dAjJycm4cOECYmNjzY5x4cIFHD16VLFv6dKluPPOO8VrcxUhwNhGe9euXQCAFStWIDc3F4Cx5bS5dUrWiImJgZubm6KToRSEYmJiMGDAABw9ehRdu3a1awAjIiIiItu0/Ml71CpkZWWJ1tEDBgwQP/rl0+P++9//NjjOunXr6uw7ePCgYh1ZQ6245c8Tknexu+OOOxr8/MbSarWKcBcSEqJo5LBmzRrMmTOnTgc5IiIiImpeDEJkF7WnxUnk62R++OEHs2MYDAZFYJC33JZaZ+t0ugY7r/Xt2xdt27YFANy6dUvsd9RDSOXT4wYPHqyoOsXGxmLhwoXo3bu3Qz6biIiIiKzDIEQWMxgMWLp0KT788EMYDAbFe/UFodjYWAQEBAAADh8+XOc8uePHj4vAk5CQgH/84x+izTpgDEHz589vsGugVqtVTKWTNEUQkn93IiIiImq5GITIYlu3bsXTTz+Np556Chs3bhT78/LyFFPa5GFApVKJAJKXlyemz9VmMBjw9ttvi9fTpk2Dn58fPv/8c4wdOxbz5s1Deno6Xn75ZYuuVT49DjC2aQ8KCrLo3MYaP348VCoV3N3dFVMBiYiIiKjlYhAii8nbUH/++ecAjA9RffDBB8XDTkeMGIGQkBDFefK1OYcPHzY59rZt20SThC5duuCPf/wjAGPI2Lp1K1577bVGtZ+uHYQcsT5IMmDAAFy6dAmXL19usJEDEREREbUMDEJkMWnaGgDs2LEDRUVF+Pvf/469e/cCMD4n59NPP61znnxKmtTKWk6v12POnDni9RtvvAGt1raGhj169FC0q3ZkEAKA6OhoPieIiIiIqBVhEHIR33zzDTp37ozg4GCEhITgscceg16vb9QY8iBUVlaGRYsW4T//+Q8A4/qdL7/8EhEREXXOkwchUxWh119/HadOnQJgDCwTJ05s1HWZolarMWLECPHa0UGIiIiIiFoXBiEX8fe//x0pKSnIy8tDbm4uPvnkE2zatMni86uqqnDhwgXFvgULFojmBwsXLsTgwYNNnhsUFCSmjP3888+orKwU7y1cuBALFy4Ur9966y27PevnlVdeQY8ePfD4448zCBERERGRAoOQC8jLy8Nvv/0GAIqOa8uWLbN4jMuXLyseGioXERGB5557zuz5UlWorKwMycnJAIDPPvsM/+///T9xzNy5c5GQkGDxNTWkV69eOHXqFFauXGn3B6kSERERUevGIOQC5E0OnnnmGcTExAAAdu7cidTUVIvGkE+LU6uVf2xeffVVeHh4mD1fXpGR1gktXbpU7Hv77bcxdepUi66FiIiIiMhWDEIuQP6MnyFDhmDmzJni9UcffWTRGGfPnhXbSUlJYrtjx46YPn16g+fL1wkdOnQIZWVloktcbGws/vKXv1h0HURERERE9sAg5AIOHjwotuPj4zFt2jTRlW3FihX1TnmTk1eEZs2ahdGjR8Pf3x8fffQRdDpdg+f37dtXVI12796No0ePis8dOnRoo74PEREREZGtGIScXFVVlZiKFhUVhYiICISGhorObNeuXcPWrVsbHEcehHr27IkdO3bgxo0bdZ7XUx8PDw/cddddAIDMzEz87//+r3iPQYiIiIiImhqDkJNLTk5GSUkJAGM1SPLoo4+KbfkaIlMMBoOYGhcZGQkfHx+rrmXcuHFie+PGjWKbQYiIiIiImhqDkJOTrw+SB6H+/fuL7V9++cXsGHl5ecjPzwcAdO3a1epruffee+vsCw4ORmxsrNVjEhERERFZg0HIydUXhMLCwhAcHAwAOHHihHgekCnyaXG2BKHw8HBFAAOM1SC2tiYiIiKipsYg1MxWrVqFvn37onv37ujVqxfee+89u44vBSF3d3f07dtX7FepVOjTpw8AIDc3F1lZWSbPLyoqwssvvyxe2xKEAOC+++5TvOa0OCIiIiJqDgxCzSg/Px9PPfUUfvnlF5w9exbJycl44YUXcOnSJbuMf/36daSkpAAA+vXrp3iYKgARhADT0+NKSkpw3333ia5zgYGBitbZ1pCvEwIYhIiIiIioeTAINaP//ve/ooW0RqMBYGxMYOmzfRry888/i+0BAwbUed9cECorK8PEiRPx/fffAwD8/Pywe/duhISE2HRNvXv3Rvv27QEA3t7eiioVEREREVFTYRBqRmvWrBHbX331VaOf7SMpKyvD/Pnz8fnnnyvW+hw7dkxs116bA9QfhCoqKpCUlIRdu3YBAHx9fbFr1y67hBaVSoUPPvgA8fHxeP/99y16BhERERERkb0xCDWTjIwMUW3p3Lkz7r33XkyYMAEAkJOTg2+++cbisd588028/vrreOSRR7B06VKx//jx42L79ttvr3NeXFyceMipPAj97W9/w5YtWwAYqzbbt283WVGy1tixY3Hw4EE89thjdhuTiIiIiKgxGISaybp160T15pFHHoFKpcKf/vQn8f6yZcssHuvLL78U288//zz2798PoKYi5O3tjS5dutQ5T6vV4rbbbgMAXLx4Ebdu3YLBYBCVKnd3d2zZsgVDhgxp5LcjIiIiImrZGISaiXxa3JQpUwAAI0aMQOfOnQEA3333HVJTUxscJy0tDadPnxavq6qqMGnSJPz6669IS0sDYGyUIK1Bqk2aHmcwGJCcnIycnBzk5eUBAIYNG4bhw4c3+rsREREREbV0DEIOVFBQgP/7v//D4cOHFfvPnTsnGhn0798fcXFxAAC1Wo3p06eL46TpaeZs27ZNbHt7ewMwtsOePHmy2G9qfZCk9jqhX3/9Vbzu1atXg59PRERERNQaMQg50Isvvohnn30WgwYNwrRp00Sl5YsvvhDHSNUgyT333CO2pWYF5mzdulVsf/XVV/Dx8QEAnD17Vuw3tT5IIm+AcPjwYZw8eVK8ZhAiIiIiImfFIOQg5eXl2LBhg3i9atUq9OrVC1evXhXT4lQqFR5++GHFebfddhtCQ0MBAHv37kV5eXm9n1FaWoo9e/YAAMLCwjBq1CjFOiOJuYpQv379RMOEvXv3siJERERERC6BQchB9uzZg6KiIsW+rKwsjBs3TjzkdOTIkQgLC1Mco1KpkJiYCMD4QNMDBw7U+xl79+5FaWkpAGMnNpVKhRdffFHx4FRfX1/ExsbWO4a7u7t4qOmVK1ewY8cOAMZGCt26dbP06xIRERERtSoMQg7y9ddfi+0lS5YgMDAQAHDixAmx/5FHHjF57ujRo8W2uelxa9euFdvSlLrw8HBMnTpV7O/Xrx/UavO3ecSIEWL7+vXrAICuXbvC3d3d7HlERERERK0Vg5ADVFdXi+cAeXp6Ytq0aVi4cKHiGHd3d9x///0mzx81apTY3rlzp8ljsrKyRBDy9/dXhKe//vWvIsRI1SVzRo4cWWcfp8URERERkTNjEHKAw4cPIycnB4AxiHh5eWHGjBmKxgT33nsv2rZta/L8kJAQ9OvXD4Cxk5s0FgBUVFQAAD744ANUVlYCAJ566il4eXmJY+Li4rB//36sXLkSL730UoPXe/vtt4smCxIGISIiIiJyZgxCDiCfsjZhwgQAgEajwfvvvw9PT09oNBo8//zzZseQV3ikdTuPPfYYvLy88Oijj+KDDz4AYFzL8+yzz9Y5f+DAgXj88cctmt6m0+mQkJCg2McgRERERETOjEHIzrZt24b33nsPgDGk3HvvveK9+Ph4nD59GmfOnMGwYcPMjjN27Fix/dVXX+H8+fP45JNPoNfrsWbNGtGKOykpCZGRkTZfd+3pcQxCREREROTMtM19Ac7k/PnzmDJlCgwGAwDgtddeQ1BQkOKYDh06WDRWfHw82rVrh5ycHOzcuRPdu3c3edyLL75o20X/Tt4wISAgAOHh4XYZl4iIiIioJWJFyE4KCwsxYcIEFBQUAAAmTpyIV155xerxNBoNJk6cCAAoKyvDv/71L/FeUlISdDodHnvsMQwYMMC2C/9dnz590L59ewDGUKRSqewyLhERERFRS8SKkJ389ttvyMrKAgD06NEDq1evbrBtdUMeeOABLF26FABEY4Q77rgD69evR2VlJXQ6nW0XLaPRaLBjxw7s3LkTkydPttu4REREREQtEYOQnQwYMABHjhzB9OnTsWrVKvj6+to85p133omAgADcuHFD7HvwwQcBwK4hSNKtWzc+RJWIiIiIXAKnxtlRbGws9u/fj06dOtllPJ1Oh3Hjxin2TZo0yS5jExERERG5MgYhO7P32poHHnhAbA8aNEis4yEiIiIiIusxCLVwiYmJGDRoENzc3PCPf/yjuS+HiIiIiMgpcI1QC+fm5oaDBw+irKwMnp6ezX05REREREROgRWhVkClUjEEERERERHZEYMQERERERG5HAYhIiIiIiJyOQxCRERERETkchiEiIiIiIjI5TAIERERERGRy2EQIiIiIiIil8MgRERERERELodBiIiIiIiIXA6DEBERERERuRwGISIiIiIicjkMQkRERERE5HIYhIiIiIiIyOUwCBERERERkcthECIiIiIiIpfDIERERERERC6HQYiIiIiIiFwOgxAREREREbkcBiEiIiIiInI5KoPBYGjuiyAiIiIiImpKrAgREREREZHLYRAiIiIiIiKXwyBEREREREQuh0GIiIiIiIhcDoMQERERERG5HAYhIiIiIiJyOQxCRERERETkchiEiIiIiIjI5TAIERERERGRy2EQIiIiIiIil9Mqg9CyZcuQlJSEAQMGYOfOnWJ/WVkZFi5ciLvvvhuJiYn49NNPTZ6/atUq9O/fH8nJyWJfRkYGnn32WQwfPhxjxozBypUrHf49nJW196d///4YOnQoEhISkJCQgBUrVoj33nnnHYwfPx7Dhg3DH//4R/z8889N9n2ckSPuEQBs2rQJEydOxNChQzFp0iSkpaU1yfdxRtbeo6KiIsyfPx8jR47E8OHD8corryjOffXVVzFs2DDcc8892LFjR5N9H2fkiHskyczMxJAhQ/DGG284/Hs4K0fcH/5WsC9r7tGJEyfEv0EJCQkYMmQIBgwYgPz8fAD8vWBvjrhHQMv5vaBtlk+1UVRUFF566SUsXbpUsf/jjz9GZmYmvvrqKxQVFeHpp59G586dER8fL465du0aduzYgcDAQMW5b7/9NiIiIvDuu+8iJycHTzzxBHr06IGBAwc2yXdyJrbcn6+//hpBQUF1xvTx8cGSJUsQERGBPXv2YPbs2di8eTO8vb0d/n2ckSPu0f79+/HZZ5/hX//6Fzp27IiMjAz4+vo6/Ls4K2vv0bx589CuXTts2rQJHh4euHjxojh32bJlKCgowLZt25CSkoIXXngB3bp1Q3R0dJN+N2fhiHskeeedd9ClS5cm+R7OyhH3h78V7Muae9S3b1/88MMP4ti1a9fi22+/hb+/PwD+XrA3R9yjlvR7oVVWhMaOHYtBgwbBzc1Nsf+nn37ClClT4OPjg9DQUIwbNw5bt25VHPPvf/8bTz31VJ1zs7KykJiYCK1Wi4iICPTp0wepqakO/y7OyJb7U5+ZM2ciKioKarUao0aNgru7O9LT0x1x+S7BEfdo+fLl+Mtf/oJOnTpBpVIhMjISbdu2dcTluwRr7lFKSgrOnTuHF198ET4+PtBqtejatas4d9u2bZg5cyZ8fHzQu3dvDBs2DLt27WrS7+VMHHGPpPMNBgPuuOOOJvsuzsgR94e/FezLHv8Wbd++HWPGjBGv+XvBvhxxj1rS74VWGYTMMRgMim35X1DHjh1DQUEBRowYUee8pKQk7Ny5ExUVFUhPT0dycjL69+/fJNfsSszdHwB49NFHMWbMGMydOxc3b940OUZmZiYKCwsRFRXlyEt1WdbcI71ej99++w0XL17E2LFjMW7cOHz00UeKsch+6rtHZ8+eRfv27fHqq6/irrvuwtSpU3HixAkAQGFhIa5fv47OnTuLc+Pi4vgjzkGsuUcAUFlZiXfffRezZs1q6kt2KdbeH/5WaDoN/VsEAFeuXMH58+cxatQok2Pw94JjWXOPWtrvBacKQoMGDcIXX3yBW7duITMzE1u2bEFZWRkAoKqqCu+88w7+8pe/mDy3d+/eSE5ORkJCAu6//36MHz9e8YOBbGfu/gDARx99hC1btuDzzz9HWVkZ5s+fX2eMqqoqzJ07F3/84x/h4+PTlJfvEqy9Rzdu3IBer8fRo0exbt06fPjhh9i9ezc2b97cXF/FaZm7R9euXcPhw4cxcOBA7Ny5E48//jhmz56NgoIClJSUQKPRwMPDQ4zl7e2NkpKS5voqTsvaewQAa9aswZAhQ/jDzYFsuT/8rdA0Gvq3SLJ9+3bEx8ebrCbw94JjWXuPWtrvBacKQk888QTCw8MxadIkPP/887jrrrsQHBwMANiwYQP69Olj8i8svV6PF154ARMmTMCBAwewadMmfPvtt/j222+b+is4NXP3BwD69u0LrVYLf39/zJ49GwcOHEBlZaV432AwYO7cufD398fMmTOb4ys4PWvvkbu7OwDgscceg6+vL0JDQ5GUlIQDBw4011dxWubukbu7OyIiIjBhwgRotVqMHDkSERERSE5OhpeXF/R6veIfquLiYnh5eTXXV3Fa1t6ja9euYdOmTZg+fXozfwPnZu394W+FptPQv0WSHTt2KKZcSfh7wfGsvUct7feCUwUhT09PvPLKK9i5cyc2btwIlUqF7t27AzBOi9uxYwdGjx6N0aNHIycnB7NmzcKmTZtQWFiI3NxcTJo0CVqtFuHh4Rg+fDiOHz/ezN/IuZi7P7Wp1cY/mvJS6aJFi5Cbm4sFCxaI98m+rL1Hbdq0qfMXIKfFOYa5e9SpU6d6z2vTpg0CAwMVC7/Pnz+Pjh07OvyaXY219+jMmTPIycnB/fffj9GjR+Ozzz7D1q1b8dxzzzXVpbsEa+8Pfys0HUv+LTp9+jSuX7+OhISEOufz94LjWXuPWtrvhVb5p6Oqqgrl5eUwGAxiu7q6Gjk5OcjLy4Ner8ehQ4ewefNmTJkyBQAwd+5crF+/HmvWrMGaNWsQHByMefPmITExEf7+/mjXrh2+/vprMc6+ffvM/oVI9bPm/qSkpOD8+fPQ6/UoLCzE4sWLcccdd4jFecuWLcOvv/6KxYsX11mwR43niHt077334pNPPkFxcTFyc3Px5ZdfYujQoc35NVs1a+5R//79YTAYsGXLFuj1euzbtw8ZGRm47bbbABgXvS5fvhzFxcVITk7G/v37cffddzfn12zV7H2PBg8ejG+++Ub8O/XAAw9g1KhRWLBgQTN/09bJ3veHvxXsz5p7JNmxYwdGjBihmO4L8PeCvTniHrWk3wsqQyv8n23nzp2LLVu2KPZJbf1ef/113Lx5EzExMZg9ezb69u1rcoz77rsPb7zxhviBcPr0aSxevBgpKSnw8PBAYmIiZs2aBY1G49gv44SsuT9Hjx7Fm2++iWvXrsHb2xsDBw7Eiy++iICAAADGf5zc3NwU92POnDkmS+LUMEfco8rKSrz11lvYvXs3vLy8MGHCBMycORMqlappv5yTsPbvuQsXLmDBggW4dOkSoqKiMHv2bPTr1w+A8bkP//znP7Fv3z60adMGzz33HP7whz803ZdyMo64R3LLli3D9evXMWfOHMd+ESfliPvD3wr2Ze090uv1GDt2LObNm4dBgwYpzufvBftyxD1qSb8XWmUQIiIiIiIiskWrnBpHRERERERkCwYhIiIiIiJyOQxCRERERETkchiEiIiIiIjI5TAIERERERGRy2EQIiIiIiIil8MgRERERERELodBiIiICMYHMfbv3x+bN29u7kshIqImwCBERERNZubMmSJwTJ48WfHezZs3MWTIEPH+e++9Z/fP37x5sxifiIhcG4MQERE1iwsXLuDnn38Wr7/++muUl5c34xUREZErYRAiIqImp9VqAQDr1q0DAOj1emzcuFHslysoKMBbb72Fe+65B3fccQcSExPx6quvIjs7WxyzbNky9O/fH/fddx92796NBx54AEOHDsWTTz6Jy5cvAwDmzp2LefPmiXOkytCyZcsUn1dUVIS5c+fizjvvxJgxY7B8+XJ7f30iImoBGISIiKjJxcXFISIiAt9//z1ycnKwf/9+ZGdn46677lIcV15ejpkzZ2LDhg3Iy8tDdHQ0iouLsX37dkybNg35+fmK469du4ZXX30VKpUK5eXlOHHiBObPnw8AiIyMREREhDi2Z8+e6NmzJ9q1a6cYY8mSJTh06BB0Oh1yc3OxdOlSHDp0yEH/nyAioubCIERERE1OrVYjKSlJVIKkytBDDz2kOG7nzp1ISUkBALz11ltYv349Pv74Y6jVauTm5mL9+vWK4/V6PRYtWoSNGzeKNUgnT55EWVkZZsyYgRkzZohjV61ahVWrVmHChAmKMeLi4rB582ZFhero0aN2/f5ERNT8GISIiKhZjB8/Hp6enli/fj2OHTuGbt26oVevXopjzpw5AwDw8PDA8OHDAQBdu3ZFdHS04n2Jj48Phg0bBgDo2LGj2F+7cmTO3XffDZ1OBz8/PwQEBAAAbty40bgvR0RELR6DEBERNQtfX1+MGTMGxcXFAOpWg6wdU6LRaMS2wWCwaYzGnE9ERK0DgxARETWbBx98EADg5+eHxMTEOu93794dAFBWVobvv/8eAHDu3DmkpaUp3reUh4eH2C4tLbXmkomIyEnUbc9DRETURDp37ozvvvsOGo0Gbm5udd4fPXo0PvvsM6SmpuLvf/87oqOjkZGRgerqagQHB4sgZamYmBixnZSUhKCgIMyaNQt9+vSx8ZsQEVFrw4oQERE1q7Zt28LHx8fke+7u7vjoo49EaElLS4O3tzfGjBmDlStXwt/fv1GfFRsbixkzZiAwMBDZ2dk4deoUbt26ZY+vQURErYzKwInPRERERETkYlgRIiIiIiIil8MgRERERERELodBiIiIiIiIXA6DEBERERERuRwGISIiIiIicjkMQkRERERE5HIYhIiIiIiIyOUwCBERERERkcthECIiIiIiIpfDIERERERERC6HQYiIiIiIiFwOgxAREREREbmc/w8xohPVZBiLiQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -1739,7 +1907,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "GPU available: False, used: False\n", + "GPU available: True (mps), used: True\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n", @@ -1760,12 +1928,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "75598345902c4f84a87bdf52830754e4", + "model_id": "36d562627f484a64bb095d5b26112d48", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Training: 0it [00:00, ?it/s]" + "Training: | | 0/? [00:00 output_chunk_length`: using auto-regression to forecast the values after `output_chunk_length` points. The model will access `(n - output_chunk_length)` future values of your `past_covariates` (relative to the first predicted time step). To hide this warning, set `show_warnings=False`.\n", + "GPU available: True (mps), used: True\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n" @@ -1816,12 +1985,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3cef7aa2cadb4ba088287f0b1447e5f1", + "model_id": "52a7d7b38b844f5ba74b9febfaf6b425", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Predicting: 0it [00:00, ?it/s]" + "Predicting: | | 0/? [00:00" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzoAAAIMCAYAAAA95dmwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+hklEQVR4nOzdeXhU1f0G8HeWZLLvKyQkgbAviiAoIOAGShVcwL0oKthatcW61KXuthbrXq2KCNWi/FjUiopWpSioqCD7DoFsZA/Zl8ksvz9u7pl7k0kyk9zJLHk/z9PHO3PvTE4y0d4333O+R2e32+0gIiIiIiIKIHpvD4CIiIiIiEhrDDpERERERBRwGHSIiIiIiCjgMOgQEREREVHAYdAhIiIiIqKAw6BDREREREQBh0GHiIiIiIgCDoMOEREREREFHAYdIiIiIiIKOAw61CGbzYbjx4/DZrN5eyikIX6ugYufbWDi5xqY+LkGJn6uvoVBh4iIiIiIAg6DDhERERERBRwGHSIiIiIiCjgMOkREREREFHAYdIiIiIiIKOAw6BARERERUcBh0CEiIiIiooDDoENERERERAGHQYeIiIiIiAIOgw4REREREQUcBh0iIiIiIgo4DDpERERERBRwGHSonZtuugmXXXZZl9f9+te/xl/+8heX33fTpk3Q6XSoqqrq9Lp77rkHd911l8vvS0RERETUFoOOn3rsscdw+umne+3r7969G59++inuvPNOl18zadIkFBUVITo6utPr7rvvPixfvhzHjx/v6TCJiIiIqI9i0KFu+cc//oF58+YhMjLS5dcEBwcjJSUFOp3O6Xmr1QqbzYakpCTMmDEDr7/+ulbDJSIiIqI+hkHHSz7//HNMmTIFMTExiI+PxyWXXIJjx46prikoKMA111yDuLg4hIeHY/z48fjxxx+xYsUKPP7449i1axd0Oh10Oh1WrFiBEydOQKfTYefOneI9qqqqoNPpsGnTJgBSmLjllluQlZWF0NBQDB06FC+99JJbY7fZbFizZg1mz56tev7f//43xo8fj8jISKSkpOC6665DaWmpON926tqKFSsQExODTz75BCNGjIDJZEJubi4AYPbs2Xj//ffdGhcRERERkczo7QF4wvjx41FcXNzrXzclJQXbtm1z6dr6+nrcfffdGD16NOrr6/HII4/g8ssvx86dO6HX61FXV4dp06ahf//++Pjjj5GSkoJffvkFNpsNV199Nfbu3YvPP/8cX331FQAgOjoaJSUlXX5dm82GtLQ0rF69GgkJCfj++++xaNEipKam4qqrrnJp7Lt370ZVVRXGjx+vet5sNuPJJ5/E0KFDUVpaisWLF+Omm27CZ5991uF7NTQ04K9//SveeustxMfHIykpCQAwYcIE5OfnIzc3FxkZGS6Ni4iIiIhIFpBBp7i4GIWFhd4eRqeuvPJK1eNly5YhKSkJ+/fvx6hRo/Dee++hrKwMP//8M+Li4gAA2dnZ4vqIiAgYjUakpKS49XWDgoLw+OOPi8dZWVn4/vvvsXr1apeDzokTJ2AwGEQokd18883ieODAgXj55ZcxYcIE1NXVISIiwul7tbS04LXXXsNpp52mer5///7iazHoEBEREZG7AjLouHvz742ve+zYMfz5z3/G1q1bUV5eDpvNBgDIy8vDqFGjsHPnTowdO1aEHC29/vrreOutt5Cbm4vGxkaYzWa3Ghs0NjbCZDK1W2uzY8cOPPbYY9i5cycqKytV39OIESOcvldwcDDGjBnT7vnQ0FAAUsWHiIiIiJyrrq7GX//6V2RnZ+PWW2/19nB8SkAGHVenj3nTpZdeivT0dCxduhT9+vWDzWbDqFGjYDabAThu9N2h10tLrux2u3iupaVFdc3q1auxePFiPPfcczj77LMRGRmJZ599Fj/++KPLXychIQENDQ0wm80IDg4GIE3FmzFjBmbMmIF///vfSExMRF5eHmbOnCm+J2dCQ0OdNieorKwEACQmJro8LiIiIqK+5o033sDf/vY3AMCQIUMwdepUL4/Id7AZgRdUVFTgwIEDePjhh3H++edj+PDhOHXqlOqaMWPGiMqIM8HBwbBararn5FBQVFQknlM2JgCAzZs3Y9KkSbj99tsxduxYZGdnt2uC0BW5+rN//37x3MGDB1FeXo5nnnkG55xzDoYNG6ZqROCuvXv3IigoCCNHjuz2exAREREFOuV93NKlS704Et/DoOMFsbGxiI+Px5tvvomjR49i48aNuPvuu1XXXHvttUhJScFll12G7777Djk5OVi3bh1++OEHAEBmZiaOHz+OnTt3ory8HM3NzQgNDcVZZ52FZ555Bvv378e3336Lhx9+WPW+2dnZ2LZtG7744gscPnwYf/7zn/Hzzz+7Nf7ExEScccYZ2LJli3huwIABCA4OxiuvvIKcnBx8/PHHePLJJ7v5E5IC2TnnnNOtyhYRERFRX6H8o/jatWu73Ji9L2HQ8QK9Xo9Vq1Zh+/btGDVqFBYvXoxnn31WdU1wcDD++9//IikpCbNmzcLo0aPxzDPPwGAwAJCaGVx00UU499xzkZiYKFoxv/3222hpacH48ePx+9//Hk899ZTqfX/zm9/giiuuwNVXX42JEyeioqICt99+u9vfw6JFi7By5UrxODExEStWrMCaNWswYsQIPPPMM/j73//u9vvK3n//fSxcuLDbryciIiLqC5SzgpqamvDee+95cTS+RWdXLuggUrDZbKK9s7z+R9bU1IShQ4di1apVOPvsszX9up9++inuvfde7N69G0ZjQC4j86rOPlfyb/xsAxM/18DEzzUweeNzPeOMM7Bjxw7V4+3bt/fK1/Z1/DeLuiUkJATvvPMOysvLNX/v+vp6LF++nCGHiIiIqAtt13P/8ssv7dZo91W8k6RumzZtmkfe19X9fIiIiIj6urYNrQBpf8ZXXnnFC6PxLazoEBERERH5IYvFgpqaGgDA8OHDRROnlStXoqmpyZtD8wkMOkREREREfkjZYS0rKwtz584FIFV5PvzwQy+Nyncw6BARERER+SHl+py4uDjccsst4vGyZcu8MSSfwqBDREREROSHlEEnNjYWU6dORXZ2NgDg66+/xvHjx701NJ/AoENERERE5IeUjQji4uKg0+lw8803i+eWL1/ujWH5DAYdIiIiIiI/1LaiAwA33nij2MNn+fLlsFqtXhmbL2DQISIiIiLyQ23X6ABAv379MGvWLABAQUEBtm3b5pWx+QIGHS+x2+1YtGiRKDP2lY2dNm7ciGHDhsFms7n8mszMTLz44oudXrNnzx6kpaWhvr6+hyMkIiIi8g9tp67JJk2aJI6Li4t7dUy+pFtBZ8WKFfjVr36FqVOn4rrrrkNtba14/oILLsB5552Hl156CXa7Xbxm3759uPbaazF58mQsWrQIRUVF2nwHfurzzz/HihUr8Mknn6CoqAijRo3y9pC6zZUgIrvvvvvw0EMPiZKqK37++WcsWrSo02tGjx6NCRMm4IUXXnD5fYmIiIj8mbOpawAQExMjjpUtqPsat4POqlWr8P333+Ott97CN998gyeeeALBwcHYsmUL1q5dixUrVmD16tXYsmULPv74YwCA2WzGfffdh2uuuQYbN27EqFGj8Mgjj2j+zfiTY8eOITU1FZMmTUJKSgqMRqPb72G322GxWDwwOs/4/vvvceTIEcybN8+t1yUmJiIsLKzD8y0tLQCABQsW4J///GefnotKREREfUdHFR0GHYlbQcdqtWL58uV4+OGHkZqaCp1Oh+zsbJhMJnz22WeYO3cu0tLSkJCQgBtuuAEbNmwAAGzfvh2hoaGYM2cOTCYTFi5ciP379/fZqs5NN92EO++8E3l5edDpdMjMzAQANDc346677kJSUhJCQkIwZcoU/Pzzz+J1mzZtgk6nwxdffIHx48fDZDJh8+bNsNvtWLJkCQYOHIjQ0FCcdtppWLt2repr7tu3D7/61a8QFRWFyMhInHPOOTh27BgAqWJy4YUXIiEhAdHR0Zg2bRp++eUX1esfe+wxDBgwACaTCf369cNdd90FAJg+fTpyc3OxePFi6HQ66HS6Dr/vVatWYcaMGQgJCRHPHTt2DHPmzEFycjIiIiJw5pln4quvvlK9rm3FSKfT4fXXX8ecOXMQHh6Op556CgAwc+ZMVFRU4JtvvnHxkyAiIiLyX87W6AAMOjK3ygilpaVobm7GV199hVWrViEiIgLXXXcd5s6di+PHj4uFTwAwZMgQvPrqqwCAnJwc0dMbAEJDQ5GWloacnBykpqa2+zpmsxlms1k9UKMRwcHBLo1zwiKguLLr67SWEgf89GbX173wwgsYOHAgli5dih9//BEGgwE2mw333nsv1q1bh+XLlyMjIwPPPvssZs6cicOHDyMuLk6sa7nvvvtEsImJicFDDz2EDz/8EK+++ioGDx6Mb7/9FjfccAPi4+Mxbdo0FBYWYurUqZg2bRq++uorREVF4bvvvoPZbIbNZkN1dTV+/etfizDx/PPPY9asWThw4AAAYM2aNXjhhRfw3nvvYeTIkSguLsauXbtgs9mwdu1ajB07FgsXLsStt94KAB2uv/n2229xzTXXqM7X1NTgoosuwhNPPIGQkBC88847uPTSS3HgwAEMGDBAXGe321Wve/TRR/H000/jueeeEz8/o9GI0047Dd9++y2mT5/uzkfXp8g/R3fWSZF/4GcbmPi5BiZ+roGptz9XZdCJjo4WXzcqKkp1TSD+nrmyDMLtoFNXV4eCggJ8/PHHKCwsxO23347MzEw0NDQgIiJCXBseHo6GhgYAQGNjI8LDw1XvFR4ejsbGRqdfZ/ny5Vi6dKnquXnz5uGqq65yaZyFZf1RfMr9qWA9ZbVakJtb6NK1LS0tsNvtaG5uBgAcOHAAr7/+OpYsWYIRI0YAAB566CF88cUXeO6557Bo0SKUlJQAAH73u99hyJAhAKTP5Pnnn8fKlSsxbNgwAMC5556LOXPm4IUXXkBmZiaeffZZhIeH45lnnkFQUBAA4LzzzgMA5ObmYtCgQRg0aJAY2wMPPIDVq1dj3bp1OP/887F7927Ex8dj8ODBsNvtSE5OxowZM5CbmwtACiEtLS3ie5GfbysnJwfBwcGq8zExMbjooovE41tvvRVr1qzBv/71L8yfPx8AYLFYUFlZqXrdr371K5x//vnisXwuJiYGe/fu7XAM5JCfn+/tIZCH8LMNTPxcAxM/18DUW59raWkpAOm++uTJk+J5+R4cAAoLCwPyvigrK6vLa9xKAyaTCQCwaNEihISEYNCgQZg1axa+++47hIWFoa6uTlxbX18v1lWEhoa264ZVX1+P0NBQp19nwYIFuP7669UDdaOi0z8RMBhc/rY0kxJnREZGhkvXxsXFwWh0XL979260tLRgzpw5qvc466yzUFxcjIyMDLG77cUXX4z+/fsDkKadNTc348Ybb1S9v9lsxtixY8Xrpk+frqqqKZWWluLRRx/F//73P5SUlMBqtaKhoUEE0VtvvRXvvvsuzj//fMycORMXX3wxLr30UrGuyGg0Ii4ursvvvbm5Gf3791ddV19fjyeeeAKffvopTp48CYvFgsbGRtTV1YnrnL3/ueee6/TrxcfHw2KxuPw59EU2mw35+flIT093qykE+T5+toGJn2tg4ucamHr7c5UbgrW9T5Lv2QHpj+t99b7IraCTkZEhKgJtZWVl4ejRo5gyZQoA4PDhwxg4cCAAYODAgfjwww/FtY2NjSgoKBDn2woODnY51Diz7a1uv7TXyGtZ5H8J5McGg6Hdvxh6vV78DwAiIyPbXfPpp5+K8CMzmUzQ6/UICwuDTqfr8F+4m2++GWVlZXjxxReRkZEBk8mEs88+WzQ6yMjIwKFDh/Dll1/iq6++wh133IHnnnsO33zzjfh96Oz9ZQkJCaiurlZdd//99+OLL77A3//+d2RnZyM0NBRz585FS0uL6rq27+/sZwBIi/IGDRrE/9NwgfJ3igILP9vAxM81MPFzDUy98bna7XYxdS0uLk719ZTrddree/Ulbn3XoaGhOP/887Fs2TKYzWacOHECGzZswOTJkzFr1iysW7cOhYWFKC8vx8qVK3HxxRcDAMaNG4fGxkasX78eZrMZy5Ytw4gRI5yuz+mrsrOzRfc6WUtLC7Zt24bhw4d3+LoRI0bAZDIhLy8P2dnZqv+lp6cDAMaMGYPNmzeL7mRtbd68GXfddRdmzZqFkSNHwmQyoby8XHVNaGgoZs+ejZdffhmbNm3CDz/8gD179gCQgqkrnc7Gjh2L/fv3t/vaN910Ey6//HKMHj0aKSkpOHHiRJfv1ZG9e/di7Nix3X49ERERkT9oaGgQ93bKYAMAISEhoqrDZgRuuP/++/HEE0/gggsuQHR0NG699VaMHz8eAHDkyBHMnz8fNpsNl112GWbPng1AuhFesmQJnnzySTzzzDMYMWIEnnjiCW2/Ez8XHh6O3/72t7j33nsRFxeHAQMGYMmSJWhoaMAtt9zS4esiIyNxzz33YPHixbDZbJgyZQpqamrw/fffIyIiAjfeeCPuuOMOvPLKK7jmmmvwwAMPIDo6Glu3bsWECRMwdOhQZGdn491338X48eNRU1ODe++9VzWtcMWKFbDb7Zg4cSLCwsLw7rvvIjQ0VJRBMzMzRaMBk8mEhIQEp2OdOXMm/vWvf6mey87OxgcffIBLL70UOp0Of/7zn7u9YO7EiRMoLCzEBRdc0K3XExEREfmLjvbQkcXExKCkpETVgrqvcTvoREZG4tlnn3V6bsGCBViwYIHTcyNHjsSqVavc/XJ9yjPPPAObzYZf//rXqK2txfjx4/HFF184/eVVevLJJ5GUlIS//vWvyMnJQUxMDM444ww8+OCDAKR1Kxs3bsS9996LadOmwWAw4PTTT8fkyZMBAG+//TYWLVqEsWPHYsCAAfjLX/6Ce+65R7x/TEwMlixZgrvvvhtWqxWjR4/G+vXrER8fDwB44okncNttt2HQoEFobm5WbRSrdMMNN+D+++/HoUOHMHToUABSB7qbb74ZkyZNQkJCAu6//37U1NR06+f3/vvvY8aMGX12HioRERH1HR3toSOTg05frujo7B3dlVKfZ7PZkJubi4yMDM3mdt53332orq7GG2+8ocn7yZqbmzF48GC8//77IsCRc574XMk38LMNTPxcAxM/18DUm5/rpk2bcO655wKQ7q/+9re/qc6fddZZ+PHHHwFIHWwN3ujU5WX8N4t61UMPPYSMjAyX1vS4Izc3Fw899BBDDhEREfUJXU1dUz7X3dky/q73N5uhPi06OlpMqdPSkCFDxN5CRERERIHOlalrsqqqqi6XQgQiVnSIiIiIiPyMK80IZH11nQ6DDhERERGRn1EGna4qOn218xqDDhERERGRn3F36lpfxKBDRERERORnOHWtaww6RERERER+pquKjjL8MOgQEREREZFfkCs6BoMBkZGR7c6zosOgQ0RERETkd+SgExsbC51O1+48gw6DDhERERGR35Gnrjmbtgaw6xrAoENERERE5FcsFguqq6sBOG9EALCiAzDoEBERERH5FWVwcaWiw6BDREREREQ+r6uOawAQHByMsLAwAAw6RERERETkB7raQ0cmV3UYdIiIiIiIyOe5UtEBGHQYdIiIiIiI/IiyouNK0Kmrq0NLS4unh+VzGHSIiIiIiPyIu1PXAIgubX0Jgw4RERERkR9xd+oa0DenrzHoEBERERH5EVenrimrPQw6RERERETk07ozdY1Bh4iIiIiIfBqnrrmGQYeIiIiIyI90p6KjDEd9BYMOEREREZEfkYNOeHg4goODO7yOFR0iIiIiIvIbcnWms2lrAIMOgw4RERERBbyioiI88sgj+Pnnn709lB6x2+2iotPZtLW25/ti0DF6ewBERERERJ5ks9lw6aWXYvv27Vi6dClOnjwJnU7n7WF1S2NjI8xmMwBWdLrCig4RERERBbR3330X27dvBwAUFxejtrbWyyPqPlf30AEYdBh0iIiIiChg1dfX48EHH1Q95883/a52XAOA6OhocdwXu65x6hoRERERBay///3vOHnypOq5U6dOYcCAAV4aUc+4sodO6Sk77njRjvREPcIjIlBfV+fX4a67GHSIiIiIKCAVFhZiyZIl7Z7355t+Vyo6f3jFjjX/k44Tk6ejvu4Tv/6eu4tT14iIiIgoID388MNoaGgAAERFRYnn/XkaV1drdPYcs2PV147HodFDAPh3uOsuBh0iIiIiCji//PIL/vWvfwGQFuXfe++94pw/3/R3NXXt0bftsNsdj4PDUwFI3dqam5s9Pj5fwqBDRERERAHFbrfjj3/8I+ytd/yPPPIIBg0aJM4HSkWn7dS17Yfs+HCz+npDSJI4rq6u9ujYfA2DDhEREREFlI8//hibNm0CAGRnZ+N3v/tdwGye2VlF5+G37G0vhy440elr+wIGHSIiIiIKKK+88oo4XrJkCYKDg1V7yvjzDX9Ha3S27Lbj8x+l44hQx/V2g+Mafw543cGgQ0REREQBJTc3F4C0j8xll10GAAFT0XE2dc1ut6uqOY/cpBPHVp1jLx1//r67g0GHiIiIiAJKWVkZACApKQk6nXTTHygVHXnsBoNBdJLb+AvwzU7p/OA04K4rgdZvG2a7o9scgw4RERERkZ9qaWkRi+4TEhLE88qg4883/HJFJyYmBjqdrl015/GbdTAF6xAbKT1usoSJc/78fXcHgw4RERERBYyKigpxrAw6JpMJoaHS4hV/rujIQUden/P5j8DWfdK5UVnA1edJx/GthZw6s2PBDoMOEREREZGfKi8vF8fKoAM41rT46w2/1WoV1So56Gz40VHN+fONOuj10py1hNalOQ3NQQAMAPw74HUHgw4RERERBQxl0ElMTFSdk6ev+esNvzKgyaGtoNRx/qyRjuN4Rw8CICiu3ev7AgYdIiIiIgoYciMCoOOKTkNDA8xmc6+OSwvO9tApaP129XogNd5xbXyU4oVB0s+BQYeIiIiIyE91NnXN3xsSONtDJ7+1opMSBwQZHW2lE5QVHaOUgPzxe+4JBh0iIiIiChiurNEB/POmv+0eOuYWO0paizxp6ll6iI92hB4Es6JDREREROTXXK3o+OM6nbZT14oqAHtrL4J2QUcxdS00Mg0Agw4RERERkd/qrBmBv1d0lOuP4uLixPocoH3QUU5dM4X3A+Cf4a4nGHSIiIiIKGAEckWnqKhIHKempqo6rqUl6VTXKruuBYWlApDCnd1uR1/BoENEREREAUOuehgMBkRHR6vO+XtFp13QcbGiYwiRTprNZjQ1NXlyiD6FQYeIiIiIAoZc0UlISIBOp65yKIOOv1d0+vXrh4IyR3WmszU6MDoqW/4Y8LqLQYeIiIiIAoYy6LQVHhEYFR2TyYTY2FjRWhoA0pPU18Ypgo7NECOO/fH77i4GHSIiIiIKCA0NDWhsbASgDjp2ux0PL7Xhkr9MBrJfA+CfFZ2TJ08CAFJSUqDT6VRT1/q1yXXBQTpEhUvHLXbHPDYGHSIiIiIiP+Os45rdbsc9r9rx9LuA2aIHUhYCumC/u+E3m82oqKgAIK3PASCCTnKcFGzakqevNdkixHP+GPC6i0GHiIiIiAKCsv1yQkIC7HY77n3NjudXKy7S6YGgRL+74S8uLhbHqampsFjsKJJyT7v1OTK5IUFTSwjk235/C3g9waBDRERERAFBWdGJj0/Ava/Z8dz/ObkwKMnvbvjbdlwrrgRsNulxR0FHbjFthx4wxgBg0CEiIiIi8jvKoPN90RxVyDktW3GhH1Z03GktLVN1XguKB8CgQ0RERETkd0TQ6XcH/nfkDPH80vt0uOVXijUswf5d0ZFaSzvOpSW2X58DqPfSgZFBh4iIiIjIL4mgk3KLeO7Ne3W49RIdkmIUFwYloKqqCna7Hf6ibUWns9bSsvhoRQAKktqyMegQEREREfkZEXRMmQCAQf2BhZdKN/uJMYoLg5JgtVpRV1fXq+PrCbm1NNA6da1UsVloB0HHWUXH36bs9QSDDhEREREFhLKyMsAQDRilxSkZyY5zSbGKC4OkRS3+dNPPNTruY9AhIiIiooBQXl4OhGSIxxkpjnNtKzqAf930y0HHYDAgMTFRFXT6Jzh/TbyyohPMqWtERERERH6pvLwcMA0QjwcopnTFRwE6eclK63oVf6zoJCcnQ6/Xi6CTEA2EmLpuRmAKkzYZZdAhIiIiIvIzbYNORoojABiNOsTJU7n8rKJjtVpRWip1H0hNTYXVasfJ1uVIHa3PAdRT1wyhUnnLX75nLTDoEBEREZHfs9vt7Ss6yeprROc1P1ujU1paClvr7qD9+vVD6SnAYpXOdbQ+B1BPXdMrpq75U7e5nmDQISIiIiK/V1VVBavVql6j0yboiHU6xkhAH+o31Y3OWkt3FnRCTTqEhUjHdkMcAMBisaC+vt4Tw/Q5DDpERERE5PccraXTxXNtQ0Dbzmv+UtFp11pa0YggPcn5+hyZPH3NoosRz/lLwOspBh0iIiIi8nuOoCNVdFLi2i/SV3deS/SbG/7utJaWyQ0JzPZI8Zy/fN89xaBDRERERH6vvLwc0AUDpn4A2q/PARRrdAAgKMlvKjrtg45is9Augo68TscOA2CQyjsMOkREREREfkJqRJAmHiv30JElxSoqPIFS0emk6xrgfNNQ5fsFMgYdIiIioj7qv//9L2bOnImPP/7Y20Ppsc720JG1nbrmtxUdRTOCjjYLlSn30oFRuvjEiRPaDc6HGb09ACIiIiLqfY2NjbjuuutQUVGBw4cPY/bs2d4eUo+UlZWJ9TmAeg8dWdtmBP5W0dHpdEhOThYVndhIIDy0i2YEyqDTWtE5fvy4J4bpc9yu6CxatAiTJk3COeecg3POOQd33XWXOLdixQpccMEFOO+88/DSSy+penTv27cP1157LSZPnoxFixb1mZIZERERkS969913UVFRAUDq6uXve6uUl5cDIY6Oa11WdIL9b41OYmIiDAYjCuXNQrtYnwMACdGKIGSUgk5fqeh0a+rao48+is2bN2Pz5s14+eWXAQBbtmzB2rVrsWLFCqxevRpbtmwRZVCz2Yz77rsP11xzDTZu3IhRo0bhkUce0e67ICIiIiKX2e12vPjii+Kx2WxGU1OT9wakAWnqmrKi0/4adTMC/6jo2Gw2EXRSU1NRVgWYW6RzrgQd5RqdoDDph8KKjps+++wzzJ07F2lpaUhISMANN9yADRs2AAC2b9+O0NBQzJkzByaTCQsXLsT+/ftZ1SEiIiLygi+++AIHDhxQPecPN/2dabtGx1nQiYsC9PLdb1Ai6uvr0dLS0jsD7KaKigpYLBYAzvbQ6fr1yqlrUQkDAUgVHX+v4LmiW2t0nn32WTz77LMYMmQIFi9ejMGDB+P48eOYNWuWuGbIkCF49dVXAQA5OTnIzs4W50JDQ5GWloacnBykpqa2e3+z2Qyz2aweqNGI4ODg7gyXuslms6n+SYGBn2vg4mcbmPi5BiZvf67PP/98u+dOnTqF5GQnPZn9RHl5ORAlBZ2IUCAqzA6brf3NfEI0UHoKQJBUDqmsrERiogulERd44nMtLCwUxykpKcgrcXxP/RO7/lpxju1zEBY1ABUAmpqaUFRUhJQUJ2nQT+j1Xddr3A46d911FwYOHAi9Xo//+7//w+9//3usXbsWDQ0NiIiIENeFh4ejoaEBgLTYLTw8XPU+4eHhaGxsdPo1li9fjqVLl6qemzdvHq666ip3h0sayM/P9/YQyAP4uQYufraBiZ9rYPLG53ro0CF8+eWX7Z4/ePAgQkNDe308WikuKQWSpKDTL86MvDznM4diwlJReioYCJLKIXv37sXAgQM1HYuWn+uuXbvEcVhYGHYfqgAgrbUJ0ZUjN7e+09c31RoASG239cGOFm0//PADzjjjDM3G2duysrK6vMbtoDNq1ChxfOONN+Ljjz/Gvn37EBYWhrq6OnGuvr4eYWFhAKQKTn29+kOor6/v8F+mBQsW4Prrr1cPlBWdXmez2ZCfn4/09HSXUjP5B36ugYufbWDi5xqYvPm5PvXUU+I4JSUFxcXFAICQkBBkZGR09DKf1tLSgtpGE6APAQAMTAvu8HvpnwQcLgRgCAP0YQgPD9fs+/bE52q1WsXxsGHDUGiNF49PG56AjIzO+0vHK4pVQWGOil1TU5Pfft6u6nF7aflDzMrKwtGjRzFlyhQAwOHDh0U6HjhwID788EPxmsbGRhQUFHSYnoODgxlqfIher+f/uQYgfq6Bi59tYOLnGph6+3MtLS3FypUrAQBRUVH47W9/i0cffRQAUFtb67e/Y1VVVapGBJkpHU9tSoxRTPUKSkJ1dbXm37eWn2tJSYk47t+/P37a7zg3IEkHvb7z9tKR4XYEB9lhbgFaECOez83N9dvP21VufXe1tbXYunUrzGYzWlpasHLlStTU1GD48OGYNWsW1q1bh8LCQpSXl2PlypW4+OKLAQDjxo1DY2Mj1q9fD7PZjGXLlmHEiBFO1+cQERERkWe8/vrraG5uBgAsXLgQ6emOdsz+3IxAai2t2Cw0ueObf3/bS+fkyZPiuG0zgjQXmhHodDrRea2xxTGbqi90XnOromOxWPDqq6/ixIkTCAoKwpAhQ/DSSy8hIiICU6ZMwZEjRzB//nzYbDZcdtllYuOp4OBgLFmyBE8++SSeeeYZjBgxAk888YRHviEiIiIiau+VtWY89sXvgLNuByzl2FiZgU2bTgHZrwMnX/X5G/7OtOu41klPhcQYHYDWBf1+sJeOsktxamoq8kul46hwIDKs82qOLCEaKKoAahqDxHN9YS8dt4JObGws3n333Q7PL1iwAAsWLHB6buTIkVi1apV7oyMiIiIiTfx5qRl2QyxgABAUhx1HASAFSF0IRE1EdfVqL4+w+9oGnQGdBB11RSfJ5wOeMugkJ6eIio4rraVlcovpJrMOkTEpqK0q7hMVncCemEdEREREqGuwo7pRahIFWxMiQy3qC8JGoPJUde8PTCNlZWXqzUI7CzoxigdBCX5T0YmNjUV9swnNrTuwuLJZqEy5aWj/jDEAgLy8PFWjg0DEoENEREQU4HJOOvZeiWj8DDVfBKNlow7njGrd6kNnREml/970Smt0pPVGep0NqfEdX5sYo3jg4xUdu90ugk679TluBJ0ExaahyWkjAUid6pTrfwIRgw4RERFRgNtz1LF3YWJkLQDAaNQhI8VxK1hWZej1cWlFmromVXSSoltgNLrejMCXKzrV1dVoamoCAPTr16/bQSdeEXTikgeL40CfvsagQ0RERBTgdh2uEcf94prE8YAUx3YelXX+u7VHUWktECSVcdISbZ1e608VnbaNCE6WO871T3StEQEAJEQ7ro2MdUzxY9AhIiIiIr928ESLOB7Yz/F8/0THraBYw+OHCssd38fA/p1XpmIiAKN8iY+v0WnbWrpcsYxKFdi6oFyjExKRJo4DvfMagw4RERFRgDvuKAxgeJZJHCvXstQ2R/TiiLRVXOX4nrLTOq9M6fU6x5qVYP+q6FRUO9ZaxUW6/j7KqWuGEEe7NlZ0iIiIiMivFZ1q3SjSWofhgxzpRhl0Gq0xvTsoDVXWO0JaRkrXU7rEOp2gRFT6cEWnXdBxzEBUhZeuKJsRWPWORUqs6BARERGR37Ja7TjVIG+kkoO0tP7iXEqc4zqLPgEtLS3wR7Vmx817RkrX14tpX/oQVNVaYbfbO7vcazoNOlFOXtAB5bW1TUGIj5cSLis6REREROS3CssBm7xHfONx9O/vPOggKBnV1f63l05DQwMsBsfCowEubKSp7Lxm08ehrq7OAyPrubZBp1IRdOLcCDrKik5FNZCZmQkAKCgo8Ntw6woGHSIiIqIAlqPYKkVnPoGkJEcSCDHpEKxvvckPTvXLoFNRUQGY0sXjAZ1sFipLVE778uHOax1VdCLDgOAg17uuRUcAhtYGDOXVQFZWFgDAZrMhPz9fs/H6GgYdIiIiogB2rNBxHG0qh8Gg7koWHiTtq4PgVJw6VdV7A9OIcg+dEEMdwkNdWaOjuMaH99KRg05kZCQiIiJQ0ZpD3anmAIBOpxPNCypqHEEHCOzpaww6RERERAHscL5FHCdHN7Q7HxXS+pwhDIUltb01LM0Ul5QDJmk6XkxoTRdXS9SbhvpuRUduL52amgqbzY7K1o/HnfU5Mnn6Wrli6hrAoENEREREfmp/jmOD0Mxka7vzcRHN4jivyNwrY9LSkdx6QCetQUqMbHTpNepNQ31zL526ujqxdig1NRU19YCtdS/U7gQduUtbfSOQlj5QPB/IndcYdIiIiIgC2LHC1rtjuw3Z6UHtzidEOSo++SWWdud93bECx2L6fvGuLaxPilE88NG9dLRqLS1eowhHMYmDxDErOkRERETklwrKWzfQbC5A5oDUdudT4mzi+GSFb7ZZ7kxeqeN4QLJrC/TVFZ0kn6zotN8s1HGuJ1PXACAk0tG8gRUdIiIiIvI71XV21DaZpAdNx1StpWX9EhzNCUpP+d+t4ckKR5XKWcXKGfUancQ+V9E5VW9CSoq04RArOkRERETkd5StpdF03GnQGZDiCAcVta4FBV9SWhMijodlhbv0mqhwwGhorWT5aNe1lStXiuOsrCxV0ImLdL21tGz0IMdrNmy1i4YERUVFaGx0bW2Tv2HQISIiIgpQ6qCTg7S0tHbXZPV3BIWq+pB2533dqTqTOD5tWIJLr9HpdIiPbG3M4IMVnW+//Rbr168HAPTv3x+zZs1SbRbanYrOJWcDQa37xq77BsjMdDQkyMvL68lwfRaDDhEREVGAOtYm6PTr16/dNYMGOKogNc2uVUR8Sb3ZEc5S4o0uv06s0wlKRGWl71R07HY77rvvPvH4iSeeQFhYGCpqHOunurNGJyZShwvHS8cFZYApYYo4F6jT1xh0iIiIiCD9VfvFF1/EOeecg4SEBCxbtszbQ+qxnJOOm+NoUyVCQtpXbNJTowGrNHWpwdKNUoEXNTQ0wALprl9vb4Ap2PUpXSnxrWuT9MGoqPadbnPr1q3Djz/+CAAYOXIkbrzxRgDocTMCAJh3ruPnc7JlkjgO1KDjeuwlIiIiCjAVFRVYunQp1q1bh23btqnOPf/887jlllu8NDJtKCs6aQnO98gJDQ0BWo4Bhiw022J6Z2AaycvLA4zxAIBQYz2ACJdfmxzn+Ht/ebVv/O2/paUFDzzwgHj8t7/9DQaDFMh62owAAGZPBowGwGIFdhdmi+cDtfMagw4RERH1WTNmzMAvv/zi9FxBQUEvj0Z7R/KtAAyApRoDUjuelhZkL0MLsmDVx6DZbHerMuJNJ3LzgCBpT5jIEPc2O1V2Xquq940mDG+++SaOHj0KAJg2bRpmzZolzikrOnHdrOjERelw/jg7vvgJKKkOBSLGAXXbA7ai4xvxlYiIiKiX1dTUqELO2LFj8eSTT2LMmDHifENDg7eG12MWix0FZa23ek05SE9v34hAZtI51qgUV3p6ZNo5dLQY0EkVj9hIWxdXqyXGOMJcTaOpkyt7R21tLR5//HHxeMmSJdDpHGOsrJX+qdcD0T1YSjV3uiLEJswFELhT1xh0iIiIqE86duyYOL7xxhvxyy+/4OGHH8bw4cPF88q9TPxNfilgtbXe1HbQWloWFuSYF1VY5j+bhh4+XiGOk+IMnVzZXlKM47jZFoXm5maNRtU9zz77LMrKygAAV111FSZMmKA6L1d04iIBvb77FbfLpgCts+FgTLkKQOBOXWPQISIioj5JniIEAEOGDBHHqamp4vjkyZPwV6qOa43ONwuVRZrqxfHxQv/ZU+V4viOg9U9yrzV2201DvRlqy8vL8dxzzwEAjEYjnn766XbXyGt0urs+R5YQo8P006VjS1AmEH46ysvLUVdX17M39kEMOkRERNQnKYNOdrZjYbYy6PhzRaftZqHO9tCRxYY1ieMTJ5s6vM7X5Bc7phZm9He9EQGgaC8NAEGJKCws1GZQ3fDtt9+KaZK33nqr6vcRAMwtdtS2fqvd7bimpJ6+diUAID8/v+dv7GMYdIiIiKhPUk5dC8Sgc6xQMQWtKafTik5CVIs4zitu6fA6X1Nc4RhrvwT31tmoKzpJXg06hw8fFsfTp09vd165WWh3GxEoXX6OtNYHgFinU1pa2vM39jEMOkRERNQnKSs6gwYNEseBEnRylENvOtZpRScpxiqOC8vcW9TvLVarFZU1jlvZhBj3Xq+u6CR4tcueMugop1HK5EYEgDYVneQ4Haae1vogbAgQNopBh4iIiChQyEEnISEB0dGOhQ8BE3TkqWt2K0L15arvsa3UBMctYckp/2gtXVxcDJs+Rjx2NwBEhALBxtaAF+w7FZ3Bgwe3O6/FZqFtzZ2mnr7GoENEREQUABobG8WNbdv1EIEQdOx2u6MZQXMe0vonq1oVt9U/MRiwSzf95TX+sc1ibm4uEBQvHrsbAHQ6HeKjWqf3eXnq2pEjRwBIv3sREe3XGqk3C9UmiF4+FdCh9ftPuBIlJSWavK8vYdAhIiKiPicnJ0ccK6etAUBsbCxMJmm9h78GnVO1QLXcRKux82lrABAbGwWYpRvdU3Xe31PGFXl5eUBQgnjs7tQ1AEiNb70VDkpAfoF3OuxVVVWJaoqzaWuAZyo6/RJ0OG1ga7e98JE4Xujd9tqewKBDREREfU5HjQgA6S/9clXHX9tLt+241lkjAgCIiYkBzFKoq20Og9Xq+3vp5ObmAsY48bg7AWBg/9ZbYZ0RJ0q8E/Dkag7QcdBRrdHpYXtppVFZjupQYZn/NKFwFYMOERER9TkdtZaWyUGnsrLS6xtJdscx5SysLjquAa1Bp0Wq6NjsepRXd3q5T5AqOtLUNZPRhjD3ttEBAJw5zHGjX9IwADZb7zdi6KoRAQBUVDuCZ1ykdl87NTFUHJdWmLV7Yx/BoENERER9Tkcd12TKdTrFxcW9MiYtqTuu5XQ5dS06OlpUdACguNJDA9OQVNGRpq7FRdk7XYPUkQnDHcfW0DNQXl6u1fBcpqzoOGtEALRdo6Pd146PNji+RrW1kyv9E4MOERER9TmdTV0D/L8hQc5J1/fQAdRT1wCgqMJDA9NQrqKikxhr6OJq58YNBYDWKk7kmV5pSOBaRcdxrNUaHQCIUfQ9qKrr+Dp/xaBDREREfY5c0YmKikJCQkK78/4edI6rKjrHu6zo+GXQyS8H9NK6moRuVjkiw3RIDG/9ZsPHIOdE76/JkoOOXq/HwIEDnV7jqYqOMug0WULQ1NSk3Zv7AAYdIiIi6lNaWlqkaU+Qpq05m/LUr18/ceyPQaesqvXA1gxYTnVZ0YmIiICuxbGPiq8HnerqatQ2BovHPbn5H5xSJR3og/HTvt690bfb7SLopGRfii9+DobN1r4RRGVr0Ak1AaEm7fY5ilWu9zHGBNxeOgw6RERE1Kfk5ubCapXWIzibtgaoKzr+2HlNBJ2WchgMBiQnJ3d6vU6nQ0Swo7VXcaVvd11TNiIAejada2y2o9vYzmPBnVypvdLSUtTW1gKhQ1CUvBpzHrRj1dftr5MrOnEaTlsD1BUdGBh0iIiIiPxaVx3XAP+euma32x1d01rKkJqaCoOh6zUs0WGN4tjXKzpSIwJH0Onu1DUAOOd0R7u2oyVxnVypPbE+J+4S2CFt1Lpppzpk2u12EXS0XJ8DADGqik5swG0ayqBDREREfUpXHdcA/w46tQ1Ai6X1QUt5l9PWZPGRjsqGrwedtpuFxkd1fzrX9DPjpSl+AIrr03s8NneIoBM9TTx3tEB9TX0jYG79aLQOOpy6RkRERBRAuuq4BgAJCQkwGqW/sPtb0BHT1gDAUtFlIwJZbHQo0CL1lT5Z3vv7ybgjNzcXCFJsFtqDik5SYgx0DbsAAA32NFTV9t60Pam1tB6InuJ4rk3Q8VQjAgCIDlc8MEYz6BARERH5M1emrun1erGuxd+Cjmqzz5Yylys60qah0p5BxZU62O2+u04nLy9Ps6lrOp0OUbpD4vG2Q51crLHDhw8D4WMAY4x4rqAMaGhy/OwrlUFH44pOcJAOIUGt++cYYzh1jYiIiMifyUEnJCRENUWtLflcaWkpLBZLh9f5GlVFx42pa8oW043NOtQ2aD40zUgVHeXUtZ69X2qEo4yyeWdzz97MDYcPHwaip7Z7/phiOx9lRUfrZgQAEB3RGqqMsazoEBEREfkrq9WKnJwcANL6HL2+41shucW03W73q790t63ouDp1LTo6GjAXi8e+vE6nbUWnp1O6BqecEsff7TL37M1cZLPZpNCtWJ8jO6oMOqrNQrVrLS2LjWx9T67RISIiIvJfhYWFMJulG9mOpq3J/LUhQXmV4kFLRbcqOoDvBh2z2Sy1/FZUdHoydQ0AhmcGAZYqAMDOnKCevZmL8vPz0dxsBqLPaXdOuU7Hk2t0pPds7chniEBxiY9+6N3EoENERER9hisd12T+GnTKqhRra9yeuuao6BRXajwwjRQWFkrrh1qbERgNQFR4Fy/qQlpaP6B2GwCgotaEwjLPr086fPgwEDZS7AeUlug4d6Sgd9boAOq9dEoqenfDVE9j0CEiIqI+w5WOazJ/DTptp67JU/C64i9T13Jzc6WD1qlrcVFSQ4GeSEtLA2p/Fo9/OtCjt3NJ2/U5C2Y5zqmmrtU4Qo8ngo6yxXR5lRU2m2933HMHgw4RERH1Ga50XJMFQtAJNzUhLCzMpde1n7rmm13X8vLypIPWqWs9nbYGQKp61SmDTi9VdBTrc+ZM0YnvpaOpa55oRqCs6Nh0kaisbF/Ke+aZZ3D99dfj0UcfdXreVzHoEBERUZ/RF4KOsutacpzB5df5yxqd3NxcQGcCDNJ8NS2qHP379wdqfxKPe6eic0Ssz4kMteH0bCC7tW9EoaLFtKoZgQfW6CiDTked17744gu89957eOKJJzpt4OFr/GekRERERD0kT10zGo1IT0/v9FrllC//Cjqt1QhLFZKT4jq/WMFfpq7l5eWJdS2ANjf/KSkpMFhLgWaplLLtEGCzebaqs++4BQiW9mo65zQ9DAYdBisa5MnT15QVnVhlKNGI6LoGdNh5Tf4DQUJCghSI/QSDDhEREfUJdrtd3LBlZWXBaDR2en1SUpJY+3Hy5EmPj08rIui0lCMpKcnl18XExADWasDaCMB3mxG03UNHi6lrBoMBKSkpoiFBTT1wOL/n79sRs9mMgpqB4vG006Xfs8FpjtBxtHX6mtyMICYCMBq1by+trui03zS0oaEBBQXSYLqqgvoaBh0iIiLqE0pLS1FfXw/AtRs2o9EogoK/VHRaLHZU17fe3rWUuR90ADF9rbBM48FppN0eOhqtW+nN6Ws5OTmwRznaSk87XfqnsqIjr9ORKzqemLYGtA86bSs68r5TADB48GDPDMJDGHSIiIioT3CntbRMXqdTUlLiF92olK2I0VLhVtCJimpNDE3SjW1VHVBR7VsNCex2u5Opa9pUOdLS0nqtIYG0PkfquBakN+OMIdLz2YpO4EcK7LBa7ThVKz32RMc1QN11zVnQOXLkiDhmRYeIiIjIB7nTiEAmBx2LxYLy8nKPjEtLykYE7k5dMxqNiIiIABodN7aenL7VHeXl5WhsbNR86hogV3S2iceerOj8sKMEMEmpZli/CgQZ5alrjmuOFkph096atzzRcQ3oeuqa8t8bVnSIiIiIfJA7e+jI/K3zWts9dNwJOkDr9LXGw+LxIR8LOqK1tNHRZEHTqWvWGqBJ2qfnRHEXL+iB7/cHieMpo63iODpCh8QY6fhIgboRgacqOl11XWNFh4iIiMjHdWfqmr91XlMFHYt7FR2gfdA5nO9bU9fEZqEad10DWqeuAUCLVLmrrJWmynnCoeJkcXzptBjVOXn62slyIF+ROXpl6pqh/dS17lRCfQWDDhEREfUJckVHp9MhKyvLpdcoKzr+0HmtJ1PXgNYW06qgo824tOKo6Hho6hoAWE4BAKxWoLZBm/duq9w8QjqwNeL8MyNV55TT15TT57Rai9RWVDigk9/aGN1u6ppc0YmPj0dsbKxHxuApDDpERETUJxQWShuTJCcnw2QyufQa/5661s2KTlMuYDMD8H7QsVrtqqqK04qORpUOUdGxOPpqq5o7aGTfsXpYg6SvFaXbj+AgdYBRtpjeus/xvXuqoqPX6xAV3vqgzdS1xsZG0Vra39bnAAw6RERE1AfYbDbxl2pleOmKvwUdsYcOAFgqEB8f3/HFTkgtpq1Ak1T9OlLg+Y0zO7LziB1Jc+wYd6sdjc3SGA4ePCidbF2jo9O1mXrVA46KjmeDzn+/c1RMMmML253PVlR0flRUdDzVjABQrNMxxqCurg4NDVIpqzvr2nwJgw4REREFvFOnTsFisQCQKjqu8rego6zoxEVYYDAY3Hp9dHTrPLDWzmtNZvU6kd70t/fsqKwBdhwBNmyVOt999913AABDiPQZxkYCBoM2U7pCQ0OlqVktiqBT6957FBUV4dNPP0Vtbccv3HXA8QPNTmu/aa1y6lqJYtNWT1V0AEVYNMYAgKjq+HPHNYBBh4iIiPqA4mJHC62UlBSXX6e81i+CTpXjOCnOvZADKDYNbTgknvPG9LWmZjs++d7xePthO3bs2CEChN6UCED7m/+0tLRuV3Tq6+sxadIk3HnnnVi8eHGH1x04dkocjx3VvrqoDDpKntowFFBUdPQmQB8qgo4/d1wDGHSIiIioD+hu0DGZTIiLk6ZJ+UPQKals3dTU1oKUhFC3Xy+Cjpf30vnvz0Bdo+PxtoPApk2bpAc6I1rs0qISrW/++/fvL5oRAO5VdF555RXk1QwDsl/H6k92w2q1Or3uxMlmcTxlQvvwEBWuQ5KTNf+erOi03UvHWdBhRYeIiIj8ns1m84sOY+5QdpJyZ+oa4GgxffLkSY+1G9ZKaVVr0LGUIznZvUYEgHLqmndbTK/7Rv01tx8G/ve/TdIDxR46WnVck/Xv3189dc3Fik51dTX+9uyLwPBVQOpC1Cc9hj179rS7rqWlBeU1julqw7Kcpxe5xbSSJys6qnVOik1D/bm1NMCgQ0RERAp2ux3nnXce+vfvj4cfftjbw9FMdys6gGOdjtlsxqlTp7q42nvsdjsqa1pv7brRcQ1QVnQUQadAg8G5wdxix3++Uz9XUQ18+5PUcS0+ZYh43vNT11wLeS+88AKqLIMAY2saCRuBzZs3t7tu3759sBmkz0UHm9gctK2209eMBiDC/QKdy1QVHUP7io4/tpYGGHSIiIhI4cSJE/jmm28AAE8//TRWr17t5RFpQ4ugA/j29LX6RsBskYNOWc+CTksJgg3SFKtDeRoN0EUbfwGq66RjveJOtR5DAQCnjTtPPOeRio7FvWYEFRUVeP7554GoyY4ng/vj283ftbv2559/BoKl36fIkIYOGykoW0wDUjVHp/PMPjoAEBOheO/WFtP+3loaYNAhIiIihUOHDqke33LLLThw4EAHV/uPnkxd85ego95Dp6JbQUdMXQMQEyz9zE4UA83m3pu+tnaT42v9eobiROQ4AMDgEWeLp7TeRDMtLc3tqWvPPvus1CQhaorjSX0Qvv3hULupjj/+tA0Iln7/kjspkLSduubJ9TmA86lrytbSzYl34canbXh4qQ1Vtb49fVOJQYeIiIiEtkGnrq4OV155Jerq6rw0Im30hYpOWZXiQU+nrgEI00t7vNjtwLFeWrJlsdjx0ZbWrx8CPPRrRZCJkIJO/8wx4imtA0C7ZgRdBJ3i4mK8/PLLAHRA9CTVudLqYOTk5Kie27r9CKCT1uhkpXU8F63t1DVPBx11M4JolJaWqtbnnNJNxDtfAE+/C7jZsdyrGHSIiIhIEBsyAmKzyQMHDmDhwoU+vxC/M3LQCQ4OVt3Mu8Jfgo66otPDqWsATNYT4ri3Oq99u0tajwMAvzpb2jwzObb19y5iHJKSk2EMdQRVj0xdszcD1noAXU9de+aZZ9DY2AiEDVM1SQAAmNJV63QaGxtx4GiVeJye1HFiGJyufuzJRgRA26AjTV1TdlxrsCaI6yLDPDeFTmsMOkRERCQoKzqffvopoqKkPyWvWrUK//jHP7w1rB6Tp64lJye7vdZB7roG+FHQsXSvoqOcuqZrcvxF39NBp7m5GW+88QZeeNexIOjKqTrodDoMTm0tqwTFYfzkuaoqi9YBIC4uDiEhIWKdTmcVnfz8fPzzn/8EAAQnnNf+gjZBZ+fOnbAZHZ9JanzH7x0ZpkOyIjf1bkVHmrrmqOjocKo+DACQ7v6vlFcx6BAREZEgB52EhARMnDgRK1asEOfuvvtubN261Usj6z6r1YqysjIA7k9bA9QVHV9uu63F1LWQkBCYTCYAgKXWsTbrUJ5nq3lvvvkmfvOb2/HJVmlaV0gwMKt1KU6IZb+4rt+QS1GhDDoaBwCdTof09HSxTqeyFh1WMp9++mmYzWYAwODxN7W/oE3QUTYiAIDU+M4Dt3KdTlwvr9EpLy93/NEjKBEtVikyMOgQERGRX6qpqRE38sOGDQMAXH755bj33nsBABaLBX/961+9Nr7uKi8vh80m7S/T06Dj2xUdxw15EKoRGRnZydUdk6evNVc59oHxdIvp3bt3A1GTRBC4YJxNTJGqyv/KcWHEGSivcjzUeuoaAAwaNEhUdJrNQENT+2uam5vFHwEiIyNRpz+t/UWmdBw5ckRMm5SCjuP3LyWu/UuUlOt04qM8O12s7dQ1m82Gbdu2AQCik0aJU30m6OzevRtnnnmm6i89K1aswAUXXIDzzjsPL730kioB79u3D9deey0mT56MRYsW+fR/KIiIiPqiw4cde6cMHTpUHP/lL39BeLi0E71yDY+/UDYicLfjGgCEhYWJKXy+XNFRTl2Li7J3ux2xvF9KZVmumF7l6alrpaWlQMIV4nFQ9X8ASOH64Lb3xPPHy+NVFR1PVDqys7O7bEhw4sQJNDdL7benz7weuSXSeptJowCdrvX+N1hKKlu2SN0V2ld0Oh+HssV0767Rkb5Yfb20TikpfZw4lZ7kP+tzgG4GHZvNhueffx4jRowQz23ZsgVr167FihUrsHr1amzZsgUff/wxAGmDrfvuuw/XXHMNNm7ciFGjRuGRRx7R5jsgIiIiTSjX5yiDjtFoRGZmJgAgNzdXVEf8RU86rsn695fmEZ08edJnmzKUKvYyTYrt/g1pRkYGAOlGNyulRby3J9sKl5SWOYKOzYxP3vktDh8+jJ07d6Ku8jDQLAXM7YccgS4yDAgO0v7Ge9CgQUBLhXjsrCGBsiOZMW6qOJ5+OpAYbZUemKSOAps3b0Z1dbX071eQ4/evq6BzxVQgOEjqPjfjTPe/D3eEh0qbkgIADDGqc32uovPBBx9g1KhRyMrKEs999tlnmDt3LtLS0pCQkIAbbrgBGzZsAABs374doaGhmDNnDkwmExYuXIj9+/ezqkNERORDlNUaZdABHDe/zc3NYtd0f6HcQ6enQaexsRFVVVVaDEtzxRUt4jg1Ibjb7zNw4EBxnBjhSE9HPDh9Le9UsggGqPoaLY1luP322/G///1Peq7uF+lUHXBU6nrtkWlrgHrqGuC8oqMMOrU6R7vryaOB1LjWoBOcAuiCsHnzZmzfvt3xXKuupq4Ny9Ch+CMdCtbpMCDZs5UUnU7nqOoY1Rv8BEc6fh/8LegY3X1BdXU13n//fSxfvlzaBbbV8ePHMWvWLPF4yJAhePXVVwEAOTk5UhmwVWhoKNLS0pCTk6Oa9yozm81icZcYqNGI4ODu/0tL7pP/Yudvf7mjzvFzDVz8bANTb36uyqAzZMgQ1deUgw4g/f96dxa6e4vyD6uJiYnd+lkq71fy8/NV3cm6wxOfa0ll63tZapGSFNPt91b+ITtMVwhA+qwP5Noxbqhnqjrl1vHiON6+CRUAvv76a+zatUt6sm4bEH8JAED+tuKjPPPvRVZWFmD51jG2ajtsNvX3rQw6uaekgKbTAROH25AaZ8GuHBOg0wPB/bBr1y589VXrOqPWqWuxkUBwUPv3bStamjHa5XVaiIlorZYZY1TPW42Orgj9E7oec2/R67uu17gddF599VVce+21Yq6qrKGhARERjgl+4eHhaGhoACD99UOe26s839jY6PRrLF++HEuXLlU9N2/ePFx11VXuDpc0kJ/fS83zqVfxcw1c/GwDU298rnv37gUg/XFRr9cjNzdXnFP+//727dud/qHSVynXHgFQfV+uUt7j7Nixo9sL/dvS8nMtr26tFrSUISQkpFvfJ6D+XhsrdgIYCwDYtq8K5wytdv6iHmhoaECL3tHC+84FE/GY1P8C5eXlAIBI3RG0nUEWFtyI3Fztq4tGo1G1RufoiQrkZqo3zN2zp7VRgyESx4qle9yhaWbUnCpCv3hFRcSUDltzLt544w3pcWvQiY80IzfXt2Y2hQWnADC1rtHRAZACTVWj43fd1piLbv5aaU4ZyDviVtA5ePAg9u3bh/vvv7/dubCwMNWuyfX19QgLk3puh4aGigVNyvOhoc53hF2wYAGuv/569UBZ0el1NpsN+fn5SE9Pdyk1k3/g5xq4+NkGpt76XG02G06cOAFAmrqjnIkBAKeffro4rq+vV1V4fJ3yD6unnXZat8auXJfc0tLS4+9f68/VagXqm1r/0m4pR3Z2drfHOHHiRHGsb3ZULkpqYpCREdOTYTp1/Phx1SL93916BXZ9fzk+/PBD8dzUMyLwabn6dWnJoR77PYyP0kFepaMLikdGhnpBjVwlNCVMQ7NdmlZ27rhgpKenIzWuynGhaQAAoLKyEjBEAQbp3nhASrDP/TuUFA/gOACdATBEAlZpzl6tOUY6HwsMGexbY+6KW0Hnl19+QV5enpiiVldXB4PBgIKCAmRlZeHo0aOYMmUKAOmvJ/Icz4EDB6p+WRsbG1FQUKCaA6oUHBzMUOND9Ho9b5oCED/XwMXPNjB5+nPNy8tDU5PUR3fYsGHtvpbyr6d5eXl+9TumXKPTr1+/bo09Lc3R67eoqEiz71+rz7Wixg4xoailHMnJyd1+30GDBonj8oJtMBikIHWkwLXpQu4qLy8HgqRueHqdBfHRQXj55Zfx5Zdfij+iz7pgLHZ8BZxUhJ2EaM+MBwDSUsJQ0foDLa5ohl7v+OO8xWKRwhmA6AG/glxTOmeMDnq9HqnxVscbmRQ9ott0XPO1f4diIxXTAI0xgLUGsXGJKD7l2EPH18bcFbdGe8UVV+DDDz/EypUrsXLlSkydOhXXXHMNfv/732PWrFlYt24dCgsLUV5ejpUrV+Liiy8GAIwbNw6NjY1Yv349zGYzli1bhhEjRvhV2ZuIiCiQddRxTSZ3XQMgKj/+Qu66FhYWppqW5Q65GQEAFBYWajIuLSn3lunuZqGy6OhoxMdLFYwTxw8jq3VG3OGCjjfP7ImSkhIRAiJN9dDpdEhLS8Ozzz4LQJo2OXv2bIxv82sZH+25BfpZ6Y41WLmF6mlr+fn5aGmRGj/YIs8Wz08ZLf2zX5xFPBeVONLxwmDXO655Q6yqxXQMACBj8FliTZS/NSIA3Aw6ISEhSEhIEP8zmUwICwtDZGQkpkyZgiuuuALz58/HvHnzMHnyZMyePRuAVKFZsmQJVq5ciXPPPRe7du3CE0884ZFviIiIiNzXWcc1AEhKSkJISAiA7q1x8Sa5opOcnNztvWWUQccX99JR7qHT06ADODqv5efnI7u/dKdb36iuqGjlZHEZEJQAAIgNbxbP/+Y3v8G2bduwa9cupKWlYdxQ9Wfnqa5rADBkYKJjfGXqHUOPHTsmHeiMqLJK/64MSAbSWzujia5rAKKSlEFHWdHxvf1o2m4aCgBJ6WeIp/wx6LjdjEDpscceUz1esGABFixY4PTakSNHYtWqVT35ckREROQhyorOsGHD2p3X6XTIyMjAoUOHcOLECdjt3d+QsjeZzWZUVEirLbrbWhqQQpLBYIDVavXJik5ZleJBS5kmQefnn3+G3W5HSnQNgBgA0sah/RM7fanbjhfUSx3KACTFWFXnxo1zbFbZrqLjgc1CZaOG9gM2Scflp9RjEh3XwsfCYpOWWsjVHABIiLbCaAAsVkAXMsBxwscrOjGRjgYEckUnKnEk0Drz0982CwW6uY8OERERBZaupq4BjhbTDQ0NIjz4OuWePz0JOgaDQbzeF4OOuqJTgcTEnqUR5TrqCIOjgnXYA83/coscW4r0T+z41nRcu6lr2o9FNnxoJmCTKjlV9eobfBF0oieL56aMcVxj0AP9pQKVWMgPACFRjnVuXe2h4w2qik7rpqHGcP/dQwdg0CEiIiI4pq7Fx8eL9Rlt+eM6HWUjguTk5B69lzx9rbS0VKzR6G0Wix1vf2rHj/vVa2WUFZ2w4HqYTKYefR1l0FF2Xjucr/0anZNljkXw6ckdN6NKjtMhTZHfPDl1LTt7ENAibRpa36z+WYqpa1FTxHPKig4gTWUDgKo6A0aOPhMAkJrhqE75YkUnVtkxvbWiYwtytP0ewKBDRERE/qa2tlasO+momgOoNw31l3U6ciMCoGcVHcARdOx2u2oT0t50z2t23PI3O877gx35JY7QUV7tOI6L7PkmmsrOa02n9ojjwwU9fut2Sqsct6OD0sM6vfas1iUvOh3QL0H7schiYmJgsEtlMrNN3cDCUdGZJP0jAhjZZkuXNEUoeGPFp1i3bh0GZE8Qz/li0FFVdIJiMXToUDTZHcmSFR0iIiLyO8oNNZ2tz5H5Y0VHy6DTr5/jr9vemL5WVG7H6x9Lxw1NwJpNjnMllY5wkxjb89s7ZUWnNH8nTK2FltziDl7QA5V1jipORr/OK1GPLdDh/HHAXxfpkBTr2TUjYcHS1DW7PgzVtVKTBLvdLlV0jPGiJfb4oYBerx5LuqLy1GhLwBVXXIGyagMAINQERIV7dOjdogw6Ny+6G7t370ZhufS7pNf7ZjjrCoMOERFRH9dVxzWZP1Z0PDF1DfBO0HlhjR3NjuUsWLPJUcU5WeY40S8hqMdfKy0tDUaj1LPq+PFjSGydJqZqeuCiyhppql1Hralrmx132P266EY2MkuHr17Q4/7rPb8wPirM0YRg1748ANIeSo2NjWIjUADIcrJbirL6kd+6TKyodVlbajx8spGHcuqaxR6O4OBgMfZ+8YDR6Htj7gqDDhERUR/nSiMCgBUdbwadyho7/vmR+rmt+yCmr5Weaq3o2K3on9zzcoHBYBCfd05ODhJjpOfLq93bS6fZbMeE2+w46zd2PLOy/XmLxYImW4x47EtVg4QYx23y3oPS1E4xbU3RTS0juX0ASGsTdJqa7ThVKz32xUYEgLqic6pWGnPpKemxP05bAxh0iIiI+ryuWkvLUlNTERQkVQv8saLjz0HnHx8AdY3SsfKG9INvpX9W1LTebLdUIDlZm/7P8vS12tpaRIdJzRcsVqCqrrNXqX2zEzjW+qP6bGv7gFRRUSGmgAFAUmy3h6u5lATHNLqDx6TShgg6pnRxboCTQqG6omNHcaXjsS+FOSXl71VVHVBQ5njMoENERER+SZ66ZjQaVWsz2tLr9RgwQPpLtj9WdLScutabm4bWNdjx0lopJBgMwMo/OyoIa7+Rnq+qb52upsEeOjLl74JJXyOO3Zm+9vlPjnBzxEkjg9LSUrGRZoihFsFBvjM9akCq484/J08qbYiOaybHNE6nQUeRNfNLHdPWAN8NOqZgHUJbs11VnWPKHcCgQ0RERH7IZrPhyJEjAKQbW7li0xF5nU5NTQ2qqqo8Pbwek4NOVFQUQkNDe/Re3qrovLkeqGzNGdddAMw6W4cRmdLj7/YAxwrtMFta94C3lHsk6Oisjjt1d4LOhq2O45JKoKZeXdUpLi4RG2lGmuq7NU5PGZThKC/lFUllLEdFxzF1zVnQiY8GQlp7LLQPOr4T5tqSqzqnatVBZ4CT6Xn+gEGHiIioD8vPz5cWV6PzaWsyf1unI09d6+m0NQCIjIxEZKS0Yru3gk6z2Y6/r3KEgz+1LsKfO116bLcDb3ysCA8tngk6lkZHO21Xg86JIjsO5qmfO9qmqnOi4BSgDwEAxEaY4Uuy0qLEcXGZNHWv7RodnQ6qvX1kOp0jAOWXwi+mrgGOoMOKDhEREfk9Vzuuyfyp81pjYyOqq6W9UHo6bU0mV3UKCwvdWpTfXf/63FENuPwcYESmFHTmTXf8hX35Z4oXeCjoNFQ7Puvyatdev+HH9s+1nb52NK9BHCfHWOFL4qMdP+OKGjusVquYumYIywQghZaOptvJ4aC2ATiY5/hd8dVmBIAj6NQ1AseLHGNm0CEiIiK/42rHNZk/VXS0bEQgk4NOQ0ODCFGeYrHY8bf3HDebD9zguKEemQUMbZ09pQoeHgo61eVHxbGrFZ0NTpoPHG1TCMsrVrbF9q3b0jhFu2WbPho7d+6UPnOdCVaD9DN2Nm1NpgwHPx1wHPtyRUfZYnrvcccxgw4RERH5HVc7rsn8qaLjyaADeH762ppNQE5rz4MLxwNnDncEHZ1Oh7nT2r9GZ6lAXJw2JYPo6GjxXmUnHXfqZVVdV7KazXZs3CEdGwyO548UqF9bVO54PCA1GL4kLkrxwBiH//73v9KxKU08PaCTAKAMBzuOOI59OegoO6/tyZH+GRwE0V7c3zDoEBER9WE9mbrm6xUdLTuuyfr16yeOPR10PvneEQKcbZA579z2z0WGNkOv1+72Tq7qlBbuE8+5UtHZsgeob22HfdkUx/Ntp66VVjnGOii95/v/aEkddGLxxRdfSMeKRgQZneTn9CTH52OWlvjAYPDt0KAMOg1N0j/TEgG9ns0IiIiIyM8cPnwYABAXF4eEhIQur09LS4Oh9U/0vl7R0XKzUFlvVnSU+5hMHN7+/JhBQHZ/9XNxkTZNxzBo0CDpwOxYme5K0FFOW5s7XYd+rb9abYNOZb1jr5rBGZHwJRGhgEHf+vMMisN3330nHSs7riV1HACcTfdKjvXt0BDr5CPw12lrAIMOERFRn9XS0iJu1jvbP0fJaDSKm31fr+gop65p3YwA8HzQOVku/TMqHIgIa39zrNPpRPc1WWKMtjfR4vfCUgW9TrrpdynotDYi0OulaXeDW2d7lVUB1XWOEFTb7CghpCX51m2pTqdDTETrWI1xsFgs0nFI562lZc4Cgi83IgCAmIj2vz+dfY++zrd+o4iIiKjXFBUVic5haWlpXVztIDckqKysRG1trSeGpgl/rujY7XacbO221q+TNR3K7msAkJrQ+T5I7nIEYDvCg6W5TF0FnbwSO/afkI4nDJe6lw1W/HrJVR273Y4ma7R43hdDQEJM662yUTG4LvbQkTkLOr68PgcAYljRISIiokBQUOCYR5Senu7y6/ylIYGng87Jkyc1eU9nahscayT6dTKjcOwQoF9c64V2K9JTQjQdh7LSF6yXdi0tq0KnrbU/V7SVvniiFMQGpzkCmRx06urqYDNKd9F6NCIyTKNBayg+qnXcxihAJ23KaooaLM53tkYnKlyH6Aj1c74edGIj2j+X3sn0PF/HoENERNRHKYNOdyo6gG8HHeXUNa1aLicnJ4vF/p6s6MjT1oDOg45Op8N1k/ZIa2gKX0S/lFhNx6EMOjqLNKgms6PRgDMbfnSEoIsnSv9UriWSg05paSkQJCWFUEMNdDrfu6Fu25AAAPRhUtCPCFUv3ncmvc1mor4edFjRISIiooCQn58vjt0JOv7SeU2u6MTFxSE4WJvWxUajUVSHei3odHFzPDhmF/BjKnD8Ps0CnSwtLQ1Go1TJsDQUiec72jTU3GLHV9uk44RoYFxrIz/11DUpCOUVlAJB0pSwqJB6TcetFeVeOvL0NbNO+vwHJKPLcNY2JKTG+16YU3IW3Bh0iIiIyO8EekVHDjpaTVuTydPXSkpK0NLSoul7y+T1OQDQL6Hzm+PSUkdHNK2DjtFoFMG2vtrxWXe0Tuf7vUBda7Vn5gRHh7FBioqOvGnokRM14rn4CMfGob6k7V46CEqE1S6FZlcW6bcNCb64DkmJXdeIiIj6oK+//hrr1q3rdG2Cv9FijY6vVnTq6urQ0NAAQLuOazI56NjtdtU6IC25OnUN8GzQARzT11rqHRWsjoKOsq20vD4HAMJCdEhrncYlT107VtAgzifGaNsWWytxUYqQGRSn3kPHpaDTplmEr09da1PRCXdhep4vY9AhIiLqwu7du3HBBRdg7ty5+Pe//+3t4WhGGXSUG2F2JT09XUzZ8dWKjicaEch6o/PayXJHYPCVoIMWx8Y+HQad1kYEOh0wY4L6nDx9raIaOFVrR16xoxrW38daS8vaTV0zOUL+gOSup6G1n7qm0cA8JKpNQ4gBSV1Pz/NlvvlbRURE5EO2bt0qjl9//XUvjkRb8hqdpKQkmEymLq52MJlMSE1NBeC7FR1lIwKtg44yFHos6Cimrq1c/vdOK4lHjhwRx54NOo4yk7OgU1Zlx54c6Xj80PZ7+qjW6eQDRYowl5Hi+u9fb2rXjMDkqHwG4tQ1o1Gn6n7nz9PWAAYdIiKiLimrFt9//z2OHTvmxdFow2KxoKhIWlzuzrQ1mbxOp7S0FI2NnbTg8hJlRcdTU9cAT1Z0HMf/fPHP2Lhxo9Pr9uzZg19++QUAcNpppyEiQvt5Rs4rOu2DV46i2/b4YY7jpqYmHDlyBNlt9tIprXLchg5K98He0mgTdILiEBY3XDwc4EIIUIahuCjAFOz71RHlOh0GHSIiogDXdnpWIExfKy4uhs0mrYtwpxGBzNf30vH/qWutBy0VgL0ZL7zwgtPr3nzzTXG8cOFCj4zFadBx0nUtz1FEQ0brtK6WlhaceeaZGDJkCA7u+EScP1Jgx6l6x54/Q7McG4f6EuXUtbikbAwfO0M87mwPHVmaor20r1dzZMo1Of68hw7AoENERNSltjfy7777rt83Jehua2mZr3de8+TUNU9vGmq32x1T18zS+3/66ac4dOiQ6rqGhga8++67AIDQ0FDccMMNmo8FcH3qWq6iL4Ncydi6dSv27t0LANjwwUvi/JECoM4c7vgaaaGajVdLyorOzEuuFWt09Pqu104BQIhJh7nTpePrL/SP0KAOOt4bhxYYdIiIiLrQdh3KsWPH8MMPP3hnMBrpbsc1ma93XvPnqWunaoFmuduy2bF3zUsvvaS6bs2aNaiulkor11xzDaKjPVMViYmJQWxsLGBxLBxyFnTySh3hXw46X375pXiuKOc76HTSNUcKgEZrjHTCbkVijMaD1ki8IuhU1jiqVv3igSCja8Fl9eM6FH2ow4O/9o+gw6lrREREfURLS4vTv9rLf0n3V93dQ0fmrYrOf//7X2RkZOD222+H1Wrt8DpPTl2LiooSa2E8EXSU63PQ7PjdW7FiBSoqHGHjjTfeEMeLFi3SfBxKmZmZgN0CtFQCcL5hqHrqmvTPr776yvGkvRkRxlMApKlrVr00rysIp2Aw+GYIiAqXqjcAUFjmCHiuTFuT6XQ6pPj4RqFK/RWVquz+HV/nDxh0iIiIOlFQUCDWssycORNhYdKi6f/7v/9Dc3OzN4fWIz0NOt6q6Pz9739HXl4e/vnPf+LJJ590eo3NZkNOjtT+S6/XIzEx0el1PSFXdQoLCzWfxqgKOuaToiNeY2OjWJOzZ88eUVUcPXo0Jk6cqOkY2hLBtnWdjtOpa61Bx2iQ2ihXV1fjp59+Ul3TXLUPAFBVpwNM0s8wzOgkNfkIvV4nKhwH8hzPu9JxzV8tvkqHX50N/GWRDln9/CegOcOgQ0RE1AnlTfzIkSNx+eWXAwBOnTqFTz/91Euj6rmertHxVjOCvDzH3eYTTzyBDRs2tLvmgQcewL590g31kCFDYDAYNB+HHHTq6+tRU1Oj6XsrW0vDfBK///3vxV4m//jHP2A2m7F06VJxyaJFizy+10lWVpZ00Bp0auqBZrM64MkVnbREwGDQ4X//+1+7qpu5Zl+7944MaWj3nC+RGxIovxVXOq75q+w0HT75mx4P3ODfIQdg0CEiIuqU8iY+MzMTv/71r8Vjf56+pqzoKNecuCo0NFTs2dKbFR3lNEK73Y7rr79e9fWXLl2KJUuWAAAMBkOH3cp6qifrdI7k2/H4cmDhC4n44Nv259UVnSKcf/75mDNnjnTu5Em88847eOeddwB4tgmBkqOi4xiccvpaXYMdla15z9n6HPHvTaNjzx9ZfIS53XO+RNViupUrm4WS9zHoEBERdUIZdDIyMnD++eeLNR+ffvqpas2EP5GDTmJiIkJCQrq42jn55reoqKhXpvHV1taitrZW9dypU6cwd+5cNDU14csvv8Rvf/tbce6VV17BRRdd5JGx9CTonCgGnvgX8PXOMHyzs/35k4qNNGE+iaysLNx9993iqTvvvFM0Ibj66qsRExPj1tfvjrZT1wD19LW8Usdx26BjNBrx7LPPIjw8HGg82u69k2NtGo9WW8oW0zJ31uiQ9zDoEBERdUJZLcjIyIDRaMT1118PQGpUsHr1ai+NrPusVquojHRn2ppMnr5mt9tVU+E8Rd7gFABmzZqF7OxsAMD27dtx7bXXYu7cuWKq1OLFi1WhR2v9+vUTx+4GnTOGOI53HG5/vm1FZ8CAAZgyZQrGjRsHQNqAU+bpJgSytlPXgDZBp00jgtzcXBw5IlVvzj77bCQnJ2P27NlOKzr9ErWfWqglpxWdAJ66FkgYdIiIiDrRtqIDQDV9TZ5C5E+Ki4tFIOhOa2lZb3deU05bGzFiBNatW4fQUGn/lY8++kislZk9ezaeffZZj46lJxWd+GgdMlsrAjuOAlareq2Lco1OvwQ9TCYTdDodFi9erLpu1KhROOuss9wbeDeJNVkdBB31Hjo61bS1Cy+8EIDUAhtNOYBdvW4ns59J8/FqyfnUtd4fB7mPQYeIiKgT8g18dHS0mCJ02mmnYfTo0QCkDRHlv1z7i552XJP1duc1ZdDp168fxowZg9dff111zRlnnIH33nvPIw0IlHq6l45c1WloAg61KYYVlrVO5TKXICvT8fnMmzdPVUm67bbbPN6EQBYZGYn4+PgONw1tu4eOs6Azc+ZMREeFAU3qUDwwPRy+rO3UtahwIDqCa3T8AYMOERFRB6xWq5iSpbypB9RVnQ8//LBXx9VTWgUdb1Z05Bv++fPn48477xTjWb9+vbQWxMOUQUf583TVuKGO4+2HHMc2mx3FFa030a3rc2TBwcGipfbAgQN7pQmBUlZWlqqiU17tCDfKqWvpSXZ8/fXXAKQ/EIwfPx4AYDKZcMUVVwBN6nU6wwfGeG7QGoiLUoeaDFZz/AaDDhERUQeKiorQ0tICQH1TD0C1yH3nzp29OKqe62lraZm3Kzqyl156CTt27MCuXbtUz3tSv379xP42R4+2X2DflbGDHcfbDzkCQ3k1YLHJQaeo3e/dzTffjMOHD2Pbtm290oRAKTMzs8OKjnLqWmXRLtGk47zzzoPRaBTnrrnmmnbrdIb5fNBRP+a0Nf/BoENERNQBZ+tzZEOHDkVQUBAAYPfu3b06rp5SViB6skant/fS6Sjo6HQ6nH766YiKcrKYwkP0er1ohnDs2LF2+8V0ZZyiIcEvioYEqkYEzeqKjmzw4MGIjY116+tpQQo6nXddi4sCvt/8X/H8BRdcoHqP8847D+EGR1MJnbUGEWG+fTvaduoag47/8O3fLCIiIi/qLOgEBwdj2LBhAIBDhw7BbPbtvUCUtJq6FhkZibi4OAC9X9FJTU31+NfrypAhUloxm82qjUxdkRAD9Iu3AAB2HJGmrAFtO645Dzre0nbqmhx0rFY7ClqfzuhgfY7MaDRi+gTHtL9g+H579nYVnSSuz/EXDDpEREQdaNtaui25IYHFYsHBgwd7a1g91tPNQpXkqVWFhYWwWCw9eq+uyEEnJiYGYWFhHv1arhg82DH/7PBhJ32iuzAqU9p7qK4RONw6m1DZcc3Z1DVvyszMBOzNgEXay0gOOifLAbmg1T/Bii1btgCQ/p2Rq15K110xQRyHGms8OWRNtA063EPHfzDoEBERdUBZ0XF2wykHHQDYs2dPbwxJE/IanYSEBNGeubvkAGi1Wru1KN9VdrtdBJ3eWofTFbmiA7gXdLZv344pU6Zg84aXHM+1NiRQVnT0luIeTS3UWttNQ8ukPUtVm4UaLIVi89gLL7zQaVe4eZeMQ4QuBwAw80z3pvx5A6eu+S8GHSIiog50NnUNAMaMGSOO/WWdjlabhcp6q/NadXU1GhsbAfhm0HGlxXhDQwPuu+8+TJgwAT/88AMaS7eIc9sPy1PXHI0JkmKsqoX83tY26FTWSNPWlB3Xqkoc/x60nbYmCwrSo+SLgdj6agPef3acp4armZgI9WNuFuo/fOffHiIiIh8j37iHhoYiISGh3Xl/rOiUlpaKKWZaBJ3eakjQUSMCb3KnorNp0yYsXLhQ3aGt7hdxKDckyCu2QL49y+rvWxtphoWFISkpCaWtndfsdqCiRt1x7cTBbwFIDSLOP//8jt8rRI+JoyM6PO9LjEYdoiPsqK4DDAYgNd7bIyJXsaJDRETkhN1uFzfumZmZTqfgpKWlITo6GoD/BB2tOq7JlBUdTzYk8MWgk5SUhMhIaV5TZ0HnwQcfxLnnnitCTnBwsLR2paUMaJamEf5yWGpIkFsktTOH3YrBmdGe/Qa6wVnnNeVmobmHpKBzxhlnSBuMBojhrXl+zEAp+JB/YNAhIiJyoqysTEyVcjZtDZD+ai1PXysoKMCpU6d6bXzdpdUeOrK+XNHR6XSiqpObmyvWpijt3r0bf/3rX8XjSZMmYdeuXfjzn/8sPVErVXVqG4CjhUBRpbyHTjEGDcz06Pi7o/2moeqKDpql7nPTp0/v3YF52LL7dfjT9cA7DzHk+BMGHSIiIie6Wp8j87fpa1q1lpb15YoO4Ji+ZrPZkJOT0+78Dz/8II7vvPNObN68GcOGDcOMGTOkJ+u2i/M/HQCq6oOlB+aTPtVxTea0otO6RsegswAtUmeCs88+u/cH50EjMnX46216jBrIoONPGHSIiIicUN60d3bD2deDTkxMjNios69VdICu1+ns2LFDHM+bNw96vXTrlZSUhFGjRqnW6Xy21Q67fGtmLvapPXRkmZmZgMXRA1uauiYdB9uLAUjT2AIt6JB/YtAhIiJyIlArOsqpa1q1LpaDYF5eHmw2mybv2ZavBp2u9tL55RdHkDnttNNU56ZNm6YKOhu2Kk76aEWn7dS1owV21NRLx8010hqk9PR0n/qMqO9i0CEiInLC1aAzatQocewPQUfLzUJl8s+npaUFRUVFmrxnW8qgk5LiOzs2dtZi2mKxiN+JwYMHi8qXbOrUqUBLCdBcCACoqnOc01tKfDIstJ26tu2Q45yt4QQAVnPIdzDoEBEROeHq1LXo6Ghxo79nzx7Y7fYOr/UFctCJi4tDWFiYJu/ZG+t05KCTkJAAk8l32i53VtE5ePAgmpqaAABjx45t99qxY8dKXfsUVR1ZfGQzDAaDxqPtuYyMDFXQ2aHMds3SHwcYdMhXMOgQERE5IVd0goODu6wgyNPXamtrPbpOpadsNhsKC6XqgVbT1gDPd16z2+0i6PhalSMmJgaJiYkA2gcd5bS1M844o91rjUajtNeMoiGBrH+Cby56DwkJQXKcI4DVNihOtrbKZtAhX8GgQ0RE5IR8w56eni4WkHdEbjEN+Pb0tdLSUrS0SPu0aNGIQObpik5FRYUYt68FHcAxfa2oqAh1dY75Z8pGBM4qOgAwc+ZMpxWdgWkhGo9SO1kZiYCtqf2J5jyYTKYOv1ei3sagQ0RE1EZVVRVqamoAdL4+R+YvDQm07rgm83RFx1cbEcg6WqejrOh0GnRq21d0hmZFObnaN2S1WacjNOXijDPOQHBwcK+PicgZBh0iIqI2XF2fI1MGnd27d3tgRNpQBh0tp655uqLjT0FHnr5ms9mwc+dOAFKolKe3tZWeno6RQ+IBs6KJg60FI4cme2y8PdW2IYFgLuC0NfIpDDpERERtuNpxTTZkyBAEBQUB8O2KjrK1tJYVnfj4eNHYoC9WdJw1JMjJyRFVQWfrc5QuuugioFYxfc1chIFZmZqPUytSi+ly9ZPmEsDWxKBDPoVBh4iIqA13g05QUBBGjBgBADh06BCam5s9Nrae8NTUNZ1OJ6o6ubm5mnee8/Wg42zqmivrc2QXXXSRuiGB+aRPbhYqc1rRYcc18kEMOkRERG24O3UNcExfs1qtOHjwoAdG1XOeCjqAIxA2NTWhtLRU0/f29aCTnZ0tjuWKTlcd15SmTJmC4JZ94rHeWoLkZF+futamotOcj/T0dM32ZiLSAoMOERFRG+5WdAD/WKfjyaDjyXU6vh50QkNDMWDAAABSRc9ut7tV0QkJCcG0042ApRoAEB90GDqdb7aXBiB9r22DTlMuzjrrLO8MiKgDDDpERERtyEFHr9e7/Bdqb3Zea2pqwoYNG1BW5mSBeKvi4mIcOHAAABAbG4vw8HBNx+DJzmty0NHr9T5b6ZDX6VRVVaGiokJUdBISElwKlbNnTQZ2TQH2z8PYpC0eHWtPmUwmxIS3qJ9szuO0NfI5DDpERERtyDfqaWlposlAV7y5l85tt92GWbNmYfDgwVi6dGm7NTK7du3ChAkTRBDqaipVd/RGRSc5ORlGo1HT99aKcp3Opk2bxM967NixLlVnLrnkEhjNh4GKD3Dm+NM8Nk6tpMQb1E805zPokM9h0CEiIlKor69Hebk0LcfVaWuANKUqNjYWQO9PXfvyyy8BANXV1Vi0aBHOP/98HD16FADw0UcfYfLkyaLjWlpaGl5++WXNx9DTio7VasXjjz+O2267DbW1tarni4uLAfjmtDWZMuisWrVKHLsaKjMzM/Gf//wHTz31FO69917Nx6e1AamhqsdG60luFEo+xzf/LEJEROQl3VmfA0idx0aPHo1vv/0WJ0+eRGVlJeLi4jwxRJW6ujoUFRWpnvvf//6H0aNH44orrsD7778vKjwTJ07ERx99hJSUFM3H0dOKzpIlS/DYY48BAIKDg/HKK68AAMrKymC1WgH4dtBRtpj+9NNPxbE7N/+zZs3CrFmzNB2XpwwaEAWUOB6fPjwOJpPJewMicoIVHSIiIoVjx46J44EDB7r1Wm9MX5MrNwAwYcIEETiamprw3nvviZBz3XXXYdOmTR4JOQCQlJQkbnTdrejs3LkTjz76qHi8fPlyVFVVAfD9RgQyZUWnqalJHAdqlWPooHjHA2sDpkwc7r3BEHWAQYeIiEhBGRwGDRrk1mu90XlN3rcFAGbPno09e/bgD3/4g2pdyFNPPYV///vfCAkJ8dg49Hq96Dx24sQJl/fSaW5uxq9//Wu0tDgWt9fX12Pp0qUA/CfoZGZmtls/FBERoWo9HUhGDukP2MzSg+ZcTJrE9Tnkexh0iIiIFJQVHXeDzqhRo8Sx3OHM05RBZ/DgwYiIiMALL7yAH374AXfeeSe++OILPPTQQ73SrliuJtXX16OystKl1zzyyCPYu3cvAPV+NK+88gosFovfBJ2goKB2FcDTTz8den1g3moNHJgJnHwFsDYCJ//BRgTkkwLz3z4iIqJuUgYdd/8aP2zYMHHsraAjmzhxIl5++WXMmDGjV8YBqNc0ubJOZ8uWLXj22WcBSOtyPvjgA1xyySUAgPz8fKxbt85vgg6g/vkDnulu5yvS09NhyHsA+D4aaYZPNN+XiUgLDDpEREQKctAJDw9HUlKSW6+Ni4sTrzl48KDmY3Pm8OHD4rjtjXZvUzYk6GqdTm1tLebPny+muD355JMYPXo0Fi9eLK55/vnnUVhYKB77etBRrtMBAnd9DiBVsO644w4EBxtw3333eXs4RE4x6BAREbWyWCw4fvw4AGnaWneme8lVneLiYrGg3pPkik5qaioiIiI8/vU6405F549//KP4WU+ePBl//OMfAQDnnnuuaOrw008/4bPPPhOv8begE8gVHQB48cUXUVdXhzvvvNPbQyFyikGHiIioVX5+PiwWCwD31+fIhg93dJ/ydFWnurpabEzp7WoO4HqL6d27d4tmA+Hh4fjXv/4Fg0HagFKn0+Huu+8W18pT14xGIxISErQftIaUQcdkMql+FwKVqxvqEnkDgw4REVGrnqzPkSnX6Xg66HS0PsdblD+z/fv3d3jdd999J44feuihdqHymmuuQXJysuq51NRUn1/Yr/wMRo8ezRBA5GVu/xfj6aefxsyZMzFt2jRcffXV2Lx5szi3YsUKXHDBBTjvvPPw0ksvqVpL7tu3D9deey0mT56MRYsWtdvcjIiI/E99fT1OnTrl7WFopicd12R9OegkJycjMTERQOf7CO3bt08cT548ud15k8mE3/3ud6rnfH3aGgCkpaXhV7/6FfR6PX7zm994ezhEfZ7bQef666/H+vXr8c033+CRRx7Bn//8Z9TU1GDLli1Yu3YtVqxYgdWrV2PLli34+OOPAQBmsxn33XcfrrnmGmzcuBGjRo3CI488ovk3Q0REvefYsWNITExEdnY2fvzxR28PRxNaBB3ldCVPd17ztaCj0+nEXkKlpaUoLS11ep3cThoARo4c6fSa3/zmN2IDUsA/go5Op8P69etx6tQp3HLLLd4eDlGf53bQyczMRHBwMADpX2iz2Yzy8nJ89tlnmDt3LtLS0pCQkIAbbrgBGzZsAABs374doaGhmDNnDkwmExYuXIj9+/ezqkNE5MfWrFmDxsZGVFZW4te//jXq6+u9PaQe68lmobL09HSEhYUB6HsVHUC9aaqzqo7dbhdBJzU1FfHx8U7fJzExEfPnzxeP/SHoANK9UVRUlLeHQUQAjF1f0t4zzzyD9evXo7m5GdOmTcPAgQNx/PhxzJo1S1wzZMgQvPrqqwCAnJwc1bzd0NBQpKWlIScnB6mpqe3e32w2w2w2qwdqNIqARb3DZrOp/kmBgZ9r4Ortz1a5BuPIkSO477778Morr/TK1/YUuaJjNBrRv3//bv8shw4dih07duDYsWNoamrq0f9/dfa5KoNOVlaWT/x7razQ7Nq1C+eee67qfHFxMSoqKsS1nY158eLF+Pe//43GxkZMmjTJJ74/rfC/xYGJn2vvcWXNXreCzp/+9Cfce++92LZtm/jrV0NDg6qtZXh4OBoaGgAAjY2NCA8PV71HeHg4Ghsbnb7/8uXLRTcW2bx583DVVVd1Z7jUQ/n5+d4eAnkAP9fA1Vuf7e7du1WPX3vtNUycOBHnnHNOr3x9rdntdvH/aWlpaar9W9yVlpaGHTt2wGq14ttvv9Wk2uLscz106BAAqTIid1/zNnmNDgD88MMPuPzyy1Xnt2zZIo4HDBjQ6X47ISEh+Pjjj1FRUYEzzzyzy715/BH/WxyY+Ll6XlZWVpfXdCvoAIDBYMDEiRPx/vvvY+DAgQgLC0NdXZ04X19fL0r3oaGh7aY01NfXIzQ01Ol7L1iwANdff716oKzo9DqbzYb8/Hykp6f7fKcbch0/18DVm5+t3W4Xe6DodDrRfObBBx/Erl27EBsb69Gv7wklJSXiD3RDhw5V7QnjrnHjxmH9+vUAgJqamh69V0efa2VlpdinZ9iwYT36GlpKTEwUvxMnTpxoN67//Oc/4vjss8/ucty+8n1pjf8tDkz8XH1Lt4OOzGazoaCgAFlZWTh69CimTJkCQNqpeeDAgQCAgQMH4sMPPxSvaWxsREFBgTjfVnBwMEOND9Hr9fyXNQDxcw1cvfHZnjx5EjU1NQCAGTNmwGaz4csvv0RhYSHuuusurFy50qNf3xNycnLEcXZ2do9+hiNGjBDHhw4d0uTzaPu5KhsnDB482Gf+fY6IiMCgQYNw9OhR7Nu3D3a7XeyRA6g7ro0ZM8Znxu0t/G9xYOLn6hvc+gQaGhqwYcMGNDQ0wGKx4Ouvv8b27dsxduxYzJo1C+vWrUNhYSHKy8uxcuVKXHzxxQCkv2w1NjZi/fr1MJvNWLZsGUaMGOF0fQ4REfk+5SL7ESNG4O2330Z0dDQA4L333sPq1au9NbRu06Ljmqw3Wkz7YiMC2ZgxYwBIf9hU/lwBdcc1ZSAkItKaW0FHp9PhP//5D2bNmoXzzz8fy5cvx1NPPYXs7GxMmTIFV1xxBebPn4958+Zh8uTJmD17NgCpQrNkyRKsXLkS5557Lnbt2oUnnnjCI98QERF5nvLmffjw4UhLSxMNaADgt7/9bYethX2VlkFHWWHpi0Gno85ryo5rmZmZqrW9RERac2vqWmhoKF5//fUOzy9YsAALFixwem7kyJFYtWqVe6MjIiKfpNwfRq5eXHfddfjoo4+wdu1aVFZWYu3atbj99tu9NUS3KYOOslNod4SEhCArKwvHjh3DwYMHYbfbodPpejpEFX8KOldeeSUAIC8vT6znHTVqlFfGRkR9BycPEhGR25RVCjno6HQ63H333eL5nTt39vawekQZdFzp5tMV+edSV1fXow5uHZGDjk6n63EFSmsdVXSU09YYdIjI0xh0iIjIbXLQiY+PV7UTVt687tq1q9fH1RNya+n+/ft32BXUHZ5cp2O320XQycjIgMlk0vT9e2rQoEHiZ6hsQ65sRMCgQ0SexqBDRERuqa2tRUFBAQD1zTwAREZGiurC3r17YbVae3183VFTU4Py8nIAPV+fIxs+fLg4Vk7100JZWRmqq6sB+N60NUDagkLeOPTYsWNiiwlWdIioNzHoEBGRW+RNKoH2QQdwdNxqaGho13HLV2nZiEDmyYqOL6/PkcnT1+x2O/bv3w/AEXT0ej2GDh3qtbERUd/AoENERG5RVieUVQvZaaedJo79Zfqalo0IZMqgo3VFxx+Cjhx4AWmdjtVqFYFn8ODBCAkJ8dbQiKiPYNAhIiK3OGtEoKQMOsr1Gb7MExUd5fql7lZ0amtr8dxzz+GTTz6B3W4Xz/tD0FE2JNi9ezeOHTuG5uZmAJy2RkS9w6320kRERG330GlL+Zd8f6noyI0IAO2CDiAFwbKyMhQVFaG6ulpsquqKU6dO4aKLLsJPP/0EQAo9Dz74IAD/Czp79uzh+hwi6nWs6BARkVvkaVgmkwkZGRntzmdmZiIyMhJA367oAN1fp1NeXo7zzz9fhBwAeOihh/Duu+8CcAQdg8GgSStsT0hKSkJycjIA6feAQYeIehuDDhERuaylpUVUP4YMGQKDwdDuGr1eL/6an5ubi6qqqt4cYrfIQSc2NhaxsbGava+y4uVq0CkpKcG5556LHTt2AADCwsLEuZtvvhlffvmlCDqZmZkICgrSbLxak38PysvL8fXXX4vnGXSIqDcw6BARkcuOHz+OlpYWAM6nrcn8aZ1Oc3Mz8vPzAWjXiEDmbkWnsLAQ06ZNE9WP1NRU/Pzzz7jhhhsAABaLBXPmzBHtmn112ppMOX1t8+bNAIDg4GDNf85ERM4w6BARkcuU3cOcNSKQ+VPQOX78uFjor+W0NcC9zmulpaWYNm2aaN89YMAAfPvttxg2bBgeffRRzJ49GwDQ2NgoXuNPQUf+GQ8bNgxGI5cIE5HnMegQEZHLuuq4JvOnhgSeWp8DABkZGaKNclcVnVdffVWMZeDAgfj2229F5cNgMGDlypU466yzVK/x9aCj/D2QcdoaEfUWBh0iInJZVx3XZKNHj4ZOpwPQt4OOcmPMY8eOiWl/zigrXx9//HG7Rg9hYWFYv369Ktz4emgYMWIE9Hr1rYavj5mIAgeDDhERuUw5/WrIkCEdXhcRESFCw969e2G1Wj0+tu7yxGahSnIgtFgsqjbWbR0+fBiA1M2uo2pZQkIC/vvf/+Kyyy7DnXfeienTp2s+Xi2Fhoa2+5ky6BBRb2HQISIil9jtdlHRycjIUHUDc0aettTY2NjpDb63ebKiA7i2TsdqtYpxDBo0yGk3O1lmZiY+/PBDvPzyy6Jq5svaTl9j0CGi3sKgQ0TkYbm5uZg1axZuvPFGn65sdKWkpATV1dUAOp+2JlM2JPDl6WtyCAsNDUVqaqrm76/8We3fv9/pNfn5+WhubgbQeaXMHykbEoSHhzvde4mIyBMYdIiIPKixsRGXXXYZNmzYgHfeeQfr16/39pC6zdWOazLlX/J9tfNac3Mzjh8/DkBqAOCJCsnIkSPF8b59+5xeI++LA/h+gwF3KYOOszU7RESewv6OREQedOedd2Lnzp3i8Y4dO3DZZZd5bTw94WojApmvVXQsFgu2bNmCb775Bvv27cO+fftw+PBhWCwWAJ6ZtgZIwcVoNMJisfTJoDN+/Hjo9XrYbDZMmDDB28Mhoj6EQYeIyEOWLVuGZcuWqZ7bs2ePl0bTc662lpZlZmYiMjIStbW1XqvomM1mbNy4EevWrcNHH32E8vLyDq9t27pZK8HBwRg8eDAOHDiAQ4cOwWKxtNtHRm5EAATe1LX09HQsX74c33//PR566CFvD4eI+hAGHSIiD9ixYwd+97vficfyX7T9Oei4O3VNp9NhzJgx+O6775CXl4dTp04hNjbWk0NUefbZZ/H000+LdUVtBQcHY+jQoRg5ciQmTZqEhQsXemwsI0eOxIEDB2A2m3Hs2DHRcloWyBUdAJg/fz7mz5/v7WEQUR/DibJERBo7deoUrrzySrG4/He/+x3OOOMMAFKHr/r6em8Or9vkik5cXBwSExNdeo1y+lpvVnUqKyvxpz/9SRVywsLCcOWVV+Ldd9/FgQMHUF9fj927d+P999/HnXfeKTb29ISu1unIFZ3w8HCPNEQgIuqLGHSIiDRks9kwf/58scB94sSJeO6558TCfLvd3uE6DV9WV1eH/Px8AFI1x9VF+95qSLBv3z7YbDYAwJlnnokPPvgAZWVlWLt2LW644QYMGzas3fQxT+os6LS0tIjfl8GDB/tFy2giIn/AoENEpKGVK1fik08+AQDEx8djzZo1MJlMqs5T/jh9zd31OTJvNSRQtnG+6aabcPnll3e5748ndRZ0Tpw4IdqOB+K0NSIib2HQISLS0Jo1a8Txv/71L6SnpwOA3wedHTt2iGN3NnwcNWqUqFB4K+goQ4a3yJ3XgPZ76QRyIwIiIm9i0CEi0khzczM2btwIAEhOTsbFF18szimDjq/uKdOZn3/+WRyfeeaZLr8uIiJCtG3eu3dvr22YqgwTI0aM6JWv2ZmgoCARYuTOa7JAb0RAROQtDDpERBrZvHmzaDRw0UUXqTZGTEpKQnJyMgCpomO3270yxu6Sg45er8fYsWPdeq08fa2pqUl1U+9JctBJSEhwuXGCp8mVJbPZjKNHj4rnWdEhIvIMBh0iIo1s2LBBHCurOTK5qlNeXo6SkpJeG1dPNTY2Yu/evQCk6kh4eLhbr+/tdTpVVVU4efIkAN+o5sg6WqfDig4RkWcw6BARaUQOOnq9HhdeeGG78/66TmfXrl1iqpU709ZkyqCjXOvjKcr9fvwp6MTExCA+Pr7Xx0VEFKgYdIiINJCbmytusM866yzExcW1u8ZbrZZ7qrvrc2Tjxo0Tx9u2bdNkTJ3xtfU5MmdBp6mpCXl5eQCkaWtsLU1EpB0GHSIiDXQ1bQ3w34pOT4NOv379xPqkX375xePrk3w16GRnZyMoKAiAY4zHjh0TPw9OWyMi0haDDhGRBlwJOiNGjBANCvwx6AQFBanCmqt0Op2o6pw6dUpsjukpvhp02nZea2lpUa3PYSMCIiJtMegQEfVQc3Mzvv76awBSd7WOupKFhoYiOzsbgDR1Sdli2FfV1NTg0KFDAKS1NiaTqVvvo5y+tn37dk3G1hE56MTExCAlJcWjX8td8vS1lpYWHD16VNVxjRUdIiJtMegQEfXQli1bOmwr3Za8Tqe5uVnVYthXKaeadWfamqy3gk5tba1Y8zJixAifW/PSdp0OO64REXkOgw4RUQ+5Mm1N5m/rdHq6PkfWW0HHVzuuydoGHVZ0iIg8h0GHiKiHlG2lZ8yY0em1fTXo9O/fXzQk2L59u8caEvjq+hxZRxWdpKQkREdHe2tYREQBiUGHiKgH8vLyxM31xIkTnbaVVvK3FtNy0AkLC8OwYcO6/T5tGxKcOHFCi+G1oww6ylDhKwYNGiQ6r/30008oKioCwEYERESewKBDRNQD7kxbA4CsrCyEh4cD8P2KTllZmQgkZ5xxBoxGY4/erzemr/l6RScoKAhDhw4FIO29JOO0NSIi7THoEBH1gLtBR6/Xi0pDTk4O6urqPDa2nlJu7tmTaWuy3gw6kZGR6N+/v0e+Rk85qzQx6BARaY9Bh4iom5qbm/HVV18BkNZYnHHGGS69TrlOZ9++fR4Zmxb8LejU19eLCpQvdlyTOQs6nLpGRKQ9Bh0i8gqz2Yznn38en3zyibeH0m2bNm0SbaVnzpzZaVtpJX9Zp6NVIwJZ//79kZSUBEAKUd1tSNDU1IQXXngBGzduVD1/6NAh8Z6+OG1NxooOEVHvYNAhIq+4//778cc//hFz5sxBTk6Ot4fTLa+++qo4nj17tsuv84fOa3a7XQSdmJgYDBo0qMfvqVVDgsWLF+Puu+/GBRdcgG+++UY87+vrc2TOgo68kSwREWmHQYeIel1+fj5ee+01AIDNZsN3333n5RG578iRI6IalZaWhjlz5rj8Wn8IOoWFhSguLgYAjB8/XrNpYD2dvlZQUIBly5YBkMLYTTfdhJqaGgD+E3QGDRqE4OBg8TgtLQ1hYWFeHBERUWBi0CGiXvfUU0/BbDaLxzt37vTeYLrppZdeEtOk7rjjDtEy2BUJCQlITU0FIE1d89SeMj2h9bQ1WU+DznPPPYeWlhbx+MSJE7j77rsBqNc7+XLQMRqNovMawGlrRESewqBDRL3q2LFjePvtt1XP+VvQOXXqFJYvXw5A2l9m0aJFbr+HXNWprKwUe6n4Ek8FnfHjx4tjd4NOWVkZ3nzzTQBAaGgoIiIiAADLli3D+vXrRUUnLCwMAwYM0GjEnqGcvsZGBEREnsGgQ0S96oknnoDFYlE9t3PnTq9WNd58803ceOONePzxx7FmzRrs3bsXzc3NHV6/dOlSNDQ0AAAWLFiA2NhYt7+mcvrarl273B+0h2ndcU2mbEiwfft2tz73l19+WfzcFy5ciBdffFGcu/XWW8Var+HDh7vcGMJblEGHFR0iIs/w7f8nIKKAcuDAAfz73/8GAMTFxWHy5MkApKpGQUGBV8a0Z88e3HbbbXjnnXfw2GOP4aqrrsLo0aMRHh6Os846Czt27FBd39LSgldeeQWAtLj+97//fbe+rrIV9datW7v/Dbjp4YcfxvTp0/HLL790eI3dbhdBJzk5WdP9aJQNCSorK1WbZnampqZG/NyNRiPuuece3HzzzbjkkksAAKWlpbDZbAB8e9qa7LLLLoPBYIDRaBTfAxERaYtBh4h6zWOPPSZuRu+77z5MnTpVnPPW9LW2QUZmtVrx448/4vzzz1eFgnXr1olQdskll3T7r/FyyAPQa80Yjh07hqeffhrffPMNLrnkEtFsoK19+/bh1KlTAKRqjtb70XRnnc7rr7+O6upqAMD8+fORnp4OnU6HpUuXIj4+XnWts65mvmbUqFHIzc1Fbm6uar0OERFph0GHiHrFzp07sXr1agDS5pp33HEHTj/9dNV5bzh69Kg4/tOf/oSnnnoK1113HQYOHAhAWo9zwQUX4JdffoHdbsfzzz8vrl+8eHG3v+6AAQNEpWTr1q3tpvN5wpEjR8RxUVERrrnmmnZft6amBtdee614PGnSJM3H4W7QaWxsFD93nU6H+++/X5xLSUnBG2+8obreHyo6gDSNr1+/ft4eBhFRwGLQIaJe8cgjj4jjBx98EOHh4T4XdG688UY89NBDWLlyJXbu3IkpU6YAcISdV199VSzSP+200zB9+vRuf12dTieqOvX19b2ycWheXp7q8TfffIOHHnpIPLZYLLj66quxd+9eANLeLr/5zW80H4e7QWf58uUoKSkBAMydO7fd4v0rr7wSN9xwAwCpEcGECRM0HC0REfkrBh0i8rgff/wR69evByDtGXLbbbcBkPYTCQ8PB+D9oKPT6ZCVlSWej4yMxGeffaYKO3feeac4f/fdd/d4SldvT19zth5myZIl+PDDD2G323HnnXfi888/ByCtofrss8+61WihK2lpaUhMTAQgNT3orCFBS0sLlixZIh4/8MADTq9bvnw53n77bXz99ddITk7WdsBEROSXGHSIyOMee+wxcfznP/8ZISEhAACDwYAxY8YAAHJycsQajN507NgxAEB6ejpMJpPqnBx2lIEEkKZLXXPNNT3+2sr3/f7773v8fl1RVnSUlZqbbroJ99xzD15//XUAQFBQED788EOPdQNzpyHB+++/L85ffPHFGDt2rNPrjEYjFixYgLPOOkv7ARMRkV9i0CEij9q6dauoEmRmZuKmm25SnVdOX+uN6VtKlZWVqKysBCBN03ImMjISGzZsUIWS3/3ud6qd7bvrtNNOExWt3q7o/P3vf8fVV18NQFqXo1x79Pbbb6saRXiCcj+dH3/8scPr5HVdgLSGioiIyFUMOkTkUY8//rg4fuihh9oFBG+u05GrOUDHQQdwhJ077rgDt99+O+655x5Nvr7RaMTEiRMBAPn5+cjPz9fkfTsiV3Ti4+MRHh6Ot956C8OHD1dd88gjj4j1Lp6kDI6bN292eo3NZhOVrvj4eJxzzjkeHxcREQUOBh0i8pi21Zz58+e3u8abQUfZiKCzoANIYeeVV17Bq6++KqbeaaG31ulYLBbRFjsjIwMAEBERgXXr1iEyMhIAcN1116mmGXrSpEmTxKaeHQWdgwcPijbXkyZN0rzNNRERBTYGHSLymK6qOYC0n4h8w+vNoDNo0KBe/dqy3go6RUVFsFqtAKTW1rLhw4dj165d+Oyzz/Duu+/2WpiIiorCaaedBkDatLWqqqrdNcqfR9t1UkRERF1h0CEij1BWczIyMpxWcwCpHbC8YeLevXvR0tLSa2N0deqaJ5111lkiXHgy6CjX58gVHVlWVhYuvvhiETh7izwVzW63O/3eGXSIiKgnGHSIyCNcqebI5OlrZrMZBw8e9PTQBF+o6ERHR2P06NEAgF27dqG2ttYjX0fZcU1Z0fEm5ZobZ9PX5KATHBysal5ARETkCgYdItLcjz/+qKrm3HjjjZ1e7611OnLQSU1NFd3PvEGuVthstk47kPVEZxUdb+ks6JSUlIjPZ9y4cZquiyIior6BQYeINKes5jz44INdtmL2RtCpra1FSUkJAO9NW5P1xjodX6zoJCcni716fv75ZzQ2Nopzyn2FOG2NiIi6g0GHiDS1bds2bNiwAYB0Q9123xxn5EXpQO8FHV9YnyPrjaCjrOj4StABHFWdlpYW/PTTT+J5Bh0iIuopBh0i0tQnn3wiju+//36XNtZMTk5GamoqACno2O12j41Ppgw63lqfI8vIyEC/fv0ASE0c5O5oWpIrOiaTCUlJSZq/f3d1NH1NGfgmTZrUq2MiIqLAwKBDRJravXu3OL7gggtcfp08fa2yslLs9+JJ7uyh42k6nU7czNfW1mLPnj2avr/dbhcVnQEDBvjUfjTOgk5TUxO2b98OABg8eLBPBTMiIvIfDDpEpCn5Jj00NNStSklvr9PxpaADeHb6WlVVFerq6gD4TiMC2cCBA0U17/vvv4fFYsG2bdtgNpsBcNoaERF1H4MOEWmmvr5eTAkbOXIkDAaDy6/1ZtDx9tQ1wLNBxxcbEch0Op2o6tTV1WH37t3cP4eIiDTBoENEmtm/f79YXyPvDeMqbwWdhIQExMTEePzrdeX0009HWFgYAO2Dji+2llZqO32NQYeIiLTAoENEmlGuz3E36AwaNEjsZePpoNPY2CjWAflCNQcAgoKCMGHCBABSBUbLdUq+XNEBgClTpojjb7/9VnRci4uLw9ChQ701LCIi8nMMOkSkGeUieneDjsFgwJgxYwAAOTk5qK6u1nRsSsePHxfHvrA+R3b22WeL423btmn2vr5e0Rk9ejSioqIASF37KioqAEjd1vR6/t8UERF1D/8fhIg0oww6cmhxh3L62g8//KDFkJzytUYEsvHjx4tjueuYFny9omMwGMQUNbkJAcBpa0RE1DMMOkSkCbvdLqauJSUldasl8IUXXiiO161bp9nY2vLVoDNu3Dhx7ImKjk6nQ1pammbvqyXlOh0Zgw4REfUEgw4RaaKkpATl5eUA3J+2JrvooovEOp0PP/wQFotFs/Ep+WrQGTBgAOLj4wFIFR2tNk6VKzopKSkwmUyavKfW2gadoKAgVYWLiIjIXQw6RKSJnk5bA6S9d371q18BACoqKvDNN99oMra25BbYgO80IwCkiotc1SkrK3O5IYHVasWaNWswd+5crF69WnWuubkZRUVFAHxz2prszDPPVIWwcePGITQ01IsjIiIif+dW0DGbzXj88ccxa9YsTJs2DYsWLVL9ZXTFihW44IILcN555+Gll15S/TVy3759uPbaazF58mQsWrRI/B8vEQWGnjQiUJo3b544XrNmTY/G1BH5v1tRUVFISEjwyNfoLuX0ta7W6VgsFrz77rsYNWoUrrrqKnz44Yd44IEHVM0WlGHJFxsRyEwmk+g6B3DaGhER9ZxbQcdqtaJ///5Yvnw5Nm7ciKlTp+KPf/wjAGDLli1Yu3YtVqxYgdWrV2PLli34+OOPAUgB6b777sM111yDjRs3YtSoUXjkkUe0/26IyGu0CjoXX3yx+Ev+Bx98AKvV2uOxKZnNZpw4cQKANG1Np9Np+v495UrQsVqteOuttzB06FDMnz8fBw8eFOfsdjtWrFghHis7rvlyRQcApk+fLo6nTp3qvYEQEVFAcCvohIaG4tZbb0VycjIMBgOuvvpqnDx5ElVVVfjss88wd+5cpKWlISEhATfccAM2bNgAQPo/69DQUMyZMwcmkwkLFy7E/v37WdUhCiBy0NHpdBgxYkS33yc8PByzZs0CIE3f2rx5sybjk+Xm5sJmswHwrfU5MleCzp/+9CcsXLgQOTk54rnJkyeLVswrVqwQAVHZcc2XKzoA8Pvf/x6XXHIJFi1aJKYwEhERdZexJy/evXs34uLiEBMTg+PHj4ubEwAYMmQIXn31VQDSnhjKG4rQ0FCkpaUhJycHqamp7d7XbDarWowCgNFoRHBwcE+GS26Sbwblf5K2duzYgeeeew61tbWq500mExYtWoQLLrjAI1/XE5+r1WrFvn37AACDBw9GSEhIj97/iiuuEF3X1qxZo+lf948cOSKOBw0a5HO/3+np6YiLi0NlZSW2b98Oq9WqqjrZ7XasXLlSPL7wwgvx4IMPYurUqbj00kvx2WefoaCgAF988QUuuugiVUUnLS3N575fpdjYWPznP/8Rj315rL2J/y0OTPxcAxM/197jyj5r3Q46dXV1+Mtf/oLbb78dANDQ0ICIiAhxPjw8HA0NDQCkXcjlTkrK842NjU7fe/ny5Vi6dKnquXnz5uGqq67q7nCpB/Lz8709hIB0ww03qKYcKX3xxRf4/vvvVf9OaU3LzzUnJwdNTU0AgIEDB6purrtj9OjRMJlMaG5uxpo1a7B48WIYDAYthoqff/5ZHEdHR/d4rJ4wcuRIbN68GaWlpdi6dSv69esnzimr4dOnT8cbb7wBQKpUzZ49G5999hkA4B//+AeGDx8uAigABAcH++T3S67hf4sDEz/XwMTP1fOysrK6vKZbQae5uRl//OMfMWXKFMyZMwcAEBYWhrq6OnFNfX09wsLCAEgVnPr6etV71NfXd9hRZ8GCBbj++uvVA2VFp9fZbDbk5+cjPT2du5Nr7MSJEx2GHED6Q8K3336L3/72t5p/bU98rsrwMHHiRE2mSF100UX4z3/+g7KyMhQWFjrdZ6UrjY2N2L59O5qbm8Vze/fu1XysWps8ebKYsldSUoKzzz5bnHv//ffF8ZVXXqka//z58/Hwww+jvLwcX331FcLCwlBZWSnOT5w4EbGxsb3wHZCW+N/iwMTPNTDxc/Utbgcdi8WCBx98EImJifjDH/4gns/KysLRo0cxZcoUAMDhw4cxcOBAANJfeD/88ENxbWNjIwoKCsT5toKDgxlqfIher+e/rBr74osvxPEDDzwg/l06ePAgpk2bBgB44403cPvtt3tssbyWn6uyajBmzBhN3nfevHliGtMHH3wgfi5dqa2txYYNG7Bu3Tp8+umn7f7IojRkyBCf/N1W7h+zY8cOXHHFFeLx559/Lo5nzZqlGr/JZMIVV1yBN998Ey0tLXjvvffEGp3IyEjExcX5XPMFch3/WxyY+LkGJn6uvsHtT+Dpp59Gc3MzHnvsMdX/Yc6aNQvr1q1DYWEhysvLsXLlSlx88cUApMW1jY2NWL9+PcxmM5YtW4YRI0Y4XZ9D1BfIjToAaT1KUlISkpKSMHXqVPHX+z179uC7777z1hDdsnv3bnHc3T102rr00kvFHzzWrl3b5XznAwcO4LLLLkNiYiKuvvpqrF69utOQk5WV5bP/DeqoIUFVVRW+//57AFJIc/bHImV77mXLlomgM2DAAIYcIiLqU9yq6BQVFWH9+vUwmUw499xzxfMvv/wypkyZgiNHjmD+/Pmw2Wy47LLLMHv2bABShWbJkiV48skn8cwzz2DEiBF44okntP1OiPxEc3MzNm7cCABISkrCGWecoTp/++2344cffgAAvPbaa6JK2pvMZjPuuusu1NTU4LXXXkNMTEyn18sd18LCwjqs1LorKioKM2fOxPr163Hy5Els3boVkyZN6vD6m2++GVu3blU9FxcXh0svvRRpaWmq500mE+bNm+ezN/4ZGRmqhgR2ux06nQ5fffWV6KYm/yGprUGDBmHy5Mn47rvvVJU2X5yiR0RE5EluBZ3U1FRs27atw/MLFizAggULnJ4bOXIkVq1a5d7oiALQ5s2bRaVh5syZ7Urbc+fOxR/+8AdUVFRg7dq1ePHFF5GUlNSrY3zttdfEIvfo6Gj885//7PDa+vp60eZ45MiRmpbq586di/Xr1wOQqjodBZ3y8nL8+OOPAKSAdP311+PKK6/E1KlTERQUpNl4eotOp8O4cePw5ZdforS0FIWFhUhLS1NVAjsKOoD03+K21UBf30OHiIhIa5w8SNTLurpZDQkJwS233AIAaGlpwbJly3ptbIC0Du+ll14Sj9966y0cP368w+v37dsHu90OQLtpa7LZs2eLoLJ27Vrxddr6+uuvxbnbbrsNr732Gs4//3y/DDky5fS1bdu2wW63i/U5oaGhna5ZmjdvXruOfQw6RETU1zDoEPUyOejo9XrMmDHD6TW33XabmFb1+uuvi+lKveGjjz7CiRMnxGOLxdLpVFPl+pzRo0drOpaYmBhceOGFAKRWnT/99JPT6/773/+K445+pv5G2ZBg+/bt2L17N06ePAkAOPfccxESEtLhayMiInDNNdeonuPUNSIi6msYdIh6UW5uLg4cOABAavUbHx/v9LqBAwfioosuAiDtbK+sAnna888/L47lisg777yDQ4cOOb1eXp8DaB90AGn6mmzt2rXtztvtdhF0QkJCvLKmyRPaNiRwddqaTK4KyljRISKivoZBh6gXuXOzKm/GC0hrZnrDDz/8IBohjB49Go8++igAaV+Axx57zOlrPB105syZA6NRWk7obPraoUOHUFBQAACYOnVqp5UOfyI3JAC6F3QmTpyIESNGiMeubKxGREQUSBh0iHqROzerF198sZhu9Pnnn4sF/570wgsviOO7774bv//975GQkAAAWLVqlWqaGiBVU+TnUlJSkJiYqPmY4uLicN555wGQNlpVtlsGAnPaGuBoSAAApaWlYgPRwYMHY9CgQS69/vnnn0dSUhJuvvlm9O/f36PjJSIi8jUMOkS9pLm5GV9//TUA522l2zIYDPjNb34DQAoUchc0Tzl+/DjWrVsHAEhOTsa1116LiIgIPPDAA+IaucIjKy4uRkVFBQDPVHNkyr1h2k5fC9SgA6inr8mVLFeqObKZM2eipKSk1xtaEBER+QIGHaJesmXLlk7bSjtz8803i3Uyb7/9tkebErz88stiU8477rgDJpMJAPDb3/5WbKz50UcfiRbzjY2NeO+998TrPRl0LrvsMhgMBgDq6WtmsxmbNm0CIFWURo0a5bExeIMy6MjcCTpERER9GYMOUS9xd40FIFV+LrnkEgDSXjG//PKLR8ZWXV2Nt956C4C0oF+uJAFSK+OHH35YPL7jjjtw7bXXIjExEffcc4943pNBJyEhAdOnTwcAHDt2DLt27QIgrSmSw+OFF17osxuAdlfboBMSEtJpW2kiIiJyYNAh6iWutJV2Ru6+BqinaWnprbfeQl1dHQDgxhtvFOtyZLfccotYL/Tjjz9i1apVImAAwKBBgzB79myPjE2m7L62Zs0aAIE9bQ0AMjMzERsbKx6fe+65CA0N9eKIiIiI/AeDDlEvyMvLw/79+wEAEyZM6LCttDPyPjIA8OWXX2o+ttraWrz44ovi8R/+8Id215hMJjzyyCOq5+Li4nDLLbfgiy++wIEDB0SHME+5/PLLxXS/NWvWqNpKA8AFF1zg0a/vDTqdTrWfDqetERERuc7o7QEQ+YvKyko8/fTTGDNmDG688Ua3XtudaWuyrKwsZGdn4+jRo/j+++9RW1uLyMhIt96jM3/84x9Fe+ZLLrkEw4YNc3rdggULUF1djdzcXFx88cU477zzxPqh3pCcnIypU6di06ZNOHLkCL755hvRgW3MmDFISUnptbH0phkzZuDLL7+EyWTCnDlzvD0cIiIiv8GgQ+SiJUuWiM00hw0bhokTJ7r0un379qm6lXXnr/IzZszA0aNH0dLSgm+++Uas2+mpTz/9FEuXLgUAhIeHqyo7bel0OixevFiTr9tdc+fOFc0H7rjjDtGUQFn1CjR33nknEhMTMXToUG76SURE5AZOXSNykbyPCeD6Bp47d+7E9OnTUVJSAgA4++yznXbS6oonpq+Vl5fjlltuEY9feOEFl/Zn8aYrrrhCNBzYt2+feD4Q1+fITCYTbrzxRpx11lneHgoREZFfYdAhcoHVasXOnTvF4//7v/8T+8d05Oeff8Z5552H8vJyAMD48ePxySefuNRWuq1zzz1XtFfWoiGB3W7H7bffLgLYrFmzcOv/t3fnYVXW+f/HnweQ3VzSckREkbFSyxZFzQ3FcDAXNDQry1KjZTJ0NLtqpAg1y6VlsklS00ptdLAcYAjMSs2tTK0cGzcsazRxl0QB5ZzfH+fH/T1HRFnO4RwPr8d1dV338rnv8775BNd5+/l83veYMdW+r7P94Q9/oFu3bnbH/Pz86N69u4siEhEREXelREekAnbt2sXZs2eN/aKiIhYuXFhu+40bN9KnTx9OnjwJWEdyVq9eXeUF+/Xq1TP+RX/Xrl38+uuvVbpPqfT0dOPloA0bNmT+/PlXTWlm2+prAN27d1clMhERESlDiY5IBZQuerc1d+5c4wWbtjZu3EhMTAz5+fkA9OzZk5ycHOrVq1etGBw1fe1///uf3ZqhuXPnGi8EvRoMGTLEbt+Tp62JiIhI1SnREbdisVjYu3cvP/zwg91/e/fuNRaeu4JtolNaGjo3N7dMwpGfn8/w4cPtXmKZlZXlkCpptl/oqzp97fTp04wYMcJIwu6//36GDh1a7dhqUrNmzbjzzjuNfU8uRCAiIiJVp0RH3MrDDz9M69atad++vd1/rVu3dukaEttEZ8aMGcb2xUUJnnnmGWNaWY8ePUhPTycwMNAhMXTs2NEYFVq9evUlR5MuZ/fu3XTq1MkoqtC0aVPmzJnjkNhq2tSpU2nevDmjR4+mffv2rg5HRERE3JASHXEbx44d48MPPyz3/HvvvXfJKWTOVlJSwvbt2wHrO20eeughQkJCAMjMzOSXX34BrMnHu+++C1hLNb///vv4+/s7LA4fHx969+4NwPHjx42YKiIzM5PIyEh2794NQP369Vm2bBkNGjRwWHw1qVevXhw4cOCqWlskIiIiNUuJjriNVatWGdPTIiMjSUhIICEhgbvvvttok5SUVONx2RYiuOOOO/Dx8SEhIQEAs9nMu+++S35+vl2p5pkzZ9KiRQuHx1LZ6WsWi4Vp06YxcOBAY7razTffzMqVK+2mf4mIiIh4GiU64jY+/fRTY3v69OmkpqaSmprKxx9/TFhYmNFmw4YNNRqX7ShS6TtwxowZg4+P9X278+bNY/z48cbITu/evXnsscecEktlE53HH3+cyZMnGwlkfHw869ev14snRURExOMp0RG3YDabycnJASA4ONjuXSm+vr52VcJqelTnUolO06ZNGTx4MABHjhzhvffeA6xT1ubPn1+ld+VURHh4OOHh4QBs2LDBKHpwKfv27TOm0plMJqZNm8by5csJDg52SmwiIiIi7kSJjriFrVu3cvToUQCio6Px9fW1O//ggw/yxz/+EYAvv/ySzz//vEZjK3X77bcb20888USZtjNnzqRly5ZOjad0VOf8+fOsXbu23HYZGRnGdnJyMs8//7zWs4iIiEitoURH3ILttLXY2Ngy5318fEhOTjb2badjOZNtIYIWLVoYpaUBoqKiuPHGG439Xr16OW3Kmq2KTl/LzMw0tq+2EtIiIiIi1aVER9zClRIdgHvvvZe2bdsCsHnzZrKyspwe1+7du+0KEdgymUzGlLrrrruOBQsWOG3Kmq1evXoZn5ORkXHJMtOnT59m3bp1ALRq1couIRMRERGpDZToiMsdP36cr7/+GoA2bdqUu1De29ublJQUYz8pKanS75KprG+//dbYvjjRARg+fDh79+5l586dTp+yVqp+/fpER0cDsH//fiOhsZWdnc2FCxcA6N+/v6asiYiISK2jREdczrasdHmjOaUGDx7MbbfdBsD27dv55JNPnBrbpQoRXCwiIoJGjRo5NY6LjRo1ythesGBBmfO263MGDBhQIzGJiIiIuBMlOuJyFZm2VspkMjF16lRjf/r06U6LCyqW6LhCXFyc8bLPtLQ0Tp06ZZy7cOGC8TO95ppr6N69uytCFBEREXEpJTriUmazmezsbMBamtm2rHR5YmNjueWWWwBrInL8+HGnxHa5QgSu5u/vz4gRIwAoLCzko48+Ms5t2rSJEydOANC3b98yFexEREREagMlOuJS27Ztsysr7efnd8VrTCaTsUYFYP369U6J7XKFCNzB6NGjjW3b6WuatiYiIiKiREdcrDLT1mzZTsf66quvHBpTKXedtlaqffv2Rlxbt27l+++/B/6vrLSXl1elfqYiIiIinkSJjrhUVRMd2ylutTXRgbKjOrm5ufz3v/8FoEuXLjVeJEFERETEXSjREZc5ceKEUVb6pptuIiwsrMLXNm7cmJtuugmwJiRnzpxxeHxXKi3tDu677z78/f0BWLx4MWlpacY5TVsTERGR2kyJjrjMqlWrjPfg9OvXr9LX9+jRA7AWDdi8ebNDYztx4gTfffcdAGFhYW5ViMBW/fr1iY+PB+DkyZN2Fen69+/vqrBEREREXM7H1QHIlR0/fpw1a9Zw/vx5u+N169YlOjra+Bf9q01Vp62V6t69O6mpqYB1+lqfPn0cEteOHTuIi4ujoKAAgM6dOzvkvs4yevRoFi9eDGCMbLVs2ZI2bdq4MiwRERERl1Ki4+aKi4vp1q0bu3btuuT5Bx54wPiSezWxWCysXr0agMDAwAqVlb6YbUGCdevWOSSuFStWMHLkSCPJue6663jxxRcdcm9n6dmzJ61atSI3N9c4NmDAAEwmkwujEhEREXEtTV1zc//4xz/KTXIAlixZwrZt22owIsfYs2cPhw4dAqxT0CpSVvpizZs3N9b1bN68meLi4irHYzabSUpKIj4+3khy7rjjDr799ltjLZC7MplMjBo1yu6Ypq2JiIhIbadEx41ZLBZmzpxp7E+ePJk33niDN954w67aVlJSkivCq5YvvvjC2O7du3eV71M6qlNYWGhXJa0y8vPziYuLs1vfMmLECL766itCQ0OrHFtNGjlyJF5e1l/n4OBgevbs6eKIRERERFxLiY4by87O5j//+Q9gLRWckpJCYmIiiYmJvP3228aX8KysLDZu3OjKUCvN0YkOVG362p49e+jUqZPxkk0vLy9mzZrFBx98QEBAQJXjqmkhISFMmjQJPz8/Jk+ejK+vr6tDEhEREXEpJTpubMaMGcb2pEmT7NZc+Pn58cILLxj7V9Oojtls5ssvvwSsVcNuvfXWKt+rtPIaVP59OllZWURGRhpTAxs0aEB2djYTJky4Kte3TJ8+nYKCAp599llXhyIiIiLickp03NQ333zDmjVrAGjdujUDBw4s02bkyJFEREQA1hES21GSmnL48GHGjh3LsmXLKnzNjh07OH78OABRUVF4e3tX+fNvuOEGGjduDMCGDRuMctWXY7FYeOWVV+jfvz+nT58GoF27dmzZsoW77rqryrG4g+r8LEVEREQ8iRIdN2W7NueZZ54x1l/YqlOnDsnJycZ+UlISFoulJsIzPPXUU8yZM4fhw4fbrXG5HEdNWwPrQvzSim2nTp0ypvpdTkJCAs8995zxsxoyZAibNm2iVatW1YpFRERERNyHEh03tG/fPlasWAFAkyZNGDFiRLlthw8fbrwvZePGjWRnZ9dIjABHjx7lX//6l7GflJTE5MmTr5hsOTLRAfvpa1dap7Njxw7mz59v7KekpPDPf/6T4ODgaschIiIiIu5DiY4bmj17tpEsJCYmXvaFoN7e3qSkpBj7FUk0HGXp0qVcuHDB7ti0adOYNGlSuTFcuHCBtWvXAtZ31DjipZa2BQmutE7H9nxKSgpJSUmXHC0TERERkaubvuG5mby8PBYuXAhYywQ//vjjV7xm8ODB3HbbbQBs27aNlStXOjNEw/vvv29sjx8/3tieNWsWTz/99CXXy2zdupXff/8dsI7mOGLRf/v27Y0Rma+++uqyid6GDRuM7T/96U/V/mwRERERcU9KdNzMnDlzKCoqAuCxxx6jfv36V7zGy8uLKVOmGPuvvPKKs8Iz/PDDD2zfvh2Ajh078tprr5GammokLnPmzOGpp54qc93nn39ubDti2hqAj48PXbt2BeC3334jNze33LaliU5gYGC1qr2JiIiIiHtTouNGzp49y9///nfA+uV93LhxFb62X79+tG/fHrBWbNu3b58zQjTYjuY8/PDDgHWR/6JFi4ypYO+8847xfppSjl6fU6oi09cOHjzIgQMHAIiMjKROnToO+3wRERERcS9KdJygsLCQzMxMfv3110pd98EHH3DixAnAWmSgWbNmFb7WZDLZFS1YunRppT67Ms6fP8+SJUsA8PX1Zfjw4ca5hx56iHfffdfYT0xM5Ny5c4D151I6otK8eXPCw8MdFlNFChLYTlsrHQESEREREc+kRMcJnnzySQYMGEB4eDijRo1i7969V7zGbDbzxhtvGPt/+ctfKv25w4cPN6aOLV261GlFCXJycsjLywNgwIABNGzY0O78qFGjjNGan376yXjx6ebNmyksLAQctz6nVMeOHY2iDVlZWZSUlJRpo0RHREREpPZQouNgeXl5fPjhh4C1wtjChQu58cYbeeCBB9i5c2e512VnZ7N7924AevbsaRQXqIxmzZoZIxu7d+821tA42qWmrdkymUy89dZb+Pj4ADB9+nT279/vtGlrAP7+/kZxgSNHjtglNaVKj5lMJrp06eLQzxcRERER96JEx8EWLVpUpuSy2Wxm6dKltGvXjsTExEuOtLz++uvGtm0Fs8p64IEHjG1nTF87ceIE6enpgLU8dN++fS/Zrk2bNsYao6KiIsaNG2eX6PTq1cvhscXHxxvbpe8hKnXmzBm+++47ANq2bVuhIg8iIiIicvVSouNAZrOZefPmGftbt27l5ZdfplGjRsaxv/3tb7zzzjt21+3YsYPVq1cD0KpVK/r371/lGO655x5jkf1HH310ySlc1fGPf/yD4uJiwJpUXW5B/wsvvEDTpk0ByMjIMEZUWrduXan1RxXVv39/I54VK1bYlbf+5ptvjJ+Fpq2JiIiIeD4lOg705ZdfGqWN+/Tpw+23385zzz3Hzz//zMsvv2y0Gz9+PNu2bTP2bUdzEhMT8fb2rnIMDRs2JDY2FoBDhw6VuzC/qhYtWmRsX2ramq26desya9asMscdPW2tVL169YiJiQGsFda++eYb45zW54iIiIjULkp0HMi22lhCQoKxHRQUxHPPPWdM5SouLmbYsGHk5+eTl5dnVDCrV68ejzzySLXjuP/++41tR05f27JlC1u2bAHg1ltv5ZZbbrniNcOHD6dnz552x5yV6IB1RKuU7fQ1JToiIiIitYsSHQc5cuQIn3zyCWBduzJo0KAybV599VU6duwIQG5uLo8++ijvvPOOMRUsISGB4ODgascyYMAA4z5paWnGC0irw2Kx2FWCs03kLsdkMvH222/bjVJFRUVVO57yDBw40PistLQ0LBYLJSUlbNq0CYAmTZrQsmVLp32+iIiIiLgHJToO8v7773P+/HkAHnnkEXx9fcu08fX1ZdmyZdSrVw+A5cuXG1PavL29GTt2rENiCQwMZPDgwQCcOnWK7Ozsat/z448/Zv369YB1jc2YMWMqfG3btm2ZPXs2vr6+PPXUUzRu3Lja8ZTn2muvNUaMfv75Z7Zv387OnTvJz88HrKM5jixrLSIiIiLuSYmOA5jNZrtpa5dLAlq2bMnChQuN/dLkKD4+ntDQUIfF5Mjpa0VFRUyaNMnYnzlz5mWLEFxK6YtD33rrrWrFUhEXT1/TtDURERGR2keJjgOsWbOGffv2ARAdHU1ERMRl2w8ePJjExES7Y9UpKX0p0dHRxshJenq6MaJRFW+//Tb79+8HrGWhBwwYUKX7eHnVzP9ucXFxxmelpaUp0RERERGphZToOEB5RQguZ8aMGdx5550AxMbG0qlTJ4fGVKdOHYYNGwZAYWEhK1eurNJ9Tpw4wdSpUwHrepvZs2e7/dSv66+/nu7duwOwZ88e49kDAgKq9CJWEREREbn6KNGpptzcXD7++GMAGjduTFxcXIWu8/X15csvv2Tt2rWkpaU5JTbb6Wvvvfdeue3Onj1L3759CQsLY/LkyRw7dsw497e//Y3Tp08D1nLSV0uiYDt9raCgAIDIyMhKT7kTERERkauTEp1q2LNnDz179rxiEYLy+Pr60qNHDwIDA50SX5cuXbjhhhsAWLt2LT/++OMl2y1YsIBVq1bxyy+/MG3aNMLCwpg4cSJr1qwxSl8HBQUZIztXgyFDhpQ5pmlrIiIiIrWHEp0q2rlzJz169ODgwYOAtbLYs88+6+Ko7JlMJp544gljf+7cuWXamM1m5syZY3fs7NmzzJ49m+joaEpKSgB49tlnadq0qXMDdqCQkBC6dOlid0yJjoiIiEjtoUSnCr7//nuioqLIy8sDrC/PXLNmDQ0bNnRxZGWNHDmSgIAAwFoC+8yZM3bnV61axZ49ewDo3LkzTz/9NP7+/nZtQkJCmDBhQs0E7EDx8fF2+xcnPiIiIiLiuZToVNKWLVvo1auXsY6lY8eOfP755zRq1MjFkV1a/fr1jbU6+fn5ZUpN25Z7njRpEm+++SY//fQTzzzzDEFBQfj6+jJnzhynTa9zJtvpa23btqVBgwYujEZEREREapISnUrYuHEjffr04eTJkwDceeedfPbZZ245kmPrySefNLbfeecdLBYLAHv37iUrKwuA5s2bG2WjmzRpwowZM8jLy2PTpk0MHDiw5oN2gBYtWjBhwgQaN25MUlKSq8MRERERkRqkRKcSli1bZryPJioqipycHOrVq+fiqK7s9ttvJzIyEoDvvvuOzZs3A9b345T685//jI+Pj911AQEBV/0oyKxZszhy5Aj33nuvq0MRERERkRrkc+UmUur111/n5MmTHD58mJUrV15V07mefPJJvvnmGwD+/ve/065dO6PktL+/P6NHj3ZleCIiIiIiDqVEpxK8vLxYuHAh58+fL7Ng390NGzaM8ePHc/LkSZYvX05ERAS///47ACNGjODaa691cYQiIiIiIo6jqWuV5O3tfdUlOWCdhjZq1CgAiouLSU5ONs6NHTvWRVGJiIiIiDiHEp1a5PHHHy9zrGfPntxyyy0uiEZERERExHmU6NQiERERxMTE2B3TaI6IiIiIeKJKJTqpqakMHTqUjh07kpOTY3du0aJF9OnTh969e/Pmm28aJYwBdu7cyX333UfXrl1JSEjgt99+c0z0Umm2paZDQ0MZNGiQC6MREREREXGOSiU6oaGhTJgwgbZt29odX79+PWlpaSxatIjly5ezfv160tPTAet6kEmTJjF8+HC++OIL2rVrxwsvvOC4J5BKufvuu4mJicHb25vXX3+9TElpERERERFPUKlEp1+/fnTu3BlfX1+741lZWcTHx9OsWTMaNWrEiBEj+PTTTwHYunUrAQEBDBo0CD8/Px599FF+/PFHjeq4iI+PD9nZ2RQXF3PPPfe4OhwREREREadwyD/n//TTT/Tr18/Yb926tfEyyv379xMREWGcCwgIoFmzZuzfv58//OEPl7xfcXExxcXF9oH6+JRJsKR6zGZzhc5fqZ1cXdSvnkt965nUr55J/eqZ1K81x8vryuM1Dkl0zp49S3BwsLEfFBTE2bNnATh37hxBQUF27YOCgjh37ly591u4cCHz5s2zOzZ06FCGDRvmiHClkn799VdXhyBOoH71XOpbz6R+9UzqV8+kfnW+li1bXrGNQxKdwMBAzpw5Y+wXFBQQGBgIWEdwCgoK7NoXFBQQEBBQ7v0eeeQRHnjgAftANaJT48xmM7/++iuhoaEVyprl6qB+9VzqW8+kfvVM6lfPpH51Lw5JdFq2bMm+ffvo1q0bAHv27CE8PByA8PBwPvnkE6PtuXPn+N///mecvxRfX18lNW7Ey8tLv6weSP3qudS3nkn96pnUr55J/eoeKtUDFy5coKioCIvFYmybzWb69evHihUrOHjwIMeOHWPJkiXExsYCcMcdd3Du3DkyMjIoLi5mwYIFtGnTptz1OSIiIiIiItVVqRGdqVOnkpmZCcD27dt58cUXmTt3Lt26dWPv3r089NBDmM1m4uLiGDhwIGAdnZkxYwZTpkzhlVdeoU2bNqSkpDj+SURERERERP4/k8X2zZ4iNsxmMwcOHCAsLEzDrx5E/eq51LeeSf3qmdSvnkn96l7UAyIiIiIi4nGU6IiIiIiIiMdRoiMiIiIiIh5HiY6IiIiIiHgcJToiIiIiIuJxlOiIiIiIiIjHUaIjIiIiIiIeR4mOiIiIiIh4HCU6IiIiIiLicZToiIiIiIiIx1GiIyIiIiIiHkeJjoiIiIiIeByTxWKxuDoIERERERERR9KIjoiIiIiIeBwlOiIiIiIi4nGU6IiIiIiIiMdRoiMiIiIiIh5HiY6IiIiIiHgcJToiIiIiIuJxlOiIiIiIiIjHUaIjIiIiIiIeR4mOiIiIiIh4HCU6IiIiIiLicZTo1CKpqakMHTqUjh07kpOTYxwvLCxk2rRp3HXXXcTExPDhhx/aXdehQwe6detG9+7d6d69O++9957dtUlJSfTo0YO7776b7OzsGnsesXJGv7722msMGjSIHj168OCDD7Jt27Yaex6xcka/ljp06BBdu3bl5ZdfdvpziD1n9Wt6ejqDBw+mW7duxMfHc+DAgRp5Hvk/zujbgwcP8uc//5moqChiY2NZuHBhjT2PWFW1X8+cOUNKSgq9e/cmKiqKv/71r3bX6rtTzfBxdQBSc0JDQ5kwYQJz5861O75gwQIOHTrEJ598wpkzZ3jiiSeIiIigS5cuRpuVK1fSqFGjMvdMTU3l9OnTZGVlkZubS2JiIjfddBNhYWFOfx6xcka/BgcHM2fOHEJCQvjiiy+YOHEiGRkZBAUFOf15xMoZ/Vrqtdde44YbbnBa7FI+Z/TrunXrWLx4MbNmzSI8PJyDBw9St25dpz+L2HNG386cOZOQkBDefPNN8vLyGD16NG3btiUyMtLpzyNWVe3Xl156ieuvv5709HT8/f3Zt2+fca2+O9UcjejUIv369aNz5874+vraHd+0aRP3338/wcHBNGnShIEDB/Lvf/+7QvfMysoiISGB4OBg2rdvT48ePVi1apUzwpdyOKNfExISCA0NxcvLiz59+uDn58cvv/zijPClHM7o19LrLRYLnTp1cnTIUgHO6Nf58+fzl7/8hVatWmEymWjWrBn16tVzRvhyGc7o299++42YmBh8fHwICQnh1ltvZf/+/c4IX8pRlX7Nzc1l165djB8/nuDgYHx8fLjxxhuNa/XdqeYo0REALBaL3fbFf0hHjBhBbGwsycnJnDp1CoD8/HyOHz9ORESE0a5169b6I+xGqtKvFzt06BD5+fmEhoY6M1SphKr26/nz53nzzTcZN25cDUUqlVGVfi0pKWH37t3s27ePfv36MXDgQObNm2d3L3G9qv7ODh06lJycHIqLi/nll1/YsWMHHTp0qKmw5QrK69f//ve/NG/enKSkJKKjo3nooYfYvn07oO9ONU2JjtC5c2c++ugjfv/9dw4dOkRmZiaFhYXG+Xnz5pGZmcnSpUspLCwkJSUFgLNnz+Lt7Y2/v7/RNigoiLNnz9b4M0hZVe1XWxcuXCA5OZkHH3yQ4ODgmgxfylGdfl2yZAldu3ZV0uqGqtqvJ06coKSkhC1btrBs2TLeffddPvvsMzIyMlz1KHKR6vzOtm/fnh07dtC9e3eGDBnCoEGD7L4gi+tcrl+PHDnC119/TWRkJDk5OTz88MNMnDiR06dP67tTDVOiI4wePZqmTZsSHx/P008/TXR0NI0bNzbO33bbbfj4+NCgQQMmTpzIhg0bOH/+PIGBgZSUlNj9wS4oKCAwMNAVjyEXqWq/lrJYLCQnJ9OgQQMSEhJc8QhyCVXt1yNHjpCens6oUaNcGL2Up6r96ufnB8DIkSOpW7cuTZo0YejQoWzYsMFVjyIXqWrflpSUkJiYSFxcHBs2bCA9PZ3Vq1ezevVqFz6NlLpcv/r5+RESEkJcXBw+Pj707t2bkJAQduzYoe9ONUyJjhAQEMBf//pXcnJySEtLw2Qy0aZNm0u29fKy/i9jsVi45ppruPbaa+0W2O3Zs4fw8PAaiVsur6r9WmrGjBkcPXqUKVOmGOfF9ararz/++CN5eXkMGTKEvn37snjxYv79738zduzYmgxfylGdv8O2X5pLj4v7qGrf5ufnc/ToUeLj4/Hx8aFp06ZERUWxdevWmgxfynG5fm3VqlW51+m7U83St5da5MKFCxQVFWGxWIxts9lMXl4ex44do6SkhM2bN5ORkcH9998PWBfU7dmzh5KSEvLz85k9ezadOnUyFuX169eP+fPnU1BQwI4dO1i3bh133XWXKx+z1nFGv6ampvL9998ze/bsMgswpWY4ul/vvPNO/vWvf7FkyRKWLFnCPffcQ58+fZgyZYqLn7R2ccbva//+/fnggw8oKCjg6NGjrFixgm7durnyMWslR/dtgwYNuP7661m5cqVxn7Vr1172S7Q4XlX6tUOHDlgsFjIzMykpKWHt2rUcPHiQm2++GdB3p5pksuiffmqN5ORkMjMz7Y6Vlkt88cUXOXXqFC1atGDixIncdtttAGzZsoXp06dz5MgRgoKCiIyMZPz48TRs2BCw1oKfOnUqa9eu5ZprrmHs2LH86U9/qtkHq+Wc0a8dOnTA19cXb29v457PP/88sbGxNfRU4ox+tZWamsrx48d5/vnnnf8wYnBGv54/f55XX32Vzz77jMDAQOLi4khISMBkMtXsw9VyzujbnTt3Mnv2bHJzc/H39ycmJoZx48bZ/W0W56pKvwLs3buXKVOm8NNPPxEaGsrEiRO5/fbbAX13qklKdERERERExONo6pqIiIiIiHgcJToiIiIiIuJxlOiIiIiIiIjHUaIjIiIiIiIeR4mOiIiIiIh4HCU6IiIiIiLicZToiIiIiIiIx1GiIyIitUaHDh3o0KEDGRkZrg5FREScTImOiIg4VEJCgpFQ3HfffXbnTp06RdeuXY3zb731lsM/PyMjw7i/iIjUXkp0RETEafbu3cu2bduM/ZUrV1JUVOTCiEREpLZQoiMiIk7h4+MDwLJlywAoKSkhLS3NOG7r9OnTvPrqq9x999106tSJmJgYkpKSOHz4sNEmNTWVDh06MGDAAD777DPuueceunXrxqOPPsrPP/8MQHJyMi+99JJxTenITmpqqt3nnTlzhuTkZHr27ElsbCzz58939OOLiIiLKdERERGnaN26NSEhIaxZs4a8vDzWrVvH4cOHiY6OtmtXVFREQkIC//znPzl27BhhYWEUFBTw6aef8sgjj3Dy5Em79keOHCEpKQmTyURRURHbt28nJSUFgGbNmhESEmK0bdeuHe3ateP666+3u8ecOXPYvHkzderU4ejRo8ydO5fNmzc76SchIiKuoERHREScwsvLi6FDhxojOaUjO/fee69du5ycHHJzcwF49dVXWb58OQsWLMDLy4ujR4+yfPlyu/YlJSXMmDGDtLQ0Yw3QDz/8QGFhIWPGjGHMmDFG20WLFrFo0SLi4uLs7tG6dWsyMjLsRpi2bNni0OcXERHXUqIjIiJOM2jQIAICAli+fDnffvstN910E7fccotdmx9//BEAf39/oqKiALjxxhsJCwuzO18qODiYHj16ABAeHm4cv3jk53Luuusu6tSpQ/369WnYsCEAJ06cqNzDiYiIW1OiIyIiTlO3bl1iY2MpKCgAyo7mVPWepby9vY1ti8VSrXtU5noREXF/SnRERMSphg0bBkD9+vWJiYkpc75NmzYAFBYWsmbNGgB27drFgQMH7M5XlL+/v7F97ty5qoQsIiIeoGzpGxEREQeKiIjg888/x9vbG19f3zLn+/bty+LFi9m/fz/PPvssYWFhHDx4ELPZTOPGjY1EqaJatGhhbA8dOpRGjRoxbtw4br311mo+iYiIXE00oiMiIk5Xr149goODL3nOz8+PefPmGUnJgQMHCAoKIjY2loULF9KgQYNKfdYf//hHxowZw7XXXsvhw4f5z3/+w++//+6IxxARkauIyaJJySIiIiIi4mE0oiMiIiIiIh5HiY6IiIiIiHgcJToiIiIiIuJxlOiIiIiIiIjHUaIjIiIiIiIeR4mOiIiIiIh4HCU6IiIiIiLicZToiIiIiIiIx1GiIyIiIiIiHkeJjoiIiIiIeBwlOiIiIiIi4nGU6IiIiIiIiMf5fy45fLRolY0OAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -1906,14 +2083,22 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAF7CAYAAAAOtvXZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACSXklEQVR4nO2dd3hc1bW33zOjGfXeLMtF7r3hAzEY0yEUU64hkACXEAhcSCAJCTfhJnAhQG56CC3wkUAIJZSEQExNMLYBG4w5NmBjY2wsV1m2eq8zc74/9pwp0nTJVlvv8/g5M2fO2bNnS5Z++q2119JM00QQBEEQBEHoP2wDPQFBEARBEIThhggsQRAEQRCEfkYEliAIgiAIQj8jAksQBEEQBKGfEYElCIIgCILQzww2gWWG+3fw4MGwr8k/WStZK1mvwfZP1krWS9Zq4P8dgbUKy2ATWGFxu90DPYUhg6xV7MhaxYesV+zIWsWHrFfsyFrFzkCu1ZARWIIgCIIgCEMFEViCIAiCIAj9jAgsQRAEQRCEfkYEliAIgiAIQj8jAksQBEEQBKGfEYElCIIgCILQz4jAEgRBEARB6GdEYAmCIAiCIPQzIrAEQRAEQRD6GRFY/czq1at57733+jRGRkZGyPPt7e2ceOKJUSvTnn/++SHPd3V1ccIJJ+Byufo0P0EQBEEQIiMCq5/pD4EVjscee4xly5Zht9sjXvfPf/6z1zmXy4XT6eTUU0/lueeeOyzzEwRBEARBMaQElqZph+VfNC644AIWLlzIrFmzeOSRR3zn33jjDY466ijmzZvHqaeeyu7du3n44Ye55557mD9/Pu+++y5XXnklf//73333WO5US0sLp556KkcddRRz5swJKYp68vTTT/vcqUj3T506FVBib8mSJZx33nnMnDnT91mefvrpGFZbEARBEIRESRroCQwFHnvsMfLy8mhvb+foo4/mwgsvxOPxcM011/DOO+8wYcIE6urqyMvL47rrriMjI4Obb74ZgEcffTTkmCkpKbz44otkZWVRU1PDokWLOO+888IKvq6uLsrLyykrK4vr/o0bN/Lpp58yYcIEAGbPns2HH37YTysjCIIgCIefpm4X56z8kHPHFPHDWZMGejoxMaQElmmaA/K+9913Hy+++CIA+/btY8eOHVRXV3PCCSf4hEteXl5cY5qmyY9//GPeeecdbDYbFRUVHDp0iFGjRoW8vqamhpycnLjvP+aYY3xzBLDb7TidTpqbm8nMzIxrzoIgCIIwEHxS38SWxhaaXS4RWMOF1atXs2LFCt5//33S0tI46aST6OjoiPn+pKQkPB4PAB6Ph66uLkCF+6qrq9mwYQMOh4OysrKI46ampga9Huv96enpvc51dnaSkpIS82cQBEEQhIGkukP97tzX2kGH201KlFzkwcCQysEaCBobG8nNzSUtLY1t27axbt06ABYtWsQ777zDrl27AKirqwMgMzOT5uZm3/1lZWVs2LABgOXLl9Pd3e0bt6ioCIfDwapVq9izZ0/EeeTm5uJ2u30iKt77LWpraykoKMDhcMSxCoIgCIIwcNR0KoFlAuUt7QM7mRgRgRWFM888E5fLxYwZM7jllltYtGgRAIWFhTzyyCMsW7aMefPmcckllwBw7rnn8uKLL/qS3K+55hrefvtt5s2bx/vvv+9zlC677DIMw2DOnDk88cQTTJ8+PepczjjjDNasWZPw/QCrVq3inHPOSWQpBEEQBGFAsBwsgJ3NrQM4k9jRBiqvKQxhJ1NRUUFpaemRnMugY+PGjdxzzz08+eSTEa+LtFbLli3jF7/4hW+n4UhHvq/iQ9YrdmSt4kPWK3ZG4lp9z9jKE+UVANw2ZzI3zZgQ5Q7FEVirsKUIxMEaQhx11FGcfPLJUQuNhqOrq4sLLrhAxJUgCIIwpKgJcLC+aG4bwJnEjiS5DzGuuuqqhO91Op1cccUV/TgbQRAEQTj8VHcOvRChOFiCIAiCIAxqajqHnoMlAksQBEEQhEGNleTusGnUdXVTFyC4BisisARBEARBGLS0udy0uNw4bRozslS7uaHgYonAEgRBEAThsNDp9uDyFttOlFqvW1WQ7GRyZhogAmtEsnr1at57770+jWE1hO5Je3s7J554Yly7CB9++GGeeOIJgKDG02VlZdTU1ARd29XVxQknnIDL5Upw5oIgCIKgcHk8HPev9zhzZd/631oJ7oUpTiZkKIG1q0UE1oijPwRWOB577DGWLVuGPY4WAdddd13MOwedTiennnoqzz33XKJTFARBEAQAqjq62NXSzsa6Jlq6E//D3cq/Kkh2MtHrYO1uHfzV3KOWadB1PRt4E5gJLDIM41Nd178C3AS0A183DGO/ruvTgUe8Y95mGMZbuq6nA08CRcBywzB+1ZfJaif0zWYMh/lOZJ15wQUXsG/fPjo6Ovjud7/LtddeC8Abb7zBj3/8Y9xuNwUFBTz66KM8/PDD2O12nnrqKe6//34effRRli5dykUXXQQod6qlpYWWlhbOP/986uvr6e7u5u677+b888+POI+nn36av/71r4AScrfffjs5OTls3ryZiy++mDlz5nDvvffS1NTEq6++yqRJk7jjjjvIyMjg5ptvDjlme3s7y5YtY9myZVxzzTVccMEF/M///A+XXXZZvMsoCIIgCD4CSyvsbW1nZk5mYuN4BVZhspMJ6anA0HCwYqmD1QacA/waQNf1JOD7wInA0cBtwH8B/wdcDRwCXgfeAr4JvGYYxp90XX9D1/WnDcOo6PdPcZh57LHHyMvLo729naOPPpoLL7wQj8fDNddcwzvvvMOECROoq6sjLy+P6667LkjQPProoyHHTElJ4cUXXyQrK4uamhoWLVrEeeedh6aFLgrb1dVFeXk5ZWVlvnOffPIJn332GXl5eUycOJFvfvObrF+/np/+9Kfcf//9/P73v4/4uVpaWvjqV7/KFVdc4XO5Zs+ezYcf9s3OFQRBEITA9ja7+yCwrBINBQEhwvLhILAMw+gGqnVdt05NAT4zDKMLWKvr+m+850cbhrEDQNf1Ol3XC4DjgP/2vv4mcCzw98DxdV2/FrgW4IYbbuD0008POY/u7m72P1MZx0eLnYooku+3v/0tb7zxBgD79+9n7dq11NXVoes6TqeTCu8AFRUVNDU14Xa7fefa2tqora31PTdNk4qKCrq7u7njjjv44IMPsNls7N+/n48//piioiLfNYEcPHiQjIwM3/nq6mrmzp2Lx+OhpqaGsWPHsmDBAioqKpgyZQpPPPFEr/kEzsXtdnP22Wdz/fXXc+qppwa9n91u5/PPPw+bCzac6O7u7rXWQnhkvWJH1io+ZL1iZ6is1faqBt/jTQcOMo/uhMbZVVsHQHJnO9211aTaNBq6XGzdvZdsR+SUmcO9VpHa8CRSyT0XaAp4bn26wDhbI5DX41rrXBCGYTyCCi3CIOxFuHr1atavX49hGKSlpXHSSSeRlZWFpmmkpaX1mlNWVhYZGRm+81lZWeTm5lJaWorH46G7u5vS0lIef/xx2tvb2bRpEw6Hg7KyMt91mqb1GjctLQ2Xy+U7X1hYSFZWlu95SkoKY8aMobS0FIfDQVJSEqWlpUHzSUtLIz8/n9LSUux2OyeddBLr16/nhhtuCHLOXC4XEydOxOFwHM6lHRSMxJ5efUHWK3ZkreJD1it2hspauZr9gqrB7kx4zu37lMCaVFTImDGjmZi5jy2NLXRkZTMzLzvivQO5VokkuTcAWQHPrS1tgQlS2UBdj2utc0OKxsZGcnNzSUtLY9u2baxbtw6ARYsW8c4777Br1y4A6urUR8vMzKS5udl3f1lZGRs2bABg+fLldHd3+8YtKirC4XCwatUq9uzZE3Eeubm5uN1uOjo6+u2z3XnnneTm5vLtb3/bd662tpaCgoIRIa4EQRCEw0dVR6fv8Z4+JKUfbFfj5Cc7AQJ2Eg7uRPdEBNYOYIau605d148DNnnPV+q6PknX9UwgzzCMGuA94DTv66cB6/o84yPMmWeeicvlYsaMGdxyyy0sWrQIUA7SI488wrJly5g3bx6XXHIJAOeeey4vvvgi8+fP59133+Waa67h7bffZt68ebz//vukp6cDcNlll2EYBnPmzOGJJ55g+vTpUedyxhlnsGbNmn79fPfeey/t7e388Ic/BGDVqlWcc845/foegiAIwsijptPvYCW666++s5v1tQ3YNJjjzeGakDE0Et010wwblfOh6/prwHxgD/D/ULsHvwt0oHYR7tN1fab3NTtwu2EYb+q6ngE8BRQArxiG8YsobzXoQoSDiY0bN3LPPffw5JNPRryuL2u1bNkyfvGLXzB16tSE7h9qyPdVfMh6xY6sVXzIesXOkVgr0zTDbrqKlWVvb2D1IRXdSbXb2L/slLjHfHznfr6/4TNOLM7jxRMXBp37WtloHjxmVsT7j8Bahf1AMeVgGYZxdojTz/W4ZiuwpMe5FuCCWN5DiM5RRx3FySefjNvtjqsWVqx0dXVxwQUXjBhxJQiCIPTmxg+3sLGuibdOO4aUPvyuCdxF2O72UNXRRXFqclxj/H2v2tx28fgS37mh4mBJodEhxlVXXXVYxBWoQqOxFiUVBEEQhiev7K/is8YWtjS09Gkcqw5WcYrKnYo3D2t/azvvVTeQYrdxTmmR7/zEIVLNXQSWIAiCIAgAdLjdNHqrrn/R3JrwOB7T9NWvWujd6RevwHq/pgGAk4vzyXL4A26jU1Nw2DQOdXTR5oq9ddyRRgSWIAiCIAgA1ASE9frSULmusxuPCTnOJKZkqc1du+Pc9We11ynyOmAWdpvGmLQUQFWIH6yIwBIEQRAEAYBDAQJrRx8crCqve+VpdbJxgxJD8TpYrW7lTqUl9U6LGedtmSMCSxAEQRCEQU9g/8C+OFjV3hpYtVVOXntTiaF4BVa7S5XXTLPbaWkzOeZaDz9/ShUbKEtPbMwjiQisGLjvvvuYMWPGoGmA/NJLL7F169awr//pT3/iiSeeiDjGww8/HPaaBx54gMcee6xPcxQEQRCOHHVNJm9/HL3sUjQOtfuLg5a3tOGJoZRTKKz8K7PNiadJiaF4a2G1BThYG7bDh9vgoZfUfMYPAYGVSKucEccf/vAHVqxYwZgxY2K63uVykZR0+Jb2pZdeYunSpcycOTPkez/77LNs3rw54hjXXXddyPMul4urrrqKxYsXc9VVV/XLfAVBEITDyw2/N3lmBbz7ABw/N/H6VVUBIcIOt4f9bR2+cFwi43janXhaktFMjQNtHXS6PSTbY/N2rAT2NLsdb747+6qgodn0zUkEVj/xWv6/Dsu4Z9d+Oexr1113HeXl5Zx11llcddVVfP3rX+eqq66ivLyctLQ0HnnkEebOncsdd9zBzp07KS8vZ9y4cdx3331cd9117N27F4Df//73LF68mJaWFm688UYMw0DTNG6//XYuvPBCrr/+ej788EPa29u56KKL+OlPfwrALbfcwvLly0lKSuKMM85g2bJlLF++nLfffpu7776bF154gUmTJvnmu3LlSubMmeMTeH/84x955JFH6OrqYvLkyTz55JOkpaVxxx13kJGRwc0338xJJ53E/PnzWbNmDV/72tf4wQ9+QFlZGevXr+eYY445LGsuCIIg9B9f7FfHNZvg+LmJjxMYIgSVh5WIwLJqYJltTvDYSOpIpju1g72t7b6k92hYDlZqko2aRv/5T3fB+FIRWEOehx9+mDfeeINVq1ZRUFDAjTfeyIIFC3jppZdYuXIlV1xxBR9//DEAW7duZc2aNaSmpnLppZdy0003cfzxx7N3716+/OUv89lnn3HXXXeRnZ3tc5jq6+sB+NnPfkZeXh5ut5tTTz2VTZs2UVpayosvvsi2bdvQNI2GhgZycnI477zzWLp0KRdddFGv+a5du5Y5c+b4ni9btoxrrrkGgFtvvZVHH32UG2+8sdd9XV1dGIbhe67rOu+++64ILEEQhCFAdYM6bthuEqG4eFQOeXOnPB1J2FJcfNHUxqmj4h/n0wbVk9fTohLcO2pTsY/pYHc8AsvrYKUn2dkXILA2l8PF0yyB1dEvVecPB0NKYEVymo4Ua9as4YUXXgDglFNOoba2lqamJgDOO+88UlPVF33FihVBeVJNTU20tLSwYsUKnn32Wd/53NxcAJ5//nkeeeQRXC4XlZWVbN26lZkzZ5KSksLVV1/N0qVLWbp0adT5VVZWMn/+fN/zTz/9lFtvvZWGhgZaWlr48pdDr6HVS9GiqKiIbdu2xbAigiAIwkBT7RUgG7f3bZyqduU8uQ7k4JxYk9BOwoaubt6uqkMzoXtPvhqvIRX7mHr2xFGqwRJYqXY7NY3+XLDN5SbXOR1kJNlp7nbR0OUiN9kR9zwPN5Lk3o9YjZwBPB4P69at4+OPP+bjjz+moqKCjIyMkPft2rWL3/zmN7z11lts2rSJc845h46ODpKSkli/fj0XXXQRr7zyCmeeeWbUOaSmptLZ6U9SvPLKK3nggQfYvHkzt99+Ox0dHVHnDtDR0eETi4IgCMLgpb3TxIqUlR+A+ubEk90r29TvD9cB9cf/zgSqpb9WUU23x2S0OxezXdWwcvsS3WMfr93t3UWYZA8KEW4uB03TfKHLeMY8kojAipMlS5bw9NNPA7B69WoKCgrIysrqdd0ZZ5zB/fff73tuhRFPP/10HnzwQd/5+vp6mpqaSE9PJzs7m0OHDvH6668D0NLSQmNjI2effTb33HMPn3zyCQCZmZk0NzeHnN+MGTPYvXu373lzczMlJSV0d3f75h0L27dvZ/bs2TFfLwiCIMRHY4vJy2tNXK6+7f6zEsAtPuqDi2XlYLkOqurr+xLIcXpp30EASpqKAZg7CTyN8edMtQYmufcQWKZpBpRqCG0cDDQisOLkjjvuYMOGDcydO5dbbrmFv/zlLyGvu++++zAMg7lz5zJz5kwefvhhQOVB1dfXM3v2bObNm8eqVauYN28eCxYsYPr06Vx66aUsXrwYUOJo6dKlzJ07l+OPP57f/e53AHz1q1/l17/+NQsWLGDnzp1B73vWWWfxwQcf+J7fddddfOlLX2Lx4sVMnz495s+5du1aTj/99LjWRhAEQYidu58wOe9/TJ5b2bdxrPwri0TDhK0uN+0eN6Zbw12jIi772jpwe2IXgA1d3aw+VIdd00irKgRAn4avVMOuOEKE7QFlGgIFVmML7K8a/MVGh1QO1kAR6Ajl5eXx0ksv9brmjjvuCHpeUFDAc8891+u6jIyMkKLs8ccfD/ne69ev73Vu8eLFYetgjR8/npycHHbs2MGUKVO4/vrruf766yPOd/Xq1UGvffTRR8yaNYv8/PyQ7yEIgiD0nfID6vjBZyaXnZF4knag+ADYuCOxRHerOKinNRlcdjxtTrrTujjY0UmptzVNNL5obsNlmszNyaS5ToUHj5qq8ee3/A5WrEnpoco0jCuGvYeUizU2X81pf5s4WMIR4sc//jGVlZUJ319TU8Ndd93VjzMSBEEQemIJo83lfRvHcrCmjlXHRB2sqsDSCoCnSQmYeMKElijKdCRRq/Z/sWAKmJ0OzM4kWl1uajq7YxsrRJmGJd4SFJ/vg+KUZAAOBhRHHUyIwBqGTJo0iRNOOCHh+08//XTKysr6b0KCIAhCLywBYuUUJYolsI73VujZVQmeOMJ6FoHFQcEvsPbG4RAFVl+v9Yqi0QXqn7vJcpxiE2yWWLO77bS0Q5Id5kxUztfeQyajUpXAskpLDDZEYAmCIAjCAGC5MrWNcLA28XGqvSUMxo/SKMiGrm44VBf/OAfalZAy25ykp4K72RvWiyNvqjWgdpUlIPOzoWyUvyZWLCE90zR9Yq2tVUmVAu84AHsOQnGKEoIisARBEARBAJSA6LkzLlGs/KTCHJWjBLDnUPzjrK1Wha9dVZkcOyvQwYo/RJis2WjvBEcSZKR6BVZz7AKr0+PBY4LDptHY7BdY4y2BdcgfIjzU3tUnB/BwIQJLEARBEI4wjS3gNWiAvgksK0RYmAPjLYF1ML4xXB4Pb3ttL9fefBbPBo/XwdoXRxkES2DZ3HYA8rNUzaqykvgEVrvLWwMroERD0Oc7BBmOJDKS7HR6PDR2u2Ke45FCBJYgCIIgHGGs8JnF5vI+5GB5BUigw7O3Kr4xjLommrpd2JrT8DSnok/X/A5WPEnulmp0eQWWKqfFhBINT4tynCpiEFitgSUaGtS5ghwozgOnQ4VVW9v9eViDMdFdBFYM3HfffcyYMYPLLrtsoKcCwEsvvRS2TAPAn/70J5544om4xjzuuOMAVZLCKjD6+OOPc8MNN/S69oEHHuCxxx6La3xBEATBj+XKJCkd0m8hwvHFKgl8z8H4BNvKgzUAuPblAWrnX6DjFGstLMvBMrv9DhbEHyJsDyjRYDl0Bdlgs2mMK1LP9waGCQdhHpYIrBj4wx/+wJtvvhlzJXSX6/BalZEElsvl4tlnn+XSSy+Na8z33nsv5muvuuqqoCr1giAIQnxYAutob/3nrbsT2/kHfgerMCc4RykeVnqz7Ft35mO3Q0k+FGba8bQ6cZkmle2xhQmtJHd3VwiB5U1yj8XBagsqMqrWpcDrhgXmmfkT3btimt+RZEgVGs17/s3DMm7dxeErll933XWUl5dz1llncdVVV/H1r3+dq666ivLyctLS0njkkUeYO3cud9xxBzt37qS8vJxx48Zx3333cd1117F3714Afv/737N48WJaWlq48cYbMQwDTdO4/fbbufDCC7n++uv58MMPaW9v56KLLuKnP/0pALfccgvLly8nKSmJM844g2XLlrF8+XLefvtt7r77bl544QUmTZrkm+/KlSuZM2cOSUnqS3vSSSexYMEC3n33XVpbW3niiSf4+c9/zubNm7nkkku4++67AVUAtaWlJew6vPrqq9x99928/PLLFBQUUFZWxvr16znmmGP6vP6CIAgjDct1mlQK2/erkFdVPYyKs76z221S5w035mUGiI84crC63B4+qmvCrmm4KnIZZTlFxSbbm1KxpXexp7WdMenR+9Nawqi7QwmsPK/AGlsEtDkxPRqHOrrodHtItof3ePyNnv01sAqylTs3PnAn4fjBGyIcUgJrIHj44Yd54403WLVqFQUFBdx4440sWLCAl156iZUrV3LFFVf4+gxu3bqVNWvWkJqayqWXXspNN93E8ccfz969e/nyl7/MZ599xl133UV2djabN28GVC9CgJ/97Gfk5eXhdrs59dRT2bRpE6Wlpbz44ots27YNTdNoaGggJyeH8847j6VLl3LRRRf1mu/atWuZM2dO0Dmn04lhGNx7772cf/75bNiwgby8PCZNmsRNN90UtWL7iy++yO9+9ztee+01cnNVA1Bd13n33XdFYAmCICSAlYNVkK3ER20j7KuKX2DVNYNpKiGTlKQxvli5PfHkYLW4XJhAms0OLjuFOer82CLY1pwCJY3si7EWliWMutqDHaxkp8bofBvNLcnYszo40N7BhIy08OOEaJNjOVgqDGqy55DJqGmDN0Q4pARWJKfpSLFmzRpeeOEFAE455RRqa2tpalL/U8477zxSU5XCX7FiRVAYr6mpiZaWFlasWMGzzz7rO28Jlueff55HHnkEl8tFZWUlW7duZebMmaSkpHD11VezdOlSli5dGnV+lZWVzJ8/P+jceeedB8CcOXOYNWsWJSUlAEycOJF9+/ZFFFgrV67EMAz+/e9/BzW1LioqYtu2bVHnIwiCIPTGH/bSGFNo8vEO2F8NR8+Ib5zAHYSgksrTUtQuxcYWk+yM6C1prLCeE3vQWOOKwHPAquYen8Dq8Nauys/2v3/ZKPjEK7Aq2qIIrIAcrF1V/s8GwQ7WfKvYaICDdai9k8vXfsLUrDR+XJob07wPB5KD1Y+kp6f7Hns8HtatW8fHH3/Mxx9/TEVFBRkZGSHv27VrF7/5zW9466232LRpE+eccw4dHR0kJSWxfv16LrroIl555RXOPPPMqHNITU2lszNYyScnq29Am83me2w9j5YvNmnSJJqbm9m+Pbj3QkdHh09MCoIgCPFhuTL5XgcLlIMVL1Y/Q0sUaZoWVMogFlq8YibJVJ5LkVeTjC3ScHsT0/fFWAvL2v23ZacSa5NG+1+LJdG9udvFb7eWs62xFYCuDjvvfQqpyappNPhLNeytCp2Ddaijkw11jXxS3xzTnA8XIrDiZMmSJb5k99WrV1NQUBDk7FicccYZQYngVhjx9NNP58EHH/Sdr6+vp6mpifT0dLKzszl06BCvv/46AC0tLTQ2NnL22Wdzzz338MknnwCQmZlJc3Pob5wZM2YENafuK+PHj+eFF17giiuuYMuWLb7z27dv9+02FARBEOLDV3ogWwkZgH1V8SW5m6bJr59R95xxtN8pijcPy3KwTG9i+uh8/zgen8CKL8l9xy47eVlwzrH+18pGgRmlmvuL+w7ys0938tvP1LbK7buUTLnqbL8bFpSD5d1FWNnewepDtdR1dlHr7XVYkOyMac6HCxFYcXLHHXewYcMG5s6dyy233MJf/vKXkNfdd999GIbB3LlzmTlzJg8//DAAt956K/X19cyePZt58+axatUq5s2bx4IFC5g+fTqXXnopixcvBqC5uZmlS5cyd+5cjj/+eH73u98B8NWvfpVf//rXLFiwgJ07dwa971lnncUHH3zQr595+vTpPP3003zlK1/xvd/atWs5/fSBD9kKgiAMRQLzisYUqsf7q+MbY+VGeOcTyM2E71zoPx9vsdFWbySjrl4JrHOOVUJmbFGA4xRniBCXnf88A1KSA0KEJVpUB6uiTUVgurw7Kr/YY8dmgx9c4h9nTCHYbFBRA3lJSkSVt7Sz7O2N3PbJdmo7lZuVn+yIac6HiyGVgzVQBDpCeXl5vPTSS72uueOOO4KeFxQU8Nxzz/W6LiMjI6Qoe/zxx0O+9/r163udW7x4cdgyDePHjycnJ4cdO3YwZcoUVq9e7XvtpJNO4qSTTvI9D3zN2kFYVlbGp59+CsCVV17JlVdeCcCCBQt87/nRRx8xa9asqMnxgiAIQmh8ffoCAiDxhgh//pQSITd/VQvKtZpQopLAd1WaQOw5WG0tdopy4YR56nygg7W/rQOPaWLTIo/X2u2vg/XNpcHXTigharHRqh7J6u4uO2cvggmj/WM5HRpji0z2HISG2mAZ8/L+KubkqEUVB0vod3784x9TWVl52MavqanhrrvuOmzjC4IgDFa27zM5/fse1m7uW++7QAcr0Rysz/ao4+VnBJ+foPYxsSvGXwOWwKLbzkUnqt2IAKPyIMmThKcjiU6Ph+oYak01damxJhfbmT0xWGCVjQJPa+Rdf73eo9vmC1kGYuV27TqoMTHDnw+c63QMGgdLBNYwZNKkSZxwwgmHbfzTTz+dsrKywza+IAjCYOUfb8MKAx56KXGB5fGYfgcrG0oL1OOKGlXXKlaaVB44OT32T030io/yGAVWi7ePn9lt55JT/KLIbtcoLQRPk7cnYSwV2L1J7gXp9l6vjS0Cs83KmQotsHoWDDVddkKV37I+484K+H9fmsPvFqrtl1UdXdR4BZY4WIIgCIIwRLDKK3y0I/ExGltVo+fMNBXuSknWKMxR5w7VxzaGx2PS4t3Yl9FDgAQ6WKYZXbDVd/gbNB8/N/i1wDysaDsJTdOk01RjZTp7ywunQ6Mk3YHpgdrObro9nl7XVPfYBW9220lP6f1eE70hw/IDJgvzs7ly0hhf4+fyljYA8kRgCYIgCMLQwKo7tW0vtHcm5mIdUG3/fIUzIf4wYaC4stmCQ3H52Uq8NbXiq/IeicYOfx2snmONCxRYURLdO9weTMB02chICS0vJoyyYbYr4VPV060yzV7ncNlJT+md92WFCK0yFeDfUbilQeUUF0iIUBAEQRAOL20dZkxuTjSs3CmPBz5NsEHzqo3qaPUhhPgFVrMyacgMUatT07S48rAaOy2B1XvfW9BOwighQqv6uumykRbCdYLgPKye7W2aXW463MGultltDzmWL0QYKLBSlXCr61JlGvLFwRIEQRCEw0f5AZP8pSbff6D/BBYkHiZ8/QM1j7MWBZcegP4RWBCQh3Ug9OuBWInpyfTOmxpXrAU4WJFDhG0ByfKhwnrgrYXVZhUHDRZY1g7CjCT/PEyXLeRYk0rVsfyAPwxqOVgWkoMlCIIgCIeRj7ZDRxcsX9v3sawQIcDHX8Qv2Do6TVZ9pB5/+Wj/+XHFSmztPRTbmFaCe1Z66NfjcbCavUnuyfbQiemxFBtdebCWL7yqz+y2k5Yc+rqyUZp/J2EPB8vaQTgjO4NsR5JvrFBJ7rmZGjkZKlRqid6iAIGlAXlOCREKgiAIwmHD2rFXfgDqm/unvALAxwk4WO98Au2dMH8KlBT4HSwrp+iLitjGafaaSZlhOpapWljKvYtGi7d2VZotlIPlF1jhdv5trm/monc2cu0Hm4HwO/9847UqZ+lgj3wrawdhcUoyxxXmopkanubUsG5Y4E5CgFEpfscq1+nAboteA+xwIgJLEARBGJT0R84U+AUWKDcrUTq7TJrbwKq1+cnO+MoqALyxXl1/5jHB56eOVcft+2IbJ5qDZYmPWBys1oDGyj0ZWwRmhwPTrVHf1U2HN88qkO3NajJWixq18y+0uCnJB09b6Bysam+IsDDFyZ8WzWGGcRxma3LYfK7AMCFAcarfwRro/CsQgSUIgiAMQjq7TGb8p8lX7+i9lT9eahr8ImhjHwSWLxSVq3Km2jpiy3EKxNimjictCBYggWLB5You2qLlYFkhwlhqYVnJ6WlJvQVWbiakpwaG9XoXG+1VlT1MYjoogWWGKTZq7SAsSnGSmmSnu0kNEtbB8n5GK9E9MEQ40DsIQQSWIAiCMAjZVQmf74V/vBOb4IhEoIO1cUfiY1kCqzAbpoxRj2Otlm5hhfYCSzQApKVojCkElxv2HIo+juVghRNYZQENkaO5bFZx0IwQAkvTNMYV+RPTK9t752Ed6HHOdIVPcs/LAnuXd6y2MALL6z5ZVSHCjWWFQXdXqs8XGCIUB0sQBEEQQmAlk3e7Yq9IHo4ggdUHB8uaU0EOlHndk90xNlS2sDbihRINVphwx/7o41hCLSuMwEpL0SjKVYLtYF3ksTqs4qCO3gILvInuXtepMkSLmwNtsRUHBSXYCp3esXoJLPW8yBvqs9YqbMmHHl+D4BChOFiCIAiC0IvAZPLPdvdtrNqAsbbvg+a2xFwsn4OVA+O9u/52H4xvrEiujOWKxZKH1dSq3jczLXwit1X6YX916Ncburr5vKmFTlPtIsxKDi2wVGJ66LwpCOFgdYevgwUwOt1br6q7C7fHv37V3hY3hV73ydJfkUo+gF9g5TodJHkT5Aa6RAOIwBIEQRAGIYECa9vevo1lOVhZ6WCaiSe61zSoY0F2cAguHnwV2EM4T1PGKHGwY3/sOVjhktwhcvHSXS1tTHxpNV955yO6UA5WtrN3oVE1jubLmwolsHrlYEUIEQKMzrXhaXfgwS+qwB8itOpZ+cRohB2JAHsPqTCoTdMo8oYJd5Y7WP1R/2ySSBQRWIIgCMKgI7De1Gd7+icH67jZ6hhrKYRec/L2ISzMgfE93JNYME0zooMVV4gwSpI7BDhYIQTW2LQUkjSN/W0duDQPpgnZqfE7WF1uT++WNxGS3MG7k9A73mVrPuaRHXu9bXL8uwhN08TSbeFqaqUma4zKU2HQylp1zhJnT73s4Ju/EoElCIIgDBM2fG6y4fP+qJjuH+OzPYmP43abvn588yapY6zV0nvNqUEdC7I1v4MVQ0K6RVe3auicZFeNj3tihQhjEVhNloMVQWCNLVLvsb+699cjyWZjQmCX6G47GWFKK6gcLKt2VbDAOtTRiQkUpzhJsStJESnJHaAkX8NsUULoo/om7t22m4YuF10ek4wkO2lJdjq6lNuY7AS7PXwYtKfQnZ2TCYCnNp3SgvBzOBKIwBIEQRD6Bbfb5LSbTE78jklLgnlOFsEOVuI1sRpa1C/q7Awo8+4621fVtxysgmwoLQSbTTVu7uqObTzLvcoIE/KaOFqNuftg9DHjcbDCCcrJmf74YqTE9MAk954OlhUeHJOWymTvZMJVX7coyYf29ROZ2KAsu6qOLt/uxOKUZB59xfTtzowk1KB3HtavjprOrRnH4a7N9H3+gUIEliAIgtAv1DQqQdPaDms/7ftYFs1t/hBQvFjhwYJsf05SuKTvaFiirzAHHEmqrIJpxu6IWflX4cSH06Exvlg1ko5W/iFamQaAMVE+76SAmyOF9UYH1K7qWc29wvu8NC2ZOV73yGx3hA3rgRJY7qos8rZNpSDZgds02dLYAoC71ck3f2Xykz8qgRmzwPKuV7LdRket+lylIrAEQRCE4UBgOYBVG/unJY31Sz/RMKG1gzA/K3LSdzxzsmpYjfcmWceahxWpRIOFFfKKNse+JrkDTMoIFljh5pWRppFuS8J02WhxuX29C8HvYFXuTebs5Em41kyne1dhVAcLlGge5S2t8HG9UsJt9er5pp3qmqgCq8S/m/OTL5RzWuENiY4plFY5giAIwjAgUGCt3Ni3sSy3aNFMdUy0VIPlYOVnRQ+ZRSOwTAME1GGKsU5XtBAhwDivKNobJrfrq3d4uOznuTQowydsL0LAl4N0oDZ0sdHJgfZXlLDeqLyAau4BeVhWiYa330vh548k0/JJKXhsUR0sgMo6GOVNSv/EK7CqK1Wul5XbFilZHvwO1t/fhvlXmdz0gOlz7CQHSxAEQRgWHAwI423YDo0tfa+afuwsddxVmdhYPgcrW7V9SUtR7o9VRypW2jtNn+jLz1JHy8Hacyi2sVpicLD8pQd6j1ndYPLcSnh7U4pPzEZysJKdqtio2w2H6nu/3lzZI0QYRRT5Et0DwoRWkVFPSzKf740tMb0wR+Wa1TZCUbLXsapvBqC1Tj23Wh7GGiL0RhhZs8kfErVCpAOFCCxBEAShXwj8Je7xwLubEhunvdOktR0cSTBrgvpFvTdB1ynQwdI0LeEw4cqNqhzAwmmQkqzmVDbKCk/FNka0uk7g3/kXan6h6ndFcsMgvGtXUW1y/vcd0K1KM0RLTB8VkIf1s0938uDnKmZrOVielhSfKI4miux2VV4BIMNUY7Z4G05bLXksIs0J/ILUYkeF/+shDpYgCIIwLDhYp1yX7Az1/O2PE9yt16COqmK6ehwuZBZ1LG+5h/xsJVwSDRO+vFaNs/RY/zlfQ+UYGz5bOVgRQ4TW5w0xvw09BFZaSmSnCMLXwnrpXejq1nDVWzv/kiKXVshTIgrgg5oGbvtkOy3dLl/Su9nqF0aRnDDfeN4wYVJX8MVWGDLWsayWQBZuN9Q1KYfMEnEDhQgsQRCEEU59s0n5gb7XrrLCVifMVcd4GyFbBCaTj+ujwApMcofEEt1N0+SV99Xjcxf7Bc1kb92qnTEWLo0vRNj7tY3bg79GkWpgWYT7vP94R43lrg8orRCldlXn5jFM6xhNjrfie0V7B4e8AitQGEVznQCmeYuqPvxMsGPlaXMG3R/LWLddofGfX4azvuQ/NyoPkpIkyV0QBEEYQL56h8nMK0y29bFiupWDtWCqOh6oSWycwHIIJflgtyvx1tkV//wCyzRAYKmG2Mf6eAdUVMPoAjhqqv/8mEKVb3SwLrb+hpGquFsECqKetb96NqqOVKLBP0clMn7yJ5MFV3tobTepbTR5+xP1uqdOJXGZHUkRE8pH5YOnKZXJe2cwI0tZlJvrm/EAnnYHePxyIlqIEOAX/6Vx8gJoqAq2qFLcyRw3y/88lrFuuFDjiZ/YWDjNf26ga2CBCCxBEIQRz8dfQGcX/PHlPgosr4M1f7L6pZ5o7apAB8tu16I2LY6ELwfLK7AswRGPg/Wq171aeqzK47Kw2TQmesOEkVws0zTp6jZjChFmpmnkZEB7Z3CTauUyKkGXmeoBIie4W8ybrI5tHUoobvgcXn7Pn0TeuWUM7e9PpGvLGFJj2flXCyXeCzd6S+T3CuvFIIrGFmu8/msNs81/r+nWGJ+bxOiA3KlYBJaFla8HA59/BRC6s2MUdF23AY8BkwAN+CZQAPwK8ADXG4axWdf1UcATQDrwkGEYT/XLrAVBEIR+we02fYLmL/+C/7vWJNmZWGjFSnJfMEUdK+uUuAgUJbHQs97U2CLVVHnvIZhUGt+cKqp7jwXxCazdB5Xw1KeHbm/z2R7V33D+lND3/9dvTP62Ci4+WT1PT428HuOKVcHWvYegIEed+3iHOs6bBDa6WfdZckwO1plfgnfu1/jp4yZvbVC5XW98oD5PbibUNzvo2DCB9FQifp2sfKbKWjg2Vamej7ylFczWZEry/YI6VlGU7NQoSXfS6gHNpoTahFGaT8xBbGLNYvYE/+OB3kEIiTtY84FkwzCWAP8DfB/4GXAOcCnwS+91P0KJrhOBb+u6HsdSCYIgCIeb2ia14w+UY/LPNYmN09mlev7Z7UogZKUrV8y7+z4uqhuspsrqF3602lDhOFhrsmO/+iU9Y7w6l4jAsnKnQgmayV7B90WE/oErNyrBZFW3jyZArDn+5jmTs/7bQ2OL6QsPHjUVZo1XhT4j1cCy0DSNJfM0n+jdV+Vvdn3qQv910eZkiZ6DdX4Ha3O95WA5OXuR/9pYktwtJpX4XSyzzcn4USrfyz+v2MX51LGqzyNAacHA5l9Bgg4WsB/QdF3XgFygFXAbhlEP1Ou6buXuHwP8wDAMj67rBjAbMAIH0nX9WuBagBtuuIHTTz895Bt2d3dTUZFgC/QRhqxV7MhaxYesV+wMlbXati8J8Ces/Gl5O4unhSiaFIUDtTagmIIsN5WVVRRmF9LUmsTHW6uYNtYV9f7A9dpzIAtIJ4kGKirayE3LBDL49IsmKipaYp7TP99LAXLRp3RSXaXilw6PBoxid6XJvn0V2GKwGWrqc4EUOlprqagIbhVTkJEGZPPJjlYqKhpD3l9ZUwzY2LHPBDRcnepzhSM/XX3+Z1ao50++VseHW5OBNMblN5Ke3A2kk5nSFvY9e5KVrOb5WXkL5RWpgI3ZYxv5O8raS05yUVERPgbr8YDdNoq6Jg17i+rT0+ZWytzTmsycaQ1ADgCaGfu8irOz8bQ6sWV04mlNJjeniWTNjZIW0B1lrXoycVQB2yscpCXVUVHRcdj/H5aWhrdUExVYNUA3sA1IAZYA9wW87tJ13Qk4DMPw/m1EI9Br06RhGI8Aj3ifhk0AqKioiPhBBD+yVrEjaxUfsl6xM1TWattBEzC94SKorE9JaN4HmtQ4pYV2SktLGVvsYecB8CQVUVoa3U0IXK/qZvVrY9qEHEpLc5k1WY3d2JFJaWl2zHP6ZLca56xjgz9TYY6H6gYNW8poSmNop+Iy1Tjjx+T3+ixHz1ZzO1CXRmlpRq97m9tM2jrVr7Yul7q3tER9rnDMmKjGtKhvz+OQt9yEPiuHqcUHyMzWOPOYdEoKer9nKOZOVWPurkqnvgVSnHDy0Tnc8aQaNysjKerXvTjPw4EaGJVZAvhFS7IrmWPn5frmXJgXei1CMXuyyWsHk4FmPG1O5h6T7Q3vqbFGF0deq55ccIKH+/8BZy3Oo7RUG9D/h4mGCM8AXIZhTAMuBH4LZAW8nmQYRhfQ7c3XAsgG6hAEQRAGDVVes2pmmTrWxGY89MJKcC/2/i60Qkrx7iR0u03WblaPvzRDHRMt1bDqI3U8+ajg8xNHq2Os9ataIiSn+0KEYUySUIn+0YqDFvXQEzsrTN9cJ45WYbBvnK1REkcYzFrD9dvUsWxUcJ5SLHlT1tf0qz8MLq1Q6HQGNVaOJ29qQok/Sd5sTaashKAcrHiS3AF+eb2Nulc0Jo8Z+BBhogJLA6xvmxogE0jSdT1H1/Wx+IXUh8BJuq4nAQuBLX2ZrCAIgtC/HPL+tA4UWD3LA8Q0jleojfL+chwdsOssHj75QrWymVCidppBYjlY+6tU/lVmGiycGvzapH4UWGOLwOlQQrK1vfe6HQzx+aOJhkXeMgVWzvnW3Sp3ymbrXbk8Vqy8rs4udSwr8X+NYpkT+BPdOxqCk6xGpyVTnOufbzyiaOJo6PqshO69eXR9UcT44h4CK4Y8s55YlfYHmkQF1pvAWF3X3waeBe4EbgVe8z7/H+91v/Q+fgd42DCM9r5NVxAEQQDweEwO1va9OGiVN6F8bJFGZppqB9MYe5qTD0tIWL+ErUTlyjjn+I63PtMJ8/znAqubxyr+rHGWzO1dcNJysHbGWFw1UnkFu91fqiGUYAslMKMJkJllGp/+Rf0DVcHdNJXQdCRYPDM/m6AyDGWjlBCxdlfG4jr5lt5jw9Pm8I+Vk0xSkuZzL+NJTJ9QAu6qbFqWL8DZlk5xHqQma75uAPE6WIOJhHKwDMNwAZeEeOm4HtdVAqGz1gVBEISE+Z//Z/KrZ+D9h2DRrMT/Yj8UENoryFbuUU0j5GTGN85n3iKl472uky9EGKeD9c4napwT5vk/U3aGRla6SVOryhPLywp3tx8rNDl9XO/XJo7WADNuByucmzKpFLbtVWHCOZOCXzsYIjEmI4byCrMmaLjdJk4HdHVb845tvqHQNI1xxSaf71XPJ5R488EK1dc7FiGz7ASN19aZFOdBW2sytjQ1san5SrmNLlCfN54Q4ag8lQ/W0QXjR/lLRYzOV0J/KAssKTQqCIIwBNnorYv0phH5umhUNaijJbAgsTwsqwTBcbPVsSSBEKFpmrzjbRB94vzg1+INEzZ7w3WhSivEEyI0TTNiiBCUGxRubqEcvFhFg92u+fodQt8EFvjDhOCfs1WQM5ZQ3FXnQNVyjVv/U/PlTXnaHEwoVlLCKhAajyiy2TTfXMYHhD//+2saXzk5fG2xoYAILEEQhCGI1U6mZ3+6eLEcrKI+CKz9VSZ7Dqomz7O8xR4TEVjb9qhaXKMLeouJsXEKrBbvzv6MEEU9/SHC6ON0dauwqSMJnI7QTuE4r2u391Dvr0UiIcJAJgWsg3LeEmdcKIFVGPucNE2jMEdjZhmYLZbASvaFcL98tEZGKkEta2LB+npYcwKVxP/8T21h13woIAJLEAThCNHabvK3VWbIZOh48Qusvo3jc7Dy/FXD4xVY1q6/Y2cpRwL8bkZlbex5U1Zz6DkTe1cVj3cnYaTioKMLVMuZqnpoidJDMJp7BX7nZU+IuYUMEcaRuB1YuX5iSfjrYsESggATvKLGCulmx9B2x2JmWfDOP+trc8OFGg2vacyfEp8osnZi9lVADjZEYAmCIBwhHnoJLr7d5MEX+zaOaZo+gbX3ENQ0JCbYTNP0O1g5AQ5WQ3zjrNms3v/4Of5fkJlpKhenrQOaWmMbp8GbXJ8TooSSzyWqiu2zNkcQRjabxgSvW2KJunBYDZojiaJI4s9ysAJDffHkKE0KEB39FSJMS/F/ra8+B374Nbjm3NjFTXEepHYoReZpTA3ajWi3xy+SvvcVjf/+Gnzj7LhvHdSIwBIEQThCWD3tPv6ibw5WUyt0BxRH/2hHYuM0t6nk4rQUyEjTKMhWvxxrGuObn+VgLZ7jP6dpWty1sBq9QiyUm2KJmFhb3PhDhKFfjzVM6EtwjyCKxsXgYOnT1TE12e/yxUKggxVvH8aeWPMsC0gmH5Wv8cvrbYwfFfucNE1jhlZIy2tzyCuf2GuXZrxMGK3xq+ttFOWKgyUIgiAkgBV6276vb+NY7pVFomFCq8hoUY46JpKD1dxm8slOVfzymBnBr8Xb9y+igxV3krs6hmuIHGuxUZ9Qi7DzryRf5WhV1UN7p1+cdruU02izwfzJSjzEEx4Ef/gsO0M1Z+4Li+fAucfB9y/uu5CZPd5Gd3kRZXmO6BePUBJtlSMIgiDESa3qjcv2fSo81zPPKFZ6CqwN21WPu3ixioMWe2tXJSKw9lWpPnVTxkFaj/pH8QqsxhYlTrIzen+WRHOwwjtYVqmGyGsXSw6WzaYxptBkVyXsr4IpY9X5wPCrNf94yw5MGwffugBmjNcS/n6xSE3WWP6L/nGJZpap9Qvc+ScEIwJLEAThCFHrFS7NbaowZ0lBYuNYAmtskRIvfXWwrAKRiTlY6pgVwuHxC6zYBGAkB6u0UFUKP1CrnKFoBTct5ymcgzUpzhBhNOdpXLHK59pzyC+wrPBgSX585RAC0TSNB78/+EJnl50On+yEb10w+OY2WJAQoSAIwhEiULhs35/4ONbOv+PnquOeg6qye7x8tkcdLSGUyC7CSLv1xhapX74xO1gRcrAcSRqjC5RbFktOV6Qkd4geIjRNtdszliR38O8kDHTYKgOq2+vT1e7IC0+MPvehQEGOxmO32NCni8AKhwgsQRCEI4QVIoS+5WFZDtaYQuX2uNxQ1xTxlpC8aShRdtIC9UuyLw5WuD59kEAOVphco3hqYfmcpzAOlrWrb/dB1WC6Jz9/CjLPNFn1kXotWmjPn+husr/KxDRNnxAsyYfMNI1Nj9v46VXya3ekIF9pQRCEI0B7p0lbh//553sT30lY7S3LUJij+fKnrHyqWGltN3nvUxV2O+UodS7PK2zqmkKLjlBEa4QM8eRgqWO4mkyxJrqbphlR+AGkp2qMylOFRCt6OGKmafLQSyamCa++H3kc39y8ZSTufBzGXmTy99VKbAW+JowsRGAJgiBEoKHZ5IcPefhsd99KK9T2cIX6w8EqzPHnTx0KUdAyEu9uUuJi4TTIy1ICIClJIzdTNfWtb45tnOYIuU4+gVUdW7HRSDlYENz0ORIdXSqUmOyM3Bw5XJjQ2Ab7q9Vjy4WKNURo8fJ7qro9BFcoF0YOIrAEQRAi8Pe34dfPwF1P9E1gWWE3p3dXe19ysAIF1iivgxWqYngk3vxQfZ7T9eDz8YYJIzlYORkqqbu13S+eIhEpBwsit6QJxCf6oogiXy2siuDz/3in9/ihWu4Ezy34eW2jCj8ClPWxArswNBGBJQiCEAFrp52xrW/jWPlXC6aosNzOCrUbLhF8AiubhEOEVpPo0xYGC4d4BVZzm9VUubcA0TSNsd5ed/tjCBNGy8GyXCJLuISi2xW9ObOFr+lzpf/rYJom/3in97XRxppcqupMTfXuIPyiwj9PKWUwMhGBJQiCEIG6JvXLd8d+aGpN3MWyQoRjClUvPJc79grnPQl2sJSwOVgb+9xM02TLbvX4uNnBrxXmqGOsIcdoYibWPKxul2qrY7NF3/kXrr3N6+tMnKeY/OkVS/RFfk+r911giHD7PvWvZzubaOUVkpI01jxo4+PH/GNW1oLdrr7mwshDBJYgCEIE6gJykT5OsCUN+B2hgmx/3lTPgqGxENiHMCgHKw4Hq71T5SilOCElOdh5svKFyqP06LOIlkweq8BqbvM3HQ5XULMsoH9gqLIUz7ylzlkOVDTXKVSIcJu3dMWJ81QOl0WsFdhTkzXGFCoBbZqq/lVfW8kIQxMRWIIgDDuaWk0WftPDr/7at7wpCE5OT7SgJ/hDhPnZUOQVRVVxhvVA5TN1dClxlJ6aWIgwkus0qVSJgZ0V8e0iDOcWBRcbDU9Tu/p1FC7/ClS/xMIclZxv1ZgK5P1P1fELr2CKNUS484A/Cd8SguOK/bsWYxkrkMlj/I8lwX3kIgJLEIRhh7FNiaH/t7zvAivQwVItaRKjxltaoSBb8/X+swqGxkOge6VpWkJJ7q0RBZY6RqtwbhHdwYqt2GhTq7ouXP6VRbidfzUNpk9Yud3qGC1EOCpfhQLrmuCob5oY20z2V5u+eY8PEEdxCayApszjRWCNWERgCYIw7LBE0a5KVe+pT2MFFPDsFwcrq28OliV8LOcqkTINlusUKq/IEgdfxLjLMVYHK1pphea26A4W+AuE9szDWre197XRRJGmafzyvzTys1X49zfPmj4hOKawDw5WqT8kKA7WyEUEliAIww5LFJmmvx1MogRWX9+2N3HBZo1TkK0KhAJU1cc/1pP/Ci6v4BNrDbG3y4kUIiwbpXY57q2Cru7o40VLcrccnD1hdv7VNJhcdJuH1z9UWeXRBJbfwQqe2/tbes81moMFcMOFGq/9Un09tu31O21ji4ILhMbTQ3BKUIhQ8q9GKiKwBEEYdgS6Tlt2JT6OaZq+saaMUYnhW3cnNpaV5B6Ug9UQ3xgNzSZ/W60eX32O+sWd7FTFQd3uYDEYiUj99ZKdGmOL1GcNJ4oAnllh8skXZsRCo+CvD7WvKnR1+D+9Ai+8DY//WymrcEVGLSaUqM/d08Gy8q8CidV1mj5eHT/f63faxhaReIgwQGBJiHDkIgJLEIRhR12z/xf5p7sSDxG2tqvyAanJ/tBZvAU9LWoDdhFaOVjx7iL86wq1A/DUhf5kdIg/TOgLEYbpr+cLE1aEfn3D5yaX3mlyza+i15xKTVZ5YuHKUlj9EC2yowosdQwUWG63yXpvnbKF0/znQ9XmCkVWukZJvto8YInKMUWJhwit5HmQEOFIRgSWIAjDjsA2L31xsALzpqycp0TypiDAwepDDpZVhsByryyK40x0jyaKfInuYQRW4G69aEnu4K9k3rNAaFuHyZrNweeiOVgTvWOVV8L6rSZV9aY3107lTR093X9tPKJo2jj/4/xsJQwDq7NHa/YcSHqqxonzVdFRKTI6chGBJQjCsCMwRPhpHwSWNU5elt91irdiOkBnlwql2e3KobGKecYrsKzSBPq04PPWTsJYHaxIuwgBJnkLcO48ENr9+3CbOl/fHKPA8ro4PQXWGm8/xECy0yO7TmOL1DpWVMOXrjO5/C6THd6E/Kljg/Om4hFY0wMElpWYP7ZIfb1KC8Fujy+XauXvNbb8RZMaWCOYpIGegCAIQn8TWFphX5Wqi5UV5Rd3pHHysqA4TwNMDtWZQHxjrfW6NNPGqp1rhTlKoFQ1qDyvcIU1e9Lk7dWX1SMR3AoRxutghUvcjuZgGZ8HP09xRi6mGa7FjRUenFzqD0dGc7CSkrSgXK73t8A53sbZU8b4xRHEluRuMW2s+voCvvY+yU6NdQ+BI4HflDabhk0sjBGNfPkFQRh2WM6TVYk70TBhbaiwXkP847zyvvrFvfRY9TwtRSMjVbk3lmiKhXAJ5SX5StxUxtguJ1qIMFIOVkub2WtnZjQhU+ZNTN9dGTw/qx/i7d/wi7NoOVgAXztN7XS029VnWbFBjTtljJZw3pSV6A7BIm36eC0o300QYkUEliAIww5LYFmhtM/3JThOoIOVQL0pUA7Vy2vV43MX+39RW4It1kT3bpdJR5cSFanJwa+Veh2Xihh7G7Z2KEGSkRpaOFgOVnmIljQf7VDlLwKJJmSsEOGeQ/5z3S6TzeVKKF14IpSNcgGQG6XQKMCfb9HY+zeNk+ar55ZQ65uD5X88pkgEldB3RGAJgjDsqG9Rx9kT1DFeUWThy8HKTNzB+nyvcoLys+HYWf7z8eZh+dyr1N69+kYXqGOszaOj7SLM9Lak6ezqPeaH23pfH6vACgwR7j2kSkGMKVQJ5T+5tIkrvgxL5kaff7JTY0yRxpyJ6nlnlzpOGaPEprU88ThY44pVqBOCRZogJIoILEEQhhWdXSat7ZBkh4mjEy/oCVDbqO7Lz9YSdrBefk8dz14UnCgdb7uccPlXoBoKQ+wOVrQQIfjDhD1b5hifqzWZN9l/LppTZNWC2nsIPthqsrPC9LW6scounHV0J3/5iQ2nI3b3aM5E/7U2mypC6nRovvWIls8ViN2u+XYSys4/oT8QgSUIwrCiPkRYL5G8KQgIEWaq+lWapko3uFyxC7b1n6lrT1sYLBziLdXQFKGgpy9EWO1vWhyJaLsIwR8m7Nky59NydTz3OP+5aE5RarJGcZ6qKbboOpMzbzZ9dawsgZUIcyf5H48vVs4WwD03atx+pb88RKz88jqNH1wCx81OfE6CYCG7CAVBGFYEiqK+1q6yQoT52Wr3Wn6WSU2jqmk1Kj++MUp6XB+vwLJChFkhBFZmmkZGqir62dASPY8p2i5C8BfLVKUa/OLQaiWzZK5/110suU5WA2ZQIVNLeFouYyLMLFOi1zSD29NcdJLGRSfFP+6Xj9H48jGSfyX0D+JgCYIwrLAcrNzMvtWuAn+h0TyvYEkkDytwPoEUefsRVjfE5oZFChFCsIsVjqp6k9rG6NXXASaP8dbCCthJ2Nxm0tCicpXmT/GfjyXX6exFwc+XexP/++JgpaVovlBmoMAShMGACCxBEIYVQcVBE6yYHmosSGwnYeBOxEAsd60yxrGi9fyLloflcpnM/YaJfk1sAstysAJLNQQ2Qi7MAacj8pwCufubGn/6ocbV56jn1u7JvggswJfoPmWMOE/C4EJChIIgDCsCRZG1U6+6QZUbsNni+yUc2CoH/IItHkcsnINlJVL3bFocjqYIIUKIvpNwf7VfGFrJ37HkYO084C+GagmsccVqJ+OYQpWsHouDNbZY4+qlKqj46Kt+166vAuvH/6mRnmpyxZl9G0cQ+htxsARBGFYE5mAlOzWyM1Sj4YaW+MY5UGNSVa/ylCyhVhynI+ZymTS1qjyh7B6hvVBNiyMRs4MVJkQYWIPKWotI/fUKc9R7Nbaoz+tymez1jhHYSgbC19MKxYKA0GKys3duWrwsnKbxxE9s5GaKgyUMLkRgCYIwrKhrUu5IXpb6hRuvKLJY/ZE6LpnrbwOj2uXgbZcTHUvI5GTQyz0bla9ymWobVSufaETPwVLjHwhTzX3Pwd7nMiKE9jRN87lYoy4wmXa5yRf7va1kvMJqjDfvK556U7PKVLFUUPWx4nUVBWGoIAJLEIRhRc+QXCJhPYCVG5WYOHlB7+rrsSa514fJvwIlYOJxsSwRlpkWWpCM9jpBsThYFmnJvc8FYhUIBSg/AC++qx5bDZUvP0NDnw5fPibyOIGkJGvM8Nab6mt4UBAGMyKwBEEYVgSGCCGgoGecAmuV18E6eYH/XLxJ7nVh8q8sJnoTySMJrPpmk72HTJq9ienhcrCitcvZczDY2UpNDi58GoqeFc137A8+f+aXND58xMb08fG5UAumqqMILGE4IwJLEIRhRc+df4nsJNx7SCVvZ2cE5wxZ+UIHamMbx+emhakobgmM8gOhXwc4/39MZl3hr3weLgcrWpJ7TwcrlrDet/9D4z+WwI0XBp8f18dWMhefrJFkh6XHSnhQGL7ILkJBEIYNpmmyba96PMpbBsEf1gsumBmJVRvV8YSA/CtQu+cAX7J3NHqKvZ6oIpsmuypDz62xxWTNZlVI8/0t6ly4HKySfJVMf8ibkB44b+idgxWLwJo2TuMfP9PYdcDk/hf8Dlhfe/UtPU6je5WIK2F4Iw6WIAjDho93KCExKs/fK88q6BmPg7VppxITx84OFgGFOSoxvb5ZFd2MRrgSDRbRHCzjcyWuANo61DFciNCRpPolejy9w4Qej8nequBzkXYQ9qSsxO/e5WRARpg8MEEQ/IjAEgRh2PCPd5QauWCJf3daIu1yrJpT+T2cJ03T4nKxwhUZtYiW5L7+s97nIhX1DJfTVVUPnV1qHslOdS7SDsKeaJrG8XPV43HSCFkQYkIEliAIwwZrl9uyEwJ2/uWoYzy7CCPVnIpHYNU3K8GXmxHa8QkUWKGaNH+wtfe5cCFC8AuswPY24M+/Khvlz5+Kp7QCwGKvm9fX8KAgjBREYAmCMCzYvs9kyy4VwjopYOdfIknukWpOWRXYQ5U96EmkMg1qfI38bOjogoM9EudN0+SDrb3vieRgWe1tyiuDhZmVfzW+GMZ7Sy/EEyIEuOJMuPhk+MElEh4UhFiQJHdBEIYFazer4xlHq3wkC1/Pv1p/y5doWCURMkO4PKoGlCqdEC1p3kpyD5eDBTCxRBUbLa+EkgL/+YpqOFinKsm3tvvPh8vBAn/SfM+crt2WwBrld+fidbByMzWe+6mIK0GIFXGwBEEYFlhuUc/WKzkZyvVpafdfE41IDlZ8IUJ1jCSwJo9RR6vGlIXlXi2e7Xfhkuz+HKpQhA0RemtgjS/WGD9KiaR4HSxBEOJDBJYgCMOCRm+l8+weNac0TfNVJN8da2Nlr8AKFY6LJ0QYLckdYIpPYAWH9TaXq+cLp8Fkb8uarHQiOnD+EGHw+Z1eR2viaDhvMcwYD+cfL26UIBxORGAJgjAsaPT2/ctO7y0cfAIrRD++UPiqpifoYP35NZPLfp7L9n3qebhCowBTxqj59nSwLAE3cbTmE1iR8q8guL9hY4tfsH3urQ02bRzMm6yx9UkbZ0uRT0E4rIjAEgRhWNDodZ2yQyWmewVWLK4TBIQIQwiaMQEtaVyu0LWwfvucydubUuh2qeeRHKypXgfLEmMWuwMS0y0RFin/CpS7ZYUJrTysjk6TPYdUg2VpTSMIRw4RWIIg9BuP/Ncf+dmYn3Ngd4TeL4cJn4MVwi0q8+Yd7a6MXhy0s8uk2wWOJEh29nZ5kp0aJfngdqvE+Z50dZs+x8giLUK+05Sx6vhFRXCpBiucWTbKn6cVqUSDhRUmfOAfJj98yMPn+1Sx0okl4HSIayUIRwoRWIIg9BuNzzSzoP0o7v3GfUf+vSM4WPGECK0io5HEzLgIeVg79oPLHXwuUt5UbqYq1dDa7hdsLpfJ/mr1eGwRnDhP9Ro885joAslysB57DX79DNzzvBJtU8dGvVUQhH5EBJYgCP1Gpk3ZR60ftx7x97aEUUiB5Q2NxSKwfEVGI5QxsBLdQ423ZZd1jYoPnrow+ntO6REmPFCrRFpJPqQka5QUaOx/QePWr0cXWJZbZ/HsSnUUgSUIRxYRWIIg9BuZNpVsNME9kcrKGLfs9RORQoSRBFFPIpVosJgcZucfwKe71LlzF3Ww528a/7g7uiiy8rBWfWRyz/P+EKOVOwaRXbBArJY208apY2eX9/lYCQ8KwpFECo0KgtBvpKNUyeSkybz095e4/sbrj9h7RwoR5mergp1NrdDQbJKTGV5sRGqTY6HEitkrMR38DtbUMd3eoqTRUUnsJnc+DmCyYIo6XzYq/D3h0Kdr7Pu7akxdeJ7p+zziYAnCkSVhgaXr+knAbSgX7D6gGvgV4AGuNwxjs67ro4AngHTgIcMwnurzjAVBGJR0tXTh1FQVTIfm5P1n1g2IwArlPKlaWKqVzu6DMD9C4U9fDlYEgWWJlZ7J7ABbdqvj9LGuqHO2sEKEFh/tUMdEBBbAmCIl7E5eYLJ8rTonAksQjiwJhQh1XU8FfgCcZRjGyYZhvAj8DDgHuBT4pffSH6FE14nAt3Vdl9rBgjBMaahoCHqetPvIGeSdXSadXarSeWpy6GtiSXQ3Tb/jEylEaImV7fuDd/51dJrs2A82G0wsiV1gTR/vf2y3+x+PH9W3sN7purdqe6pKkhcE4ciRaA7WsUA78LKu6y/qul4CuA3DqDcMYy/g7f7FMcBKwzBcgAHM7vOMBUEYlNT3EFhjO8cdsff2hQczwucqRavm/ufXTFJOM/n3h0owRQoR5mVpFPTY+Qfw+T7weJQjlRKhpU1P5k6Cu65W+VonzO0950Q551g1j8WzY8/hEgShf0j0T8xiYDKwCDgN+CnQFPC6S9d1J+AwDMPjPdeIX3j50HX9WuBagBtuuIHTTz895Bt2d3dTUVER8jUhGFmr2JG1io9I67Vn6x4A2mknlVTGeMawf//+I/KLvbzSDhSRkeyioqI65DV5aelAFh9/3kJFRVOv1+/9Wz5d3U6ee8sD2LB5WqioCN+8sKw4n5pGJ2s21rB4lsokf3djCpDLxFHtcX9vfeM0dVwyK51VH6nNAilaFRUVsTthPXECK39tJyvNQ0VF9BpgA4n8X4wdWavYOdxrVVpaGva1RAVWA7DWMIwuXdffQgmswJ9ESd7XunVdt3lFVjZQ13MgwzAeAR7xPg37E6CioiLiBxH8yFrFjqxVfERar+3dO3DRSWNyA6mdqaSRTkFBASkphz8zoLLZBEzyspPCzu/YeSY8bbK3Jp3S0uAkrOoGk03e3n9tncrYLynKoLQ0fAn2OZM9GNuhvr2A0lIlImta1N+TC6al4nA4EvreuvwskzufUnM5Zm4RaSl9E6hD5dtb/i/GjqxV7AzkWiUqsD4EfqDrugbMB7YCE3RdzwEy8QupD4GTdF1/B1gI/LBPsxUEYdDSXt0O2GhNa4VOSNPSaG5uPqwC680PTZ78t4nT+5MsVIkGi5ll6ug12oL493pV7TyQrBA9DQOZ6t359/k+E9NUIbjP9wW+lhhTxmrceoWJ06H1WVwJgjBwJCSwDMOo0XX9ReBtlOt0FVAKvOZ9/i3vpb9E7SK8G3jYMIz2Ps9YEIRBSXttO6mk053RjbveTbKWTFNdE4WFhYftPXfshyf/BTleYRWqRIPF2CKV7H2oDmobTfKz/eLl9Q96m+fRGitbie73PA9P/svkLz/2Fwrt6469u74pJQoFYaiT8DYfwzAeBB4MOLUTOK7HNZVA6KQqQRCGFV31XaSSjpYOnbYO0jzpNFQ2wrTD955zJ6ljg1VkNILAstk0Zow3MbbBZ3v8BTk9HpN/rVePHUn4GjRHa6w8LSCHv6YRnnrTXxdr2jhoD5++JQjCCED+TBIEoV/oblDKxJ5lp9Oukr5bqg6vyrAElkWkECHArDJ13Lrbf+7TXUogjSuGL830n4/WWHlyqSpgmuQtq/Dq+9DSrs7lZUloTxBGOiKwBEHoFzzNKsE7KTsJl0OJrdaaw9uTMCtdY0KJ/3kkBwtgZpkSPq9/YHLKdz28sNpk00712tHTYVpAaC9aiDDZqbHpzxoV/9DIzvC32Jk6JvJ9giCMDKRVjiAI/YLZqvKYkvOScTtd0AatNW2H/X3nToJd3tpW2VES061E95feVcfObpMT5qnHsyfgTSpXnyOagwUwukC933GzTF7/QJ2TiumCIIA4WIIg9BNau/pxkpqfgpmiREpHXcdhf995k/2Po4UILYFlsXG7vy3NrAlasIOVGvscFs/xC7tp4yQ8KAiCOFiCIPQTSR0qGSmtMI321E4AOhs6D/v7zpvkd52ihQjHF6tWOu3eaXV0wVsb1OPZE4KvjcXBsjg+oPq6hAgFQQARWIIg9BOObtUbJnNUJvUZDQB0NXYf9vcNTHSPJorsdo3/Os/kw22Qlwkvvwcut9o9OHmManPjdKiaWNFysAI5erpKdne5JUQoCIJCBJYgCADU19fjcDjIyIgSZwtDskt1Wc4sycKeodwsd3PibV5iZeJoyEhVO/iiOVgA99yoQpn3/d3k5feU8zV9HDiSVGjvr7dBlwucjthDfWkpGrdcpso09AxDCoIwMhGBJQgCdXV1lJaWMmXKFDZt2hT3/Z4uD07Tict0kVOcTVKWAwB3qyfKnX3HZtM442iTf32omizHSmBJhtkT/Y8vPCmxHCopDioIQiAisARB4KGHHqKjo4PNmzfj8Xiw2eITC90NKhTYYraQnZ1Nco4KF1o7Cw83z/9UUw5WRuziaN4kf2HRWWWSmC4IQv8if3IJwgino6OD+++73/e8paUl7jF6CywVLtQ6joxwsdu1uMQVQEqyxoIp6vGciZGvFQRBiBcRWIIwwvnHt17kwe6HmWxX9Q6am+Ovvt5WrepdtdFKcnIyqfmqxoGtc3D/iLn3Oxq3XgFnLxromQiCMNwY3D/9BEE47DS930yqlsppyWeo501NcY/ReFDd02HvRNM00gtUtnlS1+DOQlg0S+Oub9pISpIQoSAI/YsILEEY4djb1I6/ox3HAIkJrOaDyvXqdqgCU5mFaieiw+XsjykKgiAMOURgCcIIx9GpdvyNso9irG1cn0KErmQ3oGphASR7kvtploIgCEMLEViCMMJJdqX4Hh/tPCYhB6utph0AM1WVZcgZlQNAipkS7hZBEIRhjQgsQRjBmKZJmukvWX60IzGBZfUc1LzNltMLVQ5WKql0dh7+djmCIAiDDRFYgjCCcbW4cODAZaqK69OTptPcFH+I0BJYjhwVbrQ77HSYHdg1O40HG/tvwoIgCEMEEViCMIJpPKDcqgazAY/dg1Nz0lyXQB0sb89BqzwDQIdNia7GQyKwBEEYeYjAEoQRTN3eWgDa7e24U1SCekdte9zjeJpV7lV6kb8ZYKdNhQabD8XviAmCIAx1RGAJwgimsUI5WJ2ODsw01damszaBnCm1iZCs4kzfKZdDuVrNVfE7YoIgCEMdEViCMIJpqlQCy5XsQlOlq+jytr2JB3uHqqWVU5rrO+dyqLyuttq2Ps5SEARh6CECSxBGMG2HlPhxp7mxZymR5G5yxz2Oo1sltxeMy/ed86SosGF7AiFHQRCEoY4ILEEYwXTUWOUVIClbtbXxNJtxjWGaJikeVe+qcHyh/wVvvntHfUffJyoIgjDEEIElCEOY+vp69u/fn/D9XXVdANiy7STnqrY2WpwRPVerCztJdJgdFI0u8p3X0lRNrK7GroTnJwiCMFQRgSUIQxTTNCkrK2PSpEk0NiZWCsHVqMKBzlwHKfnKhbK1x/djocnb6LmVVtLT/bsIk3OUYGuvFQdLEISRhwgsQRiirFu3jqamJrq6uti7d29CY5jecGByvpM0b/V1e2dSXGNU764B/GUZLDKKVNa8hAgFQRiJiMAShCFI3Xt1HFpWw5cciwBobW1NaBytTf0ISCtKI6NYCSxntzO+uexTtbS6ncG7D7NHZavzjfHvShQEQRjqiMAShCHIwX8dwtnl5MKUrwDQ3JxYMc+kDuVWZYzK9BUJTXWn4nK5Yh6j4UADAJ6U4N2HeWPy1PlWT0JzEwRBGMqIwBKEIUj5x+UAzHLMosBWQEtLYsU8nV3KrcoanYXTm+SeoWXEJdiaDqprraR2i6IylfBu67BhmvHtTBQEQRjqiMAShCFI494m3+MlzhMScrBM0yTFrRLb88bm+ho1Z9jiE1htNWrboT0r+MeJFSJM8aTQ1NTU6z5BEIThjAgsQRiKNPndoiXOExMSWK4mF3bstJlt5BXl4fDWwcrQMuISRB3eXYKOnODcLUe2EmxpWjoHDhyIe36CIAhDGRFYgjAEcbR7i4LiYVrSNNor46+W3l3v7RXoaSYnJ8fvYMUpsKzWOil5KcFzzFJzTNfSqKioiHt+giAIQxkRWIIwxDBNk5QuVSa9KVnVv+qqjr+YZ2uVCu210ExGRgb2VDsuzYVDc9JUE7sj5m5Wye3phWlB55O8AitNS6divwgsQRBGFiKwBGGI4WpykWQm0Wa24c5R4qa7Lv5SCA37GwBot7ejad6q6w4l1FoOxhFy9FZ+zxqVFXTanmLHY/Pg0Bwc2CMhQkEQRhYisARhiNFZpURQg6cBZ57Ke7IqssdDU4UKA3Y5/e6Xy1vLqq069n45tg7VJDp7dHav16yGz9V7quOenyAIwlBGBJYgHGH27NnDhx9+mPD9jftUWLCJRlIKVN6TGWeDZoDGA2ocd6pfnFmP22tiy+n6+OOPsXeoHyOjJ4/u9botQ71Wu78u7vkJgiAMZURgCcIRoqGhgaVLlzJhwgSOOeYYDMNIaJyanao1TYezA0euSkynRYtwR2iaDigHKynb7jtnpimh1lkfW07XPffcQ4amWuJkFmf0et1KdG+sbIh7foIgCEMZEViCcIT417/+xauvvuorurl169aExmnY0wBAd1o3yfnJQPwNmgHaqpRLZY0BoGV4c7FiEFgHDhzguWeeI99WoMYpSu51TUquctiaqxMrhCoIgjBUEYElCEeIng2Zq6sTy0tqrvAmoGdDqjdE6OhwxD1OV50SUWlF/t1/VqmGWATW888/T6G7EIfmIHVsCkkZvZtEpxWosbsaunC7488TEwRBGKqIwBKEI8S+ffsAyM/PBxIXWO0HlfNkz7OTbjVo7oqvQTOA25sYn1Xi3/1nCaLuhui7Enfu3Mk4+3gAMqb3Dg8COLPVvFLNVBobG+OeoyAIwlBFBJYgHCEsB2vhwoUAVFVVJTROd61qxJxSlEzm6Ez12J0S6ZaQaG0qHJg3Ltd3LsObR+Vujt6gec+ePYz3CqzMMALLX2w0nbo6SXQXBGHkIAJLEI4QloNlCaxEHSzTawRljM4ge7Ryn9I8aRHuCE2SN6xYOKHQdy6n1FtqoTX6/Xv27PE7WNNCCyxfsVFbOrW1tXHPURAEYagiAksQjhD95WAltapdfznjs30hwgwy6ezsjGscy/UqmVLiO5c3Jk+9R2eSLxk/HLEJLCXi0rU0cbAEQRhRiMAShCNAe3s7NTU1OBwOZs+eDSTuYCV3KmGUPzEfZ67KccrQMmhqjL1/YGd7J2mmcr1GTRrlO2+FCFPNtIj9CBsbG2lpbKHUXqrum5oe8jpHQLsccbAEQRhJiMAShCPA/v37ASgtLWXUKCVoEhFY7jY3To+TLrOL4rJibA4b7bRj1+w0VsaeRH7giwPYNButtJLk9O/+S8pWjzO0DA4dOhT2/j179jDaVqp2EI5LDbmDEPwhQsnBEgRhpCECSxCOAFZ4cNy4cWRlZeFwOGhpaaG9PbaK6RadNf42OZZQa7OrtjZW4dBYqNxeCUBHUkfQeUe2N6RnS48YwtyzdQ+nJZ8GhN9BCCKwBEEYuYjAEoQjgJXgPnbsWDRNo6ioCIjfxWqrVGKqwWzwlXvoTFK5V82VsRfzrN6t3teV4go674jBwfK4PJg/1rgo9WIAchb27kHoGy8zOET4t7/9jb/97W/U19fHPFdBEIShiAgsQTgCBAosgMJCtXMv3kT3+t3KBWpLasVuV8nu3cnK1Wqvjt0Nq9/nFTjpwYns9nQ7Hs1DipZC1YHQc+us7CSp0UGrp5U9Z+5i0ncnhH0fv4OlktxvvfVWLr74Yg4cOBDzXAVBEIYiIrAE4QgQGCIEv8CK18Fq8DZ67kz27xi0XKh4BFZTpaoGbw/oQwigaRruZFWAtHZf6JBe+wEVVtzn2Uv2OVnYHOF/jFi7CNO0dGpqanzrYAlNQRCE4YoILEE4AvR0sBINETZXqDCgK80f2vOkqaKgnXWxNWgGaKtSocbk/N4V4E2vq9V4IHTSfIdXYNV4ahg/fnzE9wksNLp9+3Y6OjrIyckhKysr4n2CIAhDHRFYgnAE6K8QYfsh5VKZmQGV1jOUIHLVR29vY9FV6+1DWNi7vII9Q7lazQebQ97bcUC5Z7EILFuqDS1Zw6k5ObRb5XRZLp4gCMJwRgSWIBwBLCFl7fxL1MHq8u4itOX4/+vastRjd2P09ja+cbzNnHPG9E5Qd+aqsF57bZvvnMfj4Ze//CUrVqygZY8SXvXUUVJS0uv+QDRNw1msXLI8Wz65Wh5lY8pinqcgCMJQJXTxGkEQfKxdu5bRo0czYUL4ZO5IeDweX4mCvDxVKT1RB8tdp/KjHAUO3zmrdpXZErnyukVLSwuuBjc4YeyM3rlQKXkptNIWFHJ89dVXueWWWygqKuKvxz6r5lDs8CXaRyJtdCqdezvJt+VxS9r/MHHdJBo/aSJ7noQJBUEYvoiDJQgR2L9/PyeeeCKLFi1KuI5TQ0MDHo+H7OxsHA4ljBJ1sExvqavUIn9zZ2eeGlNr0WIaY+PGjWRoqnZVenHvHobpRSps6Gry53k98MADgBKEdV+oHYh5k/Nier+UEm/leVsBRTb1uVNGJ8d0ryAIwlBFBJYgROCzzz7D7XZTVVXFzTffnNAYVosYq24VJL6L0OpDmD7anzuVnK8EjK0jspvU1tZGfX09hmGQrxUA4CzoLXQyvALL3mGno6ODzz//nH//+9++17sPKWerdE5pTHNOKVHvMdY+lgxbJqbDxFnQO7leEARhONEngaXr+td0Xa/2Pv6Kruvv6br+lq7rY7znpuu6/o73/Kn9MWFBOJLs3r3b9/jPf/4za9asiXuMmpoaILTAiidEaHpMHB1KmGQH5E6lFaYC4OiMHPE/8cQTGTt2LK8vf50x9jGYmhmyh6Ajx2rQrIqN/uEPfwAgKSkJGzYy3Sq0N/WYKTHNO3mUEoDTk2YAYC+2o2mxuW2CIAhDlYQFlq7rduArwD5d15OA7wMnAf8L3Oa97P+Aq4EzgTv7NFNBGAB27doF4Avtvfnmm3GPYTlYBQUFvnOJhAi767uxYaPJ00R+kV+sZZZkqjl2h3eFPB4PhmHQ2trK7jW7sWt2HGOTsKf2dr2sdjkZWgb79u1j7dq1AFx99dXkarnYNTv1njpmz58d07xTRikHa2rSNADSxvUOSwqCIAw3+uJgfQ34G+ABpgCfGYbRZRjGWmCu95rRhmHsMAyjCajTdb0gzFiCMCixHKyFCxcCUFlZGfcYoRyszMxMnE4nra2ttLW1hbs1iM5qFZprNBt8yfIAoyePBiDZnYzpDp3o3tzsL7kwwT5RzWdBfshrLQcrw6YEllViYpl2IctSLwKg1qxl0qRJMc3bChGmasppy5kUvrWOIAjCcCGhXYRe9+pi4ALgB0AuENhp1vqzOFDANQJ5QE2Psa4FrgW44YYbOP3000O+Z3d3NxUVFYlMd8QhaxU70dZq+/btAMydO5d169ZRXl4e99qWl5cDkJKSEnRvfn4+lZWVbN68mTFjxkQdp+UzVWS0wdNAV1eXbyxbko0WTwsZtgz2bNvjE0iB7Nmzx/d4QpISWNp4LeRnae5WYixDy2Djxo1UVVUxzTkN1/MeLkj5DwA60jrC9irsSafWGfTclesaEd+f8v8wPmS9YkfWKnYO91qVlobPRU20TMPlwPOGYXh0XQdoAAL3XLu9x8DCPNlAr21YhmE8AjzifRp2n3lFRUXEDyL4kbWKnWhrZfXMO+OMM3jkkUeoq6uLe21dLrUbb/z48UH3jho1isrKSux2e0xjHkC5Z41mIzNnzvQ5YqNHj2ad9iEZZJDcnUJJ6ahe91rOW0ZGBnMz50InjDmulKLSwl7XNkxqpJw9ZGgZrNnyDgDH5C+CAJ2Unp8W8zq4c91sY4fvefGsIkpLR8d071BG/h/Gh6xX7Mhaxc5ArlWiAmsmsEDX9ctR4cEbgRm6rjsBHdjkva5S1/VJQBWQZxhGTcjRBGEQ0t7eTmVlJUlJSRx99NEACTUptkKEgTlYEH+ie0eValHT4GkgJyfHd17TNLocneCCyi8qKZnfW2DV1tZyvGMJx004jqmtU+nudJE1KzPk+ziy/e1t3n//fQBmpcwKElhpM3snx4fDnmbHneLG7t3lmDo2NeZ7BUEQhioJCSzDMH5kPdZ13TAM43pd1y8BVgMdwNe9L/8EeBwVMry9TzMVhCNMYIPm0aNHo2kaVVVVdHd3+5LeYyFUmQaIP9G9ab8K3XU423sV+PSkeKAFqspDi7W62jq+l/F9UitS6caFI89BcknoWlS+HCwtk4aGBgDGd6uWOKN+U8Tnb3/Oxb+5KKY5W6SNTqWz3NueRwSWIAgjgD5XcjcMQ/cenwOe6/HaVmBJX99DEAYCK8G9rKyMpKQkiouLOXjwIIcOHYopZ8oimoMVSWBVr6yhemUN026bSsteJbDc6e5e12mZGrRA3b7QxVDrKxso0/yJ8VmzMsOWSrAqw6dpaWhopGvpZLVlY0u2UXhyAUd9Y0HY+YYjc1wmneW1aA6N5FFSZFQQhOGPtMoRhDBYJRrKysoAlet08OBBDhw4EJfAiuZgRQoRbv/ZDho/biJzegbN77UC0JDb0Os6R64DKqGpsqnXawAte1t8j0edW8zYr4efvy3Jhj3dDq1q559VXiFrbhY2R2Ibjy1RlVqagmaTGliCIAx/pJK7IITBcrCsHoSjR6vE7HjzsPriYLUfUHlXn/9sB2adySH3ITpHd/S6LrVAFfNsrWoNOU5npUqgah3fwlGPz6fw5MgVU6z2O1laNtPsSmDlLEy8vIJVC0vyrwRBGCmIwBKEMFgCa/x4lX+UiMAyTTOsgxUtyd3T7aHLW/uqq0od13atIS+/dw/AjGKVsB7YoDmQ7qpuAOwF0ZszA6SUKsFWZCtkStJUoG8CyxJWaROkyKggCCMDEViCEAZLSFnhwEQEVlNTEy6Xi4yMDJKTg3OPoiW5dx7q7FW4ZG33mqAioxa5Y3MA8DR5er0GQL0KyzmLY+sBmDpGCaIiWzGldvX5M2dkxHRvKEqWjWLyzROZeGNZwmMIgiAMJURgCUIYrEKao0apsgeJCKxw7hVEDxF2eMN69jTlOnVmdPK5a1tIgVUwXoX8tNYwievN3tILY2JzkFLHKAer2F5Msa1YnetDeM+R5WDq/0whfWLs5R0EQRCGMiKwhGGHx+Ph1FNP5eyzz8Y0w9aujcrBgwcBKC5WAqOkpARITGD1zL+C6EnuHZUq10qbA/P+MIcNx3+IiRlaYJWp8R3dTjo7O3u9ntKmBFPW+Kxer4XCElPTkmbg0Bw4C50kZcieGEEQhFiRn5jCsKO6upqVK1cCsGXLFmbPjq0pcSAdHR00NTXhcDjIzc0FEnOwQvUhtLDChm1tbbS2tpKeHuzuWA7Wi2+/SMotTtYeWAOEbs2QnKfCj5laJgcOHPAl5v/qV7+ira2Nwm7lwuVN7i3OQpE6VgmyWUmzAEgbJ8npgiAI8SAOljDsCBRAr7zySkJjWOHB4uJiX70oS2BFa/h84MABHn74Ydrb2yM6WJqmRczD6vQ6WLWeWn7xi1/wzjvv4HA4QvbrdHqLg2baMtm/fz8AdXV1/OhHP+KnP/0pOR6VoF44LbZ+61YOVoqmhFZqmQgsQRCEeBCBJQw7AgXQyy+/nNAYPcODoHKm7HY7NTU1IcNwFnfeeSfXX3895557Lps3bwZCO1jWmBBaYLVXWAKrhtdffx2Px8MZZ5wR1CbHwpHrFVhaBhX7VWPTDz74AAA7drK1HDymh7SS2HKwUrw5WBZp42T3nyAIQjxIiFAYdgQ6WO+//z7V1dU+IRMrgQ6Whd1uZ9SoUVRUVHDw4EFf+YaerFixAoC33nqLt99+G4D/+I//CHltKIHVuKmJgy8fomWfKg5a66n1vXbRRaFb1NhT7bjtbhxuJzv3qMbK77//Pjel/4AJ9gnYNBsNWgO2pNj+pkpKT8KZ76CrVpV3SBMHSxAEIS7EwRKGHYECyzRNXnvttbjH6LmD0CKWPKzAcKDL5eI73/kOJ598cshreya6uzvcrL/QYOfvymn+2BJYKo8rKSmJ8847L+z7elJViQarH+G2Vds4Lfl0JiVNBqDV0RL23lCkjPGLqlTJwRIEQYgLEVjCsMMSP5MnK2Hx7rvvxj1GqBAhxCawLDdq1KhRnHDCCfziF78Ie601vhXWtKfYKbt2nHpRmUeMXzCe+fPn8+1vfzvkDkILW6bKFavfV4/b7SZpc3DNq6Sk+AxrK9EdIK1MQoSCIAjxICFCYdhhiZ/TTz+dL774gh07dsQ9RqgQIcQnsD777LOQ+VKBjBunxNTevXt95+oW1mIme9A6bbR6WpkyZwp//vOfo87ZkevEU+mhqbKZzz77jAWeo8AOldMPkLY1jfKynVHHCMQq1aDZNVJGS4NmQRCEeBAHSxh2WOLnxBNPBOiTwIo3RNjR0UFzczMOh4Ps7OitZaw8rj179mCaJr/73e9YfMZi/tbwNwBqzZqQZRlCke5NYO+u7uaDNz9gRtIM3JqbU/50En+c//844X+XxDSOhSWwUsemxJy7JQiCICjkp6Yw7LDCbV/60pdwOp1UVlbS0hJf/lGiIULLvSooKPCVd4hEoMBavnw5P/jBD3C73bzY8QKfujbzr443YhZYOZNzAEhqSOLAa5XYNBsdE9uZMGMCK1etDFneIRJWYnvaRAkPCoIgxIsILGFY4Xa7feKotLTUl4cVr4uVaIjQSla3ktejESiwrFyxSZMm0WQ28aOm/+alzhdjFliZZapXYD4FdG5WZSRyT8qJ6d5QFJ5SwJRbJjHt1qkJjyEIgjBSEYElDCuqqqrweDwUFhbicDiYMmUKkLjAijdEaDlYsZaFyMnJISsri9bWVtasUZXav/nNb4Z8z2j4GzQXkdmmWuJMOmFSTPeGwuawMeW/J5M9L7b2OoIgCIIfEVjCsMISPpYoSURgtbe309TUhNPp7JWkHqvAitXBAr+LtX79egDOO++8IIEWq4Nl7fortBVRYlfzLJ5bHOkWQRAE4TAhAksYVvQUWFOnqvDW9u3bYx4jVJsci/z8fBwOBw0NDbS1tfW61woRxlPY1BJYpmlit9uZPHkyixcvBlRx01jFmlV9vcReQoGtALfmJrU0JcpdgiAIwuFABJYwrEjUwfJ4PHz00Ud0dXWFzb8C1T8wUk/CvjhYoPKvnE6nT2CVlJRgt9tjGseR48DtcJOsqZIKndmdaPboifaCIAhC/yN1sIRhhSV64hVYzzzzDJdffjlz5szxhQUnTQqdvzR69Gj27NnDgQMHfNd89NFHPPXUU75Gy/E4WGVlZb7HM2bMAOC0005D0zRmzZoV8ziapuHJ9WCvUoLMOdYR872CIAhC/yICSxhWVFSoRsclJSWAEkNpaWnU1NRQX19Pbm5uyPs++ugjAF9z5tGjR3P33XeHvLang9XZ2clFF11EeXm575pEHSxLYM2fP5933303SHzFgqMkCVSUkvwZoRtMC4IgCIcfCREKw4p9+/YBMHbsWEC5OpaL9cUXX4S9L7CS+uzZs1m1apWvxENPeia633///UHiChLLwQK/wAJYvHhxzAnuFunj0n2PS+aPinClIAiCcDgRgSUMK3oKLICJEycC9BJBgVgC691332Xz5s2+5PhQBAqsuro67rrrLgCSk/3tZPpDYCVCyZwS3+OMSRl9GksQBEFIHBFYwqDhnXfe4dFHH8U0zYTHSFRg7dmzB/D3BoyENfbu3btZs2YNTU1NHHfccVx77bW+a+IJERYVFZGTk4PT6WT69Okx3xeK9HH+quvpE6QCuyAIwkAhOVjCoOHKK69k165d5OTkcOGFF8Z9f2NjI83NzaSlpQXlWlmJ6OEEVmdnJwcPHsRut8dU1DOwOryVPL9w4UKuuOIK7r//fpKTk8nKir04p6ZpLF++nPb2djIzM2O+LxSBDZqtx4IgCMKRRwSWMCjo7Oxk9+7dAPzwhz9k6dKlQSG3WAh0rwLrV1kO1s6dOyPeV1paSlJS9P8SgTsTLYE1efJkFi5cyJ133klhYWFMfQgDWbIkvkbM4UifnI7m0MiYloHNKQa1IAjCQCECSxgU7NmzxxcaLC8v5/777+fmm2+Oa4xQ4UGIHiK08q8Cc6EikZeXR35+PrW1tb72NpMnT0bTNG677ba45tzfJBc4Oe7fi3DmOwd0HoIgCCMd+RNXGBTs2rULgLQ0lTf097//Pe4xwgms8ePHo2ka+/bto6urq9d98eRfWVgu1pYtWwDC7jgcCLLnZkkFd0EQhAFGBJYwKLAE1imnnALA559/HneyeziB5XQ6GTt2LB6PJ6gcg0W8Dhb4BRaAzWaLu16VIAiCMLwRgSUMCqzw3aJFi8jKyqKhoYGampq4xggnsMCf6B6Yh/W3v/2NL3/5y/z5z38GEnOwQAkzp1NCcoIgCIIfEVjCoMBysCZMmJBQg2aILLB65mG98847XHbZZWzZssUXIozHwQqskzWYwoOCIAjC4EAEljAoOJICq7W1lQsvvJDu7m5f30FI3MESgSUIgiD0RASW0C+0tLTgcrkSvj9QYE2bNg1QeVixYppmzAJry5Yt1NTUMHXqVN58800yMzPJy8tjwoQJMb+fCCxBEAQhEiKwhD6ze/duJkyYwOmnn57Q/U1NTdTV1ZGamkpxcXHcDlZLSwsvvvgiHR0dZGdnhyzWGZiDZYUEZ86cSUlJCeXl5WzatInU1NgLc2ZmZlJcXAyIwBIEQRB6IwJL6BOmaXL99ddTU1PDu+++S3d3d9xjBLpXmqb5BFY0B6utrY1vfetblJSU+Cq/hxM7gQ5Wz5yrgoKCuJsqg9rxmJaWxtFHHx33vYIgCMLwRgqNCn3i2Wef5Y033gDA7Xaza9euiI2SQ2ElnlshOuv+L774Arfbjd1uD3nfyy+/zEMPPQTAMcccw+LFi/nGN74R8tq8vDyysrJoampi48aNQHw5V6F46qmnaGlpiastjiAIgjAyEAdL6BMPPvggACkpqrCl1TomHr744gvA7zJlZGQwevRourq6QtatsrDe66abbuKDDz7gd7/7HXPmzAl5raZpvvFXrVoFxLdrMBQ2m03ElSAIghASEVhCwnR0dPDhhx+iaRrLli0D4t/5B/5q6LNmzfKdiyVMaNW0mj59ekzvYwmsgwcPAn0XWIIgCIIQDhFYQsJ8+OGHdHV1MXv2bF8eUiIO1qeffgoECyxLNH322Wdh77MElpXAHo2e14nAEgRBEA4XIrCEhLEaHR9//PE+xylegeXxeNi6dSsQLLCsx9ZrobBytyxnKhqB16WmplJQUBDXXAVBEAQhVkRgCQljCawlS5b46kLFGyLctWsX7e3tjB49mtzcXN/5mTNnAuEFVnt7OxUVFSQlJYWsexWKQIE1btw4NE2La66CIAiCECsisISE8Hg8rF27FlAOVllZGXa7nX379tHR0RHzOFb+1ezZs4POBwqsUE2frdIOZWVlJCXFthk2UGBJeFAQBEE4nIjAGsHcd9993HnnnQndu2nTJhobGxk3bhxjx47F4XAwYcIETNMMaqgcjVD5VwDFxcXk5ubS0NDgS0oHqKqq4tJLL+Uvf/kLEHt4EJRrZbOpb3kRWIIgCMLhRATWCGXnzp1873vf4/bbb2f//v1x3//8888DBFVvT6SHYDgHS9O0kGHCX//61zzzzDP86le/AmJPcAdwOp2+2lcisARBEITDiQisEcpDDz3kC71t27Yt6vXf/e53OfbYY/n2t79NeXk5Tz/9NAD/+Z//6bsm1jysxx9/nHXr1gHhHazAc5YI6+rq8jlXFvEILPA7XiKwBEEQhMOJVHIfgbS1tfHYY4/5nm/bto3TTjst7PXNzc3cd999AKxbt45nnnmG+vp6xo0bx5IlS3zXWYJo06ZNYcfavn27r9r62rVrfWUYLLcqkJ4O1vLly6murqagoICamhogvhAhwHe+8x2cTidnnXVWXPcJgiAIQjyIgzUCefbZZ6mvr/c9j9bzb9++fQCUlpaycOFC372XX365L6cJYMGCBQB8/PHHYcfavXu37/EJJ5xAd3c3y5YtC9mguafA+uMf/wjAbbfdxlVXXUV+fj7HHXdcxLn35Pzzz+f1118nPz8/rvsEQRAEIR5EYI0wTNP0tbf5yle+AkQPEVrtaqZPn85LL73EqFGjSEpK4oorrgi6bvbs2djtdrZt20ZbW1vIsSorK32P3W43o0aN4uGHHw55reWIbd68mba2NlasWIHdbufyyy/nT3/6E1VVVRQXF8fwqQVBEAThyCICa4TxwQcfsHHjRvLz8/nf//1fIHYHa+zYsYwZM4aNGzdiGAbTpk0Lui4lJYUZM2bg8XjYvHlzyLEsgVVaWsq4ceN46qmnKCwsDHltSUkJRUVFNDQ0sHz5cjweD9OnTycvLw9N04LcM0EQBEEYTMhvqBGG5V5dffXVTJ8+HafTyb59+2htbQ17jyWwrB14JSUlzJs3L+S18+fPB8KHCS2B9f3vf589e/Zw6qmnhn1fTdM46qijAHw5Y1YYUhAEQRAGMyKwRhAtLS08//zzaJrGddddR1JSEpMnTwYi7/yzQoSxVEy3BNBHH30U8nVLYJWUlMQ0Z0tgrVixImh8QRAEQRjMiMAaQWzbto2uri5mzZrFhAkTAH9T5Uh5WD0drEhES3SPV2AtXLgQwFdSwnLIBEEQBGEwIwJrBGE1YrYKggK+PKpIeVjxOFhW6HDTpk243e5eryfqYFmIwBIEQRCGAiKwRhBWGNAqCAp+Bytc7SrTNH2V3mMRWHl5eYwdO5b29nbKy8t7jXXgwAEARo8eHdOcx48f72sCPW7cOPLy8mK6TxAEQRAGkoQKjeq6fgxwL9ANVABXABcANwHtwNcNw9iv6/p04BHv+9xmGMZb/TFpITFCOViLFy8GYPXq1bjdbux2e9A9NTU1dHR0kJubS0ZGRkzvM3PmTPbt28fWrVuZMmUK7733Hr/+9a858cQTaW9vJz09PWTdq1BYie5vvfWW5F8JgiAIQ4ZEHax9wCmGYZwA7AbOB74PnAT8L3Cb97r/A64GzgQS6yosAMr92bBhA6tWreKLL75IaAxLYAU6WJMmTWLChAnU19ezYcOGXvfEEx60CCwQ+stf/pLFixfz0ksv8YMf/ACIPTxoceyxxwKwaNGiuO4TBEEQhIEiIQfLMIzKgKddwDTgM8MwuoC1uq7/xvvaaMMwdgDoul6n63qBYRg1gWPpun4tcC3ADTfcENQ8OJDu7m4qKioSme6w4J///Cff/va3AXA4HKxatYqysrKQ14ZaK9M0fXlWGRkZQa8vXryYXbt28cILL1BaWuq7fsuWLbz22msAFBUVxbz+loBav349b7/9NgBZWVk0NTUBkJ+fH9fX8oorriAnJ4fzzz+/378HRvr3VbzIesWOrFV8yHrFjqxV7BzutbJ+Z4aiT70IdV0fD5wB3AIEVou04kyBDlkjkAcECSzDMB5BhREBzHDvVVFREfGDDHes5sipqam0t7ezcuVKbrvttpDXWmu1f/9+KisrOfroo6mpqaGxsZHMzEzmz5+Ppmm+6y+44AKeeuop1q1bxy9/+Uvef/99rrvuuqC8rGnTpsW8/lbY8e2336a+vp7Ro0dz5ZVX8n//93+AyquK92tpuV/9zUj/vooXWa/YkbWKD1mv2JG1ip2BXKuEk9x1Xc8CngSuBKqBrICXre1jnoBz2UBdou830lmzZg0At956KwDPPfdcxOtN0+TLX/4yixYt4qOPPgoKDwaKK4BTTjkFm83G+++/T3NzM3fffTebNm2ioKCAc889l69+9avccMMNMc/VChFaPQuPP/54li1b5ns93hChIAiCIAw1EhJYuq4nAc8CPzUM43NgBzBD13WnruvHAZb1Uanr+iRd1zOBvJ7hQSE2Kioq2LVrF5mZmXz/+98nNzeXLVu2sGXLlrD3rFu3jq1bt+LxeLjvvvtC7iC0yM3N5eijj6a7u5vVq1fz/vvvA2AYBsuXL+eZZ57x7TaMhZycnKBdgscffzxHHXVUUCV4QRAEQRjOJOpgfQ34EnCbruurgWXA74HVwN3efwA/AR4H/gXckfAsRzhr164F4LjjjiMlJcXnBkVysZ588knf42eeecYnmgJ3EAZi5b498MAD1NfX+3oFJorlYoESWJqmce211wL+pHVBEARBGK4kmuT+JCo82JPnely3FViSyHsIfqzw4PHHHw/AxRdfzKOPPsrLL7/MnXf23pzZ2dnJs88+Cyihs3XrVh55RKW5hXKwAM444wzuvvtu/v3vfwNKBPUMJcbDzJkzWbFiBZmZmcyZMweAH//4x1xzzTUUFRUlPK4gCIIgDAWk0OggY926dfzkJz+hs7MTULlU77zzDuAXWMcffzxJSUls2rSJlpaWXmMsX76c+vp65s+fz7333usb54QTTuDss88O+b6LFi0KqnPVV5dp1qxZvnGSkpSO1zRNxJUgCIIwIhCBNcj40Y9+xP/93//5Qnz3338/n3zyCenp6RxzzDEApKWlMX/+fDweD+vXrw+6v7W1lV/+8pcA3HTTTZx22mmsXr2azZs38/bbb5Ofnx/yfR0OByeffLLv+XHHHdenz3HppZfyrW99i5///Od9GkcQBEEQhiIisA4zNTU1bNu2jYMHD0a91jRNNm/eDKj8qjfffJObbroJgEceeYS0tDTftZbDZOVWWfzmN7/h4MGDLFy4kMsvvxyAE088kdmzZ0d9fysPy+l09rlqekZGBg8++GCvXoKCIAiCMBIQgXUY+fzzzxk9ejQzZsxg9OjRrF69OuL1VVVVvtIGK1eu5Nprr8Xj8XDbbbdx6aWXBl1rOUzvvfee79yzzz7LXXfdBcA999yDzRbfl/fcc88lPT2ds88+m+Tk5LjuFQRBEATBT58KjQqRefXVV+nu7sbpdNLV1cWvf/1rTjrppLDXb9261ffY4/Gwe/dupk6dGrKgqOVgrVu3Do/Hw4oVK7jsssvweDx873vfY8mS+PcWlJWVUV5eHnOfQEEQBEEQQiMO1mHE2v33s5/9jOTkZF5//fWIfQStulaBeVK/+MUvcDgcva4dN24cJSUl1NXVsX37dh599FE8Hg/f//73ufnmmxOec1FREampqQnfLwiCIAiCCKzDhmmaPoF1wQUX8LWvfQ3TNPnDH/4Q9h7LwfrOd77DtGnTOO+887jgggtCXqtpmq8lzYoVK3w9/6655pp+/BSCIAiCICSCCKzDxI4dO6iurqa4uJhJkyb5Ws088cQTmGbolouWwPrSl77Etm3b+Oc//xmxFtW5554LqHyrQ4cOUVxczLRp0/r5kwiCIAiCEC8isA4TgcVBNU3jqKOOoqioiNraWnbt2hXyHktgBVZBj8TSpUtJSkqivLwcgBNOOKFPxUEFQRAEQegfRGCFYM+ePaxevZoPPvgAt9sd/YYQvPvuu4C/OKimaSxcuBCADRs29Lp+586dVFdXk5GRwZgxY2J6j7y8vKCk+RNPPDGhuQqCIAiC0L+IwOrBoUOHmDVrFieffDKLFi3it7/9bULjWOUTrDwpwFcTauPGjUHX7tmzhzPOOAOAU045JS4XyupLCETcoSgIgiAIwpFDBFYPnn76aVpbWyksLATg3nvvpbu7O+p9Ho/H97i+vp7t27eTnJzMvHnzfOdDOVjl5eWceOKJlJeXo+s6jz/+eFzzveCCC0hJSWHcuHExhxYFQRAEQTi8iMAKwDRNn8B56KGHmD59OgcOHOCll16KeN8TTzxBZmYmTzzxBAAffvghoBwrp9Ppuy7QwTJNk0OHDnHSSSexZ88eFi1axIoVK8jNzY1rziUlJaxfv55Vq1ZJ/pUgCIIgDBJEYAXw8ccfs3nzZvLy8li6dKlv59/9998f8b6HH36YtrY2rr76alavXu3rD2j1DrQYN24c+fn51NbWsm/fPp577jn27dvH0Ucfzb/+9S+ys7MTmvecOXOYOHFiQvcKgiAIgtD/jGiBtXfv3qDw31/+8hcAvva1r5GcnMwVV1xBZmYm7777btgCoYcOHWLdunUAuFwuLrroIv79738DqtxCINZuQlBhwo8++giAr3/962RlZfXvhxMEQRAEYcAYsQLrlVdeYfz48cyePZt///vfdHd389e//hVQggcgMzOTc845B4DXXnst5Dgvv/wypmly5plnsmTJEmpra307CHs6WAC6rgOqxY0lsPraWFkQBEEQhMHFiBVYf/rTnwDYvn07Z555Jj/60Y+orq5mxowZPhEEcPbZZwPhBdby5csB+I//+A/uvPNO3/n8/PyQYTtrp99rr73Gli1b0DSNuXPn9stnEgRBEARhcDAiBVZzczNvvPEGmqZx5ZVXYpom99xzD6Dcq8Bk8TPPPBNN01i9ejWtra1B49TU1PDmm28Cqqr6SSedxAknnAAo9ypU0vmSJUtITk7m008/xeVyMWXKFDIyMg7XRxUEQRAEYQAYkQLr1VdfpbOzk8WLF/Pwww8zffp0AGw2G5dffnnQtYWFhRxzzDF0dnaycuXKoNceeOABOjo6OPvssykpKQHgN7/5DZMnT+bqq68O+d6pqam+4qMg4UFBEARBGI6MOIFlmiZPPfUUABdddBHJyck8/PDDJCUlccEFF1BaWtrrHitM+Morr9Da2srFF1/Md7/7XR544AEAfvSjH/muPfroo9mxYwcXXnhh2Dmcfvrpvsfz58/vj48lCIIgCMIgImmgJ3Ck+f3vf8+rr75KcnIyF110EaBazOzevZu8vLyQ95x//vncfvvtvPjiiyxcuJC//e1vvte+9KUvsWTJkrjmcNppp/kei4MlCIIgCMOPEeVgvfzyy/zgBz8AVEmGQLeqtLSU1NTUkPfNnTuXqVOnUl1dza233grAhAkTcDqd3H333XEX+FywYAGlpaUkJyf7yjYIgiAIgjB8GFECq7y8HIA777yTSy65JOb7NE3zXV9dXY3T6WTDhg20tLQEuVGxYrPZeOutt3j33Xd9LXkEQRAEQRg+jKgQ4Xe/+12OO+64oDIMsXLJJZdw1113ASonK96WNj2ZNm1an+4XBEEQBGHwMqIcLFBJ6In07Js1axazZ88G4LLLLuvvaQmCIAiCMIwYUQ5WX/nrX//K2rVrI+4QFARBEARBEIEVB3PmzGHOnDkDPQ1BEARBEAY5Iy5EKAiCIAiCcLgRgSUIgiAIgtDPiMASBEEQBEHoZ0RgCYIgCIIg9DMisARBEARBEPoZEViCIAiCIAj9jAgsQRAEQRCEfkYEliAIgiAIQj8jAksQBEEQBKGfEYElCIIgCILQz4jAEgRBEARB6GdEYAmCIAiCIPQzmmmaAz0HQRAEQRCEYYU4WIIgCIIgCP2MCCxBEARBEIR+RgSWIAiCIAhCPyMCSxAEQRAEoZ8RgSUIgiAIgtDPiMASBEEQBEHoZ0RgCYIgCIIg9DMisARBEARBEPqZQSWwdF0fN9BzGEroup7mPWoDPZfBjq7rX5J1ig1d13MHeg5DCV3Xp3uPg+rn6WBE1/UpAz2HoYT8X4wdXddPGmzrNSgqueu6fiZwA9AJPAO8YRhGy8DOavCi6/oFwOXAPuDXhmEcGNgZDV50XZ8H3AusA/7XMIyuAZ7SoEXX9ROBHwA1wIPAFsMwOgZ2VoMXXdedwI+BrwBHGYbROcBTGrToun4q8EOgBVgDPGUYRvXAzmrwouv6+cCVQD3wAPCJYRjuAZ3UIEXX9anAn4C1wF2GYbQN8JR8DPhfXLqu24HrgEeAnwI6kC5uQ2h0XV8KfAP4JdAA/Mh7XtYrNEuA/zMM4xZg4kBPZpBzCfBn1B85ZwMXDux0Bjdesd4MuIGbQf4fRuAa4HHgP4FsoHRAZzOI0XV9EUpc/QJ4F7gYSBnIOQ1yjkYZDf8DzNJ13THQE7JIGog31XU9GbgA9ZdMB7AFOADsAeYDqYADELcBXyjwa8DrwEbgm4ZhVOu6vh14Vtf1IsMwqgZ0koME71pdAqwxDGMH0Aacqev6LUClrusfAi8bhrFzIOc5GNB1PRX4X5Rj/DawC6gE1qP+X56j6/p0wzC2DeA0Bw0B6/WqYRhrvKe3A9cC9+q6/rxhGDt0XdcMwxj40MAAEvi9hXIWNqJ+pmvAYuDvuq5nGYbRNHCzHDx41+tewAD+CHzLMIxKXdc/BV4EcoHWAZzioMG7Vr9HOez3ob6nLtJ1/btAOVDn/b+4cQCnCQycg/Vl1AKdaBhGLeo/4eXAR6jwxDXAtwdoboMKXde/BqxG/QVTZRjGAa+4sgGZwC4RV4qAtUoFdntPpwElKIfhW6gw9DkDML1Bha7rY1FO1SHgfe9pDZgAmMBWYC8weUAmOMjosV4fBrx0EuoP1buBO3RdnyriKmit3jMMwwU8D8wFPgCqgHNRLvyIR9f1K4AXgCLgYsMwTK+4cgDdKOOhYiDnOFgIWKti4Hzv6VrU78ffGoZxLbAZ+PrAzDCYIyqwAuzzCuBVoEjX9WMNw3gXeBN40DCMy4FXAKeu67aRbLnrup6FsofvAt4CTrISag3D8KDEg8t77ThZK99arQRO1nV9NOo/owMYaxhGI0p4WWs2YtcLJQqWA6uAG3VdPw74F3AcMMv7h08KSqyO9LWC4PX6lq7r53rPv4YS7YeAU4CfwIhPeO/5vXW2YRi7gb+j3L/LgIeABl3XMwdumgOPrus5wCTgB4ZhXACs8QpUDMPoRoVTHYZhmLquTxrJ6xVirdbqup6PioAdAqZ5L30fODQY9MNhDxF6dwbejPoPtxMVhkgDMlBu1TzUgkxCiapFKKeh3isiRhQB6/Uqylr/I3AT4ESt4W91XT/f+wNrCSpf7XdAPsr1GzGbA6Ks1cvAb4BTgefU5XoaKrfoC4CR5DT0+H/4Ker75QxgFip881NUzsdOYJmu6zNR4fomGFlrBVHXawNKOHSjckaPARpReaRl4PsDaEQQw1p9z/uLLhfo9G7SOR/wGIbRPCCTHkB6/NzabBjG7d7z44GFqOiOxfFAsq7rvwcKge+h8v5GBFHW6ijAbRjGXl3XXwZO1XX9e8ACoHYw/B88rH9l6bo+BvgtyuIsQe2GAPUL7jVUvLlE1/UfoHZ57QJuB9YbhvGdwzm3wUiP9RoFPGEYxmvAr4GTDcP4LSoJ2bLWx6Echx2GYXx9JO28jGGtfgP8BfilYRh/Q4UsvoQKWfx0gKY9IPRYq1LgD4ZhGKhfhF2GYTztff0M4EngH8CJwIeGYfxpYGY9cMSwXn8Ffof65fcs8LhhGP9pGMbthmEMitDEkSLGtfot6o/BlShX6wrAMAzj6oGZ9cDRY72KUKIcAMMw9gAHCQ5v5aN+bn1uGMZlI2nnZQxrVYna8AWwApXDlobKv/3+kZ1taA6LwNJ1/YQAay7HMIzfGobxJODQdf1mlHN2NOqvvaXApUC1YRjPAucbhnH/4ZjXYCXMev0FyNR1/X8Mw/g3Kj8GlEh1eR+vAI41DOOhIzzlASPOtboX5YpmGYaxFWUty1pBtq7r3wR+hnJfMAzjDWC697pPge/I/8Oo6zUX6DYM4x/e++0DMe+BIM61+hcwA0g2DGMVcIlhGA8OyMQHiCi/E28NuPQFwB7wvbQemC8/t8KuleZdK80wjErg54Zh/PFIzzkc/SqwdF3P0HX9TVS+0NmoEOAaXdf/y3vJWmAZUIdyX74O/BwVnqgC39bnEUEM6/UucJ6u6zmGYbh1XT8BeAm1UwLDMN41DKPhyM/8yNOHtdpp7VQaKXVkYlird4CrvMc1uq7f7r3+gPfaEbNW0Kf1qkCVSgFGxpr18XurDny5RSOCGH8nnuPNLwIYD5RZ30uGYWwaKTst+7JWVjhwsKUy9HuhUV3XFwJjUX+9PAjkeI+7UflB7ahk2k2y+y2m9WpFOVVbUDlGjxmG8cJAzHWgkbWKnRjWqhMlQN9H7ciZ5XX/RiSyXrEjaxUfMf7cetswjNd0Xc8DFnnTHUYcw22tDlsld13X70PlUj2l63oJkIVKoP0u8KQlrnRdtw2GZLSBJsx6fYFKanzaMIyDAzm/wYSsVexEWasn5Y+cYGS9YkfWKj5kvWJnuKxVv+dgBcROn0ZtlS/yxkazUbVQxgEt1nUjXVxFWa+/oWzQZn1kb/sGZK3iIca1atGl/AIg6xUPslbxIesVO8NtrQ5rL0Jd129ElV+oR7lX2w3DWH/Y3nCII+sVO7JWsSNrFR+yXrEjaxUfsl6xMxzW6nDtIrTGnQucBZQbhvHUUFucI4WsV+zIWsWOrFV8yHrFjqxVfMh6xc5wWqvD7WBdCLxiSJf5mJD1ih1Zq9iRtYoPWa/YkbWKD1mv2BkOa3VYBZYgCIIgCMJIZMQnAwuCIAiCIPQ3IrAEQRAEQRD6GRFYgiAIgiAI/YwILEEQBEEQhH5GBJYgCIIgCEI/kzTQExAEQYiErutlwC7v0/81DOMu7/lHUY2FMQwjocrOuq7PBC4GVhuGsdp77nFUI/qjDcMw+jJ3QRBGLiKwBEEYSlyp6/rdQDpKGPWVmcDt3ser+2E8QRAEQOpgCYIwyAlwsMqBicApwATgD0ANUIpKd/gJcA2QBxjADYZhbNF1/Q6UiPoTcBKQA3wL+BC/M2ZxMnAlysH6LfAV79iXGobx7mH5gIIgDEskB0sQhKHCZ8AHqLDgVcBLQIP3tW8AdwGbUELraOCfuq47Au5fAjyAahz7C6Aa+L33tReArwFbA64/DvgjMAa4o38/iiAIwx0RWIIgDCUeQ7lKi4E/B5w/23v8vmEY9wH/RDWKnRpwze8Mw7gX5YSVGYbRCqz1vvapYRjPGoZRFXD9HYZh3A10AmX9/kkEQRjWiMASBGEo8SzgBvYDb4Z43exxDKTOe3Th/9kXKUci8Hp7fNMUBGGkIwJLEIQhg2EYTajw4H8ZhuEJeOlV7/F3uq7fCJwP7AS2Rxmy3ntcouv6V3VdT+3XCQuCMGKRXYSCIAwpDMN4LsTpx1HJ7tegkuA/RCW5d+u6Hmm4NcBbwAne+8b262QFQRixyC5CQRAEQRCEfkZChIIgCIIgCP2MCCxBEARBEIR+RgSWIAiCIAhCPyMCSxAEQRAEoZ8RgSUIgiAIgtDPiMASBEEQBEHoZ0RgCYIgCIIg9DP/HxdkXcV4maAkAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAIMCAYAAADYexzcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADeH0lEQVR4nOydd3xb5dn+ryPJkmV5bzve2ZuQQAkBQiGsMJKWUUahQF/SQltaOmh/HZTVllIKhb68QFmmlEIptOxRIAUSZggkkEGWE9tx7HgvSbZk6fz+OD7nPEfD1jKR7ev7+eSjR2c95+jYzrl03/d1S7IsyyCEEEIIIYSQSYTpUJ8AIYQQQgghhHzRUAgRQgghhBBCJh0UQoQQQgghhJBJB4UQIYQQQgghZNJBIUQIIYQQQgiZdFAIEUIIIYQQQiYdFEKEEEIIIYSQSQeFECGEEEIIIWTSQSFECCGEEEIImXRMCiHk9/uxd+9e+P3+Q30qJAy8R8kP71Fyw/uT/PAeJT+8R8kP71FyM97uz6QQQoQQQgghhBAiQiFECCGEEEIImXRQCBFCCCGEEEImHRRChBBCCCGEkEkHhRAhhBBCCCFk0kEhRAghhBBCCJl0UAgRQgghhBBCJh0UQoQQQgghhJBJB4UQIYQQQgghZNJBIUQIIYQQQgiZdFAIEUIIIYQQQiYdFEKEEEIIIYSQSQeFEImaSy+9FKtXrx51u4svvhi//e1vIz7u+++/D7PZjO7u7hG3+/GPf4yrr7464uMSQgghhBASCIXQBOX666/HYYcddsjm//TTT/Hiiy/ie9/7XsT7HH744WhqakJWVtaI21177bV4+OGHsXfv3nhPkxBCCCGETFIohMiY8L//+78499xzkZGREfE+VqsVxcXFkCQp5Hqfzwe/34/CwkKcfPLJuPfeexN1uoQQQgghZJJBIZSkvPLKKzjmmGOQnZ2NvLw8nHHGGdizZ49hm/379+P8889Hbm4uHA4HlixZgg8++AC1tbW44YYbsHnzZkiSBEmSUFtbi3379kGSJGzatEk7Rnd3NyRJwptvvglAERvf/OY3UV1dDbvdjpkzZ+LOO++M6tz9fj/++c9/4qyzzjIs/9vf/oYlS5YgIyMDxcXFuPDCC9Ha2qqtD0yNq62tRXZ2Nl544QXMmTMHNpsN9fX1AICzzjoLjz/+eFTnRQghhBBCiIrlUJ/AoWDJkiVoaWn5wuctLi7GRx99FNG2TqcTP/zhDzF//nw4nU5cd911+MpXvoJNmzbBZDKhv78fy5cvx5QpU/Dcc8+huLgYH3/8Mfx+P772ta9hy5YteOWVV/D6668DALKysnDw4MFR5/X7/SgrK8OTTz6J/Px8vPvuu1izZg1KSkpw3nnnRXTun376Kbq7u7FkyRLDco/Hg5tuugkzZ85Ea2srrrnmGlx66aV46aWXwh7L5XLhd7/7HR544AHk5eWhsLAQAHDkkUeisbER9fX1qKysjOi8CCGEEEIIUZmUQqilpQVNTU2H+jRG5Oyzzza8f/DBB1FYWIht27Zh3rx5+Pvf/462tjZs2LABubm5AIBp06Zp26enp8NisaC4uDiqeVNSUnDDDTdo76urq/Huu+/iySefjFgI7du3D2azWRMtKpdffrk2rqmpwV133YUjjzwS/f39SEtLC3ksr9eL//u//8PChQsNy6dMmaLNRSFECCGEEEKiZVIKoWjFwaGYd8+ePfjVr36F999/H+3t7fD7/QCAhoYGzJs3D5s2bcKiRYs0EZRI7r33XjzwwAOor6+H2+2Gx+OJynjB7XbDZrMF1fp88sknuP7667Fp0yZ0dnYarmnWrFkhj2W1WrFgwYKg5Xa7HYASMSKEEEIIIbHT4HTj/3bW4+SSApxQnHeoT+cLY1IKoUjT0w4lZ555JsrLy3H//fejtLQUfr8f8+bNg8fjAaALgWgwmZSSMFmWtWVer9ewzZNPPolrrrkGf/zjH7F06VJkZGTgD3/4Az744IOI58nPz4fL5YLH44HVagWgpPqdfPLJOPnkk/G3v/0NBQUFaGhowCmnnKJdUyjsdntI84TOzk4AQEFBQcTnRQghhBBCgrnps914uqEFj+9rxudnHge7xXyoT+kLgWYJSUhHRwe2b9+OX/7ylzjxxBMxe/ZsdHV1GbZZsGCBFlkJhdVqhc/nMyxTRUNzc7O2TDROAIB169bh6KOPxlVXXYVFixZh2rRpQSYNo6FGj7Zt26Yt+/zzz9He3o5bbrkFxx57LGbNmmUwSoiWLVu2ICUlBXPnzo35GIQQQgghBNjV6wQA9HmHsLd/8mTbUAglITk5OcjLy8Nf/vIX7N69G2vXrsUPf/hDwzYXXHABiouLsXr1arzzzjuoq6vD008/jffeew8AUFVVhb1792LTpk1ob2/H4OAg7HY7jjrqKNxyyy3Ytm0b3n77bfzyl780HHfatGn46KOP8Oqrr2Lnzp341a9+hQ0bNkR1/gUFBTj88MOxfv16bVlFRQWsViv+/Oc/o66uDs899xxuuummGD8hRbAde+yxMUXGCCGEEEKITtugnp2zh0KIHEpMJhOeeOIJbNy4EfPmzcM111yDP/zhD4ZtrFYr/vOf/6CwsBArV67E/Pnzccstt8BsVkKZZ599Nk499VR8+ctfRkFBgWY1/dBDD8Hr9WLJkiX4/ve/j5tvvtlw3G9/+9v46le/iq997Wv40pe+hI6ODlx11VVRX8OaNWvw2GOPae8LCgpQW1uLf/7zn5gzZw5uueUW3HbbbVEfV+Xxxx/HFVdcEfP+hBBCCCFEKZloF4VQ3+QRQpIsFoxMUPx+v2azrNbJkLFlYGAAM2fOxBNPPIGlS5eOun009+jFF1/ET37yE3z66aewWCZlmdshgb9HyQ3vT/LDe5T88B4lP7xHiafX40XVM29q7y+sKsX/Hhlb6cF4uz/Jf4ZkXJKamoq//vWvaG9vT/ixnU4nHn74YYogQgghhJA4EdPiAKBuEqXG8UmSjBnLly8fk+NG2s+IEEIIIYSMTNug0UF4MqXGMSJECCGEEELIJKV9wBgRahv0oNfjDbP1xIJCiBBCCCGEkElK+2BwP8fJ4hxHIUQIIYQQQsgkJaQQmiTpcRRChBBCCCGETFICU+MARoQIIYQQQgghE5xA1ziAESFCCCGEEELIBIepcYQQQgghhJBJR9twalyq2YQKRyoAJTVOluVDeVpfCBRCJGouvfRSrF69etTtLr74Yvz2t7+Na67a2lpkZ2dr76+//nocdthhEZ/L//7v/+Kss86K6xwIIYQQQiYqHcN9hPJtVkxNdwAAer1DaB+c+BbaFEITlEDB8EXz6aef4sUXX8T3vve9uI7zta99DTt37ox5/yuuuAIbNmzA+vXr4zoPQgghhJCJhs8vo8OjRIQKbFZMy0jT1u3pcx6q0/rCoBAiY8L//u//4txzz0VGRkZcx7Hb7SgsLIx5f5vNhgsvvBB//vOf4zoPQgghhJAvmn/WN+O4/7yHpxuax+T4XR4v/MMZcPmpVlSn60Jor9M9JnMmExRCScorr7yCY445BtnZ2cjLy8MZZ5yBPXv2GLbZv38/zj//fOTm5sLhcGDJkiX44IMPUFtbixtuuAGbN2+GJEmQJAm1tbXYt28fJEnCpk2btGN0d3dDkiS8+eabAACfz4dvfvObqK6uht1ux8yZM3HnnXdGde5+vx///Oc/g1LSqqqqcPPNN+OSSy5Beno6Kisr8eyzz6KtrQ2rV6/GvHnzsHDhQnz00UfaPoGpcaOxceNGFBYW4je/+Y227KyzzsIzzzwDt3vi/0ITQgghZOJw82e7saW7H9d/untMji86xuXbrKhOt2vv904CC23LoT6BQ8GSK/xo6fzi5y3OBT66PzLt6XQ68cMf/hDz58+H0+nEddddh6985SvYtGkTTCYT+vv7sXz5ckyZMgXPPfcciouL8fHHH8Pv9+NrX/satmzZgldeeQWvv/46ACArKwsHDx4cdV6/34+ysjI8+eSTyM/Px7vvvos1a9agpKQE5513XkTn/umnn6K7uxtLliwJWnfHHXfgt7/9LX71q1/hjjvuwMUXX4xly5bh0ksvxfe//338+c9/xiWXXIKtW7dCkqSI5lN58803sXr1avzud7/DlVdeqS1fsmQJvF4vPvzwQyxfvjyqYxJCCCGEHAr8sowD7kEAQJNrAO4hH+wWc0LnaDcIoRRUOnQhtK9/4n+BHJUQuu+++/D6669j3759uPnmm3HKKado62pra/G3v/0Nfr8fq1atwtVXX609yG7duhU333wzGhoaMHfuXNxwww0oKSkBAAwMDOA3v/kN3nrrLWRkZOB73/seTj311AReYjAtnUBT25hOETdnn3224f2DDz6IwsJCbNu2DfPmzcPf//53tLW1YcOGDcjNzQUATJs2Tds+PT0dFosFxcXFUc2bkpKCG264QXtfXV2Nd999F08++WTEQmjfvn0wm80hU9pWrlyJb33rWwCA6667Dvfccw+OOOIInHvuuaivr8e1116LZcuW4eDBg1Gd+7PPPouLL74Y9913Hy644ALDOofDgezsbOzbt49CiBBCCCHjgm6PFz7Bua3RNYAZmY6EztEeEBEShdBeCiEj5eXl+NGPfoR7773XsHz9+vV46qmnUFtbi9TUVFx55ZWoqqrCqlWr4PF4cO2112LNmjU49dRTcd999+G6667D/fffD0ARVz09PXjppZewZ88efP/738fs2bNRWVmZuKsMoDh3zA6dsHn37NmDX/3qV3j//ffR3t4Ov98PAGhoaMC8efOwadMmLFq0SBNBieTee+/FAw88gPr6erjdbng8nqiMF9xuN2w2W8iIzoIFC7RxUVERAGD+/PlBy1pbWyMWQh988AFeeOEF/POf/8RXvvKVkNvY7Xa4XBM/xEsIIYSQiUHrgLG/T73TnXghJMxRkGqF3WJGid2GZvcg6p0T/7kpKiG0cuVKAMBDDz1kWP7SSy/hnHPOQVlZGQDg61//Ol5++WWsWrUKGzduhN1ux6pVqwAoLl4rVqxAc3MzSkpK8NJLL+GPf/wj0tPTsXDhQhx33HH4z3/+gyuuuCLkOXg8Hng8xh8Mi8UCq9Ua9rxVEaG+fnhfNFedWNRzGI0zzzwTZWVluO+++1BaWgq/348FCxZgYGAAfr8fqampIx5P9X4Ptd7n82nLBwcHte38fj+efPJJXHPNNbjttttw1FFHISMjA7fddhs+/PBDbR9ZliHLcti5c3Nz4XK5MDAwEHRfLBZL0H5ms9lwbAAYGhrSzkm8jsDrkmUZU6dORV5eHh588EGcdtppIX8WOjs7kZeXF/HnT4IJvBckueD9SX54j5If3qPkZzLdo9bhtDiV+n5Xwq+7dUCfI8+aAr/fjyqHHc3uQbQPetEz6EFGSuRyIVnuj8kUWSlKQmqE9u7dq4kkAJgxYwbuvvtuAEBdXZ0hZctut6OsrAx1dXVwOBzo6OgwrJ8xYwa2bt0adq6HH35YiyapnHvuuRGlbTU2NkZ8TYeSrq4ubN++Hb/+9a+1z2bDhg0AgLa2NtTX16O0tBT3338/Nm/eHNJMwOl0wu12o76+Xls2MDAAANi8ebMWSVq3bh0A4ODBg6ivr8fLL7+MRYsWGe7n1q1b4fF4tGOFOrZIXl4eAOCNN97AnDlztOVDQ0Po7OwM2q+trU27N83NzdprTk4OOjo64Pf7tX26u7uDziUtLQ133HEHLrzwQqxatQp//vOfkZKSoh2/vr4eAwMDKCwsDHvOJHLGy+/RZIX3J/nhPUp+eI+Sn8lwj7Z39hneb2k+iHqLL6Fz7GvXi+a9ne2oH+xHAfQ53ttdh5lptqiPe6jvT3V1dUTbJUQIuVwupKena+8dDoeWhuR2u+FwGMN4DocDbrcbLpcLZrNZi24E7huKyy67DBdddJHxIiKICDU2NqK8vDxihXgoKS8vR15eHp5//nksWrQIDQ0NuO222wAABQUFqKysxHe/+13cf//9+P73v4/f/OY3KCkpwSeffILS0lIsXboUhx12GO699150dXWhrKwMGRkZsNlsOOqoo1BbW4sjjzwS7e3tmmAtKipCZWUlFi1ahGeeeQaff/45qqur8be//Q1btmxBdXW1lq7ocDjg9XrDpi9WVlbi8MMPR11dHU477TRtucViQW5ubtB+BQUFKC8vR2Njo1Y7VlJSgsrKSuTl5cFkMmn7ZGdnw2q1Bp3L4sWL8dZbb+HEE0/E//t//w+PP/44LBblx/u///0vampqcNxxxyXqFk1Kxtvv0WSD9yf54T1KfniPkp/JdI8kbyMA3eiq22xNeOnIQFOPNp5fVYkpaamY5/LjuXZFhA1mZKOyLPI2JuPt/iRECKWlpaG/v197r35LDygRIKfT2JDJ6XTCbrcjLS0NPp8PAwMDmhgS9w2F1WodUfSMhMlkGhc3xWQy4YknnsDVV1+NBQsWYObMmbjrrrtw/PHHa9eQmpqK//znP/jRj36EM844A0NDQ5gzZw7uvvtumEwmnHvuuXjmmWdw4oknoru7Gw8//DAuvfRSPPTQQ7j88stx5JFHYubMmbj11ltx8skna8e98sorsXnzZlxwwQWQJAkXXHABrrrqKrz88svaZ6daco/0Wa5Zswa1tbVBDVVD7SfeF/E11HK17ijUuZSWlmLt2rU4/vjjcfHFF+Pvf/87zGYz/vGPf+CKK64YF/d+PDBefo8mK7w/yQ/vUfLDe5T8TIZ71DboNbxvcLkTfs0dHn2OArsNJpMJ1UJT1XrXQExzjpf7kxAhVF1djd27d+OYY44BAOzcuRM1NTUAgJqaGvz73//WtnW73di/fz9qamqQmZmJvLw87N69G/PmzQvadzKzYsUKbNu2zbBMFpxDACXy8tRTT4Xc32azhVw3e/ZsvPfee2GPa7PZ8PDDD+Phhx82bPO73/1OG9fW1o56/t/4xjfw29/+Fu+99x6WLl0KQHGTCySw5qeqqspwPpdeeikuvfRS7f3111+P66+/Puy5lJSUYMeOHdr7LVu2YNOmTXjyySdHPWdCCCGEkGRBdHQDgHrnQMLnODhcI5SRYkGqWbHmrnIITVUneC+hqKTa0NAQBgcHIcuyNvb7/Vi5ciWefvppNDU1ob29HY899piWErV48WK43W48//zz8Hg8ePDBBzFnzhwtBWrlypV44IEH4HQ68dlnn+Htt9/GSSedlPgrJV8oqamp+Otf/4r29vZDeh4HDhzAX//6V2RlZR3S8yCEEEIIiYZAIdTl8aLXO5Sw4+/uc2oW2dOFKJDYVHWi9xKKKiJ0880344UXXgAAfPLJJ/j1r3+Ne++9F8cccwx27dqFSy65BH6/H6tXr8ZZZ50FQEllu/XWW3HTTTfhlltuwZw5c3DjjTdqx/zWt76Fm2++GaeeeioyMzPxs5/9DFVVVYm7QnLISIaePSeffPKhPgVCCCGEkKhpC7DPBoAGpxvzsjMScvynG1q08eryIm2cY01BZooFvd4h7HNSCGkEpiWJXHbZZbjssstCrps7dy6eeOKJkOtSU1Nx8803R3MahBBCCCGETGjaBsdOCMmyrAkhCcBXyvXejZIkoTrdjs1dfdjvGoDX70fKOKj3iYWJeVWEEEIIIYSMET//ZAfmPv82/nOgbczmCBURqk9QhObT7j7s7lPqf44uyMGUtFTDerVOyCfLaByD2qRkgUKIEEIIIYSQCOn2eHHvrgY0uwdx1459YzKHe8iH/iGln49NiMYkSgg9Va+nxZ1dURy0vkqoE9rrnLiGCRRChBBCCCGEREiLe1Abq1GVRCMaJczP0VPhGhIghPyyjH81KkLIIkk4K0SfoCrH5DBMoBAihBBCCCEkQsTandYBD3o93hG2jn+O+dkZsJqUPoqJsNBudg+ieVjMHVOYg1xbcH9OMSKUCPGVrFAIEUIIIYQQEiGtAbU7u8eg1067MEdhqhXlaYowaXS6g/pKRotrOOUOAErstpDbVAgRoUSl4yUjFEKEEEIIIYRESKCJwZ4xSI8TI0KZklUTJv1DPnQMxheBcvl0IWQfbqIaSFlaKoaDUDRLIF88sixjzZo1yM3NhSRJ2LRp06E+pS+EtWvXYtasWfD7/RHvU1VVhT/96U8jbvPZZ5+hrKwMTqczzjMkhBBCyGSmbWDQ8H4s6oREsfX9W1PQXK+7usUboXEPjS6EUkwmlNpTEzJfMkMhlKS88sorqK2txQsvvIDm5mbMmzfvUJ9SzEQiVFR+9rOf4Re/+AVMUfjVb9iwAWvWrBlxm/nz5+PII4/EHXfcEfFxCSGEEEICaQ3o77O7L/FfsooRIb/bis82Jy5VzSlEhNIsihDatEvGWT/z4+GX9LS7CocihDo9XvR5h+KaM1mhEEpS9uzZg5KSEhx99NEoLi6GxRJV71sASlRpaGj8/OBu3LgRu3btwrnnnhvVfgUFBUhLSwu73utVQsiXXXYZ7rnnHviEPwCEEEIIIdEQWCM0FqlxYo2Q7LZisDORESE96ybNrEiBG2plPP8u8O0/yuh1KmKoUqgTapygUSEKoSTk0ksvxfe+9z00NDRAkiRUVVUBAAYHB3H11VejsLAQqampOOaYY7BhwwZtvzfffBOSJOHVV1/FkiVLYLPZsG7dOsiyjFtvvRU1NTWw2+1YuHAhnnrqKcOcW7duxemnn47MzExkZGTg2GOPxZ49ewAoEZeTTjoJ+fn5yMrKwvLly/Hxxx8b9r/++utRUVEBm82G0tJSXH311QCA448/HvX19bjmmmsgSRIkSQp73S+88AJOOukkpKbqv+x79uzBqlWrUFRUhPT0dBxxxBF4/fXXDfsFRpwkScK9996LVatWweFw4OabbwYAnHLKKejo6MBbb70V4Z0ghBBCyHjixfdk3P4PGe7B+AwFRiIwNW5PvytuA4OgOYSIkOxKgb83cREhV4iI0L7htkIeL7B1rzJWDRoSMWeyEn2YYQKw/oT34GkdHH3DBGMttOGYtUtH3e7OO+/E1KlT8Ze//AUbNmyAeTh/89prr8XTTz+NRx55BJWVlbj11ltxyimnYPfu3cjNzdX2v/baa3HbbbehpqYG2dnZ+OUvf4l//etfuOeeezB9+nS8/fbb+PrXv46CggIsX74cTU1NOO6443D88cdj7dq1yMzMxDvvvKNFk/r6+vCNb3wDd911FwDgj3/8I1auXIldu3YhIyMDTz31FO644w488cQTmDt3LlpaWrB582YAwL/+9S8sXLgQa9aswRVXXDHidX/44Ye45JJLDMv6+/uxcuVK3HzzzUhNTcUjjzyCM888Ezt27EBFRUXYY/3617/G7373O9xxxx3a52e1WrFw4UKsW7cOJ5xwwqj3gRBCCCHjh4aDMs76fzL8fsA7JOGnF43NPIERIeeQDy0Dgyixp4bZI3rUGiHZJ0H2WIxCKM6+Pq4QNUIdPfr6LXuBpfOAynRRCE1Mw4RJKYQ8rYMYaP7ihVCkZGVlISMjA2azGcXFSrdfp9OJe+65B7W1tTjttNMAAPfffz9ee+01PPjgg/jJT36i7X/jjTfipJNO0va7/fbbsXbtWixdqoiwmpoarF+/Hvfddx+WL1+Ou+++G1lZWXjiiSeQkpICAJgxY4Z2vEDRcN999yEnJwdvvfUWzjjjDDQ0NKC4uBgrVqxASkoKKioqcOSRRwIAcnNzYTabkZGRoV1LOPbv34+SkhLDsoULF2LhwoXa+5tvvhn//ve/8dxzz+G73/1u2GNdeOGFuPzyy4OWT5kyBfv27RvxPAghhBAy/theD6heS2s/lvHTi8JnocSKLMuGZqcqu/tcCRVC6hyyywpAgjxoATwWwDoUf2qc6Bo3HBFqF4VQnQxAMqTGTdReQpNSCFkLQ3umJ/O8e/bsgdfrxbJly7RlKSkpOPLII7F9+3bDtkuWLNHG27Ztw8DAgCaMVDweDxYtWgQA2LRpE4499lhNBAXS2tqK6667DmvXrsXBgwfh8/ngcrnQ0NAAADj33HPxpz/9CTU1NTj11FOxcuVKnHnmmVHXNQ0ODhrS4gBFyN1www144YUXcODAAQwNDcHtdmtzh0P8DETsdjtcrrHpAk0IIYSQQ0d7tz7+ZJciWkZKyY+FHu8QPP7gNLg9fS4cW5gbYo/o8csy2octsv1utdmphKGeVFgK+tHoGsCQ3w9LFMZSImJEyGExwzUgwy3EB7YMp8ZVpOnPZBRCE4hI0tOSDTX3NPAXOtQvucPh0MaqDfWLL76IKVOmGLaz2RRhZrfbMRKXXnop2tra8Kc//QmVlZWw2WxYunQpPB7l24ry8nLs2LEDr732Gl5//XVcddVV+MMf/oC33norrLgKRU5ODrq6ugzLfvKTn+DVV1/FbbfdhmnTpsFut+Occ87R5g6H+BmIdHZ2YurUqRGfEyGEEELGB2JUo60bONAOTClI7BwHhfogf78NpnTlfSKd4z7u7IVv+LnP36eLEX+vHSjoh0+WccA9aGh6Gg1un26WYDebDGlxgC6ESuypSDFJ8PrlCVsjRLOEccK0adNgtVqxfv16bZnX68VHH32E2bNnh91vzpw5sNlsaGhowLRp0wz/ysvLAQALFizAunXrNHe1QNatW4err74aK1euxNy5c2Gz2dDe3m7Yxm6346yzzsJdd92FN998E++99x4+++wzAEptTiRObXPmzAmKbq1btw6XXnopvvKVr2D+/PkoLi6OK7Vty5YtWiSMEEIIIROHtm5jpOaTXWMwh1AfNHQgWxsnspfQc/sPamPvvnxtLNYJ7YujTsg5ZDRLaA8QQq1dQGuXDLNJQtlwVKjBNZBwQ4hkgEJonOBwOHDllVfiJz/5CV555RVs27YNV1xxBVwuF775zW+G3S8jIwM//vGPcc011+CRRx7Bnj178Mknn+Duu+/GI488AgD47ne/i97eXpx//vn46KOPsGvXLjz66KPYsWMHAEWEPfroo9i+fTs++OADXHTRRYYoUm1tLR588EFs2bIFdXV1ePTRR2G321FZWQlAcXV7++230dTUFCSgRI477ji88847hmXTpk3Dv/71L2zatAmbN2/GhRdeGFWzVZF9+/ahqakJK1asiGl/QgghhCQvgQ/0YyGERKOEobYMyF7lUTpRFtqyLGtCyCRL8NbpIS1/T2Jc3MQaoTRzsBACgC11ymvFsHNcn3cI3Z7x05IlUiiExhG33HILzj77bFx88cU4/PDDsXv3brz66qvIyckZcb+bbroJ1113HX73u99h9uzZOOWUU/D888+juroaAJCXl4e1a9eiv78fy5cvx+LFi3H//fdraW0PPfQQurq6sGjRIlx88cWahbdKdnY27r//fixbtgwLFizAG2+8geeffx55eXkAFPOGffv2YerUqSgoCB+jXr16NbZt26YJMAC44447kJOTg6OPPhpnnnkmTjnlFBx++OExfX6PP/44Tj75ZE2gEUIIIWTiEPhA//HOxEcwxIiQ7LLC16P0Max3uuELUTsULZu7+tAw7NBW5MmBPKg8i5nNgK83Mb2E3AERoY7e4G20OiHHxLbQnpQ1QuOBH/zgB/jBD35gWJaamoq77rpLs7EO5Pjjjw8ZtpQkCVdffbXW2ycUCxYswKuvvhpy3aJFiwz9igDgnHPO0carV6/G6tWrwx77qKOO0uy0RyIrKwvf+c53cPvtt+O+++4DoEST1q5da9juO9/5juF9YKpcqM9gcHAQ99xzDx5//PFRz4MQQgghicU9KCPFDFgsiXdyU2nrNr4fk9Q4wTHO77LC35sK5PdjSJbRPDCopZLFipgWl9elf+m8ZCaw4UBiRInYR8huNhtMJlS27FWc4yocgmGCy43DcjNjnjcZYUSIJBU///nPUVlZGVFNUTTU19fjF7/4hcF1jxBCCCFjz85GGVO+KqPqazLau8euziQwIlTfAnT2Jna+VsEsQXZZDWYG++OMmBjS4iTA1qxn0SyeYTROiKdGyDWklxikmU1o7wn+jNTUONFCO97+RckIhRBJKrKysvDzn/9ca4KaKGbMmIFvfetbCT0mIYQQQkbn328DXX1AUxvw73VjN0+oWpdNCY4KiTVCfrfVYGDQ4Iqv6ejnvU7UDYuNYwpy0dtp1dYdNl0CfGb4+xXH33jsrF0BfYTCpcbJsmxIjZuIFtoUQoQQQgghZMwQ3dyUZp2Jx++XQz7QJzo9Tq0RkmVAdqcYojTxCoX9Ln3/o/Kz0Tl8PdnpwNRSZazWCbUNetDvjc28QK0RSjFJSDGZDAJy9nAZdZ8LaGyFIdWvWWw2NEGgECKEEEIIIWOGKFDUIvxE090PqIGOYqGvaaINE1qHa4RkdwogmwxCqNEZX0TIKaSspafokZq8LKCyWBknIgKlRoTShrNvRCG0/DB9vL0eKEi1Qq3qahmgECKEEEIIISRixAftsRJC4hzHLgQswxn22+oTN4csy2gbFgN+l5KiZhQm8UWEXIKbm91kRne/Ms7NAMoLAUkyztcYYwRKnSdt+ENSG6pazMDCabqZRcNBIMVkQp5Nca4T0wInChRChBBCCCFkzOgQRIrarDPRiM5npXlA2bDPQMPBkJvHRK93CJ5hi2zZpdTvyIMWyB5FUOyPMyIkCiEMmaGa4OZlAdYUCaX5RsOEphgjQm6fEnmymxUZoIrIvCygskjfrr5FOYGiVEX0tQ4MTrimqhRChBBCCCFkzAis3dk6BlEh0To7P0tCxfADfWcv0O9KzMN7oFGCElCRNHHS6HLDH4dQEE0MfIO6aVRuhvJaVQzNLAGIXQgFRoRUIZQvpOABQEOr8lo4LIQ8fnnCNVWlECKEEEIIIWNGoJvbWKTHiXMUZId+oI+XzV26ovP3puLwGcrYN5yu5vHLOBhHHY1TiAh5B/VH9Lws5bWyCPD3C3bdMQghn1/GoF+NCJnhGpCheiDkZykpeCpqNK3YrrvXTbQ6IQohQgghhBAyJvh8Mrr6jMvGwjlOFEL5WUBFiAf6ePnvwQ5tPLQ/B4umA3YbEmaYIKbGDbpDRIRKAiJC7ujnEqNOaRazIW0xPwvISJOQMzyf+rmpESHA2EdpIkAhlKTIsow1a9YgNzcXkiRh06ZNh/qUvhDWrl2LWbNmwe/3j77xCEiShGeeeQYAsG/fPsNn+Oabb0KSJHR3d4fct7W1FQUFBWhqaorrHAghhJDJTnc/EJgtNhYRIdGiOz8bqCgyFv3HiyzL+G+LIoRkrwlDzdkozAGmTQkQQnEYJogiZdClC6G8LOVaKoskwGuBf8ACAGhyRS9K3KIQMpsNAjIvU3lV0wr3tylCtkgQQgcnmGEChVCS8sorr6C2thYvvPACmpubMW/evEN9SjFTVVWFP/3pTxFt+7Of/Qy/+MUvYDLF96PZ3NyM0047LaZ9CwsLcfHFF+PXv/51XOdACCGETHZCNTlVm3WO1TwF2frDPAA0HIx/ru29TrQMi4ChphzAb0JBtlKL5O9NTETILUSEXP2ha4QAPT3ugHsg6pokMeqUFtBMNT9beVUNE7xDQEsnUJgqpMZNsF5CFEJJyp49e1BSUoKjjz4axcXFsFgsUR9DlmUMDY2foraNGzdi165dOPfcc+M+VnFxMWw22+gbhuGyyy7DY489hq6urrjPhRBCCJmsdIQQQr1OYH+C6nZUglLjRPezBESE1GgQAHgblEZFBdlKTY2/T7DQjqOpqlOI1ricIWqENCGkPN94/XLUltYun55xYzebAj43JfJkFJFAsZ2pceQL5NJLL8X3vvc9NDQ0QJIkVFVVAQAGBwdx9dVXo7CwEKmpqTjmmGOwYcMGbT815evVV1/FkiVLYLPZsG7dOsiyjFtvvRU1NTWw2+1YuHAhnnrqKcOcW7duxemnn47MzExkZGTg2GOPxZ49ewAAGzZswEknnYT8/HxkZWVh+fLl+Pjjjw37X3/99aioqIDNZkNpaSmuvvpqAMDxxx+P+vp6XHPNNZAkCZIkIRwvvPACTjrpJKSm6t+sXH/99TjssMPw0EMPoaKiAunp6bjyyivh8/lw6623ori4GIWFhfjNb35jOJaYGjcabrcbp59+Oo466ih0dnYCAObPn4/i4mL8+9//jugYhBBCCAlGjDikCN/pJjo9TnSNy81IfI2QWB/kbcwDoAohyRARirXJKWCM1vT1BEeEVIEix2GhLUad0sxmg+24nhpnTCssEiJCEy01LvowwwTghNfePyQ3sijVirUnHTXqdnfeeSemTp2Kv/zlL9iwYQPMw51/r732Wjz99NN45JFHUFlZiVtvvRWnnHIKdu/ejdxcvY3ytddei9tuuw01NTXIzs7GL3/5S/zrX//CPffcg+nTp+Ptt9/G17/+dRQUFGD58uVoamrCcccdh+OPPx5r165FZmYm3nnnHS2a1NfXh2984xu46667AAB//OMfsXLlSuzatQsZGRl46qmncMcdd+CJJ57A3Llz0dLSgs2bNwMA/vWvf2HhwoVYs2YNrrjiihGv+8MPP8Qll1wStHzPnj14+eWX8corr2DPnj0455xzsHfvXsyYMQNvvfUW3n33XVx++eU48cQTcdRRo3++Ij09PTjjjDOQmpqKN954Aw6HQ1t35JFHYt26dbj88sujOiYhhBBCFMSIwxGzgHe3KOPP6oDTovsvO6J5cjMBi0VCugXIzZTR2Ru/EBrw+fBum5IhYh+yoasrDYAihMoKAHkgBbLXBCnFnzCzhN5esUZIebXbJBTlyugRnOOa3ANYjKzI5wg0SxBT44YPYxCRrcDKCWyWMCmF0MEBD5qTOMcxKysLGRkZMJvNKC5W4qBOpxP33HMPamtrtdqX+++/H6+99hoefPBB/OQnP9H2v/HGG3HSSSdp+91+++1Yu3Ytli5dCgCoqanB+vXrcd9992H58uW4++67kZWVhSeeeAIpKUr34BkzZmjHO+GEEwznd9999yEnJwdvvfUWzjjjDDQ0NKC4uBgrVqxASkoKKioqcOSRRwIAcnNzYTabkZGRoV1LOPbv34+SkpKg5X6/Hw899BAyMjIwZ84cfPnLX8aOHTvw0ksvwWQyYebMmfj973+PN998MyohdPDgQXzta1/D1KlT8fjjj8NqtRrWT5kyBZ988knExyOEEEKIETE17tgFuhDa0yQDCJ8lEi1iLxyViiKlj5Ba9G82xzbf++3dGBhOKcvsycWB4fMu0OymlV5C5lwX9rvckGV5xAyYcKgixSxJ6OzR98/N1LepKgY+6dOFSbRNXMWIkN1sRkOPYDKhCqGA+qqMFAscFjOcQz60uBkRGveIIb7xMu+ePXvg9XqxbNkybVlKSgqOPPJIbN++3bDtkiVLtPG2bdswMDCgCSMVj8eDRYsWAQA2bdqEY489VhNBgbS2tuK6667D2rVrcfDgQfh8PrhcLjQ0NAAAzj33XPzpT39CTU0NTj31VKxcuRJnnnlm1HVNg4ODhrQ4laqqKmRkZGjvi4qKYDabDYYKRUVFaG2NLuF4xYoVOOKII/Dkk09qUTcRu90Ol8sV1TEJIYQQotMuPGgfNl0CoLzf35a4OTxeGb1OZWwQQoXApl3AkE8p+p9SENvxt/f0a2NTa442zs8Gyod1iL/PDnOuC26fH22DHoPldKSIjU67+hQhZDIBWXqyCiqLgI07jBGhaHAGRIQMrnEBtUgAUN+ivBamWrG3382I0EQgkvS0ZEN1Vwn8hiHUtw5iepdqQ/3iiy9iypQphu1UMwG73Y6RuPTSS9HW1oY//elPqKyshM1mw9KlS+HxKN8KlJeXY8eOHXjttdfw+uuv46qrrsIf/vAHvPXWW2HFVShycnJCmhMEHkOSpJDLorXcPv300/H0009j27ZtmD9/ftD6zs5OFBTE+FeTEEIIIYbUq1kVgDUF8HgTK4QCHeNUDIYJLbELoX6vLh76u5Xnj+x0IMUioaxAeT4TLbT3uwZiEkJqQ1WH2aRF0nIyAJNJf86rKgb8G+OpEdKfldKEeQBdRBbnKvVc3iG9GW1Rqg17+93o8Q7BPeSD3RL8BfJ4hGYJ44Rp06bBarVi/fr12jKv14uPPvoIs2fPDrvfnDlzYLPZ0NDQgGnTphn+lZeXAwAWLFiAdevWwev1hjzGunXrcPXVV2PlypWYO3cubDYb2tvbDdvY7XacddZZuOuuu/Dmm2/ivffew2effQYAsFqt8AnfQIx0roHRrbHklltuwTe+8Q2ceOKJ2LZtW9D6LVu2aFEzQgghhERPR4BImZKvjMdKCIkRoUqx6D8OlzqxrqZn2MRAFVypNgkF2cFCKJ550ixmdA43oc3LNG5TWSwZm6pG2UtIrEOyCxEhixnIHP4e3WSSUDYsGvWmqnpWU9ugMT3uoHsQbx7swGddfejxhH6WTFYohMYJDocDV155JX7yk5/glVdewbZt23DFFVfA5XLhm9/8Ztj9MjIy8OMf/xjXXHMNHnnkEezZsweffPIJ7r77bjzyyCMAgO9+97vo7e3F+eefj48++gi7du3Co48+ih07dgBQRNijjz6K7du344MPPsBFF11kiCLV1tbiwQcfxJYtW1BXV4dHH30UdrsdlZWVAJTUtrfffhtNTU1BAkrkuOOOwzvvvJOIjytibrvtNlx00UU44YQT8Pnnn2vLXS4XNm7ciJNPPvkLPR9CCCFkIhHYsLN8uBC/sxdwDSSml5DofBZYI6QSj2GCUxAP/b1GIQSoFtrx9xJSozV2kxlqNl5ugBCqKgbgN8HvVIRJU5QNXEVRJ/lM2D3cO74g25h1pH52XX1An0tGsRDhCuwltL6tE19962Msf+19PF7fHNX5HGoohMYRt9xyC84++2xcfPHFOPzww7F79268+uqryMnJGXG/m266Cddddx1+97vfYfbs2TjllFPw/PPPo7q6GgCQl5eHtWvXor+/H8uXL8fixYtx//33a+lnDz30ELq6urBo0SJcfPHFmoW3SnZ2Nu6//34sW7YMCxYswBtvvIHnn38eeXmKveSNN96Iffv2YerUqSOmmq1evRrbtm3TBNgXxR133IHzzjsPJ5xwAnbu3AkAePbZZ1FRUYFjjz32Cz0XQgghZCKhpsY57Er0pEx4DEhUVGhfiz5We+EAiWuq6hR6Msre0ELIF2dEyOeXMTic4j/g1tPOppcZt9N7CSnzHRzwwOMbvTTgXw0t+GvdfoOoW7fRjL7hUuhTvxQwj/DZNbbCkOoX2LuoY1CPAuVaIy+JSAYmZY3QeOAHP/gBfvCDHxiWpaam4q677tJsrAM5/vjjQ3ZqliQJV199tdbbJxQLFizAq6++GnLdokWLDP2KAOCcc87RxqtXr8bq1avDHvuoo47S7LRHIisrC9/5zndw++2347777gOg9BG6/vrrDdvV1tYG7fvmm28a3oufQ1VVleF9qM8p8HO94447cN111416zoQQQggJjyqE1BQvgxBqBWaUx3d8v1/GXU/r/6cfrpveJqypqigewgkh/6bY63YAo4lBe7suhC4+2VgHrgoUf78NKFKsJ1oGBlHhCF/v/VFHD/7nfaVcoUrY7pk39XjIj75mnCcwmlZUKPYSMkaE2oVUuXybFRgcP85yjAiRpOLnP/85KisrI6opGitaW1txzjnn4IILLjhk50AIIYSMd2RZ1mqENCFUqD9wJyIi9Ox6YPNuZXzELODLh+vr1KJ/IHGpcRgWQodN06+jvFCC7LRC9ivLGqNMVwOMtTvtHcocFUXAiYuN26WnScjLMqbijSa8tnT3aeN9Tv3cWlqVeVYeBcytDhRC+vv6FmNE6Il9zTht7QbU7tkPAOgUI0K28RURohAiSUVWVhZ+/vOfh7Sz/qIoLCzEtddeG1MPAEIIIYQo9DoV62pAr91JZGqc3y/jhlo9GnT9ZZLh/26x6D+RESFJAr56nL6+vBCAbNJMDGJJjROFkN+rPJ5fdprRMU6lqhgGw4TR5gtneS0Pz/Pj80PPobK32VgjtLGzBx+0d+Pnm3bA6/cbIkJ54yw1jkKIEEIIIYQkHNE6Oy+kEIrPLOH5d4zRoNNCdEdRH+h7+oHuvtjmU0WK7JMAvwnHLgBK8sWIkPKqipOOQa8xihTJHGImzJAiti49LfQXspVFeo0QMHpEqG0gTKrakBmHTQeOD2GQW1Oqj+uagSJ7cC/MAZ8frQMeQ0Qoz3ZoenXGCoUQIYQQQsgkZV+zDPdgYtzbAhHd3MLVCMXDKx/q5/2Li6WQmRzVJfp4b4yGZqqoUeuDzj3eOI8mhPr0+pto64QCo04nLgaqSkILocCIUMsoTU5bw9TsyF4zFtQE96gElLQ8tW993QEgzxpa4LQODGoRIbvZhLRx1l+IQogQQgghZBLy5FoZ1V+TMefisRFDYkRITY0rylV61gBAY5ypcd39+nheTehtqgUxEa8QwnBa3NnLjetL8wFJAvx9ujiJtk7IFSCEjlsYPj2/sliC7Arv4hZIuIiQPGRGWmrIVUixSJrA29sMmE0S5mdnBG3XOuBB53DvoPEWDQIohAghhBBCJiXPvaOIn30twLtbEn98Y2qc8mBvMkmYMhwVijcipFo/A0BGWuhtEhER6vMo9tmy1xyUFgcooqEkL6CpapS9hAJT4xxhBAowHBFyCS5u7pEjQuFT40wjzlMz/Nl19ipphfd8aR5+NLsa351ZqW3T7B7U7LPzxplRAkAhRAghhBAyKRGbnaq1Ngk9frc+zhMag6rpce09wEAckajohVD0c8myDJd/ODVuyIyvHhc6UhPYVDVawwR3QEQoXKQGGO4lNGSGPKiE1gLtrAMJlRqnGCVII84TKCLnZKXjF/OnYWl+trZ8d58TvuGWJIwIEUIIIYSQcYFRCI1Fapx+TDU1DjDWCTW1x358VQhZzEBqmGdw8WFebLwaKYN+P9SrkL1mraFpIPEKocAaoZEiNVovoeH0uIMjpMYN+Hzo8w4FLZeHFBHlSA2fgldTGjqtULTS3taj5yeON8c4gEKIEEIIIWRSIgqhTWMQERJFTl4YIRSPhbYqhDLSQhf8A0pNkhqoiCU1LlKBUl5odHKLVgiJqXHykAlptvDbZmdIyEoH/E6rdo79IcQOMEJ90LDxw0gRIYNz3AF9XCSozu2CEMplRIgQQgghhIwHRCG0vR7weBMXFZJlGWs/VsbWFGBWhb6urEBoqhpHnVDfsB9BuLQ4QKlJUi2097Uo5xUNBhtsT/iUtfJCCfBa4B9QOrjGY5YArxkOe/htAaVOSDRMCJceF9ZIYUiRACNFnsRoWp2QVliQKs6rHz+fNUKEEEIIISQemttl/PZRGR/vGBtbawBwD8pwCs/q3iFg277EHX9nI1A/nIp27ALAYdfFT1mhvl08EaFep/I6khAC9Ad61wDQ2hXdHIaI0AgmBmqUS02PO+AahM8f+f1zBcwzUkQIGO4lJBomhBE8beGss4dijwjZzCZkWy1B27NGiBBCCCGExMUP75bxi/tlnPEzGUNDYyOGOnqClyXSMOHVD/XxKUeG7rsDAI2tsV3f0BCgmqVFKoSA6NPjAlPjwkeElFdVCA3J8qgmBoZ5fJGbJQDDznFOoZdQGOe4VuEcSu369mpq3EgRoYJsaJGpwM9NrBNSoWscIYQQQgiJi8/qlNfmDmDn/rGZoz2UENqTONH1qtDs9JQjjevEGqHGGFPj+oVoVsYoaWRiL6FoDROcQ3rtjey1jFgjBBgNExojqBNyDvkw5PcHRYRGEijAcC8hpx6BCZcCJ9YIHVOYq6+IICIkSRKqhbRCn0+/p8UhhRAjQoQQQgghJA46hf47H+8cmzlCCaFNuxJz7IFBGW9uUsYlecD8gGanJXm6gcGeA4iJPkEIZTpG3jaeiFBg7U444VA83ChWNExoGkUIfdbVh9nPvYXFL71jTG2LICKkpMaNXiMkCqFlBTnaOJKIEKCnx3m8wAHB/KIwhE0fI0KEEEIIISRmZFk2NCL9ZOfYpMaFjghFbyYQivWfKfU4AHDyEcGObiaThKnDD9h7mgB/FLU0KpH0EFJRzRKA6HsJReoaZzZLKM03pquNlhr3r8YW9A/50OgawBstusqQvSM3OgWAKQWRNVUVewgdU5iDE4rzYPKb4NmhfCijCa5wIjKkELIyIkQIIYQQQmLE6Va+fVf5JEFRmkDEZqcqnb3xubipGNPiQttaT5uivA54gKYYDBOiEULxRIT6BSEk+cxICfYI0CgvBOQI6nZUDggRI1ELykOjR4SKcwPmiiAiVJhqw1PHHY6Tdh8H714lP3H0iJB+/+rC9BICAAlADvsIEUIIIYRMTF54V8YZP/Xjvx+PnZubGA0CFCGUiChNIO09+jHF1LXNe+I/9tublVdJAk5aEnqb6WX6eFcMdVC9UQih3Ex9m3hS42ySOWy/ImC4l5BzdCc3lQPhhNKQGfZRXOOKcwF50AJ52AY7XI2QutxhMcNhUdLhBtxmbf1o7nRG5zj9Z6YoICKUY02B2RT+s0lWKIQIIYQQQiLgqttlvPge8P27xk4IdQYIoe5+YF8MjUBHQ0yNO36RPt7ZGP+x1WvITgfys8NEhMr05bEIIUNEyD7yA7gkSVpUqOGgseh/NMTUOCvMI2ypCqEoIkLu4BoipZmqNKLgAoBUm4ScDElLjwtbIzSoLC8QjAzE0qXR+hUZegkJ9VyBEaHxWB8EUAgRQgghhIzK0JCsOZxtS3DzUZHAiBAwNulxohBaPEN/6K5vif+6VEe39BEessWI0O6msa0RAvQHeu8Q0NQ+8rYiLsHW2m4aTQgpTVVlj7Jd8whCSJZlHHAFr5e9o/cQUinOBeRhIdQx6IXH5zes9/j86PYorncFQgTHKQih0eYS66vqD+rjInugEBp/9UEAhRAhhBBCyKh09uljn08p8h8LQvX3+WTXWKTG6ePFM/Wx+LAbK+qD9kj1J2qNEBBbRKg/SiFUWaSPo6mDEiNCdvPoESEAo0ZpAKDL48Wg3x+0XPaaR43SqJTkGSNQrQHNU8VmqqK5gRoRsqYAFsvIkSeHXUJeljKuF6zHA1PjGBEihBBCCJmgBLqsfd4wNvOEigiNhYW2ej0pFmBWBaA+48crhGRZ1oXQCA/05YW6hfbuGERlNPbZAFBWqD/w74/CnKHfq/cRSrNEKISGxUmvd8hovy0Qvj7IFFVESHSOaw0QXqJRgpgap96fSOdRRWRTO+AdbvCbY02BRUjfY0SIEEIIIWSCEuiyNlZCKLBGCBjb1Lj8LCUqoDY5rY+y4Wgggx5ADXSMFBGK10I72tS4Kfn6eDQh1DHowQft3Xi6oRm9Hl3IOCKMCMkRWGgfCNNjKNqIkGGuAHGl1gcBQIFQ0+OKQKiKqOlxfr/u8GeSJEO6Xd44dIwDKIQIIYQQQkYlKCJUP1Y1Qvpx1QfV5g7gYGfi5pNl2SCEAP1b/64+oM8V+1xi/clo1syihXY0URog0Cxh9O1VoQcA+9tGvr6vv7MZp63dgCve34KDbj2qkpEyshAqyFaiXGKUJpxhQriIkDwUeY1QSZ5k7CUU4BzXOhA6NS7qiJBQJ7QvTHqcuzcFrV0yQmT7JTUUQoQQQggho3AoUuOOW6CPt+1L3BxOtxK5AQQhJBbFxxEVckbhSGYwTIiyTiga+2wAKCvUx6P1LZqarh/w8z69OCzDOrIQkiQlsuaPoL9PU5iIEEZo2hqIYpagz/VBezf+vvcAuocbURlS48QaoeFTijQiVFkkmmnoy0XnuD8+koKiVTJufTyyYyYLFEKEEEIIIaMQSgiNRX8f0Szh8Bn6ONqIyUiI15KfrbyKZgLx1Ak5hdqdUSNCcVhoR5saV5qnj0f7LKcKB3QOu8bJPgnpttEfmyNtqipGhES7gkiaqaooZgm6wPlHfTO+u2ErvvXBFgABEaHhGh6fT9ZEcCwRIfFnQ4wy+d1KalypkII4HqAQIoQQQsi45rM9Mh5/XR4zS2vA2IAUAHqdQEtH4ucR3ekWTI2twH80DEJIiwiF/tY/WvqjEELxWGhHK4RSbRIKspVxNEJIJdLanaCmqu7QjU7FHkKH5WQa5olUCBUHuMapbBouNBPNE9TojejYHWnkyWChLdirH5mXDQAwyRJ87RkAjLVY4wEKIUIIIYSMW7r7ZBx9lYwLb5Rx2xNjN09gRAgYm/Q4NSKUlW58AN3fmjiRF1IIiRGhOHoJialxI/URAuKz0Bbts0ebR2XKcJ3QgfaRm6qKqXEaEfb3CWqqGtYsQVnusJixRPWnBiB7TRELlJI8JTXOs6sQkl9Cqll5rG8b9MDr9xsiQnnWFLgHZUPELlLBFa5G6PyqEjxy9AIsrV+ipehRCBFCCCGEfEFsr9ejEE+/NXYRoVD9fcZECA3XCOVlGutaEhkR6jAIISUSFC79KVqMNUIj96iJx0Jbtc922AGzeeR5VFTDhCEf0NoVfrvqEEJIiQiNPs+UfMkohEKkxsmyrEWESu02zBD9v6MwS8hOVz4/56vzUfryCVhRrKuQgwMezbEuzWzGnAvMmPJVGZt26/tHKriy0/Wom/izYTGZcGZZEfqb9IjWlAKMKyiECCGEEDJuaenUx5/sUiJEY0HIiFCCneN8Phldw6lxeZlAUY7e36cxiiagoxEqIlQhiK4vqkbIZJJQU6KM6w5EV3OlpsZF4hinYnSOC79dmsWMUrtRjcgRRoSKcwF4zZC9yiN2qIhQn3dIa9Raak/F4bm6kPD12iM2MZAkSZkPyu9Bsd1opa26yKX6rDjQrjgCPvqq/hlHGhGSJEmLGDa2Bludq+YTGWmRpSkmExRChBBCCBm3HBS+2ZdlYN2nYzOP2IBUJdERoR6ncg0AkJelRDrUIv/E1gjpD7KqEEq1SSgafqj+olzjAL33jnswdA+lcPQ6lddoHrzLCvSITlP7yNtOyzB2aY20RkgRJnpUKFREqElYNtRng7spE5dkzoL7wyp4Pi9Bmi2yCBegpMcBys9nvlWvTdrndKF3uBmsT4hQiZG3SCNCAFA1LFg9XkV0qaJVlmXtsxxvRgkAhRAhhBBCxjEHO43v3/xkbCNC1SVAjlIXnnAhJKas5Q7PoUYx2rqBgcHEXFuoiBCg1wk1dwCDntjmiiYiBOhCCBg96rWrUcZv/grUtVi01LjohJA+3j/KXDUBhUey1xJZRGhYmKhCqNc7BNeQz7CNaJTw+ts2HPs9GTnNZRj4cCowFHlDVQBaRAgA0nz6CX7apbtu9LbrAmnPAWH7KISQWEN20yMyslfKuObPfvT06w1ax1t9EEAhRAghhJBxTEtAo9E3NyV+Do9X1iIQBdnAzApl3HAQcLoTJ7zEHkJq/bxYJ3QgQS51oeyzAWOdUKwRqGgaqgJAeaEe/RhNCF14k4zrHgKuvLNAa9wZjRCaEkVT1akBESFEaGKgChNZdI4LSI87IFi3+ftt8PuBtzYJKWsR1ggBekQIAEyD+pybBSHk7taXi2LbkRp55El0Fbz3WSUi96d/Gr8MGG/1QQCFECGEEELGMYERobGoE+oIiKBMLdXfJ7J2xyCEMpUHz2iiGJEinnOoiBAQe3qcc0D/7KNJjQs8r0B6nTI++lwZ7zqgP9jHHBEaQej5fDJcrSEiQhEIobRUCZkOwO8y1uuIiBEh2akcVExZiyZSU5yrCxSxf9HmLv2HSWy6ajzXyOcRfzZEXv9IHzMiRAghhBDyBXIwwP1rLOqEAlPJxIf3hjiMBQIRBVfecP28WNeSiDqhzl4ZG4YFxYxy5cFdpbJI6CUU43VF00cICBRC4QXspl2hl2fGHBEKv90fHgd+9odAIWSOuKamONdoob2utQtvtLTDN2wyEBgRCjyfaGp3xIiQp1efs2e4PggA/C4rQhFVjVBx6OX/2aDfsyn5kUeYkgUKIUIIIYSMW1o6g5cluk4oWAhFns4VDaJZgGokVp5gC+1XP4SWVnbGUuM6g4V2jL2ExqpG6JMwQiiaiFBGmoSsdGXcFOazlGUZf3lehr/XDtkvLB+KotFprjE17ndb9+Dctz/BLVv3AACahYiQKphEw7xoIjWiEOrpTEGKKViMhGq6Gu08lWGE0Htb9TFT4wghhBBCvkDUiFBxLiANPwOObURIQoWQJjRSFCNaOnr1Y2k1QlHUtUTCi+/pxzh9qfGhubpEH9c1x3b8aBqqApFH1z7ZFfrao7VrVj/P/W2h7bo/qwP2NgPwm+DvFS4g6ohQ8MYftHcD0C21ZZ8E2Z0StF00kRrRLOFAO1CUGix65AREhApzgNQQhxF9IJgaRwghhBDyBdHvkrUIxMwK/SE3nj44oRCFUF5gatyY1Qgpr6IQijf65PPJePkDZZyRBhyzwLi+Rqh92r0/tjmitc922CXNhS+2iFB06Vjqw/qAJ7Rd9zPr9LG/R1dZsje6iNBQcxa8TdnIMKfAPKzQm4drhQ66lf4+ikAJPv9oIjWiZfUDLxiNEVT8TitMIZ74o5lHkiSc92Vl/D9nKE1WA2FEiBBCCCEEiv3yqv/nx5e/70dr19hYWov1QcW5eppQWzcwNJS4OUeqEUqoWUKIGqHiPGgPsfGmxr2/TX/4P+VIwJpifAhPS5W0B2vRZjkaok2NA6BF2Jrag5t1AsrP0rZ9ofeNNSIEKO5n/3hDNsz5zDp97OvWlVxUNUJ5EuA3of/fi3FH/nLUpCsn2TIwiCG/H+2DihAKl7IWbY3QCYcPn6MMNDcGNIL1A/KAFcsXxjcPANT+XELdExLu/ZGEudXGdSaT0gB4vEEhRAghhJCE88oHwHPvAG9+Avz20TESQkJ9UFGOLoRkOdhEIR7au40NSHMy9G/TE1ojpDsea6lxKRZJS3+K1zVupLQ4lWlTlNfWLsWpLVqitc8GdGHpHQp2AQSALXuNKVgiUQshQcT+8gEZ598g44EXlPf1LbIh8uRrzdTG/t7UiCMoYt1OSydQYlfEiXPIh919LqifajgTg2gjNa/cJuHWKyXYrMHiSnZbAVnCiYtDRJ6isOlW56oulWA2S5hbZVxXnAtYLDRLIIQQQggxRC/+9lrsDTpHQhQ7RbmSoV4ilIlCrARGhCRJQsXwA3Vja+hak1hQI0IWs/EBX41iHOxSehrFyovv6ePTvhR6G1UIAcCeptDbjIQqhKwpkT8YjxZhE8VJYUDUISOK5qMAMG1K8Dl9tEP5TJ9db1zu2VkE94fVcL07FUNNObBHKBzEn8PmDlkTQgCwSbS1DmdiEKVASbFI+MkFEr4022jSACjCyGQClswK3i+axq2BzKkyfo7jsT4ISLAQ+vzzz3H55Zdj+fLlWLVqFZ577jltXW1tLVasWIETTjgBd955p+GPxtatW3HBBRdg2bJlWLNmDZqbY6zQI4QQQkhS0CpEUTp6lOhQohHFjpIapz+cNSeo+SgQugGp+vDuGghdaxILao1QbqYitlRUISTLsV+XLMvYslcZz69RhGMopgpCIdL0uEdeVtIgN+/Wa7aiSbsazYXv4536z9JFJxnXZQb0PR2Ns5cD314FnLVMX6bO+ez6AJEpmzDwYQ0GP65CWqpkuCcjESjIi8MIIb/TBmuwV0LMAqW6xNi/CFDqkKbkG8WmSrSCSyQwNW481gcBCRZC1113HZYtW4b//ve/+P3vf4/bbrsN9fX1WL9+PZ566inU1tbiySefxPr16zWR5PF4cO211+L888/H2rVrMW/ePFx33XWJPC1CCCGEfMG0BqSmPfTSGESEOvVjFuUaU5LGQgiZzUDW8IN3ouuEuvtk7TiB364nwkLbPajbZotNVAMRI0KRGCa4BmR8+48ynnsH+PVDstZHKDohpI9HiwhdcopxXbSpcWmpEu75kQnP/FbSXNDUOT/eqbyWFQQ/2Mfq5CamxgHAJkE1+11WHH+YcV+LWYnwxEJVcXBqnN9lRWWx8ZxU4okIBabGjdeIkCWRB2tpacGpp54Kk8mEWbNmoaqqCvX19XjllVdwzjnnoKysDADw9a9/HS+//DJWrVqFjRs3wm63Y9WqVQCAK664AitWrEBzczNKSkqC5vB4PPB4PMaLsFhgtYbOswQA//BvvvpKkg/eo+SH9yi54f1JfibbPQqs0Xn1Q6C+xR/ym+lYESNChdmyoY7kQLscsvB+JMLdI1UIKQYGynHF66g/KGPB1PiE3lub9V4yxywwnoP4kFnfImPp3Ojn6nPp47TU8D+HooX27qbRP8P9rYoDGwDs2q+nxjlGmCMQ8fpe+0jGnU/JyMsE3rwLsKUAnyrtd1BTCsyt8iMzTUavyzw8T/T3WaW8UDnnxlags8eP7n5l+fQy5TrEXkNptsivJy9TMQ/w+4GWDqDIpj+jbunWC8H8ThtOOwH4zwZ932g+t0Aqi0OkxrlsqCgEshwyrCmAx6uvS02J/bMrzFGc49TPrDRfOe9k+TtnCmWTF4KECqHzzjsPL730Ei677DJ8/vnnOHjwIObNm4d77rkHK1eu1LabMWMG7r77bgBAXV0dpk2bpq2z2+0oKytDXV1dSCH08MMP4/777zcsO/fcc3HeeeeNen6NjY2xXhr5guA9Sn54j5Ib3p/kZ7Lco8aWIgD61+iyDPz5H134zlkJyiMDsHd/AQAlJOB17Yc8aAagPDvsqu9DfX1shUKB96itqxyACVl2D+rrlfR9u9kBQHmC3/x5BxZM6Y9pLpXn384BoBTnzyltRX29br9mN6UBUEIUn2zvwtJp0X+GjW0WAEq4R/I7UV/fHnI7q08CUAEA2LpnAPWjeJFv2mkDoHTbbGz1w+mWAEhIMQ2ivr4lonMzefVze+l9Zdm+FuCvL7RhToUHrgFl3fRSJ/bvb8fsiiJ88LkihHq7mlBfPxTRPIHkZxZiF+zodQKvvdeiXUdeej9STCaoP1sAYDXr9z4ScjPK0N5jRlPbEKQe/VsBl08XCDZvCorS9XkBwJYyhPr6GIqzAKRJNvidxtCP7LIiu6AHDQ3dyM+cggMdyqO/SZLR0tyACLP9QjK1pAgbdym/4za0o77eqa071H/nqqurR98ICRZCS5cuxa9//Ws88MADAICf//znyM3NhcvlQnq6bjjucDjgcilfTbjdbjgcxgRPh8MBt9uNUFx22WW46KKLjBcRQUSosbER5eXlEStE8sXCe5T88B4lN7w/yc9ku0e9w/+NS5Ie6fj8QA4qKxPnsds3qI8Pn1dmSMfr92SgsjIjquOFukfuQWC47QtKCqyorKwEABw2W9/P6c1DZWVe4OGi4pM65VWSgLNXFGqucQDwJcGJrcsd22fYJ0TLivIdqKwMX1yTl6nUKzV1pmrXG44Ne4U5XPrPdW62bdR9VYqDv/dWjuctwKDwq7JwugPl5XacfUwnPvg8FYfPAJYtnhKyR04kTC8H3tumjHe36mJk7tR0tPcA/9mob5uVYY34egAlva69B2jvtWBBZSWwPTjPsNSRikVzjXmKmQ5LVPOImOyAPCBD9kmQzMovnd9pxfwZWaiszEJ5IXBgOGU0LVVCVVVs86gcPgvYOJy2uHB2Pior88fd37mECaHu7m788Ic/xPXXX4/jjjsOe/fuxdVXX42pU6ciLS0N/f36NyVOpxNpaYrKttvtcDqdhmM5nU7Y7aETF61W64iiZyRMJtO4uCmTGd6j5If3KLnh/Ul+Jss9au1SvvmuLFK+3QeUh+tEXntLpzJHbiaQajOhJF+GJMmQZSVtLta5xHu0vV4Ghg2Pywr0Y1YW6cv3t8V3Xd19Mj7ZpRxrwVSgIMd4rGll+lx1B2KbyzWoHyPdPvIxppX50bFNuS6PV0KqLXzYQOkRFZxe5UiN/DztqUBRrj/IOrvuAJCTIWnHrymVYDKZcM6xTlx4Wj6KcqS4LJsrivTozPrP9OXVJYoVtXhdjlE+s0CK8/zAbsUSPNUX7Eog+4GqbCumFOjXByhpi7H+LJUVyEixKCl35kxFPftdNlSXSDCZJJTk69cb7fWE4oozZDz5Xxk1JcBxC5U5VMbL37mEnWFTUxPS09Px5S9/GWazGdOmTcPixYvx8ccfo7q6Grt379a23blzJ2pqagAANTU1hnVutxv79+/X1hNCCCFkfDHokQ21A2oX+vbuxM6j1iGpjRxTLJJmBJAos4R1n+rjZfP1B71EmiWs+1SPmgUWzwOKGMgZDm7VxWis2y8k2qSPUiQ/tVR5lWVg7yjztXQGiyAg+kJ8Z4hEoD0HgLoD+vFrSvV1JXnx960R3ere3aIvryoJLv6P1mFNNCc441oJGDDaw8luKyoKJWSkSQbDh2h6CAViNkuoKFLS4bR5nFZUFgWfUzyOcSpHzJbQ+qyEjQ9IQc15xwsJE0KVlZVwOp14++23Icsy9u3bhw0bNmDatGlYuXIlnn76aTQ1NaG9vR2PPfYYTjvtNADA4sWL4Xa78fzzz8Pj8eDBBx/EnDlzQtYHEUIIIST5aevWx0U5ukuZag+dCPpdMlzDKWNFwgOe6hzX0pmY/j7rNuvHOGaBvtxhl5A73G+zIU4h9OYn+hzHLwpna628NrbG1ktIFBoO+8gPrdPK9PHuUcpVwvVrisZlDQBmhcjSqjtgFGLVCX40FMVsr5CcVFkUwjUuSmEnio6NO4ChvgA3N6cNFUXKfRDdDqP93AKpLgGGDio/mH5XCvz9qagYFkKivXy886hYUyK3FU9GEiaE0tPT8bvf/Q733nsvli9fju985zs477zzcPTRR+OYY47BV7/6VVxyySU499xzsWzZMpx11lkAlFS3W2+9FY899hi+/OUvY/PmzbjxxhsTdVqEEEII+YIRa3UKc/TeO119wNBQYmy0A3sIBY49XmW+eJBlWUuZyk4H5gXUX6sP0k1tgM8X+3W9uUl5lSTguIWht6kZFgF+v55qGA3RRITEpqOjCaFwkbdoH7R/eJ4ESQJmVij/AEVg7hiuuZckaA/0iSKUg6HZrKRAlgaUfEUfETKKg1C21ur8pUL0Kd5ITXUJ4P5gKpxvzkT/s4tQkGlCWqo0fE7CPAkSQuOdhJslLF26NOS6yy67DJdddlnIdXPnzsUTTzyRyFMhhBBCSBhkWR7Tb3Fbu/VxYY5qO63Q2acsixfRnrtIOF5gL6FcYe5o2dGgR7eWzYehBgIAKgqBzbuBIZ9yPqUx9FLp6Ze1PjkLpgK5mSNHhAAlUjKjPLp5nILhwmgiZaqQgranSQYQ/mclbEQoygjKBSskHLdQuV+X/EbGjgbA59Ots8sLlehDrHbPoQglhMoKlJS7KQXGeaK9npIAISUHCCHZaRMiNbHPE0h1iQR4LPBsUcJ6lbNCn1OiIkLjneSvYiKEEEJIwqg7IGPaBTKWXeWHezDxTU6BgIhQtmRo4NnRk5g59gkpU2LKTyKbqor1QccuCBYDiagTamrX64MOmxZ+u6ml+vx7YnBXjioilJDUuOiF9pQCCXabpEW/AP2zSXRaHABkpUtBDVmrhs3jMtKMoiTaSE1VsfG9vz8wNU6ICAk/s/FGhALnrRSiaOLvBiNCChRChBBCyCTi768pEYV3twDPrh+bOQJT48SIUHuChNB7W3URd/gMfbkoiuIXQvocxy4IXi8W2zeM3G4nLP1Co9Os8I7WBqOAPQdiqBESIkKjCaGCbP1BeaRWQH6/HNQ4VyWeiMPUKcEiSrz+RBIYFVKFgyRJBsOEaCM1R8wGvn8OcNqXgO9+NVRqnE1IjdOvN16BEigYRSFUVQxYlPZLQWYQkxUKIUIIIWQSIbp8fbJzjCJC3fpxlRoh/UEvUUJIdfmSJOBLc/TlYh1EuGhFpKzbrLymWoEls4LXJyIiZIjUpIXfLjA1Lup5XEYr6JGQJAkVw9fW0BredKKjV0lfC0U8KV6hRE91ydikcgYKoSpBSEwx1O5EN78kSfjT1Sa89AcTTl8qBQmhDNhgt42NWYJIZbF+3vnZEu79kYQLVwDXXjh+DQ4SCYUQIYQQMokQHd0+3jU2cwSZJYipcQlwjutzydg8XDsyvwbIdIRLjYtd6O1vlTVTgi/NQUh7YLF4v7E1trmMKWvhH06n5AMpw5XdY50aB+jX5hoIbzoxUsQtkjnCMTWEEKoZIzPhQAOGKkE4iDVf8QiU2ZXBNUJFdt3i+vAZiqAHgDlV8QmUwhxjVKky4Pq+eYaEx64zhYy6TUYohAghhJBJhCiEPtmVGIvpQA4aaoQCUuO6A7eOng+3K+5pAHD0POO6RNUIbdJbHAbNoSJGE2JNjesTUuNGEg9ms6R921/XHP19i8YsAYjs2lpG+HzjEQ7lhXoKl8pY1AgpcxkFgVhjY4gIxXk9tiGjECpP19/PrJDw0q0SHvyphAtWxD4PoESixGuoLA6/LaEQIoQQQpKClg4Z37/TjyfXjk26moqYmtbRA+yPswdOKNSIkNmsuIAZI0LxX5/Y/PLoecYHWTE1Lh4h1ClErkrzQn97PqVA/yY/IalxETY6dQ0AB6NM+4s+IjR6/ZOYemgKeKKMJzXOYpGCHuC/sBohYd6ZFfpnENhXKBpMJgmzilIg+/TjTc21GrY59UsSLj9dQkqcTWIBYO6wzbs1Zew+t4lCQu2zCSGEEBIbv/+7jLueBu55VsZxC4HiMA/f8SJGhAAlKlSe4P4sqhAqyFIeAvOzdfGTiBqhd7fox1s237guPU1Cul1Gvzu+GqEeocFmdkbobVIsEkryZBxoT4wQCnQwC8RomAAU54XfNhBDRCiK1DggMiE0qwLYtk+YI85al6mlegqg3WZsmptIRCFkMin22SoXrlCaoaalAisWxzfPnEoJu3vtMOe44O+3oarQPPpOMXLj5RJMkozTl0qGtFESDCNChBBCSBKwc7hxpHcI2LJ3bOaQZTlIiHyS4DohWZa1PkJqv6BEusb5/TLe26qMi3JDp0yp6XHxRIR6+vXxSG5u6oN0Sycw6Ik+2hVVREio64jWMEGcJxKRUmEwggh9XaLxhujcF+kcIyGaQ1SXYMz6XolCaEq+sRYs1Sbh7h+a8IerTDCb45t/dqUE97vTMNSSCdc70wyfb6KZVSnhietNuPgUiqDRoBAihBBCkgDRREAVRYmmp19p/inycYKd43qdgMerjFUhJDY1jbeP0PZ6XaQcPTf0A7Ja5N7rVIwVYqHHqe8XiRAClJ5A0dLv1ueJNDUOUBudRo5zWAhZU0IbPwRiqBEKE+0SI0KLZxiPGW9j0BrBJW6s6oMAtVGrMp5eNvK28TCnCvDuLUDfU0fAu6s4ZDNX8sVDIUQIIYQkAaJA2LV/bOqEAtPigMRHhFoDjBIAJYUsO10ZxxsRGqk+SMUgTtpim0dMjctKD79dRZwW2tFEhMTUuLrm8NuNNE+kkZqyCMwSxIjb4pnGdYmOCI0VdpuE266ScPQ84PrLxi6CMrvS+D7QrY4cGiiECCGEkCTgi4gIhRIhja1AR0/ihJeaFgfoESEAyMsKfw7RsKNBP9fAh28Vsc4j1tqdyFPj9IfnWOaK1DUOMDqa7Y1RCEVqa223Sdr9G801zmEHZpQb18UrhE44XDG+sJiB8748tile3ztbwjv/Z8KxC8dunqmluv252Wx0NySHDgohQggh5BDj88noFh68x0oIiREhs1CrnciokLGHkNDMcVgIdfcDQ0OxCy8xgpITxsRAFCf7Y4wIifdjpIhQvBba0USE0tMkFGQr42iFkGqWEI1AUaMWBzpC3zM1Na4kFyjI1h/0gfhT47LSJdT9Q8KBf0tjKlC+KCwWSbNhXzwDcdcckcRAIUQIIYQcYrr6ALEtzN4WwBuHWAiHKISOnKWPx0wIZetjVQjJMtDVj5iJJIKSkIiQkBqXOYKbW3kEpgIjEY1rHKCniR1oj9ycQZZlPSIUwRwq5cOfo9+viCGRgUFdvBfnKe6AapTDmoKE2EDbbRIKsieOYPjrLyT88TsSHv/1xLmm8Q6FECGEEHKIEdPiAMDni/4b/0gQ09JE2+mGg4kTXZ8LqWulQkPKvAQZJkQiHEQhtL8tRrOEfn2Okb69F2s94qkRkiTFJno01PQ4WY48AjXo0RvQxhIRAoLnEpvmqr2bTj1Sef3yosjnmExUFEn44dck1JRSCCULFEKEEELIISZU3cyu/Ymfp61bFwXza/SHMfGhNl7e2Ki8ShLwpTn6crGpajx1QpGkkpXHKU4APSI0Un0QoNRBqSlh8QghR6oSVRkN0ThgJLEsyzJueFjGOb/yY4eQahlpjRAwclNV0TFOFUJ3XyPhvXskPPtbPuiT8QEbqhJCCCGHmFARkp2NwOlLEzuPmBqndp8HgINxNB4Vae2S8VmdMl48E8jNFGqEsiUAihBLhBAaKYKSnwXYrEokZH+8QmiE+iBAES9lBTL2NsdXIxSpQKku0T/HkYTQus3A9Q8r21nMugCONSK0rwX4539lzKsGZldJhs+1ZLj5r8Ui4ai5kR+fkEMNhRAhhBByiAlMjQOAnY0ygMR+sy4KkIoi5eG73524iNDaj/XxiYcb1yU6NW6kCIokKeJkTxPQGINZgncIcA2bC4wWEQKUz3Jvs2Kw0O+SkZ4W+X1Ta54iF0L6eF9L+J+Rf6/Txc/HO/Xl0USExPqnX9yvHC8/C6j7B1AviL5KWkGTcQpT4wghhJARkGUZuxpl+P1j09sHCC0MxiY1TnmVJCA3AygaTmlKVETo9Y/0z+jExcYH9ESnxo32QK/WCfX0R99UNVLrbJXyOHoJRWtiEElqnCzLeGad/n7PAX0cVWpciKaf7T3Ap3uA+hb9M60sDt6OkPEAhRAhhBAyAt++TcaMi2R847djKIR6g489FhbaqgDJy1QMAIqG+8R090fuQDYSan2QzQocs8C4ziiE4rfPHu2BXhQn0abHRdpMNdRcDVHM5fHK8HiVcUaEAqWiSBGyQHgh9OkeJZVNRTVKAKKztVaFciB7mhgRIhMDCiFCCCFkBJ57R3n9x1rlwXUsEFPj1AfVxlbAPZjY+dSIkCpKVCEkrouVugOy9vB99FzF+lgkTxBCoVIBI0VLJRslgmJ0jotuDoMQiigiFFtTVbW3DxB5pMZmlTQ3vnBCSIwGBZJujzxtL1zq4e4mWRNCFrPRHZCQ8QSFECGEEBIGWZbR2aeMvUPAtn1jM4+YGif299mdwPS4gUG9l4zalFP8xj/eOqHXP9LHgWlxQEBEqDu2OTxeGd4hZTxaBKWsIDZxAhiFUHYEESExIiKmjI1Gv9gTKYr+Pmp6XFs34HQHz/fM+vDnEI1ZAgD8zxnBy/Y0AfXDoresgM1ByfiFQogQQggJg2sAWuoSkNjGoyJihGTpPH2cyDohsS5HE0JCRCjeOqG3N+sP3yuWBK/PFcwSYq0RisQ6W8WQGhdtREisEUpPnKU1APj9Mn77qIxfP+TXGpIC0dXuGA0TjOv2NcvYNMLPaTTzAMDt35Xw9E0Smv4laSl5n+xSmgADrA8i4xu6xhFCCCFh6AxI4fp4p4zLVib+2281IpRqBWaU6fbIzR2Jm0NMfVOjM4U5+lzxRoRahf1nVQSvT7FIyM2U0dkb+3UZhFAUqXGNrdE58EWbGieKgdGE0DPrdAc2MZoTjUCpCphPtEL/zwZ9XF4YHA2LpkYIADLSJHx1uTIuK5DR2Apsr9fXsz6IjGcYESKEEELCoKbFqYx1RCgvS2nQqSI2QI0XUQiNRUQokmiN+gDf2AZ4h6K/tqgiQsIDelwRoQiEUFqqpKUZjiaE/vuJft3vbdWXRxcR0kVd4Hx7m/Xjf/W44H2jjQiJTJ0SvIwRITKeoRAihBAyLtm4Q8bv/ibjYOfYubkFRoQ270bCbbRlWdaFUKYuUoD4DQxEjKlxyoO0sUYovutSC/9TreFrRmpKlVefL/q6HSCgpmaUB/r8LMCaoozjqRGKxDUO0NPVmjtGNrl4f5s+FiMrGVH0HjKm4hnnEkXf0rnBx4xHCE0LJYSKWB9Exi8UQoQQQsYdQ0MyzvipjJ//RcaP/++LE0L9bmB3U2LncLr1OqT8LKMQau1O3DyhUuMMEaE4U+O0RqcjPGiLD/B1B8JvF46+KCJCSlNVZTzWrnGA8doaDobexj1orN/pEiKOsdYIbd6tGGGoGISQUG+mEq1ZgsjU0mDRw4gQGc9QCBFCCBl3dPYBLcOpXOs+Hdt5Avl4Z2LnEI0S8rLGMiKkPyyHdI2LMzVOjQiN9KBdUxo+pSsSxIhQJBEU1TAh2qaqRrOEyPaJxDDhk53AkC/0umiEUFmBYlsNAGs/BsrPkfHXV5TrU6NfWenK9QceN66IUFnwMtYIkfEMhRAhhJBxhxipqW8B+qN4yI11HpVPdiZ2LtE6Oy9TqTdRoyqtcUZpRFoEoaMKoYw0JZUNSFxEaKQH7RpDRGhsa4SAgF5CUaTHRWufDQBVxaOLPDEtLpBoBIrZLOHylfr79h7gO3fI8PlkLSJUVqBExUT3PCB6swSRqaXBywKPT8h4gkKIEELIuKMrIFIj1lokks7e4If1RBsmGCJCwxbTBcOpa4mKCA0NyXjxPWVsMQNVw4JEkvQi/3giQn6/DFcEEaF4U+OiFULiQ3pDBELI6Qb8/vhT4wLrdlTe3xZe/EUbqbn3xxLe/rOEecOOcf1uJVo56FHeqyKwIiBik0izhOJcINXGGiEyfqEQIoQQMu4ITFnbuu+LmQdQhJAsJy4qZEyNUx4qVee4jl7A54t/rlc36JbVZxwN5GToD69FwlxDMTi5AYB7EFA/kpEetCuLofWiqYslNS5KISRGaepbRtgQwMvvy8g/C1h9fTHahqNjkqREzSJhpN4+Kh8kKCIEKCL22IUSTl+qL3tjoz4OJ4TiqRHKdEgGV0PWB5HxDoUQIYSQcUdgRGjbvrFPjZtTpby29yS2v097tz7WIkLZyqssG4VSrDz4gv75XB7QB0kVQrIcewRKrQ8CRk69sqboqVqR1gh5vDL++7GMnn45aiEkPqjvaxn5Z+Sup2V4vMCWehs271GWZaQBJlNkEY+KIsA0/FQV6toOtMthTRTUuWJhZoV+fms/1q+xvFBZXlGor7eYdSe9WBHT41gfRMY7FEKEEELGHYG1O1v3jtE8guBaMlMfJ1IIBZolAIk1TGjtkvH8u8q4JA847UvG9UYL7djmcEYhUNTISUcP0NM/uoD96b0yTviBjOVXywbDg4iEkPCgPlJEyOOV8fbm4OWRpsUBSsNYNQoTSgiJ0aDi3OD1saaszSjXx+s/08fquYjpgQ67EkmKB9EwgREhMt6hECKEEDLuCI4Ijc08quCyWY0PfYk0MegQ6pDUiFBhtr4+XiH06Ku6U9k3TgUsltARISD26xIjNaOlXtUIEYVIokJPv6W8bt4N1AsRlUgiKGJaWP0I0ZgPtkGrcRKJRggBesPYjp5gl7oPt49No9OZghByD+rjsmEBJH4G8dQHqYgW2uwhRMY7FEKEEELGHYEmBvvGyDlOFUK5GUBRjv7Ql1AhFOAaB+gNTxMx1z/W6p/LZSuDH1yLcvVlMUeExNS40YRQSeQW2q1dsqEZ6ueCKUYkD/UOu6T1TBopIvT6xtA/O5FaZ6uIdUJ7moBdjbJWTyYaepx1TOIaneZnS8jNDF4eqkYoEUJIrUkym4EVS+I/HiGHEgohQggh446u/uBlY+Ecp6bG5WbCUCSeyEanoVLjxLnijQg1tSuvpfnAjPIQQkhsqhqjc5yhdmeUSE00znEbdxjf7xKa2Ub6UK865B3oUFLgQiGaDIhEap2tUi2IvEXflDHjIhnX3qPMuWu/stxmBY4O0eg0LQ4TAzEqpKIKIcVGWxlnxliHJLJkloQdj0nY9ZhkqE8iZDxCIUQIIWTcEZgaByQ+PW7Qo1tC52YECKGuxEWf1EiF2aw/eBtrhOKbq2+4CWm4NC9jjVBsczkNqXEjPxyLqXGj9RIKFEKqNTQQuRBS64T8fmg9dkT6XHJYN7doU+NEkafy99cVe/E9w6KvpkRpBpuToW/jsEduyhCKmRXG9+l2IHP43G1WCd9epZgkfPP0xAiXGeUSqkspgsj4h0KIEELIuCNUo9OtCXaOE8VWbqaxbidRqXH1LTI+b1DGR8zSH4ZFIRRP9Mnv153WwtXUGCJCCagRGk2gGITQKKlxG0doXhtpBGU0w4S3N+s1VCccblwXT2qcyoF24LM6XcRNG+7FI6asZcSZshYY6VObqar83w9N6H1ZwrdWUbwQIkIhRAghZNwRKiKUaOe4zkAhNAapcWqTUwA4/Sj9ITVRqXHOAb2/TzghVJKnj2N1w4umRqgwRxcxo9UIBUaEtDmiiKBUir2EQhgmvCHUB317FZCX4dPeRxsRmlmhRPYCeWadPp4+7LomurnFW7sTmBpXVhi8jc1KEURIIBRChBBCxh2qSCkr0FOAEt1UVYw65WYAORn6Q26stTSBvPie/hAuNsY0RITiiD6paXFAeCGU6dCFyYH22OaJJiIkSZIWOdnbrEStQhFolCASTQQlkoiQcl7AlxcBi2fo1mtZjujEQ2GOhPt+JOGCFcD3ztaX/3udfo3TypRjGoRQnLU7galxan0QIWRkKIQIIYSMK2RZ1iJCeVn6N+yNrYDPl7j0OIMQypRgMklaelwiIkKuARlrP1bGpfnAYdP1dXabpDUmjSciJAqhcIXykiShdDgqFKsQirShqkrNsBDyeIGmEHU7QPhoEBBdBKVKSFerPxj887F72IChqliJ/B0xQ7+Y/OzI51H55hkS/n6dCed9WRdRm3fr6/WIkL4+3ojQtCl6M1fl2PEdj5DJAoUQIYSQcYVrQHmABpQojVrj4vcb09niJTA1DtBT1lq7oNkix8raj4GB4bqR05cGN7pURVc8QqjXqY9H6rtTmq+8dvcrAi1a+qNsdCo25dwTxjluRCEURQRlpIhQV5+MnmEHQjVKde6x/fjSbODwGcBXjo18nkDmVodertYIJTI1zmaVtB5GAFBWwDQ4QiKBQogQQsi4wmBikJFYq2kRMSKUM1w0r4oT7xC0B+hYMaTFHRX84Kqmx3X0xh7piiQ1DtCFEBBbnVA0NUKAsSnn7qbQ24hGCVMCUr2iEQ7ZGZKWPrkvQAjtE2qUVCGU6ZDx7j3AxgdMyMuKXVDkZEhB521N0QVQIoUQAMwQ6oSYGkdIZFAIEUIIGVeIkZqcjMTV0wTNIzRtDYwIAfGlx8myjJfeV8bWFODExcHbqNcly8ZeQ9FgSI0bod6lVDBMiCU9TqwRiiQ1zhARagot8tSIUEYacPxhxnXRCgc1KlR/ELj+IT++9ms/Wjpkg1lDVXHioyjzAqJCNSWA2azMM6sCSLEoy6eWIm6OnK28mkzAnKr4j0fIZMByqE+AEEIIiYZgW2sJgPIwnVAhNEJqnDrXjBCNLCPBNQA0DDuYHTkbSE8LfggPjHSJ7yOlTxAoIxkMlObrn2FTDEJIjAhFIlLEB/9QESHXgG6UMK/aaDUd6RwiVcWKhbXPB9xQqywryZNRUaR/7qGsr+NlXjXw6of6++mCACzKlfCP64EPtsn40fnxi7BrzpXgHZIxv0ZCVQlT4wiJBAohQggh4wpDylqGFCROxmKe3OHml4kSXeKxxf5EIgVZ+ri1K3zNyUhEWiMkpnDFEhEyNlQdffvKYsWBz+cD9oQQQmLj08piYIog1ICRryXcfIF8uB3wCY51VWMghObXGM9bjIQBwFeOk/CV4xIjWrIzJPx2DQUQIdHA1DhCCCHjiq6A1DhD5KRnrFzjlNdEpcZ1CfVFORmhtynI1h9qY619MqbGhd/OmBoXg1lCFPbZAJBikbR0td1NwcYTom12eWFwzUv0qXHBAuHTOqBOMGoYk4hQjfH9tCkUKoQkExRChBBCxhWBZgljViM0PI/ZrIuIREWfAsVcKBJhAtHniiyKIpolHIjQLME1IOO/H8sYGJS11DizWal5igTVPa3PBbT3GNftF4RQWYEU1CA0WiG0aEbwMqcbWPepMrZZgeLc6I4ZCbMrlf5EKtPLwm9LCPniYWocIYSQcUVnn/5wn5NhTC0bi9S4nHTd2lqc62CnDCC2b/iNQij0MUQh1BLjXJG6xpXEYJZw9q9kvPIBcMEKPSKUbg+2AQ/H1CkANijj3fuNgnb0iFB0n8UJhwN//r4E5wDQ3S/jlseU5ernU1kEmExS2OausZKWKmFqqazVQanijxCSHDAiRAghZFwRaJYgPkAn1D67T59DJWGpcRFEhER75fqDsc3TG6EQctglZA1bhEcihHw+Ga9/pIxf26CbJURSH6QipokF9hJqbNUFSXmhco9ThK9uo40ISZKE754t4acXSfjSnGARNRZpcSqnHKm81pQGmz4QQg4tjAgRQggZVxjNEoBUm4RMh4xeZ3ziRGTQozfaFIXKF5kaJzbIFG2eo8FQIzSKwUBpntIb6UCHUrMzUmSnpRMY8inj9h4ltQyITqCI0ZHd+40Rr8CIkMkkoTRf1hqixtN3Z+HU4GVjKYR+/20Jyw8DjpqjW2cTQpIDRoQIIYSMKwJrhAA9KpSo1LgPt+vjWRX6OC1V0h7C4xNCxvS+UDjsuiNeIoTQaE5rap2Q023cLxT1AY1JBz3KazQRoamCEAqMCKmucdYU/d6K6XHxCKGqkmDjiLHoIaTisEs498sSykMYNhBCDi0UQoQQQsYVasqaJAkmBtnKa1cf4B2Kv87jzU36+PhFxgdYVZwkLDUuPfx2alToQLsSpYoWMTVuNPEgGiY0tYXfDgAaWkMvj6SZqkqN0Evo/a3A6p/7cdpP/Oh16j2EpuQr0SDAKISitc8WkSQpKCo0lhEhQkjyQiFECCFkXKGKiJwM/SFZTFlr745/jjc/0UXH8YcZ16lzdfbGLroC65zCoT6gy3JsdUJqZMdhHz0ty2ChPYpzXGBESCWaSI3dJmn9i3Y3Ac+uB175ALj9HzK6h9MSxTopUTjF0lxWZOE04/uqEH2GCCETHwohQggh4wrNzU1IKTNYaHfHd/xBj4x3tyjjymKgqiQgIiTMFavoiqRGCDBGKmJJj1OFUEYEAqU0X7/O0QwTGg6GFoDRpMYBoV3UHn9DH4tC6KrVElYsAb69Cjg8hB12NBw2zXhPq0vDbEgImdDQLIEQQsi4we/XowVjYWIAKPVBA8M1L4HRoKC5uoGS/OBtRqNTEELZI6TGVZdIABTRsS8eIRRBKpmhl9AoQihcdCra2p0pIT67nY36WBRCZYUSXrs9MXU2YkTIYQfysxJyWELIOIMRIUIIIeOGHqeSJgboRgkAUJitPyDHK4T++4k+DqwPAgL7+8Q2hxoRynSMnLJmjAhFloZ3/UN+LP4fP97bIms1QpEIoSkGITTyXA1hhFC0EaEVS/RrF6N6KuWFY2MwMLcasJiVcU1J5L2PCCETC0aECCGEjBvCpZSJ4iTeXkIj1QcBQFmBHqVpDGMaMBpindNIRGuh3XhQxg21yvjXD8nwDVtcB7qkhcIQERqtRihBEaFLTgFkWUJpPrBxB/DLB4wCLLCRaqKw2yT8+lLg3udk/L+vUwQRMlmhECKEEDJu2LZPH4vix1gjZOxJEw0DgzLe26qMQ9UHAcammErjz+jmkuXIhVBFkeKOJ8uRCaEPBNvvDZ/r40hqhIpz9fFIqXE9/UrPplA47NF9FmazhMtPV8a2lOAolJgal2h++Q0Jv/wGRRAhkxmmxhFCCBk3PLtef1hesVh/iE1UjdDmPXp90PKFobepEB7Ow6WIjYTTrTcjHck6GwBsVklLWYtECG3Yrn8+ai0VEFlqnM0qabUy+0ewzx7JvS6e/j5HzgbMZuOysRRChBBCIUQIIWRc4PPJeO4dZZyWCpx0hL5OdHKLJzWuvUcfT50SOlpQHqcQ6hIEymgRIUCvE2rvAfpdI9fufPh56OWRpMYBShQMUIRQOGvwka452hohw752CYcJJgapViCPJgaEkDGEQogQQsi44P1terTnlCOUOg8V0fUrHvtsMeUrXBQlK11fF5MQitA6W0U0TNgXpn8PoDjqbdwRel2kDUjVufz+8Ncm9hCaU2VcF01D1VAcPU8flxfSxIAQMrZQCBFCCBkXPLNOj1CsPtb4gGyxSFpj0nhS41S7aQDIDCMeJEnS6oQa2wBZjq6parRCqCrCXkI7GoznL5KRFpmgqIlgLrGH0LELjOviSY0DgKPn6efJtDhCyFhDIUQIISTpkWUZ/16njM1m4PSlwduo6XGJEkIjRVHUOqFBT/SpeEYhNLpAqRYMG0YSQh9uD78uErMEAKgp1eeqOxB6G7FG6NgFxvOPJzUOAI5bCKQM2zjNq47vWIQQMhoUQoQQQpKebfuAPU3K+LgFQF5W+P4+/W7APRhdlEalT6jBGUkIxVMnFGuNEDByL6ENn4dfF2mNkDhX3YHRa4SWzTeuizciVJov4R/XS/jJBcAvLmFaHCFkbKEQIoQQkvSs/1Qfn7ks9AOyodHpKH1wwtEbaUSoSD+HqIVQrz7OjVoIhd9OtMu2BLivRVojVFM6+lxqRKgoV7H3tqbo6+KtEQKArxwn4dYrTSjMoRAihIwtFEKEEEKSnk4hnUxsMipiiNLE2OjUUCM0QhTF2EsoujmirRGakq+LDTUqFojHK2PTbmU8o9woaIDIhVBFEWAafjKoCyGEPF4ZzcMis7IIMJkkg514vBEhQgj5IqEQIoQQkvT0OvU0rawwAqVSiNLUj+CuNhKGGqERHupFISSaB0RCtKlxZrOkmRjsblLc4QL5dA/g8SrjI2YBUwOEUDjjh0CsKZImKEPVCDW2Ks1dAf0zqBSEaaSCixBCkgEKIUIIIUlPj2BrnRWmCakYKRrJZnokIrHPBuKLPkUbEQKAaWXK64AHONAevH57vT5eNF3StleJRqCoqXidvUBPv1F07RYiUqrY+tZZElKtwDnHAwXZTGcjhIwfLIf6BAghhJDR6BGiKOGiG2Jkor5FBhD9Q3mfWx+PJB6m5AOSpERHIk2Ne+w1YG9jOjqEGqFIhdB0Qdjs2g+UBVhLixGw6hIgxSIBiMz4IZCaEuDNT5Tx3mbgsOn6up2N+nhGufL5nvtlCWctA2xWiiBCyPiCQogQQkjSI5oYhIsIGYRQDI1OAT01zpoy8oO9zSqhOFepl4nELOG9LTIu+Q0A5BmWZ4e5lkCmTdGFze4m4MuHG9fXC+l5lcWAzWpcH5UQKtXnqjtgFEK79uvziOKMIogQMh5hahwhhJCkR4wIhasRyk7XH/jjrRGKRDioNTLNHcCgZ+Q6oXe3BC/LdCj1P5FgjAgFzyVeb2URMG2KcX0sqXFAcJ2QMSIU+TEJISQZoRAihJBJyn0//wuuqf4RXvrby4f6VEZFrREaKVIjSRIqh8VJQ2toU4HRUGuEImlAKtYJNYWo2xHZui/4XCJNiwOCU+MCUeuU0lKBvCylXkoa/phsVsUEIVJEx7m6ZhnPrpPx4TbZMHdGmtGunBBCxiMUQoQQMgmRZRkp/2fDSb0n48MrN0CWY2tA+kWhCpRw0SCVquFohscLtHRGP49aIxRJA1LRNnq0OqGte4OXpZiDl4WjvFC30N4dIIRkWdbS8yqLFEFos0qamUFRlIJFFEL3PAOs/oWMY78nY0udrJlQzChX5iGEkPEMhRAhhExC+jr7UGxWimoWpCzEZ5s+O8RnNDI9EQqhSsHWOtr0OI9XxqBHGUeWGhdZU1VZlrFtX/Dy3WF6AoViJAvttm7APaiMxTqp266S8KU5wC3fik6wFGQrkSURjxe440kZfr/yfnpZ0G6EEDLuoBAihJBJSHdTtzZOlVLxn4deO3QnMwqyLGtmCaNFaiqLhV5CURomGHoIRVEjBIwsuhpbgf7hSFN1sVdbfsWZ0Z1fOAvtwPoglVXHSnj/XhMuWBGdEJIkxQ47kMff0MesDyKETAQohAghZBIiCiEA2P3KnkNzIhHgGgB8PmUcTURoX3N084hCKJIGpGIK2e6m8KmFYlrcSYe78MxvgWvOA66/LDqBEq5OSBR8ohCMh+MWBi9To07KuTAtjhAy/qF9NiGETEL6WvoN79Oa09DQ0ICKiopDdEbhiaSZqorRQju6XkLRRoREZzbRTS0QMS1uxhQvzjwaWHVM9N9Dihbadzwp46KbZJxyJDC3Sr9GUQjGw4++JmHzbhnHLQQ8Q8DjrxvXz2BqHCFkAsCIECGETEKcbU7D+5mWWXj22WcP0dmMTK9wqqNFauKpEYpWCDnsEsoKlPHOEE5uKqJj3LQp3vAbjoIYEXr+XcW2u/Zl4Jn1xh5CieCYBRLq/mFC7c9NOO1LwWJyOlPjCCETAAohQgiZhLjaXYb35eZyvPxUctpoRxMRKsqFVt8SbY1Qb5RCCNDFSUcP0NkbOj1OjAhNK41dCAX2BlJ5R/C5SFRESOTExcb3+VlATgZT4wgh45+EC6Ha2lqcfvrpOO6443DhhReir69PW75ixQqccMIJuPPOOw1WrVu3bsUFF1yAZcuWYc2aNWhujjKxmxBCSFQMdAwELWv/oAM+tRgniRCbqY4WEZIkSTMx2NeCqGzBjTVCkT3oi6YBofr7iI5x1SVAmi12m/KKUUSOxQyU5MV8+LCU5kuYJWRM0jGOEDJRSKgQeuKJJ/Duu+/igQcewFtvvYUbb7wRVqsV69evx1NPPYXa2lo8+eSTWL9+PZ577jkAgMfjwbXXXovzzz8fa9euxbx583Ddddcl8rQIIYQE4O0OjkxMk6ZrX14lE2KkJit9dIGiRkVcA0qkZjQGPTK8Q3LUqXEAMKNcP59QQqixVRdYc6oiO2Y4zGYJC6bq7wuyjevLC5VtxgIxKkTHOELIRCFhZgk+nw8PP/ww7r//fpSUKM0Opk2bBgB46aWXcM4556CsTPka6etf/zpefvllrFq1Chs3boTdbseqVasAAFdccQVWrFiB5uZm7TgiHo8HHo/HeBEWC6zWEF6fw/iHGx+oryT54D1KfniPkpto74+3Zyho2SzLLPT09CAzMzOh5xYvXYI2y0iTDT10QiFGTvY2y8jNDL/9p3uAY78L5GYCl56qL3fYR58HAKYK6Wo7GoL32VKnj2dXKuvi+R265VvATY8Al5+uNFb9/d/1dZVFY/f7efIRwN3/Vsbzaybu3wH+nUt+eI+Sm2S5PyZTZLGehAmh1tZWDA4O4vXXX8cTTzyB9PR0XHjhhTjnnHOwd+9erFy5Utt2xowZuPvuuwEAdXV1mmACALvdjrKyMtTV1YUUQqrYEjn33HNx3nnnjXqOjY0j2PqQpID3KPnhPUpuIr0/g52DQctmWmbh888/P+T/gQWyb38GgFwAgMfVhvp614jbZ6dmAsgBAHz4WRvyU8Nvf+ujueh3Z6DfDTz2Hy+AFADAgLMV9fXuUc8t3WQBoKihTTucqK9vN6x/5xP93IszOgDE9zs0qwh47FplnJliA6C7I+Sl96O+viPmY4/EvFLgyjOy0dZjxor5naivjz3FbzzAv3PJD+9RcnOo7091dXVE2yVUCPX392P//v147rnn0NTUhKuuugpVVVVwuVxIT9crXB0OB1wu5T8mt9sNh8PYGMLhcMDtDv0f0GWXXYaLLrrIeBERRIQaGxtRXl4esUIkXyy8R8kP71FyE+39SfGkaONOawdyPXnIMGUgw5qBysrKsTzVqLEIf96nVhVgtNNbMg/A08q4yx1+e1kG3t2uv69r0T+TqZWFo84DACWlgNkE+PzAgS4HKiuN/58dFKJZRy/KBeBM2O/QlClA7p+Bzl7l/Zyp6aisHMVNIg7+98fqaOzmONTw71zyw3uU3Iy3+5MwIWSz2QAAa9asQWpqKqZOnYqVK1finXfeQVpaGvr79WpXp9OJtDQlAdtut8PpNNq4Op1O2O32kPNYrdYRRc9ImEymcXFTJjO8R8kP71FyE+n9MQ3o2wxmDgLDgQxnuzPp7m+vS49Q5aRLMJlGroOZWyVD7bezvT58isSOBnm415CC6KuQ5Rh9HgBItQFVJX7saVJ6CUmSBEnS99vdpJ/7rAoTujsS9ztktQKnHunH34d7/FQWRXbOZHT4dy754T1KbsbL/UnYGVZWViIlJSXkuurqauzevVt7v3PnTtTU1AAAampqDOvcbjf279+vrSeEEJJ4zIPK92Be2QspW394drY7w+3yheJ0y/hgm4y/vyYb+wg5wu+jMqMcUP//3V4ffrtXPwy/LlKzBEBvLtrvBloCMtPURquFOaNbf8fCN09X7p3FDHz58MQfnxBCJjIJE0J2ux0nnngiHnzwQXg8Huzbtw8vv/wyli1bhpUrV+Lpp59GU1MT2tvb8dhjj+G0004DACxevBhutxvPP/88PB4PHnzwQcyZMydkfRAhhJDEkOJVvrjql/uRmpOqLXd1jFx/80Vx0g9lHPVtGRfdJGN/m748KwIhZLNKmFqqjD9vQFjTg1c+CF/nEongUhFd1DbtBtZulOEakNHvktE8LIzGynL6hMUStv5Vws7HJNSUMhpECCHRkLDUOAD46U9/ihtvvBErVqxAVlYW/ud//gdLliwBAOzatQuXXHIJ/H4/Vq9ejbPOOguAkup266234qabbsItt9yCOXPm4MYbb0zkaRFCCAkgdUhJZ3bBhZzsbG25uzO4v9ChYH4N8N5WZfz+Nn15pFGV2ZWKnbV7EGg4CFQFfLc2MCjjzU3h948mIjS9TIKairfyWuX17OXALy7WhclYWk7PqaIAIoSQWEioEMrIyMAf/vCHkOsuu+wyXHbZZSHXzZ07F0888UQiT4UQQkgYZJ+MVFmpwxwwu2HNKtTWDXYHu8kdCubX6OJCTY2TJCA9dPloELMrgefeUcbb9gULofWfKSIpFCYTYLdFfq6hRM5z7wBnHq2/F8USIYSQ5CD5q5gIIYQkFG+v3kzVY/EiNVt/6vf2BDdaPRSIjUNVMtIQsRnA7Ep9u1B1Qq9+qIuSpXON6zLTYDA8GI1QQsg7BDz+hj7HjDFKjSOEEBI7FEKEEDLJ8HTpYmfI6kVqrh5mGeoLbrR6KJgfQghFUh+kMqdKH28P0fPmAyHd7srVRtETTVocoDRwXTZfGYui6LWP9PH0MUyNI4QQEhsUQoQQMsnoE5rb+FJ9cOTrT/6+/uRoppqTIaG80LgsGgODWUIPoO31wM2PyFh6pR8ffS5DlmVs3aesK83XRYxKtEJIkiS8dZeExqckPPMbXVSJfWmnTYnumIQQQsYeCiFCCJlk9B7o1cZymoz0Al1h+F3JIYQAxTBBJJqIUEaahLICZfzBduBXD8p4fyvw//4i42Cn3oR0bhVQUQikWMR9oz9Xs1lCWaGEmRVAToZxXVkBkJZKQwNCCEk2KIQIIWSS0deqR4RM6RIyCvUnd8l9KM4oNIF1QtEIIUBPj/P59GUfbge27NXfz60GLBbdbhtQaoRixWSSgmqOxtIxjhBCSOxQCBFCyCTD2ap3KDVnmpFRmKm9Nw2aD8UphWTBVGMUJZrUOEBxjguk1wk8s06vGVKtp0WxEktESOToecbzHqseQoQQQuKDQogQQiYZ7g69V1BKVgpsOVbtvdmTTELI+D7aiJDoHCfy99f18dwq5VUUK/ELIeP7GeVMiyOEkGSEQogQQiYZg516Ax1rjhWWdL1AxuJNORSnFJIZ5cbanUibqaqINUaFOfq4S88M1NLnRLESbeQpkCNnA2ZBTzIiRAghyQmFECGETDK83bp9tj3fDlOKCR54AAA2nzXcbl84KRbJYIOdmRZdZGXpPOCbpwPHLgBeujV43ykFQHaGsnzhNH15WUF8ERyHXcJhwvFYI0QIIcmJZfRNCCGETCSGevVeQWkFSh7YoHkAVp8VNjkVsixH1VB0LFkwFdi8WxlHGxGSJAkP/FS/jhnlMnY26uvnCDVEX5oj4aZvAnXNMr55ehwnPMw3T5ewcYeMxTMZESKEkGSFESFCCElS/vjHP+Kwww7DK6+8ktDjyv26WUBGoaIuPGYlSpQGOwYHB0PudyhYKBgm5GWOsGEEHDHL+H5utfH9L78h4aGfmZCXFb8IvHK10lfo/XskmEzJISoJIYQYoRAihJAkZOfOnfjxj3+MzZs34+abb07swV36MKNIsc72pShRIruUht7e3lB7HRK+cSqwaLoiYs44Or5jHTHLKEjmVo+tQCkrlGCxUAQRQkiywtQ4QghJQm6//XZt/M477yT02Ca3Usnv9DtRllsCAPDZfIATMEtm9Lb2orCwMKFzxkp+toSPH0yMmDhytvG96hhHCCFkcsKIECGEJBmtra2ora3V3qenR1kcMwoWj/IdWL/cj8xMJd9MTtXT5XoPJk9EKJEcNh2wCG5uofoMEUIImTxQCBFCSJJRe90jOEpeCtPwn2iTKXF/qmVZhtWrOMM5BSEEu75NX1t/wuZLJuw2CccuUMYLpuqOcYQQQiYnTI0jhJAkoru+B7P+OQfz0hcg25mNZwefQV9fX8Kc3HwuH8yyEhbpl/uRkaHUCJkcuthytjnjnidZqf25hCfXAquOOdRnQggh5FDDiBAhhCQRn770KSzD31Ettx0PQIniOJ2JESdDPbp1ttvkRkqK0kDVkqHnjLk6XEH7TRQqiiT8+AIJ08sZDSKEkMkOhRAhhCQRfc192ni6eQYypSxleV9fuF2iwiv0EPKm6I1VUzJTtPFA10BC5iKEEEKSGQohQghJIlytejTGJJmwOGUxgAQKoR5d/AxZdVFkzbJq48FuT0LmIoQQQpIZCiFCCEkiBjuNzUyXpBwBIIFCqFsXQn67Xxun5qbq2/R6QQghhEx0KIQIISSJ8HYNGd4fnrIYJpgS1uS0v1VwhEvTLbPtubptnK/PeA6EEELIRIRCiBBCkghfr8/wPtOUiRmWmQmLCIlCyJSu/xfgyEvTz8HpByGEEDLRoRAihJBkIkQLnyUpSxIohHT3OdEgIb1AaNo6cU3jCCGEEA0KIUIISSJM7uA/y/MtCxKWGif2CEor0KNAGUWZ+kbuhExFCCGEJDUUQoQQkkRYBpUozYA8AL9NSVHLMmUnLCI00KGrnIwiPQqUVawLIZOH/zUQQgiZ+PB/O0IISSJsXsXGuk/uhSlD+ROdLjkSJoREa+zMkixtLKbGWTyWhMxFCCGEJDMUQoQQkiTIsoxUn+Le5jK5YdaEUDp6exKTGjckmDHkleVqY3OKGQOy0kg1ZSglaD9CCCFkokEhRAghSYLP6UMKFBEyaBmAJUsZp0hWuLoT42AgOxXLbL/sR15ZnmHdgEkRQlafLSFzEUIIIckMhRAhhCQJYjNVr80LW45VXyektMWDyS0BAFyyCwWFBYZ1HpMyv11ODdqPEEIImWhQCBFCSJLQ3dSjjf12P1LzdEHi7fYmZA7zcP2PU3aioMAohLwWZY5U2OEb8gXtSwghhEwkKIQIISRJ6N7frY1lhwx7vl177++NX5jIsgzbkJL25oQTWVlZhvVD1iEAgEkyoac1MTVJhBBCSLJCIUQIIUlCX7PuDGfKMMEqpMb5h2t74sE/4IcFSkTIYxmEJEnG9cN23QDQ29IDQgghZCJDIUQIIUlCf0u/Nk7JsSAlS7Cxdkoh9oiOod4hfWwNjjDJqbrY6j3IiBAhhJCJDYUQIYQkCa52vdmpNdeKlGzdxto8EP+f694WQdykBUeYpDR93N/aH7SeEEIImUhQCBFCSBTIsowf/OAHOOqoo/DZZ58l9NiDHbprnD3fjpQsXQhZBi2Q5fjS49obOrSx5AiOMFky9Pl6GBEihBAywaEQIoSQKHjuuedw55134oMPPsDvf//7hB7b26U7w6UXO5CSrafGpSENAwMDcR2/q6lLG1syLUHrHQVpIbclhBBCJiIUQoQQEgX33XefNn7ssccSemx/n25WkFGSaYgIpUsZ6OvrC7VbxPQ06wYItpzgpqmZhZn6tjRLIIQQMsGhECKEkAjwe/3Y8outKH1zCswwAwCOOeaYxE4ilOVkl2YZaoTSpfS4hVD/QX0Ce15w09Scshx92zZnXHMRQgghyQ6FECGEREDrq21ouHc/vmo/B6faTgMA+HyJbTpqcisCa0AeQE5RDiyCa5xDcqC3N766HVeHbsaQXpgetD6/PF8bD3S6g9YTQgghEwkKIUIIiQDXXpc2Ps66HADQ359YZ7WUQUX49Mt9yMnJgTnVDJ9ZEVuJSI0b7NLNGDJLMoPWF5QXaGNPjzdoPSGEEDKRoBAihJAI6GnUozFzLHORK+XGLUwCsXqVup1efx+ysrIAAL5UVQjFnxrnFcRNTml20Hqxbsjfn9hoFyGEEJJsUAgRQkgENHzWoI1NkgnLrMckVAj5XD6kyEpNkEtyIjVVqeGR7YpltsMUf2qcv183Y8iryAtanyI4yUkDJgwNDQVtQwghhEwUKIQIISQCBtsGDe+PsR6X0NQ4j2CdPZiizyU5lNc0KQ193fEJL8ml9w4qqCgIWm/JEOy6pTS0trbGNR8hhBCSzFAIEUJIBMgBbtLzUuYh3ZMOrzcxtTTebv04Xps+NmXqf6ZdbS7Eg2lQP1YoswRzuhmypESg0iQHmpqa4pqPEEIISWYohAghJALMLnPQskSmxw20681S/XY9hU1sfOrujK+haorXqhwHbpgswX/+JUmCz6rUBjmkNBw4cCCu+QghhJBkhkKIEEJGQfbLsA0qRgIDsi5GpltmJCw9rrupW3/j0IfWbKs2HuwwpudFg9/vR6pfqTsaNIc/jmRXXtMohAghhExwKIQIIWQUvD1emGUlItTo000TMhJgaa3S16wfR0yHS83Tndy8cVhad3d3wzFccDRkDX8cc4ZynUyNI4QQMtGhECKEkFHwtHm0cbu1XRtnmBInhPpbnNo4JVtPh7Pn27Wxrzd2S+vWplakSkpEyJ/qD7udGoGySTY072+JeT5CCCEk2aEQIoSQURho1VPJvGleLaKSIWUkLDXO3e7WxtZcPR3OUaDnyfn6wguY0WhraNPGkkMKu11abpo27mhsD7sdIYQQMt6hECKEkFHoaRQs47IAX5oiSNITmBon1v+kFepiJL1Id3eT4jCN62js0MZq+lso7Hl6BKrrQHfsExJCCCFJDoUQIYSMQufeTm1syTUDDsViOl1KR19PYoSQ2Ecoo0QXP2JqnMkd+5/s/774pjYWo0yBpGSmaOO+1sQ1jCWEEEKSDQohQsi4p6mpCTfddBOmT5+O6dOno66uLqHH793fq41TC1MhZSipZWbJDFdHfL19VHzdQ9q4sLpQG6dk68LEPBA+kjMSBw4cwDuvvaO9n3HY9LDbWoRo0VDvEAYG4rPsJoQQQpIVCiFCyLhm3bp1mDZtGq677jrs3r0bu3fvxj//+c+EzuFq0cVOeqkD5kxdLLjb3KF2iRp5uNRoUB5ESWWJtjwlSzdOUPsARcvdd98Nu6xHluz5aWG3tQgRIfYSIoQQMpGhECKEjGuefPLJoKjFwYMHEzrHoOAal1WRhZQcXZzE09tHRI329Ml9KCkRhZAuTGy+1KiP63K5cN9996HYVKwfpyi8oBIbuKZJDgohQgghExYKIULIuKahoSFoWXt7Yt3O/F26W1tBTQGsuUJvHyGlLR6sw9GefrkfBQUF2nJzuhl+KPOnyXa4XNGl4j355JPo6OhAublCW5YxKz3s9ikZohBKYy8hQgghExYKIULIuKaxsTFoWaKFkNSn/Kns9/ehsLQQ9nw9MuPrib23j3YMtw9WWRFCA5YBmM166p0kSfCkKBGpdCkdbW1tIY8Rjo0bNwIAKs2VygIT4Jga3ixBjAg5JEfU8xFCCCHjBQohQsi4Zv/+/QCAKVOmwGRS/qQl+uE9xa2kp3XJ3SgsLERagV5j4++T4z7+YKeeXudLDY4w+WzKsnQpI+q0v4aGBkiQtIhQWlUazPbwpguBqXGdnZ1htyWEEELGMxRChJBxy8DAgCZ6KisrkZubCyCxESGf2werT4nW9Pi7UVBQgHTB3lpyhm9OGilte4XzDZW1NhzAcUgOtLa0RnXs+vp6FJgKkSopUaz0GeGjQQBgCUiNoxAihBAyUaEQIoSMW9RoEACUl5cjPz8fQGKFkKddN0roN/XD4XAgsyRDWxZPbx+V1jo9ymMRXOK0OYYtrU2SCW2N0UW7GhoaUCHUB6XPDF8fBAApAalxFEKEEEImKhRChJBxi1gfVFZWppkM9Pf3J6z/jegY57ErY7uQGmcZCBYu0dLRqIsNW54taL1V6CXUuT9yYdLX14euri6DEMoYRQgZU+MYESKEEDJxoRAihIxbRCEkRoSAxEWF3C16nyB/uuLeZs3VhYnVEyxcoqVnf482dhQG9/ix5+nmDD3NvUHrw6E66lWoRgkA0mdGkxrHiBAhhJCJC4UQIWTcEi41DkicEOrY16GNTdlKPZDY2yd1KH4h1H/QqY0zSzOD1jsKHMK2fREfVxdCwxEhCUifMXJEyJRigsmu/NfgYESIEELIBIZCiBAybgmMCIn9dxLlHNfdoEdrrPmKaYJkluCSlH4+dn9wBCdaBtr1qFNueU7Q+sxiXRy5OtxB68NRX18PAJpjnL3CDnNaeMc4FbVOiBEhQgghExkKIULIuOWLSI3rP9CvjdOKddEzYFFqkNKRDp8vvl5CYlPWgurCoPWOQj2KM9g1GLQ+HA0NDcg35SNNUs57NKMEFUu6KoSUiJAsx28RTgghhCQbFEKEkHGLKoRSUlJQWFg4JkJo4KBuupBZrrvFiU1O+3ojT1cLhSz0IiqeXhy03pqjp+INRdHAtb6+3lAflDFKfZCKJVMXQn6fH3198V0fIYQQkoxQCBFCxi2qEFKbqY5Fapy3w6uNcypztfGQTVlukkzobu4J2i8aTC79T3FWSXCNUIpoqe2U4ff7Rz2mp9ODmR/Owk8cP9WWjVYfpGLJVISXSTIhFXamxxFCCJmQxO/7SgghhwCn04muri4ASlocgDGJCMnDJm1e2Yv8ijxtuS/NByjTo+9ALzAn9jmsXisgAV54NaMCEVWYAIAdaejq6kJeXl7QdiLbf7kDSzqP1L/uMgE5R2VHdD6WDL2OSE2Pe+SRR5Ceno7p06fjrLPOiug4hBBCSDJDIUQIGZcEOsYBYyOEzE5FFPTIPajI19WO7NDT2fpa+oP2ixSn04k0vwMwA4OWAUiSFLSNGBFKl9LR2to6qhDq3aooOL/sx5b0z/Ctp9fAURNZalyKILwcJgfa29vxm9/8Bl6vF/Pnz6cQIoQQMiFgahwhZFwSaJQAwJAalwghJMsybIOKPXaPvxu5uXpqnJSuCxanYH8dLc3NzcgwKbVHQ7ahkNuIdt0OyYHW1tZRj+tqUtzl2v1t+HDJ+8g5IjvicxKbqjqkNGzfvh1er5IKWFFREW43QgghZFxBIUQIGZeIQqisrAwAkJaWhtRUpfloImqEhnqGYJKVP5M9co9BCJmz9D+fA+0DQftGSnNDM1Il5Zzl9NDubJYQEaGR8A364etSTBXa/e2orKwccfug+QxNVdOwefNm7b0qOgkhhJDxDoUQIWRcEioiJEmSlh6XiIjQYJtHG/fKvUhP180GUrL1KM1gR+SW1oEc3HNQG5szQ/f4MaeaIacoIskRgRAabNGFWYe/I+oojhgRSpMcBiHEiBAhhJCJAoUQIWRcEqpGCIBBCMXb/8bToQuhQdugoX7HmmvVt+vyIlY66jtCHjMQabi8J11y4ODBg2G3A4CBA7owa5ejjwiJNUkZUga2bNmivWdEiBBCyESBQogQMi45cOCANp4yZYo2VuuEhoaG0NMTn621R4gIedOMYseen6qNfb2xN1Tt2t+tjdMK7GG3Mw+nq0USERpoFiNC7VFHcWxFNm2ca8qFx6N/DowIEUIImShQCBFCxiVi6pvooJZI5zjXQbf+JqB+J61Qd2CTe2OPPLXv088xa0pW2O1sOUq0yGFyoO1gcP1TbW0trrjiCnz88ccYOKALofYYhFBqsSCEJOWztUKZnxEhQgghEwUKIULIuKSjQ0kpy87OhsWip3IlUgj1NfVqYynbaGvtKBKsqGM3jUPz7mZtXDK9JOx29jw9WtTTYox0NTQ04IorrsAbb7yBn/3sZxho1lPjBu0DBje9SLAV69GuXJNiEFGb/Vc8kf1PtF6bGFtyQggh5FBDIUQIGRNefPFFFBQU4KKLLoLf70/48VUhFNhPR3zoj9c5ru+A3h8oJS/FsC6zOAN+Wbkukzu2P6WdnZ0YEIwWbHm2sNuK9UPOVqPyuu+++7TPeMOGDeir79PW5U3PC9mbaCSsuSmQUpR98kx5sMGGLFM2MkwZ8LsSfy8JIYSQQwGFECFkTPjzn/+M9vZ2/P3vf8cDDzyQ0GP7fD50d3cDCBZCiYwIDRzUU8zshamGdZnZmXDKiiCxDBhFUqRs3LgRGVKG9l50ogtEbHLq7tDPa3BwEPfff7/2vre3Fwe362YK5QujT2WTTJJWJ5RjykWBSReX9rLwdUyEEELIeIJCiBAyJtTV1Wnjn/70p2hpaUnYsbu6ujRHuLEUQp523SQgrTjNsC49PR39shJ5SfHEJoQ++ugjLfUMUCIx4RCd3GSnjMFBJZL01FNPBUW+3MM1Ql3+LsyeNzumc0vVhFAOSsyl2nJ7WWq4XQghhJBxxZgIoU8//RRHHHEEamtrtWW1tbVYsWIFTjjhBNx5550GW9utW7figgsuwLJly7BmzRo0NzeHOCohZLzg9/vR0NCgve/u7sYPf/jDhB1fTYsDxjY1bmi4KemAPIDsomzDuoyMDPTLSuqcbcgG2R+ZYcI999yDBQsW4N///jc2btyIKnO1ssIEOGocYfezZOkiSWyqevfddxu2M8GEtEFFtHX4OzB37tyIzisQm2CYMNMySxvbyxkRIoQQMjFIuBDy+/24/fbbMWfOHG3Z+vXr8dRTT6G2thZPPvkk1q9fj+eeew4A4PF4cO211+L888/H2rVrMW/ePFx33XWJPi1CyBfIwYMHtYiFyuOPP25ozBkPIwmhREaEMOyV0OPvQW5ermGVzWZDPxQhZIIJQ/1DER3ypz/9KT777DN89atfxfvvvI9Ks+Lo5qhJgzktdENVwBgRSpfS0dzcjM8//xzvvfceAN1CPEvKhllSjtPhb49ZCInOcbMMQogRIUIIIRODhAuhf/3rX5g3bx6qq6u1ZS+99BLOOecclJWVIT8/H1//+tfx8ssvA1By5O12O1atWgWbzYYrrrgC27ZtY1SIkHHMvn37tHFKih7J+PTTTxNyfFEIicIn8H08ESHZJ8PsUgRFt9yN3FyjEJIkCYMWXex5u0cXQi6XC319upGBqdWMFEkxQciclznivmL9kMPkQGNjo6HR6Zo1a5CdnY18k379fSl9KCkJ70Q3EqJz3EzLTG2cOoURIUIIIRMDy+ibRE5PTw8ef/xxPPzww7j99tu15Xv37sXKlSu19zNmzNDSOerq6jBt2jRtnd1uR1lZGerq6kL+B+7xeAzN/QDAYrHAag3fkV11UxoL5yqSGHiPkp9o7pFYH7Ro0SJ8+OGHAJQmqIm4x2JD0ZycHMMxRcHS1tYW83yeDg8kKM5pvf4eZGVlBR1LTpMBlzIe7BxAall41zcgOEJVbdG/MEqf7RjxXM0ZerTIIaWjsbHRkGJcVVSFFTUr0PSZ3mjWUmCGLMuG7SLFWqT/TU2T9JQ92xQbf09jhH/nkh/eo+SH9yi5SZb7YzJFFutJqBC6++67ccEFFyAz0/jNpsvlQnp6uvbe4XDA5VKeHtxuNxwOY168w+GA2+1GKB5++GGDQxIAnHvuuTjvvPNGPb/GxsaIroMcOniPkp9I7pGYAjd37lxNCO3YsQP19fVxn8OePXu0sSzLQcfMyclBV1cXDhw4EPN8g3v0aE+33A232x18LEEIbf/oc5RkFY94zO3btxvea/VBANwFIY4v4HbpTnHpkgNbt27VBI4ECTn35uGyhv8BdBM6pBRZY77+flNwcyQpU0JT+36ArYTign/nkh/eo+SH9yi5OdT3R8xMG4mECaHPP/8cW7duxU9/+tOgdWlpaejv1/txOJ1OpKUpxbx2ux1Op/E/XKfTCbs9dPrFZZddhosuusiwLJKIUGNjI8rLyyNWiOSLhfco+YnmHvX06A0/Tz75ZDz88MMAgP7+flRWVibkXFRmzpwZdMzi4mJ0dXWhs7Mz5vk6GjtRB0VE9Pi7MX/+/KA0vPSidF0U9GPUufbu3Wt4Xy0IoanH14xoROAccmIfFAMKh5SOxt567XMoNU2BuSH4z3nlYeUxX3+fsw+NaDIsS69MT8j9m6zw71zyw3uU/PAeJTfj7f4kTAh9/PHHaGho0FLg+vv7YTabsX//flRXV2P37t045phjAAA7d+5ETU0NAKCmpgb//ve/teO43W7s379fWx+I1WodUfSMhMlkGhc3ZTLDe5T8RHKPxCjEsmXLtHFLS0tC7m9nZ6c2LigoCDpmQUEBtm/fDqfTiYGBAe2Ll2jwdni1sVojFDiPo8gBbFXGXfu7Rr02tfeRihoRsmRakFaRNmLjU2uOnnaXLqVj//79mhCaIdTwiFQfXh3z520vDRZlaeV2/n4mAP6dS354j5If3qPkZrzcn4QJoa9+9as4+eSTtfd//OMfUV5ejosvvhibN2/G73//e5x00kmw2Wx47LHHtKjO4sWL4Xa78fzzz+OUU07Bgw8+iDlz5sRc4EsIOfSoQigtLQ1lZWXIzs5Gd3c3Dhw4MMqekTGSaxwAFBYWauO2traYohhiDyFvqhcWS/Cfy6zSLG3cc6AnaH0gooC797Z7Ufhb5Twz5maMKIIAo2ucY1gI+XyKvfdhGYcBIcqAZi2bFbwwQlJyUpT/IQQPCDrGEUIImUgkTAilpqYiNVX/T9JmsyEtLQ0ZGRk45v+3d9+BTdV7G8CfJG2TtummtHTQFgoUqAxlFFtAEEFAoZflQgRUvC7EK76uqzKuXhHhXl7hCq8LFbwyRWZRAUUQZG9KWzad0EIXTUeS94+Y05MmzU5Xns8/npzxy4kH2jx8fyMlBZmZmZg0aRI0Gg1SU1MxatQoALoKz4cffoi5c+figw8+QJcuXTBnzhxn3RYRNTCtVivMGhcbGwuJRII2bdrg1q1byM3NhVartfil3xJbglBBQYHDQUijVJs8J6Rt7cQM5ddvW2yzqKgIExQP4QHFKARsrx1L6d9FaeYqHamnFDJfGdTlavhKfJGdnS2MEUrwSgD+HNJU6lUKvyo/FEjzERU/1EyL5kkkEniEylCTW/vZFVGcMY6IiFoOp06WIDZr1iyD11OmTMGUKVNMntu1a1d89913rroVImpABQUFUKl0A/v1ASQiIgJnz57F7du3UVJSgoCAAHNNWKQPQgqFwmS3t7pByB6V12uDkCTAdHm/dVwYCv4cJFRZWGnyHLGiwiI87P0o5BI5cLh2v19Xv/ovEvH094C6XA2l1FeoBnnAA22qIgAAXm090eeLu/DL7N3oObW7w4FTGe2HW7m3hNfeUawIERFRy+GyIERE7km8hlBsbCwAGHR1zc3NdVoQMlUNAnRjhPSsDULVJdWouFwBv0RdN7XbebUVHs8Q0z8qIzq0EYKQusR01UisLLdcF4Lq8OtiXRDyCPAEcivhK6mtIMXK4iDT6qbWVnRVIKZ7DKZseMKq9ixRhBneq7nJHIiIiJqbpj+KiYiaFfFECfogFBERIexzdJyQVqu1GITqjhGyRFOtwZ6B+7Dnnn24tOwytFotStN1M12qtWooWpuuhITG1gYuGM82baQqv8pon1QhhV9ny13jgNpxQt4Sb8igCz/ixU69uzq3YiMPZxAiIqKWixUhInIqaypCjigvLxcWVbYmCFlTESrPKkfFFd3aZReXXEbIgBBUXda9x+ma0whsFWjyOg+lB9RQQwYZPCo9Lb6PprC2ahTUPxDyQDnCHmgND6V1P4o9Amrfw1eiRIm22GDGOO9E5wYhhSgISb2l8Aqx/BmJiIiaCwYhInIqcRASjxHSczQI3bhRu5pn3XV99GztGqfKrR3fo8pR4ewb6cLr36v2IjGoi8nrJBIJVDIVfNW+8NH4oLS0FH5+9Xdzk9yqLcJHpEYgZnK0xXsTE88c5yfx+zMIddS17SmBvINxtztHiCtC3pHeDo85IiIiakrYNY6InMpSRcjRrnGWZowDbO8aJw5CAFC4p3aa633VexEcHFz3EkGNQje/tFKiRHZ2dr3nAYBHaW1FxTvC9uqNuELTStoKPhIfREl1Ycqvqx+kcuf+SFeE194jp84mIqKWhkGIiJxKP0ZIoVAIgcSZFSFrglBQUBBkMt0YGmsqQpW5KpP7z9Wcww3NDbNBSOKr+6+v1BfXrlwz+z7eqtoxNoo2tldvxNNXh0pDESdrB6lE92M8oKd/fZfZzSeu9v2UHXyd3j4REVFjYhAiIqfKy8sDoAs/+q5UDV0RkkqlQvc4W7vGie2r2gsAZoOQLEAmbOdk1v/ZVCoVAjS1s+XVnYjAGuKqTGtZGNpIa/+/uiKo+MT4IGFuJ7T5SzjiXoh1evtERESNiWOEiMhpqqurUVSk61Ym7p7m4+MDf39/lJSUNEhFCNCNE8rLy0NBQYHFRVxVeaYrQr9X/Q5AV2GqjyK4NpwUXKq/G97NmzcRItXdr1qihleIV73n1se7TkVI/Im8Y7xRAcuLutqq3XOxTm+TiIioKWBFiMjNaDQaZGVlQaPROL1tcfUlLCzM4Ji+e1xDVISA2iBWVVWF0tJSs20KFSEpoOykq6zcDCxCtkbX1c1cRci3de2CrkVXiuo9r6ioSAhCKoUKEqntEw+IFzRtLW2NMGl47bG2nNqaiIjIFgxCRG7m0UcfRYcOHfDiiy86ve38/Hxhu24Q0nePKy8vtxhMzLE1CAGWu8dV5umCkCRQgjtX9kTCnE7Y3mmbcNxcEAqIqO3uVpJbXP995xciQBoIAKhRVpu9n/p4BnjCw09XyA+tG4SiOJkBERGRLRiEiNyIVqvF999/DwD44osvcPu2c7tSmQtCzlpU1dlBSFOjQeV1XRBKL0jH4lUfo93zsTiVd0o4x1wQCowMFLbL8o1XVT127BhWr16NG5m1035rg7T1tmeJ4s/A01oainCZLgh5tfKyei0iIiIi0mEQInIjRUVFwmKkKpUKO3fudGr71lSEAMdmjrNljJCeuSBUVVAF/NlLsEhTiI8//hiXLl3C0aNHAQDdu3eHt3f93c7kIbWTHlQVVRkcy8/PR3JyMh566CF8sfALYb8sxP4fvd7RunvxlHihlVS3jhK7xREREdmOQYjIjdQNIFu2bHFq+86uCGm1WixcuBCvv/46yst11RZ9EJJKpQgMDKz3WmvXElKJps4u1BQiJycHL730krBv7NixZu/RM7B2bSBNmVYImgCwa9cuoepWfLFE2O8VbvtECXrekcZd4HxiGISIiIhsxSBE5EbqBpDNmzdDq7W/m1Zd5iZLsKcidPDgQbzyyiuYN28epkyZAo1GI3yGoKAgSKX1/wiztmuceOrsIo0uZG3cuFHYZ0sQ8pP6GYTB/fv3C9vB0trudT6RtRMs2MrUWCBWhIiIiGzHTuVEbqRuALl27RpOnjyJbt26OaV9cQgQBxHAvkVVMzIyhO01a9bAy8tLCEIdO3Y0e601XePUlRqo8mqDUKGm0OB4p06d0LlzZ7PvIw5CSokSOTk5iI6OBqALQhHSSLSWtkbIn93YAMA/xv7FT/Vd48R8GISIiIhsxiBE5EZMBZAtW7a4JAiZqwhZ2zXuxo0bBq9XrlwJAJBIJHj//ffNXmuuIlRxtQIXFl9C7sY8hD9Qe583NIbvN3bsWLPrDwGmgxAAVFZW4uKxi/jY/z9QSpUG14S0r3/yBUsUpipC7BpHRERkM3aNI3IjpoLQ5s2bnda+Pgh5eXkhICDA4Jg9XePqG9vz8ssv45577jF7rbkxQln/voDLn11BVUEVrq24Juwv0hquAzRmzBiL9+gZWPvvSX4SP2RnZwPQzRbXC72NQhAAtO7U2miftUx1jWNFiIiIyHYMQkRuRFyJCQoKAqDrvuXIuj5i+iAUFhZmVElRKpXw8/Mzug9zTAWhLl264L333rN4rZ+fH+RyucF96bV7Plb46aepqh0jdRNFiIqKAgDEx8fjzjvvtPg+MoUM+HPuA3FFaP/+/ejj2dfkNQFhASb3W0MRroBEJvp/KwEUUQxCREREtmIQInIj4krM8OHDAQAajQaZmZkOt61Wq4WubHW7xenpq0L2VISWLVuGF198EWlpaVAoLC8eKpFIEBkZCQC4evWqwTHfdr5oMzrcYJ9Kq4IyVIn169fjueeew6pVqyx2i9OT+et+lCqlfkIQOrTnELp79jA6Nwc5VrdrikQmgSKidspuRRsFZHL+KCciIrIVf3sSuRF9AAkMDMQdd9wh7M/KynK47Rs3bkCj0S3IU18Q0k+YUFpairKyMottioPQE088gf/93/8VJiKwRtu2bQEAxcXFKC4uFvar1WqcbnfK4NxCTSEiIiPQu3dvLFmyxKpqkJ5XsC6Y+Elqg1DJ/lJ4SXSlIuUDvvi18heotWocUP5hdbv1EU+YwPFBRERE9mEQInITWq1W+JIeERGB+Ph44ZgzKkLmZozTs3WckD4Iibu52SImJkbYvnLlCgDg5s2beOCBB/D4WxNxsOqAcLxQUyhUkGzlE6YLI3KJHEXXipCfn4/YojjheKdHO+L3nnsw/uYYSIfb9RYGFKK1hHxMzCJHRERElnHWOCI3UVxcDJVKt3homzZt0KFDB+GYMypC5maM06u7qKr4HkzRByHxVNi20FeEAF0QCg0NRUpKCs6fPw8AWKNajd5efQAAeZpcg/uzhXgmt6q8avyx7w/0+bNdtUyNVgNCsHXrVhw/fhxJSUl2vYeYdxQrQkRERI5iRYjITYgrMG3atEH79u2F186oCJlbTFX8vqbux5Tq6mrcvHkTgP1BSFwRunz5MhYsWCCEIAA4XXMKX97+HAeq/sC6ijV2ByFxMFGUKXBy40kE/bmAqrarBjJvGfz8/JCSkgIPD8f//UnZ0VfY9kswnpWOiIiILGNFiMhNiINHREQElEol2rRpg9zc3EapCFkKQoWFtYubOqsidOzYMeF1XFwcLl68iLWqNViLNQBgd9c48ZTWraStkPNrHnr++brN/eGmL3JA+Ohw3PzjFiQyIGyk/VNxExERuTNWhIjchHjKan1lRj9OKD8/HyUlJQ61b00QsmVRVfFECc6oCF25cgXp6ekAgODgYKSmphqdb3fXONGYnVBpa2jzaqfkjhsQZ+oSh8jkUiQu6IKuH3aB1JM/xomIiOzB36BEbqJu1zgABmN0xF3G7GFrELJUEXJGEBLPMHf69Glcu6ZbPDUhIQHJyclG5zuja1xraWu0kdZ+Tr/27LpGRETUFDEIEbmJul3jADh15jhrZo2rO1mCOc4IQt7e3sK9nDhxQtifkJCAfv36GZ1vd9c4g4pQKMJluiBUI6uBV6iXXW0SERGRazEIEbkJSxUhZwUhmUyGkJAQk+f4+fnB19fX6H5McUYQAgzHCeklJCQgIiICsbGxwj4vLy8EBwfb9R4yHxngr9sOl4UjTKqriKlb1Ti0eCoRERG5DoMQkZswN0YIcHwKbX0QCg0NhVRa/48WfVWoISpCgOE4Ib2EhAQAwN13321wX46EFnm4rvLTShoKD4luHhqfWB+72yMiIiLXYhAichP6Coy/v79QlXGka9ypU6eE8KTVaoXps+sbH6SnD2ElJSUoLy+v9zxXV4QAwyBkb7c4PWWM8Vig1nfYf99ERETkWpw+m8hN6IOQeMICpVKJ8PBw5OXl2VQR+u233zBgwABIJBLMnj0bKpUKNTU1ACxPOFB3Cm1xGNNqtdi2bRtat25tEITqG3NkjboVIU9PT8TF6WZyEwehqKgou98DAJSxShSiyGBfSGfTXQSJiIio8TEIEbmBsrIylJWVATAMQoBunFBeXp4whba/v7/F9n766ScAuuDyzjvvGBx75plnzF5bd+Y4cRD617/+hVdeeQVeXl4G4ceZFaEOHToIi5r26NEDkyZNwq5du/D888/b/R6A4VpCej5x7BpHRETUVLFrHJEb0E8bDRhXbMRBxNoptK9cuWJy/+LFizF69Giz19Y3hfb169cxa9YsAEBVVZVwzz4+PvDxsT9Q1K0I6bvFAYBEIsFXX32FK1euoH///na/B2A4hbYegxAREVHTxSBE5AbEQUi8tg5g34QJ4iAkk8kgk8mwYMECq6oq9U2hPXv2bJSWlhqd70g1CDCuCImDkDOJF1UFAK1MazCtNhERETUt7BpH5AauXr0qbNcNQvrxMgBw6dIlq9rTB6GAgADk5eXh5s2bRl3u6mOqIpSeno6lS5eaPN/RIBQSEgIfHx/cvn0bgOuCUN2ucfJIL0hknDqbiIioqWJFiMgNiCtCdScFEAehixcvWmxLo9EI7bVt2xYKhcLqEAQYVoSys7MBAB988AHUajUAICkpyeB8R4OQRCIxqAq5KgjJw+SQeNYGn4AOAS55HyIiInIOBiGiJmLdunV4/vnnLa6vYw9zFSHxoqLWVISuX7+OyspKAKanprZE/P769zt8+DAA3aKmmzdvNpiwwdEgBACdO3cGAMjlcnTq1Mnh9kyRSCVQRNRWhTg+iIiIqGlj1ziiJqC4uBiPPfYYKisrcfz4cfz2228OLe5Zl7mKUFhYGLy9vVFRUWFVRUg8PsieIOTr64s2bdogNzcXmZmZ0Gq1wiQN7dq1Q0hICMaNG4cvvvgCgHOC0Ny5cyGTyTBq1CirZsWzl3eUAhWXKwAAPnHGkycQERFR08GKEFETkJGRIVRZ9u7di++//96p7euDkJeXl1GwkEgkQlXo0qVL0Gq1ZttyNAgBuimsAaCgoADnzp1DRYUuPLRv3x4AMHXqVOHcO+64w673EOvatSvWrFmDxx9/3OG2zPGOrA0/PrGsCBERETVlDEJETUDdLmmvvfYaqqqqnNa+vmtcVFSUyUqTPgipVCrk5+db1RZg3M3OWuKZ6rZv3y5s64NQcnIyNmzYgGXLluHRRx+16z0aQ3BKEABA5itD4F0cI0RERNSUsWscURNQt0taVlYWli5diunTpzvcdllZGW7dugWg/uBSd8KE8PDwettzZkUIANLS0oRtcUCytB5RUxT1cCQUbRTwjlJAHipv7NshIiIiM1gRImoCTI3N+fe//+2Uts2ND9KzZQptZwehX375RdjWV4SaK4lMgtDBraDsqGzsWyEiIiILGISImgBx+GjXrh0AXTgqLy93uG1rgpB45jhLEybou8ZJpVKDqbBtIa78qFQqYbu5ByEiIiJqPhiEiJoAffjw8fFBSkqKsD8rK8vhtq0Z02NPRSgiIgKenp523ZM4COlJpVKDQEZERETkSgxCRI1Mq9Xi8uXLAHSVGfE6NxkZGQ63b2vXOFMVoczMTDz33HPYunUrCgoKANjfLQ6onUJbLDo6GnI5x9UQERFRw+BkCUSNLC8vT+geFhsbazB+xtlBqL6KUFBQEPz8/FBaWmoUhHJzczFo0CBkZ2cb7HckCAG6cUK5ubnCa3aLIyIioobEihBRIxN3RYuLi0PHjh2F15mZmQ63L+4aV19FSCKRCFWhK1euQK1WAwAqKiqQmppqFIIAx4NQ3e5xprrLEREREbkKgxBRIxNXYOLi4gwCgTMrQqYWUxXTj8+prq5GTk4OAOCll17CgQMHTJ7vjIqQGCtCRERE1JAYhIgambgiFBsbC19fX0RGRgJwbkWovsVU9eqOE1Kr1fjqq68A6Mb0rFu3zuB8exdT1WMQIiIiosbEIERkpbKyMuzfvx/V1dVObbduRQiA0D3uxo0bKCoqsrttaxZTrfve+nvKzc1FVVUVAGDIkCFITU3Fxx9/DLlcjjZt2mDQoEF23xfArnFERETUuBiEiKxQWlqKu+66C/369cOcOXOc2rapICSulthbFdJoNPjjjz+E1/WND6r73vp7MrVw6siRI3Hx4kVcvHgRfn5+dt2XXt3go18/iYiIiKghMAgRWeHtt98Wxuts2LDBqW3ru8b5+/sjMDAQAByaMCEzMxOvvvoqwsPDMWTIEGG/pSAkDiIXLlwQpvQGDMcDhYWFOWWaa19fX6HdyMhIh4MVERERkS04fTaRBYcOHcLHH38svM7KyoJGo4FU6vi/I6jVaqHyEhcXJ4zhEQchWyZM+PbbbzFx4kRotVqjY4MHDzZ7rTgInT9/3mRFyNnmz5+P+fPnY+bMmS5pn4iIiKg+DEJEZqjVajzzzDPQaDTCPpVKhZycHIsVFmvk5OQIY470s7YB9neN+/rrr4UQ5OnpiWHDhiEpKQnDhg1Dr169zF7r4+OD8PBw5OXl4cKFCwZBKCYmxup7sMWECRMwYcIEl7RNREREZA6DEJEZv/zyC44cOWK0PzMz0ylB6Pz588K2eIxOu3btIJVKodFobKoIXbhwAYCu29nFixfNTpdtSvv27ZGXl4e8vDycPXtW2O+qihARERFRY+EYISIzfvvtN2G7X79+wnZWVpZT2j9z5oywnZCQIGx7eXkJFaKMjAyTXd3qUqvVwnij9u3b2xyC9Nfp7du3D4CushQWFmZzW0RERERNGYMQkRl79+4VtqdMmSJsO2N9H8AwCHXp0sXgmH6cUFlZGfLy8iy2lZ2dLXSzs3cGNvF1KpUKgG7abWeMhyIiIiJqSvjthqgeNTU12L9/PwAgIiLCYAY2Z1WETp8+LWzXDUKdOnUSttPT0y22pe8WB9gfhEwtaspucURERNQSMQgR1ePUqVMoKysDACQnJ6Nt27bw8vIC4LyKkD4IhYWFISQkxOBY586dhW1x5ag+zghCpq5z1UQJRERERI2JQYioHuJuccnJyZDJZEJQOH/+vMFMcva4fv06rl+/DgDo2rWr0XFxhUg8cUF9WBEiIiIish6DEFE96gYhAIiPjwcAVFRUICcnx6H2xVUeU0FIXBFqqCDUunVr+Pr6GuxjECIiIqKWiEGIqB76IOTj44Pu3bsDMFzfx9FxQubGBwFAq1at0KpVKwC2BSGJRGJ3dzaJRGIUohiEiIiIqCViECIy4dq1a8KCon379oWnpyeA2ooQ4Pg4IUsVIaA2IOXm5uLWrVtm29MHocjISCgUCrvvq273OAYhIiIiaokYhKhZq6qqwoMPPojo6GgcOnTIae3u3r1b2NZ3iwMatiIEWO4et2DBAoSFheH9998XxhvZ2y1OjxUhIiIicgcMQtSsrV27Fps3b8a1a9fwySefOK3dVatWCduDBw8WtsVByNGKkLkZ4/TMBaEbN27gjTfeQEFBAd566y1hv6NBSFwRatWqFXx8fBxqj4iIiKgpYhCiZk0cfqxZa6eumzdvIi0tDZmZmcIscIWFhdi2bRsA3fpBAwYMEM6Pjo52yhTalmaM0zMXhFasWCEsoCrmzIoQq0FERETUUjEIUbN18uRJ7NmzR3h97tw5m9sYPHgwhg8fjo4dOyI4OBjz5s3DmjVrhIDxyCOPQCaTCeeLp9DOysqCWq226n3Wr1+Pbt26YcmSJQAMxwfV1y2u7jHxNVqtFl988YXJaxwNQuKqV2xsrENtERERETVVDELUbC1dutTgdWFhIQoLC62+vri4GMeOHTN4/frrrxt0M5s4caLRdYmJiQAAlUpldVXo3XffxcmTJ/HCCy/g4MGD2LFjh3DMXEUoMjISfn5+AAwrQocOHcLJkycBAEql0uAaZ3SNe/LJJxEdHY2XXnrJobaIiIiImioGIWqWysrK8M033xjtt6UqdPXqVWG7devWwnZRUREAXTVGP222WI8ePYRtcZAy59SpU8L2xIkT8cEHHwDQTVc9cODAeq+TSCRISEgAAFy6dAkVFRUAYFAN+uijj4T7lMlkBhUde3322We4cuWKQbdAIiIiopaEQYiapZUrV6K0tBSAYUUkIyPD6jbEQWjatGmYMWOGwfHHHnsMEonE6DpxODp+/LjF97l9+7bB64yMDKHr3auvvmowDsgUffc4rVaL9PR0qFQqfPvttwB0axw98sgjWLVqFUaPHo2PP/5YWHuIiIiIiOrn0dg3QGQrrVZrMEnCG2+8IXRns7ciFB0djalTp+LEiRPYuXMn5HI5HnvsMZPX2VoRysvLM7n/jjvuwJw5cyxeL+46d/LkSVRVVaGkpAQAkJqaCn9/f/j7+2PDhg0W2yIiIiIiHVaEqNnZv3+/UInp06cPHn74YeGYI0HIw8MDGzduxKJFi/Djjz8iJibG5HWRkZHCdNfWBKHc3FyjfXK5HN988w3kcrnF68XB68iRIwbvmZSUZPF6IiIiIjLGihA1O+Jq0LPPPouYmBjI5XJUVlbaHYSioqIAAL6+vpg+fbrZ6yQSCbp3746dO3ciLy8P+fn5CAsLq/d8cUXovffeQ6dOnZCQkGB2kgSxnj17CttHjx5FVVWV8FockoiIiIjIeqwIUbNSWFiI1atXAwCCgoLw0EMPQSaTIT4+HoBtU1rXrQjZQhxALI0TEleEIiMjMXbsWKtDEKBb1FQf1I4dO4YjR44Ix7p162Z1O0RERERUi0GImpVvvvkGlZWVAIDJkyfD29sbANCpUycAQFVVFS5fvmxVW/ogpFQqERAQYNN92DJhgjgIhYeH2/Q+enfeeScAoKSkBAcOHAAAxMXF2XzfRERERKTDIETNysGDB4XtSZMmCdsdO3YUtq3pHqfVanHt2jUAumqQqdnhzLFlwgRx17g2bdrY9D564u5xWq3W6B6IiIiIyDYMQtSs6BcwFa+vA9RWhADrglBRUZGwJo+t3eIAICEhAV5eXgAsByFnVITEQUjP1BpHRERERGQdBiFqVrKysgDowotCoRD22xqEHBkfBABeXl7C+j7nzp0TQpUp+iDk4eFh9xo/poIQK0JERERE9mMQomajsLAQN2/eBAB06NDB4Jg4CKWnp1tsy9EgBNRWZNRqtdn31HeNCwsLg1Rq31+56OhoYcpuPQYhIiIiIvs5LQhVVVVh9uzZGDFiBAYOHIhp06YJ/3oPAMuXL8eQIUMwePBgLFq0SBjnAACnT5/GI488guTkZEybNs3kuitE+m5xAIRZ4vSCg4MREREBQDeOSDzFtCnOCEKdO3cWts+ePWtwTKvVory8HGq1GgUFBQDs7xYH6LoCiqtCgYGBaNu2rd3tEREREbk7pwUhtVqNyMhIfPnll9i5cycGDBiAV155BQCwZ88erF27FsuXL8fq1auxZ88ebNy4EYAuQP3P//wPHn74YezcuROJiYl45513nHVb1IKIg3XdihAA3HvvvQCA8vJy/PHHH2bbMrWGkK30XeMAwyC0a9cudOvWDQEBAZg3bx40Gg0A+ydK0BMHoe7du9s8wQMRERER1XJaEPL29sZTTz2FsLAwyGQyPPTQQ8jJycGtW7ewdetWjBs3DlFRUWjVqhUmTpyIbdu2AQAOHz4Mb29vjB49GnK5HE8//TTOnDnDqhAZMVcRAoAhQ4YI2z///LPZtlxREdJqtfjrX/+KwYMH49SpU1Cr1ZgzZ45wjiMVIcA4CBERERGR/Txc1fCJEycQHByMwMBAXLx4ESNGjBCOdezYEUuWLAEAXLhwweBLrbe3N6KionDhwgWT/4JeVVVl1O3Jw8NDmMHLFP2/yOv/S65z/PhxPP3008K4mJ49e+Lbb7+Fr6+v2euseUbiINS+fXujcwcNGiRs//zzz3j33XfrbUschCIjI+36sxETEwO5XI7KykqcOXMGaWlpWLZsmcE5+jWPAF0QcuTP4IgRI9ChQwcUFBRg8uTJDf7nmX+PmjY+n6aPz6jp4zNq+viMmram8nysHZPtkiBUVlaG999/H8899xwA4Pbt21AqlcJxX19f3L59GwBQUVFh9CXZ19e33lm4vvzyS3z66acG+8aPH48JEyZYvC/xl19yjTfeeAOHDx8WXmdnZ+Ojjz7C5MmTrbre3DM6ffo0AN14GQ8PD5MLp8bHxyMrKwt//PEHTp06BT8/P+FYWVkZtmzZgoyMDGERVH9/fxQWFqKwsNCq+6srLi4O6enpyMzMxPr164X9iYmJOHXqlMG5Xl5eVi/2Wp9t27ahuroacrnc4bbsxb9HTRufT9PHZ9T08Rk1fXxGTVtjP5+4uDirznN6EKqsrMQrr7yClJQUjB49GgDg4+ODsrIy4Zzy8nL4+PgA0FWAysvLDdooLy+Ht7e3yfanTJmCxx57zGCfNRWhq1evIjo62u5Zu8gyrVaLI0eOAABkMhnUajUAYOfOnWarM4DxMyovL0dxcbEwAQJQ+5cqOjraYAFVsfvvvx+LFy+GWq3GhQsXMGrUKFRUVOC1117D8uXLjf6sxcTEICYmxu7P3K1bN6Snp6OmpgabN28W9i9duhQpKSkG53bp0sWh92ps/HvUtPH5NH18Rk0fn1HTx2fUtDW35+PUIFRTU4M333wToaGhmDFjhrA/Li4OWVlZwhfDjIwMtGvXDgDQrl07fP/998K5FRUVuHbtmnC8Li8vL7OhxxypVNosHkpzlZGRgevXrwMAhg0bhkuXLuHMmTPYu3cvcnNzERkZabENqVSKiooK9OvXD2fOnMGKFSvw6KOPGkydHR8fX+9zvO+++7B48WIAugCWmpqKr7/+WuiKWdeECRMc+jMhnjBB3x2wXbt2SE5ORrdu3XDixAnheGRkZIv488e/R00bn0/Tx2fU9PEZNX18Rk1bc3k+Tr3D9957D5WVlZg1a5bBjFYjRozAunXrkJ2djRs3bmDlypUYPnw4AOCuu+5CRUUFNm3ahKqqKnz++efo0qWLwzNsUcPbu3evsJ2cnIzx48cD0FWK1q1bZ3U769atw+nTp6HVavHWW29BrVZbnDFOb+DAgZDJZABqJ0zYvXu3cHzy5MnYsWMH9u3bh3PnzuHvf/+71fdlinjCBL3k5GQAQGpqqsF+/pkmIiIiajqcFoRyc3OxadMmHD16FIMGDUL//v3Rv39/HD16FCkpKRgzZgwmTZqE8ePHIzk5GaNGjQKgq/B8+OGHWLlyJQYNGoTjx48bzLRFzUd9QQgA1qxZY3U7K1asELYvXbqEtLQ0izPG6QUEBKBPnz4AdDO5ZWdnY9++fQB0XTQ//fRTDB48GElJSfV2r7OFuCKkV18QCgsLc/j9iIiIiMg5nNY1rk2bNjh06FC9x6dMmYIpU6aYPNa1a1d89913zroVaiT6IOTh4YHevXvDx8cHXbp0EbrHZWdnW+wel5OTgx07dhjsW7JkCXr37i28NlcRAnTTaOvDz4oVK4RJBXr37g0PD+cOi+vQoQOkUqnB7Cj6INSjRw/ExcXh4sWLiIqKgkKhcOp7ExEREZH9mn7nPWoWCgsLkZ6eDgC48847hckwxN3jxLOq1WfVqlVGUy6mpaVhy5YtwmtrgpDewoULhe2kpCSL728ruVyO9u3bC68DAwOFKpFEIsHy5csxevRoLF261OnvTURERET2YxAip/j999+FbX1FBADGjBkjbO/atctiO+JucfoKolarFabklkql9U6koZeUlCQEsYKCAoP9riAeJ9SvXz+DwYEDBgzAhg0bMHLkSJe8NxERERHZh0GIrKbVavHll1/iq6++glarNThWd3yQXmJiIgICAgAA+/btM7pO7Pjx4zh27BgAXTe2efPmGc0Q+NJLL1nsYubl5YWBAwca7XdVEBKPE6o7ZTYRERERNU0MQmS1tLQ0TJ06FZMnTzaY8vzGjRv473//K7wWByGpVIq+ffsC0E0vfeXKFZNta7VazJs3T3g9depUhIaG4tNPP0Xfvn0xffp0nDlzxqCrmzni7nEAEBsbi/DwcKuutdUDDzwAQDc26i9/+YtL3oOIiIiInItBiKy2Z88eYfvrr78GAFRVVWHs2LFCwBkwYIBR4BBXYvbv32+y7U2bNgnH4uPjMXXqVADApEmTsH//fixatMjkVNX1qRuEXFUNAnTB79SpUzh79qxN90hEREREjYdBiKx29uxZYTstLQ0lJSWYPn26sE5PeHg4Vq5caXSdpSBUXV2N119/XXhtqkucrRITE9G6dWuT9+AKXbt2NTutNxERERE1LQxCbuLrr7+Gv78/JBIJJBIJRowYgaqqKpvaEAehyspKvPPOO1i2bBkAQKFQ4IcffkBUVJTRdfqucQCEaa31NBoNpk+fjnPnzgHQjbFxRvcyqVRqUBW6++67HW6TiIiIiFoOBiE38e6776K0tFR4vW3bNpsWOa2qqjJY1BQAFi1aJGzPnz9fWMi0ruDgYHTq1AkAcPToUVRWVgLQhaAXXnhBmFpaKpVi/vz5kEgkVt+XOW+//Tb69euH6dOno1evXk5pk4iIiIhaBgYhN5CTk4NLly4BAPz9/YX9S5YssbqNrKwsqNVqk8fi4+PxzDPPmL1e3zWtqqoKR48eBaALUp988gkAXQj66KOP6g1T9khISMDvv/+ORYsWOS1cEREREVHLwCDkBsRTW7/wwgtITEwEoOumpg8lloi7xcnlcoNj7733Hjw9Pc1eLx6jo+8eJ14zaPny5UhNTbXqXoiIiIiIHMUg5AbqrvHz/PPPC6//85//WNXGmTNnhO2nn35a2O7VqxfGjRtn8XpxENq7dy+Ki4uFNYO6deuGxx57zKr7ICIiIiJyBgYhNyAOQv369cPEiRPh5+cHAFi5ciVu3rxpsQ1xReivf/0rZs6ciQEDBuDrr7+GVGr5j1FiYiICAwMBAD/++CN27doFjUYDQDflNhERERFRQ2IQauHKy8uF7m9du3ZFUFAQlEolnnjiCQBARUUF1q9fb7EdfRCSyWTo0KED5s+fj19//dXqdXM8PDyEhUdLS0sxd+5c4RiDEBERERE1NAahFu7AgQPCJAfiKaTHjx8vbB86dMhsG2q1Gunp6QB0EyPYu8aPeFrsI0eOCNv9+/e3qz0iIiIiInsxCLVwdccH6fXo0UPYFocSUy5fvgyVSgUAVleATBk2bBgUCoXBvo4dOyI8PNzuNomIiIiI7MEg1Mhqampw+PBh7Nu3DwcPHrR5kVNL9uzZI2yLg5C/vz86dOgAADhx4gRqamrqbUO8CKojQcjX1xf33XefwT52iyMiIiKixsAg1MgeeOAB9OrVC3fffTf69OmD/v37C5MIOEqj0WD//v0AgNatW6N9+/YGx3v27AkAUKlUQte3unbv3o1p06YJrx1dmLTuFNkMQkRERETUGBiEGtHx48exfft2g30HDhww2mevzMxMFBcXA9BNX113UdE777xT2Da1ntDu3bsxfPhw3L59GwAwYsQIjB492qF7evDBBw1mmWMQIiIiIqLGwCDUiL755hthu2/fvsL2kiVLbG6rurraqHvbgQMHhO0+ffoYXaOvCAHG44RMhaB169ZBJpPZfG9ioaGhGDFiBADdOKWYmBiH2iMiIiIisgeDUCNRq9X49ttvAQCenp7YuHEj2rZtCwDYunUrLl68aHVb+/btQ0BAAHr06IHs7Gxh/8GDB4Xt3r17G11XXxD6/fffTYaguhMd2Ourr77CN998gy1btjilPSIiIiIiWzEINZIdO3YgNzcXADBy5Ei0bt0azzzzDABAq9Xik08+sbqtDz/8EBUVFTh9+jRGjx4tBBhxEDI1tic0NBRRUVEAgGPHjgljk2bMmOGyEAQAwcHBmDhxIiIiIpzWJhERERGRLRiEGom4W9zjjz8OAHjqqaeENXo+//xzVFRUWGxHpVLhxx9/FF4fPnwYkydPRlVVFY4dOwZAt/ZPcHCwyev144RKSkpw4cIFqFQqoToUHx/v9BBERERERNQUMAi5WHl5ObRarcG+srIyrF+/HgAQFBSEkSNHAtDN7KZf6LSoqMiqSRN27dolVG/01qxZg1deeUVY+8dUtzg9cfe4o0eP4syZMwYLsDIEEREREVFLxCDkQl988QUCAgLQrVs37Nq1S9i/fv16IbxMmDABcrlcOPbwww8L29u2bbP4Hps2bRK2n3zySWF78eLFwrapiRL0xDPHHTp0SKgiAUD37t0tvj8RERERUXPEIOQiWq0W//znP6FWq3Hq1CkMHjwYU6ZMQXV1tUG3uEmTJhlcN2jQIKF7XFpamlE1qe576IOQl5cX/v3vf+Pee+81Os9cRUg8W92uXbsMglCPHj3MfkYiIiIiouaKQchFTp48iaysLIN9y5cvx6uvvoodO3YAANq3b49+/foZnOPr6yusrXPlyhWcPXu23vc4duwYrl27BgAYPHgwlEol/v73vxucI5PJDLq/1RUWFobExEQAuvFFv/76q3CMFSEiIiIiaqkYhFxEPwYIAEaNGiUsZrpo0SKhyjNx4kSjRU4BYPjw4cK2ue5x4vd48MEHAQADBw5EcnKysD8xMRE+Pj5m71VfRdJoNDhx4gQAICoqCiEhIWavIyIiIiJqrhiEXGTdunXC9n/+8x88++yzRudMnDjR5LXWBKGKigosXboUgK7qM3r0aACARCIxqArdfffdFu/VVHc6dosjIiIiopaMQcgFMjIycOrUKQBAv379EBkZiX/84x8IDQ0Vzrn77rsRHx9v8vqEhATExMQAAH777TeUlZUZnfPVV1/hxo0bAIDx48cjMjJSODZs2DC8//77GD9+PF5//XWL9ztw4EDIZDKDfewWR0REREQtGYOQC6xdu1bYHjNmDADdNNnz588X9j/99NP1Xi+RSISqUFVVlTCmaOHChejRowc++ugjLFy4UDh/5syZRte/8cYbWL16Ndq2bWvxfv39/Y1mlmNFiIiIiIhaMo/GvoGW5tixY3jvvfeE1/ogBABPPPEEfH19UV5ebjRbXF0jR44Uur6tX78effr0wauvvgqNRoPjx48L5w0aNAh33XWXw/c9ZMgQ7Nu3T3jNIERERERELRmDkBPl5eVh1KhRwhpBTzzxBNq1a2dwzrhx46xqa8iQIfD390dJSQl++OEHJCYmQqPRGJ336quvOn7j0I0Tmjt3LgBAqVQa3TcRERERUUvCrnFOolKpkJqaiqtXrwLQrc+jr+jYQ6FQYNSoUQCA4uJiIaQAQLdu3QAAKSkpuP/++x2461pJSUkICgoStqVS/tEgIiIiopaL33ad5NChQ8JipFFRUdiwYQMUCoVDbU6YMEHYLi0tBQDccccdOHr0KM6dO4edO3eanH7bHnK5HOvWrcMLL7yAxYsXO6VNIiIiIqKmil3jnCQlJQW//PILJk6ciDVr1iA8PNzhNocOHSp0j9N75JFHIJVK0bFjR4fbr2vQoEEYNGiQ09slIiIiImpqWBFyoqSkJKSnp6Nnz55OaU8ulwvd4/Qeeughp7RNREREROTOGISczMPDuUU2cfe4vn37chIDIiIiIiInYBBq4oYNG4akpCR4eXnhzTffbOzbISIiIiJqEThGqInz8vLC77//joqKCvj4+DT27RARERERtQisCDUDEomEIYiIiIiIyIkYhIiIiIiIyO0wCBERERERkdthECIiIiIiIrfDIERERERERG6HQYiIiIiIiNwOgxAREREREbkdBiEiIiIiInI7DEJEREREROR2GISIiIiIiMjtMAgREREREZHbYRAiIiIiIiK3wyBERERERERuh0GIiIiIiIjcDoMQERERERG5HQYhIiIiIiJyOwxCRERERETkdhiEiIiIiIjI7TAIERERERGR25FotVptY98EERERERFRQ2JFiIiIiIiI3A6DEBERERERuR0GISIiIiIicjsMQkRERERE5HYYhIiIiIiIyO0wCBERERERkdthECIiIiIiIrfDIERERERERG6HQYiIiIiIiNwOgxAREREREbmdZhmEli1bhvHjx6N3797Yvn27sF+lUuG9997Dfffdh6FDh+Kbb74xef3y5cvRq1cvnDx5UtiXnZ2N559/Hvfccw+GDx+OL7/80uWfo6Wy9/n06tULKSkp6N+/P/r3748vvvhCOLZw4UKMHj0aAwYMwOOPP44jR4402OdpiVzxjABg48aN+Mtf/oKUlBSMGzcOly9fbpDP0xLZ+4zKysowZ84cDB48GPfccw/eeustg2vffvttDBgwACNHjkRaWlqDfZ6WyBXPSC8nJwfJycl4//33Xf45WipXPB9+V3Aue57R0aNHhd9B/fv3R3JyMnr37o2bN28C4PcFZ3PFMwKazvcFj0Z5VwdFR0fjlVdewdKlSw32f/7558jJycH333+PsrIyPPvss4iPj0e/fv2EcwoKCpCWloaQkBCDa+fPn4/IyEgsWrQI+fn5ePLJJ9G1a1f06dOnQT5TS+LI89mwYQNatWpl1KZSqcTixYsRGRmJnTt3YubMmdi0aRN8fX1d/nlaIlc8o927d2PFihX46KOP0K5dO2RnZ8PPz8/ln6WlsvcZzZ49G2FhYdi4cSMUCgWysrKEa5ctW4bi4mJs3boV58+fx0svvYTOnTsjJiamQT9bS+GKZ6S3cOFCdOrUqUE+R0vliufD7wrOZc8z6tmzJ3777Tfh3O+++w4///wzgoKCAPD7grO54hk1pe8LzbIiNGLECCQlJcHLy8tg/759+/Doo49CqVQiPDwco0aNwpYtWwzO+de//oVnnnnG6Nrc3FwMHToUHh4eiIyMRI8ePXDhwgWXf5aWyJHnU59p06YhOjoaUqkUQ4YMgVwux5UrV1xx+27BFc/os88+w9/+9je0b98eEokEUVFRCAgIcMXtuwV7ntH58+eRnp6Ol19+GUqlEh4eHkhISBCu3bp1K6ZNmwalUonu3btjwIAB+PHHHxv0c7UkrnhG+uu1Wi369u3bYJ+lJXLF8+F3Bedyxu+ibdu2Yfjw4cJrfl9wLlc8o6b0faFZBiFztFqtwbb4B9ShQ4dQXFyMQYMGGV03fvx4bN++HVVVVbhy5QpOnjyJXr16Ncg9uxNzzwcAJk6ciOHDh2PWrFm4deuWyTZycnJQUlKC6OhoV96q27LnGanVapw7dw5ZWVkYMWIERo0ahU8//dSgLXKe+p7R2bNn0bZtW7z99tu49957MWnSJBw9ehQAUFJSgsLCQsTHxwvXduzYkV/iXMSeZwQA1dXVWLRoEWbMmNHQt+xW7H0+/K7QcCz9LgKAq1evIiMjA0OGDDHZBr8vuJY9z6ipfV9oUUEoKSkJ//3vf1FaWoqcnBxs3rwZKpUKAFBTU4OFCxfib3/7m8lru3fvjpMnT6J///4YM2YMRo8ebfCFgRxn7vkAwKefforNmzfj22+/hUqlwpw5c4zaqKmpwaxZs/D4449DqVQ25O27BXufUVFREdRqNQ4ePIhVq1bh//7v//DTTz9h06ZNjfVRWixzz6igoAB//PEH+vTpg+3bt2Py5MmYOXMmiouLcfv2bchkMigUCqEtX19f3L59u7E+Sotl7zMCgJUrVyI5OZlf3FzIkefD7woNw9LvIr1t27ahX79+JqsJ/L7gWvY+o6b2faFFBaEnn3wSERERGDduHKZPn457770XoaGhAIA1a9agR48eJn9gqdVqvPTSS0hNTcXevXuxceNG/Pzzz/j5558b+iO0aOaeDwD07NkTHh4eCAoKwsyZM7F3715UV1cLx7VaLWbNmoWgoCBMmzatMT5Ci2fvM5LL5QCAJ554An5+fggPD8f48eOxd+/exvooLZa5ZySXyxEZGYnU1FR4eHhg8ODBiIyMxMmTJ+Hj4wO1Wm3wi6q8vBw+Pj6N9VFaLHufUUFBATZu3IipU6c28ido2ex9Pvyu0HAs/S7SS0tLM+hypcfvC65n7zNqat8XWlQQ8vb2xltvvYXt27dj7dq1kEgk6NKlCwBdt7i0tDQMGzYMw4YNQ35+PmbMmIGNGzeipKQE169fx7hx4+Dh4YGIiAjcc889OHz4cCN/opbF3POpSyrV/dEUl0o//PBDXL9+HXPnzhWOk3PZ+4z8/f2NfgCyW5xrmHtG7du3r/c6f39/hISEGAz8zsjIQLt27Vx+z+7G3md05swZ5OfnY8yYMRg2bBhWrFiBLVu24MUXX2yoW3cL9j4ffldoONb8Ljp9+jQKCwvRv39/o+v5fcH17H1GTe37QrP801FTU4PKykpotVphW6PRID8/Hzdu3IBarcb+/fuxadMmPProowCAWbNmYfXq1Vi5ciVWrlyJ0NBQzJ49G0OHDkVQUBDCwsKwYcMGoZ1ff/3V7A9Eqp89z+f8+fPIyMiAWq1GSUkJFixYgL59+wqD85YtW4bjx49jwYIFRgP2yHaueEYPPPAAvv76a5SXl+P69etYt24dUlJSGvNjNmv2PKNevXpBq9Vi8+bNUKvV+PXXX5GdnY077rgDgG7Q62effYby8nKcPHkSu3fvxn333deYH7NZc/Yzuvvuu/HDDz8Iv6fGjh2LIUOGYO7cuY38SZsnZz8ffldwPnuekV5aWhoGDRpk0N0X4PcFZ3PFM2pK3xck2mb4z7azZs3C5s2bDfbpp/V79913cevWLcTGxmLmzJno2bOnyTYefPBBvP/++8IXhNOnT2PBggU4f/48FAoFhg4dihkzZkAmk7n2w7RA9jyfgwcP4p///CcKCgrg6+uLPn364OWXX0ZwcDAA3S8nLy8vg+fx5ptvmiyJk2WueEbV1dWYN28efvrpJ/j4+CA1NRXTpk2DRCJp2A/XQtj7cy4zMxNz587FxYsXER0djZkzZ+LOO+8EoFv34R//+Ad+/fVX+Pv748UXX8T999/fcB+qhXHFMxJbtmwZCgsL8eabb7r2g7RQrng+/K7gXPY+I7VajREjRmD27NlISkoyuJ7fF5zLFc+oKX1faJZBiIiIiIiIyBHNsmscERERERGRIxiEiIiIiIjI7TAIERERERGR22EQIiIiIiIit8MgREREREREbodBiIiIiIiI3A6DEBERERERuR0GISIiIugWYuzVqxc2bdrU2LdCREQNgEGIiIgazLRp04TA8cgjjxgcu3XrFpKTk4XjH3/8sdPff9OmTUL7RETk3hiEiIioUWRmZuLIkSPC6w0bNqCysrIR74iIiNwJgxARETU4Dw8PAMCqVasAAGq1GmvXrhX2ixUXF2PevHkYOXIk+vbti6FDh+Ltt99GXl6ecM6yZcvQq1cvPPjgg/jpp58wduxYpKSk4Omnn8alS5cAALNmzcLs2bOFa/SVoWXLlhm8X1lZGWbNmoWBAwdi+PDh+Oyzz5z98YmIqAlgECIiogbXsWNHREZG4pdffkF+fj52796NvLw83HvvvQbnVVZWYtq0aVizZg1u3LiBmJgYlJeXY9u2bZgyZQpu3rxpcH5BQQHefvttSCQSVFZW4ujRo5gzZw4AICoqCpGRkcK5iYmJSExMRFhYmEEbixcvxv79++Hp6Ynr169j6dKl2L9/v4v+TxARUWNhECIiogYnlUoxfvx4oRKkrww99NBDBudt374d58+fBwDMmzcPq1evxueffw6pVIrr169j9erVBuer1Wp8+OGHWLt2rTAG6cSJE1CpVHjqqafw1FNPCecuX74cy5cvR2pqqkEbHTt2xKZNmwwqVAcPHnTq5yciosbHIERERI1i9OjR8Pb2xurVq3Ho0CF07twZ3bp1MzjnzJkzAACFQoF77rkHAJCQkICYmBiD43pKpRIDBgwAALRr107YX7dyZM59990HT09PBAYGIjg4GABQVFRk24cjIqImj0GIiIgahZ+fH4YPH47y8nIAxtUge9vUk8lkwrZWq3WoDVuuJyKi5oFBiIiIGs2ECRMAAIGBgRg6dKjR8S5dugAAVCoVfvnlFwBAeno6Ll++bHDcWgqFQtiuqKiw55aJiKiFMJ6eh4iIqIHEx8djx44dkMlk8PLyMjo+bNgwrFixAhcuXMBrr72GmJgYZGdnQ6PRIDQ0VAhS1oqNjRW2x48fj1atWmHGjBno0aOHg5+EiIiaG1aEiIioUQUEBECpVJo8JpfL8emnnwqh5fLly/D19cXw4cPx5ZdfIigoyKb36tChA5566imEhIQgLy8Pp06dQmlpqTM+BhERNTMSLTs+ExERERGRm2FFiIiIiIiI3A6DEBERERERuR0GISIiIiIicjsMQkRERERE5HYYhIiIiIiIyO0wCBERERERkdthECIiIiIiIrfDIERERERERG6HQYiIiIiIiNwOgxAREREREbkdBiEiIiIiInI7DEJEREREROR2/h+7ELT/FrSE+wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -1950,7 +2135,7 @@ { "data": { "text/plain": [ - "[3.41736301779747, 5.282935127615929]" + "[3.4170475, 5.2831783]" ] }, "execution_count": 43, @@ -1978,7 +2163,7 @@ { "data": { "text/plain": [ - "4.350149072706699" + "[3.4170475, 5.2831783]" ] }, "execution_count": 44, @@ -1987,7 +2172,7 @@ } ], "source": [ - "mape([series_air, series_milk], [pred_air, pred_milk], inter_reduction=np.mean)" + "mape([series_air, series_milk], [pred_air, pred_milk], component_reduction=np.mean)" ] }, { @@ -2005,10 +2190,18 @@ "execution_count": 45, "metadata": {}, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "`enable_optimization=True` is ignored because `retrain` is not `False` or `0`.To hide this warning, set `show_warnings=False` or `enable_optimization=False`.\n", + "`enable_optimization=True` is ignored because `forecast_horizon > model.output_chunk_length`.To hide this warning, set `show_warnings=False` or `enable_optimization=False`.\n" + ] + }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "264b99afcd6b48b194151ca067be63d5", + "model_id": "c64e892d85a84c25a89c9c8bfdeba46b", "version_major": 2, "version_minor": 0 }, @@ -2028,14 +2221,22 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAESCAYAAADtzi4UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABUT0lEQVR4nO2deXyU1fX/35N93yEhCUsChD0gPKDIIopYFVyqtdYdtcWldlHcurjUam2rrdX2V1u+XdSWqhWrrUvdUNnE4gMiIHvCloSEhOx7JnN/f9x5JhOSTCaZCZmE83698pqZZ7nPvTOTz3Pm3HPPsSmlEARBEAY+Qf3dAUEQBME/iKALgiAMEkTQBUEQBgki6IIgCIMEEXRBEIRBggi6IAjCICGkuwMMw5gNPO58mQ68BbwK/BJwALeZprndMIw04AUgGnjWNM2/902XBUEQhM6w9SQO3TCM54C/Ao8AlwKxwB9M07zQMIyn0GL/MbAOONs0zUY/91cQBEHoAq9dLoZhhAGzABNoNU2zwjTNw0CS85BZwIemadqdx0z2d2cFQRCErunW5eLGucBqIB6odttud4p9qGmaDue2KtqE3oVhGMuAZQB33HHHjEWLFvWq0yeLlpYWQkND+7sbfkHGEpjIWAKTQB5LRkaGrat9PRH0K9Dulkogzr0N0zSbDcNoMQwjyCnq8UD5iQ2YprkCWOF8GfA5BwoLC8nIyOjvbvgFGUtgImMJTAbqWLxyuRiGEQrMBNabplkPhBiGkWAYxnDahPszYIFhGCHADODLvuiwIAiC0DneWujnov3jlkvlx8DbaCv7due2X6CjXB5FT5Q2+LOjgiAIgme8EnTTNP8L/Nft9VrgzBOOOQoEtlNcEARhECMLiwRBEAYJIuiCIAiDBBF0QRCEQYIIuiAIgo8opbDb+z8SWwTdA48//jgfffQRr7/+Oo8/rtPZLF26lKysLKZNm8b06dPZuHFjP/dSEIT+pLVVMWWp4qzvKvq7pKcIugc+//xzzjjjDNasWcP8+fNd25944gm2bt3Kz3/+c2655ZZ+7GHvsdvt/d0FQRgUlNfAlwfgkx2wdV//9kUEvRPuuececnNz+eKLL5g9ezZ/+tOfuO2223jkkUfaHTd//nz2799PbW0tCxcuZPr06UyZMoV///vfANTV1bF48WKmTp3K5MmTefnllwG4//77mThxIrm5udx9990AlJaWcvnllzNz5kxmzpzJhg0bAHj44Ye56aabWLBgAdnZ2TzzzDOu6//0pz9l3LhxzJ07l6uuuoonn3wSgLy8PM4//3xmzJjBvHnz2L17N6B/Xdx6662cfvrp3HvvvaxZs4Zp06Yxbdo0TjvtNGpqavr2jRWEQUhNfdvz19f3s9tFKdVffwHNpk2b1NKlS1Vzc7M688wzXdtvuOEG9corryillPrnP/+pZs2apVpaWlRVVZVSSqnS0lI1evRo5XA41KpVq9Q3v/lN17mVlZWqrKxM5eTkKIfDoZRSqqKiQiml1FVXXaXWrVunlFLq0KFDavz48UoppR566CE1e/Zs1djYqEpLS1VSUpJqbm5WmzZtUlOnTlUNDQ2qurpajRkzRj3xxBNKKaXOOecctXfvXqWUUp9++qk6++yzVUFBgbrhhhvU4sWLld1uV0optWTJErV+/XqllFI1NTWqpaWlT95Lf1NQUNDfXfAbMpbApCdj+XyvQzGvVTGvVU29sbUPe+WiS13tSS6Xk4rN1mX+GZ9QXvq4tmzZwsSJE9m9ezcTJkxot++ee+7h0UcfZciQIfz5z39GKcUPf/hD1q5dS1BQEIWFhZSUlDBlyhSWL1/Offfdx5IlS5g3bx52u52IiAhuvvlmlixZwpIlSwD44IMP2Llzp+sa1dXV1NbWArB48WLCw8MJDw9n6NChlJSUsGHDBi655BIiIiKIiIjgoosuAqC2tpZPPvmEK664wtVWU1OT6/kVV1xBcHAwAHPmzOGuu+7immuu4bLLLiMzM7MX76ggnNpU17U9/2I/HChSZKX3jX51R8AKen+xdetWli5dSkFBAQkJCfz2t79FKcW0adNcE6BPPPEEX/va11znPPfcc5SWlrJ582ZCQ0MZNWoUjY2N5OTksGXLFt5++21+/OMfs3DhQh588EE2bdrE6tWrWbVqFb/73e/48MMPcTgcfPrpp0RERHToU3h4uOt5cHCwR/+3w+EgISGBrVu3ttteWFgIQHR0tGvb/fffz+LFi3n77beZM2cO7777LuPHj+/V+yYIpyrV9e1f/2cDfO+Kzo/tawLWh+7pZ4Uvf90xbdo0tm7dSk5ODh999BHnnHMO7777Llu3biUyMrLTc6qqqhg6dCihoaF89NFHHDp0CICioiKioqK49tprueeee9iyZQu1tbVUVVVx4YUX8tRTT/HFF18AcN555/Hb3/7W1eaJgnwic+bM4Y033qCxsZHa2lrefPNNAOLi4sjKyuKVV15xvY/WNU4kLy+PKVOmcN999zFz5kyXr10QBO+xfOiRTrurP/3oASvo/UlpaSmJiYkEBQWxe/duJk6c6PH4a665BtM0mTJlCi+88ILLyt2+fTuzZs1i2rRp/OQnP+HHP/4xNTU1LFmyhNzcXObOncuvf/1rAJ555hlM0yQ3N5eJEyfyhz/8weM1Z86cycUXX0xubi4XXHABU6ZMIT4+HoCVK1fy5z//malTpzJp0iTXJO2J/OY3v2Hy5Mnk5uYSGhrKBRdc0NO3ShBOeSyXy5IzISQY1m2Dqtr+EfUelaDzM/0fhd8NgZ4Tuba2lpiYGOrr65k/fz4rVqxg+vTpnR4b6GPpCTKWwORUHcsTLyrufVax/Ep4cyPsOQw7X7AxYVSf+dH9UuBCCDCWLVvGzp07aWxs5IYbbuhSzAVB6Dtq6rVtGhtlIz5aP6+q83RG3yGCPoD5xz/+0d9dEIRTHsvlEhet/9y3nWzEhy4IguADVpRLXBTEOwW9vyx0EXRBEAQfsKJcYkXQBUEQBjbichEEQRgkdO5y6Z8gPhF0D0j6XEEQuqOdyyVGRxRW1fZPX0TQPSDpcwVB6I52Lpco57b6ro/vS0TQO0HS5wqC4C2WeBcc3kV8jH7eXxa6pM/tAkmfG7icqmlaA51TcSwOh0MFnWVXzGtVcfFJ6vU1tYp5rWrh9/s0je4ATJ8739En7aq13v0okfS5giB0R30jOBw2aK2nuqqcTZ98AFzUb1EuASvo/YWkz5X0uYLgLS7hbq0G4K1//wNCL5I49BNRa4P65K87JH2uIAjeUtPgfNKq55++2LwWkFwuAUVv0udedNFFTJkyBcMw2qXPveeeewgKCiI0NJRnn32WmpoaLrnkEhobG1FKtUuf++1vf5vc3Fzsdjvz58/3mELXPX1uampqh/S5t912G48++igtLS184xvf4Oabb+7Qxm9+8xs++ugjgoKCmDRpkqTPFYQe4rLQ7dpCtyz1/poU9Sp9rmEYC4AH0Bb9M0Ap8EvAAdxmmuZ2wzDSgBeAaOBZ0zT/3k2zkj7XRyR97sBHxhKYeDuWDzcrFt6poPIjpgYt17+G5zaBLYSm1TbCQvskhW7v0+cahhEJLAcuME2z2bltDbAYiAX+AFwI3IcW+Y+BdYZhrDJNs9HnrgtdIulzBaF/sRYV0VrLueedS0VFBYft1RCaRHUdpCSc3P5443KZDTQAbxiGUQ/cDrSaplkBVBiGkeQ8bhaw3DRNh2EYJjAZMPui04JG0ucKQv/iWkDUWk1SUhJDhw7lcGsVhCZRFaCCngqMAc4AzgV+AlS77bcbhhEGhJqmacUaVgFJnIBhGMuAZQB33HEHixYt8qHrfU9LS4srOmSgI2MJTGQsgYm3YzlcFAXEg72aoKAgHThRWwXA/gPHiMD/K7I9uYK8EfRKYINpms2GYaxGC7r7ksIQ574WwzCCnKIeD5Sf2JBpmiuAFc6X4kM/ichYAhMZS2Di7ViCQxWgoLWG7Oxs0tLSYI+2d8Ojh5KR0Wdl6DrFm7DFz4AJhmHYgGnATiDEMIwEwzCG0ybcnwELDMMIAWYAX/ZBfwVBEAKGamf5OVqrSUxMJCEhwRXx0h+RLt1a6KZplhmG8RqwBm1V3wRkAG87X9/uPPQX6CiXR4E/mKbZ0ElzgiAIJx2lFAePwqhhYLP5z2p2X1iUlJSkBb1Vu1z6I0GXV3Hopmn+P+D/uW3KA8484ZijQGA7xQVBOOWob1QsfVzxykfw7HIbt17iv7ZdUS72WpKSkkhMTAxsC10QBGGgcqxCseQ+xWfORdC7Dyk8hHH3mBOjXLSFXgH0z2rRgF36LwiC4CuPPKfFPMipdDV+doNU1Wofus1RQ2xsrNOH7nS59EPVIhF0QRAGLfudkYffOEc/1vp5Zq+iRoclxkbbCAoKclroTpeLWOiCIAj+o7RSP452RiD6W9AtCz0xRktpOx+6CLogCIL/sAQ9a5j2m/vb5VLjFO2keD0d2S7KRQRdEATBPyilXIKena4f/W2h1zVpCU1OCANoH4cugi4IguAf6hqgsRkiwiA1UW/zp6C3tioamrVlPiRJV4d2t9D7I2xRBF0QhEFJmdZVhiRArNZbv7pcXDcHezXJyfqOERERQViwTjJbJVEugiAI/sFytwxJAOWsKFRT7z+RbUudW0NSUlsuwgTnBKk1YXoyEUEXBGFQ4i7od995GwB1jeBw+EdoK6wUhfZKHd3ixJogrWmw+e1a3iKCLgjCoMQSdFrKePmlf0BrPWCj3k9ld0oqrPaPtbPQExNiobUWpWzUneQSPyLogiAMSixB/8JcrZ843S7+mhg91oWg92fGRRF0QRAGJaWV2t1RfGSb3tCq1dXvgt7ciaBbkS4nOXRRBF0QhEGJFeVCSxlXX321/wXdecOg5Vg7H7peLdo/i4tE0AVBGJS0+dBLOfPMM10uF3+FLra5XEo7sdD1tSrF5SIIguA7pS4LvZScnBxo1eZyX/jQ3S30hIQEaDkOQHl1x/P6EhF0QRAGJe4W+pgxY8ChzWV/xaIXlbUCEBlSQ1hYmGu7drmUAW5un5OECLogCIMSd0EfNmwYwWjTvKyiyS/tl5TrG0NCVPv2tIWuBf14tcShC4Ig+ERTs9ITkspOdEQrERERRIS2AFBa7h+fS1mVzuCYlhzcbru7y0UsdEEQBB9xj3AZOiQFgMgwh95X4ftqn7oGRWNLMLQ2kJEW326fdrmIoAuCIPiFMrcJ0ZQULejREVrQy6tafG7ffUI0IyO93T53l0tZpc+X6hEi6IIgDDrc/eeWoMc4My5W1vhB0F3tH2PYsGHt9rX3oft8qR4hgi4IwqDDPY/LkCFDAIiPtrIgOnxu3z0G/URBj4+PFx+6IAiCv+jMQo+P0ZOX/ghbdCXmai4hPb29yyUkJISYiGYAyioVSp28SBcRdEEQBh2lrmX5bYKeGK9jxesabD637+5DP9FC19cKh9Y6mu02v5e984QIuiAIgw53C91yuSTHhwJQ3+y77B2raMvj0pmgt/Ojn0S3iwi6IAiDjrYol+MuCz0lKRLAVQfUF4rLtR/eZi9j6NChHfb3V+hityMzDGMU8BnwpXPTFcAC4E6gAbjBNM0CwzDGAyucbT5gmlYSYkEQhK75yU9+Qnh4OPfff7/f2nSPQ7cEPTVZh7k020N9br+wpAUIJyG6mZCQjjKakpIC5QEo6E7WmKb5NQDDMEKAu4CzgJnAA8AtwM+Am4ES4L+ACLogCB7ZuHEjDz/8MAB33XVXu5wovtBWHq7c5XJJHRINQIsj3Of2i8t1HpfUpM798aNGjYIvT34+F29dLnMMw1hnGMbPgLHALtM0m03T3ADkOo9JN01zn2ma1UC5YRgpfdFhQRAGD0899ZTreVWV/5SvTdArXBb6sKGxehORPrdfWqUjZjKGdG7tZ2Vl9YsP3RsL/SgwBqgH/g+4DHAPl7cSGbjfHKqAJKDMvSHDMJYBywDuuOMOFi1a1LtenyRaWlooLCzs7274BRlLYHIqj+XIkSO8+uqrrte7d++mubnZL30pr04FgrA5qqivr6exsRGbowGUA2WL5PCRQoI9mLOextLqgOr6VABS4un0uLi4OLDvB+BAQTWFhf5LjJ6RkdHlvm4F3TTNJqAJwDCMfwFLAffetTof3aP144HyTtpagfazA5zcNGS9oLCw0OObN5CQsQQmp/JYlv9kFY6QdGguACAyMtIv70WLXVHXqEDZSU4IY/jw4YBzwU9rLYTEkZCUTlx01+GLnsZSWqlQKGg5zric7E6PMwwDWj4FoMkRS0ZGfIdj+oJuXS6GYcS6vZwHvAVMMAwjzDCMMwFnwT6OGoYx2nl8kmmaZSe2JQiCAPBlXh0v77odprxP2jC9MKeystIvbbuqBNkrGZLS5vmNjo525UQvq+z9L4HuYtDB6UN3rhZ1xcSfBLxxucw1DONRtMvlAHoStBH42Pl4g/O4HwHPoV0wD/m7o4IgDB7e+vgI2HIgKoes6bdS/NaDfhP0zvznADabjWAaaAWOltSQndG7yVFvBD0qKoqEGDuVwNHSZvCD394bvHG5/BcdteLOy84/9+N2oi14QRAEj3yZ15bCtsC+BOgbQbciXCxCbI20AsWlNUDv4jYOlTifNBWRnp7T5XGZaVFUAsXH7b26Tm+QhUWCIJx09he2+a+P1E+B8JF9IOiV7Sx0gLBg7WopLq3rdftfHnC6UOp3dmmhA2QPjwOgvMb3VAPeIoIuCMJJp+C4dkHERdQAQZD2Lb+FLXblcgGICLGqFvW+yIVL0Bt2kZqa2uVxOVnJAFQ3hJ+0BF0i6IIgnHTK6hIAuOqMHXpD2k1UVFT6pW1PLpeIMB2Ud7yy94K+PU8H9CWFFxMa2vWq05wxw6G1FocKPmkJukTQBUFox69eUqR/1cHuQ31jVTY2Kepbk0DZuXx+C+EhLRCW6pfScOAm6C0dLXRfqxbV1isKyoLB0URmiudi03pxkXP5f2WvLtdjRNAFQWjHqjWKo8fhN6/0jaDnFQEEQeMBRo3MIC7K6Qap9L3wBEBFjbPfnbhcYpzBJhXVvRP0XYecTxr2kJHetbsF2q8WPVnL/0XQBUFoR55z4eML77Tw8E+f9NtkpcW+AssHvZ+MjAwSY5xukGr/yJH7pGhmZma7fXExVtWiVnrD1n3OG0H9Li6//HKPxw4fPtyVcfHoSYp0EUEXBMFFTb1y5RJvaA7lJ/9vJ//3f//n12ts3aMjTMLVEaKiokhxLqKsqvM9rS2096GPGDGi3b6EGH2Nmvretf2P17cCMCS6lKVLl3o8NiwsjKhQfaG9+cd7d8EeIoIuCIKLvBPTkqR9k4MHD/r1Gtv3a195UqTODjI0UctQdYN/Mi2WlOvQxOiIFp1TxY3EOC3otQ09dydVVFSw/nO9quhbV88hODi4mzMgMUZb9HsOnByfiwi6IAguXIJe8QERIY0Qdwa7DvvHcrbY73S5pCdq6zUtRUeK1DX7ZzVlaYV2b6QP7dielUK3Nxb6Sy+9hD10DADXXnaaV+cMS9J9yS/wT9Kx7hBBFwTBxa6DWniCGndy3mmVAOw7Pt6v1zhSFgFAdrqeBE1P0ZZ5U2sMdrvvvmbL5TIyPbbDvsy0BADqGnsufV/syIOILIJtrYzN9G6xULpzTra4ontr3h+IoAuC4GLrHq2GKTE1zJigLeeKho7C2FsamhQV9THgaGH8SJ1LZUiiUxxDU6iurvZwtnfUNGjxzB6R3GHf+NGJuh+tCbS29mxi9Iu9OkwxM7mOkBDvBH1kmu7L8dqTk8tFBF0QBBf7jmgLeeRQO5NGa/9zfWuy31Y65hc5nzQeYMQInXbWmhQldIjPq0XtdkWTPRyUg9FZQzrsH5Pp9NOHZXLs2LEetb2vWL8fE0Z5v5R/dKa+aVU3+u+m6AkRdEEQXBSUacGbkBXGaKf4qdAMjh/3T5SGu6BbecTbBD3Z5xBJ99S5WaNGdtg/LBlQrRCWxsFDRR32d0VDQxPHw64E4PKzo7w+b1xWHCgHDY4EWux9v/xfBF0QBEAXhqiojwXlYNqERIZbxezDR1BU5L34eaLQqpLQdMQVI94m6Ck+C7p7yOLIkR0FPSTERkRQBdiC2L7H+5INf369BKInE9x6lOvP936SOH3YEGguBoIoPgmRiyLogiAAcKgYFMHQdIQJ47JJioMgGiEkjv0HSv1yjcJSp5XaXNhR0EP6XtAB4iK0n37XAe8yLiql+O3r2iofG/kGYaHeu1xSU1NdFZkK/PMWekQEXRAEwFqSDzTmM2bMGGw2GzEhOlZ8Z35N1yf2gANFOi47VJWSkJAAQLKby6XcxwRdRaU6C5bNUdUhMZfFkDg9uZlX4DkXi8W6L2Dv0SRoOc45E/J71J/k5GRo0rGgh4pbKatUvPKR4nBJ37hfRNAFQQDaQhZtTQdc1m1itLZi9x32T+KsA4X6GkPimrDZtKUbGmIjLLgBbMEUl/l2nf0HtV8jOqyZoKDO5S0jRYdLFng5J/rKx07xPfoHJk0Y1aP+hISEEBmk+7TnYB1rv4CvP6T41i9F0AVB6EO27tZWeGJkhSstbGqCFuDDJf5JnGW5HYYltxe06DBtWReX9S5plsXBAh0lEx/ddX+zM/TYjlV5V4Ku2Cp3X7eDnJyuKxR1hc75DnlHGvngf5UADI063ON2vEEEXRAEAHY7LfThKW2rGocP1VZ0cXnXeb97Qmm1bmd4anvpiY3Q7o+Sct9uHEeKdZhLcnzX0jY+S68WrfQyvt6VKdFe1itBT47VN6vDJQ7Wfq5/gezb8mKP2/EGEXRBEAAoKNVyMHZEm3iPztChi/5YGFNTr2hoDoPWBoanRbfblxCt4999TTNbUqZvDEOTu84Lk5ujFxfVO7yLrz9WrhcghdlqOmRv9Ia0RH1+4fEg9pfoCYMZOb3L9tgdIuiCMEBoblFc+1MHf3+vb/yvlXVaBCeOSXJtG5/tzH3SnOBz+4VWlEdzIampQ9vtS4rVY6qo9U2Syiq1UGamRnd5jGWhq9AMr6JqrF8N2cPjuvTLe2JEqv6Vc+BYEk32CGgq4LRJaT1uxxtE0AVhgLBmK6x8H77/W4Xdz4tUlFLU27XQ5U5Id22f4rRmmxjq82pRVwx6cyFDh7YX9CEJWvSq633LuFhZq9sZmRHX5TGpSYBqgdAh7M8/Mb1ke5RSVNbp5fvjx3QeNdMdo9K1r75VOfO51JiMGTOmV211hwi6IAwQDhzVj8er4KPP/dt2VS0oQsFerWthOhk3SrtaVGgG5eUVPl3DZaE3dRT01GQtdrVN3k1UdkVNo170M3pkUpfHBAXZiLDpyJNte8o77G9ubnatjK2ug1ZHENhrmDAuq1d9ykxPgWa3kJqaTYwdO7ZXbXWHCLogDBAOHG2zkF2hdH7iWKXzSUspw4YNc22PjbIR5KiC4Eh27utZ7pMTKfAg6OlDtGVe3+z9svoTOXjwIM2t+vzxYzy7NOKdi4t25rWPr1dKcdlllzFr1izy8vLaTYhOmDChV/0aOnSoa3ERQHjLdtLT0z2c0XtE0AVhgLC/oG0i7V9r8WtukMJjznBBeylJSe2tWyuOevveSt+u4VolWqBXULqRmapT6jY6Ynrd/kcffQQh2kWUHO95NWeKM/Ikv7B9nvLVq1fz1ltv0dTUxH//+982QW8pY+bMmb3qV2pqqmtxEcCY1EpXDL6/EUEXhAHC9n3OzFOOJu122eK/tvcdrAQgIqi6w8SfZc3uPdTLum1O2vK4FHWw0Eeka8vaTgIOR+9CFz/8aC2Eacs3NdHzsRkp+uZyxO1Hh1KKH/3oR67X69atY0++dskEq6pehSyC00Jvclro9XsYP3aY5xN8wGtBNwzjKsMwSp3PrzAM4xPDMFYbhpHp3DbeMIy1zu0L+6rDgnCqUnjcGU5Y8jcA/vwf33OHW+QX6JtFdFhH0U6J1bHTB4p8Kz5xuFj/wgi3lREd3T4KJS3JOWEYkkxtbe2Jp3bJ//73P44ePYpSig/WH4CgMIYlNhMd6dkCHpWufe0llW2TsG+88QabNm1y9W3t2rVs3nYQ0PlmehPhAie4XGrNPvOfg5eCbhhGMHAFcMQwjBDgLmAB8CDwgPOwnwE3A+cDj/i9p4JwClPXoKhtigJHIzE1fwXgX2vsfstTXlCsRTshumOptIwUZxx1qW9uggKnyyXFbdm/RW8yLh45coQzzzyTM844g+3bt1NcnQDAlDHdR8qMz9Kuncr6NhfPI49o2Xr00UdJTk6muLiYNZ98CcDwtAiv+tQZUVFRRNWsgtJVcOQXfRbhAt5b6FcBrwAOYCywyzTNZtM0NwC5zmPSTdPcZ5pmNVBuGEaK/7srCKcmB4udTxoP8aen7wR7JXZbIoeL/VOrsqhMi3ZKXEd3x6hh2po9Vt37CJQWu6KsOhhUK8OSO94YEmLQecpDkyg66t3k6/79+3E4HBw+fJjLL78cInWpvImjuj93Zq724dfZk3E4HDQ0NLB582ZCQkK49dZbXf7ybTt1xrKxWV1HzXjDsGQFu6+E+i/710J3WudfB152bkoE3H/rWcXy3NuqAnx7BwRBcGGFLNJ0iNNPn0V4ax4Aa03fIk8sSiv1oxU+6M7oEdoFUVXfeyv16HFQygbNJaSldrT1goNthAVpV8v2XZ5jwy1KSkpcz/fv3w9ROgplwsjuf0lMyNI+exWWQVFREQcOHABg1KhRREREcMYZZ+j9wVrGcif45vd2nzPoS0H3JlP7tcA/TdN0GIYBUAm4R+1bU+/ut/Z4oEOAp2EYy4BlAHfccQeLFi3qRZdPHi0tLRQWevflCnRkLIGJt2PZ+HkQkEpQy2GCgycRF1pEKTP46NNizpnue2xDWZUWwYTojv0ZEq//xevtcR776mksW/eGAinQXEB0dHSnx0WFQnNzPP/bks+Fi7p/T/bs2QNAeHg4TU1NEKUt9JToUgoLPSf5UgqCVAKOkHhWf/wxjpZKADIzMyksLGT69On6wFC9mCg5Vvn0nYuL05IZHR1Na2urT21ZlZ46wxtBnwicZhjGtWh3y3eACYZhhAEGsM153FHDMEYDx4Ak0zQ7lAMxTXMFsML5su/rMflIYWGhxzdvICFjCUy8HcuBo/qnf2pcHcOHD2dEynpKy+HgsUi/vBf1LVoAJ+cM7dDe2XOS4Wmw25IZNiy5y8lBT2P5ZK8CFDQVkZWV1elxQxMOU3kMio57Fi2L5mbtbvrud7/LG2++yd6YSTiA+TOGkJLQvZUeE1ZAdUskB4sVsUF60dTkyZPJyMjAbrcTGxtLTaguND0uO5mMjN7PIVjpiMeOHdurfDDe0u2t3TTN+0zTPM80zfOBfaZp3gb8BvgYeNT5B/Aj4DngXeDhPuirIJyy7D2kBXeUc73M2AxtNR8o6b0bxJ0Gu54cHDMyvsO+jKHhoOwQmkxBkXdld97/THH9Yw6Kj2u77X3Tab81HeoQsmgxfKiWI6sIRndYLpfRo0fz5ntf4LBFMSQBr8QcYIgzFn3HvmrtsgHXhGVISAhnnnkmhGr3UEqCV012iRV335fuFvDOQndhmqbhfHyZNp+6tW8nMM9/XRMEwaKgTP+rThytfb+njQvnpe1QUtNNwLUXOByKFrSQ52R3nPoKCrIRosqx24ayY88xRmSmdjjmRH7xD8XqzZBXqHh8GfzpTbBhRxX/iaFDf9jpOWNGRLB6BxSXd/Tjd8axY3r+IDU1lf1FIYBiQudV5zplxFBFXjnkF7ZQ1dxe0AF+8IMf8OEDw2jBLQqnl8yYMQOAuXPn+tZQN8jCIkEYAJTXax/szCnapztjUgq01tPQmkhVrW/ey+NVCmzB0FLO8IzOxToqRMdB7M7zLp+Ltcz/kx2waLlCKRhuewXqd3ZpoU8YrVWzsiGGlpburXTLQh86dCi7Djrb6IGgjx2pf90UlAV3sNAB5s6dj92m+5TkXer0LrnkkksoLi7mO9/5jm8NdYMIuiAEOBU1ihYVDa21GFNHAZCdPQoa9KTgrkO+tX+wSC8mstnLiI3tXLniI7V7Yt/h7hf9KKVcgh4WCs0t2lUUffwpgA7L/i1GpTkdBqHpHDrU/aAsQU9NTWXXIX1T8ybCxSI3JwGA8tpoDh06RFBQEKNGjXLtr6jRk6eJsRAS4vtS/dTU1D5b8m8hgi4IAc6+I85AssYDjBunl59nZmZCw24Atuf5toJz7wFtdYcFVXUpOMlx+hqHj3ZfWLmqFuoaIDoSVj5gY2wm/OV+G2XHdNm1riz0DCs7bXgG+fmeizErpSgpq4PpX3DTUyNY84Xe3hMLfeJoPW9gDx6Gw+FgxIgRhIeH8+IHiuV/jOewMyrSV3fLyaRHPnRBEE4+n20/BqQRYSshJmYqAKGhocSFFFINbNpRw7cu7v2yj/wjzmX/oXVdHjMs2cbWo3C0rPs8K5Z1njkEvrbAxtcW2GhtbaWsTAe+paR0vuYww9ocnkF+/iaP16itraUxeBxET2bttrbtPRH0kWk2QEH4CEC7W7buU9zwM0WLPQqCnCtbB5Cgi4UuCAHOjr16SUdyTHvrOCNR+7V9tdAPFWl3SnxU19b3iDS9SrSsuvsJSysJV6ZbPYiysjKUUiQnJxMS0rkdOTQRgmytEDqEPfs8u1yOHTsG4Tr8b0QqxEbBtLGQ2bnx3ym6fw4IzwCCycoez3WPKlqcb+fLH+pHEXRBEPzGgUKdZyU1qb11PCZdK09+sW9VfopK9QRkUmzX1re1WrTSi9WiBc7Fq+6CbkWkdOVuAb1aNDFa31R25VV20q5i9DccPLNKaf95mI5V/+o8KH/Txmd/tPXIRx0WaiMmrFZPCIens6/lWnYcgDEZkJ7clqrY15DFk4kIuiAEOEfL9E//zCHt/10nj44AZae0JpaGpt5HupRU6HNTk7oWw/HZzsLK9q5Lu1lYLpeMTgS9qwlRi/RkfVPJK2jssO/tTyG/CFa+r5wWuhb0zCE2QkJsvZq4HBrvvE50LusPTMdmg7/92MbS89rcT2KhC8IpxsqVK7nlllv0EnQ/U1aj0+aOymhvHY/OHg6NBwBbW66XXlBeo90o6UNCuzwmZ5SOfmkNSuk2vW2h8waUntx2k/HGQgfISte/NgqO0SGTpBXJsq/AGeESpl0uPXGznMhIZwFnhn0be2swZ02DMybZuOqceiKduchSuimWEUiIoAuCH3jooYdYsWIF//rXv/zedlWDdneMG9XeOh41ahQ0al/z4ZITz/Ke6gatXCOHRXZ5jCtDYlhat3lILJfLvd+7mi++0OEnu3friJy0NM+l4bIytaA3OpJcdT0tdh7UjxU1cOBItZuF7rFJj+Q4a6aS9BUArligx5kYo7jlYr1rat9lu/U7IuiC4COtra0cPqxD8l544QW/t9/YmgDA5Jz2kSyjRo2CpiOAb4Je36JvGKNHdL16JjYKgmiE4Bj25xd3eRy0uVzqK/by+OOP09rayl//qnO4L1myxOO5mSnOG0d4Jnl5ee32fb6nwfV8f6HNNSnqi6BPzG7Lh26zwWXz2/Y9ebuNL1+wcV7vKs/1CyLoguAjR48eda1sfO+99zh61Af/xwk0tzhoDU4G1crUE1K4Dh8+HJq1oB842trZ6R0oLy9n9OjR3H777SilcDgUTUrfKMZ1suzfwmazERmso2p25XVIpMqK/yjuXhFPc4tqKzXXXMCqVatYsWIFR44cITs7m4ULPRczc7lPwjJcKW0BauoVpdVtvyB25LdAmH4/0n2ovOByuQDzp0KaW6724GAbE0f1bKK1v5E4dEHwEfdVjQ6Hg3/84x8sX77cL23v3F8BJGKzlxIf375SfFhYGAmR1VQCew7U0z6rdef873//Iz8/n2effZZx48axtXA8KngRtqbDTBjjOed3XGQ9dbWw/4TVovuOKL79lMLeGsX5Z0B5NeBogpYyWtHZEAGWLVvWbRm3tlj0dA4eXO/avvuEKMY9R1MgLYSE6GbCQnufoGykmwfo62cPHOHuCrHQBcFHDh48CEBSkrZw/el22b5H+y/CbZ3nUMlwhtfle1nv093/vfzu+3juI70SZ+nCQiIjPVckSonV1zh0wmrRH6xQ2J0/EH75opVVsdBVm9NutxMaGsqNN97Ybf9c7pOwzHYW+lorG7fDWaEpfgEAw5K8+2XSFSOcQTcnulsGKiLoguAjloV+/fXXk5SUxLZt21yTgb6yO78KgNjwmk73Z2foyJSiMu8yFBYV6bzqycnJtCZfBZE5JEaW88dHzuz23LTkIOe12uLVN+5QvLoGIsMhyKZcE5c0FzBnzhzmz9cqedlll3Ub4QJu7pOwYeTnt5nlH3yiiywnBzuXhUaOBmBkmnfj7oqkOBtPf9fGH++2tXO3DFRE0AXBRywLfezYsVx66aUAfPzxx35pO79ATwQmx3ZeO3R8lraCj9dF0drafSy6JehX3/os0ZN+DcAzy5MI9SKGe+QwbcGXuLnQ7/uDvuZdX4d5U9z62FRIVlYWTz/9NBdffDE//elPu20fIDzMRmKMHYJCyTvSdhP7Yr+eozh3RkO747MyfFtUBfDdr9n41kUDX8xBBF0QfMay0EeNGsVpp50GwPbt2/3S9uFi7eZITexcrMeOzoTmYzhUMCVeZLYtLCyCMX/gt2svp64lnjMmwVULvROzCWP04qKy6hCUUpRVKtZtg6gIWDx1F1NS3ZKqNGtBnzZtGv/+9797VNjBKnRx5JjC4XDQ2tpKSbV2Z91wSRZRYS1uxw4OIfYXMikqCD5iWegjR44kJkaHwW3bts3DGd5zrFKL28hhnS/60aGLhyFsKIdLuo/42FuSCsO+RViIgx9eF8x9V+toDm8YnRkNKFqDh1JUVMSuo3qSNj74AHPOmIIKjiFifjmNLUHQVEBWVu+KOUzMCmJbPtijTqeoqIiDh4txhE0FZeec2cMZP7KVLfv0sb6ELA5GxEIXBB9QSrli0EeOHMmUKVMA2LFjB62tvk3YAZTXajfH6OFRne7vaSx6cbWukfnVOQ08dKONiHDvLdyxw51PoqeyZ89ePt+nfzUc3feOXtVpr2HSUOeNrPbzdrnFe8LlZzn7lPJ1Dh48yCtvfgG2YOLDywgPs5Ezok22RNDbI4IuCD5QUlJCY2MjycnJxMTEkJiYSGZmJg0NDd3m9PaG2mYdijhhdEKn+4cPH64tdOBgN7HodrudaruO05ua0/Wq0K4YPwLCguogPIONnxex4Qud7yTSsYeHH34YgLAjy4nZOxeq15OVldXjawBceAaE2Boh7nQ2fXGM9Vv0itEx6drVMtatxnKGCHo7RNAFwQcsd4u7NWpZ6b66XZRSNKMt6tzxnUeIREREEBteCcCu/K7zmYMz/0nEOAAmZfU8OiQoyEZ2sl40tX4bbNmjbyC5oxXf//73CQkJ4dNP1lBbspHo6Ogu8553R1SEjbHJuhrT22Yc28q062beadqdNTaz7VdFhg+LigYjIuiC4APWhOjIkW2VFXJzcwHfJ0aLi0shVJug2Zke8qwkast1f0HnkTAWRUVFEKUFfdyI3vVpRo7OTrijYCgFx6NB2Zl7WgLx8fHMmDHDlVArKyvLpxWWZ03U/qOP8uZgjzqDIHsJP75JT8paFnpiLERHyqSoOyLoguADnVnolqD7aqFv210MtmCCHeUewwpHDbOiQjyL24FDxRA+Aht2stM9Htoli2bpMMnC5jkogqF+N6fP1OM9++yz2/rUS/+5xeIzQ8BehQM9hzAz8a8kx+txTh0DE0fB5Wf5dIlBiQi6IPiAe8iihb9cLjv26YDvqJAqj8fljNTWe2m15yXwX+ytA1sQcWFlXsWdd8bF56SDowllc16r7gumT58OwDnnnOM6rrf+c4ucMSPg+Ov6xbGXuOystoC8yHAbO5638X/3inydiLwjguAD7iGLFuPGjSM0NJT8/Pxuc4e7k5+fz4svvuhK9LVtl85DmxBZ7/G8iWNTwNFEfUsUdQ1dLy6y8omnxXm+QXgiMT6SsOY2V1KEfTfZ2dkATJgwgWHDdD4YXwV95MiRcOB+yPse7L+F2bNnt9s/kBJmnUxE0AXBBzqz0MPCwhg/fjxKKb788kuv27rlllu4+uqrmTFjBj/60Y/428sfADCiixh0i+ysUa5IF/fQxRa74rG/VpC48AA//M0ODpY4854P9a0Ix7DotuidcZkNLnG12Wxcf/312Gw25s2b59M1wsPDSR8SAkW/I8TWiGEYPrV3qiCCLgi9RCnlSiDlbqFD7yZGrWO3b9/Ozx5/AjXkGgDOnZvj8bxRo0ZBg84dvsuZ/iS/SDH5BsWP/xpPZctIfrEqgyOV2nE+YaRv1u3EzLYlqbNz28fHP/bYYxQXF/tFgC0r/7TTTiMysudhlqciIuiC0EuOHj1KQ0MDKSkpxMe3Lzxp+dG9FfTq6mpKSkoIDw9n+fK7iZ2+EuLnkZ4Ct1zsWYBHjBgBtZ8DYO7RibOeeFGx9wjQsA9qt+AIiqfMMQuAaeN8E8e5uTZoqYDaLcyZNb7dvuDgYK+ScHmD9avnRHeL0DXdLv03DCMVeA1oAVqBa4DRwC8BB3CbaZrbDcNIA14AooFnTdP8e5/1WhACAKuizpgxHWuUTZgwAWgrvdYd+/fvB3SCr2HGL6nZpIgMh3//zMawFM+CHhkZSXxIPlXAp9ubgCjWbGkEImDfMubMPo0NddNdx5+em+hVn7ritMkj4cdTwdHA9OnrfGrLE1dddRUbN25k6dKlfXaNwYY3FnoZMNc0zbPQgn0z8BiwGLga+IXzuPvQIn8W8G3DMHqfdV4Q/EheXp5fluGfiCXCo0eP7rBv/Hhtue7atcurtvbu3QtoQS8o1ZOXz//QhjHeO/dI1pBKALbmBdHQpNh9JBRUK1dfPJ63XvoJIRXOWqctZYzLTvaqza4YN24cNBcSFdaon/cRixcvJi8vz5XwTOiebgXdNM1W0zStBMixQB7QappmhWmahwGrbtUs4EPTNO2ACUzuiw4LQk9Yv349Y8aM4etf/3qHKvK+4slCz87OJiwsjCNHjngV6bJvn842NXbsWJ76ThCb/8/GFT2ooDNjUhLYK6moDeOtjThjxL/kqq9fRHx8PNfN3wstx4lqWt9t1aDuyM7O5mc/+xl//OMfCQ72LR+54F+8yrZoGMY04I9AAnAecKXbbrthGGFAqJvwV9Em9O7tLAOWAdxxxx0sWrSo1x0/GbS0tHRb4XygcKqO5c033wTgX//6F7/+9a/5xje+4bd+WP7xxMTETvuTlZXFnj17WLdunWuS9ESssVgFMYYMGUJhYSGpMdCTj2vkyBGwaQsknMPT/2wEwqF6EykpuRQWFnLrDefyn1ems/DsORQWnt7jsZ7I9ddfD7SvgHSqfsdONhkZGV3u80rQTdPcCpxuGMbXgR/RvnhhiGmazYZhtBiGEeQU9XigQyVZ0zRXACucL/1rLvUBhYWFHt+8gcSpOhb3f8qHH36Yyy67zOcYaQurWMSsWbM67c/kyZPZs2cPx48f77K/1lgKCgo8ttUd8+fPh79ugoRzWL9DhyeGt2xj1qxvEhQUREZGBkcL8wkN9RwC6Qun6ncskOj2t5fT+raoAmqBEMMwEgzDGE6bcH8GLDAMIwSYAXgfgCsIfYTlw54wYQK1tbWugsX+wJMP3bqmex884e5y6Q1TpkxxRbpY5AyraOde6UsxFwIDbyz0aYZhPImOcGkEbgLGAm+jrezbncf9Aj1p+ijwB9M0GzppSxBOGkopV5TJSy+9xNSpU/n4449xOBw++5HLy8uprKwkJiaGIUM6z+HqbaTL8ePHKS8vJyYmhrS0NI/HdkVSUhJDows5Zm1orWPmpJhetSUMXLoVdNM0NwEn1sM+Cpx5wnFHgcB2igunFAUFBdTV1ZGSkkJubi5paWkUFxdz4MCBLq1qb7Gs8zFjxnS5DN1bC93dOvdlSfv08bG8U10HwdFQa5I7ZWKv2xIGJrKwSBi0uLtbAKZOnQrgmoD0BSvCxdONISdHr/Dct2+fKz+LRXl5OV/5yle45JJL+OSTT9od31tycydB7Vb9ouYzJk+WQLNTDRF0YdBiuTr6QtDdLfSuiI6OZuTIkdjtdtcNAODYsWOcffbZvPfee2zevJl7770X6L3/3CI3N1dnKFStUPa6CPopiAi6MGjpbwvd/drWzcVut3Puueeybds2cnJyyMzMdC168ougFz4FnySQEr7Pb0vwhYGDCLowaLEE3Vq1ebItdPdrW33ZsWMH27dvJy0tjbVr17Jy5UqSkvSSja5i1b1l3LhxhIQEg6OeyZMnS4rZUxARdKHfWblyJUuWLKGystKv7Z7ochk3bhzh4eEcPHiQqqre5wSHnlvoO3fuBNqW+J9++umkpqYyevRoNm3axGuvvca0adN86lNYWJjreuJuOTURQRf6lXXr1nHDDTfw1ltv8e9//9tv7VZUVFBSUkJUVBTDhw8HICQkxCV0Pa0mVFJSwooVK1i8eDHp6ekUFxcTHh5OZmamx/MmTZoEdBR09wnQ0aNHc+mll/aoP11hpa21qggJpxZerRQVhL7g6NGjfP3rX3f5kH0tquyO5eIYN25cu5jzqVOnsnnzZrZt2+Z1EYbNmzdz5pln0tzcVoQ5KiqKW2+9tdt4dndBb21t9XkBUXc89thjzJw5k+uuu65P2hcCGxF0od+4+eabKS4uZsiQIZSWlvaJoFsuCIve+NFXr15Nc3MzU6dO5Xvf+x4LFixg5MiRXi1OSkhIID09naKiIg4cONCphe5Phg0bxm233dYnbQuBj7hchH6hrKyMd955h7CwMP7zn/8AvhdVdufzz/UyeKvQhEVvBN0qI3f77bdz4403kpWV1aOVppaV/uWXX/a5oAunNiLoQr/w7rvvopTirLPOYtasWcTExFBcXExpaalf2v/ss88AmDlzZrvt7qXhvM2Rbvm/J07s3cpLS9DXrVvn8xJ/QfCECLrQL7z99tsAXHjhhQQFBfW4ZJsnmpub2bp1K0CH2paJiYlkZWXR0NDgVTUhh8Phct/4KuivvfYa4PsSf0HoChF04aTT2trKu+++C8AFF1wAtFnO/nC7bNu2jebmZsaNG9eh1ifAjBkzADBNs9u2Dh8+TF1dHWlpaa548Z5iRdbk5+cD4m4R+g4RdOGk89lnn3H8+HGys7Nd4mZZ6P4Q9K7cLRaW1e6NoPvqbunsXBF0oa8QQRdOOv/9738BbZ1brgd337avWII+a9asTvdbFvrmzZu7bcuaELXcJr0hLi7OFQsPIuhC3yGCLnhk3bp1HD161K9tuvvPLSy3xI4dO3wu6NydhW4tutm6dSt2u73D/paWFl5//XUaGxv9YqFD+xtCX8WgC4IIutAlb731FvPnz2fp0qV+a3P79u2Ypkl0dDQLFixwbU9MTGT48OE0Nja68qT0htraWnbu3ElISEiXS+mTkpLIzs6moaGh01zlDz74IF/96le57rrrXBa6CLowEBBBFzrF4XDw4x//GIBPPvkEh8PRzRntUUrx6aefsn37dpqamlzbn3rqKQBuvPFGoqKi2p3jD7fLli1bcDgc5ObmEhER0eVxXU2MlpeX87vf/Q6AVatWufb74nJxPz8lJaXXk6uC0B0i6EKnvPbaa67Qv9ra2nb5vL09f/bs2eTm5hIVFcXtt99OUVERK1euxGaz8b3vfa/DOdaiH2982xZ33nknZ5xxhit+vTt3i4U1MXritX77299SW1tLamoqoG9MQ4cOJTk52es+dcbs2bMJDg7m9NNP96kdQfCECLrQgdbWVh566CEAIiMjgbaVl96yadMmAFfY4LPPPsusWbNobm7mkksu6TTt7OzZswHYsGGDV9dQSvHnP/+Z//3vf3zjG98gLy+PJ554AoA5c+Z4PLczC72mpoann34agJdffpmLL74Y8N3dAjqN7pYtW3juued8bksQukQp1V9/AU9BQUF/d8Fv9GQs//jHPxSgRowYoe655x4FqB/84Ac9ut7ll1+uALVy5Uq1du1aFR0drdBFxdXatWs7Pef48eMKUOHh4aqxsbHbsVRUVLjaBFzXWLhwoWpubvbYv/Lycte1rGOffPJJBag5c+Yoh8OhSktL1c0336w+/PDDHo29J5yq37FAJ8DH0qWuioUutMNut/Pwww8D8MADD7hcBJb7xVvcC0DMmzePd955h/j4eM4++2zmzp3b6TlJSUlMnDiRpqYmtmzZ0u01Dh06BOgEWMHBwdTV1TFx4kRWrVpFaGiox3MTExPJycmhqanJNTYrfe+dd96JzWYjJSWFP/3pT5x99tneDlsQ+hURdKEdK1euZO/evWRnZ3PDDTdw2mmnAT1zuSilOlT0mTt3LkVFRbz//vsel71brpL169d3e53Dhw8DcMYZZ/D8889z6aWX8vbbb5OQkOBVP60by7p162hqanK5iUTAhYGKCLrgoqWlhUceeQSAhx56iNDQUEaNGkVcXBzFxcUUFxd71U5JSQl1dXUkJia2i+iIiooiODjY47mWyHrjR7cs9BEjRnDNNdfw2muvMXLkSK/6CDB//nwA1q5dy5YtW2hqamLSpEkShSIMWETQBRcvvvgi+fn5jBs3jmuuuQaAoKAgV/SJt24Xb+ttdoZloW/YsAGllMdjLUHviYi7YxW4WL9+PevWrWt3fUEYiIigCy7WrFkDwG233dbOkrbcLidD0LOzs0lLS6OsrMyVO7wrLJdLbwU9KyuLjIwMjh8/zp///GeALv37gjAQEEEXXFgLeiwBt7BWXHrrR7cEvTcrIm02Wzsr3RO+Wug2m81lpVs3D7HQhYGMCLoA6NjzHTt2AB2r/PRW0HtjoUObqG7cuNHjce4+9N7iXld02LBhZGVl9botQehvuq0pahjGLOBpoAUoBK4HLgXuBBqAG0zTLDAMYzywwtnmA6Zpru6rTgv+Jy8vj4aGBoYPH05iYmK7fZMmTSImJoZ9+/aRn59Pdna2x7Z8FXRrlWdnK0arq6upra2lqamJ4uJigoODSU9P79V1oG1iFPSNRApPCAMZbyz0I8A5pmnOBw4ClwB3AQuAB4EHnMf9DLgZOB94xN8dFfoWy91yonUOEBYWxkUXXQTAK6+84rGdzkIWe8q0adOw2Wxs376dxsZGQFvj3/72txk6dChf+cpXXNfIzMwkJKT3tc4nTpzouoGJu0UY6HQr6KZpHjVNs8H5shkYB+wyTbPZNM0NQK5zX7ppmvtM06wGyg3DSOmbLp/abNiwgV/96lf86le/4vXXX/dbu1ZhCStB1olcccUVQPeCfvz4caqqqoiLiyMlpXdfgZiYGCZMmIDdbmfbtm0UFxdz2mmn8fvf/56mpiYOHTrEM888A/Tef24RFBTElVdeSWRkJEuWLPGpLUHob7w2bQzDGAmcB9wPDHHbZYVDuN8cqoAkoOyENpYBywDuuOMOFi1a1IsunzxaWlooLCzs7264qK2t5dxzz3VZraCTYHWXiAq6H8v//vc/ADIyMjo9bsqUKURHR7N582Y++eSTDkKan5/Pp59+ypEjRwAttEVFRV6NqzMmTJjAzp07Wb16NUFBQVRUVDBlyhRmz57NihUr+Mtf/gLo7IW+fkb3338/d955J5GRkSf98w6075gvyFhODhkZGV3u80rQDcOIA/4GLEULeJzbbqsagXt+1Xig/MR2TNNcgfazg86/EdAUFhZ6fPNONlbRhezsbLKysli9ejUvv/wyl156abfnuo8lLy+P+vr6du4Vy4WxYMGCLsd80UUX8dJLL7F+/XrOPPNMAN577z3uuusuV95wi8mTJ/v03s2fP59XX32V/fv3c/z4cUAbAVdccQXPP/+8KyXvhAkTAuoz6imB9h3zBRlL/9Oty8UwjBDgJeAnpmnuAfYBEwzDCDMM40zAKgJ51DCM0YZhxAJJpmmWddGk0EusSj833ngjf/nLXwgKCuLVV1/1egUnQF1dHbNnz2bGjBns27cPaEuPGxoayrhx47o8tzO3y49+9CO+/PJLEhISuPLKK7nlllv4zne+48rW2FusbIgbN27kgw8+AHTJusTExHaVjnx1uQjCYMIbC/0q4HTgAcMwHgCeBX4DfAw0Ajc4j/sR8Bzagvftv1nogFLKVYvzwgsvZMSIEVx88cW8/vrr/OlPf3IVo+iO5557zpU7/OGHH2blypUu63rChAkek1pdcMEFREdHY5omBw4cIDY2ls2bNxMeHs6RI0eIiYnxcZRtTJs2jaCgIFdFoSlTprjqcl511VW89tprgAi6ILTDUyrGPv4LeAIphea2bdsUoFJTU1Vra6tSSqn33ntPASozM1O1tLR4PL+goEDZ7XY1evRoV7pZm82mtm/frlasWKEAde2113bbjyuvvFIB6oknnlAvvviiAtS5557rlzGeyKRJk1x9vffee13bjxw5oiZOnKhCQkLU4cOH++TaJ4tA+o75iozlpCHpcwc6lnV+wQUXEBSkP7aFCxeSk5NDQUEB7777brdt/Oc//yEvL4+srCxuv/12lFLceuut/OEPfwA6D1k8EXe3y3vvvQfAeeed16sxdYdVVQjaF5S22Wy8//77fPrppy6rXRAEWSkaUCilqKqq6nSf5T93F7agoCCuvvpqoE3wPbVtVfP5/ve/zwMPPEBkZCQbNmxgy5YthISEcM4553TbxwsuuICoqCg2bdrkcnv0laBbfvS4uDjXJKxFenq6a78gCBoR9ADihRdeICEhgRdffLHd9vXr17NhwwaCg4M7hHpaYmpZy13x/PPPs3HjRlJSUrjppptIS0vj97//Peeffz5PPfUU+fn57SziroiKinLFa1dWVpKamtpl7LqvnH/++URERHD99dd3W7BCEATEh+6Jk+1Hu/TSSxWgJk+erBwOh1JKqQ8++EBFRUUpQC1btqzDOS0tLSohIUEBKj8/v9N2d+3apSIiIhSgVq1a5XM/X3nlFZdv+7rrrvO5PU/U1dUpu93ebluA+zd7hIwlMAnwsYgPva9paGjgn//8J88//zwrV66koqKix21YuUt27NjBunXr2LJlC4sXL6a+vp6lS5fy+9//vsM5ISEhLFy4EOjcSq+qquLaa6+lsbGR66+/nssvv7zH/TqRCy+8kKioKKDv3C0W3hTFEATBiSe17+O/gKcnd+kHH3ywXcHiCy+8sEfXKikpaXf+pZdeqiZPnqwAtXTpUldkS2f88Y9/VIC67LLL2m3fuXOnysnJUYDKyMhQlZWVPeqTJx577DE1b948VVVV5bc2vSXAraceIWMJTAJ8LF3qqgi6B3ryoebm5ipAXXTRRa7q8+vXr/f6/LffflsBKicnRwUHB7uEfcyYMaqurs7juQcOHFCAio+Pd4Uv5ufnq7i4OAWoKVOmqA0bNnjdl0AnwP/ZeoSMJTAJ8LGIy6UvKSgoYNu2bURHR/PKK69w5513AnoVpVLeZTgwTRPQ7oxLLrkE0OF5zz33nMu90RWjRo0iJyeHqqoqV6Hjv//971RXV7Nw4UI2btwoC3AE4RRABN0PvPPOO4COCw8PD2f58uUkJCSwZs0a17L17rD854ZhcN999xEZGcmDDz7odUrXr3zlKwC8+uqrALzxxhsAfO973yM6OrpH4xEEYWAigu4HTowRT0hI4L777gPg8ccf96oNy0I3DINZs2ZRW1vLww8/7HUfrr32WkCHPh46dIjPPvuMiIgI14SpIAiDHxF0H2lubub9998H9KIbi1tvvRWbzcb69etpaGjo6nQAiouLKSwsJDY21lWH01oN6i0zZ85kypQplJWVccsttwBw7rnnduuuEQRh8CCC7iMbNmygtraWSZMmtattmZCQwLRp02hpaXHlGu8Ky90yffr0Hgu5hc1m45vf/CaAKw2AVWVIEIRTg0Ev6EopfvjDH7Jo0SIWLVrEd77zHVpbW7s/0Us6W5JvYdWrXLt2bZfn79mzh7vvvhvAq0IVnrj22msJDw93vZYKPIJwajHoBf3jjz/m8ccf54MPPuCDDz7gd7/7HStXrvRb+9akpzUp6U53gv7GG28wa9Ysdu/ezeTJk7nrrrt86ktSUhKXXXYZoH3xvhRPFgRh4DHoBf3JJ58E4Pbbb+eRR3Tt6ocffpjm5uYetZOfn9+hJNXx48fZunUr4eHhHZJHAcydOxeATz75pN31HA4HjzzyCBdffDHV1dV87WtfY+PGjQwbNqxHfeqM++67j9GjR7N8+XKf2xIEYYDhKUi9j//6nB07dihARUZGqtLSUmW329X48eMVoJ599tluz7cWF5SVlamYmBgVGxur1q1b59pv5TQ5++yzu2zDut7GjRtd27773e+68pE//vjjrrwtfUmAL5ToETKWwETGctI4NRcW/epXvwLgpptuIiUlheDgYJeV/tOf/rTb6BOLF198kdraWmpqavjKV77icrN8+OGHAB5DA090u7S2tvLXv/4V0C6X+++/H5vN1ovRCYIgtGfAC7pSirKyjuVLjx49yt///ndsNptr5SbA5ZdfzrRp0ygqKuKf//ynV9ewBHjatGnU19dz0UUXsX//flavXg3gMY/4iYK+fft2ampqyMrKYvHixd4NUhAEwQsGvKD/8pe/ZMiQIcybN4933nnHtdT+mWeeoaWlhcsuu4zRo0e7jg8KCuLWW28F8GpydNu2bWzZsoWEhAQ++eQTrrzyShobG7n22mvZu3cvsbGxHqNT3AW9qamJ9evXA3i9AlQQBMFbBrSgNzc38+tf/xrQRSAuuOAC7r33Xmpqalxl1e65554O511xxRWEhoayevVqiouLPV7j+eefB3Rh4sjISJ5++mni4+NdseXz588nJKTrWtvDhw9n2rRp1NTU8P7777NhwwagbcJUEATBXwxoQX/99dc5duwYEydO5Oc//zkhISE8+eSTXHXVVVRWVjJ37lxOP/30DuclJSVxwQUX4HA4eOmll7psv76+nr/97W8ALF26FIDU1FQee+wx1zHeLK3/2te+BsCqVavEQhcEoe/wNGPax38+c8455yhAPfPMM0oppX7961+3yyn++uuvd3nuyy+/rABlGEaXx9x1110KUDNmzGgXiWK329XMmTNVSEiI2rNnT7f93L17tyvaBlAJCQke85v3BQE+a98jZCyBiYzlpDH48qHv3bvXJZIVFRVKKaUcDoerjFtOTo5H0ayvr1exsbEKaCfKW7ZsURUVFerIkSOusm1r1qzpcH5NTY3av3+/1/21ilXQi+IX/iDAv6A9QsYSmMhYThqDK2yxtraWZcuWAXDllVeSkJAAtOUPv/vuu3n++ec95kWJjIx0lWP7y1/+AmiXyPTp0xkxYgSLFy+msbGRyy+/3DWx6U5MTEy7ydbusNwuIO4WQRD6CE9q38d/vaKyslLNmTNHASotLa1HVvKJbNy4UQEqOTlZNTQ0qFmzZrVz2YSFham8vLxet++OtciJLiz+vibALY4eIWMJTGQsJ40udbXr8IwAxG63c95557Fp0yaGDx/O6tWre2Qln8jpp5/Oaaedxueff87y5cvZtGkTSUlJvPrqq7zwwgtMnTqV7Oxsv/R94sSJnHvuuRw5coRZs2b5pU1BEAR3BpSgh4SEsHTpUo4fP84HH3zAqFGjfGrPZrNx++23861vfYvf//73ACxbtowFCxawYMGCDrlbfL3We++9J6tCBUHoM2xKea55aRhGPPA+MBE4wzTNHYZhXAHcCTQAN5imWWAYxnhgBfom8YBpmqu7ubZ3xTY7ob6+3m+FG+rr60lPT6eqqorg4GDy8/Ndec0LCwvJyMjwy3X6GxlLYCJjCUwCfCxdWoXeTIrWA4uBVQCGYYQAdwELgAeBB5zH/Qy4GTgfeKT3fe0ef1bhiYqK4sYbbwTgq1/9arsiFYIgCAOJbl0upmm2AKWGYVibxgK7TNNsBjYYhvGkc3u6aZr7AAzDKDcMI8U0zY5JVgKQRx55hNTUVJewC4IgDER640NPBKrdXgc7H92t/SogCWgn6IZhLAOWAdxxxx0sWrSoF5fvG6677jrsdns7v3lLS4tf/ej9iYwlMJGxBCaBPBZPrqDeCHolEOf22qrn5nDbFg+Un3iiaZor0H528MGHfrIIcD9aj5CxBCYylsBkoI6lN4K+D5hgGEYYYADbnNuPGoYxGjgGJA0Ud4sgCMJgwStBNwzjbWAaMA74I/Ab4GOgEbjBediPgOfQLpiH/NpLQRAEoVu8EnTTNDuWtIeXTzhmJzDPH50SBEEQes6AzOUiCIIgdEQEXRAEYZAggi4IgjBI6HbpvyAIgjAwEAtdEARhkCCCLgiCMEgQQRcEQRgkiKALgiAMEkTQBUEQBgki6IIgCIMEEXRBEIRBggg6YBhGtPNxwBf8NAwjyvk4GMYy0vk4GMZy+mAYB4BhGIOmrJdhGIn93Qd/ckovLDIM4zzgW0AR8AvTNIv6uUu9xjCMS4FrgSPAEwN8LFHAL4HhwNecVbMGJIZhTAWeBj4FHnRW+hqQGIZxPnAH0AS8CLxjmmZt//aqdxiGcRawHF2E5/8BX5qm2di/vfKdU91Cvxr4E7ADuNUwjAGZLdIwjCXAjcAv0AVI7nNuH5AWoWma9UAzEIse14AdCzoD6c9M07wfyO7vzvQWwzCCgVvRBWp+gq6FED2AP5crgb+ib0wXApf3b3f8Q28KXAxYnJbflcB6oAQ4DGwCPnJun2EYRt5AsG6dY7kK+C+wBfimaZqlhmHsBV4yDGOoaZrH+rWTXuL2uaw1TTPPKRL7gX8B3zUM4x3TNA/3aye9xP075qyxWw+cbxjG/egiMJ8Bb5immdef/fQG51i+AawBaoHt6F+zh9D1ESKBUPTNN6AxDCMSXdT+HdM01wAHgKPo//9GYLFhGONN09zdj930mVPGQjcM4yp0UY4oIN80zWogDZjt/Bn8ORCBLp8X0LiNJQI4ZppmkVPMg9BW7YEBJObWWCLRN1hM01TARPRn8S/gFsMwhvdXH73lhLEcdG6OAoYBdwO3o90Vi/uhez3ixLGYplkCrEa79T5Huyq+BXy7v/roLc7vzotoI26jc7MNyEKXwtyJ/u6N6ZcO+pFTQtANw4gDvg78FP2lPNcwjBTgWeCbhmFEm6a5AxgJjOq3jnpBJ2NZYBjGeADTNB1oAbE7jx0RyD+JTxjLh8BZhmFMcu5eg/7lUYcWke86zwnI72wnYznbMIx04FW0FTvcNM0qtNBbn09AfjadfMcWGoYx1jTNj4EPgP9nmua1wJtAmGEYQYE6FichwH/Qv8S/YxjGmcC7wJnAJNM0j6ONo0gI3M/FGwbtpKhzJv5u4C1gAzAfuBMIA94ArgfOApahP/B1aH/tq6Zpvtkffe6KbsbyH/RYLjFN86BhGDejv6hVQDLw7UCauPJyLOcBtwAL0DVqi4A60zQf6Icud4mX37GF6HHkoi3BC4H9pmn+pB+63CVefi4XoH9dDEML4h1AhWma3+2PPneF21j+g54fy3S+LkQbCUuBnwNT0AXvdwNL0C6/P/VDl/1GQFo7vmIYRibwK7SvLw14wTTNt4EngLNN03wSeAH4pWmav0B/gW8BtgWgmHc3ll+hJ3d+4TxlBFrQ95mmeUOAibk3Y3kBeBh4EviLaZrfME3zrgAUc2++Y8+jo6deQf/kPx34JADFvCefy1/QheIfBjYFoJi7jyUD+L1pmibauGk2TXOlc/95wN/QLr2zgM8GupjDIBN0wzDmu/1cSjBN81emaT4PxBqG8QPTNN9D+85AF7qOMgwj1vlT8gbTNJ86+b3unB6O5Xc4f8ajfxLPNk3z2ZPc5S7p4VieRltNmKb5d+f5AfM97cVYwgzDiHPW3F0+wD+XaCDCNM0X0b8If9sP3e4UD2OJNwzjm8BjwCwA0zTfAcY7j9sBfDeQxuILAfOP4guGYcQYhvE+2t93IXrCZr1hGLc4D1kHXGwYRoJpmq2GYcwHXkdHUtQCmKZp79jyyceHseQDmKa5zjTNypPf84748rk4QxcB19xAv+LDWPKcE/CYptnaD13vgI+fSx1AoMTTezGWtcBNzsf1hmE85Dy+yHlswHwu/mDQ+NANw5iBXogyC71QIMH5eBAt2nVo6/VL4P/QP+df7Y++doeMRcbS15xiY2lC35A2AqnoidD3+qGrfc6gEXQLwzCeQfv2/m4YxjD0z/f9wPeBlaZpFvdn/3qCjCUwkbEEJt2M5W8DJZTXFwaFywXahRqtRIeMDTVN8yg6lvkVdEhiTSD5Y7tCxhKYyFgCEy/HUjuQwxG9ZdBZ6ACGYXwHGA1UAHnAXtM0N/Vvr3qHjCUwkbEEJoNpLL0h4O++PcHNmshFx8zmm6b594H4gcpYAhMZS2AymMbiC4PVQr8ceNM0zab+7ouvyFgCExlLYDKYxtIbBqWgC4IgnIoMKpeLIAjCqYwIuiAIwiBBBF0QBGGQIIIuCIIwSBBBFwRBGCScUiXohFMTQ5dSuxddeec5wzCWolMO3+NMcysIgwKx0IVTgSjgIXRhA9DVkK5CF6EQhEGDWOjCqYDpfDzLMAyFLn4wErgH2GMYxkEgBV2Q4lp0EfHfoSvchwA3mqb5jmEYYcDP0DeDaOB94HbTNEtP4lgEoUvEQhdOBX7ofNyFFuPO3CzRzseN6Lzaz6Ir9gxFlysD+AGwHG3Z/wa9xPwPfdJjQegFIujCqYCV+/qYaZov4SxqcgIOdA1NK+f330zTfAZdCCHLuW2J8/EWtAsnGljUJz0WhF4gLhfhVMCb/BYNpmk2G4bR4nxd5XxsBYLdjrOjhd2qciNGkRAwyJdROBWoRlvgYwzDuAbtP+8Nb6KNoBvQxbjPR1vrghAQiKALgx7TNFvQ/vAE4O+0Wdc95XFnO/PQk6YXoCNmBCEgkGyLgiAIgwSx0AVBEAYJIuiCIAiDBBF0QRCEQYIIuiAIwiBBBF0QBGGQIIIuCIIwSBBBFwRBGCSIoAuCIAwS/j+Qez45FuayPwAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAG0CAYAAADgoSfXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWVElEQVR4nO3deXhTZfbA8W+67zt0p7SUsguyuVBcEGRRgUFBEEVQwW3cF5wZF0THUVxG/Q0uIwjqMAIDLoDgBiqCoIgKCiKUQjfaQltKt7Rpmvz+SHNz040kbZIu5/M8Pt7k3iQ3F+g9Pe95z6sxGo1GhBBCCCHcxMPdJyCEEEKIrk2CESGEEEK4lQQjQgghhHArCUaEEEII4VYSjAghhBDCrSQYEUIIIYRbSTAihBBCCLeSYEQIIYQQbiXBiBBCCCHcSoIRIYQQQriVXcHI6NGjrf4bPnw4W7duVfavXLmSsWPHMmbMGF555RXUneYPHDjArFmzGDVqFAsWLCA/P7/tvoUQQgghOiy7gpFvv/1W+e/tt9/G19eX888/H4AdO3awbt06Vq5cydq1a9mxYwcbNmwAQKfT8fDDDzNz5ky2bdvGwIEDefzxx9v+2wghhBCiw3F4mGbLli1cfPHFBAYGArB582auueYaEhISiIqK4vrrr2fLli0A7N27F39/f6ZMmYKvry/z58/n4MGDkh0RQgghBF6OvMhoNPLZZ5/xyCOPKM8dO3aMSZMmKY/T0tJYunQpAJmZmaSmpir7/P39SUhIIDMzk9jY2Ebvr9Pp0Ol01ifq5YWPj48jp9vhGAwGcnJySExMxMNDynrORq6XfeR62U6ulX3ketmnq1wvW76bQ8HITz/9RHV1NRdccIHyXFVVFUFBQcrjwMBAqqqqANBqtUoGRb1fq9U2+f4rVqzgrbfesnpu+vTpzJgxw5HT7bBycnLcfQodilwv+8j1sp1cK/vI9bJPZ79eycnJZz3GoWDk008/Zdy4cXh5WV4eEBBARUWF8riyspKAgADAlAmprKy0eo/Kykr8/f2bfP958+Yxe/Zs6xOVzIhohlwv+8j1sp1cK/vI9bKPXC8Lu4OR2tpatm7dyksvvWT1fHJyMhkZGaSnpwNw+PBhUlJSAEhJSeHDDz9UjtVqteTm5ir7G/Lx8ekygUdLPDw8uvxfUHvI9bKPXC/bybWyj1wv+8j1cqCAdefOnQQFBTF48GCr5ydNmsT69evJy8ujqKiIVatWMXHiRACGDRuGVqtl48aN6HQ6li9fTv/+/ZusFxFCCCFE12J3ZmTLli2MHz8ejUZj9Xx6ejpHjhxhzpw5GAwGpk6dyuTJkwFTpmPJkiU89dRTPPvss/Tv35/Fixe3zTcQQgghRIemMao7k4l2wWAwkJWVRVJSUpdP3dlCrpd95HrZTq6VfeR62Ueul0XX/vZCCCGEcDsJRoQQQgjhVhKMCCGEEMKtJBgRQgghhFtJMCKEEEIIt5JgRAghhBBuJcGIEEIIIdxKgpF24NSpU3h7e1NVVYVeryc4OJi8vDxlf8+ePdFoNGg0GgICAhg4cCBvvvmmG89YCCGEaDsSjLQDu3btYsiQIQQEBLB3714iIiKIj4+3Ombx4sXk5+ezf/9+pk6dym233caaNWvcdMbup9Pp3H0KQgjRLuQXGVm5xUhRacftYSrBSDvw3XffMWrUKAB27NjBhRde2OiY4OBgYmJiSE1N5emnn6Z379589NFHACxcuJC0tDQCAgJISUnhscceo7a2Vnntvn37uPTSSwkODiYkJIRhw4bx448/ApCVlcVVV11FeHg4gYGBDBgwgM2bNyuvPXjwIJMmTSIoKIjo6GhuuOEGioqKlP2XXHIJd999Nw8//DARERHExMSwaNEiq3M/dOgQ6enp+Pn50b9/f7788ks0Go1y/gB5eXlce+21hIeHExkZyZQpUzh+/Liyf+7cuUydOpV//OMfxMXFkZaWBsBrr71Gnz596Nu3L7GxsVxzzTUO/RkIIURHNfVvRub9w8iNz3TcYMTutWlE28jOzuacc84BoKqqCk9PT1auXIlWq0Wj0bBlyxZmz57N66+/3uTr/fz8lIAjODiYlStXEhcXx6+//sr8+fMJDg7m4YcfBmD27Nmce+65vP7663h6evLLL7/g7e0NwJ133olOp2P79u0EBgZy8OBBgoKCAMjPz+fiiy9m/vz5vPTSS2i1WhYuXMiMGTPYtm2bci7vvPMO999/P99//z27du1i7ty5jBo1inHjxinrFPXo0YPvv/+e8vJyHnjgAavvUlVVxaWXXsro0aPZvn07Xl5ePP3000yYMIH9+/crKzhv3bqVkJAQvvjiC4xGIz/++CN3330377zzDklJSfj7+7Nz5842/FMSQoj2b99R0/8/2wNnKoyEBmlafkE71CmDkeHDh1NQUODyz42JiVEyDmcTFxfHL7/8QllZGcOHD2f37t0EBQUxZMgQNm7ciKenJ3369Gn0Or1ez3/+8x9+/fVXbr/9dgAeffRRZX/Pnj154IEHWLNmjRKMZGdn89BDD9G3b18AevfurRyfnZ3N1VdfzaBBgwBISUlR9r3++usMHTqUZ555Rnnu7bffJjExkcOHDyvZiXPOOYcnnnhCee9//etfbN26lXHjxvH5559z9OhRvv76a2JiYgD4+9//zrhx45T3XL16NR4eHixbtkxZgHHFihWEhYXx9ddfc/nllwMQGBjIsmXLlODkgw8+IDAwkCuvvJKSkhKSkpIYNmyYTddfCCE6g1q9kZr6Ueu6OvjqZ5g62r3n5IhOGYwUFBRYFYC2R15eXvTs2ZO1a9cyYsQIBg8ezM6dO4mOjuaiiy4iKyuLqKgo5fiFCxfy6KOPUlNTg4+PDw899BC33norAOvWrePll18mIyODiooK9Ho9ISEhymvvv/9+brnlFt577z3Gjh3L9OnT6dWrFwB33303t99+O59//jljx47l6quvVjI2e/fu5auvvlIyJWpHjx61CkbUYmNjOXnyJAB//PEHiYmJSiACMHLkSKvj9+7dS0ZGBsHBwVbPV1dXc/ToUeXxoEGDlEAEYNy4cSQlJZGamkp6ejrTpk3j6quvJiAg4GyXXwghOoVKrfXjz/cYmTpaMiPtgvrG114/d8CAAWRlZVFbW4vBYCAoKAi9Xq8EEnFxcRw6dEg5/qGHHmLu3LkEBAQQGxurZBB2797NzJkzefLJJxk/fjyhoaGsXr2aF198UXntokWLuO666/jkk0/YsmULTzzxBKtXr+ZPf/oTt9xyC+PHj+eTTz7h888/5x//+Acvvvgid911FwaDgauuuornnnuu0fnHxsYq2+YhHzONRoPBYADAaDQq59ocg8HAsGHDWLVqVaN93bp1U7YDAwOt9gUHB/PTTz+xbds21q9fz6JFi1i8eDF79uwhLCysxc8UQojOoKJBMPLFHvecR2t1ymDE1qESd9q8eTO1tbVcdtllLFmyhGHDhjFz5kzmzp3L5ZdfrmQWzKKiokhNTW30Pjt37iQpKYm//e1vynNZWVmNjktLSyMtLY377ruPWbNmsWLFCv70pz8BkJiYyG233cZtt93GX/7yF9566y3uuusuhg4dyvr16+nZsydeXo79Venbty/Z2dkUFhYSHR0NwJ491v9ahg4dypo1a+jevbtVRscWXl5ejB07lt69e/PCCy8QERHBtm3bmDZtmkPnK4QQHUnDYCQjD46dMJIc17GyIzKbxk2SkpIICgqisLCQKVOm0KNHDw4ePMi0adNITU1tNLW3OampqWRnZ7N69WqOHj3Kq6++yocffqjs12q1/PnPf+brr78mKyuLnTt3smfPHvr16wfAvffey2effcaxY8eULIN535133klJSQmzZs3ihx9+IDMzk88//5ybbrqJuro6m85v3Lhx9OrVixtvvJH9+/ezc+dOJXAyZ0xmz55NVFQUU6ZM4dtvv+XYsWN888033HPPPeTm5jb73ps2beLVV1/ll19+IS8vj3fffReDwdBkrY0QQnRGDYMRgC/a/+/jjUgw4kZff/01I0aMwM/Pj++//574+Hji4uLseo8pU6Zw33338ec//5khQ4bw3Xff8dhjjyn7PT09KS4uZs6cOaSlpTFjxgwmTpzIk08+CUBdXR133nkn/fr1Y8KECfTp04fXXnsNMBXZ7ty5k7q6OsaPH8/AgQO55557CA0NxcPDtr86np6efPTRR1RUVDBixAhuueUWpeDWz88PgICAALZv306PHj2YNm0a/fr146abbkKr1baYKQkLC+ODDz5g7NixjBs3jn//+9+8//77DBgwwK5rKIQQHVXTwUjHm+KrMRqNHe+sOzmDwUBWVhZJSUk23/Q7kp07d5Kenk5GRoZSSNsanf16tTW5XraTa2UfuV72aYvrtek7I1c9Yn0bDw+GUxs0eHp2nKGaTlkzItqXDz/8kKCgIHr37k1GRgb33HMPo0aNapNARAghurKmMiOny2HvHzCyv+vPx1ESugqnKy8v54477qBv377MnTuXESNG8PHHH7v7tIQQosNTByPD+1q2O1rdiAQjwunmzJnDkSNHqK6uJjc3l5UrVxIZGenu0xJCiA5P3WfkT6r+Ip/v6VgVGBKMCCGEEB2UOjMyKAV61U/E/O430NV2nIBEghEhhBCig6rQWgKOIH/ol2Ta1tdBaYWbTsoBEowIIYQQHZQ6MxLkD8Gq1TDKq1x/Po6SYEQIIYTooBoFI/6WxxKMCCGEEMLpWsqMNDXtt72SYEQIIYTooKyCkQAIDrDMqJHMiBBCCCGcTh2MBPqZsiNmEowIu5w6dQpvb2+qqqrQ6/UEBweTl5en7O/ZsycajQaNRkNAQAADBw7kzTffdOMZCyGEaA/MwYiPN/h4a6SAVThu165dDBkyhICAAPbu3UtERESjVXsXL15Mfn4++/fvZ+rUqdx2222sWbPGTWfsfjqdzt2nIIQQbldRH3CYMyISjAiHfffdd4waNQqAHTt2cOGFFzY6Jjg4mJiYGFJTU3n66afp3bs3H330EQALFy4kLS2NgIAAUlJSeOyxx6itrVVeu2/fPi699FKCg4MJCQlh2LBh/PijqVdwVlYWV111FeHh4QQGBjJgwAA2b96svPbgwYNMmjSJoKAgoqOjueGGGygqKlL2X3LJJdx99908/PDDREREEBMTw6JFi6zO/dChQ6Snp+Pn50f//v358ssv0Wg0yvkD5OXlce211xIeHk5kZCRTpkzh+PHjyv65c+cydepU/vGPfxAXF0daWhoAr732Gn369KFv377ExsZyzTXXOPRnIIQQHZE5M9JUMNKRClhloTw3yc7O5pxzzgGgqqoKT09PVq5ciVarRaPRsGXLFmbPns3rr7/e5Ov9/PyUgCM4OJiVK1cSFxfHr7/+yvz58wkODubhhx8GYPbs2Zx77rm8/vrreHp68ssvv+Dt7Q3AnXfeiU6nY/v27QQGBnLw4EGCgoIAyM/P5+KLL2b+/Pm89NJLaLVaFi5cyIwZM9i2bZtyLu+88w73338/33//Pbt27WLu3LmMGjWKcePGYTAYmDp1Kj169OD777+nvLycBx54wOq7VFVVcemllzJ69Gi2b9+Ol5cXTz/9NBMmTGD//v34+PgAsHXrVkJCQvjiiy8wGo38+OOP3H333bzzzjskJSXh7+/Pzp072/BPSQgh2jdzwBHoZ/q/dWbECHSMlXs7ZTAyfL6BghLXf25MBPz4lm3Jpri4OH755RfKysoYPnw4u3fvJigoiCFDhrBx40Y8PT3p06dPo9fp9Xr+85//8Ouvv3L77bcD8Oijjyr7e/bsyQMPPMCaNWuUYCQ7O5uHHnqIvn1Nqyj17t1bOT47O5urr76aQYMGAZCSkqLse/311xk6dCjPPPOM8tzbb79NYmIihw8fVrIT55xzDk888YTy3v/617/YunUr48aN4/PPP+fo0aN8/fXXxMTEAPD3v/+dcePGKe+5evVqPDw8WLZsGRqN6R/OihUrCAsL4+uvv+byyy8HIDAwkGXLlinByQcffEBgYCBXXnklJSUlJCUlMWzYMJuuvxBCdHRGo5HKatO2OTNiVcAqmRH3KiiBvFPuPouWeXl50bNnT9auXcuIESMYPHgwO3fuJDo6mosuuoisrCyioqKU4xcuXMijjz5KTU0NPj4+PPTQQ9x6660ArFu3jpdffpmMjAwqKirQ6/WEhIQor73//vu55ZZbeO+99xg7dizTp0+nV69eANx9993cfvvtfP7554wdO5arr75aydjs3buXr776SsmUqB09etQqGFGLjY3l5MmTAPzxxx8kJiYqgQjAyJEjrY7fu3cvGRkZBAcHWz1fXV3N0aNHlceDBg1SAhGAcePGkZSURGpqKunp6UybNo2rr76agIAAhBCis9PWgLG+G3xHrxnplMFITET7/9wBAwaQlZVFbW0tBoOBoKAg9Hq9EkjExcVx6NAh5fiHHnqIuXPnEhAQQGxsrJJB2L17NzNnzuTJJ59k/PjxhIaGsnr1al588UXltYsWLeK6667jk08+YcuWLTzxxBOsXr2aP/3pT9xyyy2MHz+eTz75hM8//5x//OMfvPjii9x1110YDAauuuoqnnvuuUbnHxsbq2ybh3zMNBoNBoMBMEXu5nNtjsFgYNiwYaxatarRvm7duinbgYGBVvuCg4P56aef2LZtG+vXr2fRokUsXryYPXv2EBYW1uJnCiFER9ew4Rl03A6snTIYsXWoxJ02b95MbW0tl112GUuWLGHYsGHMnDmTuXPncvnllyuZBbOoqChSU1Mbvc/OnTtJSkrib3/7m/JcVlZWo+PS0tJIS0vjvvvuY9asWaxYsYI//elPACQmJnLbbbdx22238Ze//IW33nqLu+66i6FDh7J+/Xp69uyJl5djf1X69u1LdnY2hYWFREdHA7Bnzx6rY4YOHcqaNWvo3r27VUbHFl5eXowdO5bevXvzwgsvEBERwbZt25g2bZpD5yuEEB1Fw4Zn0HELWNv/XbuTSkpKIigoiMLCQqZMmUKPHj04ePAg06ZNIzU1tdHU3uakpqaSnZ3N6tWrOXr0KK+++ioffvihsl+r1fLnP/+Zr7/+mqysLHbu3MmePXvo168fAPfeey+fffYZx44dU7IM5n133nknJSUlzJo1ix9++IHMzEw+//xzbrrpJurq6mw6v3HjxtGrVy9uvPFG9u/fz86dO5XAyZwxmT17NlFRUUyZMoVvv/2WY8eO8c0333DPPfeQm5vb7Htv2rSJV199lV9++YW8vDzeffddDAZDk7U2QgjR2TSVGQnwA3MyuiNlRiQYcaOvv/6aESNG4Ofnx/fff098fDxxcXF2vceUKVO47777+POf/8yQIUP47rvveOyxx5T9np6eFBcXM2fOHNLS0pgxYwYTJ07kySefBKCuro4777yTfv36MWHCBPr06cNrr70GmIpsd+7cSV1dHePHj2fgwIHcc889hIaG4uFh218dT09PPvroIyoqKhgxYgS33HKLUnDr52cq/w4ICGD79u306NGDadOm0a9fP2666Sa0Wm2LmZKwsDA++OADxo4dy7hx4/j3v//N+++/z4ABA+y6hkII0RFVqIINczDi4aFRZtZ0pGBEYzSay19Ee2EwGMjKyiIpKcnmm35HsnPnTtLT08nIyFAKaVujs1+vtibXy3Zyrewj18s+rb1en/9gZPyDplv49PP+YNlj8aaawz8ZyC+GhG6Qs75j/Dl0ypoR0b58+OGHBAUF0bt3bzIyMrjnnnsYNWpUmwQiQgjRVamHaf63+m10R47w0UcfERwA+cUytVcIK+Xl5Tz88MPk5OQQFRXF2LFjrWb7CCGEsJ9VgWpdBRs2bODEiRMEB8Qo+22Z0dgeSDAinG7OnDnMmTPH3achhBCdinUwUonRaOR///sfwQF3mZ6qg2od+Pu65/zs0TEGk4QQQghhpWFmBGDNmjXWXVg7SBGrBCNCCCFEB1ShVc0/qQ9Gdu3ahYfREoFIMCKEEEIIp2kqMwJQeCJD2ZZgRAghhBBOYxWMGCqVzeMZvzZ9TDsmwYgQQgjRATWfGTmibEtmRAghhBBOU9kgGDGvpK4OTCQYEUIIIYTTNMyMzJ8/X9k269TByMqVK7niiiu46KKLuO666ygvL1eeHzt2LGPGjOGVV15B3Wn+wIEDzJo1i1GjRrFgwQLy8/Pb5hsIIYQQXZASjBgNYNAyZMgQhg4dCnXlyjGdNhhZvXo13333HcuWLeObb75h8eLF+Pj4sGPHDtatW8fKlStZu3YtO3bsYMOGDQDodDoefvhhZs6cybZt2xg4cCCPP/54m38ZIYQQoqtQgpG6SsBIWFgYycnJVsFIpyxgraurY8WKFTz66KPExsai0WhITU3F19eXzZs3c80115CQkEBUVBTXX389W7ZsAWDv3r34+/szZcoUfH19mT9/PgcPHpTsiBBCCOEgJdAwmIZlQkNDTSudW2VGOsZauHa1gz958iQ1NTV8+eWXrF69mqCgIK677jquueYajh07xqRJk5Rj09LSWLp0KQCZmZmkpqYq+/z9/UlISCAzM5PY2NhGn6PT6dDpdNYn6uWFj4+PXV+uozIYDFb/Fy2T62UfuV62k2tlH7le9mnt9bJkRkzBSEhICMHBwVY1I2VV7v/zsGVFYruDkYqKCnJzc9mwYQN5eXnccccd9OzZk6qqKoKCgpRjAwMDqaoyDVZptVoCAwOt3iswMBCttun80YoVK3jrrbesnps+fTozZsyw53Q7vJycHHefQoci18s+cr1sJ9fKPnK97OPo9aqo6gFolOCjtLTUVKupyowUnKogK6u4LU7TYcnJyWc9xq5gxNfXtNrOggUL8PPzo1evXkyaNImdO3cSEBBARYUlGqusrCQgIAAwZUIqKyut3quyshJ/f3+aMm/ePGbPnm19ol0sM5KTk0NiYqJNEWVXJ9fLPnK9bCfXyj5yvezTmuulqwWdvv5BXQV+fn707t2bHj16gN4SjBg0QSQlBTX9Ju2IXcFIUlIS3t7eTe5LTk4mIyOD9PR0AA4fPkxKSgoAKSkpfPjhh8qxWq2W3NxcZX9DPj4+XSbwaImHh4f8g7aDXC/7yPWynVwr+8j1so8j10urMwL19SB1lYSFheHh4UFoaKhVZqSy2rZhEnez6wz9/f257LLLWL58OTqdjuPHj7NlyxZGjRrFpEmTWL9+PXl5eRQVFbFq1SomTpwIwLBhw9BqtWzcuBGdTsfy5cvp379/k/UiQgghhGhZhXrKbl2FKQjBVDeCoco03ZeOM7XXrswIwMKFC1m8eDFjx44lNDSUW265heHDhwNw5MgR5syZg8FgYOrUqUyePBkwZTqWLFnCU089xbPPPkv//v1ZvHhx234TIYQQooto2PAsLCIMqA9GMJqm+3oFd95gJDg4mOeff77JffPmzWPevHlN7hswYACrV6+29+OEEEII0YD1InkNMiNgGqrpQMFI+x9IEkIIIdqZnEIjD79u4ONv3dPHwzozYqoZAZSgxFw3Ut5Bmp7ZnRkRQgghurIjOUYuu89Izkl41cdIwYcQFqxx6TlUVqseNKwZAUswUgVGoxGNxrXnZy/JjAghhBA2+v24kYvvNgUiADU6OOGGNh6NakbqMyMNgxGDAaqte4i2SxKMCCGEEDY4cMwUiOQ3CD4q3TAU0nCYxpwZCQ4OVp4z6wh1IxKMCCGEEDa49/+MnCpt/HxVjctPxXpqr8GSGfH09DR1PO9gK/dKMCKEEELYYP9R0/+jQuE+1eok7s+MWGpGgEaNzyQYEUIIIToBo9FISZlpu0c0xEdZCkKtikldpEKrmsWjqhkBmli514Un5iAJRoQQQoizKK8CfZ1pOyIEAvws+9wTjKgeNMiMNAxGKjrA9F4JRoQQQoizMGdFACJDIFAVjFS1g2CkcWbEsnCtZEaEEEKITkAdjEQ0CEbaZ2ZEghEhhBCiUymxjHoQEQyB/pbHlVrXd2FtKTMiBaxCCCFEJ2SdGdEQ4Gt57PbMiLGKoKAg5WGjAlapGRFCCCE6vuKGwzSqzIhba0YM1YSFBOLhYbmdNypgrXLP+jn2kGBECCGEOAurzEhwO6oZUXVfNWtUMyKZESGEEKLjKymzZBciQ9tTMGJdLwLSZ0QIIYTolBoWsFr1GXFD5kEpmm0wkwbqC1j1EowIIYQQnUpLU3tdvTaNwWC0ZGMkMyKEEEJ0DeoC1vBg+M97b4PR1JLV1ZmRqmowGuvb0RsaZ0ZCQkLAUAVGAyAdWIUQQohOwZwZCfIHXU0lf/nLI1BXCcDpMp1rz0U1ZIS+tOnMCEbl/CQzIoQQQnQC5gAgIgRef/11ioqKTNkHoLLatVNni8+oHtQWNZ0ZAWWoRoIRIYQQooNTr9gbHmTg+eefNz2ozzxUVbv2VlpkFYwUN8qMKMGJORiRYRohhBCiY6vUQq3etF1VlsupU6dMDwymYKS6VuPS81HXr6AvbpQZCQ4ONm2oMiNGY/tufCbBiBBCCNECdY1GduYvlgf1mRGd3guDwXU3e+thmpJGmRFPT08CAwOVYMRggGrXlrXYTYIRIYQQogXqm39NRT6gmrFSz5Ut4YvOUjMC5um9lcrj9l43IsGIEEII0QKr2Su1JQA88sgjUGe5w7uyC2uxqhss+sY1I9Dxeo1IMCKEEEK0oKRBjUZycjLp6elWmQdXZkaKGxSwNpUZCQ0NlWBECCGE6Cysg5HTREZG1g/TWIIRV2ZGrIZp9EWSGRFCCCE6u4bDNBEREfWZB3cN09RvGOtAf6aFmhFLFHWmstEh7YoEI0IIIUQLSqxqNEoIDw9vnBlxYS8PZZhGX4Kfny++vr6NjgkJCQH9aeXx6fJGh7QrEowIIYQQLbDu62HKjDScreLKxfKUYZpmZtJAfTBSW6o8lmBECCGE6MCsakbqh2m8vLzw9qxVnnZVZkRXa7QsfNdE91Wz0NBQ0JcojyUYEUIIITqwkgaZkfDwcAD8fS3DN66qGbGaSaMvaTkzYjVMIx1YhRBCiA5LKWCtqwCjjoiICAACVKUargpGGjY8ay4z0jAYKZHMiBBCCNFxKZmR+oZn5mAkKMCyJk2l1jWZB6v6ldpiunfv3uRxUsAqhBBCdBJGo9ESAOitg5FgVTByusw1i79YD9NIMCKEEEJ0elXVoDPXqdYHI+aakZBAL+U4VwUjRQ26rzYXjISGhoKx1jS0hAQjQgghRIfVsPsqWDIjocGWYORMeS2uUNygNX2LmRFQzlmCESGEEKKDsu6+WgxYMiPhIT7KrjMVdS45n6IzqtqU2mKio6ObPK5hMCIFrEIIIUQH1XBar5+fH/7+/gCEh1qm01RUuSYYKW4wm8bWzEiNDrQ17Xd6rwQjQgghRDOaanhmFhnmr2xXuGM2jS3DNB2kC6sEI0IIIUQzihvUjKiDkahwSzDinj4jJXTr1q3J4zw9PQkMDOwwXVglGBFCCCGa0XCYxiozEhEMBlPhqrZGgysowzS1pwkODlCGjJrSkab3SjAihBBCNKOk3Lpg1Fy8Clit3Ftd6+mS87H0PGl+iMasURfWshYOdjMJRoQQQohmtJQZCQ0NVVburXFBMKLXGy3ZjRZ6jJhJZkQIIYToBFoKRkyZkSoAdHU+ONvpCvW5nD0YMa3cW2p5vQQjQgghRMdj1Z+jQQGrOjOiNzg/GCm2sfuqWaPMSIVM7RVCCCE6HCUAqKsCQ3XjmpH6YMSAN3q9c2/2RQ3WpWmu4ZmZKRiR2TRCCCFEh6ZkRhoskgcQFBSkDNMAVNU491xamxmRAlYhhBDCQX/88Qc5OTlu+WzlBt5EMKLRaPDysCyQV6l17rlY9TyxIRgJDw/vvAWsCxYs4MILL2T06NGMHj2au+++W9m3cuVKxo4dy5gxY3jllVcwGi0pqwMHDjBr1ixGjRrFggULyM/Pb5tvIIQQotP64osv6NevH71793Z5QKKrNVJtjjXqC0HVwzQAPl6WBfKc3fis4TDN2YKR+Pj4zl3A+sQTT/Dtt9/y7bff8uqrrwKwY8cO1q1bx8qVK1m7di07duxgw4YNAOh0Oh5++GFmzpzJtm3bGDhwII8//njbfQshhBCd0pIlSzAajdTU1LBr1y6XfvaZStUDvSktoc6MAPh66ZVt5w/TWPc8OVswkpCQAEY96E1RSKcLRpqyefNmrrnmGhISEoiKiuL6669ny5YtAOzduxd/f3+mTJmCr68v8+fP5+DBg5IdEUII0axjx47x5ZdfKo/Ly117Nz2jnkpb13Qw4udjsBxfrseZrIdpml8kzywxMdG0UT/EZDU1uJ3xcuRFzz//PM8//zxpaWncd9999O7dm2PHjjFp0iTlmLS0NJYuXQpAZmYmqampyj5/f38SEhLIzMwkNja20fvrdDp0Op3Vc15eXvj4OH/qVHtgMBis/i9aJtfLPnK9bCfXyj5tfb3efvttq8dnzpxx6Z+FVSZBfwYPDw+CgoKszsHfxwj1IzUniysxGEJsfn97r9epUsu2xnCasLCwFl8bHx9ff+6ngSROl0NdnQGNazrXKzw8zp73sDsYufvuu0lJScHDw4M1a9Zwzz33sG7dOqqqqkyVxfUCAwOpqjJVGWu1WtOCPSqBgYFotU1X+6xYsYK33nrL6rnp06czY8YMe0+3Q3NXwVZHJdfLPnK9bCfXyj5tcb3q6upYvny51XPZ2dlkZWW1+r1tdeSYLxBTf0JnCAkJafTdvFUFrH9k5JKVYn2vs4Wt1+vEqWjAD4DwIAO5ubktHm80GgkMDKSyvohVVwuHjmQT4OvafiPJyclnPcbuYGTgwIHK9o033siGDRs4cOAAAQEBVFRYckCVlZUEBAQApkxIZWWl1ftUVlY2u8DPvHnzmD17tvWJdrHMSE5ODomJiTZFlF2dXC/7yPWynVwr+7Tl9fr0008bDeV7enqSlJTUqve1x8/Zqgf6M0RFRTX6/IhQXzhZ/8Aj0K7zs/d6VdbUBxF1FcTFRNj0WT169OB3VRFrcFgPEloe3XELh4Zp1MwXMDk5mYyMDNLT0wE4fPgwKSkpAKSkpPDhhx8qr9FqteTm5ir7G/Lx8ekygUdLPDw85AegHeR62Ueul+3kWtmnLa5XwyEaMNWMuPLPobzKCJgDgDIiIiIafX5IkKcSjJSW6xw6P1uv16nSOtNGranhmS2vSUxM5Pdjlum9Zyo19PBw8TiNDey6auXl5ezevRudTkdtbS2rVq2irKyMfv36MWnSJNavX09eXh5FRUWsWrWKiRMnAjBs2DC0Wi0bN25Ep9OxfPly+vfv32S9iBBCiK5t6+5iPsi4GxL/iq+vr/J8WZlru3Y1nE3TcFovQHCgZYG80rLaRvvbitGoWiTPhmm9ZgkJCR2iC6tdmRG9Xs/SpUs5fvw43t7epKWl8corrxAUFER6ejpHjhxhzpw5GAwGpk6dyuTJkwFTpmPJkiU89dRTPPvss/Tv35/Fixc75QsJIYTo2B54+RTGkHQISefKS7xZ/96TgJuDkbozjWbSAIQFW7L4peXOC0bOVECdoT6jYcO0XrPExMQO0fjMrmAkPDyc9957r9n98+bNY968eU3uGzBgAKtXr7bv7IQQQnQ5xwq8le2Q3ncA7glGyipVhZ76M0RE9Gx0THiIt+r4OqedS5GdreDNTMHIj8rjknYajMggqBBCiHalsi5K2f7850h8/UyTHVzeZ8RqmKbpzEhEmJ+yXVHlvGnHVj1G7B6maf+ZEQlGhBBCtBul5UbqNMHK47wiDf4xEwA3DNM0aHrWVM1IpCoYqdQ6b8ps3inVA12hfZmRWnUw4tppvbaSYEQIIUS7kXmi8c2yLnIW0D5rRrpFBCjbzlyb5oi6pUj1UTuHadp/AasEI0IIIdqNA0cb9yyv9B8PHn6UlZVZLcDqbA1n0zQZjERampxpdc67pR7JVX1v7RGbg5Hg4GCC/CyFtRKMCCGEEGdxIMMSjPh4mKIBgyYIIiaj1+uprnby0rgqZeZgRF8OGJoMRmK6WYaUqms9G+1vK1aZETuCEYD4GEvAVOLa5JLNJBgRQgjRbhzJsfwWPzJetUpvd1NXblcWsSqZkTrTVJamakaiVcGITt/qPqLNUoIR3UkCfPVWy6+cTc/4MGX71GnnTT9uDQlGhBBCtBtZhZbtMQNySehW/yB8PHhHubRuRClgbWbFXoCgQD8w1ACgq/NutL8tVFQZyS+uf2BnVgQgMTEO9KaAqqjUedOPW0OCESGE6MIMhvY1uyK/pL7jqqGWvsmBXDumfoeHN4SMclkwUldnpMK8lqu++cwIgMZoWhRWb/Btcn9rZeSpHlRnOBCMWIpYSyvaXyt4kGBECCG6rIPHjcRPMzL0ZoN1gy83Kq6sH36oySYuLoa0RNXN0yvSZcFIWZXqgb6MgIAAq9b0ah6Y6ljqcE4w0pp6EbDuwlpe7eXSImBbSTAihBBd1H8+N1JQAj8fgfc+c/fZmHqM1NTVT5WtySI2NpbwYNUBXmGuC0ZsmNZr5qXRAWDU+DvlRm8djNifGVE3PjMYPS0Zn3ZEghEhhOiisgos2+9vdf9vy+p6EaqziImJISJE9ZxXhMsKWG2Z1mvm7WEKRvAIdMpsn4bTeqOjo+16vSkzUqo8bo/TeyUYEUKILkp989/5K2QXujcgOZ5v2faqyyM4OJhw9aQR73CXZUasu6+eaXGVeR+v+hkqHt6cKj7T7HGOOpxjHYxceeWVdr0+ISGhQRfWtjqztiPBiBBCdFHZhdaPx1+/nAkTJpCfn9/0C5zsuCpTE+ZfikajaZQZcVkw0mBdmri4uGaP9fOyzFA5WdS4aVtrHThqmq1DzQkuHj2cCy+80K7XBwUF4etlKYKRYEQIIUS7oNcbySuyzoQcKhrMZ599xjvvvOOWczqaZ7mpR4eYChusa0ZclxlpWDMSHx/f7LF+PpYF8grbOBg5U2HgjLZ+/ZvqI/ztb39z6H3Cgix/1sVl7h+Sa0iCESGE6ILyisBgaDDNM3gY+PcmJyfHLed0OLtG2U7oZgpMggPAQ1N/83RhMNKwZqSlYCTAz3JzLyqpavY4R6xc+52yHRVYytixYx16n25hlu6wx3PbX2pEghEhhOiCrIZo9KqbU9QMTp486fLzATiWX39TN9TSM84HAA8PDSEB9ZkHr3DXFbA2WLG3pWAk0LJwL6dK2m6qitFo5LW3P1ceT7ykNxqNY31C4rpZgpGMbAlGhBBCtANWM1cKllm2u8+ksNA9wUheUX0H05oc4mIt01fDgs2ZEVfWjKiGMs5SMxISZGkDX3iq7W7033//PYezLUNAky/v7/B7JcdbIqbjJ2paONI9JBgRQoguSJ0Z8dPtJX1Q/YOA/uSUhLn8fErLjVTWmIOR48TExCj7okLqswFeoZw50/YFok05Y0fNSESo5UZf0IbByO7du8G/t/K4T6Lj3VNTe1gWyysoadVpOYUEI0II0QVlFVh+84+L1DPzMsuNrrB2mOvPp4keI2aR5noHjQenyw24grqA1ZPKFhuNdYsIULZPFVc2e5y9jh07Bv6pyuNezcdDZ5Ucb5kjXVzunDV0WkOCESGE6IKO5FhS9clxXozoa9mnrYuktta1q7uqG7A1zIyop/eeqXTNbUudGYmO9MPDo/nPjYu2ZB0KS/Rtdg6mYMSUGYmNqCPAz/HMSEx0ONSaVts7U+XfJufXliQYEUKILuh4fv002jotacnhxEWpdvrEUlRU5NrzUQcjDTIj6sZnZVpPXEGdgUmIDWnhSOidZDnBojKvFo60T8bxIvA2/cH0TWrd946KigKdqX9MZW1Qu1ufRoIRIYToYoxGI/kl5vqMbHr2TCI6AqD+BuwT6/IZNcdVw0ZUH7dqea7OjFRU+7jkfIpL6zMchmoS4rq1eGxitCUAaausg9FoJDPf8r69E1r3fqZgxBTx1Rl9rfuotAMSjAghRBdzuhyqay0zV5KSkvD20hDoXd8jwx3BiKrpa6jfaasVcsODLcMT1bV+1NXV4Wyl5fXBkb7l4lWA2EjLdqU+pE2yDqdOnaLGe4DyuHeC40M0AGFhYVBrKcxpb0WsEowIIUQXY9VjpCaLnj17AhAWUN8jwyeWAhdP7802f5yxzurmDtaZEbwjqKhw/oyacm39zd+GYCRGtYaewbN7m0w/zsw8BjHzlcdjh7fu/Tw9PfHzKFUeSzAihBDCrayLRbNJSkoCICq0fmjCw5tjOa7p52GWX1Q/RKQrJDbGeljEarE8rzCnNz4zGo1odfVDJGeZ1gvg463B16P+evnEUlBQ0OLxtvh8dxkEDQEgMewEQ3q3LjMCEORrCeLyi1v9dm1KghEhhOhislVJD6+6E8q0VXVGwpWNsQwGIydL62+2tQVWxavQcH0a5zc+q9SCwVh/e6wra7HhmVmwb30Rhk8s+fmtD0Y+2m2pmblqeF6r3w8gPNDyZ5p7su1m/bQFCUaEEKKLySq01DTEhOmUaavqQszck86vyzArKQN9XX0woitsFIxYr9zr/PVp7FmXxiwiqP5G7+FLRlbrxkCKzxjZn9/H9KC2hFlj22aGTlSIJQDJOlHdJu/ZViQYEUKILiYjW6dsJ8VYbgO9EiwzQQpPu+72YFW/oHN/ZsQ6GDn7MA1AdLhlKnBGVutqWlZugTpjfYFx4Tv069OzVe9nFhNhCUKzC13bR+ZsJBgRQogu5mhe/Y3IaCAtydI9VN0yvLjcNVNo4ezBiHVmJMzpwYh62quPp5agoKDmD66X0F21Km6+40NcBoORNz62BA2B5auIiIho4RW2i+9uybDkF0mfESGEEG6Ue6r+xqkroFeKpYFFfDfLLaGsOrDhy5zGKhipbTxM4++rwcujfojBO8LpBaylFZYbdYiNl6FnnGUqct5Jx1vWb90LGeYSkdNfkhpvcHil3obiuweAwRQonSy1/Fm/8L6R/35h5Pfj7gtQ2q5VnBBCiHavRmektKp+YbeaLGUmDWDVhbVSH4rRaGyzG2FLCtQzO5qoGQEI8qultMrLJTUj+aeqAFPGKCzYtt/Z1V1YC0sd/z1/03eqgKDg3ySnJzv8Xg1161bf+MwviZIK0zBQdY2RhW8aMRhgSG/4ebnz/7ybIpkRIYToQnJPqR7UNzwza9gvo7LSNW06C0+rbsBNzKYBCPGvz4y4oGYkO++Mst0t3LbhKnUwcrrCr4UjW3ayVPWg4ieSk9suGFF3Ya2o9kevN3LgOBjqEznnpLTZR9lNghEhhOhCmusxAo37ZbiqC6t6mEajP0lkZGSjY0KD6u+YnoGUlDo3SMotsAwDRUfZFljERVkyCuW6s9eYNKdEHWfpT7dpMBIZGakEI0Y0nCyF/Uct+/smum46d0MSjAghRBei7jHiUZvbqIdGkE/9TBCfWApd1IVVHYxEBOnw9Gy8KJy6JXxRqXOnHZ8s1irb8dG2BRbqHi01hgiHW9afNsdBRgPoz7R9ZqTWEo0WFMNPhy3n+c5rD7XZZ9lLghEhhOhC1JmRqKAqvLysSwfDA+v7T3j4cjT7tEvOSakZqdMS1cywSFSo5XZVUubcQstTJZapzwmxoTa9xt9Xg7fGHMjFcOrUqZZf0IwSczCiLwWMThumAcgvgR8PWrIhfRLc13tEghEhhOhCMvNUN9rujfd3D7M0xsrIck3NSEFJfXBRW0BUE0M0AN3CLUHTaedOpqGkzJItSE60fVptoHf9ibWiC6vy3fSmdFFbBiPh4eFWmZH8YjiQVX9da07Qt1fT194VJBgRQoguJLfQMgSRkth4CCI20jIcktWKfhm2qtUbKTpj6b4aFRXV5HHRkd7K9pmqxsM4bUnd9Cy1Z7fmD2xAWWjQM5DMbPszIwaDURWMnCY6OpqAgIAWX2MPT09PyzAcsPcPI+Xa+uta+auyYKI7SDAihBBOZjAYeeg1A7c8Z6BS695mU4XFlsxHWs/Gv/UnxVpu+nmnnH+uJ9UjQbrCJotXAbqFWTIj5VrndqWorLa8vz3BSLdQy7U9fMz+9E1ZJRjNl7yNi1fN1OvTfPaDakflPglGhBCiM9u6F15YDcs/gVfWufdcis2zNeoqrRqemaWoW8K3ol+GrQqtGp4VNBuMqFvCV9X4NnlMW6murQ/IjHpCgmzPwqhn1GTm2V9/UaKOX5wUjHQLtQxBHctX7ZDMiBBCdG5/ZFu2N37n3syIklWoLW7y5tOnp6X3ekmFc2/60LgVfHPDNOqW8FW1zjsvvV5PrdE0NOJJpV1N33rEWLJKOYX2r4prVQtTW+KUYCQmspnvU7nPapq3q0kwIoQQTpZz0hKAfH8QTpW6JyAxGo1oa+trEPQlJCQ0zoz0SrRkRlzREt46GGl+mEadGampc955FRQUgKdpBo2vp33ZjV6JlvMqcGDhXmf2GDHrHhUKtQ1OzlBDt6DTbVqfYi8JRoQQwsnUXU+NxgZj9S5UoQWDeRUQfTHdujWuh1AXsGr1YU4/pwIbh2nUmRGDJoSaGucU1/7xxx/gZQpGAnzsy270SbacZHFZy51ba2pq+Prrr6mosBSUWmVG9M7JjJim9+ZbP1l1kOSejQNTV5JgRAghnCynQe+wT3a5JzNSbOlyjkZ/mrCwsEbH+Plq8DSaDqz1iHK4eZetlGm90OIwjTozgrfzWsLv+G4PeJiGgSLD7CuUTUmwdGs9U91yluHWW2/lsssu44YbblCes64ZKaVPnz52fb4tIiMjrab3AlC53631IiDBiBBCOF3DYOTT70Gvd31AUqy6f/t5VTVbD+HvWWra8I6luNiB8QY7NKwZaXaYRj0L2SvMaSv37tz9m7IdZ2P3VTN1F9YqffPN0o4cOcK7774LwL59+8jLMy3Tq86MBPnpiI+Pt+vzbWHKjBRaPynBiBBCdG4Gg5G8IuvAo7QCdh90/bkUnbGcR5Bv8/UQIb71jTY8/TmaVeTUc7Jasbe2+ZoRLy8N3h71fTyctFie0Wjkx58PK4/juttXmxIcoMGTKgDqPLqh1WqbPO6f//wnRqPlz2LPnj0A5BZUKc+l9ox0yorJTQ7TVO53ypCQPSQYEUIIJzp5Gmr19TcVQ63yvDuGavIKLQFIaGDzwy8RQZbjDmU6d4XcQnOfEf0ZMFQTEdF8x1N/r/rz8gp3SjBy9OhRTldaaj0iQ1o4uBn+nvVjYT6xpmLYBk6dOsWKFSusnvvxxx8BOJZjaboyoI/1mkFtRb1YnkIyI0II0bmpi1cp2ahsfrLL9eeSk29pLRoR3Hww1C3MEqgczXFuS3hlmEZXQFhYWKO1ctQCfOuLVr0iOHOm7YOR3bt3g1+q8rhXvP2ZiRC/+uvlFcrx7MYLDb7++utUV1tnpX74wVTRrM6MDBnonGm2DdenoeYE1BZJMCKEEJ2ZVb1IxU9Qbrrx/JoJOYWuzY7knbTcBLuFN//jP76buiV8bbPHtVZVtZEyc6zTwkwas2C/+nPx8OZUSVWLxzpi9+7d4N9LeZzqQMlGZIjleh3KLLXap9Vq+de//gWYWrOHhprqSvbu3YvBYODkactrLxieZv+H26Dhyr1U7gdwa48RkGBECCGcyioYqcmFks3Kw4932N8YqzUKii03u5io5qeeJsVY9p0ocl7AVNigx0hzM2nMQgIsGZvCYl0LR55dQUEBU6dO5Y477kCnM72XKTNiCUZ6ORCMxEYYlO0j2dZZpffee09ZzXf69OmMHj0agNLSUjIyMjhTWd/t1VDDuYP72f/hNggPD4fK38BQn2Uq3Up0dDT+/v4tv9DJHA5G9u/fz4gRI1i5cqXy3MqVKxk7dixjxozhlVdesSrQOXDgALNmzWLUqFEsWLCA/Pz8Jt5VCCE6l1zV+i6B3qX0jjyiPP732iNNvcRpTpVabpRx3f2aPa5XomVa6slS5y1KZ+tMGrNw1dDSyZLWBXIrV67k448/5vXXX+e1116jqqqKffv2KZkRDw/oGWP/+yZGW7qwHsu1Ho55+eWXle0HHniAkSNHKo+/++47qvWmgMCTMgICnBMceHl5ER5UC7+OhcPz4cS/3D5EAw4GIwaDgZdeeon+/fsrz+3YsYN169axcuVK1q5dy44dO9iwYQMAOp2Ohx9+mJkzZ7Jt2zYGDhzI448/3jbfQAgh2rHj+ZYAIDnOi1X/flgpZD1e4N3cy5zidJll+CUptvlpq31TLNNSndkS3t5gJCLYcv6nTrdu+Cg3N1fZfvrpp9m2bRt6vR78ewPQozv4+thfM5LW09IQJbvQco6lpaX8/vvvAIwcOZLhw4czYsQIZf97770HXuEABPo4d7XkyMhIKPsOCt8Go67jBiMffPABAwcOtJoKtHnzZq655hoSEhKIiori+uuvZ8uWLYBpPMzf358pU6bg6+vL/PnzOXjwoGRHhBCdXmae5caS1jOA4cOGoNFlAVBpiLHKIDvbmar64lCjgaSE5vtg9OtlmdFSXuO89L1199WTZx2mie1uOZcTJ+1fiE6tqMgyZbm4uJhbb70VvCLAKwyAVAcbkg5MswRUhactWaWsrCzLMQMHAjB8+HDluW1ffQuepgDRqsGbEzS8zu0hGLF7HeYzZ87w/vvvs2LFCl566SXl+WPHjjFp0iTlcVpaGkuXLgUgMzOT1FRLhbK/vz8JCQlkZmYSGxvb6DN0Op0yhqecqJcXPj4tt9ftLAwGg9X/RcvketlHrpft2uJaKUWqtUWk9UrEaDTizwmqSMWgCaSg2Eh0hGsCkkrzarf603TvFtns9woJ8gRDFXgEUF0XbPP3t/d6WfUY0RUQEZHS4muT4i136fyi6lb9uaiDEYATJ05AsGXYpFecY3/uPWMt96nTlX7Ke2RmZirP9+jRA4PBQFhYGElJSaZApT4rAtA9wtup/z4bZqDM5+MsHh5nz3vYHYwsXbqUWbNmERJiPQG7qqqKoCBL2i8wMJCqKlO1s1arJTDQunlMYGBgsw1hVqxYwVtvvWX13PTp05kxY4a9p9uh5eTkuPsUOhS5XvaR62U7R69VnQGKyut/xa7JITQ0lKysLIK9CzHPBfly5zHSz3HNXAKtvv4mVFtMdXW11W/rDXkZvdETQC2hHD9+3K4GXLZeryPZEUB9gFE/3bSlc/LRBACmepaCIl2Lx55Nk5l5VfFqhP9psrLsnz5cp9UAPQCo0oeRkZGBt7c3v/zyi3JMYGCgcu7nnHNOo2AkMtSjVd/tbPz8rOuFAgICnPp5tjRUsysYOXToEAcOHGDhwoWN9gUEBFgt+FNZWamsAOjv709lpXVVcWVlZbPVu/PmzWP27NnWJ9rFMiM5OTkkJibaFFF2dXK97CPXy3atvVb5xWAwJz1q8hgxYgRJSUnER26nsNT0dG6xH0lJjTPEbU2vB6XkU1/M4MHD8fZuvmbF3+sw5UbAK5KwsCrCws7eAcze61WpToDXFpCWltbiFNM0VTKjXOvdqr/D5qZp5um1Z86csZrWO3xgOElJ4U2+9my8NFr0Rn/wicPT05OkpCSrJm3Dhg0jKSkJg8HA4MGD2bhxo2mIqF5achRJSW3ffdWs4TUeOXKk26f22hWM/PTTT2RnZyvDMRUVFXh6epKbm0tycjIZGRmkp6cDcPjwYVJSUgBISUnhww8/VN5Hq9WSm5ur7G/Ix8enywQeLfHw8JCbhR3ketlHrpftHL1WeaeMQH00UpND795X4eHhQUqMgZ9KTU8fOFrjkj+HM1WWc/GmHF/flgtTg3y1lFcDGi+OHC/ivKFhNn+Wrder8HT90IDRALWn6NatW4uvi420fIc6jyiKi4uJjo62+bzUiotNY0SJiYlcf/31PPLII1YNz9ISNXh4OBYQBPuWc7raFIzk5PxCr169yM7OVvYnJycr33Pw4MGmJxtkRhz9bFs0rBlRn4+72BWMTJs2jcsvv1x5/OKLL5KYmMgNN9zAvn37eO655xg3bhy+vr6sWrVKyW4MGzYMrVbLxo0bGT9+PMuXL6d///5N1osIIURnoe6+6qHPVxY+69PTCw6Zns/Ic029iHrFXn/vszcMCwvUk19fI3r42GnOG9r256QUsNYWgVF/1tk0MepO8T7R5OTkOBSMVFVVKWUCUVFR3HvvvWRlZbHm0EjMM4ZTWtGNPSpYx+lqwCuEQ0fyuOQSy/CTh4eH1QJ4/fv3x9PTkzpvy5dzZQFre+gxAnbOpvHz8yMqKkr5z9fXl4CAAIKDg0lPT2fatGnMmTOH6dOnM2rUKCZPngyYMh1Llixh1apVXHrppezbt4/Fixc75QsJIUR7kX3SEmh0D63B09M0u+Kc3iFgNDXwyi1qvt9HW8ovskwzDfQ7e8OwqFDLuR/Lad0KuSVlRrIbdJstqzSSby5gre8IerbZNBEh4KGpb3zmE22VbbCHung1MjISX19fXnvtNTyD+gAQ3w0C/BzPTKhX7z2YYVpv5vjx4wAkJCRYDY/5+/szaNAgZRYPQIQLgxF3L5BnZncBq9qiRYusHs+bN4958+Y1eeyAAQNYvXp1az5OCCE6lD+OVWEuuEyMttzcknvGQU02+CVzqiIUo9HolBVa1Y7nlgGm375DA87eMCwm0gvqJ4Bk5zc92cAW+UVGUq8zoq+D/z4GV19i+p4vrDaiM8dH5aZVa8+WGfHw0BAaUMPpygDwjiE7e4dD52QeogHLjbms0sipUtNzvVq5Rl3POB+2mzNfOVoqKyuVz2yqNuOCCy7gl09clxlRX+f2MK0XpB28EEI4zZFsy3BIWpKlq2l8fDxojwKgMwRQ4tyFcQHIVi3C1tIieWbx3VUt4U853nr9y71QVQ26WrhliZGcQiMFxUZeXFN/gLEWcv5BYGDgWetYALqHmjMj3Tme5dgsJ3VmxByMHM2z7HdkTRq1PurGZwW1VjNVmgpGFi5cSEofS8+RCAdWC7bHOeecQ3Cw6RzHjBnj3A+zUasyI0IIIZqnHpo4p4/lN9/o6Gg0NRvMpa1k5EFk8z3I2sSJQkt2o3v42Vu894y3tGM4edrxuhZ1Y7PSCrjxGSO9E0wBCoD/6ZVoq48RZeNsjvhuXvxxAtB4kZF12qFzajhMA6Y/A7PUhNZlqVJ7WGowCk57KkM00HQmIjExkQsvSiTzc9NjZ2dGwsLC+OWXX8jMzOTSSy917ofZSDIjQgjhJCdL62sDak/Rp7flZuvp6UmIj6W6NSO34Svbnq2L5Jml9rBER8Xljt8q8outA5mvfoZ/bzRtBwdATcYTwNmHaMx6xFqyJ8fzHOvC2tQwTUYbZkbUqx6XVvpbBSPNTaE9rSrLcXZmBEyzXMeOHavUMbmbBCNCCOEEdXVGymrqf8WtyaFXr15W+6NDLHefQ9nOX723SLVIXkL02YtmeyVZgpGyKsdbLVi1fG/gz1OrMdQUArYHI3HdLLetvFN1LRzZvKaGaTJyLUFTa4ORONVXqfOM5ocfflAeNxeMqIfqwppfNqjTkmBECCGcoKAEjNT/1lmT12jWQlK0JQA5cLR166zYoqTc8tt6j7jAFo40iYmw3B4qawNaOLJl6pbvt0+1bEdHwLXpli6oZ5tJYzkvddbBl+pq+69dU8M0R09Y9vdqbTCi/io+cWzfvl152FzBqDkzEhwA3l7OLWZujyQYEUIIJ1D3GAnwLG60JEZaD0vJ3pEcx37Dt0dZlWU6aUri2QtUQoMwFZcCNYYQhxf0M2dGAvzgn3/WMPE80/YbD2iormwcFJxNw14j6tV3bVVcXAzeMTDgExav7ccf2UZlmKZbGIQEti4Y8PXREGDu5eIbx7Fjx5R9iYmJAFRUGXnnU8grMgWsJfXBiLPrRdorCUaEEMIJjmRbfmOPCmn823vPxO5QY7qRZp9yfsfpCvMieYZqEuLOnoXQaDT4aOrvkF5RnD7tWLGoORiJiTDdpD9ZoqHycw+mjtY0maE4G6tgxNuxXiNFRUUQMw8iJvDJD4EMmmskrz54bO0QjVlkcP0MJB/LPOGYmBj8/PwwGIxMfNjITc/C9UuiqdVbMiOuqBdpjyQYEUIIJ/j1sKVYIrF74x+1CQkJoM0AoEzrx5kK53Zira6rH2qpLaZ79242vSbQp35NMe8o8vML7P/MGqNykzU3AlP3U2mqkPRsrDMjMQ4FI8XFxeBrqd2oVZXspCbY/XZNUuI9D19l3RnzEM07n8KO/abdWYXefLDdcg7hXbBeBCQYEUIIp8jMsSwcmpLQuOYiISEBqo8qj9V9Ltqa0Wik1mj6lVtjOG1z++9gvxrThocfx7JPtXxwEwpVyRSrIKKeOhixOTOiPszBLqxFRUXgY1mOxEs1oaRfGy1Qlxynynb5mNItSUlJnC43svAN68Dz5f9ZtiUzIoQQos3kFloahaUlhzXab2p8lqE8znBiMFJVDUaNaZhGGXqxQUSwpZYlI/tMC0c2TT2TpqlgxJFhmiB/8POpnxnkHUNOjv2Nz0zBiGlNGw8POPCuhjnj4U+j4ZYr7X67JvVKVAWgvqahmqSkJB5bZun0avbD75ZtqRkRQgjRZorOWH7DTktuvBR9XFycVWbEmcFI0RnLb+IB3ra3du8ebrlFHM+taOHIpqln0qhnwZg5Mkyj0WiICa//PjYM02SeMHLVIwaeec/0GmWRPJ8YALqHmVbofedvHnzwdw+6hbVNZkTda8RcN+IRMpTXPzY9FegP1zbR/NTZ69K0VxKMCCGEE5SqenP06dX4t35fX1/C/S2pA2eu3puZY8lqBPnW2Py62CjLjJ+cQttfZ6bOjMQ2kfhwZJjGdF714yrekRzPzm/x2CX/NbLpO/jbW0aO5hnrP1MD3qbMSIztH2uXOKvhJFMwsvHAZRjqkzqP36jhr9c3fl14cNeb1gsSjAghhFNU1lgKRnskxDZ5TGKUZSjnSK7zgpFjOZaOWqGBtk8j7hGramtebP/0Y3X31aZu+o4M04D1kE92fnWL044PHLds/5Fd/5leEeDh0+i92lK8ukbYNw78UjiQa/qwPj3g3ukwMAUGJVsHeVIzIoQQnYDRaHS4J0ZbqjGaenlo9KcICwtr8pikhAjQmTqQHs01NHlMW8gpqFS2I+242fWMt0ztKCq1/3PPVjNizoz4+vo26sPSEnVgU10XSklJ821e1a32jxfUf2b9EE1z59UWGjY+I3yC8nDuBA0+3qYMyNXp1sNfUjMihBAdXG1tLZdccgkJCQns37/fbedRVW3EoDHdXH00Z6yms6olJCRAjakA82SpB3V1zgmi8gpVPU/CbP+xrw5GTlfYv66qrcFIZGRks9eoKVb1Jy3UjZRXGa3O4XiBsb541RKMNDV81Ba6h4FGUx9g+sThHTNV2TfpAstxk8+vwsfSj04yI0II0dHt3LmT7du3c+LECf7xj3+47TzyTlkWpVN6dTQhPj4edKaahzqDhpOO9RU7q8JiSyONWBsWyTOLVt30laZpdrAEAgbumD/dqnGaXq9XhmnsGaIB23uNNJwufSy/8bTepgpr24KXl4aIoPq/B37J6APTAUjoBoNSLMeFBRmYPMryON62Ot5OR4IRIUSnob4pbdq0yaF1S9rCoQxLYWZogK7Z4xISEkBnWRTlRHGzh7bKKfUieTG29RgBU2t0M60+iLo6++pG8s3fR1fEho/X88wzzyj7tm3bhk5nujb9+vWz632tu7B2bzYYaThDSRmmqS9ebfRebSw+qj7Q8Y5UplZPOp9GWaAlt8HlI+ChWdC3jfqcdDQSjAghOg31OiUVFRVs3brVLedxJMsyeyUqpPlakEbBSFGzh7ZKaYV6kTzbW3ya6kvqz98rymr2y9kYjaohklpT99Z3332X2lpTtuC///2vcuy1115r8/uC7ZmRjAbL1hzNrWs0TOPMYKRnXOMs1KTzGwcbSTHw2YseLLm9696Su+43F0J0Onl51r8Kf/DBB245j2O5lqGZmMjmf8zGx8dDjWVqamuDkaKiIn788cdGBbxnqiz1HimJthcleHpq8PWoX/DNuxsFBba3hC+tAJ15tKq+SPfkyZNs2rQJrVar/NmEhIQwadIkm98XGnZhbSEYaTBd+nSFJwWnKlxSMwINilgBH2+4bJjzPq8jk2BECNFpNFzB9eOPP0av1zdztBPPQ9WTIyG6+RoNU82IepjG8QLWmpoahgwZwogRI1i0aJHVvooaSzfQXkn23X2DfOubpJ0lGDlVamTCQ3Dbq93Q1lg3PENned2yZcv45JNPKC83dYK9+uqr8fPzs+ucotU95LybX7n39+O1jZ7LK/Kyzow4MRhRhmnqXTwYggK65jDM2UgwIoToNBpmRoqLi/n2229dfh4FJZagomd881NWg4ODCfKx9ABpTWbkjz/+UL7/008/zXfffQfA9j0nKDP0Nh1UfYzIiFC73jcssP6G7hVMTl7z69M8+paRL/bA53sDePsT65k05iJdgE8//ZSXXnpJeXzdddfZdT5gWv03zDza5BPTbDBy6HjjQDQjV68EIwF+pvbyztIwM9LUEI0wkWBECNFpNAxGwD1DNepW8L2TWr75q29YrQlGCgsLlW2DwcCNN97ImTNnmHHfLtCYftQPif7erim0ABEhlsAqM6fpdW3yThlZ+anl8cc7VcWrYJUZMRgM7Nq1C4Do6GguvfRSu87HTKn18IkhLy+vUXFtpdZISWXjSONUWQB4xyjvYe/1sEejYOSCpo8TEowIITqJ2tpa5Ybcr18/fHxMwyMffvghBoPzGoo15UyVZRps314tV0gmxQWBwTSrJLvA/i6nZupgBCAjI4NBQy+l0GhqtqUxVPDB0ol2v29MhOU2kXWiqsljXlxjtNSHAN/8AoeyVUNOtYXExcU1uvFfe+21eHp64ghleMUziDqjX6Pvn3lC9aBaVVMS0Be8TX8mzqwXAetpur3ioXeCcz+vI5NgRAjRKeTn5yuFm/369WPcuHGAKVuyZ88el55Lha6+RsNQS+/kbi0em5ho6TWSV+R4zUjDmzFATu0k8DRlB669uILkHo0X7Dub+GhLYJV/qvE05aJSI29usH5OXwcrt6ie0BUwfPhwLr/8cqvjHBmiMWs4o6bh6r2/HbVM6w4xqv78g0c2/R5O0DvB8hk3TtA4NQvT0UkwIoToFNR1AwkJCUybNk15vH79epeeS43BNDTjYSjCy6vl3/zVRaynK7zQ1ToWkKiDkT/96U+g8YW4OwHQYOAff256fZyzSYqzFL8WljTOML38PyNV9ff9EX0tz+ecVB2kyychIYGbb75ZeSolJYWRI0fiqIbBSMO6ka+/tzwe2qsMDfVZp8AhTb+HE/j5ati7TMOnL2j4y2znflZHJ8GIEKJTUNeLxMfHM3nyZOU30W+++cZl56HX12HwMOX/fTVlZzna3GvEUuBZ0PwyKy1SByNPPfUU54xbAj6m5l4zxnjQM9ax38oToy0zXU6dsd53psLIvz40bXt7weonIDyoiaEmXQGJiYlMnjyZ8847D4AnnniiVZkCq86pTcyo2XvQcrKXjIwhKrg+YvKw9F6PjXR+piIuSsP4kRq8vCQr0hIJRoQQnULDzEhUVBRJSUkAHDp0yGWL5x3NKlZueC21gjdrq8ZnJ09aUhG7jyaS7Xmn8viBax2/EXYPt7y2uMzD6jr+eyOcqV/nbc546BkLY4Zord/AUA11Z0hMTMTX15evv/6aU6dOMWfOHIfPCRpmRqIbDdNknrDc3qaOH0ifpMbTh52dGRG2k2BECNEpNMyMAPTtaxo3KCsra7KmwhkOHbWtFbyZqfFZ64ORwsJC8AxB0/ddbnkhSOm6On4kjOjneDCibglfpwm36jWy7SdLYPLgTNNnjBvaoMi1fiZNQoKpetPPz4+oqNYvwNKw8Zk6GNXr9ZTWmA7wqCvhnP49SE1sPFzmzB4jwj4SjAghOoWGmRGwBCNgyo64wpHjqlbwoWefxdNWmZGCwmIYvANjN0txwrVjYPUTrRseiFLPTPbuxrFjx5SHB+o3w4KgruJ3pkyZwsfv3IWfjyoLVT8ElZiY2KrzaMgqq+HbwyozsvuHfRh9TJ8X7leCRqOhZ0zj6yCZkfZDghEhRKegzozExcUB7glGjuVZhmZiW2gFbxYREYE3lgjEkRk1BoOBkxVREDgAgJBA+M+jGt5/QkNYcOuCEXVmBO8oJRgpqzQqRapRAYWMGDGcTZs2sWXTOvpGq4ZM6lvBm7NVbaV3Aviam9uGjSFHFYxu+vKAsp0SZwoIe8bQiLOn9grbSTAihOgUzJmRyMhI/P1N01n79Omj7HdVMJJbaBmaie/efCt4M41GQ0y4pejTkczI6dOnqfNOUh4/OFPD7MvbZiqpr4+GYL/69vb+qWRmmoKRQ1mWYzL2bUCrtdSKBGi/sOysLaB79+74+lqmCLeFAD8Nl55rPskE8k5HKY3PvvnBEpgO6x8GmOpZ1DSaBoGWcCsJRoQQHZ7BYODECdNQh/o3cHdkRgqKLUMzyQkBLRxp0SPaspBdTqH9jc8KCwvBL1l53CvO7rdoUf8e9QGWTwwHMk4DcFAVjFB1ELB0M8395VV6xhhNzdyKPmjzIRqzKy+wBFuGsPFKXdDBY5aA8MJzTX1eGmZGokLBW2a4tBsSjAghOryioiJ0OtMNyFwvAqZ246GhpqKHP/74wzXnUmb5sdo7Kcym1yQlhEOdqfAzp9D+hf0KCwvBv5fyOKWNg5ELBlkyPAeyTLNSDh5XDSdV/c6aNWu45JJLAMg+9hsr7vwevk+A0q1WfyZt6Qp1e/WIK8jJyaGwsJAynaXRXFoP059HfBSoW75IvUj7IsGIEKLDa2omDZh+UzdnR7KysqiqarqdeVsqVbeCT7XtjpeQYGl8VnDa/h/LpsxIivK4V9uWZ5A+2DItNud0d8BSvAoQG1bKjBkzuOiii5Tn1q75D+hNM4uclRnpGauhe1D94n3B53Hg8El+/vln8O+tHJNafy28vDQkdleds9SLtCsSjAghOjz1TJqGhZLmuhGj0ciRI0ecfi5VOssqvYnRttVJqGfUVFR7U1VtXxGrepjGz7vWegZMGxiu6qx6xtCb2tpafj1an8HRlzG4r2mqrjoYWbNmjbLtrMwIwMhe9VW0Gg+2/uzD5m9yIPQSAEL9tUSEWI5VD9VIZqR9kWBECNHhqTMjDW98rqwbMRqNqlbwFfj72laT0LALq9WKtzYoKCwC354AxIVXt/kaKD2iwcfcTTZwKH9k5JJzqr7OpeogAweaZvGcf/75ygKFJSWWVrLOyowAXD7cskLfj0ejWf3DeaAxjcfcMrHC6lqoi1glGGlfJBgRQnR4LWVGXBmMlJWVYfQyZQl8Pc6c5WgLU+MzS0Bl74yazDyd0vW1Z2zbr1Cs0WiIC6kPlny6s36rqs191e8MHDgQMDU0GzJkSKPXOzMzMu78EKg1RW9HTg/kVK3pXDTVR1l8q3VzNXWvkRgXtIIXtpNgRAjR4bWUGVFP73V2EWtWTr6yPH2gr+31KQ0bn+XZGYxkn7RUZqb18G7hSMf1ja9Qtj/aFWzZUXWQAQMGKA/Na8+oOTMz0jMpAU5/BoBRdUtL815OgL9119VRgyzbI/s57ZSEAyQYEUJ0eC1lRnr16oWnp+mm5OzMyB+qVvBhNrSCN4uOjkajt7SrtzczUlBqmUI8IMXfvhfbaEQ/y+1if64q4NP+Tr9+ljt7UyvxtnXDMzU/Pz+Ca7dbP1m6lbHnNl4XaMxQ+OjvGjY+q2HUIMmMtCcSjAghOjxzZiQgIICwsDCrfb6+vqSkmGaa/PHHHxgMbT+MYXYkS9UKPsT2z/H09CQquEZ5fMLOLqwlVWHKdu9E5/xYv2yk5TMMRktflMTIcgIDLUW7Q4cOxdvbkp2Jjo5W6kicpWfoYTDWF9Qa6+Do/QwbNrTRcRqNhimjNVx5oQQi7Y0EI0KIDs+cGYmPj2+yeNNcN1JVVdVoqfm2dFzVCj7GhlbwanFRlvPOPWl7IGM0GqnQW+aspsS2cHArjBwSryx6p6irYHAf60pQf39/q+yIM4dozHomhEDO86YVgo/9Bap+Y+jQxsGIaL8kGBFCdGhlZWWUl5cDzRdKtnVbeL1ez/79+5X242Y5BZahmYQY+9qfJ8dZjj+eb/sQT1lZGQYfcyv4OpKaWIOlLfj7++Fb+5v1k1W/M2jQgEbHqqf4OrN41eozsh6FnYGQ9yI+Pj7079/f6Z8r2o4EI0KIDq25hmdq6hk1bVHEOnXqVAYPHsx5551HRkYGAJ9//jlfbt+nHJPaw75mH0mJUaA3DfPknWp5mOZwtoGdv5qyJ6YeI6buq4GeJfh4O28IontAjvUTVb9bFa+aXXzxxcp2cnJyo/1trWH25ZxzzrEaKhLtnwQjQogOraWZNGZtOb23pqaGzZs3A7B3717OPfdcFi5cyFVXXYWecOW4QX26N/cWTVLPqDl1xhujsXFAUlFl5Lbnq+gzu470O2HR68c4mlWszOCJCLB9OrEjekU3eP+qg8q0XrXLLruMG2+8kREjRnD77bc79Zyg8Z+7DNF0PF5nP0QIIdqvnBzLb+u2ZEZaG4zk5ORYBQoVFRUsWbIE8IRQS0age3gTL25BQkICVB+HgH7U6L04UQTxliVW+GSXkdtfNJJz0g/qkx9LVvvx+AzLarnRYc5td39uah1fn7Q81mgPWQ2BmXl4eLBy5Uqnnotaw8yIBCMdj2RGhBAdWlaWZfnYpKSkJo+JjIwkMtK0GElrg5FjxyyLskRHR1t29PgrhJwPQHIs9O1h3/vGx8dD1QHl8W+qtV8++8HIlQuN5Jy0fo3WGM2KLy0ZmKTu9i+yZ49z+nazas7WM1qLn59fC69wjYaZkXPPPddNZyIcJcGIEKJDsyUYAUsR64kTJ6isbNyDwlbHjx9XthctWsS7775L/wtuRZP0OACenvCfRzV42bk8fUJCAlSqgpFMy77Nu1RDNqe/hMM3Kw8PF1sKNVMTnPsjPTk5GUpMQ1RojzKkT5hTP89W6oyYp6cngwYNauFo0R5JMCKE6NBsDUZSU1OV7czMzGaPOxt1ZiQ5OZkrplxPWexrSvfPJ+dpuNCBhlpxcXFWmZEDxy0ByL6jqgMPXUev4B1Q9n2j9+jvpIZnZsnJyXDsQTh0A/w6loED20cbU39/f3r3Nq3UO3LkSPz9nXsdRNuTYEQI0aGZg5HQ0FBCQ5ufwdKrVy9l2zwDxhHqYCQpqSe3PGckt34V+0vOhUdmO/a+vr6+RAUUgdE0S8acGTEajfx8uL7vSE0u6It5Z+VKhkR91ug9zu0X0ui5thQfH4+3Rw2c+i/UZDdZvOouq1at4r777mPZsmXuPhXhALuDkb///e+MHz+eiy++mGuvvZZvv/1W2bdy5UrGjh3LmDFjeOWVV6yKvA4cOMCsWbMYNWoUCxYsID8/v6m3F0IImxkMBqWAtaWsCFhnRo4ePdrCkS1TD9P4hybxS31cExlqGp7x9HR8am1ifARUm4Kdg8eNGAxGsguhrKr+R3XlfubOncuoUaN4ZMEAqPrd8mJ9KWnJ3Zp417bj6elpdZ2bmtbrLiNGjOCll16S/iIdlN3ByOzZs9m4cSPffPMNjz/+OI899hhlZWXs2LGDdevWsXLlStauXcuOHTvYsGEDADqdjocffpiZM2eybds2Bg4cyOOPP97mX0YI4Tq5ubn873//Q6ezvUFXW8vPz6e21rSE/NmCkbbOjMTGxpIU68fPyzVcNxZWPKIhvlvrenykpqYqQzWV1RqyCuCXI6oDKn7hjjvuAGDqlMkEnn5N2eVZm42vr3PbrgMMHz4cgG7duilDI0K0lt3BSM+ePZV1BjQaDTqdjqKiIjZv3sw111xDQkICUVFRXH/99WzZsgUwzcX39/dnypQp+Pr6Mn/+fA4ePCjZESE6KL1ez6hRo5gxYwZz5sxx23nYWi8CbZMZ0Wq1piZjWJp5hQZpWPW4B1eNan2zsb59+1oVsR443qBepHK/Uojr6+vLzVcFQOWvAIQZdrX6823xwgsv8MQTT7Bhwwanrzkjug6H+ow8++yzbNy4kZqaGi6++GJSUlI4duwYkyZNUo5JS0tj6dKlgKlYTP2DwN/fn4SEBDIzM4mNbbyQgk6na/TblpeXV5f5i29eyMuZC3p1JnK97NMW1yszM5Ps7GwA1qxZw4033sj48ePb5Pzsoa7f6NGjR4vfKSwsjNDQUM6cOUNGRoZN37/htVIXvvbs2bPN/86lpaVB1Wbl8a9Hjfysyox0C8gjKChI+dxbbp7Dq/8aBf69GTwyHIPh1jY9n6bExsYqme2G31/+Ldqnq1wvD4+z5z0cCkYeeeQRHnroIX788Ucl3VlVVUVQUJByTGBgIFVVpgY8Wq3WalVH836tVktTVqxYwVtvvWX13PTp05kxY4Yjp9thqZs5ibOT62Wf1lyvXbusfwu/44472LJlC76+9q3H0lr79+9XtgMCAqwyJU1JTEzkzJkzZGdnc+TIEZt/wTFfqx9++EF5Ljw8/KyfZ6/Q0FCrGTU/HKjgxz+8AV+oqyQ51mj1mUFBQSy4eRZbtmzh+uv/3Obn4yj5t2ifzn69bFkSwOEOrJ6enpx33nm8//77pKSkEBAQQEVFhbK/srKSgIAAwJQJaTivv7KystnpV/PmzWP2bOuS9K6WGcnJySExMdGmiLKrk+tln7a4XuaF6cyOHz/OunXr+Otf/9oWp2izsrIyZXvo0KFnHarp168fv/32GwaDAaPReNbjG14r8y9YAIMHDz7r6+0VGRkJVX+AUQ8aL349HkRucf3Oyv0MHjmw0We+/vrrbXoOrSH/Fu0j18ui1e3gDQYDubm5JCcnk5GRQXp6OgCHDx8mJSUFgJSUFD788EPlNVqtltzcXGV/Qz4+Pl0m8GiJh4dHl/8Lag+5XvZpzfVqqk/HM888w/XXX0/Pnj1beWa2Mw8Vgem3r7N9H/Vw8bFjx6zaxLfEfK3UmYeUlJQ2//sWEhJCQnw3crUZENCXoydUO+vrRTrC33H5t2gfuV52FrBWVVWxZcsWqqqq0Ov1bN26VVkoatKkSaxfv568vDyKiopYtWoVEydOBGDYsGFotVo2btyITqdj+fLl9O/fv8l6ESFE+6eejXL11VcDpl8yHnzwQZeehzk48PX1pXv3sy9Mpw5GHJlR07DhmTP07dvXaqhGUbGvyXVghOgM7ApGNBoNH3/8MZMmTeKyyy5jxYoVPP3006SmppKens60adOYM2cO06dPZ9SoUUyePBkwZTqWLFnCqlWruPTSS9m3bx+LFy92yhcSQjifeTaKr68vy5YtUwKBDRs2oNc7d30UM6PRUj/Ro0cPm36zVE/vdWRGjbnHiIeHR6PF2dqKaUbNb413VO4zFbgK0QnZNUzj7+/PG2+80ez+efPmMW/evCb3DRgwgNWrV9t3dkKIdsdgMCg38pSUFMLCwhg9ejTr16+ntraWzMxMl9w0T58+rdSp2Vq70drpvebMSEJCAt7e3na/3hZ9+/aF1V9bP2k04Fnzu9OyMUK4W9cepBJC2O3EiRPU1NQAlkxDv36WNUp+//33Jl/X1uzpMWIWGxurrDJr7zBNeXk5xcWmalJnBgV9+vRpnBnRZtCrZ7TTAiAh3E2CESGEXdQ3cXOmoaMEIx4eHkoAlZmZSV1dnc2fp24D78wi3b59+0J1BhhUvZYqpV5EdG4SjAgh7KIe3uhomRGwnLNOpyMvL6/Z4wwGA4sXL+b222/n6NGjLileBdNidIEBvqA9ZHlSghHRyUkwIoSwS1OZkT59+qDRmNqht/dgxJa6EaPRyAMPPMCTTz7JZ599xuTJk/n111+V/c7MjGg0mvoi1oOWJyukeFV0bhKMCCHs0lRmJCAgQAkIDh06ZLVit7O0NjMCzdeNPP/887z88svK40OHDlnNAHR2IWnfvn3hVH3Bf00ulG2XzIjo1CQYEULYxRyMNFxO3jxUU15e3uLwR1sxByMeHh7Ex8fb/LqzZUZWrlzJwoULlcfmglf1elnObuzWp08fKNkI3yfBj32hrkIyI6JTk2BECGEzo9GoZBN69Ohh1SlZXTdy6NChRq9ta+ZgJD4+3q5ZJi1lRn7//XduueUW5fHf//53Xn31VatjvLy87Ap+HKF0htXlgkFLSEgI0dHRTv1MIdxJghEhhM2Ki4uV9WDUGQZwbRFrZWUlRUVFgCkoskdSUhJeXqYWSw0zI59++qkyw+a2225j4cKFjB07lr/85S/KMT169MDT07M1p39WDdvUp6WlKTU5QnRGEowIIWymziSoMwzg2mBEvSaNvYvVeXl5Ka/JyMiwqm9Rz5iZPXu2EgA8+eSTzJw5Ew8PD26//fbWnLpNevfubRV8SL2I6OwkGBGiA8nPz+eee+5h/fr1bvn8popXzVwZjDhavGpmzupUVFRw8uRJ5fnmpu96enry/vvvU1ZW5pL1d/z8/Kw+X+pFRGcnwYgQHURtbS1XXnklr776KrNnz7a6ibpKU9N6zSIiIpQ1apwZjBQUFPDVV18pjx0JRnr37q1sHzlyRNk2ByO+vr5NLuQZGBho92c5Sp0NkcyI6OwkGBGig3jmmWf46aefAKipqbHqe+EqLWVGwJIdKSws5PTp023ymUajkZ9//pn77ruPhIQEYmNjWbJkibK/tcHI4cOHlc8xd1lNSkpy+5LuI0aMULbPPfdcN56JEM5n10J5Qgj3+Omnn3j66aetnjt06BCXXXaZS89DnRlJSUlptL9fv3588803gCk7cuGFF7bq87766ivuvvtufvutiVVsMWVjzj//fLvfVz3sYc6MFBUVUVlZCTi/j4gt7r33XioqKhgwYIAM04hOT4IRIdq5mpoa5syZg16vt3r+jz/+cPm5mDMjsbGxTQ5ZNKwbaW0wcscdd1hNE/bx8WHUqFGce+65nHvuuUyYMIGwsDC731d9czdnRtT1Is7uI2KL8PBwXnzxRXefhhAuIcGIEO3c4sWLOXDgAGC6iZpvnq7o5aFWXl6u1Kk0rBcxa8si1pqaGuW7RkdH8+STTzJjxgzCw8Nb9b5gmp7r7e1NbW2tkhlx1dozQojGpGZEiHbMYDDwxhtvAODt7c26deuUTICrgxFzYABN14tA2wYjmZmZGAwGAMaMGcOtt97aJoEImKb3mr/DkSNHMBgMEowI4UYSjAjRjv3666+UlJQAcMUVVzBo0CClIVZOTg4VFRUuO5d9+/Yp24MGDWrymPj4eIKDg4HWByPqWS7qgtO2Yn7P6upq8vLyJBgRwo0kGBGiHfv666+V7UsvvRSw7s6pzlY42/79+5Xtc845p8ljlBVngePHj6PVah3+PGcHIw3rRiQYEcJ9JBgRoh1TByOXXHIJYB2MuLKIVR2MDB48uNnjzEM1RqOxVUNJ7gpGgoKCiIyMbPPPE0I0T4IRIdopg8GgTJONiIhg4MCBgHUDLFfVjRiNRmWYJiYmhm7dujV7rPk8gVb1QlEHI80VzLaGOsD5448/lK6uPXv2lHVghHAxCUaEaKf279+vNA67+OKLlSZc6syIq4KREydOKLUrLWVFwLqepC2CkfDwcKdkKtSZkW+++Yba2lpAhmiEcAcJRoRop5qqFwHTTBbzqrOuCkZsqRcxa4tgRKvVkpOTAzhniAYgLi6OgIAAAH755RfleQlGhHA9CUaEaKeaqhcB0xRf87TUw4cPK9NfnUk9k+ZsmZG4uDhlCq6jwYi67byzghGNRtPke0swIoTrSTAiRDtkMBjYvn07AJGRkQwYMMBqv3moprq6muzsbKefjz2ZEY1Go2RH1MM79nB28apZU23WJRgRwvUkGBGiHWquXsTM1UWs5syIt7e3TSvItnaoxlXBiGRGhGgfJBgRoh1qbojGzJVFrNXV1coU4v79++Pj43PW16hn1DS3yF1L3JkZaQ/r0gjR1UgwIkQ71Fzxqpkrg5Hff/+duro64OxDNGYdNTMSERFBSEiI0z5PCNE0CUaEaMKxY8cYNGgQF198cau6iDqiurpaCUaioqLo379/o2PUQyXObnxmT/Gqmb29Rp588kl69uzJ6tWrAUswEhUV5dCqvLZqmBmRIRoh3EOCESGa8Le//Y3ffvuN7du3s2nTJpd+9kcffcSZM2cAmDBhQqN6ETD9Bm9uPObszIg9xatmoaGh9OjRAzAN0xiNxmaPPXz4MIsWLSIrK4ubb76Z33//nRMnTgDOzYqAqThYvfieBCNCuIcEI0I0kJOTw9q1a5XHBw4ccOnnL1++XNm++eabmz3OPFRTUFBAaWmp087H1jbwDZmHasrKylqc8fP6668r21VVVcyYMUN57OxgpOH0XglGhHAPCUaEaOD//u//lBoJgIMHD7bZexuNRrZt28batWs5dOiQ1eeAaXjoyy+/BEzNzS6++OJm38sVa9So28BHR0fTvXt3m19rS91IZWUlK1assHpOXfDq7GAErIdqJBgRwj0kGBFCpby8nH//+99Wz7VlMPLhhx9y2WWXce2119KvXz+Cg4O58sorlW6j6hvzzTff3OIaKepgpDVt18EUAEycOJGXX37Z6vmCggKKiooA24dozGwJRlatWqUMSaWkpDTa74pgRJ3tadjPRQjhGhKMCKGyYsUK5eZodvjwYWXdktb64osvrB5rtVo++eQTJkyYQHFxsRKMeHh4cOONN7b4XkOHDlW29+7d26rzevrpp/n000+57777WLNmjfL8jh07lG17hmjg7MGI0Whk6dKlyuM1a9Zw0UUXWR3jimBkwYIF3HzzzTz66KOMHj3a6Z8nhGhMghEh6tXV1VllBsyZgNraWjIyMtrkM8wrwwJcddVVShHqwYMHGT58OLm5uQBcccUVxMXFtfhe6mDkxx9/bNV5qafS3nHHHRQUFFBYWMjdd9+tPH/hhRfa9Z59+vRR1tBpKhjZuXOnUo9y3nnnMXz4cJYuXYqnp6dyjDNW620oJCSEZcuW8dRTT8lqvUK4iQQjQtT7+OOPOXbsGACXX345V199tbKvrYZqjh8/DoCfnx8ff/wxu3btUgIS8z5ouXDVLCQkRJniu3//fnQ6ncPnlZeXp2yXlJQwf/58Zs+eTUFBAQDjxo1j8uTJdr2nj4+PMpR06NChRuenzorceeedgGlK8PPPP4+npye33HKL9PwQoouQYESIei+++KKyff/991v192iLYMRoNCqZkaSkJDQaDb169WLjxo34+/srx8XExDBp0iSb3nP48OEA6HQ6hzqdginzc/LkSavnNm3axNatWwGIjY3lP//5j1XGwlbmfiN6vd6qyPbUqVOsW7cOMPUSmT59urLvvvvuo6KigrfeesvuzxNCdEwSjAgB7N69m++++w4wFTFefvnlbR6MFBUVUVVVBVi3HD/vvPN4//33lX4it99+O97e3ja9pzkYAceHagoKCpQ+IA2Hhjw8PHj//fftmkWjpq4z+emnn5TtnTt3otfrAbjhhhvw8/Ozel3Dx0KIzk2CESGAf/7zn8r2/fffj0ajITU1Val5aItgRF0vkpSUZLVvypQp7Nq1i3feeYe//vWvNr9nWwQj6iGaadOmMXfuXOXx4sWLW5xefDYjRoxQtn/44QdlW32u6enpDr+/EKJz8HL3CQjhbsePH1eGDLp37851110HmGoeevfuze+//86hQ4fQ6/VKcOLo55g1tRjbyJEjGTlypF3vOWTIEDQaDUajsU2Ckbi4OO655x7i4+OJjIzknnvuceg9zdTB0p49e5Rt9ewf9TFCiK5JMiOiy/u///s/DAYDYCqkVA8RmIdqdDodmZmZrfqcljIjjgoKCqJfv36AacZKdXW13e+hDkbi4+MJCAjg6aef5r777muyFb09QkNDlSLWX375hZqaGqvAqVu3biQmJrbqM4QQHZ8EI6JLKysrUwolfX19uf322632q5tgtXaoxhnBCFgyC3q93qHmZ+Z1YMAUjLQ181BNbW0t+/fvJzs7W2mkNnz4cJlOK4SQYER0bcuXL6e8vByAOXPmKNNszdqyiPVswzSOam3dSMPMSFtTDz398MMPVuc4bNiwNv88IUTHIzUjokt7//33le377ruv0f62DEbMmRFvb29iY2Nb9V5qbRmMnK3RmiPURax79uyx+u5SLyKEAAlGRBdmNBqVACM1NVWpvVBLS0vDw8MDg8HQ6tV7zZmRHj16tLoWQ23w4MF4enpSV1fXqmAkKCjIKU3GBg8ejLe3N7W1tfzwww9W2RcJRoQQIMM0ogvLy8ujsrISsF50Ts3X11dpSd7UKru2Ki0tpaysDGjbehGAgIAApbblwIEDaLVau15vrhlxxhANmHqGmPuNHDp0iO+//x4wNXdzRiZGCNHxSDAiuqxDhw4p2+a26k0xD9VUV1db1X3YQ1282pb1Imbm2ou6ujr27dtn8+vKysqoqKgAnBeMgGWoxmg0KjU6UrwqhDCTYER0WepgpLnMCLTNjBp1ENPWmRFwvG7E2cWrZk31T5EhGiGEmQQjostSr5XSUjCiLmJ1ZOosOD8zMmTIEGXbnnN0dvGqmbqI1Uxm0gghzCQYEV2WrZkR9W/wX375pUOf5ezMiHlBOrAvGHF2jxGzvn37EhQUZPWcBCNCCDO7ghGdTseTTz7JpEmTuPjii1mwYAEZGRnK/pUrVzJ27FjGjBnDK6+8oiy+BabCulmzZjFq1CgWLFhAfn5+230LIRxgDkYiIiKIiopq9rjevXvTq1cvAL799lulENUezs6MhISEKEHOb7/9ZvVvT+3w4cO88MILyr9bVw3TeHp6WgV18fHxbTq9WQjRsdkVjNTV1REfH8+KFSvYtm0bF110EQ888AAAO3bsYN26daxcuZK1a9eyY8cONmzYAJiCmIcffpiZM2eybds2Bg4cyOOPP97230YIG5WXl5Obmwu0nBUB0Gg0TJo0CTB1OXUkO2LOjHh6ejrtpj9o0CDA9N3UwQ/AyZMnufPOO+nfvz8LFy7kxhtvRK/XuywYAeuhGqkXEUKo2RWM+Pv7c8sttxAdHY2npyfXXnstJ06coLS0lM2bN3PNNdeQkJBAVFQU119/PVu2bAFMi2L5+/szZcoUfH19mT9/PgcPHpTsiHCbw4cPK9tnC0YAJRgB2Lx5s92fZw4O4uPjW7XYXkvMwQhYD9UsX76c1NRUXnvtNWVqcn5+Pl999ZXLakYALrjgAmX7vPPOc+pnCSE6llb9VNy/fz8RERGEhYVx7Ngxqx/YaWlpLF26FIDMzEylVwOYgpqEhAQyMzObTNXqdDp0Op31iXp54ePj05rT7TDMi7aZ/9/ZlJeXs3TpUqt6hUGDBnHLLbc4NNXTkev1+++/K9t9+vQ562tHjx6Nv78/Wq2WzZs3U1dXZ/O5VlRUUFxcDJiGaJz156qe9bN//36uuOIKysvLueOOO5R/T+bmaABr1qxR/gw0Gg3du3d36t+5K6+8kptuuolTp06xYMGCDvH3u7P/W2xrcr3s01Wuly1NHh0ORioqKnjmmWe44447AKiqqrIqUAsMDKSqqgoArVZLYGCg1esDAwObbc60YsUKZfEys+nTpzNjxgxHT7dDysnJcfcpOMVzzz3Hm2++2eh5vV5vFdDay57r9cMPPyjbERERjYY1mnL++efz1VdfkZ+fz6effmo1y6Yl6ixMZGSkTZ/liIiICGV79+7dZGVl8c033yiByIUXXsgzzzzDpEmTqKqq4oMPPsDb2xuAqKgoq+DQWR599FHA1N/Ekdobd+ms/xadRa6XfTr79UpOTj7rMQ4FIzU1NTzwwAOkp6czZcoUwNQF0tw8CaCyspKAgADAlAkxd7pU7/f392/y/efNm8fs2bOtT7SLZUZycnJITExs07bh7cXOnTubfH7Dhg2NVs21hSPXSz1EmJ6ebtMMl6uvvpqvvvoKgF9++YWJEyc2edzJkydZvXo1H3/8MWVlZUqTLzBlL5wxmwYgNjYWLy8v9Ho9x48fJykpySoDdPfddzN69Giuuuoq1qxZw5kzZ5R9PXr0cNp5dWSd/d9iW5PrZR+5XhZ2ByN6vZ6//vWvdOvWjXvvvVd5Pjk5mYyMDNLT0wHTb4MpKSkApKSk8OGHHyrHarVacnNzlf0N+fj4dJnAoyUeHh6d7i/oqVOn+O233wDTmiXLli1j+vTpHD9+nC+//JLCwkKHZ1nYc73MPUa8vb3p1auXTa9TZ222bNnC3/72N6v9Bw8e5JFHHmHLli3o9fom38PWz3KEn58fffv25bfffuPQoUPo9Xq++eYbZf+ll16Kh4cHM2bMYM2aNVavjYuL63R/19pSZ/y36Exyvewj18uBPiN///vfqampYdGiRVZj5pMmTWL9+vXk5eVRVFTEqlWrlN8chw0bhlarZePGjeh0OpYvX07//v1lal8XpL45jh8/nuHDhytZMIPBYLWKbmuUlJRw3nnn0adPHzIzM6321dXVKUMnqampylDF2SQnJyuL6e3atYuSkhKr/fPmzWPjxo1WgYiXlxfe3t54e3tz4YUXcvXVV7fma52VuYhVr9ezd+9epRtr//796d69OwATJkxo1PPD2TNphBCiJXYFI/n5+WzcuJGff/6ZSy+9lNGjRzN69Gh+/vln0tPTmTZtGnPmzGH69OmMGjWKyZMnA6ZMx5IlS1i1ahWXXnop+/btY/HixU75QqJ9+/rrr5XtSy65BIAbbrhBee4///lPm3zO0qVL+eGHHzh8+LBSp2CWnZ1NTU0NYNtMGjVzdsRgMPD5558rz5eWlrJnzx4AwsLCeOSRRzhw4AC1tbVKQfbOnTsJDg5uzdc6K/WMmtdff10pVjVfazBlUMaNG2f1OglGhBBuZRTtTl1dnTEzM9NYV1fn7lNpcwMGDDACRk9PT+OZM2eU50eMGGEEjIDxt99+s+s9G16vuro6Y1JSkvJ+np6exuPHjyvHb968Wdn3yCOP2PVZW7duVV57ww03KM9v2rRJef7uu++26z3b0saNG5Xz8PHxUbbXrl2rHFNXV2dctmyZsg8wvv3222475/asM/9bdAa5XvaR62XRtQephEudPHmSAwcOAKahu5CQEGWfOjvy3nvvtepztm7dajVjpa6ujldeeUV5bGsb+Kakp6crQxxbtmxRpuR9++23yjGjR4926Lzbgjozop4ef/HFF1sdl56eTnh4uPLY2T1GhBCiJRKMCJfZvn27sq0eNgC49tpr8fT0BGDVqlWtmne/bNmyRs+99dZblJaWAq0LRnx8fJQhjqKiIqUmo70EIz169LAK8sA0g8dcL2Lm4+PDNddcozzu06ePS85PCCGaIsGIcJmm6kXMunfvzoQJEwDIzc21OtYeRUVFysyt7t27c/PNNwOmvjj//ve/AetgxJGbcMNurFqtVqkXSUtLIzo62qFzbwsajcZq0TxofK3NnnnmGW6//Xb+/e9/O2W9HCGEsJUEI8JlzAGGp6enMgVcTT1Us27dOoc+47333qO2thaAG2+8kYULFyqzvl555RUef/xxJXCIiYkhLCzM7s9Q9xfZvHkzP/zwg/KZ7syKmNkajERERPDaa68xf/58F5yVEEI0T4IR4RLqepHhw4c3OavkiiuuUIZq1EM6tjIajVade2+++WZ69+6tNOY7ceIETz31lNL599xzz7X7M8A082Tw4MEA7Nmzxypwag/BiLpuBOCiiy5y05kIIYRtJBgRrVZdXa3UYzRH3V+kud/Ug4KClADhwIEDynouttq2bZvScXT06NHKEMyDDz5odZyHhwdXXHGFVVGrvdRDNebhH/Pnups6GGmqXkQIIdobCUZEq5SVlZGWlkZUVFSzdR5Go5EPPvhAedxcMALWv8Xv2LHD5vOora216gh86623KtsXXnghzz77LGPHjuW5554jNzeXTZs20bt3b5vfvyF1MGKetRIfH2/TGgzONmzYMKKiogCsilSFEKK9kmBEtMqXX35JTk4OdXV1PPvss00e8/zzz7N69WrAtIbRqFGjmn0/dWZBPUPlbFauXMnBgwcBGDlyJLNmzVL2aTQaFi5cyBdffMHDDz/cJp1/zz///Eb1JqNHj3Zo1eG2FhQUxK5du1i/fj1//etf3X06QghxVhKMiFb59ddfle0vvvjCagE6gHfeeYeFCxcqj//v//6vxS6k6sJWW4OR3NxcZchFo9GwdOlSp6/z4OXlxfjx462eaw9DNGapqalMmzZN1ngSQnQIEoyIVlEHIw3Xltm8ebMytRZM6xrddNNNLb5fVFSUsv7LTz/9ZLUSdHMeeOABqqqqALjtttsYPny4Xd/BUeqhGmhfwYgQQnQkdq/aKzqWTz/9VBm+ANMy8zNmzFBmrbSWOhgB09Ta+++/n+LiYm644QZlbZS77rqLv/zlLza950UXXcTvv/+OXq9n9+7djB07ttlj165dq8xmiYqK4umnn3bwm9hvwoQJaDQajEYj4eHhDBgwwGWfLYQQnYkEI53Yli1bGv32DnDs2LE2qSXQarVkZGRYPffLL7/w22+/8frrryur2k6ZMoWXX37Z5nqK0aNH8+abbwKmoZrmgpHly5ezYMEC5fGzzz5LRESEI1/FId27d+fGG29k5cqV3HnnnV1+CXAhhHCU/PTsxNavX9/k8//85z+VYY3WOHjwoNK2PSAgQHn+L3/5C2+88QYAgYGBvPbaa3bdqM9WxGo0Gnnuuee45ZZblM+/+uqrufHGGx36Hq2xYsUKSkpKeOqpp1z+2UII0VlIMNKJmafa+vj4sHr1aqXdelFREe+++26r3189RHPXXXfh5WVKtG3atEkJEh577DG7F2Hr0aMHPXr0AGDXrl1WC74BLF26lEceeUR5fN999/Hcc8+5LTOhXnBOCCGE/SQY6aRycnI4evQoYJqGeu211/L3v/9d2f/SSy8p9RyOUgcjY8aMUYIds9TUVKveH/Yw9xuprq5m7969VvtefvllZfsf//gHzz//vAyRCCFEByY/wTupphalGzp0KGPGjAHgyJEjbNy4sVWfoQ5GBg0aZLW2DJiGg3x9fR167+aGao4fP64EWRdddBGPPPJIu+jtIYQQwnESjHRS6mDk0ksvVbbVrdFfeOGFVn2GORiJjIwkJiaGq666ioSEBACuuuoqrrjiCoffWx2MfPnll8r21q1ble2WZtkIIYToOCQY6aTMwYivry/nn3++8vyECRPo378/ADt37mTXrl0OvX9RUREFBQWAKSui0Wjw9/fn66+/5r333mPt2rWtylj07dtXaa2+bds2Tp06BVgHI5dddpnD7y+EEKL9kGCkE8rOziYzMxMw1Yv4+fkp+zQajVV25NVXX3XoM9RDNOol63v16sX1119v9ZmO0Gg0zJgxA4C6ujo++OADjEajEowEBQUxYsSIVn2GEEKI9kGCkU7obCvkXnfddYSGhgLw1VdfYTQa7f6M3377TdluuGR9W7n22muV7TVr1vDbb79x8uRJwPS9vL29nfK5QgghXEuCkU6oqeJVNV9fX0aOHAlAYWEhubm5dn9Gw+JVZxgyZIiysu4333zDqlWrlH0yRCOEEJ2HBCOd0FdffQU0rhdRMwcjAD/88IPdn9HcME1b0mg0SnbEYDDwz3/+U9knxatCCNF5SDDSyWRlZXHs2DGgcb2IWmuCEYPBoAzT9OzZs8VVeFtLPVRjbn4WHR0t68AIIUQnImvTtJHdu3ezY8cO5XFoaCgzZ8506o26Kep6EfWU3obUxZ/2BCNGo5FHHnlEWU3XWUM0ZgMHDqR///5Wi/2NGTNGeosIIUQnIsFIGzhw4ACjR49Gr9dbPb9161ZWr17t0nNRNwi7+OKLmz0uNjaWxMREcnJy+PHHH6mrqzvrSr56vZ5bb72Vt99+W3lu7ty5rT7ns7n22mt54oknlMcyRCOEEJ2LDNO0gddee61RIAKm5e0PHz7s0nP57rvvAPDy8rIaimmKeX9FRQWHDh1q8djq6mqmT5+uBCIajYY33niDadOmtcFZt0w9VANSvCqEEJ2NBCOtVFFRwXvvvQeYVq5ds2YNt99+O2Aa0lAXXTrb6dOnleGMc88912ol3abYWjdy5swZJkyYwEcffQSAt7c3a9as4dZbb239SdugT58+XHDBBYDpeyUlJbnkc4UQQriGBCOt9P7771NeXg6Y+nfMmDGDZ555hqCgIABWrlypdA9trZKSEnbv3t1sX5Ddu3cr2xdeeOFZ308djOzZs6fJYwoLC7nkkkuUWpTAwEA2b97M9OnT7Tn1Vvvf//7H//3f//Hhhx+69HOFEEI4nwQjrfTmm28q27fddhsAYWFhzJ8/HzANb7z22mut/hydTseoUaO44IILuPbaa5tccdc8RAO2BSPDhg1TCkGbyowUFBSQnp7OL7/8ApjWoNm2bZtbajbi4+P585//LFkRIYTohCQYaYUff/xRWd5++PDhDBs2TNl3zz33KAWh//rXv9Bqta36rG3btil1Hf/73//485//3ChDYm8wEhwcrKxTs2/fPqqrq632v/DCC2RkZACQkJDAt99+e9Y6FCGEEMJeEoy0whtvvKFsN6yfSEpKUtZWKSoq4t13323VZ61bt67RZz/11FPKY71ez/fffw9AYmKisnru2ZiDC71er2RAzNTBzfbt2+nXr58jpy6EEEK0SIIRB505c4b3338fgJCQEGbOnNnoGPWCdP/85z8dWgMGoLa2VqmVUK/H8sQTT/DWW28Bpo6olZWVgG1ZEbPmilj1ej0///wzYFr8zryCrhBCCNHWJBhx0H//+1+qqqoAuOGGG5SCVbWhQ4cyevRoAP744w8OHDjg0Gd98803lJSUAPCnP/2JF198Udl37733UlBQYPcQjVlzwcjBgweVYZvhw4c7dN5CCCGELSQYacILL7xAeHg4s2bNUlqrN7Rs2TJl21ys2pRrrrlG2f74448dOp/169dbvd/999/PLbfcAkBVVRXPPPOMw8HIoEGD8PX1BWDXrl3K8z/++KOyLcGIEEIIZ5JgpIHy8nIef/xxSktLWb16NX379uWBBx7g9OnTyjE///wzP/30E2C6UQ8ePLjZ95syZYqybe7TYY+6ujo++OADAPz9/Zk4cSIATz/9tNJH5I033uDzzz9XjmnpfBry9vZWFtPLzMxUClbNhbkgwYgQQgjnkmCkgY8//thq5otOp+Oll15ixIgRnDlzBoDly5cr+2+++eYW3y8pKUkJDn788Ufy8vLsOp8dO3Zw8uRJACZOnKgMB0VHR3PvvfcCppqSoqIiwDTsoq4rsYU5wAHYsmWLcq5m5557rl3vJ4QQQthDgpEG/vvf/yrbs2fPVla9PXr0KA8++CBarZZVq1YBpizErFmzzvqeU6dOVbY3bNhg1/moZ9Goh3wAHnroIcLCwqyes2eIxmzSpEnK9ubNm9HpdOzbtw+AtLQ0QkND7X5PIYQQwlYSjKicOnVKGe7o0aMH7777Lvv371eyEcuWLeOuu+6itLQUgOnTp9t0o1YP1dhTN1JTU8P//vc/AHx8fLjiiius9oeFhbFw4UKr5xwJRgYOHEh8fDwAX3/9NT/++CM1NTWADNEIIYRwPglGVNatW6d0Np01axYeHh707t2b559/XjlGPURjLiI9myFDhtCjRw/A1LzMPNxzNm+//TaFhYUAXHXVVYSEhDQ65u677yYmJgYwLV5nrv+wh0ajUYZqqqurrWbrSDAihBDC2SQYUVEP0Vx33XXK9oIFC7jkkkusjk1LSyM9Pd2m99VoNEyePBkw1Xd8+umnZ31NTU0Nzz77rPL4L3/5S5PHBQQEsHr1aoYPH84LL7xAVFSUTefUkLpuxFwwCxKMCCGEcD4JRuplZWWxY8cOAAYMGMCgQYOUfR4eHixbtsxqFdybbrpJWdfFFvYO1axfv57c3FwArrzySqtW8w1dfPHF7Nmzh/vvv9/m82lo7NixeHl5WT2n0WikeFUIIYTTSTBSz9xNFUxDNA0DjV69evHyyy+j0WiIi4tj3rx5dr3/xRdfrNSXbN68WanJANOMnXvuuYc77riDzMxMdDqd1eJ6jz/+uCNfyS4hISGNMj19+/ZtspmbEEII0ZYkGMHUN+SZZ55RHjc3Q2b+/PkcPnyY/fv30717d7s+w9vbm6uuugowtZI3T6EF08q/r776Kq+//jp9+/blyiuv5MSJE4Bp+GTEiBH2fiWHqIdqQIZohBBCuEaXD0aOHj3KxIkTKS8vB+Daa68lJSWl2eNTU1OJjIx06LNmz56tbL/33nvK9ooVK5Tt2tpatm7dqjx2RVbETIIRIYQQ7tClg5HCwkLGjx+vzFi58MILefvtt532eWPHjiU6OhqATZs2cfr0afbt26csSBcTE4O/v79y/Lhx4xyaHeMo9RRfoMU6FSGEEKKtdNlgpKysjIkTJ3L06FEA+vfvz8aNG62KVNual5eXMgSk0+lYu3YtK1euVPY//vjjHD58mDvvvJMJEyZYrX/jChqNhhtuuAGA2NhYhg4d6tLPF0II0TV5nf2QzmnXrl38+uuvACQmJvLZZ58RERHh9M+94YYbePnllwHT8ExmZiZgamo2c+ZMwsPDefXVV8nKyiIhIcHp59PQokWLuOCCCxg8eLBVlkYIIYRwli6bGRk/fjwbNmxQAhFX3fjPPfdc+vfvD8D333/PqVOnAFPL+PDwcJecQ0t8fX2ZPHkySUlJ7j4VIYQQXUSXDUbAVLB55MgR+vXr57LPVA+FqM2dO9dl5yCEEEK0J3YFI2+++SbTp09nxIgRfPbZZ1b7Vq5cydixYxkzZgyvvPIKRqNR2XfgwAFmzZrFqFGjWLBgAfn5+W1z9m3A19fX5Z85e/Zsqz4mcXFxXH755S4/DyGEEKI9sCsYSUxM5IEHHmDAgAFWz+/YsYN169axcuVK1q5dy44dO5TVaXU6HQ8//DAzZ85k27ZtDBw40KXTVdujxMREq/byN9xwA56enu47ISGEEMKN7ApGJk2axPnnn4+Pj4/V85s3b+aaa64hISGBqKgorr/+eqWp1969e/H392fKlCn4+voyf/58Dh482K6yI+7w0EMP4eHhQUREBLfeequ7T0cIIYRwmzaZTXPs2DEmTZqkPE5LS2Pp0qUAZGZmkpqaquzz9/cnISGBzMxMYmNjm3w/nU6HTqezPlEvr0ZBUEc2fvx4fvvtNwIDA0lISMBgMCj7zNvq50Tz5HrZR66X7eRa2Ueul326yvXy8Dh73qNNgpGqqiqrNUwCAwOpqqoCQKvVEhgYaHV8YGAgWq222fdbsWIFb731ltVz06dPZ8aMGW1xuu2Gn58fdXV1ZGVlNbk/JyfHxWfUscn1so9cL9vJtbKPXC/7dPbrlZycfNZj2iQYCQgIoKKiQnlcWVmpNA/z9/ensrLS6vjKysoWe1jMmzfPqnU6dL7MSEsMBgM5OTkkJibaFFF2dXK97CPXy3Zyrewj18s+cr0s2iQYSU5OJiMjQ1n19fDhw8r6LikpKXz44YfKsVqtltzc3BbXf/Hx8ekygUdLPDw8uvxfUHvI9bKPXC/bybWyj1wv+8j1srOAVa/XU1NTg9FoVLYNBgOTJk1i/fr15OXlUVRUxKpVq5RF14YNG4ZWq2Xjxo3odDqWL19O//79m60XEUIIIUTXYldm5Omnn2bTpk0A/PzzzzzxxBO88cYbpKenc+TIEebMmYPBYGDq1KlMnjwZMGU5lixZwlNPPcWzzz5L//79Wbx4cdt/EyGEEEJ0SBqjujuZaBcMBgNZWVkkJSV1+dSdLeR62Ueul+3kWtlHrpd95HpZdO1vL4QQQgi3k2BECCGEEG4lwYgQQggh3EqCESGEEEK4lQQjQgghhHArCUaEEEII4VYSjAghhBDCrSQYEUIIIYRbSTAihBBCCLeSDqxCCCGEcCvJjAghhBDCrSQYEUIIIYRbSTAihBBCCLeSYEQIIYQQbiXBiBBCCCHcSoIRIYQQQriVBCNCCCGEcCsJRoQQQgjhVhKMCCGEEMKtJBgRQgghhFtJMOICb775JtOnT2fEiBF89tlnyvPV1dX8/e9/Z9y4cVx++eW89957Vq8bPnw46enpjB49mtGjR/P2229bvfaxxx7joosu4oorruDTTz912fdxJmdcq5deeokpU6Zw0UUXccMNN/DTTz+57Ps4mzOul9mJEycYNWoUzzzzjNO/h6s463pt2LCBP/3pT6Snp3PNNdeQlZXlku/jTM64Vnl5edx5551ccsklTJw4kRUrVrjs+zibo9eroqKCxYsXM2bMGC655BL+9re/Wb22M/6cb4qXu0+gK0hMTOSBBx7gjTfesHp++fLlnDhxgg8//JCKigpuv/12UlNTueCCC5RjPvroI6Kiohq955tvvsmZM2fYvHkzR48e5Z577qFfv34kJSU5/fs4kzOuVVBQEP/617+Ij49n27ZtPPjgg2zcuJHAwECnfx9nc8b1MnvppZfo06eP087dHZxxvbZv385//vMfXnjhBVJSUsjLyyM4ONjp38XZnHGtnn/+eeLj43nllVcoLCzk5ptvZsCAAYwcOdLp38fZHL1eTz75JNHR0WzYsAE/Pz8yMjKU13bWn/NNkcyIC0yaNInzzz8fHx8fq+d37drFddddR1BQEDExMUyePJlPPvnEpvfcvHkzCxYsICgoiMGDB3PRRRfx+eefO+P0XcoZ12rBggUkJibi4eHB2LFj8fX1JTs72xmn73LOuF7m1xuNRs4777y2PmW3csb1WrZsGffffz+9evVCo9GQkJBAaGioM07fpZxxrfLz87n88svx8vIiPj6eIUOGkJmZ6YzTdzlHrtfRo0c5dOgQ9913H0FBQXh5edG3b1/ltZ3153xTJBhxM/WiyUajsdE/zOuvv56JEyeyaNEiSktLASgrK6O4uJjU1FTluLS0tE7zj7o5jlyrhk6cOEFZWRmJiYnOPNV2wdHrVVtbyyuvvMK9997rojNtHxy5XnV1dfzxxx9kZGQwadIkJk+ezFtvvUVnXwzd0b9b06dP57PPPkOn05Gdnc2vv/7K8OHDXXXabtPc9fr999/p0aMHjz32GJdddhlz5szh559/Brrez3kJRtzo/PPP5/3336e8vJwTJ06wadMmqqurlf1vvfUWmzZt4r///S/V1dUsXrwYgKqqKjw9PfHz81OODQwMpKqqyuXfwVUcvVZqer2eRYsWccMNNxAUFOTK03e51lyvVatWMWrUqC4RsJk5er1KSkqoq6tjz549rFmzhn//+9988cUXbNy40V1fxela83dr8ODB/Prrr4wePZpp06YxZcoUq5ttZ9TS9Tp58iTff/89I0eO5LPPPmPu3Lk8+OCDnDlzpsv9nJdgxI1uvvlm4uLiuOaaa7j77ru57LLL6Natm7L/3HPPxcvLi/DwcB588EF27txJbW0tAQEB1NXVWf0AqKysJCAgwB1fwyUcvVZmRqORRYsWER4ezoIFC9zxFVzK0et18uRJNmzYwE033eTGs3c9R6+Xr68vADfeeCPBwcHExMQwffp0du7c6a6v4nSOXqu6ujruuecepk6dys6dO9mwYQNffvklX375pRu/jfO1dL18fX2Jj49n6tSpeHl5MWbMGOLj4/n111+73M95CUbcyN/fn7/97W989tlnrFu3Do1GQ//+/Zs81sPD9EdlNBoJCQkhMjLSqtDp8OHDpKSkuOS83cHRa2W2ZMkSTp06xVNPPaXs78wcvV4HDx6ksLCQadOmMX78eP7zn//wySefcNddd7ny9F2uNf8W1Tdi8/OdmaPXqqysjFOnTnHNNdfg5eVFXFwcl1xyCXv37nXl6btcS9erV69ezb6uq/2c7/w/ldsBvV5PTU0NRqNR2TYYDBQWFlJUVERdXR27d+9m48aNXHfddYCpsOnw4cPU1dVRVlbGiy++yHnnnacUR02aNIlly5ZRWVnJr7/+yvbt2xk3bpw7v2abcMa1evPNN9m3bx8vvvhio+Kyjq6tr9eFF17Ixx9/zKpVq1i1ahVXX301Y8eO5amnnnLzN20bzvj7deWVV/Luu+9SWVnJqVOnWL9+Penp6e78mm2ira9VeHg40dHRfPTRR8r7fPPNNy3ekDsSR67X8OHDMRqNbNq0ibq6Or755hvy8vIYNGgQ0Hl/zjdFY+zsYXw7sGjRIjZt2mT1nHn61xNPPEFpaSk9e/bkwQcf5NxzzwVgz549/OMf/+DkyZMEBgYycuRI7rvvPiIiIgDT/POnn36ab775hpCQEO666y4mTJjg2i/mBM64VsOHD8fHxwdPT0/lPf/6178yceJEF30r53HG9VJ78803KS4u5q9//avzv4wLOON61dbW8txzz/HFF18QEBDA1KlTWbBgARqNxrVfro0541odOHCAF198kaNHj+Ln58fll1/Ovffea/Vvs6Ny5HoBHDlyhKeeeopjx46RmJjIgw8+yNChQ4HO+3O+KRKMCCGEEMKtZJhGCCGEEG4lwYgQQggh3EqCESGEEEK4lQQjQgghhHArCUaEEEII4VYSjAghhBDCrSQYEUIIIYRbSTAihGhzP/74I8OHD2f48OGcOHHC3acjhGjnJBgRQrTKokWLGD58uNUChEFBQQwcOJCBAwd2uhb8Qoi25+XuExBCdD59+/Zl5cqV7j4NIUQHIe3ghRAOu+qqq8jPz2/0/BtvvMFtt90GwIYNG4iLi1PW7oiNjeXWW2/l9ddfp6KigsmTJ3PnnXeydOlSNmzYQHBwMHPnzuWaa65R3u/UqVO89tpr7Nq1i9LSUqKjo7nqqquYO3cuXl7yO5UQHZ38KxZCOKxPnz5otVpKS0sJDAwkOTkZgEOHDjX7mqKiIp599lmioqKorKzk/fffZ/fu3Zw8eZKgoCAKCgpYsmQJw4YNIzk5mdLSUubOnUthYaHyGZmZmbzxxhvk5eXxxBNPuOrrCiGcRGpGhBAOe+GFF0hPTwdMgcnKlStZuXIlffv2bfY1tbW1/Otf/+KDDz4gOjoagJycHN5//33WrVuHr68vBoOBvXv3ArB27VoKCwuJjIzko48+4v333+e5554DYNOmTeTk5Dj5WwohnE0yI0IIlwoJCWHIkCEAxMTEUFhYSK9evYiLiwMgPDycgoICSkpKANOy8wDFxcWMGzfO6r2MRiO//fYbiYmJrvsCQog2J8GIEMKlAgMDlW1PT89Gz2k0GsAUaKj/rx4GUvPz83PauQohXEOCESFEq5iDgerqaqe8/4ABA/juu+/w9PTkmWeeUTIolZWVfPXVV1x66aVO+VwhhOtIMCKEaJWePXsCcPDgQa699lr8/f2ZP39+m73/jBkz+Pjjjzl58iRXX301ycnJVFZWUlhYiF6v58orr2yzzxJCuIcUsAohWmXy5MmMGTOGoKAgjh49ym+//YbBYGiz9w8PD2fFihVcddVVhIaGcvToUWpqajj33HO5//772+xzhBDuI31GhBBCCOFWkhkRQgghhFtJMCKEEEIIt5JgRAghhBBuJcGIEEIIIdxKghEhhBBCuJUEI0IIIYRwKwlGhBBCCOFWEowIIYQQwq0kGBFCCCGEW0kwIoQQQgi3kmBECCGEEG4lwYgQQggh3Or/AagFKggTkaB3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -2080,14 +2281,12 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABbZklEQVR4nO2dd3xUVdrHv5PMTHrvJJAAoUNoF0SKiKgrVsS197oWXl236equZdfV19Vd27rL4uraXhurIPZVEREQ5YqKSCe0hPQyqZNp9/3jzL2Z9ElmQgrn+/nkk+SWc89J+c0zz3mKSdM0JBKJRDLwCenrCUgkEokkOEhBl0gkkkGCFHSJRCIZJEhBl0gkkkGCFHSJRCIZJEhBl0gkkkFCXwq61t8/iouL+3wOci1yLQPlQ67lqH10iLTQO8Htdvf1FIKGXEv/RK6lfzJQ1yIFXSKRSAYJUtAlEolkkCAFXSKRSAYJUtAlEolkkCAFXSKRSAYJUtAlEolkkCAFXSKRSAJE0zRcLldfT0MKeiCsXbuWjRs3BjRGdHR0kGYjkUj6ArfbzcSJEznhhBPweDx9Ohcp6AEQDEGXSCQDm/LycrZv386XX37Z53ogBb0dFi9ezPTp0znppJNYvnw5AB9++CHTpk1j8uTJLFy4kAMHDrBs2TIee+wxpkyZwhdffMFVV13Ff/7zH2Mc3fquq6tj4cKFTJs2jUmTJvH222/3ybokEknwqa6uNr7+v//7v76bCGDu06f3U5577jkSExPZu3cvixcv5pxzzuH6669n3bp1DB8+nMrKShITE7nxxhuJjo7mV7/6FQDPPvtsu+OFh4ezcuVKYmNjKS8vZ9asWZx99tmYTKajuSyJRNIL+Ar6G2+8wRNPPIHVau2TufRbQe8tsfOnh+qTTz7JypUrcTqdFBYWsnz5ck444QSGDx8OQGJiYrefedddd7Fu3TpCQkIoLCykpKSE9PT0Hq1BIpH0H3wFvbKyko8++oizzjqrT+YiXS6tWLt2LZ988glffvklH3/8MVOnTmXKlCl+3Ws2m41NEY/Hg8PhAMTbsLKyMr755hu+++470tLSsNvtvbUEiURyFPEVdOhbt4tfFrqiKCcCv0e8ADwJlAF/BjzATaqq/qAoSjrwIhAF/ENV1ZcDmZg/lnRvYLPZSEhIIDIyks2bN7Np0ybsdjvr1q1j//79LVwuMTEx1NTUGPfm5OTwzTffcMEFF7B69WqcTqcxZmpqKhaLhc8++4yDBw/2ydokEknw0QX91FNP5b///S+rV6+mvr6eqKiooz6XLi10RVEigF8Ci1RVXaCq6krgT8AZwCXAw95L70CI/HzgFkVRwntnyr3LaaedhsvlYty4cTz00EPMmjWLlJQUli9fzpIlS5g8eTIXXnghAGeddRYrV640NkWvv/56Pv/8cyZPnsyXX35p/EIvvfRSVFVl0qRJvPjii4wdO7YvlyiRSIJIVVUVAJMnTyY3N5fGxkYKCgr6ZC7+WOjHA43AO4qiNAA3A25VVauAKkVRdIfyTOCXqqp6FEVRgYmA2huT7k3CwsL44IMPACgsLCQzM9M4t2jRohbXjh49mq1bt7Y4tmnTJuPrhx8Wr3XJycl8+eWX7T6vrq4uKPOWSCR9g26hx8fHEx8fD4h35X2BP4KeBuQCs4CTgfuBGp/zLkVRrIBFVVU9qt4GtNk5VBTlBuAGgKVLl3LKKacEMPXeR98UHQzItfRP5Fr6J91Zi+91YWFhAOzbt6+FMRhMOhvXH0GvBjaoqupQFOVThKDX+o7hPedUFCXEK+pxQGXrgVRVXQ4s937bN07ybtDaQh/IyLX0T+Ra+ifdWYu+VxaTkE1KSioAFoulT34W/kS5bAbGKYpiAqYA2wGzoijxiqIMpVm4NwMnKopiBqYDP/bCfCUSiaRfobtcDlXGUeeMBfqxy0VV1XJFUVYCnyOs6muATOB97/c3ey99GBHl8gCwTFXVxl6ZsUQikfQj9E3R2NgEwiPjAKiorO6TufgVtqiq6tPA0z6H9gGzW11TBPRvp7hEIpEEGd1Cj4yMJzFeCHpVVU0nd/QeMrFIIpFIAkAX9KiYeKJivIJe3TcuFynoQaa75XBbF/TSUVWVW2+9FYDnn3+epUuXArBs2TJefPHFDsdrXQGyq+tb8+STTzJu3DguvfRSv+/pTVatWsX27dv7ehoSSbtommYIekJiPFHRQtCr+0jQ+20tl/6M2+0mNDS0V5+hKAqKorQ5fuONN3Z639q1a4mOjmb27Nktrvc3BOvvf/87n3zyCVlZWX5d73K5MJt7789o1apVnHnmmYwfP77XniGR9BS73Y7D4cBisRITFU5UlL4pKl0ufc6BAwcYO3Ysl156KePGjeOGG26goaEBEGn9d9xxB9OmTWPFihW8+uqrTJo0iYkTJ3LHHXe0GOf2229nwoQJLFy4kLKyMgCeeeYZZsyYweTJkznvvPOMcQE++eQTFEVh9OjRvPvuu4AQ5jPPPLPNHO+77z4effRRQFjT48ePJy8vj4suuqjdkr6+1+/du5eTTz6ZyZMnM23aNPbt29di7BtvvJH8/HwWLVrEY489RmVlJYsXLyYvL49Zs2YZSVT33Xcfl19+OXPmzOHyyy+nrKyM8847jxkzZjBjxgw2bNgAiKSpq6++mkmTJpGXl8ebb74JwE033YSiKEyYMIF7773XeP6dd95prOdXv/oVGzduZPXq1fz6179mypQpbeYrkfQ1hv88OoEwq6nZQu+jKBc0Teurj37H/v37NUBbv369pmmaduGFF2qPPPKIpmmalp2drT388MOapmlaYWGhNnToUK20tFRzOp3aggULtJUrV2qapmmA9vLLL2uapmn333+/dsstt2iapmnl5eXGc+6++27tySef1DRN06688krtJz/5ieZ2u7Xdu3drmZmZWmNjo/bZZ59pZ5xxhqZpmvbvf//bGOfee+815pSRkaHZ7XZN0zStqqqqzXnf7wsKCrSZM2dqb731lqZpmtbY2KjV19e3+RlkZ2drZWVlmqZp2tKlS7X77rtP0zRN+/TTT7XJkycbY06bNk1raGjQNE3TLr74Yu2LL77QNE3TDh48qI0dO1bTNE37zW9+o912223G2JWVlZqmaVpFRYWmaZrmcrm0+fPna99//71WXl6ujR49WvN4PC3Wc+WVV2orVqxoMceCgoI28x6oyLX0T/xdy48//qgBWsbQMdpnWzza0y98qQHa+IlKb06vQ13tty4X0wm908pJW9f5m5KhQ4cyZ84cAJYsWcIrr7xi1DvXa7hs3ryZE088kZSUFEDUalm3bh2LFy8mJCTEuO6yyy5jyZIlAGzbto3f/e53VFdXU1dXx09+8hPjmRdccAEhISGMGjWKESNGsHPnTr/WkpeXx6WXXsrixYtZvHhxp9fW1dVRWFjIueeeC4ga7V2xfv16w6o+6aSTqKioMIqRnX322URERADiHYavn7umpoa6ujo++eQTXnvtNeN4QkICIGpGL1++HJfLRVFREdu3b2f8+PGEh4dz7bXXcuaZZ7b77kQi6W8YG6JR8QBEey30mhq5KdovaF2H3ff7nlRP0++/6qqr+Nvf/sYPP/zAvffe26J8bmfP7Iz33nuPW265hS1btjBjxoyj2qTW92fh8XjYtGkT3333Hd999x2FhYUdbg7v37+fRx99lE8//ZStW7dyxhlnYLfbMZvNfP311/z0pz/l3Xff5bTTTjtaS5FIekyzy0UIue5yqa+TPvQWaOtCeuWjKw4dOmQU0lq5ciVz585tc83MmTP5/PPPKS8vx+128+qrrzJ//nxAiJsetfLKK68Y99fW1pKRkYHT6WxTL3nFihV4PB727dtHfn4+Y8aM6XKeHo+Hw4cPs2DBAh5++GFsNht1dXXExMRQW1vb5vro6GiysrJYtWoVAE1NTS38+O0xb948Y65r164lOTmZ2NjYNtedeuqpPPXUU8b33333HQCnnHIKTz/dnL5QVVVFTU0NUVFRxMXFUVJSYhRCq6urw2azcfrpp/PYY4/x/fffA3S4HomkP2BY6NHx3s+6oEsLvV8wZswYnn76acaNG4fNZuOmm25qc01GRgb/+7//y4IFC5g8eTLTp0/nnHPOAYTl+vXXXzNx4kTWrFnDPffcA8Af//hHjjvuOObMmdOmfO6wYcOYOXMmixYtYtmyZX65Q9xuN5dddhmTJk1i6tSp3HrrrcTHx7cp6evLSy+9xJNPPkleXh6zZ8+muLi402fcd999fPPNN+Tl5XHnnXfywgsvtHvdk08+iaqq5OXlMX78eJYtWwbA7373O6qqqpg4cSKTJ0/ms88+Y/LkyUydOpWxY8dyySWXGO6t2tpazjzzTPLy8pg7dy5//etfAbjooot45JFHmDp1qtwUlfQ7dEGPjRXuxLDwCEJDzTgcdpqamo7+hDpzsPfyR79j//792oQJE4zvj8VNnoGAXEv/pL+vxe12+32tv2t54IEHNEA7//I7tM+2eLTPtni02LhEDdAKCkt6OtWu6FBXpYUukUgGNdW1Gv/36lvExMSwcuXK4I7ttdDj4uKNY7rbpbzi6LtdpKD7kJOTw7Zt2/p6GhKJJIhs3dvEz2//BQ0NDXz22WdBHbuyUhTm0qxZHCkXFcF1Qa+oPPqC3m/DFiUSiSQYvPHqs5SXiD6+hcXBFdnKKhuEhPPq90t4djPMy9MIiZkKfEdVlbTQJRKJJGg0NDTwynMPGt8Hu2hWVVU1hOfS4BCBDF9shT0R/wBzAlXVRz90UQq6RCIZtCxb9gxVFUcICxdJcDVBrrFSXV0NEaMByBsJ6YmgYYGw7D6piS4FXSKRDFo+XydCdxedfTUQ/AzO6uoqiBgFwJihkJnsPWFJpbIPaqJLQZdIJIOW8vIKAHJGTgCgrja4gm6zVRsWelYqxMd4T1hThX/9KCMFXSKRDFoqK0XL44zMEQDUBTGDU9M0amuqISIXgKGpkKBXvLCk9ElNdCnoEolk0FJZKSz0IVlC0BvqbbjdwSn8V19fj9vthkhRqiMrxcdCt6T2SYEuKegSiWTQYrMJCz0pOQOLNQy3y4mtJjj966urq8EcD5YUwq2QHAfxhoWeSk1tDZqmBeVZ/iIFXSKRDEoaGxtpsjdisVgJj4gyStsGK+GnvLwcwsWGaGaKqJJqCLo1lYY6Gy53UB7lN1LQJRLJoKSsTLhbYmITMZmauwlVBGmzsri4uHlDVLRGIMFwuaTQWF+D8+hVtAakoEskkkFKUXEFEEJEUh7QnJJfGSQL/UhRCUQKC31oqjjm63JpqLfhcAblUX4jBV0ikQxKiksrIedPFKZ9wJ9f0YiIFmZ0sFLyi4pKOrXQ6+ttOKSFLpFIJIFTUloBsbMA+OAr2BP+lDfhpzoo4xcVFUO4CFnUBT3cCmEWDUIjaWh0SQtdIpFIgkFxaYWRxZkcB/XacBhyc9A2RYuKS1skFUHLjVGHJ4ra+qOr6FLQJRJJn6BpGra63gvrO3ykDqwZhJicXKm3qLUODVpKfmGJE8wxRFodxEU19wFOiPF+bUmlrPzotk+Ugi6RSPqE2gb48GuNLbs8OJzBF/aDJULeYsNsJOmtcK1pokJiECiqFuMnxbR0lPtujJaUH93kIinoEomkT2hsArcb9hTAZ1u0oCfhFFeHAZAUVdcig9NmC47IVtZ4BT0uBE3TOFKu0diktXhW+VFuciEFXSKR9AkNdo2QEEhLNFFVS9CTcCrrhbKmxTuao0+swUnJd7vd1DsiAUhNtNLkhOgI8SIVprcNsqYELUTSX7rsWKQoSg6wGfjRe+h84ETgdqARuFJV1QJFUcYCy71j/l5V1U97Y8ISiWRwUF0HVjNs/+ErKms0HHNmYQlSDzWXS6POmQhhoqRtgo8bpK7OhtutERpq6nSMzigvL0czi9CWpLgQmhyQlghTR5l470vNeFZlRQUej0ZISM+f1R38/fF9rqrqTwEURTEDvwDmAzOA3wM/Ax4ErgVKgA8AKegSiaRDbPVQX1vCz68/EYslnJsvryAqIjQoYztc0EgaANkZFsKsJsLMTppcYdTVuHG6IDSAR5WUlIA1HYDEWGhyCt95mNVERlKzoFeUF+JwQnhYoCvyD39dLnMURflCUZQHgVHADlVVHaqqbgDyvNcMUVV1j6qqNUCloijJHY4mkUiOeWx18NkH/8bpaKKh3kZVdV3QxnY4wRk6FIARQ0W3othIsXlZZ7fgDNC9U1JSAhbxgpEQA24PxHojXdITvRdZUqgoPXRUk4v8sdCLgFygAXgGWAL4xv3or3O+Lw42IBEo9x1IUZQbgBsAli5dyimnnNKzWR8lnE4nhYWFfT2NoCDX0j85VteiaZCd6Oa/q5cZx0qO7CbcPCQoc6msBc2cAe5GjhvdQGTkEVJioyirCcfhNlNVfoSaTiz0rtayY8cOsApbNjetgomZDlyNUFgI2UlmIAWsqThrd1NVcYTa6qAsC4DMzMwOz3Up6KqqNgFNAIqivAVcBfi+lOqvdb5FhuOAynbGWo7wswMc3bqSPaCwsLDTH95AQq6lf3KsrqXS5uH820ootNwKprtBc1BjDw/az+KrNfUAmJryqfFMpKYOYqLtANQ2RWGNGkJ6Usd+7a7W0tDoMCx0zEn8eAQWzzURHmaiwOaVQksq+QfLsEQOYUjy0fGhd+lyURQlxufbecB7wDhFUayKoswGtnrPFSmKMtJ7faKqquWtx5JIJBKAjT/C3rI0yPoF5K0BawblQYzZ3rpH2JwW92HjWHK8sF+b3FHdjnvPL/Sw42CzzVpU1OxDj42C0BAIs4pz6QneiyzJlJUepslx9GxXf1wucxVFeQDhctmP2AS1A2u9n6/0Xnc38DzCBXNvsCcqkUgGD5u31QJeWzH2eJj4IeUVBUEbf8cBkXIfYSrCVqcRGgqJccLHoplTqK6pZ1h6TGdDtKCiBrbugxA85GSY2L2/EsxxhJjchFlCiY4Qaf8A0ZEmIsM9NNjNVNfYqapxMHxIeNDW1hn+uFw+QESt+PK698P3uu0IC14ikUg6Rd1eDcSQ0PQmtrAz8URNpKRid9DG318kxDXWWkljE5hMEKVrqjWV0jIbjPZf0Ovtoh6Mugt+2K9xsNgBYRAT7qDJGUFKfPO1VgvERZlosAPmFA4cLGTa2JFBW1tnyMQiiURy1Mk/IgQ3NfIQ4SHC1XKkLHiFrEqqhK2aEFmHBszNMxFu8Z60pFFe0T33Tn2jqKSYnggxEVAjXPTER3twuHzK5iJi62Oj9G/SOHDwUEBr6Q5S0CUSyVGnpFqEEmYkOAg3NwBQVhU8X7OtUah3QrSH0BAYkgyzJnhPWlIo7aagNzSB2QyhoSbCrCZs9d60/9gQNA2iI5o3PS1miNMF3ZJGwWEp6BKJZJDidHqw2UW1rKGpoURZRfRJZR14PMER9XqHeMGIjwklNkr4tzO9NcuxpnUrJd/p0nC7IdSb7enxeIzxU5PETmiET+JQSIip2QVjzeDIkcNHrVm0FHSJRHJU2VsIHizQVEh6WhIxEcLVUtsYGpQenDV1HlyeMPDYiY+NMtL+M/VUR0sqVdU2v0W2dZOKGluFT9p/KGgtBR0gTY90CRtCecmho9ZbVAq6RCI5qmw/4P2icTdJKRnERopUlvomS1CyKgv1gGlHCRHRCUb1w5R4MOECcxy2mlq/uwm1nlNVRQlYRMhifLTYBLVaWsaZZyR5v7AOobz00FHrXCQFXSKRHFV26aHhjXtoIp2YCO+3jrCgWLIFZd4vHMVExSQZ/u0wq4mwEBGfXl3j9vvFo8kB+Oh1ZUUxWEVSUUyk+GhNluHeyaC89PBRS/+Xgi6RSI4quw1B38340RlERwq1tLujgmLJGha6s4TYuBQiveGK5lAINzcCUF3rEULtBw4XLfLaP/3wVSNLNDayrbsFYKg3iRRrBhWlh7A3SR+6RCLpA5xOJytWrODcc89l5MiRfP3110Edf/dhkXFpsu9j4ugU5k4WG4sOT0xQLPTiCu8XjhISUrKI8GZwmkwmosOFitc0mPy2mvW67QBHCvL56N0XW1joUe3kDA3TBT1sCPbGOkrLqoxzmqbhdveOwEtBl0gkLbjtttu44IILWLVqFfn5+bz99ttBHX9foRD02LBKYqNDyR0mFNFJLI1BsGQLy7zlpZwlJCVnGCn5APFR4i1AnT0Uu58p+fV2jDrtLz/7JzxuN6ERWYBoatGeoCfHeu8JjYXQaHbtbQ5dLK2CXYekoEskkqOAbpEff/zxgLdUbJCwN2mUVYeC5iIx2klEGAwfIpzonpAkkV0ZIPsLhVsl0tpAYpzFSMkHSIoVQlrfZKW+0b/x6hvBEtpsnZsssbgJF5uhZggPa1t4K8xq8umSlEH+/mZBr2vUsPfSJqkUdIlE0oL9+/cDcMUVVwDBFfR9R0DDBI35JCSmEBkG2ZmxoLnRzPHYGgJ/RmGpcKvERmjNDZu9DEkR5nqDw0Kdv4JuF0lFGz9fjcft5rgTrwJEdmhIqBD11ljNPtmj1iEcPNRcp6a6TpQP7g2koEskEoOamhoqKysJDw8nL0/U+w6moO8v8n5h309icgZWC8TERIFThKYUlnTPiW5v0tj4g6dFRcPyavF1fKypRUo+wPBMkcLZ4Ijw20L/egf85h/wY754+5CRMwuAxBgR/NJe2zyrxaftnXUIlZUVht+8qta/5/YEKegSicTgwIEDAOTk5JCRkQEEV9CLKrzC6ygiIz0Dk8mEyWQixC12Mg8e6Z6J3uiAnYdg03ax0ehyaVQ3CIVNSQhvkZIPMConTjyeOGobPG3Ga43LpfHZt/BDPnxZdiWExnCgQbii0hKFpW21tL3P0sJCT6e2uhy7N6rGFrzGTG0IUktWiUQyGNDdLcOHDyctTYRqlJSUoGlaC190TynyCSnMyko3jlu0KpqAgtIGIN7v8RxOiAyDI+Ww4QeNchs0OERgeFpKbJuQwpwhXvW1pFFaWo6mpbW7rrpGKK3SiI6ASm9/tiZTOkzewLeHhhFmgctOAUztu1xMJhOpCd4XL+sQamzfYHeAxazR2OT38rqNtNAlEomBr4UeGRlJdHQ0TU1N1NTUdH6jnxTpfcwcJeRkZxjHw7wVF8urHLhc/juYHU4RIp6eCCVVokyuBwu460hPSyWslfU8VE/4sWRQXVXUbty7y6XhcML2/eKz4SLRPBAlKnz98kIYmWkCrX2XC0CG3lvUOoRaWzmNTdDYRK9tiIIUdIlE4oOvhQ60sNKDQbEu6M5ShmU1t3iLtIh6tFW1/mdwAjQ2aYSYhEWcEm9q3uh0FJOYnNXGHZKWCCbNCZYESktLaGpHXGu8Xp8jFeJFwhD0/b8GzcEFC+CUGSZcbg2rRRTjao8h+otHWAa1NeXUNQrrvDfrukhBl0gkBr0t6CV6fo2zpYUeHSZUtLrW061sUd8YcWh2j+AoJik1C3OrRtDhVhMWk7ioqMTW7rNsdeIdQpgFdh3WqLdDaIgHCh9nfN2Z3LRYCLjLjZGF2h7GuwGvhW6rg3q7RhA8Vx0iBV0ikRjoLpfWgl5cXByU8Usrve4UZynZRn48xEUKx3Jtg6ldq7kj6u20EO1yvUGzs5TMIUPa+MfNZhORFvHiUVLe0O6ziishJERsau7xlimI8r6DyPJ5V+FyCf99R2TrWwTWIdTYyqmu16iua9/nHiykoEskEkCkpOsWek5ODhB8C73U28QiJsJNRHizPyQpVvgh6uzmblnoDU0tLfQjJSKExGqyER/XvvkcFykeUGFz0tSqWbSmaRRVQIhJuFL0yBSrSfiKhmQON651utuv46KTHCesfEKjcLotlJbXU1VLG79+MJGCLpFIAKisrKS2tpaYmBgSE8WOXjAF3eHUqG0MAc1FSmJLJUyJE5Z1fZOVerv/m6KNrSz0IyXCko6y2ttNyQdI9maLVtdBXasoyQa7KMalG/a6BW9yiAD6IVnNvUFdboiK6HhuLbNFh1BVWS4E3drxPYEiBV0ikQAt3S26qyKYgl5q+M/LSE1NbXFObwhhd0X4ncGpaRqNjpaCXlrpzRKN8nQo6BkpwqSvbbRQ16rUQE09LSorlnsbGznrxTsXX0F3eyCynbR/ndbZonW2MvJ3f89TD17Oyjee6XJ9PUHGoUskEoA27hYIrqAbG6KOElIyUlqcy0gWfgi7O8pvQXc426bQV9Z4s0RjQju0nrOHRMAWaHBGUNvKQi+r1jD7qGJ5tfjcULVbzDNrhHGuo6QinTCrj6CHZVJjK6fGVsa6j18hwuoBftb5AnuAtNAlEgnQNsIFID1d7OwFRdB9QhZTUpJbnEtOjARXLRrmZku+CyprNG57Eh54EaOdnE3PEk0MJ8zSvvU8ZrjoZ9rkjsVWp7VoRVdU2bJ6YoU3asZRs5fwiCgSEpvfWZg6SCrSsZqFHx2AsGxqbGWUFumW/vCObwwAKegSiQRoG+ECwbXQm9P+S0hObinocXFx4CzxXuffeN/ugbJqWLMFPvtWCHyNQ/j+01NiOrSeR2QJxdYsadTYqoxGFx6PRnUthPv4uHWXC44jDMka2SZqpqOkIoDQUFNzK7qIkbjsFVSUHYaQKDKHSkGXSCS9SHsWeuv0/0A4ogu1s4S01JYul9jYWHCI0MgKGzj9yBYtLGv++m9vwf3Pg5tIqF5LdmZCh9Zzc3u4dKori2j0CnqDXbjPfUW7paCPoDWduVzAJ3QxfAT1tWUcKIuHOTV8sPvMzm/sIVLQJRIJAAUFosTr0KFDjWPR0dFERkbS2NhIXV1gVaWKfDoJpaa2tNB9Bb2qDr/awx3xseSramHrPghxlcLOS0lKbZslqpOZjEjjt6RSUV5k1FZpaFVjRdO0rgW9i13IEUO8X4SPxFZdTlmtcKqnJnUSHhMAUtAlEgkApaWlQLNVrtNTt0uDvWWrNV8fenpqOy4XxxFAVCP0J/1ft9BPmgahIRAaouH58adYqCQ5NbtDsY2OMGE21YIplKKSauoavE0vGjVMwL+ee55zrvoHpeV1OJwQSiO468gcmmuM4fZo4pmhnad95qRDiMkDYUMoLimn3iMSk8aPjOp6gT1ACrpEMoDYtGkT5eXlXV/YTTwejzFua/92TwX9+70a3+1pFvQjPhZ6Wlp7FroQ9Mqaji302gaN3YdEzLpu8U8bDY/fCjec+BXUbGD0OIWIiLAOxdZqgQiziFcvr6yn2vvGo6oO6mzFvLJhPLtD/8DfXxddhkJc4p1DUkaeMYbb3XmWqLGuSIiPErGRu/ZVQOQ4AHIzQzu7rcdIQZdIBgg7duzg+OOPZ9asWdTWBrdLQlVVFW63m4SEBKzWlpkvPU3/r20UdcQLyzxU2DQO668HjmLS0lr60IWFLsavru/YQq+waXyzWzS20MMgk2Jh4nATtQXvATB20vEdxqCDyADVm0WXVzmoFtpOZQ2sWrEcLWo6AOv3jAbAWX8Ak8nEiFF52OrFC5SzizouOlERJiNpqs6ZCJHjARg+pLO7eo4UdIlkgLBlyxYA9u3bx89//vOgjq27W1JSUtqc67nLBZLjYeM2WPutRo3XtYGr1MhE1QkPDyfELcavrPFQ29D+pmhZtUj+OVSiUVYtjiV5QwO3fb8RgDETZncptkkxopF0Va0HW53wlxcUVfHfdfvAJGTRo6fp2AvIyBrN3CnRNDlErHp1LW3a27WH1QwZSV5rPG4OWBIwm+pJiu363p7gt6ArinKxoihl3q/PVxRlo6IonyqKkuU9NlZRlHXe4wt7Z7oSybHL3r17ja+fe+453nzzzaCNrQt66wxO6Jmgezwa9iYR0221iJjt2gYTaG5iItyYzS0d3CaTiWireNdRVePpsD1cWTVkJMH2g81JRHt/+BCX08nObaK5de742V26Q9IShcja6s24PeJF4v23/o4jcra4oO775osdR8geOYWUeJg/BUZmivK5eSO7LptotUBWmncyiSKyJSG8stcqLvol6IqihALnA4cVRTEDvwBOBO4Bfu+97EHgWuA04A9Bn6lEcoyjC/rxx4sWaMG00jsT9J4kFzldgLdOeVyUCY9ucDvLSUhIbPee+AhvCd26kDYp+SAaT9Q0QEwk1NZDjfcF4rE/nM/Gde9gtzeQNWwU0bGpndZYARieKboa1TRaMSESiD55ZxnEC1t0SOND0LhHXOwoJGfkFKwWSEsMYdroEFITTF1uiIKw0NMSvTIbORaA9AQ/Qnh6iL8W+sXACsADjAJ2qKrqUFV1A6DvFAxRVXWPqqo1QKWiKMkdjCWRSHqALugPPfQQ4eHhFBQUBBxKqFNWJkJGOrPQu+NDd7hoURPFaBLhLCExqX1pSE2ygseO3RliuFN8qW0UY5pMJlx6O1BnKc6mBv58/7UATJg8G7cbosI7F9uxI0XxmEZ3DC63i4MFNqrqLBCRS1Q4zBwXAruugrL/QNkbjB43pcNGFp1htTTXqdHJyei9iitdCrrXOr8AeN17KAHw7Uelb9f6jmUD2n8ZlkgkPUIX9FGjRpGVlQU0x44HSmc+dL1ZdHcE/fEVGrc8BnsLWnW6d5SSnJTU7j052dnQJCJdiipok8hU1wDoVRB1I9dbBbG+TgSMT5w8G42u48NzMvTeoulUlhWwc/d+wzqfNhqmTJ0KtZtg54XgLGPCpCn+LLsNFjOktlLCMcPjezSWP/jzUnEZ8Iaqqh5FUQCqAV+Xvtv72beFdhxQSSsURbkBuAFg6dKlnHLKKT2Y8tHD6XRSWFjY19MICnIt/RN/12Kz2SgvLyc8PByPx0NKSgp79+7l22+/JSYmpsv7u0LPErVarW3mo2dOFhQUdDpX37W8sz6RytowHnvDyet3l+O0RwDxwkJPiGp3nKSkJNh9BCJGEB9WQWGho4Wv2W6HSZkQGgrbnWFAIjiKCQ8Px24XPpoTZ48iO6sIRwN09mMdEhcCpEH4cKLd60XPVK+gz59kY3rWJOPa1NQ0Jo9w9/hvThkOVqw4EC9kp81oJNbc0On8OiMzM7PDc/4I+nhgqqIolyHcLf8DjFMUxQoowFbvdUWKoowESoFEVVXbBMuqqrocWO79NrA84qNAYWFhpz+8gYRcS//E37Xo1rFunefm5vLll1/S2NgYlJ9FQ4PwX48ePbrNeHpESllZGUPa6QKk47uW8hph320/aOGelzJY+53+oO2kpQ9rd84TJkyAz8U6t+xP4ryTTcRGNT/ro689eDwQEWZib4leF6aIk8+6he++Wo3ZYiUy9QR+LDBxxmwTMZEdu0giYzyYcKBZ01C3N1BRWQPxiwAYlR1HTvYEwiOisDfWkzl8Gk0hGYzO7FlQ4A7VQ6R5Dw5XEiZPLTZHOjUuGNXD8TqjS0FXVfUO/WtFUVRVVW9SFOVCYC1gB670nr4beB7hgrk36DOVSI5hdHdLbq7IVtTT8w8fPhyU8TtzuURERBAXF4fNZqOqqqpNyGF7GKVygZVfiM+p4bspLXyc1JT2YyZycnLAsQ8QzSfsDoj1JlS63SJUMNXrj27uHVpEWsZw/vef35OeZMbpMmEydd0VKDzMRLSlmlpnKgeP1GOrKAVrOpYQB0NTrZjNZsZOmMF36lqyR04l2o+Y846IjoC4sFqqXRAdcgSTaUzPB+uCbnnnVVVVvJ9fp9mnrp/bDswL3tQkEonO0RL09jZFQfjRbTYbRUVFXQp6XYNGg7d587w8UQ1x6ihIKH6UNR57mzouOtnZ2eBYD0BVDUaNFcCokV7XCFHhmlHWFkcRw7PHEB8bRkWtyOA8YQpYOyidq2M1Q0JUI7XVcLjUjadBeI6TY+oxmUSY4WlnX8X+vduYOe88wq09jzOMCofUBA8H6yE1Njib2B0hE4skkgFAbwt6Z1Eu0By6WFRU1OVYxd7ds4RouPNSePhG+N+fQb1NbHimdSroYnxbvYatrtkrW9cI+4vg3Lvhr2/4WujFZGUkMzfPREQYLFRMZKZ0LWuhoSaGJAmRLq0yU1wtTPChqc3P/MmZV7BqTSkjRk0JqG1cTCRcce4kJmcd4lfXjO35QH4gOxZJJAOAPXtETHRvCLrL5aKiooKQkJAOrW890qU7gp4YCxaziZmifAnVVWJbLT29/ReNuLg4Ii01NAAV1U6q6ppVtKpW46sdou3b+5sgXq9t5ShiSEYqcdEmzpxNh/799hg5NIJN+6DaHovLu6maO7RtALs/UTOdERFmIjkhjMd/nW2spbeQFrpEMgDozEIPtE65XpQrKSmJ0ND2i0Z1J3RRL5qlp+Tr2KrbL/7lS5bXuq6o8RhFs0BY5FuFex1NE4W0AHAUke4t9NUdMQfIGxMPgF1Lw2URpXFzh7WTkaQF1tg53IoRbgmiuXR4AON1hhR0iaSfU1tbS0lJCWFhYUb8eXx8PFFRUdTV1WGz2boYoXO68p9D91wuR8rFC0x0BDQ2Nb/Y+CPoejeh6vpQGuwY5Xf3HYH8IyJRp0Wdc0cJaWntx7V3xdhs70DhuRAhCnFlt6wcLMrkhop3Gj0l3Nqy96nbA7GdROAEghR0iaSfs2+fME1HjBhBSIj4lzWZTIaVHmhyUVf+c/DP5eJwgcOpUeCtUx4bCZW1oq6Lw9FEY0MtoWazKJXbAbk5yeCx43BZaHKIjVGHU2PzTnF+Si6cM8d7sbOSqKgIoiK6CGnpgFFZgOaCsCyIGAl4RPMLH1wuOq3c6A9WC5hDxc9BJ8KP0rs9QQq6RNLPyc/PB2DkyJEtjgfLj95ZyKKOPy6XJgcUlGqGyyUuGoani4JaVZVC5RMSkjt1jQwfnmNki1bVQqMD6u3N7pYZY+HikyEl1gGV7xMTl9JliGJHxESaCA+pENUVTWaiQqsI80azaJrIVHW6xDuNQDCZTERHtCwJ7E/p3Z4gBV0i6efoGYq+reEAw/0SLEEP1OWiabD9QLMPPS4Kpo02ER4Gew94N0TTOn7RgJaRLlW1wkKvrdcMQZ85DhJiTNx97mbYfSWxccmYe+gOsVogNqy5rnxStHDMezwaTrfY3HW46LLQlz/ERoHDKV4kTEgfukRyzHLkiLBYhwxp2RUhWBZ6sFwuAKXVUOjNEU+JFwk88yebGDdEqHxKSuc1+7Kzs6HpAADlNWCr0/hyO9Q2iCJXQ71TrKn2WvyJPa8BaDVDSpzT+D4rRcSiV9eJxKTkONEkOiYIgh4XpbukRBhjTwp9+YMUdIkkCHzyySc89NBDeDyeri/uJr0t6P5Y6Hono5qaGqNMQHuEW5t7hw7x7lXGx5hw2oWgd7YhCl5BbxQRPaVVUF0La78V55SxzZEs+gZrUgeVG/0h3AoZyc3xiCOzhGPb7oAIK8yZZCIlXoQdBkpslAmXC5qcwhXVW0hBl0iCwG233cZdd93FBx98EPSxj5agd+ZDN5lMhtulMz96TCTYvC3dHr37ZGPuhw6J/pxdCXpycjIWj7j2SJmDqjrYJb5l9FBwNNnxeDxUVwkLPbmTOXdFmBVGDG3eoJ0wKpG6Bo2UeFEALDLcxMmKibQg1I3VXSxNTv86HfUUKegSSYBomsaBAwcAWLFiRdDH7w8WOnTtdqmqNVFTL3zpoZ5qtm75jMcffxyA//znPwDMm9d5dRCTyUR6nHgHcLjETUMTHBbTw+o+yJnzE1j+5J3YvILeUdapP5hMJiaPbb4/d2gENQ0wYXizRR4TaeqyjIA/6LHoLjfERfWOuwWkoEskAVNVVWW4IVatWkVTU1MXd3QPfwTd3+QiTdP485//zIYNG4xj/vjQoWNBb7BrLL7Lw6K7Uw3xxSms+Oeee46tW7fy9ddfExsby+LFi7uc44gM4bYqrbagac2brAd/fAuno4n3Vv6LinIxflebrF0xNjuU+GiNIUkaCTEQGtK2IUUw0GPRTabeC1kEKegSScD4Wsg2m41PPvkkaGM3NDRQXV2NxWIR9cJ9iImJIS4uDrvdTkVFhV/jbdq0iTvuuINFixaxf/9+CgoKjDj2rgS9I5dLZLgJWz3UNITw4kfimLtRjFlRUcEll1wCwPnnn09ERNc7jLnZCeCsxOE2c7BEhC3GRMKu74U7q662mq83iq9Tu9hk7YqUePjfn5l48jYTDpeIRvGntVx3sVpM3lh0KegSSb+mtcvjjTfeCNrYujXcUR3y7iYX6XOtra3lsssu46c//Sl2u53TTjuN+Pj4Tu/tzOVy71VibjsOeg94Y8kBfvzxRwAuv/xyv+aYkzPM6Of5nbet59AUD9u3bjSuqa8T1bnS0wOz0GOjTMRFQVKciSYHJATeK6STZ0FISO+FLIIUdIkkYHQxnTt3LgBvv/120NwuvoLeHt31o/ta1xs3buSrr75i2LBhvPjii13e25mgnzjVxMwxPmt2FJM7agzR0WIHMDs7u0v/uc6wYcPALiJdvhefiLGW0WRvJDyi5Y6iXselp/iKq90Bib0p6JEifLG3QhZBCrpEEjC6mC5cuJC8vDxsNhufffZZUMbuyH+u01NBX7hwISaTibCwMN58881OI1x0ukouuvksn2pajiLGjRvPFVdcAcCVV15plC3oimHDhhmhizu9ES6eWmHlzzv5UjKGZBnXZmYEZqFHhGEUzvJodNrlKFBio3o3ZBGkoEskAaOL6dChQznppJMA+O6774IydleC3t1sUV3QL7zwQjZs2MDmzZvx9grukmHDhgEYET2tmTnWQZ5enaBxL9nZQ/nzn//MSy+9xF133eXXM4zneAVdp6pgHQALFsznvCWLATBbrMTHB2ZS+xbOMpl6LyUfID7aRHLHZWyCghR0iSRAdJfL0KFDGT9+PADbt28Pyti9ZaGnp6dz/PHHM2nSpC7uaGbECFFidv/+/W0SqDZu3Mg7q9/i7sthZsJzUPU+OdnDiIqK4rLLLiMszP+dwMzMTMPlonNox9sAnHPGiZx77rkAJCWndbtkbmusFhOWUFFVUdN6V9CHJMOoob33DgBkgwuJJGB8LfTIyEgAduzYEZSxe1PQu0tMTAypqamUlpZy5MgRsrKyaGpq4u677+Yvf/kLAE/8exah1e8A3qzPHhAWFkZyVA16l3lziAdH9Y9kDhvDuFHpjM1N46677mLixIk9Gr81MVHQYBful0DK5HZFoC8+/iAFXSIJAE3TDAs9KyvLCP3bsWMHHo/Hb79xR/QnQQdhpZeWlrJv3z4yMzM544wz+PTTT43zW776lNJiMRfdRdMThmXGUu6sBEsiMdZKqnAzZ+4JmEwmTCYTf/rTn3o8dmviomBfIWR1HrU5IJAuF4kkAMrLy7Hb7cTFxRETE0NSUhJpaWnU19cHpT2cvz70goKCLuvIeDwev7NCO0Iv4btv3z5KSkr49NNPiYqK4te//jUAWzavobRE7GQGJOjDhhqhi6EOUWpx9vHH93i8zoiLgpoG0TJvoCMFXSIJAF//uc64caKJZjDcLl0JemRkJElJSTidTkOsO6KiogK3201iYmK3fNq+6IKen5/P1q1bAZg2bRq//OUvAdj1wxfU2iqwWKw9ftEAyMkeavjR7RUqAMfP8m/ztrtER5jQNIjvxZT8o4UUdIkkAHz95zrB2hitra2ltraWiIgI4uLiOrzOX7eL7m5JS0vr9LrO0DdG9+3bxw8//ADApEmTSEtLY8yYMTgcotlyRubQgNxN2dnZUPIikaYC6vKXERYeyZS8sT0erzMiwkQmam9uiB4tpKBLJAGgi6ju+oDgWehdZYnq+JstGqj/HFq6XHwFHWD27NnGdZmZQ9ve3A2GDRsG1Z+gqROhYTu5Y6ZitfawNVEXhFtF0o8UdInkGKc3LfSu3C063bXQgyHovi6XvLw8AObMmWNcl5Pdc/85NK+psUF0FMqbPD2g8Toj3Cr8572Zkn+0kFEuEkkAtOdD9xV0TdN6HK7WHwU9PT2diIgIKioqsNlsAEb44PHHH09ISAgej4eRIwIT9NYbqjNm9J6gm80m5uYdnbDC3kZa6BJJALTncklLSyM+Pp7q6mpKSkr8Huvdd9/l2muv5cCBA2iaxscffww011DpCH+zRYMh6CaTyfCju1wusrOziY0V4SFxcXFMmzYNCCzCBUSzDd+N21kzZwQ0XlcMBjEHKegSSUC053IxmUw9crvcf//9PPfcc+Tl5XH66afz/PPPYzabWbJkSaf3dWahf/vtt4waNYp//etfQRF0aHa7QLO7Ree3v/0tc+bM4ayzzgroGSEhIWRmiheqiMgYJk8aHdB4xwpS0CWSHuJ2u9t1uUCz26U7G6P79ol469raWj788EMiIyN55513uqxS2JGgO51Orr76avbu3cs999xjnA9U0HULHWhTOmDJkiWsX78+4GcAZHv98CNGTyciXEqVP8ifkkTSQ44cOYLT6SQtLc1I+dcZO1aE2O3cudOvsaqrq6mqqiIyMpJnn32WRYsWsWbNGk477bQu783MzDTm43a7jeOPPfYY33//PSAiZtavXw8E10LvTi2Y7qK7bSZOmj5oXCK9TZebooqipAErASfgBi4FRgJ/BjzATaqq/qAoSjrwIhAF/ENV1Zd7bdYSST9ArzqYk5PT5tyoUaMA2LNnj19j7d+/HxDW7zXXXMM111zj9zzCwsJIS0ujpKSEoqIisrKyyM/P57777gPg7LPPZvXq1UabukDi0PU56rR2uQSTSy+9lHXrN3PBxVf02jMGG/5Y6OXAXFVV5yME+1rgT8AZwCXAw97r7kCI/HzgFkVRBkFUp0TSMcEU9Pz8fKClWHaH1qVtn3nmGRobG7nooov497//TXi4+HcMCQkhOTmwphC6hW61Wo119gannHIKa774gTnH9d67gMFGl4KuqqpbVVW9SEQMsA9wq6paparqISDRe24msEZVVRegAsEphSaRBMDevXvJzMzkscceC/rYulU9fPjwNudGjBhBSEgIBw4cwOFwdDlWoII+ZswYoNnFo7d9O++880hMTOSiiy4CRA2X0NDQHj1DZ9SoUVx33XXce++9WCy9k+yjk5MRQlqidLf4i18+dEVRpiiK8hWwFNgI1PicdimKYgUsPsJvo1noJZI+4/333+fIkSP85je/Ydu2bUEduzMLPSwsjGHDhuHxeAzh74xABb11VI0u7Lov/+abb8ZkMhlZrIEQEhLCM888062mFZKjg1+JRaqqfgccpyjKBcDdgG9dMrOqqg5FUZyKooR4RT0OqGw9jqIoNwA3ACxdupRTTjkl0Pn3Kk6nk8LCwr6eRlA4Vtfy7bffAiJm+sorr2TVqlUBl7TV2bVrFwDR0dHtzmfYsGEcOHCATZs2Gb01W6OvRY+GiYuL69HvSS+E9e2335Kfn09+fj4hISFERkZSWFjIkCFDWL16Nenp6b32d3Cs/o0dbfRN8PbwZ1PUqqqq/p7RBtQBZkVR4hEuGF24NwMnKoqyDpgO/Kb1WKqqLgeWe7/V/Jx/n1FYWNjpD28gcayuRa+HYjKZ2LJlC++88w4333xzUOahj60oSrvzmThxIuvWraOysrLD+epr0cVjxowZPfo96aGN+fn52O123G43ubm5LSz+3v79H6t/Y/0Jf0yVKYqirFMU5TPg58AjwO+A94HXgN96r3vY+/U6YJmqqo3Bn65E0j30Tcn7778fgKeeeioo47pcLg4dEnW/O+rM4+/GqNvt7tR94w8jRozAarVy6NAhNm/eDDS7WyTHDl1a6Kqqfg2c0OpwETC71XVFQP/2oUiOKRwOBwcOHCAkJITbbruN++67j927d2O3242oj55SWFiI2+0mIyOjw7H8FfSCggJcLhdDhgwhIiKiR/Mxm82MHj2abdu2sWrVKkAK+rGITCySDFr0ZsbDhg0jNjaW3NxcPB4Pu3fvDnhsfyzq0aNFunpHgu52u2lqagp4Q1RH3xj98MMPASnoxyJS0CWDFl1IdUt5woQJQHNIXyB0FrKok5OTQ2hoKIcOHcJut7c4V1BQwPjx45k7dy5r1qwBAhd0PYJFf5YU9GMPKeiSQUtrQdct2GAIuj8WusViYfjw4WiaZljhAKWlpZx88sns3r2boqIiHnjgASB4FrqOFPRjDynokkFLb1ro/m5itvaju91uTj/9dHbt2sWkSZNa3B8sCx0gOTmZpKSkgMaTDDykoEsGLbqvvK9cLr7P1ueyfft2vvnmG1JTU/n444957rnniImJAZqzPXvK6NGjjRj7YCQQSQYeUtAlfc6OHTt44oknWlQKDAatLfQxY8YQGhrKvn372vi0u0tPLXTd9TJ9+nTS0tIYPXo0a9euZdmyZcyYEVgTh7CwMKPOinS3HJvIFnSSPqWiooKFCxdSVFTEiBEjAm6MoGO32zl8+DChoaGGFR0WFkZubi67du1i165dTJ48uVtj1tXV8d577/H1119TUFCAyWRqUwe9NXqki55V2l5Ey7Rp04xOP4Eyfvx49uzZE7C1LxmYSEGX9BmapnH99dcbGZdbt24NmqDv27cPTdMYPnx4iwJS48ePZ9euXfz4449+C7rNZmPp0qW8+eabNDY258tNmTKlRZu09tAtZV3Q9SYWgfrLO+L222/H6XRy2WWX9cr4kv6NFHRJn/Hss8+ycuVK4/vutGvritbuFp0JEyawcuXKbvnR33rrLV5+WZT3nzNnDqeddhqTJ09m/vz5Xd6blZVFREQEJSUlVFdXGxa6b5OIYDJ//ny/5iUZnEgfuqRP0DSNe+65B8CordKddm1doVvE7Qk6dG9jVJ/XPffcw/r16/nd737HWWedZTRH7oyQkJAWbpdgJRFJJO0hBV3SJ/z4448UFRWRkZFhxGHv3LkTj8fTxZ3+8d133wG0cavogt6ddwN6hErrOG9/0d0uO3bs8Ds6RiLpCVLQJX3Cp59+CsBJJ51EQkICGRkZNDY2cvDgwaCMr5fNnTJlSovjo0ePNiJdGhoa/BpLt/Z7utGo37dmzRocDgdpaWkdltOVSAJBCrqkT9AFfeHChUBz3HQw/Oj19fXs3r0bs9lsWOQ6YWFhjB07Fo/H45fbxeVyGRuZPW23pgu6XmNFulskvYUUdMlRx+Vy8fnnnwPNgq67M4LhR//hhx/QNI3x48e3G4Wiu2G+//77Lsc6cOAATqeTrKwsoqKiejQfXdDLysoAKeiS3kMKuuSoo6oqNTU15ObmGs2Ng2mh6+6WqVOntnu+O4Ku+88DietufW9vRbhIJFLQJUed1u4WCK6Frm+Itvaf63RH0AP1n4NoUefb/UZa6JLeQgq6pFNcLlfQx2xP0H0tdE0LrDthRxuiOrqgb926tcNnNTU1Ac2Croce9hTfFwQp6JLeQgq6pEP27NlDamoqS5cuDdqY5eXlbNiwAZPJxIIFC4zjqampJCYmUlNTw5EjR3o8vsvl4ocffgA6FvT09HRSU1Ox2WztRtWsWLGCiIgInn766aC4XKBlbRXpcpH0FlLQJR3y0EMPUVVVxdtvvx20MZ9//nkcDgeLFi0iOTnZOG4ymQwrPRC3y65du7Db7eTk5BAfH9/hdXl5eUBbt4umadx3331omsavf/1rw9oPVND1+8PDw0lPTw9oLImkI6SgS9qloKDASHcvKCigurq6W/cfPnyYU089lZ/+9Kf84Q9/MNrBLV++HIAbb7yxzT09aUCxc+dO1q5da3yv+8872hDV6ciP/sknnxgbs42NjVRXVxMWFmZs3vYUXdCHDx9ulLiVSIKN/MuStMvjjz+O0+k0vu9uDfHXX3+djz/+mDfffJN7772X4447jn/+85/s2bOHrKwsFi1a1OYe3UXyzTff+P2c8847jwULFrB69WoAo51bR+4WnY4E/fHHHwfg1ltvNSz83NxcQkND/Z5Te8yfP5/zzjuPO++8M6BxJJJO0TStrz76PQUFBX09haDRnbVUVlZq0dHRGqBNmTJFA7Rly5Z163k333yzBmgXX3yxNn/+fA0wPu6///5279m8ebMGaGPGjPFrLS6XSzObzRqgJScna08//bQGaKGhodqWLVs6HeP777/XAG3kyJHGsV27dmmAFh4erpWVlWnPPvusBmhXX311t9beHY7Vv7H+Tj9fS4e6Ki10SRv+/ve/U1dXx8knn8yll14KwLZt27o1hl6z5MILL+S9997juOOOAyA0NJRrr7223Xvy8vIICwtj165dfrl4SktLjSic8vJybrnlFgAeeeSRLl0uY8eOxWKxsG/fPmprawFYtmwZAJdffjnJyclcc801bN68mccee6zrBUsk/QAp6JIWNDY28sQTTwBwxx13MHHiRKDngj58+HCioqJ47733OOOMM7jnnntaxGT7YrVaDSFWVbXLZxQWFgKQnZ1t9M+88MIL+fnPf97lvVar1dgY1Z+l++L1FzEARVGIi4vrcjyJpD8gBV3Sgn//+9+UlZUxffp0Fi5caAi6nk7vD5qmtWnRlpSUxLvvvmuUzO2ImTNnAvD11193+ZyCggIAJk2axMcff8yf/vQnnn32WUwmk1/znDVrFgBfffUVjY2NbN26lZCQEBRF8et+iaS/IQVdYuByuXj00UcBYZ2bTCYyMzOJi4ujoqKC0tJSv8YpLi7GbreTmJjoV81wX3oi6FlZWUydOpW77rqrW/VWdEHftGkT3377LW63m4kTJ/a4ZotE0tdIQZcYrFy5kv3795Obm8uSJUsAER/ua6X7QyA1v3VB/+qrr7p8R+Ar6D3BV9C/+uqrFs+XSAYiUtAlBp999hkA1113XYswve760XV3S08EPTc3l/j4eIqLiw3B7ohABX3kyJEkJSVRUlLCihUrACnokoGNFHSJgZ6h2brLT3cFPRAL3WQy+e12CVTQTSaTYaV/+eWXgBR0ycBGCrrEQM+Q1FPwdY6moANGiGNvCzo0u10AIiMj2zTEkEgGElLQJQDGpmdUVBRDhw5tcU4X9K1bt2K327scK1BB10MXOytvq2maIegdhUH6g6+gT58+HbPZ3OOxJJK+psu/XkVRZgJPAE6gELgCWAzcDjQCV6qqWqAoylhguXfM36uq+mlvTVoSfHR3y7hx49rUGklOTmbq1Kl8++23rFmzhtNPP73TsQIV9I7S8uvr63n++ecxm82cd955NDU1ER8fH1B/zhkzZmAymdA0TbpbJAMefyz0w8BJqqqeABwAzgF+AZwI3AP83nvdg8C1wGnAH4I9UUnv0pG7Reess84C4J133ul0HJfLxaFDhwCR8NMTcnJyiImJobi42AiVfOGFF8jNzWXp0qXcdNNNRlRKIO4WgLi4OKMo2IwZMwIaSyLpa7oUdFVVi1RVbfR+6wDGADtUVXWoqroByPOeG6Kq6h5VVWuASkVRktsbTxIYTzzxBOeccw7nnHMOv/jFL4LWgEK30HVxa42voHcWTlhQUIDb7WbIkCGEh4f3aC4hISEtyttu3bqVq666iuLiYsLCwtA0zYiXD1TQAR588EGuuuoqzj777IDHkkj6Er8dhoqiZAOnAncCKT6n9Pg23xcHG5AIlLca4wbgBoClS5dyyimn9GDKRw+n02mkl/cHysvL26S1jx8/vt3Kha3pai163e/U1NR2r0tLSyMtLY3CwkI++ugjJk2aZJxzuVxs3LiRDRs2GPdmZmYG9LPLzc1lw4YNrFu3zngBOeecc1i0aBE33nijkaafkJAQ8O9o+vTpTJ8+ncrKyoDG6Qn97W8sEORajg6d7Rn5JeiKosQCLwFXIQTcN/3P7f3s8TkWB7T571BVdTnCzw6i8l6/prCwMKANt2DzxRdfACK0bsaMGTz99NOsXr2a6667rst7fdeyY8cO6urqWrgY8vPzAZg3b16Haz7nnHNYvnw5X331FaeddhoAb731FjfffDMlJSUtrp08eXJAP7vZs2fzwgsvcODAAcrKygBRp+Xcc8/lN7/5DTU1NYBoDdeffkfdpb/9jQWCXEvf06XLRVEUM/AacL+qqruAPcA4RVGsiqLMBrZ6Ly1SFGWkoigxQKKqquUdDCnpIXovziVLlnDPPfdgNpt5//33KS4u9nuMhoYG5s2bx+zZs9mzZw8AtbW1HD58GKvV2ulGpu6S8PWj/+lPf6KkpITc3FzuvPNOHnnkEZ544gkeeOCBnizRQHe5bN68mXXr1gGwYMECwsPDW7wjCYbLRSIZLPhjoV8MHAf8XlGU3wP/AB4H1gJ24ErvdXcDzyMs+HuDPE8JLZsrp6amcvrpp7N69WpefvllfvWrX/k1xmuvvUZFRQUgyswuX76cnTt3AqKrTmdheyeddBIRERF88803FBYWEhUVxbfffovVauX7778nMjIywBU2M2nSJEwmk9GkecKECUbrtiVLlvD6668DUtAlkhZ0Viy9lz/6Pf2pyH1+fr4GaPHx8ZrL5dI0TdNWrlypAdr48eM1j8fT6f36WhRFMRpNWK1WrbCwUHv++ec1QLvgggu6nMfZZ59tNLxYvXq1Bmjz5s0LfIHtMGrUKGOut956q3H84MGD2tChQzVA27NnT688+2jRn/7GAkWu5aghG1wMdHTrfMGCBUadlTPOOIOUlBS2b9/uV/1wVVVRVZWEhATOOussHA4HDz74oDF2RxEuvvi6XfSNyfnz5/dkSV3iW4Jg4cKFxtehoaG89957rFy5ktzc3F55tkQyEJGCPkDwdbfoWCwWzj//fAA+/PDDLsfQO/JcddVV3H///QA8/fTTvPTSS0DXfThBvIiAaKb8wQcfAHDiiSf6t4huogt6SEhImxeNSZMmsXjx4l55rkQyUJGC3o84ePAgS5cupaioqMVxl8tlND/2FXQQfm1o7rbTEfn5+bz88ssA/OxnP2Pq1Kmcd955gKidsmzZMs4888wu55iens7MmTNpampix44dWCwWjj/+eL/W1130RhOzZs2SXYMkEj+QhSv6EY8++ihPP/00jY2NPPvsswB4PB6uvvpqSktLGT58OGPGjGlxzwknnADAxo0baWpqIiwsrM24mqbx29/+lqamJq644gpjjFdeeQWbzUZKSkqbezrj7LPPNgpnHXfccUHdDPXlJz/5Cf/4xz96zaUjkQw2pIXej9CTe9544w3q6+vRNI1bbrmFl19+maioKF555ZU27dVSUlKYOHEidru9w+qEL774Ihs2bCApKYm//OUvxnGr1dptMYfmrFHoPXcLiPK2N954Y4flCCQSSUukhR4kDh06xEMPPURjYyNms5lbbrmly87zvng8HrZuFSH9dXV1vPnmm4Dwe4eFhfHOO++0qAzoy4knnsi2bdtYu3Yt8+bNa3Huu+++4xe/+AUAf/3rX0lODrwiw6RJk8jJyeHAgQMsWLAg4PEkEkmQ6CwEppc/+j3dCV266aabjBA7QJs8eXKXoYS+6GGJ+seMGTO0lJQUDdCee+65Tu/9z3/+owHaSSed1OL4Rx99pEVHR2uAdvLJJ3drPl2xYcMG7bHHHgvqmP7Sz0PKuoVcS/+kn6+lQ12Vgt4J3fml6jHTDzzwgJaenq4B2vvvv+/3/XpM+axZs7SIiAhD2OfNm9elaJaWlmqAFh4ertntdk3TNG3btm2a2WzWAO2SSy7R9u3b5/dc+jv9/J+tW8i19E/6+VpkHHpvcujQIfbs2UNsbCx33HGH4eJ48MEH/R5Dr/09b948I/rEbDbzj3/8o43fvDXt+dFXrFiBy+Xiggsu4KWXXmp3s1QikQwupKAHAT1GfP78+ZjNZm688Ubi4+NZv34969ev92sMXdAnT57M7bffTkxMDH/4wx/8bomm+7Lfe+89AP773/8CcNlll7VpWCGRSAYn8j89CLRO+omJieF//ud/AFEvxR90Qc/Ly2PatGnYbDZ++9vf+j0H3ap/7bXXqKys5KuvvsJsNvdqFIpEIulfSEEPEE3T2s3ivPHGGwFYs2YNbre73Xt1ampqyM/Px2q1MnbsWIAu3SytmTdvHkOHDuXgwYP88Y9/xOPxMGfOHGJiYro1jkQiGbhIQQ+QHTt2UFxcTFpaWgv3yJAhQ8jJyaGuro4ff/yx0zF++OEHQNRSsVgsPZpHSEgIF198MQBPPvkkAKeeemqPxpJIJAOTY0LQi4qK2LBhAxs2bODw4cNBHVu3zk866aQ2VrWeEr9p06ZOx3j77beBlsWoesKll14KiJh2EJmWEonk2GHQC3pVVRUTJkxg7ty5zJ07l7Fjx3Lw4MGgja/XUGldYwUwEoE6EnSPx8Ptt99u+NmXLFkS0Fzy8vKYOHEiAElJSd1KbJJIJAOfQS/oL7zwAlVVVaSnpzNs2DAaGhpapL8HgqZpRls4vaaKL7qgf/nll23O2e12LrzwQh5//HEsFgsvv/xyUJoUX3bZZQCcdtppMrpFIjnW6CxIvZc/eh23220k/Lz11lva1q1bjQSckpKSLu/3TS549dVXtVWrVrU4v3PnTg3Q0tLS2k3+aWpq0sLCwjRAq6ysNI6Xl5drc+bM0QAtNjZW+/TTTwNYZdtnPvXUU9qRI0c6XMtAR66lfyLXctQ4NhOL1qxZw549e8jMzOSss85i0qRJnHnmmdjtdp544gm/x9m3bx8XX3wxixcv5rnnnjOO6zHmc+fObTcqxWq1Mn36dIAWhbOuuOIKNmzYQFZWFhs2bDBK4AYDq9XK0qVLycjICNqYEolkYDCoBf3vf/87IOp/670y77rrLkA0drDZbH6No/evBLjuuuuM73V3S+uCWL60drs4HA5jI3X9+vWGz1sikUgCZVAIut1ub3OsoKCAt99+G7PZzHXXXWccP/7445k3bx42m43//Oc/fo2vC/iiRYvQNI3LL7+cXbt2dUvQ9Y3RrVu30tTUxJgxY8jOzvZvgRKJROIHA17Q//a3vxEREcHixYtbxHsvX74cj8fDkiVL2rgfLr/8cgCjRG1nbN++na1btxIfH8+qVau48sorcTqdXH/99eTn5xMdHU1eXl6H9+uhixs3bsTpdBqul5kzZ3Z7rRKJRNIZA1rQPR6PEbHy9ttvM2nSJP75z3/icDh45plnALj55pvb3HfOOecQEhLCJ598QnV1dafP0K3zJUuWYLVaefDBB4mMjDSs89mzZxvunPbIyspi/Pjx1NbW8sUXX0hBl0gkvcaAFvT169dz4MABsrKyuPnmm9E0jdtuu40HH3yQ4uJixo8f3244YWpqKvPmzcPpdBrFrNpD0zRee+01AC666CJAZID+8pe/NK7pzN2io3f4effdd6WgSySSXmNAC/qLL74IiKiRp59+mmuvvZampiajo/3NN9/cYU0UvZhVZ26Xjz76iN27d5ORkdGiM8+vf/1rUlNTAfzqd6k3X16xYgU7d+7EarUGnBUqkUgkbegsprGXPwKioaFBi4mJ0QBtx44dmqZpms1m03JycjRAi4qK0mw2W4f3FxQUaIAWERGh1dXVtTnvdru1MWPGaID21FNPtTm/ZcsW7ZlnnvGrY4/T6dQSExONphUzZ87sxkqDQz+Pq+0Wci39E7mWo8bgi0N//fXXqa2tZebMmUaFwtjYWF588UWio6O5/fbbiY2N7fD+zMxMZs2aRWNjo+F2KS0t5cILL+Thhx/m+eefZ9euXQwbNozrr7++zf1Tp07luuuu86sqotls5vTTTze+l+4WiUTSGwzIJtHr16/nlltuAeDaa69tcW7evHlUV1cTGhra5TgXXXQRmzZt4oUXXuCCCy7gL3/5C2+88QZvvPGGcc0999wTlG4/Z555Ji+//DIgBV0ikfQOA85C37JlC2eccQYNDQ1cddVVLWLMdfwRc4BLLrkEs9nMhx9+yMGDB3n++ecBDIt/xIgRXHHFFUGZ909+8hMjGkYKukQi6Q0GlIWu98isqanh/PPP51//+ldABahSUlI466yzWLlyJZdeeimlpaWMHz+eH374gY0bNxIZGdnj+uStiY+P529/+xvFxcWMHj06KGNKJBKJLwNK0M1mM2+88QaPPfYYzz77rN+WeGdcffXVrFy5kg0bNgBw/fXXExISwty5cyksLAx4fF9+9rOfBXU8iUQi8aVLQVcUJQ74GBgPzFJVdZuiKOcDtwONwJWqqhYoijIWWO4d8/eqqn7aGxOeNm0aL730UtDGW7RoEWlpaZSUlGC1Wo0sUolEIhlo+OOvaADOAP4DoCiKGfgFcCJwD/B773UPAtcCpwF/CPZEewuz2Wz4yZcsWUJSUlIfz0gikUh6RpcWuqqqTqBMURT90Chgh6qqDmCDoiiPeo8PUVV1D4CiKJWKoiSrqlreG5MONr///e9JTEzkmmuu6eupSCQSSY/piQ89Aajx+V53ZPta+zYgEWgh6Iqi3ADcALB06VJOOeWUHjy+d7j88stxOp0t/Oatvx/IyLX0T+Ra+if9eS2ZmZkdnuuJoFcDvhk7bu9nj8+xOKCy9Y2qqi5H+NlBZE32awoLCzv94Q0k5Fr6J3It/ZOBupaeCPoeYJyiKFZAAbZ6jxcpijISKAUSB4q7RSKRSAYLfgm6oijvA1OAMcA/gceBtYAduNJ72d3A8wgXzL1BnaVEIpFIusQvQVdV9fR2Dr/e6prtQNe1ZCUSiUTSKwy41H+JRCKRtI8UdIlEIhkkSEGXSCSSQYJJ0/p99KBEIpFI/EBa6BKJRDJIkIIukUgkgwQp6BKJRDJIkIIukUgkgwQp6BKJRDJIkIIukUgkgwQp6BKJRDJIkIIOKIoS5f1s6uu5BIqiKJHez4NhLdnez4NhLccNhnUAKIoyrK/nECwURUno6zkEk2M6sUhRlFOB64EjwMOqqh7p4yn1GEVRFgOXAYeBRwb4WiKBPwNDgZ96u2YNSBRFmQw8AWwC7vF2+hqQKIpyGrAUaAJeBT5UVbWub2fVMxRFmQ/8EtGE52ngR1VV7X07q8A51i30S4B/AduAGxVFGZDVIhVFORO4GngY0YDkDu/xAWkRqqraADiAGMS6BuxaEBVIH1RV9U5gRF9PpqcoihIK3IhoUHM/ohdC1AD+vVwI/BvxwnQ6cF7fTic49KTBxYDFa/ldCKwHSoBDwNfAZ97j0xVF2TcQrFvvWi4GPgC2ANepqlqmKMpu4DVFUVJVVS3t00n6ic/vZZ2qqvu8IrEXeAu4VVGUD1VVPdSnk/QT378xb4/dBuA0RVHuRDSB2Qy8o6rqvr6cpz9413IR8DlQB/yAeDd7ENEfIQKwIF58+zWKokQgmtp/qKrq58B+oAjx/28HzlAUZayqqjv7cJoBc8xY6IqiXIxoyhEJ5KuqWgOkA8d73wZ/C4Qj2uf1a3zWEg6Uqqp6xCvmIQirdv8AEnN9LRGIF1hUVdWA8YjfxVvAzxRFGdpXc/SXVms54D0cCWQAvwJuRrgrzuiD6XWL1mtRVbUE+BTh1vsW4aq4Hrilr+boL96/nVcRRtyX3sMmYDiiFeZ2xN9ebp9MMIgcE4KuKEoscAHwR8Qf5cmKoiQD/wCuUxQlSlXVbUA2kNNnE/WDdtZyoqIoYwFUVfUgBMTlvXZYf35L3Gota4D5iqJM8J7+HPHOox4hIrd67+mXf7PtrGWBoihDgDcRVuxQVVVtCKHXfz/98nfTzt/YQkVRRqmquhb4BHhaVdXLgHcBq6IoIf11LV7MwGrEO/H/URRlNvARMBuYoKpqBcI4ioD++3vxh0G7Kerdif8V8B6wATgBuB2wAu8AVwDzgRsQv/AvEP7aN1VVfbcv5twRXaxlNWIt56iqekBRlGsRf6g2IAm4pT9tXPm5llOBnwEnInrUHgHqVVX9fR9MuUP8/BtbiFhHHsISPB3Yq6rq/X0w5Q7x8/eyCPHuIgMhiEuBKlVVb+2LOXeEz1pWI/bHsrzfFyKMhKuA/wUmIRre7wTORLj8/tUHUw4a/dLaCRRFUbKAvyB8fenAi6qqvg88AixQVfVR4EXgz6qqPoz4A/4ZsLUfinlXa/kLYnPnYe8twxCCvkdV1Sv7mZj7s5YXgfuAR4HnVFW9SFXVX/RDMffnb+wFRPTUCsRb/uOAjf1QzLvze3kO0Sj+PuDrfijmvmvJBP6uqqqKMG4cqqr+n/f8qcBLCJfefGDzQBdzGGSCrijKCT5vl+JVVf2LqqovADGKovxWVdX/InxnIBpdRyqKEuN9K3mlqqqPHf1Zt0831/I3vG/jEW+Jj1dV9R9Hecod0s21PIGwmlBV9WXv/f3m77QHa7EqihLr7bn7ywH+e4kCwlVVfRXxjvCpPph2u3SyljhFUa4D/gTMBFBV9UNgrPe6bcCt/WktgdBv/lECQVGUaEVRPkb4+05HbNisVxTlZ95LvgDOVhQlXlVVt6IoJwCrEJEUdQCqqrrajnz0CWAt+QCqqn6hqmr10Z95WwL5vXhDFwFjb6BPCWAt+7wb8Kiq6u6DqbchwN9LPUB/iaf3Yy3rgGu8n9crinKv9/oj3mv7ze8lGAwaH7qiKNMRiSgzEYkC8d7PBxCiXY+wXn8EnkG8nX+zL+baFXItci29zTG2libEC9KXQBpiI/S/fTDVXmfQCLqOoihPInx7LyuKkoF4+74X+Dnwf6qqFvfl/LqDXEv/RK6lf9LFWl4aKKG8gTAoXC7QItTo/xAhY6mqqhYhYplXIEISa/uTP7Yj5Fr6J3It/RM/11I3kMMR/WXQWegAiqL8DzASqAL2AbtVVf26b2fVM+Ra+idyLf2TwbSWntDvX327g481kYeImc1XVfXlgfgLlWvpn8i19E8G01oCYbBa6OcB76qq2tTXcwkUuZb+iVxL/2QwraUnDEpBl0gkkmORQeVykUgkkmMZKegSiUQySJCCLpFIJIMEKegSiUQySJCCLpFIJIOEY6oFneTYQFGUHESLMRCNmf/oPf4solATqqr2KGtQUZTxiOYPa71VOlEU5XngSmCGt1SrRNInSEGXDHauUhTlAUTp1wuCMN544F7v12uDMJ5EEjRkHLpk0OFjoecDI4CTEP0j/44omZqJcDfejeiLmQiowFJVVX9UFOU+hGj/C9FtKB7RD3QzzZa/zgJEB5wrEY0TzveOfYmqql/0ygIlkg6QPnTJYGYH8BXCzXINooRqtffc1YiemVsRwj4DeFtRFIvP/fMQzUPiEC3LyhCNUUD0Cr0Y0VZOZzai1GwWoqOPRHJUkYIuGew8h7Ca5yBa9emc7v38C1VVnwTeRhR1Gu1zzV9VVX0CYenneJs7bPCe26aq6mutSrLep6rqA4j62zlBX4lE0gVS0CWDndcAN1AAfNzOea3VZ18qvZ9dNP+vdOaj9L0+tHvTlEgCRwq6ZFDjbf92DfCzVq3s3vN+/qu35Oo5eMutdjFklffzPEVRLlIUJSKoE5ZIAkBGuUgGPaqqvt7O4ecRm6PXIzZNNyM2RZ2KonQ23HpE/8oTvPcNDepkJZIAkFEuEolEMkiQLheJRCIZJEhBl0gkkkGCFHSJRCIZJEhBl0gkkkGCFHSJRCIZJEhBl0gkkkGCFHSJRCIZJEhBl0gkkkHC/wOdaatMF+aB8gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdZklEQVR4nOydd3xV9f3/n/fm3pvcDDJJQgYhyJAhiiIOQAVBlKpQCoqjVrRQta3WWu1ya/uzWrVYtbgKfisVURzgHtQBKgoOEARkr5CQvW7u/v1xcs49N7lJ7r3JvTfj/Xw8eHD2+ZxPbnJe9z0NXq/XiyAIgiAIQowwxnoAgiAIgiD0bUSMCIIgCIIQU0SMCIIgCIIQU0SMCIIgCIIQU0SMCIIgCIIQU0SMCIIgCIIQU0SMCIIgCIIQU0SMCIIgCIIQU0SMdEM8Hg979uzB4/HEeig9Apmv0JD5Ch6Zq9CQ+QoNmS8fIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkYEQRAEQYgpIkaEVlx55ZXMmjUr1sMQBEEQ+ggiRnood955JyeccEKshyEIgiDEmJKSEpYsWUJ5eXmshxI2IkYEQRAEoQczc+ZMrrrqKn7605/GeihhI2Ikhrz99ttMnDiRtLQ0MjMzOf/889m1a5e2/+DBg8ybN4+MjAySkpIYN24c69evZ+nSpdx11118++23GAwGDAYDS5cuZe/evRgMBr755hvtGtXV1RgMBj788EMA3G43V199NcXFxVitVoYPH86iRYui/OSCIAhCV+D1erW/+e+88w6lpaWxHVCYmGI9gEgwbtw4jhw5EvX75ubmsmHDhqCPb2ho4Le//S3HHXccDQ0N3H777fz4xz/mq6++oqGhgZkzZ5Kfn8+qVavIzc3lq6++wuPxcPHFF/Pdd9/x9ttv8/777wOQmpoa1IfQ4/FQUFDAihUryMrK4tNPP2XhwoUMGDCAiy66KOxnFwRBEKKP3W7H6XQCijBZvXo1P//5z2M8qtDplWLkyJEjHDp0KNbD6JCf/OQnfuvPPPMM2dnZbN26lddff52jR4/y5ZdfkpGRAcCQIUO0Y5OTkzGZTOTm5oZ0T7PZzF133aWtFxcX8+mnn7JixQoRI4IgCD2M2tpav/VXX31VxEh3IdQXdKzuu2vXLm677TY+//xzysvL8Xg8AOzfv5+tW7cyduxYTYh0JYsXL+bpp59m37592Gw2HA6HBMMKgiD0QFqKkffff5/6+nqSk5NjNKLw6JViJBRXSSy54IILKCws5KmnniIvLw+Px8Po0aNxOBwkJCSEfD2jUQkB8nq92jbVfKeyYsUKbrzxRh588EFOO+00UlJSeOCBB1i/fn3nHkYQBEGIOi3FiN1u591332X27NkxGlF4SABrjKioqOD777/n1ltv5eyzz2bEiBFUVVVp+4899li++eYbKisrA55vsVhwu91+2/r37w8oaV4q+mBWgE8++YTTTz+d6667jrFjxzJkyBC/oFlBEASh59BSjAC89tprMRhJ5xAxEiPS09PJzMzkySefZOfOnaxZs4bf/va32v4LLriA3NxcZs2axbp169i9ezcrV67ks88+A2DQoEHs2bOHb775hvLycux2O1arlVNPPZX77ruPrVu38vHHH3Prrbf63XfIkCFs2LCBd955hx07dnDbbbfx5ZdfRvXZBUEQhK4hkBh5/fXXcblcMRhN+IgYiRFGo5Hly5ezceNGRo8ezY033sgDDzyg7bdYLLz99ttkZ2czY8YMjjvuOO677z7i4uIAJfj13HPPZfLkyfTv35/nn38egH//+984nU7GjRvHDTfcwL333ut332uuuYbZs2dz8cUXc8opp1BRUcF1110XvQcXBEEQugy9GFFd9ZWVlaxduzZWQwoLg1cfYCB0CzweD/v27aOoqEj7cAltI/MVGjJfwSNzFRoyX6HRFfP1+OOP88tf/hKAc845h3fffReA3/zmNzz88MNdNtZII58WQRAEQeih1NTUaMuXXHIJJpOSl/Laa6/Rk2wNIkYEQRAEoYeid9MUFRVx6qmnArBnz56A8STdlbDEyNKlS/nRj37EGWecwaWXXkpdXZ22ferUqUyZMoVFixb5qbItW7ZwySWXMGHCBBYuXOiX8SEIgiAIQujoBUe/fv3Izs7W1tV3c08gZDGyfPlyPv30U55++mk++ugj7r77biwWC2vXruWll15i6dKlrFixgrVr17Jq1SoAHA4Ht9xyC/PmzWPNmjWMHj2a22+/vcsfRhAEQRD6Ei3FSEpKirbek8RISEXP3G43S5Ys4amnnmLAgAGAr0T5m2++yZw5cygoKADg8ssv56233mLmzJls3LgRq9XKzJkzAViwYAFTp06lpKREu44eh8OBw+HwH6jJhMViCf0JeyBqJVb1f6F9ZL5CQ+YreGSuQkPmKzS6Yr70MSPJycl+lVdramq6xc8imODckMRIWVkZdrud999/n+XLl5OcnMyll17KnDlz2LNnDzNmzNCOHTZsGI899hgAu3fv9uurYrVaKSgoYPfu3QHFiCp49MydO7fP9U45cOBArIfQo5D5Cg2Zr+CRuQoNma/Q6Mx8HT16VFuurq72Ex87d+4kJyenU2PrCoqLizs8JmQxUl9fz8GDB1m1ahWHDh3iuuuuY9CgQTQ2NvopsqSkJBobGwGw2WwkJSX5XSspKQmbzRbwPvPnz+eyyy7zH2gfs4wcOHCAwsJCSY8LApmv0JD5Ch6Zq9CQ+QqNrpgv1YtgMpkYNmyY5p0ASExMpKioqEvGGmlCEiPx8fEALFy4kISEBI455hhmzJjBunXrSExMpL6+Xju2oaGBxMREQLGENDQ0+F2roaEBq9Ua8D4Wi6XPCI/2MBqN8gsdAjJfoSHzFTwyV6Eh8xUanZkvNWYkKbkfX+0wkJjoixlpaGjoMT+HkEZZVFSE2WwOuK+4uJidO3dq6zt27GDw4MEADB482G+fzWbj4MGD2n6haxk0aBD/+Mc/OnWNpUuXkpaW1u4xd955p1+33yuvvJJZs2Zp62eddRa/+c1vwh7Dhx9+iMFgoLq6OuxrvPrqqwwZMoS4uLhOjUUQBKE7oooRa2I/NmyDIzU+D0VPCmANSYxYrVbOPvtsnnnmGRwOB3v37uWtt95iwoQJzJgxg5UrV3Lo0CHKy8tZtmwZ5513HgAnnXQSNpuN1atX43A4eOaZZxg5cmTAeBGh5/C73/2ODz74oM39L7/8Mvfcc09Q1wokXE4//XRKSkpITU0Ne4y/+MUvmDNnDgcOHAh6LN2RlsJPEAQBfGIkIbEfaSlQa+8D2TQAv//977n77ruZOnUqqamp/PznP2fcuHEA/PDDD1xxxRV4PB5mzZrFhRdeCChul/vvv5977rmH++67j5EjR3L33Xd37ZP0ARwOR7dyX7WM3G5JRkZGp65vsVjIzc0N+/z6+nrKysqYPn06eXl5YV+nu827IAgCKH+bmpqaAEiw9iMxAQbl90wxErIzKSUlhQceeICPP/6Y1atXM2fOHG3f/Pnz+eCDD/jf//7HDTfcgMFg0PaNGjWK5cuXs27dOr/U4L7KWWedxa9+9St+9atfkZaWRmZmJrfeeqtfobjBgwdz7733cuWVV5KamsqCBQsAWLlyJaNGjSI+Pp5Bgwbx4IMPtrp+XV0dl156KcnJyeTl5fHPf/7Tb/9DDz3EcccdR1JSEoWFhVx33XV+MT8qr776KsOGDSMhIYFp06b5RX139G29pbXj8ccfZ+jQoSQkJJCTk6N9dq688ko++ugjFi1ahMFgwGAwsHfv3oBumnXr1nHmmWeSmJhIeno606dPp6qqqtW9P/zwQy3ffsqUKRgMBj788MOg5m/QoEEB5/3TTz/ljDPOwGq1UlhYyPXXX+8XC2W327nlllsoLCwkPj6eoUOH8swzzwBKWvzVV19NcXExVquV4cOHs2jRolZjHj9+PElJSaSlpTFhwgT27dvH0qVLueuuu/j222+1+Vm6dGmb8y4IQt9AX2MkIbEfFhMkJ/fTtvVqMSJ0Hc8++ywmk4n169fzyCOP8PDDD/P000/7HfPAAw8wevRoNm7cyG233cbGjRu56KKLmDdvHps3b+bOO+/ktttua/VyeuCBBxgzZgxfffUVf/zjH7nxxht57733tP1Go5FHHnmE7777jmeffZY1a9Zwyy23+F2jsbGRv/zlLzz77LOsW7eO2tpa5s2bF9azbtiwgeuvv567776b7du38/bbb3PGGWcAsGjRIk477TQWLFhASUkJJSUlFBYWtrrGN998w9lnn82oUaP47LPPWLt2LRdccAFut7vVsaeffjrbt28HFPFRUlLC6aefHtL86ed98+bNTJ8+ndmzZ7Np0yZeeOEF1q5dy69+9SvtnCuuuILly5fzyCOP8P3337N48WLNcuTxeCgoKGDFihVs3bqV22+/nT/96U+sWLECAJfLxaxZszjzzDPZtGkTn332GQsXLsRgMHDxxRdz0003MWrUKG1+Lr744rB+DoIg9B78xEiCIkasSSkB93d3QnbT9ATGLfBwpDL6983NgA1PBa/vCgsLefjhhzEYDAwfPpzNmzfz8MMPc/XVV2vHTJkyhd/97nfa+mWXXcbZZ5/NbbfdBij1XLZu3coDDzzAlVdeqR03YcIE/vCHP2jHrFu3jocffphp06YB+FksiouLueeee7j22mt5/PHHte1Op5NHH32UU045BVDE04gRI/jiiy8YP3588BMD7N+/n6SkJM4//3xSUlIoKipi7NixAKSmpmKxWEhMTGzXLXP//fczbtw4vzGOGjUKj8fTKlvLYrFoZZEzMjK06z700ENBzV/Leb/iiiu49NJLtXkbOnQojzzyCGeeeSb/+te/2L9/PytWrOC9995j6tSpAH4B2mazmbvuuktbLy4u5tNPP2XFihVcdNFF1NbWUlNTw/nnn88xxxwDwIgRI7Tjk5OTMZlMnXJbCYLQu9CLjXhrP+Li/LNpamtbW7u7K71SjByphENHOz4u1px66ql+rqzTTjuNBx980O+bvhqPo/L9999rlWxVJkyYwD/+8Q/cbjdxcXHatfScdtppfhk2//vf//jrX//K1q1bqa2txeVy0dTURENDg1YTxmQy+d3/2GOPJS0tje+//z5kMTJt2jSKiooYPHgw5557Lueeey4//vGPtfTvYPjmm2+YO3duSPdtSbDz13LeN27cyM6dO1m2bJm2zev14vF42LNnD5s3byYuLo4zzzyzzXsvXryYp59+mn379mGz2XA4HJqbKyMjgyuvvJLp06czbdo0pk6dykUXXdTn3ZmCILSNXoxYExX3TKKfZaTnuGl6pRjJ7VzcZLe6b8ticV6v10/AqNuCQT1v3759zJgxg2uuuYZ77rmHjIwM1q5dy9VXX43T6Qx4TkfbOiIlJYWvvvqKDz/8kHfffZfbb7+dO++8ky+//LLDFGKVturShEKw89dy3j0eD7/4xS+4/vrrWx07cOBAv9T1QKxYsYIbb7yRBx98kNNOO02LvVq/fr12zJIlS7j++ut5++23eeGFF7j11lt57733tC6cgiAIevzESFKzGNFbRnpQzEivFCOhuEpiyeeff95qfejQodq380CMHDmStWvX+m379NNPGTZsmN95ga597LHHAkr8hsvl4sEHH9QK4qixC3pcLhcbNmzQrCDbt2+nurpau06omEwmpk6dytSpU7njjjtIS0tjzZo1zJ49G4vFEjD2Q8+YMWP44IMP/NwdoRLs/LXkxBNPZMuWLX5tDfQcd9xxeDwePvroI81No+eTTz7h9NNP57rrrtO27dq1q9VxY8eOZezYsfzxj3/ktNNO47///S+nnnpqUPMjCELfQi9G1MDVOJMJS3wCDnuTBLAKwXHgwAF++9vfsn37dp5//nn++c9/csMNN7R7zk033cQHH3zAPffcw44dO3j22Wd59NFH/eIbQMk6uf/++9mxYwePPfYYL774onbtY445BpfLxT//+U92797Nf/7zHxYvXtzqXmazmV//+tesX7+er776ivnz53PqqaeG7KIBeP3113nkkUf45ptv2LdvH//3f/+Hx+Nh+PDhgJLBsn79evbu3Ut5eXnA5k5//OMf+fLLL7nuuuvYtGkT27Zt41//+hfl5eVBjyPY+WvJ73//ez777DN++ctf8s033/DDDz+watUqfv3rX2vj/9nPfsZVV13Fq6++yp49e/jwww81kTdkyBA2bNjAO++8w44dO7jtttv48ssvtevv2bOHP/7xj3z22Wfs27ePd999lx07dmhxI4MGDWLPnj188803lJeXY7fbg35mQRB6J/5ixGcRUa0jDQEyJLsrIkZiyBVXXIHNZmP8+PH88pe/5Ne//jULFy5s95wTTzyRFStWsHz5ckaPHs3tt9/O3Xff7Rd8CcpLd+PGjYwdO5Z77rmHBx98kOnTpwNwwgkn8NBDD/G3v/2N0aNHs2zZMv7f//t/re6VmJjI73//ey699FJOO+00rFYry5cvD+tZ09LSePnll5kyZQojRoxg8eLFPP/884waNQpQCqjFxcUxcuRI+vfvz/79+1tdY9iwYbz77rt8++23jB8/ntNOO43XXnsNkyl4A1+w89eSMWPG8NFHH/HDDz8wadIkxo4dy2233eYX0/Gvf/2LOXPmcN1113HssceyYMECLbD2mmuuYfbs2Vx88cWccsopVFRU+FlJEhMT2bZtGz/5yU8YNmwYCxcu5Fe/+hW/+MUvAPjJT37Cueeey+TJk+nfvz/PP/980M8sCELvRC9GUvr5UnrVuJH6+p5jGTF4gw04ELqUs846ixNOOCFg2XaPx8O+ffsoKirqMX0FYonMV2jIfAWPzFVoyHyFRmfn69Zbb+Uvf/kLAPcueocJk5RsyasvPoHdP2zCEh+PvbkoWndHPi2CIAiC0APRW0ZSU1tbRhx2e6ukhO6KiBFBEARB6IHU1NRoy/36pWnL+oyanhLE2iuzaXoCamlyQRAEQQgHvWUkKclnGdFXYa2rq+t0n7BoIJYRQRAEQeiB6MVIoq4nTWKir4FpT7GMiBgRBEEQhB6IKkYMRiMJCb5q1j3RTSNiRBAEQRB6IKoYSUzs51dZWl8SvqamZzTLEzEiCIIgCD0QVYxYdfEiAFadZaS6RiwjgiAIgiBECFWMJLUQI3rLSHW1iBFBEARBECKAy+WisbERgKTkFmJEZxmp6SGde0WMCIIgCEIPQx+Yqu9LA/6pvSJGBEEQBKGX4XZ7cbu91NTUcMcdd/D222/HZBx+ab1JqX779JaR2h4iRqTomSAIgiAEyc5DcLDMy+L7r+OlF/9LfHw8R44cIS0tLarj8Ct41tJNk9TzxIhYRgRBEAQhSKrrvHzyxV5eXql0MLfb7Rw6dCjq49CXgm8vZqSurj5qY+oMIkYEQRAEIUjqbPDFB4/g8Xh822JQWExvGbEZh/HEKi+bd3kB/5iR+oaeIUbETSMIgiAIQeDxeCktq+Z/bz3jt10vDKKF/p4fH5pLzW5Y/gFMGuPlp1N9lpL6Oil6JgiCIAi9BrsT3n7taZps/taGWFQ5ra5udtPEJVNjT9O2f7IJrluUBAU3A+KmEQRBEIReRV29gzdefqTV9lgUFquqbhZA8cWt9rncBhh0LxgTaaiXAFZBEARB6DW8+OIKqsqVYNX4BKu2PRa1PDRrTMIgbdtFk2G0qk0MJjD3p6FBxIggCIIg9BqeXfKktjxz7rXacizESHUAMVKcB4PzdAeZM7E11uHxeKM6tnAQMSIIgiAIQbB3z04AMrMGcMqEGdr26hjEjPgsIz43zYAM6JekO8ikiBGHU8SIIAiCIPQKamurAUhNy/IrLFYXA8uIVsxML0YyoV+i7iBzJm63i/oGe3QHFwYiRgRBEAShA5qamrDbmwBI7pdOoq5TbiwyVrTU3mY3jSkOMlNbWkYyAKiq6f5xIyJGBEEQBKEDqqurteXklDR/y0gMip7V1fln0+SkQ5zR4C9GzJkAVMUg2ydURIwIgiAIQgdUVFRpy8kpaS1Krkc/ZqSutgZMmWBSxjFA0R2ktogZAagRMSIIgiAIPZ+y8mptOTkllQSr761fF4NaHnV1tX7xIrnNYsQ/ZiQLgGpx0wiCIAhCz6e8olpbTk5Ow2g0aq6aWBQWq6+vbZVJAwR008Qi9ThURIwIgiAIQgf4iZGUNMDXHTfaYsTtdmNrrPerMaJaRpKtYDQ0b2wOYK0VMSIIgiAIPZ+KAGJE7Y4b7SqnLTNpwBczYjQaSFFdNaplJAZ1UEJFxIggCIIgdEBVVbW2nNIvHfBZRpQqp56ojaW09KiyoOtLk5vh26+5apoDWKtrun+zPBEjgiAIgtABFZX+2TTgEyNer5fa2oaojeVIabmy0GwZSbBAWrJvv0+M9AODWdw0giAIgtAbqKys1pY1MZLsK3xWGcX02bKj5YBBEyO5GWAwGLT9qS0Kn9XVi2VEEARBEHo81TXV2nJLy4iyP8pixDIAjPGAL15EpWVJ+Pr6Otzu7t2fRsSIIAiCILSD0+WltqYa+k2CESv4dp9Sv8Oa5PONVEfRMnK0rDxgjRGVls3yGhvqcLqiM7ZwMcV6AIIgCILQnWlyQH19DQx5ApLGcN9yKK31YrX6LCNV1dHLWDlaXh6wxohKy1ojtsY6nG5IiM7wwkIsI4IgCILQDnYH1NfVgvVYbduSN+Hr6ouBOCC6tTwqyssDpvWq+IuRLBob63E4ozK0sBExIgiCIAjtYHdCgz0ejBa/7TuqxsKwfwPRrXJaUVHhn9bbXsyIKUOxjHRzN42IEUEQBEFoB5vdS6M7XVsfkg+muOaVnMvBUkBtFANYKyqOtmsZSdWl+WLOpEnEiCAIgiD0bGrqbHjMBdr6OSfDjFN1B1gGUFsXPTFSWemLGemXCEkJBr/9qX6WkUyabHU4RIwIgiAIQmjUN3rZfdjbLVJSS8uqIL5IWx+QCekpugPMWb4S7VGgsrIa4hVx1NJFA60DWJtsYhkRBEEQhJA5UglrN3n5fKuXxqbYCpLy8mr/pnQZLQqLmTOjFjPicrmot8WBQfETZaW2PqZfi6JnTU31NDmiV64+HESMCIIgCN0OuxNsdvh+L3z4tZeyqtgJkorKakjwWUZyM1rX8qiLkpumsrISzP21dX0ZeBWzyYA1Xl3JxOvxUFXdGJXxhYuIEUEQBKHbUdfoxRoPxXlQVg2fb/HicEZfkHi9XiqrqiF+EABmYxPJiYYWlpEs6uujI0ZKS4+CpbUYKanwsr/U59Zq2SyvorJ796cRMSIIgiB0O2obwGKGOKOB7DRobFKsJdHG5YaamhqIHwhAaoLyUm+ZsdJQX4fXG3mxVFpaDqYsbV0VRTY7ZKbCnhJoaPL60nvNSkW0yihm+4SDiBFBEAShW+F2e2m0g6W5RrgpThEFsQjCdLrgSIUTjGYA0pNsQMv+L1k01Nfhckd+PEfKjoJZJ0aS0UTQsQMNjDkGjlbjc9MYTBCXSm1t9+5PI+XgBUEQhG6F3QkOJyQ2v1Dj4sDtISov+5Y4XXC02pc62z9VUUR+lhFTBrZ6JWPFHOG36tGj5X5iJC0ZnG7lvmnJMDjPQJIVEsw64WHOoqFOGV9cXICLdgPEMiIIgiB0K5ocihixmMHj8bD6pX+xbs1/Y2YZqawza+s56cpLPsFiwKJuNmdFrcpp2dFyvwDW1CTfXCVYwGBQ4lmSW3Turaws69a1RsQyIgiCIHQr7A7ft/3XXlzMovt+BcCFU0eQP/2kqI7F6YIam1Vbz8vymRZSkxSXCOYsbLbouGnKy8vBPERbT0tuFiMmRYyAIkxSWhQ+qzha0q1rjYRsGVm4cCGnn346kyZNYtKkSVx//fXavqVLlzJ16lSmTJnCokWL/IJ5tmzZwiWXXMKECRNYuHAhJSUlXfMEgiAIQq+iyQFer/It/63Xlmjbf9i5I+pjcbqh3tlPWx+Y6+t9m6rLWImWZaS8vKJVzIjDBUkJEBenuJPMppYxLZlUlh/u1s3ywnLT3HHHHXzyySd88sknPPLIIwCsXbuWl156iaVLl7JixQrWrl3LqlWrAHA4HNxyyy3MmzePNWvWMHr0aG6//fauewpBEASh19DkUP7fv3c7O77fqG2PZmdcFacLbLq+NIMKfDm9Wvqs0YLbG09Doz3i46mo8MWMWExeEiyKZURfb8Qc1zqmparyMM4YxNwES5e5ad58803mzJlDQYFSovbyyy/nrbfeYubMmWzcuBGr1crMmTMBWLBgAVOnTqWkpIQBAwa0upbD4cDhcPgP1GTCYrG0OrY34vF4/P4X2kfmKzRkvoJH5io0umq+Gu0ezCb44LVlftvr6muj/rNwOr04aI7RcFaSnZmGAWUMimWkObjVnEV1dQ2e/ODfU+HMV2VFOSQq40lNBqPBi9frJdlq0K4TZ/SSluxFszeYM6mp3IzT6cHjMbRx5chhNHZs9whLjDzwwAM88MADDBs2jBtvvJGhQ4eyZ88eZsyYoR0zbNgwHnvsMQB2797NkCE+H5fVaqWgoIDdu3cHFCNLlizhqaee8ts2d+5cLrroonCG22M5cOBArIfQo5D5Cg2Zr+CRuQqNzs5XhgUmDPVy27v/8dvubjzEvn37OnXtUIlzgysuT1l2HaAo3WedKchIB5pdOKZMGqq2s29f6JVOQ5mvqsoS6KdYRrJTHQxMO8LANGWffmrGDbYAA7SxOer3Y3TuJ8rTB0BxcXGHx4QsRq6//noGDx6M0WjkhRde4IYbbuCll16isbGR5GSfXSgpKYnGRuWHYrPZSEpK8rtOUlISNpst4D3mz5/PZZdd5j/QPmYZOXDgAIWFhUEpyr6OzFdoyHwFj8xVaHTFfHm9Xl77xMsr7/3AviP+3+JLKuMoKipq48zIsHqtBwzKs5g9peyvHqPtM+rfoOYsKupTmBjC+MKZr8oar1bzxJpgYV9VIftL4exxBgZk+ubro+911hZzJof2lVHjKmTMMd3zcxyyGBk9erS2/LOf/YxVq1axZcsWEhMTqa+v1/Y1NDSQmKhE0FitVhoaGvyu09DQgNVqJRAWi6XPCI/2MBqN8gcwBGS+QkPmK3hkrkKjM/PVZPfy3w+8rPxkOJz0HWybB5WvA1BXVx/1n8PuEl8iRoLhKF5dqGW/ZP9aHtU14Y2v5Xy5XF6q6yErzV+M2Ww2mly+yNTUZAN2pwGjEazxBoxGXT2UdN2JpgyabHUcrWjAODRAZ71uQKd/quoEFhcXs3PnTm37jh07GDx4MACDBw/222ez2Th48KC2XxAEQRBAKXi2aVfzSz7OCiNXQvbPAKivr8PjiW4V0d0HfUGpSeZqv32pLbrjVlbVdsk91V48h476P2tFRYtMmiQlkyberKu42kxmCsSpb3iz0p/m8KHum8Uakhipq6vj888/x+Fw4HQ6WbZsGbW1tYwYMYIZM2awcuVKDh06RHl5OcuWLeO8884D4KSTTsJms7F69WocDgfPPPMMI0eODBgvIgiCIPRdmhxQclSXlWIwwfB/Q/5vsTXWR7UKq8fjZd8R31hSE+pxuwM0owMwZ1HTRdk+DiccqoAvt3mpqvMJkn0Hjrbq2KsWPIs3+18jMQGSVOdDs4A5XHK4S8YXCUJy07hcLh577DH27t2L2Wxm2LBhLFq0iOTkZCZOnMgPP/zAFVdcgcfjYdasWVx44YWA4na5//77ueeee7jvvvsYOXIkd999d0QeSBAEQei5VNd7qbc31/LwOMDY7LIf/ACVDVfjdOGrfBphlL40vtiLjKRGDh5Vtg8a4G3RuTezy8SI0wUmI1TVwhdbvUw6Hipq4IP1RwNaRtKS8XPRAFjMBpITvNQ2oHXuLSs9jMvlxWSKfkZNR4QkRtLT0/nPf/7T5v758+czf/78gPtGjRrF8uXLQxudIAiC0KfYo/cklK/kvPNn89YXig+izlUY1SqirfrSpLlxeyA/C/aXtqxymkV93SE8Hm8rYRAqDhcYDDAwR5mPtZu8HKmEsrLy1gXPnC0sNM2YTc0l4SuAuEQwJlB+tASnG0zdsPa6RGQJgiAI3YZdh3zLRtcBThzuC4ZocidEtXCX0w2V9c2WGWcF6amK36Mg20BmKjToE0LNmdTX13aJG8lm9xJnVCqqFmbDoXJITwGju7UYcXsg2dpa/JhNkKzPETFlUnG0+1ZhFTEiCIIgdBt26sRIUlyl37d+hycxqpYRu8NLneoysu8nMSkNoxGy0+HkYw0kJYDJ2Kw+zJk0NnRNSfhGO5iaW+DEWwwUDzCQkmigpqq8VcwItA5eBaVXTXKCbkNzSfju2p9GxIggCILQbdh3xBewmZpQ51fW3OVNiWoAa0UteL3Nr0lHGQmJqVpDurwsA2OHGbDGNw/IlEVjQ12XdMa1NfnEiJ6aan8xkmJV3DkJASphmE2Q0iLAVsSIIAiCIHSA0+XlwBFfK5DMfnZSdXEZbkMKDmf0UntLK3UrrnLirWlYzL6Xf1oyJCc0j8ecRUNDXafdIF6vlyZHW2KkQgtGNeAlIR6/8egxm/z71WDuT3Xl4S4RS5FAxIggCILQLWhyQImaveJ1kZNm8HPTeE0ZNDREvhmdSlmVbsV5lHhrGgkWXzaPn/XBaKHR5uq05cHpos0gU71lJCURXG40S01LzCZI9xMj2YoYiaKYCwURI4IgCEK3wO6A8rrmt7D9ABmZmVjjweBtNjeYMqmq7prCYsFQXqNbcR7FnJDW7BpRAkbNJkhN8pkw6puMnbY8OJyKyGjbTaMEsKYmG3A4FSESH0iMxEFGP/2GbJyOJsorqzs3wAghYkQQBEHoFpRWebE7m80OTXtIS++PwWDAbGhuNdJccj1a+FtGKjAnpPlZaiwmSE/xqQabw9x5y4gbXC5FTLSkpqYWTIrCSEtWUoD7JfrEkR6TScn48Q02B4BDBw+1OrY7IGJEEARB6BboM2lo2ktaRjYA8XHNvc3MmVRWdU1hsWAoq9atOI+SmJROYoLvxW82Qb9k33qT04zd0Tk3iMMJLg/EtRAjXq+X6npdcG9S2zVGVHIzdCtmRYwcPNg9q7CKGBEEQRC6BXv1Bc+adpOeroiRBFOTss2YQFllY9TGU6Fz0xg9lVjiE/3iM+LiDH6uELvbSmMnQ1qcLvB4IK5F4bTGhjrchjRtPTUZvF78xFFLcjNA29sca9JdS8KLGBEEQRC6BfuO6Faa9mKnP26PF6vF94Y/Um7H641OEGaFzgiTaHEQF2doFSyameJbdngTaWzq3D3bijnRx4uAr0lfy540elISdf1pmt00R46URG3+QkHEiCAIgtAt2FeqW2naQ25ONnuPQKLFly9bWeOKSq0Rt9tLtU6MJMe7Amau9E/TnUMK9bbODa6tmJPqqtZN8kBxFbVFvEWXjWRWrExHSw9FtVZLsIgYEQRBELoFB8t0K017GDG0P8W5EGf0vT2rat1RKdzldEFNQ7MFwesmOckYsKZHdrpuxZxFTU09Llf4lge7w0uAeFQ+/+R1P8tISiLEGdsXI+Y4JcAVUPrTxCVT0U0Ln4kYEQRBELoFhyuaF9yNJFiayMlM4PTRBvIyfS/3moa2rQddidMN1XXNIshZQVp6DvHm1h2Dc/RBoqZMGurrOtU/x2ZXRIYeh72JVS890UqMmOI6ECOmFgGu5mwqy0uwd8P+NCJGBEEQ+jgNDQ08/fTTTJw4kVNOOYV9+/ZFfQxOp8eXStu0h9TUbBIskBBv4Jg8n6mgzmaIipvB6YK6xub7Oo+SkpYbMI1W76bBnEldfeeqsOr70qi8/9Z/W5WCT7YqGTeBUoBVLOYWnYXNOVRVHMbuaPOUmCFiRBAEoY/S2NjIb3/7W/Ly8liwYAHr1q3jiy++4Lnnnov6WA4c1QVvNu2lX1o2Cc0N4HIyfV//G5qMUbGM1DR4cbqb3/SuclLSBvi/2JtJTQIjzerDnEV9feea5dns/tYOr9fLyv8uUlZMPstIUkIQbpqWVVgt2dRUltDY5Gl17MbtHkrKYxfYKmJEEAShj/LMM8/w8MMPU1vrX9W0pKSkjTMix86DuhX7HlLTs7A2x2fk9/f5RrqisFgwlOn70jjLSU3LIcnaOpjDYjZgMTanG5syaaivDbsKq9vtxe70d9N8s+FDdu/cDEBi+mBte2KCYkEJVKlVxRwHqSn6DTm43S6OlJb7HefxeKmsJabuGxEjgiAIfZStW7dqy+eee662XF5eHujwiLJLX/6iaQ/pGdlasGhBri9qtMkV36mYjGApbdGXpl96bps9YOJNzanH5ixsnWiW53Q1V1/VWTteUq0iQFLaMYCSzms2Kf/HxbVdZ8Rsggw/MaK4efYf8K/CanfGVoiAiBFBEIQ+y4EDB7Tlf/zjH9pyLMTIHr+CZ3vIysrGZFJetIW5Pv+I3Z0QFcvIUb++NOWkZQwILEbilBokABjjqakN303jcPn3pTl8cDeffbwagKzsfJwoFdZSk5TjAo3Hb2yt3DRKrZH9B/wLnzU56HS34c4iYkQQBKGPcvCg4hsxmUwMGTIEs1lxh8RCjPgXPNtDTk62tpqXnQRe5Q3v9CRFJYD1aAvLSP/sti0j+liSiqqGsN00WsfeZjHy1RcfaAXKLvjJL6htDqhNTQ5ejPj1p2muNXLosL8brsnedrG1aCFiRBAEoY+iWkby8/OJi4ujf3/FjB8TMdKi4Fl+nk+MpKQkg1PJ+3WRTFMn+7+o2B1edh704na3vp5/X5py+vdvW4yk6ZrlVdc2YbOHNz6HE9w6MVJa4stqGnjMaXia405VMWKNb/96BoPBvz+NRZnT6qpqnLpaKN3BMtJOHK4gCILQW2lsbKSyUonSLCwsBCArK4vDhw9TXl6O1+sN2A02UpRXNy+46sBdR67OMmI2mzG4KvBacnAbUrF1sv+LSnU9fLvTi9MFIwb5P6s2HpTeOMlJ8a1qjECz9SHNp1Jq6p1h96dxumF/GdyxBAblerHoAonjU4u05bQkpS9NvKXjn09aimJBaXKgWUZqaiqxO3yxKU0OsYwIgiAIMUB10QAUFBQAihgBsNvtNDQ0RHU8lWpCj/MoAHkDsv32x3mVIA6v0UpNfdfc0+mCqnr4diccqfC3ZpTX+tZTEpV/gcSZwWAgN8uqrdc1esPuT+NwwsffwoEy+GQTfFcxQdvX6MnTlrVS8O1k0qhYLboqrM2de2trKhVx0kxDkxd362zfqCJiRBAEoQ+iFyN6y4jK0aNHozYWt9tLjap9XIqLSO+mATDhSz/2c6F0AqcLjAZwuGHjDi8NNi8ul5e9JV7KKn2mgtQUi38l0xYU5PrESEOTiSaHki7bEbUN/sc4XVCl64dTar4UrMNITivk6Td99xg+UPm/vRojKtZ4gy+mxZwBBjN1tZV+2TO10dWdARE3jSAIQh9En0nT0jICStxIcXFxVMZSXQ/au9tZgcFoJM8v2AHi4xpQDQ5VdYqAaS+tNRjUFOH8LNhbAl/t8NLkgINHobLGCSh+mfR+8SQltH2vnHTfPpszHpdbERbxHQSYHijzkmxUnsVohCaH118YGOJhyOMY4ys50lz3ZMwxMOVE2HskODHSuiR8fxrqqjQx4vV6qbN1fJ1II5YRQRCEPkhHlpFoBrGWt0ijTemXSZLV3wdhNTVqy5U1XdMsz+kCAxBnNJDfH7bthyOVkN8fGtQXtKuW9IysgPEiKrmZvmW7OxGn0xtUDMbRav//bXaobWxxUNpkaq0/AZTYj99fqsSLdFR9VcVs0rlpAMw5NNZXaW4auwMc3aA8vIgRQRCEPkgwlpFoUValc1c4y8nIyMZo9LdEJFp8gRjlVU1dUvjMZlcsEgAJFgNDCwwUZhuwmAzU2eK08aRlDGg3PiNH17nXa+pPbU11h2LJ4fRZQQ4dVZ6/0e5zmZjjWj/gtTMhL8uA29NxkzwVS0vLiCWbhvpKGmzKPbtD8CqIGBEEQeiTBLKMqKm9EF0xUqovve4qJzMru9UxKVbf1/fKGkeXWEYCNaUDxW1iczb7WJxHSU3PaffFn60TI5j7U1FZ1mGqbL0NLStofxk02PxLsuelVkDZ89rx44bDBc3xrC53x03ytOG0ctPk0FBXSV2zBUZN622vrHw0EDEiCILQB1EtI2azmexs5eUfK8uIf+n1cm08elKtvrd7Za2rS8RIk115qbdEcZWoHXvLycga0K4YSYw3YDaoJo3+1FaVdTi+epvPIlHXqGTQ6N1VJm8l7P4NVL3PwIwybrnUl83jcofmpklvURLe1lhLdZ0Tr1eJkcGgBPLGEhEjgiAIfRDVMpKfn4+x2VcRKzGixkwAzWKkf6tjMvv5ck/rGtydLtKlvogDWQSq9anDrnIyM3PbjRkxm5RaJMpKNnU1ZR26PvSZNAkW2FPipUInRrz2I+Ash++mc8us3fRP86kFtWR8sGLErz9Nc0n4qupqHE78UnxjiYgRQRCEPkaggmcQu9TeltVOcwJYRrJSdWLE1vk4B5fbvw+Mnhp9RovzKJn9c9t1iZhNkBTfrI5MKVRWVXQolipqlEZ3ABn9FKtIhS6t19Xoc6Pl5BX5nev2KOe2jKsJhMWkXN83WGVuqyqVWiMNTV6iWNuuTUSMCIIg9DECFTwDyMz0pYXE0jIyYEBrMZKd7lMDDU2GTrtpnGpTugBvQX1RNaO7krT0jHatEEpchs/SUVHViN3Zdp0Rl8tLRa2vt0y82YDDqSv8BthqdgFgMpnJyMz1Pz+IvjT6sfn1p2m2jNTUKOm9tQ2KYIk1IkYEQRD6GPpMGr1lxGq1kpSkRDtGU4zo3RO4yltVXwXon2EBr5Jh0mg3tfuyDwatKV2AF7HeTWO1OIm3GNqtaWKOg3R9f5oaR7tVWOttYHNAYoJvW1YqVOnESH3FdgD65xRobjSVUMSI0WggPVmJMVEGq7jA6moqsdmVeJX2XFDRQsSIIAhCH6Mtywj4XDXRFCOaRcDrAWdVq+qrAP1SksClRLo2Oc2+OiBh4nT5N6XTU13ncwmlJCol1dvDbIKsdN9BtQ2udvvT1DUq9T30FonUZAN6zaFaRrJzB7Y6P5gmeXqSrbqMmuaS8A31ldQ2KNk7YhkRBEEQok5blhHwpfdWVFTg8USnYUmlGivhqgLcAbNpUlJSlIBOoMkVH3YzOhWHy5eV0pLSCp/S6Zdk8LNgBCIuzkBuf19lsTqbEZtdCZINRH3z5Vv2utGXgseptDEOJEaCbZKnYo3X96fpDxhoqKuiul4pziaWEUEQBCHqBGMZ8Xg8VFdXR2U82ku4WWwEEiPJycngrADA5YmntqHtl30wqDEngZrflVf5UkzSUuKDskLk9/dZRhqazFpMSiCO1ngDWiP8xIijDIDcAa3FCARXY0TFGm8gRbWMGM1gSsfWoLhpHGIZEQRBEGJBe5aRaKf3Ol1ezVKA8ygms5l+/fq1Oi4lJQVcvupoVXVtv+yDu2/b+yprfRfOTE/CYurYCqEvfNbojMfpDnwPt1spbhbI2qKKkfg4O3gV008gywgEl9arYjG3LAmfja2hEqdbsbJ89slqdm1bz9GyI8FftIvpBnpIEARBiCb6gmf6qqvQOr132LBhER2LX/Cqs4K0tIyA1grFMrJNW6+qU77Vh/JS1tOeGKltbL6/x0FmRlpQbgx9fxqnNwW7w4XDaW4lOupt0NjUohBZM6oYsRhrUb1QXSFGWvWnseRga6jC4QSno4lbb5wFwJsnncpXGz4L/sJdiFhGBEEQ+hiqm6agoHWmRrQtI359aVzlpKVlBDxOsYxUaOvV9Z2rNWJ3tl1fo6FJLQVfTlpGblAv/twWJeEry8sDFhSrtylBo/EtBE6Tw6vFwcR5fBagnBZixO32Bl19VRtOXOuS8I31ldgdUF3pc9nl5QUWPtFAxIggCEIfoqGhgaoqJSulZbwIRF+MtCwFn5qWHvA4xTLiG091PZ2qwlpTD2u+go++8Y878Xq92FzW5vEcJbWDJnkqWWkAzQG/5v7UVJcFFCN1jYprpGXBMn28iNdeoi1n5/q70UJpkqdiMbewxMTnU19XRX0T1Fb6XHYD8lp/HqKFiBFBEIQ+RKAGeXpiLUYy0tuxjDh9FoO6xvZdLR3x2lp47l24cwl8tsUnSBrt4FUjGFzlZGQGZxlJsBiwGJu7zzWXhA8kRiprvQHTifVixFG/H4B+qRlYE5P9jgulSZ6K2QTZaboN8QOpr22uM1LlEyN5+a0/D9FCxIggCEIfor3gVYh+594yPzFSQXpGYMtIQkICRp37or6TJeF3HvYtP7kK3B5FkLSsBpuZ1X5fGhWzCaxaf5r+1FaX0dDUOtunuj5wwbJKnRhpqt0NQM6AolbHhdIkTz+2HP20xhdRV1vJsAJoqPGJ0wF5IkYEQRCEKNBeWi/EImZEt+IqJ7MNMWIwGLCafE1j6hrDd9O43V6/aqd7j8C7XygumidX+bab3QdItMYH3ZAuKaFZHcUlUltTTW2D/zEOpxebPXBdD383jZLV0lbBs5DdNCbISsdXVC2hkLraSswmL0dLD0DS8WDKEDEiCIIgRIeOLCPRFiPlftk05WRlBnbTACTH+4qR1TUSdkl4p6tFMzxgyVuwah18tqV5g+MIWa5Xg3aJWEyQqgsSraq1NceH+MbY5FAEVMvgVWhZY0QteNb65xNKkzwVs0k5J1PNmI4fiMfjobGhjtLSw3DC53DaUe54YUzQ1+xqRIwIgiD0IQ4dOqQt5+fnt9qfkeETA9Ho3OsvRo6SmRnYMgLQz+pr+FJnA1uYVVidbv/+M6C4Z/7xom7DD9eQmWbFbAJTEHVGzCZI7+czV1TXOLA7lbLvKjY72NuoeBqo+mrLTBoIrS+NitFowGLSiRFzFhgTqa+r4vBRJxiVC+Zmxa4Uq4gRQRCEPoTe2pGTk9Nqv8lkIj09vdWxkaKipWUkK7PNY1OTAY+iQOoavGH3p3G60FwoCRZoZWQ4shQqV5OanhN0DxiLCfpn+A6uafDgcOEXxGqzg8cDcQGsGv6WkfbdNKH0pVFJSmjRvTd+ILU1lRyt9RUgGZQbvLWlqxExIgiC0IeoqPDV6sjMDPzij0SzPI8nsEulQo3d8DjBXasJoUCkJCeDUymTXtPgDbs/jd3hpa458WVgDpwz3rcv1doIu28EIDO7mMQgX/wmk4HcLN+LvbbRgMPpL0b0yzVV5by64l/s3bsXiKxlBBQBk6FP700oorRkH3ZytU2DclufFy1EjAiCIPQhVDESHx+P1WoNeIwqRmpqanA6O1HMoxmny8tHX3s5Wt1akGgvYZcifPRuopakpKRoPVvqGg3YHcq1O8Lj8WKz+447Wg2qNkpLhqt/BLkZivVgXMYycCsKqfCYE0OyQuRk+oJL6pvMeL3+AqSu0as15vvDrf+Pf6w+hrm/fBWv16vNg9HbAB7FHVU4aHire4TaJE8lMcFAur7KfvxAdu34FqxDtU2DBoR82S5DxIggCEIfQhUjmZmZAcuug396r96SEi5NDiithk07vbh04sHp8rZqktehGGm2jHi8Bqrqg6s1UlIBn37n1YTLEV0GT1oyZKUa+M+tsPIeqNn7srZv0JBxIb349VVYbU6lDryfNaRBCSTdu3sr22yXQMZ0KjL+xvc7DvlSe5uDV1PTB4ApLeB9Qqkxop1jamEZiS9k1w+b/MRIsVhGBEEQei92u52ZM2cyefJkv9TaaOP1ev3ESFt0dUaN06X823MEdvuKi7Jxuxe7anhpFiPtuWmSdW4a8PWn6Yi6Rigp96URl/rKlWiVSU1xBixm2LFtIwBp6f1JzyoIqaPtAN+04SIdp6NRqzXidiuuIYsZVr6wBJLHKgcaLSx7t0mLf/E0KQVQBg0eSWmVcl5LwunHY9YHsALEFymWkYQhAMQZnH7N/qKNiBFBEIQI8/bbb7Nq1So+/PBDFixY4JfuGU0aGxux25VAi2iKEYdTiXXolwibdnmpqfdyoNTL51t0BzkVkdRuzIjOTQNQWRtc4bPaBi8VtXDwaOvCZmm6AqelJfuprVbGMWzESRgNhpBe/Ll6o44lm6aGo1qgbJNDGavbWc97n+wEg+/1+9muYt95zWLrmKEjKOwPBwMkNIUjRiwmyNCLkYRCSg7thwTl3ulJtjYtZdFAxIggCEKE2blzp7b89ttv8+KLL7ZzdOQIJngVWnfu7SxOlxLr0D9NcVVs2uVl4w4vDU26g1zlJCenYDK1/aZVLCOl2now/Wm8Xi/lNUoA5/5SaLB5/SwjejGy4/uN2vLQEScCob34s1LBgFtZMWfR1HBUqzVisytpvuvW/Bd7/Fi/8zxe3U2a3TQjRo5k7DAD8WalhLzN7uVAmZd4S/iWkcQESIpvVm/xRZBQBEYlnTc7zRP6RbsQESOCIAgRZt++fX7rv/nNb6ipqWnj6MgRjhjpEjdN8/vZYDCQlwk7DiopvX4vVedR0troS6OixIz4xFFdY8eWEbsDGpqUcui1jUovnLIWMSMqejEyZPiJSsGzEF788Wb//jQNtWXYnYpgstmVGJnVL/0L+p3e9kWaxdaxx44iO93AmGOUpn6VtZCXCaeNMvi7W4LEbAKTEbJSm61y8QVgPVbbn58dRr5wFyJiRBAEIcKo6ZsqJSUl3HbbbVEfR8zEiE4wWOMVQTIoF/9y6c5y0jsQI8nJyX5umtqGjgNYG5oUF4k1HuJNsOewl6M6HWiv8wnFHd9/pS0PHnYScXGEFDNiNkGipTnfuLlZnlprpMkBu7Z9xu4ftkDKKcohnjKo/p//RZqfb8SIkQAMKzQw6XgD08cbmHKSgcF5BuLiQnenWExKGfmcjObXvsEEqZO0/fk5CSFfsysRMSIIghBhVMuIyWQiMVGpRfHoo4+yYcOGqI4jlmJEH45gjVdeqH5VUJ0V7caLgH82DSiWDruj/fibhibFMmExG8jop1hG9DU9/vqHc9mz8zu8Xi/bv1d+HqlpWaRnFYbeA8YMyQnNZiCjhfKKKq3WSEOTlw/fXAzJx0OcYo7JSToIh/7hfxFnKf3Sssnur/x8TCYDQwoMZKUZOhXToVSShf7pulSctCnaYk567OJFQMSIIAhCxFEtI0VFRdxxxx2AEkfwyCOPRHUcsRIjjU2++hp6WlpG2kvrhdYxI/U2Oix81mDzCaHEBAM2u78YcdQfYOkTd7UKXnV7DJhDFCNKSXjfy/5IWZ1Wa6Si2sWGdSv9XDTHFjqg8g1o3KEbUCl5A0cF1Sk4FMzNlhE/F0/yidpiTvtTH3HCFiObNm3i5JNPZunSpdq2pUuXMnXqVKZMmcKiRYv8Isa3bNnCJZdcwoQJE1i4cCElJSUBrioIgtC7qK6uprZWKaI1aNAgfv3rX2v7du/eHdWxBCtG9HVGuiKA1WaHuAC1MWpaipH0tHavk5qaqqUAgxIz0lFJ+Op6LybdvZOt+kJrdeCx8fEHK3nn9We1Y4aPPEnrjmsKoaaH0h3X5+4orVAGZ7PD3v0lOB1N0G+Ctv+0E9IBL+z9k7LBtgvqv6KwaESXixGjUQmG9cuoac7oiaPJr8lfLAhLjHg8Hh566CFGjhypbVu7di0vvfQSS5cuZcWKFaxdu5ZVq5RezA6Hg1tuuYV58+axZs0aRo8eze233941TyAIgtCN0ceLFBUVYbVaSUtLA4j6l7JgxUhqaipms/I27BIx4lCCJ1viJ0Zc5WRltf/1PC8vD7xOcCrpMLWNyrXbwuv1Ulnn38slM1WxqAB+Lp//PH2vtjxsxEla2fVQXCNmE+ToSsJXVLswGKCqzsuRkub6Ms2WkQQLTDhpEBaLBSpegc9z4asx4LVTWDwypFiVYEmMh7SU1ttTE6qJYVYvAGE97ssvv8zo0aOpr/c5/N58803mzJlDQUEBAJdffjlvvfUWM2fOZOPGjVitVmbOnAnAggULmDp1KiUlJQwY0Lr+rMPhwOHw/4SZTCblh9YH8Hg8fv8L7SPzFRoyX8HTFXO1Z88ebbmoqAiPx0NeXh7V1dWUlJTgdrujVt9BL0bS09Pbfa7+/ftz+PBhysrKgn7+QPNld3h54HnFOvCHy7x+38Br6gGan73ZTdPevbT3hbMUzBnU1CsVXR0Ob8DOuja7l6YmL4nxYGi+jwGot6n39Aktt8sXCTt8xFg8Xg+JCUpju1DQFw6rrgerxUNdI5SV7of4gUoWCzBykBdrgomhQ4eyZcsWv7EUHzMCU5wHj6drPxeJ8R6y+kFLO0T/FBtxRg9er6HL7wlgNHZs9whZjNTU1PD888+zZMkSHnroIW37nj17mDFjhrY+bNgwHnvsMUAxRQ4ZMkTbZ7VaKSgoYPfu3QHFyJIlS3jqqaf8ts2dO5eLLroo1OH2aA4cOBDrIfQoZL5CQ+YreDozV19//bW2nJSUxL59+zTLiM1m47vvvqNfvzByNcNAX/21sbGxVcqxntTUVA4fPszRo0fZu3dvSIJJP18ffpvAmq+U7sD/92Y9DyzwCaLGpgGABdyN4LHh8XjaHRNAWloa1c4yYARNDgPDsg9w6FDbQawnDvJfP1ptBAqVFWdrq09GRgbjjvViMCjP0MFwWjG60ApkA9DoTOaEgp3Ex8eT7PnOz0UzYUQNhWk1jBw5UhEjOs49vR+HD+0P7cZBkGWFc48HI3l48PmBhuU3MGn4AbCH/rzBUFxc3OExIYuRxx57jEsuuaTVL09jY6MSXNRMUlISjY1KvrXNZiMpyd8hlZSUhM0W2Nk3f/58LrvsMv+B9jHLyIEDBygsLAxKUfZ1ZL5CQ+YreLpirurqfNGSJ510EkVFRRQXF/Ppp58Cyt+2oqKiLhlvR+j/5o4ZM4a4QIEczeTn5/P999/jdDpJS0vTBFR7BJqvmi99QuHldUmce1oSQxXjAOVqx95mUTBkyJAO56KwsJBqh09EfPBdAZdPM5Ca0los7S/18uHXXooH+PbtOqQ7wFlGv9QMjMY4qquUax4zfBwHaorYe8TLuGMNjCgKzVKQuFNnSokv4pPNcWRmF7Jha71f8OrAvFQOVKcwatQovyJ4KalZ1BhO4MSirv/d/OGAl8+3eUk0VVLv8gUp52Rn8sn2HCaNMVCUGxt/TUhiZNu2bWzZsoXf//73rfYlJib6uW0aGhq0FDar1UpDQ4Pf8Q0NDW12jLRYLH1GeLSH0WiUl0UIyHyFhsxX8HRmrvTf9IuLizEajUrsQzOlpaWMGjWq02MMBtVNk5aWpsWEtEV2drbfeR1luujRz1dZte/l7PUaWPwaPHAdbN4N1S2a5GVmZnY4z/n5+Wz+wRfrUV5jxOkxYDS2fok22r24PV68+PZV1eusKM6jpGUM4NwLfsqTj/wBgGNHnYwXI26PF7Mp8HXbo1hv7E8YSHXFYRLTjqHi6CHo9zMADAYvIwYZ8GL0i70EyB84CqslMr+bZrMyH/0S6qmv94mR4YMzcHuMGAyhP29XEZIY+eqrr9i/f7/mjqmvrycuLo6DBw9SXFzMzp07mThxIgA7duxg8ODBAAwePJhXXnlFu47NZuPgwYPafkEQhN6KKkbi4uLIz88H8HNPRzOINZgmeSp6MVJWVsbQoUPbObpt9NVOATbugJc/hv97GzyqLqhcDbTfsVeloKAAtgZXEr6y1tsqK8WvtomjDEtaBpPP/xXbt26goryEC+Zco+0OJ4g0M9WA2WjD6UmA+CKqK74gLQ+qKkoh6zhA6Y6blGAAvBx77LEYDAYt+3RA4QiSAn9P7zTq86Ql2Tmsm4fB+fH+wcQxIKSpnj17Nuecc462/uCDD1JYWMhPf/pTvv32W/72t78xbdo04uPjWbZsmeZqOemkk7DZbKxevZrp06fzzDPPMHLkyIDxIoIgCL0JNZumoKBA67uit4xES4y43W6qq6uB4MSIPr23rKysnSPbp7y69bZHX/Ytpxu+oWr/X4HgxEh+fj44jmjrtY34Ov/q8Hq9VNUpWSt69DVGcB4lIyOdBruVP/31BSzNQbB2hxeDIcweMHHQL8FGRWMCxBdytOxVCr1QUWuE/opbbJDObZScnEx+4RAO7v8BgAGFI4k3R8Y6YTaB0QiZ/VzQrOcMngbSU5JiLkZCsgMlJCSQlZWl/YuPjycxMZGUlBQmTpzI7NmzueKKK5g7dy4TJkzgwgsvBBS3y/3338+yZcuYPHky3377LXfffXdEHkgQBKG7UFdXR2Wlkoaqj4XQfxE7fPhwVMZSVVWlffsO1TLSmfTesmrf8uAW3z8HD4BC2x3Q3Fyuowqs0CxGdCm5dY1KUbGW2OzKP2sLMeJf26SM9PQMBuXCoeZLOlxeDpTB0AL/zJhgsZgho1+zycdo4UBJDUMGuKi1+2Iq87L8zxk6/ATfvoFdX2NERe1Pk53mEzuJxiMx7dar0qlM5jvvvNNvff78+cyfPz/gsaNGjWL58uWduZ0gCEKPQh8vMmjQIG05Fm6aYGuMqHSVZaSiOUjVbIIb5sINzUVns1Lh//0C/nydElFqMpn8kiDaQhEjPjdNXSPUNXoB/xeq2pMmo0WiUivLSPoYThhqoKLWS2mll7pGRYicfKwBc4B04Y6wmCEnw8wPzcabw0fdVFYcwRvvyygZ0GL6Z8yaz9oPXyN/4FCGjJwQkRoj0NyfxgSFA3yTkpFY384Z0SNCjywIgiDoxUhblpHuKka6yjKiipG0ZBhzjIEb5nj5dhdceS5kpxuoq1UsR2npGUF9Qy8oKPBrltfQ1KKsvLrdBi634sJ58X9ejsmH8SNa9sMpIzMzg8xUA2OO8fLZd0oA6viRBuIt4VkLzHGQn5sIW5X1ozVxlJUegARfjGRLy8jJp53DKx+UYY5P5HBFXMQsI/EWRZCMG1OA5XUbDo+V86cMjMzNQkTEiCAIQoTQV1/VW0aSk5NJTk6mvr6+24qRrrCMeDxeLWMmrdnoMWuSgVm+ZrHU1ihiJD0tOJ9IIDdNQxO43V6/brYNTcr/z70Lyz9QYiX+/XvfeACl0FqmEqcyJN+AwQD5WUojv3CxmGFApi9luqbRytHSg5BwjLYtL8D0JyX3w+7whtwPJxTMJgPxFi9uDzx3h5UjlTBqUBi+qAggeX2CIAgRoi3LCPiCWLurGOkKy0h1PbibM3vTAnhgXE4ntkZFHQSbOpyRkYHFZAePojZqG5SuwC2DWGvqvZhNsL7ZQuHxwEsf6bJpnFXgdZKZobyMTSYDwwcaSE7sXPyE2QQDdI/S6M6g5NBuSFDcNHEGN1mpgc91uhU3SqTcNADJCeBwQf80A8cNjl0qb0tEjAiCIESItmJGwOeqqaur86vRFClCFSMpKSlavadwLSP6tN5AYqS+vlpbTs8I7hu6wWCgID9fc9XUNCipvS2DWNWU3z06rfful3C0pnml2bqSmdm17WpNcZCrn974Ir7f/KXmpslMsbcpAFxuxc0TKTcNQHKiIt5a4vUS0/40IkYEQRAihOqmMRgMFBYW+u2LdtxIqGLEYDBo1pFwLSNlVb4CY4HESF2tT61khSAKCgoKNDFRU+/F3kKM2B1eGu0tqq2iiBOtJknz+aHcNxgMBgMDMsFI84ASBvLdtl0QpxQBbRkvosfpas54CaFTcKgkJRha9dvxeJRU5vgIiqCOEDEiCIIQIVTLSF5eXquq0t1djIAvbuTo0aNhNQs8Uulb7hegRX1dje+AUCq8KnEjikDyeA3U2/zFiM2uuG22t9dSqLnqa3b/rhUjoHTHTTI3B6fEF1Hd6GuVWzQgvo2zwO1Wzo1kqm0gweFwKdaYljVZoomIEUEQhAhgs9koLVVSUAP1W4m2GFHrnUDwYkS1jOgLpoWCXozY7FBV59/QrrbWd0AwNUZUlMJnvvTe2obWYsThhO92+7aNG97iIs2Wkf6RECMJkJrYPKC4JEgep+0ryG7b7OF0K+dGkvhmwaHWnAFlriwmESOCIAi9jv37fV1XW8aLQPSrsHbGMgLBxY2oLzj1/1KdGBmQCZW14Pb4XoJ6N00olhG9mwagsQnqG33XtTmUbTub3TSDB8BVP2pxEWcZRmMcWS0LkXQBCRYDmak660baFG2xZY0RPS5XFMSIWXEFOd2+bQ6Xsj1exIggCELvQp/W2x0sI6oYsVgsWhPTjgg1o6auud6HWlisVBfAmtFPqWiqFyh1nbGM6MWIXSkLr9Jg87LrkK/3zZghMKLIwGh9J3tHGckp6VgiUHrdbILcLJ07JvUMbbG9mBEvRKwUvIomRnRBrA4npCRG1j3UESJGBEEQIkB7ab0Q/ZLw+iZ5wb50wq01UtocuHq02rctPQVGFRuwO5UAU4Dqqk7EjLQofFZvUwIxQcmw2akLXh3TXOLjp9N1F6n7gpTUjIiktlrMkJ/jixPB5LO+tGcZUc+NJGrhMz8x4goc0xNNRIwIgiBEgCNHfM3c1G69emJlGQnWRQPh1xrZdwRcLi/lNb5tOelQlKNUOC2pULJgSkrDc9MEKnzmcCpBq16vl5oG2KELXj2+WYyMH2HgkV+74ZvToH4DqaldHy8CSnpudkbrYiGJ5noSdJVdSysV8eTRua4iWWME1MJn/mLE41G7CMcOESOCIAgRQA1eBcjJyWm1PzU1lYQEJUAg0mKksbGRpialSFgoYiRcy0hlLZTXoIkRcxxkpEBcnIGRgwzEmxVrRoIxPDfNgAEDwOUTR2rhsyYH2B1QVQu7mo1NhdmQ0c/3oh2YWQ11XwCQFsI9Q8FiDtxkLzPZpi27PUr6MSj1WNxuL3HGyFtGwFf4TE8sg1dBxIggCEJE0IsRvYVBxWAwRK0KazjBqxC+ZaTRDofLvVpfmpRESLQ2XzPdwCmjDEw50QCuau2cUCwjZrOZ/v186TMVtcrLtcmuBK9+v08pIAY+F42KPoMnIyP4uQgFixmyU8GA/xt/QIbPAlJTD6nNrhGXRynSZoqLvGUE/AufuZtrjIgYEQRB6IXoLQmBxAj4XDVVVVWa5SIShCtGwrWM9EuEvUfQ+sCkJEKirt/L4DwDuZkGv3TjUCwjAPk5VnArEbOllV68XsUyYrPDlj2+41qKEX0GT3paWkj3DBZzHFgskGCs8dtemOt749fUw8BcZfnYgVBW3VwKPgqWkcR4X+EzZzeoMQIiRgRB6GW43W7sdnush6FZRlJSUrBarQGPiVbcSLQtI6nJcKjc15cmJTFw8zdVjCQnJ2M2h/YWLijIh6a9AJRUoomRxibYftB33PGtxIhOAIVgjQkFNUg0JcG/nfCQgUpQq8PpJS4O8jIVgTaiyMCgXCLaJK/l+FS6Q40REDEiCEIvoqmpieOPP5709HQ+++yzmI5FtSQEihdR6e5iJCkpSYtrCcUyEmdUsltUUhIDux+qqhQrRSguGpXCgnywK7VcnC5Dc0aNl8YmL4eV4qqkp0BOhn9gZm2NvvhbZMSIwWAgyQrpSf5umoIcpeBZZS1kpaI1zEuIN3DScAMDc5QA00ijVmH1er3dosYIiBgRBKEXsW7dOrZs2YLNZuPhhx+O2TjsdrtWsbQni5HO9Kfx6qrH79/+HtdfO4/a2lptm8vl0iwjobpooLnwWbNlBBS3R20DHK5Q/gco6N/6PL1lpKv70uhJsUJWmn+11bxMRQDUN8Ex+Qbi4nzCIzvdwLhjo/NKjjcr8Skud/eoMQIiRgRB6EXo63W88847OJ3Odo6OHMHEi0D0qrCGK0bAFzdSXl4eUn8afbbGoR/W8PqqFdx///3atk8++UT7+Qwf3rJWe8fk5+eDfa+2XlWnWGO2+wrfkpcFTbZGXnvxX2z+Zh3g3w8nkmIkOdFAbravO6CRJtJTlDEmWzuuNxJJ9LVGukONERAxIghCL0L/Qq+trWXdunUxGYdejPRkywj4xJTH4/ELOO2IWn24RHNTu//+979aqfiXX35Z2/3jH/84pDFBsxhp8hWWq6xTvuUf8CUxkZcFzy/9G//4f7/kd9dOo/zoYb9smkg0yVOJN8OgAt9c56a7MRgMVNYqFpt+SbGzRCRYfFVYPR5ItsbWKgIiRgRB6EW0fKG/+eabMRlHRzVGVKJVhbUrLCPQftyIw+ll+Rq4/vEsvF6oqtftbBYje/bs4fPPP8fj8fDKK68ASnn6GTNmhDQmaO2mqagBh1sJnFXJy4QvPntHGZ+9ifXr3qKuxpdNE4kmeSrxZuif5ls/plAxP7g9kJcV25e/WvhMtV7FOngVRIwIgtCLaClG3njjjZiMo6MaIypdbRm59tprGT16NJ9//rnf9nA69qoEm1Fz8Z1ern3IwOvrk/jqByWGQ8PpO2/ZsmV8+eWXHDqk1GufNm0a/fqF3qwuLy/Pz01TVq1YRvSdgrPTnOza/o22/uVn70bNMpIQD7kZcO54yE6Dn5ypVFo1ANZu8PJPsSoF4rpDjRGAKCQRCYIgRIeWL/StW7eyd+/egF1zI0mwbprMzEzMZjNOp7PTYmTPnj0sXrwYgEsuuYQtW7aQmJiI1+vlwAFfbfRQg0WDtYxcPs3Aq58oLphXPzZoRc4Av9LtL7zwAvHxviZy4bhooDll2tyIzd0IcYmUNqf3luma8zVVbcbp9BVH+2r9++QXDtHWwwmcDZZ4sxKXcf0csDbXWGlyeLFYwBrfwclRIDlRqYKbnNg9xIhYRgRB6DUEeqHHwlUTrGXEYDBo1pHOihG9m2fv3r3cc889ACxdupRNmzYBMHToUEym0L6DBmsZmTkRCvorYuSLbQa27dPt1FlGysvLefTRRwEwGo1ceOGFIY1HxWAwkJvrs44cUcVItbI/KQH2/+AfM1RXW8WObV8BkJySGvJchEK8Gcxm/0Beu1PZ3h3ESGK8odvUGAERI4Ig9CLUF7r+m3esxUh7lhHwuWqOHj3aqeyflkLh73//O2+99RY33HCD37ZQCdYyYjIZWHC+b11zl3iawF3vd6zDoVgrzjjjDL/rh8qAAXnQpKTP2J1KJdHK5uzhvCz4/rv1rc7xuJU68ZFqkqdiMQfojutUhEg0qqx2RHxzEGu8uXuMR8SIIAi9grq6OurrlZfeqaeeqr3k16xZg81ma+/ULidYNw34x43oO/2GSnl5ud+6y+XiRz/6EXV1Sk32K6+8MiwrRChVWK+YDlZLi/RfhzIX48ePJ61F+fXZs2eHPB49LeNGtu8HtQFuXhZsaxYjcXGtLSCpaZFz0UBz4bOE1mKkO9T0AJ/lJjWpe4xHxIggCL0CvZsjLy9Py9Cw2Wx8+OGHUR2LahmxWCwdBmd2VRCrXijExSnFttQ02oEDB/KPf/wjrOuG0p8mLRlmT/Qvga66aIqLi5k7d67frlmzZoU1JpUBA3L9Mmq+2uHbl5HUyOGDuwEYPHw8gwb71zJJT4+sZQQgJamFGHFBWjeo6QHNYiSue9QYAREjgiD0EvQv8gEDBvCjH/1IW492Vo0qRnJycjr81hkJMXLrrbf67Vu6dCmpqalhXTfUZnlXTqv13+BULDZ5eXlcdtll2uaTTz6ZwsLCsMakUlCQ51dr5KsfdDubdmqLo8eM54IfneN3bjTESLLVoHUPBiWmJTEh9lYIUNw0iQndZzwiRgRB6BW0FCNTp07FaFT+xLVMdY0kbrdbc5m0F7yq0lVVWPViZN68efz+978nISGBv/71r0yePDns6yYlJZGcnBz0+I7JczFuuNe3oTmTJi8vj0mTJjF79mxSU1O5/fbbwx6TSkG+v5umVJfWW1+2UVueOOEUpk+f7nduRkZk3TTg6wEDPitVdwgWBWVsSQndZzyS2isIQq+gpRhJSUlh4MCB7N27l507d+L1eqPiG6+oqNDKpncULwKRsYz079+f++67j/vuuy/s6+kpLCzk+++/58CBA0HN44/P8LJhe/MxTYqrJC8vD6PRyMqVK/F4PJpQ7AxKFda9Afcd2f0/bXnKmacypDhLS6OGyDXJ06MXI063EjDaHTJpQBnLgEwDackdHxsNxDIiCEKvoKUYARgyRKkpUVNT41eFNJKEErwKXSdGVGuM0Wjs8voZRUVFgNIVuWWgbCBOGgbXzoLByeuh5F+AvwWoK4SIdk1nGbj9A5TNcV52b3kLgPSMHI4bOZDk5GQmTpyoHRPJvjQq8Ra1IZ0Xh6P7pPWCErR6wlADqcniphEEQegyAomRoUOHatt++OGHVudEgmBrjKh0VUl41TKSmZnZZS97lYEDB2rL+/fvD3iM0+nkP//3b15//XUMBrhosoFB3ke1AFa9GOkqtLnTuWoAsvo5aahTfDZjTzyFuDhlPs45xxc3UljQsVDsLAkWJUjU4fTVGOkubpHuhogRQRB6Be1ZRgB27tzZ6pxIEEqNEVBcKmr2S1e4aTpTt6Mt9GJk3759rfYfPXqUadOmcf2vF3L99dfz7caPACgva/0z6UqSk5NJSemn1RpRsRp91qnTThuvLV9zzTVMnjyZyZMndzqTJxjUGh5qd9xkKxiN3cMS0d0QMSIIQq9AfZEnJCRomSOxECOhumni4uK048IVIw0NDVotlUiLkZaWka+++opx48bx0Ucfads2fv4uABXliqUnJSWFlJSULh8XQE5uXivLiNfm+1mfOekUbTktLY01a9awZs2aiI1Hj9mkiBGHS7GMpEX+lj0WESOCIPQK1Bf5gAEDtADLWFtGgnHTgM9qUFpaitvt7uDo1ujjOKIpRr744gsmTJjQSqBs/vYzACqbxUgkXDQqAwYMaBXEqmbSGAwGTjllfICzooPBYCDZqlhGPB4l1VcIjIgRQRB6PE1NTVRVKR3S9O6AwYMHa8IkFjEjwVhGwDdmj8fTYZXTQLTMpOlq2hIjf//732lqagKUqrf5+fkA7Ny2gbraKmyNSvXXSIqR/Lw8sPu7jqoOfwrAoOKhYXUE7kpUMQISL9IeIkYEQejx6Muo68VIQkKCVlgrFm6aUC0jEF4Qa6TFSEFBgSbq9GJk69atgFJp9n//+x9nnHEGAA67jbUf+XoCRVKMFBS0toy4arcBMGrUmIjdN1iSrQYcLogzdp9Mmu6IiBFBEHo8gYJXVVRXTVVVFZWVlUQa1TJiNBrJysoK6pzOFj7Ti5Fg7xkKZrNZG6MawOp2uzVr05AhQ0hISOC0007Tzlnz7kptOaKWkVa1RrzQtAeA48aMjth9gyXeAm5390rr7Y6IGBEEoccTjBiB6FhHVDGSlZWlZcl0RGdrjUTaMgI+V01ZWRk2m429e/dq3XePPfZYAD8x8u2Xb2vLkRQjSq2RUq3WSKKpBrx2AMaeEHvLiNqQzmIGq7hp2kTEiCAIPZ72xIi+1kikxYjX69XcNMG6aKDzYiTSAazgHzdy8OBBtm3bpq2rYmTMmDFYrVYAnI4mbX/ExQjA4Ucw4CLb/aq278Sx3USMxCl9YEwmCWBtCxEjgiD0eIK1jEQ6iLW2tha7XflWHmzwKvQsywgocSPbt2/X1ocPVzrimkwmjj/++FbnRkWM7P0TZyTMx77rXgCs1iSKi4sjdt9gibeAxUS3KbveXRExIghCj6e7uGnCSeuF7h/ACr6S8KCIkUCWEYATTzyx1bkRT+1t5tC+rZQcUuJFhg4f3eWVaMMhwQIJ8dAvSawi7RH7n5QgCEInaU+MDB48WFuOtBgJteCZ/lg1W6U7BrBCcJYRgLFjx7Y6NxLVV1WsViupaWkA7NzxjbZ95MjYB68CmE0GUhIlXqQjRIwIgtDjUV/gJpOp1cs4MTGRgoICILqWkVDEiNls1iwanREjaWlpmM3mDo4Oj5Yl4VXLSG5urlbxFlqLkfT0dC2OJFLkDWhteRlzfOzjRVTGHGNgQGasR9G9ETEiCEKPR32B5+TkBDTNq66a8vJyqqurIzaOcGqMqKjWgyNHjuD1ekM6Vw1gjZRVBPzFyKZNm7Rn1VtFADIyMhg2bJi2HkkXjUp+fut7nHD8cRG/b7D0TzOQEC9umvYQMSIIQo/G5XJpL8a23AHRihsJ1zICvrE7nU4qKiqCPs/pdGoCK1LxIqBYXZKTlSjMr776StuujxdR0af4RkOMBLrHuBO7jxgROkbEiCAIPZrS0lLNkhAtMbJhwwZuueUWNm3apG3zer1+L+lwxQiEFsQajbReUPqsqNYRveWmpWUElNLwKrEQI5n98+jfP3JWIqHrETEiCEKPpr3gVZWurjVy8cUX88ADD3DKKafw3HPP4fV6ufnmm1m9ejUASUlJfvcMhlCqsO7fv59vv/0WiE4mjYo+o0YlkGVk2rRpWCxKxObJJ58c0TFBazEy/NjuEbwqBI8p1gMQBEHoDPoXd1vfwruy1khtbS27d+8GlAZ9P/3pT3nyySf55JNPAMWC8MQTT/gFdQZDsLVGtm3bxqmnnkpNTQ0vvvgi6enp2r5IixF93IhKIMtIcXExa9asYdeuXcybNy+iY4LWInRkN+hJI4SGWEYEQejR6F0abVlGjjnmGG25s5aRAwcOtNqmChGAJ554gssuuyzk6wYrRm655RZqamoAePjhh6PmpoHWYiQ+Pj6gtQRgwoQJXHHFFZqFJJK0FKGjR0u8SE9DxIggCD2agwcPastqh96WJCUlaS/7zlpG9F1rTzzxREwmn4H5H//4BwsWLAjrusGIkY8++khzBQF8+umnfPHFF9p6JLNpoLUYGTp0aND9dyJJSzEy9gQRIz0NcdMIgtCj0YsRtZ5III455hhKSko4evQo9fX1WmZIqOgtI7/4xS8YPXo0jz/+ODNmzODSSy8N65rQcQCrx+Ph5ptvbrX9mWee0ZajbRkJFC8SC/RzZzTGccKYETEcjRAOYhkRBKFHoxcH7YkRfZ+Sffv2hX0/vWVk4MCBnH766Tz33HOdEiLQsWVkxYoVfPnll4D/s6guG4h+AGugeJFYEB8fr1XaHTL8RFKS42M8IiFURIwIgtCjUS0jSUlJpDWXBQ/EoEGDtOW9e/eGfT+9+GnLLRQO8fHxZGRkAK3FiN1u549//KO2/vjjjzNhwoRW14i0GMnLy/MrKtddLCMAzz77LOfPXsAf71qsldYXeg7iphEEocfi9Xo1MVJQUNDuS6irxIjeMtKVYgQU60hlZSUlJSV4vV7teV544QVtzFOnTmX69Ons2bOHdevW+Z0faTFiNpvJy8vT5rw7iZGJEyeSkns6CRYRIj0RsYwIgtBjqampoaGhAWjfRQP+YmTPnj1h31MVI2lpafTr1y/s6wRCjcloamryq+aqL6Z28803YzAYmDt3rl/wbGJiIomJiV06nkCo7hCj0ehX9r07MGqQgSH5sR6FEA4hi5G//OUvTJ8+nTPPPJOLL77YL6Vt6dKlTJ06lSlTprBo0SK/Kn1btmzhkksuYcKECSxcuDCsZlCCIHQf7r77bsaMGcP//ve/mI0h2OBV8I+zCNcy4vF4tHt2tVUE2q6HsmvXLm155MiRgJI5M336dG17pK0iKn/+858ZOXIk99xzT5eLsc5iMhmIixPLSE8kZDFy2WWXsXr1aj766CNuv/12brvtNmpra1m7di0vvfQSS5cuZcWKFaxdu5ZVq1YB4HA4uOWWW5g3bx5r1qxh9OjR3H777V3+MIIgRIfq6mruuusuNm/ezOWXX05jY2NMxhFs8Kq6X413CFeMlJWV4XA4gMAFwDpLW5ViVTESHx/vl8aqD5qNdFqvyjnnnMOWLVv405/+FJX7CX2DkGNG9KZOg8GAw+GgvLycN998kzlz5mh/EC6//HLeeustZs6cycaNG7FarcycOROABQsWMHXqVEpKSgIWKXI4HNovvDZQkykqxXO6Ax6Px+9/oX1kvkKjK+Zr165d2vmHDx/moYceisnLSR+/kZ+f3+4zxcXFUVBQwP79+9m7d29Qz99yrvQiprCwsMs/c6oLBBTLiMfjwePxaBVf1f3qfS+44AKysrIoLy9nzJgxMf8dkN/F0Ogr8xWok3ZLwgpgve+++1i9ejV2u50zzzyTwYMHs2fPHmbMmKEdM2zYMB577DEAdu/e7Wd+tFqtFBQUsHv37oBiZMmSJTz11FN+2+bOnctFF10UznB7LIEqPQptI/MVGp2ZLzXFVOVvf/sb06dPj9q3c5UtW7ZoyxaLpcOU3QEDBrB//34qKirYsmVL0LVG1LnSx24kJyd3KkU4EFarVVvetGkT+/bto6SkBLvdDijjb3nPZ599lvXr1zNr1qwuH0+4yO9iaPT2+dK7SNsiLDHyhz/8gZtvvpkNGzZopsTGxka/X+ykpCTNdGuz2UhKSvK7RlJSEjabLeD158+f36qccl+zjBw4cIDCwsKgFGVfR+YrNLpivlq6Zerr61m6dCn//Oc/u2KIQVNfX68tn3jiiW2WJlcZPnw469evB5R56Oj4lnPV1NSk7RszZkyH54fKgAEDiIuLw+12U1JSQlFRkZ81ZvTo0a3uWVRUxLnnntul4wgX+V0MDZkvH2Gn9sbFxXHKKafw/PPPM3jwYBITE/3+MDQ0NGiR3VarVYt41+/XfwvQY7FY+ozwaA+j0djnP6ChIPMVGp2Zr0AxF08++SQ33HBDVDMsDh06pC0PHDiww+fRf0Pbv38/xx9/fFD3UedK/w120KBBXf55S0hIoKioiN27d/PDDz9gMBj8Mn+GDBnSIz7j8rsYGjJfXZDaq0aXFxcX+wVc7dixQ/NvDh482G+fzWbj4MGDfv5RQRB6DnoxsnDhQgBcLhd//vOfozoONbMlISFBKxjWHp2tNRKpgmd61CDWuro6jh496pdJo2/4Jwi9iZDESGNjI2+99RaNjY24XC4++OADNm7cyNixY5kxYwYrV67k0KFDlJeXs2zZMs477zwATjrpJGw2G6tXr8bhcPDMM88wcuTINjtsCoLQvVFf5BaLhb///e9kZ2cDsHr16qgG46nioKOCZyp6y0g4tUbUgFmDwUB+fmQKWujj63bu3CliROgThOSmMRgMvPbaa/ztb3/D6/VSWFjIvffey5AhQxgyZAg//PADV1xxBR6Ph1mzZnHhhRcCyh+s+++/n3vuuYf77ruPkSNHcvfdd0fkgQRBiCxer1d7kRcVFZGSksJpp53Ga6+9ht1u58CBA10eSxGI2tpa6urqgOCtFF1lGcnLy8NsNod8fjC0JUYMBoPf+AWhNxGSGLFarSxevLjN/fPnz2f+/PkB940aNYrly5eHNjpBELodlZWVWnyY+nLU18f44YcfoiJGQil4ppKfn68FiIYqRux2O0eOHAEi56KBtsVIYWEh8fHSAE7onfTtiBlBEEJG/xJX3R76oNUdO3ZEZRzhiBGTyaQJiVDFiP5+kSh4pqIXdl988QVVVVWAuGiE3o2IEUEQQkL/Em/LMhINwhEj4BNQVVVV1NTUtHtsXV2dlrGjD16NpBjRZ+l89NFH2nYRI0JvRsSIIAghoQ/87IliJNi4kX379jF69GgmTZrE448/HtFuvXri4+P9GuapiBgRejMiRgRBCIlAlpG8vDytrlC0xEi4abbBiJH6+nouvPBCTfDcdNNNrF69WtsfScsI+MeNtLdNEHoLIkYEQQiJQDEjBoNBs47s3r0bl8sV8XFEyjLi8Xj46U9/yqZNm7RtDoeDl156SVuPpGUEAgsPsYwIvRkRI4IghITqpklISCAnJ0fbrooRl8sVdlfcUFDFiMViCaknTke1Ru644w5effVVAFJTU/1cUCqRtowEuqeIEaE3I2JEEISg8Xq9mtAoKiryKzQW7bgRVYwEW/BMpT3LyMaNG7n33nsBpUT3888/z6OPPkpCQoJ2TEJCQsQbAra0jGRlZdGvX7+I3lMQYomIEUEQgqa8vFxrkteyAFc003vr6+uprq4GQnPRgBLfYjIpJZZaihF99sodd9zB9OnTGTp0KA888IC2feDAgSGJn3BoKUbEKiL0dkSMCIIQNIHiRVSiaRnRx4uEGr8RFxenuVlaihF9xsyUKVO05WuvvZaFCxcSHx/P9ddfH8aIQ2Pw4MF+gkfEiNDbETEiCD0Ij8fDa6+95td4MpoESutViZUYCdUyAj4hVVNToxUVA38xoo8LMRgMPPHEE9TV1fHLX/4ynCGHREJCgt9ziRgRejsiRgShB/GLX/yCWbNmccYZZ2jukmgSKK1XpX///lpcQ08RI6Bk/6ioYsRoNJKXl9fqvEj1owmEXtyJGBF6OyJGBKGH8OGHH/L0008DUFJSwnfffRf1MbQnRgwGgxY3sm/fPux2e5fee9++fdx3333MmjWLm2++WdsejhjRv9z1YkTfCE+NK4kV+hicQNk1gtCbiO1vmyAIQWG327nmmmv8tu3cuZPx48dHdRx6N03LmBFQXpobNmzA4/Gwe/duRowY0an7eTwe3njjDRYvXsxbb72F1+ttdczIkSNDvu7gwYO1ZVWM2Gw2ysrKgMin7gbDddddx/vvv8/o0aM59dRTYz0cQYgoIkYEoQfwwAMPsH37dr9tsYgbUS0jVquV/v37t9rfMm6ks2Lk2muv5cknn2y1PTU1lXHjxnH55Zf7WRCCRS9G1K640WqEFyzHHXdc1KrZCkKsETEiCN2cnTt3arUvWm6PJvoaI4MGDQqY3qoXI12R3vviiy9qywMHDmTBggXMmTOHYcOGac3kwiGQZaSt4FVBECKPiBFB6ObcfPPNWvzFddddx+OPPw5ErweMSmlpqda4rWW8iIreStHZ8VVXV2uZLqeffjoff/wxcXFxnbqmSkZGBmlpaVRXV4sYEYRugASwCkI3xm6389ZbbwGQk5PD3/72Ny1gM9qWEb240FsW9HRleq8+PmXEiBFdJkRU1GfYv38/TqdTxIggxBARI4LQjfn66681q8g555xDcnKyVp2zvLxcq0IaDbZs2aIttxU0mp6eTmZmJtB5N40+y6Ut8dMZ1Gu63W72798vYkQQYoiIEUHoxqxbt05bPv300wH/UuFq8GU02Lp1q7Y8atSoNo9TXTWHDh3qVC0UvRgJlLnTWVqm94oYEYTYIWJEELoxn376qbY8YcIEIPoN6VT0YqS9dNquCmLVu2kiaRkBfzGSnJxMWlpal99PEIS2ETEiCN0Ur9erWUb69eunCQC9ZSSacSOqmyYrKytgWq/Kscceqy1v27Yt7PtF2jKiFyM7d+7UxEg0GuEJguCPiBFB6Kbs2bOH0tJSAE499VQtgDMWYqSyspIjR44A7btoAL/aIt9//33Y91TFSFJSUrviJ1z0YuSLL77QMoXERSMI0UfEiCB0UwK5aMA/1iFaYkQvKjqqeNoVYsTtdrNv3z6gdQfbrmLgwIGawPv888/9tguCEF1EjAhCNyVQ8CooloIBAwYA0YsZCTZeBBSxpDaUC1eMHD58GIfDAUTGRQNgMpkoKioC0O4FIkYEIRaIGBGEbopqGTEajZxyyil++9Qg0bKyMmprayM+lmDSelVMJpM2vh07duByuUK+X6TTetu7togRQYg+IkYEoRtSU1PD5s2bARgzZgwpKSl++6Od3htsWq+K6qpxOBx+WTHBEulMGhW9y0tFxIggRB8RI4LQDVm/fr3WoVYfL6IS7SBWVYxkZGSQnZ3d4fGdjRuJdCaNilhGBKF7IGJEELoh+uBVfbyIil6MRDpupLq6mkOHDgGKiyaYYFJ9em9nxUg03TQGg4H8/PyI3U8QhMCIGBGEbog+eDWQZURfWCzSlhG9mAjGRQOdt4zo3TRtNeXrClqKkdzcXCwWS8TuJwhCYESMCEIA9uzZw6hRo5g0aRI2my2q97bZbHz22WcA5OXlBXQbRDO9N5RMGpXhw4dry8GIkTvvvJOioiJeeOEFwGcZyc3NJTExMZThhkTLmBFx0QhCbBAxIggBuPvuu9m6dStr167ljTfeiOq933jjDRoaGgCYNm1aQLdISkoKOTk5QOTFSCiZNCpJSUla2uy2bdu0+JdA7N69m7vuuov9+/fz85//nL1792oF1iLpogFITU0lIyNDWxcxIgixQcSIILSgqqqK5cuXa+vbt2+P6v2XLVumLV922WVtHqfGjZSUlFBfXx+x8YRjGQGfq6a2tpaSkpI2j3v22We15fr6eubPn6+tR1qMtLyHiBFBiA0iRgShBf/3f/+nlQaHrhcjTqcTp9MZcF9VVRVvvvkmADk5OUyZMqXN6+jjRiKZ3quKkbS0NK3YWjAEEzfi8XhYunSp37YPP/xQW45kJo2K3lUjYkQQYoOIEUHQ4fV6Wbx4sd+2znSebcnGjRvJzMwkOTmZk08+mWuvvZbXXntNc2OsXLlSqwY6b948rVx5IPQZNZ0do91uZ/ny5a0yc2prazlw4AAQfCaNSjBiZM2aNVqDOqvV2mp/NCwjejGiupYEQYguIkYEQcfHH3/cqtPs9u3b2415CIUXXniBuro6HA4HGzZsYPHixcyaNYs77rgDgP/+97/ase25aMA/s2XTpk2dGtef//xnLrnkEsaPH6+l8UJoPWlaEowY+fe//60tL168mLy8PL/90RAjV155JYWFhYwbN47p06dH/H6CILTGFOsBCEJ3Qm8VSUhIoKmpierqasrLy7ukc6xqBWjJPffcQ3Z2tuaiGDJkCOPGjWv3Wscff7y2/M0333RqXF9++SWg1BS54YYbeOmllwB4+umntWOCTetV6UiMVFVV8fLLLwNKMbWLL74Yp9PJz3/+c+2YaLhphg4dyt69ezEYDBFpyCcIQseIZUQQmikrK2PlypUA9O/fn8svv1zb11WumoMHD2rLpaWl3HXXXdr6r3/9a80Cc9lll3X4Yhw0aBD9+vUD4Ntvv+3UuPQBpitXruSNN97gjTfe0MRIUlISP/nJT0K6ZmZmJllZWUBgMbJ8+XLsdjsAl19+OfHx8Vx55ZWMHj0agKysrFaWkkhhNBpFiAhCDBExIgjNLFmyRAssveqqqzjuuOO0fV0VxKrGX2RlZZGdnc1tt93GvHnzWh136aWXdngtg8HAmDFjtOtWVlaGPS41lVbll7/8pZ+F4qGHHqKwsDDk66rWkSNHjlBdXe23b8mSJdryVVddBUBcXByrVq3ihhtuYOXKle3GzAiC0HsQMSIIKFkdTzzxhLa+cOFCv8JdXWEZcbvdWjyG+mI3GAw8/fTTmqgAGDduHMOGDQvqmnpXTbhxIw0NDdTV1flt27dvnyZQzjvvPBYsWBDWtfWuGn2K8M6dOzXX0NixY/2eo7i4mH/84x+cccYZYd1TEISeh4gRQQDee+89rQT59OnTGTx4sJ8g6ArLSGlpKW63G4CCggJte1JSEq+++qrWE+X3v/990NfUv8TDddXorSInnXSSXzn09PR0nn766bBdGHrrkn58qhABmD17dljXFgSh9yBiRBDwD1y95pprAKXmRHx8PNA1lhHVRQO0cnkUFxfz/fffc+DAAebMmRP0NU844QRtuSvEyMSJE/njH/+orT/++OOditvQj08fZKsf69ixY8O+viAIvQPJphH6PAcPHmT16tWA0gvm/PPPB5T4hSFDhrBlyxZ27tyJ2+3uVAxDe2IElBLvKSkpIV1z9OjRGI1GPB5P2Bk1ejEyYMAAbr75ZoqLi8nMzNTmIlyOP/54DAYDXq+Xr7/+WtuuFyN6644gCH0TsYwIfZ5nnnlGc5/8/Oc/x2TyaXTVVeNwONi3b1+n7qPPpNG7aTqD1WrVxrhly5Y2K7u2hz6TJjc3F6PRyM9+9rNOCxFQBJZanG3z5s24XC7AJ0YyMjI095QgCH0XESNCn8blcvHUU08BSnqnPoME6NIg1o4sI+GiWhYcDkdYsS16y0hubm6XjUtFdcM0NTWxbds2ysrKNAGkWk4EQejbiBgR+jRvvvmmluFy/vnntxIJXRnEGgnLCHQ+iLWlm6ar0ceEfPPNN+KiEQShFSJGhD7NM888oy2rgat6ImUZ6U5ipKWbpqvRB7F+/fXXfmPU7xMEoe8iAaxCn+arr74ClBTWc845p9V+vWWkq8RIdna2lqXTFXS2LLxqGYmLi9MqpnYlesvI119/TVlZmbYulhFBEEAsI0Ifxmazaa6TYcOGBcyUycrKIiMjA+icm8blcmkWiK60ioCSAaSKiM64aXJycjAau/5PQk5Ojub++frrr7WsGpPJ5FcUTRCEvouIEaHPsnv3bm156NChbR6nWkcOHDhAY2NjWPc6cuSIlrHTlcGroFRxVS0MZWVlrUq7t4fb7aa0tBSIjItGRbWOVFdXs2XLFkCpztqVFiJBEHouIkaEPsvOnTu1ZTX9NBB6V80PP/wQ1r0iFS+iEm7cSEVFhSaSoiFG9IiLRhAEFREjQp9FLyzaEyNdEcSqz6TpassIhN+jJtKZNCqBAlUleFUQBBURI0KfJRzLiL7ZWyhEqsaIyqhRo7Tl77//PujzIp1JoyKWEUEQ2kPEiNBnCVaMnHjiidryRx99FNa9Iu2m0VtvQhEjkS54plJcXEy/fv38tokYEQRBRcSI0GdRxUh6ejqZmZltHjd48GAGDRoEwLp168IKYo20myY5OVm77rZt2/B6vQGPs9ls/O9//6Ourg7wt4xE0k1jNBr93DIDBgygf//+EbufIAg9CxEjQp/Ebrezf/9+oH2riMrZZ58NKCXX161bF/L99JaRznTBbQ81Tba6ulrLkFHxer289tprjBgxgqlTp3LFFVfg9XqjZhkBf1eNWEUEQdATkhhxOBzcddddzJgxgzPPPJOFCxf6mbqXLl3K1KlTmTJlCosWLfL7drZlyxYuueQSJkyYwMKFC/2+kQlCtNm9e7f2+QxGjEydOlVb/uCDD0K+nypGcnJyIpbOqq/ZoXfV7N+/nwsuuIBZs2Zpzf6+/fZbtmzZElUxoreMiBgRBEFPSGLE7XaTn5/PkiVLWLNmDWeccQY33XQTAGvXruWll15i6dKlrFixgrVr17Jq1SpAETG33HIL8+bNY82aNYwePZrbb7+9659G6DE0NTVRWlqq/VO7uUaLYONFVKZMmaIthypGnE6nJr4j4aJRCSRGPB4PF154IW+88Uar41977bWoBbAC/PjHP2bIkCFkZmYyf/78iN5LEISeRUjl4K1Wq19X04svvphFixZRXV3Nm2++yZw5c7TgvMsvv5y33nqLmTNnsnHjRqxWKzNnzgRgwYIFTJ06lZKSkoB+aofDgcPh8B+oyYTFYgn5AXsiHo/H7//exvvvv8/s2bNpaGjQtuXl5fHpp5+G9bIOZ770ab3HHHNMh+dmZWUxZswYNm3axMaNGykvL9cqs3bEoUOHNCtMfn5+xH6u+iDWrVu34vF42LJli1Z3JCcnhz/84Q/ceOONgCJG1NiRlJQUrFZrRD9zKSkpfP/997jdbsxmc4/4fPf238WuRuYrNPrKfAVT2blTvWk2bdpERkYGaWlp7NmzhxkzZmj7hg0bxmOPPQYoJnH9t0+r1UpBQQG7d+8OKEaWLFmitXVXmTt3LhdddFFnhtvj0McZ9CYeeOABPyECcPjwYf72t79x8803h33dUOZLLUkOSvCn6r5oj3HjxrFp0ya8Xi8vvvgi5557brvHl5eXU19f75cOnJaWFtS9wiE5OVlb/vrrr9m3bx+vv/66tu2qq65i5syZPPXUU2zdupWNGzdiNpsByMzMjNi4egO99XcxUsh8hUZvn6/i4uIOjwlbjNTX1/PXv/6V6667DoDGxka/P4ZJSUla1oHNZiMpKcnv/KSkJGw2W8Brz58/n8suu8x/oH3MMnLgwAEKCwsj0isklni9Xq2ZW2JiIlOmTOHNN9/E4/Hw3nvv8c9//hODwRDSNcOZL32A58SJE4PK7Pjxj3/Mv//9b0AR4r/4xS9aHeNwOHjllVd48skn+fDDD1vtHzFiBEVFRUGNMVQGDhxIRkYGlZWV7N27l6KiIrZt26bt/9GPfkRRURE/+clPNIHkdDq1cyM1rp5Mb/5djAQyX6Eh8+UjLDFit9u56aabmDhxouZ6SUxMpL6+XjumoaGBxMREQLGEtPwm3NDQgNVqDXh9i8XSZ4RHexiNxl73Ad2xYwfl5eUATJ48mdWrVzN58mQ+/PBDdu7cyZYtWxgzZkxY1245X/X19bjdblJTU1sdq8aM9OvXj+zs7KAE0FlnnYXJZMLlcrFmzZpWP5tVq1axYMECv660LTnhhBMi+jMdMWIE69at4/Dhw9TX1/PZZ58Byu/UuHHjMBqNzJw5k3vuucfvvNzc3F73WetKeuPvYiSR+QoNma8wUntdLhd/+tOf6N+/P7/5zW+07cXFxX5BgTt27GDw4MGAUqdBv0/tlqruF/oO+rTY008/HYA5c+Zo21588cUuuc/+/fsZMmQIBQUFbNy40W+fw+HQXBJDhgwJ2hKTnJzMKaecAiif75am1ZtvvtlPiAwbNozLLruMyy+/nMsvv5xFixZxzjnndOaxOkQfxPrJJ59osTHjxo3TsnhOOOGEVunFkQ5eFQRBaI+Qxchf/vIX7HY7d955p98f8RkzZrBy5UoOHTpEeXk5y5Yt47zzzgPgpJNOwmazsXr1ahwOB8888wwjR46MaJEloXvy6aefasuqGJk9e7b2WXrxxRfbLNgVCosXL6a0tJT6+vpWVoC9e/dqAWPtdesNRFspvuXl5VrfmmOOOYY1a9awbds2nnvuOf7zn//wn//8h+uvvz5kF1So6MXIM888oy1PmDBBWzYYDEybNs3vPPldFAQhloQkRkpKSli9ejVff/01kydPZtKkSUyaNImvv/6aiRMnMnv2bK644grmzp3LhAkTuPDCCwHFRHz//fezbNkyJk+ezLfffsvdd98dkQcSujeqGImLi2P8+PGA8iKcOHEiANu3b9dazIeLx+Nh2bJl2vrq1au1AmcQelqvHrX4GfiLkfXr12vLs2bNYvLkyREXHoHQi5HVq1dry6rwU9GLKhDLiCAIsSWkmJEBAwawYcOGNvfPnz+/zfoBo0aNYvny5aGNTuhVVFZWaoGTY8eO1WKKQMmW+uSTTwB46aWXGD16dNj3WbdunZ/48Hg8PPnkk9x7771A8N16A3HKKaeQlJREQ0MD77//Pl6vF4PBwOeff64dc+qpp4Y99s6iFyP62i0txcj48eNJS0ujuroaEDEiCEJs6dsRM0JU0b+w9W4DUFw1Kp2NG9FbRVSeeuoprXZNZywjFouFM844A1CazKnFxfTPpsaVxIKBAwf6iTxQnjE7O9tvm9ls5kc/+pG2HkzqnSAIQqQQMSJEjUDBqyr5+fmaQNm6datfbY5QcDgcrFixAlAyvNS4pbKyMl555RWgc2IEWrtq3G635qbJy8uLSFfeYDEajX7Fz6D1XKvce++9zJgxg1tvvbXVOYIgCNFExIgQNQIFr+rRZ9WsXLkyrHu89dZbVFVVAUrshr6I2uOPP055ebkWk5KcnExOTk7I99DHW7z//vts27ZNq2R66qmnxiRWRM+xxx7rt97SCqUycOBA3njjjVYBvoIgCNFGxIgQFZxOp2Y9GDhwYEDrwaxZs7RlNX4kVPQumssuu4yzzjpLezl//PHHFBQUaCm5oaT16jnuuOPIysoC4MMPP2Tt2rXavli6aFT0cSPQtmVEEAShuyBiRIgK3377rVZxt61v6kVFRVqK6fr160Pu11BTU6NlkGRlZTFt2jQMBgPXXnutdozdbteWr7nmmpCur2I0GjVXTW1trdb2AGIbvKqiFyOpqamMHDkyhqMRBEHoGBEjQqf57LPPWLFiRbvioSMXDSj1L9SXeW1trV8p82B44oknaGpqApQmjmrflSuuuEKzxKSlpfHb3/6WH374IWA592DRx41s3rwZUNKVTzrppLCv2VXoxcdpp53W5ys7CoLQ/ZG/UkKn2LNnD5MmTeLiiy9m8eLFAY9xOBx+7pO2LCPg7+bQ1+7oiMrKSv7f//t/gGK50FtD0tLSWL9+Pf/73/84dOgQDz74YFiBq3pa1ukAGDNmTKseTLFgxIgRXHLJJeTk5HDLLbfEejiCIAgdImJE6BRr167F7XYDSrfllni9Xq677jq++OILQEkhPe6449q8nt7NoU+X7YhHH32U2tpaQKl3M2rUKL/9eXl5nHXWWa3SXsOluLi4VTpsd4gXAcXC9N///peSkhImT54c6+EIgiB0iIgRoVPoXSkbNmxgz549fvsfeeQRrSx5QkICK1aswGRqu9ae2swNghcju3bt0iwviYmJUavuq3fVQPeIF9ET66weQRCEYBExInQKteiXij4l99133+W3v/2ttv7vf/+bcePGtXu9pKQkrWvvd99959cJui3+9Kc/4XQ6AbjppptaNYGLFC1dNd1NjAiCIPQURIz0cvbt28c777yj/VODLbuKlmLkpZdeAqC+vp4rrrhCC2r905/+xCWXXBLUNVV3h8fjabf9AMBHH32k3TM7O9uvrkikmTJliraclpYWctM9QRAEQUHESC/myy+/pLi4mHPPPVf7N2bMGJ577rkuub7T6fSrZgpK0On+/ftZtGgRpaWlAJx77rkhFdYKNm7kiy++0JoxAtx+++2kpKQEfZ/O0r9/f+bOnQvAVVddJVkrgiAIYSJ/PXsxzz//PF6vt9X2v/71rwG3h8rOnTu1Zmz6+IQnn3yS+++/H1DSXf/xj3+E9KIORoxs2LCBc845RwtaPf3001mwYEHIz9BZXnjhBfbt28ff//73qN9bEAShtyBipBejr+1x6623ahkm33//PR999FGnr6930cybN09b/stf/qKJhKuuuirkvifDhg0jLS0NUMRIS+H07bffMm3aNGpqagCYPHkyTz31VLuBsZHCYDAwcOBACRYVBEHoBCJGeik2m42vvvoKUHqV3HPPPdx6663a/scff7zT99CLkZkzZ7ZK2U1ISOD2228P+bpGo5Hx48cDUFpayv79+/3233zzzVRXVwNw5pln8tprr2G1WkO+jyAIgtA9EDHSS9mwYYOWYaJWPJ09e7bWSv6VV16hpKSkU/fQi5ERI0b4NboD+PWvfx12B9u2XDV2u13rW5Ofn8/rr7/eLQqNCYIgCOEjYqSXonfRqBVPLRYLP//5zwFwuVw8/fTTnbqHKkaMRiPDhg3TgjlB6Ynyhz/8Iexr68XIZ599pi1v2LBBK/k+ZcoUkpOTw76HIAiC0D0QMdJLWbdunbas7wWzcOFCLZj0iSee0AJQQ8Xj8WgFz4qLi0lISGDEiBFcc801pKen88QTT5CRkRH2+E855RQtDuP999/Xtuu7+Z5xxhlhX18QBEHoPogY6YV4vV7NMpKRkcGwYcO0fUVFRZx//vkAHDp0iNdffz2sexw4cIDGxkbAv0vsv/71LyorK7n44ovDHT6gjFu1jmzZsoVdu3YB/mJk0qRJnbqHIAiC0D0QMdIL2bFjBxUVFYBiFWmZVnvddddpy2qp9lDRl4HXi5GuZObMmdrya6+9htvt1iw+2dnZfiJLEARB6LmIGOmF6ONF9C4alWnTptG/f38gcOpsMLQMXo0Es2bN0pZfffVVNm/erKXzTpo0SdJpBUEQegkiRnoh+ngRNXhVj9FoZOzYsQCUl5dz6NChkO8RDTEyfPhwrUbJunXreOWVV7R94qIRBEHoPYgY6YWolhGTydRmYzpVjAB8/fXXId8jGmIEfK4aj8fDQw89pG0XMSIIgtB7EDHSy6isrNSEwoknnkhiYmLA47pKjAwYMIDU1NQwRhoc+rgRtYNvSkoKxx9/fMTuKQiCIEQXESNdiMfj0f51Re+XcNDX5AgUL6LSGTGyfv16ysvLgchaRUBJ8c3JyfHbNmHCBOLi4iJ6X0EQBCF6iBjpAmw2G5MnTyYuLk77l5qayvLly6M+lmDFyJAhQ7SCYaGIkY0bN3Luuedq65Gu9REXF8cFF1zgt03qiwiCIPQuRIx0AcuXL+fDDz/021ZXV8dNN92klWSPFl988YW2rK9i2hKj0cgJJ5wAwL59+6isrOzw2l9//TXTpk3T+sKcccYZ/O53v+vUeINB76oBiRcRBEHobYgY6QKeffZZbfnkk08mPz8fgMOHD7N69eqojcPr9bJhwwYAcnJyOuwLo3fVfPPNN+0e+8033zB16lSqqqoARRC88cYbUekLc/bZZ2uxL/Hx8Zx88skRv6cgCIIQPUSMdJK9e/fy0UcfAUoq6vr16/n3v/+t7e+K7rjBsnv3bk0snHzyyR3W4Qg2bmTTpk1MnTpVs55MmDCBN998M2p9YaxWK3/+85+Jj4/nd7/7HfHx8VG5ryAIghAdRIx0kueee05b/tnPfobBYGDq1KkMGTIEgA8++IDt27d3yb127NjBf/7zH61RXEu+/PJLbbmtlF49wYiRzZs3c/bZZ/tVdH3rrbei3qDuT3/6E/X19dx7771Rva8gCIIQeUSMdAKv18v//d//AWAwGLjssssAJR7jmmuu0Y5bvHhxp+/V2NjImWeeyRVXXMH06dNxOBytjtGLkWBcGSNHjsRsNgPw1Vdftdq/Z88ezj77bC1z5tRTT+Wtt94iJSUl3MfoFCaTKSb3FQRBECKLiJFO8Pnnn/PDDz8AMHnyZAYOHKjtu/LKK0lISABg6dKlWlO5cPnggw84cuQIAB9//DG/+tWvWqUPhypGLBYLo0ePBmD79u2txvjwww9z9OhRAMaPH8/bb79Nv379OvUcgiAIgtASESOdQB+4+rOf/cxvX2Zmpta5trq6utNpvi276z711FM8+uij2rrb7dasG0VFRVrvmY5QXTUej4dNmzb57VODYQFWr14d0eJmgiAIQt9FxEiYNDU18cILLwCQmJjI7NmzWx2j7477r3/9K+x7eb1eTYzoi33deOONvPfee4DSRbehoQEIziqi0lbciF6cFBUVkZ2dHfb4BUEQBKE9RIyEyeuvv67V2/jJT34SMKDz5JNP1mp5bNiwgYMHD4Z1r6+//prDhw8DcO655/KHP/wBUKwhV155JU1NTSEHr6q0JUZ2796tiRv1GQRBEAQhEogYCcCmTZv47W9/y5o1a9o8ZtmyZdryT3/604DHGAwGv4Jd77zzTljj0btozj//fP7yl78wbdo0QKllsnTp0pDjRVSOP/54LQVYH8T67bff+h0jCIIgCJFCxEgLvF4vc+fO5eGHH+bss89m3rx5HDp0yO+Yqqoq3nzzTQByc3OZMmVKm9fTl05/++23wxqTvnDaj370I4xGI3/961+1bX/729/8ysCfdNJJQV87OTmZY489FlAKm9XV1QEiRgRBEIToIWKkBd988w07duzQ1l944QWOPfZYnnnmGW3bypUrtdTaefPmtdu07eSTTyYjIwOA9957D5fLFdJ4SkpKtEDSE044gcLCQkBxxZxzzjmAUnhNdbEMHz485EDTyZMnA4rb5+OPPwZEjAiCIAjRQ8RIC15++WVtWRUZ9fX1/PznP9esD//973+1Yy699NJ2rxcXF6eJhpqaGj7//POQxqNaYEBx0ej585//3Or4UOJFVM4++2xt+YMPPgB8YiQ5OZni4uKQrykIgiAIwSJipAWvvPIKoMR7bNq0yS9l91e/+hX79+/XmuINHTo0qJd/Z1w1ehdNSzFyxhlnMHHiRL9t4fRtOeuss7S4kQ8++IDq6mr27dsHKFYRo1E+JoIgCELkkLeMju3bt7NlyxZAKXs+cuRInn76acaMGQMoAZ4//vGPtWJjl156aYf9XwDNMgKhiZGKigot6DU7Ozug0PjTn/7ktx6OGMnIyNCyajZt2sT777+v7RMXjSAIghBpRIzoUK0iAD/+8Y8BpQS5vriYPuOkIxeNyoABA7T02I0bN1JWVhbUeYsXL9b60FxyySUBLRTnnnsuJ554IgBJSUlhp+HqXTWLFi3SlkWMCIIgCJFGxIgOfbyIKkYAJk2a1Cp9d9y4cQwbNizoa5933nnacjApvna7XRNBRqORG264IeBxBoOB5cuXc/XVV7N8+XISExODHpMevRhZu3attixiRBAEQYg0IkaaOXDggFar44QTTmDw4MF++++//36/vixqU7xgCTVu5NVXX9UsKHPmzGk3iHTo0KE8/fTTrWJKQmHixIla0zwVg8Gg9a4RBEEQhEghYqSZV199VVsOVNo9NzeXBx98EFDcLqGKkdNOO03rdvvOO+/gdru1fV6vlyVLlvD0009jt9vxeDx+qcQ33XRTSPcKh6SkJE499VS/bUOHDiUpKSni9xYEQRD6NiJGUIqY6eMkAokRgJ///Ods376dTZs2Bd2ITsVsNmtVUysqKli3bp22b+XKlVx11VUsWLCAMWPGcNddd7Fz505AsViMHz8+1EcKC72rBqQMvCAIghAd+rwYcblcXHTRRezatQuAU045hZEjR7Z5/LBhw8jKygrrXnqR8+KLL2rL+u6/O3bs4N5779XWo2EVUWkpRiReRBAEQYgGfV6M3HTTTVoqa//+/XnhhReCStcNhwsuuACLxQIo1hCPx0NVVVWbAa1Dhw7lggsuiMhYAjF+/Hi/AFgRI4IgCEI06NNi5KmnnuKRRx4BFDfKyy+/TFFRUcTu169fP6ZPnw4oZd4//fRTXnnlFZxOJwA33HADS5Ys0VxA99xzT7ul5rsai8WilYY3GAx+HX0FQRAEIVKYYj2AWLF27Vquu+46bf1f//pXq2qmkWDu3LlaVdWXXnqJrVu3avsuvfRSxo8fz7x589i8eXNIDe+6ivvuuw+n08n06dPJy8uL+v0FQRCEvkefFSNDhgzh5JNP5rPPPuM3v/kNV199dVTue8EFF2A2m3E6nTz//PNUVFQAUFxcrFVPtVgsYceldJbRo0cHVQdFEARBELqKPuumyc3N5X//+x8PPfQQDzzwQNTum5aWppWHLysr01J8L7744ojFqgiCIAhCd6bPihGA+Ph4brzxRkym6BqI5syZ02rbvHnzojoGQRAEQegu9GkxEisuvPBCPwE0fPhwrRmfIAiCIPQ1QhIjTzzxBHPnzuXkk09uFVewdOlSpk6dypQpU1i0aJHW2RZgy5YtXHLJJUyYMIGFCxdSUlLSNaPvoWRkZDB16lRtfd68eeKiEQRBEPosIYmRwsJCbrrpJkaNGuW3fe3atbz00kssXbqUFStWsHbtWlatWgWAw+HglltuYd68eaxZs4bRo0dz++23d90T9FCuvfZaQCnD/rOf/SzGoxEEQRCE2BGSGJkxYwannnqqVrhL5c0332TOnDkUFBSQlZXF5ZdfzltvvQXAxo0bsVqtzJw5k/j4eBYsWMDWrVv7vHXkwgsv5JtvvmHr1q3tNsETBEEQhN5Ol0Ru7tmzhxkzZmjrw4YN47HHHgNg9+7dDBkyRNtntVopKChg9+7dDBgwIOD1HA4HDofDf6AmUysR1NM57rjjAPB4PH7b1fWW24XAyHyFhsxX8MhchYbMV2j0lfkyGju2e3SJGGlsbCQ5OVlbT0pKorGxEQCbzdaq82tSUhI2m63N6y1ZsoSnnnrKb9vcuXO56KKLumK4PYYDBw7Eegg9Cpmv0JD5Ch6Zq9CQ+QqN3j5fwVj/u0SMJCYmUl9fr603NDRoPU6sVisNDQ1+xzc0NGC1Wtu83vz587nsssv8B9oLLSNt4fF4OHDgAIWFhUEpyr6OzFdoyHwFj8xVaMh8hYbMl48uESPFxcXs3LlTK6e+Y8cOBg8eDMDgwYN55ZVXtGNtNhsHDx7U9gfCYrH0GeHRHkajsc9/QENB5is0ZL6CR+YqNGS+QkPmK8QAVpfLhd1ux+v1assej4cZM2awcuVKDh06RHl5OcuWLeO8884D4KSTTsJms7F69WocDgfPPPMMI0eObDNeRBAEQRCEvkVIlpF7772X119/HYCvv/6aO+64g8WLFzNx4kR++OEHrrjiCjweD7NmzeLCCy8EFCvH/fffzz333MN9993HyJEjufvuu7v+SQRBEARB6JEYvPrqZEK3wOPxsG/fPoqKivq86S4YZL5CQ+YreGSuQkPmKzRkvnz07acXBEEQBCHmiBgRBEEQBCGmiBgRBEEQBCGmiBgRBEEQBCGmiBgRBEEQBCGmiBgRBEEQBCGmiBgRBEEQBCGmiBgRBEEQBCGmSNEzQRAEQRBiilhGBEEQBEGIKSJGBEEQBEGIKSJGBEEQBEGIKSJGBEEQBEGIKSJGBEEQBEGIKSJGBEEQBEGIKSJGBEEQBEGIKSJGBEEQBEGIKSJGBEEQBEGIKSJGBEEQBEGIKSJGosATTzzB3LlzOfnkk3nnnXe07U1NTfzlL39h2rRpnHPOOfznP//xO2/cuHFMnDiRSZMmMWnSJP7973/7nXvbbbdxxhln8KMf/Yi33347as8TSSIxVw899BAzZ87kjDPO4Kc//SlfffVV1J4n0kRivlQOHz7MhAkT+Otf/xrx54gWkZqvVatW8eMf/5iJEycyZ84c9u3bF5XniSSRmKtDhw7xy1/+krPOOovzzjuPJUuWRO15Ik2481VfX8/dd9/NlClTOOuss/jzn//sd25v/DsfCFOsB9AXKCws5KabbmLx4sV+25955hkOHz7MK6+8Qn19Pddeey1DhgzhtNNO04559dVXycrKanXNJ554gpqaGt5880127drFDTfcwIgRIygqKor480SSSMxVcnIyjz76KPn5+axZs4bf/e53rF69mqSkpIg/T6SJxHypPPTQQwwfPjxiY48FkZivjz/+mOeee46///3vDB48mEOHDpGSkhLxZ4k0kZirBx54gPz8fBYtWkRpaSlXX301o0aNYvz48RF/nkgT7nzddddd5OTksGrVKhISEti5c6d2bm/9Ox8IsYxEgRkzZnDqqadisVj8tn/22WdceumlJCcnk5uby4UXXsgbb7wR1DXffPNNFi5cSHJyMscffzxnnHEG7777biSGH1UiMVcLFy6ksLAQo9HI1KlTiY+PZ//+/ZEYftSJxHyp53u9Xk455ZSuHnJMicR8Pf300/z2t7/lmGOOwWAwUFBQQGpqaiSGH1UiMVclJSWcc845mEwm8vPzOeGEE9i9e3ckhh91wpmvXbt2sW3bNm688UaSk5MxmUwce+yx2rm99e98IESMxBh902Sv19vqF/Pyyy/nvPPO484776S6uhqA2tpaKioqGDJkiHbcsGHDes0vdVuEM1ctOXz4MLW1tRQWFkZyqN2CcOfL6XSyaNEifvOb30RppN2DcObL7Xazfft2du7cyYwZM7jwwgt56qmn6O3N0MP9bM2dO5d33nkHh8PB/v372bx5M+PGjYvWsGNGW/P1/fffM3DgQG677TbOPvtsrrjiCr7++mug7/2dFzESQ0499VSef/556urqOHz4MK+//jpNTU3a/qeeeorXX3+d//73vzQ1NXH33XcD0NjYSFxcHAkJCdqxSUlJNDY2Rv0ZokW4c6XH5XJx55138tOf/pTk5ORoDj/qdGa+li1bxoQJE/qEYFMJd74qKytxu918+eWXvPDCCzz55JO89957rF69OlaPEnE689k6/vjj2bx5M5MmTWL27NnMnDnT72XbG2lvvsrKyli/fj3jx4/nnXfe4corr+R3v/sdNTU1fe7vvIiRGHL11VeTl5fHnDlzuP766zn77LPp37+/tn/s2LGYTCbS09P53e9+x7p163A6nSQmJuJ2u/3+ADQ0NJCYmBiLx4gK4c6Vitfr5c477yQ9PZ2FCxfG4hGiSrjzVVZWxqpVq7jqqqtiOProE+58xcfHA/Czn/2MlJQUcnNzmTt3LuvWrYvVo0SccOfK7XZzww03MGvWLNatW8eqVat4//33ef/992P4NJGnvfmKj48nPz+fWbNmYTKZmDJlCvn5+WzevLnP/Z0XMRJDrFYrf/7zn3nnnXd46aWXMBgMjBw5MuCxRqPyo/J6vfTr14/MzEy/QKcdO3YwePDgqIw7FoQ7Vyr3338/R48e5Z577tH292bCna+tW7dSWlrK7NmzmT59Os899xxvvPEGv/71r6M5/KjTmd9F/YtY3d6bCXeuamtrOXr0KHPmzMFkMpGXl8dZZ53Fxo0bozn8qNPefB1zzDFtntfX/s73/r/K3QCXy4Xdbsfr9WrLHo+H0tJSysvLcbvdfP7556xevZpLL70UUAKbduzYgdvtpra2lgcffJBTTjlFC46aMWMG/7+9+wtp6o3jOP6ZS1tppVZ4YTGJkgqLikNBSQXlalQkiEWXwdpdYCAEgmQZxAKv6qKRkURetAwMhQgJnFeCUfSXQKy8EJYrNWrkiLXfRXjo/IxytnlU3q+reZ5nz9n3y9w+PDtjzc3NisVievHihXp6elRRUWFnmWmRiV4Fg0E9e/ZMTU1Nky4um+vS3a+dO3fq/v37am1tVWtrq6qqqrR//341NjbaXGl6ZOL5dfjwYd26dUuxWEzRaFT37t1TeXm5nWWmRbp7VVBQoKKiIrW3t5vrhMPhP74hzyXT6ZdhGEomk+rs7FQikVA4HNbQ0JA2bdokaf6+zv+OIznfY/ws0NDQoM7OTsuxia9/nTt3TmNjYyopKVFtba22bt0qSerr69OlS5c0PDys3Nxcbd++XWfOnFFhYaGkn98/v3jxosLhsJYuXarTp0/r4MGDM1tYBmSiV4ZhKCcnR06n01yzrq5OXq93hqrKnEz061fBYFCfPn1SXV1d5ouZAZno1/fv3xUIBNTV1aXFixersrJSfr9fDodjZotLs0z06tWrV2pqatLAwIBcLpc8Ho9qamos/5tz1XT6JUn9/f1qbGzUu3fvtHr1atXW1mrbtm2S5u/r/O8QRgAAgK34mAYAANiKMAIAAGxFGAEAALYijAAAAFsRRgAAgK0IIwAAwFaEEQAAYCvCCAAAsBVhBMCcZhiGDMOY17+UC8x3hBEAf+X3+803/RMnTljGxsbGtGvXLnP8ypUraT9/R0eHuT6A+YcwAiAl/f39evLkifl3e3u74vG4jY8IwFxHGAEwZQsWLJAk3blzR5KUSCTU1tZmHv/V58+fFQgEdOjQIe3YsUMej0f19fWKRCLmnGAwKMMwdOTIEXV1damqqkrl5eU6deqU3r9/L+nnD5CdP3/evM/EDkkwGLSc7+vXr2poaNCePXvk9XrV3Nyc7vIBZAhhBMCUlZaWqri4WN3d3frw4YN6enoUiUS0b98+y7x4PC6/36+7d+/q48ePcrvdisVievDggU6ePKnR0VHL/OHhYdXX18vhcCgej+vp06e6cOGCJGnVqlUqLi4255aVlamsrExFRUWWNa5evare3l5lZ2crGo3q2rVr6u3tzVAnAKQTYQTAlGVlZam6utrcEZnYITl+/Lhl3sOHDzUwMCBJCgQCCoVCunHjhrKyshSNRhUKhSzzE4mELl++rLa2NvOalOfPn2t8fFw+n08+n8+c29LSopaWFlVWVlrWKC0tVUdHh2Wnpq+vL631A8gMwgiAlBw9elSLFi1SKBTS48ePtWHDBm3evNky5/Xr15Ikl8ulvXv3SpLWr18vt9ttGZ+Ql5en3bt3S5LWrFljHv//DsqfVFRUKDs7W/n5+SosLJQkjYyMpFYcAFsQRgCkZMmSJfJ6vYrFYpIm74pMd80JTqfTvJ1MJv9pjVTuD8A+hBEAKTt27JgkKT8/Xx6PZ9L4xo0bJUnj4+Pq7u6WJL1580aDg4OW8alyuVzm7W/fvk3nIQOYxSZfAg8Af7F27Vo9evRITqdTOTk5k8YPHDig27dv6+3btzp79qzcbreGhob048cPrVy50gwzU1VSUmLerq6u1ooVK1RTU6MtW7b8YyUAZgN2RgBMy7Jly5SXl/fbsYULF+r69etmcBgcHFRubq68Xq9u3rypgoKClM61bt06+Xw+LV++XJFIRC9fvtSXL1/SUQaAWcCR5ENVAABgI3ZGAACArQgjAADAVoQRAABgK8IIAACwFWEEAADYijACAABsRRgBAAC2IowAAABbEUYAAICtCCMAAMBWhBEAAGCr/wDEbkpA3fSn1wAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2111,7 +2310,7 @@ "\n", "With neural networks, one has to give a `Likelihood` object to the model. The likelihoods specify which distribution the model will try to fit, along with potential prior values for the distributions' parameters. The full list of available likelihoods is [available in the docs](https://unit8co.github.io/darts/generated_api/darts.utils.likelihood_models.html).\n", "\n", - "Using likelihoods is easy. For instance, here is what training an `NBEATSModel` to fit a Laplace likelihood looks like:" + "Using likelihoods is easy. For instance, here is what training an `TCNModel` to fit a Laplace likelihood looks like:" ] }, { @@ -2123,7 +2322,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "GPU available: False, used: False\n", + "GPU available: True (mps), used: True\n", "TPU available: False, using: 0 TPU cores\n", "IPU available: False, using: 0 IPUs\n", "HPU available: False, using: 0 HPUs\n", @@ -2145,12 +2344,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c2d818ed170a450e8e9a8aed016b2b86", + "model_id": "58408b18e11649049255d2f5e5c0c966", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Training: 0it [00:00, ?it/s]" + "Training: | | 0/? [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/dennisbader/miniconda3/envs/darts310/lib/python3.10/site-packages/torch/_tensor_str.py:137: UserWarning: MPS: nonzero op is supported natively starting from macOS 13.0. Falling back on CPU. This may have performance implications. (Triggered internally at /Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/native/mps/operations/Indexing.mm:283.)\n", + " nonzero_finite_vals = torch.masked_select(\n" + ] + }, + { + "ename": "ValueError", + "evalue": "Expected parameter scale (Tensor of shape (32, 24, 1)) of distribution Laplace(loc: torch.Size([32, 24, 1]), scale: torch.Size([32, 24, 1])) to satisfy the constraint GreaterThan(lower_bound=0.0), but found invalid values:\ntensor([[[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.5466e+02],\n [0.0000e+00],\n [4.6437e+02],\n [7.5609e+02],\n [3.2690e+02],\n [0.0000e+00],\n [3.2321e+02],\n [1.1282e+03],\n [2.8581e+03],\n [3.9684e+03],\n [8.2819e+03],\n [2.1521e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.2196e+02],\n [2.9085e+02],\n [1.4671e+02],\n [4.2493e+02],\n [1.8432e+03],\n [5.2108e+02],\n [1.8184e+02],\n [2.8255e+02],\n [4.0458e+03],\n [1.3649e+03],\n [5.2962e+03],\n [3.4843e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.6621e+02],\n [9.4351e+01],\n [5.9659e+02],\n [0.0000e+00],\n [0.0000e+00],\n [3.0769e+02],\n [0.0000e+00],\n [2.4108e+02],\n [0.0000e+00],\n [3.4435e+02],\n [0.0000e+00],\n [9.6189e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [6.2573e+02],\n [1.9478e+01],\n [0.0000e+00],\n [2.6027e+02],\n [7.2585e+03],\n [8.6589e+03],\n [1.2641e+04],\n [1.2864e+04],\n [2.2555e+04],\n [2.1138e+04],\n [2.4303e+04],\n [1.9105e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.0673e+02],\n [0.0000e+00],\n [4.7850e+02],\n [1.6997e+02],\n [2.0591e+03],\n [6.3764e+01],\n [0.0000e+00],\n [0.0000e+00],\n [1.4656e+04],\n [3.9371e+04],\n [4.8098e+04],\n [8.9642e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.1685e+02],\n [6.7294e+01],\n [1.8114e+02],\n [7.7117e+01],\n [4.1540e+03],\n [1.0585e+03],\n [4.6140e+03],\n [2.0682e+02],\n [9.2396e+03],\n [1.0781e+03],\n [6.3496e+03],\n [0.0000e+00]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.2792e+02],\n [3.4131e+02],\n [2.9428e+02],\n [2.8990e+02],\n [9.5690e+02],\n [2.9681e+03],\n [3.5354e+03],\n [2.1584e+03],\n [1.3484e+03],\n [7.0866e+03],\n [4.9625e+03],\n [4.5635e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.9794e+02],\n [6.3204e+02],\n [0.0000e+00],\n [0.0000e+00],\n [3.6342e+03],\n [1.5193e+04],\n [1.7998e+04],\n [3.3042e+04],\n [3.7157e+04],\n [5.3951e+04],\n [5.3066e+04],\n [6.3337e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.8738e+02],\n [5.9231e+02],\n [1.2937e+02],\n [0.0000e+00],\n [8.7417e+02],\n [4.4924e+03],\n [7.7686e+03],\n [5.2749e+03],\n [1.1464e+04],\n [7.3656e+03],\n [1.5769e+04],\n [5.8549e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.2412e+02],\n [5.9308e+01],\n [0.0000e+00],\n [7.0189e+02],\n [4.2594e+03],\n [1.7311e+03],\n [3.6755e+03],\n [5.0991e+03],\n [9.1981e+03],\n [4.6576e+03],\n [7.5442e+03],\n [1.0303e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [0.0000e+00],\n [2.2418e+02],\n [7.0614e+02],\n [3.5272e+02],\n [0.0000e+00],\n [0.0000e+00],\n [1.7541e+02],\n [7.4891e+01],\n [5.0964e+03],\n [0.0000e+00],\n [1.0632e+04],\n [1.6849e+02]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.4644e+02],\n [6.0210e+02],\n [2.9503e+02],\n [6.2108e+02],\n [3.4425e+02],\n [2.4112e+03],\n [1.8081e+02],\n [5.3398e+03],\n [3.0440e+03],\n [5.6225e+03],\n [7.2210e+03],\n [7.2862e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.1805e+02],\n [4.2366e+01],\n [5.6576e+02],\n [5.2030e+02],\n [4.2446e+03],\n [0.0000e+00],\n [8.7383e+03],\n [2.5814e+03],\n [2.0124e+04],\n [1.0774e+04],\n [4.8236e+04],\n [3.5690e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.8773e+02],\n [2.1789e+02],\n [4.3082e+02],\n [3.2359e+02],\n [4.0239e+02],\n [2.4006e+02],\n [8.2602e+01],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00],\n [1.8908e+03],\n [8.6257e+02]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.5584e+02],\n [1.1363e+03],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00],\n [1.8747e+04],\n [4.2485e+03],\n [2.7998e+04],\n [3.0196e+03],\n [4.8885e+04],\n [5.8029e+03],\n [4.8085e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.0141e+02],\n [2.3429e+02],\n [8.7342e+02],\n [0.0000e+00],\n [8.6362e+02],\n [7.0546e+02],\n [7.8284e+03],\n [2.4537e+03],\n [1.5170e+04],\n [1.7069e+04],\n [1.8793e+04],\n [2.3392e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.7611e+02],\n [3.5129e+02],\n [1.8447e+02],\n [0.0000e+00],\n [1.5156e+03],\n [6.0635e+03],\n [1.2944e+04],\n [2.0738e+04],\n [1.6236e+04],\n [2.7564e+04],\n [2.1402e+04],\n [3.6097e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [0.0000e+00],\n [4.1882e+00],\n [6.6243e+00],\n [0.0000e+00],\n [4.2323e-04],\n [0.0000e+00],\n [0.0000e+00],\n [3.9317e+01],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.8740e+02],\n [5.7409e+02],\n [3.1118e+02],\n [4.6254e+02],\n [4.6531e+02],\n [2.5792e+03],\n [5.5729e+02],\n [4.7599e+03],\n [6.3608e+03],\n [6.3185e+03],\n [9.6536e+03],\n [6.8044e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.8756e+02],\n [4.2308e+02],\n [2.3249e+02],\n [2.0505e+02],\n [9.1562e+02],\n [1.4755e+03],\n [5.3977e+02],\n [4.2784e+02],\n [1.1924e+03],\n [1.4245e+03],\n [3.7625e+03],\n [6.6584e+02]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.8670e+02],\n [1.3137e+02],\n [5.9928e+02],\n [3.8858e+02],\n [5.2856e+02],\n [0.0000e+00],\n [2.4692e+02],\n [1.6345e+02],\n [6.7857e+03],\n [0.0000e+00],\n [4.9448e+03],\n [1.6755e+02]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.1253e+02],\n [2.0230e+02],\n [8.7402e+00],\n [0.0000e+00],\n [4.2190e+03],\n [4.5460e+03],\n [6.9655e+03],\n [4.3069e+03],\n [1.0163e+04],\n [5.1115e+03],\n [1.3262e+04],\n [2.0912e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.1422e+02],\n [2.6167e+02],\n [0.0000e+00],\n [5.9992e+02],\n [3.1619e+03],\n [7.3641e+03],\n [8.3763e+03],\n [1.9238e+04],\n [1.0471e+04],\n [2.9842e+04],\n [1.2521e+04],\n [3.7745e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.4059e+02],\n [5.0451e+02],\n [0.0000e+00],\n [1.0669e+02],\n [4.7835e+02],\n [1.7370e+03],\n [0.0000e+00],\n [2.0056e+02],\n [1.6877e+02],\n [1.5789e+03],\n [8.3318e+01],\n [0.0000e+00]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.7563e+02],\n [3.7193e+02],\n [4.0011e+02],\n [5.6188e+02],\n [6.5350e+02],\n [0.0000e+00],\n [5.6529e+02],\n [1.0223e+03],\n [1.6954e+03],\n [0.0000e+00],\n [6.2738e+03],\n [6.0970e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.7755e+02],\n [9.4972e+01],\n [1.3695e+00],\n [1.9749e+02],\n [4.7334e+03],\n [8.4419e+03],\n [1.4042e+04],\n [1.6364e+04],\n [1.7950e+04],\n [3.9612e+04],\n [2.3361e+04],\n [4.9177e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.3864e+02],\n [1.3122e-04],\n [1.5656e+02],\n [4.4812e+02],\n [4.3967e+03],\n [2.1135e+02],\n [4.8541e+03],\n [0.0000e+00],\n [7.9736e+03],\n [5.3526e+02],\n [5.9979e+03],\n [0.0000e+00]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.8944e+02],\n [7.1204e+02],\n [1.1715e+02],\n [0.0000e+00],\n [0.0000e+00],\n [7.1381e+03],\n [6.9366e+03],\n [1.4242e+04],\n [6.5499e+03],\n [2.5540e+04],\n [1.8810e+04],\n [3.7684e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.3328e+02],\n [2.7684e+02],\n [5.5600e+02],\n [5.2213e+02],\n [6.6743e+01],\n [1.7771e+01],\n [1.4544e+02],\n [1.0106e+03],\n [3.4816e+03],\n [2.7806e+03],\n [4.9556e+03],\n [1.0809e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.9472e+02],\n [0.0000e+00],\n [4.8687e+02],\n [3.7346e+02],\n [4.9578e-07],\n [2.0248e+02],\n [5.1683e+02],\n [4.9718e+02],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00],\n [9.4098e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.1485e+02],\n [3.6214e+02],\n [5.5538e+02],\n [4.7417e+02],\n [1.2258e+02],\n [0.0000e+00],\n [1.2590e+03],\n [1.3526e+02],\n [2.0405e+03],\n [0.0000e+00],\n [1.7554e+04],\n [1.7065e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.2569e+02],\n [1.1581e+02],\n [5.3897e+02],\n [0.0000e+00],\n [3.6477e+03],\n [3.4733e+03],\n [1.8417e+04],\n [1.3479e+04],\n [2.8909e+04],\n [1.9235e+04],\n [5.3059e+04],\n [3.4125e+04]]], device='mps:0')", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[48], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m pred \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m36\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_samples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m500\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# scale back:\u001b[39;00m\n\u001b[1;32m 4\u001b[0m pred \u001b[38;5;241m=\u001b[39m scaler\u001b[38;5;241m.\u001b[39minverse_transform(pred)\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/darts/utils/torch.py:112\u001b[0m, in \u001b[0;36mrandom_method..decorator\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m fork_rng():\n\u001b[1;32m 111\u001b[0m manual_seed(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_random_instance\u001b[38;5;241m.\u001b[39mrandint(\u001b[38;5;241m0\u001b[39m, high\u001b[38;5;241m=\u001b[39mMAX_TORCH_SEED_VALUE))\n\u001b[0;32m--> 112\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdecorated\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/darts/models/forecasting/torch_forecasting_model.py:1401\u001b[0m, in \u001b[0;36mTorchForecastingModel.predict\u001b[0;34m(self, n, series, past_covariates, future_covariates, trainer, batch_size, verbose, n_jobs, roll_size, num_samples, num_loader_workers, mc_dropout, predict_likelihood_parameters, show_warnings)\u001b[0m\n\u001b[1;32m 1382\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39mpredict(\n\u001b[1;32m 1383\u001b[0m n,\n\u001b[1;32m 1384\u001b[0m series,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1389\u001b[0m show_warnings\u001b[38;5;241m=\u001b[39mshow_warnings,\n\u001b[1;32m 1390\u001b[0m )\n\u001b[1;32m 1392\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_inference_dataset(\n\u001b[1;32m 1393\u001b[0m target\u001b[38;5;241m=\u001b[39mseries,\n\u001b[1;32m 1394\u001b[0m n\u001b[38;5;241m=\u001b[39mn,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1398\u001b[0m bounds\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 1399\u001b[0m )\n\u001b[0;32m-> 1401\u001b[0m predictions \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict_from_dataset\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1402\u001b[0m \u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1403\u001b[0m \u001b[43m \u001b[49m\u001b[43mdataset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1404\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrainer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1405\u001b[0m \u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1406\u001b[0m \u001b[43m \u001b[49m\u001b[43mbatch_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbatch_size\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1407\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_jobs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mn_jobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1408\u001b[0m \u001b[43m \u001b[49m\u001b[43mroll_size\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mroll_size\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1409\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_samples\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_samples\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1410\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_loader_workers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_loader_workers\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1411\u001b[0m \u001b[43m \u001b[49m\u001b[43mmc_dropout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmc_dropout\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1412\u001b[0m \u001b[43m \u001b[49m\u001b[43mpredict_likelihood_parameters\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpredict_likelihood_parameters\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1413\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1415\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m predictions[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m called_with_single_series \u001b[38;5;28;01melse\u001b[39;00m predictions\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/darts/utils/torch.py:112\u001b[0m, in \u001b[0;36mrandom_method..decorator\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m fork_rng():\n\u001b[1;32m 111\u001b[0m manual_seed(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_random_instance\u001b[38;5;241m.\u001b[39mrandint(\u001b[38;5;241m0\u001b[39m, high\u001b[38;5;241m=\u001b[39mMAX_TORCH_SEED_VALUE))\n\u001b[0;32m--> 112\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdecorated\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/darts/models/forecasting/torch_forecasting_model.py:1546\u001b[0m, in \u001b[0;36mTorchForecastingModel.predict_from_dataset\u001b[0;34m(self, n, input_series_dataset, trainer, batch_size, verbose, n_jobs, roll_size, num_samples, num_loader_workers, mc_dropout, predict_likelihood_parameters)\u001b[0m\n\u001b[1;32m 1541\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrainer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_setup_trainer(\n\u001b[1;32m 1542\u001b[0m trainer\u001b[38;5;241m=\u001b[39mtrainer, model\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel, verbose\u001b[38;5;241m=\u001b[39mverbose, epochs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mn_epochs\n\u001b[1;32m 1543\u001b[0m )\n\u001b[1;32m 1545\u001b[0m \u001b[38;5;66;03m# prediction output comes as nested list: list of predicted `TimeSeries` for each batch.\u001b[39;00m\n\u001b[0;32m-> 1546\u001b[0m predictions \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpred_loader\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1547\u001b[0m \u001b[38;5;66;03m# flatten and return\u001b[39;00m\n\u001b[1;32m 1548\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m [ts \u001b[38;5;28;01mfor\u001b[39;00m batch \u001b[38;5;129;01min\u001b[39;00m predictions \u001b[38;5;28;01mfor\u001b[39;00m ts \u001b[38;5;129;01min\u001b[39;00m batch]\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:863\u001b[0m, in \u001b[0;36mTrainer.predict\u001b[0;34m(self, model, dataloaders, datamodule, return_predictions, ckpt_path)\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mstatus \u001b[38;5;241m=\u001b[39m TrainerStatus\u001b[38;5;241m.\u001b[39mRUNNING\n\u001b[1;32m 862\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpredicting \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m--> 863\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mcall\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_and_handle_interrupt\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 864\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_predict_impl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataloaders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdatamodule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mreturn_predictions\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mckpt_path\u001b[49m\n\u001b[1;32m 865\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:44\u001b[0m, in \u001b[0;36m_call_and_handle_interrupt\u001b[0;34m(trainer, trainer_fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m trainer\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39mlauncher \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 43\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m trainer\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39mlauncher\u001b[38;5;241m.\u001b[39mlaunch(trainer_fn, \u001b[38;5;241m*\u001b[39margs, trainer\u001b[38;5;241m=\u001b[39mtrainer, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m---> 44\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtrainer_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 46\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m _TunerExitException:\n\u001b[1;32m 47\u001b[0m _call_teardown_hook(trainer)\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:902\u001b[0m, in \u001b[0;36mTrainer._predict_impl\u001b[0;34m(self, model, dataloaders, datamodule, return_predictions, ckpt_path)\u001b[0m\n\u001b[1;32m 898\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mfn \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 899\u001b[0m ckpt_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_checkpoint_connector\u001b[38;5;241m.\u001b[39m_select_ckpt_path(\n\u001b[1;32m 900\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mfn, ckpt_path, model_provided\u001b[38;5;241m=\u001b[39mmodel_provided, model_connected\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlightning_module \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 901\u001b[0m )\n\u001b[0;32m--> 902\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mckpt_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mckpt_path\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 904\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mstopped\n\u001b[1;32m 905\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpredicting \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:986\u001b[0m, in \u001b[0;36mTrainer._run\u001b[0;34m(self, model, ckpt_path)\u001b[0m\n\u001b[1;32m 981\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_signal_connector\u001b[38;5;241m.\u001b[39mregister_signal_handlers()\n\u001b[1;32m 983\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[1;32m 984\u001b[0m \u001b[38;5;66;03m# RUN THE TRAINER\u001b[39;00m\n\u001b[1;32m 985\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[0;32m--> 986\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run_stage\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 988\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[1;32m 989\u001b[0m \u001b[38;5;66;03m# POST-Training CLEAN UP\u001b[39;00m\n\u001b[1;32m 990\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[1;32m 991\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m: trainer tearing down\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py:1027\u001b[0m, in \u001b[0;36mTrainer._run_stage\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1025\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_evaluation_loop\u001b[38;5;241m.\u001b[39mrun()\n\u001b[1;32m 1026\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpredicting:\n\u001b[0;32m-> 1027\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict_loop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1028\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining:\n\u001b[1;32m 1029\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m isolate_rng():\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/loops/utilities.py:182\u001b[0m, in \u001b[0;36m_no_grad_context.._decorator\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 180\u001b[0m context_manager \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mno_grad\n\u001b[1;32m 181\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m context_manager():\n\u001b[0;32m--> 182\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mloop_run\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/loops/prediction_loop.py:124\u001b[0m, in \u001b[0;36m_PredictionLoop.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbatch_progress\u001b[38;5;241m.\u001b[39mis_last_batch \u001b[38;5;241m=\u001b[39m data_fetcher\u001b[38;5;241m.\u001b[39mdone\n\u001b[1;32m 123\u001b[0m \u001b[38;5;66;03m# run step hooks\u001b[39;00m\n\u001b[0;32m--> 124\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_predict_step\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbatch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mbatch_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataloader_idx\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataloader_iter\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 125\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m:\n\u001b[1;32m 126\u001b[0m \u001b[38;5;66;03m# this needs to wrap the `*_step` call too (not just `next`) for `dataloader_iter` support\u001b[39;00m\n\u001b[1;32m 127\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/loops/prediction_loop.py:253\u001b[0m, in \u001b[0;36m_PredictionLoop._predict_step\u001b[0;34m(self, batch, batch_idx, dataloader_idx, dataloader_iter)\u001b[0m\n\u001b[1;32m 247\u001b[0m \u001b[38;5;66;03m# configure step_kwargs\u001b[39;00m\n\u001b[1;32m 248\u001b[0m step_args \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 249\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_build_step_args_from_hook_kwargs(hook_kwargs, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpredict_step\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 250\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m using_dataloader_iter\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m (dataloader_iter,)\n\u001b[1;32m 252\u001b[0m )\n\u001b[0;32m--> 253\u001b[0m predictions \u001b[38;5;241m=\u001b[39m \u001b[43mcall\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_strategy_hook\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrainer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpredict_step\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mstep_args\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m predictions \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 255\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_warning_cache\u001b[38;5;241m.\u001b[39mwarn(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpredict returned None if it was on purpose, ignore this warning...\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py:309\u001b[0m, in \u001b[0;36m_call_strategy_hook\u001b[0;34m(trainer, hook_name, *args, **kwargs)\u001b[0m\n\u001b[1;32m 306\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 308\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m trainer\u001b[38;5;241m.\u001b[39mprofiler\u001b[38;5;241m.\u001b[39mprofile(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m[Strategy]\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtrainer\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mhook_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m--> 309\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 311\u001b[0m \u001b[38;5;66;03m# restore current_fx when nested context\u001b[39;00m\n\u001b[1;32m 312\u001b[0m pl_module\u001b[38;5;241m.\u001b[39m_current_fx_name \u001b[38;5;241m=\u001b[39m prev_fx_name\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/pytorch_lightning/strategies/strategy.py:438\u001b[0m, in \u001b[0;36mStrategy.predict_step\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 436\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel \u001b[38;5;241m!=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlightning_module:\n\u001b[1;32m 437\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_redirection(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmodel, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlightning_module, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpredict_step\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m--> 438\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlightning_module\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict_step\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/darts/models/forecasting/pl_forecasting_module.py:292\u001b[0m, in \u001b[0;36mPLForecastingModule.predict_step\u001b[0;34m(self, batch, batch_idx, dataloader_idx)\u001b[0m\n\u001b[1;32m 286\u001b[0m input_data_tuple_samples \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sample_tiling(\n\u001b[1;32m 287\u001b[0m input_data_tuple, batch_sample_size\n\u001b[1;32m 288\u001b[0m )\n\u001b[1;32m 290\u001b[0m \u001b[38;5;66;03m# get predictions for 1 whole batch (can include predictions of multiple series\u001b[39;00m\n\u001b[1;32m 291\u001b[0m \u001b[38;5;66;03m# and for multiple samples if a probabilistic forecast is produced)\u001b[39;00m\n\u001b[0;32m--> 292\u001b[0m batch_prediction \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_batch_prediction\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 293\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpred_n\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minput_data_tuple_samples\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpred_roll_size\u001b[49m\n\u001b[1;32m 294\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 296\u001b[0m \u001b[38;5;66;03m# reshape from 3d tensor (num_series x batch_sample_size, ...)\u001b[39;00m\n\u001b[1;32m 297\u001b[0m \u001b[38;5;66;03m# into 4d tensor (batch_sample_size, num_series, ...), where dim 0 represents the samples\u001b[39;00m\n\u001b[1;32m 298\u001b[0m out_shape \u001b[38;5;241m=\u001b[39m batch_prediction\u001b[38;5;241m.\u001b[39mshape\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/darts/models/forecasting/pl_forecasting_module.py:678\u001b[0m, in \u001b[0;36mPLPastCovariatesModule._get_batch_prediction\u001b[0;34m(self, n, input_batch, roll_size)\u001b[0m\n\u001b[1;32m 673\u001b[0m input_past[:, :, n_targets : n_targets \u001b[38;5;241m+\u001b[39m n_past_covs] \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 674\u001b[0m future_past_covariates[:, left_past:right_past, :]\n\u001b[1;32m 675\u001b[0m )\n\u001b[1;32m 677\u001b[0m \u001b[38;5;66;03m# take only last part of the output sequence where needed\u001b[39;00m\n\u001b[0;32m--> 678\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_produce_predict_output\u001b[49m\u001b[43m(\u001b[49m\u001b[43mx\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43minput_past\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstatic_covariates\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m[\n\u001b[1;32m 679\u001b[0m :, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfirst_prediction_index :, :\n\u001b[1;32m 680\u001b[0m ]\n\u001b[1;32m 682\u001b[0m batch_prediction\u001b[38;5;241m.\u001b[39mappend(out)\n\u001b[1;32m 683\u001b[0m prediction_length \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moutput_chunk_length\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/darts/models/forecasting/pl_forecasting_module.py:480\u001b[0m, in \u001b[0;36mPLForecastingModule._produce_predict_output\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 478\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlikelihood\u001b[38;5;241m.\u001b[39mpredict_likelihood_parameters(output)\n\u001b[1;32m 479\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 480\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlikelihood\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample\u001b[49m\u001b[43m(\u001b[49m\u001b[43moutput\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 481\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 482\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m(x)\u001b[38;5;241m.\u001b[39msqueeze(dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/darts/utils/likelihood_models.py:1051\u001b[0m, in \u001b[0;36mLaplaceLikelihood.sample\u001b[0;34m(self, model_output)\u001b[0m\n\u001b[1;32m 1049\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msample\u001b[39m(\u001b[38;5;28mself\u001b[39m, model_output) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m torch\u001b[38;5;241m.\u001b[39mTensor:\n\u001b[1;32m 1050\u001b[0m mu, b \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_params_from_output(model_output)\n\u001b[0;32m-> 1051\u001b[0m distr \u001b[38;5;241m=\u001b[39m \u001b[43m_Laplace\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmu\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mb\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1052\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m distr\u001b[38;5;241m.\u001b[39msample()\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/torch/distributions/laplace.py:52\u001b[0m, in \u001b[0;36mLaplace.__init__\u001b[0;34m(self, loc, scale, validate_args)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 51\u001b[0m batch_shape \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mloc\u001b[38;5;241m.\u001b[39msize()\n\u001b[0;32m---> 52\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mbatch_shape\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalidate_args\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mvalidate_args\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/miniconda3/envs/darts310/lib/python3.10/site-packages/torch/distributions/distribution.py:68\u001b[0m, in \u001b[0;36mDistribution.__init__\u001b[0;34m(self, batch_shape, event_shape, validate_args)\u001b[0m\n\u001b[1;32m 66\u001b[0m valid \u001b[38;5;241m=\u001b[39m constraint\u001b[38;5;241m.\u001b[39mcheck(value)\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m valid\u001b[38;5;241m.\u001b[39mall():\n\u001b[0;32m---> 68\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 69\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpected parameter \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mparam\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 70\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m(\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtype\u001b[39m(value)\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m of shape \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mtuple\u001b[39m(value\u001b[38;5;241m.\u001b[39mshape)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m) \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 71\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mof distribution \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mrepr\u001b[39m(\u001b[38;5;28mself\u001b[39m)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mto satisfy the constraint \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mrepr\u001b[39m(constraint)\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 73\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mbut found invalid values:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mvalue\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 74\u001b[0m )\n\u001b[1;32m 75\u001b[0m \u001b[38;5;28msuper\u001b[39m()\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__init__\u001b[39m()\n", + "\u001b[0;31mValueError\u001b[0m: Expected parameter scale (Tensor of shape (32, 24, 1)) of distribution Laplace(loc: torch.Size([32, 24, 1]), scale: torch.Size([32, 24, 1])) to satisfy the constraint GreaterThan(lower_bound=0.0), but found invalid values:\ntensor([[[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.5466e+02],\n [0.0000e+00],\n [4.6437e+02],\n [7.5609e+02],\n [3.2690e+02],\n [0.0000e+00],\n [3.2321e+02],\n [1.1282e+03],\n [2.8581e+03],\n [3.9684e+03],\n [8.2819e+03],\n [2.1521e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.2196e+02],\n [2.9085e+02],\n [1.4671e+02],\n [4.2493e+02],\n [1.8432e+03],\n [5.2108e+02],\n [1.8184e+02],\n [2.8255e+02],\n [4.0458e+03],\n [1.3649e+03],\n [5.2962e+03],\n [3.4843e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.6621e+02],\n [9.4351e+01],\n [5.9659e+02],\n [0.0000e+00],\n [0.0000e+00],\n [3.0769e+02],\n [0.0000e+00],\n [2.4108e+02],\n [0.0000e+00],\n [3.4435e+02],\n [0.0000e+00],\n [9.6189e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [6.2573e+02],\n [1.9478e+01],\n [0.0000e+00],\n [2.6027e+02],\n [7.2585e+03],\n [8.6589e+03],\n [1.2641e+04],\n [1.2864e+04],\n [2.2555e+04],\n [2.1138e+04],\n [2.4303e+04],\n [1.9105e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.0673e+02],\n [0.0000e+00],\n [4.7850e+02],\n [1.6997e+02],\n [2.0591e+03],\n [6.3764e+01],\n [0.0000e+00],\n [0.0000e+00],\n [1.4656e+04],\n [3.9371e+04],\n [4.8098e+04],\n [8.9642e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.1685e+02],\n [6.7294e+01],\n [1.8114e+02],\n [7.7117e+01],\n [4.1540e+03],\n [1.0585e+03],\n [4.6140e+03],\n [2.0682e+02],\n [9.2396e+03],\n [1.0781e+03],\n [6.3496e+03],\n [0.0000e+00]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.2792e+02],\n [3.4131e+02],\n [2.9428e+02],\n [2.8990e+02],\n [9.5690e+02],\n [2.9681e+03],\n [3.5354e+03],\n [2.1584e+03],\n [1.3484e+03],\n [7.0866e+03],\n [4.9625e+03],\n [4.5635e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.9794e+02],\n [6.3204e+02],\n [0.0000e+00],\n [0.0000e+00],\n [3.6342e+03],\n [1.5193e+04],\n [1.7998e+04],\n [3.3042e+04],\n [3.7157e+04],\n [5.3951e+04],\n [5.3066e+04],\n [6.3337e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.8738e+02],\n [5.9231e+02],\n [1.2937e+02],\n [0.0000e+00],\n [8.7417e+02],\n [4.4924e+03],\n [7.7686e+03],\n [5.2749e+03],\n [1.1464e+04],\n [7.3656e+03],\n [1.5769e+04],\n [5.8549e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.2412e+02],\n [5.9308e+01],\n [0.0000e+00],\n [7.0189e+02],\n [4.2594e+03],\n [1.7311e+03],\n [3.6755e+03],\n [5.0991e+03],\n [9.1981e+03],\n [4.6576e+03],\n [7.5442e+03],\n [1.0303e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [0.0000e+00],\n [2.2418e+02],\n [7.0614e+02],\n [3.5272e+02],\n [0.0000e+00],\n [0.0000e+00],\n [1.7541e+02],\n [7.4891e+01],\n [5.0964e+03],\n [0.0000e+00],\n [1.0632e+04],\n [1.6849e+02]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.4644e+02],\n [6.0210e+02],\n [2.9503e+02],\n [6.2108e+02],\n [3.4425e+02],\n [2.4112e+03],\n [1.8081e+02],\n [5.3398e+03],\n [3.0440e+03],\n [5.6225e+03],\n [7.2210e+03],\n [7.2862e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.1805e+02],\n [4.2366e+01],\n [5.6576e+02],\n [5.2030e+02],\n [4.2446e+03],\n [0.0000e+00],\n [8.7383e+03],\n [2.5814e+03],\n [2.0124e+04],\n [1.0774e+04],\n [4.8236e+04],\n [3.5690e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.8773e+02],\n [2.1789e+02],\n [4.3082e+02],\n [3.2359e+02],\n [4.0239e+02],\n [2.4006e+02],\n [8.2602e+01],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00],\n [1.8908e+03],\n [8.6257e+02]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.5584e+02],\n [1.1363e+03],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00],\n [1.8747e+04],\n [4.2485e+03],\n [2.7998e+04],\n [3.0196e+03],\n [4.8885e+04],\n [5.8029e+03],\n [4.8085e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.0141e+02],\n [2.3429e+02],\n [8.7342e+02],\n [0.0000e+00],\n [8.6362e+02],\n [7.0546e+02],\n [7.8284e+03],\n [2.4537e+03],\n [1.5170e+04],\n [1.7069e+04],\n [1.8793e+04],\n [2.3392e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [4.7611e+02],\n [3.5129e+02],\n [1.8447e+02],\n [0.0000e+00],\n [1.5156e+03],\n [6.0635e+03],\n [1.2944e+04],\n [2.0738e+04],\n [1.6236e+04],\n [2.7564e+04],\n [2.1402e+04],\n [3.6097e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [0.0000e+00],\n [4.1882e+00],\n [6.6243e+00],\n [0.0000e+00],\n [4.2323e-04],\n [0.0000e+00],\n [0.0000e+00],\n [3.9317e+01],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.8740e+02],\n [5.7409e+02],\n [3.1118e+02],\n [4.6254e+02],\n [4.6531e+02],\n [2.5792e+03],\n [5.5729e+02],\n [4.7599e+03],\n [6.3608e+03],\n [6.3185e+03],\n [9.6536e+03],\n [6.8044e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.8756e+02],\n [4.2308e+02],\n [2.3249e+02],\n [2.0505e+02],\n [9.1562e+02],\n [1.4755e+03],\n [5.3977e+02],\n [4.2784e+02],\n [1.1924e+03],\n [1.4245e+03],\n [3.7625e+03],\n [6.6584e+02]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.8670e+02],\n [1.3137e+02],\n [5.9928e+02],\n [3.8858e+02],\n [5.2856e+02],\n [0.0000e+00],\n [2.4692e+02],\n [1.6345e+02],\n [6.7857e+03],\n [0.0000e+00],\n [4.9448e+03],\n [1.6755e+02]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.1253e+02],\n [2.0230e+02],\n [8.7402e+00],\n [0.0000e+00],\n [4.2190e+03],\n [4.5460e+03],\n [6.9655e+03],\n [4.3069e+03],\n [1.0163e+04],\n [5.1115e+03],\n [1.3262e+04],\n [2.0912e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.1422e+02],\n [2.6167e+02],\n [0.0000e+00],\n [5.9992e+02],\n [3.1619e+03],\n [7.3641e+03],\n [8.3763e+03],\n [1.9238e+04],\n [1.0471e+04],\n [2.9842e+04],\n [1.2521e+04],\n [3.7745e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.4059e+02],\n [5.0451e+02],\n [0.0000e+00],\n [1.0669e+02],\n [4.7835e+02],\n [1.7370e+03],\n [0.0000e+00],\n [2.0056e+02],\n [1.6877e+02],\n [1.5789e+03],\n [8.3318e+01],\n [0.0000e+00]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [3.7563e+02],\n [3.7193e+02],\n [4.0011e+02],\n [5.6188e+02],\n [6.5350e+02],\n [0.0000e+00],\n [5.6529e+02],\n [1.0223e+03],\n [1.6954e+03],\n [0.0000e+00],\n [6.2738e+03],\n [6.0970e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.7755e+02],\n [9.4972e+01],\n [1.3695e+00],\n [1.9749e+02],\n [4.7334e+03],\n [8.4419e+03],\n [1.4042e+04],\n [1.6364e+04],\n [1.7950e+04],\n [3.9612e+04],\n [2.3361e+04],\n [4.9177e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.3864e+02],\n [1.3122e-04],\n [1.5656e+02],\n [4.4812e+02],\n [4.3967e+03],\n [2.1135e+02],\n [4.8541e+03],\n [0.0000e+00],\n [7.9736e+03],\n [5.3526e+02],\n [5.9979e+03],\n [0.0000e+00]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.8944e+02],\n [7.1204e+02],\n [1.1715e+02],\n [0.0000e+00],\n [0.0000e+00],\n [7.1381e+03],\n [6.9366e+03],\n [1.4242e+04],\n [6.5499e+03],\n [2.5540e+04],\n [1.8810e+04],\n [3.7684e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.3328e+02],\n [2.7684e+02],\n [5.5600e+02],\n [5.2213e+02],\n [6.6743e+01],\n [1.7771e+01],\n [1.4544e+02],\n [1.0106e+03],\n [3.4816e+03],\n [2.7806e+03],\n [4.9556e+03],\n [1.0809e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.9472e+02],\n [0.0000e+00],\n [4.8687e+02],\n [3.7346e+02],\n [4.9578e-07],\n [2.0248e+02],\n [5.1683e+02],\n [4.9718e+02],\n [0.0000e+00],\n [0.0000e+00],\n [0.0000e+00],\n [9.4098e+03]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [2.1485e+02],\n [3.6214e+02],\n [5.5538e+02],\n [4.7417e+02],\n [1.2258e+02],\n [0.0000e+00],\n [1.2590e+03],\n [1.3526e+02],\n [2.0405e+03],\n [0.0000e+00],\n [1.7554e+04],\n [1.7065e+04]],\n\n [[1.0175e+00],\n [3.7658e-01],\n [2.3018e-01],\n [2.9205e-01],\n [2.3816e+01],\n [3.4126e+01],\n [7.2803e+01],\n [8.8747e+01],\n [1.5841e+02],\n [1.8664e+02],\n [2.5827e+02],\n [2.8993e+02],\n [5.2569e+02],\n [1.1581e+02],\n [5.3897e+02],\n [0.0000e+00],\n [3.6477e+03],\n [3.4733e+03],\n [1.8417e+04],\n [1.3479e+04],\n [2.8909e+04],\n [1.9235e+04],\n [5.3059e+04],\n [3.4125e+04]]], device='mps:0')" + ] } ], "source": [ @@ -2250,54 +2476,9 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: False, used: False\n", - "TPU available: False, using: 0 TPU cores\n", - "IPU available: False, using: 0 IPUs\n", - "HPU available: False, using: 0 HPUs\n", - "\n", - " | Name | Type | Params\n", - "----------------------------------------------------\n", - "0 | criterion | MSELoss | 0 \n", - "1 | train_metrics | MetricCollection | 0 \n", - "2 | val_metrics | MetricCollection | 0 \n", - "3 | dropout | MonteCarloDropout | 0 \n", - "4 | res_blocks | ModuleList | 166 \n", - "----------------------------------------------------\n", - "166 Trainable params\n", - "0 Non-trainable params\n", - "166 Total params\n", - "0.001 Total estimated model params size (MB)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f496f739ecc945428729b72519bb5a76", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Training: 0it [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "`Trainer.fit` stopped: `max_epochs=400` reached.\n" - ] - } - ], + "outputs": [], "source": [ "model = TCNModel(\n", " input_chunk_length=24,\n", @@ -2311,46 +2492,9 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: False, used: False\n", - "TPU available: False, using: 0 TPU cores\n", - "IPU available: False, using: 0 IPUs\n", - "HPU available: False, using: 0 HPUs\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "cba279282c064f62b654037198473a03", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Predicting: 0it [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEPCAYAAABShj9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABfhUlEQVR4nO2dd3ib1dn/P48k773imdiJs0MWeQKEQBIChBX2Hr+GUWbT8tIWQpllFF6gtH0ZLVBmaaFsCqSEEWZIQngyyCJ7207ivWWt8/vj6JElT9mWbcU5n+vyJfsZR+dY9le37nMPTQiBQqFQKA59LP09AYVCoVCEBiXoCoVCMUBQgq5QKBQDBCXoCoVCMUBQgq5QKBQDBCXoCoVCMUDoT0EX4f61f//+fp+DWotay6HypdbSZ1/toiz0DnC73f09hZCh1hKeqLWEJ4fqWpSgKxQKxQBBCbpCoVAMEJSgKxQKxQBBCbpCoVAMEJSgKxQKxQBBCbpCoVAMEJSgKxQKxQBBCXoHPPzww3z55Ze8//77PPzwwwBceeWVDB06lEmTJnHkkUeybNmyfp6lQqEIBzyeDnN++gQl6B2wevVqjjnmGL7++mtmzJjhO/7YY4+xZs0a/vd//5frr7++H2fYfVwuV39PQaEYMDhdgk9/EFTU9K+oK0Fvg1tvvZUJEybw448/Mm3aNJ5//nluvPFG7r///oDrZsyYwbZt26irq+PEE0/kyCOPZPz48fznP/8BoL6+njPOOIOJEydyxBFH8MYbbwBw++23M3bsWCZMmMBvf/tbAEpLSzn//POZOnUqU6dO5bvvvgPg97//PVdffTWzZs1i2LBhPPHEE77nf+CBBxg1ahTHHXccl156KX/84x8B2L59O6eeeipTpkzh+OOPZ9OmTYD8dHHDDTdw9NFHc9ttt/H1118zadIkJk2axOTJk6mtre3dX6xCMUCpa4SDlbB4paCqth9FXQjRX19hzYoVK8SVV14pHA6HOPbYY33H582bJ9566y0hhBBvvvmmOOqoo4TT6RTV1dVCCCFKS0tFYWGh8Hg84u233xY///nPffdWVVWJsrIyMXLkSOHxeIQQQlRWVgohhLj00kvFt99+K4QQYvfu3WL06NFCCCHuvfdeMW3aNGG320VpaalITU0VDodDrFixQkycOFE0NjaKmpoaMXz4cPHYY48JIYSYPXu22LJlixBCiOXLl4sTTjhB7Nu3T8ybN0+cccYZwuVyCSGEmDt3rliyZIkQQoja2lrhdDp75XcZavbt29ffUwgZai3hSVfXsveAR7z+uVt8uMQt3vvGLRxOTy/NTAjRga7a+u+tpGM0TeuVcUWQPVRXrVrF2LFj2bRpE2PGjAk4d+utt/Lggw+SkZHBCy+8gBCCO+64g2+++QaLxUJRUREHDhxg/Pjx/OY3v2HBggXMnTuX448/HpfLRXR0NNdccw1z585l7ty5AHz++eds3LjR9xw1NTXU1dUBcMYZZxAVFUVUVBSDBg3iwIEDfPfdd5x99tlER0cTHR3NmWeeCUBdXR1Lly7lwgsv9I3V1NTk+/7CCy/EarUCMH36dH79619z+eWXc95555GXl9eN36hCoaioEdisEB+rcaBCYHdARD+oa9gKen+xZs0arrzySvbt20dycjJPPvkkQggmTZrk2wB97LHHuOCCC3z3vPzyy5SWlrJy5UoiIiIoKCjAbrczcuRIVq1axX//+1/uuusuTjzxRO655x5WrFjB4sWLefvtt3nqqaf44osv8Hg8LF++nOjo6FZzioqK8n1vtVo79H97PB6Sk5NZs2ZNwPGioiIA4uLifMduv/12zjjjDP773/8yffp0PvnkE0aPHt2t35tCcThTWg0xzf+mNDkgIbbv5xG2PvSOPlb05KszJk2axJo1axg5ciRffvkls2fP5pNPPmHNmjXExMS0eU91dTWDBg0iIiKCL7/8kt27dwNQXFxMbGwsV1xxBbfeeiurVq2irq6O6upqTj/9dP785z/z448/AjBnzhyefPJJ35gtBbkl06dP58MPP8Rut1NXV8dHH30EQGJiIkOHDuWtt97y/R7N52jJ9u3bGT9+PAsWLGDq1Kk+X7tCoQgeIQQVNRAdKX/2CHD0U8yBstDboLS0lJSUFCwWC5s2bWLs2LEdXn/55Zdz5plnMn78eHRd91m569at49Zbb8VisRAREcHf/vY3amtrOfvss7Hb7Qgh+NOf/gTAE088wS9+8QsmTJiAy+VixowZPPPMM+0+59SpUznrrLOYMGECmZmZjB8/nqSkJAD+9a9/ceONN/Lggw/idDq55JJLuOaaa1qN8Ze//IUvv/wSi8XCuHHjOO2007r7K1MoDlsa7OD2gNUi3cSaBk0OAfSO27gjtGB9yr1A/wdtdkJRURG5ubn9PY12qaurIz4+noaGBmbMmMFzzz3HkUce2ea14b6WrqDWEp4crms5WCn4YqUgK00KeGmVYEw+HDGs1xwg7b5TKAv9EOa6665j48aN2O125s2b166YKxSK3qOmXgRIbKRNWu39gRL0Q5jXXnutv6egUBz2lFZBTGTzzzYb1PeToIftpqhCoVAcCpS3iHCJsEJ9Y//MRQm6QqFQdBOnS1DXCJERzT4XmxUamjq4qRdRgq5QKBTdpMnR+pjFouH2SLHvazr1oeu6Pg142PtjDrAQeAd4FPAANxqGsU7X9SzgH0Ac8DfDMP7ZO1NWKBSK8MDllmGKLdE0cDj7Plu0UwvdMIxlhmHMMgxjFrAUeB/4A3AGcBnwiPfSBUiRnwn8Qtf11imPhxiqfK5CoegIpxvaivzW6J/koqBdLrquRwJHAQbgNgyj0jCMPUCq95KjgC8Mw3B5rzki1JPta1T5XIVC0REuF21GhQvadsf0Nl35QHASsBhIAmr8jru8Yh9hGIbHe6yaZqH3oev6dcB1APPnz+fkk0/u1qR7mwceeICvv/6avXv3ous6u3fvZtGiRZxxxhk0NDRQXl5OUVERhYWFbN26lS1btnD11VdTXV2N0+nktttu45RTTqGhoYEbbriBkpISPB4PN998M2eddRYPPfQQn332GVarlZkzZ3L33XdTXl7O7bffTnFxMSDL5k6dOpXHH3+c4uJidu/eTXFxMddcc40v6/Mvf/kL7777LmlpaeTk5DB+/HhuuOEGdu3axZ133klFRQUxMTE8+uij5Ofnc9FFFxEVFcX69euZOnUqc+bM4d577wVkMbR33nmH+Pj4fvu9B4vT6fTVpjnUUWsJT4Jdi8MF43Jau1bSoqGxDop6IXyxw4SnYGugTJky5aUpU6bMmDJlSuyUKVO+8Du+3Pv43ZQpUyze75+cMmWK3smYYY0qnxu+HM5lWsOZw3EtW/e6xb8/d4svV3kCvt5Y7BY/7XL31vR6Vj5X1/UIYCpwjWEYHl3XbbquJwMJQIX3sh+AWbqufwNMAW7rwZsQ2gxP5xd1A/FNcF4mVT5XoVB0RqMDvP9OAdis/ZNcFKzL5SSkf9xU2buA/yJdRTd5jz2CjHJ5EHjGMIx+Cq3vGap8riqfq1AEi70JrG3YiJE2aOgHBQxK0A3D+Bj42O/nb4BjW1xTAoTMKR6sJR1qzPK5xx57LG+88QZ33303t912W4cVFzsqn5uamsoVV1xBcnIyzz//PHV1dTQ0NHD66aczffp0hg0bBjSXz7311lsB+cYyadKkdp9z+vTpXH/99fzud7/D5XLx0Ucfcd111wWUz73wwgsRQrB27VrS09NbjWGWzx0/fjw//PADmzZtUoKuUHSBJqe0xltis0F9PyQXqVoubaDK5yoUimBoaaHvLBZU1cOEYVBV1/fzUeVzOyDcy4Gq8rmHPmot4Umwa1m41EOETVrpb3wJz38ECHjrfmm9X3SChtUa8rroqnzuQESVz1Uo+he7Q3Yq+sOr8MWq5uOlVZAUJ8MaY9pwyfQWStAPYVT5XIWi/xBC4HRBTYMU8wgbpCdBSTlU1kJSvEz/96/E2Nuo4lwKhULRDZzeYLODlfJxSCYcIWMcpP+8H3qLKkFXKBSKbuByA1qzoA9KhhRvonWld0PUqQRdoVAoQse6HR5WbvLgCnE5W5db7k4erJI/ZyRDcoL8vqoW8FZc7EuUD12hUAxo9pdLv3Z5reC48RAbHZqoE6dLhuqZFnpmCiR78/aq6mQ4Y0OToIOglJCjLHSFQjFgEUJQWQt5GVBWBXsOhM5Kd7nlo89CT/Gz0OtkKGNjHycXKQtdoVAMWBqbwCNkF6HoSBHS+iqmf7zUz4ceFSG/r6z1tqLr43ouStAVCsWAxV/AI2yhFVjTQj/g53IxvSs+C72Pa6IrQVcoFAOW+kbhy0kPdfPmxiY5dkWNbDmXntws8lW10ofe1y4X5UNXKBQDlopaiPS6QSJsoRVYuwOq66VLJzUBbFaN6EiN6EjZms7hktf0ZXkVJegKhWLAUl4tU/NBWsz2JvB4QiOwTU75hgEwKKX5eIp3Y7S6DjyeZqu9L1CCrlAoBiRmhEuUV9A1TUMQumSfxibpboFAQU/2Sy7StL5NLlKCrlAoBiRmhIvV0hwHbtFCl47f5GwW9Izk5uMpfslFGn2bXKQEXaFQDEga7LRZpDtUAmt3QFm1/D6zHQtdCOlP7yuUoCsUigFJXWNrNQ+ly6XJ2Szo/ha6KejV/VDPRQm6QqEYkPhHuJgIT/dcLm63CIhWcbkEQsi65wAf/Osu/vfeqxBCNFvo/VDPRcWhKxSKAUlNfWtBt1qhwd71+ipb9go0DUbny/taJhWt+uZFcB7gtLOuIjnheKB/6rkoC12hUAxIGptaN3DubnJRTT38uA2aHNJKd7ql5V1TD1aLAOdBAN7855+aS+jW9n09FyXoCoViQNKWoEfYoL6x62PVN8kyAjuKpaC73M0RLkmxTZi7r8u++ZCmut1Ac/p/X9ZzCcrlouv6LOBu5BvAE0Ap8CjgAW40DGOdrutZwD+AOOBvhmH8s1dmrFAoFJ0ghMDhlC4Pf7pbX6W+EbJSYd0OSEsSrNnaXOgrxtYQ8LzfLHoO+EO/1HPp1ELXdT0G+A1wmmEYJxiG8R7wB+AM4DLgEe+lC5AiPxP4ha7r0b0zZYVCoegYs1a5pgX6rrtToEsIQUOTzDj1eOBzQ9DYJGPaASK0egDGTZgGwJf//Ssgo1wsWvi5XKYBjcCHuq6/p+t6NuA2DKPSMIw9QKr3uqOALwzDcAEGcESvzFihUCg6wekK3Ibce1Dw4kJBRY1M/+9KfRWnS0bHWCwamamQmQpJ8RrVXsPcKmTs4sQpM8gZPAqnvYbYKBceIcW8L+u5BONyyQSGA8cAJwH3ATV+5126rkcCEYZheLzHqmkWeoVCoehTzNhvj0fw/hJ47gMZN+72wJnT5YamWRKgM/zDDjVNw+p9p6ip9x5zVQAQG59OYlI6xXs3ExvpoKHJRlW9rJHucstPB71NME9RBXxnGIZD1/XFSEGv9R/De86p67rFK+pJQEXLgXRdvw64DmD+/PmcfPLJPV5Ab+J0OikqKurvaYQEtZbwRK2ld3C5YVwuvPJZHE++k+g7XlffwBG51Rw8AJYO/BP+a3F7x2opyB5nAhCP1VUCQH62jZ1ZsWxaD4lRNZTVxmJxlXPEUAf79ze7aHpKbm5uu+eCEfQfgN/ouq4Bk4CNwFBd15OBBJqF+wdglq7r3wBTgNtaDmQYxnPAc94f+66mZDcpKirq8Jd3KKHWEp6otfQOxWWC9VsEX62VPx83Hpasg+KKWDYUxXLyVI3UxPYV1n8tJWWCDVsFWamB1xdXSgmz15cB0EAhed57PG4ZSrO9NI2oWDjlKI3khN6PRe9U0A3DKNN1/T3ga6QIXw3kAv/1/nyT99JHkFEuDwLPGIbRjeAghUKh6DlOl6x0uN9rbs6cJAW9okaKVleyNx0u2jQ/a7w+dEe9tOQzMzNwlKcBECGqAO/z9WE9l6C8OoZhPA087XdoO3Bsi2tKgPD2oSgUisOCxiaBRnMm59gC+VhR2/X0/3q7wGptfdz0oTfW7gUgc1A69fvl1qHFLa12M/2/yS900eUSOFwQGx16i10lFikUigFHY5MUXJcbUuJlZIpFkx2GBN72cUFS39j2hma1V9AbqnYAkJmZTlqatNBxHACkoFstUF3f/HwHKmHbvt7xOCtBVygUA45Gv9K2WWmyJnpSnHR/NNgDm0d3Rr29dcYpNFvojvoibBGRDEpPIDVVWugeu3TDVNbK+PWK6ub7qutFr7lglKArFIoBR2MTlHuDq7O8AdQp3mCXOnvX0v/rGyGiLUE3E0Sd5SQkphMbpfksdEe9dMOYHZMq6prvK6+m11CCrlAo+g2Xq3dcD/YmOOj1n2d7vSCpXkGvbYC6Lgh6QxPYWrhc7A5ZWsBm9YCngYSkdKIi/QS9VrphKmog0qbRaAend60VtfQaStAVCkW/UNcg+HCpYO12D/Yu+LSDodEBB6vk95leCz3V2xqupj54l4vLJXC7A9vYmWMAxEbK3c7EpAwibPhcLvbqbYC00IWQpXcbvKJe10CvoQRdoVD0C/V2af1u2g2fGSJk6fEej8DlhgPekEXT5WJa6FV1crM0mE8HTU7aLGVuCnq0Vb4zJCSlEWnDZ6HXVe8jJlL6yusbZW/TBq+rpzeLdSlBVygU/UJtg8BmhUEpGvX20HX2MdP+zRh0n8vFa6GbZW+DCV1sLwbdjHCJsEjneEJSOhE2iI2NJTo6GqejicS4ZheLRYOaBlnkqzc7GClBVygU/UJFraxzAtIIbgqhoHs8fi6XFNi5fQOLP/yL73kRHT9fXSNs2+eR4tuWhW4W5vLIHc6EpAwivX520+0SHy2foLIWoqPkG0l1nWgzYiZUKEFXKBT9QkVNs6ALQijobhnh4vFAehJoOLn/9kvYvPpD3/O2TPZpicsNyzdCSTltZ4mahbnc8mNAUnI6NptUftPtEm2TO6+VtRAdIR/La2QYY2+hBF2hUPQ5Ho+guq5Z0KFjge0KThcc9LpbMlPhtRcfZtf2DeDYD3izN0X7Lhe3W+AR0kWzaY9os4iX6XLxOGRGqC+hiGYLPcrrjjGbVdc0yNh4JegKhWJA0dgkDV+LN3rEopnNm3uO0wWl3ljvhMgq/vnCQ94TMnuzokY2i65rbPv5zE8KsdEa8dGQHN/6GtNCdzXKN4mMjHTfOVPcIzQ5icpab6MNb3303iyjqwRdoVD0OQ3NbTgBKXK1ISrn1+QUlFbJ70t3L8HlcjJi9GRwVaIJJ/V26Y5pLxa9ydnsNo+P1YiMaO1E988SBcgclOE7Zwq61V0OeD8ReNF6ueCiEnSFQtHn1DUEWscRtq4l+5g4XYLtRZ6AY41NzWn/ztotAMyZ+zMALO5SQL55tJctKjsadfy8pqDbvYW5sjObLXTT5aK55HP5BF3rfNyeogRdoVD0OZV10q9sEmmjWwk39Y3wwyYorWpWysam5vR6R81mAAqGjQVAeP3odQ0dCLpDtBnZ4o/Zfs4szJWd2exDNy10j70YaM4MTU+CtKTg1tVdlKArFIo+p6LF5qDNKmusdDW5yOmWCTvGJoHHI+9tbGoOK6yvkBZ6/tAxQHPRrJoGqG+nt2hNfad67rPQhaOUmNhEkhKjfedMC93V4K3nUmOuUSPS1rs+FyXoCoWiTxFCUFkX2NPTYtFkI4gu1CkHmaQTGyXdGrv3ewXd0Sy4tRVb0TSNyJhMYuOToEla6FW10o/e1vPVNnbeLs4cH2c5CUnpAZ82TAvd3bAb8NZgD6Mm0QqFQhEy7A7ZrNnpgnW7BT/tgYIsGJYtNyT9xbEzHE7pHklPlB2JftzuoapOFuACwFlKUnI6dQ4baalpNDiloJvZm209X20DpEXTLm63oK4RNATCVUVq+hEBkSumoNvrionOkOutt0N8TPDr6i5K0BUKRZ/S2CR92Dc+LuuqgBTVFxbIWPSE2ODHqrfLBhKRERq56TJ+3OWStVNio1w0CBcJyZmMyINBGWnsLfYKupn+3yKZSQivWHdgoZvROFG2Jux4SB+U58sShWaXS11NOclDZQmCytq+EXTlclEoFH1KkwN27ZdinhQnfekOp/y5q9mi/nHdFouGzar5KinGRjQBkJSSSWGORnp6mq+TUHmNFP2Wz+d0ySxRf9ZuF/zmacHmvdJtYrpbIi3ym9SMwW1a6LU1FSTFyWP+oYu9iRJ0hULRpzhc3pR64NgjYEim/L6qtmut4cBbq7yFiplWf5RVCm5SSiZREXgFvQSQFrqmeSNa/Ghytvaff7ICVm2BO5+T0TRmlqjFW8clrYWgmxZ6TXWFr0BXXwm6crkoFIo+pd4ufM0ncjNkGv2WvfKxtouhiw321s0nTEGPQApuUnIm0ZFey9nxLSDj1G3W1qGLdkfrWHFTwMtr4PZn/Sx4p4wzz8zO82W8AkRGRhIfH09dXR1xUQ4gyhcX39soC12hUPQpdQ2yUTJAXoaMzwbpyuhqLHpjU+t+n9VeQde8mZqpaZnYbN5uQg6/TVFL62SmJgetYhbN8aIiYEcx7DkAOWkQXf60XEPe4FbzMt0usRHy3cDMXO1tlKArFIo+pd7e7HLJ9RP0qjoZix4sHo/ZBi5QgU2LWjRJCzorW/p00tLSQDiI0GrxeALj1U3qGkUrl4s53u+ukC6i+efBy3dA7V5ZvTE3t7Wgm26XGEsV0HeC3qnLRdf1AuAHYIP30IXALOAWoBGYZxjGPl3XRwPPece82zCMxb0xYYVCcWhTU9/cTSg3HazuA0AmlbVdS/93umgzA8h0ubgaZaZmjr+gAxGiAicJ1NbL5s+yRZwcqLahdRijKegTh8PMSfK6+roa6utqiIyKISMjtdUcmp+rFBgWdhb614ZhzDIMYxZQCfwaKer3AHd7r3kIuAY4Fbg/tNNUKBQDASEEew/KDM/0JGisPcArT90IQFm17N/pDLJxtMPVdkanKehNdXsAGJwbKOgW10FAlh/wCOk3N6lpCKyG6PYIahvkBmqCX9jhwQMyCzR90GBio1rPIj8/HwBn3VZ5fVVQS+oxwQr6dF3Xv9V1/SFgBPCTYRgOwzC+AyZ4r8kxDGOrYRg1QIWu6+ntjqZQKA5LXG4oliXEyc2A1176Xxw1sqFyaZXHG3kS3FjtZZWaPm+zzkr+4CygWdBFk7Tcy6sBb69Pk7rGQEGvbZCbpAkxYPVz7ZTul4KeljE4IOPVZOTIkQDUlK4FoKwKX2mC3iSYKJcSYDjQAPwdOA+o8Ttvbkn4vzlUA6lAmf9Auq5fB1wHMH/+fE4++eTuzbqPcDqdFBUV9fc0QoJaS3hyuK3F4wFNxAJJ5CWX8eHTz4JHZhJVVAvG5ZZQUQY1QbRpc7pgbE7r+uL1jelABPWV29E0jdQEOS+n0xt03rQL4qCpsZZxuXXUVoG9Tgr3sDQ5XoTVSVZ8MfU1NiCD1AQXWfGlvuewV60DYNiQNKIpoeWyzTePxrJVpMS7qayzYvMcINIiqKiIICfBRVGLKpHBkpub2+65TgXdMIwmoAlA1/V3gSuBOr9LzCAe/9klARVtjPUc0s8ObTZ2Ci+Kioo6/OUdSqi1hCeH21oqagSrt8t//Z2bluBweOXF3UiDI4YfdmRz6lEa2emdF7Hae0CwYasgKy3w2rIar7Q4D5KQlE5axhCSEzSSkuTuq71mF6TCrrIENu1PYGwBjMu1UFEjWLJJjpcVX8z+uhy2l8qx4mJt7K/L8T3Htj0ysNwaP5LI2BxyBwXO4ZhjjpHX7dhL2vFWKutgY1EmZdVw9wtwzFhY9kzoY1I6HVHX9QS/H48HFgJjdF2P1HX9WGCt91yJruuF3utTDcMoazmWQqE4vHE4ZSo8wKaVr6FpGlk5BeCQbpDK2uCzRRubRKsUfSGEz4cu67hk+qo6xsXFERkZ6SuaVe6t+GiWAaipb21jmu4bM+PTpHT/PgBSM/LabPpcWFiIpmkc3L+T1ARp6x6sgh0yr4nhecGtsasE43I5Ttf1B5Eul53ITVA78JX3cZ73ujuBl5EumHtDPVGFQnHo0+Qn6J66zYwbfwxJaXnsLy+CmEKq683WcO1b6B6PwGLRaLC3drc0NEk/faTNhcNjJykl0xe1omkyFr2kVr55lFXL2HIzi7O0ilb+cDPCpaWgm5uiaRmD2xT06OhohgwZwu7du4m2VgMplFbJOHaA4b30oSwYl8vHwMctDr/h/fK/biPSglcoFIo2qa5vzhLFvp3s3PMQ1ngokaZrTX37jScAyqsFW/YKph2h0eBonVRkWucxNjsOIC19UEAWZ1paGiXl3k3RGvmGUFELLpdsWxcT1XK+8jGpRV/RUr8ol/Z6hI4cOZLdu3djce2nlaD3koWuEosUCkWfsa1Ils6NtVWDp5HUjCGkp6VCk9xV7Cy5qMEOW/dBVa2Qaf/tZIlGWuQ3gwZlBZxPS0sD5wE0BJXemugaMlyxul5a7G2N52+hCyF8FnpqOxY6NEe6uOp3AbCvFIpKZYbq0Oz219gTlKArFIo+Y7s3GiQaaZEnpuUzoiDV50OvqgsMI2xJXaOgoQm2FQmZ9t9OHRerkB8DzCxRE5kt6iImsgkhZCy6EHCwUgq7prWddeov6DXVFTTZG4mLTyQmNrFdQR8xYgQAjZWbAFi9Rca956S1fuMIFUrQFQpFn7Hfm/Iv7HJTMSs7n/y8ZkGvqJGlAdrr8FPbAIOSYds+bx2Xdiotak75RLnZgwLOm+GEMVZ5YXk1oMHByrb7iLblcjHdLRmZg9G01p8STHyx6AdWA9K/D83VJXsDJegKhaLPMDMmHd4szrGjC8jISPO5XMzmzu0lDdXUy8gUTZPXWFoUXjFdJG67/ASQm9uGywWI1OREyqplg+rKOgKaVPjGa8NCX//jUgAGZQ7GaglMOPLHtNDLi5YHHM9Xgq5QKPoKp9PJwoUL+eUvf8lpp53G1q1bQzOuS/gaJjdUy+zQUSOGeKsgeiNPaqSh3F7oYo231kpKYtvnTQu9sWYXAIVDCwLOm4Ju88ioajN0saq29YYotPahV1Yc5MW/ymons0+7osN2eQUFBdhsNioObic5vvkTR35W+/f0FCXoCoUigJtvvpm5c+fy1FNPsWjRIl555ZWQjNvkgGpvdUNhLyE5NYtBqTGyMqGjOR3fI1q3hgMZieJwyeqKkTaN3IzWlrEp6HUVW9A0jeHDhwacNwVd8/YWLauRoYp2B7549c17BK9+HosQwifoyV6Xy18f/w21NZXox8zh+BMv8d3TFjabjaFDCwFIimneGFAWukKh6DOWLFkCwLRp0wDYu3dvt8ZZu93DrpLmBHKHS1rCADgPkD4on5gob6lZjx1clbjc0k/eloXessaLEIJXFgmWrG22fptL5x4kNT2P+LhAszsjIwMAd6N0+ZRXg9WiMWqI5tsQfeQ1eOj1JJaslX5viwXiYmDd6iV8/vG/iIyK5n9+9zQeoXUo6ADDvW6XaKvcpI2Jgozkju/pCUrQFQqFD7fbzZYtWwD47W9/C3Rf0A9WwDc/wv5yKeoN9mbBxbGfjCwp6CkpKfKY6UevgSZH601RuyNw33JnCbz8MdzzInz7o7zetKhxlpKZU9hqw3LIkCEANFZtls/VopNQebVgpzeb89Mf5GNSnIx++WH5pwCcdf715A4uxO3uPFqlcJj8hBDhkRUeh2XLN4jeQgm6QqHwsXPnTpqamsjLy2PMmDFA9wW9vglSEuDrNfDVKg/f/iiaG0o4DpCemU90JERFRREXFwdNMvKlpr7tWHS7I7AAlNnWTQh44B/w7AeC3Qe8J52lZOYMayXoZlnbmoM/Aq0bT6zy2y5YvlE+mv7zXdvlgZFjdUDG03cm6Lm5sv6L1Sl/h4W9XLZHCbpCofCxcaMUrbFjxzJ4sOzEs2/fvnbDCNtDCBknHh8DiXHSd56RLMUaPOAsZfDgfF+USmpqqk/QK2vbzhattwd2E6rwum8ibDLi5d+LZShjvO0gNO0lJ6+wVVx5UlISycnJuGqlhb6/IjBEctWW5mvN3qFmyOKu7esBGFo4DpCC3tZGqj85OVLQE+0fcNlJcMWcjq/vKUrQFQqFj59++gmAMWPGEB8fT3JyMna7nbKyrtXaczil5axpGjFRGklxGjXe2uI2UQO4GTo033e93BiVVmxlrYxFb0lNfWDtFrMGy1nT4fyZcOIUeOhaGO/5BQgng4cMa3Nu+fn54Kogyuamoam5MbUQgtVeQR+Z1+zET4oDR5Odor3bsFgsDCkYDUhBj47suCqkKejV5Tu59kyNjOTOq0j2BCXoCoXCh7+gAz4rvatulyYnrXpzmlUNcUp/8sgRBb5z0kKXPvSKdlrRmSGLJmYIZFoSzD9P466faUw7QmN/kVTlAm+ESUsKCuTzJkbLdwSzWFhxmWxenRQHV59S77s+KQ727NqEx+Mhd/BwIqOiAe+bUyd127OzZY5/eWlxxxeGCCXoCoXCR6gE3bTQ/TFdJO5G6VoZPbzAd87f5VJeLV0nLd08tQ2ByT+mhZ7iV+BbCEHJPtmpaGgngh6lyWxSs2H1Sq91PmkEHD++yVeaNykedm6XLZULCo/wjaNpras9tsS00CvKlKArFIo+RAgROkFvI9PTFGDRVCIbT6Q2p19Kl4sU9NIq+WbgH4vudkuffIRNazVeqp+gV5Ttx25vICExjYz05DbnZm6MWrwuHrNhtek/P3IkpCZ4GCWXTlJcs/+8oHCsbxyNzi305ORkoqKiaWyopbGhruOLQ4ASdIVCAUBxcTG1tbWkpaX54rXz8mSd164Kur2NsEPTQsdxgIzMgoANRX8LvbRKiqX/m4LdQatmFpVeffS30Iv3bQcgM6ew3Q1L00J3N8hsVXNj9Ef5I1NkCRYumg1ZqXDUmOYIl6F+Frqgc0HXNI1BmV63S1kJdbVVbP3pB+rraju+sZsoQVcoFEBrdwt030Kvb2ztjqj0+dAPkJaRG5CUk5qaCu5abFojTU7pQ29saj7fMgYdmi30ZL/CWUVeQR+UPazdDUvTQrdXSjdKSbmstlhVJ63xHG97+xMma7x+r8aQTI1dO0yXy7iAsTpzuQBkZUm3S1lpMT+u+oYFNxzDbb+6oPMbu4ESdIVCATSHLIZC0GsbW5e2rfSz0AdlZrdqPAEQ6W1FXFEb2BLO7gj0ybs9zWn57Vno7YmtaaHXHTQAaaFvlR8OGJHXuoRuY2M9xft2YLNFkDdkRMC5zix0gGyvH728tJjdO+TveNiIcR3d0m2UoCsUCiC0FnpDY+vqhf4ul+zsnIBzqampANi8GZW1jTLixKSqTmD1E8+aelnzJTFW1nYxKdrrFfTs1klFJikpKcTHx9NUJa3u/RWwxbu8EW10EtqzU/5e8vJHEhHR/LEimCgXgNycZpfLrh1yrGGFYzq6pdsoQVcoFABs2iQbMfgLuulDLyoqwu12Bz1WXRvdhHwWuvMAOdmBJQdNQde8Rbpq6qGsqvl8STnERrcey986h+AsdE3TyM8vAHc1MZFu7A4wZJ5Rm63hdm4zE4qa/edujyDC1rp8b1vk5DSHLpoW+tDhYzu6pdsoQVcoFADs2rULgGHDmhNyYmJiSE9Px+VyceDAgXbuDMTjEdibWgu6Lw7dsd+XEm9iCjpN3uSiGlkYq8khcLsF5dUQ4+dzb0vQXU6nz5rOzhvRoX/bdLskxciBftotj4/Mg3VrvuPvzz2NxyNr0OzYtk7e4xfhEkzav8ngPK8P/WCxb35DhykLXaE47Pnyyy8pLg59TLMQwjeuaZWbdNXt4nACWqAv2u321nERHnCWkdeOoLvqpYVdWiUTk+oaZfy5INAarmhD0DesXUZDfS1DCkaTlJrVoTukoEBujMZozRmwsVEQZ6vgrlvO5k9/fJgVSxfJcX9cBsAobw0XIYQszNVJpUWTvLxc3/zs9gaSU7NISk4N7uYuogRdoThE+PHHH5k9ezZTpkzxWdOhoqysDIfDQXJyMrGxsQHnghV0l7u5ZnlLR0SVt3en5i4H3D43hIkp6E3VMhjcjEWvbRBU14tWSUpmGd5kP0H//rv/AnD0cachBER0KOgFAFicRb5jw/Pgxb/eQU213Jj9Ydkn2Bsb2PyTgaZpjBw7jaJSwf5yWRgsOkgL3cwWPVAiPwYMLugddwtAEEE3El3XLwWeMAwjQ9f1C4FbgEZgnmEY+3RdHw085x3zbsMwFvfKjBWKw5Tvv/8egP3793Pqqafy3Xff+aJDekpRkRS23NzW5QCDFfTGJthZIkhO0GgZhW5a1KKpBIvFSlZWRsD5mJgYoqOjsdfvBKC0WlrAZdXg8RbBKq8W3PU8zD222eUSIapobIggJjae77+TFvVRx56KxQI2W/v+bTN00VW/FZgJQHrMARa+8rzvGmPZZxw36xzcLhfDRk7GIZI4bgKkJWps3C06LcxlYmaLmuTl9467BYK00HVdtwIXAnt1XbcBvwZmAfcAd3svewi4BjgVuD/kM1UoDnPWrZO+XKvVyubNm7n88stDNnYoBF0ImW1ZUy8t6CVrBS63lPbmkMWDJKdmERXZWnr8k4sOVsoOQqVVUFIhN0Q/Xwmb9sBL/5U10wHeefl33PizY9i7ews7tq4lOiaOMROO79S/PXSorFPeUL7Od2yL8SJCCM6/9FfExcWzZ9cmPv/4XwCMGHscx03QyM+yEB+rcdQYC+OHBefgSEpKIio6xvfz4IJ+FnTgUuAtwAOMAH4yDMNhGMZ3wATvNTmGYWw1DKMGqNB1PT3001UoDl/Wrl0LwDPPPIPVauXTTz/Fbm+jLGE32LdPCmlL/zk0N4XYs2dPp+M0NsH2IsE/PoG7X4Dr/wjfbxR886P3AucBklOz23SHZGRkgLuaSJuMPHG5ZEOMBjtE2jQMGYRDeQ0slxGHuO0ycuS2X5wKwJFHnYjVFtVpJ6GRI2U6aOW+pc2/g41vYLXZuOrG+zlm2nQAFn0o2++NGX9c0JugLdE0jYxBzS6m3nS5dCroXuv8IuAN76EUoMbvEvOl8R+rGugdr79CcRgihPBZ6KeeeioFBQUIIdixY0dIxu/IQu+KoGekSIvarGC4oxhufxYWLvNe0LCRlLTsNiNQRnjbtcVGyIwhs4GFhiwl8OP25mv9G2UA7C/eBcDR00/D5e68TnliYiKZWTm46jYTYfUQE+mGhp/IGzyCuPhEph8n3TAeb6jmqAnHB5UV2h5mtihAXj/70K8A3jQMw6PrOkAV4N9z2wxO9fgdSwJvypcfuq5fB1wHMH/+fE4++eRuTLnvcDqdvj/0Qx21lvAk2LWUlJRQWVlJUlISIC3p7du38/333/uO9QSz7VxcXFyr+URGSnN3586dHc410upkaFoJw9Kgpn4QYOXCGQ0s/ymScflO4ho/5p1vH2XYtMsoa6OcrOlrjrPsp4ok7I0VTC2U+f/Lf4rE6UojPdFNWY2fee88yKBBmRw8KIV97pwjyUwrIcIKnf1ahxcO48D+Jdx0wmLcjlqeWuxi5IgCsuKLmTnjWN91+QVDmX6Eh5qqYuqqOxiwAzIzZJu9lJRUpo5yEWkr6XR+7dHWm65JMII+Fpis6/oVSHfLL4Exuq5HAjqw1ntdia7rhcBBINUwjFYV8Q3DeA65cQq02jcJO4qKijr85R1KqLWEJ8GuxbTOJ06cSF5eHuPHj+frr7+msrIyJL+LqqoqAMaNG9dqvKysLGw2G2VlZaSmphITE9PGCPDTliJ2V2Rjs0q3iEWD68+J5abzNSCCF55eDXjQYgvbnLPXYMRZvwsYxfo9qYwplBubn66WcjHnKCvLN0rLX158gHMvvY+qylKiomKwJE5l835BYQ6MzO3YATFqzAS++24Jjqp11NXK9WcOnsz+uhxy8iAnbxjF+3YwduIs1u/L5oJZWkC1x66QO1j67AcPPYItB7IZkgkjOplfd+hU0A3DWGB+r+u6YRjGjbquXwx8BdiBed7TdwIvI10w94Z8pgrFYYzpPx8/fjwAw4cPB2Dbtm0hGb8jH7rVamXw4MHs3LmTPXv2MGrUqA7HMjcsUxLA6peWb1rlZvXBloweLTsBuap/hKRT2FfafO4Hr/986miIi5aCbqUBt8dO+qBcLpl3q+9alxuig4hAMTNid+/8ibpaaXoPGdq8YTnzpAt4/eVHmXb8XDQtuDT/9jDdVkMLe6eGi0mXvEKGYejexzdo9qmb5zYCx4duagqFwsS00CdMkDEIpqBv3bq13Xu6Qkc+dJBhfjt37mT37t2dCrrp+05v4QmqKNsPQFZW24JujluzfxkkwV5Z1oXSKsGu/TLqZdxQyEqDVz8FS8NWGoD0jMCwwGBawwGMHSPfQPbs2kxtjSwck+8n6FfdeD+zT7mE/MKJ1NtbF+3qCvPmzWPlhkouuvTn8g0nyKSkrqISixSKQwBT0E0L3dxADIWF3tDQQFVVFZGRkaSntx2cZsZt7969u9Pxyk1BTw48blroLeOyTRITE8nKysJVI2unmIK+0ltnZfII2eAiK1XjpdshsejnAKS1EHSN4Mrajj9Civeu7Rso2iPfGAcXNL9ZRUREMnzUpJAIcHZmGhdddT9ZOfm43fRab1El6ApFmON0On2lbY84QhaIKigowGKxsGfPHpqamjq6vVNM6zwnJ6ddK7Qrgl5aJR9bW+glQHP1wbYYNWoU2Hdh0TyUVUNjk2C9zDVikl/l2sxUqDwo66KkpbcYL0j3SF5eDjGxCdTVVuFyOcnMzicmJq7Vde4gomY6w2rVsFlkCQQIrOEeSpSgKxRhzpYtW3A6nQwdOpSEBJnrHhkZSX5+Ph6Ph507d/Zo/I785yZdEfS2XC4up5OqylI0i4XcnEHt3iv96B4SIqsAKCqVyUQAY/Kbr6uvq6bJ3khMbDyxcS1KLorgLHRN0wJ85v7uFn9cnsDCYN0lJkrG1aclQWSEstAVisOSlta5Sag2Rjvzn0M3BT25+VhFufSfJ6VkEh/bvtqafvRIt8xK3VYEO0vAYgmsVW66b/z95y63QAghmzcHuYE5dFizi2XI0NFtXhNMXHswxEZLQR+S2fOx2kMJukIR5pgWeGFhYBf7UPnRe0vQM/ws9HKvuyUlte2kIhNT0D0NMqzli1Wylsuw7MCNzvJSOZ7pP6+ulyV291fQpYiUkSODsNBDJOhx0TL7NT2pd6xzUIKuUISEjRs38v777/fK2Kagm/VHTPrSQjfruRQVFeFyudq9DpobU6S3IejJqVlBCXpj+UqgeUN0dH7gdeVeCz0tI4cmh6DJAacerXH+TI2Tp2pERwUnmmPGNlvo7Qm6EBAVAhdJTDQkxPae/xyUoCsUIWHevHmce+65LF4c+iKjpqCbJV9NQhW6GIygR0VFkZ2djdvt7jBbVIhmC/2Pd8+l9ID0z5udhFLaqeNiUlBQQGRkJA0HZWVJjzf9cLQM42bPzk3YGxsoL5OCnpqWRVk1HHsEJMVrREZopCQEL75jxzSn4Q9pR9CDjZrpjLho2YDaPzY/1ChBVyh6iMfjYf16GWr31FNPhXx8s/Z5qCx0sxOPSTCbotC+28XpErz0X8Evn06hrhGanGARDaxf+TEv/u0ePB4PH70jE8THTj6hQ3G0Wq3SldS4JeD46CGwbvUS5p0/lsfu/7nPh56YkkNmKuQN6p6UjRxRSF7BOI6YNJ2k5HZKEWuhEfTUBI1RQ3o+TkcoQVcoekhxcbGv6uEHH3wQVBGrYPF4PD5Bb2mhDxs2DE3T2LVrFw6HI6jxDh48SGZmJhdddBEulwuPx+Obb2clBNoTdA2472XB4tXRfPy996C3N+inC1/lzVcfZ+/uLWRm53P0jAs6FceRI0eC8yCRVrmm6EgoyMJXyvarz99i60+rAUhOzSa+7UoEQREXa+Oxv//IEy980+41obLQkxM0MlN7V3KVoCsUPcTfQvZ4PDzzzDMhG/vAgQM0NTWRlpbmC1k0iYqKYsiQIQGi3xnff/89ZWVlvPXWW1x//fVce+217N+/n7S0tHYTfkzaE3SbTePmC6Qb4Y0v5DFPo3yT8LjdPPt/snrIBZf/DzZrRKcbluZmb7xNloMaORg0TbD06w99Y65bswSApJQcYnuwYRlpAzTNF39fWiXYXy5wuWVvVJBFp0Ih6H2BEnSFooeYgm7WInn++ed7nOxj0t6GqElX3S7+nx5efPFFXnzxRWJiYnj77bd9VRXbo6NIl2vOgPgYD43mspuKSc/IwWaTRcQTElM49cyriYwI7A3aFmatcqtzFyDdLZs3GpSVFvvGM4lPziY2usPhOiTSO5wQshmHRYOjx8oomep670WdtLMLJ5SgKxQ9xNyUvOyyy5g0aRKlpaUsXLgwJGO3tyFq0tXQRVPQZ82ahcViITo6mo8++ohZs2Z1eq8p6G0lMiXGaVw4o6H5gKOIcROP5YxzZXr+uRfPJyIqPqgUenNNERX/ZlgOnHo0fPfVfwA4/dxryMxuDnlJScsOqm5Le2iaRlw0ON1Qb5d1YobmWIiKlHsBHo9A66SdXTihBF2h6CGmmI4YMYKzzjoLgOXLl4dk7PY2RE26a6FfffXVrF69mnXr1jF79uyg7jU/gfz000+tztntds6eWoLVVBRHEckZwzn/qj/xwJ8/5GfX3o3LE1wVRFPQq3e9xgsLNIZma3z39QcAHH/CuZxx7jUAxMUnEh0d32N3SGw0OF2y21KWty2PzQIIs9BXz8bvS5SgKxQ9xBTT4cOH+2p6G4YRkrGDdbkEG7poCvqQIUOYMGGC7/5gGDp0KDExMRQXF1NZKasTulwunnnmGYYMGcIV50/luHGy2xC1K8nOG8HEEZGMmXQ65bVWmaAThDhmZWURHx9PfW0l1VXlFO3Zxq7tG4iLT2LilJmcdvbVJCalMnb8NDSt2W3SXRJipKADJMVJS1w2mYYmR2iSivoKJegKRQ8QQvgEvbCwkClTpgCwcuXKVuGB3aG9CBeT7lroZn3urmCxWBg7VsZtb9iwASEEZ5xxBjfeeCOlpaXU1dVSaPk7QyvPh9rlZOWOYMRgjbnHauSmy8bPwQi6pmkUDpdWetGerSz9Rm6GHn3c6URERJKekcM//7OVB//8PiIE/u34WCnoQkCiX22unHTpR4/p4RtGX6IEXaHoAfv376ehoYG0tDRSUlLIyckhJyeHmpqakJS27cxCLyws9IUuOp3ODsdyOp0UFxejaVq3uxyNGycbNGzYsIFdu3bx6aefEh8fz0033QTAsq/e4eAuGeqSlTuSCCtERWocO15j5sTWJXXbY6TX7bJ3zxZWrZDjHX3sqb7zCYkpREZGQQgs9LhojQY7JMUFFs3KSYPahuDcROGCEnSFogf4u1tMQuV2cbvdPova3JBsSXR0NHl5ebhcrk7rrBQXF+PxeMjOzu40oqU9zAJhGzZsYNky2fl55syZPPLII0RFRfHT+mXU19UQF59EUkq6bzNR0zRGDrEEnQA0cqQU9F07NrF2tYwRnzz1hIBrhBBBV1bsiKgIaGiSG6L+JMdr2GzK5aJQHDb0pqCbdVOysrLa7ePp/9ydfSLoibvFxLTQ169f7xP0adOmER8fz3HHz/JdlztkJLFB1lNpCzN08atP36Shvpa8ISPIyAzMZHV7N1l70kkIpIUfFQEZLYpmJcZBYiw9Covsa5SgKxQ9oC1Bnzp1KtBzQe/M3WISbOhiKAS9LQt92rRpAJw853TfdTl5w3uU8GOuaX/xDgDGTJxFSblM+rE7ZMKP0xWaCJSoCOluSWzR28Jikb7/yEMkZBGUoCsUPaItQTc3RletWoXb7Q56LKfT6aurAsELel9a6IMHDyYhIYGDBw+yevVqLBYLRx11FACzTjjJl/iTlTuiR75nU9BNRo+fxdFjNSaPhMpaeczthrgQuEOiImRD64TY1ufGDtVITez5c/QVStAVih7QlqBnZGSQn59PfX09mzZtCnqsq666isGDB3PZZZfx6quvcuutspO9Gf/dHh2FLtbU1HDfffexcePGkAi6pmm+SBePx8P48eOJj5f1YBMTkzjy6DkADB46vkeuirS0NBKTkn0/j510AtlpMDxXw6LJhB+nG2J7UMfFxGbTOG6C1mYGa0qCRmy0stAVigGPEMInoi2bT3THj/71118D8Prrr/Ozn/2MsrIyTjrpJH75y192eF97FrrH4+Hyyy/n97//PZdddpkvBLIngg6BnZNMd4vJr25/lgX3vcSUY8/pUds2TdMoLJR+9PyhY8nMzCQmSsNqlRaz3RG6xhPQey3h+hol6ApFNykuLqa2tpa0tDQyMjICzvm7XYKhurqaffv2ERUVxaWXXkpSUhKPPPIIn3zyCcnJyR3ea76Z7Ny5M6D5xAMPPMBHH30EwI8//sjnn38O9FzQzY1RgGOPPTbgXGp6NqeeOQ+PsPTYsh3ujUUfN/kEXwYnQGaKjEpxe2TIoaKZTgN+dF3PBN4DnIAbuBwoBB4FPMCNhmGs03U9C/gHEAf8zTCMf/barBWKMMBMgW/LJTJx4kRACmlXx3rttde8vTGDE6vY2Fhyc3MpKipiz549DBs2jC+++ILf//73aJrGJZdcwuuvv+4T+9600P3paTjhvHnzWLFyPSecdl2AoKclaTh3iZA8x0AjGAu9DDjOMIyZSMG+BvgDcAZwGfCI97oFSJGfCfxC1/VDKNhHMVBpaGjgtttuY+XKlSEf2/SPjxnTutONKehr166V8dKdsGHDBqDZ+u1qKJ75pmI22vjXv2Tt8AULFvDSSy/5RDw2NpbU1NS2BwmSiRMnEhkZSV5eXitXk4kWgqYQp516Eo88u4rc/CNIjGv+fSTEgkWTzxGpBD2ATgXdMAy3YRhmDnMCsB1wG4ZRaRjGHsD86zgK+MIwDBdgAEe0Hk2h6Fv+/e9/89hjj3HKKacEXTM8WDqy0HNyckhNTaWysjIgcqU9Wgp6VzFdPKbP3nT1zJ07l6ioKO6++25AlhDoadz2oEGD+OKLL1i0aFG7Y2n0XGwtFo3oKOkG8I9AiY+RYu7xKAu9JUH9OnRdnwQ8CyQDc4CL/U67dF2PBCL8hL+aZqH3H+c64DqA+fPnc/LJJ3d74n2B0+nssH/iocThupYlS2QjhPLycs4880zee++9DpN0uoLpTsnIyGhzPqNHj2bp0qV8+eWXnHjiiW2OYa7FFODMzMxuvU7Dhg0D4Ntvv2XHjh2sX78eTdN8czv55JP57W9/y+TJk0Pyd2DWlvEfK9LqJD+1BIsGaTFQUwV11T17nlGZsq9o6cHA4xMGg8MZmudoi3D+f+mobENQgm4YxhrgaF3XLwLuBPwjM22GYTh0XXfqum7xinoSUNHGOM8Bz3l/7PxzaD9TVFTU7ZoX4cbhupbt22Vz4piYGNavX8+f//xnnn766ZDMY8cOmfRy/PHHtzmfqVOnsnTpUvbt29fufM21mPOcMWNGt16nU045BZAul4qKClwuF2PGjPFlXAI89thjXR63K/y0pYjdFdnERGmUlAsumKUR0cOknBUbPdhsMDY30JmwYaeHdbvg4pFar9QqP1T/Xzp1uXitb5NqoA6w6bqerOv6YJqF+wdglq7rNmAKsCHUk1UouoIQgrVr1wLwxhtvANIFE4xPuzOqq6spKSkhOjq63U1Gfz96Z2OZES6mpd1V8vPzSUtLo6ysjPfeew+AI488sltj9RQhhCw/G4IuP+lJkJ3aWrDTEjUSYg6dxhN9RTAW+iRd1/+IjHCxA1cDI4D/Iq3sm7zXPYLcNH0QeMYwjMbQT1ehCJ69e/dSVVVFWloac+fOJTMzkwMHDrBjx452N/OCxdwQHTVqFFZr28o1YcIEoP1IF7vdTn19vS/hZ/To0e2O1RmapqHrOp988gkvvvgi0OxX7ysibLLrj80qU/J76qsHGJbbts2ZGAdpST0efsDRqaAbhrECmNHicAlwbIvrSoDwdoorDitMy3jixIlomsZRRx3Fhx9+yIoVK3os6B1tiJqMGzcOi8XCli1baGxsDPDdr1ixgnPOOYfGxkYuueQS3/U9wRT0/fv3A31voUfYwOUKbcJPe8RGaxwztnef41BEJRYpBiymZWy6PsyaIytWrOjx2B2FLJpER0czatQoPB6PL4oF4M0332TmzJmUlJRQVVXFM888A/Rc0M2iYCaTJ0/u0XhdxWqR0SdOV980hbBalbulJUrQFQMW00I3XR+m4P3www89Htu00DsSdGidYHTw4EGuuOIK7HY71157LXPnzvVda9ZI6S5muQGQxa0SE/u2qpSmQWYqVNWFpsaKousoQVf0O5s3b+aZZ54JScs2f1pa6Kagr1q1qtPuPp1hWuidFc5q6Udfs2YNTqeTadOm8eyzz/LUU09x/fXXM27cOGbOnNmjOeXk5JCVlQX0vf/cZMgg2eXnUGoKMZBQYfmKfmXLli0cd9xxlJWVkZOTw1lnnRWScRsaGti6dStWq9VnRaempjJ8+HC2bdvGhg0bmDRpUtDjNTY28s033/Dpp5+yfv16tm3bhsViCQgLbAvzOdasWQM0Z3JOmjQJTdOw2Ww+l0tPMTdGP/roo36LcElP1oiNFj1qbqHoPkrQFf3GgQMHOPXUUykrKwNg+fLlIRP0DRs24PF4GDduHNHRzVUopk6dyrZt21ixYkXQgr5+/XqmT59OTU1NwPETTzwxYOy2MP3Ya9asCfCl99Rf3h533HEHMTExXHXVVb0yfmckxMKgZJXB2V8ol4ui37j88svZuXMnKSkpQM87/PhjujhMl4eJuTHaFT/6woULqampYejQodxxxx28//77bNy4kU8++aTTe7OyssjOzqa2tpYdO3b0uqBPmzaNN998k/T09F4ZvzM0TWN0vkzPV/Q96n1U0S/s3r2bxYsXExsby2effYau6xiG0aUqgx1htkfz3yiE7kW6mO6Su+66i6uvvrrLc5k8eTIlJSWsXLmSjRs3Ar0n6OFAYTux44reR/3mFf3CO++8A8jiUUceeSSZmZlUVlb62q71lG+//RaQafn+TJ48GZvNxvr166mrqwtqrNWrV/vu7Q6mP/vDDz+ktraWjIyMVvXTFYpQoARd0S+8/fbbAFxwwQW+zTwIjdtl//79bN26lbi4uFYiHBMTw6RJk/B4PHz//fedjlVfX8+WLVuw2WzdDis052Cm5A9k61zRvyhBV/Q5+/btY9myZcTExHD66bJTvCnooYgRNyssTps2DZuttVdx+vTpAHz33XedjmXWMx83bhxRUd2LxTMFvaGhAQhsEKFQhBIl6Io+x3S3nH766cTFxQHd68HZHqa75bjjjmvzfFcE3fSfdyXEsSUFBQUBbeSUha7oLZSgKzrkq6++CnldaH93i4kp6CtXruxxgpFpobf0n5uYgr5s2TLcbner8w6Hg3fffZeGhgaf/7wngq5pWoDrRwm6ordQgq5ol7fffpsTTjiBefPmhWzMlStXsmTJEmJjYznjjDN8x7OyssjLy6O2tpatW7d2e/yamhrWrFmDzWbjmGOOafOanJwcCgoKqK2t9SX6+LNgwQLOP/98LrjgAl/rup7WRfFP9FGCrugtlKAr2qShoYFf//rXgHRNOByOLt1fV1fH/fffz6OPPsq7777rS8q59957AfjFL35BQkJCwD3d8aNXVlaye/du38/Lli3D4/EwZcoUYmNj272vPbfL9u3bfQ0wPv74Y18nIbN8QHcx3xCysrJ63NNToWgPJeiKNnn00UfZu3cvIOt2d9akoSX/+Mc/uPfee33W7qRJk3jllVdYuHAhcXFx3Hrrra3uOfroo4FmH3gwnHbaaQwfPpxFixYB8O677wLtu1tMTEFfunRpwPE77rgDp9PJMcccg8Ui/z2GDh0a4APvDrNnzyYlJYWzzz67R+MoFB0ihOivr7Bn3759/T2FkNGVtezatUtER0cLQBxxxBECEE899VSXnu/6668XgJg5c6YYN26cQDZDEYC444472rznhx9+EIAYNmxYUGtxOp3CZrMJQMTFxfme02KxiKVLl3Y4xpo1awQgCgoKfMeWL18uABEdHS327NkjHn30UQGIn/3sZ11ae3u4XC7h8XjaXMtAQK2lz2hXV5Wgd0CYv6hdoitrueCCCwQgLr30UvH0008LQPy///f/uvR8M2bMEIBYtGiRqK+vF2effbYAREJCgigvL2/zHpfLJZKTkwUgtm/f3ulatm/fHvBGAQhN08Srr77a6fxcLpdITEwUgNizZ48QQoiLLrpIAGLBggVCCCE8Ho9YtmyZqKqq6tLau8Lh+jcW7oT5WtrVVeVyUQTwxRdf8PbbbxMbG8ujjz7qc4MEk4Tjj1kvfOzYscTGxvLOO+/w0ksv8emnn7brQ7ZarcyePRuAxYsXd/ocZmPlY445htNPPx2bzcZLL73EFVdc0em9VquVWbNmAfDZZ5/h8Xj4/PPPAfj5z38OyOiUY445hqQk1etMcWigBF3hw+VycfPNNwNw5513kpeXx4QJE4iOjmbLli1UVFR0MoKkrKyM0tJS4uPjycvLA6SAXnnlle1GnpicdNJJAD5x7QhT0MeMGcNHH31EaWlplyJyTjnlFAA++eQT1qxZQ0VFBfn5+T1uT6dQ9BdK0BU+Xn31VdavX8+wYcN8ES4RERG+ZgnBFrTy77fZ1UJbpqAvXry403h0U9ALCwvRNK3LG5dz5swB5JuHWTnxpJNOCklxMIWiP1CCrvBhujl+85vfBNT57qrbJdj2bG0xfPhwhgwZQnl5ua8Ebnv4C3p3KCwsZOjQoVRUVPDkk08CcPLJqs+54tBFCbrCh5l239ItYv68fPnyoMbx9593FU3TfFb6Z5991uG1PRV0TdN8VnpJSQmAz4evUByKdFoPXdf1o4D/A5xAEfAz4BzgFqARmGcYxj5d10cDz3nHvNswjM53tRRhQ3V1NZs3byYyMrJV8SjTQl+2bBlNTU2dFqnqiYUOUlRffPFFvv32W2677bY2rxFC9FjQQbpdnn32WUCm96uytopDmWAs9L3AbMMwZgC7gLOBXwOzgHuAu73XPQRcA5wK3B/qiSp6F/+MyMjIyIBzQ4YMYfLkyVRXV/PBBx90OpbZxKG7gu6f9GP60d1uNx988AFnn302d911FwcPHqS+vp6UlJQeZV7Onj0bq9UKNPvvFYpDlU4tdMMwSvx+dACjgJ8Mw3AA3+m6/kfvuRzDMLYC6Lpeoet6umEYZSGf8WHOtm3bfL7l/Pz8Vh15uovpbmlvvKuuuorVq1fz4osvcuGFF7Y7Tl1dHXv37iUyMpJhw4Z1ay75+flkZ2dTUlLC5s2bycvLY8aMGb7KhwCjRo0CemadAyQnJ3Pcccfx9ddfc9ppp/VoLIWivwm6BZ2u6/nAHOB2wP9zqdX76G/tVwOpQICg67p+HXAdwPz588N+A8rpdIa80mBPaGxsRNd1qqurAekDXrhwYau+mW3R2VrMdPvCwsI2rzvhhBOIjIzk008/xTAMsrOzfeeEEPz000+sXr2a4uJiQKbLHzhwoEvr8+fII49k4cKFfPTRR0RGRrJmzRoyMzMZPXo0X3/9NQ888AAgC2319DV69NFH2bBhA6NGjerz1zvc/sZ6glpL35Cbm9vuuaAEXdf1ROBV4EqkgCf6nTbrj/rHmCUBrYKWDcN4DulnB5nZF9YUFRV1+Mvra959912qq6vJzs4mOzubVatW8cILL/jK0XaE/1qWLFlCVVUVc+fO9Z03mxfPmTOnzTXn5uZy1lln8fbbb/PZZ5/xu9/9DoA333yT//mf//FtKppMnjy5R7+7k046iYULF/LTTz9RVibtgnvvvZfzzjuP/Pz8gGYRPX2NcnNzfb1G+5pw+xvrCWot/U+nPnRd123Av4H7DMPYDGwFxui6Hqnr+rGAWbWpRNf1Ql3XE4BU5W4JPaZw33LLLXz44YdERkby7rvvsmnTpqDHKCkpYc6cOZx55pk+q7yiooIdO3YQExPTod/7qquuAuCll16SdSOAe+65h5KSErKzs7nsssu44YYb+NWvfsV9993X3WUCzX50M0Zc0zTOPfdcMjMzOffcc33XqSQghaKZYCz0S4Gjgbt1Xb8b+BvwF+ArwA6YqXl3Ai8jLfh7QzzPwx673c6HH34IwPnnn09OTg5XXXUVzz77LI888ggvvfRSUOM8/PDDNDY2AtLttXLlyoCa3221bDOZM2cO2dnZbN26laVLl5KWlsbmzZtJTU1lz549Hd7bVSZNmkRsbKyv4uPMmTPJysoC4Nprr+Xf//43oARdoQigo0IvvfwV9oRTgZ7//Oc/AhBHHnmk79i2bduExWIRNptN7Nq1q8P79+3bJ3bv3i0iIyOFpmkiMzNTAOLxxx8Xt9xyiwDEr371q07nsWDBAgGIa665Rjz00EMCEPPmzevp8tpk1qxZvqJbTz75ZMBarr32WjFu3DhRW1vbK8/dV4TT31hPUWvpM1RxrkMd093iH2FSWFjIhRdeiMvl4rXXXut0jD/84Q84HA4uvvhinnnmGUBmhf75z38GCMqPbLpd3njjDZ+VfM4553RpLcFiul0AzjvvvIBzzz33HOvXryc+Pr5XnluhOCTpSO17+Svs6et36cWLF4tRo0aJb7/9NuD41q1bfaVet2zZEnDuvffeE4A46qijOhz7H//4h9A0TVgsFrFp0ybh8XjEOeecIwAxfvx4cdddd4nGxsag5jlt2jSf5RwTEyPq6+u7ttAgWbx4sa+muj9hbj11CbWW8CTM16LqoXeHvn5RL774Yp84m40QvvzyS5GSkiIAMXv27Fb31NfXi5iYGAG0O9+tW7eKpKQkAYj777/fd9zpdLZbm7wjnnvuOZ+gn3322V2+vyu8//77Yu/evQHHwvyfrUuotYQnYb4W5XLpbcrLy3n44Ye55557uP/++9m5c2eXxzD7W65YsYIvvviCb775hjlz5lBZWcncuXN5//33W90TGxvrq0fSVhbnzp07Oeecc6iuruass87izjvv9J2z2WzdyrK8+OKLiYmJAQiIOOkNzj77bF8JXoVC0QkdqX0vf4U9XXmXnj9/fkDnnMmTJwuXyxX0/bt37w64/6ijjhJZWVkCEDfeeGOHY7388ssCECeffHLA8VdeeUUkJCQIQBQWFoa0887jjz8uTjnlFFFTUxOyMYMlzK2nLqHWEp6E+VqUy6U7BPuiulwun/jecsstIi8vTwDir3/9a9DP9dprrwlATJ8+3ecvB8SsWbOE0+ns8N6ysjJftEtlZaUQQogvvvjCN8b5558v1q1bF/Rcwp0w/2frEmot4UmYr0W5XHqTpUuXsn//fgoKCnj88cf5y1/+AsiuP2aWY2eY7pbTTjuNm266CYCsrCxef/31TuO709LSmDFjBi6Xy+d2efnllwGZhPTWW2+RkpLSjZUpFIpDCSXoIcAMKbzgggvQNI3zzjuPk046icrKSu65556gxjAFffr06dxxxx0sWLCARYsW+ZJpOuOyyy4D4Mknn8Rut/Pee+8BcMMNN6gOPArF4UJH5nsvf4U9wXzscrvdIjc3VwBi+fLlvuPr1q0TgEhKSurUZVJTU+NzmXQ3BLChoUGkpaX53D60SEIK84+QXUKtJTxRa+kzlMult/j+++8pKipi8ODBAYk5RxxxBCNGjKC6urrTXpzLly/H4/EwefJkYmNjuzWPmJgYn6vGTBS65JJLujWWQqE4NBnwgu7xeLj66quZOHEiEydO5KKLLqKpqSlk47d0t/hjdpX/9NNP273/q6++4pprrgHg+OOP79FcbrrppoDmFBdffHGPxlMoFIcWA17Q33zzTV566SXWrl3L2rVreeutt/jTn/4UsvHNglltpb+bgm52lPenqamJBQsWMHv2bPbu3cvUqVPbbbcWLFlZWVx++eWA9MUPGTKkR+MpFIpDjI78Mb381es4nU4xcuRIAYiHH35Y/POf/xSAiI2NFXv27On0ftOP5vF4xJ/+9CfxxBNPCLfb7Tu/efNmAYiUlJQ2/eS1tbUiIiJCWCwWUVFR4Tu+adMmMXHiRAEIi8Ui7rnnHuFwOEKwYiH27NkjzjnnHPHNN9+0uZaBgFpLeKLW0mccnnHoL7zwgi+pxhTMCy64QADioosu6vR+80X97rvvfDHd5557rqirqxNCyOQaQFx22WXtjmFWDHzrrbd8x4488kjfvJYuXdqTJQZNmP+Bdgm1lvBEraXPOPw2RZuamnxNFu677z4iIiIAePzxx4mJieHNN99k2bJlQY31xBNP+L5/7733mDlzJvX19Xz00UcAAZ1/WtLS7VJSUsKqVauIjY1l1apVTJs2reuLUygUijY45AX97bffZujQodx0002+NmoAf//739mzZw/jxo0LiPYYMmQIN998MwB//etfOx1/3759vP3221itVj7//HOGDRvGypUrufHGG/n222+xWq0+0W4Ls87Kxx9/jMfjYfHixYBs2JCYmNjufQqFQtFlOjLfe/mrxzgcDjFkyJCAGij33XefqK+v96Xiv/vuu63u27lzp9A0TURFRYnS0tJ2x9+3b5+48847A1w0q1evFhEREb7nmzFjRodzdLvdYujQoQIQn3/+uZg3b56vsURfEuYfIbuEWkt4otbSZwxMl8tbb73Fnj17GDFiBDfeeCNWq5V7772XM888k/3796PrepvRJwUFBZx66qk0NTXxyiuvtDt+VVWVrxHEL3/5S0C2RvPvl9mRuwXAYrEwb57s0vfSSy/5LPSTTjqpS2tVKBSKTulI7Xv5q0d4PB5fpMjf//53IYQQf/vb3wKs9UWLFrV7v9nSbcSIEb7a4y0x65Mff/zxAde4XC5xwgkniJiYGLF9+/ZO57pjxw4BCKvVKgAxaNCggGiZviDMLY4uodYSnqi19BkDL8rF7NSTlZUV0Gnnt7/9ra/LTXtCLYQMaTSrIn766adCCCHKy8vFDTfcIJ544gnxzjvvCEBERUWJTZs2tbrf4XB0qTmEf3/MSy+9tAsrDQ1h/gfaJdRawhO1lj5jYAn6q6++KiIjIwUgHnnkkYBzbrdbLFy4UBw8eLDTcR588EEBiJNOOkkIIcTNN98cYOED4qGHHurJVH2YNcsB8cILL4RkzK4Q5n+gXUKtJTxRa+kzBoagu91u3yYlIObPn99p4auOqKioEPHx8QIQH3zwgYiOjvbVJAfExIkTQ5bwU1tbK+Lj44WmaWL37t0hGbMrhPkfaJdQawlP1Fr6jHZ1teNC24Cu60nAZ8BY4BjDMNbrun4hcAvQCMwzDGOfruujgecAG3C3YRiLe+rfb4kQgrVr12K1WnniiSd8xai6S0pKCjfddBOPPvooF154IU1NTZxzzjm899577Nu3D7vd7otf7ynx8fEsWrSIyspKlZKvUCh6hU4FHWgAzgAeA9B13Qb8GpgJTAXuBq4HHgKuAQ4AHwMhF3Sr1cprr73GypUrmTlzZkjGvOWWW/i///s/X8Eus355Xl4eRUVFIXkOk+nTp4d0PIVCofCn07BFwzCchmGU+h0aAfxkGIbDMIzvgAne4zmGYWw1DKMGqNB1Pb0X5kt8fHzIxBxkQSuz2uGZZ57J5MmTQza2QqFQ9CXBWOgtSQFq/H62eh/93xyqgVQguP5r/czDDz9MXl4eV111VX9PRaFQKLpNdwS9CvDPWXd7Hz1+x5KAipY36rp+HXAdwPz58zn55JO78fS9w89+9jPcbneAm8XpdIbc7dJfqLWEJ2ot4Uk4ryU3N7fdc90R9K3AGF3XIwEdWOs9XqLreiFwEEg1DKOVdW4YxnPIjVOQkSphTVFRUYe/vEMJtZbwRK0lPDlU1xKUoOu6/l9gEjAKeBb4C/AVYAfmeS+7E3gZ6YK5N6SzVCgUCkWnBCXohmGc3sbhN1pcsxHoWQ81hUKhUHSbQ7o4l0KhUCiaUYKuUCgUAwQl6AqFQjFAUIKuUCgUAwRNiLCPHlQoFApFECgLXaFQKAYIStAVCoVigKAEXaFQKAYIStAVCoVigKAEXaFQKAYIStAVCoVigKAEXaFQKAYIStABXdfjvI9af8+lp+i6Hut9HAhryfc+DoS1HD0Q1gGg6/qAaYqr63pKf88hlBzWiUW6rs8BrgWKgUcMwyju5yl1G13XzwGuAPYCjx3ia4kFHgUGAxcYhuHs5yl1G13XJwL/BywH7jEMw9HPU+o2uq6fCswHmoDXgUWGYdT176y6h67rM4HfILuqPQ1sMAzD3r+z6jmHu4V+GfA8sB64Qdf1Q7L8r67rc4GrgEeQHaUWeI8fkhahYRgNgANIQK7rkF0LsqT0Q4Zh3A4M6+/JdBdd163ADcgGNfchm9vEHcKvy8XAS8g3ptOB8/t3OqGhOx2LDlm8lt/FwBLgALAHWAF86T0+Rdf17YeCdetdy6XAx8Aq4OeGYZTqur4F+Leu64MMwzjYr5MMEr/X5RvDMLZ7RWIb8C7wK13XFxmGsadfJxkk/n9jhmFsBRqAU3Vdvx3Z1esH4EPDMLb35zyDwbuWS4CvgTpgHfLT7G5kw5sYIAL55hvW6LoeA9yD/FTxNbATKEH+/9uBM3RdH20YxqZ+nGaPOWwsdF3XL0V2WYoFdhiGUQNkAdO8H4NXA9HIfqhhjd9aooGDhmEUe8XcgrRqdx5CYm6uJQb5BothGAIYi3wt3gWu13V9cH/NMVharGWX93AskA38FrgJ6a44ox+m1yVarsUwjAPAYqRbbzXSVXEt8Iv+mmOweP92Xkcaccu8hzVgKLIV5kbk397wfplgCDksBF3X9UTgIuAB5B/lSbqupwN/A36u63qcYRjrgXygoN8mGgRtrGWWruujAQzD8CAFxOW9dkg4fyRusZYvgJm6ro/znv4a+cmjHikiv/LeE5Z/s22s5QRd13OAd5BW7GDDMKqRQm++PmH52rTxN3airusjDMP4CvgceNowjCuAj4BIXdct4boWLzbgA+Qn8V/qun4s8AlwLDDOMIxypHEUA+H7ugTDgN0U9e7E/xZYCHwHzABuASKBD4GfATOB65Av+LdIf+07hmF81B9zbo9O1vIBci1nG4axS9f1a5B/qNVAGvCLcNq4CnItc4DrgVnIpuPFQL1hGHf3w5TbJci/sROR65iAtARPB7YZhnFfP0y5XYJ8XU5DfrrIRgrifKDSMIxf9cec28NvLR8g98fyvD8XIY2EK4H/BcYDicAmYC7S5fd8P0w5ZISltdNTdF3PAx5H+vqygH8YhvFf4DHgBMMw/gj8A3jUMIxHkH/A1wNrw1DMO1vL48jNnUe8twxBCvpWwzDmhZmYB7OWfwC/B/4IvGgYxiWGYfw6DMU8mL+xV5DRU28hP/IfDSwNQzHvyuvyIrDV+/2KMBRz/7XkAn81DMNAGjcOwzD+5T0/B3gV6dKbCfxwqIs5DDBB13V9ht/HpWTDMB43DOMVIEHX9d8ZhvEp0ncG8BcgVtf1BO9HyXmGYfy572fdNl1cy1N4P8YjPxJPMwzjb3085Xbp4lr+D2k1YRjGP733h83faTfWEqnreqK3ifpvDvHXJQ6INgzjdeQnwif7Ydpt0sFaknRd/znwB+AoAMMwFgGjvdetB34VTmvpCWHzj9ITdF2P13X9M6S/73Tkhs0SXdev917yLXCWruvJhmG4dV2fAbyPjKSoAzAMw9V65L6nB2vZAWAYxreGYVT1/cxb05PXxRu6CPj2BvqVHqxlu3cDHsMw3P0w9Vb08HWpBwiXePog1vINcLX3cYmu6/d6ry/2Xhs2r0soGDA+dF3XpyATUY5CJgokex93IUW7Hmm9bgD+jvw4/05/zLUz1FrUWnqbw2wtTcg3pGVAJnIj9NN+mGqvM2AE3UTX9SeQvr1/6rqejfz4vg34H+BfhmHs78/5dQW1lvBErSU86WQtrx4qobw9YUC4XCAg1OhfyJCxQYZhlCBjmd9ChiTWhpM/tj3UWsITtZbwJMi11B3K4YjBMuAsdABd138JFAKVwHZgi2EYK/p3Vt1DrSU8UWsJTwbSWrpD2L/7dgU/a2ICMmZ2h2EY/zwUX1C1lvBErSU8GUhr6QkD1UI/H/jIMIym/p5LT1FrCU/UWsKTgbSW7jAgBV2hUCgORwaUy0WhUCgOZ5SgKxQKxQBBCbpCoVAMEJSgKxQKxQBBCbpCoVAMEA6rFnSKwwNd1wuQLcZANmZ+wHv8BWShJgzD6FbWoK7rY5HNH77yVulE1/WXgXnAVG+pVoWiX1CCrhjoXKnr+oPI0q8XhWC8scC93u+/CsF4CkXIUHHoigGHn4W+AxgGzEb2j/wrsmRqLtLdeCeyL2YqYADzDcPYoOv675Gi/Tyy21Aysh/oDzRb/iYnIDvgzEM2TrjQO/ZlhmF82ysLVCjaQfnQFQOZn4DvkW6Wq5ElVKu8565C9sxcixT2qcB/dF2P8Lv/eGTzkCRky7JSZGMUkL1CL0W2lTM5FllqNg/Z0Ueh6FOUoCsGOi8irebpyFZ9Jqd7H39tGMYTwH+QRZ1G+l3zJ8Mw/g9p6Rd4mzt85z233jCMf7coyfp7wzAeRNbfLgj5ShSKTlCCrhjo/BtwA/uAz9o4L1o8+lPhfXTR/L/SkY/S/3pr16apUPQcJeiKAY23/dvVwPUtWtkt9D7+yVty9Wy85VY7GbLS+3i8ruuX6LoeE9IJKxQ9QEW5KAY8hmG80cbhl5Gbo9ciN01/QG6KOnVd72i4Jcj+lTO89w0O6WQVih6golwUCoVigKBcLgqFQjFAUIKuUCgUAwQl6AqFQjFAUIKuUCgUAwQl6AqFQjFAUIKuUCgUAwQl6AqFQjFAUIKuUCgUA4T/D8TSgvH4y3+cAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pred = model.predict(n=36, num_samples=500)\n", "\n", @@ -2371,22 +2515,9 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEVCAYAAADwyx6sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACUQUlEQVR4nOz9d5xbeX3vjz9P0VEfaXof927vushljXe9y+IFdun1BkiAS0IgIbm/8L0JqSQkJCEVklzuJUASSEiBsCQksJXtzbuW27r38fQ+kkb11N8fZ6SZ8UgzmrFmPLb1fDzmYc/o6Oijc6T35/N5l9dbsCyLMmXKlClz8yPe6AGUKVOmTJnSUDboZcqUKXOLUDboZcqUKXOLUDboZcqUKXOLUDboZcqUKXOLcCMNujXfn76+vnk/t9Q/5bEs7bEslXGUx7K0x7EUxzPDWApyU67QDcO40UPIUR5LfpbKWJbKOKA8lnwslXFkWUrjmc9YbkqDXqZMmTJlpiPPdkAoFBKBvwdWAQLws0AN8KeACXw6HA6fCIVCDcA/Al7g/4XD4e8s2KjLlClTpsw0ilmhbwWc4XD4buA3gM8Cfwg8BHwI+JPx4z6HbeT3A78YCoVcJR9tmTJlypQpSDEGvQsQQqGQAFQCCcAIh8Oj4XC4A6gaP24X8HQ4HNaBMLB5IQZcpkyZMmXyM6vLBRgCNOAs4ALuBv560uN6KBRSAEc4HDbH/xZlwtDnCIVCnwQ+CfCZz3yGAwcOzGvQmqbR3d09r+eWmvJY8rNUxrJUxgHlsSzlcWRZSuMpNJbm5uaCzynGoD8A6OFweF0oFAoBfwFUTD5HOBxWQ6GQFgqFxHGjHgBGrj1ROBz+OvD18V9nTL+Zie7u7hnf1GJSHkt+lspYlso4oDyWpTyOLEtpPPMZSzEGXQCGx/8/BPgBORQKBcf/nzXch4B7Q6HQ88AO4NfmNJIyZcqUKXNdFGPQnwQ+FgqFngOc2EFRGXgEe5X9C+PH/Ql2lssXga+Fw+FU6YdbpkyZMmUKYlnWjfqZN11dXdfz9JJSHkt+lspYlso4LGvpj+XjH/+4VVtba23atGnG537lK1+xNm3aZG3cuNH68pe/nPv7sWPHrD179libN2+23va2t1nRaNSyLMs6evSo9eMf/zh33O/+7u9af/Znf1ZwHHMllUpZBw8etGKx2HWfK994/uEf/sHq7u7O/f6JT3zCOnXqlGVZlrVs2TJrcHDwul+32LGMU9CulguLypQpA8DHPvYxHnvssRmPOXnyJN/4xjd47bXXOH78OD/60Y+4ePEiAD/7sz/Ll770JU6cOMG73/1u/uzP/gyAY8eO8cgjjyzYuI8dO8a5c+d49NFH6erqAkDX9ZKd/1vf+hY9PT2537/5zW+ycePGkp2/lJQNepkyZQC45557qKqalpw2hTNnzrB79248Hg+yLLN//35+8IMfAHD+/HnuueceAA4cOMDDDz+Mqqp8/vOf57vf/S5bt27lu9/9LgCnT5/m3nvvZe/evfz1X/913tfy+Xz8yq/8Cps2beL+++9ncHAQgEuXLvGWt7yFHTt2sHv3bl544QVaW1v5xje+wUc/+lG2bNnC//7f/5uLFy/ypje9iTvvvJPt27dz6dIlAP7sz/6MnTt3cscdd/C7v/u7ALS3t7NhwwZ+9Vd/lU2bNvHAAw+QSqX4/ve/Tzgc5sMf/jBbt24llUpx7733Eg6Hp433O9/5Drt27WLr1q38/M//PIZhYBgGH/vYx9i8eTNbtmzhy1/+8jzuTPGUDXqZMksQQRAW5Od62bx5My+88ALDw8Mkk0keeeQROjs7Adi0aRM//OEPAfj3f/93Ojs7URSF3//93+eDH/wgx44d44Mf/CAAZ8+e5fHHH+dHP/oRX/jCF9A0bdprJRIJQqEQp06dYv/+/XzhC18A4JOf/CR/8zd/w8svv8x73vMevvOd7yAIApIkkUgk+PVf/3Xe9ra38VM/9VP84i/+IsePH+fll1+msbGRJ554ggsXLvDaa69x7NgxDh8+zPPPPw/AhQsX+NjHPsapU6cIBoM8/PDDvO997yMUCvHP//zPHDt2DLfbnfe6nDlzhu9+97u89NJLHDt2DEmScs/p7u7m5MmTnDhxgo9//OPXfQ9mopigaJkyZcoAsGHDBj73uc/xwAMP4PV62bp1K5IkAfD3f//3/PIv/zJ/8Ad/wDve8Q4URSl4noceegin00lVVRV1dXX09/fT0tIy5RhRFHMTwEc+8hHe8573EI/Hefnll3n/+99PMplEVVWsSX2R7733Xpqbm+nu7uby5cvs3bsXAJfLLlx/4okneOKJJ9i2bRsA8XicCxcu0NbWxooVK9i0aRMAO3bsoL29vejr8tRTT3H48GF27twJQCqVoq6ujre//e1cvnyZX/qlX+Khhx7igQceKPqc86Fs0MuUWYJMNlI3ks7OTt7+9rcD8KlPfYpPfepTfOITn+ATn/gEAL/5m7+ZM8Tr16/niSeeAGz3y49//OOC53U6nbn/S5JUlM9bEARM0yQYDPLEE0/w5JNP0tjYiChOOBqyK+jKykoEQeDJJ59k27ZtbNiwAVEUsSyL3/iN3+Dnf/7np5y7vb192phSqeIT9SzL4qMf/Sh//Md/PO2x48eP8/jjj/O1r32N733ve/z93/990eedK2WXS5kyZQrS2trKsWPHOHbsGJ/61KcAGBgYAKCjo4Mf/OAHfOhDH5ryd9M0+eIXv5g73u/3MzY2NufXNk2T73//+wD8y7/8C/v27aOiooLly5fz53/+5zmjnQ3KTsbj8VBXV8fly5c5duwYTz31FMPDw7z5zW/m7//+74nH44BdvJMddyGKGf/999/P97///dy5RkZGuHr1KkNDQ5imyXvf+16++MUvcuTIkTlfh7lQXqGXKVMGgJ/6qZ/i2WefZWhoiJaWFr7whS/kVuKTee9738vw8DAOh4OvfvWrBINBAP71X/+Vr371qwC85z3vyfmL77vvPr70pS+xdetWfuM3fqPo8Xi9Xl577TW++MUvUldXlwuo/vZv/za/9Vu/xcMPP4xhGNx3332sXr162vN/8zd/k7/8y78kGo1iWRZf+MIX+Omf/mnOnDnDXXfdBdiB1+985zs5t1E+Pvaxj/GpT30Kt9vNK6+8kveYjRs38sUvfpEHHngA0zRz18btdvPxj38c07RVUfKt4EuJcAO3duXS/xJTHsvSHQeUxzLXcfh8vtxKOsvQ0BCPP/74NFdLMfT29vLQQw9RUVFR8Jilcl1gxrEUjG6XXS5lypS5KdB1nVdffZVAIDBnYw62XzybkXOrUjboZcqUWZJcuzo/ffo0Y2Nj+Hy+eZ0vGAxy8eLFnPvjVqRs0MuUKbPkGRkZ4eTJk9TW1s77HIqikEgkGBmZJgR7y1A26GXKlFnSGIbBq6++is/nmzF4WQxOp5OrV6+WaGRLj7JBL1OmzJLm0qVLRCKRGYOZxRIMBrl8+XJJtV6WEmWDXqZMmSXNxYsXc6mR10u2iGm23POblbJBL1OmDJ2dndx3331s3LiRTZs28Vd/9Ve5x0ZGRjhw4ABr1qzhwIEDjI6O5j3HU089xfbt29m6dSv79u3LFfxkMhk++MEPsnr1anbv3p0rqc8W/GT5vd/7Pf78z/98yjmTySTRaLSghsp88Hg8eYuR5sq1Kow/+7M/y+nTpwFYvnw5Q0ND1/0ac6Vs0MuUKYMsy/zFX/wFp0+f5uDBg3z1q1/NGacvfelL3H///Vy4cIH777+fL33pS3nP8elPfzonSPWhD32IL37xiwD83d/9HZWVlVy8eJFf+ZVf4XOf+xxgG/Snn356xnGVOoBpGAZ+v5/u7u45lfbnYynK6pYNepkyZWhsbGT79u2AXeq+YcOGXIPiH/7wh3z0ox8F4KMf/Sj/+Z//mfccgiAQi8UAiEajNDU1TXv++973Pp566ikymQyf//zn+e///u+8srorV67kr//6r+nq6pq2On/rW9/KV7/6VT72sY/x2c9+lkgkAtiFOL/2a7/GJz/5SX75l3+Zjo4OwJ6Q/vIv/5JPf/rTfO1rX6O3t5c/+qM/Yvv27dNkdR966KG8sro/93M/d1PI6pZL/8uUWYII9yxMrrT1/OxruPb2do4ePcru3bsB6O/vp7GxEYCGhgb6+/vzPu+b3/wmDz74IG63m4qKCg4ePAjYhra1tRWwdwKBQICxsTF+//d/n2effZZvfetbgO1yOXv2LM888wxjY2OsW7eOr371q9NSFdPpNGvXruUXf/EX+fa3v823v/1t/tf/+l/8xV/8BZ/97GdpaWnh9OnTfOUrX+Ev//IvARgcHOT//J//gyRJfPrTn+Y973kP99xzD/v378c0zZys7o9+9COampp4xzvewfPPP09bWxsXLlzgX//1X/nGN77BBz7wAR5++GE+8pGP8H/+z//hz//8zwmFQgWv5WRZXYfDwS/8wi/wz//8z2zatCknqwvkJqXrpWzQy5QpkyMej/Pe976Xr3zlK3mzSmbSVf/yl7/MI488wu7du/mzP/szPvvZz/LNb35zTq+fldV1Op1UV1czPDxMQ0PDlGNEUeSNb3wjYDfS+PznP08qleLUqVP83u/9Xu64yRrr+/fvR5IkkskkQ0NDHDhwgN7eXlRVpaKiIiermzW818rqbt26FVj6srplg16mzBKkmJV0qdE0jfe+9718+MMf5j3veU/u7/X19fT29tLY2Ehvby91dXUAvPnNb6a/v59QKMQf//Efc/z48dyq/oMf/CBvectbAGhubqazs5OWlhZ0XScajVJdXZ13DJMlbC3LKqqqMyur6/P5Ck4g+YKqkiTR1dXFxo0bc7K6b3vb26bop9xssrplH3qZMmWwLItPfOITbNiwgc9+9rNTHnvHO97Bt7/9bQC+/e1v8853vhOAxx9/nGPHjvHNb36TyspKotEo58+fB+DJJ59kw4YN057//e9/nze+8Y0IgoDf7yeRSBQck6Zpecv8TdPkueeeA+wV8JYtW/B6vTQ2NvLss8/m3k8hWd3a2lpefPFFgsEgp0+fJh6P52R1s+O5WWV1yyv0MmXK8NJLL/FP//RPbNmyJede+KM/+iMefPBBfv3Xf50PfOAD/N3f/R3Lli3je9/73rTny7LMN77xDd773vciiiKVlZW5FecnPvEJfvqnf5rVq1dTVVXFv/3bvwG2rO4f/MEf5JXVTafTGIaR6zQ0GZfLxZkzZ/inf/onKisr+fznPw/Ab/3Wb/HlL3+Zf/qnfypKVvcf/uEfME2T5cuX88ADD3DmzBne8Y534HA4blpZ3bJ87nVSHkt+lspYlso4oDyWuYyjp6eH559/fpr/HOwsl0cffbQkrz88PMzy5cvZsWPHjOO5EZTlc8uUKXNL0N3dPWNP0lJxq0kBlA16mTJllhSWZdHZ2Ynf78/7eKlW53DrSQGUDXqZMmWWFNFoFFVVcTgci/J6pZICWAqUg6JlypRZUgwPDxfMdS+EYYJlTTzn2tCgBUiihZRnCZuVAkin0/MY7dKibNDLlCmzpLh69Sper7fo49OqyKGLlai6wOR5wLKm/l7pU9m2Ijrt+aIoIggCvb29i+K3X0hmNeihUOguIJtT0wT8GHgY+FPABD4dDodPhEKhBuAfAS/w/8Lh8HcWZshlypS5VVFVlYGBAerr64t+TveIC90UqPZrMx43POYgpYq4lenFSn6/n/Pnz7N58+Y5j3kpMasPPRwOvxIOh+8Nh8P3Ai8D/wn8IfAQ8CHgT8YP/Ry2kd8P/GIoFJqeQFqmTJkyM5CV5i3W5aLqAh2DHircMxtz+5wQSeT3y3u9XoaHhzEMo/jBLkGKDoqGQiEF2AWEASMcDo+Gw+EOoGr8kF3A0+FwWB8/5uae6sqUKbPo9Pb2zikY2j/qHPePz36s22HQM1J4nSnL8hT9l5uRufjQ3wQ8BQSA2KS/6+PG3hEOh7N7mSgThj5HKBT6JPBJgM985jMcOHBgXoPWNC0n7XmjKY8lP0tlLEtlHFAeSzHjcDgcbNy4segVui8os2mthSA4Zz3WssAwBXwuD4Iwva6xvr4ey7KWxHWBwvdopsKnuRj09wP/AESAyTJscjgcVkOhkBYKhcRxox4ApinTh8PhrwNfH/+1XClaYspjWbrjgPJYZhvH2NgYzz//fE6qdzZ6R5yc7vLP6jufzPCYwua2GPXBTN7Hq6urqaqqoqpq2np00ZnPPSrK5RIKhRzATuDFcDicBORQKBQMhUKtTBjuQ8C9oVBIBnYAp+Y0kjJlytxUFKOEOBfmkq5omnB5wIvPNTeft0sx6B0tvJoXBIGurq45nXMpUawP/U3Y/vHsHfxt4BHg34Csqs6fjP//eeBr4XD4+vo7lSlTZsliGAZPPvkkg4ODJTtnR0cHHo+nqGOHxxRSqoTTMbdJxa0YjIwpqHr+iUOSJC5cuFDyyWqxKMrlEg6HHwUenfT788Dea47pBebnFC9T5ibHNE1E8fYpvB4dHaW/v5/nnnuON7/5zQXL9ItF13V6e3undSfKh2VB+4AHr3Pu+iuiYD8/mnRQW6FOe1wQBFRVZXh4uKixLDVun09gmTIlQlVVRkZGaG9vJxwO8+ijj/Lwww+XrI3YzUBPTw9utxtZlnn++efJZPL7pItldHS06EkxknAQTTny5pMXg1Mx6ZvB7eJ0OufUlWgpUa4ULVNmFiKRCMPDwwwODjIwMEAikcj5ehVFybkJOjo6CAaDN3Cki4NlWVy5coVAIICiKAwODnLw4EH27ds3o374TPT19SHLxZmjqwNuXI7ifOddfVGOnYnS3i+wa4PMrjsb8SgGQzEnuhFHlqbnZgQCAdrb29m2bVvRY1oq3FyjLVNmERkbG+PUqVNcvnwZURRxu925BsjXkvW9btq0ad5G7WYhFouRSqUIBAIA1NbW0t3dzeuvv87WrVvnrMMCdrl/MW6bsZTM0JiTav90d0k8keHo6SHOXjXojgSIGauwlDtzj7cfvMyuO8cQRTt9MZaUqcqTIZNVYBwcHCw642apUDboZcpcQzKZ5OzZs5w7dw5FUWhsbJzVSDkcDlRVZXBwMG9ThluJ/v7+adejoaGB06dP4/f783YJmolEIsHY2FhRxrNj0I0imzmNFtO0+Nt/7+TK6Co0ZRMI4yZNGv/Ro7jN86SkdRjKSs5dfpp1K6txOkz6os68Bh3sHqRXrlwpG/QyZW5WMpkMFy9e5OTJk4iiSF1d3ZxW21kZ1lvdoF++fHnaajp7vV599VX8fv+ctFiGh4eLOi6ZkeiLOKn0TRjhQ6/3cT75dnACloGsnqFK6WJ5XZItq72sX12NLCn8/jePMMq9vHgszrqV1XicOgOjLtY1xfNWmVZUVNDZ2YmqqjeVYFfZoJe57dF1nStXrnD8+HF0XaempmZevlO/309nZyepVCpvl/lbgWQyyejoaN6Vq8PhoKqqiueee463vOUteV1T+ejs7CwqXbF72IUo2JkqWZ4+at+nOp7kF99fQYXfBdRNe+7Glhgv9cLlQXuylUQwLIFY0jFlgsgiiiKmadLf309ra2tR72MpUM5yKXNbk0wmeeSRRwiHw1RUVNDQ0DDvQNhkGdZblcHBwRndT263G6fTyXPPPVe0vnhPTw8+n2/GYzKaSNewm4BnwvhGYykGjD0AvOMNwrgxz8/+ndVgGSTlrURjdomMLJkMRAtnu3i9Xi5fvlzUe1gqlA16mduagYEBkskkjY2NJdlaBwIBzp49yw1svr6gtLe3z7qaDgQCZDIZDh48WFC90LIsNE1D13UMw5jVtdU7ahvryVmN//3cAEg+nOpRNq2dOWe8ttqHUzsBosLzYbvdnM+l0x9xUqiGyO/309PTQyp189RIll0uZW5rOjs7S+oecbvd9Pb2Eo1Gb7kURlVV6e3tpa5uukvjWmpqaujt7eXgwYN4vV7S6TSpVIp0Ok0mk8mt3jdt2oTLNbPStqYLtA+48bunFhKd6FkBCmxr6wSWzTqmZcFOzie3cuKqh7dju100Q2QsJRPwTi9SEgQBQRDo7+9n+fLls55/KVBeoZe5bTEMg97e3lm3+3NFlmU6OjpKes6lwPDwMJZlFV0RW19fT19fH5cvX6a/vz+Xv+/z+aivr6ehoQGHwzHrxNcfdWKY4pSc8aOn+lGVLaBHeOie4oLQezbb7pUhbTOmaZ9LEk0GxwrvzHw+HxcuXCjq/EuBskEvc9sSjUaL2u7PlWAwyIULF276ZgnX0tHRMetqejKiKObUCwOBAD6fD5fLhSzLc8pV74u4ppX5Pxm2DXKj8io+7+zSuQB3bqhD0HqwHA0cOd0PgM9l0DvqmtaDNIvP52NoaIh4PF70eGcjFostmABY2aCXuW0ZHBxcEP2VyTnptwqGYdDR0VF05kqp0HSBWEKeIsIVT2ToVXcDcCBU/MQgigK1DlsE9rWTdnBVlixUTSSeLux9FkWxpIHuS5cu0d/fX7LzTaZs0MvctnR0dJTc3ZIlm5N+qzAyMoKu64teBRtPy1gwpdnzI8/3ghxEUU+wbVPx+e4Ad6ywffdXo225v4mCrd5YiIqKCi5cuFCSQLdhGFy6dOm6z1OIskEvc1uiqipDQ0NFy7XOlck56bcCvb29N0TXJJp0TCv8Odph54Vvaboy5/Pds7MezDSqYzP9g7YbxevS6R4p7HZxu91Eo1FisVj+A+bA0NBQ0YVU86Fs0Mvclsy1GfFcuZVy0ieLcS02/REnbmUiFnH6wiBpZTsYcd6+f/ZsG7DlclMZkXhawu914jWOgyDybNg2rIpskVZFEpnCuw9RFEvSmq69vX1OPVPnStmgl7kt6e/vX9AvFtw6OenRaJRkMrnoJfCqJhBPyyjyhP/80YO277tOOkigYuZ0U90QGE04GI4rKA6LjCZiWrCq1vZfn+2emKAEAUbGCn8esoHu67mXmqZx9erVBZ0Yywa9zG1Jsep+10N2qx6NRhf0dRaavr6+G9K8IxuozG6i0mmNrtROAN64LX9zC9OCeFpiaEwhlZFYUZdk77oRdqyKUO3XSKsS+7bZcZOIdSeqap/H6zToGS08QTidzpzswXwZHBzEMIwFvZZlg17mtiORSBCPx3E6i0t3ux5uhZz0K1euLHp2C9grZlmatDp/oQccNciZs+y8Y2rueUYTGYk7GI0rBDw621dG2LthmOV1STxO22VTH0yTUkXWLK9GUi+CHOSVY/Zq3ekwiadlTKuwC06WZTo7O+f9fi5evLhgMZssZYNe5rbjelZZc+Vmz0lPJBJEo9EbIjY2GJvqPw9fto34pobziJMUulRdIJmRWNcUZ9+GYbYsi1Hl06YFU4MeLbfcb/TYxUKHz088LmJhGIUNejAY5OLFi/O6l+l0mp6engXfFZYNepnbju7u7kUzUDd7Tvrg4OANiQGkVZGkJqHI9mtfaB8mqewCM8Xb90/VbYmnZVY1xGmuTs/YNNrtNPE4dFRdYMca+7iexJpJjxtoMxh0h8NBJpOhp6dnzu+nv79/TlW286Vs0MvcVpimSWdn54Lln+fjZs5Jv3LlyqJeqyxjaRkmzSOPvGSnf1ZxkOrKqW4L0xKoqcjfqOJa6oMZkhmZvdsbQI9iKGu43GHv2FwOE8MUUPXCRr2yspIjR46g63NrUH3x4sUFX51D2aCXuc2IxWJomjavnGrdEEhlRGJJmeExhb6Ikyv9Hk53+ni9vYKMlv/rlM1JNwvJ+i1RMpkMfX19N8Sgj4wpudW5qulcTewAYP+W5JTj0qpIwK3l/OSzUe1XMUwBRZEJCMcBeOGInV+eDb7GkoWzXdxuN8lkck7FQYlEgoGBAbxeb9HPmS9ltcUytxXDw8Nzzj2/3O+hY9CDYdpfessSsJePApJoIksWKVWixp+hqToz7fnZnHRNK24VuVTIXquFytUvhGXBQEzJ+c+feKkHy7EDSb3EvlDzlGMTGYmNLWNFn9vn1pFEC8OE9U2jvNoPFwYm8tkFAQZjCjUV03uWZqmpqeH48eO0tbUV5brr6+tbtOtYXqGXua2Yq7slrYpc6ffid2tU+zWqfBrVfpVqv/1v0Kvjcxn4XDo9kcJf7kAgQDqdXhI56aZpoqoqfX19RKNRVDW/8ZqrGFepSKsiqi7l1BVfPV8NwLrq01OCofalFAr2Bc2HJEJtRYaUKrF/RxUACelO4gl7IhYFi8FoYY10IFe/cObMmaJe89y5c4tWlFVeoZe5bdB1nf7+fmprZ26GMJnuEReCYOXtOzkZl8NkJO4gpYq4lenWwO12YxgGY2NjNyQFcDKDg4OMjY3x6quvIggClmXhcDgIBAIEg0GCwSBer5eOjg6qq6sXfXxjaUfWWtPRHSEu7wNT5R37q6Ycl8xI1FRkZgyE5qMumKEv4qSxvgJFPYGqbOGFcD9v3d+GIIBmCCQy8jT99cnU1NRw9uxZVq1aNaOxjsViRKPRRWs2XV6hl7ltGB0dxTTNojMNVF2gY9Azpe1ZIQQBBGzfb+FjBPr6+ood7oJx5swZJEmioaEhp0seDAZRVZXOzk4OHz7Mc889B7DoYlwAQ1FHzkj/6IUxECQC5kHqa6furNKaRHNVcW3uJhNwa1gIWBa0Bq4CcPzKRE2CIMBofOa1riiKuFwujh8/PuOuq7u7e1GvYdmgl7ltGBgYmNOXq2/UiQWzrs6zeJwGPSOFXRSiKN7wHpXRaJSenp5p10GSJDweD5WVlTkjX0xnolJjWTA45sr5z7OqiLvXTq22NUwQRYugd+5xCcVhEfRoZDSRXRts98lAZlOu6YXXadA3g/ssS2VlJZ2dnQVTUi3L4sKFC4uqgVM26GVuGzo6OopOHdMNgSsDXipm2HZfi0sxiaUcpDL5v1aiKDI6OlrSZglz5eLFi4uuyTIXEhkJ3RCQRIjEUqiOjWBq7N021U2WSMs0BtNTuhjNhfpgmqQqs31zHYI2gKU0c+Kc3WvU6TAZS8kFs5ayCIJAIBDg8OHDeTOYRkdHSSQSi1KRnKVs0MvcFqRSKSKRSNEFRQMRBd0Q52wwBCxG4jO7XQYGBuZ0zlKRTqe5ePEilZWVN+T1i2EsJSOMJ6C/cmwQBBmnfmqaEJdmiDRUTs8oKpZKn4ZlgSyJVMsn7Nc7MfV8seTsIUafz8fo6GheeYeurq5Flxwu6tVCodC9wO9gTwB/DQwCfwqYwKfD4fCJUCjUAPwj4AX+Xzgc/s6CjLhMmXkwl3J/w4RLA3Zmy2yoms65yyPIosiGNTV4XAbdI26aq/P7dn0+H5cuXWLlypVFj6dUXL16FcuybohfvFgGY06c40Hl01dt89Tk7wZacsfohoAimVQUcX8K4XUaKA4D3RDYvCzJsx3QPjrxGk6HwUDUSW2gcPpilurqao4cOUJTU1Nu92OaJhcuXFj0RuGzGvRQKOQG/j/greFwWB3/23PAQ4Af+BrwIPA5bCP/LPBCKBT6fjgcnnvE4jZD0zTOnDmTK3aRJAlZlnE4HMiyjCiKiKKY82/eLliWVdK83Z6enqK3vsMxhYwq4XdNLVZRNZ3TF4Y5cyVF55CLkXQDGWkDSB4wNX6O59i4ppahMYVkRspb7OL1eunr6yOVSi2qPophGJw+fZqqqqrZD75BGKYdVM4a6v7kclBgyzVz31hKZlltkuupohcEaAyk6R51s39nLc+2q2Qcd9DZewIQcCsGgzEnhjk2awzF6XQyOjrKhQsX2LRpE2Dn8GcymQWXaL4WYba82FAo9EbgU0AASAK/APxzOBx+4/jjB8Ph8J5QKPQScHc4HDZDodDfAN8Oh8Pha871SeCTAJ/5zGd2HDhwYF6D1jRt0S9UIa5nLJZlEY/H0TQtl3mRvR/X3hdBEAgGgzMauVvluoDtHtA0Da/Xe136F9lxRCKRXIHPbCTSMgh2TvLLR/r58r8l6YnVkxJXg5jHCBsJkLyE6h7l659fi24IOB3mFB1vsPOXNU1D0zR8Pt+i+rJVVSUej+fuSXYsN5rJ4zBNgUTGzj+/2hPj3X94J1gaz/zJJQL+iclYNwS8TgNRvL6cfsO0Rb1kyWL/L4wyJob4SOgxPvuxNbnX8TgNpCJex7IsDMMgEAggiiKJRAJN0/LuhgzDQFGUWZUXC32HmpubC36Ii3G51AOrgT3Am4AvAJN7MemhUEgBHOFwOPsJjgLTlgLhcPjrwNfHf5333eju7qa5uXn2AxeB+Y4lk8nw3HPPEYlEisom6O3tZc+ePaxYsaLkY1kIrmcslmXxX//1X6TTaQRB4K677qKlpWVeK/bu7m78fj8vvPACDQ0Nsx4/PKZw9EqAGr+91f71v/WQUfbmvimiehW/eJWGQJTVLQJ3rqvk8OlRHr/4No51ruC5w3EymogF7Fk71c3T0NBAX18fY2Nj+P1+7r333jm/n/lgWRaPP/44uq7niqqyY7nRTB5H15CL871+qnwq//V0JwjbcGsnOXZeBmyjn9FETBP2rBvlejdwuiHw/Olqgl6NtmAvp2Lw1DE3Ow7bQevRuIMV9UmW1yVnOZPN4OAgy5YtY/v27fzgBz+guro6r0EfHR2lra2NNWvW5DnLBPP5DhWz9IkAL427W54CtgGTKyPk8ce0UCiUPV8AGJnTSG4j0uk0zzzzDLFYrOjUsGAwyOnTp5dEpeFCMzo6SiqVor6+nkAgwPPPP8/BgwdJp+fnwRsZKe6jaFl2mb9nPGXu1WO9ZJStoEd4+/of8dvveoW/+PkIv/dzAT71gTbetLeV2mof9+60hZ5053rOXR7KaWsnC7Q08/l89PX1kcnMP6g3F4aHhxkZGbkhmixzYWjMidthZxWd7bRX5M2BqS38EmmJlprUdRtzAFmyqKlQSakSd2+zdVZ6M1snml64dHpHi89Qqa6u5uLFi5w/fx7DMG5IrKIYg34I2BAKhQRgK3AakEOhUDAUCrUyYbgPAfeGQiEZ2AGcWoDx3vQkk0mefvpp4vE4NTU1RT8v2/1mIRvMLhUmF2M4nU6ampro6urikUcemVePzs7OzqL81dGkg2hSzvm+Hz9s55S3uV/mjXe1TlP5y+JyOagUjwLw3BF7NWd3ks/vcspWZw4NDc35vcyHc+fO3RA987lgGDASd+QCogNp23F+5+oJE2VZYCHMqLMyV+oqMqRVkXUrq5HUCyAFeCFs7xgU2SKZkUmpxbn8srGukydP3rDrPetIw+HwEPAfwHPYQc/fB34beAT4N+A3xg/9k/H/Pw98LRwO3xrtzktIIpHgmWeeIZ1Oz8mYZ3G5XHNSebsZMU2TS5cuTSnGEASB2tpa3G43Tz/9NEeOHJmT/7e3t7eo1Wn7gBvXeIViR0+UUd4Als6798/eZebO5bZA1KXhZQB4nTrdI4W/1B6PhytX5t61fq7E43E6OjoWPdtirsTTMpYlIArQ2x/DUNaAkSC0pT53TFoVCXrVvNIK8yXg1ewSX6DVZ3e7OHxhsifaIpooPhaUjXPdKHmHotIWw+HwV4GvTvrTJWDvNcf0AvOLct4GxONxnn76aQzDmHemQTAY5MqVK9xxxx1LfsU1X7LulnwGyO1209jYyIULF+ju7mbv3r2zao3ouo5pmrNuf8dSMoMxZ853/h/PjIHoIKA/z/LW2bOL3rinnmevJFGVO+jofo625iDDYwqJtITXNT3bxe/3093dveCB7MuXLyNJ0qIrJs6VaFJGFGx34svH7diDxzyJyzlReZtUZVbUx/I+f764FROv0yCjidy1WaL9CPRltmCaA4iigMthMhBzzinnfS5aQaWmXFi0CMRiMX7yk59gmuZ1pR5msz2up6/hUme2YgxRFKmvr0cQBB577DF+8pOfcObMGQYHB/OqBuq6XpQx6xh045RNBAESyQztyT0APLAjUdS4/V4nFdZhAJ4+ZJepC4JV0O0iiiKmaS6o20VVVc6ePbukUxWzDEQnyv3Pd9uLldbgRAGWadnXs8pfOndLlsZgimRGYvvmekStB8vRxJFTttvFrRgMxxRulg6CZbXFBSYWi/Hkk08iy3JJNB0qKys5c+YMq1evviGd2BeSfO6WQvh8PrxeL8lkkpMnT2IYBpZlEQwGaWlpoba2lkAggKqqs7pbkhmJ3lFXzlj859N9IO9CUU+wZ2vxKnmbW0d4uRfO99uZCV6nXWTUWpPOG8RzuVxcvXp1wZT4urq6MAxj0asV54qmC8SSMpU+2402pK4GBbatnZgMkxmJ2go11/RiPhSqbaj06Zh9dtXoisBpLiWbePmEQWgLiKLdESmWcuTGt5S5tSzCEiSrmVwqgR6n00kikbhpe1TOxMjICJlMpuj8bEEQ8Hq91NbW0tDQkEtLPHv2LM8++yz/+Z//iaZps+b7dg65kSULUQDTtDjWvR6AncuuTNHfno3799SBqZJybKV/MI7TYZLMSCQKZLtUVFTQ0dEx53ZmxWCaJidPnrwpitHiaRlLsIt92rsjmMoK0KNs2zThukirEk3zUFYEO++7p6eHrq6uvI/7XDqyZDe9eOtue8LoHFude1wSTYbjS6O+YzbKBn0ByfavLLXamtfr5dy5cyU951Kgs7PzuvzJgiDgdrtzBr6xsRFFUWZ0uWQ0ka5hd6468ZmD3ejKWgStj7fdN3sOsGFCJOGgP+rE6/XhNY6AIPHUq3Y2kijCSAG3iyRJGIaxIJlLAwMDxOPxG9KgYq6Mxh1I47fo1ddtd5XPOoXisHcWhgmyZBL0zN3dkkgk6Ovr484778xp0l+LKEJdwO41+j8ebLFTUJV1XLhi3xeP06A/4uJmyBguG/QFJBKJzLt/5UxUVFTQ3d19Q1X7So1hGFy+fHlRpUbBNiZAroz82ZP2inZN4BAuZ+H7Zph2ml006aClOsm6xjESaYn1jbbf93SPXV/gdep0DbsLGgOn07kgMZHTp08v+bzzLIMxZ85/fqHXHvPymonYQjwt01iZYS5p3ZZlMTg4iK7rPPDAA2zatImGhoaC35m6gIqqi3jcCpVCNgXVjp8oskValUipS1cDJ0vZoC8gAwMDC+LnFgQBURS5evVqyc99oxgZGUFV1UWXLhiMOXE5bGNy7vIwccdeMNO85435A4mGaU8CsaSDZbVJ9q4bYXVjkrqgionA/burwDJISNsZjSRRZIuUKpNIF3a7XL16Ne/Kcb6Mjo7S19e3oKlzlgVnu7wMRJQZ27UVc554RsbpMDFNi1FtLQDb103sLHRDpD5YfJaJqqr09PTQ0tLCW97yllzWSWNjI6lU/mxqW4jNwrJgyzI7k+bS0MQOTcAiMkvTi6VA2aAvIFevXi1af3uuVFZWcvbs2QXxv94IOjo6Fl2n2zBgaFIz4h++YLtdasUXp3XHsYWjHMRS44Z8/QirGpK4xnOiPU67r2hVZQCXdgxEhadeteMcgmAxVKCTkSzLqKo6JzXI2bhw4cKCX8tkRqJr2MPxqwFeu1jJyJhjzi4JywLdFHMiIJeujmAqLaCPsGV9be4YAQufq7jPeTQaZWRkhL1797Jnz54pgmwzxRMU2RqX1BW4b7cdC0k77qR3wK4vcCkm/dGl774qG/QFIpVKMTIysmD54oqioKoq/f39C3L+xcQwDK5cubLo7paxtAPTEmw/dyRJr/YGAB7aM3XJGUvJxFIOVjYkecO6YVY2JPP2sWyqTJHISKyt7QbgRIdtQHyumYuMZFmmu7u7JO8pmUxy6dKlBQ+GRhIORMGitkLFsuDwlSBHLgeJJmZfxaZVkc4hFy+fqyKtinjHjfWrJ213SAWnkMclDjO6iN+jz6pLb5omfX19OJ1O3vrWt7JixYppsZOKigoEQcjbjAKgIZDGtCBY4c7FQp49ZPvRXYrBaNyBpi/tfP6yQV8gsvohC1nQ4fP5iu48vpQZHh5ekFjDbIyMOXJKej94aggkH271EHdumKhONExbxOmutSMsr0uiOAoblqrcCs+emGLCDuKJTM4Ha5r5PwuBQIBLly4VNDRzob29HVEUF1xHpC/ixD0ukeBWTGr9KmlV5NDFSo63VxBPTX19w7SFz463V/DS2Wou9PhwSCayZOWqcy/32y6ilbUTu5W0aqcrzoRpmvT29rJ+/Xre9KY3FVwYyLJMdXV1QbdL0DexC1jXYC+UznTbFd2iYMsOjKWWttulbNAXiK6urgXPMPD7/QwODhKNRmc/eAlz9erVRW3TlaU/4sTj1FE1nTNDWwHYt36qAuFYSqalKpVzrcyE12XgUgya6itR1BMgeXjmVft8omChFzDoiqKQyWSIRCLX9X40TVsUzXNVF4gklJwhzuJ1GVT7VWJJBwfPV3G600ck4eBSn4cXz1Rz7EqAsZRMlU+lyq9NySk3TYuIuRGAHRsm0kwNU5i1SffY2Bitra1s3bp11kVBc3MziUT+YjG3YiAIdl78fbvsHc6YtJ2xhO2/lyWzoOtsqVA26AtANl1xofznk5Flmfb29gV/nYVC13Xa29sX3d2SyogkVRlFtnjshW5MpRVRbeeBfRNdayzLDsg1Feg+dC2CAI3BNIm0zMqqdgCOXbE/Az6XjqqLBf3MsizT09NzXe9pMaQEAGJJBwJW3mIpQQC/W6fKrzIYc3L4UpCOQQ9ep23sfS4j7/POXBzCctj9PTeumapz5J3Ff55MJlm2bFlRY6+uri64ExIEcEgmiYxES0MARX0dRDfPjk/K3psgfbFs0BeASCSCruuL4kKorKzk3LlzS6JZwXwYGhpC1/VFlxqNJh1ko3GvXLCN+Oa613O+W7ADfzX+DL48WiyFqKlQMS24d4ctxzpibiOd0XHIdgbFTNkuly9fnrc8craQaDFEuAaiCo5ZKjZFAQIenWq/SqVPm9UHHj5tq1QGxdO5Yi5VF/C69FmrQwVBmFXTJ0sgEJjxGtsFRvZnYEWlnUV2/Iov95iqi0va7VI26AvAwMDAookhybKcq4S7GblR7paBmBOXwyR8so+0sh30KO+5f6o2fVqTaKudm2ioz6WjSBarltUgq+dADvL8oYl7U0jbJVsBPF/32eDgILFYbMFF2wzT1l3xOEubXXVl0HZxrJwkvpVSJWoqZk5XTKfT+Hy+onPunU4ngUCgoLa+JFqIgoVpwj3b7Gs5bG5F1ez3K0smXSNLN9ulbNAXgLmmK6ZUe9aPJWWiSZloQiaScDAadzAy/nNtkGkyFRUVnD59uhRDX1Q0TePq1auL7m4xDLtvqFsxeOxV28A2O1+Z0lk+o4m4FIOgd247H1GExvFsl2UVFwA4fME1/phFz0jhIiNRFOed7XLq1Cm8Xu+8njsX4mkZwxRm7bM5F3TDJIrdi3P35gnDbBgCld6ZJ46xsbGi3S1ZmpqaCvrRgVzTi41rapHUSyBX8coR2+3id+v0jrpJF6mRvtgszVHdxMw1XTGVEXn1fCWHLgYJX6rk8KUghy8HOXw5wJHLQY5dCXLscoDDl4MFFd+8Xi+RSKSkxSmLwdDQ0A3p7JJNV+wfjDHMPrAM3rV/6i4hnpZZUZuYVyPimoCGbojcvdUOoA1qW9F1A1GwV52FOhlVV1fz+uuvzzk4GolEFryQKMtoXMnJ3JaKE2cHQa5CULtZtWwioGvBrPnnuq7PWdysrq4urzJn7vFAhrRm36Nmry2xceic/bso2HnxfZH5r9J1QyCZWRjTWzboJWau6YodQx5AoMqn2dF/n0aVT6Pap1HtV3MZAZouEkkWjrArijLvFm2lRtd1DMOYdYJpb2+/IVoj2XTFpw+Ngqjg1V9j9SRDYpj2aro2MD+pVr9bQxItNq6pQ1SvYDlqeWl8hYcgMFJA6EmWZbxeL6+88sqcCsbOnz8/q2ZNqegdcc4apJwrR87Zn9sqx7mc/1zTBVyKmTffP4thGIiiOOe4wWw7Qjurxp609tiJN/SmNmGa9t8q3DrtA250Y37Xu2vER8fgwmTLlA16iZlLumIyI9E97KJilrQssAsbZupvGAwGUVV1SVSOXrx4kWg0yve//32efPJJXn/9dbq7u4lGozkjr2kanZ2dN6SzSzZd8UKv7bddWz9VuTKWdNBanZw18FcISYSGYJq05qDFa9cJvHbWXuF5nfaWvRAVFRVEo1FOnSqug2O2kGgxNM9TGZHEeGZQKWkfsrNaVjdM6KykVDsgPRPxeJzm5uY5Jx94PB6cTmfBRAKXYuJ12U0vdt7ZiKANYCqtHD9j6/RkA6eD0bkb5ZQqcnWoYsEyZcoGvYTMNV3x6qAbUbRlW2fD4zQYiDgLVqpJkoRlWUU3RF4odF3n1KlTyLJMbW0tmqZx/vx5XnjhBR599NGckT9y5MgNcbdkjRKWRpQtAOzdOnG/LMvWv26qur4GznWBDKousnez/RXrTW9B1+0V51hKJjXDlru2tpaTJ08yMDBQ8JgsV65cQRTFRdHGjyQdJXe3pDM6ccH2n+/ZMjG5a4ZIlX/mhU4ymaStrW3OrykIAo2NjSSTyYLHZJteyJJIreM4AC+dmNix+Vw6lwe8c9ax6Rj0kNEX7jNfNuglZC7piom0RM+ImwrPzCvqRDJDd38M0zCwmFAHzIcgCDe8m1Fvby+qquYExDweDzU1NTm98qyR7+rquiFa3dHxHOrXXu8HOYikXp7ibklk7MyKbKPo+VLh0REEi22b6hHGu+D8+Dlbj1vAmvE+SpJEZWUlr7zyCplM4YlF0zTOnDmzaB2J+iOuacVE18vjL/aAHEBU26e0+rMAXxGZNMWmK17LTEJdMN70Ynzu2r7avgcd0VW5x50Ok5QqEZlDv1Fb/8aF31X6rktZlm5C5U3IXNIV2wc9yJLJI892cOqqQsZwohouNMuNgRdTqMCSKkC03Tdu9RC/9TGTnlEXdcH8HwhJkmhvb2fr1q2LvvIFW7L05MmTM7pRskZ+tqYTC0V/1IlLMTlyzv621rsvAA25xzOaxKbWset+HVmyqAtkiCQcNLpO0GM08fAzGT7xbnA7DXoibpqqCxtrj8fDwMAAR48eZffu3Xk/V4tVSAS2T3tkzEGwxF17njhoG9Ua5QJgp43qhoBTNmeszk2n01RUVMw7s2c2v/vkphf7dzbw2LkxNGUDlzueZWWbPfG4FYMrA16q/JGiXvPKgMfOZZ/XiIujvEIvIcWmK8ZTdsuz/r5+nrryVvqsNzMq3kvCsQdVuRNDWY3lqLONuamCZZBSdnKlvY+RuJOMlv+2CYKApmklVe6bC8PDw4yOji5K+tx8MAxbT8StGHSN2alud6yYMFAZTcTj1OecqliIhmAGVRPZtd5e7Z8dXI9p2tol0aSj4H3MUltby8WLF/N22lnMQiKwJRBMS5jiHtSN61+tnx7XSlnbNLFaTmsi1f5M3orS3HjGxli+fPm8X9fv9yOKYsHAvShC7XjTC5fLQcCyNdKfDU/kyXudtmBXMYVG8ZRE74iLCvfCxrjKK/QSkU1XzLZBm4n2AQ+KZPLvz1ogyHi1g9zR2o/fI+L3SgT8DoJ+J5UBFx63wpe+PcQgb+Lpwxk+3GQxEnfQWKALuSRJdHd3U1NTk/fxheTcuXMLXthyPYylHViWQP/gGJqyD8w0b9heN+lxmc2tsRkNyVzIapDcta2BHx4bQHcs5+jpx9mxuQEs2302Uzd5QRCora3llVdeoaqqaspEmS0kampqKs1gZ2Ew5kSRJwz4b/6tSkraQJVwiF1rE9y3uxFFmZs5SWd0ota4/3zrhLslo4lUz+I/NwyD+vr6GY+ZCUmSqKurIx6PFyxKqqtQ6RsvItrcFuGlHrg4OPV6O2STziEXG1tnbjZzqd+L02GW7LNViPIKvUQUm644lpLpi7roH+hniP1g6fz0mxJ84K3Leev+NvaFmtmyro7WpgA+rxNRFNi7wf7SXx3bgssxsxRrKZX75kI8Hqejo2PRVozzYXjMgSSavHTEvlce4zg+r505lG1zVjOLst9ccMgW1X4VzVSoV8a74BzLKhQaReUyO51OZFnm0KFDU+7pqVOnFq0jkWnamUHZdMWLV0dIKTtB8jEi3sdjF9/G5761jD/5Vh8vHu4uauWeTKs89kI3SF4k9QLN9RNuOkGYOf88m654vTGY2QqMKjwaFgKWBW/cXQumRsqxlcHhCePtd+v0RtykZig0iiZlBqLOojXdr4fyCr1EFJuueLnfg1M2+fdnTBBkqs2nWbdy5tX0vp1N/NfrPZhKG0dPnmTD+uWkMiJu5/QvTla5b3R0dN4Bo/lw+fJlJElaNMmDuWJZ0Bdx4XEanO32gQgra/oB2/USSzlYVpOcVXNkrjRUZjjZ4eQNmw0ePgFdiTvRjQHcit3CTtWFWdMAq6qq6O7u5tKlS6xZsyZXSDTXgpr5Ek/LaMZEdejB47bbwa0eoiXYz+XIegxlNX3Wm3n4dfiPcCdtvte5b4dCc72Pc1ciXO1V6R1VGE0GSFpNmI5WEOw4T53rMtk4hmHaxTszBaWz6YrXGyeqqqqaUddFkS2CXpW0JlIV9OA1jpBw7OaRF4f56DvtyTRbaNQ74mJlw/SsGcuCS72+nJLjQlM26CUgm6442+o0lpQZjDqJjvYzaO4HweD9981+flkSafEco1Nr4qWTMhvXwdCYQqszfyFRVrlvsQy6qqqcPXt20bIt5kNaFUmpEk6PxoixGUTYvckOzJoWWCY0zqOrvGVZjI6OkkgkqK2tnTapB70aCLB7ayP/caQbU2nm4NHj7As1Y1l21s1set9gVzeGw2Fqa2sXtZAIYDQuT/GdXxyoBAk2NPbw0+9YjmnGOX7mCZ45qtOV3IqptNKutvIPr+Q5WTZ+axlI6hWqnN28e/9EUDetSrP6z5PJJK2trdf9vrLBe8uyCl7LukCGC71+3IrKtuX9vNgNp3pXAROr7YBHo2PITWtNalrtwmjClu4o5c5vJsoGvQQUm654ud+DSzH4xtMaiA6qzGdYt7I4o3vfNpl/fA36tB1IQgfdI25aa/IboEAgwOXLl9m8efOifOm7urowDGPRG1TMhWwO9bEzA1iObQhqd06mNZGWqQtkcBeheZ4la8jT6TTLly/H5XJx8eLFaQbd6bC71au6zIbak5yKNPPSSYl9IfuxvlFXUQbd4XDg8Xh4+eWXiUaj1+U/niu9EXduxazrBlHLzt/fc4edACCKAts21bNtE+hGPy8fPsrLpxX6tR0gOHEY7fjkQWp8cZprLFa2uFizrBKXy8H+HY08d3jChZHRxFmNnyAIJYkRKYpCMBgknU4XjP3Ybens/7/1nkZe/KcImnMTR089wbZN9j2QRHKFRpMzl+zVuRdviYXMZmLpfgNvIopJV4wmZIZiTqKjfQyY94Jg8L57JgyI3RlHRDMEdEOwu9sIAmBhIdDQ2IqsnkNX1vHS4ZfZvX018bSUV9pVURSGh4eJRCILnuu92NkW82Ug4sTpMDl0yjYWtcppRNEOiGZ0gdaa4lQVrzXkGzduJBgMMjIywrlz5/I+pzGY5myPnw8/4OI3vwf96nZUrQOPEwZjCrohFOXqCQQCDAwM4HA4rquQSNUEu4t9AbfdZFKqSCIjUT2ernj45ADI2xHVq6xZPn0xIksi9+xq4Z5dYJodmJY1LklcOf4zM5YA/hl8zalUioqKipKlvTY3N3P27NmCBt3rNFAcBroh4HEpNCqv0mu+mZ8ctti2aeI4n0vnyqCXhspMTv9nKKYQTTmo8S/O6hzKQdGS0N7ePmO6omXZUW6XYvDvz9ir80rrBTasqcEw7dzoRFpGEi2qfBrL61Jsahtj24oIu9aMcveGIRoqVZYHbfW+QxcqEEWL4Vjh/GNRFOnt7S35e72WgYEB4vH4ks5uMQwYjtvpih0Ru5P7pmW2AU9rIj6XMWuBV7YKt7e3l4aGBh588EH27t2bm8iCwSAOhyNvGlyl325N98C+ZiT1Epajlude60UUwDSFcW324qirq7vu1enFPh+qLvLqhaoZP0MA0YQj18QZ4Mi58UbazvOzvo4oClP05WfDNEFidv/5XNUVZ6KmpmZGzSFBgIZAhsS4oNr9O+y/92R2kk5PZOJkC41GE7YcgGnCxT7vogRCJzPrCj0UCi0HDgFZcYn3A/cCvwKkgI+Gw+GuUCi0Hvj6+Dl/JxwOP7UQA15qmKbJ6OjojOmK0aSDkbhCPDZAv3EvCCbvvdu+0bGkg1X1cVY3Fi5DBmiuSrH3ziAXX4GIsAst8zpdI17aatN5/Y3ZbJcNGzYsqNvl9OnTi5ZtMV9iKdsoRaNJ0o6dYOncvd3uKp/MSKxuiM/os43FYsTj8Skr8msRRZHW1lZ6enqm7YrcionfrYPgZHngNJdSq3j1nIcDb7ANQX9EoXqRVnHDMQfdIy72SCZuxeDIlSCrGxIsq03mVZbMFmJl6Yg0gQIbWksvBJfWJCp96owKl7quF5UaXCzFSDdXV6h0DNsLlh2bG/juS2fQlA08+sKLvPvAxOTiUQzaBzxUj3drSqTlRfOdZyl2+nwuHA7fGw6H7wVGgc9iG/XPA78zfswfAZ8A3gL8fmmHuXTJzu6FjKZlwcVeL27F4LtPpkFUCJrPs2ltLaZlB+SaiwjGVfo0lrdU4VKPgOjm6YP9pFWpYFGDy+UiHo8Ti8XyPl4KstkWi9Fq73oYjjsQRYsXjwyCIOPSXqcyaG/ZLQuCs2huJxIJDhw4MGVFno+WlpaCipeNlSlME+7fOd40wdhBMq3iceoMRFwFpZFLiaYLnO7yU+HWEQR7Mqn2qVzq83LiagWqNvUzrBsCI+OFWACxsTRpeQtYBvu2l77OwS4oKmwAs9o/pXTveTwe3G73jHK62WKgrBTAhrpxnfsrU+MYHqfBSNxBJOHgfK/XnsQXGWG2llfjK/RXgIvAC8A/Ab8aDof/5/jjr4TD4btCodDBcDi8Z/xv/w18PBwOD11zrk8CnwT4zGc+s+PAgQPzGvRilTsXQzqdJp1OF0yhMkyBREbi3OVhfubLd4Dg4MsffZn9uxoxTAFZtHApxX2b05rEb3zlHI9deJCAeYgn/6YaRZ6QGHU4HFMU5HRdx+12L5hEbTKZJJPJ5A2GXjuW+WAB17u3cDgcjI5ZCILF+361nfb0/exqeJSv/fZaLMu+PzN98bK538Ws5EzTJBKJ5P1smpaALDtIpAz2fipNWt7Ez+x6jP/fz6yx/bNOA0lc2GaVGU1E1UVkycLnkYgnJz53uiEgCHZ+fHYchimMC1TZv3/t3y7y9RffjFs/wUtfK40Pe/I4ZrsO2cB7qXeEiUQCTdOQJKng5zalSuONPSw6e8d45x9sAMHBP/xSmDvXT8QSDNO+joYJjgJxka7eBMtbfFQFZ3ZTFrJzzc3NBb8WxQRFe4HVQBL4BvAeYPKyL2vJJq/2o0AVMMWgh8Phr2O7ZWCKZ25udHd309zcPN+nlwzTNDl9+jT9/f0FDfqJqxVEkzL/97sjIDoJGs+BFOS5w3GGYgq71ozO6r/NMhp3sLKtFs6pRIXt/MuPX6aqsoo3bBhGFKGhoYG+vomu9alUCsuyePDBB0vyfieTSqV44YUXqK2tzfverx3LXLnY6+HqoJeW6hQNlencqnKu1NU38sMXdCo9GTpi60CBNS0Czx2Ok0hLVHg0tiwrrN3S39/PHXfcUfTn7fTp0xiGMS1oZ1lQUdnCU4cSrKy8yumxTfzwFQ/bNsWJJmUaghnWNc9cbXg9RBIODl0MUu1XEQXYv8M3JbsExgOgaZn1LWM0V6W52OulZ9RFYPzz+eNX7K9sg7eD5w63THuN+ZAdh2nZY9y/cYhC6eW9vb3cfffdJf/ud3Z2cvjwYRobGwt+bntHnZzu9I9XsAoErYNExP380d8N8Av/Y0LW2rRsEbMafyav/PK5y8N87akdrK98iVP//eCMwe352LlZXS7hcDgTDocT4XDYAn4A3AlMVl/KTvOTw+UB4MbquJYAy7IwDINMJkMymSQWizE6OsrQ0BB9fX1cuXIFy7IKGnNNFxiMKYwMj9Cr7wfg3fvsrV0iI1Hl04o25mDnu9bXePAbh0CQ+Mmro6hG4aa1brebaDTK2Nj1i01dy9WrdgPdhRABsyzoHXXjd2v0RZyELwY5eK6SrmHXrPon12KYAgIWZy4OYSotCNogWzfaW+W0Js6aMmhZ1pwKeFasWJHXzSUIdpl4IiPz5rsqwDKJCjuJxFL4XDp9ESclkEbJi2HA6U4fPpc+o1SzWzEJejXOdPk50+Wnb9SFd1KAsi9lqw1uXV36MWY0kYBXK2jMsyxErUMgEJg1zhT02IY8yxs22t+pS9E7plTGigI0VqbzGnPTtPjHn3hBDjAady6I5HExQVF/OBzOWoS7gR8DnwqFQgoQAl4ff6w3FAqtAgaAqmvdLUuN9vZ2RkdH0TQNVVXRNA1N09B1fcr/YaLwQBCEaZVld9xxR8HXiCZt7ZDvPpUC0UXAeJ471tupcmlVYkPz3AytKEJzdYpNraMc7INzA6uQJZO+iIuAN//qThRF+vv7S+rnNgyD06dPL1ghUTwto+oifreOItv3IKOJnO/xca5boC6Qobk6RcCjzdrbUjcEnA6TgyftoHOldBJZGh+3IMw4oaqqitvtnlPP09ra2oLVh7JkYZoCbc1BXNox0sp2nnipnw+8dTm6IRJPyQRm8efPh/ZBDylVmlUfJTvGGr9K36gT3RTxj1+fju4IhnInGHF23Vm6oGSWtCrRXFU4dTSVShEMBhdEpdPn8+WarRfC7TTxKHqusvfeXU08eqILU2njhUMnuG/P7DuW/3q6g6TjHaCP8is/szCJBMW4XPaFQqEvYrtcrmAHQdPAs+P/fnT8uN8CvoXtgvndUg+0lMRiMV5++WVcLheSJCGKIoIgIElSzo+WbRow28w90yzbF3EyMjJCj3YPiPCuvWkgcF2qfvWBDHt3tHDwh1E05yY6u5/ComFKt5fJ+Hw+Ll++zOrVpVtW9fb2kk6nF8ygD49Nb6TgdNixAtOytTH6o0GckjnRfX78NghMrKMEAfYGBNyKweWhenAwPolWjUu0GrmAXz6i0Sjr1q2bU5ZQIBBAUZS8hWaiYMdLVF1gQ0MXR0e283pnPR8AJNFkMKaU3KCPpWRb4tVbfLaFIDCtucTLxyMA+MzXcTlLr6ZpWkLOtZOPsbExNm/eXPLXBfs7XF9fP6tKaWNVhiv9HhSfhixLLK84xuV0Cy+e8nDfnplfIxpL8fzlneCAjcFnaG7YUMJ3MMGsBj0cDj8KPHrNn787/jP5uNPYK/glz5kzZ3A6nQtaqq4bAoNRJz98rh9ENxX6C7mtfjwlsaltbF4NiL0ug5qgRLUYZpj7eeZQmg81CERTDvJ527xeL729vSQSiZLI2lqWxalTpxasdZxlQe+Iq2DfSlEAn8vA57KLPXRTtIMx2V2vNeUfJNEilcqQlO4Ay+TuHXYAK5GRaKrMn/KZRdf1ufswx9MXu7q68n6+mqtSXO738uY3VHP0hxoJaQf9Q69RXemnd9TNyvr86YPzwTDhTKetI3K95zzfGxjXvxkCSmvQLcvWQ/HmKZLLYprmglbHNjU10dPTM+MxlV6VS9bEe3/oDT7+5ikYYQ8jkWNUBQvvHr75w1Esxx4U9QQP3r1wGjy3XWFRNBrl0qVLC15BGU066OmP0a3ZvvN37bW3k7oh4HBY1FbMr8WZIEBLdYqtq+wVV/vYZmTRpG+kcL9RQRDo7++f1+tdy9DQEENDQwuWe57MSCSL7FspSxZOh4lr8o9i/7jHf0QBXjpiT6oO9Qz1tfa49VlanGmahqIo8/qctLS0FEyDq/GrWJZAfY0Pr3EYRAePvzRsNz7QBeLp0hVvdw+7iKUdU/zg80E3TCKG3S151+bSuzwyuojPbRSsll2IdMVrqaysnFWh1OfWkUQrF+tY2VaJWz0EopsfPTdY8HnHTvfTpR0Ay+D9e7sR51BsNVduO4OeXZ0vdA/G/lGFJ14ZAdGNX38pp/sQS8msqE3MGvyZiZoKlZ1bWxC0PkxlGSfPdtAfdRVMG8q6Xa4X0zQ5cuTIgjZ2Ho3bLeJKyeuX7dSvlop2gJw2h99d2KDHYjFWrFgxr89JdXU1lmXl9aV7XUbO7XJHqz3Jnumz/a+iYEsBlIJEWuJCn5/KObhaCnHi7CCWow5B62HD6gXIP1cl6gKFFzhjY2O0tLQsaBeuioqKWV1rkgh1FWmSmYlJd8dyuxr7ZN/KvM/RDZN/e6EOBJlG6SeEtiysQuZtZdAjkQiXL19ecFVAw4D+mIvuxFoA7t1s++ayM3t98PoaELsVk9qASZPrGAAvnZQwLQHDyP+B9Hq9DA4OzthDsRi6uroYGhpa0EKi3lHXdffzvJa+1BoAtq+1r09GF6lwazPuAlRVpaVlfql5TqeTmpqavE2IBcEuJEukZd78hnowU6QdW+nojlDh0egY8sw5k+daTBPOdftRJHPWoHExHDpjf16r5TOIxXQ0nyOGKVDhKTy5plKpkqgrzoQsy1RXV8+6Sq+vVKfcn7fc3QB6BE3ZzLHT03fB//5YBxllK4I2wM++c+EWQlluK4N++vRpXC7XgisQRpMOzl0awFBWgz7Kvh32rBxLOmirSaI4rn8F2lKVYudGe6XQm9mBSBrNKNyaDiiqi3whNE3j8OHDCyrJm1btFExnCRsRHz45iKGsAj3CrjvtXVIqI1EXKFydm93iX8/Ev3z5cuLx/IHqar9qBwEr3ASsQyCIPP5KDEm0dw+dw9dXCNY76mQk7ihZpeLVEfu6rW+e2gwio4lkNLEk6ZYzaZ4IgrAoDcWbmppmNegBj4YoWmQP83qcNDheBeAn4anPHRyO81rPPgD2th2c0cdeKm4bgx6JRGhvb1+UD0Zf1Mnh0/aXuVo8iqLIcyrzL4ZKn8amtY1I6kVw1HDwSBe6IRTsnHK9bpdLly6RyWQWrOoU7MISC0raCODhn9jlEAFOoDjsCdC0BIK+wgYkFouxbNmy65IDnil90efScToMNF1g+8oIABeG7C17wKPRMeghPUMHnJlIqyLne/0l64uaTKskJVsud++2iQnONO0MGlG0SKRlhsccDMcVRuIKI2MORsYcRJMyiYxERhPRDYF8l8O0wOvSC+6WsrGMxWgqPtM9yyJLFg2BNIlJbpf7Q/a/3dcIdn3zv5IgV+NWD/OeB9oWZMzXctsY9JMnTy7K6twwYGDURUfUvoF3rrANezxlVwPOJlea/5zGNHeJQ7ZoqsywvOIsAIcu2G6QwWh+H6zP56O/v7+g1shMJJNJXn/99QXvU9oXcc1Jk7wYwpfsHPI1jbbbyzRBEqwZV4TpdJq2tuv7AmbTF/OVkWfdLvG0zJv2NoJup6CeuzyMJNq+9M6h+alXXun3gEXJOi+9cmQgF1BurJtwtaVUibpghp2rI9yzaZh7Nw2xd90woVWj3LE8xvqWOM1VKSrc9oo2o4mMJhwMjymMxO2mD8NjCoYhUuMv7IJMJpM0NTUtiq5/dXU1oijOqOsC090u2zfWI6tnQK7msRftTJlXjvYwYN0PpsaH7xtdEFdVPm4LPfTR0VE6OjoWpWVXNOWgs3cUVXkDmCnu3W0XYWR0sWjN7SypVIpIJIIoijmVucmBoYaqDHu3Brl0EEbZxXDkEleHPLRUp6elqQmCgCiKHDt2jF27ds0p2Hf69GkEQVjQBhaqLjA85qDKV5qVJdhNiIf0LSDBG7bZhj2lSVT61YK+ZdM0EUXxul1LgiCwbNkyrl69mtd1U1Ohcrnfg8elUC0dZpg38pPXkqxbWU2FW6Nj2ENLdWpOC4BoQqZrxD2r/vbLR3rA8IM0eyzk+GXbEDV4r8CkxNiMJrJyUqaWJIFbMmeckC2L8VRTIaf973HW0lxdeJGRSqUWrdWeJEk4nU5GR0dnTJG0C9pst4so2jLBG+su8HpkA+HLdTyo6fzHq8vAKbLM+Rib1i6eTMlNu0KfbWs0mRMnTizK6hzsRgqvnbC3+X7zCH6vc05l/oZh2MVIPT2Ypsnu3bt517vexerVq4lGo1OODXg0Vi+rxKkeA8nDN77fiapJRAroa9fW1nLp0iWOHj1a9PWLRCKcP39+wdvZRZO2xK0ggKrpvHKkm2js+oK4rx7vB6kCSb3A8uYgYBui2TIqmpubUZTrzzZpbm4mk8n/Wj6XjuIw0XSB3evs4OmV6HpM00IU7V3E1cHi3Qx2INSH1zlz78rvPdrOvx9/K7/yrRA/eblz1vP2JVYAcMfKawy1wJx99Lb8gZWTE67yacizTAJQnDBaqXA6nZimOeP3Q5YsagMZkurE4upt91SDmSEh7+Kr3+1Hc25EVLv4xLsWdld7LTelQU8mkzz//PNFScOOjIzQ2dm5KL5zw4S+UReXB+3ZfWOzrX6QViVW1BXuLg72SqSvr4+hoSGam5t585vfzIMPPsjKlStxOp0sX758mnGQRGiqTrG6pguAp47X4nQYdBXYrguCQGNjI2fOnOHUqVN5j5mMZVkcP34ct9u98GmeESfO8S/23/2gh+8df5Df+/etfP7rcb776FVGIjPrxefjqK1ySqPn4sQfrQk51Hwkk0mWL18+59fKR3Zlns84CAI0V9pul/27GhG0QQxlNcfP2IHrCo9G94iLRLq4VL2+USexlGPGDKEnXuzglZ5xoTbRxY/P3M8zB7sKHt87MIambAAzxV1b63J/N0yQReu689tnwzAMRFFc0DTZaxFFkYaGhln1jxorM6QnGfTaah9B6yAIIh2afY3vW3sUv7dwfchCcFMadMuyuHr1Kj/+8Y85efLkjDKtJ0+exOPxLMrqPJZ0MBxJkJS3gWVw/+6aWcv8Lcuip6cHXdfZuXMn73znO9m9ezfV1dVTxlxTU4PD4cjpy2SpD6js31kPZoaosIPBoWEGY86CQTVRFGlsbOT48eNcuHBhxvczMDBAV1fXgk+GhgGDUSee8TL8y5F144N1MeZ4Awf73sEfPLyD3/56in/50VX6hwqrEpqmxeBIguNn+umO23IHd66akGd1yFZBo5c1vKWKFSiKQn19PYlE/sm8pkLFtEBxyNQrRwB4+og9NlGwV4LtRazSVU3gQq+PwAypf68d7+XRs/eB6KDV8SjLXU+B6Oa/Tt7Hc691533Oy0ftnabHOIHXM2GYUqpETcXMjZxLQSqVoq6ubsEXE9eybt26gvcsy2S3S5a9GyYmAZ/2Mg/uX9hUy3zctD70QCCAz+fj5MmTXLp0iZ07d9LY2DjFCA4PD9PZ2UlTU9OijGkg6uTV490gOnCrh6mt9jE8JrOpNVaw9DoWi9Hc3Mw999wz46QjSRIrVqygvb19ivvD59JpqfcTMF8lKt/DYy/F+OCDtQxEFdpq8/smJUmivr6eV199FUVR8rb0MgyDcDi8KNvdaMqBie2PvHBlGF15I+hR/tdbjvLckRjn+hpJObaTcOzh0CAc+i8dt3aU1mAfKU0mnnaTMipQqcKU60Ec36EogJFk73Z7x5TMSNQHCxuiRCJBQ0NDSTN5li1bRjgczltZ63fbbhfdELh3q8W/HYWu9B7iiQv4vE78bp3eURfLapL43IVXw+0DHgxLyKvwB7Zk67++GgKHj2rzaX75pxrYv93HQ//rJwxKb+I/X9+PKDzH3Tun+nrPdntBgGVV/cBEkDijSdRUlC7WUYhEIsHatWsX/HWupa6uLhfQLtR3Iet2iSQcub6+9+1u4vGTFzGkOn7mgTSiWHrNm9m4KVfoWSRJoqGhAUVReOaZZ3jhhRembJVOnjyJ1+tdlNW5YUJvxMn5HtsArq7tttO0BDvFsBDJZLJoAai2trZpEXhBgJaaFFtX2qvWi5EteJwaV4c8zJRSK8sydXV1vPTSS3l7j3Z0dBCNRhelvdxg1IljvKnB80ft9xEUjrK8tZKPvnMZf/TzCr/+9oPsqPkvvNqrYFmklJ2cT76dTu2tjEr3kla2YyrLbWNuxJDUi7jVQ7zzjmfxuGx/uG4IM3bEGRsbY8WKFSV9b7W1tQVzm4VxqdV4Wmb31kYU9XWQK/mPp+z7IQqgSCZXBgobhrGUTMeQp+AOsLs/xtefXA2OGrzaq/zaTweQJRFZFvm1j1ZTbT0NkpcfHL+HFw9PrNRN02JYtwWkdm6Y6jawAL9r4Q26ZVkLXgSYD1mWWbNmDZFIZMbjGoIZMtqE20WWJX7zg4P82tuP522gvRjctCv0ybjdbpqamhgaGuJHP/oRd955J1VVVXR1dS3a6nws5SCR0IkK2wG4N+QnrYkEPWrBQhlVVVEUhdra2qJeo7q6Ou/KoaZC5a4drbxwqQdTWc5rx37Mpg0riSRnzhpRFIWqqiqeffZZDhw4kHM1qKrKkSNHFjwQCnYwry/izKURXhxsBgU2t8aY3CW+vtbHR95uTy6DI4d46uAgXUNOfC6NSr9FbVCkocZFc72PQEU2hqCwf8e6XCMHSxCoKFDun3W3FHsvisXv98/Y4qy2QuXqgO1W2bWinRe77+B47yY+bMYRRbubUn/UybKkPC2obllwvseHSzHy6pxHYin+6j9rMJU2FPUEv/YhUJSJr7wsifz6zwT5428/w4h0Hw8f3YckvsRd25o4c3EIy7EVQRtky/qJa6LpAi6HMaXP6EKQvR+LGRCdzLJly2aNMwU8GoJgYVrkrv9iFA/NxE29Qp+MIAhUVVVRW1vL8ePHeeqpp/D5fIuyOgcYiCocer0LJB+OzGlWtlWRykg0BgunZEUiEdatW1e0RoUoiqxevXraysGtmNRUmGyuOwHACyddOB0G3cOz5zK7XC4CgQBPP/107rznz59H13WczoUP6IylZHRDRBLtyrq0404wNe7bXdiw1lZ5+R8PLud//0wjn/pAGx986zLeeFcrG9fUTjLmU8loIj6nXrBKN5lMUl1dXRJFyslk0xcLBfD9Lh1FstANgbff24yg9WAoq3nqla7x54NTNu388msYjNo53b48KoXptMaf/quEpmxAUq/w2ffEqPBPdyXJssTnfqaCoPEsSBV8L7yX14738tq4fnxQOoU8KcczNa67stBfq3Q6TWVl5Q1rNRkIBKipqSlY7Qt2xk5tRYZkZuE0ZubKLWPQs8iyTGNjI3V1dYs2u5umrUFy+qptAJcF7YpME2FGd4thGHMuYGlpaZkWGAVoqU7ziXfZecVD5m50NcHADMHRyWQb5T799NP09fVx8uTJ6woMqrqAaRX3jR8cU3I9JJ95bQgEGY9+tOQrnaz/vBDxeJyVK/MLLF0vTU1NBQP3ogiNVSniaQlFkVkbPAzAc6emxkkGYk6iiYnVtaYLnO3x5w2E6obJn3wnQUrZiaD186m3tOdUJvOhOGR+46N+AvrzIAf419f2cHrQ1r9Z2zg1VVY3hJLWChQiHo8v2u66EOvXry8q22Wy2+VGc8sZ9CyLObOPpWTSqsWQficA++5U7BWhSy9YGBKPx6mtrZ1zSlZlZWXeLXyVT+WurQ3jOek+Hn2hD8Gyilbv8/v9iKLIs88+iyzL81a2syw43+0jnpa41OdBLyAYlj3WbnNmT1Cnu2x/6eq6+fciLYSJMKPy4ELqbVdVVc2YqVEbUDFM+/H33l8FZoqE4y7OXLDTXrPNmy/3e3Pl8x1DbvTx7jlT34fFl/95gIi0H4wYH957jNXLZvdDKw6Z3/yolwr9BZCD6IrtP9+7dWqGk8XMTbVLhWEYJXd/zZVsId9MnYwmu12KRTdFHAs0B9yyBn0xGYwqHD/VheWoRVSvsmVdHUlVoqmycGHM2NgY69atm/NriaLIqlWrphUZOWQLh2SxscEuFnm9qxWfW+fq4MzB0ckEg0ECgcB1+c4Howq9EReyaBfGvHq+kpF4/sk1kZbIaBIO2SKZVokK2wDYv6O0ao6mBSKFy/1TqRQVFRULpiLpcDior68vGBz1u3Qckp3tUlvto058EYD/fnlivD6XwXBcIZJwkEhLXB3IHwj9xsOd9BhvBjPDOza/wI7NxbeLUxSZ3/gZD379JQAk9QJtTRO7XFUX8Lr0koqnFcKyrBvmP8/icDhYs2bNjJ2MbLeLWrTbJaOJyKJJa+31Ka4WomzQS0DPqJvXL9lTdJPnNKIoYJqFt6aGYSDLMg0N8+vNWMjt4pBN7tnVDEaCtLKdKx1DZDTJrsIsErfbPe+4Q0YTOdPlH1+1QJVPQ5IsDl8KcqrTP00WdiTuQBhvNffCoX47/qCeYWVbaTMb0qpEpU8tqEEfi8UWzN2Spa2treBKTxShqTJFYtwoPHSX/fde7Q1TCqrcisHFPi8Xe704ZGtaKuwrR3s4O/YgWCb3tD1eVJ/La3E5ZX7zZ1xs9P8379t1ccpjyYw078Ysc0FVVbxeL273/PRsSsny5ctn1XZpqEyjFiF5bFr2bn5t4yjOEiiu5qNs0K8TwxTIaAK9Kbujy+4NFpou4HQYBVtqjY6Osnr16nm7hYLBIF6vd5rQliRaVFcqVAu2nOdjr6RQZJPukYVTSMxiWXChx4vFVDeAy2FS41cZiDh55VwVvSPO3I6hZ9SdqzY8esmOP7RWXCr52NKqSN0MhsiyrAXXC5nNfVAbUNHH5Y/vWF9nd8KRfDz8k4le616nQSTpYGDMOc3tkUyrPPzaGhAkWpXHePeB6bUFxeJyyvzc+9rYs22qD9swxRljQqViKfjPswSDQaqqqmYsNAqOxzFmc7tE4rZ8dpVv4SbFskG/TnRD4MLlXkxlGYI2yJ6tDSQyMo0z9KvUNO26yssFQWDNmjV5Mydaq9PsWGuvKK4mtuGUM/RHXdfdNGE2sq6WfEE6YTwX3+vUOdlZwbErQQZjCvG0rX2uGyYDqt0A+K4tCxD7EKCiQPNlVVVxu90Lvr33+XyIolhQ7dLvnnC7ANy93o4jnB3eiqpNjL3So1GZ5xp/7fu2dICkXuRT7yu979n23Vv4Z1CpLBWZTGbeu9dSIwgCGzZsmFFmxCFb1AZmdrukVBGnYrKifu4SFnPhtjXo57q8XB1wFdQPLwbTBM0QOXLW9pXXOo4jyxKGKRRUvEsmkwQCgevuj9jU1JTX7VJbkWHHljZE9SqWo4nnXutBsCwGCsjqloJrXS2FyPkbVZHj7QHG2ztz5GQ/lqMRQeth+8bSBiYtCxwz6I6MjY2xbNmyBU9vFQQBl8s1LfaRRRTtIqOs2+XAvhZE9Qqm0spjL0wU/MiSNU0a95WjPXSqbwbL4H27LuQKqUpJRhcJePSC1ailRBCEG+4/n0xjYyOiKM4YHG2oTJMpYEtMExJpmc2tsQW/frelQU9lRLpGPFzq9/HK2Speb69gJO4oOngIthHrj7qwLOiIrQJg66qULVwkmQUzAaLRKBs2bLhuA5KdFK7VSfe6DCp9Ossr7Jz0l8/48bl1OmapHJ0vhVwtM+FzGVT5VILj2/eDp+wvSr1youS60aYlUDND3rSmaQvaTX4yDodjxo44dYFMzu0iS2KuruCVC4V94ZNdLW3K49PcJKUilZGorShNc5aZ0HUdWZYXpUK5WBRFYeXKlTNWjgbHFzP53C6jCYUV9QkCBXaJpeS2NOhDYwoCFlU+jUqfRiwlc/RykJfOVdE55Mqbu63pAiNxB5f6PBw8X8lLZ6o43eHj+JlBW5HOGGP/rgYSabuRRb4sNcMwEAShZP7Bgm6XmhT37KgEyyQi7GZsLEFKlYilSu/OmMnVMhOiMFFd1zlmi2htX1N6/6xl2ZW0hR+3FrSb/GQkScLn883odsk2kAZ4z/11oEdJK9sJn8yfyjnZ1fLzC+BqyWJaAsFFMEiJRGKaJtNSYOXKlTMGRx2yRXWFSuoat0siI+Fz6SyvXVhXS5ZbovR/LlgWdA27cwFLQbBXjD6X/UW60OPjfK9AfSBNQzBDMiMyEHURTcqAgCSaeJwGVX7b+PzLY8MABKyjeFwBhsdEagvobUejUVasWFGyCszGxsa828Aqv0prYzUeLUxS2cWPnh/kPQ9U0D3sKllrMrCDjae7KmZ1tczExasj6Mp9YMS4e8eE3zSZkUhrIhYCAhPLHssScpkxtlSOkPsfWFiWgCRaSKKFLNqr4UJyuel0Oleav1isXr2a119/Pa8AmChCW02SCz0+qvwagQo3zc5X6DbewmOvOghtnnp8ztVC1tWyMKtz0wJhli5PpSKVSi2ZgOhkqqqqqKioIJVKFfy8NFWlef1KRc62GKb9Hdm1JlIww6rU3HYGPZGWSGbkvCJNimxR5dcwLRiNK/RHXIiChVsxqPLlN1qHLjWABJvbIphmAFGwCBTQC0mn06xatapk78Xn81FTU0MikZhSsq7IFg3BNJtb+3mtH071reSnXTp9ERerGxMlySO2LLjY68293nx5/rBdiRfkKC5XMPf3lCqxqTWG22mMr+YtRMFCyP5ftI2MaQrohoBmiOM/AhlVIK3JpFURh2wVfL/xeJw1a9bMe+zzoampiWPHjhV8vLZC5XyP3X9TEOCd9yj836dNhtlHd/+rNNfbhWiJZIaHX1sLikSb4xH2bFu4rjgZVaTSqy2aUVqsHdNcEASB9evX89prrxU06IFJbhdRsLNaVjfGF6UQK8tt53IZiDoRhZkNkDjejaXar1Lp03ApZl5j3j8UJy7eCabK/btrSaoStYFM3g9+Op3G5/OVXPBq9erVecuTG6sy7Au1gh5BUzZz4mw/omDRdZ0d5bMMRJ30zcPVci0XB+3V2KaWiWChYdopmLWBDAGPjt+t43UZuJ0mLsVEcdiBQUkc74DjNKnw2PerIZhhWV2adc1x7lwRw+UoHMjSdZ26urqCjy8E2QKma2MfWVyKSfUkfZA1y6upMF4GUeE/np64Rn/7gyEMZdWCu1oAUpq8KPnnpmkiCMKiNrSYC83NzQiCUDAOokxyu4ylZAJenZaahY87TOa2MuimCd2jrpLNmE+/OgSChMc4SmXQQ0YTC+qFRCKRkgRDr6WhoQHLsqZ1xQl4NII+B/WO1wB48pBJhUfj6qD3ujJ7wN5GnunyU5HH1dLbH+Ov/rmLHz87e3uzwZEEKcdWsPQpYlwp1S5gKdT3s1Qspv88iyAIrF69esY0uNbqNOlJ+iBvvMM25JfHdpFOa1OyWt6/++Kcs1riaQnNEGaUZZiCZS1KQC+ZTFJbWztv2YmFxuVy0dLSMqO+S1NlmkRaQjNENrSMLfhn+FpuK4M+lpJRNalkHdHPdNsCVuvq+3Nb5Hwr1myPwpaWuVfuzYbH46Gurm5a4YMoQmttit0b7C9tT3oHhq4jChbtA/MXvspKtoI1zdUyOJLgL/+zjnb1IX7ne3v4/uNXZzzXc+NiXG7tKNWVE2NKa3ZH+YUknU5TUVFxQ6oRm5qaZkyBC3pV5Mk56TubkdUzWI46vvd4j+1qGc9q2b21+IIo04ShmIIimbgcJqMJB8Ys3rdsI2SPc3EM+lL0n0+mpaWl4O4KIODVUBwWa5vGChYWLiRFG/RQKPRToVBocPz/7w+FQi+HQqGnQqFQy/jf1odCoefH/37/Qg34euiLuJAlk28+3MGv/63JH//DAN/+4VVePNxNZI4NiccSGcYkW/v8vp1BUqpEpVfL60+OxWK0trYumPEo5HaprciweX0zsnoey1HLEy/1jPeqdBNPzW8VNBhV6I86CVyjzR2Npfjzf/ejK+tAj4Do4qWed/DX/9KFXsBqnOwM2uOvnWiwkZ0YZ+r7WQri8TitrYvfIgxsIbRAIFDQMEgitFanGEvZIS5RFNjech6Ao8MPjrtaLszJ1ZJWRUbidvrcjlURFNlkffMYI3FlRqOeUiWq/eqirDRN01wUDf7rYbZ2jIpssW1lhKbKxXW1ZCkqKBoKhSTg/UBnKBSSgc8C+4GdwO8APw/8EfAJoB94FHhqIQY8XwwDekedaJkYpyIHQHExAAyMwLERePh1ENUOfGIHtb4Iy+pNfB6J4YjBaFwglpJJZNykDT8qlRjSCpDcuPUTtDbZ2S0r6vOXByeTyQUNvhXKo/a6DIJendVVlzgbX8trF6p42322vvalfi93Lp+9yfZkChUQJZIZ/uRfHajKFkS1g//1tiscP5/g6Stv5krmIf7g71/gf3/IOaVhbjqtERW2AnDPJDGujC7iXwQBqBvhP8+SrfQ9evRowUm+LpiZ0qnonfc3cegfB7EcteOulkt4XLOvzi0LRhMOFNkktDoyJcuptSaNacL5Xj/VPjVvqm1aE1m5CP7zrNtwKRUU5cPv9yPLMoZhFHQNXbvYWUyEfB3JryUUCn0EMID/D/hp4FfD4fD/HH/slXA4fFcoFDoYDof3jP/tv4GPh8PhoWvO80ngkwCf+cxndhw4cGBeg06n06TT6Tn52gxTIJmR+P3/d5YfnX0Qt36S3as6uNTrZiBRT0ZaBeIc0wmNOD+950V+5aNr0A0Br8uYFnC1LAvTNBfcVzs2NoYsy9OqRzVD5OSFGB/68y0gCPzb/z7OmuVBdFPA6zRyWuTFkFIldEOY4rJKplTe/qtRRtmDqPXxf3/xCrvuqMPnkfjKP57n/z61G6QATu00X/9snC3r7BXYN79/if/77AMo2jkO/u3EukI3BJwOE0UujUF3OBx5tcg1TaOysnJR850nd5oyDINoNDqjnk8iI4ElII7fo0//4Tle7X2QO6oe41u/P/sCwbTsz70iWTgdxpRJePJ1yWgiGV1CFqcH/wt9rktFdhzZQOONNugz9RHNEo/H0XV93r5+wzBQFAWPZ2bXZ6GxNDc3F/zQzrpCH1+dfwB4F7ZBrwQmL+2y72ry/B4FqoApBj0cDn8d+Pr4r/P+hJw/f56LFy/O6eaf7PATSTj4yev1oMCWpku8843Lxx/VUNWTnL08wvn2FJ1DMsPJagzLgUsaw6uk8Ls1Kn0m1QGZumqFhlov1UEP9+1cw+MHk4gC7FozXWZzYGCATZs20dy8cGllAJ2dnUQiEYaHh6f8XdUFznRU4zdfZUzex6/9dT+/8hGZZEbCIZuEVkWKyiEfjCocaw9Q41dzx+u6wR9+a8zW3taH+dj+E6S0Op47HGf/Dh9rVtTzc/sP8XdPryajbORjfznAB3YeZs+2Jn7wnH2OZt9Fnjs8EVsYjjvYtTpSssB1Q0MDfX1Ti3LS6TSmabJly5aSvEaxdHd3T/kcPPLIIwiCUHCV3h9xcqKjIicj8b4Djaw7+wR3bmjItdUrRDQpY1oCm1pi1AbUafd48nWxLLjQ6+XqoGfq/TUEUhmJfRuHF6xDUXYcQ0NDrF27dsG/J7Nx7T3KR3t7O0ePHp233szo6ChtbW2z7tqLGcu1FONy+QjwvXA4bIZCIYAIMDmvKOv5n7ykCgAjcxrJAqLqAgMRJ5HRAdLKvWCmeOvdU90UiiJzx/o67lh/7bOD4z+FSWZk1jTmj3ybprkogZ76+nqi0ei0rWA2J/3+rUn+8yR0pPfT23+ExvoKhsYUhmIKtYGZ5UFVTZjmatENkz/9xxEi0pvsRgp7DrFl3XQXwMY1tfx6VTdf/v4QKSXEd4/cR1f/E/SrIXDAnk0TH0HDzOquLOyWdb5a9KVm9erVM7pdqnwqkmCNp3HacgDbNs0sU2BZMDymUF2hsr55DHcRvT8FAVY3JDBNga5hN9XjRj2lSlRXLHy7ObBdYDe6oUWx3IjG1cVSTKhjI/AzoVDoMWAN8EvAhlAopIRCob3A6+PH9YZCoVWhUMgPVF3rbrmRROIOTASeODhexGK9RrBA78l5YVl5tc+zxnUxtpGKouB0OvOK8TdWZdi8vhW/9hJIXv75cdvX73PpXOj1zprpcKnPi2lNaLWYpsVX/rmfQeFNYCR5z50vEtpS2J9bW+3j9z4uUC88aQdLe9+B5WhC0HrZvnnCj53MyNQF8ssmlBLDMG6Y/3wyjY2NM2q7OGSLpqo08XTx9X+jCQfN1SnuXBYtyphnEUVY2xSnqSrN8JiCZYGqi9TOIJtQam60u6VYsn70fOJ4N5pZvzrhcPhz4XD4gXA4/BbgQjgc/jTwFeBZ4IvjPwC/BXwLeBz4vQUY67zpHnHjknUujtpttXatmVswcCZMC1yKgSePml9W13mm9mOlxOl05vUXBzwaimTyzr22Ie/W7qWjJ4rLYZLKSPSPFo4dDMccdI+6p6RjfvW7XXQbbwEzw4MbnubunbNvCxVF5td+ppY7gv8Fln2t6pQTUxoQq7o4626hFNyI/PN8zJbtAraKX7H54vG0hNdpsKYxMa9JURRhXfMY9YE0ownbd7sY5f5ZCePZfMpLBUEQaG5unlEj/UYxp9L/cDgcGv/3u8B3r3nsNHB36YZWGrLpWlfaOzCUN4M2xP13lc4FYpoCTVX5t6XJZHJBcs8Lkd0NJJPJKV8OUYSWmhS62ULg4PNEpXv41yfSfO5jASo8Ohf7fNQG1GnSnqoucLrLj9+l597fN77fweX028HSeeOKxznwhuIbKYiiwMffvYyfvPwoL5wK8O77Jz5+Ob3tArIJpSKVShEIBPJqqdwI1qxZw5EjRwq6XSrcOh7FIKOJM2b+aLqAqotsWzF6XXUWkggbW8c40SGSzEi45rDKny+JROKG+87nSlNTE1evXl1yu4pbvrBoeExBECyePWp/yBudh1GU0krYVPkKryoX29+2YcOGvJrbtYEMpiXwvrtVsEz6jHu53DGKQ7bQTYGekemr9Mt9XnRjwpD86JkOTo+9HYC7Gn/M2984v644b9rbyhd+roJ1KydyjtOaSLBAHn8picfjizrJzkZDQ8OMbhdBgLbaifZ0+TAtiCQdbGqJlaSYRZJgc1uMLctii+I/T6fTC94xqtTMlo9+o7jlDXr3iBtZzNCTtouA9t9pG4yUKpJSxeLLn/OgG8K4WuP0bWl2G7nYus5ZF8+1lYg+l0GFW2PVinqqrOdAVPi3n9jjDng0Lg/4pnQ1Go076Bx2ExjPW+7ojvDUxTcAsNH/33zgrctLOu5URqJhgatDwfafL5b+eTH4/X4qKytJJgvLq9ZUqFiWULDF2WjcwbKaJPWVpXNXyZK1aKJSS62hRTH4/X4cDseS86PflAY9owm0D/pQtZmNcSItEUvKvHq0G8tRh6ReYecdDXYHkYyMWzFJaSIjYw6GxxRGxhyMjDkYS8mkNRHDtN0OKVVkLCUTSYwfF7f/jSQdOCQzr78yuxJcbF1np9PJihUr8orxt9WmSGZkPnCfBZbOIPdy7vJQrgqwY8je9mu6wOlOP363jijY6Yn/70c+kKvwaq/wifeUvsLSgtzksVBki1eWgv98MqtWrZpRH8TpMKkLZPK2OBtLyVR4dFY1LD1/brEstYYWxZDtaxCPz5w+utjclPK5piVwqT/ISNrJiroEzVXpvK2dhmIORNHi4FkviLAycApRbGUsJdMUTLGxzb4ZuiHYxRWaSEqVGEvLxFMyybSMw2HiVkxciobLYdhqf5KJLFk4JBOnI3+2hKqqN0yXYtWqVVy8eHHa32v8GRyyycq2Gmp5lkHhTXzvGZHfWQkBt0bnoJvmqjTdI3YP0iqXbWC//nAPaeVtCFo/v/guo+RdhbLFRIXaxJWKdDpNMBgsmR59qZgt2wWguTrFQDSIb5JLRdUFdFNgc2ts0aRtS012x7RYiQOlpKmpifb29iW1QLgpDTqAz6VR4Ra53O/l6oCHlQ0JGiszuYCQZUHXiAdTjzNi7QLgwB47UKjqIg2VE9t7u0+jMe5/LM0q0bKsG+Znq6qqymVPTA62SRKsqE1woc/H/3iTzN88qTIi7OfkuafZvK4WSbI41+1jaEzJ6cW/fKSHC4m3ACYPbQ7TWFd6/3MiI9FcmVpwf208Hmf9+mmFBjccn8+Xc7sUyvQIejQU2UDTBRyyhWlCNOlg24oobufCBy5LiWmaxONxEokE1dXVN0xT53pZ7ErjYrj5psVJSCJU+TS8LoPzPX5ePldFz7ATw7S3omlV5OlXekHy4lSPsWZ5NYYJomhdt473TGQzKW6Ekh9MiPHnc7tk5X2XtVTSID0Lgsj3n7flVyvcOgNRJz6X7WoZiSR5+NBmEGTalMe4f+/sxtyy7J6tplX8B103BaoqFtbdAjdWv2U2CrUTzCKKdmvBsfGc9JGEwsq6xIzt9ZYSqqoyNDSUqwoNBoPs3buXYDDI8uXLb/Tw5oXf70dRlCXlR79pV+iTkSWLar9ql7l3+bky4CXg0ZBEON7ZAA7Y2NABLBvv+Zle0C1qPB5nw4YNC/cCRTBZjH/ydlZxWLTWpOgacvNTD7j48qNpovI9HD31BNs21ecMvmla/PW/a5hKK4p6gk9/qHAg0bLs9NCkKoMAQY+KadqGfbbVYzbQt9DqipZlIQjCktoeT6a+vn6apv211AVULvX5iCZlqrwqy+sXp0/lfDFNk8HBQUzTxO12s2rVKpqamqiqqspplHR3d9/gUc6fbD56b2/vkvlc3RIGPYvdMUQjo4n0RVwk44Mk5TeAqfLWu23tcs0QCjahKBVLIZPC5XKxYsUKuru7p6VONleluTrgobUxQLPjWbqNt/AfL3nZtmnimH97pIOo/A4wYvzsA4O4nFNlTSeMuASCQNCjsqI+RqVPG/eHe0jrEoLAjLnMKVWixqeWTKO+EEvVf54l283q2naCk/E4DSp9KrGUzMbWxW+eMFcGBwdZvnw569evp6KiYsm5J0pBY2Mjly9fXjIGfYl/JKbzD98/xS988RyqVjiA5nSY1FSoPPFKFASJCvM1aqvsEndJWlh3y1JaCa5cuTJvh3mP06A+mCGelvmpN3vBSDDmeAOvHrN1yU9fGORQny1pv7flGdasmDDmhgnDYw5GEgqKw2RT6xj71g+zY1WUhspMLmddFC22r4yQVKUp6ZDXktHEBW9mAUsv/zwfs2W7gK25sm1FdFEKfq6HWCyGz+dj+/btBAKBW9KYw9Lzo99UBl1VDX7hyxIv97yVv/qPAIdP9s14/PlBuyHzjlW2Tlg8LdMYXNjWZolEgtra2lklOBeDmpoafD5fXqPeVptE1UWa6ytoc9nSh//9WiXptMa3nm4GyUu1+TTvf8vyKc8bjSusrE/kNeLXEvDobF8ZJZ6WUfX8H3rTEggu4ASbZanot8xEMW6XCo9+Q/W2i0FVVRKJBPv27VsS34OFxOfzoShKXsmNG8FNZdAVReLzH4kjaZ3ozo1857X7+at/7iKZnh4YOnFuAM25EfQID+y10wd1o3DPz1KRSCSWTNReEAQ2bNiQNzha4dap8GikMiIfeWsAjBgJx27+4B9NNGUDotrOL71/asZFLClT5VNZVpsqugFF0KuxdXmEWNIxzairuoBX0Rc8S+NmaZ7g8/lm1XZZ6liWxeDgIHv27Fny17sULDVdl5vKoAP8xqdDPP6nMeqsRwGRdvUhPv/tal4MTw2uPBW2Z8w6+RAulwPdEHBI5oJrhViWRU1NzYK+xlxoaWnJNdmYjCDAirokCVWmttrHSs8LACQdu8DU+OCeswQmKVLqhoBhCmxoGZuz8FN1hcYdy6NEk44plbnJjLzgEyzY/vOqqqol6z+fzMqVK2d1uyxlBgcHWbVq1U2buTIfmpqalswkfNMZdICaSjefeFc179/6OJJ6EUNZycMnHuRPv91HNJZCN0w64ncCsG+zbcDjaYmmytSCulsWUy63WNxuN8uWLcur71LlU3E7DFRd4MMPVtm9QIENgcfYdeeEtobdxkyx9bXnuZquC6hsaYsxmpgw6oYp5PLdF5KbwX+eZTZtl6VMPB7H5XKxffv2JeVXXmiWQrwsy01p0LPs3d7EFz8aYaXzx2Bq9Jpv5gv/2srXvteNpTQjqp3ctd02TLopUhtcWOOx2HK5xbJ69eq8fnRRhBV1CcZSDqqCHt5950vcWflf/M93TzV+0aRMfSA9pRhrPjRUZtjYYht1TReQBAvfIuiFGIZx0zRPyNYvqOrNkV+eRdd1YrEY+/btQ1GUGz2cRcXn8+FyuZaEH31pWZ554HI5+KUPtfDRu57BoZ7EUpq5lH4bAMv8ryNLtgCXUzLxL7C2cyqVWpIrwZqaGjweD5nMdINcG1CRRBPDhHt2tfCxdy27RqNcQMBuflCKRVdzdYb1TWMMxJxUVyxsgDrLUtRvKYQgCKxYsSLvjmop09/fz86dO5d0N5+FIutHXwq6Lje9Qc+ydWM9X/yfGTb6/xvMFJgZDuy0Na/jaZmm6tSCd8KxLGtJfqBFUSwYHHXIFm01KaLJ6dkIlmWXl29oGStpmlxrbZo7lkVpqZ6+ayg1pmlSXV19U60am5qallT14WwMDQ3R1tbG6tWrb/RQbhhNTU15d8GLza1VWOSQ+bn3tdHZc4ixhMqGNfY22zBZ8FZaN0out1haWlo4fPjwtMpRgKaqNFcGvZgWTNbdiiYdNFamF6SLUGvN4nz4TdO86ZonVFZWIsvytP6wS5FkMokkSezcufO28ptfSzAYXBLv/5ZZoU+mtSnAxnFjrum2kt9CazvfKLncYvF4PLS0tOTNoHApJk2VKcZSE/N7RhMRRYu1jaVxtdwoLMu6afznWSRJKhjIXkoYhsHo6Cj79u1bMh2gbhRer7dgC8jF5KY06IIAaVUqKPg/mXhapqU6veBG6UbK5RbLqlWrCjZSaKlOoxkilmXrq8RSMptaYiiOhS3JX0iyW+CbxX8+mba2trwxj6VEf38/W7duvekmzIVgqfjRb0qXi1M2aamOMzxWR6VXm1EHxLQEavwL/8W4kXK5xVJbW4skSXm38n63TpVPJZmxS/Vbq1NUL4ICYqkwDINkMkkymcxVW1ZUVODxeG4q/3mW6upqRFHM6yJbCqRSKfx+/w0XoVtKNDU1cenSpRs6hpvSoAsCrKqP0Wi4ON3lx+M0cOcJ2qm6gEsxStJncSZutFxusTgcDpYtW5ZXsAtgeV2S1y5U4nfdHB1wYrEYiUQCQRCQJIn6+nrWrVtHZWUlgUAARVFuWjU/h8NBU1MTIyMjS6quIUskEmHXrl1LcrK5USyFneBNadCzNFZl8LgMXm+vIJqUp2lcJDIyK+sW3ge8VBsn5GP58uVcvnw572OVXo36QJoV9am8HaCWCllt7draWrZv305FRQU+n++WMy7Lli2jq6tryRl0wzAQBGFJpujeSLxeb66G4EbtCm9qgw62ANSuNRFOdfgZHlOo9Km5TA3TZFHcBktBLrdYampqcs1tZXnq7RcE2LpicTq9zwfLshgaGgLgrrvuYtmyZbecEZ9M1jedVfBcKkQiEVatWnVTSCksJtk+o11dXTcsffmW+DY4HSZ3rojSWp1kOKbkeoR6nMaC96kE+0Yudf95FkmSZixcWUJ2YwrxeJyenh7a2tp429vexooVK25pYw62bENNTc2SEX7KkslkWLVq1Y0expKkubm5YDBb0zTGxsYWVKvnpl+hZ5FEWNOUwO/WOd3lRzNENrUu/GrTNM0lI5dbLG1tbZw/f/5GD6ModF1ncHCQiooKHnjggdsuo2LlypUcOnSo6PoG0zTp7e2lvr5+2g6sFCQSCaqqqm6aBcxik81HTyQSpNNpVFVFEAQsy8LtdlNdXc3q1asXLCPuljHoYK8us371c90+ahZB+Mk0zSUjl1ss1dXVuZzZpTwRjYyMoKoq27ZtY/Xq1QtioJY6dXV1s2qkT2ZgYIDa2lqGhoZoaGgo+XhisRh79+5dUi6gpYTH46GhoQHDMGhtbaWyshKv15vTTV9obslvSMCjs3N1ZFHcB0tNLrcYRFFk9erVnDt3bsmueAcGBqivr2f79u34/f4bPZwbht/vp6KiglQqNWsWVTwex+/3c/fdd/PEE0+QTCbxeDwzPmcu6LqOJElLvt7iRiIIAvfee+8Ne/1b1gk5mzHv6em57kq8bLR/qWUhFENLS8uS1QsxTRPTNNm9e/dtbcyzrFy5klgsNuMxhmEQi8XYs2cPbrebnTt3Mjo6OqfV/WyMjo6ybt26Jb2ru92ZdYUeCoXqgf8ANMAAPgysAv4UMIFPh8PhE6FQqAH4R8AL/L9wOPydBRv1dZLJZPB6vTgcDvr7+6mrq5vXFjIajdLS0nJTBucqKyvxeDw3NMWqEJFIhBUrVtz25eRZGhoaOHbs2IzHDAwMcOedd1Jdbfd/bWxspK2tjcHBwZJlXOi6fls1rrgZKcYSDQH7wuHwfmyD/QngD4GHgA8BfzJ+3Oewjfx+4BdDodCS/TZGo1FWr17NgQMHWLZsGT09PXPSYDAMg97eXhwOx5IvJiqEIAisXr06rwLjTKiqyuDg4II2YUin07e1ct+1BIPBGTXSo9Eo1dXVU2ohBEFg69atqKpakp3Y2NgYtbW1N+Vu9HZCmMuWLBQK/RK2gf+5cDj8xvG/HQyHw3tCodBLwN3hcNgMhUJ/A3w7HA6Hr3n+J4FPAnzmM5/ZceDAgXkNOp1Ok06n561Ep2kagUAg9/xMJkMikUCSpFlX24ZhYJombrcbl8uFrutLZgs61yCnYRhEo9E5PSf7GpqmzXi9ssfMlexEUSrDsZQCv9czllQqRTqdnhYYtiwLXdenfJ4nk06nSSaT0153rvdH0zT8fn/Jr+VSuj+wtMZTaCzNzc0F3QlFBUVDodBW4G+BIPAA8MFJD+uhUEgBHOFwOLtsiwLT9nnhcPjrwNfHf523c+/8+fNcvHhxXl96VVVJpVK84x3vmOJmGR4e5sUXX0TTtLxBTl3XGRgYoKqqil27duW2sd3d3UtGnnWuY7Esi9dffx1JkoraaYyMjFBdXc0999xDb28vr7zyCqZpUlNTM81l1dDQQF9f35zfQ29vL3v27CnZNb2Z789kBgcHCYfD0zJXuru72bVrF21tbXmfp+s6P/7xj3E4HFMCpHO5P5qmEYvFeOc731nyTKOldH9gaY1nPmMpyvkbDoePhcPh3cDvAL8FVEx6WA6HwyqghUKh7PkCwMicRrJIRKNRVq5cOc0AVVdX88ADD1BTU0NPTw+GMVGQNDo6yuDgINu3b+fAgQNLsonFfBAEgbVr184acAP7S61pGjt27MhVxD300EO0tLTQ09NTEmVAwzAQRXHJfKGWElVVVTlhtSwjIyM0NjbOWOQjy/J1B0hHR0dZv379bZk2erMxq0EfX31niQJxQA6FQsFQKNTKhOE+BNwbCoVkYAdwqtSDLQW6rhdMu3K73dxzzz3ccccd9PX1EY/H6e7upqKigoceeoj169cv+YYDc6WxsbEof3h2Qptc4OJyudizZw/33HMPsVgsV5Y/X0ZHR1m9evWSC9IuBSRJoq2tLTf5Zn3jxQhkZQOko6Ojc35dy7IwDINly5bNa9xlFpdiptytoVDoz7EzXNLA/wTWAI9gu01+Yfy4P8EOmn4R+Fo4HE6VfrjXh6ZpOJ3OGavcRFFk8+bNVFVVcfjwYe666y6WL19+U2ayFIPf76eysnLGnOVIJEJtbW3elaAgCLS2tlJdXc2hQ4fo7Oykrq5uXmNRVZWVK1fO67m3A21tbVy5cgXLshgcHOQNb3hDURWk2QDpj3/847waPjMRi8Voampasp24ykxl1jsbDodfA+655s+9wN5rjusF5hflXCQikQhr164tyjg3NTXdNgUUa9as4dChQ3kNumEYpFIp7rvvvhmvm8fj4Z577qG9vZ3XXnttzm6TRCJBdXX1kpAgXapkUxIHBwdZvnz5nFbNfr+fO+64g+PHj9PY2Fj08xKJBLt3757zWMvcGG7NZWcBDMMo+2fz0NDQgGVZeX2s2fzmYgLQ2Y71Dz74IMCcurfEYjE2bNhQLimfAUVRaGpqQhAEtm/fPudrtXbtWrxeb8GuVdeSyWTweDzz3nGVWXxuG4OeTS+8VQKapcTr9eZV9RsbGyMQCLB27do5nc/v9+P3+3MCRbORdQPMZeV4u7Jhwwb2798/r/oHWZbZtWtX0b70SCTCxo0bb1l3463IbXOnotHoLe0Lv17Wrl07RdYzW0q+e/fueWU3SJLEPffcw/Dw8Kz5zqOjo6xdu3bJ5P8uZWpra69rxVxfX09bWxuGYeQCnoZhoGkaqqqSyWRIpVK5Vn43m/Dc7c5tY91UVS1/OGcgaySybpfBwUE2b96c89vOh8bGRvbs2cPAwMCUdLtr0TStXFK+SAiCwLZt2wDbnTY6Oko0GiWZTKKqKqZpIkkSiqJwxx133LSV0Lcrt0ViqWEYyLJ8XcbpVsftdtPU1EQ0GkWSJDweDxs3brzu865atYp4PM7Jkydz/t/JjI2NUVdXVy4pX0R8Ph/BYJAPfvCDsx9c5qbitlihZ90tt1oOealZuXIl8XicSCTCnj17SuYC2bJlCytXrqS/v3/aY2NjY+XO8WXKlIjbwqBnMpmCpdFlJsiqTq5du7akmQ2iKLJz505qamqmFB9l6wJuln6sZcosdW55g54tJy+7W2bH6XSyb98+7rjjjpKfW5Zl9u3bh9PpzOnQZ/W1yyXlZcqUhlveoMdiMZYtW1Y2GkXS+v9v78yjrKzLOP5BUSFkaSSNUUrkuHISOj5quSGITpimuWtmZJoej2uL6DHRk/tGbmimIq5gSmomaWqZUi588RxLDdfc0kkmN0AQnLE/nvfqjdhm5r3v/c3L8zmHc4f73jvzuff3/p739z6/beDAmu3m3qNHD4YPH87ChQuZN29eTCkPgpzpkgF9lVVWYe7cucscOVFhwYIFETQSok+fPowYMeLThaViR6IgyI8uGdB79uzJsGHDaG5uZv78pS8ZUxmC1dX2/Cw7/fv3Z9SoUQwdOrTeKkFQKrpsHmLIkCE0NDQwffp0FixYsMQFt+bMmUNjY2NMWEmQmBUaBPnTJVvoFQYMGMDo0aPp1asXzc3N/7cWyYcffsigQYPqZBcEQVAsXTqgg0+SGDlyJIMHD/6fvUHb2tro1q1bpFuCIFhp6LIpl2q6d++OmdG/f38ee+wxevfuTWtrK42NjTUbsREEQZAaXb6FXqGydGtTUxOtra20tLREuiUIgpWKUrTQq2loaKCpqYlZs2bFOs5BEKxUlC6gg09gGTZsWL01giAICqU0KZcgCIKVnQjoQRAEJSECehAEQUmIgB4EQVASIqAHQRCUhAjoQRAEJSECehAEQUmIgB4EQVASui2+QmEQBEHQNYkWehAEQUmIgB4EQVASIqAHQRCUhAjoQRAEJSECehAEQUmIgB4EQVASIqAHQRCUhOQDupl1q7cDgJl9vt4OqZJCGZnZ5+rtkCqJlE/Un6WQZ/kkObHIzLYFNgImSaqrYOZyDHArcGc9fcxsOHAw8FvgUUktZtatHk5m9jWgn6R7i/7bi3lsAxwN/FLSw3V22Q7YF7gFmCXp/TqWTxJ1KKX6k/kkUYdqVT7JtNArVykz2xe4DhgF7FF9rA4uxwHnAedKuqNOFbPisgHwI+AeYGPgFwBFOlW5HAH8Dtg9C+yFUuXxc+Ai4Ox6BfMql62Ak4CZwI7A+VC38qlrHUqp/izmU9c6VET5JBPQgXWzxz/jH/RSYDsza6jDiVBxeQl4GxhiZneb2Vgz2wLAzIr67hqzx7WANSTdKelCYISZfbtgly9kj9OA7YGH/M/bmgX9/cU9ngXeBTY0s8lmNsbMNinYpX/22Bt4T9INks4DRprZTlBoME2lDqVUfyCdOlTz8ql7yiVr2VwCPAc8DtyS3aoOwm9f35d0VcEuzwOPAlfhV/GewHhgW2B/SU0FujwHPAbciLdG/yjp12Z2PdBL0j4FuOwInAq8CkwFHpI0L0sxbA88JWlawR63S5pmZrcC84FfAQbsKGmvgl2mArOAw4D7Jf3RzG4Gukk6qACXJOpQSvVnMZ+61qEiyyeFFvqu+O3pEfgV9GfZ82/gH359M+tvZqsW6PJD4IvAOEnHSzpC0nOSJgLzzKyIE7L6e1kbGItXiiPNbCrQDHxgZlsX4LIXcGH276vA4dnzM4E3gcFm1sPMuhfosbWZjZG0v6Qxkv4q6VK8fLassUe1y0XA5sDeeBrqFDO7HXgBeNvMNi7AJZU6lFL9qfapdx0qrHzqFtCrbkNbgI0lfYTn28zMTNIiYDrwH+A+YEKtbouW4nIWsGN1cDCzfsA7wNO18FiGyznA8Oz5nfE84Kn4FX9mAS6v4S2ZZ4EpwBZmtpmk+XjZrAXcAZxai/TCUjxuBEaZ2aZVr/sSsAj4R94Oy3B5BrgNGAq8DhwAnIjfTr8l6bkCXOpah1KqP8vwKbwO1aN8Cg3oWYUDvCMi+8BPZcc2yT7gRPw2BGArYHe8E+NoSW11cNk7e24s8HvgX3irNDdW0OVa4FBJrcCmwN3AapI+zjOIWjb8z7Ke/+wEmw30NbO1JL0IPIKnWsBbp98CZgBn5JULXEGPhyseZvZjYDKet52Xh0M7XR4BmiTNBobhQX5R5X05unw6/K+edagdHjWvP+3wKaoOrbIcj5qVT61vkQEws2/gQ8s+MrPJwH2S5mQf+HlgM7yTYBZ+9e6bvXU2sJ+kf9fRpV/21mfwvO1LdXL5O9Ane+ts4AeS3oB8eunNbDfgO8AbZjYevx1FUpuZCdgT2BrvEP0AqNweNgO7ScqlknbAo9IoeRM4JOfyaY/Le3z2nbTg5fNK9vo8ymc48GOgxcwmAM9IWlB0HeqAR7/srbnXnw741KwOmdkBwMGSdqsEZTNbVVJrkeVT807RLC80Fb8qvQIcBIyX9LaZbQjsA/wVv1X9J/B14AlJ5yTiMkPS2SV3WQ0fO305sAk+KmCapMczlx2ABXj+/HlgF7xj6Yo6ezQBD+bt0UGXXYA/SZqQt0vmcwVwPzAXv4i8JGlyHepQez1qcs6m5GNmjXjn76bAxVlfQeVYoeVTk4Ce3aIegA/PmYu3Qu/CO4puBY7Ee76PBP4m6VozWxvvaJov6fpwKdSlDThe0nFmtjo+OuE1PKVxGHBHNipgA+D7wMuSriuTR4IuPYFxwL2S/mxmP8XTOk/go0W+mf1/Z/xcmViLcyUVj9R8Mo/TgN9Jmp49NwC4CR/J02Jmg4GTgemSJtXye6mQe0A3swOBE4Dr8dl7reZDvPbEc62PAi8CHwLn55VzDZcOu1yZpRBuA6ZKmmJmF2QvvRp4RdLCqvfmNqsuFY8EXQYCl+Hj/K+QtNDMTsQ7XafgndB74amdu7KccO6k4pGaz2IeV8o7OyvHzgS6Szopy593z/LmhZBrp6iZ9QH2A84AHgR2MrMNJT0EPABMkPQd4F58jO4nVqOhbuGywi67mNla+CzHjcxsGtANTzE0ZJXm0+FUOQbzJDxSc8nojk9N/xNwjPnyBvcB2wBDJLUAa+Ideq21OlcS8kjNp9rjKDPbterYhcDQLOg34hPOCptc1ukWuvkIjZ/gvbR/wXOLJwCr4x/6EGA0fis0AC+Ao4F3JR3bqT8eLnm43A18F+/YfN181MZ/zOws4Dr5CI5SeSTs8lu8w2y97P//Ap4ExgDnAl/BO/VmAbsBD0u6pmweqfksx2Nm5jEB71eaY2anAMfhDbSxkt7Ky2V5dKqFbmbr4RMrXsUnEtwgnzF4ATBC0kXADcDpeOffC9nPT9QgaIVLx1wuBCbhLQvwSQ734bPX8gzmSXgk7rIunkoQnj5YKOnm7Pgu+Nj73+DjqWfkHLSS8EjNZwU8bsHPm52ANjPri3fOXiDpkCKDOXQwoJvZDlW3EP0kXZQl+Xub2cmS/oDfooJPee0F9JA0GdhD0mWdNg+XPF0uAxaZ2Rr4ibu3pPPL5NGFXPqa2WH4xJytAOQrWm6Sve5p4Ni8zpVUPFLzaafH/cCXgHUkvY8PQ7xgib+4xrQr5WK+CNMd+Gpye+L5xrFAs6SrzGwcnkYYLek9M9sBnzU3U9JpeYqHS+4uT0oaVzaPLuhyGj4cczt8FEVb9vOLwElZwCiNR2o+qXh0lHbn0M1XSxuIX50m4BMHJuBjqefis/QewCcSXA1MlDQ1N+Nw6TIuqXh0QZePgDvxkU/r4B1+fyirR2o+qXh0hA53iprZpXjO9ybz8Zd98KvU8cDNkppzswyXLu2SikcXc7lR0tsrk0dqPql4tId259Cr8ko34+sJr50l/vvi61d8GZhjBawvHC5pu6Ti0UVd5lqNh7ql4pGaTyoeHaFTwxbN7BhgML7JwEvA85KeyMktXErkkopHuKTtkZpPKh4rSkdHuVTetznemfSypJvq9IWHS8IuqXiES9oeqfmk4tFeOttC3xtfy+Cj5b64xoRL2i6peIRL2h4VUvFJxWNFqfsWdEEQBEE+pLAFXRAEQZADEdCDIAhKQgT0IAiCkhABPQiCoCREQA+CICgJhWwSHQRFYmbr43s3AoyTdEb2/LXAoQCSOjTLz8w2wzfDeEi+QQlmNgn4HrClJHXGPQg6QwT0oOyMMd8WrBceiDvLZvgqe+BbkAVBMsQ49KB0VLXQXwY2AEYCg4Ar8P0m18XTjacAhwMNgICjJT1jZqfjQfsafBnVfsBRwAw+a/lXGIHvWPM9fCOEfbPffZCkR2ryAYNgKUQOPSgz/wAex9Msh+JLnr6XHfs+vofo3/DAviVwl5mtVvX+7YHL8UWZzgVmAxdnx6YCBwLPVr1+G3zp3fXwHaiCoFAioAdlZyLeat4WuK7q+crGvj+SdClwF74I00ZVrxkv6RK8pb++pHn4/qMAT0uastgSqqdLOhNfL3v93D9JECyHCOhB2ZkCtAJvAPcv4fgniz1W8072+DGf1ZVl5SirX79q+zSDoPNEQA9KjaQP8HTLEZLaqg7dkz2Oz5ZI3YNsedTl/Mp3s8ftzewAM+uZq3AQdIIY5RKUHkm3LuHpSXjn6OF4p+kMvFN0kZkt69dNx/eZ3CF738BcZYOgE8QolyAIgpIQKZcgCIKSEAE9CIKgJERAD4IgKAkR0IMgCEpCBPQgCIKSEAE9CIKgJERAD4IgKAn/BVFtE6cmyzPRAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pred.plot(low_quantile=0.01, high_quantile=0.99, label=\"1-99th percentiles\")\n", "pred.plot(low_quantile=0.2, high_quantile=0.8, label=\"20-80th percentiles\")" @@ -2403,7 +2534,7 @@ "It is also possible to use [QuantileRegression](https://unit8co.github.io/darts/generated_api/darts.utils.likelihood_models.html#darts.utils.likelihood_models.QuantileRegression) to apply a quantile loss and fit some desired quantiles directly.\n", "\n", "### Evaluating Probabilistic Forecasts\n", - "How can we evaluate the quality of probabilistic forecasts? By default, most metrics functions (such as `mape()`) will keep working but look only at the median forecast. It is also possible to use the $\\rho$-risk metric (or quantile loss), which quantifies the error for each predicted quantiles:" + "How can we evaluate the quality of probabilistic forecasts? By default, most metrics functions (such as `mape()`) will keep working but look only at the median forecast. It is also possible to use the Mean Quantile Loss metric `mql()`, which quantifies the error for each predicted quantiles. For quantile=0.5 (the median), it is identical to the Mean Absolute Error (MAE):" ] }, { @@ -2415,22 +2546,24 @@ "name": "stdout", "output_type": "stream", "text": [ - "MAPE of median forecast: 11.80\n", - "rho-risk at quantile 0.05: 0.14\n", - "rho-risk at quantile 0.10: 0.15\n", - "rho-risk at quantile 0.50: 0.11\n", - "rho-risk at quantile 0.90: 0.03\n", - "rho-risk at quantile 0.95: 0.02\n" + "MAPE of median forecast: 11.78\n", + "MAE of median forecast: 50.12\n", + "quantile loss at quantile 0.05: 5.01\n", + "quantile loss at quantile 0.10: 11.73\n", + "quantile loss at quantile 0.50: 50.12\n", + "quantile loss at quantile 0.90: 20.56\n", + "quantile loss at quantile 0.95: 12.13\n" ] } ], "source": [ - "from darts.metrics import rho_risk\n", + "from darts.metrics import mql, mae\n", "\n", "print(\"MAPE of median forecast: %.2f\" % mape(series_air, pred))\n", - "for rho in [0.05, 0.1, 0.5, 0.9, 0.95]:\n", - " rr = rho_risk(series_air, pred, rho=rho)\n", - " print(\"rho-risk at quantile %.2f: %.2f\" % (rho, rr))" + "print(\"MAE of median forecast: %.2f\" % mae(series_air, pred))\n", + "for q in [0.05, 0.1, 0.5, 0.9, 0.95]:\n", + " q_loss = mql(series_air, pred, q=q)\n", + " print(\"quantile loss at quantile %.2f: %.2f\" % (q, q_loss))" ] }, { @@ -2445,54 +2578,9 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "GPU available: False, used: False\n", - "TPU available: False, using: 0 TPU cores\n", - "IPU available: False, using: 0 IPUs\n", - "HPU available: False, using: 0 HPUs\n", - "\n", - " | Name | Type | Params\n", - "----------------------------------------------------\n", - "0 | criterion | MSELoss | 0 \n", - "1 | train_metrics | MetricCollection | 0 \n", - "2 | val_metrics | MetricCollection | 0 \n", - "3 | dropout | MonteCarloDropout | 0 \n", - "4 | res_blocks | ModuleList | 208 \n", - "----------------------------------------------------\n", - "208 Trainable params\n", - "0 Non-trainable params\n", - "208 Total params\n", - "0.001 Total estimated model params size (MB)\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "9b104ef44f5b45d5a7fc248f84768f70", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Training: 0it [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "`Trainer.fit` stopped: `max_epochs=400` reached.\n" - ] - } - ], + "outputs": [], "source": [ "from darts.utils.likelihood_models import QuantileRegression\n", "\n", @@ -2524,12 +2612,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dfbbd21dd8be480faa682ea5ada5d239", + "model_id": "ae398049c0d24454853a41c79c6dfc72", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Predicting: 0it [00:00, ?it/s]" + "Predicting: | | 0/? [00:00" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -2570,9 +2656,9 @@ "pred.plot()\n", "\n", "print(\"MAPE of median forecast: %.2f\" % mape(series_air, pred))\n", - "for rho in [0.05, 0.1, 0.5, 0.9, 0.95]:\n", - " rr = rho_risk(series_air, pred, rho=rho)\n", - " print(\"rho-risk at quantile %.2f: %.2f\" % (rho, rr))" + "for q in [0.05, 0.1, 0.5, 0.9, 0.95]:\n", + " q_loss = mql(series_air, pred, q=q)\n", + " print(\"quantile loss at quantile %.2f: %.2f\" % (q, q_loss))" ] }, { @@ -2600,43 +2686,9 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f09961b31d4340d68f34d345e875a784", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/57 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from darts.models import NaiveEnsembleModel\n", "\n", @@ -2674,43 +2726,9 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d5cd2271e8a74512a947a55d8007e7dc", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/57 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from darts.models import RegressionEnsembleModel\n", "\n", @@ -2739,20 +2757,9 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.01368849, 1.0980105 ], dtype=float32)" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "ensemble_model.fit(series_air)\n", "ensemble_model.regression_model.model.coef_" @@ -2768,41 +2775,9 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "8ca7a08507a741f1bb55d4c2136fb1ba", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - " 0%| | 0/57 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from darts.models import LinearRegressionModel\n", "\n", @@ -2856,22 +2831,9 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEPCAYAAABIut/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAB8rUlEQVR4nO2dd3gc1dWH39mi3nuzmntvY4xtbMBgqqmh91BDICEhEBJSv0AKgUBCGpBeIKEltNC7C7YZjHsvsqzey6602na/P+6u6q600kqyLd/3efx4NeXO0Wr3zJ1zz/kdTQiBQqFQKMYepiNtgEKhUChGBuXgFQqFYoyiHLxCoVCMUZSDVygUijGKcvAKhUIxRlEOXqFQKMYoR5ODF+H8q6qqCuv84fqn7FB2KDuOPTuOJluGYEdQjiYHHxYej+dImwAoO3qj7OiJsqMnR4sdcPTYMpx2jBkHr1AoFIqeKAevUCgUYxTl4BUKhWKMohy8QqFQjFGUg1coFIoxinLwCoVCMUZRDl6hUCjGKMrBD4Jvf/vbfPDBB7z00kv89Kc/BeCGG26gqKiIOXPmMG/ePD777LMjbKVCoTjSCCE4GnptKAc/CNavX8+JJ57IRx99xLJlyzq3P/zww2zatImf/exn3HfffUfQwqHjdruPtAkKxZjA6xWs2y4wdisHf0xw7733MmvWLD799FMWLVrEH//4R26//XZ+9KMf9Thu2bJllJSUYLPZOO2005g3bx4zZ87k5ZdfBsBut3Puuecye/ZsZsyYwbPPPgvAt771LaZNm8asWbO45557AKitreULX/gCCxYsYMGCBaxZswaAH/7wh9x4442ccsopFBcX8/jjj3de/4EHHmDy5MmcdNJJ3HHHHTzyyCMA7N+/n7POOov58+ezdOlSdu3aBcinjy996UssXLiQb37zm3z00UfMmTOHOXPmMHfuXFpbW0f2jVUoxhhCCDbtFRyshD2lUFbjPfIGHSX/wqKsrCzcIfplw4YN4s477xROp1MsXry4c/v1118vnn/+eSGEEM8995yYM2eOcLlcorm5WQghRG1trRg/frzwer3ihRdeEDfffHPnuU1NTaKurk5MmjRJeL1eIYQQjY2NQgghrrzySrFq1SohhBCHDh0SU6ZMEUII8YMf/EAsWrRIOBwOUVtbK1JSUoTT6RQbNmwQs2fPFu3t7aKlpUUUFhaKhx9+WAghxPLly8WePXuEEEKsW7dOnHrqqZ22n3vuucLtdgshhFi5cqVYvXq1EEKI1tZW4XK5wn7fRvrvEirKjp4oO/oyHLZsO+AR/3jLI94zPOLNdR7x7Pse0Wr3jrQdQf2q5cjeXkJH07QRGVeEGCfbuHEjs2fPZteuXUydOrXHvnvvvZcHH3yQ9PR0HnnkEYQQ3H///Xz88ceYTCbKy8uprq5m5syZfOMb3+C+++5j5cqVLF26FLfbTVRUFDfddBMrV65k5cqVALz77rvs2LGj8xotLS3YbDYAzj33XCIjI4mMjCQjI4Pq6mrWrFnDBRdcQFRUFFFRUaxYsQIAm83G2rVrufTSSzvH6ujo6Hx96aWXYjabAViyZAl33303V199NRdffDF5eXlDeEcViuOT6gbBpr2QnQImk0ZkBFg6BOt2CE6dC2bzyPiw/gjLweu6ngi8A0wDTjQMY1u3fWbgD8BE4DPDML4WzrWOFJs2beKGG26grKyMtLQ02traEEIwZ84cPvnkE0DG4C+55BIAysvLefrpp6mtreWzzz7DarVSWFiIw+Fg0qRJbNy4kddff53vfve7nHbaaXz/+99nw4YNvPfee7zwwgv85je/4f3338fr9bJu3TqioqL62BQZGdn52mw29xs/93q9JCUlsWnTpoD7Y2NjO19/61vf4txzz+X1119nyZIlvPXWW0yZMmUob5tCcdxRWSeIiujpyFPiNcprBVUNkJs++jaFG4NvA84FXgiwbyVQYRjGUiBW1/VF4Vyov8cQIQRlZWVDCg0NxJw5c9i0aROTJk1ix44dLF++nLfeeotNmzYRHR0d8Jzm5mYyMjKwWq188MEHHDp0CICKigpiYmK45ppruPfee9m4cSM2m43m5mbOOeccHnvsMTZv3gzAGWecwa9//evOMYM5aD9Llizh1VdfxeFwYLPZePfddwFISEigqKiI559/vvN99F+jN/v372fmzJncd999LFiwoDNWr1AoBqasFuJ8LsHlcnZuj4yAhpYjs+Aa1gzeMAwXUKvreqDdi4H/+V6/CSwBPgnnekeK2tpakpOTMZlM7Nq1i2nTpvV7/NVXX815553HzJkz0XW9cxa8detW7r33XkwmE1arld///ve0trZywQUX4HA4EELw6KOPAvD4449zxx13MGvWLNxuN8uWLeOJJ54Ies0FCxZw/vnnM2vWLDIzM5kyZQqJiYkAPP3009x+++08+OCDuFwurrjiCmbPnt1njF/+8pd88MEHmEwmpk+fztlnnz3Ut0yhOK5o7xBs/GwdO4z/sPbjVykr3cuPfvEfTjrlAqIjobb5yNilhRqD7g9d1/8KPNIrRPMU8DvDMDbpun46sNwwjPt7nXcrcCvAnXfeOd8fNx4KLpcLq9U65POHiyNph91uJzY2lvb2di6++GJ+/vOfM3PmzCNiix/1d1F2HAt2QHi2vPX2e9x04/U9tl1z7Rf5zvceAMDtgeT4kbEjNzc3aHB/JBdZm4AE3+tEoKH3AYZhPAU85fsxrDtNeXk5ubm54QwxLBxJO6666ip27NiBw+Hgoosu4qyzzjoidnRH/V2UHceCHRCeLZ98ugcA/cQVTJo6j2f+8hClFS1U2XIAqGoQnLdYIzZ64IXW4XxPRtLBrwVOBz4GzgT+MoLXUgDPPPNM5+vy8vIjaIlCcXyxa7d08CvOuYbs3CKe+ctD1NV0+w4KsLVDbOBluxEj7EInXddfB84A/qDr+g26rj/p2/UakK/r+irAYRjGMRl/VygUiv5o7xCUle4DIK9gEqnpctZeX1vReYxmgta20V9oDXsGbxjGOb02/dW33Q3cEO74CoVCcTTT2CKoLJMz+Lz8iURFxQBQV1eB1+vFZDIRFQE1TTBhlEtLlFSBQqFQhMG2XRV0OOwkJKWSkJhCRGQUCYkpeNxumpvqAIiOhLqm0bdNOXiFQqEIg41b9gKQN25i57a0dLlI6o/DR1g02hzgdI1umEY5+EGg5IIVCkV3HB2C/ft94ZmCSZ3b/XH4um5xeJALraOJcvCDQMkFKxSK7jTZoKpcLrCOy+82g8/wOfhumTQC5eCPSpRcsEKhCER9i6CqXM7gc30OvqZRcNB7E0Tk9MikibRCffMoZ9IMRb9lhP6FhZILVnLB/aHs6Imyoy9DseXtDR4xrnCqAMQf/rVRfLDRKxbf7hEs9Qgm/Face9FN4oONXvHBRq94/ROPeGuDZyTsGANywcsGEs7PBgYvri8+Du0hRskFKxSK7rjdgtpGD1Xl+wHIHTeBfWWCtX7BluRzqK39X+fxkVaobZIdn0ym0ZEOPmYc/JFCyQUruWCFIhDNdqirLsXlcpKWnkN0TBz/+He3EExUPhX1XaWrJpOGEAK7A+JjRsfGYyYGLz429fuv7F+VAx4T6N9AKLlgheLYweMZvWbXTTZBVYUvRbJgEgcrBR9vBqsF5o6XT8l1rl6qrRp0OHuPNHKoGXwIKLlgheLopcUu2FUqqG+GplZYPBMKskY+BFJRB/VV0sHnjpvAP9+W289dBLPHW/l8PziiT8bp7CAiQj51CwGOUXTwwyIXPEwoNckwsdlsxMXF0dbWxqJFi/jLX/7CvHnzjogtftTfRdkx0nas3+HlQIWU4/V6pRM9Z5E26Dafg7FFCMGLHwmeeeJr/PfZX3PFl/7AsztuxGyCp78nG3+c+00nYOapuyqZOH4cIDNs5kyASfnBowdDeE+C/qLHTIhGMTC33nprZ8HVOeecc8Sdu0Ix0ni9gsM1kJ4EUREaMVEaTXaoG+EGG7Z2cLuh/LCcwTdpCxECls+DjGRpR4x7M2hm1mzuSn63WmTsfrRQIZoxhJILVhxvtNjB5QZLtz6osVGw65AgPWnkwjTNNhlyKCuVOfCtHplxNr2o65jMyG0c9C5g477ITtXFCOvoFjupGbxCoThmqW0S9M44TIyV/VFHUp63qkFgwklVRQkmk4nqFtmuqSi765jxqYcB2FOdjscrbbFaoKVtxMzqg3LwCoXimOVQdd8mGpqmYTbBwYqRc/AVddDacACv10tGdhGlNdKVFmV1HVOQbYX2vXS4o9lRIrdZzeDokKGl0UA5eIVCcUzidAnqmmRIpjcpCbCrdPjVG50uwZb9Xppt0Nwgw6BJOYtwuiAjCeJiuh4n0jJyoVGm1myRtVBomoYAOlzDalZQlINXKBTHJA0t8v9A2TIWs4bHC/XDuNhaXuvltbWCHQchJx3qayvltRLnAj3DMwBp6Tlg2wjAvm5LYhqjlwuvHLxCoTgmqaoXWCzgaA8c1I6wQHXD8MzgnS7B6i0QEwVZqRpmk0Z9nXTw3igpXVKU0/OctIxcsH0OwL6yru2C0cuFVw5eoVAccwghOFQNn636F+cuTeC5fz7a55i4aLnYOhxUNwi8XpmK6afB5+AdWiEQZAbftgO8TsrroM0hbzYaKkSjUCgUQWltg7YO2LjhbbxeL088di+frPpfj2MiIzRa22VT7HA5UNF3Mbe+rgqAJpdcWS3u5eBj4xKJirRC2w6EgAPyfoDZDC2j1IBbOXiFQnFM0eEUrN0qiLTCoQNScVUIwY+/czWlB/vqJzWF2dagvUNQUd9XIKy+rhK0SBrbEjCZID+z535N02RnJ9smAPb6wjQRFnmDGg2Ug1coFMcMLrdg1RZBa5uUJigtkQ59waIzsdta+O7dF2K3tXQebx2GOLz//N6LuQ11lRAzFSE08tIhwtp3sTctIxfsmwDYX95lk3LwCoVC0Q2PR7B2mxQVS0/WqK0uo73NRnJKBv/3yAsUT5jJ4UN7+PDd5zvPiYuGivrwrru3LLC8b31dJcTOAPrG3/2oGbxCoVCEQF0zlNVAZoqcKZf4wjP5RVOJjo7l5BW+ngylezvPiYrQaLbL5thDwd4eONe+vc1Ge5sNU8IcILiDT8/IBbuU5z5YCW6PwGzWcLvl08hIE7YWja7rDwGLgRLgRsMwXL7t0cBzQALgBq4yDKM63OspFIrjk/I6QVRE18+lB3cCUFAk5bizc6QQTGV5SY/zNGRz7KxIBk1FnUDT+oZn/CmS1sS5dNCPg8/MA08LMeY62txplFZDcQ5oPl146wirgYU1g9d1fTaQaxjGUmAXcEm33WcD2wzDOBn4K3BTONdSKBTHL0IISiohvqsBWecMvqBY9mfIzisGoLL8QI9zLRYp0zsUDlRCQmzf7f4iJ48/Bz6Ig8/IlDLBUR75VNG94Gk0cuHDDdEsBnwy97wJLOm2bx/gf2uSgbowr6VQKI5Tmm3gdEOEpWsm7c+YKSiSTrZzBl9xsMe5Q82H73AKGlogOsDMv76uEsyJuE2ZRFghJy3wGOmZvr7GvoVWf8HTaMkVhPuAkAz4sjtpBlK67dsLTNN1fTvyKemE3ifrun4rcCvAnXfe2dkoeii4XK6jQiJX2aHsUHYMvx0OJ8zIBYvsD48QgtIS2d16wYwUMuIqyIwVREZG0tJUTxy7iYuL77qOG8rKZGgkVFvcHnnNQGEUV+tuSFoOwOQ8J7kJgVdyTUXy5I66VRB7O6VVHWTFNZAWDR02KA8wix/s36a/5iDhOvgmZIwdIBFo6LbvemC1YRg/1HX9EuB7wH3dTzYM4yngKd+PqqOTskPZoewIyNsbvLg8EBslPXRjQw3NTU3ExiXgiZlLlU1uz8op5tDBnWza42DCpMmd51fVC85aqJEUH9zD97Zlyz4ve6ohLbHvOSXldsi+FYBlcyKosuX0OQbAG5WF2WLBXrUaCmBHaSSVrdk0tkJBFswv6htEGc6/TbghmrXA6b7XZwJruu3T6ArL1CFvAAqFQjEoHB2C+haI6RYq8Rc4FRRN67EAmpUrwzRV5T3DNAJZ+ToYympleCcQh2s8kHwGFpObMxYEH8NkMpGWngvOcuKiPbS2QXWjbPzhT5WsrPOyeot3cMaFSFgO3jCMTUC1ruurgOnAi7quP+nb/QywUtf1D4EHgL5iEQqFQjEA9QFUIw/5MmjyfRk0AJv2CVoTbgNTDBW9FlrNJtmcO1TaOwTN9p7aM93Z1yy9+qz8ahJi++8c5V9ozYyXJbVlNV258DWNgvc3dv2Ow03YSTqGYdzba9Ntvu3NwFnhjq9QKI5vDleLPgudXTP4qRyqEjz1KqzdBrAS8r/TZwYfGQGNg5AsaGwN3sna6RbU+gIXZ8wbuGLJv9AabW4AkqhulHH9hhZ4f6MgIRZGqv+HKnRSKBRHLR6P4HAtxPcKlRzyZdA4Y5Zx40PSuXfmyGd/icPlPUtuIq2Dc/BVDYIIa+B9qzaD15wCtk3o0weOPKdnyHi61SvFyaob5NOIV8j2gt1z+4cb5eAVCkVYdDgFa7Z4BxUCCZWGVpnNYjb3nE/7i5y210zH64VT5sLT34NJOTawJLG/We9xfKQv5h1qq7zD1cHj7y+vlvFyrfopklPSAx7j8YrOPqzpWTJEI9rlU0VVozwmJ00jOnLkGoODcvAKhSIMnC4p/rWnDD7fIxBieJ18ZZ3oTI30Y2ttpq62goioaPZUSJGYG8+BlASNK0+TLq0x5qoe7fo0TUMIaA9hodXeLmh3BhYPq6gTbD1gAncryZ73MZkCu9CaRqj0ZU6mZ8gQjbNVFjtVNwQ8ZURQDl6hUAwJl1vK9ja0QFG2RlkdVNYPn4MXQnCwUoYxuuOfvWcVn0mTTSMlAfJ8E+ll82IwOXZCRC6vftTU80QttEyag5WCYPcpGecHGt8gLSUh4DH+m1xmMjS2is4YvL1+KyCd/2ihHLxCoRgSm/cJqhohI1nOdFPi4dNd4B4mEa0Wu3TIvWfSZT4xsaisswGYPb4rw8Zk0shwPwfAi6sieoRkhBfaHP1fc1+Zl837ZAPtQKzb7ntR/xqpaYH1CeztkJEMC6dpODogNV06+KZKA4DaJjrDNyONcvAKhWLQeL2CkipI77bGGB2p0eaAvWXD47yqGwSmACHqmurDADgiZJx91vie+yem7oGOMiqbYtjWLZkmwgpNrcFtc7pg3Q7ITOkb8wewOwSb94OGFxrfICUtK+A4Nofs7pQQqzFrArhNGZgtFpobykiOE8PeDLw/lINXKBSDptkuy/97O8L0JNh6gB7x76FyoDKwDntNVSkA9a4JAMye0HN/Xl4+NLwBdGmwg0yVbAiSSdPUKrC1y5m7JYBzB/h0p1zwTY8uBXdD0Bm88HY91UwapxEXYyYlVVa6psTLGNFoxeGVg1coFINmX0k9B3d/2me7xazh9coc73BocwgaWyAmqq+zrak6DFHjsTvjSIyFwl4T6aycImiTwfKDlV3boyKkbHAg6lsEaIEXVv2s9YVnUjQZagk0g7c7BKmJEBstx7FaNGYWQ0qazKSJi5B3mKpRisMrB69QKAbNffd+he/ceSKfrX+3zz6rJfzF1tomgRbEO1VXlULiyYAMz/TWas/JK4Y2WQhVUtW13WLWcDgDP11U1BEwHOTH4xWsl0MSaX8PIOAM3tYG43vJyCTHa6Sky41RmpS1VDN4hUJxVOJyC3Zt3wjAKy882Wd/fCyUVhNWymRJZU/tGT9CCKorD0HiMqBveAZ8ssF2Od0uqepph6b1TZUUQlDdKOUMgrGjRC765qSBvc4/g+/r4L2iKzzjJz4G0jLkDN7skiqR1WoGr1Aojkbqm73UVpcAsPajV2hq7Cm2HmHRaOsAW/vQxvd4BFUNgQuN7LZm2ttskCRn8LPH9z0mIzsf3DXgqsPeLlv9+RGibyaNvV2uJ/THJ770yMXTodHXzan3DL69Q5AYC/ExPR282ayRny8zaTxtUiNHzeAVCsVRybbdFbhdUsjc7Xbx7utP9zlG06C+eWgzeFu7VH80BYiZVFeWQmQ+ROYTFw1FAVR6rdYIMjPHQZucxXePw5s0aG3raVezPbAdb776Nx749lWUlDXy3mdy28JpXhobpAxC7xh8UytMGhd4rMm+uE1Hs5RYUDN4hUJxVLJxs8w9NFukVuEbL/+lTzgmJhJKa4Y2fmsbQQuNaqoPQ5IU+po1HsxBAudZuUVg7xuHDyQ6VtsoiAggu/jvv/6c99//kNt/3kpNE0zIhcaDL+L1eklOycBq7RKRsTsE8TFQmBXYnskT8wFoqfkckDP44a76DYRy8AqFImTaHIKSEungFy89j8SkNA7s28ruHUaP42KjobJuaEVPdU2BHS74UiRTzwNg4bTgY2QHyaSJtPZNlaxsgJioANdqcMGs93Bo40i0VnD94jU8/MPrALj8uns6jxNC0NQKC6ZqWCzBHLwM0TRW7yY2WrbrC/bkMJwoB69QKEKmoQVqq0oAGFc4iRXnXgPAGy//ucdxZpNUSwyWltgf1U2BHS5ARUVl5wx+8YzgY2TlFgbMpIm0yv6ujg5543G6BE22voqOdlsL7Xm/hJgpYN9K88dzePCbZ+JyObno8ju47NpvdB7b0CpTNTNTgqfh5OVmYTZbaGyoISNJipWNRhxeOXiFQhESHo9gywFBY52cwWflFHHOBTcC8N6b/6LD0XNV1WKG6sbBzeDdbjkbDiahu6siEcwxZCfUBWyl56d7Js2hqi4VSZNJQ9Ngd6n8ucUu1wt6p1pWVZZ3pmLesnwLuOvpcLRz8opLueOeX3Ye7/YIXC6YPaF/VUiz2UxGplwwSI6R71OVcvAKheJo4VCVoNkGdb4MmuzcIoomzKB44izsthZ2bt/Q4/i4aJkuORj8C6y9Ha6fwy2TAJhT1L+4e3ZuEbjrMXvrae/oKfCVlgQ7DoGtTdAYRLpg295mMMcQ4S3jqquu4Y57HuOSq+7i/gf+jtncJW/Z2AqT8yEupn8HD1BQUAD4G3+MjuiYcvAKhWJAHB2CjXsgNaGr32l2jux/OnWGbF+3f8/mHudERcgZsscT+iy+tZ8GSV6voNl0IgDL5vTfjM7fm1XzhWkOdgvTmE0aVgtsPyiorIfYAOGgnSUyjJISIWURLrnqLu645zEiInom57vdMC4jNE33qVPkzUnrkFo6o5FJoxy8QqEYkF2lAq8AE25qa8rQNE3mmwPjJ84G+jp4TdMQgH0ABcfu1DYHX2DdftCL15IGjoPMnZ7Z7zipadlYIyJxN28CesbhQSpf7q+QYZJABVUHaqQITk5ifdBrON2CyAgIohrch+nTpwLgaN4NqBi8QqE4CmhqFewogdREKRPg9XpJz8zrTBOcMHkOAPt2bw54/mAKnqqDZLQAvP+pTDuJtL9HZGQAr9wNk8lEVnZB50Jr90wauV8jJgranYGVI6tapMD8+Ozgd6dmG0zIC5yvH4jJkyfL86p9qZK+GbzLV1MwEigHr1AoguJyC9ZuF8RGy9BGVUXXAquf4omzACjZvw23y9XjfLMJmmyhhWhcbpnREhmkF+q6nTL2nWH9PKTxuouOlVT23Z8Up5Gf0Xe73SFo9WSB18mUwuA3ErcH8tJDb7k3ZcoUAOoPrwXkzczp7ODi01L5+o3zcfV674YD5eAVimOYirrhb5PnRwjBZ7sFrXZIjJWOrNIff8/tcvCxcQnk5BXjcjkpLdnVY4zoCKhrCu16rW2gEXiBdX+5oKopBtxNFKSGFtvIzi3szKQprQ7cZCPQtfYcBjCBfTPZ2YElgZ0uQUwkJMeHZAoAhYWFRERE0FD5OREWQUsbbNy8iw5HGy6nA6s1yJ0tDJSDVyiOUaobBB9+LsKW5g3G/nLB/nLZnchPp4PPKexx7PhJc+Q5vRdaI3tqwfRHsKbdXq/gsed9P9Q8TVZ2AH2CAGTlFIGnmWhzIx0uOBxiZe3OEt+L1k872+31pskXngmW7RMIi8VCUfFEACbnyj/a4y9nghbJ+MnzQx5nMCgHr1Acg3g8AmO3wOWG0urhn8Hb2gSf7pLOvbsTq6ooAbqyVACeeUdwKPoBsCSxb8+mHuNYzBpOd1dhUX8cqoboABGRV9fC9oMQaWqGku+RmZUf0u/gf8qI8cgerjtKQjqNHb4MGs1ukJwSeDHX44XctNCdu5+JE2Uc/vTx75OZDJWtmTDxCcZP1gc9ViiE7eB1XX9I1/VVuq7/Q9d1a699V+i6/r6u6x/qur4o3GspFArJoSpBix1y02Ff+fD1QfVT1yzQkA0rulPZK0Xy/Y2CP7wGpS1TYOJT7A2y0DpQJk1Tq6C8FhJ6NdiubRL84VX5usD7BHiaSc8KoujVC7+DFy3rgNAdvD9FMtFysEfOu58OpyA2ChLjQhuvO1OmSAdfX7GZB28GTbRD5nVUivMHP1gIhOXgdV2fDeQahrEU2AVc0m1fDnABcJphGKcYhvFJWJYqFApAOpjP98qcdItZw+2RjZyHk/I6iA6QzeJfZM3OLaKyXvDos3K72SQg7QvsrJvVd01A9FVw7M2eMkGEtW/I49cvypvD4hngqZHNtPubwdc2CuwOeS3/QrC98k0gNAdf2yRosFnA3URWUuDslpY2qWI5mPCMn+nT5EJracluxqU5YPcNALy7rYCKuuF/Egt3Br8YeNv3+k1gSbd9ZwEdwDu+2f0Q7ncKhaI3uw8L3J6u9nIxkbC3fPicg9crqKiDuF4Ovr3dTmNDDVZrBIkpOTzwN+l8T5oJ37pa2uLIeoCN23sGuyOsUN/POoGtTbC/TOamd+dghWDVFlkwddclUOvrxZoRxMHXNQliomVxFUBCYgoxsfF01K7GYpZNwv3OPxg7D/letBqkZwSO9bs9kNWP7kx/TOt08LvYv2czovYFkpsf4Yc3auQMIeQzEP2Xgw1MMuBPQGoGUrrtywTSgBXA7cCdwM+6n6zr+q3ArQB33nknK1asGLIhLpeL8vLyIZ8/XCg7lB0jaYcQYHLB7G4+LitONqw4XNZ/27lQ7fB4YUo2WHtFJ/ZWygKdnNxcXl1lY+eheLJTPDx8cy1JcYKn/vYZteaVPPq8g7dPqOjskJQRK7NjAl3O5XJRVVXBzHFSu6Y7f/w0AYjlwsV2xqdU0tLcQEREJFPGuTCZKnra7JHXiYuSKo1Wn2cbl5fH7t07KUxrZl91EtU19SyeFnhmbjW7+GRLOxANzR9ROC+JrLiKPselRUOHDcqHoAYZHy/vYuWluynf9w4Ap0zYyAUnVHa+P4P9jOTm5gbdF66DbwL8dVyJQEOvfR8YhiF0XX8P+G7vkw3DeAp4yvdjWFOQ8vLyfn/R0ULZoewYSTtqGgVbdwmyU3vFxusFC6dCcW5oD+X92bG/3MuO8r7qiNv2yjZ96VkT+c8a6ai+dpkZB9lU2WDJuF/x0oF5VDTlsG4vjM+V53u9gtomuPRUrU9RUFlZORv2ZJOa0FVwtGPLOsorq3hprYxLn3ZCLO+tkZ2Q0jPHUdPWM7Ol2SYQAlYs0IiN1nhtjReLBaIiNNKyJ7F7905SomuBJNbsTKU4P/Bd0OKp4p2N0YAXqv9GdNJXqLL1nMU32wUp8TBjytCCH7m5uaSmZ1NfW8lrr8verrkTlrKvNpsLJssxh/OzGm6IZi1wuu/1mcCabvvWAHN8r+cAB8K8lkJx3HO4JnApf2Is7CkbnmuU1wauJq30xd+TsuZQUSdDQ/Mnde2fPHUaNH8EwPaSru0mk4YQgRdaHU75VOJ37kIIvnfPxfzkl69id2gUZ9rZtf6PfPfrFwAw74Tlned6vILKehm7Xz5fOneAguwuTRt/Omccu/rY1WlDexv//NNP+MNLrXi8kGr6HJzlAVMk2xyQ379KwoAUj5dhmi0bPwZg0tSRSZGEMB28YRibgGpd11cB04EXdV1/0rdvC3BY1/UPgRuBX4dnqkJxfOP1CkoqA2dvxERpNLbKhhzh4PEEF+CqLJNzNE+cXGqbOb5nmf+EyXOgVeZSBFrQtPeSLKhrErR3SHVHP81NdTTUVUH2rQAcWHUnv3jwNlwuJxde9mW+8s3HAbnQXFUPM4phha6RENtlR2ayXHiGrnROk209IHPcey8C/+qhO/nTb7/Hv96X0guxNrlynJbRdxataZCaEF6sfOLErrui2WKheMKssMbrj3BDNBiGcW+vTbd123d/uOMrFApJQws4XTJzJhiNrcG1XEKh2e6L8wcI5peV7gOghekAzJ7Qc39B0VTMdgMPsO2AF+gKqmuaDG9k+UJLLrfgk+2C8Wk92+4dLtkNcfMg/gSsWhvu+hewRERy93ee4Kzzru88rqVNXn9Gcd85anK8XIvwekVnOmdT1UZSUuR7WFYL43wSBe+/9W/efOWvkHQaLks+idHtOPb9B4D09J4O3uEUxEWFJg3cH5MnT+l8XTxhJhGRUbg7whoyKKrQSaE4imhoEewu9QbcV1EnsPQzJYu0QnmYqXZ1TQItiFcoP7wXgLJmGZeePb7nfqs1gnHpHeBpo7zORHM3DZroSDhYIdcQvF7B9oOCNgeYel2r9NBuyJKz9wuWxfCPFzbx9//s7OHcQWaypASZSVstGunJMpziz4WvrjjI9EK53/90UVl+kEd//CUAEqZ8G4CIxmdoqJWxrt4z+NY2Gf4Jl6lTuxz8SIZnQDl4hSIsHB2CXYcCO+ShUNMo2HagqwORHyEEB4KEZ/zEx0BZTXjNnMvqAodnPG43FeUHwJpFdVMk0ZEwKUC9UVHxZLB9CvQM0yTEarR1wLuG4KVVgm0HIT2p7/mHDu6F9MsAWLkYcvMnkNVLFgHkE0EgO/0UZMqYv//cqooSpuSLTrs8Hg8P3n81dlsLC0/5IvbIU0C4qd38Q9xuFwmJKURGRfcY0+2B7CGmR3Zn2tTJna8nTxuZClY/ysErFGFwuEaw/WB4TrU7VQ0yTNJbX6bJBu0dEBGkqTPImavT1X/TjEC43YKGFkFJpZeq+sD66FUVJXjcbhIKLgZgRlHgUFFB8VTwVY72XtBMSZC53nExUgIhUBhoV4kHLImkxLZSkBX8dxWi/1BUaoLsCRsdE0dySgYul5OcBJmfv+0AbNu0lh1b15GSlktH4e/xeDUKE3eAU6ZFpmX0XGBtbBUkxg1OXCwYE8bnY42Qxk+ZviD8AftBOXiFYogIIdhdCm0d0vmGi9crqGmUre4O1/S8YZTXCswmeOm53/Hgd66hvT14EnZ98+BuNut3Ct7aIFi/AxJigsTffeEZa/qZAMyZ0OcQAArHT+908MEqRyMsWtAbVWmTDP/MLAyuke50CeKi+8oodCchFiIssmeqX85Y2D4jKgIOVMKf344HNJLnPcGm/VaS4uDRO61ERErHm94tPGNrk2mYJ8/WAmrHD5bICDOXXvd9zjzvhk7bRgrl4BWKEPB6BXVNPaV5G1rkYp/VPLimFsGwtYPXK2eJByq6wjRtDvmUkJIAf3vy/3jvjWf4zcN3BRwjJip01UToqlrNSJZ578EWEMtKpYPviJQx494LrH4Ki6Z1ZtLsPDS4dn1ul4tmTXaHOmlO8FhUu1M2H+kPk0kjL0M+zUyYJMcs3f8Z918j/15bqmbDrPfY334OJhN8/waYOj6Js86/AYBMX7cqh1Ngd8Cp87rSMIeDa266j69/508BtW6GE+XgFYoBaLYJPvhc8MZ6QVm3mfXBSiGbU2gDa62EQmubrPazWjRc7q4wzY4SgUkDW0sdTY21ALz+0p95/61n+4wRGw2V9aE7VrtDVoGaByiBLS/dC9YMbJ5soiJko+lA5I6bgEU0Qft+HM6+nZT6o+TQQYhfBMLLCdODN9pwdEBaCG3y8tI1HB0w3ufg9+/ezNLZGj+9DTTRBoknA3Db+TB3ovz9b7nzJ1xz0/1cfp1MDqxvhqWzITl+eGUE4qJk9fFIoxy8QhEEr1ewo8TL6+sErW2QkQSf7AB7u8DpEhyogKQ4qZUSalOL/qht7CpislhkmKapVbDnsJyxlhyQ7ef8YYRHf3xbp7qjH7OvqKjJFto1/TeVgSgr3dfpEIPF3wEsVit5BZOgNXAcvj/WfF4Hpihi2N8jr703QtDvfj8pCYDW1VJw/16pdDlnghfLznOgbQ/nnNDBpad0nRMXn8RNdzxITl4xXq/AYpZ59cNNXAw4lYNXKI4MLrdg/Q6p2piRJNu7RUZoWEzw6U5ZQenxykKf6Ij+xbRCpbJbP9LEWBmm2bRXEB0pQw4l+2V3ouVnXsFJp16I3dbCT753XZ8FXpNJZuOEQl2T6NRt6Y+ywwcg9+sAzJ3Y/7GFxdOhRYZpBuPgN+2V7ig3vnTAY2OjBzyE6EiNxDhIy56ENSKSirID2FqbqSjbj6t+FRnlZ3Dv1VFBVSE7XJAUH7hna7jEx6gZvEJxRGhzyJBMaTXkpPb8gqckaJTXwed7Id7nZCKsMhYfjia7yy1otsunAfBlxLilbK8/PHDIN4MvGj+de7//R+Lik9i2aU1nEw4/8TFwsCq061Y3Bs6a6WGby0mV+QpIWEh6kuD8k/o/vrBbJk1nd6QQOFgnNQCmjQueBiSEAG1gm/0UZEK70ypvOsCBvVs4sHcLwIAVpO0dgVM5h4PoSC088a0QUQ5eoeiGxyNYvUWGZDJTtICzu8wUaHd0VTRqmobGwE0t+qO1DRA9NcaT4iCt22KiP0RTWDydhMQUps5YCMDeXT2bUEdHajTbBl4X8Hhku79AXZS6s+azCsQ4qRX4ras14gZYbCwcPx3atqIJF2W1ockntLYJmt354HVywszgC6wdLvl0E+qsOjNZpktOmCzj8Pv2bGK/38FPnNnvuU4XpCUO/+wdgjcWH26Ug1courH7sKC+uX+9EYtZI7uXdrc3iJhWqHSv+vQTHSnDQn78M/iC4mkATJwyB4B9uz/vc65Jg6r6/h2rP/7eX+MKh1Pw21dTQbOQ4fkv8yYN7PAKiqeBcGN2Snnh/X0Vd/uwaS+gmaD1EyaMDx4Dcjhlo5NQSYqTUsXjJ86RtuzZzIG9WwEYP2ngFMW4EEJBQyEyQto10igHr1D4aGwVbNrbs8l0qFjM8vyhUt0gG1QHo7mxjsaGGqJj4sjwtaybMHkuAHt3bepzfHzMwI61tU0uWPbHk69AnS0O2nawMHdV/wf7yBs3EYvFirtxAwD7gqhcrlv9OrfcdDVbN61hzRZZSGCxrQoo8uXHEUKKZHcsFo3sVMgp9M3gd2/uCtEMkIMu6L9aNhwirWHqo4dI2GJjCsVYwO0WrNsuC2iGsqgWHQF1zUO/fnVj/5WZJd1m7/4Z98Qp0sEHmsHHRGlU1gta2wTxQXLba5pEv6GCT7YJXloFGm7ErmvJP/X64Ad3w59JU2LfJO0L0LvizVf/xsM/uhmvx8PGzVfgmiuFzLKjtmLqLVDTHUHQ3ycY+ZmwL0868wN7t+B2u7BGRDIuf1LQc5xuQUwkPZ6ghhOrRcot9JakGG7UDF6hALaXCJpsoaXfBSIqcuipku0dgrYBZAhKDsgMmkJfeAbg87LxWIvup662gob66j7nDBSmqW4IflNpaBH8/F/ydY77z2DfRF5+4NCJxyM4UCFo7+i6VkHxNLBtAvo6+Of++SgP/eCLeD0exk+YRFvchbi8EdD0IRPyBi78GeysOiVBIyY2kezcItxuFyDXMcz9KLf1ljEebjRNIz0JWoehQK4/lINXHPeUVnnZun9ooRk/FrOGyyPFxwZLa9vA8dhDnQus0sFv2id49FkNV94DkHkD+3b1ncX3F6YRQvYuDTSDF0Lw82dkLv3cieA6KDttBnPwtc1QlC01dPwUFU8DuwyFHKyQkgEgwzK/f/QeAO645zFe+M+bRBV/U55U+TvGFQSfVXu9Ak0beFG4N/Ex8pziibM7t40fIDzT4YT0QYSChsKsYg1biHUIQ0U5eMVxTVOrYO126dwHquYMhaEstDa2ij6yub0p2e9z8OOn43QJHu1exFr8GBu39m2Y5m8CYguQTeP1CWAGWmD9fC+s3ykd4z2XdVBbXYrJbCYru7DPsbZ2qZGuT5EFVv6c/ILiaeBpJZJKXB4o9T1gbPr0AwAuv/YbXHLVXXy2Lw6HlofFWwN1LzFt1olB34O2Dlm8FEgrpz80TaMwC3IKuhz8QBk0Xi8kxo3sMmhakkZ+JjS1jtw1lINXHLd0OAUfbxbERkGENfQv87rVr7Njy7o+24V3aJIF1Q0Dz0pLDvpi8EXTePodqTeTnwkT00rBksCbu04OGM81abC3THC4WlBZJ6hplMqRLk/wa62WE2/OXwIdrfsRQjbOsFh7Tve9XhnWWjhdIz5GIye1S8mycLzMO9dssnrUH6Y5fGgPAFNnyhTPf74fC8C156by1DMbOGHxWQFtEkLQbIPpRf2/T8HISdcYV9zdwR+5DJruzBqv0eEaufGVg1cct1TWC2ztg1u0e+f1p/n2V1dy/9fOx+ufBvuIipSLpYNBCEFNU/+FO81N9TTWVxMdE0cb+Tzzrtz+jcvh9vNbwVlFs5jGCx/2PTclAXYfhjVbBR9tFry/UfD2BtlsIy4msD1rZBYhSWItLz/3OyBweKauGabmQ3qSfP8m5Gm0+Z5g/Jk0jrrVAOz1ZdIcPiRTJ8cVTKaiTvDRlkisZjj/JDMTp8wNmrJZ3wKFWfRpNh4qKfFdqZLQf4qkxyufqMLpjBUqiXEak/NHLmVSZdEojluC9R4Nxu4dBo88cAsge4dWVZSQk1fcuT8hRoYi9Mki5Ewcezu43f1n7vglCgqKpvLrF2XjiZWL5ezP7ZqM+cBleKb8h7++KbhoWU8ZXatFIyul75hWC30KlkoO7OD5lz+ipulL0FHOb3+wDH+EOFBIw+OBKQVdY0iNd+kgLVYr+UVTOVAnZ/D7y2VFbHnZfjRNI3fcBH73Cgihceo8KQURDKdb4PXC3EmBC89CwWzWmDcrn8WnXkpsdCRJyelBj3U45Y1xqNcaLNMLtYHzVYeIcvCKo5r2Dpm+6PJImVeLCbzIGGlOGkzOH9pDqBCyuXRCbGjH19dW8t27L8LZ4cBkNuP1eNi/Z3MPB282a7g9gobW0EvcQ2nOccgXnknKP491+6QOy23nyX0Wq5Xi1MPstW+nnensOiSbYQ+WxoYabrliLu7c70A+mJvfYNaCU8kvnEzh+OmsOOeaHsd3OAXxMfSQ0LVaNAqyBOW10kEWT5jJgUMy5r6vHCoOH8Dr8ZCdW0RtSxT/+wRMmuCK0/p3pLWNsHCaXFMIh4JME3fe/+8BnwLaHDAuuP8fdmKjNU6YNjI3ExWiURzVbN4rm2B4PHIBs8kOrXb5euPuocv02toHbmDdnQfuv4q6mnJmzjmJi6/4CgD7dm/qc5zVAuU1odtU1yIYSBLcP4OvtlwKwAVLejZ+njhlDjS9B8Bne0K+dA/27two88Oz5DV+dP/1PPrku3zt27/lwsu+TGxcz/LR1na5BtCbouyumHLxxBngrCDC1EprG2zdeQiQ4Zk//g88XrjopHaKsoP/DZptgvRkKM4J3wGmJspQyEC5524P5KaPzux9pFEOXnHUUlnnZX+FfPSPjpQaKPExsilFXLRGRARsPzA0B99sCz097fChPWz+7CNi4xL54cPPM3XGCQDs27O5z7GJsbJjUKgFLP3lovvZs+tziCqmpGkiFjNctKzn/olT5nU5+N0hXbYPB/ZthchCXBFTiI2CBVP7F0txu6VWT29SE7o6KRVNkGGdSJc0auteqWEcm72CjzZJkbY7zw+eQuLxyGYbJ0zRBp05E4gIq6xq7a85S3uHICHGJzU8BlAOXnFU4nQJ1u/sPxaaEi+daUPL4J18VUP/VZzd+WTVawCcuPRcUlIzGT/R30BiU59j/X1RA+mxCyFwuugsCPJ4pO5NdETwa7tcTvbs/Axyv45A43S9rwDWxMlzofkjEG52HAJ7COJevTm4fzukng/ACVP7b4cnhEAgdV56YzZr5KVLJ+rPNe+ol9LBByrlo8reDtlU+5KTISsleMPymiYZbkoaxmYbhdky3TIYTTaYWjB68feRRjl4xVHJjhJBh1PO3IOhaRoxUbB5nxh00+uKutDT4D75WDr4xctWApBXMInIqGiqq0ppbembNmM2ywyd7ni9gk17pUrl+u0Cr1dm8Aj6z+vev2czLm8cWtYXAbjs1L7HFE+ahUnYoXUDXi9s2Rfa79Wdg/u2QeoFACzpP0VcVnkmBi/jz0nT5DEZucTFJ+FskCml+9rPg5OclDXnkBADV54W/Bp2h0xfnZI/vI42Palnvn5vTJq0f6wQtoPXdf0hXddX6br+D13X+8yJdF3/lq7rRrjXURw/tHcIdh4KrVQ8KU6jog5qBpGe2OYQ2NtDy31vbWlky+er0JJPxZO4EiEEZrO5M/ywP0CYJiFGZo34nYjb1zxk5yEZlqish20HRUhiXzu3rofcryFM0SycSsB4dXR0rNQ7b5T5k4ONw7vdHg60zofEpVjMgoXT+j/e1g55/SxCJsfLWLemaRRPmAlN7xMX1SHVIjUzZpPg1vMJ2v8VZPHPidO1fp8khkJMlEZRFjQEiAx5PDIVM6qfScWxRlgOXtf12UCuYRhLgV3AJb32xwMDzAcUip6UVskepKFWlibFw7odso1eKDTbpNBTKGxY+yZeSw5Mf4Of/CuWnz0tM0j8jZwDLbRGRsh88Mp62FPq5Y31gkPVkJ0q92ekwNb9sgCpe5io2SZ44G+CNVu7fo/Vn7fAuPsAuGpFcDunzFgwpDh8s13w7d+34Sl+AjQzF540sN67x9uV+x6I2GhZE+B0C4omzABXDefm/B+sjiZ6YypvPaJx7qLg57vcgthoyBiBVnkAM4plGK1331qvgPG5Y8e5Q/gz+MXA277XbwJLeu2/C/hNmNdQHEd4PIKdpXIWGCqxUbK58ub9oTn42iZBPzpTPVj78WuQ902EJj3x25/CVx+H9AL5Ud+/Z0vA8yxm+GiTbPlnMUNWt+YhZpNGaqKc5XdfYH19Pby/Eb7/J3htraCuWbDJfgtoZs6eV8Ws8cGdz5TpJ0Dresw4KKmC+ubQ3otf/BuMfXHgbqHY+yhfvqj/471eefMNFH/3o2m+OHxbV/78qveeB+GkoHDigDUCbQ7IDEMXaCDiYjSmF/VU/7Q7BGbT4KSIjwXCdfDJgL8bZTPQWVKh63oiMNMwjE/CvIbiOKKmUX7BByMdADLvfE+pzLwJhMcDFXWCijrB4drQCpzcLhfrNmyCrJvQEHzvejkL33MY/vn51TDhCXbsD6wRnJakkZ2qkZmiBVxHiIrQKM6R//v5bJf83yvgF8/Cl3/hwWtOQ2v5kK9d2X9i9tQZJ4BwYWmT8e6NIYRpHE7Buh0AAjadwAkTagZcXLQ7ZEcrywChk+xUmS7pD2VVlEmtnHEFkwe0q72DgMVZw8nkcRpmk3waq2mU6z2x0WNncdVPuIVOTYA/oSgRaOi272vAr/s7Wdf1W4FbAe68805WrOjnGXQAXC4X5eUBhKdHGWVHeHa0tsHsfDAPYeqRFQ8NdeBx9AzBCAFOl4vmWimtWJAsZ9UDsWH9WtqSbgFTJGfq7Vy1rImz52n84G+JvLMxGrJvoZRbePbtRu66ODTdV6vZRVZcX4lHhxO2HsgCNL5yYSu/eTmO2mYzdFQwK+Jh8lP6d4yps5KJjIyko/IVGH8K2w+0ce2pwQXqrWYXh8sbcLlTSDDto6V9L3Om5wa0rcd1oqQjHOhP6hUwIxccKak9tk+bnNPjGoHej9QoMLsHvka4zCuSTxlFaVIqwu0+Nr8zubnBG6SE6+DXAncDfwfOBNZ02zcBWKTrOsBEXde/YxjGj7ufbBjGU8BTvh/DqtUtLy/v9xcdLZQdQ7ejxS74aIcgOzXwTMpuayEqKqZfHe/qBsGMYphe1HWHOFztpb21knpHzqBsf+H17ZB1LwCXLI+myibFW+6/Hq45S/Dlbz2DPeEq/vxWAhctT+pXz91PVlwFVba+dny6S+B0w8Q8uPjUBJKTBE8+e5Dqz69kysUnBzynNxOmzGf7vg/leLtjqLIFLtP1er1Eu3fw9uf5ckPT+wCkjls24HUq6wXnLtJC0s3/fLWXSGs2mdkFVFfKIqfkbL3HNXq/H0IIqhvhkpO1AZ8SwsXjkY3OU3ztGY/F78xAhBWiMQxjE1Ct6/oqYDrwoq7rT/r2XWsYxlmGYZwF7O3t3BWK7rjcgr2HBRZzYOd+6MBOLj8nnwe+c3W/4yQnwK5DMnPFz56ywT8RdHR08PbWIjBHM3NcfZ/Ft/xMDT39ZbBvwek2sf3g4MbvjeELz+i+ifqpczXGtdwOtk+ZNjO4hG53pk5fAPatWEwdVNQHrw/4/WP3cNLiOXz4mYyutpY+i8lkIr9wSr/jO5yC+GgpIxwK+Rky46Z4QleexUAhGr8OzEg7d5A5+yn99N4dC4StRWMYxr29Nt0W4Bg93OsoxiYtdsHBCsHuwzJOHqzpxlO//jZ2WwvrV7+Ox+PBHKS+P8Ki4XQLqhoEeRkatjZBTQPkDqIy0esV3P+rvXQkXwvCwx2XpQY8bsKk2Xz0xtsQOwtjl2yOMVQ6HfwUvw1edm5bD9CvRnp3psw4AfAS691NM7PYUQIn9RJNrKo4xH+f/Q1eSw51tgQiLS46mtaQVzCRiMj+FyZa7DCzOPQ4dVaqxq5SmUnzyarX5OJrkKYhfuwOmJwf0vCKEFCFToojQmOrYO1WL//7RLCnTM7astO0gBkWWz9fzdqPXgHA0W6n7FD/K4jx0eCTPaGiLnAzDbfLxSsvPMEbL/+F7Zs/6SxYcrkFP31asLF8Ong7+MLctUwOUmwzfvIcaHwHgE93hfiLB6C20cuBStldaYZPu6y0ZBd2WwvpmXmkpYcWWpoyXUoodNTKdMntJX2P+eeffozH7caScS4Artq3QLh7zLKD4fFKpx0qiXEy7urPpMnKKRzwJuJyQdoYn1WPJkpNUjEge0q9OJwwa8LwzAd2H/Ji7JEl+lkp/c8IhRA88UvZ0s1sseBxu9mzayMFxVODnhMXo1FRJ2hsFewqlY6mNx+88xyP/eTL8gdLMhT8gLTii2nx5OJ0aeCxkVx9O7df+9eg15k8dT60rAZvO3vLomlsFSQPsqy+vraS6297AMb9ltnju/qy+huKhBqeAcjJKyYhMYWW6vcg/et9wkZVFSW8+epfMZlMzF/xXdbvA2/9GwAU+Rp0BMPpFkRH9p8e2ZvoSI0Ii2DWvFPJyBrHqWdcNvBJWugKn4qBUTN4Rb+UVnnZsBO2H5ThlHCxt8vc8Mxkubg10OP+qvf/y46t60hOyeDSq78OILVZBiDCClv2SbGqqAAl9Qf3ya4WRRNmEDfv35DzFeocuThdEOE5CFtXcO0li/pd0E1JyyIvbxw0rwKGJvS1bfMa2iN8TrxJlpTUVB3mr0/+EICZc08KeSxN05g8bQG0ypvD7sPyicSPf/Z+6lnXsrMiS57TJJ9AigaYwTfboChr8GmEqYkQHZ/Js68f4pav/LTfY90eWfg1Go02jheUg1cEpaZRsHqrjItHRkjNl3DZvE8WGYUi0+txu/njb+4H4Npbvsfs+ScDsDdAg+neJMdBaU3wdMiyUinYcvJFj2KLPB2r2Y1px0pYm4Jz7QQSzQc4+/wvDnidWfOWQqN0zMYQHHxleQkknw7Ahv99gzde/gvfvPNsaqvLmDFnCSsvumVQ402ZsQDcjcRba3C6ZDGVvM5B3nz1b5hMJpas/BEtbSZy0+Drd9/LwpPOYcGiM/odd6gSuqmJcuE0FPw59mMtF/1Iohy8IiDNNsGHnwuS42XRUXK8dJi1TUN38jWNgoOVUlI2FN545S8cPrSH3HETOO/iW5k0ZR4Ae3dt7NMurzdms0ZyXHDZ17JSGcf/6ICcPV9xuoWf/vArRFik1ODFV36FqOiB00VmzVvW5eB3BRexCsbuQx0QkY3ZUw1tO/j5/93EoQM7KCiexo8fe5nIqME1Bp3qi8Nb2qT80zZfmOaVF57A43Zz2tlXU9KQB8CCqXDeF27lZ4+/RnRM8NiL2yOwWgZXXewnOU7D3U//1+60O0a+wOl4Qzl4RR/aHIIPN8mYq78KU9M0EmJg424RstZ5dzwewac7BYlxoc3QnB0O/vbUjwC48cs/wmK1kpKWRVp6Dm32VsoPDyyZGBejBdSz8Xq9lJXuhbTLOFgTS3I8XLEcTlhyFo//6WNu+cpPuOK63slhgZk9bxm0bUdzVVHfAgcrQzqtk3114+Q4RQ5OO/sqANIz8/j5b94gIXHw3m767MVomkbLYamAuaNEbt9kfAjAaWdfxxsyOYdF/YTdPV5Z4VlZL6iqh4LM/tsKBiM2mpAqXOqaBdFRUtJBMXyoRVYFTpecoWmahsstWL1V4PFAYq9shvgYjfI6wbaDgin5g5MTOFgpaLHLTJlQeOn531FXU874SbM5ZUXX4tykqfOpq61g766NjCuYFPL1u1NTdRiXC0zjH8IL3HhOVzu4ydN0Jk8LPas3K6eQzKx8qhvegszrMXZB8SDqqWpccyECFs0QnH/KH9EXns68E04jI2tc0HMq60Vnpa7ZJJ+I/JLDCYkpjJ80m32H5brAjhJos7eyZ9dGzBYLVe4l1DbBxFwX+uTggvhNrZCbDgWZGhHWwS2udic2amD/XlkvyEyGRTMCyzooho6awR9HeDx9ddObbYKXVgn+85Fg/XYv67YLGlsIWgCSlSydxqtrBfvKvCHN5h0dcmE1NSk0O+22Fp7+s1yQu+mOBzF1y3OcOGUuAHt2DLzQGozyw3sh/TK8EfkUZcPZoSeqBESGaaRU72Di8DWNAmfEDPDYOXVBMhGRUZx1/g39One/2Ndp8zVOmqmRnwmVDT07SM2ZfzK07cRqaqe6Edau24jX42HilAW88HEkALecY+tXh97pggm5GnkZGhnJ2qC1gfxEWDWiI3su9vpxuQUuN0zKg5PnKOc+EigHfxyxfodg+8GuL5rXK9iwUxBhlamElQ1Q1RC82AjkY3pWikZ8NKzbAdtLBnbwO0oEQhBSKT/AC08/RktTPTPmLOHEk84BpCjUCx8KqkyXQdIZbN819NLRw4f2QLLUPTp3UeiyxMGYNW9pZ7n/1gOBnVkg3tsg2z6ZWz8kNSUppHPanXLhMj1JOt8TpmpML5QNTDw+Jz9nwamAINIpM4U+3iBXWlMmf4myWimYdvYCR9BreL2ydmC42talxvddaLW1C+qaZNOVeZMD1z8owkc5+KOYilov1Q39LyaGisstOFwDm/bCwQo55oEKQW2TbJphMWskxWmkJw2cughd/S237IO6fhZePV7YVRq6DKsQgldefBKQs3dN09hXLrjtEfjtf+Gt7VNh5htsi3qev7w+tAXfwyV7IGk5APPCqD71M2veMnBVYXLsxuGUUgmhsGqLXH1MNW0I+VptvkwTP5qmMXuCxpyJUFXvs2fuUjRNo61KLv5+Vj4T4hdR4jwPgMuX9y+2ZmuXN4HharaRmtTTwbfYBW43nLlQhn9U1szIoRz8UUqHU/DJdli/o29jgqHQ0AJer2w2sXYbHKjw8tluKbM7VMwmjaR4WLNN0OHsa6MQgjYHREeGPktuqKuioa6K2LhEZs9bxn9XCb78CzhUDfmZcMFJYG77FID/fuwZ0nuzt0xmrsRFOijMHvTpfRhXMInk1Ey8DTKnfOPegc+xtQt2l8eD8FCUHOIdAXnDTO0VPtM0jRnFJpLifHoxCclMmDwHb9W/iDC7aTPPgDmrqWhKJDkezl7Y/zXsDijICtmkAUnqlUljd8DimWNfB+ZoQDn4o5QdJQKPV86mSqvDd/AVdTIUE2HRSEmA1VvAagl/lhYbpdHhhM/39ozvCyHYekDGWAdT3blvzyYAxk+azae74PEXwOWB8xbDk/fA1y7VmB/9I2jbQ2u7ma0HBm9zaYP0XtMLOoZl9qhpmpzFN30AwOchOPgNO8ErTNC8inE5g8iWEcF7yeZnSbllQNYMtO9ifMvlUPoTTF4pHXzFaaEtjve+iYRDbFSXfLPTJbOz0sZYY42jFeXgj0IaW2X/ztREmSHx+d7Q47qBEEJQUgXxvhLw6EiN3PTgC6mDJT1JFtSs3y5wdEg7d5cKtu6XN5HB4O9xWjhxAY8+J7fddC7cfbnWWZE6eeo8qP8PAB/3bYnaLy6Xk2Zku73Fs0KURQyB2XOXQvNHgJcdB+VMujcdTsHbn0Xx7PuCf7/n21j/Mpk5hSFdw+uV2TPBHHxmsobHN1Oeo58CwM6NL8Gh77Ey78f87m649JT+r+FwChJi+u+XOlhio+hsdN1kk5LI/S3wKoYP5eCPMoQQfLZbdpQ3mzQiI2RnnAPlQ3fwLXYZA+2+yBnuwmJ3NE0jJw0O18D/1gk27/Vi7Bpa0cq+3dJjl5uup7pBOoMrT+t5zORpOtT9F4BVWxhUXn754YOQsAyABdOCpwkOlmmzTgR3I1bnTlwe+ujAeDyCr/0G7vpdMk+8DHvLAOGB+pfJzi0K6RoO3wJrMOeYHC9nyl6vYPa8ZT2eTubpJzK1YOD1ldY2hiVs1R2LRSMuGlxuWRE7LkM599FCOfijjMp6qG6AxLiuL0FaImw5QOfseLDUNsnUupFE0zTSkzViIqWKYVbq0Apj9u3ZBPEL2Vg2DZMJ7r2y7zjzFiwn0r0DHKXUNctF3FD5dGsNWJOJEJVkD0IZcSCKJ87Cao3AVf060Ldl3nMfyMXXlDgnFy+DOy6CrJqroeMQWdmFIV2jrQMykoLvt1o0MpLlQmxcfBITJs/t3Ddr7tKQruF2j0yxUWqi7IGalkhIzUIUw4Ny8D5kTm74se5w2VUq+qjpWS0aXi/sKRuafSVVvorCUSA6UiMnTQtJa6Y37e12Dh/aCxN/j0Dj8lNhYl7fcaJj4lhyygVQL2fxgwnTbNwj38Ps2DA7dPTCao2QDrVZxuG7L7Qamw7xx1ddADStv5AVUwy+cDI0lspq08zsgpCu4XJDamL/72t+ply3AZijS+2egqKpJKdkDDh+e4fAGkZRU3+kJcjiKaX1ProoB+9jz2HBmi1iWDJWhoqtTVDdEDjGmpYoH/vt7YOzr8MpUyFDaTLdHZfLia21GVtrM+3t9sGdPEQO7tsGKRdA7GzSk+D6s4Ife9qZV0CdjMOv2hy6Bsy+atm8Y3JOywBHDp4pMxZA82o0POwplZkyr7/0F+79ZQlerFD9N7wNb/HfZ39LU2MtHY524hOSiYsPbcVRY+BuSqkJmjwQOGXFZZjM5gFleoUQ1DbJjKclM4b25DUQCbEa6UlKimC0UQ7eR10z7K+ALfv7VnuOFodrZCglUJzUbNawmGHnocHZVl4rjx9MtkjpwV1ccGoa552czHknJ3POknheeOZXg7ruUNi7axPkS/XIK0+DyAAyv34WLD6TOHaCs5qK+i7VxP7YekBQ75SJ7ydMixwOk3swdfoJ4LUTzx68Ah78Ozz+xgxIXEaE1sz3b81D0zQ+ePvZTsnjrGFaYPWTEAtWsxQImzZzIa98UM+1t3yv33OqGiAnFc5ZpJGdNjIuITEOZk/o/2+qGH6Ug/fR0ALjMuUs+UDF6Dt4r1e2retPsS81AfYclvICoeB0+SQCBlmR+M7r/6S9zYY1IpKYWGnQM3/+KU5nx+AGGiSfbHND3DxirDbOGUA+wGqN4JTTL4b6lwB4K0CtkNPZwYY1b/LYT7/MVV+8j6//sgWhWaHit0ydXDho+6obBHXNgvaOwJMA2TIP3LUyDr9+B3RE6SBc3H99HKcuP52TTjoZl7ODvz0phdRCjb/7e5UOlH1iMmmMy+xKl4yNS+gh9dAbj0/6YOG0kZUKiI7UmJSv3M1oo95xZBjDn2WSmSJL8Ndv97KzxEtZTfhhm9omMWBopa4Z2jv6z1E2mTSiIuRTRijsLRO4PYMTBQNY+7GMDT/46Eu89nETxRNn0dhQwwdvPzuocQJRUunkO4/vZefBnrXrQgi21MmY8WkzKkOa6Z129lVQ+RQAr6yVioR+XvzX41y4PJ37vnIOr7z0Xz53/h8eLQHqXyWp6WdkZg0uGGx3CBJjpW4KQHld39TV3HETiItPom3vj7ju9GaWFbwD285jcew3OXmuzBe94qrrADr7rWbm9Iy/t7YJKuv6fubaOmSTlFDITdNC1mC3tUFexug0uVaMPsrBI788/o+31SJjhVUNUkv7vc8Eh6qG7uC9XsHHmwSvrBEYu7y0tgUe60C57GYzEMnxUFothar6vy5s3T/4gpKqikMc2LuF6Jg45uinoGkal1x1FwAvPvOrsMJXpdWC2x9uZ+3+CdzxS43n3u+SHt6wU9BumQ6uWq4+O7T8yllzl5IWWwt1L+J0wdOykBSv18s//vAg7W02iifNJuPUTyCqiHEpzTx4Wwx/eGZDv52aAtFih0njZNvCs080sWg6VDf2jP2bTCamTF8AHhsTYj+geedPofF1Tjul63Fk2cnLSc/M6/y5d4jG1gbFuVIXyJ9L3+aQnakGWmD1kxTXVVg0EG0dUjFSMTY57hx8fbNg64Ge+i72dro8PHImn+jTZclMkQJSQ53Ft7bJSsyMZJnN8tpawd7D3h6OoalVFiKFkr2gaVIeYP0OgbufrJ92J5jNg18w+2SVnL3rJ55BRISMU5921pUkJaezd9fnbP189aDG83O4RvC1X3txeBLAcRCBhd+/DF/6BVz3Y8G3npR2xjT9iczMtJDGNJlMLD/zcjj0Q8DLa2uhqkGwe4dBc1MdWTmF3Py9jdS0F5Ca4OFXdyeyZOnpITex9uP/W3WXOi7O0SjKgvrmnsf6pYY//eQttm5ajdli4YTFXavFFouFlRd3dWnq7uDdHpnFMn+SxqlzZZu8Sl/T8GWzQq8riImCCMvAxXFCCBCh6wQpjj2OKwfv6BCs3iLYWdLTYTfaBOYg70RUhIbdITWrh0JDi/wSmU0aaYny6WD9TumgbW2CTXu9vL5Olm+HWt0XG6Vha4fdhwPb1NAi6HAOPvYO8IkvPLN42UpAOoEWRyQrL74VkKGPwWJrE9z9G2hsNUHTB2ib5sL287HSzN4yWSBlMXmg7kWmp20c1NjLz7wS2nYQ0fRf3B74x1uwfrWMgS9YfBZ/f1Med9NZ9kE3xPbT2iYXIbvHqDVNY/5kDZNJzrD9+OPwb77yV7weD7PmLCUuPqnHeOdceBMms1T76p4i2WSD8TkyXJKbbuLcRRrnLNI4a6GJohxTyDdrTdPISpWz8/5o74CURJRM7xhmzDp4t1twsMLb2ShaCIGxS2qjeL3Q0tZ1bEMLREcEHyshVi6+DiU8UVbbs4mwxayRmwaHquCVNYI9h6U6YPfCplDISJJKjr0bYbvdgk+2yRvWYMvB29tsbDI+QNM0Fp50DrY2wYN/h0u/D1Wx92GxWFn9wX+pqigZ1LifbJdrDKb2rbD9fL79g98R2fY+rnWTueGUvTzxDbi0+P9g52VMnjx5UGNPmjqP3HETcO69H5Pm5c0N8NF6mYSeMuF6dpXK/qyXn9I2wEjBsbfDhAD5+FGRGifN0mhs7drmb5nncskg+CLfjbI7aek53HbXQ5x9wRcp7tbs2uWG/G7hkrgYbdCfCz/ZKbIFXn+0tslG2oqxy5hw8LY26bj9IQtHh+DjzbJh9P/WCjbs9LKjRHCoRj6OappvZu2joQWi+smai4vWqGuWTmoweDyCyvq+RUaappGZIguCMpIDt5UbCLNZIyoS302r63fZflDQ0gb9JE4ExVj3Di6Xk2kzT6S0IZ2bfw7v+ybU734ey5RTfoHX6+WNl/8yqHE37JT/eyv+zJRpMzj97Ku49Oqvg6uWDS/dwMb3H+a9N/4OSJGxwaBpmgzTOPaRG7EarxdKoh/HnHIqn5TOB+Dy0yAmcmhPYB6vwGwOrrqZkSyfyuy+WXxqenaPGPviZecFPO+ya+7mmz/4U2eGS4dTEBM5fBrsodwYvELarxi7hO3gdV1/SNf1Vbqu/0PXdWu37efpur5e1/XVuq6PaBJ1Yys02+Gl1YIt+728awiZ9pghY+il1VKwKzNZOoSYKBkWgK4MmoEqL2OjpcLjYGhpk08Lw6n70p3keI3aJnhjneyfWdsk2FbSf8OO/lj90euQdhkNuU/ztV/LRcQp+XDNGXL/Xs+tEFnI+jVvhDym1wuf7vK9b41vcfUXv4WmaVxx/TdJTEpjx9Z1PPX4t6ipOkxCYopUZRwkp555BQBNxjVMSCsFawqeaW+x57CZpDg4f8nAY7TYZf/RJlvPDJZmG+Rn9J+JNDlfLsL6meKbxecXTiE3f0JIv0OzHSaOGz5t9PgYQAv+1CkERPoavSjGLmE5eF3XZwO5hmEsBXYBl3TbvRlYYhjGSUCGruuhN7ocAiYNEmNhd6mcmaQlyS+KyRf7zkvvKp+PjZJ6Lx6P6JFB0x+JsbJrTrAsmEDUN4uQsxmGSmaKhtkM73wqeP8zQVJc4BvK559+wKM//hJ2W+AKzvrGNt6tvhem/otKWwFREXDtGfDrr8mepSfNhA63FW3aM+zeuYmG+uqQ7NtZaqHZroHjEPlZJhaffD4g87O/et/jZOcWseKca/i/h1/g368fIiU1c9DvQdH46RSOn05rUzlNa0+Git+CJmPcly8PLcZsa4d5kzQyk6HRJtdcqhrkzb8op//zs1M1TFpXR6W5PiXHk1dc0s9ZPfF4IS99+D4sVotGcoBOSt2vV5itmm2MdcJtur0YeNv3+k3gi8C/AAzD6C4B5QSGpzVRP/hTHAfCZNIQQtBsl8JMoXh4TdMwaYLyWsGUgsAnVNbJxtIpHYLoSI3DNYOXCBgKsVEaMZHSGQVzZn/67XfZvuUT0jJyua5XZWNrSyNf/ta/8Ebdjtldzh2X57JigQxN+bnnSsGuUqhjIeTezaefvMWZK68b0LanX68C0qHpbe757pM9im6Wn3kFy32z73BZfubl/Pl336euuhSqv8oXr/sCTR1ZXBiCxpbTJYiJ8svYmhBC4HTJmLjHSx9toN5EWDUKswXltTLEcv4lXyI3fyLzFiwPyXa7Q5AcP/wiXNkpsKdMNlzpjRAyX14xttHCyWvWdf1+YIdhGC/puj4B+JFhGFf1OmaBb/vZAc6/FbgV4M4775y/YsWKIdnhdIPH7cLtDV3+1eWBmEj5QZchmoHPEUI+HQRLZ2xtA4vJhdNtJS5GPraHMu5IYDW7cHnk++FyudDnTsHp7CAtPYP3PlhHRIRcVa6pruLGm25if/KbEJHBA1ds5ZIVgdMU12yL4ObHUsHdwmlJX+U3v/ppvzY0NNRzyh02XDEncnbh33j0e2cM7y/ZjZKSA5x9hgzvjBtXwFvvru4xO+3+fvTG7ZFrMP0ttA+E2yP/3gPp3weyw+WWIZXBaucPhMstP5OBxrWYXERFWkf8CXMgXC4XVuvwyTaHw9Fiy2DtyM3NDfpXDPcj1QT4l4USgYbuO3VdzwN+CVwU6GTDMJ4CnvL9OOQ7zeFqga2hgnpH6PnNtjZBTLQM7djaQm9wUFkvOPOEvu3GWtsEH+8UzC2oZHd1Nl6vvPEMVpK2qqKkM4wSGRVN7rgJQ3qMzoqroMom3489Ozd2ygzU1dbw7H9Xs+Lca7DbWrjt6iso95wFmRmMz3ay5MSZVNkCX298IcwusrH5YAIflyyhvCkjaMGQ09nB/d+4C1f0MyA83HbzNVTZhtmDdSMqLYdJU+ezZ+dnzF90LtX23B77u78fvamoE5y7aOgZKyAL2l5dK4vVovqpwu1tR3uHTBBYOVkb9iYYtjbBurWCrNS+n9WJGZXk5eUGOXP0KC8vJzf3yNsBR48tw2lHuIusa4HTfa/PBNb4d+i6Hg/8G7jNMIyaMK8z7MREQW2jLFTpL4OmNxazvKH0prS6K5c+OV42E44fpETv6g9f5sqVxdx8xRxuvmIO1144mZee/e3gBgnAru1SqMWfj/3ivx5HCMFvHv4a5WWlmAulwNcXz40Y8GZy12WxIDy4Um7go7VbAh5TVXGIu25axme7vKBZmDLORWL8yDl3P9fd+j0Kiqdx/qW3h3xOe4cgKX7gMMxAmEwaU8bJRdnB0GSDORNHpsNRbDRYLH2L9OztEHHkJ6qKUSAsB28YxiagWtf1VcB04EVd15/07f4aUAT8Rtf1D3XdJ059lCDj8DJUMxjt8uR42Ffe80vj8Qh2l0JSN6Gw+Bht0G3P3n39aUAWvxQUTQXgr0/+EFtr06DG6c3ObRsg9+t4F5QQOeGH7N65mSd+eS9vvvpXLHk34zFnUpwNi6YPPFZRjkZB7AYwWfnrW33vjBvWvsWtV81j1/ZPic69GIAls4dnIaLDKbNcgrHk5PP56wvbKBofwi/io8UOk4cpeyUrVRvUY6jDKQvcRioWrmly0djeKx9eiCMXOlSMLmFPqwzDuLfXptt82x8AHgh3/JFEM8kONoPBYtZwugV1zbJACaC2CTpckBKGYJPL5eTTT94C4Jd/+JDM7Hy+futyNn/2Ec/85Wfc+tWfDXnsnds/hdzXaXPFQ/b3IPEynnv/jzDl32iZF4AXrj4j9FnkNad18OOX7By2TWPDTsEJU+V57W02fnDvJTja7Sw86VwOJF1OezOcMHXIpgMyO6WuSToll8eXmz4MM14hBF7v4MNowYiPkTZ6PCKkqtOGFnlTHQn9dT/ZqVIYzf+E4nTLBeVglduKscVx/WdOie856w6VqAjYV96lBbO3TATMVBgMmz/7iDZ7K8UTZpKVU4Cmadx210OADKnUVB0e0rht9lYOVQqIzCM+RpCd4oKYyVD8MKRfissbwYIpcPKc0MdcetKJmCukbQ/8zUt1g3wf1q95A0e7nSkzTuCCW1+mttlMWoKHCWGEE/3FYpPzYeVijcLMnjnn4WBrl60FY6KGx8GaTBpZKWAboIIUoKFVkJow8v1J05NkNzB/CmerXXZ9UhwfHNcO3mrRiB3ClzsxVkoNvPCR4I11XkprIGGATjsDsfbjV4Gepe1TZ5zAySsuxeky8+vf/n5I4+7Z+RkkyeykE6dp/PU7VuZnvElix+vccnYz//wuPPSlwRVjRUZFs2DcFmh4A1u7iR/+Vc4MV33wEgBLT7uMJ16R4910tj2s+HJLG0zMhTkTTURGaBRmaziGSZbe1g5Fw9xgOjdtYImAFrvArMHS2dqIy/QmxmlML4S6Jvmz0wU5Kj3yuGHkV77GICaTRk6afMR3OOWTQDhOTAjRTeSrq7T9YIXAOvlJsGmsbkngpXcPceHpofXv9LNr+6eQfCYAC6ZIpcxHvtMnY3XQnHX+daz79nWYF2xi16Fcfv2Ch3Wr/weAM/laSjdKZ3fVcjsNjqHLFXY4YVw3fZa0RKmSORxhGg2GLEAWjOR4DbTgkXivAIcLzlygDduTw0BMK9IoqRbY2mXhXXI81LaPyqUVR5jjegYfLpomu+CEq8ZXsn87VRUlJKdkdKoRvrZWcOND8O7mRLDITNT/fdzQ3zAB2b5tEyTK/HB9Slhm9mDJsvNJTYrEs/UizCYvr31ipm3cnxg3+RxeWifz6G87X8rWDhV/jUZ3VUyLRaMga/DZKr1xuQUR1vCzZ3qTECvj2/6QiB+PR1DdIGP+p84NLyVzsFgtGidO06hrkutGg20Aozh2UQ7+KMAfnll40jmYTCbqmgW/f0nuO3cRXDL/UwBKGvMGrWi57aAJzNHkpzuGdbZqsVo556KbwPYZUy2PY9HaIe1iyjJeptkOs8bDSbPCu4bdAenJfft4FmRqdITYsSgYtnb5hDHcpfomky9zpdsMuaFVNj6fWiiL5NKTRt/BZqZoTC+GQqUeeVyhHPxRQO/wzO9fklrei2fAPVdoXLVyPDircZvS2Hc4dM/WUFdFk5gDwKKZw99keuVFt2Aymdj10beI2nkSNH2I8H2kvnxh+M7T3h7YIaUlBs7vHgwOJ+QOo/ZLd3LTpdY6SBkErwfOW6Ixa7zpiFaO6pPlGobi+EHF4JHpfR++8zwul/xWxsUncfLpl2I2j3yycFNjLTu2rsNqjUA/cQWf7Ra8v1Eq/X1FppGTnJJKnOd/2DiH1z86xF3XThpwXLvNxuMPfw+SvwvIpsrDTUbWOE5cupK1H72CrXYTGZabuPHL+4mKhMn54V/PKwLPdi0WjfzMLu2XoaBpoXXQGgopCVrnk1Ztk7xRx0YfeceqhMWOP5SDB37zyDd4/e110HEQPDK4W1tTwfzlX8fhhBlFI/fF+PSTtxFCMHv+KZgjYvnVC3L7tWfSo8R8Sm4TRgN8unPgWevB/dt58L6LOFDWBgtnEGFxM6NoZP7U519yG2s/egWAZadewJkLh+e96nAKYqN8srcBKMrWOFAhOlM0Y6JkcVkoOF2C6Ii+Ov3DRUKM1ONvtgnSEqEgSzlWxZHhuHfw1ZWlvPlZAszfBHiJNx2itWYjT36yFGHIYx7/qmDm+PC+pEIIvvtHqbH+iy93NWQw1slO0XNPPJsH/yZ16sdlwGWn9jz/1BNSMd6ECts4nG5BRJD0undef5pHH7wNh6ON5Fk/pxHQp1iwjlA63oJFZ5KTV0xF2QGWnR66PO5AtLTBlILgs86MZI0Ll0pBrcZWWLtNBL0Z9Ka1DYpyRm5GazZrZCTLPrsrFw2/xoxCESrHfQz+33/7Od6kc3w/mWj1FkHaFxDWDMyaC4APNg19/ObGOg7u386abbB2G+wvhwf/IbMshBB8tu4dsCTzQcVNrNoCcdHw7Wvo45CXLlkI9q0ILZpNu/omgjudHTz2k9v5yXevxeFo49zzLsM07usAnLd46PYPhMlk4qe/eo0fPfIiM+eE0FkjBISQAlzZKf07xuhIjYRYjbz0wJkrwQhl7HAZlwFTC7r6EigUR4Lj2sHX11by2sv/gPiFAPz7B/CLO+DaZQfBmAZbpY7ami1D68cqhOCbd57NjZfO4pdP1wJSvdLYJZtDH9y3nXrvPEzz1rGvMpb0JHj8LpgaQG8+PiGZJE2Ke729trLHPo/bzT1fWsErLzyJ1RrB3d95gqVf+B31LSYKssKXChiI/KIpLF0eUDB00DTZBBX1UJwt87VDwWzWyE2XqqADIYRAMLQK5sFQlK2xYIpy7oojy3Ht4J/9xyO4I2eCOZrCLJlKNm+Sxo1fKOaUk2bjaVxDpNZITRPsLRv8+Du3bZCVpGkXU9+eTrSlmQdulgt8f38L7v1TJkx/BW/kBIqy4bdfl44hGDMLpQf7fF/PyNqObevZumk1ySkZ/Pova1h58S389W25gnjZqSOjVBgOTrfA6erVLNwjm6kkxsLZCzVOnGEalEZLfoZGWwgVrvZ22V813NqFgTCZVGhGceQ5bh18U2Mtr77wJCTIlj+zxvfcf/MdD2K2mOmo+DcAq7cO/hqvv/RHwETkJKnb0r7rfta/8mW+eLZU9GtoTwNnJadP/ozf3T1wfvRpi/LA20GDI6dH0/DNn30EwLLTvsDkafPZuAd2HbaSHA+nj2ijxMHj8QhqGmUP0rpm+Tt0OAXVjfJJ45S5fbX2QyE1xGLZ1jaYNG7QwysUxyRj1sHX11ZSWrIbl1vwyhrB6i09Z4z/+dfjOBxtJBZ+AYDZvXoj5+ZPkC3p6l4GYHVg6fOgtNlbee/Nf0P6ZXSYi0iKbsPa+DSvvPAkOeI5bj7XjaXk6/DpBG6/LK/fJhF+5i9YAo1vgmbit/9xdW7fsnEVQGfD6mffl9svXkbQxdgjgRCCqgaYOxHOXSQLgspqZYP0k2fDxHGmIS98xkRpJMVJffdgeLwCkwmyRjj+rlAcLYxJB+/scHD7dQu5/ou3cf7XD/HYc/D9P8PWA/LL395m46XnfgeYcETMBmBmcd9xzjr/i9D8IZqnmYOVUF4behz+g7efxeGOxzrplwDcfEEMX73nEQB++8hd5JlfwX34ccZPmExKWmjlhXHxiYy3/BM87bz/uRVjl8DjdrNt8xowxdBoOYO7Hhd8uguiI7ycNzxrnsNGbZMsXJpaIHVYTpqlsXQWnHGCRl5G+B/Fwiw5Q/fT2CpwdyuGarZBQaYq1VccP4xJB//BO89RG/NVmPUBDlMBuJsRAn76T0F7h+C1//yB1pZGiudeR4fLQk5q4PDIjNmLyc0rQNRLEa01gwjTvPrff8C0/+AypTOjCM48Ac658CZmzjmJxoYafv7DGwHQF54+wEg9WbH8RCiVMvuPPQfbt2+hPf4yTCeW8ptXktiyX8oZ33d5K4nD3MQ5HOwOQUwkLJjaFZvWNI2CLBOpicNjZ2aKhsfX2r2mUWAxQ3VD1wJ5hwuKg7evVCjGHGPSwf/7xXch7xuYNDd69ioSds8D+xYq6zWefNnD808/BsCUxTKNsHf83Y+maZx53nVQL8M0H2+WvTcHYt/urex23QYJC8lM9vLAzbJRiMlk4hvffRKLxUqbvRUAfdHgGlGfsuIyKP8FWtt2KurhW3+fBJP+gNeczJR8+Mbl8MIDcPkpIaSUjCLNNpg3WRvR2XNSnGwwXVkvC4zOWKBRnCOfHISQwmdpQxe2VCiOOcacg9+1/VNKHFIO94Il8PC3lvHzx5/HcuBW8Lp4eY2Z2o5pFBRPo0XI1m7BHDzAinOulXFvr4PtJXDtj+GFDwV2Ry+1QK/gf58I7vxNMl/6XRFkXIlFc/DTW00kdVMOLCieytU3fhsAa0QkM+ecNKjfLzM7nxmzFyL23AII2t2x4KzkvBkf87u7ZVOMoWjcB8PWJqisF9Q0Dl33pc0hs2OyUobNrICYTBoFmZCZDCfN0oiM0Jg/WSM2Sua+T8o/+jKKFIqRZMw5+Gf+9TykX4qGhytOl+mEk6fN5xtfu70ztMGMV8la/C+2HpBf9v4cfFZOAXPnLoBd15IQ1UpFHfz2v3DzQ/TIZHniJXjk3/De51F4iEVz7OfbV9opyunrUK668duced713Hznj4mMGny9/PIzLofW9YwXjxFR9TMwpnHVuQXDWplpaxeU10lJ3cUz5Ax4qOJeTTb5Ho+Gc509QWPZ7K4nhQirjPWbzTBuhMTFFIqjlTHl4Jsaa1mzbzxoZpbOaCMjuesLfdb5N7ByYSOUPw6YWH9oBs12qTWek9b/uGecdx3U/4e8mpU8cJMswqlqkAu3HS7Bu4bghY/AYhakNP4ANhRx6+L/snxh4IEjIiL51v/9hcuuuXtIv+fJp1+CyWRi/+p7ce79DhnpiWRmD64RSH80tMhK0jMWaKxYIOPkE/KgcQga7F4hq3NHq4tQhLVvl6TEOI3EWEga5uYeCsXRzphx8F6vl1//8id4064F4Mbz+pYqfvXeR7l1ZQf3nL+TYl+rthOmDqxJcvJpXyAqOpYdm1eTG7uDh78si2W2H4Rzb32bn/xNin8vyHyThm0PMi47mi9cddew/n7dSUnLYo7eJVYza+6ysGfvHq+gzSGoqBMkxMKZJ2ikJ2md447P0XC6+p4z4LgeOXsfycbSoaCEFBXHI2PCwTudTr5931d4f3shmKOZld8QUMHPao3gyhu+ybmnz+DJe+GRL8MdFw88fnRMHGeslDeO//zrcVISNH58C5jpwJNwBsIUDVV/5ZNnZT/Vr9z7K6zWiOH8Ffuw/MzLO1/Pmrd0yOM4XbKCtKFFLkLOGg+nzOnbTi4pXiM9ScbkQVajltXIVMRg41Y1CMxmyFOhEYXiiHDMO3i73c5N11/AG6sbIedOTJrgzssHXs2zmP0LcKE5ny9c8VUA3v7fP2huqictphb2fhGEh4yYKgp5AoCzzj6PBYPMjBkKS5dfjNki1xhm+wqcBovHKzsNnTQLLjlF4/QFJmYUm4I2gp5aIFUePV5BbSNMK5SNM3pT1SCwO2D+JCmdO9KNpRUKRWCOebngO++8k48+XoNJ34JXM3HtmTAxb/gdSn7RFBYsOpNPP3mL//33Dzg7HHiqnmX+xCh+9uCfMZvWUXJgB/q0OOpD0EQJl4TEFO79/h9prK8mv2hozVar6mHmeCjICu0+n5WiEWkVVNTJatTiHI19ZT1n8G0OQVIcnD5fxsLLy4dkmkKhGAbCdvC6rj8ELAZKgBsNw3D5tpuBPwATgc8Mw/hauNcKxIMPPsjrey+kxlTAxDy4ZgQnz5dcdReffvIW/332t7ic0otfc90NWHzx5aLx07FaK2AUHDwgpRSGSE2jID9zcM1MLBaNqYWC1jaYXiTj8/ExAodTdEottLTBvIlq1q5QHA2EFaLRdX02kGsYxlJgF9C948NKoMK3L1bX9UXhXCsYW8tyqDGdh9Ui+NbVdDrbkUBfdAbjCidTV1NOc1Mdk6bOH3J4JBhCiJCKqcKhvUOmP54wdfCKh1MLNE6Y2rX4mp/ZUx5ACHpkLykUiiNHuDH4xcDbvtdvAktC3DdsrN8h/7/jvFaKA+ScDycmk4mLr/hK58+XX/eNYe8KVNMIlfXDOmQPhJALqidMhcgQBM56o2laj985M0XD45GvXW5BpBUSR6jXqUKhGBzhhmiSAX/3iWYgpde+liD7ANB1/VbgVpCx9BUrVgzagJvPgOl5VmYWtiGwD/r8wXLt5St44Z/jiI2N5bILFmOxVPTYbzW7yIqrCHL2wKRGyXJ7jwfC6fkdzA63B3KKQXQwLPFxIWB6rrTZ7YHCFKjodlmXy0X5URCIV3YoOwbiaLFlsHbk5uYG3Reug28C/H3tE4GGEPcBYBjGU8BTvh+HHJdYaBE0NVRQ78gZ6hCD4s/P70Yzmahz9E2FzIqroMo2NDvqmgVF2VCYq/HaWkFG0tDzxwPZ4XQLmlqlVG9s9PA9eezY4MXtkXozy+drZHaT4y0vL+/3AzhaKDuUHQNxtNgynHaEG6JZC/jlEM8E1oS475gmIjJq2PPchRA4XTAhVyM+RmPWeKhtlvs8HkF9s6DDGV5svr4J5k1iWJ07yP6jLW1gMkFKwsDHKxSK0SEsB28YxiagWtf1VcB04EVd15/07X4NyPftcxiG8UlYlo5xWtogJ1WW1QNMGqcRHSk16OtbICsV6pqHPr7LLRdWCwMUgIVLepKGvR2yU/s2C1coFEeOsNMkDcO4t9em23zb3cAN4Y5/vGBvhxOndTlHq0XjpJlSRz0rRcNqAZdL0NgqSB6CpkpjqyxMGon0xaQ4WdBUEFrfEoVCMUoc85WsI0l7h1RUdIQZGhkIv5xuelLP7amJGvmZJiKsMnNl7iSN9o7QNGC6I4TA4x2Z2TvIm8aMYpUeqVAcbSgHHwCXW2qgd7ikcmTLCCbnCCFobIX5kwfOSU+M05heCHVNg7tGS5tUzIyLGTkHPLXQRHSkcvAKxdGEcvC9EEJQ0whzJsDKRRrFORpe78hdr74ZxudCVmpoznFKgYbFLDNiQsXeDpPHKeerUBxvKAffiyYb5GX4HKlF6ogPV4DG4xVUNwhs7b4eob7Qz+wJoTvfyAiNKQUyJTEU2jsEMVGQkTxocxUKxTGOcvDd8HoF7R0we3xXtWZUpEZ8NGGnKHo8gqp6mJgHVjOU1wlqmmDBVAYd2shJ03B7Bj6uplFgb4cFU1SrOoXieOSYV5McTupbYEJe384/WalQWg2RQ0x9d3sEVQ0yB31qgRy7ugFqmwX5mYN3vElxEBMpbzp+uQGnW1DfDH4/nhoF43OkKFiUio0rFMclysH78HgEbg9ML+zrDLNSNPaWDW0G73LLmP6CyTC5oOuBKSs19Lh7bzRNY0KeYPtByPDddOqbYVYx5KZreLxgb4H8ceoBTaE4nlEewEddM8woDlzlmRgHQ3HFTpeguhFOnN7TuQ8HuWnSkYO8iVjMMHGcRlK8Rmqihln9ZRWK4x41g0eGOiyW4JkmcdFgschZfqjaMA6nVG1cNgvyQ2yoMRgS4yA2StreaJNZPxFWFYpRKBRdqHkeMvauTw7uIDVNIzMZ7A75c3uHoKQyuG57Q4ugpQ1OnTsyzt1v04Q8+eRhNjHiUskKheLY47hw8FIDXeB09XXIzXZBehKMy+jfQWanQnuHDIc0tkJmKtjaex7j9QpcboiPgXMWamSnjezbm5Oq4fLAzGI1e1coFH05Lhx8YyvERkNbB1TUCWqbBC12QXuHwNYWWhVpcrxMTaxphEXTYXph14zeT22zzLRZPk8b0apRP4lxMjRTlK2cu0Kh6MuYj8F7vQKHE06brxEfI8MxVQ2CZptsNTejCFISBnaQCbEQYYXJ+VCUY6K9QwACIQSapvla7UF0xNA13AeLpmnMmaicu0KhCMyYc/DNNoEAknyyu/UtMHFclwxvepKUtx0sVovGqXO79M6jIzXSEgV2h1yEbWmD7BSpia5QKBRHA2POHbV1yJTGhlbRmds+rWB4ZrlpST1DOeNzwOZrOG1vh8n5ajatUCiOHsaUg/d4BWaTbBsXYYZD1TC9aPg7GPnJSNYQyHz36Eil96JQKI4uxpSDt7dDVgrEx2icOk9jcj5Myhu5WXVcjEZSHJTXwZT80Yu9KxQKRSiMKQff3gF56fJ1bLTGkpmmEddhGZ8DFjND0pRRKBSKkWRMLbJ6RWgZMcNJbrrGfI8YsTCQQqFQDJUx5eCtFpnOOJrERmtMK1LOXaFQHH2MmRCNxyurTZXuuUKhUEjGjIMXoiv+rlAoFIox5ODNJiknoFAoFArJ2HHwZinypVAoFApJWIusuq4/BCwGSoAbDcNwddt3HvBdwAV8ZhjGXeFcayCsFjr7qCoUCoUijBm8ruuzgVzDMJYCu4BLeh2yGVhiGMZJQIau6/rQzeyflASIGmK/VIVCoRirhDODXwy87Xv9JvBF4F/+nYZhlHY71gl4w7hWv8RGazSNmWCTQqFQDA/hOPhkoNL3uhlICXSQrusLgAzDMDYG2HcrcCvAnXfeyYoVK4ZsjMvlory8fMjnDxfKDmWHsuPYswOOHlsGa0dubm7QfQM6eF3Xs4B/B9j1NuATzyURaAhwbh7wS+CiQGMbhvEU8JTvx8D970KkvLy83190tFB2KDuUHceeHXD02DKcdgzo4A3DqAJO6b1d1/U5wN3A34EzgTW99scjbwy3GYZRMwy2KhQKhWIQDDlybRjGJqBa1/VVwHTgRQBd15/0HfI1oAj4ja7rH+q6fnJ4pioUCoViMISVJmkYxr0Btt3m+/8B4IFwxlcoFArF0FG5JwqFQjFGUQ5eoVAoxiiaEGElrygUCoXiKEXN4BUKhWKMohy8QqFQjFGUg1coFIoxinLwCoVCMUZRDl6hUCjGKMrBKxQKxRhFOXiFQqEYoxxTDl7X9Rjf/0e0dZOu67FHgx1+dF03HwU2HC1/m4wjeX0/uq4X+P4/0u/H+KPEjoVH2gafHWfrup5zFNiRPxrXOSYKnXRdXwlcDZQBjxqGUTnAKSNlxxnALUAF8JBhGBVHwg6fLZcDKw3DuPZI2eCz40LgGuAw8PCRek90XT8f+bexA78B1hqGMWJNZvqxIwb4OTAOuKR7G8tRtuN84DbgY8MwHjoSNvjsmA38ClgHfN8wDOcRsuNs4BvAEmCqYRglR8iOs4A7gQ5kg6Q3DcOwjdT1jvoZvK7rVuB64AlgH3C7ruuLjpA5VwF/BLYBX9J1femRMELX9ZnAlcA8Xddv9G0b9Vm878b7ReAhoAm4z7d9VGdquq6fiLzJ/BT4L3CGYRjeIzFjNAyjDdnBLB753hyJ92M58EPkDfchXdejR/P6vVgK/MQwjG8BxUfCAF3XvwDcCHwFeAy49AjZYQa+hOyB8X+ADsSO5OfjqJzB67oeCVwIrALMwH2GYdyp63oE8CRytvi4YRh1I2xHDHA5sBqoBu5BfkDsvu2pwHOjMWv12XIF8D5QZRiGw/eo+R/gFN/PmmEYI/oH9dlxJfCGb5PLMIxaXdcTkfr/14+G/n+39+NdoNowjA7f9kzkF+hrQNlIz6C7fUY+Ngxjv+/LejuwBfgqcE+v9pUjaccVwFtAFHAxsBBIQnZcexxYYxiGexTsuBxYbRjGXt8EZAYwB9kB7lPgVcMw9o+CHf7Pqc0wjBbf9tOR7UYf8n9mRsGOK4CPABty9v4ysBd4FunwK0bqyeZoncGfiewEdbJhGIeBNF3Xr/C9CbXIDlIjOivRdf1K4EMgBjjg+4BkAYt8dnyO/CIljqQdvWyJBsq7OfMKZKOVHwKMgnP32xEF1BiGUeFz7ibkjPXgKDn37u9HZTfnPh74LbI72L3A2aNoRyl0/g2mIT8X/wFu03V93CjaUeVznjuBTYZhnA48jXwvRnQG3cuOEt/mGCAbOTn6MjI0ce4o2REF1Pqdu49YIMkwjA7f53Y07IgGSgzDqAbeQz5tfg7UIcOKd4yUDUeVg+/2qFIO/A/I1nV9MvBjYKKu668jbU5DfmhGyo4E4DKknv17wOm6rqcBvwdu1nU91jCMbUABUDhSdgSx5WRd16d0c+YPAifpup6q63qirutRo2THKbquTwHwxbpjALfv2PyReuwM9n74dtcAdxiGcSGwHd/NdyRs6WXH+z47pvt2fwRsRD7pXYOcyTMSDiXA+3GaruvFhmG8BvwMwDCM/wB5wKThvn4QO94HTvU9Yb4IWIFxhmE0Ix2//3My0n8X/+djcrdD3vHZVjCSazRB/i4TDcP4EPnU+VvDMK4BXgMidF03jcT7EVbDj+HAt5p8D/AKsB84iHQWccjZ+qnAk4ZhbNV1PcEwjBZd138MNI6QHf9Dzor/AHwdiABeBR4GTgbWA1/zdbKKQoaQhpUBbHkF+IWu6xcYhlFiGEajruvvIdcnXvSd5xhtO5Cx1lhd1x9Fhq7uQD6SjrYdrb6b8WJgAwzfk02IdpwBTEWGaWqQfxOHz45hcSihfFa7vR9+Z2NimD4Xg7DjEeA0ZChC94UrzkF+Vkf77+L/vrTpuv4yMBM4NBzXH4QdD/sWe7OR35WFyKeaxpG62RzRGbwum3L/AvlGZyOzH0B+AF5HxusygB/5HnMn6Lr+FtBsGMbeEbIjC/i7YRivI536qYZhPILsPftzX0bCGmSGwhbfTGnYCMGWXwB/QS4o+j9U84AfG4Zxs2EYTaNshz9DIx/pVPcahnH9cGUGDOH9WIlcC1hvGMavhsOGQdjxd2S47BHgz4ZhXGEYxt2GYXxvFO14hJ7vx3XI79LnhmG8O8p2/A0Z634emTGyEJnd9H+jaEfvz0cE0u8N6xrAID8ff0bG4H8IbDAM46vDaUt3joiD13V9WbfHkSTDMH5hGMY/AKuu6/cgnywWIMMfFyDv+gB7gC8YhvHzEbTjb0C8ruvfNgzjbcC//5dAjK7r8b7HrOsNw3hsOOwYgi2/ATy6zMevBC7zfaGOhB3+Rbt3kesTvz9Cdnh1maWwC7jIMIzHj4AdvwISAAzD+Kfv/GH5jg3x/dCATcC5hmE8fATs+BUy/JBgGMYO4BtH8PPh0XU90bd+9iPDMHYeATt+hVwDiDIM41/ABYZh/Ho47AjGqDp4XdfjdF1/BxmTOge5yLBa1/XbfIesQa7+NyBnhNcj77z/B9QbhmEbjplhCHasAs7XdT3JMAyPruvLgJeQTxY2gOHKRgjDlv2GYdgNw3AZhtF+BO04AGAYxqrheHoI8/3wGIaxzzCM1iNoxz5DpkoC4Ydlwvm7GIYhDMPY4ot9h0WYf5cWAMMwPEfYjmafHWF/d8P8fNh9dox4TcCop0nquj4fWQRyAjLjIcn3fwnSebYjU722GCOYkRGCHXbkrHQ7Mpb2Z8MwXhzLtig7lB3KjmPPjv44Ynnwuq4/jow//VPX9Wzko+1+4C7gH37nruu6aaQWIPqxYx8yj/ppwzCqRuraR6styg5lh7Lj2LMjEKMeg+8Wr3oama6UYUjpgUTgOWRoxuY/bqSc+wB2PI9MgWwdrhjqsWCLskPZoew49uzojyNayarr+leA8ciUx/3AHsMwNhyvdhxNtig7lB3KjmPPjt4cqSwa/3VnISvsDhiG8c/RfkOOFjuOJluUHcoOZcexZ0cwjvQM/gvAa8YoaEIcC3YcTbYoO5Qdyo5jz47eHJViYwqFQqEIn6NKi0ahUCgUw4dy8AqFQjFGUQ5eoVAoxijKwSsUCsUYRTl4hUKhGKMccT14hWKk0XW9ENlnAGTj5wd82/+E7NWJYRhDarag6/o0ZGOHDw2pMoqu639FCuUtMAzDCMd2hSIclINXHG/coOv6g0jZ1suGYbxpwA98rz8chvEUimFD5cErxjzdZvAHkH1JlwNFwO+QMq+5yHDld5A9MlMAA7jTMIztuq7/EOnE/wicglQN/DKyIc1BenIqcANyBv8L4FLf2FcZhrFqRH5BhSIIKgavOJ7YiWy5eKPv30tAk2/fF5H9M7cgHf0C4GVd163dzl+KbB6RiOx3WotsBAOyNd+VwI5uxy9GysTm4WuMrlCMJsrBK443/oycVS9BtnLz4+8adrchu0G9jBSP6t6o+lFDtgE8ABT6Gjes8e3bZhjGv3v1MPihYRgPAh2McHN2hSIQysErjjf+DXiAMuCdAPtFr/+70+D7303Xd6e/GGf344e9ObtCMRDKwSuOK3zt424EbuvVa+B/vv8f9Um/XoBP9nWAIRt9/y/Vdf0KXdejh9VghSIMVBaN4rjDMIxnA2z+K3Kx9RbkIuynyEVWl67r/Q23GtmXc5nvvHHDaqxCEQYqi0ahUCjGKCpEo1AoFGMU5eAVCoVijKIcvEKhUIxRlINXKBSKMYpy8AqFQjFGUQ5eoVAoxijKwSsUCsUYRTl4hUKhGKP8P3C2fxpXr3IJAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from darts.models import KalmanFilter\n", "\n", @@ -2895,22 +2857,9 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEPCAYAAAC0r/QVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABosElEQVR4nO2dd3ib5dWH71fy3ntvO85wNm9CBoEECHsWymopq6wSWgp0fqWL0pa2lJZCW8ooq2xo2RsCGYTkzU4cJ068995Llp7vj0fyiJdsSx7Jc19XrsjvPJLln47Oc4YmhEChUCgU0xPTZBugUCgUirGjRFyhUCimMUrEFQqFYhqjRFyhUCimMUrEFQqFYhqjRFyhUCimMRMt4mI8/yoqKsZ1vqv+KTuUHcqO6WnLNLZjSKaVJ261WifbBEDZcTTKjv4oOwYyVWw5Fu2YViKuUCgUiv4oEVcoFIppjBJxhUKhmMYoEVcoFIppjBJxhUKhmMZ4jHSAruvBwEfAHGCZYRj7+uwzA48BM4DthmHc4SY7FQqFQjEIznjibcC5wKuD7DsPKDMMYxXgr+v6clcap1AoFFMVi8Uy2SYAToi4YRgWwzCqh9i9AvjQ/vh9YKWrDJto3n//fWbOnElGRga///3vJ9schUIxBamurubhhx9m+fLleHl58dBDD022SSOHU0YgFGiyP24Ewo4+QNf1m4CbANatW8fatWvHfDOLxUJpaemYzx8Kq9XKLbfcwvPPP09sbCznnnsuJ554IpmZmRNqx2hRdig7poMdMHVsGY8dBQUFrF27lvb29p5t7777Lpdcconb7YiPjx9y33hFvAEIsj8OBuqOPsAwjH8B/7L/OGz56EiUlpYO+2TGypdffsnMmTNZsWIFAFdffTVbtmxhzZo1E2rHaFF2KDumgx0wdWwZjx3r16+nvb2dzMxMvva1r/H73/+exsbGMV3Pla/HeLNTNgOn2x+fCWwa5/UmhdLSUhITE3t+TkhImBJeg0KhmDoUFBQAcNFFF3HdddcBUFlZOYkWSZzyxHVdfxdYCMzUdf1RYLlhGDcDbwMX6bq+AdhpGMaX4zFG07TxnD4kao6oQqEYLw4RT0lJITo6GoCqqqpJtEjilIgbhnHOUZuesm/vBq51rUkTT3x8PMXFxT0/l5SUTImvfgqFYuqQn58PSBEPCgrC29ub1tZWWltb8ff3nzS7plSxjxBi2H8lJSUjHjPYv5FYsmQJubm55Ofn09XVxYsvvsgFF1wwAc9YoVBMFxyeeGpqKpqm9Xjjkx1SmVIiPll4eHjw8MMPc+aZZzJ79mwuu+wysrKyJtsshUIxRbBarRQVFQGQnJwMMGVEfLzZKccM55xzDuecc3TUSKFQKKCsrAyLxUJ0dDS+vr7A1BFx5YkrFArFCPQNpTiIiooCJn9xU4m4QqFQjIBjUTMhMYVDRTZsNjFlPHEVTlEoFIoRcHjigaEpbNgDdc2CiAjpiU+2iCtPXKFQKEbA4Ymb/JJJiYH8cmjoUiKuUCgU0wKHJx4dm4LZrBEbriE8pkY4RYm4QqFQjEB+fgEAmRm9C5vJiVOjalOJuB3VilahUAxGd3c3JSWyojs2Prlne2RUDAAVyhOffKxWK7fddhvvvfce2dnZvPDCC2RnZ0+2WQqFYgpQUFCM1WolPDIOLy/vnu2BQaGYTGYaGxro7OycNPuUiANbt24lIyODtLQ0vLy8uOKKK3jjjTcm2yyFQjEF2HtALmrGxqf2224ymQgJnfxccSXiqFa0CoViaPbZRTwmNmXAvrBwGRcvLa2YSJP6MaXyxLWTbSMcEQuMdMxAxBfqs0qhUIyNAwcLAYiJSx6wL9Qu4vlFVSxbNqFm9aDUDdWKVqFQDE57p6C4yO6Jx6dis/XviuoQ8SMFyhMHRvaY3TXiqW8r2vj4eF588UWef/55l99HoVBML+qaoKZSeuL4ZnHpPTAnVfCTb4K/j0ZomIyJH85XMfFJRbWiVSgUg1FaI6ipLADgs0NzqW+BTXvhu3+ByjrRI+JVVZW0d07OBLEp5YlPJqoVrUKh6IsQgvzSLupqStECdbYf9sfbE6JCIa8cvvMgfC0rE4DG+krqmiA+cuLtVJ64QqFQDEJTK1RVVWCz2fBIvw+Ai1bBI9+HRTNkqGVToVzNbG6sorx2cjxxJeIKhUIxCLWNgpbGagg8EUvg6fh4wRWnQaCfxs++BZoGhyvDweRHc2MVpdWTY6cScYVCoRiEoirobK2C5F8CcMkpEBKgARAWpDE7GSxWE4SupaGukvZOaOuYeG9cibhCoZjSCCHYv38/Vqt1wu5pswkq66Cqtg1Cz8BMB5et6X/Mirn2B+EX0NhQQ7e1m4aWCTOxByXiCoViSvPee+8xd+5crrrqKoSYGE+3rQMEcKjMB4BInyME+Wv9jlk5T/6vhZ+PEBodrTVU1SlPXKFQKPqxZcsWAF5++WWeeeaZCblnawcgoLA2DICEkIEB7+RoiI8A4REOQcuxtFVSMglxcSXiCoViSnP48OGex7fffnvPlB130twmQIPKFllcmBEzME6iaVq/kEprczXN7dAxwfniSsQVCsWU5siRIwDMnDmT5uZmrr76arfHx+uawGqDZmsC2LrITBr8OEdIhbDzqa+tRIMJj4srEVcoFFMahyf+2muvERsby6ZNm3jqqafces/aJigoBzQTtGwnKiJi0OPmpoKXqRX8ZpJX2oXZDFUNyhNXKBQKAOrr66mrq8Pf3585c+Zw9913A7Bjxw633dNqFTS1Qk6RfUPTJkJCe0sx+zbBMps1koPzADhQFkWALxOeL65EXKFQTFkcoZT09HQ0TSM1VQ5m6Nt11NW0dYIQsN8Rem/aTIi9R0pNg6C0mn59UmbENgJQ3hyFj5cMp3R2TZw37lTvFF3X7wdWAAXA9YZhWOzbfYGXgSCgG7jKMIzJHTinUCiOGRyhlIyMDICe4S3uFPHWdui2QnaBADQ82rbh5x9Ie6fAZILVizQ27RMIIfDz0chMNPFuNjRa4tE0DQ1BYytEebnNxH6M6Inrur4AiDcMYxWQA1zaZ/fZwD7DME4BngJucIeRCoXi+ORoEU9ISADcK+It7UJWa1o0aDtIaJAJIeRi5/IsSIzWOP0EjZZ2eezM1ACwddCpxdHSLrNamtsmzhN3JpyyAvjQ/vh9YGWffYcBf/vjUKDGdaYpFIrjHYeIR0Snsi3HRlhYJJ6entTW1tLW1uaWe9Y2whHHdMamzYSERlLdALOTITZCSmZEiMbqRRrNbRAdHQut+wDIKwMfL3mNicKZcEooUG5/3AiE9dmXC8zRdX0/oAFLjz5Z1/WbgJsA1q1bx9q1a8dsrMVimRKzL5Udyg5lx+gYqy0HDhwAIDw8DG9RzpFCiImNpbioiO3bt5OWluZyOwI9oaQyBPCFpk1EzwhibkI5wf5w9KkLksBms6G17UEE6pSW17F2fieCgceO1o6+DDcMxxkRb0DGvAGCgbo++64BNhqG8Utd1y8F7gF+1PdkwzD+BfzL/uO4vmO4a7KPskPZoexwL2O1pahIpog0m5dS1xFHbZMgKDQFioqwWCyjvuZIdlitgi8+Exi59g1NmzD5LqGDWLISBgYuOkttbM0BP5FHK/BVjjdnrQyjqh4uXa1hNmsDznHGjtHgTDhlM3C6/fGZwKY++zR6Qyg1SJFXKBSKcdPS0kJFRQUenl6kpkjBCw/SCI2Qj90RF2/rhPpmGf/2MndA+yECgqKIDR9cjOMjNTQg1FsGK46UaWiahsBeuj8BjCjihmHsAip1Xd8AZAGv6br+qH3388B5uq6vB+4F/uwmOxUKxXGGI70wKiaNIP/eoEF8gsxQKSgoGvS88dDabi/yAUI8ZbgjKCSSkIDBj/f20kiJhfCARhA2yup86OoWCAEt7S43b1CcSjE0DOMHR2262b69ETjL1UYpFAqFY1EzPim93/boGCniuXklLr9nU6ug0J4k7Svk/SMjI/DzGdwTB0iP0wgNCYXqQ9j8ZlFYASEB0NgiiIsY+jxXoYp9FArFlGTPfimiSUeJeJRdxA8fcX04pbYJiu2D683t+wFIT44a9pzwYIiMioGWXQDklsgMlZoGl5s3KErEFQrFlGR/tt0TT8zotz0qWop4WVkJre2uzceuboCCCvnY1mQAkJ4yvIhrmsbsjFho3QXAYYeIN7nUtCFRIq5QKKYcQggO5cqeJEeLeGS0LPipqy6mrMZ1It5lEVQ3QHkteHpAW/U2YGRPHCA1pb8n7umh0WmZmPJ7JeIKhWLK0dQK5SXSE/cLzeRPLwpyCqUgBodE4OXtQ2tLA7sPtrhs2k9LOxTZ4+GpsdBYL1c4ExKcEPGkGGjdCcCRMnuTLDExGSpKxBUKxZSjqKyd2upiNLOZf3+WzDtfwj1PQEubQNM0IqOkN15QVEKji/p3N7eJnlBKaoyFzs52vL19CAgYIjWlD4mJcWCpwWQpp70TympkUcxEZKgoEVcoFFOOL3fkI4QgcMaP2HFIylRNI/ztdbnfERevqymm2kX9u2saexc140JkQDsiIhJNGznDJCYmBgDRIlvk5paCtyfUNapwikKhOM5obRcUFJSATyotET8F4PpzpCh+uA027hFE2jNUWuqLKa91zX2r6qHQ7omH+ci4SnT0yKEUAD8/PwIDgxDNuwHIt/dQqZmAHipKxBUKxZSiplFQV1cOmU9g03xZvQiuPlPjxvPl/j+/BIFhMwBorCuhsr7/oIaxYLUKahuhsBI0DbxFIQBRUZEjnNlLdEwMtO4FZFzc2wvqmnFZzH4olIgrFIopRX455Jd7QvApeJuaucPe/PriVbAwA+pboKDrXABqq0uwWscfe25ph+JqOVczIRKa66VLHhXlnCcOEBcbA217e56D2aRhE9Dm5sVNJeIKhWLK0GURVNTCkZo4AOZE5RAcIGPSJpPGDefJ4w7XZQIaVRUloDHuxc2WPuX2GfFQWyNnrEVGOu+Jx8bGQtshzJqV8lpo65AZKu5e3FQirlAopgz1zWCzQUnrbAAWpvYPKmelQHQYNLb7QtBJVFUW4+UBlfXjC1nUNclBEAAzEqCxQYr4aDxxubhpJchbBunzy2VopqFFhVMUCsVxQmWdoLQWOomCrgrmZXj3269pGqcttv8QdSXVlcUE+MqUvnHdt743Rzw9HpoapKKP2hMH/JGNuY6Uga+3XDB1J0rEFQrFlKGoEvYcsf9Q+zaRUbEDjjnVIeKRX6etrYOujiZaO/oPLx4NNpugpqE3nJIeD02NY/XEwcMim5Hnl4Ofjyzld+fiphJxhUIxJWjrEDS3wVfZ9g11bxIeMVDE0+IgOQbwCIOQtVRXlaAhqzzHdl+orJO9xMODIMAHWppGHxN3iLipdQ8gR7V5mGX5fUfX2GxzBiXiCoViSlDfLLsI5pYA1lb8LNvw9RtYLalpGqefYP8h6kqqK4oxm2Vq4mh57bXXOPOMU9mVLd3wjHgpuC1j8MQd4RRLwxZAirgQAg33Lm4qEVcoFFOC0hrBrsP2H+o/JDw8dMhj1zhCKuEXUFpWjr/P2OLijz/+OJs3red/b70HyFBK7qF91FSXyfL+MXjiTdX7CPSTwl3dgD17RoVTFArFMYwQgpIq2HHIvqH2TSIi4nr2d3QJGlt7hTA+QiPCpxjMAezK88fXW45U6+4enVhWVMh88IYO6XEnhLfxwC8uxWq1cu211+Lv7+/0tSIiIjCbzTQ21JEQYQOkN+7rDVUNozJrVCgRVygUk05zmwyn7DkCGjaoe4fwSCni3fZqSk8zlNeKnurMWbEyBJJXI/ub2GzQOMq4uEPECVgAwOuP30BFaS5z587n4YcfHtW1TCYT0dHRAEQHy8R1h4hXuzFDRYm4QqGYdOqaBLmlsmIywq8cumsJj4xFCEFlHegz4YwlGpkJst93V7dgfpoVgOpO2W/cNMq4uNVqpbq6Wi6QeieCtZXDu17Fzz+Y119/DT8/v1E/D0dIJdhbxnbyysHLQ6Ot0329xZWIKxSKSaekWk7EAQgx5QAQHhFLVb2MU2cmaXh4aJwwy8TS2VDbCAtnBkF3M51aAtUNggDf3i6EzlBbW4vVasUn8iQAfEQeJrPG3b94ihkzMkY4e3Aci5sBmswVzyuT2zVNfttwB0rEFQrFpGK1Cspr4aB9eL1XhxyLFhASS4AvnDBT69cONi1Ow8sDwqPioWkjALtywc9bzrXssjjn8TpCKd7hKwA4fdUc/vliHueed8GYn0tSUpK8Znc2mibz3i3dMkOluU154gqF4hiksVXmaB8skh6rtXY9AD4BccxPl6PO+mI2a8xJgS5bMB5tmwEwDnShaRoCaHCyj0plpSzRNAUuBGBGopnA0AQigsf+XNLT5VDnppqDxIbJ8FBhpexo6K7KTSXiCoViUqlpEOSVgcUKqTHQUCNTVCKjYokNH3wgQ3KMhkAj3FMeu+uw9HI9zM73USkplQujXZ4zAZkjDhDgO/IQiKFIS0sDoKo8D8dUt/wy+S2humHMlx0WJeIKhWJIrFbh9n7YRVWyRB1gXjrUVstA8vJFsXh4DC6ofj4aabEQFdgI3U1UNXpTVT+6uHhxSSVo3rSJeEyarAQF8PcZ+3NxiHhZST6JdhHPKwcvT43m9vH3PR8MJeIKhWJQ2joEHxuCz3cK2VbVDXRZZN+SHDmDgRmxLVgsXfj5BzM7bfjZlhkJGqHhcdC4AYBdh8HXW6OxBTqc6KNSXFIBfnMQmEmIkhPuTZrsdzJWHCJeUpxPYmRvrvgjD9zJ68/dS0NDw9gvPgRKxBUKxQCaWgUfGYLWTqhthve2CMprbC6/T0OLjBvvz5c/xwaUAhAVHYefz/BhjbAgiE9IhMb1AOyUfafQkDnnI1FUUgEBCwEZSunsktd0ZqbmUAQGBhIZGUlHRwch3vIrwZFSwX9fephXn/4lHh4eY772UCgRVygU/ahvFnywVWZUhAVqhAdp+PnApzugapx9u4+msl5QUi0XNuPCwdouU1QSEwY2vjoaTdOYOzO+R8R320v2PT2gvG5kOysrK8FfFvmkx0F7J0QEje159MXhjdvacvHxgtomDStBRMWmERAw/LeLsaBEXKFQ9NDRKfhit8DXC4L8ez1SX28Nf1/ILXGtiBdVyJgxwPx0qCiXnnhyUtwwZ/UyIz0JWnZhFi2U10JFnSDQD4orh2//2tYhqKuphIBFAGQkyIXV8OCxe+EOHCJeX51HSox9o/88klLnjvvag6FEXKFQAHLRbWuOwGKBAL+BYhbkJ/OeXRUfb+sQNLXBgQL587x0qKyUudtxcc6JeGZGAmDDq2MrIHuveHlqtHUMP7KtrknQUF/TI+IzE2UYxt93jE+mDw4Rb6jJly1zAfznkZg6b/wXHwSnAjS6rt8PrAAKgOsNw7D02XcFcBPyA+EnhmF86QY7FQqFm8kpEhRXQnzk4N6oyaShISipEmQmjd9jrW8GIWBvnvx5fhrs/kBmpjgqH0ciKSkRAEv1e5B0KtsPwjnLwNMT8ssFiwIHt/NAvoXm7ggw+xMTJggOMNFWK8aVmeLAIeI1lXkkpNs3+s8nMTVw/BcfhBE9cV3XFwDxhmGsAnKAS/vsiwMuBE4zDGO1EnCFYnpS3yzYlQsxYcMfFxIIOUWuSZUrq5GNrRpaIDQQ4iOhoVaKuLOeeEhICH5+/nRXvQNIT9xmE4QGwKHiwfuVtLYLcvOrwV82JZ+ZpGHpFvh4gbfX+D+cHAU/FaV5xDs62frPI8lNnrgz4ZQVwIf2x+8DK/vsOwvoBD7Sdf1ZXdddH7VXKBRup6hC4OkhqyGHw8dLo6VdDm8YD1aroKgSCuxNBOfbPdb6utGFUzRNIz4+AdoPEupvoaFF5pybzbJ6s7R6oIiXVguaGioh0C7iiXIQxHgqNfvSk2ZYlEeYn/2F8ssiKm6Ga25wFM6IeCjg+JU1An0/q6OBCGAt8CWwzqXWKRQKt2OzCQ6XQoiTLpiPFxwZ5wJnXbNcSMwukD/PTZVC2lg/Ok8cekMqqREypW+7vSd5sD/syx/4rSGnCCztFRAgRTwz0Z6Z4iIRj4uLw8vLi+rqSioLv4LOYjD7U9Pk+vRCcC4m3gA4Em+Cgbqj9n1mGIbQdf0T4GdHn6zr+k3ImDnr1q1j7dq1YzbWYrFQWlo65vNdhbJD2XEs2dFthcxomZrnDDEBYOmGkhLZ62QstrR1wNx4yC6IBDxYM7eahGAL9bUyVcVmszn9GoaHS78yOXAXO4hn35EOvnt+PdjtLC6R5fgAXV0WUsPL2dNxGPy/DcBJsyrw8xb4auCqX1tCQgJ5eXkU7H0RWi8B70SEpZ7y8o5BX4+RiI+PH3KfM7+2zcCdwDPAmcCmPvs2AT+wP14I5B19smEY/wL+Zf9xXB/fpaWlwz6ZiULZoew4luzYcchGXiVEjCK9rrxWcPICbchF0OFssVoFd//yeYxtmylq+xu+3hASGsk/n/kPlq4uQkNDychwvhVsZmYmAJ0NB4Bz2XbQh+KGWDw9NBpbBMHtcMIsjUA/jdwjpRysjGVnnj+YfQnwqKFdxFJQJjh7mdYvrXI8zJw5k7y8PD786BPwy4Swc9h0IJQ7rtQwmTSXvkdGDKcYhrELqNR1fQOQBbym6/qj9n17gGJd19cD1wN/c4lVCoViQrBaBfllzodSHPh4QUnV2Hyy2iZ45Zn72LhddhGMCSjnjVce5u+//xYAd91116iul5gowymtdQdIiZFhGUeYJsgfKuvhtU/buOiydbzxxpuEBkBBlRz4EBNU05NP7orMFAeOuHhtVTG07gVkjxh34NQXKMMwfnDUppv77PupSy1SKBQTRm0TdHWDxwgLmn2pq62kMP8gHSknsmS2NybT6LzXgnIr1RX5kHATAPk7/snf/vcbAO6//35++MMfjup6CQkJ0q6aEhbrcrF0+yFYkCEXPqPD4IlHfssbrzzCJ+8F8soH36KyOQKA5Mg2Oi0Q6Dfyou5ocIg4AK17AFmA5A5UsY9CcRxTWCHw9hzdObdft5I7b1pNadGRUc+0tFoFu7Ir6OrqwBR2CgCe7dswmUz84BePj1rAodcTb6orJStFbttxsHd/QV42Lz79RwBaWpr57MOXqOuSwp+ZYM9MCRn1bYelr4j7mavsLXKhxQ2DIdyzXKpQKKY83d2C/HIIH2W/kLiEDMpK8qgqP0xV/WxChyioGYyaRigtyQNzADafuZhN8OSTT1JT28Dak2eN8hlIHJ54TVUxKTECs0njQBE0tAiC/AR//s0tdHdbiEtIp6zkCG+89m/aQ74BwsbcDF+Xphc6cOSKAySnzmbhavnY6voeYsoTVyiOVxpawGYbfRghIUkuOtZXHaawwvnzhBDsOSJorMmHwOWgmZmRCAnxscTEzyJsFB8GfZEFP360traAtYkls+Tz+t8GeO/Nf7N310ZCw6L46xOfExgYxMGCTtA8of0g8bFRICBwkDYD4yE1NbXncWLqXG66QOOCkyA4wLX3ASXiCsVxS02jwDQGBYhPlCJeVX6Y2ibnencDFFcJquqRIh4sawbn26MOArkIORY0TesJqTTWFXPparn9v18IHn3oVwDcdveDRETGccGFX4PYG+UBTZ8TGByGAAJd0DOlLwEBAURFyakQCclZrr34USgRVyimIO6epgNyAs5YGj7FJ8nKw9Liw2jIwp2REAKMHAgPhrLSfAiSE+bnpck4uaeHa4YxdDXnkhoLs5OhqU2j2e9CEpMzOfXMKwA49ZwbIOpqEFZCW/9Dt1XD3wd8vF3vIS9cuBCAjNknuvzafVEirlBMMX73u9+RlJTEvn373HaPLovsW+LnPfpzE+wiXlKUi5cnlAxS2n40HV2y8MbHS6OstBSClqMhmJfeWy05nmEMs2fPBqCu4gCdFrjyNPuO+DtJTpvfc+3PD88HkxdUv0JEUAetHRATPubbDsvjjz/ORx99TNqMRW79UFYirlBMMV5++WVKSkq48cYbsdncsBJG70T4sQhnTFwKJpOJqooifDw7Ka6U3vRQNLYIKdQh8uei+nAw+ZAc1UWwv0ZbJ0SHjuFJ9MEh4oX5OQCsmAdBXjXgk4It/JIeO175XOaHU3I/cQlpdHSN/95DkZiYyOmnn4afj2wx4C6UiCsUUwghBLm5cs7Yli1beOyxx9xyn8p6gdk8tnM9Pb2IiUtBCEF1eT5d3VBaM7iIW62Cr7Jl7N1s0ujq7KBJzAdgyWyZ22izMaoMl8FwiHjuoQME+0uvP1a8DsDOugt45gPB0x9Ae5eJZXPgZ//3I2654w+YNAh2UZXmUAT4Qpdl5OPGihJxhWIKUVlZSWtra4+H/KMf/YiKilGkgDhJcaUUl7ESlyAXN0uKcwkJkKPRBmtPu79AUNsEZrvSVJQXQsgaAE6Y1Ss/47EFekU8JyeH+EgbzW1gKXkCGjfQbvHh3+/Cf7+Qx161Fk4760qiYpIBWejjToLsHyruQom4QjGFcHjhi09YwjnnnEtjYyPf//73XXqP9k5BY6scuTZWHGmGpcWH8fXWaG6T/cH7UlUv2JsHUX3CFfn5RRC4BEQ389PBahN4eIx/ok5YWBhRUVG0tbVhbSvBYrFRUrgP9qzm3mtbWTlPNus6ZX4H89Lk8+6wD0Z2ZaXmYAT5KU9coThuOHRI9lH1Dsrg2997CD8/P1588cWe7a6goVmOIhsPPRkqRfJDJzgA9uT1ZtW0tAk27ZXDGcx9yvKNnC7QzIR6FuDrrdHeKYuNxrOo6cDhjZcVH6C2uoiuzg7CI2I5aVEAv/m2xpu/g4duq+853p2Lmn3x89FwwQyNIVEirlBMEaxWwaatcmR7evoM2rQUli4/FYBdu3a57D7ldcLptrND4cgVLymS9vr7aDQ0Q2k15BTaeHuzQNOkgPXlYKkcUZYSLkNE7Z39PfXx0BsXz6GzSdbdJ6X0VoEG+Gp49XneVitEBLnXCwfw9oRRtpcZFarsXqGYImQXCvYdkJ5tUsoMYkIhIDwLeJvs7GyX3EMIQXHV+OPACX1yxR0E+cH6nXLBNDJk8KZapc1JAMxL7QKkkI61UvNoHCJ+4MAB4uwzQBNTMoc+QRt7gdFo8PGSefLj/vozBErEFYopQHe34GAR1FZIUYxPzMBs1pg1ezZvA3v2ukbEW9vlQIbxZmTExKVgMpupqpBhCy9vHwL8NLy9BJ4eg1+7rknQRjJY29Dn9DZscdXC4pw5cwAp4o4gQ2Ly4P1Yuq0Cr3EWGDmLj5d7r6/CKQrFFKC8VtDVJSgrkSLu8HQzZsiS7V2797vkPrVNrgnOenp6ERObjBCC8tL83u1HCXhJUS6//8V17Ni+jR2OsH7TRpKSUrHaZOqhq4TU4YlnZ2eTmyvDKZFxMwc9tqVdxsNdEYsfCQ8PDQ8PmUrpDpSIKxSTjBCC7ALo7qigo72VoOAwAoNkoDg5dTaaplFUcIi6xq5x36uk2nWiGZ9or9wszh10f2V5EXfdcjofvPU0t958LW+sl4uKnq1fEBQS3lMANNp+5EMRFxdHYGAgdXV1bNu2DYDQqMFFvK0D0uPcL+AO3Bm2USKuUEwyDS1yOEND9RGgVxwBfHz9iIlLwWrt5qMNg4uls1itgtLq0edk55YIfvWU4KpfC372uOCFTwSHigXxibLdqiNDpS91tZXcfetaqiqK8fbxpakrjH1FwWDrJM5zM5omM1OiQsb1lPqhaVqPN97a2oqPjw/hUUkDSt7bOwXB/q5bUHUGVzfY6osScYViEMprbHy63UZru/sbUR0pFbIHiV0MHaEUB8mpMta7ZWs2zeMYKtDTetZJz7eiTvCjfwpu+iOs3wnltbBpL/zrTbj5T3DIehOYA/otbgJ0tLfxw9vOoqQol4yZC3nm9RyCZ/0ENBNUv0RivFTPbiuEuTg7xCHiIOdcxoSbaG3vf0xDM2SlTkwoxYE7C4qUiCsUfWjvFGzZZ+PTHXISy45Dwq3Nizq7BEdKITQQSu1hCYeH6yAlXYp4WXE22QVjt6W6YXStZx94CbYekAtzX18N/7wbfvJNOG8FeJohu2oeLN7FgeL+sYKvNr/HkUO7iUtI4w+PvE9QWALWyGvkzrJHiIlL6Tk2yMXi1lfEZ82aRXoctHT07hcCPD1xesCzqwj009yWZqhEXKGw09Ep+GiboLga4iIgNlyjqFKOMHMXFXUCm5DecWmxPZxytCeeJkW8qjSbvFLG7I0XjqLUPr9MYORIAX/uZ/CdizVmJmqcsUTjrss1Hv0BpER1gE8quV5/5A/PCxpbpV1lds98xSkXEBoWxSfboaXDg6TwRrLSvTj97G/IkEYABLh4GMPRnnhUqIbJBPXN8sPYapNtaofKoHEXPl6MOzd/KJSIKxTIvh9fHRB0WSAyROv5qh0ZAltzcFtYpaiyd6HREU6JS8igy9J7vxS7iBflH8BshrzS0dvS0SmoawJfJ1vPvrJe/n/2iRAePFDwUmM1/nGXB1rRr8DWyXtfwTX3wac7BGUlefJ5xKchhOB1e8+Sb54dzMP/3sjMOSfQ1AoZcaN+GiNytCfu56Nxhq7JPuY10hNPiZlYAQcp4l6jnGXqLErEFQrgQKFc9IsI6f8H7uWpYTaBcVAM2251LFitgrIa6R0LIWRsWfPi2U0LOOsHcMufBI+9Jej2lmmGxYUHCfHr5mCxDMOMhnr74AZn4sB1TYKPDdlr5JJThj7Ox8eTePEC7FjIzPgWGlvh3qfBqFgNaETFpfPSp5BXBuFBVk5Z1Oe52yA2wvVimpqaire3/KSaNUvmiIcEapy8wMQZSzX8fcHfd+JF3NtTeeIKhduoqLWxM3fovtLhQRpl1bAtx7VCXt8sPUOzSaOupoKOjm48FrzFlgNeCAEHi+H5j+GOR3wJSzkHi6WLivI8bAKKKkdnR0m181Pt39go+1+vmDty7DghKRPaD3HFog+4/RIwmaDCfAVkvcU/1q/h0Tflcded2YqXPYTR3ikICXT9XEsADw8Pbr31VtauXcvcuXP77YsM0Zx+DVyNt5f7in6UiCuOa2w2GfsNCxy+m11MuPQot+WIQVuujoWqPguN+fmHYc5/6Q48nSB/ePgOuP8WWJ4lvVZbwv8BUJiXTWgA7MsffhBDX6xWQVGlc7nKnV2CNzfJx19fPfLxjrL2kqJDfO1kjd992wrd9RB2NqW13sSGw703wPVntvac09QKM+KdMn1MPPjgg3z44Yd4ek6SYg+Cpmksz9JclhPfFyXiiuOashpBY5ts1PT+m0/x/ptP0dhQO+A4TdOItQv57sOuEfHCit7Us1c2BEPYmXhqTTy4DrJSNZbO1rj7CvlVvEFbBv4LKczLxttLo6NLVnk6Q10zdHUP3svkaD7dIVMRMxNhfvqIh5OYLItpigtlOWZiSDHsWoFX8wfceB489RM4ab5G3yiOTUBM+MSHNCYbby/3PGcl4orjFptNsPswhAbIn599/D7u/+X1lJUcGfR4TdOIDoNDxWDpHp+Qt3cKGlpkT++WNsGOYpmRsjb5VdL6VBKGBWlcsNL+Q9LPyc+TPVQC/WTr124n7Citcr5r4btb5P8XneRc/DwxxS7iBbLMvbw0H9oPMUv7HVet1fDy7H8NR1aKO0IpxytKxBXHLWU1cjiCn49GRVkhZSVH8A8IInPW4iHPMZs0bDaobRzfveuaeh+/uQm6hQ80fMKyBWEDjr3iNPA0WyHiQg4VyWGNAb4ajS2w58jwIm6zCfLKIdiJUEpRpWBfvsxgWb1o5OMBkno88YP2PioyMyU2IW3Q4xta3BtKOR5RIq44LnF44SF2L3yX8RkAC05YjdljeLfVxxsKR7mweDSlNQIfLzl1/jV7Ch7FfyRj5sIBx4YFaZyzTIp3qXYlVqt8HB0KBwqhqGLozkoNLdBpcS4v+v2v5P9rFjk/9Sc0PBr/gCBamhtoqK/uSS+MjU8dcGxHl1xcTYlVXrgrUSKuOC4pq5HhDMfQgh3bpIgvWrJmxHOD/KCg3LlQxmDYbILiShkS+XCb3Stv2Ylf91f9qhn78q2zvMDWgQi7gB17CwHZOCoyBL7cLye5D0ZpjcDDiYHIVqvgA9kzirOXOf9cNE3rjYsXHOzpaBgXP9ATr22CE2ZOfKHNsY4SccVxR2eXYFuOnK8IMkd759ZPAFi85NQRzzebZUilZowhlcZWudCoafDSp/aNJX8iI3PhkHHosCCNSNNmAN7e2NsMxMtTw8cbPtkuqKwbKOR5pc6FUr46ID9MkqIhK2V0z6dHxIsODRlOsdkgIggSo5SAuxqnRFzX9ft1Xd+g6/qzuq4PyNvRdf3Huq4brjdPoXA9+/JkZaYjZFBceIia6jJCQiNJSc9y6hreXmMPqRRXSu/4y/2yNWyAVwNUv0LGzAXDnjc/Xnq52/Pj+qU5Bvtr+HjBx4Zge46NljZBR6eg2wptnQxYXByM9+wLmmefOPKCZle3oLRaUFEnPziCI+WibP6Rg/2qNR04yt0Xz3RPit3xzogiruv6AiDeMIxVQA5w6VH7A4F57jFPoXAt1Q2CA0WynN7Bzm3SHV605FRMTnaICvaXKYKjDalYrYLcEhmL/8gevoi2vQ1Yychc2HNcXZOg46iqzBULgqCjgNbuEHYe1f3Vz0emQB4uhbc3C/63UdDUilOhlPpmwZf7ZaHOGUuGP7ajS1DTACfNh/NXaJyua5x2kvTED+cYNDXW4uXtS5cWRW2joLxWUFEnS84jQ5SAuwNn3rErgA/tj98HVh61/3vAw640SqFwB93dgi37BSEBvYMIPt0heHzTWpj1PJboOzhY7Jwom80aVpuM846G6ga50Gjphi32iWttRU8A9Cxq1jfLRc/6Zmjr6LUnI3M+VD4DwAdbB17bZNKIDtOICdeICdPw9HBOONfvlAVFJ84evjVsW4egvllmriTHmPD31QgP1li+RJa379+9EZCl7/osjYx4OGmexlknaqPuYa5wHmeyR0OBcvvjRqAnB0rX9WBgnmEYv9F1fdCTdV2/CbgJYN26daxdu3bMxlosFkpLS8d8vqtQdkxPO7oskBLW28OirNbEAy9G0ibSITKdjQWw8U/wyO21nLqwc8T7RfpCYz10H9Wvejg7WtphQRK8u9WHLksoi9Lb2bVxAx4eHpw4PwQPjzIifWV1pU1Ac5uclG4yQcRsP7waXqIr+ed8sdvGb6+tIsB36A8dT7OFmICyEZ/Hl/vCAG8uXlFPTEDHkMdZfCArHkQn9H16/v4y6N7d3Q1AYkIcvlo5vn5AN7Q1TZ/3yFS1Iz5+6LxMZ0S8AXBMNQ0G6vrsuwP423AnG4bxL+Bf9h/HlZdVWlo67JOZKJQd09OOj7bZ6LTIHGshBD/9t4wZU/s2gd2fs+TsP/LpDvjhY2H8/U5Iih7ei7VaBXXN8LWTtX4l+0PZ0dEp2LBBEBUK/5VrlMyIqmSnECSlzqGiNYXaJjhzqdbjEdc3Cz4xpGce4KeRmhDAwcbP6Qw+hZc2xnDu8mFaBQSUUdEyfKvAuiaBcUj2B5+TEUpFy+DXa2kTeHvBvNmDf3lPSkqiqKgIkAOLj37+0+U9Mh3tcCacshk43f74TGBTn30ZwM90XX8fmKHr+v+5xCrFcYvNTdNkW9oENY3gb2/7+rEhMzK8zR2QexMrZ9bxs2/BKQuhtQN+/kT/UMZgmM0a3VbnQyrltQKBvP62HOlhh9hkknjGzIXUNMqmU31DGqGBMu7c1intSZsxDyqeBuC9r0b7Kgxkwx7ZhGvJbPD3GfoDobkNZiUNfZ2ZM3tnWaalDV7oo3API4q4YRi7gEpd1zcAWcBruq4/at93tWEYZxmGcRaQaxjGfW61VnFM09LSwpw5czjzzDNdfu3yWoFJk5kXdU2Ch1+X2yNa/gyWShYvPRVN0/jRVZASIwco3P88I0718fKA4irnvmAeLJZhkg175GiyhTOgPP9LAFLSF+DnAwmDdA0MCdQ4dbGs0ExOWwA1r+KhtbM/Hw6XjK/o6PNd8v+Th0mM6bYKPDyG73eiRHzycGop3jCMHxiGscowjG8YhtFlGMbNgxwzeFBcoXCSxx57jIMHD/Lhhx/S1DTKFcNhEEJwqLi3i9/T70NTG2QltlBq3IOffyAnrbkIkGmH994A/r7wxe7BFxD7EhwgC39G6ihY1ySHMvj7aHy2Q25bswgOH9wNQGTCArJShu6kGBGiccoiCIudB7ZWAttlj9eeas8xUN8sq1Y9zLBy7nDHwczE4Yt0lIhPHqrYRzEl6Orq4oEHHuj5OTs722XXbmyRBTa+3tILf+8rWWgT2yWXc04/+yp8/QJ6jk+I0vjeJfLxw69DVf3QAu1h1ujqlp0Ch2NfvsDXGxpaBDtywWyCFXNt5B3eA0BaxoIRY/BxESZOXjEfgNZDv0XTBJ9sl9ccCxv3ysXTE2YOPSZNCIGle+RS+czMzJ7HqakDS+4V7kOJuGJK8Pzzz/dbrd+3b9+4r1lTU0NmZiZz56Tx4C8v4sl//Jxn323G0g3L51jZ8sGfADj/kgFfLDldh5XzZPz6jy8OH1bx9ICSYUIqtY2Ct99+j9qy3azfKasX9ZnQUptLZ0c74VGJnJAV5lSr0vkzwwmLTKCrcR8LUtuwdMPbm514MQbh853y/9ULhz6mpR2iQiHIf3jbsrKy0DSNpKQk/PzcONpdMQAl4opJx2azcf/99wMwf770NPfv3z/u637xxRfk5uZSWlKAsfktnn3yId6Qqcyk+31AS3MDs+YuHbTplKZp3HmZ7JNi5MA7Xw59n2B/2Wd8qGER678q5YGfX8B3bziZ97fIFL5TT4B9u6X6JqctIC3euUKYiBBITpO1dfOiZFzmjY0ybj0aahsFOw87vhEMfVxLG8xOHtm2+Ph4XnvtNV5++eVR2aEYP0rEFZPOCy+9QU5ODnHxSXznez8HXOOJFxQUALDslMu453cvELnwXoQ5EJ/ObXz13i8BOP9rNw15fliQxve+Lh//842hm0x5esiQymBZKjUNgl37jmCz2WjvDuFgiQ9eHoKMiCIe/esPAThlzVlO99f29NCYO0+uQor6j0mOlj1cNuxx6vQeXv1cfiNYOW8EL1uD8KChd/fl4osv5sQTTxydIYpxo0RcMWmUVNl4b4uVX/xaeuFrL7qTDo+FAOzavX/c8yzz82WvkVlZSznp1MvojvoOAB25v+DQge34BwSx5szLh73GmkWwZJYMqzz30dDH+fvA1mzRb4Bxl0Ww/aCgralEboiUnwgxPtnc/7NLaWqsY+HSs7n7+7eM6nktXyq/reTl7uHik+W2V9dDSeFh/vfy38nL3Tvs+S1tgjft30iuPG3o49o7ZXWrj5NtaRWTgxJxxaRQ3SD4fBfs3bWJIzlfERQcxuVX3cC8rBR8fPyoqS7n3Y21o57q3pcjRwoASElJ5tMdUN9iIjmqi3BP6eWffvY38PUdvsWfpmnceL58/MYGqBikUyBIb7a1A7YekPu7uwWb98qhE60NMtbvnXgDAEVbf8mhA9uJiUvh9p88Q1To6P4MV5woRfzwwV2csUSGfLIL4H8f7uGvv1/HS88+MOz5b26SRU6LZsCsYUIlLe2yq6FiaqNEXDHhtHUIvtgtCA2EN16UgnPhZd/B19cfk8nU00lwx879fL5bjLlv92G7iMclpPGWffHvstO8ePDRT7j86ru45uZfOHWdGQkap50gJ8D/+92hj4sMgaJKaO+Er7IFFfUQFapRU1UKPhl0es7GQ+uA+nfx9PLmrl++wryZYXiMsr/23KxZ+PoFUFVRRHtLFRetkts/z5FZIbOyhu5i1dklePVz+fiq04c8DJD9VKJDlRc+1VEirphQrFbBl/sFGlBTcYjNn7+Jp5c3F1++rueYlDQp4g1V+6lthANFoxdxi8VGcZEMp7Sb0sgukCGPNYsgMTmTW77/R0LDopy+3vXnyHzqjwzIKxvcHk3TiAmXIl5UKSfvAFRXlUKkDNusXuzJtTf9mN8/9A7xqYtHTCscDLPZzOLFUqgP7PuKi0+Ww5RruheCX9awIv7BVpn3PSNBphYOhc0mf0chAUMfo5gaKBFXTCjZhYKqOrlo+MpzfwbgzPO+1U9QUzOkiOcf3kdUKOw5LLMpRnWf3Bo6OlrxDwhm/R65Mne67vzYsaOJi9A4f6UsUX/inaGPM5tk98DYCK2nL3dVZQlEXWG3wcw1N/2c+SeswdMDIoLHZA4rViwFYP+eLYQEaJy+uAsALfGHpGcOXn7ZbRU9QyiuPH34vuGtHRATxqi/JSgmHiXiigmjs0uQnS/zjuvrqvjgbdlW9evfvLPfcSnpMuetIC8bs0kjOAA27RVOT5i3dAs+2yK98Ki4WXxoH1dy3oqBx1qtguoGR99r+f/RfbwdfHOt9Hg374Mjpc5/qFQ2BoLfHAJ8rT3eb2MLpMYOXaE5EitXLAdg/25ZUrowdgcIKyLyChpavQY9572voKwWEiKHL7MHaOuAROe/qCgmESXiigmjoFw2gDKbNf730iNYujpZccoFJKX0/16fao+J5x/ZhxCCAF+Ntg6Z/dHROfJ0dyNHUGhPL/SIvYrWdpidDBl9crG7LFKwa5sgIx5WzddYvVBjeZYcUzbYgmpYkMa5Ujt5/mPnnrPVaqXeQ458W71QVniCHM82nlFljlS+Qwe2YrVaqS78AqpfAc1j0G8KnV2CZ96Xj687R35jGA6bgPBg5YVPB5SIH4eMdaFwvPfcXwBhgfLnTZ/L3h9fu2LdgGMjouLxDwimqaGW+roqAKLDoKwG3t0y+CxJB9kFgrwyaGssAKDW41xgoBde3QAnZMJFqzQWZZpIiJLDFFJiTZyyUOZed1kG3ufyU2WBzPqdw1dpOqirrYRwmVp4mi7H7HRbBV4ezudfD0ZMTAyJiUl0tLdQlH+AnP0GFP0aD1M3H26TMzf78r+N8jllxA9foQnym4y3Z2+vGcXURon4cURTq+CrbBuvfi7Yn2+bUDEvrRF0dsl5j1arlaKCHAAS0pby6nrBv98V7Dgk6LIINE3ryVDJPyzTATVNIzJUw9dbzpL8KttGc1uv/ZZuQacFdh+GmHCoKC8Av7nUdaXi5y0XNB00tghiwmFGojbo/Mn4SBOr5kNVw8AqzKhQjTOWSE/1xU8HnDoAY189+KZhtlYzz94XqqkVkmPGHkpxsGyZ9Mb37NpCzv6t0H6Qb6yuBuDPL0FRlfzQaGkXPG/Pcf/2eYw457KlHRKiRp61qZgaODMUQnEMsPOQjQOFcsBvRDDsOQJFlYJlWbJntTux2QR7jkCI3QuvKCvAIkLwmfsbrv1DIB1d9gM/kH1IVi8UJKTq7N+9mfwj+zjhxN6KFF9vjdhwQXGVzBKZkSCH8BZWwOxYiAyVoYKK0gKIuw2AtUt6FzSFELR0wEnztWFFKinGRFqNjco6CA3sv+/K02WWxwdb4ZqzxLAj0DbslfHpKPMWzKYLADmebbCWs6Nl2bJlvPLKK2z47E2qKorx8w/km+dGU1AnW8x+/5+hzEoWbD0guzbOT4els0e+bkcXxEcoAZ8uKE/8OKC1XZBTKLMNwoM0PMwaseEalm54/ytBSZV7BjE4qKyTQwUcQpp/JAfmfUBH6PV0dMmwxqWnyK/6lm6Zxvdlyy8h4AQKjgzsoWIyaUQEa0SHQkEFlFZDeLD8APCyZ1OUlddB1DcAuHhV77n1zXLBzpl4b1qsRscgU9oSozROWSh7gj/xztDNsWw2wZ7iGADSw3J6tmlA2DhCKQ4ccfEdW2QQPHP2CXh4mLn7chl+yi705PUvoKRa9ne57WLnvGtNU6mF0wnliR8HlNUING3g1+ggfw0fL8H6XbBkpo3MpOG907EghGBfviCwT2O7d7f6gv88/M01/PWuCNL7LDiWVgt+9RTklgTDgo3sKPzDkNeWYj74Pcttp4DZn4UZ3STHePZs7+iC+WlONpsKBk9P+1CEo0If3zoLNu2T3vjsZLjwpIHn782DVksAdBSQGS/nT7Z2yHDPYGGc0bJ48WI8PDx6Zls68sMD/DTuvUHw0scdxEf5cMJMaeNw/cAddFkEft7g76s88emC8sSPcYQQ5JbK4QWD4eWpERsGxkHYe8T1MfK6JhlbdjR4qm0UbC1dBsDpM7f2E3CA+EiNh78P557YBSYvyn1/wIEjjaO6Z011JdbIGwG4dHWvn1LfLNP6QpwMH3l4aKTHQUPLwH0pMRp329uu/O012HW4/2tX0yh47kP7D9UvERWTAEgRT4kZ1dMZEl9fXxYs6M0VnDV3ac/jGQkaD6+r57pzNOana04JOPTGwxXTByXixzhNrdDYPHyRi9msERsOe/KGH4AwFnKKBL590pYffROs+ELtW6w+YfD0By8Pjbuv8ias+30weXP/c+0jjknry6dbG8A3HQ9rGcuyerd3WiAjYXQeZlK0DDsNxtolGpefKsvTf/kkPPGO4N//K+XW35XyzXsFxkHQRAdUPk1EpByKKwREuDB1r2/XwFlzhq7UdJYuC8SEKS98OqFE/BinpFpgNo98nMmkERYIX+4Tg6bWjYXmNkFhRe/C4J4jgo8MwNYBed8nKXX4VbaLlxSCpZrCumg+2ObcPYUQvL8jBIAkr0978qG7uuVkndGm9YUGgq/34OmGADeeD/osOTnouQ/hmc/iWH9Yp9OisWo+RJReBO0HiYxOoKNLEOg79BSdseAQ8eDQaKJiEsd9PcHAhVzF1EaJ+DGMzSbILXF+kcrPR6OjC3a7KKxyuETg6SEX02w2wSP/te8o/gOBXg0j9i5Zc9payLsbgH/8VwzZz7sv63dBQW00dDcwPy63Z3uDvV/ISOl1R2MyacxIgPpBQiogM2Fmab/FfPh6KPwVVDwBlc+S1vodfnU9NJZtACAyKp7mNkiNG9XtR+Tss88mPT2dM8+/jk7L+K7Vaf+QGWtrAsXkoET8GKauSTZjGs0iWmQIHCqC8prxZax0dMrhxI7ins92IocV+3ZCyR9ISp094iJqfGI6Sf7boeETmto0fvscw5beN7Zq/O01+w/5PyE5qTf43G0de1pfQqSGzTr0/qAAP6zlT3Na1mEev3cpPkW3kLfjUQ4f3EVXZwf+AcH4+gXQ3e36UEVkZCSHDx/mZ7+4j+a28V2rWbWenZYoET+GKayUnvBoMJk0QgNhW874Kjv35suMGLNZo6tb8PjbcvuS2E1gayc5dZZT11l5yvmQewtepha2HoB7nx58FFlh3gG+90At9c3g07UTKh4jJi4FkK1vw4IgOGBsAhocIPu3tA9R8n/h12/lsRd38rP7niM9cz5rTj0DoKevd2R0ApZugaen+0IVUSEa3UPE7p2lu1sWMymmF0rEj1E6OgWHS8YmGn4+Gq3tkF8+NhEvq7FxqKi3Q9+bG6GiTmZl+LX+D4DkPvFwm01QVS8bUFXUyrJ6q71ScvnJ50NHHsHF3yDAV44h++2zYLUJWluaePnZB7jpqhO49vqb+aowC2xddOy9GhDEJaQDstAlM2FMT6WHjHi5SDwYXt4+ZPTpHHje+RcB8NmHLwEQERlPTQPMTR19OMdZQgIAbfiBziMhUPnh0xEl4scoBRUCIUZudDQU4SGw6zAjNpw6mvZOwduflfDXX52HseVDWtoEz34g9910PpQUZAP0LGparYLyWimSJ83TOHmhxswkKK+RQj1n3jKCQyKoznub71+Qj5+3DM3832Pw4P0/5R8P/oDcilDIkgH3VO93Of2Uxdx4+29JTM5ECPk6xI6zAjE2QsPqZITppFWrCQwKxWaVMZjQ8HiC/GXan7vw9tIIC5Lhs7GgRrFNX5SIH4N0dwv250PYGHtVg0zzs9ng4CgGMggh2HFQ8N/n/8C2ze/x4G9v5Zn3bTS1wYIMWJYFhQUHAOmJW7oFFXWwOBMWZWokRGnERWgsyNCYnyGFHM3EiSedA0DFwZe5/1Y5juyrbPis5m5I/hXa/A/AI4xT5nfwz99fxP/d9yxXXfdjNE2jqRXiI8e/WBfopxESOHRIpS9eXl6cfNolPT8HhCawdI427l4pI5EYJfPQx4Jj4Vcx/VAifgxSWiPosvSWoI+ViBA5u7Gp1TkhzykU5BS0suHj5wCoqPfhtS9kGfetF0FrSyN1NRV4+/gSGZ1EVT0sz4LZKaZ+i5yapjEvTWPhDKioheWrZCfCLze8w9xUjUfvhtToDmxeyZD0M4QwcdXp8Mjt9QOec2sHzEx0jXjOGCakcjSnn31Vz+OZ6XHD9ldxFZEhGt3DLMAORUu7IMgfUmOVFz4dUSJ+jGGzCfbl9TabOpraRuF0QY/ZpOHtJYf/jjR5vqTKxo5DcMB4idaWRrx8fCH9L9iEiXOWSSEtzJNeeFLKLGqbTMxKgrT4wd+CmqaRlaqRkQAps8/Aw8OT7D1f0thQS0y4xoWZL0L5o3hRxz3XwI3na5iPulRHlyDAV2bcuIKYcA2bk19M5i1aRUSULPBZumj8+dvOEBIgPzBHExcXQtDYAktmu/+bgsI9KBE/xqiql4UnR4cPbDbBa58LvnEvXPkr+O2zgqLKgX/sNpuN/MP7KC0+AshBCNX1cqzaUHRb5YJjZAi889/HADjzW69D6Fqw1LEoUk5QKMyXIh6fNAsfL5iXPrxoaJrGohkaoaFBZC08GZvNxtbNcrLB/l2fweHvcPPy5zl18eDXaWiBLBcuJgb6ycydto6RRdJsNnPNuof52mXXcc5ZI0wkdhGeHrKXzGhCKnX2VgQqK2X6okT8GCO7UHqffamoE9z1CDz8uiw9R5OdAq/9Hfz2OTmezMELT93P9ZfN5/UXH+rZFhUm+3Qf7cHbbIKCchvNbXKAQOGRXeTs24p/UAxflduFq/DnvPn8b2hsqO0R4IjY2SzLGryX99F4eWqsnKsx7wQZUtmy8V2EEOzavh6ABYtPGfQ8q1Vg0lzT8rUvMxKcC6l0WQTLV13AC889gbe3t0ttGI6kKNn/xBks3QKLBeaP8GGqmNo4lUWs6/r9wAqgALjeMAyLffv5wM8AC7DdMIzvuclOhRPUNwsqauVQXwcNLYLv/lVOsgkNgDsvh4wEeP4jOXPxo22wYTd8Y63gsjWQtUCOwNllfN5zDbNJIyxQsHGPYOls8JJNAdlzRFBZB4tTwN9H463XHgUg9eS/s6/BREqMlepdL7NnZy2XnBGL1Z7IvHL5IqJHUfQSEaJx5WXn8tyjd7J103uUFOVSXVlCUHAYqRlzBz2nzr5Q5+3lWoGKDdcwmwXtnWLYxdLaRlgy2zXdCkdDTLiGOCRGDKkIIaish2VzXNsGQDHxjOiJ67q+AIg3DGMVkANc2mf3bmClYRgnAVG6ruvuMVPhDLklAi+P3j9eq01w79NSwOekwJM/kcMQYsI07rxc4+mfwqr5cgjAE+/AXY9AWuaJeHp5k394L02NdT3X8vPRMJthwx7Bp9sFn+4QtLbLroOaJgcff/ze82Dyo7BLes23XmTmkiu+A4Cw2Vi09Ax++KsXuPW6c0b93M48ZQaJKTNpaW7g+Sd/D8D8xSdjMg18C3dZBN3dkBbnenHy85E9UeqaBi86AtnkytdHdjqcaIL8NZKiZcfG4ahugPQ4BnSRVEw/nAmnrAAcTTXfB1Y6dhiGUWQYhqNOrAtw73QBxZC0dQj+/e+n+ebZgezc9hkAT78POw5JD/yX10HIURWLcREav75B44HbZDx7Xz7c9x9vZs07CSEEe3Zu6Hd8sL8cJhETLj8I+lZA/uPBH9De1kLS8r/Q3O7BrGRYMgu+deM9/PYvb/Kftwr5wW/e48ffvxxvr9FH8cxmja9dKMX/g7efBmDB4pMHHNfeKahphJXzxl6hORIx4Sb0mbKA6WiP12YTdFthYYZsZTsZzErSeqclDUJLm8DHCxZnur5/vGLiceavKRRosj9uBMKOPkDX9SVAlGEYO1xom2IU5JcLvvriVTo723n52T+z9YAssjFp8H/fYtgUt8WZGn/6jpz+svUANEX/GTCx21jv1L2/3LyRj955Fk/fUBoCrgHgmjPlwqTZw4Nlq87F6hHH0jnjGwV34YXnA73CuVBf3W+/TchF3VMXy/Fq7iQzSTbGKqulp7rUZhOU14GPNyRPghfuIDxYIyqUQYuTrDZBU5v8RubqUJNicnAmJt4AOBp4BgN1fXfqup4A/AW4eLCTdV2/CbgJYN26daxdu3aMpoLFYqG0tHTM57uKqWaHECA6obxoFwBbt3xCYVgn4M3tFzVz7glDtODrQ0wAPHGXB9f+MZzC5rkw4zH27forMQFlw57X2dnBtb/4MQArLn6az4s9mJvSxYVLa3E4ed1WiE8DH2A8L1tqaiqBgYE0NzcTGBTMifPD8fSU9llt4GW2sHxGOdaO8d3HWeKDINxHVkmaTGCzQWIIeJoslJUN/7q5mxlR8v1x9O+v2wpJodDeDKUjhFxcyVT7m5lsRmtHfHz8kPucEfHNwJ3AM8CZwCbHDl3XA4EXgZsNw6ga7GTDMP4F/Mv+47h6nJaWlg77ZCaK8djR1iFoapWLkPUtslIuPBhOyNRG/fXbYceuXBvbc+qpKJd/sLaoGyiv9yY5Gs5fFUhFi3NNtMPD4b4bBT/8h6Az5lpyKk0cLPUjODhkyHOe/Ps9FBYWkDhjFXsaZLjjqrVeVLb29lwtrxGcs1xzSXjj7LPP5uWXX2blypPJrU4ATQ4yCAuC2THlJCZO/Pujvlmw7YAgJBCyUjXKy8sm/X0qhOBAbhn5tbH4+8jX3WoVVDfABSdp+PlMrBd+LPztTlU7RvzOaRjGLqBS1/UNQBbwmq7rj9p33wGkAg/rur5e1/XB870UNLUK3tls49+vF7FgXgaL5wRz2tJgLj09mJ//9HbW7xKj7lMCUNMgS+wbq/YA4OEdBok/A+Db5zHqAo756Rq/v0XDJNog+lv84rHmQQt9hBC8/OwDPPv4fWDyQ5v7FvXNGvPS6DdNp61DEDqODoJHc9tttxEZGcl3br2RM5dq+HtDejycukhjkDXOCSE0UGPtEo0lszS3NbgaLZqm4ectc+UdrQJqGmFOKhMu4Ar34lSKoWEYPzhq08327fcC97raqGON1nbBZzvlH9L+7a9SVZ7Xb7+nqZOGFvjIEJyyUGYYOIMQ8FW2INgfvjqyF4DkVY9zpDMKGjcRYfYBRp8wtDBD4/TE5/mw4HJ2Fyfw08fgnmsEAfbhuTabjX/8+S5eff6vgImM8w0O1wQSGy4XUPsuljW1wYnDD/AZFSeffDJVVb1f+tYucV9nwNEwFRcIPT3gtMXw+S452UjT3NuESzE5qGIfN9PZJfh8t8Bmk9kdO7fKzJG77/kX72xo5J0NjXz3h38jIliWdL+/VTg9kKGjSzbyD/DTOHJoN3hGUWQ5W+4s+Ckf2rM4xsIZJ6fCvrMw2+rZegBuexBKquQH0UP3386rLz6KKfxsZl2ax+G6mQT6we9vlhWeDmw2AULmVruLqSDgU5mYcBNrl8g5obNT1NSeYxEl4m7EahVs2itoa5dfubstFnbvkEU0S1eejZ9/IH7+gXh5+wBS5AN94ZMdkFNokyI4BCVVNto7e/uC5OXuhYS7sNi8mJ/cCE0b+eT9F+jqGltv0jnzl2NuN7DtWEpytJWiSrj+frj0HitvFNwFy6qxzXmbnMpEPD0Ev/m2HCrcl6Y2SIxW7U0nm7AgjXOWacxOUr+HYxEl4m4kv1z2yo6wp/cdzDZob2shMWUmkVGDL2r4emvEhsn87rc2Cw4V2Qb06iittvH5LvAwy2pKq9VKXt5BiJbpfbdcEkx65gKaGuv4csPbY7Ld19efWXOWINrzuHbZx6yaD5ZuqG0ygU8qmP2YkQDfWAuv3lMzaOl2Wweku6HgRjF6/HxGv3CumB4oEXcT7Z2CHbkQGdq7bee2TwFYtGTNsOeazbKvto8n7MyFNzYKPjZsHCm1UVAuBTwimJ4UvtLiw3T5rwXPSNLiYFYSnH/JTaxeexnRMUljfg6LTzwNgO2b/8uvb9D4331wTuyvYdsMLk3/Hf/6gca3z9PITBg4F8zSLfD2dF0HQYVCMThKxN3EniMCjf49vXfYKykXLznVqWt4e2lEh2nEhMn4t5EDm/dBeFD/niB5uXsg+gYAzlkmF9ku/Pqt/OL+F5mVtWTMz2HNGZcD8PnHr2KxdBEcoLHfeAU68jhp5UnDnlvXBJlJo8+OUSgUo+O4EvGWNuH0gIPxUN0g51s6ZkwCdHV2sG/3JtA8MIWeTlmN83ZomkaArxT0uIiBlXZ7sgshdC0mzcJaF3avSU3PIi1jHs1N9Wzb/AHVVaUU5mXj4+vPnPnLhjyvyyIwm2CG6suhULidUc5Cnzy6u4XTMw4ddHYJmtugplGQVyZLsgFCAwWZCZAQ5Vw71NHaudWe9tc37Wz3zi+xhFyGZ/q9/PwZqe76LMEFK2DFvLHPwgTYlhcPmonZMcUE+aeM9yn047SzryTvb3v55P0XaGqsBWCRvgZPT68hz3F08FMLmgqF+5k2Il7fAs1tsnhkpGKFxhbB5n2ChhbQAM0k5zI6Ut3aOgRbsiG0WOZlu7L44VCJ7E3RN62uukHw29dmwcynsADRYbLLnJEj/81NhZ99S4yqPasDq01QZjkZPOG8Fc59sbJapY2dXbKE1tsTQgMHz3U+9cwreOxvP2XT52/Q0S4/BfXlQ7dOaO0QBPqpUV8KxUQxrcIp3VbYmi2GTb1rahV8vF3Q1U1Px73oUK1ffqyfjwxLtHfJAhtXhViaWgW7cyEqpHdbdYPgzoehoSsGOvK5VN/Nf34Gr/wKbrtYhlz25cONf4SNe0dvx//Wt2LzjIOOPE5bFjfssV0WQUWdoLYJ4sLhlIUaZy6VMffyWtl7/Ghi4lKYu3AlnR3tbP7iLQD0EwcXcSEEDc2gz1KjvhSKiWLaeOIgmwyV1kBusWBm8kCRaGoVfGwIPM0Dqx6bm+p55rF7aW+TXX+8vH256rofY/aL5aNtgtNOgJBxdNiz2QTbcgQ+3r2LedUNgu//TdpMy0607LO49oHDmM0aQf5w6WpYqwt+/x/Ykg33PA43nCv45hnO2ZFf3Mg//usHJkjkP3h6/XxI2yrrwccLTsiUHfb6hpFWzNOYkyLYtE9Q1yT6FewAnHbWlezbJVvmRMUkkpgyc8A9uq1ycv2MBPlNQ6FQTAzTSsRBCsT2Q+DvKwgOkMLU0AKFFYIjpbIN6GBl6889cR+v/ucv/ba1NDXw0988Q3Ob4IvdgjOWjD2OW1AuRSw+ojdkc9cjUsDjQ5so/XItM2dm4B/QvxlVcIDGb28SvLIe/vmGHM4ghODqM4e3o6wkj5t+sRdrwCy82jZx708vH/Q4m01QVgtZKTAvbehc4ZBAjVMXw6c7Bgr56rVf529//B42qxV92doBYRebgMo6WDJTtmidiiXoCsWxyrQKpwB4mDWCA2DjHsE7mwWvrpfed2GFDE0EDyLgHe1tvPfGvwH49rr7+O4PH8JkNvPJBy9QUVZAoJ9GlwW2ZI881X0wKmptfJndPyf6r69CcZUcQntSxD+gu555iwZPy9M0jcvWaPzkGzL3+8l34en3hx6xdTB7O7d85w5aA74Ooos/3pVJcupA79hqF/B5abBwxsjFHr7eGqculhPuaxp77x0SGsmylbJD4fJV5/U7p7FFthRYu0RjZrJJCbhCMcFMOxEHOc8xxh7vjrX/Cw8eOg776Qcv0txUz8w5Ot+4/idcfMU6TjvzSmxWKy8/+wAgqyrLamBf/uhEvLZRsH4XhAX25oR/tE3w4Ta5YPiLa+HQXjntfd7C4XOr1y6RQm7S4Kn34OY/wYbd/dcAtm56n++uu4HmaDmi7PI1gvmzogZcy2aT1aLz02VnQmfF1SHkYYFQXtt77x/84nHue/ANVq6+sOfYmgaZShjsr6alKxSTxbQU8dEghOB/L/8dgIsuv61n+xXXyMaM777xJA311YAM1ezLg0932KiqH37YrM0mKKuRsyY//O+fuOaiZPbs2EBpjeDBV+Qxt18C8eHdHNi7BYC5C1cOeT0Ha5do3HONzBbJLYGfPymn0j/2luCJZz/kx3/eTlfWFvCbTVKUhevOHXySemUdzE6SIZTRese+3hqnLNSYnSwXPGsbBRYtgrR551FZBxW1gtIaQWggnK5PXgtYhUIxDWPio+XA3q/IzdlBUEg4p57RGzdOmzGP5avO48sNb/P6i3/j+lt/jdmkER8JjfYF0ogQWJHVfxq4zSYzX97bImhshUCfbv73wgPU11XxkzsuIOasIto7AzhloayePJi9i46ONhKTMwkNG+gxD8bqRRrLswTvboEXPpFhmec/BlgLCTIz5MylgnuurMNiihlwfnW9IC5ShlDGGt4wmzUWztCIDLFR1yT7tHh6yHAWyEXmuPDJmyOpUCgkx7wP5fDCz7nw+p5ugQ6uvO5H8piXHqGttXdWVbC/TEFsbYcPtwkamqVH3tou+GKXoKVNxq7jIjQO7f+C+jrZ37ot8EryKgMI8e/mrstlrHvvzo2Ac154X7y9NC4+WeM/98Afb4U1WeXQlo135w4e+i78+BsmwoMGVj/VNQn8fGHZHNek+cVHmpiXbmJ2iomMBBMpsRopsRpJ0aqhkkIxFTimRbyhvprPNu6F+DvINf2cy34h+N5Dgn+9KYuBZs5dwdyFK2luqufj954fcH5ooIanhxTyg0U23t0iqGuWHqmjQOizD18C4MJv/Bpz+h8AsOWuw9YlR5HutafmjRQPHwpPDw19lkZW4KuwfR5rYh5h3iAdA0EuRnp7wuqFagiuQnG8MK3DKXU1FVSUFTB73on9wgZWq2DDHnj0lQ66F+wAYPthua+6AfYcAT6Rcees+X+F/Wex4dP/csGlNw+4R6CfhodZYOTI7Je+4thtsbDhs/8CUOK5DqvmT0DXBpqOPMZzT/jznTsfYN+uXk+8qVVg6ZZFS95eEDKKkWUH9xsAQza0qqwThAfDSfM0Ve6uUBxHTFsRF0Lw4++eS27OTmbNXcpNt/+ORUvWcLBYcO9T9gIbEqC7gcXpzaw9KZHZSVBWA/sL4Mt9kFcOG5sXwZJ8dhy6guamegKDQgfcy9dbxsqPZse2T2lqqCVy9i1sPxKMjxf83zfD+OlWjTde/jtLV5xFfV0VoWFRmP0z8PWG5Gjw9Ya8MqhtEoQHOSe4Ofu3AjAra+mAfdX1gphwWDFXw1OFOBSK44ppK+K5OTvJzdkJQM6+rdx582lknPIIhdrNWKwaEQFt1Oz6IRHiE/7w0P6e+HByDCyfKysjdx2Glz6Brw74YZvxH95453O+eeX5Ttuw/qOXwSuBpug/gBVuOBeWLZnL6Wd/g4/efY7f/uxqADLmrCQpSmNZVm8cOTFaZrbUNQvCRqgUbWluoLjwEJ5e3qTNmNd/X5vAy0vGwJWAKxTHH9M2Jv7RO88CcNYF1/KtW+7DPPtpDttuwWLVuGAlzLbcBOX/4LwLr8RsNg84X9M0Fs3Q+N3NkBlxCDwCeW7LidQ1OZcnbrF08cVn78KcV+i0+qPPhItPlvuu/86v8fT06kldPPHEk/oJOEjvfs0iDS+PwXuW9OVgtgylZGQu7Nc9UAg5Y3PVfBUDVyiOV6aliFu7u/nkgxcBOPnsdWxr+THWiG+CtQ0t9zpWxL/P5vWvYDKZOOeiG4a9lqZp/PyGAGjaTCeR/PAfNnYcGr7JFsDmz9+kNepXELiU6DD42TW97WRj4lL65aRf+bWVg2Zy+PlorF4oh9h2dg19vwP77KGUub3xcCEE3VZYOpsBvU4UCsXxw7QU8e1ffUx9bSWRGZfwwDuLOFAI0aFwWuwjiIpn+L/vX4i1u5tlq84jMjphxOvFx8WTKe6DjnyOlJm46xH41n3w8qeCjkHENb9C4/5XIiH2Rsymbn59/cBy/6uu+ylBIVHExMaxZMniIe8d4KexPAtqGhmmzN6+qDmnV8Sr6mVFaJqaYalQHNdMi5h4eY3gn28KUsK9iIkWvPvOq5D2Z2pib0c0ytLyX14Hvh7rOGQ8SXHhIUDOmXSWNWvWcOjvy0ld9Xda/L9GaQ384w146TO4+gzB3FQorobsAvjvF5FYfWLQrE385GpfMhMHCmkXYbz69m4WzDDh6ek57L0TokxkJtnIKx28A2BOjycuFzUbWwRB/uDnM3gPcIVCcfwwLUR841749VMA4Zg0gc3yJ4gPBk1w+Rq5oCgX9fz48a+e4vYbVhEbl8qS5Wc6fY9Vay7m0b/+iKqtN/DKh+ex87AXz7wPB4tlM6v+mKHyaW660Mxp+tUDrtVlEZg0WKVHO53utyBdo6JWdhDsO6ChuqqUmuoy/AOCSEiaQWeXoNMCaxZrNDc4/fQUCsUxyrQQ8ZQYuOYs2JptIafIBB7B+Fpz+MuPZg3wgufMX8aTL+0hIDBk0AXNoYhPyiBtxnzycvew/cv3OGnNRSzPEnzwZTMPPHUEm8mflFgPwv1b2PbWzcQGVXHppTkDriOEoKoBVs4dXVtbL0+NkxfA7iOC0mowaTLv++D+bQDMnLOEbqtGTSOcslC221UirlAopkVMfMlsjT9+R+OSjAcRm4LAmMVPLz08aBgDIDltNuGRsaO+zxnnfhOAD95+BpDecEvBv+k2TsC2dRZ5b2Sw7fmF0PwV37rxHjwGCZNU1UNqjBy8MFqCAzROXmDigpUac9PkxPjt22UoJTlDp6EFVs6T4ReFQqGAaSLiAK+/+gL3/fqnYOvgjjvu4KTVQ+dzt3UISqvlKLKKOkFFrfzX0CJo7xR0dgm6LAO7FJ5+9jcwmc18ueFtGuqrEULw7v+eAODiK9aRmJwJQEpqGmvP+eaA+9Y0Su956RwN0zgGH/v7amSlmjhvhUZZvvTEFy5awjnLNFJip82vTKFQTADTIpzy9ttvs+7WaxBCcOPtv+XCr9865LFWq6C+WbZIDfYHqw06LXJ0W2UdNLaB1QrWblmCHx4s8LHnWIdHxrJ0+Vls2fgOH7/3PFnzl5N/eB/BIRHc+v0/YbrTxNYvP2DZwmg0j/4vXWOr7Fuycp7rim78fDQCfAUeHh5ce9nSft0UFQqFAqaJiHt7e+Pl5cW3rr2Jq6778bDHVtbDwhn0mxzv7ytzqVOOirCU1djYvBfaOnurJs+64Bq2bHyHD956msK8bADOOO/qniKb5avOJSagjIqW3utYrYK2djhnef+BzK7gk08+ob29HR8fn5EPVigUxx1Oibiu6/cDK4AC4HrDMCz27WbgMWAGsN0wjDvcYeTatWv5dMMufH19qesY+ri6JkFMGMweZIjyYMRFmDh7meCrbBl+iQqF5SefT2BQKIcP7uoR8ZEKhmoaYU6KjGm7A19fX7dcV6FQTH9GDLDqur4AiDcMYxWQA1zaZ/d5QJl9n7+u68vdYyakpWUMmRPd3imn7Hh5wrKs0cWj/X01Vi/SOHGOXEhs6fDitLOuBGRpfdb85aSkzRny/K5ugckEM5NUqEOhUEw8zqySrQA+tD9+H1jp5L4JobJOTtpZMRfOWqr19PkeDSaTRkaCiXOXawT6wYrTrunZN5IXXtsACzNGl06oUCgUrsKZcEooUG5/3AiEHbWvaYh9AOi6fhNwE8C6detYu3btmAzttoKvp4UYc1nPNpuAKD8IDgBsUFk5pkv3Y2YMRJ8Ux+vLVlJaWsLlF6/C37+s3zGeZgsxAWXYbBCZBL4alJaO/96jxWKxUDoZN1Z2KDtGyVSxZbraER8fP+Q+Z0S8AQiyPw4G6pzcB4BhGP8C/mX/cXSj5PtQ3SCoqCijtj2uZ1t5jWBZFsTHuTbtrmSvjbt/9zlhQRrNQqO5pf/+mIAyssvkKunqRdqkNaAqLS0d9per7FB2TAU7YOrYciza4Yz6bQZOtz8+E9jk5D63YukWeHpCQpTrBTQrVaPTojFYPyqbTU7nCfSDs06cPAFXKBQKcELEDcPYBVTqur4ByAJe03X9Ufvut4Ek+74OwzC+dJulR1HXBLOTccsghOAAjfR4qGvuv725TVBeBz5esGbR2OLvCoVC4UqcSjE0DOMHR2262b69G7jWxTaNiM0msAlIjXWfiM5J0cgvlxWfCFk0FBYkF087WlCT3hUKxZRgWhT7HE19C6TH41ZPONBPY60O7Z1yAdVsgpgwMJs1SltGPl+hUCgmgmkn4laboMvifEHPeAgPVt62QqGY2ky7bkq1jTArSXrKCoVCcbwzvUTcni0yawK8cIVCoZgOTCsRt9lgbhoubzKlUCgU05VpJeKeHpARrwRcoVAoHEybhc1AX2jzlWPMFAqFQiGZNp64j7eGh/MjMxUKheK4YNqIuEKhUCgGokRcoVAopjFKxBUKhWIao0RcoVAopjFKxBUKhWIao0RcoVAopjFKxBUKhWIao4nBxtcoFAqFYlqgPHGFQqGYxigRVygUimmMEnGFQqGYxigRVygUimmMEnGFQqGYxigRVygUimmMEnGFQqGYxkw5Edd13c/+/6RPf9B13X8K2TLp3dSnyu9G1/Woyby/A13Xk+3/T/brkT5F7Dhxsm2w23G2rutxk20HgK7rSe6+x5Qp9tF1/TzgG0AJ8GfDMMon0ZYzgBuBMuB+wzDKJsmOy4HzDMO4ejLu38eOi4BvAsXAHyfx9bgA+XtpBR4GNhuGYZsEO/yAPwCJwKWGYVgm2ga7HRcANwNfGIZx/2TYYLdjAfBXYAvwc8MwuibJjrOBu4CVwGzDMAomww67LWcB64BO4AXgfcMwWtxxrynhieu67glcA/wTOAzcquv68kk06SrgcWAfcIuu66sm2gBd1+cBVwKLdV2/3r5twr1x+4frdcD9QAPwI/v2CfW4dF1fhvwg+R3wX+AMwzBsk+H5GYbRBnQBgcjXZjJej1OBXyI/VO/Xdd13Iu9/FKuA3xqG8WMgbTIM0HX9EuB64HbgQeDrk2GH3RYzcAvwL+BXgA74u+s9MmmeuK7r3sBFwAbADPzIMIx1uq57AY8ivb6HDMOomQBb/IDLgY1AJXA38o3Qat8eDrzsbg/UbscVwKdAhWEYHfavha8Dq+0/a4ZhuPWXZrfjSuA9+yaLYRjVuq4HAy8C1xiGUeVOG/rYcQXwMVBpGEanfXs08g/kDqDE3Z5wn/fHF4ZhHLH/Md4K7AG+C9xtGEaRO23oY8cVwAeAD/A14EQgBGgEHgI2GYbRPQF2XA5sNAwj1+5kzAUWAuXANuAtwzCOTIAdjvdpi2EYTfbtpwMrkN+iO91pw1G2XAF8DrQgvfA3gFzgJaSol7njW8pkeuJnAn8BTjEMoxiI0HX9CvuTrAaCAbd7F7quXwmsB/yAPPsbIQZYbrdlJ/IPJniC7PAFSvsIdhmwCel1MQEC7rDDB6gyDKPMLuAmpOeZP0EC3vf1KO8j4OnAI4AAfgCcPYF2FEHP72AO8j3xOnCzruuJE2hHhV0gDwC7DMM4HfgP8rVwqyd8lB0F9s1+QCzS+fkOMoRw7gTZ4QNUOwTcjj8QYhhGp/1961aOfk0Mw6gEPkF+c9wJ1CDDgLe54/4TLuJ9vlKUAu8AsbquzwTuA2bouv6u3a4I5BvDnbYEAZcB9yJf9NN1XY8A/gF8W9d1f8Mw9gHJQMoE2nGKruuz+gj2b4CTdF0P13U9WNd1nwmyY7Wu67MA7LFnP6DbfmySu74eDvV62HdXAbcZhnERsB/7h6s7bDnKjk/tdmTZd38O7EB+W/sm0iPHHaIxyOtxmq7raYZhvA38HsAwjNeBBCDT1fcfwo5PgTX2b4qvAZ5AomEYjUhxd7xP3P17cbw/ZvY55CO7bcnuXjMZ4nczwzCM9chvkI8YhvFN4G3AS9d1k6tfEw9XXmwo7Cu0dwNvAkeAfKQgBCC97jXAo4Zh7NV1PcgwjCZd1+8D6t1oyztID/cx4PuAF/AW8EfgFOAr4A5d1zcgP+1dGo8ewY43gQd0Xb/QMIwCwzDqdV3/BLle8Jr9vI6JtgMZ+/TXdf3PyBDTbcivjhNtR7P9w3YFsBVc9w3FSTvOAGYjQypVyN9Jh90Ol4iGM+/TPq+HQ0xMuOh9MQo7/gSchgwZ6PawwjnI9+pE/14cfy9tuq6/AcwDCl1x/1Ha8kf7Imss8u/lROQ3lHp3fKhMxFeNBOAB5IsZi8wqAPlLfhcZP4sCfm3/Spqh6/oHQKNhGLlutCUGeMYwjHeRwr3GMIw/Ac8Af7Cv9m9Crv7vsXs9E2XHA8C/kYt4jjfNYuA+wzC+bRhGwwTb4ch8SEIKZ65hGNe4arV9DK/HecjY/FeGYfzVFTaMwo5nkKGtPwFPGoZxhWEYdxqGcc8E2vEn+r8e30L+Le00DOPjCbbjaWTs+RVkFsaJyKyhX02gHUe/P7yQ2ubymPwo3yNPImPivwS2GobxXVfbA24UcV3XT+7ztSHEMIwHDMN4FvDUdf1u5LeAJcgwxYXIT2+AQ8AlhmH8wc22PA0E6rr+E8MwPgQc+/8C+Om6Hmj/SnSNYRgPToIdDwNWXeaqlwOX2f9oJsMOx0LZx8i1gn9Mkh02Xa785wAXG4bx0CTY8VcgCMAwjOfs57vk72iMr4cG7ALONQzjj5Ngx1+RYYIgwzCygbsm8f1h1XU92L6W9WvDMA64wo4x2PJXZFzexzCMF4ALDcP4m6tsORp3xO8CdF3/CBkfOgcZ1N+o6/rN9kM2IVfV65Ce3TXIT9BfAbWGYbS40MMbyZYNwAW6rocYhmHVdf1k4H/IbwktAK5Y6R+HHUcMw2g1DMNiGEb7JNqRB2AYxgZXfAsY5+thNQzjsGEYzZNox2FDphkC4w+hjOf3YhiGMAxjjz0WPS7G+XtpAjAMwzrJdjTa7XBJhs443yOtdlvcmjfvlhRDXddPQBZCLEVmEoTY/y9AimM7Mk1qj+HmTAcnbGlFepj7kbGtJw3DeE3ZoexQdig7ppotg+HWPHFd1x9CxoKe03U9Fvk19AjwPeBZh4Drum5yR8DfCVsOI3ON/2MYRoU776/sUHYoO6avHVPNlr64JSbeJ3b0H2SqT5Qhy+iDgZeRYZQWx3HuFPARbHkFmT7Y7Kq4prJD2aHsOHbsmGq2DIbbKzZ1Xb8dSEemCx4BDhmGsdWtN53itig7lB3Kjulnx1SzxYE7s1Mc156PrCTLMwzjuUl6E0wJW5Qdyg5lx/SzY6rZcjQT4YlfArxtTFAPg+lgi7JD2aHsmH52TDVbHEyZVrQKhUKhGD1TohWtQqFQKMaGEnGFQqGYxigRVygUimmMEnGFQqGYxigRVygUimnMhPQTVyjcja7rKcg+9SCH9d5r3/4EcvYihmGMqRm/rutzkI3/1xuysyW6rj+FbN62xDAMYzy2KxTjQYm44ljkWl3Xf4NsB3qZC643B/iF/fF6F1xPoXAZKk9ccUzQxxPPQ86ZPBVIBf6ObB8ajwwf/h9y3mEYYADrDMPYr+v6L5FC/TiwGtmp7jvIoSX59GcNcC3SE38AOVndBFxlGMYGtzxBhWIIVExccaxxADla73r7v/8BDfZ91yFnIe5BivkS4A1d1z37nL8KOWAgGDm/sho5KATkGLYrgew+x69Ath9NwD7MWqGYSJSIK45FnkR6xyuRY7scOKZH3WnIqUBvIJsZ9R0u/GdDjnzLA1Lsjf032fftMwzjxaN64P/SMIzfICe8p7j8mSgUI6BEXHEs8iJgBUqQk8+PRhz1f1/q7P930/v3MVzMse/xLh2mrVA4gxJxxTGHfVTY9cDNR/Wqf8f+/5/tLUUvxN5OdIRL1tv/X6Xr+hW6rvu61GCFYhyo7BTFMYlhGC8Nsvkp5ALnjciFz23IhU2LruvDXW4jcsbiyfbzEl1qrEIxDlR2ikKhUExjVDhFoVAopjFKxBUKhWIao0RcoVAopjFKxBUKhWIao0RcoVAopjFKxBUKhWIao0RcoVAopjFKxBUKhWIa8/8KVRujovhgwgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from darts.models import GaussianProcessFilter\n", "from sklearn.gaussian_process.kernels import RBF\n", @@ -2942,13 +2891,6 @@ "\n", "As data scientists, it is our responsibility to understand the extent to which our models can be trusted. So always take results with a grain of salt, especially on small datasets, and apply the scientific method before making any kind of forecast :) Happy modeling!" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { diff --git a/examples/16-hierarchical-reconciliation.ipynb b/examples/16-hierarchical-reconciliation.ipynb index 2c57bd6f3e..84e901a7fc 100644 --- a/examples/16-hierarchical-reconciliation.ipynb +++ b/examples/16-hierarchical-reconciliation.ipynb @@ -416,7 +416,7 @@ " mae(\n", " [pred[c] for c in subset],\n", " [val[c] for c in subset],\n", - " inter_reduction=np.mean,\n", + " component_reduction=np.mean,\n", " ),\n", " )\n", " )\n", From 0604813675f1e59725de705270f2fe6a54e80f5e Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 8 Apr 2024 11:03:27 +0200 Subject: [PATCH 024/161] lxml_html_clean for nbshinx (#2303) * lxml_html_clean for nbshinx * update changelog --- CHANGELOG.md | 1 + requirements/release.txt | 1 + 2 files changed, 2 insertions(+) diff --git a/CHANGELOG.md b/CHANGELOG.md index f4d66002c3..d24d26ca79 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -95,6 +95,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co **Dependencies** ### For developers of the library: +- fixed failing docs build by adding new dependency `lxml_html_clean` for `nbsphinx`. [#2303](https://github.com/unit8co/darts/pull/2303) by [Dennis Bader](https://github.com/dennisbader). ## [0.28.0](https://github.com/unit8co/darts/tree/0.28.0) (2024-03-05) ### For users of the library: diff --git a/requirements/release.txt b/requirements/release.txt index 5571b3c1b7..bd3b3d3cee 100644 --- a/requirements/release.txt +++ b/requirements/release.txt @@ -6,6 +6,7 @@ ipywidgets==7.5.1 jupyterlab==4.0.11 ipython_genutils==0.2.0 jinja2==3.1.3 +lxml_html_clean==0.1.1 m2r2==0.3.2 nbsphinx==0.8.7 numpydoc==1.1.0 From 49c3a1d34ce65a7b45ed59957b37c204b75d6cff Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 8 Apr 2024 13:49:24 +0200 Subject: [PATCH 025/161] fix lighgbm segmentation fault (#2304) * fix lighgbm segmentation fualt * update changelog * parameterize unit tests --- CHANGELOG.md | 3 +- darts/models/__init__.py | 14 +- .../forecasting/test_probabilistic_models.py | 126 +++++++++--------- 3 files changed, 70 insertions(+), 73 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index d24d26ca79..556bc40c33 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -89,8 +89,9 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. **Fixed** -- fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). +- Fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - Fixed type hint warning "Unexpected argument" when calling `historical_forecasts()` caused by the `_with_sanity_checks` decorator. The type hinting is now properly configured to expect any input arguments and return the output type of the method for which the sanity checks are performed for. [#2286](https://github.com/unit8co/darts/pull/2286) by [Dennis Bader](https://github.com/dennisbader). +- Fixed a segmentation fault that some users were facing when importing a `LightGBMModel`. [#2304](https://github.com/unit8co/darts/pull/2304) by [Dennis Bader](https://github.com/dennisbader). **Dependencies** diff --git a/darts/models/__init__.py b/darts/models/__init__.py index 19258f37d6..edcca507ea 100644 --- a/darts/models/__init__.py +++ b/darts/models/__init__.py @@ -7,6 +7,14 @@ logger = get_logger(__name__) +from darts.models.utils import NotImportedModule + +try: + # `lightgbm` needs to be imported first to avoid segmentation fault + from darts.models.forecasting.lgbm import LightGBMModel +except ModuleNotFoundError: + LightGBMModel = NotImportedModule(module_name="LightGBM", warn=False) + # Forecasting from darts.models.forecasting.arima import ARIMA from darts.models.forecasting.auto_arima import AutoARIMA @@ -26,7 +34,6 @@ from darts.models.forecasting.tbats_model import BATS, TBATS from darts.models.forecasting.theta import FourTheta, Theta from darts.models.forecasting.varima import VARIMA -from darts.models.utils import NotImportedModule try: from darts.models.forecasting.block_rnn_model import BlockRNNModel @@ -51,11 +58,6 @@ 'or "u8darts-torch" or "u8darts-all" (with conda).' ) -try: - from darts.models.forecasting.lgbm import LightGBMModel -except ModuleNotFoundError: - LightGBMModel = NotImportedModule(module_name="LightGBM", warn=False) - try: from darts.models.forecasting.prophet_model import Prophet except ImportError: diff --git a/darts/tests/models/forecasting/test_probabilistic_models.py b/darts/tests/models/forecasting/test_probabilistic_models.py index a854775690..7b728efcbb 100644 --- a/darts/tests/models/forecasting/test_probabilistic_models.py +++ b/darts/tests/models/forecasting/test_probabilistic_models.py @@ -1,3 +1,4 @@ +import itertools import platform import numpy as np @@ -278,81 +279,74 @@ def helper_test_probabilistic_forecast_accuracy(self, model, err, ts, noisy_ts): mae_err = new_mae @pytest.mark.slow - def test_predict_likelihood_parameters_regression_models(self): + @pytest.mark.parametrize( + "config", + itertools.product( + [(LinearRegressionModel, False), (XGBModel, False)] + + ([(LightGBMModel, False)] if lgbm_available else []) + + ([(CatBoostModel, True)] if cb_available else []), + [1, 3], + [ + "quantile", + "poisson", + "gaussian", + ], + ), + ) + def test_predict_likelihood_parameters_regression_models(self, config): """ Check that the shape of the predicted likelihood parameters match expectations, for both univariate and multivariate series. Note: values are not tested as it would be too time consuming """ + (model_cls, supports_gaussian), n_comp, likelihood = config + seed = 142857 n_times, n_samples = 100, 1 - model_classes = [LinearRegressionModel, XGBModel] - if lgbm_available: - model_classes.append(LightGBMModel) - if cb_available: - model_classes.append(CatBoostModel) - - for n_comp in [1, 3]: - list_lkl = [ - { - "kwargs": { - "likelihood": "quantile", - "quantiles": [0.05, 0.50, 0.95], - }, - "ts": TimeSeries.from_values( - np.random.normal( - loc=0, scale=1, size=(n_times, n_comp, n_samples) - ) - ), - "expected": np.array([-1.67, 0, 1.67]), - }, - { - "kwargs": {"likelihood": "poisson"}, - "ts": TimeSeries.from_values( - np.random.poisson(lam=4, size=(n_times, n_comp, n_samples)) - ), - "expected": np.array([4]), - }, - ] + lkl = {"kwargs": {"likelihood": likelihood}} + + if likelihood == "quantile": + lkl["kwargs"]["quantiles"] = [0.05, 0.50, 0.95] + lkl["ts"] = TimeSeries.from_values( + np.random.normal(loc=0, scale=1, size=(n_times, n_comp, n_samples)) + ) + lkl["expected"] = np.array([-1.67, 0, 1.67]) + elif likelihood == "poisson": + lkl["ts"] = TimeSeries.from_values( + np.random.poisson(lam=4, size=(n_times, n_comp, n_samples)) + ) + lkl["expected"] = np.array([4]) + elif likelihood == "gaussian": + if not supports_gaussian: + return + + lkl["ts"] = TimeSeries.from_values( + np.random.normal(loc=10, scale=3, size=(n_times, n_comp, n_samples)) + ) + lkl["expected"] = np.array([10, 3]) + else: + assert False, f"unknown likelihood {likelihood}" - for model_cls in model_classes: - # Catboost is the only regression model supporting the GaussianLikelihood - if cb_available and issubclass(model_cls, CatBoostModel): - list_lkl.append( - { - "kwargs": {"likelihood": "gaussian"}, - "ts": TimeSeries.from_values( - np.random.normal( - loc=10, scale=3, size=(n_times, n_comp, n_samples) - ) - ), - "expected": np.array([10, 3]), - } - ) - - for lkl in list_lkl: - model = model_cls(lags=3, random_state=seed, **lkl["kwargs"]) - model.fit(lkl["ts"]) - pred_lkl_params = model.predict( - n=1, num_samples=1, predict_likelihood_parameters=True - ) - if n_comp == 1: - assert ( - lkl["expected"].shape == pred_lkl_params.values()[0].shape - ), ( - "The shape of the predicted likelihood parameters do not match expectation " - "for univariate series." - ) - else: - assert ( - 1, - len(lkl["expected"]) * n_comp, - 1, - ) == pred_lkl_params.all_values().shape, ( - "The shape of the predicted likelihood parameters do not match expectation " - "for multivariate series." - ) + model = model_cls(lags=3, random_state=seed, **lkl["kwargs"]) + model.fit(lkl["ts"]) + pred_lkl_params = model.predict( + n=1, num_samples=1, predict_likelihood_parameters=True + ) + if n_comp == 1: + assert lkl["expected"].shape == pred_lkl_params.values()[0].shape, ( + "The shape of the predicted likelihood parameters do not match expectation " + "for univariate series." + ) + else: + assert ( + 1, + len(lkl["expected"]) * n_comp, + 1, + ) == pred_lkl_params.all_values().shape, ( + "The shape of the predicted likelihood parameters do not match expectation " + "for multivariate series." + ) """ More likelihood tests """ From 0cdb4a53c513491b71f5b59137e3b7d662fb32fe Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 8 Apr 2024 16:14:44 +0200 Subject: [PATCH 026/161] Fix/example notebooks metrics (#2305) * fix lighgbm segmentation fualt * update changelog * parameterize unit tests * make metric_kwargs metric specific rather than infereing which kwarg belongs to which metric * update hierarchical reconciliation notebook * fix failing residuals tests --- CHANGELOG.md | 2 +- darts/models/forecasting/forecasting_model.py | 48 ++-- .../models/forecasting/test_backtesting.py | 52 +++- .../models/forecasting/test_residuals.py | 6 +- examples/16-hierarchical-reconciliation.ipynb | 256 ++++++++++-------- 5 files changed, 218 insertions(+), 146 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 556bc40c33..b2e6da8fd9 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -53,7 +53,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - `ForecastingModel.backtest()`: - Metrics are now computed only once between all `series` and `historical_forecasts`, significantly speeding things up when using a large number of `series`. - Added support for scaled metrics as `metric` (such as `ase`, `mase`, ...). No extra code required, backtest extracts the correct `insample` series for you. - - Added support for passing additional metric arguments with parameter `metric_kwargs`. This allows for example parallelization of the metric computation with `n_jobs`, customize the metric reduction with `*_reduction`, specify seasonality `m` for scaled metrics, etc.. + - Added support for passing additional metric (-specific) arguments with parameter `metric_kwargs`. This allows for example parallelization of the metric computation with `n_jobs`, customize the metric reduction with `*_reduction`, specify seasonality `m` for scaled metrics, etc.. - 🔴 Improved backtest output consistency based on the type of input `series`, `historical_forecast`, and the applied backtest reduction: - `float`: A single backtest score for single uni/multivariate series, a single `metric` function and: - `historical_forecasts` generated with `last_points_only=True` diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index a58795336b..7b327cd8fd 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -1165,7 +1165,7 @@ def backtest( reduction: Union[Callable[..., float], None] = np.mean, verbose: bool = False, show_warnings: bool = True, - metric_kwargs: Optional[Dict[str, Any]] = None, + metric_kwargs: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, fit_kwargs: Optional[Dict[str, Any]] = None, predict_kwargs: Optional[Dict[str, Any]] = None, ) -> Union[float, np.ndarray, List[float], List[np.ndarray]]: @@ -1317,6 +1317,25 @@ def backtest( Same as for type `np.ndarray` but for a sequence of series. The returned metric list has length `len(series)` with the `np.ndarray` metrics for each input `series`. """ + metric_kwargs = metric_kwargs or dict() + if not isinstance(metric_kwargs, list): + metric_kwargs = [metric_kwargs] + + if not isinstance(metric, list): + metric = [metric] + + if len(metric_kwargs) > 1 and len(metric_kwargs) != len(metric): + raise_log( + ValueError( + f"Mismatch between number of metric-specific `metric_kwargs` " + f"({len(metric_kwargs)}) and number of metrics in `metric` ({len(metric)}). " + f"For `metric_kwargs`, either give a list of dicts of length `{len(metric)}` " + f"with metric-specific kwargs, or a single dict that is applied to all metrics." + ), + logger=logger, + ) + if len(metric_kwargs) != len(metric): + metric_kwargs = [metric_kwargs[0] for _ in range(len(metric))] historical_forecasts = historical_forecasts or self.historical_forecasts( series=series, @@ -1391,9 +1410,6 @@ def backtest( logger=logger, ) - if not isinstance(metric, list): - metric = [metric] - # we have multiple forecasts per series: rearrange forecasts to call each metric only once; # flatten historical forecasts, get matching target series index, remember cumulative target lengths # for later reshaping back to original @@ -1420,15 +1436,10 @@ def __getitem__(self, index) -> TimeSeries: # errors shape `(n metrics, n total historical forecasts)` series_gen = SeriesGenerator() errors = [] - for metric_f in metric: + for metric_f, metric_f_kwargs in zip(metric, metric_kwargs): # add user supplied metric kwargs - kwargs = {} + kwargs = {k: v for k, v in metric_f_kwargs.items()} metric_params = inspect.signature(metric_f).parameters - if metric_kwargs: - kwargs = { - k: metric_kwargs[k] - for k in set(metric_kwargs).intersection(metric_params) - } # scaled metrics require `insample` series if "insample" in metric_params: @@ -1774,10 +1785,10 @@ def residuals( ) -> Union[TimeSeries, List[TimeSeries], List[List[TimeSeries]]]: """Compute the residuals produced by this model on a (or sequence of) `TimeSeries`. - This function computes the difference (or a custom `metric`) between the actual observations from `series` and - the fitted values obtained by training the model on `series` (or using a pre-trained model with - `retrain=False`). Not all models support fitted values, so we use historical forecasts as an approximation for - them. + This function computes the difference (or one of Darts' "per time step" metrics) between the actual + observations from `series` and the fitted values obtained by training the model on `series` (or using a + pre-trained model with `retrain=False`). Not all models support fitted values, so we use historical forecasts + as an approximation for them. In sequence this method performs: @@ -1786,9 +1797,10 @@ def residuals( How the historical forecasts are generated can be configured with parameters `num_samples`, `train_length`, `start`, `start_format`, `forecast_horizon`, `stride`, `retrain`, `last_points_only`, `fit_kwargs`, and `predict_kwargs`. - - compute a backtest using `metric` between the historical forecasts and `series` per component/column - and time step (see :meth:`~darts.models.forecasting.forecasting_model.ForecastingModel.backtest` for more - details). By default, uses the residuals :func:`~darts.metrics.metrics.err` as a `metric`. + - compute a backtest using a "per time step" `metric` between the historical forecasts and `series` per + component/column and time step (see + :meth:`~darts.models.forecasting.forecasting_model.ForecastingModel.backtest` for more details). By default, + uses the residuals :func:`~darts.metrics.metrics.err` as a `metric`. - create and return `TimeSeries` (or simply a np.ndarray with `values_only=True`) with the time index from historical forecasts, and values from the metrics per component and time step. diff --git a/darts/tests/models/forecasting/test_backtesting.py b/darts/tests/models/forecasting/test_backtesting.py index ec9d7160ce..b60ac5fd0f 100644 --- a/darts/tests/models/forecasting/test_backtesting.py +++ b/darts/tests/models/forecasting/test_backtesting.py @@ -1158,7 +1158,7 @@ def test_scaled_metrics(self, config): @pytest.mark.parametrize( "metric", [ - metrics.mae, # mae does not support time_reduction + [metrics.mae], # mae does not support time_reduction [metrics.mae, metrics.ae], # ae supports time_reduction ], ) @@ -1172,19 +1172,57 @@ def test_metric_kwargs(self, metric): y = [y, y] hfc = [[hfc, hfc], [hfc]] + metric_kwargs = [{"component_reduction": np.median}] + if len(metric) > 1: + # give metric specific kwargs + metric_kwargs.append( + {"component_reduction": np.median, "time_reduction": np.mean} + ) + model = NaiveDrift() - # backtest should only pass `metric_kwargs` parameters to metrics that support them + # backtest should fail with invalid metric kwargs (mae does not support time reduction) + with pytest.raises(TypeError) as err: + _ = model.backtest( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + reduction=None, + metric_kwargs={ + "component_reduction": np.median, + "time_reduction": np.mean, + }, + ) + assert str(err.value).endswith("unexpected keyword argument 'time_reduction'") + bts = model.backtest( series=y, historical_forecasts=hfc, metric=metric, last_points_only=False, reduction=None, - metric_kwargs={ - "component_reduction": np.median, - "time_reduction": np.mean, - "n_jobs": -1, - }, + metric_kwargs=metric_kwargs, + ) + assert isinstance(bts, list) and len(bts) == 2 + + # `ae` with time and component reduction is equal to `mae` with component reduction + bt_expected = metrics.mae(y[0], hfc[0][0], component_reduction=np.median) + for bt_list in bts: + for bt in bt_list: + np.testing.assert_array_almost_equal(bt, bt_expected) + + def time_reduced_metric(*args, **kwargs): + return metrics.ae(*args, **kwargs, time_reduction=np.mean) + + # check that single kwargs can be used for all metrics if params are supported + metric = [metric[0], time_reduced_metric] + bts = model.backtest( + series=y, + historical_forecasts=hfc, + metric=metric, + last_points_only=False, + reduction=None, + metric_kwargs=metric_kwargs[0], ) assert isinstance(bts, list) and len(bts) == 2 diff --git a/darts/tests/models/forecasting/test_residuals.py b/darts/tests/models/forecasting/test_residuals.py index 7ad2fade82..961fa5081f 100644 --- a/darts/tests/models/forecasting/test_residuals.py +++ b/darts/tests/models/forecasting/test_residuals.py @@ -325,15 +325,15 @@ def test_wrong_metric(self): model = NaiveDrift() - with pytest.raises(ValueError) as err: + with pytest.raises(TypeError) as err: _ = model.residuals( series=y, historical_forecasts=hfc, metric=metrics.mape, last_points_only=True, ) - assert str(err.value).startswith( - "`metric` function did not yield expected output." + assert str(err.value).endswith( + "got an unexpected keyword argument 'time_reduction'" ) def test_forecasting_residuals_nocov_output(self): diff --git a/examples/16-hierarchical-reconciliation.ipynb b/examples/16-hierarchical-reconciliation.ipynb index 84e901a7fc..fda0190b8c 100644 --- a/examples/16-hierarchical-reconciliation.ipynb +++ b/examples/16-hierarchical-reconciliation.ipynb @@ -17,22 +17,43 @@ { "cell_type": "code", "execution_count": 1, - "id": "288c82a5", + "id": "7e499de8-7d98-4188-96b2-166d212d73c3", "metadata": {}, "outputs": [], "source": [ - "%matplotlib inline\n", + "# fix python path if working locally\n", + "from utils import fix_pythonpath_if_working_locally\n", "\n", - "import numpy as np\n", + "fix_pythonpath_if_working_locally()\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "288c82a5", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/dennisbader/miniconda3/envs/darts310_test/lib/python3.10/site-packages/statsforecast/utils.py:237: FutureWarning: 'M' is deprecated and will be removed in a future version, please use 'ME' instead.\n", + " \"ds\": pd.date_range(start=\"1949-01-01\", periods=len(AirPassengers), freq=\"M\"),\n" + ] + } + ], + "source": [ "import matplotlib.pyplot as plt\n", - "from pprint import pprint\n", + "import numpy as np\n", "from itertools import product\n", + "from pprint import pprint\n", "\n", - "from darts import TimeSeries, concatenate\n", + "from darts import concatenate, TimeSeries\n", + "from darts.dataprocessing.transformers import MinTReconciliator\n", "from darts.datasets import AustralianTourismDataset\n", - "from darts.models import LinearRegressionModel, Theta\n", "from darts.metrics import mae\n", - "from darts.dataprocessing.transformers import MinTReconciliator" + "from darts.models import LinearRegressionModel, Theta" ] }, { @@ -47,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "877c48bc-31c6-49a6-805d-5b33a00e2140", "metadata": {}, "outputs": [], @@ -73,20 +94,28 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "12f0066e-7607-4e5f-a3ca-d8a36aec309a", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEFCAYAAADkP4z+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABzUElEQVR4nO2dd3gU1frHP1vTGwk99N7bUAQBO+pVr3otV1EEC+oVLNfevfZr16vX9rNXLNeGCihIkT70XhJCSIMkpCdb5/z+mN1NTzZlswk5n+fZZ3dnZme+c3bmPe95z5n3GIQQSCQSiaT9YAy2AIlEIpG0LNLwSyQSSTtDGn6JRCJpZ0jDL5FIJO0MafglEomkndFWDL9o7CsrK6vRv23pV1vS2tb0tiWtbU1vW9La1vQ2UWuttBXD32jcbnewJfhNW9IKbUtvW9IKbUtvW9IKbUtvoLSe8IZfIpFIJJWRhl8ikUjaGdLwSyQSSTtDGn6JRCJpZ0jDL5FIJO0MafglEomknSENv0QikbQzpOFvAY4ePcrMmTPZvn17sKVIJBIJ5mALaA+8/vrrfP755xgMBj799NNgy5FIJO0c6fG3AH/++ScAW7duDa4QiaQBuN1uli1bhsvlCrYU1q5dy3333YfT6Qy2lBMCafgDjMPhYN26dQDs3buXsrKyoOr58ccfmTx5MmlpaUHVIWn9vPTSS5x++um8/vrrwZbCbbfdxr///W9+/vnnYEs5IZCGP8Bs3rwZm80G6B7Uzp07g6rnpZdeYu3atSxYsCCoOiStnx9++AGAP/74I6g6iouL2bx5MwD79+8PqpYThRPW8NtsNtatW8eGDRuCqsMb5vESzHCPy+VCVVUAduzYETQdktZPYWGhr6W6adOmoGpZu3atL1nZgQMHgqrlROGENfwrVqzgpJNO4tlnnw2qjlWrVgEwcuRIILiGf9euXZSUlADIEUaSOlm5cqXP2Kanp5OVlRU0Ld57CKThby5OWMM/ZswYAHbu3Bm0NKyaprF69WoA5s+fD8CWLVuCogXweXAAu3fvbhWddq0Bp9PJX/7yF2666aZgSyE/P5+rr76apUuXBlXH77//Xul7ML3+iob/4MGDQdNxInHCGv5OnTqRmJhIaWlp0LyEvXv3kpubS7du3bjwwgsB3dMOVkVU0fDb7XbpPXn4888/+eWXX3jnnXd8LaJg8eKLL/Lpp5/y/PPPB1WH1/ArigIEz/Db7XbfdWs2m0lPT6e0tDQoWk4kTljDDzBu3DgAX8dQS+ON70+dOpWEhAQSExMpKSkhKSkpKHq8N1D37t0BGe7x8uOPPwIghAhq53txcTFvvPEGAHv27KG4uDgoOjIzM9m1axcRERHMmzcPCJ7h37RpEzabjaFDh9K/f39Aev3NwQlt+MeOHQsE76L1Gv6TTz4ZKA8/BSPck5+fz969ewkJCeHKK68EZAcv6Mb+p59+8n0PZh/Me++9R15eHqCPANu4cWNQdHi9/enTp3PSSScBwbuHvGGeqVOn+gx/sFuqN954I+edd16bDpWe0IY/2B5/xYsWYPTo0UBwjIt3dNPYsWN9zXfp8evhuIotsG3btgVFh9Pp5KWXXgJg0KBBAKxZsyYoWryG/4wzzqB///5ERUUFrYN35cqVgH4PDRgwAAiux19YWMg777zDzz//HDS70hyc0Ibf6/Fv3rwZTdNa9NhpaWmkpKQQHR3N8OHDgeAafm+YZ9KkSb4RRtLwl4d5evXqBQTP8H/11VekpqYyePBgHnnkESA4hl8IUcnwG43GoLWc3W63b3DEtGnTfIY/mB5/xetj+fLlQdPRVE5ow9+1a1c6depEYWEhycnJLXps7wU7efJkTCYT0DoM/8SJE+nfvz8hISEcPnyYgoKCFtfSmvCGee677z5Av7Fb2kkQQvDcc88BcPfdd/tCg2vXrm1xLXv37iUjI4NOnTr5HBZvy7mlDf/OnTspKCigV69e9OjRo1WEeiqWQVs2/PUmaVMUxQi8D/QDDMD1QALwHKABN6uqukNRlC7Ax0AE8Kaqqp8qimIC3gUGAJtUVb3ds8/bgMuAXOAqVVULm/vEvIwYMYKlS5eyefNm34XTElQN8wD06dOH6OhosrKyyMrKokuXLi2iRQjB+vXrAd3jN5vNDBs2jM2bN7Nz506mTJnSIjpaG9nZ2axduxar1crMmTN54oknyMjIIDk5uUWvlSVLlrB9+3a6du3KzJkzsVqtdOnShaysLPbt28eQIUNaTEtFb99gMADBG9lT9R5qDaGeiuGdVatW4XK5MJvbXq5Lfzz+0UCIqqpTgfuBfwJPAX8BrgT+7dnuXvTKYDpwi6IoocB5QIbntxGKopykKEoCcAFwMrAAuKX5Tqc6Xq+lpS/aqh27AAaDIShe/8GDBzl+/DhdunShZ8+eAK0i3PPWW29xyy23BK2T7JdffkHTNE499VSioqIYNWoU0PLhHq+3f/vttxMSEoLBYPAZ25YO91Q0/F68Hr/3qe+WwhvfnzZtGgA9evTAarWSkZERtGG3XsNvtVorpZJoa/hj+NMAg6IoBiAOKAHcqqrmqaqaCnTwbDcBWKaqqgtQgeHAZGCJZ/0iYAowHlihqqqosCxgeA1cS/5B+fn5bN++HYvFwvjx4yutC4bhrxjf93pxI0aMAII3sic5OZn58+fz3//+N2i5YLxhnvPPPx/AZ/hb8r9RVZVly5YRFRXFjTfe6FseDMPvcrl8/8Xpp5/uW+7t4M3IyGixDl4hRDWP32Qy0bdvXyA4Xn9paSl79uzBZDJx+eWXA2033ONPGyUHcAJ7gVBgKvBahfUuRVGsgEVVVW9AsgC9QogDCv1YVg1FUeYCcwHmzZvHmWee6ecpVWbw4MGAfoOlpaX5DF8gWbZsGUIIRo0axfHjxyut6927N6Df0Onp6ZXWOZ3OasuaA+9ToEOGDPHtv1u3boBeLo09ZlP0Pvjggz5P//PPP2fo0KGN2o+/VNVqt9tZtGgRoBvZ9PR0X2to/fr1AfkfauLxxx8H4Morr6S4uNg3dt9bCa1cubLFtKiqSlFREX379sVkMlU67rBhw1i3bh1LliypVClAYK7bQ4cOkZWVRXx8PJGRkb799+jRg71797J+/XoSEhIate/G6t20aROapjF48GAmTpzIJ598wqJFi5g5c2ajdPhDU8rW+7xOTfhj+M8CXKqqDlJ0N+RFILriPlRVdSiK4lQUxegx/jHAcSC/wrYVl/Wvsqwaqqq+A7zj+Sr80FkjQggSEhLIycnB5XL5DG8g2bt3LwCnnXZatcI/9dRTAdi3b1+1denp6XX+WY3F69WfddZZvv1X1NGtW7dGVYiN1ZucnMzXX3/t+75s2bJGa/CXqloXL15MSUkJo0aNYuLEiUB5mezduzcg/0NVkpKS+Pnnn7FYLDz00EOVjulwOAgNDeXgwYOEhoYSHx8fcD3vvfceAOecc061858yZQrr1q0jJSWlRa7bxYsXA3qYJzEx0bd8xIgR/Pbbbxw/frzRx2ys3u+//x7QB0hcdNFFzJs3j40bN9K5c+eAxfkDZRP8CfUY0DthQff+owCzoiixiqL0oNxwbwROURTFDIwDdgFrAG+wcAaw2rPdtCrLAobBYGjx8fw1dex6GTp0KBaLhQMHDrTIk5mlpaVs27YNo9HoCx8AdO7c2TfiKTU1NeA6KvLUU0/hdruZNWsWXbp0ITU1tcX7GqqGeUDvPAwLC+PIkSPVWmqB4KWXXkLTNGbOnFnJuIEeQ/aGCSum2ggkNcX3vbR0nN97D3nj+16CObLHaz/Gjh1Lt27dGDBgQJuN8/tj+H8DeiiKsgL4EngceAj4xfP9fs92//Z8Xgm8papqGbAQ6KkoyirApqrqWlVVs4GfFUVZjd45/N/mPKGaaMlxyHa73few1OTJk6utt1qtDBs2DCFEi8TXN2/ejNvtZsSIEURGRlZaF4wO3qSkJD766CNMJhMPP/ywz/B6x9O3BEII3/EqGn6TyeTr+wh0mWRnZ/P+++8DcNddd9W4jff6aYk4f3FxMWvXrsVoNHLKKadUW9/SQzprc56CObLHa+C9ZeEtpzYZ5xdCtIVXo0lLSxNff/21AMTZZ5/dlF35xerVqwUghg0bVus2s2fPFoB44403Ki1PS0trdj3PP/+8AMSNN95Ybd0dd9whAPHUU081at+N0TtnzhwBiNmzZwshhPjpp58EIBRFaZQGf6modevWrQIQXbp0EW63u9J2N9xwgwDEyy+/HFA9jz76qADEeeedV+P6tLQ08cMPPwhAnHLKKQHVIoQQP//8swDExIkTa1zvdrtFVFSUAERmZmY1rc1Jenq6AERkZKRwOp2V1qWkpAhAdO3atdH7b4xem80mzGazMBgMoqioSAghxGeffSYAcc455zRaS300sWxrtakn9ANcXip6K0I0urvAL+oK83hpyZE9FR/cqkpLe/xJSUl8/PHHmEwmHnroIUAfPRIWFtakTuaG4g3znHfeeRiNlW8B738TyCGdJSUlvukM77nnnlq38+bJ2bBhQ8Dnmq0rzAO06BO83ntoypQp1WLniYmJWK1WMjMzWzSJ3Y4dO3C5XAwaNMjXcp4+fbpPb1vL29MuDH/v3r2Ji4sjOzs74MalpvH7VQmG4Z80aVK1dS1t+J988klfbL9fv34AhIWFcdZZZwGwcOHCFtHhDfNccMEF1da1xFj+Dz74gNzcXCZNmlTnddKxY0cGDBhAaWlpwP+j+gw/tNyDXHU5TyaTyXfttGSW24rxfS/du3dvs3H+dmH4DQZDpbw9gaLixCv+GH6vFxEo0tLSSE9PJyYmxpf4qyJDhgzBaDSyf/9+37zAgeLgwYN88sknlbx9Ly0Z58/MzGTjxo2EhoZWG5YI5ZXhrl27AuJlu1wuXnzxRUD39usbydQScf6srCx27NhBWFiYr5VREy3VwVtfqzkYOXuqxve9tNU4f7sw/NAyHby7d+8mLy+PHj16+JJ+1URMTAx9+vTBZrOxb9++gOnxpmmYOHFitZAG6N72wIEDcbvd7NmzJ2A6oNzbv+aaa3wP4Xg577zzMBgMLF26NOBPZHpbFWeccQbh4eHV1kdFRdGvXz8cDodvWG5z8s0335CSksLAgQNrbHFUpSUMv/c5j2nTphESElLrdi3RwZuXl8eOHTuwWq1MmDChxm2CMbKnJo8f2q7hb3tJJhpJS3j8/oR5vIwePZpDhw6xdetWhg0bFhA9dYV5vIwcOZK9e/eyY8cO33wBzc3Bgwf59NNPMZvNPPjgg9XWd+7cmYkTJ7Ju3Tp+++0332xlgcAb36/L6I4aNYqkpCS2bt3qG+XjD1u2bOGNN96guLgYm81GWVlZpXebzUZGRgagj+TxJu+ri5Yw/N4wT30PSVZ9gjcQuaZWr16NEIIJEyYQGhpa4zYt7fE7nU5fqM3bWvdSNc7fVvL2tBuPvyXG8vvTsevFa2QDGeevq2PXS0sMX3ziiSdq9fa9eA1xIMM9paWlPiN33nnn1bpdYzt458+fz3vvvceCBQv44YcfWLJkCStXrmTjxo3s2LGDAwcOUFJSQv/+/bn66qv92ufQoUOJjo4mNTWVtLS0BunxB1ElDXNdGI3GgHv9/txDLT2kc/fu3djtdvr160dsbGyldW01zt9uDH+/fv0Cnm+koR4/BG42LqfT6YvF1mX4A93Be+DAgTq9fS9ew79w4cKAzUm8dOlSysrKGD9+PF27dq11u8Z08B49epQ1a9YQEhLCZ599xnfffceiRYtYvnw569atY+vWrezbt4/Dhw+za9euWr3ZqhiNRl/cfe3atX7r8Zf9+/eTlpZGx44d/WrdBDrOX9uDWxVpaY+/tvi+l7YY7mk3hr/icLRA1MypqamkpqYSGxvrV+im4sieQAwx3b59OzabjQEDBtT5uH+gk7U9+eSTaJrG7Nmz6dOnT63bDR06lL59+5Kdne3rm2huanpatyYqJmvz97/58ccfEUJwxhlncOWVV3LhhRcyY8YMpk+fzsSJExk1ahQDBw6kZ8+eWK3WBukOZLjH6+2ffvrpNfYDVSWQHn9paSkbN27EaDTW+PCjl8TEREJCQsjKyqKoqKjZdVSltvi+F2n4WzmBNPxeb3/KlCl+3UCJiYl06NCB3NzcgAwx9Se+D/rMU1FRUWRlZXHs2LFm1bB//36ft//AAw/Uua3BYAhouEfTNL8Nf8+ePYmNjSUnJ4fMzEy/9u/N43LRRRc1SWdNtIThry/M46Whhl/TNJ544gnefffdeivR9evX43K5GDVqFNHR0bVuZzQaW3RIp/dcazP8bXE8f7s0/IHwVhoS5gHd0AVy8vWKI3rqwmg0Bszr99fb9xLIYZ3bt28nKyuLHj16+Dz62jAYDA0K9xQWFvL7779jMBjqrVQaw4QJEzAajWzevJmysrJm26/L5WLZsmWA/4a/YgevP5XiZ599xiOPPMLcuXO5++676zT+/oR5vLRUuMftdvv64Woz/G0xzt+uDH9jOnjLysr88oS9F62/hh8C+yCXvx4/BCbcs3fvXj777LN6Y/sVmTp1KjExMezZs6fZb+jffvsN0CsXf7KANiQ3/6JFi3A4HEyZMoVOnTo1SWdNREdHM2LECFwuV7PG1lVVpbCwkP79+9c5/LgiDengLSsrq/Tfv/jii9xyyy21TidZcWL1+mipIZ379u2jrKyMXr161Rky9YZ7VqxYEVA9zUW7MvwDBw4kPDyc1NRUcnJy6t1eCMG5555Lly5duOyyy2o1jHl5eezcuZOQkJBqE6/URaAMf25uLgcOHCA0NNTXeVsXzdnBK4Tg448/ZsqUKWiaxpw5c/xOhW2xWDj33HOB8nh8c1HR8PtDQ0b2fPfdd0BgwjxeAhHuaWiYx4u/hv+1117jyJEjjBo1ih9//JGQkBDefPNNrrvuumod+E6n09d57Y/z1FIje+qL73tpc3H+uhL5tKJXo6ma5Gjy5MkCEIsXL673twsXLhTocwH4Xn/729/Etm3batzu5JNPbpC2nTt3CkD07du3Rq0Vsdvt4sorrxSzZ88WpaWlde7Xm3DLXz2rVq1qVKK0qnoPHTokZsyY4Surs846S+Tk5DRon1988UWzJyY7fPiwL+mXzWbz6zebNm0SgBg0aFCd29lsNl/ysqSkpOaQK4SoXraffPKJAMQFF1zQbMeYPn26AMS3337boN99/vnnAhDnn39+jVqFECI7O1tER0cLQCxZskQIIcTvv/8uwsPDBSAuv/xy4XA4fNuvX7/er/L2snTp0kbdc7XprQ1vIsMnnnii3n0CIioqqlpiuaYQqCRtwTboLW7458+fLwDxzDPP1Pk7TdPE2LFjBSDuv/9+MX/+fBESEuIzahdddJHYsmWLEEKIe++917ddQ3A6nb595ufn1/kn33fffb5jn3322XUasIcfflgA4q677vJLR15engBEaGiocLlcfuv36nW5XOLVV18VERERAhBxcXHio48+Epqm+b2vilrMZrMwmUwiNze3wb+viTfeeEMA4uKLL/b7N2VlZcJsNguj0ShKSkpq3e7XX38VgBg5cmRzSPVR9VpISkoSgEhISPCrXDVNE1lZWWL37t1i1apV4ocffhAffPCBeOGFF8QDDzwgbrrpJmGxWITBYBDHjx9vkLZ9+/YJQHTr1q1GrUIIceuttwpAzJgxo9LyVatW+SrKCy64QJSVlQkhhHjhhRcEIK6//nq/NHgr886dOzdIe216a2PatGkCED///HO92w4YMEAAYsOGDQ3WVBvS8DeSqgX3wQcfCEBccskldf7u+++/96Xu9XrY6enp4rbbbhOhoaE+I3zBBReIoUOH+n1xVEVRFAGIFStW1Pon//HHH8JgMAij0Sg6dOjg87bsdnuN25911lkCEF9//bXfOnr27CkAsXfvXr9/k5aWJnbt2iUmTZrkK4/LLrtMZGVl+b2Pmjj99NMFID799NMm7ScpKUncddddIjY2VgDiww8/bNDvhw8fLgCxfv36Wre58cYbBSAeeeSRJmmtStVrQdM00blzZwGI/fv31/nbwsJCn8Gq7zV16tQGa6uYojkjI6Oa1gMHDvhSGFdtHQshxIYNG0RcXJwAxJlnnilKSkrEBRdcIADx0Ucf+a3Bex8WFhY2SL+/xrTiefpzTXtTej/33HMN0lMX0vA3kqoFt3379krhlZpwu91i1KhRAhCvvvpqtfUZGRnijjvuEGFhYb4byGAwiLy8vAbru/76633HqelPPn78uEhMTBSAePTRR8W2bdt8xv+iiy6q1Fz2ao+JiRGAOHLkiN86/vKXvzSosrDb7eLOO+8UFovF5/398MMPfh+vLl599VVfJdJQ3G63WLx4sTj//POFwWDw/T9TpkwRxcXFDdrXzJkzBSDefvvtWo/VpUsXAfhaf81FTdfCRRddVG8FZrfbfRV/RESEGDRokDjppJPEeeedJ2bNmiVuv/128fjjj4vXX39dfPHFF+Lo0aON0nfKKacIQPz000/VtF5yySUCEHPmzKn199u2bRMdO3YUgJg2bZrvmj506JDfGoYNGyYAsXnz5gZp99eY7t+/v1LLpj4+/fRTAYhzzz23QXrqQhr+RlK14JxOp89TqK2J+8033/j+cG9TtCaysrLEnXfeKcLCwnzxzobiDUPMnj27Ri/v0ksvFYCYNGmSL3a4adMmnxd72WWXVYop7t69WwCie/fuDdJx//33C0A8/PDD9W6bnZ0tRo4c6TOqc+fOFfn5+Q06Xl0kJyf74qW1tWqqkp+fL1599VUxcOBAny6r1SpmzZol1q9f36gbyDuJzT/+8Y8a169Zs0YAolevXo0Ka9VFTXq94ZC5c+fW+Bu32+2rrDp16iQOHDjQrJoqcueddwpAPPbYY5W0esskLCys3jLfs2eP6Natm+//SkxMbFA5/vWvfxWAWLBgQYO0+3stfPnllwJqnyynKkeOHGn2OL80/I2kpoKbMGGCAMTSpUurrXO73T5PouoMWbXhcrmqzeTkL94Zu0aPHl1N64cffujrlKzacbhhwwZf59nMmTN9sfn3339feDuhG4K3U/Wvf/1rvdteffXVPoO3fPnyBh3HX7xhFm/HYG0kJSWJm2++2de/4DUgTz31VCVvtjE30JIlS3ythZq4++67BSBuv/32Bu+7PmrS6zWqw4cPr/E3d911l8/TV1W12TVVpGIHr1erpmm+wRMPPvigX/s5ePCg6NWrlwDElVde2SAN3vN98sknG/Q7f68F7//bkDBe//79my3Or2lag0KvNSANf0VuvvlmAYjnn3++2jpvLd+jRw+/R4A0haKiImEwGITFYhHJycm+5QcPHhSRkZF1Nu3XrFnj22b27NnC7XaLuXPn1npudVF1hFFtLF682NcRvGrVqgYdoyE88MADAhDz5s2rcf3BgwfFnDlzhMlk8hn8U089VXz77bc1eluNMfxHjx71VbxVK3ZN03w3eSAqv5r02mw2YbVaawwrvvjiiwIQZrPZrxFrTcXbwdu1a1ef1v/9738CEB07dhQFBQV+7ys1NVXceeedDTZyb7/9tu/abwj+Xgvevqbvv//e7317Q7dNjfO73W5x6623iiFDhjRlkIM0/BV59913BSD+/ve/V1rucrnE4MGD64zrBgJveMLr3TocDjFx4kRfKKeu5u/KlSt9Q+RuuOEGXwhm5cqVDdLgcDiE1Wqts7OspKRE9OnTRwDi2WefDcgcwV7WrVsnANGzZ89K53/gwAExe/Zsn8E3mUxi1qxZYseOHXXur7Fau3btKgBx8ODBSsu9FWVCQkKzDt/zUpter0e9aNEi3zLv3K/N0SHuL26329fi3LRpk3A4HL5RLf62lJuKd0hnbS2y2vDnWtA0zdcB3ZC+suaI87tcLnHdddf5wpW///57Y3clDX9FNm/eLAAxcODASsu9f1rv3r39ji03B5dddpkAxEsvvSSEEOKRRx7xhSz8GWq3bNmySiONTCZTnUMQa2P06NECEGvXrq1xvbfpO2rUKOFwOAJq+N1ut28Uy9atW8WBAwfENddcU8ngz5492+84dmO1nn322QIQ33zzTaXlTz75ZL0dmE2hNr3e8IY3/LBkyRJfB/sLL7wQEC214e3g/fDDD8Xrr7/uu6eqDjgIFKmpqb7+jIbgz7Vw6NAhX+ulIf0OTY3zOxwOccUVV/j6ST777LMG76MC0vBXxG63+24Wb5PU6XT6PJb33nuvKYdsME8//bQAxHXXXSf+/PNPYTQahcFgEH/88Yff+1iyZInvmYCxY8c2Soc3dl9Ta2fz5s3CZDIJg8Hgi18G0vALUd5sHjJkSCWDP2fOnGoeeH00Vqv3+Ymqnd7jxo0TgPjxxx8btd/6qE2vN5xyxhlniE2bNvlCff/85z8DoqMuvB28c+fO9Y3Q+e6771rs+BWHdDYktOTPtfDtt98KqP4cgj80Ns5vs9l8HdZRUVFi5cqVsnO3sdRWcN6Hs1asWCGEKO9I7devX4t5LF5++eUXAYgRI0aI3r17C0Dce++9jdpP586daxyC6g/eUSy33HJLpeVOp9Nn6G677Tbf8kAb/h9//LFSK+baa69tsMH30lit3k7vik/Mej3N8PDwep+ibiy16c3MzPR14Hbq1MnXKdrYwQVNwdvB662UTz755GYf3VQf3kEAmzZt8vs3/lwL3j6mhj6UKUTj4vwlJSW+YbhxcXG+Z0ek4W8ktRWc92GLl19+WTgcDtGvXz8B/j9A0px4b2bva+zYsY0ONTXlxvN23E6bNq3Scm/HYc+ePUVRUZFveaANv91uF7NmzRI33nhjk9MhNFard3hsz549fctee+01AQ17Erih1KW3b9++vmvljDPOaNGwZEW8Hbze17p161pcw4UXXigA8eWXX/r9G3+uhdpCfP7gDRl36NBBPPTQQ/X2ERQUFIipU6f6wlYVH3qThr+R1FZwb775pgDE1VdfLd577z1ffDIQHXX+4I1nh4WFNXUIV6PJyMgQgIiNjfVVIIcOHfJ1Hi9cuLDS9oE2/M1JY7W6XC7fg3re/pbTTjtNAOKTTz5pTomVqEuvNyQ3duzYBj+12pxU7OBtzMN2zYG338mfIZ1lZWXiueeeE7/88kud22ma5gtdVRxp5y9FRUViypQplVqrF198sVi2bFk1xyw3N1eMHz9egP7szZ49eyqtl4a/kdRWcN6kUAMHDvSFV5rYkdIk/va3v7X4aKKqaJomEhISBCBSU1OFpmk+z+fyyy+vtn17MPxCCN+NuXz5cpGTkyNMJpMwm80NznHTEOrSm5SUJB555BFx7NixgB3fX6677jqRkJDQrAnqGsI777wjAHHNNdfUu603h1VISEidfTPehGsVHaCGommaWLlypbj88suF2Wz2VQJDhw4Vr7/+uigsLBRZWVlixIgRAhB9+vSpsZKRhr+R1FZwZWVllcaADxkypEEJypqbnJycBo0XDhSnnnqqAD3vkDeGGxsbKzIzM6tt214Mvzcs+Morr4iPPvrIF2IJJG2pbFNSUoJ27GXLlglATJ48uc7tjh49WukhP5PJJD744IMat/3hhx8EIE477bRm0ZiRkSEee+wx39Bgb+etNxXLoEGDag0HBcrwt6t8/BUJDQ2tNDfuo48+islkCpqe+Ph4FEUJ2vG9eHPzL1++nNtuuw2AF154gS5dugRTVlCpOBuXN/f+hRdeGERFrQuz2Ry0Y/ubl//ZZ5+lpKSEc889l9tuuw23282cOXN4/vnnq21b3+TqDaVr1648+uijHD58mK+++opp06ZRVFREWloaI0eOZMWKFSQmJjbLsfymrlqhFb0aTV015pw5cwQghg0bFpRREVVpDV6et7/DaDQKQEyfPr3W5m5r0OsvTdHqna9g8ODBvnh/Qx7qaQztpWybitvt9v0ntQ3pTE1N9Q113rJli0hLS/N10IOevrziNX7++ecLQHzxxRcB0719+3bxn//8p95woQz1NJK6Cm7FihViyJAhAcs301Baw82+YcMG3w0REhIi9u3bV+u2rUGvvzRFa0FBQaXRK+PHj29GZTXTXsq2OfAO6awtP5E3VOftp/Lq/fzzz33x92uuucY3sKN79+4CqPPabylkqCcATJs2jd27dzN9+vRgS2k1DBs2zDcn7UMPPcTAgQODrCj4REdH07dvX9/3QE6xKGk4dYV7Dhw4wPvvv4/JZOLxxx+vtO6KK65g4cKFhIeH89FHH3HRRReRkpJCeno6UVFRvnl9T0TateGXVCc8PJx//vOfXHrppdxzzz3BltNq8M7BCzK+39rwGv6aJl5/9NFHcbvdzJ49u0YnZsaMGSxbtowOHTqwcOFC33y/Y8aMwWg8cc3jiXtmkkbzwgsv8NVXX2G1WoMtpdXg7eAdNGgQQ4YMCbIaSUW8nnlVw79t2za++OILrFYrjzzySK2/nzhxIn/++SeJiYmkp6cD9U+u3taRhl8i8YOLL76YDh06cMcddwRbiqQKtXn8Dz/8MAA333wzPXv2rHMfQ4YMYfXq1QwePBjA5/mfqARvHJZE0oYYPnw4ubm5wZYhqYGaYvxr167lp59+IiIigvvvv9+v/fTs2ZP169ezceNGTj311IBobS1Ij18ikbRpunbtSlhYGNnZ2RQUFCCE4IEHHgDg9ttvp3Pnzn7vKzo6mtNPP/2Eju+D9PglEkkbx2g00r9/f3bs2MGBAwfIy8tj+fLlxMXFcddddwVbXqvkxK7WJBJJu6BinN/r7d97773ExsYGUVXrRRp+iUTS5vGO7Hn55ZdRVZUuXbowb968IKtqvfgV6lEU5RTgYfSK4jUgG3gO0ICbVVXdoShKF+BjIAJ4U1XVTxVFMQHvAgOATaqq3u7Z323AZUAucJWqqoXNeVISiaR94fX4N27cCOgPH0ZERARTUqumXo9fUZQw4E7gHFVVT1VV9TvgKeAvwJXAvz2b3oteGUwHblEUJRQ4D8hQVXUqEKEoykmKoiQAFwAnAwuAW5r5nCQSSTvDa/gBevfuzQ033BBENa0ffzz+k4Ay4CdFUUqBfwBuVVXzgDxFUTp4tpsA3KmqqqYoigoMByYDP3vWLwKmALHAClVVhaIoi4CPajqooihzgbkA8+bN48wzz2zM+eF0On0PZbR22pJWaFt625JWaFt6W4PWyMhI3+fbbruN7OzsWrdtDXr9pSlau3fvXus6fwx/Z6A/MAk4A/gXUDE041IUxQpYVFXVPMsKgA5AXIVt61pWDVVV3wHe8XwVfuiskfT09DoLoDXRlrRC29LblrRC29LbGrR269aNGTNmIIRg/vz5daZYbw16/SVQWv3p3M0HVquq6gCWAmOA6ArrzZ51TkVRvPuLAY57fhvtxzKJRCJpNAaDgUWLFrF48eKgzqvRVvDH8G8EhiiKYgBGA7sBs6IosYqi9KDccG8ETlEUxQyMA3YBa9BbCQAzgNWe7aZVWdamyM3NZfTo0YwePZouXbrQvXt333eHw1Fp21deeYXS0tJ693nKKaewbdu2QEmWSCQSH/WGelRVzVEU5TtgBXrI5VqgO/CL5/s/PJv+G31Uz5PAW6qqlimKshC4UFGUVcAWVVXXAiiK8rOiKKuBPGBmM59TwImPj2fr1q0APPbYY0RGRtb6oMgrr7zCVVddRXh4eAsqlEgkktrxazinqqpvAG9UWJSE3nFbcZtM4Mwqy1zA7Br29zLwcgO1tmqWLl3KXXfdhcvlYvz48bz55pu8/fbbZGRkcOqpp5KQkMAff/zBzTffzMaNGykrK+OSSy7hX//6V7ClSySSdsYJ8QCXwWCo9ZWYmFjn+rpe/mKz2Zg9ezYLFixgx44duFwu3nzzTW699Va6devGH3/8wR9//AHAU089haqqbN++nRUrVrB9+/ZAFYtEIpHUyAlh+ION2+2mT58+vokerrnmGlauXFnjtl999RVjx45lzJgx7Nq1i927d7ekVIlEIjkxkrQJUftoz9Y0dOvQoUO88MILbNy4kbi4OGbPno3NZgu2LIlE0s6QHn8zYDKZSElJ8eUD/+STT3zz+EZFRVFUVARAYWEhERERxMTEcPToUX799degaZZIJO2XE8LjDzahoaF88MEHXHrppb7O3ZtuugmAuXPncvbZZ/ti/WPGjGHw4MH06NGDKVOmBFm5RCJpjxjqCpO0IuSTu62QtqS3LWmFtqW3LWmFtqW3iVprHaEiQz0SiUTSzpCGXyKRSNoZ0vBLJBJJO0MafolEImlnSMMvkUgk7Qxp+CUSiaSdIQ1/EzAYDNx5552+7y+88AKPPfYYAPv27eOUU05h9OjRDBkyhLlz5wIwZswYX2ZPl8tFZGQkn376qW8f48aNY/PmzS12DhKJpP0hDX8TCAkJ4X//+x85OTnV1t16663ccccdbN26lT179jB//nwApkyZwpo1awDYtm0bAwcO9H0vLS0lKSmJUaNGtdxJSCSSdoc0/E3AbDYzd+5cXn65eobpzMxMEhMTfd9HjBgBwOTJk32Gfs2aNdx0002+FsCWLVsYN26cnEFIIpEElBMiZYNhmlbH2q5AXetrR6ysv1685ZZbGDlyJPfcc0+l5XfccQennXYakydP5qyzzmLOnDnExsYyZcoUHnroIUA3/I8++ihffPEFRUVFbNq0icmTJ9d0GIlEImk2pMffRKKjo5k1axavvfZapeVz5sxhz549XHrppSxfvpxJkyZht9vp1asXDoeDrKws9u7dy6BBgxg/fjzr169HVVWZv0cikQScE8Ljr8szb4m8HLfffjtjx45lzpw5lZZ369aNa6+9lmuvvZbhw4ezc+dOxo0bx+TJk/n666/p2rUrBoOBSZMmsXr1arZu3cpJJ50UUK0SiUQiPf5moEOHDlx22WW89957vmWLFi3C6XQCkJWVRW5urq8Cmjx5Mq+88orPyJ900kl8/PHHdOzYkZiYmJY/AYlE0q6Qhr+ZuPPOOyuN7lmyZAnDhw9n1KhRzJgxg+eff54uXboA+sie5ORkn+Hv2rUrbrcbRVGCol0ikbQvTohQT7AoLi72fe7cuTOlpaW+7y+99BIvvfRSjb8bP358tVnDUlJSSE9PD4xQiUQiqYD0+CUSiaSdIQ2/RCKRtDOk4ZdIJJJ2hjT8EolE0s6Qhl8ikUjaGdLwSyQSSTtDGv4m0BrSMs+ePZtvvvmm6ScjkUjaDdLwNwGZllkikbRFpOFvAq0lLfPvv/+OoigMHDiQhQsXAvDhhx8yb9483zbnnXcey5cvx+12M3v2bIYPH86IESNq1C6RSE5sTognd3+JX1zn+m3sbNR+z82dUe82rSEtc0pKChs2bCApKYlTTz2VgwcP1rrt1q1bSU9PZ+dOvUzy8/MbfDyJRNK2kR5/E2kNaZkvu+wyjEYjAwYMoG/fvuzdu7fWbfv27UtycjLz589n0aJFREdHN/h4EomkbXNCePx1eeYnQlrmOXPmsGXLFrp168Yvv/xSbb3BYKj23Ww2o2nlE9DYbDYA4uLi2LZtG4sXL+att97iq6++4v3332+OYpBIJG0E6fE3A4FOy/zBBx+wdevWGo0+wNdff42maSQlJZGcnMygQYPo3bs3W7duRdM0jhw5woYNGwDIyclB0zT+9re/8eSTT8qJ3SWSdsgJ4fG3Bu68805ef/113/clS5Zw2223ERoaClAtLfMdd9xRLS1zYydh6dmzJxMmTKCwsJC33nqL0NBQpkyZQp8+fRg6dChDhgxh7NixgN4CmjNnjq818MwzzzT6nCUSSdvEUDU9cCul0SJbItTTXLQlrdC29LYlrdC29LYlrdC29DZRq6G2FTLUI5FIJO0MafglEomkneF3jF9RlCuA11RV7agoyqXAHUAZcI2qqmmKogwG3vHs82FVVZcqihIBfAJ0An5UVfU5z77+DUwGUoBrVVV1NudJSSQSiaR2/PL4FUUxAZcCRxRFMQP/BE4BHgEe9mz2NHAdcDbwuGfZ9cAvqqqeDJymKEp3RVFGAd1VVZ0K7AUuaaZzkUgkEokf+OvxXwF8DdwJDAD2qKrqAFYrivKCZ5tuqqoeAFAU5biiKAnoXv3dnvW/AScBHYElnmWLgDnAF1UPqCjKXGAuwLx58zjzzDMbeGo6Tqezzcxl25a0QtvS25a0QtvS25a0QtvS2xStdXUK12v4Pd7+ZcCF6IY/DiissIk3sUzF1kMB0KHKthWXZVZZVg1VVd9BDx2BHNXTKmlLetuSVmhbetuSVmhbegOl1Z9Qz1XAV6qqeh8DzQcqPufv9rxrFZbFAMerbFvXsjZJW0zLnJKSwvDhw/3eXiKRnHj4Y/iHArMURVmEHuaZDwxRFMWqKMpkYLtnu0xFUfopihIFdFBVNQdYA5zhWX8GsK7KshnA6uY5lZZHpmWWSCRtkXoNv6qq96qqepaqqmcDB1RVvRl4BVgOPOl5ATwIfAgsBh7zLPs/4AJFUf4EVqiqmqaq6lbgqKIoq4BhwLfNdTItTWtJy7xy5UomT55M3759fd6/EIK7777bl355wYIFjTlFiURyAtKglA2qqiqe9wXAgirrdgNTqywrRu8bqLqfu6suawodvvqtni12N2q/xy+rv0O5NaRlzszM5M8//2Tv3r1ccMEFXHLJJfzvf/9j69atbNu2jZycHMaPH8+0adMavG+JRHLiIR/gaiKtIS3zhRdeiNFoZOjQoRw9ehSAP//8kyuuuAKTyUTnzp2ZPn06GzdubJZzlkgkbZsTIklbXZ55e0jLHBIS4vvcRnIvSSSSICI9/mYg2GmZa2Lq1KksWLAAt9tNdnY2K1euZMKECU05TYlEcoIgDX8zceedd1Ya3bNkyRKGDx/OqFGjmDFjRrW0zMnJydXSMiuK0mx6LrroIkaOHMmoUaM47bTTeO6553zHl0gk7RuZlrkV0Za0QtvS25a0QtvS25a0QtvSK9MySyQSiaRZkIZfIpFI2hnS8EskEkk7Qxp+iUQiaWdIwy+RSCTtDGn4JRKJpJ0hDX8TaItpmQOBqqrceuutACxfvtyXhE4ikbROpOFvAjIts46iKL5cRdLwSyStH2n4m0BrScv8+++/oygKAwcOZOHChQB8+OGHzJs3z7fNeeedx/Lly3G73cyePduXrrkm7XWxceNGJk+ezKhRo/jLX/5CUVERy5cv57zzziMlJYW33nqLl19+mdGjR7Nq1Sr69OnjS11RWFhY6btEIgkOJ0SStuj7YwOy38Jn8uvdxp+0zOMmnsmO0tk8NCcuIGmZU1JS2LBhA0lJSZx66qkcPHiw1m23bt1Keno6O3fuBCA/v/5z9OJwOLj88stZsGAB48ePZ+/evYSFhfnW9+7dm5tuuonIyEjuuusuAE455RR+/vlnLrzwQr788ksuvvhiLBZLg89RIpE0H9LjbyL1pWW+5JJLePuT5fz4+mTmv2wLSFrmyy67DKPRyIABA+jbty979+6tddu+ffuSnJzM/PnzWbRoEdHR0bVuW5V9+/bRtWtXxo8fD0BUVBRmc92+w/XXX88HH3wA6MnmqmYwlUgkLc8J4fHX5JkLITj1NsGKrTDvYvjP7YGr4+pKy9xx0LXkdJ8DWSNZv3Enm/YpzZ6W2WAwVPtuNpvRtPJpkG02GwBxcXFs27aNxYsX89Zbb/HVV1/x/vvv+7Zzu92MGzcOgAsuuIDHH3+88QWD3qeRkpLiCzPJ+X4lkuBzwnr8BoOB124zYDIK/vs9bDsYuGR0taVlLi5x8M83BDiyMGm5ENKd/3wrmj0t89dff42maSQlJZGcnMygQYPo3bs3W7duRdM0jhw5woYNGwD4fW02973p4owZF/Pkk09WG0FkMpnYunUrW7durWb0Bw0aRGZmpm9Cl+LiYlwuV6VtoqKiKCoqqrRs1qxZXHnlldLblzSan9cK5jyjUVTaJpJKtnpOWMMPMLKfgVlnlqJpMP8VEdBJSmpKy9xnwAiSfhpDyP5zeObZ5zCEdOHLZTB05ORmTcvcs2dPJkyYwDnnnMNbb71FaGgoU6ZMoU+fPgwdOpRbb72VsWPHcihDcNHdabzxr9MYOGQMV111Fc8884zfx7FarSxYsID58+czatQorrjiCl9Lwsv555/Pd9995+vcBZg5cyZ5eXlcccUVjTo/SfsmJ19w1ROCD3+F938OtpoTBCFEW3g1ml370kXH892CqW7x+W9aU3bVIDJzNBF5ln7cxev14553r/79qY9r1pGWlhYwPUeOaiLxYv34THWLyLPcIregaeXhr96vv/5aXHXVVU06VlMJZNkGgtagN79IE2/8TxMFxXVfJ4HWestL5dft+BvcTd5fayhbf2mi1lpt6gnt8QPERAiemavHwO/6r6C4hZqKD74rKC6D8yfDWRP048+/WH9/83uBy9VyTdb8IsE5dwvSsmHKCDh1DBSXwX++Dfyx58+fz3333cfDDz9cabnNLnj4/zTmPKNRagt+8339bsHulODrSMkUXPOUxrKtIfVvHECEEFz1pOCWlwU3vxi8ctmdInjrRzAaISwENu6FA0eC+z/930LBkx8FNoIQcOqqFVrRq9GkpaUJt1sT42/QPYZ732y6x1AfG/dowjDNLSynusX+1HJvye3WxMArdR1f/1HdiwqEJ2Kza+KUW/VjDp6pe/nLt2iCqW4Rd65bFJY03utvrN5dhzQxak65F3f1k26haYFtjdWldamqCeN0t4g+2y3SjrVcq7AqG/doovNf9TKJOdvZ5BZZU/h4keb7f5jqFut31a4lkB702Xfpx7/pBbeY9aT++dH3mnYPN0XvoQz9WmGqW3z5e+D/H+nxNwGj0cDrt+ve9ktfwb7UwNXUQghu/49ACLj9UhjQo3zEjdFoYJ7H6//Pt4H3FjRNcM3TguVboGs8LHrBQIdoA9NG6Z5/XhG89UPAZfgQQvDWD4Jx1wu2HYS+3SA8FD5ZDO/82HI6KpKVK7jyCYGmQWEJ/OOl4HhyP/4pmH6r4OhxCLFCQYmRpz4OjkeZkSO49VX92Mpgfdkdr7d8ufy6TrBoPURHwOPXGZh5pn7vfP47QfO2//Otfq2AHkEoKWubXn+7MPwAE4YauO4v4HTBba8F7iJesAxW74BOcfDQrOozn11zNkSGwcptsD0psBfN3f8VLFgGUeHw6/MGenXR9RgMBh68Wv/84gJBmT3wF29OvuCiB/Wwgc0Bs8+Bre8beOcuXcetrwnUvS17E7ndejjj6HE4aZhuYH5cDV//0aIy+M+3ggsfFJTa9HJZ+ZoBg0Hwn/9BckbLlokQghtfEOQXw7mTYOnLBjrFwZqd8NWyltPhdAnufEM/90euMdAx1sBpY6FzBziQBmrtj6oEjKJSwf95Opd7dYG0bHj6U2n4Wz1PzzUQEwmLN8CPfzb//kttgrv/q18IT99gIDqiuuGPjjAw+xz9cyC9/pcWCF76Cixm+O4pA6P6V9Zy9kQYOxCOHg/8SIllmwSjrhX88CfERMIXjxr44H4jUeEGZp5l4B8XgsMJlzwiOF7YcjfS05/C0k16Jf3tEwaev9nTF/OqILcg8DrcbsEd/9G49VW9hfj4dQbev8/AhKEG/nZyGU4X3P92yxqWT5fAwjX6//TO3fo1/MR1ernc+7bA1gJOAsDbP8Cew9Cvu/4cDoDZbODvp+mfP/ut5Q3uB7/orcKpI+HLR/UyeeFLOJjWBo1/XXGgVvRqNFVjZK99o8cu+1zmFqW25o3RPfqeHvsbe51buFy173vvYV1D2BmVR9Y0V6z0y9/L47OfLaldxzd/6Nv1vMQtHM6Gl0V9eu0OTdz7plsYpulapvzDLQ5lVD+Oza6JCXP1bc65yy3c7uaPnVbVumyTHqs1THOLJRv047ndmpg+X9dxzVOB7QsqKdPEhQ/ox7Kc6hafLK58zhu2ZYjQ0/X1a3e2TKw/PVsTsefox/zgl/JjulyaGHGNvvyZTwLfN3W8UBMd/qIf77uVVcplt37Ndv6rWzgbcc0K0Ti9Lpcm+v1d1/Ttcv241zylfz//3sBdK4GK8QfboLe44Xc6yy/if33QfDfU4SzNd6Ou2lb/fs/6p77tc583r+H/Y7MmrKdV33dNuN2aGHJV9RvdX+rSm5SuCcXToW6c7haPva/VeaMeztJE/Hn69k98GFjDn5WriS6eTtSH3q180+5PLf8fvcNwm5us3PKKLvYct/hjc83G9P63yyvMQHd+a5rmG2587t3Vj/fbRt3gRs1wi6zcyuua2/Df/pqu45Rbq+vQNE0MuKJp/09j9H6/Uj//3peWO3WZOZqImqFr+WVtYP4fafgbSU0F5x3VEnp6zR5oY/j7Y/oFcPmj/tX+P62ufiE19QZas0MTMR6P7dZX/DMW3tEbA6+su5VSE7XpXbWt3Ij3utQt/tzu334XrddHQ1X0wpsLr1aXSxNn3KFrmz6/Zq/x2U/L/5uiJox6qomdyZroc1l52ew6VPszHQXFmu8ZFK+XGSi810HMObWPbPJWDHOfq3yNN6fh33tYE+ZT9Gtgy/6adTz2vq511pON87Qbo9c7Mu6lBZU1vfCFrmXAFW5hswe+pdpApOGvitdQX/xg05tpK7eWVySHs/z7810uTfS9XNfw/cqmG/4vf9dEiMdTveRh/424w6mJ3pfqv1uwtOmG/6Nfy1sc59zlFnmFDdun96ZOOM8tUv0sS3/wan38Q33/Hc93i/TsmvfvdGpizLX6Odz+WtOuD03TxLaDmnjiw/IhxUx1C+UGt8jMqX+I5Ovf6nr7/90t7I7AGP/aQjxV2ZOiG2XjdLfYfrD5Q5RCCHG+p3K5/t+1l/uBI5rvIcSSsuYPUVZly/7y1k7Vh9nsDk0MnqlrfvZTafhbveE/clQT4Wfqf9i7P2mNbkofL9TE6GsbN774xS/1C+r02911aq0LTdPEUx+Xx/RveqHhsc83v9d/P2pOw0IKFfW63Zp48J1yw3brK42Lwbrdmphxp76PiTc2n7FLS0sTf2wuj+vXFybYtFcTJo/nua6OMew14XBq4ndVE7e+4vZVqt5X2BluMecZtygu9e9pWIez/NmP175pfsNSX4inKvNf0bc9447ybZvL8HvDSZFn1V0pCiF8obLGjKVvqF5vLP+2V2u+v5ds0HVHnNX8z4FIw99I6io4bzONqW7x98ca7p0u2aCJ7p40CD0vabj3kVdYXvnsOqQ1+E+2OzQx+2n994ZpbvHil42rwMpsmuh6ob6fn1Y33PCXlGnikof135tOcYs3/te0iz87TxM9/qbvb/4rzdNxtmVnhi+u/+A7/u3znv/q2w+fVX8F5HZr4pe1mrjiX25fuM376nSBW1z3rFv8sErz+xqpeC1448vx5zX8Gq0Pf0I8FcnJL28deK+V5jD8Tqcmhs+qvQO5Kq9+rTW6Y7UhejNz9BasYZpbHEyrXZe3o37m483b0SsNfyOpq+A0TRPvLdRExFnlxnvFlvovupIyTcx7ufzGPummui+KurjxeX0fN7/obtCffLxQE6d64o7hZ1Yf/dBQvK2PSTf57/WnpaWJjOzyTtzos91iUTN1iK7fpQnLqfp+3/6h8S0yIfSw2tSbSwVT3WLaPP9bIqU2TfT/e90DAY4XauLFL8tHfHhfQ65yi/vecos1O7QG950IUfm61TRNTL2l+Z88rxjief9n/zW+tEC/VgbN1EeDNYfhf+v78n6VMj9G22Xl6i0y8ylukZPfPH1TNfHIe3r5XPhA3eWenN6wwR3+Ig1/I/Gn4PanlsdfDdPc4oF3ah/euGG3JgZ5YnrmU/SEa40dViaEEDuSypuJu/en+/Wbg2nlGrr81S3UvU2/0IpLyztkl6r+7W/xn1m+xG99Lqu9o7KxvPG/8hbZhLl6pdLQCmB/quZ71L+uuH5t/LFZ8w25rHh+m/dp4rpn9dCNV2OvS/XroWKajsZS9bpdv0vXEXK6W6RkNn3/Dqcm/nKP/yGeitgd5SNrXvum6Yb/6PHyTuyvlvmvwxsSfPP7wBj+Mlu5ruV+OITeSmL0tQ0fKFEb0vA3En8LzuHUY9TeMefKDZXz7Dicmnj0PT2UwVS3GHq1W2xqBoMrhPB57o+9c7zebf/crokEj4EecY3/ncn+8ISn4/O02+r2bpxOTXzzhybCz3AKprrFybe4xbG8wMSf//tdef4a79DGZZvqD7v8uk4T595d/jvTdFejWyM3PFfesvv8N01Mvrmyd3/WP/UwTnPd7ELUfN1e8S/9eFc90XivX9M08e3ycsPtb4inKt7wU4e/uMXOvf45LFUpLNHEvz4oHxJ58i0Nq4C8YaqTb2lYefhrE95bqO9/zLX+6Sop00TPS/Rz+e93rdvwG4RoE0+dNVpkeno63bt393v7Vdv0x/hTj+p5ZF691cDJI+Dqp4TvMfE7LtOfzA0Nqf5kbmP4bqXg4ocEvTq5ePZmC5oGbu/LXf45pwCe+kRgd+hP3i54rOangxtLfpGg12WCwhJY+6aBScMM2OyCHcmweT9sOSDYcgC2J4HNof/m6hnw7t0GQqzNp6MqJWX6ZDr//lyQW6AvO3WM/qTrySPLj1tUKvjoV/jP/wT7j+jLQqww8wz4+7RszpzcuVHHzy8SDJ0lyMwtXxYdAXPOgX9cZGBgj+Y/95qu25RMwaCrBA4nqO8aGDeoYcddu1Nw95uC1Tv07wN7wNt3GThlTMP1CyE4/XbBH1vg+nOKefd+/6fwLLML3vwenvlUkOP5P8+eCG/dWZ5WxB+KSgWd/yoos0PKV/7/1h+bIIRg1Bz92v/oAQOzzvZv398sF1z6iKBDNOz/zEB8TNOujYbaryrUfvC6aoVW9Go0jakx8wo1n3fFVLcvG1+Pv9XvbTYGp7PcU/Dn9Y8XG//UYn14Hxrq/3e9U9Pbwqn66n2pWzz0Vl7AHyyqSGGJJp78qDwu7fW2F67RR9B4PUemukXixXonYXZe83RALlyj9zmMuMYt3vpea/bx/VWpTe9db9T+cFNtHDhS3vnuDXm98T+tUU9rV2TLfs3XQh41Rx/6+sMqrdYOaIdTE2//UD4gwtuC86dfrTa8w7Kf9qND2Is/18LvquYLpTZkfL6maeK029y+/rKvlmmNHt+fV6iJj37KbtRvPUiPvzF8tkTwj5d1D3jWDHjtNgMxkYHxbJduEry6oJSwsDCMRjB5X6YKn41w8kgDfz+9+jy7zUV2vqD3ZXrCMNDzoA/uqef1GTPAwJgBMHoAxEUZmuqNNJr8IsFLXwle+RqKSiuvmzYK5v/NwIUn67ldvDSHVptdEGINXNlXpDa9eUWCfn8X5BVBj04wpJf3ZWCw53PHWF1jTr7giY8Eb/6gJycMtcKdl8M9VzZfS/HpTwSPf6hhd1bMQgtjBuitslPHGJgyAn5eC4+8L0hK17cZPUBvNZ89sWnluXCN4Pz7BMP6wI4PDX7ty59r4fz7NBau0VuVD1/TMH27UwST/yEoKNa/d4iGq86E684zMLJf3fs6cETw0xr4aY1g1Xa9xZ/6tYEenRtVRrX+SBr+esjM0ScwGT8keDd7S7Nmh2DnIRjVH0b0hfDQms892HpzCwTPf6Enf5s8XDf4owe0Tq0NpS69C5YKrv13eeVclQ7RegWwI1lPKmYw6Flhn7jOQGKn5r+Okw6lk5rXjT+26KGf9bv1iqYmBvbQdVxyip6mvKk4XYKuF+khwK3vV09GWBP1XQsHjggGztQr+SPf6JlBG0pugeDz3+G9n/UU5F7GDYJrzzVwxRm68+RyCVbvhJ9W6wbfG6IE3embMMjOm3eF+nVeNdB4w68oygTgVcAJpAOzgAuBO4Ay4BpVVdMURRkMvAOYgYdVVV2qKEoE8AnQCfhRVdXnPPv8NzAZSAGuVVXVWc8JBM3wtyRtSSu0Lb1tSSvUr9flEiRnwt7DehbLPYcFew7D3lTd2HuZMQGeu7l+T7M5tZaUCdbsxFcRbNwL3eLhsTkGZs2o3BJrDv7xksab38PdV8BzN9efcLi+sp33ssYb38F1f4H/u7fpCYw37xO8/4vgs98g39MKCLXCySP19NLeZQBxUXDORDh/ioEZE6C0MCMgMX6zHz8+ApymqmqZoijPAH8F/glMB8YDDwM3Ak8D1wFHgV+BpcD1wC+qqv6foiiLFEX5DEgAuquqOlVRlAeBS4AvGntmEkl7xGw2MLCH7kFfcDJ473Eh9E7oPYchOrxlWqpViQgzcOZ4OHO8fmy7Q2C1BC5ENvNMA29+L/jid3j2RlFrS8LhFOw6BFlHzRQ6BeGh+gCO8BB9Wkej0UBekeCDX/Xtb7ukefSOHWRg7CADL/xD8P2feitg6Sb4XdXXD+4J502G8ycbmDy8csVYWtgsEqpRr+FXVTWzwlcHMAjYo6qqA1itKMoLnnXdVFU9AKAoynFFURLQvfq7Pet/A04COgJLPMsWAXOowfArijIXmAswb948zjzzzAaemo7T6SQ9Pb1Rv21p2pJWaFt625JWaLrewV3095Y45WCXba846NGxI0eyzXy7NIfJQ/UhZ0fzjGw6YGXTAQubD1jZnmzx9EV0pKYgQohFw2QUlNqNTB1up0Po8WYvv6mD9deRbBOb9lsY1c9Jny5u3/qjRytv35Syraul4I/HD4CiKL2As4D70EvOi8nzXrFNVAB0AOKAwhqWZVZZVg1VVd9BDx2BDPW0StqS3rakFdqW3tag9eqzNZ7+BF7/MZ7v1+ozhqVkVd9uUE+wmpw43RZK7VBqg1I7lNnxVAoGjEb41/WhAT2n7t1h0uj6twtU2fpl+BVFiUaP1c9GN/QVB+16qyutwrIY4DiQ79k237PssOeY0VW2k0gkkkYz80wDT38iWLmtfFlkGEwcqnf8Tx5uYOJQ72i0nGrGVAj9+ZhSO5hNNOvzMa2Reg2/oihm4EvgX6qq7lMUxQIMURTFCijAds+mmYqi9AOOAR1UVc1RFGUNcAbwvuf9BvQY/z+Bj4EZwOpmPieJRNLOGNrbwFM3wL5UwaRheqx8eB8wmfwz4AaDgdAQCA0JsNBWgj8e/xXAROBhRVEeBt4EXgGWAzbgGs92DwIforcIHvUs+z/gU0VRrgUWqqqaBqQpinJUUZRVQCrg7SNodnbmF5FbaqNtNJglEklTeOBqPVQjqZ8Tdhz/j2lHuXbtdkZHhfHbjCkt8tBNU2kNsdKG0Jb0tiWt0Lb0tiWt0Lb0BiplQ9MHqbZSpnfqQJzVwubCMr5PO1r/DyQSiaSdcMIa/hirhQeH9wfg0W0HKHO56/lF+8DmdrPJm+lMIpG0S05Yww9wdZ/uDIoIIa3Uxuv7DgdNx9bjhZzx+3qWZGQHTQPoIxeuXbudM5du4OPktKBqkUgkweOENvwmo4F7++hPsry69xDptSU3CSAlLjfXr9vO5uOF3KruptBRX3aKwPHdkaMsysgB4IkdBykIohaJRBI8TmjDDzA+JoLzEztR6tZ4fPuBFj/+Y9v2k1xcBsAxm4NndiW3uAaAPLuT+7fsAyAhxEKu3clzu4OjxUuR08WRkrKgavBS4nJjd2v1bygJCiUuN3sKiuvfUOIXJ7zhB3h85EBCjEa+Ts1iQ05+ix13aVYO7yWlYTEaeGPCMIwG+L+DR9iVX9RiGrw8vG0/2XYHkzvG8s20sRiAdw8cYX/FjF4tyMGiEib+uppxv6xmTXZeUDR42VNQzMiFq5i2ZC2FtaWVbCGEEGw9XkiZrIR8CCGY+edWpixey2+ZOcGWc0LQLgx/r8gw/jGwJwAPbN2H1gJDWPMdTm7duBuA+4b144re3biuXw/cQnD35r205DDaFUdz+TwlgxCjkZfHDWVkXDSz+nbHJQQPbd3XYjq8HCwq4YI/VLJsDlxCcMO6HeTaHS2uAyDH5uDKP7eS53ByoKiUB4NQHhV5dlcyp/2+nmt3puDSpPEH+DY1i5XH9Af8H99+oEXu39oQQnD3pj1cvXorpW14wEi7MPwAtw/pQ5dQK5uPF/LV4cz6f9BE7tm8l8wyO+PjY5g/qBcADwzvR0KIhXU5+XydWkMikQBQ6nLzz017ALhraB8GREcA8ODw/kRbzPyelctvmS3X6ZxUVMJfl28iy+ZgSsc4JsTHkFlm55YNu1r8hna4Na5Zs43DJWUMjYkkxGjks0MZLApSJ/wb+w7zvCf8trM4uAMSWguFThcPb9sPgNVoYFdBMd8dCd7w7N+zcnkvKY2f07O5Z/PeoOloKu3G8EdZzDw8cgCgew3FAWzSf3cki29Sswg3GfnvhGGYjXoxx1gtPOrR8Oi2/S0SVnhuVzKHinXDNn9Qb9/yhFArdw/tC8BDW/fjaIHQQlJRCRcs30RmmZ0pHeP4cuoY/m/SCGKtZpZk5vDf/S1n6IQQ/HPTHtbm5NM1LISvp43hoRH68N/b1d0t3gL5JDndZ+Cu65cIwLO7ktgbxLh2icvNwrRjlATRs/33riSO2hwo8TE8O2YwAM/sPIgzCK0hl6bxiOc/Avg8JYNPk9tOxteKtBvDD3B5r66M7RBNls3BK3tTAnKMrDI7d23SPYHHRw2kX1REpfVX9O6GEh/DUZuDf+9KCogGL9vzCnlj/2EMwCvKUKymyn/3Df170D8qnANFpfzfwSM176SZSC4q9Rn9yR1j+XLqGCLMJhIjwnhj/DAAHt9+ELWFnjF4Y/9hPk/JIMxk5LMpo+kaFsrNA3syuWMsx2wO7ty0p8XCcT8cOcodm/Sw4DOjB/H8uCH8rXMsDk0wf+Nu3FrLhzZsbjd/X7WFWWu28fdVW7C5W974784v4p0DRzAa4Pmxg5nZpxt9I8NILi7ji5SMFtfz2aEM9hWW0CsijJfGDQHgni172ZHX8n12TaVdGX6jwcDTowcBerP6cHHzjigRQnCbups8h5PTusQzx+O5VdXw/NjBGIB3Dhxhd4A8OpemcZu6G7cQzB3QEyU+pto2VpORp0YPBOC53clk2wLj5SYXlXL+cpXMMjsnJcTy5cm60fdyTvdO3DywJy4huG7tdvIDPMx0cUY2j27TR3j9d8JwRnfQk8UaDQbeGD+cSLOJH9OO8W0LhOOWZuUwd/0ONAH3DevLjZ6+qDt7d6ZbWAibjhe0aEsIwK0Jbly/k9WeTvfV2XnMXbezRSsgIQT3bNmLWwiu7deDUXHRWIxG7h/eD9Bbsi1ZGRU7XTzjcdQeGdmf2f0SubpPd2xujdlrtwV1mHZjaFeGH2BCQiyX9OyCXdN4dPv++n/QAD5OTue3zBxiLGZeU4bWmh9oVFw01/ZLxC0E9waoo/etA6lsyysiMTyUBz03S02c2bUjZ3SJp9Dp4umdB2vdrrFUNfoLpo4h0lI9N+CjIwYwJi6aI6U2bt24O2De9u6CYm5YtwMB3D+sH3/t0bnS+l6RYTzpqQzv3ryXjAA++7EuO49Zq7fh1AQ3D+zpC70BRJlNvKwMBeDpnUktNvpKCMH9W/fxU9oxoi1m3p00ghiLmYXpx7hrc8u1gr5JzWJNdj4JIRYeqHD9XtSjC0NjIskos/NBUss9hPiffYc5ZnMwrkMMFybq18yzYwYxIjaKQ8VlzAvgNRsI2p3hB3h05ADCTUZ+TDvG6mPNMx1ASnEpD3nif8+PHUy38NA6t39wRH/iQyyszs5rds8ypbiUZ3bq3smL44bUaGgr8uToQZgNBj5OTm/WZuuh4lIu8Bj9SXUYfdBbH++dNIIoj5EJROhJH8GzhWKXm4t7dOauoX1q3O7qPt05q2sCBU4Xt6qBuaG35xVy+Z9bKXNrzOzTjSdHDazmKJzZNYErenfDrmnM37irRTzul/ek8H8Hj+gd3VNG8beeXfji5NGEmox8lJzOsy3wHEqhw+mLpT86cgCxVotvndFg8PXFvLznEEUt0E+WUWrj9X0pADwxuvx/CjOb+HDySKI91+wbLdwyawrt0vB3Dw/l1sG9Abh/674m31BuTfCPDbsocbn5a2Jn/tazS72/ibVaeGSE3tH7SDN29Ho7LcvcGn/r2YUzuybU+5uB0RFc378HAn24a1MMnRCCpKISvkzJ4Pw/VDL8MPpeekeG86rHy31423625TXfhKMOTWPWmm2kltgY2yGa/4wfVmuLzGAw8IoylDirhWVZuXzYzJ7lgcISLlm5mSKni/MTO/HKuNpbh0+NHkjXsBA25hbw9oHUZtVRlc8OpfPkzoMYgLcnDWdKJ31yvEkd43hv0gg91r47mfcC3B/07K5kjtocjI+P4Yre3aqtn9E1ASU+hhy7M+BlAvDMriTK3BrnJ3ZiUkJspXV9IsP57wS9j+pf2w+yLsjPpPhLuzT8APMG9aZ7eCg784u5dt12UpvwBOkb+w+zLiefzqFWXhg32O8U0DP7dGNchxiybA6ebyZPasHhTJYfPU6c1eLrz/CHe4b19bVAfkw75vfvip0uVh07zku7D3HFqi0M/HEF439dwz827CKjzM5Ej9GPqsfoe7mwR2eu7ZeIQ9Pj/c1RIQoheDwpk3WeETyfThlNWIU+hproEhbCC+P0USQPb9tPclFpk3UApJWUcfHKzeTYnZzaOZ53Jo7AVMvk4KA7CC97OhKf3HmQpKLAhHwWZ2Rzu6oP+31u7GAuSKwcAjuneydeHqdXyvds3sv3ARpSuTu/iHcPlnfoGmu4lwwGAw97vP7/7DtMnj1w8fVd+UV8figDs8HAox5HrSrndu/E/EG99P6Itds5ZrMHTE9z0W4Nf7jZxEvjBhNiNPJT2jEm/rqGf20/0KBOmg05+Vz151Ye86SCeFUZSnyI1e/fGw0Gnhs7SPewDqSSVNr4CybH5uCzQ+k8uFVvIj85eiAdQ/3XEmu18MAwPZb6yLb91bKZCiFIK7XxR1Yub+9P5Z/qbi7bmkyf75fz1+WbeHLnQRZn5pBrd9IxxMq53TryxKiBfN0Ao+/lydEDGRYTSXJxGf9sYqjlcHEZd27aww/HCggzGfn85NF0CfNvmqWLenTh4h6dKXVr3NLEUEtaSRlP7TjIab+vJ73UxoT4GD6eMooQU/234FndOnJ5r67Y3BrzN+5u9ucdNubmc+3a7biF4M4hfbiuf48at7u6b3ceHtEfAdy0fgcrjzbvrKnC83CjWwiu69eDkXHRtW47tVMHpnfuQJHTxWueMEwgeGTbAQRwXf8e9I0Kr3W7h0f056SEWLJsjhbvCG8MJ+xELF7qm8ggraSMJ3Yc9D1QlRBi4b5h/ZjVt7tv/H1FNCH4LTOHV/emsM6T/iHEaOSuoX24s0LnXEP4p7qbD5PTUaLDee2kUfSJDPfLIBwsKuGX9Gx+zchmQ06+r5BO7RzPN9PGNHjyGbcmOOW3dewqKOaqPt3oFRHGgaJS9hcWc6CotMbx3CaDgeGxkYyPj2V8fAzj42PoFRHW5IlvDhSWcNrv6ylxubljcG+u6tudPpG133gV0YRg+dHj/N/BVBZn5CDQZ6R4/6SR1Tpz6yPP7mTK4jVk2Rw8NnKAL0ToD25NsOxoDu8fTOO3rBy8tmBCfAwLpo4hpkLsuipVr9s8u5PJi9dw1ObgmdGDfKN/msr+whLOWbaRPIeTmX261TkoAco7f985cIRIs4mFpyrElxY1y8QmXx3O5Kb1O0kIsbDxnCl1lg/AptwCzly6gTCTkU3nnux3he7v5CZLs3K4dOUWoi1mNp87hQ71OHVZZXZO+W2dPhx4SB8e9LRKmkKgJmJp94bfy6bcAh7ett9nzAdGR/DEqAGc0SUBg8GAw63x7ZEs/rM3hb2eERYxFjPX9e/B3AE96NSEyTqP2x1M+HUNxz2tDaMBekWE0T8qgv5R4QzwvPeLCie1xMavHmN/oEKz32o0MLVTB87t1pHLe3cjvJ5QRm2sOnacvy7fVOO6hBALA6MjGBClv7q57Zw5sF+loZnNidcQeOkXGc7pXeM5o0sCUzrGVQvXFDqcfJGSyXtJRzjoCc1YjQYu6tGFi2JDOWtQ427E3zJzuHzVFqxGA0+MGkjvyHC6h4eSGB5KdA2tmWybg08PpfNRchqpJfqoIIvRwAWJnZnTL5GTEmLrrRhrum5/ST/GVau3EW4ysmrGSX5XhLWRWWbj7KUbOVJqY0bXBD6ZMqpGZ6cqmhDMXbeD/x05SscQKx8N68mk/jV3lPtLocPJhEVrOGZz8Pr4YVzZp3psvyauXr2Vn9Ozub5/D54bO9iv3/hjE9yaYNpv69hTUMy/Rg5gvp8V/qpjx7loxSY0AfcM7cvw2Ch6RYTRKzKsxmulPg6npdGze/fGOlLS8Pt1ECH4Kf0Yj207QIon5n9K5w5M7dSB9w4eIaNMD8V0Cwvh5oG9mNW3e4PDGLWxLiefZ7bs4YjDTWppGf60FGOtZs7q2pGzu3Xk9C7xzablxd3JqLkF9I+K0A19dAQDo8KreTwtMYXdz+nH+OZwFsuP5lJQId4fajJycsc4Tu+SwIi4KP6XmsWCw5m+Vkm3sBCu7deDq/t2p2Ootcla71B381ENT2lGWcx0Dwuhe3go3cNDKXS6+Dn9GE7PH9gzIpTZfROZ2ad7g0Jvtemdu24H36Rm+Z58bmila3drbDlewJrsfL48nMHBolKU+Bi+nz6uQc6Cw61x+Z9bWHH0OAkWM6d368iQmEiGxUYyNCaSLqEhDTJWD2zZx1sHUpkQH8Mvp42vMbZfE7sLipm6eC1mo4ENZ0+hV2RYvb/x51r4JDmd29Td9IwIZd3Zkwk1+V82L+85xBM7qg+NjrNa6BURSq+IcHpFhNE1LIRSt5t8h5M8h5N8h4sCp/7uXVbscrPtLyfTI6L+86oBafgbgt2t8X8Hj/DC7uRKxmZQdAS3Du7N33p0qfYUbHPg1Wp3ayQXl3KwqISDRfr7gaJSkopKibGYmdGtI+d278ikhFgsfnhogaIl5y51aRrq8UKWZubwe1YO22oZdjqtUweu79+Ds7slVPJem6rV5nbzQVIau/KLSS+zkVFqI73URmkNqS6MBjirawJz+vXg9C7xfhuxitSm97jdwUmL1pJtd2AAekeGMSwmiiExusEdGhNJ38hwX4dxodPFxtx81mbnszY7j83HC7FXSHcwICqCX09T6g1j1ESR08XFKzaz6Xj1p63jrBafnqExkURaTBQ53RQ6XRQ5XZXfXS7WZOcjEPxxxiRGxEU1SMfN63ey4HAmV/TuyhsThte7fX3XQrHTxYRfV5Nlc/DupBF+jdKriCYE36ZmoeYWcLikjMMlZaSWlDUq46oBWHHWJIbHNqxMKvy85hXS8NfOcbue2iG1pIwrenfjzK4JjbqJ/aUtTQINwdV7tMzOH0dz+T0zhx35RUzr1IFr+/dgSExkjdsHQqsQgjyHk/RSO+llekVgd2tckNiJxMZ5aD7q0rv62HHu37qPvQUluGq4f0NNRgZ5kvHtyC+q1nocGhPJSQmxTOoYx4yuCfUOs60Ll6axeF8S2dYwdhcUs7ugiN0FxeQ7Gj4a66YBPXl6jP8j0bykFJcy4dc1aAj+POskBnuuASEExS43OXYHOXYHuXYnx+1OKC5E6dWDXhFhNfal/XtXEv/elczYDtH8dvqEJvdXebUcszl8FcHhkjKOltmJtJiJtZiJsVqItVqItZqJtejvcVYLhceO0iOxegYAP5GGvy3QlrRC29LblrSCf3odbo2DRSXsLihmV0Gxx/AWV5ppzmwwMCoumpM6xjK5YxwT42OJC6m707SpWoUQZJbZ2VVQzB7Py6FpRFvMRFnMRJnN5Z8tJqItupEbFhNV59DWurhr0x7eT0qjV0QYsVYzOXYnOTZHpdZNVQxAt/BQ+kSE0TsyjD6R4XQLC+HOTXsodWv8fKrCSR3jGqWnuQhU527zBIUlEkmLYzUZGRobxdDYKC6psLzA4WRPQTEuIRjTISZgne+1YTAY6BYeSrfwUL8eIGwO7hzahwWHMz3edPnycJORhFArCSH6K9Zq4UhBIZlOjSOecF16qY0/qzx4dV73TkE3+oFEGn6J5AQjxmph0glstGqia1goS8+YSEpxqc/Qx4dYa6z0vF60U9NIK7WRXFxKSnEZhzzvpW63L1/TiYo0/BKJ5IRgYLQ+Cs1fLEYjfSLDmzwsti3Sbp/clUgkkvaKNPwSiUTSzpCGXyKRSNoZMsYvkTQD9hwHxxYdo+RgCbHjYomf2gFLbPMOm5RImot2a/iFW5CzPIfsP3IxWoyYo8yYo0yYo8xYoi2+z+YoM9YEK5aYlr+JXSUuCrcXkb+lgIItBRRsLQQhiBocRdTQSKKGRhE1JJLwfuEYza2j8eYqclF6uJTSQ2U4jjuIGRND9PAoDI0cn92aKU0pJeuXYxz95Rh56/Og4pBxA8SMiiZ+WjwJ0+OJmxiLKaxlh1VKJLXR7gx/8b5i0r5IJ/2rTOxH/U+DHNLZSuSgSKIGRxI5KJLIwfrn5vDqhBC4ClyU7i7j8JIjupHfUkDR3uLKxsRD6aEyjv5anjPfaDUQMTCSqCF6ZRAzOprYMTGYoxr397qKXdizHQiXQLgFwqmhuUT5d5dAc2oc351HSUEpJSmllKWUUZpSiiO3elprSwcLCdPiiZ/egYTp8YT3avooCiEEjlwn9iybrtVd9zN+xSUl2K12rAnWRj+JKYSgcEcRR38+ytFfjlG0u3y+ZKPVQPy0eKKHR5G3MZ+8DfkUbC2kYGshya8dwhhiJG5CLPHT4okZHY0l1oIl1qy/x1gwmFqmYtScGs7jThx5Tpx5TkzhJkK7hujlcgJWzpKaaRdP7naK6ETG/zJJ+yKDgs3leUXC+4XT7aIuGENNuIpclV/FLlxFblxFLuxZdtylNU/s7K0QQjqHYAo1YrQaMYaaMIYYMYUYMYYaMYYYMVqMOPOd2HMcOLIdOHIc+uccB45cB8JZ/RQNJgNRwyKJGRND7JgYYsZEYzAZKNpdTNHuIor2FlO0u5iy1BomkTFC1JBIYpVYYsfFEjc+hoj+EZVubiEEtgw7hTsLKdpZRKHnVZrc+ElHjKFGwnuFEd47HHOUmePr8rClVZ63Nrx3GPHT40k4JZ7oYVFoToFm19Dsbtw2Tf9s03Db3Wh2TS+rLDu2LDu2TLtu7I/a0RwNvywsHSx6xT0ogqiBkb7PIV30pGKuYhdlaTZs6WWedxtlaTbK0ssoOViKPavcWTBHmel4VgJdzu1MwmkJWKLLK1pXiYu89fnkrMgld2UuhdvrntLSHGXGEuepDGIs2F12QiwhIPT/CQFCAzTPZwEGswGj2YDBYsBoMerfPe8GswHhEjiOO3RDf9yJ87gDV3HN17HBYiC0SwihXUMJ6aq/h3reQ7qEENolhJDOIZgjqzsTNT1d6i51Y8u0Ycu0Y8uyYTAZCOkYQkhHK9ZOViyxllorYGehi9LkEkqSSilJKn935juJ6B+hO18exytyYCSm8JpbUsItKEsro+RgCcUHSig5UErp4VKcVifxg+IJ6xlGeK8wwnqEEdYjFFNo87bIhFsvf0eu03efV3x3FrqwxFiwxluwxluxJlixdrB43q1YOljIPJYp0zI36AeeUM6B95Mo/KMIza67zuZIE10v7kriFd2IHV9/elwAoQnKjpRRtLeY4n0lFO8tpmhvMSUHSmqtEBqKOcqMKcFEvNJBN/Jj9RCJP+EBZ6GL4n3FFO0pomhnEfmbCyjcUYRwVS42c4yZ2HExRPQJp/hACYU7i3Aer+6hGywGQruF6kbF9zJW/m4y4I5ykzA0wWfow3uHEdI5pFrlUppcSs6KXN0IrjqOq6B5ppm0xJoJ6RpKSEcrRkvdoa6S7BIch5y4imo+tjnajMEIzvy6tYV0DqHzOZ3o/JdOxJ/cAaPVvxCbI9dB7p/HyVmRS2lKGc58p+/lKnQ1wbVpGAaTQa9g4ixY4yy4SlzYMuw48/ybgMgcaSKkSyghXayEdtErhRJHCdYSK7YMj6HPtNX7HxssBkISrFg76ZWBJdaCLcNGSVIJ9qOOBpyQ7khEDY4icnAkGPAZ+tLkUt997w8hnUP0iqBnGGGJob4KISwxjNDEUMwR1Ss9zaVRllqmVywHS8srmaQSHNmOJv+vpigjJ/08iehhMkmbX2T+kMWWa7fpXwyQMD2e7ld0o8u5nWv1EBosylMhFO8rwXHcgebQPVXNruG2ez/rXqvmFFhi9P4Ca4JV93wSQrAm6LW9KdTUrPlk3GVuCrYXkq8WkK/mk78xH1tm9dCWJc5C9PAookdEET08mqjhUUQOiPDLoDVGr3ALCrYV6pXAilxKU8sqtIxM5Z+t5e/WeKvudXYN8Rmb0C4hDYqZp6en061bN+xZdr3y3ldM0f7yitxr+IwhRkITQwnrXn7Dh3UPJdTzPaJfeLOHRIRb4Cpy4czXQzCuAhc52dnEJyToxzKAwWjAYAQMBt9YPOESCKdAc2n6u1PzhOYEmlNgNBuwdLBg7WDB0kH3Js1R5hr1u8vceosqw4Yt04bdY8BtGXbsR+3YjtqxZ9n9NqRGq4GQLuWtBuEW2LPt2LP1Fq+rsPaKwRhiJLxvOBH9wonoF6G/+odjibFQvL/Y53gV7y2m5GBpnWG+kM4hRA6IIKJ/BBEDwgnvE0724WxCC0MpPVJG2eEySlPLsKXZ6g0XWjpY9MogMRSEXsGUHCqtsbXu+02c15u3lN/78Vas8VbMUWacRS69FXDc2xpw4sz1tAqOO0HAKVumEd5TpmX2C3eZm3XnbyDs5FCG3DCYsO6VC04IQVJuMnuO7kYTGiaDCZPRhNFgwmw0YzKaMBmNmAwmwq3h9IzrRVyYfy2ExhLoRGJl6TbyN+VTllpGxIAIoodHE9rNv7zpZc4y0gsySC9IIy0/nYzCDI4dP0ZkZCSa0MpfmoZbuH1l2rtDbwZ2HMiAjv1JjEnE2EJppIUQ2Fw2iu3FFNqKyM3OYfzg8TWeqxACR47unVk7Nr4PoDlpjUnlvH1Rtiy7J/Rmw55lJ/9YPh0HdfSFh0K6hmKNrz2UA+C2ufUQ3jEH9mw7zuNOQruGEtEvnNDuoX5XrppDoySphKI9ekUAeIy8XmFUDL95qalsNZeGPdNOaapeGZSllVF2xEbZkTLK0m3Y0spqDS2GdgslYkAEkf3DfceOHKCHD5sy6EK4Bal7Uuk5pGdj+4Dan+H34v2T88ry2XRkE+oRlY2pKpvSNnG8tGFzhkaFRNEzrgc943rSM7YnvTr0oldcT3rG9aRrVFc6hHfAbPK/Q9XpdpJRmEFavm5MkzOTiY+Lx2w0YzGZMRstns8WzEYTZpMFAwYEwjMPrf4uKrwbMBAfEU+X6K50jepCqCW0Xh1CCPLK8jmcd5jUvMOk5qWSmneEtII00vPTSStIJ6ckp0FlVRNhljAGJPRngKciGNhxID1iEwm1hBJiCiHEEkqoOQSrKYRQSwghphDMJjNlzjKyi7PJKcn1vGeTXZxDdkm2b3mhrZBiezFF9kKK7MUU24txaZW9ys5RnZnc+yQm957MlD6TGdp5qF8VkcPl4HBeKofzDpNdnE1uaS7HS/M4XpJLbmkuuSX699zSXOxOG4mxifTu0Js+8X3oHdfb97lnbA+s5sp5721OGwW2AvLL8skvyyevLJ9CWyFFBUUkdk4kMiSCcGsEEZZwIjyfI60RWEwWNE3DqTlxup043E6cbgcOtwOn24XT7UAIgdlkwWqyYDVZsZisWExmrCYrVpO12Srh1lhJVUT//w6TnHuII/lHKCsqY0CPASREJJAQEU/HyI5EWOtO9SA0gf2YQ68I0spAeCqYfuE1hoBqwul2UmgrJL+sgEJ7ISX2YsKtEUSHRhMdEkVUaBSh5tBKFaacerGBZBVm8fOeX1ixdwW7cndzIPtAtW06RXZiVLdRhJituIUbt6bh1txowo1bc/uWFdoKSc1LpdhRXMORKhMbFktCRALxEfEkRMTrn8PjiQmLIbs4m/SCdI7kp5FekE5WUVaTJhL3hw7hHega3YWu0d3oFt2VLtFdiAmNJi0/3WPoUzmcl0qRvZ7OR6OZ7jHd6B7TncTYHnSP6Ybb5iY2JhajwVjhZcBgMGIymnC4HCTnJrM/ez/7sw9wrPhYnceoCaPBiCYaPoEFQIg5hMiQSKJCoigoLSDPVjkDY2xoDJN6T2Jy78lM7jOZCGs4ybnJHMpN0d+PHyI5N5kj+WmN1lD1XLrHdCPCGukz9DaXrf4f1rKvpmoyGoy+1q3RoLdujUb9fzQZTfp3g9FniAweO1LRkTdgwOV2YzaZEJ7b1HtJiwq3rdVkJTIkgghrJBHWCM/nCCJDIom0RhJuDcdkrDt0ZzQYsZgsupNgtmI1hxBiDvFUbPqy/LJ8knMPcej4IQ7l6v9fWkF6vWUVZgmjY0QC8REJJEQkEB0aTUxoNFGhUR7DHO1bFh0ajcFgoNBWSIGtkMIqL98yeyEFZQUU2AootBVS4iipUwOAxWQhKiSK6BD9uFZDCP935bv0jW/U1Jbtz/D/mfwn5757nu97iDmEUd1GMb6HgtJTQekxjp6xPf1u1tfkFR/OS/W9Hy06Sl5ZXoMMudFgpGt0VxJjE+ke050wEUpYRDgutxOn5sTlduHUXLg1F063E6fb5fPqDQaD550Knw0IIcguziGzMJOsoqxqXm9tRFoj6dWhJ73ienlaND08Br47PWIT6RTZqZqH2FBvJL8snwPZB9mfvZ+DOQfZd2wfWUVHcbjs2Fx27C4bdpcDm8uG3WXH5rIhhMBistAxoiMdIxNI8Lx3jOzoWxYfkaDfpCFRHkMfTVRIZCXvOi0tjVJrKatT1rDm0BrWpKzhSH6a3/9TYkx3+sT3oVNkZ+IjOhAfHk98RDwdwjtU+m4xWkjNP0LK8RQOHT9EyvEU/XPuoRoNkMVkITYslpjQGGLDYokNiyU6NJrikiI0k6DEUUKpo4RiewmlzlJK7CUUO4p9+7F4vXmjGYvZ6vHs9WWge5kuTW8ROFwO/TrSnNhd/g9lbusYDUZ6xCbSN74vPeN6kleYT6koJbckh+ziHHJKchpdATdUR0xoDDGh0cSExRBujaDUUUKhrYgiexGFtkIc7uod21vu3Ey/hL6NOWTrM/yKovwbmAykANeqqlrXsIIGiyxxlHDbd3cwMLo/pw8/gxFdh1drZjc3bs1NnqfJn1OSQ25JLjmecEB+WT4JEQkkxiSSGNudxNhEukZ1rRQaau4ms6Zp5JTkkFGYQWZhJhmFmWQUZFBoKyQxNtFn5HvF9aJDeFyDY9uBbuILIXBpLsxGc5Pj7jVpTc1LZU3KWtamrGVtyjpcmou+8X3pG9+HPh36+D73jOtJiDmkSccHPeSQmn8Eh8uuG/uwGMIt4TWeW11l2xzl4t2H3sLVPK1bN5oQaJ7Wrib0FjBQwZsvvxW9y7KysujSRZ+esLxVUN5KEAgcLifFjiJPxVVCiaOEEnsxxY4Siu3FlDhK6nWa3MKNw6WHs+wuO3aXA4fbXulzVEiU77/r4/kfe8X1rHTv1zRxTImjhOySHHKKc8gtza3Ri9eNs+69a0LoLYEKrYCKLYPo0Ghiw2J0Qx8WQ3RoNJHWyHr/L7vLTpGtiELPsQ6lHeKcsef4FbKtgdZl+BVFGQXcrarqVYqiPAgkq6r6RR0/kTNwtULakt62pBXalt62pBXalt4TbQauycASz+dFwBygkuFXFGUuMBdg3rx5nHnmmY06kNPpJD09vfFKW5C2pBXalt62pBXalt62pBXalt6maK2rwgiW4Y8DMj2fC4AOVTdQVfUd4B3PV+nxt0Lakt62pBXalt62pBXalt5AaQ1WZq98INrzOQZo2LhKiUQikTSaYBn+NcAZns8zgNVB0iGRSCTtjqAYflVVtwJHFUVZBQwDvg2GDolEImmPBC0ts6qqdwfr2BKJRNKeaR2zd0gkEomkxZCGXyKRSNoZbSVlg0QikUiaCenxSyQSSTtDGn6JRCJpZ0jDL5FIJO0MafglEomknSENv0QikbQzpOGXSCSSdoY0/BKJRNLOCFrKhpaggbN8BQ1FUXoDG4FdnkWXqqqaHTxF1VEUJQb4DRgKTFJVdaeiKJcCdwBlwDWqqvo3l2ELUIveA4A3uflTqqr+FjSBFVAUZQLwKuBE1zcLuJDWW7Y16d1N6yzbzsB36FrdwEygH/AcoAE3q6q6I3gKK1OL3i8Ak+f7e6qqftLU45ywht8zy1d3VVWnemb5uoQqk720MlaoqnpJsEXUQSnwF+B5AEVRzMA/genAeOBh4MagqatOJb0eClRVPSU4curkCHCaqqpliqI8A/yV1l22NeltrWWbA5ysqqqmKMps4DrgTPRrIwp4Czg3ePKqUZNegHNUVS1uroOcsIYfP2b5amVM8WQrXQU8qKpqq3qk2tNaylYUxbtoALBHVVUHsFpRlBeCJq4GatALEKkoygp0z3SeqqqtYh4IVVUzK3x1AINo3WVbVa9G6y1bd4WvUUASeqWVB+QpilJtEqhgUoPeXcBpwC+KouQD81VVPdzU45zIMf44oNDzucZZvloRmUB/YBrQCbg4uHL8omL5gt4Ube1MUVV1Oroj8K9gi6mKoii9gLOAP2kDZVtB70+04rJVFGW0oijrgXnoc4FULFuXoijWmn8ZHKro3Ywe+p0GvAj8pzmOcSIb/nzayCxfqqraVVUt8Xj5/wNGBVuTH+RTXr6gxx9bNaqq5no+fkMrK2NFUaKBT4DZQDatvGwr6lVV1dmay1ZV1a2qqk5ED5k9SOWyNXtaVq2GKnrv95atqqorgG7NcYwT2fC3mVm+FEWJqvB1KnAwWFoawAFgiKIoVkVRJgPbgy2oLjw6QzxfW1UZe/pLvgT+parqPlp52VbV28rLtqI3XwAUA2ZFUWIVRelBK3MIa9Bb6qlkURRlKJDXHMc5YWP8qqpuVRTFO8tXKtCq4qRVOFlRlCfROyQPodf0rQ5FUX4BRqPHoN8GXgGWAzbgmmDpqo0qer8HLlMUpQSwA9cGT1k1rgAmAg8rivIw8Catu2xr0ntPKy3b0Z4+Ejd6WV6L3j/1CyCAfwRRW03UpHeZoihlnvW3NMdBZFpmiUQiaWecyKEeiUQikdSANPwSiUTSzpCGXyKRSNoZ0vBLJBJJO0MafolEImlnnLDDOSWShqIoSjhwD5CiquqHnlwpHwB3q6ramocDSyQNQnr8Ekk54cCj6E/PAqxAH7P+U7AESSSBQHr8Ekk5qud9uqIoAjgM9ALuBvYpipICJAAfAVeh59R5HXgH/V6ao6rqIs/Tl0+jVxoR6Omh/9HaUm1L2i/S45dIynnA874H3WjXFN6J8LyvRU/n+yZ66udOwLOedfcDd6K3FF4BzkFP/yuRtAqk4ZdIyvGm8T6mquqX6HldqqKhT5Dyref7J6qqvgZkAH08y87zvN+IHjqKQM8BL5G0CmSoRyIpx5/8JWWqqjoURfHO5lbgeXdTOX2yC70C8GbWlE6WpNUgL0aJpJxCdI++v6IoM9Hj+41hIbpTdQ3QEzib1jWDlqSdIw2/ROLBM2vX80As8CmNz4P/jGc/U9E7f89BHyEkkbQKZHZOiUQiaWdIj18ikUjaGdLwSyQSSTtDGn6JRCJpZ0jDL5FIJO0MafglEomknSENv0QikbQzpOGXSCSSdsb/AzQEYWefQyDlAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGvCAYAAABB3D9ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADMoElEQVR4nOydeXgN5xfHv5N9swsJCRFJbCGI0EiIEEXUvrRobbVTlNLSllpKFC1tFa2ti1p+lKLE1iSK2PdIJJEIInZJZE/und8fk/tmbta7JXeunM/z5Mns933nzp35zjnnPYfjeZ4HQRAEQRCEAWKk7wYQBEEQBEFoCgkZgiAIgiAMFhIyBEEQBEEYLCRkCIIgCIIwWEjIEARBEARhsJCQIQiCIAjCYCEhQxAEQRCEwUJChiAIgiAIg4WEjIbI5XLEx8dDLpfruyl6o7KfA+p/5e4/QOegsvcfoHMghf6TkCEIgiAIwmAhIUMQBEEQhMFCQoYgCIIgCIOFhAxBEARBEAYLCRmCIAiCIAwWEjIEQRAEQRgsJGQIgiAIgjBYSMgQBEEQBGGwkJAhCIIgCMJgISFDEARBEITBQkKGIAiCIAiDhYQMQRAEQRAGCwkZgiAIgiAMFhIyBEEQBEEYLCRkCKSlpeG3335DdHS0vptCEARBEGpBQobAvHnzMGrUKHTp0gU5OTn6bg5BEARBqAwJGQKHDx8GACQlJeHOnTt6bg1BEARBqA4JmUrOixcvEBcXx+Zv376tx9YQBEEQhHqQkKnkXL58WWk+IiJCTy0hCEKfPHr0CIcOHUJ2dra+m6I1CQkJ8PT0xKBBgyCTyfTdHKKcISFTybl48aLS/JtgkTl48CCWLl2K1NRUfTeFIAyC3NxcdOrUCX369MH8+fP13RytWbt2La5cuYK//voLISEh+m4OUc6QkKnkvGlCJiEhAQMHDsSXX36J1atX67s5BGEQXLt2jbmYjxw5oufWaM/58+fZ9N27d/XYEqIiICFTybl06ZLSfExMjEGPXAoPD0deXh4A4Ny5c3puDUEYBqdPn2bT0dHRBu1eys3NxZUrV9j8vXv39NcYokIgIVOJSUpKQmJiotKyvLw8xMbG6qlF2nP16lU2TSOwCEI1zpw5w6ZlMhmioqL02BrtiIiIQFZWFpsnIfPmQ0JGQzIyMnDz5k08fvxY303RGLE1xsLCgk0bsntJLGQSEhKQkZGhx9YQhPTheV5JyADAzZs39dQa7SnsLich8+ZDQkYDtm/fjqpVq6Jfv37466+/9N0cjRH/4Pv378+mDVXI8DyPa9euKS2jbMUEUTpxcXFFXsgMWchcuHBBaT4hIUFPLSEqChIyGuDk5ASe5wEAt27d0nNrNEcsZEaOHMmmDVXIPHr0CM+ePVNaZsgmcoKoCApbY4A3574GCC50sauJePMgIaMBLVq0YNOGmneF53nmWqpduzYCAgJgYmICwHCFTGFrDEBCRmp89tln8PLyKpK/yBDJyMjA0qVLcezYMX03RSuKEzKGapHJyMgoVoTdv39fD60hKgoSMhpQvXp1ODg4ABDeXBTWGUMiISEBz58/BwB4eXnB1NQUbm5uAIQgWcXIH0NCHB+jgAJ+pUNERARWrFiBS5cuISgoSN/N0Zr58+dj4cKFmDJlCuLj4/XdHI1RjFgyNjZG69atAQAPHjxASkqKHlulGVevXi02AR7FybzZkJDREIVVJjk5GY8ePdJza9RHbH5t164dAKB58+YAgJycHKWyBYZCcUKGLDLS4cSJE2zaUN/4FaSnp2Pr1q0AALlcXqxVwxB4+fIls8C2bdsWHTp0YOsM0b0kjo9p27YtmyYh82ZDQkZD3N3d2bQhupfEI5a8vLwAFAgZwDDdSwrXkpWVFVxcXAAIFhm5XK7HVhEKTp48yaZjY2MNOl/Rrl27lDJHi/OWGBJnz55l0z4+PmjZsiWbN0SxKX5BGzp0KJsmIfNmQ0JGQ8RxMob45lKcRUbcJ0MTMikpKcyK5OHhwURZZmYmHjx4oM+mERDyE4WGhrJ5mUxm0PmKNm7cqDRfnDXQEBBbkgoLGUO+r1lYWOCdd95hy0nIvNmQkNEQsUXG0H7wcrmcBVvWr18f9vb2AAzbIiMO9G3dujWaNm3K5ilORv9cvHgRr1+/VlpmaNeYgmvXrhUZ4nv16lWDtPwVFjLi+5qhWWRevnzJxHGbNm3QuHFjts7Qhcyff/6Jnj17GqwLs7whIaMhzZo1A8dxAAxPyMTExDCzuMKtBACurq4wNjYGYHjuMrGQadOmjZKQoTgZ/SOOj1EQGRmph5Zoz88//8ymFYkkX79+bXAWpuzsbCbInJ2dYW9vj5o1a6JevXoABCFjSAMZCrvLLSws2EuaIQuZ3NxcTJgwAUePHsXHH3+s7+ZIEhIyGmJlZYUGDRoAEB76hvQ2VpxbCQDMzc1ZbElUVFSx0f9SRWzab926NZo0acLmScjoH3F8jAJDFDJpaWn4448/AADW1taYOnUqW2doQ8qvXLnCair5+Piw5QqrzKtXr5CUlKSXtmmC2EqmeEFzcnICYNi5ZGJiYpCeng5A+M4oW3lRSMhogWK4ckZGhkEp/uICfRUo3EtZWVkG1SeFRcbY2BgtW7YkISMh0tPTWVBpw4YNmdXPEF1LO3fuZC6yYcOGwc/Pj60zNCEjdlP4+vqyaUMN+BW/oLVv3x5AgZABDDeXjNjiL5PJDO46qwhIyGiBQsgAhuVeKskiAxhmnEx2djZzhTVr1gwWFhaoVasWbG1tAZCQ0TenT59Gbm4uAKBHjx5KI8oMyeoHKAf5TpgwAZ6enmze0EYuiSteiy0yhihkeJ5nFplq1aqxa0wsZAzpxUxM4WfLuXPn9NQS6UJCRgsMUcjk5eUxN4yzszNq1qyptN4QhUxERARL4KdI6AWAxckkJSUpDZUlKhaxWykgIADNmjUDIFj9DKkOzpUrV5g1s02bNmjXrh3s7OxQt25dtt5QYkp4nmdWsho1arDvBDDMgQyJiYmsXpSXlxeMjIRHW8OGDdk2JGTeXEjIaIEhCpnbt28jMzMTQFG3EmCYQqZwoK8CGrkkDcSBvv7+/koPTUOKkxEH+U6cOJEF+yvSFohTAEidmJgYVpesY8eO7MEPCPcAxbyhWGTEVmbxfe1NsMgUHnhx/vx5PbVEupCQ0YJGjRqx+kSGImRKcysBQJMmTdgN2lCEjDjQVyxkKE5G/zx//pwJzTZt2qB27doGKZZfv36N7du3AwBsbGwwfPhwtk5swTCU+IWS3EoAYGlpyVwzt2/fNgj3nzjQVxEfAxi+kMnMzCwyGi4xMREPHz7UU4ukCQkZLTAzM2MPy6ioKBYHIGVKenNRYGlpCWdnZwDC27IhjMYSCxkPDw82TUOw9U9ISAhzt3Tr1g0ADNIis2PHDqSlpQEAhg8fjipVqrB1YiFjKHEyJQX6KlD0KSsrC3fv3q2wdmlKSfc1xchSwDCFTFRUVLH3YHIvKaO2kImKisLYsWPh5+eHfv364cCBA2zdtm3bEBAQgK5du2Lt2rVK/uKIiAgMGzYMPj4+mDBhgtKwvqysLHz55Zfo3LkzevfujeDgYKXPPHjwIAIDA+Hn54dFixZJSjAozMq5ubkGkUdC4ePnOE6pFokYxRtzenq65LPiyuVyXL9+HYDgDxfH/LwJrqV///0XdnZ2GD58uMHEX4gRx8cohIz4ezEUIVM4yFeMIVtkTE1Ni7XMGlLAr1wuZ0LG3t4e9evXZ+ssLS1hZ2cHwDCFjNjS37lzZzZNQkYZtYXMggUL4OPjg5CQEKxYsQKrVq1CQkICTp8+jT179mDbtm3YvXs3Tp8+zUROTk4O5s6di/feew///vsv3N3dsWDBAnbMjRs3IiUlBYcPH8ayZcsQFBTEggBjY2Px3XffYdWqVfjnn3/w6NEjbN68WUfd1x5DCozLzs7GjRs3AAgPE/FbpRhDMv3fvXuXvSmLA30BwaxsZmYGwDAtMjzPY8aMGXjy5Al27NihNGzeUFDEx5iamqJTp04AhPwrijfl27dvS16gXb58mVlaPD09lUYqAUDdunVRp04dAIYR8Pvs2TNER0cDEPpjaWlZZBtDEjLiBJ9it5ICQ84lI36mfPjhh2yahIwyaguZx48fo2fPnjAyMkLTpk3h5OSEhIQEHD58GIMHD4aDgwNq166N999/H0eOHAEg3AgsLS3Rr18/mJubY/z48bh9+zazyhw+fBgTJkyAjY0NPDw80LlzZxw7dgwAEBwcjO7du6N58+awsbHBuHHj2HGLIycnB2lpaUp/WVlZkMvlOv8DlB/6N2/eLJfP0dXftWvXmDWrXbt2JW4nfmNWJPsr7Rzos09iU37r1q2V1nEcB1dXVwDCzS4nJ6dcroHy6tuJEyeUbmQnTpzQ+zWkTv/j4uKYW8Lb2xuWlpZsncK9lJqaisTERL33o7S/DRs2sO9g/PjxRdaLrZsvX75EfHy83ttc2l/h+JjitlHnvqbve4A4+LW4+1rhkUvl0YbyOgfi37+fnx8ru3D58mVkZ2fr/VqqiGtAFUxU2krE0KFDcfjwYYwZMwZRUVF48uQJ3N3dsX79egQGBrLt3NzcsG7dOgBAXFwcCx4DBHOfg4MD4uLiYG1tjRcvXiitd3NzY5HacXFx8Pb2ZutcXV2RmJiIrKwslh5czNatW/HLL78oLRsyZIhSJVRdUqNGDTZ94cIFSQ8nPXr0KJtu3LhxiW1Vt0/6dD+FhYWx6fr16xdpq6OjIyIiIpCTk4MzZ84oBf/pivLqf1BQkNL8oUOH8N5775XLZ2lDSf3fvXs3m/b09FT6bsTm/9DQ0CIBp1Lh9evX+PPPPwEIQb4+Pj7F/h7E96/g4GD06tWrwtqoLuIXQVdX12L7Y2pqCnNzc2RnZ+Pq1auSvgf8+++/bLpBgwZF2lr4fmZubl4u7SiPc6Bwm9vY2EAmk6FFixa4e/cusrKycPToUSXLmb4pr2ugUaNGZW6jtpDx9vbGwoULsWnTJgDA/PnzUbNmTWRkZMDGxoZtZ21tzVIpZ2ZmwtraWuk41tbWyMzMREZGBoyNjZVESWn7Kj4jMzOzWCEzZswYjBgxQrmTJibMxaAr5HI5Hjx4AB8fH1hYWCArKwvx8fFK6l9qiIeGdu/evcS21q5dm00/ePCgxO0U58DR0VFp+GZFUrhP4uA+AGjbti2LuXr9+rVOv5/y7H9MTIzSDRoQ3sLq1KlTrCtAH5TVf8VNGAAGDhyodO7bt2+PLVu2ABBS4Uv1d7NhwwZ2LxoxYoSSpQIoOAd+fn748ccfAQAPHz6UbH8AZXdFv379mFusMC1atMCVK1eQkJBQ4nUnhXuAOP6td+/eSsIFAFq1asWmMzIydP7dlNc5UFgrAaEPTk5O6NatGwvZuH//vlKFb30hhWtALSGTnJyMWbNm4auvvkLnzp0RHx+P6dOno3HjxrCysmKxCoAQKGplZQVAsMAoakWI11taWsLKygoymUzJwlLavorPKOlmbmZmpnPRUhqmpqZo3rw5rly5gtjYWGRnZ0vmQVMYRSCiiYkJ2rRpU+JFV6VKFTg5OeHevXu4ffs2OI5jQ7KLw8jISG8XsOJhWbNmTTRs2LBIO8UjZGJiYsqlneXRf4U1ExC+j9evXyM7Oxvnzp1jQbNSobj+8zzPhFiVKlXQoUMHpW3EsWWRkZF6u35Kg+d5JevuxIkTS2ynOGD2ypUrkuwPILwAKmKt3NzcWCBscbi7u+PKlSuQy+W4c+dOiYMDAP3dA3JyctioRVdXV9SqVavINopRmIDw8C+vdur6HIjj+lq0aAEjIyMl78T58+cxbdo0nX2etujzOaDWpyYmJsLGxgb+/v4wNjaGi4sLPD09ceXKFTRq1Ehp1E50dDS7gJydnZXWZWZm4uHDh3B2dkbVqlVRq1YtlfeNiYlB/fr1i7XG6AvFTVkul0s2qDQ9PZ0F7rq7u5cpthRvnuK3Aqnx+PFjls2zTZs2xYotQxyCnZyczKwVVlZWWLFiBVtXXBVpKXLr1i08ffoUgODbNzU1VVpvCEOwL126xHLgeHl5KeUoKoyjoyN7iEo54PfSpUssTq4sd54hBPzeunWLFb4sLp0EYLi5ZMSJ8BTPGA8PD+Yao8R4BaglZBo2bIj09HScOnUKPM/j3r17uHjxIlxcXBAYGIi9e/ciMTERz58/x/bt25mf2NPTE5mZmTh48CBycnKwefNmNG/enJVYDwwMxKZNm5Ceno6bN2/i1KlT6N69OwCgZ8+eOHHiBKKiopCWloYtW7ZIzv9sCCOXFG9WQMk/eDGGMHKpcMXr4hBnXzYUIbNlyxZmhRw1ahQGDRrE1hmKkClu2LWYmjVrMpeGVIWMeMj1xIkTS92W4zg2munZs2eSTVgmzh+jjpCR6n2tuIrXhTHUXDLic654xpiZmTHLWExMDF68eKGXtkkNtYSMjY0Nli9fjg0bNsDPzw9Tp07F0KFD0bFjR/j6+mLgwIEYOXIkhgwZAh8fH/Tt2xeAcPK/+eYbbN++Hf7+/rh+/ToWL17Mjjtx4kTY2NigZ8+e+Oyzz/DZZ58xFe3i4oKZM2fi448/RmBgIOrWrYuxY8fq7gzoAEMQMqVVvC4OQxAyJZUmEFO1alXUq1cPgGEImby8PHz//fdsfvr06ahTpw7z81++fBkvX77UV/NURiy4AgICit1GYZV58uSJ5PqUkpKCHTt2ABCuIVWCrMWuF6kmxisrEZ4Y8X1NqhaZ4ipeF8ZQc8kUJ2QA4K233mLTZJXJhyc0QiaT8XFxcbxMJuPv37/PA+AB8IGBgfpuWrEMGzaMtfHKlStlbn/u3Dm2/fjx44vdRnwO9MGQIUNYG2/dulXidl27dmXbPX/+XGefXx7937t3L2trr1692PJZs2ax5Xv27NHZ52lDSf3PycnhbWxseAB83bp1eblcXuz+kydPZn06ffp0RTRZZdatW8faNmXKlBK3E5+D//3vf2yfL7/8sgJbqxoymYyvUaMGD4CvXbt2id+LArlczravV69eicfU5z2gZcuWPADe2NiYT09PL3G7t956i303mZmZOm1DeZ0DOzs7HgBva2urtHzXrl2Sus70fQ3wPM9LMyLNwHBwcEDVqlUBSN8iY2FhoaTuS0IcwyB1i4yFhYVSXaXCGFKG3zVr1rDpmTNnsmmxVUPq7qULFy6woPxu3bqVGCgu1TgZnudLzeRbElK3yERFReHVq1cABLdSaQH8gOAuU7iXHj16JDmrWXp6OosjadmyJRsgUhziOJn79++Xd9O05sWLFyz+T5E9XgFZZIpCQkYHcBzHxMH9+/dZlkmpkJycjJiYGABCLEnhwMviqFq1KhwcHABIM/vq69evWZ9atWrFincWh6EE/F6+fBn//fcfAOEhr4gTA4BOnTqx703qQqas+BgFUhUyFy5cYBmwO3TooFS/qzQaNWrEhv5KsVRBaYUiS0LKbnN14v4MLeC3uEBfBY6OjsxVdv78eZWTxr3JkJDREeKLTWoWDHF8THF1VUpCESfz6tUrPHnyROft0gZxjpKSAn0VGEoV7LVr17LpmTNnKr0x29jYsKGXsbGxkk68KBYyJcXHANKNw1InyFeMOMPv48eP8ejRI523TRvUCfRVIOWRS6oE+iowNCFTUnwMIFxnCqtMSkqK5K3MFQEJGR0h5TcXdQN9FUj1QQOoFuirwBAsMklJSdi5cycAYUTP+++/X2QbsSgQiwUpkZ6ejvDwcABCoH7hBIVi7O3tmUtWKhaZ5ORk9j1Uq1YN7777rlr7S9m9pBAy5ubmRepFlYSURy6pEuir4E0SMoCye4nqLpGQ0RliP6aUf/CaWGQA6QkZVYZeK3BwcGD+c6m+vaxfv57l95g4cWKx/n5DiJP577//WD9Ks8YAwpulwr2UkJBQJGmmPvjjjz+QmZkJAPjggw9KjbsoDrFAkJJ76fHjx6zulZeXl8pp+sX3NalaZCwtLYvEkRRGLGSkbM1UIH6GFNc3ipNRhoSMjpCyRUYhZGxsbEoNii2MIQgZIyMjpRTkxWFkZMT6fffuXeTk5JR7+9QhKyuLFSY0MTHBlClTit3Oy8uLVSxXFJCUGmKBpUoGYnGcjL6tZZoG+YqRqkVGE7cSAFSvXh2Ojo4AhPuaVGLlnj9/jvj4eADCOS8tRg4wrFwyPM+zZ0j9+vVRvXr1Itu0a9eOZdEliwwJGZ1Rp04d2NraApCWkHny5Akr5uXp6QljY2OV95XqyKWcnBwWDNekSROV3poVQkYmk7E3U6mwY8cOPHv2DIBQ4FQRZF0YExMTdOnSBYCQdE1K15kChcuL4zj4+/uXub1YLOvbvXTu3Dl2Tr29vTUqyNe4cWPmLpOSRUad/DGFUbykpaSkSCbRn7ruckPKJfP48WM2uqykEabW1tbs+rx586ZSeaDKCAkZHaK46J48ecIeTPpG00BfQIjVUPz4pSRkIiMjmVWlLLeSAqnGyfA8rzTkesaMGaVuL2X30rNnz1jsUps2bYqte1MYKY1c0jTIV4yRkRGL2UpMTJRMkLx4xFLHjh3V2leKAb/iQN+y4mMUKNxLjx49YmUNpEhZ8TEKFO4luVyudJ+vjJCQ0SHii048fE6fiONj1An0VaDwzz579kwy4kydQF8FUhUyoaGhbKjvW2+9hQ4dOpS6vZSFTEhICJtWtbBleQkZnueRmpqKJ0+eID4+Hrdv38alS5dw6tQpHD16FPv27cOff/6JTZs24fvvv8eKFSuwa9cuAII7ZejQoRp/tjhORgrupYyMDOaKbdasGWrWrKnW/lIUMprc1wwll4y6QgYg95Ja1a+J0ikcJ6NwA+gTTUcsKWjevDlzF9y+fRt+fn46a5umiAN9NREyUgr4LSkBXkk0a9YM9vb2SEpKwqlTp5CTk1Oh1d5LQ5WyBIVxcnKChYUFsrKydGb1e/HiBTp37qzx8UaOHKlVBfvCAb/6rg134cIF5OXlAVDfrQRIL/6P53lmkalRowYaN26s0n6FRy65urqWR/O0pqxAXwUU8FsAWWR0iBR/8Io3l5o1a6JRo0ZqH0OKAb/qjFhS4OrqyvKySMUiExsbi4MHDwIQRlYNHDiwzH04jmMiIT09XVI3MIXgNTMzU/mBaWxszOKXYmNjdRKI/dtvv2l8rVpZWWHatGlafb7UAn41SYQnplmzZiy2TgoWmQcPHrDK6l5eXmVmKFZgKEOwxc8O8f23MG5ubqhWrRoAwSIjlUBsfUAWGR0itSHYDx8+ZD/4du3aqfyDFyM1IcPzPHMtOTg4oHbt2irtZ2VlhQYNGiAhIQFRUVHgeV6j86FLfvjhB3bzmTZtmkoZlwHB2vH7778DEKwgnTp1Krc2qkp8fDzi4uIACDEY6gxbbtasGa5fvw6ZTIbY2NhSb96qcPToUTbds2dPVK9eHZaWlrCysmL/i5u2tLSEh4cH7O3ttfp8Nzc32NjYIC0tTRIBv9oE+gJC3hk3NzdERkYiMjISubm5Kl+r5YE6ifDEGIKQkcvl7D7r7OwMa2vrErc1MjJChw4dcOzYMTx+/Bj3799Hw4YNK6qpkoKEjA6pVq0aHB0d8eDBA0REROj9Yalp/hgxUhMy8fHxrASEqtYYBU2bNkVCQgJSUlLw5MkTFsisD1JSUrBlyxYAwoiK8ePHq7yvOP7kxIkTWLRokc7bpy6qliUojsLXmDZCJisrC2FhYQCEoauHDx+u8N+gkZERWrdujdOnT+P+/ft4/vy5yoJb18hkMpw9exYAULduXTg7O2t0HHd3dxZkHxsbqxTbVNGokwhPjCEImfv377MRSKrUxHvrrbdw7NgxAIJVprIKGXIt6RjFxZecnKz3FOXaBvoCQO3atdmwcikIGU3iYxRIKU5my5Yt7IY1atQotQIw69evz/py/vx5SdT20kbI6DLg9/Tp08jKygIAvP3223p7kZBKwG9ERAS7PlQpFFkSUgr41fS+Zgi5ZFQN9FVAcTICJGR0jJTcS9oG+ipQvCE/fvxY7xVwNRmxpEAqI5dkMhm+//57Nj99+nS1j6GIk5HJZMwCoS/kcjkTMlWqVFH7WtOlkFG8nQKCkNEXUomT0datpEAqpQrEQ40dHBzUcgMaQi4ZVQN9FYgtUpV55BIJGR0jlYBfnufZD97Ozg716tXT+FhSSlqmSaCvAqkUjzx48CC7kfbs2VMjM72UhmHfunWLDc3v0qVLmVlWC+Pq6sqCSXUlZMRB0fpAKqUKtA30VSC+r2lrkYmIiFBqlzrcuXMHr1+/BqDZy5nUc8mUVvW6OGrVqsVGX125ckWSfaoISMjoGKkImdjYWCQnJwNQL7K/OKQUJ6OwyFSvXl3J560KUrHIqDvkuji6dOnCUpTrW8ioWu26JMzMzODi4gJA+F5kMplG7Xj8+DGriu7p6am3uBRAEM2KIdxSsMhYWlqqbcEU4+zszAK4tREy169fh6enJzp16oTPP/9c7f01DfRVIPVcMopnhng0X1ko3EvZ2dns+q9skJDRMc2aNWOiQZ9CRlduJUA6QubZs2dITEwEIFhj1BVndnZ2LH28voTM1atXmSuoWbNmGrs/qlWrxszKt2/fRlJSks7aqC7axMcoUFilsrKyNC7qd/z4cTatT7cSIJSTUFgM4+LiWMr5iuThw4fsXHbo0EGrkUZGRkbM1REXF6dxgc/Fixczq8GyZcuUXKyqoGmgrwIpB/zm5eUxi6Sbm5vKhT0pToaEjM6xsrJiCZoiIiL0VthPFyOWFEhFyGjjVgIEd4PCKpOQkMCqHFcka9euZdPTp0/XylImtn6IxURFkpOTg1OnTgEQhKKmI450EScjlfgYBfoO+NW0UGRJKKzNPM9rdB+4ffs2/vrrL6VlM2fOxM6dO1U+htgiIz6/qiJlIXP37l0m8lRxKykQZwOvrHEyJGTKAcVFmJmZySq0akpGRgZyc3PV3k+bGkuFqVu3LmrUqAFAv0JGm0BfBQohw/M8YmJidNEslXn8+DF27NgBQMhI+sEHH2h1vMLDsPXB9evX2dt5t27dNBZm2opluVzOLDLW1tbw9vbWqB26RN8Bv7oWMtqOXFq+fDmbVryI8DyPkSNHKlnTSiInJ4e5Tpo0aVJsVeiyEA9PlpqQUTfQV0GrVq1gYWEBgIQMoUN0FSdz8eJF2Nraws7ODt9//73KgkYmk7EbZ8OGDdnwaU3hOI49aB4+fKi34b7aWmQA/QX83r59GwEBASxz7YQJE0pNdqUK3t7eLA7jxIkTesnsqchRAmgWH6NAW4vMzZs3WYFGf39/SZRt0HfAr0LIcBynE2GnzciluLg4JuJr1qyJU6dOsdxJubm5GDBggJIVuThu3LjBfj+ausulbJFRN9BXgampKXtZjYuLY0lQKxMkZMoBXQmZBQsWICMjAy9fvsSMGTPQsmVL/PPPP2U+sCIjI9lbsrbxMQqkMHJJIWTMzc01TshV0QG/PM9j69ataNeuHbtRVa9eHR999JHWxzY3N0fnzp0BCJWW9ZEbR/zWr2l8DKD8vWhyfUnNrQQI4kwR51DRFpnXr18zC6a7u7tG1ovCaDNy6ZtvvmFB3DNmzECVKlXw008/oX///gCEchuBgYGIjo4u8RjaBvoChmORUUfIABQnQ0KmHNCFkLl9+zaCg4OVlt25cwfvvPMOevbsWWp1bV0G+ioQmzo1rey9bt06eHh4sDczdUhPT2c3OXd3d40DFytSyLx+/RoffPABxo4dy+Jx3N3dcfbsWdSvX18nn6HPYdhpaWnsYenq6gpHR0eNj2Vtbc0SlkVGRqptXRILmR49emjcDl1iamoKDw8PAEBMTAxSUlIq7LPPnz/P4vO0yR8jpm7dumwkmDpCJjExEVu3bgUg5BlSiHgTExP8+eefrMTG8+fP8fbbb5eYSFTbQF9AGL1Vt25dANIVMubm5ioXwlQgjpMhIUPoBFdXV/ag1fShLx6iO3nyZCUf97Fjx9CqVStMmTKF5e8Qo8tAXwXaxjBcvHgRH330EW7cuIH333+/iEgrixs3brCHm6ZuJQBo3Lgxy1lSnhaMa9euwdPTE9u3b2fLJk6ciAsXLug0vbs+hcypU6dYVWVd5GxRXGMpKSlqjcLKyMjAf//9B0B445ZSVWNxnIw4xqu80VX+GDEcxzH30pMnT4q99xTH6tWrmUtoypQpLN4OEITFgQMH2HETEhLQs2dPljpCjMIiIx4RpglSzCWTnZ3NXtSaNWumdi4msUWmMsbJkJApB8zMzFgsRlRUlNrBus+fP2dFAatUqYKgoCD8999/2LVrFzONyuVyrF+/Hq6urvj222+VqgaLhYwmkf3FoY2QycvLw8SJE5kQkcvlGDp0qFpvdboI9AWEtx1FvZmoqCidjyrjeR7r1q1Dhw4dWDBxlSpVsHPnTmzYsIHFtOiKVq1asbfkkJAQJiwqgn///ZdNa+NWUqBpnMypU6fYA0mfZQmKozziZDIzM3H//n1cvnwZwcHB+P333/Htt99i3rx5GDduHPr164f169ez7XUlZAD1rc3Pnz/Hxo0bAQAWFhb4+OOPi2xTvXp1BAcHM4Fx8+ZN9O3bV2lU4evXr9k1IQ5u1QQp5pK5c+cOc72pE+irwMHBgVl5L1y4oHEuJkOFhEw5obgYc3Nz1R4ds2HDBlYvZty4cahatSo4jsPQoUMRFRWFZcuWwcbGBoDw9jp79my0aNECf//9d5HIfkWZd22pV68ey8GirpBZt24di29RWENev36Nd955B48fP1bpGNrUWCqMQmRmZGSwvDS6IDk5GYMHD8a0adOYsPT09MTVq1fx7rvv6uxzxBgZGTERkZqaWmFBpadOncKePXsACG/q/v7+Wh9TUyEjxfgYBboQMseOHYOvry8aNWoEGxsbWFlZoWHDhmjXrh169eqFkSNHYvbs2QgKCsLmzZtx4MABFvBZv359nRYSVHfk0po1a5CRkQEAGD9+PHPrFKZevXo4evQoE+X//fcfhg8fzoT5lStX2IuQtu5yKQb8ahroK0ZhlRGLvsoCCZlyQtM4mezsbKxbtw6A8JAqXIfHwsIC8+bNQ0xMDD788EP29hkbG4v+/fujffv27CGqK7cSoDxyKSEhgRU8LIvExER88cUXbP7o0aPsRnT//n3069eP3ehKQyFkOI5Dq1at1G2+EuURJ3P+/Hm0adNGKU/GzJkzcebMGbX93epSUcOweZ7HsWPH0LlzZ/j5+eHBgwcAhOtMnaKXJaGp1U8hZIyMjNC1a1et26FLWrRowUZQaRLwGxERgYEDB+LMmTO4d++eWono6tatixUrVujUQqXOyKWUlBT8+OOPAAR30Jw5c0rd3s3NDYcPH2aj+fbv34/JkyeD53mlQF9N42MUSFHIaBPoq6AyB/ySkCknNBUyO3fuZFaKgQMHlpiG387ODps2bcLly5fh5+fHlotTVOsq0FeB+EGjqgCYMWMGEz0TJkxAt27dcODAARbYeeHCBYwcObJUF09eXh57+3N1dWXWKE3RZRVsuVyO1atXw9fXl90Ua9Sogb///hvfffedytk5taG842R4nseBAwfQoUMH9OjRg8WjAEJF4W+//VYnn6OJRSYxMZG9zXp5eelEUOkSMzMz9vAX1wlShZSUFAwcOJCJl+rVq6Np06bo1KkTBg4ciIkTJ+KLL77A2rVr8eeff+L48eO4du0aEhMTkZ2djcePH2PEiBE67Y/Y7VGWReann35iAc4jR45UKRjcy8sL+/btYzGGmzZtwoIFCzSueF0cb6qQqdSJ8XhCI2QyGR8XF8fLZLJi18fExPAAeAD8gAEDVDqmXC7nPTw82H5nzpxReb+9e/fyzs7ObF919leVVatWsWP/+uuvZZ6DQ4cOse1tbW35ly9fsnU3btzgq1SpwtZ/9tlnJX7uzZs32XZDhw7Vuh+nT59mx5s6darGx3ny5AnfpUsXpXPesWNHPiEhQes2qoviuzczM+PT0tJ0csy8vDx+165dfKtWrZT6CIBv1qwZ/9tvv/HR0dElfv+aUKdOHR4AX7duXZW237p1K2vTggULdNYOVSnrN8DzPD9+/HjWxv/++0/l4/bv35/t5+Hhwaenp+uq2Vrh5OTEA+BtbGz43NzcYvufnp7O29ra8gB4IyMjPjo6Wq3P+PPPP5WuNzMzMx4Ab2Vlxefm5mrV/sjISHbc4cOHa3UsnlftGigLxe/XxsZG4+Okp6fzxsbGPADe3d1d47aoiy76ry0kZDSkrC8vLy+Pt7S05AHwrq6uKh3z33//ZT+w9u3b83K5XK02ZWVl8d988w3v6OjIDxw4UOcX1uHDh1n7Pv3001LPQXp6OrvhAeB///33Yo9nZGTEttm8eXOxn/v777+zbZYvX651P549e8aO161bN42OkZCQwDs4OCjdbOfNm8fn5ORo3T5NmDBhAmtHcHCwVsfKzc3lf/31V75JkyZFBEzr1q35PXv28DKZrFxuYH5+fuyzXrx4Ueb2w4YNY9ufPn1aZ+1QFVXOwYYNG1gb16xZo9Jxly1bxvapUaMGf/fuXV01WWv69OnD2nb37t1i+79mzRq2zXvvvafR56xdu7bI9depUyet25+RkaH04qEt2v4O0tLSlO772tC2bVseAM9xHJ+SkqLVsVSFhIwBo8qX5+npyS6qjIyMMo/5zjvvsAt6x44dumyuTrh37x5rX58+fUo9B59++inbtmvXriWKsh9//JFtZ2Jiwv/7779Ftpk1a5bOHtIKatWqxQPg69evr9H+gwcPVrI26apdmrJ7927Wnk8++USjY2RlZfE///wz36hRoyIPkA4dOvAHDx5U+h7L4wY2efJklYWJTCbja9euzQPgq1atqhcRqco5uHDhAuvTyJEjyzzmsWPHmMDnOI4/fPiwLpusNfPmzWP92b9/f5H+Z2Vl8fXr12fb3LhxQyefBYCfNWuWLrrA161blwfA16tXT+tjafs7uHjxIuvf2LFjtWrLlClT2LFOnjyp1bFURQpChmJkyhFxkbWyfP7R0dE4dOgQAMDR0RGDBg0q9/api6OjIwvEKy0Y89atW1i9ejUAIUbgp59+KjHgcOrUqSygOS8vDwMHDiwSt6KL0gSFUcTJJCYmqhW3AADh4eFsxE6tWrVw5coVvSdh8/f3Z+dY3TgZmUyGX375BS4uLpgwYYJSfTA/Pz8cP34c4eHheOedd8p9aLM6cTJXr17F8+fPAQBdu3bVqrpzedKyZUuWF6SskUsJCQkYNmwYixlbuHAhevXqVe5tVAdxwG9xebJ+++03Nhqwb9++Stury9dff42xY8ey+e7du2t8LDFSyiWji/gYBfqIk8nLy9NbcWQFJGTKEXUCfsVVkT/66CNJ3pSNjIzYgyYuLq7Y6tFyuRyTJk1iwybnzZunVN+oOL799lv07t0bgDCEuXfv3uwBxfM8yyFjb29f4vBNdREH/JaWFr0wPM9j9uzZbP7jjz9GvXr1dNImbahduzYbln7t2jV2/soiJCQEbdu2xYQJE/Dw4UO2vEePHjh16hRCQ0MREBBQYblZ1BEyUh52LcbCwoIFyUZGRpY4Si8rKwuDBg3CixcvAAC9e/fGl19+WWHtVJXSShXk5eUhKCiIzX/++edafRbHcdi4cSM2bdqEbdu26eyFQUq5ZHQpZCo6MR7P85gwYQJmz56tlMuswtGbLcjAUcWcduTIEWbmmzNnTonbvXjxgreysuIB8NbW1vyrV6/KocW6YeTIkaxPly9fLnIONm3axNa7urrymZmZKh03NTVVKajU19eXz8rKUnJn9erVS2f9WLlyJTvuH3/8ofJ+e/bsUQp41XWwqzbMmTOHtW3Xrl2lbhsbG8sPGDCgiAupT58+/Pnz51X6vPIwKScmJrK29OzZs9RtxYHWsbGxOmuDOqh6DsaOHcvaevbs2WK3+fDDD9k2zs7OSsHxUiI7O5s3MTFhQaXi/v/xxx+sDwEBAXpuacmIXd/Hjh3T6lja/g569OjB2vLo0SOt2iKXy/kaNWowl7e6cZbqMnfuXNb2vn37lvvnlQRZZMoRsbourVTBzz//zN7SxowZo5MCb+VFabk+nj17hrlz57L5n376SeUMnFWqVMGhQ4dgZ2cHQEixPm7cOKXcG9omwhOjSRXsnJwcfPrpp2w+KChI7VTi5Ykqw7BTU1Mxd+5cNG/eHPv27WPL27Zti1OnTuHAgQNa5+nQBnt7e5Z4sTSLTFpaGitY6ezsXO65erSlrMR4v/zyCzZv3gxASNu/b98+pVT+UsLMzIxZNKOiotibuFwux/Lly9l22lpjyhOxRSYhIUF/DUHBs6FGjRrs/qcpHMcxq8yzZ8+U3MS6ZvXq1fjmm2/Y544YMUJvWbVJyJQj9evXZ5l1S3It5ebmsqRRHMdhxowZFdY+TSitCvacOXPw8uVLAMCIESPUrr/j6OiIAwcOsDT+f/zxh5IbR5dCRpOkeOvXr8fdu3cBCDEpCneYVPD19WXJ1woLGUUcjKurK1auXMkePnZ2dti6dSsuXrzIivfpE47jmHspISGhxARwYWFhrPSHvuOTVEFcc6lwYryLFy9i2rRpbP6XX37ROuljeaN4ScvLy2MPywMHDrCHsre3t1J+K6khlVwyycnJzKXr7u6uEyFQEQUkf/vtN3zyySdsfvHixRg8eHC5fJYqkJApRziOY77x+/fvIzU1tcg2//vf/5QC41xcXCq0jepSUhXs0NBQ/PrrrwCExF2KYF918fLywh9//MHmxW8Uugr0BYBGjRqxOCRVhExycjIWL17M5leuXCmpmj4AYGVlxerqxMfHIy4uDoDw3Xh6emLChAksdb25uTnmz5+P6OhojB49GkZG0rkViONkSkpYePToUTYt5fgYBR4eHqw8h9gi8+zZMwwaNIgJy48++kjnSezKA3EA7507d8DzPL7++mu27PPPP5fc70OMVISMLkoTFKa842T++ecfpQDsRYsW6f2alc7d6w2lNPcSz/P47rvv2HxxBdWkRsOGDZnFRGGRyc7OxqRJk9g2QUFBWgXlDhw4ECtWrFBaVqVKFVbsUReYmJiwKskxMTFlFllbtmwZsza9//77OivGqWvEVrBNmzZh4MCB8Pf3V8r4PGTIEERFReHrr79GlSpV9NHMUlGlVIEi0NfY2FgndZ7KG0tLSybQIiIikJWVhby8PAwbNoyVeujYsSNWrVqlz2aqjFjIREdH4/jx47h06RIA4YUjMDBQX01TCXH9KX0KGV0G+ioQu4Z1LWTOnj2LIUOGsPvl1KlTpeFC1EtkzhuAqgFe33//PQuG+vnnn5XWnTp1iq1r06aN3gKl1KVNmzY8IGTsjIyM5BcvXsz68dZbb+kk+FMulysFP+oiEVZhxMGupSUci4+PZ5lFzc3NWeZeKeRPKMz58+eLBPAq/tq2bcufOnVKZ59VXv0/ePAga/P8+fOLrBcHgPv4+Oj0s9VFnXMwatQo1u7z588rBZza2dnxiYmJFdBi3RAXF8fa3q1bN75z585sfvfu3fpunkoocslomktKgTa/g2nTprHzFhoaqlU7xDRt2pQHwJuamqo84KIsbt68yVevXp2199133y23xJjqQhaZcqa0Idhia8ysWbMkbYoVo3hjlsvlCA0NZSZlY2NjbNiwQSduCo7jsH79eowaNQp2dnb47LPPtD5mYVSNk/n888+Z6X/mzJmsTpQU8fT0LFLx3M7ODlu2bJFMHExZlDUE+/jx42zaENxKCsRxMosXL2ZWRxMTE+zevVsSw/hVpWHDhqzm2ZkzZ3Dq1CkAQhD9wIED9dk0lZFCLhmxlV7sttcWRZxMbm4uS1+hDQkJCejRoweSk5MBCPl8fvvtN8m4pKXRijeYkoTM3bt3sX//fgDCSI2hQ4dWdNM0Rmz6//TTT9lNYObMmfDw8NDZ55iammLbtm1ISkoqF1O1KkLm4sWL+PPPPwEIye/mzZun83boEmNjYwwZMgSAchzMmDFjJHPTKQsnJyc22q0415Kh5I8pjNgd+c8//7DpVatWGYTAFGNkZMTubVlZWWz5vHnzWCyQ1FEIGZ7nmXuvolE8E+zs7FC7dm2dHVccJyMW/prw7NkzvP3223j06BEAodr93r172cACKWAYdzYDxtbWFnXq1AGgLGS+//578DwPAJg2bZqkLoqyEAsZRQCzo6MjvvrqKz21SDPKqoLN87xSZP5XX31VxNohRb7//nscOHAAMTExko2DKQ1jY2M2PD42NlYp0ZZMJmMjsqpXr67zCu/lSevWrYtYXYcNG8YyWxsahWM6nJycMHz4cD21Rn30HfD79OlTPHv2DIDu4mMUiIXMggUL0LVrV5w8eZI9c1Tl9evXCAwMZElD3dzccPjwYcndU0jIVACKi/Tp06d4+vQpUlJSsGXLFgBCEODEiRP12Ty1EQsZBT/88AMzNRsKZeWSOXjwIDOZu7q6Gsz3ZGlpiT59+sDR0VHfTdEYhXtJJpMhNjaWLb906RJevXoFQAhsNpS3fwCwtrZWEs/u7u745ZdfDMalXJjCpQfmzp0ryYzkJaFvIVMegb4KWrVqpSRmQkJCEBAQAG9vbxw6dEglQZOdnY2BAweyIO569erh2LFjsLW11WlbdQEJmQqg8MilTZs2IS0tDQAwatQo1KpVS19N0whnZ2clC1Lfvn3Rr18/PbZIM6pVq8YSUBUWMrm5uUrJ/VasWGFQN2lDp6R8RYbqVlLQv39/AII16a+//mK1ywwRsZCxs7PDmDFj9Nga9dGFkNm5cyfq1KmDuXPnsrxGqiIWMrqMjwEE19+pU6ewZcsWNjoTEPLK9OnTB23atMHu3btLHK0pl8sxatQoJevn0aNHlUZ7SQkSMhWAWMhcv34d33//PZufOXOmHlqkHSYmJmjXrh0AIXeJuE6UoaF4Q3769CkbXg0IQ5cV7iZfX1/2ACIqBnHArzhORixkdFVAsCJZsGABDhw4gNu3bys9YAyRDh06sMD3JUuWqJzFWypoK2QyMzMxffp0vHjxAnv27MHIkSPLTOMgpjxyyIgxNTXFmDFjEBkZiZ07dyoJz+vXr+Pdd99FixYt8OuvvyqJMJ7nMWPGDOzatQuAYOE9dOhQubRRZ+htvJSBo86Qs7Nnz7Ihaw4ODmw6MDCwAlpaPty4cYOfNGkSv3fvXkkNP1aXSZMmFamBk5KSwtva2rLl586dK3ZfKQw71Cfl2f9bt26x8z9s2DCe54XvxdjYmAfAu7m56fwzNaGyXwPJycn8yZMnDbL/GRkZWg3jX79+fZEUB2PGjFH5XHTs2JHtl5KSovbnq4tMJuP//vtvvn379kXa7eTkxP/00098ZmamUjoNY2Nj/tChQ2UeV9+/ARIyGqLOl5eSklJsXo/jx49XQEvLDylcwNqyZs0a9n1s3bqV53menz9/vlKuhJJ4E/qvDeXZ/+zsbCZaWrduzfM8z+/fv599L9OmTdP5Z2oCXQOG3X9Nc8nk5eXxLi4u7HpUFNEEwH/00Udl5gSTy+V81apVeQB8w4YNteiB+sjlcv748eO8n59fkWdS7dq1leZ//fXXMo8nhWuAXEsVQNWqVYsEXrZs2RLdunXTU4sIBYWHYD98+BDffvstAKE4nrgIHlFxmJmZsXIdUVFRkMlkBh8fQ0gPTXPJ/P333ywIvWvXrlizZg1Lb/DDDz+Ume324cOHbMRnRbtsOI5DQEAAQkNDcfr0afTq1Yute/78OZtetWoVRo4cWaFt0xQSMhVE4Yv1448/NtjRCm8ShUcuffHFFywvxrRp09CoUSN9Na3So4iTycrKQkJCAquvZGpqahBlCQjpo0kuGZ7nsXLlSjY/a9YsBAYGYtOmTWzZ8uXLsWzZshKPUZ6Bvurg4+ODw4cP49KlS0qJDD/99FOlgr1Sh4RMBSEWMnXq1MGwYcP02BpCQYMGDViQYlhYGH777TcAQI0aNaRRQ6QSIw74/eeff1jl8Y4dOxrcUH9CmmgS8HvmzBlWw8jd3R09e/YEIIxA/emnn9h2n3/+eYkDIco70FddPD09sXfvXty9exeXLl1CUFCQvpukFiRkKghxevIpU6YYXIT/m4qRkRGzyiQnJ7P8Cl988QVq1qypz6ZVesRDsMUj/citROgKTYSMuLDnJ598omRZnzx5spK1ZubMmUqWGgXlmUNGG5ydnSVbELc0TPTdgMrCoEGDMGnSJMjlcqX8JIT+adq0qVJ16EaNGmHq1Kl6bBEBKFtkxEnxSMgQukJdIXPnzh0cOHAAAFC/fv1iLeuffPIJ0tLSsGjRIgDAhAkTYG1trbStQsgYGRkpxekRmkFCpoIwNTXF+vXr9d0MohjEcTIAEBQUBHNzcz21hlBQ3A2+Vq1aaNOmjR5aQ7yJiBO8qSJkVq9ezay2M2bMgJmZGeRyeZHtFi5ciLS0NLb9Bx98ACsrK/Tr1w9yuZzlRnJxcYGlpaVuOlOJIdcSUekRPzA7dOjAii4S+sXa2rpIpXFDK0tASBt1hMyTJ09YDF2VKlUwYcKEErflOA4rV67EpEmTAAilNoYOHYpjx44hPj4emZmZAPQb6PsmQUKGqPQEBgbCxcUFNWrUwE8//USjySRE4bpePXr00FNLiDcRKysrVtS3LCHzww8/sCHaEydOLLOALMdxWLduHT744AMAQE5ODvr3769kmZdSfIwhQ0KGqPRUq1YNUVFReP78uVJQNqF/xHEygGGWJSCkjSq5ZNLS0tiIJBMTE8yYMUOlYxsZGWHLli1saHNmZiZWr17N1pOQ0Q0kZAgCgLGxMUtoRUgHsZBp3rw5HBwc9Nga4k1ElVwyW7ZsYVXXhw8frtZ1aGJigh07diglnlNAQkY30J2bIAjJIraQFfcgIAhtKWvkUl5eHr777js2/8knn6j9GWZmZti7dy+6dOnClpmamhp84VCpQEKGIAjJ4unpia+//hojR47E/Pnz9d0c4g2kLCGzd+9etrxHjx5KVaTVwdLSEgcOHEDHjh0BAP369YOpqalGxyKUoeHXBEFIGhIwRHlSmpApXI5gzpw5Wn1WlSpVcOrUKdy4cYPcSjqEhAxBEARRaSlNyISGhuLy5csAgDZt2qBr165af56xsTHlQtIx5FoiCIIgKi2l5ZIpbI2h1AzShIQMQRAEUWkpKZfMrVu3cOTIEQCC2KFEmdKFhAxBEARRqRHnksnJyQGgXBzy448/hokJRWJIFRIyBEEQRKWmcC6ZxMRE/PnnnwCAGjVq4MMPP9Rj64iyIIlJEARBVGoKB/weO3YMubm5AIDJkyfDxsZGTy0jVIEsMgRBEESlRixkbty4gQ0bNgAQEtl99NFHemoVoSokZAiCIIhKjVjIrFixAqmpqQCAkSNHws7OTk+tIlRFIyGzbds29O7dG507d8bw4cPx+vVrtjwgIABdu3bF2rVrwfM82yciIgLDhg2Dj48PJkyYgKSkJLYuKysLX375JTp37ozevXsjODhY6fMOHjyIwMBA+Pn5YdGiRczkRxAEQRDaIhYyT548YdOzZs3SQ2sIdVFbyOzcuRNnz57Fpk2bEBYWhsWLF8PMzAynT5/Gnj17sG3bNuzevRunT5/GgQMHAAjly+fOnYv33nsP//77L9zd3bFgwQJ2zI0bNyIlJQWHDx/GsmXLEBQUhISEBABAbGwsvvvuO6xatQr//PMPHj16hM2bN+uo+wRBEERlR5xLRkGfPn2KVF8npIlawb4ymQxbt27FL7/8Ant7ewCAi4sLAODw4cMYPHgwqwr6/vvv48iRI+jXrx8uX74MS0tL9OvXDwAwfvx4BAQEICkpCfb29jh8+DBWr14NGxsbeHh4oHPnzjh27BjGjx+P4OBgdO/eHc2bNwcAjBs3DkuXLsWkSZOKbWNOTg4bPsc6aWICMzMzdbpaJnK5XOl/ZaSynwPqf+XuP0Dn4E3pv4WFBerUqYOnT5+yZbNnz1apX2/KOdCU8u6/kVHZ9ha1hMzTp0+RnZ2NEydOYOfOnbCxscHw4cMxePBgxMfHIzAwkG3r5uaGdevWAQDi4uKY4AGE4lkODg6Ii4uDtbU1Xrx4obTezc0NERERbF9vb2+2ztXVFYmJicjKyoKFhUWRNiqElpghQ4Zg6NCh6nRVZUoq+16ZqOzngPpfufsP0Dl4E/pvb2/PhEzr1q3h6OjIPAOq8CacA20or/43atSozG3UFjJpaWl4+PAhDhw4gMTEREyZMgVOTk7IyMhQGqJmbW2NjIwMAEBmZiasra2VjmVtbY3MzExkZGTA2NhYSZSUtq/iMzIzM4sVMmPGjMGIESOUO1lOFpkHDx7A0dFRJcX4JlLZzwH1v3L3H6Bz8Cb1v2nTprh+/ToAoVCpOG6mNN6kc6AJUui/WkLG3NwcADBhwgRYWFigcePGCAwMxJkzZ2BlZYW0tDS2bXp6OqysrAAIFpj09HSlY6Wnp8PS0hJWVlaQyWRKFpbS9lV8hqWlZbFtNDMz07loKQ0jI6NKefGKqezngPpfufsP0Dl4E/r/0UcfITw8HB07dsTAgQPV7s+bcA60QZ/9V+tTGzZsCFNT02LXNWrUCLGxsWw+Ojoazs7OAABnZ2eldZmZmXj48CGcnZ1RtWpV1KpVS+V9Y2JiUL9+/WKtMQRBEAShCT4+PkhISMCOHTtgbGys7+YQaqCWkLG0tES3bt2wefNm5OTk4N69ezhy5Ah8fHwQGBiIvXv3IjExEc+fP8f27dvRq1cvAICnpycyMzNx8OBB5OTkYPPmzWjevDkLGA4MDMSmTZuQnp6Omzdv4tSpU+jevTsAoGfPnjhx4gSioqKQlpaGLVu2sOMSBEEQBFG5UbtEwaefforFixcjICAA1apVw7hx49CuXTsAgrVk5MiRkMvl6N+/P/r27QtAcPd88803WLJkCYKCgtC8eXMsXryYHXPixIlYunQpevbsiapVq+Kzzz5j/kkXFxfMnDkTH3/8MdLT09G1a1eMHTtWB10nCIIgCMLQ4Xhx1jpCZeRyORISEtCwYcNK6xet7OeA+l+5+w/QOajs/QfoHEih/5XvrBMEQRAE8cZAQoYgCIIgCIOFhAxBEARBEAYLCRmCIAiCIAwWEjIEQRAEQRgsJGQIgiAIgjBYSMgQBEEQBGGwkJAhCIIgCMJgISFDEARBECrg5OSENWvW6LsZRCFIyBAEQRAGBcdxpf6NHj26zP33799fIW0lyh+1ay0RBEEQhD5JSkpi07t27cKCBQtw584dtszS0lIfzSL0BFlkCIIgCIPCzs6O/VWrVg0cxykt+/PPP9G4cWOYmZmhSZMm+P3339m+ioLEAwYMAMdxbP7u3bvo168f6tatCxsbG3h5eeHEiRN66B2hLmSRIQiCIJRo164dHj9+rNK2MpkMxsbGOvlcOzs7XLp0Satj7Nu3DzNmzMCaNWsQEBCAQ4cOYcyYMXBwcIC/vz8uXryIOnXqYOvWrejZsydre1paGgIDA7F06VJYWFjg119/RZ8+fXDnzh00aNBAF90jygkSMgRBEIQSjx8/RmJior6boRGrVq3C6NGjMWXKFADArFmzcO7cOaxatQr+/v6wtbUFAFSvXh12dnZsPw8PD3h4eLD5pUuXYt++fThw4ACmTZtWsZ0g1IKEDEEQBKGE+AFfFrq2yGhLZGQkJkyYoLTMx8cHa9euLXW/9PR0LFq0CIcOHcKjR4+Ql5eHzMxM3L9/X+s2EeULCRmCIAhCCVXdO3K5HAkJCWjYsCGMjKQTcslxnNI8z/NFlhVmzpw5OHr0KFatWgUXFxdYWlpi8ODByMnJKc+mEjpAOlceQRAEQWhJs2bNcPr0aaVlZ8+eRbNmzdi8qakpZDKZ0jb//fcfRo8ejQEDBqBly5aws7PDvXv3KqLJhJaQRYYgCIJ4Y5gzZw6GDh2Ktm3bolu3bjh48CD++usvpRFITk5OOHnyJHx8fGBubo4aNWrAxcUFf/31F/r06QOO4/Dll19CLpfrsSeEqpBFhiAIgnhj6N+/P9auXYuVK1eiRYsW2LhxI7Zu3YouXbqwbVavXo3jx4/D0dERbdq0AQB89913qFGjBjp27Ig+ffqgR48eaNu2rZ56QagDx/M8r+9GGCJS9Q1XJJX9HFD/K3f/AToHlb3/AJ0DKfS/8p11giAIgiDeGEjIEARBEARhsJCQIQiCIAjCYCEhQxAEQRCEwUJChiAIgiAIg4WEDEEQBEEQBgsJGYIgCIIgDBYSMgRBEARBGCwkZAiCIAiCMFhIyBAEQRAEYbCQkCEIgiAMjtGjR4PjOAQFBSkt379/PziOY/MbN26Eh4cHrK2tUb16dbRp0wYrVqwAAAQHB4PjODx+/FjpGHZ2dnB0dFRa9vDhQ3Ach2PHjpVTjwhNISFDEARBGCQWFhZYsWIFXr16Vez6zZs3Y9asWZg+fTquX7+OM2fOYO7cuUhLSwMA+Pr6wsTEBKGhoWyfyMhIZGVlITU1FbGxsWx5SEgITE1N4ePjU659ItTHRN8NIAiCIAhNCAgIQGxsLJYvX45vvvmmyPqDBw9i6NCh+PDDD9myFi1asGkbGxt4eXkhNDQU7733HgAgNDQUvr6+4HkeoaGhcHFxYcvbt28Pa2vrcu4VoS4kZAiCIAgl2o2X4/FLFTbkAZmsPoyNAXByrT/XriZw6RfVHQXGxsZYtmwZhg8fjunTp8PBwUH5eHZ2CAsLY9WZi8Pf3x979uxh8yEhIejSpQvkcjlCQkIwbtw4tnzEiBEa9Ioob0jIEARBEEo8fgkkPlN1a/0+RgYMGIDWrVtj4cKF2Lx5s9K6hQsXYuDAgXBycoKbmxu8vb0RGBiIwYMHw8hIEExdunTBsmXLkJSUBHt7e4SFhWHOnDmQy+VYu3YtAODBgweIj4+Hv79/hfePKBsSMgRBEIQSdjVV3JAHZLI8GBubAFzZm+vscwuxYsUKdO3aFbNnz1Zabm9vj/DwcNy6dQthYWE4e/YsRo0ahU2bNiE4OBhGRkbw8fGBmZkZQkND4eHhgczMTLRt2xY8zyM1NRUxMTEIDw+Hubk5OnbsqH0nCZ1DQoYgCIJQQlX3jlwuR0JCIho2bMgsHPqgc+fO6NGjB+bPn4/Ro0cXWe/u7g53d3dMnToVp0+fRqdOnRAWFgZ/f39YWVmhffv2CAkJwcuXL+Hr6wtjY2MAQMeOHRESEoLw8HB4e3vDwsKigntGqAIJGYIgCMLgCQoKQuvWreHm5lbqds2bNwcApKens2X+/v7YuXMnXr16hS5durDlfn5+CA0NRXh4OMaMGVMu7Sa0h4ZfEwRBEAZPy5YtMWLECPzwww9s2eTJk7FkyRKcOXMGCQkJOHfuHEaOHAlbW1t4e3uz7fz9/RETE4Pg4GD4+fmx5X5+fjh06BDu3btH8TEShoQMQRAE8UawZMkS8DzP5gMCAnDu3DkMGTIEbm5uGDRoECwsLHDy5EnUqlWLbeft7Q1zc3MAgKenJ1vu5eUFmUwGS0tLdOjQoeI6QqgFuZYIgiAIg2Pbtm1FljVs2BBZWVlsftCgQRg0aFCZx7KwsFDaT4GZmZmSC4qQJmSRIQiCIAjCYCEhQxAEQRCEwUJChiAIgiAIg4WEDEEQBEEQBgsJGYIgCIIgDBYSMgRBEARBGCwkZAiCIAiCMFhIyBAEQRAEYbCQkCEIgiAIwmAhIUMQBEEQFURoaCg4jkNycrK+m/LGQEKGIAiCMDhGjx4NjuMQFBSktHz//v3gOE5p2caNG+Hh4QFra2tUr14dbdq0wYoVKwAAwcHB4DgOjx8/VtrHzs4Ojo6OSssePnwIjuNw7NixcugRoSkkZAiCIAiDxMLCAitWrMCrV69K3Gbz5s2YNWsWpk+fjuvXr+PMmTOYO3cu0tLSAAC+vr4wMTFBaGgo2ycyMhJZWVlITU1FbGwsWx4SEgJTU1P4+PiUW58I9SEhQxAEQRgkAQEBsLOzw/Lly0vc5uDBgxg6dCg+/PBDuLi4oEWLFhg2bBiWLFkCALCxsYGXl5eSkAkNDYWvry98fX2LLG/fvj2sra21bvuZM2fg4eEBCwsLdOjQATdv3mTrvvrqK7Ru3Vpp+zVr1sDJyanYtlSvXh0+Pj5ISEjQul2GCFW/JgiCIJQ43TUcOU+zy9yOByCTyRBnnACuzK3LxqyOOXz/9VZ5e2NjYyxbtgzDhw/H9OnT4eDgUGQbOzs7hIWFISEhAQ0bNiz2OP7+/tizZw+bDwkJQZcuXSCXyxESEoJx48ax5SNGjFCzV8UzZ84crF27FnZ2dpg/fz769u2L6OhomJqalrlvXl4e+vfvj/Hjx2PHjh3IycnBhQsXirjUKgskZAiCIAglcp5mIyupbCGjIA955dia0hkwYABat26NhQsXYvPmzUXWL1y4EAMHDoSTkxPc3Nzg7e2NwMBADB48GEZGglOiS5cuWLZsGZKSkmBvb4+wsDDMmTMHcrkca9euBQA8ePAA8fHx8Pf310m7Fy5ciO7duwMAfv31Vzg4OGDfvn0YOnRomfumpqYiJSUF77zzDho3bgwAaNasmU7aZYiQkCEIgiCUMKtjrtJ2CouMsbGxziwymrBixQp07doVs2fPLrLO3t4e4eHhuHXrFsLCwnD27FmMGjUKmzZtQnBwMIyMjODj4wMzMzOEhobCw8MDmZmZaNu2LXieR2pqKmJiYhAeHg5zc3N07Nix2Dbcv38f7u7ubH7+/PmYP39+iW329i6wPNWsWRNNmjRBZGSkSv2tWbMmRo8ejR49eqB79+4ICAjA0KFDYW9vr9L+bxokZAiCIAglVHXvyOVy5rJRWDf0QefOndGjRw/Mnz8fo0ePLnYbd3d3uLu7Y+rUqTh9+jQ6deqEsLAw+Pv7w8rKCu3bt0dISAhevnwJX19fGBsbAwA6duyIkJAQhIeHw9vbGxYWFsUev169erh27Rqbr1mzptr9ULiGjIyMwPO80rrc3Fyl+a1bt2L69OkIDg7Grl278MUXX+D48eN466231P5cQ4eEDEEQBGHwBAUFoXXr1nBzcytz2+bNmwMA0tPT2TJ/f3/s3LkTr169QpcuXdhyPz8/hIaGIjw8HGPGjCnxmCYmJnBxcVG5vefOnUODBg0AAK9evUJ0dDSaNm0KALC1tcXjx4/B8zwTN2KRpKBNmzZo06YN5s2bB29vb/z555+VUsjQqCWCIAjC4GnZsiVGjBiBH374QWn55MmTsWTJEpw5cwYJCQk4d+4cRo4cCVtbWyX3jr+/P2JiYhAcHAw/Pz+23M/PD4cOHcK9e/d0Fh8DAIsXL8bJkydx69YtjB49GrVr10b//v0BCDE7z549wzfffIO7d+9i3bp1OHLkCNs3Pj4e8+bNQ3h4OBISEnDs2DFER0dX2jgZEjIEQRDEG8GSJUuKuGQCAgJw7tw5DBkyBG5ubhg0aBAsLCxw8uRJ1KpVi23n7e0Nc3MhRsfT05Mt9/Lygkwmg6WlJTp06KCztgYFBWHGjBnw9PREUlISDhw4ADMzMwBC4O5PP/2EdevWwcPDAxcuXMAnn3zC9rWyskJUVBQGDRoENzc3TJgwAdOmTcPEiRN11j5DguMLf+uESkjFN6xPKvs5oP5X7v4DdA4qe/8BOgdS6H/lO+sEQRAEQbwxkJAhCIIgCMJgISFDEARBEITBQkKGIAiCIAiDhYQMQRAEQRAGCwkZgiAIgiAMFo2FzI0bN+Dl5YVt27axZdu2bUNAQAC6du2KtWvXKo3nj4iIwLBhw+Dj44MJEyYgKSmJrcvKysKXX36Jzp07o3fv3ggODlb6rIMHDyIwMBB+fn5YtGhRkVTNBEEQBEFUTjQSMnK5HN9++y1L8wwAp0+fxp49e7Bt2zbs3r0bp0+fxoEDBwAAOTk5mDt3Lt577z38+++/cHd3x4IFC9i+GzduREpKCg4fPoxly5YhKCgICQkJAIDY2Fh89913WLVqFf755x88evSo2AqnBEEQBEFUPjSqtfTXX3/B3d0daWlpbNnhw4cxePBgODg4AADef/99HDlyBP369cPly5dhaWmJfv36AQDGjx+PgIAAVjL98OHDWL16NWxsbODh4YHOnTvj2LFjGD9+PIKDg9G9e3cmmsaNG4elS5di0qRJxbYtJycHOTk5yp00MWEZE3WFXC5X+l8ZqezngPpfufsP0Dmo7P0H6ByUd/9VSbKntpBJSUnBjh07sHXrVnz77bdseXx8PAIDA9m8m5sb1q1bBwCIi4tTKqZlaWkJBwcHxMXFwdraGi9evFBa7+bmhoiICLavuB6Gq6srEhMTkZWVVWwV0q1bt+KXX35RWjZkyBAMHTpU3a6qxIMHD8rluIZEZT8H1P/K3X+AzkFl7z+g+jk4d+4chg8fjmvXrqFq1aoaf56zszM2bNiAt99+W+Nj6JLyugYaNWpU5jZqC5l169Zh2LBhRb6AjIwM2NjYsHlra2tkZGQAADIzM2Ftba20vbW1NTIzM5GRkQFjY2MlUVLavorPyMzMLFbIjBkzBiNGjFDuZDlZZB48eABHR8dKmZYaoHNA/a/c/QfoHOiz/2PGjMFvv/2GZcuW4dNPP2XL9+/fj0GDBkEmk7FlGzduxIYNGxAbGwtTU1M0atQI7777LubOnYvg4GD07t0biYmJsLOzY/vUq1cPpqamLMwBAB4+fIiGDRviyJEjTECoew7i4+MBAI6OjqhevbpW58DW1hYNGzbU6hjaIoXfgFpCJioqChEREUoXjQIrKyslV1N6ejqsrKwACBYYcbl0xXpLS0tYWVlBJpMpWVhK21fxGZaWlsW20czMTOeipTSMjIwq5Q1MTGU/B9T/yt1/gM6BPvrPcRwsLCzwzTffYNKkSahRowZri/j/5s2b8cknn+D777+Hn58fsrOzcePGDdy+fRtGRkbo3LkzTExMcOrUKbz33nsAgMjISGRlZSEzM1PJoxAWFgZTU1N06tSpSH9VPQfi9ml7zqR03emzLWp96pUrV3D//n0EBgaiR48eOH78OLZs2YKlS5eiUaNGiI2NZdtGR0fD2dkZgGACE6/LzMzEw4cP4ezsjKpVq6JWrVoq7xsTE4P69esXa40hCIIgKg8BAQGws7PD8uXLS9zm4MGDGDp0KD788EO4uLigRYsWGDZsGJYsWQJAsPJ7eXkhNDSU7RMaGgpfX1/4+voWWd6+ffsiHgZNuHz5Mtq1awcrKyt07NgRd+7cUVq/fv16NG7cGGZmZmjSpAl+//13rT/zTUUti8zAgQOV/HGrV6+Go6MjPvjgA1y/fh0rVqxA9+7dYW5uju3btzMXj6enJzIzM3Hw4EH06NEDmzdvRvPmzWFvbw8ACAwMxKZNm/D1118jLi4Op06dYsO6e/bsiYkTJ2LAgAFwcHDAli1b0KtXLx11nyAIgihM1+Pn8CQrp+wNAcjy8mB8SzfxEXUtzPBv97dU3t7Y2BjLli3D8OHDMX36dDbYRIydnR3CwsJYhebi8Pf3x549e9h8SEgIunTpArlcjpCQEIwbN44tLxy6oCmff/45Vq9eDVtbW0yaNAljx47FmTNnAAD79u3DjBkzsGbNGgQEBODQoUMYM2YMHBwc4O/vr5PPf5NQS8hYWFgoWULMzc1hZWWFKlWqwNfXFzExMRg5ciTkcjn69++Pvn37AhDcPd988w2WLFmCoKAgNG/eHIsXL2bHmThxIpYuXYqePXuiatWq+Oyzz+Dk5AQAcHFxwcyZM/Hxxx8jPT0dXbt2xdixY3XQdYIgCKI4nmTlICkzW/UdcmVlb1NODBgwAK1bt8bChQuLTc2xcOFCDBw4EE5OTnBzc4O3tzcCAwMxePBg5grp0qULli1bxkbShoWFYc6cOZDL5Vi7di0AIZg1Pj5eZ0Li66+/hp+fHwDgs88+Q+/evVmIxapVqzB69GhMmTIFADBr1iycO3cOq1atIiFTDBoNv1bw1VdfKc2PGTMGY8aMKXbbFi1aYOfOncWus7CwwNKlS0v8nD59+qBPnz4at5MgCIJQnboWqscZyvLyYGyi1aNEo88Vs2LFCnTt2hWzZ88uss7e3h7h4eG4desWwsLCcPbsWYwaNQqbNm1CcHAwjIyM4OPjAzMzM4SGhsLDwwOZmZlo27YteJ5HamoqYmJiEB4eDnNzc3Ts2LHYNty/fx/u7u5sfv78+Zg/f36JbW7VqpVSGwHg6dOnaNCgASIjIzFhwgSl7X18fJioIpTRzdVHEARBvDGo6t6Ry+XMZaPPoNPOnTujR48emD9/PkaPHl3sNu7u7nB3d8fUqVNx+vRpdOrUCWFhYfD394eVlRXat2+PkJAQvHz5Er6+vjA2NgYAdOzYESEhIQgPD4e3t3eJ8Zn16tXDtWvX2HzNmjVLbbOpqSmb5jgOgHIuFsUyBTzPF1lGCJCQIQiCIAyeoKAgtG7dGm5ubmVuq0iwKh4R6+/vj507d+LVq1fo0qULW+7n54fQ0FCEh4eX6HEAhDQf4nxo2tCsWTOcPn0aI0eOZMvOnj2LZs2a6eT4bxokZAiCIAiDp2XLlhgxYgR++OEHpeWTJ09GvXr10LVrVzg4OCApKQlLly6Fra2tUrJVf39/LFmyBElJSfjkk0/Ycj8/PwQFBeH169cVFp8yZ84cDB06FG3btkW3bt1w8OBB/PXXXzhx4kSFfL6hIY0B6ARBEAShJUuWLFEqVgwIQ7TPnTuHIUOGwM3NDYMGDYKFhQVOnjyJWrVqse28vb1hbm4OQBhpq8DLywsymQyWlpbo0KFDhfSjf//+WLt2LVauXIkWLVpg48aN2Lp1q5KliCiA4wt/64RKSMU3rE8q+zmg/lfu/gN0Dip7/wE6B1Lof+U76wRBEARBvDGQkCEIgiAIwmAhIUMQBEEQhMFCQoYgCIIgCIOFhAxBEARBEAYLCRmCIAiCIAwWEjIEQRAEQRgsJGQIgiAIgjBYSMgQBEEQBGGwkJAhCIIgiAoiNDQUHMchOTlZ301RCym3m4QMQRAEYXCMHj0aHMchKChIafn+/fvBcZzSso0bN8LDwwPW1taoXr062rRpgxUrVgAAgoODwXEcHj9+rLSPnZ0dHB0dlZY9fPgQHMfh2LFj5dAjadOxY0ckJSWhWrVqAIBt27ahevXq+m1UPiRkCIIgCIPEwsICK1aswKtXr0rcZvPmzZg1axamT5+O69ev48yZM5g7dy7S0tIAAL6+vjAxMUFoaCjbJzIyEllZWUhNTUVsbCxbHhISAlNTU/j4+JRbn6SKmZkZ7OzsiohEKUBChiAIgjBIAgICYGdnh+XLl5e4zcGDBzF06FB8+OGHcHFxQYsWLTBs2DAsWbIEAGBjYwMvLy8lIRMaGgpfX1/4+voWWd6+fXtYW1tr3fYzZ87Aw8MDFhYW6NChA27evMnWffXVV2jdurXS9mvWrIGTk1OxbalevTp8fHyQkJCgVZuys7Mxd+5cODo6wtzcHK6urti8eTP7PIVrKTQ0FGPGjEFKSgqMjY3h7OyMRYsWYfHixWjZsmWR43p6emLBggVata00TMrtyARBEIRB4vdjFzx5/VSFLXnkyWQwMTYGoP2bet0qdRA2LVTl7Y2NjbFs2TIMHz4c06dPh4ODQ5Ft7OzsEBYWxio0F4e/vz/27NnD5kNCQtClSxfI5XKEhIRg3LhxbPmIESPU61QJzJkzB2vXroWdnR3mz5+Pvn37Ijo6GqampmXum5eXh/79+2P8+PHYsWMHcnJycOHCBa2tJSNHjkR4eDi+//57eHh4ID4+Hs+fPy+yXceOHbFmzRosWLAAkZGRePjwIZo2bYrU1FQsWrQIFy9ehJeXFwDgxo0buHr1Kv73v/9p1bbSICFDEARBKPHk9VM8Sn2k72aoxIABA9C6dWssXLiQWQ/ELFy4EAMHDoSTkxPc3Nzg7e2NwMBADB48GEZGglOiS5cuWLZsGZKSkmBvb4+wsDDMmTMHcrkca9euBQA8ePAA8fHx8Pf310m7Fy5ciO7duwMAfv31Vzg4OGDfvn0YOnRomfumpqYiJSUF77zzDho3bgwAaNasmVbtiY6Oxu7du3H8+HEEBAQAAJydnYvd1szMDNWqVQPHcbCzs0N2djZsbGxQtWpV9OjRA1u3bmVCZuvWrfDz8yvxWLqAhAxBEAShRN0qdVTcUvcWGU1YsWIFunbtitmzZxdZZ29vj/DwcNy6dQthYWE4e/YsRo0ahU2bNiE4OBhGRkbw8fGBmZkZQkND4eHhgczMTLRt2xY8zyM1NRUxMTEIDw+Hubk5OnbsWGwb7t+/D3d3dzY/f/58zJ8/v8Q2e3t7s+maNWuiSZMmiIyMVKm/NWvWxOjRo9GjRw90794dAQEBGDp0KOzt7YvdvlevXvjvv/8AAA0bNkRERESRba5duwZjY2P4+fmp1IaSGD9+PMaOHYtvv/0WxsbG2L59O1avXq3VMcuChAxBEAShhKruHblczlw2CuuGPujcuTN69OiB+fPnY/To0cVu4+7uDnd3d0ydOhWnT59Gp06dEBYWBn9/f1hZWaF9+/YICQnBy5cv4evrC2NjYwCCGyUkJATh4eHw9vaGhYVFscevV68erl27xuZr1qypdj8UriEjIyPwPK+0Ljc3V2l+69atmD59OoKDg7Fr1y588cUXOH78ON56660ix920aRMyMzMBoETXlaWlpdrtLY4+ffrA3Nwc+/btg7m5ObKzszFo0CCdHLskSMgQBEEQBk9QUBBat24NNze3Mrdt3rw5ACA9PZ0t8/f3x86dO/Hq1St06dKFLffz80NoaCjCw8MxZsyYEo9pYmICFxcXldt77tw5NGjQAADw6tUrREdHo2nTpgAAW1tbPH78GDzPM3EjFkkK2rRpgzZt2mDevHnw9vbGn3/+WayQqV+/fpntadmyJeRyOcLCwphrqTTMzMwgk8mKLDcxMcGoUaOwdetWmJub47333oOVlVWZx9MGEjIEQRCEwdOyZUuMGDECP/zwg9LyyZMno169eujatSscHByQlJSEpUuXwtbWVsm94+/vjyVLliApKQmffPIJW+7n54egoCC8fv1aZ/ExALB48WLUqlULdevWxeeff47atWujf//+AISYnWfPnuGbb77B4MGDERwcjCNHjqBq1aoAgPj4ePz888/o27cv6tWrhzt37iA6OhojR47UuD1OTk4YNWoUxo4dy4J9ExIS8PTp02LjdpycnJCWloaTJ0+iZs2asLW1hY2NDQBg3LhxLGbnzJkzGrdJVWj4NUEQBPFGsGTJkiIumYCAAJw7dw5DhgyBm5sbBg0aBAsLC5w8eRK1atVi23l7e8Pc3ByAMFxYgZeXF2QyGSwtLdGhQwedtTUoKAgzZsyAp6cnkpKScODAAZiZmQEQAnd/+uknrFu3Dh4eHrhw4YKSuLKyskJUVBQGDRoENzc3TJgwAdOmTcPEiRO1atP69esxePBgTJkyBU2bNsX48eOVrFZiOnbsiEmTJmHYsGFo164dVq5cyda5urqiY8eOaNKkiU7PWUlwfOFvnVAJqfiG9UllPwfU/8rdf4DOQWXvP0DnoLj+8zyPpk2bYuLEiZg1a1a5t4FcSwRBEARB6ISnT5/i999/R2JiYqkxRbqEhIwWPHhmghLyKxkcT17yqFEFMDOVXvppgiAIwjCoW7cuateujZ9//hk1atSokM+sfHYwHXDzLo8BnwNd5tTDzTh9t0Z71v6Ph11/Ht1n8ZDJyNNIEARBaAbP83j27BmGDx9eYZ9JQkYDjl8CDpwBeJ7DV1v13RrtePqKx/xfBPFy6jrw7xU9N4ggCIIg1ICEjAZM7g/Y5we77/8PuHzHcK0YK3fwyMgqmP812HD7QhAEQVQ+SMhogKU5h88/KJj/cpNhPvyfvOSxbp/ysr9OAanphtkfgiAIovJBQkZDxgYC9WvnAQCOnAfO3DS8h//KHTwys4Vp6/zs1JnZwJ5QvTWJIAhCJ1BmkcoDCRkNMTcDPuqXzOYNzSrz+AWPn/YL0xZmwPYvCkYrGbJ7KTePx8SVcnhPluPOfcPtB0EQmnP5Do+6/Xh0mChHWgbdB950SMhowUCfdLjkl7AIuQr8e9lwfjDfiKwxk/sDfX2BJkLZD5y6DsQ/Mpy+iJm7nsfPB4FzEcDMHwyzDwRBaA7P85i2hsezZOBCJPC/UH23iChvSMhogYkxsFCU7+eLTbxBmDOTnvNYv1+YtjQH5g7jwHEcRvUssMr8dlQ/bdOG3f/yWPO/gvng80DsQ+l/HwRB6I7jF4UXGQX7/6N7wJsOCRktedcfaNFImA6PAI6c0297VGHFnzyycoTpyf0Au1qCgPngbSC/0Cp+O2oYokxB5D0eY1cUbe/6/YbTB4LQJ5nZPGIeGNbvvjA8z2PRNuX2H78EZGQZbp+IsiEhoyXGxsDisQWWDKlbZZKe89h4QJi2NAfmDi9ou0MdDt3ya6XFPQJO39BDAzXgdQaPgV/wSM8U5gd0EmKYAGDLYcO/icnlht1+QvpkZfPwncrDbQSPpb/puzWa8+8V4Owt5WWZ2YKVhnhzISGjAwZ0Btq4CtNXY4B9p/TbntII2l5gjZk6AKhbU7kkgdi9ZAhBvzzPY9wKHlH3hflWjYE/vuTwrr8wn5wG/HlCf+3TBp7n8d1uHlV78Qj4WI7sHOl/H2Xx4AmPYxf4N0Kc/RPOw2ko8OG3tsjO0XdrtOPb3cCVaGF62e88kp4b3vfD8zwWbS1o9wc9Ctb9fcbw+iPmp31C4PKJS4bdj/KChIwO4DgOS8cVCIAFW6SZ6j/xGY+NB4VpKwtgzrCidZUGdAJs8odi7w6RvjVj7f+EdgJAVWtg7xIOVhYcpg0s6Nu6fdK2khVHdg6PsUE8Zv0oWJpOXkYRk7mh8eAJj9Yf8ujxCY85Pxl2Xw6c5jHgcx4PngIh163wqwHGlClIfMZj2R8F30dWDrBqp+F9P6FXgf/yrchNGwAbZnMsrcTBM5DkPVkVHj3n8dFaHhcigWGLeBqFVQwkZHREr7cA7xbCdEQ8sOtf/banOIK28+zNceoAoE6NokLG2pLDkHxrxusMIXOxVDl9g8ec9QU/6t/mc3BxEPrk1YyDV1Nh+bUYIPxWcUeQJk9e8ug6k8e2I8rLV/wJXLhtmDcxnucxcRWPl6nC/Nq9QlyTIfL3fzwGL+CRm1ewbOUOIC/PMPvz6YYCt6yC9X8L5UsMCbHQ/3KU8ELTs70w/zylqMvJUPgtGJDLhennKcAPf+m3PVKEhIyOKGyVWbiFl9SN7eFTYVgyICS/K84ao8AQ3EuPX/AYupBHnkyY/2wE0K+Tcp+mDlC2yhgCV6N5tBvPs5uupblgJQOEm9moZTyysg2jL2L+OCYkjlQgk0FJhBoKf//HY8jCAhFjZSH8j3sE7JTgy0tZnL3JY/txYbpmVWBkvjsmMxtYbUBWmbBrPMKuCdNNGgDvdhWm+/kW3AP+Pm04/VHA8zy2HFZu98odPFLSDK8v5QkJGR3S1ZODfxthOjZRWkOYg7bzyMkVpqcNAGyrlyxkOrUCnOyE6ROXBdOzlMjL4/HeIh5JL4R5/zbAkg+L9ufdrkCtasL0/0IFS4eU+V8ID5+pPB4+E+YdbIH/fuSwexEHzybCsqj7guvSkHjyklfK6VPVWvj/TzgMyue/v5AlZkR34MDygvXLfjes2B+5nMcM0feyeCyH5RM5Fii/bj/wPNkw+iOOjfliJAdjY+F+0NtbGJABAPtPG1623zM3gZiHystevQa+221Y/ShvSMjomCUiq8yibbwkAjQfPOHxyyFh2toS+OS9kkUMABgZcRjZU5iWy4W3aSkx/5eCt696tYGdX3EwMSnaJwtzDh8GCtO5ecCmQxXXRnWQy3l8tUWOoQsLkhS+1QK4+DMHzyZC336dz8HMVFi3aqfwJm0oTFtT4FJ6rxvw48yC72r2OmnGkxVm3ykeQxYUWADffxv4db7w4uLlJlRdjUyQdqB/YbYdAS5FCdMtnYGJfYF6tTmMf0dYlp4JfPc/6X83/13nEXJVmHZ1AN7rWrCuZlUOnVsJ03cTgdv3Krx5WiG2xiz+kINJvij7djfwIkX6301FQUJGx/i05NCrgzB9/wmw+R/9tgcAlousMR8NBGqXYo1RMLKHsntJKm8yf4XxWLlDmDYxBv63iCs21kfBpH4cy42z4W9pufsAID1TcJEt2lawbGQPIGQNx/L7AECLRhwb5s/zwOjlvOQDsQFgbyjPanfVrgZ8P4PDiO5gFqYbd1EkFkhq/BWm7Mb8oAewbV7BW//Uvils269/l85vpTRS03nM+7mgnWunF7wMfDq8QDT/sBd4mSrt/ohjYz7/oOhLjbJ7qcKapTWvM3g2kKGaDfDJe0KNP2GdYQZklxckZMoBsVVm6W88MvUY03D/Cc8sETYqWGMUNK7PwTf/TSYyoeDNTZ9EP+AxennBufx2GoeOLUvvT6N6HHp7C9MPnwEHz5ZnC9Xj/hMevtN47A0T5jkOWDmZw7b5HCzMi/Zr9rtAh+bCdMxDIWeRlHmZymPqmoI2fj+Dg211DkZGHL6dqpx7SaojMfaG8nj3qwIRM7IHsPWzAhEDAJ3cs9AuX5hdjTGMpJhLfuXx9JUwPcgP8G+rnE9K/MBcI2GrzJmbPE5eFqYb1xfcfYXp51swbUhZfv8XAhaEPawbYGnO4YuRBSLz+73Sd5dXFCRkygHPJhwL0Ex6AVYOQB8s+73Apz99MFCrmmpCBkChkgX6/cGkZ/IY9AWP1xnC/LAAYNpA1fYVB/3++Jc0fvhnbgpBvddihPmq1sChIA6f5JeLKA4TEw7b5hXEMKz5n2BWlyof/8DjyUthuk9Hwa2koHPrgt/I45dC7S+psTeUx7uLCkTMqJ7AlkIiBhAE6Lz3C+aX/iZtq0z0Ax5r9wjT5maCeC7MZyM4mJoI02v3AMmvpdkfcWxMcdYYAHCy5+DhIkxfjBKGMxsCYrfS2EChX451OUzsKyzLyBKytBMkZMqNRWMLXBrL/9DPG2fCYx5bDgvTVayAWUNVFzEAMKSLUBkbAHacBHJy9fOj4XkeE1byuBUvzDd3An7+pOQHfmHe9gIr7vnvFf0P+93yDw//GUJRO0B4kwxfzyHQu+z+NG3I4etxBS6mMUE80jOldzM7co5nwe7VbID1s4t+XysmFTwsV+0UYrmkwp58ESPLFzGjewGbPy0qYhT09QHcRaVKQq9WUEM1YNaPBS83c94TrJaFaWjHYXQvYTo1XXj7lxrht3gcvyRMN7IX4pZKQmyVOXCmfNulC+7c53HmpjDt3gho17Rg3bwRHLsvr98vvcEY+oCETDnRsjHH3kCfp+jnRqBkjRmknjUGAKrZcBjQWZh+kSKMMtEHP+0ryM5rYwn8tZSDjZXqfTEy4jBFZJX5SU/1l2QyHrN+lOPDFQXfS9e2wPkNHJo7qd6fmUOAju7C9N1EKMU6SIHUdCFnjILVUzjUty3aP1dHjlnVMrOBzyXiKvtfiDAqTiFixgQCm+aWLGIAwMgImP+BsktZihw5x7PfsYOtYHkpiXkjODbi57vdPFLTpdWnwrExpsVYYxT08zGsYdhbxdaY3sovAfa1C343WTnCfb6yQ0KmHPlqDAej/DO8cgdfoebZe0kF1piq1sCsd9UTMQr0nVPmXASPj38s+Nyt8zg0aaB+X0b3EnKyAMCvwUIgXUWSm8djxBIe3+0uWDZ1ABC8ilNbYBobc9g6j2P9+WEvEHpVOjezTzcIGW8BIKAdMLZ3ydt+OYpDzarC9O9HgUtR+u3H7n95DFusnohRMNRf2fIXfks63wkgWFTFw+C/mczB2rLkfjWqx7G8MslpwI8SSsR2/jaPoxeEaSc7sFGWJdHGDXCsI0yfvAzJiTIxeXk8fg0Wpk2Mi7c0zR1ekLX4l0OC9b0yQ0KmHHFz5DAq/weWnAZ8W4Fj/7/+vcC3P2OwMAxREwI8hSHOgGCReVaBeSXu3BfSwCusF7PfBQZ30awfNapwLBDwdUbFDinPzhFGvSiyPZsYC+nTf/zYqNS3yNJwc+SwfELBvmOWSyNgNvQqjw1/C9NWFmW7AGtU4bBglPJwbH3Fl+z+l8fwJQUiZmy+iDEyUu07MjbmMO/9gm2/ltib8g97gegHwrRPS+WYpZKY/37By9jqXXyFvwCUxGKRNWZ+GdYYQEhYqnAv5eYBwedL3VyvBF8Q4sYAwWVZXM4v2+ocZg4WpnPzhODtygwJmXJmwaiCOIDvdldMgqn4RwXp7ataAx+rGRsjxtiYw/v5AiBPBuyooAKMt+/x8JvOsx90p1bA8oma9wMomum3Ih6YWdlCZW5FqQdzM2D/Mg4T+2nXFwD4aJBwXgDg3mNg7gb93swysniM+6agDcsncMXGXxRmcn8h/wcAnLpesWUxXqby+PkAjy7T5UrupA97A7+oIWIUvP92wZv/P+FCpmYp8OQlj8X5DzuOA76frlqMmYtDwQvAy1TBzatvLkbyOJw/MqxBXbCXxbIwlCy/W/5RdiuVxOz3OFSzEaa3BQOxD6Xbp/KGhEw542TPYVx+gqm0zIoZnSG2xswcIrz1asOoXhXrXroVx6PL9IIRL61dhbgYTa0XClq7ciy2JCJeeGiWJ+mZPPrMK7jpWpoDB5dz6K1CUK8qGBkJLiZFmvz1+/WbKXfBZh53E4Vpn5aqjyozM+WURs7MXc+Xa2B5eiaPnSd59P1MDrv+QjxP2DUheBoAxr0D/DxHfREDCH35dHjBfuJijPrk8194pKYL0x/2Bto2Ub1vn39QMHBh1U79B5cvFlkf5r/PwcxUtb74tQZ78P9zTnD3So2nr3iWIsK+FtDDq+Rta1ThMDs/ZEAmM/yistpAQqYC+PyDgiGzP/4FxDwovwvubiKPbfn+1Wo2wMdDtH9oNnfiWNT8lWhBaJQX12N5dBGN6PFsApz8jlMpiZ8qVFT9pdcZPALn8jiRP6rC2hI4spJDdy/d9ENB4/ocvplUcMwPV+gnKPPCbR7f/U+YNjcTRvioIwT6+gJdROU9dP3mn5vH43A4j/eXyFG3P49hi4QHhrjwY5MGQm6ijZ9oJmIUjO0N1K0pTO8N0/8ouct3lOPlvh6vXt+aNFAeuKBwHeqDy3d4HMp/0DvWEWKYVMXUhEPvt4TplDSw7OBS4o9jUBruX9xwcjFC2IAwvf24/q81fUFCpgKob8thSn9hOjMb6DCJL5c35yt3eHT7uMA8/vEQDtW1tMYoGNWj/K0yV+4IVZ9f5CdKbd8MOPEtp3F8T3EM8gPq1BCm/zpVPkMXk1/zeHs2zyw+Va2BY6s4+LXWrYhRMLk/WI2v+0+AT36q2JtZdg4wdgXPKvR+NVr9gGyO47B6SsGb/+Jfea0zysrlPP67zmPKt3LYD+DR+1OhQKK40nO92kLs1eVfOET+zuHjodqJGEBIXPbJuwVD5Jdv19/Dhed5TF/LM2vTwtGlZ8IuiS9GFnw3K3fqL6u0ODZmnhrWGAVSdi/xPI/NIrfSmMCy+1bVmsPcYQXX2ldbpdWnioKETAXxxUgOzRoK069eAz3n8Fj7P93FafwWLBQcTHgszDvWEdS6rhgWABbr88cx6DzV/8VIQYQpavJ4twCOrdadEFNgbsZhQh9hWiYDfj6o2368TOURMIvHuQhhvkYVwaJUVgZibTAy4rDlMw42ilEMB4GjFyruhrbsD8FVBwBt3YRU6prQtknBKJlXr5UfWurw5CWPz3+Rw2koj84f8Vi/H0wcA8J3Mr4PELKWw/3/cVg11Qhtm6iel0gVJvUreFP+8wQQ90g/D5gdJ8AqqTdpoLq7rzDNnTgM6SJMP3kpXGMVzdVonuWAqW9bkK5fHXp2KLiP/S2xIpIXIwtqQfm2EgL6VWHawIKXs90hglW7skFCpoKoWZVD+PqCdPkyGTDzBx4frtCusGRuHo/pa+UYtYxHVo6w7K0WQoI1XYqAWtU4vJPf9scvwRJR6YJzEcLDPzlNmPdtBRxdzaGaTfk8/Cf2LciP8fMB3SX6e5YsJLq7fEeYr11NeFi2a1p+IkaBkz2H1aK0/x+uqJjh/pH3TRG0XZg2MRYy35ZlDi+Nr8cXDCtft0/IQqsqD54IvwWnoTyW/Q42BBwQ4pPe7Qr8vYxD0j4OP88xQpc2qg2r1gQbKw4zhxTEL6zQg1UmPZNXCgBf85H6FgwxX4ws2HfFnzyyKrj0ijg25rPhHMzN1O9LVWsO3TyF6QdPgavRumqd9hSXyVcVrC05zBPlA1q4hYQMUY5Us+Hw9zJOKZ351sNAlxk8kjRIm/3kJY9uM3n8IEq2N7EvELq2+ARk2lIeOWXO3BTcMIpAxC5tgCPfcKiiRsI7dXGow6GfjzD9+KVuKhYnPefh9xGPG3eFebuaQNgPHDxcyl/EKBjfB+jeTphOfAaM/Jov11FyeXnAp5trMZ/+vPehdX/r23KYOyz/+DIhJ01ZxD7kMW6FHI2HCb8FhaA3NgZ6dQB+/4LDk7857PzKCH19NXsAasK0gUJGbUAYVfLwacU+YIK280h8Jky/0xHo2UG7frdszGFgfoLMpBcVW03+emzByL96tcEGUGiCknvpjDQe+hlZPHacFKatLcGsX6oyqZ9gpQIES9PFSGn0q6IgIVPBGBtzWDbBCDsXFrx5nosAvCbyal185yJ4tB3H478bwryZqTBcdMMnRuV2o+71lmBlAID9p4Hk19od79Q1Hj0+Kaif1M0T+GeFell7NUWXQb8PngKdP+IRmSDM17cVRIw62Xp1Acdx2Pwph6rWwvzBs4DrcB4/7tV91e/cPB4LtgC37gkXcXMnIahdF8wZxsG+ljC9/z8g7Frxbb8Vx2PEYjmavM9j8z8FgbtWFsDHQ4GE3RwOrzTC+2+XrzAuiRpVCjKw5uRWbLXi+Ec8Vu4Upk1NoFSkUxu+FOX8CfqTR3aOTg5bJmI346fDiy+qqip9fQqmpVIN+69TYC9z7/pD7XughTmn9PtbUMmsMiRk9MS73Tic/pFjOScSnwGdPuLxx7GyL8BfDgo5Vh49F+br2wKnfuAw7p3yvVmbmXIYHiBMZ+cAu0M1P9a/l3n0msuzwMu3vYCDQRysLCrmgePfFixm6b8bwM27mv3wHzwzQZfpwkgbAGhoJ3wXqvq3dY1jXQ6/f14QL5OcBny0VhC9usj+m5PLY9MhHk1G8Fjxp7DMyEhwKelKQFtbckoja2b9yEMuL2j7pSgeAz6Xo+VoHn+eAAsyrmoNfP6BIGC+nWZULlZJdfl4aMELy88HheG15U38IyGLtEJkzBwilIPQBa1dOSYEEp8BW4/o5LAlkpcnxBL+lW81taspWB61oV5tDu2bCdPXY4XzpW9UzR1TGh/2Fu4/gJDw78xN/feroiAho0faNuFw8WcOvvlJzbJzgA+W8pjzkxwyWdGLMDuHx8SVckxYySMnV1jWqZUw4qJD84q5aYvdS78f1ewYxy8KI0gysoT5wLeE2AVLLd6y1IXjOEzpr51VJuYh8N6yuriXH2DtUl8QMc4qJIErT/r6cojeXhA4CwA34wD/GTzeXSjXqDhjdg6P9ft5uA7nMf4bHvFJBesWjILOr7+RPYT8QYAw5P+PY/kWvNlyeE3glZLm1a4mxNbc/x+HpeONdDZUXxfYVi8ILs/MFmoWlRd5eTxW7eDRYhSP8Pxg87o1lWNbdMGC0eJYGSAnr5SNteD0DR6e45XLKnw6XDf3CbF7Sd9FJOMe8Qi5Kky7ORbUUVMXM1PlLNlfSqR2WUVAQkbP1K3J4eR3BTc7QKgE3PtTHq9EwZqJz4T8Kj+LRgtMHwScXMOhbs2Ku3G3cSuo8nv2FhD/2ESt/YPPC0niFHEMfX2EZHfamIo1ZWRPMMvF78dQZnBsdg6PcxE8vtstCALvyUDSS6H/TRsI7qQGdaXxELWvzeHXz41w9icOnk0Klu8OAZq8z2Ppr6oFa2Zm8/hhL4/Gw3hM+ZbH/ScF6972AnZ//hhfjtJ9+42NheHYCsZ9I1ghj10s2KZebSHvy73dHOZ/UH7B4dryyXsczEyF6XX7oPS71hUXI3l4TeQxZz2PzGxhmYMtsHcJh6rWuj0vnk0KBi3cfwLsO22j0+M/eclj9DI5Ok0riDkDhPg/TUddFUZcDVvfw7C3HVEO8tVm9NzIHgX1vkKuCpbvygDHS2n8mQEhl8uRkJCAhg0bwshIez3I88Iw0RnfF2TldXUADizn8CwZGLKwINOthZkQD/P+2/q5ca/aIdwwAcDfIwN+ba0g54XgTJks/79c+FMsk8mFN7dd/4JZkwZ0AnZ+pd1ICm2Z8q0c6/cL02s+4jBDlEDwwRPhzfbcbeH/leiCtotp6Qyc+E6z/BwVgVzOY+thoUq2ItEgADSyB76bxqGvL4rcPNMzeWw8IBQ7VZSJUNDbW4iV8GrK6/Q3UBz95smLvDE3shfezEf3QoUF7paEqveBiSvl7CVk8YecUqyJNqRl8PhyM4/v9xa42DhOeMlZMq78YoPO3+bx1iThHuBom4uYHaYwN9PuGsjL47H+b+DLzTxS0gqWt3EF1n3Mwdtdd33heR5uw3nEJgpB4U//1jxflTbPApmMR6N3hSKrxsbAg/9xsK+tXT+3H+Px/lLhu+noDpxep9vUAoXR9bNQE0jIaEh5fXmhV3kMXlCQFM7GUhiFoRA3De2Av5ZwaqUY1zVJz3k4DC5IgKYJQ/yB7V9qX3ZAWyLiebiPEn4CLvWBSf04hEfwOHcbbMRHSVhZAF1apmPbF9awrSF942byax5fbeXx4z6wpImAYFlZO51D04Yc0jJ4/LRfCEwVix5AeIv9chQHz/xrryJuYNEPeLSfKDzYmjYQCgQO61Z2xtOKQtVzEPeIh9sIIVllzapCHI+2Qe2HzgpWMvEwcw8XoVBn+wpwNff8RM4qULd1A/r6CJaatm5QO6ngmZs8pn7H43pswbLqNoLLcGJflMsw+U/WybF6lzD92+ccPuhR8ULm2AVhwAMgjCw7GKT970gm49FqDM9y0qyawmHqAJSb1ZuEjAFTnl/evSQe/eYrm1UBIKAdsGOB7tL1a8MHS+UaVZDmOGBML2DjJ9rlG9El/jPkCL1a9nZujsBbzQFvdw5vNQeaN+SRmKjfH7AmRMQL2V7/vVKwzMRYEJfHLionjwOAwV2EOIvCQ6sr6gaW8FiwRrZrqv4DsrxR5xyM/FrO4soWf8hh3gjNBFnScx4zfuDxv5CCZZbmwFdjOHw8FBX2cnD2ppCEszB1awrD3nt7c+jeDqW6/J6+4vHphoIitwrGBgpFYsvTyvnfdSFhIiBk/N6zRLNrWJvfwXtfybHrX2H6r6UcBnTWTX/3hPIYsqDgu7GtLmQAn9yPg10t3Z3TxGc8dv/LY/vRLBxeZYE6NUnIGBTlfRNPy+AxejmPvWHC/NxhwtuJVB7+2Tk8Tl3nkfDgKezt68DUWEgyZ2IMGBsJf2xatLy6DXT6Q9IFf4XxGPSl8s+gihXQoXm+cGnBoUNzISmgGCm8iWgKz/P4KwyYtU457kUBxwkJ5D7/gIO7c/HflyH3X1eocw4i7wmBuIo7roUZ4O4MeDQGWjXm4OEiTJeUyFIu57HpkFDlXOx66d4O2PCJfoLMf9onx/f/y8Gdh2bFrjcxFhJcBr4lWGuaNRTcmHl5PDb8DXxRyI3U2hX4ScdupJKQyXjY9efxPEXI3fL8gGaxepr+Dl6m8rAfIAzcsK0OPNyrOze7XM5j5NdCSQ4xZqbAsG7CaDpNcz49SxaeSztPCmVYFNfzT7OAyf1JyBgUFXETl8t5nLwsmKI99ehKKok35UHG80IitcgEHm3dOHi3EG64ZZmz34T+Z2Tx+OZPYSh1Vo4wlHpEd6GqcNOGb37/tUXdczBskRw7T5a+TYO6gqDxcCkQODm5wKTVPM7cLNiudjUhrmt496IxThWFov9Glg0RfJ7D4XM8TlwGG5FYGCc7IR9VeARwLaZgeXUbYOk4DpP6lY8bqSTGBsmxNb+g5qEVmlWm1/R38ONeHh+tFR6/s4YCq6fp/jd0/jaPNf/j8b9QZXcyINRnmzmEwzsdy7Z0Jr/msf+0IF5OXC56LEAY/r3pUxIyBgXdxOkcvEn9T3gsjAjybwO4OKh2M3+T+q8p6p6DlDQhiPpilBAPEptY8EarDqN7CbEPha2EFU1x/c/KFt7U/wnn8c854G5i6ccYEwgElbMbqST+/o9H/8+FL2B8H+DnOepfx5r+Dtp+KMfVfDF3c1vJlk9d8OAJj3X7hGsvOU15nUt9YMZgIXheHLeVnilUiN95kseR88UPdHBzBN7rCvg2TUQ37/oUI2No0E2czgH1v3L3H9D+HKRn8rgVLyRmux7L4/pd4MZdsGzXhXGpL8SXdfWUhoVWlf5HP+BxOBz45xyPsGsFGZhbuwLrZpZvQdWyyMjiUbuPMGS9bk3g0V/qVz/X5Bq4Gi0kqQSA9s2A8xsr5veTnsnj12Bg7R4e0Q+U11WzAca/A3g15fDXKUHEFGdZa2gniJf3ugnWQp4v/9GLZaFWEpCcnBwsX74c58+fR3p6Opo0aYK5c+fCxcUFALBt2zb88ccfkMvl6NevH6ZPn85MnhEREVi6dCnu37+PFi1aYNGiRbC3twcAZGVl4euvv0ZYWBiqVKmCjz76CD179mSfe/DgQaxfvx7p6eno2rUr5s+fD1NTU12dA4IgCL1gbSnEX3VoDgDCvZLnedxLAq7fLRA4SS+Bnu05zB2OCk0cqQvcHDm4OQIzh3J4ncEj5IogZvr56n/0mZUFh7e9ePx9Wqjqff424K1hQjp12Food0xFYW3JYcoAoTbTkfNCgsaTl4V1KWlCDjOgqG3DvhYw1F8QLx2aK7sypWALUUvIyGQy1K9fH1u3bkXt2rWxY8cOzJ49G3///TdOnz6NPXv2YNu2bbCwsMDkyZPh5OSEfv36IScnB3PnzsWECRPQs2dPbNy4EQsWLMAvv/wCANi4cSNSUlJw+PBh3L17FzNmzECzZs3QsGFDxMbG4rvvvsOPP/6IBg0aYPbs2di8eTMmTZpULieEIAhCn3Ach0b1gEb1gP6dAIXAeROoYiXkLZIS/Xw5lhTv79N8uQcaZ2XzbMSnhRnwXrdy/bhiMTISgq97e3O4cVcoA7H9BJRqZ9WqBgz2E8RLp1YVG7ukLmoJGUtLS4wbN47Nv/vuu1i7di2Sk5Nx+PBhDB48GA4ODgCA999/H0eOHEG/fv1w+fJlWFpaol+/fgCA8ePHIyAgAElJSbC3t8fhw4exevVq2NjYwMPDA507d8axY8cwfvx4BAcHo3v37mjevDkAYNy4cVi6dGmJQiYnJwc5OcqVzExMTGBmVnxUvabI85OoKP5XRir7OaD+V+7+A3QO3oT+B74lBLnL5UIRyWUTyu5L8mvg1A0g9KoQUJuTUxc1q/GwtpTD2kLI/2VtiYJpi4L5yATgVX7B3UF+QBUr5VpiFY17I+CXucDX44FtR4Anr4SRcN08hYKjCgtNSW0s72tAFXeVevnlC3Hjxg3UrFkT1atXR3x8PAIDA9k6Nzc3rFu3DgAQFxfH3E+AIIgcHBwQFxcHa2trvHjxQmm9m5sbIiIi2L7e3t5snaurKxITE5GVlQULC4sibdq6dSuz9CgYMmQIhg4dqk1XS+TBgwdlb/SGU9nPAfW/cvcfoHNg6P33dKmLi9EWiLoPhJxLhLO9cgGpzGwOl2LMEX7bAmdvW+DWPTPIeYWFggNQ9FmkCoGej5GQkK1d43XIu6LK4I/KCNIuTHldA40aNSpzG42FTFpaGpYtW4YpU6YAADIyMmBjU1Bzw9raGhkZQsRaZmYmrK2tlfa3trZGZmYmMjIyYGxsrCRKSttX8RmZmZnFCpkxY8ZgxIgRyp0sJ4vMgwcP4OjoWKkDHSvzOaD+V+7+A3QO3pT+D+0GXIwWpi/F14ePJ3A+Egi5ItQsCo8oCFLWFU0cgaFv28GATxsAaVwDGgmZ7OxszJ49G76+vsxdZGVlhbS0gnFd6enpsLKyAiBYYNLT05WOkZ6eDktLS1hZWUEmkylZWErbV/EZlpaWxbbNzMxM56KlNIyMjAz6B6wLKvs5oP5X7v4DdA4Mvf/9OxXUjwvaDizaBlZ8szjcGwFd2wJd23LwbcXj5bME2NZtiIxsDumZQHoWkKb4nyH8Z8syhc95/23pJDjVBfq8BtQWMnl5eZg/fz5sbW0xc+ZMtrxRo0aIjY2Fr68QyRUdHQ1nZ2cAgLOzM/bt28e2zczMxMOHD+Hs7IyqVauiVq1aiI2Nhbu7e7H7xsYWFOCIiYlB/fr1i7XGEARBEIS6uDhwaO4k1CcqnGcFABrXLxAu/m2AujULBIhcziP1JVDVuuSszMq8OeJFKqgtn77++mtkZ2fjq6++UhqCFRgYiL179yIxMRHPnz/H9u3b0atXLwCAp6cnMjMzcfDgQeTk5GDz5s1o3rw5G34dGBiITZs2IT09HTdv3sSpU6fQvXt3AEDPnj1x4sQJREVFIS0tDVu2bGHHJQiCIAhdMH1QwfOsXm3ggx7A1nkc7u3mELvDCD/PMcJ73TglEUNIA7UsMklJSTh48CDMzc3h7+/Pln///ffw9fVFTEwMRo4cCblcjv79+6Nv374ABHfPN998gyVLliAoKAjNmzfH4sWL2f4TJ07E0qVL0bNnT1StWhWfffYZnJycAAAuLi6YOXMmPv74Y5ZHZuzYsTroOkEQBEEITOgL+LTkYGYKuDror+wDoT6U2VdDKKspnQPqf+XuP0DnoLL3H6BzIIX+V76zriOSMrPxc+JL5Blw/gSCIAiCMHRIyGjA1tgH8DpyFhsfvcRfD57ouzkEQRAEUWkhIaMBrlWtkZVviVkVGU9WGYIgCILQEyRkNMC3Tk342FYHAMSlZWLv/cf6bRBBEARBVFJIyGjI3ObObHrl7TiyyhAEQRCEHiAhoyE+tjXQroqQXTguLRN7yCojGR5lZOHKyxR9N4MgCIKoAEjIaMGEejXZ9CoDtsq8zM7Bioi7OPfslb6bojUPM7LQ+dg5BJy4gI3R9/XdHIIgCKKcISGjBZ5VLeFrWwOAYJX5nwFaZeQ8jxFnrmNFRBwGhF3Bw/RMfTdJK76+GYuXObkAgBW37yI1f5ogCIJ4MyEhoyVzmxeUGDdEq8yuhCScf54MAMiWy/HN7Tj9NkgLrr1Mxa6EJDafnJOHjTHlU1qeIAiCkAYkZLSko20NdK4juJji0zKxO8FwrDIpObn46nqM0rId95IQ+zq9hD2kC8/zWHA9usjyn6ITkEJWGYIgiDcWEjI64NMWBSOYVkcajlVm+a27eJadAwCoYWYKAJDxPIJu3dVnszQi+NEznM6P8XG2scSQBnYAgJTcPGyIMexYmSeZ2ciSyfTdDIIwKF5l5yI9j343lQESMjrA27YG/ERWGbF7Q6rcSn6NTXcFt4uVsREOd22H2uaCmPnrwRPcSn6tz+apRa5cjq9uFFiWFrZyxWfujWGcX/RtffR9g7XKrImMR/ODp9D1+Hmk5ubpuzlakS2TY9h/V9FoXwiOPnqm7+YQbzAhj1+g+cFT8A4+iyeZ2fpuDlHOkJDREUpWmdvxyJWwVYbnecy5EgV5frnQ2c2d0aSqDT5uVhDvs+xWrJ5apz6/3k1EzOsMAMBbtavjnfp10MjGCu852QMAUnPzsN4ARzDtvPcIi2/GggcQlZqOxTdiytxHyiy5GYOjSc+RkpuHjy5GINlAxaWCtNw8rI26h1PJhueKfZPJk8vx2dUoZMvleJiRZZC/fUI9SMjoiLdsa8CvrmCVuZeeid0StsqIA3xdqlhhiltDAMCYxg6oZ2kOAAh+9BwXXyTrqYWqk5qTixW3C1xhiz3cwOVbYj5p5gwThVUm5r5BPThPPXmJGZduKy3bcvchwg10iPzxpOf4SfRAeZ6da5AuTAV5cjk+OHsdS27dxccxSQb7vbyJ7EpIYi82ALA17qHBWzN33XuEQWFX6DorARIyOuTTFo3Z9CqJWmVSc3KV3DBBbZrC3Fi4DCyMjTFHlLH465vSf9B8F3UPL7IFgTLQsS7a1arG1jW0scQwp3oAgNe5efgpOkEvbVSXqJQ0jDx7Hbn5JrMW1WzYuukXbyPTwPz+TzKzMfXCLTbP5f/fdPeBQbkwxXx5PQZhT16y+fnXYyBTmDgJvZEtk2NFhPLIy9e5efg9LlFPLdKe++mZmHbxNkKevMD7Z66Tq6wYSMjokLdqV0eXfKtMQnomdt2TnlVmeUQcnmYJAb59HOqgq10tpfXDG9VDIxshY/Gppy8R9uRFhbdRVR6kZ2JD/lu+mRGHBa1ci2wzu3kjZpXZGPMAr7KlbZV5kpmNd/+7yt4g37avjZMBHeCVL9DupmVgpQENkZfzPCZfuIXn+ef9bfva+KKlS/46YO6VKPC8YQmA7fGJ2FgogPxm8mtsv2e4D8s3hV/jHuJhRhYAoFX1Kmz5hpj7knyxVIW1Ufcgy/+NvMrJxezLkQb3mylvSMjoGLFVZnWktKwyEcmv8UuscAO2MjbC1x5uRbYxNTLCPFEflt68K9kfzZKbscjOP78TXRuggbVlkW0aWFtieCPDsMqk58kw7PRVPMi/EXvUqIJNb7WEmbER1rZrDjMjQZD9cCcB11+l6rOpKvPjnQSE5lsu7CzM8KNXC0xxa4jGNlYAgHPPkyXthi3MhefJmH05ks2PzL+2AMGCSQkY9Ud6ngyrb8ez+e+9mqNnvdoAgMSMLOx78ERfTdOYpMwsbI9XFsiHHz2jkjiFICGjYzrUrg7/uoKVIyE9EzslYpUpHOA7q5kzHIp58APAwAZ2aJbvzrj8MgXBEhxhcuVlCvsx1zQzxSxRoHJhZjdrBFMjhVXmviStMjI5j/HnbuDaK8HVUt/KAjt828DG1AQA0LSaDWY3E9x+Mp7H9Iu3JSWSi+PyixQsvSkEjXMA1ndwR20LM5gbGyGobRO23cIbMQYhABIzsjDy7HXk5P+Ixrk44lvPZgioIfxWnmXnYFVkfGmHkDTHk55j3tU7Bpvd++eY+yydRH/HumhVoyo+auLE1v8QdU+yL2Ul8eOdBHa9tRe5zT+9GoXH5GJikJApBwrnlcmR6f+BszshCefyA3wb21hhapOGJW5rxHH43L3AKvP1rbuQS+gGwPM8vrxWkPxubgtnVMvPg1McjtaWGJEfK5OWJ8M6iVlleJ7H/Gt3EPzoOQCgiqkJdnVqA7v8wGsFM5o6oXm+wLyZ/Brr7kirH2JSc/Mw/txN5OVfNzObOsGvboEbs5tdbbxTvw4A4GlWDoIipO0uy8yT4YMz15hbtlOdGvi6tWDRnOFYCxZGwq10Y8x9g0woefrpSww/fQ0bY+5jQNgVg0tXkJyTi++j7gEAjDgwq/Jbtaujbc2qAICIlDRmHTQEnmflYNvdhwAAS2Mj/O7TGoPy82Ml5+SRi0kECZlyoH3t6iz25H56FnYmPNJre1JzcrFQHODbtgkL8C2JXvVs2Q3gdkoa9j2Qjinz8KNnCBeJsjGNHcrcZ5bIKvNzzH28zH9zkwLro+/jl1ghp48Jx+G3jq2YYBFjZmyE772aI78bWBERh5hU6T00eZ7HJ5cjcS//zb5drWr4TCSMFXzd2g2W+dfhL7EPcDslrULbqSo8z2PGpdvMWtbA2gJbvFvBNF+81DM3xVS3BgCAXLmyyDYEEjOyMDb8BovDuJuWgckXbknq5aUsfoi6h5T8uLJhTvXgWtUaAMBxnLJV5s49PbROM9ZHJyAz/yX4A+f6sLUww4o2TWBrbgYAOPLomUHW9ysPSMiUE2KrzLeR8Xq1ygSJAnzfqV8H3exql7kPx3EsKBMQsgBLwZWRI5MrlVX4ysOVPVBKw8HaEh80qg8g3yojEWvGwYdP8KWotMJar+ZKlovCtK1ZDZNdBWtatlyOmZduS+6Bsyshibn9qpia4JcOLYv9jhytLVnuIhnP41OJBv7+cCeB9cfaxBh/+rRGrfyHiYLpTZ1gn29BO5r0HCcfP6/wdmpCtkyO0WdvsGBsBcGPnmOVgQSVP8nMZsHXZkYc5opGXgLIzysluNFDn7zEzVfSHymXnJPLXm5MjQrEWE1zM6z2bMa2+4xcTABIyJQbXrWqo5vIKrPjnn6sMreTX7MfhKWxETOHq4JfnZpK1b311Qcx2+Ie4m6akCPCu3Z1BNazVXnfmc0asYDZX2If4IWerTIXXyRj4vlbUDy65zZ3ZsPFS2Oee2M45cc3hT9PZuZnKRD7Oh1zrkSx+e88m6GhTfGxWAAwrUlD9pA58+wV/pKQ5Q8Ajic9wyKRNXN9e3c0F42GUWBtYoyvRKPmPr8WLQnhXxafX7uDyy9TAAiWpk1vtVSy+B2TYHxcYb6LjEdG/ovi6MYOcCwU+2dsxLFcWQDwowFYZX6JeYC0/DQLw53qob6VBVv3jkMdJRfTrMu3JfkCUJGQkClHxCOY9GGVUQT4KkzGs5o1KvIjLw2O4/C5yCqz8na8Xmv+pOTk4htRLMWS1gXJ71TBwcpCySrzox6tMvFpGRhx+hqy8q+JdxvaK1nxSsPKxBhr2jVn81/diJFEgGaOTI7x526y+jYjGtXDwPwbbklYGBtjeeuCwN8F12PwWiLJy6JT0zHuXIHQ/LSFM95xqFPi9oMb2LFh8tGp6dgSKx2BWRw77j3ClnwRbG5khF87emBgAzt86S785nkAE87fQpwouZzUeJCeia1xQh+sjI1KDPof5lQPNc0KSrBI4fdSEq9F9eGMOQ4zmjoV2WZFmyaoYyFYBYMfPTeokX/lAQmZcqRdrWoIyLfKPMjIwp8VbNHYc/8xiyVxtrHENJGvWFU61K6Ot+0LhjBuu6u/XBnfRsbjZX4Q4uAGdmhbs1oZexRFbJXZFPsAz7Mq3irzMjsH7/53lZnzO9WpgbXtmqslyjrXrakkymZLwC2z5GYsrueb7V2rWCGoTVOV9nu7ni0bJpuUmS2JPDkpObl4/8w1Jqr6ONRRShZZHBzHYXmbAlEWFHFX71a/krjxKlVpGPkqz6bwqCHExE1v6oQ++YItNTcPH5y9Ltniiysi4ljiyEluDVHHwrzY7axMjPGhiyMAwY0p5UKyW+8+xCvRfc4pP1WBmKIupjtIysyqsDZKDRIy5cxcPVllUnPzsEAUeyHO4Ksun7sXWGW+i4xHmh7emBPSMpkf3NzICF+KLEXqUN/KAqOcheDgdD1YZbJkMrx/5jpi899ym1S1xm8dPWCmwXez2MMVdvlvZceTnmOvHgP/TiQ9Z6PBzIw4/PJWS1ibGKu8/7LWTWCeH0ezIfo+ovQY+CuT8xh37ib7jlpUs8E6rxYwUkFotq1ZDcPya3yl5OZhuQTLMLzKzsXIs9eZNXC0c32MyBfFgCDIfvRqAbf8gNnIlDRMvxihd6FcmOjUdDaQopqpCaaVMhITAMa7OMIi/3f2W1yiJEdmZebJWK4rDsDMZk4lbtu7fh0Mzrd4puTmYdalyjuKiYRMOSO2yjysQKvMioi7eJJvbehd3xYB9mUH+JZEyxpVMMCxLgAhV8bPMQ900kZ1WHIzhuVTmOTWQC0XWWFmNnNiD81NsffxrIKsMsk5uZh2IYINg69jYYZdndqUOnS8NKqZmWJlobcyfViYnmRlY+qFCDb/VSs3tMp/u1cVJxsrZkLP43nMu3pHbzflRTdjcPKxkNG6lrkptvu2Zvl8VOHLlq6wyRdx2+Ie4raEyjDI5DwmnL+J++nC27tnzWpYXozlrIqpCX7v6MH6se/BE8mlLVh+6y7LizW9qROql/E7qm1hxmLQ0vJkkootU/BHfCIbmNHXoS6aVC06elFMkMjFdDTpOXZVUhcTCZkKoHC23/KOM7mdksbEhoWxEb4WxSBoymctGrMgwB/u3KvQAoyXXqTgr/ysnLXMTfFxMT5jdbC3tMCoxsIbaIZMXm5DMlNz83Ds0TN8eS0aXY6dQ+P9oawfVsZG2OHbuthsxOrQu34d9HMQRObLnFzMu3ZH63arg5znMe3ibZaI7G372pjo6qjRsWY0dULD/PMR9vQl/n74VGftVJVd9x4xK50Jx2Gbdyu1vyM7S3MWqyHngXnX9CfKCrPi9l0m0mqbm2Jbx1YlWmpdq1pjQwd3Nv/VjRickkgeluuvUvH3Q+G3ZGtuhgmuDVTab4pbA1bra2PMfWRLIMeXghyZHGvzc+EAQnmVsqhpboZvRS8z8yqpi4mETAXgWasauoviTPyPn8eF/LdyXcPzPOZeiVQK8NX2YQkINzXF20xKbl6FuWR4nlcanvxp88aoqqEFQ8yMpk7MzLw59gGeZmk/hDEjT4aQxy+w5EYMup+4gMb7Q/He6WtYF52AG8mvWdCoEQds8m6FNhrE+BTHirZNUN1MsBjsvf8YRytwpMkfj5MRUqgEgTqxPmIsTYyxTDSq7otrdyrUjXn5RQpmXiqIGwlq0wQ+dWpqdKxJbg2YKPvv6Sv8k6j/0T9HHz3DqvwU/kYcsOmtVkqjYYojsH4dzBaJsg/P3ZBEoOzX+RmjAeGBr6obs3EVa/TOT8T4OCsHe+5Lx4KxM+ERHuUPpe5ZrzbcixkdVxyB9etgiMjF9HEldDGRkKkgvmzpwh6cd1LT0evfi/jsSpROR2gkZWZh+qXbOPssGQDQyMayTL+xOsxt7qyU6l8XD/+yOJj4FOfzRZ9rFStmSdEWe8uCWJlMmRw/RKkvzLJlclxOzcSKiDj0/vciGu0PwaBTV/Bd1D1cfpnCxKQC9+o2mOTaACe6dUBPNYaNl0UdC3Mlq9usy5Gs6GR5cuVlKn5MFN7uxSUItKFnPVvmin2UmY1vKyDlP8/zOJ70DCPPXme1u0Y718dYF80sS4AwGmuJqJbZl9ej9TriL+51BiaeL6hAvqClKzrXVU2kfdaiMUsl8SI7F6PO3tBrX8KfvcKJfKuSgyjmTVXE98Qf7yRI4qGfJ1e2xsxqptoIRgVBbZqibv5v71gldDGRkKkg3KtXwbFu7dG6hqCyeQA/xz6Az9FwHE/SLnlWck4uFt2IQbvDZ7A9viAGJ6hNE1gYqx5wWRaO1pYYIwqUXavBw18V8uRynEh6jsnnbxWKvVAt+Z2qiK0yW+4+wJMSEkvxPI8nmdk4+fg5vo+6h4nnbsL3aDga7g/FhDuJWBkZj/DnyWz0hAK3qtYY5+KIbR1bIaafH0697Y1lbZqgdU314kdU4b2G9qzGV1JmtlLuE12TlJmFL67dQf+wy5Dld7lwCQJN4TgOQW2aspFl66ITyi17cZ5cjj0JSf9v787j2yjv/IF/ZqSRRrdkWZLt+L5yOZCrBMhFElrOpPzaAL1+LbTL8Wu7QLvtwqvdbdntCxa23bZ0e0DZXdjtshQWWhrucoQQIAGSJoTcjm87tuRD9zEaaZ7fHyMrdnzEt+z4+3699JpDtvQ8o0ea7zzXYP2f9+LG3QfRmfn8L8m3j3nE1WiuWeDChkyNTks0jt+czM1ImWgqjS+/91E2uN1a7MZfj+MCR8Nz+O2aZdm5iw74Q/hujkbJMcbwowG1MXcvrRz3IIaL8u1Yk28HoF5Uvj4LJi/8Y5sXTRG1pmujJw+rneOrrXXohXndxMSx2RCOzkGKoqClpQVlZWXgx3FyTSkKfnOyFQ8cachOPw0A15cW4L7lC8d1RRtLpfHb+lY8NGB6bgAwazX4u2XVY243Hg9vXMLKl95BPK1Ax3P4Q10pLq6tHtcxGA5jDB/2BvFsaxf+2NY1ZKbR9W4Hntu4asLNFiP5/sET2RPM/6stxQ+W1eBkKIojwTAOB8I4EozgSCA8JD3DqTQbsM6dh/WZiQQ9huGHgk6X1mgca1/dkx0qu+OyVVg3waaR4bRF43joeDOeaDqdrbkAgNV5Vry4+RNTGmTe9/Ep/EumNmaTx4lnNqyYss8+nkrjf5pP419PNGc7vfa70GHB0+tXwjXG7+G5fgeOBsLY8NpeKEydNO+Dqy5FoWH05pypxBjDbe8fzs5MXGMx4fXLL4JlHJ2X+x0OhHHFGx9kf7d+umoxvlxRNKHfwYl6vbMHN+w+AECtoX33ikugncD7vtThw5fe/QgAsM7lwI5NqyecpomeC7L/zxgufXUPTmYC9ucvWzXhJs3b9n6cvW3Bpwrz8eS65VP+m3m2yeZ/KlAgM0GT/fCaIjF8a98xvO0703nOqRdw//KF2F5aMGrhkxUFv2vswI+PNmZHJgHqsOSvVRfjW4srhkyhPpX+8VA9fp6pBq0Uddi0wI2ldgsW28xYbDWNqw/L8WAEz7Z24ZnWLrQM0/ZuE7S4rsSDH15Qc85RCRMxMDDTcBw4IHujw9FoOQ61VhMqtRyuqizBeo8TxefobzATHjnZmu3wy3PAWpcDWxd4cE2xa8In0FPhKH5+rBlPt3QOOjYiz+PT+Rbcf/GFcIwwf8dExVJpXPzKe2iPqYHGf1164aiT0Y1FMCnj30+14+H6liGB6ao8G761uBxXFrnGNMy631h+B76z/1h24rnPlxfiVxfVDft30+G39a2454BaHsxaDV6/fE12WPVEPNPSiVszTVQCz2HHxlVwRwIzchJTGMPm197HocwosP+45AJclxlNOZHXuviV97JD7N+4/KIJ91mb7LlgR7sXN713CIB6k8sXN62ecPDhl2Rc+up72fPCry5aOqbZwieDApk5bCo+PMYYnmg6jb//6OSgGpXLC5z4l1WLhwwxVhjDH9u6cP/hhmw1JKCesD5fXoS7l1SieAo69p6LX5Kx/KV3RuzfU2wUscRmxhKbGYszyxqLKTtXSkcsgWdbu/Bsaxc+HmZoqqjhcUWhC9vLCnB5Qf6E578Zq787eAK/HqXaP18vYKndgjqbBUvtZtTZLaixmCBwyPkX+GxpheHat/Zl+xX146BWqW8rdmPrAveYysnRQBg/PdaE59q9GNhqZtZq8NWqEtxeU4y4t2va8v98uxdfyfzAFxtF/MuqRSg1GVBqNMAwjjlqOuMJPHyyFY81tGenfe+3pcCJuxaV41KXY0Inj7H8DvRKSax+6d3sd/y1LRdh1TibDiZib7cf297anw0+H7/0AmwrntiJf6DvHTiRnVCuQNTjPxcVYlV11bR/B/7U5sXNe9TycIHdgjc/uWZcQefZHm9ox7czkwJeV+LBf1xywYReZzLnAsYYNg0Izp5ev2JSU2UAwMsdPnwxU9tkFbR4cMVC1FhNqDYbp2SgxNkokJnDpvLD88Yl3H3gOHYMGG5q0mrw98uq8bWqEvAc8HpXL370cT0OBwZPFHbtAje+v6zqnPMNTLU/tnXhBwdPomOMNyzTchyqLEZYBC329wZxdqHjOWCj24ntZQW4ZoEb1glUfU9Ur5TEdW/tx4lQFLVWE+rsFiyxqQHLUpt5xCai2fAFHk5ITuGhY034U7sXjZHhR5iszLNiW7EHW4vdqDhr5tADfUH89FjTkJE2NkGL22pKcVtNKRx6YdrzzxjD9rcPYKe3d8hzBaIOZWYjykyGAQ8RZWYjCkU9NDyHhnAU/3qiBb9vPp2dgwhQy9p1xR7cuagCyxxjGxkykrEeg4E1ZavybHh1yycmdRI+l664hE2v7c1emd+xsBz3Xlhzjv8aG1lR8Jldf8G73X4AwAqziP9YvxKlZuO0NWOkFAVrX92L+rDa/PLU+hXZkaATlUinceEL76BbSoLngP1XrRv1vmAjmcz34LXObty4+yAAYLnDgjcuXzMlx/D29w8Pe9sCl16HaosRVRYjqi0mVFmMqDIbUWE2jnrBKCsK+iQZvUkZfimJ3qSsbktJ9EpJtPUFcFtdDdZNQT+5iaBAZoKm40f8xQ4fvrv/GLoGNBd9wmmDwHPZkUj91rsd+MGymhm5shuJoig41NCIiNWB46EYjgbDOBaK4mgwMubRWCvzrLi+tBDXlXhmvE/J2RTGprxZIZcYYzgSjGBHuxc72n3ZNvizLbNbsK3YjTq7Bf92qi07z0g/p17AN2rL8NXqkkEB5kzkvz4UxebX3x/XFPkCz2GBQURLND4oYNbzPL5QUZS5UeXQad8nYqzHQFYUrP/z3uxn8PPVi/F/KxZM2YmfMYZjwQje9PZiZ1cf9vT4szP3rnc78OyGlRPqSzISX0LCptfez3aQBoA8nYDleVascFixPM+KCx1WLDDopySP/9N0Gt/8UO34P9nml4F+crQR92dmX761ugQPrBx/J++Jfg8YY7jyzQ/xYa96087frb0wOzR8svySjI2v7c02zZ4LzwGlRgOqLEY49Tr4k2qQ0ifJ6EvKYxoF+eDyWtxSO3WjZMeDApkJmq4f8WBSxr2H6vGfjcPf02i5w4K/X1aDyzx5096J61xGOgaMMXTEEjgajOBYMIKjmcfJcBSywlBjMWJ7aSE+W1qASsvUnFByYbYHMmc7Hozg+XYfnu/wDqnZG06hQY9vLizDlyuLh52nY6by3xyJ4d1uP5ojcbRG42iOqkvvGGcxtghafK2qGLfVlE55sDyeY/BGVw+uf/tAdtsmaLE8c9Jf7rBiRZ4VJUZxzN/rnkQSb3l7sdPbi51dvYMugPoVGfTY+cmLx9x5eTz29Qaxdee+QR2/z+bS6wbl70KHZUhfLcYYEmkFAVlGIJlCUE4hmJQRlFMIJGUEkjL+q7EjO8fKi5tW4xKXY0ry0CclccELuxFLKzBqeBy6dj3yxtm/cKLfg92+Pnz6rf0AgMU2M3Z/6uIpraULJmW81+3HqXAMDZEYGsIxNISjw5aTqfC3SypwT93Ebh0zWRTITNB0/4i/6+vDXfuOoSGidkarthjx/bpqbCt25zyA6TfeYyArCoLJFJx6YdbkYTLmWiAzUGM4huczNTUH/KFBz5WaRNy5sByfrygadfh+rvMfTaXRmglqmiNxtEQHPxw6AV+tKsZXq4qnpW8AMP5j8IV3DuCV0yMP93XohOxJvz/I6a/VSKYVfNAbwM6uXrzp7c3eoHM4C4withQ4p2xCzJGcCIbx7x+fQLPC46A/NKbRfQWiDguMBoTkFIKyGqgklbGdhrYUOPG/G1ZONtmD3P2X43j0lDoT+vfqqvCdc9wc9GwT/R5c99b+7GCPRy+uw2dLC8f1vhMVklNoDMfQEImqQU44hlNhdX1gHzIOgF0nwKkXkKcTkKcXkKfTwakX4NTr4Mg85xC0SPR0Y2VVBWzTOMhkNBTITNBM/IjHU2n8vvk0rDotPl3smdKq4amQ6xNZrp0v+W+NxvF8uw/14SjW5NuxvbRgTEOpz5f8T8Z4j0H/yKl9fQEc6AuNqVYpXy+gymLC4UB4xCY2o4bHWnceNnmc2FzgRI1l+vqrDDQw/xzHoSOWwAF/CB/5wzjQF8JBfyh7J+fJMmp4vLrlIiwd44y3Y9USiWPVy+9AYWoN0kfXrhvT/FtphaFHSqInISHZ48OFVZVj/h683xPAVW9+CACoMhux98pLoeFze3HHGIM3kURIVi827YIwpjTNht+BmetRScbNoNXg5knMLkrIWJSaDPjGFM4ATUZm0wn49oB76HTGEzjYF8JBfxgH/SEc6AsOqdXokWT0SIEhr3WB3YJNBU5s8jixJt8+7aP7zoXjOBSbDCg2GbA1MzqKMYbWaAIH/WpQc7AvhAP+EEJyChZBC5ughV2nhU0QYNdpYc0s7YIAm04Lu06ATdDCphNQazGOu9lnLMrMBmwr9uC5Ni+6pSR+19iBTxbmw5tIwpuQ4I1L8CWS6Bqw7k1I6JaSg0bzOY+0o8ZqQq3VhBqLCbVWI2otZhQbxSEBwcAZq+9aXJ7zIAZQP78Cgx4FOe6rOBEUyBBCSI4UGkQULhBxVaaTJ2MMHXEpE9ycOfn3JWW4RV22xmWjJw/uKZ67ZzpwHIcyswFlZgM+XXImuFEYZsXJu99fLyzDc5kbut594ATuPjD+m6/2JmX09gSyd7fvJ2p4VJmN2QDHoROys7kXG0XcUDYzTUrnMwpkCCFkluA4DsVGEcVGMTsBIGMMgWQKdp32vOhbxnEcNLMsGyvybFjrcmSHlI9Gw3Fwizp4RB3coh4OnRaNfUG0yulhmwoTaUWdITw4tIP9XYvKp3RG7PmKAhlCCJnFOI6DQz89nZXJGT9dtRh/e+A4kmkFHoMeblGHAlEPt6iHx3Bm3akXBo0uGthHJJJKoz4cw8lwFPWhKOrDUZwMRdEYiQ+5iWyhQY8vVEzvrLvzBQUyhBBC5r0aqwl/3LhqUq9h1QlY5bQNmd8rmVbQFI2hPhRDfTiKHimJL5SPPiqQjB0FMoQQQsg00ml4LLSaZ3wG9vmCGucIIYQQMmdRIEMIIYSQOYsCGUIIIYTMWRTIEEIIIWTOokCGEEIIIXMWBTKEEEIImbMokCGEEELInEXzyBBCzhvx9jhOP9OJzh1eKEkF+Zc54bnSDccaO3iBrtsIOR9RIDODJJ8EyStBaxMg2LTQWrTgZtGN06YDYwzRUzH49/rRt8ePaGMMpkojbBdaYV1uhbXOAq2JiiGZODkoo2uHFx3/exp97w6+V07kWATNv2mB1qaF6/J8eK50w7UlH4KNpvwn5HxBZ5BpxhhD3zt9aP5tK7yv+ABlwJMcoLVoIdi0EOwCtDYtBGtm2R/s2AQYikVYl1lhKBFn/U3jlJSC8OEw+jKBi//9AJLdg2+kFvgwgI6nTqsbPGCuNcO23ArbhVbYllthrbNCY5zbU3crSQWxphgip6KI1kezy1hzHDqXDu5PueC5yg37Ktt5H8xOByWpoPv1HnQ8fRq+P3dDkZQhf8NpOLC0en+bVDCFzme70PlsFzgth7xLHHBf6YL7CjdMFcaZTj4hZApRIDNN0rE0Op45jebftiJybOhdTwEADEiFUkiFUoi3Jc75moJdC2udFdYLLLAus8J6gRWmaiN4be6qzJWEgr53+xB4P4i+vX74PwggHU2P4wWAyPEIIscj6Pj9gOBm4cDgxgbbhVbwutnXNJAKpOHv9CPWGEekPoroqSgi9VHEm+PZk+jZkj1JRI5F0PhQkxrUXOGC50o38jc6cxrAMWX49AIAhom1GGNgbJT/mWKMMfg/COD0053o/FMXZL885G9MVUYsuKEIRdsLIdgFdL/RA+8rPnS/3oNUKKW+Toqhd3cfenf34dj3T8C80AT3FW54rnLBvsoObrbdmpkQMiqOzeQv0Xlk4B1P+QG3YY+3xdHy761o+1075EBq0P/oC/RwbclHOpqGHJQhB1NIBWXIoRTkgAwmj/+j4EUeliUWWC+wwLbMCusyCyxLLNAYJn9CZIwhFUpB8qpNYgmvBMmbzG7HWmIIHgyNmm6tVQvHxQ7kXWxH3iUOWBZbEDkVReijEIIHgwh+FEL4aAQsNXreNUYNHGvsyFubB+e6PNiWWyfd5yGdSCP0cRiB/QEE/hKE1ClBkRlYSgFLscy6uj1kPc2gyApYcnyfmd6jg+RLAsP8Gy/y2T4d7k+5oPfoJ5W/gRhjkAMy4m0JJNoTiLfHEe9IIN4Wz2wnIPmkYdM1Kk0m6MyUPWudGmQL9sk33TDGkOxOItYcU2tfnulEvCU+5O90Lh2KPlOAouuLYFtuHbbWUpEV+Pf64X2lG75XfIg1D30dAAAPCHYBujwddE4BgkOAzqmDLk+AkNmnc+ggONW/0do1aO9qR0lxCXiOB1MYmAKgf8mGX/JaDpyWA6/jwQkceEFdchpu1FrXdCKNZE8SUncSyZ4kkt1JSD0D16XsuhxKQV+gh6HYAEOJCGOJAYYSdd1QYoC+UD/pi6CRfgdziSkM8dY4Iiej0Bg1sC6zTFtTImMMUq+E0/7TKK8qnzXHYCbNhjJAgcwEDfzwOI5D33t+NP+2Bd6Xzmo+AuC4yI6yW0tRcK1nxJMvYwxKXDkT4IRkyIEUZL+MSH0UoY9DCH0cguRNDvv/A3EaDoJDAC/y0IgaaAw8eFEDjciDN6hLjagBb+DVfaIGvJ6H3CcPDlp8EpT40Cr70eg9euRd4oBjQOByrivcdCKN8NFINrAJHgwhciwyYo0GAGhMGuRd7EDeWgeca/NgXW4d9UeZKQzRhhgC+wMI/iWIwP4gQkfCEwoez0Vj1MBUZYSp2gRTjQnmapO6XmWE1qyF1C3B9+ce+F7xoeetXqRjw9dg2VfZ4L7KDc+VLohFItJxBUoijXRCQTqehpJQkE6kocTV5aDnYykkOqUzgUpHYnw1ZZNkKBFhrbPCsuxMgC0WD20aTUsK4q1xxJpj6qMljnhzHNHmGOIt8RGPjcaogedqNxbcUAjnRue4TsiMMUROROF71QffK93wfxgYfwA3XTiAFzhwAj84yOEB2S8jFZm6z5DTcBCL9Jng5kyAIy4QYVggQlwgnrP/2lhPYnJIRrxdDZzjbQkoSQWiRw+xUA99gR5igTju2kjGGBKnEwgfU2t0+5eRk9Eh5cZYboD1ArUW23ahutTn68b1fnIohcjxMMJHIwgfDSN8TF3KgRSgAYylBvV7XmmEsVL9vpuqTDAsEGdFLV86kVaDXa8EyZfM/sZLPglJbxKST/3dV5IK9C4d9C499G499B4ddC499O7MPo8OercegkMAx3MUyMxliqKg6UQThH06tPxbG8KHw4Oe5wQORf+nEGW3lMK+0jbCq4yf5JUQ/DiE0KFwNriJNY1wdTkDhBIB7nUuOC/Ng+MSB4zlhinpx5OOpxE+EkbwoxD8HwTQ+04fpC5pxL/XmDTIu8QB57o85K3Ng2GBiOBHIbW2ZX8Qgb8EkQqmRvz/QfpPJlpevWruXxe4zJX0mfW0IQ1nnRPmmkzQUmOCWCSOud9LOp5Gz9u98L3SDd+rvjEFqlOOUwNQsVA/bKA98i8EQ7w3jmSLPGrQ2U9r08K6zAJDkQHxjjhiTXEkOhNjDyJ4IH+jEwuuL4Lnaje0lqlpGZe6JXS/1gPf692It8aR7JMh98lIhcdYXmYZTstBl6+D1qxFonNyAaxg16qBTbEBYpGYWT8T6Og8OrSebkWhsRBShzQoWIm3x7Pr/c16o9HatBAL9NAXiBAL9Zl1NcgRC/VIRdIIHw+rQcvxKCLHI5P6jMQiUa3JvtCabaoXi/RgKfWiJ3w0jPCRMwHLWJr/h8PreRjLDTBVmmCsMqoBTqUJxgojxEL9lPaRS/YlBwVascZYNmAZ8+/fGPWXM71bh7Q5jeqbqrDgs0VT+h5jTgsFMuMX71Cbj1oeb0U6OLjGQu/RofTmEpR+uWRKmwZGI4dkhA+HEfxYDW7CR9SrhIFX6+OteRDsWug9+uxDLDizrkbpeujcAjr6OmYkEmeMIdYYQ++7feh9pw997/gheUcObMbCXGuCbaUN9lU22FfZYa4xgdfzY756muorEaYwBA8Es80f4aMj9K0aJ97Aw7Agc8VdLEIsNqgno8xSXyhCox9/+vvzX+wpRuxkDKHDYYQ+DiN0OITQx+FJnUB5HQdDiQHGciOM5QaYF5rhucYDsWBmvlOA2qE42SdD9ieR7JWR7EtC7pOR7E0i6Zch98qQeiXEo3EYDAa13PAcOB5qMM8B4AGO59STFQ+AU59jaQYlmWnCTCpgstpUqcgMLLNU5Mz+pAKWZhBsAnQuHfT5OnXp0kGXrz70Ln1mqYPWps1eTAxsUlSDiviQ9eH6Go0Zp160jbeJddpwgLHCCMsiM8wLzZCDMkKHQggdCY+pdlnIE5COpKCMMT9ioR6mGhMiXVGk2mWkY+OrweZFHsYyA4wVRvVRblRrdMrVWrKRavDTiTQiJ6ODaobCRyKT/k3U5evA63gke6QxH4N+tT+oQfWdlZN6/4miQGYCGh5qxIl/rB+0z7bShvLbSlG4rWBWdkplaYZ0XG12UM5uhoinoUgKBLuQCVR00IjnrubNZZUiY+pVU987fdngJukbuTZD59KpActKNWixrbRCsE6u3Xy68x9ricH3Sjd63u6FIilqc6Ax01w4oJmQzzQfakSN2pxo0EBj0EDv0cNQLELIE6ZltNto+WcKQ6x5YHATRuhQaFCtms4pwFhuhKHcAGOZ+uPdH7iIBbOjOv5cZkO1+mSlwim1v1RrJrjpSCDRkUDitNp3KnE6cc4+bCPhBA6G/hqdTNOVodgAjcirNQVdEhKdCXWZWR9rc7ahRIR5sQWWhSZYFltgXmSGucY0bBOVklIQPRVD6FAIwUMhNbg5FB5zjY7WrFHfa4kZlsVmWJdaYF5shs6hy5aB0tJSyD4Z0cYYog1RxBpjiDZk1pvjw46sG/XYaTi1b1MmwNE5BUTqowgfVWtaxlILCqjNsP3NQepDN/iiNLOty9dlAyfGGFLBVKbpSW12krLNUpLaRJV5LtmdBEszLPvlUpR8vnhceZwqFMhMQLIviTeX7YIiKyi8rgAVt5bBvtqe62TNuNn0I84YQ7Q+qtbWvOtHsjcJ6zIL7KvssK+yDds/Y7JmU/5zYSL5l7rVzqjiAgME69wfNDkfygBTmNqnoj2O+Gk1yIm3Z5YdcSQCCVgqLDCWGLP9bNTaPwP0Hv24AtL+AQaJzsEBjtSZAK/nYV5khmWhWtsy2aZFpjDEWuJqcPOR2kwfPhqBYNPCssQCy2IzLEvVwROjTX0xljLA0mp/nsipTIDTmOkT1qj2CxtvkDMcwT4g3UvUoMu80AytVTut03akU2k0HmpEWXUZdNbx9TuaKhTITFDni10Iu8KoXl01ph+wVDqFw12H0R3pgYbXQMtrMksteE4DrUYLDcdDy2uh4TXQZJZaXgOHwQGz3jwDuRqf+fAjPlAylURboB3Nfc1o8begqbcJp3tOw2gygoEhzdJQFAVppiCtpMGYou7LbCtMgcIYXOZ8LC1YirqCOiwtWAKX2ZXrrE1IOp1Gc0szKsor5sXnP5z59h0423zPPzD5Y8AUhkRnArGmOGJNMUSbYog1nQl0zu7gzes4mBeaYemvIVqirusL9TmZZ2w2lIG5f0mUI56r3EgMMxS0XyqdwkenD+Hdpnexu/Ed7Gneg5AUmvD7FVgKUJVfiSpnFSqdlYPWjTqa0GsqMMbgi/jQ3NeSDVYGLjuCp6GwyV85nc1tdmNpwRIsLViaeSzBIvciiII45e91NsYYwlIY3rAX3rAXwUQQwUQIwXgQoUQIwcTgZeCs/YqiYHXpKmyu2YwtNVuwsngFNPzMzIWTVtLoi/XBF/HBF+lGd6QbvogP3Zl1La9FdX41alw1qHHVoNxRBq2GfvLI7MLxnNqHbYEBznV5g55jjCHZKyPWFEOyNwlThRHGqtzOHTYbUY3MBJ0dhabSKRw8/dGgwCUshc/9QlOgyFqUDWyq8qtQ5axEsb0YHosH+aZ8CJrJ9QVJK2l0hjrR3NeM5r5mNPU1o7mvBR3BDkhSAmajBTqNDoJGC51GB61GgMBrodPqoOWF7H5BI0DLa8HAspOpZdfBoDBl0L7+bUEjoMhWhFJ7CUocJSi2lSDP6JjQ1QdjDN6wFw29DWjoaUBDbyNO9ZxCQ08jmvuaEZNjkzpWU0XDa1DlrEJdwVIsKVgCt9kNURBhEESIWgNEQQ9Ra4BBEGEQDNBr9TAIBvVvtAZoeA388QC84S50hrrQFe6CN+xFV0hddoa7sutTmWe7wY5N1ZdhS81mbK7ZjGL7xNrMGWNoD7bjpK8eJ7pPoNXfiu5ID7r7g5ZoN3qjveMKLAWNgEpnJWr6g5v8atS4alHjqkGe0THs/yTkBPpifeiN9aIv1oe+mF/djp7ZjkfjKMwvgEVvgUVvgVlvzqybYdabYc7s79826UzqCSqdhJSWIKdkSGkJUioJOZ2ElBqwntlOpWVoeC30Wj30Wh0EjQ56rQ56jf7MulYPQSOof6PRz8jV8Wy4Gp9JaSWNFn8rTnafxEnfSZzoPoGm3mbwaR4V7nJ4rB4UWArgsbjh6V+aPTNyUTIeiqIgKIXgj/nVR/zMMplOwi7aYDPYYBNtsBvssBnUpUVnGfI5z4YyQIHMBCXlJF7+yytojDfinaZ3sbdl76iBi8vswvqKdah112abGtJKGikllVmmobCB2ymkFQUpRUZnqAsNvQ3ojnRPKK1OkxMeswduswtuiwceixtus/rwWNT9TpMTPdGeAcFKS3a91d+KZDoHw4JHYdKZUGIvQbG9OBvglNhLUGIvRom9BKJWRENv45mApachs96ISHL8o4HyjHkozytHuaNMXeaVo9ReAimYRPGCYmg1Gmg4DTiOh4bXgOc48Nl1HhpOXXIchxZ/K450HcaRrqM40nUEh7uOoDfaO6XHh+O4aZl1l+M42PRWWEUrrKINoXgIrcHWEf9+oXshNldvwpbaLVhXsXZI7aGcltHY24gTvhM4kTk5nOw+iZPd9Ygmo1Oe/pE4TU7U5NfAIIiZAKUPvdG+aQlsp+uzOZuGV8vkmSUPvn97wD4NpwGf2cdzPLjMNM79FwocOPRfM5z9HMAhmUxCp9Ohfxx9f95YdhuDtgFAy2sywZ0VFtECq94Ci2jJBoNWsT8gtGa3dVr9cBNMj0rQCBC1IvRaPUStOOYaubgcR0NPA050n8QJ3wmc7K7HSd8JnOppQCI1/mHYdtEGj7UAHvOZAMdhdMAu2mE3DH44MsuxpDUhJxCIB+CP+xGIBzLrAfhjQ7f9cTUI98f8CCaCE6pd7v/+DwxurKIVmpQGX1zzBVyx+Ipxv+ZUoEBmAp468DS+9dy3Rz0hus1urKtch/WV67CuYi1qXbWTbr8MJULqyfmsE3NjX+OUnwjnG0EjZAIVNUipyCtDWZ4atJQ5ymAVrUP+Z6quRPqbtA53HsFR75HM8iiOeY9PawBpE60osBaiwOI58+NqcMAqWmETbbCKVtgNtkHbZp05m9f+/HNWHm81vIU369/EW6feQiARHPb9dBodLi2/BHWFdWjua8bJ7no09jYipYxvfgu9Vg+32YV8k0sNyC0uuEwuuMzqtrp0IS4nUN9Tj/ruzKOnHqd6GiClJjdElcxdGl4zKLDRa/UQBRGiVg+9VoSg0aIt0I4Wf8uM3n5jOGadGQ7jmQDHKJgQkkJnApSYf0JB1XT5xyvvxV0b78rJe1MgMwHvNr2Lq357zaB9HosH6yrOBC41rpoZ7XjljwfQ2KPWQDT2NqrNBhEvvGEfuiM+eMO+CRV6k86E8rwylA2oiVBP9OVYYF2AjvYOFCwoQJopSKVlJNNJyErqzHpahpxOQU4nISvqOgcOPM9nr/TUJafuz9Ra9O8DOEipBNqDHWjzt6Et0P9oR3ugfVx50vAalNpLUZVfher8qmxTXHV+FUrsJePu2zHdVaqpdAoNvQ045j2OUCKIuJxAIpVAXI5DSkmIy3EkZHW7f39CTiCRkiClJDiMDhRY+qu6PSjsD1qsBSiweGAQDJNK33D5T6VT+EvHAbxx8g28eWonPmz9cNxXfjzHo8xRhoXuWix0L0StqwZVziq4LR64zPmw6oe/DcFYpJU02gJtqO8+dVaQcwqdoU4AgJbXIs+Yl3k4kGfMg9PkHLTPaVS3baIN7R0dsDotiMoxhKUQIlIEYSmCSOYRksKISOHsdliKQMNroNMI0Gn10GWag3QaPXRaIdNclNmXeV7QCEilU5DSZ5qf5LR8VjOUhGRKRnJAM1VaSSPN0kgrSmaZhjLMvnSmRlhhQ2tVhtawDN5WFCX7+Q9XmzPctpRW0z+XaHktKp2Varl0LUStuxa1rlpU5FXgVFM9BJsOvqgPvrAXXZk+Z96z1nPZdM1xHGyiDQ6DAw6j46ylPbut0+jUvnLxIIKJIALxAILxIPzxwJntzDKtnOmI/NB1P8PNa27OTd4okBm/hJzART+/GIsdi3BF3aewvmo9qvOrZ/WdqRljCEkh+MLd8GUCHF/EB1/YB2/Ei55oD5xG55BgJd+UP6lhh9OJMYbuSDfaAu2Z4KY1ux5LxlHprECVsxJV+dWozq9CmaMMOu3UDQ/Mdf5zbSz5D8QD2NWwC2/W78QbJ99Aa6At+5yoFVHjUvupLHSpQctCdy2qnFU56VMQkSJIs/S4AiUqAxPPv5SSsoFeOBFCWAojlAgjLGUeiXA2CAwlQkiOM/BhjCGlyEjIEqRUAlI6iYScgJSSkEgNWMrqsr9m0Kwzo8ZVMyiQXuhaiApnxbD9Dcd6DBhjiCQj6Ap50R3xZZuD/JkaFvURHLB+5jGwZtYoGM80QxkHNkk5hl3PM+bBYXTAJlqntCM+YwzRZBT+mB/HGo9hRe0KuCy5GYE5JwIZv9+Pe++9F/v27YPH48E999yDiy66KKdpmu8/YAAdA8r/+PLPGMOpnlNoD3Zk+xjN1Ain6UJl4PzJv1rjJcEoGMd1UTrdx4AxhrgcRywZg0W0QK+dudmtx2I2lIE5MRbxwQcfhMvlwhtvvIG9e/finnvuwXPPPQerdWi/BULI7MRxXHYoNCGzjVajnZXD8zmOg1FnpGk2RjH7PrWzxGIx7Nq1C88//zxEUcRll12GJ554Am+//TauvfbaIX+fTCaRTA7uIKnVajO96qeOoiiDlvPRfD8GlP/5nX+AjsF8zz9Ax2C68z+WWp5ZH8i0trbCbDYjPz8/u6+mpgaNjY3D/v1jjz2GRx99dNC+66+/HjfccMO0pK+tre3cf3Sem+/HgPI/v/MP0DGY7/kH6BhMV/4rKirO+TezPpCJx+MwmUyD9plMJkQiww99vvnmm/HFL35x0L7pqpFpa2tDSUnJnG8bnqj5fgwo//M7/wAdg/mef4COwWzI/6wPZAwGA6LRwRNjRaNRGAzDDx3V6XRTHrSMhuf5eVl4B5rvx4DyP7/zD9AxmO/5B+gY5DL/s/6ol5aWIhKJoKenJ7uvvr4elZWVOUwVIYQQQmaDWR/IGI1GbNiwAY888ggSiQR27dqFhoYGbNiwIddJI4QQQkiOzfpABgDuueceeL1ebNmyBQ899BD+6Z/+iYZeE0IIIWT295EBAIfDgV/84he5TgYhhBBCZpk5USNDCCGEEDIcCmQIIYQQMmdRIEMIIYSQOYsCGUIIIYTMWRTIEEIIIWTOokCGEEIIIXMWxxhjuU4EIYQQQshEUI0MIYQQQuYsCmQIIYQQMmdRIEMIIYSQOYsCGUIIIYTMWRTIEEIIIWTOokCGEEIIIXMWBTKEEEIImbMokCGEEELInEWBDCGEEELmLApkCCGEEDJnUSAzAX6/H3feeSfWrl2Lz3zmM/jggw9ynaQZd+utt+LSSy/F+vXrsX79etxxxx25TtK0euSRR3D99dfjE5/4BF599dVBzz3++OO4/PLLsXnzZjz00EM4H+/6MVL+n3/+eaxZsyZbDtavX4+urq4cpnR6JJNJ/MM//AOuvvpqbNy4EbfeeitOnTqVfX4+lIHRjsF8KQf33XcfrrjiCmzcuBE33ngjdu/enX1uPpQBYORjkNMywMi43X333exHP/oRi8fjbOfOnWzTpk0sGAzmOlkz6pZbbmGvvPJKrpMxY1588UW2Z88e9pWvfGVQvnfv3s2uueYa1tbWxrq7u9n27dvZc889l8OUTo+R8r9jxw72zW9+M4cpmxmxWIw9+uijrKuri6VSKfa73/2Obdu2jTE2f8rAaMdgvpSDpqYmJkkSY4yxw4cPs40bN7JgMDhvygBjIx+DXJYBqpEZp1gshl27duH222+HKIq47LLLUFVVhbfffjvXSSPT6Oqrr8bFF18MnU43aP9LL72E7du3o7i4GPn5+fjSl76El19+OUepnD4j5X++MBgM+Ku/+it4PB5oNBrceOONOH36NAKBwLwpA6Mdg/mivLw8+x3gOA7JZBI9PT3zpgwAIx+DXKJAZpxaW1thNpuRn5+f3VdTU4PGxsYcpio3fvzjH+Pyyy/H17/+ddTX1+c6OTnR1NSE6urq7HZtbe28KwsfffQRtmzZguuvvx7PPPNMrpMzIw4dOoS8vDzY7fZ5WwYGHgNg/pSDBx54AGvXrsWXv/xlXHLJJaisrJx3ZWC4YwDkrgxoZ+ydzhPxeBwmk2nQPpPJhEgkkqMU5cYdd9yByspK8DyPp556CnfeeSeeeeYZGI3GXCdtRsViMZjN5uy2yWRCLBbLYYpm1sqVK/H73/8eBQUFOHr0KL7zne/A6XRi06ZNuU7atIlEIrj//vvx9a9/HcD8LANnH4P5VA7uuecefPe738W+ffuyfYTmWxkY7hjksgxQjcw4GQwGRKPRQfui0SgMBkOOUpQbdXV1MBqNEEURX/nKV2AwGHDkyJFcJ2vGGY3GQUFsNBqdV8HcggULUFRUBJ7nUVdXh8997nPYuXNnrpM1bSRJwt/8zd9g3bp1+PSnPw1g/pWB4Y7BfCsHGo0Ga9aswYcffog9e/bMuzIADD0GuSwDFMiMU2lpKSKRyKA2wfr6+mzV2nzF8/OzKFVUVAwavXLy5Ml5XRY4jst1EqZNKpXC9773PbhcLtx1113Z/fOpDIx0DM52PpeDgRRFQXt7+7wqA2frPwZnm8kyMD/PPpNgNBqxYcMGPPLII0gkEti1axcaGhqwYcOGXCdtxoTDYezduxfJZBKyLOOJJ55AKBTC4sWLc520aZNKpSBJEhhj2XVFUXD11Vfj2WefRUdHB3p6evDEE0/gqquuynVyp9xI+X/vvffg9/sBAMePH8dTTz2F9evX5zi10+O+++6DJEm49957B/1Iz5cyAIx8DOZDOYjFYnj55ZcRi8WQSqXwxhtvYP/+/VixYsW8KQOjHYNclgGOsfN0sPs08vv9+OEPf4j9+/fD4/Hg7rvvxpo1a3KdrBnj9/txxx13oLm5GYIgoLa2FnfddRcWLVqU66RNm3vvvRcvvPDCoH0PP/wwVq9ejcceewz//d//DUVRcN111+GOO+44765IR8r/7t278dJLLyGRSMDlcuGGG27A5z73uRylcvp0dnZi69at0Ov1g2off/GLX2DFihXzogyMdgzeeuut874cxONxfOtb38Lx48fBGENJSQm+9rWvZfuAzIcyMNox+NnPfpazMkCBDCGEEELmLGpaIoQQQsicRYEMIYQQQuYsCmQIIYQQMmdRIEMIIYSQOYsCGUIIIYTMWRTIEEIIIWTOokCGEEIIIXMWBTKEEEIImbMokCGEzCr79u3D6tWrsXr1apw+fTrXySGEzHIUyBBCcubee+/F6tWrceutt2b3mc1m1NXVoa6uDjqdLoepI4TMBdpcJ4AQQgZatGgRHn/88VwngxAyR9C9lgghObF161Z0dnYO2f/www/j9ttvBwDs2LEDRUVF2ZtWFhYW4rbbbsNvfvMbRCIRbNu2Dd/4xjfwq1/9Cjt27IDFYsFNN92E7du3Z1+vu7sbv/71r7Fnzx4EAgF4PB5s3boVN910E7RaupYjZK6jbzEhJCcWLlyIeDyOQCAAk8mEiooKAMDx48dH/J+enh488MADyM/PRzQaxZNPPom9e/fC5/PBbDajq6sL//zP/4xVq1ahoqICgUAAN910E7xeb/Y9Ghsb8fDDD6OjowM//OEPZyq7hJBpQn1kCCE58ZOf/ATr1q0DoAY1jz/+OB5//HEsWrRoxP+RZRm//OUv8Yc//AEejwcA0NbWhieffBLPPPMM9Ho9FEXB/v37AQBPP/00vF4vnE4nnnvuOTz55JN48MEHAQAvvPAC2trapjmXhJDpRjUyhJA5w2q1Yvny5QCAgoICeL1eVFVVoaioCADgcDjQ1dWFvr4+AMCRI0cAAL29vfjkJz856LUYYzh8+DBKSkpmLgOEkClHgQwhZM4wmUzZdY1GM2Qfx3EA1CBl4HJg09VAoihOW1oJITODAhlCSM70BxKJRGJaXn/p0qV47733oNFocP/992drbqLRKHbu3IlNmzZNy/sSQmYOBTKEkJwpLy8HABw9ehQ33ngjDAYDbrnllil7/RtuuAF/+tOf4PP58NnPfhYVFRWIRqPwer1IpVK49tprp+y9CCG5QZ19CSE5s23bNmzevBlmsxkNDQ04fPgwFEWZstd3OBx47LHHsHXrVthsNjQ0NECSJKxYsQLf/va3p+x9CCG5Q/PIEEIIIWTOohoZQgghhMxZFMgQQgghZM6iQIYQQgghcxYFMoQQQgiZsyiQIYQQQsicRYEMIYQQQuYsCmQIIYQQMmdRIEMIIYSQOYsCGUIIIYTMWRTIEEIIIWTOokCGEEIIIXPW/wepr8uW+hLhPQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -106,20 +135,28 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "5b1a6bd3-d780-486f-9611-25205588fd7e", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEHCAYAAACp9y31AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABwhklEQVR4nO29ebwU9ZX3/67e7n7hsl32RQU3lIsUiCCCKBoVcUMTjcmISYyJZJ4sr8w882TyS2Z+eeb5ZZnJNpM4JjP6JBpjNHE3RqPBDaIWigqCgnBZLnCBe7l771W/P6qruqr727fX6rt0fV4vXlRXV3WfW1116tTnnPM5kqZpuHDhwoWLyoFnqA1w4cKFCxflhev4Xbhw4aLC4Dp+Fy5cuKgwuI7fhQsXLioMruN34cKFiwqD6/hduHDhosLgy7aBLMtjgOeBs4CliqJsl2X5LuBvEpt8V1GU38uyPBn4FVAH/FxRlPtlWfYCvwDmAlsVRfly4jP/B3AT0AHcqihKT4n/LhcuXLhwkQG5RPwDwFXAI5Z1XwSWAauA/5VY9/fA94CVwF2yLFcDa4HDiqKsAOpkWb5AluUJwDrgQuAh4K4cbNAK/Xf06NGC9y33v5Fk60izdyTZOtLsHUm2jjR7i7Q1I7I6fkVRooqiHE9ZvReoARqArsS6JcCLiqLEAAWYj35zeC7x/rPAcmAx8JKiKJplnWOIx+NOfnxJMZJshZFl70iyFUaWvSPJVhhZ9jpla1aqJwOeBnYCXuAziXV+RVHUxHI3MA5oAnpyWJcGWZbvAO4A2LhxI2vWrCnI0Gg0SltbW0H7lhsjyVYYWfaOJFthZNk7kmyFkWVvMbZOmzYt43t5O35ZlhuBL6Dz9gHgRVmW/whEZVn2JJz/GKAT/WmgMbGrdd1pKevSoCjKPcA9iZeDPrYMhra2tkEPwHDCSLIVRpa9I8lWGFn2jiRbYWTZ65SthVT1qEAQCAH96M5fAt4EVsmy7AMWATuAzcClif0uB15LbHdRyjoXLly4cFEm5OT4ZVl+BrgMvUJnPfAHYAu6Y/+PRJT/XeAfgJeBuxVFCQJPATNlWX4FCCmKsiWRL3haluXXgFuAn5X4b8oIV5DOhQsXLkAaIc4wJyMPHjzIzp07CQaDhEIhgsEgvb29xGIxgsEgsixz2WWXOW1rwRhJj6AwsuwdSbbCyLJ3JNkKI8veIm2VMr1RaHJ3WKK9vZ0tW7ZkfD8YDJbRGhcuXLgYnhhVnbs1NTWDvh8KhcpkiQsXLlwMX4yqiL+6utpcnhRo52MT/0hndBxPHVsHuBG/CxcuXMAoc/zWiN8jxZlT20pNOOns3YjfRbnxT//0T2X9vm9961tp6yRJ4qtf/Sr/+q//CsAPfvAD+vr6+Pa3v80HH3zA5z//ebq6ugiHw6xYsYJ77rmHhQsXcu+999LS0kIsFmPs2LHcfffd3HrrrQAsWrSIX/ziF5x33nk52XXbbbexdu1a1q9fn9P2ra2trF27lu3bt+f4lydx9913U1tby6c//Wnuu+8+LrvsMqZOnZr355QTiqLwq1/9ip/85Cds2rSJQCDAsmXLHPu+UUX1WCP+YFy/CVR7ks7ejfhdVCKqqqr4wx/+wIkTJ9Le+9u//Vu+8pWvsG3bNnbu3MmXvvQlAJYvX87mzZsBeOedd5g3b575ur+/n48++ogFCxaU74/IA3feeSef/vSnAbjvvvs4fPhwzvu2trayatUqhyzLDFmW+clPfgLApk2bzGPtFEaV47dG/CFVX67xJJ296/hdVCJ8Ph933HEHP/zhD9PeO3LkCNOnTzdfn3POOQAsW7bMdD6bN2/mzjvvZNu2bQC88cYbLFq0CK/Xm5cdL7/8MsuWLeOUU07hkUd06S9N0/j617/O/PnzOeecc3jooYfy+sxf/epXnHvuuSxYsIBPfepTAHz729/mBz/4AY888giKovDJT36SlpYWnn76aa699lpz3+eff57rrrsup++57bbb+Nu//duc7d+0aROrVq1i/fr1nHHGGXzyk580y8nffPNNli1bxoIFC1iyZAm9vb1s2rSJtWvX0trayt13380Pf/hDWlpaeP3115kzZw7RaBSAnp4e2+tCMaocvzXiD6sBVE2iyhtBQte7iEajI0qnw4WLUuGuu+7igQceoLu727b+K1/5CqtXr+aKK67ghz/8IV1dXYA94t+8eTMXXXQRVVVV9Pb2snnz5oJoiCNHjvDqq6/y1FNP8T//5/8E4A9/+APbtm3jnXfe4c9//jNf//rXOXLkSE6ft2PHDr7zne/w4osv8s477/DjH//Y9v769euRZZkHHniAbdu2ceWVV7Jr1y46OjoAuPfee7n99tsds//tt9/mRz/6Ee+//z579+7ltddeIxKJ8PGPf5wf//jH5j7WgHX27Nnceeed5lPY+eefz6pVq3j66acB+O1vf8v111+P3+/P2W4RRpXjlyTJ4vw9hFR92Ur3uDy/i0pEY2Mjn/70p006wcCGDRvYuXMnN954I5s2bWLp0qWEw2FmzZpFJBLh6NGj7Nq1i9NPP53Fixfz+uuvs3nzZpYvz19b8dprr8Xj8XDWWWfR3t4OwKuvvsrNN9+M1+ulubmZlStX8uabb+b0eS+++CI33ngjEyZMAGDcOKHslwlJkvjUpz7FH/7wB7q6utiyZQtXXHEFANdddx0tLS1ceeWVKIpCS0sLLS0t3HvvvQXbv2TJEqZPn47H46GlpYXW1lY++OADpkyZwuLFiwH9d/H5Bk+1fvaznzXtuPfee9mwYUNOx2cwjKrkLuhRv+HcQ/Fqar1BarwhgmodoNM9dXV1Q2miCxdDgi9/+cucd955aY5j6tSp3H777dx+++3Mnz+f7du3s2jRIpYtW8bDDz/MlClTkCSJpUuX8tprr/HGG29wwQUXpH3+hg0bePvtt5k6dSrPPPNM2vtVVVXm8lA1jm7YsIGPfexjNDc3c+ONN5pO99FHHwV0jv+2225j06ZNafvma791e6/XSywWK8jm5cuX09rayqZNm4jH48yfP7+gz7FiVEX8YOf5g6qR4HUre1y4GDduHDfddBP/9V//Za579tlnTb746NGjdHR0mJ2iy5Yt40c/+pHp5C+44AJ+9atfMXnyZMaMGZP2+ffeey/btm0TOv1MWLFiBQ899BDxeJzjx4/z8ssvs2TJEts2bW1tXHLJJWn7rl69mocfftikbjo70/UeGxoa6O3tNV9PnTqV5uZmvvOd75Qkcs7FfitOP/10jhw5Yj4VGMoCg9kM8OlPf5pbbrmlJDbDKHT8Vp4/FNeXa7xugteFC4Cvfe1rtuqe5557jvnz57NgwQIuv/xyvv/97zN58mRAjzT37t1rOv4pU6YQj8dLWmZ43XXXmcnZ1atX873vfc/8fgNHjhwR0iFnn3023/jGN1i5ciULFizgq1/9ato2t912G3feeSctLS3mtX/dddcxY8YMzjzzzLLYb0UgEOChhx7iS1/6EgsWLGDNmjVpwejVV1/No48+aiZ3AT75yU9y8uRJbr755qJthlGm1QPw8MMP8/777wNww+SHmd+wg98fuYHtfXq1wvXXX29WLgw3jCQNERhZ9o4kW2Fk2eu0rf/+7//OzJkzWbduXUk+77bbbmPFihV85jOfyb7xEMM4to888giPP/44v/71r/PZvTK0eiA14k9QPW7E78LFiMXGjRtL9lmLFi3C7/fzn//5nyX7TKfxpS99iT/+8Y95UWjZMOocv53jT1A9bhOXCxcugK1bt9LW1mZLvA53/PSnPy35Z45yjj894neTuy5cuKh0jDrHny3idx2/CxcuKh2jzvHbIn7V5fhduHDhIhWjzvHbIv6427nrwoULF6kYdY5fFPG7dfwuKhmSJPG1r33NfP2DH/yAb3/72wB88MEHrFq1ipaWFs4880zuuOMOABYuXGiKssViMerr67n//vvNz1i0aBFvvfVWzjbcdtttprBZLmhtbS1Jh6oLMUad4xdF/DVu566LCkalyTK7yI5R5/htmvwmx++Wc7qoXIxmWWYXhWHU1fFbHX9ErdKlmT0RPMRR8ZrSzPmetC5cFI3fZGykTENefbC3ZG9sv+uuuzj33HP5u7/7O9t6Q5Z52bJlXHbZZWzYsIGxY8eyfPly/vEf/xHQHf+3vvUtHnzwwZLIMu/atYt169axfv16m6zxiRMnWLx4MRdddFHen+0iP4y6iN8uzSwlpZndqN9FBWM0yjK7KByjLuIHnec3uPxgvIZab5BqT5CBuC7HHAqFqK+vH0oTXVQicojMDTihf+PKMrswMOoifkit7HFlG0CvzHj11Vf58Y9/zHe/+11++ctfsnPnzqE2y0UZMVJlmV2UHqPS8dsre9JLOiutskfTNB577DFeeOEFurq6CIVCtLW18bvf/Y633357qM1zUUaMRFlmF6XHqKR6RBF/JXfvfvTRR+zYscOyRsNQbH3mmWeYP39+0TM8XQxf9PX1mcvNzc0MDAyYr//t3/6Nf/u3fxPut3jx4jRKprW1tSAb7rvvPqFNkiTx/e9/n+9///u292fPns327dsL+i4X2TEqI36RUNtQ6vX09vbS1tbGyZMny/q9Bnbv3m0un9e4la/N+QETA8cAnQLav3//kNjlwoWLocGojPizjV8sV8QfjUZ56qmneO+998zI6bTTTmPdunU0NDSUxQaA7u5uc/m0ut3U+/qZUX2A45FJAHR1dZXNFhcuXAw9RmXEL+zeHYJyzkcffZR3333X9ri8Z88eHnzwwYIHLxcC66N9rVdfHorj4cKFi+GBUen4hQqdZZZt6OjosFTNqEyuOowH3dkfOXKEvXv3Om6DAatjN+Qr3AH0LlxULkal4xcqdHrLy/Hv27fPXD6rfiefn3kPy5teE77vNMQRf+Umu124qHRk5fhlWR4DPA+cBSxVFGW7LMvTgZ8BDcDLiqJ8S5blycCvgDrg54qi3C/Lshf4BTAX2KooypcTn/k/gJuADuBWRVF6SvlHCRU6y8zxWyspJgSOAzA+0GGu6+/vd9wG0Es5k3+vZjp8V6rahYvKRS4R/wBwFWDVVP0+8AVFUS5WFOVbiXV/D3wPWAncJctyNbAWOKwoygqgTpblC2RZngCsAy4EHgLuKs2fkoSY4y8vtWF17KIou1zONhwOmzmGgCeMV1KHzBYXLlwMD2R1/IqiRBVFOW68lmXZD8wG/lWW5RdlWTa6OZYALyqKEgMUYD6wDHgu8f6zwHJgMfCSoiiaZV1JIeb4y5vMtH6H6fiHoLLIRvNYvr/cx8OFCxfDB4WUc04AWoCPAxHgSXRn7lcURU1s0w2MA5qAnhzWpUGW5TuAOwA2btzImjVrcjYwHA6by+bc3RROu62tLefPKwSdnZ3msuH4rXkGo7bfimg0WnK7jh07Zi7XeAcsy8nj0dfXV9D3OmGvUxhJtsLIsnck2Qojy95ibB1M66kQx98F7FEU5QCALMtRWZZ9QFSWZU/C+Y8BOhPbNib2s647LWVdGhRFuQe4J/EyL0UnTdOQJAlN00xp5oAnakozx2Ixmpub8fmca2OIx+Pmcq0nPeKPRqNpP4wTwlz2xK444hfZkgucsNcpjCRbYWTZO5JshZFlr1O25l3VoyhKEOiQZXmsLMt1QFWC3nkTWJW4CSwCdgCbgUsTu14OvJbY7qKUdSVFqjSzoddTXUZe2+pw67w6369H2fo9LBgMlkWh0FbKaYv4Q0joD2jhcBhVVdP2deHCxehETo5fluVngMuAX8iyfBvwv9ApnhcBI7n7XeAfgJeBuxM3iKeAmbIsvwKEFEXZksgXPC3L8mvALejVQSXHUCp0appmcfyaSfV4JZWAFDG3sVJSTiETxw9Q5Vb2uHBRkciJ61AU5UrB6hUp2xwB1qSsiwG3CT7vh0D6HLgSoqamxtTGSY5gDIKuQOuoo7NG0AEpgs+TpH1qvEEisSrTBusNyglYHb814tdfhwiptaYttbW1jtriwoWL4YFR2cAFqUJt6UPXnYz4RQ1Tpl1lruyxVxfZv28o9ItcuHAx9Bi1jl8k1FZTpu5dew2/vVGr3B2zmTh+/bVb0unCRSVi1Dp+UcRfrgh3sIi/3I7fRvUk/v6Iqmvvu3o9LlxUJkat47dG/KEyR/z2ip4Uxz+kVI9uS2dUb51w9XpcuKhMjFrHb434zXLOSo/4E9/dGUk4freqx4WLisSodfx2jr+8Cp12x69z/OF4QLdrKKUjPPaI303uunBRmRi1jl88fnHoIv6O6HjdhjJG/LFYjGhUr1/1EKPKG0HVJLpiYxO2uMldFy4qEaPW8Qsj/jJRGyLHfyIyQbdhiLqHjRtOMF5DMK7X67vJXRcuKhOj1vELI/4yRdsiSeZOI+IvI70iquEPqjVDNpzGhQsXwwOj1vGLIv6aMkW4QqonUn6qx17KqS8PxGuHbDiNCxcuhgeck6ccYogi/uoycdoigbaO4RLxx2uGbDiNgWg0yl/+8hf27dvHwMAAc+bMYfny5UycOLFsNlihaRo9PT14PB7q6+uRJGlI7HCRjkgkwuuvv87bb79NNBpl0qRJXHjhhcyZM2eoTRvRGLWOv6qqKinNrAUs0swxVHzEYjFisVjJpZnj8bgpviYRp8YbQtUkOqNNwBBG/IknjwG1dsiG04B+g3nggQc4dOiQue6dd97hww8/5NZbb2Xq1KllscPArl27eOGFFzhx4gSga5hfdtllzJw5s6x2uEiHqqo88sgj7N6921zX19fHvn37+MQnPsG8efOG0LqRjVFL9WSSZna6kkWkfx+M1xBWq4lrHgKeKF4pBtirbpxApog/pFahaVDtDZvSzJFIxDZDwCm88847NqdvtfXFF190/Put+Oijj3j44YdNpw+6/vlvfvMb2wAbF0ODHTt22Jy+AU3TeOKJJ8oiaz5aMWodP4j1epyuZBHx+wPxWmxzAYYg12Bw/HpFj8eUqi730PX33nvPXL58wrPcMeNuvJJ+89u7d6/NZqfx8ssvmyqq1Z4gvoRkdjgcZsuWLWWzw4UYe/bsMZeXjt3M/5j9Q+q9+vC+/v5+jh49OlSmjXiMascvVOgsa8Sv8/sDhvRxhjGQTkEU8Q8kbj5BQaVTORy/Nbo+p+FdplQfZWJAX6dpGl1dXY7bALpzP3DgAABeKcrGWT9lw/R7zfc/+uijstjhIjOs58IZ9bsY6+9mWnWb8H0X+WHUcvyQQaHT4WhbVMo5kKibD5a5kUykzBlMuQmVs3s3FAqZ+Q+fFKHOp9tUZ1EwtR4/J9HT02Muj/F1U+cbSNwEVcBDX18fqqri8Yzq2GhYw3o+Gk+m5X5CHa0Y1We1aApXtcPRtkigbSBep3+fQCyuXNVFNakRf5mF68DubBt9yeWhcPx9fX3mcoNPX/ZIGtUe/cakaZrrWIYY9sBFX672JqfWub9P4agcx29G2846uswc/9BG/LU2jr/8UtUA3d3d5vIYX3J5KBx/b2+vuVzvTd4ErKJ65cw3uLBD0zS740+cp27EXxpUENVT/ojf4Pj7Ux1/mTj+fCP+sjp+/9A6fmvEX+9L3gRqvf1ml3V/fz8TJkwoiz0Ax44d44033uDQoUMEAgFaWlpYuHBhRfYVRKNRs8rMJ0Xxe/RKOKvjL8fM6tGKinH8oojfecdvj/hFHbNORS12qkJLavUYHH+ZK4wgNeJPUj21viGmeoZBxN/a2spvf/tbmzM7ePAghw8f5qqrrqo45y+K9gGq3Ii/JKgYqsc2cD2B8lE9CY6/jBF/KBQy65yrPGG8kkpE9RPX9Ht9sMwVRpCeUDUwvCL+8jt+TdN45plnhBHs1q1b2bdvX1nsGE4Q8fvg6kuVCqPa8duoHpPTdvbEsVX1eFI4fsHNxylnm0mnx0C5ch5WWCP+RgvVY+XYh4Tj9yW/v24IHH97ezvHjx8H9N/q9um/ZEHD2+b7O3bsKIsdwwnWc9Hq+Ks8yZujS/UUjlFN9diresoTbYsi/jSOvwwJ1Uxdu+b7Zcp5WDGckru2iH+IqR5rl/Cc2n3MqDlEXPPyTu9CADo6Ospix3BCJqpnKJO7/f39bN68mQ8++ABVVTnllFNYvnw5TU1NZbWjFBjVjl8U8TvJr2uaZnEWmunQ0qp6yh3xW3R6DCQ5/vJcSIYQWuKVwPFrgER/fz+apjnOadvLOe3JXQPlcvzWpw+jzNV6jlRidZGtht879I4/FApx33332RoQt27dyq5du/jMZz4z4pz/qKZ6RBG/kwqd4XDYlADwSxF8njgR1U9M08cullMeOnvEX94KI6MhCnQ6w++JEYpXEVH9+DxxAolHeFVVHX+Ej0aj5nH3EDOPDwxNxC/qb6j0stKMEf8QcfwvvfSSzekb6O/v5/nnny+bHaXCqHb85Y74xc1bySh7yCJ+AcdfrpyHAXspp+7cumNj6E8kvq10jzUadwL2xK79u4y8DAyN42+wOX7NtKPSBMkyJnc9IYzjEg6Hy3ZcrLpBV096glun/goSAod79uwpi8BhKTGqHX8gEDApg6gWIK558HtijqljDlbKCaQIo+knTSgUMiPhUkIc8VttKW/EL6royeT4neb5RaWcoXgVYI+0h0I+woj4vZJqPgVpmlZxicxMjt8jafgTon6aphGJRMpiz8mTJ83lcxre5dS6vTQmKMJoNGqj60YCRrXjlySJqqoq45WwW7WUUa5QoM3ibDW8hOJVSBKmNECpbRDZYnL8FqonrOozCqo8ETzo0Yq1aabUECV2e6Jj6I+V3/HbK3r05WORScDwoXoAaj2Vy/Nnonqg/Dy/9brwWprJ6oagGq1UGNWOH/So30BSqM0Znn8wgbY0GxyOtEURU1C12mKRZi5D966tlHMYRfwG1XMiMgFVk6j2hs0nwmg06ui8BNAH9xj2SKgpiebK5fkzRfwAVZbztRxPQtabi/WmU19GerLUGPWOPxnxJzl2p5q4BhNoS7XB6ZJOkU6PNeIHsV6PUxGUjerxG46/ccgdv0H19MYazJt0TRl5fqstdd5+vFKS9qtkx2+r40+cnzHVC5Q/4rfbklyu87kR/7CF1fE7rYefjeMHccTvPNWTzvHbbCnDCEYR1dMdtUT8ZZRtEFE9ffEG05ZyOtxMNE+57RhuEEX83bExwNA6fuvTcTkLEkqNrHX8siyPAZ4HzgKWKoqyPbF+FvAhsEhRlO2yLJ8B3JP4zG8qivKCLMt1wK+BScATiqJ8L7Hvd4FlQCtwu6Iojj1P26geh7tVBxNoS7XBaVVMe3JXHPE7/QRkhZ3qSVb1NMb15boy1s+Lmrf6YvXmTbqc3buiih4DNa7jB5IR/8loE+MDnY7nxwazxXrd1g9B42GpkEvEPwBcBTySsv7vgNcsr/8F+AzwMeCfE+s+CzyjKMqFwGpZlqfJsrwAmKYoygpgF7C+CPuzQhTxO+V0c4n4Q2Uq6RRG/GqKLWXS64nFYuaF4SFOg68XTYPeWOOQJHdFzVu98aTjdyP+oUU8HjerdTzEqfJGUDUpGfGXuZY/Y8Q/mqkeRVGiiqIct66TZXkOejHtAcvqqYqi7FYUpQfolGV5AnpU/1zi/eeBC1LWPQssL+5PGBzWiD8kGLjuXMSfgeMXKHSW2tlGo1FiMT1B6SFGlSdCXPMQVqts25VLsdQe1fbikTR64w2oeIeE4xdp8fdZOP5ydu+KHH9PtCFhR/K7nZbTGE6wd+3q52ZIrTbP16oySzNn5PhHcMRfqGTD3wP/H/BtyzrrTaQbGAc0AT2CdUdS1qVBluU7gDsANm7cyJo1awoy1O/3m8tBQcR/4sQJ2tra0vYrBNaLOCPHL4j4jx8/TltbG9FotCS22KuLrF27dhkE0fE4duxYzjbkau/hw4fN5UYLvw8IHX9vb2/JfhMDhq2qqlqOj2rmFvoyRPxHjx4tuS1WtLe3m8uG4z8amUyjv9cWHHR0dDhqRzEo1XlrwFozbxyDYLwmpQ9Gh3Ht5IN87bVqKdmrepIRf1dXlyO/TzHHdtq0aRnfy9vxy7J8KoCiKK2yLFvfsnYhjQE6gS6gMfH/GGB/4jsbU7ZLg6Io96DnDMBo1SsAH3zwgbkskm3wer2DHqB8YI0+6jJx/AJ6xefzMW3aNNra2kpiy9GjR81lc9ZuCr8P4icgv9+fsw252msoT0Kyoqcnpp8CVmcrEUfDSzgcZvLkyXi93pzsyMdWa7Rf6x3AK6kMxGuIaz6h4y/l+SGC8WQGScffHp7MvLrdNjs0TXPUjmJQqvPWgLWXJElT1hBKPLFaOf58zlcD+dq7fft2c9maD7MGK+Fw2JHfp9TH1kAhVT0LgLNlWX4WWAPcLctyNXBEluVTZVluAMYpinIC2AxcmtjvUuCvKesux54nKDlE5ZxO0CzxeNx0/BJxarwhNC15s0m1odpBekXUtTuQwu+DRSba4XJOYUVPgq/V8DIQr0GSsGnmOEWxiEo5+2L1+ncKqnrKOaPAjPjDzWW3YzhBlNi1RvzDpY7fCFZAt3kkyTbk5PhlWX4GuAz4BdCoKMoKRVE+hs7b36koSgj4BnAf8CeSFNAvgXWyLL8KvKQoyiFFUbYB7bIsvwKcDfy+dH9OOuxVPenRdqkcnTiZWoOWcojLodcj0ukRRfxOHg8r7HINCR474fiBsiZ4xaWcCcevpkf8TnK3qqpa7NFsEX+qHZWU3BVp8QfjNYTLrC8l+g4rW6AHKyPzN8qJ6lEU5coM62+zLL8PrEh5vw+4VrDf1/MxshjYq3qci7ZFzVv9KYldKE9yN5tOjwEnj4cVwq7daNLx98XrmciJsjh+e0VPsnkLoD9W3qqe/v5+m2KpzxMnGK+mK3FTTAq1SaZQWyWMYBTV8IdUMcdfdsfvsX9fvbef/rh+/vT19dHQ0OC4PaVARTVwifh1JyL+TIldGIKIP0MNv25Leco5RUPWu60Rfxkre8QVPfaIv1w9BXYdfn25J9ZIXPMTUf1pQm2VMmowM9VjcPxD2bmbuBElRP1GaknnqHf8onJOpyN+kUCbaYMt4tdMG0opLyuM+AUcvyjid2I4jViZs9FcN1DG7l3RrN2+RMRmT+46L4ksLOVMTXp7Ko/nFw1hCapWjr+84xdF5aUd0fHAyO3eHfWO3+/34/Hof2ZU81ukmfVm4Xg8XhIhrlwE2gBimp+o6sPniZvysqqqllQMzB4xDRbxO//0EQqFzGacgBSmxhsipnpt/Q3ljPhFXbu9iYg/rvkJqwG8kmrOdnUy0hY5/t60aqfKU+jMGPEPB44/8d0nIhOAkdu9O+odvyRJlklckmOyDbkItBlweuh6Ljo9ABFNl2YOeKJ4SM4osJYYFgvRgHWd5kly1eVM7oq6do3kLqRG/Yl1DjncnCL+EZo8LAZiZdlqorbzVa+gKfX5mgr7RDjVdPydZsTvUj3DFtZJXCGHhozbqB7BxCsrnFbozEWnR4flRuhQN7OoosfK74M14nf+IsrUtWtARLGUw/E3+A3HL6KdnLVDhNbWVp544gnuuecennjiCVpbW8v23ZkifpCSdE+Zunetn13lCSNJOr9vFASUU1ywlBjVw9YNWGfviiL+kjt+n7h5K82GlJuPNR9RKlsy6fQYCKnV1DFAtSdIfyLyDQaD1NfXC7fPF4PV8BsoF9WjaZol4tdMLf5eUcTv64ewc7bA4BF/cAgd/9tvv82TTz5p5jaOHDnCtm3buPrqq1m4cKHj3y+M+BPXTFitotYbpNobIqjq500oFKKuTvx0XSxENE9IraYvcc5au3ddjn+YwTZ71yFZ5GwRv7UL1emSzmxa/NaSs+TxcKakM9PkLSvKJc0cCoXMJpuAJ0zAEyWi+olYNIyGKuJPo3rM36W8jj8YDPL000+nJbQ1TePpp58ufxWNJbkL1hkS5VHotNuSdPz9ibzQSNXrqQjHb434RcNHSh7xCzj+ceOSkkQhB8soVVW1fJaWFjFlssWp7l2bc/OnV/RA5oi/1NU0mbt2k/kGs8LIYYebWu00XDj+nTt3mjfHKVWHuW36fzOlStdaisfjvP/++45+v6ZplvM3yakbFXnlruW3SzIbtiQjfmuw4kb8www2xy+IcEse8QuqesaPH28uOzkAxfq3VHlCeCSNcDyAmmD1/H6/jcYZiog/leoJq1XEVC8BTxS/pFcAxWKxkg/SHqxr10C5HK61xT/gCVHliRBR/YQTjm2oyjmtgmTzG95jVs0B5jdsF77vBOznb9hy/upPzOXm+O1UT/Lpwx6s6E14Tpb+lhoV4fhtVI8DEb+maZbHPM2MXK2O3xplO1lGmU2np7a2NuUJyFm9nkyTt+yQLNOvnHt0zjRy0YpyOf7M0b5ks6OmzOWc1pujUfVkHRBjfd8J2BO7+nkYVEXFGeWJ+EVyDSG1mrjmJxSvwiuppp2apo2YyquKc/whQbRd7IkTiUTM1nu/FMHniRNVfUQ1PVnr9XoZMybp7JwcuJ5Np6empiYl5+Es7ZR0cKrFwaU6/vIkeHOJ+PvLpMk/GM0DQ5fcFdnV4E0et7I6fgFNGY6Xt3tXpMVv0KNDMUuiVKgIx2+v6il9OWe25q3a2lpqa5OvReMXS3XyCiP+ePaI3wnaqa+vz3z0rfPqWjQD8RrzhmhFORK84pGLwy3iz2xHOageW8SfcPjWyWBWu52AuIZfEPGXKbkr5PgTNhhBg1W2YaTw/BXh+EVVPaWMGLIJtNXV1WXIMzgc8Rta/Gr2iN+Jubu50Tw6yhE92eUa7F27BkTSzOVy/L1Wx5/4zcolHwE6VWFVC01SPb2mDb29vY7akLmGX0e4zMldO9Vj6PTo9hiNhyOxe7ciHL8wwi2h082W2K2trU3JMzhXzplNmTPV8Yv0i5xw/IYqZ09KRY+BcnTvirt2s0f8TlzMdoG29Ih/KITaBgYGTMqy2hPE79E7Yv2emPl0qqqqo5RTJmVOA+XW5M9Uxw/lbTwsNSrC8Qs57RLSLNkE2jI6/jJx/NYa/lSqx8l8QzZVTivKzvGnKHMaCKrVqJpEjTdkygJEIpGSywJko3qgvD0F6TbZuXzrayfpHpESpjXiL7dejyi5GzQdv37u1I/Aks6KcPzCKpYSli/mwvELm8gcj/iN5G7miN+UZnYg35CtlLOpqclcFjn+Ujs5UcTfG0/tUPZYbszO8et5Of4y8fyiip7k6/JU9mRL7oqkmcse8ccNjt9N7g5r5BLxF8NbZhNoS42yw2oVqiZR5Y2YUWU0Gi3J6DbRhTOgZo74RXOIS+VchM7NwvFPnTrVXHY6uRuLxUwH4ZWi1HhDxDWPUE+pHHSPTafHosUvtqM8JZ12m+xRfbki/kySzAaSdfxD0LnrsVNPye5dl+oZlrBKM8c0PzHVi88Tx2eRZi7mUT4Xjl+SJMsNSBKKxZUichHZkm/EXy6qZ8qUKeay8djsVPRkPS5GMk7PK6RfAv0OJ3jD4bDZnOaTItR6gwmpavtNqNzdu6LBMEY8NCQR/2DJ3TLV8Yu0+NMifpfqGZ7I6HRL5OxEHH9/iuOH7GJxpXD8ogsnleMPBALmCL+oFrDMKNBvfqWaUZCN6rFF/A4nd22O36R5xGPykpO4nHG4Ii7d2rxloNy1/HaqR7fR0J0fiohfWM45lBy/J5XjTxdqcyP+YQZxQrM09Ea2iN9QDsyW4C1XxJ92I3RArycajZrH1CvFaPD1oWqSrXzSHvFbxx4mW+CNKpNiYf19GzIkds1tHXa4ufD7kLwBlUuoTVTD3xaepr8e0ojfTpOCQfXojyPhcNiRElMr/eqVovg9MeKah5jmB0gRatO/3wmNKSdQMY4/WzllMY5O6PjV9Ig/W4K35BF/Bo4fMtwIS9jEZY32G7xGnXoDWkJzpb6+nurqalOKWsVHMF6NR9JsLfBOVDtl6to14HT3rrCGX/D0YTyplSviF+UdDocSjr9M3bvZIn4VLxHVj0fSCEhJLScnErzCaD8xFwD0QUZR1YffEzNticfjZRkHWSwqxvHbE5ql7d7NpswpdPwORPzRaNTMVXilKAFPlLjmMWWHJUkyh89ns6XYiD8bv9/YqEe4Vh11J0s6rb9Rg6Br1+/3J7d1OLkrTnoLIv4yC7WJegvaEo6/HN279hu9JuT4wUL3OMzzD1bDr0Masd27FeP4xRF/8SdOPB4395WIU+sNomnp+jhpNgjq54tVo7TPBLBeNJL5/Qa37+SNELJP3jK0i4SO34HKHnvEnz6AZdKkScltHS6jzJnqKSPHH4vFzL/RQ5w6bz+qJtEeaUbVJOp8A2YOKBQKlXRGtIFoNGpSez4pis8TJ6Z6TWrFgEia2emIvyYlsWtgpHbvVozjd8rRZXo01RKHtrq62hzCkk0Vs9iT126LuLrIfD/LjbCUVI9oAIvh+K0S0U5G/Na/x6R6LBG/3fGnV/U4FfE35OD4y6HQmSpgJ0n67xHXfGYupN5huiczzWNPeoukmZ2I+AfT6TEwUrt3K9PxlzDiz6V5y0C2iL9Yx2+nnNL5Uev3C2+EJUzuiqmepHMzqB7r8RlwsLLHXs6ZrtMjjPgd6pjNNeIvZ1XPYH0FPfHGhK3OVvZkK+U0YCR4y0r1CK4nGLnduxXj+LMJkxUa4eYi0Ca0QZBgHqqIP6lfVLqI3+7c0jn+Qakepzl+QXK3ubnZYoe1wih9/2KRTafH/E6BUFswGHSkakRUw2/MKjD+d7qyx37+GqWT6Y6/XAqdIo4/nEL1jNTu3Yp0/KUUJsuleUtkgxPJ3cwcf/r3i6p6HIv4Bcqcg3P8pX1sVlXVkodRzYu0L1vE74AyprXM1UOMep/OpfdbbkIGNRjX/ITVQFmE2uylnMkqLP3/YRbxl6mWX6TFH0ylegTdu27EP4xgd3SJbtUSR/wigTars3W6nFMU8afW8AttEcwALuZC0jRNzPFnifidip6sF2Kttx+PpDEQrzHHUVZVVVFbW2s63FiiTM/niZujIFVVLUkCUUSp6GWu+qVYX19vOyaG43NaqE3UVGY4/J4hifjF1AqUb/yisGtXzRDxOzhHwglUjON3qo7fxvF70iP+zFRPurN1guMX1fCDeA5xdYmSu8Fg0CwrrfKEqPLq82SNi9jr9ZrHxRbxO8TxiwawWEcuNjQ0IEmS7fj0OzR0PRu/39jYaM97lEmoTTSdrCcl4rcKtznu+A1dHEHEX66B66J5u6n2mBy/m9wdnnBKmCwXgTYD2QbCDKeIvxjnklmqQa/OaGxsNMtKy8Hx26UI0rt2jcoiqy1OlVKWwvE7EfGL8g69cXvE73QtfzZlTgOhoUjuZqrqKcMcCSdQMY7fKSnifBKqmQfC6LXLxbae56LTY74vmENcqghKXMqZdG7W+cPlcPz2yVvpid2GBt2xlcPhZpu81dDQkMEOZ0s6RZLMqRy/09279rr5QaieeLpCp+Odu0ayOYfkrsvxDyNkpjaKq5awOqa6DENYDPh8PrNDVMVLOB7AI2lUeZKNW6WWjsgU8QsF4xyI+BsFXbtWx29tKgup1cQ1D9XesNksFIlEim4WsunwC7p2jYhf7HBLexPKJeK3BynOR/yaplns0ix2Ndj+19c7N4LRXjc/WDnnUFA94og/pNZYzln9PI1Go0U3YzoNX7YNZFkeAzwPnAUsBfYDjyf2jQEbFEXZL8vyGcA9ifXfVBTlBVmW64BfA5OAJxRF+V7iM78LLANagdsVRSl9G2AKDGlmVVXTpJljWgBVVYlGo6Z2TK4QOdv+DBw/6I7OcGRBtYYqb4QaT9A8mUOhkO3Czwe56vQYdpj7ZbiQNE0znXI+yKbKadTwA3g8HmpraxNOVdfHb/D1UevtpzexT39/P2PHjs3bDgMi/tratTu44y+tw81WytnY2GiTCDc0n5x0/MFg0BQjC3jCBDxRIqrfPCejWhWheBXV3jA1niBBtRZVVenv77c14JXCDgO5JHfLWtUjGAOpQ6I/Vkejv5d6bz/dsbGAfs7m60vKiVwi/gHgKuCRxOsocKuiKBcB3wW+nlj/L8BngI8B/5xY91ngGUVRLgRWy7I8TZblBcA0RVFWALuA9SX5S7LArkgpFiYr5OTJp5wTspd0llozKFPEL5pR4PfEbDMKCo207XINmSt6DDhN94iSu9kjfueTu6IBLJk4ficVOm03I6+V5kne9MtRy59rOWe5tHqEnbspVA8kacORVNKZ1fErihJVFOW45XVIUZTDiZcRDIIapiqKsltRlB6gU5blCehR/XOJ958HLkhZ9yywvPg/IzfYa/mLb+LSNM1yEWqDCrSJbBDVzxfq+K216qCmqAmm2yJJkoXuEc8oKPRisg9ZT+j0CGr4DThd2WPn+NO7doea4x/c8aeXc5a6qkekw2+teoLydO/mndx1sJxT0zTLZ6oWqqcqbVtTl38ElXRmpXoyQZblAPBt9Kge7DeRbmAc0AT0CNYdSVkn+vw7gDsANm7cyJo1awqyMxqN0tbWphvoSZooqqM/ePBgXpO4IpGI+YjslyL4PTGiqo9oQlTK4/Fw/PjxjHSJKOJva2uz8e+5IpWP9EgaoXgVakIG2e/3c/ToUds+VkXKoFpDPf3UeEP0JS7y/fv3M26c8OcB7MfWis7OTnNZpMwZCoVs+1l/F1HE39bWlkaZ5YOuri5zOdm1m3Rs/f39tLW12Y6hSAu/s7NT+Pfming8bjoEiTgNvl40zX4T6u3ttd1gRDegrq6uouxIxYEDB8zlxgxjIEUR/8GDB6mvr894HuQL699tRvxq+rUgGr8YDAZztiEXe603kipPBEmCcDxgyopbkemcNQKKYlDMsZ02bVrG9wp2/Oh8/s8URdmdeG2dmDEG6AS6gMbE/2PQ8wO+xDrrdmlQFOWexHeAkVEqAG1tbeYBGDNmDMeOHQOsTjd5sdfX1w96sFJx8uRJc9lO8yRLFadPn27bp6mpidbWViDJF1odf01NTV42GDhx4oTFlnR+tLa2Nu1zGxoazOhcNIylsbFxUFusx9ZAPB43IzcJVRjVzp0715SHBpgwYQIfffQRIB7B6Pf7CzomkC71Wy8YwnLaaadRXV1to7b6Y+myDaqqFmwH2G9A9YlGst5YvdlIVlNTw6xZs2zHRuT4Y7FYUXakYs+ePeZyakWPAVH3rsfjYdq0acLzIF/EYjEz6PIQp8obQdUkU5cH9KdUTdOIaX7b1Li45kNVVZqbm/H5sru0XOy1XttmolmQbwBx967P5yvJb1SKYytCQVU9six/C9irKMpDltVHZFk+VZblBmCcoigngM3ApYn3LwX+mrLucuC1giwvANmEyfJ9hM5HoM1Atkay0qiE5maLE1PJrNUedd4+vJJKf6zWlNatrq62OTZwluMPBoOm1G+VJ4TfEyOi+oloug0+n8+0x0axOJBUFZdyJh2skfS2niPlUOgUqYUaNfzmNg5z/CJBNP0aTarc2qhJs6TTGZ4/l4oeA33mCMaRQ/Xk5PhlWX4GuAz4hSzL3wS+iZ6s3STL8v9JbPYN4D7gT+gUEMAvgXWyLL8KvKQoyiFFUbYB7bIsvwKcDfy+RH9LVojr6As/cfIRaDMgqqYpuXREFp0eoS0l6mbONoAlld+H7Jr8xTg6USlnb0pi16DiRMldxxy/X8zvp9oRtN2AnBFqsx2jLBG/U9272RK7NTU1tus3LOD5nXL8mbT4DfQLhrEMd8efE9WjKMqVKav+X8E27wMrUtb1AdcKtv166rpyQFzCWLjTzbeiJ82GEspDFxvxl2pGgaiiJy/HX+Lkrr2UM0HzCEo5Ib3JT9N0JyQRR8NLKBQiHo+bmj75Ilti1+CE/X4/Pp+PWEynMcJqgCpPhCpPmLBabQq1FVr2m5tdKcldh7t3syV2a2pqbDc7pxU6s2nxG78POKsq6xQqpoELxE1cpYr4RQJtuTr+UstDZ9PiN5BtRkEhtthr+I2xguIafgNOUj2irt1UnR4DXq/XPCYaXoJqDZJUOrnqXCp6DFh/G5PucUioTTRkvTctuets9262Gv7UiD8ZqJSB6hHYYy166BMEKyO+nHM0QSTbUEz5YtERv6CyqJQcf6YafrEt6RF/0VRPIRF/iVvg7U5N/5x+gU6PgWzdu8U4XFHZZCbHb82DmAqdDtTy2yuNVGG5K+i/i5MjGO1UT3opck1Nje2YOD1+MZsW/4QJE8zl5DCWkUP1VKzjL4VQm12uIeH41QKoHoc4/kw6PSJbSjWjwM5jp0/eyu74rdU0xWvhCyP+DFQPZHD8lki7mAu62IjfCYVO6/Gp8/bhkTT6YnVmpZEBDU+ypNNb+lr+bBG/PbmbdMLlSO6KtPitEf9AvBZVk6j1BvEQN/fPpzS83Kgox2/Xp0kXasv3YhLz6pmbtyD7+MVyRvziqp7ibMlHrsGAwWmDroUfVgP4PHGzTtvenJYfsnXtptZaixx/na80kXbxjr/0lT1iHX5x/bmT3bvZJJnTqR5nk7tCLX5LxF9XV2deU1pCagRKr+3kFCrK8WdzuvmeOPkItIlsCGUo5ywkus1Hp0dkSyluhJD75C0rJElyLMErrFjJOeJPVPaUgFtXVdXiJFUhl56J6nFSmlnYtRsXO34nu3dz4fjFVI8zyV0rbWRq8ac8gVjPnZHWvVtRjl+UzCxm+Ei+Am1g18iJZtDIKeQRMR+dHgPZZhTkeyGFw2FzH58Upc43QFzzmByoJEkZuxmdSvDaqnoG0ekx4JRsQ19fn3lDr/UO4PPEGYjXmP0NVVVVNsdmfxpzzvGLJ4KlP5Xp652L+EVDTwYv53Q2uZtt+lZ1dXXZ5kU7gYpy/Jlr6PUL0lCkzBWFJHftYnFSyfR68tHiN7crccSficqwjhXMVAopip5KHfEPptNjQJRvKEVyN9dSTgPZOH4nIv7GlMlbgO33cnL2bi7lnPbALZ3jdzq5a9Xir6mpsY8NHWGzdyvK8ft8Ptsg66jqwyup+BPRtiHNnAvi8bhlgHecGk8QTcveNJW6vhQJXrtYXO4Rf+ZhLIXdCAuheUybhWMPi3P8kUjE1EX3SVFqvCHimse82aaOW0y1o5QONx9+H8RUT40DQm3ZBNqmTJliLjvZvVtwOecQde5mivhHSvduRTn+VGnmYpqWUk9USdJPVEPEqbq6OmN0W+qSzmg0aorF+aQofk+MuOYhoul64B6PJ00mAew3wtQZBZDfjRDEXbs9WSp6DGTr3i3kIhIndusxTvu6ujqbQByU1/Fn4vchNeJ3rpxTPHkracvUqVOT2zrYvZtL566d408kd73OR/ymFn98MI4/vXvXjfiHEYSTpwqIGgqheQyI5KGLaRLK3LUrmd8nUgi1SzOLZxTkaoumabz77rvm67G+LiB7RY8BcXK3uLpo0QAW0chFK7LJNpQi1yBSwBzc8ZeJ4/emUz1WgTAnu3fzjvgF4xfL2bmbGvGLmrjciH8YQRTxF0Kz2ATaPPk5/lKXURai0yN6rxjaac+ePaa8r1eKsaBxGwBHwsmIcTCJZycSZaKIP1WnJxXliPizNW9Bhs7dEpdzapomHrJuscvq+O3duzoFaE1aF4pMsySs5ZNpdfwOUj2xWMx8gvZKMfMJ2pBblySJQCDgJndHEkQRfyGJVZtAmy83gTYDpVboLESnx0A2xdJcLiZN03jxxRfN14satzLW3017eBK7+s4w15966qkZP8OJi8hOYwyu02PAnmtIl2YutJmsGI7fKaG2cDhsUnl+KUK1N0xM9ZrBiMfjYdy4cebchqgWIBSvwueJm/kGVVWLzjfYte/DeCSNcDxgmyXh8/nKxvFnnrxlf4IWUT0jpXu34hy/uJa/SKrHk1syVWhDCZK7hej0DG5LflTPzp07zSEvfinCinEvA/CXjovNip558+bR1NSU8TMcj/gNqmcQuQbQHW6y3DZgKbfVk8TxeLygQdpCxx/N7Ph9Pp/pcA2hNq+kmtSGIdRWDDLX8OsOzlAutdrWI6jsKfbpQ8jvC85f683QUOfUj4cuux2JREwJ7mIgLC1NqeEH+znbV2KpEadRcY5fxBNaI9xcT+JsAm05R/yC5G6+F3QhXbui9wqJ+FVV5S9/+Yv5esnY16n39dMWmsoH/clo/+KLLx70c5xO7jbk0LULqZU+UknoHjuloiUdf3xwW5weBZnL/N9U23rMBG9y32Ij21xKOUF/AjEGmGt4CMcDSJKd5y9Fgtcu0Cbm9yGlBNnG8es3n4GBgZLciJxAxTl+68VkjN8b6+8y1xkTurIhW/NW7snd4hU6C9HpMZBtRkE2W9577z1z+leVJ8jyJn2uzosdl2BEjvPnz2fy5MmDfo5Ng96ifSJZtE8M3jVX5KvTY0D89FG4wx0YGDBtr/aECHiihOMBIgln4vP5spbbOqHQKUo4i5RLrRF/r5ngTe7riOPP8MQqpntKm+AVCcal5hvAPsRHxUcwXo1H0mxBXKmH5pQKFef4rap6R8J6jfLUqsPmusOHD6ftI0KpqnpKUc5ZTMQvrurJzZZ4PM6mTZvM18vGbqHGG6J1YBZ7B04B9Ah61apVWf8Gr9ebQfuk8IqabF27mbqISz2JKxd+X1R1Zb8Zlr6kU1zDn95UZj1OvYKI3xGqJ0NxQjaev+QRv6Cix2qPsJZ/BMg2VJzjt1YpHA7pFSeTq46aqnonTpzI6eQRO/7BBdoMCEtKi4j4C9HpMbcXSVXnqF/0wQcfmHNka719LG3aAtij/ZaWFsaPH5/T31Fqnl/YtZtDxF9qaeZ8E7uD21G6Ji6bXd7MEb+N6okPbcQv0usptUKncAxkXGzDSO3erTjHP2bMGPOCCqk1dETG4ffEmFSVpHhyifoLEWgzUGqFzkK6dg0I9XpyuJCi0Sjbtm0zX1/Y9CoBT5QP++dyMDQT0KP4lStX5vx3lNLxx+Nx87hIqObnDKbFbyCbw83X0eVbyjm4HaWjEUR9Dj2CGcB2qsfpiN+QR8ge8YcFTVwld/xZIn6hUNsIKOmsOMcvSZKtG7EtpD8BTK1qM9fl4vgLEWgzUOpZt4Xo9AhtyaOv4c033zSPQYOvm8Vj3gTgLx2rzW0WLVo0aLduKkqZ4LXrzPfjkTT6Y7VmiWB1dbUpBZ2KUidV89XpMSDi+J2iekQ1/MKI35RtcDbiT+2SFS0nizMc5PgTN5WgILkLqefsyOnerTjHD/Y29MOJBqNp1bk7frs2jpY3x5+qK65pUO0NIyWqAcLhcF6JzGIi/kKGsYTDYV599VXz9UXjXsbnibOj9yyOJvImfr+fFStWpO07GKwX0UCRnZDCUs4sXbsGRN27xSR3RQ4234jfCYVOkVxDrhF/Ywkj/mxjDrNRPaWu5RdG/ILkLqRSPSOniasiHb+d509E/NVJZ9/W1pa2jxWRSMR0zP6ENk5U9RFNaON4vV6z7EwEj8djOXk8RZ/AxXD8heQbtmzZYq5v8neysPFtVE3iLx3Jks3zzz8/I5WSCaUUvRKVcmbr2jUgivhrHE7uFmJHMRy/qqqWY6Sajr9PUGJq1POD/lQb1zzUeoN4E5pOVjG8QlBoclckzVz65K5Yi9/ASBVqq3jHfyQ8GVWTmBQ4ZjbpdHd3D/qDGc1KAI0JFUr9R9cvjtraWmGVhhWlSvBa290l1KwXTiqEVM8gVT0DAwNs2bLFfL1y3Ca8kso7vQvoiE4E9Khs2bJlOdlvRTaOPx+Ha+ev07t2c4/4xd27+SBfgbbB7CjFUBhInw/gldS0+QBG8OLxeCy/jXgEYzFibQWXczo0fjFbHX9mjj+d6nEd/zBCXV2dyT3HtADHIpPwSBpTqpIOfbCov7W11VyeVbNf3z6UvJkMpkljoFQlnant5ZIEoXiVqRIaCAQyqoTCYMNYxNLMr732mhndTQy0c27Du8Q1Dy91JJO4y5YtG/Rmkwkix1/oKDu7To/RtZt09oPlYISa/AU63EgkYlY+2Zq38nb8pS3nzLWGX2SjqJa/GLG2wss5E8ndMlA9wVyonhHUvVuRjh9SeP5EWefUHHn+/fv3m8uza1sBaA3ONtfNmjUr6/dnk23I9QQuRqcHdC4+OaPAZ5lRoDt3TdNMR9/b28sbb7xh7nvx+L8gSbC1exHdsSbz+84///ycbE9FtuRuPhdRNp2efCP+Qh1ua2urSQtOChyj2humL1Zn3ux9Pl/Gm5CTnbuiGv7BbkbZundLHvFncPzick7nOnfNZHOG5K69ezeh11Okqmw54Dp+LDx/Do1csViMgwcPJl5pzK5pBeyOf/bs2am7paFUJZ3F6PQMbkt69+6mTZvMsZBTq9o4s34XUdXHK50XmdteeOGFQu3/XFDKRJmwazeHUk5I7yIG47fRk+/BYDDnVvw9e/aYy6fV6st7Bk7DoAWnT5+ekRa0/y5WO4oXahPV8A/W3GZv4ipdxK9pmuVc1wbV6oHsHH+pq3qSyd3sHL894td/l/7+/qLF9JxAxTp+K8/fJqjsaWtrE/5gbW1tpvMb7++gwddHX6yOExGd3/Z6vUyfPj3r94urafJ3/MePH09+ZgERf7otYr2eDz/8kLfeestcd/F4XY3zja7zzYRgY2MjixcvzsluEXKp48/lItI0jUOHDpmvx/k7AXGpogher9fSiu+1tOLnJ16naZrd8dftBmBP/9zkutNOy7i/3++3C7XFSyfUJo74c6V6ShfxR6NR8ybqk6L4PHGiqs/MNXi9XvMYQKZyztI5fk3TLE8NFoloNRnMWG0IBAJmWXBMCxBWA/g8cfM3KoV6qROoWMdvHSl3LNxMTPUyPtBJlVEHPzBgmyhlwMrv26P9ZARnPVEzoVTJ3XfeecdcPqVmHwCdkWSn7GAOTmiLIOJvb2/nscceM1+fXreT0+o+IhSv4rWTy831F110Ucba+FyQqowZVX0EPFGTdspVGfPIkSPmk1Cdt5fmqmNEVR+Hw8nf3CrdIUIpaJbOzk5OnjwJQEAKM7PmAKom8VFCzgIGd/xpdpSwpDPb5K3BIn6je7cUk7iENfwptIr1ichpaWbr/lWeCJIE4XjAzJlZqVHQ+4KcGCLkNCrW8VdXV5tSAipejoZ1EbFsdI8tsZvg9/fnye9DaZK7HR0dJu3kIcY5DfoErHd7zzW3yffpQ9RQ9sc//tG0p9HXzTXNjwOwqXOVSUE0NTXR0tKS9bsGg/0ikgru3v3oo4/M5VNr9wKwPziLeCKKnDhxYtZS01LINuzevdtcnlO7F6+kcig0nVDimDU0NDBp0qT87ShBZY+whj+eXsMvei2q5S+U6sknsQupHH96crdYjl9cyimu6DEwErt3K9bxQyrdoy9PG6SeP5Xfn5OIsFsHZpvb5MLvQ2k0+a2SCXPrdlPnG+BYeKLZlOb1ejnrrLOyfo4wirLYYlxMEnGun/x7arwhPuyfy+tdySTuxRdfPGj1UK4ohWyD1fGfUqsvfzSQjKwHGwhjoBSyDVY75tYl+P3+pB2nnXZa1rJfoUJnGWYADxrxC7p3SxnxD5ajEp2rOq0irkLLF8KKngw1/AbsPP/I6N6taMcvTPAOUtlz6NAhs0JjvP8E9b5+nd+P6rRBrvw+ZE/u5qKDb6V5WhKjDrf1LMSgnc4444y8k7umNLMn/ftXjXuJWTUH6Ik18Hj7tWAZsjJ//vys35MLipVtCIfDlpuzyqkJx79nIOnsC3X8+XTvRqNRy9Ohxqm2xK6OuXPnpu84iB2lVOgUUz15cvyWEYy9vb0Fac/nG/H7fD5LFZqfmOrF54njk/S8m6qqZg6uENgregbv2jUwEkcwuo4/gTajpDOF6rFGDzZ+31bGmR+/DxlUMfNIHu7du9e8eOu8fcyr+xBVk2w0T67Ui53jT4/4AWbX7GXFuJfRNPjD0etNKYOGhgauueaarJFrrsg83CKxLstF1Nraajqg5kA79b5+eqINtuR7LnRctqHr2Rxua2ur6YAmBI4z1t9NX6zOlAL3eDzMmTMnTztKo9AZiUTMpzivFKXWGySuecyehdSxgmBv6IppfoLxanyeuGmLpmkFObh8SjkN25xU6MxlyHoqxCWdw7uWv6Id/+TJk81kYkd0PKF4FWP8PdQlytsikYg5ZAQGS+wm1uVI80Dx5ZxWmuechnfxSBq7++ea3YMNDQ2ccsopGfbObIso4q/19nH95D8gSfBy50r2B3WHJUkSN9xwQ06VQ7nCPvM2/0SZlV45rc5K8+g3plmzZuV0cy42uWut5pmbiPY/GjgV45KbMWOG0ImkQizUVpxCpy3at8kx67bV19eb14UVwlp+b3GVPflSPeBsglcoyZyF4xc/pQ7v5G7WEgxZlscAzwNnAUsVRdkuy/KNwFeAIPA3iqIckmX5DOCexGd+U1GUF2RZrgN+DUwCnlAU5XuJz/wusAxoBW5XFCVa+j8tO/x+P5MmTUpIMHg4Ep7CnNpWplUf5sP+0wE96p84cSKxWMxSImip3y+A34fiBq4Hg0F27dpl2mKneXQsWLBAePGKIKrqSUb8Ktc2P0aDr4/9wZm8ZKnZX7hwYc7J7FxR7GOzmN/Pj+ZJtyP/5G4xZZxWOFHVY+f3s9M85raNjXR0dJjbN1cdo9HXS3tkivm51qfoXJAv1QODSDMnvEjJHL+ghl/Uo5Kte3c4Ov5cPMMAcBXwCIAsyz7gq8Aq4P8BvpnY7l+AzwAfA/45se6zwDOKolwIrJZleZosywuAaYqirAB2AetL86cUBhHPP80i0WwkeK38/oQEv98bq6ejAH4fxFIJuTbnbN++3bRlStVhmquO0R+r5UOLY8mnwkZEOxkX4QVj/8rcuj0MxGv4/dEbzLK2WbNmFV3FI0IxHP/Jkyfp7NRr9v1ShJnVB9A0zGlgUB6H29nZabEjbNqRTxmnyI5giZK74slb2R1/tklcxUf86cnUrBF/iaWZbRx/Fi1+AyOxezer41cUJaooynHLqrnATkVRIoqivAYYpPJURVF2K4rSA3TKsjwBPap/LvH+88AFKeueBZKF4EMAUSOXKMG7b98+c52I358xY0ZeNex+v9/cPq75iKh+vJJKQCCVkAorzWNE++/1noOaeICbMWNGzlOvILNez9SqQ1wy4c8APN5+Lb0xXd+otraW66+/Pucninwg1DfPkS+1RvuzalrxeeIcDk81S04bGhqYOHFiTnYUQ/VYo/05tbodbaFpBNVEqV99Pc3NzYXb4SmO4xcNWc+luU1U2VNs966wfDJDl6xoXanHL9o4fuNGlEdyd6To9RTSbdMEWH9ho4bP6gW6gXEp21rXHUlZlwZZlu8A7gDYuHEja9asKcBUvbpiMME1q7O2SzRrgMTRo0c5cOAAH374obnd7EQZ534LzTNu3Liscs6pCAQCZgIwGK8h4IlS7Q0SiemPk/v27Uu7CE+ePGnejLxSlHMa3gPsNM+sWbPyssV6wRoneaO3h/VTHsErqfz15Pkm9QW6LENvb2/WY1sIrA7VSO6O9XVh/B4HDx5kz549wshrx44d5vJpBs1jKZ+cPHlyzjOVrdGrKLnb09OT8W/fvn27xY4EzTOQfBqbOnVqVjuMY2t1GqIbUHd3d96/wZEjR8zlRkENP4hFCq1VO6KIv729PW9bkgJ2Yo5/YGBAWFZtICxI7h49epSmpqaM3znYeWs03IG4jj8YDKbta715JRU67Y7/0KFDBRVAFHONWYPaVBTi+LsAa3eHMTHEWss1Bui0bNuVWLc/8Z2NKdulQVGUe9BzBmDwHwWgra1t0AMwZcoUnnzySWKxGN2xMfTHaqnzDTDWd5Ku2DiTUklKI4j1ec4555xBv0eE+vp609EF1RrG0EONJ0gPYwH9pD/jjDNs+1id2+l1H1DjDXEkNJn2iN6A5vP58tbLsU7JMiL+Rr/uEA6HpvDnjuRNd+nSpVxwwQVA9mNbCKxPKscjE+iP1TIucJLp1Yc4FJqBqqq0t7ezfLn9QVFVVZtDO6Uund/P5zeyKqyKHG44HBZ+ViwWs9ihcVqifn+35QZ07rnnZrXDOLbWG79IoTMajeb9G1gpRNGQ9WnTpgk/s6enx5TkFnXvxuPxvG2x3kxEHP/06dPTPtN6joQE4xerq6sHtWOw89bWJWxKMiftmTJlStq+mqbh8XhQVZWwWkVM9VLlieCTIsS0APF4nIkTJxakYeXENQaFVfXsBs6UZTkgy/Iy4N3E+iOyLJ8qy3IDME5RlBPAZuDSxPuXAn9NWXc58FrB1pcAHo/HIt8gCRu53njjjSS/HzhOnW8gwe/rJ6DP58uL3zcgSvBOt9BMf/zjH2lvbzdfx+Nx3n33XfO1KKl71lln5X2C2eUjrImzAL8/up64pscHU6ZM4dJLL03bv5Sorq5mxowZAKj4eDvxty0ao5jbbN26NS3/0dbWZj7iN/q6mBg4QTge4FAo+bvkmtg17DCcQFitIq55qPJEzOEjsViMaDS9JsFaxjnef4Imfxf9sVqzqU6SpLzscEKoLdvkrcGSu+ZnlKh7N99yTkjp3nWQ4xdN3xLZk6njfDh37+bk+GVZfga4DPgF8EngR8Am4DuJfwDfAO4D/gR8O7Hul8A6WZZfBV5SFOWQoijbgHZZll8BzgZ+X/yfURyySTS///775vKcDPo8hWjUWKPKd3oWAHDZxD8xMaAPfo/FYjz88MOmQ9uzZ495AjV4ezi19iPimof3epPNU4UkXH0+n1niqOIzI8unj62lM3FzCwQCrF+/viTdudmwaNEic3lr9yI0DebXb6cmwW2fPHnSxueDnVc3mrb2BeeYM3YnTJiQV9mpJEmW7aWcu3dtZZx1hZdxGnBCqM3G8XvTq3oyzQdwont3WJdzmp27g3P8MPK6d3PyVoqiXClY/VDKNu8DK1LW9QHXCj7v67mb6DyySTRbI6pZRZZxWnH22Wfz9ttvA/BObwtzavexoPFdbpzyO35x4HNEtSo6Ojp48sknueGGG2xJ3XMb38Ejabzfe4aZNBw7dmzBtsyYMYO9e3Vdm0ePXk+td4D3LM1gV199dU4DZkqBs88+mz/96U8Eg0G6YuPYM3Aac+v20NK4jS1d+mQvRVFslTF2fZ50mYZCHpdra2tN5z4Qr6XB10etZ4BedGpsYGCAsWPH2vaxyzAb/H5+chEiOwzBwAG1lipvhFrvgMlvDwwM5Dz4RtM0ixPScpJrMGCMYNQ0jQHLCEafFCWm+QmHw0QikUHHjlphfWryEKPKE0HVJLNEE7Ind0UcfzHJ3Xy0+K0Q6fUM55LOim7gMiCu7DlsDj9PwsrvJ7suC3W2p556Kuecc07ilcTTx9ZyLDyRiYETXN38JMbj/I4dO3jppZcsCebMtfuFdtCee27Sye8ZmMu7vQvM1y0tLSWTZMgFPp/P9uSidMuAQffov8mHH35oOsNgMGgmSyVUTkkIs+3pTzrZQqg4cWlp5sqekydPmnXufinCrJr9iTLO/GQaUlFKobb+/n6TV6/xBPF54oTiVea8aL/fn5Eq9Hg8FgdnGcFYYGWPSB5Bp3n0c7impkZ4Pou1pRzs3M1SZQQp58oI6N51HT865WKc7APxerqiYwh4okwInLBtNzFwjDrfAD2xBjqjevTr8/mKSr6sXbvWlAiOagF+d+QmIqqfcxq2I1t47Zdeesm8YKdXH2JCoIPeWL1Ng2bBggUUinPPPZeLLroobf15553H2rVrC/7cQmGle3b3z6M72sj4QKcpjKdpmjkfYO/eveZT2dTqNmq8ITojTXTF9N8oEAhkVcEUIV+Ha432Z1vKSY2qoLq6OiZPnlwSOwqt5c82eauhoWHQ4KGU3bt2J5v7ECF7HX/pFDpjsZiZy/NKMfyeGHHNQzSh6ipJUsanGXFJ5/Ct5XcdP/oPatftMegeexmVvVu3sPr9VAQCAW666SaTx+2ITuSJ9nUAXD7hWaZUpZdytTTq9NC7PeeaDVWzZ88etIQtGyRJ4uKLL+YLX/gCl156KWvWrGHDhg2sXbu2LLx+KsaPH29KTmh4eKtHvxHIY5M3w7feeot4PG6XaRDQPLNnzy7obxA1Tw3WvZtLt24hT2Ri2YbCHL+whn8QOeZUlHL2rlCLP0siFbKPXyw04hdH+9UY13rqbAArRE+H9XmIC5YbruNPwMbzmxO57LXWxerzZMLEiRNtUfWOvnN4o2sxPk+cm6b8jmpLlOmTIsyv1+vErTRPqbpoJ02axPLly1m2bBkzZ84smfhaIZBl2Vx+q/s8VE3ijLpd1CcizL6+Pj744IOSyTSkwq4blO5w33//fbPJLhaLWZr8tJQxizpy7dYdzI5iFTrzHbKeilJ272ZL7GaiVYTjF0uQ3C1Ei9+AqHvXGvHv2LHDpvuVDwpRPc0G1/EnYKVrRBLNoDKrRh+yXmrHDzrVYq3Zf+7E5bSFpjLW3821zY9hcNtn1u+kyhvhUHAaJ6J6F2ogEODMM88siR3DCfPmzTMdTV+8gV19Z+CRNM4bkxwB+cILL5hRZpUnyPTqQ8Q1D/ssv1EpHK4RaU+qOoaRezl48CAPPPAA4XCYAwcOmInKcf4OxgVOMhCvMZ8e8y3jzGZHoQqdYrmG3EZSpr5fbPduITo94BzHbxdoy02L34A14u9NVPVMrz5EbcL5B4NB7r///rxujPF4nPfee4+f/exnJRkib4Xr+BOwOf7wFDRNl/X1oNdkT0rU7/dEGzhp4ffzFaUaDEuXLjV7CuKaj4eP3EgwXs3p9R+yvGkzYKnd720x9zv77LNzrqQYSfB6vSxcmHyqUbr1eb6LGrciJfoGDU0cgDk1+/BIGodC04kkHMLYsWMLpsCsjW36BC8PZ9bvYs2E5zCc/4EDB7j//vtTunWTZZxa4hKbNm1azpU3qbBRPaZuUGEKnSKBtlxq+M19Sjh7t5BSTrBTPWE1gKYlxiQmzoloNGpy9flAqNOTRa7BgFUK5GBwBodDUxjj7+GWqb/BL+lOu7u72wwUsmH37t38/Oc/5/XXX6ejo4OXX345779nMLiOP4GGhgbzcS2iVnMiOgGfJ05zld5AJZqvWyy/nwqfz8eNN95ontjdsSYePXo9AKvHv8C5DduYU7OPqOpje5G1+yMFixYtMummfcE5nIiMp9Hfy7y63WnbmjLM/fbyyULpqlmzZpm5gWORyTxy5EbimodlTVu4fMKzGM7/0KFDZlmubod42lahcDq5m0sNv7lPCWv5C4347Zr8HrP808rzFxIhF6LFb6CxsdF8+lfx8ZvDn6Qz0sS06sPcOOVhPImbUnt7Ow899FDGG9OJEyd44IEH+M1vfmNWiAH89a9/tb0uFq7jTyA1wWs0ck1L0D2zTGG24ss4B0NTUxPXXXed+Xr3wDxe6bwQj6Rx3eTHkCTY1X8G4URkNG7cOLPTdTSisbGR0083dIIktnYnkrxj3kzZMjnlqhT8PuiOx9qpvKv/TH535OPEVC9Lm17nyonPQErJr0+KmkFCsWWcBoRJ5gLLOcVa/LlTPbaIP15c924hXbsGxE1cxSV4s2nxZ2u8u/rqq02b++P1PHD4Vvpjtcyt28PVzU9gBAr79u3jscces/UHhUIhnn32WX7+85/bigQMqKrK888/n/fflAmu47dAPIrxMKA6ltgV4fTTT2fZsmXm6790XEzrQFL3fltPi7nc0tIypAnYcsBa2rmtp4Wo6uO0uo9o8idpnnH+Dsb6uxmI15hTriRJymnK1WA4//zzbb/Fh/2n81DC+S8e+yZrJz2N1fnPrmnF74lxODTFFOyqra21yILkD+c4/nSqJ5+I317Hrx+Dvr6+nJORomapXKgeyM7zFxLxZ9Piz+b4x40bx80332yyAJ3R8fzm8C1EVD8tje+wevyL5rbbt2/n+eefR1VVtm7dyk9/+lNef/1189hJqCxqVPjk1F9jHNvUQoZi4Dp+C0SNXNOq2pgUOEatN0h3tJGTUZ0v9vv9jognGVi9ejUzZ84EQMPLI0fXczI6lqPhZvZZdN2tjVejFaeeeqrJ04fUWnb0nQ3AosZkaeeplmoeg1efPn16XvIIIkiSxKWXXsqKFcmm9D0D83jwyM1EVR+Lxmxl3aQnzWY/s4wzpZqnmJtzsdPADESjUfMm4SFGva8fVZPMGxSQNnIxFakjGAfiNXgl1TaC0egAz4ZszVKDOX6RXk+x4xeF83ZzrOoxMGPGDNavX2/+3ofD03n4yE2omsSKca8gj3nD3HbLli385Cc/4amnnrL9hrNq9nHHzP9kbfNTnFb3EafXJZWB//SnPxWUv0iF6/gtsEb8R8OTiWseJgROMC9x4FP5fSfr271eL+vXrzerBfrjDfzH/o3cc+DzpmObN2+eLQE5WiFJki3qNzp5F455G29iyLbh+PeWiOZJ/f6LL76YlStXmuv2DpzGg4dvIar6WDjmbdY1P46EmizjLGDaVibY6/it5Zz5CbUlJ8hBQ0JHpi9Wb55PdXV1OZ3T1qeC7qh+/p1am3T2Tz31VE4Rd6HJXXBGr0d0I8qmxS/C6aefzlVXXWW+3jMw1+zNuXLiM5xRl9T+MrrPAcb4TrJ+8u+4bfr/ZXJVO13RMfzuyI18YJFEP378uE26pVC4jt+C2tpaU3slrvlpDzfjkTSWjNXv0uWgeaxoaGhg/fr1NpEu4yL1+/187GMfc9yG4YKWlhbTKbWFpnMkNJlab5Cz6t/HQ4w5tXoN/Uf9pXf8oDv/VatWcfHFF5vr9gVP4YHDt5qP8rdMfYDxgU6C8WoOhZJPg8XaYRVqU9GF2jySZka4uQq1vfLKK0mbEjcoowMdstM8Bqw5JeMmfPmEZ83mtu7u7pz46GzJ3cEcrXD8YpGO33qzEtXx5/P0uGjRIlsn/Du9C3nxxGokCW6Y/HtmVu833/NLES4e9yIbZ/07Zze8T0T18+KJi/mP/RvZ2Xc2RrDp9/tZvXp1UR36BlzHnwJ7Waf+BGBER6UQZssXs2fPZsOGDWYzlcfjYfbs2Xzuc58rqlN3pKGuro6zzjor8UoyHY485k1m1Bwk4IlyLDzRTDjW1NSUtNTWwEUXXcQll1xivt4fnM39bbcSVgNmVdHegVPMjupp06aVZBi9eBRk7iWdBw8eNBvMPMS5cNyrALyZKJEFTGoxG6yO562eRewdmEOdb4ArJj5jrt+6dattap0IxUT8ou7dam9xyV3R9K1QjnX8IqxatcpWjvzKyRW8mWjM/MTUB5kYaOechnfZOOunXDT+ZXyeOO/2nMO/79/IKydXEktIRYBO6W7cuJEVK1aUpJKwdLWIowRTp041h50cDk2DMVsB6I420hVL8vtOOJVMmDJlChs2bCASieDz+RwZeTgSIMsy772nTxx7r/ccLpvwHDNrDnLBWH04iLWK5pRTTnHsOF144YV4vV6ee06fIHowNIv72z7FJ6feT7U3zO4S0jwGbAqd8Vqa/F3UegY4mRhgNzAwMOi4TWu0f07DezT5uzgRGc/OvrPM9blGkjNnzuTMM89k586dgMST7ev4wqyfMb9hBzt657OrX28mfOKJJ/jCF74g7DFRVdXinFVLxJ8bp26L+OPpVE/pkrv5cfxWSJLE2rVr6e/vTwgsSvzx+BXU+3o5s34Xn5/5n3glPTfUFprKs8c/xqGQ/eY7ceJErr766pJX7lWmBxkEds2e5PK+4ByMR66ZM2cOiX5NIBCoWKcPOsVgiK1FtSpTQfT0ej0HYy3jNHR+nMIFF1xgo9oOhWbw34du57nja2xy1vPmzSvJ92VL8A5WP3/kyBF279aTzhIqF47TbwKvdK4wqcO5c+fmXHkkSRJXXnml6Qi7Yk38+YRe9nrVpKfMuQldXV288MILws+wO9kwkqQLrhlPSoFAYNBrTMTxlzK5m48W/2DweDzccMMNJpOg4eEPR2/gQHAGXkmlL1bHY0ev4ZcHP2tz+vX19VxzzTWsW7fOkXLtyvUiGWA9+Y9HJhJV9Yei/RZ+f9asWam7uSgDJEmy6fcYdA9ATPWyP5j8XUrJ72fC+eefz5VXJkdVHI80s6VruTn85dRTTy3Zk6FIqM3aOPXSSy9lrPawRvtn1b/PhEAHJ6Nj2d57jrneWrWUC+rr6203vje7F7M/OJN6Xz+XT3zWXP/GG29w4MCBtP2LKeWEVMdfGoVOoRZ/AcndVAQCAW6++WZznkVM83N/2608dPgmfrr/S7zTuxDDFXu9XpYvX87GjRsdLdV2HX8KqqqqzPZrDS+7+s8gGK+2dWGWi993kY5zzz3XTHQeizRzIKhHQ/uDs0xOdMKECWWrdlq8eDHXXXddmob91KlTWbduXcm+x1o/bzQXLm96Fb+ki8QdO3bM5uANHDt2LEHJAKisGKe3/r/aeaF5g5ozZ05BUeU555xjeaLx8ET7NURVHwsa32Vu3Qfmdo8//njamEprTiKfrl0DYo6/8IjfniBPTjgrNLmbirq6Om699VazSi+qVbGr/yxTWgT0aqAvfvGLXHrppQXN580HruMX4OyzzzaXHz16Pf+272v0JaRrm5qaHK3fdzE4qqqqLMNr4KXOVYTiVWztSUb/5Yj2rTj33HO56667WLduHStXruSWW25hw4YNOVfJ5AIrdaV0L+ZouJlxgZOsHp+kUl555RWOHj1q2+/VV181l0+v+5DmqmN0Rxt5x6L1JJrDkAskSeKqq64yOfzO6Hhe7FgNwNpJT1GVcOidnZ385S9/AfRegtdff52HH37Y/BxRl2xeEb9Zx194ctf6hFDlieCRNF0HKHFz9Pv9RdO7TU1N3H777WlDgZqbm7n11lv5xCc+UbYpd25yV4DFixezdetWent70fAQ05L3x0suuaSiefbhgCVLlvD222/rzUIDp/Ldvf9ge78U5W75oqGhwVbBUWqceuqpzJw5kwMHDqDi5fH2a/nsjF9w/tjXeb/vbA6GZqKqKo8//jif/exn8Xq9dHR0WMTjNDPa33xyOXFNv/RnzpxZFHXZ2NjI+eefbz5tvN61lLPq32dGzSEun/AcTxy7BtC1ZgDefffdNG36ukSuIp+Iv9TSzJm1+NO/rxiMGzeODRs20N7eTkdHB83NzUyYMKHs3feuBxOgtraWz33uc8ydO9e8yxvt2NanARdDg+bmZpYvXy58b+HChUXJIwxXSJLEunXrzFK+o+EpvNZ5IZIE65ofxyfpVMrRo0fZvFlXcn311VfNxq5Ta/cwrfowfbE63uo5z/zcFStWFO105s2bZz5laXh4vP0aYqqXhWPeNvsFNE1jy5YtNqdf7+3lsgl/Yu2kJ4HkABPI7mhL3cBVjBZ/vvB4PEyZMoX58+czceLEIZFccSP+DGhoaOCWW24xB0KX8od3UTxWr17NuHHj2Lx5M52dnYwfP56WlhYuuOCCoTbNMYwfP56LL77YbI56+eRFnFG/k0lVx7l4/F94/sRlgJ7onTx5Mu+++25iT42LEtH+lpPLzFzI1KlTS0KLSZLE1Vdfzc9+9jMikQgd0Yls6lzFpRNe4OpJT/CzA1+0cdmNvi6WN73GeY1v4fPoCekP++ey+WRSEynbiEphcrcIrR6hFn8eOj0jDa7jzwKfz1dS6WUXpYEkSSxcuJCFCxeiadqoF6ozsHTpUnbu3MmhQ4eIaz4eb7+Wz8z4JUvHbuH93rNoC08nHo/z4IMPmtH+rJpWZtYcZCBeY6uEKkW0b2DMmDGsWbOGp59+GoDNJ5dxZv1OplUfZs34P/P08bU0+Tu5sOlVFjRuM+vX3+87k1c6V3A0nKx+qq6uzjpYyK7Jb+X4NUAiFArldV4ItfhLlNgdjnCpHhcjHpXi9EGnCdatW2dSkIfD09hychkeSeOa5sfwJigfq3aPEe2/3rWUiKY7zObmZovcdWmwaNEis+JNw8vj7dcQ1zzIYxU+MeU3bJz1U84b8xYSGu/2nMPP9n+Rh4983Ob0a2pqWL9+fVaxOGtAFtd8RFUfXknFb/n7UyuJBoO4a9d1/C5cuBgmmDhxok0w7i+dqzgRGc/EqhOsHGef1DS9+iCn1O4jFK/i9a4l5vpSRvsGjDyEUW57PNLMy526nafXf4iGxNvdLfzH/rt4tP0Gjkcmmfv6fD6WLl3KF7/4xZzpJ2FJZ4E8v5DjdyC5O1zgchguXIxALF++nJ07d3LkyBHimp/H26/h9un/zfKmV9nZdyZHElG0UcnzRvcSc3jP+PHjHZvR3NTUxCWXXMKzz+pNXK92XkiDt5e45mVL11K6Y3Z9qUAgwJIlS1i6dKltbm0uqK6uNpPFIbWaBvqo8oZMvaZQKJRzSa1QrqEInZ7hDjfid+FiBMLj8XDNNdeYpcWHQjN5vWupSfl4iDG56jDz6nYTUf389eRSc98VK1Y4WpK8ZMkSU/BNxcvTx9fy7IkrbE6/urqalStX8uUvf5lLLrkkb6dvfIaBcLw4hc5SaPGPJLiO34WLEYrm5mZb89ULHavpjDTRXHWMFeNeYUVCk0fplgmqumMdO3Ys8+fPF35eqSBJEjfddJOwMqe2tpZLLrmEL3/5y6xataooh1rK8YvWbauK0OIfKXCpHhcuRjAuvPBCdu7cSXt7OzEtwBPHruG26fexYtwreCWVmOpli6VM0lAWdRp1dXXcdtttvPPOO+zdu5eamhpmzpzJ/PnzzRxAschWy59a0tnZ2cmJEyfo6+tj6tSpthyHUKdnFCd3XcfvwsUIhtfr5ZprruEXv/gFmqaxPzibN7oWs2SsPoz+rZ7zTLmRxsbGsnY1V1VVsWTJEpYsWZJ94wI/34BZ0inQ6+nr6+OZZ56xaBbpzW0f//jHaW5uBoobAzkS4VI9LlyMcEyZMoULL7zQfP3nE5fSGWkirAZ47WSyw3nZsmWjqidFpNeTyvF/+OGH/PznP7c5fYCTJ09y7733cuzYMXNb83MroI5/9JwFLlxUMC666CJ27drF8ePHiWpV3HPwDvxSlL5EhUtdXR3nnXdelk8ZWbCXc6YndxVFoaenx3wtoTK7ppXD4amE1WrC4TAPPvggn/3sZ8Wdu67jt0OWZQ/w38Cp6NNJPgtMAL4HqMAXFEV5T5blycCvgDrg54qi3C/Lshf4BTAX2KooypeL/itcuKhw+Hw+rrvuOu677z4ikQhhtYYwSXpi7dq1JePWhwuyJXetTr/B1811zY8yp7aV9vAk/vvQ7UTUarq6uvjtb38rnP87muv4C6V6WoAqRVFWAP8AfBX438BVwC3AdxPb/T36zWAlcJcsy9XAWuBwYt86WZZHr7iKCxdlxJQpU/jUpz5l8taga05de+21nHHGGUNomTMQKXRaOX4DZ9Tt5M6ZdzOnthWA5qpj3DD590joshGHDh0yh9h4pRh+T4y45iGq6XLTkiQJx0eOZBRK9RwCJFmWJaAJ6AfiiqKcBE7KsmyISi8BvqYoiirLsgLMB5YBTyfefxZYDmwp9A9w4cJFEtOnT+fOO++ks7MT0BO6o4nXtyIbx++TIlw+8U/IibnZu/tP4+XOldw89TfMq9vNZRP+xJ9OXGH/TJsks2R+z2iTBSn0jDgBRIFdQDWwAviJ5f2YLMsBwK8oippY1w2MQ79R9KSsS4Msy3cAdwBs3LiRNWvWFGRoNBqlra2toH3LjZFkK4wse0eSrVA6e60UhlMYqmNrnTOcyvE3B45yw5RHmBg4QUz18ueONbzedT4g8dDhT/Dp6f+XpU2v0xGdgNK92PwcUWLX7/cP2blTzLEdbGBUoY7/MiCmKMrpsj4E9V8Ba2+0T1GUiCzLUVmWPQnnPwboBLos2xrr0qAoyj3APYmXmmibXNDW1jZiJmaNJFthZNk7kmyFkWXvUNlqfZKxjl88f+xfuXT88/g8cY6HJ/D7o+tpjySbyQ6EZvFE+zqum/wYV0x8hs5oE3sHTkvsn17DX19fP2S/hVPHtlCOXwI6EssngAbAJ8vyWFmWZ5B05m8Cq2RZ9gGLgB3AZuDSxPuXA68VaIMLFy4qGKLk7sTACT428Vl8njhKl8w9B++wOX0D7/a28ErnCjySxo2TH2ZCQC/rrDa7dkevTg8U7vifB2bIsvwS8Fvgn4F/BJ5JvDZm4X03sfwycLeiKEHgKWCmLMuvACFFUVx+34ULF3nDrtWTXB6I1/Dbwx/n6eNriSUStD6fjyuvvNI2HvPFjovZ0XsW1d4wt0z9DbXe/orQ4ocCqR5FUWLAxwVvLUvZ7giwJmVdDLitkO914cKFCwOBQIC6ujr6+/uJaAHe7TkHvyfKH49fQW9sjLndpEmTuOGGG5g0aRLxeJz29nYOHz4MeHis/VrG+ruYVn2Yj0/5Le/3nQWMfsfvdu66cOFiREKSJObOnWu84tH2G/jdkU/YnP6SJUv43Oc+x6RJuva/1+vlkksuYfz48QDEtAC/PXwz3dFGZtYcZNW4TcDoruEH1/G7cOFiBGPNmjU0NTWlra+treXmm2/miiuuSCtnraqq4uabbzb1d/riDTx4+GYiqp9qr94AZtXiH206PeA6fhcuXIxg1NbW8pnPfIYVK1YwZcoUpkyZwsqVK/niF7/IvHnzMu43fvx4brrpJnMuQXtkCr8/uh5jYuVoj/hHZ2eHCxcuKgZ1dXWsXr2a1atX57Xf7Nmzufrqq3n88ccB+LD/dJ46djWLx77BRwOnmNsZtNBoguv4XbhwUbFoaWnhxIkTvPaaXlX+Vs8i3upZZL5fXV1tThMbTXCpHhcuXFQ0LrnkEluZpwFjvGU5BteUG27E78KFi4qGJEmsW7eO2bNn895773Hy5EmmTZvGeeedx6xZs4baPEfgOn4XLly4AM4991zOPffcoTajLHCpHhcuXLioMLiO34ULFy4qDK7jd+HChYsKg+v4Xbhw4aLC4Dp+Fy5cuKgwSJpW8IwTFy5cuHAxAuFG/C5cuHBRYXAdvwsXLlxUGFzH78KFCxcVBtfxu3DhwkWFwXX8Lly4cFFhcB2/CxcuXFQYRrVImyzL30UfAN8K3K4oSnRoLRJDluXZwJvAjsSqGxVFOT50FqVDluUxwPPAWcBSRVG2y7J8I/AVIAj8jaIoh4bSRisy2LsbaEts8r8VRXl+yAy0QJblJcCPgSi6fZ8GrmX4HluRve8zPI9tM/Aouq1x4JPAqcD3ABX4gqIo7w2dhXZksPdBwJt4/V+Kovy62O8ZtY5fluUFwDRFUVbIsvwNYD36ARyueElRlPVDbcQgGACuAr4PIMuyD/gqsBJYDHwT+PyQWZcOm70JdCuKsmpozBkUB4HViqIEZVn+P8A1DO9jK7J3uB7bE8CFiqKosizfBnwGWIN+bjQAdwNXDp15aRDZC3CFoih9pfqSUev40SP95xLLzwIbGN6Of7ksy68ArwDfUBRlWHXWJZ6WjsuybKyaC+xUFCUCvCbL8g+GzDgBBPYC1Muy/BJ6ZLpRUZTOITEuBYqiHLG8jACnM7yPbaq9KsP32MYtLxuAj9BvWieBk7Isjxsay8QQ2LsDWA08I8tyF/AlRVH2F/s9o5njbwJ6EsvdwLD6gVNwBDgNuAiYBFw/tObkBOvxBf1RdLhjuaIoK9EDgX8aamNSIcvyLOAy4FVGwLG12Pskw/jYyrLcIsvy68BGYDP2YxuTZTkwNJaJkWLvW+jU70XAvwI/LcV3jGbH3wU0JpbHAMMiAhFBUZSwoij9iSj/D8CCobYpB3SRPL6g84/DGoqidCQWH2GYHWNZlhuBXwO3AccZ5sfWaq+iKNHhfGwVRdmmKMr56JTZN7AfW1/iyWrYIMXefzCOraIoLwFTS/Edo9nxbwYuTSxfDrw2hLYMClmWGywvVwB7hsqWPLAbOFOW5YAsy8uAd4faoMGQsLMq8XJYHeNEvuS3wD8pivIBw/zYpto7zI+tNZrvBvoAnyzLY2VZnsEwCwgF9g4kbrLIsnwWcLIU3zNqOX5FUbbJstye4M0PAMOKJ03BhbIsfwc9IbkP/U4/7CDL8jNACzoH/Z/Aj4BNQAj4m6GyKxNS7H0MuEmW5X4gDNw+dJal4WbgfOCbsix/E/g5w/vYiuz9u2F6bFsSOZI4+rG8HT0/9QygAV8cQttEENn7oizLwcT7d5XiS1x1ThcuXLioMIxmqseFCxcuXAjgOn4XLly4qDC4jt+FCxcuKgyu43fhwoWLCoPr+F24cOGiwjBqyzlduMgXsizXAn8HtCqKcl9CK+Ve4OuKogzncmAXLvKCG/G7cJFELfAt9O5ZgJfQa9afHCqDXLhwAm7E78JFEkri/5WyLGvAfmAW8HXgA1mWW4EJwP8FbkXX1Pl34B70a2mDoijPJrov/wX9plGHLg/9xeEmte2icuFG/C5cJPG/Ev/vRHfaInqnLvH/FnQ535+jSz9PAv6/xHv/AHwN/UnhR8AV6PK/LlwMC7iO34WLJAwZ72OKovwWXdclFSr6gJTfJ17/WlGUnwCHgTmJdWsT/38enTqqQ9eAd+FiWMClely4SCIX/ZKgoigRWZaNaW7dif/j2OWTY+g3AENZ0w2yXAwbuCejCxdJ9KBH9KfJsvxJdH6/EDyFHlT9DTAT+BjDa4KWiwqH6/hduEggMbXr+8BY4H4K18H/P4nPWYGe/L0CvULIhYthAVed04ULFy4qDG7E78KFCxcVBtfxu3DhwkWFwXX8Lly4cFFhcB2/CxcuXFQYXMfvwoULFxUG1/G7cOHCRYXBdfwuXLhwUWFwHb8LFy5cVBj+fysawvXZ3DqlAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGxCAYAAAB4AFyyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADMJUlEQVR4nOy9ebwU1Zk+/lT1dvv2vZfLzmXfRFkUZFHxKkIERdxiFMYlk9HEJTEZTTRxmJlf4hLGqKOTydeZOHwTl/lmyMTEmESUIBpB466oiCAKssNlh7t23+6uqt8ffau6zjlVp7u6q6uq4TyfDx9uV/VSp6vrnKee93nfV9I0TYOAgICAgICAQBVC9vsABAQEBAQEBARKhSAyAgICAgICAlULQWQEBAQEBAQEqhaCyAgICAgICAhULQSRERAQEBAQEKhaCCIjICAgICAgULUQREZAQEBAQECgaiGIjICAgICAgEDVQhAZAQEBAQEBgaqFIDICAgICAgICVQtHRGbp0qVYuHAhZsyYgRdffNHYnk6ncd9992Hu3Lk4//zz8cMf/hDJZNLYv2HDBlxzzTVobm7GzTffjJaWFmNfKpXCD3/4Q8yaNQsXX3wxVq5cSXzm8uXLsWDBApx33nm49957kclkSh2rq1BVFdu2bYOqqn4fim840b8DMf4Te/yA+A5O9PED4jsIwvgdEZlhw4bhzjvvxMSJE4ntTz/9NLZs2YLf//73eO6553DkyBE89dRTAHIk56677sLVV1+NV155BZMmTcKPfvQj47VLly5Fa2srVqxYgfvvvx8PPPAAduzYAQDYsmULfvrTn+Lhhx/GCy+8gL179+Lxxx8vc8gCAgICAgICxwvCTp68YMECAMATTzxBbG9paUFzczN69eoFAJg9ezbeffddAMDatWsRj8dx+eWXAwBuuukmzJ07Fy0tLWhqasKKFSvwyCOPoK6uDpMnT8asWbOwatUq3HTTTVi5ciXmzZuHCRMmAABuvPFGLFmyBN/85jdtjzGdTiOdTpODDIcRjUadDLUgdPZ5orJwQHwHYvwn9vgB8R2c6OMHxHdQ6fHLcmG9xRGRscMll1yCn/3sZzh69CjC4TBeeeUVnH/++QCArVu3YuzYscZz4/E4hg4diq1btyKRSODw4cPE/nHjxmHDhg3Ga2fOnGnsO+mkk7Bnzx6kUinU1NRYHsuTTz6JX/ziF8S2hQsXYtGiRW4MlcGuXbsq8r7VhBP9OxDjP7HHD4jv4EQfPyC+g0qNf9SoUQWf4wqRGTp0KOrr63HBBRdAkiTMmDEDX/7ylwEAyWQSiUSCeH4ikUAymURXVxdCoRBBShKJBLq6uixfW1dXZ2y3IzI33HADrrvuOmJbpRSZXbt2YdiwYUUxxuMRJ/p3IMZ/Yo8fEN/BiT5+QHwHQRi/K0TmgQceQDwex5o1a6BpGn7yk5/g3/7t33DXXXchHo+js7OTeH5nZyfi8Thqa2uhKAqhsHR2dqK2thYAmNd2dHQY2+0QjUZdJy08yLJ8Qv54zTjRvwMx/hN7/ID4Dk708QPiO/Bz/K586pYtW3DppZcikUigrq4Ol112Gd5//30AwOjRo7FlyxbjuclkErt378bo0aPR0NCAvn37Evs///xzjB492vK1mzdvxpAhQ2zVGAEBAQEBAYETC46ITDabRXd3NzRNM/5WVRXjx4/HCy+8gFQqhWQyieeffx5jxowBAEybNg3JZBLLly9HOp3G448/jgkTJqCpqQlAzkD8y1/+Ep2dnVi/fj1ee+01zJs3DwAwf/58vPzyy9i0aRM6OjrwxBNP4KKLLnL5KxAQEBAQEBCoVjgiMkuWLEFzczM+/PBD3H333WhubsYHH3yA22+/HclkEhdffDEuueQSdHZ24o477gCQC/U89NBDWLZsGebMmYN169bhvvvuM97zlltuQV1dHebPn4/Fixdj8eLFGDlyJABg7Nix+O53v4vvfe97WLBgAQYOHIivf/3r7o1eQEBAQEBAoKohaZqm+X0Q1QhVVbFjxw6MGDHihI2LnujfgRj/iT1+QHwHJ/r4AfEdBGH8J963LiAgICAgIHDcwJWspeMdO3fuxJEjR5BKpdDd3Y1UKoVUKoWjR48iFAoZ27q7u3H++edjypQpfh+ygICAgIDACQFBZIrAW2+9hU2bNhX1XL0GjoCAgICAgEDlIYhMEYjFYkU/N5VKVfBIBAQE/IKmaUz7E1VVkU6n0d3d7as/IhqNQpIk3z5fQMBPCCJTBJwQme7u7goeiYCAgF9Ip9N44IEH/D4MSyxevNjRPBV0rFmzBnPmzMHRo0fR2NhY8vtIkoQ//OEPRqX5cjF79mxMmTIF//7v/+7K+1UTgjx2YfYtAnQBvl7hoziz8W2c12cNRsS3EfsEkREQEAgKrr/+ekiSxBCwP/7xj4yCs3TpUkyePBmJRAKNjY04/fTT8eCDDwIAVq5cCUmSsG/fPuI1gwcPRnNzM7Ft9+7dkCQJq1atqsCI/MWzzz6LH//4x8bjkSNH4mc/+5mPR+QdrMYeFFIjiEwRoO90+kUPY37/lZjddw1GCyIjICAQYNTU1ODBBx/E0aNHbZ/z+OOP44477sBtt92GdevW4Y033sBdd91ltIU555xzEA6HsWbNGuM1n376KVKpFNrb24kK7KtXr0YkEmEIzvGAPn36oL6+3tX33L59e1WEBSsxdrcgiEwRoBWZlJonNrEQ6YkRHhkBAYEgYe7cuRg0aBB+8pOf2D5n+fLlWLRoEb7xjW9g7NixmDhxIq655hrjDryurg4zZswgiMyaNWvQ3NyM6dOnM9vPOOMMpllwKVi7di2mT5+O2tpanH322fjss8+I/Y899hjGjBmDaDSKk08+Gb/61a/K/sw33ngD5513Hmpra9G7d29ceOGFBgmcPXs2vvvd7xp/79ixA3fccQdGjx6NUCiEzs5ONDQ04JlnniHec/ny5UgkEmhvb3d8PE899RQaGxvx4osvYvz48UYB2ZaWFuM5qqrivvvuw9ChQxGLxTBlyhSsXLnS2K+TpWeffRZz5sxBbW0tJk+ejLfeequssX/ve99DKBTC6NGjKzL2YiGITBGgFZluJU9sYjKpwAhFRkBAIEgIhUK4//778eijj2L37t2Wzxk0aBDefvtt7Nixw/Z95syZg9WrVxuPV69ejdmzZ+PMM88kiMzq1asxZ84cV479n//5n/HII4/g/fffRzgcJiq7/+EPf8Dtt9+OO++8E5988gluueUW3HDDDcQxOsVHH32E888/HxMnTsRbb72F119/HZdeeikURWGe++yzz2Lo0KG499578c4772DPnj1IJBK4+uqr8eSTTxLPffLJJ3HVVVeVrGh0dXXh4Ycfxq9+9Su89tpr2LlzJ77//e8b+3/2s5/hkUcewcMPP4yPP/4YF154IS677DJs3ryZeJ9//ud/xve//3189NFHGDduHK655hpks9mSx37fffdhz549eOeddyo29mIgiEwRoIkMochQREYoMgICAkHDFVdcgSlTpuDuu++23H/33XejsbERI0eOxMknn4zrr78ev/3tb6GqqvGc2bNn4/PPPzeUgFdffRWzZs3CmWeeiVdffRUAsGvXLmzbts01IvMv//IvOO+88zBhwgQsXrwYb775pjHHPvzww7j++utx6623Yty4cbjjjjvwla98BQ8//HDJn/fQQw9h+vTp+PnPf47Jkydj4sSJ+M53voN+/foxz+3Tpw9CoRDq6+vRv39/DBo0CABw44034sUXX8TevXsBAIcOHcLzzz9fVnudTCaD//qv/8L06dMxdepUfOc738Ff/vIXY//DDz+Mf/iHf8DVV1+Nk08+GQ8++KClMff73/8+Lr74YowbNw733nsvduzYYYQFSx37oEGD0L9//4qNvRgIIlME6NBSt5p/XCOTxEUoMgICAkHEgw8+iP/+7//Gxo0bmX1NTU146623sH79etx2223IZDL4u7/7O8yfP98gM83NzYhGo1izZg02btyIZDKJqVOnYtKkSWhra8PmzZuxevVqxGIxnH322ZbHsHPnTtTV1Rn/7r//fu4xn3baacQxAsCBAwcA5Dw6tA+nubkZn376afFfCgVdlSgHZ5xxBiZOnIj/9//+HwDgV7/6FYYPH45Zs2YZz5k4caLxHUycOBEAiO9F36ajtrbWaMQM5L4L/Xtoa2vD3r17i/oueN+nV2OvBET6dRGgFZmMFoGqSZAlzVKR0TStKsxbAgICJw5mzZqFCy+8EP/0T/+E66+/3vI5kyZNwqRJk/Dtb38br7/+Os4991y8+uqrhq/ijDPOwOrVq3HkyBGcc845CIVCCIfDmDlzJlavXo233noLM2fOZG7+dAwePBgfffSR8bhPnz7cY45EIsbf+pxqVonoebbcuTcej5f8WjNuvPFG/Md//AcWL16MJ598EjfccANxXCtWrEAmkwEA7NmzB7Nnzya+F/O4rR5LkgS6TWIx3wXv+/Rq7JWAUGSKAHtRSkj1qDK0IqOqqhFzFBAQEAgSHnjgASxfvhxvvvlmwedOmDABANDZ2WlsmzNnDtasWYM1a9Zg9uzZxvbzzjvP2M4LK4XDYYwdO9b4V4jI8DB+/Hi8/vrrxLY333wT48ePL/k9TzvtNCJkUwjRaNTSQ/LVr34VO3fuxP/5P/8HGzZswN/93d8R+0eMGGF8ByNGjAAA4nvRtxWDhoYGDB48uOzvwquxVwKCyBQBq0JT3T0+GVqRAUR4SUBAIJg49dRTcd111+HRRx8ltn/rW9/Cj3/8Y7zxxhvYsWMH3n77bXzta19D//79MXPmTON5c+bMwebNm7Fy5Uqcd955xvZZs2bh+eefx/bt213zxxTCD37wAzz11FP4r//6L2zevBn/9m//hmeffZYwwTrFP/7jP+K9997Drbfeio8//hibNm3CY489hkOHDlk+f+TIkXjttdewb98+4jm9e/fGV77yFfzgBz/ABRdcgKFDh5Z8TMXgBz/4AR588EE8/fTT+Oyzz7B48WJ89NFHuP3224t+j1LHvmfPHhw5csTY7vXYAUFkikIkEmGksVRP5lJNKAWAlPiE4VdAQCCo+PGPf8yEJebOnYu3334bCxcuxLhx43DllVeipqYGf/nLX9C3b1/jeTNnzjRu7KZNm2ZsnzFjBhRFQTwex5lnnunJOL785S/jZz/7Gf71X/8VEydOxNKlS/Hkk08SShGN2bNn24bVAGDcuHFYtWoV1q1bhzPOOAMzZ87En/70J4TD1i6M++67Dzt27MDs2bMxcOBAYt83vvENpNPpihtdAeC2227DnXfeiTvvvBOnnnoqVq5cieeeew4nnXRS0e9Ryti3b9+Ok046CdOnTyf2eTl2AJA0+hctYImHHnoIyWTSePx3Q57EyNpcquK/bPlnZLV87PHGG2/EkCFDPD9Gr6GqKnbs2IERI0b42mfGL4jxn1jjt+u1tHPnTgwfPvyE7LVUbb+BkSNH4p577uGSGaew+w6WLVuG22+/HXv37kU0GnXt84IGq/F7PXZh9i0SsViMIDIp1VxLJoWskicyQpEREDj+IEkSE2ZWVRXRaBSxWKwqFvITGZs2bUJ9fT2+9rWvVfRzurq6sG3bNvzkJz/BLbfcclyTGBp+jV1ceUWCTcHOT2g1oiiegICAQKBxyimnYP369RUnnA899BCmTJmCgQMH4h//8R8r+llBg19jF0SmSDDVfYmieKKWjICAgIAAcM899yCTyeAvf/kL6urq/D4cT+HX2AWRKRLconghUd1XQEBAQEDADwgiUyT4bQqEIiMgICAgIOAHBJEpEk4aRwpFRkBAQEBAwBsIIlMk6NBSSph9BQQEBAQEfIcgMkWCNfuS6dfEPkFkBAQEBAQEPIEgMkWC55GhFRkRWhIQEBAoHWvWrIEkSTh27FhZ7yNJEv74xz+6ckwCwYUgMkWCl7UkFBkBAYEg4vrrr4ckSXjggQeI7X/84x+ZSsBLly7F5MmTkUgk0NjYiNNPPx0PPvggAGDlypWQJAn79u0jXjN48GA0NzcT23bv3g1JkrBq1aoKjEhAgIUgMkWCm7Uk0q8FBAQCipqaGjz44IM4evSo7XMef/xx3HHHHbjtttuwbt06vPHGG7jrrrvQ0dEBADjnnHMQDoexZs0a4zWffvopUqkU2tvbsWXLFmP76tWrEYlEGIIjIFApCCJTJBhFxpS1VCMUGQEBgYBi7ty5GDRoEH7yk5/YPmf58uVYtGgRvvGNb2Ds2LGYOHEirrnmGvz4xz8GANTV1WHGjBkEkVmzZg2am5sxffp0ZvsZZ5yBRCJR9rGvXbsW06dPR21tLc4++2x89tlnxP7HHnsMY8aMQTQaxcknn4xf/epXZX+mQPVBEJkiQSsyaS0KVctJsyL9WkBAIKgIhUK4//778eijj2L37t2Wzxk0aBDefvtt7Nixw/Z95syZg9WrVxuPV69ejdmzZ+PMM88kiMzq1asxZ84cV479n//5n/HII4/g/fffRzgcJrop/+EPf8Dtt9+OO++8E5988gluueUW3HDDDcQxCpwYEE0jiwStyAASutUY4qEUo8goioJsNmvb/lxAQOD4gPTiGRjWuQfSRyHvPjQ+CJj/vqOXXHHFFZgyZQruvvtuPP7448z+u+++G1/5ylcwcuRIjBs3DjNnzsSCBQtw1VVXGb2JZs+ejfvvvx8tLS1oamrCq6++ijvvvBN79+41lJBdu3Zh27ZtrhGZf/mXf8F5550HAFi8eDEuvvhipFIp1NTU4OGHH8b111+PW2+9FQBwxx134O2338bDDz/s2ucLVAeEIlMkaEUGyPdbohUZQISXBAROCKT2IZzeBym5B/Ds377Cx2WBBx98EP/93/+NjRs3Mvuamprw1ltvYf369bjtttuQyWTwd3/3d5g/fz5UVQUANDc3IxqNYs2aNdi4cSOSySSmTp2KSZMmoa2tDZs3b8bq1asRi8Vw9tlnWx7Dzp07UVdXZ/y7//77ucd82mmnEccIAAcOHACQ8+jQPpzm5mZ8+umnxX8pAscFhGRQJKLRKCRJgqZpxjadyNCKDJAjMm7EiAUEBAKMmkHIKgpCoRCkws92B/FBJb1s1qxZuPDCC/FP//RPuP766y2fM2nSJEyaNAnf/va38frrr+Pcc8/Fq6++ijlz5qC2thZnnHEGVq9ejSNHjuCcc85BKBRCOBzGzJkzsXr1arz11luYOXOmhYKdw+DBg/HRRx8Zj/v06cM95kgkYvytZ1npxMq8TYemacw2geMfgsgUCUmSEIvFCP9LqicFOywrCElZKFr+6xQ+GQGB4x/ahe9i144dGDFiBCQ5+AL3Aw88gClTpmDcuHEFnzthwgQAQGdnp7Ftzpw5+M1vfoOjR49i9uzZxvbzzjsPa9aswVtvvYUbbrjB9j3D4TDGjh1b+gBMGD9+PF5//XV87WtfM7a9+eabGD9+vCvvL1A9EETGAWgi0001juxS8m3LRWhJQEAgaDj11FNx3XXX4dFHHyW2f+tb38LgwYPxpS99CUOHDkVLSwuWLFmC/v37Y+bMmcbz5syZgx//+MdoaWnB97//fWP7rFmz8OCDD6K9vd0zf8oPfvADLFq0CFOnTsX555+P5cuX49lnn8XLL7/syecLBAfBv4UIEJh+S0QKtshcEhAQCD5+/OMfEyFyIJei/fbbb2PhwoUYN24crrzyStTU1OAvf/kL+vbtazxv5syZhl9w2rRpxvYZM2ZAURTE43GceeaZnozjy1/+Mn72s5/hX//1XzFx4kQsXboUTz75JKEUCZwYEIqMA7D9lsyKjGgcKSAgECw89dRTzLYRI0YwN1pXXnklrrzyyoLvV1NTQ7xW96tEo1EiBFUuZs+ezZCtKVOmMNu+9a1v4Vvf+pbt+9DPFzg+IRQZB3DSpkAoMgICAgICApWHIDIO4KRxpFBkBAQEBAQEKg9BZByADS0JRUZAQEBAQMBPCCLjAFxFJiQUGQEBAQEBAa8hiIwD8BpH0oqMIDICAgICAgKVhyAyDuDEIyNCSwICAgICApWHIDIO4CRrSSgyAgICAgIClYeoI+MAPEVG1JHxH5qmYfv27WhpaUEymcTAgQMxatQo0fNKQEBA4DiGIDIOwFNk6MaRIrTkLQ4ePIjly5dj165dxPZYLIa5c+di2rRpopmcgICAwHEIQWQcgFZk0mo0v09kLfmG9vZ2PPXUU+jq6mL2dXd344UXXoCiKJ6VThcQEBAQ8A7CI+MAtCKjQUa3kiMztCKTyWSgKIpnx3YiY/ny5ZYkxoyXXnoJhw8f9uiIBAQEBAS8giAyDkArMgCQ6gkv0R4ZQKgyXiCVSmHLli3Etj6RwxhbuxkSVGOboijYtGmT14cnICAgIFBhCCLjAFZERm8cKYiMP9i5cyfRGC4mp3DzsKW4bsgyTOu1lnjujh07vD48AQEBAYEKQxAZB5AkySJzKafIROUMZJChpGox/KbTaezduxft7e1+H4pj0MfcP3oQsVAaADCkZjf3uQICAgIC1Q9h9nWIWCxGKC3dVAp2Uq3N7wu4InPgwAGsWLGCUCrq6+vxpS99CZMnT66KLB+aLNbISdPforaPgICAwPEOocg4BG34TVVp48jPPvsMS5cuZcIt7e3t+NOf/oQ//vGPRMgmqEgmk8TjmlD+O6fDfUE+HwICAgICpUEQGYdgO2BXX+PI1tZW/PGPf4SqqrbP+fjjj/HRRx95d1AlgiYncROZtFJkqoGcCQgICAgUD0FkHIIhMpzGkUFVAD788EPm2Gh/DwC88cYbXh1SyWBDS/aKjKqqyGaznhyXgICAgIA3EETGIdjQkn3jyKAqMtu2bSMeT6jbgMVjfoIrBv6e2H748GG0tbV5eWiOwRCZkMkjE2KJZFDJpYCAgIBAaRBExiHY0FL1KTJ0YbipDWsRkbM4rWE94jJZWO7IkSNeHppjFFZkyFBSUMmlgICAgEBpEETGIXiNI6tBkdE0jTHI1oby5MWsaADBJWM6WEUm/zgkqQhLGe7zBQQEBASqG46IzNKlS7Fw4ULMmDEDL774IrFv/fr1uP7663HuuediwYIFeOmll4x9GzZswDXXXIPm5mbcfPPNaGlpMfalUin88Ic/xKxZs3DxxRdj5cqVxPsuX74cCxYswHnnnYd7770XmQy5MHkNXuNIWpEJIpFJp9OMyde8+NNkLOgLP03K4jKVxVQF5FJAQEBAoHQ4IjLDhg3DnXfeiYkTJxLbDx06hLvuugs33ngjVq9ejV//+tcYP348gNzCedddd+Hqq6/GK6+8gkmTJuFHP/qR8dqlS5eitbUVK1aswP33348HHnjASAnesmULfvrTn+Lhhx/GCy+8gL179+Lxxx8vd8xlgVFklOrKWrIiJnFO7ZUgExlN07ihJaB6wn0CAgICAqXBUUG8BQsWAACeeOIJYvuyZctwySWX4JxzzgEANDY2orGxEQCwdu1axONxXH755QCAm266CXPnzkVLSwuampqwYsUKPPLII6irq8PkyZMxa9YsrFq1CjfddBNWrlyJefPmYcKECQCAG2+8EUuWLME3v/lN22NMp9NIp9PkIMNhRKNRm1c4A/0+ZEE8dtHkpTj7gc7OTuKxDIUgYE7GoG/3a4yF1CXAWmFy63j9Hr/fONHHD4jv4EQfPyC+g0qPX5YL6y2uVPbduHEjJk+ejEWLFqG1tRVnnHEGfvCDH6ChoQFbt27F2LFjjefG43EMHToUW7duRSKRwOHDh4n948aNw4YNGwAAW7duxcyZM419J510Evbs2YNUKsWEeHQ8+eST+MUvfkFsW7hwIRYtWuTGUJksHjK0RC6a7e3tgevvYw7rARYLP/X4wIEDBcewa9cudw7OIWhSBlgoMtR49u3b5/o58Wv8QcGJPn5AfAcn+vgB8R1UavyjRo0q+BxXiMzBgwexcuVKPProoxgwYAB+/OMf45FHHsG9996LZDKJRCJBPD+RSCCZTKKrqwuhUIggJYlEAl1dOfMp/dq6ujpjux2RueGGG3DdddeRg3RRkaFBmn3JRVNVVYwYMaIin1sq6MW/kKckFovZjkFVVezatQvDhg0rijW7jQMHDtBHxJwDejzxeNy1c+L3+P3GiT5+QHwHJ/r4AfEdBGH8rhCZWCyGiy66yFggbrzxRtx8880AcgsHvXh2dnYiHo+jtrYWiqIQCktnZydqa2stX9vR0WFst0M0Gq0YabH6bLrXErGvuztwP2zatxMP0USGNSwXGoMsy76Mkx5LTO4G3R6KDpWl02nXj9Wv8QcFJ/r4AfEdnOjjB8R34Of4XfnUMWPGEI/NZeBHjx6NLVu2GI+TySR2796N0aNHo6GhAX379iX2f/755xg9erTlazdv3owhQ4bYqjFegP5sDSGk1QgAlshYeTj8BtObiFJkqskcy2tPoENkLQkICAgc33BEZLLZrNGvRv9bVVVccsklWL58OXbv3o1UKoWnnnrKMP5OmzYNyWQSy5cvRzqdxuOPP44JEyagqakJQM5A/Mtf/hKdnZ1Yv349XnvtNcybNw8AMH/+fLz88svYtGkTOjo68MQTT+Ciiy5y+StwBjprCcg3jqTVDCB4CyeTrkwrMqHqJTJ0DRyguoiZgICAgIBzOCIyS5YsQXNzMz788EPcfffdaG5uxgcffICzzjoL1157Lb7xjW/g4osvhqqquOOOOwDkQj0PPfQQli1bhjlz5mDdunW47777jPe85ZZbUFdXh/nz52Px4sVYvHgxRo4cCQAYO3Ysvvvd7+J73/seFixYgIEDB+LrX/+6e6MvAVZEprsnBTsWYklL4IkMo8hUj4LBqktCkREQEBA40eDII3PPPffgnnvusdx39dVX4+qrr7bcN3HiRPzmN7+x3FdTU4MlS5bYfuall16KSy+91MlhVhSyLCMSiRCF+XRFJianIUGFZuKHQVMAmHBMAY9M0I7fDHYs7LHSWUtBHo+AgICAgHOcuM6kMsBW9+UbfoOEgqElCyJj9jwFCYWK4QHBPx8CAgICAuVBEJkSwPZbqp7GkQVL+lMKhqqqyGazFT+uUsASGdYjU00Kk4CAgICAcwgiUwJ4ikzQPRmMr4QiLrSCAQR38ec1jNQhFBkBAQGB4xuCyJQAWpGppsaRhZsspgCQoaRqITJW6dc0kVEUJbAKk4CAgICAcwgiUwJoRYbXODJIJCCbzTLdw2mPjCxpiEhkr6qgkTEdNCkzk0hVy1XGs/LNBOmcCAgICAiUB0FkSkC1KjKFOl/rqJZaMrwMrPZsPQDrUFmQzomAgICAQHkQRKYEsETG3iMTJBJAKxiAyigyQLDHYAYva6k12wsAEJYVhKQM93UCAgICAtULQWRKABNaItKvg6vIsKGYNGSJTa2uhkwfRVGQTpMhMF1J6laiSCr5nlhBN2ALCAgICJQOQWRKAD+0FNxFs1CfJR1BJmM6rI5JD5Ol1JqqSokXEBAQECgdgsiUAJ4iE+SwTKFieDqqwSPDhsnySlJSjVdVSryAgICAQOkQRKYEcBWZUHDVDF7qdVuPORaojtASfUxhKYOwrOT2KTVcA3YQxyMgICAgUBoEkSkBvPRrOrQUpEWTp8gczfQ2/q4GBYNn9M2FluxT4oM4HgEBAQGB0iCITAngKTK0mhGkRZNHZI5lGo2/q1GRqTGNJanG0a0IRUZAQEDgRIAgMiWAJjIqQsiouUbiVmbfoDRdZCvhWisy1dAxmg2T5Y+xW6nh+paCRC4FBAQEBMqDIDIlgA4tAfnGkVaVZIOycLKKTP5YjxGhpeATGV5oKanyPTJBOR8CAgICAuVDEJkSQCsyQL4oXpAryfLMvkdNoaUgp5Dr4IWWUgUUmSASMwEBAQGB0iCITAkIhUIIh8PENl2RyZEAldgXFCLAdr42eWSyjfntVaDIsDVxzGbfuFBkBAQEBE4QCCJTIujwUndP5pIk5SrmmhEUIsBTZLqUBLrVKACWyKTTaagqSc78Bk1GzGGyJJW1FAtwI08BAQEBgfIgiEyJoMNLvEqyQVAAVFW1bbKYUcPIahGDjNEF8YBgjMEMriKj1BBZS0HOJBMQEBAQKA+CyJSIamscaVnSv4fI6H2JyPAYiSCMwQzW7GvyyKhxpLUoVE0CEOzaPgICAgIC5SFc+CkCVmBCSwFvHGlV0l8PLSVVkshE5QxkKFARMp4btMWfNfuSigwgoVuNIR5KMYqMoijIZrOMzymI6OzsxMGDBxGPx9G/f3/Isrj3EBAohM7OTuzbtw/RaBQDBw5ENBr1+5AEKojgz+QBBb8oXvAUAJrIhKUMInI2t49SZIAcGUuqCeNxEMiYGbzQUrJnHDqRscskCzKRaWlpwYoVK7B7925jWyQSwbnnnouzzz4boVCI82oBgRMThw8fxvPPP4/t27cb2yRJwrRp0zB37lzLjFOB6kdwZ/KAg/XI2LcpCAIJ4HW+1hUZIjwWIolMEMiYDk3TbP0+iiYjq0UA6MSs1bK2TyqVQiKRYLYHAVu2bMGvf/1rppBiJpPBK6+8gm3btuGrX/1qVakzBw4cwF//+lfs3bsXHR0dGDhwIE466STMnDkz0IRSoHqwd+9ePPHEE1AUhdiuaRref/99bN26FTfddJNlHTCB6kb1zIQBAxtasm8cGQQSwGtPkNIVGSXYqpKOdDrNLPJG52slDiDnjdGJWVhWEJKyxPODQC6t0N7ejmeffZZbDXrbtm3461//6uFRlYe33noLS5cuxSeffIIjR44gnU5j165deOWVV7B06VIcPXrU70MUqHKk02k888wzDIkx48iRI1ixYoWHRyXgFQSRKRGMIqPYm32DsGjyUq/ziox9pk+QiIzVsejHaw6Ppaqw39Inn3zCnKuonAJAEpt33nknMK0vePjiiy+watUq2/T9Q4cO4fe//z13ARIQKIQtW7YwhDgmpyCDvIFZv349urq6vDw0AQ8giEyJ4HlkqsHsS9RdsfHImBGEMeigSYgE1ehwbSYvvEyyII3HjC1bthCPT058irtGP4Trhz4JM5lJJpPYt2+fx0fnHKtWrSr4nD179mD9+vUeHI3A8Ypt27YRj4fU7MKdox7G3498FBGJrOu1Y8cOLw9NwAMIIlMi6NBS0Evi80JLujk2RXlkzAjCGHTQxxIjjL5x429eJlmQxmPG4cOHiceTG9YhJKkYEd+JPhFy35EjR7w8NMdoa2vDgQMHiG0zG9/AtYP/B/0iB4ntW7du9fLQBI4zHDt2jHg8PvEpInIWjZFWDIvvJPaJUObxB0FkSgSdzhd0RYbX+TpZZR4ZfnsCsyJjP54gnBMamqaho6OD2FYfbjf+rg2RkrhVSn2QQCtGiVA75vV7CScltuDs3m8Q+1paWrw8NIHjDLxyDHTyRTpNKjQC1Q9BZEoET5EJYgE2riKjFPbIBGnhZzOW6BoyPX9XmSKTTCYZr0h9yExkyHMY9Fh/Z2cn8bhXuA1SzoeNhnAbsS/opEwg2GALZNoTmSDNZQLuQBCZEsGtIxMKHgkoxuzL88gEaeHnV/W1UWRCwZ/M2tvbqS0q6sJ5hYZWZKqNyNSG8o/jFClLJpNVYV4WCCbYcHO36W9SgQnitS9QHgSRKRE0kVG0MLJqrkiZ1R2A35M0r/O1ZWgpwB4ZdixmRSbvkeEpMkGczGgiUxvqQkjKZ/vE5eoKLdFEJsEhMqqqIpPJeHJcAscfRGjpxIYgMiXCqqiSrgbQYRlN03yfpItTZIJd1E8H6/ex8chwPD9BGo8OmsiYw0oAG1oKOpGhFaOESVGyKlIY9PEIBBN6yxEzRGjpxIIgMiXCqtS1niUTtKaLmqbZemRUTUK657hTVVpHxqo9AVB9HhmGyITJx/EqDy0lwmZFJgUJZG0ZQWQESgGvrhQARAWROe4hiEyJCIfDTIl4sns0GUry8+LJZDJMQTKy83XOgZnVIlC03JisiIzf4TEdrIzMVikGqi9rqRCROZ48MgD7GxNERqAUFCIyQpE5/iGanJSBaDRKXES6IiNLGqJSGmktrwj4qQAU0/k6BwkppQaJcBfjkVFVFdlsFpFIpJKHWhR4ikyqihUZXuo1QIYDgeAv/DyPDJAj00m11ngc9PGY0dXVhW3btmH//v0GoRw5ciQkPS1LwDPQxCQkZRCW89l/UaognvDIHH8QRKYMRCIRSyID5O4C0qa2BX7eBdALhATFyOJJKnFiX7caQwJdtuGxQBIZokqxddZSrAqzlupDJLGhFZlUKgVVVQPZPFLTtIJEpqbKiBmQG9cHH3yAl19+mfgdrl27FkOHDsVll12G/v37+3iEJx7YGxvy2haKzPGP4M2AVQS6KF4qoI0jeQXkSEWGNiyToaSgqBg84zKZfh2FHg0LsudHB01k6hiPDLvQB3Xx7+7uZsKZVoqMGUE8JzTWrl2L559/3vJYd+/ejSeffBJtbW0WrxSoFHiVvnOPg5dFKuAuBJEpA7Q60R3QxpHF9FnSoRMBPTxG7AvIQsMLLZlVGEC2NWBns9lANSosVNUX0BUZcgIOqk+GVmMAjVGUrGrJBBlHjhzBypUruc9JJpNYvny5R0ckAPDnA4C99lVVDdS1L1A+BJEpA07aFARJkbFTMOjHtKoUBElWURQmlV0PLaWUGDTqJ83LJAvCeHR0dXUxCgZNZEKSymRgBHXxp4lMVEojIpMpstXm+dm0aROxAEpQMbp2C3pTPbC2bNkS+LEcT6CvY7r4ZdCvfYHyIYhMGaAVGV7jSD8vHLakP1sMTwepKgWHjPGOQT9OmpSZt1nVLQnCeHTQYSUJKuoojwwA1FKLf1AVGaaGTJhWaKpPkaE7LJ/e8AH+dsj/4JbhSxGjzsvOnWSjQoHKoZAiE5VZc68gMscXBJEpA1WryHCITIqTshyEhZ89Bo1KJSehKzIROQsZpJwcpMmMJjKJUCdkiY3j07Vkgrr4F0q9BshChkAwfl88tLa2Eo9HxHcAyJXAHxAlu3mz7SYEKoVCRCbo175A+RBZS2WgWhSZYqr66uA1jgzCQkOPJSxljDL+PEUGyJHLpJrI7wvAeHQUqiGjo1pqyRTKWALI+j9AcEmZDtrDZO6DVW3q0vEEem6lbyKBXFG8lCnVv1pSsFOpFN59913s3r0bx44dQ//+/TFq1ChMnTo1kNmKfkEQmTLAVWQC5C8pVZEJ0hh0FNueQIc5Jb4m1E0QmSCMRwcvY6lLiRvtCaqlAzZLZNjjrCaPjKIozPGZQ3/VmEp+vIBXjkFHjCIyQbr27bBt2zb84Q9/IOaGgwcPYuPGjVi7di0WLlyIPn36+HiEwYGgdGWAUWSqJGuphqPIpKrMI0NW9bUgMkoww300eH2WDnQPMP6ulsaRbJ+l6vbI0GoMQCsywf1tHe8oVEcGqL4O2G1tbfjtb39rG6Lct28ffve73zE9pk5UCCJTBo4Hj0zKgUcmCBc/ryZOSmU9MkEN99HgpV4fSA80/qZDS0Fd/IsJLdGKTDqdDmxaLH1+QlKWUMdoRUYQGe9QqI5Mbltwr30rvPTSSwV/Q/v27cO7777r0REFG4LIlAGeRyZIFw43a6nKPDLsWAqFloJJLmnwPDL7TYpMtYaWzGZfvRaZVYG/IJ0TM2gik6AyymjjclAJ5vEIJv26yomMpmn44osviG2ja7/ApQP+hP7R/cT2LVu2eHlogYUgMmWAp8gEiQRwzb5UOCao1YntjoGoUmwRWqoWRYZHZMyKTLV0wOYpMseyjQB0IkNmZgWVADBGX4rI0MblIFwrJwqK8cjQ9ZeCbPY9evQodR1ouGLgs5ja60Nc0G8V8dzdu3d7e3ABhSAyZYBWZLJa2OgeHZSy2IqiMBetfiecKyAXIvZVnUeGU9wPqA5FRlVVNrTU45FRNQkH0/2M7dXgK9E0zbaOjKLJOJZpBJAr8BehqkcHcTwAP2MJqI7zcjxC07SC6ddAdSkyVpmZdT3XT5/IEWJfJpNhCoSeiBBEpgzQiozePRpg7wr07tFeo/jO1zmQ6crBu/h5d1+03wegFJmANo7s6upiSK6uyLRn69Gt1hgEuVZmFZmg9Y1JJpPMMenenk4lgS4lnz1Cm2SDSgBYokkpMiK05AuslBWrSr7VZPZl08nzj2mPHBBcVdZLCCJTBqw6QfNK4vuhALATqmYs/rwCckB1KDJmb0LSSpHhZC0FZTJjq/oqRiimXakHIBnnip7INE0LzDh0WPVZ0sfTpdQSpuxqScEuqMhYGJfplhMC7oNX6dsMej4OcmiJNS/nj70m1M0U9xNERhCZshAKhZiiRCSRIe9K/Vhw6IUhKqW5BeQ0hNCt5pQmekIIwuTMZC2F+KElnkcmCMQMsKghE+qEJOX+7sjWAYChYlgZZIM2kdHHE5NTxm+uM5sgvEzVEpIp7JEJdguM4xXsd6xa3kTSHpmgkX8zWPMy+bhafHJeQhCZMiBJEmpqrM2yIUlFWCJjl35MbE76LOnQ+y1ZTc5+TwC8eLhVaInnkfF7LDp4Rt/2bD2APJGJyhnmdxW0xZ9n9O1UEkRIs2qJDFV5OafIVIdx+XiClXqh3wS099wE6NvNCMq1bwVeaAmonsxFLyGITJmIxWLE4+6AZclwq/paeGSAPBkLSniM9/k1BSr78lLi/R6LjmKIDLn4B/uOjEdkupQEQaCroSKupmkWqhlJbMKyEogblxMNvPmgLdtg/F3dRIYcY7W0KfESgsiUCZrI0L19iH0B8MiQqdd8IhOVM0w81s/J2TJDoUc1yqohZDXWs5TmeH6CMplxiYzSQ2RMBtmgd8DmtSfopIgMrcgEcfHv7u5mCvXRHhlA1JLxA7wwTGu2l/E33QE7yB6ZwoqMIDI0BJEpE3RoqaoUmQJEBghWOCadTjPZMDoxs1JjAECDjG4l5/mJUVlLmUwmEJVk7VKvATa0BAS/A3ah0FK1mX3Z9gQao8gA1dcE83gAL4uxLVOdigzP7AtYZy6e6BBEpkwwRfHMWTIBKCjnpM+SDnPPItonE6TCfkBeZbEbC5AnOVbZDEGY0HgNI/NEJj++oMfI7WrIAECnUstVZIK4+NNEpkZOISyzBJhWZIKoLh1v4LUn6FQSyKqhnu3BqOtVDGi1iC4bUS1tSryEIDJlgjX7BkuR4Zl9rcyxAF9V8nNypj9bgoJYKHfRWzWM1MFLiQ8ikbH2yJhCSwGXlnntCRizbxUoMoX8MTqEIuM9Cnnm7K59TdMC23BRhJacQxCZMsGafYMVluF6ZAqYfYFg1ZLhdbm1Cy2Z9wXN8wPYVPXtITKKJhsExqzIBL0DtiOzb4AUPzvwasjopQoAocj4AZ5HplutQVrrCSsH9CbGCoWaYAbd7O8HHBGZpUuXYuHChZgxYwZefPFFZn82m8Xf/M3f4MorryS2b9iwAddccw2am5tx8803o6WlxdiXSqXwwx/+ELNmzcLFF1+MlStXEq9dvnw5FixYgPPOOw/33ntv4Moxs2bfYCkypXhkgkbGdLDx8MJjAUiFKWixctZ/kffI5NSYXC6p2SNDh5aCRmToidV8B9mZTSCjRYxKxVaKTNAkf17q9cF0f+PvagiTHW/gV/rOKzJRiTX3+n3t20EoMs7hiMgMGzYMd955JyZOnGi5/7e//S3q6uqIbel0GnfddReuvvpqvPLKK5g0aRJ+9KMfGfuXLl2K1tZWrFixAvfffz8eeOAB7NixA0Cus+dPf/pTPPzww3jhhRewd+9ePP74407HWFGwZt+AZy0VY/atEo+M+Q64uwhFBgjGOTGDDlvIyCIRzk1MelgJILOWgnxHpqoq65HpUWQyarjnDjlfqZhe/INYqZhXDO+QqQ8WnUru92/rRAA/tBQziExYVhCSyFBS0H5nOkohMkEj/14j7OTJCxYsAAA88cQTzL7Dhw/jD3/4A26//Xb89Kc/NbavXbsW8Xgcl19+OQDgpptuwty5c9HS0oKmpiasWLECjzzyCOrq6jB58mTMmjULq1atwk033YSVK1di3rx5mDBhAgDgxhtvxJIlS/DNb37T9hjT6TRjlgqHwxZ9kcqDXuGWft9ClWS9rozLmn3NJf3tQkvFjYH+v9Jgq/ry2xPoSNP9lkzzWTKZLPn43Rh/W1sb8dgcttBTrwHa7MtOZH5UXLYaP9ueAER7Al1hSipx1IU7LSsVd3Z2un69lgM+kTErMmz6td+VsCsNr+cAGrwwjNkjAwBRqRtJLUy81o3jdvs7cEpkFEVBd3e3b9dMpX8DdPV8KzgiMjw8+uijuOGGGxiFYuvWrRg7dqzxOB6PY+jQodi6dSsSiQQOHz5M7B83bhw2bNhgvHbmzJnGvpNOOgl79uxBKpViPkfHk08+iV/84hfEtoULF2LRokVlj9EK9CTHy1pqb2831CYvoGmarSKTUcOWdVcAvkfmyJEjzBh27drlxuEWxP79+4nHROdrjtnX3NGbVmRaWlrQ2NhY1nGVM376uzQbfTtMikxKjUPTAEliVYyuri5Pf1c0zOM/evQotVclGkbq0El0TE5DhgLV1IV927ZtDMHzE0eOkB2HzWTTHFqiFZm2tjZfz4uX8GoOoGGVUaajmyIyMbkbSTX/G9y9ezckvQywC3DjO7BSJAulXwPA5s2bmWiI16jUb2DUqFEFn+MKkfn444+xc+dO3H333Vi7di2xL5lMIpFIENsSiQSSySS6uroQCoUIUpJIJAxpmn6tfqKSyaQtkbnhhhtw3XXXEdsqpcjs2rULgwcPJrbzKslqmoYRI0a4ehw8WEnbhequAPzwmCzLxhj072DYsGFFseZy8emnnxKPSRmZ55ExEzPynCQSiZLPiRvj37ZtG/HY3FXZHFrSICOpxlEbSjITmaIoGDx4sGUT00rCavz0XVlcTkKWcrI3QWQIw28SXUp+Em5sbPT0OikEWuEliYwptETduCiKEqhxVAJezwE06DpQ5lpRKaUGaZMZm+6A3dDQ4Mr5cfM7sAp30etILJRGSMpCMalLvXv3ZtYir+D3bwBwgcioqoqHH34Y//AP/2DJbuPxOCM3d3Z2Ih6Po7a2FoqiEApLZ2cnamtrLV+rs+943H7Rikajnkps9LHwjKWpVMrTE211Ueh38zxzLM8j093dzYxBlmVPxkWPxyzlJ3mKjGqvyFiNxynKGb9dxhJAEhkgd85qQ0lGWgZyvy3aeO4VzOOnFUCyhgyryAA5smMmMm6cE7egKArj+dFDSxk1jNZMo7GdNi57fb37Ca/mABp2HhlVk5DWotz5OJPJuHrMbnwHVsksVvWv4nIXOpR8wb8g/Nb8+g0ALqRfd3Z2YtOmTbjjjjtw4YUX4q677sLu3btx4YUXIpVKYfTo0diyZYvx/GQyid27d2P06NFoaGhA3759if2ff/45Ro8eDQDMazdv3owhQ4bYqjF+gF48MloUqpYjdH6XxKcXlZCUQVTOXSj8AnL2Zf2DZPYt1GdJB0+R8dvwx29PQErFeuZSTagbEpVGHhTDL689QZeJyKSqpCieledHJzIdSh1UhIzK0fQ40ul0ICpHH6/IZrPM96vPCTkCIwU6Y9EK7DFplqnjInOJhCMik81mjYqI+t+1tbVYsWIFli1bhmXLluH/+//+PwwePBjLli1DLBbDtGnTkEwmsXz5cqTTaTz++OOYMGECmpqaAOQMxL/85S/R2dmJ9evX47XXXsO8efMAAPPnz8fLL7+MTZs2oaOjA0888QQuuugi97+FMsCSKsm2CJOiKJ4WYeJl+XAVGSK0FJyLn5d+zQstFVJk/EQxVX11VEPXaG57gqydIhPcHkW0YmbOKuvo6a6sj8XqzllkLlUOVt+tfg70Ocxs9I9Sc1kQ+y3RY4pKaVjZeASRIeGIyCxZsgTNzc348MMPcffddxt/9+vXz/jX0NAAWZbRr18/SJKEaDSKhx56CMuWLcOcOXOwbt063HfffcZ73nLLLairq8P8+fOxePFiLF68GCNHjgQAjB07Ft/97nfxve99DwsWLMDAgQPx9a9/3dUvoFxYyfm8kvheTmxslk9xdVeypjofVoqMX6l+3FRLbmVfc6gsOJWKAQtFxqLPko6uKmgcydaQIdsT6KiWNgU0kTGHyjp6FDP9es+Ng7w2gjSW4w3stasZoXB9Pqh2RcZKjQGC36bEazjyyNxzzz245557uM+ZPn06fv/73xPbJk6ciN/85jeWz6+pqcGSJUts3+/SSy/FpZde6uQwPUUkEoEkScTiXqgkvlfu8lKq+uYgIaXUIBHuYjwyqqoim816biwFCqWSl5a15OdkZuW/0ENLWTXEqExEB+xQF2AKpwdlwSzUMFKH+XxVE5Exp14bikwPKQtJKiJSBhkt79Hzmygfz6Cv3bCURUjKmc11ctnNMfsGUZHhERlVkwzjvFBkSJwYTrQKQpIktt9Sz91ArggTad7yU5Epps+SDp2M+a0q8T5XH4+mkXdeNLo5oTI/FxrLqr49RCZXQ4bUlIk2BQGdyAq1J9BBKDIBLiTHmrFNRIZSZADRb8lL8BRafT6oekXGdCN5zGQsF40jSQgi4wLYfkvBaFNQuiKTn5xzFz8pl/ux0GSzWcZfRMbD7X/KPPOyn5MZHVYKSVlDMqbDSgCtyARTWua2J7AjMgFe/HkNI/U6P9VCyo43FCqGB/A9MlVBZEzHfDTb2/ibLsEQlOvfLwgi4wLYfkvB6FXE63zN88gA+THIksb0KfFjci7G2GeHoN6VsYukvT8GALpU+zYFQVn8+aElk0fGRKTpQnJBGQvAjqfOUpExk7LgGpePNxTqswQE99q3A68x7rFMnsgEVZH1C4LIuAC23xK/xL9X4PZZKlKRAdgKxX5MAMUY++ygIYS0mvP00IpMOp32rbw6L/W6w4rImNsUBLADtl4TygzdHJtWI8iavSNVosgU55Exp/cHdyzHG/ihpeokMlxFxkRkhEeGhCAyLoANLQVDkSk1/RoAuhX7cEwQFJmIlDaMfTQpC4VCoEGGykj4NaHxa8hUX2jJ6hh0RcYcVgJIomzVATso4HW+LkaREaGlyoG+bs03jVZm32iVm31bM72MGmWicSQJQWRcAGP2pZsUmvdVQfo1QPdb8t8gy6pL9sXwGhoaQEMnZrFQcIgMYyQtFFoKuNmXDsNIUAzCZa4hA/S0XFDMact5WPmh/ICmaQU8Mrkx8RQZQWQqh0KdrwHSI1Odigw5z+klGGgio6pqIImZVxBExgUwiowSVEXGHFoiF3+6HxZZDdf/u0wnNWRqa2uZ9PC8IpOGBDKU5Ndiw1VkrMy+hEcmeCoGTWTsjL46dDJtlRkXhPGk02mGUOkemS4lDrWnekW1FPc73sDL8NHnBBUhZNTcebIiMkFTMXiKTLcasyUyQDBuZvyCIDIugDX7+u+R4XW+VjWJSVfu3bs38TjoHhmi8zVFympqari+paDcmTklMooWNqRyeiLr7u72vRx+se0JdJCF5EhyGQQCwKbHa/n2BNl8LSie30coMpVDMR6Z3N/2db2sehv5CR6RSZmITFTOIEyV9hBERqAssIumfd0SrxZNqz4kZOdr8tQzREYJliLDhsnMd19kmKympsZRJllQFBlzRoyVRwbIqxi02Rfwf/EvthieDn0ssqQxxcr8HgvAnp+Y3I2InFNozOcneRzVkQmaQsEDL8MnZUFkaI8MELzwUkFFhpO5eCITmbK7Xwvw68j4FVqymkB5na8bGxuJxzxVKQiKTNyiZoSOQopMjdyNVvM+H8aTzWaZc6R7ZNJqxLbAX5dSi8ZIq0nFyBPSrq4uz6pGWx5bke0JdNAdsM03AEEgAMVkLAEkkaZJfxDGUQgHDx7Ea6+9hj179qCtrQ39+/fH2LFjce655yIajRZ+A59QTB0ZAEj3qJj5mlj5QpPd3d2or7e+afADhYgMYfiXu9COXsZjQWQEygLX7OtTaImeQCWoxiRLE5lwOMwsgKmge2RMigzt97FSZHiZZH6Mh1fVN7dIWnSKQ77fkixpqJG7iYwZvxfNUhUZoEfJMBX8CkJIhs1Yyj/uNHUm52VgBWEcPLz33ntYuXIlUYJg37592LdvHz7++GNcd911GDBggI9HaA9+HZn89a/fFIQkFWEpi6yW988FTZHhhcvSaowswSAUGQMitOQCgph+TS9qMTlldFGl05Xj8Th/DAFIKeV6ZBR2PGzbCPtMMj8mMzpsEZbSRiaWXVgJoDtgB2siY4hM2Lo9gQ5akSH2BUDJYBUZc52fPJHRIBu/L7o3WSaT8d27ZIedO3fiz3/+s20dpba2Nvzud78LbDYMm37N98gAwe6Araoq49nRFZluNQoNMtk4NmDXv58QRMYF8BQZOt3XL0WGV9XXeuEPuCJTILQUdEWGNfqa/DEWRl8dyQB3wKY/P1EgaynoRfF4iky7QiqYOimjCRkQjLFY4eWXXy7oiTl06BA++OADj46oeKiqaktk0moEKvK1pIJo9LeC1bEYRKaHKAsiYw1BZFwAvWim1Sj0+cGv3j681Gu6q7IlkQnYxc8NLSmFiUzQPD8MkSlQQ0aHeSILWpsCNv3aFFrKFlBkqoHI2HhkgDzxz42DJAdBGAuNZDKJ3bt3E9vO6PUOvjbkKQyO7SG2b9myxctDKwpWSoo+T9E3NmlTRWnaVB54IhPSFZnCRCaIvzOvIIiMC6BJACDbpvxZZRNVAuUqMt2cRotByFqKc9Kvrcfjf7jPDDZjqVgiE9wYObfztWph9g14s0WeItNho8gEpTdZIRw4cIBQYyJSNy7o/yJG1W7HuX1eI57b0tLi9eEVhGXvtZ6bG3NVcvpxEG7K7EAfiwTVIF7WRCZYiqyfEETGBdB3/0B+cbUq9uXFxeOkz5KVgqEhZNQsCUJ/Iq6xr4jQUhAM2GYwVX0LtCfQwWtT4OcdWSaTYe6SdSKTUmJQNDavgOyAHbxsH74iQ54jIhQboPNiB6vfn97yozFyjNjX1dXlWz8yO9DXrATFWPTp+YDnkQkykYlapJPzFFlBZATKglWKIq8IkxcLp5M+S1YKBpCfnGkDI+DtBKBpmq1HJqOGoWhkFV/r9OtgFfgrObQUULOvkz5LOpKcbB+/F39VVW07X2fVELNYpjjVfYOoyDBjM5E08992z/cbbOq1dQ0ZAEhr9opMkMy+hVKvAVLZDJoi6ycEkXEBkiTZFmCLyFnIIMuce7FwMnVXCoSWrFQlv8mYcRwW35dOZOhJC7BRZDjycjDMvvzO1zq6OGZfPxd/eqGTkTWyw2yJDJ1+bd4XML8PkCebubASmR4f5LFYgQ2b5cdbG+pi2ngEncjwzP/VYvblkTN9DGk1BkXLLdt0UcwTuXGkIDIugesx8SFzyUmfpXg8ziVjUTkDGaSvx8vF3+qzeMX9CikyfhmwzXDankBHMqDSMq89gR2RSQU4/Zpe6GUoxh0wbfQF+OpSEBUZenwJkwojSxph1LZ6vt9gMpZMc2y3Ql/7JrMv5V8KsiJTY0FkAMm235KVcn2iQBAZl8AqAP6aS510vo7He5r3MZlLwUhZpsciQ0FUztVboO++otEoZFkuUG3ZX0Umk8kwn6kTmW41SkjhNHhm3yApMoVqyABAVosYDf2sehT56cugF+7aUKdRh4k2+gJ0Knnw/D407MJmxmMqvBQ0IlNM52sd1aLIFBNaAkARmeBnyHkBQWRcQqGS+Gb4r8gUSWQIA6N/KoYTo6/dWFSEkFZzXhq/zcuWVX17whY8NQYAMloUWTVXI8MqZdkvadlpewIdvPorfi4yTjKWAKrfUhUqMnUhmtgEW5Eptj0BUL1m35hNgT+dyETkLCKicSQAQWRcA78Am/cXDy9ryaoSLsDvGeVnpg+/qi+bsQRYZ5LxPD9eSsx0WCkidSMWyn0+TWQkiW5VIBmGPzpG7qe0zG1PYFFDRoeuDtKkDPD37pLJ6uHUkAGoMFkVKjKJ0PGkyFBm3+NUkQGCFV72E4LIuAR+QTlvwzKKojALs37H261EiaqXQHGhJT9ryTBhMmLSYlPJAecp8V6Ox0lV3z59+jCvNzpgW0jLfk1k3BoyNqElID+WiJxFiLq79JMA8DqTW5mxk0r1KDKapnEVJwBIUI8Db/blemSOLyKTFNV9GQgi4xKcqBmVvni45lhq4Qfyiz/XIOtjvyU2A8tEZKhJSydloVAIkQiZlq0XxoqF0kxWhpcTGjdjiaoh06tXL2NMOvQ7srCsMNKyX4u/0/YEOpKctOUgeX6IGjJWoSUiayk447BCd3c3U5QzQYeWAq7I8PossaGlvNk3Klen2Tdlo8gIIpODIDIuIUi9fdiJU7PN8jFnKwXNsGwcB0dGtup8rcMuCwtgY+W+KjJEDRlykayvr2eIDFlILhgTmdPO1zrMv7EgtSlgFQvrhpE6gpyBRYMlJRpDXGhiE3hFhmP2Pe5CS6KWDANBZFwCL7TkdbdleuKMSGmjaqeV0Vf3YXDH4GNoiZWR7dsTmMfgxIDt5YTGrepLhS3q6upQW0uaZcmJLBhlyrl9loow+wLBIgBMaMm00NMNI4HctaL7rK0ysIIE+lzF5BTCMqnQ0KGmoCsyPLOvBtkw+lsVxAtK7RX6dxK1CZeRtaQEkQEEkXENjCLjo5rhtM+SDr5Hxr+Fn3v3RY2Hp8gEpQO2kxoy9fX1DJHhxcj9WPw1TSvgkeEQmYB2wOZ5SDotiAwg23qwstksstmsxWv8QaGMpdw28jnJZNKTHnHFgpfJSHtkgOAY/XnghctIs29w+635BUFkXAJfzfA2jOG087UO3sIfJEUmXmRoKaiKDLdhpMISGdYjY1Yx/J/IMpkMs1DrdWS6lDg0ylxuhlmRCYpJNp1OI5MhvUf6wp5Uaiz7RgF54h+0DCwavGJ4OmhFBghWeMlJiwIgf+3THhkgOOGlUrKWgnAjEwQIIuMSnNz9e6/ImBZ+J4qMWVXy0ezLK+5nZ/YFrDwypli5j+PheWTojBhrj0ywQktWC5w+wfL8MUAwFRn6/ACasbBb+WN06GPJkX7STB6k8FKhYnhA7ndFV/MOSniJ13tN0WRkqN5rAJDuMfzmyAEZSgo6kdE0IK3lDcvC7MtCEBmXwF00Pb77dxJa4ikYgfXIFJF+DRRSmPxRZNLpNPNZemgppcSQMU1YgHVoKWh3ZPTkGZbSRidiXg0ZgK6/EgwiQy/YUSltVJLmdibvGYssacb4jX0BulMuJrQEsIbfoBCZbDbLFLDU54ScckHXXsorGrKkMZl+QSAyiqIwqqa+btBjIuvI+H8jEwQIIuMSaBKQ9pEEsKEYfp8lHfwWBQHyyHAq+3KJGdE40h9iZnW3rxMZq6q+1mZf+6wlPxZMXp8lnj8GoBSZgJh9uVV9OYpMilNLJkhEhm0nkR/f0Uyj5Xar1/kFq2tVnxNohVYHr7pvEDwyVvOpPufSc5y5urfVjYyfrT38giAyLoG++9cgo1vpkTOprKVMJlPRH1upZl96DFktYnRatSJjXrn97QriqZpE1IgAgq/I0EQmKnfb3u3H43GEw2FuaIle/P24I+O3Jyg9tORXOIZVLPLnzNromwOvum+QQkvs+PKP93cPtNxu9Tq/wH6XmjEnWPljgOAXxbM6BlJlMkM0jqQhiIxLoO/+AX4l2UpePKX0WQKsxiAZdzh0kS9VVT3JxMhms0y2hFGlWI2B/gnzFSZ7RcaryYwtfc/PWAJgEVoKVtaCkxoyTAYWYfYNRiE5niJD1/kxg1fdN0iKDGv2zZ+v/d2DjL+DmoJNX6sRKQNZyt1U2RGZtLkDNhX2CyKRkaEgIufmV5bIgGpTEozq3n5CEBmXEI1GmW28lL9KsuZSOl8DzsmYH80vgTyposcClK7I+BVaIqr62hAZWpFJqTVQtVzM3Epa9rouBlvV1749Qd++fYnH3WrUGEtQmmDyFAurqr46qkGRsUqV1wmLpgEH0gPy2wNaFI/nmbNa9OntQVRkeFlYlkTGVN07KpHETBAZgZIhyzJDZnQSEJUzTAZAEBWZcDiMUIhMlSXJGLmoeDE5O5GRQ6EQwuF8aixXkfGpmze3hoxF6jXAqhiAbNtsUVEUJnW40uB5ZGhFhiYy5vordJjMj7EApXtkiDYFAVVkrNoT6EStS6lFm4lMV0toKcZpWaIj6B2wi0291iEyl0gIIuMieHVLvCyJX2rWktVjfZGRJY1h/l5MAEy1S7nbVkauqakhukU76UjumyJjrhhrUdUXsCIyeUJKV/YEvJ/IWPOofWipX79+zOt5HbD9UDK4RIabtZT/fQXF70PDqj2BrqB1KHUEUaPNvkElMrw+Szp4bQqCaPYtRGSCVhTTbwgi4yJ4vX28Mpdamb30STWrhpClaizQYQtu5pIPcjm3z5JTUmbKWqJDZYFQZGxCS6FQiFH79DuyWCgNGaRXyWsiwzf7kiSsoaGBaeZprr9CN/P0Y1Lmhpa4WUvmDKxg+H1o0GMztyfoUOoIM3O1KDJkaOn4MPvGCoxJKDIkBJFxETxFxqt03+7ubsZXoEv2ubt4ssYCTWR4rRb8qCXDhsnsL/BCY1ERRkbNhZ6sJjMv/Bjcqr42RAZgx9bFKYrn9aLJNftSdWQSiQSbhdWjLkkSe514PRZVVW07XyuazJQvMMO8ryagigw7NvJcZbSokQloVtaA3DUShFYL/C7RdkSmusy+5kzXQqGloDSO9ROCyLgIlgR43zjSauK363wNFKPI+FvWn1dDJqnwFRgr8zLPgO3FePgeGbbztQ6235J9LRkvJzJenyVVkxhPViKRYM5LkKr7dnV1MYRWP0c5NcZ+ykwRHpnqUGTIsFnu96erTrQiY/V6P8CtK6Wwiz7AV2SCEFpiVSYTObMYk1BkSAgi4yJYRcbsyfBGzaAnTBlZo04JvajEYjHIMvkT4DeODEJoydw3ik9caGJpfo3XKfH6+9PmVT39OtfDhwy5cIlMQDpgW9VE0ifW3GRL/r6sFJlUgDpg0wu1BNUYDy9jCaA8MgHpG0WD12eps4fA6L6meCiFkEQqMEHIXHLS+dp4zfFm9lUFkTFDEBkXwWtT4JWaUWqfJR1cg6wPmT52xfAAfnsCgM1iAmhFhlyAKz2eUqr66nDSONLLxd8qq0xXZKyK4dXW1loU+LNPW/abyNSGOg1zOc8fA+R+W3oqOV13ya9Uchq80FJHz/kiDL8B9MmU4pHhmX2DQGRoVUhkLTmDIDIuIgiNI52kXluFXniNI4OgyMQdhJYAewO2JLGdcCs9HprIxOSUUfSKJjK1tbVEKryTfkteTmRMVpmUNsZEtyeIx+OQZdnCI2OvZPhNZOotQi86GhoaqFfzU8mD4C8pJrREGn6D12+JG4YpSpEJnkeGrSPjwOwrCyIjiIyLCIK/xC5jCeB3itbhZAx+Zy3Rk1Yx4yF8Sx7fmZVSQ0aHkw7YfioyvPYEiUTucZA9MowZm8hYIs+JVSq5fo1ZpZIHwSfD+pnY0JKZsAWxum9JdWQ0s9k3eB4Z53Vk7Kt7B+F35jUEkXERThQZrzwyxfZZ0uHEI+OP2ddMzAorTEE4JzrYGjLFZSwB/DYFfpp96e+MV0NGJzJ2WUuA//VXilEsdDQ2NjKhS30suWuFDF0GwSfDa0+QDy0lTPuD1ziSf3NjbfYlWxQEL7TEIzJWY8pqUSMDUzSOFETGVTBhjABkLRVb1VeHE49M0BSZokJlPmZhlVJDRgfjkVHN6ZfBUWTIztfWfZa4HhmfQ0t2qdcA65Gpq6uzDcXmUsnJ35Pfd8q89gSqJhnnqyPgtWTY9GtzGMaayACykYIdk8jXV7qJbzFwqsgA+fBSUNU/LyGIjIsIYtZSsX2WjOc78Mj4bfala3oEXZFh/RemPksFQkts+nUwYuQskeHXkAH4RIauv+J7aIk4R2x6PBMmIzKwvCf+PKRSKW57Aq1nOejM2oeW/FZkVFVlQkH5LtFRaAhZvaxnv33pBb/DS+UQmZwic2I3jhRExkXwspa8kjPLVWT4HaP998g49fwEIZNMRzmKDK+OjJ8xci6RKTK0FOT06zqihQSryDBjCZDfhwZLQqwzzMyELREws6/VNaoXj7Pzxxiv7bn2abOv3ft6Batq7Do5UzSZqcauQycyIUll5mZBZARKBq+yr1cZP+X0WbLaxhtDpS9+VVVtZeS0GoEK0p9Q3Hj8C5WV45GhF0wVISN0SS+Y6XTaswwZvtmXJF/2oSVT1pLPiz/PI9OpFA4tEdV9A9Y4kh5bjbk9gYmkdZhITdDMvlbXaF6RsQsr5aD7ZPwovcCDoihMaEsnJrkxSRavErVkzBBExkXQd/8aQkirOTZt5ZSvRFyWq2CU4JHREDJiyzSRqdQYdFhNLnp9Dqs0y6LSr33KWtI0zSJsYW8kNdeQAawbR5LSMgmvFk03FBkVYeM3Risy6XSaCYdUCul0mgkx6IpMSokxd8bWHhn7mjh+h5Z4xfDMvz9FixjXCe2RSafTvnQk10F/hzIUo+CnXeq1Dp3oSBIQlcgx+ElkLFUmgshYQ6Rg5yGIjIuwWkj1i8uruCw3tFSCRwbIS7Z0kS8AFZ3UeHdfVjKyY0XGQ4XJqk+NHlrqzNZC0Uh1iVZkIpEIUVcGyIcK43KSabbo1UTmBpEBTI0jLX5jXhEAK7VBJ5t0ejxgHVoKsiLDGn3tz5VObILWpoBXb6VYIgOw1X399MhY/b4dExmhyAi4BauS+HrdEquS+JWYoO1CS5rGpvEVo8gA+YvJagyVnADYuy9+uwVJYiVYJx6ZSi6YllV9e0JLdoukGZIk2RbFkyR/evtomsaQP31CVTSZKeSlE5loNMqcK7KQHGlc9IoA0At0ROo2GgzSGUs1NTUIh8MWnrLqUWR4GVn641gojbBEXuNBIjI1RdSQ0RHUDtj0Z4ekrBHy4xGZJIfI+E2avYYgMi5ClmVEIqT8bCgyoTRz1+z2xZPJZJi7fn2Byy385Om2IjKSJNlWw43IWcgg37+SRIbXbqEYoy8QHEWGJjJxOWlMVrQ/pq6ujumBBRRIW/bhjsyq7L5eRyZ3h0+SFZ3ISJJkO5awrCBCyf5+ERmzYmEX+uNmYAWs3xK3zxI1vo6AVvfldb62a0+gg2xTEJzqvtzeURxyJhSZPASRcRk8sywtZ7o9sZXb+VoHtygeVQ/Hy9CS0xoygLNMMi8VGSL1Osum9VohaG0KeFkwdHsCmrzwSZk/BIBVLOzPkU5k2CrFwTEu0+CFljqo0JI51JQIUAp2KcXwdHQHtCheKanXAHmN+VkUMwgQRMZlsHVLvDOXshOlanhk6FBMKBRi1CMdvFoytIrhZWiJqOpbJJHhKTK0H8NLRcZJewIdTjpge7Fo0pNlTE4hJOVUR7qGTG1tLRFO4lX39ctb4qSqrx2RSRHj8D7cx0MpoSX6eVbv4yUq5ZEJKpFJC49MURBExmX4Gcqwaqamrx3FhmKAQmTMOyLD7XxdRCo5wI5F0cLIqjnTrNVdWaU6FDupIUP7Y3Q46YDthyJTjNFXRxDrrzhZ6G1DS6q9IuN3aIk5X5zU8qA2juR5ZLoLeGR4HbCDZPatKdCeQIcgMnkIIuMy/DSXcmvIFJF6rYPfb8m/0FK8hNASL5OMJmWaplVsQuOFLQrVkNERtMaR9GTJa09AExl+RdxgEBle52s7RSatxqBqubsHK0WmUkS5EDRNs+2zlGtPQKp9HQGt7strT+BEkTkuQkuma0YQGQFX4aQAW6VDS05Tr3XwPTJ+hpbyj5NKcUSGl4VllRJfqQmtnKq+OoLukeEpMvSxO/HIBEORsVbN2OtIMsZCj0NVVd9qsKRSKabmk1V7Ah1mzwzdODJQigyhXvDnBNIjUx1mX56BWdEixpjoOjLd3d2e1V8KAhwRmaVLl2LhwoWYMWMGXnzxRWP78uXLce2112LWrFm4/PLL8cwzzxCv27BhA6655ho0Nzfj5ptvRktLi7EvlUrhhz/8IWbNmoWLL74YK1euJF67fPlyLFiwAOeddx7uvfdeX4sxFYNoNEo85hVgq7Qi47TPkg4mtBQUj4yJmBVT3A8AwuEwU3+FrO1D3iFXSv6vhEeG1wHbH0Wm9NBSEDpgM4pFCYoMYK/4Af6Fl1jykTdm02OjtwWpuq8Ts29DQwPxmKfI+BlaKlWRAYJRFDMIcERkhg0bhjvvvBMTJ04ktqfTafzjP/4jXnnlFfzbv/0b/u///b/44IMPjH133XUXrr76arzyyiuYNGkSfvSjHxmvXbp0KVpbW7FixQrcf//9eOCBB7Bjxw4AwJYtW/DTn/4UDz/8MF544QXs3bsXjz/+eLljrij89MiU22dJBz+05B+RIdKviwwtWe3TJwdZ0hCVKn9nZlXVV68ho2lkkz7AQWiJ0wHbD0WmmPYEOrhtCnyqiWOnyCiaTJBGIH+OrIiyUagwlGJKLvi1uNDnytyegDZm09vofkudnZ2+hciYRZ9TkqFXr17ka6vQ7FuIyJDqnz9FMYOAcOGn5LFgwQIAwBNPPEFsv/LKK42/x4wZgzPOOAMbN27E1KlTsXbtWsTjcVx++eUAgJtuuglz585FS0sLmpqasGLFCjzyyCOoq6vD5MmTMWvWLKxatQo33XQTVq5ciXnz5mHChAkAgBtvvBFLlizBN7/5TdtjtCozHg6HGaWkXOgyLS3XMopMAY+MmyX+6R9uoT5Ldp/txOeTyWQq1qaA2/mamrRisRh3POaJPEWF+9LZ/PiSyWTR47H7DdBIJpOMzGtU9VUSUKmOvYlEwvI9aUJmXlytSpRXsn0EYGUe5YeWzMdD/8Z4oSWvxkIvzvnKywnQ93z6eFRVRTQaJX6rdJZfykQ4vRiLFdra2ojHdTbtCXSoCKNLiaM2lGSyljKZDFKpFHHNeTUmniJDh2HoGwKe2be7u7vkMZT7HZRq9gXyiowsaaihfmudnZ2enJdK/wasamrRcERkioGiKNiwYYNBerZu3YqxY8ca++PxOIYOHYqtW7cikUjg8OHDxP5x48Zhw4YNxmtnzpxp7DvppJOwZ88epFIp2zvwJ598Er/4xS+IbQsXLsSiRYtcG6MZu3btIh7TZIKnyBw9etRQn9zA4cOHicdxTigmlUrZfjZ9Z1pIkaG/A7dAqxhkaIk8/21tbbbjoavIdlPhPvOn7N692zYt3Q6Fxn/06FFqi5ovfU95LyRJwsGDB5lzCbCLUVaLIqOGEZGzjLScSqWwbdu2oiaBUtHa2ko8JkJL1F1+V1cXcX7oc8tLv25vb3f1OrECfY4kqLahF0mScODAAeN3FYvFCCKTpKr7mheXnTt3un7sxWD37t3EY17GkrE9m8gRmTAbSvr888+J0E2l5gDmmCjyHON4ZOiFlVRkyJvdzs7Osn9jpX4H9HVdSmgJyBn+zb+1Sl8zNCr1Gxg1alTB57hOZB577DH079/fICDJZJKJjycSCSSTSXR1dSEUChGkJJFIGGSAfq0el04mk7ZE5oYbbsB1111HbKuUIrNr1y4MGzaMWCyOHTtGPI+nZsiyjBEjRrh2TPSixVNkmpqabD+bniwIjwxl9s1kMsx34BZoFYMsR06OZ/jw4Rg2bJjl+zQ0NBDEgEcu6+vriz4ndr8BGnS15dpQl1FvhfbH1NXV2V64VmGJLqUWveQ2RsUAgIEDB1o2m3QLtF+tlpO1NGLECAwfPtx4zIRjOIpMNpt19TqxAn2O4qEuyFJOobHyx4wcORIADEXGDLMiQ5MyJ78vN/HFF18Qj80p1R0WoSUgN+7+OISonEFE6kZGy89lvXr1wvDhw4u+BtyApmnMb06/sVI0GVmqX9nw4cPx0UcfGY95BfFUVS35vLj9HUQJIsPPxKIN/0cyfY3HiUTCk9+al78BO7hKZJ555hm88soreOKJJ4y7lXg8ziyMnZ2diMfjqK2thaIohMLS2dlpTL70a3WlgOfviEajrpMWHmRZJk4efWzmH6JVXNbNE8/rfE0TmdraWtvPZmp8FFBk6O/ADWiaZisjq5qEtEaeY954eNWWaXKpj8cJCo2f/v3Xc7Jh6uvrbd9LLypnDoEk1Th6oa2HRGgwtwVIpVK2NWnKhaqqtmbfjBpmzg89LppgZbQoFE1GSFIt068lSbLspeUW+OeI9TCZx0LPN7QiY4bb13yxYKv68kNL9Pa6cAeOZvLXTVdXFzGOSswBNNLpNBP+029ucuSR/H307t2beJzRotC0XG8yq9BSucdf6nfApJSba+NY9Mcz39DwMheTyaSnvzUvfgO2n+3WG61atQpPPvkk/uM//gONjY3G9tGjR2PLli3G42Qyid27d2P06NFoaGhA3759if2ff/45Ro8ebfnazZs3Y8iQIVxjp99g/CXmMIbH6deEp6Qss6/3bv9sNssqMnrna5WdtHi/CX6bAvKcVCKrxI3Ua8C6R5E+kYUklTEuV9LsZ/XeZHsC6z5LOpykLVeyvo8OblXfAgUL2Wve/5o4NNhU+WJCS8Eqimd1bZJzAgk6awmQbEsvWM03XsGJ2ZcmZ12qPZE5kcy+johMNps1qp/qf6uqirfffhv/+q//in//93/H4MGDiddMmzYNyWQSy5cvRzqdxuOPP44JEyagqakJQM5A/Mtf/hKdnZ1Yv349XnvtNcybNw8AMH/+fLz88svYtGkTOjo68MQTT+Ciiy5yaeiVAT9ryceCeGVU9s1qESha7qdipchUIoPB6rsppW8UYFWp2L7AXyWyF9yo6qvDSS2ZSi6a7CSpGp9PG31lWWbOgRXxNLJ9ZPa4K00AuDVkqIWeJmWsImOuuxQMIsOOr5jQkimsH4CieOycoBlzKk1kwuGwZViVV0PKjxRsqw7y+rFl1RAUKlzWp08f4jFx/cvel2AIChwRmSVLlqC5uRkffvgh7r77bjQ3N+ODDz7Ak08+iba2Nnz961/Hueeei3PPPRf3338/gNxF/tBDD2HZsmWYM2cO1q1bh/vuu894z1tuuQV1dXWYP38+Fi9ejMWLFxvx57Fjx+K73/0uvve972HBggUYOHAgvv71r7s3+gqAnrBVhJBRcz9GmgS4WRJfVVXmgtAXhG41CpWKIjpRZADJiPvTqpJOat2GVd8ou7uvcDiMcNg+SspVmDzot8RWjHVeQ0ZHUDpg0wtZXE4anhKrGjJ0WCgUCrEEoGcssVAaMsi740pPymzoxdQwUuGnx/MVmcorfsXASY0cY7tJkQlCUTz6u4tKaeM3R88JsVjM0mKgExna7Av4k4KdyWSYNUAnMlZGX3O0A/C/KGZQ4Mgjc8899+Cee+5htk+fPp37uokTJ+I3v/mN5b6amhosWbLE9rWXXnopLr30UieH6Sus7jS71Rgictb2LsCq+qxT8BQMq1bwzohMbqJIoMu2yJcbY6Df04yYnLbtG1Uo1OhEkfEktFRCewIdTONITpsCL4mMuT1BoWJ4OuLxOHEXbCZlNaEUYRiuNJGhz5FZkWm36bOkg6vIUOqSH0RG0zSWqPWMT9Uk4jdkBuGRCQCR4XpJFFbxk2UZkUiEMAinewy/ucq+Ksz38n4QGavP5BEZWpFJCiIDQLQocB1WC7oXlT7ZiV6z7XwtSRKXeFgV+SIl2cpXw+VX9XVGZNhu3vYeGS9CS3VEaKm4Yng6GI8Mp99KJRd/Xg0ZOmPJLnOKZyr32lvC98g4IzJkA0zvi/vRsKpXZfYz0e0JdBCNI8NswobX4Ff1tZ4TeA1waVUmGERGs1WeQ6EQMz+YFRkvFdmgQRAZlxEKhZgwB0kCqNoGLl089AQZkTJG5U6rYniFMkDsqvt6VQ2X2/laZcfDA0+RqbRvybKqbw+RUTWJUS+cKjLEROZhB2xun6Vs8YqMGX72W+J5ZGgzbGFFxr4mjh+KjFV7Ap2o2YWVgOCHlmKlEBnNfBPjf3Vf+jPDUsYIl9GKTCwW47YpEYqMgKuwIwGSVLm7ALf6LBmv57QpoH0lXigycU4p8kLj4XlkrHxLbsKqkqseWupUEtCoqr7OPTL+dMCmJ0kn7Ql0cPsteUgAMpkMc971hb5biSJDpZIXyloi2i0EwOxLk44aOWnUMaLVJjM6lVro9g2r0JLXbQp4TWTpeivFKDJB6LfEq+pbDJFRETYUZprIpNPpivgXgwhBZCoAtukiv02BG3Crz5IOXuNIevH3JrRkTiV3zyNTaUWGVmMkTlVfWZYLFrBz0jjSN0WmSI8Mfd5Ij4x3BMBKXdAXbtqMDRRWZPSaOAB7rSSTSc8JAOuPsT9XZmgIGYofnbWkKIrnCgbjkTFX9bVoWQKw5yZtDit7oCwXgpPUaysiA4jGkYAgMhUBf+GsjALAS72mq+CWpsjYk7FKTADs3Zd7HpmsFs4vNBZZS24uNDSRqQ11GtKxVep1oZCfXR2Z3Hv76JHhVPUtNrSU4igyXhKZsJRGTSj3m6YVi1gsxrSwYLNj8ll+ftTEoeHE/8O8tif0lCOq5HXhdXjJSedr+9CSqbpvKHihpUJEJhKJMP5FvZZMXE4yTUpPlPCSIDIVgBMSEFRFxkkHbK8VGZqYOVVkzAsNrchYlUEvB26mXgMWWUs+dcDmh5aqyyPjpIaMVZ0fK+O8fs1V0uBfLJjU6yKK4Rmv7dlvlXXpN5EpySNjNvtKQSQy/HCZJEm2PjlJYj1ZgsgIlIygKTJWZt9C4I7BD49MGaElu5R4wLowlpvjcauqrw56EutWY4a6ZFUQq1JhDH5oiTxGN4hMJRf/cjKWABhpvmboY6kJdTN3yV7L/WyNHFMxPE5oCSCN27RPxuvMJTa0ZL/o24aWAuaRcarIAM6KYgoiI1AyeCXxK6XI8Bd+FxQZjkfGk6wlIlTmzOxrlU5OpsSTi72b4+HVkLHqs1QITkr7WxVJdAN6fzQzdCKTViPIUubYoolMQEJLThUZwFl/Mq+JDHd8RYaWAP8zl3hmX7vaUnyzb7A9MnS4zI7IJEXmkiAylYCTNgV+KDJue2Q8Dy05TL8G7Cc0WdIQkchQUmUVGXOhNWftCQDrc+e12c+yz1LPXb6VebTorCUzWfaw/kq5igzANy57qS5ZwUmfJbrpH9FvKRwsIkMu+uVnLflBZFhyVq4iI0JLAi6B1ziyUiXx3SYyrKrkrSLDvftyGFoC+OOpZFE8bmipBI9MKBRi0317iF1UziBEkbJKTGT0wihBMSZQuoZMOBy27UbP82H5qcgQna+V4sgm31Pmbwo2257APrTUv39/8rVEdV9/G0e6YvZVTWbfAISW6M8UoaXSIIhMBcBTZLwy+9YQZl9noRigwBg88MhwC+I5bFFg9ZxujxQmtvR9eR4ZoMBE5sGiSRMZ811gMX2WdNC/Qw0hg/TTKkYmk6lYTQw3FBkmtMSp7uulIuO0PcHAgQOJx0FqHGnnkdE0+0WfJtFkZd/gKTKE2dcmpTwojWODBEFkKgCeRyYIZt9yPTKVLuuvqipzp6LfoafVCFSqiFy5dXEqpZKpqmqbtZSr6ktOSMUSGb8bR/KMvsW2JwCszxuvA3alCAAvq6dYjwwTWgqIIpNMJpmCjDqRyRVkJJcAhsgEpLqvoihMNqF+Q5UjJ+Q47BQZntk3aB4ZO3LmpASDUGQESoYTj4wbk7Omabbp14omM5VJg55+bfV++qRFkzKgNEXGi7o4XV1dTNaQTmRyagx5+bmiyPhAZEpJvQZgWRODNC6T310lCICmaVyy2VUk2eSTS/8UGVY1UW39TJIkYcCAAeTrFXuPjJeKjNV3ps+ldKgZqN5eSzyzrz4m5vonSjAIIiPgEngXTyX8Jel0mlkwdUUmN6GS0n5poSXv7mQsiYxNIzXAuo5HoefwUuLdWmjYqr6KbcXYUChU1HkBnHXA9sLsW0rqNZBbOFklI/cdyJLGSP+VGItTxaJ4j4w/GVg0aJIWl1O27Qlqa2stmxKqWm7+SFh4ZLyqUmw1x+hzAq1cSJJkhJSceGSCRmRK8sh42G8tSBBEpgLg3f1X4uKxmhiNztclKhj0BKBBRreSmwRoj0w6nWYWg3JAE4mQlEFEzvkjrIy+harhAs5S4t2a0Fh/TCf0Q6UXkfr6+qLGAfA7YPsdWqLv8gu1XOAqGR4QADY8klcs6HNkVYxMB5u1ZPaU+Ze1xBp9+WEzmqhpkI1zSteRUVXVs7Gwc0LWdk6IxWLGtURf91ktYhCzIJh9eUQmLdKvi4YgMhUAffEoWgRZNSehWxlly72roSd4GQpiodxFSdeQiUajjJxvBSuyQ9ZeIeHm3Qy3z1IJxf2snudFkUKGyHCK4RWTeq2D2zjSB7NvKe0JdPBNst4Tmbi5oaLFQl+scZlUZPyrI8Pts0RlmNXV1SEejzNjNIhMuAN+tSngVvXlmP+t2kfYFcNUFMXTJouaptkamK28gHZERkPIIM40kclkMq5WKg8qBJGpAJxUknWjJL7bna8B63ANj8i4eWfG+n3sU69LHY8XdXHcruqrw2+PDBNaCpfmkQEKFcWrPAHg1fmhCxbyyCbX7BsgRYZX7C+RSECWZeac6cpUSFIZ47JfRKaGMyeYz4XVPMar6u2lKmP1Wfox0WElwJ7IAKJxpCAyFYBTElCuAuB2nyUgJ6PbeX0ichYyyDsXNyfnUip4FgKjyHiQtXTgwAHicbk1ZHQ46YDtTfq1/V2+YyJjOi9+KDJ1BUIvduCFyPys7MuoZ6bx0cXw9HPFEBlOLRmvDL8skTF7SazTlAErRSY/j9FmX8Bbn4zVZxVDZCKRCNMSQycy8VAKEhRy3wkQXhJEpgKwKolP3gWQ8my5JMDtztc6uJlLocqoGFbvZb4LLKUYHlAoJd79sRw7dgybNm0itvWLHDL+LqU9gQ5WxfC2cSQ3/Vot3uwLWCkZ/npkeOX7nSgyWVM42aqyr1cmWXZ8pmJ4FqEl8/86glDdlwnBEAUyrbN7ANL4qyPdY/iNyhlm0feSyLDzjGpLZOg1hafKetk8NigQRKZCsKskmyuJ727aHy8UU6oiA/hXS4YNlZknLfc9MpXIJHv77beJxSoqdWNywzoAQFYNYW93E/H83r17F/3erNkvP5ZKh5YymQwjietEJqXEoGhhYl9ZZl8PQjKsImPqheVAkWF/h5JxzdOEzMobUSk4Nfua/88/z//GkaV6ZIDgpmDTnxWVMkYygF3Gkg5eCvaJaPgVRKZC8LKSrNudr3XwUpYrWUuG2wCzxNCSl4pMMpnEBx98QGw7vdcHRj2R9e2noYtaREaOHFn0+3PNflT6ZTabddXsZzUp6hOnVZ8l56Elf82+5oW6vQxFBsjfRNAGf8A7n4xdVV+gtNBSwidFhueR4YWWrB4Hpd8Sk7HkoA0L3/AviIyAS+D29nHZk+F2VV8dfjWOdBJaKnY8VtK/osk978+ej3Kk/7Vr1xLkQYKCsxrfNh6/eWwm8fxRo0YVXPDN4DWOpBd/wF0CQC+MMrIGQaOJTDQaZWL5NHjZPl5UxHXLIxMKhZgQhq4UxOQ0ZCqE4YVPxqo9ga6e5Yr9kd99UaElnxQZu+weoPCi76S6r5dm31JqyOjw2/AfNAgiUyGw5tLKKQCsgmE2+5a28AOFPDLeKTKk2bc0hYk1YNunYaqqWnIaZjabxTvvvENsm1i3EY2RVgDA550n4VCarJ569tlnO/qMSCSCcJgM4eQr4lbW7MdLvXZaQwYItiLjxCMD8DOwvOhPRsOy2F84X+yPnv7tQ0tmRcafxpE8s28hIsPrtxQLUGiJqCGjCCLjBILIVAj8sIy7cmalFBluf6IKemR4oaVSzb6WdXF6xuOm9L9+/Xpqctcws/ebxqM3j5KkZcCAARgzZozjz+GXKa+c2Y+XseS0hgxQKP26sh6ZbDbLvKe+0HerUWQ08vdfiMiwRfG8VZdoWBb7C9kX+9PPBUNkssHzyJA3N/ZmXyC41X355MwpkbEviifSrwVKBr+6r7t3Z/zO1xXKWqqgR4YejzkURytMxRKZcDgMWSZ/7rxMslImNE3T8NZbbxHbRsa3Y3BNCwBgb6oJO5Ijif0zZ84suqKvGX51wObXkHGWsQSwv8esFkFGzalNVoqMm9k+VmqCvlDTCz3gXJExXy9eqEs0aJJhbk9gVe9Hvz7o85ZU40YY1orIeJGBxTX7OgwtBaUDduVCSyJrScAl8BQZutBXufLs8e6RMd+Z0xkK5dTF0SfAkKQiLJGG2FLGs2XLFhw8eJDYdnbvN4y/3zzaDHPfq/r6epx66qmOPwfwrwM2tz1BtvzQEuBd4UX6ugtJGcPvQ/tjotGoZU0SM9gsP/vifl6Elpz4f8zkhSVsMlXdNw+vMrB4HplCZl82/boaPDL8MfHTr0VoScAl0D+01mwv4+++0cPEPrpwmlPYFcTTNPaCKCe0xFNk3JrMNE2zzVCw6uTtJAvLSSZZKeN58803icf9o/txUmILAOBYphc2down9p9xxhlFtYuwgl+NI91sTwBYF48kO2BT+1wci5v+GMBZdV8/QksJc8YSZ3zxeJxRL/XvI0dcSd+NF2PhhpY4dWSAQllLQfLImMmZ8Mg4gSAyFUK/fv2Ix/u7Bxp/D4ztI/ft319y08VsNssYU/UFIKXWMN17y1r4OdVw3brDzGQyzHehT1o5NYYMw5STTk5kkpV5x7x3715s376d2DazMR9mevvYTGim3inRaBTTp0939Blm8BpHVnIi43e+dk5kZFm2LYoXlTMIuaCU2cGtjCUd3L5RPigyvD5LHYp1MTwgp17S504/t7KkedJh3Qwr1UdXL7JqCIpGZsY5IzLHR2gppcahR/isrn+vCjD6BUFkKoSBAwcSjzuVOsM0NzC6H2ZPRjabxdGjR0v6HMvO1z0TjVXn66B7ZKzeR/8sOhYOBEeRob0xdaE2nNbwMYBc7ZsPWk8n9k+dOtXRsdNwIi1XVpEpj8gAhTpgk7+HICsy3KylChuXrcAQmSJDS4CV4deUuUT5ZCo9lnQ6zSzETuYEJ2ZfP0NLPLNvoToyGmTj91bpWlJBhCAyFUKfPn2YGhq6KpMIdzGTwf79+0v6HHZiV42LnDb6hkKhgnU9zOAblivjkbEq2203nnA4zKQh88C9MytDYTp27Bg2bNhAbDuz8V3DWPl+63QiA0aSJJx11llFv78VnHTA9iprqRSzL1CgT1EF7/65DSNLUGTYrCWz2bdyhMwOTkJLBYkM0W+JfN9Kj8XpzY2TgnjHi9kX4DeOPN7DS4LIVAiSJGHAALJeyP50XqUZFCOJy759ZLipWDAZPnI3ZCl392Jl9HWSIUNfPJUsIqeDzcDqNsp2l2r0Nd6LEyorR5F59913mXYE03u9ByAnfb977Ezi+ZMmTUKvXr1QDvxoHMkrsJY7BvKYijH7AlaE2T4Fu5LqEqnIFN/5Wge3uF8QPDLh4kJLAEtszFWA66haMt4TmXxPIprIRCIRxnfGmH01+xsyX1sUOCAy4XCYGZd+/dWEupmmvoLICJQMOry0v3tQfl+UJDKlGn4r1WcJsOkfY1N7RVVVV+RLXinyUmvI6OC3KShNkenu7rZsR6A31Vzffho6qE7XM2eSlX1LAeOR8cDsl8lkGD+W/lldSpzwAAEuhZYqSADc9shwFZkghJYchM54oSVakan0WNjU67TtzY3VnMBVZFzue+cE5bRdAJw1jjzea8kIIlNBsEQm/3gApci4FVpyq/M1YFNEjpMa68YkwGYnmMbjMpFxo0jh559/zm1H8JZFO4Kmpqaij9kOTNaSBwXxrIqf6Xf5pfRZ0uGkKF4liUyCs9AX052c327B29CSpmm2HiBVk5ibHPpcsf2WTOnZYW9DS/zUa75yYbWtGsy+aZVUW4ohMskTOHNJEJkKgiYyhzL9jNDMQIrIHDt2rKQ7m0o1jATY1vEAv4icG3dmbGjJpMiUOR4nRQqLmdCy2Sw2bdpEbKPbERwssx2BHehJTNHCSKs5/xNt9uvu7i45K84MmsiEpYyRvkrXkInFYkWnlvMVmcqYyq0W+vqezteqJjHErJTQUlaLIKvmvgOrTt6VzCSxKh5Ikk7r9gR2j3lmX69DS05VWpoEKFrYmIetzL5eZPhYKdixHhW3W4kWlW0qUrDzEESmgqCJjKKFcSidS8vuHz3IxDFLCS9Vqs+SDrvMJVnSGFnWjUWGGQ+nI6zT8ThRZIoZyyeffEJN4pVpR2AFXuNIK7OfG4sN3+hbWsYSwK+/UilFJpVKQVHInlS6YtGl1DILSSmhJcDUAbtCCqYdrNoT2FUtliSJWRSZxpEcs6/3oSX7EIzVObAqZFiJPmtOYHXu9WOhVSbAeWhJEBkB11BTU8OYOvXwUkhS0S96iNxXQnipUlV9dbDVSitbS4Z395UsIh7OA1eRcdiR3Mt2BFaIxWJM0TKyAzZ5V+nGRMarIUMbfcvp5u2FR4Zd6DUjZEL7Y6wWeitYEhmPivvRoMcXl5NGEoBV6jX9u6SJTEqtMdQlunFkKpVyRfGzA7/PknNFBrAnMoA3KdhOiYwVGWNrSQkiI1AhMD4ZU+YSHV5yhci41GdJB1/FcB6OKQSWyJg9MuWFlvhNMJ0pMlu2bMGhQyQRJdsRnA232hFYwdzkT4e+aMqSxoTK3JjIKlFDBvAn/ZpOvY7LSSNdnlYszH2IeJBl2bboYlTOMApsJYkMW0PG/lxZqU3s+cuH22hFBqjsQumk87UVaYlEIgxR08lCVGZJix8tFySoRpiWHlM0GrX8/fH7rQkiI+AieIZfOgW7FCJDT1g1lVZkKlwUz0loyU1FxikpK9yOYAKxv5x2BHbgdcCuRPVVJ+0Jik29Bvwx+/IyltoV56nXOngdsCvl97GCk2J/VqSzpqaG+b3qSk5tqAsS1aag3H5xPPDMvoUKxwE50s/2W8o9jshZyCBDjH4QGSep1zpEaCkPQWQqDG7mUpQlMk6MZqqqYu/evcS23pF8heBOSkJ2h8jYV8MNemiJnhAyWhSqlrtTs1Jk7M6FZTuC3vkwk9vtCOzAUzIqcUfmdnsCHfQ4utWYUW69Uh2weQs9rw9RIfA6YNPVfb0MLSVMRI2eF6zGJ0mSreE316aAJLVWGW1uoZzO18ZrAlYUj1fVVxAZ5xBEpsKgiUyHUo/ObO4HR4eWMpmMo1YFhw4douK5GobW7AYApJQYjmR6E8/v06ePgyPPgZHKzUXkKnCHyWQtcdKv3aiLo08atCLDM/1ZtiOor1w7Ajt43QG3UmZf9jzmy63TioyiKK6YMd2uIaOD22/JQ0XGSZ8lu3PFLYpHERlPFRnT99hN3dzYLfpBS8FmyZkbRMab+ktBhCAyFUafPn2oMvqS4ZOpD3egtoxWBbt37yYeN4RbjTLru1NDYT69oVCIIVXFgO1PZPaVeOGRcS/92mpC0MmRlenPajyltCM480yysq9b4LYp8CK0RPguSjf7+mGSpZXMXuFW4+9S+izpsGuACXiryJRTDM9uO6+WjJeKTClFMulrP80hMn6Yfd0gMim1xlCYT7TGkYLIVBiyLDOtCg6YO2FbhJeKBU1khtXkH+9JDSX2DR48uCSPht8eGafxcB54pj8rImM1nrffftu2HYGiyZbtCBobGx0dZ7FgPTLmO7LKKzJEaClbukcmEokwPbPItGXSj1EuAchms8y1M7Rml/G3OfwLAA0NDUW/N7/fUjBDS8UqMrxaMpVUZHjqhRuhpRhl+PUjtOQ0pRywusZk4waAJjKKonjaENNrCCLjAWgis89MZMow/O7Zs4d4PNREZHZTRGbIkCFFv68ZvLL+5XaMpmF1sekycq5IFEnEnIaWJEmyTScPywpCElmgih5PMpnktiP4uK0y7QjswFdk3O23ZNVnSf+MYirFFgIbksmdF0lif2fljmX37t1EDRkJKkbEdwAAOrIJHMr0I54/ePDgot+bV92X7uTtpdnXTDo7ssUV++PWkvFTkQk5v7mhzb68Dtj+EBl7RcYq9RpwXkvqePbJCCLjASqRgt3d3c0U0BtCKDIkcRk6lCQ2xYJXR8Ztj4zVBKJ7JOiF0urYigHvzqyQeXnt2rUF2hGQBfDcakdgB376JbnYlzuJWVUH1hfH3OeSU0m5RIbIXHJZydixYwfxeGBsn0FGdyRHwJw2H41GHZ1Ddhzm64Wt7lsJWJFOPbSkaDJzLRUdWsr645GxU2lVTWJK+Ver2ZdUmYoLLYVCIWafnrkYk9PMjZkgMgJlYdCgQcTjg+n+RiyTDi0dPXq0qAuJVmNCUhZNsVwxtkPpvkTvHcA9IsPzyJQ7MbMLlGZMWrSEbJVSWQzs6nwAfM9POp3GO++8Q+z3qh2BHbzsgH348GFqi2YQGas+S05CS0CBonguN1ykiczI+Pb8PqqI4YgRI4qqIaODJf72ikylQktWfghdQbFqT2BHOlmPjH1oqVKKTDabZSow63NCjoyQY7Fb9Nn0a3/Nvk6ylng3bF7ezAQZgsh4ADq0pGgRHE73BaC3KiAv1GJaFdAx/kHRfQjLufehw0r19fWO4vxmeOmRaWlpIR5HpIwxJqsKnqVUyWWJWXGKzCuvvELddZLtCN6qYDsCO/BCS243jty5cyfxuF/kECJyLnvoWKaR2FdbW+to8Qe8q+6bzWaxa9cuYpseVgKA7RZExgmcFPerlCLDkgo1TzqpsBKvarGTxpGVUmSsviO7mxvAHY9MtZh9AZGCrUMQGQ9QW1vLdM/dl86pNGFZQd8oebdbTHiJ8cfE7Y2+Q4cOLbk0vpdpixs3biQejzDdKR/NkqnkTkMXOniViu0Umd27dzNqzJjaLUQ7AnoBdLMdgR3oSSytRY1meFYemXKyFmgiM9y0+O9Mkos9TdyLgVfZPnv37iXSt83+mM5sLQ6m+xPPHzlypKP35/WN8qoDdrntCXTQikxajSGj5kzZdHXfZDLJKCdugJ1TNNtS/pIkIRKJWL5P0NKvGSJTQko5IIiMDkFkPAIdXionc0nTNEaRGVIBoy/ATswaZHQrOZmW9sik0+mSe66k02ls3ryZ2DahPk9sPus4hdhHf5/FglvgL8QqMoqiYPny5cT2sJTGgv4rjMeVbkdgB/ZOWsqb/aiCeJqmlawAaJrGhGPMKsYOisgMHz7c8Wfw66+4R2ToQoYDovuN+i7l+mOAAmZfj7KW3KqRw+6TjNfTigxQmfAS/ZsNS9mSVFqWyNibfb1QZNyoIwOwc0CSU0vqeK4lI4iMR6DvUvcTmUv7yH0FiMzRo0cZdq1nLGXUMPZ3k59Vqj8GsJZqdUnXzY6+mzdvJu6UZWRxSmJT7j3VKLZ0kWGasWPHlvQ5/H5LrCLzxhtvMKG+2X3WoE80V7hwR3I4NnRMJPZXoh2BFazODdk4kkSpE9mhQ4eY1w6P5xSatBpBSze52DsNxwDO2hSUE5Jh/DG12/P7KFVt2LBhjkNk9DlRtLChYtDjsDJQuwFeMTw6tMQjMtFolEmL1w2/taEkExKvRHjJjaq+QHWZfZ0QGaZxpFBkBCoJp5lLvDAArcYkQu3oHTkGIJetZE5TliTJUfooDV4ROSsiU+oiQ4eVRtVuN+6UP+8cB0XLS8ayLOPkk08u6XOcpJPv3bsXr732GrFtUGyv0Y4gq4awfP9lMF9GsVisIu0IrCDLsm1vn4icRVgi7yxLncjoxb9X+Jhhct6dGgrV9HuTZbkk4uyFR0ZRFCZExvPHOA0rAdYpsUZNnJB7xJ8HXg0Zq9CSHazaFJiN3QkP2hS4UQwPCL7Zl5e1VLLZVxAZAbdBE5m2bINRLIsOLaXTabS2tsIObDGvvF+G9scMGjTINm5cDCRJsr2byTVcI8vFl0JkMpkMG1aqyxObje1kA8YxY8aUXPLfSRbWrl27iLi/DAWXDXjO8Bu8duQ8HKZqjsyZM6ci7QjswG8c6c5E5sQf09TUVFI2mRdEhvbHwOSP6VLiOED5Y0pRliwVzJ7rnFZkgMrI/byqvnQfqUJeM27mkgeGX17na9pLUroiE4SCeLnHqiYho5HXj/DIFIYgMh6hX79+VLhBMsJLDZF2xClPw759ZLjJDC8K4ZnBzVyy8JU4xZYtW4j6LDIUnFL3KYBc6GJLFxlGmjCBJDZO4ESRoXFW77fQVJM7L/u7B+ANKlNpyJAhmDFjRsnHVgp4MXI32hR44Y8BvDHJsv6YA8Z3lBtHfjqMRCIlKZlWRRd1RSYiZxGSyif+hcA2xLTvs1So/QLTb4moJVN5IsPrs1RsvRWrfX4WxLPqF0amlJM+H0dEpgI3MtUAQWQ8gizL6N+fvOMrpTBeJpNhSA5p9HWnEJ4ZvKJ4btSSscpW0heYzzvHIWu6QyknrAQ4U2TM6B05jNl91gAANA14bv9lUJH3D8iyjMsuu8yxp6JcsDFys7ek/ImstbUVbW1txDbdH6NoMvN7K0XFALwxyTqpHzNs2LCSfU524T7Am35LbE+s0hti8hSZunDli+K5FVqiyYCKMLJq7vxamX0r2ZfIiijZZWIBZSgyLlz/1QJBZDwE45Ppzmfe0ETGrpZMS0sLYRCUoGBIT2jpWKYXOhSyXowbRIaXskzfLTu9m8lkMvj888+JbeZspU87SPVl1KhRjlsTmMFTZGIhu2PXcOmA5UbdlHeOnYW93eT3es4555SUdlwu+IpM+VkL9OJfG+pA/+ghAMDe1GCCZAKlKzL0OVW0MNJqLiTqhknW0h9Ta/LHdJEErBR/jA6WlOWvFy8yl1hFxsXQksksTCsyXnhkeD2JnCgyudfHet6TvO41TSMUYrfhlMjwQrX09d+txmxLMBzPjSMFkfEQLJFxnoJN+2MGRA8iKucuOjqsFI/H0adPn5KPVwc3ZblAWf9C+OKLL4h0RwkKxidyYaWMGsbmzpOI55cTVgIsFBnFnpTpOL3hQ4zqyW45lumFVw7PIfb37dsX5557blnHVSp4igwdWirljowmMsNr8mTAqn5MqSTT0iTL6YDt9HfW0tJCLU4qRtTs6PmcGkIdBUpXlgBn1X3dDi1ZtSfQTbm59gTksTkNLfGq+3ofWird7AvwG8ZWMgWbPucyFOMmySpjiVePileCgb5uNE3zxP/jBwSR8RA0kTmQ7g+dINMp2IcPH7a8mHj+GDcL4ZnB98iUNzGzYaWdSIRzC+7mzpMI45skSTjlFLKejFPQd2ZpLWq0i7Ca0OpC7ZjXb5Xx+PkDlyCjke9xySWXMGmqXoEXI3ejjgQvy8ctfwxgPWHr3pKcIkPeSTodC+2P6R89aPzOaH9MOBwuy1vmpN+S24oMtz1Blm1P4DS05HXjSJ7Z16qOjB3C4TAT9tVJQ1Ri59lKLvhupV4DonGkDkFkPARNZLJaFIcz+VYFElWX4eDBg8x7MIXw4vZGXzfCSoCz2itOiEw2m8Vnn31GbCOylSzCSk57+NBgJzvJmDysFJn5/f9spIGvazsNX3SRCtG4cePKWsDLBbcDdpm9Vjo6OpgeSzqR0TRgZ2oYua8MFcPSJNujZIRlBWGqAZ5TAsD6Y8yEbCSxrxx/DMD3yFRakWFVkXx7AtofI0lSQQWNF1qi06+998gUn6Zs1Zst3XOTFJYVxoTtLZGxV5kKERleCYaonHGtBEPQ4YjILF26FAsXLsSMGTPw4osvEvueeuopzJ07F1/60pfws5/9jLgr2LBhA6655ho0Nzfj5ptvJnrqpFIp/PCHP8SsWbNw8cUXY+XKlcT7Ll++HAsWLMB5552He++9t6Kxy0ojkUgwE4MeXorIWfSJHCH3UeGltrY2xnipKzJZNcQUJnOLyDjpt+RkAti6dSsVVlKNbKWsGsLmznHE88ePH1/0e9vBSaz85MSnmNjj1+nM1uLFgxcS++vr6zF16tSyj6kcVLJxJK3GxOSU4eXanx6IbqqLcrmErlIdsFVVtVCWtht/b6eUpXIIGcA3Llfa7EurIrWhfHsCurlnXV1dQcWWnq8yWszwLtGKTCqVYrJxyoVbBfGAAinYkneZSzxFJu2AnOngp2CXH16uBjgiMsOGDcOdd96JiRPJSqavv/46nnnmGTz11FP47W9/i9dffx3PPfccgFys8a677sLVV1+NV155BZMmTcKPfvQj47VLly5Fa2srVqxYgfvvvx8PPPCAcfe0ZcsW/PSnP8XDDz+MF154AXv37sXjjz9e7ph9BdcnQxl+6ewkWo2pkZOG8XJf9yAoGhneKKcQHvE5FfLI0GGlYTU7Ud8zOW7uOglpUwhHkiRXiEw0GmUmb6sCfzE5hQUD8m0IVh6aj6RKLgQXXXRRSTVT3EQlK3vSKsawml3Gokj7Y3r37l1yY1Id3DYFZRCAlpYWKkyrGRlLKSVGmO6B8oy+gJUiY2/2rbQiY/axdDg0+to9R38f2uwLuB9e4nlknJh9rfb71W/JzdASIFKwAcBRYH/BggUAgCeeeILYvmLFClx11VWGAvDVr34Vf/7zn3H55Zdj7dq1iMfjuPzyywEAN910E+bOnYuWlhY0NTVhxYoVeOSRR1BXV4fJkydj1qxZWLVqFW666SasXLkS8+bNMwyeN954I5YsWYJvfvObtseYTqcZb0k4HHZ9wdGzJpxmTwwYMABffPGF8dhsMhwU24+NHZPy+/bvJ96f7a+U98vQYaX+/fsjGo26UgKd/u4KdcAu5jMVRWHDSpxspREjRiAej7synlgsRiwg+uShS8yKFsbcvi+jIdwOANjcORaftJO9k8aPH4+TTjoJu3btqkiZ+WJhpZapmgRZ0iw7YCuKUrRvijH6FvDHlPs98AkA+Tvr6uoq+vO2bdtGPO5H+WM0yh/T1NRU9HtbzQPsObEPLSWTSVd/P+3t7cRjImPJoqpvoc/W507znNqh1KEPjiIeShnXi/nz6Qa55YAbWlLIRb7QfMev7kuuGcXOY4DztYAZkylb0umYAGc3M52dna7PV6WuhcWimJIWrjgUt23bZpAcIOcb+M///E8AufCBuS9OPB7H0KFDsXXrViQSCRw+fJjYP27cOGzYsMF47cyZM419J510Evbs2YNUKmUruT355JP4xS9+QWxbuHAhFi1aVP5ALbBr1y5Hz6dj72ZFZkCUVWS2b99uLDxmAgTwC+H16tWLWYhKBT05EnVkqAWmra2tqM/Vz2MeKsabwkqfU2GlAQMGuDYe+hzQdXH6RQ5jeuP7AHIF+V44cAnoZoKTJk0yzr3T34CbYO+wZKTUGtSGkswkpigKvvjii6IqPafTaSa0SRp9yTBSbW1t2eeHngh5/Zb27dtX9Odt2rSJeDySQ8j69evHGOqLgfk3QKsiZkJGm31bW1td+10DIML2AFnrhS6GB7Bk1QqxWIwhMjoSoQ60ZRuNx1u3bnUt/G+VZaOrFxk1TNRxAuwTJHTQvy+eItPS0oJevXo5Ot5i5wG6tAZPkclkMgXPET0uXi0ZJ9eNU1RqHhw1alTB57hCZLq6uohYaiKRMCbYZDLJyJOJRALJZBJdXV0IhUIEKeG9Vv+MZDJpS2RuuOEGXHfddcS2Sikyu3btctxYrqamBq+//rrxuDXbiJQSQ02omwktpdNp9O7dG7169YKiKDhyhPTQ8Dpen3LKKWXH+nXQcW9eHRlN04r63I8//ph4PKxmt6GAfNE1hpGNm5ubC2ZYFItEIkFI4ObJIxHqxKUDnzMe/+XQ+Wg1TdQAcOGFF+KUU04p+TfgJqw8CV1KbY7IyKyMXFdXV1TncLplRFjKYHBsLwDgcLoPOhXyrnvq1Kllp/p/+umnhHrCa1MQi8WK+p2pqopDhw4R20h/zEhi37hx4xxdN1a/AXphIT0yKeb1bl2nAPDRRx8Rj3mhpYEDBxb12Y2NjcTNDFndt5MgMolEwrXxWIXd9O+P9scAudYlPPNyr169sHfvXuMxr7pvXV1d0eNwOg/QIXWSyJDj6tu3b8Hj2Lx5M3GTy1NkIpGIq783oPS10E24QmRqa2uJu5DOzk4jbhePx5m4aWdnJ+LxOGpra6EoCqGw8F6rfwbvxxqNRj31Lciy7OjkDRgwALIsmyY7CfvTAzEivhONkVbE5CRhojx48CB69+6Nffv2MX1idEWmI5tgFls3f1R0DDZFVMNlPTKFPtcyrMTJVhoxYkTZ/gszeNV95/V7Cf2iuUyd3ckheK/1DOK5o0aNwumnn06EZ5z+BtyE/ns334l2Kgn0w2HEQmk0hI8RC83GjRuL8k7Rd1dDavYgLOey6mh/TF1dHfr27Vt2qr/TDtjFfOf79u2j7urz/phuJYp9lD9m1KhRJZ1L82+ALVLI98i4+dvh9lmyqOpbzGez1X1NN5fhDsD09XZ2dro2Hit1xSAyCktk4vE497PZ697cb4mt7ut0HMXOA7ysJVqRqampKfiePLOvleG/UnOVn/OgK586atQobNmyxXj8+eefY/To0QCA0aNHE/uSySR2796N0aNHo6GhAX379i36tZs3b8aQIUM8bcrnNkKhENOq4EARhfFof0zfyGHDN5BTY8jQR79+ZDPDckAbzrJa2KgeaZW1VKh65Pbt2ymzporxPURG0WR83km2IHDD5GsGz7x8UmKLcRzPHbiM8U9ccsklrtTmcRP0ud7aNcb4+9T6T4h9n3zySVHVPZlGkTV8f4wb30klGkfS9WP6Rg4Z4ZYdqRFEp/hQKFSRlh4q8lWKra4XN70FbOfr0vssGe9BF8XLkqEl3ueXA1qRkaAiFsqRG1qRiUajBRdR+gb3uDX7noCNIx0RmWw2ayxU+t+qqmLBggX4/e9/jz179uDQoUNYtmwZLrroIgDAtGnTkEwmsXz5cqTTaTz++OOYMGECmppyqcILFizAL3/5S3R2dmL9+vV47bXXMG/ePADA/Pnz8fLLL2PTpk3o6OjAE088YbxvNYPOXNrHyVyyIzKFGkW6yYytaq/od0R0QTxVVbF+/Xru+9HS6pCaPegVyaWVb+0aTUjxgPtEhpe9oOP1I+fgIFXtdfbs2a5USnYbtFS83mRMPrWeDOG1trYyJIVGJpNhfCI8f4xbdXS4acslEhl+/Rjyexs6dKgrhQ0rXaWYB54iQ4eWiiUy3KJ4FWxTwKZem0yxDlOvAYtimByzbyUr+zKZWMS4yk+/5rUpEUQGwJIlS9Dc3IwPP/wQd999N5qbm/HBBx/gnHPOwVe+8hV87Wtfw8KFC9Hc3IzLLrsMQI4FP/TQQ1i2bBnmzJmDdevW4b777jPe85ZbbkFdXR3mz5+PxYsXY/HixUb649ixY/Hd734X3/ve97BgwQIMHDgQX//6190bvU+ge/IU0zySITIeFMLTYXUx6RNJXagDiRBpBv7zn//MGIR1qKrKmC/JsBKZ2j9s2DBXw0oAv3cUABxM98Nfj84itg0aNIgwngcJkyZNIh4fzfTBrmTuNzAwdoAxkdP+JBp79uxh+nkNi+dCTW2ZehzL9iaeXykik+SkXxez+Kuqynbu7mk1AQDbu0aS+1zyDljdRevXCz0OwL1aMqqqskSmp5yBosnMDUIx6deAVVE8bxpHsgu+fQimGOUiqOnXUaHIlA1Htx/33HMP7rnnHst9N9xwA2644QbLfRMnTsRvfvMby301NTVYsmSJ7WdeeumluPTSS50cZuBBmy0PdOeJDU1kDh8+jNbWVhw9epTYrisyqiZhb4r0PLhNZMLhMOLxODHhbk+OQt/oEUTkLC4Z8DyebrkaengrlUrhhRdewN/8zd8wIYft27dTF5NmEBlFk7GpgwwrldtbyQq80BIALN9/KZFSKkmSL52ti0VTUxP69u1LVOFd334qhvWQ3VPrP8ZfDs8z9m3cuBELFiywrV5LL/5NsX1GP68dqRGgw5huNct0O7S0f/9+e3+MGmUKSJZbP0aHXjHXfIx0leKsls8cc0uRSSaTTNhQr76ba09AXoslh5YUc3Vf70JLpfZZ0sESmXyoycojUylUOrSU1qLIqiGEZcWycaymaYELj5eLYM7Mxzno0FJGi+FIOneXOyB6ABLyd8OapuHDDz8knh+RujEgmkvhO5AewPT+KadPjB2GDSPL0f/l0JeMcuWn1H2GSfVkOOmzzz6zDDHRYaWm2F40RloBANu6RiGlkhel22ElgL3wj2byCsN7x6ZjV4q8M585c6YRCg0iJEnCqaeSdW42dEwyekidWr8eMP2mUqkUk5VkBuOPMYVjrBpFujUp0otRWosaXiyrgnjFeLHM6BM5bBRc3JkcXhF/jA5+NezKVPelSYTEaU8gy3LRDT6d9FuqJJEhTLEO+iwZrw+IIsOrjeO0yB9g0ziyZx6lMxc1TXO9CGMQIIiMD0gkEsyPb186p9JE5Qx6R0j1hSYyg2v2GhVW6bBS7969i5aMneCss84iHifVBF44cLHx+KL+f7YMMZknNquw0kRTWIkugjd06FDHtRyKAR0K2ZMaij8fuAhrDs/Gi4fINgS9e/fG7NmzXT8Gt0ETmS4lgS1dufpMvSJtGBEnyYmdj0lRFCZjieePcUuNAay8JXwvVqG7Zif+mCFDhhRVX6dY8NWlyvRboklEPNRlzBM0kUkkEkUTUJrIZLWIUbiN9sik02nX6sjw+yw5JzL8gnjeEBlebRxFk5GlqrMXQ2Ssxk42jiQJ//EYXhJExgdIkmQRXrL3ydj1VwKA3cnK+mN0jBo1imlNsalzAj5pz22rDSVx8YAXYL5oUqkUnn/+eePOeefOnVQMXzOylVRNwqcdpxDvXwk1BsiFYkgiKeHd1jPx6pHZUDRyMbv00ktdXeAqhT59+jDnnmf6/fzzzy0X0H379lELkYrhPSSoS4njYJrMuKPVxXJgaZIlOmCT4BEATdNYf4ypfgzdKNLt2hq86r6VUmRYo2/+cWe2tIwlwKZNQQ8xohtHAu6pMtzO1yUoF9xeS5TZt1JERlEUJktNJzK54yHJZTHjslLXdCITlhVEToDGkYLI+ATG8EukYO+jn06Al7FUKSID5HoL0UrSnw8uQGc2t2183SZMqiPTfT/77DN88kluGx1WGhTbhz7RnPq0PTmS6WVUCX8MkLvwv/zlLxd83jnnnFNUVcmggFZlPus4xUj7nVC3kejwm81m8emnnzLvQS/+/aOHjMZzO5PDASod3c0srlAoxNw160pGTagbMtUdnkcA9u/fTy2EeX9MWo0wvjK3/DE6WEXGvpZMpUJLRDE8C0WmWEQiEWZB1RtQ1oS6mc7kbmUu8foslZLdw/PIeKXIWJFvksiQKLbUyIneOFIQGZ/ANI/kZC6R0Awik1RqcDjTl9hbSSKTSCRw8cUXE9u6lAReOHiJ8fiiASsYA6CexUQvnBPqNhh/00XwBg8ejMbGRpeOnMVJJ52EBQsW2KotZ599Nr70pS9V7PMrgYkTJxLhgowWxaYelSseSmFsLemLsQovOfHHDB061NYwXCp4RfHo8BKPAND+mN6Ro2iI5EKfu5LDoJr8MbIsVzzTj9dvqVKhJbN/xaoYnhPwMpcqZfjl91kq3yOjIYSMmgvl0EQmnU4XVW/JKawIkh2RkSSp6HIAJ3oKtiAyPoEmMkczjcYdAo/I9AofM1Ie96SGgL5DdlPqt8KECRMYpeTTDjrE9DzMIaZkMolf/epX1ASXz1ZSNQmbOsgwUqXUGDNmzJiB22+/Heeccw4mTJiAMWPG4Oyzz8a3v/1tzJs3r+qc/YlEguhbBgAft59m/H0qZcjetm0bkSavaRpDZLyoH2MG2ziytJAM64/ZbvxNtyUYMmSI69XAWUJm32/Ji9BSR5ZtE+MEfhh++RVwyw8t5d4n1vPeLMGoROYSPaaQlDEqZluRs2LnIFaRyf/+TgQi40qLAgHn6N+/PyRJMrF+GQe6B2BYfDd6R44hKqeQtugnwgsrNTU1uX6HbIUFCxYwadR/PrgAo+LbkAh3YXzdJkys+wQbOvKhjoMHDxLvMSC6H32jud5RO5IjmDvGSvljaCQSCZx//vmefJYXOPXUU4mMpK1do9GRTaAu3ImTE58hJqeIReCTTz4x6uMcPHiQWlQ1jOip6JtWI9hHpStXgsgwRfHoFGxTFMOOAPjtjwH4hKxSigxNZHihJaeKDK+6L2349USRccHsC+SITB06bYlMMQTJCdxOvdZxoteSEYqMTwiHw0xpeSK8FD1AvwSAf/4YMxKJBNHtHNBDTPmw0wKLEJMZEzjZSoMGDQpkBd1qwMknn0yEyzSEsKGnyGBYVgxztQ5zcTx68W8MH8uHY1KVD8cAzvot2RGZAwcOMIRMV2Qyahh7KuyPAfiErFKKDDe0lC3dIwNY9VsiG0ea4ZZHhkm/DpVXATccDjM3ejp5yJl9yVBSJXwynhEZVRAZAY/A+GRMDezswktmIpMLLZn2eURkgJwfg1ZNPu2YiA3tOVJSG0piAZXFlIeGCfW5BVXTgE99CCsdr4hGo8x5Wd9mH17at2+foZY58ccMHjy4ItlcbhTFo/0xjeFjRguMHCEjix3SNZLcAKPImBSEUqoUFwPW7Ft+nyXjvThF8SoVWnLbIwPY91sKSSrCJjM8UBkiw8vEqpgiQ9WSOXz4cEX8P35CEBkfwRIZ++aRABCSshgUy2U0HUr3ZYrHeUlkgFwWE32xrTh4sZHFNKHuU0w0GXp19I8eRP/oIQDAztRwdCj1xH5BZMoDnb20p3sIDqdzCteo+DbUh8h0/vXr19uEY7z1xwCFCAC5CHz44Yc4dOgQ8x6MP4bTlqAS/higUN+o4k3LxUJVVeZOm9eeoJJmXzcUGavCbTqRUTUJGY08Z8USGbbfkn1132pSZOzSrwFWkdm1axfeeuutot+7GiCIjI+gicyBtLlVAZuCPSjWYhjD6LBSfX296z2JCiGRSODMM88ktnUpCawgQkwvoJaa6IjeSu0kaRk4cCD69iUzsQScYfTo0dQdtGTUlJEkYBLVEXv9+vU4evQo0x9Lrx+jaDL2UL+3SvhKAL4i00gVikwmk1i2bBmhAATBHwNYhZYqq8h0dXUxd9m6dyVHOkjTaNDNvtlslqm3ohOZnD/Geb0Vq+d5Xd3XiYG5WHIGsIpMp0kxG5vYjDilyrz88suMclku3Ozi7hSCyPgImsh0qzU4mmkEAAyIHYC5rDwQDH8MjREjRuCUU8hCdhvpEFP/FcR+c9r1p50irOQ2ZFlmiheuJ7KXyOJ4x44dwxtvvEFsS4Ta0S+a6920JzWE6A0EsC0r3AK9wB7O5H1kZza+g5NqPyf2Hzt2DMuWLTMWiIMHDzLKBOGP6SbDsZXwxwDsIqQiZGQl0opMOp2GopA1cpyCVkEkqMadeCcVVnLSnkAHS2TM/ZbcbxxpRe70740OKwHlKDLedsB2osg4UQrpm7/2bC9s78qR9MZIK74y6PdM65tnnnmGKbZaCjRNw9atW/HYY4+52v3cCQSR8RH19fXMhKKHl2JyGo3hY8Q+Pyr6FoIkSbjooouYcawwFcqbWL8RE3oK5fWLHMSAWI8nIzkM7VmyBYEgMu7gtNNOIx4fyfQ1TK5NNfvQjzKTf/DBB8Tj4aaWBrQ/ZuDAgY4XwmJB9wk7mumDN4/msqpkScNVTb/D4Nge4jn79u3D7373OyiKwqgxvcJHjV5eu1NDmWaglSJkllWKldKqFBeDSrUnML/GDEULG0X+6KylTCZTNglgvw/Ntt6KLMtF11sJniLjTmipb9++DNl8dv9XjLT7sYkvcF6fV4n9nZ2deOaZZ8oi0e3t7Xj66afx+uuv48iRI1ixYkXhF1UAgsj4CEmSuD6ZQZThVycyaTVChKEA/4gMkLtbY7OY6rDiYH7bgv4rUBvqILJm6Gyl/v37M5lcAqVh8ODBTOaXWZU5rd6615IOP/wxQO43QN9dvnRonlGnKCpncO3gZegdOUw854svvsDy5csZuZzsrzSS2Dd48GDX02t1RKNRhizoKcO5EAkZBirXJ8NkLIXsM5ac+mMAmzYFPe9Lh5asjscp6AU/ImUQknKKglXqdbHEjDX7elvdl6lWTLRdcJ6JpUOSJMyaNYvY1p7thd/vu8poHnte31cZRXPXrl1YtWpV0Z+jQ9M0fPTRR/j5z39OlHvYuHEjNmxgfZGVhiAyPqPYCr91oXbjznJvajDRuVeWZd+7M1tlMW3smIiN7bltiXAXFvRfYWQr5faLsFKlYNUR+5P2fEfsXLdy+8yF4TU5RUbTgF0pkrhUylcC5I77kksuobbK+OP+K7Ctx6ibCHfhq4P/h/FerVu3jmmDMYJTCK/S47CrJZPrf0OW9S9XkWGK4YXdy1gCcqnL9Hh0pScqZxCRyAW6XCLD63xdSg0Z4324/ZaqV5EBgGnTpjEtVbYnR+Evh+Yaj68Y9Cwaw0eI57z77ru2TWSt0NbWhv/93//Fn/70J8vf7YoVKzwPMQki4zN4iswAE5EZwvHHDBo0yPfGhpIkYcGCBZSkLuGFgxcbVSYn1m80VKbdySFoyzYS7yGIjLugiUynUoetXaMBAL0jxzCsZpfVyxCTk0Z23L7uQYwJsZKKDJDzrcydO5fYpmhhPN3yN9jfnVMi+0SP4trBv2Ya4tHQlaWsGsLulDf+GB1s5lLlqvty+yyVWUNGB7eWTNhdnwyTsRRyh8jYpV8DPoWWQvZmX6dERpZlXHnllUzSx5vHzjZuGuOhFBY1/Zbpj7V8+XIcOGBdu0yHpmn48MMPGRWGRldXF/785z87OvZyIYiMz2BbFfQxGv2ZU7BJoy8Z16d9BX7BNsR04GLmuXRvpX79+qF///7M8wRKR9++fTF4MFn8jWf61TGsZhd0pZ72x/Tp0wf19fUWr3IXZ599Ns444wxiW7cax6/3Xoe2TO7zh9TsxVVNv4ME6xh/Q7jVaEqa88fkyb4kSRUnZNwqxS5X92XbE9j3WXKLyJg7atM+mXLvyLn1VkqsIQNYmH01E5GRKm/2ZZUm9xQZIHduFy5cCFk2L+0S/rT/chxK50K2TTX7mDYymUwGTz/9tO3vsLW1Fb/+9a/x3HPPWRA8DQ3hVmLLhg0bGHW0khBExmforQp0aJAN/0ufyBFDsiWJjH+F8Aph4sSJTBbTho6JTBiJ9seMHz++6nobVQNo0++mjlOMRnkT6zdARpZ5DeGPSXnnjzFDkiRceOGFTLiyLdsLy/Z+FSklN8mPS2zGJTaFF3lp101NTRXzx+hga+KU1jeqGLBVfd0NLVm9zqzIuN04kvWS2He+dnIej1ezrxlDhw7FRRddRGxLqzX4bcvfGDfJUxrWYVrDWuI5R44cwZ/+9CcijV/TNHzwwQd47LHHsGXLFuaz6kJtuLrpf3HTsP+LuEyS1xUrVnhWRVgQGZ8RiUQYc+OBnvCSJOXSsCUoGFKTy9Q4mmlEJ1VALkhERpIkXHzxxUyIacWBfIhpR3I4jmV7E6+j04UF3AHdETutxbCpM0c0a0NJjE18wbyGl7FUSV8JDVmWccUVVzCZRQfSA/GblquRVXM+sam9PsAsKiMD4DeK9GIcbE0cUy0Zl4vicfssuWD2BVglp5K1ZNzus6SDJTL2BfH8Tr92Mi4a06ZNw+TJk4ltB9MD8Nz+y4zH8/v/GYNju4nnbNq0ySjF0NraimXLlmH58uWWKszk+o9w64if4+S6z1EX7sRFA8hwUmdnp2chJkFkAgA6vLSPqvA7MHYAETl350z7Y2pra9G7N0kK/EZdXR1zR9Cp1OGXu27Ey4fm4vf7riT29enTBwMGkFlYAu6grq4Oo0ePJraRLQvI8FJYyhik+VC6LxOW8EqR0RGJRHDNNdcw2Ww7kqPwx/1fNh7P6bsGUxrIFHLSH+NNQT8z6IUoxVFk3E6/9iK0xGsc+dlnn5WlaLB9ltzxkvipyGiaZktksmqIKA0AlK7IAPkbSnpt2dBxKt4+mitiGpYVLGr6LaOkvPLKK3jppZfw85//HF98wd7o1IfacM3gX+PLg/5oEPKObAIb2tmb0U8++QSffvppyeMoFoLIBAD0Ik60Kojtp/orsfVjghiSmTRpEhNiOprpizeOnsPUjmlubg7kGI4X0KbfL7rGGDV+Tk58hqgp42RIzW4jzXUnlXZdX1/vC2mOx+O47rrrmIV0Q8epWHXwAuPxpQOWY2xtzoRYH2ozuqvv6WYL+vlBZEhFxj0ik06nGQk/0RNayqohRsFwK7TUbiIyORUvH5Lo7OzEa6+9VtLnAAVCS2V4ZPw0+2YyGab6MlmtmES5oc9IJIJFixYx7/PSoQuwM5lTOXtF2nBlE1ss780337RQpDRMafgQt474T4xL5M2+69pOw3/u+DY+o4qbArkbbdKvUxkIIhMADBo0iHh8gErBHsIphBcUoy8NPY22ULuBpqYmTJkyxZuDOkExfvx4IqtNRQgbezpiR+QsTqnL3zGR9WPIxX748OG+Ec7GxkZcd911zEL01rGZePvoWQByBfMWNv0WTbE9GGHqr7SD6q80aNCgsmT7YsHrt0SbfcsJLa1bt45YICWoaAjnKrbmKvCS56xUItPY2Eg8PpAeYFQiH1W7HeMSnxH733nnHRw5Qqb6Fgue2dfN0FKaSL8mF263iYzV+9kV+QPKJzJATu3+yle+QmxTEcLvWhYZxfLG1G7FnL6rue/TEG7FtYOX4fKBf0JNTxfy9mwd/nfv1fjj/q8wff+AXFj71ltvxcknn1z2OApBEJkAgJb/UmocrZlcCt3A6H4jTTarhrAvTZKeIPljaCQSCXzta19jiJqOsWPH4mtf+5onjP1ERjQaZSaTj9vzKs1ppvBSUPwxVhg0aBAWLVrEZGS8eOgCoyVGrmDer4kxbafGUem0ax08jwydfl2qIqNpGt577z1i27jE56jtef993eS1F41GSyZxgwcPJoikhhBeOjTPeHxBv1UImTpIK4qCl156qaTP4ntkSveS8JpGVlqRsfKZ2BGZUChUdLXiQhg3bhzOPfdcYluHUo/ftSw06kqd2+evGJfYZPFqDac3fIBvDf85Tkrkzb4ftU3Gz3fcis87T2FeoWdOXXXVVSWHMZ1CrCABQENDA3Mx6hNQTajbkMhbupuYOGpQFRkdDQ0NuPnmm3Hddddh+vTpOO2003DGGWfg+uuvx7XXXuvJnbEAG17anRpmupvehkSoHTIUgzS3ZhpwjKrz47U/xgpjxozBZZddRm2V8Yf9Vxi9ZerCncakq2gyU67AK0LGz1pyR5HZvn07Dh48SGyb0fiu8ff7rTOIfeWoatFoFNOmTSO2fdoxwfje+0aP4Ixe7xD7N23ahG3btjn+LJ5HppzQEk1kNMhGJg9NZDKZjKuNEK2qFettJNzKWLLD7NmzMWbMGGLbztRIgoheMfAPRMXshvAxXDf4f3DZwOcMFaYtW49f770Gf9p/haUKM2nSJNx6662e1wQTRCYAsGpVYA4v6aD9MQMGDKh4CqkbkCQJY8eOxcUXX4wrrrgCF110EUaMGCF8MR5izJgxVIdcyTD9ypKGSfWfYFCsBVE5VyhrZ2o4zCGJmpqawBiyJ0+ejPPPP5/YpmgRPN1yNQ50k7WI9qSGIKOR4SiviAy3joxLBfFoNaZf5CDG1G4FABxJ98aWLnLxotPZneLcc89lMhJfPDQfemRrVp/XmIrLK1eudEwIeB4ZN82+uffLbaOJDOBu5lKla8jwIMsyvvKVr6BXL9Kf+PaxmYaaWRPqxt80PY2IlMbUhrW4dfjPiazGD9um4LEdt2JzJxsqqqmpwcKFC3HllVcynbi9gCAyAQHP8KuDzrwIuhojEByEQiHmLskcXjq1fn1g/TFWaG5uxvTp04ltKTWOZXuvQ1s2X56Arh9TyYaXNNisJZPZ14WspdbWVmzaRIYDZjTmic17rWfAPMXX1NQwypxTxONxzJkzh9i2r7sJH7ZNzX1GqBtf6vsKsf/AgQNMU9JCqFRoyaqjtE4iaI8M4C6R4aVe076fStyg1tbWYtGiRQiFQqatEp7bfzkOpnNZgQNjB3DbyJ/h0oHLEQvlxt6WqceyPdfiuf1fJnxeOk499VRcdtllTHKHlxBEJiDgtSrQQROZIPtjBIIHujje4Ux/7E3lenQNqdmLyQ3rjH1B88fQ0Luu05NnW7YRy/Zch2OZXujM1uKD1qnEfq/8MQCryGiQjUJ+NVQdmUwm47gL8fvvv0+YfKNyCpMbPgKQayz7UdsU4vmnn366K61Mpk2bxtx4vXL4S+hWciRhasMHGBhtIfe/8krRqpOqqgyB0Bf9tBoh+swBzoiMlfeEVGTIrCI3fTIskcn/BtIu1pDhYfDgwWyxPC2G3+79G6OmjrmY4oetp+PnO2/Flq5xzHvV1dXh6quvxpe//GXfLQKCyAQENJE5nOljVGAFcg7xViptWRAZAScYOnQokz693qTKDIzleq10KXHjDk1HEPwxNHS5nC2YNwiPbr8ND2/7vq+FF62UH/3Om1ZkAGfhpWw2y6gck+vXIdajKqxvP425e54xg/TLlApZlnHhhRcS2zqVOrx25DwAuUKe8/uvhJkUJJNJvPoqW7TQClbkQSd+tD8GcL7o29WSkSWNaeZZWSLjXWjJjKlTpzKZoocy/fGn/Zcbj1szDfifPdfhuQOXo9tChZk8ebJnGUnFQBCZgIC+w9EQwsF0Pt6fU2Py0n4sFhO9iQQcQZIkTJo0idhm7oitI1c/Jj81RCIR37ur2yESieDqq69m0vxVhEBPb0OHDmVIT6WPjc7I0ztg5xZm8u5/3759Rb/3hg0bqNoxGs4wmXzfPUb2qRo3bpyrNYBGjx7NLGLvtJ6JI+ncZ4ys3YHxprR+IOfnOXToUMH3tgqzuVlvhQ4vpTnVfStJZHQDLVBe2wWn0Bv80tmkn3ZMxP/b/bd44cDFeGznrfii6yTmtfX19bjmmmvw5S9/2bMQbTEQRCYgiEaj6NOnD7HNHF6ijb5DhgwJlGdBoDpAh5c6lAZsS44ittH+mKFDh1Jx9WChtrYWX/3qV5nqv2b07t0bV111lYdHlVsw7DKXQpKKulA7se+ll14qyhSraRreffddYtuo+Fb0i+YyTrZ3jWCSBegGnG7gggsuIIiaooXx4qG8UjOv3yqETAqHqqpYtWpVwfeliYwMxTChW3lJnM6DflX39dPsS0Mvlkf/Prclx+D91hmMoRoApkyZgm9961sYN44NM/kNQWQCBDq8pC8wmgZs6SSzD4TRV6AU9OvXj1FX1reRBtCg+2Os0NjYiBtvvBFTp04lFoFwOIypU6fi+uuvZzI2vABdfM5c12V23zXEvgMHDmDtWrKRnxX27NmDvXv3EtsINaaVJC19+/Zl2lS4gT59+uDMM88ktn3eeTK+6Mp9Vu/IMcxsfIvYv3nzZsvmg2awC747fZaM9+MUxYvJleuAHZTQkg6d3Be6Samvr8e1116Lyy+/PFAqjBnuVNwRcAWjR48m+lJ80uNf6FIS2J8mFx+6JoCAQLE49dRT0dKSN2N+2jkeF6svICJnkVYjaKGKqAXRH2OFWCyGSy+9FAsWLMCBAwcQiURQX1/va4mCwYMH48CBA8bjN442Y2rDB6gJdWNqwwd479gM4tpevXo1Jk2axF0w6JTrXuGjGJf4HEAuw+SzDtIAPWPGjIqpt+eeey4+/PBDE/mQ8OLBC/HN4f8FWdJwbp+/4qO2KehQGozXvPjiixg1apTtAspkLIXcXfD9UmRYA7MppVxhlSYvMGbMGPzt3/4tnn76acajJUkSpkyZggsuuMB3M28hCEUmQJg0aRKRVaBBxvr2yfiiayzxvIEDB1bN4iIQPEyaNInsiK3W4NUjs5FSYnj1yHlEVogsy1VnKg+FQmhqakK/fv18r7M0dSqZNdWl1OG1I7MAlGaK7ejowIYNG4htM3q9bxRWe791Ro8/KIdoNFrRFiCxWAynn346se1geiDWtuZS46NyBuf3+wux/9ChQ3j//fct309VVezcuZPY5lafJR1+9VsKUmjJjBEjRuC73/0urrjiCkyZMgWnn346zjvvPNx+++247LLLAk9iAEFkAoWamhpccMEF3OeEQiFccMEFwh8jUDLq6+tx0kmkke+No+fgwa2L8ebRc4jtdJ8mAWcYNmwYkyL+zrEzcTid88PlTLEbif08U+wHH3xApGmHpQxO75XLXsqqIaxtI4nTaaedVvFFccyYMUxYfPXh2UZLhikN6zA4tofYv2bNGsKsrGkaNm/ejP/6r//C22+/TTw3ximG50Zoqdsvs6/sj9nXCtFoFKeddhouv/xyXHbZZZg9e7YvodhSIYhMwDB9+nRcdNFFlotHPB7HtddeW5F4t8CJhfPPP9+CDLPkeObMmd4c0HGMefPmEWEUFWGsOpS/YZnX76WiTLGKojBKxqT6T4y+Shs6JqJLIT05lTD50rBKx06qCbx6ZLbx+EJKeUqlUli9OteocN++ffif//kf/PrXv2baLQB0MbxKEBlvFBn6vaIcRaYaVJAgQXhkAogzzjgDp556KtatW4djx45BURQMHz4c48ePd62RmMCJjQEDBmDBggVYsWIFUVTNjMsuu0yYyl2Abop98803jW26KXZM7VbDFPv60VnGft0UO3ZsPqz82Wefob3dnOmkEb2N3qNSrkeNGuVZiYYRI0ZgwoQJ2Lgxry69d2wGpvV6H/2jhzA8vguT6j7BJx15Y/natWuRTCaZUFkeGk5KfE6EptxQLtj06xPT7Hs8QayKAUU8HsdZZ53l92EIHMeYPn06+vXrh7/+9a/Ytm2bQWhGjx6N5uZmofy5iFmzZmHdunXo7NSrpjo3xdIp10NrdqGpJld7Zk9qMPZ0k6TTCzXGjHnz5uGzzz4zQl8qQlh18EJcN2QZAGBuv5ewqfNkZHt6X2maZktiBsVacEG/FzGqdruxTdFk7E6Sfq2GhgY4RVAUGbJ/lCAy5UAQGQGBExgjR47EyJEjkUqlkE6nEYvFxCRaAcRiMXzpS1/C8uXLjW26KXZG43uGKfZP+68w9uum2DPPPBP79+/Hjh07iPdkC+DlQ4O9evXyvN5HY2Mjzj77bPz1r381tm3pOgmbO8fipMQW9Iq0obn3m0TIiUZDuBVz+r6CyfXrYI587kwOw6qDFzLZm6UUOHTikXFLkdE0zVaRsWq7IK5BZxAeGQEBAdTU1KChoUFMoBXElClTmGqqxZpiaTWmLtSOCT0m4c5sLTZ0kK0Xpk+fzlQV9gLnnHMOUzvnxYMXQtFyx9Lc+3U0hFuZ10Wlbszp+xd8Z8SjmNKQJzFH0r3x25aFeHL317Gnm1RjBg4cWFJGnR+KjBUh0j+LVmMAQWScQhAZAQEBAQ8gyzLmz59PbEuqCaw5PNt4PL//n0GbYleuXIn169cTr5vWay1CUq4K8AdtU6Fo+eSAUCjEpH17hWg0irlz5xLbDmf6471juT5PETmL8/u+bOyToGBaw/v4+5H/B7P6/BUROQsASCo1ePHghfj5zm/j046JoI3okUgEl156aUkVp/0gMlZtFwSRcQ+CyAgICAh4BN0Ua8b7rTNwsDvXXmFYfDcm1ZOkZf369chk8llNMrKY1iuXvaRqEt7vqdmi49RTT0VtbW0lDr8onHbaaYxJ/NUjs9HV02fqtIb1GFqzE2NrP8c3h/8XLhn4vNFxWdFkvHX0LPyf7bfh7WMzoWis+6Ffv3648cYbSzai88y+Ucrs6xaRYd9HtSUy4XA40C1BgghBZAQEBAQ8BJuOHSJ6FM3t+zIikr03Y3zdJtSHOwAAmzpPQVu2kdjvVpfrUiFJEpOOnVLjWH34S8bjvx3yK1w35NcYEMunW29on4D/3PEdrDo0HymVJWLxeBzz58/HN7/5TabJrhMwLQq0CPTEvUopMmzqddoIn1n1jxJwBkFkBAQEBDyEboo144uuk/B5Z65IYa9IG87u/Ybt62eYTL50yvXQoUMxePBgF4+2NAwbNgynnkr28FrbOhX7u3MERG8CCQC7kkPx+K6v45l9i3A0QzbOBXKhsrPPPhu33XYbzjzzzLLVCpYoyEYH7JhEEo5sNltUI89CcJJ6LWrIOIcgMgICAgIe45xzzkF9fT2xbRVhin3D0hQ7MNqCEfFcCf8D3f2xPTmS2O+3GmPG+eefT9S90hDCyoPzoWo5KeJophG/a7kKT+z+BnanrFuuTJo0Cd/5zncwb9481xZ4K8VDJxO0IgO4o8qIGjKVhSAyAgICAh4jGo3i/PPPJ7YdzvQzFJaInMXcfi8xrzOnXL/XSqZcJxIJTJw4kXmNX+jVqxeam5uJbduTo/Hk7hvw9N5F+M8d38HGjkmwqig9bNgwfOMb38CVV16JxsZGV4+L9sgAeTJBe2QAd1Kwee0JuhVBZMqFIDICAgICPsDaFHueYYo9tf4TDK3JN1Cskbtwao8ROKXEsK7tNOK106ZNC5xJtLm5menZszs1HJs6J1gaefv06YNFixbhhhtuqFizUlmWmRYw3ZpZkSFDSW4oMkFtGHm8QBAZAQEBAR8gSRKTjk2bYnPdsXML6+kNHxrpyR+1TUFGixHvNW3atMoftENEIhEsWrSoYOPRmpoaXHjhhbj11lsxfvz4ijfFtUvBliQgaup7BVQqtGTfCFMQGecQREZAQEDAJwwdOpRrih1SsxeT6z+GBBUzGt8znvNeK+mFGT9+fEnl+r3A4MGDcfXVV6N3797MvlAohLPOOgu33XYbzjrrLM8UJTYFu7IdsIVHprIQLQoEBAQEfMTcuXOxadMmo1aMhhBePDgfXxv6/wAA5/d7GYoWQu/IMQDAls4xOJLpR7yH132VnGL06NH49re/jY0bN+LQoUNIpVIYMmQIxo0b50uWTqGieB2KaZ8gMoGHIDICAgICPqKhoQHNzc1Ys2aNsW1bcjQ2dZyMU+o+Q324A5cP/KOx791WkrQMHDgQw4dbZ/0ECaFQiFGf/AJTS6bCHbB5Zl+6o7dIv3YOEVoSEBAQ8Blnn302ExpadegCZNVcqCUs5ySCI+ne2NJTb0bHjBkzKu4pOd7gZpsCVVWNjt92EIpMZSEUGQEBAQGfEYlEMG/ePPz+9783th3N9MU7x85Cc598cbz3W2dAM91/1tTUBEblqCbwiEwxHpn29nb89a9/xYYNG9DV1YVQKIRx48ZhxowZGDVqFPN8YfatLIQiIyAgIBAATJw4EcOGDSO2vXb0XHRkEwCAjBrGh21TiP2nn366ZV0UAT7o76zbZPYtpMisX78ejz76KN577z10dXUBABRFwaeffopf/epXWLt2LfN5Iv26shBERkBAQCAAsErHTqs1+N+912JD+wT8bt9CpgfR9Olkw0iB4lBKaEnTNPzlL3/Bs88+SzTxNEPTNDz//PNYt26d5XtYfYYgMuVDEBkBAQGBgGDw4MGYMmUKsW1v9xA8s28RNneeTGw/5ZRT0KcP25tIoDB4HbCtzL7pdBpPP/00Xn/99aLe/4UXXsChQ4eMxwyRCZmJDHksgsg4hyAyAgICAgHCvHnzLGuumBGLxXDRRRd5dETHH5woMocPH8YTTzyBzz77jHoXDdMa3se3hv8nZvdZDUAz9mQyGTzzzDNG00lawdE/o1uJgl6GRdaScwgiIyAgIBAg1NbW4tprr2WaSupIJBJYtGhRYAvgVQOcmH1bWlqwf/9+YpsMBRcPeB6XDHweA2IHcV7fVzG1gfTG7N+/H6tWrbI0C9f0mH1TKktahCLjHCJrSUBAQCBg6NevH/7+7/8e77zzDr744gscO3YMdXV1GDlyJM466ywkEgm/D7GqwRIZe7MvjbjciUVNv8XI2h3E9vn9V2J3ahgOpAca29577z1Ldc1QZFSWtAjztnO4SmQ2bdqEhx56CF988QUaGxvxjW98A5dddhkA4KmnnsL//M//QFVVXH755bjtttuM2gcbNmzAkiVLsHPnTkycOBH33nsvmpqaAOTc3v/yL/+CV199FfX19fj7v/97xhAnICAgcLwhEongnHPOwTnnnOP3oRx34Csy9gXw+kcP4JrBvzaqLGfVEHalhmFU7XZE5CyuGvQ7/GLXzchoeTLy0ktkF3MJKqJyhvlcIEdiZFkESpzC1W/sRz/6EZqbm7F69Wo8+OCDePjhh7Fjxw68/vrreOaZZ/DUU0/ht7/9LV5//XU899xzAHJGqrvuugtXX301XnnlFUyaNAk/+tGPjPdcunQpWltbsWLFCtx///144IEHsGPHDrtDEBAQEBAQ4IJv9rVWZMYlPsM3hv3SIDEd2QSe2nM9lu29Dvu6cypM/9ghzO//Z+J1mqYRj0XGkvtwVZHZt28f5s+fD1mWccopp2DkyJHYsWMHVq5ciauuuspoy/7Vr34Vf/7zn3H55Zdj7dq1iMfjuPzyywEAN910E+bOnYuWlhY0NTVhxYoVeOSRR1BXV4fJkydj1qxZWLVqFW666SbLY9Ad5sQgw2HX5TpVVYn/T0Sc6N+BGP+JPX5AfAfVOn66G3dGi0DVJMiSZkFkNDT3fgPn930ZegHlvakmPN1yNdqyvQAAz7QsxM3DlyIqZzC114fY1jUan3RYFyosRGSq7bus9G+gGIXKVSKzaNEirFixAjfccAM2bdqE/fv3Y9KkSXjsscewYMEC43njxo3Df/7nfwIAtm7dirFjxxr74vE4hg4diq1btyKRSODw4cPE/nHjxmHDhg22x/Dkk0/iF7/4BbFt4cKFWLRokVvDJLBr166KvG814UT/DsT4T+zxA+I7qLbxd3Z2UlskpNUoakLdBNEISRlcOmA5Jjd8bGz7pH0i/rT/cmRN4aPDmX544cDFuGLQHwEAlwxcjj3dg3E005f5bB6RAVC1EYdK/QasKiXTcJXIzJw5E3fffTd++ctfAgD+6Z/+CX369EFXVxfq6uqM5yUSCaMiYjKZZIxriUQCyWTSKP1sTkczv9YKN9xwA6677jpiW6UUmV27dmHYsGEnbEzzRP8OxPhP7PED4juo1vFbZRJ1qzGCyNSF2vE3Tb/B0Pge4zmrD8/Ba0dmAWB7W33cPgWjardhSsM6xOQ0rhr0DJ7Y/Q0oGrnM8toTNDQ0YMSIEeUMzXME4TfgGpE5duwY7rjjDtxzzz2YNWsWtm3bhttuuw1jxoxBbW0tOjo6jOd2dnaitjZXoTIejzPsuLOzE/F4HLW1tVAUBalUyiAz5tdaIRqNeur6lmW5qi7gSuBE/w7E+E/s8QPiO6i28VvVatHVkaicRlNsL65u+l80RNoBAGk1gj/uvwKfdkzgvu+KAwswtGY3+kUPY3BNC+b2fRkvHiKTU3iKTE1NTVV9j2b4+Rtw7VP37NmDuro6zJkzB6FQCGPHjsW0adPwwQcfYNSoUdjy/7d37zFRnesawJ9huA0zUAQMF6sCUqXIPojSUOROxbZjAYNcNKmKx4rGNmhv0TRNpPVSa5s0veNuu6WxBG3QY9FiPTvdVDhHSJWctEUPAQEjIoOiDC0zA+N01vnD42yHWzfsGdZeruf3j8xaw5p3fXmRh2++NevyZdtzW1tbER4eDgAIDw+322cymXDt2jWEh4fDx8cH/v7+434vERHRZCkUijHut3Q3VHi4mLHh4b/YQszAHR/8pevfxwwxI38X3RE8UNWTZ7tr+eMzGjFfbf9Bep73BZmhMa5aoslzWJCZO3cuDAYD6urqIAgCrly5gvPnzyMiIgJarRbHjh1Dd3c3+vr6UFFRYftUyiVLlsBkMuHkyZMwm8344osvEBUVZbv8WqvV4vPPP4fBYMAvv/yCuro6ZGZmOqpsIiKSoYkuwXZzsQAArppm47OuYvSag+2eq1AooNVqsXbtWixevNhuX685GP/Z96TtcU7gCXi7Dvz9df9gRoYmz2FvLWk0Grz11lv48MMP8frrr8Pb2xsFBQVYunQpAKCtrQ3r1q2D1WrFypUrbZ8v4+7ujgMHDmD37t3Yv38/oqKi8Oabb9qOu3nzZuzZswdPPfUUfHx8sHPnToSGhjqqbCIikqHRl2DbP/6fgUX49uYzo9a4eHp6Ij8/3zYbs3z5cnR0dECv19uec37gMYR5deBRTQu8lCasCjqGL6+thwAlL792Aocv9k1ISBhz34YNG7Bhw4Yx9y1cuBBHjhwZc5+npyf27NnjsBqJiIg0Gg1u3bple6wbDkaU9//CKijw175MNOoTMHJRb0BAANasWWN3s043NzekpKSgpqYGFovl/7cqUN2bg2CPHvi6DWCu6ipS/c7ih9sZ8FCOv9iXQWZqpLmqiIiI6J9w73PN7jmnT8BxXS7+fLUYjfqlGBliIiIisHHjxjHvOO7r6zvqJp5DVhWO6VbBKtw9TopfHUJVHfYzMr9zRsYRGGSIiEh2oqLsF+/+Lrjhl9/+bdR6GODuuw1r1qyZcA1LTEwM/vQn+w/BuzY0B3+7lQEAUCiA3KDj8HO7bds/crEvg8zUMMgQEZHshISEIDExccLnKJVK5OTkYPny5X94abFCocCKFStG3STyv/sT0W64u57G23UQj6j/fhUuF/s6BoMMERHJUkZGBtLT08cMKcHBwSgqKsKiRYv+4eN5eHggLy9vxPFc8B+9uRi0jL5jORf7OoZDF/sSERFJhYuLC1JSUhAdHY2Ojg7odDpoNBoEBQVhwYIFUChGf4LvHwkJCUFmZibOnDlj22b4XYPjulysnXXYdr8mq6Cwu0s2wCAzVQwyREQka35+fmMu4p2q+Ph4dHZ2orW11bat0zQP/9WfjGS/egD3ZmPsgxKDzNTwrSUiIiIHUigUyMnJgY+Pj9322ltp6DDevQliu3Ge3T5XV9cJb79D4+OMDBERkYN5eXkhNzcXX375JQRBAAAIUOJw91oEe/SgdzjI7vlz5syBqyt/JU8FZ2SIiIicYO7cuUhLSxux1QU9w7NghdJu68hLt+kfxyBDRETkJElJSYiJiZnwOTExMX/4HBof57GIiIicxMXFBTk5OfD19UVDQwPMZrNtn7u7OxISEpCUlDSlK6ToLgYZIiIiJ1IoFEhLS0NiYiLa29thMpmgVqsxa9YsqNWjP1+GJodBhoiIaBq4ubkhMjJS7DIeOFwjQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJLFIENERESSxSBDREREksUgQ0RERJKlEARBELsIIiIioqngjAwRERFJFoMMERERSRaDDBEREUkWgwwRERFJFoMMERERSRaDDBEREUkWgwwRERFJFoMMERERSRaDDBEREUkWgwwRERFJFoPMFPT392Pbtm1ITExEbm4ufvzxR7FLmnbFxcVYunQpkpOTkZycjJKSErFLcqqDBw8iPz8fjz32GM6cOWO3r7y8HMuWLUNGRgbef/99PIh3/Rjv/E+ePIn4+HhbHyQnJ0On04lYqXOYzWa88cYb0Gq1SE1NRXFxMS5fvmzbL4cemGgM5NIHe/fuxZNPPonU1FQUFhaivr7etk8OPQCMPwai9oBAk7Zjxw5h9+7dgslkEmpra4X09HRhYGBA7LKm1aZNm4TvvvtO7DKmzbfffis0NDQI69evtzvv+vp6YcWKFUJXV5dw8+ZNIS8vTzhx4oSIlTrHeOdfXV0tvPDCCyJWNj2MRqPw2WefCTqdTrBYLMLhw4eF7OxsQRDk0wMTjYFc+qCzs1MYHh4WBEEQmpubhdTUVGFgYEA2PSAI44+BmD3AGZlJMhqNOHv2LLZs2QJPT0+kpaVh3rx5qKurE7s0ciKtVovHH38c7u7udttramqQl5eHhx9+GAEBAXj22Wdx+vRpkap0nvHOXy5UKhWee+45BAYGQqlUorCwENevX4der5dND0w0BnIRGhpq+xlQKBQwm83o6+uTTQ8A44+BmBhkJunq1avQaDQICAiwbXvkkUfQ0dEhYlXieOedd7Bs2TJs3boVbW1tYpcjis7OTkRERNgez58/X3a98NNPP+GJJ55Afn4+qqqqxC5nWvz888/w8/ODr6+vbHvg/jEA5NMH+/fvR2JiItatW4eEhASEh4fLrgfGGgNAvB5wnbZXekCYTCao1Wq7bWq1GoODgyJVJI6SkhKEh4fDxcUFR48exbZt21BVVQUvLy+xS5tWRqMRGo3G9litVsNoNIpY0fRavHgxjhw5gqCgIFy6dAmvvPIK/P39kZ6eLnZpTjM4OIh9+/Zh69atAOTZAyPHQE59sHPnTrz66qu4cOGCbY2Q3HpgrDEQswc4IzNJKpUKBoPBbpvBYIBKpRKpInFER0fDy8sLnp6eWL9+PVQqFS5evCh2WdPOy8vLLsQaDAZZhblZs2YhJCQELi4uiI6OxurVq1FbWyt2WU4zPDyMl19+GUlJScjJyQEgvx4Yawzk1gdKpRLx8fE4f/48GhoaZNcDwOgxELMHGGQmac6cORgcHLR7T7Ctrc02tSZXLi7ybKWwsDC7q1daW1tl3QsKhULsEpzGYrHgtddew8yZM7F9+3bbdjn1wHhjMNKD3Af3s1qtuHbtmqx6YKR7YzDSdPaAPH/7/BO8vLyQkpKCgwcPYmhoCGfPnkV7eztSUlLELm3a/Pbbb2hsbITZbMadO3dQUVGBX3/9FY8++qjYpTmNxWLB8PAwBEGwfW21WqHVanHs2DF0d3ejr68PFRUVePrpp8Uu1+HGO/9z586hv78fANDS0oKjR48iOTlZ5GqdY+/evRgeHkZpaandf9Jy6QFg/DGQQx8YjUacPn0aRqMRFosF33//PZqamhAbGyubHphoDMTsAYUgPKAXuztRf38/du3ahaamJgQGBmLHjh2Ij48Xu6xp09/fj5KSEly5cgVubm6YP38+tm/fjsjISLFLc5rS0lKcOnXKbltZWRni4uJw6NAhfPXVV7BarVi5ciVKSkoeuL9Ixzv/+vp61NTUYGhoCDNnzkRBQQFWr14tUpXO09PTg6ysLHh4eNjNPn7wwQeIjY2VRQ9MNAY//PDDA98HJpMJL774IlpaWiAIAmbPno2NGzfa1oDIoQcmGoP33ntPtB5gkCEiIiLJ4ltLREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJEREQkWQwyREREJFkMMkRERCRZDDJE9C/lwoULiIuLQ1xcHK5fvy52OUT0L45BhohEU1pairi4OBQXF9u2aTQaREdHIzo6Gu7u7iJWR0RS4Cp2AURE94uMjER5ebnYZRCRRPBeS0QkiqysLPT09IzaXlZWhi1btgAAqqurERISYrtpZXBwMDZv3oxPP/0Ug4ODyM7OxvPPP4+PP/4Y1dXV8Pb2RlFREfLy8mzHu3nzJj755BM0NDRAr9cjMDAQWVlZKCoqgqsr/5Yjkjr+FBORKBYsWACTyQS9Xg+1Wo2wsDAAQEtLy7jf09fXh/379yMgIAAGgwGVlZVobGzEjRs3oNFooNPpcODAASxZsgRhYWHQ6/UoKipCb2+v7TU6OjpQVlaG7u5u7Nq1a7pOl4ichGtkiEgU7777LpKSkgDcDTXl5eUoLy9HZGTkuN9z584dfPTRRzh+/DgCAwMBAF1dXaisrERVVRU8PDxgtVrR1NQEAPj666/R29sLf39/nDhxApWVlXj77bcBAKdOnUJXV5eTz5KInI0zMkQkGT4+Pli0aBEAICgoCL29vZg3bx5CQkIAADNmzIBOp8Pt27cBABcvXgQA3Lp1C5mZmXbHEgQBzc3NmD179vSdABE5HIMMEUmGWq22fa1UKkdtUygUAO6GlPv/vf+tq/t5eno6rVYimh4MMkQkmntBYmhoyCnHX7hwIc6dOwelUol9+/bZZm4MBgNqa2uRnp7ulNclounDIENEogkNDQUAXLp0CYWFhVCpVNi0aZPDjl9QUIBvvvkGN27cwKpVqxAWFgaDwYDe3l5YLBY888wzDnstIhIHF/sSkWiys7ORkZEBjUaD9vZ2NDc3w2q1Ouz4M2bMwKFDh5CVlYWHHnoI7e3tGB4eRmxsLF566SWHvQ4RiYefI0NERESSxRkZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpIsBhkiIiKSLAYZIiIikiwGGSIiIpKs/wO68SL6BLeI9AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -141,20 +178,28 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "4841f1cd-40d6-46fb-b7fb-2b6692afea6a", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEFCAYAAADkP4z+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACe3klEQVR4nO2dd3gc9bX+PzNbtdKqy3LH3cYdGLBNb47pAUIJCdwQkkASSP9Bkpt2k5t7025uclMhhJAQklBDByehd/BgbGzAvcuWLatL23fm98fszM7uzs6upF3ZluZ9Hj9ebf3u7MyZM+95z3sEVVVx4MCBAwejB+KhXoADBw4cOBheOIHfgQMHDkYZnMDvwIEDB6MMTuB34MCBg1EGJ/A7cODAwSjDkRL41cH+a21tHfRrh/vfkbTWI229R9Jaj7T1HklrPdLWO8S15sWREvgHjWQyeaiXUDSOpLXCkbXeI2mtcGSt90haKxxZ6y3XWkd84HfgwIEDB5lwAr8DBw4cjDK4D/UCRjJUVeW9995jz549HDx4kNraWsaPH8/8+fPxeDyHenkOHDgYpXACf5lw4MABHn30UVpaWnIee/nll7nooos46qijDsHKHDhwMNrhUD1lQF9fH3/+85+NoO8SEoz17cUjRAHo6Ojgz3/+M/v37z+Uy3TgwMEohZPxlwGPPfYYfX19AJxY+wqnNzyHR0yQVEVWdx/HU23nkkzCgw8+yKc//WlE0Tn/OnDgYPjgRJwSIxQKsWnTJgAWBd9medO/cAsJ3m+ZAyocX7uKMxueBaCtrY29e/ceyuU6cOBgFMIJ/CXGjh07jNuLq9cA8Jk//Ja5t7zP2f/9NAALq9cCSs7zHThw4GA44AT+EqOzs9O4Pd6vZfN/ffUjADz//hns7x5DtbuXKld/zvMdOHBgjVAoxIEDB46o5qvDGQ7HX2KEQiEAXEIcrxgnlvDQG6k2Hu/qr6W55gA+MUJfMkgkEjlUS3XgwBbxeJyuri5qa2sPifxYURTefPNNXn31VXp7ewFwuVxMmjSJFStWMHbs2GFf00iBE/hLDD3wB8QwAO29DRmPd4VqAfC7IhCHaDQ6rOtz4KAQNm/ezDPPPMOBAwdQVRVBEGhububMM89k5syZw7KGWCzGXXfdlSOHTiaT7Nixg9tvv51zzjmH448/fljWM9LgBP4SIxzWAn6FSzsBtPdlBv7uUA0AflEL+MOV8cdiMdatW0drayvd3d00NTUxefJkZs2ahSAIw7IGB4c3VFXl8ccfZ/Xq1Tn3t7a28te//pXjjjuO888/v+z7zJNPPmkE/WZvK/OC66n1dLEzfBTv9CwirnhZuXIlEyZMYPz48WVdy0iEE/hLDD3wB1KB/2BvY8bj3WEt8PtELeAPR+DfsmULjz/+ON3d3cZ9mzdv5tVXX2Xq1KlceOGF1NXVlX0dDg5vvPXWW0bQr3L1sjD4Ds2+VlqjY1nXu5C+ZJC33nqL8ePHc+yxx5ZtHXv37mXt2rUAzAhs5opx9+IREwAsCK5nftV6/rb3I8QUH0899RSf+MQnyraWkQqnuFtiGFSPK0X1ZGX8Xf21APhTgb/cVM+ePXv429/+ZgR9rxCl2duKgFYk2759O3fddZdTaxjlSCQS/POf/wSg3tPOJyb9nuVN/2Jh9To+0PQvPjHp99R5OgBYuXIliUSibGvZsmVL6pbKuU1P4hET3PXSNXzy9tvZ0jqdKYGdHFOjnaBaWlocunQQcAJ/iVGQ6gkPH9UTj8d54IEHUBQFkSQXNT/MV6f/kE8fdSu3TPsxx1a/BUBXVxcrV64s2zocHP7YtWsX8XgcgNPqn6fW081LG07mk7ffzksbTqbW083p9c8B2n61e/fusq1lz549AIzxHqDe28mOtqP4+G13csfzn+Rr9/wQgJmBzYBGQzm9MAOHE/hLCFVVCxZ3dY7f59ICfiKRKJtEbdeuXUamf07TUxxTvQZFEdncOgO/K8qFzY8xu3IDAOvXry9rFufg8EY6kCvMqdqAoghc9au/ccfzn+Sjv/kLqgqzKzeiz/fQg3M50N+vSZ2r3T0AbNw3G0V1AbB5v1ZcrnL3Gc93rlYHDifwlxDRaBRV1Q6MfBm/oeoR0ztruXbcbdu2AZpX0ILgOhRFYOl3XmfWVzbz7/f+FwCLUk1myWSyrAezg8MbusVIhRjBK8bpCtXS0jkRgN3tk+mPVuJzxfAKMSBNaZYD+nsbx5ApeeqLVAHgFWPGfbFYDAcDgxP4SwjzwVCRh+M3Mn4xzUuWi6PUm8PqPB34XVE2tc7ire0SkG4qG+/bm/N8B6MP+r5bmWosbOtpynjcqE25yi9KSNfJcgUS/dFKADxC3LjPCfwDhxP4Swid3wcbVY8h5yx/xm/UGyxoJ6sTkHPJPHqh0yuVbu3/Az1jMh7PvlIt176STCaNQG7QpX1Oxl9qFJRzSpIkAn8ApgMC8EngVsAFJIE7ZFn+syRJY4G7gErgt7Is3y1Jkgu4HZgJvCXL8hdT7/kF4AqgHbhaluWeoXyJeDxOOBwmEonk/Dtw4ADvvvsukUiEaDRKJBLh2GOPZd68eUP5SEuYM/6AWIDqcQ1j4E9dfXT2pyWbPeFqVFUP/CogOOqIUQw98AdchQK/ti+Ve5/V1pKbPIViARRFwCvG0fyuRCfwDwLF6PgXAz5Zlk+RJOkU4Mup+8+VZbnP9LyvAj8GngdekiTpAWAFsFeW5eskSbpdkqRlwGbgIuBk4CPAjcAPhvIlnn/+eV599dWin1+uASjmnfZwoHrSGb92kHb01xuPKaqL/mglVf5+vEKMmOpzAv8ohpHx56F69KSh3FRPJl2amzypqkg4VkGlP4RHiBNXfU7gHwSKoXr2AIIkSQJQBxxEO9U+KUnSo5Ik6VH0BOBZWZYTgAzMB04E/pl6fCVwEnA88IIsy6rpviHB7/fbPKriFmJUuXoQUo6Yw7HTBiwKU2CWc5Y/49ffVz8JdfTVZzyefRJyAv/ohKIoRpJQmdpvczL+rP4Tc5JTSlgdQ9l0aV80k+7RZagOikcxGf9BIA5sAPxogfqnsiy3S5J0GvBLtAzeI8uyknpNN1CPdqLoKeK+HEiSdD1wPcBNN93E8uXL8y7QHDg/NPZ+6jyd+MWI9s8VwSVoy/rfbV+mN1lNe3u75UjEoUKfqCWg4BcjKIqQQa9A7gGkv66lpYV4PF6ydZm5Up3jz15LT7iaCezF54rQm6ymq6trQJ9fyvWWG0fSWmF412sOtkbG35tV3M3i+MPhsLG+Uq7VrCzLd9WsF3i9Ypz+JM5+mwcTJkzI+1gxgf8DQEKW5dmSJEloQf9KAFmWX5Ak6af6GiVJElPBvwboALoA3ZrSfN+MrPtyIMvy74Dfpf5U7RbY0ZF+i7G+Vhq97RmPqyoIgnaZ2pusxuVy2W6UwWLNmjWAxoMKAnT21xr6Yx2Z3LrGUfr9fiZMmEBLS0vJ1qXL88CU8fdnnmN7wtpPo2f8oigO6PNLud5yw26t4XCYtrY2AMaNG3dInCizMZzb1jwC1OD4uzMzfj1pqEhRPbFYjPHjxyMIQknX2traalpLnoxfL/CmpKUej2dU7rdDQTGBX0ArwoKW/ddIklQty3KPJElzAV0DuAo4XZKkF4HjgFuAV4GzgRfR+P47gS2k6wQrgFeG+iXMVE8kqd2+8hf38Pz7p9MVquW5b5zBibNeK7siIe3To/2fvcOCxq33RaoIVvThFWPEFH9Z1mN+T38Bqme4DeMOFxw4cICnnnoqYxiOIAjMnj2b8847j2AwOGxrUVWVbdu2sXXrVjo6Okgmk8yaNYt58+YRCATK+tk6vw/pjL+Qqgc0atCeZh040lcfal6BRLayx+H4B45iAv+/gGslSXoB8KEF7WclSdJJvhtT//8ITdXzfeBWWZbDkiQ9DlwsSdJLwNuyLL8GIEnSE5IkvYJ20vjoUL9ERuBXtNs94WoO9DQDwydFy9YfZ++wOrpCtQQr+vCLEWKKvyzcekahWbQO/NkZ/2ji+Ddu3Mh9992HoigZ96uqyoYNG9i+fTvXXHPNsGSGPT09PProo2zdujXj/i1btvD8889z/vnnM3fu3LJ9/kCoHp9JjRYOh8sW+D1CDLeYJBStIBzLPPEZWn4n8A8aBQN/qlh7ZdbdksXz9gHLs+5LANdaPPdnwM8GslA7WAX+2sou477haj7J8enptQ783aEaJjXswS9G6SnTeqwURtkcf7ZT6GgJ/B0dHTz00EMoioJAkiW1bzAtsI2k6mJD3xzW9i4mGo3y4IMPcsMNN+Dz+cq2llgsxt/+9jeD4hBJ0uRtozcZJJSsJBQKcf/993PVVVcxa9assqwhI+PPp+O3qE2Vc7/NZ3IIuVSPE/gHjhFhy2wZ+ANdxn3Dn/Hn32nBrKYpX8A1B36/hZwTRm/G/9prr6W+q8IV4+5jTtVG47E5VRtp9u3nnwfPobOzE1mWOemkIQvP8uKZZ54xgv68qnVc2PwYPjGGqsLG/tn8vfVDxFUvjzzyCDfeeGNZaB898AskqRDDJBUxh6Y0OH4xvV+V4zjKtmuwoksdqmfoGBGdu1Ycf6HAr3vqlBLGTpuHm8xZTxmvQKwy/kIcfywWy6E+RhpUVTVsf6dU7GRO1Ubaehr58C//xvW/v41o3MuyutepcXcBZPD/pYaiKKxfvx6ASf6dXDbuQXxijE37ZhKN+5hTtZGLmx8CtH0rbVdcWqSbtzRRQkdfPaqaGRqGq/GwGLrUrOoBJ/APBiMi8LvdbkRR+yrFUD2qqpZc+xuPxw13y2Iz/nIWVdOBX6FCDFtKS7Mzfhj5B1EoFKKrqwvQ3SbhV/+8iXtf/zC3P3c9D7x5GQDTA1qQLafsb8+ePUagk2pkAH7wyNeY/f82cfQt7xONe5ldtRF/KpHYvn17WdaRDrbWNA8Mn7mgQfXkcbcFk45fcHT8g8WICPyCIBhZfzFUD5R+p83MsHMvU0Uhbb08HNy6vh6/GEUQoDcSzJGWZlNOMPKVPWaZazBl+7th7xzjvu0HpgLpIme5rg4BDh48aNye6Nf063966WMA7Gibyqptx+MSFMZ4DwAYJ6xSo1DXLgwfx29n0KYjm+qJx+Mj/kq11BgRgR/SdI8d1VPOAFeoa3dSQ3pwRfZBVI7gon8/fx5FD1hn/COd5+/t7TVuB93a7dbuscZ9Rme16eqwXFdB7e2aSlokQa2ni0TSxbYD09KPp/Yf/QqyXFbI2YHfKuPvDtegKAJ+V7RsHfCKopi6zQtTPR6TUZuT9Q8MIy/wF0H1QJkzfgtXwenNaale9hQuRVFKPgQl26Atu7AL5qEwoyfwmzP+Kpd2e1/XOOO+bBoOyrdN9MbDOk8XoqCy8+BRxJPe9OOp30z/Dctlk5AO/NZ2DaB55GQnCqVeTzHutmDt0OkE/oFhRKh6wCLwDzPVY5nxmwL/tKZtPMtZQO4UrnKsx86ZU8dozPjTgV81pji1dpky/jz0V3V1NaWGnvE3pDrNN7fOzHw8tf/oiUQ5An8ymTR+czuqB7TjqLayG78YIaJUlHxfKWaeBeTKOWF4alM7duxg/fr17Nu3D0VRaG5uZs6cOcyePRtBEMr++aXEyAv8Rah6oLyB32qnNWf8w7Ee45JZl3JaUD3DaRh3uEAP/F4xqnm9RAL0RtJBPV1/Ke/JUFVVI+Ov91gHfv0302mPRCJBPB4vqaVEMRp+HV39tdC0U+sET9SV9arZLuNPUz3DM4wlHo/z1FNP8fbbb2fc39raytq1a5k1axYXXXQRlZWVZVtDqTE6qJ5hLe6qBFwhVNWG6hkGa+Ycqsfh+IF04NdpHjO/D8M3KKe7u9uYtaxn/JtaMxu0jIzflQ6Ipc76zYE/UCDjN6yZy9QPU8w8Cxj+YSwrV640gr5LSHBUxXamBzbjFbRjZdOmTTz00ENlEwGUAyMv408F/pqKbuOxrv5aVFXn+LWhI+Xaab1CDJeg0BepJBrX1uL3hBlbkzafyhdcKioqSrIWVVVzpm9ZUT3DORvgcIFe3A26c/l9GL66h07zANR7tMw/f8afGfhLSTtZ2TWYM/7qim56UldBVg6dpUQxlsxg0vEPA9WzZcsWVq9eDcBY316uHn83lW5tbTHFw337rmBraCZbt25FlmWOP/74sqyj1BhxGX9S9ZBQXPi9UfwebceMJ72EYxW4BMWY1VmujN9K0dNQ1T6s1FPm0Pf8xd3+aBVJRcQrxhFIGq8dycjO+HMC/zDRX2ZH2YYU1bNpX2bGbxR3xeHK+HOLuzPHbjZul7vxsGiOPzp8xd333nsPAJcQ55oJf6bSHWL97nm8vnkJHiHOVeP/RtCtJZnvv/9+WdZQDoy4wA/F0T3lK6bmXqI2BNupCaSvQMqdVWY4c9rIOSGX7hktHH+VLuXssqZ6yn0VpGf8biFGjaeHaNzLzoOZk+H05MGc8Zda0mnlzGk2aJs1dpNxWz+GKsp8DLmFOF4xTjTupS+S65A6nFTPzp07AZge2EbAFWb19mNY8LX1LPuP1/n7qktxCQrzqrSTw65du0quzisXRnbgN2fZZTZqs/PpaajKCvxlziot7RosMn6AnlBm4B/JnbuxWMz4fvky/v5oFYmkC68YR0xdBZUz49dpnm0HpuU02Om/mc53Q/kyfpEEFa4I8YSbjtS+KwhKRm0qm+OPx+NGnaIUyPbpMR9D5gZIo7grlL+4292tHbdNXm1ew9PrzzYe+8c7K1KPaQ12yWQy40R6OGNkBv4i/XpKCbudtjF4kKC/FyE1CawvEixrcCnGmVNHtoplJGf8GRp+t3VxF4bHvC4t5bTm92F4i7tWnHpDVTuNwXR3cbn7YbLtGsxrmVCfts4Yrow/kUgYJzY9buhxxLw+fdtB+ZrsSo2RGfgPgUOnncdIQ1U7oqhSXdFj3FfO4GLpzGmiegK+dFair8M/Chw6M+waXBrVs69zXM7zyu2emkwm6ezU5hcZ/H6WogcgFK0kEvPhERO4U9ltuQqqVjTPmOoDw9oBn2PQZjqGJjfsMm73R6tQFCFl0qYlU+UI/JmUaW7g17eVOfA7Gf8w41B68lu1mmdnTpCpNCpncCnkzDmlcYfFOkZ+4DfbNdhl/IbqylWeq6Curi6j+J5Pw68ju8BbrozfSsPfVN2WEfjT4xfLY81sd9U8pvoAFV4T5RXTFHA63VPuwK83W+pxBJyM/7DAocz4rRpPsou7kKfYXIYTkZV9RGcoTfVMadph3DauPFzlM4w7XFDIrkFHuU30MqScNlQP5DZxlS3wp97frOEfU31gWPthspVx5uSpMXiQKn/698tW9pRD1VMo43cC/2GAQ+nJb5VhZxd3wTrjL4c1s1kd4RETRGI+QnpBzBVjfO3enHWMhoxfD/wiSSrdIRJJl7UhWZltswtJOcdUp4efZ2v5y031mLfHmOoD1FV2Gn+X06HT3HuSTyBRaaIoh2MYS6HA397XQFIRtTkGqVqdE/iHGYfSk79Qx6ER+K0knWXIKrOdOc2F3brKzox1ZHP8o6G4W5miedp6mnIGjkD5OX494/eJEarc/fRHArR0TgTAJSY4bupb6edm+fWUMrDE43EjYFoF/qZg27D1n5gTMf0Yysn4femMP93ENTxUj9+C6lFVMYf+cgL/MONQevIXajzRlRHDTT1ZSTnrqzospaV6xp9MJo8YLfJAUah5S0e2e2q5Mn6d39+yf4bx2LQx22iuMWX8uqSzDBl/IbuGMTUHLDn+cqh6Mo8h6+Qpg+qx8OQvNQpl/JBL9ziB/xDgUHnyW3L8vcVl/OUoINrZNdRXduRRF6U/f6TSPdl2DVaFXbDO+Evpw2JIOS2sGmaO3Ux9ZZoKym7iCofDJVtLIbuGMdUHCFb0Ghr6/mgV8YQ7JUNOGOsp9VrycfyHG9UD6RNlpRP4Dx0OlSe/VcafoeoJWgR+iwJiqQ7otMIoV8pZV9mZR1008v160hl/SsqZL+PPOimXkhaMx+NGU5CVOdussZuM/QXMqh5tH0smkyVbSyG7hqZgG4KQeRylB9WUNmEpdNXcEMzM+NNNXOUP/K5UrSwa9xKOZQ67P1Iz/hFj0gaHzpNfz3pcQgKfGCOW8BhWv6KQNAKteT1WRm2lOqDtnDnrqzqoDuTvJ4DyB35FUdi+fTttbW1EIhHGjh3L5MmTCQQChV88hM/UA52VD7/ZjCz7pAzavuL1poekDBa6fh+spZwzx25GFNJjBPMZtZViLZZ2DVlUD2j7rd7N29VfS2OwHb8YJpSsLNm+UsiSOUfVM4wZv0756cesGUbgF53Af8hwqDz5Df1x6sfPDrSiqGXy5ow/vZ7SDzrPoXpMUs76qo5DmvFv27aNlStX0tbWlnG/1+vlrLPO4vjjjy/LUAtzYAlacPxzxm/gza1LgPTVYTm2iVnKaWT8JkXPrHGbMqi5fN27NTW5QWigKOTF3xTUfiNLnr/EtaliBBIZVE+0/IFf/83z0Txgzvi1tYVCIVRVPewHs4weqmcYMv58MjQddg1cUJqdVx/WAXky/jwc/3AMY9m6dSt33323KeirhgwuFovx1FNPsXLlyrJ8tjnwV1pYMs8et9G4XU4vpbSUU03bMe83ZfzNmRy/kfGXwaFTD/xuIY5PjBGNe42rHpeYMKScGZLOrP6TUnP8Igl8rhjxhJvu1GeJQpLaQNchU/XYBf7s7l1VVY8IZdzIzPiH2ZM/p+OwN1fRA1lcqcEjlzbwF3LmzJZzDtfEqf7+fu6//35UVUUkwQca/8Xc4Lv4xQjbw1N58sB5dCfqePPNN5k6dSpz5swp6eebM0rdrsFM9cwZv8G4Xc6rID3jD7hCVLgidPXX0JbKsn2eCJMadmeosKwy/lLRCWmLhFyap6m6zbhSHQ41WrbJYbYSTRRVW6onkUigKIoh6S4FjMBvIeXUka+Jq1SzNcqFEZnxD7cn/2Ay/rTKqLRUTyFnzvqqfKqe8gb+9evXG+972bgHWFL3BkF3HyIKsyo3c93EP1AhagFo1apVJf9883apKpTxl3EKl924xRnNWxBFNWOf0U/a5sBS6ow/n4Zfh5VIotTWzDm25haqODPVkx6/WD5Pfv27+Yqieo6s7t0RGfhheD35szl+K0UPWKt6/CWmeiztGrLknNaNZOUN/PqQigbPQY6u2kB/JID0zVWMv3Evr25aRrWnl3nBdwHNA73Ul+7pg1GlytWHqmbKOTMyfv0qqAzzEtJSTuvCLmgnZ+P5GQ1cWgZe+sCfsmvIMmjTYaflL33yZF3YBWwzfihf4NePUavi7pFq1DbyA3+ZPfkzW83zd+1mr8Uqqyx14PfnkXP6PRHcrhQ3mvARjXtxi0lcZZpOpqoqra2tAEwNbAfg/jcu563tEgd6mvn1v24EYErFDiDTvbJU0LeLXwzjFpP0hKsNaV7A18/E+j3Gc8uV8UejUUNSqtsxZ0s5Qctsve6UXDJeQTjmxy0mjSvVUvPqRsbfnanh12HJ8ae2Taka/grNs4A8gb+M4xdzqJ4RlPEX5PglSRKBPwDTAQH4JNAI/BjNE/UzsiyvkyRpLHAXUAn8VpbluyVJcgG3AzOBt2RZ/mLqPb8AXAG0A1fLstxDCXAojNpisRiKosnvClI9FqqeslI9ojXVIwga7dTep+203aEaxtS04ROjhJKekmf8fX19xns2erTsbf2e+cbju9snAWkKRn9Nc3NzydagH4xWUs6xNa3GvARVFdPDWFzaSEoVV0n2FbNHTz4pJ4AgaL9Ta4qK6uirZ0L9XipcYeIJb0kCv6qqJi9+a2dOHYXUcaXYb43An8euAfJRPeUZxpJIJIwTWnGqniMr8BeT8S8GfLIsnwJ8Hfgy8F/A+cBHgB+lnvdVtJPBacCNkiT5gQuAvanXVkqStEySpEbgIuBk4F7gxlJ9mUMxjKWYVnPjcW/YyLSjcX9Opl0ujj+D6knRCNbKnvIYtR08mC5wN6YmGW3Ymy7e6pSLXnSFTAvlUkD/nayknONq9yGKKkF/+jPLsU0spZwWGT+Q2b2b5ddTisAfj8eNwJbPi1+HdSNkeg1D3Tbmq2a7Y6gQ1VPKwG/ZtWtR3O2LBInEfHjFOO7U1ceREPiLUfXsAQRJkgSgDugHkrIsdwKdkiTp6eQJwFdkWVYkSZKB+cCJwBOpx1cCJwG1wAuyLKuSJK0E/mT1oZIkXQ9cD3DTTTexfPnyggvVOyKhuO7d/v5+WlrSk30GA7MevcJiCItZ1SMI2onoYOoA0zNtvxihP+khEomUbD0CChWuCIoiZAR+/URop+zp7u4uah3xeLyo523ZssW43ejVtsf7e4827tODsJaNa4qrvXv30tTURKmQnfFnB37QtonRxBWqob6qE58YIawE6OzsHPJvs2PHjtQtTcqpqtYZP2BZ4NWDYldX15DX0tOTPvFbafgLcvymjD8UCg1pPZlXzcVl/IaO30T17Nu3D5crc3ylFYrZb7u6uozbdlSPvtaJDS0EXCF6El4OHjw45N9nIGvNhwkTJuR9rJjAfxCIAxsAP3AK8AvT4wlJkryAR5ZlveWwG6hHO1H0FHFfDmRZ/h3wu9SfRXkZVFdXG7ejRVA98XjcduMUg4Je/KYDGLTgogf+rlBtKvBH6U8GSSQSQ17P2rVrgbQSoTtcYzhQVld043YlU7dNGX8o069HEISi1tHS0lLU8/Q1eYUoNZ4ewjE/29umGo/3RYL0RSqp8vfjFaPEFD+iKA55W+gwZ5S6XYO5sDu2Vqs/1FR0szt1X4ZtQ4KSrOfNN98EtCsbrxjnQHeToVWv8vca64A8Bd5Ulq0oypDXYrYHCVh48ZupHjuOvxTrMVNg+ewaAGsdvynjDwaDJdtvzdvHjuqB7MCvPadU+26xx9hAUQzV8wEgIcvybOBDwE+BatPjblmWY0A8VQ8AqAE6gC7Tc+3uKwkOhSd/sT49CUXLROyauEpJ9eSza9Bhl/GXi+rRs/1N+2bl2CHrnLvunGkemjJURKNRY3aqkfF3Wmf8OsoxjMWQcnqt+X1zs6elpLOE1sxWdg3FZPzZDVww9G1T0K6havhVPYWoHr34DmmK7Egyaism8AtoRVjQsv8g4JYkqVaSpEmkA/cq4HRJktzAccC7wKuAPpZ+BfBK6nmnZt1XEhwKT/5iM/7ORF3OetKGV2UI/HmknDrsOP5Sq3qyA7+Z39ehUy+6c2YpOX6ryVsZGX9NKuO3ck8t4TbJlnLm4/fBPuMvhUNnocCfUdw17bNWVM9Q99uCdg3BXB1/uVU9hZw5p4/Zatw+Eo3aign8/wImSZL0AnAP8D3gm8CTqb+/nnrej1K3XwRulWU5DDwOTJYk6SUgIsvya7IstwFPSJL0Clpx+Del+jKHwpNf/5EFFCrEMIoiWGbZnXHtgMnuJtbWowWXUnbu5nPm1GHn11PqoTB6ENcLu2Z+X4fB86eomFJm/BmB347jL+NM5FAoZJyUGyzGLer8fjJ1JWTH8SuKMuR9JR34VWuDtkIZv6h3wJc28FteNVsUd8ut6rEcwmIK/DPGputWR2LgL8jxy7KcAK60eOjErOftA5Zn3ZcArrV4z58BPxvIQouF3+8nFAoNyJPfXBsYKPQf2S9GEAToCtWgqBqtE/T34HXHiSpeQklNM25HJ5Qj48+Wcuqw8+TXLaJLYTSVqehJFXZbbAK/u/RUj/nqwcquweD4LRvsSpPxFyvlbI2OZYJ/b8ZvlT1wHbTf2efzDXo9+n7rEWJ4xAT9kQD9esHUHaW6osc4CVV4w3jd0VTPh59IzIffG8UtJEioQ5f/WnnxWw0yCvhMTVLRKhRFwCvGEVBQEYc145/RnA786SYu7QSqU4vFFJoPFUZUAxdY+PUELDLsEnry27Wa6ztsOFlB1OJElN0oVA6OPx/VY9e9W0r/eXPgb7LJ+PVArMstY7FYyQ7kojP+AqMxh0KvZEg5baiePRFtBKOlnDPLoXMosOva1X34Q8kAkaTfUKPpSGf92hqG+jvp30UgSYUrQlIRc8aFArhEhQqvSS+fasDzlMGoLe3Fn8AjJoglPMbcalFIMrVpu/HcI1HLP+IDf7mpHlufnhQ3GUoGrE9EWdbMiUTCKEIOBmZnQKvirpnqseT4y2BRoAd+kSR1nk6SipgR8HSkM/7Sa/n1wO8S4lS4IsQSHqN5TRSSBp9tRfWUahiLHvgFFOo8nSiKkDFyUc/4W1KB35rqKV3gz+7atfLh709WWtbKsm0bSkX1mJMVvfhfV9lhKNEgH91TemvmbJ8es11DbWVXRg0k25MfnMA/7Mjx5C+zNXO2M6cVN6kFfu2y3DKrLJFCwpyVWjlzFlL1eMvg16MH/npPBy5BYUfbFKJxf87zsqkeKB3dkz1rd393uiN4TM0BXKKmQraj4WBo+4pO9dS4u3GLSfZ2jjcyyPqqdhqCHUSTXtpiTan78jdwQQkzfhsNf3+ykrCiuUzWBfJLOkul6glY9MFky6HNks5yzt218+KvDXRl9OfoJ00n4z+EOGQZv2iR8ad22rBSYdlXYOUJM5SDqBhnTh3D5cmvN5QZhV0Tv19rCia6ykYPzlCGwG9D84A9/QVD+20MRY+VlLNZy/bb4w2EklqgLeTQOdTAkm3XkKHhTzlz9icqrRMoQ5RQ2ozfrnlLh7Wyp3xUj5WUszbQleFeakX1HO5GbaMr8Od48pcu47eTcoYLUD3m4DKU9RTjzKnDTGuUy5o5kUgYZmtNFh27px39gnE7LecsPdVjDFnXpZxZPj06LKmeEpwMVVXNsWPO4PfHafx+e7yBcCrwZ2f8qqqfzIfu0Gn26bHT8IfMVI9FAlVRcqqncAOkFdVTjilcdgZttZWZGf/BPofjP+TQA39CdRue/D5PqlO3xJ78mdOu8vuIh5IVRJIpqqdMwQWKc+bUYc74y2XN3NHRYVBPDXkCv5CaL9vWM4Z4wk3AFUZE85A5pBl/CQfU9Pf3G0GpwZNfytkRqyeuekkoLiq8YWO/jSV8hKIBXIJi6NaHEvij0ahhkWAZ+A2OP2AZ+LO1/CWjeorI+O2auMrRwFUM1XOwtxFV1devbVcn8A8z0t27QtkdOjNlaPmLu+FkIE312DRwQQmpngJyTnOQK1fGb6XoMTdvLZi0LuOSWefeSynpTCaTuXYNFlJOKEzDDXZfMSt66m3M2drjDYBAWKlAELLonv7MAu9QAr+ZhgjkUfVAqribonrsbBtisdigFU+qqhZlyazDyq/HI5Qx408dE2aqpybQjc8TI+jXkqdE0kN3qAZRUI1t4gT+YcZwevJnBtr8+uMMVY9FA1dZqJ4Cck6rjL/UHH/awE6h0XsQVc3k+OeM25CRcWfz/KUI/Ob3CA6G4y+B0slKymmd8Wv7jkH3mCWdvbndu4OFZdeuhRd/KI+qx6oDfrBBNx6PG0q2gWb8/ZFhoHryZPzZazvSmrhGX+AvU8Zv13EYUiqsVT0lHuqdfq2azviLlHOqqn4C0jK3Umb81e4evGKc/d3NdIW0E1HQ38OE+paMjLsctg3mwF+Zx5JZR7l+Gz3wiySo9XSRVES27p9uPK4H/va49lvpShrz9LZ0E5e2z5U68Gdk/NWmjN/2GEqvYbDbJuMYsrFrUFStmTBD1RPNpHpKFfgzvPitOH4n8B9+sDRqK9P4xWJ9esxUT3ZWWcqAq6/HLcRxi0nCMT+RuBZEvO4oAV+IpCoSV9x43AmjGUZRXfRHKxGEtPdJKQO/VcfunPEbEITMwJut5S9Fxp/Rteu2cOY0FXf1YSygOYYmFTHVGaplpIPdJnpht87ThSio7Dx4FPGkV/v82n0EK/q0OpCiNSRZZvwWfj2DhTko2RV3NapHW0sha+aSBH6b5KknodGRVsNYSq3qMf/OVmMXrQL/kWbUNrIDf5mpHstW8zzF3aTqJq648brjRsBNKm76o5WIgmoE3FKciPI5cwpCqos4dfVhN3S9FMM19MCvK3o27Evz+0dP0GbwZgT+Tt2vRwv4oVBoSA1tYG3QlpHx16U/P98wFt8QbRuKknLG0vtNOGXvkWHbYEg6h+7QmeHT4+5HVfMF/jRFacnxl6ADvli7hu6EFnjtiruJRMIoWg8F5u9iNWhdTyQtm7icwH9oYA78xXjylybwp6mVfMVdbT2Fm7hKQfVYSTn1Bhytp6DwOoYa+Lu7u43LZSsN/5xxG4DMjNuYxGVq4hqqHjod+BUjyFnJOcNJC7ltloneYLaJpZRzn7WUU4dB9Vh175qmcA22oKpvU58YxSUo9EWqjKa6Cm+ISn+IhOIipvjK3ghZyJJZ3wZdce0zLXX8JbZmtjRoy9LxQ9ou2rxmc+AfqoNqOTGiA3+xVM9gfyB9p/UIMdxiklC0IoNaqfT1k1RFYqp2WW9V4M0urJaC6rFy5tSzx3CywlhHOTN+82Qyfc6uWcppZPx1FlRPCUcw6oE/4ArjEhQ6+uoNmqW6opuAL0xU8dKbCAKld+js7u42rlosM36TlFNHKI+WH9JXc6qqDvo3yhmynofmyauMy2rggkOT8WdbNkBpHW6h+OJuuntX26bJZLLkw99LiREX+C09+W2onqF4sNj59DQGDxpGV9pIg0LF5qG7QBbjzGmmeqxPQKVxoyzkynn0eAuqpwy2DWm7hvyTt/oSVZYNdmm57eC3SaYrp3Y7v5RTQ9iqe9eQc6YD5WB5/mKat7TAD2E7HX8JqR4BBb+ojQo106X6ftudyvgtqR6hjBl/sVTPEdbENeIC/3B68hfr06MjmrShWEqa8eeXckYU/7Bw/Hrg94shqtz99IaraOnUDMg8rhjTxmwDMgN/9hQuGHrgN7p2baScfckqe/prCL9N0VLODKonl+M35Jwl8OuxtWswKXoAy/6TrlCqA97kyT/Yteiv84sRREGlO5y2Na+u6DZszXX6y3Lubjkzfjuqx0bVA07gH3YUY9RWCvMtW2dOQ9FTkf4c26yydCojK4M2vTiXkfGXcdRgTmHX1Lg1o3kLHrfG/2dz/KqqZ/xaka5UVI9R2LUYuZiR8Zf4KkgP/G4hRo2nh1jCw462KQAIgsL0Zm2SU7uJ6rHP+EsX+O3tGrSTj1mUEEgF3VKKEnLsGizEEeFkBTFFo+esdPylHsYyJKrnCHHoHNmBvwiqB4a+0xrj4qwUPYop47flS4dGscTjcaOYamfQFlbSswGGg+O3mrql8/sAlf6Q0QEZS/jo6KvHJSjGyXQoGb+qqia7hvxSzr5EsGwnw3RhV/t/24FpRkY7qX43Fd4IvYkq4mp6qEoxDVwwuMBv7pQ1vPitDNpSGT9YH0dpukdbw2D3l2LsGkLJQDrwW+n4Szx+UT8GRRJ4xTjxhNsYUiMKSePkcyQbtY2+wF9Gqsda0WPO+MuXaZu/g6Wcs9KC47eZMRuLxQYtjevv7zcO6CYbfl+HXYF3KIE/HA4b38FSymmmeixUPVYZ/0CFAGkpZ4rfNyl6jMYtk5QTtIY/wHIK11AzSrMayN6nJx349X04Q9KZVeAd7NVHMXYNWuD3aGsuoOopZeDXazv6MQra/iGK2vZzqJ7DDMPhya8oivE6e6onN+O3U/Ukk0kjcx8ICjlz6gdtxNRFbJfxw+APInNht8FGw6/DStJZCr8eq8lbVj49vYmq9EnZRtUzUCFAMpmkq6sLsOb3dSmnmd8HLB06O/rqS+LQmeHTY+PFHyqQ8ZdKFl2MJXMoGTCUcXbunFDiwJ/HkllHXWUnoqAptrpCdcQTbvyuqGEy6AT+YcZwZPyZGbb9Tmu8xvZENDS/nkLOnMWqekpR+7Act5jVtQvQHddONlZNXLqF8lA4/oLNW0bGH7TurB6iiV5XV5dxxWE3Z1e3atCRUL3EFTcV3ojR7BdPeumLVGm8empfGWrgt5q+Zfbi11GMNfOQr5pt7BrCSgVxC46/3KoeO0UPaA1/ZlsNfe1HQhNXwWHrRyIG5skvDGqnzfQYsbtMtaB6rAJuVs2hqqpqQOsp1pkznKwwsvpCGf9gaSed33cLcWrdXcQSnowxg3rz1vbwVBZ71ha0bRjs4Pdi7Rr6ElWGwqXQMJZIJEIwGMz5rHA4zPbt22lvb6e3t5e+vr4sV04bKWcW1QNasPOIvTRUtbOnQ0seOvrqCVb0ERDDxBT/oAJ/QbsGC6rHKmHJtm0YzDFkrksFLOwa9AYpM8dv6c5ZpuKunU+PeY1tqe13sLeRsbX7CbhC9CWrncA/3MjnyR+N+w1P/oAvjEeIE1e9Q86w7ewawhbFXWseeXBZpdV6rOSchqpH8VNh27k79MCvZ/wNHq2XYUvrDJKKtqtNbthJpT9EX6KSgzHtILdz6FQUhXA4TCAQYKAoOGQ9VVvoTVZRo2jbotC8hOxtEg6HefLJJ3n33Xdt+f9ipJyCIBjvEU5WUO3upb6qgz0dkwAtsTiqaRcVrjBdibqSZfz57Bp0WNo2lMD6pFDzlrnzPa5qHH/AZ+LQo5UoipDyU1JQEYeV6oF8TVxOxn9IkO3JXyX2UxvoYn8qqHSFagn4wvjFCPHk4AJ/sTttyELOaXXJPFRr5gzqyWrerqm4G0mtt1wZf7Y5mxW/3xZroi/VLWvl0JndxDWUwO8RovjEGOGYn+7U9va4YtRXdqCogmabbdVjYTGMxbyde3p6+P3vf59FR6n4xAhBdy9BVy/V7l6q3T1UufsJRSuMIO4SE0xt2o6qQkdcO0E3NzfT2qptCytlT3YT19ACv0LAFUJVrb34B8rx68Nd9ObJYpCZrNj3wqikzAXFBAFfvzGvOBQLUOXvxyPEiam+8gT+PFQPYDmJ60gwahvhgV/baavICvz9tYyv24ffFaE3WT10qqfI4q5lcCmRF75+EAkk8buiJBXRsECG9A5rbuAqhw1xLBaju1t7XytFj87vH4w10pfULtWtqJ7sEYxjxqSz0mKRPXnLXNhtrtmPKKr0JIKAWPTVmL5NVFXl4YcfNoL+3Kp3kWpWMdG/B49oXZw3011Tm7bjcSfoiteQTGWzEydOTAd+C7+e7CauoQT+ilTDVGd/LYmk9vlBfw9+b5SY4iGeKqaCieopYM0cjUapqEgnOoVQrF2DnjzFFC8eMUGlKfD3Raq0wC/GiCWHIfBnZfxHqlHbqAj8UHpFQgbVY1WYsuD4bQuIJaJ6rC9PO3GJCpGkDxWXsY5yZPxmXttSw5+Sch6MNdGbyB/4S9G9m9O8ZVXYTa3Bvv6Su0127drF9u3bATi2WubC5seN5/SGq9jbOV771zWelo4J7O0az9qdi4znGOZsJn5/4sSJyLIM5HHozGriGkxgSatocgu7Vvw+mI4hK44/qzY12MCvn8zsut9jqpdKQlT5+mhDSwTMyp7+5NCLu2ZVnc+ma1dVQRDsJZ26nHggV0HDhZEf+Mvkya/vtCIJfK4Y8YTboBFEIUltZReqqsknjbVYnISsgstQqB57fl9bi72qZ2iBP8OczUbDfzDeSF8yl+oxbBtK4NeTbddg6dOTuuoo9qSsb+etW7WOWwGF0xueB+CWv/6I2569gR6T7jsfrKwaJk6caNy27N7NsmbW+woGUvi269q1at6C9D5sN35RX89AUGiehR5U9TqZVfdutrJnqBl/sV27PYlqajw9thw/aN+xsjJzex4OOPxORSXAcHjy53jf92faI7hEhbBSgWraxHrADVaYPd9rSCoiPjFmDPwY0npSO2s+RY+2jvQBpA8e6Y9WlWTwiM7vCyg0eNpRFCEPx9+YmlMg0lDVjselHbA94RpC0Qp8YgyPoH3+YCWdxdk1aCcfq9/GbhiLTsmM8R4g6O5jc+sMfvLELUUF/YCvn2tO/jMAuyNasPd6vdTX1+N2a7mYVROX4dApDt6h0wj8thr+zHqKJdVTAodOs625Xm/IN88CsFT2pDP+0gxjKRT49cRAN9Wz7t5Nr+9wpXtGfMZfLk/+HJ+eXis1QuZlr4pIVPHiE7VBzb0RjV7pDQeprezGJ0aJKIEhUT22XbvG1YdINOnF54oR9PcawaonXE1dZdeQ1qEH/lpPJ24xya6Dkww+tr6qncbgQaJJL72JakCgP1FJtaeXsbWt7G6fDGiUzPTmbQTdfXTEfYPK+OPxuLF+K7uGbKon32+TvU30fUVfU9Ct0WXbDkwz3tvtijO5YRfj6/YyvnYvE+pbMm4vmLSO+qpOehNVvN+nXQ3NmjULQRCoqKigt7fXNuOvyOoONe/vhZDO+C3sGqpzNfxQgC4dgvWJHhR9qXpDTyhoWGZX+vrwe6PEFTeJVL3Bqokru3t3qFRPsQZtnfF6YPsR271bMPBLkrQM+EHqz/HAE8AxgAtIAnfIsvxnSZLGAncBlcBvZVm+W5IkF3A7MBN4S5blL6be8wvAFUA7cLUsyz2UEIP15B/IJXN2x2G+VvNsRJJ+fGKM2souI7h0h2qorezGnxVcBgI7Z06jazeZeSXkc8WoruhJB/5Q6QK/UdjN4vcFQaN5dKvq3mSQak8v42r3GYG/tWss05u3UeXqpSPeMKjAX0jKqWv4e5Ppfolo0odPjFET6M74beoqu4zfRt8maRpJ+39v53jjfa5cei93f/Ya2/XtiUzg762XGkFt8eLFAKbAb+HQmeXJDwMr8OrSWCjOktn4jCJ0/DB4qqeQXYOOuJVtQ4nn7lpl/GbLBn0b6PMTrMYvjojAL8vya8DpAJIk/RF4GC3wnyvLsvmI/CrwY+B54CVJkh4AVgB7ZVm+TpKk21Mnkc3ARcDJwEeAG0mfWEoC3ZNfUZQBefJ7vd7st8oL245DQ8OfW+gy8+u79fWEajmKXUPy67Fz5jQbtOWsI9BtSAzTnHaU7kGsQ1EUo7hrNXVL5/fbYuksU8+4zbYN2ZLOIQf+Ioq7oJ0Mq+nN3CYW1syKopgy/tz3Hl+7F4CueA0tkQn0JYL0JoP0JoL0JIJ0xOvpSdQaz1+yZAnTp2vD1/XiqP5bZcg5s6ZwwcACf7GzdkN5iruFOP6BqoyyTQ4Ldb7bOnSWk+O3yPj1busj1aitaKpHkiQvcAJwHZpn7pOSJHUBn5NleWfqsa/IsqxIkiQD84ET0a4QAFYCJwG1wAuyLKuSJK0E/pTn864Hrge46aabWL58+YC+mNer6fOLtW3YsWPHgIow5slOMICM3042mDoRdXd309LSUvRazL5Bts6cydzAb6fsKbSOeDye8bjZosBu6lZ7LH2A20s6tW3c09MzoO0BsHPnTuO20bVr4dOjF5jBvuhtGHZ1d7Nly5b0e7tyM369MezNriW81nVi3jWKosixxx7LvHnzcr6fQfVYWAKYM/6WlpailTTmoTDFePHryLevKIqA3xU1mqfa2toG9Dvpsl9Lk0OL5MmgeqwcOsW0PXShNWTvt2botRuwL+52xHMz/oO9jaiqfiLTXAFaW1sHvO8Wu9ZCmDBhQt7HBsLxnw08kwrsl8uy3C5J0mnAL9EyeI8sy7qdYzdQD9QBPUXclwNZln8H/C7154BnIwYCGmVSrCd/bW1t0Vpxc1HNzqcnbBP4M5Q9pkxbf3+7Hy0blnYNebz4ddgqe0y8rd06WlpaMh43F2EbLXz4dQ1/mznwp4qr1pJO7f3i8ThNTU0DuiIzHywDyfghc1/Jdk8FMuw09PqBVcavj3MELcgHg0GCwSA1NTVMnjyZWbNmUVtbm7Hu+vp6du7cmR6/aNXAZcr4Kyoqit5XzNlwsV27gCYBTtWEqiu66QnXoKoi3eGaFDUYIaIE8Hg8A9pvbe0aLDL+uJVtg8XA9UJryN5vzdixY4dx29KyIbVv9CSqSSguAr4Qfk+YSFwbu9ofraTK349XiBFTfbjd7gFtk4GsdSgYSOC/HLgTQJbl9tT/L0iS9NPU43FJksRU8K8BOoAuoDr1uPm+GVn3lRzl9OQ3WxZbFnctNPw6rJqn9PUMluopZNeQnr6VKy0tpSd/2pxNTZuz5dHw69A59gxJZ5ZDJ2hXWPX1ljmCJfQrMoEkla5+koqYEeSaa/Zrz0vmBv5Cw1isPIDMGf/4ur0Z323ixIlcd911RdWQcqievA6dCiAOiEPOcOa0KO7m4/j19fhcMWoDXUZNqKu/NlX/iNjWhFRVRVEUXC5Xxv22dTKTXYMOS6pHV/UIWlE3kUgMSTuf9uJP4hXjJJIu+iLaCVwQFIL+XlRVO45DyQDVnl6aqtuM+tTB3kaq/P0EXP3EEr5B21WXG0UFfkmSPMDxwCdSf1fLstwjSdJcQCf+VgGnS5L0InAccAvwKtqVwotofP+dwBbgy6nXrABeKc1XyUQ5HTozM+zCO63Zg8XS9z1LLz4UPbS/CDknQMx21ODQAn+Vqw+/K0p7b71hYFXhDXFU406SqkhnPH1S6rNq4uq0buIaTOCvdIW0gnJPo+EXVF/Vjs8TI5L0kUh1zYL1SdmK4zcHfrurCT3jr66uLlo4oAf+pOohpnjweWJU+vpScls3PeFqagI9+MQoUaViQIGlkE9PNtXj8/mMfUA7jrqpq+xkV/tRQJayJ5G5H0YiEd58801Wr15NX18fyWSSSZMmMXfuXE444QQURTGuQIodXWqr4zdZM8fjcXw+X9HbxQz92NN/b/33By0hEEU11YEvElICVNNLY/BgRuCf0rSTgCtEV6L+iOf4zwaeNVE5z0qSpP/KN6b+/xGaquf7wK2yLIclSXocuFiSpJeAt1OFYiRJekKSpFfQThofLcUXyUY5PfmLtWvQtdg1NTWGL7tdE5fOI0ej0QGpjKwyfns5Z7pT1SrjH+w0MLupW7PHbUQUVdqiDSikMz87qifbtmEgyJm8ZeL3jcBs4veh0EnZKuNXqHL3oar5aCTt/a3cPPPB7EkUTlbgFePUV3UYE6A6+uqpCfQQcIUHHfiFlE+Pogh56BUt8Dc0NLB3r3b1Ynkcpa5UK7ISlvb2du68886coLd79252797Npk2bOOecc9LfuQi7BoCYmn8YiyfLk3+wgV8/0dnRPPoxrJ+UdBdROHKM2ooK/LIsPwU8ZfpbsnjOPmB51n0J4FqL5/4M+NkA1zoglDPjL2jQluXTU11dTW9vL8lk0nIKV3bNQVXVAe28VtO3LDt3TXJO+1GD2s6vt6/rTUV2UFU115zNit+PN2W8rteiuJvt0AkDV/YYckuLjNxsx2xGscNYOju17RlwhXAJCu299cQS+om0m0p/iKjiJZYapzgQi21zoTasVFBDDw1V7UZG2d7XwNQxO6gQw3QyMCWN4dOTugpq76s3xkDWVXbgdceJJH0kVe33zgj8VuMXQ5m2DZFIhL6+Pv785z8bnzXJv4sZlZuJJv1s7J9Ne7yR7du3c9ddd6W/s51dg1Is1VOaYSzF+PTo20K/MrLS8h/uRm0jsoELyuvJX6wls56tBAIBfD4foVCoqClcoGUexQb+or34LeSc1hx/5jqKCfy9vb3GAWc3bvGgqbAL0J8K/LpPDGj0QyLpotIdQiSJgmvAgT/boC3fyEUzrGwb0nRGmvbST3BWih6d3zefVAaS8WcE/jyTuGBwDp3pWbspmqc7P80DZFBrttbMpoxfluWUWkfl7IanOak+zeSe0fAsjxz4IOt7F1rWGyztGszFXasGrqg11TNYFGPJrF/96GvLMGrrOzKM2kakZQPk9+QHDE9+l6DgSRWFBk316NlKX35FQkVFhS31lG/gR7FIH/wqFa6wZvWbZ/qWDrsT0GD8esxTt+wGrJsLuwBJ1U0oWYHXHacxpYlW1XQhtnIQWn5FUYzAoiuDLKWcicyAbDkT2WIymRH49cJul0nKmcXvw9ADf0b3bpZR22AyfmPyVm9uYdfMqTc0pAOxvUNnxFjLmjVrAJjo38NJ9a8QilbwP098hbtf/ihuMcn5TU8QcGX+llZjF60EEpbDWAyqpzTDWGyHsOSjemz8euLxeEmmgpUaIz7w6578UDrbhvTBplgG2vTIOIvAb0EnlKrY7BFiuASFUDRgUA8+T4QKb4SE4rIsZFYHSuPQaWnOZqHoacvK+CFPgVfn+QcxgjEUChnFdNuMP5En4y9wMtQPZKN5y+QBlFb0lCDwp/Yfs6RzKNbM6Yxf+7+QQZtVxm9t26CtIZFIGNr8BcF3APjZU1/i5r/+D9f89m4eX30+fleUhcF1Geuyumq2beDyHS5UT27gP1JsG0ZB4C+9UZv+Q/rFKKKg0h2qMRQjVf5evO44McVjcKU61QP2U7gGO/3Kzpkzs7CbLhYbswFKnPF7xQjV7l5C0Qp2HtTUH6KQTM+XTQX+5uZm47V6kMwYum64dKZHMBYLyyHrFiMXe7OoHrthLOaTsg67jL+vlBl/MDfjD5gyfl1aXAg5zpwmqseqazcYDBr7ra01s8W2GevTtvGz751p3Penlz4GaLML0lCpELXkqdA8i1jKsqGQqqekgd+G6tFPSkeiUdvoDfxFZPw6ZdDX15exM6V9cYrz6cnM+O0auIaW8RfjzKnDjuMfzDqMwm6qY3fTvlmoqrZ7TRuzDZ8nRle8xuBpp06darzWyPjrrJq4Bk71DMauAQqclMXcE6BOI2U0b+kZfyrwu93uASlMPB5P2qHTookr26ETijs5J5NJ47e0pHosvPgDgYCJorSwZrZw6NSgMsarvd+63QuMe59Ycz79kQCTKvZQ7da2sVeI4RaThKIBInHtM/yeMAFfiITiMrp1Id25a9fABYMP/Mlk0rias5u3a0v1HCF+PSO+uAsD9+SPRqPIssyqVauMS1e32838+fNZunRpUQZt5kBrzvjtVD1DDvwWUs5sL37jO9r4zw8l47c0ZzP4/TTNM3XqVF5//XWgANWTytj7+/uLbsyxHLJulnPW6cXdPBx/gcJ79ntnFHf1rt3U1UQwGBzwoPhAIEBPT0/eJi7IdegsZNuQoUSzsGTOpnp8Pq3r1O/3093dXbRDJ0C1uxu/K8qB7iajjwMgHAvw1NpzuWzJgxxd9R5vdC3LmzwJgn4MpbddsaqewXLqBb34czj+/Kqewz3wj96MPw/VE4lE+NOf/sTTTz9tBH3Q+Ms1a9bw+9//nm3btgEQEG26dk0yNHPmZKkVH+IQFDtnTqNr1yTlhOK8eopdhy7jg8JTt3SMHz8ej0e7dNcDsKVtg0nLX2zWn36eapnxG1RPMRl/OJeG02FXP9Az/oFIOXUY3bupjDJj/OIgHTotm7csqB6dt9Z9qwYqiwZotsj2ddz/xuUAzK16DyjergHSlg2FVD2DzfjNgV8/BoqiemzGL8LhadQ2KjL+Yj35VVXlnnvuYd8+7eAd79vD3Kr3qHT3sz00lXW9C0iYxqna+fTko3piqhdFFaj09eMSEyQVN+FYgFjCg9cdxyUkSKruQWX8/iKlnFBIwTKwwF9o6pZ5zi5ov01lZSVVVVV0dnYaAdiS48/S8ldXV1MIeuD3iVE8YoLecJXRAOX3hKkJdJNQXIaFhe7kajeMRRuUo2QM1rGXcw68eUtHOvDbZPwDdOi0tGuwUPXoXvx6I5mdGi0fxz/Glz/wP77mAkLRCiZX7Cbo6rG1a8gJ/ClxQsBryqajlSiKgEdMGL9PKQJ/McVdSz+lvnqSikiFGEYgiYrLyfiHE4Ohenbv3m24Oi4MruG6SX/gpPpXWVy9lkvGPszl4+7HJaQjv6Uzp8UQFjPVAwJRxYcg2MsGiw38qqoWN4Qli+NPqB4UVcDvieB2paYXJXxE417cYhLXAGSu+uxZsG7eylb0NDY2IgiCERTtHDoHM4IxPXkrdwDL2NpWBEH/TI1GqKvTApg+jMUlKgT99ldChbp2S5LxWwxcz5ZzwhAyfhu7huyMP2yn48+iesZ4NR8kq8Afilby1NpzATi66r2i7RpA+31iigdRVAmYeP5QTHueLs0uSeAvQs6p4CaS9OFxJ6gNaNtFUV109tchCFCReg8n8A8jdE9+KI7qUVWVN998U3utEGdF0z8QUfifJ77CDXfcSmtXM0dXbeDUuheN97C1k82T8ZvXY2cGpmfasViMN954g1//+tf84Ac/4Hvf+x533HEHb7zxBvF4nEQiQTKpjQUs1plTgyZzFQR7ZU+hjD8WixlcfbO3lUZvO/2RAJtaZxnPMTj+VNduY6N2kOtB0bBtsCju6lk1FC/pzGneshq5aFL06OsBbRgL5LHNNmW2etduR19u125M8Rhdu0PJ+EMWGb8h5yxB4LcyaAvlCfwDoXr0jH/9nvnGfSfOTDdyPfDmZQDMDb5nePFbz9rNrVtYDmPJKvCWNOO3oXrAusCbrew5HI3aRmzgFwRhwDvt5s2a5HB6YCsBV5iXN57MzX/9H3737A1c+vO/oygCJ9W/bGQ0BsdvqerRdlqfz4coigWvQKyM2np7e/nd737HypUrOXjwILFYDFVV2bNnDytXruSuu+4yBp9AHo6/KteZU4e9sqe4wL9q1Spjxz6lXjsp3vbsDUYwnNG8mZpAD32JSiOoNDVpAUcP/IZDp5nq6R6LqurBW9PkF5vxZ9s1WEk5zYoec+C3m5dgbuKy9OEfYvOWjmyqx5xld/bXoShCikrQZJzFZJT6c0QSVLgiJJIu2lNNh4Kg5NAr2VRPTNEoyip/H6KgJRr90SriCTdeMY5IIvX+SZq8bSiKwLt75hmf/93LvmPcfmz1hYRjfib7dxkniWIyfrD25NcLvJ4hjl8sdt6uvo+Y12jJ86dOaocjxz9iAz8UZ9RmPpjTlgPazvjG1iXGY69tPpHfPv0ZXILChc2PIqCkM36L4q7efKMfQGZJn5UXfrY1c19fX0Zgb/QeYEnt65xY+wrVbu177Nmzh9tvvz39fQcg58xYhynIDcSaOZFI8NprrwHQ5N3PvOB7hGN+fvLEzcZzvnze/wKwqT99BTB5suY7owf+mOIjrrgJVvRRmTqgo3E/XaFaXIJiXMkMmOop0q4hI+MvYhgL5Jm8lSXlhKEFfgU3UcWL1x03qCdFddEdrkEQ0vvKQDL+fF2yLlEhnPQbBnrZGT+IxhWiJWWaunKu97bjEhS2t0016ipN1Qc4a94zzBq3UVtLtIqVa89BEGB+cD1Q2K5Bh61D5xCncFlRPWZ3zmyOH9IiDrvuXYfqGWYM1JNfh1WBEuBr9/6Q3e0Tmehv4YTaNwsUptI+Pea1mNdj2SiUCi6tra2GRHJJ7et8evKtnNO0kuVN/+JzR/2SxdVvA2Q07wxEzgnWGb+VDXE+bNiwwQgop9S/BMDvn/skralgOKFuD9ed9gdUFV7t1CZRVVdXG4Ml0kFRMIKlpT3zAJq4otGokfFZ6eytGqysOlStZa6mjN9Cymnl+jmYwJ/t0AnWBV69xlRMHSbHrqGAD39u4E8nUHYjGK0UPQsmrUMQ4PIT7jfu0+keXypLL2TXoMPOtmGoVI++rwsk8YkxEkmXMXtZEBSqK3oML34ddkZtTuA/RBgMPwlYDhEBTeHx2Tt/g6rCmQ3P0ODVdlA7VY+evRWSl+bTi9e4O1ne+E9UReDWp2/gjy98DJeQ5Jymp4wmGB16ZmzZuZs6aM1BJWIhLS0244/H46xduxaABk8b86vWE4n5+OFjXzOe89ULf4TPE2N933zaU/z+0qVLDV27ufBZzAjGYjh+y65dS58e7fMCgUDGNrHz5Pebirt2zVvmk8pQirtg7deT3cRVKLAkEgl6erSTe6Xbwq7BwqDNMvDbJFB68+AYn0aDrt+d5vcXTNIsGi5fkg78j62+kEgsHUAL2TXoiFkYtRlafrE0xV39d9aPBdCSI1FUU/tHOmyGbbp3zQ6duoXI4YIRK+eEgXvya1Bo9B5EVeG9lrk57/n42xdy3+tXcOWy+4wdza64a0v12Fgz6ziuZjUuQeG256/nM3feCoDHHeejJ/2VY6pX80LHGcZzbeftpjL+2tpaI1BYZvwW/vNWePvtt03c/ksIAtz54sfZ26ll82Nr9/HJM34PwEsdpwJaMJGktKO3OSjqGb/lJC5X8Rm/VeC3VN2YGqwyf5v8hXfLjN9k15CmerT31hugBopsa2bI18Rl7dcTCoXYsWMHu3fvZs+ePezdu9e4MrQfuZgb+M1rsbRm1iWdqStnq47d+RM1Omfh5HeY0byZLftn0hup5h/vrOCD0qNApslh9jFUWVlpXLFYUj1ZWv6hcvzFdO3qKKZ7V1VVIpFI0bORhwNOxp+TYffgFeO0do2lO/WcoL+Hz5z9G+M5n7vrl7T3poOr3RAW/cfOCC42TVz+LGuASf5dgNburuPul68GYHblxoznFqPqMc94teKzi8n4E4kEL7/8MgD1nnYWBNcRS3j4waNfN55zywU/psIb4d3eubTFtCCzbNkyo2kLMmmQ/iIknX19fQUzp4yu3TxyTkhn5VVVVVl0hp1fjynjt1EM6VRPVVXVgLt2IY81c2X+7l098Hd2dvLwww/zv//7v9x///28/vrr7NmzJ4MO1K8SLRU9iUy7BhgE1ePLlXLqGb8gZGb99795uXHbMuNP8efmfdZO1eMpEcdvq+jJCvx2Rm3Z3dWHE0Zv4M/x5NeQz1L4h1d+jQl1ewBo6xnD//vr/wAQjvkJ6zpiV4wqfx9JVTRGG+oHscvlMoJesVSPSJLx/r0aR77pROP+Z949i55QkHH+VmpShV6RJD6XxkvqM1EFQTECmJHJ1qSLVcVy/NnBds2aNUaAPbn+JURB5U8vfswYFtJUfYAbzrwNSGf7FRUVHH/88RnvEwgEDMltr80IRl2dY/abyYdiM36dWqqqqsqQ/tr79RTI+GuH3rwF2YE/1b0bzE/1hMNhDhw4wB/+8AfWrl1ryHtdQoIJ/t0srX2Ny8bex5em/JSzG58BCjtz2tWm8iVQHiFKnaeLaNybIeedNzFtymYO/I++dRHRuDfjO0Eux2/eZ+1UPaWSc9raNSStM35rqufwNWobFYG/WE9+yD9EpDrQy28+/lnjvj+++HGeXn9WpqInmOsxYuaPc6yZrageU7G52bcfrxhnc+tMQ3qnr33lO+cAMLtyg/beqcv+7MtTXa2hd5wGg8GcIGdn26CqasalczKZNLL9WncHi4JriSfc/Pej/2485/+d9z8EfGE29M1mf0zLtpctW4bXmzbcAk1yq1MKfVYOncbQ9eK1/HrgF0kQcIWJJ9zGgSgIipHd9qWyWz0rz/FSKqTqsZJz1mXKOUsS+JX8Gb+5uHv33XenvrvKwuAarp34B7427Qd8ctIdrGj6B/OC71Ht6aWjr44n15zL8++fbrxf2qAtXZfSB6NbBn6L8Yt+V5gxqaRpw945hlvttDFbqfL305eoJJL0sfioNUwbs1XbTpFq/rnuA0RiPkMB5HHFCFb0oqiCZbJSzNzdIQf+ElM94AT+YcVAPfkhXdg18/t6A9JFxz3G5UvuM+6/4Y7b2N0xyfjbSn9sDvw51swFLJEn+XcDmdm+jkfe+iAAs6s0usdw5iwwgKWiosK0DptCZh6L6LVr1xoeRifXv4woqPzllY+yo21qahsc5LPLNVrsxY7TtPfy+znhhBNyvgOYm7gKO3SCPc8fDod5910tu9Sz/QM9YwyX0KZgG25XklCyAiVV3tI/P/vq0F7VU6Br13Q1MRi43e4ch07LjN/UxKWfED/Q+A8uGfswR1XsQkTh3T1z+f1zn+C6393B0Te/R8MNHZz/kyd5ZdPJxmuzOX7zPuv1eg26ymoYi9m2YYwFzaPz+63RsWzqn5VL97xxeY4qThD0Y0j7XHPgj9upelIJXCKRKNqq2ozBUD1HqlHbKAn8xUs6raieuRPeM27/4t8+b7RnbzswnS/++efGY/ksmbPXY5U5WVkzT6zQAv9rW5blfLcn1pxPPOFmSsUO/GKoaCmn1VAYq4zfa+HXk0wmeeklTbZZ4+5icfUaEkkX//XIN4znfvm8/6XK38+m/pnsi2rZ8NKlS/NaE+tZsSXVMwDbBlVVeeSRR4yh9stqtf4CfSaA+b2tdPZFzUtIbROrrt2gv4cqf7/Wtat7/gwy4zevx5Lj78/k+HU0eA6ytPZ1onEvH7/tD9Tf0MH8r77Lp37/e+584To2ZKnUAMZU7+fMec8CsD+qXWHpFhaQ3QiZ21Bm1vHnk3ICHIg1816f1tCVQfesvijjqkkfXG4+hiorKw2a1Nahc4jjF4uheqL5qJ4CRm1O4B9GDNSTH1Tb6VEdsTrG1u7npx/9ivHYm6YmL6tWc0uqx2IIipW3uVXG7xK1DsnuUC0vbDgNUVCZWbnZVspp5iULZvw2swHWrVtnBNaT6l7GJSjc89qH2bJ/JgC1gU5uWv4rAF5s17J9n8/HkiXpbZQNI+O3cegsxrbhjTfeYONG7epnTuX7LK17g1jCk3FintG8RXsPC7ll9m9jV3+xGuCe2bylZapDCfxpjxwLvx4LozbQBpwIAvz55Wv444sfN8QJZrhdcY6f9iZfOOfn3HPTlWz8n9nUVXaxI3QU7XEtYB111FEZrylWJNFkYc6mB/790TFsCU0nmvRy7JTVTG3SHG67Q7Xc89qHjeenp9dlHkNG4FfLM4wlw4u/CIM2HRHFh6IKVFf0GJ5XfZEgkZgPrxjHnSo4H27du6Mn8Bch6Qy4+gm4wnT21xpNSD5PhKljtqOoAvfs+zAJxcXHT7uTM+c9k/N5+Xx6dNhmlVle+EFXD7Webrr6a3i3RcuUXGKCa0/9o/Gah+WLAZhTucHg+As5c2YG/sIcP2gZv6IoRrYfdHdzTPXbJBWR7z/8TeN5Xzr3Z1QHetnSP52W6EQAlixZYitp1ANvKBlAUQUaqtqNA6g7VEs45sfnihmKDauMf8+ePfzrX/8CoNbdyQebHwbglr/9mFXbNIrJ7Ypzy4U/BmBnOB3Y9ElgA/pt7Jq3hti1qyOd8Wv7UoZfjwXVAzCjUjuxPbb6QuO+puoDXCw9xI8+fAsvfusUen5fzZv/uYSfX/Mlrlx2H7WV3Wzpn859+64ANGpnwYJMczVbWbQpYWm2MGdLZ/xjSKoeNvbPRhDgshMeMJ7zx5euNW7no0v1+pBlA1c0U9UDAw/8ZjrT4PiLoHpAJJQMIAj56B5rye2hxugJ/EVQPUbjlqmwO2vsJlyiQke8nrZYMy90nIYgwG3X3YDfk/ljWnUcWhd3bVQ9qbXoNM8bW5cYHPWiyWv56Il/MV7zyFsfRFW1A14PRoUM2iwz/iLGL65fv56ODi34nFT3Cm4xyf1vXM7GfXMAzaDs8yt+AcALKW7f6/WydOlS7KAHfhWR/mQloqjSXL3feDw9gtF6Elc4HOaBBx7QhrSQ4LJx9+N3RXlo1cX838ovGs/78VW3cML0VXTFa3izWzsZTJo0yfhN7GYiZ2f8erHZMuNP5l5NDAY5VE8Ba2a/GGKifw/RuJdn3j3LuP/lb5/MQ1+6lFsu/AmnzHmZCm+Etmgjb3cfw6P7L+KXOz7HX/ZeQ1jR6JKzzz47g1MH+/1Wv8Js9B6k0h2iq7+GPam6l9cdZebYzSiqYMxieL9Pq52Z6Z6OAnYNFRUVOYG/1FRPphd/8Rk/mAq8VfmN2g43qmdUNHBBcZ78VtOjdH6/LbXjvtp5EvOD65kxdiv/8aH/4Gv3/Mh4btqSWdsR3G53hm690BQuVdXXojLJr0lHX9uc5vdPnPUqp8x5ibrKDjr769nTMYnVO47luKmrjcEWllSPKeP3+/05tEahgevhcNhw4Kxy9XJc9VsoisB/PvQt4zmfX/ELaiu72Raayp6IJus84YQTCjatmLPi3kSQoLuPcXX7aOnUrhj2dY1j6pgdVLl66YzXZwR+ndfXi80faPwXE/x72X5gCh//3Z3G8z543MN88Zyfk1RFHth3ObHUvnDmmel5sAOZiWzvw58O9qXI+EMWVI9Vxj89sA1RUHl548mGQmbamK3MHLuZqOLl9c6l7IlMYk9kAhHTkCAdbreb888/n8WLF+c8ZmvNnDqGaj3a9jI7cs4ZvwGPO8HBWAOJFEWzJTSDqOJFmiZzVOMOdh6ckvFZ+ZInPfDHLeScpaB6ip6+lcwf+M08f7ayx6F6hhEDpXoaLTL+9PQo7Qyu4OLR/RehqvDlc/+XxUe9bTx3coPWbNVnoY4wryepekgoLnyemCEvTSQ9hGMViIKKR4gz0YLfP3Hmq7hdSc5f/IRxn67umeDXAo+dQZs+z1U/iGwNyUwc/9tvv234Bp2Yyvb/vupS3ktRUFX+Xr54zs+BtJLH4/GwbFluUTobVrYNVpJOK9uG119/3cTrv8eSujeIxr1c8cv7DH77qMYd3HnDxxEE+NfB5QYFdcIJJzBlyhTjvbKvgszDWHoj1RnDWKwM2rKpHpfLNaiu3ez1WM66DdVqwz5cEQQ0zf6MSs1ZVve6Bzh30VMIAmzun8nzHWeyJTQzI+h7vV6mTZvGihUr+PKXv2wZ9MGC6rFInnRY8/vNxn0J1WOoe8x0j45suwY9ebKleowGrnSWP6TAXwTVYxYrHIl+PSM68A/Uk9+ysGvMi013Ou6NTuSNrqV43Anu+/wVnDH3Wa5ceg8XHvsYiiqwNTQdgHHj0oEBivfrqXL3Md6/l6Qi8vqWNFWybKamVLlYeti4T+f5ddiperJ9g/LZMquqnvFrjVstLS0ABFx9SDWylu0/nM72b1r+KxqCHewIHcXO8BQAjj/++JwTnxUyAr9NE1e2bcOePXt4+umnAa2f4IPNjwAary9v0xrFPK4Y933+Cuoqu9jQN5s3urRtOX78eJYvX56xDn2bFDOMpcpq1q6e8SfTGv7BdO3q0AOLgotI0ofblaQmta+oqpglBlCYEdD4/ezAD7ClXyu+u1wuFi1axPnnn8+nP/1pvvrVr3LNNdewdOlS2yszOzVaMYFf79zW8V5vLt2jI5+77UBVPSXP+LMCf0NDmp4K23nyi07gH3YIgmBkCsWoeqw4/vT0qHTgB3i2/Ux2hiczc+wWnv3GWdzzuauo8EZ4o2sp/amDf+rUqRmvKeTXoxcRp1RsxyUovLtnnuEOOK52L0c1atPBViz8h3GlsG73QrYfmGK8h930rWz7CAU3ccWNx52gIjXOTlFd9EcrEYTMAdYAUs1beMQEj62+kHd2LQIg4Os3rJf1bN/tdheV7UN24LebvZuya45G6enpMXh9l5Dg8hSv//dVl/CLf3zBeK3O63fGa3lk/8WA1qh12WWXGTp5HZmWGvn7G3xiJE31dOUv7g6F5oHMJMGyics0iWusr5Uqdz+7Dk4yrsJ8nghnzH0O0OgVgBkzZnDxxRcjSRLNzc1FDa43ryWhekiqIn5PBK87ZekR9xOOpddqZc62P5oZ+LeEZhBTPJww/U0mN+zMeCw749cbyYyMv0yqnoFSPWbJq333bsoXKxo1Oqrt8P7772fM2CgXRnTgh/QOU8iT3ydGqHb3EopWsCPFO4pCklnjNgFpqqe5uRlBEIirXu5uuZoX209lT3gCW/qn89j+C/jnwQ8A2o5xzDHHZKyl0BQuPYvT1RnZNI+eQFb5+zl73tPGYzrdA9ZDWHRnTkvfoCKHrgNMT2WVtz7zaeO+z5z1W5qqD7IrPIntYe1EJ0lS0YVNt9ttrKu3yBGMd999t8HrL2/8J+P9+9h2YCrX/e4PxnMulh7iC+f8X4rXv8yoc3zwgx/MOGh1FLTNNnkpBe2Ku4m0+dtQYP6NClkzzwzk0jynH/08AV+YvZFxhg/SjBkzBrUWcyNkOFmBIFiPYFRV6+atAzGN6tF/54TqzUv3WA0yAmypHiPjH4Kqp+jpW6l9o7Ky0liblV/PYLp34/E4Dz30EL/61a+47bbbeOmll4z9vNQoWNyVJGkZ8IPUn+OBJ4AHgR8DCvAZWZbXSZI0FrgLqAR+K8vy3ZIkuYDbgZnAW7IsfzH1nl8ArgDagatlWe6hTEgXVO2pnkaP9qNt3DfbUNFMb96KzxOjK15jFJWOO+44fD4fDz30EAnVy3MdZ/JcR7pIqH/mpZdemmNRUJDqSWX80yu0lnZz49aJs14FtAMi4ArzweMe4Yk1FwDw8FsX88Vz/w+wl3Pqn58d+KvopybQzf4Un94dqmF83T58rgi9yZQfOUnG+fahqpkDaj591q0AvNhxKiDgcrk48cTcTmM7VFVVEQ6HjYzfyqHTrOXXh7sfXfUeS2rf1Hj9X6R5/SlN2/nD9ddpvH7bB9hrkpYefXRuE5PVNoF8tg0Ro2vXzot/KIqe7PUUsmbWEwVLmieUDvYzZ84c1Fqy99sq+qkNdBn7S1eolnF1rbR0TKArpJ1UawJdTGrYTVxx0xnX7jv22GN55RVtBON7fXOZH3yXy5Y8wP8+le6Lyc74dUrFjurJdueEwat6BJPnVbYXP6T3Db/fTyAQIBqNWg5jyWfUZpcQbNmyxVh3a2srra3acdDc3MzcuXOZN29eBsU0FBTM+GVZfk2W5dNlWT4deBV4GPgv4HzgI4Aua/kq2sngNOBGSZL8wAXAXlmWTwEqJUlaJklSI3ARcDJwL3BjSb5JHhRL9RRT2AVtbODChQu5+uqrGT8+feDrmDFjBp/5zGeYOHFizmNF0wkubQc2Z/w6v/9yxykAXHjsYwiC1pb+0oZTDLdQOzmn3WyAQhl/o/cgHjHB9rapdKZOLnWVHUxv3kpM8bAtVddYvHjxgLPddBNXcRk/aLz+RWM0Xv/mv/6Et7Zrds8eV4x7P3cldZVdvN83hze6tJNUU1NTDq9vRrGDcuo8HbgEhc7+urJ17UJW4LexZq73dhgyzqfXn208ns3vNzU15cg0i0Uha2b9OMrO9gVBo0h1n6hx48axcOFCQCs4xxQPS6a/wfRUY111RTcT6ltQVMHYF3Qvp7SqRzsBBLymgBqtRFEEPGLCGEc52IzfZ+PFH0n6jO+iB36w794diFHbe+9pyjyPEEuNd9VqbPv37+e5557jV7/6FbfeeisvvviiIbYYLIqWc0qS5AVOQAvUSVmWO4FOSZL0SHMC8BVZlhVJkmRgPnAi2hUCwErgJKAWeEGWZVWSpJXAn4b0DQqgGKrHL0Ysh69kSzkhPS92+vTpTJs2jYMHD9LT00MymWTSpElFFcnAWjZo5hQPdDcZHbFed5Rjp6xGVeGtnmM5vvZNxtbuZ+mM13lt84koqovH376AfzvlrgyqRw/8ETuLaFtlTzrwj/dpVMZb248z7jtu6lsIArRGxhoHxPTp0/N+/3woyrbBZQ78Khc1P4rfFeXBNy/ll//8vPHITz5ys8HrP7r/g4BmOXDmmWcafLEVCtZfUttEvzLMb8429K7d7PUYDp0WGf+8qvV5ZZzhpJ89EW0+wmBpHiisjtP3ObOU0+D3Y2lFT3NzM263m3feeYeE6uWd3oVINW/x4Bc+xG+e/iwfOv5BKrwRtoemGJJbvYs4ffUsElM8eMU4AV8/oRTNE4oFqPL34xHixFTfoAO/TvOYRy7qx4ZZw+/z+XICv1nHnz1+EewDfzweNxRqsys38qFxD3Iw1sB7vfN4t29uii4T2L9/v3EiWLp0KStWrBjQ99QxEB3/2cAzQA1gpmYSqZOCR5Zl3RmpG6gH6kzPtbsvB5IkXQ9cD3DTTTfZZmt20It4hTN+7UezMmfTFT0+n4/Ozk7DtkCHfmDoDU75YN4Z7VQ9kKnfl6bK+Dwx9kfHEFP8bOybw9K617n4uId5bbN2VfDIWx/kQyc8SDypHSAV3hAV3ghxxW1oqGOxGC0tLRm8YbEc/3i/FtzkbelBKtJUGYC9kXQQFEXRUAEVC932Wc/ymmvSDVwHuseQVEQqXf0IJFFxcUz120wN7GB/9xg+9fv0zOFLpL/z+RW/MPT6+gnv5JNPxu/3267LrLO2M9HT95MMfr82d9ZuJBIZ8HYww1x4teP4J1Vo/R5WMs6toemoqRm6dXV1g16PeX+JWGn5U5SpJb+fKuy6XC7C4TCBQICamhq6u7t59uBZTKvYxqKj3uG2T2h1o1CygqfazgPSPkEtLS0ZQTOmePGKcap8fUbg74tUUeXvxyvGiCV9dHV15f2+8Xg85zH9mLZ05tQLu+ZZu6b1WBq19eX69ezduzdjtoAZO3bsMGieuUHNaLDR286pDS9yasOL2kmgby5rexbTEddO+oFAwPY31UecWmEggf9y4E6gC6g23e+WZTkmSVJckiQxFfxrgI6s55rvm5F1Xw5kWf4d8LvUn4OeW1asJ7+9okf7EceMGWNJ4RQLs6+9VRNXRuC34Pd3R7SOyA39WuD/4HGP8NV7NBuCf6xbQUtH+oe2Mmhrbm5mwoQJhUcNWsyYHZfK+OXtpsA/TQv8uhlbIBBg1qxZA5Yxjhs3jnXr1pFUPYSTfio8Eeqr2unoa0BRXbT1NDG2dj9Vrn4UBJY3/hOAL9z1fwbtdFTjDoPX/+eBD7A3qm2LpUuXctJJJ9HS0mJ7IGSclG2GseiB31rKmeb1p06dypgxmWqWgaClpQWv10ssFrNt4tJhJ+P0er0ce+yxtlc8dqiuTh/uxVI9ZnM20K6UJ03S9t9zzz2Xe+65h7AS4Le7PoNUI9PoPUh3vIY1vYvpTWjb+swzz2TatGkAGdSGTvfkavn34xFjkNRqAvl+b7t9wbawa2reGj9+PKFQiM2bNxuF6GyOX1X1wK8AIl6vN+/n6g2SXiHKjMAWFEXgw7+6h7PmPcMl0kOMqWnj1PqXaI810hFvwO12s2TJkpw6YrEoStUjSZIHOB54WZblEOCWJKlWkqRJpAP3KuB0SZLcwHHAu2g1AZ14XAG8knreqVn3lQ36JXMhT/56byfxhJvN+9MFsDnjNwDpjL+xsZGhwOz7bpVVmrMMK35/d1g7cHaFJxFKVjB7/CZmj9PWGIpWct8bVxivyZZygjXHr7sN2mX8AknG+lo1qimL6oF0xj9+/PhBadcLavlNPP+5TU9R4YrwxNvnce/rHzaec/snP0VtZTfv983hzW6N158wYQJnn53mve3g8XiMtdt179Z5OjPWZF5rqXx6dOi/l90ULqCgjHPq1KmDDvqQh+rJsm1IJF0ZNOmCyanAn8r4zSfBWbNmcfbZZyMIAgnVy+tdJ/L4gYt4qfM0I+gvWLCAk046yXiNOcDZavkHOYXL1pnTwq7BzPEnVC8xxYPfG6XKr4kQEkkP3aEaREE1KNN83bvxeJxNmzT14KzKTXjEBK9sOon737iCT//hNhb/+xoURSChuNjYP1t73qxZgw76ULyc82zgWROV803gSeAe4Oup+36Uuv0icKssy2HgcWCyJEkvAZFUobgNeEKSpFfQisO/oYxIbxx7T36ArQemk0hq2cSkhl0EK/roS1QazSQ6vz8U2Ble6cEllvCwalt6WtWyGanAn8r4VVxs6tcmHJmbuf744rXGbZ0WMO+seiAx7zDFDBdv8rbhERNs3T/dUM40VB3kqMadxBQP7alLz+yGtWKRYdtg49J5XM1bzAu+R2+4is/c+Vvj8WtOvovlC54mlKzg8QMXovP6l112WdEBL9N+OH/dQxS0qzZru4bSdO3q0AOLZXHXpN4qJOMcrJpHh9vtNrZjPmvmLftnEI1r33lC3R7qKrsIJSuMqyBz4BcEgZNOOolrrrmGGTNmGHSsIAg0Nzdz1VVXcckll2QkEWbrk3IMY7EdwqJbMivpuovf7zcKz2A9kCW7ezefUdvWrVuN9eo0z/1vpMdSXnTso4iiytbQdCMpmTt3bu4bDQBFUT2yLD8FPGX6+0W0wq35OfuA5Vn3JYBrLd7vZ8DPBr7cgcMc5CylaP21jE8V5zL4/TyKnqHC7/fT3d1tHVxSdMKanYuJxLUDbGrTNsbVtdKfCNAZTx/sG/vmsLh6LR887hF+9NjXAG0+gI58Bm2QHgMZj8dtPfn1jH+8P7ewK02TEQTYFxlnFHatVE7FwCrjz7BtSBm1HVejXWF88/7vG2MeG4Nt/O/VXwbgH23nGHzrBRdckJdPzQefz0c4HLZ16NRhJ+UcateujnTGn7+4C4VlnEMp7EL6pNjf35/XoTO/VYO2Haxor6lTpzJ16lQSiQR9fX0Eg8G8J+qMjF/N79DpFTWefLDunIPJ+EEL/LWebhqDB42hRAd7G5kxdisBV4iOeEPe4m5azZOmeR548zLjcb3D+b2UwZ3b7R7yyXzEN3CZ1RGFMv4Mft/CqmGoVI95PZaqnhSvaEnzRCahH0SgFe7iipsl09+g2RQkdeSbvpW7DjuHTu0gGG/B7+s0zz5TYbckgd9G0gnwxpYT+OU/P2f8/bOrv0RjsJ2t/dN4p1eTCs6ePXtQGZHdaExz/SV7TZle/KWhecCC6rEo7ma7cZZSxmlGIU/+jMLuJK2wa7Zq0O2vreB2u6mtrbW9Oiua6kll/APR8SuKYpwoiuX4rQI/ZHbvppu4tBOUFdVjVvOYaZ59qa7wxmAbpx39AklVLBnNA6Mg8Gdk/DaSTrAevqJLOT0eT9kPID2rzHDknKkVdvdE0iMeQXMp3BaahiiqXHTsozmfk8+ZU8dAPPnH2Sl6UoXdysrKQQc8n89nXO4btg0WIxjjCTef+v3tRoPdioUr+ehJfyGuuHn8wAWAZtFx3nnnDSrjLmY0pg5ru4bSdO3q0AN/yKaB6+WNJ9MX0T6v1DJOMwpZM+cbvqK/dqjbxDLwWzl0DoLjtzRos1H1eL1eRFHMCPyDNWrLpHm0zN9M81x6/N9xu5IpmkfbD4ZK88BoC/w23buQmfGnNfzaj9fY2FiSy/ecKVwWWeWrm01WDbqiJ1XYbWxsNILkxv45QCbPryM74zcXlsEi489jQyySZKy3FUURWL3jWOM5pSrs6msztPxWDp0pqucnT9zMut1aVh/w9fPbj38GQYDn2s+gK6FlwGeddVaGCmUgsP1tTFRP/lm7pena1aEHfstRnaFaEklXQRnnUCkBHYY1s+5Vk8XxW3n06IqeMWPGDPnYMR/H+VU9aKoehhD4i6B69G1hDvy2Rm2mwG9W9kEmzTMzsBlFEXhw1YeMxw2ap1cr3peC5oFRFvjtPPkVRbB15SwFvw8FqJ5QLbvbJxqDLCp9fSyYtI6kKhqZ9dSpUw2J28b+WagqnDn3WSpN2Q/kyjn9fn/GwZc9GyBfxt/kPYBbTLJl/wx6UsGvqfoAkxp2E016aU/VHQZb2NWRM3Q9i+rZtG8m33vo28Z93/vQt5k6Zgd7I+N4PeW6OXHiRI4//ngGi7RraX5VD2gZrl7IrPL3EqzoK2nXrg498Ku4CCf9uETFmPesr6OQjHPy5MklWYudQ2dL5wS2pupLopA0rpYPpI6dochadQyU6hly4LeheszDe/RjypLqSTVx6UZtyWQyY12JRMJE82zGIyZ4dfOJ7O3UrtYag22cfvTzJFWRDSmaZ+bMmUOmeWCUBX47qmdX+2TCMf2s3UZjsJ1o0mtkcaXg9yGXR84OuK9sSkvYTpj+Jm5XktboWKMJa9KkScyZo2X6oWQVuyOT8HujxkGvI1vOma0oyLZmzjd3Vy/sZtM8ggD7ouNgiIVdHenAn6vq2ds1nuvv+J0RbI+bKvOFc/4PRRV47MCFqLgQRZELL7ywJFbIhTj+QrN2S53xg8mvJ5ime9bsXGwr45w2bdqQZJxm2FE9rV3jDPpt5tjN+L1RuuI1RvdtKQK/WdUTt1P1pKieRCKBoigUg4JUT56MXxAEI+u3MmrTm7iy/Xp0bNmyxVbNUy6aB0ZB4C/Wkz+/FbN2MJcq8OvBRcVFTPHgdiUN7a+qivxz3QeM5+r8vk7zgBb4Z82aZfy9oU87CXzwuEcyPidt0KZ95/r6zAbpYjl+K0WPUdiNDr2wq0MPllYOnTvapvLC+6cD2tzh33/yk7hdSV7vWkZrag0nn3zykANMNv1l3ib6MBbIknLW5jZvlTrjB2tr5r+88lHjdindOK1gN4zFDKvhK3aF3WIhCEKOUZsV1aOreqD4Am/RlsxZgR/ItW2w8eSHzMBvRfNYqnlMNI/52B8KRnzgz9Rn56d6LD164rkePUNFIWtm86V7dsduVVUVNTU1VFZWGkFB5/nPP+YJXGLCeG22nDN/4LdT9UQZ50sVdrdbFHZT/H5VVdWQg53++qjiJ664CVb0GjMCzPjKeT9l8ZS1dMTqeK79dEA7KZ9yyilD+nwwD2NxGcNY9JMyQG9YW+NwNG9BNoecW+D9+6pLjdvlkHGaoW8bBTcxxYPHncihFyFzuLqOUmT8YHLoVAtTPVA83ZM5b1cTNBRD9UBu4M8Yv2hQPblGbVY0z2ublw0LzQOjIPCDfdOUHvitPXq0M7YoijmBc6hrybeeVlNQWTpDa+PWFT2TJk0yqIyTTz4ZgI54AweiTdRVdvGh4x8ENNfMo8e/j6IKdKUscbMLnunAnz6IdLfP/mgVSUXEK8YZ67Mp7EbThd2hIk2PaM6MgpCZ9YOmWvnOpd8F4Im2C0ikAsCFF16YM1hlMLB0T7U4Ido1b0GZM36TpFO3DYZ04N9cYhmnjkKW4jqMwJ/K+Kurq0vSzAZmT/7UMBazqieqj18cWuAvJuM37yd6E5elX09WcRfSgT9DzVOl0TzmzvtLpIfKRvPAaAv8A6R69MJuQ0ND0dOKCqGQM6aOOePfp76qk+54NT2pNnazT5DO8wO81qXJP2//5Kf482euZtV/Hk+lP8T28FSj6zj/NDCRaNKLKKoETdmtTve4BIVNrbMMyWBzTSsT6luIJH10pE4qQy3sQmHbBoDbPnEDAV+YNT2LDBvo4447ruQFTMijpAnnBv5Sz9o1I5Pj135Hc+DXYZZxtkS0faSU2X72WqwSFh26hl/P+EuV7YPFMBa/xTCWIWT8Agp+V5SkIhpCBsDSi1+HIbm18eS3CvxmC+aZlXY0T7ppq1Q0DziBn66QZtRmZ8dcKn7fvBbzesxFRB0Gvx/J5Pd11NfXM3++JqFb07OY1d3HUh3o5eqT/8L05m0cjDXwcOslgLbT6EogHVaNbRk8fyidTZa7sAtZtg2pIKoPrwf42Cl/5Oz5z9CfCPDPNq0OUlVVVbQXTzEo1q7asrhb4q5dyFPcNVE9OjJlnKkia4lknDqKyfgrvCGmjdlGUhU5GNP6DMoS+HWqx0rHP4hhLPZe/N24RIVo0mtIZK2onnCyAlXVKFb9yrkrVEc84cbviiKi0bChUCiD5pmZatoy0zwNVQc5Y+5zqaYtLcErJc0DA3PnPGJRiOo50DPGcHkM+nuYUN9CQnHRFa8FSsfvm9cC9pfMOr+/J5XBuVyunMz6zDPPZMOGDSQSCR47cBGruiXGeA/Qn6xiW2iqsaNeeOGFOYPPM2cDpFUsupTUrFsvd2EXtBOZy+UimUyyLTyNucH3+fyKX/DKppOY0rQjbctw8BzCipbdnXfeeSXLrqH48YvWGX9pm7dAoxh9Pp825cnCqE1HOWWcOqy2jVnLDzBv4ru4RIX90TEoqdBSisKuDmMYi01x1yOkg32xGX+OXYPNyEXI3BY61aMiEla06XgNVe0cTHXttvc1MLZ2PwFXmL5kkLa2NrZu3Wp85tyqVNPWm7lqns39M4wGzFLSPDBKMn7b8YuhWt7bk96oc8ZvQBDgYLzRyJ5KmfEXGvihI1vRM27cuBweu66ujuuuu87gcluj43mndzFbQzMMieMZZ5xhTD0qtA4rZQ9YWzHrhd1gMFgS+aI5WL3bO4/OeC1LZ77Bzl9M4YVvnU59VSdrexayrlfrEJ0zZ07eMYqDRcFhLGGbjD9R2uYtHYZtg27NHMzM+Mst49RRyKETylvYhVyqZyDFXUVRaG1tZevWrbS0tJBIpIUQxRi05Qv8VrYNVnTP2JRIYuPGjfzjH/8ANJpnVuUmjeZ5w8qbp/RqHh2jK+PPw/FbN26V1pwtey2QtkTODvy1gU5mj9tIXHHTGtW6Vs00jxnjxo3jU5/6FGvXrmXz5s20t7dTXV1NU1MTp5xySt6idLG0RlIReXtHemh8OQq7Ok488US2b99ORAlwx+5PcE7TSqZU7CCsVPBe7zxe6DgN3Xnz3HPPLfh+A4XlhLSsbaKq1nYNfSaqp5TQtehW1sxQfhmnjkL1DzAXdrVgLwhCSZMmO1WPFdUTi8VQVZW1a9fy4osv0tmZvkJ55plnmD9/PitWrMi1ZB5Axp8b+NtpCraxAS2mPCRfwvxJ73JR86PctuvT9CerjHXoNM+rm5bR0qld2Ztpng19mppnxowZJaV5YJQF/mxP/mjcTzzpzaAyrMYtlmrAMZCRteejepbNfA1RVNkdHm9cMucL/KBdbp544okDGnJebMa/ce9sY6TfuNq9jK/bRzjpNwZol6Kwq2PGjBksW7aM1157jf5kkAdbL0ebwZPmzN1uN1ddddWgbRnskFH3sLBt6ArV0hWqtezajZa4a1eHLiowHDqzMv5yyzh1FEP1GFO3UlYN9fX1JVFb6chW9Vi6c2apep5++mleffXVnPeKxWKsXr06YyKdMXbRRHPmM2gzHjc5wLbHGplcsZsLjnmclzZqI0f+48H/4JTZL3H63Be4ZOzf+UvL1QaTYNA8pqYtXc2j0Tzab15qmgdGCdWT/qGsPfnNpmjZip66urqMrsGhwlz4s+oQBZMxm6lxayiTv6xQaP6vnvFbT9wahx6MS5nxAyxfvpwPfvCDpiCc3l4TJ07k3/7t30rOX+soZhiLtZSzilJ37erQf3erBi7IlXECJZVx6jBTR5HU1Uc+qkc3Zyv1OgZK9axatcoI+tXuLs5reoLrJ93KVeP/wtSKbdpa9+/PpXpMGb/+++fL+Ovr6w067q0eTfL8pXN/xsmzXwJAUV1c9eu/sb97DNMD2zi1/kUgi+axtGDWaB6Xy1VymgdGWcYP1p787+/N1fCbzdnKBSs6AbKtmDWUOpMsNuPPKOxOKZ0Vcz4IgsDixYuZN28ee/bsYd++fQQCARobG5kwYULJFDP5Ptvv9xMOh/MOY7Hz4YfS/0568bA3UUVSFZlYv8cYS7lo8pocGeeyZcvs3q4ksEqeGoNtNNfsJ6p46U7Jj0t9VaYnYLpJW8DU4BeKVpJURDxiAgEFFdEY11jj7uK6iXdQ7dHkyuNoZVblZh5qvYR3ehcZ7zEQL34dgiCwZMkSnn/+eVoik3i542ROrn+Ze276MIv/fQ0He5to7RrHR379V/75tQ9wWv3z7ApPosIVSal5lhqCivqq9hyaZ+LEiRnHaqkwyjJ+eyWN1x1latN2FFUwBhqXI/DrB7OVykgUkpww/U0AdqcO5oEOFCkGma6l+QuZGVJOvbBrsmI2TyEqJTweD1OnTuXEE09k8eLFTJw4saxBX4ediV53uKbgkPVSB/4pU6YAEFd9bA9Nxe+N8sT/O5+vX/Tf3P+FyxEEWN19rEEflCM71KHXunSHTrO0dMGkdQiCzu9ra8nuHRkq0vusSEzxIIoqARPdE4pq1IhZ2QOwpPZ1qj29vPD+qZz0Hy/zvb9/C4AVTStxm6ghu+ataB6qB7STrV5Le7b9DHaGJzOhfi9/+exHDWnns++exff+/m0EAS4d+3ekmlUA3Pd6umnrUunveNwJtoWmGTRPtgy7VBh9gd+m+WT2uI24XUk64vUkVe1iqJSFXR260kG/fDdbEC86ai3Bij7aY/WEUsW6oThO5kPm/F/rjD+RdPH2TovCbirjL+fV0KFCoWEsVhl/Obp2dZjn5T7Zdj498SBLZ77Bf1/5DWaO3cLeyDhe6tTsKsaNG8dRRx1V0s83Q691taQG2S9f8C9mjt2ExxXj8yt+AcDO8BTj+XZ1qcGgkCe/Fd0D2oATgC/f/b+8uvkkvvPg93hjywkEXGHjMSgu49e9+LPXdfnll+N2u1Fx8cC+y+hPBPjAwn/xzYu/bzzvPx/+Fv9adzZV7n6mBnYUnLTlcrlKvg11jL7Ab5Pxl2vcYjb0wL8vOo6o4uWYKW/zkRP/wuSGnfzgSm2E8eb+dOZW6sxJR6HBIxv2zjEcSyfU7WFs7X7CST9diVpgZAb+QtvETspZyq5d83pWrFgBQGe8nlt3fYbHD5zPKx0n8sj+D3LH7k8aLf1nnnlmWa+K9KuP3kQNG/pmE/CFef8nR9N+WwMXS48QV9ys6taSlLFjx1JXV1fSzy9kzWyl7HELceo8ncQT7oxhMX999SMAzA+uN+7zWXD8+Zw5szF27FhDadaXrObv+z+EqsJ3Lv0uZ8x9FtBMGD/6m7/Q0qElD29sXZKH5ilP05YZoy7wW3ny6yjXuMVs6FlZUnXzaueJCAL85car2fmLKaxY+E8iSR+vdGoKnaamJsaOHVvyNYCFG2UgM+O3pHki4ym1Y+nhhELDWKw5/nTzVjkCryRJxlVfWAnwVvfxPN3+Adb0HIOCC5fLxcUXX1wWNY8Z8+bNMwqZD7ZextqehSiIBCv6OBBt4s491xn2Isccc4zdWw0KRQ9jMdE3DZ6DiILKlv0ziCfTr7/vjStIKiIzA5vxiZpl+UCdObNxzDHHGD0z20LTebHjNFyiwl9v/AhjU/tKW88YrvrV30gkXTlqHo87wfbQ1LKqeXSMvuKuDdWTPXWrqqqq5BkcaDzs2LFjaW1t5cWO0wgnKzi2ZjUBV4h9kXGsbDuHvqRWGFuyZEnZsricIGfKbnvC1by1w75jdyQGfluOv0DGX2pFjw5BEDjvvPOYP38+zz33HK2trUQiESoqKpg1axbHH388EyZMKMtnm1FVVcWFF17IfffdR0L18PD+S3n8wIW4hKSxvUALWOWgJwc6jAWgyae5ZZpNGEEzQ3zh/dM4c95zHF21gTU9x9hTPclcg7ZsCILA+eefz969ezl48CAvdJzGpIpdTKvdzt9uvIqz/vsZFNXFSxtP5Rv3/VdRah69QF1qjIrA7/F4EEURRVGKonraSjx1Kxt6hnbnnXcSjUZZ1b2EVd1Lcp53zDHHcOyxx1q8Q2lgx/F3h2psZ+zW1NRkeMmMFBQaxmLH8Zea38/G5MmT+djHPgZoOnTzrInhwtFHH81HP/pRHn30UXp7e0moHmNIkCiKHHfccSxfvrwsyYpZVm3p1xPNpXrGeLXA/+6eeTnv97dXr+LMec8xv2qdFviHQPXo8Hq9XHHFFdx+++3E43H+3vohbph8K6fPfYHvXfZtvnn/fwHw48e/arymvqqdM+c+m0HzzJgxoyxqHh2jguop5MkPmppm1jit0HNwGKSczc3NfPrTnzZ4UzMqKio488wzueCCC8rK2dpltx399azZudj422rG7khE9mSy7GEs5q5dK4O24YJVkXG4MGPGDG688UauvPJKli5dyrx581ixYgU33ngj5513Xkn7XsywyvjNDp1Ww1gavdYZP8CDqz5ELOFhamA7la6+IVM9Opqamjj//PMB6E9W8WDrZSiqwNcv+gErFq7Mef7Fxz1s0DzhYaB5YJRk/KD9YKFQKC/VM23MNnyeGN3xauKqdtCXK+PXUVtby8c+9jE6OzvZvn07nZ2dTJw4kSlTppT1bK/DLuPf0ZYuKE9q2MWYmjZCyQpDo13Kjt3DCdkT0rxinCp/r2FLnd21G1fcxvYrF9VzOMLn8zFnzhzmzJlDS0vLsFBNRat6BHPGfwDIzPg9rhjxpJfO/nr+8c4KLjz2ceZWvVcU1VMs9bto0SJ27tzJ22+/zc7wFJ5rP4OzGp/l7s9ezeKvrzEsGgCuWHofkEnzzJ49u6jPGSxGRcYP9n49YG3VMFwcdl1dHcceeyxz5sxh9uzZwxL0wZ7WMCNz4lZ5OnYPFxSakKYj04df2ybDmfGPRlgVd61UPZ4U1eMyKXo27ksH0k+cfodx+2+vXgXAguA7+MQoiiJk2TJryVDEwou/EM4991zDnfTlzpPZ3D+DxmA7937uSmNaXnNNK2fOfRZFFYaN5gEn8BuwUvSUO+M/1NB3roTqQVEF/J4Ibleuh7lVYXekZ/xgmsJlcULMpnnACfzlhiXVYzl3Vwv8jZ52REFl64HphqJnQt0ePn3WrcZrHln9QfojASZV7EEQNFGDPjg+6O/B7UoSVay9+AvB4/Fw+eWXp9Yt8lDrJXTHqzlp9qs8dcu5XHvqnTz0pUvwuBO833f0sNE8MBoDfx6qJ13YbTSeX66u1MMF2R5GgpBJ9+jItmKura3N8fcfKSh2UE45Z+06sEZGcddO1ZOiepp8uTTPvInvsnDyOxw9XrvCD0UreeztC43HLfl9m67dQmhoaODCC7X3DyuV3Lvvw/QnAixf8DR33nAdy2a+Tm+iin8dTA8XMk/XKxdGTeC38+SH3Iy/qalpWCwCDiWKHQNZTivmww3FbhPdrsHctTuaOP5DAUEQ0n49thm/dtXaZFHYnTfxXQQBrjrxb8Z997z2YeP2QCyZi8X8+fMNeeu+6Hhu3309z7efxru9c3m+/TR+s/OzdKeaIs8444yyNW2ZUVRxV5Kk04FvoZ0ofgF8AXABSeAOWZb/LEnSWOAuoBL4rSzLd0uS5AJuB2YCb8my/MXU+30BuAJoB66WZTk3zSwxClE9c8ZtAIbHnO1wQSGjNoCjGnfQGGynPxGgJ6FxnyOV5oEBZPx1mc1bLpdrRMpbDzd4vV7i8bilJ3+2jr/JQsqp1/KuWvY3vv3AfwLw1Npz6eqvobaye0AGbQPBOeecg6IovPXWW3Qnanmh44yc55x00kllaXyzQsHAL0lSBfAV4FxZlmOp+76Q+rvP9NSvAj8GngdekiTpAWAFsFeW5eskSbpdkqRlwGbgIuBk4CPAjcAPSveVrKG3jydUDwdjDTR62/ngcQ/zyFsX86HjH6A60Et7rN4Y6zfS+X0obhpYpn5/6IXd7373u4N+bSnwne98x/bxzG2SP/BnG7RVVVWN+CvEwwHGMBYLVY+u49c7d60C/7yJ7wIwY+xWpGmrkLcdTyzh4++rLuW60+8sOdWjQxRFzj//fCZOnMiqVavYu3ev8djkyZM54YQTmDcvt9egXCgm418GhIHHJEkKAZ8BFOBJSZK6gM/JsrwTOAH4iizLiiRJMjAfOBF4IvU+K4GTgFrgBVmWVUmSVgJ/KuH3yQuzXn5NzzGc3fg0f//ipWzYO4c547Vsf1X3CcZzyi2nOhxg1dGcnfEbHvyRkV/Yhextkp/qGe7mLQcacoaxWOr4Y7iEOPWeDhJJV4aiR6/lgZb1y9s0CuZvr12lBf4yUD06dMvxxYsX09fXRyKRwO12HxKKsJjA3wzMAJYCZwP/AVwuy3K7JEmnAb9Ey+A9siwrqdd0A/VAHdBTxH05kCTpeuB6gJtuuonly5cP6IvpiMfjtLS0oKoqTU1NtLW18UrnSVSIIZbUvsHcie+jqAIvtJ/GG11a4G9ubiYcDtPS0jKozxws9LUOF/TJQ5A/48/m94PBIB0d2jCQ4V5vKVBovaqqIggCqqraZ/xZdg1ut7uk2+JI2raHYq1WnbtmqkdX9GwyefRMqNtDbWU3iiogCipXLLmP//fX/0FVRZ5990xau5otqR6zHUVnZyfhcLik38V8HGZjKNvWrreimMDfBbwiy3JMkqRngK/LstwOIMvyC5Ik/VRfoyRJYir41wAdqdfqoljzfTOy7suBLMu/A36X+lMtYp2WMDeXXHnlldx2223E43Gebv8AL3ScToP3IAdjjSRSO1IgEOCKK67IO6u2nBiuRhgd5glJ+Tj+dODXsvzJkycbaxzu9ZYC5vV2dXXx17/+lc9+9rMZzzEPY9nRBptbV+W8T1rOqWVriqKwYsUK1q9fn/PcweBI2rbDudaqqioOHDhg784pxCwLuzq/vys8mRpPNxMbWjhl9ku8uOE0FFUzTdMnz4E11TNlypSSD7K3Q7m2bTGqnlXA0ZIkCcBiYJskSdUAkiTNBTpNzztdkiQ3cBzwLvAq2lUCaHz/K6nnnZp137CgoaGBa6+91uDv46qX1uh4I+g3NTXxkY985JAE/UOBQgqWqU3bqK/qpC9RSe8ILOx2dXXxm9/8Jud+s5XFjjZYu+vdjMcrfX2mrl0tKIx06e/hAp3qsVP1eMR4XiknaE2a63vnAxrdo+Oe1z5sW9z1eDzDGvTLiYIZvyzLByVJegh4AS3zvg54VpIk/XrnxtT/P0JT9XwfuFWW5bAkSY8DF0uS9BLwtizLrwFIkvSEJEmvoJ00PlrSb1QA48eP5/rrr+f9999n165ddHd3U1tby8SJE5k/f/4h8z85FNBNvhRFMQKYOePPnLilFS7LZRF9KPC1r32NrVu3snjxYoNKfOqpp+js7OTEE09k1hIfX7sHNu07gJbzfAy4hKRyGcd+A5KKinT2biZPnuxIOYcJBsdfQNWTT8oJ0BYbw87wUZxS/zKXLXmAz931SxJJD69uPgmfJ2o8Pz1vd+Bdu4c7ipJzyrL8a+DXprski+fsA5Zn3ZcArrV47s+Anw1koaWE2+1mwYIFLFiwoPCTRzAEQaCmpobOzk5DxnrW/GdAsw7hyqX3AplD348U+qEY/PCHP2T9+vWsWbOGBx98kFtvvZW1a9fyq1/9im9/+9ucNPscfvhh+Pd7q3lty5rUq0JIU/+bl76zgud3jOEjv3qKG264wcn4hwk5qh5/rqrHTPVYSTkPxJo4EGvmQLSJMcE2ls//F0+tPQ+A594703j+QJ05jySMGpM2B9aYPHkynZ2dbAtNJ5z0c8L0Vaz9wUJC0QBLZrxBQnGxukezhp44ceKI2vnNePnll7nqqqtwuVw0NzczZcoUNu7qZvFksmws4uzu+E8WfBXidNLWpnmujNRO5sMNOaoeC6rH74pQ4QrnKHqy/bjW987nTN9zXLXsb0bgN2OwBm1HAkYPr+HAErp2OK56ubvlGvoTARZOXsfSmW8QUfzc33oF/akC5nHHHWf3ViMGhodRKqv0uBKmR39GY9DF2h/A729eSDKZBJyu3eGCwfGnTNoC3pDxWDgWIKmIuARF8+jZP51YQvstx9e1UFvZTX8iYMyyXt+n8fwXSw/j9+QqdQZjyXykwAn8oxwzZ85k0aJFAOyNTuB/t3+ZP7dczZ/2/Bu/2PF5NvVrGdO0adNGHDUWDAbp7e0F4JRTTuHee+8lmUwSiUTYuXMnzeMnEayASNw8vLubcbUgivDw632oqlqWWbsOrJH26xGJKR5EUaXSJOkMRdNXXu+2mAq7E9KFXR2d8QZaIuMJVvRxwTGP53yWQ/U4GNE477zzcLlcrF69GgU320KZs1unTp3KFVdcMWIUDToaGho46aSTmD9/Pueeey4LFy5k0aJFhEIhli9fjreygYWTwOtOAovQylWfZe3OE1j0dZg2PY7H43G6docR2Q6dXjFOpa+f/hS/3xepIlihnQje22NV2M3syF/fu4AJ/r18eNk9PPDm5RmPjWSqxwn8DvB6vVx44YXMmzePDRs2sGvXLjweDzU1NRx77LFMnTp1xAa2v/71rxl//+QnP+GVV17h6aefRgVU0cNz34wT/MTLxjCWP316MWfMe5679ixj8WkfJRgMMmXKlJJp+B3kR641cz9V/j4O9Gi+97qyBzIzfqt5GwDre+fxgcZ/cN7iJwn6e+iNpL34dVWPrngbrjkZwwEn8DswMG3aNKZNm1bWzyjklVMuDKQRJtvKwivGqa/sMAJ/dteuY9cwfCh2GAvkl3Ka0ZesZkd4ClMDO7jk+Ie466WPpd6zF7crSUzxoKS8+EeSCZ/D8TtwkIWGhgbjdktUO1noU5vOmPsss8ZtIpSsoCOuGf+Nloa/wwEFh7GkKJ9E0sWGvWlfe7OUEzK9uKyaueorNUOBUhi0HY5wAr8DB1mYOHGiUc94u/tYVBW+fel/su/XY3nm389CELT7ldQF88yZMw/lckcVLIexWPj1WCl6QskKQknt8cmTJzNr1iwA3u+bS1IVOXv+05wy+0UArjvtD0DaowoyE4IjHU7gd+AgC263m4ULFwKwOTSLh/ZfQk8iyNja/cRVD692LuPp9rMALdufNGmS3ds5KCEyMv5U966VQ6eVR8+B6Bj0DvSmpibjNw4rAV7pOBm3K8nz3zyd1t80850PfQ9VhdXdmoTZ4/EwcWJ6QPqRDofjd+DAAueccw47d+6ko6ODdb2LWNe7kBp3Fz2JamP+qtvt5oorrhhVNh+HGlZUj1XGb+XRkz1Pu6amhvHjx7N3715e7DwVUUiyrO41mmsO0BMP8mz7mWwOaVcFCxYsGFGqNifwO3BgAa/Xy7XXXssTTzzBxo0bAYHuRJ3xeFNTExdccAHNzc2HbpGjEBnFXRuHzozCbkrDr/P7brebmpoaBEHg3HPP5U9/+hOJBDzTvpznO86g0tVPbyKImiJExowZwznnnFPeLzbMcAK/g0OHvw6jRPS0PQN+STAY5Morr2Tnzp3s3r2btrY2ampqGDt2LHPmzCl7BijLMnfddRe/+MUvyvo5RxIyqZ78tg12Us66ujpDnjxx4kQ++clPcv/999Pe3k5SddOTSFszz507lxUrVmTUFkYCnMDvwIENBEFgypQpGRPcBgN92tJAIEkSkpTjhziqYVnczXLozPHomagHfk3KWVtbm/Gezc3N3HDDDezatYtt27YRDoepr69n8uTJTJ48uVxf5ZDCIScdjEr09/dz/vnns2jRIubPn8+992pOpFOmTOHgwYOAlnGffvrpAPzHf/wHH/vYxzjllFM46qij+Pvf/84tt9zCggULOOecc4jH4zmfcfrpp/PFL34RSZL4v//7P9566y1OO+00jjvuOFasWMG+fdr4xlWrVrFw4UIWL17MzTffzPz5mrzw+eef54ILLgCgo6ODiy++mIULF7J06VLeeecdY13XXXcdp59+OtOmTTOuDvJ9vyMdgiDYO3RGqth2YBrRuCa9HFe7l7rKLkLJCvpTih59/rYZHo+H6dOns3z5ci666CJOPvnkERv0wQn8DkYpVq5cyfjx41m7di3r168visPdunUrzz77LI8++ihXX301Z5xxBuvWraOiooInnnjC8jWxWAxZlvn85z/P5z73OR544AHeeustrrvuOr7xjW8A8PGPf5zbbruNNWvW5KWPvvOd73DMMcfwzjvv8N///d/827/9m/HYhg0b+Mc//sGbb77Jd7/7XeLx+KC+35GCtFGbtY4/3/AVXdFjFfhHG5zA72BUYsGCBfzrX//iq1/9Ki+99FLGGMp8OPfcc/F4PCxYsIBkMmkE0wULFrBjxw7L11x55ZUAbNy4kfXr17N8+XIWL17M97//ffbs2UNXVxe9vb0sW7YMgI985COW7/Pyyy9zzTXXAHDmmWfS3t5OT482NOf888/H5/PR2NjImDFj2L9//6C+35GCtDWztarHSsrZFk137GZTPaMRTuB3MCoxa9YsVq9ezYIFC/jmN7/J9773PUBTfCiKAkAkEsl4je7VIooiHo/HKBCKokgikcAK+oAWVVWZN28ea9asYc2aNaxbt45//vOfJfkuZg8Zl8tFIpHI+/1GAgpRPfkzfgxTvdEOJ/A7GJXYu3cvgUCAq6++mptvvpnVq1cDGsf/1lvagPkHH3ywZJ83e/Zs2traeO211wCIx+O8++671NbWEgwGeeONNwC45557LF9/yimn8Je//AXQuP/Gxkaqq6stn2v3/UYC0uMXrVU9dlLOpqamEWs4OBA4qh4Hhw4fUYfvs1paMv5ct24dN998s5G9//a3vwU0Lv0Tn/gE3/rWt4zCbing9Xp54IEH+PznP093dzeJRIIvfvGLzJs3jzvuuINPfepTiKLIaaedZknL6EXchQsXEggE+NOf/mT7efm+30hADtVjyvh7wtVs2Gfy6JmYKeVsasp05xytEFR1GA++wWPQixyIK+OhxpG0Vjiy1ns4r7Wvr8+gH374wx+yb98+brnllsN2vdkY7m177733smHDBsZ4W/nMUbfyzq4FLPq6pnIK+PoJpbp3x9XuZe+vJxBKVvCTbbcAAmeffTZTpkwZLds276WNk/E7cHCI8cQTT/CDH/yARCLBUUcdxR//+EdisVjhF45S2Kl6QiY//szGrbRHjwMn8DtwcMhx5ZVXGuofHS1Z1JSDNOyKu2ZYTd0aM2YM/f39ls8fTXCKuw4cODiikOb4U4NYfAUCf0rKqU+Vc+AEfgcOHBxhSFM9WuCv8IYtn5ft0eMoetJwAr8DBw6OKKT9ekRiigdRVKm0yPqzp245/H4aTuB34MDBEYVC4xcBxtbuo76qk3DST39SU0w5gT8NJ/A7cODgiILlMJasAm+6cStz6pYDDU7gd+BgGJDP0sHBwGE1fjE78Gfz++AEfjOcwO/gkEMQyvcvHw4nW+bbb7+d448/nkWLFvGhD32IUCgEwP3338/8+fNZtGgRp556KqD5B3384x9nwYIFHHPMMTz33HMA/PGPf+TSSy/lnHPOYebMmdxyyy0AJJNJrr32WubPn8+CBQv42c9+NvQf7BAjcwpXrm0DmBU9aY8ex5wtjaJ0/JIknQ58C+1E8QugDfgxoACfkWV5nSRJY4G7gErgt7Is3y1Jkgu4HZgJvCXL8hdT7/cF4AqgHbhaluWeUn4pBw4KQbct1u2Uu7u7C75m69atPPfcc7z33nssW7aMBx98kB//+MdccsklPPHEE1x88cU5r9FtmePxOKeddhqPPPIITU1N3HvvvXzjG9/gD3/4A5deeimf+tSnAPjmN7/JHXfcwaWXXsr3vvc9/vGPfzBhwgS6uroA+PWvf40gCKxbt44NGzbwgQ98gE2bNgGwZs0a3n77bXw+H7Nnz+Zzn/scBw4coKWlhfXr1wMY73Mko9DcXTBr+DUpZ2Njo6PoMaFgxi9JUgXwFeBcWZbPkGX5IeC/gPOBjwA/Sj31q2gng9OAGyVJ8gMXAHtlWT4FqJQkaZkkSY3ARcDJwL3AjSX+Tg4cFMThYssMsH79ek455RQWLFjAX/7yF959VwtaJ510Etdeey233347yWQS0OyZr776agDmzJnDUUcdZQT+s846i5qaGvx+P3PnzmXnzp1MmzaNbdu28bnPfY6VK1faGrsdKciYwlUk1TNmzBgcpFFMxr8MCAOPSZIUAj4LJGVZ7gQ6JUmqTz3vBOArsiwrkiTJwHzgRECfULESOAmoBV6QZVmVJGklYOk2JUnS9cD1ADfddBPLly8fzPcjHo8fMV2QR9JaoXTr3TPwcbhFQ19e9lorKyt5/PHHefbZZ7n55ps5+eST+dKXvpR6TQvRaJTdu3cTjUZpaWmhp6eHyspK4z3cbjd79+4FNK8dVVVztkU0GqW/v5+WlhZaW1uZOXMmjz76aNb6Wrjmmmu44447mDt3Lvfddx+vvfYa8Xicb33rW6xevZpnnnmG733vezz11FOEw2EOHjxofFYsFmP//v10dnZmfMd4PM6+ffuYOnUqTz31FM8//zw///nP+eMf/8hPf/rTkm7j4d5v9TkEYK3qMSt6+lKKHq/Xm7FtjpTjbChrtfP4KSbwNwMzgKXA2cB3ATM1k5AkyQt4ZFlWUvd1A/VAnem5dvflQJbl3wG/S/3pmLQdhjiS1pu91r179zJjxgzmz5/PtGnT+P3vf8+ECROYMWMGe/fuZdGiRbz44ov4fD4mTJhAdXU1VVVVxnsIgmDczn5Mh8/nY8yYMUyYMIGmpia6u7vZtWsXy5YtIx6Ps2nTJubNm0coFGLRokXU1dXx5JNPMmHCBDweD5FIhAsvvJALL7yQV155hUQiwQc+8AH+8Y9/cMUVV7Bp0yZaW1s59dRTaWlpyViD3++nqakJn89HMBjk+uuv58QTT+Tqq68u+W823PuB+eosbqHqsfLomTFjhrHGI3m/LRWKCfxdwCuyLMckSXoGLfD3mt8j9VhckiQxFfxrgI7Ua/VrS/N9M7Luc+BgWHE42TL/53/+J0uWLKGpqYklS5bQ26sdXjfffDObN29GVVXOOussFi1axJw5c/jMZz7DggULcLvd/PGPf8wYxJKNlpYWPv7xjxvDZX7wgx+U7DsdKhRS9ehSTp3fB0fRk42CtswpTv4eYDkanfNZYCoaTx8EbpNl+TxJkn4OPAq8mPp3FrACOFaW5W9LkvQ74E5gC/A3WZbPliTpI8BRsiwX2hudjP8wxJG03iNprXBkrXe416qqKj/+8Y+JRCIcU/0WFzU/xuOrz+fCnz4OwDP/fiZnznuOx/ZfwOoeCY/Hw9e//nWjuDuKtu3gbZllWT4oSdJDwAtoAfg6YALwZOrvz6ae+iM0Vc/3gVtlWQ5LkvQ4cLEkSS8Bb8uy/BqAJElPSJL0CtAJfHSw38qBAwejD4IgMHHiRLZs2cLm/lnEFTfnH/MEL337ZNxigqUz3yCS9LG+dwEA06dPdxQ9WShKzinL8q+BX5vu2opWuDU/Zx/aVYH5vgRwrcX7/Qw48gXFDhw4OCSYN28eW7ZsoS8Z5J59H+bD4+7h5NmvABBKVvDAvsuJqRoFtnDhwkO51MMSjh+/AwcOjjgsWrSI9evXs3XrVraFZvCTbTczLbCNuOplb2Q8EaUCgKOPPpo5c+YUeLfRB6dz14EDB0ccBEHg0ksvNYJ6XPWxsf9otoWmG0F/5syZXHLJJQ7NYwEn43fgwMERiUAgwBVXXMH777/Ppk2b2L17Nz6fj7q6Oo477jimTZt2qJd42MIJ/A4cODhiIQgCc+fOZe7cuYd6KUcUHKrHgQMHDkYZnMDvwIEDB6MMTuB34MCBg1GGgp27Dhw4cOBgZMHJ+B04cOBglMEJ/A4cOHAwyuAEfgcOHDgYZXACvwMHDhyMMjiB34EDBw5GGZzA78CBAwejDE7gd+DAgYNRhhHt1SNJ0o/Q5gbsAK6TZTl+aFdkDUmSpgCrgHdTd10uy3LboVtRLiRJqgH+BcwFlsqyvF6SpMuBLwFh4GOyLJdxbPrAkGe9mwF9cvV/ybL8r0O2QBMkSToB+D8gjra+fwMu5vDdtlbrfY/Dc9s2Aw+hrTWJNvhpOvBjQAE+I8vyukO3wkzkWe/fAFfq7ztkWf7zUD9nxAZ+SZIWARNkWT5FkqRvAJehbcDDFS/IsnzZoV6EDULA+cBPACRJcgNfBk4Djge+BdxwyFaXi4z1ptAty/Lph2Y5ttgNnJmaWvcD4IMc3tvWar2H67Y9CJwsy7IiSdK1wCfQBkadjzY69lbgvEO3vBxYrRfgXFmW+/K/bGAYsYEfLdP/Z+r2SuDjHN6B/6TUiMqXgG/IsnxYtVSnrpbaJEnS75oJvC/Lcgx4RZKk/zlki7OAxXoBqiRJegEtM71JluWOQ7K4LKSm1+mIAbM5vLdt9noVDt9tmzT9GUSbHnimLMudQKckSfWHZmXWsFjvu8CZwJOSJHUBn5NleedQP2ckc/x1QE/qdjdwWP3AWdgHzABOBcYAlx7a5RQF8/YF7VL0cMdJsiyfhpYIfPdQLyYbkiQdBXwAeJkjYNua1vsYh/G2lSRpsSRJbwA3Aa+SuW0TkiR5D83KrJG13tVo1O+pwE+BX5biM0Zy4O8CqlO3a4DDIgOxgizLUVmW+1NZ/t+BRYd6TUWgi/T2BY1/PKwhy3J76uYDHGbbWJKkauDPaDOq2zjMt615vbIsxw/nbSvL8hpZlpegUWbfIHPbulNXVocNstb7dX3byrL8AjC+FJ8xkgP/q8DZqdsrgFcO4VpsIUlS0PTnKcCWQ7WWAWAzcLQkSV5Jkk4E3jnUC7JDap2+1J+H1TZO1UvuAb4ry/JGDvNtm73ew3zbmrP5bqAPcEuSVCtJ0iQOs4TQYr2h1EkWSZLmAp2l+JwRy/HLsrxGkqT9Kd58F3BY8aRZOFmSpO+jFSS3o53pDztIkvQksBiNg74N+DnwPBABPnao1pUPWet9GLhCkqR+IApcd+hWloOrgCXAtyRJ+hbwWw7vbWu13lsO0227OFUjSaJty+vQ6lNPAirw2UO4NitYrfdZSZLCqcdvLMWHOLbMDhw4cDDKMJKpHgcOHDhwYAEn8Dtw4MDBKIMT+B04cOBglMEJ/A4cOHAwyuAEfgcOHDgYZRixck4HDgYKSZICwC3ADlmW/5jySrkTuFmW5cNZDuzAwYDgZPwOHKQRAL6D1j0L8AKaZv2xQ7UgBw7KASfjd+AgDTn1/2mSJKnATuAo4GZgoyRJO4BG4E/A1WieOr8Cfod2LH1cluWVqe7L/0Y7aVSi2UN/9nCz2nYweuFk/A4cpPHvqf/fRwvaVvROZer/19DsfH+LZv08Bvhh6rGvA19Bu1L4OXAumv2vAweHBZzA78BBGrqN9wFZlu9B83XJhoI2IOXB1N9/lmX5F8BeYGrqvgtS/9+ARh1VonnAO3BwWMChehw4SKMY/5KwLMsxSZL0aW7dqf+TZNonJ9BOALqzppNkOThs4OyMDhyk0YOW0c+QJOmjaPz+YPA4WlL1MWAycA6H1wQtB6McTuB34CCF1NSunwC1wN0M3gf/B6n3OQWt+HsumkLIgYPDAo47pwMHDhyMMjgZvwMHDhyMMjiB34EDBw5GGZzA78CBAwejDE7gd+DAgYNRBifwO3DgwMEogxP4HThw4GCUwQn8Dhw4cDDK8P8BsJnXXq8uW9YAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGvCAYAAABB3D9ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwdVZ02/lTd/d7eu7PvSSdAFsImiEBYAyEIqCMRxXEGBtB3FhV1HF5+MzpqdHAbZ0YdRRZ5XRFxI5CwBkFQEQiEkJB96c6edNLb3W9V/f6oPlXnnKpzbt3bd0u6ns+HD3ft1LlVdc5znu/yKIZhGPDhw4cPHz58+DgBodb7AHz48OHDhw8fPsqFT2R8+PDhw4cPHycsfCLjw4cPHz58+Dhh4RMZHz58+PDhw8cJC5/I+PDhw4cPHz5OWPhExocPHz58+PBxwsInMj58+PDhw4ePExY+kfHhw4cPHz58nLDwiUyZ0HUdu3btgq7r9T6UumGs/wb++Mf2+AH/Nxjr4wf836ARxu8TGR8+fPjw4cPHCQufyPjw4cOHDx8+Tlj4RMaHDx8+fPjwccLCJzI+fPjw4cOHjxMWPpHx4cOHDx8+fJyw8ImMDx8+fPjw4eOEhU9kfPjw4cOHDx8nLIL1PgAf9UU2m0VPTw8MwwAAdHZ2orOzs85H5cOHDx8+fHiDT2TGKPbs2YM///nP2LZtGzRNY96bNGkSFi9ejHe84x1QVV+08+HDhw8fjQufyIwxGIaBl156CWvXrrVUGB4HDhzAgQMHsHXrVvzVX/0V4vF4jY/Shw8fPnz48AZ/uz3GsHr1ajz77LNCEkNj586duO+++5BOp2twZD58+PDhw0fp8BWZMYRdu3bh1VdfpV7RcUpiK85texlNgWFoRgAbhxfg1YF3IKtHAQDHjx/HM888g2uvvbY+B+3Dhw8fPnxI4BOZMQJd1/HYY49Rrxh474Tf4PSWDcznJkUP4ty2v+C+ntswpLUAANatW4czzzwTU6dOreER+/Dhw4cPH8Xhh5bGCA4ePIhjx45Zzy9of8kiMYYBHBtuR64QAgC0BIdw4+SfQ4HtZrpx48baHrAPHz58+PDhAT6RGSPo6emhnhk4q+U1AEBBC+B9//VrdH70GOZ9eis29CwEAEyOHsCkyAHrG3v37q3l4frw4cOHDx+e4BOZMYL9+/dbj9uCx9ERPg4AeGrDlfjtq+8FAOw5OhNff/yfrc/Nju+0Hh84cMBTgrAPHz58+PBRS/hEZowglUpZj1uCQ9bjTfvmM5/bvP9U63Ez9TlN05DP56t4hD58+PDhw0fp8InMGEEmk7EeRwN2OfXxZDvzuaFMs/U4rGaZ97JZ9rkPHz58+PBRb/hVS2MEDJFR7cf9yTbmc4PpFutxxIXINDc3w4cPHz4aFYZh4NixY8jlclAUBfF4HC0tLcW/6OOEhU9kxgjopnaxgE1kHIpMmlZkcsx7uRz73IcPHz4aBclkEn/5y1+wceNG9PX1Me9Nnz4dp59+OhYvXoxg0F/2Tjb4Z3QMwDAMTpERh5aGs03QdQWqaiCi+KElHz5OdhQKBezcuROHDx+GoihQFAUzZ87EpEmToChKvQ/PE3p7e/HLX/4SQ0NDru/39PSgp6cHb7zxBj7wgQ+gqampxkfoo5rwicwYQD6fh67bPWGY0FKqjfmsYahIZhNojg27hpZ8+PBxciCbzeLpp5/GW2+95Xpvd3V14bzzzsPZZ5/d0IRm8+bN+OUvf8nMcSLs3bsX9957L/7mb/4GHR0dNTg6H7WAT2TGAGg1BgCiktASYCb8NseG/dCSDx8nKQ4fPoyHH37YEYKhcfToUTz++OPo7e3Fu9/9boRCoRoeoTekUimsWrWKITFtweM4r+1ljAsfhg4Vu1Oz8OrAOcgZEQDA4OAgHn/8cXz4wx9uaILmwzt8IjMGwJs+xiShJcBM+J3cfuCEUmQOHTqEt956Cxs3bkR/fz8URUEgEEB3dzcWLVqEuXPn+rFxHz5gLuQPPPCAy/1sAHAu7G+++SaSySRuuummhlv4n376aaa1xKLm9XjPhN9CVeyeV3MT23FBx4t4cO/NOJIbD8A0xN20aRMWLFhQ82P2UXn4M/sYgEiRMQxnaAmwE35NRcae3BqRyOi6jueeew4vvvgi87phGNB1HW+//TbefvttjB8/HjfeeCPa253EzYePsQLDMPDYY48x93JX+DAuaH8Ji5o3IKDoGC4k8HL/eXhl4FzLPHbHjh148803sXjx4nodugOapjHWKVOjvbh+wu8YEkMQD6Rx46Sf497e25HRYwBMDzmfyJwc8PvIjAE4iMxIjkw6F0OuEHF8nvSSURUDIcVugtdoRCafz+NnP/uZg8S44fDhw7j33nuxZ8+eGhyZDx+Nie3bt2Pbtm3W8wnhg7h16n04o2U9AooZnmkKJnF511rcNPknCFD3/1NPPdVQTTEPHDjAHM85ra9YY/jfp/8P2m47jlmf3IkXt1wAAOgIH8cpic3W5/ft2+d3Kz9J4BOZMQBRaMktrASIe8k0Wo7MCy+8gB07djCvTY7sxaUda3Fp57M4s+U1ZiJOp9P41a9+1XCEzIePWoEmMSo0fHDyzxAJmPf1vmOT8eKWC5DOmSrMtNheXNn1tPX5VCqFffv21faAJeCPpTu+HQBwZLALn/zxf2Eg1YbdR2bhjp98y/rMrPgu63E2m2WMdH2cuPBDS2MAotCSiMiwvWSygGY+byQic+jQIfzxj3+0noeULFZMehjdCZbYXNa5Fr899F7sSHUDAIaGhvDcc89h2bJlNT1eHz4aAbR57LRYL1pDgwCA599egmu+/jiS2SYsmPoWXv7CeUhEU1jQ9BbWHFkGsuft7e3FzJkz63DkTiSTSetxUMkjETRzZTbuXYC8Frbee7PndOtxa3CA+RupVAqdnZ1VPlIf1YavyIwB0ERGRQFh1VQp3PJjANamIEJVLjWSkvHKK69YlQoKdPzVxF85SAxgyuQ3THwY48KHmO82kkTuw0ctoOs6Dh2y74NZMVud+J8nP45k1uytsnHvQjy67joAQCKYwrjwUetzBw8erNHRFgetNMt6Y+UKERS0AAAgpLL3vT8PnBzwicwYAHPDFym9BsShpUYiMr29vdbjadFenNK0FQBwaGA8/vp/f4RLV67F468vBwBEAjks6XjB+ryu64wbuA8fYwG8MtsUHLYe7zw8m3mvp2+69TgesKuCGmkOoMcj61YOAKlsHACYnD/AJzInC/zQ0hgAPfnE1OJERmQc2SihpUwmg8OHD1vPuxN23P9TP/lP/OyPNwEAXtx6IQ58dxK6mvswO74TgA7C3ffu3YsZM2bU8rB9+KgrnLlyNkHpG2bDKyfCZsZrt3IASOXiaIkP+YrMSQpfkRkDYCVYsWEkAZ0j04ihJb4NeRclff/+7UusxwUthD9ufRcAs/yS3lmKWpn78HGygu63AgCxgD0vnIhExqt/HGASGcBXZE5W+ERmDIDZuQTkOxeg8Scx/jhklgsnQr6PDx+1gEORGZkLMrkIUtkE816jzwFAiYoMCS35isxJCZ/IjAEwOxc6tJQ6cUNLNMhEmy8EHRMyU4Gl2MffKGPx4aNW4BWZ+Eho6VjS6TnEEhn7fmskIlO+ImP3jvHngZMDPpEZAxiVIqOwKkYjNJASNfgbSLc6PjuctV1uG5GU+fBRK4gUmb4hZ/nxQMq+l3hFphHmAMMwylJkVMVAQNGs131F5uSAT2TGANgbvtQcGXsSMwwDhUKh8gdYIhyhpZHdmNt4RPk+PpHxMdZAKzJBJYeQat7LfH4MIA4tAY1x7+TzecYoslgRA1FkACBEbc58InNyoGQis3nzZtxyyy24+OKLcf311+PRRx8FAKxatQrnnXceLrroIus/uufAxo0b8cEPfhAXXHABbr/9dhw4cMB6L5PJ4N/+7d+wZMkSXHPNNXjiiSeYf3PVqlVYvnw5Lr74YnzhC19omIvPMAzk83kMDw+jr68P+/fvx65du7B582asX7/ek618taFpGvN7FZNgAXFoCWgMaZlVZAypIsOOxScyPsYuaEUmLkn0BeREphHmAF5dYpRml5B5kgo503kyjbKW+BgdSi6//tznPoerrroK9913H7Zu3Yrbb7/dMhI799xz8e1vf9vxnVwuh89+9rO4/fbbsWzZMtxzzz343Oc+h3vvvRcAcM8992BgYACrV6/Gjh078IlPfAKnnXYaZsyYge3bt+Nb3/oWvvOd72D69On49Kc/jfvvvx8f+9jHRjl0OTZv3oyenh5ks1npfzKZ9ZRTTkE0Gq3qcRaDMwxTWmiJXvwBcxJramriv1JT0GMKKXnLJI6WwwmGM+6hpUaYjH34qCXYXLkTm8iIwsuAPLQEsJVLjaAw+xg9SiYyBw8exLJly6CqKk499VTMnDmzqBHfa6+9hlgshuuvvx4AcNttt+GKK67AgQMHMGnSJKxevRrf/OY30dTUhMWLF2PJkiV46qmncNttt+GJJ57A0qVLMX/+fADArbfeipUrVwqJTC6Xc+y2g8EgwuGw6+dF2LFjB1599dWSvsMjnU6X/O9WGnQbb0Be4UPAVvqwk1Ymk7GUJv7/tQI9iUWKjEdUtZTL5UZ93PUaf6NgrI8fOLF+Azq0FKNaERwbLpbsy84B6XS67nOAqJTcMLyElmwi488Do0e1x6+qxQNHJROZFStWYPXq1bj55puxefNmHDp0CAsXLsRLL72E9evX4/LLL0dHRwc+8IEP4P3vfz8AYOfOneju7rb+RiwWw9SpU7Fz504kEgn09fUx78+bN8+yZ9+5cyfOP/986725c+di3759yGQyrmrHD3/4Q0vpIbjhhhuwYsWKksbJM/5ysHv3brS1tY3674wGR44cYZ576ew7lG6GYQCK4pzEenp6HESR7rJbC/T19VmP6fG4KTKiqqVsNlsxJ+xaj7/RMNbHD5wYv8HAgO0zVCy0lM7FkS8EEQoWHHNAb28vNE1zvFZL0J5RgL1BS2YTKGghx+cZRYYKLQ0MDPjzQIVQrfHPmjWr6GdKJjLnn38+Pv/5z+O+++4DANx1113o6OjAWWedhYceeggTJ07Epk2b8JnPfAadnZ249NJLkU6nkUiwZbGJRALpdBqpVAqBQIAhJYlEwmLc/HdJWCOdTrsSmZtvvhk33XQTO8gyFBn+pEyN9iCqZhER/BdWs+jPt+GZviut73R2dmLq1Kkl/buVBh8DJpJyvhC0vFV46EYAqWwciWjKMYm1t7dbHXF1XUdvby+mTZvmiTVXCn/605+sx1Hq+NwUGVHVUqFQGPVx12v8jYKxPn7gxPoNaPJBKzJuRAYwVZnO5mOOOaC1tbXuc8Dx48eZ50SREW3ORIpMKBQadYfvE+kaqAYaYfwlEZn+/n586lOfwr//+79jyZIl2LVrFz7+8Y9jzpw5WLhwofW5hQsX4sYbb8Rzzz2HSy+9FLFYzBHiSCaTiMViiMfj0DSNUViSySTicfPC4787PDxsve6GcDhckXAOT5JumvxTRAPy2PD+zCTAFguQy+XqfmGLKnxENzzBUKYZiWjKkSOTz+cdY1JVtabjpMdEh8qKKTIRbiyFQqEiOUy1Hn+jYayPHzgxfgM6HBOnc2Rcyq8BMZFxm9fqOQcA9jwgJDICRcZtPisXJ8I1UE3Uc/wl/av79u1DU1MTLr30UgQCAXR3d+Pss8/GunXrHJ9VFMV6PHv2bGzfvt16nk6nsXfvXsyePRstLS3o7Oxk3t+6dStmz57t+t1t27ZhypQpVU+ijUQizPOsHhF8kvrOCZQUJ8qPISC5JY0+pmI5MrQiE+KIjF+55GOsIJ/PM4mtXhUZoDHnADpxOaDkrVJyL4pMWPGrlk42lERkZsyYgWQyiRdeeAGGYWD37t145ZVX0N3djT/+8Y+W3Ld582b84he/wEUXXQQAOPvss5FOp7Fq1Srkcjncf//9mD9/PiZNmgQAWL58Oe677z4kk0ls2LABL7zwApYuXQoAWLZsGZ555hls3rwZw8PDeOCBB3D11VdX8jdwhYjI5Aoh/N0P7sMN//0wrrr7CZz/+T9ib98U8zsNfsMDetGdCwE7idmVWY0wJrbBXymKTOP1w/DhoxYQNcMDihOZkFqACpsENdoc4MUI1y+/PrlRUmipqakJ//Ef/4Fvf/vb+Nd//Vc0NzdjxYoVeNe73oVvfetb+PznP49MJoNx48bhIx/5iEVGwuEwvva1r+FLX/oS7r77bsyfPx9f/OIXrb/70Y9+FCtXrsSyZcvQ0tKCO++8EzNnzgQAdHd345Of/CTuuOMOJJNJXHbZZbjlllsq9wsIICIyoUAeP3zhZhiGzQGPJTswtXNfQxIZthleFkQoKxpaGiEAqmIgqBRQMMwEukZY/NnQkv3Ylchk3JN9+b/jo3pIpVLYvHkzNm3ahCNHjkBVVQQCAcyaNQunn346pk6dyii4PioPp/O1dyIDmJuAtG4uF41w35TarVxUfu0TmZMDZSX70lVEBHfccQfuuOMO4fcWLFiAhx56yPW9aDSKlStXCr977bXX4tprry31UEcFEZFRFKA5OoRBqvkavXNRoMFAAEBjLPrCrr4eQ0uAmSRLKgHqPYnpus4cQ7HQUjKbgK4rUFXDke/TCOfnZMeGDRuwatUq1wWjr68Pr776KqZOnYoVK1agubnZ5S80FgzDwI4dO7BlyxZs27bNuoZaWlqwaNEinH766Q05DofP0khoyTDcy68Bp01BWjdVjXrPAYDEP85Lsq+vyJx0KJnIjBXIcmRaYoOuRAYwE0ozupmI3Ag3fKk7FwJ+N5bSzFyTeo+JJx/Fkn0NQ0UqF0dTNOmHlmoIwzDwxBNP4C9/+UvRz+7duxf33nsvbrzxRkyePLkGR1cehoeH8dvf/hY7duxwvJdOp3Ho0CE8++yzuPTSS3HhhRc2lMokCi0Nplug6e7LQCM7YPuKjA8aYzfFugh4IpPjiAyNRr7hS925EDSqR5HI+RqQNPgbGYuvyNQO69evd5CYRGAYZ7a8hrNaXsXcxBYosBtoDQ0N4Re/+EVD3DNuOHToEL7//e+7khgahmFg7dq1+PWvf91QXWNFioworAScXPOaSJHRdd3RE8fHiQdfkRGgmCJDo5Fv+EooMmGlccbkqMIqkuwL2JVLbnYLPiqPoaEhzi9Nx1VdT+Kc1lcRVO1F42iuE6sOXYuezEwAwODgIH7/+9/jqquuqu0BF0E+n8evfvUrpg2EAh3d8e0YFz6CghHEztRsHM2Ps95/66230NnZiUsuuaQOR+yEKOlfVHoNcPNaoHHmAIAPmdtjE21mRKaRgHl+A4FAZQ/QR03hExkBgsEgVFW12i7LiIyoMqbxbvjiztcETGt/ahKrt4oh6h9hGMUVGT+0VBu8/vrrzHm6sutpvLP9ZcfnusJ9uHHyQ7iv91Ycy3cBAF5++WUsWbJE2CeqHli7di3TIXtiZD9WTHoY7aF+6zXDAN4aXohHD11vJca/+OKLWLRoETo7xWShVqAVmaiasfzJTkRFxjAMtmrJQ7dyUR8ZwCQy9fbE8zE6+KElARRFYRrrnaiKTNmhJZrIcK396wlRX5xUNi6M9RPjyICiM2WkPpGpDnbv3m09bgsex/ntZifmTC6CL/763/DX//sjvLjlAgDmIrS062nr84ZhYN++fTU9Xhl0Xcf69eut5x2ho/jrKT9mSAxgFgEsan4L1034HUi7Ak3TmC7U9QS78BevWALYeS3aQPNaoVBgwkFejHCZ8mvFSWR8nNjwiYwEdHjpRCQyhmGwpcoSq/uAysbzWQfsxhmTKEdGVoUlMo6s91hORmiaxth7nNK02Xr877/+d3z+V1/ET176a1yy8vc4cHwiAGBWbBdU2AvT3r17a3fARdDb28tsBt7V/ifLp+ilLe/C+//rl/jEj/4LAynzflnU/BamRXuY7zcCSu3qCwADabZqiaDe9w2fuOzFP06UIwP4ROZkgE9kJDjRiYzM6p4PLU1pZ3fBonBZvVUMUY6MKD8G4EvJGydx+WREMplkklwnRA5Zjx97/d3WY00PYu2mywAAkUAObSHbO4c2N6w3aHVJgY75TaaZ7fFkG6766pP41Svvx/88+Ql8/Ef/Y32uO24nBB8+fLgiBrSjBaPM0s7XSffSa0A+rxmG4faVmkA2r5VatQT4ROZkgE9kJDjpiIxk5zK9i3WTlakY9ZzE6N9UgW4dG7175EFCSwCrLvlEpvLgq2MSATtB9tDABOY9tk9JYypl/f391uOW4KCVj7F242WM6erTG5Zaj8dT5A0wk5/rDUaRKSO01Ej5ZaJScsMQE5lMPgZdN8vhfSJz8sEnMhJUgsg00s4lJoklT+9kiYxoTPUuV2R9lqjSa0nysoiU+USm8uDNYQmR0XTVsWg2aviSBu2yTKtGu4/MZD9H3U/8ot/IiozXqqUwN6Z6niORIpPOxZAriD3x0jkzgdwPLZ188ImMBCyRsRN/vRIZwzDq2kvCEUseueF1XXEoGDyRoUNLjTqJMc3wJIoMOxafyFQTPJGx+pUMdTK2HsCJQTBpRaYtaD/edWQW87lMPoZMzpwv6GRaoP5ExjAMZi6Ie7AnAPhkX3YM9ZwDRHYLxQoYSJ6Mr8icfPCJjASjVWSAxln0ATu0NJhucSwqstBSI/VfEdoTSBQZJrTUQD1xTkaIFJkjQ+Mcn23ktgWAmbg8OGjf63SlEk9kAJtM84t+vYkMrwx7cb4GTrx5rRiRIZVLviJz8sEnMhKUQ2QaSb0oZefiNbQE1HfHLHS+likyJ8DO/2QBnYsRVHIIjywahwfGOz7L+3kRNMp5GRwcZAiALLQE2GS60YgMn7fktfw6lU0gXzBbGjQSkaHnNRUF6xorqshkfUXmZIVPZCSgiUw5FgVAI+1cDOHOJaAWMLl9P/PaUKYZZA5vpDGJnK89KzI+kakqaEUmQe38iyoyDdSriIDOjwGAthFFxjCA3UdnOj5PWgCY94ttv1BvIiNKjgXEhpEEhGw20hxQajM8Aiu05CsyJx18IiMBTWR0BJAfabjm6OybabYy4hv1hg8peQQUc3Lle660xfsdYypoIWTyZrfLRgotlZUjI9j5N8qCeTKB3v3TFUuHB0tTZOqZJE9A58cAdo7MkcFxSFEN1qzPj9xXisLOA/UmMg6fJdV8ni8EGfNbN5BNWqPOa16a4REQRcZsjGkXLPgbmhMfvkWBBG5+SyG14Fj0DUNFMptAc2y4oW54eicm81lqTxxHc9RZIjqUbkYsnGnY0FKkiPM1gayPjGEYDeVSfKKDVmTiFJE5MuiiyAhCfqQyLhis7/REE5mAUkBL0Lzv3fJjAFYVjKoZZHWzSqbeREakyMh6yBA0IpFhK7BKV2QAU5XJ6qa/UqMqMpqmYfv27diwYQOOHDlikfsZM2Zg4cKFmD59uj93jcAnMhK4EZkmJNESH3R8djDd0nBEhv63ZfYE7YnjaI65EJlMM8a3HmmoMbE5MsWdrwE2tBRxMYyjrSh8jA7lhpbccssaici0BAdA1gwhkaGuwaiaAWnrV28iI3S+dim9jkeSjNpEiExILUCFBh3m4t8wc0ApigxnHJmFqTg3IpHZs2cPHnnkEQwPDzveO3LkCF599VVMnDgRK1asQHu7fNxjAX5oSQKRA7abetHoOxemqy+36LcnjiMayiAYYG9oMqaw0hihJafHikdFRrJg+rJyZSEMLRVN9m2Ma4wGTWToiiW3RF+AIzKUUlBvIkPPAwHFTo7lE31bYgPobOpjXmObFjZGuKxsRUZgHNloRObVV1/Fj370I1cSQ+PgwYP4wQ9+gB07dkg/NxbgExkJREQmGNAQC7O7HJbI2PH9htm5SEJLbfF+KIqToBECEFQ1BJT6my06fZbE5IyGbMH0iUzlUCgUmOudCS25KDKNWhlHwDTDk/SQIeBDSwSNRGRikh4ynU19J0TX8nIVGZFxZD17ffHYs2cPHn/8cei6nSweUnKY37QRpzevR3d8KxQukfyRRx5piO7R9YQfWpJARGQAM+E3TUmV5IZXFPPCyxvmZxtFkSkWWgJMInOcipszBEDJIm2Yl0u9xsT/u14VGVHVktvf9FE+HPYEweLJvoZh3jONdl4KhQKzI6ZLr3cd9hZaImgoIiPpIdPZ3IeQQJUFGsdzrVI5MgSNoshomobHHnuMee3c1j/j4s7nGVuJ4/k2rDm8HNtS8wCY19eaNWuwYsWKmh5vI8FXZCQoRmRoNPzOpUiyL9D4Y3IoMh5zZGSl5I2w8z9ZIOrqC7gn+xa0ELJ5855qtPPiqFiiQ0supddA44aWRD5LfOn1iaDI5PN5LrxcetUSwCoyjUJkNm7ciKNHj1rPz2h5HVePf4I5Z4AZ5rxh0sOYErWd1d9++23mu2MNPpGRoBQi02hu0YZhCEuV+Z4rbYl+AHAk/DZaIzmRx0pBC2CYOlYemh60Fkw/tFQ9iLr6FrQA+oa7XL/TiH1KAHHpta4r2HN0hvt3JKGlepaTs8qsWJHpSBxDa4x1Hm80IlOKEW5AZUNGIkWmUeaAnh67KWlQyWH5uMcBmH2L7l17K2679wd48s0rAZjJ18vHrWa+v2fPntodbIPBJzIS8NUsJ5Iik8/nmTir19ASDVGSbKOFlujfXgSyYDZK4vLJCJHztax7rOi81Htx4YlM+0ho6UD/JKExoSi0pOt6XXf9QufrIWdoSTqvUaShXveNqFs5ABxPsfPaxNaDzPNGV2R6e22FZWZsD0IjROyB52/B7fffi/t+fxuWffVJvL77DADA5OgBJAL2nE0TobEGn8hIoCgKQ2ZOJCLj3LmIb/hSQ0uNosiQY5LlxxCIdv71XjBPJohCS25hJQJClhtNkaETfYNKDk0j+T6iRF+A3SDQSgHQSFU+khwZl9BSo1UtiVRZwLlBm9qxl3lOKzLhBsyRocnzxMgB6/Fjr7+b+Rz9fGLEJms8+R5L8IlMEYzWOLJRdi6y0JKlyHgMLTUMORsZE09kVEWDoujMayTh1w8tVQ80kQnRPksuib4E5BoLqlpDdVtlXa/tcIso0RcQKzJA/RZ+TdOY3zIu8Vk6EXJkRM390rkosiOdyAmmdOxjnjeyIqPrOnOe6N+aJ2hHh+wwLa2087/NWIJPZIrgRCUyoliyYbiXXwONH1qixxRQ8giq5sLnsFxI9KMpwvZgIGMJqQUo1IJZ753/yQQ2hCHv6kvQaNcYAUNkaLNIQaIv0JhERhaKcSUyce/zWj3yfkSbGbdE3yntLJERlV83ApHhiTv9W9P3CMAmadO+WT6R8SHEyUJkyASWysaR19jcnxMltMQaRopLr1tjA1J1KdyAiX4nA9iuvvLSa4JGU/0IRM3wZKGlbD6KTM6cIxoltOR0vrafO6qWmvs8J/sC9SEAIkXGjcjwRriNXH7NX++0csznANJj5YlMI3iU1QM+kSmC0TpgN4oEK3K+BiTJvg22yAidr10UGX4sbC+Z+pOykxFsV1+5PQEBfd80ynnJ5XLMWOjSa1loCbCvxYZVZEYWPsMYXWgJqM88QP+OKjRrU8LPa83RQcdYRKElTdOYwoh6gP8t6d+aJzK0RxZdfq5pWkM196slfCJTBKNVZPi2+rWCSIJ167fSGjd3YbIx0YuMpml1H1MxRaYpyoWWaFKm1L+U/GREKYaRBI1W4g+4lV57Cy0BjUdkRM7XyWzCUX3V0XSsJCJTjzGJemO55f3Fue7rIkUGqL8qUxKREYSWgLEbXvKJTBGURWQC9d+50Be0ioJw59ISG0BANXcj8mTf+o+Jcb6mpPvSFZnGWDBPNjChpSJdfQkaMUeGrlgCbEWmoAXQ2zdN+l2yoJr3C9tKvh4QKTJuhpGuVUtp96oloP5zQLGWEvEIR2QYRcZpHltPiIhMrhBCJh9j3mNCS6pPZACfyBTFaMuvgQa44SVNo0hYCSiW7Fv/ah9WkbF/09JzZBpjwTyZUCgUmGsiUaSrL4GILDeUIjNCZHr7pkHTWVcX3nONkGpFYa/RxlBkDJvIcGGlYCCPlphbOCaBgmY6XjfCvMYY4RbpVn4yKDJ8oi9ghpZIKgyfi+UTGR+uGG1oCWiERV/ufE3Q6ORMmOyb5ohMfEBYtQQ0TgjjZIKzh0zpikwj5GEBLJEJqxmrZJl3vW6KDmFm1272uw3mt0QvbGE1i8BIWwK3rr6K4pwDgMbqvlyKIpOIsNekqGoJaFwi49bss6CFLIWZV2TqbYdRL/hEpghoIlMwgtAM8ydzW/RFfj71vuGLOV8TnFChJZnlQrzfMZbhrB9aqiZEXX0BebIvb0xK0CiKjMz1eta4XcxGAOBsChqsE268SOk1YOfL0RhMmYtpI8wBjCJDExmXJp+O0FIDKzKi8mtR13Iyj/s5MiZ8IlMErN+SYqkyPJHJa2GhAV69F30v9gSAM7SUK0SQzZuhtXq39jcMg1VkAuUrMn5oqfIQdfXNF4I45sGiAGhMRaZdYhY5a9wuy6fM+m4DKzLFSq8BIBFJOppJksWUT2Cu97xWcmgpm7A2m42syKgoWPYEIiJDzp+pyNgl1z6R8eEKkXEkv+MH7IuuEYhMKbFkglJk5VrvmHO5HNMjQVp+7aLIsDt/X5GpNESGkTKfJUBMMHmvsFqCTvalm+Hxpdczx+1mFE2g8YiM0GdJoMioquHY0JCNQkgtMN2X6z2vlZrsCwCZke6/jabI0L9lRNJDhoCUYAdVDUGKlPlExocrRETGbdFvJCLjNUeGCS1FneSsUbxwnD5LkvLr+IC0aonPkRmrTaQqCT6plBAZWaIvIFZkgPqQzHQ6zVzbxUJLDiIjCC01miLjyJFpOmY99tqGodZzQKFQYPqklKrIAHblUiMrMkxX34wz2Rfwu/vy8IlMEYiITDSUQTDAXvyNRGRK2bkQxCMpqArbH8ZyJ1brG1oSOV8D7uRM1keGnox1Xa9LT5yTDbzPEpHGZYm+gHiRBOpDZEQVS4Az2dc1R6aRFRk6R4Z3vh5RZIDGbfbp7FZeuiJD8mQaWZGh74NiOTIAm/DrJ/v6cIWIyLhl+JOLLqDoCCj2zqHRdy4EiuIMmZEx8bJyrRcZkXcUULoi0wil5CcbWHsCb119AZ5g1pcsA04i0z4SWsrmw9jfP5l5b+a43SXlyNRa+TMMoyTnawI+4bdRiIyzW7m8iOFkUGSKhZYAtr2Gr8j4cIWIyABOIiOq8qn3zsWL8zVBoxpHOkNL5r+fyUUcHUpb48X6yNR/wTzZwNoTUKXXA6wiEw6yvzVbft1oioxhhZb2HJ0Bw2Cny6KhJeq+03W95otlLpdj8oxiHnJkgBNHkYkWUWRCwQJCAfYaIiXYJzyRoUNLqh9a8olMEfBE5kTwW5KpF46dC7ej5IkMO6b6VZWUYrnQFhe7XwONsWCebGDsCYLi0utZ43ax38s2QdcVAI1BMOlE35iaRmRkIeTDSh1NfWiJD0mTfSN1No4syfm62RuRiTaQIkOIWTYfRpoqrQbsDZqoBDuoalAohflEIzIy48ixCJ/IFAHd2Rc4MRywRc7XgHu/BRpeVaZaL/6iHBk+rAS4KzJMHxnFDy1VGsLQEpfsO2fCDsd3SdivEQgm00NG4npNGuF5DS0BtScyDp8lWfm1RJGh77FGmtfI7yszwnWWYNM2BXb4/UQjMvT5i/qKjE9kiiEYDCIQCFjPTwQi44glj9zwuUIIKaq7JeASWvLY2r++OTK69fvyikwsnEI4mHck+2bzUeQLZnv5Rtj5n2wQhpa4ZN85451ExirxV9jzUO8cGab02qViCYBDkTmebLfbx9eZyIgUDE1XHfdNR8Jb1VIjzWtkgyYlMh6b4tV7MyMkMikvOTL275LNZuvu5F0P+ETGA0ZrU1D3ncuIxM3nxwDOidgRWko1XmgpouagmNEI10RfQFBKLqjAqvckJkMmk0EymUQmk2nYCSqfzzO/YVzS1Xf2+J2O7zfKeTEMg22GR5Ve86GlmeN2A3DeP7lCxOpVwvvgNIoiY5Itdur3GlpqlHlNgWaF/Xgik4gMIxQ01Ra5ImNfX/VUZAzDYK710YSWgLFZuRQs/hEfkUjEmhRORCLjZedC0KgJzOyOpXhfHDciM5xpQkfT8YYIYciQyWTw2muvYcuWLejt7bVej0QiWLBgARYvXozp06fX8QhZyOwJeEVmUtsBRENpxtGX5C+ZRMYAYLLUWl9jqVSKWdBkoSVLkeFCS4C5YYiFDzaeIqPKna8JSqlaqmUlltCeQNZSwqNxJF3lWWsUCgVmkzKaZF/A/J3i8Tj/lZMaPpHxAFaRsXNmGpXI0De8Ah3RgPnv8zd8LJxCJMQu4o3qGi1q8OfmfA0AiSjbaRZonJ44MvT09ODXv/41BgacnjfZbBbr1q3DunXr8I53vANXXXUVE/asF2S5GHyOzPiWw2iODbFEZuS8qIqBkJJH3jDvsVqfF2cPGXtBdPSQGW8SGXK9MX8n1YZJ7fUnMvR5UaFZ8wCf6JuIDDPzgHReo1QmwzBqqmQwtiuSAgaayPDzAKvI2MdeT0VGZBgJeCu/9h2w/dCSJ5zIoSX6OGRdfQnkY6pfa3/W+VoyppEdckDVEefcb0lSqZnsa++AGkWRefvtt/Hggw+6khger7zyCn784x/XPUkRENsT5AtBHE+ySaXjWo5IK+PqmYdFVywBtiKTzMRxeHAC8x5J9g0FC0hwFXLkmowGslCo66yeikzUY+k14H1eA2o7t7GbGW+9sXhFhnHAVhufyIg6+w5nmq2cP98B2ycynjBaIlPrNvisBOvthieQ9ZFpGHIma4ZH7ZAdYxmZFBSF3Y01ApEZGBjAo48+ylwnTYEhXNT+PK6b8FtcM+4xzIlvA20Qt2fPHjz//PN1OFoWIiJzdKjL8Vk3IsNeY/Ujy6IeMrxZJGDnyADODQGdi0bfM/UkMnRXX5FhJIHXqiWgtvMA29yvAqGlBlVkwh68lgDfAZuGH1rygNESGcCclPmeNNUCfWN4veEJRIs/AISpqhI+rlttCENLLs7XBE3RYRyixA1+wcxr5vlohNDS448/zoxxUfN6XD/hdwhQTsTntL2KnvQ0/HT/TcjpZkLpH//4RyxcuBATJ06s+TET8D5LJLTEJ/oqio7Opr6GDV/SRCYRGLZsFviw0oTWg4hH7MWiLdGPfcen2n+HK8HO6GYYrZ5ExmtXX+AkU2T4qqVs41UtiRQZXVeEigxghpfGtx5xzZEZa/AVGQ8oh8jwvjH12rl4TYojkMfHG2USo0JLXCWWzARTZFNQ7/BMOp3G9u3breez49vxngm/ZUgMwfRYL26Y+EuQ0JhhGFi/fn2tDtUVtCITlvgsdSSOIRjQpGS5URSZdg89ZAikDth1NI706nxNl14DzjkgmW2CpptLha/IVB4iIpPMJhzVZTSIsmaGMO3mfj6R8eGKSigydVv0qQnMS46MdLdcx0ZybI6MN0VGqi7VcefPY+vWrUxI6fy2P0FVzOffe+ZjOO2fN+HdX1+FvX1TAADdiR2YHNlvfX737t01PV4e7IJJlV67JPoCLpVxDRK+ZHrI0K7Xh7mKpfFsd2K5TUH9DP2EigxvGMmFltwSmMk5aph5rVxFhiIy4QbPkZGFlQB23PSc6BMZH66giUyujKoloH43vFfnawK5RUF9xqRpGjPRRCTeUfSiInPArufOn8fevXutx1E1jdlxs9fKpr2n4e9/+D1s3n8aHn/j3fj/fvll63PzElutxwcPHqzrGJhmeEFx6fW4liMAvBPMWo6J7yHDVCxxOTK8zUIpxpG1hND5usTQEmDPA/VqXcDPAWUrMidQ1VIxIsOUYAfqR5gbAT6R8QA2t0VFVjPJDD8hp7IJFDSzHLZRJFivztcEXnfLQO0mMYc9QaA8RYYJLSmNQ2SOHbOl/c7wUUuN+f3blzCfe2nrBdbjjjAbDuATbmsJr/YE45pHiIxE9YtQ56WW98zQ0BA0zZbnpfYEVKIv0JihJV3XuVw570SG3wAAYiJTqzE5u5V7m9cSXOVi41ct6d6JDN3d11dkfBSDyAHbbeditVuvE5HhJ7CorHmcSzMvfpHJ5GN1b+0vcr4GyldkGim0RJf9dlBKwPZD3cznaCdpuukcUF8iIwwtccm+41vN0JJXh/VaEkxnDxn7uSO0xCsyHh2wa0lknPYE3pN9VdVAc9S9cims5pl8jHrNATIjXK+hJVqRKRQKNa0spUH/hmElb3UtLyW0NNaNI0smMps3b8Ytt9yCiy++GNdffz0effRR670HH3wQV1xxBS677DL893//N3NhbNy4ER/84AdxwQUX4Pbbb8eBAwes9zKZDP7t3/4NS5YswTXXXIMnnniC+TdXrVqF5cuX4+KLL8YXvvCFmrPnUogMaelfLyLD/zvS0FK8eGgJqD85E5nFAUUUGd44UpDsW09FRtM0ZhHtCNlKy45Dc5jPDmVakMmZ1x7ddA5wNqWrJVhFRhJa8qLIcDYYtVpceCLTHjTvjf5kK/o5o1WHIlNCaKlW4xH5LAHFy6+BxusnJTPC5Tdo5YSWgPp19y3VnoBAFFryiYwHfO5zn8MFF1yA5557Dl/96lfxjW98A3v27MGLL76IRx55BA8++CAefvhhvPjiixbJyeVy+OxnP4sbb7wRa9euxcKFC/G5z33O+pv33HMPBgYGsHr1anzlK1/B3XffjT179gAAtm/fjm9961v4xje+gccffxz79+/H/fffX6Hhe4OIyJQiwdZv5+JNgk1pZomoq8okSPSrW2hpZHHQdcVxs0uTfRukXwmNgYEBZnFrp4gMr8gAtsrRKIpMoVBgNhay0BJJ9vXaEE/XdSbcU03QqpgCHa0h8zriS68VRcf0zh7mNT5EKwot1bITrqPbsipWZPiqJaA0m4JaQGSEmy8EkaSc7YESFBmVPRf1mgdKdb4mYLr7jnEH7JL7yBw8eBDLli2Dqqo49dRTMXPmTOzZswdPPPEE3v/+92PqVLOfwoc//GGsWbMG119/PV577TXEYjFcf/31AIDbbrsNV1xxBQ4cOIBJkyZh9erV+OY3v4mmpiYsXrwYS5YswVNPPYXbbrsNTzzxBJYuXYr58+cDAG699VasXLkSH/vYx1yPL5fLOS7IYDCIcDjs+nkvCIVCzHNCZIgEO5SxLzi7Db4pwRowc2ZqZfrHT2BRSWIsfcMP5FsRD6QdMWWgeGv/ao+LHxMpAx/KNDvKE8sNLZUzBvKd0Yz/6NGjzHOiyOi6gp2HZzs+f2RwHKZ17h1RZHSQvcjw8HDNTSV1XXcQ57hMkREl+woIJmBOyokE69heDdCKTHNwyCp95xN9p7Tvc9h6SHNkOJuCVCqFYLD67bt4Ykt27OlcFGlqMQfKUWScTf5qPQeQ8RTzj5MqMi7zWSwWQ6kY7Twg6sRO3xdukCX7apoGhcSoqoxKzIMyqGpxvaXkO2rFihVYvXo1br75ZmzevBmHDh3CwoUL8b3vfQ/Lly+3Pjdv3jx897vfBQDs3LkT3d327jIWi2Hq1KnYuXMnEokE+vr6mPfnzZuHjRs3Wt89//zzrffmzp2Lffv2IZPJIBqNOo7vhz/8Ie69917mtRtuuAErVqwodagW+JbxfAk2TWTY3WUO2ZFmWEeOHLFUpmpi//79zHOyI9R1xRGGIZJ4Xg8ipZs3uKoaaIoOYZha9MmYTHKmwxhZPA8fPoyJEycyxobVgGNMI4sD39UXKC/ZV9M07Nq1y9MN44bRjH/Hjh3Mc0Jk9h+fzPgRERByEFD0kWZr5nk7ePBgTa4vHjyRSXgov/baEA8Adu3aheZm+YReCRw8eNB63Ba0F8Jiib6A9xwZwJzP2tudi2+lQVfCAXYosphhJIGcyFCh3ZG5sV5zQFEi4zFHBjA7ZXuxBxGh3N9gcND+rcMlKDJMjgylyGiahh07djg24NVGta6BWbNmFf1MyUTm/PPPx+c//3ncd999AIC77roLHR0dSKVSaGqyF4pEImGxaLddVSKRQDqdRiqVQiAQYEiJ7Lvk30in065E5uabb8ZNN93EDnKUiszQEDvx8kRmH6Us8zsXQmSi0ShmzJhR9jF4hWMnNnKBD6RbHeoFueHTesxRVk4TGX6hIWMiu5dp06aVTQK8gM6nAuxJjI+NK4rOkBevjdcAYOLEiSXvxnRdR29v76jGv2XLFutxWM0gETSve7ewEsCSg0QgZRGZQCBQk+uLhq7rwgUzVwg5cku8lV+z56Wrq6smXYtpQlZKoi/gniNjGKYVBm/o19HRURPncnbhN2znay6spCqaJ881ehNEqwZk11/tOaCnxw7nyYxw45EkwkEq1MkpzLIcmfHjx2PSpEklH9to5wFaOZGFlmLhFKOmyYwjx40bh9ZW50avGqjEPDhalERk+vv78alPfQr//u//jiVLlmDXrl34+Mc/jjlz5iAej2N42Jbyk8mkZSUei8UcC2wymUQsFkM8HoemaYzCIvsu+TdEi044HB4VaXED/2+V67dUi5MsyieR7VwyWpQZUzHpnxAZEsJTVbWqY6NDhSoKVudYXpFpiQ1CVSmvIo+hJcDM9Sh3DKMZv6hiacfhOW4fZ8I1iUASfXnTzyiVStVlEuGvN6nP0kiybykl/qM5L16h6zqzE6e7+hbrIQM4FZlcIYJMPopYOONQZLLZbE3OE03MQkoeQdXMNeKJTHviOHPPEJQyrwHVnwPY8Iv3AgY300hCMvkcmdFea+X+Bl5zZGZ07cHm/adZz5nQEmdTUKv1hka1rwHpv13Kh/ft24empiZceumlCAQC6O7uxtlnn41169Zh1qxZTJv1rVu3YvZsM8Y/e/Zs5r10Oo29e/di9uzZaGlpQWdnp+fvbtu2DVOmTHFVY6qFUCjEsOZGdsBmpX7DYup8fkxALVi7FVORKd16oR5jilI2CcU6FXutWgLql+hH95BhEn0PChQZqqSZzkepV7Ivf70RIsOHlRRFt3Ix+POS18LI5s3NRz2S5AcHB5mEa7oZHq/I0KEl8hU3RYMssDyRqVUJNp1TQpdeyyqWCnrAetzI81op/nF8aEk3AsgVzGuNV2Tq1UumFCJD43iy3boGx7pxZElEZsaMGUgmk3jhhRdgGAZ2796NV155Bd3d3Vi+fDl+9atfYd++fTh69Ch++tOf4uqrrwYAnH322Uin01i1ahVyuRzuv/9+zJ8/35Lxli9fjvvuuw/JZBIbNmzACy+8gKVLlwIAli1bhmeeeQabN2/G8PAwHnjgAevv1gqKoozapqAe2f0hJWclLbrd8ISbmYqMrWLJy2Nr3+eDvdElztdcpUVTRKbI1KcnDg3DMDhFhiq99qLIUF1061V+TS8wYTVr7fz5RN/Opj4EVPNalJX418MGw9FDZsSewDCcOTK0ItOXN9UN/roD7I1DvYgM43ztsRlef6HNeuyoWko1DpHx2gwPcCoygJ0nwysyjU5keI8vTQ9aauZYJzIlhZaamprwH//xH/j2t7+Nf/3Xf0VzczNWrFiBd73rXQBMteQjH/kIdF3He97zHlx33XUAzHDP1772NXzpS1/C3Xffjfnz5+OLX/yi9Xc/+tGPYuXKlVi2bBlaWlpw5513YubMmQCA7u5ufPKTn8Qdd9yBZDKJyy67DLfcckuFhu8dkUjEupkYIhNvLCJTzs4lo0cZRcZrVUl9JjExkSmmyKSyCWi6ioCqN4QiMzg4yJQXy5rhEfA5MgTJZBKGYdSsUoGAPjdeSq8BAZFJN6Orua8uigxNJgE7R6ZvuNNR2kuITEqLYaDQiq5wH4IBzZEgT9TCSCDnqF6sBRifJY+l18fz7egKm8RGtkGLcvNaLXrjlGMYCTgVGcDMk2lP9DeEIqNpGtO/phRFBjDzZFriQ2PeAbusZF+6iojGzTffjJtvvtn1vQULFuChhx5yfS8ajWLlypXCf/Paa6/FtddeW+qhVhSs31LjKjKiRV/WNCqjxcrO+6kFhM7X3Jj4XaTbgpnMJNASH0JEqU9PHBp0WAmwQ0uG4WyGR8DnyBBomoZcLufoeVRtsESmeOk1YC4uqqJBN+xQRrES/2qCVmRUaGgJmtc/H1YKqAVM6dhnfiffhoxmh7fb4v2uRAYw7xmSlF2P0BKjyEgMI/vzbdZjr3OAYRg1aSTnVZHhE68bXZHh551IQExkpnTsQ0AtQNPtZft4sh0zx+0ZUWQMAOZGZqwRGd+iwCNOlNCS5xueUi8yOhdaklWVKLUfE2O5EJCEljjXXreGhfVcMHnwSgAJLR0d6sJg2r3igCYI8QZoikdfb1J7AkqRURTnuSH3TUgtMC3wax1aagkOWF5XfFhpemcPggHz2I7n25HVWSLD/M062xQIna9loaW8PUfIqpbCAfZeqQUBYBUmSpFJyRWZcDAHVWGbKpLKpUZQZESGkYCTyLTGBtDRxG5+SM5TQNERosKyPpHx4YpKEJlaSLDlhJbSOle1xIVkGqk9eaQE7yg3RYYk/DZCaIlWZAJK3lICRGoMwIeWGovIeDGMJGik8CVNZJiKJa6rL53oO1BoQ4YmMjKbAuo+rMV4DMNgk309Ol8fp3JkvM5rQG0IAJvwL8mR4aqWFMWlBNtSZAowm0qaaHQi0xIbdBA1xjiSus58IuPDFaMlMrVqt844X3tMisto8qolUbJvvcNlxRSZULCASIjdAbO+UTaxrAeRoRWZ9mC/lXwtyo8BgGS2CamsWf7eCESGvga8hpYA703xanFe6PMgc72mE32Pu4SWaMj8lqqNQqHAzDWek33LCC0B1ScAJGxKIPWP4xZ6wJknwzhgK3ZYrNGIDH1PAGY+Jm8nISrBrqVBaSPAJzIeQfemKYfIALVZ+Nmdi0S9KCW0JHAnzufzVW9NbhgG5+YtKb92cfN2VC6NjEVVDASpSaweoSVakekIi80ieRC1gzeOrDWRyeVyTH5E3ENXXwKvzQqrTWQKhQLT8JIuveYVGZrI9OfbWUWmgUJLznb+3sqvU1rCmgf4fLPhTDM03Vwuak1kyvWPI5DbFNjH3ghEhlTtZfNh5ApsvltLbNARWvIdsE34RMYjRIqMzACv1kTGMAw2tORx55Iu0hBPFFoCqu8Yy5OlUhQZwKWXTLYxHLANwxD3kJEoMoCtdth+SyZqXYLN/3ujUmQEZLna9wzfkp6UXgNye4L+fHmhpVoQGZnztUyRSVFJ/27msSQsy5eUV/vecRCZUSoyIpuCeqiyIkXGzZ6gJVZEkfGJjI9iYIkM286fRj2JjGPR97hzyfAN8eLi0BLfEbfauxjHjS5TmUpQZAA2cbnWk1gqlWL+TS89ZAhIIq2qGIycXGtFxuGwTOfISJJ9Ae/hy2qfF0cPmZHQkq4r0q6+/YXGDS2JnK91XXEoMmRhLOgB5I2wlMiQua3WioyMmI1ekbGvr1pUX/Eohcg0R4ekOTJj2QHbJzIeQRMZHUHkR0rg3IgMyemtNZERWd0D8vLrtB5F1vBWtVRvWZn+93kTTC+KjKgpXq2JjLP0ungPGYLDA43RFI8nTkSRyebDGOCut0ZN9uWJDDkPhwYmIJtnu4fPGm8SmaFCEwpGyHNoKcYRmWon/YsW/oF0K1PyDtihpbQeA6BYRMat4o8ooPWeA8i8li8EmZJ3YHSKTCOElkREJqAWEAunPYeW/BwZH67g+3OIdi6GoVrJZLUmMqVIsLR6kdGijGmkLLTEV/vUaxIDXBriuSgyMgfselRgEfBEhigyg6lmHOHCMtM6e5jntNrBN8WrJUShJVefJT605LHEv9rnhU70DSp5NAfNBZwPK0VCGUxsNR2ySVJsOaElwzCqPiZnjsyIYaTE+TqlmYt7VjPntYCqo0kwD4TVPJQaVvuIiBm/OQPciYxX48h6E5mAUrA6Y7tVLCkKPCf7ZrPZmhSXNAp8IuMRXokMIJZga01kyA1vGGIJVjNU5I0wANUKmfFjIh1xgcbZjeUKIcYJFnBXZLwaR9Y62ZdeQBVoVkiDDyspio7z5rzMvCZqildrIsP+e4YVWuITfVVFc+wk5TYYtVNk6ByZ1qD9mCcyM7r2WOaKpJW/19BSpMY2BfTCr0AXOl9HQ2nEI+Z7ac2shKNz5fj7SeS5Vq85QGaES8PNOJKgkZJ9i5VeA87xicqvgbGlyvhExiNERIafkAFbJm+U0FIym0BBCzHv0c7XpBskUWXcxkSUjFoTGYeb98jNyqsxgLvnjUyRaZTQUmtwwPLE4iuWpnbsxbTOXuY1mijU0ziS3vlHZD5LzbbPEoFc9asdwWRLr71XLAGQh5YEOTJAbYlMVM1YZf2yRN+07iQyXvP/aqvI6EIiEw2lEQ07r5cTJbTkhcjIQktRzqbAJzI+HBARmXAwj2iIvYBsCTYHuldJzUNLAudrwJ546cnYImcujeREKlO1E+REOTJusrKbC7HXnX+tiQxjFkmVXvP5Md0TtjsSZUWKTCqVqknTRQKaOHnt6kvgNUcmn89XdUyiZniOiiXKsI+ElvJGCJphTqH8Trk/2WblykVrvFMWdfWVlV6nSWjJI5GJ1jAhm7coIcTMS6Iv0Njl1/RvVw6REVUtAWMr4dcnMh4hIjKA+IZXFYNh/DUPLY0wdDcJlqgXZCcGeFOZ6psjY1i7MV6RCQezrrsxr1VLtQ4tMT1kKCWAV2S6J2x35JeIiIyu6zXdhdGKjLT0mkv0Bbw3xAOqt1Dm83mGjMlKr0miL2A2wzOhWOElPkcmr4WRzpn3Vq0VGaHPksQwMuUSWnLYFFD3XL0UGa9NPrOanfPnIDINWn5dTmgpmW1CNm+OdSwbR/pExiPKITJAbTvh0hduQCmMtOB23vCt8X5L6qfj/CS0FFB1xLkEOVuRyaGWbb3p3yyk5CwfHFmDv5xuh9EasY9MJpNhFpsOSQ+ZORN2OBQNNrTETdI1rFyiSYBX52sCabJvjXywnKXX4tASo8gU7PuJKJpuaiC5RusZWvLqs1SqIlNLIlOO7cqgZh+rI7REKTLhBs2RoTdcAKXIcMm+gP07+IqMj6LgiUwjOmB7db7mu/oSyCYx0UJTy0mMlrMdzfCo/JjBgv37N0oIgwZvFilrhtc9YbtD0Tg8ON4KW9TTpoDd+Yu7+vKKEiBviMeHL6tFMvnzQBKuNV1FT9905j2iyBgGMJC3ry9y/7gl/ZMFptahJea80D5LEufrlJUjY88HfD+pRiAyXhWZoYJ9PXlVZOpNZMJlKDIARWR8RcZHMdAWBUBjKjLl3PAZzRlaAor0klFqR2S8Ol/T5GygYL/ntWoJqJ0qIyq9Tuei2HtsGvPenPE7ML6VVTQy+ZhVeVFPIsMqMqWFlrwSZaCGisxIaGnfsSmO5HiS7DtYaIGOoPU6ITLBgIbmKDsmkpsWUXOMo3dtFRlvXX3dFBlZ1VLDKzLUZkZkGgk4c2RqmWMGlB5aCgULjuuM5MlEAjmo1HXmExkfDqiqilDIntwanciU4nxNkJPZFKTqX3opc76mFRl6N+a1agmoF5HRrSZsuw7Pcnx2zoQdrkSAkAW6IR5QOyLD+ywlZF19W4uHloYzzdB1M4uzVooMTWRCShaJoDkGPj8mHkmiq/koAOB4nr2XmBJsWS8ZakzVJDKGYZQVWvKSI8POa/YYqn3fiHJkZE0+hwri0FIyQ5tGsvNXrXuvlEpkAHkJdnSMOmD7RKYEjNamoLY3vDciwyoy4jGJuvvWVlb25rNE78bkikxtdv486JBGc2DYymXie8iMbzmE5tgwmqLDjso4Er6JqWlmt18rIsP/O3GPigzZ8LpVxlmNJBX2PNRCkWFcrzlCOWvcLqtShvSQIfBcgl0jvyX+b9OhJUfVUgXLr6upZJSnyHgMLans/FXL8BJviCsjMnQoVtrdd4w6YPtEpgSIjCMbUZGhfZa85sgwiozHsuV65cjIfJZkOTKMIqPUX5Eplh8DAIrizDMhZEFR2MqUWiX7ygwjZcm+5Ny4VcaxbQts1EKRoUuvpR5LVsWSCWlTvDo4YMucrx2KTInl16KqJcMwqtaGQdd1NrzsOUdGkuxLEZkgp8jUMumfnzu9KjJeS7B9RcaHK04kIuPZ+VqQ7Ou1YVmj5MjQikxai1teWI6qpUyT0AurHkSG7iHDl17PmbDDeiyvXKp9UzynImMuFtl8GIOcBxYhYVktjKRmqi5uigwhy7VqJMk0wwvaj4u5XtPwbFNQIyJTivM1XQHj1tm3EQxxnd3KK6DICPrIALVVZEQ+S0CR0FLcN47k4ROZEtDoRKacfgueQ0uCqpJaNsST5cgw3lF6xCol50NLuhGwJrJ6hJby+TyGhiiZWGIWSRQZwJkwK2uKVws4DCNHcnV4NQawiUxSS1jnJRQsIBJiFym2V1F1G0lmMhnm2ioWWiKgS6+BxgstiRzJc4WQw2CRKDIZLQIdpplkhk72jXtL9gVqR2QqrcjwquyJQGR840gnfCJTAkZLZPL5PHSdbdVeKRQKBYZU0BOn59CS4bFqqUahJV3XGZVEWn5NKTIZLSrtUkx6ydQj2VdWei1VZFrFikw9jCPZBdOwyBSf6KsqmrXzT2lxT5VxqmIwkn81zouzh4z9XBZaOi5TZBogtORQZIjPksQwkm6KWU5bCaB6RMZhu+JRkUlpcRR0k5ydbIqMNLTkKzI+ikFEZPjwRSPsXDyHljRBaEkyplqFlhw+Sx4VmaweRc4Y8Y1yC2EIvLDqQWRI6XVBCzgW0HIUmXqEliJqxvKK4hN9u5qPWmaLSS1hnRfAe4+fatwzPJEhlWO5Qgh7j01l3iOhJc1QmZ0+UErVUr1yZNwNIwF7HiDO1wBgQLUaSjoT/lvsyrJAvRQZ87mmq44QJhlPTg9BRwB5wxwHX36d18LIF8zQM1+11AhERtNVJKnGnUCRqiUmR4atWqp1OXm94BOZElCOIsP3KqnZDR/wGFrSPYaWJFVL1bpZHD5LHnNkMnrUCmFEQlkEVDb8RcbCy8q1CC2xpdeGRWR6+qY7epdIc2SGaEWm9n5LrD2Bt66+KS3hOaE8XOVqP1EPmd6+aTAMdlokisxAvhUGN2WWYxyZzWardo7Y7t55q3MtT2Ta4scRDJjVbmkqvAzYc5tbkz+ReWytFBmiOLj5x5F5jYyHEBk+tATY4aVGJDJ0QQIBo8hw3X0ZB2xKkdF1vS5N/uoBn8iUgNGGloAaSrAeFRl6HNI+MsyYahOSkSkyA9xujM+RIeNSFHHlUlDVoMImObVQZGgiE1PTiI7sbLcfZPNjWuP9THmszDgyTvWS4fuIVAuem+FR1VZJLVECWa6ufQStjEWp88An+rbG+9GWMEkyX3oNlJcjYxhG1a41+txLS6+bnaXXBDIiQ+67uuXIBNydrwGnEW5+RFniQ0uAHV5qpNASCXXzYSXAe45MdIzaFPhEpgTQRKZghKAbpszaCERGJMFm82GkqeQ2wF70M1qE2WHKQkuM2WKNQjIi52vDECsyBT0AzQhZigzgvZdMrUNLtMcS30NmzvgdVu8SwKX8esA9tATUJrwkdL6WKDJJLS4ly7U09Cylh4z1HS4/BigSWqJUg0iN/JZG47NEIDOPtT3X6rFB0615jScy4WAWsbD52RNdkXEjMvQc5lBkfAdsn8iUAtZvSRHuXHKFiOVIWr8yxREJlsslASgJ1rETKz20BNSenCWzCWh6kHmPVFiQ3RhNZLx29611aIkuveYVGTo/BnAPLZHoRD2MI4WhJS7ZlyZgKU6RkSaUUzkY1Q4t0aXX8h4yThWgnNASUD0iMxrna+vYRsYUUHU0CZRZ03bBLlyoxRwQUW3TWDeVmRB/XpGJhpy/daMpMgp0S4XkiUxTdMgy+QWcOTLHk+1W7tJY9VvyiUwJEPktuUmwte6JIQotSSVYajcJeA8t1araRxRacouPk90wOSeN2NxP0zSuCZtYkemeyBIZXpHJFSLWOam1ImMYRlk+S2ZoyWOSvFI9gmkYhrAZHq/I0D1kjruElgpGCNpITo0bkSFkk98p11yRkRhGihQZoFj+X/U3AeW0lCAbNKLIKIppM0GDKDJmDpGdr1QvIkP/lo6uvtxczIeWdCNgzWm+IuOjKHgHbBmRqbUES0+MCnQr5s8v+rFwCpGQedPQu0lAXrEg88KplSJDdul8fgxgH6+lyBiS0JIgTFZtRWZgYIBJ8uyQdPWdM34H89zNb4mEcWpNZPL5PFPqX7HQkiDZt9LnJZ1OM+SbCS0dKS20BCjWhoAPLRW0kLXzr4ciQ+/OpT5LghwZwLvfUi3mAK/N8LIaq8gALsaRVAl2ULGv5XoRGa+l14CTyAB2eMlXZHwUhYjIxMJpR2UMMVmsx6If8dzVl53AADskU4oXTi1yZBRolnrCk7Pm6KAlvRIiIwthiGwKqp0jw7tek5JfXVew8/Bs5j0+tJSIphy7SqJ+xAIZxvW22kRG1AyPPiYCWbKvLA+rmsm+zh4y5YeWAPua4xUZwA4v1YrIMMm+JTpfE+S0xmn2yVqUeFVkRoiMYRMZqd8SlSdTSyJDX9elEJlEJIlggD1OUrlkJkPbmyWfyPhwQERkFEV8wwdVDQGK8ddCgvW6c+FDS4C3RL9adcRlyRnVDI9TZOgOpGRMXnf+1a6OoSHqIXOgf5IjIZsuvSaQ2xTUrimeyJ6APyagSPl1nRQZ/jyQ0ut0LoqD/ZOY90hoKa8HMaw5y2IBm8jwnXABisgEqk9kCoUCsxB7T/b1rsiI/JZqUYXlfV4bCS3pYiJDNmUAmydzIigyiuJM+CW/R0DRmc3ZWOnu6xOZEiAiMkCRWHKVKzAAsUu0zOqeDy0BkHbEFeX91CJHRuZ8Te+E7RwZr1VLtQst0YpMWMmiaUTJ4Dv6xsIpTGo74Ph+o9gUOBSZkX87k4tgKMNOwrTPkmYE5cm+AkVG1/WKWmGwioxhhZZ2H5np+CwhMgOFVgCK433AJs8BVUdLjCUzRD0Mq3lGNavGAiPzWZKVXzuTfU8WRca+1hw2Bdn6KzJCIpOSExnAN47k4ROZElAukWmkG56xJ9DEoaVQsIBoiL0JaumFA/Bu3va/wZMzeiecLTW0VCdFRuZ6PXv8TqsbLg1ZU7xaGkeKnK/5iiXAJl/ELJKxwfDYEA+o7LmhiUw8kLSaxvFEZlzLYTRFzbEdF4SVAHnlEn3/Rarc3dfhs6SKFRnGMFIXJ/t69VuqidLsMWTuRZFhQksnmCIDFOvu6xMZHxJUgsjUIp/EqwSbligygLiqRFUMZhdTrUnMqyLDhJZckn29Vi3VMkemI+zNLHKoYJMuRy8ZWpEJ1kuRMazQEh9WCqgF63ojRMZr+XU1w5dMxVLQfuxwve7abX/HNdHXhGcH7CobR4oUGcNwCS2NKDKaoTL3POB9XotWmcjous7OAXS38lSJOTIS48gQFYppBCIzxJl7uioygtASMDYdsH0iUwKCwSACgYD1vByDtUYqU5SFlgDvvWRqQc6kzteMyuQsv+ZDS7Jk32q1jjcMQ9wMjzeLpCqWejPTrMeyHJlaGkfSfz9ags8SIL9nRA7rQPUUGcYsklNkWNfrNusxPQcAXFM8j71kaqHIECIzlG522F9YhpFaDHzIrFGUZv5vShWZeImKjMA4sn7l16UpMo7QUtJdkfFzZHy4oiybgkCNQ0tena/dQkseTf1qkVsiyvvxosh4zcWgx2EYRkVzMZh/c2iI+duy0BLdQ2Zv2jYwlCoyXI5MtVzWyd8n8Fp6TYwJC0bQ6ogtV8qqU+3H95ChK5YcigzVQ4auWOro6EAoZC+SjeKAze++SWjJzTCSJTIsykn2rYZ/lNP5uvyqJUf5dQNULY0mtOQ7YLPwiUyJGK3fUi0kWM/O126KDFV66dVvqSbJvpIcGTbZ19nZV5bsy/tGVYuU8aXXRJExDHd7AoK9EkVGRGSA6k5g5fosmVCECeV0R2ze0LNS19jw8DBDKMvpIdPW1oZo1L53GiW0xCoyhtD5OhTIWfdEisuPAcqb1yqdkA2IO3sD3oxwZaGlelctFQoFaJqd/F1yjkycy5FhFBnWAXsswCcyJaIRiYyjA65X52tXRabxQ0uecmQkZb50aClUoy7Foh4yfcOdGOCIGVFk0loUR3Nd1uvy8uvaNcXzak/Al14TlFMZV6n7RuR6DbiElsbbROa4jMhQ91E9Q0v0ohVRM1Y7f7eKJdLO312RscfWGvOW7AtUp3EhDULMNF113DNkXsvrQWiGaV+S8xpaqoMiw88zMiLj1gpDZhxJKzK5XI4hTCcrfCJTIhqRyMicr0svvxYnybLtyas7Jn7H4rX8muTIePb0qVEpOZ0fE1AKaA2aCwSfHxMM5DG9s8f8Tr4daT1qhWL40BLtt1TL7r5eDSNZewJ74bCaLrpM0GxlnI1qERlCKIfSTegb7mLeI8m+WT3MVPZIFZkGCS15b4ZXWmhJNAcAlZ8HRIoMf/8D7v5x3pN9bfJSC+NYQGwYCVQgtFQjO4xGgk9kSoSIyEh9Y6ocSy5FgqUn2rSkIR7gnQBUg8g4x+St/JosKjqClgeOW2iJnIJaNfejFZm2oG1wx+fHzOzajWDAJHDH8h0AVCu/hFdkClrI+i1448hqEZmSfJZcQ0v2NZaIJKEobC5PNXsV5XI5HDx4kHpFtwglH1YCgBldewCQsJKdEFup0FI1c0piZZZeA3LzWLZqib1Hq01kyALt5h9HiAydeO012Tdch9DSaImMrPw6OgZtCoLFP+KDxmgVGcC8WXgDytFAdMPLJNicHoLucvq9V5VUN0fG6bPktSFelHocQTyQdpDMghZCrhBGJJSrWi4GD6ZiiXK9dlQsUR19j+fNySmpJdAUTLr6LR0eGI/2RL9DkalWCTYvVSdK6Opr/Y2RhVJRgKbIMNNEj1xjIbUABRoMmBVCXhdJXdexd+9e7N27FwMDA8x//ITeHBhGUDXHwoeVJrfvQzQ84lfGlV63t7dzoaXyHLCz2Szzd0YLofO1xDCSb4YHAAYCyOkhhNW8a3hZ1xWoqlHj0JIhNMINBXKW4jJaRSafz8MwDCgKW8lVaYiIjGGIiYxmqFaFoKP8mipHH4vGkT6RKRE0ASmXyGSz2YoSGVFoSSbBuoWVALkiU8vQkkxlkjfEs48/p4dNIiPIxYiE+moSWjIMg+0hQ1XKyHrIHKOIDABEw1k0RweZhf/I0Dicgq2IBrIIKAUrP6BaiozDnsCrz1KBUmS4pngMkeF6yWRHFqZi5yWZTOKZZ57Bli1bPE/c0oolpocMp2qWElqSEJlMJlNRIsO28y/PZ4kgq0dciYxhqBjONKElPlR1IkPPAWE1a+X8uIXLCe8QKTIy00g62dcwDOi67iixrzRERCadi0HT2WXZMsTVolAVHbFAxhFaSmUTyOQiiIazY5LI+KGlElEJRaZWsWT+hgds6dvNZwngZOW492TfSsvkjgTmkTEVtACSWdbzhiQkZrUwDOqSJjt/PrQE2Am/tQgtpVIp5u9Ke8hQisyxnLmA0mEZWQl2Lbr7irr6AkWSfXVnjgzg3QdLdl527dqF73//+3jjjTdKmrTbZRVLVKIv3UMmEokgGo2WlyNTZb8l1vnam8+SmyID2HMbPwcA9txWS0XGeyWmQJHxaBoJ1Ca8JCIyvBoD2GtLVo9Y1xofWgLs32UsOmD7ikyJoIlMzmMsubZExhDGkoOBvLUzcXO+BoqYLdKhJSokQ/qv0L01RgtHaGnkN3RTmSxyxqlMZDKOh1NQFB2GYZMcUVJpNRQZ3qRQ2kPGRZFJUWrG+JbD2EmVa/NN8YYK5u9TrdCSyDAynYtimOtISkJhGS1iKUWA9/Bl2ENl3O7du/GjH/3I5R0DMTWN1tAAWoMj/4UG0Brstx43BWyCK2uGx1csKYrCEJmCEURBDyCoaq45MoZhhtGq6YBtGEZ5yb4uOTIARWRc8jPMuW1fTec1z00+RTkykvLroOokMpVUytwgIjJ8V1+AJTIGFLSH+oVEZlL7QQdh9omMDwdoImNARVYPI6LmHDd8MtsETVcRUPWa7lzCSs6SYN1ueDcJljm2MkJLgDmmahIZK1yWdhIZosjwRIY091NVA4lIklloyYQRVvNQoFtKTjWIjKiHzFC6CYcHJzDvESJjui2bx0hX/Hhtiler0JLls8TlxwDA+FZTkaEVJUBeGccoMoo8DyubzeJ3v/sd89qUaC/Ob/sTZsd3Mv00isFrM7y2tjYA4BY6BRk9iiY16VBkND2IZDaBpmiyqkSGLyKgna9lhpFuVUuAPQ8EVB2JyDCjglqKTCAHQAcR9qtJZDw7XzOKDGUa6bH8GqiHImMIFZlwMItIyLz2s3oEmmGGvIIBDS2xAQxS8yHpJRNRc1BRsHIgx0LVkk9kSoSb35IbkQHM8EVrfLC2Oxe6qy8lawNcmbIwR0asMhXrvNrUxIZ8RgP+Rifj4scUDOSt3RbvGcOHMGgiw/eSyZH+M1UmMgo0qwkbH1ZSFN1SAkw1xmSdNBHw2kumNqEl3fZZ4sJKwUDeut5SXB6GV7JcrCP2H/7wB6ac+qyW13DN+McsIi+Cris4ODARPUeno6dvOvYcneFQxkT2BO5ExryfmpB0KDKAec1Wm8jInK9lVUvFQkuAOQ+4ERnAXDRJgn2lF8xybFfSXquWBKaRQG1KsOnrOagUrGtW5nyd1SNMuKyj6RhLZJgS7AySmnnOfEXGhwPuxpFDQgm25kTGswTrIbQkdSeubkiGHlNQKVjZ+o5meLEBW2UShJYAcywH+u33+J1/DiPWBlXIkaFDS63BQWssfEffqR17rUoZ2m2ZrvjhK5dkNgXVgNBnacDps0TOC6/IeA1fhhU5kdm6dav1eFz4MK4et9paEA72T8D6nsUWWSGEpefodOw9NhV5TZ5sTxSZtBZlKuHa283z4kZkAPdQTH+qDVM791U1R6YU5+tSQkuAOaYD/ZOt53zY3HKcbzBFRkfAqvSRVS3xlYu1VmS8ll5n9Qhz77QnjmM3pSTyJdg+kfEhhMgB2y2htFZJcZVyvgbMmz+vBxFSC66LDIn315acUaXXXGiJ3gHz4bI8bVMQ4XrJ8LkYIxXF1VZk6NJrXgWgrQlIfgzAKTKt3mwK0uk0NE2rePXFaLv6AiWEliQl/kNDQzhyxCZ1Z7ass0qpv7Xmk/j0T7/J5ESVglg4hWkdvQCcpddCRWbk2guoukPyJ0n3YTUPFRr0kZLyWigyBS3gaMFAQks5PcTkLtGQ+i1RY6tmh29WkSlvXsvrIQQCWYcik81HrdA/r8jUgsjQv5VXIpPTI0xuY9ES7JFhjIXQkl+1VCJERCag6mgSyOQkD8P6ThVzZEbjfE1AQjL8BKYbASu2XG0iw+5YxOEyuoU6H1qSLZjDlFQernJPHJrItEsqluhE3+MMkaFyZDhFRuSADVRnJ+a5GR7T1bcERSbjnuzLX18HDhxgnk+Pmd2Q84UgPvfIF8smMQDwT1d+G6Gg6Ru0O83mznR1md1/RYoM4L1yqZqKDCEyfH4MYCsyfMiPRpbaFNDtDYDadC03DIMLmYvnNZkRLgnF8OXXgFnqDNQ/R0ZqT0DdH1k9zOQ0ee3u6ysyPhwQERnAXPjpPAw2OTZXEwlW1m+lmPM1QVaPIIGUawv5wXQLEtFU1cuWRXk/vCLj1tWXQFrmW6PmftlslllkOiQVS0zptUiRkRhHuvktVTJvifxNt39P1gwv6ciRGf154XOAWoIm6T40MMFRPSVCOJjFtM5eTO/sMf/r6sHFpz6PyxastT7z5tDp1uP29nZ0dJjnhScyTPgpcRw9fTOs53wvGaJQVfKeKcX5miyAokRfoEhriVT1iQz/t8o1wiV5MnxoCTATfpuiybooMuWGltLcdUaDdcC2fy+fyPhwoBiR2X98ivW8kWPJotASUNzUbxIOVr2RHON8TdsTSBKYs46qJfvc8KE/VpGpXnM/kVkkIFdkSA8ZwBwXifXzROboUJfVabUWfkteQ0t0dRUfWvKeh+XsVUQ6rrJjs5OOeWVIUXRcf/bvMKNrD0NYpnf2YHzLYaiqODH4ub5LcDA7yXo+b94869/n5wGmuy+X8Evfh9XyW6IXKxWFkYoipyLTHB1EOGgu1G7O1wTee2RVfzxA+Ua4RJHhQ0sAKcE+0tCKjIPI0IoMH1pKcqGlEfhExocD/ARWTi+ZSi76fP+IcvothEIh5uYlZcuRUA7hYBa5gj1m1gvHAKmsqSY5i0hyZBhFRuN3yd52/tUMLfE9ZIgik8lF0HtsGvMeUWQ0Q8VAgR6ngqSWQEtwyFF+rRsBHEt2oKu5D4lgdYmMw2eJ7uo74D20lDUk50WQIwOY54bcf8KkY47ITGg9hN/c8T7JqJw4nB2Hv/Sfh9cGz7GPJRLBeeedZz0PBALMfeO5u28NQkvSrr6S0utgMIhCwQyp1dsQtxT/OC+KTCzsXMxJwu8JS2T40FKSVmRYIlML24V6oiQic9FFFzHP0+k0vvrVr+Lyyy/HqlWrsHLlSqb1/i9/+UtMnDgRALBx40asXLkSPT09WLBgAb7whS9g0iRzt5PJZPDlL38Zzz//PJqbm/FP//RPWLZsmfV3Vq1ahe9973tIJpO47LLLcNddd1W0Z0kp4P/det/wfFddpvxaFlqiksba2tqYxEm+PLZv2H5OZGVVMRBUCiiM7HgaIlxWpPyaRin9SkYDVpExLCKz68gsRx4HSfbtz7dZHkMEKS3uSmQAM6zT1dxXdeNI3mcpLuvqSyUlJwvszr+chnjk33cjMk2SXB1ewQJMP5uhQjMGCq3mf/mR/xfa0JfrQF++C7RJJABcc801VsUSQTQa9UZkauCA7bUZHmMYyRGZtrY2HD16FEB5yb7VDJWRhVnXFVeLAsDsvaQZ7PxMFBlVNRANpZHJ22Mm+X5maMnelNWTyPAN8XgiQ8/bXnNkDMNg7p2TESURmT/84Q/W423btuFv//Zv8c53vtN67dxzz8W3v/1tx/dyuRw++9nP4vbbb8eyZctwzz334HOf+xzuvfdeAMA999yDgYEBrF69Gjt27MAnPvEJnHbaaZgxYwa2b9+Ob33rW/jOd76D6dOn49Of/jTuv/9+fOxjHyt3zKOCoiiIRCLWhVjvWHIldi6tra1iIhMbQt9wl/Wc7yVT0MyJoprl13RoyVF+Lc2RkYSWMrVJ9qWJTFNgCCHV3PHyYaVxLYfREjfJFp0fQ5AsJIAIEA7m0RrvZypRDg+Ox2lTNiOi5hBU8ha5rHQJtqgZHjkGGlJFxmPVklseVnNzs+NYaGXo0ADbYHBCyyHr8esDZ+KFY0swWGh2NUx1g6qquPTSS7Fo0SLHe9FoFEND5vHLQksiv6VqERl6N+7VZ0lRFLS2tnoiMrINWqV2/o55bWSDNphucWwAZP5xvHEkQ2RGFBlVMRBQNKuC60RRZPgcGTaE6bQpOJmJTNmp/WvWrMHFF1+MRCJR9LOvvfYaYrEYrr/+ekQiEdx2223YtGmTVXmwevVq3H777WhqasLixYuxZMkSPPXUUwCAJ554AkuXLsX8+fPR1NSEW2+9FWvWrCn3sCuC0fotVZPIxDzHku2bvqWFvXlk4TKvVSWjgWEYbI5MGc7X5nOvC2b1cmQY12uPZpHHOZNCoDGa4onsCfhjAPjya7EiI22IpzgVGbdjkREqWhk6mJ2A/kK7ZxLT1dWFW265BRdeeKHr+6M1jqxeaInqISNzvqZ297FYjBuPfY68Vi3pus4odqOBSJHh5zTAntfckpc9G0dyDtjVBFFICEpL9hXnyDChpTFmHFlWjoxhGHjyySdx5513Mq+vX78el19+OTo6OvCBD3wA73//+wEAO3fuRHe3PXHHYjFMnToVO3fuRCKRQF9fH/P+vHnzsHHjRuu7559/vvXe3LlzsW/fPqFzbC6Xc+yqg8FgRd2mK0FkdF1HJcDvuslEaRhiIqMZKtO+mycynjuvcqZ+lRqT02dJHFqS5cjkPPaRoceh6zpyuRyCweK3BhmvbNyiHjJ8MzxRDxkCvinetoPzrOd8L5nBkU60yWSyYucEAIaH2d+QEIhUNuYw8iQhsIwWcRAHAypyeghhNe+4voYzzVbyMp9Qnk6nrfGwRMY+LlloiTQIc0M8HkdLSwtaW1sxdepUdHd3Y9y4cVAURfgblkVkuBwZTdMqomCU5bNEEcxYLMbMkeUa4qbTaU+b22JgF167szc/pwXUgqW2FlVkihhHZmCShFwuV9J942UeoMFvlsIlEJmCEbL6fPGhpePJduve4Y0jU6lURecCGqWOv1SoanG9pSwis27dOmQyGYZgnHXWWXjooYcwceJEbNq0CZ/5zGfQ2dmJSy+91PXiTiQSSKfTSKVSCAQCzKSQSCSsBZr/LiknTafTrkTmhz/8oRWyIrjhhhuwYsWKcoZaFN4XfftiTaVS2LNnT0X+/Z6eHuY5ITLJbMJhB886X9uTZyaTgaqq1oXo2TiSDvkMDFRsTPyCyTTEkygyjhwZgw2RMf+GoI8MAOzYsaMk07je3l7X1zVNw+CgPRExZpEHi5tF0pA1xRP1kjl27FjFzgngHKfUZ6nF3WeJIKeHTSLjUuKfzCbQHBt2nJe9e/dCVVVn0jGtyAw4k32tv0sdS1tbG8455xwkEgkkEgkHcU2n0457iwetPjChJY85MgCwffv2imyy6N+DUWQ8Ol+rqsossOUSmZ07dzo2RuXg0CH7vIWUnJXMLfOPK6bIyIwjQ2reaop5/Pjxsu4b0TzAg1c2pYpMnCUygEnYQuqwI7RkGCoG0q1oT/Q7ukj39PR4IgSjgdfxl4pZs2YV/UxZRIaEe+ibf8oUu+x44cKFuPHGG/Hcc8/h0ksvRSwWc5y8ZDKJWCyGeDwOTdMYhSWZTCIeN9ky/12yyMVi7j0Qbr75Ztx0003sICusyLS0tFg5JVmt9Bu+UChgxowZqARorxkAQudrgJJgOefrKVOmIBqNWuTRq98SvZNQVbViY6InMYD97WSKjKP82nPVEjsZT5gwwergKoOu6+jt7cW0adNcJwk67whge8g4FBmqh8zxnBuRETfFE3X31TStYucE4Ccqsc9SKJCzzouIyGT1CJqQFJb4N8eGHYtka2srZsyYgVQqxSS4MzkynAknq8jYxzJlyhRmI1YO3n77bezcuRMAm3Mmy5GJcERm3Lhxnq41GTRNY8IhcWo37jCMFCgybW1tVrM/QJ6QLSMyXV1dVhHHaPDWW29Zj73bE5SoyAhCS5FIpKT7ptg8wIOfF0oJLQEmYWsODjtCS4D5+7Qn+h2KTHNzc0XnAhqljr8aKJnI5PN5PPvss/jP//xP6edouXT27Nn4zW9+Yz1Pp9PYu3cvZs+ejZaWFnR2dmL79u1YuHAhANNDZfbs2dZ3t2+3d6vbtm2zFl43hMPhipIWN4w2tKRpGnRd9xS+KAZRsi9/wyuKLnSJjsfjCIfDFJERKxlsDgObJFupi5gPDZLdhWGIk33NcBlfUUaFlmR9ZFy8VkoZi6qqrp/nSSbpIVPQAg63ZaLIGAZwnDIpJPDaFI93wK7kxMLkYagZy9eID+fIfJYICMl0U2SG0s1A+wGHIkPOCx/vlykyIiKTSCRG/duMNrQEVOa+cXb1lSgydPk1taGJx+PM5pC2KnGb10Thv0rNA2wfqfL942ibEq/GkYVCoawxiOYBxzFxOTheOvsahu3mTc5bPJJytMc4NtyB2eN3jWxobWdyorpXE17HX5V/u9QvvPTSS1ZSLo0//vGPVmLj5s2b8Ytf/MIq1z777LORTqexatUq5HI53H///Zg/f77F3JcvX4777rsPyWQSGzZswAsvvIClS5cCAJYtW4ZnnnkGmzdvxvDwMB544AFcffXVoxr0aDFaIgNULqmUJjIBJW9VxfCN41pig1bzLz6XJBqNMmOSlscKHLCr2dWTkLN0LuYw+yOLhnke2FyDghGCbpivee0jA1SucknUQ6a3b5pV7UXQPdEkMoOFFkcJKcDlyHAl2LQiQif7ZrPZiiVfAuyC6bWrr6gNPrlvwsE8wkH2fDt7FZkg50WUq2MY4hwZ3VCYUEol8jhoIqMZIRR0s2TeLbREBKRqOGBXwvk6FosJm33yc4BhqFZYplrzGlOFVSlFhjeOZBQZ+56vdrIv/xuR3zBfCCKdY+8X8tvT8xsJoSmKuLuvqhhM7t/JnuxbMpFZs2YNrrrqKkeC2ssvv4wVK1bgoosuwl133YWPfOQjFhkJh8P42te+hp/+9Ke49NJLsX79enzxi1+0vvvRj34UTU1NWLZsGe68807ceeedmDlzJgCgu7sbn/zkJ3HHHXdg+fLlmDBhAm655ZZRDHn0KCcpjg9fVIPIeC+9Zncu/CQmayRHl5TznVcrBWeyr/nv8GoMYCsyPDkzoQh3/pl8DAUtwPx9gkqNhU70jaopa0LmK5ZaYgOW5O+WHwMUUWQoFaKaTfE8+yxJuvoS5GRN8UZIJulVREDuGVEZeH+qzUF0SY6MSajs6a4S1g0ivyU+tKQbAavcvxpExqHIjCgYhiFWZHRDYRb+eDzu7FY88j5ftQRU3xCXnde8KTJu3cqZHBmPiky9iAzfQwbgiYwJqXGkoAT7ZCcyJcc2vvrVr7q+fscdd+COO+4Qfm/BggV46KGHXN+LRqNYuXKl8LvXXnstrr322tIOtIpg1AujdPUCqM4N79WPJOuiyIjImVd34qr2kBgZF58fA0AYLiPI6WFEA1lH1RJg9pJpSwxUzTeKLb2Wm0WSn+24kMhQOTJSRYabrFOpiiRfkr9FkAh6K72W5cgQyHoVhV16FYmIDB9WAuzfij+OSisygHkNNiHpUGQA89ptjg07QkvVUGTINZDKxpHNs8dICLN5v9jETqbIuOUxDaZbMAX7HcRMdu8UCgXs378f+/fvRzgcRktLC8aNG4fWVucGpSxFxi20RCkyjvLrnHuOTL2IDB9WAtyJTMZrd99AGgMF8/c62R2wfYuCMkDf8JoRREEPIKhqroqMYZgSYC0kWHqSpC3dAfnOJRKJjDq0RHpIVD7vRxcqMvFI0nIpFhGZrBEBMOSei5FpdiUy1VBk6NJrr2aRzDHpEes64xWZvuFOaLqKgKpX1W9JaBgp8VniDSMJvPYqiqg5pEaiY26KTEDJIxowX+eVoeboIGJh81oa5kqvq0JkRjYILbFBKIrONG7rT7ZhWufe2igyI6ElN8NIkfO1myJDFs9gQEM8kkSKqvKxFJlADnQuhtu8lk6n8dRTT2HDhg2OUKeiKFiwYAEuvPBCTJhgJ2pXRZGRhZYaQZFJs4qMougW+WIUGa8O2GNIkalPZs4JDmEsOc5OyJoetKziay3ByswVaUYfiUSgqqpYkZGUlFcrXMZ3vSRqBe+zxDbDc+9aSRZMfjcG2BOHrPFaudB1nUn2pZvh8RVLbOm1s9rMhGKpCjyRMQzVanxWLSIjLXmWdfUteFBkZNcYdW7cFBmvzfD446iWIgOY7fB5ckbUxLCahwo7XFZ5RcawFBmeyATUghUm4kuVZYoMUCxsziqzNLZu3Yrvfve7eOONN1zztQzDwFtvvYXvf//7WLdunfVaOUpzMUWGDy0x5dd1UmRUaFZeo1uiL8lrZENL9nUn6+5LK1k+kfHhgNekOKC2seRykuLIZOw1R0bURwaoFjmjSq85ckbCSoA8tASYu8oYN5GRyiVzInYmlY4GAwMDTIMoWQ8ZRpGhSq95dYsQGbqEloAs4tUiMnzDw4Tnrr6iqqXSexW5KTL0eGX2BPxxVJPIAMUql+wxVZrIhKmeK3zpdUfTMWtTwCsypRIZWh0VJf0fOHAADz/8sOdrcNWqVXjttddc/OMoRaYEpRkAcjJFpgFyZEpphkcgc8CWGUeezPBDS2Wg1FjyxLZDVUsoLcf5mr7hScllOXk/1QrJsKWXVDM8ifM1n/djHRNHyuiqALJgKoq5IyPljZUgZKxZpJ0jYxhyRYbOkZk8eTLTlI0sPqFgAR1NfThG7bgJmQipBYSUnDWWShEZpz2Bt2RfcY6MN/uIiIsPVlmKDHUcoVCoIi0aihEZuqUa3xSPEKtKh5ZkpdeMYSSX8C8LLQHspgFwVmSSM0junXQ6jYcffphRYSZH9uGijhcwNboXETWLnsx0rBs4G5uGF1ifefzxx53mnFVSZOjQUphSZCrtt8aDVZztf0tGZHKiZF+PxpEnO5HxFZkyILrhI6EcIiF2YmIVGXuXUe2qJalLNHXDk8mYnthJ3g/g3keGbJZqocgw9gSycJkgtERPxnwvGVFzv0pMZCIic6B/kqPEktgTDBcSDImcNm0a87kkZ1NAQ9RLplLGkfzfScicrz2UX0sVmSI+WIzzdVBCZKjjGOZ6yFQCohwZoJhxpL2oVFqRkZVes83wnKElntyNxkfu9ddfZ0KrpzVtxK3T7sWpTVvQFEwipBYwJ74TN0z6Ja7ofBpkbjQMA8888wx7bNSY+DmgPT6KHBmBIlNJzyg3lOuzRJCRGEfSRIa+zvL5fFXHVG/4RKYMlBNLNktJ7ZulEot+oVBAoWDH272GltJFQkuAXR7LLzKaHkRmpBKiJqElSoaXKTLC0JKkzLeaDtg0kQkpWWvB5SuWoqE0JrfvB+A0i5w6dSrzXGocKeglUz1FxlwUkpk4kwQK2IpMWotCR8D170kVGYEPVjFFxhFaEtgTVIrI8Lll5fotjRZCnyWJYSTd1TcYDCIUCkFRlLJ6ZEVdiMzbb79tvdYWPI73Tfi1Fdbad2wytlHh1Qs6XsLs+E7rOTETtv++3RCT36CRea2gByzXdxrldPYFwMyrlUZ5ztf2dea1/HosGUf6RKYMlJsUV+kGcs4yZa8dMIsTGVneD1loah1akikyvD2BdUyjCGGMBl5dr2eP32kl9PEVS+PHj2cWSllTPEaRCVZekRGVPPNqDFDcZwkoX5HJ5/PM+ZGGlugy8ELliQwg7u4rS8KstAM223HZo88S19WXoBKGuENDQ9i7d6/12uktbyKommrAvWtvxYxP7MG8T2/DPz74beszF7W/IBwfWZCH0s0O/zjyO5u/vbP1g9fy66DKEplq5smUR2Q8Vi2NUQdsn8iUAYd6USciw1+Y9E5PtHMBgAw1iZEcGZGs7Fa2XMsE5ojHHBn3hnjsueF7yTCKjFLZc0MrMu1FesgQ0PkxiqKgtbWVWXSliozAOLJSigxLiCifJS7RNxTIWfcAH1aik5e9J5SzBLOUXB2ZPUGlQM8FUuNIJrRUI0WmBOdrgkoQGd4rbU7ctt/4/375ZYuMfPfpf8TGvfMBADNiexBT3a9Vke0KIPaPI/Bcfq00HpGh514mtKRHrPC+LLTE+y35RMYHg8ZVZMShJTKxGgabTyIMLY0sNNFQBgGVlVnZFvI2qp33U4rztXVMHhWZSoaWDMNgFZkyesi0tbUhEAhwREbcFE/mt1QJMO7KalroszSu5YjQZ4lO4pQ5k4sUGd5NHACaAjY5LcVnqVLw7LdEJ/tWMLRkGAaXI0O5n0sMI3l7AgKvREZWtdTXx1bVdYWPAgD2HZuCI9z18vjr1wAwE+7nJHbACUNohBtQC9a1I9rIlFN+DTQGkREpMoBqXWu8IpPJx5DOme/xzRd9IuODgaqqCIXsG6RRiAy54bP5sCOhlDB381jt014stKQoLpVLIzvmgKIjQLWQr0RIRtM0Jj5N58jInK+LlV8DLsm+RXIxysXQ0BAzBlloSdRDpqPDXIRo2Z8Oj3g1jszlchWJ9zNdfcssvaaJjFeH9QgXvuSTqEkYLZsPo58rzSU5Mlk9jAKVK1UTIiNN9rXvW9IRu1zwSZy087XUMJIixcLQEkUOeJsC2bx29OhR63lMTVkq0ZYDpziOf/X65dbjufFtjvdDSt4qJ3fbnBHSLFJkNCNo+a15TfYFqlu5NHoiY4eXRA7YgFOROZm7+/pEpkyIdi6y5l5VDy2VIcEWCy0B3huWVVtlkiky4hwZ8TiqlezLm0W2U6XXUkWG6iFDFn160U1JqpZoQhGvQi8ZJsFWUinENMPjQkttbW3W43KbLvK/rZWrMyjJ1alCMzwChsiUEVoCRnfflOJ8LSq/rmRoSdM0HD5sk9nOsE1q3IjMi1suxMCIf1t3YjsU6Mz7sh4yNFkUKTKAYqkyvCKTzsWh6ybJCSvsPV8tRcYwDCGR4b2WpERm5PzxhBmwlTg/R8ZHUZRjHFmr0JKbJxG54N2crwFxaAmorQO2s323OO+HzZERdPaVmRMWKfMtF6LS62PDHRjgxkAUmYwWQVq3F35XRUZmHClQZIDKExmZPYGomy7fp8RrQzx+gWF/W9uSgSdUAbVgkfdq+CwRjDa0BIxup1yK83UlQ0vsvMYe//79+63HXWH733QjMpoexNMbTHPheCCNydF9zPuee8gIFBnAzpPhFRkAVgUmr8hUi8homsY0lhytIhNQdbRy1xr5ncJqnlHMfSLjw4FKJMV5gWEY0DTNVX6mJ0AFuhWG4W/4eCSJcNC8MfkQjJjIiHMY2DFVttpH5HwNOBUZpiGeyGtJFlqqUtUSvdgGlAJag+Zx8o3wAmoB0zvNhndmfoxddUGIDL3o5o0w8iOJkjRhAIDjyQ7kC+Z7vHFkJYiM19ASrcikuLwU+horUJK/vJqMvU/o3zamZoS5OuNbDlvVYHUhMh5DS8DoFhiRz5Kmq455gISW8nqQCbVVsmoJYEuXO0NyRQbgw0vbmfek9gR0DxmhImPnybjZlJDwUq1yZEQ+S0CJREZSgi3qJXMyExm/s2+ZqBaR0XUd27dvx4YNG7Bt2zbrc62treju7sbChQsxc+ZMAHxXX483vCC0FAgEoKqqtVuQSf/VUjIAF5VpZPeq6SoGBV5LOT0k7FfiObRE7fwLhQJ0XYeqlsfz6fBHW9CO4/PWBDPH7bZML/keMm6hJcBclNvUAUdoCQCODnVhUvtBhyIz2hLsknyWBF194/E4F75UkNUjiAUyjvOSK0SQK4QQDuYdiyT928p6yMgcuJuaWAPJ0YAmMpoRsow9eUVmINUKXVegqkZFjSMdztcj5df9yTbGtBKwFRm3ZngEIqsSR7Jv2j3Zl0dnEUUGANasv9r6bboT2/D7Y5da7zGhpdEqMmHnfZDKxoHmvpopMvwcWY5FAeB0wN51ZLb1nC/BTmrmfO3nyPhwYLREJp/PMxIjAAwPD+NHP/oRfv7zn+Ott95iLvqBgQG89tpr+H//7//h0UcfRTab5RrHifutiHrIAPZE7GyGJQktCbxwqqHIkEmfd4YFbEWGV5kUxVY2vPaR4XMxRjMWxvWaLr2WmkWyFSYyIgOYu2tFYa8fEuYxF3hbwRutIsP7LElDSwyBsHf6vCID2OfG1Zlc0KuIXrhluToyIkMv3KOFyKaAJzK6EbCIcyWJTFnO1zqbuyQiMjqClgLoNq+JOnzT6BpRZNK5KPYcneH6mYP9k7C+ZzEAYEp0PxJUJZpXw0gvikws7FQkSOVSoysyOYciI+5ZxJZgjw3jSJ/IlInR5sgA7GJ55MgR3HPPPdizZw+K4fXXX8cDDzzAlKLKmuExSXHczoWeiIUO2B5DS9XIkSGTPh9WAuzFIsvlx9A7blloSZTs63YcXmEYhrCHjCPRd7x76XVzc7NVFSciMgFVd5hHksU8qGoMMRstkRE1wwOcJc9ssq9MkZF7lIlK/NnjoEqvpc7X9nmOx+NlK21u4MmZLAmThJeqlSOjQLO6e/Ol1/FIEtGw+VvyiowotATY54ivWjIM1SIBonOkQLNaD2w/2O1QiGisfsMOL3VT4aVKKjLBgIZwkD1WK7RUJ0WG/HaGISYyeT3oUJxlxpGi7r4+kfHhgFdFxotbtKZp+PWvf43hYXtiVqFhftNGXNH5NC7tfHakqZS9yz58+DB27rTbent2vqZ2LsFgkGlS5jkZs4rJvqIcGT7RV1U0i5jwikxLiz0heO8gW5kuxel0mvkd6B4yjmZ4E92b4ZH8GIBdZIDymuKNNrQksicA5Mm+aY+KjFvugkiRoeHV+Zr+zSoZVgLEfkvN0SGHYmYRmSqFlug5QJ7o602RAeQdvkWNMQnaQgNW6bQorETAEJmEXYZdjiLDk38vNgUBRYcKu4y91kQmmU04iB75zfmwElBCd18/R8aHDJVIiiMX9YsvvoiDBw9ar48PH8RNk3+KlhC98P4B+zOT8LP9H7JinjRG43ztOibDW2ip0maL9KQeUAoIjTTjc0v0JREkNyKzb59Z/ZCjJjF5B9nKhJb4ZmAdXhUZl9JrwDkppwpcUzyqyIOvXCLkaLSKjMgwMpmJO/oVEUWG91lyIzLZkaZ4qmqgKTqEYYpYEpIZVvNQoMNw2XOV43xdyURfQBxaUlUDrbEBprcNCfmG1AICSgGaYU6/FSMykh4y9K6dVy+8KDJuqtlgugWT2w8IiYws0TcRGUYya5PKP29/J/qGOtDZfAzd8e1QoMFAoCxFprm5mbnm+e6+9Dnhe8lkR8xya01keDUGsH9zVyJDjVcaWvIVGR8y0Dd83ghZFRilEhnDMPDGG29Yr7UG+/HXU37MkRgTk6MH8MHJP0dQcS6yo3G+JmBCS5pYyahVaMlr6TV/o9OKDKAiNzKR8aGlZLZJ2EeiXCKzYcMG6pmBzpBJbIYzCRwamMh8luTI5PUghjR7UqcVmUAgwFxrXhWZShpHikJLPHmgj4nPS3ELLeVkNgUStYzAq/N1PYgMIK9cilTIpoDxWZL0kKGb4aW40BI9BhGRCQULiHFqBqvIsOoTIC+9XvHOh5m/pxsBPLXhSvN4AllMi5peTV7Lr+kNGnv/l2cc2RBEJiYmMnyyLw3W18smL5lMZlTNFxsZPpEpE+wNrwgl2Ew+hlzBvJHciMyRI0cYu/tzWl+1JugXt1yAK//jSfzVfz2C3j7TCXlKdD8ubH/JcTyeQ0suztduY/LaQp5vhiWziiel5DKw9gSS0uuYuKsvP5FZSaUuu0oS569Ejkwmk2FI6bRoLzrC5m//xp4zHJ+fNX4XAFKxZN+KNJEBvDfFE/WSqWRoSYFu7fL4sFI4mLWuFbeS53KtPfhEbIK4JFeHJjLDXD+bSoK/h7JlNMUbzQbAs/O1wGcpGo0yOUOO8XiwKVAUIKw4F35ZM7zF09fjsvlrmdfcwksxr4qMxioyNLwaR9J5MrUhMoaQyERDaatlRjFFxlF+LTCO5JvxnUzwQ0tlwi1xMRbICN2iO5uPuRKZnp4e5rUFzW8BMLP83//fj1i7+Lf2LsSGuxchHMzjXe0v4bWBszGk2Rd/JUJLbLKvt4Z4/CKTzWaZxSKbzeLll19GT08P9u/fj0wmg5aWFrS3t2PRokVYvHgxAoEA83l7TBKVidrtZrmKBX4iy+oRNCHpUGTIWJpjwxUJLb3xxhvMBHhu28vW43ue/Sjz2XmTtiAWNsfXl+fCAC5EhiQQl9MUr5KKTCxA+Sy5JPqKfJYSiYSLIiMhy3TYT8nBSUHtMRqGU5Eh9gS6oTCTfqVzZHhy5rkpXjUUGa/O14JmeIB8PK3xAUZV5NXmHJd0T9RIw3ASmVMmbUEokMfjb7zbeu2JN5dB01UEVB1zE9uwtu8K63cyDPG8phkqQ1YcikwZxpG1IDIhJWfdL3xVpqz0GiiSIyMILQEm8eXJ6skAX5EpE5VIistms0yFS0jJoT3UDwBYt+ssZtLYeuAUfPfpfzA/pxZwaRe7m5E5X3sNLZVjuyBSMgzDwIYNG/Cd73wHzz33HHbs2IF0Og3DMDAwMIDdu3dj1apV+M53voMtW7bYxydyvvaoyIRCIcfkLCvzJZVLo032NQwDf/nLX6znzcEBzG/aBAA42D8Bv/jzB5jP/+1FD1qP96RnWo8DgQC6urqYz3o1jhQl++bz+VHlL9GLpdeuvnxCqRuRkTpgS5riWX9z5Fj6U23Ia+zfJiTPPA57mqt0aIn3XfPcFK9CxpEiRUZmGEl3kOYVKlljzFLC5oBtFnl4cLyjo/Upk7bg6sVrmNeODo3DqzvPAQBMjBxCc2DQyvsZzjRZrtkElu2KFgPdTDKRSDAtGMoxjqwFkSm3GR4gL79mQ0tjwzjSJzJlQkRk4pEUVIUNn3glMrJSXQD40m/+DceGzYv0jOY3MCF8wHrPeytvcWiJXmi8tpAXKRl//vOfHZVYbujv78cvfvELbN682Tw+UW8ciSLDu3k7dv4jicvhYN5RfmknleZAV4WVKsFu27aNadZ2TuurlnLxg7W3MwttJJTBbZfdC8DcTb41tNB6b8aMGczCCJRnU8D7LY0mvOS5GR7d1ZcK5yiKglgsBkVRyrrGRKEl4nzNK0OA/dsMa6wCU2kiA4AlMmWElsolMrquM98tJ0dGpsoCJRQycCXlYTWD5qB5frbsZ9WYSCiD6V09mDV+N06bvIl5b836q63H3Ylt1hwg84/jQ8uxWIw5J1JFpsahJXpDUW4PGcBsvkh6/PChpf5UGzTdXNp5ReZkbYrnE5kyUYpbNLlIg6oGFXb7bp7IyCpcALMN/Zd+82/Wv3PluKdAFt+Y19CSJiYyohbyLfHSEpi3bt2Kp556inm9NdiPM1vW4fLOZ7Co+U00B21FxTAMPPLII+jp6Rl1jowbkaEnY1EvmdE6edNqTEDJ4+yW18y/Uwjhe8/+H+azN73rp+gaWVjeGlqIJLXYnnbaaY6/LcyR4RWZIVqRqZzfUjnO13wPGbJDFoUv5XlYznMRVPKIBMzXeULVEhuweqZU056AgB6TNLRUYSLDfy8u8VliDCMFztcAHGSz3IpMElYCnGGluRO2IaCaycHLz1jNvEfnycxNbLPmNX5OUxTdOh6+L040GmWJDG3HIEv2pa6z2igy9r9XqiIDUA7YXGjJMFRrvuQdsH1FxgeDUkwWRVU+mUyG2cXTPUfciAwAfPfpf8D2g2Y/ktnxXZib2ApA3sqfEBmzlb8tz8rj44qw9DKvhZHNj6gcXLVPOp3GqlWrqFcMnN/2Ej4x879w3YRHcWHHi3jfxF/jH2d8B6c3r7c+pWkannvuOWGOzABvTyDIkYlGo9Jz49WgsBQic/ToUezYYZdSL2zaiETQnDAfefn9ONg/ifn8P135bevxX/rPsx5HIhGcfvrpjr9PLzYFI2QRAF6RGUi1WeeF7noLjI7IeDWMZO0J3BfLcnoVuSkyca/2BFV0vibwSmTYRmWjJzK8yhaVlF+zoSWxIgOwG5xyiYysYumUSXYomScyr+w8F4dGFLY58R0Iqqa67WjyGe+3vLQqpsicQKElwD6PfGgJGHsO2D6RKRPlVmDQF29fXx9jsFZMkQFMEnHnQ3dbz5d2PQ0VmqcOuCJ7AoJKdF7dtGkTE066oP1FXDnuaVAha/PfUvN478TfYH7TW9Zru3fvZm40pvyas10QKTKRSKTsMt9yS8lfeeUV6pmB89r+bD379lP/xHz2olNewBkzTQLXm56K/dkp1ntnnnmm49gBl14yIySBJzKA6bcEVM440jAMTpHxVikkKnkWKjLS8KWTVEp7yFDHkaq1IkPdY/wCI0r25S0gvMLhs+QxtESrsm5ExmuPLHqucSoy4oqlUybbRObCU15EE3fun3zzKgDmHEEgV5mLKTKSqqU6Jvt6JzLOOQGwxx0LpxEJsWSY/F7mdWZfWz6R8cGgEkTmwIEDzOcIkTEMYNvBucJ/+1evvB8vbrkAADAufBRnta6zmHcpsWRZaIkeUykJzG+++ab1OKjk8K72PwIAdF3B3Y/+C666+wnc8+zt1mcu61zLdNRkjo8OLUkUmaI5Mh5CSwCb8OtVkcnlcli/3laWpkV7MSlqNjf8y4534M/bz2c+//Gr/sd6TKsxAPCOd7zD9d9w2BSMqAztieMIqAXmPbKo835L5ebIZDIZZpFNSLr60ooM73xNUE6Jv5si0+SxGd4wdRyhUMiVKI4WQkWmBAfscspiRT5LmVwEqSx7zdiGkVEYVKPCYkSGvrfozQNQJLTkUZEJB/O4YuEzzPt0eInAa94fUESR4UNLdSy/rpQioyjiEmxVMZh/xycyPhgQt2gC795EYg8cQmSODXc4svz5ZlSf/uk3rWZul3Q8Z02M/A0fCuQsOVXkfG0dmyAk45bA7KWF/KmJLVbc/sEX/hb/9xd346kNV+FjD9yDNW8sAwB0ho9hZny36/cjkmRfelLNcopMMBgUG0d6DGF4JTI7duwQllx/+0lWjZna0Yv3nPNb898tNGHTsJ0PM2/ePEfZNYHIb0lVDXQ1H2XeI3krAUVnFK1yFRmnPYG3ZF8voSXvVUsuikxQHFoS2RNUQ40BysuR4ZNjywkviZyvZYaRMp8l69joc6SVvkED7IqlXCGEnYdnM+/RRAYAli9mw0tPvnkVChrrLVQKkYlEIkJFppEa4smIDL2GiIgMXYEqN448+bv7+kSmTCiKwtws5caSCYJKHq0h83t8WCkUyOErK+5iXvvLjvOskt5EMGVVyLhV91it/MsMLSmKeMccUgtCRWVK1O6f/9CfbmTee/CFv7Uez47tgBuisvJrqrNvhsuRcSQsUsl+vCIjCmF4ITKGYVjVVkDxkuu/v+J/EQyYv9WrA+cw+Urnnnuu8N9xhpZq1xRPZE9gGPJk3xTns0QgqloqtSFeI9gTELBExh6T1z4ygHcik06n8fbbb2PNmjV4/vnnmfeIIsOXXiuKbqlDMudrgnLsV6LMOdKtZN+dh2c7yqZ5IsOXYfen2vHn7e9kXvPaDI/c/15zZJjy6xNOkbHnPVl330rkYzU6/IZ4o0AoFLIuzNESmbaQfWPyRGbW+F34h6Xfxfee/T/YSsm0//cX/4H3nvMbq0IDKG3n4jW0BJg7Zlol4heajO7c2U2K7gdgLnqv7T6bee+ZjVdYza9mx3cCfY6ve7Jd0A3FKq+mxxSJRKxzI2u8NpwtP7S0fft2DA3Zf6+UkuvXBs6x3uvq6sLs2eyulQa/2DAl2K2Hgb32e2zlUgrHRubjyiky5kKQzCaQybPHRUJLKS3GhC/oXb9Xh3W2/NotR0bifC1I9q0FkSFlsSG14AgtDaRboesKVNXwTGRyuRz27NmDXbt2Yffu3Y5wNEFQyVm+ZLwiY4YgzfCgF0VmtFVLLcFB61j40uvxLYfQlmBDVFM79+H06evxZs9i67U166/GhafYHcz5+79Yk0+ayORkigwVWqK7ExcKBei6XlGndF3XGYI0aiIjccAea35LviIzClRSkWESfQ+yRKZ7wnaEggV87cbPMq/vOToT//3kJ5jXHEQm7r5zAbyHloDSesmY0DExYuaK9BydjmPc5HpsuBOv7z4TADApehDxgLPfDPm72XwY2TxLuogiY/7udhiJjIHd+XutWrLH4SVngU7yHU3J9bnnnsuEwngEAgHmXDFN8XhFZsBdkakUkSnHZ0mUI+M5tKSUpsiQrr7msdi/c7WIDN/3h2wYeEXGMFRrXNEioaUDBw7gd7/7Hb7+9a/jZz/7Gf70pz8JSQxg99QB5KXXMudrAq9VS7RKSqtmXiuWMlTYig8v8XkypSgyAEbdRwYAU4hRCfCbI3repK93oLQcGcB3wPaJzChQNSJzyElkAOC6sx/FklNZOfkrv7sLRwbtTrBe7Qn4jqRAaV09i+UwdISOWa+v232W430AeHrDUuvx7Ngux/tkspdWYglUJlF1jCPZl1JkSgktyUquf/WXvyqp5Hrx4sUohnKa4lWCyNChJQW6pcjwYaVIKGP9tm5dfQnKIZhu90zCa/m1IMRVSYja+vNEBrDDSyJFxjAM/OEPf8C9996LN954Q7iYBpQCpkd34+KO5/C3Ux/AP878jvWerPSa38wUzZGhk33j3pJ9pRVLFJFZN2jPC3wZ9ht7zsS+Y5Ot56Xarow2RwaofHiJ3xyFR6nIyHJkmO6+viLjQ4ZaEZk5480FU1GAb970ae5vt+ILv/689ZwvU2are5y5JDT4JFmvCcxuOQyTI/bu8bVdZzveB4Cn36KITMKZJ0Mme15WBuxJVZT347lfiSCEUYzI0A3w+JLr/3ny48xnyym55lFOU7w4lyNTjvMt67OUsvKt3BJ9LZ8lrneLKNnXQMDqTuoW8iOH6xpaGkn2zebDjsR4QmSyehgFKuxYi9ASYF+TTdFhR5I8uZZFRGbNmjVYu3at41wp0DAlshcXtP8BH578I/zL7Ltx87QHcUnn85gR60FAsSvLHIaRdFdfahfvtpkB2HOkI2idI7d5jRxmxKsiQ5Veb09240jO3ISdP/dPaOWI3xNvLrMeV0qRkZlGBtXaEplKVS0BRUJLnAP2yQifyIwCXolM8TBMEUVm4nbr8TmzX8OHL/gx8/73n/0YNo/Eoku94WnIkmRL3TFPitpERqTIvLT1AiQz5kQyJ7YDdLkw7QzLKzLRUBqRkLm48Td5yaElSdWSaOF3c7mudMk1D9ZvSaLI0KElqrKnUCiU5bdUTldfWe8Wr72KDEO1EjFligx/HPSx1KIZHiAOLamq4VAxCJEJqQUEKAUgk8lgw4YNjp5Es2I78IFJP8e/zP4qbp1+H67oehZzEjutHBSAtGvoxj3P3o4P/M9D+MbqzzD/psj5mu64TMNrGwbdCFiKBk3MvCoyffkubE+ac10woOHKRWw3cDq85FWRcSUyhiS0VEdFxguR0Q0FBcNJNoEixpECB+x8Pl/xkFkjwCcyo0A5ikw4ICAyI119+5OtOMr15yChJYKvfOAuREP2xanpQXz2518DUL7zNYFIySg1tDRxRJExDLEikytE8MLmJebfDw2hi5oAw0pOWInFVCx5CS1JqpboPjL8OEQLv8zlulIl1zzY0JLEOJJRZEbXFM8wDMZCQ+qzJOjqS3yWCER5WG6GnuISf12YqxMM5K1rns/VqbTzNYFDkfHsgG3PBalUCk8//bT1XIGO90z4DT4y9cc4tWmLZcdA0HN0Gh58/m/wN99/ENM/3oN5n96Gjz1wDx5++QOOfDSvztcEo+0nRXrIHBtud8xlhMjk9BAGC83YlrT7ZfF5Mk9vWIpcwZxjvW7Q3EJLBcOuaZGaRtZJkXHLASS/NZ8DSCNdRvk1cHKGl3wiMwpUKrSkooDWEe+hHYfnsO8pGmaO2828Nq1zLz61/D+Z11atuw7PbbykbOdr6/hEDtglhZYMTBohMvuPT8bhwQkQgQkvxe3wEt1nQ1p67YHIyKqWaEIW8kBkSnW5LrfkmocotOQ1RwYovQR7w4YN2L9/v/W8OWj/duX4LAGV6R4dUzMWyeXzY8Y1H7Fa19fCZwkQh5YA703xNmzYwFTAXdzxeyxusZtLHhoYj4f+9AHcft896P7UNsz4RA9u/sGD+NEf/gZ7j02THh+tdBzN2eetpaXF7eNCIuNGNnkiE1RyaAuZ9yevxgQDecwaZ+bC9eU6AajoycxAbiT0s2zxE8znhzIteGnLBTAMd4sCQFy1yKpkqhUec0v2JcJrvRQZPtEX4ImMDZqMey2/5hPLfSLjg0E5PTHciExbaMCamPmKpRldexAOmjfUwewEy8jxzmvvxniq8RcAfPpn33QtvSSQOV+7jcl7wzJ2TG3B41bvAlFYiYBO+J1D5cl4Kb02j5G90d2JjMcQGVcd40ZkRuNyXUrJNQ96EdaMoFXxwVctDWeakc6Zv8FojCOHh4fxxBP2whJQCrio/QXreU/fdObzjPO1pHeLQ5EZWYQioRxCnOogciZPBD2WXteIyIhCS4B340h6kQspWZzbZpLlfCGID33np5j494fwwe88hHufux07BPYlPGZ07cZ3/uYfcNXpTwIABvPNOJSzid/UqVNdvyciMuFgnlGCAbvjtjkHGOikQuR86fWc8TsQCo6UiOfNeUozgtiZMu+DiW2HcPasV5nvrFl/NVLZOHNfAfa8ZqoSNlF2U2QAqrknp8gYhopsfmR8HhXZciEiMnxYCRATmba2Nvvv6RFrPXDr7EsIGq/InIx5Mj6RGQXom8WAau0snGGYFqsLrxuR8VKxBJjJca8NmGGa5tgwvvBXn2c++/rus/DarnOY14rFknmU0wyLD8kw+TG7WCLTzt1wb+1dhAPHJwIAZsZ2W+7gnp2vqd0v3QiLDZF5q1ryMpFVyuW6WMk1D1F3X7r5GwFRS0ZDZNasWcPs3JZ0PI9xETP095cd78CvX3kf8/mpnXYzG16RoVGStUfKvMZ4Z3KvPkvJgv178yGuSkJVVa6tv8fQUsB9QZkV321tBB584W/x8z99yNNxTGrbj5su+Anuv+0W7PzWLOz+71n4hyv/11Konj56JehFf/r06a5/R3aORJVLigKElBw6wx7zY3J2pSUTXuLdsNcvL8t2hScyJE+GV2QAO+G3XooMuc4JAmoBsbB578mIDKBa4+dDS9l8FOmceb2PBeNIn8iMAvzNIoslk1yMkokMleh7LN+B3x+7BNmR3cmtl96H+VM2So+xWCyZR1nVPpySMYmuWOIa4f31hT9GC+fZQsJLYTWPqVFzQZQqMrTzNWdPQMgBrcjoCKCgB4TjEFXH8BNPrUuuafCEgJQ4t8X7EQywEy7JkzFzZOxqFq9EZtOmTdi0aZP1fGLkAC5sfxGAGc+/5QcPQDfshnfhYBbvPec31vPDOZtc8DlAotASIA/70WRZVnrN9pBhCVUlm5vxoDcG5YSWaMyM7bYeP/7GNcJ/s6OpD3/1jkfw3b/9e7z99VOx7ztT8JO//2vccskPMWu8/TdyeghPHFmGt4YXWa9NmTIFs2bNcv27o/GR89pD5mjeVo63p2wiw3f53bh3Idb3OO8VQqhEtitCIhN2ITLZ2hOZgFKwnL0d9gTRIasCkCcyra3spo7kyfChJcAOL/k5Mj6kKIXIiEwWAe+KzLF8B1JaE/5w/CIAZqb/1z/0z9JjJDtCzVCZ7P2SQ0uyRSYgJjK8InPunL/gsgVrmdfcwkvSHBmB8zU9JtGCySsyuhFAZiTRjj83vCJT65JrGiJFRlHETfFUxUCMWiy95MikUimsXm3vilVouG7876zw2Zd/9/9h496FzHc+/74vYOa4PQCAbcluJrQ0ZcoU5rMlNV3MuJNlz4pMDewJCDwrMh6IzIwRIqPripUMT3DRKS/gmzd9Cq9/+Qwc+d44PPLJG/D3S7+HUydvYRzmC3oAO1Oz8OzRy/Ffuz6Jl/vZlv/Lly8XKoLlqGbmeLKeXa9pRWaw0IpDWfM8njvnL+igkpMB4Kcv3cQ8b433W52KRe0X+PuLlGDz5dcApcjUMNmXvp5LKb1mFRmbyLXGB6BQJfiAnfA7FhQZ36JgFBARGXFS3D5XItMe9k5kAODl/nfinNZX0RYawNWL1+CKhU/jGSpplvnbRILVoqBl5UqGlsIKveDbib6HBsZj33E2Dn/WzHUYSLXit6++13rtmY1XwDDMRXl2fCee67uc9VkqwfnabRyAmYuRQMo9qTTdjFg4Iw0tyUquX9lxjrzkeoBN6vVack1DRGQAc/E+0G83D+N7yaRH7CO8KDJPPvkk87kL2l+yxrl+z+n4j0f/L/P5M2euwz9f83UAJlk2wxcmgsEg5s2bx3xe5kwuL/G3z4VX5+taEhlGkfFKZFxCSxE1bd0/b/acjuNJVtH62T98CFM79zm+pxkq9mWmYHdqFnalZ6E3MxWaS9muqqp497vfjcmTJzveI5CpZsUUGVKxpOmqYy5jQ0tsLt/25FxMiBxGQNWx7PQn8LM/2uTld+uuZz7LhstLU2RCwQKCgTwKmv1+PRQZr119c8WIzIgiE1B1tMX7meuFlGCTUn9yPZyMRMZXZEYBEZEJqDoSEXbnbysyOdByP2ArMsOZhCM8QYhMXg9iqGBe8AUjhLV9lwMwF/9vfOgzDjZOYCXFFXG+JhBW+3hM9m0JDlrhFl6NSUSGMW/SVixd9DTz+sH+SXir19zlT47sR1RNMzkyfJM/UY6MTJGRlvmSpFJFHFqSllw/VaTkemi+9V4pJdc0+PMla4pXrnHktm3b8OabdqVMV/gwlnSYnaQLWgC3/OABZgEIBvJ44LZbrATOF45djCNUWOmss85ylDwHg0HONd6j6kddD3R/HIc9AZUAP1wvIqOJiQxTTeKiyMyI9VjKyu/fvoR5b86E7RaJMQxgf2YS/nj8XfjpvpvwtR3/gh/u/Ts8d+wy7E7PciUx8XgcH/rQh3DmmWdKx6Kqanl+S4GM1UJh95GZyBXYRZgQmcFCM3IG+942KrzE58mksuy5Y8PlHnNkaJsCQQl2UNWgUHNzpYkMvTEqtxmeiMgA8u6+tDLrExkfDEREBijm5mtf0Ao0tI8YRu44xJZeK4qO2eN3AgCO59tBn64NQwuxL2PuqhbPeBM3L/mh4/gURbeOo5hhJAGtZOSNkJUV77XJ36SIXa7LVyydMeMNBFQd3RO2Y0bXbua9pzaYO3lVMTArvgsRj4oMnyNDINpVRkMZR7dVUf4SmXiKlVzzzt6VKrmmoaqqd5sCpimePWnLFJlMJoPHHnvMeq5Ax/Xjf2fF8b/x+Gewjst3uvPau63w2cHsBLx47EL7300kcPHFF7v+W57zsATNCuMyewJakamBYSSBUJHhc2QkDtiAHVYCgOc3s7/fJaf93nq8tu8y3Nv7UTx99EpsT811EAMakydPxnXXXYdPfvKTmDNnjvBzNLwqs/S92Rnqs/rdbN5/KvO59sQxdDWbJIdXYwCgNz3NqsS76vQnhRsz82/RlZgswS+W7AsU8VuiVJlaKTJeiYyqqo6NQUZSgi0yjvSrlnwwGI0ES9AaHLTai/NS7NSOvZazNQkr2VDx1JGrrGdfuuHfEOfiv62xAatiQbRz4cGGZBShkpHJx5AvmAs0TcyY/BiOyJw1c535VxU4unjS/WTmxHcwsrtUkRGElkSKjKKId/5BVYMKm+QQIjO6kmt78S+15JoH293XW1M8r35LTz/9NAYH7Wv2vLY/Y2rM3P2/ve9U/Puv/535/PwpG/Gv71kJwOzl8btD10OnHK+XL1/u6uMDlJCHJQwtmWqnYYhzZHRDYVTIehEZfpdMh5YiLqGlmVR+zPNvi4nM7rR7oi5gXmfnnHMObrjhBvzzP/8zbrvtNpx55pmudgQisETGHo/Mb2ly1N7EuCX6EqWJzo8h0BHAjpRJsrqa+3DenJcdnyGgjXDTnCJL8n5KUWSY7r5qrYiMfT17JTKRSIQpaACKOGCPIeNIn8iMAs5eBd4ayNFEpqPE/BgaPZkZeHvY3PlMbj9g5SoQTOvstR57cb0FRt+wjC695jv6nj3rNesxH156YfMSZHLmvzU7voP5m7wiI2qIR0++5Tp506SMTDyjK7m2/3apJdc8GEWmIFFkJMaRbrYLu3btwrp166zn7aE+XNZpJmRruoq/u/d+pvOoqmh44PZbLJuIl45fgINZO+fitNNOw/z5djiNx2gVGTKm/lQbE+oCeAdue3qrZbJv1mOODF9NElHTlmP8ht5FjvyYi08zw3w5PYT9Gfv3bmpqwhlnnIH3vve9+NSnPoV/+Id/wDXXXIP58+cLyWRp4/G2QZsSsXN3vFYs0ZBVL9EQKTI0mZQqMjyRaWhFhtokjZAYeu6mybq0u+9JbhzpE5lRIBhkc6XLUWSYiqWDpREZAHjm6FJohnka//mar+O8OWYljaLoTMLpnvRM63EoFHKU8VnHJiAAbpVYhACwoSWTyPQNdWDP0ZnM54kiAwCXzV/LyMfpXBx/3PYuAEB7qB+TqRCVwwiTaYjnsWqJkt699pLJ5XJ1LbnmITSO5KqW6K67dBhG13VHSXkul8Ojjz5KvaLjuvGPWl4+33nqH/GnkfNCcMfV38J53Sa5O5LrwvPHbOUgFoth+fLlkKE8Py9n+TUfVgJ4ImOjloqMZthGizyRGUzbPaX40NL0WI+l9PH5MbPH78C0kV49velpjPr17ne/G9dffz1OP/10NDc7u8SWg3KITFcZPWRoEN8lwJknQ4NJ9qUUGXqBlykyMuPI2ikypYeWyDlh87HEfktsPpZPZHwIoChKmQ3kBERGpsjk3InMsXwnXh5ZMBPRFJ6963Ks+ewyvLbybNx66f0AzERhuunU1KlThT01RKWXbmWLZExk8W8KDKF5pOvq63vYhMJoKI3TprxtPe9sPsYoNICdJwMAnSNKlWE4b3SiyOT1IDTKR0VGZPKeFRnWOLLckuu96SlMyfUZZ5xRcsk1D885MhKbAj68tHbtWvT391vPz259DTPjZin1zsOzcNfDX2E+3z1hG774/s8BMM/No4euZxJLly1bVtTTSKjIeLDBCCp5Kw+DzgUCgJbYgBWKrSeRAWylkM+RMQzVGhdftUT3j5GHlWYy782YMaOMI5ajnHmNFhtlpddHqRyZQMAmZMNaMw5kzOaYZ81c5+hcTuBFkeE3meUYRzYqkREpMlIHbD9HxocMoyUy7RSR4X2W+GZ4BPPmzWMu5mePXoHtSfO7iWgKyxY/iTNnvmG9/9tD78WQZv/73d3iFuciJUNVDTQJpP+wmocCjW2Ex4WVFk9fbyXAEjjyZKh+MgTDmSam+Rpg73JFzteu45B196WNIxU2tEQ3hiul5PrlgfOY98pN8qXBKjKjN47s7e3Fyy/buQgtwX4s7TJDfoYB3HrvfY6Kkftv+zvEI+ak+HL/O7E3Y/v8zJ07F4sWLUIxeL1n3Briee/qW2ciM6IU8IoMYIeXeEVmRswkkLquSBN9aSIzceJEYb7baFDOvGa9lmp2KJVEkSnoAQwU2qzX+euFVC+pqiEML3lRZOgu30CRHJkaKDKGYXgnMvESiIzMOFLggJ1Op11DzCcyfCIzSpRVpuiiyKRzUfRy/jVEkdEMFYMFOxQ0efJkLF1qL/o6AvjlgRX4fd/FSBbsm7InPQ0/3XcTNg0vsP+9jg7poirLLSlWiTWJSvbjS6/PmrUOPJYuZPNkXt9zJo4OsfFzvqsvYCsyskosRVHKKiWnQ0t79uxhFv4zWt6wHtei5JoHvRjrCFiTOK/IpLIJJDPmdSAyjiwUCvjd735HvWPg2vGrLMJw73O34blNlzHf/fsrvoslp/0BAHAs1461ffb7kUgE7373uz3lAJXj50UUGRmREXX1BeqnyDRFhx1VciRUShOZiJqxNgJv7V3ocLAW5cfMnDmzIsfPQ0RkWrmu3HyzSsCpxqiKZs1lx/IdMKhlp7u7G52d9lhldgUEXhQZgA0vyRQZxgG7SopMPp9nyIOMyND3QSlERhZainGk+WRTZfyGeKNEebtLchHrFpHZddhZhTBnvJmbcTzfztz8HR0dWLRoEXp7e/H6668DAHJGBM8fuxQvHr8IYSUHA4qjNFFRFCxfvtwhu4rGw49J3ksm56liCTCJWUDRcf7cPyEeSVq7fsNQ8exbl+MD5z9sfZafKEspKQ+Hw1blUc5jvxI6tMTnk8yMmc69w5mE1OX6tQqVXPNwa4oXC2QcigxgqjKJ6B5haOn5559HX5/dQXVx83p0j3RV7u2bis/89BvM96Z37sHdN95pPV91+DrkqfyWpUuXCt2UeXgmmIwNhlORcZReC7r6hkKhUYf1ikFEZBTFDC/RxISQ86CqWY3Kpkep/JhNlzB/a/b4HZjeZSbu92amMddWrYmMF0WGJzIzx+22EsOP5tn8mM7OTsydO9e6FvdlpiKlxRAPpLF00dMIqAVoOjtfefWPExIZadWSvZGpJJHh55JwoPzQEj1OxgFbElqKct19M5lM1bzH6gFfkRklRhNaag4OWX06+PyYSW37kYiaNxyf6Et298uXL8epp7L9GjQjiLQed5CYcDiMD37wg0X7SEg7r0rLY7MWkRlItWD7obnMZ0k+jG4o2DBkysmRUA4Xn/o887mnuQ7FvCLTHB2ySsqzGku63IgMARNaikhCS1x3X+tvKVl0hM0J9M2e05lmXwG1wJRcv1rBkmsaou6+LbFBhIPsREnUinggxTT5SiaT2L9/P1566SXrtabAEK4aZzpdGwbwsQe+j6EMO7nee+ttaI6Zv9urA2cz5b8zZ87EWWfJXc5psPdMaQ3xZM3w6mVPAIiJDODNpmBmfLf1Gp/oS9QYANiTmsm8JzJ+HC3oc6QZQcurzG1e46MUpST6EiJDYEC1yrDbE/04f+6fHMdGiIxuKMz8xC/MbGjJvs7q0UeGtzthOvum2QTtUnJk6Hne0UdGUH4NlJ/wu2nTJuzbt6/hQlM+kRklRhNakiX6zplgV8ocz7kTmWAwiBUrVuB973ufsMxSURTMmzcPf/d3f8dMGF7GU8qY2kPH0Roy3399N5voGwrksGCqaW55NNeFLcM2+eLzZJ7acCUzMfKKDL0o8IoMryYxO39DQsgEoSUa4yL2Irmhl43rnzJpi1VyvTU5r6Il1zT4c0z7LfHhJVK5pChsfHxoaAiPPvooNREZWD7+cctt+ScvfhirOaPCmy9+AFeeboYBB/ItePqoTTaDwaDnkBIBfV4KVNNFL92jEwGbhDaKPQEgzpEBijhgjxAZmb+SLD+mWrtqkTJL528AgKYHLZdlAmnpNZXo29railAo5CBj2+nw0mJneIl1vhbbrpSnyFSHyIicrwG5IpMrQmQ0I4jcSP4PnyMzkGqDpptLfCX8lnRdx2OPPYb77rsP3/zmN/Hb3/4WGzdubIgwVUmhpYsuuoh5nk6n8dWvfhWXX262y3/wwQfxk5/8BLqu4/rrr8fHP/5xa4LbuHEjVq5ciZ6eHixYsABf+MIXMGmSmRCWyWTw5S9/Gc8//zyam5vxT//0T1i2bJn176xatQrf+973kEwmcdlll+Guu+4qqblTNTEaRaYUs0iCaDTqSGpbtGgR5s+fj/3792PHjh1IJpOIRqNIJBI47bTThKXWbiC5JWQH4TWHge5IyoeVFk3bgHDQnBQOZCdhV3omdEOBqhiOfjK9fdOx9cA8nDJ5KwCnIkP3kMkWCS2x1TGlVy3RmBAWE5lF0zZYj+n8BVVVcfrpp7v+vXLAL8h8wu/eY3biLV+5RMq1X331VeZvzG/aiNOaNgMwuxR/4sf/zbw/qW0/vnnTp63njx2+Fjnqdz/zzDPR3t6OUuDWdDEayDoIZjYfRb4QRChYsAimNEeGqnJJFmyVrVgVVSXAL/zS7r6c31JYs/NjNu5dgL5hVrUgqmVeD1rdvIHqVCsRuBGZBFJCQ1ySAA54V2RIbkwwGMQpp5yCLVvMz21PzbG815afsRp3PfwfzN8jHYLp/BCgmCLjsfy6SoqMiMjouuJQP8lvnNNDTEqBG5EBzN8hrOZdHbD7k23obD5WEUVm37591veSySTWr1+P9evXQ1EUjB8/HgsWLMC8efMwfvz4im3evKIkReYPf/iD9d8DDzyASCSCd77TdFV98cUX8cgjj+DBBx/Eww8/jBdffNHqT5HL5fDZz34WN954I9auXYuFCxfic5/7nPV377nnHgwMDGD16tX4yle+grvvvht79pgZ/Nu3b8e3vvUtfOMb38Djjz+O/fv34/7776/U+EeNihEZjz1kREmjgUAA06ZNwyWXXIJrrrkGl19+Od75zneWRGKs4/PasIwiAHTpqKwR3oHsJGT1GPZlzNLk+VM2YXI7a4JHh5cczteCZnj8cQOS0JKkaon3WyIYH7EXSRmROZyz8zY6OzsdxzQaxGIxZoKQNcUT9ZJh/p6axPJx9o73Hx/8jqMJ2/du/j9oH1mI3xhczDQtmzp1Kk45hV20vGA0TRelOTICRabcpnClgG/FUEpoicmP4cJKs8btxIxxPQBqlx8DODcFliLjQmToe1TXFWw7yCq/omZ4dJIvrRantCbsG2ldcPr0N3HJac9Z7111+hNoS5hzwH6qCSMAB6H2muxbi/JrB5EZcb+m5x4C8hvzVZnkvnEQmZHwEq/IAHZ4qRKKzLZt21xfNwwDhw4dwtq1a/H9738f//Vf/4VVq1Zhy5YtjpBatVB2su+aNWtw8cUXW7vE1atX4/3vfz+mTjXdjj/84Q9jzZo1uP766/Haa68hFovh+utNF9PbbrsNV1xxBQ4cOIBJkyZh9erV+OY3v4mmpiYsXrwYS5YswVNPPYXbbrsNTzzxBJYuXWp1Cr311luxcuVKfOxjH3M9rlwu5/jxgsFgxZP9dN3MO6hWaElEZNrb261/u1ooZ0ykIykgT/Q9MLKj3Jmag2mxvVAU4IqFz+BHf/gb6zNPb1iKf7zyuwCKhJaoHBliRkj/NvREJlVkXMp8eYwfUWQMQ05kDmVtlWD8+PEVP1fxeNxK2JU1xZP1kiG4atyTVnO/R17+K/zqlfcz7994/s9x/TnmZmS4kMCTlCVGIBDANddcg3Q6XfIYnR2xR2wwBM7kHU3HbUWmjByZeDxetXuG/F1d1xGNRq0FSxpa4ogMnSQvy4/ZzeXHTJs2rWrj4s8RIWbhYB7RUBqZvL2Y0vNAb980pHMscSQ9ZIYLCWSpnI7Ozk7r+Pk8sj8ffyfeP+lXUBTgN3e8F/f//u8QUDXcftkPrM9sS9rO6qFQCOPGjWN+D7qowYtpJOAMLWmaVlRdoK8BEXjiQNYAt2RpGZHRdd2xOSLKVCyccZwbkvBrhjB1EO0ilUqVfO3QRCaipqEbASbhn2BwcBDr1q3DunXrEAgEMGPGDHR3dzsq1LxC1POMRllExjAMPPnkk7jzTruKYdeuXUxHz3nz5uG73zUXo507dzK9S2KxGKZOnYqdO3cikUigr6+PeX/evHnYuHGj9d3zz7f7dcydOxf79u1DJpNx7Z/wwx/+EPfeey/z2g033IAVK1aUM9SioC9QkhQXVDVhUpyiUERmpOlbrhDCnqOsTEx6yOiGgv68vZgHAgFLraoFvCZjkh3lcCbhkJbp0uuDWbPh1Y7UbFzcaU7SVy56iiEyz2261AopyEJL9K43FAo5fhea0NLKklSRcQ0tGZgwosjsPz7ZoVoQIpPVwkyPjHA4XPFzRS8w5TbFA4DJkb1Y3GI6XfcNdeAfHvwu835X8xH8z0fshn+PH74GGd1eoE4//XTr2u/t7UUpoBvwAXavIv68ALRrPKvIZPNhDHDXBvkNsloYBWoHnsvlqn7P9Pb2MhMunYQpzZEJZKxE31LyY9rb23H4MHvOKwnaWwxwbmhERIa/95uiQ5jUZhK1Ps6aoFAoMOdl6tSp2LvX7F68cXgBzkm9ipnxPWhLDODT1/wn8923h0+1igYAYNy4cdZ3Cej736tpZFhhVZidO3dKqzxpyO6DgwcPMs9lRIbMszyR6e/vx549exz3D28cuf+43YiTlGArChBVs9Z1efjw4ZLuiVQqxYzh3NZXsKTjeexOz8S25FxsS83FcRfrCU3TsHPnTuzcuRNPPfUUrrrqKkyYMMHxORlmzRL7ihGURWTWrVuHTCbDEIxUKsXEohOJhNWzIp1OO+L7iUQC6XQaqVQKgUCAISWy75J/I51OuxKZm2++GTfddBM7yCopMr29vRg/nt0VZvUIgqozllzQQsjko4iFMyMXsWEpMruPzHQ0fSOl1/35NoecXM3YOAA0Nzdb5ZA5jyXlBG/sOQOGYU/oAbWA06eZC+bRXKeVdLsvMxVZLYxIIIcrFj7D/d0WvLzjPFx4yktSRYbOkYnH447fZcuWLdi+ffvIZ732K3EqMk2BYcRHpFlejUlEhjGjy5wQDufGg04+nDdvXsXPVVtbmzWRSY0jqdBSgmuKBxi4cpydZP25R76Iw4Ps5PLtv/knjGsxcxE2Ds3H5qTdF2fSpEnWpqW3txfTpk3ztGsiELnGk6aLw9T5oJsuArpFZHg1BrD7yPA9ZKZOnVq1e4bMA9OmTUNLS4tFALzmyLQGByxFZtO++ThKNTMEbEUmrweZTtFz586t6jzQ1tbGPOeJDH29yIiMzCxy/vz5TOj7iiuuwIMPPjjyTMVP9v81rh63Gme0vGEZ6xb0AP4ycC6e77sE9L22fPlyK+eSYMMGWynNlWEaCZjXerHQJH0NiO4DluToVndqnsgkIsMIqOZYeSIzffp0TJkyxaFq8MaRNJHhu/sSIhMKhUq6ft544w3meXdiG4Kqhu7EDnQnduBqPIG+XMcIqZmHPekZTNd1wNzYnX322Uw350qhLCJDwj00U43H4xgetndUyWTSugBisZijNXoymUQsFkM8HoemaYzCIvsu+TdkpofV7hlBwy2WLEuKI0QmERgemZydYaWu5iNWHJgvve7q6ipp0SgH9JhkfWTcdhN8I7wFUzdabeMPZO2JRkcAu9KzcGrTFkxoPYzTp6/Hmz22F9HTG5biwlNe8qzIRKNRx+/C5PoY3pQlNyIjy49ZOPUtqxzcJDI2Jk6cWPFzxTpgl6fInJLYjBkxM+9i8/5TcM/ajzLvX3/2b/GBd/4CAJDSYlhzxFZaVVXFddddh2AwaEnTqqqWNE7+nuHDfm5EBjDDfiIiEwzkLZLLE5nm5uaq3zOqqnIeON5CS3MT24T5MTPH7cLMcSZJ7s1MYxaGWbNmVXVM/Pwq29AUIzIEdMVSMBhEW1sbE7aZMWMGzj77bLz2mplTpxlBPHb4Ojx15CpMi/Ugp0fQl+9ASmPzSs455xxMmTIFPOh1wKtpZJBTZDRN8/w7y+4DWh0Kl+F8DdhzHC8KeO7uq6ZB3s1kMiVdP2RDaP6dFKZG9zo+0xk+hs7wy3hn+8vI6SHsSM3BLw+ssBKWZ8+eXbUinZLvhHw+j2effZapKgLMG4se7NatW6245+zZs5n30uk09u7di9mzZ6OlpQWdnZ2ev7tt2zZMmTKlKm25y4GjE64hNlmkZXKvib7HBT1kqgnPnVfTTkVGnh/D7ph2puy4ON/llyT8es2Rcbse6HFoRtAy15RaFLiElrxWLB3O2rvUcDhcVqJ1MQiNI6U2BTaRUaFZNgQA8C8//yrTcCwaSuPbf/NP1i76iSNXI0ktHBdeeCEmTpw4qjHISvxlvYpag/3Wos/7LI1rPmIRylp39SVgiIws2ZcKLU2kSDLfCI/usbSnBv5KNMptwyCtWMqzFUtuuSfLly93OKfnjAh2pOaiNzPdQWLOPPNMXH311a5jEFYtRb2ZRgKVS/gdrc8SYK81gUCAGVta0kuGMY4s0wFb0zTGOHdOfId1H/7oD3+Nz/7sq/j9pouRL9jzSFjNoykwzFRdeWn/US5KJjIvvfSSlZRLY/ny5fjVr36Fffv24ejRo/jpT39qXWBnn3020uk0Vq1ahVwuh/vvvx/z58+3pMDly5fjvvvuQzKZxIYNG/DCCy9YLfiXLVuGZ555Bps3b8bw8DAeeOAB4YVbD4j6LURCOUeTMtpkkZgiAt4TfcPhcE0qMESdV/keEm6KTLGKJRo7U3ZzPr6fzMvbz0N/stVz+bVbdRA7GSvCpNJcIYJcwZwY3KqWvFYsHaIUmWqVINLnP6XFrJ47booMeY9OkD2n9VXr2vv9povx6Lrrme99evk3LZflbcluRx7CkiVsDkc5kNlgyMJ+NPmX2xOwi13diQwXWqIXFwLDgNxfiUr0nTBhQtW7sqqq6jnpn95seFVkurrcHbBVVcX73vc+XH311dIxxuNxXHnllbj22muFygK92Be89pFR6ktkaCKfExAZgGuKJ7EpYEJLVAl2Kb1fenp6GEVpbmKr9fiHz9+Mrz/+WVz65d+j62NH8YO1t1nv0XYTgNzjb7QoObS0Zs0aXHXVVY5J+sILL8S2bdvwkY98BLqu4z3veQ+uu+46AOaC8rWvfQ1f+tKXcPfdd2P+/Pn44he/aH33ox/9KFauXIlly5ahpaUFd955p1Va2N3djU9+8pO44447rD4yt9xyyyiGXFnIWvq3xAaZmPdgyrxoA4puVcEA3olMR0dHTerzRSXlskUGAFLZGDbtY3dTjCLDEZm+fCcG8i1oDQ3iolP/gEgog2zeXAB0I4DnNl3qLL+OiUNLsnEA5oIZC2SE1TGdzcfcQ0sj56qgBfD2/tOY90SKDJ87VSnQi7KBANK62c6dV2Sy+SiGM01ojg1bxpERNY2LO38PwEws/czPWBuC8S2H8C/XftV831Dw1JGrQPIQFEXB9ddfX5H4trR7tET166DIv9SegCpLVxSlZq3Y2dCSPSZZaInALT/mkvm/BzDSP4bKj6m2GkMQiUSsBSxD+y1RmwnAXoyTmbjDL44QGc1Q0Z+3CZyseiUQCODcc8/FokWL8Pbbb2Pfvn04fPgwIpEImpubMX36dCxatKhoEi5NZAyoViGGV9NIoHJEhiYCTFdfbg6VKTL0fROLxTA4aH5W6oAtMY70CrpaSYGO7oS5Pg2kWvDi1gut9wbTrZjYaicEb6NaNUyYMMGzhUk5KJnIfPWrXxW+d/PNN+Pmm292fW/BggV46KGHXN+LRqNYuXKl8O9ee+21uPbaa0s70BqhmDcRQ2SYcmW75NJBZGjX6xxLZGoBNrfEngyKEZkNvYuYpGVV0bB4+noApslgVucXFAU7UnNwVuvriIUzuHDei3h24xXWu0+/tdQx6dO7W3pyLa7I2OfGrTpmONOEzuZjjtCSAh3jwiZJ2HZwrkW0CBZNN4nMUKEJaaqqp9TMfK9w2BQUEogH0g5FBjBVi+bYsJVXclH7i1bS8s/++CG8tusc5vNf+KvPWzYErw2cjaN5+9o999xzXfMQygFxJiaLhNfKuI6QHf8vpfS62vkxBDSR0WF2XA2reQeRGUy3QtNVK6kTcIaVZnTtFubHVLN/DI1IJIKhIWcFjSi0xPePAYC5E81F8Hi+HTrsucFLGW4sFsNZZ51Vkv0FDT4fI2+EEITmqFoqaCHkCiGEg/m6KzIyewJ6E+vVAZs1jiyPyNCpHZOj+6w55OkNS1HQ7N84HMzisgVrAZjzIalQBaobVgJ8i4JRo5giQ4O+aEmlQkELYNcRtryMKDKGARynynlrRWRYAqAiq7nn/aSyCRQ0e3Liw0qnTt5s+UXxagwBHV7iu/w+vWEpBtLuioxhsL91sRwZwM5f4jt7AnR1DKvIdISOIaQWAJiuxDQmth2wrAkOZTmFoAaKDGAv2olIEtEQOzmRyqV4II32UB/Oa/szANNp/a6Hv8J89rTJm3DrpfcBMMuXf3/sEuu9aDSKiy9mwx6jheemixSRaZeElurps0Qg8ltya1TGL2BSf6U0q8DUUpEh8DKv8WGlaZ091v1/lKtYEoWWKgkHkRnJk+EVGcAOL/H3f6UaulWCyNBgiAxXfk2DrVqyw0mFQsETSevv78eRI7baOzduqzOr1y9nPnvJab9H00j+0fZkN1Cj/BjAJzKjhmPXr3kjMtER99OevukMqwVsIjNQaIVGKSL1UGQAu88Hv1sG2ERZaaKvkMjMsnI5+ITf7YfmWs7YBESRMW9y+/L1GloC7DJft3GQMl8CaX7MVLqjL5ezUStFRuK3RC/27x7/mGVQ+t9PfMIRAvj6h/7Zcu9+8fiFTFLlkiVLKh6eKSeh3GuOzHCjEJmRyiU+RwZgE35LzY+pRZ4cMHoiw1oTsApMOY3RSoWj8eLIRoZXZAA7vFQbRcZr1ZJ9X/DrDOOArUlCS0UcsIuB7+Y7N2E+13UFa9azuarLz7C7hNNhpWg0ajXKrRZ8IjNKBAIBJlZbquU9X7HUFj9usWqR63W1ISIAshbygAuRmVWcyKT1hPXeGTPeQBfXoZYHUWR4ewIvigx9bvjwElOCTU1m5VQsNTc3Vy0vg1/E6MolukU/wFYuzY7vMl8b7MJXfncX87nLFjxrTUID+Rb8ud/uD9XW1oZ3vOMdlTl4Cmz4Uly1RN8zLUH7fpLmyDQKkRm5RhORJAIjqh4BHTJ9e99pOMIRM0Jk6pUfA1SYyFAVS01NTRW17hChHEWmUauW5IqM9/JrGl7CSzSRSQSGMDlqRhLe2HMGDvazczqZQzRDZZT27u7u6rc/qOpfHyMox2+JwC0/hoRC61F6DUi8cFwUGTKmbD6Mt3rZ0MvZM6mKJar0mu/USC56VTUczfF4sIqMDS85Ml6rY+juvuVWLFULfL8cpikeb1Mw4DyOL/z684xJnaLo+MaHPmNdc2v7LmcqPK644grPnU1LAXvPeDsvpOQTKOJ8XWgsIqMo8hJsPqw0vXMPZo7bDQDYm5nKqLK1yo8BxPMan+xLwr+jrViqNNxyZAAgEspCVTTmvdoqMpUlMjk9YjnIu5VfE8W7VL+lfD6PXbt2Wc/nJuxcmdVvsGGl7gnbMHckt7MnPZ2pKK1mtRKBT2QqAK9Exq0TrrRiiUr0DQaDNXHxBcR5PwFVR5zLLyHS/1t7FyKvscThjBlvAAD6861I6/aCcuqppzKkbIeknwyNUCCHaMiUQ70oMrIyX3kvGVv6JRVLyUwcOw+zfjAk0Vc3FBzN2epHNYmMoiiMKuO1KR5gNr/7/rOsR9lfX/hjnDnzDQDAgcxEvEmVW0+dOtXR06NS8Fra63bPGIY4tKQbCrNDbYTQEiDv7uuWH0OIZa37x9Bg5zV7LCL7lVJ6yNQC/EaGEBlFERtHmvlwdmi5EkRG0zQUCrYiV2kiAyhWeIknMrlCxBpbqYrMnj17mOPupvJjHn/jGuazdFhpew3Lrgl8IlMBVFSRqXPpNVBenw++o+/ciVvREjc/y4eVJk2axJjE9WamIz/SlI1P+KXRlui3Jnh6kQA8Jvt6LPMlCX8hJWflZWzct4CxXlAVDfOnbAJgnidaxahWfgxBOU3xAPfmdytv+Ffr+VNHrwQ9JVx55ZVVu+aEyb6ShngEx5PtjrwyQuJMYmePoZ5EJuvBAdswgOffluTHUERm/PjxNcuPAUqb1w70T2I6MgM2kUlrUaQo5bBWREYUWgKKdfe1F+9KEBmH83XFiYwdXuJzZIDyHbDpsJIKDXPiZlO8o0OdeHnHecxnrznjcft7VH7MlClTanIP+kSmAhgVkZF09eWJTK1QTiWWrBHeQYrIKIqCiRMnYs4cO4aqGUGrMmNa516cOvlt1+Oie8h4CS2pqsqERRibAg+hpXHhIxZx4sNK3RO3IxY21aFaVSwReLYpoEJLbs3vPrX8P63md1uG52F32iaX8+fPx7Rp0yp63DQ8J/u6KDJuPkskrFavrr6A8xqUdvcdITKb95/q8Lki/WMKegB7M/XJjwHY8RBDXMB9Dtiyn1VjYuEUpnWa/kJmxZJNiOsdWgKcigztgB3mHLBHC57IhKtBZEYUmZbYIBSFdbUmJdilKDKGYTBEZlqs1ypQefLNq5hNXTySxJJTXwBgqu9HKHW62tVKBD6RqQDKJTKarmLH4TnMa6w9gd0DoL3d2Q20WihHyZBVLO2n8mO6uroQCoUwc+ZMZre/gy7DFoSXRD5LgLsiw48lW2JoqZyKJUVRMG4cq4RUGiyREefIEEXGrfnduJbD+Jd3283vnjm61HpPVVVcfvnlFT9uGqLu0V5sMPjcn5bYgOXnVU8ioyiKd7+lkRwZPqw0rbMHs8aZeQlm/5j65McA4g2NmyHuGz1nMK/NnbjNsozgXa/rpcgUvBpHKtUlMtLOvtT1LyMyonwsVTWcCb8jlUtBVWO8pGREpq+vj3FAZ8quufyYyxc8a91/Zjdfe173icwJhHKJzL5jU5ArsBcoaYY3VGhCnlIQaqnIOJN95Q3L8oUg3uw9nXldVHpNbCmi0SjTYE3WT4ZA5HwNuCsy/Fg8J/uO2BSUU7HU2dlZleRYGkyODJXYylctEeXi53/6oGvzOxL645vfveMd76j69SZM9pU0xCOQ2hMUWOJSq7wyAq82BUSRcfNXsvNj6tM/hsArkQGAV3awlW1s6bWtwAQCAYezdrXgLL8WKzJMd98aERnDcBJ18ttqhso0QfSqyABFuvt6tClwll2btgSaruKJN1mfxeWL3cuuE4mEw5G8WvCJTAUgTFws4k3E58ckIsNWeKBepdeAuSOnJ4Fi5GzTvvmOjrdnznwdgEnIkpp9s9IXNp0nczg3HkMFc9G55LTfIxhwTiCMIkPtdvmulzQ852K4hJakisz02lcsEdAqQ1qPWRULDkVmcJzZ/O4XbPO7Uye/jdsuvReAe/O7SvgpFQN9zxgIWDlSPMEczjRZVRcEXkuvAWe5erXh2Tgy1ebeP2YkrAQ482NqqS4BpRGZv+w8l3kuqljq6OioWadlfkMhzZGhFZkKh5b4pnqEyGTzEUeBBPltzd/antO85sgA/3975x0eRZ3/8ff2mp6Q3kMSQu8l0kMLBDgELAgiXVSaBfQ8ECzn4XHYyykH9/NQ5PRUUEBFBQuKgID0EkgIEBIS0rPJ1t8fy87OzO5sNiHJ7pLP63l42J2dmf3O5Lsz7/nUBqr7utmmgF3NN0BajnYK67Vl//m+uFHNtajZAn2NZgnyau0ZqSkpKa0W10lCphloqkXGWaCv7e/OzlgCWlfIAI2rvMp3KyWGXUCw1vpjuloXxfmMLWTYcTKAiOmG7aeqRv+UXxzGxOl8zRqTqx9LU1xLtmBfW8ZSUUU7hzofNouM3izjuABbW8gAYiaQkh8jYzDJseZ/K3GplPsk/9I9wsXvBg4c2Co3f8FaRTyBabZIODcZwP2qvjKZzMG62NI0pgP2mcI0FFVwO4nbAn2t8TH2ImKtbY0BXDfEVci4T/O5vGuZpzOWAOsDGbs3GDtGhl/d2xMWGWcxk1whw9qG97eQy+Wc657OzcaRSjfaFOj1euTl5THvUzTCbqVOMccQF2qNhcrTJXC8CK3lVgJIyDQL7ElmsMiZJ8iGhExukXB8DNsiI5FIWrThljOEBICzY3IVH3ONl7EUEWG/cEdHR3O+pyH3klCMjCsTqduuJZaJVyHWQy2phvZm12i+NUYlr0VSuwsAcDOwzf4zag0h41gUz/qen7UEAC99+Tjn/dCM7zC2uzXDwFr8rh/zWWBgIPr04T5ZtxSCtYqcFF3k/268sT2BDcEYGSeuJb5bKSa4gJlXnqwfY6MxQf98bELGbBFxrmWtKWQA7jzzlEWmOYQM//fCb4Za56pxJKdNQcOupQsXLsBstgcMu2pLwKnmy0q7FolEvAfVloWETDPA/cGLBE2wOr0aBqPd3OmyWSTrxx8UFNRq5lgbbnfA1vk5ZCwJVfQNCQnh7FcikXCK411ooJ6MUIxMXFycw7rOjoNdQdbBIlPPtsjUu4yP6Rhzgmn4V8zLWGrp1GtAuE2BWqGDRsE9Lna6NQAnxe/sF8iWKn7nDAeLjMW96tGAo2uJGyNj/zu2dnwM0DjXkrfWj7HRHEKm3BDIifVorYwlG2wXuauspdazyFgEhYxMoodCdtPt5EZWpruNIxvbAZsdHyMRGZB4syr41bJIHOY9tAq1JYiLixNMwGgJSMg0A43xJbMvyo2pIdPauFtCvrw2EEfyu3GWsVOvrzoJ9GXDjpOpNvmhqN76tN0r6SACeBd/rkXGPiZXP5im9PSRi/VNqugrk8laJbtMSMgAju4lNtPv+D/0SLTGLvGL30VHR7dY8TtnCLst6iGTcGMK+ELGmy0y7ONyJWTKaoIchIxQ/ZiwsDCPHwvgvpCJCCxkAsk9lbFkgyNkXFhk2OnXMlZBzOYWMhKREZKb6dHOUq9tQvZWhIyz6r7MNmK7FcaZkOGnXcer8pl09F1HuUG+/qoKDGi/D4A1DqqM9bdujSJ4bEjINAONETK2yWuxuBYyZTyLTGvDEQAuGmEeuNAbOj3X1dE93nqzrDGqUWVkdfx2ImT45kebVUYqMWFiz884n7FdVuWGQOa1q5iOpmYtNSVjKSwsrFWC2/g3NVdF8Wx4svidM4RcSyJRw0XxXLYnYJ2L1g70Bdx3LRWUxnl1fAzgWsiwazrxEcpYAsgi05RieIAbQsbtDthc1xLbhQQAxcXFqKqy//5SXaRdj+z8NWRSa/FAfjXf1oyPAUjINAtCP3iNosahOJFt8l4rj3Do7GwTMjVGNcd14mmLTL2LQnL8i3FMcAHaBVhvpla3kv3m6EzIBAcHIyAggHl/nGUleOGup5DV6RtEBl7Fipy/IjP1ZwBAcX0YJxOKncbNR6heies6MvWMRcZkFuPE5Y6cdT3RY4mNXC7nBDG6Y5FZOmY9E5THL37XoUMHl+65lqAp1aNtOKRf+7NcS6xz4WnXkhkS6G9aAfgWGT7RQZeRHG6tnHq5LoZTKdoT8TGAs+xF4TYFbDgZS6yndLVa3WLNVIXgWmTsc8xTMTLuChn9rVhk3Ey/5o8NcEy7tgX66o0yfH1sJOczoWq+/v7+rXYttNE6DvHbHCEhIxJZL8qVOvuN2jZ5+dYYpUyHqKCrADybem1DsGCZk8aRbNhupcJ64YwlGyKRCB07dsS+fVYT5dX6aJytaY9UzTlEBRXimydHOmzzww1uerCrFvGcYD+LDBaLwFN/HTvYtx5hcqsYu1Cc5GBxsgmZaqOGk/HTGvExgPWcaTQaVFZaL3yconhOLDJh/sVYkfMiAOfF77Kyslp4xI40tX1EnV6BClafIsBukak3yTkCwNPBvoDVKiMXGxoUMq7iYzwlZADrtc12M3fXtSRkkWlttxIgbJHxVNZSc1pk2HPN3fRrpZM2BWxBxBYywbJShMitoujnM5mcZrMAMLrrLgDWzE12zaP27du3qnUXIItMs9CUkv58IZMcnstUwvQGIeNuSjkfoUJ4QUFBgrEsffv25QQzf3ptEi6w6hHYMFtE2FM6BCeq7VabuLg4lwKCH4jNpPnybpY6vRpGk9XK0U5RzPiF+W6lMP9ihN+8cbIr+gKtZ5EBXBTFc2KReWbSMx4tfucMx9+Me0Xx+P2jAH6fJTteIWRuWjH4riU+3PgY+03BU/ExNppyHRCqIeNxIWN24VpyYZGx8AsZNRIhIcO3NAoJGalUyrHA2uBkLbmZfu2qTYFOp0NBQQHzvj077ZqXrdQz8SAiAq2W0Au1SZyA7tZ2KwFkkWkWHM3kjRcyQoG+YrG41SphsuHWkRE2+/PhCBlWawJXFR79/f3Rs2dPHDhwAIA1lXDzlfuQpj2DNM1pyMQGVBn8cbCyJ0p47QDGjBnjdh0ZAKi3KKCA3sG1BFgD/gLUlVCznlqOXXIvPgZoPYsMwL1JV7PcbO0juKbhtMjTHi9+5wyJRAKxWMz46BuqVWSD71aSSuzWDm8WMhpFDSRio0MWmQ1ufyXPx8fYuBUhU2+Wc+Zma8fHAC5iZFw0jWRbZCwWC0wm0y1l87lrkWELeFftCWywhYwZEtSb5VCI9Q6upUpdAIwmCaQSk8vGkbm5uRzRluIiPkYo7ZqfidpakEWmGWiSRcbNZpGBgYGtnnoN8Cuvihlff0NCxuZa0pmUKDcGMssbKlU9evRojpI3Q4JT1Rn4rGgS/lt4F3aVjOGIGNs27Lo0DR0HAEGLDOC8r4+7GUsajaZVb5xs68/VukjU3QzIntp3K9IiTwMAAtTl2DR/JhOQ56nid84QiURNyijj91lq51/MWDKrTdyYGG8SMiKRo8nfRlTQFeb3f6U+mpMS70m3EsA9HneEjEyiR0JYHgCgVB8Cdoycxy0ybjaNZFtkgFt3L7Er+zZH52sbQm0KnM0zW0sMV0KGXc1XJqpHgioPAJB3PR4nr3DjBNltCc6z4mPi4+NbvQglQEKmWZBKpRyrQFNcSxwhw6rq6wmzP9C4TCwbEYGFiAy6BsC9QF82YrEYU6ZMQdeuXRscm1QqxZQpU9wq3iYUVOrMIsOuJWPj2GX3LDKtHdzGvsGZIcXJamvqtJ+qGn+82AX7numPs39PRb/2+wEAN/RBHit+J4S77SPYF3xX7QlqvdEi46JxpI0hHfYw8TF5tQmcz7zVIsMuhcAmJfw8UzW6xMMZS4D76ddCTSOBWxcytxojIyRk+HPNlZCxuZeUrPRrwC5k+GnXieqLkIqtf0e+NSbU7zp6J1ut50X17VBptMeAesKtBJBrqVkQiURQKBRMpURXQqZK5+c89dpFMTxP4G4JeTZCbiWgYSEDWC86EydORO/evbF3714UFBRwqk9qNBr07NkTvXv3djsjRSjNVyoxQSnToc5gf6rhW2R0eqWD5cwmZCwWoJjVrr61hYztycf2tLfr+hiEK4oQrbwKudSA/u1/ZdatNanwwdVpnCf94cOHt1rxOyE4FhkXmXGuXEucGjKsWCF+5dPWQsgiAwjHyQzusJd5zQ70DQ0N9UjmFRtuXZyGLTJpUezWBHYLjEgk8si1jC1k3G4a2cwWGa6QsVtnXAsZ++9ByMLBn9+2uaaU10OtqOFkxdqEjEpSBxHMsNy0YRw5cgS9evVCYWEhamvt56S9i7YEo7vsYgqCnvNw2rUNEjLNhLtCplLnj5KqUE4mE2C3yOhMStSZ7T8qT1lkGlNC3oZQxlJAQECjXBjR0dG49957YbFYcOPGDZjNZvj5+blsDimEkGsJsIoyjpDhBd+dvJIBs4UbZJcRfRKAVWyyhUFrxscA1vk2fPhw7Ny5E4C1NcZ/rkxHn8Df0DvgN6gltTBapDhW1QU/lw3gFKtKTk5Gx44dhXbdargbf8FxLbnqfM2rIeMJlyz/AcBVUTwbtkBfk0WMAlZ8jKfdSoCLhrhCQkYgYykoKMhpwGpLwxYyRg9YZCwWS4tZZFx1wA5Sl3GFDCsFO01zBqdrOgAACgsLsW/fPhiNRvaombYEOr0S350cxvkebnxMKvM6ODjYI+5DgIRMs9GYxpF8a4xMokdsiDVa3BsylgBh15JManSwZNgQylhqait3kUh0yz8MoVL4AKBVVOM67DdGdi0ZwDHQN6ldLrRKa9qmJzOWbPTq1QsnTpzApUuXAFiDpH+4MRg/3BgsuE1AQAAmTZrU6umRzmhKZ3JXrqVqD1f1BaxzVqlUMg81DbmWIgOvMgHa1vox9vnpabcS0PhgX6GMJU+4lQCukDFDApNFDInI7Hb6NSAsZCwWC8rLy1FdXY3q6moYjUbHByeBztdACwgZVgp2iF8prpTZRfHmn6chu5v1oSe73ZfIy49nHpj37NkDPz/7byxMXowAmXUse08N5pSfEItMGNn5awBAnUnBEd6tXc2XDQmZZqJRQobnrkhqd4Ex1XmrkHFlybBhEzL1JjlusDpCN1XINAcNWWTY8C0y7lb0BTwjZMRiMaZNm4bPPvsMp06danD90NBQTJ482WMBvnzcDvZ117XkBUIGAEwmE/O6IYsMOz4mnxcf4w0WGfZ1wGSRMkLAHSFzg2UF9NSTOlvIANY4GYmk3sG1pDcqmMyehlxLFRUV2LNnDy5cuMDUcrLRoUMHDBgwgKltxS84J29mISORSJj5xq52Pij9B/xxyR5v+MG+abir30cY33M7/KTVGBX2FT4v+hMA63wtLy9n1nXlVuqX8itC/KxZUedrU2CB3crmSSFDwb7NxK1YZIQCfQF4JPUaEHYtAc6fxkL9rjNWJas1xj61vEvIuFd4DXA/Yyk4ONjhgtlayOVyTJkyBaNHjxa8WchkMgwYMADz589vdReYKwQtMq6ylnxAyLBvfA3FyLDjY9j1Y7whPgbgx/wIN8S1YRMyFQZ/GFjWJa8RMjfjZPiuJQDQ6a0PZ0IWGYvFgoMHD+LNN9/EkSNHHEQMAJw6dQobNmzA//73P5hMJsHO18CtCxmxWMz5PefW2u8rT41/AYFqbtDvgn+9jbKaQABAN/+jaK8+63S/NreSxQJ8eWQs5zO2W4ndlkAqlXrUgkgWmWbiloSMQKBvQECAxwIyXdXGcRYn0yPhd+bJku1WAjwrZKRSKadeCfvJ31UHbMD9jKWwMMciba2JSCRC37590adPHxQUFKCoqAj19fUwm82Ii4tDbGysR+ITGkLQIuPCUuYyRobV+dqTQiYhIQF5eXkAGnYtseNjLtfFMsu9wa0EOHcxqyU6p1lLIdoS5mm9xOD5jCXAuUUGcAz2Bawp2H6qasjFXHeQTcj8/PPP+Pbbb9363mPHjsFgMKBfv36c5e63KLD/HoSEDAAkJibi6lVrRfjC+iicrk5DuvYMIoOu4eXpSzDznX8z6xaWR2HZf/6BjfNnAQDGtduONy89xGk9oRDrEKeyuqrPFqbiQjG3Fx67LcF5lnCKiIjwaPIACZlmotksMh7uem3DZeVVASFjgy1k/Pz8PP5kKZfLmZgFlz19WE/+JVUhuFbOFWA2IWM0Szh/J0+4lZwhEokQFxfX6n2TmopgGwwB15LZLBJsGGm2iDiN8zwpZDiNI124liICC5EaaX0qvlIXzbFgeINbCXASvGxSAjLnFhluoK9nu17baIxFxhYnw7fI6PV65Ofn47vvvuMsj1YWoGfAIfhJqqC3yHGmOh3HqzrCfPO2evr0aY7LBrALGZNZ7NBrz3ZO601ysC3aroRM37598euvvzLupR3FY5GgyoNSUo8ZA/8PH/16F3ayqvJu+uEBTO27FWO67YK/rAojQ7/G9uLxzOfJ6gsQi6x1mfjVfCMDr6Jr/FEAwJW6KNSw6ja56nfXGpBrqZm4FSGT3C6XeV3mJUKGn/HRkGuJk7FUZ89Y8qQ1xoa7QaXsYF9+oK9CVscEZV7XhzHpi4D3CBlfg/13MVhkMFusJj2hOjLltYEwmrg3Jm57AvvfxJNChh04ecMQzBzXwPQfOetN7btVsL+SN1tkAEAh00Mu5bpNOKnXrIwlhULhsb8HX8jYHmSUsjqHdW2ZS85iZLZv386qemvBmLAdmBO7Ad39jyBFk4sM7Sn8KeJTTI9+HyqxXSRdu3aNsy+bkHFWfNMm4N3ps8Rs4+fHsfpUmfzxVckoANYijO/Mng8/Jfd6PW/DP1FRa/1N9Qj4HUlq+/0nxUV8THa3Hcx85addk5C5TeAKGfuTFf+mf60iAjequU8nNtdSvVnO8fN7Usjw0VtcN47skWi1yOjNMk79iIYq77YGQvVKtAqua4ntwuDHx3SIOsUU+irSez7Q93aAG78k3Aer3qCEwSh1sMYAQJiftUmmN7QnsMG+qNebVbh6U9h3iTuGDXNnITP1J8wZ8i5W37kKgDUW4WilPTAzJCSEI4Y8SWOqlgt1vQ4NDfVYlpyQRUYstkAtkLlktcjYS/VfuXIFpaWlzPu+gfvRJ/A35j27FVOCOh854dsEx2MTMny3EsCyyDRCyADA4MGDORavI5Xdcb7G6hKKDbmMddMe5ax/+UYsnvhwLfM+p902yEX1AMxMfEx1nQZ7T3GzH4XaEoSFhXnc6k5CpplgTzYLJExJf/6Pnf9EKREbER+aD8AW6Gv/wXuTkHHlWgpUlyEx7CIA4Fp9BMdaERXF7YDtCbguDPdiMVxnLNlvqBKJxKv+Tr6EYNFFZ+0j6vwc2hMEqMuhlFtvDOxieAA8emGNjY3lvN9dmsVYZWYN2YifVg3Eu3PnIVBjjTM5VtUZpayYEneqW7cWruriRARwrQ0do08wrz3d9dqGUIwMIFxLRiQCJCJ7XZVjx46x1jKjX+AvAKwCZsn76xE0rwxZL3yD8hprbbAO2tOIVFxxOh5XQsYWs9dYISOTyTB+/HjWEhG2F+fcdFEBc4a+h6xO33C2+ed38/HtcWt9mEBZBbJCv0GkohBaqVXc7T6eBYPJfq2USfTI6rgbAFBjVOMqq06YJ7OVbJCQaSaELsoNdYuOD82HXGo1ZXpL6rUNtjXF1ZNYj0TvDPS1IeRa4ltkOK4lV0KGZZEJCAjwSOG12wHBootOLH5VOj8UVQrXkPEmi0xwcDA6dOjAvM/XJWJb0QSmHxabPyo7Y1vxBOa9RCJBjx49WmWc7uDv78/5OxWwApJnD9nAvE4JP4dRXb4CAJQbAlBhtN+oPRkMz59jTWkcySZcXoRAmVWA7jo6Gq/sWoKK2kB8eyKLY+Xo5HfcYVsRzJDfdFs5NIxUVjI9w+otjRMyABAXF4e+ffsy7yuNgfimZKT1e0XAu3PmQsO73s157z1U11l/J70DD2JYiD0GiO9WGpj+I/zV1t+lNcjXfs3zVDVfNnQFbiaETLCuSvoD3EDfMp6Q8VR7AhscXz8reG9A6j7OeuO6f8G8ZsfHqNVqrzCRN9YiYzaLcPxyJ85nnNRrlkXG038jX8bhN3PzAu6sD5Yzi4y3ChkAGDlyJCeL42hVN7yatxi7ro/GzzcGYG/pILxzaT4+LZoEk8W+3qBBgzw+djZisZjjKjtf0x5GszUDbsmYV/DtU8Owcd5M/P58D6Y5qdVN5h03OiHXEuCkTQG7uq/YuZAJlZcwr78/OZTz2X/3T4HBaP1bpmocU5ubUkMGEG5RwGfYsGGc69Ghyp64UGvtRJ0Qlo+/3b2cs37e9USs2PIi8z5FY42VsVicxMd0ZbuV7NV8FQoFUzPHk5CQaSYEhUwD3aKFMpb8/Pw8VpvEBtstVKRvhxqj9Yc+oefnWDXpGfRIOIRHRr6KBcPfBmCNjzldk85sExsb6xUVZBvbZTmvJAE1vFRsm5CpNalQbbKLM0/V+bkdELJiSsRmh6fHqjo/t9sTyOVyj/92AgMDceedd3LEjM6sxv7yfthdOhJ7bgzDNV5j1W7dumHgwIEeGK1rkpKSmNcVxkB8eX0c835Yx+8xc/C/4aey/r0KdDHYVz6A+Tw4ONijMWT8eeCqTQG7A7ZcwCITIrfHypwr4gq08tog/Hw2EwAQKi9FiKyE83lTasgA7llkAOu8d3AxFeUwYQ4PZr2FwTfT/W288c3D+OEUd84dK+jMqQoM2ONjzBYRcmvtKdnJycleUdqBhEwz4aqkv8pJqp8NoRoynnYrAXxfvxi7S7MAWG80z9y5Goee74VX718MldyaAfBbeR9OTYLOnbnuGU8hlOYrVEeGn7EUpLmBqCBrrQZrfIz95kMWmabjquiig7VM5+eyPQE7FdRbLBrp6em4//77G7RKSqVSDBkyBOPGjfMK4c+nb9++HMF+pLI7/ls4GddZcTD1ZjkOVfTA5qv3Qc+6BvTv39+jx8SvbeLSIuOicaSNYNkN5vW5a46Wpu2/5zCvUzVnOJ+5XUPG1DQhA1jT9nv16sW8LzcG49sS63VbLLbgvTlzHO5Hs979F2rr7ZXa+daYhLCLSI86DcDqWqxjtULwhvgYgIRMs9GY6H42QlV9vUHIJCYmcuJkjlT2wJ7SwTBZHKfN/vI++LZ0OPNeqVQiLS2tVcbZEBwh46rL8k2LjLP4GNu1uJiXsUQWmabjsg2Gk1oy7na+9hYhAwAxMTFYtGgR/vSnPyE2NpapMSMSiRAZGYk+ffrgoYcewuDBg73iydYZMpkMY8aM4Sw7Wd0Jb+UvxPqLS/FG3kNYd+FRfFE8nvMgk5GRgZ49e7b2cDlIJBJODJu+iY0jbYTIrBYZs1mE3KJkh8+3/T6eyWJK0zZNyLDvHSKRqNHWxaysLAQE2JsS/1bRG/k6a22plIhcvDD1Kc76uUUpePq/zzHvnbmVbNe/817S7ZoPFcRrJhoSMkUVztOQbULGYJaiivVU6Q1CRiwWY8yYMdi4cSOzbO+NoThS2Q1d/f+AWlKDepMSx6o7oYTXRHHs2LEerfTIhhvsKxwjYwv2ddmagBUfo1KpHBq3Ee7T2PYRvtCewBlSqRRdunRBly5dAABGoxEWi8Xj7q/GkJqaiilTpuDTTz9lOiVbIEalMcDp+omJicjJyfEKC5NMJmNaBbAtMi4bRwpZZORWi8zlGzFO+82dL2qPM4VpSI86g1hlAVTiWuhuNmdsanuCxp5DhUKBnJwc/Oc//7m5RIxtRROwIO4tyMRGPDLqNfx3/xTsO5fJbPPyriWY3OdjdIg+hX3nBnD2N7a7vZrvWZaQiYyMhFarZaqmexKyyDQTje1NBAAikZlJW7a6lex/Dm8QMoA1Gn7UqFGcZRXGIPxwYzB2Xc/G9zeGOYiYAQMGoFMnbrCsJ2H/bSwQM09lDllL9VpYLO5nLLVr184rLtS+iuNvRlhkVur8XcbIeEPna3eRSqU+JWJsZGRk4IEHHnBZOVomk2H06NGYPn06r0+T52Cfa076tatgXycWGaW4FmqJDoBzt5KNbYescSpikYXTgJEtZPgF8fzVjeuz1BDJycno3r078/6GIQTflVrTrSViMzbMmw0FqyigxSLGrH/+C9sOjYfJbH8AVcp0TBuNSoMf5/rnLdYYgCwyzUZThExscAFTB8PbUq/Z9OvXDwEBAfj0008FW9oD1nMwYsQIj5uT+TjrgC0XGxxulhaLGDeqg3H2WipnuVANGSqEd2uIxWLIZDJmTjXUpsBVjEytDwkZXyYqKgoPPPAArl+/juPHj6OmpgZlZWUICQlB+/btkZCQ4HUijf37v5X065AG4mNsbD+cgydyXgJgjZP5o8paF8iVRYY935tDyADWzLnc3FymueX+8n7I0J5ErOoy0qPOYM2dK7F8iz1l/ExhOh7+9+ucfQzN+B5qxU3xVtse7PhAEjK3IWKxGHK5HHq9teGYO0KGHejrbanXfDp06ICEhAQcOXIEv//+O27cuMGYFCMiIpCYmIh+/frB39+x0JOncR6LUeM0o+zAhd6cJxIA6BRjrQlRZgjkVDgmIXPryOVyRsi4yigrqQpFpY7rxrD1Wao3yWFkuwxIyLQ4YWFhGDp0KMxmM/Lz8xEfH++19ZTctciws5ZkvMaRABDMzlhyIWT2nR2AkqoQhPqVIkV9HmIYYYa0WTtfu4NSqcS4cePwwQcfALBao7cVTcD8uLchFZuwLPsf+Pi3yThwoQ+zTXUd11IkVM1XrVZ7RbFTGyRkmhGFQtE4ISMQ6KvRaG5pArcUKpUK/fv3R//+/WGxWFBfX49Lly4hJSXFay9igBOLzM2AX2f1Sn4515/zPj40jykExbbGAFYhY2vWRjQNhUKBmhprrIKrrKXcYsfASptrydtqyBDeBUfIuLLINOBaYltk+FZbNmaLBDuOZGPGwPehkOiRoM7HhdrkRggZ9zpfu0P79u3RtWtXHD1qbfZYYgjDnhtDkBX6LaQSEzbOfwA9/vw79Ebn32MTMiaLGBdr7Wn43nbN956R3Aa42zjShjd2vXYXkUjkFfU63EHI7aeQ6SGTcJ+8+IFuQvExgGcrlt4ucDPKhH8z/AwRqcTAdJOuNnFr/pCQIdgIWmRcuZacBPu6ssgoeE0o2WnYaTfTsBUsK09rWGRsjBo1itOyY1/ZAFy5Wbi0Y8xJrPzTGqfbpUedQlI7awxnni6B8/v0lrRrGyRkmpG2JGR8CVdpvnyrzP7zfTnvhTKWAgMDvdJq5msINVvlu5YuFCdx3rfzL2ZSQskiQ7iCa5Gxz7HGBvvaasgYTRKH+Tg9833O+11/jEa9wfpd1noylia5ltyt6usKlUqFsWPHMu8tkGBb0QSmjMYT49aie8LvDtuxq/my065FIhGSkx0tpJ6EhEwz0lQhYzRLUMnqTUJCpnlxFuxrwzGolHuBEbLIhIdzrTNE0xDqg8V3LfFTXYUCfQESMgQXIYtM49KvLUwNmUulcZyGigCwZMzLEInsacjVdX5M9+hAWQXayYub1KKguR6W0tPTOZmkxfpw/HBjEABr0daN8x6AVMI9ZnbaNTs+JiYmBmq1Gt4ECZlmpLFCJqndBQBAmTGI0zHa2wJ9fR2X9Uoa6IVlEzImixilrH5TFOjbPLjbPoIPpz0BqxieSCTyuoss4VncjpFxkbWkltRAKbEKEb5bKUBdjozok+ibvJ+zfNvv9nYBaZoz7lf2tTS/kAGAMWPGcH4bP90YiGv11geyrvF/4JXpixkxNrrLTgzN+B4AUKIPQanBfu3zNrcSQEKmWWmMkIkKugKN0vpDYgf6AmSRaW4cixWyXEsKx4BfGzKJHmmRVv/2dX0YzLBXXiUh0zwItY9oSMiwLTLsGjJqtZpq+xAcmlRHhmeRcZV63T7iHEQiYHyPbZzl23/PYar8prKEjMUiLGSMZgmniWhzChm1Wo3sbHvVXjMk+LxoIuNiWjjiLZz5exp+XjUAXz4+lnHd/nTjDrDTrr2lYjsbEjLNCPfp0rWQcdX1moRM8yKVSjk3N06bAhcWmfSo00xHX37GErmWmgfBGJkGLGW+UtWX8DzuWmQ46dc8i0ywTDjQt324tehdTo/tnOWXSuPxxyVrNecY1RUmxqa2Xg2zhduOwnaPaGrDSHfp2LEjOnTowLy/Vh+JT6/9CWaL9frYPuI8BqT+ArHYqsBOVGXgj6ouzPpJSUleee0jIdOMNMYiIxToS2Xvmx9bhpUNd5/8heJjJBIJic1mojksMiRkCFcICplGNI0Mkbu2yABAx5gTSLhZqd0GO3tJK7XG5FTVOTYRbS0hAwDZ2dmce8yJ6s54/8oM5NbYA5iv60Px9fWR+PjaZFhYlmhv7M4OUB2ZZoU96UwWKUwWMSQis1Mhkxyey7ymjKWWRy6XM/1W6l1kLbERylgKDQ2FRCLxih4jvg77N2OGBEazBFKxqZExMvbUUnaaKUEAXCFjskhgtoggFlkaVUfGpUXmppCxuZde/Wox89m238fj6T89z1mf71YC7BbI1hAyWq0W99xzD95//32mGGWeLhF5ukQAFkhFRhgtUrDdSQCQmZmJ+Pj4Zh9Pc0AWmWaEO+lEzKR0Zian1OvWhfvk715QKWUstTxCNX6a6lqiQF+CD7fWlYiJk+FnLdUZVDCbrTdvvkXG5hYyGKW4eD2R85lNyACO7qUDF/qgsIzbMJgvZBSyOsilturWLS9kACA2NhZTp0510thXdLNKNlfE9OvXD8OHD/fa+DMSMs2IUAdsV64ls0WECoO99DplLLUMQmm+7lhk6kwKTno8Bfo2H0K/mQZdSzfbE5gtIujM9uaE5Foi+PCLdtrcS3zXEgDo9FaXC9ciY0HIzWJ4F68nOrQwYQuZQek/wF9Vwfn8i8PjOO/dTb0GWk7IANbso0ceeQTdunUTFCjR0dGYPn06Ro4c6bUiBiDXUrPCv4hWGAIQJCtHqF8JooKu4GpZNAAgSHMD6VGnAVitMexsGLLItAzcCrINW2T8VRWIDSkAABTpw8F+QiEh03wItY8QKllgI9yf3Z7A/jxGriWCj6CQkTsKmVq9GhplLUfIaCXVkN+00PDdSiHaEgRry5j3cqkBo7vswtb9dzHLth/Owdxh7zHvvUXIAIC/vz8mTJiAoUOHorCwEMXFxTAYDAgNDUVoaCgiIyO9WsDYaJJFZtOmTRg7diwGDRqEe++9F1VVVdi+fTv69u2LgQMHMv+uXbvGbHPixAncc889yMzMxLx581BYWMh8VldXh7/85S8YNGgQxo4di127dnG+b/v27cjOzsbgwYOxevVqlx2YPUlkZCTn/UWdNXhKIjbjnVnzERl4FWH+xXh71gKmo+jp6g6cbbypEdfthGC9EgEXRqeY40z6IWUstRxCFhmFrN6hQBebMP/rAKiqL9EwDkLGLGyRscXJyFntBNyJj2Ezvic3DfubYyNQW28PrnVZQ4YnZJqjsq87+Pv7Iy0tDQMHDsSwYcPQpUsXREVF+YSIAZogZLZs2YJ9+/bhvffew969e7FmzRrmZPfp0wc//vgj8y8iwuob1Ov1eOKJJ3D33Xfju+++Q6dOnbBy5Upmn++88w4qKiqwY8cOvPDCC3jxxReRn58PADh//jzWr1+Pv//97/jyyy9x9epVbNiwoTmOvdlRqVQIDQ1l3h+p7Ioao/WHMa7Hl7j6RjSK3wrH1H7/BQDozTIcruzOrB8SEkL9e1qIxrqWhOJjlEol/Pwcsw6IpiHUPkIkEraWBajLoZBZbzTsYngACRnCESGLjEquc1jXloLNtsi4k7HEZkzXnZCIjcz7OoMK354Yzrz3JovM7UKjXEsmkwkbN27Eu+++y1gf3Knyd+jQIahUKkyYMAEAMHfuXGRlZaGwsBCRkZHYsWMH1q1bB61Wi65du2LQoEH4+uuvMXfuXOzatQsjRoxARkYGAGDOnDl47rnnsGDBAqffpdfrmQ7UzEFKpc2ubG0ZK/zMlW7dumH37t0AgEpjIP57bSruifwACl5zQoNZig+v3osbrIqJHTp08KlMGKFz4I2wL2buBPsKZSy1a9cOFosFFovFp46/JWiO4+cHG9bzUrDLahxdrUKBvoD1YaI1/x40B7z/+PlzzGaRkYjNUMjqUG+wx1jZUrCtwb4WACK3LTI1RjU00loEa8twR9pP2HtqCPPZ9t9zkNPjCwDuCxnbNcubzy3Q8nPAnS7bjRIyxcXFqK+vx+7du7FlyxZotVrce++9mDx5MgDg6NGjGD58OIKDg3HXXXcxyy9cuMARPCqVCjExMbhw4QI0Gg1KS0s5n6empuLEiRPMtv3792c+a9++Pa5cuYK6ujoolfYJaMMmtNhMmTIFU6dObcyhuk1BQQHnfUREBAIDA1FeXg4AyNcl4OW8JegX+CsiFNcgExuQr4vH4cruqDLag3z9/f0RGxvLWKJ8Cf458Ebq6uzdad0phc+1yNiFjEqlcvgb+cLxtyS3cvw6HfepWO+G24+Tes0TMqWlpaioqOBv0uLQHPDe479x4wbnPTtGTi2v5QqZm64lscgCMUwwQ8oE+gLAuSJhIXOgog+GhOwBAOR0384VModzYDYvgFhscVvISKVSn7oftNQcSExMbHCdRguZ6upqXL58Gdu2bcOVK1ewcOFCJCQkoEePHtiyZQsiIiJw8uRJPPbYYwgJCcHQoUOh0+kcTL4ajQY6nQ61tbWQSCQcUaLRaFBba/Vf8re1BfPpdDqnQuaBBx7AtGnTuAfZQhaZgoICxMbGOijGyZMnY/PmzcxFus6sxp4bwwT3JZFIMHXqVIcYG2/H1TnwNvLy8pjXrrpf2+gcZxUyFQZ/1Jvt/u3k5GSmloIvHX9L0BzHz493c6coHtciYw/ulcvlrd6Vl+aA9x8/PwCc3ziSbfXjF8WrN0uZ1Ot6gxyXSuI4+7IJGbNFhAMVvTAoeC/EIgtyemzHYx+sY9a7Vh6JQxd7onfyQbeFjEql8tq6LWy8YQ40SsjY/HXz5s2DUqlEcnIysrOz8fPPP2PxYnsRoE6dOuHuu+/G999/j6FDh0KlUqGmhpuzX1NTA5VKBbVaDZPJxLGw1NTUMPUg+NtWV1czy50hl8tbLUAKsJq9+H+86OhozJkzBx9++CFKSkpcbh8aGopJkyb5nIhh4+wceBvcwmtSl4XXooMuI0hTDsCWsWQnPDzc4Vh94fhbkls5frlcDpFIBMvNpjTuWMtcVfX11N+B5oD3Hj8/zsTt6r4iA+qhYITMheIkh9YCtvYE5YZA1Jq0yNfFI1Gdh9TIc0iLPI0zhenMutt+H4/eyQdRpePG2AkJGaVS6bXn1BmenAON+tb4+HiHwCkh2NHOSUlJOH/eXgBOp9Ph8uXLSEpKgr+/P0JCQjifnz17FklJSU63PXfuHKKjo51aY7yJ4OBgzJkzB9nZ2U5FSkREBIYMGYJ58+b5tIjxFRyCSm+al51ZZDhuJV7GEqVeNy8ikUgwENst15KRK2QIgg//wdbIbhzpqrqv2AB/aRVkNwN3zxamctZt518Ef7V1jtq6Q5+tsTdU5BfHs7UrcNciQ4G+7tMoIaNSqTB8+HBs2LABer0eeXl52LlzJzIzM7Fv3z6UlVnz6U+fPo2PPvqI6cvQs2dP6HQ6bN++HXq9Hhs2bEBGRgZzA8/OzsZ7772HmpoaHDt2DD/88ANGjBgBABg9ejR2796N06dPo7q6Gv/6178wZsyY5jwHLYZCoUDv3r0xb948LFmyBA8++CDmzJmDpUuXYv78+Rg8eLDbwpC4NfhphDb3krObpVDGEgCvF9C+iFCzVXcsMtXUZ4loAKGsJcB140i5yMAN9OXFx6RGnmVe26qzn6mxix1+N+yjl7oh/3qcg5Bhz3MSMk2j0Xag5cuXo7y8HFlZWXjkkUcwZ84c9OrVC/v378fUqVMxcOBAPPXUU5gxYwYjRuRyOdauXYvNmzdj6NChOHr0KNasWcPsc/78+dBqtRg9ejRWrFiBFStWICEhAYA1K2rJkiVYunQpsrOzER4ejlmzZjXP0bciAQEBaNeuHaKjo+Hv79hrg2hZ+Dc5VxVkhTKWiJaB02yVFYgpVBSPGkYSjUEsFnMeZNgxMg01jgyRuZd6fUNvtciUGUJwvd5agqN/+18QrC3lbPPF4XENWGTs85+EjPs0urKvn58fXnrpJYflS5cuxdKlSwW369ixI7Zs2eL0M6VSieeee05w25ycHOTk5Ah+ThANwb8o1N0sa6+S66BVVqGa1ZG2W/wRAIDJIkaJ3l4XKDMzs+UH2gZprGuJLWRqScgQDSASiSCTyZiyHK4sMvzGkcFyF6nX4XYhU8oqo3G2Jg1hihJIJSaM7fYl3v9pBvPZtt/Hu+1aas1YT1/HdyKJCOIW4BcavKyLBWAtvDZniL18+NCM79Ap9jgA4EpdNMwsrU8VfVsGwarLAq4lW4xMvUl+s8GdFRIyhBDcOlLcrCU2fItMsJsWmVK9PfPpjIs4me9PDkVRBfc6QjEytw71WiLaBBqNhlPf53RNGjKDfwYA/OO+ZRjW8TtU12lxZ59PmNYEhyp6MtuLxeJWT+1tKwhaZIRiZG42jKw2cdNqScgQQrCFjMusJZ5FJuRmjExtvQqXb8Ry1rUJGZNFjApWTbDLdTFMcbxRnb+CTKKHwWQV6AaTnHltwyZkLBbAYCHXUlMgiwzRZmALkct1cdhbOgiA1SqT0+ML3DNgC+RSa12TU9XpOF7ViVk/KSmJKQlANC+N6YMllRgQqC4HQH2WCPcRFDJ81xLLIiMX1yNIZk1gyS1yfIhJCbdm05YZgmBhNf61QIxztVbrjb+6CkM67HE5NpuQsVpj7LE8JGTch4QM0WYYMmQI5+Kw58YQbC/KQYXB7rOuMarx041MfFw4heNW6tu3b6uOtS3B6UzegEWmnX8xYzEjIUO4C3uOuQz2ZVlkQuUlkIpNABwzlqKCrkCjtG5bqg8BH1dp2Hy4QsYOCRn3IdcS0WbQarUYPnw4duzYcXOJGL9X9sSRym7QSGqgENfjhiEYZnCLXmVmZrrVU4xoGpyspQYsMuwaMrU8IcOv4EoQNty1yLDTryMU15jXLjOWDI79wHJrkpmimzk9tmPR/70mODYSMrdOmxQyH374IVPzpqlYLBYYDAbIZLIWb3UeFBSEe+65p0W/o63Qu3dvWCwW7Nq1i6kma4YEVSZ/VJkc1+/cuTOGDRNuL0HcOpynZYscFotw92tODRlWMTyRSCRY7ZsgOELGzfTrcLldNPOL4bEzltiNf23oLQrk6RKQoslFQlg+Osf+gWMFXRzWE4tMzBhIyDSdNilkysrKcP36dU8Pg/AQffr0QXBwML777jsUFhY6XUetVmPs2LFM13Wi5eBesEWoNyuglNQ3KGTYriW1Wt3iDxSE7+J2jAzLtaSR2j/jW2TYxfDYGUtsztakIUWTC8BaHM+ZkPFXVTKuUhIyTadNChmCSElJQUpKCq5evYrTp09Dp9Ohvr4egYGBSEpKQkxMDKRS+nm0Bvx6GXqzHEpJvdOCeEKdr8mtRLiCa5GxzzdX6ddsXHW9dmaRAaxVfrNhdWPn9NiO5z9/2mEdodRrgIRMY6ArNeGSmTNnory8HJ999pmnh9IiREVFISoqytPDaNPwL9j1FgWAKqcxMkKdrynQl3AF+6HE3fRrG1U6La6Vc/vh2YSM0SxBhdGeLKDVapnGxpXGQFyrD0eEogi9kw4gPOAaiioiOPthz3E9CZkmQ1lLPsiQIUOwZMmSFt+GIFoDh4aeZuGGnhwhQw0jCTcRzFpykX5t43wRN9BfJDIjuZ3VZWQN9LXfRvv06cNZ90y1NXtJLLZgXPcvHPZNFpnmgYQMQRAehe9asl3QJWIz1DzTv6sYGYIQoil1ZGzw42NigwuglNcD4LYmAKwu69BQe1sTThp2d8c0bFdCRiKR8FcnBCAh42PMnDkTe/fuxSuvvAKRSASRSIS8vDzs3bsXffr0gUKhQGRkJFasWAGj0ehyG5PJhNmzZyMxMREqlQppaWl45ZVXPHyERFuDb02pMAQyr3sk/M68lkoM6J5wGABQZ1JAZ7Z3Ivfzs/fKIgg+bCFjtNjdTHzXEjv92obrZpHcQN/g4GCkptoznK7WR6LKaHWBZnXaDaVMx1lfSMioVCoKXm8EJGR8jFdeeQX9+/fH3LlzUVhYiMLCQshkMmRnZ6N37944evQo3nrrLWzYsIFpxOlsm9jYWJjNZsTExGDr1q04efIkVq5ciaeeegpbt2718FESbYnAwECOReVCbRLzev19S9Eh6iRC/a7jlemLERFoDfY9W5MK9uUrJiam1cZL+B5sIQOImH5LjllLGtysysDguoaM3SKj1WqhUCiQlpbGWlt8c64CGmUthnf8lrMvW5VqgPos3QoU7OtjBAQEQC6XQ61WIyLCGjj25z//GbGxsXj99dchEomQnp6Oq1evYvny5Vi5cqXTbQCr6XL16tXM+8TEROzbtw9bt27F1KlTW/3YiLaJSCRCTEwMzp61prSerUnFdX0owuQl6JV0CCdf6shZ32QR42BFb+a9TCYjIUO4hCtkrHEycrHBwSIDAHUGJVTyOua9y2aRrGJ4wcHW1zExMVCr1aitte77bE0aegZYLYsLhr+NL4+MY7YZ1eUr5nVRvb2ZZECAvXcT0TBkkbkNOHXqFPr3788xRWZmZqK6uhqXL192ue3bb7+NXr16ISwsDFqtFu+++y4uXbrU0kMmCA49evRgXustCnx49R5UGh3dRWaLCJ8VTURBXRyzrEOHDhRPQLjEQcjcjJPhp18DjplLZ6/xiuFxXEt2i4xNyIjFYrRvbxc/52uSUXbTXTqux5f4z8JpmJb5H2ycNxOTev8PAKAzKXG13p4ZFR0d7faxEWSRuS2wWCwO/lRb1VpXftatW7di6dKlWLduHfr37w8/Pz+89NJL2L9/f4uOlyD4pKWlIS0tDWfOnAEAlBlC8FreInTzP4wk9QWIYUaJPhQHKvqgwhjIbKdWqzFy5EgPjZrwFZxZZABH1xJgDfgNwQ0AQHlNAEqqwjifp0ZYLYd6swxVJrvYtgkZAOjevTuOHj0KADBDit0lIzAl8r8AgGmZH2Ba5gecfW4vzuE0noyLiwPhPiRkfBC5XA6TyV5PPyMjA5988glH0Ozbtw9+fn6MsudvAwA//vgjBgwYgIULFzLLcnNzW+EICMKRMWPGoLi4mGkfYrTIcLCiDw5W9HG6vlgsRk5ODqVeEw0iZJFRyXUO67ItMny3klhkQmK7iwBsqdf2B0W2kImPj0dcXBxj3T5Z3RFbC0WYEP4ZFGK9/btMKuwuycKparv7NDo6mhMwTDQMuZZ8kISEBOzfvx95eXkoKSnBwoULUVBQgEceeQSnT5/G559/jlWrVmHZsmUQi8VOtzGbzUhJScHBgwfx1Vdf4ezZs/jLX/6CAwcOePjoiLZKQEAA5syZg8TExAbX9ff3x8yZM5Gent4KIyN8HSEhI5MaIZPoOZ+xM5f4QiYhLA9yqQGAY9drtpABgKysLE4hvlPVGVh34TF8cOVe7CwejS1X78JreYtwuLInZ7tRo0ZRxlIjISHjgzz22GOQSCTIyMhAWFgYDAYDduzYgd9++w1du3bFggULMHv2bDz99NOC21y6dAkLFizApEmTcNddd6Fv374oLS3lWGcIorVRq9WYNm0a/vSnPyE5Odnhgt6uXTsMGTIE8+fPR2xsrIdGSfgaQq4lwHXjyMZ0veYLmdjYWEydOpV5mASsTVHP1abit4p+OFPTAXVme6NTiUSCKVOm0LxuAuRa8kFSU1Pxyy+/cJYlJCTgt99+a9Q2ALBx40Zs3LiRs+yvf/0r83rTpk23NliCaCQSiQRdunRBly5dUFtbC51OB5PJBLlcjsDAQE8Pj/BBhCwygDVOpqI2kHnPcS252WNJrVY7fAcAtG/fHtOnT8euXbtQVFTk8LmN4OBgjBs3zi1rJOEICRmCILwWtVpNVXuJW4YvMvRuNo50sMiEs1KvWcXw/P39IURCQgLmz5+P48ePIzc3F4WFhaiuroa/vz8CAwPRpUsXpKWlcSw3RONok0ImKCjolvdhsVhgMBggk8la3J/ZHOMlCIJoq/CFjNGNxpEWC3C20EXqNcsi01BlaZFIhM6dO6Nz586NGzjhFm1SyNxzzz23vA+z2Yz8/HzEx8eTkiYIgvBiXMbICPRbKq0OQXkt9yHSJmTqTXJOry9XFhmi5aE7MEEQBHFbw84eAngxMgIWGb5bSSoxICEsD4CtWaTdEk+9vjwLCRmCIAjitkYkEnE7YLuwyNjSr/lCJqndBUgl1lpc/Iwlssh4FhIyBEEQxG0PR8hYGnYtuQ705daQIYuMZyEhQxAEQdz2CFpk3HQtCQX6BgYGUq8vD0NChiAIgrjtYQsZPcsiI5R+3diu14TnICFDEARB3Pa4GyNTq1fDYmnAIuOk6zXhOdpk+jWHb4cBNZcavZkIQIzBCNGxFjiFmjhg+HfNv18fIS8vD4mJiTh8+DC6devm6eEQBHEbIBgj48S1VFzZDlV13ABem5DRmZTQme1F80jIeB4SMjWXgOrGd3wWAZABQH1zD4iIjY1FYWEhQkNDPT0UgiBuE+RyezXfhiwyfGuMXFqP2JACALbUazskZDwPuZaIZsNgMDTLfiQSCSIiIhxqPxAEQTQVdy0yNfUah4q+ye1yIRGbAQA39K6bRRKtDwkZH+Tjjz9G586doVKpEBISgqysLNTUWAPWhgwZgiVLlnDWnzhxImbOnMm8T0hIwHPPPYcZM2ZAq9UiPj4en3/+Oa5fv44JEyZAq9Wic+fOOHjwoMtxSCQSbN68GRMnToRGo8Fzzz0HANi+fTt69uwJpVKJpKQkrF69Gkajkdnu9OnTuOOOO6BUKpGRkYHdu3dDJBLhs88+A2B1LYlEIhw5coTZZu/evejTpw8UCgUiIyOxYsUKzj6HDBmCRYsW4YknnkBwcDAiIiLwzDPPcMb7zDPPIC4uDgqFAlFRUVi0aJGbZ5wgCF/H7fTrekeLjFDGkkgkokamXgAJGR+jsLAQ99xzD2bNmoVTp05hz549mDRpEiwWS6P2s379emRmZuLw4cMYO3Yspk+fjhkzZuC+++7D77//jpSUFMyYMaPB/b788ssYP348jh07hlmzZuGrr77Cfffdh0WLFuHkyZN45513sGnTJjz//PMArK0dJk6cCLVajf379+Of//wn/vznP7v8jitXriA7Oxu9e/fG0aNH8dZbb2HDhg2McLLx73//GxqNBvv378fatWuxZs0afPPNNwCs4m/9+vV45513cO7cOXz22WfU94Qg2hBsCy/bteQsa8llxpKeUq+9DbLd+xiFhYUwGo2YNGkS4uPjAaBJN+Ts7GzMnz8fALBy5Uq89dZb6N27N6ZMmQIAWL58Ofr374+ioiJEREQI7mf8+PGYNWsW029q+vTpWLFiBe6//34AQFJSEp599lk88cQTWLVqFb7++mvk5uZiz549zH6ff/55jBgxQvA73nzzTcTGxuL111+HSCRCeno6rl69iuXLl2PlypXMd3fp0gWrVq0CALRv3x6vv/46vv32W4wYMQKXLl1CREQEsrKyIJPJEBcXhz59+jT6vBEE4ZtwLTL2eBlnwb7nirhCJjXyLPOanXodEsKNlyE8A1lkfIyuXbti+PDh6Ny5M6ZMmYJ3330XZWVljd5Ply5dmNfh4eEAGV13kQAAHDdJREFUuILItqy4uNjlfvgi6tChQ1izZg20Wi3zb+7cuSgsLERtbS3OnDmD2NhYjjhqSFCcOnUK/fv353QZz8zMRHV1NS5fvuz0mAAgMjKSGf+UKVOg0+mQlJSEuXPn4tNPP+W4pgiCuL1pTIuC80UpnGXsqr5s1xLFx3gHJGR8DIlEgm+++QY7d+5ERkYGXnvtNaSlpeHixYsAALFY7OAOchaEy/5R2wSCs2Vms9nleNRqNee92WzG6tWrceTIEebfsWPHcO7cOSiVSlgsFo4gcQdn29iOkb2c3+FWJBIx44+NjcWZM2fwxhtvQKVSYeHChRg0aFCzBSgTBOHdcLKWLHZnBN8iU1wZjtp6DWeZzbVUY1Sj3qxklpNFxjsgIeODiEQiZGZmYvXq1Th8+DDkcjk+/fRTAEBYWBgKCwuZdU0mE44fP95qY+vRowfOnDmDlJQUh39isRjp6em4dOkSioqKmG0OHDjgcp8ZGRnYt28fR6Dt27cPfn5+iI6OdntsKpUK48ePx6uvvoo9e/bgl19+wbFjxxp/kARB+BzcBx0xDGarmOFbZPio5LWICroKgFKvvRWKkdHENWkzCwCjwQipTIrG2RfcwMWY9u/fj2+//RYjR45Eu3btsH//fly/fh0dOnQAAAwbNgzLli3Dl19+ieTkZKxfvx7l5eXNPUJBVq5ciXHjxiE2NhZTpkyBWCzGH3/8gWPHjuG5557DiBEjkJycjPvvvx9r165FVVUVE+wrZKlZuHAhXn75ZTzyyCN4+OGHcebMGaxatQrLli1j4mMaYtOmTTCZTOjbty/UajXef/99qFQqJs6IIIjbG77F1mCRQQajg0WGT0r4eYjF1ocoftdrssh4ByRkmlhB12I243J+PuLj4yFy82baHPj7++OHH37Ayy+/jMrKSsTHx2PdunUYM2YMAGDWrFk4evQoZsyYAalUiqVLl2Lo0KGtNr5Ro0bhiy++wJo1a7B27VrIZDKkp6djzpw5AKyusc8++wxz5sxB7969kZSUhJdeegk5OTlQKpVO9xkdHY0dO3bg8ccfR9euXREcHIzZs2fj6aefdntcgYGBePHFF7Fs2TKYTCZ07twZ27dvpwsRQbQRHISMWQZIdA1aZIRaE4jFYgQEBDTvIIkmQULGx+jQoQN27dol+LlMJsObb76JN998U3CdvLw8h2X8uJqEhIQGU69NJhPy8/Mdlo8aNQqjRo0S3C49PR0//fQT8/7nn38GAKSkpAh+9+DBg/Hbb78J7nPPnj0Oy2x1aQBrLZ2JEycKbk8QxO2NM4sM4Jh+zUeoWWRQUBDEYnGDcYREy0NChmh1Pv30U2i1WrRv3x7nz5/H4sWLkZmZieTkZE8PjSCI2xSnFhk4BvvyESqGR9Zc74GEDNHqVFVV4YknnkBBQQFCQ0ORlZWFdevWeXpYBEHcxghZZGQSAyRiI0xm57dDdup1Kas9AQX6eg8kZIhWZ8aMGZgxY4anh0EQRBtCyCIjElkzl/jdrm3YiuFVGbUwWBTMchIy3gOlXxMEQRC3PUIWGUDYvaRVViE8wFoqgt2aACDXkjdBQoYgCIK47XEpZAQyl9pHnIOtKgSlXnsvJGQIgiCI2x4h1xIgbJERak0glUrh7+/cFUW0PiRkCIIgiNseRyFjb1kglILN7XrNTb1ubKsVouUgIUMQBEHc9jTVtWSDUq+9FxIyBEEQxG2PSCSCVGpP1HUn2JcrZIKY15Sx5F2QkCEIgiDaBGyrDCdGpgGLTIXBH0aL3RVFQsa7aJKQ2bRpE8aOHYtBgwbh3nvvRVVVFbM8KysLw4YNwyuvvMIpM3/ixAncc889yMzMxLx58zgdmuvq6vCXv/wFgwYNwtixYx1K8G/fvh3Z2dkYPHgwVq9eDYPB0JRhEwRBEG0YjpBpwCIToC5HqF8JAMeu1+Ra8i4aXRBvy5Yt2LdvH9577z1EREQgNzcXcrkcP/30Ez7++GNs2rQJSqUSDz74IBISEjBhwgTo9Xo88cQTmDdvHkaPHo133nkHK1euxLvvvgsAeOedd1BRUYEdO3YgNzcXixcvRocOHRAfH4/z589j/fr1eP311xEXF4dHH30UGzZswIIFC5r1RJjNQGlpY9cXQ60GmqtnZEhI8+3LExgMBgc/NEEQhLfQGItMasRZwdRrssh4F426bZpMJmzcuBFPP/00IiMjIRKJkJKSAoVCgR07dmDy5MmIiYlBaGgo7rvvPuzcuRMAcOjQIahUKkyYMAEKhQJz587FyZMnGavMjh07MG/ePGi1WnTt2hWDBg3C119/DQDYtWsXRowYgYyMDGi1WsyZM4fZrzP0ej2qq6s5/+rq6mA2m13+u37djHbt4Pa/iAgxeveOR0SEuFHbufp3/brrMdr+bd26FZ07d4ZKpUJISAiysrJQVVUFs9mMIUOGYPHixZz1J0yYgPvvv595n5CQgGeffRbTp0+HVqtFfHw8Pv30UxQVFWH8+PHQarXo3LkzfvvtN5fjkEgk2Lx5MyZOnAiNRoNnn30WZrMZn3/+OXr27AmlUomkpCQ888wz0Ov1zHbr1q1D586dodFoEBsbiwcffBCVlZXM5xcvXsS4ceMQFBQEjUaDjh074osvvmA+//7779GnTx8oFApERkZi+fLlnP0PGTIEjzzyCB5//HEEBwcjIiICq1at4ox91apViIuLg0KhQFRUFB555BG3zj3/H4AmbXe7/Gvrx0/nwLeOX8gi4yxrSajrtUwmg0aj8dlz4GtzwB0aZZEpLi5GfX09du/ejS1btkCr1eLee+/F5MmTcfHiRWRnZzPrpqam4o033gAAXLhwgelsDAAqlQoxMTG4cOECNBoNSktLOZ+npqbixIkTzLb9+/dnPmvfvj2uXLmCuro6KJVKhzFu3LiRsfTYmDJlCqZOnery2EpLxQDi3T8ZLUBBQQFqa13/4YqLizFt2jQsX74co0aNQnV1NQ4cOID8/HxoNBrU1dWhsrKS05Vap9NBJpMxy4xGI/7xj3/gsccew7Zt2/Cvf/0LM2bMQM+ePTFlyhQsXrwYa9euxbRp0/DVV1+5TDN8+eWX8fjjj+PRRx+FRCLB+++/j4cffhirVq1C7969kZ+fjz//+c8oLy/H4sWLAQDl5eV48sknERMTg4KCAqxcuRJVVVV49tlnAQCzZ8+GwWDABx98ALVajXPnzqGmpgb5+fm4du0axo4dizvvvBMvvPACcnNz8dRTT6Gurg5LliwBYHVVbtq0CbNnz8bHH3+Mw4cP4/HHH0dycjIGDhyIHTt24B//+AdeffVVtG/fHiUlJTh16pTTTt7u/t3aMm39+AE6B75y/Hq93v66gToyQl2vtVotLl265LC+r5yDlqKljj8xMbHBdRotZKqrq3H58mVs27YNV65cwcKFC5GQkIDa2lpotVpmXY1Gg9pa6+TQ6XTQaDScfWk0Guh0OtTW1kIikXBEiattbd+h0+mcCpkHHngA06ZN4x6kVAq5XO6wLhu12p0z0LLExsYiLMz1OqWlpTAajZg9ezbi463Ca9SoUcznSqUS/v7+zGeAVThqNBpmmVQqxdixY/Hkk08CANLT07F582YMHDgQDz74ILNNZmYmlEolIiIiBMczfvx4PProoxDf9Ik99dRTePLJJ7Fs2TIAwMCBAwEAK1aswD/+8Q8AwOrVqzn7kEqleOihh/B///d/AICSkhJMmjSJOS7bPgDg3XffRVxcHDZt2gSRSIRhw4bBaDRixYoVWLduHcRiMZRKJbp168Z835AhQ/DRRx/hxIkTuO+++1BXV4eoqCjce++9zBPa+PHjXZ94J5jNZhQUFCA2NpY5/rZEWz9+gM6Brx0/W8g0lH4tZJGJiIjgXF997Rw0N95w/I0SMgqFtWHWvHnzoFQqkZycjOzsbPz8889Qq9Worq5m1q2pqYH6pjpQqVSoqeGa7mpqaqBSqaBWq2EymTgWFlfb2r5DpVI5HaNcLm9QtDjDG+afWCxucBzdu3fH8OHD0bVrV4waNQojR47E5MmTERRkTw0UiUScCSUSiRyWde3alXkfGRkJAOjSpYvDspKSEkRFRQmOp3PnzjfHbd3u0KFDOHDgAF544QVmHdvft66uDmq1Gt9//z1eeOEFnDx5EpWVlTAajairq2NE66JFi/Dggw/im2++QVZWFu6880506dIFAHD69Gn0798fEomE2f8dd9yB6upqXL16FXFxcQ7HYjue69evQywWY+rUqXjllVeQkpKC0aNHIzs7Gzk5OZzUzMbAPv62SFs/foDOga8cP/se1VCMjE3ImC0ilBnt19eQkBCnx+or56Cl8OTxN+pb4+PjBYM5ExMTcf78eeb92bNnkZSUBABISkrifKbT6XD58mUkJSXB398fISEhbm977tw5REdHO7XG3AohIUBxsfv/rl0z48CBfFy7Zm7Udq7+uRMIL5FI8M0332Dnzp3IyMjAa6+9hrS0NFy8eBGAdTKxs8UAOM3yYv8dba4jZ8sa8lGqeaYss9mM1atX48iRI8y/Y8eO4dy5c1AqlcjPz0d2djY6deqETz75BIcOHWJckLZxzpkzBxcuXMD06dNx7Ngx9OrVC6+99hoAwGKxOLi6bMfLXs6fpyKRiDmW2NhYnDlzBm+88QZUKhUWLlyIQYMGUTYcQdzmsB+AGspaYlKvjQEwWewPOdSawPtolJBRqVQYPnw4NmzYAL1ej7y8POzcuROZmZnIzs7GJ598gitXrqCkpASbN2/GmDFjAAA9e/aETqfD9u3bodfrsWHDBmRkZDBP/dnZ2XjvvfdQU1ODY8eO4YcffsCIESMAAKNHj8bu3btx+vRpVFdX41//+hez3+ZELAbCwhr3LyTE3OhtXP1zV8yKRCJkZmZi9erVOHz4MORyOT799FMAQFhYGCe13WQy4fjx481+voTo0aMHzpw5g5SUFId/YrEYBw8ehNFoxLp169CvXz+kpqbi6tWrDvuJjY3FggUL8L///Q+PPvooE/eUkZGBffv2ccTavn374Ofnh+joaLfHqVKpMH78eLz66qvYs2cPfvnlFxw7duzWTwBBEF6LzbILuLbIhGhLEKQpBwDcYLUmAChjyRtptC19+fLlWLNmDbKyshAQEIA5c+agV69eAKzWkhkzZsBsNmPixIlM3IFcLsfatWvx7LPP4sUXX0RGRgbWrFnD7HP+/Pl47rnnMHr0aPj7+2PFihVISEgAAKSkpGDJkiVYunQpampqMGzYMMyaNasZDt032b9/P7799luMHDkS7dq1w/79+3H9+nV06NABADBs2DAsW7YMX375JZKTk7F+/XqUl5e32vhWrlyJcePGITY2FlOmTIFYLMYff/yBY8eO4bnnnkNycjKMRiNee+015OTk4Oeff8bbb7/N2ceSJUswZswYpKamoqysDN999x1zfAsXLsTLL7+MRx55BA8//DDOnDmDVatWYdmyZW6bNTdt2gSTyYS+fftCrVbj/fffh0ql4vi9CYK4/WDHW1ab/GA0SyAVm9A94TBnvcEd9jKvS/TcwMXw8PCWHSTRaBotZPz8/PDSSy85/eyBBx7AAw884PSzjh07YsuWLU4/UyqVeO655wS/MycnBzk5OY0d6m2Jv78/fvjhB7z88suorKxEfHw81q1bx1ipZs2ahaNHj2LGjBmQSqVYunQphg4d2mrjGzVqFL744gusWbMGa9euhUwmQ3p6OubMmQMATBDu3/72Nzz55JMYNGgQ/vrXv2LGjBnMPkwmEx566CFcvnwZ/v7+GD16NNavXw8AiI6Oxo4dO/D444+ja9euCA4OxuzZs/H000+7PcbAwEC8+OKLWLZsGUwmEzp37ozt27dTkSuCuM1hx/sZLTJcrotBgjofHaJP4693rcDLu5YgMewi/nrXk8x6J6szmNcBAQEOiSuE5xFZ+AEVhFuYzWbk5+cjPj6+zQZ4tfVzQMffto8foHPga8dfWVnJPBQBQLL6HKZFbYZQhYmrdZF4t2AeAOsKffv2xejRoznr+No5aG684fjb3lknCIIg2iT+/v5IT09n3ufWtsfXJaNgsjjeCovq2+E/V+6DTcQAVs8C4X00Ld+UIAiCIHyQkSNH4vz58zAajQCAX8v743R1GvoG7oeftAoiWHCyOgOna9JhYmU29ezZE7GxsZ4aNuECEjIEQRBEmyEoKAhjx47Ftm3bmOzHcmMwvioRzoYNDw/nFB4lvAsSMgRBEESbolu3bvD398fWrVtRX1/vct0uXbpgzJgx1BDXiyEhQxAEQbQ5kpKS8PDDD+Pw4cP4/fffOWUq5HI5EhMT0a1bN05MDeGdkJAhCIIg2iRarRYDBw7EHXfcgZqaGuj1ehgMBoSGhnKqABPeDQkZgiAIok0jEok4TY8J34LSrwmCIAiC8FlIyBAEQRAE4bOQkCEIgiAIwmchIUMQBEEQhM9CQoYgCIIgCJ+FhAxBEARBED4LCRmCIAiCIHwWkcXWbIIgCIIgCMLHIIsMQRAEQRA+CwkZgiAIgiB8FhIyBEEQBEH4LCRkCIIgCILwWUjIEARBEAThs5CQIQiCIAjCZyEhQxAEQRCEz0JChiAIgiAIn4WEDEEQBEEQPgsJGYIgCIIgfBYSMk2grKwMixcvRmZmJiZNmoTffvvN00NqdebNm4cBAwZg4MCBGDhwIBYtWuTpIbUo77zzDqZMmYLevXvjq6++4ny2adMmZGVlYdiwYXjllVdwO3b9EDr+7du3o2/fvsw8GDhwIK5du+bBkbYMer0eq1evRnZ2NgYPHox58+bh/PnzzOdtYQ64OgdtZR48//zzGDVqFAYPHoy77roLP/74I/NZW5gDgPA58OgcsBCNZvny5ZZnn33WotPpLN9//71l6NChloqKCk8Pq1WZO3euZdeuXZ4eRqvx5ZdfWn755RfL/fffzznuH3/80TJ27FhLQUGB5fr165bJkydbPvvsMw+OtGUQOv5t27ZZHn74YQ+OrHWora21vPvuu5Zr165ZjEaj5f3337eMHz/eYrG0nTng6hy0lXlw8eJFS319vcVisViOHz9uGTx4sKWioqLNzAGLRfgceHIOkEWmkdTW1mLv3r1YsGABlEolhgwZguTkZPzwww+eHhrRgmRnZ6Nfv36Qy+Wc5Tt27MDkyZMRExOD0NBQ3Hfffdi5c6eHRtlyCB1/W0GlUmHOnDkIDw+HRCLBXXfdhatXr6K8vLzNzAFX56CtkJCQwPwGRCIR9Ho9SkpK2swcAITPgSchIdNILl26BK1Wi9DQUGZZ+/btceHCBQ+OyjO89NJLyMrKwsKFC3Hu3DlPD8cjXLx4ESkpKcz71NTUNjcXjh49iuHDh2PKlCn4+OOPPT2cVuGPP/5AcHAwAgMD2+wcYJ8DoO3MgxdffBGZmZmYMWMG+vfvj6SkpDY3B5ydA8Bzc0Daat90m6DT6aDRaDjLNBoNqqurPTQiz7Bo0SIkJSVBLBbjo48+wuLFi/Hxxx9DrVZ7emitSm1tLbRaLfNeo9GgtrbWgyNqXXr06IEtW7YgIiICJ0+exGOPPYaQkBAMHTrU00NrMaqrq/HCCy9g4cKFANrmHOCfg7Y0D1asWIHHH38cBw8eZGKE2toccHYOPDkHyCLTSFQqFWpqajjLampqoFKpPDQiz9CpUyeo1WoolUrcf//9UKlUOHHihKeH1eqo1WqOiK2pqWlTYi46OhpRUVEQi8Xo1KkT7r77bnz//feeHlaLUV9fj0cffRR33HEHJkyYAKDtzQFn56CtzQOJRIK+ffviwIED+OWXX9rcHAAcz4En5wAJmUYSFxeH6upqjk/w3LlzjGmtrSIWt82plJiYyMleOXv2bJueCyKRyNNDaDGMRiOeeuophIWFYcmSJczytjQHhM4Bn9t5HrAxm824fPlym5oDfGzngE9rzoG2efe5BdRqNQYNGoR33nkHdXV12Lt3L3JzczFo0CBPD63VqKqqwq+//gq9Xg+DwYDNmzejsrISHTp08PTQWgyj0Yj6+npYLBbmtdlsRnZ2Nj755BNcuXIFJSUl2Lx5M8aMGePp4TY7Qse/b98+lJWVAQBOnz6Njz76CAMHDvTwaFuG559/HvX19XjmmWc4F+m2MgcA4XPQFuZBbW0tdu7cidraWhiNRnz77bc4dOgQunfv3mbmgKtz4Mk5ILJYbtNk9xakrKwMq1atwqFDhxAeHo7ly5ejb9++nh5Wq1FWVoZFixYhLy8PMpkMqampWLJkCdLT0z09tBbjmWeewRdffMFZ9vbbb6NXr17YuHEj/vOf/8BsNmPixIlYtGjRbfdEKnT8P/74I3bs2IG6ujqEhYVh6tSpuPvuuz00ypajsLAQOTk5UCgUHOvjq6++iu7du7eJOeDqHOzZs+e2nwc6nQ5Lly7F6dOnYbFYEBsbi9mzZzMxIG1hDrg6B+vXr/fYHCAhQxAEQRCEz0KuJYIgCIIgfBYSMgRBEARB+CwkZAiCIAiC8FlIyBAEQRAE4bOQkCEIgiAIwmchIUMQBEEQhM9CQoYgCIIgCJ+FhAxBEARBED4LCRmCILyKgwcPolevXujVqxeuXr3q6eEQBOHlkJAhCMJjPPPMM+jVqxfmzZvHLNNqtejUqRM6deoEuVzuwdERBOELSD09AIIgCDbp6enYtGmTp4dBEISPQL2WCILwCDk5OSgsLHRY/vbbb2PBggUAgG3btiEqKoppWhkZGYn58+fjrbfeQnV1NcaPH4+HHnoIb7zxBrZt2wY/Pz/MnDkTkydPZvZ3/fp1vPnmm/jll19QXl6O8PBw5OTkYObMmZBK6VmOIHwd+hUTBOER0tLSoNPpUF5eDo1Gg8TERADA6dOnBbcpKSnBiy++iNDQUNTU1ODDDz/Er7/+iuLiYmi1Wly7dg1r165Fz549kZiYiPLycsycORNFRUXMd1y4cAFvv/02rly5glWrVrXW4RIE0UJQjAxBEB7h73//O+644w4AVlGzadMmbNq0Cenp6YLbGAwGvP766/jf//6H8PBwAEBBQQE+/PBDfPzxx1AoFDCbzTh06BAAYOvWrSgqKkJISAg+++wzfPjhh/jb3/4GAPjiiy9QUFDQwkdJEERLQxYZgiB8Bn9/f3Tr1g0AEBERgaKiIiQnJyMqKgoAEBQUhGvXruHGjRsAgBMnTgAASktLMWLECM6+LBYLjh8/jtjY2NY7AIIgmh0SMgRB+AwajYZ5LZFIHJaJRCIAVpHC/p/tumKjVCpbbKwEQbQOJGQIgvAYNiFRV1fXIvvv2LEj9u3bB4lEghdeeIGx3NTU1OD777/H0KFDW+R7CYJoPUjIEAThMRISEgAAJ0+exF133QWVSoW5c+c22/6nTp2Kzz//HMXFxbjzzjuRmJiImpoaFBUVwWg0Yty4cc32XQRBeAYK9iUIwmOMHz8ew4YNg1arRW5uLo4fPw6z2dxs+w8KCsLGjRuRk5ODgIAA5Obmor6+Ht27d8eyZcua7XsIgvAcVEeGIAiCIAifhSwyBEEQBEH4LCRkCIIgCILwWUjIEARBEAThs5CQIQiCIAjCZyEhQxAEQRCEz0JChiAIgiAIn4WEDEEQBEEQPgsJGYIgCIIgfBYSMgRBEARB+CwkZAiCIAiC8FlIyBAEQRAE4bP8PxxMo06zA3RWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -164,12 +209,8 @@ "city_labels = [\"city\", \"noncity\"]\n", "\n", "tourism_series[\"Total\"].plot(label=\"total\", lw=12, color=\"grey\")\n", - "sum([tourism_series[region] for region in regions]).plot(\n", - " label=\"sum regions\", lw=7, color=\"orange\"\n", - ")\n", - "sum([tourism_series[reason] for reason in reasons]).plot(\n", - " label=\"sum reasons\", lw=3, color=\"blue\"\n", - ")" + "tourism_series[regions].sum(axis=1).plot(label=\"sum regions\", lw=7, color=\"orange\")\n", + "tourism_series[reasons].sum(axis=1).plot(label=\"sum reasons\", lw=3, color=\"blue\")" ] }, { @@ -209,7 +250,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "c7478d62-efc4-47d5-9936-2272560e7b9d", "metadata": {}, "outputs": [], @@ -245,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "cff59853-dac0-4cd4-98a1-ffa5ac021201", "metadata": {}, "outputs": [ @@ -277,7 +318,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "cebbf377-9668-436b-b172-c59f451623f0", "metadata": {}, "outputs": [], @@ -297,7 +338,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "04f4fb58", "metadata": {}, "outputs": [], @@ -315,19 +356,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "c34e663a", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/julien/unit8/darts/darts/timeseries.py:4079: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.\n", - " if isinstance(time_idx, pd.Int64Index) and not isinstance(\n" - ] - } - ], + "outputs": [], "source": [ "model = LinearRegressionModel(lags=12)\n", "model.fit(train)\n", @@ -344,20 +376,28 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "2116be09", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAHfCAYAAACVud3rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1xT1/sH8M9NwnAholaGe4ADBSUow4Fat/ZrnbXDivbnqAtKt7baYbVqxaqttv1ardXW3a+24lZcqBAVXIATB4IDZcgKSc7vj0hKuDeQQBbheb9evtqce3PvufeG5D73nPMcjjEGQgghhBBCCLFFIktXgBBCCCGEEEJMhQIeQgghhBBCiM2igIcQQgghhBBisyjgIYQQQgghhNgsCngIIYQQQgghNosCHkIIIYQQQojNkli6AnqymtzZ6enpcHV1tXQ1SCl0XawPXRPrQ9fEOtF1sT50TawTXRfrY4XXhBMqpBYeAymVSktXgQig62J96JpYH7om1omui/Wha2Kd6LpYn6pyTSjgIYQQQgghhNgsCngIIYQQQgghNosCHkIIIYQQQojNooCHEEIIIYQQYrMo4CGEEEIIIYTYLAp4CCGEEEIIITaLAh5CCCGEEEKIzaKAhxBCCCGEEGKzKOAhhBBCCCGE2CwKeAghhBBCCCE2iwIeQgghhBBCiM2igIcQQgghhBBisyjgIYQQQgghhNgsCngIIYQQQgghNosCHkIIIYQQQojNooCHmE1KSgomTJiAAQMGYN26dWCMWbpKhBBCCCHExkksXQFSPcjlcgwaNAhJSUkAgAMHDsDR0RHjxo2zcM0IIYQQQogtoxYeYhYHDhzQBDvFfvzxRwvVhhBCCCGEVBcU8BCz2L9/P69MJpNBLpdboDaEEEIIIaS6oICHmMWBAwd4ZQUFBbh48aIFakMIIYQQAMjKysKCBQswe/ZsxMTEWLo6hJgEBTzE5FJSUnDt2jXBZWfOnDFzbao+xhglfCCEEAC//fYbmjRpgkaNGuHbb7+l70YDqVQqDBw4EHPnzsWKFSvQo0cPHD161NLVIsToKOAhJifUulPs9OnTZqxJ1SeTydChQweIRCL06tULd+/etXSVCCHEIi5evIhJkybh/v37ePToET7++OMyf28I36FDh7QePKpUKqxYscKCNSLENCjgISZX1g8QtfDoT6lUYvz48UhMTAQAHD9+HB9++KGFa0UIIZaxbt06KJVKrbKNGzdaqDZV0759+3hlFy5csEBNCDEtCniISSkUChw6dEjn8lu3buHRo0dmrFHVlZCQoAl2iu3atQtFRUUWqhEhhFgGYwz/+9//eOWnTp0yf2WqMKGA586dO3j+/LkFakOI6VDAQ0wqLi4OWVlZZa5DrTz6EepXXVBQgMuXL1ugNoQQYjmXLl1CSkoKr/z27dtITU01f4WqoLt37/IeohXTVU5IVUUBj4EUCgXOnz9PAyP1JJSOujQKePSjayBpXFycmWtCCCGWJdS6U4xaefRT1u/zlStXzFgTQkyPAh49HD58GJ999hn69u2L9u3bw8/PDzdu3LB0taoEfQaQUsBTPoVCgePHjwsui42NNXNtCCHEsnbt2qVz2cmTJ81Yk6qLAh5SnUgsXYGq4IsvvsCJEye0yk6dOoU2bdpYqEZVw7Nnz3D27Nly14uNjYVCoYBEQh9HXc6dO4ecnBzBZdTCQwipTu7evYvz58/rXE4BT/nKG19LAQ+xNdTCo4fg4GBeGU3OVb4jR45ApVJplbVo0QL16tXTKsvNzaUv13KUNS/ClStXkJeXZ8baEKIeNJ6SkoLs7GxLV4VUM7t37y5zeUJCgs4HRETt7NmzZY6vpd9kYmso4NGDUMBDfYTLJ9SdbcCAAejWrRuvnLq1la2sgEepVFIaUWJWT58+RUBAAFq0aAFXV1esW7fO0lWqkv73v/9h6NChmDRpEnVNNUBZ43cA9Vwy9JtSNqHsbCXdvXuXgkZiUyjg0UNgYCCv7OrVq3j69KkFalM1MMYE+wcPGDAAAQEBvHKagFQ3uVxebhcNulki5vTJJ59oPnP5+fmYMWMGHj9+bOFaVS379u3DyJEjsWfPHuzfvx+DBw/GkydPLF0tq/fs2TMcO3as3PWoW1vZ9EkoRJnaiC2hgEcP9evXR9u2bXnldJOu2/Xr13Hnzh2tMrFYjN69ewsGPPQ0Tre4uLhyu6zROB5iLnl5efjjjz94ZUeOHLFQjaoehUKBsLAwrS6/GRkZ+O233yxYq6ohKioKCoWi3PUo4NHtyZMnkMlk5a5H3dqILaGAR0/Urc0wQk+PAgMDUbduXcEubcnJydRipkNZ3dmKUcBDzOWff/4RnJRQnwQlRG3dunVITk7mlR8+fNgCtalahLKz9enTh1d29uxZmpRZh4MHD+o1tQYFPMSWUMCjJ0pcYBih8Tv9+/cHADg7O6Ndu3a85XTDJEyfgOfGjRsUMBKz2LRpk2A5tdLqJy8vD/PnzxdcduzYMcjlcvNWqAopLCzE3r17eeWffPKJYDKchIQEc1WtShEav+Pq6soro4CH2BIKePQkFPDExsbSEyQBcrlc8CZ9wIABmv+nbm36KSwsFAysa9euzSvTp4sCIZXx9OlTwRtOADh//jzdrOthxYoVePDggeCyvLw8evBThiNHjvBaF52dndGrVy/B32jq1sanUqkEe2DMnDmTV0YBj2GeP3+OW7du0X2hlaKAR09t2rRBgwYNtMry8/MpO5aAmJgY5ObmapXVq1cPfn5+mtdCiSAo4OE7c+YMCgoKtMoaNmyIV199lbcudWsjprZjxw6dP+aFhYW4ePGimWtUtTx9+hSLFi0qc52y5kap7oS6sw0ZMgR2dnbo3r07bxkFPHwXL17Ew4cPtcocHBwwZcoUiETat4T37t2jtPN62rNnD5o1a4ZWrVrB29sb165ds3SVSCkU8OiJ4zgEBQXxymkcD5/Q06OXX34ZYrFY81qohefs2bO8eXuqO6GWspCQEHTt2pVXTgEPMTVd3dmK0UOLsi1cuLDMuU8ACnh0UalUggHP8OHDAQj3wjh58qReY1WqE6Hf5x49eqB+/fpo2bIlbxllaiufXC7HlClTNN3Kr127htmzZ1u4VqQ0CngMQON49KNr/p2S2rdvz+uWlZWVhaSkJJPWraoRCnj69OkDf39/XjkFPMSU7t27h+PHj5e5DnXH0u3u3btYuXJlueudPXuWnqoLiIuLQ3p6ulaZvb295rdFKpXC3t5ea/nDhw9x69Yts9WxKhAavzNw4EAAQIcOHXjLqFtb+c6dO4fU1FStsgMHDiAjI8NCNSJCKOAxgK5MbfQE6V+PHz/G+fPneeXFCQuKicViwVYKekL8r/z8fMHz0bt3b/j4+EAikWiVP3jwgPelS4ixbNmypdzvOgp4dJs/fz4KCwu1ymrUqIFGjRpplSmVynIDy+pIaLLRvn37ok6dOgAAR0dHwQdB1K3tXzk5OYK9UoqDxvbt2/OWUcBTPqFzqmusFLEcCngM4Ofnx3uClJaWhpSUFMtUyAodPHiQV9auXTs0adKEVy40jofmNvpXTEwMbxC4m5sbPD094ejoCB8fH957qJWHmErpuXeEXL9+nZ5qCrh8+bLgHDthYWEYOnQor5y6tfGV1Z2tGI3jKdvRo0d5Y/A8PDw0LTvUwlMxunr6REVFmbkmpCwU8BjA0dERHTt25JXTOJ5/lZWOujTK1FY2oe5svXv3BsdxAEDd2ojZJCYmCiZoKZ3IBVBnryTaPv30U974RBcXF3z44Yfo27cvb30KeLRdu3ZNcCzJsGHDtF5TwFM2oRaHAQMGaH5ThAKeq1evmrxeVRljTOc94L59+6BUKs1cI6ILBTwGkkqlvDIKeNQYY3qN3ykmNAHplStXqP/6C0Iz1/fu3Vvz/xTwEHMRat3x9/fn3XAC1K2ttJMnT+Lvv//mlX/66adwdnYWnDTzypUrvPEq1ZlQ605AQADc3Ny0yoQSCyUlJeHJkycmq1tVUtb4HQBo27YtZWoz0K1bt/Do0SPBZRkZGfR9aEUo4DGQ0E0mJS5Qu3z5MtLS0rTK7O3t0bNnT8H1GzZsiNatW2uVMcboCTHU+fyFghd9Ah4aU0aMiTEmGPC8/vrrgg8t6Af+X4wxfPTRR7zyJk2aYPr06QCARo0aCU7EfPjwYZPXr6oQGr/zn//8h1fm4uIiOA6FfqPVk1OXTuAgEonw8ssva147OjqiVatWvPdSK49u5T3wpm5t1oMCHgMJtfBcunSp3FSj1YFQc3n37t1Rq1Ytne+hbm3CTp48CYVCoVXWpEkTrbSh7du3553bzMxM3Lhxwyx1JNXD2bNneTdKHMdh7NixOgMeCrrV/v77b8Gb7a+++gqOjo6a10Jdsahbm9rDhw8Fx3aWHr9TjLq1CRNq3enWrRvq1aunVUaJCwxTXsCzZ88eM9WElIcCHgM1aNBAsFWCbtL1S0ddGgU8wsobvwOoM9116dKFtx51ayPGJNS606dPH7i5ucHb2xs1a9bUWvbs2TNcv37dXNWzWgqFAp988gmv3NvbG2+++aZWmdBN+uHDhylwhDpoLH0ePD090bZtW8H1KeARpmv8TmmUuMAw5bUexsfHU/ZUK0EBTwXoSk9dneXn5wumUtWVsKCYUKa2M2fOVPsfel0BT2k0jsdwCoUCn332Gbp3747w8HDKKlYGhUKBLVu28MrfeOMNAIBEIhFs9aZubcCGDRsEuwItXLhQaxJmQP3gp3Sa+Xv37lHgCP2ys5Uk9Pssk8mQn59vzGpVKYWFhYJjQkuO3ylGiQv0l5mZqVcwuHfvXjPUhpRHUt4KUqlUBOBXAK0AcADeAdAAwGIAKgDTZDLZJalU6gpgA4BaAFbLZLKNUqlUDOAXAG0AnJPJZGEvtjkbwBgAGQDelMlkVWpEXHBwMC/FaHXvI3z8+HHeHBONGjVCp06dynxfx44dUaNGDa0fo4yMDNy4cQNt2rQxSV2tXVZWFs6dO8cr1zfgoTFQZZs6dSrWrl0LQP2g4ubNm9i9e7eFa2WdDh8+zBuQ6+DggBEjRmhed+vWjfew4+zZs3jrrbfMUkdrlJ+fj3nz5vHKe/TogSFDhvDKa9WqhYCAAF5LxKFDh+Dp6Wmyelq758+fC051IDR+p1iLFi3g5uamNZ60qKgIMpkMPXr0MEk9rd2pU6eQl5enVebi4iL4sIJaePSn78PZPXv24J133jFDjUhZ9Gnh8QXgIJPJegD4BMB7ABYAGALgdQDfvljvI6iDoF4ApkulUkcAQwE8ePHeWlKpNFAqlTYA8AqA7gC2AJhuvMMxD6EnSGfOnOGNuahOhLqz9evXj5fxpTQ7OzvBL93q3K3txIkTvBS2LVq0QLNmzXjrCk3eeuHChWr9WSzLyZMnNcFOsb///huXL1+2UI2sm1B3tiFDhqBu3bqa15S4gG/VqlW4f/8+r/zbb7/V6pZaUsnB48Wqe+KCAwcOCD5IK/2ZYyoVVBnqsYscx1G3tlKExu/069eP19IIAF5eXrzf7fv379M4ZQFCPXu8vLx4ZYcOHeJ9jon56RPw3AfASaVSDkA9ALkAlDKZ7JlMJrsLwOXFel0BHJHJZAoAMgDeAIIAFN8J7wMQDMAfwDGZTMZKlFUpbdu2hbOzs1ZZbm4uLl68aJkKWQF9+wcL0dWtrbrStzsboA6E6tevr1WWn59PT+QEKJVKzJw5U3CZPpNqVjf5+fnYuXMnr7y4O1sxoXF48fHx1bYL0bNnz7Bw4UJe+fDhwwW/64oJBTxHjhyp1vN4CGVnGzZsmNaNOsvPROF3LSD/KQBMob6ppIBHmyG/z5SpTX9CAU9YWBjv/vD58+c4ceKEmWpFdCm3SxuAJwCKACQBcATQA8CKEssVUqnUHoCdTCYrfiydBXUgVA9Ath5lPFKpdDKAyQAwY8YM9OvXT89DMq2ioiKkpaWhS5cuvD6xe/bsQaNGjSxUM8tJS0sTvMH29vbWa7CeUNe148ePGzTQr6ioyGYGBgq1lvn4+Og8Pm9vbxw7doy3DaFJIc3J2q7Jxo0bER8fL7js999/x7Rp08ptkazqDLkm//zzD54/f65VVqdOHcHPoqurq9a8MQqFAgcOHBBsvbV133zzDZ49e6ZVJhKJMHv2bJ3nvqioCB4eHqhVqxZyc3M15ZmZmdi3bx98fX1NWWWrpFAoBLua9ujRg3ce6zo4Q5L7EI/P/YWixj0EuwGeOnUK9+7d0/tv3Nq+vyoqPT1d8GFsp06dtI7P/vY+2KWeQm7gXLRs2ZI3fuzkyZNo2rSpyetbHmu5LgqFgvdg1tkRCK73AL169sCu3dpzb23ZskUw/bwtsJZrUszDw0OwXJ+Apz8AhUwm85Kqf72+A+BUchsymUwulUqLpFKp6EXQUxfAUwCZJdYtWda6VBmPTCb7GcDPL15azQj21NRUeHh4oG/fvryA58qVKzpPtC0TukH39fXV+0daqE97YmIinJ2dy0xpXVLxdanqnj59Khg8jhw5Uufx9ejRgxfwXL9+3eLnw5quybNnz7BkyRKdy+/fv487d+4IPhm2JYZcE6GBtqNGjRJ8+hsUFMRrDbp161aZYy1s0f379/Hrr7/yykNDQxESEqLzfcXXJSQkhJfG9tKlS4Lfkbbu6NGjvG5UtWrVwpgxY7RSegNAUYfhUJ74FvUyzsKu22to1KgRL3jMyspCVlYWvL299dq/NX1/VYbQGKiOHTvCz89P85pl3kVh9PuAIh91OgyCVCrltQqlpaVZxfmwluty7tw5Xiv25nE10CZxMT7o9wZ2lYrVjx8/bhX1NgVruSbl0edRBwd1cgFA3dpTB4BEKpU6S6XSJvg3YIkDECKVSiUA/ABcARADoLidfgCAUy/W61mqrMoRGsdTXRMXCAU85WVnK8nNzY03PkWpVAoO3Ld1x48fF0zBWtaXidA4HsrUpm3evHnlZmPbtGmTmWpj/Z49eyY4YV7p7mzFaByP2hdffIGCggKtMkdHR8yfP1+v9wt1a6uu8/EIZWcbMGAAL9gBALGXOiBUJv8DxhgkEolg98Hq2K1NaPxO6exsRQc+ARTqm3fltShKXKCH0t3Z+rcWoVdTdScnH4cU3li9a9eu0Rx5FqZPwHMQQBOpVHoMwGYAXwKYCyDqxeviiQa+ffH/xwGskclk+QD+AdBUKpWeAFAgk8lOy2SyxwD2SKXSU1AnPfjRmAdkLv7+/oJpRO/du2ehGlmGSqUSfIJkSMADCI8DEJpsztYZMn6nmFCmtkuXLlXbMRSlXbp0CT/+WP7XzNatWyGXy81QI+u3Y8cOFBUVaZW5urrqbKWg+bTUrdJCrTuzZs1C48aN9dpG3759eWUnT56sdn/LjDHB8Tu60lFz7lKgViMg6x7YQ3UCEhrHo35wKPT7XHL8jvLWUaiu7gBEdgAA1fUD6NCeP8cRBTzaSj7gFnPAwn7/jiuTPDiDvsH8OfKEHiIRM2KMVYV/VuP+/fua//f392dQd7fT/Pvzzz8tWDvzi4uL452DGjVqsIKCAoO2ExkZydvO8OHD9X5/yetSlXXs2JF3HjZv3lzu+xo3bsx7X0xMjBlqrJs1XBOVSsV69+7NOze1atViNWrU4JXv3r3b0lU2KX2vSUhICO/chIWF6Vz/+fPnTCwW896Tnp5urKpbvVdffZV3/M7Ozuzp06flvrf4uqhUKvbSSy/xtnPo0CFTV9+qxMfH886BWCxmGRkZOt8j/98Ulj/PgRVFf8MYY+zQoUO8bTRr1kzvOljD91dlnTlzhncOatasqfl9VimKWMGqzprzVrC8Lcuf58Dyr0czkUjEe++zZ88se0DMeq5Lyd/cSX4ilj/PgT1b2JwV/NqX5c9zYDvmj+Kdv/79+1u62iZhLdekBMFYwrZH6JoYTUAq3J0tJCQEDg4OBm2HJiAFHj9+jEuXLvHKy+r7X4zm4xG2Y8cOwVazzz77DK+88gqvnLq1qcehlB4TBgCvv/66zvfUqlVLcGxEdenWdvr0afz111+88k8//RT16tXTezscx1G3Ngh3Z+vZsydcXARzHAEARMXd2q6pn6J369aNl3b5zp07gunCbZVQdrbevXtrfp+VcT+BPb4Krl4LiIPCIfIcDAAQ3zmM1q1b895LmdrU7t27p/kc1bEHPgtR9/ax778A4g6jAADdG/Gnl4yOjuYlgiHmQwFPJdA4nsqloy7J19cX9vb2WmXp6em4c+dOhetW1QjdZLZv316vzH80jocvLy8PERERvPLWrVsjLCxMcDzK7t27kZOTY47qWa0tW7bwHjS0adOm3IxrQuN4qkO3NsYYPvroI15548aNMWPGDIO3J9StrboFPELd2cpLgCFq2QeQOIKlxoHlpKF27dqCiXOq00PJssbvsOePoDj6JQBAMmAJODtHiDwHAQBU1/YKjuOhgEet5GcoorsYjWpzuPSsJmp0Hgex11AAgNOTWDRvrP3bLZfLecmuiPlQwFMJQUFBvLKEhIRqE8Hn5OQIBniGjt8B1LO3d+nC7/NaHW6Yigl9EZY3fqeYUAtPdQ94lixZgrt37/LKIyMj4eDggAEDBvCeGOfn5wvebFUnQq1cr7/+us4JM4sJjeOpDi08UVFRgnNsfPHFF6hRo4bB2xNq4Tl37hwv1bWtunv3Li5cuMArLy/g4exrQdRC/X2pvKbOMFidx/E8e/ZM8O+v+IGk4vDnQGEWRK37a1rHRM16AHa1wB5eQmCHJrz30jgeteKAp7ETMCtA3Yp4wm4AOI4DV7exekyZIh9hr3Tivbd0FkZiPhTwVIK7uzuaN2+uVaZUKqvFjzygHmCvUCi0ypo0aYK2bfkDHvVR3ScgrUjCgmIlU4wWu3btGjIzMytbrSrpzp07WLRoEa980KBBmhS/9vb2GDNmDG+d6tytLTExUfBms6zubMWEWnji4uJseuJMpVKJjz/+mFferl07jB8/vkLbbNq0KW9uMsaY4PeDLRLqzubj48P7rRVSfOOuetGtrToHPIcOHYJKpdIqa9myJVq3bg1VqgzKC78BIjtIBi7VPMzgJA4QtVIH3D3c+YkyKOBRK37Q+0UfCWrYcdh2WYmmASM1y8VthwEAhvCng0JUVFS16qpvTSjgqaTqPI5HVzrq8p4E61KdM7WlpaUhKSmJV96rVy+93u/s7Cw42Z5MJqt03aqi999/n5ce2M7ODpGRkVqfT6FubQcPHsTDhw9NXkdr9Oeff/LKpFKp4GertLZt28LJyUmrLCcnR/BzbSs2btyIy5cv88oXLlzIy+JpiOrcrU0o4NGVna008YsxKKqbh8GK8gV/ny9evIjsbP74Clujs7s5YyiKCgfAIA6YCVED7b9tkae6y1tr7ibv/RTwAM+fP0dCQgK6uHF43UeMQgXDZ4cVWj1+RG3V40M98i/D0d5O6/33798XHKtLTI8CnkqqzuN4hL5QK9KdrZhQwHPhwgXejastio6O5pV16tQJDRo00HsbNI5H7ciRI9i+fTuvPCwsDF5eXlplQUFBvDmgVCoVtmzZYtI6WiPGGP744w9euT6tOwAgEokEP4O22kpbUFCAzz//nFceFBQkmBDDEELd2g4fPlypbVYFz549E/wu1HcCW87JHZxbF0CRD9Wto3Bzc0PLli211lGpVDb7mSzGGNM5fkeZ8DtYahxQ2w2SXp/w1hG3UQc8tZ+cQ20H7aQPDx48qLa9BoqdPXsWSqUSi/qrH2j8cFYJzrk53N3dNetwDduCq98GXMFTTBlC3dqsBQU8lSQU8Jw+fdqmu3EA6lnUS0+ipSvDkL6aNGmi9aUBAEVFRYJdbGxNZbqzFaNxPIBCocDs2bN55a6urpg7dy6vXCQSYdy4cbzy6titLTY2Fjdvaj/V5TgOY8eO1Xsb1WkC0h9//FFwjNi3335b4VbuYr179xacuFBof7YkKiqK99vZtGlTweQDuhRPQqpK/gdA9ezWdvXqVaSmpmqVSSQS9A7yg+LQZwAAu34LwDnU4b2Xq+MGzt0PUBTgtUB33vLqnrggJiYGw7xE6NFchCd5DItPKHn3gRzHaVp5xvk58bZB8/FYBgU8ldShQwdeN47s7Gybb/oVmszM39+/zLSh5eE4rtp2a6OAxzjWrFkj2MVo0aJFvL/TYkLd2mJjY6vdrNhCrTt9+vThPYQoS3UJeLKysrBgwQJe+bBhwwRvsA3l4uIimMTF1lt5dGVnMySA/Dc99V4wlapaBjxCrTvdu3eHo+x7IPcRuCaBEHXiP+gpJnrRyvMfb0feMlu/tynP2ZgTWPBiktEF0QpkFQonsCoex9PB7jZvWUxMDJ4+fWraihIeCngqSSwWC96k2/o4HmOloy6tOs7Yfv/+fcHWsp49exq0HV9fX964gfv37yMtLa3SdawKnjx5gs8++4xX3q1bN7z11ls63+ft7Y1OnfjdDoQCAFulUCgEu/Hp252tmFDAc/nyZZvLXLl48WLeDYtIJMI333xjtH1Ut25tBQUFgjfq+nZnK8a5+gBOHsDzNLC0C4IBz5kzZ1BUVFThulo7od/ncf06Qxn7IwAOdoMjywwii8dC+bvwMwNW54BHpVLBK+8U2tQXIfmJCv89p04KIdTTh/PoCtR2hSQvDYP9GvO2I3SNiGlRwGME1S1xgUKhEPzhrcz4nWLVMVObUOtOly5dDJqwEABq1KiBjh078sqrSyvP3LlzBfuXr1y5EiJR2V91Qq08mzZtqjbZdI4cOcJL1GBvb48RI0YYtJ2XXnoJLVq00CpTqVQ2lTzjwYMHiIyM5JWPHz9ecPLVitI1AamtfiaPHDnCC4ydnZ0NfvDDcRzEni9aeZL/gZeXl2D6eVvtKp2Xl4fjx4/zykfWjQVUCoil70Dk5lvmNji3zkCtRqjL5cD7Je3AqDoHPIkXTuO9burMtHMOKqFQAXXq1BH8u+dEIs2cPFP78FN8U7c286OAxwiqW+KCs2fP8rLcODk5CT7dNVSXLl14rRT37t3j9Ue2JcbozlasunZru3DhAn7++Wde+cSJEwXPSWnjxo0THDNx7tw5o9XRmgm1Zg0ZMgTOzs4Gb8vWu7V9+eWXyM/XTtnr4OCAL774wqj7CQ4OhoODg1bZw4cPbfaGUyg725AhQ2BnZyewdtlEL240VdeiIBKJqtVDyWPHjqGwsFCr7O2Aeqj1WAY41oOkz/xyt8GJRBC/yNY20FP7NtFWP3/6yD/8NerX5HDstgp7rqlbdwICAiAWiwXXLx7HE9ggg7ds7969Nj/W29pQwGME3bp14z1Bvn37ts12JRJKR92nT58K/TCVVrNmTfj4+PDKbbmVhwKeymGMYebMmbwn305OTnp3MWrSpIngk+TqkLwgPz8fO3fu5JULtXrpw5YDnuTkZPz3v//llc+YMQNNmzY16r5q1KgheKNui93aVCoVdu/ezSvXNx11aaLmPdUTaKYngGXerVbjeEp3C6whARa8yHIu6TMfXM36em1H9KJb22BP7Zv5tLS0ajMJbkmqp7fglXsMKsbw8YF/5x8U+hstJmoRAjg4oXbeHbRz0x4PlZGRYfO/zdaGAh4jqF27tuBNuq0+QTLV+J1i1albW0pKClJSUrTKxGIxevToUaHt6Qp4bLUbDABs3rxZ8G9t3rx5aNSokd7bERqvsnnzZpt/CvfPP/8gJydHq8zJyQmDBw+u0PaEAp4zZ85U6c+gQqFAbm4u5syZw/s81K1bF598wk/vawy6urXZmtjYWKSnp2uV2dvbV/h3hbNz1Eygqby2V2fAU5U/k7qU/n2O6C5GfUkeuEadIJa+o/d2RC37ACI7dGvMoX4N7WXVMVOb4vDnsONU+CNBhfj0fz83QgkLinESe4jaqD/Dswe14S2n9NTmRQGPkVSXJvOnT58KPpUwxvidYtUpU5tQ645UKkWdOvx0ofro0KEDatTQ/nV6+vQpbt26VaHtWbvnz5/jgw8+4JW3bdsWM2bMMGhbo0aN4rVSpqen2/wM90Ld2UaMGMH7HOmrc+fOvPOYlpaG+/fvV2h7FaVQKLBv3z58/PHHmDVrFqZMmYIJEyZg3LhxGDFiBIYMGYKXX34Z3bt3h7+/Pzp16gQvLy80b94cbm5ucHFxQa1atSCRSGBnZ4fatWtjx44dvP18/PHHqF9fv6fmhhIKeKKjo21uwL1QdraXX365wt+DwL/Z2lTJ/8DPz4/XPfDRo0c2l4kxJSUFycnJmtfNnIGIYHULjd3gZeBEwl2vhHAOdSBq3hMiDujXunp3a1PdOwPVle3IL2L44ui/rTsikUjwfqUkcVt10o2BLRW8ZRTwmFfFp4ImWoKDg7Fq1SqtMlscx3PkyBGoVCqtslatWvEmd6sMoS+Qc+fOQS6Xw97e3mj7sQbG7M4GqOda6NKlCy/YjouLQ6tWrSq8XWu1cOFCwfFd33//vcGfFRcXFwwePJg3lmDTpk2Vml/Kmj179kxw8GxFu7MBgKOjI3x9fXkPRs6ePYsmTfiDd00lIiICK1asMOk+3N3dMWvWLJNtv0uXLnB2dtZKxvH8+XPExsaW2ZWmqhEav2NodrbSxG0GQgEOqpRjcIAc/v7+vG5sp06dQps2/CfvVVXp1p1v+0vgKOEg6jgWomaGp0sXeQ6C6tZhDPYUYfOlf3/3q1PAwxhD0f6PAADfn1bifonhy506dSo3KBe17g+I7fFS0W00rAk8zvt32YULF/DgwQODUv+TiqMWHiMR+vE5f/488vLyBNauukzdnQ0AWrZsiYYNG2qVFRQU4OLFi0bdj6Uxxowe8ADVZxzPzZs3sXTpUl75f/7znwq3OArd6O/YsYM3SN1W7Ny5E3K5XKusUaNGlf4MWnocz+XLl00e7ADA/PnzUbNmTZNtXywWC14LWxrHk5ycjKSkJK0yjuPwyiuvVGq7XO2XwDXpBijlUN08XC3G8ZQcv9OnJYf/tBNDzuxg169i6dJFnoMAAC+3EkFS4m6xOgU8qis7wO6fRY6qBr47pd2dtazubMU4RyeIWvQGB4bJAtna9u7da7S6krJRwGMkTZo0QePG2rnWFQqFTd1oMsYEExYYszsbUH0mIL1x4wavm4+dnV2ln9wKBTyxsbGV2qY1eu+993g36/b29vjuu+8qvM2hQ4fyntjl5OTgn3/+qfA2rZlQUobXXntNZ9YhfVk64NmwYYPJ9+Hr64vQ0FCT78fWx/EIte5069YNrq6uld52yfTUth7wFBUVaQJhOxHw3UB1B55Hbd4G5+RRoW2KXFpBXqc56tXgENDk3yyW1WUMD1MUQnFoLgDg58QGeK79c6P3b7WonTp4H+Nbi7eMurWZDwU8RmTr43iSk5Nx9+5drTKJRFLpp8FCqsMEpEKtO127dkWtWvwvRUMIBTznz5+HQsHvQ1xV7d+/XzCr0/vvv1+prns1atTAyJEjeeW2mK0tNTUV0dHRvPLKdGcrJvT3K5PJzDL2RKlUYuPGjUbdJsdxcHR0hLOzM9zd3TF27FhERUXxUuibQt++fXllp0+ftpnJXIXG71Q0O1tpmnE81/chKIAfhCcnJ+Px48dG2ZelnT59WpN85N1uYrRtKMLNZxyajfq2Utu1bz8MADCozb+3i9UlU5vy7I9gmSlgDdri6913eMv1aeEBigNvDq3t7qN2qZ7WBw8e5D24I6ZBAY8R2XrAI9S6ExgYCCcnJ6PvqzpkajNFdzYAaN26NW/+lLy8PCQmJlZ629ZALpdj9uzZvHIPDw+jZMsSuuGPiorC06dPK71ta7JlyxZelqrWrVtDKpVWetutWrXiDeTPz8/H5cuXK73t8hw+fJg3JYCdnR1WrlyJtWvXYuPGjdi+fTv+/vtvHDhwAMeOHcOZM2dw4cIFXL16Fbdu3UJqaiqePHmCnJwcyOVyKJVK5Ofn49mzZ0hNTcXmzZvh5uZm8mMBAE9PT8HeAydOnDDL/k3p4cOHgt/rlR2/U4xr2A5cvRZA3hPUzb2GDh068Naxld/o4u7mrrWBT3upW2h3ZEph51i5B2h2bdVzGg2qZvPxsNwnUBxfBAC41ng8CuTaD2vc3d3RrFkzvbbF1XEF16QbRKoiDO+k3YPg+fPnNvG3XBVQwGNEQgHP6dOneYP8qypzjN8pJpVKeXMb3bp1C48ePTLJ/szNVON3APXTaFsex7Nq1SqtTETFlixZgtq1a1d6+7179+Z1pykqKhLM0FWVCbVavf7667wJWCuC4zh07dqVV26Obm1C3dmGDBmCGTNmYOLEiXjjjTcwcuRIDB06FP369UPPnj3RrVs3+Pr6ol27dmjRogXc3d1Rv3591K5dG3Z2dkY5JxXFcZzNdmv7+++/eUG3l5cX2rZta5TtcxwHkaZbW5RgtzZbCXiKx+981VcCJwcOe5KVcOs+vtLbFTUNQq5SgnYNRWju/G+5rQc8imPfAIVZELV6GfuS+S3TwcHBBn0vFGdrm9j9Jd4yocQxxPgo4DGiTp068bojPXv2jDcgsyoqLCwU7P5i7PE7xerUqQNvb29eua208iQlJeHhw4daZfb29oItWxVhq+N40tPTMX/+fF559+7d8dprrxllH2KxWHBbttStLSkpCefPn+eVC81FVFGW6Jaak5MjOInq+PGVv/GzJKFubbYQ8Ah1ZzNW604xTbe2a3tsdhzPo0ePcP78eQQ05vCmrxiFCoYP9yuM8kCSE9vhjqg1AO1WHlsOeFRPrkMp+xngRJD0XyQYFOvbna2YqK26a6BfvQzYlbrzpnE85kEBjxFJJBLBwbq28AQpJiaGl3HOxcUFXbp0Mdk+bblbm1DrTmBgYIXnPinNVlt4Pv30U94kmRzHYcWKFUZ9Ci/Ure3YsWO4d++e0fZhSX/++SevzM/PD15eXkbbhyUSFwhl1CtON16VCQU8Fy9erNIt3s+fPxcM2owe8DTrDjjUBXuciF6dmvKWnzt3zuTZVLdu3YpJkyZh6dKlyM7OLv8NBjpw4ABEHPDdIPWYsuWnlXBwbYemTfnHWxEFHr0AAIPa/JvMxJYTFygOfgqoFBB3fhvcSx0EpxgxNLmQqH5rcA3bw16Vj14ttG+9k5OTcfPmzUrVmZSPAh4js9VxPELd2fr161fpbE5lseXEBUIBT58+fYy2faHuRBcvXkRBQYHR9mFusbGxWLduHa988uTJ6Ny5s1H35efnB09PT165UKBQ1TDGBCcbNWbrDiD8GUxKStKaU8bYhLqzjR07ljfpZFXj5uYmOP7kyJEjFqiNcezfvx+FhYVaZY0aNRIMlCuDE9up50IB4JobDw8P7YxlRUVFJn0YtGzZMowdOxa//vorPvjgA0ilUqP3+ti/fz/e7ixCF3cR7mcxLD6hNGp383rS0VAxhp7NOdR6MaewrbbwqFKOQ5X8N2BXC5Le83Dt2jVkZGRorVOjRg34+voavO3ibG2TevIzEFK3NtOjgMfIhAIeW5iA1BzpqEsTCnhiY2OrfLYxlUol2D3QmNnu3N3deZOZKRQKJCQkGG0f5qRSqQQneHR2dsbXX39t9P1xHCfYymML3dri4uJ4M8xzHIexY8cadT/16tUTDBpNdXN59+5dwQcJVb07WzFb69YmlI562LBhJnmIJn7RrY0l7xH8jTZVt7arV6/i448/1iq7fv06AgICjDb/ikqlwpnoffiij7p155ODCuQVAQMHDjTK9gGglXdXxKUCDhIOfVqqbxvT09NtLpELU6k0k4xKukeAq+Mq+MC6a9eusLOzM3j74rbqgKdv00KU7o9A3dpMjwIeIwsICOB1rbl+/XqV7nrw8OFDXLhwgVdu6oDH09MT9erV0yrLzc2t8k+Wrly5gidPnmiV1ahRQ/CJeGXY0jie33//XbA71FdffYUGDRqYZJ9CLR4XL140S6YxUxJq3enduzfvybcxmLOVVigYbdOmjdFbDCxFV+KC0oP+q4KioiLBua2MlY66NFGbAQAnhurOSfQJ4nfDNkUvDKVSiXfeeUcwFXtWVhaGDh2K7777rtLXLz4+Hu92zETDWhyO3VZh+xUVHB0d0bNnz0pttyR7e3vInrkAsO1xPKpLf4KlXQDqeEAcGAZA+IF1RefK49w6A06NUQfPIfXQvk+Mjo5Gbm5uhbZL9EMBj5HVrVtXcLB9VW7lEXqK2L59e16qVGMTiUSCNytVvVub0FPo4OBgo3e7sZVxPNnZ2fjoo4945d7e3pg6darJ9tu6dWvBz59QwFBVKJVKbN68mVdu7O5sxcw1jocxJtidbfz48RbNsGZMvXr14rV+3LlzB7du3bJQjSru5MmTvHlcatWqJdiKZQxcjXoQNQsGmBIvt+Qvj4mJgVKpNOo+V69eXeZk2SqVCu+//z5CQ0Mr1dVYFvUbJktFUKgYIvapez/06tXLaONBiz2o0REAMLCNSNM6YUsBD5Pnoejw5wAAu77zwdnXBCAcDBuasKAYx3GaVp7X/LSn8ygsLKy6XVRVVaPXDQU8JmCpcTzbtm3D22+/jXnz5vG6rFSGOdNRlyb0hLisH5GqwFTpqEsTajGqagFPZmYmpk6dystoBwArVqww+cSPQoHAH3/8UWVTzZ86dUowO+CIESNMsj9dAY+xWyVkMpnguIg333zTqPuxJCcnJ8G/6arYrU0oO9vAgQPh6Ohosn0Wp6duXHAZdepoz4WSlZVl1Jv3u3fv6j0n2G+//YbevXvz5o7SB2MMvk/+gFjE4ec4Ja48Uv9dmeL3uU7rQNzPYnCrw8HXTR3y2FLiAuWZFUB2KjhXH4g6qbszZ2RkCH6vVCabanG2thHe9rxlValbG8tOheL8Osi3jEO936VgmXfLf5OFUcBjApYIeH788UeMGTMGGzZswJdffok2bdpg8ODB2Lt3b6VuzhhjFhm/U8zWMrWpVCocO3aMV26KgEdoAsnk5GRkZWUZfV/GJpfLsWLFCrRq1UowUcCoUaNMcs5KGzt2rOBT9araYit0ozl48GBe11Fj6dSpE+8m9smTJ7h9+7ZR9yPUutOrVy80b97cqPuxNKFubYcPH7ZATSqOMSY4fsfY2dlKK05PzW4eRHAgP3A01jgexhimTZuG58+f85YJtboD6t80f39/nDt3zqB95cZtQCfnHDzOZfgq+t8WKmOO3ynWoYM39l5X30sMbKO+dbSVFh72/CEUJ5cCACT9F4F7MQeg0MPVdu3awcXFpcL7EjXrATjWg6tdNjzra7c+R0VFWW0XVaYsgvL2MRQdnIPCH6UoXNYKit3ToEr8CyJ5DlR3rT85FwU8JiAU8Jw7d85kGbLu37+PDz74gFe+d+9eDB48GG3btsX3339foRvdixcv8p4IOzg4GLV/cFmEnmgmJyebfLCkqZ7gJyQkCHblMMbs9qXVq1cPrVu31ipjjBn8o2pOjDHs2LEDHTp0wOzZswWvs6OjI5YuXWqW+jRq1EjwJrMqJi/Iz88XzAQklJzBWOzs7ODn58crN+ZDC7lcLhgU20qygpJ0BTxVqcUxISEBd+7c0SoTi8UYMmSISfcrqt8aXAMvoCATY4P46ZqN9VBy8+bNgn9nkydPRkxMDMLCwgTfl5qaiu7duwt2ORXCCp9DcVDdijTviAKZL24vmjRpYrSJW0tq37499l5Tf84Ge9pWwKM4+hUgfw6R52CIW/77IE3oM1HR8TvFOLEEIi91mvzh7bV7KNy7d8+qxoiyrHtQnFsL+eaxKPzWHUW/DYDy1Hdgjy4DdjUh8hwCyZAVeDY2GuJO4yxd3XJRwGMCzZs3583ULpfLTXaj+cEHH5Q5j8D169cRFhYGDw8PvPvuuwY1Qwu17vTo0QM1a9asUF0N5ezsjHbt2vHKTTEOoKCgANOnT0fNmjXRpEkT/Prrr0bfh1B3th49elQo44s+qtI4njNnzqB79+4YNWpUmV0y58+fj2bNmpmtXkIBwdatWyGXy81WB2PYs2cP76lznTp1TH6jaepxPHv37uWljXV0dMSoUaOMtg9rERAQwPvuffr0KeLj4y1ToQoQat3p2bNnpZ6a66u4W1tPd/7vpTFaeJ48eSKYTdLNzQ2LFy+GRCJBZGQk1q5dK/idX1BQgHHjxmHOnDllBrFMWQRF9FdwLHqKcw9U+O3Cv+sOHDjQJOPW2rRpg5P3RMgvYpB6iNColjqhUem/vapG9egqlOd/BTgxJP0Wai0zZsKCkorH8YyTOvGWWbJbG1PIobx1FEUHPkHhD11QGNkGir+nQ5W0C5DngGvQFuLA2bB7aw8cPkqD/es7IPGfDJVTE4vV2RAU8JgAx3Fm69YWHR2t9xOh3NxcrF69Gh06dMDLL7+MXbt2lTtQ05Ld2YqZI9MTYwyTJk3Cjz/+iPz8fDx48ACTJk1CRESEUZ+eCg1KNGXXrKowjufmzZsYM2YMAgMDy+wq5ujoiEWLFuHDDz80Y+3UmaNKDwB++vSp4Ng2ayaUbGHEiBFGH9xcmqkDHqHubK+++iqcnPg3E1Wdvb29YOt6VerWJtSt0lTZ2UorTk/tlpvA66p69+5d3L1buXEI7733Hi8DJ6Ducl63bl3N64kTJ+LIkSNo2LCh4Ha++eYbjBgxQjPJMlMpoUqVQXHyO8h/H4bCRa5Qnv5evc8oBVQlekGZanytvb09mrT0RPRt9e9hfxvp1qY48AnAVBBL34Go4b8TL8vlcsGsphVNWFCSqFU/QFIDbZ2ew117OJnZ5+NhmXegkP0C+Z+jUbjYHUUbBkEZEwn2+CpgXxsir2GQDF0Jh7BkOMyIh92AbyFu1RecpArObcYYqwr/rMb9+/f1Wm/ZsmUMgNa/V155xah1KSoqYt7e3rz9GPKvefPmbPHixSwjI4O3/dzcXObg4MB7T0JCglGPozw///wzrw79+/fXWkff66LLN998o/McjR49muXn51dq+4ypr1edOnV424+Nja30tnU5efIkb39NmzY12f5KKu+aPHnyhIWFhTE7O7syP6Mcx7EJEyawe/fumaXeQl577TVevcaOHWux+hjq2bNnzN7enncMBw4cMPm+U1JSePu1t7dnBQUFld52RkaG4Odn7969Rqi5+Rjy/bV06dJyvw8tQaVSsby8PJaWlsYSExPZmTNn2L59+9jmzZvZTz/9xL799lv2wQcfCP6Np6SkmKeOSgXLX+TO8uc5sFEhHXn1+OOPPzTrGvqbsm/fPsFjGzVqlM733Llzh/n6+vK/8wDWsRHHFgz3YM9+Gcjyv3mJ5c9z0PqX/V1b9n9Skdb7xGIxe/bsWUVPT7lGjx7N/k8qYvnzHNifoyUMAFu9erXJ9ieksr/1JSluHFSfz28aMtXzR1rLzpw5w7suDRs2ZCqVyij7LvxjFMuf5yB4DZ8+fWqUfQhRFRUwxY1DTL7vQ1aw0of3uSr4oQuT7/+EKW4eYaqiQr22acxrYiSCsYRpUxxVY7omIGWMGa25+ccffxTs7/nzzz/D1dUVK1euxMGDB8vcRkpKCj788EN8/vnneOONNzBz5kz4+PgAAI4fP86bCdvV1RUdO3Y0Sv31JdTCc/bsWahUKohElW+k3LVrFz799FOdy7dt24YHDx5g165dqF+/foX3c/78ec0Tu2JOTk7o3LlzhbdZns6dO0MsFmu15N29excPHz5Eo0aNTLbfshQWFmLVqlX4+uuvkZmZWea6L7/8MpYsWVKhWa2N6Y033uC1pO7evRs5OTm8jE/WaMuWLbwueI0aNTJL4oemTZvC1dUV6enpmjK5XI74+PhKz5GzZcsW3jwnrq6ugmNdbIVQ6uYTJ06gsLDQ6KntAeDy5cs4fvw4nj59iszMTGRlZWn9t+T/V6Sbp4+Pj9m6qHIiMUSeA6FK2ITXu7pge7T28pMnT2LcOMPHIjx//hxTpkzhlTs7O2PlypU639e0aVOcPHkSEya8jUvRO9GrOYeQFiL0aC5Cg5ocgCfAfXU3aK5eS4ha9IKoeS+IWvTCz+u24RfZbK3tBQQEwNnZ2eD666tDhw5Yu38bMATo20oEO1HVa+FheRlQXd8HZfIeqK6rW+klPT4EV0u7tU2ot0FQUJDR7t9EbYdBlfw3xnaujV9k2ZpypVKJ/fv347XXXjPKfkpi+c8g/28vsIxr/xba14GoZR+I2vSHuHV/cHWrRve0CtEVCVnZP6uhbyRbWFjIHB0deU8IkpOTjVKPhw8fsrp16/K237VrV6ZUKjXrJSYmshkzZrDatWvr3erTo0cPtnXrVjZjxgzesvHjxxul/oZQKBSCLSNXrlzRrFPRJwwJCQmsVq1aep0XLy8vdvPmzQofx6JFi3jbHDp0aIW3p69OnTrx9vv333+bfL+lr4lKpWJ//vkna968ebnnukOHDmzv3r1Ge5pWWYWFhczFxYVXzw0bNli6ajplZGSw1atXs6CgIMFzPGvWLLPV5T//+Q9v/99//32ltxsQEMDbbkREhBFqbF6GfH8plUrWoEED3nEfPXrUqHVSqVTsm2++YRzH6f3bUZF/8+bNM2q9y6O4vIPlz3Ngqd/yW3h8fHw06xlyTcLCwgSP7b///a/g+iqViikzbrAi2VpWuO0tlr+kKe9J+/Uwe/bLfyTsDR8Ra+4i4bWkDBo0iLe/r776qkLnRF9bt25lAFjsVDuWP8+B9W7Bsd69e5t0n6VV5Lde+eQGKzq1nBX8+jLLn19T6zwXbhjCVHJ+D46RI0fyzu+3335rjENgjDGmyn3C8ufXYM8/d2R1HbT389ZbbxltP5r9qVSscMs49XEva8PkB+Yw5e1jerfilKWqtPBYOpCx2YCHMcZ69uzJ+4P59ddfjVKPiRMn8rbNcZzO7lFZWVlsxYoVzNPTs1I/Ths3bjRK/Q3Vt29fXl3Wrl2rWV6RP7iHDx+ypk2bGnT8L730UoW7oA0YMIC3ve+++65C2zLEO++8w9vv559/bvL9lrwmx48fZ127di33/Lq6urJffvmFFRUVmbx+hpo6dSqvvgMGDLB0tbQUFBSwHTt2sOHDh5fbVfDs2bNmq5dQl9HXX3+9UttMTk4WPK74+Hgj1dp8DP3+Gjt2LO+458yZY7T6qFQq9tFHH5k00Cn+zbp06ZLR6q3XseVnsfwvarO8+TVYg5r8+mRmZjLG9L8mZ86cEQwK+/Tpo/XARpWVyhQXfmfyv95h+cta8wKc/MVN2Y1lIWxKgCNrWU/4fL377rtMLpez/Px8VqNGDd5yU3aPZoyxK1euMADsy75ilj/PgS0ZIGYvvfSSSfdZmj7XRaVUMuXd00x+cA6/29YXtVjhb4NZ0ZkfmeqZcFdKlUrFXF1deef35MmTRj2WwnX9WP48BzbWW7tbW4MGDZhCoTDqvorO/ao+/gUNmDKj4g9uhVDAQwEP++STT3h/MJMmTap0HYT6lgJg77zzTrnvVSqVbN++fWzo0KEVenL38OHDSte/IubMmVPm8Rr6B1dQUMCCg4MFj3HYsGFsw4YNOm8Ya9asyXbv3m3Q/uRyuWBL0oULFwzaTkX89NNPvP0OGjTI5Pu9f/8+S05OZsOHDy/3c1WzZk02f/58lpOTY/J6VdSJEyd49RaJRCw9Pd2i9VKpVOzEiRNsypQprF69enr9HXt5eZm19ezIkSO8OrRq1apS2/zss8942+zUqZORamxehn5/CY1r7Natm1HqolQqBVv3TfHvs88+M0qdDVW4YQjLn+fA3uvnxqtT8fgvfa5JYWGh4DhaR0dHdv36dc16iqv/Y/lf1Na+8V7kxgo3j2VFZ1cz5cOrmr/H+Pj4Mh/E9e7dm/3555+88gYNGmj17jAFuVzO7OzsWGATjuXPc2CXZ6rHBT5+/Nik+y1J13VRFeYyReLfTP6/KSx/cRPtc/3NS6xw+3imuLSVqfIzy93HrVu3eOfX3t7eKGN5Syo6vYrlz3Ngm8fyx0qfOXPGaPtRPk5m+V/XY/nzHJgifpPRtluMAh4KeNg///zD+xC3a9euUvtXKpVMKpXytuvs7MwePXpU/gZKuHHjBnvvvfcEu8YJ/evcuXOl6l4Zf//9N68+3t7emuWGXBeVSsVCQ0MFj9Hb25tlZ2czxtQ3abrOjUgkYj/++KPe+zx16hRvGy4uLib/gWKMsfPnz/P2Xb9+fZPe8D569IhNmDCBSSSSMj9TIpGIvfPOO+zBgwcmq4uxKJVK1qxZM94xGKNrVkUkJyezzz77jLVo0cKgm8w6deqwI0eOmLWu2dnZgg9YDP3OKqZUKgW7Ri5dutTINTcPQ28YhG7IRCKRpnWiohQKBZswYUKFAxg7OzvWsGFD1qZNGyaVStnLL7/MRo0axSZNmsQiIiLYl19+yVasWMF+++03duvWrUrVtTKKzvzI8uc5sFPvt+YdQ3FLmT7X5KuvvhI8D4sXL9aso3yczPIXNFB3n/ptMCuK+Z4pH8QzVRnf/Q8fPmTdu3fXeZ6F/pbGjRtX+ROjhw4dOjARB3b/A3uWP8+BtanPsWPHjpll34xpXxdVTjorOvcrK/xjJMv/yll78H2kJ5NHRagH3yvkBu3j999/553fwMBAYx8KUz1LYfnzHNizuTWZg9g0DwNURYWsYE2A+vO3/W2jbLM0Cngo4GEZGRmCX1ZCGdH09csvvwhuc+XKlRXe5vPnz9maNWtYhw4dyvwx++ijjyq8j8p6/Pix4Jd+VlYWY8yw6/Ldd98JHl/9+vV5P8KXL19mTZo00XlOPvzwQ72Clq+//pr33ldffdWwk1BBcrlccDyZqW441q9fz5ycnMq9ORo0aJDZu7NUllCrbdeuXc22/8ePH7OVK1fq1T2w9L/27duzjz/+2GLBpdCT8H/++adC2zp27JjgDX9VCJyFVOSGoWXLlrxz8L///a/CdSgsLGRjxozR+fkZM2YMW7RoEVuzZg3bvHkz27t3Lzt9+jS7evUqe/DgAcvLy7OaMXflKb7RzJ7vxOxL3WiGhIQwxsq/JlevXhXMfNilSxdNl1xV4XNWsKqz+mZz65sGnZ/CwkLB7si6/v32228VPyEGKP6M/PqqhOXPc2CzAsQGPfyrDJVKxdIuHWVFxxezgl96sfx5jtpBzk/BrOjYQqZMv1Spz+K0adN45/f999834pH8q2B1N5Y/z4ENbCPifY6MQb7/kxcBoJderVsVQQEPBTyMMcbatWvH+8Op6IDxp0+fCg5W7dSpk1HGPKhUKnb06FE2YsQIJhJp//HZ29uza9euVXofldG6Nf9p3MGDBxlj+l+XPXv28I4NUD+Z1PWUKjU1VTB1aPG/1157rdwUu0JjkFasWGHYCaiEwMBA3v63bNli9P0UD2ot65+Pj4/mulU1ly9fFjymkt1XjC0vL49t2bKFDRs2rNwWs9L/GjVqxMLDw9n58+eZSqWy6A/TpEmTePWr6FNMoW0NHDjQyDU2n4pcl//7v//jnYMZM2ZUaP/5+fls6NChOj9Hn376aZUJZvRV8KOU5c9zYC+30m4tqVGjBissLCzzmiiVSsEu0WKxmJ0/f54x9mKQ+La31DebK32YqsDw7roqlYqtWLGCicXicv/W09LSKnwuDDF//nwGgI3uoE5PvXe8HZs+fbrJ96vKfqAJDjT/vnRihRv/w4rifmGqrFSj7Uso0c/OnTuNtv2SiqIXsPx5DuzHYfzv9so+wFHcOKQ+T/NrMuXd00aqMR8FPBTwMMaEB4x//PHHFdq3rn7VpmhOvnPnDvv444+Zv78/k0qlbNeuXUbfh6HefPNN3rEXZ6XR57pcuXJFMNsboDubTrHs7GzBpAPF/3r27Kkzd35BQYFgC4s5WzdmzZrF27+xn1jdvHmzzJYdDw8Ptn79eqMPxjQ3Hx8f3rF98cUXRt2HSqVix44dY5MmTdKrtazkv5o1a7I33niD7d27l/cgxJI/TEKt0/369TN4O3l5eYJ/xyXnUKlqKnJdtmzZwjsHFekynZOTw/r06aPz8/TNN98YvM2qQH54Hsuf58BWv8rPYHrmzJkyr8kPP/wgeK5K9oIo7jaXv6A+Uz5KrFRdDx48WOb4PF9f30pt3xDbtm1jAJizI1jOZ/Yse649G9y3u0n3qVLIWcHa3ix/ngPL/caVFe6cxBRX/qpQEFmezMxMwS6DphqrqUy/pM4a+FFNJuK091kyMZOhVM8fsfwlzVn+PAdWFL3AiDXmo4CHAh7GGGPr1q3j/eH06NHD4P3Gx8cLtkxUNtNRVSL0IzNkyBDGmH6TXAp1AQHAwsLC9Nq/XC4XfLJc8mbj9u3bvPcJdb8x5gRm+hDqk9yzZ0+jbb+wsFBwbBkAVrt2bbZgwQKWm5trtP1Z0rfffss7Rk9PT6Ncz5ycHPbjjz+y9u3bGxTkiEQi1q9fP/bbb79pxqAJseQP08WLF3n1rlu3rsHj2IQGbNepU6dKf74qcl2EuvkCMGhbz54905m2HDBvK7S5Ke/Fsvx5DuzeJ3V5x7106VKd5/Hu3buCAXfr1q1ZXl6eett3T2uSFCgubTNKfa9du8batm1bbqBlalevXtXs98Db6vTUEwKcTbpPeVSEOnhc2oKlXos36b7279/PO7+VTbBSFpVKxQqWt2X58xxYUBPtQGvEiBEV3mbhphHq1sW1fZhKabqHjHfu3GH9+vWzePKeUijgMQZDf5iuXbvG++NxdHRkhYX65z5XqVSsR48evO3UqlXLGiNrkzl37hzvHBQPvi/rPMjlchYSEiL4QzFgwACDugOqVCqdA1UBdVplmUym9Z7iLgAl/40ePbrC56EikpKSBD8/xmptee+99wTPx6BBg6zti7DS7t69K/gEMC4ursLbvHHjBgsPD9c7gUjxPx8fH7ZkyRKWmqpfdw5Lfl8oFArB+cASEw17+i00/8jEiRNNVGvzqOh16dy5M+9c6DuW4/Hjx4LvLw6gK/N0uSpQKZUsf0kzlj/PgXVspP33PHz4cMFrolKpdHb9K04Eosp5yPKXtmT58xyYfK9xW9EzMzPZ4MGDtfYrFou15qQzteJMbQBYeJA6PfUv/5FUOAFJeRQXN79IJ12bKe+eNvl32Oeff867tqaef1C+7yOWP8+BLeqv3XWxTp06Bt0rFiuK/UmTnU717I4Jaqx24sQJ1rBhQwaABQUFldu134wo4DEGQ//YVCqV5gNR8p8hKQc3bdok+AVrzEmwqgK5XC4498C1a9d0p6pUqdiUKVMEz5+Xlxd79uxZhery22+/6RxPUatWLbZnzx7Nur169eKtY65BnsWUSqXgzfTly5crve3du3cLnocmTZpU+PxaO6Frqm9LYTGVSsX2799vcIp4d3d39sEHH7CLFy8aXG9LPyARevCwfv16vd+flpYm2NIdHR1twlqbXkWvy/vvv1+hm7PU1FSdrYgSiYRt3ry5QvWpauS7prL8eQ7s457aN5oNGzZk9+7d462/efNmwXNWPEWCSqlghesHqJ+s/zfE4Oxg+lAoFGzRokWsadOmrE2bNhbpylmcgKRtA3V66jvv27Poo4eNvh9l+iVNOuWis2sYY6b/Dnv55Zd51/enn34y6T6VKSdZ/jwHljib3/X98GHDzqvy4RWW/1Vdo7YuCvnll194U3dMnDjRWsb6UcBjDBX5YxOaZVzfCSezs7OZmxt/rgBPT88KRf5VndBkrhs2bNB5XVauXCn4A1WvXr1KJ2E4dOiQzvEVYrGY/fTTTywvL08wk4+hT7WNQShxwrp16yq1zbt37zIXFxfBm6aKJueoCoTmQXF1ddWrxSw7O5utXLmSeXl56R3k1K5dm7399tvs0KFDlWqVs3TA8/HHH/OOberUqXq/XyjDYrNmzcyS3t2UKnpd9u3bJxgQl3XTkZKSwlq1aiX4ObO3tzd4jrGqTJH4N8uf58BO/h9/HpTjx49rrfvkyRPBh5eurq6aBzvyg3NfTCLaxKiD6K1NyWx+V2ep01NvXf6BUfehynvGCr5vr85wtyNU85k25XdYUVGRYCu0qcfbqpQKlv9tY5Y/z4F1eEn74VdERIT+25Hns4If/NSti3/9n0nqKpfL2cyZM3X+VllJN1jBWEIEYnLBwcG8slOnTun13q+//hppaWm88hUrVsDe3r7SdatqAgICeGWnT58WXPfgwYMICwvjlYvFYmzduhVt2rSpVF369u2LkydPwsPDg7dMqVRiypQpGDNmDORyudYyV1dXeHl5VWrfFeHv788ri42NrfD2FAoFXn/9dTx9+pS3bNGiRejcuXOFt23tRo0axfv7S09Px9GjR3W+5/r165g9ezY8PDwwc+ZMJCcnl7ufXr16YdOmTXj48CHWr1+Pvn37QiwWV7r+ltKtWzde2dmzZ/V+/4YNG3hlb731FkSi6vlT1r17d97n8MGDB0hKShJc/9q1a+jevTtu3rzJW1azZk3s2bMHw4YNM0ldrZGoZR9A4gg/d8C1tvay0t+NERERePz4MW8bP/zwA5ydnaFM+gfKk0sATgy7Ub+Dc3I3ZdUtqkOHDpr/33ddBQBwvH/MaNtnKhWK/poE9vQmuEadYDd0FTiOM9r2dbl06RKeP3+uVebs7Iz27dubdL+cSAxx26EAgFfaan+X7dmzR+/tKA7NAXt0GZxLa0gGLTNqHQEgIyMDAwcOxMqVKwWXe3h4IDAw0Oj7NRpdkZCV/bMaFXm6IDTppKura7lNf4mJibwmQ0Ddv7i62rlzJ+98dO7cmXddkpOTmbOzs+ATiB9++MGodbp3755gGktd/8w1QVxpO3bs4NVFKpVWeHtz5swRPL4hQ4YwpVJp8dYEUxs+fDjv2CdMmKC1jlKpZFFRUYLjTnT9q1GjBvu///s/lpCQYPQ6W/qaPHjwQLA1VJ+EAwkJCYLnKzk52Qw1N63KXBeh7pVCT1kvXrzIGjVqJHgOnZyc2MmTJytzCFVW4aZXWf48BxbaRbur5NixYzXrHDhwQPC8FQ8qVz65wfK/eUnd9eqkfr03qrLt27drzsHLrdTd2i69V89o2y+K/kbdUrawEVNm3NRaZsrvsFWrVvGu8aBBg0y2v5IUyVEsf54DOz2Zf8938+ZNPd6/98VYp1pMeV9W7vqGunTpks7ETwBYQECANc2DRl3ajKEif2z5+fmC3ZrK+hCrVCrWv39/3nscHR0tOkO1pem6YSrZPe3p06fM09NT8I9y2rRpJqlXVlYW69evn143tD///LNJ6lCeu3fv8upiZ2dXoYGGBw8eFBx34uHhwR4/fswYs/zNtakJzTlUp04dlpeXx7Kystj333/P2rRpo3eg06xZM7Z48eJKTUxcHmu4JkIT+Z44caLc9wmNV+nWrZsZamx6lbkuQklU/vOf/2itExcXJ9j1FFAnfimdaKU6KYr7heXPc2DbXtMek9myZUvGmHpi7hYtWvDOW926dVlqaipTFeZq5vQp/HOMtYxhMKnExETNeXAQgz3+RN2tTZXJH/dkKMX1Ay8mFHVkiuS9vOWm/A4bN24c7zoXT31haip5PstfUJ/lz3NgTetq16G8ieVVOeksf3ETdcB9YqnR67Zr1y7Brn7F/8aMGWNNCQsYo4DHOCr6xyaU+nPDhg061//rr78EP1jz5s2rYM1tR7NmzXjnZds29eC8oqIiwUARAOvduzeTy40/iLSYXC5nEyZMKPfG9saNGyarQ1lUKhVzdXXl1Sc2Ntag7aSnpws+KRaJRFr93q3h5tqUdM0HM2DAgDJ/HEr/69OnD/vrr7/MMj+RNVyT0aNH887BkiVLynxPUVGR4GfX2K21llKZ63L69GneeXFyctJknzx+/LjO+cdcXV3NOh+YNVJlpbL8eQ7s6af2rIZE+/w8fPhQZwbKX375RZ3+d+ckdZKC7zuYbCZ7a1NUVKTV+2TrWAnLn+fAnh2NrNR2lU9vs/xFbuob96PCgYYpv8OaNm3Ku87F2ffMoXDL6yx/ngOb3k07iUZZkyqrlEpW+PswdcC9fgBTGXE8o0qlYl9//bXOpDoikYhFRkYKJviwMMFYonp2fLYAQ8bx5OfnIzw8nFferFkzfPTRR0avW1UjNI7n/PnzANT9rA8cOMBb3qpVK2zbtg12dnYmq5ednR1+/fVXzJs3T+c6TZo0QcuWLU1Wh7JwHFfpcTwqlQpvvvkmHj58yFv2xRdfoEePHpWqY1VSo0YNjBw5kle+f/9+Xj/w0mrWrIkpU6bg0qVLOHz4MIYPH16lx+YYoiLjeA4fPoz09HStMjs7O4wdO9aodauKpFIpnJyctMqys7Mhk8lw4MABDBgwADk5Obz3NWnSBMePH4e3t7e5qmqVOCd3cO5+qGHHoXdL7Vui5cuXY/ny5bz3hISEYNKkSVCeWwtVwkZAUgN2YzeDc6xrplpblkQi0RqHGnVNPY4n79JfFd4mK8pH0ZbXgPynELUZBHHPTytdT0Pcv38fd+/e1SoTi8Xo2rWr2eogbqsePzfMS/tzePToUeTm5gq+R3n2B6huHABquMDu1bXgjDSeMS8vD+PGjcPcuXPVrSOlODs7Y+/evQgLCzPL+CpjoIDHTAwJeBYvXoyUlBReeWRkJGrUqGHsqlU5QoPizp8/j59//hkrVqzgLXNycsLff/+N+vXrm7xuHMdh/vz5+PXXXyGRSHjL+/TpY9EvB6GAJy4uTu/3L1q0CIcOHeKV9+nTB5988kml6lYVvfHGGwat36JFC3z33Xe4f/8+1qxZUy1vNisS8AglKxg6dKhZ/qatnUQiQUhICK983rx5GDZsGPLz83nLWrdujZMnT1Y6cYutEHsNAQAMKXWjuXDhQqhUKq0yR0dH/Pzzz2APzkGx9z0AgN2wHyBqVL3+lksmLtj/InGBU8Z5sCL+5608jDEo9swCS48HV68F7Eb8arQbd33FxMTwynx9fVGrVi2z1UHkOQgQ2aF7MxHql7jVKywsFEyIo0pLgOLQHACA3StrwDnxEyhVxN27d9G9e3ds2bJFcHnbtm0RGxuL/v37G2V/5kIBj5kEBQXxyq5cuYLMzEytstu3b2PRokW8dfv374/hw4ebqHZVi1ALz8mTJzF9+nReuUgkwubNm9GuXTtzVE0jNDQUe/bsQe3a/6b+4ThOMGucOVUm4Dl58iQ+++wzXvlLL72EjRs3VpsWipJ69+4NNze3ctd7+eWXsXv3bly/fh3vvfce6tWrZ4baWacuXbrwHgbcu3cPDx48EFw/Ozsbf/3Ff3I8fvx4k9SvKnr55Zd5ZQcOHOBliATUN6rHjx9H06ZNzVG1KkHkqQ54BrURobzHUfPnz0drDxfIt44DlHKI/adA7PO66StpZUoGPGnPgfMPVJCgCKqU4wZvS3nuv1DG//6ipWwLuBrm/34UCniEHlSbEudYF6IWvSAWAYM8y87WxuR5KNrxtvozKP0/iNu9YpQ6nDx5Ev7+/rhw4YLg8iFDhuDMmTNV8mEJBTxm0rBhQ94HhDGGM2fOaJW99957KCgo0CqTSCT4/vvvq0yzoan5+vryUrHm5uZCoVDw1l26dCkGDRpkrqpp6d+/PxISEjB9+nS8/fbbOHnyJHx9fS1Sl2JCAU9iYqJgl5eSMjIyMG7cON7TTo7jsHHjRr1u+m2RWCzGW2+9JbisVq1aePfdd3H16lUcPHgQw4YNq5ZBYWk1a9ZEp06deOW6Wnl27NjBa6VwcXHB4MGDTVK/qqhv3756refn54djx45V279XXTjXTlDWcoNbHQ5d3HX/zvr6+iI8bDaKdkwAsu6B8/CHZMBi81XUipQMeABg74tWHtW1KIO2o7ofC0VUiZYyV/53gzkI9bgRelBtaqK26sCldHrqNWvWoFevXvjll1/w7NkzKA58BPYkCVyDtpD0/9Yo+167di369OmDR48eCS7/6KOPsGvXLtStW0W7buoa3GNl/6xGZQbMCQ1onzt3rma50CRyANgHHxh3Qi9bEBgYWO5gcCua9deqCKWWPHr0qM71VSoVGzp0qOA5/uSTT3S+zxoGyJtDdnY269Chg+actGrVikVGRrLMTOsbwGwt12TatGm8z9JHH30kuG5ISAhv3enTp5u5xqZV2euiUqkEJ6gu+S84ONgqP5PWovDvWSx/ngP7vLdY8PyJxWJ27tw5Jj/ypTr97yJ3psq8a+lqW0xSUpLW+ZG6q9NT5y9ro/fvrirnIcv/rqV6osw9YXq9xxTfYc+fP2diMf+6W2IwfskkGjXthP+WX+2gzoqXO78Wy78TV+l9FhUVlTmZqKOjI9u0aZPO91vL70oJlLTA0soaxyOXyzFr1izecjc3N8FuRNWdULe2krp3744ff/yRWsUEGNqt7fvvv8c///zDKw8ODsaXX35p1LpVRXXq1EFCQgKio6Nx4cIFXLt2DWFhYVX3KZgZ6DuO586dO4iOjuaVU3c2bRzHCXZrK/byyy9j//799JksQ/E4nsGewrdF7733HnzqPIby2DcAONiN+g1c3SZmrKF1adWqlVZPi3MPGB4+Z0DWXbBHV8t9P1MqULT9LSA7FVyTgHJbKe7fv49169Zh//79gr05KiMuLg5KpVKrrEmTJmjcuLFR96MPzskdnEdX1LDj8HIr/mfRvQ6w8kXj9kd7C+Dm0w9TpkzBiRMneD0w9KHPZKInTpzA669X/W6bFPCYkVDAc/bsWSgUCnz//fe4du0ab/mSJUtQp04dc1SvSikr4GnWrBl27NgBBwcHM9ao6jAk4ImLi8OHH37IK69Xrx7++OMPwcQM1ZFYLEavXr3g6+sLkZkH21ZFQn+/QjcdGzdu5K3n5eUl+Bmu7nR1a3vllVfw999/m3XwdVUkatELcs4BPq4iNC0VF7Zq1Qrzwyequ7KBQdJnHsStdAeY1UHpTG0M/yYv0Kdbm+Lw51ClHANqNYL96D/ASex1rnv58mX4+flh4sSJmDRpEqRSKW7dulXpYygm1J3N3ON3SirO1jayk6NWOQfgv8PtUL8mh/3XVfjhrBKZmZn4+eef0bNnT7Rs2RJz5sxBYmKiXvu5cuUKunbtisOHDwsuDwgIQFxcHKRSaaWOx1rQL7MZeXl58QYr5+XlYe/evYJPyrt3724TUbUpCGVqA9TjJnbv3o2XXnrJzDWqOoTSbAoFPFlZWRg7diyKiop4y9avX0+DnkmFtWnTBs7Ozlplubm5uHLliuY1Y0wwO9v48eOp5VbAq6++ioYNG2qVvfbaa9i+fTscHR11vIsU4yQOKHRV/66UHjD+y5pVEO+eCBQ8g8hzMMTd+Q+BqiNd43iU1/eW+T7llZ1QxiwDODHsR28E5+Sue12lEm+//bbWuJKEhAT4+fkhKsqw8UK6WEPCgpJE7f4DABjlWxvffPWFJrAMDxKjd0sRHj5nmLyrCKWTRd+5cwfffPMN2rdvDz8/P0RGRvLS+RfbvXs3AgICdAaOEyZMQHR0tE2N96OAx4xEIpHgILi3336bN2+HSCTCqlWr6Iddh8aNG8PT01OrjOM4/PHHH4IDosm/unTpwmuFSElJwePHjzWvGWOYPHkybt++zXt/WFgYXnnFOBlhSPUkEokEA++S3dpiY2MFW73ffPNNk9atqnJycsKePXvQp08fdOzYEd999x02btxo0rnHbE29ruo084M9/00uMmXKFHTP2w2Wdh6cc3OjznVS1ZUOeA7fVEHBRGD3zoDlZQi+R/U4CUW7JgMAJP0XQtS87LnbVq9erZlnr6TMzEwMHToUX3zxRYW6cmnqo1IJBjyWSFhQTNTAE1wDL4gKs/Dh6z2QmJiIy4d+x5cvq1vBpuxS4JHwtDwa58+fx3vvvQcPDw8MHDgQGzduxPPnz8EYwzfffIPhw4cLzhcnEokQGRmJX3/91eZ6ydBfrZkJPTV49uwZr2zatGnw8fExR5WqJI7jsGTJEs0fpEQiwcqVK+lGXA+1atVC+/bteeUlW3l+/vlnbN26lbeOn5+fYNp0QgxV3jie33//nbc8JCSEWhbL4O/vj8OHD+PixYt47733KCuggcSeA8HAoXcrCbr7++Czzz7Dyv/rBuX5XwGxg3pyUQukTLZWpQOeHDlw6VltgKmgunGQtz4rzEHRlrGA/DlEHUZDHDCzzO2np6djzpw5OpczxjB//nwMGzZM8D5KH4mJibzpQWrVqmXxB6eiF93aVEl/A/JctL6yEGJOBc5/GsJXReHNN99EzZo1y92OSqXC/v378dZbb6FRo0bo2rUr5syZYzOTiRqCAh4z06eZtH79+jQYXA+vvPIKkpKSsGPHDhw6dEhwHh4irKxxPBcvXhScL6hOnTrYsmWLzT31IZYhNI6nOE2/XC7Hn3/+yVtOyQqIKXG1GkLUpBvsOBV2LpuJ+dNGQLk3HAAgGfI9RG6+lq2glRF6cPa/K+ppNZSlxvEwxlD0v8lgT5LBNWwPu1dWl3tTHRERgezs7HLrERUVBalUioSEBANqrybUutOtWzeLj08Vt1V3a1Mm7YZibzjY05vgXvKGff+FGDBgAH7//Xc8fPgQGzduxMCBA/UaO5qXlweZTCa4rKpOJmoICnjMTCqVlvuHtHDhQri4uJipRlVb8+bNMWLECLRu3drSValSdI3jyc3NxdixY3lzQQHAL7/8glatWpmjeqQaEPoMXr16FdnZ2YiKisLTp0+1ltWoUQMjR440V/VINSX2GgoAcLj+F4q2jgMUBRB3CYWkywTLVswKlc7UBgA74tXdpFQ3DoAp/82mpoyJhCrxL8DBST25qENtlOXIkSP4448/eOW6Jm2+desWAgMDBROdlMXaEhYU49z9gDruQPb9F5OyOsJu1AZwdv+Ox6tduzbeeOMN7N27F6mpqVi+fHmFEgxU5clEDUEBj5nVrFkTXbp00blcKpVi4sSJZqwRqY6EWnhiY2MxY8YMJCUl8ZZNnjwZY8eONUfVSDXRoEEDXgDNGINMJhNMVvDqq6/CycnJXNUj1ZTIU52e2v7OIbBnt8G5dYZkUKSFa2WdJBIJ2rZtq1V28ylDfg0PoCAT7L66xVZ56ygUh+YCAOxeXQtRg7JvrAsLC/Huu+/yyuvXr4/o6GidU3Xk5+fjrbfewowZMyCXy/U6BqsNeEQiTbY2AJAMWAzRS/wWtWKurq6YPXs24uLikJiYiLlz56J58+bl7qfKTyZqAAp4LKCsP6ZVq1ZRv2tich07duQ9mXv8+DHWr1/PW9fb2xvLly83T8VItSI0jicqKkpw3ifqzkbMgWvYFly9luoXjvVgN+YPrafqRFvpcTwAcJ2pH2Qor+0Fy7qnnm+HqSDu8aHWTbwu3333HZKTk3nlixcv1nT53717t86b9B9++AG9e/fGgwcPytzPo0ePcOPGDa0yjuPKnefPXMSdXgfAQdTuVYil/6f3+9q2bYuvvvoKN2/exIkTJzBlyhRey5ijoyM2bdqERYsWVZt7Tgp4LEBXwBMaGip4A0CIsdnb28PX17fc9WrWrImtW7eiRo0apq8UqXaEbixWrlzJS4Xu5uamc54ZQoyJ4ziI/adAZVcbdiN/g6heC0tXyaoJBTwnHqh/L1RJf0O+9XUg7wlELftC0nteudu7ffs2vvrqK155UFAQJkyYoHk9bNgwyGQydOzYUXA7MTEx6NKlC44fP65zX0Ljd7y9va2mtUPUpBscIm7BbvSmCiUREIlE6N69O9asWYO0tDT89ddfmDlzJmbPno2EhIRqN+0JBTwW0L17d15E7eTkhIULF1qoRqQ6EhpDUdoPP/yAdu3amaE2pDoSesAj1BXljTfesPggYlJ9SIJm49nbFyBuY7sDuI1FKHHBnoQMwMEJLOMaWGocULcJ7Eb+Bk5UdksCYwwzZ87kjSEVi8VYvXo1b2B+69atcfr0aZ037g8fPkSfPn0QGRkpmJXM2ubfEcLVcTNKGnQHBwcMHz4cK1aswPLly3nTelQHFPBYQKNGjTBr1izNa7FYjJ9++gmNGjWyYK1IdVPebPVvvfUW3n77bTPVhlRHPj4+vK6VQqg7GzE7jm6P9CHUwpNwORGiVi9aZMUOsB+7BVytBuVua9euXdizZw+vfPbs2TrTRNeqVQsbN27EihUrBB+KKJVKvPfeexg3bhxv3hmh8TuWnH+HmBb9RVvId999h927d2PRokU4ceIEXnvtNUtXiVQzZQU8np6e+PHHH20yFz+xHg4ODujcuXOZ6/j6+urstkIIsaxWrVrxpip4+vQpsluNBuq4w+4/ayBy152oqVhubq7Wg+BiHh4emD9/fpnv5TgOM2fOxNGjR+Hq6iq4zpYtWxAQEKCZzLigoEAwRbO1tfAQ46GAx0I4jsOwYcPw0UcfITAw0NLVIdWQl5cX6tSpwyt3cHDAli1bULt22WlDCTGG8gYIU+sOIdZLLBbzMrUBQEJmXThG3IK40zi9tvPll1/i3r17vPLly5cL/k4J6d69O86fP4/u3bsLLr9y5Qr8/f2xa9cunD9/ntd9tlGjRmjRgsZs2SoKeAippkQiEXr16sUrX7ZsmV4JDQgxhrIStYjFYowbp98NEyHEMoS6tV29elXv91+5cgXLli3jlQ8cONDgubfc3Nxw5MgRzJ49W3B5dnY2hg8fLjhReXBwMPVqsGEU8BBSjX3xxRdaLTnTpk3DtGnTLFgjUt2UFfAMGDBAZxcVQoh1EEpccOXKFb3eyxjDu+++C4VCoVXu4OCAlStXVigAsbOzw/Lly/HHH3+gZs2aguvEx8fzyqg7m22jtDeEVGNdunTBjRs3sG/fPjRr1gwhISGWrhKpZlq0aIGGDRvi8ePHvGVvvfWWBWpECDGEUAuPvgHP77//Lpg6+tNPP0Xr1q0rVa9x48bB29sbI0aM4M23I4QSFtg2auEhpJpr1KgR3n77bQp2iEVwHCfYyuPk5IT//Oc/FqgRIcQQugIeoVTQJT19+hTvv/8+r7x169b48MMPjVK3jh07Ii4uDsOGlT3hqYODA7p0KT+5Aqm6KOAhhBBiUUKJW0aPHk0T3hJSBbRs2RKOjo5aZc+ePUN6enqZ75szZ45gy+4PP/zA215lODs743//+x++/vprnV3k/P399UqRT6ouCngIIYRY1IQJE7RucBwdHREREWHBGhFC9KUrU1tZiQtiY2Px008/8crHjBmD/v2NP+GrSCTCnDlzsHfvXri4uPCW9+vXz+j7JNaFAh5CCCEW5e7ujtOnT+O1117DyJEjcfDgQbRr187S1SKE6MmQxAVKpRLTpk3jdXmrU6cOIiMjTVK/YgMGDIBMJoOfn5+mrE2bNpgxY4ZJ90ssj5IWEEIIsThfX1/8+eeflq4GIaQCDElcsHr1apw/f55X/uWXX8Ld3d3odSutRYsWiI2NxeHDh5GXl4d+/frpzOZGbAcFPIQQQgghpML0DXjS0tIwZ84cXrmPj49ZW1lEIhF1Y6tmqEsbIYQQQgipMH0ztb3//vvIzs7mrbt69WpIJPQMnpgOBTyEEEIIIaTCWrRowcuslpmZqZWp7fDhw/jjjz947/2///s/wUyNhBgTBTyEEEIIIaTCdGVqK+7WVlhYiOnTp/OWN2jQAAsXLjR5/QihgIcQQgghhFRKWeN4li5diuTkZN7yxYsXo379+iavGyEU8BBCCCGEkErRFfDcvn0bX3/9NW9ZcHAw3n77bXNUjRAKeAghhBBCSOXoCnhmzpyJgoICrXKxWIzVq1dDJKLbUGIelBKDEEIIIYRUilDAc+bMGahUKl55WFgYOnbsaI5qEQKAWngIIYQQQkglNW/enJepTSjY8fDwwPz5881UK0LU9GrhkUqlIQA+gzpAWgHgMYDFAFQApslksktSqdQVwAYAtQCslslkG6VSqRjALwDaADgnk8nCXmxvNoAxADIAvCmTyfhJ2QkhhBBCSJUgFovRrl07XLhwocz1vv/+e9SuXdtMtSJErdwWHqlUWgNABIBBMpmst0wm+wvAAgBDALwO4NsXq34EdRDUC8B0qVTqCGAogAcymawHgFpSqTRQKpU2APAKgO4AtgDg5ykkhBBCCCFVilC3tpIGDRqEESNGmKk2hPxLny5tgQDyAfwtlUr/kkqlbgCUMpnsmUwmuwvA5cV6XQEckclkCgAyAN4AggAceLF8H4BgAP4AjslkMlaijBBCCCGEVGFlBTyOjo5YuXIlOI4zY40IUdOnS1sjAK0BBAB4GcAXAEp2QVNIpVJ7AHYymay4s2YW1IFQvRLrllVGCCGEEEKqsPbt2+tc9umnn6JVq1ZmrA0h/9In4MkEcEomk8mlUulhqAOenJLbeLGsSCqVil4EPXUBPH3xXqcX65Usa12qjEcqlU4GMBkAZsyYgX79+hlwWKZTVFSE1NRUS1eDlELXxfrQNbE+dE2sE10X60PXpGJ0TSLaokULvPHGG5U+p3RdrI+1XRMPDw/Bcn0CnjgAEVKplAPgC+AqgBZSqdQZQB38G7DEAQiRSqXHAfgB+BBADNStQscBDACwDsANAO+9eM8AAKeEdiqTyX4G8POLl0yPeppFamqqzpNJLIeui/Wha2J96JpYJ7ou1oeuScW4ubmhbt26yMrK0ir/6aef0LJly0pvv6pfl4yMDPTt2xcAkJ6eDrFYjIYNGwIAYmNjYW9vr1l3+fLlmDx5MmrWrFnmNkNCQrB06VJIpVLTVbwMVeWalDuGRyaTPQHwF4BjUCcl+BLAXABRADYD+OTFqt+++P/jANbIZLJ8AP8AaCqVSk8AKJDJZKdlMtljAHukUukpqJMe/GjcQyKEEEIIIeYmEokQFhamVTZlyhSr6aVjafXr10d8fDzi4+MxdepUhIeHa16XDHYAdcCTl5dnoZraHr3SUstksh8A/FCi6CbUCQlKrpMGoF+pMgWACQLbiwQQaWBdCSGEEEKIFfvss8/QsmVLHD9+HH5+fpg6daqlq8RjjsQJjOnXOenw4cN4//33oVAo4O/vj9WrV+Onn37CgwcP0Lt3bzRo0ABHjx7FtGnTEBcXh/z8fIwaNQpffPGFiY/AtugV8BBCCCGEEFIesViM8ePHY/z48ZauitUrKCjAhAkTcPjwYXh6emL8+PFYvXo1wsLCsGzZMhw9ehQNGjQAACxYsAAuLi5QKpXo27cvLl68iE6dOln4CKoOfdJSE0IIIYQQQoxIqVSiRYsW8PT0BAC8/fbbOH78uOC6W7duRZcuXdC5c2dcuXIFV69eNWdVqzxq4SGEEEIIIcRK3b59G0uXLkVcXBzq1auHCRMmoKCgwNLVqlKohYcQQgghhBAzE4vFSElJwY0bNwAAv//+O3r16gUAqFOnDnJy1LPAZGdno1atWqhbty4ePnyIvXv3WqzOVRW18BBCCCGEkGpD34QCpubo6Ih169Zh9OjRmqQFxUkeJk+ejIEDB8Ld3R1Hjx5F586d0bZtWzRp0gTBwcEWrnnVw1nLRS+H1VSyquQbr27oulgfuibWh66JdaLrYn3omlgnui7WxwqviWAKPurSRgghhBBCCLFZFPAQQgghhBBCbBYFPIQQQgghhBCbRQEPIYQQQgghxGZRwEMIIYQQQgixWRTwEEIIIYQQQmwWBTyEEEIIIYSYAcdxiIiI0LxeunQp5s+fDwBITk5GSEgIfH190a5dO0yePBkA0LlzZ8THxwMAFAoFateujY0bN2q24efnh/Pnz5vtGKoiCngIIYQQQggxAwcHB+zcuRNPnjzhLZs1axbCw8MRHx+PxMREzJw5EwAQHByMmJgYAEBCQgI8PT01r3Nzc3Hz5k34+PiY7yCqIImlK0AIIYQQQoi5cD1VJt8HOy7cpiCRSDB58mRERkZiwYIFWsvS0tLQuHFjzeuOHTsCAIKCghAVFYV3330XMTExmDp1KtavXw8AiI2NhZ+fH8RisWkOxEZQCw8hhBBCCCFmMn36dGzatAlZWVla5eHh4ejTpw8GDRqEyMhIZGZmAtBu4YmJiUHPnj3h4OCAnJwcxMTEICgoyNyHUOVQwEMIIYQQQoiZODk5Yfz48VixYoVWeWhoKBITEzF69GhER0cjICAAhYWFaNasGeRyOdLT05GUlAQvLy/4+/vj7NmziImJQXBwsIWOpOqggIcQQgghhBAzCgsLw9q1a5Gbm6tV7u7ujokTJ2LXrl2QSCS4fPkyAHW3tm3btsHNzQ0cxyEgIACnTp1CbGwsAgMDLXEIVQoFPIQQQgghhJiRi4sLxowZg7Vr12rK9u3bh6KiIgBAeno6MjIy4OHhAUAd8CxfvlwT3AQGBmLDhg1wdXVF3bp1zX8AVQwlLSCEEEIIIdWGroQC5hYREYFVq1ZpXh84cACzZ8+Go6MjAGDJkiVwdXUFoB7HEx4ergl43NzcoFQqafyOnijgIYQQQgghxAyeP3+u+f9GjRohLy9P83rZsmVYtmyZ4Pv8/f3BGNMqS0lJMUkdbZF1hLiEEEIIIYQQYgIU8BBCCCGEEEJsFgU8hBBCCCGEEJtFAQ8hhBBCCCHEZlHAQwghhBBCCLFZFPAQQgghhBBCbBYFPIQQQgghhJgBx3GIiIjQvF66dCnmz58PAEhOTkZISAh8fX3Rrl07TJ48GQDQuXNnxMfHAwAUCgVq166NjRs3arbh5+eH8+fP612HCRMmYPv27ZU/mCqEAh5CCCGEEELMwMHBATt37sSTJ094y2bNmoXw8HDEx8cjMTERM2fOBKCedDQmJgYAkJCQAE9PT83r3Nxc3Lx5Ez4+PuY7iCqIJh4lhBBCCCHVRlT9/Sbfx+CMAYLlEokEkydPRmRkJBYsWKC1LC0tDY0bN9a87tixIwAgKCgIUVFRePfddxETE4OpU6di/fr1AIDY2Fj4+flBLBYbVL9Dhw5h0aJFyM7OxrJlyzB06FCsX78eMpkMq1atAgAMHToU77//Pnr06IFJkyZBJpOB4zhMnDgR4eHhBu3P0qiFhxBCCCGEEDOZPn06Nm3ahKysLK3y8PBw9OnTB4MGDUJkZCQyMzMBaLfwxMTEoGfPnnBwcEBOTg5iYmIQFBRkcB1SUlIQGxuLPXv2YOrUqSgoKNC5bnx8PFJTU3H58mVcunQJoaGhBu/P0ijgIYQQQgghxEycnJwwfvx4rFixQqs8NDQUiYmJGD16NKKjoxEQEIDCwkI0a9YMcrkc6enpSEpKgpeXF/z9/XH27FnExMQgODjY4DqMGTMGIpEIbdq0QcuWLZGUlKRz3ZYtW+LWrVuYOXMm9u3bBycnJ4P3Z2kU8BBCCCGEEGJGYWFhWLt2LXJzc7XK3d3dMXHiROzatQsSiQSXL18GoO7Wtm3bNri5uYHjOAQEBODUqVOIjY1FYGAgb/uhoaHw9fXF4MGDBffPcRzvtUQigUql0pQVt/rUq1cPCQkJCAkJwZo1a/DOO+9U6tgtgQIeQgghhBBCzMjFxQVjxozB2rVrNWX79u1DUVERACA9PR0ZGRnw8PAAoA54li9frgluAgMDsWHDBri6uqJu3bq87a9btw7x8fGIiooS3P+2bdugUqlw8+ZN3Lp1C15eXmjevDni4+OhUqlw7949xMbGAgCePHkClUqFkSNH4uuvvzYoI5y1oKQFhBBCCCGk2tCVUMDcIiIiNAkCAODAgQOYPXs2HB0dAQBLliyBq6srAPU4nvDwcE3A4+bmBqVSWaHxOwDQtGlTdO3aFdnZ2VizZg0cHR0RHByMFi1aoH379mjXrh26dOkCAEhNTUVoaKim9WfhwoUVPmZL4Rhjlq6DPqymkqmpqZpom1gPui7Wh66J9aFrYp3oulgfuibWia6L9bHCa8IJFVKXNkIIIYQQQojNooCHEEIIIYQQYrMo4CGEEEIIIYTYLAp4CCGEEEIIITaLAh5CCCGEEEKIzaKAhxBCCCGEEGKzKOAhhBBCCCHEDDiOQ0REhOb10qVLMX/+fABAcnIyQkJC4Ovri3bt2mHy5MkAgM6dOyM+Ph4AoFAoULt2bWzcuFGzDT8/P4MmA50wYQK2b9+u9/opKSnw9vbWe31rRAEPIYQQQgghZuDg4ICdO3fiyZMnvGWzZs1CeHg44uPjkZiYiJkzZwJQTzoaExMDAEhISICnp6fmdW5uLm7evAkfHx/zHUQVJLF0BQghhBBCCDEXl60HTb6Pp2P6CZZLJBJMnjwZkZGRWLBggdaytLQ0NG7cWPO6Y8eOAICgoCBERUXh3XffRUxMDKZOnYr169cDAGJjY+Hn5wexWGxQ/Y4fP45ly5YhPT0dixcvxqhRo8AYw4cffoi9e/eC4zjMnTsXY8eONWi71opaeAghhBBCCDGT6dOnY9OmTcjKytIqDw8PR58+fTBo0CBERkYiMzMTgHYLT0xMDHr27AkHBwfk5OQgJiYGQUFBBtchLS0NJ0+exD///IOPP/4YALBz507Ex8cjISEBhw4dwgcffIC0tLTKHayVoICHEEIIIYQQM3FycsL48eOxYsUKrfLQ0FAkJiZi9OjRiI6ORkBAAAoLC9GsWTPI5XKkp6cjKSkJXl5e8Pf3x9mzZxETE4Pg4GCD6zB8+HCIRCK0b98eDx8+BACcPHkS48aNg1gsRqNGjdCrVy/ExcUZ5ZgtjQIeQgghhBBCzCgsLAxr165Fbm6uVrm7uzsmTpyIXbt2QSKR4PLlywDU3dq2bdsGNzc3cByHgIAAnDp1CrGxsQgMDORtPzQ0FL6+vhg8eLDg/h0cHDT/zxgz4pFZJwp4CCGEEEIIMSMXFxeMGTMGa9eu1ZTt27cPRUVFAID09HRkZGTAw8MDgDrgWb58uSa4CQwMxIYNG+Dq6oq6devytr9u3TrEx8cjKipK7zr16NEDW7ZsgVKpxOPHj3H8+HF07dq1ModpNShpASGEEEIIqTZ0JRQwt4iICKxatUrz+sCBA5g9ezYcHR0BAEuWLIGrqysA9Tie8PBwTcDj5uYGpVJZofE7urz66qs4ffo0fHx8wHEcFi9eDFdXV6SkpBhtH5bCVZFmLKupZGpqqibaJtaDrov1oWtifeiaWCe6LtaHrol1outifazwmnBChdSljRBCCCGEEGKzKOAhhBBCCCGE2CwKeAghhBBCCCE2iwIeQgghhBBCiM2igIcQQgghhBBisyjgIYQQQgghhNgsCngIIYQQQggxA47jEBERoXm9dOlSzJ8/HwCQnJyMkJAQ+Pr6ol27dpg8eTIAoHPnzoiPjwcAKBQK1K5dGxs3btRsw8/PD+fPn9e7DhMmTMD27dsrfzCVIJPJMGvWLABAdHQ0YmJiTLo/CngIIYQQQggxAwcHB+zcuRNPnjzhLZs1axbCw8MRHx+PxMREzJw5E4B60tHigCAhIQGenp6a17m5ubh58yZ8fHzMdxBGIJVKsWLFCgDmCXgkJt06IYQQQgghVsTpE2eT7yN7YaZguUQiweTJkxEZGYkFCxZoLUtLS0Pjxo01rzt27AgACAoKQlRUFN59913ExMRg6tSpWL9+PQAgNjYWfn5+EIvFBtXv0KFDWLRoEbKzs7Fs2TIMHToU69evh0wmw6pVqwAAQ4cOxfvvv48ePXpg0qRJkMlk4DgOEydORHh4uN77iouLw+zZs5GbmwsHBwccPnwY586dw9KlS7Fq1SqsWbMGYrEYGzduxMqVKzF+/Hhcu3YNdnZ2yM7Oho+Pj+Z1RVELDyGEEEIIIWYyffp0bNq0CVlZWVrl4eHh6NOnDwYNGoTIyEhkZmYC0G7hiYmJQc+ePeHg4ICcnBzExMQgKCjI4DqkpKQgNjYWe/bswdSpU1FQUKBz3fj4eKSmpuLy5cu4dOkSQkND9d6PXC7H2LFj8f333yMhIQGHDh1CjRo1NMubN2+OqVOnalq2evTogZCQEOzZswcAsHnzZowYMaJSwQ5AAQ8hhBBCCCFm4+TkhPHjx2u6dBULDQ1FYmIiRo8ejejoaAQEBKCwsBDNmjWDXC5Heno6kpKS4OXlBX9/f5w9exYxMTEIDg42uA5jxoyBSCRCmzZt0LJlSyQlJelct2XLlrh16xZmzpyJffv2wcnJSe/9JCcnw83NDf7+/ppjl0jK7mD2zjvvYN26dQCAdevWGRRg6UIBDyGEEEIIIWYUFhaGtWvXIjc3V6vc3d0dEydOxK5duyCRSHD58mUA6m5t27Ztg5ubGziOQ0BAAE6dOoXY2FgEBgbyth8aGgpfX18MHjxYcP8cx/FeSyQSqFQqTVlxq0+9evWQkJCAkJAQrFmzBu+8847We5VKJXx9feHr64vPP//c8JNRSnBwMFJSUhAdHQ2lUglvb+9Kb5MCHkIIIYQQQszIxcUFY8aMwdq1azVl+/btQ1FREQAgPT0dGRkZ8PDwAKAOeJYvX64JbgIDA7Fhwwa4urqibt26vO2vW7cO8fHxiIqKEtz/tm3boFKpcPPmTdy6dQteXl5o3rw54uPjoVKpcO/ePcTGxgIAnjx5ApVKhZEjR+Lrr7/mZYQTi8WIj49HfHw8vvzyS61lXl5eSEtLQ1xcHAAgJycHCoVCa506deogJydHq2z8+PF4/fXXjdK6A1DSAkIIIYQQUo3oSihgbhEREZoEAQBw4MABzJ49G46OjgCAJUuWwNXVFYC61SM8PFwT8Li5uUGpVFZo/A4ANG3aFF27dkV2djbWrFkDR0dHBAcHo0WLFmjfvj3atWuHLl26AABSU1MRGhqqaf1ZuHCh3vuxt7fHli1bMHPmTOTn56NGjRo4dOiQ1jrDhg3DqFGjsGvXLqxcuRI9evTAG2+8gblz52LcuHEVOr7SOMaYUTZkYlZTydTUVE20TawHXRfrQ9fE+tA1sU50XawPXRPrRNfF+pjqmmzfvh27du3C77//buhbOaFCauEhhBBCCCGEWIWZM2di7969OrvjVQQFPIQQQgghhBCrsHLlSqNvk5IWEEIIIYQQQmwWBTyEEEIIIYQQm0UBDyGEEEIIIcRmUcBDCCGEEEIIsVkU8BBCCCGEEGJiGRkZ8PX1ha+vL1xdXeHh4aF5LZfLtdZdvnw58vLyyt1mSEgIZDKZqapsMyhLGyGEEEIIISZWv359xMfHAwDmz5+P2rVr4/333xdcd/ny5XjzzTdRs2ZNM9bQdlELDyGEEEIIIRZw+PBhdO7cGR07dsTEiRNRWFiIFStW4MGDB+jduzd69+4NAJg2bRqkUik6dOiAefPmWbjWVQ+18BBCCCGEkGqlYL6jSbbrOL9A/zoUFGDChAk4fPgwPD09MX78eKxevRphYWFYtmwZjh49igYNGgAAFixYABcXFyiVSvTt2xcXL15Ep06dTHIMtohaeAghhBBCCDEzpVKJFi1awNPTEwDw9ttv4/jx44Lrbt26FV26dEHnzp1x5coVXL161ZxVrfKohYcQQgghhFQrhrTEWNrt27exdOlSxMXFoV69epgwYQIKCqpO/a0BtfAQQgghhBBiZmKxGCkpKbhx4wYA4Pfff0evXr0AAHXq1EFOTg4AIDs7G7Vq1ULdunXx8OFD7N2712J1rqqohYcQQgghhBAzc3R0xLp16zB69GgoFAr4+/tj6tSpAIDJkydj4MCBcHd3x9GjR9G5c2e0bdsWTZo0QXBwsIVrXvVwjDFL10EfVlPJ1NRUeHh4WLoapBS6LtaHron1oWtinei6WB+6JtaJrov1scJrwgkVUpc2QgghhBBCiM2igIcQQgghhBBisyjgIYQQQgghhNgsvZMWSKXScQBWyGSyhlKpdDSAcAD5AN6WyWT3pVJpWwA/v9jmZzKZ7LBUKq0F4HcALwHYLZPJFr/Y1rcAggCkAJgok8mKjHlQhBBCCCGEEALo2cIjlUrFAEYDuCeVSiUA3gMQAuBzAJ+9WO0bAJMADATw5YuydwBEyWSy7gD6SKVSD6lU6gPAQyaT9QCQBGCUkY6FEEIIIYQQQrTo26VtHIBtAFQA2gBIlMlkcplMdgpApxfruMtksusymSwbwFOpVNoA6lacAy+WHwQQWKpsHwDKrUcIIYQQQggxiXIDnhetO2MAbHlRVA9AdolVxALbygLgUmrdssoIIYQQQgixaRzHISIiQvN66dKlmD9/PgAgOTkZISEh8PX1Rbt27TB58mQAQOfOnREfHw8AUCgUqF27NjZu3KjZhp+fH86fP2+2Y6iK9BnD8yaArTKZTCWVSgEgE4BTieXKF/9VlSirC+BpiXUzX5TdebFPp1Lr8Uil0skAJgPAjBkz0K9fPz2qanpFRUVITU21dDVIKXRdrA9dE+tD18Q60XWxPnRNrJMtXBcHBwds27YNEyZMgIuLC7KyspCbm4vU1FRMmTIF48ePx4ABAwAAiYmJSE1NhY+PD6KiotCwYUNcvHgRLVq0wMGDB9G7d2/k5eXhxo0baNCggUXOjbVdE11zAukT8LQH0Fkqlb4JdXe2mQDaSaVSewBSABdfrJcmlUpbAXgEwEUmkz2RSqUxAF4G8OuL//4fgAZQjwHaAGAAgFNCO5XJZD9DnQQBoIlHSTnoulgfuibWh66JdaLrYn3omlgnW7guEokE06ZNw+bNm7FgwQLUrVsXYrEYHh4eePr0KXx8fDTHWPzf/v37IyoqCh4eHti5cydmzpyJ9evXw8PDA0ePHoVUKkXTpk0tcjxV5ZqUG/DIZLKPiv9fKpXKZDLZNKlUOhZANIACAG+/WDwHwHqou7jNe1H2XwAbpVLpRAD/yGSy+wDuS6XSh1Kp9ASAuwCWGulYCCGEEEIIKddBZ2eTbLdfZma560yfPh2dOnXChx9+qFUeHh6OPn36ICgoCP3790doaCicnZ0RHByMuXPnAgBiYmIwb948/Pnnn8jJyUFMTAyCgoJMcSg2Re+01AAgk8mkL/67Bf+O6SledhVAj1JlzwEMF9jOB4ZWlBBCCCGEkKrOyckJ48ePx4oVK1CjRg1NeWhoKAYMGIB9+/Zh165d+Omnn5CQkIBmzZpBLpcjPT0dSUlJ8PLygr+/P86ePYuYmBjMnDnTgkdTNRgU8BBCCCGEEFLV6dMSY0phYWHo0qULQkNDtcrd3d0xceJETJw4Ed7e3rh8+TL8/PwQFBSEbdu2wc3NDRzHISAgAKdOnUJsbCwCAwMtdBRVh75pqQkhhBBCCCFG4OLigjFjxmDt2rWasn379qGoqAgAkJ6ejoyMDM34mKCgICxfvlwT3AQGBmLDhg1wdXVF3bp1zX8AVQwFPIQQQgghhJhZREQEnjx5onl94MABeHt7w8fHBwMGDMCSJUvg6uoKAAgODsatW7c0AY+bmxuUSiWN39ETdWkjhBBCCCHEDJ4/f675/0aNGiEvL0/zetmyZVi2bJng+/z9/cGYdtLilJQUk9TRFlELDyGEEEIIIcRmUcBDCCGEEEIIsVkU8BBCCCGEEEJsFgU8hBBCCCGEEJtFAQ8hhBBCCCHEZlHAQwghhBBCCLFZFPAQQgghhBBiBhzHISIiQvN66dKlmD9/PgAgOTkZISEh8PX1Rbt27TB58mQAQOfOnREfHw8AUCgUqF27NjZu3KjZhp+fH86fP693HSZMmIDt27dX/mCqEAp4CCGEEEIIMQMHBwfs3LlTa8LRYrNmzUJ4eDji4+ORmJiImTNnAlBPOhoTEwMASEhIgKenp+Z1bm4ubt68CR8fH/MdRBVEAQ8hhBBCCCFmIJFIMHnyZERGRvKWpaWloXHjxprXHTt2BAAEBQVpApyYmBhMnTpV0+ITGxsLPz8/iMVig+px6NAhSKVSeHp64p9//gEArF+/HjNmzNCsM3ToUERHR0OpVGLChAnw9vZGx44dBetu7SjgIYQQQggh1QrHcSb5p4/p06dj06ZNyMrK0ioPDw9Hnz59MGjQIERGRiIzMxOAdgtPTEwMevbsCQcHB+Tk5CAmJgZBQUEGH39KSgpiY2OxZ88eTJ06FQUFBTrXjY+PR2pqKi5fvoxLly4hNDTU4P1ZGgU8hBBCCCGEmImTkxPGjx+PFStWaJWHhoYiMTERo0ePRnR0NAICAlBYWIhmzZpBLpcjPT0dSUlJ8PLygr+/P86ePYuYmBgEBwcbXIcxY8ZAJBKhTZs2aNmyJZKSknSu27JlS9y6dQszZ87Evn374OTkZPD+LI0CHkIIIYQQUq0wxkzyT19hYWFYu3YtcnNztcrd3d0xceJE7Nq1CxKJBJcvXwag7ta2bds2uLm5geM4BAQE4NSpU4iNjUVgYCBv+6GhofD19cXgwYMF91+6NYrjOEgkEqhUKk1ZcatPvXr1kJCQgJCQEKxZswbvvPOO3sdpLSjgIYQQQgghxIxcXFwwZswYrF27VlO2b98+FBUVAQDS09ORkZEBDw8PAOqAZ/ny5ZrgJjAwEBs2bICrqyvq1q3L2/66desQHx+PqKgowf1v27YNKpUKN2/exK1bt+Dl5YXmzZsjPj4eKpUK9+7dQ2xsLADgyZMnUKlUGDlyJL7++muDMsJZC4mlK0AIIYQQQkh1ExERgVWrVmleHzhwALNnz4ajoyMAYMmSJXB1dQWgHscTHh6uCXjc3NygVCorNH4HAJo2bYquXbsiOzsba9asgaOjI4KDg9GiRQu0b98e7dq1Q5cuXQAAqampCA0N1bT+LFy4sMLHbCmcIc1vFmQ1lUxNTdVE28R60HWxPnRNrA9dE+tE18X60DWxTnRdrI8VXhPBzBHUpY0QQgghhBBisyjgIYQQQgghhNgsCngIIYQQQgghNosCHkIIIYQQQojNooCHEEIIIYQQYrMo4CGEEEIIIYTYLAp4CCGEEEIIMQOO4xAREaF5vXTpUsyfPx8AkJycjJCQEPj6+qJdu3aYPHkyAKBz586Ij48HACgUCtSuXRsbN27UbMPPz8+gyUAnTJiA7du3671+SkoKvL299V7fGlHAQwghhBBCiBk4ODhg586dePLkCW/ZrFmzEB4ejvj4eCQmJmLmzJkA1JOOxsTEAAASEhLg6empeZ2bm4ubN2/Cx8fHfAdRBVHAQwghhBBCiBlIJBJMnjwZkZGRvGVpaWlo3Lix5nXHjh0BAEFBQZoAJyYmBlOnTtW0+MTGxsLPzw9isdigehw/fhxBQUFo2bKlprWHMYYPPvgA3t7e6NixI7Zs2VKRQ7RKEktXgBBCCCGEEHPieqpMsl12vPy2hOnTp6NTp0748MMPtcrDw8PRp08fBAUFoX///ggNDYWzszOCg4Mxd+5cAOqAZ968efjzzz+Rk5ODmJgYBAUFGVzPtLQ0nDx5EklJSXjllVcwatQo7Ny5E/Hx8UhISMCTJ0/g7++Pnj17Grxta0QtPIQQQgghhJiJk5MTxo8fjxUrVmiVh4aGIjExEaNHj0Z0dDQCAgJQWFiIZs2aQS6XIz09HUlJSfDy8oK/vz/Onj2LmJgYBAcHG1yH4cOHQyQSoX379nj48CEA4OTJkxg3bhzEYjEaNWqEXr16IS4uzijHbGnUwkMIIYQQQqoVfVpiTCksLAxdunRBaGioVrm7uzsmTpyIiRMnwtvbG5cvX4afnx+CgoKwbds2uLm5geM4BAQE4NSpU4iNjUVgYCBv+6Ghobhw4QLc3d0RFRXFW+7g4KD5f8aY8Q/QylALDyGEEEIIIWbk4uKCMWPGYO3atZqyffv2oaioCACQnp6OjIwMeHh4AFCP41m+fLkmuAkMDMSGDRvg6uqKunXr8ra/bt06xMfHCwY7uvTo0QNbtmyBUqnE48ePcfz4cXTt2rUyh2k1KOAhhBBCCCHEzCIiIrSytR04cADe3t7w8fHBgAEDsGTJEri6ugJQZ2q7deuWJuBxc3ODUqms0PgdXV599VV06tQJPj4+6NOnDxYvXqzZf1XHVZFmLKupZGpqqibaJtaDrov1oWtifeiaWCe6LtaHrol1outifazwmnBChdTCY6CbDwxL+0cIIYQQQgixHAp49FQoZ/hotQoh7zfE9miraXCqUu4/YpjwjQp9w1T47z90DgkhhBBCiOlRljY9JNxgeOtrhku3AIDD1O8Ygr0BtwaCrWZEwNNshqB3Ge49Ur8+cl4d8LwzlM4hIYQQQggxHWrhKceV2wz+k4uDHbWMLOCdxaxapPEzllnf/xvsFJvzC0NeAZ1DQgghhBBiOhTwlKN9c2AIP705os4A//3H7NWpkv46zrDpIL/80TNgzS7z14cQQgghhFQfFPCUg+M4/PwBh5fq8ZeFr2K4mUotFGV5nMkwZanuc7T4T2rlIYQQQgghpkMBjx4aOnP45QP+WJPcfODtbxiUSrph12V6JMPjTN3LHz4Fft5ttuoQQgghhFgMx3GIiIjQvF66dCnmz58PAEhOTkZISAh8fX3Rrl07TJ48GQDQuXNnxMfHAwAUCgVq166NjRs3arbh5+eH8+fP612HCRMmYPv27ZU/mEqQyWSYNWsWACA6OhoxMTEm3R8FPHp6pTuHiYP55acuAUv+NH99qoKtRxi2HS1/vW//YMgvpKBRH4wxRJ1mWLiR4UQCnTNCCCGVk/aEYcoSFYZ8qMKfh+h3xdQcHBywc+dOrQlHi82aNQvh4eGIj49HYmIiZs6cCUA96WhxQJCQkABPT0/N69zcXNy8eRM+Pj7mOwgjkEqlWLFiBQAKeKxO5EwOTRoqeOWf/8qQcIO+JEp6+JTh3Uj+OalbG+BKNZalPwV++dtMFavCCuUMI+YyDPmI4dOfGXrNYtiwjz53hBBCKuZpNkPguww//60em/z6lwzbjtLviilJJBJMnjwZkZGRvGVpaWlo3Lix5nXHjh0BAEFBQZqAICYmBlOnTtW0+MTGxsLPzw9isWHzRB46dAhSqRSenp745x/1oPT169djxowZmnWGDh2K6OhoKJVKTJgwAd7e3ujYsaNg3csSFxeHoKAg+Pj4oGvXrsjJyUF0dDSGDh2KlJQUrFmzBpGRkfD19cWJEyfQokULFBUVAQCys7O1XlcUpaU2gFMtDpHTsjD6q/oomaCtSAG89TVD3M+Agz2lWWaMYep3DBlZ/GWr3+PwvxMMW0u1/Hz7B8PkYYCjA50/IXkFDK/OYTgQ928ZY+oug/39Adf6dN4IIYQYJmwlw5107bK5/2UYFaLuemXLourvN8l2B2cMKHed6dOno1OnTvjwww+1ysPDw9GnTx8EBQWhf//+CA0NhbOzM4KDgzF37lwA6oBn3rx5+PPPP5GTk4OYmBgEBQUZXM+UlBTExsbi5s2b6N27N27cuKFz3fj4eKSmpuLy5csAgMzMTL33I5fLMXbsWGzZsgX+/v7Izs5GjRo1NMubN2+OqVOnonbt2nj//fcBACEhIdizZw+GDx+OzZs3Y8SIEbCzszP4GEuiFh4DBbSTI2Isv/zSLeCztfRUBAD+OAj87wS/fGQv4LW+wGdv879EHzyhrHe65OSpW3VKBjvFnucD836lzx0hhBDD/H2K4XeBe/5r94Aj+g8HIRXg5OSE8ePHa7p0FQsNDUViYiJGjx6N6OhoBAQEoLCwEM2aNYNcLkd6ejqSkpLg5eUFf39/nD17FjExMQgODja4DmPGjIFIJEKbNm3QsmVLJCUl6Vy3ZcuWuHXrFmbOnIl9+/bByclJ7/0kJyfDzc0N/v7+mmOXSMpub3nnnXewbt06AMC6desQGhqq9/50oRaeCvhqEod9Zxku39YuX7oZGBbE0MPHtp+KlOXBE4YZy/k34A3qAj++x4HjOHi3BEb35o/vWbiJ4Z2h1MpTUmYOw+APGU5f0b3Of/cAM0cyeLek80YIqV4YY7h+HyiQAx1b2n6rhLE8yyk7g+qPfzH09bPtc6lPS4wphYWFoUuXLrybeXd3d0ycOBETJ06Et7c3Ll++DD8/PwQFBWHbtm1wc3MDx3EICAjAqVOnEBsbi8BA/vwpoaGhuHDhAtzd3REVFcVbXvpvheM4SCQSqFQqTVlBQQEAoF69ekhISMD+/fuxZs0abN26Fb/++qtmPaVSCT8/PwDAK6+8gi+//LLiJwbqMUspKSma7nTe3t6V2h5ALTwV4ujA4fe5HOxKhYuMqbO25eRVzyfujDFMXsKQ+Zy/bHUEh5fq/fvH9dl44VaetXtMWcOqJSOLoW942cEOAKhUwPs/Vs/PHCGk+lIoGMYvYPB6g8EnlKHfewy5+fRdqI/wlQxpGbqX7zoF3H9E59KUXFxcMGbMGKxdu1ZTtm/fPs1YlfT0dGRkZMDDwwOAehzP8uXLNcFNYGAgNmzYAFdXV9StW5e3/XXr1iE+Pl4w2AGAbdu2QaVS4ebNm7h16xa8vLzQvHlzxMfHQ6VS4d69e4iNjQUAPHnyBCqVCiNHjsTXX3/NywgnFosRHx+P+Ph4XrDj5eWFtLQ0xMWpu6nk5ORAodAeD1+nTh3k5ORolY0fPx6vv/66UVp3AAp4Ksy3DYcvJvJv2m+nqb9IqqPf9gF7TvPLX+sLjArRPlcdW3EY2Yu/7qJNDIXy6nn+Snr4lKH3bIbz1/Rbf38ssO8snTd9PHjCMCNShU4TVHjraxUePqXzVlGM0bmrKMYYtkczDP5AhXdXOOPSTTqXhvrkZ4aNB/59ffgc8MFqOo/l2XOa4bd9Za+jVAK//EPnUl8FhQzfb2OYuEiFzYf1P28RERFa2doOHDgAb29v+Pj4YMCAAViyZAlcXV0BqFs9bt26pQl43NzcoFQqKzR+BwCaNm2Krl27YtCgQVizZg0cHR0RHByMFi1aoH379pg1axa6dOkCAEhNTdWky37zzTexcOFCvfdjb2+PLVu2YObMmfDx8UG/fv00LUfFhg0bhr/++kuTtAAA3njjDTx79gzjxo2r0PGVxlWRHyyrqWRqaqom2lYqGXrOZIi5zF9v90IOw4Jtuzm4pHsPGbwnMGTnapc3cgGu/Mahfl3+ubh4U/1UrrQf3+Mwbbhh567kdanqUh+rW3aS7/KXOdgDm+Zy+GA1w+007WUdWgDxazlIJNbxubO2a6JUMqz+HzDnv9qf0zaNgVM/cmjobB3nzZSMdU2e5TDM+p7hj0OAe33g14859PO3/fNnLDl56u5Efx76t8ypFhD3MwfPJnQe9bEjmmHU58K3BkeWc+jdpXLn0dq+v4wlM0f9W536uPx1XV2Au9s52FnJbwpgvdfltfkqbDny7+svJ3GC45Vtkamuyfbt27Fr1y78/vvvhr5V8MRTC08liMUcNszhUKsGf9k7ixkeZ1pNnGZSjDG8s5gf7ADATxHCwQ4AdGrF4dUe/PKFG6tvK09KmjqIFgp2ajgA/yziMDKEw6Ip/HN65Tbwq3DLdbUnS2LoNpVh5vf8z+n1+8CQDxmeV9OuqIYqKGR45RP1k3WVCrj/GBjyEUNcIp0/fVy4xtBlknawAwDZucA73zKoVHQey5N8lyF0ke7z9M5i6tqmS8T/s3fW8W1bex9+JFPs2KEmDZR5ZUrXYcfbO4Y7vOPdMd7h3R0zMzPdMTNDO+gKKTO3YWjQEKPO+4cctMJO4qR68tFH0pFsK0d0vuf84FltsXPXvySMzaIaF1fAZ7/3zHH1ZX5dIpqIHYA7Xhf8vVq/BjvLFVdcwY033sitt94ate/UBU8XGTVI4rHLIhufpZVw0cNilzD5ePkrNCOInXkYHLtv6z0ct50TuT2vFN74LlpH13fYlKeKna2FkdvsVvj+YYmDs9X6OukA2HNi5H63viqocff/a669VLtU87XdLxIs2dDyfovXw8m3CwJBve5aQ1EE59wv+HNl0/JAUK2/Sqdefy0hhOC5zwR7XCLYXKC9zx8r4SU9J1mruDxqPjKnp+V9thbCzS/r12Jzvl8oNDvFDp0Ft5wFx8+J3Pbc53o9toYQQjNCr6LAWffqwruzPP3002zevJmxY8dG7Tt1wRMFLjgajtgjsvyzP9AM+dif2F4kuPbZyBs6KxWevLLt4dxpYySO3Sey/L63Bf7ArvOgWLtdFTt5pZHbkuzw8+MSc6Y11KckSTx2ubbQfvDdXafeWkIIwXs/C3Y7Q/DsZ9CefofvFsIFD+0anRSd5b8vRvZk1rG9GM57QK8/LaqcgpNvF1z2uMDfRu68G54XurN4CwghuOBhwdrtbe/71Cfw1yq9HuuodgkueCiyPhw2ePkGNYLqpRqm5POWw5ptej22xA+L0HRrANhcoN7POrGBLniigCRJvHKDxIDIIBlc8aQgt6R/XvCKIvjXgwJXbeS2l6+XSHa0z371Ng0719wS2nSq7C8s3yTY7wpBcUXktgGJqj367AmRdbTHRIlTDoz8zGMf0G+vufawKU9w6LWCf96lXad1NI+yCOo1d9NLu27dtcbznwseeq/1fT7/A576uGeOp6+weJ1gxvmCj+e2b3+nBy59TBeOWjz9Cbz/S2T5iEyIMzctE0IV4LU+vR5BjeSZr2HK9silEkPT1ffLftNgwvDIfZ7XR3k0aWl0pzHPfQ4/LNLrLxbQBU+UyEyVeOHayEZpjRvOua9/2mU//7l2crLzjoAj9my/s96McRJHawQZue9//X+UZ9FaNRrbzurIbekpMO8pieljW67LBy6SsDR70Xv9u2aj3esT3Pm6YPK5gp9zWt5v8kj461mJD+6QkDWegA+8A099vOvVX2t8PV87v5YW1z8vWLRWrz8hBE98KNj7ssgAI3VMHY2mH+NX8+HDFkbSdlX+WqVtTWCLU4ME3XN+5HNyYx7cpicE58dFQjOx98HZqoVKHS2N8rz1A7tsuo3W+PJPyGk5V2c95z2gm/vGArrgiSIn7i9x+iGR5b8t63+9nlsKBDe8EHkDDxmIpqlVW9x+buRntherD9r+yp8rBQdfo523aHAa/P60xMQRrdfl8EyJq/4RWf7OT+xSTuQ/LRZMPkdwx+sCn197n3ir2pu55BWJvSZLHD9H4tmrtev3308LPvx116m/1shZLzjlDkGjXHT1HKOR3DsQhJPv2LVf8BU1guNuElz9jCAQ1N7nkuNgwfMSr94oMTApFLH9iicF5dW7bh02pqRCNQkMRlYTr9wgMXEEXHG0l9kTIrc/9iEs3IUFeI1bDSrUHLtVtcRonnzyzMOICMTk9KjvFJ0GFEVw22uR9Zpi9UWUFe6Eyx/fda/BWEEXPFHmmX9LDE6LLL/xJcHa7f3jglcUwbn3CzzeyG2v/kci0d5xwTNznMRRGqM8977VPx3Jf1kiOOw6bcfbEZmq2GlveNqbzpRI1TCnvObZ/m8WU7RTcNqdCode27IjOKi96Ovekrj21KYhVi8+VuK2cyL3FwLOvFfw29L+XX9tsa1QcOR/tO/1846Az++TuFJDcO8ohnPv7//XnxZ/rxZM/5fgy7+0tyfEwwd3SDx3jUycRTX9vfucmoj9yqrg6md2vfprTjCoCu7CnZHbrvgHnLJ/iLVXXsmqM/7Jq9cGMJua7qMo6rXo3UVN265/Tts39OFLJYZnNjwLy3/7jR3PPovdHOTMQyP3f+6zXfN+bolP5sHKLQ3rcSEXN+04j/eWDOOqxEjb33d/Ru9E62V0wRNlkhwSb9wU2VD1+eHMe/qHidZTH6vRhJpz8bF0KRfH7RoR27YX97/AD9/+3XIjcuwQVeyMyGp/PSbatZPg/rmy/4YUDYUEz3wi2O1MoWnTX8ewDPjqAYlP75UZkq5dp3ecKzUx66jDH4BjbxIs39T379nOUOkUHHGDoLQyctuhs+CF69Te4YcukZi1W+Q+X/wJT3zU/ccZKyiK4KF3BfteIcgt0d5n5jhY+orEyQc2vRaPnO3VNG373w96QuH/viSYtzyyfM+J6oitv6SEnd9/T8VvvxG6/xLuODuyvtbtgLvf2vXq8eccoRn178AZcGH4mRd0Oll75ZUsPf54Nt58MxtvuUUzD96qrUREZ9xVCYUEtzca3cnybeGpzYeyf/XnSEE/R/59FXMCkS+mSx4TFO3c9a7DWEEXPN3AQTO1ez2XboS73+zbF/vGPMF/NfxDhmfAQ5d0LclW9m6SZrS7e//Xf0Z5Pp0nOO5mbbOriSNUn53BAztejxceDbsNjSy/4YX+IbIbs2RDyzl16jAa4MbT1aS3R+3Ven1KksRzV0ua5llODxx+vWB7Uf+qw7bw+VWTrPUa+aCmjoaP7moYKbOYVX+oRHvkvjc8L3YJc6KyKsFR/xH85wVBSMPsCuCqE1XfsVGDtK/HZ6/WrsOLHhG7rP/EJ3MFj7wfWT4wWb0GzSaJuEGDmP7xxxgcDko+/ZRjV97IzLGR9fXgu+qzY1fB6dE2ZYu3qmaAsixR+ddf/L333hS89RayxYJkMpH34ouk5XzIPlMiv1MPUa3y/i+qiAbYveZHntl0EMN962HoWAadfTYEg9y09RxGe1Y0+VxFDVywi6QriUV0wdNN3H+RxDiNBuh9b8OCNX3zYg+FBOfcJ/BqNNZfu1HCYet6VmGtUZ6thf3DfvjdnwQn36Ft0z99DMx9UiJjQOfq0GiUeEQjH9SWAnj2s059ZcxR7RJc8UTbOXX2nQLLX5O4/yKZeGv76tNolHjvdom9JkVuK66Aw67bdRIJ1+Xa+X1F5LbBafDNgxIJ8U3rdUSWxOs3RtZ1MKTm56mo6b919/tywbTzBN8t1N6eZIfP7pV44koZi7nl6zEzVeLRS7UjVu6KOWVaSi4qy/D+7RKD0hrqKmHqVKa98w6S2UzBKy/zdNpjEVEYQyHVtK2/dQC1xH9eEOwojix/6GKJoSk+Nt56KzlHHYU3NxfHlCnMnjuX3R56CIC1V13FFVNWRXz2k3lQXL5r1F9LBIOqr6gkFE4veZi7tp+GXalh/dCj2P+Pnxj/+ONknHwyss/NI4WnkOHf0eTz3/wNr37TSwe/i6MLnm7CFifxv5slDM0yF/flZFSPfQh/r4ksv+IfcMCMrosdgN0nSPzf7Mjye94SBPvwKM9r3wjOuEe793ePiWro6dSkrtXhEXvAQTMjy+9+s283OIUQfPCLmlPnmU/RdJ4HNYT36/+VmNeOYA9a2OIkvnpAYvywyG0b8+Co//TN+7aj3PyytplgQjx8+1DThmZjjp8j8e+TIstzS9RIlf2tVzMUEtzzpuCAf2v7l4B6by9/TeK4NhIw13Hekaq5UXOe+ZRdKmt7a8lF779Q0nzfpMyZw+RXXgFZxvX8vTw16o2IfVZtVaN/9nd+XSJ4/vPI8v2nw+kjVrLwgAPY8fTTSLLMiOuvZ/eff8Y+fjyDzjmHrDPPRPF6yXjmTEbam8b1DwT1xvpbP0Bhbg237ziLs0vuB+C1jFuY+uabmBITkWSZic88Q8p++2HzlPLAjpNxBJvW49VPC7YW9v/rMNbQBU83Mmu8xK1nRT6YN+X3vWRUa7drx5sfPUh9AUUTrVGeLQWq019f5NlP1XxFWu29OVPhx0clktqZs6g1JEni0cskmgXdodLZd00py6sF/7hFcOqdrefUOf8o2PC2xDmHR0Yd6ggpCRI/PCIxSCPwyKJ16mhFfzGv1OKFLwQPvBNZbjTAJ3dLTB7Vet0+eLG2P89X8+HxD6N0kDFASYXg/65Xn4ktCfDrTlX98YZltP96lCSJl66XsFqalgsB/3pQ4PP332uvjtaSix6/L1x/WsufTT/mGMY/9hgAoz6+ljOsX0bsc+//YMXm/luPLo/6vmmO3RLk4YRHWXzwQbjXrcM2ejSzfviB0TffjGxWcxtIksRuDz9MwowZ+HJzua/sfGTRtJfuxS/7dudjV/AHBC89t4GnNx/CXjXf4jQkcuvw9yk/4hrmTG/o3ZbNZqa89Rb2iRPJqt3EXdv/iVlpSFjoqlU7gUKhXbMeewtd8HQzN50J2RoNgL6UjCoYFJx9X6TfiSSpPertNRtqL3tMlDh0VmR5XxvlURTBvW+1nL/kkGz47uHomALWMXW0xLmHR5Y/86makLMvMW+5YOp5gs/+aHmfSSPgz2clXr5BZkBidOpxSLoqepI0/Cm+XQAXPNT/RisAvvlbcFkLoVNfuUHi4Oy269dskvjwTu26+88Los+a8zbmlyXqddlSrqcBifD1gxIPXyo3iQjYXkYNkrj7X5GfW7cD7nu779dfW7SUXHTMYPV901aHxuBzzmHUzTeDEJy19EKme5o+QIJh07b+2nFx44uC7c1M2Qb5NvNO+RFUPn0vIhhkyIUXssfvv5OYnR3xeUNcHFPfegtTaiopm+Zybsk9TbbnlapmWbsi79/zLTf+fTBDfJvYFjeeK0b/wuKEQ7hbIweUKTGR6R99RNzgwUz0LOLG3IuaiMc/VvavTqC+gC54uhmTUTVta54FGtRkVH3B1Oih97STa119EuwzJbpipw6tUZ5N+fB+H0nGV1qpRmK75RXt83vUXmqyPFtc9Ovv7vMlbHFNy4IhtcHZFwgGBbe+onDAVYICjczgoCYbfPgSiaWvSuw9Ofp1OHGExJf3RyZ1BXjz+/7nU7FkQ8u5du48T+Lsw9tfx8MzJd74b//y5/H5BfOWC656UuGQawQlLYw27jMFlr8qcWQHEi9rcdWJ2h1l9/0PVm3pe/XXXlpLLvrpPe1PeTDiuusYcsEFEPBzb97pjKptGl5s2SZ4ODJycJ9n7jLRxGdTEgpH73yFlzbvh3VrDpZBg5jx+efs9tBDGGy2Fr8nbvBgprzxBpLBwCmlT7Jv1RdNtj/7Wf+9BrUQisL6u+4l88nTiVdczE08jqtG/UChZSRH7gmzJ2hfl3FZWUz/6CMMiYnsU/M1FxfeRGNTj5tfEazeumvVZW+iC54eYLdhkmYEs8KdtNijGius3KI66DVn3FC454LuETsAe02WODiy84m734z9YeBflgimniv4vgUn5hP3V82D4izdU39ZqRI3nBb53Z/9oY6axDLbiwRzrhDc8xaaJoAAx+0L6/4ncd1pUqd60NvLvlMl3rtNQtZ4St7/Njz9SWzXZXvZXiTC/kmR2849Am49u+Pfeey+ElefHFmeVwpn9wF/nlBIsGSDGmb6sGsVko8U7H+l4KlPtK9LSVJH8397onNRFptjNEq8+h8JYzMf0GAIzn8o9p+BnaG15KIvXy8xaWTHTAPHPfgg6f/4B0afi4dyTyLLt7XJPne+IVizrf/Uo7tWcF6jIA+p/gLu23YiVxTegClUS+Ypp7DnX38xYP/92/V9Kfvsw5i77wbguvzLGeZdV7/tpxw1YuuuQKCqiuWnnkreYw8TQubljDu4b+ireA3qMPZdGikhGmMfP55p77wDJjPHlb/MSWVP12/zB9R8b7tKII3eRhc8PcRlx2s7lL//C7z/S2xe7IGwKVvzqGKyDG/8V8LaTQ32OrRGeTbmaZs7xALBoOCWl9Ue4Jb8Tc44FN67TQ2n2p1cdypkpUaWX/usQFFi83r74BfVVEgrMAao0a4+ukvis3tlhraQUyfaHD9H4tmrtX/rqqdEn08kV5drR+t6PSQbXryu8z5RD1wkoZX5/uv58KhGqOHeRAjBxjzB858LTrxVYeCxguwL1DDTPy6G2sjk6fWkJcH3D0vce4GMMYoCfMooif/8M7J80Tp46pOo/UxMEAyqfnpawR8uPwH+eUjH61WSZSY9/zwDDjwQh6+M+7f9g5RAg62XP6BaWfQlM+nW+O9Lgm1FgBAcWPkRL23cm5muuQTtKUx5800mvfgipqSkDn3n0EsuIf3EE7Eqbm7ffhbxoer6bS980T/qrTVc69ax8MAD2fnjjziNydw84iM+GngldY6yJ8yBGePavjZT9tmHyS+9CMAFxXdwQOXH9duWb4K73uj/dRkL6IKnh5BlNWyrVp6FSx+LzZ6me98SLN8UWX79qaqfTXezzxRJO+rYW7HXw5lbItj/KsG9/2t5ZOK6U1WhGM1GUUvEWyXu1RiBW7Ih9oI/uDyC8x5QOPXOlvPq7DsFVrwuceL+PSN0GnPxsRK3nRNZLoTaO/fb0ti6FtuLzy84/mZRn0+iMVNGwcd3d20EzWxS8/No+fPc+JJg/qrerbeinYK3fxSce7/C0BMF404XXPqY4JN5ar6M9nDAdFjxmsShu3fPdXnLWZJmfq1bXhFs60dRnm56WTB3WWT5nhPhUY1w++2lznk8YcYMMv07uHfbSU0a7YvWweP9IDnu78sFT38CCcFybs09hxvzLsKu1LBh0P+x/+L5pB97bKe+V5IkJj71FLWDJzHYv4X/5F6MJFS719e/BY+3/1yDzSn54gsWHXwwtVu34hk8mctG/8pSxwH12yUJzYTfLZFx/PGMuFP1h7ou/zKmuRqygt//Tt9NV9KX0AVPDzIkXeLZf0feIJVOmP4vwX9fVGIi7G3RTsGZ9yjc+UbktokjOnaTdxWtUZ4NufDhbz12CG3y2e+qCdtfkWkLAEhNVHOXPHypjMHQc3V31mFqfp/m/PdFETMvqqUbBDMvELz+rfZ2WVavt9+elHpsVEeLO86VuODoyHJ/AI67WfS5qE+Kopq/aGWwH9RCrp3OMCxD4s2bIr8nFIJT7xSUV/dcvVU5BZ//oeZymnCmQtYJgjPvEbzxHeS34CvWEiYj3H4O/PSYRGZq912XcRaJV/4TGXnR44ULH4l908D28MlcoelPk5YEH97Z9dFwo93O9A8/xDp6DKO8a7hz++lNImbd+qpgQ27frUePV3Deg4LZNT/w0sa92bf6KzyynaeGP8Wh372LNTOjS99vsNmY9d7/cBqS2MP5A/8sfQSAKlfsWlt0BREKsenOO1l59tmE3G5STziJS4Z+R7G5ab6CUw6kQ2aWAKOvuhzLqZdgEgFu334mI2pVc4a6dCWx8l7ur+iCp4f55yFw0gGR5YEgPPAOTDhL8MUfvfMiCwQFj74vGHeG4O0fI7cbDPDmTVKryfOizb5TJQ6YHlkeC748Xp/gsscUTrhFUOXS3ueA6erIxBFddGLuDLIsafaO5pf1fnQYRRE89oFgj0sEG/O09xmaDvOekrjtHKlHhaIWkiTx3NUSx+wdua3GDYdfL9he1HdeVre+KjRH+hw2NddONPxQ6jhmH4lrT4ksr/Pn6S4TS0UR/L5ccNNLCrMvUhhwtDqi9cynaI5qtUVqIpx8gGrmt/1DiTvO65kOjL0nS1x6XGT5zznwxnfd/vPdSlvJRaN1HZpTU5n56SdIaVlMcc/nptwLkIVqq+3zq6Ztvf0+6Sy3P13NMQuu5O7tp5ESLGVl/F5cPPYPDvjvmYwdGp0mXubkEeT842UUJM4seZDda9QGwrOf9Q/RXUegspJlJ53E9scfRzIYGHvffXy734sUuZoGeJBltROsM+z73L2UTzuOeMXJPdtPJs2fD6hBmfpKYKG+ii54ehhJknj+GonMAdrbc0vUHuNj/tuzJgs/56ijFNc9p53sDeCmM2BmO+xVo83tGg+WdTvg47k9figNv79dMPtiwXOfa2+XZbj7XxI/PSaR1Y09wG1xwAyJo/eKLH/gHdFrGbNLKtQIdtc+G+kfVsdJB6gJG7srCmBnMBol3rtdYq9JkduKyuGw6wQ7q2L/hfXSl4L7/hdZXpdrZ0obuXY6w/0XSewxMbL8m7/h0Q+i+1urtwpufEFh2EmC/a4U3P+2arrUUr6cloi3wuGz4ZFLJZa9KlHyhcQHd8pceEzP39P3XyQxZGBk+TXP9N593FVaSy563wUSB86Mbh1bhw5ljy8/wW9NYq+ab7kq/5p6++P5q9Vw2H2NeW/9yZSH53B45dv4JQsvZt7N9SO/ZMT0YVx1YnR/6x/XHswbGbcgI7gx90KyfFtYuhEWr2v7s30B56pVLNx/f8p//RXTgAHM+OwzEs+8hEc0nk9nHALjhnbu+pRkmeO/fp7taXuSFiji3m0n15tZPvMp/LS4b93PQlHwLNOwR41BdMHTCwxIlPjxUYmRWS3v8/V8dbTnnje7N9lcbonqpHvINdq2/HUcvZdqT94b7DdNYr9pkeV3v9XzDvhCCF7/VpB9oWDlFu19BqfB3Cclbjm790cmAB6+NDLak6sWbnut5x+sPywSTGklgp0tDl6+QfX9SI5CMtZoY4uT+OoBifHDIrdtzIOjbhQxYZbaEr8ss3BpC5EhX75B4pBZ3VPnJmPdOY3c9t+XBH910Z+noEzwyHuCaecpTD5H8OC7HTdTMxrUsNK3n6MmDK34WuLbh2WuPVVi2hgJWe6969Fhk3jh2sjfr3LBFU/G7vXWEq0lFz1uX7hBI1hDNLCPH8/MD9/HL1s5vPJtzi1uyDFz08uCLQV9oy5dGzaw6t/X4r3yaDL8uWyKm8JlY37lk7TLMFtkXv9v9N89M8dJbJ3zb/5IOAq7UsMd288kLuTqFyGqiz7+mEWHHkrtjh04pk1j9ty5pMyZw+MfRVpvGAxwm4apfUew2K3s/ek75MaNZbhvPXdsPwOTokZGOfcBQaUz9uvUvWkTm+++mz+nTGH7GWfgXNWCTX8MoQueXmLSSInVb0rcfg6auT4AvH7V9GTKuSLqqt/rU8XUbmeoTrotMSARXrpe4rN7uz+yWGto+fKs2Uarxx5tatyC0+9WfR88Xu19jt1HNWHbd2rsNNbHDZW4WMNn9dVvei6nh88vuPYZhf+7TlBaqb3P1NGw5GWJ84/qfGSwniAlQeL7RyQGpUVuW7gWZl4gePGL2LPHXrpBcMmTSYQ0wv7efg6c04FcO51haLrEWze34M9zR8dHx2rcgje+Exx8tcKQEwXXPy9YsbljxzR1NFxzsmrGV/mNxB/PyNxxnsy+U3v3eafFEXtKnH5IZPnHc1U/wr5Ea8lF32hHctGukLHvHtjufZ0QBk4re5zjy54H1Eh8/3owdqNYBqqqyHvtNRYedBB/z55N8RuvIpB5e+B1XDX6R3bEjQfgnn9JnR59aItLj5d5ZMiz7LCoDfVr8q/kg1/7xsi2FkowyMZbbmH1+eej1NaSedppzPruO6xDhlBeLTRNv887Qk0O3FUmTE7Bd+fHlBszmOr+i+vzLkUSCgVlcGWMdmIEKivJe/VVFh18MPNnzWLbo4/izc/HNGgQvpKS3j68NpH6iP1lzBxkQUEBgwYNiup3bsoTXPGk4IdFre93yoHw2OVdN6f4er7gqqcEWwtb3keW4eJj1CSWKQm9/+IXQrDfFYI/muaPY9IIVWAUFRVG/bw0Jme9GjZ1S4H2drMJHrtM4tLjicnG+s4qweh/Cqqb9VYdOgt+eLR7+j3q7pWNeYLT7hQs3djyvledqIYx7q7cRN3B6q2CfS9v2X8rJQEuOgYuO15iUFrv/V8+v+Dr+XD5E9rhp8/+v/ZlsI8WNzyvaDqpH7EHfPVA6yMpgaD6nHz7R8EXf6qdQh1hZJaaHuDgmRIHzIC0pNi43tr7XtlZJRh/pmBnddPyzAGw9i2JpBgcFW3OX6vUnEbN8+3Y4mDhCx3Lt9MVHjznXWZ8fikADwx5kV+TTwLg2aslLj1e6pZ3fUcRoRDlc+dS+O67lH39NYovHB/d5uDbuOP5csC/2GqdXL//HhPhz2e6z7Kg1icY/A+BrXQTT28+mHjFycsZdzDr9qu4XiP3W3cQjfOi+P2UfPEFO555BueKFUhGI+Puv5/B559f/xy88QWFB99t+jmzCTa9G70AOooiOP3slZzyzZHEKy4+Sr2cl7PuAtQUDL0RlbQ5SiBA+c8/U/j++5R99x3Crz50DXY76cceS+Zpp+EZNozBQ4b08pE2QbPidMHTQbrrISiEOtLy76dbzi4PqlPxnedJXHECHQ5vvDlf8O+nBd/83fp+e02CZ/4tMX1s799sjfllieDgqyMvhY/ukthzTPcIHkURPPER3Phiy/4m44aqDrbTxsRWfTXnkffUXvDmfPewxP/Njv6x5+cX8NPKLK54UjupJaiRmN74b+8EdYgGf6wQHHKtwNdKw9toUH2Srj5JYtb4nvk/hRAsWANv/SD44Fc1EqQWB2erEdl6cjQjEFQ7L7TyLT1wkcR/Tm96LEIIFq5VRc4HvxLR2G8NgwH+b3c4bl+Jg2fC8MzYvM468l559yd1pLk55x8FL98Qu0Yb/oDgnZ9UE8YSDeH9zq1Sp/LtdBaXR3DN/k9z0sbbCGLk9uHvsDjhEOKtsPoNCZPSvZ1oreHevJmi996j8P338RWEe9kkiaR957Bj6j/575oj2byzqSO9xQzLXpEYP7x76/D65xQeeR/2qP6Ou3acTgiZp7I/5usfD+gRs8+utMF8paXkv/46+a+9hj88ImFOT2fK66+TvFeDs2tJhWDkqZGWHJcdD89cHd17LLdEcPpxv3LTulMwEuS5rPv5PPUiBiSq12HGgJ5/ZgkhcK5cSdH771P88cf4y8KNUkkiZf/9yTrtNAYeeSSG+Hig+9rFXUAXPNGgu0+s0yO46w3B4x+haXpSx5RR8Nw1EntPbvtmcNcK7ntb8Mj7ahjdlshIgYcukTjj0NgcpRBCMOcKwZ/NRnkmj4Rv7i5iyJDonpeyKsHZ9wq+a8HfBOCcw+HpqyTsttirr+b4/Grv8LaipuUTR8DyV6ObH6jaJTj7bg9f/G1tcZ+Ds+Gtm7o3rG9P8NnvgpNuF63er3XsNQn+fZLE8ft2vMOiPWwrFPzvR/jfD4LNLYxG1jF5JPzxjESivefrP69EMO1fIiLfjcGg+r/tM0Vic77aQH77x7b/l+bMngBnHCJx8oEwMDn2r6+OvFeEEBx9o3bH1a9PSBwwI7b+X3et4OWv4NEPRIt+VZefAE//u+fF2i9LBO+dejunlD2FV7Jxw8jPWB8/i4Oz4fVrihg8uOcaccGaGoo//5yid9+lasGC+nLr8OEk/+Of/Jh4Co/OG9Jih+iDF0vc8M/uP/dbCgSjT1ObZGcV38cZpY9QbUgh/tXfOPw4DefGKNOZNljN8uXkvvACxZ9+Wj9CET9+PEMvvpjMk07CYGsqHq95RokwZ4szw5b3uydgyVvfC966/n3+k3cJChL3DHudPxOP4ai94Mv7e2703VdSQtGHH1L03nu41q6tL48fN47M004j86STiNOoe13wRJeYOcieOrGrtggufTyycd+c845QH3SpGqYZQgg+nqtG8mnNgddoUE2KbjsnOrk3upOfcwSHXBN5Obx0dSUXHN9C6LtO8OsSwRn3CIrKtbfbrfDCtRKnHxrb9dWcD38VnHJHZP29cK3ERcd2/n8JBFVzv7Xb1enVbwTbi7X3NRrgvgvVUMW96QgeTRauFdz0kuDXpe3bf2g6XHGCxPlH0WUzpGqX4KO56kuzuclnS2SlquZD0Qw/3VG++Vtw1H8ir8XMATAsAxZojAC1xqhBavSk0w+RGDOkb11XHX2v5JUIJp4dGeFs1CBY+bqELa73//+KGjUE+FOfCMpbGZXbcyLMfar3fKYueiiE4/nLOazyPWoMyVwz6hty43bjwfOruOGslG79baEoVP7xB4XvvEPJV1+h1KpD4Yb4eNKPOw7psNN4ceuevPqd1OIoOcCs3WD+cz2T1Brg8OsVvl8IklC4a/tpzHb+RGnqFE5d9QMGa8udXNGgvfeKEghQ+vXX5L7wAtULw72WkkTa4Ycz9KKLSJ4zR1NIFO4UjDpVRJjLXn0yPHZ594hyIQT/uEVg+eRxziu+G79k4caRn7I6fk9euUHiX0d133kNeb2Uffsthe+9R/kvv9SHszQlJ5Nx4olknnYaCdOntyq6dMETXWLmIHvyxAoheOt7uP55QVlVy/ulJMD9F6qNp7oG5NrtgiueaLsBdtBMeOoqiQndPAweLYQQ7HOZYP7qpuUThgVY9aa5/v8XQqAooAh1pEwREFLUe1lz3mi/N74T3Pu/+oilEcwYq5qw9bVGFaj1svelkeZEA5NV2+S2BK8/oPa2r9lWJ27USEsb8mjR5K8xowbBe7f1nGlXT7Nis+DJj9WRidZGU+uIt8I5/wdXnigxtgPXUzAo+HGxarLWUV+WySPhgzu63/SlPfzneYWHNPx52suARDj1QDjjUInZE2JzZLo9dOa98txngss0Iu5dfxo8dEnvmbYV7lRzbL34pRoNsjUGJquBSnpTeNe4BZPPCHB+zpns4fyBMlMW/x71PbWJWax9y8CQbkh47Nm+naJ336Xwvffw5jUkIkvee2+y/vlPdow9hse+iufT39sOp+6wwd/PS0wc0XN1+NVfauoMAHuwiqc3H8Qg/zYcx57K7Dee79b7sK17xV9eTsEbb5D36qv4ClVHZWNCAllnnsmQCy7ANnx4q99/+eMKz37WtMwWB9s+kLp1tLisSjDpLIVTVl/H0RWvU2NI4upR31GZPI6Vr0uMyIrebwshqF64kML336fk008J1qhD7ZLRSOqhh5J12mmkHnYYsrmFiFrN0AVPdImZg+yNE1vpFNz8suCFL1puhINqxvHQxRKf/yl4+hMinEIbM2SgGgDhH/v1vUbCj4sEh10XWREmo1o/IaX1euoKV5+sisueTL4abRasEex5SWQF3XQm3HuB2lDy+dWEoGu3w9odqqhZs01NjtbaddUaZx0Gz1wt4egD5n9dpaRCvV+f+7zlqHTNOWov1dztwBna96QQahSyt35Qk4Zq+UG0hC0OTpgDR8ws5+RDU2MiXDqoI4MHXCX4qwMRTePMcMzecOZhEofOIuaiqXWGzrxXFEXNM9TcCkCW1dG77N16tl425Qkeek/w1g/tE/sHzYRXbpBiwq/q+4WC4651c9/WE5nsWUCuZQxXj/qOPfdM4dX/REeQBV0uSr/4gsJ336Xyr7/qy+OGDFF9Ik4+lZ8KRvDoB5Edei2xx0R4+fqeC/RQRygkGHWaYEd4FH+4dy1PbTqUOOFh3EMPMfTCC7vtt1u6V5wrV5L70ksUf/RRfXCH+LFjGXLRRWSecgpGu73N795RLBjzz0h/3RtPh/sv6v5OhC/+EJxwU5DbdpzFXjXfUWwawr9H/8Ck7Ax+e7J9ofGVYJBgVRWBykp1qqoi2Gg5UF7Ozl9+oXbr1vrPOKZNI+u008g48UTMAzpuKaMLnugSMwfZmyd28TrBJY8Jlmzo/HeYTXDDaXDj6RLx1t5/0XQGIQR7XSo6bPLSFQYkwps3SRzZR53rm3PanUpEWFiLGY6YDWt3wOaC1n3IOoLDBs9f0/fM/6KBzy94/xd4/KP2h0yeNEIVPqcfAnEWicKdgnd/UoXOqq1tf74OSYIDpsNZh0mcsJ+ayyUGX0zklQimn9+62VPd/3LGoRInzKFX/I66k86elw25gqnnRQbNmDIKcl6WMPWAidOyjYIH3hF8PK99yV2P31d9/+w+IbbO4bn3K3z8VRWPbj2SEd51bI6bzEr73hhEkESLn8yEAGmOAKm2AIlxfuRQABEIoPj96jwQua74/Qi/HyUYRPF66ytItlpJP/posk4/HdPMfXjjB5knPmo9cmodsqzW4bWnSOw5qffq8IG3Bf99qaFptl/Vp9ycez6S0cjML79sEgQgmjS+V5RgkLJvviH3xRepmj+/fp/Uww5j6MUXk7L//h3q0L3gIYVXvm5a5rCpozsDEnumrs97QOHdrz08uPU4Jnhy2Bw3mZey7mbvEdXsP6qKSamVGGqr6wVNsE7IhOchZwsRapphycwk8+STyTz1VOzjx3fpmAsKCjBas0h2xEwHlC54okFvNxhCIdVU4KaXI0MMt8VRe8Hjl0uMHhwTF2SX+H6h4PDre+ay2G+aGkGoN0MLR5vtRYLdzmw9ulg02HMi/O8WKSp5C/oyQgjmLYcnPhJ8+Vf7RiDTklTxM29F+xqSdew2FM76P1UwNQ+f2tvPr5b4boHgyP+IiHqZMkoVOacdRK+aPXU3XTkv9/1PtQBozn/PgKtOlBiYHP1RfCEEf6yA+99pOYlwY4wGOP0Q+M8/Y8OUUotKp2DiWQJfcRFPbP4/MgJ5bX+ogyTOnk3W6aeTcdxxlPodPP2J+j5vKYpiY+Ktqs/uVSfGxvO0tFIw5ETRZDTvgsJbOWnns5gHDmT23LnEZbWSXb2TFBQUMNBmo+Ctt8h7+WW8+fkAGBwOBp1+OoMvuID4UaM6/L1bCgTjzogMPnPbOXDneT1nIlrjVnMvVuaX88Tm/2Owv4UM5y0hy5iSkjAmJWFKTm6YGpXZx48nZc4cJIOh7e9rgYoa9Z3261LBjwsDbCwwxVLQFF3wRINYaTCUVAhueF41H2iLUYPgiSskjtorJi7EqNBSXp5oIstqwtObzyRmTICiSVf9J5qTlgQThoenYRLDU8s4ck5anzOZ7G425wue/kTw2rdt+zi0lwGJcNpB6mhO9m4tN3Bj5fmlxafz1GiSwRAcNgtOP1Riyqhd49rpynkJBAWzLmx5BNFuVfMPjcpS3wWjBkn1y0MHdixaoKKo0eEeeKd9ZldWC1xwFFx7avRyl3Qndb4pKYFi9qv6DBmFoGQiKJkJhOdByRheNxOSjAQkM0HJRFy8mQmjTEwea2LKbhamTzCRnGxGNpuRTSak8HzFZtXH6b1f2uf3mJWqBji56FhIjrE8S2fcrfDOTw3rsgjyXOmJjCz5ncRZs8j++mtki6VLv6EEAgRragjW1OAvKWHTK69Q88039QEebKNGMeTCC8k67TSMCQmd/p2z71Ui2lNJdnV0p6fzW81dppr6Zvi2c3HRzdhD1bgMSdQYknAaknEak3EZkvCYkhg9Ppm990rhoP2SGDg0GWNCApIcfYFW41bbW78tVX3Dl2+O7Li79Wy4618xERpfFzzRINYaDPOWCy59TPWxaI7VAjefqUbD6ksJHdtLaaWa0PL3Fdp+JZIEBlkVLk3mkhr+Vm5l+8gsNWpde8J+91WqXWp40Y7kNQFIT4GJw+vEjVQvcponcYy1eyXWqHYJXv1GjWK1o4WIdq1hMsLRe6ki5/A92mdKoJ+T2KSr5yVnvWD2xaJDI4GgjrwMy2gkhrKk8Fx9BtaZPQeDag6kB94RrN7W9vcm2dVQ01eeKMVMctf2csUTCs98Gp3vGjNY9bPZY4I60vbil4Kfc9r32SmjVLO1Uw+KGTOhCOavEux9WdPmWWJwJ59UHIhSnM+gc89l7N13q4KluppgTQ2B8DzYbK5VHqiuRvF4NH97wEEHMfTiixlw0EFdbuCv36FGPWx+/9xzvsTNZ/VO3V/7jMJjH7a9Xx0Gg2r2e+J+EsfP6Xo4fo9X7dT4bZkqcBavb9vMfe/J8OezuuDpKjFzkLHYYAgE1eSYd77RkODxxP3h0cv6Rq9aV/H5BXn5hQwelFUvZGS57wVj6A0+nis49U7tHDJZqXWjNTBxhCpsxg+j3bbMsXivxCLBoGrm9vhHbYehB9VM8Kz/kzj5AEhJ6Ng1rp+T2CQa5+WG5xUejuKILai52UYNgoIyWgwz33z/a06RuOgYYj7FQUsoiuCHRfDRLy5W74hn2abOB2rpDIfPVuvwoJmx/w4TQjD9X5Gji9dnL+ewdw6vDx7QJWQZY0JC/WSaPJnxV19N/NixXf/uMFo+rQMS1dGd3gqyEwoJ7npTDX7T3sA3dcgy7DcVTtxf9XlsT/JSf0BN8PzbMtVM7e817Qs+0hijASq/iYm8hLrgiQax3GBwedSLdOwQGJbR6xdcjxLL5yXW+XWJ4MfFAn8wPGIzTBU6XR3G189Jx8lZr4a1fv+Xpo2sYRlqlLszD+1aOHT9nMQm0TgvHq/a2758U5QOqgOMGgQ3nCZx1mH9x5qg7pzU+gTLNsLCdWqEywVrIbckur9lNsGZh8LVJ/dseOlo8NKXgoseadpEs8XByjM+Ytt1VyAZDBgTEzElJGBMTFSFS3huarauVW6w25sIv2g/w1ZtUX1mmvPwJRLXndb75yIUEvy5Su2c/GQeLeYGbAlJgn2nNIifOl/kYFCwdCP8ulQdxflzFXi8XTvWySPho7skxg3t9XrTBU800BsMsYl+XmIP/Zx0nsKdqglRlUtw4AyJfadEJ0mrfk5ik2idl0qn4KUv4e81aiLgrUVdb8S0xtTRasS1E/frmC9QX6C1c1K0U9QLoIXrVHOf1hKDtsSARLj0OLjseIn0lL5Zf+5aQdYJghp30/InrpC48sToj1JF+xl2ws0Kn/3RtCwjBba8HxsJfBujKKqZ2cdz1aiIBa0klG+JvSapuRt/X0HEOeso44aqZnTThldywkEpsWS+qgueaKA3GGIT/bzEHvo5iT30cxKbdNd5EUJQXA5bCmFLAWwpFOG5ut5R/7069pkC/z1d9R2LdbOrztKRcxIMCtZsh4VrYcFaNWXCuh0t7z92iDqac9ZhxFyjujNc9aTCU580LRs7BNa/LcW04Fm6QTDzgsjm5ZNXSlx5YmyfF0URLFrXIH464wfaUYZlwIEz4MAZEgdMbxgtisH3iubJM7b1qezs7N2BJ4EAUACcBRwHXA3UAmfn5OTkZ2dn7wa8FP7OW3Nycn7Jzs6OB/4HDAS+zMnJeSj8nQ8CewHbgfNycnI6aCmoo6Ojo6Oj0xqSJJGZCpmpqkhp3g6ocTcIoK2FamjeOjGUWxoZDv3IPdURnX2mxHZjsKcxGiWmjlZHvC48Rq2bKqdg8XpYsBYWrhWsz1WDGFxyrMRRe0VnxDZWuOQ4iac+aSocNuap5lIHzeylg2oHt70WKXYGp8GFR/fCwXQQWZbUgBgTJR6+VJCzvkH8tCefU3vIHKAKnAOmqwmxR2T17Wu2TcED5AEH5uTk1GZnZ98PHAtcA+wHzAJuBS4C7gP+BZQA3wG/AOcD3+bk5LySnZ39fXZ29jtAKjAoJydn3+zs7JuBE4Eou1rq6Ojo6OjotEZCvMT0sTC93v+7oUHjD6jRA7cUgtevRg0b2ccbPD1JkkPikFlwyCxoocO537DbMIkDZ6jRvBrz3GeCg2Z2/n8PBlWhuGwTLNskWLMNXO4UkhIU4sxqJNrIuRRZboY4S3geLt9eDN/8HfmbN58l9Tk/NEmSmDUeZo2XeOBi1Y/v43mCj36DTfnt/54BiaqJWt0Izrih/WsEt03Bk5OTU9Ro1Q+MA9bl5OT4gb+ys7MfCW/LysnJ2QSQnZ1dkZ2dnYo6inN9ePtPwJ5AGvBjuOx74Fx0waOjo6OjoxMzmE0SY4bAmCG9fSQ6fYFLj5P4dWnTEZMv/oL8UtGupMFen2DVVlXcLN0oWLYJVm5RxXZT2srr03kPiOEZanLXvowk1XViSNxzvlqnH89Vxc/63Kb7JsSr0dwOnCFx4Ew10XV/GnlsTntGeADIzs4eBhwK3IgqWuqoS9XaOPh2NZACJAM1GmVFzcq0fu9C4EKAyy+/nEMOOaS9h9qtBAIBCgoKevswdJqhn5fYQz8nsYd+TmIT/bzEHvo56RgzR0B68kBKKg31ZaEQPPpuDded5Gqyr9MjsWaHidXbjazeZmL1dhObCoyElN5tbF9xbBVlpVHKBh0jDIiDi/5PnTbmG1m0wUQoJDF1VIBJwwMYG04XRUUtf09rxNq90pI/UbsET3Z2dgKqL845qAKncTrbuuCpja19E4EKoCq8b1W4bEf4NxOa7RdBTk7OS6g+QaAHLdBpA/28xB76OYk99HMSm+jnJfbQz0nHueQ4wR2vN22uvT/XwWF7JrB8EyzdpIb43hw7beN6xgyGK09JxmjU7IPvFwwaBAfMjv739pV7pT1BC4zA+8CdOTk5G7Kzs03A+OzsbDOQDdSlyivKzs4eBZQCKTk5OTuzs7PnAwcDr4XnF6D68FwDvAUcBvwV5f9JR0dHR0dHR0enB7ngaLjnraY5xIor4PDrY6bPukUevFjqd6HVdZrSnhGe04DZwK3Z2dm3As8DTwBzAS9wdni/m4E3UEeAbg+XvQK8nZ2dfR7wdU5OTj6Qn52dXZKdnf0HkAvU+QDp6Ojo6Ojo6Oj0QbJSJY6fo/qLRIuUBJgxFqaPgeljJKTgTuwJqdT6VP+eyLlouu4Hry8819g/K1WNnHf8HF3s9Hf0PDwdpK8M3e1q6Ocl9tDPSeyhn5PYRD8vsYd+TjrH3GWCA67qXJNtcFpY2IyFGWNU5/shA5tGCtPPS+wRg+ekc3l4dHR0dHR0dHR0dNpiv2lqPqIVm1vfb8xgVdzMGCvVi5y0JH2URaf70AWPjo6Ojo6Ojo5Ol5Ekif/dDP+4VbApH4wGmDiiwSRt+hhVECXE6+JGp2fRBU8HCCmCj4sruTgjE4tBbvsDOjo6Ojo6Ojq7EJNHSax9C8prIDGePpfIU6d/oguedrLZ6eayRWtYXF5NjcnCrVPG9PYh6ejo6Ojo6OjEHEajRHr/jfCs0wfRhynaQBGC5zfuYM6PC1hcXg3Akxu2s7SiupePTEdHR0dHR0dHR0enLXTB0wabnR5uX7EJb6ghr6oi4NJFa/CGQq18UkdHR0dHR0dHR0ent9EFTxuMTYjn+gkjI8o31rh5YPXWXjgiHR0dHR0dHR0dHZ32oguedvDv8cOZmuyIKH9m43YW7azq+QPS0dHR0dHR0dHR0WkXuuBpByZZ5tndJ2GSm0YaUQRcvngNtUHdtE1HR0dHR0dHR0cnFtEFTzuZkGjnxomjIso3Oz3cu7qNDFs6OlGiuNbHOfNXsPt3f3HdknW62NbR0dHR0dHRaQNd8HSAK8YNY5I9LqL8+Y25LCir7IUj6lv8VVrB7O/mM+aLudywdD2+RoEgdNrGGQhyzNwcvswvZbPTw2tb8rlw4SqEEL19aDo6Ojo6Ojo6MYsueDqAUZa5Z8wgzM1M2wSqaZtb721vkcXlVfzj96Vscrop9wV4ZXMe1yxZ29uH1WcQQnDtknVsdnqalH9TUMaHO4p66ah0dHR0dHR0dGIfXfB0kFE2CzdNGh1RvtVVy92rNvXCEcU+xbU+zv5rBX6l6UjEe9uL+DK/pJeOqm/x9rZCPs4t1tx247INFHq8PXxEOjo6Ojo6Ojp9A13wdILLxg4je0BiRPlLm/L4q7SiF44odvGFFM6ev4Jir19z+9U56yiq1RvrrbG22sWNy9a3uL06EOTqJet00zYdHR0dHR0dHQ10wdMJDLLEs7MmEmeIrL4rFq/FFQj2wlHFJjcuW8/i8uoWt1f6A1yxeK3eWG8BdzDEeX+vpLYNf6efinbyzrbCHjoqHR0dHR0dHZ2+gy54OsmYhHhu1jBt2+6u5a5VetQ2gDe25PPm1oI29/u1uJxXN+f3wBH1PW5Yup6NNe527Xvzio3ku2u7+Yj6Ps5AkHtXbeaQnxdxdc5aKn2B3j6kPsmCskquX7KOx9Zu06MF6uj0YbY43Zz11woO+XkRL23K1TsgdfoluuDpAhePGcrs1KSI8lc25/F7ya5t2rZgZxX/0TDDMkoSKWZTRPltKze2u2G/q/D+9kLe2x45ajMuIZ5X9pgcUe4MBLkyRx8ta418j5cjfl3Mo+u2saSimje3FnDEb4up9uuipyM8tX47R/yWw6tb8rln9Wb+79fFOPWRbR2dPkdRrZfDf13M1wWlLKmo5sZlG3hhU25vH5aOTtTRBU8XMMgSz8yagFXTtG3NLtsAKKr1cu78FQSUyIb3A9PH8fzsiRHl3pDCxQtX4ddDVQOwocbFdUvWRZRbDTKv7TmFE4ZmcNrwzIjtc0sq2jWqtiuyorKGQ39eyJpqV5PyDTVuzpm/Ur/22snzG3dwx8qmAVpWVTm5bNEaXWx3gJAieHr9dqZ98wfHL9vCT0VlvX1IOrsYQgiuWLyWnc1Gue9dtVm3FtDpd+iCp4uMcsRz2+QxEeV5Hi+3r9jYC0fUu6hBClZSohGk4IwRWZw7ajCHZKZx3qjBEduXVzp5eO3WnjjMmMYTDHHe36vwaDTAH5y+G+MT7QDcN20cmVZLxD63rtjIDpf+smrM94VlHPVbTovBM+aVVnCNHvihTV7bnMfNy7Wfa18XlPL4uu09e0B9FF9I4YKFq7h95SZy3V42e3yc+sdyfine2duHprML8crmPH4tLo8o94QUbmrhPtfRZlONm/1/XMDgT37hrL9W6MGYYhBd8ESBC8YMYa+0pIjyN7YWaD5M+itCCK5fuo4cjSAF2QMSeXjGeCRJzWF059SxjLLbIvZ7fP02Fu6s6u5DjWluWr6Bdc1GIQBOHpbJ6SOy6tcTzSaezJ4QsZ87GOKKxWtQ9MY7AC9uzOWMv5a3mSfr3e2FPLpuWw8dVd/jf1sLuG5py9ECAe5dvZmfivRGe2s4A0FO/XMZn+c1DckvgIsWrNZ71nV6hPXVLm5f2XIqja8LSvmxUB91bA+VvgBHz81hZZUTT0jh64JSjp+3VPcPjTF0wRMFZEnimVkTiTcaIrZdlbOWml3EP+D1Lfm8rREpLD3OzJt7TcHSyPQv3mjghdmTMEhNk7gqAi5ZuHqXNQf8JLeItzRM0sY4bDwyY7d6wVjHwZmpnDliUMT+f5ZV8urmvG47zr5ASBHcuHQ9/12+AQ3rSk3uW71FT+SqwQfbC/l3TtuJggVw4YJVbG2WIFdHpdzn5/h5S5jXgo9nhT/AOX+vxKebV+p0I/6QwsULV+Nt4zq7Ydl6PHpAkja5ZcUGSptZD2yscfPPv5brAV1iCF3wRInhdht3TIk0bSvweLllFzBtW1BWyY3LNkSUm2SJN/aaSqY1LmLbzAGJXD9hRET5dnctt+yCw+mbnW6uzon027HIqt+O3WTU/Nzd08Yy2BZZv3eu3LTLNjxdgSBnzl/OSy2IvgmJdm6eNEpz2xWL1+j5tBrxaW4xly1eg5ZmHGG3RpRVB4Kc8ddyPTx/M/LdtRzx62KWVtS0ut/SihpuWR75LNXRiRYPrNnCyipnm/vlur08ro96t8ovxTt5b7t2J9nCnVVcuHAVofb2uOl0K7rgiSLnjhrMnIEpEeVvbyvk535s5lHg8XLO3ysJaphQPTh9N81IdnVcM34EM1Mik7j+b1sB3xWURvMwYxpvSM2349LoDbp/+jgmJjla/GyCychTsyJN2zwhhcsXr9nlHrZFtV6O+i2H7wu177mDMgbw7YGzuHbCSK7abXjE9oAiOOOvFXrUQOCr/BIuWrhac4Ts2MHpzD9sLw7MGBCxbX2Nm8sX60EM6lhf7eKwXxezqZ0dEK9uyddHGjvAGz8EueU1XWC3h7/LKnly/faI8lG2eGbGpUWUP7VhO5v0Z6EmrkCQaxp1UoqgTLDUQePH3jcFZfxn2Xr9WRgD6IInisiSxFOzJmBvwbStP4a+9YZCnD1/RcRwLsDZIwdxjkZwgsYYZZkXZk/EphHp7qqctZR6fVE71ljm1uUbWV0V6bdz/JB0zh4ZabLWnP3TB2gGgliws4oXd6EQo6urnBzy86IWey/PHTWY9/aZRkJ4tOzWyaM5bkh6xH7VgSCn/LGMshaCHOwK/FBYxvkLVhHSeFEfkZXGS3tMwmKQeXn2ZIbHR470fJlfyhMaDatdjUU7qzjit8UU1UY+y+IMMrdMGo1Rivzc1TlrWduOXvhdmZAi+Pdv2zj3frj3DZn9Hi/UTbBaocYf4OKFqyNHa6viKXt7d357bDKhLQObbAooghuW6g12Le5ZvZk8jxqcIFQTh/OjbJwf7k7t7+OaiJ7XtuTrAV1iAF3wRJmh8Vbumjo2oryo1tfvop4IIbhuyXpNE41ZAxJ5YPpu7fqeUY547pk2LqJ8py/AVYv7f16ZL/JKeHVLZOLVkXYrj2dPiPDbaYk7poxhmEbD857Vm3eJHrqfinZyxK+LKdRoWErA3VPH8siM3TDKDY89WZJ4bveJ7D4gcpRxh7uWf/65fJdsQP1SvJOzWwgtf0hmKq/uOQVTuB6TLSbe3nuqZqfFPas29+vR7bb4uWgnJ8xbQpU/cvQhwWTkkzkzuGbCCG4YkRGxvTYc8bJGNw3UJKAoXLhwFW+Vbca2n2oC+Ptn6ezz/Fa9zlrgxmUb6hvodQR2pFD7ye7sKJQJKRLunyYRKEhqss+80go+zSvuwSONfRbtrOLlTarJdLAoEedHswiVq5YYvlWDqf17VBPRc8/qzbyr4eOs03PogqcbOHvkIPZLjzRte297IT/0o6gnr27O512NxJgZcWbe3GtqkyAFbXH2yEEclpkaUf5D0c5+nVdmm8vDlRrO4GZZ4tU9p9SPRLQHu8nIMxqmbd6QwmX93LTttc15/PPP5ZomgVaDzJt7TeWyccM0xWOcwcA7+0xjpIY/ypKKai5euLpf111zfi+p4My/VuDX+J/3S0+JCEACMCHJwdO7R+bXEsAFu2gQg493FKmCWcMxPD3OzDcHZLNnWjIAp2Ykc+LQSNGzxeXhCt00MII6y4LPwpHuLBMLidtjCyCx7JMR7P/GRip8u+7orBaf55XwfiMzSSHAu2wIrq+n4a2VOX5fuPhYCAUlPN9MJbjT3uTztyzfuMsEYGoLX0hRk3wDvnWZOD+bgag1YxlawWPX+ZENAt/S4XiXDG/yuaty1upRLHsRXfB0A5Ik8XS2tmnb1Tlr+0Wowvllldyk4VhrliXe3HsqGRr5YVpDkiSenDWBVIspYtstyzewxdn/Rih8IYV//b1SMyLd3VPHMjU5ocPfuffAFC4cMySiPKe8mmc37ujUccYyIUVwy/INXLd0vabp1cA4M18dkM1RgwdqfLqBARYzH+w7nRRz5PX3dUEpt6/sX6OzLfF3WSX//HOZZvSmvdOSeWfvacQZIp9rAMcPyeDKccMjyqsDQc6cv2KXCmLw4sZcLly4WtOvcYTdyvcH7t7EL0+SJB7PnsBuCfER+3+VX8pzG3cds9S2cAdDnPbn8ggfvbiZ27FMyQNFZtn7ozngvbUUa4z27ooUerxcs6ShY02EJDy/jKf2r7EgJG49Gz6+W+KZf0ucdAAofiOuL6cRqmkIhlPi9XPfmi29cfgxx6PrtrKhyo3nz9F4fpkAioxlSh4P3uTi6mPiePcWGSSBd8EovCsa3schITh3/gqWVkSm7tDpfnTB000Mjrdyr4aZVrHXz3/7eASefI+Xc+av0HyZPzRjN2YNSOrU9w6Ms2jmlfGEFC5euIag0r9Ctd6xchPLKyNt9I8aNJDzR0eKlvZy2+QxmqMV963erJnfp6/iDoY45+8VLTYGxyXE8+NBuzNDIyiGFqMc8by9zzQscuRj8bmNubyyqX+H+V5cXsUpfyzTHJGYnZrEe/tMw6bRidOYWyeP5oD0yCAG66pdu0QQAyEE967a3OIzfnKSg+8OnMUwjfsz3mjgzb2manaU3bFyE3+XVUb9ePsaNf4AJ/6+VDOstySBdd+NmEaXQMDIqvfHcfCnK8ndxfMaKUJw+eI19WaViseM87MZ+NdnYTYLPrhD4q5/yciyhMEg8dZNEvtPB+Gx4PpyGkptQyfQK5vzWFHZepTB/s6aKiePrcjD9c1UfMuHgaxg238d+xxXzGW7DQXglIMkXr5etSao/WMsvrWZ9Z/3hBRO/WPZLjnq3dvogqcbOWNEFgdpRDD6cEcR3/TRCGS1wRBn/7WCnRqjVOeNGsxZI1sPUtAWhw8aqJlXZklFNY/1o/CY3xSUagYTGBZv5elZ7ffb0cJmNPDM7pNo/g1+RXDZotUE+oFwLKn1ccxvOXxToG0iul96Ct8fOIuhGj5NrbFHahLPaphmAdy4fH2/MkltzPKKGk76fZmmSeCMlAQ+2Hd6i2HRG2OQJV7ZY7KmL9mX+aU81Y+DGIQUwTVL1rWYvHaftGS+2n8mA+NaHv0ekxDP07Mir7+QEJz390pKduERiwqfn+PmLdFMTC2hBoCQJIg/ZA3GwRUIj4V174/nkK+W79IRF1/alMfcsEAMltmp+XAWoeIkbIl+5j8rcfKBTd8UcRaJz++VmDBSQamKx/X1VERAbSoqAq5dsm6XTWodVBTO/2ELlR/NJLgjFckSwH7MMuInF/Fk9oQm/qHnHyXz6OXqsufX8fg3NgTH2elThfuuEpQpVtAFTzciSRJPZE/Q9MO4Jmcd5X3MxlgIwXVL17FMo4dnj9Qk7tMY0eoM90wbqxn16eG121hS3veHgnPdtVy+aE1EuUmWeHXPySRqmFV1lD1Sk7h07LCI8uWVzj7f6Fxb7eKQXxZpXoegdjR8uO/0TtfjCUMzuG3y6IhyRcC//l7J8jbyqPQ1Vlc5OeH3JZqO3lOSHHw8Z0aHfMlaC2Jw16rN/FLc/2zYvaEQ5/69skV/w6MGDeTDOdNJaMc1eeyQdC4ZOzSivMTr518LVva7ke72UFLr4+i5SzRHxA2SxEt7TOKTOTNwmIxIBoH9iJUY0mpQqm1s+Wg8h3+/lJW74MjEumoXd67cBIB/80Ccn2QjXHFYs2rIeVlm5jjtJmCiXeLnRwykDAgSKknE9f1kREgVRksrajSTY+8KXPt1CQtfGY9SYUdOceE4eTGmwVX8e/xwzdQR15wsc8t5CiDh/nkC/m0Nfsrb3bWc9oeer6wn0QVPNzPIFsf90yOFQJnPz3+Wru+FI+o8L23K00ywlWm18PqeUzB3IEhBazhMRl6YPQm52RBFSAguXrgadx+OmuUPKfzr71VUazzk7pgypt3mV+3hpkmjGOOI9Al4aO1WVvfRcLe/FZdz+K+LyW8WaaiO2yeP5snsCfURxDrLVbsN5yyNcOCekMJpfy4jv5+YyaytdnF8C1HEJiTa+XS/GSR1QjhOTHLwlMZIhQDO/3sV21z9x5yjJhzC/OsWRu3PHDGI1/ec0qLvkxZ3TBmjmb9sflkVd6/a3NlD7ZPku2s58rfFmua4Zlnizb2m8I+hmeyZlswX+80kxWxCMoewH70COdFDqCyB3M/Hc/TPSzVHh/orvpDCxQtX4w0p1C4cgfv7yRA0YN6tkE8eDjI+w9zq5zNTJeY9bsRoDRDckYrnt93qo47dtWrTLhey/76PfDz1WBrCZ8I4bCcJJ+ZgSKxlbEI8144f2eLn7jrbwGUnh0CRcX8/iUBecv22ZZU1nPP3yn5hddEX0AVPD3DqsEzNCGSf5pXwZX5JLxxRx/mztIJbVkQ6bptlibf2mkp6B4MUtMXuqUlcvduIiPItLg+3axxHX+HuVZtZouGweHhWGhePiezV7QpWo4Fnd58YIRwDiuCyRWvwa/hqxDJvbsnn5D+WaQZ5sMgyr+05havGj+iSOWAdkiTx8IzdNJNqlnj9nPzHsj4fsWhTjZsT5i2hXMM8dWxCPJ/tN5MUS+uNotY4YWgGV4yLHGWsDgQ546/+EcSg1KuaVv5Rqu1fc834ETyRPR5D85uwDUyyzGt7TiZNo/6f3rCDr/P7pkl0R9nq9HDEbzlsdUV2MFgNMu/uM50jBjUEJJmWksDXB2STEWdGtvmxH7MMyeYjmJ9C0XfjOOG3JcwtKe/Jf6HXuH/1FlaWenB/Nxnv4pEgCaz7bOTfF7k4fEhke0SLScNlnrvNC8YQ/vVZ1P49CoAqf5A7wiNH/Z1gUHDFEwo3P21SgxNM24H9yBVI5hAS8FT2hFYj0kqSxNOXGTn9yCCEDLi+mUqwqKFj89fi8l0i/UYsoAueHkCSJB7LHk+SOdIs5Lol69gZ4z0l+e5azv17pWYUrEdnjmemRg6TaHDDxJFMS44cJn5tSz4/FfU9X4ofCss0I6UNtsXxzKyJUWmoNyd7QKJm5KxVVc4WfQ1iCSEE+R4vt6/YyNVL1mlegwMsJr7Yf6ZmAtGuYAqLqImJ9oht62vcnN2He+a2Oj0cN2+JZsLgUXYbn+83k7S4zoudOm6bPIb9NUL0r6t2qWFd+/BLfoerliN+Xdxiktt7p43llsmjO31fZ1rjeHXPyREdFgCXLV7TLyNXNmZdtYsjf9MezbUbDXw8Z4Zmh8RuiXa+PXAWQ+PjMCR6sR+9HExBApvTKZ87mlN+X8a3fdSHtr38VVrBE4uLcX4yk8DWgUjmAPajljNlTgV3TB3Toe+6YO9Ejjw7H2RFDbUcjjr23vbCfh9Io9IpOOIGwTOfogYnOHAttn02I4VbzheMGcLuGiOxzZEkibeuN3HEAX4IGnB9NZVgaUPb5v0dRdyzi43c9ga64OkhMq1xPKiRiHOnL8D1MWzaVhsMceb8FZq9wOePHsLpGgEGooVJlnlh9mSsGr0nVyxeG/NCsTH5Hi+XavjtGCXVyTtZIxx3tPjPxFGa4W4fW7ctpiLuhBTBxho3n+QWcfuKjRw/bwljv5zHlK//4OkN2iG1xzji+emg3dv10ukMCSYj7+87nUyNEcx5JRVcs2Rdn2u057prOXbeEoo0HOCHx1v5fP+ZHQ4r3xKtBTH4PK+kxfMa66ytcnL4r4s0Rx6MksSLsydxiYYPXUfZZ2AKt02ObKA6A0HOnr+y3ybFXV5Rw9G/5VCi8YxPMhv5fP+Z9TmMtBhut/HtAbMY44jHmObCfuRKtcG+agg1i4dx9vyVfLQj0jy7P1DjD3DWJ3nUhBNhyokeHCflYB1eyYuzJ2FtI9KiFq+fMojUQ9TIg7V/jK13wL9u6fo+2+nTFhvzBHtcLPgpB2SrH8fxS7FMaLhmhtjiuGVSpK9nS8iyxBe3Wth7dx/Cb1LDflc0vJcfX7+dlzUCGelED13w9CAnDs3gyEFpEeVf5Jfwzz+XkRNjDvlCCK5eso4VGo6ie6Ulce+0sd1+DGMT4rlzSuTvlHr9XL2kb/QQBxSFCxasolLDBOqWyaO7rbFeh8Ug89zukzA062kOCcGli9bg6wXTNl9IYXlFDW9tzef6Jes47JdFDPvsV/b4fj4XLFjN0xt2MK+kQlNo17FPWjI/HDSL4XZbtx7rIFsc7+8zXTNc8DvbCvtU9MBiX4Bj5y6hQKPXfLAtji/2n8kgW5zGJztPisXM//aeqtlxcdeqTfxa3LdMjBaUVXLkbzkUazTGrQaZd/aZxknDMjU+2TmuGDdM872xttrFtX1QcLfFgp1VHDtvCRUaz8s0i5mv9s9ul69jli2Obw7IZkqSA9PgSuIPXQOouVE8qzO5eOFq3tiS3w3/Qe9y9AslbP1gIqLWjHFIOY6TFmNI9nDTpFGdyu0GkBZn5qFTErDupZqxuX+eQCAvmXXVLl7ohzmiflosmH2RYGMeJGXUYj9pMcbMpu2zx7MntCtyZWOMRolf749j8mQvwmvG+cU0QtUNz9sbl23gqz7i5tAX0QVPDyJJEo/OHK+Z3PD7wp0c+ssijp+7hD9KK3r9JeYNhXho7VY+1OgFy7JaeH3PqV12DG8v/xo9WNN04ZuCMt7dXtgjx9AV7l+9RdNZ9uCMAVyu4ePQHUxLSeCa8ZE+UeuqXTzUzcnkavwB/iqt4IWNuVy2aDX7/vA3Qz79lQN/Xsi/c9bx6pZ8FpdXa+Z/aYnThmfy8ZzOOdR3hsnJDl7dc0qEaAS4d/UWPu4DvcXFtT7OX72DHRoBFzKtFr7YfyZDOhjGu71MaiGIgSLg/AUr2d5Hghh8V1DKCb8v1Qw6kmQ28tl+MzlEw1+zK0iSxDOzJjJCI3fPBzuKWowM1xeZV1LOifOWaPrpZVktfHNgtmY0rJZIjTPzxf4zmZ2ahHl0Kbb91FEKz9zd8G1N5Zol6/p81Mo6gkHBkfe4+P3jLNXXZGquGrghLsieqUlcoWHa3BHOGjmYPQ+qwjI1FxQZ17dTCJY6eGjt1haDyPQ1hBA884ng8BsEVS7YfaYPjlmIIaHp/3fa8EzNNkl7MJskFj5mZcSYWoQ7DtfnM1Bc6oi6AC5csLrfmwr2FlJvN6zbScwcZEFBAYMGdc2M69PcYs5fsKrVfWYNSOTa8SM4JDO1W3w7WmJdtYu3thbw4Y4izREJiyzz7YHZTI9iNLH2UFTrZZ8fFkQck91o4PdD98BUXdnl8xJtdnr9fJlfwnUaJouZVgu/H7oHA7rgFN5R/CGFg39ZyOqqptGOZAl+OHD3LvliCSGo8AfY7qplu9vDVmctOcWlbPIG2R7liGb/nTiK6yZEJzhBR3ljSz7XLFkXUW6WJT7dbyZ7tWJm01sEFYV5pRXcvHyjZj6SgXFqr/kYDbPHaHPbio08o2HGNiHRzg8H7U58J8xtups8dy2f5hbzcW4xa1pI3JtptfDxnBmM1/D3ag/tea+srnJy6C+L8DbrGDDLEt8dOKvHn8nR5vvCMs6dvxKfholUnallR/Nq1eEOhjjzr+XMLamgduEI1YnfEMJ+7HJMWVVcO34EN00a1eSZEo13fU9RUSM47tYQfyyTw4kw19ebX9mNBv48bM9O111jllfUcNDPC3H+MJHApgwkqx/HiTkcO8HBW3tP7fL3t4fuOi+BoODKJwUvfKGuX32qwtdZf7HT33QkN81iZsH/7dVlM/Qat8LYi2opybUiJ7lxnLAE2aa2bxJNRr49cFannyc9TQzeK5qNA13wdJBonFgh1AR17emZm5zk4OrxIzh60MAOR/ppL55giC/yS3hzSz6L2jCre273iZw6PKtbjqMtvswv4Zz5KyPKZ6cm8eLYTIYO7lrS067iDoaYX1bJ7yUVzCstjxAWdRgkiS/bsEHvLlZXOTno54UElKa31BhHPPMOnd1q6NygolDg8bHN7VGFjauWbW4PO1y1bHPXavbKRgOLLDMh0c7UZAdnjxrcabOMaHHHik08tWF7RHmS2cgPB+7eI8KhLYQQrKxy8uGOIj7NLdb0hQA14MOX+2f32Is1qCic9Mcy5oUTITbm+CHpvLLH5F4Rss3Z6fXzRX4JH+cWtxnKeLTDxidzZnRpdKy975X3thdymYYv4BBbHL8dMrtLUfV6k8/yirlowWqCGu0RNWLgDDKtXTO19IUUzl+wkq/zy/DMHYd/zWAkcwDHCUswpLq5cMwQ7ps2Djl8/cVgI06TddsFx/xXsLkAJKsf+xErm5hfRfud/Z+l63lpQz6ur6cSzBug+gj9YwkfHTaBQzIjTS+jTXecl/JqwYm3CeYuA4sZXr1BYn7SGs00HK/tOSVqAXJKqxTGXlhLdbEVQ6oT+3FLkePU92iW1cIPB+0edRPj7iAG7xVd8ESDaJ1YIQRvbi3g8XXbyGvHcPAYh41/jx/BiUMzomZKtrrKWT+ao5V0sDkXjhnCAxqBF3qSyxat1nwIXTVsILfP7pkepjoCisLSihrmlZTze2kFi8urI4SEFrdMGs01EyLNy3qKR9Zu5b7VkWZsl48bxg0TRrLDXcs2Vy3bXJ765e1uD3lur2aDJJokmIxMSXIwKcnBlGQHU5IcjEmI7zHzyfagCMG//l7FFxq21sPirXy234xu9ytqiXx3LR/nFvPBjiI2tJFdPsls5Mv9s5nUAROhaFDh83PgzwvJdUc+9+6YMoYrdxveo8dThzMQ5NuCUj7OLWZuSYVmRMDmTE9O4IN9p5PaxYh2HXmvXJ2zVrOz7KCMAXyw7/T6Bntf4Z1tBVyVsxatR+fkJAefzJnR5fqtI6goXL54LR9sK8L9/WQ1gpnNh+PEHAwJXv45PIsnsydgkKVYbMRF8O3fgtPuEtS4URvMR65AdjQEIzlm8EBe33NKVDsRqv0BZn8/n5KaEM7PZhAqS8CQVsPE09ey4JjZnQqK0BGifV7WbhccfaNgayFkpMDn90m4Uso56fdlEfseOSiNt/aaGtX63FoaYvJFXjzlVgzp1TiOXYZkVoORjE+08+0B2VFJRt6d5OUVMGRITN0ruuCJBtG+2QKKwkc7inli/TY2O9u2Yx8aH8eV44bzzxFZHUpkV4crEOSzvBLe3JrP0g5kjD9teBZPZI/v9YZnjT/Avj8uiBCJRgn2TEtmWLyVYfFWhtutDA0vp1nMUXlACSFYV+NWBU5JBX+VVeLqYJSk/dNT+HjOjF5tlAQUhcN+WaSZtbwnybRamJzkYHK9uElgaHxcTPTwt0VtMMRx85awuIUR0eHxVvZKS2avtGT2Tkvu1v+rxh/gi/xSPtpRxJ/ttP1OMBn5fL+ZTEvpndGyVZVO/u/XRdQ2M8+SJfho3xkc0En7+I7iCyn8XLyTj3cU80NRWYS5WGvsNzCFt/aeiqODjstadOS94g2FOOLXxZr3740TR3LDxFFdPp6e4pVNedywTDtKafaARD7ad3rUG3uKENywdD2vbijE9eU0goXJqknRP5YgWwMcOzidF2dPoqy4KGYFT0WNGir5jtcFQoBldCnWg9YgmRqu30yrhT8O3aNbRv0+2lHERQtXo3jMOD+ZiVJtwziknFuvr+a2ae2PXNYZotUG8/kFH8+FSx9XBeP0MfDFfRLJKSH2/uHviDZGgsnI3/+3Z5dHGrVYketn90uD+GviMA6qxH70ciSjei73TkvmoznTO9Xe6078AcFvy+CTeYLPfw+x4nUjmakx8+7WBU806K5en5Ai+LKghMfXbWvRFKoxGXFmLh03jHNGDm5XpJC6iFgf5xa3u5EeZ5A5bnA6Z40azB7dHEmsI/xdVslRv+W0+6KwGWSGNhNBw8PzofHWVusv313L3JIKfi9VJ628Je1lt4R4vtg/Oyr5TbrKumoXB/y0AH87RqS6igSMcthUYZPkYHJyApOTHDFRD11hp9fPYb8uYptGaOLmZFkt9QJor7RkxjhsXRJAAUXhl+JyPthexPeFZZp+Dy0xPN7KK3tOblekq+7kk9wiLliwOqI8yWzko31nMDYhPipiojkhRfBnWQUf5xbzVX5pu0a3GzMzJZEzRmRxxohBUTMz7uh7Jdddy/4/LaDK3/TYJeDDOdM5KCO6gRO6gyfXbePOFnKP7DswmXf2ntbhKFjtRQjBXas28/iKfFyfziBU7mjSu35wxgDuG57G6KFDuuX3O4OiCH5ZAq99K/jsD/CFX0VD982nZsoGmj9OPpnTfR0HQgiOm7eEP0orCVVbcX6cjag1Eze2mBWPJjI2sfvMervSBhNC8Pdq+N+Pgg9+hbo+gxP3hzf+KxFvlbhx2Xpe2pQX8dknssdz1sjuM5v/fVMtB14JIbcF47Cd2I9YiWRQ38/HDB7IDRNHMdhqwWEy9lqnYK1P8OMi+PR3wZd/QeOm6uv/lTjncF3wRIOYOcjuHuYWQvBj0U4eXbetXWGqU8wmLhozlAvHDInoCasJBPk0t5g3t+ZrhpZuiQmJds4eOYiThmX2WBSsjnLnyk08GaXoOqkWkyqIwiIoyxbH2moXv5dUsKWL0aPGJcSz38AU9s8YwEEZA3p9hKwxrTU4OkOcQa4Xk8PtNgaE/OwzfAiTEu3d1nDpbTY73Rz2y2LNAB+tkWYxs2daUv0I0PhEe5ujfkIIllTU8OGOIj7LK241ZHdzTLLEYZlpHOQwc+rEca1mBu9Jbl2+UTMZbx3xRgPpcWbS4yykWy2kx1nIiDPXL6db1fVks6nVRoAQgqUVNXySW8xneS37NLXE2IR4ThqawQlDMxjRDeaKnXmv/FRUxil/LI8oTzabmHvI7G6LuNdVhBDct3pLi4mPD8lM5Y09p3S7aRTA4+u2ceeCXJwfZ6M4rRiHlmM/cgWSQTAzwcYnB80moZefXduLBG98J3j9O8gNW9FKEhySDamzCvlOjgyictGYodw/fVy3HtfGGjf7/vg3AUUQLHXg/GwGBIyM2quUjfcNRO6md11n7pWthYL//aAKnS2NrEGnjoaLjpG46Bg1T86inVUc/uviiAbnvgOT+Xy/md0uND5b4eTE680oXhOm0SXEH7oGSW56NHajgSxbHFlWC4NscWRZ4xhks4TncQyyWkiIYrvN5RF8u0AdyflmATSOQTR6qMKcPQKMHV3EqPE2Mq1m9h4YmWi6F9AFTzToKbteIQR/lFby2Lpt/F4a6eDbHLvRwPmjh3DJ2GHscNfy5tZ8PsstbneoX5tB5oShGZw1cjAzUxJi3qzIF1I49JdFrGohy3lvkWW1sF96CvulD2DfgcndMvwdLYKKwuG/5rCkov35nwZYTAyLtzLCbmN43dyuipwMq6VJo70v2MBHgwVllZz65/IOjxQ0JslsZM/U5HoRNCXJgTHcYNju8vDhjiI+2lHcYQE+OzWJU4ZlcuzgdJItppg7J0FF4aTflzGvHc+41jDLEgPjwoLIGhZIcRbSrWbyPV4+yS1u10hcYwbb4vjH0Az+MTSDiYn2bn0mdva83Ld6M4+sjRQOM1IS+OaAWTEjbP0hhbXVLpZVVPNbSQVfF5Rq7nf04IG8PHsy5h487pc35XLdb7k4P1FHKczjirAdvBZJUs3CpiUnMMphY7TDxhhHPKMd8aRaWhfYXcXrU0dxXvtWHdWpa6YNz4Bzj5A453DYIVVy3NwlEY2jcQnx/Hpw9/vSANyzanN9HrJAXjKur6aBInPmqS7eurR7zGXbe69UOgUf/qqKnL8aBcXNHACnHwJnHiYxZVTDOfSFFPb7aUFEJEurQebPw/bslo4OLV6cX8Ult9kQfiPm3QqxHbQuYvSuLdoSRXEGGWcgSE2jqfF6aY3C2pU2Nq90ULzJgRJsuB8NaTWYRpViHlWGIbnp++iYwQN5Y6+e9aVuAV3wRIPeaDAsLq/isbXb+KFoZ5v7yhKazp8tMTXZwVkjBvGPYZm93pPVUQo9Xi5dtKZdgrC7SDQZ2XdgCvulpzBnYAqju2iq1NMUeLyc9ueyejNKWYIhtrpRmqaCZni8tUM9R7HWuO5OSmp9PLtxB3+WVrCyytmhe1ALu9HA7qlJuALBNiMnNmeU3cbJwzI5aVhGRPCEWDwn5T4/B/60sF3BW7qbARYTxw5O58ShGeyemtRjvnadPS8hRXDSH0uZqxH17rDMVP4vK43RDhujHfEMjIuOL2N7jmmD082yimqWV9SwrLKG1VXONs1nTx2WyVOzJtQL/Z7kve2FXPJ1LtXhUQrLtB1Y997cYkMz0WRkVFgAjQrX7xiHjZF2W5eExtINgte+FbzzU4O5kMUM/5gD5x0pccB0dSSi2h9gnx8XRCQQNskSPx80m8nJPROIxBMMsef38+vvXf/GdNw/TgLgxRsVLjwi+m2K1u4Vf0Dw/UJ46wfBV/OhbuDdFgcnzIGzDpM4cAYYDJEntqXOg7umjuHyLuYw6ih3/bST2+9PhKABy+Q8rHM2dlj0dBSl1kRgaxr+LWkE81NAaSRyMqowjyrFNKosIidRY/ZPT+HT/WZ274G2D13wRIPebDCsrnLy2LptfJFX0qUKsRsNnBgezektp+Vo4g6GWLx1O157Attdtexw15LrrmV7eO7uYGCB1rDIMnukJqkCJz2FqUkJ3RYuvKcIKYKCWi9BRTAkPi5qZnex2LjuCWr8ARaWVzO/rJL5ZZUsq6jp9uh2AywmThiSwcnDMpnRyghtrJ6TVZVOjvhtcVTv1fYSbzRw5KCB/GNoBvunp/SK2WlXzku5z8/+Py2MaPw2x2EyMtpuqxdAdQ32kQ5bp/MfKUKwzeVhWVjYLKuoYWVlTYeSCAOcN2owD83YrVeDuXyZX8LZH+ZT9eVUUGSse27GMj03wqSoLQbb4upHgxqLoUG2OGRJIqgoeIIhnMEQ7mCIgsogX/xm4KtfzWzd3iAQBg31MWV2NcOnVhEyB3AHQ7iCIVzBIMW1PgprfRG/3RtRDr8vLOOffy6vX/cuH0Ltn2ORZcE3D8r83+zontPm94oQgsXr1JGc936Buv4hSYKDZsKZh0qcMAfstpaPY02VkwN+WhjxnJ6RksD3B87qFRF++adFPPtUGigysqMWyepHtgaQbP6GZasf2epHsgbq53XBDtqD4rLg35pGYMtAgoVJIMJ1JAmMWZWYRpVhHlmKbG+fCfCMlAR+Pnh2J/7bqKMLnmgQCw2GTTVunli/nY92FHWoITUjJYGzRw7m+CHp/c6noqXzIoRgpy/ADnctO9wedri84WV1yvd4Ww0/K0swLTmB/QaqAmf3AUk9YirQH4iFeyUWcAdD5JRXMb+sir/LKsmpqO5QNLCWiDPIHJ6VxsnD1Kzf7Wmox/I5WVPl5PmNuWx0uimp9VHi9XVbUA2TLHFIRir/GJbBYZlp2Hr5nu7qeckpr+bI3xa3Kyy+FllWS9hcy8ao8Hy0w8YQm7W+Q0cIQYHHy9KwsKkbvemKKSeo4fDvnDImJkbGfy7ayUmvF1H1/US1QFKQ7T5khxfZ7lXnjvB6uKwuhHBbWGQZSQJvSEEICOal4FuXRWBLWn1vumQJYB5XjHlCIcbUtoMXNWavtCS+2C+7VzrgzvhzOd8WltWve+aPwrd0ONY4wfH7SKQmQlqSRFoSTabUREhJUEet2kvdvbKjWPD2j+pozsZGMQYmjVDN1f55MAwe2Pb3BhWFw35ZzLLKplFrjZLEb4fMZmIPh+1vzF1fVXHPU/EEfB14PpmCyDY/UlxAnTcSR5LVjxwXIFRhx78ljVBxUsPnZAXjkAp1JGfETmRrx/xSQU2fsvDwvTv8uW5AFzzRIJYaDHnuWp5av523txW2GKUpwWTk5GGZnDVyUI/n2+hJOnte6pJp7nCruWZy3V4KPV4SzSb2Tktmn4HJMRu4IdaJpXsllvCFFJZVVPNXWSXzy6pYVF7V7pENCdhnYDInD8vk6EEDO+yc2pfOiRCCKn+QYq8qfkpqfRTX+ij2+uvXS7w+Srz+dtWfBOw7MIUThqZzzOD0mLqvo3FeXt2cx/VLtUM8dxaLLDPCbmVgnIW11U52diBQRlvYjQZunDiKS8YOjQmxU8eS8mrOe72CVb+kI9xt+2BKlkATAVS/HJ4km7/eHClUE4d/XSb+9ZkozrqgEgLjkAosEwoxjdjZoR76OhwmI38eukevBarIc9eyx/fz68PMCwGenyfg35DZ5mdlGQYkRAohdblBJKUkCGRziG/n1fBDTjLzljd8R3oK/PNg1WRt6mg6dD09s2E7t63YFFF+3YQR3DSpe0NstwePV1BUDqWVUFol2FoWYtvOIHk7FQorBOXVUFUt4XIZ8LmNTUzR2sQQwjSsHNOoMkzDdyJb2td5EW804DAacJhMJJiMWJQgqfZ4htis3D1tbCf/06iiC55oEIsNhuJaH89t3MHrW/LrX/y7D0jk7FGDOXZweq/3XvYEsXhednX0c9I+AorCykon88sq+XtnJX+XVVHdrNd8t4R4ThmWyT+GZTK4C5m3++s5cQaCDaLI628ihhQhmJacwPFD02M2iEg0zosQgltWbOT5jblROqrokmYxMz0lQZ2SE5idmhTTCRXX7sil0pJAzg4fK/ICbCgMkVcqsXOnTMBpQXHGoTjjINTG+1VW1JEgS5BQWYMJueyoxTyhEMtuRU2ShXaGF2ZP4uRhbYuL7uSJddu4q1HUTyEgWJjEaakj2c2cQlmVoKwKyqqguFJQWiUor5ZwujsndmVjiKETney+h5t9pisMT4hjsC2OwTZru4NKbHN52OeHvyPygY1NiGfeIXvETNCP9iKEoNIp2FgaZH2Jn81lQXaUhSioUOu7olrC6ZQx2gJkjK9iyDgXKXaZBJORBJMRR3jefDnBZMRhrCs3RJj4xeB7RRc80SAGT2w9NYEgKyprGGKL67VM771FLJ+XXRX9nHSOkCJYV+Mip7waCZiRksikpOhECdPPSWwSzfOyxelmSUUNm2rcbHZ62OJys8XpiWjUdSeJJiPTUhKYkZzAtJQEpqckMshqiamRnLZo6ZwoQpDv8bLZ6WFTjZuVRT7W5gfZWiwoK5frhVDdJLyN8o0ZQphHlakma4Mqu+yIbjcauHb8CK7cbXiv160/pDBHI8qZ3WhgbEI8lf4Alf4A1f5gkwadCEkIrwml1ozwmhC14eVaE6LWjFJrQnjr5iYMyW7V7G90aYvmhHEGmUHWOAbH14mghmmIzUqWzYJFlutzCTVGAr47cBa7x1DuwVgnBt8rmjdD/3Lk2MVJCEcM09HR6bsYZIlJSY5+bYKq032McsQzytE08aMiBIUeL5tdHjbXeNjsdKvLTjd5bm+XehTjjQamJDnCozeJTE9OYITd2usN8O5CliSGhpNWH5gxABpZ8HiCIba6PGx2etjsrGCz08OGilo2FoaoqTFgGODCEBdUTYJMFuKNBuKNBuxGo+ayw2QMlxmID5fbTeqy3WggI87SoyG8W8NskHlkxm4cM3dJk3JXMMTSipoWPgWS97GS4QAAK7VJREFUQSDF+5HjO5/UuznekMIWl6fVMP4pZhMVGvnTLhgzRBc7/RRd8Ojo6Ojo6PRjZElicLyVwfFW9k8f0GRbbTDENpdHUwxV+ZuaVprDYnxGSiLTUxKYlpzAWEd8n49UGS1sRoNmZ4UQgppAEKMsYzPI/VYM7jMwhZOHZfLhjqLePpQ20RI7Q2xx3BIDfjs63YMueHR0dHR0dHZRrEYDE5IcTNBopJf7Amx2edjp9TMkPo7xCfaYGVHoS0iSFNP+StHkrqlj+L6wrMvR+7SwGw24g6Fu83F4PHtCv4tgq9OAfmZ1dHR0dHR0miBJEqlxZlLjzG3vrKMTZmCchZf3mMTZ81e2GH7fYTKSbDaSYjaRZDaRbDY1Xbao86RwubpsxCjLbM/LR04ZQL7HS77HS144vUTjqTP5vE4brob31+m/6IJHR0dHR0dHR0cnKhySmcaSI/ZmWUUNsiRFCJeuJPc1yRKDwj5UWgghqA4EGwSQ20uep6koKq71NRkl2ictmfunjev0Men0DXTBo6Ojo6Ojo6OjEzUyrXFkDur5MPBSWGAlmU0tBn4JKApFtT7yPV6SzSbGOGwRoZZ1+h+64NHR0dHR0dHR0dklMMlyfaQ9nV0HXdLq6Ojo6Ojo6Ojo6PRbdMGjo6Ojo6Ojo6Ojo9Nv0QWPjo6Ojo6Ojo6Ojk6/RRc8Ojo6Ojo6Ojo6Ojr9Fl3w6Ojo6Ojo6Ojo6Oj0W3TBo6Ojo6Ojo6Ojo6PTb9HDUuvo6Ojo9Dt8JT7K/6rAXxHANtxKcnYSpiRTbx+Wjo6Ojk4voAseHZ1GKEEFb6EP2SxjSTcjSVJvH5KOjk47CLqDVPxdyc655eycW45rnStiH/u4eJJmJZG8exLJs5KIHxOv3+M6Ojo6uwC64OklQp4QO38vx73Vg2yWMcYbMMQbMNqN6jzegCHeiNFuwBhvRLbK+os5yvjKfDjXunCudVKzxolzrQvXBheKVwHAEG8gfnQ88aNsDfNR8cSPiseUoN86PYVQBL4SH4pfIW5QHLJRt8TVARESVC+vVgXOvHIqF1UhAqLVz7g2uHFtcJP/dgEApmSTKoBmJZE8K5HEGYkY4/V7W0dHR6e/oT/Ze5BATYDSH8so+bqUsl92EvKE2v9hiXoRZLA3EkQaIsmSYSF+pI34kTbiBusNxJA3hGujG+caJ861qrCpWevEX+pv/XPuEDUraqhZUROxzZJuVsVPE0EUj224Fdm0a9d3RxBCEKwOUlvgpTa/Fm+Bl9p8rzovUOfeQi8iqDZkDfEGkmYmkjw7meTdk0jKTsSUoJsp7Sq4t3nYObec8nnllP9RTqAq2KXvC1QGKPuxjLIfywCQDBKOSQ5VAO2uTnGD4/TOJh0dHZ0+ji54uhnfTj+l35dS/HUJ5fPKUfyt90C2iICgK0TQFYKS9n9MMknYhlqxjYonfqQN2wib2kAfacM62Ipk6D8vciEE3nyvOlqzxolznQvnGifuLR5EqJP13gK+Ej++Ej8V8yublEsGCetwK/Gj4rGPrhsRshE/xr5LmsiFakN4CxuLmEhRE3K3X/iH3CHKf6+g/PcKtUACx3g7SbsnkbJ7Mkm7J2Ebbt3l6rm/4q/0U/5HRb2ZWu2O2m79PRES9Z0cO17JBcCSYSF5VhJJYTO4hCkJGCx6p4aOjo5OX0ISIroNwW4iZg6yoKCAQYMGtbqPt9BL8TcllHxdSvn8ClB66OA6iGSSsA2zYQuPBsWPbFiOJTEkhCDkDhGoDOCvCKjzSj+B8LK3yMfOFeX4N/sJOrvW49udmFPNJExykDDZgWOSg8TJCcSPju+1evaX+3FtdOPa6MKzzUPIqyBComEKhiclPG9rW+P1oMBb5iVY2YFRzChhHmhu6KGfnRyTDdSQN4R/px9fqV+dl/maLPvL/PjK/B0aBW6PxguKEI6hdvU+H6F2gNhG2ogfbsNgM3ThP4oOIZ9C1aIGP5zqFTVdevo7Jtixj7dTs9KJe5M7KscoW2TisiwYE0wYHQZMDhPGBCNGhxFjghFTo+W68iZldiOS3PRktee9EqsIIQh5QgSrgwRqggSqAgSqAwSrggSqA+FJLVf3CRCsCWKIM2BOM2MZaMEy0Iw5TZ1bBlqwhMt785rs6Dlxu90UFRVRWFgYMRUVFVFSUoLD4SA9Pb3VKSkpqVc6bEI+BcUXwugwxnSHUV++V3oDv99PcXExRUVF9VMoFCIpKYnExESSkpLqp8TERBwOR4fPfwyeE81/QBc8HaSlE+ve5qHk6xKKvy6hKqe6F44sutSJofhRNiwZFmSzjGyR1blZarYut7hdMjWUG8LrCEGgKixeKgLhZX9YyKhl/kpVzAQq1fJOj4x1AmOiEREQHTM57CSyVcYxXhVBqhhKwDHBHjU/AqEIvAVeXJtUYaMKHDfujS785YGo/EasI1tkEqclqCZwYSFkSbNE5buFUMWd4lNQ/AqBygC+Mj++Ul9YvPjD4iUsYnb68ZfGpjCvM4W1hYVQ/fJwW5d91kRIqPVS7MVb4sNX7MNb7MPXeLnYh6/M16UOIkuGhdT9B6jTnAFY0hvOs7/CT1VONZWLqqhcXEn10poeuce1MNoNqmAKC6GA8GMxWxACUAQI6peFAIRA1NVL3bII76e1LElIxvBkkJDrlk0SkkFuWDc07Ccb5SafaShX2w5BZ6hBwFQFCdYJmepAm75TncUQb8CSrgqgxuLIkmbBMtCiloW3G6zRFUd17/ra2tr6hqKWmKkTNNXV0Xnvm81mBg4c2KYwSk9PJyUlBVluX2eOElDwFnjx5NZSG548O2qpzVPnvmIfAMYEo9oBOjq+SWdo/Kj4HotyqAQUavO9lK0vY/vK7eSuyyV/ez5FRUUERZCkgUk4BthJSE8kMSOBxKxEEockkZSViD3Bjs1mq59Mpv5p8tz8uqxfLiikMK+QosIiikqKqKiu6ND3yrLcRAhpiaLG60lJSfh8Pvbaay8cDkc3/bcdRhc80aDuISiEwLXeRfHXJRR/XYpztbPD32VKNpF2cCpGu5GQO0TQHSToChFyBwm6Q4TcDct1jvQ60UMySdjHxuMY78Ax0UHCRDuO8Q4smWojyVvow73FjXuLB/dmt7q82Y1nR233jtpJED8qvpEIcpAwKaFJ4605SkDBs9VTP2Lj2ujGtUk93o6YjMUqxkQjKERNKNhG2kjOTsKYaETxK/WCRZ0aBIyoK/M12la3HlDnsfN06j7MaeamI0J1y8OtKH7RRMj4ShoETLSETEsY4g0M2CeFAfsNIHW/AdjHtT/qmhJUcK5xUbmoksrFVVQtqqI2zxv9g9TpEYx2dcTInGrBkmoOL6uTJTw3p6nLphQTIRGiuLiYwsJCCgoKIkRMbm4upaWlVFZWtv3jgNloZmDiQNJsaQwwpzJAHkByKJkkXxIJ7kQSlUQ8ohZnXA3OuBqqjdVUy9VUKZVUBCqp8JZT7irH5Y2MLtji/2w0kpaWpgqggemkJqSSYk4hSUomIZiAw5NAfHU81p02zCVmDKJrotA8wIRtZHxYAKkiqE4UGe3t7xTxeDzsWJvL9uXb2LEul7wt+RTmFVBUUkRJdQk7a8soD1VQi6dLxwtglI3Y4sICKN5GvCNencfHY7PZsNvt9Q335OTkiMZ847JoiychBD6fD6fTSU1NDU6ns8lyZVklFXkVFBcUqwKmtIiS8hJKq0txetvX5pSRSZaSSZZTSAlPBgy4hTs8uXALNy7FjUe4qaVzZsOfvv4pRx1/FKbEmBCYuuDpKkIINv+4mdBCQfHXJXi2dPxmtKRbSD9yIBlHp5OyV3K7AwooQYWQJ0TIFSLoahBEQXcwLIzU5UBVEM92D56tHtzbPAQqdo1e/LaIy4rDMcGOY4IDx0R1bh8dj2zuuKmT4lfwbPOoQmiLG9fmBlHkL2s9EEJXsKSbSZiUgGOSA9twK7W53npx49nmqXfs72vIFpm4QXFYB8Wp88F1cytxWWq50WFEKALXRrfaQF1YReXiqk7dgzp9GBmSZiSGR3FSSZqZ2Kl7uCW8hV4qc6qoXKQKoOqVNd02eqHTPYREiGpRRblSQYVSToVSri6LcsqVcirC5VWiql3fZ5SNpNnTSLWmMsCYSopIJimQTKI3iRRSSJEGkCKn4JA6bgqkhU/4qFIqqRRVVCmVVClV1JiqqTaFBZKoojJQQYW3ghpvZECdlpCRSZASSZaTSZaSSJKTSZKTSJKSSZbVdbtkR0GgCAVFXar/C4mm6/V/4X0NiTKmNBOGVCOmAQaMA0xgFxTlFVOwI5/C4kKKK0ooc5fiDLavsW7GzAB5ACnyAFVASinIkoxP+PAJL17hxYcvvO6rX/YKb3jdixLFnhabzdamMLLZbLjd7hZFTPN5INC5NpoRoypipAYhkyKnNCpTr8sEKQGD1H6hGxKheiHkEqoIcoVFkVtpKHM3Lhdu/h1/NRMHT+KgNft36v+JMrrg6dQPK4LKBZX1Iznego73AFqHWck4Kp2Mo9NJmpkYYb/dnQSqAri3enBvdasiaGv/FkOGeAOO3ew4JjoaBM4EO+Zkc4/8fqA60GxEyKMKoo2uHjXLixkkiMuwNAgYDWFjTu18MAdfmY+qxdWqCFpURfXyGnXURaffYBtlI3U/1UxtwD4pPdqDGKoNUb2ihqrFqgiqXFSFf2f3dWrodBxFKNznuodyZSflSjmVorJdjVwZmSQpqb5hOCDcqE6RBzBAGkByuCxBSkCWYssHsI6A8FOlVFMlKqlUKqkUqkCqUipVYRQWTFWiEqfouBVKd1HXWB9Q3zAf0Kj+1XpPkQYQL3UtT5YQgiBBDTHUIJQ8wlPfaHcJZ3i0w4VH9uA2uHHjxh1y4fQ7CYnoW0sYMWKTbFgla/3cKtkayrCRKCc1iJpwnUVLYEcT+3g7c/7cu7cPA3TB08kfFoLfpv7eYaFjHxdPxtHpZByVjmNS7F2YEBZDW9y4t3liXgzJFhlTsglziglTsim8bMaUpJZ5E70M23cYtmHWHhWU7UUJKLg2uXGuclK9qgbnKic1q2u6HFa3K0gmSY0mN1adTClm1XY/bPOPLDW19Tc0su03gGSQ1bkxPG+yXWKnayfDpg3r0TDdIZ9CzcoatXG6UDVVaiv8eG8gGSTMqSbV3CbNos4HmhvW08xY0swYE03tCkbQ3sd40fYi7B67OkIZvu892zzU5ntjZBxdDToxYO+UepFjHWLt7UOqRwiBv8xPoDpIsCag+rWE50Gn6owfdKrO+3XLTcqcwX5hYtoc2SJjSjJiTDBhSjRiSjJhTDRiSjSpU5K6XFdmdBgJuYOqX1eZH1+Jr97XzVfqx1/qw1fmb/eo9WmVp1AjGnxoEqXE+ka02khs1piWB5AkJXWo57uvExABqoVqQlepIYiqlCrcuJGFjIyELMnIGJCQUJdkZKlhvf5Pkon4k2QkJIwYSZKT6kWkek5ScMSwiGwJIQRevLgUV/3oh1u48MbX4o334rV68Zg8+CQfZp8Js8eCscZEnDeukZhpEDa28Nwk9UxnbE+QvGcye369e28fBuiCp/OsvWkd21/MbXO/hKkJqsg5ciD2sfYeOLLuo04MebbXEqgJNvgzNPF1UFB8otFyg19Dw7potq76PJgSw+IlxVQvWkzJ5iaixpysbjcnm9tMvBqDUULaRAg1oEBNWPzUrHRSs9pJbW50Q+8a7Qbix8RjH2sPixs78WPDOYO6MUdTLJwTIQS1O2pVE7hFVVQuqsS5zhXVJ4pkkMKBOSSMDqMabarOybqReFFFjSpuzCmmXhHmLZ2TkE+hdkdYBG1r6PjwbPNQm+uNSlh3U5JRdTDPiCMuw4Il3aLOMxstD7RE3fk81lCCCiFXqF4ABWuClBWXkpqWhiSjhtuTaFiGZuXhuQQ0Xpak8JxwAINwQI1go6iKQUVdbxxpMbysBJSm5UGBEmrYx+gw1osZU51wCYsZQ1z0z5lQ1OA2vtJwEJA6QVQSDgJS2iCQFhT8jVVYSZEGkCwnY5Jiwo+gCbJVVn1xe7E1Y04zYx1ixTbM2jAfGp4GxyGbZLyF3npzbXddR+gW1Xe1J82mzWlmbMOs2IbbsA61YhuuHnNZcRl2vx1voTc8+agt9OIr8vZqB2LMIKHen3UdwuEOYlNS3Vz1tQpUqsFHAlVq4KhAZQB/VYBglVremWd++uEDmfn29Gj/R51BFzydpWJ+BQuOXhy5QYLkPZLJOGogGUemx1RP5K5GLDSuo0WgOkDNalX81KyqwbnaiXO9q01fAnOaWRU0Y1RhEx8WN3FZlh4ZYVQUhQpPBUXOIkqcpeQV55GSkowiwjbhStjeOzwJoSAQDdu19kEghIIiBAbZwNCkIQxPGc7wlOEkxCV06jgDNQGqllTj2uACSdKOPGiRkU3N16Wm6+HohLESvr09dOY+UQKKGslpW7jxs82De1stnq0eavNrVR+sjLCQSbdgyQiLl/AUl64Kmv4uZLpCf3p+9QZ14qg+EmK5v2G5LBzuvX7ZF7WGsdFuwDywaQdHXWjt+qhy4W3GeCMi1BCh1F/hJ1CupljwlwcIVPjV8vJwxNLyhuil7W0BmZJNqjgYasXaWNQMsWIdEtel6J9KUKE2tzYsgJoKotq8jgfyka2ymiNwuE09xuG28Lp6vC0FQWjtXgm6g3iLfE3EkLfQi7eoYb1PmaTKYB0UhyUjTu0ETjJhSjY2ETDmxmIm2YQpwdTld5IQQh29DguhelHUbN1fqYafd5d5wAUDD0tj0sMTovTPdwld8HT6x0OCXybOVR3SjZC67wAyjkon/YiBWAa2L7ytEIJiZzGrilazqmhV/bywuhAAg2RAliRk2YBBNiBLcrhMxiCrQ8nqckNZ3XZZbthmkGRSbClkJWaRlZAVnmeSlTiIrIRMbGZbd1ZVr9HfGwyKX8G1waWOBq2qwbfTT1xmHPYxdcImvtv8lIKhIGXuMoqdJRTXFFPsLKa4ppgSZ4m67CyhJDwFlZ7rYUuxpdSLnxHh+fCUYQxPGc6ghEEYDf03r7I/6Mcd8OD2ufD4Pbj8btx+F26/B7ffjcfvxuVz4wl4cPvcuP3qVO2sZtKQScwYPIMZg6czIH5Ab/8rUUcIgSfgoaq2iqraKvyhAOn2gaQ70jHIsSm6+vvzK9ZQAooqKHaqpnP+nf6GMPJhweQu9+DIsKumpnW5gepGbMOhsXsiT5AICQLVdWkc/GEhpC7LZrlhhGaItcvh4ztL/QjxFk+Dz/AWD74SH+ZUM9ZhDcJGnWyYB3bOd7Or90rIp6hRJQt91Bao4bi9ReGokkVeNbJkkbfHfG5NySZV8IXrxTZcnVuHNYy6xTox+PzSBU9X2PF6HgarTGhqiGHjh7a6byAUYFPZpghxs9O9s4eOtmWSrEkMSswiK2EQWYmZjURRFoMSs8hMzCIpLjEmfY6aoygKO907KfeUU1paSlaG2sg1ygaMshGjbMQgN103ysZ25y3o74SUEGWuMgqqCymsKaC4poQiZzElzmKKa0rUubOEMncZfeQ5UY9RNjIkPBrUIIYaBFGSNalXj88b8FLhqaifKmsrqfBUNi3zVFLjrcHtd+Pyu/H4VYHjDngIhKLjYzcseWhY/KgCaNqgaTgsvZ9LQQiB0+ekqraKam91vXipmyprI8sa76dVP0bZSFZCJoOTBjMocTCDkwYxODwflDiIwUlDSLb2fNLHYChIQWEBw4YM69Hf1WmdGGzE7dK4fC6KaorYWbaT3UaMJ9GS0G3vciFEfVJzX7FXHTUKC6IGgeTFV+pvs3UqmyV1hE1D0NiGWWMljHOXiMF7RRc80aD5ia32VrO6aDUrC1exung1qwpXsa50Pb6grxePsmvYTDYyEzJVYZSYRbojnWRrMknWJJJtyeHlxPplhyW6QRnqGuJFjUYSimqK6kcUisJlpa7STo0oSJKEQWosggwYDMYm6xJS2JxKhOfUrwPNtqlzoGlZo3KzwUyaPZWB9oGkxqcx0J7GQMdABtrTSLOr84H2gaTZ0zAZuv4ADIQCFNUUUVRTpAqa6oKwsCkMrxdS5CwipPQ/B+r2kGRNYnjyMBLiEjAbLZgNJixGCyaDGYvRjNnQuEydmw1mzEZzeNmk7mM0YzGY67/D7feExUoFFbVV6ryJiKmiwlOBJxCb4bQlSWJM6hhmDJ5eL4QmZ07CaoqeuW4gFKCwppD8qnxyK/PIr84nrzKPvKp88qvzKXOVUe2t7pVr02ayMaiZEBpSJ5ASBzEoaRDx5nhAfU45fU6cPic13hqcXic1dcs+J06vk2pvdcP2+rKaJp+rDag+eyaDCZvJitVkw2qyYjOryw1lceFydXvjZZupriwOq8mG2WgiEAoSCAUIKgHN5YASIBgKElAC6nooQEgJNVoPhvdXyw2yAZPBhFE2YTIYMRlMmGRTuJOp6bpJNqnrBmN4/8jleguFRlYK6iQ1sWZomAzIcsP2xlYQslTn4xn2eWr0PqpbbvyGaijT2k+dFxYWkpWVBVD/HAeadP40fu43lKG5L0Cc0UKcMU7vdGuGoiiUucuaPQ/UKb8qn7yqfCprm+ZDkiVZbZNYk+vbIim2huVkWzIptpSm2+NToiqUlICi+piFR4a8RV6CNUHiMuPCo1pW4jLiom72rCgKLr8Lp8+Jy+eixutU1701OH0N5epzRi1Xt6vrAA6LnXhLPPFmO3ZzPHaLnfhmc7s5nvjwuiM8jzfbsVvisRgbrJt0wRNdev0ghRDsqNzBvDW/U+ArYHV41GZHZdvBDPo7BtlQ/+Bp/ABKsiY2Wk6qfyAZZGP96EGDiZQ6olDkLKbMVYYidt3QwsnWZE0x1LA+EIfFTomrhMLqorCIKaCwurBe1JS6SvvcqIxObGKUjUxIH99kJGh8+vgWhXmNt0YVM+HGSuPlvKo8imqK+vT9nRSXSFAJ4fK3P0GkTt9GVmSMihFjyIgpZFKXFSOGkBFTyFi/bgqZMIaMGJRG5Y22CwQhOYRsMmA0GTCYDZjMJkwmI0azEZPZjNlswhxnxmw2Y7aYsVgsWOIsxFniiIuLwxJnwRZnJS7OisliQjIDZsBAlzseZUnGZDBjNpowG8zqsqHRcl25bOqQaPAGvORV5ZNXnkdBeT4FFYUUVhRSXFlMUUUxpdWlKEEFg2JAVgwYG8+FAYMiY1CMGIRcX4eNp6AcQpHC8/qyIIqkEJSDTfYVsqjvvE2xpZAYl4jDYlcb+BY7dnOjZUudGHBgt9jrG/12iwOHxd7uzkkhBN6gNyxCXLj9rvpll8+FKyxMXD4XLn9dWcNyg6BRhUyttxZLwIIlGJ4CFizBOCxBs3ZZk+1xAPgNfvxGf8Pc6CdgCDRbj9ynblmYBSabCVucDYtsJjE+iVEDRvHqqS936tqLMrrg6SxXffZvPl35KdUdSPKlo7Mr4rA4SHekk+FIx4KFeFt8ox5YtRe2cS9u497Zxvs13i4hIcsybp+b7ZU72F6xndzK3B71F9JpSpwxjsmZk5k+eBpCQH51HnmVqqip8la3/QU6Ot2IMWTE6rdiDVjDcxu2xut+G9ZAXHjdVr+vzW8lLtCwX51QkUXsj8goKAQNQQKGAAFDgJAcJBBeD8rhuSGglsmB+n3ryoJygJAcwlAn5sKCw1C3HGpaZhRhkaeY6pfV7ercoBiQQzJSSFLXRez4zwWlYCOxFGxUF3X1FWioO0OAgBxsqLtGZcIkkMwSBouMwWLAGGfEYDIQ8AcJ+gIEfUFC/hDBQAhDUK6vnzpR3LzOGsRxXZm6r7mZkDGK2PFPDUpB/EY/jx36KMoMhQX/nt/bhwQtCJ7YqbUYJqgEoyJ2LEYLE9LHMylzEpMzJzM5cxK7DRyPxWgmJEJqtColREgJoQglXKYQUkKE6qNXNSoLfyYU/owQCv6QnxJnadiUqYDCmsL6UYBiZ/Eua8Kk0zWSrclkJGSQ4Ugnw5FBRkJGWNioZemODDIS0uvNfaB7h7mDoSCFNYVsr9jOtortTebbK7ZT4anolt+NFQyyQTU3MNuxmW3YzfHYzDbizXbizTbiLfHYTPHYLfHEh7fZzXZKy0vY5t7O0vxlbCjd0OmRFm/Qy+K8xSzO04heGQOYDWaSrEkkWZMwykYKawqpqq3q7cPS6Sbu+eweHF4H1oAqXkxKdP0iQlLThnFIDobXQ/WCIhhuFAcN4WW50TaD2sCWBPUjFU1HMMJT4/KwSKgXD0JuMvJRJ0TqRpWMwog5ZMYcit28LiGp0ciM1HSURpFChGSl6eiNFLldIlyHdaM+SuP6MzRdb1ZeJ16NQhUS9NHmUEgK4TP68Jq8+I1+fEYfPpMXn9GPz1g3b1zmayg3qTklzUH1WjEHzfXLJo2ypnMT5qAZU6NyozBiDBhRJKXJ+z8W0QVPO5icObnDn0mNT60XNXXzMWljouKf0VlCSohSVykF1YUUhX05Gvt4FNYUUVhdiDfYsSSrvUmCJYE0expCESBDSAkSVEIElSChZvOgEoyas3d/oS6IRWaCGs2vXsQkhEWMI510R3oTe91YwGgwMjR5KEOThzJn1JyI7dXeanZU7AgLoB1NxFBuVW6vXwdG2VhvUqFOdTboKU3KkqxJ9TbTjQWN2dD1CEcun4uVhStZmr+UJfnLWFawjK3lW6P9r3Yaq8laL1rUKZHEuMRmZUkkN1tPsiYRZ4yLqB+Xz0VBdQH5VQXkV6umdup6PvnVBRRUF9T70/QkkiSpeXN633K7zzKwJp0EX0OY+qAUxGP2UGuuVSdTLbVmD7Umb8NyuNxjrqXW5MFr9uKp368Wr8lbL1iEHPvnRhJSvcldndmdKoZMmOpN8dTllsoMiiEszoL1pmJ14q6x+Vj9dkOwyXr9iEmzdUVWUCQFIXW+Hg2ygayETEIhBadf9YHrbD3VmSjKQm6oM8XUYLJYVz8tljWrx0ZlBsXYSBAHG9VJqMm61j6N67ShHoONRI0Pr9FLSA61MIbRwwgwKAbMITN+o585lsh3cSyhm7S1g7+2/cXhLx2puU2SJEanjm4ibqZkTibdkd4nIp01RwhBZW1VvZN7UU0R5Z5yKj2VVNZWqhGS6perqfRUdosDdpI1iQxHBpmNRxISMupHFDISMslwpNeH2e7IaIKiKPUCKBgWSKFGwijQyFRKzecnISE1mavbpIhtNNuf8Nzjd1PqKqPUVUqZq1Rddqrz+nVXaVRHJtLsaeGQ5GpUvrogFI2j9HVnj0wMOjICqvAvrCmkoKoAb9CHL+gjEPLjC/nxB/34Q358QR/+RuuNywOhAL6QD1/Qr34u6MMfCuAP+jAbLfVipal4USdV5CSTYEnoledDW+eksraKZfnLWJq/lGUFy1iav4yC6oKoH0eaPY3BiYMZkjSYIUlDGJw0mKHJQxicNIRMRwbJtuQeF9lCCCo8FeRX51NQVUBeWBDVzQuq8ymsaRrow2Fx4LA4SIhLUJfjHCTWLdeV15cl1JclxDVsjzfHU1BQQFpGGp5ALbV+jzoPePD4a/EGa/H4a6ltVFYbqMUT8ITLwuv+8PZALcFQAGN9EAFDeG7CVBdcwGBqCDTQbNkkm+oDFJjCnzHIRkLhZ2NdgINgo+WAElS3t7AtGA6S0Dh4gmqpEJmbq87CoXF+rroyUbcumn4uvSwdn+zDZ/bhMXsIGoLhBKwNQWYazjMaZZH7KYrSxE9FK8BB4/LGt3Pjfes3CIE36OtTHYo9icPiYEjSkPrnQd2zYUjSYAYnDSYzIRODbKh/hvmD/nDExsr6qJaVtZVUetSIlw3LFfXLlbVVnRZKsUZdYAFH2J/IUe9n5MBucZAQ59DYrpZJSGr0T58znNLAjdvnxulz1qcwcPncuPxO3D53/T4unwu3z4XT79K0Fjp64lG8c8bbvVAbEeg+PJ2l2lvNkDuHEW+OZ0zKGGYOm8mUrMlMypjEhIzxMT+M1934gr4mQqjuwVK3XFVb3Wi5Cn/Ix0B7OhkJdSZRGQ3LCRmk29OJM8V16BhitXHdUQKhADvdOyl1lVLqLKPMXUZZWAw1FkhOn5PU+LRGImZQfWjxrMQsMhMye31Upr+ck/5EZ85JibOEpflLWZqvCqClBUspd5e3uL/JYKqPblYvZpJUMaOuD4pq1LeeJKSEKHeXYzFZsJvtUcvro98rsUd3nZOQEqoXqW6/u16segLu8NyDx+8Jl3vq1+sErtvvCQtfT9T9GEOKEhaqfrUTJ+RvWA76CYTL/KGOJe+UJIlMR2ZYyDSImMbL7U0V0NXz0lwoVXtr1Ia8310f3axhXQ0ooAYQcDcEEwgHFOiISbDJYMJutocDJDjqgyI4tIIlmBtvczSIlrCIieazpzMIIfAFfeGUCS625m3DlmjDYbEzIUNPPBpBdnb2g8BewHbgvJycnNZsTHpdlW2r2M6wpKEUFRXpL6YYRG8wxB76OYk9onFOhBDkVuWyLH85G0o38P/t3V2IXVcVwPH/JcMEJl9N0BFSY1qsiPUheVhaSZpGSmNNFRRJBamYNEKLdXyokkINQQpq1SrUD2gNiEqE9sGqUAkhATGkiYgLCWotpYqpGkONmkxJO01ukuvDOWMmkztxrE32ybn/38s5+85hZg2LNcM6e+9z5g7NZdniZbxxUTVLMzp/tLEv+Gwqa6V5zMnMevXe4cnm51wj1KU7OStez/SNzn89SxcuZXjotdlb1JS89Ho9JroTFzx57ZXTJ5k3PHJB81L6BuSl1JScTNGchxZExArg6sxcExFbgQ3AYyVima1rl1xTOgRJKq7T6bB88XKWL/ZFmdIg6nQ61fuX5gwxwkjpcIrodDqMDI8wMjzC6ILR0uFoFko9a3EVsLs+3wWsLhSHJEmSpBYr9ZS2xcCR+nwcWDL9goi4C7gLYGxsjHXr1l2+6C6i2+1y+PBrv4lX/x/z0jzmpHnMSTOZl+YxJ81kXpqnaTmZaXldqYbnODD5DMlFwAWPpsrM7cD2elh8D8+kBq5VFOalicxJ85iTZjIvzWNOmsm8NM+VkpNSS9oOALfU57cC+wvFIUmSJKnFijQ8mXkQeCEi9gFvB54oEYckSZKkdiu1pI3M3FLqZ0uSJEkaDKWWtEmSJEnSJWfDI0mSJKm1bHgkSZIktZYNjyRJkqTWsuGRJEmS1Fo2PJIkSZJay4ZHkiRJUmvZ8EiSJElqLRseSZIkSa1lwyNJkiSptTq9Xq90DJIkSZJ0STjDI0mSJKm1bHgkSZIktZYNjyRJkqTWsuGRJEmS1Fo2PJIkSZJay4ZHkiRJUmsNlQ7gShIRXwZWAYeAzZnZLRuRIuIa4FfA0/VHt2fm0XIRDa6IWATsAa4H3pWZv4uI24F7gQlgY2b+tWSMg2aGnDwHHK4v+UJm7ikW4ACKiHcCXwe6VHn4GPBBrJOiZsjL77FWiomINwA/psrJGeAO4M3AV4CzwCcy87flIhxMM+TlMWBOPf5OZu4oF2F/NjyzFBErgKszc01EbAU2UCVY5e3NzA2lgxAvA+8DHgKIiCHg08Ba4B3ANuDuYtENpvNyUhvPzHeXCUfAX4CbM3MiIh4EPoB10gT98mKtlPUP4MbMPBsRm4CPA+uo/qYtAB4FbisX3sDqlxeA9Zl5olxYF2fDM3urgN31+S7gTmx4mmJ1ROwD9gFbM9O36RZQz3gejYjJj94CPJOZp4D9EfHVYsENqD45AZgfEXup7lyPZea/igQ3oDLzyJThKeCtWCfF9cnLWayVojLzzJThAuCPVE3pMeBYRCwpE9lg65OXp4GbgZ0RcRz4VGY+XyK2i3EPz+wtBl6sz8cBC60ZjgDXATcBo8CHyoajKabWDFTT3SpvdWaupbpx80DpYAZVRCwH3gM8hXXSGFPy8iTWSnERsTIifgmMAQc4v1ZOR8RwmcgG27S8/JpqO8FNwNeAbxYNbgY2PLN3HFhYny8CvNPTAJl5MjNfqmd1fgSsKB2T/uM452oGqrW9Kiwz/1mf/hDrpYiIWAjsADYBR7FOGmFqXjKza62Ul5kHM/MGqqWeWzm/VobqmVFdZtPycv9krWTmXmBp0eBmYMMzeweAW+rzW4H9BWNRLSIWTBmuAf5QKhZd4DngbRExHBGrgN+UDmjQ1bmYWw+tlwLqvW2PAw9k5rNYJ40wPS/WSnnTZm/GgRPAUERcFRHL8MZzEX3y8nJ9s4CIuB44ViSw/8I9PLOUmQcj4oV6r8ifAddZN8ONEfF5qs3Zf6K626BCImInsJJqX8K3gYeBnwOvABtLxTXIpuXkJ8CHI+Il4CSwuVxkA+sjwA3AtojYBjyCddIE/fJyn7VS1Mp6T9sZqtrYTLU3dCfQA+4pGNsg65eXn0XERP31TxaL7CI6vZ77uyVJkiS1k0vaJEmSJLWWDY8kSZKk1rLhkSRJktRaNjySJEmSWsuGR5IkSVJr+VhqSVJxETEC3AccyszvRcQm4LvAlsz0NQCSpFfNGR5JUhOMAJ8DNtXjvVTvRnmyVECSpHZwhkeS1ARZH9dGRA94HlgObAGejYhDwOuA7wMfBZ4CvgVsp/pfdmdm7qrfAv5FqmZpHrAHuCczj17G30WS1CDO8EiSmuCz9fEZqmal3zK2efXxF8BtwCPAQ8Ao8KX6a/cDn6GaGXoYWA88ekkiliRdEWx4JElNsLs+/j0zHwdO9LnmLHAv8EQ93pGZ3wD+Blxbf/b++ng31RK5ecC6SxKxJOmK4JI2SVIT9GZxzURmnoqIbj0er49ngDlTrjtN1ficqcfe3JOkAeY/AUlSE7xINYNzXUTcQbV/59X4KdXNvI3Am4D3Us32SJIGlA2PJKm4zOxS7ce5CvgB52Zn/lcP1t9nDdVDDdZTPfFNkjSgOr3ebFYRSJIkSdKVxxkeSZIkSa1lwyNJkiSptWx4JEmSJLWWDY8kSZKk1rLhkSRJktRaNjySJEmSWsuGR5IkSVJr2fBIkiRJaq1/A1PnTMtKWNllAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "" ] }, - "metadata": { - "needs_background": "light" + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH8AAAKmCAYAAADUyjJfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gU19cH8O/MLh0FuyiiAiLN3hvYsPdEo1FTjTGmqTGmGI0lGo39F01ioonR19h77w0VGxYsiIigggUFRPqWef9YlyI7dwtb4XyeJ0+EOztzgS0zZ+45hxMEQQAhhBBCCCGEEEIIKZV4S0+AEEIIIYQQQgghhJgOBX8IIYQQQgghhBBCSjEK/hBCCCGEEEIIIYSUYhT8IYQQQgghhBBCCCnFKPhDCCGEEEIIIYQQUopR8IcQQgghhBBCCCGkFKPgDyGEEEIIIYQQQkgpRsEfQgghhBBCCCGEkFKMgj+EEEIIIYQQQgghpRgFf2yAUqnEvXv3oFQqLT0VYiPoOUP0Rc8Zoi96zhB90XOG6IOeL0Rf9Jwh+iprzxkK/hBCCCGEEEIIIYSUYhT8IYQQQgghhBBCCCnFKPhDCCGEEEIIIYQQUopR8IcQQgghhBBCCCGkFKPgDyGEEEIIIYQQQkgpRsEfQgghhBBCCCGEkFKMgj+EEEIIIYQQQgghpRgFfwghhBBCCCGEEEJKMQr+EEIIIYQQQgghhJRiFPwhhBBCCCGEEEIIKcUo+EMIIYQQQgghhBBSilHwhxBCCCGEEEIIIaQUo+APIYQQQgghhBBCSClGwR9CCCGEEEIIIYSQUoyCP4QQQgghhBBCCCGlGAV/CCGEEEIIIYQQQkoxCv4QQgghhBBCCCGElGIU/CGEEEIIIYQQQggpxSj4QwghhBBCCCGEEFKKUfCHEEIIIYQQQgghpBSj4A8hhBBCCCGEEEJIKUbBH0IIIYQQQgghhJBSjII/hBBCCCGEEEIIIaWY1NITIKQ0S09Px+LFi3Hp0iV4e3vjww8/RHBwsKWnRQghhBBCCCGkDKHgDyEm8uzZM7Rp0waxsbH53/vzzz+xc+dOdOnSxYIzI4QQQgghhBBSllDaFyEmMnfu3CKBHwDIysrCxIkTIQiChWZFCCGEEEIIIaSsoeAPISYgCALWrl2rcezKlSvFgkKEEEIIIYQQQoipUPCHEBO4efMmHj16JDp+7tw5M86GEEIIIYQQQkhZRsEfQkzg0KFDzPGIiAgzzYQQQgghhBBCSFlHwR9CTEBb8IdW/hBCCCGEEHNQKBSYN28eOnbsiLZt22Lu3LmQy+WWnhYhxMyo2xchRpaXl4cTJ04wt7l69SpycnLg6OhoplkRQgghhOhPqVRi48aN+OWXX5CdnY1GjRph/vz58PT0tPTUiI6GDh2KzZs353999uxZnDt3Dlu2bAHHcRacGSHEnGjlDyFGdvbsWWRmZjK3kclkuHz5splmREoiKSkJ8+bNw5gxY7By5Urk5ORYekqEEEKI2fz+++8YNmwYLl++jOjoaGzYsAGNGjVCSkqKpadGdBAeHl4k8KO2bds2XLhwwQIzIoRYCgV/CDGygwcP6rQdpX5Zv8jISDRp0gSTJk3C8uXLMWrUKHTq1AlpaWmWnhohhBBicmlpafjuu++KfT8lJQXz5s2zwIyIvjZu3Cg6tmvXLjPOhBBiaRT8IcTItNX7UaOiz9ZNEASMGzcOT58+LfL9iIgILF261EKzIoQQQsxn3759ePnypcaxHTt2mHk2xBCsm5K3bt0y40wIIZZGwR9CjCglJQUXL17UaVta+WPd4uPjcerUKY1ja9asMfNsCCGEEPPbuXOn6NitW7co9cvKJSQk4Pbt26LjN2/eNONsCCGWRsEfQozo6NGjEARBp23j4+OLrSoh1uP48eOiYzExMXjx4oX5JkMIIYSYWV5eHvbt28fc5syZM2aaDTGEttXod+7cQV5enplmQwixNAr+EGJEuqZ8qdHqH+vFCv4AqnpAhBBCSGl16tQprTc6KPhj3bTVoZTL5YiNjTXTbAghlkbBH0KMSN/gD9X9sU6CIGgN/lCHDEIIIaUZK+VL7fTp02aYCTGEQqHA4cOHtW5HqV+ElB1SS0+AsAmCgOjoaOzevRsxMTHw9PTEtGnTLD0tosHdu3dx7949vR5DK3+sU3x8PO7fv8/cRtfaToQQQoitEQRBp+DP+fPnkZeXB3t7ezPMiujj0qVLSE1N1bodBX8IKTso+GOFUlJS8Pvvv+PMmTOIiIgoUkzP39+fgj9WSt9VP4Bq9YhSqQTP0yI8a6Jt1Q9AwR9CCCGl1/Xr1xEfH691u5ycHFy5cgUtW7Y0/aSIXg4cOKDTdhT8IaTsoCtOK8TzPH744Qfs3bu3WBeF6Oho6qxgpQwJ/qSnpyM6OtoEsyElceLECa3b3Lt3D8+fPzfDbAghhBDz0mXVjxqlflknbfV+1Cj4Q0jZQcEfK+Tu7o6goCDRcaoTY30UCgWOHj0qOl6xYkXRMfp7Wh9dVv4AqiXVhBBCSGmjT/CHij5bn/T0dJw9e1anbW/fvg25XG7iGRFCrAEFf6xUmzZtRMfoQ9b6XLx4EWlpaRrHnJ2dMWrUKNHHUt0f6xIfH4+EhASdtqWiz4SYx/379/H3339jy5YtyMjIsPR0CCnVHj16hPPnz+u8/enTpyEIgglnRPR17NgxKBQKnbbNy8tDXFyciWdECLEGFPyxUm3bthUd0zWST8yHlfIVGhqKkJAQ0XEK/lgXXVf9AFT3hxBzmDNnDnx9ffHhhx/izTffRIMGDfS6MCWWd+rUKfTp0wdeXl4YMmQIjh07ZukpEYbdu3frtf2jR490qg9EzEfXlC+1W7dumWgmhBBrQsEfK8UK/pw7d46WZ1oZVvAnLCyMWQgxKioKmZmZppgWMQAFfwixHmfPnsX3338PmUyW/734+HiMGjUKSqXSgjMjuoqIiED37t2xZ88eJCYm4uLFi+jatSv27Nlj6akREfqkfKnRqnTrom/wh+r+EFI2UPDHSvn5+YnWicnMzMT169fNPCMiJiMjg7kaKywsDFWqVIG3t7fGcaVSSbVjrIguxZ7VHj58iMePH5twNoSUbfPmzdOYThIVFaVXoJZYhkKhwAcffIDs7OxiY99++y2lClmhrKwsHD58WO/HUdFn6xEXF4fY2Fi9HkPBH0LKBgr+WCmO46juj404ceJEkbvShXl4eOQX727VqpXoPqjos3WIj4/Xe+k6Be4IMY0XL15g7969ouOUAm391qxZI5pOcv36daozYoUOHz6MnJwcvR9H56XWw5DusxT8IaRsoOCPFWOlftGHrPVgLa3t2rUrOI4DwA7+UN0f66DPqh81KvpMiGls374dubm5ouNU98e65ebm4scff2Ruw+qSSSyDlfLVpUsX0bGoqCikp6ebYkpET/qmfAGqmj+USktI6UfBHyvGWvlDdzyth7Z6P2qtW7cW3Y6CP9bBkDQSqvtDiGmsW7eOOX7u3DlKG7Jiy5cvx/3795nbHDlyxEyzIbpQKpXYtWuX6PioUaPg6+sr+lhaxWx5crncoNdVdna2zp1OCSG2i4I/VqxFixaQSCQax+Li4qjWiBV4+PAhs0NC165d8//duHFj2Nvba9wuMTERDx8+NPr8iH4MDf7QBSghxpWcnKy17siTJ0/ofdNKZWRkYNasWVq3O3r0KL1/WpHz58/j6dOnGsekUil69OiBdu3aiT6eVqVb3vnz5/HixQuNYy4uLswby5T6RUjpR8EfK+bq6oqGDRuKjtPqH8tjXZwEBwfDw8Mj/2sHBwc0btxYdHta/WNZCQkJovV+eJ6Hg4ODxrEnT54gMTHRhDMjpOzZvHkzFAqF1u3ofdM6LVmyRDSIUFhycjJu3LhhhhkRXbBSvkJCQuDu7s4M/lDRZ8tjpXx17NgRTZo0ER2n4A8hpR8Ff6wcq+4PBX8sT9eULzWq+2O9WPV+mjVrhqZNm4qOU90fQoxr/fr1Om1HdX+sT0pKCubNm6fz9pT6ZT1YwZ9+/foBYJ+XRkRE6BS0JabDCv50794dgYGBouMU/LFuCQkJeOONN+Dj44OgoCCsWrWKXm9EbxT8sXJU9Nl6KZVK5sqfbt26Ffse1f2xXqyUr44dO6J58+ai41T3hxDjefjwIU6dOqXTthT8sT5z584VTTvRhIo+W4e7d+8yV2H17dsXABAQEAB3d3eN22RkZCAqKsoU0yM6SEtLY55LduvWjYI/Nur58+do3Lgxtm7diri4ONy8eRPvv/8+Fi9ebOmpERtDwR8rx8rNvXjxIvLy8sw4G1JYVFSU6LJ2e3t7hISEFPs+a+XPxYsXIZfLjTY/oh9W8Cc0NJSCP4SYycaNG3WuA3Px4kW682lFkpKS8L///U+vxxw/fpw++6wAq9BzcHAwvL29AajSoFnnppT6ZTlHjx4V7djl5eUFPz8/rcEfqsFlnebNm4e0tLRi3582bRpSUlLMPyFisyj4Y+Xq1KmD6tWraxzLzc3F5cuXzTwjosZK+WrXrh2cnZ2Lfd/b2xuVK1fW+JisrCyqfWAh9+/fx7179zSO8TyP9u3baw3+0AkTIcahrctXYZmZmcyi+8S8Zs6ciZycHL0ek56ejsjISBPNiOhKl5QvNSr6bJ1YKV/dunUDx3GoWrUqKlasqHGbjIwMKqJvpcSCsxkZGThw4ICZZ0NsGQV/rBzHccw7LPQhazn61vsBVH/Pli1bij6O2qRaBqveT9OmTeHm5ob69evDxcVF4zYpKSmixaIJIbqLjY3VeyUdpcxah7t372LFihUGPZZSvywrNTUVJ0+eFB3XJ/hDK38sQxAEZhBAXYqA4zhK/bIxqampzL/Lvn37zDgbYuso+GMDWMEfKvpsGTk5OcwTJbHgD0B1f6yRtno/ACCRSNCsWTPR7ajoMyElp2uh58Ko7o91mDp1KjN9a8iQIaJjVPTZsvbt2yeaPlmtWjW0aNGiyPdatGgBiUSicfuEhATqgGkBd+/eFb0JxXEcunTpkv81BX9si7Zrg/3794um+xHyOgr+2ABtudWUbmJ+p0+fFl3aXrFiRWYrTer4ZX10Cf4AoLo/hJgYBX9s07Vr15jpegMGDMB3330nOh4eHo7c3FxTTI3ogJXy1bdvX/B80csFFxcX5nkOrUo3P9aqnxYtWhRJ9aLgj23R9npKTk6m1FmiMwr+2ICmTZvC3t5e41hSUhIePHhg5hkRVspXly5dRO+IAWCmfd26dUuvLimk5O7fv4+4uDiNY+p6P2oU/CHEdKKiogyqexYVFYWsrCwTzIjoavLkyaI3ojiOw08//YSGDRuK1hrJycmhtGcLycvLw/79+0XHX0/5UmN1o6XUL/PTVu+nMAr+2BZdsjz27t1rhpmQ0oCCPzbA0dERQUFBouOU+mV+htT7UXN3d0f9+vU1jgmCQOlDZsaq99OkSRO4ubnlf80K/ly6dImW3RJSAqyVI0FBQahbt67GMYVCQc0PLOj06dPYvXu36PjIkSMRFBQEnueLrKR8HaV+WcapU6dEbzo5OTkVSRcqjIo+Ww+ZTMasm6Vv8IcyCqyHQqHQKTBOdX+Irij4YyOaNm0qOkYfsub17Nkz5oWGtuAPQKlf1kTXlC8A8PHxKRIMKiw9PR2xsbFGnBkhZYcgCMyUr6FDhzJXTdL7pmUIgoDvv/9edNzOzg7Tp0/P/7pz586i21LRZ8tgpXyFhYVp7FwKsFf+XL58mVbjmVFERAQyMjI0jpUrV65YrckaNWqgfPnyGrdPS0vD48ePjT5HYpgbN26I/m0LO3fuHJ4/f26GGRFbR8EfG0G51dbjyJEjondFfH19UadOHa37oKLP1oO18uf14A/P88zVP7RqixDDnD9/Hvfu3RMd1xb8obo/lnHgwAFm84OPP/64yGciK/hz7tw5nS5yiPEIgqBXi/fCPD094eXlpXFMLpfTa9KMWClfnTt3hp2dXZHvUccv26HrNZ4gCMznASFqFPyxEawuQ1euXKE7LGZUkpQvNW0rf2jJrXk8ePAAd+/e1Tj2er0fNar7Q4jxsVb9NG/eHL6+vsz3TbrQND+lUslc9ePs7IwffvihyPf8/PxQrVo1jdvL5XKcOnXKqHMkbNevX2d2iOrTpw/z8ZT6ZR30qfejRsEf26BPaQ9K/SK6oOCPjahWrRpq166tcUwul9NFp5loi6zrGvxp0KABHB0dNY49ffoUCQkJBs2P6Ie16qdx48Zwd3cv9n0K/hBiXAqFAhs2bBAdHzZsGADVClixYvr37t1DcnKySeZHNNu8eTMzBXrcuHHFAj0cxzHThSj1y7xYq35atWolGqhTYwV/qOizeaSkpDBXHVPwx7bpE0Sllu9EFxT8sSGsVCEq+mweMTExot3VeJ5Hp06ddNqPnZ0dczUXdT0xD33q/aixgj+RkZFQKBQlnBUhZcupU6fw6NEjjWMcx2HIkCEAVCtJGjRoILofSrs0H7lcjilTpoiOV6hQAV9//bXGsTZt2og+joI/5qWtxbs2rEDe2bNn6ULUDFilCOrWrQsfHx+NYxT8sX7Jycl61ZJMTk7GpUuXTDgjUhpQ8MeGsD5kaXmtebBSvlq2bKlxpYgYqvtjeYYEf2rXro1KlSppHMvKykJ0dLQRZkaMSRAEXLlyhVJkrRSry1eHDh3g6emZ/zUVfbYO//77L2JiYkTHv/nmG9HPQ1bw5/Lly0hJSSnp9IgOHj16xEyXZNX7UWvQoAFcXV01jqWmptLnoRloS/niOE7jGAV/rJ8hN/Yp9YtoQ8EfG8I6YTpz5gzViTEDY9T7UaOOX5b18OFD0Xo/HMehQ4cOomMtWrQQ3S+tPrAusbGxCA4ORpMmTdCkSRP4+fnhwIEDlp4WeUUmk2Hz5s2i40OHDi3yNRV9trycnBxMmzZNdLx69er4/PPPRcdr1qwJX19fjWOCIDCD8sR4du/eLTpWt25dBAUFad2HVCplnstQ6pdpCYLA/DwTS/kCgFq1asHFxUXj2LNnzyiN1gpQ8IeYAgV/bEjDhg3h5OSkcezZs2eiF7LEOGQyGY4dOyY6zvqQ1YR1whQZGYm8vDy99kf0w6r306RJE+YqLqr7YxtevnyJbt26FbmLmZiYiCFDhiApKcmCMyNqhw4dEl3pIZFI8Oabbxb5nraiz3QTxPR+//13PHz4UHR8ypQpou3B1Vgp0pT6ZR7aunyJrRh5HRV9tpzbt2+LliKQSCTM7no8zyMgIEB0nFb/WJ4hrx9q+U600Tv4Ex0djQ8++AChoaHo379/kQ+PVatWoWvXrujcuTOWLFlS5CTsxo0bGDZsGNq1a4fRo0cXye/PycnBlClTEBISgt69e2P//v1Fjrlr1y706tULoaGhmD59OmQymSE/q82zs7Nj3vWkD1nTOn/+PF6+fKlxrFy5csyLEk1q1aqF6tWraxzLzc3F1atX9Z4j0R3r7nJoaCjzsRT8sQ0///yzxvbh6enpWLJkiQVmRF7H6vLVtWtXVKlSpcj3AgICRO9Wp6SkIC4uzqjzI0W9fPkSs2fPFh2vW7cuRo0apXU/rIvSI0eOGDQ3orvMzEwcPnxYdFyXlC81KvpsOayUr1atWmktRUCpX9ZLJpMxV5KXK1dO4/ep5TvRRu/gz9SpU9GuXTscO3YMc+fOxfz585GQkIDw8HBs3rwZq1atwsaNGxEeHp4fGMrLy8OkSZMwdOhQHD16FMHBwZg6dWr+PpcvX44XL15g7969mD17NubMmZPf7Sg2NhaLFi3C/PnzsWfPHiQlJWHlypVG+vFtD9X9sRxWylfHjh1hZ2en1/44jqPULwsypN6PGiv4c+XKlTIboLYm9+7dw8KFC0XH169fT8VILSw7Oxvbtm0THVd3+SpMIpEwX3+U+mVaCxcuxLNnz0THZ8yYAXt7e637Yb3HRkdH08o8Ezt8+DBycnI0jrm5uYmmPWvSqlUr0VVCd+7cofQhEzKkxbtQ6HOPgj/W69q1a8jOztY45lm9Et5+u/jno9revXtNNS1SCugd/Hn8+DF69OgBnufh7++POnXqICEhAXv37sWbb74JT09PVK5cGSNGjMjPO7x06RKcnJzQv39/ODg44KOPPsLNmzfzV//s3bsXo0ePhqurKxo1aoSQkJD8N7T9+/cjLCwMgYGBcHV1xahRo8p0PiOr7g91/DItY9b7UaOiz5aRmJgo2kGBVe9HrUaNGsxVWzdu3CjxHEnJfP3118jNzRUdv3//PgXMLWzv3r3IyMjQOObg4IABAwZoHKO6P5bx7NkzLFiwQHQ8ODhYY8BOk6pVqzI7t1Hql2nt2rVLdKxXr17Mm1lCTjqE3IJV0G5ubsy/Jb3PmkZubq7epQiUz+8i79dg5C6uDyE9iYI/VkzsdTO0AY9bozPxo+95SEWu4g8cOEA3t4goqb4PGDJkCPbu3Yv3338f0dHRePLkCYKDg/H777+jV69e+dv5+flh2bJlAIC4uLgixf2cnJzg6emJuLg4uLi44Pnz50XG/fz88i+e4uLiigQ86tWrh8TEROTk5MDR0bHY/PLy8orVSpFKpTrdibJW6hewUqlkrhSJiopCWloaypcvb66plRkvXrxgBmO6dOli0Bstq3DwuXPnDH7zLvycIcWxTpgaN24MNzc3rb+75s2bixbMPHfuHBo2bFiiOZpbaXrOnDhxAlu2bNG63X///cdcTUnYSvqc+e+//0THevbsiXLlymncN2vlT0neNwnb7NmzRVOfAWDmzJngOI75+y/8nOncuTOioqI0bnfkyBG8/fbbJZsw0UipVDKDP3369NH4N1QmRUJxbDqEe8ch6T4XkhZj8sfatGmDa9euadxfeHi4Tm3jxeZa+P+kwOnTp0W7V7q5uaFZs2ZFfm+CIEC+8xMIqarUWNnFv+DvL/4au3nzpk3+3kvLc0ZT8KeKM7C4lxRSTkCFjFvoWs8e+28Xrw+anJyMCxcuMK8xSIHS8pwBVLW8tNE7+NOmTRv8+OOPWLFiBQDg+++/R8WKFZGVlVWk3aOLi0v+m1J2dnaxHH0XFxdkZ2cjKysLEomkSCCH9Vj1MbKzszUGf/755x/89ddfRb43ePBgDBkyRN8f1eqoi7rVqVMH8fHxxcYFQcDOnTv1Wq5LdHPo0CEoFAqNYx4eHnB0dMxPVdRH1apVwXGcxiKld+7cwZUrV1ChQgW996smVgiwrNuzZ4/oWJMmTXT6W4p1qwFUwQd9C4BbC1t/zigUCnz22Wc6bbtx40aMHz8eUqneH4WkEEOeMy9fvmS+Drt27Sr6OqxRo4bo4y5duoTY2Fi903AJW1JSUv4NPU2aNm2Khg0b6vw5+ODBAwQHB4uOHzx4EPHx8ToXHSa6u3z5Mp4+fapxTCqVIigoSOPfUZryDFXuqlZAZ13ZiJSqPfPH6tevL3q8Y8eOGXR+VJitfy6ZAqtLYuvWrZGYmFjke053t8M94WT+1zk3doPzGg4HBweNq2QfP36Ma9euwc3NzXiTNiNbf86cOnWq2PemdZHCzbHgPfH9dlWw/3Zise0AVWp71apVTTa/0sjWnzOAqu6eNnqd8aalpWHChAmYNm0aQkJCcO/ePXzxxRfw8fGBs7NzkeXbmZmZ+d0enJyckJmZWWRfmZmZcHJygrOzMxQKRZGVPKzHqo8h1vXq/fffx/Dhw4v+kKVg5c+DBw9Qq1Yt8DyPkJAQjcEfQFXnYsSIEeadYBnAKr7cvXt31KlTx+B9BwUF4fr16xrHHj16hMaNG+u9z9efM6SoS5cuiY716dMHtWvX1rqPLl26YPHixRrHbt++rdM+rElpec6sWLFC5+Xqz58/R2xsLLp3727iWZVOJXnOrFmzRjQtz9XVFe+++65oxygvLy9Ur14djx8/LjaWl5eH9PR0NG3aVK/5ELZZs2YxO1DOmzdPp8/Bws+ZN954Ax9//LHGu61JSUlQKBTw8fEpybSJBn/++afoWGhoqGgKl+DlBVl4XSD1HhweX4BX1fLgnFQ3p/r164cJEyZofNz169dRvXp1ODg46D3X0vK5ZAqsFNf+/fsXOQcRslMg21Q0ZdP++XXUreaKgIAAXLlyReN+MjIybHIVs60/Z5KSkooF7xpX5/Bek6I/TxevHHAANPW4jIiIYKbpkgKl4TmjD72CP4mJiXB1dc1v0enr64tmzZohMjISdevWRWxsLNq3bw8AiImJgbe3NwDA29u7SFHH7OxsPHz4EN7e3ihfvjwqVaqE2NjY/LtArz+2cG2OO3fuoGbNmhpX/QCAvb29TQd6WHieB8/zaNeuHVavXq1xm7Nnz5aJJ665sbpidOvWrUS/89atW4sGfy5cuIDevXsbvG/1c4YUSExMxJ07dzSOcRyH0NBQnX5nrLojUVFRyMvLE32fsma2/JxJT0/HlClT9HrMhg0b0LNnT+0bElGGPGc2btwoOta/f/8iK4k1admypWir6osXLzJTw4h+YmJisGrVKtHxbt26Mbt3acLzPCpUqIAWLVqIplQfP34c9erV02u/RDtWyle/fv2Yr2Wlfz8ozi4BBAUQewB8I1XakLe3t2hANjc3F1euXGHWrNTGlj+XTCE5ORmRkZGi4+rarGqyI1OArFeF2qWOgDwHgADEHUFgYKBo8Cc6Ojr/us7W2PJzRtN74oKeUvDqlZD2rkBeBlyEDLTy5BDxsHj459y5c0hJSUHlypVNPd1Sw5afM/rQ6yesXbs2MjMzcfLkSQiCgPj4eFy4cAG+vr7o1asXtmzZgsTERDx79gxr167NP6Fu1qwZsrOzsWvXLuTl5WHlypUIDAyEh4cHAFVxuRUrViAzMxNRUVE4efJkfgHdHj164PDhw4iOjkZGRgb+/vvvMn+izvoAjYiIKBU5i9bk/v37iImJER3v0qVLifZPHb/M68SJE6JjjRo1QsWKFXXaT9WqVeHl5aVxTCaTidY/IKbz008/iaYziNm2bZto1xtiGs+fP2d2qRk6dKjWfVDRZ/OZMmWKaNozAGbrd21YQSMq+mx8d+/eZTYk0FabR+JfMK6ILggicRxHLd/N6PDhwxrLBQCqG/OFUz+U989AEfmP6gv7crDrvzx/THHnABV9tkKvN/AZEsyjrZfqkv2pwg3S7nPzx0a2cte4D2r5TsToFfxxdXXFzz//jD/++AOhoaH49NNPMWTIELRt2xbt27fHoEGD8M4772Dw4MFo164d+vXrB0C1GueXX37B2rVr0alTJ1y9ehUzZszI3+/HH38MV1dX9OjRA99++y2+/fbb/OXDvr6+GDduHMaPH49evXqhWrVq+OCDD4z3G7BBgYGBokWdX7x4gVu3bpl5RqUbq8tX48aNS5xTqy34I/YBTwzDCv5oa/H+OtbqgosXL+q1L1IysbGxoml4LOnp6dQW1cy2bNkCuVyucaxChQo61ctiBX8oaG48kZGRzFVab775Jpo1a2bw/rUFf+jzz7hYq34aNGigtV4EV6sN4FwFAKCMPQBBVtCKmlU8n4I/xqVri3dBIYNs9+f5X0s7TwMfOAhwUF1DKO8eRoC/eL0mCv5YRuFiz852wKyuBYk6sV7vQxIwAOAkAIB+/hLR/ZTl7thEnEEFn8VWnrz//vt4//33NY4FBQVh/fr1GsccHR3x008/iR6zb9++BncKKI0kEglat24t+uZ/5swZBAUFmXlWpZcpWrwXFhgYCFdXV40tj1NTU3Hnzh34+fmV+DhE5fjx46JjhgR/tm7dqnGMgj/mNXHiRMhkMtHxmjVrFsuhV1u3bh0GDRpkqqmR16xbt0507I033tApdZvVxeTWrVtIT0+nzpdGMHnyZNExnucxc+bMEu2/Xbt2sLe311hP6OnTp7hx4wazMDTRj1iqJKB91Q8AcLwEkvq9obi8CpBlQRl3FJL6qtR01sqfM2fOQBAEKuBtBNpWdBSuYac4+z8IT1UrvTiPppC0HAOOl4D37gLlrW1AdgqaVBNf1UfBH/PLzc0tUpfyq3YSeLqpXjf7YhRo8t4YcM6VwNfpAOW946gsfYkG1ThEPSkeKFe3fC8LqUxEd/RssFGs1K/XlwsSwymVSma9H2MEfyQSidbWxcQ4kpKSRFP4OI7Tu1MerfyxDkeOHMGOHTtEx0NDQ5mFD3fv3o309HRTTI28JjExkbn6btiwYTrtx93dXbTDkCAIzKLuRDcnT57E/v37Rcffe+89+Pv7l+gYTk5OzBUjlPplPKmpqTh58qTouHq1vja8f8F2yuiCYFKTJk1E69w9ffoUd+/e1XGmhOXmzZtISkrSOCaVSvNvYilT4yE//urGOsfDrs+v4HjVKhG+XkGAqEbOTdHuiA8ePKDPRjOLjIzMD4Z7uQHj26r+ZjKFgPmXK+YX8uYDBuQ/ZmCQ5r9fcnIyfRaSYij4Y6NYJ0uFlwuSkrl8+TKeP3+ucczBwcFohfBat24tOkbBH+NhXXQ2bNhQ53o/aqx0hxs3biArK0uv/RH9yeVyjBs3TnSc4zgsXrwYffv2hYuLi8ZtcnJymMEjYjybNm0STeWpXr06QkNDdd4X1f0xHUEQ8N1334mO29vb48cffzTKsVh1844cOWKUYxBVCohY7aZq1aoxV9MVxnt3BuxU76WK23sgKFQpnPb29sx9UOqXcbBW/bRp0wbly5eHIAiQ7x0PyFVpeZIWY8DXLDhfkfgWSq2NO8xcXR4dHV3ySROdFb6B/3OYFE52qlU/y84pUD2wff7qucL1t4Y21XxuA1DqFymOgj82qlWrVqLLZ2/fvi0asCD6YaV8dejQAU5OTkY5DhV9Ng9jpnwBQMWKFUVbESuVSly+fFnvfRL9rFixQrRbHgCMGjUKjRs3hrOzMwYMGCC6HSsViRgP6/c8ZMgQSCTi9QteR8Ef09mzZw/zRtLYsWNFC97ri1X35/jx46L1oYh+tKV86Zoawtk5FqwcyXoG4UHBxaq21C9ScrrU+1He2gHlnVcX/a4ekHYuGqjlytcAV03Vwl1IuoTWDbxF90mpX+alfp2E1OEwKEj1efgkQ8DPJxVFbvxz5WuCq6n6DKzrkgXvCpr3RzUNyeso+GOj3NzcmHV9IiIizDib0svU9X7UWMGfK1euIDs7W3Sc6M7YwR+AUr8sKS0tjdnavVy5ckXqybFSig4dOoRnz54ZdX6kqLi4OGZQRpcuX4VR0WfTUCqVzFo/rq6u+P777412vBYtWsDV1VXjWHp6OgXRjSAvL4+5AkDXlC81sa5f1PHLtHJycpgrmLt16wYh9yVk+77K/55dz/ngHN2KbVs49atHfc1pQwAFf8xJEAScPXsWEg6Y36OgLO/UI3Kk5xYv+SEJ6J//7/4Bmm+cnD9/ns5tSBEU/LFhlPplWllZWQgPDxcd16Ujja48PDxQq1YtjWNyuZxOfo3g0aNHzHo/ISEhBu2Xgj+WM2PGDOZJzZQpU4p04wsLCxNN7ZPL5di8ebPR50gKiDV9AIDatWsz0181adSokWhx6MTERNEC34Rtw4YNuHbtmuj4hAkTUKVKFaMdz87Ojvn+S6lfJXfy5EnR2i1OTk7M1DtN+Ho9AF51caqM3pGfysmqR3njxg2kpaXpdRxS1OnTp0VvBlaoUAHNmjWD/NgM4KXqvY/37abq7qWBpFDwp0l58c9RCv6Yz/3795GUlIQPmvFoUE11iX4pSYk1V5Swt7dH06ZNi2zPFwr+DGmkOROBWr6T11Hwx4ZR0WfTOnXqlMYOJABQpUoVNGzY0KjHo7o/pmXsej9qFPyxjNu3b+PXX38VHffx8cEXX3xR5Hv29vZ48803RR9DqV+mxQr+DB06VO9OQA4ODmjcuLHo+IULF/TaHwFkMhlzNV3FihUxYcIEox9XW8t3UjKsFu9hYWFwdnbWa3+cUwXwdVT1uYS0BAhPogAAlSpVYhYBp3PTkmFdxHft2hXc0ygozi1TfUPqCGmvxaLvq5xna8BBtSKoevYtSETefin4Yz5nz55FBUfgx04Fq34m7pNDANC0adNiBdX5Sr7gqqqyQBpXlcFD8wJKqvtDiqDgjw1jrfw5d+4c5cmXECvlq2vXrkZvnUh1f0yLlfKlT5HZ1zVt2pRZf4s6ZZjGV199xXyPW7BgARwcHIp9n5X6dfLkSTx48MAo8yNF3bhxA1FRUaLjunb5eh3V/TGuv//+m9mV6bvvvoObW/EUkpJiBX/Cw8ORm5tr9GOWFYIgMOv96JvypSbW9Yt1bkqpXyXDbPEe1hWyXZ8BghIAIA35DnxF8Vo+nEQK3qcrAEAiS0crL81pQ/Hx8cjMzCzBrImuzpw5gymdpKjkrDqnXHdNgYiHqlV1Yq+rwq/Dvv6ar0v2798PpVJp5NkSW0XBHxtWr149VKpUSeNYVlYWc9k20c5c9X7UKPhjWqao9wMA5cuXZ7acjoyMNHjfRLMDBw5gz549ouNdunQRvaDp0KEDatSoIfrYDRs2lHh+pDjWqh9/f3+DV1JS8Md4srOzMWPGDNHxmjVr4tNPPzXJsRs1aiS6+jI7O5vqGJbA9evXER8fr3GM4zj06dPHoP1K/Asep7hVEPyhos+m8eTJE1y5ckV0vJ/XcwhJqtXGXGV/SNqO17pPvl5B+YKhLTRfTwiCgNu3b+s3WWKQx1HH8FFz1aV5Zp6AKYcLbnCJZXtICrV8HxAo1bjNs2fPaCU6yUfBHxvGcRylfpnIkydPmMEzUwR/mjZtKtrpJj4+Hk+ePDH6McuKR48eMU9eDK33o0apX+Yjk8kwfrz4SS3P81i0aJHoaiyJRIK33npL9PGU+mV8giAwf6/Dhg3TO+VLjRX8uXDhAt3t1MPSpUuRlJQkOj516lSjdbh8Hc/z6NSpk+g4pX4ZjrXqp1WrVqhWrZpB+1V1G1K1dheeXIMy9R4AdvDn3LlzkMlkBh2vrGPdkGzX2BflIhflf23X51dwUs310Aor3PK9a11BdDtK/TK9rMxMvO8VAymv+iz8JVyBxJcF42Irf7jqDcG51wag6hBWwVHjZpT6RfJR8MfGUdFn0zh8+LDomL+/Pzw9PY1+TGdnZzRq1Eh0nFb/GO7kyZOiYw0bNhRdQacrCv6Yz/Lly3Hr1i3R8Y8//hgNGjRg7oOVYhQZGSlaGJwY5tKlS8xUIn27fBVWr1490TSk9PR0umOtoxcvXmDOnDmi476+vnj//fdNOgdW6hcVfTacKVK+1Ap3/VJG7wYA+Pn50ap0E2ClfM3vaQ/kqlLMJY3fAV+ng0775Mp5gKveGABQ1zkd1Vw0b0fBH9O7u38JOtVVBX7upQpYckaRP+bl5SW6YpnjOPCvVv9IOKCnn+ZLewr+EDUK/tg4Cv6YhrlTvtQo9cs0TJXypUbBH/NISUnBjz/+KDru7u7OTFtRa968OXx8fETHafWPcbF+n02bNoWfn5/B++Z5Hi1atBAdp9Qv3cyfPx8pKSmi4zNnzoSdnXg7aGNgdZw6d+4cMjIyTHr80ujRo0fM10BJgz+F640oXtX94TiO6v4YGatjUxdvDo3tXwXXnSpBGjZbr30XTv0K89V8WUjBH9MSZDmoer2ggcW3B+XILYj9MLM8gKIt3wcEaP4bUst3okbBHxvXvHlzZqrQo0ePzDwj2ycIAgV/ShlTFXtWa9y4sWgB8Lt37yI1NbXExyDAtGnTmBeoP/74IypXrqx1PxzHMVf/rFu3Lr91MSkZpVLJrKNkaKHnwljvmxT80e7JkydYtGiR6Hjjxo0xZMgQk8/Dz89P9O62XC5HeHi4yedQ2uzevVt0zNvbG4GBgSXaP1/FH1wlVfBWuH8aQmYyACr6bGxRUVEaU/8dpcD/ehcEZaXdZoNz0f4ZWJikXo/8f3en4I9FKM4ugZugOk88FqfEzuii6cqs1xPwqnObiyp9M8xXAmcNcXpq+U7UKPhj41xcXJitbqnuj/5u3bolWvdAKpUaZaWIGG0XMQqFQnScaPb48WNER0eLjpe03g+geh0GBQWJjtPqn5K7efMmfvvtN9Hx+vXr61WMlhV0uH37NrOwJtFdeHg4EhMTRceNEVSgos8lM3v2bGY3n1mzZhm9u6UmHMdR6peRsVK++vbta3CtrcLyV/8ISihi9gKgos/GJnbR/nV7Cbwrqv6GnFc7SBq/o/e+uZotAUd3AEAXH15jy/e7d+8iJydH730T7YT0RMhP/QIAkCsFTNxfvIuptpU/HM/np2A6SoFuIkE8Sv0iAAV/SgXWmwJ9yOqPteqndevWKFeunMmO7efnJ1q/4uXLl8wgBtHsxIkTomMNGjTQaaWILij1y3QEQcCECROYwc+FCxfqlZYSGBjI7DBFqV/Gwery1b59e3h5eZX4GKy0r6tXr9JFC0NCQgL++OMP0fH27dujZ8+eZpsPK/WLij7rJzMzk1m/sKQpX2pF6/7sAqD6PBR7P3748CHu379vlGOXFZqCP36VOExs/2rlPy+FXZ+lBgXzCrd8r+DEoZVn8X0olUqqhWciskOTAZkq+P7XRSVuJhdddezk5MS8ya/GF0r96k8t3wkDBX9KAdZyQFr5oz9LpXwBqvoVlPplXKzgjzFXcVHwx3T27t2LAwcOiI53797doAtU1uqf9evX00lSCclkMmzatEl0vCSFngvz8PBArVq1ROdAq7jETZs2DXl5eaLjP//8s1FWh+iKtfLn8uXLzLRPUtThw4dFA59ubm7o0EG3osDacDVbAK4eAADl3cMQ8jLh5OSEpk2bij6GbkzqLjs7W2PTiv/1lsL+1TIdSdvx4KsGGHwMSb3u+f/uVo9Sv8xFef8slFGqGyTPswTMPFZ81Q8rkFoYXycUcFDdPO7px8NOw5+RWr4TgII/pQIr+HPx4kXk5uaacTa2LS8vj1kfxtTBH4Dq/hibqYs9q1HwxzTy8vIwYcIE0XGJRIKFCxcadIHKCj48ePCALlBK6OjRo6IFJnmex+DBg412LEr90t/NmzexevVq0fFevXqhffv2ZpyRqquNr6+vxjFBEJjv56QoVspXr169jFbAW5Vy0kf1hTwHyljVDTRW6hfV/dHdqVOnip3Hv92QR2jdV5dw7nUgDfmuRMfgC7V8F0sZouCPcQlKJWT7J+Z/PeOYHKkaYrXa6v2ocVJ78H6qm2Bujhw61tV8TkSpX4SCP6WAl5cXPDw8NI7l5eXh8uXLZp6R7YqIiBCtfeDm5sZMLzAWCv4Yz5MnT5htwY1R70etYcOGkEqlGsfu37+Pp0+fGu1YZcmyZcuYy83Hjh1rcNHSOnXqMNNmKfWrZFi/vy5duqBq1apGOxYVfdbflClTmKvbZs2aZcbZFGCt/qHUL90olUpmsWdjpXypaer6RUWfjeP1Va8VHIE53QrONex6LwFn71yiY3Cu1cB5NAEANPHgUd21+DYU/DEuxZXVEJIuAQBiXzhg5SXN78Xa6v0UJnnV8h0A+gVobgZEwR9CwZ9SQFtbTbp7rTtWJfxOnTqJXtwbE+sOdlRUFLW71QMr5Ss4ONho9X4AwNHRkVlDhlb/6O/Zs2eYPn266HjFihUxbdq0Eh2Dlfq1adMmyOXFl2ET7XJycrBt2zbRcWN0+SqMVv7o58KFC9i6davo+NChQ3WqM2EKVPS55M6fPy96w0EqlaJHjx4axwylSjkpDwBQxuyFoJAxV/5cvXqVzmV09Pp56U9hUlRxUa3quO/ctEjKVknwhfajqeU7BX+MR8hJh/zI1PyvP9+RCYVIg1F9gj+8bxggdQIA9K3Pg9ew+IdavhMK/pQSFPwxDkvW+1GrUqUKfHx8NI4plUpcunTJLPMoDcyV8qVGqV/GNXXqVLx48UJ0fPr06ahYsWKJjjFkyBDRTkbJycl0sWmgffv2IT09XeOYvb09Bg4caNTjNWvWTPTveOfOnVJXK0YQBMhkMmRkZODZs2dITExEXFwcbt68icuXLyMiIgLHjx/HgQMHsHPnTmzcuBFr1qzBihUrsGzZMnz++eei+5ZIJJgxY4YZf5qiOnXqJDoWHR0t2o2TFGClfIWGhsLd3d2ox+Ok9uDVLcNz0qBMOIXq1avD29tb4/ZKpZJWMusgKSkJ169fz/+6TS0OHzRVrehIzxXgOmCp0Y4l8S0I/mhq+X7nzh1mfTCiO/nJn4FMVXD2WaV2OH5PczMLHx8fvVbIcvYuqgAQgGquHFprKN4tCAKzhiIp/Uy/jIGYBSsyfPbsWQiCYNaijbYoNTWVeYHerVs30TFja9WqFe7evatx7Ny5cwgNDTXbXGyZuYo9qzVv3hx//vmnxjEK/ugnKioKy5cvFx0PDAzEmDFjSnycatWqoUuXLqKB33Xr1qF7d+PcWS1LWClfPXv2NPrFp6urKwIDA4tcKBV24cIFq/47XrhwAf/99x/u3LmDnJwc5Obm5v9f7N+CIHKruIQ+/PBD1KtXzyT71kXVqlXRoEEDREVFaRw/duwYhg8fbuZZ2RZW8MfYKV9qEv9+UF7fCEDV9Uvi3Rlt27ZFXFycxu1Pnz7N7O5Git6QlPKqIs9qy29WwRQ/8aLa+uI8WwKOFYCc1PyW74VXo8jlcsTGxhqcZk1UlM/uQBHxKmgnccCW1MYANKez6lrvpzBJQH8oX6Ve9g/gceZB8cDSvn376D20DKOVP6VE06ZNYW9vr3EsKSmJ2mrq4OjRo6L1D+rUqSO6GscUqO5PyT19+pS5TNmY9X7UaOWPcQiCgPHjxzPrkSxatMhoaZisFKStW7ciOzvbKMcpK16+fMmsN2KsLl+vs9XUrzVr1qBNmzZYvHgx9uzZgyNHjiA8PBwXL15EVFQUYmJicP/+fTx58gRpaWnIyckxWeDHwcEBU6dO1b6hiVHql+Hu3r2LGzduiI737dtXdKwkeN9ugER1HqqI3glBEJipX7QqXbvCKV9ftJYguJrqsu1SkhJpPm8a9VgcLwHvq2r57u7IoXWt4jeMKfWr5OQHJgFKGQBA0m48DkSI16XUJ+VLjffrBfCqc6N+/prr/hw4cIC6mZZhFPwpJRwcHJgXnvQhq522lC9zrpxiBX8iIiLMNg9bxlr1ExQUhCpVqhj9mMHBwXBwcNA49ujRIyQmJhr9mKXRzp07mRd4ffr0MepKvIEDB4oGz1++fIm9e/ca7Vhlwc6dO0UDZs7Ozia7+LTFos+pqan44osvoFBoXvZvbp999hlq1qxp6WkwV4QcOXLEZMGv0mDXrl2iYw0aNEDdunVNclzOsTx471dBu/RECEmRzODP2bNnreZ5b42USmX+eamXGzC5o+pCXqEU8PluOcK6GbduE1A09UtT1y8K/pSM4s4BKO+8Krhcvib4tl/h7NmzotsbsvKHc6qgqsEFoE4FDo2qF792oZbvZRsFf0oRbalfhM0a6v2oNW7cmLmS6+HDh2adjy0yd70fALCzs2MWSaUPW+1yc3Px1VdfiY7b2dlhwYIFRj2mu7s7evXqJTpOXb/0s379etGxfv36wcXFxSTH1bbyxxoDBhs3bkRaWpqlpwEAKFeuHL799ltLTwOAamWmWA2n+/fv4969e2aeke2wRMqXGu9fENhVRO9EYGAgypcvr3Hb9PR0CiYwXL16FcnJyQCARb2kcLZTXcQvv6DAjed2Jlm9rK4XAwDd61Hwx5gEeR7khVq724XNRsy9h6Lv/66urggODjboWHxA//x/9w/Q/D5KXb/KLgr+lCJU9NlwcXFxonnpHMcxl6CbgoODA5o0aSI6Tqlf2lki+ANQ6ldJ/e9//xOtdwUAn3/+Ofz8/Ix+XFbq1+7du0WLF5OiUlJSmMUkjd3lq7CgoCA4OTlpHHv69KlVpj//3//9n6WnkO+HH34wagfEknBzc2O+l1Lql2apqak4efKk6Lipgz+S+n0AqIIUyuhdkEgkzBuT1PJdnDrlq78/j15+qlU/j14KmHZUgQ4dOsDZuWTt3TXhXKshq3x9AECj6jw8Xmv5fuuWeIoSYVOc/x3C8zsAAK5WG/DBQ5g35lu2bAmJRHPaljYS/75Qvw77+Wu+1KcVzWUXBX9KEdYH7JUrV5CZmWnG2dgW1qqfZs2aoVKlSmacjQrV/TGcJer9qFHwx3BPnjzBzJkzRccrV66MKVOmmOTYffr0gaurq8ax3NxcbN++3STHLW22bt0KmUymcczd3d2kRZft7OzQtKl4AVRre9+8d+8ewsPDLT0NAMCYMWPw9ddfW3oaRbBSv44e1Vwgtazbt2+faCpV9erVmZ9PxsC5VgNXqzUAQEi+CeXzWOaNSQr+iDt48CBc7YEFPQtq203cL8fLPNM2ILEP6J3/79dbvt++fRtyudxkxy6thIwnkJ+Y9eorDnY9F4LjOOaNeUNSvtS4ch7gPFXXEEFVefhWLJ76deHChfyVZaRsoW5fpYiHhwfq1KmD+Pj4YmMKhQIXL16kLlEirCnlS43q/hiOdeczKChIr9aZ+tIW/KHOe+KmTJmCly9fio7PnDnT6F2i1JydndG/f3+sXbtW4/i6devwzjvvmOTYpQkrRW7QoEGiNbGMpWXLlqIXlOfPn8eQIUNMenx9/PfffwY9jud5ODo6wsHBAQ4ODjr9W2ysQoUKCAsLM2tDA1117twZP//8s8axo0eP0nupBqyUrz59+oim0hmTxL8f5A9UKxqU0Tup6LMBMjMzER4ejp86SVCzvOo5vv+OAltvqor0mjL44xzcD3nnFgIAetTjsfpKQWHg3Nxc3Lt3z6LdAG2R/MiPQK5q9bCk6Xvga6hW9rNW/hhS7LkwSUB/yB+qrhX6B/BYcLpoUFgQBBw8eJC6fpVBFPwpZdq2basx+AOoPmQp+FOcQqFg3kW0xuDPpUuXIJfLjdbtqLRhpXyZ+jUQEBAAZ2dnZGVlFRt79uwZEhISUKdOHZPOwRZduXIFK1asEB1v0KABRo0aZdI5DBs2TDT4c+jQISQnJ5ukUHhp8ejRIxw7dkx03FRdvgqzlY5fgiAwU74+/vhjfPnllxoDNmXlfb9t27awt7dHXl5esbGnT5/ixo0bBtfEKI3y8vKYdTxMnfKlxvv3BQ59B0BV96fVW6PB87zG7kJxcXF4/Pgxqlevbpa52YoTJ04goKIMY1vaAQCyZQLG71WtuKlWrRoaNmxosmNzNVsgXSZFeTs5OnvzkPKAvNCf7ubNmxT80YMyKRKKy/+qvnAoD2nn6QBUKZqsFeqtW7cu0XH5gH75r8P+/sWDPwC1fC+rKO2rlKGiz/q7dOkSUlNTNY45OzuXaOllSXh7e4vWX8jKysL169fNPCPbYal6PwAgkUiYqSeU+lWcIAgYN24csyDv4sWLTX7RGxYWhooVK2ocUygU2Lx5s0mPb+s2bdok+jesWrUqOnXqZPI56BI0twaRkZGIjo4WHf/0008REBCAunXrokaNGqhUqRJcXFzKTOAH0P75S6lfRZ08eVK0NpmTkxMzjc6Y+Eq+4KoEAgCEB+fgImSgUaNGotvT6p/iDh3cj6V9pJDwqlU/s08qEJ+mGgsLCzPpCi6OlyBOqAMAcNPQ8p2KPutOEATI9n0FQPW5KA2dDM5VtfKclYbs7+8vei6iK76iD7hqDQAALTx51CxXfBtq+V42UfCnlNFW9Nkau51YGivlKyQkxORpCmI4jqO6PwZQ3xEWY47Vb1T3Rz9bt27FiRMnRMcHDBhglqLr9vb2ePPNN0XHqesXG6vL15AhQ8wSuKhTpw4zaG4tFy6sVT8NGzZEgwYNzDgb68V63VPwpyhWyldYWJhJCgSL4QPUq4wEKG7vZqZ+Ud2f4srf3YLmNVWXaDefKrHkTMGqDVOmfKm9rFKw6qT7a3V/rOU91BYoozZAeJUCyVXyg6TlJ/ljpqr3U5ikUNevvhoKP1PL97KJgj+lTMOGDUU/4J8/f447d+6YeUbWzxrr/ahR8Ed/rHo/gYGBJq33o0bBH93l5ORg4sSJouP29vaYP3++2ebD6kZ16tQpPHjwwGxzsSXx8fHM1aXmSPkCVEFzVuqXNbxvyuVyZiBxxIgRZpyNdWOtVjl+/LjVrOSyNEEQLNri/XUS/4LjKaN3UdFnPSTevoSxQc/yv/5ijxyyQoszunbtavI5uDbsB+Wrm8XdKPhjECEvE7JDk/O/lvaYB05qn/+1Kev9qPH+BcGffv6aO4dR16+yh4I/pYxUKmWe+FLqV1EZGRnM6Ls1B3+o6LNmrBUkpk75UtOl6DNRWbRokWidMgAYN26cWYvRdujQATVq1BAd37Bhg9nmYktYvxcvLy+jnczqwtrr/hw+fBhPnjzROMZxHDMAWda0aNECLi4uGsdevHiBy5cvm3lG1un69etISEjQOMZxHPr06WPW+XAeTYDyngAA5b1jaN9CPO0rMjIS2dnZ5pqaqLy8PGzatAmTJk3CokWLkJaWZpF5vNzxJdwcValW/15W4PT9gvOFhg0bwsPDw+Rz8GvcDpFJquM2rF40ZejWrVuUKqQDefg84GUiAICv1xOSegWdLhUKBfMc3lgrf7hqweAqeAMAOtThUMmp+DasOmGkdKLgTymkLfWLFDh58qRoW+Lq1atbvJgk6yImOjoaL168MONsbIMliz2r1atXD+XLl9c49uLFC8TGxpplHtbu0aNHmDVrluh4tWrVMHnyZNFxU5BIJHjrrbdExyn1SzPW7+Wtt94yS5chNWsP/rBSvjp16gRPT08zzsa62dnZISQkRHT8yJEjZpyN9WKt+mnVqhWqVatmxtmoAk75q38UeaiRc0P0eS2TySy+IjYzMxNhYWEYMmQI5s2bhwkTJsDb29vsF8aK2EOok6X6XTzLEjD5UNGVbeZI+QKASpUqIfxRQaSgcMv37Oxs0UAjUVGm3oPi9CLVF7wdpD3mFRm/ceMGMjIyND7W3d0d/v7+RpkHx3HgX6V+SXkOveoX/xymlu9lDwV/SiEK/uju4MGDomNdu3a1eBtZ1oeAIAi4cOGCmWdk3ZKTk5mFsM0V/OF5Hs2aNRMdt/SJrrX4/vvvkZmZKTo+a9Ys0SCaKbFWXkRGRiImJsaMs7F+t27dwtWrV0XHzb2ShRX8uX79OvM5Z2oZGRnYtm2b6DilfBXHSv2iuj8q1pTypcb7983/tyJ6p1Wfm44bN65Yynhqair69OmDJUuWmGW1riDLhmzPl/lff39IjuevLYgyV/AHAOL5go5eVPdHP/KD3wOKXACApPXn4Cv5FhlnPd9bt25t1Jslhev+9NNQ90fd8p2UHRT8KYVY7QFv3LhBq0UKseZ6P2pU90d3rHo/AQEBZr37SXV/2C5duoRVq1aJjjdp0gTvvfee2eZTWPPmzZmpZrT6pyhWypefnx8aN25svslAddda7O+nVCoRGRlp1vkUtn37dmRlZWkcc3R0xKBBg8w8I+vHKvocHh6O3NxcM87G+jx69Ii5os1iwZ/a7QHHCgAAZcx+dGgrfi5jybo/p06dwooVKzSOKZVKjBs3Dp988onoKnFjkZ/6BUiNU80pXok1V4qmVjk6OqJ9+/YmnUNh0lot8CxLFfTq7MPDrtAVIwV/xCnuHYfy1qsAv0s1SEO+LbaNOer9qHE1WwKuqlTBrj48XO2Lb0OpXyqCUqF9o1KAgj+lUKVKlVC/fn2NY4IgUMDglcTEROYHmC0Ef6juT1GWbPH+Ogr+iBMEAV9++SVzm8WLF0Mi0Vyg0NQ4jsPbb78tOv7ff/9R3aZXBEFgBn+GDRtmkRWU1lr0mZXy1a9fP7i5uZlxNrahUaNGom2Ps7Ozy/zn4O7du0XHvL29ERgYaMbZFOAkduDr91J9kfcSYX7inVMt1Y02NzcXo0eP1rrd8uXL0bNnT6SmpppkHsrk21CEqxob5CkEfLGneCHzkJAQODlpKNpiIgGBwTgcqwpAlXco2vKdgj+aCQo55Pu+yv9a2nUGOMfiq5fN0elLjeN5SF6twnOUcsUKeAPA/v37oVCUjcCHmiDLhvL+GcjPLIZ88whU3dwZyrNLLD0ts6DgTynFihxT0WeVw4cPi44FBwebpaieLrSt/KGL0ALWUOxZjRX8iYyMLHMftIVt3LiReaf3zTffZNb5MAdWqlJMTAwVmn3lxo0bzDQ4c3X5ep011v15/Pgxc7UppXxpxvM8OnXqJDpe1lO/tKV8WTJ9vXDXrzp5N5jdaC2RTjtnzhxER0frtO2RI0fQunVro89TEATI93wOKFUrixadUSD6WfHzuu7duxf7nikFBgbiQGzB6qPu9QouGSn4o5ni0koIT28AALgazSBpNLLYNsnJyaJ1H7V1qzQUXyj1q7+G1K/nz5+X6puSgiBA+TwWiqv/QbZnHHKXt0Xuz1WQ93dnyA9+C+XNrZBkPoIy0fI1Ac2Bgj+llDXnVlsLW0j5AoAGDRqI3u1JTk5mdkoqS549e4aoqCjRcXPV+1GrW7eu6N3qjIwM3L5926zzsRbZ2dmYNGmS6LiDgwPmzZsnOm4uAQEBaNRIvEMNpX6p7Nq1S3SscePGRitcqS9rDP6sX79etEtOpUqVzH5xZ0tYqV9lOfiTmZnJvJFlqZQvNd6nKyB1BAAId/aidSvx16W5U7+io6Mxe/ZsvR4TExOD1q1bG/U5p7y6Fsp4Vcr6vVQBc09qvjFkzno/gCr4cyhWmd/yvXDdn5s3b9KNx9cIWSmQH5ue/7VdzwXgNNTuYd2Ab9CggUnqHPJ1QvJTMHv48bDXsKi6NKV+CdlpUMQegvz4LOStHYDcXzyR92swZNs+gOLCHxAeRQLKoqvrlFJncBLx1YmlCQV/SilW8CciIsJq2jRmZGRg48aN+PXXX3Hy5EmzzUsQBOYJkzUFf+zs7JjFgymNT4VV78ff398i3U4o9asoQRAwY8YM3L9/X3Sbr776CnXq1DHfpBhYq39YF/JlhVKpZKacWGrVD6CqGSWVSjWOJSQkiLZaNyVWytdbb70Fe3sNxRgIAHbwJyIiQrRzTml3+PBh5OTkaBxzd3c3a40YTTh7F1UACAAyHuPNtnVFtzVn8EcQBIwZMwZ5eXl6PzY1NRXdu3fHn3/+WbI5KJVQPjgH2cGCmjBf7pEhu3jGFzw8PBAUFFSi4+mratWqEJwq4lKiKsgTXI2H56u4REZGBh4+fGjW+Vg7+bEZQHYKAIBvOAx8Lc31V81Z70etcApmeQcOneoWv/y31eCPoJBD+fga5Bf/gmz7R8hd2hi5c6tD9n99IT8+E8o7+4Hs5689igNXJQCSJu9C2ncZpB+fw5Nh5yF941+L/AzmRsGfUiogIEC0dkB6erpVLNmMjY2Fn58f3nrrLXzxxRcIDQ2Fn58flixZgvT0dJMeOyoqSvTk397e3uIpJ6+jos/aWVO9HzUK/hQ4f/482rdvjzlz5ohu4+Hhge+++86Ms2JjBS8ePnxo0SKl1uDMmTN49OiR6Phbb71lxtkU5eTkhIYNG4qOm7tT4q1bt3Dp0iXR8ZEji6cHkAL169dHjRo1NI7J5XKEh4ebeUbWgZXy1bNnT9jZ2ZlxNprxhVK/OtfKFt3OnKvS//nnH2aauDZyuRwff/wxxo0bp1cKt5CXBcXtPZDt/AS5C+oib2UokPUMAHA1ty4O3dW8mqZbt25mT9/jOA6BgYHYXyj1K8yXUr80UT65DsXFV8FAOxfYdf1JdFvW89xUwR8AkPgX6voVYLst34WXj6C4tROyQz8g958w5M6pirw/WkK++3MorqyB8ExDGqdzZfD1ekLa6UfYjdwDh28fw+HTy7DrvxzSZh+Cr9YA4C1TY9ISKPhTSvE8z+z6ZenUr5ycHPTs2bPYhcPdu3cxbtw4eHp64ssvvxTNiy0pVspX27Zt4eLiYpLjGoqKPmtHwR/r9ODBA4wYMQKtWrXS+r7z888/w9XV1Uwz06527drMVZRlPfWLVei5TZs2Fl/BZU1Fn9euXSs65uPjw3yPJ6oLUUr9KkqhUDDTLi2d8qUm8esFcKrLjVrZV0W3i46OxvPnr9+hN76nT59i4sSJouMcx+Gff/5B7dq1te5ryZIl6Nu3L/OGpZDxBPLIf5C37k3k/lITsnVvQBH5D5BZ6AakWy18tU98FZK5U77UAgMDcfBOQfCnBwV/ihEEAfL9EwFB9XuSdpgErnxNjdvKZDLmjQdjF3sujPfpCtipam71rc+Dfy2WaI0t3wVZDpT3z0J+ZgnyNo1AzqJ6yF1QF7INQ6A4PR9CwilA9lr3TN4OXI3mkLQcC7tB/8D+ixtw+PoB7IdvgzT0O0h8uoBzLNuNFSj4U4pZc92fRYsWMQM7L1++xP/+9z/4+fmhb9++OHz4sFHzi22l3o8aK5B3+fJlg5YulybPnz+3qno/aqzgz+XLl03eOtaSMjIyMGXKFPj5+TEvfNVatGhhlasfWKlfmzZtKtV/Qxa5XI7NmzeLjrN+b+ZiLXV/lEol8zUwYsQIixbltRWs4M+RI0fMOBPrcP78edE79VKpFD169DDzjDTjXCqD82oHAODT4tCndT3Rbc3RkGT8+PHMrl2fffYZ3nvvPZw/f16ni/F9+/ahTZs2uHfvHoBXxWWf3oL81DzkruiI3Pl1IN/5CZS3dwPyQiufpE7g6/eBtN/veNJrM05fjRM9RteuXXX/AY0oMDAQl5IEJGeqzr87eRe0fC/LwR9BngdlcjQUt3aoCgbfOw4A4CrUhaSNeCfTa9euITtb8+q3ypUrw9fX1xTTBQBw9s7gfVV15aq4cGjrVfwzZ+/evSY7vq4EpRLyiGXI/bPdq6LMnSA/+A2UNzYDLx4Uf4CbF/igNyHt/gvsPzwOh++S4TA6HHa9FkLScBj4ij70+foazQnxpFSw1o5fSUlJmDVrlk7bCoKA3bt3Y/fu3QgKCsIXX3yBESNGiHaM0EVOTg6zPow1Bn88PT3h4eGhMcUiNzcXV69eRYsWLcw+L0EQ8Pfff2P79u2QSqXo27cv3nvvPfAaityZkrZ6P9WrVzfjbAp4enqiWrVqGlMMc3JycPPmTWZRYVukUCjw77//YvLkyXj8+LHOj1u8eLHZnze6GDx4ML788kuN9X2ePXuGI0eOWM1FljkdO3YMT58+1TjG8zwGDx5s5hkVpy34IwiCWU4KT58+zSzMP3z4cJPPoTRgBX8uX76MlJQU0SL7pREr5Ss0NBTu7u7mm4wWkoD+kCecAgC826YSdkfc0bjd6dOn0adPH5PN48CBA/jvv/9Ex2vWrImfflKl7FStWhVHjhzBRx99xKzXBQC3b93EFwOa4tcve8Hj5WUIqSKBHJdqkNTvBb5+H/B1O4GzV53LHvzrL9F9N2nSBFWrVtXyk5lGYGAgBACHYpV4u5EE5Rw4tPHicDJeKBPBHyE7FcKzGCifRUN4FgPh2W3VfylxgFA83U/abS44O0fR/WlL+TL155EkoB+Ut7YBUHX9Ck8o+jMcOHAACoUCEonlUqAUEf+DvFAdrCLsXMDXbAbOsyX4mi3Be7YAV846OjPbEgr+lGKtWrUCx3EaV8zExMTg2bNnqFy5stnn9e233yIzM1Pvx924cQMff/wxvvvuO3z00Uf49NNPUatWLb33c+bMGdHIe4UKFdC0aVO992lqHMehVatW2L59u8bxc+fOmT34o1Qq8c477xS5o719+3asX78eW7ZsQbly5cw2F1bKl6VW/QAFRZ/37NmjcfzixYulKvhz7NgxTJgwAVeuXNHrcRMnTjTpcueSqFatGrp06SK6WnDdunVlMvjDSnnr1KmTxQKuhfn7+8PV1VVjMeC0tDTExsaiXj3xVQjGwrpwbNWqlVnmUBrUrl0bPj4+uHv3brExQRBw4sQJDBw40AIzswxbSPlS4+v3AfarUq3aVBZfdWPKOmpZWVn45JNPmNssW7asSLclR0dHrF69GgEBAZg8eXKRbcvZq2rg9Pbj0cOPR0WnbOD+Frx+xs1VDQJfvzck9fuAq9FcYwcoVrqNpVK+AFXwBwAOvgr+AECPejxOxivyO37Z+qoKQamE8OJ+keCO8tltCM9iiqbmacH79wfv35e5jSWKPRfG1+sJgbcDp5Shn78EXx8oGvxRt3y3VBqy8vE1yI9Mzf+aqxIAvmYLVbDHsxW4KgHgJBS6KCnru81KjKZ8+fIIDg4WHbdErZiIiAisWbOmRPtISUnB3LlzUbduXQwZMgSnT5/WKyWMlfLVpUsXi0a8Wayt7s+0adM0pjIcOnQIHTt21GvVR0lZY70ftbJQ9ycmJgYDBgxA586d9Qr8VK9eHatWrcIvv/xiuskZASuFadu2baLB5NIqNzcXW7duFR23ZJevwiQSCTMobo7Ur9zcXGzcuFF0fMSIESafQ2nSpUsX0bGylPp19+5d3LhxQ3S8b1/2Rai58RXqgKuuutFRKS8eNUXuDV24cMFkaewzZszIT83SZODAgejfv3+x73Mch++//x5btmxBvWpO+LgFj53D7fBwkj3WDrbD240kqOhUEACRKwXcU3hC0u0X2H9xEw5jL8Guywzwni01Bn7kcjmz+6wlgz81atRA+fLlcfhuQcv3bq/q/qSlpZn1PK+kBFk2lI+vQXF9E+THf0Le5pHI/b0lcmdXQt4Sf8jW9oP8wNdQXFqhqiUjFviROoGr3gh88BBIO06B3Zv/B/tPLsLurfVaA2GslT/muAHGOblDUrcjAMDLnUMTj+LztVTXL0GWDdmW9wCF6vUvaTtBVZR5wJ+QNh8FvnoDCvwYCQV/SjlrqvujVCrxxRdfGG1/CoUCmzZtQvv27dGiRQusWbMGubm5Wh9na/V+1Kyp49fmzZsxc+ZM0fHIyEi0bdsWd+5oXtptTM+fP8e1a9dExy258gco3cGflJQUjB8/HkFBQdixY4fOj3N0dMQPP/yAmJgYvPvuu1Z/53DgwIGibbhfvnxpFXny5rR//368ePFC45idnR3eeOMNM89InKXr/uzduxdpaWkaxyQSiUU7otmislz0OScnB48fP0Z0dDRWrFghul2DBg1Qt654S3VLkRTq+jWsueaCqzk5Obh8+bLRj3316lXMnz9fdLxcuXL49ddfi31fEAQokyIhOzYDvZ/OxbUxSizuZYcwXx72koLPrRc5AjZdV+C9LTLUmpeHwJ/uYsi8Y8iy156udfHiRdH3CGdnZ7Rr1077D2gi6o5fz7OBCw9VwZ+gqjxqvVocZY2pX4IiD/aPL0BxaSVk+79G3v/1Q+7i+sidVRF5f7SEbPNIyI//BOX1TRCeXCtah6kw1+rg64RA0vwjSHvMh92IXXAYdxsO3z+Hw5hzsH9zNaQdJ0MS/Cb4asFaz2OSkpKQkJCgcUwikTDPFY2JDygIcPbX0PXLUsEf+eEpEJJVzyeuWkNIO/9okXmUBRRCK+Xatm2L5cuXaxwzd/Bn9erVzCr3Xbt2hYODg2iKDMulS5fwzjvv4Ouvv8Ynn3yCMWPGoFq1asW2e/78OSIjI0X3Y83Bn+bNm4PneY21R2JjY/H8+XNUqlTJ5PO4du0a3n33Xa3b3bt3D23btsWePXuYF2Alxar3U79+fXh4WDYfmPWBfvXqVeTm5sLBwcGMMyo5mUyG33//HdOnT0dKSopejx0+fDhmz54NLy8vE83O+Nzd3dGrVy/RtMt169ZZVcDD1NavXy861qNHD1SoUMGMs2GzdMcvVspXjx49UKVKFZPPoTTp1KmT6NitW7eQlJQk2hLekgRBQE5ODtLS0rT+9+LFC43f1+XmFmB9KV9qvH8/4LjqptGQJi6Yf0xzAPnMmTNGTTtRKBQYPXo0syX77NmzUbOmqkOTIM+F8t4JKG/vhuL2HuBlosbH3E8TsPu2ArtvKxGeIED22qnZ9u3b0aFDB+zcuZNZooCV8tWxY0eLnx8EBgYiIiICB2KVaFVLFSzoVo/HyktK3Lx5k7kaz9wEhQzyf7qgUtIliP+1C+Ek4Cr6gKtc/9V/fuCr+IOr5AfOyd2oc2OlfDVu3NhsXYYl/n0h2/05OAjo589j2tGivyl1y3dzfjYpYg9BcW6p6gupI+zeWAVOalvnxbaEgj+lHCuH9MKFC5DJZLCzszP5PNLT0/HttyIFvAA4OTnh77//Rq1atRATE4Nff/0Vq1at0lirgeXJkyeYNm0aZs+ejaFDh+LLL78sUsPnyJEjoiliPj4+Vnm3TK1cuXIICgoS7Wp1/vx59OzZ06RzePbsGfr374+srCztG7/avlOnTti4cSN69+5tkjmdOHFCdMzSKV+AKrXJ09MTDx8+LDYmk8kQFRVltjs+JaUuwD5x4kTExMTo9di2bdti4cKFNtvSetiwYaLBn927dyM9Pb1IrYjS6smTJ8xCs9aS8qXGCv6oOyWKreoqqdTUVOzevVt0nFK+9Fe1alU0aNBA9HPw2LFjFiugffjwYezduxeJiYkagzfm6spprcEfrlowOPc6ENLiEVguFe6OQFpO8e1Onz6N8ePHG+24v//+O3OVX6tWrfJrASlubIVs5ydArubAFFejGST1eyOvdlf8MGkeNu0X73gIAFeuXEHLli2xY8cO0fcia633o6au+3PgjhJTX8Veu/sWBH+sieLsEghJl4oPOJTPD/Dw+YGe+uAq1AUnNc37/+ssXe9HjXOtBt6rDYT7ZxBQhYdfJQ4xzwuuiwRBwIEDB8z2+SRkPoNs+0f5X0vDZoOvGmiWY5dVlPZVyvn6+ooWdc7KymKmyxjTrFmzNHY8Uvv222/z74z4+fnh119/xcOHD7Fw4UKDAjJ5eXlYvXo1mjVrhg4dOmDTpk2Qy+U2m/KlZsnUL5lMhsGDBzO71miSlZWF/v374++//zbJvKy12HNhpSH16+rVqwgLC0O/fv30CvzUqVMHGzZsQHh4uM0GfgCgT58+cHV11TiWm5uLbdu2mXlG5pOXl4ft27dj4MCBqFWrlmjw18nJyeouPGvWrCm6+i8vL8+kn4GbN28WveB3dXW1ut+VrbC21C+5XI7Ro0cjLCwMixYtwsaNG3Hw4EGcP38eMTExePr0qdkCP9WrV7famwkcx6lW/wCQQIke9TRfguhbx5Hl4cOH+P7770XHpVIp/vzzT0gkEigfXYFs6/tFAz8SB/D1ekDa51c4TLgLh9GnIQ39Hs51WmL9+g2YOnWq6L7VHj9+jNDQUI0rJl+8eMGs2WhNwZ/LjwQ8ySho+W4vsa60L2VqPOTHVZ2EBY6HJGwO7N7dD4ev7sHh2ydw+OgU7AeugLTD15AE9ANfpb7ZAj+A5ev9FCYJGJD/734WTP0SBAGy3Z8BGaraUbxPGCQt2UXZSclR8KeU4zjO4nV/7ty5g0WLFomOe3l5YeLEicW+7+bmhvHjx+POnTvYvn07c7k3S3h4OIYMGQJvb29mkVJbD/6YuujzhAkTmIEWFoVCgQ8//BA//fST0U7qAFXNGWuu96Nmy8Gfx48fY9SoUWjSpIleBVXLlSuHOXPm4NatWxgyZIjV1/XRxtnZWWMxUDVW9ytbJAgCLly4gM8//xw1atTAwIEDsX37dshkMtHH9O3bVzRAZinqToliTFn3h5Xy9cYbb8DZ2dlkxy7NWMEf1upeU5DJZBgxYgT+YrTqNqe+ffuC11BU2FpIAgoCngMCNa86f/z4sd43mcR8/vnnePnypej4V199hYYNG0LIToNs49uAQpVax/t2g92Q9XCYlAj74dshbf4RuPI1izyW53lMnz4d//33n9bUrJycHAwbNgzTpk0r8vw8duyYaDqap6cn/P39df1RTUYd/BEAHL6rym1ztefQ1ouzmuCPIAiQ7x2fX78ny384JG2+gKRuR3DlPCx+/pGbm4tLlzSsSHrFnCt/AOQHYQFggH/x9wt1y3dTU1z+F8pb21VfOFWC3YA/Lf63Kgus9xOCGA3rTYW1DNFYJkyYwLxgmD9/PvMkWCKRoH///jh69CiuXr2KDz/8EI6OjnrP48GDB6L1SXieZ55QWovWrVuLjp0/f95kJ70rVqzA0qVLmdvokh88ZcoUjB071mgfKidPnhT9mf38/Kym9oMtBn+ys7Mxe/Zs1KtXDytXrtT5ucXzPD7++GPExsbim2++Mei1aq3efvtt0bHDhw8jOTnZjLMxjYcPH2Lu3LkICgpCy5YtsXTpUjx//lynx7K6olmSJYo+JyQkMOuRUcqX4UJDQ0UDHAkJCcyOTsaUl5eHt956Cxs2bDDL8XQxatQoS0+BiavVBnBWrUbv5svDUaT4hDFavm/fvl00VRcA6tati6lTp6pWH+wYDSE1TjXHGs1hN3QTJIEDwDloD2YPGzYMJ06c0Fhn8nXTp0/HsGHD8jtEakv5soYL4Vq1auXXozlwp6CwUXdfHs+ePbOKzz3lrR1Q3nm1WqWcB142Nl5zGWOIjIwUXf3n4eGB2rVrm3U+fIU6EKo2BAA0q1lQwFtN3fLdlJQpdyHf91X+13b9fgNXzrI1OssKCv6UAZZc+bN//35mzYPQ0FC8+eabOu+vYcOGWLFiBR48eIBZs2YZ7eK+ZcuWcHd3N8q+TCkgIED0znpqaqpJumudOXMGY8eOZW7TuXNnxMXF6VT09o8//sAbb7xhlPbY1tzivbBmzZqJjl2/fl3nGkrmIAgC/vvvP9SvXx+TJ0/Wq+5Wt27dcPXqVfzxxx+oWlV7lxNbExYWJlpUXd190BZlZmbi//7v/9CtWzd4eXnh22+/xa1bt/TaR6VKldCjRw8TzbBkLFH0+b///hMdq1GjhsErWYlqVTAroG6O1K+cnBwMGjTIqtI9p0yZYtLmCsbA8RJI6qvq/zlJlejsrfkypKTnpunp6fjss8+Y2/zxxx9wdnaG4uz/oIx+VcfMsQLsh6zVu9hsq1atcP78eTRq1Ejrths2bEBoaCgePXpk9fV+ANUNnYCAAACqlT8KpepGUPdXaXuWXv0j5L6ErFAQQdp9PgR761qBqq3ejyWCfHZBA/L/3ddfUmzclF1MBYUcsq0fALJMAICkyXuQBIivrCbGRcGfMqB58+aQSjXfXklISEBSUpJJjiuTyZhF+3iex5IlSwx606tcuTK+//57xMfHY926dcwVMbqwhZQvQLUKqkWLFqLjxr6QefjwIQYNGsRcuVW3bl1s3LgRrq6u2LBhg9YTLgDYsWMHunbtqnenqNdZe7FntcqVK4vWrlIoFLh69aqZZ6RZZGQk2rVrh+HDh+PBgwc6Py4gIAB79+7F/v37ERwcbMIZWpadnR0zWG1LqV9KpRLHjx/H+++/j+rVq2PkyJE4dOiQwasHf/nlF6td5cUKFERHR4u2rTeUIAhYs2aN6Pjbb78NiaT4yTbRnbbUL1PKyspCv379DOpMaiie51GxYkV4e3ujadOm6Ny5MwYNGoQPPvgAU6ZMwdmzZzFjxgyzzackeP+Ci7y+GlJOgJKv/Pnhhx+QmKi5Sxeg6jrZrVs3KO+fgfxQQU0gu0F/g3M3bBWGl5cXwsPDdarldeHCBTRp0gR3797VOM5xHLp27WrQPExBnfqVmgNcSFR9RgRU4eHlZvngj/zo9PyObLxvd3CF6tlYC1Yw09wpX2p8od+TuVu+K07NgfBQdb3CVfCGtMd8kx2LFEfdvsoAZ2dnNG7cWHQJ39mzZ03Spnjp0qWIjo4WHR89erROd0lY7OzsMHToUAwdOhTnz5/HkiVLsHHjRsjlcr32YyvBH0B1h+nYsWMaxyIiIjBy5EijHCc7OxsDBw5kFup2cXHBjh078ldDSCQS/O9//0PNmjXx3XffMfd/5swZtGvXDvv37zdoyWtKSgozaGIt9X7UmjdvLpqOcPHiRYudAABAfHw8vvnmG2zcuFGvx1WqVAnTp0/H6NGjzdI10BoMGzYMy5cv1zgWHh6O+/fvW3Ub+zt37mD16tVYs2YNEhISSry/WrVqYcGCBRg8eLARZmcabm5u8Pf3F/08unjxolHbFV+5coW5copSvkquS5cumDNnjsaxo0ePQhAEk9xNz8jIQN++ffWufyeRSODu7p7/n5ubW5Gvtf3n6upqFSlAxsB7dwLsXABZJnr78eA5QPlazDkqKgovXrxAuXLl9N7/+fPnmWnqFStWxMKFCyFkPEXeppGAoEpDl7T/GhK/knVMdXV1xdatW/Hdd99h3rx5zG1Z51bNmzcXXWVqCergDwDsv6NEa3XLd19e71WixqRMugzF+d9UX0idIO29GLCy14kgCMyVP+Yu9qzGVQmArJwX7F7eRzsvDpWdgWeFFqFfvHjRJC3flQ/OQX7i51eTkKjauuuQXkmMSCBWT6FQCHFxcYJCoTB4H1988YUAVb22Yv9NmDDBiLNVefLkieDm5iZ6THd3dyE5OdnoxxUEQUhMTBR++OEHoXLlyqLHL/yfq6urkJeXZ5K5mMK2bdtEf5ZmzZoJglDy54xSqRRGjBih9Xe3efNm0X38+++/glQq1bqPGjVqCFevXtV7jtu3bxfdZ7169Qz6uU1p7ty5ovN95513LDav//u//xMcHBx0eq2o/7OzsxO++uorITU11WLzthSFQiHUrFlT9Hfzyy+/WHqKxaSkpAh//PGH0KZNG73+zmL/lStXTvjggw+EY8eOCbGxsSX6bDKXd999V/TnmT17tlGPNX78eNFjBQcHC0ql0qjHsyXGOJ8RBEHIzMwU7O3tRX/P169fN9KMC6SlpQlt27bV+vpwc3MTtm7dKkRFRQkPHjwQXr58Wab/5prkrh8qZP/oIGT/6CC08+I0/h4PHDig9/MlLy9PaNiwIfPvs3LlSkGpkAu5//bMn0PuP2GCUi4z6s/4999/C3Z2dga9x06ePNmocympnTt35s+tiQeX/3vbNFQqdOnSxSJzUirkQs7ytvlzkZ1UffYa6z3GWOLj45nnUtnZ2RabW97B7/N/f+824YvNb82aNUY9njInXchZHFDwNzv2k1H3byhre86YGqV9lRHmLvr8ww8/MJfST58+XbQFfUnVqFEDM2fOxIMHD/D3339rXV309ttv29SqBVbnmqtXrxqlls7ChQuZnWoAYOrUqcwVY++88w52796dXyhQTFJSEjp06CC6mkmMrdT7UbPGos9bt27FiBEjkJubq/NjBg0ahFu3bmH+/Pk2USfL2Hiex1tvvSU6bi2pXzKZDHv27MGQIUPg4eGBMWPGlOi9nud5dO/eHWvXrsXjx4+xcuVKhISEWHVnocLMVfRZLpcznwMjRowoNSs4LMnZ2Zl5XmPs1K/U1FSEhYVprUVTsWJFHD16FAMHDkRwcDA8PT1L1aodYync9aufEVO/Fi1axOwA2rFjR7z//vuQn5gNZdyr2lCu1WH3xmpwEuMmQ7z//vs4cuSIQSt4rKXej1rhlT9XCrV871iXR2z0DYvMSXHxLwhJqg5aXJUASNp8aZF5aMP63G3WrJlF06WLtHzX8Do0duqXfP/XBYXVPVtD0uEbo+6f6MjS0SeinTEikgkJCaKRZ3t7e6NGni9duiRwnOY7OQCEwMBAs660USqVwvHjx4WBAwcKPF80su3v7y8kJiaabS7G4uXlJfr7PX36dImeM/v37y/2e3r9v/79++u87wsXLghVq1bVeqfL3t5eWL9+vc7zbNy4sei+1q5dq/fPbWppaWmi8+U4TkhPTzfrfBISEgR3d3ed70Q2a9ZMOHHihFnnaK0uXLjA/F1FR0dbbG6XL18Wxo8fr9NrTpf/AgMDhblz5woPHz4sdixbulvG+pt5eHgYbWXGgQMHmL/P+/fvG+U4tsqYz5kZM2YwP6OMJTk5WWjSpInW10qVKlWEa9euGe24pZkyK0XInu4iZP/oINz8QvMKrq5du+r1fImLixOcnJyY5xjR0dGC/M5BIftHR9Xqg2lOgjzuuEl/1rt37woBAQE6v+e6uroKubm5Jp2TvuRyueDo6Jg/xz/7S/NXb3SqywkpKSlmnY/yRaKQPbtK/hwU8afyx6ztc4mVeTF+/HiLzk2pUAipP3kI2T86CGmT7YVy9kXnV6lSJUEulxvlWPKb2/P/XtmzKgmK57FG2a8xWNtzxtRs45YdKbFatWqhZs2aGsfy8vIQGRlplOMIgoAvv/ySWTR08eLFZl1pw3EcQkNDsXXrVty9excLFizA6NGjsXTpUpw/f95q2oHrg7X6pyRFn+/cuYOhQ4dCqVSKbhMUFIQ1a9bofMe/efPmOHPmDHx8fJjb5eXlYejQoVi8eLHWfaamptpUvR9AVXfEz89P45ggCLh8+bLZ5iKXyzF8+HCkpaVp3bZGjRr4999/cf78eYSEhJh+cjagWbNm8PX1FR039+qf58+fY+HChWjUqBGaNGmCRYsW4enTpwbvr3Llyvjiiy9w8eJFXL9+HZMmTRL9/LAVDRs2hL29vcaxR48eMYvD6oO1YrJjx46oVauWUY5D2EWfjx8/DoVCUeJjPHnyBJ06ddL6/uzh4YETJ06gQYMGJT5mWcA5VQBfR/V5UrcCh+CqxVdGRURE6Fy/URAEfPLJJ8yVz5MnT4ZfdWfItrwH1bUtIO08HZK6pj1f8Pb2xtmzZ9G9e3edtu/UqZPoe5WlSCQS+Pv75399MLbgHLFHPfPX/ZEd+AbITVfNrcm74Gu3N+vx9cFaLWipej9qHM/DoYFqBb+DlMvv4Kb2/PlzXLhwocTHEdKTINv5Sf7X0p4LwFdkXxMQ06HgTxnBcZxZUr82bNiA8PBw0fH+/ftbtLhynTp1MGHCBCxfvhyffvqpQcUErQEr+BMREWHQPtPT09G/f39mQKBChQrYsWOH3r83Hx8fnDlzhpn6pDZ+/Hh8/fXXzADUqVOnRAOMvr6+Vnuhai2pXz/99BPzdQqo0iqmTZuGmJgYvPPOOzaT3mMOHMdh2LBhouPr1q0zuGuWPm7cuIGPP/4YtWrVwldffcVMd9DGzs4OgwYNwo4dO5CYmIglS5agWbNmpSZdxd7eHk2aNBEdN0bqV2ZmJrZu3So6ToWejatly5aiacUvXrwo8U2tpKQkdOzYEdevX2du5+npiRMnTuS3wya64f0LpX5p6DaUkZGBqKgonfa1bt06HDhwQHQ8ICAAkyZOUBV4zn6uOr5fL0jafSX6GGNyc3PD7t278cUXX2jd1tpSvtQKp34dKdTyvZsvb9aOX4rYQ1De2KT6wqkSpGGzzXZsfWVlZeHKlSui45Zs9KFmHzwo/9/9TZD6JSiVkO0YDWSruvvyAQMgafxOifZpbI8ePcLw4cOtpvOuqdHZfBnCijBry2PXRVZWFr7++mvRcXt7eyxYsKDExyFgtrY3ZOWPUqnEiBEjmHdveJ7Hxo0bta7gEVO1alUcO3YMPXtq76Yxf/58vPPOO8jLy9M4bmv1ftSsIfhz8uRJzJw5k7nNyJEjERMTgx9//FFrzaayihX8iYmJMdlKLqVSiT179qBbt24IDg7Gn3/+WaI6Xy1btsSyZcvw6NEjbNmyBf369bO6u87GYuq6Pzt27EBmZqbGMQcHB5N01SzL7OzsmKsRjx49avC+79+/j5CQEGbHUkB1Q+nkyZOoV6+ewccqqyT1++T/u299zZcjutyYTElJwbhx45jb/Pnnn5CcnAHh4aubY25esBuwApwZb2pIpVIsWbIEv//+OyQSieg2ffr00ThmaYWDm6k5wLmHquCPfxUej24ZdtNRX4IsG/I9BQE0abefwTlbT1e01128eFF09ZqXl5dV3Kjka3dADucMAOhej4fDa0/NkgZ/FOd/h/LuYdUXrh6w67vMqm4qRUZGolWrVjh79iz69++Px48fW3pKJkfBnzJEW/CnpHeq586di4cPH4qOT5gwweDAASmqadOmkEo1FydMSEhgthDV5Mcff8SuXbuY2yxYsABdu3bVa7+vc3V1xY4dO/Dee+9p3Xbt2rXo3bs30tPTi41R8McwKSkpGD58OHNV1ciRI7F69WqrOCmxZgEBAcxi8sZO/crIyMDSpUvh7++PPn364NChQwbvy9PTE9999x1u3bqFc+fOYezYsVbVVthUWCsmjRH8YaV89e3bt0wWSDc1VuqXoUWf7927h9DQUNy9e5e5na+vL06cOIG6desadJyyjnPzBFdD9ZnY2IOHl1vxbXQp+jxp0iQkJyeLjn/00UdoUzEZioj/qb4hsYf9kP/AOVc0aN4lNWbMGOzfv1/j+8Hnn3+OOnXqmH1Ouii88gcADhRK/Sr/zPByA/qQn5wDIfUeAICr3QGSxiPNclxDsYKX1rDqBwA4iRTyOqpz+3IOHDp7Fw0NqFu+G0L59Cbkh77P/9pu4F9WFazbsmUL2rdvn5/2/eDBAwwcOBA5OTkWnpmJWbDeENGRsQpR5ebmMls637t3z+B9x8fHFykG9/p/Hh4eZi9oW9o1bdpU9Pe9bds2nZ8zGzdu1FqA8N133zVqq1qlUilMnjxZp+KHjRs3Fh49epT/2JSUFGZB8QcPHhhtnsb28uVLZjFtU7ZOVyqVwsCBA5m/69q1awtpaWkmm0NpM2fOHNHfpaenp1GKB8bFxQkTJkwQ3NzcdC4Yquk/Z2dnYeTIkcLhw4eNVsDR1ookxsTEMIusluT38vjxY0EikYjuf/v27Ub8SWyXsZ8zkZGRor9zJycnIScnR6/9xcTECJ6enlpfT7baLMLayE7MyS8C+1mr4q8fLy8v5vPlxIkTzL9TtWrVhNS7F4sUB5ad+8PMP6Vm8fHxwujRo4VatWoJgYGBwtKlS4323mwKt27dKnpuVr2g5fue98uZ/PiKp7eE7OmuqmNOdxUUT29p3s6KPpf69esn+txcsmSJpaeXT3ZrV/7f8o9+0mJzNaTlu1KWI+T81jx/v3n7Jppg5oZRKpXCzJkzRf82I0aMMOo1j7WhlT9liL29PXPlQUlSv77++mtmpHTOnDk2W1/HWhmj6PPVq1e1rsJp2bIl/vjjD6Mu0+Q4Dj/99BOWLdO+/PPKlSto06YNYmJiAADh4eHMej+enp5Gm6exubq6MutCXLp0yWTH/vPPP7Ft2zbRcTs7O/zvf/+j16kehg4dKjr28OFDrXWVxAiCgJMnT2LQoEHw9fXFwoUL8eLFC4P21alTJ6xatQqPHz/G6tWr0aVLF9GUg9LO19dXdPVNRkaG1hQflg0bNogWGK5YsaJO6a5Ef40aNUKFChU0jmVnZ+uVBn3r1i2EhIQwVzADQHBwMI4fP26TzSKsDR/QP//ffTXUG7l//z4ePXqk8bG5ubkYPXo0c/+/LpoHpwNj8osD88GDIWnBfoy51K5dG8uXL8f9+/dx48YNfPrpp1b93uzj41OkWcvVxwIevVSdi7Wqnov0FMObDGgjCAJkuz8DlDIAgKTdBPBV/LU8yrIEQbCJlT8AIPHpilxBlU3Quz4PyWun5Xv37tV7n/Kj0yA8UdXs4qoGQdqFXW7AXLKzszFixAhMmTJFdJv/+7//w5w5c8w4K/Oi4E8Zw0r9MrTo8/Hjx7Fp0ybR8VatWlGhSxMoaQpDcnIy+vfvj6ysLNFtPDw8sG3bNjg6Oho0R23Gjh2LLVu2wMHBgbldfHw82rZti4iICGbKlzV2+XqdJVK/bty4obUmwuzZs6lTjZ5q167NfE/VN/UrNzcX//77L5o2bYrQ0FBs27aNmaInpl69evjpp58QHx+Po0eP4t1336WgHlRBZ1PV/WGlfL311lulto6SpfE8j06dOomO65r6de3aNYSGhmqt99CkSRMcO3YM1apV02ueRDOucn1wlVT1ktp5cajkVHwbscLdP//8M27fvi267549e6K/8+mCC9DK9WHX9zerqjdiS+zs7Ip0LBUAHHqV+uViz+Hh2Y0mO7biyhoICaqbKVyFupCGfGuyYxnL3bt3RdOlnJyc0LhxY/NOiIGzc0RaxRYAgMrOHNrVLvoaOXDggF7dExVxx6A4s1j1hcQedoNWgbMzzXWEPh4/foxOnTrhv//+07rt2rVrS236FwV/yhhWpNmQlT9yuRxffvklc5slS5ZQpyATYBV9vnDhAvONWiaTYfDgwUhISBDdxt7eHlu3bjX53c2BAwfi8OHDWuthPH/+HJ07d2ZeUFtzvR81cwd/srOzMXToUOaHWPfu3bUGh4hmrMLPmzZtgkwm07qPx48fY9q0afDy8sJ7773H7A4ihud5vPHGGzh58iRu376NyZMno3bt2nrvp7QzRfDn9u3bzHa4dPPDtLp06SI6pkvR58jISHTq1ElrXYuWLVviyJEjqFy5st5zJJpxHJff9UvCc+ilofCzphWx0dHR+Pnnn0X36+zsjH/Gd4Xy8irVN+ycYTdkHTgHCoKXxOt1fwq3fJfd1n91iC6ErOeQH/wu/2tp7/+Bs9MQJbQyrBvqzZs3L7KKyhpUaf9B/r9f7/qVkpKic8t3ITsVsm2joAoPAtIuM8FXt/yNxcuXL6NFixY6rQbt2bMnTp8+bbIb35ZGV+RlDCv4c/XqVdFOJWJWrFjBbC/87rvvMleoEMPVq1dPNGDy8uVLZrHK8ePH48SJE8z9//HHH8wAkzG1b98ep0+fRq1atZjbZWdniy4BB2x/5Y+uH676mDhxIrNVcdWqVfHvv/9SgNZAgwcPFv3dPX/+HIcPHxZ9bGRkJN59913Url0b06dPx9On+i+bd3Nzw8SJExEXF4fNmzejQ4cOdGebwRRFn9euXSs6VrduXata3l8asYo+R0REMM9rzp07h86dOyMlJYV5jHbt2uHQoUOiKWbEcJJCLd81df16PfijVCrx8ccfi3YDBYClUz+B27mCNBO7Pr+Crxoouj3RzevBnyNxSshftXyvmHbZJMeUH/oeyH4OAOCDBkPiG2aS4xgb64a6NX4mOAX1h0ypOnfo5188/VCXrl+q9LzPgZeqAsp83U6QtP7cuBM1wLZt29C+fXutKb2A6vpo165dcHNzM8PMLIPO9suY6tWri3amUCgUel18pqam4ocffhAdd3V1Zd6ZISXD8zzzLrZYq+m//voLy5YtY+77yy+/xPvvv1+i+ekrMDAQZ86cQXBwsEGP9/Hx0Ro8sgaNGjVidmoztKuCJtu3b8dvv/3G3Gb16tWUwlAC1apVY3bBe32lmkKhwNatWxESEoJmzZph9erVzIsYMfXr18eyZcvw8OFDzJs3j1b56KhFixaiY9euXUN2drZe+xMEgZnyNWLECArGmVj9+vXh4eGhcUwul+PUqVMax8LDwxEWFqa1nlbHjh2xf/9+lC9fvsRzJcVxNVtA6VQFANDVh4fzawsibt68WSSA988//+DkyZOi+2vbvAGGOe0H5KrXsqTZh5A0Gm78iZdBrwd/0nKAcw9UwZ8qfCqUKXFGPZ4yIRyKy/+qvnAoD7sevxh1/6bEWvnDShe3FM6xPJLs6wMAPN04NKtR9HNLl+CP8tp/UN7YrPrCsQLsBvwFzoI3FgVBwOzZszFo0CBmiQsAkEqlWL58ORYuXGjVtbeMgYI/ZZC2lu+6+vHHH/H8+XPR8R9++EH0hIwYB+su9tWrV4t97/Tp0/j000+Z++zcuTPmz59f4rkZwtPTE6dOnTJoBY8tpHwBqlxvVoDLWEWfHzx4gA8++IC5zcSJE9G9e3ejHK8sY6V+bdu2DdnZ2UhLS8OCBQvg4+ODN954Q/SCVJvu3btj7969uHnzJsaOHQtXV1dDp10mVatWTTRQJpfLRYPmYs6cOYN79+6Jjg8fThedpsZxnN6pX8eOHUP37t3x8uVL5r7DwsKwZ88eep2ZEMfzsAtUFX52suPQ1afopUnhG5NPnjzBxIkTRffF8zy2jqoJpMSq9l29MaQ9Fpho5mXP68EfoGjLd2XsQaMdS5DnqVaRvCLtMgNcOdu4pnj58iWioqJEx61x5Q8AuDZ9K//f/QOKvg4vXLjAXJ2sTI2HbM+4/K/t+i4F52a5Biw5OTkYOXIkJk+erHXbihUrYvXq1Rg1apQZZmZ5FPwpg4wR/Llx4wZzRYGPjw/VEDEDVlrW63VDHjx4gDfeeINZg6Ru3brYuHGj6MoUc3B3d8f+/fsxePBgvR5nK8EfwPR1fxQKBUaMGIHU1FTRbZo1a4ZZs2aV+FhEVbdKrGh5RkYGBgwYAE9PT0ycOJFZZ0uMk5MTxowZg5s3b2L//v3o2bMnpemVgDHr/rBW/bRo0QL169fXa3/EMKzUr9eDPwcOHECvXr203gnu3bs3du7cCWdnZ6PMkYgr3PWrn4auX+pz0/HjxyMtLU10P+u+6gi3R8dUXzi4wW7If1ZRaLa0qFevXrFVEQfuFKr7E73HaMdSnF0MIfkWAICr0RyS5h8Zbd+mdv78edFmDT4+PqhataqZZ6Qbj5APoHg17dfr/gCq905NBKUCsm0fAHmqYDrfaAQkQW+YbJ7aPHnyBJ06dWKmZKv5+/vj7NmzZitzYQ3o7LEMYkWcz549K9pGW00QBIwbN45ZUHjhwoVaOziRkmNdxMTExCAjIwOAqlbOwIED8eTJE9HtXVxcsGPHDlSqVMno89SXo6Mj1q9fjy+++ELnx9hCvR81Uwd/Zs+ezVwW7+LignXr1lEHIiNxc3NDr169RMcPHjyodz01QLUSbs6cOXj48CF+//13BAQElGSa5BVjBX/y8vKwYcMG0XEq9Gw+rOBPZGRkfk2f3bt3o1+/flq7uAwcOBBbt24ttQU/rQ1fJxR5nOp33dOPh/S1q5MzZ85g//79zIYPvZtUQ1/Xgtev3YC/wFf0Nsl8yyoHBwf4+voW+d61JwUt34WEkxBkJe+QpEyJg/zEbNUXHA+7Pr+C420nFcfW6v2o8a7VEK+oDgDwq8zDv7JuqV+K8PkQ7qt+Zs69Nux6LjTtRBmuXr2KFi1aICIiQuu23bt3R0RERLHndGlHwZ8yqEGDBnBxcdE4lpKSgpiYGObjd+zYwSxi2q1bN/Tt27dEcyS6qVy5Mnx8fDSOKZVKXLp0CYIg4KOPPtKaTrR69WqravXN8zwWL16MX37RnuPt7e1tE/V+1ExZ9Pn06dOYNm0ac5vffvsN9erVK9FxSFGs1C99tW3bFhs2bEBcXBy++eYbVKxY0Wj7JsYr+rxv3z7R1XUSiQRvvfWWxjFifLVr1xb9LBQEASdOnMDWrVsxcOBArTW23nrrLWzYsIGC42bESe2RU6MDAKCiE4d2XkUvOs+ePYuxY8eKPr6iE7DmDQk4pWpls6TteEgC+oluTwynKfVL3fWLV+RCmWBYSrOaIAiQ7x0PyFVBJEmrT8HXaFKifZqbrdX7KUzh3TP/36+nfmlq+a5MvAT58VfF1TkedoP+AedomfpoO3bsQLt27fDgwQOt23755ZfYvXt3qS7sLIaCP2WQVCplnvyyItY5OTn46quvRMclEgkWL15MBS7NiPW3PHfuHBYsWKB16eOPP/6IQYMGGXtqJcZxHL7++musWbOGmYrGuutrjRo0aCB6YZGUlISkpCSD9puamoq3335bdLkxoKpBMnLkSIP2T8T16dOnRHVBpFIphg8fjvPnz+P06dMYMmSI1bWCLS2aNm0qmjZ39+5dZi27wlgpX926daNC6mbG+hyYOXMmhgwZArlcztzHyJEjsXbtWnrtWUCFVgUr5foHFF3lkZaWJlpbiwOw5xNPOMlUr1vOqy2kXWaYbJ5lnca6P4VSv5R39pdo/8qb26CMfZVeVK4mpJ2mlmh/5qZUKpnBH2te+QMAvr3H5//79RTM11u+C3mZkG19D1Cq3lclHSaB9zJ/cEsQBMydOxcDBw7UuspaKpXijz/+wOLFiy1a4sKSKPhTRmlL/RKzaNEixMWJV/P/7LPPKDXBzFh5qitXrsQ333zDfPyAAQMwdap1f7iOGDFCtOimRCJhFoC0Rvb29mjUqJHouCFFn9UrvO7fvy+6jbe3N3777TcKzpqAk5MTBgwYoPfjKleujB9++AEJCQn4v//7P2Y3KmIcLi4uzKLruqz+SUtLw65du0THKeXL/FhFny9fvsxMVQeAUaNG4Z9//in1nV6sldSvZ36raU0t38VM6eqMxuVedcl0rgL7N9eAk1DwzlQ0BX+OFmr5rryjuS6MLoScdMj2F5zP2fVcAM6hnMH7s4Tbt2+L1qVydXU1uKOtuThX90Nshupcu2kNHl6vLYwpnPolP/gthOd3AKjqMklDtRdXNrbc3Fy89957+Pbbb7WWLalQoQIOHjyIjz/+2Eyzs04U/CmjDCn6nJSUxCwQW7lyZfz4448lnhvRD2vlT2xsLHMVSFBQEFavXm0TxWO7deuGkydPolmzZvnfc3d3x8qVK22yqKqx6/6sWLECW7ZsER2XSqVYt24dtSs2IX1Svxo0aICVK1fi/v37mDlzJmrUqGHCmZHXlbTuz5YtW5Cbm6txzMXFBf3799c4RkynJEX/x44di+XLl1Pgx4I4x/K4z9cFoGo13cRD+02K0DocvmmnPsfhYPfGKnDla5pwlkRT8OdFLhDxquW7kBIL5fO7Bu1bfmw68FK18pn361WkELitYN1Ab9mypU2sNkmp3C7/3/38i74nrl69Gtu3b0fujR1QXPxL9U07Z1W6l5mDrk+fPkXnzp2xevVqrdvWr18f586dQ6dOncwwM+tm/Vd8xCRYq0Vu3rypMWr97bffMpfT/fTTT6hQoYIxpkf00KhRI4NqE1SoUAE7duxAuXK2c1elSZMmuHDhAk6fPo2TJ0/izp07ePfddy09LYMYM/hz8+ZNfPnll8xtZs2axbzgJSUXFhYGb2/xAqMcx6Ffv344evQorl69ig8++ABOTk5mnCFRK2nwh5XyNWjQING6esR0qlWrZtBd9fHjx2Pp0qU2cROktFN498j/t6auX4V5uAL/DXUGD1XQQdppCiQ+4qu/iHHUr19f4+rhIqlfsfqv/lEmRUJx/nfVF1InSHsutMlVyqzSGdZe70fNs8sn+f9+ve5PfHw8Ph4xEMn/Ds3/nrT7L+Arm7eO5LVr19CyZUudulR369YNERERVOvyFfqkK6MqVqwIf39/jWOCIODcuXNFvhcREYE1a9aI7q9x48YYNWqUUedIdOPg4IAmTfQrhieRSLBx40bRApnWjOM4tG3bFh06dEDlypUtPR2DaSv6rG35qlpOTg6GDRuG7Oxs0W26du1qc6lxtsjOzg5//fVXsfTEcuXK4csvv8SdO3ewY8cOdOrUySZPaksTbcEf1uvv/v37OH78uOg41dSyHFbqlybfffcdFixYQK9HK1En7BMoX732+jKCPxIOWDPYHhUdVLVGeJ8wSDp8a5Y5lnVOTk4ab3IciC1c90e/4I+gVEC26zNAUO1D2vEH8BXqlGielmLL9X7U6jbvjrsvVCuU2npxqPravYw/+klR2Vn1Ot0VrUDwiHmYPXs2s+yAMe3atQvt2rVDQkKC1m0/++wz7NmzB+7u7qafmI2g4E8Zpmvql1Kp1Npye8mSJbRc2oJYqV+aLFiwAF27djXRbIguAgMDRVd9JCcn69StAAAmTZqEa9euiY5XqVLFZlL7SoPOnTvjypUrmDFjBj755BOsXLkSDx8+xOLFi20y2FpaBQUFwdnZWePYs2fPEB8fL/pYVrvp6tWr21wB+tJEn9/99OnTMWvWLAr8WJHyHvVwPUX1ugyqysOnoua/zfQukoKOYOVrqlJO6DPObDSlfkU9EZCU/qruT/wJCDLxG1KvU1xYDuFRJACAqxoESRv2NYe1Sk1Nxc2bN0XHWVkX1oTjONyzCwIA8ByH3oVqcH3UnEdPP9X13uMMAWN3yXH7dgwmT56M2rVro3Pnzli1ahVevnxp9HkJgoBffvkF/fv3R0ZGBnNbiUSC33//Hb/++qtNpNqZE71TlmG6Fn1evXo1s/30kCFDEBISYtS5Ef3o84Hy3nvvaQ3mEdOTSqXMFVu6pH7t2rULv/76K3ObVatWwcPDQ+/5EcP5+PhgypQp+O233/DBBx9QnSUrJJVKi9QPe93rq1/VBEFgroJ9++236UaIBYWEhOgU6P75558xdepUCvxYoQSHgtQ9TYWfe/vx+Krdq4s5Xgr7wWvBudjuKmBbpCn4AxRa/SPPgTL+pE77EtITIT9SUC/Urs9Sg2vHrFmzBs2aNUOrVq3QrVs3nVKCjEnscwMA/P39UbFiRTPOpmTq9yno7KxOwfSrxGFOt4JAypgdcjzLKvq4Y8eO4f3330e1atUwYsQIHDx4UGuxfV3k5ubigw8+wDfffKNTYecDBw5gzJgxJT5uaUTBnzKMtfInIiICCoUC6enp+PZb8aW0Tk5OmDdvnimmR/Sg68qfVq1a4ffff6cTXitRkro/iYmJeP/995nbjB8/Hr169TJoboSUdobU/bl69Spu3Lgh+jjq8mVZ7u7uzPdVAFi4cCHzvIZYln3QwPx/v173p4478NeAgotPabc54GvZxmqK0kQs+HPQgNQv2f5JQJ5qlYik6QfgvQxLjfrjjz/wzjvv4MqVK0hOTsaRI0fQoUMHzJs3T+c0+pJiBZtsJeVLzbfDYLzkVK2+OnvzqOwM/DNICmc71fXDH+cVRVL9XpednY21a9eie/fuqFWrFiZNmoSoqCiD5pKcnIyuXbti1apVWrf18/NDRESE3inAZQkFf8owf39/0RzIly9f4saNG5g1axaePHkiuo9vvvkGXl5eJpoh0VXdunW11r/x8PDA1q1b4ejoaKZZEW0MDf4oFAqMHDkSz58/F92mSZMm+Pnnn0s0P0JKM0OCP6xCz4GBgWjcuHFJp0VK6IMPPhAdW7ZsGcaPH2/G2RB9New4EDeeqi4qW9XiUO1VvREHCbB2sB0qOKkuPvmAgZC0+tRS0yzTxII/R+OUkL2KB+hS9Flx5wCUN191KXWuAmnXnwyaT3x8vMbXtVKpxKRJk/D2228zG9YYC6vej60Ue1bjOA7uLVU3M+wlHPa844CmNVRhg+hkJb4/JNd5X48ePcK8efPQsGFDNGnSBIsWLWJeWxZ2/fp1tGzZEuHh4Vq37dq1KyIiIuDn56fz3MoiCv6UYTzPM9OFVq9ejUWLFomO16pVC19//bUppkb0xHEcc/WPvb09tm3bRu2krYy24I/Y3aq5c+fi2LFjoo91cXHB+vXr4eDgUOI5ElJasYI/kZGRkMlkRb6nUCjw33//iT5mxIgRtKrSCnz44Yfo0KFDke85ODhg5cqVGDt2rIVmRXRVp04dnH7qDkBVb6TXq9SvX3pI8y8+uYq+sOu/nF5vFiLWMCa9SMv3u1A+jxXdh5CXBfmegi6ldt3ngHM2LC1q3LhxyMnJER1fv3492rZti3v37hm0f10oFApERESIjtvayh8AkAT0z/93w2qq/8uUHD7crkC27rGfIq5cuYIJEyagZs2a6N27NzZs2CDasGT37t1o06YNswaf2qeffoq9e/dS12kdUPCnjGNFohcsWFDs5Lew+fPnixbMJOY3aNAg0bE///xT76LQxPTq169frDOUWmpqKuLi4op9/+zZs5g6dSpzv7/++ivd+SBEi9q1a6Nq1aoax7Kzs4uldx07dgyPHj0S3d/bb79t1PkRw0ilUhw7dgwrV67Ep59+iq+++gq3b99mrggi1oPjOPj0KKhL2M+fx9AGPEY3f1VLS+oIuyHrwDlSLTVLcXV1Re3atTWOHbhTUN+FlfolP/kzhLR4AABfJxR8Q8PeP/fu3YsdO3Zo3e7atWto3rw5Dh06ZNBxtLlx44ZoEWI3NzcEBASY5LimxHm1A5yLZhU4dZuJnefv45dffkFwcLDII7VTKBTYu3cvhg4diurVq+Ojjz7CqVOnIAgCBEHAggUL0K9fP50KOy9duhRLly6FnZ1htaLKGgr+lHGGLkMMCQnB4MGDjTwbUhIjRozQuJJk8uTJePfddy0wI6INz/PMorOvp36lpaVh2LBhzOJ5Q4cOxXvvvWesKRJSanEcx1z983rxTlbKV0hIiOjFEDE/iUSCDz74AEuXLsX8+fPpb2Njen04GVlS1R38TnV5/NbPPn9M2msx+OoNLDU18opo0ec7her+iKR+KZ/ehOLMq8wCiT2kfX41aBVXTk6OXg1MUlJS0KNHD5PUAWLV+2ndurVNdlzleAkk9fsUfF27PSRtx6NmzZr4+uuvce3aNVy+fBnjx48XvZGii/T0dKxYsQIhISHw8fFBr169MHHiRK1/I3d3d+zbtw+ffkrpn/qwvWciMaqWLVvq/YbE8zyWLFlCy22tjL29PU6ePIkff/wRISEh6N69OzZu3IiffjIsh5qYh651fwRBwJgxY5CQkCC6fZ06dfDHH3/Qa5MQHela9ycrKwtbtmwR3ZYKPRNiPBzHoVzToQAABykHJ6nqIlDS+B1Im75nwZkRNbHgz/WnAl6iHABAee8EhLyi7aAEpRKy3Z8BSlXekKT9RPCVDVupPH/+fNy9e1evx6jrAA0bNsyodYBKU72fwiRtxwFOFcFV8oP9wL/B8QXdLDmOQ+PGjbFw4UIkJiZiz549eOutt0pUcuDevXvYv3+/1u3q1auHiIgIhIWFGXyssoqCP2VcuXLl0KCBfndQPvroIypqaaWcnJwwbdo0HDt2DL///jveeOMNS0+JaKFr8Oeff/7Bhg0bRLeVSCRYt24d3NzcjDo/QkozXYM/O3fuFF1+bm9vjzfffNPocyOkLOP9+xb5mqsaDGmvxZaZDClGLPgDAJFpr2r3KHKLtXxXXFkN4b5qlQxX0QfS9pMMOn58fDxmzZpl0GMBYMOGDWjbtq3G9HpDlKZOX4XxVfzhMCkR9mMjwbmLN/iRSqXo1asX1q9fj8ePH+Ovv/4qVnvNWLp06YKIiAjUr1/fJPsv7Sj4Q/R6U3Jzc8PMmTNNOBtCypYWLVqIjl26dAlKpRLR0dH4/PPPmfuZOXMms4A7IaQ41uvvxo0bePlS1YKYlfLVp08fKjJJiJHxtTsU1BuxL6eq82NPdSatBSv4sye6oF5o4dQvIfMZ5Ie+z/9a2nsJODvDOtCOHz+eWeRZlzQkY9UBSk5ORmys5uLW2hqy2AKO48BJpDpv7+7ujlGjRuHkyZOIi4vDjBkz4Ovra5S5jBkzBvv27UPFioYVBycU/CHQbzni9OnTUaVKFRPOhpCyxdvbG+7u7hrHXr58iWvXrmHo0KHIysrSuA0AdO7cGZMmGXb3jJCyrGLFiqhXr57GMUEQEBkZieTkZOYydEr5IsT4OIkdpG+sQZZ3X0hH7AJfWfPrlFgGq4DxujNJAK8KFijv7M+v3SI/9B2QnQIA4IOHQOLT1aBj79u3D9u3bxcdDwoKwp07dzB8+HCt+0pNTUWPHj3wyy+/GFwHiJXyFRwcjPLly25x8rp162LKlCmIiYnBmTNnMGbMGNFzXhae5/Hrr7/it99+o8LOJUTBH6Jz8CcgIIDapBJiZBzHMVO/hg4diqtXr4qOV6pUCWvWrIFEIhHdhhAiTlvR5w0bNogWWa9QoQJ69eplqqkRUqbxdUPxosMv4D3FX6PEMtzc3FCzZk2NY89e5iKnShMAgJB6D8LzWCjjT0JxZY1qAwc32HX/xaDj5ubmai3yPH36dLi6umLNmjVYuHCh1vMjpVKJb775xuA6QKW13o8xcRyHNm3a4Pfff8fjx4+xefNm9OvXD1Kp9hVFbm5u2LdvHz777DOqaWkEFPwh8Pb21mk1z+LFiynaSogJsII/t2/fZj521apVqFGjhrGnREiZoa3uDyvla8iQISUqbkkIIbaKlfqVICko4qyM3gnZ7oKAjbTrT+DKVTfomPPnzxdNsQKA9957D02bNgWgCjiMHz8eBw8eRKVKlbTue8OGDWjTpo3edYBYwR9brvdjKg4ODnjjjTewY8cOJCUl4ddffxVNwfb19UVERAS6detm5lmWXhT8IeA4Tmtkul+/fvTCI8REWMEfli+++AJ9+vTRviEhRBQr+HPw4MFiLd8Lo5QvQkhZxUr9OpdckOokPz4TwrNoAABXsyUkzT406HgJCQnMIs/u7u74+eefi32/c+fOuHTpEpo0aaL1GFFRUWjevDkOHjyo05xkMlmR5gCvo5U/bFWqVMFnn32G8+fP4+bNm/juu+8QFhaG5s2bY+7cubh06RL8/f0tPc1ShYI/BAD7zcne3h4LFiww42wIKVtYRWfFNGrUCHPnzjXBbAgpWxo3biy6qlVd8FmTOnXq0Ik9IaTMYq38ORWdDJR/lRYmf1WYmZPAru9ScLxhl5/jx49Hdna26PhPP/0kWui5du3aOH36tE4B+9TUVPTs2VOnOkDXrl0TnVPlypWNVui4LAgICMDs2bNx8OBBXLhwAZMmTSrT9ZJMhYI/BADQu3dv0bHx48fTmxchJlSrVi29Cqk7Oztj/fr1cHQ0rEsGIaSAo6MjGjVqpPfjhg8fDt7AixhCCLF1rODPzZu3IKnXo8j3JK0/A1+9oUHH2r9/P7Zt2yY63rhxY4wZM4a5DycnJ6xevRqLFi3SuQ7Q0KFDmXWAtLV4pxo1xNrQWQsBoKqMP2zYsGLfb9asGX744QcLzIiQskNb0efXLVmyhJbBEmJErNQvMbp0kiGEkNKKFfy5desWOJ+wgm+UrwlpxykGHSc3Nxeff/45c5tly5bp1PiC4ziMGzcOhw4dQuXKlbVuv3HjRmYdIKr3Q2wNBX9IvtWrV2P69Olo2LAhatWqhbFjx+LAgQNwdXW19NQIKfV0Df4MHjwYH35oWL48IUQzfYM/zZo1Y9a7IISQ0q5SpUqiaVbZ2dl4YB8Avk4I4FQJdgNXgnMw7HpiwYIFWos865uC26lTJ1y8eLHEdYC0rfwhxNpQ8Ifkk0qlmDp1Kq5evYr79+9j2bJlOlXHJ4SUnC7Bn9q1a+PPP/+kZcSEGJm+wR8q9EwIIVpSv27Hwv69g3CY9BCSuh0N2n9CQgJ++ukn0XE3NzeD6x+WtA5QUlISEhISNG4vkUgMqudIiKlR8IcQQqyAtuCPRCLBf//9B3d3d/NMiJAypH79+ihXrpxO2/I8j6FDh5p4RoQQYv3YdX9uAkCJblhNmDDB4CLPulDXAVq8eLHedYBYKV+NGjWCi4uLwfMixFQo+EMIIVagRo0aqFWrluj4tGnTqLMQISbC87zOd2nDwsJQvXp1E8+IEEKsny7BH0MdOHAAW7duFR1v1KiR1iLPuuA4Dl9++aXedYA2bNggug2drxFrRcEfQgixEqNHj9b4/dDQUHz33Xdmng0hZUurVq102o5SvgghRMVUwR9dizxLpVKDj/E6dR2gpk2bat02KioKmzZtEh2nej/EWlHwhxBCrMS4cePQr1+/It9r164dNm/erFMXC0KI4XSp++Ps7IwBAwaYfjKEEGIDtAV/1PVx9LVw4ULcuXNHdPzdd99Fu3btDNo3S+3atREeHl7iID+t/CHWynjhUkIIISXi6uqKbdu2ITw8HNeuXUNQUBDatWsHe3t7S0+NkFJPl+DPwIEDqQMmIYS8UrVqVVSsWBEpKSnFxjIyMvDw4UNmSrsm9+/fx8yZM0XHS1LkWRfqOkDNmzfHV199BYVCodfjq1evjtq1a5todoSUDK38IYQQK8LzPEJCQvDZZ5+hU6dOFPghxExq1KiBmjVrMrcZOXKkmWZDCCHWj+M4o6d+aSvyPHPmTFSrVk3v/epDXQfo8OHDOtUBKqxt27bUlZVYLQr+EEIIIYSAvfqnWrVq6NKlixlnQwgh1s+YwZ+DBw9iy5YtouMNGzbEJ598otc+S6Jjx464dOmSTnWA1KjeD7FmFPwhhBBCCAG76POwYcOMWlyUEEJKA2MFfyxR5FkXXl5eCA8P13nlJ9X7IdaMgj+EEEIIIVCldTk6Ohb7voODg1FaChNCSGljrODPokWLEBMTIzr+zjvvoH379nrNzVicnJzw77//YsmSJcwGHA4ODnqtEiLE3Cj4QwghhBACVd2fefPmFbmzzPM85s+fj/r161twZoQQYp2M0fFLW5Hn8uXL45dffjFofsbCcRy++OILZh2g0aNHa7yBQIi1oPXLhBBCCCGvfPbZZwgNDcWBAweQlZWFYcOGoV69epaeFiGEWKUaNWqgfPnySE9PLzaWlpaGx48fw8PDg7mPr776CllZWaLj5ijyrCt1HaDhw4cjPDw8//shISGYMmWKBWdGiHYU/CGEEEIIKaRBgwZo0KCBpadBCCFWT93xKyIiQuP4zZs3mcGfQ4cOYfPmzaLjDRs2xNixY0s8T2Py8vLCyZMnER4ejlu3bsHT0xM9evQAz1NSDbFu9AwlhBBCCCGEEGIQQ+v+5OXlaS3yvHTpUqssts9xHDp06IDRo0ejV69eFPghNoGepYQQQgghhBBCDGJo8GfRokW4ffu26PjIkSPRoUOHEs2NEFKAgj+EEEIIIYQQQgxiSPDnwYMHmDFjhujjrKHIMyGlDQV/CCGEEEIIIYQYhBX8uXXrlsbvayvyPGPGDFSvXr3EcyOEFKDgDyGEEEIIIYQQg9SqVQsuLi4ax5KTk5GcnFzke4cPH8amTZtE99egQQN8+umnRp0jIYSCP4QQQgghhBBCDMTzPAICAkTHC6/+ycvLw2effcbc37Jly6yyyDMhto6CP4QQQgghhBBCDKZr3R9tRZ5HjBhBRZ4JMREK/hBCCCGEEEIIMZguwZ+HDx9i5syZotuVL18e8+bNM/rcCCEqFPwhhBBCCCGEEGIwXYI/X331FTIzM0W3mz59OhV5JsSEKPhDCCGEEEIIIcRg2oI/hw8fxsaNG0W3adCggdZaQISQkqHgDyGEEEIIIYQQg9WpUweOjo4axx49eoSPP/6Y+filS5dSkWdCTIyCP4QQQgghhBBCDCaRSODv7y86HhcXJzo2fPhwhISEmGJahJBCKPhDCCGEEEIIIaREWO3exZQrV46KPBNiJhT8IYQQQgghhBBSIqy6P2KmT58ODw8PE8yGEPI6g4I/q1atQu/evRESEoK3334bL1++zP9+165d0blzZyxZsgSCIOQ/5saNGxg2bBjatWuH0aNH49GjR/ljOTk5mDJlCkJCQtC7d2/s37+/yPF27dqFXr16ITQ0FNOnT4dMJjNk2oQQQgghhBBCTEDf4E9wcDAVeSbEjPQO/qxfvx5nzpzBihUrcOLECcyYMQP29vYIDw/H5s2bsWrVKmzcuBHh4eHYuXMnACAvLw+TJk3C0KFDcfToUQQHB2Pq1Kn5+1y+fDlevHiBvXv3Yvbs2ZgzZw4SEhIAALGxsVi0aBHmz5+PPXv2ICkpCStXrjTSj08IIYQQQgghpKT0Df4sW7YMdnZ2JpoNIeR1egV/FAoF/vnnH/zwww/w8PAAx3Hw9fWFg4MD9u7dizfffBOenp6oXLkyRowYgX379gEALl26BCcnJ/Tv3x8ODg746KOPcPPmzfzVP3v37sXo0aPh6uqKRo0aISQkBAcPHgQA7N+/H2FhYQgMDISrqytGjRqVv19CCCGEEEIIIZbn4+OjczDn7bffpiLPhJiZXv30nj59itzcXBw+fBjr16+Hq6sr3n77bbz55pu4d+8eevXqlb+tn58fli1bBkBV3d3X1zd/zMnJCZ6enoiLi4OLiwueP39eZNzPzw83btzIf2ybNm3yx+rVq4fExETk5ORobCeYl5eHvLy8oj+kVAp7e3t9flSrolQqi/yfEG3oOUP0Rc8Zoi96zhB90XOG6IOeL7ZHIpEUuY4TU65cOcydO9fof1t6zhB9labnDM9rX9ejd/AnIyMDDx8+xM6dO5GYmIixY8eiTp06yMrKgqura/62Li4uyMrKAgBkZ2fDxcWlyL5cXFyQnZ2NrKwsSCSSIoEc1mPVx8jOztYY/Pnnn3/w119/Ffne4MGDMWTIEH1+VKv04MEDS0+B2Bh6zhB90XOG6IueM0Rf9Jwh+qDni22pXbu21uDP559/DplMll/mw9joOUP0VRqeM3Xr1tW6jV7BHwcHBwDA6NGj4ejoCB8fH/Tq1QunT5+Gs7MzMjIy8rfNzMyEs7MzANVKn8zMzCL7yszMhJOTE5ydnaFQKIqs5GE9Vn0MJycnjXN8//33MXz48KI/ZClY+fPgwQPUqlVLp4geIfScIfqi5wzRFz1niL7oOUP0Qc8X29S8eXPs3btXdDwoKAhTp041Sa0fes4QfZW154xewZ/atWuLvlDr1q2L2NhYtG/fHgAQExMDb29vAIC3tze2bduWv212djYePnwIb29vlC9fHpUqVUJsbCyCg4M1PjY2Njb/sXfu3EHNmjU1rvoBAHt7e5sO9LDwPF8mnpTEeOg5Q/RFzxmiL3rOEH3Rc4bog54vtiUoKIg5vmzZsvwFBaZCzxmir7LynNHrJ3RyckKXLl2wcuVK5OXlIT4+Hvv27UO7du3Qq1cvbNmyBYmJiXj27BnWrl2Lnj17AgCaNWuG7Oxs7Nq1C3l5eVi5ciUCAwPh4eEBAOjVqxdWrFiBzMxMREVF4eTJkwgLCwMA9OjRA4cPH0Z0dDQyMjLw999/5++XEEIIIYQQQoh16Nixo+iN+GHDhiE0NNTMMyKEqOkd3vrmm2+QlpaGrl274vPPP8eoUaPQvHlztG/fHoMGDcI777yDwYMHo127dujXrx8A1WqcX375BWvXrkWnTp1w9epVzPh/9u48zqb6j+P468yOwdjHrohs2aJmTMZIKUVECsWgSEQJlYpCDKlImyIkkhZ+qYg0ozBKixTKEmMbS1nGMsOY+/39cXIzzdw7c5l93s/Hw8Pcc77n3O+533PPPfdzv9/Pd+xY5z4HDBhAYGAgt9xyC0888QRPPPEENWrUAKBWrVo88sgjPProo7Rv354KFSrQt2/frDl6ERERERERyRLly5dnwIABaZbXrFmTl156KRdqJLmhRo0aTJ06NberIf/h0bAvsLOzv/DCC+mu69OnD3369El3Xf369Vm4cGG66wICAhg/frzL5+zQoQMdOnTwtKoiIiIiIiKSg6ZOnUqVKlVYsGAB8fHx3HzzzUyYMIHg4ODcrlqhY1mW2/W9e/dmzpw5brdfvHgxnTp1ytqKSa7wOPgjIiIiIiIikh4vLy9GjhzJyJEjc7sqhV58fLzz7w8++IDRo0fzxx9/OJe5mkRJCqaCn9VIREREREREJIsUL14cf3//XP9XvHhxt/UMDg52/itZsiSWZaVatmDBAmrWrImfnx916tRh3rx5zm0vpGHp3LkzlmU5H+/cuZM77riDChUqEBgYSPPmzfnqq6+y66WWLKSePyIiIiIiIiKZdO7cOc6dO5fb1bgsixcvZujQoUydOpW2bdvy2Wef0adPH6pUqUJERAQbNmygfPnyzJ49m1tuuQVvb28ATp06Rfv27Rk/fjwBAQHMnTuXDh068Mcff1CtWrVcPipxR8EfERERERERkUJkypQpREZG8tBDDwEwbNgw1q9fz5QpU4iIiKBcuXIABAUFpcrX1KhRIxo1auR8PH78eBYvXsynn37K4MGDc/YgxCMa9iUiIiIiIiJSiGzdupWWLVumWtayZUu2bt3qdrvTp08zcuRI6tWrR1BQEIGBgfz+++/s2bMnO6srWUA9f0REREREREQKmf/OBmaMyXCGsBEjRvDll18yZcoUatWqRZEiRejatWu+HwZXGKjnj4iIiIiIiEghUrduXdasWZNq2bp166hbt67zsa+vLykpKanKfPvtt0RGRtK5c2caNmxIcHAwu3fvzokqy2VSzx8RERERERGRTPLz88vtKgCXV48RI0bQrVs3mjZtyo033sjSpUv55JNPUs3cVaNGDVatWkXLli3x9/enVKlS1KpVi08++YQOHTpgWRbPPPMMDocjKw5HspmCPyIiIiIiIiKZdPLkydyuwmXr1KkT06ZN44UXXmDIkCFcccUVzJ49m9atWzvLvPjiiwwbNoy3336bypUrs3v3bl5++WX69u1LaGgoZcuW5fHHHychISH3DkQyzTLGmNyuhLjncDiIi4ujevXqeHlppJ5kTOeMeErnjHhK54x4SueMeELni3hK54x4qrCdMwX/CEVERERERERECjEFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0REREREREQKoMjISCzLIioqKtXyJUuWYFmW8/GMGTNo1KgRxYoVIygoiCZNmjBp0iQAli9fjmVZHDx4MNU+goODqVq1aqpl+/btw7IsVqxYkU1HJJdKwR8RERERERGRAiogIIBJkyZx7NixdNfPmjWLYcOGMWTIEH755RfWrl3LyJEjOXXqFABhYWH4+PgQExPj3Gbr1q0kJSWRkJDAjh07nMujo6Px9fWlZcuW2XpM4jmf3K6AiIiIiIiISH5RvJ2Dc+dzuxbg5wMnv8y4P0fbtm3ZsWMHEydOZPLkyWnWL126lG7dutGvXz/nsvr16zv/DgwMpHnz5sTExHDPPfcAEBMTQ1hYGMYYYmJiqFWrlnN5ixYtKFas2OUenmQx9fwRERERERERyaRz5+Fcch74l8kAlLe3NxMmTGD69Ons27cvzfrg4GDWr19PXFycy31EREQQHR3tfBwdHU3r1q0JDw9PszwiIiLzL6bkGAV/RERERERERAqwzp0707hxY8aMGZNm3ZgxYwgKCqJGjRrUqVOHyMhIFi1ahMPhcJZp3bo127ZtIz4+HoDVq1cTHh5OeHi4czjY3r172bVrl4I/eZSCPyIiIiIiIiIF3KRJk5g7dy5btmxJtbxixYrExsby66+/MmTIEJKTk+nduze33HKLMwDUsmVL/Pz8iImJYcuWLSQmJtK0aVOaNWtGQkIC27dvJzo6Gn9/f0JDQ3Pj8CQDCv6IiIiIiIiIFHCtWrWiXbt2jBo1Kt31DRo0YNCgQcyfP5+VK1eycuVKVq9eDUDRokVp0aIF0dHRREdHExYWhre3Nz4+PoSGhjqXh4SEEBAQkJOHJZmkhM8iIiIiIiIihUBUVBSNGzemdu3absvVq1cPgNOnTzuXRUREsHDhQo4dO0br1q2dyy8M/YqNjaVPnz7ZUm+5fAr+iIiIiIiIiGSSXx75Fn0p9WjYsCE9e/Zk+vTpzmUDBw6kUqVKtGnThipVqhAfH8/48eMpV64cISEhznIRERGMGzeO+Ph4hg8f7lweHh5OVFQUJ0+eVL6fPCyPnLYiIiIiIiIieV9mplfPy8aNG8eiRYucj9u2bcs777zDG2+8wd9//03ZsmUJCQlh1apVlClTxlkuJCQEf39/AJo1a+Zc3rx5c1JSUihSpAjXXXddzh2IeETBHxEREREREZECaM6cOWmWVa9enaSkJOfjLl260KVLlwz3FRAQkGq7C/z8/FIND5O8KX+HLEVERERERERExC0Ff0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0RERERERERECjAFf0REREREREQkz4iJicGyLI4fP57bVSkwFPwRERERERERKYAiIyOxLIuoqKhUy5csWYJlWamWzZgxg0aNGlGsWDGCgoJo0qQJkyZNAmD58uVYlsXBgwdTbRMcHEzVqlVTLdu3bx+WZbFixYpsOCK5VAr+iIiIiIiIiBRQAQEBTJo0iWPHjrksM2vWLIYNG8aQIUP45ZdfWLt2LSNHjuTUqVMAhIWF4ePjQ0xMjHObrVu3kpSUREJCAjt27HAuj46OxtfXl5YtW2bbMYnnfHK7AiIiIiIiIiL5xZfVvsIkO3K7Gli+XrTb0zbDcm3btmXHjh1MnDiRyZMnp1tm6dKldOvWjX79+jmX1a9f3/l3YGAgzZs3JyYmhnvuuQewh2aFhYVhjCEmJoZatWo5l7do0YJixYpdzuEBsHbtWkaNGsUff/xBo0aNmDlzJg0bNgTg2WefZcmSJWzcuNFZfurUqUydOpXdu3c76zJy5Eg2b96Mr68v9evXZ8GCBVSvXv2y65bfqOePiIiIiIiISCaZZAeOcybX/2U2AOXt7c2ECROYPn06+/btS7dMcHAw69evJy4uzuV+IiIiiI6Odj6Ojo6mdevWhIeHp1keERGRyVfTvREjRjBlyhQ2bNhA+fLl6dixI8nJyZna9vz583Tq1Inw8HA2bdpEbGws/fv3TzPcrbBQ8EdERERERESkAOvcuTONGzdmzJgx6a4fM2YMQUFB1KhRgzp16hAZGcmiRYtwOP4NMLVu3Zpt27YRHx8PwOrVqwkPDyc8PNw5HGzv3r3s2rUry4I/Y8aM4aabbqJhw4bMnTuXQ4cOsXjx4kxtm5CQwIkTJ7j99tupWbMmdevWpXfv3lSrVi1L6pbfKPgjIiIiIiIiUsBNmjSJuXPnsmXLljTrKlasSGxsLL/++itDhgwhOTmZ3r17c8sttzgDQC1btsTPz4+YmBi2bNlCYmIiTZs2pVmzZiQkJLB9+3aio6Px9/cnNDQ03Trs2bOHwMBA578JEya4rXNISIjz79KlS1OnTh22bt2aqeMtXbo0kZGRtGvXjg4dOjBt2jRn4KowUvBHREREREREpIBr1aoV7dq1Y9SoUS7LNGjQgEGDBjF//nxWrlzJypUrWb16NQBFixalRYsWREdHEx0dTVhYGN7e3vj4+BAaGupcHhISQkBAQLr7r1SpEhs3bnT+e/DBBz0+jgvDtry8vDDGpFr33yFhs2fPJjY2ltDQUD744ANq167N+vXrPX7OgkAJn0VEREREREQKgaioKBo3bkzt2rUzLFuvXj0ATp8+7VwWERHBwoULOXbsGK1bt3YuvzD0KzY2lj59+rjcp4+PjzMxdGasX7/eOUzr2LFjbNu2jauvvhqAcuXKcfDgQYwxzoDQxcmfL2jSpAlNmjThySefJCQkhAULFnD99ddnug4FhYI/IiIiIiIiIplk+XrhRd6Y7ctTDRs2pGfPnkyfPj3V8oEDB1KpUiXatGlDlSpViI+PZ/z48ZQrVy7V0KuIiAjGjRtHfHw8w4cPdy4PDw8nKiqKkydPZlm+H4CxY8dSpkwZKlSowFNPPUXZsmXp1KkTYOcgOnLkCJMnT6Zr164sX76cZcuWUaJECQB27drFW2+9RceOHalUqRJ//PEH27Zto1evXllWv/xEwR8RERERERGRTMrM9Op52bhx41i0aFGqZW3btuWdd97hjTfe4O+//6Zs2bKEhISwatUqypQp4ywXEhKCv78/AM2aNXMub968OSkpKRQpUoTrrrsuy+oaFRXF0KFD2b59O40aNeLTTz/Fz88PgLp16/L6668zYcIExo0bR5cuXRg+fDhvvfUWYA9T+/3335k7dy5///03FStWZPDgwQwYMCDL6pefWOa/g+Qkz3E4HMTFxVG9enW8vJSmSTKmc0Y8pXNGPKVzRjylc0Y8ofNFPKVzRjxV2M6Zgn+EIiIiIiIiIiKFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIpJnxMTEYFkWx48fv6z9WJbFkiVLsqRO+Z2CPyIiIiIiIiIFUGRkJJZlERUVlWr5kiVLsCwr1bIZM2bQqFEjihUrRlBQEE2aNGHSpEkALF++HMuyOHjwYKptgoODqVq1aqpl+/btw7IsVqxYkQ1HJJfKJ7crICIiIiIiIpJfVPvka845HLldDfy8vNhzZ5sMywUEBDBp0iQGDBhAqVKl0i0za9Yshg0bxiuvvEJ4eDhnz55l06ZNbNmyBYCwsDB8fHyIiYnhnnvuAWDr1q0kJSWRmJjIjh07qFWrFgDR0dH4+vrSsmXLLDpSyQrq+SMiIiIiIiKSSeccDs45TB74l7kAVNu2bQkODmbixIkuyyxdupRu3brRr18/atWqRf369enevTvjxo0DIDAwkObNmxMTE+PcJiYmhrCwMMLCwtIsb9GiBcWKFbuk1/diP/74I9deey1FixYlNDSUP/74I9X6N954g5o1a+Ln50edOnWYN2/eZT9nQaXgj4iIiIiIiEgB5e3tzYQJE5g+fTr79u1Lt0xwcDDr168nLi7O5X4iIiKIjo52Po6OjqZ169aEh4enWR4REZEldX/qqad48cUX+eGHH/Dx8aFv377OdYsXL2bo0KE89thj/PbbbwwYMIA+ffqkqov8S8EfERERERERkQKsc+fONG7cmDFjxqS7fsyYMQQFBVGjRg3q1KlDZGQkixYtwnFR76LWrVuzbds24uPjAVi9ejXh4eGEh4c7e/7s3buXXbt2ZVnw5/nnnyc8PJx69erxxBNPsG7dOpKSkgCYMmUKkZGRPPTQQ9SuXZthw4Zx5513MmXKlCx57oJGwR8RERERERGRAm7SpEnMnTvXmcfnYhUrViQ2NpZff/2VIUOGkJycTO/evbnlllucAaCWLVvi5+dHTEwMW7ZsITExkaZNm9KsWTMSEhLYvn070dHR+Pv7Exoamm4d9uzZQ2BgoPPfhAkT3Nb5mmuuSVVHgMOHDwN2zqH/5hVq2bIlW7duzfyLUogo4bOIiIiIiIhIAdeqVSvatWvHqFGjiIyMTLdMgwYNaNCgAYMGDWLNmjXccMMNrF69moiICIoWLUqLFi2Ijo7m6NGjhIWF4e3tDUBoaCjR0dHExsYSEhJCQEBAuvuvVKkSGzdudD4uXbq02zr7+vo6/74wO9nFvZH+O2OZMSbNMrEp+CMiIiIiIiKSSX5eXkDemO3LU1FRUTRu3JjatWtnWLZevXoAnD592rksIiKChQsXcuzYMVq3bu1cfmHoV2xsLH369HG5Tx8fH+esYJerbt26rFmzhl69ejmXrVu3jrp162bJ/gsaBX9EREREREREMikz06vnVQ0bNqRnz55Mnz491fKBAwdSqVIl2rRpQ5UqVYiPj2f8+PGUK1eOkJAQZ7mIiAjGjRtHfHw8w4cPdy4PDw8nKiqKkydPZlm+n4yMGDGCbt260bRpU2688UaWLl3KJ598wldffZUjz5/fKOePiIiIiIiISCExbtw4jDGplrVt25b169dz1113Ubt2bbp06UJAQACrVq2iTJkyznIhISH4+/sD0KxZM+fy5s2bk5KSQpEiRbjuuuty5Dg6derEtGnTeOGFF6hfvz4zZsxg9uzZqXokyb8s899WlzzH4XAQFxdH9erV8bqErn1S+OicEU/pnBFP6ZwRT+mcEU/ofBFP6ZwRTxW2c6bgH6GIiIiIiIiISCGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiI5BkxMTFYlsXx48dzuyoeycv1VvBHREREREREpACKjIzEsiyioqJSLV+yZAmWZaVaNmPGDBo1akSxYsUICgqiSZMmTJo0CYDly5djWRYHDx5MtU1wcDBVq1ZNtWzfvn1YlsWKFSuy4YjyttDQUOLj4ylZsiQAc+bMISgoKHcr9Q+f3K6AiIiIiIiISH5RaUwVzqWcy+1q4Oftx4Hn9mVYLiAggEmTJjFgwABKlSqVbplZs2YxbNgwXnnlFcLDwzl79iybNm1iy5YtAISFheHj40NMTAz33HMPAFu3biUpKYnExER27NhBrVq1AIiOjsbX15eWLVtm0ZHmH35+fgQHB+d2NdKlnj8iIiIiIiIimXQu5Vye+ZcZbdu2JTg4mIkTJ7oss3TpUrp160a/fv2oVasW9evXp3v37owbNw6AwMBAmjdvTkxMjHObmJgYwsLCCAsLS7O8RYsWFCtW7JJe34utXbuWRo0aERAQwHXXXcevv/7qXPfss8/SuHHjVOWnTp1KjRo10q1LUFAQLVu2JC4u7rLqdPbsWUaOHEnVqlXx9/fnqquuYtasWc7nuzDsKyYmhj59+nDixAksy8KyLJ599lnGjh1Lw4YN0+y3WbNmjB49+rLq5o6CPyIiIiIiIiIFlLe3NxMmTGD69Ons25d+T6Hg4GDWr1/vNjASERFBdHS083F0dDStW7cmPDw8zfKIiIgsqfuIESOYMmUKGzZsoHz58nTs2JHk5ORMbXv+/Hk6depEeHg4mzZtIjY2lv79+6cZ7uapXr16sXDhQl555RW2bt3Km2++SWBgYJpyoaGhTJ06lRIlShAfH098fDzDhw+nb9++bNmyhQ0bNjjLbtq0iZ9//pnIyMjLqps7Cv6IiIiIiIiIFGCdO3emcePGjBkzJt31Y8aMISgoiBo1alCnTh0iIyNZtGgRDofDWaZ169Zs27aN+Ph4AFavXk14eDjh4eHOnj979+5l165dWRb8GTNmDDfddBMNGzZk7ty5HDp0iMWLF2dq24SEBE6cOMHtt99OzZo1qVu3Lr1796ZatWqXXJ9t27axaNEi3nnnHTp37syVV17JjTfeyN13352mrJ+fHyVLlsSyLIKDgwkODiYwMJAqVarQrl07Zs+e7Sw7e/ZswsPDufLKKy+5bhlR8EdERERERESkgJs0aRJz58515vG5WMWKFYmNjeXXX39lyJAhJCcn07t3b2655RZnAKhly5b4+fkRExPDli1bSExMpGnTpjRr1oyEhAS2b99OdHQ0/v7+hIaGpluHPXv2EBgY6Pw3YcIEt3UOCQlx/l26dGnq1KnD1q1bM3W8pUuXJjIyknbt2tGhQwemTZvmDFyl59Zbb3XWq379+umW2bhxI97e3oSHh2eqDq488MADvP/++yQlJZGcnMz8+fPp27fvZe0zI0r4LCIiIiIiIlLAtWrVinbt2jFq1CiXw4saNGhAgwYNGDRoEGvWrOGGG25g9erVREREULRoUVq0aEF0dDRHjx4lLCwMb29vwB7iFB0dTWxsLCEhIQQEBKS7/0qVKrFx40bn49KlS3t8HBeGbXl5eWGMSbXuv0PCZs+ezZAhQ1i+fDkffPABTz/9NCtXruT6669Ps9+ZM2eSmJgIgK+vb7rPXaRIEY/rm54OHTrg7+/P4sWL8ff35+zZs3Tp0iVL9u2Kgj8iIiIiIiIimeTn7ZfbVQAurR5RUVE0btyY2rVrZ1i2Xr16AJw+fdq5LCIigoULF3Ls2DFat27tXH5h6FdsbCx9+vRxuU8fHx/nrGCZsX79eucwrWPHjrFt2zauvvpqAMqVK8fBgwcxxjgDQhcHli5o0qQJTZo04cknnyQkJIQFCxakG/ypXLlyhvVp2LAhDoeD1atX07Zt2wzL+/n5kZKSkma5j48PvXv3Zvbs2fj7+3PPPfdQtGjRDPd3ORT8EREREREREcmkzEyvnlc1bNiQnj17Mn369FTLBw4cSKVKlWjTpg1VqlQhPj6e8ePHU65cuVRDryIiIhg3bpwzefEF4eHhREVFcfLkySzL9wMwduxYypQpQ4UKFXjqqacoW7YsnTp1AuwcREeOHGHy5Ml07dqV5cuXs2zZMkqUKAHArl27eOutt+jYsSOVKlXijz/+YNu2bfTq1euS61OjRg169+5N3759eeWVV2jUqBFxcXEcPnyYbt26pVv+1KlTrFq1ikaNGlG0aFFnkOf++++nbt26gD2rWXZTzh8RERERERGRQmLcuHFphku1bduW9evXc9ddd1G7dm26dOlCQEAAq1atokyZMs5yISEh+Pv7A/bU5Bc0b96clJQUihQpwnXXXZdldY2KimLo0KE0a9aM+Ph4Pv30U/z87B5PdevW5fXXX+e1116jUaNGfP/996kCUkWLFuX333+nS5cu1K5dm/79+zN48GAGDBhwWXV644036Nq1Kw899BBXX301DzzwQKreURcLDQ3lwQcf5O6776ZcuXJMnjzZue6qq64iNDSUOnXqZOlr5opl/tvqkuc4HA7i4uKoXr06Xl6K10nGdM6Ip3TOiKd0zoindM6IJ3S+iKd0zoincvucMcZw9dVXM2DAAIYNG5btz6dhXyIiIiIiIiIiOeTw4cPMmzeP/fv3u82RlJUU/BERERERERERySEVKlSgbNmyvPXWW5QqVSpHnlPBHxERERERERGRHJIb2Xc0GFJEREREREREpABT8EdEREREREREpABT8EdEREREREREpABT8EdEREREREREpABT8EdEREREREREpABT8EdEREREREREskSNGjWYOnVqbldD/kPBHxEREREREZECxrIst/8iIyMz3H7JkiU5UlfJfj65XQERERERERERyVrx8fHOvz/44ANGjx7NH3/84VxWpEiR3KiW5BL1/BEREREREREpYIKDg53/SpYsiWVZqZYtWLCAmjVr4ufnR506dZg3b55z2xo1agDQuXNnLMtyPt65cyd33HEHFSpUIDAwkObNm/PVV1/lwtGJpxT8ERERERERESlEFi9ezNChQ3nsscf47bffGDBgAH369CE6OhqADRs2ADB79mzi4+Odj0+dOkX79u356quv+Pnnn2nXrh0dOnRgz549uXYskjka9iUiIiIiIiLiobMzQjGnDuX481qBFfAfsO6y9jFlyhQiIyN56KGHABg2bBjr169nypQpREREUK5cOQCCgoIIDg52bteoUSMaNWrkfDx+/HgWL17Mp59+yuDBgy+rTpK9FPwRERERERER8ZA5dQhO7s/5582CfWzdupX+/funWtayZUumTZvmdrvTp0/z3HPP8dlnn3HgwAHOnz9PYmKiev7kAwr+iIiIiIiIiHjICqyQJYGYS3neLNmPZaV6bIxJs+y/RowYwZdffsmUKVOoVasWRYoUoWvXrpw7dy5L6iTZR8EfEREREREREQ9d7tCr3FS3bl3WrFlDr169nMvWrVtH3bp1nY99fX1JSUlJtd23335LZGQknTt3BuwcQLt3786ROsvlUfBHREREREREpBAZMWIE3bp1o2nTptx4440sXbqUTz75JNXMXTVq1GDVqlW0bNkSf39/SpUqRa1atfjkk0/o0KEDlmXxzDPP4HA4cvFIJLM025eIiIiIiIhIIdKpUyemTZvGCy+8QP369ZkxYwazZ8+mdevWzjIvvvgiK1eupGrVqjRp0gSAl19+mVKlShEaGkqHDh1o164dTZs2zaWjEE9YxpjcGKYoHnA4HMTFxVG9enW8vBSvk4zpnBFP6ZwRT+mcEU/pnBFP6HwRT+mcEU8VtnOm4B+hiIiIiIiIiEghpuCPiIiIiIiIiEgBpuCPiIiIiIiIiEgBpuCPiIiIiIiIiEgBpuCPiIiIiIiIiEgBpuCPiIiIiIiIiEgBpuCPiIiIiIiIiEgBdsnBn02bNtG8eXPmzJnjXDZnzhzatm1LmzZtmDZtGsYY57rNmzfTvXt3WrZsSf/+/YmPj3euS0pK4plnnqFVq1bcdtttLF++PNVzLV26lPbt2xMeHs5zzz1HcnLypVZbRERERERERKRQuaTgj8Ph4KWXXqJevXrOZWvWrOGjjz5izpw5LFq0iDVr1vDpp58CcO7cOUaOHMk999zD119/TYMGDRg9erRz2xkzZnDixAm++OILJkyYQFRUFHFxcQDs2LGDl19+mSlTpvD5559z4MABZs2adTnHLCIiIiIiIiJSaFxS8OeTTz6hQYMGXHHFFc5lX3zxBV27dqVKlSqULVuWe++9l2XLlgHw448/UqRIEe644w78/f154IEH2LJli7P3zxdffEH//v0JDAykUaNGtGrVihUrVgCwfPlybrrpJurVq0dgYCD333+/c78iIiIiIiIiIuKej6cbnDhxgvfff5/Zs2fz0ksvOZfv2rWL9u3bOx/Xrl2b1157DYA///yTWrVqOdcVKVKEKlWq8Oeff1KsWDH+/vvvVOtr167N5s2bnduGhIQ411111VXs37+fpKQkAgIC0tTv3LlznDt3LvVB+vjg5+fn6aHmGQ6HI9X/IhnROSOe0jkjntI5I57SOSOe0PkintI5k74+ffrw7rvvMmHCBB5//HHn8iVLltClSxdSUlIAezTOm2++yY4dO/D19eWKK67g7rvvZuTIkSxfvpzbbruN/fv3Exwc7NxHpUqV8PX1dY7aAdi3bx/Vq1dn2bJl3HzzzTl3oJegIJ0zXl4Z9+vxOPjz2muv0b17d0qUKJFq+ZkzZwgMDHQ+LlasGGfOnAEgMTGRYsWKpSpfrFgxEhMTOXPmDN7e3qkCOe62vfAciYmJ6QZ/Zs+ezdtvv51q2V133UW3bt08PdQ8Z+/evbldBclndM6Ip3TOiKd0zoindM6IJ3S+iKd0zqR2+vRp/P39iYqK4tZbb6VkyZIAHDlyBIC4uDg++OADxo4dy+jRo7nuuus4d+4cv//+Ozt27CAuLo5q1arh4+PDRx99RIcOHQA7PcuZM2cwxrB69Wpq1KgBwOLFi/H19aVq1aqpgkJ5WUE4Zy4eleWKR8Gf33//nc2bN6eKGF5QtGhRTp065Xx8+vRpihYtCtg9fU6fPp2q/OnTpylSpAhFixYlJSUlVU8ed9teeI4iRYqkW8c+ffrQs2fP1AdZAHr+7N27l6pVq2Yqoieic0Y8pXNGPKVzRjylc0Y8ofNFPKVzJn3FihWjbdu27Ny5k/nz5zNp0iQAypUrB0D16tWJjY2lW7dujBw50rndTTfdlGo/zZs3Z/PmzQwePBiwU7fccMMNGGPYvn074eHhAPz222+0aNGCunXr5sThXZbCds54FPz56aef2LNnj3N416lTp/D29mbfvn1cccUV7Nixg7CwMAC2bdvGlVdeCcCVV17J4sWLnftJTExk3759XHnllZQoUYIyZcqwY8cOGjRokO62O3bscG67fft2KleunG6vHwA/P798Hehxx8vLq1CclJJ1dM6Ip3TOiKd0zoindM6IJ3S+iKd0zqRmWRY+Pj5MmDCBHj16MHToUKpUqeJ8jby8vKhYsSKrV69m7969VK9ePd39RERE8NFHHzm3W716NRERETgcDlavXk3//v0BiImJoWfPnvmqDQrLOeNR8OfOO+9MNW7vxRdfpGrVqtx333388ssvTJo0iZtuugl/f3/mz5/v7IHTrFkzEhMTWbp0Ke3atWPWrFnUq1ePihUrAtC+fXtmzpzJ888/z59//sk333zjnEL+lltuYcCAAXTu3JkqVarwzjvvcOutt2bR4YuIiIiIiIh4bn3r1pw7fDjHn9evfHmuj4nxaJvOnTvTuHFjxowZk2b27DFjxnDnnXdSo0YNateuTUhICO3bt6dr167OoEjr1q2ZMGEC8fHxzmDRiBEjcDgcTJs2DbCHT+3atYuIiIgsOU7JWh4FfwICAlL1uPH396do0aIUL16csLAwtm/fTq9evXA4HHTq1ImOHTsCdm+cyZMnM27cOKKioqhXrx5jx4517mfAgAGMHz+eW265hRIlSvDEE084xwzWqlWLRx55hEcffZTTp0/Tpk0b+vbtmwWHLiIiIiIiInJpzh0+zNkDB3K7Gpk2adIk2rRpw2OPPZZqecWKFYmNjeW3335j9erVrFu3jt69ezNz5kyWL1+Ol5cXLVu2xM/Pj5iYGBo1akRiYiJNmzbFGENCQgLbt28nNjYWf39/QkNDc+kIxR3LGGNyuxLinsPhIC4ujurVqxeK7mhy+XTOiKd0zoindM6Ip3TOiCd0voincuOcyQ89fyIjIzl+/DhLliwB4LbbbsPX15fIyEg6d+6Mq3DAmjVruOGGG/j666+dPXluuOEG6tatS6NGjfj888/54osvAGjXrh1dunQhNjaW3bt3Ex0dfdnHmBMK23XG49m+RERERERERAo7T4de5QVRUVE0btyY2rVruy1Xr149gFSTL0VERLBw4UKOHTtG69atncvDw8OJiYkhNjaWPn36ZEu95fIV/PCWiIiIiIiIiNCwYUN69uzJ9OnTncsGDhzIuHHjWLt2LXFxcaxfv55evXpRrlw5QkJCnOUiIiLYvn07y5cvd87uBXbw57PPPmP37t3K95OHKfgjIiIiIiIiUkiMGzcu1XCvtm3bsn79eu666y5q165Nly5dCAgIYNWqVZQpU8ZZLiQkBH9/f8Ce1OmC5s2bk5KSQpEiRbjuuuty7kDEIxr2JSIiIiIiIlIAXZhF+2LVq1cnKSnJ+bhLly506dIlw30FBASk2u4CPz+/VMPDJG9Szx8RERERERERkQJMwR8RERERERERkQJMwR8RERERERERkQJMwR8RERERERERkQJMwR8RERERERERkQJMwR8RERERERERkQJMwR8RERERERERkQJMwR8RERERERERkQJMwR8RERERERERkQJMwR8RERERERERyTNiYmKwLIvjx4/ndlUKDAV/RERERERERAqgyMhILMsiKioq1fIlS5ZgWVaqZTNmzKBRo0YUK1aMoKAgmjRpwqRJkwBYvnw5lmVx8ODBVNsEBwdTtWrVVMv27duHZVmsWLEiG45ILpWCPyIiIiIiIiIFVEBAAJMmTeLYsWMuy8yaNYthw4YxZMgQfvnlF9auXcvIkSM5deoUAGFhYfj4+BATE+PcZuvWrSQlJZGQkMCOHTucy6Ojo/H19aVly5bZdkziOQV/RERERERERAqotm3bEhwczMSJE12WWbp0Kd26daNfv37UqlWL+vXr0717d8aNGwdAYGAgzZs3TxX8iYmJISwsjLCwsDTLW7RoQbFixS677mvXrqVRo0YEBARw3XXX8euvvzrXPfvsszRu3DhV+alTp1KjRo106xIUFETLli2Ji4u77HrlRwr+iIiIiIiIiBRQ3t7eTJgwgenTp7Nv3750ywQHB7N+/Xq3gZGIiAiio6Odj6Ojo2ndujXh4eFplkdERGRJ3UeMGMGUKVPYsGED5cuXp2PHjiQnJ2dq2/Pnz9OpUyfCw8PZtGkTsbGx9O/fP81wt8LCJ7crICIiIiIiIpLfXHvttWly4OSE4OBgfvjhB4+26dy5M40bN2bMmDHMmjUrzfoxY8Zw5513UqNGDWrXrk1ISAjt27ena9eueHnZfUZat27NhAkTiI+Pp2LFiqxevZoRI0bgcDiYNm0aAHv37mXXrl1ZFvwZM2YMN910EwBz586lSpUqLF68mG7dumW4bUJCAidOnOD222+nZs2aANStWzdL6pUfKfgjIiIiIiIi4qGDBw+yf//+3K5Gpk2aNIk2bdrw2GOPpVlXsWJFYmNj+e2331i9ejXr1q2jd+/ezJw5k+XLl+Pl5UXLli3x8/MjJiaGRo0akZiYSNOmTTHGkJCQwPbt24mNjcXf35/Q0NB067Bnzx7q1avnfDxq1ChGjRrlss4hISHOv0uXLk2dOnXYunVrpo63dOnSREZG0q5dO2666Sbatm1Lt27dqFixYqa2L2gU/BERERERERHxUHBwcL563latWtGuXTtGjRpFZGRkumUaNGhAgwYNGDRoEGvWrOGGG25g9erVREREULRoUVq0aEF0dDRHjx4lLCwMb29vAEJDQ4mOjiY2NpaQkBACAgLS3X+lSpXYuHGj83Hp0qU9Po4Lw7a8vLwwxqRa998hYbNnz2bIkCEsX76cDz74gKeffpqVK1dy/fXXe/y8+Z2CPyIiIiIiIiIe8nToVV4QFRVF48aNqV27doZlL/TQOX36tHNZREQECxcu5NixY7Ru3dq5PDw8nJiYGGJjY+nTp4/Lffr4+FCrVq1M13f9+vVUq1YNgGPHjrFt2zauvvpqAMqVK8fBgwcxxjgDQhcHli5o0qQJTZo04cknnyQkJIQFCxYUyuCPEj6LiIiIiIiIFAINGzakZ8+eTJ8+PdXygQMHMm7cONauXUtcXBzr16+nV69elCtXLtXQq4iICLZv387y5csJDw93Lg8PD+ezzz5j9+7dWZbvB2Ds2LGsWrWK3377jcjISMqWLUunTp0AOwfRkSNHmDx5Mjt37uS1115j2bJlzm137drFk08+SWxsLHFxcaxYsYJt27YV2rw/Cv6IiIiIiIiIFBLjxo1LM1yqbdu2rF+/nrvuuovatWvTpUsXAgICWLVqFWXKlHGWCwkJwd/fH4BmzZo5lzdv3pyUlBSKFCnCddddl2V1jYqKYujQoTRr1oz4+Hg+/fRT/Pz8ADt58+uvv85rr71Go0aN+P777xk+fLhz26JFi/L777/TpUsXateuTf/+/Rk8eDADBgzIsvrlJ5b5b6tLnuNwOIiLi6N69erOTOsi7uicEU/pnBFP6ZwRT+mcEU/ofBFP6ZwRTxW2c6bgH6GIiIiIiIiISCGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiI5BkxMTFYlsXx48cvaz+WZbFkyZIsqVN+p+CPiIiIiIiISAEUGRmJZVlERUWlWr5kyRIsy0q1bMaMGTRq1IhixYoRFBREkyZNmDRpEgDLly/HsiwOHjyYapvg4GCqVq2aatm+ffuwLIsVK1ZkwxHJpVLwR0RERERERKSACggIYNKkSRw7dsxlmVmzZjFs2DCGDBnCL7/8wtq1axk5ciSnTp0CICwsDB8fH2JiYpzbbN26laSkJBISEtixY4dzeXR0NL6+vrRs2TLbjkk8p+CPiIiIiIiISAHVtm1bgoODmThxossyS5cupVu3bvTr149atWpRv359unfvzrhx4wAIDAykefPmqYI/MTExhIWFERYWlmZ5ixYtKFas2GXX/ccff+Taa6+laNGihIaG8scff6Ra/8Ybb1CzZk38/PyoU6cO8+bNu+znLKgU/BEREREREREpoLy9vZkwYQLTp09n37596ZYJDg5m/fr1xMXFudxPREQE0dHRzsfR0dG0bt2a8PDwNMsjIiKypO5PPfUUL774Ij/88AM+Pj707dvXuW7x4sUMHTqUxx57jN9++40BAwbQp0+fVHWRf/nkdgVERERERERE8ptrH3Bw8GjOP29wafjhbc/6cXTu3JnGjRszZswYZs2alWb9mDFjuPPOO6lRowa1a9cmJCSE9u3b07VrV7y87Odq3bo1EyZMID4+nooVK7J69WpGjBiBw+Fg2rRpAOzdu5ddu3ZlWfDn+eefJzw8HIAnnniC2267jaSkJAICApgyZQqRkZE89NBDAAwbNoz169czZcqULHv+gkTBHxEREREREREPHTwK+4/kdi0yb9KkSbRp04bHHnsszbqKFSsSGxvLb7/9xurVq1m3bh29e/dm5syZLF++HC8vL1q2bImfnx8xMTE0atSIxMREmjZtijGGhIQEtm/fTmxsLP7+/oSGhqZbhz179lCvXj3n41GjRjFq1CiXdb7mmmtS1RHg8OHDVKtWja1bt9K/f/9U5Vu2bOkMRElqCv6IiIiIiIiIeCi4dP563latWtGuXTtGjRpFZGRkumUaNGhAgwYNGDRoEGvWrOGGG25g9erVREREULRoUVq0aEF0dDRHjx4lLCwMb29vAEJDQ4mOjiY2NpaQkBACAgLS3X+lSpXYuHGj83Hp0u4PxtfX1/n3hdnJHA5HmmUXGGPSLBObgj8iIiIiIiIiHvJ06FVeEBUVRePGjaldu3aGZS/00Dl9+rRzWUREBAsXLuTYsWO0bt3auTw8PJyYmBhiY2Pp06ePy336+PhQq1atSz+Ai9StW5c1a9bQq1cv57J169ZRt27dLNl/QaPgj4iIiIiIiEgh0LBhQ3r27Mn06dNTLR84cCCVKlWiTZs2VKlShfj4eMaPH0+5cuUICQlxlouIiGDcuHHEx8czfPhw5/Lw8HCioqI4efJkjuXbGTFiBN26daNp06bceOONLF26lE8++YSvvvoqR54/v8l/oUoRERERERERuSTjxo3DGJNqWdu2bVm/fj133XUXtWvXpkuXLgQEBLBq1SrKlCnjLBcSEoK/vz8AzZo1cy5v3rw5KSkpFClShOuuuy5HjqNTp05MmzaNF154gfr16zNjxgxmz56dqkeS/Msy/211yXMcDgdxcXFUr17dmWldxB2dM+IpnTPiKZ0z4imdM+IJnS/iKZ0z4qnCds4U/CMUERERERERESnEFPwRERERERERESnAFPzJJzQ4T0REREREREQuhYI/+cCmnXDHmGDWbMrtmsilOJNkWL/ZcPBvRfBEREREREQk5yn4k4edP2+YMM/QYgD8FudP3yg4nagAQn7y+mJDyVsNIQMNlbsY7hrt4Fyy2lBERERERERyjoI/edTvcYaWgwxPvW1IPm8v23kAnpihwEF+MeN/hkEvG86n2I8dDvgoBh56SW0oIiIiIiIiOUfBnzzo1Y8NTfoZvt+azrpP4OsfFTzI63YdMDz2evrtNOtz+GWH2lBERERERERyhoI/edCZs5B0zvX6PlGGhNMKHuRVxhgeeMFwOtF1mefnqf1EREREREQkZyj4kwc9djeE1He9fs8heOw1BQ/yqreXwqof3Zf5KAa27lYbioiIiIiISPZT8CcP8va2mDPKooi/6zIzP4Nl6xU8yGv2HDIMdzHc62LGwIT31H4iIiIiIiL/FRMTg2VZHD9+PLer4pG8XG8Ff/Ko2lUtogZYbsvcP9lw7KQCCHmFMYb+LxhOnslc+QVfwY59aj8REREREckekZGRWJZFVFRUquVLlizBslJ/35wxYwaNGjWiWLFiBAUF0aRJEyZNmgTA8uXLsSyLgwcPptomODiYqlWrplq2b98+LMtixYoV2XBEeVtoaCjx8fGULFkSgDlz5hAUFJS7lfqHgj952OA7oXUT1+sP/AVDpil4kFfMWQZffp/58g4HTFTvHxERERERyUYBAQFMmjSJY8eOuSwza9Yshg0bxpAhQ/jll19Yu3YtI0eO5NSpUwCEhYXh4+NDTEyMc5utW7eSlJREQkICO3bscC6Pjo7G19eXli1bZtsx5VV+fn4EBwenCazlBQr+5GFeXhbvPG4RWMR1mfdWwJJvFUDIbfuPGB591fN2ePdLiDuo9svLUlIMn8ca3l5q2LRTbSUiIiL5izGG978y3DXaQY+xDhauMhije5rCpG3btgQHBzNx4kSXZZYuXUq3bt3o168ftWrVon79+nTv3p1x48YBEBgYSPPmzVMFf2JiYggLCyMsLCzN8hYtWlCsWLHLrvvatWtp1KgRAQEBXHfddfz666/Odc8++yyNGzdOVX7q1KnUqFEj3boEBQXRsmVL4uLiLqtOZ8+eZeTIkVStWhV/f3+uuuoqZs2a5Xy+C8O+YmJi6NOnDydOnMCyLCzL4tlnn2Xs2LE0bNgwzX6bNWvG6NGjL6tu7ij4k8ddUcnihYfclxkwxXDkuC7gucUYw4MvGk6c8nzb8ykwaYHaLq/avtfQvL/h9sftIX2N+hh6Pe/A4VCbiYiISN5njOHhqYYeYw0fxcD7X0H35wyDXta9TGHi7e3NhAkTmD59Ovv27Uu3THBwMOvXr3cbGImIiCA6Otr5ODo6mtatWxMeHp5meURERJbUfcSIEUyZMoUNGzZQvnx5OnbsSHJycqa2PX/+PJ06dSI8PJxNmzYRGxtL//79L7tXTq9evVi4cCGvvPIKW7du5c033yQwMDBNudDQUKZOnUqJEiWIj48nPj6e4cOH07dvX7Zs2cKGDRucZTdt2sTPP/9MZGTkZdXNHZ9s27NkmQduh/dXJPLNr+l3ATp8DB56ybDoOfJk97KCbv5K+Gyd6/UVy0DT2vB5bPrrZ30OT/cyVCqrtstLfo8ztHnEEP936uXzvoQ6VeGpXrlTLxEREZHMev8reG1x2uVvLIF72hhaNdb95+VY0yaWc4fP5vjz+pX3J+zrEI+26dy5M40bN2bMmDHOXioXGzNmDHfeeSc1atSgdu3ahISE0L59e7p27YqXl91npHXr1kyYMIH4+HgqVqzI6tWrGTFiBA6Hg2nTpgGwd+9edu3alWXBnzFjxnDTTTcBMHfuXKpUqcLixYvp1q1bhtsmJCRw4sQJbr/9dmrWrAlA3bp1L6s+27ZtY9GiRaxcuZK2bdsCcOWVV6Zb1s/Pj5IlS2JZFsHBwc7lgYGBtGvXjtmzZ9O8eXMAZs+eTXh4uMt9ZQX1/MkHLAsm9v2bkm56zX0UAx98nWNVkn8c/NtkmHfpzcfcJ+8+lwwvvK9fX/KSzbsMrYemDfxcMOE9Q/xfajMRERHJu44cNwx5xfX9yvRPdC9zuc4dPktSfM7/u9SA06RJk5g7dy5btmxJs65ixYrExsby66+/MmTIEJKTk+nduze33HILDocDgJYtW+Ln50dMTAxbtmwhMTGRpk2b0qxZMxISEti+fTvR0dH4+/sTGhqabh327NlDYGCg89+ECRPc1jkk5N8gV+nSpalTpw5bt27N1PGWLl2ayMhI2rVrR4cOHZg2bRrx8fEuy996663OetWvXz/dMhs3bsTb25vw8PBM1cGVBx54gPfff5+kpCSSk5OZP38+ffv2vax9ZkQ9f/KJiqVTmDoE+rgepsmglw2tG0NwGUXwc4IxhodeMhw76bpMj7bQMcxuj843GBZ/m365GZ/Ck/caypdS2+W2TTsNbR81HDnuusyZJHh2tmHGCLWXiIiI5E1Dphn+PuF6/ZJvIf4vQ0X1Pr9kfuX989XztmrVinbt2jFq1CiXw4saNGhAgwYNGDRoEGvWrOGGG25g9erVREREULRoUVq0aEF0dDRHjx4lLCwMb29vwB7iFB0dTWxsLCEhIQQEBKS7/0qVKrFx40bn49KlS3t8HBdGu3h5eaXJX/XfIWGzZ89myJAhLF++nA8++ICnn36alStXcv3116fZ78yZM0lMTATA19c33ecuUsRNQl4PdOjQAX9/fxYvXoy/vz9nz56lS5cuWbJvVxT8yUfuuxkWfwOfrk1//dEEeOAFw6cTNfwrJyz6GpfBHIDypeCVof+2w9O9LBa7SM6deBZe+sAQ9aDaLTdt3G5oO8z9jdIFMz+HoXcZ6tVQm4mIiEje8ukaw8JV7sucT4F3vtBQ9svh6dCrvCAqKorGjRtTu3btDMvWq1cPgNOnTzuXRUREsHDhQo4dO0br1q2dy8PDw4mJiSE2NpY+ffq43KePjw+1atXKdH3Xr19PtWrVADh27Bjbtm3j6quvBqBcuXIcPHgQY4zz++/FgaULmjRpQpMmTXjyyScJCQlhwYIF6QZ/KleunGF9GjZsiMPhYPXq1c5hX+74+fmRkpKSZrmPjw+9e/dm9uzZ+Pv7c88991C0aNEM93c5NOwrH7EsmDHconQJ12U+Wwdzl+dcnQqrI8cNg6e67yr7+qMWZUr+GxhoWsfiNjefD68thr9PqPttbvnxDzvHT2YCPwAOBzz+ptpLREQKvvPnDT9vMyz51vCXJhnJ846fNAx8KXPt9NZSQ0qK2rQwadiwIT179mT69Omplg8cOJBx48axdu1a4uLiWL9+Pb169aJcuXKphl5FRESwfft2li9fnmroU3h4OJ999hm7d+/Osnw/AGPHjmXVqlX89ttvREZGUrZsWTp16gTYOYiOHDnC5MmT2blzJ6+99hrLli1zbrtr1y6efPJJYmNjiYuLY8WKFWzbtu2y8v7UqFGD3r1707dvX5YsWcKuXbuIiYlh0aJFLsufOnWKVatW8ddff3HmzBnnuvvvv5+vv/6aZcuWZfuQL1DwJ98JLmPxxjD3PQ2GvmLYe0gX8ew0+GXDX26CBHdFQJfWadvp6V6u2+5UIkz7SO2WG77fYrjxUfdD+NLz2TqI+VltJiIiBVf8X4YbHjY0vd/Q+SlD+TsMLy7UZ19eNvJNw4G/Mld2zyFY/n321kfynnHjxqUZLtW2bVvWr1/PXXfdRe3atenSpQsBAQGsWrWKMmXKOMuFhITg728PO2vWrJlzefPmzUlJSaFIkSJcd911WVbXqKgohg4dSrNmzYiPj+fTTz/Fz88PsJM3v/7667z22ms0atSI77//nuHDhzu3LVq0KL///jtdunShdu3a9O/fn8GDBzNgwIDLqtMbb7xB165deeihh7j66qt54IEHUvWOulhoaCgPPvggd999N+XKlWPy5MnOdVdddRWhoaHUqVMnS18zVyzz31aXPMfhcBAXF0f16tWdmdbvHuNgUbTrbW66Fr580dLwr2zwyWpDl2dcv23KloTN71ou8/fcNMzBVz+kv23JQIhbZFEy8PLaLb1zRtIX+5vhlhGGhPSv1xm69mr47k0LL6/8/V4ryOfMuWRDzM9gsGfeKxeUv9sqryjI54xkvQN/GXbuN1jJ+whtWkXnTD5xOtHQYoBhy+6062Y/aRF5a/ZdT3WNuTRf/2j/oOWJ20NhaVT+f40Lwzlz8owhsIhSfGSV3D5njDFcffXVDBgwgGHDhmX78xXMd0Uh8NqjFuVLuV6/8gc7ibBkrb9PZNyNdvojrgM/4L73z4lT8Oonl1w98dCaTYabH8s48FOquOt1P/yO20Cs5B6Hw/D2UkOlOw3thhtuGW6o1d3w/lf6zSO/OZds2LjdsDtebZffnE40DHzRQfW7DK0ehlaPVSZyIiSfV1vmdcbY9zzpBX4AHp2umS/zmtOJhvsne94mn8dC3EG1ZV727S+GkIEOStxiKN/R8PgbDg3Xy+cOHz7MSy+9xP79+93mSMpKCv7kU2WDLN4a7j7iO/x1w58HdFHISkNfMRw+5np9pxvg7jbu9xHe2OKGa1yvf/lDw6kzarfstnqj3ePnVKL7cneEwabZFoFuEvs/OcNw9pzaLC/ZstsQPsTQ/4XUeZwSTkOPsYaFq9Re+cVn6+wAXpN+hivuNoQNcnDwb7VffrBlt91r5M3/2YllAYyxmPel/XkqedvMz2Del67XHz9FhvkPJWc9M8uwy/Us1i4ZAzM/U1vmVVt2G25/wrB+s/34rxMw+X3oE2XSDN2S/KNChQpERUXx1ltvUaqUm14dWUjBn3zsjhsserVzvf50IvSNMjgcuihkhU/XGOavdL2+VHF4Y1jmhto909t1mb9PwJv/u5QaSmat+tFw6wjD6QwCP3e2gkXPWVQpb/F4D9dttvugnbBbcl/SWcMzMx007mtYs8l1ud4TDKs36tqY1/3vW0PHJ1MH8Nb+ChFDFSTP6+avMDTv77rXyBtL4Bu9B/Osn/4wPDwt4/b55Bv4OEbtmBes32yY+qHr9UUD7B+0XJn5mXrk5VWPvJJ+L/V5X8IHX+d8fSRrGGM4cuQIPXr0yLHnVPAnn5s2xKJyOdfrV2+E6R/nWHUKrGMnDQ++6P4DcdoQi+AymRt/2/ZaaOEmyfyUDwyJZ/UBnB1WfG+4/XFD4ln35e6KgIXPWvj52m067G6oVNZ1+fHvGo6dVJvlpq9/NDSMNIx/F5LPuy97Lhk6jTJs2a02y6t+/MPQY5whvR81f99Dpr6YSs5LOmsY8IKDe8cbziS5L9t/inpN5kXHTxruGmM4ey5z5QdP1edfbjt7ztBvUvrXywsm9rcY18/1ferBo/C/NdlQObksa381rHSRKxRg0MtGvWEl0xT8yeeCilvMHOk+4PDEDMMfe3RRuByPTjfE/+16/W0hcO/Nmd+fZVlue/8cOmr/AiNZ64tYQ8dRhqQMbmh7tIUFz1j4+vzbRkUD3N80HTsJE+bpfZYb/jpu6P28gxsfNezYn/ntjp+CW0cYDihnRZ6z95ChwxPugwdzlsF7K9R2ecmOfYaQhwxvLc1c+T/2wMT31IZ5iTGGPlGGPw9kfpuDR2H4a2rH3PT8PNe97ABC6sOgztCwpkXLhq7Lvfk/tWNe8+xs921yNAEGTNHwL8kcBX8KgFuus+jfwfX6pHMQOdEoKdglWrbeMHe56/UlA2HGcM9nVrstBBpf5Xr9pAX6RTQrLV1r6Px0xr9k3tcO3n3KwscnbXv2vgUaXOF621c+Rglpc5AxhrnLDFffZ3jXTV4Kd/YcgvYjDQmn1W55xckzdm4DdwH3Cx580bBtr9ouL/g4xtDsAcPG7Z5tN+E92KoeeHnGy4tgybeeb/fOF/DVD2rH3LBpp2Hie67X+/nCrMctvL3t+5oH73B9v7rqR3RNzUPWbDIuZwi+2Kdr4b0V2V8fyf8U/CkgpgyyqBHsev36zTBlYc7Vp6A4ccrwwAvuPwRfGmRRuZzn0y1alsXT97nebv8R+5dtuXyLvzF0ecZwLtl9uT7tYfYT/94g/Ze3t8Xkga7b7FwyPD1TN005Ydtew42PGCInps4Hcyl+2QFdnzHKdZAHnD9vuHuMYdPOzJU/nQh3P6tAeW46l2x45BUHXUdnPHNiepLP28O/lJ8w96391TDyzUtvh/4vGE4nqh1z0vnzhr5RxplQPT1jIi3q1vj33qVrOJQp6br8W5+qDfOKjHr9XOzhaYb9R9R24p6CPwVE8aIW7zzhPgAx+h3Db3/qouCJ4a8b9h9xvb5dCztgcKk6t4J6NVyvj5qvL6SX66MYQ7cxJsMcMP07wMyRrgM/F9xyHbRp6nr9/JV2okzJHmfPGcbNNVzTxxD9c+a28fJy38sOYOUP8MBkdZvOTcYYhr5iWPadZ9tt3A4j3lC75YY9hwytHjZM++jy9rNmk4Y657Yjxw13P2tIcRNECG9s3/e4sivenm1Kcs5Li+DHP1yvb3wVjOieelmAv0WfW11vM3uZnbtLcte3vxhW/Zj58idO6T5GMqbgTwES0dTi4S6u159Lhl7PK5iQWSs3GLc3o8WLwlsjPB/udTEvL4un3PT+2X0QtzOMiXsfrDLc85z7X8QAHuoEbzxm4eWVcVtalsULbnr/gP1FVB++We/bX+zpvkfPynwi0qa14fsZFt+9aXFjM/dl5y6HMe+o3XLLtA/h9SWXtu30j2HJt2q7nPR5rP1+/G5LxmWLF4Xx91t4ubnrHPmmIV75t3JFSoqh51j3P3ZVKA3vj7aYMdyiWBHX5aZ+CN9tUTvmhG17jdvPLG9vmDUydf7CC/p3cH0fczQBPlqdJVWUy3Ap9yPLvoN3Ps+GykiBoeBPARM1wOKqKq7X/7wdJszLufrkVyfPGO6f7P6i+8JAi2oVLj3wc8HdbXDbZhPmKV/TpXhvhT1TkLtfMQGGdIFXH81c4OeCpnUstwm+v/4Jlq3P9O4kA8dOGh6Y7KDVw4atcZnbplgReHmwHfRpVseete3jcRbX1HS/3bi58PZSvd9y2qdrDMMySBhbxN/9PvpGGfYcUttlt/PnDU/OcHD744ajCRmXb1QLfnzb4qleFkPc/EB14hQMna72yw3j38XtbEJeXrBwjEXFshbVKkBUf9efl8ZAv0mGc8lqy+zkcBjun+R+AosR99j3K+m5qqpF22tdb6vEz7lr9cbM927+r0df1WehuKbgTwFTNMBizpPuf10b/67RsJQMPP6mYc8h1+vbNIX+HbPmuby9LUa56f2zfR8sis6a5yos5i4z9Hre4HC4LzesG0wdcmm9t8bfb+Hv53r9yDcVtLtcxhje/8pw9b3ue+H9V4dQ2PKuxSPdUifuLhlo8cVkiyrl3G8/8CXDF7Fqu5zy4x+G7mPdT1FcqSxsmu0+eHfsJPQYaziv3q3Z5sBfhhsfNUTNz1z5+2+H2Dcsrqpqvw+f6wOVy7oeg/thtJ2cX3LOyg2G5+a4f83H9bNo3cTir1Wr+OHWW+l/4wlCG7guv3kXbhMQy+Wb8Sl8u8n1+tpV7Vw/6TH/3Bw92NH1vc/aX+HXnXov5hZXuX6uSNzMyPiHebz0PFx9aJ48Ywdg1QNd0qPgTwEU2tDisbtdrz+fAr0mKEGmK9E/Gd5Y4np9sSJ2bpjLGe71Xz1vwm3C7ufnKRlmZs36zJ6mNqPPvMd72InSL7Udqwe7/xV78y4l7L4cuw4Ybh1h6DHWcPhY5rapVBY+Hmfxv4mue+VVLmex7AWLkoGu95OSAneNMfzwu95z2S0zU7oXKwKfRVnUqmLxwbMWRQNcl137K4zxIEGmZN6qH+1hXt/8knHZogEwd5TF2yO9KOL/73sxsCiM7eV+GrdBLxtOnlEb5oR9h+1rrLvPy/bXwxM94dCnn7Lx7rs5vn49m3r25O2hZ/Hzdb3d8/MMm3epHbPDnkOGkW7ynFmWPbtXwEXvPWMM8YsW8W3Dhqy99lpO/fEHHcMguLTr55mhxM+5IuZnQ0w6vX4ijn3EtB030/bIfG6MGUrkmddd7uOrH+wAoch/KfhTQI3ta7lNJLx5l2cZ5AuL04kZD/eK6m9xRaWsC/wA+PpYPNHT9T4377q0qVcLmzf/Z7dfRoGfp3vBxAGXH8B78l6LUsVdrx/9jmY+8VTyecOk+Yb6vQ1ffp+5bSwLBnW2e/vcGZ5xuza40mLxeAtfH9dlziTBbY8b/jyg9ssumZnS/cJwkya17Ta9urrFa4+6b9+J72nK6ayUkmIYO8dw07DMBWLrVrfzbPW6Jf12imiUxN1tXG+/9zA8o1kTs13yeTvB819uZkusVgHefcoeFh149dX4lCgBwLG1a0ke9wCj73PdvTb5vN37QD1gs5YxhgenGE4lui4zqDOEXfPv+y9x715+7taN3/r3J2nvXhL//JNN992HlXiK+293vZ93v4RTCsTmuP9+P/My5+l/4Gme3NufAPNvw/fY+Qzhxz9xuZ/hr+seRtJS8KeACvC3mDvKwtvbdZnJ78P6zbooXGzUW4Y/D7he36oRPNQ5e5478lao7GY4yvh31YXTnVc/Ngx8MePX59k+FuPu98qSnlulils809v1fg78BS8vuuynKTS+22K49gHDEzMMiWczt801NWHd6xavPupFycDMt2lEU3uIrDuHj8GtIwx/n9D7Lqtldkr3lwdb3B6aup1634LbnFvGwL3jDYeOqt0u15HjhvYj7aSymfn46XmTHfipf4X799bLgyHITe+7Vz6G75U0OFs9OcOw7jfX63194MPnLMqUtNuyWO3aNPnwQ7yLFQPg8GefccePj3HNla7b6bst8Krr76ZyCd5bgdsZEatVgIn/5GQyDgd73nqL2JAQ/l6ZevaQ09u2sWXIEO6/HZepIk6egYVfZ1XNJTOifzKs3vjv45Ln/yLqzy50/evfXj7FGzVy/v3E/odoeGpduvs6nWjnwtPIAbmYgj8F2LVXW4y61/V6hwN6TzCcSdJFAWDNJsN0NzcpRfztbrSeJAb2hL+fxcjurvf983b4PDZbnjrfm7rI8PC0jM/j8fdbjOmTte33UCe4oqLr9ZMW6EtoRk6cMgx+2UHIwIyDARcU8YdJD1r88LbF9fUvrU173GQx6UH3227bCx2fNCRq2tssY4zhkekZT+n+cBcY0jVt+1iWxevD3E9ucOgo/+T9UrtdqjWb7GFeKzZkXNbfD2YMt5j3tEVg0YzfjxVKw5SH3CcN7j9Fs5Nml8XfGF78wH2ZFwdZtKiXuo1KNmtGo3nzsHzt8V7x8+byaqmJbvNMjnrbsEu9D7LEoaP2tdOdt0fY78FTv//Ohltu4Y+RI0k5dQoAv+Bgrn7xRWcPrkOLF2MtnkH7613vT4mfc44xJlWvn6vObOTV7W1ofNru+n/e8qHq+ClcFxNDpfvuA8A75Rxj9/SkWtLv6e5z9UYFYCU1BX8KuKd7WTS+yvX6bXvhqbd1YT+TZOibQZ6YCQ/YOSey0wMdoHwp1+vV+yetF943PPpqxq/JpAft2Waymr+fxQQ3M5+cSoSxGSTTLKyMMXwcY6jXy/DaYpe5C9No1wI2z7UY2SP9KWw9MaK73UXenXW/Qc+xGr6QVV75CF5b7L7MbSF2rx9Xihe18/+4yzmyYgO88P4lVrIQM8Yw5X1D66Hup/6+oGZliH3don9Hz4bS9r0Nwhu7Xv/LDvWczA479xsiJ7q/lt0VAYPvTH9dmTZtqP/GG87HSbOn8HKVt1zu60wSDJiie5es8PA09zPsRd4KbRsn8+fkyaxv1YoT3/87drpyZCSh69dTtV+/VO237ZlnGFjLdST+xz9gw1a1XU6I/glnTrWbjr7PyztvpULyPgD+9qnArwM/5erB92NZFnVfeokyN90EQLHzJ3h+VzdKJ8enu98nZhi271Ubik3BnwLOz9ce/uUut8W0j+CbjYX7ojB6lmH7PtfrQxvYv0JntyL+FsPvcX3z/N0WO4mb2Ca+5z7p4QUvDrIDBdmlWwQ0v9r1+hlL4Y89hfs99l97DhnueNLQdbThwF+Z26Z8KXh/jJ2wOavyblmWxbQhFneEuS+3+Ft7+lR9gbk8n67JOFjbqJbdzt7e7tu4SW3Lbe8RgKdmGmJ/U5tl1rGT9vtyxBuGlJSMy3cJt6dxv5CTyROWZTFjuPsA3ph3DDv3q/2yStJZw12jDQmnXZe5qkrGk1pU7NqVOlFRzsd1P3+Su62PXZZf+QPMXX5JVZZ/LP7G8KGbmV8rlIaxoT/yXevW7JwwAXPOngO+yJVX0mzpUupNnYpvUBAA5W+7jRqPPAKAOX+eYlP6Ur+U60ivev9kP2MMY2YbvE0yD+1/nBH7BuFn7PHvm4s25/Frvub+J0Kc5b18fblm9mznELAKyft4ftfdFE1JGx1MPAt9ovQDltgU/CkErqlp8ayboS7GQOREU2iTuq3fbHj5Q9frA/zgnScy/iKSVQbeAWVKul4/bm7hbKf/GjvHMOqtjF+LaUMsht2dvW3n5WXxgpsvoSkpdn4FsZPHTl1k9/ZZmv4w9XQ90AF+f8/inhuzdqY9AG9viwWjLa6v777c9I/hpQyGSohrmZ3S/bMoi+KZGDoEdu8Ed4G7lBS45znDsZN6/2Vkw1ZD036Ze1/6eMPUhy0+HGt5lGvrv+pUs3jaTY/MpHPw4IsKumaVoa8Yft7uen0Rf3vGxBLFMm7Tag8+yBXDh9sPjKHf5odoetJ1dOLR6YaDf6sdL8Wxk4aHXnL92gU4TjOr+FP83ulmTm3ZAoDl7U2NRx4hZO1aSt9wQ5ptaj79NKXC7IvnuYPxPHfgfrzM+XT3//4qOK5raLb6+ifY/OMhJv/ZiU5/v+1c/lnpSEZe+Sm9elSkdInU70ufwECaLFpEQLVqANRM+o3Rcb3xcZxLs/+1v8JUN991pPBQ8KeQGNkdWtR1vX5XPIx8s/Bd2JPOGvpMNDhcT1jB2H4WdarlTOAHILCoxaN3uX6+bzcV7p5axhhGz3Iw5p2MX4PXh1np5gzJDuGNLTqEul6/+Fs7h0Zhtv+I4cZH7Z4fp93MVHKxutXh21ct3hrhRani2deWRQMslk50n0cG7NkzPlhVuNvxUngypXuV8plvZ8uyeOcJi6rlXZfZcwj6RSmA4Ioxhtc+MYQNNuw+mHH5quXt9+TQu7ImEPt4D9zOTvrVD3aSW7k8760wvLXUfZnXh1k0rJn5Nq351FNU7t3bfnA+mfH7elH7zE/plj1+ikzl5pO0HnvNcPBo+uuanfya9/a0xG/pG86x08WvuYYWq1Zx1bPP4l2kSLrbefn40PCdd/ALDgagxPZv6XN4YrplE8/CPL0Hs40xhrcmf89r29vQ8LSd3POc5cdLlafySpWXKFLcn0e7pf++9K9QgaYff4xvKTtnRNNTq3l0/yPpjqN/aqbh9zi9Bws7BX8KCR8fe2Ybfz/XZd5YAis3FK6LwnNzDL/vcb2+RV0Y1i3n6nPB4DuhpJuZUMa9W7ja6QJjDE+9bRg3N+Oyb42wGNgp54J2AFEPWm4TX454o/B+Af0i1tC4b+pZLNzx94Nx/Sw2vmOlmrI2O5UNsoeUlQtyX67XBFOoA7CeupQp3T1RuoT1zzAx12UWf2t/xklqCacN9zxrGDzVcC454/Ltr4efZ116kvX0+PlavDXC/f4efdXw13G95y7V5l2GAVPcv35920PkrZ61q2VZXP3ii5S/3Z4v3Cf5NBPjulElKf3uRR/F2MOXJPNWbjDM/iLt8uLnjzF87yAm7upKiQT7RtYrIIBazz5Li1WrKNG4cYb79i9fnmtmz8b65+J596GXuT4h/fF5b/6v8N6/ZLevxs6l14oOlD1v5+w54luR4TU/Y3mZXgAM7UqaXj8XK3bVVTR+/328AgIAuOnYQnofmpCm3Nlz9kQ/55VIv1BT8KcQqVvDYsID7j/Y+0YZTpwqHBeFH343vLDQ9Xo/X5j9ZM4N97pYyUCLIW5yDH31gz1crTA5ecZw33jDxPfcl7Mse5jeAx1yvt3q1bC4/zbX69dvho9X51x98oJzyYbhrzm47XHDXycyt02bprBptsXTvS38fHO2HWtWtvgsyqKIv+sy55LhjlGGLbsL13vwUpw/bwcXLmVKd0+0bGjxXAYz+Q17zbBxu9rsgk07Ddc+YFjkJo/IBV5e9vTRS6P+nfo7K7VsaPHgHa7X/33C7v0gnjt1xtD1Gfe97q6pCa8+emnt6uXjQ4OZMynVsiUAxZOPMnFXF8okH0i3/EMvaRhmZp06Y3jghf+8VsbQ6vhiZm67npuP/ZvRvlTLlly/di1XPPIIXr5uEmn9R6mQEK4aO9b5eOSeBwk+uztNuS27Yc0mT49A3HGcPcuWoUPh5UfwM/ZQrV+LhTCoVjS/F70WgBLFcNnr52JB119Pg7fesm+CgZ6HX+S2v+ekKff9Vpji5ruPFHwK/hQyQ7tC2DWu1+87QqZmTsrvzp6zh3u5S2g5JtKiXo2cDyBcMLSrRWD6vXUBe+avwuLCl5T5K92X8/KCuaMs+rTPvXZ7rq9FMTft9sQMw7nkwtF2fx4w3DA44ymFLyhT0m6/r162qF0199qwRT17Jil3vbiOn4JbRxgO/FU42vJSXJjS/Yv17su5mtLdU0/0hBubuV5/9hzc/WzhzW8HkHjWsHKDHZC9boD7iQ4uqFgGvp5q8cS9Fl5e2fe+nNjfomIZ1+vf/RK++qHwtt2lMMbQf4r7Hs7Fi8JHYy2K+F9623oHBNBowQICGzQA7OSzE//sSvHzx9KUPXgURryudsyMUW8b4i4ailkm+QDPxt3L03v6Ueq8naDZu3hx6k6dSrOlSylWs+YlPU+1hx6i/B129DXQkcDouN74OdKOzVbi56yTFB/PD7ffzv65/3ZlX1KmPyOvXMJx33/HMT9yF5ke8l6hY8dUidgH7x/OdQlfpik3Zrbhtz/VloWVgj+FjLe3PfyraIDrMrO/gM/WFeyLwvPzDL/tcr2+aW17CujcVKakxUOdXK//PBZ++qNgt5Mxhrc+NVw3wLBtr/uyXl7w3tMW97XLvaABQHAZi+F3u16/cz/M+DTn6pNbPow2NOln+H5r5sr3vgV+n2fR65asT+h8KTq0tHg9g1/C9xyC9iMNCacL9vvwUmXFlO6e8Pa2eO9pi/KlXJfZthcGTy087eVwGH78wzBpvqHtow5K3Wa4+TE7IJuUNidoGjc2s4d5hTfO/vdkUHGL6UPdP8+AKYYzSYWn/S7Xm/+D979yX+adJyyuyoJgu2/JkjT9+GOK1KgBQI2zvzN2d3f8HWfSlJ31Oaz6Ue3oztpfDa9+Yv9tGQe3/T2HmX+EEJqwzFmm2I3tCf3uO6pERmK5+7UiA5ZlUX/6dIrWqgVAraRfGbx/ZJpyH62GIxp+edmOxcbyXXg4JzZsAOCsFcDkqq/zeuUoUqx/e22VDMRtDtD0VBswgOoPPwyANw6eiutHnTM/pipzLtke/pWs4V+FkoI/hVDNyhYvDHR/MXlgsuHvEwXzorBxu/uhQ74+9nAvX5/c/wL62D3uh588P69gthHYw7x6jrPzFGT0JcXb284X0r1t7rcZwPB7LCqUdr3+uTkFd3hl4lnDg1McdBvjfjrhC66oCKtetpgzyouyQXmj/S4YcIfFqPvcl/llB3R9RjdR/5WVU7p7IriMxbtPud/f3OUw78uC21674w1vLzXcPcZB+TvsXpNPzDCs+tHu/ZQZlgWjI+HLKRYVSufc+/LOcOjY0vX6Pw9oxsvM+uF3u+edO0O7QtfWWde+/hUq0HTxYvzKlQOg/pnveSquH94mbUKp/i8okOdK0llDv0n2zIiVz+7ghT87MnT/MIo5TgJwzKccBx6aQ8hH8wmoVClLntOnRAkavfsuXkWKAnDLsfnccnReqjLnkmHOsvS2lswwxrB35kx+7NCBc4cPA3DItwrDan7BV6XuSVP+ka52UNxTVz33HGXv6AxAgDnDuF3dqXg29S/eP20jwzQKUjAp+FNIPXiH++7xB48WzFkZks8b+kQZzrsZ7vXUfRbXeDDbRXYqX8qifwfX6z/5hgLZdfOXHYZm95sMf7EEe8rhRc9a3BWRN9oM7Bnb3OUf+fsETFpQ8Npt6267l1ZmezZ1i7B7FbRplnfa7r/G329xXzv3ZVb+YAfMlQzT9lM2TOnuiXYtLB7v4b7MwJcMf+wpGO117KTh4xjDwBcd1Oru4Iq7Df1fsHP5/J3JPFsXK1sSlr9g8VxfrxzPeWdZFq8+4n7I8wsL7aHA4tqxk4a7RrtP4n19fZicwQ+Bl6LoFVfQ5KOP8C5e3H6ek1/yyL5H0sw+9OcBGD1L7Ziece8adsQlc8/hl5mx7QauOb3OuW55qR7M7Lye+8bfkeW9ZAPr1aPetKnOx4P3j6RmYupEPzM+NTgcajdPpSQlsWXQIH4fPhxz/jwAO8u3YvBVX7O9aOM05UsGwiMe9vq5wPLyotFbb+LV2I6kB6X8xYRdd1Hy/F+pyo2bqzx4hZGCP4WUl5c9PW7xoq7LvP8VBW5K46j5sDH9SSgAO+nhk/fmXH0yY0R3Cz83ufsKUu8fYwwz/me47sHM5aIoVRyWRlncGZ73ggf9brOnKXfl5UX29NcFgTGG2V8Yru1v+PXPjMsH+MGM4RYLn7UoGZj32u5ilmUxc6TlNlgOdm+SZ2cXjPa8HHsP2TN7ZfWU7p4ad7/F9fVdrz+dCPc8Z0g6m//a7Ow5Q/RPhqfedtCiv4OyHQxdRxve/J89rPRytGxoB2RvbpF778uqFSwm9Hf9/CkpdrA1JSX/tV1OcDgMvZ837D7oukzpEvDBs9mXUL9Eo0Y0nj8fy9eeYrbdsffpd/C5NOVe/hC+36J2vNjP2wwfz9zI9O1t6XtwHH7mLADxftV5/IpPeK3mq7w6unS25d+q2K0bPp37AeBnzjI6rjeB54871+/cD6t+dLGxpCtx715+uPVWDixY4Fzm6DKYQRU+4oRP2XS3GdbNuqRePxd4+fvTasl8TlW4GoDK5/5MMwzzfIo9/Kuw5KEUm4I/hVi1ClaGuRa6jzU8PNWR74eopKQYXvvEuO0u7u0Ns5/I+dmFMlK5nEU/NzNIffA1BeIX7ITThu7PGR580WRqaML19WHjOxa3XJe32usCHx+LSQ+6rlvSOXimAPzqeWEWtr5R7r/wX1C3Onw/w6J/x7yR2ycz/HwtPh5ncU0GuTTHzoGZn+X/Nr1U2T2luyd8fSzeH20RFOi6zMbtMOKNvN9exhg27TS8uNBw6wgHpW83tHnEMGEebPgdHI6seZ4R3SF6WvYG5TLroU7Qoq7r9d9vhdeX5FRt8pcpC2HpOtfrLQvmP2NRrUL2tnPpVq1oOPNtzD/X+buPvEKXI6+mKuNwQL9J+vJ5QVLCaT66dzRT/2hLraRfAUjBi4/KPsSA2mv4uXhrnuuT/RMitHrjeeJKNQWg4rk4Rux9CMv8e6FR4ufMO/rNN3zXujUJP/8MgFeRIjR4+21G+4zFYfmku01QoD0k83L5BgURLzZJFgAAv+5JREFU8cUijgdUBKDumR95cs8DeJl/hz9s2qmhtIWNgj+FXN/boP31rtcbA69+AnXvM3wYnT+HNazfbGje3zB4qiH5vOtyT/SApnVy/6Y3PY/3sPDxTn+dMTDxvfzXLhf7eZs9zOuDrzNXfkR3+GZ69t+8Xq7bQ6FVI9fr3/3SHuKWX11ot4xmYbugb3vY8JZFwzwyrNITJQMtvphsUaWc+3IPvmj4Ijb/tumlyqkp3T1Ro6LFrMfdP9ern8Dib/Jee+07bPem6znWQXAnQ6M+huGvG5Z/R6aCrJ649mpYPsVi8kCvPJHrDuzk3W+PdP25BzDqLVNgek9mlW82Gka97f41eeo+cuxHkwp33MHVU150Ph4QP5q2x1LPM/3bLpi04L9bFj5Hv/mGlU3DaL1tOt7YgZY/A+rxSK0veavSeJK8itG0NjzmZkKJrOIdEIDjqTmc8LaTF4acXM7dR6Y51/9vLew/oveeO8YY4l5/nZ86dyb5b/sXkSLVq9NixQp+rtLV7WQYw+7Oul7RQTWrUfWtDzjjZf8SEpqwjEEHHk81DHPifNiwVe1ZWCj4U8hZln2DVaq4+3Lxf0O3MYbbRhp2HcgfF4i/jhsemOwgZKDhZzdDvQDqXwHP9M4bN73pqR5s0ctN3pH3VpJv2uVixhjeWGIIeciwIxPDFUqXgM8m5a0vKe5Ylvvk6sbAyHzQ8+C/jDFM/9hw/cDMDc8LLGL/0jzrCS+KFcn77eZK5XIWy16wKOmmN0lKCtw1xvDD7/mvXS+VMeTolO6euDPc/ayJAH2jDHEHc7e9Es8aPl1j97S9+l4HVbvavekWfAWH086WfVnKloS728DMkRa7F1lseMuLdrk4zMuVa2paDE+bA9XpVCIMejl//iiVHQ4dNdzznCHFTU7DNk3hWTf56LJDtX59Kf7QKOfjx/Y+TIuEFanKjJtr2LK7cLZj8vHjbBkyhB87diTgLzsp7znLjzkVRjG41tf8UdQec+zjbc/M5pND9z73dK/Ky7XewoH9fL0PPk/jk6sB+3Nu1uc5Uo18KeXMGX7r359to0Zh/nlDlmnThutiYghs0MDtEPFSxWFIl6ytz/Udr2F7v3c5j93TqMPf79DtyCv/1jcFIifmz2HQ4jkFf4RKZTOeXvWCZd9B/d6GqPfy7uw2Doc900mdew0zP8u4vJeXPdzL3y/v3fxe7Ml7LVzN5JmSAlHz82Z7uJJw2u4p8NBLmRvmFdoANs6yuC0kb7fTf7WoZ3F3G9frV2yAFd/nn7Y7mmC482nDkGnuk4le0LQ2/DTTosdN+avdXGlwpcXi8Ra+6ffWBuyeGbc9bvgzHwZkL8X0j3N2SndPvTjI/ZC946egx9ic/0xzOAzfbDTcP8nu3XPHKHtq5z/2ZO3zBPjBTdfayX1/mmlx6H8WC5/1ot/tFtWD8/b7cnSkRc3KrtcvXQefrM65+uRVKSmGHmPdD7msWAYWjM7a2fUy67rnR3DwhvsB8CaFp+P6UO/0d871yefh/kmFK49T4u7d7JwwgXUtWrD/3Xedy38reh0Dr1rNggrDOe/l51z+RE9oVCvn2q5EMYv6Xdswr8LjgD1t+Kg9D1Am+QAAby81nM+j3wNyU+Lu3Wxo146DH37oXFZj2DCafPghvqVK8cV6e7iuK8O6ZU8uxCETIljUbLrz8f0Hn6PNsX/ruGV34cxbaIzhxA8/cOSFF0j46afcrk6OUPBHAOhxEzzgZlapiyWehSffMjTpZ1izKW9dKH78wxAy0J7p5GhC5rZ5vAc0r5u3b4ABalWx6H6j6/Wzl+WfBMI/bzM0vd+ejSYzHu8BMa9YVM3jw7xcmdDffbBg5Jv546Z33a/2+37Jt5krP6QLrHvd4qpszk+Q0yKaWsx50v0xHT4Gt44w/H0i77fr5fjqpyIMe819mcZX2Xl+cuNLJ0CAv8UHz1oUDXBdZt1vMOadnGmr7XsNo2c5qHmPIXyIYdbnkHA66/ZvWdCsjn3d/Opli2OfW6x4yYsR3e1cS9mVKDY7FPG3ePMx9/V9eJrh+MmC/T7LyLOzDV+7+d7i7W2/ByuUzp22tyyLbh9N4ufKF6afTmTs7u5UT/p37Evs5oyDyPldyunTHFiwgB9uu401jRvz5+TJzim/z3gFMr3SZB6r+Tl7A+qk2q5udXi6V8633YCOFgvKD+f74m0Be9aop+P64OM4x74jZNjbs7D5Ozqa7yIiOPmrna/Ju1gxrpk7l6tGj8by9sYYk3GvnyzI9ZMeP1+LoW/ew5yKTzuXPbZvsLM3F9gzKa7fXDiupae2bmXH+PGsbdKEH26+mRMLFhC/cGHGGxYACv4IYH8wv/mYxbh+7meWutjmXXDDYPtXy6MJuXuxOHbSMOglB837G7fjaP9rUGd7Kuf8YtR9Fq5y5CafhxcW5u2LtjF24u3rB5pMzUpTpiR8Pski6sH8MczLlSsrWQzq7Hr9LzvIdN6c3OBw2L39Wg0x7DmUcflSxWHJ8xbThnrl+R51l6rHTe4TegNs2wsdnzQkFtCu1D9tg6FvlM1wSvelEy0Cs2FKd09cXd3i9Ufd1yFqPqzckD1tdTThnyGuAx3U7mkYNxe3szF5qkaw/QPOoucsDv/P4oe3vYh60Isbm1kE+Ofv92Dba90Pe47/2/5BqrBa/p1h/Lvuy0x4wKJV49w9D/z9vWm94A1+CgwHoETKcSbs6kq5c/+OHR71tmF3fMFqS2MMx9atY/OgQayuU4fNDz3EsbVr/y1gWawvdTsP1F7H0rL3Y6zUX80sC2Y9nju905vVsbi2rheTqr7JQd+qANQ/s4H7D44BlPj5AmMMu6dN46cuXUg+Zo/TLVqzJi2++ooKd9zhLPd5LPzgptfPY3dblCiWfe3c+CqLOiOH8VnpSAB8TTJj4npxReJmwE7A3ntCwb1nSdy9m10vvURsaCixISHsmjKFxN27neuPfPFFoRhGbJnCcJT5nMPhIC4ujurVq+PlatxPFtq21zDwRfe/Iv1X2ZJ21/r72pGjM/gYY3h3uT1jy5Hjmd+uZmV49ZG8O1OUO3eNdvBRTPrrAvxg1wcW5UuZHD1nMuPEKcP9k43Luv9Xy4b2L5V5YeaZrPD3CUPN7oYTp9JfX7U8/DHfokgufVFzdZ05dNSezWvlD5nbT8uG9tCCvJ6MOysYY3h4qsnw1+rGV9lJ27uGk2P5GrLbvsOG6x40HPjLdZliReDb6dk/s1dmGWPo9bzhvRWuy1QoDb+8kzU9JM4lG5ath3e/NHwWS6aGSWZWqeJ2/pabrrVoey3UrJw3XuOMXOr9zF/HDVffZ/j7hOsy375qEXZN/ngdssqeQ3YvWnevS4dQWDIh7/T4evylE1R9oRN1Eu3Zj/b6X8WjNb8gwacMADc3txOQW5aV4/e/WSlx717iFy7kwIIFJO7alWZ90Vq1qNi9O8O3dWPxVtdjGx+5C15+OPeOffYXdv6xq878zMs7b8XP2OP0n682k29K3cnO9y2uqJQ3zi3I+e9MySdOsHXoUA4tWeJcVrZdOxrMmIFvUJBzmTH25DM//pH+fkqXsO/fszP4A5B83hDyQDIdv+pFyMnlABzxrcgjNb/kiF8VAB7tBi8Nzl/vN1fOHj7MocWLOfjxx5z4/vu0Bby8KH3DDfi0bs3VkZH4lyqV85XMYQr+5AO58eFnjD2Dz7BXPQuqRDSBNx6zqFMt+z8INu00DHrZsGZT5rcJ8LN7z4y4h3z7a+gvOwyN+7p+2z52N0weSJ66YfrxD0O3MYY/D2Su/JP3wti+OZfYMKe88L5xm+B5Yn+LJ+7NO8Gfr34w3DvecOhoxttblt1uz/UpeO3mTkqKocszhv+tybhstQowtKtFv9vIljH9OeXkGcMNgw2/7HBdxssL/jch52b2yqyTZ+wZ6twlKr/pWvvL56V8WTbGsGErzFtheH8Vbr+Ue8LPF1o2sHvB3HStnUsrt4bRXY7LuZ+Z96UdvHOlbnX4eVbez9+XVc4lG1o9bPhui+syNYLhp1kWpYrnndfkTJIhpMcRhq5pT9Vz9kXk9yJNGXnlEpK87Wz6c0dZ9Lol/wV/Us6c4fBnn3FgwQKOrl7Nf7tFehcvTvCdd1KpRw9KtmjB3OXQZ6Lrc/qKivDrHCtXJ0o4k2SodKf9w9Vtf89h6P5h9nKvQB6utZJ776/DhP55p21y6pw5uWkTe995h4MffkjK6X/H7V45ciRXPvEE1n+e+9M1dl43Vyb0t3gyh+7/ft1pCO17ignb7uDqRPuX/t3+V/NorWWc9i6JZcHqVyxuaJR3rhueSD5+nMOffcbBjz7i6Dff2F2a/qNkixYEd+lChU6d8C1XLl9dZy6Xgj/5QG5++B1NMDwxw/D20sxv4+drJ6Z7smf2dDdPOG0Y845h+ie4ndXiv24PhWlDLK7MQ79QXKo7nnTw6dr01xUNgF0L4fSJ3L+Q2cO84LHXM5ccuGxJmPd0/uyRlRlJZ+1E5K6GTpUoBjvftygblPPHf/F1xuGweHa2YcJ7ae5d01WhNMx7yuKm5gWz3TJyJslw46OG9ZszV754UXjgdnvmq7yecPdiB/+2fxR4+zOTYVLiaUOsHJ/ZK7N+3mYPPXV3TfI0ELvnkN2j6N0vM35tMuuamnYgqu21FjdcQ76eKe+Cy7mfMcZw82OGr9z0Qhzbz8rTM3dmpUdecTDtI9fr/Xxh7WsW116d916Pr3809BgUx8s7bqXs+XgANgS2YUyNBZz38qNUcdg6z6JcUN7rxfxfxhhObNjAgQULOPTJJ5xP+E/CScuidKtWVOrZk/K334530aIAxP9lqNfLcNxFb2Cwc3bd2Cz322/oNAevfAwYw4h9g7jpmJ0bJc6/NmObf8WOxcXx8839ekL2fmdKOXOGQ4sXs2/2bE78kPpC5F28OA1mzKB8+/ZptjPG/tHB1czDZUravX6K5+Dw6InvGSa/fpiXd9xC5XN2z7SNxcJ46ooPSfbyp2ZluxdsfvncSTlzhiNffsnBjz7ir5UrMefSziQTWK8ewV27EnznnRSpUcO5PL8FmS+Xgj/5QF44Kdf+anhwiuG3tD1XXbqqCrw+zKLttVlz4TDGsHAVPPaa+xkt/qt6MLwyxKJjWP64gGXGhq2GFgNcv3WfvBceuCl3z5njJw39Jhk++SZz5W+4Bt4fY1G5XMFpp/S8t8IeRuXKkC4wbWjOt9mF64xXker0HAdrf83cdjddC+8+ZRFcpmC3W0aOHDeEDjTsyEQuqwu8vaFLK3ucf4t6efP1O3vOsHQdzFlmWP595gLuD3eBV3LhHPbE9I/tGetc8faGb16xCG3oul1OnjF8vBreXW6I/vny6+TjDe2vh24R9lCu3ErOm50u935m535Dg96GJBczRPr5wqbZOdP7OLcc+MsweYFxG/gBeO1Ri4c6593X4YHJDr76cAsv/nkbxVPsLnJfB3VhUtUZGMuLuyJg4Zi81Yv5YkkHDhD/wQccWLCAM9vTfqsvUqMGlXr0oOI991CkWjXncmMMKzbA0zON2/wv/W6DmY/njWPesttQv5d9vfR3nGHajpu5MsnuchZd8k4avzOTbjfmjbpmx3em09u2sW/2bA4sWMD5E6m7c3oHBlKxWzeqP/wwRa+4It3t//etodNTeavX9/nzhpaDDPs2/snUHe0ISrG/WF38Hhx8J0x/JG+0a3ocycn8HR3NwY8+4sgXX5ByKm0ktUj16nbAp0sXAuvVS38/eeB7dk5S8CcfyCsnZfJ5w0sfwHNzDIlnM79dz5vsfECXcyO7dbc9xMuTG2w/XxjZ3Z4ivWhA3r0BulS3DHfwZTrDV8HuWfDNlL1cU69qrpwzP/xuD/PaFZ+58qPuKzzDhRwOw7UPuP4FyMfb/sWzVpWcfS0cDgezFh/m8XfKc+xkxuW9vWFcP4vHe5Bncknktp377dkGPRkqe0HYNfYUrx1b5v5wHmPsLyVzlxsWfEWmzocLbguxh3vl9jFkxBjDnU+7n7muWgV7GFHpEv8eS0qK4asf7YDP4m/x6LPQleZXQ692FnffCOVyoddfTsqK+5lJ8+0eya60agTR0/JOjpussjveMGmB4Z0vMs4f1b0tzH/GytEcjJ46ftLu+VJ6z3qi/rwTf5MEwCdlB/BmxQlgWXw8DppUy/373wtSkpI4smwZB+bP5++vv04znMS7WDEqdOpEpR49CAoNTfX6J5+3f8CcstCwaaf756lYBra8axGUh4brhT/s4Jtf7L8rnd3Ja9vbUMxhfzisaDGJF1YMyMXa/SurvjM5zp3j8Gefse+ddzi2Ju247sD69anSrx8V77oLn+LFXe7HGDsv18Y81Ovngq27DU3uN1xx/Acm77yDAJMIwAflhjCr4rMArHrZok0e6H12gXE4OLZuHQc//pjD//sfyUfT5iXwq1CB4M6dCe7alRLNmmV4Hcwr37NzioI/+UBeOyl3HTAMnmo8muIxKBAmPWhx/+2efVE8dcYwbq7hpUVw3oMhXjc3h+mPWNQuYFNMX2zNJjvvhiuPdD7Oi0ODcvScMcYw/WMY/roh+XzG5csF2cO82rUouO2UnlU/Gto+6rrt7oqARc/lXLudPWcY8YbddplRtbzdS6ulm14RhdXP2+ygwqXO5FSzMjzS1aJP+5wf5hP/l+G9lXYvny27Pd++8VV2gufcntkrs44m2PnT9h52XabzDfDxeIvf/rSHdM1fiUc9T12pUg7uawf33WxRt0b+eL2yQlbczySftwPo7r5Azxxp0e/2gvG6/rHHMPE9+72ZmZ53V1eDDW/lj/fhkm8NnZ8yXJ+wnDG778Mb+wDfCX6GheUfpWIZWDZuDw3rVcu1+19jDAkbN3Jg/nwOfvQR548fT1OmVMuWVOrRg/J33IFPYGCqdSfP2KkTXl5k2Hckc8+55HmLO27IW+33/leGHmP/vW9peeIzxsT1AiDZ8qXy3M9o1PG63Kqe0+VeYxJ372bfu+9yYN48zh1J3WBe/v5U6NyZKv36UfLaazMVXL1wjrsSNcDi8Z6519ZT3rfv/64/sYwxcffhjR3QfLXSJD4t+wDVg+28U7kRnLrAGMPJX34h/sMPObR4MWcPpE0g6lOyJOU7diS4a1dKh4VheXtnev957Xt2dlPwJx/IiyelMXZ396GvuJ/t5b9C6sOM4RYNa7q/iBhj+GQ1PDI98x+WAJXLwdSHLbqE5+ysY7klYqiDGBe9oUoWS2H3Im+CiufMOXP8pD0jxGI3v6RfLLyxPStUpbIFv53S036Eg2XfuV4f+4bF9fWz57U5ftKweTds3gWbd9k9GTL7Zf+OMHjnidS9ISS1E6fsGcCmf2w4mIlk2ekpVRwGdISHu2TveyTprOHTtXYvn+Xfp5sXMVMqlYXv3sx/s/Ot/dUQPsS4/VJ9ZSUynazencAi0LW1HfBp3aRw9pjLqvuZ77fYeZtc3cEGBcLv72XNrG25ZeN2w4T37BkyM3unXjQAvp9hUf+K/HPc3cY4+DAabj46n+H7HnYuf6nyVJaX6cU94SeZ/1zxHL//PXvoEPGLFnFgwQJOb92aZn1A1apU6t6dit27pzvc58Bfhlc+Mrz5KS5n+UzP3W1g4bN5417/YmfPGap0Mfx10ain++PH0O3IdACSSlSk3U/f4le2bC7V0HYp1xiTksJfK1aw9513+Purr9K84YrWqkWVPn2o1KMHvh7MBuVw2L1+XE2OUPafXj+5GahNSbETx6/7DW77ezZD9z8GgAOLcdXnsrbk7fTvADNG5Pw5eXrbNg5+9BEHP/6YMzvTRvu9ihShXPv2BHfpQtkbb8TL3/+Snicvfs/OTgr+5AN5+aRMOG14Zqbh1cWZ/9Lg7Q3DusGYyPQTiW3fa3h4mnE5pCk9Pv/s85ne+ePXrqzy9Y92ollXJvaHJ+7N/nPm+y2Gu5/NXG8Hy4Kn7rPbvzAM83Ll152Gxv2My/dN2DXwzfTL67afcNruwbF5F2zebdi8C37bhUcB2wv8fGHKQxaD7ywcgdWscPacPePTSx8Yfv3z0vbh6wP33GgPCWt8VdblT9uwFeYsN7z/FW4TjmZG7arw0diMg/p51YR5hqfezp5bIS8vaNvMHtbV6YaCkbT5cmTl/YwzCa0L99wI74/JW/dMmbF+s+H5eYbP1nm+7btPWdzXLn+dY4eOGureZzh2Eu46/AoPHHwWgBS8GFd9LutK3sZXL8ONzbKnLR1nz3I+IYHkEyc4n5BA4u7dxC9axN8rV2L+ExX2KlKECh06UKlnT0rdcEOaGZ3Azo8zZaGdAD4zPaAvVqakPdyrfKm82YaPv+Fg8vv/PvYy55n8ZyeuOW2frCVvCKf5kk886nWR1Ty5xiTFx3Ng3jz2v/suSftSTwFp+fhQ/vbbqdKnD6Vatbqk+57F39g9gV2Z9KDFyB6539bb9xoa9bVTevSJH0f3Iy8DcNYKYOSVS9harAVfTrG4ORt66Z8/dYqzhw5x7uBBzh46xNmDBzl78CBHo6M5+Wva5JOWjw9lbryR4K5dKXfrrWl62l2KvPw9Ozso+JMP5IeT8offDQOmGH7alvltqgfDq4/8OxXwmSS7a/Pk9zMez36x1k3sxIb1ClHX+QuMMbR8yBDrYpahckHwRE+LFIcdnEv1v7F/7XYY/v3/ovXpb5O2bPJ5WPZd5m5yygXZeQgK66xQ/9UvysE7X7hev/h5i06Z6Pp96sw/QZ7ddk+eC7163A1n8UStyvDBsxZN66jdLoUxhlU/wosfGJa76e2VkTZN7eTQt1x3ab1GDvxlfyGZs8ywNe7S63FBnarQ8fpjPNO3FMWL5c3PpsxwOAzthrufRcpTDa6AXrdY9GhLgU9i74msvJ85ecZQ7z73vYM/n2TRPiTvv/7GGGJ+hvHvGr7+yfPtvbxg8oMWj92T9481PXOXGSInGjCG/vHP0PWv1wE4Z/nz5BUfc6Z2KJvmpM3faIwh5fRpzp84Yf+7EMT5529Xy5Iv+tuRlJRh/YKuv56KPXoQ3KkTPiVKpFlvjOGbX+CF9w2fx17aa1Ay0B7u1bpJ3m3DnfsNtbqn/tpYOvkgr22PoMx5exrTK4YPp9bTT+dG9YCMrzHG4eDoN9+w7513OPL552kCfAFVqti9fO69F/8KFS6jHoYm/VwPTy0XZPf6ySs/CLzykWHoK/Z7cOTegbQ9vgiAE96leaTWcqwqtfh1TubyUBljOH/8uB3I+Segc+5CYOfix4cOpZukOQ3LolTLlgR37Ur5jh3xK136cg83lfzwPTsrKfiTD+SXkzIlxR7q8PRMw8kzmd/uzlZwZyuLp2d6licjuLSdSLp728LdE2HZekP7kXn/bdy6iR34KazDvNKz/4jhqh6uE6jXrgq/zbXw9fk3QLo1jn968Jh/evRA3CXml8mMHm3hzeG5O967INm8y/DyIsO8FZ4FuS9Wtzo82s3i3puhiL/7dkk6a/jfGruXz4oNlz6s64KSgdD9Roi81eLaOoY9e/L+Z1NmHPzb/uXz8LFL30f5UvYEB73aWTSqVbg/l1zJ6vuZpWsNHZ90/flXrQJsnpt3ewQbY+dPfP5d1z/iZOTW62B0ZPYNE84JxhhuGW5foyzjYPjeQdx0/AMATnsVZ03J26lbJoErSiRQJPkEKSf/Dez898t7VvGvVMk5rKtYrVrplklJsYe6v/C+4fu0I8MypWQgPNjRvqbnh2GK7R5zsGJD6mUNT61j8p93OHM2Nf7gA8q1a5cLtXN9jTl39CgH5s9n/5w5aYcQWRZlb76ZKn37UrZt2yzpufRxjKHraNfXphcGWgzvnnfa2+EwtHnEsHoj+DjOMX733TQ9tRqAeL/qDK35JXd2KMPr/Y46gzjO3jr/6blz7vBhHGcvfzaEEk2bEtylCxU6dyagUqXL3p8r+eV7dlZR8CcfyG8n5f4jdvT449XZs39vb3j4Tni2j0XJwLxz4cwtxhia9zf8+Edu1yR9lgXP9IbRvfP+DEC54em3HTw/z/X6LuF2kGDzbtgVn/ncD5eriL/doy7yVn2JzQ6HjhpeX2J4fTGpcih4olwQPNQJHuqcepiAMYbvtth5fBauuvxhXV5edhL9yFss7giDgH8CTvntsykjK763ewB5IsDPzoPVq53Fzc0p1ENZMyM7zpm7Rjv4KMb1+ke7wUuD89b5mZJi+OQbmPCe61mAMnJnKxh1n0WzAtIjc3e8oUGk4XQieJtknt19L9edXJktz+VTooT9r2RJ5/++Fx4HBRF0/fWUad3aZRDgTJJhzjJ4aZFh5/5Lq0OVcnbA5/7boUSx/NOGroYydT0ynf7xYwA7+e71q1dTpEaNHK5d6muMZVmc+O479r3zDof+9780AQm/8uWp3KsXlXv1oki1allYB3syAVfDvcuXgj8X5p1ePxf8ecBwTR/7PVg0JYEXd95GzSQ7Kp1kFcXXJDkTQl8u7+LF8a9QAf8KFfALDrb//ud/v+Bgil5xRZa2iTsF7V4mIwr+5AP59aT8PNaenj0reyW0bGh/IW1UK29dMHNbRrMJ5JbypezePm2vVXu5knDa7kZ9KdODZ5cGV8AHzxXOoZQ5LfGsYd6X9peIP/Zc2j78/eC+m6H3LRZrNtm9fC51XxerW93u4XPvzaTbYy+/fja58+QMB1HzMy7XqpEd8OnaGv0I4YHsOGfi/zLU7WVcJtX18rKTkV97de63U/J5O8/WxPcMv1/Ce9TLy+559+S9+Supc2Y5h54AAY7TPP/nXTQ8k3pq2fP4cMq7JKe9S3LauwSnvEtiihQnsFxJylQOolK1ElS9siQBpS8K7FwU5PEpXvySe3YcOW547RO7l/ulBu0bXgkje1jc3QZnr978JPm8oUa3dCZ7MYZn4npzQ8JnABRv1IjmX36Jd0BAjtbP4XCwa/NmfNevZ//s2ZzasiVNmdLh4VTp25dy7dvj5eub5XX4KMZwl5teP1MeyrtDNN9YYnjoJbvuZZIP8MqOmymXnPkZD3zLlHEGcvwuDuj8E+i58Ni7WLHsOgSP7dzv4MMVf7Mxrgw7D9hJ8wvyj54K/uQD+fkG+3SiYewcz6dq/69yQTB5oEWvdoVzhpSMZPQrQ26I+GeYV0UN88rQa58YBk/N/Utx2ZIpPNTJmyfutTIcTiRZy+EwLPsOXlxoiHYxg19OCAqE7m3tXj7N67rv9ZWfP5tcST5vuG2kYWU6+X9qVbbz+Nx7E1xRSe+PS5Fd58yM/xkefNH1NbRudRjYyaJWZahZGWoEg59vzrXh2XN2T5Go+Z4Nb7/A1wcib4XHe1jUrFxwz72UFEPYYMP6f4bAeZtkaiRtJdnycwZ8zlpF7C7Fbvj5QtPa9gyzIfUtQupzWTMR7txveOkDw+xluBymnZEbm8GI7nYPwfz+xXLMOw7Gzkm7vGhKAq/vvJFKSfawqsq9e1Nv2rRsqcP5hASS9u8nad++VP8S9+3jxE8/YRITU5X3CQqiUs+eVImMpNhVV2VLncD+LG/Ux/DbrvTX59VePxcYY7j5sX9z4FVP2soTe/pT8vxRjvpW4KhPBY76VuBvnwoc9Q3mqE8FHKUqcP0NFbj9tgq0vtYvz/eAPXzMzq226kc7H+Ou+NTrt823uKpq3j6Gy6HgTz5QEG6wf91pJ4T2dEy7ZcGDd8DzD1iUykSSscIso1kFcoplweje9sxrGuaVOcnnDfV7Gbbvy7hsVvDzhaurQf0roH4Ni/pXQN3qBu/kOK68Iv9eZwqKn7cZXlpkD9m6nKB5Znl5wS0t7F4+HUL/HdaVkYLw2ZSec8n2bEtLvrW/dLeoa0/Pfn39/P+lLbdl1znjcBjChxjWbMpceS8vqF7BDgTVqgy1KlvOv6+sRJrEwpfqdKLhraUwZWE6PSUyoYg/PHA7DL/HomqFwnHubdltJ8q91JxorlQulzoY1LQ2+Pu5f02/32J4YaE9RO9S8qV5e0O3CBh+d8GaMGHfYUP1bunPVlojcQtvxt2E1zk7+FLv1VepfO+9Hu3fkZzM2fj4NIGdpP37Sdq7l6R9+zifkJCpfZVs0YIqffpQoVMnvIsU8agel+LDaEO3Ma7vxV8cZDHs7rx9LsQdNDSM9Cx/6wXlguwhqd0iLMIbkye+B5w8Y+cyuhDsyeiH8jces3jwjtyvd3ZR8CcfKCg32A6HYdbnMPINk6kcFC3qwuvDCs549pzw2KsOXlqUe89/VRX7onljM7WZpz5ZbejyTNZejn197KTRDa6A+ldY1K9hB3xqVkqbm6SgXGcKkv1HDNM/Nsz49PLz9qSnXo1/hnXdxCX10NM5I57KznNm6247aben02unp1LZC0EhqFnZuujvzA3zO3HK8OonMPVDc0nDg4oXhUGd7ZwweXXa7+w0eYHh8Tez9+uJny80ueq/vYPsvHpfrLeTOH/zy6Xtu2gA3H+b3X41KhbM9us0ysH/1qS/ro/fB3T/YSAAXgEBtFixguLXXAPYPUuSjx5NP7Dzz99nDx68rNkJvIKCqHjnnVTt04fiDRte8n485XDYOXM2u+j1U6G03esnq4LL2WnmZ4YHJl/ee7B8KTtvZbcIixuuyblA0NlzdmeDC8Ge73+3ZyrOrK6t4cOxBfeeRsGffKCg3WAfPmZ47DV7yuH0lCoOUQPsJHga4uW577YYYn427DlwglJBJfHxtl9Hby/7105vL/Cy7F+kLv471f8Xl/XKXLlyQXZvkrze3TOvMsZww2DD2l8939bbG2pXudCT559AzxV2MC6zOQUK2nWmIDl1xh5uMPVDw5+ZH3qfrlLF7RncIm+1aFbn8nqy6JwRT2X3OfPsOw6em5Plu02lbEmoVcUOoteqDLWqWPbfVcDCfp++uhiXOYjcKV0Chna1eLgLhbq3szGGF963h8kdO5lzz1upLBT1hx2XmMS5fCkY0sViYCcoXaJgt9/y7wy3jnD9FTK65mMkL54NgH/lyhSrXdsZ3HH8Z0iWJyw/PwIqV7b/Vali/6ta1fnYr2JF9h89miufS4u+Ntz9rOvX5KXBFo92yx/nhTF28GfW51mzvwqloUsr6NbGIqxh1gaCUlIMP2+HVT/aAZ81v1768EyAMiXh8P+sAvsdVMGffKCg3mCv+tEw+OV/kx56eUGfW+3AT9mggvmGyykF9Zwp6LbvNVw/0HDURW9mLy87oHOhB8+FIVu1q15+/gqdM3lfSoo9bfuLHxjW/Zb57by9Uw/rymioQ2bpnBFPZfc5c/ac3fsnKxKe56QKpe2hQQPugOJ5dFr6/7N333GOlPUfwD8zk9422V5vd69yvd9xx9FBmhRFmgoIggIqiKg/xI4gdgQLYgFUFEFBKSL97oDrvey1vW23vSabXuf5/TGTbLK7SbYku8nu9+1rnWRmNjtHJpOZzzzP95kMbo+I197vQGNvMXYcAbbVAO29k71VQ82tkLrm3fiRkXebzXaiyDDr+vg1rG690IfPvXcp7PtGV8ROVVg4EOpEBzzyj6qgAFyCY8dkfS+FQlKrnyONwy8vzgXqn8+ueoqMMbzyIfD7Vxne2pW6bujFuVLrmmvP5XDG4tHf6GdMOsaHw55N+5HykHjvHzksn5s979VoUPiTBabyCbYoShcxvf1SNy8qDpwaU3mfmeoa2hh+/rxU/0erjg155lWk78SS9pnssr1Gqgv04ub4reMXVgO3XMLhUxcCxXmp329onyGjNRH7zJZDDOd9OfU1Y9JhRhHw9Rs43HoZsuqicKIM3l8YYzjVKYVA2w4zbD8C7KtFSrr6jcX6RVIR5yvOmJ4t1X/0LMM3fj/8ZaRGBTT8qhnHP3YR/B1SQiTo9bFhzqDWO+qSknGPDjZZ30v/eJfhhu/Hv6T+5Zc43HNN9u4jVodUB++fG6UBEVIVBJXkAdecA1xzLof1i+J/jlq6pC5c7+6VpmOpoTZSKiXw5wc4XH9+9r5fiVD4kwXoBJuMFu0zZLRon8lOje0Mj/2L4bl3gc6+gTtqn7mEw4q56S1QTPsMGa2J2mf+t53h7sfYmLvvpNuccuD+T3H49EcmdtSxbDOS/cXjY9h7Ath2GNh+RKr1kc4LQ44DrtwAfO16DusXT+/3rrOPoeIT8ets/fJLHL5wkQPelhaoS0uhyMlJe9H8yfheCoWkAslHm4ZfXpIH1P0ju1r9JNJnl4KgFzYyvLNndPV0EikrAD4h1wiaNwPYtG8g7DnRnJq/MRyeBxZV+nDJOjUuWCW1Rpoq79VwKPzJAnSCTUaL9hkyWrTPZDfGpJE5TPqJO2GhfYaM1kTuM4xJF2O1zVINl7o2hpMt0uOmznHVkx2zxTOBB27kcM05mTEKTqYby/7CGENzV2wYtPfE+FsHqVXAzRcBX7mOw7wZ9N6FXf89Ec+/N/yy02YAR/7KTegoiZPxvfTcOwyffDD+5fRjd3O4+xNTc5/psTH850Op3tF7+1IXBKXb/Erg/JXA+Ss5nLWEob9v+pzLKCZ7AwghhBAyPhzHwaSf7K0gJHNwHIcFVdKodvKcyDJ/gKGpQw6FWoGTrSzyuL4dKe8ytvo04Fs3cfjo+unZPWgicRyHGUVSl7rr5G4b3nDroJqBQKi1e2SvZzECd10FfOlqDkW59N4NdseVHJ5/b/jg49gpYPN+4JzlE7tNEykUYnjwmfjBT0kecPvlE7hBEyzfLA3Qc9tHOXTbGP79PvDPTQzv7Z2cgD2eisKBsOe8FUBpVJkRUWTo75vEjZtgowp//H4/HnnkEezYsQMulwvz5s3D17/+dcyePRsA8Mwzz+DZZ5+FKIq48sorcffdd0fS3pqaGjz00EM4deoUFi5ciO9///soKSkBAHi9Xjz88MPYvHkzjEYjvvSlL+Hiiy+O/N1XX30VTzzxBFwuF8477zw88MADUCqVqfpvQAghhBBCpgmVksOcCmBORXjOwIVAKMTQ0h0OhaRgaOAx4PaO/O+cvQz45o0cLliV3i6YJDGNmsP6xcD6xUD4vW7ulEKgbTVS7aC9J2JDv8pi4CvXcrj1UsBARbjjOnsZMG8G4hZZ/93LDOcsn7r//Z5/D5GBa4bzjU9Pne5eyRSYOXzuCuBzV3DoskpB0AsbpYLMEx0E5ZqA81ZIYc/5K+TRGOkYDGCU4U8oFEJZWRmefvpp5Ofn47nnnsN9992Hl19+GR9++CH+9a9/4ZlnnoFGo8Gdd96JqqoqXHnllfD7/fj617+Oz33uc7j44ovx5JNP4jvf+Q7+8Ic/AACefPJJ9Pf34/XXX0ddXR3uuecezJ8/H5WVlTh58iQeffRR/PrXv8aMGTNw33334U9/+hPuuOOOtPwHIYQQQggh05MgcKgsli7+z1sJRAdDjDF09g0EQXVyi6GTrcDJFsDmBBQCcNEaqabPhiV0sZGpKoo4VBRJQ08DUuugfbXAqU5pyPd1CwGFgt6/ZDiOwx1XAPf+evjWLy+9L9UGmoqtpkIhhgf/HL/VT2k+cPtHJ3CDMkihRRq98PNXcujsY3jpfalY9Kb9QDoKzug0wFlLgfNXcDh/JbB0NrWyjGdU4Y9Wq8Vtt90WeX7dddfhscceg81mw+uvv45PfOITKC8vBwB8+tOfxv/+9z9ceeWV2LNnD7RaLa688koAwO23344LLrgA7e3tKCkpweuvv46f//znMBgMWLp0Kc466yy89dZbuP322/HGG2/gwgsvxIIFCwAAt912Gx566CEKfwghhBBCyIThOA7FeUBxHrBhCRAdDAGA082gEKbPcN9TiUbNYd0iYN2iyd6S7HPTxcA3fg94/UOXBYLA068D9386PX+7o1fq0if9SAFee28FVEpAqxahUUkjp4anWlXU46j5A/O4Ea/7zu74LZ4A4Buf4uhYAKAol8OdVwF3XsWho1cKgl7YyPD+gbEHQQoBWLtA7sq1gsPpC6l4/kiNq+bPwYMHkZubC7PZjIaGBlx66aWRZXPnzsVvfvMbAEB9fX2kaxgghUjl5eWor6+HXq9Hb29vzPK5c+eipqYm8rvr1q2LLJszZw5aW1vh9XqhGWY4QL/fD78/9uijUCigUqnG80+dVKLcVk7MpM6TJKPRPkNGi/YZMlq0z5DRmur7jE4+LRVFGkslFab6/jJVmA3AtecCf3lz+OVPvsLw1esZxlNLlzGpTtPeWkTCnn218UZ24+ELAA73mP7S2DcySlk+cOuljI4FgxRagDuulH7ae4GXNgP/3AR8eCh5ELR0ltQa87wVwFlLAIMuvET6xbH+t55Kx5mRFKwec/jjdDrxwx/+EHfddRcAwO12w2AwRJbr9Xq43dKnzuPxQK+PrUSp1+vh8XjgdrshCEJMkJPod8N/w+PxDBv+PP3005HuZGHXXHMNrr322rH+UzNGc3Max7kjUxLtM2S0aJ8ho0X7DBkt2mfIaND+kvmuWqvCX94sGXZZYwfw7H87cfaSkRXMYgxo6VHgcKMKNU0qadqoQq9DSOUmp9XnLu1FZ4dzsjcj4310pfTT0Sfgjd06/HenDvtOqiEyDpWFAaxf4MX6BV6cPt+LPNNAONPbDfSmeFumwnGmuro66TpjCn98Ph/uu+8+bNiwIdKVS6fTwekc2MldLhd0OimS02q1cLlcMa/hcrmg1Wqh0+kQCoViWvIk+t3w39BqtcNu2y233IJPfepTsf/IKdDyp7m5GRUVFdNiCDoyfrTPkNGifYaMFu0zZLRonyGjQftL9pgxA1j2d2D/yeGX/3t7EW4aZtQrUQTq2qJa85yQWvdYHend3nQqLwC+9uk8qFV5k70pWaOyEli7HPju7YDHBwRDgFGnBKAEYEzr355ux5lRhz/BYBAPPPAACgoK8OUvfzkyv7q6GidPnsSGDRsAACdOnMDMmTMBADNnzsS///3vyLoejwctLS2YOXMmTCYT8vLycPLkSSxatGjY3z15cuBIUltbi7KysmFb/QCASqXK6qAnEZ7np8VOSVKH9hkyWrTPkNGifYaMFu0zZDRof8kOd1zJcMfPh+9689o2oLmLg8s7UJ9nz3Gp69bYumdlrgdu5KDVUP2ZsdIP374j7abLcWbU/8KHH34YPp8P3/ve92KGTLv00kvx4osvorW1FT09Pfjb3/6GSy65BACwcuVKeDwevPrqq/D7/fjTn/6EBQsWRIZ6v/TSS/HHP/4RLpcLhw4dwvvvv48LL7wQAHDxxRfjnXfewbFjx+B0OvHUU09FXpcQQgghhBBCyOT65IWAIc6FuygCM69nWHgTw40PMTz6AvD+gakX/FQUArdemnw9QibLqFr+tLe349VXX4Varca5554bmf/4449jw4YNqK2txU033QRRFHHVVVfhiiuuACC1xvnJT36CH/zgB/jRj36EBQsW4MEHH4z8/uc//3k89NBDuPjii2EymXD//fejqqoKADB79mx8+ctfxr333guXy4XzzjsPt956awr+6YQQQgghhBBCxsuo4/DpjzD87uXhl0+BeroJcRzw+69xUKuo1Q/JXBxjYx1kjUwUURTR1NSEysrKadEcjYwf7TNktGifIaNF+wwZLdpnyGjQ/pJ9DpxkWHbrxF1aqlXAkpnAirnAirkcls9hMApNmD2zEv4gB69fqiHj8WH4x/6BxwPL2SjWlQpUz5sBPPBpDuetpOAn20y348y4hnonhBBCCCGEEEKWzuZw+kKG7TWpf22tGlg2Wwp6Vs7jsGIusKAKUCoGAhdRZGhqAnge0Gk46IYvEZsEBThk6qLwhxBCCCGEEELIuN1xBYftNeNr/WPUAcvnDLToWTkPmFcBCAIFM4SMB4U/hBBCCCGEEELG7drzgAf/DNS3jWx9syEc8gy06JldBvA8BT2EpBqFP4QQQgghhBBCxk2r5vC3bwNXfIOh2xa7LD8HWDkvqkXPXKCqBDEjSBNC0ofCnyxBdbkJIYQQQgghme70hRzq/gG8tFkazr2iUAp8ygsp6CFkMlH4kwUanR7cebwN39Tl4KzivMneHEIIIYQQQgiJy6jjcPMlk70VhJBoU388sywmMoYnT5zCWW9vxy6HB1/ecxSuYGiyN4sQQgghhBBCCCFZhMKfDHXS4cJlG3fjG/uPwx0SAQCNLg8ePnRykreMEEIIIYQQQggh2YTCnwz0+9pTOOut7djRYxuy7MnaU9g+zHxCCCGEEEIIIYSQ4VD4k4GCIoNXbu0zGANw964aeKj7FyGEEEIIIYQQQkaAwp8M9Pk5M7A6Lyfu8pMON35cUz+BW0QIIYQQQgghhJBsReFPBhJ4Dr9avRBqPv7b8+sTjdjb1z+BW0UIIYQQQgghhJBsROFPhppr0uP/Fs6Mu1xkwBd31sAXp3sYIYQQQgghhBBCCEDhT0b74rxKLLMY4y4/Znfh50ep+xchhBBCCCGEEELio/Angyl4Hr9evRBKjou7zi+PNuKQ1TGBW0XI9OIIBPFqSyd+ebQBW7r6EBLZZG8SIYQQQgghhIwKhT8ZboHZiK/Mr4q7PMgYvrirBgGRun9lKnsgiO3dVnR4fJO9KWSUmpwefOTdnbh560E8eOgkLt+0B5/dfpC6WxJCCCGEEEKyCoU/WeDLp1VhrlYVd/khmwOPHWucuA0iI8IYw2+ON2HWfzbh0o27seDV93Hz1gPwBEOTvWlkBFzBEK77cB+O210x819p6cJ3DpyYpK0ihBBCCCGEkNGj8CcLKHke36kuhJCg+9dPj9TjSL9zAreKJPP4sUZ8+8AJhNhAN6FXW7rw2e0HwRh1Hcp039h3DCcGBT9hfzjZjK3d1gneIkIIIYQQQggZGwp/ssR8vQb3zKuMuzwgMty9qwZB6v6VETZ39uIHh08Ou+yNth78taF1greIjMZLpzrwbENbwnW+tKsGbmrFRQghhBBCCMkCFP5kkfvmV2OeSR93+d4+O3574tQEbhEZTrPLg89uO4REdYG/tf8EmpyeidsoMmJNTg/u3XM06XoNTg8ejhPwEUIIIYQQQkgmofAni6gFHr9avRB8/N5feORwHWrjdFUh6ecNhXDz1gPo8wcSrucMhvDFXTUQqftXRgmIIm7bfgiOQHBE6//uxCns6LGld6MIIYQQQgghZJwo/Mkyq/JycNfc+N2/fKKIL+2qoeGoJ8nX9x7DfqtjROtu6bbid9RSK6P88HAd9vT1j3h9BuDuXTVUxJsQQgghhBCS0Sj8yULfWDgLswy6uMt39vbjDyebJ3CLCAD8ua4laZ2YwX5w6CSOUaHujLCxo3dMo+bVOtz4cU196jeIEEIIIYQQQlKEwp8spFUI+NXqBUjQ+ws/OFSLBqd7wrZputvT24//23ds1L/nE0XctfMwAlSoe1J1eX24c+fhMf/+r080Yk/vyFsMkYnjCYbw05p6nP7GVix57QN8ZfcR9Cfplkkyi8gYnmtsw5d21eCBfcfps0YIIaPkD4n43oFabHhzG9b+byu+d6AW3hC1WiZkuqHwJ0udXmDB7XMq4i73hETcs+sI1ZSZAN1eP27eegD+MXa122914BdHG1K8VWSkRMZw184adHn9cdeZY9TjawtmJngN4Iu7auALUYiXSXq8flyxaQ8eqanDCbsLLW4vnqlvxUfe3YleX/z3m2QOVzCET7y/F1/YWYO/NbThd7WncPF7u/DXehoxkRBCRsIfEnHdB/vw+PFGHOl3otbhwuPHG/HpLQfo5iMh0wyFP1ns24vnoFKvjbv8w24rnqlrmcAtmn6Coojbth9Em8cXdx2jUoHHViVuqfXzIw3YN4paMyR1fnO8Ce919MZdruZ5/GndYnxtQTVW5Jrirnfc7sJPj1D3r0xR53Dhovd2DlvDqdbhxo1bDlBYl+G8oRA+vWU/NnX2xcwPMYav7DmKD7v64vwmyURdXh929NjQO8KC+oSQ1PjpkXpsHuZ4+V5HL/5QS2UiCJlOKPzJYnqFgMdXL0i4zvcO1qLZRUOKp8uDh07igy5rwnWeXLsIN84sw51zZ8RdJ8gY7txJhYMn2t6+fvzgUOLh2h9cOgeLzEYoeB6Pr14IZYLh9h471oj9ffZUbyYZpZ09Nlz07i40OOMf+7b32PDl3UfAqHVkRgqIIm7ddhCbO4cPeEKM4dZtB9Hq9k7wlpHRCogivnPgBBa++gEu27QHF+1vxD27j8JP4Sshabe7tx+/TFDP8Ec1dehIcAOTEDK1UPiT5c4szMUts8rjLncGQ7iHLnDS4j/Nnfj18aaE69w3vxoXlxYAAL61eDbmmvRx1z1hd+Hhw4mDCJI69kAQt207hGCCz8alpQW4bfZA98oFOYaE3b9CjOGLu2roomYSvdrSias270HfCOr6PN/UTl0uM1BIZPj8jsN4o60n4Xo9vgA+s/UgteDKYJ5gCDduOYBfH29CSD7WMgB/a2yjcxNC0swdDOGunYcjn73hOIMhfPfAiQncKjJWJ+wu3Lz1AGb9ZxM2vLkNT51spmMoGTUKf6aA7y6ZgzKdJu7yTZ19ox6FiiR2rN+JL+2qSbjO+cV5uH/hrMhzjSDgiTULIXDxW448ceIUtlBXhrRjjOGre46iMUGruFKtGr9avRDcoPfrntOqsMRsjPt7R/qdFChMkt+dOIXPbD0I7yjCgIcP1+HfzR1p3CoyGiJjuHv3EfynuXNE6+/p68c39x9P81aRsbD7A7jmg714q334EO/5pnb8tYFqNxGSLg8erMVJR/LBX/55qgNbuxO3YieTq87hwuUbd+PVli5Y/QEc6Xfiq3uP4d49RykAIqNC4c8UYFIq8MtV8xOu860DJ9BGzeNTwu4P4KatB+BK0EWrUq/F79cuhjCoi9Dy3Bx8dUF13N9jAL6wqwYOqomQVs81tuNfp+Jf8PMc8IfTF8OiVg5ZpuR5/HrNQigShHi/ONqAwzZHSraVJCcyhgf2HccD+49jLKdAd+2owa5eW6o3i4wSYwzf2HcczzWO7mbFU3Uto/4dkl49Xj+u3LwHW7ttCdf7v73HcchKx0pCUm1TZy9+f3Lk9Xy+tvcYFX/OUCJjuHvXEXQPM1DFX+pb8XO64UhGgcKfKeL84nx8sqo07nJHIIivUDo8biJj+MKumoR3UjQCjz+vXzJscAAAX5lfjWWW+C1HTrm8+NZ+aoKbLrV2F76+92jCdb62YCbWFVjiLl9kNuLe+fFDvCBj+OLOGjqRmgCeYAi3bDuI39WeGvNr+EQRn/7wAE5RfbRJwxjDg4dO4g+juFiJdt+eozhopXpbmaDF7cVlG3fjwAhCHZ8o4pZtB2CnGx6EpEy/P4Av7kzcOn2wo/1O/HGMx1+SXn+tb8W2Hlvc5T88XId/0A0QMkIU/kwhDy+bi2KNKu7yt9p78M8ErR1Ico8da8R/W7sTrvPoyvlYYok/KpSS5/HbNYug5uN//P7a0Iq32hL/HTJ6vpCI27YfgjtBt6D1BWZ8dX78uj5h982vxoIcQ9zlB20OPJ6gyCIZv16fHx/bvAevtnQlXffswtyErbW6fX5c/8E+2EdQK4ik3s+PNuCxcXxevCERN289CKuP3r/JVOdw4dL3dqHW4Rrx79Q7PbhnF9X/ISRV7t93POEotPH8qKYenVT8OaN0eHz47sHapOvdvesINnfGH7mWkDAKf6aQHJUSv1iVePSv+/cdowP7GL3X0YuHkowMddvsClyXoAVW2Gk5Bnxr8eyE69yz+wj6hmniScbuuwdP4FCC7lgWlRJPDtNdbzgqgcevVyeu4fTTI/U42u8c07aSxBqcblz87i7s7B06lPtgX5pXiRfPXoGfr0zcPfaY3YVbtx9CkFpsTajfHm/CDw/XJVzHoBDw2zULYVAIcddpcnnw+R2HIFKIMCkOWR249L3daBlDF/OXWzqp1UEW2H2M4ZrviPD66DOWqV5p6cTzTe1j+l1HIIjvjSBoIBPnG/uOj6hlZJAx3LT1II5QyQGSBIU/U8zFpQW4ZkZx3OU2fxBf23uM7rCN0imXB7dvP5SwnsiavBw8tHTuiF/zzrkzsL7AHHd5p9ePr+09NvKNJAn9r7ULv69NfHHxq9ULEhZPH2xZrgl3z6uMu9wvMnxpVw2FCSm2u7cfF727E3XOxIUseQ74yfLT8P2lc8FzHG6cWYa751Ul/J33OnrxjX3H6Rg5QZ6pa8G3kow0oxF4PLdhGa6vKsWvVi9MuO47Hb34SU19KjeRjMD2Hhsu37R72JoUI/WtAyewty95mEsmx1s7Gc65h+Ffm4AbH2YQRTpGZppOjw9f2R2/WzsLcfhI3wqYaqvBxOFvXD3f1I5tVPw5I7zR1o2XW2IHPxBdKnh2VSFwKnfI+o5AENd8sA+tVOOVJEDhzxT0yPJ5KFDH7/71WmsX/tMyspFUiFRT5OatB2BN0B2kUKPC0+uXQCWM/CPFcxx+s3pRwjvZ/27uxIvUVW/cWt1efHHXkYTr3D67ApeWFY76tb+2cCbmmvRxl+/ts+O3J8Zej4bEer21C1du2o2eJN17tAKPv6xfitvmVMTM/86S2fhokvf5T3UtSYNCMn7/bGrHfXsS199S8hz+sn4pziiUTnSvrCjClxIErgDwkyP11G12Ar3T3oOrN+9Jend6jlGPVbnxu0QHRIZbth6EjbpeZpyAKGJTfwc88kAX/9oE3PgzP4XkGYQxhnv3HEFfnM+P6FSDe20tnv+7BU1vzoR70zzEe/u+tvcY3bSaZI5AEF8d9P0Y7DTC/vwaeHfMgvOV5fAdLRnye+0en9SFneqokTgo/JmCctUq/HTlaQnX+b+9x9DjpS5FyTDG8NW9xxIWrlRwHJ5etwQl2pG3GAmrNGjx0LLErYW+tvco2j2U4o9VSGS4Y8fhhOHdIrMB3186Z0yvrxEE/Hr1QiTqKfbI4TqcsI+8BgYZ3h9rm3HT1gPwJBnKPV+txMvnrBo2zOM5Dk+sXZSw6DoAfPPAcQoQ0ui1li7ctbMmYWtKgePwp9OX4IKS/Jj53148G2cWxi/IDgCf33EYDUlahpHx+3dzBz61ZX/Sz+QyixGvn7cKT69bDLMi/qlns9uLL+ysoVAhg/hCIm7eegC/sx6G7uJDACe9139/TYnbnqRuzZni741teKOtZ9hlgVYzHC+sgbV54EaV/0gZvLuGH7jiSL8TfzrZkpbtJCPz8OGTMXWb/LWFcLy0Esytjsxzvzcf/rqCIb9b0+/EZ7YeoEFHyLAo/JmirigvwhXl8e9u9/gCuH8fdSlK5pkRDCH84NK5CUeGSubG6jJ8ZNDFTTSbP0jFMMfh50frsSVBE2adwOOPpy+BRojfAiuZVXk5uGtu/NYIPlHEl3bVIETN5MdEZAzfPXACX993DMn+E84y6PDm+WuwKi8n7jp6hYC/bViGUq067joiA27bfgg11H8+5d5p78Fntx9EKMExjQPw2zUL8dFhvscUvPSZTfT+9QeCuGnLAbjllgok9f5c14Lbth1CIMmH8owCC/5zzirkqVUo0Wrw0MxiJKqq9r+2bvzmRFNqN5aMiScYwqe37I+ECsrKXujOHTh3fOrvenz5OeoiNNlOuTz4xr7jQ+YzBngPlMP58nKIbqlHQHFUbyHvzpnwHRnaegQAflhTRzVCJ8me3n78QW59zBjg2VEN15uLgZB0niro5feFcXC9uWjYLmCbOvvw5d00yjMZisKfKeynK+YjVzX8cOMA8FJzJ/7bmnyUnOlqV68N9+8f+mUa7RMzivH5Qd1KRovjOPxy1QJYErxX73T04i/1reP6O9PRtm4rfnIkcf2PHy0/LWG3rZH6xsJZmG3UxV2+q7cfT45jOPLpyhsK4fbth/Cr48kvBtfk5eCN81ej2hD/fQgr0Wrw3Ibl0CfodukMhnD9h/vRQSfAKbOlqw83bT2QNDD4xcr5uKZy+IsSACjQqPDM+qVQJmhyV9PvxFf20MlvOjx+rBH37jmasOUWAFxUko8XzlwOk1IRmbcuR4f75g/f4iDs+wdPYnuCoY1J+rmCIdzw4X682xE7gpB6QTs0awcKtD/2pBEPvDZ8ixOSfiJj+MLOGjgHBd0swMP99gJ4PpgHiNLl3gWrgEPPcPjZXQPHTffG0xBoGr5+zPep+POEC4gi7tl9BAzSe+h6cxG8uwZGoFWd1obfPdqLmy6WZ4g8nK8vQbB96A2v5xrb8GOqgUcGofBnCivQqPDjFfMSrvPVPUdpaNxhdHl9+MzWgwkvUBbkGPDoqgXgEoz2NFLFWjV+lqSr3rcOnEAjdWMYMasvgM/tOJywpcjHK4rwqerko7ONhFYh4PHVCxPe0X748EnUO+g9HCmrL4CrN+/Fv5uT1yi7vLwQ/z57JfIS1DsbbLHFiD+cvjjhe9bq9uJTH+6nFiQpsLu3Hzd8uB/eJF2EHl42FzfPKk/6eqvycvCjZYm/415oaqfuCynEGMMPDtaOaESga2YU4y9nLIV2mID1awuqcVbh0AvOsBBj+Oy2g9Q9fZI4AkFc+/5evN/VN+xyzapGqBbJnyuRxyOPmvDgRqpPOBl+d+LUkNbNoX4NHC+ugv/EQID+f58E3vgph3wzh69cB9x9tbyA8XC+sRjBrqFdof/R1I7tVPx5Qv3meBOO9DshOtVwvLQSgZNF8hIG7fpaXHB9O26dV4Y/fZ3DFWfKJ7hBAc5XlyLYbRjyej85Uo+/NdDNYzKAwp8p7uMVxbikdGh/0LBOrx/fTNK6ZboJiiI+u+0Q2hPc7TcpFfjL+qUJWw2M1scqivHxiqK4y13BEL6wk7oOjQRjDHfvrkk44kGlXotfrJyfkvAu7PR8Mz43Z0bc5Z6QiLt319BQ1CPQ5PTg4vd2YtsI7v7fOXcGnl63ZNiLzGQuLi3AD5KM0rfPasedOw/T+zYOh6wOXPP+3iF3pwd7YNEs3JmgC+Vgn5lVjhuqEge4D+w/jh3UimTcRMbwtb3H8OixxqTr3ja7Ak+sXQQlP/xppsBx+P3pi1CkiR/Wtnt8uIM+dxOu3x/A1e/vTXjs5ThAd9ZxKKvlumgBBb734xw8tJWC1ol0rN+JHxw6GTMv0JQLxwtrEOqRwhyNmuGfD3L40R08BEE63+E4Dr/4IoePnxX+JQWcry1FyD60diUVf5449Q43fnKkXirs/MJqhLrlAvnKIPSXHYBpVTN+uWoBeI6DQsHhhe/yOGuF9N4wvxLOV5YjZNUOed17dx/Fe4Na8JHpi8KfKY7jOPxs5WnIiWpyPdg/mtrxdjsVNg373sHahDViAODJtYswM0EXn7H66Yr5KE5wMrytx4YnaqkWQjJP1bXgv63x92kFx+GPpy+GKUFXu7H61uLZqNIP/fIN29ptw59O0khSiezr68dF7+1EbZJWUhyAHy6bh4eXzQM/jhDvzrkzcEuSliavtnThoUEn2WRkjtuduPr9PehPMvrIPadVJe0ONBjHcfjZitOwxBy/gHeQMdy67SDVrxiHgCji8zsO46m65Bf3982vxo+XJ/9MFmrU+OPpixMWy3+voxePHm0Y7eaSMbL6AvjY5j3Y3dufdF2OB/QfOQyh2AYAYG41vvujHDy0i85RJkJAFHHnzsPwycEMY4BndyWcry4D80nnNuYCH/b8gccnzhn6IRMEDs9+m8MZi6XnzK2G89VlEL2x1ws1/c4Rfe7J+DDG8JU9R2E/lh9T2Jk3emC6ejdU1b24b/5MzIkqU6BWcXj9EQHL50s3VZhHBcfLKyA6YuvhBRnDZ7YewGGqYUhA4c+0UKLV4OEkTeO/vPso7DS8Kl461ZF0WO6vL5iJixK0phoPi1qJx1YvSLjOw4fqcLSfRtiIp8bmwLf2n0i4zrcWz8bKBAWBx0OvEPB4kvfwwUMn0eT0pOXvZ7s327px+cbd6ErS3UMj8Hhm/RLcMTd+S6uR4jgOP1o+D+cUxe+GAgC/PNZIzadHqdHpxsc370VPku7Ft8+uwHcWzx5TSzytQsCf1y+FWRX/Jke7x4fPbj9Io5+MgScYwo1bDuDFU8m79Ty4dA6+OYr38YzCXHxz0eyE6zxSU4cP4nQ/IqnT4/Xjys27sT/B6KaDcUoRhssOgDdLo1mKNj2+91Mjvr+3jmptpdnPjjRERqJlfgGu/y2Gd/tsQO7IbJrdi4N/VGJBVfzPolbN4eUfcphVLh0XRaserv8uBQvGXh7+8HAdurwUnqfT3xva8earObGFnUtsMF6zC0K+C/NMetxzWtWQ39NrObz3MwVmV8kBkFMDx39WRAp8hzmDIVz3wT60JGgRT6YHCn+miRuqSnB+cV7c5e0eH74zzQu7Hel34u5dNQnXubAkH19fODPhOuN1YUkBbp5ZFne5TxRx187DdBEzDFcwhM9uPxS5Ezacc4vy8MV5I+9WMhYbCnPx2QQtSVzBkFTQj06OYzxT14JPbdkPd5KaMLkqJf599kpcXh6/m+RoKXkeT69bgnlJin/fu/soPqQL0RFpdXtx1eY9CbvQAsAnq0rxyPJ54+qCWWnQ4vdrE9dv2tptG1GtGjLA7g/gmg/24q32xAV9eQ54fNUCfHFe1aj/xj2nVeGCBOcnIgNu336IWm6lUafHh8s37cZhW+IbSyVaNb4wqFsmrw3CcMV+cDrp/Ql1mPHwYwZ8e38tfcelyZ7efvxCbhEX6tPB/sJqBOrDIyMyaNfW4bUfCqiwxA/Ew/JyOLz9MwFGkxQeBNvNcL29ANFvnZ2KP6dVk82Pz/9QGFLY2XjVXvC6ADgAv1y1ACph+Mt2s5HDlscUKCmWWteK/To4Xxnaiqvd48N1H+xDP93sn9Yo/JkmOI7Do6sWwJCgJsZf6luxqXN69gm1+wO4ecuBhBedVXotnly7aFzdS0bqwaVzUZmg69ABqwM/O0JN4Qd7YN9xnLC74i4vUKvw2zULJ+Q9/O6SOajQDe0/H/Z+Vx/+TCO4AZBqiTx4sBZf2XM06VDu1QYt3jx/Ndbmm1O+HTkqJf6xYTny1fG7AwYZw01bD+CkI/5+RqSi+R/bvAenXInvMn6sogiPyTUMxuuCknzcv3BWwnWeOHEKL42gBQsJtwTZg63dtoTrKXkOfzp9CT6d4KZFIjzH4Ym1i1CqVcddp8vrx+3bD1HNuzRoc3tx+abdOJ7guxMAynUavHbuKvxg2Vz8cFBrcsHkheHy/YBSuvgMNBTgZ3/Q4Gt7jlHNphRzB0O4a+dhhBiDv64A9n+uhmiTblpw6gAMlx/AfZ9iOLM4cUvWaNWlHN78iQBeKQVAgboieD6cE7POc43tVDstDVq7GVbdGYDrRLhHgVTYWXf+UXCC9Nm5dVZ50nOeQguH7b9SwmyRPoOhHiOcry0FC8Re6h/td+LmrQfhT3KTjUxdFP5MI+U6DR5MUtj0nl1H4ExSl2GqERnDnTtrUJdgJC2twOMvZyyFOQ01YoZjVCrw2zWJR476xdEG7O1L3i9/unjpVAf+mqRLzhNrF6EowQVGKhmUiqRd+L5z4ARaXNO7+5cvJOKOHYfxyxEUkV2Zm4M3zluDWcbErXPGo9KgxV/PWAZ1nEK1AGDzB3H9B/vQ56ORiIZj9QXw8c17cTJJzaaLS/Pxu7WLICQq+jJK9y2oxkUl+QnXuWf3Eeo6m0SL24vLNu6OdCuJRyfweG7DclyZYLCCkchTq/CndUugSBACfthtxY9q6uIuJ6PX7PLgoxt3J/2sVum1+O+5q1BtkGod3jF3hjRgQtQ6igInDJceBHjpotJ3uBy/eUHAPbuPUGiXQg8eqsWJfjc8W2fB9b8lQEBq3SHkOWC8dhcWLfbim4sTh+DDWbeAx0NfdQOc/P4dmAHv/oqYdb5OxZ9TavcxhqW3hdDTKt/slQs7a1acQvhQWKJV49uLE3eNDZtRxGH7rxTQGuQAqMMM5+tLwEKxx9X3u/qo9fk0RuHPNHPzzLKEw6s2u714cJoVNf3F0Qb8ry1xwetHVy3AogQFRdNhXYEFdyUY9SbEGO7cUQMPDUGNJqcH9+45mnCdL82rxHkJuhakwzlFebgpwd1wZzCEe3YfnbZfwP3+AK55fy/+NYKWGJeWFuDlc1aiIEFB9FRZm2/Gr9ckDu7qnR7ctPUA3T0bxB4I4poP9uJIknDl7KJcPLVuSdzRoMaK5zj8bu0iVBvit5x0BUO4eesBqnMXR53DhUvf24XaJK3bcpQKvHj2ypQdV9fmm/HdJXMSrvPzow14J0kXNDIyDU43Ltu4G41JbkDMNurw6rmrUDGoNfJnZpXjN2sWxhTsVlZYoTt/4LvYu302nnqd4c6dhyk0SIH3O/vwu4PtcL66DN69VZH5yjkdMH5iN9RmL55YswgaYWwj0X7jkhyc/rG2yHPPh3Phry2MPD9kc+BpKv6cEs+/y3DmF0X0WqXvwOjCztF+vPy0UQ1OMm8Gj/cfVUCpkbvxNefB9eYiMDE2AHq+qR0/PExh+nRE4c80w3EcHlu1ALo4/UYB4I8nm7E1yWhXU8U77T14JMnB73OzK3BtZckEbVGsby6elbAGSa3DhYcOT6+wbrCAKOK27YfgSNBibUWuKWlR0XR5cMmchN0ZNnb24m8NbXGXT1UtLg8ufm8XPhzBseb22RX48/ql0I1hKPexunpGCe5PUt9ra7cN9+6hu2dh7mAIN3ywD3v77AnXW5tvxrNnLBvzBUoyOSol/rJ+KbQJvudOOtz4wq4a6pIyyCGrA5e+tztpUdBCjQqvnbsq5d0v75o7A5cmGVDhjh2HqWjpONXaXfjoxuTv8zyTHq+cswplcbowX19Vij+eHttiSz2vA9r1A/Vh3O+dhuc+8OPWbYcoLB8Huz+AW19rhOOFNQg2y4ErJ0K74QT0H6kBpxTxtQUzsSzXNK6/88/bC2BYO1BWwPX2QgRazZHnDx+uQ3eSARlIfKLI8L2nRFz/fQavX/rcKEpsMF4rFXaO9tGyQny0vHC4l0lo1Twe//0xN9CNr74Q7vdOw+Cvu58fbcBf6inMm24o/JmGKg1afCfJ3bUv7aqBe4q3KGlyevC5HYeQ6NR/bb45aVe5dNIIAn63dlHCpvBPnDg1rQvQPnK4DnsSdH8zKAT88fTFcQvlpZtJpcQvVyVuRfKtAyfQNo0uZg5a7fjIuzuT1pgApNGDfrR8Xkq7Bo3U1xbMxDUzihOu81xj+4i6rE11vpCIG7ccwLYkNSGWWYx4fsMy6NMc5C00G5N+7v7b2o3H6b2L2N5jw+WbdqM7SXfGCp0G/z13FRamoTUsx3H49ZqFCWve9fkDuG0bjdw2Vsf6nbh80+6khdgX5hjw6jmrUJykq/RVFUX48/olUEUdo9XLT0G9pFl6wng431iM/+z14MatB+ANTe1zy3T5+J86UPfsYogO6bPBaf0wXLUPmmXN4DjpJte986vG/XfK9Vp89zMcVPPlm1IiD9frSxDqk25EUvHnsXN7Ga7/PsP3nxmYp5rfBsNVe8FrY1uiGpUK/Gh54pGaE7lwuQJ//z4DJ0jHSf+xUng+mDskALpvzzG8Ta0ppxUKf6ap22ZXYF2CO3YNTg9+OIVblLiDIdy09QBs/vitRYo0Kjy9bsmkhQZhSy0mfHVBdcJ1vrCzBvZpVqsJADZ19uKxJBdvj66ajyq5TsFkuaAkHzdUlcZdbg8E8ZU9U7P7l90fwJauPjxxogl37jiM9W9sxXnv7EBHkjuHap7HU+uW4IvzqsY1CtR4cByHx1YvSNq64QeHTuI/zZ0Ts1EZKCCK+Oy2g9iYZMCA+TkG/OusFaNqwj4e11SW4HOzKxKu89Dhk9N2oINo77T34OrNe5J+j8w16fG/81ante6WWaXEU+sWx4QJg+3s7ccPplkX9VQ4bHPg8k270ZXk+LvMYsTL56xE/gi72V5SVoi/bVgGjXy+xHGAdsMJKGd1SSsEFHC+tgxvHHPhhg/2wzXFby6mkj/AcPlDLrz7XNnAEOBF/TBdtxPKMhsAQCPweGLNIihS1I32S6dVYdFHm6CYIYUCzKeE89WlEJ3S/vD3xjbspOLPo9LazXDWlxj+uTE8Ry7sfN5AYedo3108G6UJBg0Zies2qPDY/wUATnp938EKeHfGXk+EGMOt2w7igDVxi10ydVD4M03xHIfHVy+IfFEP54kTp7B9Ch7cGWP46p6jOGSLX8hSwXF4ev3SpHe8Jsq986ux3BK/KW+z24tv7T8+gVs0+bq9fty543DCllufrCrF1TMmp8veYA8vm4viBCfSb7X34IWm9gncotTr9fmxsaMXjx1twK3bDmLV6x+i6j+bcPmmPfjm/hN4vqkdx+yupCN6WVRK/PvsFbhqnEVkU0EjCPjr+qWoStASAQDu2nkYe3qnXwH2EGP4wq4jeD1J3bRZBh1eOmsFctXpr9kU7cGlcxOGdyIDbtt2CM3TuPD6v5s78Kkt++FJ0iVnmcWI/567atwXJCOxPDcHDy9LfNf718eb8HprV9q3ZarY32fHFZt2o9eXuNbVqrwc/PvslaP+rJ5fnI8XzlweadXH8YD+whooSqWuvcyjgvOVZdjY5MA17++dljesRqu9h+Gse0S89tbA949qYSuMH98D3jDQcut7S+ZgToISAaOlFnj8eNU8GC4+DKFACgVEhxbO15aB+aX39+t7j1Eh7xHadZRh9ecY9sin6Wq1OKSwc7Q1eTn4zKzylPztL12sxQN3DXy/eXfNhHdf7E0RVzCE6z/YN62/B6cTCn+msVlGPR5YFH9EAAbgyk27ce/uI2hyTp0DwlN1LfhHkovsh5bNxelpGEp6rJQ8j9+uXZgwrHu2oQ1vJrkAmypExnDXzsPoTHD3co5Rhx+vOG0Ctyoxs0qJXyTphvKN/cfRkaQpfiZgjKHd48Wbbd34SU0dPv3hfix57QPMeXkzrn5/L74vt4SpH8Nxo1KvxRvnrcbpBZY0bPnY5GtUeO7MZTApFXHX8YZEfGrL/ml18iQyhocbu/FSklZPFToN/n3OygkbaS+aSuDx1LrFKEoQvPb5A/jM1oPTsjvKn+tacNu2QwgkuYg7o8CC/5yzCnkTGN7dOqscH0sSAH9hZ82UOj9Jl129Nly1eU/C1s4AcHq+GS+etQI5Y2ydt6EwFy+etQJG+VjJKUToLz0IPlcqAC/26+B8bSm2tdvx8c17YKOi63FtPcSw8naGHYfldIAXoTv3KPTnHotpKXJ2YS5uS9LCcSwuKMnHR6tzYfjoAfBG6TMW6jHC+b/FYCEOB20OPEP1YpJ6/l2pxU+73MC0vIgh5xNDCzuHKXkOj65aAD6FLZ4fvs6AWz49cMPbs2UufEdib4x2ev245oN99JmcBij8mebunFOJlbk5cZcHRIY/17di1f+24Is7a1CfZDjQTLejx4Zv7EvcQubayhLcnoYv0vGaZzIkHe7xnt1H0DsNhp/+zfEmvNsRv6uGiufwx9OXpL2uyGhdXFqQsIaMzR/E1/ZmVvcvxhianB682tKJhw+dxLXv78X8V9/Hwlc/wA0f7sePaurxelt3SgqwLreY8Ob5q1N6BzNV5pkMeGb9EggJTsi6vH7c8OH+aXFHmzGGbx04gZd7EjcVL9ao8O+zV6J8AlqLxFOi1eCpJMOI77Pa8X97p1frycePNeLePUcTtp4EgItLpRYdicLPdOA4Dr9ctQCzjfG77fYHgrh120H4qJBwXNu6rbh6c/KWNmcV5uKfUcHNWK3JN+Pls1fCIgdIvCYI4+X7weml74hQZw5cbyzGnh4Hrty0Bz1UPDgGYwxP/IfhnHsGAgPO4IXx6j1QL4wdHMKkVOBXaxamNCiI9vCyedCbgjBcsR+cWgoFgs15cG+Uigc/dOgkvX9xxBZ2luZtWAwsu/UwApb4PQ/uOa0K83MMKd+epz6Xg0uusEWeuzfOh/9kbDHpE3YXbtpygI6nUxyFP9OcwHP41eoFCfvWA1LT/r83tmHNG1vw+e2HcNyeeBjfTFPncOE7B07g+g/2IZjgwnqR2YBfrJw/aTVGkvn8nBnYkKBFRJfXj6/uOZZR4UGq7e1LXuvhwaVzsdiS+mKkqfDI8nkoTNAK4b+tyVtSpIvIGGodLrx4qh3fOXACV23ag1kvb8Ly1z/EzVsPSsMsd/QmrRcxFheV5OOVc1ehUJMZXS2Hc05RHn6apDXZkX4nbtt2cMoPa/zDw3X4/cnEd33z1Eq8dPZKzExw8T5R1hVYkhbv/2tD67QY+aTG5sCXdx/B90ZQtPWaGcX48/ql0E5SkG5UKvD0uiUJW73us9rxnQMnJnCrssf7nX245v29cCapsXNecR6eS2Eh9mW5JrxyzkoUyC3FeKMPxsv3AyopgAo05cO9aR4OWqUaRNnQ4nUieHwMt/6I4a5fMISzOkWpFaZrd0JRNDRo/9HyeWkN1mfotbh3fjUEixuGyw4AgrQf+Y+VwrtzJvoDQXz/EBV/Hmy4ws63XArcdW8ntjjid1WdY9ThK/MT1/gcj9e+YsbKs+UBYhgH11sLEWjKi1nnw24rvkQjYU5pHJvKV4lThCiKaGpqQmVlJfgUFXMb7NGjDaMqnsgBuLKiCF+dX40FaRjxIxUCoojXW7vxTF0LNo9gNKwcpQLvXbgW1ZNcHDiZUy4PNry5LeHJ3JNrFmIV86V1n5lonR4fNnf14ZHDdWhK0LXmktICPHvG0owN8ADg1ZZO3Lz1YNzluSoltl68Lm1BiD0QRKPTjXqnB41ONxqcHpywO3HIaod7Evrw3za7Aj9cNjdlxSrT7dv7T+A3J5oSrvO52RX4UQZ1O0wFxhh29Pbjz3UteD5J11mTUoFXzlmJJQlqlU00xhhu334oYbiq5nm8ft4qLE/QIjYbtbi9eLGpHS+c6sDR/pHdvLltdgV+tHxeSlsVjPV85tn6Vty9+0jCdf60bjE+VpF4dL7p5N2OHty45QC8Se7iX1yaj6fWLYFGSH3Ad8Luwsc274mMLBZoscD5yjJAlN57zZp6aNc0YKZBi/+cs2pIkDER57+ZoqmD4epvD9SFAQD1siZo19eB44d+L3+0rBB/Xr8k7ec63lAIZ7y5DQ1OD/wnC+B6YzGkqwBAd+5RqBe24c3zV2N1njmt2zFSk73PtHYzXPnAwPvIccBP7uBwy8cCWPfmVvQkqLn16jkrcUZhblq3LxAScdpXe1G/Rw59FCEYrtgPZaktZr17T6vCt5OMDD1VTPY+M9Eo/MkCE7FTBkURl23cjV1jKFj60bJCfHVBdcac5J9yefCX+lY829A64hYKHIB/nLkMF5YUpHfjUuSv9a24J8GJsFmpwHMLyrF6zqysPZC5giFs7bZiU2cvNnX2jeiCpUSrxgcfOX3Ci8qOxa3bDiYcIeqK8kI8s37pmF6bMYYeXwD1Tnck3GlwutHgkqbJCn5OhJkGLVblmXHn3BlYmiHHjpEKiQw3bT2A/yWpsfXj5fNw+5wZE7RV6dPk9OD5pjY839SOhhHUV9ErBLx41gqsyaC6aWGuYAgfeXdnwuNJuU6DjReundD6NunQ7w/g5ZZO/LOpA1u6raP63fvmV+OBRbNSfmE51vMZxhi+uKsGzzXGDx0NCgHvXbgWs9M4Elm2eKOtG5/ZegD+JGH+5eWF+MPaxWkd1bTB6cZVm/agWe4a7K8thOvNxZHl4QBhhl6D/5y9MmZ0zulyUfbObqmlSPgUXKUSoTznCFRzhz9HKFCrsOWidSMejW283m7vwXUf7AMAeA9UwPOB3IqSE2G47CBWLffjnfPXQkjSi2AiTOY+s+uoFPyEu+sZtMBz3+Xw0fUcvrCzBs81tsX93Rury/DY6sR1IVPF7gthzt1WdB2VgyZVEMar9kJRGNsd7Rcr56es8HQmmy7HmTAKf7LARO2UfT4/vrb3GP49xi4nF5Xk46sLZmJl3sTfMQ2KIt5u78HTdS14t6M3aQ2Dwe5fOBNfXxi/+HWmYYzhkx/ux5vtPXHXWZ+jw8sXnA4hDXfz0iEkMhyw2bGpow+bOnuxs9eW9MQ1Gs8BL5+d/rsmqdLj9WPdm1sTBjFPr1uCK+MUPA2JDG0e70Cw4/SgweVGo/w8WTP/icJzwByjHkstJiwxG7HUYsRis3HChvtOF2cgiI9u3I2DCUYN5DnguQ3ZEypHsweCeLm5E883tWFrt23Ev6cReDx/5nKcmcGfwzqHC+e9sxOOBDVQzi7Kxb/OXJERFzOj4Q2F8HZ7D/7Z1IG32rtHdQwN+8HSufjCvMo0bN34zmdcwRAufGcHjtldcddZmGPAW+evmbRuapnglZZO3LbtUMIu7gBw9YxiPLFm4YS0uGxxeXDV5j2RQQC8+yvg+TAcIDDoLz0AVXUvSrRq/OfslZG6b1P9oiwQZHj0BeAbv2cI9xSeUSLCfe5uhHLjf7c8e8ZSXFpWGHd5Onz6w/2RUR3dH86Gb798jFCEYPzYHvzykjLcmgH1Midrn3n+XYbPPDJQ36eqGHjlEQ6LZ3F4v7MPV23eE/d3CzUqbL94PcwTeF7U4vBhwRedcDRIpSQ4jR/Gq/dAsAzUduU54G9nLMNFpdl3DjMaU/04MxiFP1lgonfKGpsDPzvSgFdaOkcdogBS3/GvLpg5IaNltbq9eLahFX+pb400Kx6ti0ry8bcNy9JWMC9dOj0+nPHmNvQlqMz/sxXzcOvszG150Oh0Y1NnHzZ29uKDrr6kI5Ek8vUFM3F/gtHrMtFLpzpw2/ZDcZfnq5V44cwV6Pb5UO+IDXeaXJ4xXdilk5LnMN9kwBKLUQp7LEYszDFCN0UvxNrcXlz47s6Exx6DQsAvVs7H2UV5KJigu7RjFRRFbOrsw/NN7fhva1fS7iKDKXkOz56xNCvCrv+1duFTWw4kXCdbmr2LjGFrtxX/bOrAyy2dYy44znPAL1cuwKdnlqV4CweM93zmuN2JC97ZCVeCcHsi76BnmhdPteOOHTUIJTm1v6GqBI+vWjih4Wa7x4uPbd6LE3J4NyRAuGovFMV2FGpUeOnslViQY5iyF2U1DQxPv87w17eArqhGeZecDjg37MVhb/yWep+sKsWv1yycgK2MdcrlwelvbIU3JIIxwPXmIgROSjenOK0fZTfsw77rV05Ya6R4JnqfEUWGB5+Jre+zYQnw0kMcCswcPMEQNry1LWGr2cnqsnqgy4W19/jha5Vu2nN6qbC4YBoYwEMn8Hj13KnXFTqsvYfhla0ML7zjxpeu0eGqM6fOcSYeCn+ywGR9+R3rd+IXRxvwUnMHxnKNeVZhLr66oBpnFFhS2nQ8JDK819mLP9e14I327jFtW9jl5YX41eqFEz6KSar8p7kTt26LXztGyXGYn2NApUGLKr30U2nQoUqvRblOk9am3sOx+gL4oLsPmzqkrlyNKRoWe12+GS+fszJrasaEMcZw89aDeK01fgHATKUVeCw0G7HUbMRiOew5zWSAeoL3qcl2wGrHZe/tgnsEQck8kx5nFFhwRqEFZxRYMqa49RGbA/9oase/mtrRMcZi3jwHPLVuCa4oTzw0dyZ5+NBJ/PxoQ8J1/nrGUlw2wXfYR+qIzYEXmjrwYnMHWsc52p6S5/CH0xen/f1LxfnMv5ra8bkdhxOu89s1C3F9VemYXj9bPdfYJhdqTbzeTTPL8IuV8yflhle314+r39+DwzanFCC8tRCBWumiV2p5sBuCxYNclRIvnr0Ci3MMUyb8sTkY/vEe8PTrDDuPDl3+nc8AmtUN+OnR+rivUaHT4IOL1k3aOetPa+rxSE0dAIAFeThfWYZgm9RyhM9x49avtOAP505urbuJumZqbGf4+zvAs28xHI0qAXjLpcATX+GgVkmfrx8crMWjxxrjvs5HSvLx3IZlk1an8p1GKy65j0ewW6rfyue4Yfz4HvD6gXOBQo0Kb563BpUG7aRsYyoxxnC4HnhlC/DKltjP4o0XAX/5ZnYfZ0aCwp8sMNl3Pk46XHj0aANeaOpIejdpOOvyzfjqgpk4pyh3XAe3To8Pf2tow18aWnDKNb4T3bMLc3HL7HJcXlaY0YWBR+L27Yfw4qmOUf8ezwFlWg2qDTpU6rWoMmgj0yq9FhaVctz/bXwhEbt6bdjUKXXl2m+1jyusG06RRoW3L1g7qUNJj0enx4f1b26DNUELrslmUAhYYjFiidmEpRYjllhMmGPUZV3Yli6vt3bhxi0HRt1Sco5Rjw1yEHRGgQVF2okLg7q8Prx4qgPPN7Yn7Lo2Eiqew+OrF+LaypIUbd3ECIkM136wDxs7e+OuY1Qq8O4FazKmjkyL24uXTnXghaZ2HBlh4eZkziy04OFl87BoAgZvSNX5zFd2H8Ez9a1xl+sEHm9fsDYtQyZnoj/XteAre44mPQbdPrsCj6S4iPdoWX0BXPPBXuzts4OFOClAaJW6ifImD4yf2A1e54dJqcALG5ahwGnL2vBHFBne2ysFPi+9DwzO1lVK4MoNwBc/xsE4w46PvLsr4Xn2K+esxIZJ7FIbXfwZAESvAo4XV0G0SsdHoagfmx7jsaF08lqJpPOaqc/O8M+NwLNvM3w46L5ruLDzfdcjcu5cY3Pg3Ld3xO2CqVcI2HbROpTrJzdUefpwJ257QAfRJr2PfK5TCoA0A61I5xj1eOO81bCos6/Lvj/A8P4B4NUtDK9sARrjXDItngkceJrL+uvCZCj8yQKTHf6ENTrdePRoI55rbEval3w4K3Nz8PWF1bigOH/EHyyRMXzQ1Ydn6lrx39auMf3dsFyVEp+sLsXNM8swK0NO5FPB6gtgw1vbxtztLR6jUiG1FIoKhKqStBpijOGo3SW37OnF1m7riFpEjIWC43BRaT6+v2RuRgwlPR4vNLXjjiR3sidKrkoZ021rqdmEKoM267pFTrRfH2/Edw6Mb8jbOUZdpGXQ+gILSrSpDTS9oRDeaOvB841teKejd0xhfjQFx2F9jhY/XL0YC7KsaHdYn8+Pc9/eESlGO5zZRh2unlGMIo0aJVo1ijRqFGvVKFCrJqTbTLhw87/kws2pOGmbY9Tj2spifGJGyYTezU3V+Yw3FMJF7+7CoQTB5VyTHu+cvwaGLG3ZO1J/rG3G1/cdS7reF+ZW4sGlczLiwsYeCOK6D/ZhR48NzCfA8dJKhHql8FEosMP4sb3gVCHoFQIenVWMjy8+LavCn4Y2hmfeYHjmf8CpYcpoLp8D3HIph09eAOTlSF2Dznl7B2od8etZ3Tl3Bh5eNi+NWz0yb7V14/oP90eeh+waOP61Cswt3bzIn9eH1t/mQqWcnPcr1ddMXh/Da9ukFj6vbweG61V75hLgWzdx+Miagc9WSGS46L2d2Ntnj/vaP1w2D3fMzYzSDD/Y1ozvPZQL0SF9HwhF/TBeuQ+caqCL7fwcA84ssKBUp0GZ/FOu06BYo8q4m4FWB8P/tkute/63A4hXKm7pbODy9cCqme247KwSKBSZ9e9IBwp/skCmhD9hzS4PHjvWiGcbWsdUc2SZxYj7FszEJaUFcS8oe31+/L2hDX+pb0Wd0z3sOiO1Lt+MW2aV46PlhWkZyjQTvNPeg2vlkRgmQrjVULi1UIVOizqnG5s7e9E5xm4jIzHXpMc5Rbk4tygP6wssME6Rk/qRFPBOJZ3Ao8qgw0yDDlUGLarlLoHq/j6snTMra4qEZxLGGO7dcxR/SdAaYbRmG3VYX2DBhgIpDCodQ+s2xhh29vbj+cY2/Lu5E/1jrAcTbanFiOsqS/Gx8kK4O9sz5rtprPb32XHJe7vgE0cXVPMcUKhWoUirRrFGHZkWa+UfjRpFWhUK1KM/MfaFRLzV3j2uws2DFWlU+PiMYlxbWYIlZuOkhACpPJ+pd7hxztvbExa3v2ZGMX63dlFGBB7p8JvjTfj2gRNJ1/vK/Gp8Mw2jt42HMxDEp7ccwPtdfRCdatj/tQrMKR3jFDN6YbjsADiBQc1zeHb9Upyf4UVn3V6GFzcDT73OsGmY07G8HOBTF0ihz7I5se/DA/uO43e1p+K+9lyTHhsvWJsxhcw/9eH+mNEug90GOF5aCQSkc7LzznPhne8asvYYI4oMm/dLgc+/Ng8fHMyvBG68iMMN5wNVJUP/nb+vPYX79x2P+zdW5Jrw5nlrMmZQAcYYPvdWPf70aGkkyFOU98Hw0QPgFIm/G3kOKNaoI4FQmTYcDqlRLs/LV6vSfhOxvo3hlQ+lwOf9g0BomK8GpQI4exlwwdoQzlgVgDE3CJvPj7q2dmjMuXAEQ5iXo8c5RXlp3dbJROFPFsi08Cesze3F48cb8Zf61lEXBgWkUTnuWzATV5QXguc4MMawvceGp+ta8EpL57hOdk1KBa6vKsHNM8unTbPvZM3gs1GhRoWzC3NxdlEezi7KRVmWdu0aiTa3F+vf3DbmYq2DWVRKVBu0qJZba8006qSQx6BDkUY15KQsU48z2SQgirj2g33Y3NmXltefadDijIJcbJBbBiX6PJxyefB8Yzueb2qLjLAzHsUaFa6pLMF1VaVYIB9Tp9I+82x9K+7efSQtr81z0tDMxVGthgZaEQ3Mz1ersKvXhheaOvBKS2qCOoNCwOXlhfjEjBKcVZg76Rcaqd5nXm7uxC0J6t4BwKMr5+PmKTRccVAUcbTfhRdPdeDx441J1//Gwln42sKZ6d+wMfAEQ7h56wGpJWKfHo4XV4L5pG4lqnnt0F1wBBwndS29ekYx5hj1mGPSY7ZRh2q9bsLrFg7GGMP2GuDp/zH8413AMeheJc8DF6+RAp/L1yNSBybaB119uHJT/JGgBI7DW+evzqiCu01OD9a9uTXm3D9wKhfO15YCovSefPf2EL5348R3ERrrMYYxhoN1wN/elmr5tHYPXackD/jkBcCnLuSwbA7ihlstbi/Wv7E1bjAtcBw2Xrh2QrrajkZIZLjixeP43++rI59DZXU39BcfAieMLy5Q8RxKtZqogEgd03qoTKdBjlKRNDAMiCLsgSDsgSBsviB2HGV4b4eAbbuVaGkdfn9TaILImWWFuroHYnk3fIrEZRZumlmGX66auoMGUPiTBTL9BLvT48Ovjzfh6brmMXXxmWfS44ryIrzS0onjCYZwHYmVuTm4ZVY5rqoomrIjDMXjDARx9ft7sau3f7I3Zcy0Ao91BZZI654FOZNz52iyvHiqHbdvH3n3rxKtGtUGLar0ukjQE56OdsjQTD/OZAtXMISv7TmKf54aW4200ag2aCP1gs4ozIVJqcArzZ14vqkdW7rjjxYzUlqBx2VlhbiuqgTnFOYNCQ6m2j7z5d1HUtpya7IoOA7nF+fhmsoSXFxakFHfhenYZ+7fdwy/r22Ou1zN83jr/DVYbMmsC62RYIyh0eXB3r5+7Om1Y5/VjoNWOzwjPNf67uLZuGd+dZq3cnx8IRG3bz+E11q7EGzLgePl5UBI2mc1KxugXTd8AWSB41Cl12KOSYfZRikQmmvUY7ZRjzz1+GsWJtLew/CXN4Fn/sdwbJgGO3MrgFsu4XDjRUBZQfztsPsD2PDWdrQk6Hb6fwtn4v8WZt5Ipj+uqcOPa2LfG9/RYrjfHRiJ7O/f4XDDBRN7DjfaY8ypToa/vy2FPoeHqf9v1AFXnw18+iMczlkGCELif89IWnJ/+bQqfCdDR5J0B0M4+9mj2P3XuZGWXNFBbDrpFYIcEKlhUioiIY9DntoDQbi9QKAlF4GGfAQaCsA8w48ux+e4oazuhrK6B4qSfnD8yM/HrqoowlPrlqTqn5VxKPzJAtlygt3j9eO3J5rwx5PNCZthp5pBIeCayhJ8ZmZ5Vp7cpZIzEMTva5vx39Yu1NqdcKap3k6qcACWWUw4pygX5xTnYXVezpTtmjdSzze24eHDdWhxeyFwHCp0mphQp9owUHsplRd12XKcyRbdXj+2dFuxpasPW7qtODbOYHskFBw3rrpoYesLzLi+shRXVBQlHFVmqu0zvpCIyzbuSlijIZOtycvBNZUluKqiCHnqyR1uOZ507DP+kIhLk7xvFpUSK3NNmG3UY67ccmSOUY/CYVpBTqZOjw/7rHbs6e3HPqsd+/rsYx4M4OFlc3Hn3MoUb2F6BEQRd+44jJeaO+GvK4Drf4shnSEA2rOPQbN4dKGsRaWMvMdzjDq5tZAe1QYtlGPc7/wBhle3SK183tg5tEuJQQtcd57Uymf9ovitQqJ9cWcN/t7YFnf5cosJb5y/eszbnE6eoFT8efCorZ5dVfDukMIqhYLhrZ/xOHfFxH3GRnKMsToY/rVJCnw27x+6XCEAl6yVAp/LzwC06pFvf7JReKsNWnz4kXUZ04VvON1eP9b96Tjq/jk/0pJLObMLQoEDnCoo/4SiHsvP1UFAEFMeEokuFQKN+VLg05wbCYdjMQjF/VBV90BZ3Q3e4h7zdpxXnId/nbViXNucySj8yQLZdoJt9QXwRG0Tfl/bnLIuLMNZYjbiM7PKcfWM4ilT+yVVwvtMTkkpTrl9aHC50eT0oNHliUxb3N60t0wYTqVei3OKpK5cZxVakJuhFymTiTEGT0iEkucm7KQv244z2abb68fWbiu2dlvxYbcVR1M0UlOqVBu0uK6yBNdVlo64APBU3Gda3F6c9/Z29Pgyd/S9aHOMOlxTWYJPzChGlSHzC9+na5855fLgnLe3w+Yf3TmHUamQwgGjHnOMesw2SY9nGnRQp7lLkT0QxAGrHXt7+7HXasfePjtaE7QAGY2frTgNt86uSMlrTZSQyHD37iN4rrEN3oPl8LwfLm7MoJzZDU4bAK8JgNP4wWkC4DQB8NpA5DGnDia92FNwHKoM2kgwNFvuRjbHqIsbmB44yfD06wx/exvoGaZh9drFIj56nh/r1vggKoJwBEJwBoNwBUNwBkLSNBiEMxiCKxiEMxCCQ35+IsFNAY3AY+OFazHPlLmlC95s68YNUcWfAYAxwL3xNPiPlAEAcvTAB7/msHjWxARA8Y4xPj/Df+XCzf/dDgyXqa5fJAU+15wD5JtHv702fwCnv7EVXQlqX7509oqsqCdz0uHCmU/Wo+PV+QAbxbGQF+OHQ6ogkCg8UgWlz7EqCNGqg7+xAIGGfIQ643R5VISgnNELZVUPlFU94HWp+d5elZeDt85fk5LXykQU/mSBbD3B7vcH8PvaZjxR2zTqE7J4tAKPj88oxmdmlmNFrimj7thlkpHsMwFRRKvbi0aXB41OD5pcHjQ43fLUk7LgLkepwJmFuThXbt1TnQUXKNNRth5nslWvTwqDtnRZsaXbippJCINMSgU+VlGE66tKsSYvZ9TH06m6z9TaXfjs9oM4bMusgC6sUKPCxyukws1LLZNTuHms0rnPDHchOlY8B8zQaSP1ZaJbkBSoR99ayBcSUdPvwL4+u9SFq8+OWrsrJSO3ReMA/HLVAtw4syzFrzwxRMbw9b3H8FRdCzxbZ8G7t2rkv8wxcOoAODkQ4jUDwRCvCYDThkOjIHjNwONwd5BcubXQbKMeIY+AA7uNOLYrB9a2oecsvMEL1WntUM1vh5Az/ppqw8mkkaASueGDfUO6ODGRg+u/SxBoygcg1cq5cBWQY5DCoBw9hxwDYA4/j8yXHmvVI2s5NZzoYwzA4YODcuHmTcBwh/R5M4BPX8jhkxcCM0vHdyy9d/cR/DlB1+EbqkrwmzWLxvU3JlK9w42r/9SB/S9XxGltM/E4nQ/K6h6oqruhKLcmLUY9FnNNemy/eH3KXzdTUPiTBbL9BNseCOKpk834zYkm9I7xbuppJj1umVWOaytLkDPKWibTUSr2GZs/gMZIayG3FBLJLYeaE7QaUvIc1uSZI617lltMk15klCSX7ceZbNfn82Nrt03qKtbdhxqbM+UXhoBUJ+P84jxcX1WKi0vzx9XNcqrvM/UON+qdbnR4fOj0+uSpH+3y806vD4EUjMI1EgaFgI+WFeITlSU4q9CSccPqjlS695nvHagdURHk8TApFYO6E0nhULXcWkhkDLUOlxz0SGHPYZsjJSO2JcJzwG/XLMK1lSVp/TvpxhjDtw+cwG+On4Jny2z4DlZEup6kA6eOaj2kCYADpK4lg/+mEIJyZjfU89uhKO8Dl8aP4JmFFvz77JVpHx0pFRqdbqx7Y9uQ0RJZgIfj3ysR6jKN+jUVwkAgFC8gGhIgyfONWob9R9qw+UgpnnsXaO4a+vpFucAN50utfFbMHXvQFG1rtxUf3bg77vI8tRLbL16fsV1yEznZFcD7J3xo6guipT+Ajv4Quuwi+pwMNhfgcnMQ/QKYXwEWmSrAfIqUfHaFPAeUcncuodCR9tpDJVo1ai4/K71/ZBJR+JMFpsoJtisYwtN1zfj18aaETSLD1DyPKyuK8JmZZVibb86qu5uTLd37zOBWQ61uL7SCgMUWA9blW2CgbnhZZ6ocZ6YKqy+AbT1WfNgldRU7ZHOMKwxabDbiusoSfKKyGIUadUq2cbrvMyJj6PMF0On1RQKhcEDU4fGhI/J8bCGRguNwnly4+ZIMK9w8VhPx3XTlpj3Y3mNL+WsnE24t1OsPwJHGLu/DsaiU+PXqBbikrHBC/266MMbwl/pW/OJoA07Z/WAeJUSvEkz+Eb1KMI8q9rlXGVkvXKg2FYRCO1Tz26Ca0wlek/731ahUYMtHTke5fmTdbzPBjw7X4SdHhhbmFt0qOF9fjFCHeeI3ahC9Fvj4WVIrn/NWAApF6q4pfCERZ721DbWDh3uL8uTaRbgmy4PZeEIiQ6fXh1aPF61uH1rdXrS4vdLU4UOzLYguuzg0HIp6jsHPlXKXruoeCKbUdIcFpNaRRqUCpqgfo0KA4PehxJyDHJUS+WoV7pqXHfXSxoLCnyww1U6wPcEQ/lLfisePN6Ld4xuyfLZRh5tnluOGqhKqBzNGU22fIelH+0xms/kD2N5jw4dyAelDNgeS5QlFGhU+MaME11eVYGEahpSlfWZkRMZg9QdiAyGPP/K4w+tDpzzVCQLm5xjw8YpiXFVRhHzN1PoOnIh9ps3txWUbd6PJlZ7uOJmgQK3CilwTlueasCI3BxsKLVNysIRQKIQ9J+vhybGg3unBCYcbJx0unHS4ccrliRuIsxA3EAx5lENDIjk8innuG2hVzmn9UM3tgHp+G4T89Bfrj/abNQtxQ1XphP7N8fIEQ1j/5rZhP3OMAXCr8KeVK1CmMKDfCfS7pB+bA+h3Mel51PzwY5sT6HcyhMSxBTUcz1A5z4l16zy4cB3DHIsaFTotSnXqlNZTfORwHX46TPgVdm5RHv511vJpfRPbHxLR7gkHRAM/LW5vJDRKVtx+uOBmVD8qJQwKYUiLuul2LkPhTxaYqjulNxTCPxrb8VprFzo9PiyxGHF9VSk2FFim9QEyFabqPkPSh/aZ7NIfCYOklkEHbHaITCoSemlpAa6rKsW5Rblp7R5E+0xqMcam/HffRO0znR4fHjvWiLfau9Ho8iQNSjOZQSFgmWUg6FmRa0K5TjPl9xUg8f7iCYbQ4HRHAqFauxQK1TpcYxpxlokcmE9qfcAbvOCEid9prq0swRNrFmble/tGWzc+maDm1opcE57bsBxWfyDy0+eLfuxHnz8Amz+IPr8ffb4AbP4AXEERCPKR9ybcnWjI46h5YIBiRh9UszuHLQLMASjWqlGh06BCr0WFToNynQYVeg3KddLzkbZgP9bvxNlvb4/bulMr8Nhy0bqsKMg/2VzBENrcXrR5vPCLIoyK2PDGoFSkpSvkdDuXofAnC0y3nZKMH+0zZLRon8luzkAQXV4/ynSatI9SFEb7DBmtydhnfCERDU4pFDjpcKPW7kKtHBKkc0TSsVDyHBbmGOSQJwfLc02Ya9RP27p5Y9lfGGPo8PpQa5dCoRNR73uL25uWWmrjNdOgxTWVJfjq/JlZ/V5f/8E+vDWo+HO2MqsUqJCDoHK9HA7ptKjQS9N8tRIMwGUbd2NHgm6m318yB186rWqiNpuMwXQ7l6HCHIQQQkiWM8h3xQghsdQCj9NyDDgtJ3bIbMYYun3+mDDopNyKpGmCWgvNMeoirXmW5+ZgkdkwJbtvTSSO41Ci1aBEq8FZRbkxyzzBEOqdbikQsoffc+n9d42itZBW4GFQKKBXCDAoBegVChgUQsw8Y/ixQiGvE71cqjMSnqeaoMA+3R5ZPg+bO/uGFH/ORjZ/EDa/A4dsjmGXawQe+WoVWtzx69EsMRtxZxaM2EamFzpTJIQQQggh0wrHcSjUqFGoUeOMwtiQwBcSUR9uLSSHBLVySDDWYs4lWjVWyq15VuSasMxiotFLJ5hWIWCh2TikBhpjDO0eH2odLrS6fVDyHAwKOdSJCm6MCgE6hZC1o+2lW7VBh7tPq0pY/2aq8IbEhMEPzwG/XLWA9hWScSj8IYQQQgghRKYWeMzPMWD+MK2Furz+gS5kUbVmmqIKEOcoFTE1epbnmlCi1Uz8P4SMCMdxKNVpUKqj92i8vnxaFZ5vasMpV+pGaMpGd8yZgWW5ox/mnpB0o/CHEEIIIYSQJDiOQ5FWjSKtGhsGtRbyhkJoc/ugEniUatVpKUxKSKbTKgT8cNk8fHrLgcnelElTodPgG4tmT/ZmEDIsCn8IIYQQQggZB40gYKaRRvQh5JLSAlw9oxgvnuoY92vlKBXIVSthUUk/ufLUopYe56qVMMvzc1Uq5CgFtLc0Q5FfhFavD80uaTjxFrcHzS4vmuUhxoNpHO/oZyvnQ6+g2l0kM1H4QwghhBBCCCFk3DiOw69WL0CJVo2/NbTB6g9AJ/CwqFWwqBTIVamkICc61Bkm4DGrFKOumSOKIqw8j0qjDnMGddsMC4kMnV4fmt1yMOTyoNntjTxvdnngHEUB8GjXzCjGhSX5Y/pdQiYChT+EEEIIIYQQQlJCIwh4cOlcPLh0LoKimFGFjwV+oMbT2mGWM8bQHwjKrYbkYMjlRbPbI7ci8qLL6x/yex8pyccvVy1I/z+AkHGg8IcQQgghhBBCSMplUvAzEhzHwaySupMtthiHXccbCkWCIEcgiCq9Lu66hGQSCn8IIYQQQgghhJAR0AgCZhv1mG3UT/amEDIq2RXFEkIIIYQQQgghhJBRofCHEEIIIYQQQgghZAqj8IcQQgghhBBCCCFkCqPwhxBCCCGEEEIIIWQKo/CHEEIIIYQQQgghZAqj8IcQQgghhBBCCCFkCqPwhxBCCCGEEEIIIWQKo/CHEEIIIYQQQgghZAqj8IcQQgghhBBCCCFkCqPwhxBCCCGEEEIIIWQKU0z2BhBCCCGETEchnwjbTiu6N/aif18/RL8ITakGljVm5J5ugXGBEZzATfZmEkIIIWQKoPCHEEIIIWQCMMbgqnWhZ2Mvujf1om9LH0Ku0JD12l/qAAAoDALMq8ywrDXDvNoMyyozFEY6dSOEEELI6NEZBCFkVAL2IBxHHHDUOGCvkaauky4wEdBVaqGfrYd+th6GOdJUP0sHhYEONYSQ6clv9aN3cx+6N/agZ2MvvK3eEf9u0BlCz6Ze9GzqlWbwgGmREZY1FljWSqGQtkybpi0nhBBCyFRCV2QEABB0BdH9bg86XumEdbsVvh4/BJ0AhV4BQS9AoRegMCggGATpuUEBhV6AoFdAYZCn4XXk9QVDeJk0n1dSialswkQGd6Mb9sNSwOOoccJe44DnlCfu79gPOWA/5BgyX1Oijg2F5GBIW64Bx1OXhqmOMQZ/jx+eFi+8LV54Wj3wdfgg6ASYFptgWWOGKk812ZtJSEqIARG23f3o2dgT6c4FlqoXB+wHHbAfdKDpj6cAAJoyjRQErTHDstYC4wIDeAV93xJCCCEkFoU/01jQEUTXW91of6UD3e/2QPSIscv7gwj2B1P293gVByEcJkXCI/mxSQHtDC30M3XQz5JaiyhzlCn72ySx4VrzOI46h+2OMBbedh+87T70ftAXM5/X8NJ7Pri10Gw9lCY6PGWLkCcET+tAsBMJeVo8kfmiT0z4Gvo5eljWmpG7VmrRoJupA8dRMEgyH2MM7gY3ut/rRc/GHvR92IegMzXHzpHwtnrR/lJHpKuYoB/oKmZZQ13FCCGEECKhs4FpJtAfQNcbUuDTs7E36QVZKol+BtEfQMAaGNH6qjwl9LP00M3UDQQEM3XQVVM3orGKac1zxAnHYUfS1jzpJHpFaTuOOIcsUxephg2FdDO0VAB1AjGRwd/tjwQ5UrAjBTyeFi+8rV74e/zj/juuWhdctS60PNsKAFAVqORuLRbkrjXDtMRErQdJxgj0B9D7fh+6N0lduTxNk3MMHU7IFULv5l70bo7qKrbQGGkZZFlrhracuooRQggh0w1dQU8Dfqsfna93o+PVDvRs6gULpKr9eXr5ewPw99pg3WkbskxdrIZ+li7SUkgXnlZpIWiEid/YDBRyhmDdYYPziDMtrXnSzdfph6/Tj74t1pj5vIqDrloH/Rw9TAuNMC02wbTECE2pZtq1FGGMgYUYWFCeRj8ePC/IwMTY5WKIASEGMcgQ8oZgq+mH31sHb6QVjxTuTGRIHObv9qPztS50vtYFAOC1PMwrc2BZY0Hu6VLxW6VpercOZIwh2B+Er8sHX7cfAVtgZN2LRvgxSfZ5YhDhCXrgN/ihzldP6c+fGBTRv7cf3Rt70bOxF7Y9NmDiPxZjIw50yW36UzMASCOKyS2DtBVaKIxSC1ylSZoqTArqOpahRL+IgC0g/fQHAcagyldBXaimG2OEEEIS4hhj2ZEETGOiKKKpqQmVlZXg+ZGdjPm6feh8vQsdr3ai94M+sOA0eZs5QFuugW6mXm4tpIN+phQO6Sq1Wd1yIOQOwW/1I9AXgL9PakHl75OfWwPyVHru7fLB2zzyoqJTgTJXCdNiE3KWyIHQYiP0s/QZ30qIMQZfpx/O407p54QLzhNOKXTxM7CQGDewyZqLz3TgAOMCg1T49nRpWOyp0JqBiQwBWwC+Lj98XT74u/3wdfvg6/IPeezv8UH0Z8axXZGjGAjjq+VgfqYOupk6qHKzr56TGBThOeWRWvds7EHv+30I2lPXDTqawqRA/tl5yD83D7pKHWx7+2HdaYV1py2lXa9HS9AJw4ZC0mOl9Ng4MF9hjF5PCaVJAV4V+507lvOZqYYxhpA7hIAtiKA9gIAtGBXmSIFO0CbP75fnhdfpDwzpoh9N0AtQF0pBkLpQDVWBCuoidcw8dZEKqnw1BHXm//dP1f7CGEN/fz86OjqS/nR3d8NoNKKwsDDyU1RUFPe5xWLJmuA7YA/C2yadG+pmaCHopt7NUjrGZBe/34/Ozk60t7ejo6MjMvV6vTCZTMjJyUk4VSrHfxNwuu0zFP5kgZHulN4OHzr/24mOVzrRu7Vvel8YDoMTOGgrtZGLEoV8Ysqr+dipih9mPidNlcOsr+bBKbkRf/mzEEOgP3mAE/3Ybw1A9NIbOlqCXpBbBxlhWmKCabEJhtMMk3LSyxiDt9UL53EnHMddcB53wnXCBcdx56Re4E0lmlINLKdLrRlyT7fAuMCYEeEfCzH4+/zwdfvh75IDnG4//HKLnZhQp8c/5cJ6pVkRCeQj3XjloEhpntjWW0xk8Pf64evwwdvhk6de6XF7eJ4Xvi5/6oo0D8IJHMwrc5B/Xh7yz8lHznLTsK1smMjgPOGCdYcV1h02WHda4W7InO5lI8Fr+NiQyKiA1+eFRqORzlEYwCAF2YxB+r+ox0yMmiJ2HhiGfcwAQJTnMem/Nydw4BQceIX8WMlLz+X50T+8QlomrccNWo8feB3FwOtySj6yTsgTGghr7AEEo8Mdu/Q4E1pgK82KgZCoKCocGhQYqfJUk3YcTXb+6/V60dnZGRPehC8eB//4fL60bKNCoUBBQcGQgGi40KiwsFDa99Mk5BPhafbAc8oDd5MHniY33Kc88DRJzweXXdCUaaRW9LP00s1SueamdoY2K1r+BfoDcDd6pHIGdXacOtqMU7Wn0NXdBXO+GeaSHJjLcmCeYYF5hhl51bmwzLRM+1bD6cYYg91uHxLoRE/b29vR0d6B3r7ecf0trVY7opAo0TK9Xo/m5mYKf0jmSPTl52n1ovO1TrS/Ko3Sla6TVZKcFA5xw4dDAoeAIyiFOiPtmpGhOIGTulwtMsK4wCBPjeA1PFwn3XDVuuA86YJL/nE3uDOmdQIAcEoOxtMMkdZBpiUmmBYaU1YQlYUY3E1uqQXPcSecctDjrHVlTZe7qUJhEGBebY7UDspZYgIAiD4Rol9EyCeCBcTI84Epk6b+wfPD81ic+bHPg46gFO70+CmMj0OZq4S+Wg6FZunkVkOjL/rPGEPQHpSLy3uHhDuR552+Sbnw1lZqUXBuPvLPzUPembljHtDA1+mDdacUBFl32NB/wD7lwkKSYXhIgVC4JZEcEKkK1FDnq6AqVElT+ScVLawdDgdaW1tx6tQpHDx4EMFgcEjI09HRAZvNNv5/n0zBK5CnyUeOIgce0QOr3wqnf+jopeNlMpniBkRFRUWR50VFRTCbzTE3FlmIwdvhjYQ5kWDnlAeeRje8Hb6UnF9yCg66Kl1MIBSeqosnrosvCzF427zoONyJhgMNaDrWhOb6ZrS2tqK9px3dnm70ij3oFXthYzaII/ii5cBBzamhVWihVemg02ih1+uhNxhgzDHAaDHCmG+E0WyETqeTlo3gx2QyQaeb2gNVBINBdHV1xQQ5bW1taG9uR1tzG9rb2tHR3Ymu3k54/dnV+8BgMODyyy/H3//+98nelLSj8CcLDA5/PM0etL8qtfCx7bKl7O8IegGFFxWg+PIiFJyfD17JI+QOIegMIugMIeQKT0MIuqLmuUIIOeWpS1o/5JTWkZ7Lj50hsBDtbtlEmauEaaERxkVGabrQCMO80bWcEYMiPM3eIaGQ66QLvs7xFwpOCQ7QzdQhJxwILZVaCanz43dXEQMi3PVuOKK6ajmPS0WLJ6NGTqZTFaqgLdNAW66FplwDTbEargY3rNttcB4bWvCbEFWeMhIG6eQab2CAt90bFexILXW8Hb6E3WEmmsIgIO9MqStX/nn50Ffr0vJ3Qp4Q+vf1o2+7LSO6ihGitCjlGkRSGCQFRFJQpMxTwqlyoCfQg053Fzr62tHa2oqWlpaYqd1uT9n2WDQW5CpzYeEsyAmaYRbNsHAWWPhcWHiL9MPlwsAZhly4B5gf/awfVtGGftEGG5OmVnnaz/fDzvXDKlph9VsRYqm9waMUlLBoc2FRmJHDzDD5TMhBDsycBWY+B2beEnmcw5khcOnvxiXohZgwKHo62pacoVAIrXWtqNtbh8ZDTThVewotTS1o62xDR18Hutyd6A31woPsaPEoCAJycnJiWpZE/wyeN9w6RqMxpa1PGGNwu91wOBxwOp3DToebZ7fa0d/dD4fVAbvdjj5HH/pcfWApunutgiryGczl5CmfG/lsqjk13MwNN3PDxVzyY1ec59J6HuYeUQAYz8VLL8aT9/4eqlwVii8vSsm/MxNR+JMFRFFE7ZZaCHuV6Hy1E/37UvelqDAqUHhxAUquKEb+uXkQtOn74mCMQfSJcngkh0Ty1Nfug6veDVe9C646N9z1boTc1EpiooRb8xgXGqRuUnJrnnTf4QnYA8O2FnLVuzOim5umRC13FzNCV6mTWvQcl4IeV52b7rjLeC0PbZkW2nINNOUaaMs10JZpI481pZqEhdj9Vj9su/rRt126eO3f208BGskuHGBekSOFPefmw7wyZ1JqzE2FrmIkO4VYCFbWhx65JUaP2IMesTvyuFfsRa/YgwBGNuJrIjqlDrmqXFj4XJhFM3KC5qggR76I5HORw+VAwU1MEWzGGJzMiX5mg03sh41ZYYuERv2wiVb0Mxv6uX7YRBucodTf9DBxJph5M3I46b+HmTMjhzfDIk/NvAUWzgwNp4EIBgZRmjIGESF53sB8kYXkZ+F54sBjNnSeYBKgKlFBVayEqlgFVZEKyiIlPKJ7oNVOSyvau9vRae9Er693XBfrAMCDh5kzI4/PQx6fjzw+DyYuBwEE4GVe+JgXXnjhZV75uQ++qOde5oUP6ekSOFZGozFpaBQIBEYU5DidTkzkpb6JM0UC1cGBjoXPRS6fi1wuFzou9a2kGGPwwhs/LBKjwyLXkHBpjWoNPqu7HUqLEheePC+l25ZJKPzJYM5aFzpe7UTHKx2wH0pd01OlWYHCSwpRckUx8s7Oy8iif4wx+Dp8cNVJgZC73i2FBPUuuBs9dGE4DjGteRZIU8NcfUaNksZEBk+LVwqCal1w1g4EQ972zPqSng7UReqoYEcLbVnU43INlLnKlH6Jh3wi7AftsG6XLmD7dlgR6Bv/BQMhqaQp06DgPCnsyTsrFypLZha29nX5IkGQdYcN/QftGVFzhmQXD/PgZLBWDnV60BuZSqGOlVnHfSGvhhp5fD7y5Yt4aZofdQFpgZm3QMtlf3H/4VoV2SJTa6SFkRQa9Y/7v202UkMd2Qeiw53w43w+DxYud9wtnkQmwg9/TCDkhRwcDXnuG5gfFSINhAgDAUMwBUFnJtBAAyNvHBLo5PK5MMuBjvT5NEPJZeb34GjoZupwzq4zJ3sz0obCnwzUt8OKw/cdgfNo6u4KqPKUKLqsCMVXFCFvQ25Wj3rFQgyeVi9cdXIoVOeSWw254Wn0UNeyMAEwzNHDuHCgy5ZpYfpb86Rb0BmE66QL9hoH7AcdsB+0w17jmDb1dKTipZAKj8Y8BjghXKh00GMFD45HpFhpZLm8jBc4gAd8Si/yTyuATg51tBVaqEs0kx4QM8bgOumGdYc10jrIXeee1G3KCDygylNF6m+o8pXJi3SO8PA4klODkDeE/pP9CLaEEHRM/a5Ggk5A7oZcFMite/Szs7O+Q7irmHWXDe4mD4L2IIL2IAJ2afSpoD2IoEPq2k0yDCeNDqfMUUJplqaMMamQfJcPAVv6PocNwXp80X7XmH/fwBkiF/L5fD7yuHC4U4B8+WJ+uK5XRAonHMyBfmaLCousUWFRbHCUaS1ZBuPAISfSWicvEvZFwh1Oeqzn9Fm9P/iZf1Ag5Iq0MoluneJiLniUHngUHnh5j7Re0AWHzwGPf3QtNwVOgFbQQQMNtKIWWk4DLaeDltNCw2mg43TQhOdBmobnS+tooZOnWk4LNdQT0p0wk+QsN+GMd9ZN9makDYU/GchV78Lm1R+O+3VUhSoUy4FP7npLVlTuHy8xIA3P6wqHQnIXMledC54Wb/YWWuYAZY4CylwVVLlKaWpRQpmrlKfyfIsSqlwlFGYFOtwdqJpdNS0q17MQg6veDfshuxQGHXKg/6A9a1qLKIwKGObpYZhnkH/0MMw1QGlWDgp3Rj6q3Ghl21CXvi658O2OqVX4lhO4gXoZBSqoC9Ty43CR1aiCq5M4Cg8wsM/MmDEDwb4gXPXy8TYylY7B2RjMckoOmmI1NOVa5K41S125VpsnPQidSCzEpJp/kWAoKI1eZY+dF7QHEXTGhkeRZY5g9n7vpgkncFCaFVCYlTEhTuSxWQlFjjSV5iml73+zEgqjIuFnPuQT4ZdHDvR1+eQfP3yd0mN/tzy/0z/qrvV20Y4bbNcO/feAg4WzyBfxBVGtMvJjWvFouPSNckVieZkXVtEKm2iN7XIm9MOutsMX8oF5GDiRAw8eHCdNefDgwEWmHDjwnDBkLg8BPBdZA/yg/+e42HkqThUT6uTyuRPWHS/bBVkQHiYFQh6VBwGzHwGjH3ByEHp4qIPhcEeaKpHaltjTUf55eVjzz1WTvRlpQ+FPhvrwnK1j6uqlKVGj+PIiFF9RDMsac0YMc5wpQt4Q3I0euOpc8HX4EPINjMrDhozqwxKO4hMz3zcw+s9ILj55NR8JaaTwRhUb4oRDnVwllBY51DErR/VeZtuFfDowJo0SYT/okEMhB/oP2eFtmbwRCJS5ShhPM0A/Vw/j3IGgJxNaY2X7PhNyh2Db1y91Fdtpkwrf2jOjNQqn5KAuCI+Uo4rzWAp0lBYlOD47jtsj2WcYY/B3++VA3g13Q1RX3vpJCIZ4QF2ghqZEDXWxGppiDdQlamiK5eclUjHybHofMhkTmTTog0MKhfz2ADo7O1BcUgKe5wCeA8dhYBrzeLh5kN6X8HJenscNM09+/5jIwIIMLMQgBgYes6D0nS0Gws/Dy8RB60k/orx+5HmIgQXEmPXEAAOv4mKDG7MCiqiQR9ALk368B6RWtL4uH3zd4XDID390YBQ1ZQGpLszTnj/Bwucin89HPpdPF/IZhlNw0FZooJ2hg65KC90MLbSV4akOqryBYCAyGId8o9R1Up7WuSb1PGk0FAYBumqd9G+s0kFXpYN2hga9wV7kKfKkQQFavfC2eeFp9cLb5oO3zZsx5wbTGafkItc3Sot8LSRf/4SveQI2aYTkgFX+iXqezpapJVcXY/nvl6bt9ScbHa0zVPHlRSMOfzTlGpRcIQU+5pU5dMIah6ARYDzNAONphrT9DRZiwwdFAQaFXoAyVwlBlxknflMdx3FSEeIyLYouKYzM9/f5I4FQvxwKuU66Unp3Wl2kHmjJM3egRU+i0cPI+Ag6AXln5CLvjFwA0mfRccw50DJoXz8C/UHwKh68mpOn/MBUOei5ih+67nDrDDdVctJUI0BdoIIiRzFtP/Mcx0nBVqEauadbYpaFu6uEi/2HAyFXvRQSjTYYUuUpBwKd4nDAoxkIdoqloG06tILNFBzPQWlSQGlSAGVSYGhv6oe5MicrQ+apRGFQQGFQQD9Tn3A9xhgCtgB8nX6s7VottR7q8UvTbh/8kcfS80wadW84CpNCPiapIlNVgRrqInk4+1wlQl4R/l4/An0B+Hv98MvTQF8Avh4/An3SvMlo1aguVkNXqYWuUhcV7Gihq9RCU6IZ8Y1CXsFDX62TRiK8IHZZyBOCqyE2EHLLU3/vBLao5gBNqUYKsirlQKtqYDpcvUFRFOFqciK/Mi/uMSZgD8LX7oWnTQqGhgRErd5p0ZU5FTiBiwQ2qqjwJhLshG9qm6N6K1jGH4KLfhGB/oFQyB8dEMmP/YODI2sAgf7krVFVoxy1LttQy58M5ax14f3T43f90lVpIy18cpabUnphYffaYffawXM8eI6HwAtSs0+ehxB5zkPghMjj6Xphk6myvRXHRAu6gnAccaL/gF1qJXTIAedRB0R/4sOjplwDY7ibVrjL1lw9lDmZ+8URCAXQ5exCh70THY52dDg60W5vR5ejC339Vuj0OjAmjeQhMnnsDyZCHPwjDiwXmTjMOkxeL/46BrURlZZKVOdWoSq3CjPzqlGdW40iYxEdU7JAOo8zjDH4Ov1w1w/UdPO2esHxXCTIUZcMtNRRFaqnVZesbEXfTVNf0BWMhEH+Hjkgijz2R4VHPvj7Aim58SLohEiYo5JbVIbDnHDXWXWRFP6mcnCLkCcEf19ACoN6A/D3+SNhUSAqNIo87/UnPa9QmhXQVuqgm6GFrkoL7Qwp2NHO0EFbkXjkzIngt/rlIGigvEJ4OpZRegWdAG2lFvoqHbRV0r9VV62Twq0x/HtTdYyZ7gGRwqiArnogdNOUaaDKU8mtdKQAR2lRQWHMrhvaLMQQsMeGQr4+PzrrOmHkjQjagrCcbkHJFcWTvalpQ+FPBnt/w5aYos+6WTqUXFGM4iuKYFpsHPeHjTGGZlszDrUfwoG2gzjUfggH2w6i2dYy6tfiOA4CJ0TCovBjnh8uLJLX5QfWVwsqFBmLUZZTitKcUpTllKIspzzy3Kg2juvfOt3QCfb4iX4RzhNOqZXQYTsC9iDUBVEteubooTBkTuPJeKFOh70DHY5OdNiled2u7gkd9nMstEotqnKrUJ1bhercalTnVcvPq1FpmQGVglpQpQpjDP6QHy6/Gy6/Ey6fC06/Cy6/E26/G06fCy6/C055mTsQnueEN+CFlmlx1vyzsKpiFWblzaTjzTh4A16ITIROpZvsTUkb+m4i0cSgiEBvYEhLokhI1O2Ds9sFQ5EemiLNQCsdOcxRy11mM+m7OBHGGEKuUFRLIj/81gAEjSAFPJVaKE2Ze/MoEcYYfO2+IYGQq84N0S9CU6oe2nqnUgdVoSql4cFEHmNiAyIffO1eeNt98HbI03Yv/N3+zKx7xkkjVg6EbrqYsEdpmT61g6bb9xKFPxms9icn0f5yJ4ouL4S4MoS5582BIIwt8Q+GgjjRfSIm5DnYfgg2jy21G50mJrUJpTHBUBnKcspQaiqNBEQ5mpxpc6BKZrodyKayqRTqpALP8SjLKY2EQtW5cjCUV43q3CqYtebJ3sQJEQgFYHVb0efuQ5+7D73uXvR7+uXgxiWHOE7psd8NlxzYSEGOC26/Gy6fE06/C0ExNXcvzZocLC9fjpXlK7GyYgVWlq9EsWnq3j0bTiAUgM1jg9VthdVjg03+sXqsA4/dVti8Ntg8/QPPPTZ4g1KdjRyNCeXmcpTnVKDcXCY/LkeFuRzl5nKUmEqgFLLzApG+m8ho0P5CRivT9hkxIMLX6YuEQd72qJAoapqO7pKCXhi2y5y2UgdthZZay8oybZ9JNwp/MpgYFMEr+FHvlE6fEzUdR+SA5yAOth3Ckc4j8AUze+jH8dKr9CjNKUV5TpkUFJmkkCgcGJWaypCrs0ypgIgxBpu3Hx32drTbO9Bub0enoxMdjg5YbTZYzGYoBSUUvAICr4CCF6DgFZEfQX4urSPI6yigEAbWFaLWj5knxL4ex/Fy+CAVhmSDppCWDLuMYWBo6eF/d+B5eB2BV6DAUIBCQwEM6vTVcUonT8CD1v42tPW3oqW/FW39bWjtb0Wr/Hg6hTqpYtFaImHQzNxqVOVWRkKiUlNpxn2xM8bgDrgjIU5fONBxSYFOzLzwj6sPdp99sjd9RMpyyrAiKhBaXrYcJo1psjcrKX/QjzZ7G3pcvTEBjRTaRD2PhDvS1OV3pX3beI5HialkSChUniMHReYKWLTmSfuuY4zB5XfB7rXD4XOgX+5K7vA54PQ54bDaUVEyA3q1HjqlFlqVFjqlDlqlFlqlDjqVFhqFZkp9V5OxmW4XZWT0PAEPWmwtOGVtRrOtGaesp9DS3YKy/DLk6i3I1eUiV5cLi3bgsVlrhkLInNZijDEE+4MxYVB46gs/b5NaxQ2mKVFDW6WL6i43EPKo8lPbqmoihL8/RCZCr9JD4NPfzXG6HWco/MkCiXbKbmd3pDVPeHqy5yRdLMahVWpRaipFaU4JCvQFsOgssGgtsOjM8tQyZKpWqCd8OxljsPvs6LB3oN3egQ5Hh/y4HR0OeZ7c4iN8t3g60yl1KDQWotBQiCJ5WmgolOcVoNBQhEJjIYoMhRPWpSIc7LT2t8gBz0CwI/20oc/dNyHbQiQcx0EtqKESVFApVFAr1FAKSqgVaqgFFZSCCmp5vkpQQ6VQQiWooVaoYn5HJUjPpcdKqBTqIa+lUqghMjEm1LG6+9Dr6h0S9EynzzDHcZhbMBcrypZjZcVKrCxfiUUlCyf8OOvyu9BsbcYpm3TBMPhxu6M9q79H9Sr90HDIHH5cgVJTybD/zQOhAOxeB+w+O+zefji8Dti9dvTL4Y09atrvtUvLB61r9zkgsvHfxdYpdXIwJIdCSi20Kikk0kUFRVqlFnqVfmB+ZB0dNEqNdGElBhAIBREIBWIeB8QAgqEgAmJAeh4KICgGh30cEIMIyr8z3GuFH3McoOSVUAhKKAUllLxCeswroRTCN1uGfyz9nkJeVwmVEO91pN9R8NLNnXBNRj76R+5aL/1wkS74Az8D3fN5jot0zx/6GlxMDUgOXOSCkoM8jbrAHMm8kV6QjueiLPrzG/MYQ+ezQf1ypBta2XXRPFXZPLZhj9Hhx93O7jG9bo7GBEtUKGTRWZCrswwJiiy68GMLTGrTpIYDIZ/Uisjf44dCL0A7QwtBO7k1oML8Qb/03eBzwOG1w+lzyo8dcPiifmKeO2OeO+V50d8fWqUWBrUBepUeRrUBepUBBrUBBpU+ar4RerUeBpUBBnV4vkFeXy+vL/2eWjF0dF0Kf0jGEUURDY0NYEaGwx01kS5bB9sOosPRMdmbN+XplDo5DDIPGw7FC490St2wJw8On0PushMOcaRQp90xEOh02DvgDrgn4V879RlUhkhQVGgoQKGxCIWGAhTJUykoKkChoRBapXbY16Bgh5DUUQkqLC5ZjBXlK7CyYgVWla/E7PzZYz4JY4yhz21Fs+2UfCdYvmCIumigzydQZCxCkaEQ7oAnEuh4Ap7J3iwyTQ0OlCLzGBCeNVyIk47LGJ7joVPqoFNJoaNOpY96rBtYFv14mHl6lQ5aZXgqhZQ6lY5atskYY+hydsUco6XHp+TjdUtGtXIVeAFmrTkqIBoIi0waE4xqAwxqYyRwkJ5L88KP410bTAZf0CeFL34nnOGWmT4nnD7puV2eF/4JhzlOv0MO/gcCHX9oaKukwQRRgCaggSaggTqojjzWBDRQBzTQBAee84yHX/AjoPDDL/jhj54qAggI0c9j12F8/GOCglfAoNJDL78fepUUGvEhDoXmQhg1RhQZi3D/+f+Xyv/UGYXCnwwUEkM43HFYCnnaDkWmrkD6m5OT1FEJqkgYZFQbYfVY0WHvgNPvTP7LJCOY1CYUGApQZCyEXmVAh6Odgh1CJoBJbZK6i1WsjHQbK80pBSDdEOl0dg66YDgVed5ia6HjLCHZhAGagAY6v27IjzaghSAKEEQFBJEHzwT5uQBB5CHIz3lRkB/zMesqIst48KL8POY1BPCMH3jOBDCIEDkGkRMh8iJETgQLP+eGec6L0u/wYtQ6DIwTY34n/JqMF8ELPHhBgKDgwQQgpAgixIcQEkIICiGEhCBCQvTzgXmR53wQIYX8nJeXKQYeh4QQRF4EBmUNAi9AJSihDLdoFVRQ8ipoODWk/2mgZiqooYYKaqiZCiqooBSVUDEVlEwFFVNCyZRQiAooRCWUTAGFqJD/2wtQhATwIem/qd/nQ7/TDrvTDofbAZfbBafbBa/XAwQ5CGzgPQv//sA8YfgfFn8eL/IQeVH678mHEOKkqciJ0n8beZnIiQjyQWldLgSRDyHIS9MQN/D7IheSfycYmS/GvLb0OkEhgIAQjHocQJAPSvPkxyFFCEq1EiqtCiqtGmqtClqdBhqdFlqtBjq9HgadHgaNISpAMsKgGgiT9GoDAkG/FNT4pYDG7pWDGn84wHHEhDaREMfrgMvrhsfrQSgYitn/I58DJv03HJgvQBVUycGMOhLSSIFN/BBncMCjFCemVl2QC0ZCoYAghUVDg6RAJCwKzz+VdwpbZm9BlaUSB79+YEK2dTJQ+JOBHD4Hyr8/Y9KanCt4BSotUtM3URQRYiGIYggiYwixEEJiCCIT5WkIIVEatjl6WSqafBNCUk8lqFBiKkaRsVieFqHEVIJCQyG8/R4UFBZCIXcP4IZ0I+BjugBw4IauN2id6HW5qHUAoMPejvreBjT2NaKhrxENvQ1otDaOuRk3mdpKTCXQKDRo7W8d0V1GQsjEUAaVMYGN3q+HNvq5Txd5rg+HOvJ60mMtBJYZ3VemGhEiguFAgg8iKEgF/hWRkEaessypgUMAv+CPvF9SiBRAUAhFHgPcoMBGCjfD86IDzZhwhz5nce2s2olffOTnWFS8EFvv2TLZm5M29EnPQEa1ETNzZ6Kuty7tf8ugMmBx6WIsKVmMJaWLsaR0CU4rPG3c9RcYY5EQKCSGpAAp/FgUwQaFRXavHW32drTJXWba7G1R3Wla0O/NnGafhGSieKFOsbEYxZF5xXGLnk9Gn+fq3Cqsq1o3ZL7D55ACod4GNPY1oaGvAfW9DWjoa0CzrRkhMTQh2zcdqASV3ERdD71KagKtV+mgl58b5G4K+qj+9XqVDnqVASExiA+OfYiT9jrsa90Hh8+R1m1tt7en9fUnE8dxyNHkgDGRvu9IRspz5uGmbTdBJwc2Or8WOp/0eKLu6KeaiOjWHQOPOcZFLqB5xg88l1tD8MieuiA8eKhCKqhCqsnelHGJfq+iW/MM9yNyYmxrrsEtxqIe8yKfkcFX5D0LTPaWjJ1H6YFX4YVXKf34lF54FT5pqvRGLfMNrCPPEzkRypAKqqD030EVVEEZUsY8j8wbtN6Q+fIyhZj4fQ4I0k0lfZYOIjNSmbe3EwDA0tIlKQ9/io3FWFK6RA56lmBxyWJU51al5UKP4zgInAABwoiHpF1QvCDuMofPgfb+drTa2wYCov42eYQk6bnVY03V5hOSMVSCCsXGIhSbSgaFOkUoNpYkDXWykVFtxOKSxVhcsnjIsmAoiOb+FjTIYVA4JGroa0BDb+O06e5jUBkG6g3ocpGnz5PrDhjlgCYc4oT7tEt93PXKcLAj/YxnyHBRFLHCtAKVlZUAgNqeWuxp2Ys9zXuxp2UPDrUfQiCUxWeuY2BSm2DW5sCis8CsNUd+LNpBzwctz4kqJGr32tHa34pmWwta5J9mWzNa+qXHrf1tCIrBSf6XkumGZzzWNpyestcL8kG4VW64VC64VW54VG64VR64VC75sRsutRtepQcBIYAQJw50tZG75US66QwOAuTuPeHuPIODgXBXH8aNsYU9w5CAKOZHlFvGisMESDHrSFOFKMjdpxRQhOSfqOfKkBJC9HJRAWUo9rk0VQ7zu4ohv8szTm5VEpK6IvED05Dc2iQo/3cLClHz+SCCfPT88PNhpkL4deVuaINCm3D3qkg3K3kbwu/P4KAnUR2XcWMY2vVpUDcy6b/bQDeoSHdCuauaQhSgDCmhCCkj70/4fVOGlFHv1+DHyoH3Sn7/lFHvZezjgXXBYVB3tmGm4c9J5PlA97aQ3F0x9nm8+SL8gj8qoPENCnQGAp7wcr/CP/bPV5pwIhcJ1YYLiRwa6QaWQUXhD5kES0qX4KVD/x7T73Ich1l5s2KCniUli1FoLEzxVk4co9oIY6ERcwvnxl3H7XfHtB5qjbQiCg+h3YYeV88EbvXEyNfno8RUHBUEFKHIUASPw40cixkiExEUgwiKQYTEIIJiSHoeCs8LRZYPeR6S1g9FLY99HpLXib7Ak0YC4QZNAQyaH1vgMd7vxHs9t9+FLmc3upxdsHlsE/mfPGV0Sh3KzGUoM5WizFyGUlMpys3lKDWVoiynFCWm0ikV6qSCQlCgOrcK1blVAM6NWcYYQ6+rF/V9DXKroUYpFOprRGNfI/o9/fCFfBnVcojjOJg1ZuTp8yIjioRHGRluXvhnMkYhTITnecwrnId5hfPwyRU3AJCKSR5ur8Gelj3Y07wHe1r24kT3iUne0pFRCkqU5ZShLKc0UsQ/EtZohoY3Fq0FORpTSoYPNmlMMGlMmF80f9jlITGETkenFA71DwRE4cfNtpZJrUumVqhhVBulf0d4qjFJI7Ko9LD2WyGoBXiCHrj9HngCbngCHrgDHnj8bmka8MAdcGf1iGtTjVs1MAiFyIlwK6XAxqWWghq30g13+LHKDbcc6rjlUMetHnjuUrkQEAJDatFkDQ5gHENI/h+ZPBqFBhWWClSYKzDDXIGynDIo/AJUBjWsHhus7j5Y5ZE1IyNveqxw+aPqqHKI1G4ik0uj0MCoMULgBLj8Ljj9zpR9DzCewcf74FP6Eq5nUOtT8vcyFdX8yVBvH38HVz/ziaTrqRVqLChaIHXZKlmCJaWLsbB4IQxTvMnaWHkD3sioWjaPLfIlYHVb5S+J6OdW2NxW2Lz9k7KtubrcmFCn2FiMYlNxzLxCQyFUiqFNeafbsIW+oA/dzm50OrrQ5exCt7MLnc4udMnPpZ9udDk6J6xLRbJgp8xcDrMmJ2OCnem0z4TEEPwhP3xBH/xBv/zYD3/IJ80LBeAP+uR54fl+BOT1pHX8CV5DWpcxFjNM7EB4kxd5bNbmQOCzsw/+WPaZfm8/9rfuj7QO2tO8F232tjRv6VB6lR4VZvmCQb5wiH5cbCzO6s+By+9Cq601EhCFC2GHw6F4dZNMahOMmtjAxqQxISfqccw8jREmTQ5MahNM8u8lCiZHs88wxuAL+uDyu6MCIjc8fjkoCrgj4VEkMPJHBUnyuuA4KHl5KPV4Q6uPYJj1gd8dGGY9/HhgaHcFGGMIyDdFpGHiox7LQ8cnGjJ+8PDzsUPRR7+u9HohMRjpZi91rx94LEbVYZRqM4oQo5ez6OUspm7jwO/K3fhFEUaHEW6lGz6VDyLEyPsUec/CQ6YPOyrXoHUwdKj14V5LFMWYfWXIaGBx5g2dj6Hzh1mXgcEb8MIb9A6zV5KJZtbkRMKdgWP0jMjjfH1+zHs+0mOMN+CNnO+HgyGrxzbwOM786daadSQEXpC+F9RGaWQzjTHquUG6ga9JsFxjhFEtjZY2uDWyKIrwBD1ywWoXnH4HXD4XHD6nFA75HHD6XXDKzx0+J1xy4WunzyWv44RLLoTt8rvgCyYOfz618pN44hO/Ted/sklF4U+G6nJ0YfYPY1u55GhysFTurrWkVAp65hbMHVezfZJcSAzB5umPCYWGn0aFR/K84Qpfm7XmSC2WeKFOkbFoXHf2p9OF/Gh5A150u6SgqNvZFQmMumLCom50ObriDjGabcHOSNA+Q0YrVftMu70de6O6i+1t2TvukDZXl4sZ5ophLhqkC4fp3qJOFEV0u7ph89igV+mlk2+VMe2ffTrOkNGYzP1FFEUpbAx44PK74JZbpbn9LjmQlB675dDR5XfJ67rlYNIdeRy9visSYLqTb8Q0UGQsirTaGe54bdKYRvV66dxnGGNw+p1RwdDA+b40TPrAiFuDh013+pzykOrOpOHDRFDwCimUCY8mph4YXcwYeS4vV0nLcjQmOawxxYQ3WqU2q75P/UE/XAE3nD4pSLJ77ahvrofOrIc74MYMcwXWV6+f7M1MG+r2laEKjYW4Yfn1qMytxKLiRcgTc3H6wtMhCNl5hzibCbyAPH0u8vS5o/o9URTh8DtgdVth99ph0phQZCyCVqlN05aSkdAoNZGTi2Q8AU+kRZHL70K+Pi8rgx1CMlmJqQSXLbgMly24DIB07KzrrZPrB0ndxQ62HYy0VOE4DsXG4oQtd6j1a2I8z0tdhI1Fk70phGQknucjF8QFKEj564dbNHj8HoTYxHUdY/LIvf5QAIFI69YAAnJrVn8wAH/ILz8PPw5EWrgG5Hnhx+HWsoGQX14n6rXkxzzHo9RUigpLOOSRWu6U55RBo9RM2L99vDiOkwMTI2ZYZoz5dQKhQMxw7JGQyO+IauHijA2UotZz+V1QCcrI/mmICmIGQhz5ucoAkyYqzJGDHLVCPW3PY1UKFVQKFSxaMwDps1ggFkybmxJZEf5YrVZ873vfw+7du1FUVIT7778fa9asmezNSrsnr/0dgIEUe7p+SLMVz/PI0eQgR5Mz2ZtCxkir1GKGZca4vuQJIaPD8zzmFMzBnII5uH75dQCkO3Ut/a3gOA5lptJhu7sSQki24Hk+UnifTC9KQSl3BbdM9qaQaSgrwp8f//jHKCgowLvvvovt27fj/vvvx3/+8x+YTKNrCkgIIYSQ7KNSqDAzr3qyN4MQQgghJGtlfNsmt9uNzZs344477oBGo8E555yDWbNm4f3335/sTSOEEEIIIYQQQgjJeBnf8ufUqVMwGAzIz8+PzJszZw7q6+uHXd/v98Pvjx3BQqFQQKXK3ibioijGTAlJhvYZMlq0z5DRon2GjBbtM2Q0aH8ho0X7DBmtqbTPjKRmUcaHPx6PB3p9bH9YvV4Pp9M57PpPP/00/vCHP8TMu+aaa3DttdembRsnSnNz82RvAskytM+Q0aJ9howW7TNktGifIaNB+wsZLdpnyGhNhX2mujp59/iMD3+0Wi1cLlfMPJfLBa12+BGTbrnlFnzqU5+KmTcVWv40NzejoqJiWlQhJ+NH+wwZLdpnyGjRPkNGi/YZMhq0v5DRon2GjNZ022cyPvyZMWMGnE4nenp6Il2/amtrceWVVw67vkqlyuqgJxGe56fFTklSh/YZMlq0z5DRon2GjBbtM2Q0aH8ho0X7DBmt6bLPZPy/UKfT4ayzzsKTTz4Jr9eLzZs3o66uDmedddZkbxohhBBCCCGEEEJIxsv48AcA7r//fnR2duL888/HY489hkceeYSGeSeEEEIIIYQQQggZgYzv9gUAFosFjz/++GRvBiGEEEIIIYQQQkjWyYqWP4QQQgghhBBCCCFkbCj8IYQQQgghhBBCCJnCKPwhhBBCCCGEEEIImcIo/CGEEEIIIYQQQgiZwij8IYQQQgghhBBCCJnCKPwhhBBCCCGEEEIImcIo/CGEEEIIIYQQQgiZwij8IYQQQgghhBBCCJnCKPwhhBBCCCGEEEIImcIo/CGEEEIIIYQQQgiZwij8IYQQQgghhBBCCJnCKPwhhBBCCCGEEEIImcIo/CGEEEIIIYQQQgiZwij8IYQQQgghhBBCCJnCKPwhhBBCCCGEEEIImcI4xhib7I0ghBBCCCGEEEIIIelBLX8IIYQQQgghhBBCpjAKfwghhBBCCCGEEEKmMAp/CCGEEEIIIYQQQqYwCn8IIYQQQgghhBBCpjAKfwghhBBCCCGEEEKmMAp/CCGEEEIIIYQQQqYwCn8IIYQQQgghhBBCpjAKfwghhBBCCCGEEEKmMAp/CCGEEEIIIYQQQqYwCn8IIYQQQgghhBBCpjAKfzKc1WrFPffcgzPOOAMf//jHsXPnzsneJJLhPve5z2H9+vU488wzceaZZ+Luu++e7E0iGebJJ5/ENddcg9WrV+PNN9+MWfbMM8/gggv+v707C4mq/+M4/lHLHGdaVSzL0FYjL7Iki/aNSLKCFoOihDYzsMWi6Ea7KNog2u1KLworLNSkrqKVEsqLIkMyLbJFy1LKGZds5n/xPA1ajvX8n3rOaXy/bpz5DXPOd+Drx5nvnHOcqenTp+vw4cNyuVwGVQmz8NQvly5dUlxcnDtrJk2apKqqKgMrhVk0Nzdr165dio+P15QpU7R27Vo9ffrU/Tg5g2911DNkDTzZvXu3Zs+erSlTpigxMVG3bt1yP0bOoD2eeqaz5EwXowtAx/bt26eQkBBdvXpVRUVF2rFjh/Ly8tSjRw+jS4OJpaena/bs2UaXAZMKDw9XWlqaMjMz26zfvn1bubm5ys7OVkBAgNavX6+IiAjNnz/foEphBp76RZLGjh2ro0ePGlAVzOzLly/q37+/srKyFBwcrJycHKWlpSk/P5+cQbs66hmJrEH7li1bpm3btsnf318lJSXasGGDCgoK9PDhQ3IG7fLUM1LnyBmO/DExh8OhGzduKDk5WQEBAZo6daoGDx6smzdvGl0agD9YfHy8xo0bJ39//zbrly9f1qJFizRgwAAFBwdr+fLlunLlikFVwiw89QvgicVi0erVqxUaGio/Pz8lJibq9evXqqurI2fQro56BvAkIiLC/bfJx8dHzc3NqqmpIWfgkaee6SwY/pjYixcvZLPZFBwc7F4bOnSoKioqDKwKf4IDBw5o5syZSklJUVlZmdHl4A/x7NkzDRkyxH1/2LBh5A069ODBA82YMUOLFy9Wbm6u0eXApB4+fKg+ffqoV69e5Ax+SuuekcgaeLZ3715NmDBBK1as0Pjx4zVo0CByBh1qr2ekzpEznPZlYg0NDbJarW3WrFar6uvrDaoIf4LU1FQNGjRIvr6+OnfunDZu3Kjc3FwFBgYaXRpMzuFwyGazue9brVY5HA4DK4KZjR49WmfPnlXfvn31+PFjbd26VUFBQZo2bZrRpcFE6uvrtWfPHqWkpEgiZ/Bj3/YMWYOO7NixQ9u2bdP9+/fd14kiZ9CR9nqms+QMR/6YmMVikd1ub7Nmt9tlsVgMqgh/gujoaAUGBiogIEArV66UxWJRSUmJ0WXhDxAYGNhmuGy32xkawqP+/fsrLCxMvr6+io6O1tKlS3Xt2jWjy4KJNDU1KS0tTRMnTnRfa4OcQUfa6xmyBj/i5+enuLg43bt3T3fv3iVn8EPf9kxnyRmGPyY2cOBA1dfXtzkPsayszH1oGvAzfH35NcfPiYyMbPMfeZ48eULe4Kf5+PgYXQJMpKWlRTt37lRISIg2bdrkXidn4ImnnvkWWQNPnE6nXr58Sc7gp33tmW95a87wqdDEAgMDNXnyZJ06dUqNjY26ceOGysvLNXnyZKNLg0l9+vRJRUVFam5u1ufPn3XmzBl9/PhRI0aMMLo0mEhLS4uamprkcrnct51Op+Lj43XhwgW9evVKNTU1OnPmjObMmWN0uTCYp365c+eOamtrJUmlpaU6d+6cJk2aZHC1MIvdu3erqalJGRkZbd5EkzPwxFPPkDVoj8Ph0JUrV+RwONTS0qKrV6+quLhYMTEx5Aza1VHPdJac8XG5XC6ji4BntbW1Sk9PV3FxsUJDQ7V9+3bFxcUZXRZMqra2VqmpqXr+/Lm6du2qYcOGadOmTYqKijK6NJhIRkaGCgsL26xlZmYqNjZWWVlZOn36tJxOpxYsWKDU1FSv/fYDP8dTv9y6dUuXL19WY2OjQkJCtGTJEi1dutSgKmEmb968UUJCgrp169bm6NMjR44oJiaGnMF3OuqZ69evkzX4TkNDgzZv3qzS0lK5XC6Fh4dr1apV7mu0kDP4Vkc9c+jQoU6RMwx/AAAAAAAAvBinfQEAAAAAAHgxhj8AAAAAAABejOEPAAAAAACAF2P4AwAAAAAA4MUY/gAAAAAAAHgxhj8AAAAAAABejOEPAAAAAACAF2P4AwAA8AP3799XbGysYmNj9fr1a6PLAQAA+EcY/gAAALSSkZGh2NhYrV271r1ms9kUHR2t6Oho+fv7G1gdAADAP9fF6AIAAADMLioqStnZ2UaXAQAA8H/xcblcLqOLAAAAMIOEhAS9efPmu/XMzEwlJydLkgoKChQWFqaMjAwVFhaqX79+WrdunU6ePKn6+nrNmzdPGzZs0PHjx1VQUKDu3bsrKSlJixYtcm/v3bt3OnHihO7evau6ujqFhoYqISFBSUlJ6tKF7+YAAMCvxbsLAACAvw0fPlwNDQ2qq6uT1WpVZGSkJKm0tNTjc2pqarR3714FBwfLbrcrJydHRUVFevv2rWw2m6qqqrR//36NGTNGkZGRqqurU1JSkqqrq937qKioUGZmpl69eqX09PT/6uUCAIBOgmv+AAAA/O3gwYOaOHGipL8GQdnZ2crOzlZUVJTH53z+/FnHjh3TxYsXFRoaKkmqrKxUTk6OcnNz1a1bNzmdThUXF0uSzp8/r+rqagUFBSkvL085OTnat2+fJKmwsFCVlZW/+VUCAIDOhiN/AAAA/oUePXpo1KhRkqS+ffuqurpagwcPVlhYmCSpd+/eqqqq0ocPHyRJJSUlkqT3799r1qxZbbblcrn06NEjhYeH/3cvAAAAeD2GPwAAAP+C1Wp13/bz8/tuzcfHR9Jfg53WP1ufVtZaQEDAb6sVAAB0Tgx/AAAAWvk6fGlsbPwt2x85cqTu3LkjPz8/7dmzx32EkN1u17Vr1zRt2rTfsl8AANB5MfwBAABoJSIiQpL0+PFjJSYmymKxaM2aNb9s+0uWLFF+fr7evn2rhQsXKjIyUna7XdXV1WppadHcuXN/2b4AAAAkLvgMAADQxrx58zR9+nTZbDaVl5fr0aNHcjqdv2z7vXv3VlZWlhISEtSzZ0+Vl5erqalJMTEx2rJlyy/bDwAAwFc+rq8nngMAAAAAAMDrcOQPAAAAAACAF2P4AwAAAAAA4MUY/gAAAAAAAHgxhj8AAAAAAABejOEPAAAAAACAF2P4AwAAAAAA4MUY/gAAAAAAAHgxhj8AAAAAAABejOEPAAAAAACAF2P4AwAAAAAA4MUY/gAAAAAAAHgxhj8AAAAAAABe7H8taMug5tokQwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] }, + "metadata": {}, "output_type": "display_data" } ], @@ -378,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "c3b78953", "metadata": {}, "outputs": [ @@ -386,11 +426,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "mean MAE on total: 4141.65\n", - "mean MAE on reasons: 1275.43\n", - "mean MAE on regions: 799.99\n", - "mean MAE on (region, reason): 312.05\n", - "mean MAE on (region, reason, city): 189.69\n" + "mean MAE on total: 4311.00\n", + "mean MAE on reasons: 1299.87\n", + "mean MAE on regions: 815.08\n", + "mean MAE on (region, reason): 315.89\n", + "mean MAE on (region, reason, city): 191.85\n" ] } ], @@ -413,11 +453,7 @@ " print(\n", " \"mean MAE on {}: {:.2f}\".format(\n", " name,\n", - " mae(\n", - " [pred[c] for c in subset],\n", - " [val[c] for c in subset],\n", - " component_reduction=np.mean,\n", - " ),\n", + " mae(pred[subset], val[subset]),\n", " )\n", " )\n", "\n", @@ -443,20 +479,18 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "1d994992", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAE8CAYAAAD6wgRJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAADGUUlEQVR4nOydd3gc5dW379mmXUm76mUluXdbsiR73bFxwRiwaaG8gdATWkIKIUCSjwTSQyCUADGBAKEmphtwwWCMG8b22pLcJHfZkrao97Jtvj9Gu5Is2ZZsSavy3Nfly9LsMzNnRrMzZ875PedIsiwjEAgEAoFAIOhZVME2QCAQCAQCgWAwIJwugUAgEAgEgl5AOF0CgUAgEAgEvYBwugQCgUAgEAh6AeF0CQQCgUAgEPQCwukSCAQCgUAg6AU0wTagk/R4XQuHw0FiYmJP70bQjDjfvY84572LON+9izjfvYs432dF6mihiHQ14/V6g23CoEKc795HnPPeRZzv3kWc795FnO9zQzhdAoFAIBAIBL2AcLoEAoFAIBAIegHhdAkEAoFAIBD0Av1FSC8QCASCbsbtdlNYWEhjY2OwTTlvPB4P1dXVwTZj0CDOt4JeryclJQWtVtup8cLpEggEgkFKYWEhRqOR4cOHI0kdTrbqN7hcLnQ6XbDNGDSI8w2yLFNWVkZhYSEjRozo1DoivSgQCASDlMbGRmJiYvq9wyUQBANJkoiJielSpFg4XQKBQDCIEQ6XQHDudPX7I5wugUAgEASFyspK/vnPf55xTH5+Pu+8885Zt5Wfn09qamp3mSYQ9AjC6RIIBAJBUOhOp0sg6A8MeiF9TWU9//jdRo7VN/LvF68SoXaBQDCo+N3vftcr+3n00UfbLfvlL3/J0aNHycjIYPHixQCsWbMGSZJ45JFH+L//+z9++ctfkpubS0ZGBrfeeitXX301N998M3V1dQA8//zzzJ49u1eOQSA4Xwa906XSq/jHVDVuXTgP7bUxbnJysE0SCASCQcFf//pX9u3bR3Z2Nh988AEvvvgiOTk5lJaWMm3aNObNm8df//pXnnzyST777DMA6uvr+eKLL9Dr9Rw+fJgbbrgBq9Ua5CMRCDrHoHe6wvR6EmyNFA438OmX+4XTJRAIBEFgy5Yt3HDDDajVahISErjwwgvZuXMnJpOpzTi32819991HdnY2arWaQ4cOBcligaDrDHqnCyCpupFCDGQ7a4JtikDQ7XgbvGx9ZR9DF0aAeKcQ9HOefvppEhISyMnJwefzodfrOZFfSYmz/xd4FQx8hJAeGB+uVJI9GSJ8UMHA44FffcZV8cU8/tLOYJsiELTBaDRSU6O87M6dO5cVK1bg9XopKSlh06ZNTJ8+vc0YgKqqKsxmMyqVijfffBOv10u5SUWVEWSfHKxDEQg6xaB3ujweH+a4oQAUJek5cOBAkC0SCLqPGmc9q8fqAdhn7FybCoGgt4iJiWHOnDmkpqaybds2Jk+eTHp6OgsXLuRvf/sbiYmJTJ48GbVaTXp6Ok8//TQ//OEPef3110lPTycvL4/Q0DAAZCS8wukS9HEkWe4XF2m3G3nixAm2bNlCQWExj6y+l7jvb6ZJD4+dsPOTB2/p7t0JTqGoqIjkZJHr6ml+/atPeTFTcbpiSn0cuvdiMUO3l+gP13hubi4TJkwIthnnjMfl5UBVLV61ck1H1HkZOSQqyFYNDkQboBZO8z3q8EZ71nyaxWJRAa8Co5o38gMgFvgb4APutVqtey0WSyLwBhAGLLdarW9ZLBY18DIwBthltVp/1rzNnwLXA2XATVartde7Zno8Ho4cOQJAQngpUTYNtpEesg5V9bYpAkGP4G7wsDaq5SteFqviYE4R4zNSgmiVQNB9FJfU4jW0PNtcKvFCIejbdCa9mAGEWK3WucCvgJ8DfwKWAjcCjzePexjFEbsQ+JHFYtEDywBb87phFotllsViiQWuAC4AVgA/6r7D6TxJSUmBn80mOzp7KAAOdViX+igJBH2Vf/1jI/nDNRhqvSQUKdf0mq9zg2yVQNB91DQnQQyNbgBcOknougR9ms44XYWAZLFYJCAKqAO8Vqu1wmq1ngSim8dNB76yWq0ewAqkArOBdc2frwXmANOAjVarVW61rNcxGAxERkYCkGS0UV+i/FwRH4Xdbg+GSQJBtyHLMu/XNgBgKaggucQFQI6t14PKAkGPUF/dRINeQkJmSHQ4Kp+MVy1RWyNemgV9l85M1ysF3EAeoAfmAv9o9bnHYrHoAK3VavU1L6tCccaigOpOLGuHxWK5C7gL4L777gtUK+5OoqKiqKysJMlkZ2PBPNScxD40jAP7ckWuuodxu90UFRUF24wBy9cfHGTvJB1qt0ykPJwjRUbIsHNCI4nz3kv0h2vc4/HgcrmCbcY54aysQw7XENLoocqnRuuSadJLVNY0EGJQB9u8AY8sy/322uluPB5Pu+/66fScnXG6LgY8Vqt1nMVisQB/B1pXq9NYrVaXxWJxWywWVbPjFQGUA5WtxrZeNvqUZe2wWq0vAS81/9oj8eKRI0dy/Phx4sNKqGsIJaEOakwSB3KcLL28bwtg+zv9QWTcn/nfSStyYigjs4tYlb0UjdYL2HEkGALT7QU9S3+4xqurq/vlC6bsk6nXKY5VKBK2UjUGgxb0XppkqV8eU39DCOlb0Gg0nf6ud+bOK6EI3kGJehkBjcViibRYLENocZp2AvMtFosGmArsB74BLmr+fAmwtXncvFOWBQW/rkut8pEYXkxMkTKlfk9+XbBMEgjOm+yvjrEzwwBAdGUTZfUxFFfHoPJCcYKajWu/DbKFAsH5UV5ai0snofLJNDQqsQOfR/nfpRFiekHfpTNO1xfAEIvFshH4H/B74BFgdfPvv2oe93jzz5uAF61WawPwGTDUYrFsBhqtVus2q9VaAqyyWCxbUYT4Z24x34OYzebAz0lGGxqHUu+lWGcUYnpBv+XJT3Jw6SSG5JZxslSRTMqymliHClklsfbrvCBbKBCcH+VNHgB0DS4aPMoLhsurOF1urYTX4zvtun7y8vLIyMggMzOTo0ePdqt9L774Im+88Ua3blMwMDhrerFZGP9/HXw0+5RxdmDxKcs8wG0dbPNp4OmuGNoTGAwGoqKiqKioIMlkZ39JKlBJeWIkdrudESNGBNtEgaBLOA6VsSVVeXkY4shnTck1SJKPKH0FBocekus5WnX2B5JA0FdxN3poMCjxArUXfD4lzSj7VGg8Mh6NRGVFHTFxxjNu5+OPP+baa6/lkUceOeM4r9eLWt01jdg999zTpfGCwcOgF3b4U4xJJju2yngA7EMMnDx2MphmCQTnxJ9f3EK1SSK2sI66hqn4ZDXjYg8xOuYo3hLlIVQaHo7H4wmypQIB1NXVsXTpUtLT00lNTWXFihUADB8+nNLSUgCsVivz588H4LHHHuPGm2/m1ssvZenkSaxe/SX/eOIhbrwylR/feSneei8ANY0tAu/s7GxmzpzJ5MmTufrqq6moqGD16tU888wzLF++nAULFrSzKzw8nAceeID09HS2bdvGW2+9xfTp08nIyODuu+/G61X288orrzB27FimT5/OnXfeyX333Rew88knnzzt/gHmz5/Pww8/zPTp0xk7diybN28GYP/+/YF9TZ48mcOHD3f3aRcEkUHvdPlTjLGhJbiadBiroD5MYsvm7g03CwQ9TUN5I+uHKdXnRx3LI8s2FQBL8i7MRjvl5cpE4TKzCafTGTQ7BQI/a9euJSkpiZycHPbt28cll1xyxvGyLHPsxHH+9fGnLH/5dX75wPeZOmMBX67/Cr1ez6Z1XwDgalUM/JZbbuHxxx9nz549pKWl8bvf/Y7LLruMe+65h/vvv58NGza0209dXR0zZswgJyeHmJgYVqxYwdatW8nOzkatVvP2229js9n4wx/+wLfffsvWrVvJy+s4bd/R/v14PB527NjBM888E1j+4osv8tOf/pTs7GysVispKaKY8UBCOF3NTpdaJZNodBJpU2Zj7C9sCKZZAkGXeeqpDdjNKowVbkwkU9UYSZShnJHRxzAbHdirY5F8Mo4kDYf2HQ+2uYI+hiRJPfLvTKSlpfHFF1/w8MMPs3nzZiIiIs443t3kYdbixeg0GsaOm4zP62X+ggVoVF7GjZtIwYkCZZxWSQdWVVVRWVnJhRdeCMCtt97Kpk2bznou1Go111xzDQDr169n165dTJs2jYyMDNavX8+xY8fYsWMHF154IdHR0Wi1Wq677rp22znb/r/zne8AMHXqVPLz8wGYNWsWf/7zn3n88cc5ceIEBoPhrPYK+g/C6WojprcjOcIBKDGYaGgQjpegf+Bz+fgsRKmsMvbQMbJt0wCwJO9GJUFcWCmST0V0iQqvRmLDpiPBNFcgAGDs2LHs3r2btLQ0HnnkEX7/+98DyhR8n0/RHrae1FTX5EEbEoKu0YPba0Sj1RKmUz7XqGVcbhkJGbcWXM1V6s8FvV4f0HHJssytt95KdnY22dnZHDx4kMcee+yct92akJAQQHHy/Cn/G2+8kU8++QSDwcBll13GV1991S37EvQNBr3T5RfTg6Lrqin1p2AiRWV6Qb/hzRe2cnCcFl2jj2E0cqh0DGrJQ4Y5B1DKoiSEOwl3KDf5QyWiqKGgLbIs98i/M2Gz2QgNDeWmm27iwQcfZPfu3YCi6dq1axcAH3zwAQA+rw93c2NrjceNy6tkJfQaxelSSYqTpnGDLElUVNYTERFBVFRUQC/15ptvBqJOnWXRokW8//77FBcXA1BeXs6JEyeYNm0aGzdupKKiAo/HE7CzNeey/2PHjjFy5Eh+8pOfcOWVV7Jnz54u2Svo23SmOOqAJykpSZnBaLSx5ujFhHIEe0oIxw7lM3LkyGCbJxCcEVmWedtZCcl6xuUWcahkGiAxMT6XMF19YJzZ6MBdbAQaKQkNP6dZWQJBd7J3714efPBBVCoVWq2W5cuXA/Doo4/y/e9/n9/85jcBEX1pSS1etYTKBz5vaGAbKklx7NQqLz5A5VKBVqbOpUSOXn/9de655x7q6+sZOXIkr732WpdsnDhxIn/84x+5+OKL8fl8aLVaXnjhBWbOnMmvf/1rpk+fTnR0NOPHj+8wPdrV/b/77ru8+eabaLVaEhMT+fWvf90lewV9G+lsbyJ9hB41cuvWrXz55Zf4ZIm/bHyIlP/bQmW0zI+zT/C7P/+gJ3c9aOkP1br7C1+/u5frvHZ8Etx4YBevffMj6lzh3D7lPwyLKgiMsxZlsrc8nerrDzHsWBNrbrOQmJgYRMsHNv3hGs/NzWXChAnBNqNTHC6spDZUhaG2kYbGaLw+NTGhZYRoWqK2jpp4dDo37gg3hnov41OietSm2tpawptnA1999dXccccdXH311T26z76CqEjfwmm+Rx0KGgd9ehFaykaoJBlzuANTkXIh5RWfuyZAIOgtnv/mKF61xKi8Mpylo6hzhRMXVszQyII248xGB7bKOADsyTqOHzoRDHMFgi7T1OCmXq88w9SyhNenRq3yotO0TZPr1G7czZXp3TrVWdOb58tjjz1GRkYGqampjBgxgquuuqpH9yfo/4j0IqeI6U026p1GSGuiJDyChoYGMXtE0Gc59E0B2zKVVMtsXSmfFF0GKGUiTp04Fh9WjNetJbJcojIaNmw4yKx5M3rbZIGgyxSX1uELU6F1eXF5lOK/odqGdqEErdpNY5MerawUSa2vbSLMqO8xu/y1uASCziIiXSgzVUwmpS93kslOVZlfTB+BzWYLpmkCwRn52/920WCQSDpeja9K4njFCLQqF+nmvYExY8eOBUCr9hIXVoLJrkRyD9jE7FxB30eWZWqbBfTapiYaPYoTZdDWtxurUyuRL41LGV9ZLa5xQd9COF3NxMbGAmA22imqaK5Mn6LlSG5+EK0SCE5PRX41myYoUa45cgXWokwAUhP3o9c0AcqU9IULFwbWMRsdSMVKpMCpCw1MyxcI+irV5Q006iUkWUaSdciyhE7tQqNSqsJLkoRWqwWUSBeA5FYebQ3efqFZFgwihNPVjN/pigktQyVDdLGERyuxcZMoIinomzz+3EZKYySiihsZqW0g25YOwLRka2BMWloa8fHxgXpAZqOdmjJFXFwRHxFotSIQ9FXK6pUXCF2jh0Z3c2qx1axcvV4fuL5VkoxG5cHr13VpxCNO0LcQV2QzfqdLJSkPJqNNCWEfqvAG0yyBoEOaqlysS1Te7mdVl/Pt4RQaPKEkGW0kmRyBcVOnTkWSpIBusbWY3pGipzC/sPeNFwg6ic/joy5EeUz5a3NJkhyozQVKrUV/pAuUaJfbo/zu1kn4vCKaK+g7CKerGb/TBYquy+tsbg5siqC+vr12QCAIJi8+vZH8YWoMtR4uGq7FWjQFAEvKrsAYs9kcKAkR+N/opKHRQHiN0mN001cd94sTCPoCxcU1eDQSao8Pn09Jpes1jYHaXCqVipCQkDalC7RqNz6fCrVXxquSqK7qWNeVl5dHRkYGmZmZHD0qeu0KegfhdDWj0+mIjlYE9ElGO+XlihNWmmQSlekFfQqfx8dHXkW7MrWojJ05tRRWDSFE00hqwv7AuClTpgR+9ke6dGo3saFlRNmUSEB2fnUvWi4QdI1qn+JchTS6aHArTldoKwF9aGgokiShUqlQqZTHmV9Mr3YrYvrq5vTkqXz88cdce+21ZGVlMWrUqNPa4PWKbIeg+xBOVyv89bqSTHbslS3NgQ9kibcgQd/h45d2sidNi8Ytc2NmLDtOZgCQnrgHXbOQWKvVkpqaGljHf20DmE0O1M5mMb3K0OO1jASC01FXV8fSpUtJT08nNTWVFStWAEoboMJ8G/UGiQNZu7nl+qvx+tS8/MKjPPTAvVx99dVMnz6dtWvX8tBDDzF58mRuvPFG3G43WpUHkMGtdFvI2reXmTNnMnnyZK6++moqKipYvXo1zzzzDMuXL2fBggXt7AoPD+eBBx4gPT2dbdu28dZbbzF9+nQyMjK4++67A47Yvffei8ViYdKkSTz66KOB9X/5y18yceJEJk+ezC9+8QsA8vPzWbhwIZMnT2bRokWcPHkSgNtuu42f/OQnzJ49m5EjR/L+++8DYLfbmTdvXqAOmL+VkKB/I5yuVvijAVGGcrSSl1iHGp9aYuM3ooikoG8gyzKvHVV6wE04Wor9WCF7HGmA0tzaz6RJk9DrW+oTRUdHo9Eo4mKz0U5tWSQA5XERlJWV9ZL1AkFb1q5dS1JSEjk5Oezbt49LLrkk8FlpVT2yJKFxe5Fl5VGlVbk5ceJEoFXObbfdxoIFC9i7dy+hoaGsX78eSZLRqlvE9A/9/Ic8/vjj7Nmzh7S0NH73u99x2WWXcc8993D//fezYcOGdnbV1dUxY8YMcnJyiImJYcWKFWzdupXs7GzUajVvv/02AH/605+wWq3s2bOHjRs3smfPHsrKyvjoo4/Yv38/e/bs4ZFHHgHgxz/+Mbfeeit79uzhe9/7Hj/5yU8C+7Pb7WzZsoXPPvuMX/7ylwC88847LFmyhOzsbHJycsjIyOiRv4GgdxHFUVvRUpleSTGG2fWUJNVztCbIhgkEzVg/PcSOTGWm1p0zkljxfg0ubwhDI08QH14SGJeZmdlmPZVKRUxMDE6nE7PRwbdFM1CTjzPFQFFBURtNo2BwIs3rGcG5vOn07/ZpaWk88MADPPzwwyxbtoy5c+cGPqtTqwgFNG43XlmJWmnVbhYsWIBWq2Xq1Kl4vd6Ao5aamkpBQUFgXL3bQH11MdXV1cyZdQEAt956K9ddd91ZbVar1VxzzTUArF+/nl27djFt2jQAGhoaiI9Xygq9++67vPTSS3g8Hux2OwcOHGDixIno9Xq+//3vs2zZMpYtWwbAtm3b+PDDDwG4+eabeeihhwL7u+qqq1CpVEycOBGn0wnAtGnTuOOOO3C73Vx11VXC6RogiEhXK1pXpjcb7bidSsHUsighphf0DZ75Ihe3TmL4kQqMjdXsLJoKwLTkFgF9bGwsQ4YMabduTEwMAInhDqrrTejroTpCxfZNB3vHeIHgFMaOHcvu3btJS0vjkUce4fe//z0AKklNo1ZG5ZNxNSrOoE7tQiXJgfIQYWFhaLVapObWCxqNJpD206ndIEto3ErqvKKyrkt26fX6QDN4WZa59dZbyc7OJjs7m4MHD/LYY49x/PhxnnzySdavX8+ePXtYunQpjY2NaDQaduzYwbXXXstnn33WJnp3OvzH5N8fwLx589i0aRPJycncdtttvPHGG106BkHfRES6WhESEkJMTAxlZWUkmewcKxwFOChJNmKz2Rg9enSwTRQMYgp2O9maoYiJbx4bxdqthThrEwnV1jEhvmUWYmZmZuBB1Bp/NMugbSLKUEGMXUPRKA/Wg+Xc1TuHIOjDnCki1VPYbDaio6O56aabiIyM5N///jcA5uQh5OZks2j2haxevQYAg7ZlFmJrp8iPJEmB616rUsT0kYYojJGRbNi0meuvXcqbb77JhRde2CUbFy1axJVXXsn9999PfHw85eXl1NTUUF1dTVhYGBERETidTtasWcP8+fOpra2lvr6eyy67jDlz5jBy5EgAZs+ezf/+9z9uvvlm3n777TZRvY44ceIEKSkp3HnnnTQ1NbF7925uueWWLtku6HsIp+sUkpKSmp0uG86qWGI8UJygJmfnEeF0CYLK3177luq5ocQV1TJ37hBef09xojKTcgLVuVUqFenp6R2u3zqFaDY60DhDYVQ1RT4dsix36KgJBD3J3r17efDBB1GpVGi1WpYvX47H5eXOhx/m0ft/zL9Cw0i3XAS0dbpO1w/X74hpVB4kSUb2qPn9C8v58/0/44+//xUjR47ktdde65KNEydO5I9//CMXX3wxPp8PrVbLCy+8wMyZM8nMzGT8+PEMGTKEOXPmAFBTU8OVV15JY2Mjsizz1FNPAfDcc89x++2388QTTxAXF3dWO77++mueeOIJtFot4eHhItI1QJD6ycylHjeyqKiI5ORktm3bxrp165BleHzTLxi+dDvOIV5u3nqcZ58V8YDuwn++BZ2jzlbP9Pe2YDdL3FFZyxBPLb9493o8Pi0/mfU80aEVgPKAOJ1mpaCggDfeeAOPx8Pm/NnYXCk4rixkfE41q36xkKioqN48pAFPf7jGc3NzmTBhQrDNaIOtqAqnQULj9qGrV1HTZMSgbSDKUAkoLxYJCQntXhJcLhcul4vqaqUMSmldDD5JQo5uROuWmRRvEi8W3YjL5WpTH20wc5rvUYcXm9B0nYJfTC9JSukIvV15o8pvVJ9pNYGgR3nq6a+xmyXCK1z8+LLprNkVi8enZVT0kYDDBW1rc52K/2EFSqTL2VyZviQ5XDR2F/QJZFmmpvkdW9fkot6t3H9PjXKdznk6tTK9x6NBkmU8WmhqcPeg5QJB5xBO1yn4K3eDMoPRVRwBKGL6urquiTEFgu7AU+dhdYTyVb2gupoDe/dibRbQW1JaykREREQE9COnw399m40Oymsi0bqgLFbF7m8O9ZD1AkHnaahx0aCXkJBRy+D1aVCpvIRoWgqcni61CG2dLqVIqoTGDTISFVViMpQg+JxV02WxWGYBf2n+NQlYBWwBfgn4gDetVuvzFoslDHgTiAc+sVqtf2te/3FgNpAP3GG1Wt0Wi+U64H6gAbjVarX2mQZwISEhxMbGUlpaSpLJRt6JcUARziGKmH7MmDHBNlEwyHjjma0cHKtG1+DlL7dexJ+f/JKy+liMIdWMjWlxlk4noG+Nf4ZumK4eU0gNsTY19uFevt1TzM09ehQCwdkprqpHDlOja/Tg8jQ3t9Y0BPI0Go2mjWN1KiqVCo1Gg8fjQdtcKFjlVoPOR71b9GAUBJ+zRrqsVus2q9U632q1zge+AT5GcbgWAbOAuywWiwr4AbDaarVeACy0WCzJFoslHUi2Wq1zgTzgWovFogF+DswHfgv8ptuP6jzxP5iSjHZKq6OUaECcih2bcoNsmWCwIXtl/ldTC0B6QRk1xU62HlMqzU9JykKtUlIxkiR1qo5Pm8r0RgchTiVqUNCkFpXpBUFF9snUaZtb+XhcNHiUazNU15Ja9Lf9ORN+nZFG5UUl+fA1V6Z3q4WeSxB8Op1etFgsOmA6sBk4CJgAPdBgtVp9KNGsdc3Dv0BxyFovWwvMAcYAuVar1WW1WrcCk7vhOLoVv9MVoa/CoG0itkgJCG7NdgTTLMEg5Mv/5LA7XYvKK/OH62exYcsBckvGI0k+piZlBcaNHj2aiIiIs24vLi4u0KPObLTjKlVq0VVERQQEyAJBMCgrqcWlk1D5ZJB1yLKEVu1Go/IExpwptejnVF2X26v87tapkH3ixUIQXLpSMuIiYL3VavVZLJYVwA7AC/yx+fMowH/XrgKim5fZO1jW+u7eoULdYrHcBUr5oPvuu4/Fixd3wdSu43a7KSoqAlrelCQJkow2dA4DjKjhpFsbGCM4P1qfb0HHyLLMv7JP4JsbyuhcJ8aMIXy8PRqfrGZ8XB4mfUurhGHDhp31fLrdbpxOJ1FRUZSVlWE2OcjNnwjYKE0KZ//+/QwbNqyHj2rw0B+ucY/Hg8vlCrYZAFS4PKBVE9LgotFtBNo2t9ZqtXi93tM2oJZlGZfL1SYSplO7aGoKQeuT8aglqirrCA0XM+66A//5Fijfo1O/66ebudwVp+s6wF9Y5K9AGlALrLdYLO8ClSjRr0ogAjjRvH1T8zoRQHmrcX46/AZZrdaXgJeaf+21khGgRAM+++wzQJnBWFKSANRQFhtBZGQkYWFhPW3OgKc/TKcPNvvX5fONRXmz//n8sRQU2thVpMxOtLSqQB8WFsbMmTPbFYs8Ff85Hzp0qOJ0Ge0UV8cQ7VVq0TnyK5k9e3bPHdAgoz9c49XV1X1i2r+70UODQYnAamQPtZ4QQG4zazEsLOyMtvpLGGi1WqqqqpBlOaDr0rgkXHqobXATGR0OQF5eHt/97neRJIn333+fUaNGBbYlyzKLFi3i448/xmQydbi/rvDb3/6WefPmcdFFF533tvoK/vP92WefsWPHjkA3ge7ksssu45133iEyMrLbt92daDSaTn/XO5VetFgsWmAaioAewAXUWK3WJsCDkmb8BiUaRvP/356ybAmwFTgMTLBYLDqLxTIb2NMpS3sRnU4XKCSZZLLjqFCm1juHhlFU2LffXAUDh6dX5tBokEjKr+L6uRbe/aKSqsZIogzljIw+FhiXnp5+VoerNf70uVFXS6i2gViHClklsWVHQbcfg0DQGYpLa/GqJLRuH16v8lKr1zahklo0i60buJ8JSZICzd39Thce5VHX6G15f//444+59tprycrKauNwAaxevZr09PR2Dpcsy/h8XRfk//73v+9Rh8vj8Zx9UA+xdOlSPv30025tlec/z6tXr+7zDldX6aym6yLgq2btFsBTwBaLxbIN2GS1Wu3Av4ErLBbLFmCj1WottFqt2YDTYrFsBiYBH1itVjfwDPA1Smryj/RB/ILjJKONyppI9A1QGaliy1cHgmyZYDBQvL+cr9OUKNd3h4Rx+PBhNh+ZBMDU5N2oWmmCz1SbqyP8TpckKbquUIfyMMuvE0JjQe9SV1fH0qVLWXTxBVw3ZyZfvr+CBreBKxaNoLFGeQnIycnhuuuuQ6VS8dhjj3Hrrbcyd+5chg0bxocffshDDz1EWloay5Ytw+1WnCx/REwt+ThycBc3XLGI6+fO5p67b6GiooLVq1fzzDPPsHz5chYsWNDOrrfffpsrr7wSgPz8fMaNG8ctt9wSaKr9xBNPMG3aNCZPnsyjjz4aWO8Pf/gD48aN44ILLuCGG27gySefBOC2227j/fffB5QG2pmZmaSlpXHHHXfQ1KSUwxg+fDiPPvooU6ZMIS0tjby8PM7E119/zdy5c7niiiuYOHEiXq+XBx98MGDXv/71LwBqa2tZtGhRYLsrV65sc+7T09NJTU1lxYoV52SfJEnMnz8/kB1qzcaNG8nIyCAjI4PMzExqahRJREfnr6PzPHz4cEpLSwF46623mD59OhkZGdx9992BVPNtt91GamoqaWlpPP3002c8Z32BTqUXrVbrGmBNq9/fRCkP0XpMLXBVB+s+2MGyFcCKLtraq5jNZvbs2YMppIYwbR0xhVqKxrj5dl8JdwTbOMGA5+8vbqV8rp5IZz2//OEyXnx1FYdLL0Mleck05wTGDRs2LNDIurP4q3nLsozZ6KCyJAqop8wUQW1tLeHh4d18NAJBx6xdu5a42Hj+9OY7iojEXoLHpzyWQtQteiH/5A+Ao0ePsmHDBg4cOMCsWbP44IMP+Nvf/saVV17JqlWruOqqq9qI6X/78O384pFnmXaZhRf//Ecee/Qxnv3Hs9xzzz2Eh4fzi1/8op1dW7duDTgtAIcPH+b1119n5syZrFu3jsOHD7Njxw5kWeaKK65g06ZNGAwGPvjgA3JycnC73UyZMoWpU6e22W5jYyO33XYb69evZ+zYsdxyyy0sX76cn/3sZ4DSqmv37t3885//5Mknnwz0ojwdu3fvZt++fYwYMYKXXnqJiIgIdu7cSVNTE3PmzOHiiy9myJAhfPTRR5hMJkpLS5k5cyZXXHEFa9euJSkpiVWrVgFQVVXVJfueeeYZXn31VQAsFgubN2/m+uuvb2Pfk08+yQsvvMCcOXOora1Fr9ef9vwNHTq0zXluTW5uLitWrGDr1q1otVp++MMf8vbbbzNp0iSKiorYt28fAJWVlWc8X30B0XvxNJxamV7jDIUxVRTKwdc/CAY2Dc4G1g1TrrPFkouG+nre2xKBjIpJ8fsI07WE8bsa5QJFkBwXF0dxcTFmo4NjRaMAJ+VJRux2u6hFN0hZHfN5j2z3srIlp/0sLS2Nn/7sfnjsURbNv4ipGQvwuECSZPx6eJVK1cbpuvTSS9FqtaSlpeH1ernkkksASE1NJT8/H2iJdFVXV1NbU8kUywLUnmqW3nAjv7n9trPaXF5ejtFoDPw+bNiwgCOwbt061q1bR2ZmJqBEkg4fPhzouajX69Hr9Vx++eXttnvw4EFGjBjB2LFjAbj11lt54YUXAk7Nd77zHQCmTp3Khx9+eFY7p0+fzogRIwJ27dmzJxBRq6qq4vDhw6SkpPDrX/+aTZs2oVKpKCoqwul0kpaWxgMPPMDDDz/MsmXLmDt3Ljk5OZ22z78fgPj4+A67WsyZM4ef//znfO973+M73/kOKSkppz1/Q4cObXOeW7N+/Xp27drFtGnTAGhoaCA+Pp7LL7+cY8eO8eMf/5ilS5dy8cUXn/WcBRvhdJ2GNpXpTXZsJclAFWVxIhog6FlefGozJ6aqMNS4+evtl2HdmcXuogygrYA+JCTknPvmmc3mZqfLjr06lkifjCNJw+F9+cLpEvQao0eNZsUXm9jw9Rc897c/MWW6lR/88FG0GlVAO3VqXa6QkBCAQJNs/+cqlSqgbVKr1a3WU3Rcarfyu7cT9eg0Gg0+ny/g7LWePCXLMr/61a+4++6726zzzDPPdOHIO8Z/bGq1ulM6rVPteu6551iypK2T+5///IeSkhJ27dqFVqtl+PDhNDY2MnbsWHbv3s3q1at55JFHWLRoUSCl2hn7Ws8ibWxs7LCcxy9/+UuWLl3K6tWrmTNnDp9//vlpz19+fv5pJ6nJssytt97KX/7yl3af5eTk8Pnnn/Piiy/y7rvvBqJvfRXhdJ0GnU5HXFwcJSUlJBlt7DqSiZZ87MNCKTxRyPhJ44NtomAA4q33slLnBTRML6kgMjSUN1dXUesyEhdWwrDIk4GxkydPPmN17jORmJhITk4OkfoqdHiJLlFRliCz6ZvjXHZ1Nx2MoF9xpohUT7Fv72HU8VFccc31xOvCeeedFWjVboYMSWHPnj0sXLgwkP7qCpIkodVqMZlMREZEkGXdzOwLLKx6dwWWGWefoTtu3DiOHTvG6NGj2322ZMkSfvOb3/C9732P8PBwioqK0Gq1zJkzh7vvvptf/epXeDwePvvsM+666652283Pz+fIkSOMHj2aN998kwsvvPCMtuzYsYPnn3+eN95444zjlixZwvLly1m4cCFarZZDhw6RnJxMVVUV8fHxaLVaNmzYwIkTJwCw2WxER0dz0003ERkZyb///W8eeuihLtsHcOjQIVJTU9stP3r0KGlpaaSlpbFz507y8vJOe/7OhN8hvP/++4mPj6e8vJyamprAjNZrrrmGcePGcdNNN53V1mAjnK4zYDabKSkpwWyyU1sfTkot1IZLfLVuv3C6BD3CBy9sZ0+aBo3Lx+O3LCQ/P5+vD44DlCiXdB4C+ta0Tp+bjXbCHSGUJTRytFK0ShH0HtZ9+/jLXx5FA6jVITz02xcJ1dbz85//nAceeIAnn3zynGf96XQ6XC4XzzzzNL946EGe+GM9ySOH8aenXjjrukuXLuXrr7/u0Om6+OKLyc3NZdasWQCEh4fz1ltvMW3aNK644gomT55MQkICaWlp7QoW6/V6XnvtNa677jo8Hg/Tpk3jnnvuOaMtJ0+e7FRR2B/84Afk5+czZcoUZFkmLi6Ojz/+mO9973tcfvnlpKWlYbFYGD9eeXbt3buXBx98MBAxXL58+TnZB7Bhw4YOo1DPPPMMGzZsQKVSMWnSJC699FJCQkI6PH9nmoE9ceJE/vjHP3LxxRfj8/nQarW88MILGAwGbr/99kBUtCMb+hpSP2n90at1uvxs376dtWvXAvDk5p8xcl42BeNdXLUhn1eX39nTJg1o+kMNo95G9spc+eBqtszUkXbIycZHbuK5f3/OT95YjEbl5oELnsagVWYSJSUlceedXbsGW5/zpqYm/vrXvwKw7vAi6gzhnFxcQsY3JXz256sIDQ3t3oMbhPSHazw3N/ecU9TnS1O9m7z6enwqiYjaesrrEwCZRGMxKkl5iEZGRnb6WvTXjfLT0NBARUUFAJUNEdR7DGjiakCGSeFhaENOH3Ow2+3ccsstfPHFF106Jr/0pL6+nnnz5vHSSy+d18sRwIMPPsjNN9/M5Ml9q3mL/3w7nU5uvPFG1q9fH2yTgsZpvkcdTgfvdBugwYh/aj0oui7JqeSbi9SdqxcjEHSFbf/LZftUJcz+yLJM6uvrWbFREfOmJewLOFxAQIR6roSEhARmPZqNDirLowAoTzRht9vPtKpA0C0Ul9XhU0loXV48PiWSo9c0BRyurtTm6ojWDphW7QZZQuMGWZKoqDxzTSmz2cydd97Z5dZYd911FxkZGUyZMoVrrrnmvB0uUMor9DWHqzUnT57k73//e7DN6DeI9OIZSExMDEytTzLaKCgZBlRQliDE9ILu55/fHMF9oYHhR8pYfP1iNm7ezu4i5WZrSWkR0Ptnbp0vZrO5uR2QHduhOMI5hCNFx/HDJ9oVixQIuhNZlqltbkAd4nZR54oGILTVzFy9Xt9m1mJXUavVqFSKIF/XXCRV5VaBVqbOdXaR+qnlDzrDO++80+V1+jv+GYWCziEiXWfg1Mr0RRXxANiH6sk/cvJMqwoEXeL4piI2T1He6u/MMCPLMq99WkODJxSz0UayqSX6NGnSpMAsovPBH8mNNpQj+SQiyyVcOomtW46f97YFgjNRXd5Ao15CkmXUsoTHp0El+QhRt0RzO6NjOhv+aJdG5QZJxudW4gwuSRQCFgQH4XSdBb/g2Gy009gUhqkSGgwSX6zdG1zDBAOKp/67ixqjRFxhNXdfMpeioiK+ylVKN7QuEwHnn1r043e6VBIkGh2YbMoDKs8hmtgKepayesW5Cmn00ORRNFsGbUOb2lzd8WLhnxUnSaBTufF4FKfLrVPRT/TMggGGcLrOQqBPXUgdppAqIoqUG0HWiZpgmiUYQFQdrmb9RCXKdWW0BpVKxYefH6agaggh6kbSEvcHxsbGxjJkyJBu2W9rzaLZ6EAqUTSLpfpwGhsbu2UfAsGp+Dw+6kKUR4/O56LerUS0QrUtqcXQ0NB29bnOhdalCLRqNx6vBkmWcWskGurEy4Wg9xFO11nwR7rAL6ZXdFx2nZjdJegennluC44EifDyRn5/46U0NTXxzgblOks37wnoUUApE9EdDyNQNDNRUYqA3mx0UFPqF9NH4HA4umUfAsGpFBfX4NFIqD0+8IUgyyq0ajdadYvOqjtSi9CBmB7QNPtaldUN3bIPgaArCKfrLPjF9KCkGKtKFcFnaaIp0LxTIDhXXOUu1iQo9WnmNdai1+nYuTuXrCKl0ODU5N2BsSqVqttnMfmjXWajHVtlHACOFD0Fxwu6dT8CgZ9qn5LWC2ly09Ac5TJoWxwgrVZ7zkV/T0WlUgXqP+maezmq3Mrv+w7mBRoxHz16tM16siyzcOHCLs9ePB2//e1v+fLLL7tlW/2d1ufimWeeob7+zDNJXS4X8+bN61SF/q7y4osvnrXobHcjnK6z4O9TB0qkq7AyAQD7EB1HcoXgWHB+vP7UFg6NUaFr8PLErZcC8NJHNbi8IQyNOElCeElg7Pjx40/bJuNc8be7ig0txe3WEV4NDaES32w+epY1BYKu01DrosGgvMTq8NDo0QNyG6eru2vE+aNdapUXSfLhbdZ1rV23hmuvvZasrKx2s3VXr15Neno6JpOpzXJZlgOFOLvC73//+3Mu8toZesIh6Slan4vOOF06nY5FixaxYsWKbrXD4/Fwzz33cMstt3Trds+GcLo6gT8akGS043GFEFWqzPL6fO3+s6wpEJweb6OX9zyKdiq9qBRzVCQOh5Mv9o8E2paJgPOrQH86/OlztUomIdxJVLOYfl/BmW+EAsG5UFJRh0+S0DV5cHtDaaiv4+f3XMaSxQtZuHAhK1euxGAwMHz4cEpLSwGwWq3Mnz8fgMcee4xbb72VuXPnMmzYMD788EMeeugh0tLSWLZsGW63u90+c3NzWbZsGYsvuoiHfnw1ZWW1bPliHW+88iLLly9nwYIF7dZ5++23A30I8/PzGTduHLfccgupqakUFBTwxBNPMG3aNCZPnsyjjz4aWO8Pf/gD48aN44ILLuCGG27gySefBOC2224LNIhev349mZmZpKWlcccdd9DUpEwqGD58OI8++ihTpkwhLS2NvLy8M57Lr7/+mrlz53LFFVcwceJEvF4vDz74YMCuf/3rX4BSsHXRokWB7a5cuRKAuro6li5dSnp6OqmpqQGnprvsA3j88cdJS0sjPT2dX/7yl23OxT/+8Q9sNhsLFixgwYIFvPrqq4HG2gAvv/wy999/PwBXXXUVb7/9drvtn+4Ydu3axYUXXsjUqVNZsmRJoPbg/Pnz+dnPfobFYuHZZ5/lscceC/yNjh49yiWXXMLUqVOZO3du4Pjee+89UlNTSU9PZ968eWc95rMhnK5O4H8whenqidBXYrQpYvq9dvFgEpw7617KYne6BpVX5k//NweAFauP4qgxE6qtY2J8bmBsREQEI0eO7HYbWjd2NxsdqIuVKEOxJhSXSwiNBd2H7JOp1SiPnBCPm3q3gW1b1mI2x/Pll1/y1Vdfcemll561NtfRo0f56quv+OSTT7jppptYsGABe/fuxWAwdNin8e677+b//b//x5dffsm48RP413N/4MKFi7nm9ju49+4fsWHDhnbrbN26lalTpwZ+P3z4MD/84Q/Zv38/Bw8e5PDhw+zYsYPs7Gx27drFpk2b2LlzJx988AE5OTmsWbMGq9XabruNjY3cdtttrFixgr179+LxeFi+fHng89jYWHbv3s29994bcAbOxO7du3n22Wc5dOgQr7zyChEREezcuZOdO3fy8ssvc/z4cfR6PR999BG7d+9mw4YNPPDAA8iyzNq1a0lKSiInJ4d9+/ZxySWXdMm+szX4XrNmDStXrmT79u3k5OTw0EMPtfn8Jz/5CUlJSWzYsIENGzZw/fXX8+mnnwYc59dee4077rgDgNTUVHbu3NluHx0dg9vt5sc//jHvv/8+u3bt4o477uD//b//F1jH5XJhtVp54IEH2mzrrrvu4rnnnmPXrl08+eST/PCHPwSUyNznn39OTk4On3zyyVn/JmdDFEftBG0q0xvt+JxGoBGHoXtTPYLBg+yTefWwA19iCGMPF2O54WI8Hg9vfqkI6DPMOWhU3sD4zMzMbhPQtyYsLAyTyUR1dTVmo528solAJRUJkTgcDoYOHdrt+xT0TaLf7VrLm85Sfv1iACrL6mkKkVD5mmtzebWMGTuJ5564nz/96U9cdNFFXHrppWfd3qWXXhooEOz1ernkkksA5cGcn5/fZmxVVRVVVVWBPn/XXnc9P7z7TtRu5bvUeJoiqeXl5RiNxsDvw4YNY+bMmQCsW7eOdevWBUq31NbWcvjwYWpqarjyyivR6/Xo9Xouv/zydts9ePAgI0aMYOzYsQDceuutvPDCC4EIz3e+8x0Apk6dyocffnjWczF9+nRGjBgRsGvPnj2BiFpVVRWHDx8mJSWFX//612zatAmVSkVRURFOp5O0tDQeeOABHn74YZYtW8bcuXPJycnptH3+/ZyOL7/8kttvvz2QLo6Ojj7j+PDwcBYuXMhnn33GhAkTcLvdgSLQarUanU5HTU1Nm79LR8ewb98+9u3bx+LFynXn9XrbPMP/7//+r92+a2tr+eabb7juuusCy/wRvjlz5nDbbbdx/fXXB47/fBBOVydoU5neZOdQ2TighBKzsd1FIBB0hj0fHWXrNCWV98AC5Qa3fddBcmxKc+vWAnpJksjIyOgxW8xmc7PT5WDjyXmoyceZEkrhyULhdAm6jfJGF4SpCWny0Nhcm2v82CGsXbuWr776ir/97W/s2bOHRx99FI1GE9BOnVq+xF+/y9+o2f8yolKpTqtt0mg0eDwetFJz+rFZTH86JZR///6oW2stpSzL/OpXv+Luu+9us87ZIj+dwX9sarW6UzqtU+167rnnWLJkSZsx//nPfygpKWHXrl1otVqGDx9OY2MjY8eOZffu3axevZpHHnmERYsWBVKqnbHP6/Wecey58IMf/IA///nPjB8/nttvv73NZ01NTe3aQnV0DFdffTWTJk1i27ZtHe6jI12sz+cjMjKS7Ozsdp+9+OKLbN++nVWrVjF16lR27doVaKF2Loj0YidoI6Y32iiqjEPyydiTteRmHwmydYL+yHPrDtCol0jKr+C62UobjeUf1OLxaRkVfZSY0IrA2NGjRxMREdFjtvjfAuPDS6htCENfDzUmiV3fiokig4ny6xf3yD8Aj8tLnb45tSi3zFqsKTuOwWDgmmuu4Wc/+xlZWVmAoh/atUvRNH7wwQfnfEwRERFERUUFUn0ff/QeU6fPDYjpvaqOo8fjxo3j2LFjHX62ZMkSXn31VWprawGlsXlxcTFz5szh008/pbGxkdraWj777LMOt5ufn8+RI8pz48033+TCCy884zHs2LGjU2LvJUuWsHz58kB67tChQ9TV1VFVVUV8fDxarZYNGzZw4sQJAGw2G6Ghodx00008+OCD7N69u1vtW7x4Ma+99lpAKF9eXt5ujNFobFMFYMaMGRQUFPDOO+9www03BJaXlZURGxvbblbr6Y6hpKQk4HS53W727z+z/tpkMjFixAjee+89QHFgc3JyACWdPWPGDH7/+98TFxdHQcH5zewWka5OkpSURHFxMWaTHZ9HR0yxitJEmdXr9jN9bvdUCBcMDmzbi9nQ3PLne6MUZ6qsrJzP9yhpglMr0PeEgL41fqdLo/ISH15CjE1D0WgPWYcqzrKmQNA5iktq8RokNG4fPq8Wn6xCo/Jw4PBebrv1j0iShMFg4MUXXwTg0Ucf5fvf/z6/+c1vAiL6c+X111/nrrvuora2lqFDh/KbP72Ky6M8vL1qCY/bi0arbrPO0qVL+frrrxk9enS77V188cXk5uYGUpbh4eG89dZbTJs2jSuuuILJkyeTkJBAWlpau5clvV7Pa6+9xnXXXYfH42HatGncc889Z7T/5MmTnapb9oMf/ID8/HymTJmCLMvExcXx8ccf873vfY/LL7+ctLQ0LBYL48ePB2Dv3r08+OCDgYjh8uXLu9W+Sy65hOzsbCwWCzqdjssuu4w///nPbcbcddddXHLJJQFtFyg9L7OzswM1BAE2bNjA0qVL2+2jo2PQ6XS8//77/OQnP6GqqgqPx8PPfvYzJk2adMbjePvtt7n33nv54x//iNvt5rvf/S7p6ek8+OCDHD58GFmWWbRoEenp6WfcztmQ+kkrhB43sqioiOTk5NN+vmPHDtasWQPAM1vvY/jUXE5kNrB4QwErlt/R0+YNOM52vgcyD97zKa8s1BPprOPwj65ArVLx91d28YvXMzGGVPOz2c+hVimplbCwMO6///5AraHz4XTnvKamhqeeegqAlbnLIMFD/pxqZq4/ycrnb+m2mkmDjf5wjefm5jJhwoQe3YcsyxyyVVFvUBFW34SrMZxGjx6TvppwXR2gpPPi4uLOS7focrnaFENtjdvtpqREKb9S0xROTZORkOhqPBqJoV6JmLi2EhG73c4tt9zCF190TedWW1tLeHg49fX1zJs3j5deeum8X5oefPBBbr755m6v0Xe++M93d9u3bNky7r//fhYtWhRY9p3vfIe//vWvAa1ZX+M036MOL2aRXuwkp1am9ziVNxhnWLjo4SXoNLX5dXwxRtFFLNG5UatU+Hw+3vpS0bhMScoOOFwAGRkZ3eJwnQmj0Uh4uCLgNxvtNJYqtYkqY6MoLi7u0X0LBj71NU006CUkZHR4afQo179B07Y2V09MFPGj0WgC2/cXSVW7lN9rGtuXmTCbzdx5551dLo561113kZGRwZQpU7jmmmu6JUr9xBNP9DmHqzXdZV9lZSVjx47FYDC0cbhcLhdXXXVVn3W4uopIL3aShISEVmJ6G/vLUwEHJclKTvrUInoCQUe8+MwWTs5WYah28deblwGwbdcx9thGI+FjStLuNuO7q7n12TCbzRw+fBiz0cG3tplAIcUpYdhstj4frRH0bUqqGpDD1IQ0enB5DIBEiKaxzctFd7X9OR2SJKHRaHC73YF2QLJHA3hwncbZu/7667u8n3feeed8zBzUREZGcujQoXbLdTpdrxcw7UlEpKuTaLVa4uPjAaVshKMyFpVXxmFWk/Pt2YvECQTuSjefRihR0emVFUSEKg+a596txSerGRt7mAh9i6h02LBh5zVLpiv463UlhDupqDGhdUF5jIrsb0VlesG5I3tl6rTNAnpfi4A+tFUF+pCQkB6P5kJLZXqVJKNReXA3i+ldWpXIVgh6jbNGuiwWyyzgL82/JgGrgN8By4EE4LDVar3bYrGEAW8C8cAnVqv1b83rPw7MBvKBO6xWq9tisVwH3A80ALdardbCbj2qHsJsNuN0OjEb7cg+DbEONcXJPtZuOMTci6cH2zxBH+e9Z7ezd5IajcvHEzddDEBFRTWf5yhlGXqjAv3p8KfPdWoPsWHlxNrU2Id7sR4o5c5es0IQDGRZ7rHUXllpLS5dS20ut1eLJPnQa1rKQHR325/T0VqbqFW7afDo0cgyHi24GtyEhHasBxMIzkRXHfazRrqsVus2q9U632q1zge+AT5Gcbr+ZrVaF1qtVn+xkh8Aq61W6wXAQovFkmyxWNKBZKvVOhfIA661WCwa4OfAfOC3wG+6ZHEQ8T+YDNomog1lGOzKW9vByv7T90oQHHwuH/+rVPQhE04WMzpRiZq+/MEJKhsjidRXMCq6Jaqk1+t7XODcmtbFA81GByFO5dq2eUJ6pB6PoG+g1+spKyvrsUhPpUu5dkIa3TS4FecqVNuA38eTJKld7aWeorXIXqd2gyyhcYOMRGV1wxnWFAg6RpZlysrKunQNd1rTZbFYdMB04A7gD0CoxWIZAzxjtVo/RolmPdg8/AtgFhAHrGtetha4HcgGcq1WqwvYarFYzt7roI/QpjK9yY6rOAKow2kK79G3RUH/Z/Or+/jWokHyyfz2CgugfGHf/EJxbizJu2ldMigtLa1XZw2aTCYMBgMNDQ2YjXYKS4YCtVRGRyqlUlpd+4KBQ0pKCoWFhYGZfd2J1+3D3tSELEGo201dUziyLNGoq6WyudtCSEgIlZWV3bI/j8eDRnPmR1pVVRWyLOP1qal1haMrb8Kjk6lt8lFeITqMdIXOnO/BgF6vJyUlpdPju3LGLgLWW61Wn8VimQE8AOQCmywWy1ogCvBP9agCopuX2TtY1npKSIfJfIvFchdwF8B9990XKOnfU7jdboqKis44xuv1tojpjXaySjIAGyUp4Rw6dCgwA0xwdjpzvgcKsizzUtYJPIv0DDnsZPzcSRQVFbFrXwn77amoJC8ZSdlt1klJSen283O2cx4dHU1RURFmo4Pso5mAjZJkI7m5uYHq4ILO01+ucZ1Od9pSC+fDM3/fziszjcQV1TPlaB3/2/NdYkNL+NHM9wKRrssvv7zbJiG53e6zvqhs2bIFm82G26vmLxsfZvSwI5QsK2TSnjr+d++0brFjsNCZ8z1Y6GiW9+kmIHXF6boOeK355wKr1boTwGKxHASSgUrA1Px/BHCiefv+b1QEUN5qnJ8OcxdWq/Ul4KXmX4Nep8tPfHw8TqeTJJONdUcXEueWKU5QcyKvjIuvHNfTZg4Y+kMNo+7i4Gcn2DxDmSb/oxnDAsf9s6erkFExKX4f4bqW5ulJSUk9MkX8bOd8+PDhAaeruDqGGA+UxKuwHStn4cLB8bfqTgbTNX4qsk/mW6NyzY9z2smxzwUgw7wn4HBFR0d3a0/RzpzvkSNHYrPZ0Kq9JIQ7cZQloKYQW4oBc4IZlUbMLessg/n6Ph86dYVZLBYtMA3Y0rwox2KxjLZYLGpgFEo06xuUaBjN/397yrIlwFbgMDDBYrHoLBbLbGBPdxxIb+HXdSUaHSCribUpfusXW0Q7IEHHPLdyD7XhErEFVdy56AIAqqrr+TxHuWH1dgX60+FPIYZoXEQbKolxqpBVEtuzHUGxR9B/2fpJLgcmaFF5ZYZr6zlYOhYJH5MT9wbGpKen97oko7WTkGyyUV0Tgb5BpiJaxfYN7csVCATdTWfd+ouAr6xWqz/H8GvgZRQn6mWr1VoP/Bu4wmKxbAE2Wq3WQqvVmg04LRbLZmAS8IHVanUDzwBfA39s/tdv8D+Y9BoXMaGlhNgVceiROjHlWNCe0uwK1qcrb/zXJOoCD5nlKwqoaTISG1rCsMiTgfFarZbU1NSg2NpWTG8n1K6IQ082akV6UdAlXv76ILJKYsShco7ax+GT1YyMPoapVUmU822nci60LnKdbLIBEjEFyr17zdbDvW6PYPDRqfSi1WpdA6xp9ftBYMEpY2qBqzpY98EOlq0AVnTR1j7BqZXpG0sigBqKI41CTC9ox3MvbsO5UEt4eQOPff9SQNF4vb6uWUCfsovWl8ykSZMICQkJhqlERUUREhJCU1MTZqMDR2kiUE9lRCSlpaWBOnUCwZlwVbnYOVJ5GZ3oKeFLuxLdzTC3JDVGjBjRo03cT4fJZAo0WVacLtA4w2FsPXurG8+ytkBw/ogEdhdJSEhApVJOW5LRhrMiDgDnkDCqKquCaZqgj9FQ1MjnQ5V5Ihe66whpFp1usTrIc6agUblJb5VugeClFkGZvu+PdpmNdsrLowEoSzJit9vPtKpAEODVF7fgSFQRVuUhtFGNrSaJEE0j4+MOBsYEI8rlx//iHBtWilbtoqpEueZtUT1bFV8gAOF0dRmNRtOmMn1FTRS6JpnyGBUbP88OrnGCPsXrT23l0GgVunoPT96yNLD8qf/WApCasB+DtuXtOjY2tktTj3sCv9OVaHRgr4pD8oEzScORAyeCapeg//BpqZJCHHfcyR67MiEkNX4/WrVSz1Cr1fZqDbpT8TtdKkkmyWjDVqHczwuH6misagqaXYLBgXC6zoHWDyZkiC1SIhgbdp4802qCQYS72sOHWqWxboazhIQIZcJuVU0T63KU62dairXNOlOmTAl6etp/bYdqGzFpa4kukfCqJb7Z3i+aRgiCzIkcJ1mpSsQo1VDBHkcaABlJOYExEydO7JESFZ3lVDF9U0MopgofDQaJtav71bwuQT9EOF3ngP9NKUTjJi6sFK1D0S8caxR6LoHC2hd2sStDjcor89f/mx9Y/o93iqh3h2I22kkytqTsVCpVUFMufk6tTB9uV/Rl+TVdb3chGHz8463tNBokzCdqKS2Oo9ZlJNpQRoqppV5ZsK/z9mJ6iCxUHoVf5RQExSbB4EE4XedAGzG90UZ9SSQAJTFG8WAS4HP7eKOoDFklMfq4k4zhQwOfveEX0Ce3FdBPmDCh13rQnYno6OhAwUOz0YFcYgSgwhhJWVlZME0T9HFkr8zWCGVu1oQKJ9l2xbnKSMoJXOsREREMHz48SBYqGAwGoqMVvaLf6fIVRwJw2CNm6Qp6FuF0nQPx8fEBMb3ZZMdermgC7ENCqSitCKZpgj7ArrcPsmW68vB5+KJJgeVf7yjlSEkCIepGUhP2tVknMzOzV208HSqVisTEREAR01eWRwFQbjYJMb3gjKz7bzaHxmrRuGRGGRrJKx0HyG0mi0yePDnoKXRoSTFG6KsI1dZRVqpc8/aE4L/4CAY2wuk6B04V09fUmTDUQXWExLpVu4NsnSCYyLLMv7YepUkvYc4v4+rpLbMR//6OIqCfbN5LiMYdWB4ZGcnIkSN73dbT0TKD0YGtUpmd60jWkX9E6LoEp+d1qzLZYtThMvafHIXXp2Fk9HEi9C1d34KdWvTjz1ZIEiSbinBUxCP5ZIqSNRTnVwbXOMGARjhd50jryvQSMtHNYvpNWX2/15qg5zi53s6GaYpI+LbxMYHllTUevtiTACjNrVvTna1QugO/0xUeUode5SKyTMKlk9i2TcxgFHRMfWkjO8cpUaLJmvKW1KK5RUCfkpJCTExMh+v3NqeK6X0eLTFOGa9G4uPPsoNnmGDAI5yuc8T/YNKpPcSFl6B2Kh3qT/g67N8tGCQ8/9/dVERKRDpqeGDZosDyp9920OQJYUjESRLCW5qjSpJERkZGECw9PaeK6SPsihN5pNQjNIuCDln+z02UxUiYyl2E1Ksoqk5Bp25ifFxeYExfiXIBJCYmBl50/Lqu8OaWbt/mlwbNLsHARzhd50hbMb2duhJF+1ISaxIPpkFK1f4qvpikOCiXhvsCuj9Zlnn9c2UW4LSUtn0WR48ejclkoi8RFxeHRqM8gMxGBxSHA1ARFkFlZWUQLRP0VT6vV+pbTSgoJqtQaWM1KeEAuubaXGq1OmjtrTpCq9W2SESana6mYiWVnq8VL86CnkM4XedIazF9ktFOUXOBPftQPWUOMctrMPKv57dxMkXCUN3EX29YFli+fkc1J8piMGjrmRCX22adYFagPx0qlYqEBCUVajbaqSmLBKA8IUKI6QXtyPumgD2pyktFZmQtOf7aXIktqcXx48ej1+uDYt/p8KcYw3QNRBnKcZQpYnpbUiiyT7w4C3oG4XSdIxqNJvBgSjLZaGgII7wa6sIkPvl4Z5CtE/Q2jY4mVsUr6YoZtZUYDS0PmCffVgT0meZstGpvYHlYWBhjxozpXUM7SYdi+iF6ThwXdYwEbXnh/V24dBIpx6opKIikpslElKGcoZEt10pfSi36OTVbUV4djdYlU5yg4sAOcZ0LegbhdJ0H/gdTQngxKslHVJGSWvo2t/hMqwkGIO899S17J6nQuLw8ecOSwPKyKh9f7Y0FYGpyVpt1MjIyUKv7ZirDf22bQqqRfGCsggaDxM5vhZhe0ILP5eObBOUFI62hjJzmtj/piXsCtbnCw8MZNWpUsEw8LW3E9BFF4FMRW6TU6fr06wPBMkswwBFO13ngf1PSqj3EhZUgORXty0lJG0yzBL2Mp9bDe+56ACYUFjMyIS7w2VNvFeP2ahkZfZSY0PI26/WV2lwd4Xe6JEmJdkU2i+kPFjUJzaIgwEf/2cnxEWpCGnyMNrjILRkPQLq5pZ1OWlpaQIrRl2itXUw2KrquEIdSvDiruCZodgkGNn3vm9CPaBOeNtmpKlWqHJfEi8r0g4mNL+5h2zQ1+GT+cOWMwHJZlnl9naJ1ObVMxPDhw/vM9PmOiIuLaykAbHSgdirlAEr1Rqqrq8+0qmAQ8d9cReM3+mgpWceG4PFpGR51nChDVWBMX0wtgiLuD6TRTQ4kfNQUK7quQmNIME0TDGCE03UexMfHB9JDrbvV24aE4CgQKcbBgM/j47XDdrwaiWH5xcybMC7w2Zpv6iiqiCBcV8O42ENt1uvLUS5oWwDYbLRT1yymr4iLFGJ6AQCVhTXsmqg445bwmla1uVqiXImJiQHta1/E/+KsU7uJDy/BVq7YWjhEj7vBE0zTBAMU4XSdB2q1upWY3o6ryUBEOTTpJT7+UIjpBwO57x1n40wlnfzjGSPafPb3d+oAmJKUhVrV0tNNr9czceLE3jPyHGktpnc0i+mdQ0IpPCkq0wvg+Rc3UxUhEeVsRKqGgqqhaNWuNjN0+2qUy09rXVeSyUZ9nZHQWh81JolN64SuS9D9CKfrPGkrpvcSUaSEpXccFWUjBjqyLLN8XS51YRKxBRXcsWBO4DNnuY+N+6KR8LUT0E+ePDmgJenL+K/tKEMFTS4thnqoMUns3p4fXMMEQUeWZb6SlReJVGcpu05OAGBifG6gxZVKpSItLS1oNnaG1hKRZFMRIBHTPHHxC2t+UGwSDGyE03We+B9MGpWXhPBi5GIjAEUaoQkY6Dg2l/ClRRGYX59iaPPZ39+qwCurGRt7uE3vOeibtbk6oo2YPtxJdHPF7n35dcE0S9AHyPriGHsn6ZB8MtPim1pqc7Vq+zN69GjCwsKCZWKniI6ODtQP81emVzmVe/iBelfQ7BIMXITTdZ60rfVio6JUEUcXJwox/UBn+X+sFMdJhJfV89trLg0s9/lk/rNOccYsyW0r0CclJfVpjUtrEhISAq1SzCY72mYxfYnGSE2NmN01mHlx9V5Fx3i0iiPHQqlqjCRCX8mwyJaSIn09tQhKGy7/PTw+rASNyk15qfJ7UazhTKsKBOeEcLrOkzZiepM9UEjSnqLlxCHR/HqgUnOols/HKJGfBVI9ulbpwk+2NFFSHUakvoJRMcfarNdfolygtEqJi1OuZ7PRQWOp0q6oMjYSh8MRTNMEQcRT52H7ECU6lClXkWVTanNlmPegaq7NpdfrGTt2bLBM7BJ+p0ut8mE2OrCXKxNIioZoqXaKqK6gexFO13lyqpje6w4huhjcWomPVlqDbJ2gp3jj2W85PEpCV+/myRuXtfns6f8qN+qpybtRSS3RTq1W26f6z3WG1mJ6Z/MLRUlKGEVF4oVisPLOy9soGKLGUOtllMFNbnFzba7EllmLqamp/UK3CO3F9G6XnsgSHy6dxGercs6wpkDQdYTT1Q34H0xxYcWoJQ/hNiUsvfukqGc0EGkqaWKlUWnnk1FWSpzJGPjspNPH5gMRqCQvmea2N+xJkyYREtK/tH7+azsmtIyaulB0TVAeo2LvzvzgGiYIGh8UKEV+x+WXsuOQGbdPx9DIE0SHVgTGZGRkBMm6rtOmMn2zriuiSHk0bskTEV1B9yKcrm7AH57WqHwkGJ14m8X0tj7W4FXQPax6dje7MiRUHh9PXLewzWdPvVONLKuYEJdHeEjb1ER/Si368TtdKkkm0VhCjF1JpWcfqjrTaoIBiuNQObsnKS+Vs2NcrWpztbxgxMbGttG69nWMRiNGo3LPVmYwgrc4CoAjQbNKMFA5a/zXYrHMAv7S/GsSsMpqtd5vsVjCgePA7Var9TOLxZIIvAGEAcutVutbFotFDbwMjAF2Wa3WnzVv86fA9UAZcJPVau3XIaFTG6faypKBYorN4ciyHBAjC/o/3nov/62sRFZpGJ1vJ21oS59Ft0fmDb+APqWtgD4uLo6UlJRetbU7aC36NxvtuB0GGF6Lk1Dq6+sJDQ0NonWC3ua5V76hbmoIcbZ63JUeTlQOQ6NyMzG+bW2u/nbPS05OJi8vj2hDBXpNA8VlyUAFNnOouIcLupWzRrqsVus2q9U632q1zge+AT5u/ugnQOsny8PA34ALgR9ZLBY9sAywWa3WuUCYxWKZZbFYYoErgAuAFcCPuulYgkZcXFwrMb0NR2Uckk/GnqThYPbxIFsn6E52vJLLlhnK3/rXi9vOzvpoo5uKOj2xoaUMj2zbGDozM7Nf3rhDQkIC7YrMRgcuv5g+RlSmH2zIPplNeuWRMbmigu3HxwBKbS69pqW8wuTJk4Ni3/ngf3GWJCXF6KyIQeWVsZtVnNjvDLJ1goFEp9OLFotFB0wHNlssFhOQBnzbash04Cur1eoBrEAqMBtY1/z5WmAOMA3YaLVa5VbL+jVqtZrERKVnV5LRgc+rIdapwqeW+GhV1lnWFvQXZK/MK1knaAqRMOcXc+XUjDafP/Vfpem1JXkXrf0rtVrdL6bPnw7/A8lsdFBaEQtAabJROF2DjK0fH+DABA0qr8ysZB85dsW5at3ceuTIkZhMpmCZeM6003X5NMTafMgqiU/W7QuiZYKBRleml1wErLdarb7m9ODzwOJWn2utVqu/10kVEA1EAdWdWNYOi8VyF3AXwH333cfixYs7GtZtuN3u85qRZTKZKCoqIq651ovBbgBzPdm2WjHTqwPO93z3Ni6Hm8L/Olk/S2n5c90QQxv7jzvUbD8Uj0blbvMQAhg2bBgVFRVUVFQQTM71nBsMioYnLqyEshoTkR4oiVORvf0gI0aMOMvag5f+do2fjX9tyEOea2JEXhn7KtRUNkZhCqliRFR+YMzQoUODdszddb6TmsX0oTYtDPGx/WTZgPo7dhcD7frublo78q3pitN1HfCaxWKJANKtVusfLBZLa0/IbbFYVM2OVwRQDlQC/tee1stGn7KsHVar9SXgpeZfe7zKaFFR0WlPUmcYM2YMubm5qFU+EsOdeIojgHqc4WHntd2Byvme796gobABx6dOCj+2s6u8mq/mSlRFSEQ4qvjtfd9BpWoJFP/5v0qx0NSE/Ri0jW22M2fOnD5xrOd6zl0uFzt27ECt8hEfVobJocKZ4mPf4Rru6wPH1VfpD9d4Z2mqcrFrTDgAM/UNbLUpkdt0855AWRSdTsfs2bPRarVBsfF8z3d0dDTl5eWBGYwNJfGAg8Iw/YD5O3YnA+n67k065XRZLBYtSlrw+83/p1gslrUoztPlFotlL7ATmG+xWDYBU4GHUDRgFwGbgCXAaygTQn7evOklwNZuO5og4p/lBcqbUn7ZcMBOcXI4Pp+vzQNa0HepP6k4WkUf29hVWcP2qRI7r4by6Ja/300p+jZ/zyaXzFtfKA+aUyvQR0ZG9vtoUOtr22y043PoIaUeu1tPY2NjoI2KYODy2vItOEaqCKvyMNLg5aVipWF766juxIkTg+ZwdQfJycmUl5djDKnFFFKFrTwJNQ6KUvT4PD5UGnEPF5w/nY10XYSi1/IB24GZABaL5THAarVaT1gslsdRZi/+EXjRarU2WCyWz4CrLBbLZiDLarVua15vlcVi2QpUAN/r1iMKEn4xvdfrxWy0s6NoKrEeGWeCij3fHiZj9rhgmyg4DfX59dg/cVK00sbu6lq+nSqx81qoiGq5yaory0l11/PD6elcN61t6Yf/rfdS3aAj0WgPvCX76a8C+tbo9XqioqKoqKjAbHRwomQYUE9lVBQOh4Phw4cH20RBD/NpWS2MNDCpoIzNxTG4vTqGRBQQG9qSqOhPtbk6Iikpib179wKKriu3dDyJDTLlMSqsG48wfVH/qLAv6BhvvZfCr518tHY/N9xvIWFEVFDs6JTTZbVa1wBrOlj+WKuf7bTVeNEsqr+tg/WeBp7umql9G7+YvqioiCSTHWQ1sXYVziEyKz/fI5yuPkbd8XocKx0UrrSzu66W7VMkdl5/qqNVQZqnjrstk7nOsui00cpn320AwtoJ6CVJ6vcPIj9ms1lxukx2so5kAk7KkozYbDbhdA1wTmY7yUpVopnzU2ReyvEL6Ftqc0VGRjJ06NCg2NddnCqmzy2ZQGyhj6IxatZsPSycrn6GLMvUHqxj28cHWXPYzv44LfsnSDRcING0YgcP/3LJ2TfSA/SPPg39BLPZTFFREbGhpWhVLvT2MBhSy/6ypmCbJgDqjtZhX6lEtHY11rFjisTOG6AispWjVVHOZG89d09L59qpp3e0/Ow7JpN1NAyduom0hLaznMaMGdMvZ3J1hNls5sCBA8SHFeOojibCB06zhqN5BcyeHWzrBD3Js29up3GGAfPJWmobGzleMQKNys2k+AOBMZMnT+73Ed3ExEQkSUKW5YCYXus0wBgXe6sagmydoDO4K90UrHew8stcdsoeDozVcHKkBCNbOoGYimupj9MFzUbhdHUjLY1TZRKNDhpLIoBa7EZRQDJY1B6qxfGJk4JP7GQ11SkRre9BZWTb1GG6p4F7pqdzzdSLuvTwUKJcetIT9xCicbf5LDMzs7sOI+j4dV1atZdYQxWmYonSRNi5y8HNdwTZOEGP4fP4+CZK0WlNaajmm6MjARgfdxCDtuVlsj+XRPGj1WpJSEjA4XAo2QpkqkrMwAkKI/pX+67BguyVqcquYtunh1mX72S/Wcv+8RINCyRAuW41TV7MReVMjVbxg/kWZo8dfeaN9jDC6epGTq1Mf7h8NFCEMyVMiOl7kZq8WhyfOBRHy1PPjikSO26Gqoi2Ea10bz33TM/osqPlp7Ze5p31yldoavLuNp+Fh4czZsyY8zuQPoS/Dh0oYnocIZQmNlLQoMHlcqHTBe/NUdBzfPHfHA6O1aBx+Zg7TMOvtiipxdZtf4YOHUp0dIeVf/odSUlJOBwO9JomYkNLsZUnYeAEhUNDaKx2oTeJ6zzYNDmbOPmFnc++PoRV7WXfODUFEyWY2Cqa5axhVEMNy9JS+P7lczEZ+s5kH+F0dSNxcXFoNBo8Hg9JJjvbCy3Eu2RK41RsW7+fOYvTgm3igESWZWrzarGvdFK40sZuuYEdUyV23nqqo1VGhreRe2dkcPWUc3O0WvPOlz7qmzQMiSgg0Vjc5rP09PRAl4KBQFhYGCaTierqasxGB7biJKCRyghFTN/f9TyCjnl91wmYHcbooxVYa9yUN8RgDKlmZHRLp42BEOXyk5yczO7dygtUsslGjiOd+EofNZEq1q3ewxXftQTZwsGHz+WjYkcl21Yd5qvCUvanaNk3HhoulvC7MJomD4m2MqbFaPjBhdOYNWZUcI0+A8Lp6kZUKhWJiYkUFhY2h6fVxBapsY/wsfrrXOF0dSOyLFOzv0ZJHa60kyU1sH2qhPWOto6WpryMDLmRe2dkclXm+TtarfnHe02Avl2ZCOifza3PRlJSUrPTZefAiUlACRWJJux2u3C6BiD1JQ3sHKdIIy6IdLM+NxWAyYl7A7W5NBoNEydODJqN3U3rbIXf6YoqlKmJhK/3FAqnq5eoP1FPwed2Ptt6hCydzN4JKgoyJchsiTSanNWMaqrh8rQhfH/eAoydjGYFu5emcLq6GbPZTGFhITGhZejUTegcYTCihtxq99lXFpwRWZap3luDY6WDgk/tZKsb2T5FwvqDUx2tUjLlJn44YwpXdLOj5ceaJ7P/hB6Dpp6JrQTFAMOHDx8w6ZbWJCYmkpeXR0K4E1tVDOGAPVnHiaOFzJgxI9jmCbqZ5f/cTNkECVO5i6F6L/uckwDIaFWba/z48QOqTlt8fHyrbEVz+ZdiE1DHQZc3qLYNZLz1Xsq2lrN99RE2OCvYN0zDvvHQuLTVfb3RQ6K9lOnxOu6cO40Zo0d2aR+2UpnXVvt45VMXP7rwM35w88VERER096GcFeF0dTP+NyWVpIjp60uigBqcEUJMfy7Iskx1TrWSOvzURpauSZl1eBdUm9o6WlPkJn44cyqXZ/SMo9WaZ99zAVoyknLQqtvejAdilAtaxPQhGjcR2npMpRIVsbDjmyKuvzHIxgm6nc/rlUhumqOcDU4jLm8IyaYi4sJKA2MGUmoRlGyF2WymoKCARKMTleSltCQFOEhRvCHY5g0Y/OUcTq61sWbHcbLDZPZMVFE4q0UAD2B0VjHaXctVacO5fe48wvVdm9Dg9sis2gYvrfTw+U4VPlkCQli7O4L08Tu56KKLuvfAOoFwurqZNpXpjXYOVIxHzUkcQ0JFVeNOIssyVburcHzaPOtQrzha1nuh2niKo4WL+2ZOZWl6zztafiprZN77WrHDcoqAXq/XM2HChF6xo7c5tTK92qGjIraJ/EqlD1t/rkYuaEvelpPsSVMecBeP0vFMdnsBvdFoZOTIrkUb+gNJSUkUFBSgUXlJNDqwVyYQ6cujKEVDcX4l8cMjg21iv8Rd5aZ0Yxnb1xxlU3kVe0dp2D8eGq9qpbttdJPoKGVmQgh3z52BZeTwc9pX3gmZV1bJ/GeNl9IqNaBGJXmZEHeIzKRsRkUfZfduPRdeeGGv37eE09XNnCqm/7ZgBuYGmYooFetXZbH4yqnBNrFPIssylVbF0Sr8xEZWmIvtUyR2/egUR6ushKmSmx/1sqPVmjc+l2lyqxkZfYyY0LatQydPnoxGMzC/VkajkfDwcGprazEbHRQXxwFNVBqjcTqdpKSkBNtEQTfxwgdZuGaFknKsmgpqOVY+ErXkYVLC/sCYtLS0ATkju02RVKMNW3Uy0cU+yhLVfLpmD9+/d14Qres/yD6ZquxqTn5u4/PdJ8iOlNg7SaJwwanRrEpGe2v5TuoIbps7j7CQcyvPUVsvs+IreGWVj237/c8FNbGhJUxJymayeQ/huvrA+IaGBvbt29frpX0G5tMhiLQV09sAiegiDbbRXj7/5rBwuloh+2QqrZXYP3FS+ImdLKNLiWj9GGpaOVrashKmqtz8aKaFyyYHx9EK2CzLPPe+C9ANGgF9a8xmM4cPH8ZstHPUNgYooyJBEdMLp2tg4HP52JagPPhmSg1syhsGSIyLO0Roq2buA6Xbwqm0cboibOwsAmORirJE+PZ4Kd8Pom19nSZnEyUbStmx7hhbaurYO0alRLNGtczkVje6SXQWMyshlLvnzmDqiGHnvD9Zltm2D15ZJbPiK5m6RgmQ0KmbSE3YT2ZSNimmIk73yNi+fTsZGRm9+kwRTlcPkJSURGFhIdGGckLUjWgc4TC6isMNvmCb1idocjZR9Fc7+zccJCvCrcw6/BnUhrd2tIqxqLzcN8vCJWnBdbRaszkHjth0hOtqGBd7qM1nycnJJCQkBMmy3sHvdCUaHdgq49FzFMcQPQX5RUybNi3Y5gm6gY9e28mxkWpCGnzMHR7ChxvapxaTkpKIi4sLlok9SlRUFHq90szd30vVXRINVHBMPfAie+eDv5zDiS/sfLmngD2xKnImQdElEtDiaIU7Kxjjq+Wa1FHcNvdCQs+zrp+zXOaNz+HVVTJ5J/1LJYZGnCQzKYuJ8bntilV3RH19PbW1tRiNxvOypysIp6sH8GtfVBKYjQ7qSqKAKpxRYcE1rI+w8vvb+N9IF9afn+JolRZjUXv4yZzpXDyp7zharXn+Qw+gZkpSNmpVWyd6IFWgPx3+a9ugbUKvasRYBTURErt3FvCd64JsnKBb+G+eHWaFMfZ4Od/UuyirjyVcV8Oo6KOBMQNNQN8aSZJITk7m6NGjxISWolM3YSsbClRgSzIg+2QkVd+7N/UmVTnVfP2HA+xiL3vGqdg/DpomtYpmNbhIKC5mTmIY98ydSebw8y8p4/HIrNkOr66W+ewbGY9X+RuE6WrJMO8h05xNbFhZp7Y1ZMgQZsyYwfjx43u9nqJwunqANpXpTTayS9MIIR/bUAPuBjdaw+AVHJdtL+dv81wcG658YbSlTqapffzkgmksntg3HS0/xRUyH22WkPAx5RQBvVarJTU1NUiW9R5txfQONDYdNREujhR78Xq9A6og7GCk4mQNuyYqM60vSlHzyXplUsjkxL2oVUptLpVKNeCv9aSkJI4ePYpKUu7h+ZVDiXPLOBNU5FoLmTh9SLBNDBreJh/3/nMLa6/X0jaaVc4YuY7rUkdzywXnH83yc7hA5tXVMq+vBXuzT6WSZMbFKqL4MTFH2r0Ad4RarSYtLY3p06e3uY/1NsLp6gFiY2PRarW43W6STHa+OTmLqFqZWqPEmpVWrvjurGCbGDTe+tcujl0iEVLTxOszR/V5RwugvlHmo03wz49lPF4VY2MPEamvbjMmNTWVkHMUgPYnTCYToaGh1NfXYzY6KC+OgAkuykOjKC4uDurNTHD+vPCvzVSla4lyNmIOd7PXqThX6a1qc40dO5bQ0IFdAqeNrstkJ79iBLFFXhzDNazacGBQO12rl1v5fIEGlVcmwVbIvAQjd8+dScaw7jsndQ0y73+taLU2t1x6xISWkZmURXriXowhtZ3altFoZNq0aUyZMoWwsOBnm4TT1QP4xfQFBQUkGe34xfT147yst+YPWqer/mQDnyX6ABVpZQ4unrQs2CadFp9P+bK/vlbmvQ1Q26As16pczBu+ud34gS6g9yNJEmazmaNHj2I22ikoHgZUUhkfgd1uF05XP6Ymr5avUKJZmZVVrMvV0+TRYzbaSAgvCYwbyKlFP20r0xcBYLDrYLiPrOLOPewHIrJP5pX8YuSkEMbk2vn20e7rdi/LMjtzFUfrv+uhpnmioU7jZmKcIoofGlFwWlH8qQwdOpTp06cHJYV4JoTT1UP4C+xFGSrQaxqQnBEwrpyjg7gw/apnd7N7moTK7eP/Le6b7TSOFMq88bnMm59DvqNl+cxJkJ64hwj3521mcIFSJqT1m/FAJzExkaNHj5JodOA4FIeafJwpoRQV2AaN8zkQkGWZmtxa9r57lJV5NnaN1pCTpkXyySydYOTPu8cDbSvQGwyGAdXI/XQYjUaMRiM1NTUBMX1dSQJg52T44JWHbHv7ANssStrwRzO7J7JVWinz5jrF2drf0tKTYVF2JidYSU04QIjG1alt9ZUU4pkQTlcP4X9TkiSlkGRNaRRQTnFseHANCxLuag/vNtYgq9SMOWFn9Py+owmprJF5d4MS1fpmX8vyIfFwyxK4eYnE8AQXf//7aty095qnTJnS51Ok3Yn/ZhauqwevD0Md1Jgksnae4PIrg2yc4Iz4e5bue/84nxwoYudYDXsngGei4khIPpkZRQ5sspejZaNQSV5SE1q+FGlpaX0qatCTJCcnk5eXhymkmjBdLQXlKYRgpzBFj7vBg9YwuB6fsizz/LfHcF+oZ/iRUhbeeu71yrxemXU7FVH8yi3g9ijLTYYmUuOzyUjMIr5VdPVs9LUU4pkYXFdNL9KmMr3Jzq7iTAwcpWhoCI3VTehNA1//0xrry7lsmanMVPzNkuDP8vN4lC/962tlVm6FpuYXqTADXHsh3LJEYn4mqJpnKe3atQ+3u73DpVarmTx5cm+aHnTaiumd6GwaCsd4OFTkwufzDciCmf0Zf8/SA+8f45NcO9YxavZMAnezo4VPJq6gmAui1Ty0ZD7h8iRu/81+ZFSMj80lTNcQ2NZgSC36SUpKIi8vD0lSml8fKh1DZK2P6ggVW77MY8HlfefFsTfI+/wEm6Ypz60fTTu3KNcxm8xrq2X+swYKm30qlSSTllLIhKhvGRt7CE0nRPF++moK8UwIp6uHaCOmN9rZemIO8ZUyNZESH32wnRtuHzxVjWWvzKt7C2i6TIv5RDFLr19MUVFRUGzZc1Tm9TUyb38JzuZi8pIEi6bCrZdIXD0XwkPbRq3cbje7drUvhAowYcKEAS8qPpWoqChCQkJoamrCbHRQ5QyFMdWU6SIoKSkZ8LXK+gOyLFO9p4bc94/zaa6NnWPU5KSCO7X5lu+TifE7WhdfyITkFkd61arVZNuVIs6tBfRxcXF9NmXTE7QV0xdxqHQsMYU+Cser+MJ6fNA5XU+t3EP9AgOJJ6r4fhfu4Q1NMh9uVKJaX7Wa9J0c3cDkhN2Mj95JhL6m03b0hxTimRBOVw/RRkxvsgMQWaSjJtLNpr1F3BBk+3qT4x8X8tVs5VK7Y1LvP5Cd5TLvfKlEtXKOtCwfN1RxtG5aDEMS2jpasixjs9nIyspi3759NDU1dbjtwVCb61T8Yvr8/HzMRjvO0ilANZVxkdjtduF0BQlZVtqu5H2Qz2cHbOwcqyY7FdxpLY5WdEExc6JUPLh4HqlD2usQPR4Pn28toaQujlBtHWNiWr4w6enpgyqN3lZMr+i6NE4DjHdzoK5zGqOBQpG1mK8y9QDcNOzsEhlZltl9SCle+s6XUNk890CvlZkxupBRYRtJMR2nK+XOTCYTFoulX6QQz4RwunoQf+PUSH0lBk09crEJJpWRLw+u9MtLK/dQsUyHyVnN/dde3Sv7bGyS+fQbxdFauwO8XmV5lBFuWKQ4W9Mm0O4hUl9fz549e8jKyqK4uPiM+4iMjGTEiBE9dQh9mhany8Hnx2KBAopTwrDZ7AO2PUxfxN8c/tCHJ/nsQBE7xqrJTgPX5JZbe1RhMbMjJR68aB6Th565VdPhw4f5Nl8R0Cu1uZRUjyRJgy6NrtfriYmJoaysrLmlG1SUpQDHKYrWB9e4XuaJV76lYoGBaHsdv/zxFacdV14t8/YXiii+9QvupKENZCZlkazbgkHb8Qvs6eiPKcQzIZyuHsQf+pQkRddVVRoNlOGM779eelcpt1awbrKiHbnMKPeo3keWZb7drzhaK75qebvSqOGKOYqjtXQWhOjaOlo+n4+jR4+SnZ1NXl4ePl/nNAWZmZmD6s2/Nf5r2xhSQ1OThvAmqIhWsT/rOJddFmTjBjiyLFO1q4pDH5xk1YEido5Tk5UGTektt/PIomJmmyR+cdFcMq5f3OltW3fvZa9jKdB21uKoUaN6tVVKXyEpKYmysjJCtY1EGcopKksinOMUDtFSU1yPMX7gSwuqjtbwxQTFyVwW1l6z6fPJrN+lpA8/2tyij40yyixMtTFcvwGj6vipmz0j/T2FeCaE09WDtK1Mb+dbm4VwDmMboqO6uA7TIHC+Xl++k/wlSjHUv97YM3W5TjiUEg9vfC5zuLBl+dRxiiD+hosgLrK9c1RRUUFWVhY5OTlUV1e3+/xMGAwGpk4dvM3LW79QmE3F6Gxq7CO87DtahyzLg9YZ7Slkn0zlrioOv3+S1bk2doxTKY5WZsstPMJWzMxw+MWiC5jaBUfLT11dHau2QaPHQEK4g0SjM/DZYBLQtyY5OZm9e/cqP5ts7HOmElnqpTJWzapVOXz39oFfc/GpZzdhv0CHsbyJv9zRcg8vKlXx73Uyr62ROdFcXkeS4MLJTVhS9hDu+gpJ7loa1p9CnDp16oDVyp7V6bJYLLOAvzT/mgSsAkYDUc3Lfmy1WrMsFksi8AYQBiy3Wq1vWSwWNfAyMAbYZbVaf9a8zZ8C1wNlwE1Wq7VrT7x+QkxMTEBMbzbacbv0RJbKVMZKvP/Bt9xx76Jgm9ijNBQ1sCpBBiSm1ZRjMnRfSL6mXuaDjUpU6+usluXmGLjpYsXZSh3Z/sHvdrvJzc0lKyuL/Pz8c9p3VFQUV155Zb/WFZwvMTEx6HQ6XC4XZqODWqcBRtRSpjZRVlZGbGxssE3s98g+mYqdlRz9sIDVB2zsHKdi92RonNqSYjHZSpgR7uOBBXOYfg6OVmv27dtHlq19c+uQkBDGjRt3Xtvur5xaJHWfM5WIIpnKWNhy0MF3g2hbb9DgbGBVsuImzG+sxdDc2ucPr8s8+mo8sqwU0x2WILPUUsIw/dc0VB6ErmUQGTp0aKAX4kCf/XxWp8tqtW4D5gNYLJb/AB8DBVar9ZjFYhkH/B1YBjwM/A34GthssVjeB5YANqvVeofFYnm52YE7DFwBXADcCPyIFqduQKFSqTCbzZw8eTKgCTDZQqiMdfHNQSfdV8u3b/LZM7vImiqhdvt44jwfCKDUdvlqtxLR+nAT1DfXKNXr4Op5SvrwoqmgVrcXxdvtdrKysti7d+9pRfFnQqVSMXbsWDIzMxk9evSAvzGcDUmSSExM5OTJk5iNdvaXpgK1VMYoYnrhdJ0bsk+mYofiaK3db2PHeBW7TnG0jPYSZoT5+Pn82czshu+VLMtsyoGfPxfDodIRqCQvaYkttbkmTZqEVjs4C4ImJiaiUqnw+XwBMb2vOAKo44gcXNt6gxf/voVjFhWGWg9/v0NJO590yvz+P8rBX3uhh5kjcvGVf0l9XS0NjWfaWlv8KcQZM2aQmJjYE+b3STqdXrRYLDpgOnCH1Wr1i15cgP/n6cADVqvVZ7FYrEAqMBslMgawFpgDRAIbrVarbLFY1gKvn/dR9GH8TldESDWh2jq8xRFACSfVA/sm5qn1sKKhBlmlYUy+nXFJS855W7n5Mq+vlXnrCyhqVS9vXroS0bpuAZjC2ke16uvr2bt3L1lZWTidznafd4bY2FgyMzNJT08f1JGtjmhxuhxsPDEfsFGSbMRut5OWlhZk6/oPslemYnsFxz4s5PP9NrZPULErHRosbR2taaFeHpg/m1nd4GiB0t/u7S/g+Q9l9h4DGIlK8jJ/xCal8G0zgzW1CEoj+/j4eBwOB4lGB5Lkw1k2FMjFFm8Y0Kl0T62HjwweQMO0knJiTYqm7+//k/F4Yeaok6SHvE1tgbdL2zWZTIFCpgM1hXgmuqLpughY38rhAniy+R+AttVnVUA0SgqyuhPLBiytK9MnmWxUlMUCJTgTB/YDfMfLuWydoTw0fnNp11vDlFXJ/PdLJaq1M69l+cik5jIPF8PIpPY3O5/Px/Hjx8nKyiIvLw+vt2s3BACdTsekSZOYMmUKycnJA/amer74dV2R+kqqGwyEeaAkQU3enhNcfHGQjevjyF6Z8m8rOP5RIev22dg+XsWuDKif3uJohTtKmab3cP/8WVzQTY4WwNEimX9+JPPq6pbJJhGGBjISdzI1aTemVjWToqOjGTJk8DZ3BuUe7nA40Kk9JIQV46iIJ8Z7gKJkFQW5JQydGB9sE3uEd57+hn2TNGibfPz9VuX6c5R5eXGlF9CQEbO2S/fXYcOGBWYhDuZMQVecruuA1/y/WCyW3wHfWq3WTc2L3BaLRdXseEUA5UAlYGr+vPWy0acsa4fFYrkLuAvgvvvuY/Hi7rvpdITb7e6Rgp2tp7gmGR1sKZxBpE/Glqxhz448YpIH3owg2SvzSs4Jmi4LIfGYg8lzJrY7tx2db5cHvsoK4f3NoazfHYLbqzg7RoOPy2c1cu3ceqaNcysNT2VovXpNTQ2HDh3i0KFD1NXVnZPdCQkJjBs3jhEjRgTSKTab7Zy21Rfp7mvcf21LEiSGlxBiV+Ec4iM7t4LCwsJB76yeer5lj0zd7jqca8vYcqyKnRPVWDOgrpWjFeooIY1avp+Zyqw5EwPLz/fv5vPBxj0h/GddKF9lhyDLyt9mVFwJ6fFbmBifi0bV/gE6YsSIfvMd6Kl7eOsId5LJhqM2kVi7l+IUDf/96Ftuihh4E2p8bh9v19QCWiYetaNfmEpRUREP/KMWl2cMY2IOkWg8c0kdUO4Ro0aNYtKkScTExABgt9t72Pq+wen68XbK6bJYLFpgGvD95t9vA1KsVuv3Ww3bCcy3WCybgKnAQ8A3KBGyTSj6rteAI8DPm9dZAmztaJ9Wq/Ul4KXmX3s8e15UVNQjTYuTkpICguMkkw2fR0d0CZQlSGz55gQ//Nm5p936Ksc+LuDr2Yrg8s70pA7Pq/98y7LMroOKIP6/66GsSvlcpYJLZyhRrSsuUGMICQfaFuXzeDwBUfzx412bkuwnPDyc9PR0MjIyBrwOqbuvcbPZzCeffILH48FstNPg1MOQekoxEhoaSnT0gA5in5WioiLMCWbKt1Zw8qNC1u23s2OCCusMqF3UcusNLS5lqtbFT+fOZGE3RrQAqmqVlisvfNQys1en8TFt+FEmRn1NsunMD8ALLriAyMjIbrWpp+ipe7hGo2Hz5s2AIqbfbZtCqF0FKZBX4RmQze5XPW/FOkWDyivz+PfmkZycTEl5Eyt3KvPn5g7v8LEdYLCnEM9EZyNdFwFfNeu11CjO0E6LxfI1cNxqtd4OPI4ye/GPwItWq7XBYrF8BlxlsVg2A1nNonwsFssqi8WyFagAvte9h9S3aC04TjIqN7hwm4GyhEZ2HC/jh0G2ryf410d7qFiqI8JRzU9PUwzVXq7ira9l3vhc5kB+y/K0kYqjdeNFYI7tOFLSWhTf2NgF5WYzkiS1EcUPhIJ7wUClUpGQkKA4F0YHh0rGAvVURkVht9sHtdNVsbOSYy+d5K3je9kxQcXOTKid3XKdGUrKmKJu4qdzZ3BRNztaAPuPy7zwkcwbn0Ndc+vExCgX04dkMS5iC2GtNFunY8SIEf3G4epJ4uLi0Gg0eDyegJPqKokBKjgeMvDuHbJP5t9HHMjxIYw7VMz0GxStwKMv2mj0DGNo5AmGRhZ2uK5IIZ6dTjldVqt1DbCm+WcvoOtgjB1YfMoyD3BbB2OfBp7uurn9k6SkJE6ePIkxpIZwXQ3u4gigkYKQdqex31Oxu5J1aUpqbqmp42Koz7wr88AL8fiapxvHRcL3Fiui+Iwx7avEAzQ0NARE8Q6H45xsi4mJCYjiw8PP3spCcHbMZrPidJnsfGubBTgpS1LE9JMmTQq2eUGhaJOTh9/MZvNMiZrFLQ9lfUkZmeomfjJnGkt6wNHyeJQuDM9/2LbH3ZRRVUyO3cyQ0GzUqs4lDXQ6HRcLYR6gvFz47+FxYcVoVG4KykagpoKiFD0+jw+VZuA4GN+uyOMbi/Js+vUSpb9kTZ2btzYo6cFTo1wajSZQyHQwzUI8V0Rx1F6gTSFJo53SsljAOSDF9K8u386JxSr01U385Xvti6EWV8j8+mUZnyxx7XwlqrVkOmg17R0tWZYDovjc3NxzEsVrtVomTZpEZmYmQ4YMGfQ6o+7Gf21HG8opqzMR6gOnWcOxvAIlPj4IefytHaxerNSk05eWkyE1cN9sC5ded1GPXH+llTL//gyWr5Q52TxJNzREqQY+OnQtkbrOa7JUKhWpqanMnz+fqKios68wSPA7XWqVTJLRzsnqISQ0ypTFqNi16SjTFo4JtondgizLPL/lMO4LDQw/Usay5peDP/27kJqmYSQa7YyOPtpmnZtuuolhw4YFw9x+iXC6eoFTK9MfOTmSaK+MPUnNyTwnQ8cPjAbBjbZGVjUfyvTaCowdFEP9+/9kGprg4qmNvPf7jnP9VVVVZGVlkZ2dTVVV1TnZMmTIEDIyMpg0aRIhISHntA3B2fE7XSoJ4kNLCSlWUZroY/fesgE9nf50VByo4ss05Xq7stjBqz+6qcfOwa6DMs9/qGgh/a1XRpi9LJqQR7y8Fp3q7ClEP1qtlqlTpzJz5kwiIiJ6xN7+TNt7uI2TVUOJLfRgG61l7TeHB4zTdejLAjZZlPv2vVMVrVqTy8vLayIBuGDYN7S+nIcOHSocri4inK5eoHX17iSTHdmrIcYhUZIM76208sD4pcE2sVtY+ayV7Kkq1C4vT3y3fWqitFLmhY+Vn396dS3Q4nR5PB7y8vLIysri2LFj57T/sLAwJk+eTGZmJnFxcee0DUHXiI+PDxSPNBsduOw6ShMbcboNVFdXD7oH+D9e2IrjQi3h5Y385vJ53e5wudwy738Nz32o9BkFJYK+MKOR6Sk70NVvRCUBndxtWFgYM2bMwGKxYDAYutXWgURrsby/SGqIUwejZfZWNATLrG7n7x9mU7fAQOKJKu58UIly/f2NQsrrhxBtKGNifG6b8XPnzg2Gmf0a4XT1ApIkYTabOXHiREBMH2o3QHIDWbZzi+T0NTx1Ht6trwE0jCt0MiaxffTu6fdk6hrgspmQPsoNgMPhCIjiGxq6fvOSJIkxY8aQmZnJmDFjhCi+l1Gr1SQkJGC32zEbHRwvGQE0UhmhiOkHk9PVVNzEmiTl+rvQVUuIpvtur7ZSmX99IvOvT8DZXGQnIhyumlnB+IgNNFXuhwY67WxFR0cze/Zs0tPT0XSjnQOVqKgoDAYDDQ0NJEcoZSlqSs2AjZMRAyOSbs8qYX2GEuW6cYgiffF6fTy/Unk5njPsG1RSiyYwJiaGUaNG9b6h/Rzxbesl/E6XMaQWY0g1TSVRQAOF3diPMJhsf6VVMdTLLO0+L6+Wee4D5eeHbnBz4MABVq1adc41W6KjowOieKNx4NU6608kJiY2O112so5OAUooT4zAbrczfvz4YJvXa7z2960cmqpCV+/hyVuX4qmtOftKZ0CWZbbuVYTxH2wET7OkcdIImaumFxLtWUtNpYOmys5vMzk5mTlz5jBu3Dgxu6wLSJJEUlISR48eJUpfiUFbT0HZUAzYKByio6naRYipf0+MeuLlbVTMNxDlqONX910BwL/eK8RelYIxpJp089424zMyMgadfKA7EE5XL9FGE2C0U1IWC9hwJof2e+2L7JN5NeckriU6ko8Xdzgz69n3ZWrqYdqYSrasXo7H4+nyfrRaLRMnTiQzM5OhQ4f263M2kDCbzWRlZREbWkpxdRR6wJGsJf9IASwItnW9g7feyweqJkDDFEcpCREmis7R6apvVLoxPP+RTPZhZZlaDVdd4GPRhFyair+gtrSGrmx9zJgxzJkzR3xvzgO/0yVJSorxSNko4qp81Eao+HLtPpZe3/XOG32F6uM1rBunBACW6b2omyUDT76rzESfPfTbNsVzY2NjGT58eDBM7fcIp6uXOFVMf/D4aOLcMs4ENQd3FzJ+av9ttXH8s0K+mql8Oe9MN7f7vKpW5tn3lZ9TTR932eFKTk4mMzOT1NRUIYrvg/jF9GqVTLS+kpBSiYpYyNpWzO1Btq23+OyfVnanq1F5ZP7y3QvPaRvHbTLLV8q8sgrKmxulxUbAbUtcZCTuoODIN5Qd63yzdpVKxeTJk5k1axbx8QOzVU1v0lrXlWS0caRsNNGFXmojVGzIKejXTtdTz2zGNkdLeHkTf7ldmXX+3zV2jpeaMWjqmZK0u834OXPmCOf9HBFOVy8RHR3dIqY32kBWE2OTcA6DD9dk8et+7HQt/zCHqstCiLRXc18HxVCf+wCqamFMXAHDIgs6tc3Q0NCAKF48MPo2CQkJSJKELMuYjQ48dh0VsU0U1YdQU1Mz4NO/slfm9ZOlyEN1jD/qJP3Gzte3kmWZL61KCvHTb6C5dB3TxsOti2uIV20i70A2R8p8Z95QK3Q6XWAmoslkOvsKgk7R+sU5OUIR06uKQ2GSm4Ourpez6Ss0ljSyytysRWyoIbT5xfYvbykX44whOwnRuAPjIyIiSEtLO+d6iYMd4XT1En5NQH5+PubmqsZ6eygMqyen5Nx6BfYFKnMq+SJN0TIsi6CdTqSmXuapd5Uv7+whG864LUmSGD16NJmZmYwdO1aI4vsJWq2WuLg4iouLMRvtFBQPAZqoNEZit9sHvNNlXXGQbdOUSO+vLk7r1DrVdTJvrFVSiAdPKst0Wrh+AVw3x0m9cyMHDxyktAt2hIeHB2Yi6vUDQyvalzAajZhMJqqrq0k2Kk5XaekQ4BhFsf33fP/ryc0cnapCX+vhqe8rUa5VG+3sL0pCq3YxfciONuNnz54t7s3ngXC6ehGz2Ux+fj7hunpMIVU0lEYD9djD++8X9t/Lt3NyoQpDVRN/uql96YsXPoSKGhgZU8TwyBMdbiMqKiogihdv5v0Ts9nc7HQ5OHAyDSijIkER048dOzbY5vUoz28+RNMCA0OOtRSTPB15J5T2PP9ZA7XNk3WT4+DuK2DBhKMc2reZrE2diwb7iYmJYfbs2UyePFnMROxhkpKSqK6uJjykjgh9JUXlyURwjMIUDaUnq4gd2r9m63rqPHwY4gE0TCsuJ86kvCD9/jUljW1J3kWotqXVWlhYGJmZmcEwdcAgvqG9iF/7Aoquy1Eej0Qh9pRQZK+MpO5fOfJGRxOrmsthTa+rbFcMtbZe5u8rlCjXnKEb6EgCsGzZMqZMmSL0Af0cs9lMTk4O8eElOCqj0XEUR4qewpOdr4beHzmx2c7Gqcp1/4PUjtPgXq/Mqm1KCvELa8vyeelw75U+RkTsYef2b1i/pqxL+x4yZAizZ89m3Lhx4vvTSyQnJ5OXl6f8bLJxoHgi0U4P5QkaPl2Vw+33zguyhV3jf898y95UDRqXjyduWQTA5l0l7Dg2BLXkYdbQb9uMnzlzJlqtNhimDhiE09WLnFrVOO/YOBKalFYSWVuPMmXe6CBa13U+fnYnOZlKMdQnb2ivY3lxJZRWwbAoGyOjjrf7PDExUThcAwT/C4VG5cWoq0NXBTUREllbi/jezUE2rgd56m0r1Qv1xBTV8KOfXtXms4oaiXf+K/PPj2Tym+UvhhC46WK4c6mbpvKdbN++nYO1tV3a57hx45g9ezZDhw7tpqMQdJY2uq5mp8tUBOUJ8O3x0n41ccTn9vF2VRWgIy2/hLFJSt/ER1+uAWJIN+/BFNJybYaEhDBt2rTgGDuAEE5XLxIdHU1ISAhNTU1KkVRZIrZIwjYSVq7f16+cLm+DlxXNxVDHFxYzKqHtW359o8wT/1OiXBcM+7rDKNfChQuFwzVAaN3o1mx04LXpqIlwcbJKQ11dHWFhA6/PaNXhar6c0NzyJ1IK6BldbpkHXpB5+dMEmtzKd2CEGX50tcS182o4uO9bvly5C5fL1el9qVQq0tPTmTVrlui2EEROfXEG8JZEAHUcU/evumefv5zFzkwtKq/MH6+fBcCeg+VszB2ChI85w75pM3769Oli9ng3IJyuXsRfmT4/P5+kZjG9xhEOI2vZV9l4lrX7Ftte2c830xQx5W+XTm33+UufQHEFpES0b5AKSvuY0aP7j5MpODM6nY7Y2FhKS0sxG+3YixNggovK0EgcDseArFz97HNbsF+gtPz5wx0tesZ/fQLPfwigNHP/8TUSU4aXsH37N7zxyl58vs7PRAwJCcFisTBjxowBPyGhP6DX64mJiaGsrKy5u4iMrWw4sJ+iREO/qbkoyzIvH7TjmxPCuEMlzGrOVPy/5eX45EhSE/YRE1oRGK/Vapk5c2awzB1QCKerl/E7XaHaBiL1FdSXxAC1OCL6T98z2SfzSs5J3ItDSDlWwuJTxMMNTTKPv6O84c8dvrHDKJfFYukXNydB5zGbzc1Ol4MjtnFAJRUJygzGgeZ0uSpcrE5QXjrmNdZi0CkzeBubZP76tnLt//Mn5Vw2rY6tW7fy0rrDXdq+0Whk5syZTJ06VUQX+hjJycmUlZURonERF1ZKScX/b+++w9u4zkT/fweFAEmAvReR6t1qI0uiSBXbSm+bu05ukt1s7PSsN+Xub/fu7t1NosROYrnEdop73yQucZy1HVu24yKr2hrJtiSri2okwQr2CgLz++MAIEFSNiWRAEi9n+fxIxOcAQ6GA8yZ97znPdlk+Uxq8y0cNaqYvTz+y//sfvIIO5arc/bfrpoLwIkzbbz4jmp7+ZAo19KlS0lKSkJcvIkVD50EhhZJ9TSrYbma4kT6e8+/SnssnHy+itcvVx/Yry8eXgz1/ueg1gsFKXXMyhx+sSktLY04DmJyCA0x5rrqqGvOBKCuKInqqsmXTP/grds4OtOCo6ufm7/ysfDj9z0HNY0wp7iHQN0TPPTQQxw7NvoOV3Z2Np/+9Kf53ve+R1lZmXS44lBkXlc1mFayq9V397OvHjrXbnHl9i1H6UvQKDnh5dMr1WzE//xtHb6AnZmZx8hz14W3tVgslJWVxaqpk450uqJs6HJAHR1uErtMWlM1tr9yOIYtG73f/OldWlM10mva+McPRVbf7u0z+cUHRLnWr79E1oa5xISS6ROs/dgtvSR2QodbY9+eqhi3bGz5ewM85VPpAItrmshLU2UCenpNbnhUFclclP4MjY0No37OKVOm8IUvfIFvf/vbLF68WOogxbHBlekLg3ldiR51KX2n4eLW24yGY6+dZWtwxu23FqkbJU99J39+S12bKkq3RWwvpXzGlnS6oiw9PT1896qKpGpkVKk/wwvbj8SwZaPTeqCVvy5QUa5PpmvDiqE++AJUN0Ceu57ZWcPfz4wZM2TW1SQVURLFXUdmjZpaXtlg0t3dHatmjbkX7trDnsU2LH6Tn32hIvz43c/4qfVayHXVMmeEc38kc+bM4dprr+Waa65h1qxZMuQ+AeTl5YW/90LJ9D1NWQCcTor/cgo3P7GXDpdG7plWvvFRVeLiR3dV09OfyJS000xJG7hJ0jSN1atXx6qpk5J0uqIsVJkeCCZigrVO3UUc7oz/4cW7f7OTs0UaSa293PC/I4uh9vnM8NIRFSVvYJEo1yXF6XSSnp4OQL7bg61O5Sm2ONMmzZIhpmnyQGUdpkVj1okGlkwtAVSU6/qH1ed33dQ3RozwhlitVpYuXcp1113H5z//eYqL4z8HSAyw2Wzk5uYCaijdqvVzuknlLFYVO/F1x+/3eN2+Jl5dpD6X/7sgCU3TaGnr4bGtKuJVUbI9Yvv58+eTmZkZ9XZOZtLpioFQRCDR3kN6opf2xgwAatPjO1Gxt76X57PV1WRFRwvJQ/JNHnkRztRBTnIDc3OG5zbMmTNHcrkmudC5ne+upadJDbs1Z6fj8Xhi2awxs/epY+zUVaT3/35oXvjxu5/pp7EtgVxXLbOzR45yOZ1OysvL+f73v88nP/lJuZhNYKHvMZslQJ67ls72FJxdAVpTNXa8Gr8jFpvu3kFThkZ6bRf/7/MfBuD6e87S3usiz1XLjMzImebl5eWxaOakJp2uGBia1+XxqmT66mIHvk7fuXaLuaduf4t9CyzY+vzc9MUPR/zO12/ys0dDuVxbR4xyrVu3LgqtFLEU6nTluWupa1ZDLg2FydR6Jkek61evHqbXoVFc6eXTl6sE5J5ekxsGRbmGnvspKSl86EMf4vvf/z5XXnklLpcr2s0WY2xokVTQyDqrzoGX3xpeCDoetJ/p5MWZ6kb5Y45+bFYr3T0+Hvyr6vyXl26PiNDOmjUrHNETY0c6XTEwdDmg7u5kkttMOl0af928P4YtOzd/j58nOlV14rln65mWG1mg8Xcvw0kPZCU1Mj/34LD958+fLx/gS0Do3Hba+jD9fhJ6oTnDwv63z8S4ZRevencdW5aoBORr5maFH7/zz300tDnIddUNi3IVFRXx3e9+l1WrVslMxElkpGR6e52KgB7sHH3R22j65a1bqCnQcDX38ouvqIWtb3roFN6uNDISm5g3ZHRColzjQzpdMZCeno7Tqb68C9zqLimjWv0pXt5dGcOWndvOB95jZ6gY6icjl4Lo7ze54ZFQlGsbFs2M+L2maRLlukREJtPXk1WjzpljVT56e3tj1awxsenBN2lN1cis6eC7n1S5ib19Jj97RM1YXDtClOvKK6+UmYiTUHZ2dngNwlAyfWuTin5Vpcdf57rX28dzOeoas6aznWSHA5/Pz53PqRSA1SU7Ir63S0tLJddwnEinKwZClekB8lOCwy516uQ/2jv6atXRYpom971zBp9dY0plA1cumBvx+8dehePVkJHoZUHugWH7X3bZZWRlZQ17XEw+SUlJpKaqczk/xYMjmEzfbE+lrq7u/XaNa+1nOnlltrpR+oSL8Oy13z7dS2O7k1xXHXOyI0u+FBYWUlpaGu2miiiwWCzh7/DMpCYc1h7ONE4FoKrYTkdjVyybN8w9N7/B8RlWnJ393PpVNQHqN4+dorYtC7ejjUX5kSMsFRUVIz2NGAMfWJFe1/VVwM+DPxYAfwGeAjYBAeDbhmHs13U9D3gESAbuNAzjv3VdtwL3AjOBPYZhfD/4nN8DPgc0AX9nGEbbmL6rCSA/P5+TJ0/itPWSmdREa2MW0EJdVvwl05/cPFAM9RtLIhPh/X6T6x8ZyOWyWiKjXBaLhbVrI2t5icktPz+f1tZW8t21eBoKgQ5asjLweDwTtlzI7bdtoWalHVdzLzcEi6H29pnc8Ii6SRopyrVs2fDlscTkUVBQwJkzZ7BoKtp1snkaqU1+WjOtvPDcfq7+yopYNxEAf5efp6w+wMayWi85qSn4/QHu+JO6IVo1ZRc2iz+8fUFBAVOnTo1Raye/D4x0GYax0zCMdYZhrAN2AH8GbgA+DnwRuDG46f9FdcTWAv+o67oT+ARQYxhGBZCs6/oqXdezgE8B5cDjwD+O6TuaIAYnYua7PdQ0q3yn6uIEuuJsHcZfP/UubSkaGTVtfGvDmojfPfk6HDkDac5mLssbHuVavHhxuIyAuDSEKtPnu2tpDCbTNxa4JuwMRl+bj79kqK/Kio52koK5Wb/+YzdN7U5yRohyzZkzh5ycnGHPJSaPyLwudW6nVavOy7bD8XOuP37HTvYttGHrC3Dzl68A4NFnTnOyKY9EWxfLCvZGbF9RUSH14sbRqIcXdV1PAC4HDMBvGEazYRhngIzgJpcDrxqG0R/cZgFQBrwU/P1mYDWwHNhiGIY56LFLztDV6n29TlK9Jj1OjeefezeGLYvUenCgGOqn0i0RxVADAZOfPjyQy2W1RA6NWq1W1qyJ7KSJyS90bifZu+nts2DzQUOulaMHJmZl+od/uY0js6w4uv3cdM1HgODKC8E1FkeasSj16Ca/yE5XNQBafTIARwPmiPtEW6A/wKNNrQAsONXI7MJ8TNPkpsfU9/iK4t04bAMz5rOzs5k9e3ZM2nqpOJ8Fr68CXgFSgcHDgf3BDpndMIzQVbcV1RlLH7Tt+z02jK7r3wC+AXDdddexYcOGkTYbMz6fj+rq6nF9jcFM08ThcNDb2xsukppaY6U1I8DLe06wan1R1Nryfh745R6qNiSS1NLDt69aHHGMnnvTycFT6aQ6W1iUv2/YvnPmzKGjo4OOjo5hv4v28RaxOeZ57gaotVBXHODQiU5Onz6NzXY+XzuxZfpMHu/uAhKYf6oWs7uL6uou7n5Go7E9b8Qo1/Tp0/H5fHKOR1ksv8NDMxjrvVOAE1TnOqmqqop5xGjn749jLLVj8Zt8d81UqqureXlnEwc9C7Bb+7i8+K2I7efNm0dNzejWSpXz+/0N7pQPdj7fflcDDwItwOCFmGyGYfTpuu7Tdd0S7HilAt4h2w5+bMaQx4YxDOMe4J7gj+N+21BdXX3OgzReCgsLqaysJN9dC5gE6tMAL2cs9qi3ZSS9jX28XKCGUlZ1tTFz2sA4fyBg8ttn1Z+lvGQ7tiFRLpvNxkc+8pFz1iSKxfG+1EXzmLtcLjo6Osh3e2itTYTiTpqsqVit1gn1d3/hrj3sXawuWr/40loKCwvp7TP57bOdAKwdUpNO0zQ+9rGPkZGRIed4lMXieBcVFXHixAlSnO24EtqpbioiI3CcmgIrdDopnB27CUSmafKHqr34S5zMPtrAZ77wIQB+84yaRawX7iHJPpDKkpaWxpo1a4Yt7XYucn5fmFEdXV3X7ahhwW2GYXQBNl3X03RdL2ag07QbWKfrug1YBryHygG7Kvj7DwPbg9utGfLYJSk0+8Vh6yMrqYnmRlX7qjY7OZbNCnvy9jc5MN+CrdfPTV+KLIb6zHbYdwLcjjaWFAwfDr388sulCOQlbHBlel+DG4CW9IlVmd40Te47VKOW/DneiD5D3XTc8Xg7TR1J5CTXD1t5YcmSJWRkjBi8F5PQsHpdfhtZnn4CVo1nXxge/Y+mPX86yg5d3TT/6xVzAHh1VzXGqRKsWj+rit+M2H716tWj7nCJCzfaI3wVKl8rFM74T+B54DHg34OP3Rj8/zeAuwzD6AaeA6bour4V6Akm5TcAf9F1fTsqEf+3Y/NWJp6heV01LarTVVNko7kmtqvV+3sDPNGh2jC/qoHS7IE7NtM0+clDoSjXjoiZLwAJCQmySOolbqDT5cHbrDohTfnuCdXpevcvJ9ixTF20/uVKddHq7TO58Q/qa3PojEXJYbz0DK9MD67g6Nzu6pYYtGjAba8eodehMeWEl78pWwrAT+7vAjQW5e8jxTlwjXG5XCxevDg2Db3EjGp40TCMF4AXBv38BipJfvA2HmDDkMf6ga+M8Hy/BH55/s2dXCILSXrYV3sZ6fUBmnMsPPf8O/z912JXK2X7gwd4U7ehBUx++KnIYqh/2QlvHwNXQjtLC94etu/KlStJSoq/0hciekLnttvRSXuPA1sA6vJtVB45FduGnYfbX3iP3rVJFFc28zefU19tv/x9C00dqSNGuXRdD9coE5eGkZLp+xvTgE5OJsSuKO7xLdW8sUzVlfvmZWo2sbG/jq1HS9EIsLpkR8T2q1atmlC5lhOZxBJjKC0tjcREVSslVNU4pUZVOd52OHZr1UUUQz3ZyPr5cyJ+F4pyrS7Zid3aH7Gv0+lk1apVUW2viD+DbyhykxrJrLcQsGq8d7iN/v7+99kzPtS808Dri9Vn88szVcmTPp/JTY+rC9PQKJfdbpdlUy5BLpeLlBSVtlwQLBtx1jsNgOpCJ6Y/NrMYb3rcoMOlkXumjW99TEVff3hPCwHTyrycQ2QmNYe3dTqdUlMuiqTTFUODK9PnuevQCOBrUEMxJ7XY/WkqX67mjeWqTMS39MhZlC++BbsPQ7K9g2WFe4btW1ZWFl7iSFy6UlJSwtHOfHctLo8apmswU2hoaIhl00Zl0/07g0v+dPKDv7kSgJsfbcLbmUz2CFGuFStWSA7jJSoU7Uq095CR2ERzSxYJvSaNWRbe2Rb9Zd3q3/Py6kJ1w/C5PAeapnH4RCN/3V8CQEVpZBr1ihUrZF3QKJJOV4yFcgISrD6ykhvxNgWT6XNjNzz3qyffps2tkVXdxtevHLh7N02TjQ+qO7eykl0kDIlyJSUlsWJFfFRhFrE1dKmrQIPqkLSmpsV9XldXTRd/na4uQh9PDGCxWOjtC3DLk+pGZGhdLofDQVlZ2UhPJS4BEXldqTVgWsiqUrWvnt965Fy7jZub7txOU6ZGWl0X//WFjwLww7sa8AUSmJl5jDz3wHJcdrudyy+/POptvJRJpyvGIvK6UjzUtmShBUw8hVbqKkespjGuWo+08dcF6oIztBjqK3tg10FItHehFxrD9i0vLychISFqbRXxbaAyvYcWrxqi8+anjroOUKzc9sst1BRYcDX3ccNX1Dp1mx5uwNvpGjHKVVZWFk4TEJeekfK6nLUqn2tflFcX6azq5MXp6jv4o1YfNquVMzUtPLtHLb9VPiTKpeu65N9GmXS6YixiBqO7BrPfTmadid+q8efn34l6e377q+3U5GskN/fy0y9+PPx4RJRryq6IKsagcht0XY9qW0V8C53bqY42mjtUpKu20M6ZyvgtqNjf2c+zKSqMVd7WRrLDQW9fgNueUkPma6dG1uVKSkpi5cqVsWiqiBODb5xDMxi7giMWZ93RvQn95a1bqCpUNwy/uOYTAGy8u4ae/kSmpJ6hJO1seFur1Sr5tzEgna4YS01NHZRMr4ZdkmvUB/XNysaotqXP28fz2eqUKOtqI3FQ1GrLO7BtPzht3Swv2j1s34qKCux2e7SaKiaA0MVI0yAryUt6o4bPrrH/gBe/3/8Be8fGI7dt58hsKwndfjZdq2rT/fxBD94uN9nJDczLORixfUVFhUR3L3FOp5OsLFVSJ89Vh0Xzc6pJ1f8+W5xAX3tfVNrR19LHs1mhNULbcCc6afR28MR2lZdbUbotYvvFixfjdruj0jYxQDpdMaZpWjgikOeqQ9MC9DaoD/Bpe3Sn8D5+25u8N9eCvcfPTX8fWQw1NGNx1ZQ3cdoiv0RSU1NZunRp1NopJoa0tLRwgm6+u5YUj+qc1PtcNDZG94ZiNEy/yWPtasmqxWeaKMrMoKc3wB1Pqyjd0BmLKSkpEt0VwEBU127tJ8dVT3eni+Q2P50ujb++8F5U2nDvzVs5NsOKs7OfW776MQCuv/cMHX0u8ly1zMg8Ed5W0zSppRgj0umKA6GIgN3aT05yA43eYDJ9fhKmGZ0px4G+AE90DhRDnZKVGf7dtn0mr70NDlsPlxe9NWzfNWvWSI0XMUxEMr27FupV56XFHZ/J9C89/A57F6klf376eTXs8rP7q2gOR7kic7nkvBchw4ukamRUqYlGr+07e469xo6/288fNXUzvMzjJS8tlfaObh59NRdQuVyDl4FcsGAB6enp494uMZx0uuLA0LyuhpYMLH6T2jwLpw7Uvc+eY2frQwd4c6kqhvrjz0TOZvnJQ2ohgpXFb5Fo7434XUZGBosWLYpKG8XEM7gyfXtTGgDNefHZ6brn3bMErBqzjjexfNY0unv8/PoZVYNJRbkGboDS09OlgrcIGymZ3lanorxHese/Lt0ff7WLdxfasPUF2PTldQBsevAU3u50MhKbht0wSE252JFOVxwYOoORgI2sGhPTovHMS/vH/fVN0+Tet0/Tb9corWxkzbzZ4d/tes/kZUMjwdrLiiFrdQGsXbsWqzV2lZdFfAud2+mJzTS0q2rttYUOzp6Or2T6Ay9VsjNYwfsHa1U+zvX3nqG5K4WspOFRrnXr1sl5L8Ly8vLCM70Lg7m5zV51M12dOb51C02/ycMNLQDMP9nI3KJCenv7uG+zqvm4umRHxA3D7NmzycnJGdc2iXOTTlccSE1NHVRIUn1gkzzqg2pUNZ9zv7FS+Uo1byxXd2XfWl4c8btQlGtF8e6IFekBsrKyWLBgwbi3T0xcoU6XRYN0RyspLdCTqHFgXwOBQOD9d46iW57dR49To7iyhavXLKezy8edz6UBoRmLAxet7OxsOe9FBJvNRm6uGsrLTm7Abu3jTNN0AKqKbXir2sbttV958F12L7WjBUx+8lm1ZNuvfldJbXs2bkcbi/Ijb9wrKmK3vJyQTldcGJz7khuc/dIdTKY/mzj+M6Nuf/JtOlwa2VVtfO2qgbCzcdjkhTc17NY+VhbvGrbf+vXrZVV68b4yMzPDs/vy3bWkBWfm1nYl4vVGvw7dSOoONrFlobrp+btpKhr303tO0dydSlZSA/NzI2csynkvRhJKE7FoJgVuD/6+BDLq+/HZNZ597t1xeU3TNLlr31n8Vo2Zx5uomD8Ln6+fXz+j8idXTdmFzTIwU3jatGkRQ6Ei+uSbI04MzH7xk+Oqp86rwr+egkTMwPgl07cea+eVeSrK9elMG9qgbMuNwSjX5UUGyQndEfvl5eUxd+7ccWuXmBw0TRtUJLUWS73q3LQkp8dNXteNd22nJU0j09PFP//tVbR39HLPC+qmZ2iUq6CggDlz5pzrqcQlbHBnJryWbrXq8Owap/I/b//Pcbbr6vv7/1s3E4CHnj7BaW8BibYulhXsjdhecrliTzpdcSIir8vtobk9HXufSUOOhYNvjd/sl1//ahuefA2Xt4eNwSUjAN4+avLcDg2bxceqKTuH7bd+/fqIDpoQ5zK4Mn1nKJk+Jz4q03c3dPPyVHXR+qitH4vFwk/uPhmMcjUOi3JdccUVct6LEUUm0wfP7YZkAE5Yxuecue3lg/Q6NaacaOZvy3UCgQC3Bperurx4d0QR66KiIkpLS8elHWL0pNMVJyJnMHogYCGzWt1hP/fawXPtdlF8LT6ez1JfBqu72yOKof7kIXWHtrzIwJXQFbFfYWEhM2fOHJc2ickndG5nJTfR0KqmqdcVJVFTHftI1223bqG60IKrpY+fffXjtLZ1cf9LKso8dMZiSUkJ06ZNi1VTRZzLysoKF4gOdbo83lIAqvOdY17+5+S2GrYsVYW1vzZflRn64+ZKDteVYLf2saI4soh1eXm53DDEAel0xYmUlJRwMn0oNO2sVR+od+rHJwnz97ft5NAcK/YeP5u+/JHw4/tPmPx5mwWbxUfZlJFzueTDK0ZrIJneJMnWQVIndLg13nu3Nmp16Ebi7/HzbJJ6/dXeNlxOJxvvqqS5O02iXOK8WSyW8Lme5mwhyd5JrbcQa79Jba6F43vHNrK76fe7aXdr5Jxt5zufWItpmtz4O3U+64V7SLIPpITk5OQwa9asMX19cWGk0xUnBlemz3E1YNX66WhUd9xVyY4xf72AL8ATHar69sKzjRRnZoR/t/FBVVdmWcFe3I6OiP3kbl+cr6ysrHAR0YKUOjJqVDSgutVOc/P4z849l//+1Q4Oz7aR0BPgxq9uwNvczoOvqM/gmiG5XDNmzGDKlCmxaqqYIEJDjJoWjHYFbGRV+zAtGs++MnYjFg2Hm3llobopvzonAYvFwotbT7H37DQsmp9VQ8r7SJQrfkinK46E7pJsFj+5rnpqg8n0NUVOAv1jO73+jYcP8FaoGOpnV4QfP3jK5E9vWLBq/awukVwucfEsFkt4On2+24O9Tl0smp2xS6Y3Aya/b2wFYNGpJqZkZ7HxrkpautPITGpkQW7k0i1XXHFFLJopJpiINJHgiEVy8BR/u27sRiw2/WYbjZkaafXd/PCLH8U0TW54qBfQWJz/LinO9vC26enpzJ8/f8xeW1wc6XTFkcEf2PwUD+3tqTi6TZozLBhbjo/Z65imyT1vn8Zv05h6oonyuQP5WRsf7MdEY2nB2xEfXIDp06dTUlIyZu0Ql47BywF1N6YB0JIdu8r0r/xuH3sWJ2Dxm2y8egUNjS08+rpaGHjojMW5c+dGTHQR4lxGSqbv86YBcDrZPiav0VndxUtTVf7th7U+7FYru96uYseJ6WgEht0sr169WkqcxBH5S8SRocsBgRZOpt+849iYvc6J16rZtkwNWX5nxcCQyZEzJn983YJF87O6dMew/davXz9mbRCXllCnJTu5gYbWNAAaCpPx1MSm03Xn3lMErBozj3tZOXc6P7mrkubu9GFRLk3T5LwXo5aWlkZioorkhjpdZ7zqpraqyIm/13/OfUfr9lu3cLbIQnJLH5uu/QQAG+9rI2BamZdziMykgfp3brdblmmLM9LpiiNut5vkZDXFuCC4lIS9ViXX7/N2nXO/83Xbk3vpcGnknG3jmivLwo9vfLCPgKmxJP8d0pyRofBZs2ZJUT1xwQaGzgPYzF4cPdCcYeHwvpqoJ9O/t+U0O5eoC+P3V0/DU9vI77aqCO7QKNdll11GdnZ2VNsnJi5N08Lfk8kJXaQ5m2ltycTZFaAlTWPnq0cv6vl9bT6eyVDpHeVtbbgTnew/VMOrB1X1+/LS7RHbr1q1ShZljzPS6YojgyvT5yQ3YLX0096kahzVpI5NMn3r8TZenaeWGPpMlj2cn3W8yuTxV61YNP+wDy5IlEtcnJycnPAQR0FKPZketW7h6UYLbW3jt0TKSG556u3gkj+tfP6Ky7n+npPBKFdTRJTLYrGwdu3aqLZNTHyDRyxUtEsj82wfAC/uOnFRz33/zVs5OtOKo8vPLdeqGec/vteLL5DAjMxj5LvrwtsmJiaybNmyi3o9Mfak0xVnQh9YqyVAnqsOTzCZvrrIia/74lerv+NX26jN1XB7e9n4xYFiqBsf7CVgWliUt4/0xNaIfebNmxcucCnEhbBarRHJ9I5gOZTmhOjmdTUca2bLfBU9/kKJm7NVtfxh+1RgeF2uJUuWkJ6eHrW2iclhpMr0jnoVbTrY2XfBz+vv8fOEX61/u6y6iYKMdCpPN/D8O+r8rRhys7xixYrwElwifowq7qjr+jrgv1CdtDuC//4bEAAeNQzj17quJwOPAjnAM4ZhbArueyNQBpwCrjUMw6fr+tXAD4Bu4B8Mw6gayzc1kUVWpq+hurqA9I4A7SkWtr18iPWfWnjBz+1r8/FClupnl3e14wgW8jtZY/KHV2xoBIZFuTRNY926dRf8mkKE5OXl4fF4yHfXcqphGtBBS2Y6NTU1UVta5xd3bqV5ZSKZnm7+9Z8+wbc3vkVz9+XDolw2m401a9ZEpU1ichke6YJObw7gpSrtwkcsnvr1m7yzyI7NF+DGL6sI7MZ7PPT0L2BK6hlK0gZWLklISODyyy+/4NcS4+cDI126ricC/wx81DCM9YZhPI3qcF0JrAK+oeu6Bfga8LxhGOXAFbquF+q6vggoNAyjAjgM/K2u6zbg/wDrgB+iOnMiKHLKsQfQyKhWP79snLyo5/7dL3dweLaVhG4/m74yUAx14wM9+AMWFuYdIDMpsm7SwoULJadFjInQuZ3rqqepWdWFayx0UVtbG5XX723u5eViddH7iObj1Olqntw1A4A1pZG5XMuXLyclJSUq7RKTi8vlIjVVLZye7/agEeBko0qmP1tsp9Pbc97PafpNHq5VCfLzKxuZX1yEp66Zp99UuYhDb5Z1XQ8n9Iv4MprhxVWoiNSzuq4/ret6HnAESAGcQLdhGAFUNOul4D4vB/cb/NhmYDUwEzhkGEafYRjbgcvG6s1MBiMl01vr1IrxhzouPDQd6B9UDLWqkcIMNWxyps7kd3+1AyZrSrdF7KNpmuS0iDETiuLarf0E/AFsPmjIsXLsvegEum+79TWqCi24Wnz87Osf52f3naK5OyMY5ToQ3i4hIUEWBhYXJXSD4bD5yE5upLfbRYq3n55Ejc3Pvnvez/fqI/t4a2kCWsBk49/oAFx/7xna+9zkumqZmTlQUshqtbJq1aqxeSNizI2m05ULzAA+CdwL/Bh4HHgL1fl6ILhdOhDKiG0FMkbxGID1gls/CQ2uTJ+V1IDN4qOlUV2satKdF/y8rz+8n91L7epD+78GiqH++P5u+gMWFuS+R1ZyU8Q+ixcvJiMjY+hTCXFBcnJywhM38lPqyapVXz+VNSbt7e3vt+tFC/QFeMauCgyvamzFU1XDn4y5gIpyWS0DUa6VK1eGl+QS4kJEDjGqoYr0KrX49BuHzy+H0TRN7gzWVZxxvIk1C2bT3NLOH7aqunIVpdsZXK96yZIluFyui3wHYryMJqerBdhuGEafruuvAP8OVAALgQ7gFV3XnwhulxL8NxU4HXz+UIw+FfAO2i5kxMIluq5/A/gGwHXXXceGDRtG/64ugM/no7q6elxfY7RCHxirxSTPXYunOYckTlBdnMDJI6dIcJ1/kb27957CvzaJaUfqKamYT3V1NR6vhUdfymKkKJfFYmH27Nnjdkzi6XhfKuLhmKelpdHc3Ey+20N9bRoUd+K1pnLgwIFxXWbnmYcOcGiOnYSeAN//2Hx+evdJmrvXk5EYGeVyOByUlpaOyXGKh+N9KYmn4+1wDORuFabU8LZnCZYGddN8tD9wXu08+koNO3S17zULM6iurubmh6to7l5ORmIT83IOhbfVNI3p06dH5TjE0/GOR+cqsTSaTtdu4J91XdeAxUAl4ALagx2xftQw4w7gKlTk6yrg60AWKn/rEeDDwHbgGDBX1/UEQAf2jfSihmHcA9wT/HHcC/lUV1fHTR2qjo4O3n77bQAK3B6qqorJbQ3QnmrhwDtNfPLz5zcN+PjrVezQ1fj+datKw+/zR4900B+wMi/nIDmuhoh9li1bxuzZs8fg3Ywsno73pSIejnlJSUmw01VLdUMx0Elrejp9fX3j1jbTNHm6bS/gZNHJJlL0Uv6yXxWMXDs1MspVXl7O1KlTx+R14+F4X0ri6XhnZWXx/PPPAwMzGL0tRUA1NbmJFBQUjHo5tf9406BnbRLFlc18698+R1dXN3/YpgaIVpfsHFZXLlqTUuLpeE8kHzi8aBhGI/A0sAXYBPwEuBXYpuv6TuANwzA8wH3Ap3Rd3wZsMQyjyjCMd4A6Xde3AvOBpwzD8AG3Aa8D1wf/E4MMT6aHtCr1Ad2y7+yI+7yfW5/YS2eyRu6ZNr5y1WoAPI0mj7ykphOvKd0asb3NZqOiouKC2i7E+wmVHslz1eH1qrzCxgL3uJaNeP3JA7y92IHFb/Jfn13GpoeqaO7OGBblSk5OlhlfYkw4HA6ysrIANXHEaunnVMN0tIBJTaEVzzHvBzyDcmqnhy1L1Q3ztXMyAbj90WPUdeTgdrSxKD8yZrF69eoxfBdiPIyqZIRhGL8BfjPooROo8hCDt+kAPjPCvv8ywmOPo/LCxAjcbjcul4uOjo7gckCg1bthfgdHes6vVldbZTuvBYuh/k32wLDkj+9rx+d3MSf7MHnu+oh9li9fjtvtvsh3IcRwoWR6h62PXp8FLQD1eTYqj47fMMWvd57AvyqZOYebcM0r4Nl3VZRrzdRtEVGuiooKqWskxkxhYSGNjY1YLQHyXbVUtRWRWeujsSCBZzbv41uzPrjg9KZH36JtXRI5Z9v5px98hp6eXu5+Xt2srJqyC5tlIDtn7ty5MtN8ApDiqHEqnEyf3ITd2oe3Uf3syTq/acC//NVW6nI03E09/ChYDLW+2eShF1VHbO3UyCiX3W6XuyUxbgYX2c1zNZJVZyFg1Thxuo/Ozs4xf73DO8+yc7FKiv/Oiinc/EhNOMq1MHd/eLvU1FSp3i3G1EjJ9O4a1UnafbZ5xH0GazrawisL1Pf9/8qyY7FYeOCPRzndXEiirYtlBXsjtpcZtxODdLriVCgiYNFM8l21eFrUHUx1kZ32+tGtw+hr6+eFTPUnXtPdGS6G+sN7Wunz25iVdZR8d2SNpJUrV4ZLVggx1hISEsLDLvluD8kelXDcZKaOyxDjpsf30JOoUVzZxqwMJy8cWAIMj3KtXbtW1qgTY2pwvlNhqhqxCDSpEYRTCR88aX/Tr7fSkKWRVt/Nj//uY/T393PHn9UNxOXFu3HYfOFtp0+fHtHJE/FLOl1xKjKvq4b+XidpTQF6HRqbn9//PnsOePS2bRydpYqh3viVDwPQ0BzgoRfV3dPaqW9EbO9wOKS+ixh3oRuKfHctgQY1U7cldeyXA2o63cqWueoidXVeIrf/vh5vd+awKFdmZiaLFi0a09cWIjc3d9B6o6rT5fGqSRpV+U5M/7nnh3XXdrO5RA11f4he7FYrjz13hCP1U7Fb+1hRvDtie8nBnTik0xWnIpYDCibTp1SrZPqth2s+cH/Tb/JEhxquWXRWrdMF8KN7W+jttzMj8xiFKZEXubKyMqliLMbdQKfLQ6tX1YHzFqSOeWX6n/9qC83pGpmebtbMSGfzQTV8ODTKtW7duvDFUYixYrPZwuuNZiR6cdq6qWsuwt5n0pBj4d3t515h5PZbtnC22EJyq48br/0EgUCAWx5XkdhlBXtJsneHty0uLh7XcitibMk3TZwKJdODujgBmA1pABzzBz5w/9ce3c+eJcFiqFevBKCpNcCDL6o7/6G5XImJiaxYsWLY8wgx1kKdrkR7Lx096kJSV2DnTOXYJdP3tfXxUr6KFGzo7+HOJ714uzNJT/RGRLlyc3OZP3/+mL2uEIOFhhgtWjDaFbCQVdULwAtbj464T397P/+jVhGirKWV1KREnnvlKO9Uz8Ci+Smbsiti+4qKilGXnxCxJ52uOBYaYsxMaiLB2ktDsDK9J/uDq2XfvfcUfquqYLxy9nQAfnSPlx5fAtMyTlCcGnmBW716dURBPyHGy+Bk+pxkLxkNGj67xtFjnXR3d7/PnqN3+62vUVVsJbm1n08szOKlw6oUxNC6XOvXr5cLlhg3kcn06uY5MRjQ3ecdOTf3gVve4MgsK45uP7dc+2FM0+TG3/kBjcX575LiHFi9ITc3lxkzZoxb+8XYk05XHBtIplfRrrrmHABqCq00nmk9537Ht5xl+1I1O/EfV5UC0NwW4IHNKkF+aJRL6hOJaHI6naSnq+HufHct7loVkWr0u8dkiNH0m/xZU7PEVnqaefjZzhGjXIWFhcyaNeuiX0+Ic4lIpg/OYOwNDqmfcQ9fWcTfG+Bxn1oQe2lVE0WZGWzZdYJdJ2ehEWB1yc6I7SXKNfFIpyuODS2SGui3k1Hnp9+u8ZcXRizkD8AtT+6lK0kj73QbX75SJcb/8O4Gun0OStNPUpIWWWC1oqICu/38lxYS4kKFzu18twfqg8n07owxSab/w107ODRXLfnzqfluXjmmhteHrrF45ZVXygVLjKusrKzwd2somf5000wAzk5x4OvwRWz/59++yTsLbVh9Jr/4uzWYpskND3URMK3MyzlEZtJAUdWMjAzmzp0bpXcixop0uuJYRKcrmNflrlFTjXcebxhxn9bTHbw2RyXDfzZHDRe2tAd44EU1VXlolCslJUXqE4moC1emd9fS3qSiXt68iy8bYZomD59RC7cvPN7Es68FaOpSUa7L8gaiXFOnTh2z5X6EOBeLxRL+Hk9xdOB2tNHenklSu58Ol8arm98Lb2sGTB6sasK0aMyvbGBhSTF79p1myxEVjS0v3R7x3OXl5TIBZAKSv1gcc7lc4crwoRmM/cFk+spz/OVuvWML9TkaKY09/PBLHwHgR3fX0tXnZEraaUrTTkdsv2bNGqlPJKIuNHTuSuiitUvdHNQVOTh75uKS6bc+c5C9i51oAZMPFZu8erwMGB7luuKKKy7qdYQYrci8rhpAI/NsHwCvvjMw6vD6o/t5c1kCWsDkR59RN8LXP9CCL5DAjMxj5LvrwtumpKRw2WWXRecNiDElna44F/rApid6cdh6qG8qAsCTm4RpRtZ56e/oZ3OmioSt7e4kwWajrSPA/ZvVVJi1U7cyeDQlPT2dxYsXj/+bEGKIwSVRMp2tpLRAj1Pj2KE2ent7L/h5b99yFL9VY+aRZt58O2nEKNesWbMoKiq6mOYLMWqReV1qiDGhXt3oHu5Rw4umafLbPafw2zSmH/eyfuEcDh+r5sX9aiiyoiQyylVWVobV+sEFVkX8kU5XnBucTF/g9lDfkonFb+LJt1B9pDFi2wdv28axGWrWy41fVUv+/OjuGjr7EilKPcu09Mi6MGvXrpUProiJpKQkUlPVzUC+u5a0GpVMX9/nuuBk+uNGNbsWqckiFYltvF6plkVZU7pt2IxFIaJlpOWA2lvUpKiqLDXhaf8LlWzX1f9/v3waANffV09PfyLFqWcoSR+IiCUlJbF06dKotF2MPel0xbnBH9h8twf8NjJrAwSsGs+9dCD8O9Nv8mSwGOris17y0lJp6+jnvs1pwPAoV1ZWFgsXLozKexBiJIOLpFrrVRmUluT0C87r+vnv3qI7UaOosp2TpzJHjHLNnz8/omSFEOMtLS2NpCR1fofSRCob5wBQVWSjpbqdW/5ygB6nRlFlC19cdzlnqur4nz2q81UxJJdr5cqVMvFpApNOV5wbqTJ9skdFp3afGZjJ8urv9rF3kR2L32Tj59RsrR/fXU1HbxIFKdXMyDgR8bxShVvE2uDlgDqa0gBoybmwyvQt1e1sma2iXEs7POEoV0XpNqwWVUxY0zTWrVt38Q0X4jxomha+eXbaeslMasTXk0R6vQ9fgsbv73qLLUvU5KdrZqlJJT+7r4qOPje5rlpmZh4PP5fD4WD58uXRfxNizMhVN865XC5SUlKAgSnHvY1qweCT9oGhwbv2nCZg1Zh5vInLZ02jrcPHfZtVPZihUa7c3FzmzZsXpXcgxMhCnS63o52WdtVhqitOorrqg5e5GuqGO17Dm6GRWdtDa2MOTV1ZpDmbWTQoyrVo0aLwYttCRNPwZHpIrVb5XPe7+2lL0ciu6uB7n7mC+gYvT+4sAaC8ZEfEd/fy5ctxOp3Ra7gYc9LpmgBCF6d0ZwtOWze1TSox05OfiGmaHNt6lp1L1AfxO8FiqBvvPkt7bzJ5bg+zMo9FPN+6deukPpGIudB5rWngTmgnuQM6XBpHD3nx+XwfsPcAX6ePl3JUTtiC02fYemotAGumbg1HuSwWC2vXrh3jdyDE6IyUTK81qe/sk6XqMvzZdCsWi4VND57E251BeqKXeTkHw/vZbDZWrlwZxVaL8SCdrglg8MWpIMWDtyUdq8+kLs/CsT013PyEKoZacKqNv79qFe0dfdz/YiYAa0sjo1wFBQXMnj07Fm9DiAgulyu8vmhBSh3pNSpPpb4zibq6uvfbNcIdt73G2WIrrtZ+/B1ZI0a5li1bRlpa2pi2X4jRGqkyfWNLcfix1IYeNv79x2htbeO/X1dRsfKSHRETQJYuXUpycnKUWizGi3S6JoBhRVJNK1k1apmT//mfA7w+N1gMNVfVO9p412lae9zkuOqYnX0k4rlkrTkRTwZXprfXqfO4OTFt1Mn0ZsDkT/0qKjb74Gl2nFYzE9dMHcjlstlsrFmzZqybLsSoJScnh2fr5rrqsGh+ztRPw+JXnaoN/h4SbDZuf/QYdR25uB1tLMofWHXEYrFQVlYWk7aLsSWdrgkgcjkgFZpOrFVRgSeSoSFLI7Wxh//80kdoa+/h/pdV3sra0q1YBvWvpkyZwvTp06PXcCE+QGgmYb67lu5QMn3W6DtdT9y/i0NzE0joDWDvTB0U5Rq4YK1YsSIcURMiVkLRLrvVT66rDgIJZO09Q9aJs9z0tU/Q2dnF/S9lA7Cq+E1sFn9438suuyzcaRMTm3S6JoDk5OSBZPrgckA9jerDeWKa+hOu6+oiwWbjJ3efpKU7lezkBubmHIp4HolyiXgTGjpPc7bQ3Ko6RvVFyXhqRtfpeuB4PQAz3q1m95krgcgol8PhYPXq1WPdbCHO20jJ9FOapnD9dBepSYnc+8RhzrQU4bR1s6xwb8S+cg5PHtLpmiBCH9hUZytJ9k6qvQMVtR1dfm78+kdpbevigZdzAbXsyeAo17Rp0ygtLY1mk4X4QIPzFR2WThw90JJu4dihBvr7+993323PH2LvokS0gEmSN4HGEaJcq1atIjExcVzfgxCjMVKR1Oq2Ampqaujt7eXO59SN9Yrit3DY+sLbzp8/X2bdTiLS6ZogBl+c8t0e2trSsPeqfIClZ73kpKZw/T2VNHenkZnUxPzcgxH7SxVuEY9SUlLChSMLU+vJrFHLo9S2Oamvr3/ffW975TB+m8bUAw28XbMBiKzLlZiYKLO9RNyI7HSpSG51WwGtra3c99gejjZMw27tY0Xx7oj9ysvLo9pOMb6k0zVBROZ1ecDUcB3uwdHazU+/UEZLawcP/lXlx6go18Csl5kzZ8pacyIuaZoWUSTVUaem0Xvtqe+b11W538OuhWoml7vGT2NXtopyDUo+Li8vx+FwjGPrhRg9h8MRjlhlJTeSYO2ltSeNjt5k7nzWDcCygr0k2bvD+8ycOVNWUJhkpNM1QYxUmZ735vL16r3ML87nZ/eeoKlL1XZZkHsgYl+Jcol4NrjT1duohlhaM99/OaAbHtqlyqQcb+NAzYcBFeWyBaNcbrdbKneLuBNKprdoplrWDdhft4D36udh0fysmrIrYnuJck0+ttFspOv6OuC/UJ20O4DXgDuBXOCYYRjf1HU9GXgUyAGeMQxjU3DfG4Ey4BRwrWEYPl3XrwZ+AHQD/2AYRtVYvqnJKDTluLW1lQK3SsKsaSvAgsahw0d58K8qEjZ0cd+5c+dGdNiEiDeh8zMjqYnmlhSghoZCF7W1I38ttNZ3sGWGGpLMONHFe13ZpDpbIqJcFRUVsj6diDsFBQW8++67gEqmP91Syisn1gMai/L3kepsD29bUlLClClTYtRSMV4+MNKl63oi8M/ARw3DWG8YxtPARmCTYRhXGIbxzeCmXwOeNwyjHLhC1/VCXdcXAYWGYVQAh4G/1XXdBvwfYB3wQ1RnToxC6OKU4mgn2d5BT38izT1pbHqgksauTNKczRGL+wKy1pyIe6Hz2qKBlT5sPmjMsVJ5pBa/3z9s+xtufxVvpoWM2h4OVV8FqJuNUJQrLS2NpUuXRu8NCDFKI1Wm7w/Y0QhQXrIjYluJck1OoxleXIWKSD2r6/rTuq7nAUuA7+i6/rqu658JblcGvBT8/5eD+w1+bDOwGpgJHDIMo88wjO3AZWPyTi4BobyuUGV6gOrWQv56VCULV5RuDycRAyxcuJCcnJzoN1SI85CWlhZeT67AXU+WR30tVTcm0NjYGLFtf08/L6arCFbu/lYau3KDUa53w9usW7cOq9WKEPEmNzcXi0Wd36FOF8C8nENkJnnDP+fn50tNxUlqNMOLucAMYCVwFfBjYAUq+nUIeEPX9c1AOtAW3KcVyAg+5hnhsdB2ACN+O+q6/g3gGwDXXXcdGzZsGO17uiA+n4/q6upxfY2LlZCQEP7/ghQPx5pmsuVkBY1d2aQ4WiMuPJqmMWfOnLh9TxPheE828XzMMzIyqKmpIT+lFl9dLkzpxGtN4eDBgxGlIx6+dw9n5yWS3ObnSLXKVawYEuXKyMiIi/cZz8d7MpooxzsjI4PGxkZSna2kOlto7UmjvDQyyjVv3jxqas5/4fdomijHO1YGRzUHG02nqwXYbhhGn67rrwD/Dpw1DGM3gK7rR4DC4HYpwX9TgdPB508JPk8q4B20Xcjw8QPAMIx7gHuCP5ojbTOWqqurz3mQ4kV6ejqbN28GCOd1NXapIqkVpdvDFx6ARYsWMW/evOg3cpQmwvGebOL5mJeUlKhOl7uWyoYZQCct6en09PSE22yaJs/zNgBFe1vY1ZFPqrOFxYNuNjZs2EBxcfFILxF18Xy8J6OJcrxLS0tpbGxE0+CLix6jy5dEvrs2/PusrCxWr14d94WsJ8rxjjejGV7cDczVdV0DFgOVwLu6rs/Qdd0KTEdFs3agImEE/9015LEPA9uBY8HnS9B1vQwYyH4V7yspKSm8FER+ysDMLrejjSUF74R/tlgsrF27NtrNE+KChfK6spIaaG5W53hTYUrEDMY/PvwWB+c5sPeZVJ5ZBURGufLz85k7d26UWy7E+RncUcl1NTA1/XTE7ydCh0tcuA/sdBmG0Qg8DWwBNgE/Af4DuBfVibrXMIwu4D7gU7qubwO2GIZRZRjGO0CdrutbgfnAU4Zh+IDbgNeB64P/iVEK5XWlODpwJaiZLuUlOyLW6Vq6dClpaWmxaJ4QFyTU6bJaTAIBPxY/1OVZOXXMQyCgOlX3HVYdsJK9rdS3FQ+LcskyV2IiGFxzcajU1FQWLlwYxdaIaBtVyQjDMH4D/GbIw+uHbNMBfGaEff9lhMceBx4fdStFWH5+PocOqTUVN8x4hTOtxSwtGFiny2q1UlFREavmCXFBMjMzSUhIoK+vj3xXA231FhryA1TVW2lqaqLyXS97L0tCC5jUVC4GoKJkYEi9uLiYGTNmxPAdCDE6WVlZ2O12fD7fsN+VlZXJJJBJToqjTjCD75IW5e/nk3Oex24diHItX748vDi2EBOFpmnhytv57lqSPaqSvNdUQ4w3b34Pv01jyoFOqr3TSXG0snjQkPoVV1whUS4xIVgslhGHwV0uF0uWLIlBi0Q0Sadrgnm/Qqd2u11qu4gJa6AyvYdAgwuAlrQ03ttTyc75wZ8PzwIi63JNnz5dFnMXE8ratWtJT08P/2y1Wrn66quloO8lYFTDiyJ+JCUlkZaWRktLy7DfrVixguTk5Og3SogxEOp05bgaaK1MBRrw5qfyp10NdF2ZTH5lLwfr5w6LcskyV2KiycjI4Jvf/CbHjh2jr6+P2bNny3f3JUI6XRPQ3Llz2blzZ8RjDoeDsrKyGLVIiIsX6nTZLH56g+kutQV2ul3qcf8+Netr8IzFOXPmyLR1MSE5HA4WLFgQ62aIKJPhxQlo9erVEcOMVquVz33ucyQmJsawVUJcnKysLGw2dR+Yl+wlo0Gj367RlGkho76fI1WXkeJoZUlB5IxFIYSYKCTSNQElJyfz1a9+lcrKSrq6upg5cyZJSUmxbpYQF8VisZCXl0dVVZUqFulx483uBSBpTzqgBaNcauKILHMlhJhopNM1QVmtVmbOnBnrZggxpsKdrhQPNfX5QC/J7QHeO7k0IsqlaZos5i6EmHBkeFEIETdCw+a5rnpOnC0lpdFC8tYMAgFbcKkrFeVasmQJGRkZsWyqEEKcN4l0CSHiRqjTlWD14cTH6cdUzpaKcr0DqCjvmjVrYtVEIYS4YBLpEkLEjZycnHBF7nz3wLqL5YOiXLquh9cgFUKIiUQ6XUKIuGG1WsPJ8fnuWkAt6L40GOWy2+2yzJUQYsKSTpcQIq6EhhgX5u1nZuYxPj332XCUSwoACyEmMsnpEkLElVCny5XQxZcWPxZ+3Ol0SgFgIcSEJpEuIURcmTVrFhbL8K+msrIyKQAshJjQpNMlhIgrKSkpbNiwAU3Two/Nnj2b1atXx7BVQghx8WR4UQgRd1auXMn06dOpqakhIyODoqKiiE6YEEJMRNLpEkLEpezsbLKzs2PdDCGEGDMyvCiEEEIIEQXS6RJCCCGEiALpdAkhhBBCRIF0uoQQQgghokA6XUIIIYQQUSCdLiGEEEKIKJBOlxBCCCFEFEinSwghhBAiCjTTNGPdBiGEEEKISU8iXUIIIYQQUSCdLiGEEEKIKJBOlxBCCCFEFEinSwghhBAiCqTTJYQQQggRBdLpEkIIIYSIAlusGxALuq5fDtwO+IBq4MuGYfh0XS8BjgLLDMM4EMs2TjYjHXMgF/gt4AbeMAzjR7Fr4eRyjuP9DeAfgpvcaBjGUzFq3qSj63ou8DTqePuBLwHTgU1AAPi2YRj7Y9fCyeUcx/seID24yT8ZhvF2jJo3KY10zA3D8Oi67gJOAtcYhvFcLNs4EVyqka6zwBWGYawBTgGfDj7+r8D2WDVqkhvpmN+Euhitlw7XmBvpeH8HKAPWAf8Rs5ZNTo1AuWEYa4FHgK8CNwAfB74I3BjDtk1GIx3v7xmGUR78/5/GsnGT1EjHHOC7wJ6YtWqCuSQjXYZheAb92AcEdF2fCpjAmdi0anIb4ZhbgVLgFl3Xc4D/NAxjRyzaNhmNdI4DlUAikAS0xKBZk5ZhGP5BP7qBE6hObzPQrOt6RmxaNjmNcLzfMwyjMvhz6HwXY2ikY67regqwENgVm1ZNPJdkpyskOJz4IeB64FfAL4Afx7JNk92gY34f8BDwedSX5LPA8ti1bHIaco7nAIdQHd6vvt9+4vzpur4YuBtIQx3zzw/6db+u6wmGYfTFoGmT0gjHO+Tm4H9ijI1wzL8H/BrYELtWTSyX6vAiwR76o8BXgCkAhmGcimGTJr0hx7wROG4YxhnDMGoBn67rl/RNwFgbcrwTgW8DM4E5wE91Xddi17rJxzCMdwzDWAH8F/D/gJRBv7ZJh2tsDTne/w6g6/pGYJdhGG/EtHGT1JBj/mNgkWEYkpJzHi7JTlfw4v4YsNEwjCPAImC+ruubUT32u3Rdd8ayjZPN0GNuGEY30KTrepqu68mAwzCM/ti2cvIY4RwPAN1AD9AJJADS6Rojuq4nDPqxFegAbMHzuxjwxqZlk9MIx7tL1/WvAEWGYdwUm1ZNbiMc81KgKHjd/DtgYzCyLt7HJbngta7rfw/cBoRmE91pGMbjwd89BNwssxfH1kjHHJXsfSOqA/BTmfkyds5xvEuAz6Juth4wDOOu2LRu8gnOFr0ZNaurB7gWFVX8BSpX9DuGYbwbuxZOLiMc76+hZtDtRs2uO2kYxjWxa+HkM9I5Hsod1XX9x4Ah3+Ef7JLsdAkhhBBCRNslObwohBBCCBFt0ukSQgghhIgC6XQJIYQQQkSBdLqEEEIIIaJAOl1CCCGEEFEgxSiFEJOCrutJqPVTTxmG8VCwbtODwL8YhiEVyoUQMSeRLiHEZJEE/AhVgR9gC/AF1BJTQggRcxLpEkJMFkbw37W6rpvAaVRB2H8Bjui6fgrIAh5GVdDehlo37h7Ud+E1hmFsDlbe/hmqw5YMvIwqbtoQxfcihJiEJNIlhJgs/iP47yFUh2mkIcXk4L87gY+hKvXfhFoM/BfB3/078M+oCNltwEcBqd4vhLho0ukSQkwWLwX/rTcM4zHU+odDBYAfAE8Ff37UMIw7gBpgavCxTwT//SZquDIZtSarEEJcFBleFEJMFqNZ06zbMIw+Xdd9wZ9bg//6Aeug7fpRnS9/8Ge5QRVCXDT5IhFCTBZtqEjWDF3Xv4TK57oQz6FuSP8BmAJ8BBX1EkKIiyKdLiHEpGAYhg+Vn5UG/DcDUarz9fPg81SgEu0/ipoJKYQQF0UzzdFE5IUQQgghxMWQSJcQQgghRBRIp0sIIYQQIgqk0yWEEEIIEQXS6RJCCCGEiALpdAkhhBBCRIF0uoQQQgghokA6XUIIIYQQUSCdLiGEEEKIKPj/AQnJdVADmHtxAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAG/CAYAAACNLZxtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5frw8e9s301PSEiAkIQSSGhKURGld1SwACqKiGDvDT0KdsUjiEf96auo4LEcewdBEAEBRaRJryGNkIT0sn3n/WOS2d0UIBDSeD7XlYvM7szsMxlmdu6n3I8ky7KMIAiCIAiCIAiCAICmsQsgCIIgCIIgCILQlIggSRAEQRAEQRAEwYcIkgRBEARBEARBEHyIIEkQBEEQBEEQBMGHCJIEQRAEQRAEQRB8iCBJEARBEARBEATBhwiSBEEQBEEQBEEQfIggSRAEQRAEQRAEwYcIkgRBEARBEARBEHyIIKkBeTweUlJS8Hg8jV0UoRGI839uE+f/3CbO/7lNnP9zmzj/zZMIkgRBEARBEARBEHyIIEkQBEEQBEEQBMGHCJIEQRAEQRAEQRB8iCBJEARBEARBEATBhwiSBEEQBEEQBEEQfOgauwCCIAiCILQcsizjcrlwu92NXZQmw+Px4Ha7sdlsaDSifvpcI85/w9Jqteh0OiRJOqP9iCBJEARBEIR64XA4yMrKory8vLGL0qTIsozb7ebIkSNn/OAmND/i/Dc8i8VCTEwMBoPhtPchgiRBEARBEM5Y5VwwWq2WNm3aYDAYxANhBVmWcTqd6PV68Tc5B4nz33BkWcbhcJCbm0tKSgqdO3c+7dY7ESQJgiAIgnDGHA4HHo+H2NhYLBZLYxenSZFlGY1GIwLHc5Q4/w3LbDaj1+tJTU3F4XBgMplOaz+iY6QgCIIgCPVGjLkQBKGx1cd9SNzJBEEQBEEQBEEQfIggSRAEQRAEQRAEwYcYkyQIgiAIQr2RZRm73d7YxVA1tXEg06ZNo7CwkO+++66xiyIIwgmIIEkQBEEQhHrjcDg4duxYYxdDFR8fj9FoPOE6gwcP5rzzzuO111475f2ezjaCIDQfortdA5FlmSOlVn4rKG3sogiCIAiCIAiCcAIiSGogU9Zto++yDTx88BjHrE2nG4IgCIIgnMumTZvGmjVr+M9//oMkSUiSxJEjR1izZg0XXHABRqORmJgYHnvsMVwu1wm3cbvd3HLLLSQkJGA2m+nSpQv/+c9/GvkIBUE4HSJIaiDHv96h/v7rrsONWBJBEARBECr95z//oX///sycOZOsrCyysrLQ6/WMHTuWfv36sX37dt5++23ef/99nn/++Vq3iY2NxePx0K5dO7744gt2797NnDlz+Ne//sUXX3zRyEcpCEJdiTFJDSSxSM/fFb+v2prGjRd0a9TyCIIgCIIAISEhGAwGLBYL0dHRADzxxBPExsby5ptvIkkSXbt25ejRo8yaNYs5c+bUuA2AVqvlmWeeUZcTEhLYsGEDX375JRMmTGjoQxME4QyIlqQG0jPKO/v43jLR3U4QBEEQmqo9e/bQv39/v6x4AwYMoLS0lIyMjBNu+//+3/+jb9++REZGEhgYyMKFC0lLSzvbRRYEoZ6JIKmBXDI0kYAyGYCMECOyLDdyiQRBEARBqIksy9XShld+b58onfgXX3zBAw88wPTp0/nll1/Ytm0bN998Mw6H46yWVxCE+ieCpAbSZWgi8akeAMqCdGSW2xq5RIIgCIIggDKXktvtVpeTk5PZsGGDX4Xmhg0bCAoKom3btjVuA/D7779z8cUXc+edd3L++efTqVMnDh061DAHIQhCvRJjkhqIVq8lKquMXcnBAKz45xA39+/eyKUSBEEQhPplMBiIj49v7GKoDAbDSdeJj49n48aNHDlyhMDAQO68805ee+017rnnHu6++2727dvHU089xYMPPohGo6lxm/DwcDp16sR///tfli9fTkJCAh999BGbNm0iISHhbB+mIAj1TLQkNaB2Du9YpN+2i/7JgiAIQssjSRJGo7HJ/Jyoe1ylhx9+GK1WS3JyMpGRkTidTpYuXcpff/1Fr169uP3227nlllt48skna90mLS2N22+/nauuuorJkydz4YUXkpeXx5133nk2/9yCIJwlkiwGxzSY9//1A4+cZwagc2Y5Gx8Y38glEhqSx+MhNTWVuLg4tSZSODdYXW6mfLGKEquNr28YRbDx5DXbQstyLlz/NpuNlJQUEhISMJlMjV2cJqXQ7qDEaiMmOBBdCz3/Qu1kWcbhcGAwGE4paBfOXH3cj8SV2oAGDO9CcElF8oZQg0jeIAjniAc+XMlqHWwOMvHsR781dnEEQWhA5XYnR0qtHPdAWm5xYxdHEIRTJIKkBtTpko60r0jeYA3QkVZmbeQSCYJwtpU5XSzBoy5vyyxtxNIIgtDQjhWUIVe0HlhF3aggNBsiSGpAGp2GqKwSdfnnLfsbsTSCIDSEZz5fS1mQN0dOVrDoaicI5wpZlinTeLtXOfUSHo+IlAShORBBUgNxu2V2H4GgEu8D0tqdJ56QThCE5s3p8fBlmX+6/5zWRuxV0gYLgtAyFZRacem8QZIsSRSJXiSC0CyIIKmBXPG4TI9psD+9l/rafrt4UBKEluzVnzZSFKb3e82tk1iy5p9GKpEgCA0pt8Re7bWiUpsYkywIzYAIkhpIjw7Kv0dcEYQWKjfHzHCjuFEKQgvlkWU+SM9Tl3v6xEUr/jxAaakYmyQILZnL7cZmUB6zJLzf9TYPOJ3OxiqWIAinqM5B0t69e5k+fTqDBg1i/Pjx/PDDD+p7ixcvZvjw4QwdOpT//Oc/fgHArl27uO666xgwYAC33norWVlZ6ns2m43Zs2czcOBAxo0bx7Jly/w+88cff2Ts2LEMGjSIZ555plneXPp1VZrbswwW2qcpfxe7WcuhkrLGLJYgCGfJB2u2kxtpBKDjIXBtb6e+d7jcw/HjxxuraIIgNIBjeSV4KsYjmcskpIpnIqdOg8fjwePxnGhzQRAaWZ2DpDlz5jBgwAB+++03Xn75ZebNm0dqairr1q3jq6++YvHixXzxxResW7dODaAcDgePPvoo1157LatWraJ79+7MmTNH3ec777xDUVERS5cu5cUXX2Tu3LmkpqYCcPDgQRYsWMC8efNYsmQJR48e5f3336+nw284fbsqN0dZkgjJ0qqvL924t7GKJAjCWSLLMv/ZnqouR25oRWpxa3X5WJAZu92O3V69K44gCM2fx+Oh2O2tKJZtevROJWBy6TW43CJIEoSmTnfyVfwdO3aM0aNHo9Fo6Nq1K/Hx8aSmprJs2TKuueYa2rVTaktvuOEGfv75Z8aPH8/mzZsxm82MH69Mnjpz5kyGDx9OVlYWMTExLF26lPnz5xMYGEivXr0YOHAgv/zyCzNnzmTZsmWMGDGC5ORkAGbMmMHzzz/P7bffXmP5HA4HDofD/yB1OgyGhs0oJcsyJSUl2Gy2ih87EUEJ5JXocOeEAgUArNubxd3DxI3yXFD5hSi+GFu+H7YdJDPGAkDbTJk/jydSpDORkAf5EZATY8Lt8WC1WtHr9SfZm9ASnAvXv8fjQZZl9edcZrU7cBiVemidC8rdRiwOFxiUv0txmQODXndaf6d3332X559/nszMTObPn8/9999fn0U/odWrVzN06FDy8/MJDQ1tsM9tSc71a6OhVN6Hamu1PZVJvescJE2aNImlS5dy8803s3fvXrKzs+nevTtvv/02Y8eOVddLTEzk//7v/wA4fPgwnTp1Ut8zm820a9eOw4cPExAQQF5ent/7iYmJ7Nq1S922f//+6nudO3cmMzMTm81W4wy6ixYtYuHChX6vTZw4kUmTJtX1UM+ILMtkZmb6XQyJbSL4Y184eXmtqQyS9jtdaquZcG5IT09v7CIIZ9nzq3ZC+yAA4teFsVNvBqDVUR35ES7sJg3r/zlEX5tNPGicY1ry9e92u3G73TidzlN6AGnJjhWUIZuUChBDuQY7ErJTC7gAKHe4cTgcdX5gLi4u5p577uHf//43EyZMICQkpFrF8NnUt29fjhw5gtlsbtDPbSnE36zhOJ1O3G43R48eRavVVns/ISHhpPuoc5DUv39/nnrqKd577z0A/vWvfxEeHk55eTmBgYHqegEBAZSXlwNgtVoJCAjw209AQABWq5Xy8nK0Wq1fwHOibSs/w2q11hgk3XzzzUyZMsX/IBuhJQlAq9VitXpTffbu7OaPfZDiCSciXyYvXOJYKwux7dujkaQT7EloCTweD+np6cTGxp7zDxAt2YaULA5XBEitjstszuwCBujdqRxDthl6KHOl7Um1MvKicGJjYxuzuEIDOReuf5vNxpEjR9Dr9Y3yndtUuN1urD4PZS67HqNexu3SURkkOTUatFoter0eqQ7f/8eOHcPpdHLFFVcQFxd3yts5nc56abU2GAx+z3rCqXM4HOf0ddHQPB4PWq2WNm3a1BgvnIo63akLCwt58MEHeeihh9iwYQOffPIJ77zzDjt37sRisfhlayorK8NiUbqbmM1mysr8ExSUlZVhNpuxWCy43W5sNtspbVv5GWazucYyVl7Avj8mkwmNRtPgPxaLBUmS1J8eCUoNQrbeRGxF8gaHScOB4tJGKZ/4afgfoNHLIH7O7s/sH/5W70ddfw8kyxBIVKiL+8bnYT8erL53sNhb4y5+zo2fc+H69/3Oa04/X3/9NT179sRisdCqVStGjBhBeXk5kiQxZMgQHnjgAb/1r7zySm6++WZ1OSEhgRdeeIGbbrqJ0NBQRvTtyeqlSyg7epw775zERT2DufKKPuzdsgUAp175/yDLst9+09PTmTBhAkFBQYSEhDB58mRycnKQJIkPP/yQnj17AtCxY0c0Gg2pqanVjiU1NRWNRsOXX37JkCFDMJvNfPLJJ0iSxOLFi0lOTsZsNpOUlMTbb7/tt+0ff/zB+eefj9lspl+/fnz//fdoNBq2b9+OJEmsWbMGjUZDUVGRus0333xD9+7dMZlMJCQk8Oqrr/rtMyEhgZdeeolbbrmF4OBg4uLiWLhwofq+0+nknnvuoU2bNpjNZhISEpg7d26j/5+ozx9fjV2Wc+3nRPfjk6lTkJSZmUlgYCBDhgxBq9XSqVMn+vTpw5YtW0hISODgwYPquvv376dDByXvdYcOHfzes1qtZGRk0KFDB4KDg4mIiDjlbQ8cOEDbtm1POypsSFXL2CO+IhCUJIKyvI14S/4UyRsEoSXYnVPAPzFKBU5wscyeI10AuH5wId3ibBwvjFDXPWo2qF2TBEFoPFlZWVx33XVMnz6dPXv2sHr1aq666qo6d4VbsGAB/fv359tlv3HpiJHMvuM2/nXX7Yy9YgrrN/xBXHwHnrzzdmRZxq2VsLvcfp8hyzITJkwgPz+fNWvWsGLFCg4dOsTkyZMBmDx5MitXrgTgr7/+Iisr64Qt0bNmzeLee+9lz549jBo1ioULF/LEE0/wwgsvsGfPHl588UVmz57Nhx9+CEBJSQmXX345PXr0YMuWLTz33HPMmjXrhMe8efNmJk2axLXXXsuOHTt4+umnmT17NosXL/Zbb/78+fTt25etW7dy5513cscdd7B3r/Ls8/rrr/PDDz/wxRdfsG/fPj7++GPi4+Pr9LcXhLOhTt3t4uLiKCsrY+3atVx66aWkpqayadMmxowZQ4cOHXj55ZcZMWIERqORTz75RO321qdPH6xWKz/++COjRo3i/fffJzk5mZiYGADGjh3Le++9xwsvvMDhw4dZu3ateoGNHj2a2267jSuvvJJ27drxwQcfMGbMmPr9K5wlVYOk8CA30aE2jhWacOWEA0oK4D8O5EDzOCRBEE7g0c9+R45WgqRe64z8oA/DoPMwaWAxASYZd5CJwFKZ0kCJnNYWZFnGZrOJ5A1Ci9a3b1+OHTvWoJ8ZHR3N33//ffIVUYIkl8vFVVddpXZh69GjR50/c+zYscyYMYM9heXMfGQWXy56n6RuF3DNNVfRJtzJXXc/xFVXDCIvJ4dWrVtTUubAYvR2v1q5ciX//PMPKSkpavDz0Ucf0a1bNzZt2kS/fv2IiFAqWiIjI4mOjj5hee6//36uuuoqdfm5555j/vz56msJCQns3r2bd955h5tuukltbVq4cCEmk4nk5GQyMzOZOXNmrZ/x6quvMmzYMGbPng0oY8p3797NK6+8wrRp0/z+NnfeeSegBG8LFixg9erVdO3albS0NDp37swll1yCJEl16kYoCGdTnYKkwMBAXnrpJd544w2efPJJgoKCmDRpEhdffDGgtPJMnToVj8fDhAkTuOKKKwClC9y///1vnnvuOebOnUtycjLPPvusut/bbruN559/ntGjRxMcHMxjjz2m1iJ06tSJ+++/nwceeICysjKGDh3K9OnT6+nwzy69Xo9Op8PlcqmvdW1XwrFCE7n5kVQGSYc8ItOJIDR3maXlbIxQKkbMVpnUfV1AD5ddWEJ4kBtZho7tbBRnaint4qE0WEtaXimtWtkJCgpq5NILwtlz7NgxMjMzG7sYterVqxfDhg2jR48ejBo1ipEjR3LNNdcQFhZWp/306NGD40XluLUSEVFRACQk9iQ0wA1A2zatAMg/nkur1q2xuf2zHe7Zs4fY2Fi/1qHk5GRCQ0PZs2cP/fr1q1N5+vbtq/6em5tLeno6t9xyi1/Q43K5CAkJAWDfvn307NnTr4L3ggsuOOFn7NmzR81cXGnAgAG89tpruN1udcB8ZTdBULqbRUdHk5OTA8C0adMYMWIEXbp0YfTo0Vx22WWMHDmyTscqCGfDaSVu8M025+vmm2/m5ptvrvG9bt268dlnn9X4nslk4vnnn6/1My+//HIuv/zyuha1STCZTH5jtbq2LWX1zkgOE07kcZncVhJZEUbcHhmtRiRvEITm6pFPVuMOU1qE+qzX8qMuEoCpwwrVdTrHlLI7ywRdlMQ0v29OJznuxLXBgtDcnazFo7E/U6vVsmLFCjZs2MAvv/zCG2+8wRNPPMHGjRtJSEhAo9FU63pXUzdZnU5HkcMNJp06DsVs0mExKtua9BXzJVYERo6KcREej0f9jKrjV4BaXz8Z36RXlcHYwoULufDCC6sdf22fc7Iuh6e6TdXWckmS1DL17t2blJQUfv75Z1auXMmkSZMYPnw4X3311Qk/WxDOtjoHSULd1BQkAeTpjPRKU4Ikp1HD7oIiekSENlIpBUE4EwV2B6vMyoOG3imTs7MT6CT6JZbTNdab8rVzTBn/7AgClCBpT65NTCgrtHin2u2tMUmSxIABAxgwYABz5swhLi6Ob7/9lgcffJDIyEiysrLUdd1uNzt37mTIkCF++3C7PdiMyn1AWzGRbIDJgySBLINGI1e8p6zvMkh+c0olJyeTlpamZkEE2L17N0VFRSQlJZ3R8bVu3Zq2bdty+PDhahmAK3Xt2pVPPvkEu92O0WgETn7ukpOTWbdund9rGzZsIDExsca0y7UJDg5m8uTJTJ48mWuuuYbRo0eTn59PeHj4Ke9DEOqbCJLOsqrjkrq0LUWSZGQkArP0gHK3XLJ+Nz2uuLgRSigIwpl64vO1OExKrXDfjbBMq0yqfaNPKxJA5zal5Oe3B7IBOKoz4HK5cLlc6HTidiwIjWHjxo38+uuvjBw5kqioKDZu3Ehubq4amAwdOpQHH3yQJUuW0LFjRxYsWEBhYWG1/ZRYHcgVrSpGq3I/CDBWn8RS61TW8UgSZTYnOp0OrVbL8OHD6dmzJ1OmTOG1117D5XJx5513MmjQIL+uc6fr6aef5t577yU4OJgxY8Zgt9v5+++/KSgo4MEHH+T666/niSee4NZbb+Wxxx4jLS2NefPmAdTakvXQQw/Rr18/nnvuOSZPnswff/zBm2++yVtvvXXK5VqwYAExMTGcd955ala+6OhoMYec0Oha5mQNTUjVIMlidNMhWqlZtud4M139efh4g5ZLEIT6Ue5y84Nb6XojeWTKt3TAI0m0iXAytJf/1AehAS6s+hCMdqXmODtSSfIgWpMEofEEBwezdu1axo4dS2JiIk8++STz589Xk0RNnz6dm266ialTpzJo0CASEhKqtSIB+E4T6rYp3ctqakyRXN5Hr1KrS+12JkkS3333HWFhYQwcOJDhw4fToUMHPv/883o5zhkzZvDee++xePFievTowaBBg1i8eLE6qWZwcDA//vgj27Zt47zzzuOJJ55gzpw5QPVnmUq9e/fmiy++4LPPPqN79+7MmTOHZ5991i9pw8kEBgby8ssv07dvX/r168eRI0dYunTpKadpFoSzRZLrmuNSqLPDhw/jdDqRZZmcnBxeXdKD7/8IobfjGCkP7gKgXZaVf+67opFLKpxNHo+H1NRU4uLixM2/BXny23W85VQmje6zycOaP4bi1Gh55JpcbhlVqK5Xef0/9cV5FMb+RWqCcuv9qVMUXeLaqVmrhJbpXLj+bTYbKSkpJCQkNItpOupTYUkZKU6lZ4jBCbaCQNpFuggJUAIgWZaVVmOPgawcGXuEElJZrC7iIiwYjcbTGnd0tn3yySfcfPPNFBUV1To/pXBysiyrk8k2xfPcEtXH/ahl3qmbmKo3lh5xSq1xihRGdLbyoHQswojTU71ZXhCEpsvp8fDJ8WJ12fh3G5waLWaDh2suKa5xm6RYO4FZRnX59y0ZoiVJEJoxj8fD8RLvNawr16DRQpCl+ne60eDB6dEhVdRPO3XeSWWbgv/+97+sW7eOlJQUvvvuO2bNmsWkSZNEgCSck0SQ1ACqRrDdKyaVLdAbaZOu3BhdBg07cgsavGyCIJy+N3/bSlGI0q2m+w4Pqx2JAIzvX6zWIFeV1N6OnBuoLu9ILxFBkiA0Y263G6tO6VcnIeN0GAkN8FBTwloJ0Bsl9BXjklx6CbfH45cKvDEdO3aMG264gaSkJB544AEmTpzIu+++29jFEoRGIYKkBlA1SOoaa0enrch8c8xbo/zT+j0NWi5BEE6fR5Z5e78341XkX2GUaZWA6YahRX7r+iZlSI61UZwfqi6no8HhcDSZhyRBEE6dLMsUlFhx6SoSNtgkbLKOsEC333q+XazMBllN3iAjUVLmaDItSY8++ihHjhxRuyotWLAAi8XS2MUShEYhgqQGULWvsVEvk9hWqTm2+iRv2JSa1+BlEwTh9Hzy9z6ORyiVHJ0PevituAcAFyeX0amNdwi3JElERkaqy20iXBQ4wtUUwdnhygOIaE0ShObH7XZTYPNOGK+x6jAbPJgM3qBHq9X6jUOzGD3g9GZ0KHc0nZYkQRC8RJDUADQaDQaDwe+1nglKl7vjBa2QPMrNNEUrBvMJQnMgyzKvbNyvLnf4w0iBXgmYbqzSihQQEOA3qaMkQdsOWlofU67341EGyp0ubDZbA5RcEIT65HS7sRmUgEfjkbE5DYQG+gc8Wq22SkuSB5fL27psl/CbL0kQhKZBBEkNpGqXux7xSq3xIW0YMcqUKWS3MmF3i9okQWjqlu1PIyNKGcgcmyGzJqc3AHFRDgb1qJL2OzQUrVbrN+N8Uns7IVlKxYlHK/HnjkzRkiQIzYzH4yGvsByPxjs3kkvSEhrg7WonSRIajcavJUmvAzdaNJ7K5A1adX+CIDQdIkhqIFUzw1QmbyjWGdTkDW6dxNZjYr4kQWjqnv5lu/p7j/UyWUYlEcOUoYX4Znc2GAxqf/7KGewBktvb0WR7+/lvPpgvWpIEoZlxu90U+8Q1sk1HsMXtNzeStmLBN0iSJDAZQe9Qgiu3TsLhcouWJEFoYkSQ1ECqtiR1jHFgNih3V9MxbwAlkjcIQtP219FcDrRWrtnI4zJbjvYBIMDk5qqLS/zWDQ0NVbvZ+AZJSbF2yvLC1OVUh4TD0XQGbwuCcGKyLGNzOHEYlMconQusbmONXe0q+XW5M3rQOL2PYMVlInmLIDQ1IkhqIFUnENNpldpk8E/esCWjsKGLJghCHTz27Z/q733XOtmjDwfgqgHFBJq9DzmSJBEcHKwu+1aUJEQ7OF4Wri4fCzYjy7LocicIzYTH4+F4kQ254nvdYNWg1UGgyXsP0Gg0ft/7/kGSjOyTvMHqEskbBKGpEUFSA5Ekqdb5krKLItTkDUf04pQIQlO1v7CY7RUZ7UKKZNKOKhntJElmyhD/hA3BwcF+tci+LUk6LYS3MxCZqyznxJhwiyBJEJoNt9tNmdb7fe2y6QkNdOMTB/ld/1A1DbgHl9ubvMFZ0R3vVAKld999l9jYWDQaDa+99tppHoEgCCcjnsgbkO9DEkCPiiApRRdG24rpVnJaGbG63FU3FQShCXjki9+RKwZpX7TWzjq5LQADu5cT39rpt25oaKjfsk6n83to6hrnJPyo8pDkNEhsPZgtxiUJQjMgyzIl5XacFZWaRgdYZQNhVRI2VA2SfMcl6bSAVoOuYhOnXnNKGe6Ki4u5++67mTVrFpmZmdx66631c1CCIFQjgqQGVC3DXYJSa1yq1ROdrrzm0Upsyshu6KIJgnASmeVW1gcqGerMVhl7VgKV1cZThxf6rWsymapd70CVDHc29D7JGzbuzBYtSYLQDLjdbvLLvJUi2nItASYPBu/lXS1AAiVw8mtNMsnoKqZU82gkyu2uk7YkpaWl4XQ6GTduHDExMac80avT6Tz5SoIg+BFBUgOq+tDUPtJJiEWpRjIe897olm7Y16DlEgTh5B776nc8OuUB5+LfbXxvTwKgY4ydi5PK/dat2opUyXe+tOT2dmzHQ9Tlg6Ue7Ha7SN4gCI3gq6++okePHpjNZiIiIhg+fDhlZUo6/8GDB3P//fcDSiuSy+Xithk38tRddyDJMnaHkZEDOzJ37lxuueUWWrVqRceOHfn+++/Jzc1l/PjxBAUF0adPH7Zs2aJ+ptkgI/kkbyi1OklNTWX8+PEEBgYSHBzMpEmTyM5WKk4XL15Mjx5KF98OHTogSRJHjhypdixHjhxBkiS++OILBg8ejMlk4uOPPwZg0aJFJCUlYTKZ6Nq1K2+99ZbftrNmzSIxMRGLxUKHDh2YPXu2X4C1fft2hgwZQlBQEMHBwfTp04e///5bff/rr7+mW7duGI1G4uPjmT9/vt/+4+PjefHFF5k+fTpBQUG0b9+ed999V33f4XBw9913ExMTg8lkIj4+npdeeumUz6Mg1CcRJDUgg8FQLQ1ot4oud9Zc7yDurceKqm0rCELjKbA7+UVSghe9UyYoIxJPRY3wjUOLqo1DCAoKqnE/vi1JiW0d5Bb6JG8IMOHxeESNryA0sKysLK677jqmT5/Onj17WL16NVdddVWNFRYej4f8Em/CBqNNwqXRoJFk3njjDfr378/GjRsZN24cN954I1OnTuWGG25g8+bNdOzYkVtuuUXdr9noweP0jkuyuWUmTpxIfn4+a9asYcWKFRw6dIjJkycDMHnyZFauXAnAX3/9RVZWFrGxsbUe16xZs7j33nvZs2cPo0aNYuHChTzxxBO88MIL7NmzhxdffJHZs2fz4YcfqtsEBQWxePFidu/ezX/+8x8WLlzIggUL1PenTJlCu3bt2LRpE5s3b+axxx5T72ubN29m0qRJXHvttezYsYOnn36a2bNns3jxYr9yzZ8/n759+7J161buvPNO7rjjDvbu3QvA66+/zg8//MAXX3zBvn37+Pjjj4mPjz/VUykI9Up38lWE+uRbkwzQM97Oht0BHCtuhdadgVsrkWqo3kwvCELjeeqnDTiNSgXHRX84+NymTB4bbHFzRf9iv3VDQkL8KkN86fV6tTuNySBjiAogpEimKEQiO1rJcGez2ardJwShOes708Ox/Ib9zOhw+HvhqdUDZ2Vl4XK5uOqqq4iLiwNQW2yqcrvdFDt9slha9YQEKMujRo1ixowZ6PV65syZw9tvv02/fv2YOHEisizz0EMPMWjQILKzs4mOjsZkkHF6dEjYkZFYs34tO3bs4NChQ2o5PvroI7p168amTZvo168fERFKNtzIyEiio6NPeFz3338/V111lbr83HPPMX/+fPW1hIQEdu/ezTvvvMNNN90EwJNPPqmuHx8fz0MPPcTnn3/Oo48+Cijd/R555BG6du0KQOfOndX1X331VYYNG8bs2bMBSExMZPfu3bzyyitMmzZNXW/s2LHceeedgBLILViwgNWrV9O1a1fS0tLo3Lkzl1xyCZIkqX8HQWgMIkhqYFUffnokKC1Jh3WhJB6FtFjIbWWkzOUmQCeCJUFobGUuN1+XlINFh8Yt0/aQkXKPUnN6zSXFWIz+tc0hISE17QZQkje4XC61JrlrvJOsTB1FIW6sARoOHitSH4IEoaU4lg+ZuY1ditr16tWLYcOG0aNHD0aNGsXIkSO55pprCAsL81tPlmWcLhc2o/LdLMkyVpeBqEAXAN27dweUBA2tW7cG/IOtqKgoAHJzc4mOjkYjgU4vITslnHo4eHg/7dq1o23btuo2ycnJhIaGsmfPHvr161en4+rbt6/6e25uLunp6dxyyy3MnDlTfd3lcvnds7766itee+01Dh48SGlpKS6Xy28qgwcffJAZM2bw0UcfMXz4cCZOnEjHjh0B2LNnD+PHj/crw4ABA3jttddwu93qOK2ePXuq70uSRHR0NDk5OQBMmzaNESNG0KVLF0aPHs1ll13GyJEj63TcglBfRHe7BlY1SKpMA27V6midrjTfyxqJP1KONnjZBEGobt6vm7FalPqkvptdLJEvBkAjyVw/pNBv3YCAgBO2AkmS5JflMrm9HVO2d6ziuq0ZInmD0OJEh0PbyIb9iQ4/ebkqabVaVqxYwc8//0xycjJvvPEGXbp0ISUlBVCCHlmWcbvd6txILpcTjVtCp5cwGyq64ur1aLVavwQNvl1sK1/zTc5gNsroHBXf/ZU/Vbr5ybLsl/DhVAUEBKi/V37mwoUL2bZtm/qzc+dO/vxTmfvtzz//5Nprr2XMmDH89NNPbN26lSeeeAKHw6Hu5+mnn2bXrl2MGzeOVatWkZyczLfffltrOWvqsuj7NwHl71JZvt69e5OSksJzzz2H1Wpl0qRJXHPNNXU+dkGoD6IlqYEZDAZcLpe63DrUTVSoi5xCHYZjAYAyUPTnP/czvHPtfY0FQTj7HG4Pi9KPQ7Dypd5lj5Pl5WYAhp1XRrtWLr/1a0vY4MtoNKqpvpPa2/ltdTCV1/2+PIdIAy60OKfa7a0xSZLEgAEDGDBgAHPmzCEuLo5vv/2WBx98kMjISLKysnC73ZQi4Xa7ObhnDxH9Bp10bqSa+HbHtRg9OIo1gJsOiV3IzMggNTWVTp06AbB7926KiopISko6o+Nr3bo1bdu25fDhw0yZMqXGddavX09cXBxPPPGE+lpqamq19RITE0lMTOSBBx7guuuuY9GiRVx55ZUkJyezbt06v3U3bNhAYmLiKf1dKgUHBzN58mQmT57MNddcw+jRo8nPzyc8vA6RryDUAxEkNbDKG4Xb7Z1PoUe8jV+3BVJ2PJzKh6XtOSWNUTxBEHy8u3EXxRUBUq9/3GwyXwIVl+aNwwr91tXr9X41t7XxbUlKirWTXxgBKBOlHTUacLvdOJ3OarWtgiCcHRs3buTXX39l5MiRREVFsXHjRnJzc9XAZOjQoTz44IN898OP6GPj+eT//R+lRUW4ZQ2hVeZGqm08oi+/NOBGmTyXDnBz4eAhJCZ1Y9q0afznP//B7XZz5513MmjQIL+uc6fr6aef5t577yU4OJgxY8Zgt9v5+++/KSgo4MEHH6RTp06kpaXx2Wef0a9fP5YsWaK2EgFYrVYeeeQRrrnmGhISEsjIyGDTpk1cffXVADz00EP069eP5557jsmTJ/PHH3/w5ptvVsugdyILFiwgJiaG8847D41Gw5dffkl0dPQpVUAJQn1r+tU7LVC1+ZIqutxllbRC51SaptPMIn4VhMbkkWXe2OGtRe21rYg/cpQxCl3a2emXaPVbPyQk5JS6xPhe/8EWDy5LEGarct3nRClTAYgud4LQcIKDg1m7di1jx44lMTGRJ598kvnz5zNmzBgApk+fzo033sjtt97KzCvG0rZ9HBdedCk6Heh9vqpPJUAC/yDJoJNxoUOq6Kr22oefEBYWxqBBgxg+fDgdOnTg888/r5fjnDFjBu+9956aSnzQoEEsXryYhIQEAMaPH88DDzzA3XffzXnnnceGDRvUJAygVPLm5eUxdepUEhMTmTRpEmPGjOGZZ54BlK5yX3zxBZ999hndu3dnzpw5PPvss35JG04mMDCQl19+mb59+9KvXz+OHDnC0qVLT/lvKwj1SZLFpBwNxuPxkJqaSlBQEHl5eerr63ZZmPFaW4weN92u+I2UeAnJI5Ny9VCC9SJYaikqz39cXJy44TcDn+08xJ27DwOQeECm/f6ufJnSDoAXbsrm6ku8We0kSaJDhw7odLVfr5Xnv3379hw6dEjtq3/P2zHkRf1FSidl+bsOkXRLiBUJHFqYc+H6t9lspKSkkJCQUONkys2VLMvY7XYOFNtw6TRIyGhzLbRuJRMc4B1fZDQaa60okWUZh8Ohjln0rQg5kq3HYyjDXtHI3Mmow2w0nPB+IjQvvuf/dMaXCXVXH/ejlnmnbuKqnqzK5A12jZbITG/yhnUHMxq8bIIgKF9oL67brS5fsPE436YpGadCA92Mu8C/O2xQUNApP9BUS94QayPgmPeesGZTmhiXJAhNiMfjoajMjkunPDIZbBIuSUugxRsgVSZsOBW+iR1AmS9J4/Qul5Q5/JI7CILQOESQ1AhMJpPfDTI0wEP7SCV7jO6YdxLKZX8eaPCyCYIAK9OyyAhXApf2GTKe1j1xuZVrdvLAIkwG/wb4uvaX9xuX1N6OOzdQXd6dVSa62wlCE+J2uymyecceaaw6QgM9aOqYsMGXX5BkkJGd3u3LnW4RJAlCEyCCpEag0WhqSAWuPBQpyRsUO/LKGrRcgiAoZv+8Rf29/9o8/nc0EQCtRub6wYV+6xqNRsxmc53279uanNTeTmG+97pP1+hwOp1+yV0EQWgcHo8Hl9uNtWJuJI0sY3MaCQuse8IGX1Uz3Llc3pZoh6S8J0ZDCELjEkFSI6na5a5nxaSymSUR6B3KjTE9QGS3EoSG9ndOPvvDlZaeqFyZyKj25JcoDzCj+pTSOsw/eDmdrEu+LUlRIW5K5BD0FUlbciJE8gZBaCrcbjf5xTY8Fc1GRqsGvQG/1uS6tiKBf5Ck04Ks1aJ1K/t0GpR5mURrkiA0LhEkNZLaMtwdMQTTvmIoUn6EgUKHs6GLJgjntMe+/0P9/ZLVhXxddp66XDXtt0aj8ZuN/lT5BkmSBHEdNbTOUm7HeZF6iu1iviRBaGyVE8iW+NSLyFYdYUH+wcvpBElVxy+ZjTL6ikllPRoJm+hyJwiNTgRJjaRqkJTU3o5GknFqtLTK8J6W3/ZUn8hNEISz40BxKVuClBbckCKZzsFB7E5XutJ1j7NxXgf/wCU4OPi0MpVV7XKb1N5OcJayLGsk1m/LEC1JgtDIPB4PDpcbu1G5xnVusHmMhFh8xidpNKeVraxa8gaDjOT03ktKyh2iu50gNDIRJDWSqqlCLUaZTm2U5A2abG/N9IpNhxq8bIJwrpr13XoqR2NfurqM3wL6q+9NHV5I1WehM5ng0LeiJDnWjpTjnYh2e0qRaEkShEbmdrvJK7YjV1z4+nINgRYPvg1Hp9OKVMm3gsVs9OBxefdlcytBmgiUBKHxiCCpkUiSVGuXu9LjYeprOwv9J6wUBOHsyCy3sbZi7LSlXOY8jYMV25Vsk5EhLkb39U/7bbFY/LrN1VXVDHcl+aHqcqpLg8Mh0gALQmOpHBNU5hPIuOx6wgK916QkSfUXJBlkXG7vOGSnViRvEITGJoKkRlQ9SFK612SUtcJoV26MGUEieYMgNITZS/7AUzEPyqVr7eztOBiP7E37bagyDdKZtCKBf5DUPtJJvjUcyaNc99lhShc/0eVOEBqH2+2m1OrAaaiYG8kBbo2eAJP/3Ehnwrc3iUYDGr2E3qUsO/WSSN4gCI2sTkHSpZde6vfTt29ffv31VwAcDgfPPvssw4cPZ9iwYcyePRur1dsKsmvXLq677joGDBjArbfeSlZWlvqezWZj9uzZDBw4kHHjxrFs2TK/z/3xxx8ZO3YsgwYN4plnnsHpbBnJDKpNKluR4S7NEET7dOW1wjADeXZHQxdNEM4p+XYHSyoCEr1Dpk9pPl/8qaTl1mtlrh1c5Le+TqcjMDCw2n7qwvf612ggKk5H6xzloSm3tRGnxyOCJEFoJG63m4Jyl7qstWoJDXT7dbk90yCp6nhGs1FGV5G8QZYkSq3OGluS3n33XWJjY9FoNLz22mu17v/9999n5MiRZ1TGUzV48GDuv//+BvmslqJfv3588803jfLZ4nydmjoFSb///rv688EHH2A0GrnooosA+Pzzzzl48CBff/01P/zwA/n5+SxevBhQAqhHH32Ua6+9llWrVtG9e3fmzJmj7vedd96hqKiIpUuX8uKLLzJ37lxSU5WEBQcPHmTBggXMmzePJUuWcPToUd5///16OvzGVTVISmxrR6/z4NJoCM/03nxX7jzc0EUThHPKC79uxmlQrrkBfzgp7z+YonJleWy/EloF+6f9DgkJOa3B2r60Wi16vbelOCnOSehRZdmll9i0J0uMSxKERuB2K5nlrBX3BEmWcdiNhAWcecKGqqrOl4RP8oYym6taS1JxcTF33303s2bNIjMzk1tvvbXG/drtdubMmcPs2bPPuIyn4ptvvuG5555rkM9qKWbPns1jjz3WKK2F4nydmtPubvfzzz8zaNAgAgKUwcZZWVkMGDCAkJAQAgICGDx4MIcPKw/3mzdvxmw2M378eIxGIzNnzmT37t1qa9LSpUu59dZbCQwMpFevXgwcOJBffvkFgGXLljFixAiSk5MJDAxkxowZ/Pzzz2d63E2CXq/3q4ky6CApVmk1ko55kzf8+ndKg5dNEM4VZS43n+UWAqBxy/TLyOHjjVHq+zcOL/RbX5KkM+5qV6nquCRdjkVd/mvvcdGSJAiNwO12U1hqx62tmBvJJqE3SRh8er+faStSpaoZ7tw+k8raZWVMkm9rUlpaGk6nk3HjxhETE4PFYqEmX3/9NYGBgVx66aW1frbDUX+9VMLDwwkKCqq3/Z2u+jyms23cuHEUFRWxfPnyBvvMyp5YTeV8NXWnFSTJsszy5csZM2aM+tpll13Gli1bKCgooKSkhFWrVnHhhRcCcPjwYTp16qSuazabadeuHYcPH6a4uJi8vDy/9xMTE9UAq+q2nTt3JjMzs9YaVofDQWlpqd+PzWbD4/E0iR9A/V2WZQwGg3oTlGWZ7nHKcZXkeZM37C6xN3q5xU/9n3/x0zR+Xlu/HatZeTC54G8PEWMu4MBRJXjp3dFKt/Y2v2vUYrGg0Wjq5fz7Xv9JsTbK80LU6z7F6sFms6m12uKn+f+cC9e/77XSnH6+/PJLevTogdlsJiYmhquuGo+1rAyAm666jFdfut8vYLn66quZNm2a+lp8fDzPPfccU6dOJTAwkLi4OL777jtycnIYP348QUFB9OnTh7///tvvczUajfq7Ue8hPeMoD0y5lgHt29CnazxTpkwhKysLWZZZtGgRPXr0AKBDhw5IkkRKSkqNx/PZZ59x+eWX+702bdo0JkyYwIsvvkibNm1ITExElmUyMjKYPHkyYWFhREREMH78eL/9Op1O7rnnHkJDQ4mIiODRRx/lpptuYsKECeo6gwcP5r777lOX8/PzmTp1KmFhYVgsFsaMGcP+/fvV9xctWkRoaCjLli0jKSmJwMBARo8ezdGjR+t03ir/7tOmTSMkJISZM2ciyzLr169n4MCBmM1mYmNjueeeeygtLVW3++ijj+jbty9BQUFER0dz/fXXk52d7Vf+KVOmEBkZidlspnPnznzwwQfq+//88w9Dhw7FbDYTERHBzJkzKSkpqfa3fuWVV4iJiaFVq1bcd999OJ1Ov3M/duxY/ve//9V6fHa7nbvuuouYmBhMJhPx8fG8+OKL6vuFhYXMnDmTqKgogoODGTp0KNu2bVPff+qppzjvvPN4//336dChA0ajEY/HU+182e12HnnkEdq2bUtAQAAXXnghv/32m/r+kSNHuPzyywkLCyMgIIBu3bqxZMmSRr9uT+XnRPfjk9GdfJXqtmzZgs1mo39/b3rcdu3aERQUxMiRI5EkiX79+jFhwgQArFar2uJUKSAgAKvVSnl5OVqt1q/rWUBAAOXl5TVuWzkOwGq1VuuuBrBo0SIWLlzo99rEiROZNGnS6RzqWZGenq7+XlRURHFxsbocFwEQSlp5K0zWw9jMEunBBrX7odD8+Z5/oXE5PTLvHsyCIGWOoj47MviwpI/6/uV9U8nJOe63jSzLZ3Q9+p5/q9XK8ePK/oO1ErlFSUAaAFkBJrKzswH85lQSmreWfP273W7cbjdOp/O05g9rLFlZWVx//fW8+OKLXHbZZeQXFLJk/QblQdYj45EldFo3LpcyRkmr1eLxeHC73WrLhSzLvPbaazzzzDPMmjWL119/nalTp9K/f39uuukmXnjhBZ544gmmTp3K1q1b1RYkWZbV/cqyzIP3XIU5wMzCH5bgcbmY/+hDXHvttaxYsYIrr7yS6Ohoxo4dy7p162jXrh2RkZE1tp78/vvvTJo0ye89t9vNr7/+SkBAgPqAW1hYyJAhQxgwYAArV65Ep9Px0ksvMXr0aP7++28MBgNz587l008/5d1336Vr1668+eabfPfddwwaNEjdf+WDZ+XyTTfdxMGDB/nqq68IDg7miSeeYOzYsWzbtg29Xo/L5aK8vJxXXnmF999/H41Gw80338yDDz7Ihx9+eMrnTpZl5s2bx+OPP84ffygTgW/ZsoXRo0fz1FNP8fbbb5Obm8sDDzzAnXfeqT4flpeXM2fOHDp37kxubq4a+H3//fcAPPHEE+zatYvvv/+eiIgIDh06hM1mw+FwUF5ezpgxY7jgggtYv349OTk53HHHHdx5552899576t/6t99+IyoqiuXLl3Po0CFuuOEGevbsyS233KKWv3fv3syfP7/WFrAFCxbwww8/8PHHHxMbG0tGRgYZGRk4HMo8WmPHjiU8PJzvvvuOkJAQ3nvvPYYPH86OHTsIDw/H7XZz8OBBPv/8c/73v/+h1WrVzKlVz1dqair//e9/iYmJ4YcffmDMmDFs3ryZTp06ceedd+JwOFi5ciUWi4W9e/diNBqbdMud0+nE7XZz9OjRGlt+ExISTrqP0wqSKrvA6XTezefOnYvZbGb16tXIssxLL73Eq6++yqOPPorZbKasokamUllZGWazGYvFgtvtxmazqUFPWVmZ2oRcddvS0lL19ZrcfPPNTJkyxf8gdbom8ZDh8XhIT09XB1yCcjxHjx5V1xnQ0wBfQ4YxkAvSYV8ilITqMUa1JtpcPSgUmo+azr/QuN7dto+SigDp/O0eek7syQsfKwkbosOcXD1Ig17n7Xqn1+uJj48/rbEINZ3/qg+TgW3M6PMhPxxyYsy0iowkKiqKkJCQ2nYrNBPnwvVvs9k4cuQIer3e7zt3/bA/sec0bNdRY5SRAb9edErr5uXl4XK5mDhxotKFLb+MiV27Kfspk9BqQavRqM88RqMRjUaDVqtVj1OSJMaOHctdd90FwNNPP827777LBRdcwHXXXQfAQw89xKBBgygoKCA6OtqvDLIs8+uvv7J/7w5WrNtBaGJbAP7z5v9j8KX92b59O/369VO3a9OmDe3bt6/xeAoLCyksLKR9+/Z+50Gr1RIQEMAHH3ygvv7BBx+g1Wr54IMP1Pvahx9+SFhYGBs2bGDkyJG8/fbbPPbYY0ycOBGAt956i+XLl/tNiq3RaNTlAwcO8NNPP7Fu3TouvvhiAD799FPat2/P0qVLmThxIjqdDqfTyTvvvEPHjh0BuPvuu3nuuefq9LwmSRJDhw5l1qxZ6ms33XQT1113HQ899JD62uuvv87gwYN55513MJlMfmO5unbtyuuvv86FF16Iw+EgMDCQzMxMzj//fLUxIDExUV3/ww8/xGq18tFHH6mV+G+++SZXXHEFr7zyCq1bt0ar1RIWFsZbb72FVqulR48ejBkzhrVr13LHHXeo+2rfvj3p6enodLoa7wuZmZkkJiYyZMgQJEmic+fO6nurVq1i165dZGdnq123X331VX788Ud++OEHbr31VjUo+vjjj4mMjFS39T1fhw4d4osvviA9PZ02bdoAkJSUxMqVK/n444958cUXycjI4KqrrqJ3797q36yp83g8aLVa2rRpU2Ojyqmoc5DkdDr59ddfefXVV/1eP3jwIA8//LD6H+aKK65g/vz5gNIs/O2336rrWq1WMjIy6NChA8HBwURERHDw4EG6d+8OwP79++nQoYO67cGDB9VtDxw4QNu2bWs9YIPB0CQCohOp/M8Jylwrvg9cHaKdBJjclNm0hGXqIFEZKLrynxSm9u/WKOUV6pfv+Rcaj0eWWbDlMAQr94sLt2SzxNgXuSLt93WDizDo/YOh8PDwesloVXn+jUYjOp0Ot1u5zpPiHGQc1ZEf7sJu1rA7PZ9WERHi/0sL0pKv/8pkBpU/lRw5duxZDRskSXDKlRnnnXcew4YNo2fPngwfPpxeFw9k8FVXEhwahsemR69VuthJklTt/Pl+Rs+ePdXlymCm8jVZlomKUipccnNziYmJUber7L67b98+2rRtR0xUHFaU1qV2CZ0JDQ1l7969XHDBBer+q/6NfVUORzCbzdXW6dGjh99YyC1btnDw4EGCg4Or7aNySER2djYXXnihui+dTkefPn3weDx++68s0969e9HpdFx00UXq+61ataJLly7s3btXXc9isfgNp2jTpg05OTl1roTq27ev3zabN2/m4MGDfPrpp+prld2ujhw5QlJSElu3buXpp59m27Zt5Ofnq92v0tPTSU5O5o477uDqq69m69atjBw5kgkTJqgB3969e+nVq5dfhtNLLrkEj8fD/v371XPfrVs3NbCWZZno6Gh2797tV1aLxaK26NRU+X/zzTczYsQIunbtyujRo7nsssvUjIVbtmyhtLSUVq1a+W1jtVo5fPiw+neOi4tT/+/5qnx/69atyLJMly5d/N632+1EREQgSRL33nsvd9xxBytWrGD48OFcffXV9OzZ8xTOTuOpPL4zuefWOUhav369mmDBV1JSEkuWLKFnz57IssxPP/2k1g706dMHq9XKjz/+yKhRo3j//fdJTk5WbxJjx47lvffe44UXXuDw4cOsXbtWzYw3evRobrvtNq688kratWvHBx984DcWqrnT6XTodDq1uV2jgW5xdv7aZ4HsYKAAgN+2HhFBkiDUo28OppFbESB13S9z8eWxXPe98qBg1HuYdKl/2m+NRlPtQaI+mEwmtbU8qb2dnG0m6K60mP+5PYsLk2quLRaE5sIQdfqTLjfEZ2q1WlasWMHatWtZ+vMyPlm0kP+8/AKfLv2VtmHd0Ok06likykqSmqYi8c1WWfkgXNNrVcdDVAZJsiyj1Ui4XDqoCJIckvezT1Xlg21BQUG196oOffB4PPTp04dPPvmk2rq+LQ9VA5cTlam292RZ9tuP79+m8jPqeqxQ8zHddttt3HvvvdXWbd++PWVlZYwcOZKRI0eqLSxpaWmMGjVK7T42ZswYUlNTWbJkCStXrmTYsGHcddddzJs3r9pxVD2GEx1f1XOfn5+PxWKptXdU7969SUlJ4eeff2blypVMmjSJ4cOH89VXX+HxeIiJiWH16tXVtvNNLlT171NVZYvL5s2bq1UCVgaCM2bMYNSoUSxZsoRffvmFl156ifnz53PPPfeccN/NXZ2DpJ9//plRo0ZV+w9y3333MXfuXMaNGwdAr169ePzxxwGldeff//43zz33HHPnziU5OZlnn31W3fa2227j+eefZ/To0QQHB/PYY48RHx8PQKdOnbj//vt54IEHKCsrY+jQoUyfPv10j7dJMplMajdCgB7xNv7aZ6EoL5zKIGlvecuYG0oQmgJZlnlu9U4IUYKki/84zsbLhlJqVb4gLr+whLAg/y+zoKCgesto5ctoNKpBUnJ7O7+sCAaU+8H+Iic2m+2EX8qC0NRdsqr/yVdqAi688ELaderOxIceZVyv7qz+fgl335NEq1atOHbsGKAENG63m507dzJkyJB6+dzKWu6kpCTS09M5euworcPD8Ggk9h7eT1FRUbVa/hMxGAwkJyeze/fuk86T1Lt3bz7//HN14H9NWrduzV9//aVmynO73WzdupXzzjuvxvWTk5NxuVxs3LhRbX3Jy8tj//79JCUlnfJxnK7evXuza9cuv1YqXzt27OD48ePMnTuX2NhYAP7+++9q60VGRjJt2jSmTZvGpZdeyiOPPMK8efNITk7mww8/pKysTA1A1q9fj0aj8euWdyp27typdmGrTXBwMJMnT2by5Mlcc801jB49mvz8fHr37s2xY8fQ6XTqM/PpOP/883G73eTk5JwwG2JsbCy33347t99+O48//jgLFy4UQVJVL7/8co2vh4eH8+9//7vW7bp168Znn31W43smk4nnn3++1m0vv/xyLr/88roVtBkxm81VgiSlW0KaLQJL+UHKLRKZoQ1fEycILdVvR3NIrwiQ2qfLDBkczl2/hqrv3zissNo29ZX2uyrfri9d2tnJK4wAlHGKWWYlE5HT6Wzy3YgFobnauHEjK1asYPDgwZSbQ9j2zxYK8o7TPq4bIYFuBg8ezKxZs1i+fDldunRhwYIFFBYW1tvnV1aADB06lB49evDEIzcy69kXsGrcvPTIgwy45JKTPkhXNWrUKNatW3fSCUOnTJnCK6+8wvjx43n22Wdp164daWlpfPPNNzzyyCO0a9eOe+65h5deeolOnTrRtWtX3njjDQoKCmqtuOncuTPjx49n5syZvPPOOwQFBfHYY4/Rtm1bxo8fX6fjOB2zZs3ioosu4q677mLmzJkEBASwZ88eVqxYwRtvvKGO1XrjjTe4/fbb2blzZ7U5g+bMmUOfPn3o1q0bdrudn376SQ3wpkyZwlNPPcVNN93E008/TW5uLvfccw833ngjrVu3rlNZf//99xMGsgsWLCAmJobzzjsPjUbDl19+SXR0NKGhoQwfPpz+/fszYcIEXn75Zbp06cLRo0dZunQpEyZMoG/fvqdUhsTERKZMmcLUqVOZP38+559/PsePH2fVqlX06NGDsWPHcv/99zNmzBgSExMpKChg1apVDRLwNraW2TG6mak6vqp7vNKf+KghkLiKJFqlwTqOlouJJQWhPjy5zFtrOHB1IUfjk0nNqRib1KWcLu38M/aYzebTHvh5Mn6ZPU0yckggAaVKl5Ps1koCGzFfkiCcPcHBwaxdu5YJV17J5QP68dYLz/PInBcYNnIseq2SCOCGG25g+vTpDBo0iISEhHprRQLv2AlJkvj8888JCwvlpqvGcsdV42kXH8/rb71X525oM2fOZOnSpRQVFZ1wPYvFwtq1a2nfvj1XXXUVSUlJTJ8+HavVqrYszZo1i+uuu07N1hcYGMioUaNOeE9ctGgRffr04bLLLqN///7IsszSpUurdUE7kdWrVyNJEkeOHDnlbUAZB7ZmzRoOHDjApZdeyvnnn8/s2bPVIR6RkZEsXryYL7/8kuTkZObOncu8efP89mEwGHj88cfp2bMnAwcORKvVqhX9FouF5cuXk5+fT79+/bjmmmsYNmwYb775Zp3KmZmZyYYNG7j55ptrXScwMJCXX36Zvn370q9fP44cOcLSpUvV8X9Lly5l4MCBTJ8+ncTERK699lqOHDlS52Bt0aJFTJ06lYceeoguXbpwxRVXsHHjRrWlze12c9ddd5GUlMTo0aPp0qULb731Vp0+ozmS5NPpACqcFo/HQ2pqKnFxcX6DyCpTNFaSZbj4wQQKSnWMSVrLn8OUrnavREdxy8Be1fYrNA+1nX+hYW0+XsiIVZsAiMqReTHLxoL8IazbVZGl6M6jDD/fPxtnTEzMGY9Hqu38y7LMwYMH1b7qD74bTXbo3xzuoix/0S6c8xLjqg3OFZqXc+H6t9lspKSkkJCQcNYqFc6GyoHzaXnllFXMmWYu1BEeqiPYolyHkiT5tfrWlSzLOBwODAZDjS0wlemKAUptErnHPdjCle/+QKuT2IiAOv9NJ02axPnnn68OfagvHo+HpKQkJk2aVK0Fpj4tXryYF154gd27d9cpuGqKajr/jzzyCEVFRbz77ruNXLqWqT7uRy3zTt3M+KYRBZAkb5c7Ods7I/KafzIavGyC0NL8a+lG9fchq0oxDe2mBkhtI5wM6eUfIGm12rM6M3nVh6+kWDuWY94b+trN6bVOni0Iwplzu914ZBmrURlzKMkyTpeBILN3XOLZGI/oyzdwMhtknG7vaAhnRVB9qhNgVnrllVf8MrCdrtTUVBYuXMj+/fvZsWMHd9xxBykpKVx//fVnvO8TWbZsGS+++GKzD5BqExUVdVaDTOHMndY8SUL9M5lMfpNydY+3sXZnQEXyhnwA9tlF8gZBOBP7i8vYZFAeRkKKZC5t4+GTNWHq+1OGFqKtUnUUEhJy1pMmGI1GrFYroGS42/BHEKBMqL0nxyq62wnCWSLLMm63m/wiGx6DEggZrRpMgUqFZaWzHST5ti5qNaDRaZBc4NKBU69kuKtrx5+4uLh6GViv0WhYvHgxDz/8MLIs0717d1auXHnWx6TUNo69pXjkkUcauwjCSYggqYkwmUwUFxeryz0TlJrjFEcrgkoOUBIkkRlmFFmuBOEMPPHzn6BRrp8hq2wkPtiLmf9SutFZjB6uuaS42jYNMZGrb1eA5PZ2CgrCgWwAMnXK7PQul8tvAm9BEM5cZetMiU8jjWzTERblVpcrx3+cTVX3bzbKOJxKkOTRSJTZnOh0urMerNUkNjaW9evXN/jnCkJjE93tmoiqOfIru9sdM1hon6a8Vh6oI73M2tBFE4QWIbPcxm9uZe4RS7nMJQYrX/0ZTLlduQ1O6F+sjj+oFBAQ0CBZ5Xy724UHubHqQzDalVrjnEiRvEEQzha3243T5cZuVO4DWjeg0WMyeFttGiIwqZz0spLZ6EFyeD+3zOaqc3c7QRDOjAiSmgij0ehXkxQR7KZNuBMkiaCj3geoJRv3NkbxBKHZe+bXv/HolFve4DVOBjzYh49Xharv3zC0sNo2Zyvtd1VVr/8OHWSijyplzW+lJ7/MJsYlCUI9k2UZj8fD8WI7csX1Z7BqCA3yBkhVg5ezyfceYDHKeFzeIMnm4bS63AmCcPpEkNRE1JQ5pzIVuCfHm1Xr912ZDVouQWgJ8u0Ovi9S5iLTO2T6lxTy614TmXnKgOBLupXRIcZ/zJ9erz/pTOX1RZIkvxarpFg7gVne+8HvW9JFS5Ig1LPKbHLlvtlmbXpCArxd7bRabYN1cfcNxox6GadHh4QSFDkrKnhEkCQIDUcESU1I1RSFlV3uCvIi1NcOON0IglA3/97wD86KQdkD17sZMesC/rsyVH2/tsljG3L8X9VxSfJxb4C2I71EtCQJQj1zu92UWZ04DMqjkMEBBrPWL3lLQ44B8g2SJAn0Rgm9U7kHuXQSbo9HdLkThAYkgqQmpHqQVJG8wRVOSJFSe3Q0wiRqkgShDkqdLj5KzwVA45bpn5bP/lIjG/cpY33iWzu4tFu53zaSJJ3xvEh15ZcGvL2d4jxv1r00dH7zqAiCcGbcbjeyLFNQ7s0qq7VqCQts2IQNvionlK1kMchoHcqyLEmUlDtFkCQIDUgESU1I1SCpW5zSkpSrNxNbkbzBatFyqLi0oYsmCM3WW1v3YjUpWeH6b5IZN6sv/13pnffohqGFVB1yEBQU1OCZ5HyDpDbhLgqd4WjcFckbwpTELqLLnSDUj8ogqVyvXOeSLON26QkwNWzChqr85ksyesDpLUO53S0qSQWhAYkgqQkxGAx+ze1BFg8J0Q6QJAKzvAHUkg17GqN4gtDsONwe3tqdpi7335lLebiFH/5UgqRAs5sJF1dP+91QCRt8+VaSSBK0TdAQfUx5YMptbcDqcosgSRDqQWXChsISO26dco0Z7RKBQZLf3EgNlbDBV9UMdy6f5A0OSSn7O++8Q2xsLBqNhtdee63Wfb3//vuMHDnybBZXNXjwYO6///4G+SxB8fTTT3Peeeed8X769evHN998c+YFOg1N/f+NmHSjCZEkCZPJRHm5t+tPj3gbKccMuLODAaXL0Pr9x7hvTCMVUhCakY/2plBsUZIz9N4uc9ndvfhwpRG7U3kQuXpAMYEm/5pZo9FYLSV/Q9BoNBgMBnVS6aQ4B/uyDBxt68CjlfhzRyatw8NOshdBEE6msttqsdMDFQkRsOr95kZqyIQNvnw/U68FDzo0HhsejYRTp6W4uJh77rmHV199lauvvrrWedzsdjtz5sxpsAlZv/nmG/R6fYN8lqB4+OGH/SYLnjZtGoWFhXz33Xd12s/s2bN5+OGHmTBhQoNXDDT1/zeiJamJqdrlrjLDXX6+N3nDIZfokywIJ+P2yPz7r33q8sUbjxPWO5JPf1MeKiRJZsqQomrbNUYrUiXfLnfJsXY0ORZ1ecuBfNGSJAj1wO1243Z7sBmVVhqNR0bS6DD4PKs1Rlc7qJ68wWjCL3nD4SNHcDqdjBs3jpiYGCwWS437+frrrwkMDOTSSy+t9bMqK2TqQ3h4OEFBQSdf8Syrz2Nq6gIDA4mIiDj5iicxbtw4ioqKWL58eT2U6tQ4nUo22aby/6Y2IkhqYqoGST0rMtyleCIIK6hI3tDKhEf0SxaEE/o+9Si5AcpTT9f9MpffkMg3a90cK1BeG9yzjPZR/mm/NRpNgyds8FU1eUNZXqi6nGJXHgDEmARBOH0ejwdZlskrUlpnAIxWDet++5q+ffsSFhZG27ZtGTlyJGVlZUDNXYImTJjAtGnT1OX4+Hief/55pk6dSmBgIHFxcXz//ffk5uYyfvx4goKC6NOnD3///fcJy5eens7EiRNp1aoVUVFRPHT3ZPIzjwPww6ef0P/CCwHo0KEDkiRx5MiRGvfz2WefccUVV/i9Nm3aNCZMmMBLL71EmzZtSExMBCAzM5PJkycTFhZGREQE48eP99uvy+Xi3nvvJTQ0lIiICGbNmsVNN93EhAkT1HWq/o0KCgqYOnUqYWFhWCwWxowZw4EDB9T3Fy9eTGhoKMuXLycpKYnAwEBGjx5NVlbWCf8+VVX+3adNm0ZISAgzZ84EYMOGDQwcOBCz2UxsbCz33nuvej4BPv74Y/r27UtQUBDR0dFcf/315OTk+JV/ypQpREZGYjab6dy5M4sWLVLf37FjB0OHDsVsNhMREcGtt95Kaal3vHjl33revHnExMTQqlUr7rvvPjU4OFUZGRlce+21hIeHExAQQN++fdm4cSPg393u6aef5sMPP+T7779XE4CsXr2aoUOHcvfdd/vtMy8vD6PRyKpVqwClQmDs2LH873//q7UcDoeDu+++m5iYGEwmE/Hx8bz00kvq+0VFRdx6661ERUURHBzM0KFD2b59u/p+ZVk/+OADOnTogNFoRJblav9vHA4Hjz76KG3btiUgIIALL7yQ1atXq++npqZy+eWXExYWRkBAAN26dWPp0qV1+pvWhQiSmpiqQVJSezs6rUyezki7NOWGbjdr2V9QfRyFIAgKWZZ5drX3Bn3p2gI6XJ7gn/a7hsljQ0JCGmUcQiXf6z8h2kF+abi6nB1iRpZl0ZokCGegsqtdqU+3tuz049xx241MnTqVbdu2sXLlSq666qo6V0gsWLCAAQMGsHXrVsaNG8eNNyr7vOGGG9i8eTMdO3bkpptuqnW/siwzYcIECgoK+OWXX/jpp59ITzvMg3dNA2DklVfx4WfK2JG//vqLrKwsYmNja9zX77//Tt++fau9/uuvv7Jnzx5WrFjBTz/9RHl5OUOGDCEwMJC1a9eybt06NWCpbJV5+eWX+eSTT1i0aBHr16+nuLj4pF26pk2bxt9//80PP/zAH3/8gSzLjB071i9IKC8vZ968eXz00UesXbuWtLQ0Hn744ZP9mat55ZVX6N69O5s3b2b27Nns2LGDUaNGcdVVV/HPP//w+eefs27dOr9gweFw8Nxzz7F9+3a+++47UlJS/ILe2bNns3v3bn7++Wf27NnD22+/TatWrdRyjx49mrCwMDZt2sSXX37JypUrqwUjv/32G4cOHeK3335j8eLFfPTRRyxevPiUj6u0tJRBgwZx9OhRfvjhB7Zv386jjz5aY4bDhx9+mEmTJqmBZlZWFhdffDEzZszg008/9fve+OSTT2jTpg1DhgxRX7vgggv4/fffay3L66+/zg8//MAXX3zBvn37+Pjjj4mPjweU/7fjxo3j2LFjLF26lM2bN9O7d2+GDRtGfn6+uo+DBw/yxRdf8PXXX7Nt27YaP+fmm29m/fr1fPbZZ/zzzz9MnDiR0aNHqwH2XXfdhd1uZ+3atezYsYOXX36ZwMDAU/6b1pUYk9TE6PV6dDodLpcLUCaUS2xrZ3eaiYAsE/RSut/9uH43XS/v35hFFYQma82xPNIqWpHi0mVGj2jNuu1WthxUxvR0bmOnf5K12naN2dUO/FuStBoIjTViyIXjkZATbcJdESRVrUwRhKZs6Io/ybY1bDeo1iYDq0Zc5PeaLMu43W5sdhcOo1IZonNBYVEuLpeL8ePHExcXh9Fo5Pzzz6/zZ44dO5bbbrsNgDlz5vD222/Tr18/Jk6ciCzLPPTQQwwaNIjs7Gyio6Orbb9y5Ur++ecfDhw4QExMDKAkX+jXtze7tmymW+8+BIQr3asiIiJq3AdAYWEhhYWFtGnTptp7AQEBvPfee+rk1R988AEajYb33ntPHQ+1aNEiQkNDWb16NSNHjuSNN97g8ccf58orrwTgzTffPGHt/YEDB/jhhx9Yv349F198MaA8mMfGxvLdd98xceJEQOly9f/+3/+jY8eOANx99908++yzJ/krVzd06FC/4Grq1Klcf/31agtF586def311xk0aBBvv/02JpOJ6dOnq+t36NCB119/nQsuuIDS0lICAwNJS0vj/PPPVwPNyoCg8lisViv//e9/1QnH33zzTS6//HJefvllWrduDUBYWBhvvvkmWq2WLl26MGbMGFatWsWtt956Ssf16aefkpuby6ZNmwgPVyrMOnXqVOO6gYGBmM1m7Ha73/+Lq6++mnvuuYfvv/+eSZMmAcr5nTZtmt/4t7Zt25KWlobH46mxojAtLY3OnTtzySWXIEkScXFx6nu//fYbO3bsICcnR/0OmzdvHt999x1fffWVerwOh4OPPvqIyMjIGo/h0KFD/O9//yMjI0P9v/vwww+zbNkyFi1axIsvvkhaWhpXX301PXr0AJRzdzaJIKkJMplMfs223eOVIMmZEwwoQdKfB3MbqXSC0PQ9ueJvMCljCob8WkK/z0Zxwwsu9f0bhhVSdUy2xWJRHxwai06n86skSYpzcOSojuORLhxGiW0Hc4gIC6t1sLYgNEXZNgdZ1sZvAa2sgc8rtSOblUoUvVXDxRd2Z8iQIfTr148RI0YwevRorrnmGsLC6pYopWfPnurvlQ/KlQ9zAFFRUQDk5OTUGODs2bOH2NhY4uLi1Fac7t2SCAoOJXXvPrr17oOrIhvfiVq5rFalAqimypQePXr43ec2b97MwYMHq40LsdlsHDp0iKKiIrKzs7ngggvU97RaLX369Kl1zqY9e/ag0+m4sKJrIChBXZcuXdizx5ud12KxqAESQExMjF+Xt1NVtcWs8pg++eQT9bXKjIYpKSkkJSWxdetWnn76abZt20Z+fr56LGlpaSQnJ3PHHXdw9dVXs2XLFkaOHMmECRPUgG/Pnj306tVLDZAABgwYgMfjYd++feq579atm9/YtujoaHbv3n3Kx7Vt2zbOP/98NUA6HUajkRtuuIEPPviASZMmsW3bNrX1zJfZbMbj8WC322tMXDRt2jRGjBhBly5dGD16NJdddpmaOXHz5s2UlpZWGx9ltVo5dOiQuhwXF1drgASwZcsWZFlWu4FWstvt6r7vvfde7rjjDn755ReGDx/O1Vdf7Xfd1TcRJDVBVYOkHvE2vlgbQn5+K0C5gRwS4xIEoUab8wrZXREgReXIDO1m4WB6CUs3KTfnEIubKy4sqbZdY7ciVTIajd4gqb2dzL8sgNK9duPObC7pGd94hROE09Da1PCVDzV9ZuXcSFafOdA8Tj2BZpklS5bwxx9/sHr1at544w2eeOIJNm7cSEJCAhqNplpQUtPYEt8sXZW19DW9VltwIctytQllK95B51Zq92XNifcBSkAiSRIFBQXV3vN9sK/cT58+ffwCikq+D7RVy3SiIO1E3Qn9svdVyWomSdJpjbms6Zhuu+027r333mrrtm/fnrKyMkaOHMnIkSP5+OOPiYyMJC0tjVGjRqnB6ZgxY0hNTWXJkiWsXLmSYcOGcddddzFv3rxqx1H1GE50fHWZDLi+sqzOmDGD8847j4yMDD744AOGDRvm1xIEkJ+fj8ViqfUze/fuTUpKCj///DMrV65k0qRJDB8+nK+++gqPx0NMTIzf2KFKvt+rVc9TVR6PB61Wy+bNm6slTqnsUjdjxgxGjRrFkiVL+OWXX3jppZeYP3++X5a/+iSCpCaoau1Pj4oMdylyOK3yZI5HSByLNOH2yGg1DZ+iVBCasidX/K2Othy+spzhH43m0XdKcLqUFydeWoTZ6P9FrNPpzmq/5rowmUzqAOPkWDs/LQ2mMkg6WKrMlXSiL2lBaGqqdntrDB6PB4/HQ0mZA6deuXYMdggO0iBJbkBiwIABDB06lKeeeoq4uDi+/fZbHnzwQSIjI/0SCrjdbnbu3Ok3pqM+JCcnk5aWRkZGBq1bt8bj8bBnzx5KiovomNC12vHUxmAwkJyczO7du086T1Lv3r35/PPP1QH3NWndujV//fWXminP7XazdevWWufoSU5OxuVysXHjRrX1JS8vj/3795OUlHTC8tSH3r17s2vXrlq7pu3YsYPjx48zd+5cdUxXTQk1IiMjmTZtGtOmTePSSy/lkUceYd68eSQnJ/Phhx9SVlamPvivX78ejUZTrRXkTPTs2ZP33nuP/Pz8U2pNMhgM6pg7Xz169KBv374sXLiQTz/9lDfeeKPaOjt37qR3794n3H9wcDCTJ09m8uTJXHPNNYwePZr8/Hx69+7NsWPH0Ol0ft0S6+r888/H7XaTk5NzwqyMsbGx3H777dx+++08/vjjLFy48KwFSSJxQxNUNUjq1MaByeChQG+kbUXyBodRw6686rVEgnAu219cxkaUh4fQQplLIjzkl5by2Rqle5pGkrmuhrTfISEhTSbo8B2XlNjOwfFC75fjMYsRj8dT5wxJgnCuq3x4LLR5HyI1Vi0hgW7++usv/v3vf7N161bS0tL45ptvyM3NVR/ohw4dypIlS1iyZAl79+7lzjvvpLCwsN7LOHz4cHr27MmUKVPYtm0bmzZtYsaMGQwYcCnJyRdUW/9ErS6jRo1i3bp1J/3MKVOm0KpVK8aPH8/vv/9OSkoKa9as4b777iMjIwOAe+65h5deeonvv/+effv2cd9991FQUFDrPbNz586MHz+emTNnsm7dOrZv384NN9xA27ZtGT9+/Cn+NU7frFmz+OOPP7jrrrvYtm2bOkaq8kG6ffv2GAwG3njjDQ4fPswPP/zAc88957ePOXPm8P3333Pw4EF27drFTz/9pP5/mDJlCiaTiZtuuomdO3fy22+/cc8993DjjTeqXe3qw3XXXUd0dDQTJkxg/fr1HD58mK+//po//vijxvXj4+P5559/2LdvH8ePH/f7npgxYwZz587F7XarY8t8/f777ycMqBcsWMBnn33G3r172b9/P19++SXR0dGEhoYyfPhw+vfvz4QJE1i+fDlHjhxhw4YNPPnkkyfN5ugrMTGRKVOmMHXqVL755htSUlLYtGkTL7/8sjoG7v7772f58uWkpKSwZcsWVq1adVYDbxEkNUFardavz7BOC0mxSn9uc5Z3ToSffj/1vq2CcC54atXfUNG6OmyVg/GvjOF/K13kFimN5sPPL6VthMtvG0mSmkxXO/CvJDHqZYyRAQQXKQ9D2dEWZFnGZrM1VvEEodmpTNjgkWV1biRJltFq9Oi1Sg35unXruOKKK0hMTOTJJ59k/vz5jBmjzNo+ffp0brrpJqZOncqgQYNISEio91YkUO5F3333HWFhYQwdOpRx48YRHx/PRx9/hMtdvePPiYKkmTNnsnTpUoqKqlcK+bJYLKxdu5b27dtz1VVXkZSUxPTp07FarWrL0qxZs7juuuuYOnUq/fv3JzAwkFGjRp0wgcyiRYvo06cPl112Gf3790eWZZYuXVqniUNXr159wjTntenZsydr1qzhwIEDXHrppZx//vnMnj1bTYYRGRnJ4sWL+fLLL0lOTmbu3LnMmzfPbx8Gg4HHH3+cnj17MnDgQLRarToxr8ViYfny5eTn59OvXz+uueYahg0bxptvvlmncj799NMnbHkxGAz88ssvREVFMXbsWHr06MHcuXNrncNr5syZdOnShb59+xIZGcn69evV96677jp0Oh3XX399tfOWmZnJhg0buPnmm2stS2BgIC+//DJ9+/alX79+HDlyhKVLl6LRaJAkiaVLlzJw4ECmT59OYmIi1157LUeOHKlz0Lho0SKmTp3KQw89RJcuXbjiiivYuHGj2uLndru56667SEpKYvTo0XTp0oW33nqrTp9RF5IsJt1oMB6Ph9TUVOLi4k6aZjgrK4viYm+a7xc/a8V/fw1jeNAuNt90DICBGeV89+DZr5UR6kddzr9QdxnlNs77fi0erYSlXObZn/K5+v2xXHK3jp2pypfCx4+k0zfRP8AICgqqMQtUfavL+T948KBa8z3r/dYcDdjCwSRl+eOoEPp1SzjhAFih6TkXrn+bzUZKSgoJCQlNKgOj2+3G6XRyvLCcXIMSbJjKJSIsRoItSsuzRqM5q4lbZFnG4XBgMBhOqdXa4/H4TYx6KEuPbCnDqVcCvESLAUNFNtzaTJo0ifPPP5/HH3+8Xo7Bt2xJSUlMmjSpWgtMfVq8eDEvvPACu3fvrlNw1RTVdP4rU47XJS346UpPTyc+Pp5NmzZV61b3yCOPUFRUxLvvvnvWy9GQ6uN+1DLv1C1A9XFJSktSbr43e8jhptE7SBCahBfXb8ejrWhFWu3mynmjWfV3uRogJcXa6NO5egtMU2pFqlR1UlnTMe/94PetGaIlSRDqoLLCocTt86Vp1xJk9o7rqa12vrFUDaQtRhmdsyKznSRRWn7yiaVfeeWVehlrmZqaysKFC9m/fz87duzgjjvuICUlheuvv/6M930iy5Yt48UXX2z2AVJt1qxZc1aDTFASjKSlpTFr1iwuuuiiGscdRUVFnfVyNFcicUMTVS1ISqhI3iCFE5MjkxOlJG9weTzoWmitpCCcqjy7g69zCkGvweCQuTA7D0uMmffe8D4U3VhD2m+DwYDFYqGpMRqNlJeXA0qQtHpNEKAkc9iXZxcTygrCKapM/ex0ubGblO9KrRtMRh2SpARJkiQ1ydY9jUajJmgwGzzYizVgUQK+MrubkJNkSouLi6uXAe0ajYbFixfz8MMPI8sy3bt3Z+XKlWc9CUNl97aWKiUl5ax/xvr16xkyZAiJiYl89dVXNa7zyCOPnPVyNFciSGqijEajXzrMuCgnwRY3xeUG+qRryImScRk0bM/Op09Mq0YurSA0rgV/78apVx5yBq3zMOHFYew5VMwvW5SkB+FBLsZdUFptu6bYigT+lSRJsXbyCiIApZvt0YoMRk6ns8XWsApCfalsRcorsqlzIxmsGsJCva0wWq22ySRu8eUXJBll8lw6QDkeu6wEgA2R6TI2NtZvfIvQfAwePPi00qoLiqZXdSIAys3Rt8uNJEH3OKX22HTMm8f+R5G8QTjHlTpdLDqsBBBat8wF+47TumcU7/6owVXRvWbywCKMev8vCo1GU2vK28bme+0HWzy4LMGYrBXJG6KUli/RmiQIJ1cZJJX5dqdzajEZvPeDptiKBP5z7hh0Mi50SBUPvE6dUua6zLsjCELdNM07gwBU73LXvWK+JEdOiPra5vT8Bi2TIDQ17+48hLUiY1X/TXDFvy4i53gxn61RZpDXaWWuHVw9w1NQUFCTG4dQqerg7k4dPERnKrfronAdOSVWMS5JEE7C4/EgyzJlVgcOg3L96J0QFOS97jUaTZMNknzLJUlgNILBodwXXHoNLrdHtBIIwlnUNO8MAlD7pLI5Bd7udSlacQqFc5fd7eH1HYfV5f6bcuk8ohP/XeakoFTpTTyqTymtQ6tPsBcWFtZg5awrSZL8WpOSY20E+CRvWPt3mmhJEpqspvLgXtmKVFDmTfuvs2oJDWy6CRt8SZLkV1liMXrQOL3LxWUO0ZIkCLWoj/uQeMJuwmrLcHdYG0bMscquNyYcbnGTFM5Nnx5Ko9ikBEN9tsmMvj2ZsrJyFi8PUteZOqz6pMtms9kvCGmKqma48+R6s1TtOlouWpKEJqdyjFxl0pHGVDk3kizLWA0VcyMho0WLb91iU21FquRbPrNBRnZ6gzqr0yOCJEGoReV96EzG7orEDU2YwWDwG7jZOsxFZIiL3CI90RkasqJl3DqJvzNzuLh9dCOXVhAaltsj8/Kfe6AiSLpkXT7nvTCCb349zt4MJVV+zwQbvTpUb3FpqgkbfJlMJnUiyKT2dooKwoFcANIlLS6XC7fb3aRrwoVzi1arJTQ0lJycHECZdLOxEiJUXh9FpXacWg04QO+AQLOE3a5UMjZkgCTLMk6nE4/HU6e/SeVxgFKr7XRIyBXzJ9ncbux2Ox6Pp8kHe+e60z3/Qt3Jskx5eTk5OTmEhoae0XekCJKasMouN1artWJZGZf02/ZAjFkBgJKta8nve7h4igiShHPLjxnHyKkIkJL2yQyd0A632827P3lbYG4cVlhtO61WS1BQULXXmxrflqSoEDfFnhB0ThmXXiK7lZK8wWazERAQ0FhFFIRqoqOV76LKQKmxuFwuZFkmr9SJ06A8lOqtWjwh3gdUnU7XYA+slS1bdc2kJ8syLpe3u2BOgRa51I4sgeQBd6EOrVYrgqQm7nTPv3D6QkND1fvR6RJBUhNnNpvVIAmULne/bQ/ElhtCZZC0Jav6oHRBaMlkWeaZNduhImHD4FXFXLJyBNv2F7Jyq5KxLjLExag+JdW2DQkJaRZfUr7TAEgSxHfSUJglkdEe8iL1lNgd2O12ESQJTYokScTExBAVFYXT6WyUMjgcDjIzMykttzMrtQC7ScJghyGp8dx8hdIKYzQaadOmTYOVyePxcPToUdq0aVOngEaWZY4cOaIuf7y6FXkBu0jrqLQuvRQWwHmJ7QkPD6/vIgv16HTPv3B69Hp9vfSyEEFSE1db8oZjha2QPBnIGolUg+huI5xbfsvOI7UiQIpLk7nkwiDQwFvfynhkJQC6bnARhhrucM2hqx0oXYEMBoOaoCEp1s6uLCO0tyNrJNZvy6BtpJgjTWiatFpto3UFLS4uRqPR8N8l+zjYNRycMl02mxg13tvFLiIiotr369nk8XjQarWYTKY6PyQHBASolaVtWnk4/I+R9PZKJenKTRn06Ni2QY9FqLszOf9C46nTmbr00kv9fvr27cuvv/6qvr9jxw6mTZvGpZdeytixY1mxYoX63q5du7juuusYMGAAt956K1lZWep7NpuN2bNnM3DgQMaNG8eyZcv8PvfHH39k7NixDBo0iGeeeabRaqcaQ21pwI9oQ2mjTA1DTqQRm7t69i5BaKmeXr1V/X34inJGPD2c7OOlfLFW6Uan13mYPLB6C2tgYGCzmoDVL8NdeztSrrfVaHtKkUjeIAhVyLJMcXExAH9IFvV189Eg2kUq3dY0Gk2z6HJbyfc5oGeCDVtOqLq8t8iFzWZrMhkFBaElqVOQ9Pvvv6s/H3zwAUajkYsuugiA48eP8+ijjzJjxgx+++03Pv30U5KSkgCl6fvRRx/l2muvZdWqVXTv3p05c+ao+33nnXcoKipi6dKlvPjii8ydO5fU1FQADh48yIIFC5g3bx5Llizh6NGjvP/++/V1/E1e1SbDsEAPsZEOrFodrdOV1z1aiY1HsmrbhSC0KJvzithZceeKzpa5MBZ0Ji0f/OSguFy5Jsb1KyUiuHrFQXNpRapUNcNdSV6oupzq0uBwiBTAguCrpKQEt9vNgSO5pHRWrp/wPBg5xJvyPygoqFnV5vsGSUmxdrILvS3ImUFmPB4PjopkDoIg1J/Tvkv8/PPPDBo0SO0P/8knn3DZZZdxySWXoNPpCA0NpV27dgBs3rwZs9nM+PHjMRqNzJw5k927d6utSUuXLuXWW28lMDCQXr16MXDgQH755RcAli1bxogRI0hOTiYwMJAZM2bw888/n+lxNyu1pQLXH/PWKi9Zv69ByyQIjeWpNVvU30essHPZK6Ox2x18sMxba1xTwga9Xo/FYqn2elPme+3HtnJSYAtD8ig1xsdCzQBiviRB8FHZivTRKqU7OkDrfwIYfYH3OgkJCalx26bKbDarv5sMMsFtLbRSEl1yrK0Zp8cjWpUF4Sw4rTFJsiyzfPlyHnvsMfW13bt306tXLyZNmkRRUREXXHABjzzyCMHBwRw+fJhOnTqp65rNZtq1a8fhw4cJCAggLy/P7/3ExER27doFwOHDh+nfv7/6XufOncnMzMRms9XYB9fhcFSrUdHpdBgMhtM51HpVWeNb15pfo9FIaWmputw9zsbSTUFYc0MAZWD6tuxiUaPcxJ3u+Re89heXsaEi01NYoUwffRmGEANfrizgUJZSU9ynUznJ7W1U7X0SHByMLMuN1i3ldM6/Xq9XyytJENlejyVHIjsacqONONxurFZrk5/zSRDXf0NwOp3qd+U/0aHq65HuQEwGD7KsTK1hNBob/DycyfmvzF5XmQq8e4Kd1Aw9xyOVzH1/7swkPCSkWXUhPNeI67/pOZXW5NMKkrZs2YLNZvMLXnJzc1m2bBlvvPEGUVFRPPfcc8yfP59nnnkGq9VaLQNT5UDE8vJydTCb73uVk0BV3TYwMFB9vaYgadGiRSxcuNDvtYkTJzJp0qTTOdSzIj09vU7rW61Wjh8/ri63C7EBkWQXR6Jxp+PRSqQatWoXRaFpq+v5F7z+teWg+vuIlS56P9SDlJQU/vOlt2b4ir6p5OTk+W0nSRI6nY6SkurZ7hpaXc9/Xl6e+nAUHxXI0Sw92dFOXHqJXzfu49KeVpHZqhkR1//ZU1RURHFxMX9szSK7rXJNxB7RMHqgk5ycQkDpctuY35Wne/4LCwvV5A0JEZCxLQDOLwRg7fajdGsXIFqVmwFx/TcdCQkJJ13ntIKkyi5wOp13c6PRyJgxY4iLiwNgxowZ3HrrrYDSclRWVua3j7KyMsxmMxaLBbfb7dcyVFZWpnaLqbptZS2Rb/Ozr5tvvpkpU6b4H2QTaklKT08nNja2Tv2h3W633/oXB0toJJkUXQhdj0JaLByPMhHZth0Wnch011Sd7vkXFBnlNtY6DoBWIqBMpndRAckXjWbLnhL+2KfUoMaEOblqkBadNspv26CgIGJiYhqj2KrTPf96vV697/XpoiFnnQVQklLsz3IyfnC4et8Vmi5x/Z9dsiyTkpKCyWTi18wcqLjcg/cEMOjyACQpAEmS6NChQ6Nk3TvT8x8YGEhenlL5M6CXgaUrwoFCANI1JsLCwsT/rSZMXP/NU52DJKfTya+//sqrr77q93rHjh39ln27tHTo0IFvv/1WXbZarWRkZNChQweCg4OJiIjg4MGDdO/eHYD9+/fToUMHdduDB721xwcOHKBt29rTXRoMhiYREJ2IRqOp00VSmQq4MqtfoBk6xjg4cNRIZIaOtFg3skZiQ8pRRnYRD0tNXV3Pv6CYt3kPHq0yxmD4apkrXhmORqPh/7y3Fq4fUoReV30OpPDw8CbzN6/r+fetKEpub+ebvBAqg6SUcg9OpxNJkprF3E+CuP7PlrKyMtxuNw6Xm32JylxpOqdMz9gQNBVjk4KCgho9u+Xpnn+LxUJ+fj4AHaKdHLdGo3Ufwq2VyIqwIEkSDoej2Y27PNeI6795qfOZWr9+vZpgwddll13Gjz/+SEZGBjabjcWLF3PJJZcA0KdPH6xWKz/++CMOh4P333+f5ORktWZ37NixvPfee5SVlbFjxw7Wrl3LiBEjABg9ejQrV65k7969lJaW8sEHHzBmzJgzPe5mp3oqcKVZXeeTvGHZhv0NWiZBaCh5dgefZypdTg0OmT4puUT3bE32cStfrlUeCkwGDxNrSPttMplqbXluDnzHG3WMcZBb7O1alxVoQpZlkdlKOOcVFSnX/v9+3ENJsBIUxe8xcP3l3qCouSVs8OX7DKDRQPvOWmIylePMbW2gyGoXyRsEoZ7VOUj6+eefGTVqVLVay4suuojrr7+eW265hXHjxuHxeHjwwQcBpXXn3//+N5988glDhgxh+/btPPvss+q2t912G4GBgYwePZrHHnuMxx57jPj4eAA6derE/fffzwMPPMDYsWNp3bo106dPP4NDbp5qm1S2/Hio+to/uaUIQkv0+vb9OHXK7WrwOhjz9MUAvPuDnTKb0nXm8gtLCA2oPii2uaX9rsr32tfrICjGQliBspwTY8Yjy+LhSDinuVwutUvqmnJvpUJIuolWFVMBNMfslr60Wq1fL5meCTaCM5V7g6yR+O3vdHEfEIR6Vufudi+//HKt71177bVce+21Nb7XrVs3PvvssxrfM5lMPP/887Xu9/LLL+fyyy+vW0FbmKo14ZVB0tGSVmhdqbh1EmmW5jNJpiCcqhKni/f2Z4BBi9Ytc+H2HDr+v5E4nW7eX+oNIGpK+63Vapt9xiedTodWq1WTN3SNd5CWqaUgzI3NrGFPej4RInGDcA4rLi5GlmWycoo52FUJkgJLYMygVoBy3YSEhDT7Lqkmk0ltNe6ZYGPH9iBAeRbYllbMRBEkCUK9Eh0jmwmj0eh3g+/SzoFe5+GILoTYTOW1vFYGSpyuRiqhIJwd7+9LwWpQWosu/guG3dcTgK9/KyM1R6lZ7Z9UTmLb6l3OgoODW0T/b7/JJNvbMWZ7K03+2H5U1CAL57TKrnaLlqbg0ivfk+12mBh5oXdC6eDg4EYpW33yvQ/0iLdRkBehLqdqlXHLLpd4BhCE+tL8nx7OEZXJGyoZ9DJd2zlwaTREZCotSLJGYs1ekQZcaDnsbg+vbTukLg/YkEePyT2QZZn/+9aboerGoYU1bt/cu9pV8h2XlBRrx37c+8C3v9CJ3W5vtPmfBKExWa1WtXVlW7C31TjGakRf0VcmICCg0RM21AffHiVRoW7KDaGYrMp1nxWtdCUUFSaCUH9EkNSM1DYuyTd5wy9/HkQQWorPUjIormhF6rNN5pLr45Ekic17rKzbpTwwxEY6GNSzrNq2FoulyWe6PFW+QVKXdnbyC3ySN5iUiTErs18KwrmkshVpy45M0jsqUVHUMYmbJnqvkeacsMFX1R4lXTt7aJOu3B+LwnSk5paIIEkQ6pEIkpqR6hnulJthaW6o+tqOguoPi4LQHLk9Mi/9uVtdHvRbEf3vvgiA17/ydqOZMqQIbQ13spbSigT+136ASYbQQALKlBrk7NZKDbKYSFI413g8HnWC6E/+LFBfj9plokusco/QarXqJPTNnSRJfhUmPRNsWI56W5dWbUpVJ5wVBOHMiSCpGanekqQ8FGWWtkLvVB6YMgJbRs25IPyYkU1ORStS8j6ZC4aGIWklcvKdfLVWeTCwGD1cPaC42rY6na7FPBiBkpnLd2xVYoKH1pnK36YkREtGXqmoQRbOOSUlJXg8HtxuN3s7KF3tJI/Mea29135wcHCzT9jgy7fLXc8EG/ZsbyvZ7jwHNptNdL0VhHoigqRmpGpTe4cYBxajh3R9MLEZymt5rYwUO0S3G6F5k2WZZ9f/oy4PW1HG0NlDAHjrGxtWh3LruvLiYoIsNaf9bkkPRlVrkJPb27Ec81aarN2cLlqShHNOZVe7b5cfIL+Vcr3HHdQx9UpvF/SW0tWukm9laXJ7O8fzW6nLGQFm0fVWEOqRCJKaEUmS/G6QWg0kx9lwaTSEZ3pbkFbuONwYxROEevNbdj5HtBUTQqbJnN9Vi86kxen08N4S7//1KTUkbJAkqcU9GEH1DHeuXO8g9T05VhEkCecUu92udi1bfsz7KNPqiF6tODGbzX6VCy1B1a63hqgAdd60rDbKvGmiy50g1A8RJDUztXW50/gkb1ixSQRJQvP27Lrt6u+jl9sY8+9RAHzxq5XMPCVL1cDuZXSIrl5jGhgYiE5X5yngmjy/lqRYG4UFYepypk6Py+US6X+Fc0ZlK1JxiY1DScq1YbTBZQNaXsIGXwaDAa3Wm9mzRycnUenK/c5u1rDlYLboeisI9UQESc1MbRnuSvNC1dd2FYlaJKH5+juviH88yqDr6GyZnqF2jKHKQ9Cb33hvWTVNHgstK2GDL98gKSzIg1UfgsFRkbyhlUj/K5w7ZFmmuFgZi/jetwexWiq62u3SMeIiJWDQaDTNfiLp2vg+B/RMsKHLsqjL6/4RQZIg1BcRJDUztQVJ6aVR6gNTZnDL6l4gnFue2+AdizTmFxdjF4wG4K9ddv7cq/zfToh2MCC5vNq2BoMBi8VS7fWWoOqYxIQOEH1UuYXnR+opKLeLLnfCOaG0tBS3W6lI2WzwXu9ti3VU5jcJCgpqERNJ16RqkFSW4209O2iVsdvteDzVx2oKglA3LfMO0oJVbWpv18pFaKCbDEMAsenKA1RBhIF8u6OxiigIp21vUSm/W5XAP6xQpru9kOB2Sm3wa194u5LdOLSQmp5/WmorEihjrXznfUqKtROU5a0Q+X1LmgiShHNCZVe7A4eOcyRR+T4My4cZEyPVdVpiV7tKvkFSpzYOcstaIXmUStKjYRZkWRb3AkGoByJIaoZ8b5CSpLQmeSQNYT7JG37ZeqAxiiYIZ+SlTbvU30ev8DB2/nAAjuW5+fp3JSAIMrsZ37962m+NRkNwcHDDFLSRVM1sJed4xyLuSBdpwIWWz+l0UlamzAf4/opcPBUJXtru0tGhrfK70Wj0S5Xd0vgem1YD0Qk6oo8px54dY6Tc6RL3AkGoByJIaoZq63InZXsfmH7dfKQhiyQIZyyjzMqS40oNcUCZTK+sPFr3iALg/76243Apt6urLylWJlStIjg42K+VtSXyHZeU1N5OsU/yhjSPBqfTqXZDEoSWqLIVCWB/O29Xu54h3mujJbcigTJBrl6vV5d7dbATlqFUknq0Emu2pIkgSRDqgQiSmqGqQVL3igx3Jce9/ZL3lIrudkLzMm/bPjwapTZ05GoY+fwAAJwumfeWKIOxJUlmypDCGrdvyV3tKvle+23CXRQ6wtG4K5I3hCsPjKKbjdBS+SZs+Pm3FLJiK1qRUiVmTlbmC5IkqcW3KIP/vaBHgh2OeZNUbD5UKNKAC0I9EEFSM1RbS1KatRUmW0XyhlCRvEFoPo7bHPwvNRsAo12m964c4gfHA/C/FXaOFShB0tBeZcRGVk9z3RLnQ6mJ7zFKErRN0NA6W3lQzG1twOZyiyBJaLHKy8vViVJ/3O+9D0Qf0mAyKN99gYGBLb5FGfy73PVKsFF4PEJdTpF0olVZEOqBCJKaIZ1O59fUHhniJjrMyVG9N3lDUZieHKt4WBKah//bfQinTrkdDV4Pg2adr773+lfe9W6sYfJYODdakUAZd+WXvCHOQehRbzebjTszRTcbocWq7Gpntzs5lKT8v9e6Za7o6205auld7Sr5VpZGh7koJkzNcJsVpXS9F61JgnBmRJDUTNU0qawsSYT4JG/4edPehi6WINRZidPFu3vTAOWB56KNeXS7JhmAP3a62HxA+T/dua2dC7tW/9LXarUtdj6UmvhPKmtHm+Mdl/H3/nzRkiS0SG63m9LSUgDe/yqF4pCKuZH2aBlxiXL96/X6FjsFQFW+UwJIEiQmQpsM5ZGuoJWe7KJyUWEiCGdIBEnNVPVxSRXJG3IC1dd+257WoGUShNOx6EAa1opWpIs3woXTO6hf/gs+d6rrTR1WiM80QarQ0FC/+YNaOr8Md3E2v4mkj9jB4XCIOVKEFqe4uBhZVlpK/nJ5e1K0P456XwgODj5n7gUajcavwqRHvI2ATG8XvJUbU0WQJAhnSARJzVRt45KKfJI37LNWH7shCE2J3e1hwTYlXb3kkRm4pogL77wAgKPHPXy3TmlFCglwc9kFJTXu41zpXlPJ98EovrWT/FLvNX8sxIQsyzgcInGL0LJUdrXLzCwiJVl5dAkohduujlLXOdfuBb7PAb062HBle7sd7sy2iiBJEM6QCJKaqdoy3KVaW2Epr5xUruUPZBeat8+OHKWoohWpz3Y47/IIpIp5T974yoHTrfw+aWARZmP1tN+BgYF+4/POBb5BklYDYe2NtDquLOdEm3HLsng4EloUq9WqdiN9+4djOAwVXe12ScS3UypSAgICzrl7ge9zQPc4O8ePt1KX081G3G63qDARhDMggqRmqmpTe7DFQ3xrB8cMFjV5Q0mInswyMXBTaJrcHpm5f+1Wl4euLGXQvwYBYHfIvPeTkqFKq5G5fnBRjfs4VxI2+NLpdOh0OnU5Kc5BxFFl2WGU+OdQrhiXJLQovnMjHYjySX1t9D7CnGutSOAfJAVZPEjhQQSVVCRviAlAFhUmgnBGRJDUjNXY5U6SCD7qDZ6W/rmnoYslCKfkh8xssitajZL3ynTra0BnUgKjT1e4OF6s/D7i/FJiwqt3HT2XBmlX5XvtJ8Xa0Wd7xyL8sfOYeDASWgyPx0NJidLVdu0fWaR1Uu4ZrbLh9mujASV5S2BgYK37aKkMBgMajfcxrltHF9FpSoVJeaCG3en54l4gCGdABEnNWE0Z7gDkbG+mrzU7Mhq0TIJwKmRZ5oU/d6rLo5bbGDV3pPref770Jh6YOrywxn2cawkbfPm2Iie1t2M77q1FP1SizJVUOchdEJqzkpISNRHJl1vK1ddj94HJqFSknEsJG3xJklRtXJIxy1txtGZLpkgDLghnQARJzVhtGe4K8rwDuQ84xGRyQtOzKjuPwxUP8QmpMl3aOjGEKGML1v0js/2wMrYgub2N8ztWrwmVJOmc7F5TyffaT2zrIK/Qe81nWYwieYPQYlR2tXO53BxJ9I45uqyb9xo4l+8FvpPK9kiwUZ4Tqi7vFxUmgnBGRJDUjPnOkwBKtxutRuaIPYLA0orkDREmcYMUmpwXNnpbkcYudzFmwSh1+VTSfgcHB6PVas9qGZsy35Yko15GH2UhuFi5zrOjzciyLMYlCc2e3W5XW0IWf53O8YpEdnEHJMYOVRbMZrPf9XCu8a0w6dLWTm6hN3lDZohF3AsE4QyIIKkZkyTJ78vBbJTp3MbBcb1ZTd5QFqQjraSssYooCNVsyitkm10JhKKzZbpoiwlqq4wnSM+W+WGD0qc+IsjF2H6lNe7jXEzY4Euv1/sFiV3j3URlVo5F0HI4u1iMRRCaPd+EDX8Ue1+Py/JWpJzLrUjgHyTpdRARZyIqW1k+1saE3eUWXe4E4TSJIKmZ821qB6W5HUki8Kj3xvnT+t1VNxOERvPiJu//x3HLPYxaMFxdfv0rJ26PEuBPHlSEQV+9FdRkMlXranou8q0gSW5vx5Tt/Zus25opao+FZk2WZYqLlcjoeL6dI92UxxWDA267PBJQsrwGBQXVuo9zQdVslz072onIULoluvQSf+zMFBUmgnCaRJDUzNU2Lsnjk7zh9z1ZDVomQajNnqJS1hQrLZthBTJJ+ceJTFa6h1jtMu8vVW5Jeq3MtYNE2u8T8UveEGvHmeu95vcet4kgSWjWSktLcbuVMbVvfp5JeYDyevwumQ7xyv/1oKAgv+xu5yq/cUnxNqQsb6a/jfvyRJAkCKdJ3F2audoy3Pkmbzjk9iAITcErW/eqv49dKTPs5YHq8n+XuSkoUW5Jo/uWEBVaPemIVqs952uOK1VNA55f4L3mjxoMuN1unE5nTZsKQpPn29XuYLBPS4nHe18417vaVaqa4a4kL0JdPuzS4HA41IBTEIRTJ4KkZk6v1/vVpHVuY8eo95DiilAHch9tZRbJG4RGl15m5Ydj+QAElsr0PHicuEvbA0rXmte/8v4fnTqssMZ9BAcHi5rjCr4tSUEWDy5zECar8jfMiVLSAIvWJKE5cjqdlJUpLc4btxZyJEn5fx1cBHdeFwsocwRV7W5+rvINktq1clHgDEfrqvj+j1Sa4ERrkiDUnXjaaOaqzpOg1ynzpuTrTLRLV06vNUDLoaKSxiqiIACwYOdBPBplvNGI1TDgyfPV937bIrM7VUlE0KuDlR4JNT/ci652XgaDwS+7ZaeOMtFHlWu+MFxHTolVPBgJzVLlWCSA//1eiLti0umE3W7MZmW8jWhF8jKZTOq9QJKgQ2cNbTKVe8Hx1gbyy2ziXiAIp0EESS1A9S53SvKGgKPemuYf1+5q6GIJAgBZVhuLD2XwyeGjABjtMv22HifpqiR1nQVfuNTfa2tFCggIwGAwnNWyNidVs1smt7cTcMx7L/h9c5poSRKaHVmW1a52sgzpCd4sjqPjld8lSSI4OLhRytcUaTQav3tjj3gbwRnee8Oqv1JFkCQIp0F38lWEpq5ahruKcUnunGBAuTGu33+MBxq6YMI5SZZldheV8vPRXJYdzWVLfkWtsFapkxmyDnrf0Vmt+Uw5KrPkT+XhJyrUxcjeIu33qTKZTOrDT1J7O5s2BQJKut+dmWXiwUhodsrLy9WxdP/9JoujnZRuYzHpMOEypXtuYGCgX0Y3QbkXVFaK9OpgY/Nm7/f/9swykQZcEE6DuMu0ALVluMvPjwByADgs1zAjpyDUE6fHw4bcAjUwSiur+eE85pjMpWsL6Pf2CPW11792I8tKAHX94EL0NdyVdDodAQEBZ6XszVnVDHeFBWFALgDpkg6Xy4XL5RIPlEKz4ZuwYX22Czopv3dI87aKiq521ZnNZvVv1z3eRn5eKyq//9P03kQuer2+EUspCM2L+OZsASrnSXC5lC5L8VFOAs1uUkoiCC+UKQiVOBZlwiPLaCQRLAn1o8jhZOWx4/ycmcvKY3kUO101rheXLtP7H+j9j0x8GgTd3wapYmxSabnMB0uU9Qw6D5MGFte4j9DQUL/xN4LCt4IkKtRNqRyJ1iXj1knkRHiTN4ggSWgO3G43paVKS3J+kZv0ZKUVSeOWuWVYGKB831kslkYrY1Pley8IC/TgCgjGUi5TbpHIiglAlmVsNpsIkgShDur0zXnppZf6LVutVl5++WWGDRumvuZyuZgyZQoul4uvv/5afX3Xrl08//zzpKWl0a1bN5555hliYmIAJevKCy+8wJo1awgKCuKee+5h9OjR6rY//vgjb7/9NmVlZQwdOpR//etf4kKvwmQyqV8uGg10j7Pz514L3dM1FITK2Mxa9uUVkdQqtHELKjRrqaVWlh3N5eejuWzILcBVQ9ZErUsmab8SFPXeAa2UhHZYQ8sJvSWai5+4SF33w2UyxeVKK9JlF5YQHlQ9Ta0kSaLmuBaVyRsqs1e276ihMEsiIxaOR+kpczqx2+2iFU5oFoqLi9X/y//3SRaFA5TX4/fJJF2nzKcWEhIiKkxqYDAY0Gg0eDzKlB9JndwcS9dyqIuHkhAth7OLCQ8PF1MoCEId1ClI+v3339XfDxw4wLRp07jooov81vniiy8IDAyksLBQfc3hcPDoo49y6623Mnr0aN555x3mzJnDwoULAXjnnXcoKipi6dKlHDp0iPvuu4+kpCTi4uI4ePAgCxYs4M0336R9+/Y89NBDvP/++9x+++1ncNgtj2+QBMrAzT/3Wgg4aoYe5QB8v3onSddc0lhFFJohjyyzNb9YDYx2F9U8XshSLnPeDiUw6rkbLBW97awx5bS6ox3JNyYR2CXQbxuPR+b1rzxU5o+5cWhhjfsW4w9qVzlgu3IsQlKsnV1ZBoh1IGsk1m3NIDo8/CR7EYSmwW9uJJ+htt19uu+KCpOaVWa6LS9Xvu97drBR9I8Fuij37N/+TqN7QnRjFlEQmp3TfvL4+eefGTRokF8NZV5eHt9++y333XcfCxYsUF/fvHkzZrOZ8ePHAzBz5kyGDx9OVlYWMTExLF26lPnz5xMYGEivXr0YOHAgv/zyCzNnzmTZsmWMGDGC5ORkAGbMmMHzzz9fa5DkcDhwOBz+B6nTNYmsWJU1PJX/1ieDweA3F1L3OOVLxZkTDCg3zT8P55yVzxZOzdk8//XJ6nazNruAZVm5LM86To7NUeN6UbkyvbcrgVHiIdB5wIMHR0c77a7tSKdJHTG18XYBqXrcy/+C/RlKgNS3czldY+3UNJ1XcHBwk/+bnYqzdf71er03eUOsjd17AgDlnG07XMi4i60t4u/X3DWX67+x2GzeNNV/77RypJvydzKXw53XxCHLMhaLBa1W2yz/hg1x/g0Ggzq/VI94GytXhgBKkLSnwIXVasXtdouWuEYgrv+m51TmXDytIEmWZZYvX85jjz3m9/obb7zBzTffXC2RwOHDh+nUqZO6bDabadeuHYcPHyYgIIC8vDy/9xMTE9m1a5e6bf/+/dX3OnfuTGZmJjabrdrnACxatEhtoao0ceJEJk2adDqHelakp6fX+z49Hg85OTnqckxQEdCG4wURwDEAUiSJ1NTUev9soW7Oxvk/U/lOF+sKy1lTWMafxeXYPNWjFckj0/FIRTe6f6BtFkiAU+PE3tVO1IR2tBoWgTZEyVSX7cyGE/x3e/mjVoBSyTK+byo5OXnV1tHr9X7JCVqC+j7/JSUlast9VEAxpfnhQAEAKQ6ZzMxM4NS+EISzryle/01Bfn6++oD/8XI7jorcLgm7HNg6FGPLKSYiIqLZf4edzfNfXl5OXp5yH40wSuQUdgGU6z8jwER2djZAk6g0PleJ67/pSEhIOOk6pxUkbdmyBZvN5he8/PPPP6SlpfHUU0+xefNmv/WtVmu1PvEBAQFYrVbKy8vRarV+AU9AQIDaZFx128DAQPX1moKkm2++mSlTpvgfZBNqSUpPTyc2NvasPbBUpk6NjISIIBcpBeG0zpPJi5DIbm2hXfv2aEUtUqNoiPN/qmRZ5kBJOcuO5rIs6zib8oqooREHg0Om+x4lMDpvJ4RW5FVwGBxoBhnocVN3Wg+LQmvR1rB17fanw5odyu9tIpxMGKhFp42qtl5UVFSLSf19ts5/eXk5GRkZALRqBQXWcCTPYWSNRG54AFFRUURHR1ebKkBoWE3p+m9qPB4PTqeTgIAAXG7IjssElBr3Ya08REVFodFo6NixY7NtBWmo73+t1nsvDmxjQZcHeRFwrK2FiMhIIiMjW8w9tTkR13/zdFpBUmUXuMpxAh6Ph3nz5jFr1qwab2Bms1mtIapUVlaG2WzGYrHgdrv9WobKysrU7DVVt60cd1PbF77BYGgSAdGJaDSas3KRWCwWdaZySYIeCTZWlwRyfrqWvAgPDpOG3bmF9IqOqPfPFk7d2Tr/J+PyePgrr4ilmTksO5rL4dKa580IKZI5v2J8Ube9YFTibuyBNswTQukxrTvh/cPQ6E7/GN78xo3SDgVThhSi11W/b2g0GkJDQ1vcF0p9n3+z2azed7VaaBWnx5wrkd0acqJNuGQZh8Mhkjc0EY11/TdlJSUlyLKMJEl8/lMRaZ2U+0NErszky5XAKDQ01C8AaK7O5vk3Go3o9Xo1023Pjg4Op+vJi3DiMEn8ve8Yo8LCxP+/RiSu/+alzkGS0+nk119/5dVXX1VfKysr4/+z997RcVxnmvdT1Tl3IwNEBggSIEhKJBUpkZJIikGi5KAsJ8kKs7Pf7NizM7Jmdu0dy7Ity3kcNVZykE3Zlm2JFkklSqSYcwIjCBJETh3QOVTd748LVHUDYACJ0ADe3zk4p6srdDWq69Z90/MeP34c//Iv/6JsEwwGsXz5crz55psoLy/HX//6V2X7cDiM5uZmlJeXw263IzMzE/X19aitrQUAnDx5EuXl5QCA8vJy1NfXK/ueOnUK06ZNGzKKNNUxGo2KkQTwprIfHbLC1GYCruKG5psfHcbcB24ZpzMkxhp/PIGN7T3Y0NqFd9u64YnFh9yusJXh6kPA/EMM5WcBsS+sFMkOI2N1Pqo/Uw37HNuIeHF9AYZfr+evTXoZ99w0tOy33W6nh8kloNFooNPplChyTUkM9a06dOTGkdAJ2HuiHVku1zifJUGcn2TBhi1ng2BlfJyprA9Ds5QbRiTYcGkkizjNKY3g3GYLcJUXALD1SCcWX3XxFCOCIDjDNpK2bt2qCCz0Y7VasW7dOmX50KFD+MlPfoJf/epXMBgMmD9/PsLhMNauXYvly5fjpZdeQk1NjSIBvmrVKrz44ov45je/iYaGBmzevBmvvvoqAGDFihV48skn8clPfhKFhYV4+eWXsXLlyiv82pOTgYbj7L6msrEuOwBuJO1pdI/1aRFjTEsooqjRbel0IzZEfZEoMcys59Giqw8Bud38fQaGWEkM5feWovL+CljKRz768PI6hkCET4Luut4Ph2XoQlZKCbl0jEajYiRVF0VxdqsJAF/edbSLJkZE2hKLxRAO86h2t5ehrVrtt/bwdTy93mg0TrraxNEixUgqj2DNX1wAvACA01HeN02WZXJAEeNCPB6H3++H3W6fEKq1wz7D9evXY/ny5SkeZUEQkJWVpSz3e4D739Pr9Xj++efxjW98A8899xxqamrwzDPPKNs/+eSTePbZZ7FixQrY7XY8/fTTKC0tBQBUVlbiS1/6Er785S8rfZIeffTRy/2+kxqj0ZjSM6XfSOp0ZwFoAwCc1U78dAUiFcYYDnv9WN/ahQ2tXTjo8Q+5nTHMMLeOR4vm1gEWXvYHSZCQmCVj5sMzUPKJYhhyR28yIkkMP0mW/V7iHXI7k8lEk6JhYDAY4Pfz615THMUbbzkA8AhdQ0hGLBZT0pkIIp1IjiK98IcedN7IXxedlnDNp4oBUBRpOCSXIpTmxOEO50CUGiBrBLRmcqdXJBKhhrzEmNHs7cWa9/fh4xOdKNWJ+Me7Zyvp9OnOsI2k73znOxfdZsGCBSmNZAFg1qxZWLNmzZDbG41GPPvss+c93urVq7F69erhnegURBAEGAwGRUbVZZMxLTOOs50uFHYxdGYL6Mg1IiHL0JIXaUITlWRs6XJjQwuPGLWGo0Nul9nDlejmHWKoPgVo+3q1xrVxCDfoMOtzNchfkQ+dfWw8Out2AGfa+W/vxpogKguGlhefCINnOpFsUFbkx9DTmwmAqyi1W41gjCEajVKaMpFWMMaUFHHGgNOCmg48282zH0RRhN1uH5fzm4gkjwWiCBRWaNDbJqClEOjM08Mf5ZE7MpKI0YAxhiNdHvxhwz7savHhrN0Ad3bfb3K6C+3H/fhHcH2BifCcT/9YFzEsjEajYiQBPJq0oceGvCYNOrNlxPUiDrR2YUFh7jieJXE5eKJxvNfejXUtndjY3oNAQhpyu7JGhnkHuXFU3NIvjwDETDEYb7Fh1udqkLU4CxrD2BvKP/qTjP4z+uxtviG30Wq11BV+mCQbPzotYMszQ/QAHhfQkWciI4lISwKBgCIysPeojHOzuZGkizE8tppHkWw2G6WGDQONRgO9Xq/0i5xTFsPhFgNaCqNgooBNe84hP5MaTBMjQzgh4aP6Zry5+RgO+MJoyjIhbNEARgAVg50bLYVWSJKEUCgESZLSXoyFjKRJxqC6pLIINuy1wdhuQn9d0psfHsGCz5KRNBFo8IeUNLod3V5IQ3Rb1cQZak/0yXQfBjK96rqYM4qcldmY+dmZcC1wQtCMX7pV3RmGjfv45xdnx7B4dnDI7RwOB6WFDROtVgutVqtMOGeWxdDYqoHHJSFiFnGs2YOMDJoYEelFcqrd79d1I3g7f11+PI78a/gEi1Ltho/JZFKNpPIIDh22AeDZBnsbe/GJJEcqQQyHzkgUb+09gXf3NeK4zNCWbYSkFQCnBnBaB22vSTCUnBPgOmeA1OaAVjJCuEEGYwyBQCDt728ykiYZA42k2lI+MEY6Heg3kva1eMf4rIhLRZIZ9rp9WN8nvHCyd2hDwhKQMe+wgHmHeB8jU1K2XawgipJPFaPi/grYqq1pY3D8+M+qgfeZ23wYyjksCELaD5rpisFgUIyk6qIo2g+YgFm8gHvbgRbMr5o2nqdHECkkEgmlH2I0LqAzXxVsuMnIBzS9Xk/9vS4Do9GoGKBzyiLwdGcC4Oo8jSKXCE8kEhOicJ4YP2TGcNTTi79srcOW0104bdTCk9HXYid36KwEa4Ch9IwIS5MZoXYXmn252K+1Qxb4A39WSQSS3ARR5NL/6f68pztkkqHX6yGKImSZK4bNKolAEBg6PdkAWgEA5/R02dOJYELCpo4erG/twrut3eiKDl2nk9MhY8EhbhhVnQbEvqiSDBnSdBmVD1ai9FPFMBWl16SCMYYddcDv3mUABFiMEj61cGjZb4vFAp1ON7YnOEkwGAxKT7nq4ijeec8GgBtJJ71xRKNREm8g0gafz6eIDP3pnRjOVscBCLD1Mnzm7ioAFEW6XJKdpVl2CRGdC4YIQ9QooC2XizeEw2FKayZSCCUkbG/txF8+Poq93QGccxoQMfWlwxUMXcOW385QcFaErsWG3s4s1Idz8LHOzJt1AjBZZNxSHcLiOUEsrg0hL0N1hkyElDuaLU8yBEGA0WhUPHRWI0N5Xgxnmp0o7WDoyBXQkWtCXJahozzvcaM9HMU7fWl0mzrdiEiDZbAFmaHyNMP8w8C8Q0BBBwDwSYWkkSBcpUH1Z2ai4I586DPTr4Fyb5DhtfeAF95iOFgP9NcifWphL6wmkv0eaZInRjMKo+jxZKJf1bLNaIAsy4jH42nfbJuY/DDGUnsjHfNAKuLjw/QTIRhv1kEQBBJsuEwMBkOK0u2M6TI6mzU4UynDm6FFc08AGRkRMpKmOG3hCN471YR1u+tRF0mgLcMAWSMAOgD5g40iXZyhtBHIaQRYWyY6u3JxUsjCUW3SM0Xfl04/J4jFs0O4pioMg25wmQDAx4FgMJjW9zkZSZOQZCMJ4E1lT7fZkdusRUeuhIROwK4zbVhYQek3Y0m9P4Tftrqx43Qn9rqHjqToIhLmHhUw7zBw1RHAHlDXJfRxWG6yoPqzM5GzJBtaS3revntPMLzwFsPv3weC4dR1RdkxPLbcM+R+er2eFJeugGRVK7OBQXBaYQkyBC0COnL5/zUSiZCRRIw74XBY6evV5taip0qNnn9yBv99WiwWSge7TPqdpf39p+aUR7D9uBGo5POCjbvOoaooZzxPkRhjJJnhqM+Ptw/W48PjrTilEeB19D0LbFr+NwC7n6HitIyMZgapMxP1PaU4aHAhKvZFfvqSPrQahgXTw1g8O4jFc4Ioy43jYgkLoihOiMwRGoEmIUOJN/xtux2GNhP602/e2lxHRtIYsqmjB5/etA9DxU9s3gSuOaTBvEMMNScE6NVoNOLWGDJvz8DMh2ciY6ELoi49o3/BMMMfPuBRoz3HB6+fNz2Oexb2YOWCAEyGob1KTqeTUsGuAJ1Ol5JqW1Uuo71Fg4YqGX6HBi2eIDIyhpaKJ4ixJDmK9PLrHjTfyH+zeS0ylq6qAECpdldKipFUGsGmTQ4A3Eg60h1BJBKh9NtJTCCewO5uD97cdRw7Wr1otOgQNfYZNxlD9yCc1spQ2hCHqz0B1puNg/5KbBIzIPXVEyEpkz/bkcCiWm4U3VgdPm92SDKiKMJqtcJqtcJisUwI1UoykiYhg4ykvqaykS4n+o2kg+1DNxwlRocfHjubYiAVNMVx7SEt5h1iKG0SlfoiAIhnx1B49zRU3FcOx9UOCGL6PsQOnWZ44U2G370HDNSYsJqAz9wOPH4nYBPPKZP3oaDUmiunv09a/8SopjiC3lMGoIovf7z3HKoKyXtMjC+SJCmNj2UZaIirSmuzWrnxpNVqYbFYxuX8JgvJ84Cakii6PGpT+RazEbLMm0xT0+7JQXMogs3NHXh7zykc9EfQ5tCD9c8dMgeLLOhjDOVngcIzIWS4o9AlcnFYMxNvu7PA+pq9I6lUSBAYZpdGlWhRTVF0SPGlgWg0mhTDaKIZ5WQkTUJ0Ol2qHHBhDDoNQ7svC4LcBCYKaDKld4hzMnGiN4DNnW4AQE4nw7//mCHbrUF/fREASKUJlN9XjpJPFsFaNVhGM50IRxn+9CHwyzcZttcNXj+vCnjyLgEPLgVsZgFerxcdHRf2Mtnt9rQu3pwoJHuPq4ui2LLNBoAv17WHU3qoEcR40Nvbq9TKbD+iRdts/vsUZIYvLCkAQG0ARoJkVUCzgUGfbYHDC/icQGuBGTJjiEQiZCRNQBKyjDpfAO/XN+G9I+dwnDH0Wvtz3wC4Bl9Th4+h6jRD3rle5IVCsNgLcMIxC+93ZaHTO7QpYDNJuGlWCItnB3FzbQiZ9qF7Mw5Eq9UqhpHZbJ7Q9zIZSZMUo9GIQIBHjfQ6hqrCKOrPOFHZAbTmA505RkQlGQZN+oc7JzovnmpSXt++iSHbDciCDLFWxIwHp2Pa6gIYC9K/yefxRl5r9OsNgGdAINJsBB5cAvzD3QIWzEwdEL1e70WPTYINI0PyhKe6OAqvOwNAJwCgRauDJEkk/UuMK8mpdn9e3w3PCv667GQclfdnA6BUu5FAp9NBo9FAkvjEdk5lAo1NWvicCUTMIg42dMHldNL/egLQG4tjd48P6+tOY+vZbpwxahDT9zkVh6hNFmSGwlagokFCXqsPxZoIsirycSazBh95XPhDuxFx99Bzv8r8qCK6cHVFGLpLfFT0N4G3Wq0wmUwT2jBKhp6Uk5RkIwngKXd1jUZkN2vRmi9B0grYcuoclswsHb+TnAL0xhN47XQzAMAQYViwM4TZP7sGeStyoXOmfzQvGmP4y2Zea7TpwOD1tWXcMPrM7YDDmjoo9itYRaMXroMxGo2DUkSJyyP5/+iyyohoHdDFGOJ6AZ1ZqniD1Zre0UpichKJRJTxIBAW4c5UI5vXSfx5ZTab076Ye6JgNBqVtgBzSiNo224GZnPRoC0H23B9TdF4nh4xBIwxNIUi2NbRg3WHTmNvTwBtVp0iqQ37YOEdQ5Sh4ixQejqGPI8PVU4B5TcVonFRCT4+bsUvD1nQuG1owR6DTsb1M7nowqLZQRRmJYbcbih0Op1iGBmNxkljGCVDRtIkZXBdUhRrNgH6djMAHgZY9/FxMpJGmTVnW9E/DbhpF6CZG8a0+wrSvmCxvpnhv9cyvLIO6PalrjPogftv5Sl1N9Ri0MAoyzJ8Ph88Ho+iYHUhKIo0cuj1+hTp37IKoKdVxLlShp5sHbyhKLKiUTKSiHEhOYr0lw+Axtlc1c4YZvjC6pkAKIo0kphMJtVIKo/gL2udALiRdDLIEIvFIMty2j+PJjNxWcZhrx+bmzvwTl0jjsYS8JuSpua2wcaNy8N7JRaeDaIwHMSsChtmrqpA8E473turw58OWbDtj2aEokNf14KMeF+0KIjrZoTPK6Y0FHq9PsUwmuyQkTRJGfjjre0Tbwh3OdFvJB3qHlBpT4woMmP4xdEGZXnJJglX/XTuOJ7RhYknGN7cwqNG7+8ZvH5GMfAPdwn43Aogwz7YY5RIJOD1euH1epUUj4uh0WioV8cI0i/e0F97VF0cxYE2PVDKvfdb9jehMCdzPE+RmKLIsozeXrX1wdZDbkTv4K+nnwjCfr2RxoMRJnkeUJEfQ08gC4LcCCYKaHWawPrqkqj1wtjhjcWx19OLDxpasOl0Gxo0IuK6JKEEU+q0XJAZiluA6acZ8pt7USpEMfu6fMx+tBZChhZbDkbx3l49/t9vzDh6bmijRSMyXF0Zxi2zeX1RZUHsohLdyRgMBsUwmmo1bGQkTVI0Gg30ej1iMe6pq8iPwaSX0ebLgiCfAxMFNJsppWE02dThRmOUR1KqTzDYTF6Yi2eO81kN5mwbw6/+zvDy20C7O3WdTgt8ejFPqVs0d3DUCABisRjcbndKQfal4nA4yIs5wiQbSTXFURw4aAXAjaSD5/z45EXSHwliNPD7/YrCZUObDv5K1Um3Io+PK3a7fVKm7IwXyUaSRgRyS/Uwdwhozwc6CowIJyQyksaIn+0/jp8dbECntV590zh4Cm4MM1SeASoaEsjt9GG6TUDt8nLM/eZcCGagqS2AddsT+MnLBnx8xAxPwDXk57msCSyqDWHxnCAW1oTgsFxcojvlPIxGWK1W2Gy2Kd1bj4ykSYzRaFSMJK2GT5gOnnSiug1ongZ05fBB0qQlVbHR4IUTZ5XXyzYxXPN/FozfyQwgkWBYt4Mr1G3YBQy0bSqm8XS6L6wEsp1DT1rC4TDcbndK7dtwodSakSdFvKEoCr/bBaAHAHBOFhGPxyFJEqkJEmNKcqrd794M4+x1CQACMrpl3LW0CgCNByPNQGfpnPIojrbo0Z4f43XJ+5vwKZdzfE9yCnCotRv/eaoZzDo4CpPVwzC9ASg5HUW+rxczio2o/WQNqp6ugtaoQSgUxu6jYXzttwF8eNCI/aedkOShn8k1xRHc0pdGV1saxXB1uUwmk2IYUV0gh4ykSYzRaExJb5hdFsHeehOymnVonpaArBHw0dEzWDmnchzPcnLSGAjjvfYeQBCQ4WaoOO1BxZ3lOHfu3LieV3Mnw0tvAy/+naG5K3WdRgN84iYeNbptHiAO0Z+JMYZAIACPx6NITV8uU91DNVoke4/zMxLwxXIgSgyyRkCni8sCR6NR8h4TY0YsFlPGi4QENPr9Sg+XmkYvtJpSGI3GKZfKMxYkO0vnlEdwbJ0VAE8Z2HXag1U3UluA0ebpP24FK+DjbWErQ81xoLAxiGmxAKZflYmr7puLadcUQBB5PanbG8Gajb1Yv1PARwdNaHU7hzyu2SBjYU2fRPfsIHKdl5bm3o8gCCmGEameDob+I5OY8zWV1bab0V+8uX7rCTKSRoGXTzeB9aWNLPmYoeTz08YtjUSSGN7dzWuN1m7jDRyTKckDHr9TwKOrgPysoc+xv57A4/EoD9wrQa/XIyeHGpuOBskTTUEACsq18HUIaCsAOvMMiFCKDTHGJEeRNh8yoqdWjT7ffw3Jfo8myc7SOaVR/Hd3JvqNpLOyBvF4nNoCjCLN/iB2Z3PnlCnM8PSpMFb922I4K5zKNowxHDsTwd82x/Dubg12HDciGh/aYVCaG8Pi2UHcMieI+ZUR6HXDS3EXBAFms1npY0TX/cLQf2cSYzAYUpSuZvcVbwe7neg3kuo85EUaaUIJCa+caAQAaOMM128L48b/XjLm59Hew/DyOuBXaxnOtqeuE0Xgzht4St3yawGNZmjjSJIkeDyeYYkxXAhRFOF0OpGZmUm1SKOEKIopKTbVxTEcb9OhrSAOWSNgZ10LcjKGzmMniJGGMZaS0fC3dV503MmfSYVn4ljwiWKIokiCDaNEsrM0LyOBALKgizPEdQLasqktwGjz1G8/hJTFDZ7rtvlx/88/AY1Gg1hcxgd7oli7JYF39+hwus0AYLBhpNPKuKaqT3RhThAlORdXjB2IIAiwWCyKYUSp1pcOGUmTmP7JUn9fiqLsOBwWCW2eHGikRkgaAc1DyEsSV8ZfzrWj3096/V7AvoBBa9EqRcujiSwzfLif1xr97WOe2pJMQRbw+J3AF+8QUJR7/shWLBaDx+OBz+cbthjDUGi1WrhcLjgcDhqgx4DkFJvq4ihObbQA8AIA9p504/ZrSbyBGBuCwSASCd57xe3XIOBSo0jz/TzCRBO30aO/f03/OF45XUB3s4jGMoaeHD26/GFkkpE0KvhicXzY1+xVG2e42SLiv9+MYv0O4KODOvjDQxtGOc6EEi26fmYIFuPwn8GiKKYYRuSUvDzISJrkGI1GxUgSBKC2JIIdARtqWwScKwa6sw0IxBOwXmpbZeKCMMbws7rTyvKSjyQsef3WUf/cbi/Dq+t5Sl19S+o6QQCWX8vlu++4AdBqz28chcNheDwe+P3+ETkvg8GAjIwM2Gw2Uq0aQ5JT7mqKI/iD24l+I+lMBNQfhRgzUnojfahD85wQAD5p/NxynupNqXajx8C2AHPKI9jVYATKeI3YBzsbUZJLbQFGg6/+4SNETdz4n7eb4V/33gV5z+DnoCAwzC2P4JbZXHRhZtHwJLr7EUVRMYosFguN7yMAzYwnOSaTKeUhNbs0iq1HLchs0eFccRxMFPDe/lP45LXV43iWk4edPT6cCHOjtOIMQ6bogXO6c1Q+izGGjw8Cv3yL4Y1NQGxAFD43A3h0Fa83Kis4/4jLGEMwGITb7b5iMYZ+zGYzMjIyYLFYRuR4xPBINpJKc+NwBzIBnAUAdNiNYIwhGo3CZDKNzwkSk5ZEIoFwOKz89U/OGQN27HPD/0m+XeWJEAoWlECv11N93ChjMplUI6k0gm3bHQD4WH+oPYRIJALGGDmyRpCoJONv8Thg0kGQGcL7KyAn/X8dZgk31YZwy+wgbpoVhMt2eZkmGo0mxTCiaziykJE0yRkk3lDGB0pNh5p+8+7OejKSRogU2e+PGK75j5GX/fb4GX6zgUeNjjUOXr9kPq81uvsmQK+7sHHU29sLt9s9ImIMgiDAZrPB5XJNiU7c6czA/ijOIiO03UBPFtCRZ4JERhIxQvQr14VCIYTDYcTjQ9dM1J0zIFbepiwvtvAUPIoijT7J40FtaRQ9PZkAeKFqs8EAWZYRj8dJbXQE+e7a7QjYuYz27EPANqkEEIF7b/biEzf4Mbc8gsvtvtJvGNlsNpjNZjKMRhEykiY5er0eoigq9TC1fQp3wS4n+o2kY/4rnyATQHs4irXNnYAgwO5nmHHCg6pP3j4ix2aMYUcdN4xe3whEBlyyTAfwyErgidUCphddeMCUJAlerxder1epFbgSRFGEw+GAy+Wi3gppgkajgVarVa5vdUkMDa1a9GQlEDMKOHymGxlO5/ieJDHhYIwhEomkRIouVdDlj2/LOHttDIAAq5/hwTuqIQgC7Hb76J40kWIkWU0yRIcV1gBDwCqgNd8MxhjC4TAZSSOEzBh+0+oB+gQbDLunIS5qkO+K4GsPdUJ3gZT386HVahXDyGQykWE0RpCRNMnpz0fuT6PKdUrIcSbQ3JkNbfwMEjoBLXbqTTES/Pp0sxJOv2ULUPxw3hUPZL1Bht+9y42jQ6cHr180l0eNPrUIMBou/FnxeFwRYxgJEQmtVgun0wmn00lF12mI0WhUGv1WF0XRvNsEgNea7TjUhutrisbx7IiJgCRJg4yiSxVykWSgvlWP/aeNOHDahA53A+J9ke3qeg8MN5XAYrGQBPEYoNPpoNFoFIN2VpWEpnNa1NdICNo0ON7sUYR1iCvnlc2H0N1nIE0/xbA1VAlogPtvah5W9Ein0ymGUb8ABzG20Og0BTAajSm1JrNLI/jQY8XcFgFnS4GeHAN80RgcBvIiXS4xScZ/H2sAAIgSw8ItYdy07/IFG/aeYPjlmwx/+AAIDigTclqBz68AnrhLQE3pxQfNSCQCt9uNQCAwIkp1er0eGRkZsNvtNGinMQaDQTWSiqP4+3oH+o2kU34J0WiU6hCIFOLxeIpB1C/6cyl4/CIONJhwoMGIgw1GHDpjRCgqwirFUKLtgXinW9n2rhk8ekST8rFBEAQYjUYEg0EAvF9S1z4TUMPHh837mnH19ILxPMVJxX8daATyeSpz1vYsBDU6ZNgSWDWvE0DWBffV6/UphhExvpCRNAUYqqnsBwescLXocLaU54+v230cD940ZzxOb1KwtqUTnj77Y/5BwDU7AZ1teKlngRDDmo1cvnvvicHrr5/FFeruvRUwGy8+se0XYwiFQsM6j/NhNpvhcrmoOHSCkHzfV02LodvrAtAMAGg3G8AYQywWSxF5IKYO/dc/2Sg6Xz3RQBIScLLFgAOnuUF0oMGIxk49bIkoig09yMxowfUVfgTzI2grlNFqU8eLnLY4liwvh8FgIGGXMSTFSCqP4O8bXEBfs4pjvdxpQoqXV876ww1o6jOQprUy7OiZAeiAzy3xwqAbOoPDYDAohhGNx+kFGUlTgIHF2bPLuHdQ7LAC8AAAPthzhoykK+DndfXK66UfyVjy69sued9DpxleeJPht+8C/gH2jM0MfOZ2nlI3t/Lihkm/GIPH4xmWF/h8CIIAq9WKjIwM8mpNMJIftgYdgy7LApufwW8T0JFrUhTu6KE8NeivJ+oXWIhEIpdcT9Tdq+HG0GluEB05a4QuHEeJsQvOzA6U5fqRc1UErYUyWs0CWlP2Th23bvT2QqvVIi/vytORiUsnefyeXhBFty8TQBMAoNVuIsXLEeIb7x0CCrnxX7bFjiM6EyxGCQ/e4kVEbREGg8EAm80Gm81GtWBpDBlJU4CB+ci1JVy8wd/tQr+RdCJ05QX8U5VDnl7s9/OcuMJWhryYG64ZrgvuE44y/HEjrzXaXjd4/fwZwD/cLeCB2wCr+eITCUmS4PP54PF4RkyMwW63w+Vy0QA+QRl4388sk9DSooF/poygTYOznX5kZESocH6SIknSICnuS0m3jSeA483JUSITAh0SiiydcGY0wZQTQPWSKFqnyWg2Cn2xyX4Gj1UWv4TczhAK43HcUObEI/+4BBkuF9UijTHJRpJOC2QWm6DvArqygfYCE+KyjEgkQkbSFbCvuRPH+wykDDfD/paZgA54YLEPdrOsGEmiKKKoqIhqeScANEpNEZJD7Q6LjJKcGJqas6GLnUZcL6DVSVGCy+W/T6o63Ms+Yljw7/POu219qxY/egv4zTsM3kDqOrMReGgpjxotmHlpHtaRFmPQaDRwuVwkxjBJMBgMSrrlrOIo3HUmYCYfB7bsb8assrzxPD1iBOmvJ+qPFF2qrH+nV4MDDVxc4WCDEU2nZeSZu2HPaIWQE0Dm9THECmQ06y9uENm9CW4QSXHU5pux7PpKVOVlwWw2w2Qy0Zgyjmi1Wuh0OiWlsrY8ipNNOnRlxxHXC9hxuAV3kOLlFfHvf9oOTOM9v2q2mrBWZ4dOK+NzS70p29HzdeJARtIUIdlIAnivhHUdVsxrFtBQDniy9OgJR5BpImNpOHiicfzpTBsgCjCHGGoPezHznsGy314/w4PPABt2Thu0bnY5jxo9vAxwWC/NOIpGo3C73fD7/SMmxuByuWC32yknfRJhNBoVI6m6OIKNm2wA+DhwrCsyIimZxNjTnxqVHCm6lAhyLAEcO2fAgQYTDp424PRxCUbBC1tmB1hOANFZMcjLGJo0A8ehweOSqzuO3O4QilgCs6dZccuCEpRlZ8BkMsFkMpEaVxpiNBoVI2lueQSn31f7Je443oPbFoxMM/GpSKPPj325PApnDjGcPD0T0AKfuMGPXKeE/se0IAhwuS6caUKkD2QkTRGGEm94e5cNzhY9UM49jmu3HcUXlpw/CkIM5rdnWhAX+URg0Xag+L7sIScG/+dXDBt2qstGPXD/bTxqdP0sXPJkIhgMwuPxpBi8V4LJZEJGRgaJMUxSkuuNqoti8Lgz0N9EslWvhyRJiMfj1N8qzZH7UqGSjaJLiRy3u7V9USI9jh+JIxoJwJzRDTk3CG9JDF3XMjDx4gZRZmcMuT0hFEPCnCIbFs0rQt4Cq2IQmUwm6PV6GkPSHJPJBL+fK1zOKY3g110Z6DeSTicExONxSJJEUY7L4KnfboKUw8fbq7bq8LY2E4LA8OjtnpTtbDYbpZpOIOhKTRGGMpIAQOiwAuDSrB8dPEdG0jCQZIZfHFEFG27eHMaiXasGbdfew/DSOv7abJDxzcdFfG6FgAz7pU0oGGPw+/1wu90j5vnvF2Og/PPJTbKRZDXJkMw2GCMMEaOAjmyeFhKJRMhISjMSicQgKe6LRYyjcQF1jQYcPK3HwQMReHpD0Dh6IeUE4Z0WR+c9Q+2VOgYJMkN2Rwy57hBKRBlXlTpw01WFcF5lgMFgSDGKaKI38UieB0zLSsAbz4VGOg1JI6AtUx0PSHVweHijMWy28zFUF2doP8r7It0+L4CyvFTFyIyMjPE4ReIyoVFuijAwH7m6OApRYPD1uNBvJJ2KXJrSEcF5r70bHTKfuMypY8icHh9S9vuHf2SI9pUHPHybH//rHgfEQd7bwciyrIgxXKo074UQBAEOh4PEGKYQer0eoigqUYeKCobOVhFnyxm8mVp0+cPIjEZhs9nG+UynNgOluC9WT8QY0OrWYv8pA3bv8aOtJ4yENY5Ebhg9BXG4V1z8MzUJhpz2KHI9YZRoZcwrd2Lh1YWwXK2DKIowGo0pRhGl4U58DAYDBEHo648GlE7XwN0iormYoStXD28oisxwmIykYfIfr32IqJXfH1fvEvGuyHtOPbYiNYpkNpvp2TvBICNpCpGcj2w2MFQWxHDubDYMkXpEjQJaMyiqMBx+diRV9vu2nw9uHuvxM/z8b/y1Xgd8cYUfwIUbKCYSCUWM4VIlei+ERqOB0+mE0+kk7+8UQxAEGAwGpZl0dVEUwUYDUM4jyR/vbUJp3oWbGxIjS78Ud7LIwsXu80hMwKHTOny8rRdnOsMImyREc2PoLkjAd/PFP1MXY8hpiyLPG0KpnmHB9AxcP7cQxvk8rUqj0cBkMikCC/2TaWJyIYoiDAYDIhF+/88tj2BvswEojoCJAj7ccw7TsinSMRwikoS/yzIAEYLMEDxQDiYIuLE6hNmlqZkf5IyaeAxrxnTzzamjcTgcxne+8x0sWbIEa9euxR/+8Ac0NzfD5XLhs5/9LO65R43v19XV4dlnn8W5c+cwa9YsfP3rX0d+fj4AHt795je/iU2bNsFms+Gf/umfsGKF6gpbu3YtfvGLXyAYDOK2227Df/zHf1B6yGVgNBqVfGSAp9y90WzHNc0C6isBX4YObYEg8q3kRboYp3qD2NonT5fTxVDk60HWrMxB2/30L0Cgrxb2kZVAjvP8k6FoNAqPx4Pe3t4REWPQ6XRwuVxwOBzkBZ7CJBtJNcVR7NpjBcAnSUdaAyTeMAb0q1B2dXVdUpTobKuADR95cLItAr8RCOZI6C6QEFhw8c/SRxhyW2PI9wVQZgSumZmJa+YVQp9UZ6LX6wfVExFTA6PRqBhJs0sj2LPXhv7xYP85P+7pW0dcGs/9bRsCdj6VnntAwMdSCSACj690p2xnNptHxOlJjC3DMpI+/vhj5fWpU6fwhS98Addffz0Ani7w7//+76iurkZjYyP+x//4HygvL8e8efMQi8Xw1FNP4YknnsCKFSvwwgsv4Gtf+xp+9atfAQBeeOEF+Hw+rFu3DqdPn8Y///M/o7q6GiUlJaivr8cPf/hD/PSnP0VxcTH+9//+33jppZfwD//wDyP4b5gaDKpLKovgja0OOFoMQCWfKL318RE8ufK68Ti9CUWy7PfSTQwLvnLVoG0CIYYf/YkbOxoN8K8PABgiay4UCsHtdo+YGIPRaERGRgasVit5g4mU+766OAqfxwWgGwDQBC0SiQQSiQRFGUeJ7u5uuN1uRXzBbren3Jee3gTeeq8HdU0xuA0C/DlAV4GMcC2A2gsf2xRiyGmJIa83hEoLw7WzsjFvQR60SQZRfzSR6okIIHU8mF0WQU93FoAuAMA5HRdzicViZDhfApLM8FqHD8jitZ+aPdOQEEXUlkRw/cxUpcCMjAx0dXWNx2kSV8Blj5Tr16/H4sWLldzVT3/608q6iooKXHvttTh69CjmzZuHvXv3wmQy4e677wYAPP7441i6dCna2tqQn5+PdevW4fvf/z6sVivmzp2LRYsW4d1338Xjjz+ODRs2YNmyZaipqQEAPPbYY3j22WfJSLoM+iVZ+6MU/aFg1mkFwF9/XNeCJ1eO1xlODPzxBF6rbwZEAfoYw1X7fahZM1j2+1d/B9y9/PWDS4DyAqCxz7ZijCEQCMDtditevSvFarXC5XLBbDaPyPGIyUGyeEO2Q0KAZUGTYJC0AjoyeYptNBqlifMo4Pf70dPToyyHwjH86e0m7G+Mo1unhS9bQGcBEK0EUAkA548gW/0MOa0J5PSGMcMm4YY5uZgzJ3eQI0QUxRSDyGg0UiSZUEg2kpwWGZLJAVOYIWwS0JarijeQkXRxXvzoAHr6DKSqkwxbw1yw4fGVHiTflv2prMTE47KeiowxvPPOO3j66aeHXC9JEurq6rBqFVf6amhoQGVlpbLeZDKhsLAQDQ0NsFgs6OnpSVlfVVWFuro6Zd8bbrhBWTd9+nS0tLQgEokMiowAPKI1MJ1Bq9WmxQ3fXzw9Ek0/LxetVqv8f6YXRKDXyvD2ZADgD/L6OBvX85sIvH62FZE+4YWFO4Giu5xgYGCyOsGJxoDvrVH3eepBft1lWYbb7YbP5xsxMQabzQaXy6VMhun6pSfjdf/rdLqU9M3icg08bQJaioDuHD0CsRhCoRApHY4wjDG0t7eDMQZfbwT/660OnKkWkCgSgKILp4s7PAxZbRKyeqOY4ZCw6OpsVM8eur2AKIowm82K0MJQ9UQ0Jow/6fD8B/gcQBAE5TyqqyS0ntOgYYaMXpcWZzp9cDgcsFqt43qe6Q5jDD893ATk83EzY3sOwhotSnNjWHKVH8kZ806nM22uP6FyKc6jyzKS9u3bh0gkkmK8JPOLX/wC2dnZyvrwEGopFotFKVzVaDQpBo/FYlEaIA7ct//GDYfDQxpJr7zyipLG18+9996L++677zK+6ejQ1NQ0bp89sMdOZV4eGhuyYAqf5J6kTBMaGxsvcISpDWMMP9p3ChD4zbVocwTlv60e9D9b85EVrd28Run2eSGYWDuOHAkgEAigpaXlis9DFEVYLBbYbDZEo1G0t7df8TGJsWE87v9khcSSTBPkNj1aimJgooB3t5zAsmuiCAQCY35ek5lQKKREkb73uhenFg9thGZ0AxltMpzeKEpNUSycY0BZtROoBgD12defqqPT6aDX62EwcFnufsdXLBZDb2/vKH8r4koZz+d/P16vV8lgKMvSwHvWBMzg84J1m0/BqZOVOkZiaD441YqWPgOpsJlhh7sK0AH33tCInu5OZbv++7XfcZEO15/glJWVXXSbyzKS+lPghkrP+POf/4yNGzfi5ZdfVn4UJpNpUL1FMBhUQpCSJKVEhoLBoBKaHLhv/4P8fF7PRx55BA8//HDql0yjSFJTUxOKiorGLf3B4XCgs1O9ga+eLuG1JhuuOyfg5AzA79QBDhdKnPZxOb90Z3OnG619BtLMkwy5hWFU1FakbJNIAC+9oy7/6/0JSJIEvV4PWZaRlZV12ddfq9WSGMMEZTzvf71er4i2LJipwZl3LAB4RLm+K4H7XC6UlJSM6TlNdpqamqDRaCBJEk5NV8UxKg8BLq+EUiuwcqETM29znvcYQ9UTUaPPiUk6PP/7MZvN8Hi4PPXCOTrs2OUAwOdZZ8IiXC4XiouLqab1Arz4l4NAEXdiFG9z4rDOiGxHAp9ZBuh1Ocp2eXl5sNvtaXX9iUtn2EZSPB7HBx98gB/84AeD1r377rtKJMfpdCrvl5eX469//auyHA6H0dzcjPLyctjtdmRmZqK+vh61tbxK9eTJkygvL1f2ra9XpZZPnTqFadOmDRlFAvhkIB0MogshiuK43SRmszll4JtdGgUEAbY2AzCDP8jXfnwE/+vum8bl/NKdn9edVl4v28Sw5AdLBl3LNzYznG7lsfbFc+MozugAoIZ2RVEc9sPHYDAgIyMDNpuNHlwTnPG4/81ms+JgqimOIeh2AuCTpMa4gEQiAcYYTcBHiGg0ikgkAkEQ8Ms1Z9Exmz+TCs8I+PXDheftk9afVUH1RJOX8Xz+92OxWOD1egEA1UUxdHuzALQCAFos3AEdj8fPO8+a6uxqbMfJPgMps4dhX8sMQAd8YZkHBj3Q36RZp9PB4XCkPLPT4foTl86wr9TWrVsVgYVkduzYge9+97v40Y9+hIKCgpR18+fPRzgcxtq1axGLxfDSSy+hpqZGkQBftWoVXnzxRQSDQRw+fBibN2/GsmXLAAArVqzA+++/j+PHjyMQCODll1/GypWkLHC5DMxXn13GQ+5yh6rfv+1Ex5if10SgKRjGB90+AIDLy1Da1Y3s2ak9ZmSZ4Vu/VZORv3h7J64Ei8WCoqIilJaWDlLFIohLJVm8oTArDk84A0JfDV27QxVvIEaG/gkoAOwQ1fqjsrOxlIJunU4Hu92O3NxclJaWoqKiAoWFhcjMzITZbKbJFDEqJBs/eh2DLd8CV1/f07YCEyTGKN3uAvyfN3Yqr2dusaBNZ4PdLOH+Ranpri6Xi57ZE5xhR5LWr1+P5cuXD7rwr7zyCnp7e/Hoo48q761cuRL/8R//Ab1ej+effx7f+MY38Nxzz6GmpgbPPPOMst2TTz6JZ599FitWrIDdbsfTTz+N0tJSAEBlZSW+9KUv4ctf/rLSJyn5M4jhIQgCjEajMgCW5cZhMUrw9GSiXxa4QaKbeiheOnUOrO93f9tmhvn/e86gbd7eDhw5w1/Pr4rjmumhYX9OvxhDRkZGyuSWIC6X5N+RKALZJToYuwR05gJdeUbEZRnRaJQUmEYAWZaV2qCPtregoZq/7/AAj67kBqkgCCgtLU37rAdicqLVaqHVcvl/AKitiOH0OS08rgSiJhF7T7RhqePCTc+nKg2eXuzvq0WyBhhONvAo0kO3+GA1qaIMGo0GDvofTniGbSR95zvfGfL9F1544YL7zZo1C2vWrBlyndFoxLPPPnvefVevXo3Vq1df+kkSFyTZSBJFYFZJFKeOZMISZAhaBLRnmyDLMnkxk4hIEl4+fhYQRWgSDPP3+DD7N6my34wxfDMpivTY7V0YjhNJFEU4nU64XC6SYyZGFI1GA51Op4g31JTEcLJNh87cOOJ6AXtPtCPL5Rrns5wc9Pb2KgpWfzgcAbuOR5LKDwGuap7OaLfbyUAixhWTyaTUKc4tj+DcJgswl2dKbDvShZvmlI7j2aUvX/ntJsh5PBI3Z5seb+syYNDJ+OwSb8p2LpeL5lCTALqCU5BBTWVLI/DoTJjWxH8OAbsWDW7vOJxZ+vLXpg4E+ga86/YCpSsdEAbUFXy0H9h5lL+uLk5g8exLaw6r1WqRnZ2N8vJyZGdnk4FEjAoDm8rqOlXxm93HukasX9dUpz/Vrq3dj5NzuIGkiwEP3+BUtkmu2SWI8SClqWxpBIGuDGX5VIQhFotBkqTxOLW0xR2J4mMXd27oYgwtx6YDAD59Uy8y7er/qt/hSUx8yEiaggwyksp4LYKtVU3J+euHh8f0nNIZxhh+vP+EsnzLpihu/X+3DNruW79LiiIt78bFnEgGgwH5+fkoLy9HRkYGFc0To0pyyl1NcRShbjUV5HRQRiwWS+mnRAyfcDis1Hb96K+tiPTZoRUHRdy4gNd9Go1GKognxp3k32BpbhzucKZSp9jqUpvKEir//tsPETPwB/u8nRocEPOgERkeXeZJ2c7pdNLzfJJARtIURKfTpdzAs0v5QCh1quINu+q7xvy80pU9bh9Oxnnudlkjw7TsEAzO1FqhXUcZ3t/DX5fmJrB8vv+CxzSbzSTGQIwpyZOi8rwY3L2q57jdagRjjMQbrpD+KFI8nsDRSvX/fZ1FTa0jDzORDhiNRuXZIwhAYYUGee18uTPfgFA8QUZSEuGEhHUiNyIFmaH3UDkgCFi5wI/C7ISynSAIcFHq8qSBjKQpSL94Qz8FGQlk2BJw92Qq750V6KfRz8+OqBL0yz5iuO1btwza5tuvJSnaLXdDexEnUmZm5oU3IIgRJjmSpNMC1jwznF6+3JlnIiPpCkkkEkqNxy9fr0d3Dp9wlpwU8fj9vG+KKIqw2WznPQZBjBWiKKbUxc2tiMLVzMcIWSNg055zZCQl8c0/f4ygjafCzz0gYKdcBAB4fGVqFMnhcFDK/CSCZsJTlGQjSRB4v6TGeCZsfj7Zb8sxKcXHU5nOSBRvt7kBcCWbypYu5F6dm7JN3RmGv33MX+e5JNx9/YW73pvNZlIRI8acfkWrfmaWxZHdwq35sFnE8RYPTYquAJ/Pp6QrbjOo42tFmwhN35PWYrFQ5JhIG1LrkqJAu1VZ3nPGS+NBH5LMsMaTVGO8pwiSIGLx7CBmFMaUtymKNPkgI2mKMjAnvrY0Aq/WqIg3hKxaHOvoHo9TSyterW+C1CfQcOsWYP7/qh20zXNJUaRHlrmh1124roOiSMR4kRxNqi6KwtChijds3d9CkaTLhDEGn48rg72/6SzOVvFxNLML+OeHVaeKxWIZl/MjiKFIngfMKYvA0632/Tsr6JBIJBRFzKnML97bC3cmj7rNOA5sD5cDAB5f4U7ZzmazkWrlJIOMpCnKUAp3AGBpVd9/66MjY3pO6UZclvHLIw0AeA7yNTt9uOrzqU2UG1oZ/vABf+2yybjnZt8Fj2k0GmEymS64DUGMFgMV7mLdaurXKW8c0WiUxBsug2AwqEwmX69XJ5UlhzTIyeTROovFAp1ON+T+BDEeJD+LMu0SIjon9LH+bBISbwC4A+SXJ1qVZcfOHEQ0WlxdEcb86an/m4yMjIG7ExMcMpKmKANTb2aXcg9yvNOuvLf7jHvQflOJt1u64O2LIs07BJTfZoWgSU2V+e4fGPpVUj97mwcW44UnmNRcjhhPkiNJMwqj6PGoUc1WgwGyLJPn+DLoF2w41+zBiTnck2wMA/ffrE6a6N4n0g29Xp/Sy2dmFUNBXzaJJ0uHNm9Q6ak4VfnL3hNozePGZFETww5PFQBei5ScOWuxWKj5+ySEjKQpTLJXOdMuoSAjjh63OmlqnOISlj/ed1x5fctHMSx55raU9W3dDC+v468tRhkP3+q94PGsViuF4olxJfkhbjYwCA4rzCFu2Hfm8onAVPccD5dYLIZgkNcr/OTtNsT1fOZUdkCLRdfw/6lOp6NUOyLtEAQhZUyYXRqBpUWNLn2ws3HKjwfPb1LnAYVbXfBpDZheEMUtA/ogUhr95ISMpCnMwLSv2tIIziYy4fD1hdtzTUgkEkPtOump8/pxMMoLMgvaGEptARhcqV6iH/yRIdbndH9wsRcOy4WFLmgQJcYbnU6X4jmuKpeR2yfe0OvUotUbpLqkYdIfRYpE4zhSxQ0hQWa4xqaKszidThJsINKS5HnA3PIIEh1qNsmRzsiUTsHd1tCCU0X8ns7qZtjbNhMA8MXlnpQ+iCaTidLoJylkJE1hBtclRRHQ6lHQxCdNEbMGh1o6x+PUxp2f1g2Q/f7m4pT17l6GX7zJXxt0DJ9f5r3g8Ww2G4XiiXFnoPx/TXEE5nb1d7l5zzkykoaBLMvo7eVqlr/400l4M/qiSMe1+OJ9XOVKEATY7fbzHoMgxpOUOsWiKLrdqnhDs8kIWZan7Jjw1b/uVl5XbbGhQ2dBfkYcd1yb2geRapEmL2QkTWEGTtpnl/Gwurltaos3eGNx/OUcNw6NYYbqM93IX5Cfss1P3gCCfanan17oQ7ZDuuAxKYpEpAsDFe6kLlW84Wh7eMqn1wwHv98Pqa8ocZtVjRwVt+sUlUubzUZ9U4i0JdlIMhkYDDkW2Hv5b7e1wAzG2JQcE+q7vThYwO9pa4Dh2Flei/TI7R7okm5ng8EAq9U61CGISQAZSVMYjUaTUiNTWxKFIDDEksQb9jdfWK1tMvK7hhbE+xqbLNoBzPufM1PW+0MMP/4zf4hoRIZHl3sGHSMZu91OUSQibUgxkoqj8LhVL2iLRgdJkki84RLpT7V7+8N6NJfxCHxum4D/+XCOso3T6RyHMyOIS0On06UY8bUVEnKb+HLYIuJIY8+UNJL+7XebIPcJNc3eakSD1gWnVcI9N6X2QaQo0uSGjKQpTrIXyWqSUZYbR49HDbef000tD6jMGH564KSyfP22Xsx/dF7KNv/9FuDpi7bfeZ0fhVnnr9sSBIGiSERakXzPu6wyYjoHdH2yvx1ZPK9+qqbXDIdIJKJMHt9oUms2Cg7rUdhnIxkMBqpVINKelH5J5REYWtWo6Ob9rVPOSOoKRbAtk/9P9DGGpuPTAQCfvc0Ls0G913U6HWw225DHICYHZCRNcQY+wGeXRnBGykCGmw8E7blmxKaQV/mD9m509sl+zz7KUHGjKUX2OxJl+P7r/H8jCAxPrLywTLrdbidFOyKt0Ov1KSICZRVAXht/FPTk6OELR6fcpOhy6I8i1Z/pwslZ/B63BIBP3qw6RSiKREwEUoyk0ghCXS5l+WRAQjQahSxfWJhoMvHvv9mIuIGPiVft1OKwmAOzQcZDAxRsMzIySJBlkkNG0hRnoHhDbWkEIY0Oec08dSRqErH3bOtQu05Kfrj3mPL6lo9iWPbskpT1v94AtPXw10uvDqIi//wGJEWRiHRkoOxvdVEUtjbVkP94fxNFki6CJEmKYMPPP+iEpOUTpZL9Biy9jkffRVEkwQZiQpA8DyjPj6HHrz63WhxTq6lsKCFhQ5+Mvygx+A6WA4KAe2/2wWVVDUWtVku9z6YAZCRNcQwGQ4onpL+prKlNjTD9ffPRMT+v8eC0P4gdIf79s7sZKrV+GDPVh0ciwfCd36uh9kuJIul0utE5WYK4ApKNpJriKNCp9vA51OgnI+ki+Hw+MMYQCEZxeAYv2hYlhqscNqXBpMPhSJFbJ4h0JdlI0ohAbpkBOR18uaPAiGhCmjJG0jOvb0bIyh0dc/eL2MUKodMwPDJAwdblclEUaQpAI/gUZ5BXuTgKrSZVvOFge2A8Tm3M+UXdaeX1ks0Mt31zUcr61zcCZ9r464U1QcWgHAqKIhHpTIrsb3EUfo9afHxOFhGPxxXVNiIVxhh8Pi5o84s3jiNg5xOl8iN6PHqvamxSqh0xURgo4jSnIorMZr6c0AnYerAZ4XB4vE5vzEjIMv7oDynL8p4iyIKIO6/zIy9DrT3WaDR0f08RyEgiUiZMBh1D1bQoOj3ZyntN+skfDQnEE/h9A7eAdDGG2hNdmHbdNGW9LDN8+zU1ivTkqgsr2jkcDooiEWlLsmMkz5VAb9wBQe4Tb3DxKPJU8RwPl1AohFgsBsYYtmeozqSCTiMsRv4/NJvNVItITCgG1iWJbarBv+uUe0qMBz9ZvwfeDH7fVh8DtsfKAQCPrUjNGnE6nRQlniLQVSaGqEuK4ixzIau7T7whz4TwJE+/+WNjKyJafjvcuBuY/3hVyvq1W4G6M/z11RVhXFN1fq8aRZGIdCfZSBIEoKBUh9wOHhHpyjUgmpAo5e489As2/PW9E2gr4rWbBecEPP4gCTYQE5dkEac55RH4utXfc4MkIpFIIJE4v5LrRIcxhhdPtyvL1p25iIoaLL0qkFJ7LAgC3d9TCDKSiCEV7iIaLXL7xBviBhE76pvG49TGBMYYfrTnuLJ8w1Y/rnliQcr6b/0uOYrkxoVSkZ1OJzWPJNIaURRTIh3VJVE4W3nkU9IK2FnXQkbSEMTjcQQCPP34zS718ZlTZ0HlNF7UrdVqqbkkMeFIdpbmOiUEmAvaOH/utWXzqNJkTrn7445jaMvjc6GSRobtXi77/diK1KwRh8NBz/cpBBlJBHQ6XUroeE4ZD6sb29ReCeu3nBjz8xortnZ50Nwn+11VzzBjnh6iVv1/bNwH7OoTvZtRGMXi2aGhDgOATz6puRwxEUipSyqKQpMk3rD35NRIrxku/bVIh4+3o76aR+PsvcCdN6u95ZxOJxV0ExOOgSJOlTNE5Lfw52B3rh7d/vCkHhO+t03tj5i/LQN+rQHXzgjhqgr1OwuCQM/3KQYZSQQEQUiZMFXkx2DUy4h0qfKWh7uC43FqY8IP96iy37duiuP2by5NWf+t31IUiZh8DFS4C/Wo9/uZCBCLxaZUb5SLwRhTUu1e3NoFua9/WuEeM1bcwP9PgiCQLDAxIRk4D5hTGoG9RV3euPvcpDWSNp9swuki7iTK7mLY3T4TAPD4gCiSzWajWuMpBhlJBIBUr7JWwydNHR7VO9psMoAxNtSuE5rmUAQf9XID0OFjmJHwwZStph/uqGPYuI+/LsmJYfn88yv9URSJmEgkG0kluXH0BNTfbruNjweUcqfi9/shSRK8/giOVHPBBm2cYZbLAU3fk9RqtZKThJiwpBhJ5RFIHaowyaHWICKRyKScB3ztrT3K6+lbbOjWmVFdFMFNs1KzRuj5PvUgI4kAMFi8YXZpBI2CC7mdfYpXuUYEJmE+8n8fawDrS7Vb8jHDkmduTln/7aRapMdXeJTJ0FC4XC5oNJpROU+CGGkG9kbJKDIis69Rcme+ETJjZCQl0R9F+sVfjiNk6ZP9PmTAI59WjU0q6CYmMsljwqySCHp6VPGGJp0esiwjFouNx6mNGsc73DhcyKNIdj/DkUYeRXpshScla8RqtaY4loipARlJBIChFe5iogY5zdwrmtCL2Hbi3Hic2qgRkSS8epx/J43EMOdIN4oWFinrD59meGsrf53niuOuG3rPeyxRFOFyuUb1fAliJNFoNCmpI9UlMWS28vs9ahRx+Gz3pE2vGS7RaBThcBiSJGF7rppOl9Vlh8vGU+30ej3MZvP5DkEQaU/yPMBqZBCdNphD3FHYWmABY2zSjQlfee1jxVE6a5sJjVoHirIHZ41QFGlqQkYSAYCLNySnicwu5QOhPlm8YdupMT+v0eRvTR0I6Hjk55p9wDVfqEhZ/1xSX6RHb/dCf4EsmoyMDIoiEROOgY2k9R1qqun2g20USeqjP4r0x3dOoCuf3+fFDSIeuU81mCiKREx09Hp9ynNsVqWE/HP8wRewa1Df7ptURlJ7MIQdOdwwNEQZGo9zRbsv3u6FNulxbjabB6kAE1MDMpIIhWQvUklOHHazhHC3Ogk46p5c6XY/2FGnvL7xYz+u+8drleXTLQxrNvLXLmsC99zsO+9xqPs2MVFJUbgrjiLardYg1PsTiEajk7IGYThIkoTeXh5FftuvekocdXbUlvH+KaIowm63D7k/QUwkBtYlmVpV4+Cj3U2TSgb86V9/iLieT4Pn7tChTsxGlj2BTy5MzRqhKNLUhYwkQiF5cBQEoLYkijZvNgSZT5JaLIZJo3a1t8eH+r5ff0kTQ80sbYrs9/O/Z+j/qp9f6oXZcP6JItUiEROV5EhSVUEM3T51MtBmMoIxNulqEIZLb28vZFnGnsMtOD2Tj5EuN7B8oSpsY7fbaQwgJgUpTWVLI4h0OpXlY974pFG9DMQTeM/E71lRYnAfLgcEAZ9b6oVBpz7vjUYjLBbL+Q5DTHLISCIUBtclRXBOcCKvky935pngC56/R9BE4kd7jiqvb/swgeVJst8tXQyvbuCvLUYJD9164SgS1SIRE5VkI0mvY9BnWWDz94m15JkmZQ3CcOlPtXt1b4/yXv5eG1bfFFeWKZJMTBaS5wHTp8XQ41PFG1psfEyYDGm4//n7jxC2cCNp7j4N9rJCWE0SHlyc+rynKNLUhowkQmEohbuEKCK7T7xB0grYXHdmPE5tROmKxLDBzcPp1gBDTdANS57qKfrB6wyxvvnPQ7f4YDef32uWkZGR0oiXICYSOp0uJQIys1RCTitfDto0aOzyT4oJ0eUSCoUQi8XQ6Q7gSDVPPdbHGKa7MqDv8zabTCZSvSImDQPbgbiKTcjs5svt08yIy/KET7lLyDLeiKjjWmJvEWRBwIOLfbAlPe/1ej2sVut4nCKRJtDsjlDQaDTQ6/XK8pwy7kHWtqsGxHs7T4/5eY00L504A6lPy3vxNmDJf96krOvxMfzyLf7aoJPx+WXe8x5Hq9WSB5mY8CRPimqKozC1q+k2H+9rntKRJEX2e+1JRI19st/7TPj8J1XDksYAYjIxaB5QEUNWM1fBjBkE7D7WNuHHhB/+fSd8Lv4da+qA7bEy6LUyPrvEm7JdRkYGhAt1jycmPWQkESkkT5hyXRKyHQmEupzKe8d6J3Z9QkKW8d+HeTRMkBmuOtSN0sWlyvr/eoMh1Df+f/qmXmTZpfMei6JIxGQgVeEugniXTVk+1h2ZsuINiUQCgUAAcUnCrmlqSq2t24X8jAQAPqG02WznOwRBTEhSxBtKI9C2qY7S7XVdE9pIYozh5cZuZdm4Kx9xUYNP3OhHjlN93mu1WhJjIchIIlIZKuWurVcVb2i1GZFIJMbj1EaEdS1d8Oq5F/iqI8B1D5Qo6/whhv/6M3+t1TB8cbnnvMehKBIxWUgxkopi8HjUHPzWvgaS8Xh8qF0nNT6fD4wx/O7vR+HO5mNG2QkNHvq0OnFyOp3kaSYmHQMV7vxd6phQHxMQj8cn7Dzg91uPoCOXf7/Ss8CO3kqIwuDnvcvlonubGJ6RdPPNN6f8LViwAB988IGy/tVXX8XSpUtx22234cc//nGK97Gurg4PPvggFi5ciCeeeAJtbW3Kukgkgq9+9atYtGgR7rjjDmzYsCHlc9euXYtVq1Zh8eLF+PrXvz4lH9hjxVBGUpNoR0EbHyy6co3wBoPjcWojwve2H1Ze37Q5iBv/6QZl+ZdvAt6+/nF3XuvHtMzzPwQyMzNpACUmBSkNJE0yEiYbDBE+dndm89S7qVaXxBhTUu3eTahGpKkuA9fNUOsxHA7HwF0JYsKTPCYUZCTQG3dBlPiY0JbJeydO1GjSD5JKBnK3ZSKo0WP5/ABKctR5JbX1IPoZlpH08ccfK38vv/wyDAYDrr/+egDAli1b8Oc//xmvvvoq/vjHP2LLli146y1e3BGLxfDUU0/hgQcewMaNG1FbW4uvfe1rynFfeOEF+Hw+rFu3Dt/61rfw3HPPobGxEQBQX1+PH/7wh/je976Ht99+G62trXjppZdG6vsTAzAYDCmT/9rSKCRBRGYLF2+QNQLeP1A/Xqd3RRz1BXAEfKDPb2eoLQNEHb8FIlGG77/O1wkCw+Mr3ec9jk6no8kRMWnQ6XQpaaOVFQx5rXzZk6lDtz885YykQCCARCKBj/c04mwlnzBmdwK33JiJ/uHRarVCp9ON41kSxOhgNBqVeYAgAKVVWuS38uXOPD16o7EJaSR9UHcWZ4p46mBOJ8OuzhkAgMdWpEaRnE4npdITAK4g3W79+vVYvHixoh+/bt063HPPPSgsLERWVhY+85nPYP369QCAvXv3wmQy4e6774bBYMDjjz+Oo0ePKtGkdevW4YknnoDVasXcuXOxaNEivPvuuwCADRs2YNmyZaipqYHVasVjjz2mHJcYeURRTEm/qS0dLN7w4d5zY35eI0GK7PemBFZ+e5my/Mp6oKPPLlp2dQAV+eePVlIUiZhMCIIwIOUuCmu7uvzxvqYJOSG6EvqjSK8dVZtKZu1x4pOL1SgSeZqJycrAMWFOaQSOFu4sYKKAj3Y1Tsgx4Zm39yuvy7c64NaasLAmiFklqhNIFEVq60EoaC++yWAYY3jnnXfw9NNPK++dOXMGq1atUparqqrws5/9DADQ0NCAyspKZZ3JZEJhYSEaGhpgsVjQ09OTsr6qqgp1dXXKvjfcoKZETZ8+HS0tLYhEIoNSwwAetRrY/FCr1aaotYwX/Q3Y0r0Rm16vVyQ+nRYJRVkxBLtdAHj/gJPBeNp/h4H4YnG82eEBtCKMEYZatxvmPDOvt0gAz/9e3faJle7zFqrrdDpYrdbL+v4T5foTo0M6X3+dTodQiPdAqy6KYNdeKwA+CTrcHEA4HE7L8x4NYrEYgsEgmjt6cbSa1x+ZwkBRRjYshggY4/8vo9E4rP9JOl9/YvSZaNc/eR4wuyyC3Uljwr5zftwdCkGSpAnjMDza1oMjxdzZa+9lOHx2BqADHl+R+ry32WwQBGHEr9NEu/5TgUuJFl6WkbRv3z5EIpEU4yUUCqXoyVssFuWhGw6HB3UstlgsCIfDCIVC0Gg0KQbPhfbt/4xwODykkfTKK6/gV7/6Vcp79957L+67777L+aqjQlNT03ifwgUJBALweNTw8/R8F07tz4ZGOgNJI6DVbsLp06eh1V7Wz2dc+HVTF+JafkPcvAOY/Vi5ktL5160WnG3PAgBcO92DbFMTOjuHPk5GRgbOnbuySFq6X39idEnH6598z2ebdejtyQfAFaDOMRFtbW0QBCGlp9JkxePxIBAI4OdvNyK+IA8AULrXjDsWd6Gzs8955HRe9jiQjtefGDsmyvUPBoNwu3l6RZ5FA3dPMfrHhLOCFu3t7QAwYVJO//ea3WAVPEJUs9WM9To7qgv9KHU1Ks/7/jFuNPtATZTrPxUoKyu76DaXNcvtT4FLniSbzWYEAgFlORgMwmzmBX4mkwnBAcX+wWAQJpMJZrMZkiSlRIYutG//Z5hMJgzFI488gocffjj1S6ZRJKmpqQlFRUVpne8ajUYVAwIAFswAPjpkQ22rgKYioDvXALPLhfwJ0olaZgx/+Pg4YOS/13n7unH9T5fydTLw4jvqtv/f3QHk5OQMeRy9Xo+SkpLL9pxNlOtPjA7pfP0jkYgy6c/JAQLMCY3EIGkEdGVZkJOTg9zc3EHOrslGv5KfRqfH/go+URJkBl1PDq6ZJQHgXuby8vJhG4zpfP2J0WeiXf9YLIazZ88CAHIAyGY7jBGGiFFAe74VOTk5yM7OnhD1uW3+IPYX8fM0RhgaTlYBGuB/rPYjN1d93tvtduTl5Y3KOUy0609whm0kxeNxfPDBB/jBD36Q8n5ZWRnq6+tx0028MefJkydRXl4OACgvL8df//pXZdtwOIzm5maUl5fDbrcjMzMT9fX1qK2tHXLf+npVKODUqVOYNm3akFEkgE9k08EguhCiKKb1TWI0GqHRaJSw8OyyCGRBQEaLDk1FcTBRwAcHGvC5pVnjfKaXxsa2LnT1GUizjjNc/6lC5f//5haGY4081D6vMoxrqiLnNYKysrJGxJOe7tefGF3S8fqbTCaIoqiknRRXaOBuE9BSCHTn6BFOSIjFYpO+J5Df7wdjDK+sPQpfJfc6VxzV4b67TBAE7qxzOBxX5D1Px+tPjB0T5fobDAZotVpIEu8dVD2doalJgzPTZfgytGjqCcDlck2I7/KVX3+ERB6fM87Zocc7miyU5cWw9KpgyvM+Kytr1L/PRLn+BGfYV2rr1q2KwEIyq1atwhtvvIGWlhZ0d3fjtddew8qVKwEA8+fPRzgcxtq1axGLxfDSSy+hpqYG+fn5yr4vvvgigsEgDh8+jM2bN2PZMl5Uv2LFCrz//vs4fvw4AoEAXn75ZeW4xOggCEKKEVpTHIUoMIgdqhd504GJEzJ+fssh5fXCzSHc9KWFAHht3bd/p+YiP7nKjfMFiQwGw6SfIBJTF0EQUpxLNcVR2Nv4sqwRsPVg85RQuOtPOdyoVTMVNHU5uGWOms1Agg3EVGDgPGBOeQTmVvW++HDXuQkh3uCPx/GhjTs1NBJD12HugH9suQfJtorVak17Bzsx9gzbSFq/fj2WL18+yNt+00034VOf+hQ+97nP4d5778XChQtx1113AeDRneeffx6vvfYabr31Vhw8eBDPPPOMsu+TTz4Jq9WKFStW4Omnn8bTTz+N0tJSAEBlZSW+9KUv4ctf/jJWrVqF3NxcPProo1fwlYlLIaVGzMhQURBDoFtVfDkVls8rbpBOnAmEsEfmnrDMHoar8yVo+prJfrAX2H2cbzezMIpFtaHzHocU7YjJTvI9X10chdipOkUOnPZOiAnRlRAOc6nzd7c1oLmU/y/yWgVcd4MLmr4npdFoPG8WA0FMNlKMpNII4h1qI+W6niii0WjazwP+7282Imzhz/y5e7XYj2nIdcax+jp/ynaZmZnjcXpEmjPsdLvvfOc75133yCOP4JFHHhly3axZs7BmzZoh1xmNRjz77LPnPe7q1auxevXq4Z0ocUUM1VR2R2M2NIkGSFoB7U4TYrFYikxoOvLjPcfQHx66dbOEld+9XVn3rd9eehQpWZSEICYjyfdyTXEEAbcTAI+snI3zVGtJkiateEO/7PefzgSBWl6/4NyTgfu/pDpPKIpETCWS5wEziqLo8mYB4K1bms1GMMYQiUTOWyM+3sRlGW9KEvrjAZF9xWCCgC8s80KvU5//ZrOZnB/EkFBiJDEkg42kKNo0Vkxr4ZZET7Yenf7AULumDaGEhD82dwEAdHGGue09sBfylLntRxg+7GuZUJITw+3zz/9dsrKyKIpETHqSjaTCrAS8YVWYpcPBJ0GTNeVOkiT4/X6cbnLj2EzuLbcGgJyMXGTYeCRao9FQyi0xpUieB+i1gD3fAqeXL7dNM0PuM5LSle/+ZSt6nTzVruaIgJ2xUjjMEu5d5EvZLmOCiFARYw8ZScSQ6HS6FI9xbWkETBDgauU5u0wUsGHH8fE6vUviD6fPIdKXWnf9buD2p69T1iXXIj2x0qOk0wzEaDRSFImYEiRPiAQByC7RIbtPGrczz4i4LE9aI8nn84Exhv/eeBaSljtEivdY8ZlValNpu91OBdfElEKr1aaIlMyujCGniScgRUwiDtR3pq2RxBjDb9q8yrJhVz4SooiHb/PCalSf/0ajcdKrdhKXD434xHlJCbUXRqHTyhDa1cFkS13beJzWJcEYw492qkbcgr09mL58OgDg0GmGtdv4+3muOFZf33ve42RlTQwFP4K4UkRRTBVvKIkho5VPkOJ6AftPtqfthOhKYIzB6/UiGIljXwX3KIsSQ6I7H7PLVKOQUu2IqUhqXVIUujazsrzlYFvajgm/3nQInbn83MsagO3+Shj1Mj5zG0WRiEuHjCTivCTnGeu1wMzCGHp7VPGGhhhL2+7RO7q9aOmT/a5sYLhpRb6y7rnXVC/So8s90J+nMs9kMpGHiZhSJKfcVRdFoetQx4CdR7smZSQpGAwiHo/jV2/VIWDjj8TKQ3p8apVqMFosFlK+IqYkAxXuQp3JAk68n1K/THg68eO9Z5TXWTuyENbo8OmFvUr6LMBFxShThLgQZCQR52Uo8YbmQDZ0cW5ktGWY03bS9NzmA8rrmzeFsOhfbwYA1DczvL6Rn7/LmsC9N1EUiSD6STGSiqMI96iNIhuCMmKxWNo6Ri4Xr9cLxhg2JTlEEscKsGKBWqdIUSRiqpLsLC3OjsMbzoQg82doq4uvS7do0juHTqOxiN/PeR0MuztmQCMyPHK7J2W7jIwMqjcmLggZScR5GWgk1ZZG0KGxYFozH1Tc2Xq0+85vZIwXraEItsZ4LYHDxzDfFYfGwGuTnv8Dgyzz8//8Ui9MhqHlS81mM8xm85DrCGKyknzPl+fF4O5VU1HaLVzNKhaLjcepjQrxeBzBYBBvbTqF9kJuIBY2Cph3rQOGPvUrnU5HEWViymIwGBRDQhCAaRU65Hbw5Y58I0LxBMLh8Hie4iC+seGg8rpkqxMenRF3XOtHYVZCeV+r1cJutw+1O0EokJFEnBeNRpNatFkaBQQBjlY17WTd9vQTb/jpvuOQNXwQX7xFxqpvc9nvli6GV9fziY/VJOGhW33nPQZFkYipSHIkSacFLPkmOLx8uSPfpEj+Thb6Zb//1q4afua9OXjwFjWK5HA4yNtMTFkG1irOLo/C1cyXJa2Aj/elV1PZQ82dOFbMU+gcPoaD52YAAL64nKJIxPAhI4m4ICme5fwYzAYZQoeaw7v9eOd4nNZ5iUoyftvABSVEieGq5m44S3jK0PdfZ4gn+KD40C0+2M1Dpw1ZLJa07ftAEKOJVquFVqsW6c0sTSC7lUdhw2YRJ1u9aZtiO1xkWYbP50NdQydOzODS3g4vYHfmoiCTe5wFQYDD4bjAUQhi8pP8PJxbHoHQps4B9jT40spI+softoCJ/DlfvdWCNq0Nt8wJYEah6gjRaDR0XxOXBBlJxAVJNpI0IjCrJAJfj5qCc0ZCWhVt/uVsC4J9gg0LDgAr/uUaAEC3l+GFt3gUyaCT8fml3vMegzpvE1OZ1KayURiTxBu27m+ZNEZSIBCAJEl4aUuLMqmatseOh1ao389ms6UYjQQxFUmeB8wujcLXrT4jzzANJElKizTcZl8Aewu4AWcMM9SfqgLA23wk43K5SM6fuCToV0JckIERldmlUZwLZMMQ7RNvyDSnlRfp+1uOKK+v3enGzDt4qP2/3mAIRfhE6N6be5FpH9qwoygSMdVJnhBVF0UR61IbqJ7wxBCNRsHY0LV8Ewmv1wtfMIID07lalzbOEOwqxPUz1foKEmwgiNQxIcMmIaJzQhfjY0B7Dq/XS4d5wL++/AESOv6cn7PDgFOaTMyvDGNepXpuoijSfU1cMmQkERckuWgT4Ap33VqTIt7gzdSj2Xv+2p6x5IC7Fw0m7vUtbma4+VZeV9QbZPjJG3xA12oYHh2gcJMM1SIRU53kSNKMwih6vKrXuM1ggCzLaeE1vhIikQjC4TB+ufYYwmb+GJx+wIDVyzXoH+4MBgM5TAgCXCo7OfJSVSWgoJkv92Tr0OkPj7uR5IvGsNnFxy5NgqHjSAUA4PGV7pTtHA4HNBrNmJ8fMTEhI4m4IIOKNksjgCDA3qpOpNZtPTYepzaIb2/ap7y+eVMYt37lVgDAL98EvAE+87nr+l6l3mAgVqt1kKIfQUw1ku8Bk4FBdFhgDnEnQ0cONxomesqd1+uFzBi2uNQoWfBoEe6+QVXrJG8zQXAEQUgZF+aWR2BtVZc/2H523I2k/3j1A0TM3PiZu1eLA8jH9GlRLJ4dUrYRBIGaxxLDgowk4qIkD47TshJwWiWwJPGGXad6xuO0UuiJxrAxzCdu5hDDAnMUWqMG4SjDD17nAg2CwPDYCooiEcSF0Ol0KZ7WqjIZuX3iDb0uLdq8wQltJEmSBL/fjz9+cBzdedwBVFovYtY8B6xGbgyKokjywASRRGpdUgSJdlX44FAHjySNVxpuTJLxd0H97NC+EkAQ8PgKD5IF7Ox2O9UYEsOCjCTioiQPjoLAB0hvj5qCc5aJiMfj43FqCr/YfwKSlv+cb94q465vLgMAvLIO6PDwUXL5vADK84Y+T5vNlpJmRBBTmYFNZc3t6vLmvU3j7jW+Enp7eyHLMv7uUdUtdfvy8PASNW3YbrdTYTdBJJGcelpTHEWPR50DNBsNYIyNm/Pk23/aDL+TtyuZdVjArkQJCjLjWLnAn7IdRZGI4UJPAeKiDBZviKAxlAVjpK9wM3t8xRskmeHl400AAEFmmHe2G65yF+IJhu/8Xp0IPbHq/FEkUrQjCJWBCndyknhDXVtowkaSGGPwer3Yc6wNp6v4d8roAbS2fFTkqw4USrUjiFSSnaVGPYMh0wqrv0/AKd88bj3UZMbw+y7VGNLuKoAkiHj0dg90SUEjm82WUjpAEJcCGUnERdHr9SniDbWlUXh0Jkxr4j8fn0uHM93nN0BGm7eb2uA1cy/S3Dpg1f83DwDwh/eBc32dwRfVBlFTPPTEzm63UxSJIJJIUbgrjsLjdinLLRotJEka9+jx5RAKhRCLxfDrPR3Ke/m7nHhouVq3YDabaTwgiAEM7KE2uyqBvCa+HLRpcLTJjXA4fL7dR40X39uLrlw+XlWcBnYEKuGyJvDphb0p21EUibgcyEgiLsrAos3ZpdxbZEsSb1i/9fiYn1c/3/nwoPL62p0e1NxVDVlm+NZvVZnvJ1e5h9oVgiBQFIkgBpBsJDgtMqJaO3TxPvGGTDOAiSne4PV60e0L4VAVN/r0UYauzhLcMieobENRJIIYmoHzAEObWVnevK9lXCJJPz/crLx27chGRKPF55Z4YTKoNUoWi4VEmYjLgowk4pJIHmCyHRLyM+KQO9QUnD1nPONStHmiN4BjZu7Nyu1kWHydC4Ig4G8fAyf6Il0Lpocxf/rQg7fdbqcQPEEMYGD0uKxCRF4rv5/c2Tr0RmMTri4pkUggGAzi528fR8zIv1vlPhNWLQW0fToVWq0WVqv1AkchiKlLcur93PIIIh1OZfmEnzeUHcvm8mv3nMS5It6nKb8N2NU1A2aDjIduTW1LQlEk4nIhI4m4JAZ6YWpLo/C41QjMOVE7Lr1TnvtQlf1etCmCZf9nCRhjePY3FEUiiMtFEIRU8YaiKGzt3JnARAFb9jVNuEiS1+tFLJHAjjyn8p77aCnuvVlNy3E4HCnGIUEQKsnzgLLcONxBVRG2xc4NqLF0nnz7A7V5fPFWJ3xaA+5f7IPDotYim0wmmM3moXYniItCRhJxSQw0kmaXRtAYyVL6p7TnjL14Q288gfV+XktgiDBcowlDa9Tgvd3A/lP8p11THMFNs0JD7u9wOKDT6cbsfAliIjFQvAGdFmX5YGPvhIokMcbg8/nwu3eOw5PJI8+VxzSYPseKDBt3qAiCAIfDcaHDEMSUJnkeIIpATqke2V18uaPAhJgkjdm4sOdMK06U8Kiv08uwv2UGdBqGLyxNrY+mKBJxJZCRRFwSer0+pXfK7NIIfFqDIt7gd2hxqmNs+yW9ePAkYnp+TjfulPHJZ5cCAL7xa7VZ7BOrUvsk9ENN5QjiwgwUb/D3qOINjZKIRCIxpqk1V0IgEEAikcA70aRH3v4CfCZJ9ttisZDThCAugCiKKc6TOeUxZDbxeyauF7D9yNjVJf3HH3eAifzhPmOrFR0aK+66vhe5LnVMMhgMsFgs5zsEQVwUMpKISyZ50jSrhKfaJHfdXr9l7MQbZMbwy0NnlOV5p7qRWZmJrYcZthzmhlNZXgzLrg4MuT9FkQjiwiRPhvJcCfTGnRDkPvEG59in1lwJXq8XWw82obGcT5hyOoCYOR9zytSUQRJsIIiLkzwPmFsegdim1vDtPNYzJmPCWbcP+wv555rCDCfrZ0AQGL64fHAUidJniSuBjCTikkkeHO1mGaW5MSQ6VfGG/c3+MRNv2NjaiW4rr5GoPsFw15NzAQDfeFWNIj2+wg3NEL9wqkUiiItjMBiUCYYgAAVlOuT2Sep35RkQTUgToi4pGo0iFArht0fU2sTs3Rl4cJmqaKfX66lugSAugYEKd/4uNSPjdF+EebTbA/zbyxsh6fhYNHu7EQ0aF5ZeHUR5Uq8znU4Hm812vkMQxCVBRhJxyQxVl+ROEm9o0urGzLP8rfdUwYbrtntR+6laHDjF8M5uHkUqyIhj9XX+Ifd1Op0p/R4IghiMKIopyo/VJVE423j0VdIK2HW0dUJEkrxeL1q6/aib4QQAmEIMTR3lWHmNGmV2Op3kcSaISyBZ4S7HKSEkuKBJ9DWVzeSR2tEcFzyRKLZkc4eGNs7QUlcJgDtFk3G5XHRPE1cMGUnEJTPYSIribDQL1kCfeEOueUyayZ0LhnHAyI2hDDfDbXPtEAQBz/5a9SI9ujy123Y/oihSLRJBXCIDFe40HWq0Zc+JnrSPJMmyjN7eXvzinVNI9HmeK/aacfstEgw6Pm6Jogi73T6ep0kQEwa9Xg9RVKeO5dNFFLTw5e5cHTzByKgaSU+/9D6iJv55c/bocAS5uH5mKCV1VqPRkAgLMSKQkURcMlqtNqWOp7Y0goBWj4I+8YagTYPjbV2jfh7f/nAf0FewefPHUSz/6hKcOCfjLx9zwynTlsA9N/UOuS9FkQji0klRuCuJIuRWJx5nIgyxWAyyLA+1a1rQ29uLSDyO3YVOAIAgM7Qdq8ADi1XBBpvNliJKQxDE+RnYHmBueQS2Fr7MRAEf7m4cNWdpVJKxQd+XAiwzBA6UAoKAx1em1iK5XK4UQ44gLhf6FRHDIkXxqigKjchgblXD7+u3nhrVzw8lJLzp5gaQNs5wXTwAnVmHb/0mDsb44Pn5ZV4Y9YNroyiKRBDDI/l+L82Jw+NX7592G7/v0zma5PV68dLbR9Hr5I6RqjodSmosmJap1i6SYANBDI/klLvZpdGUxvIHmoOIRqOjUp/8zO83wu/gjtpZhzXYnShCTXEEN1arbT5EUaR7mhgxyEgihkXypMlkYKiaFkWiS01VOdQeGFVZ4N8cqUfEyCc81+5l+PQzS3GuQ8YfPuDv2UwSHlzsG3Jfl8tFHmOCGAbJHmNRBFzFJmT0Kf135hshM5a2dUnhcBjRaBQfCGpdVfzANDx8q1dZNplMg9KICYK4MKlKtxG4e5Iay+v0kGV5xJvLy4zhjz51rBF2T4MsiHh8RWqbD6fTSc95YsQgI4kYFgMnFLWlUXQniTc06wyjNmlijOGne+qV5QXHupA9MxvP/TaGuMRHyYdv9cFmHpz+o9Fo4HK5Br1PEMT50Wg0KSm2M0tiyGrlDomoUcSRxvStS/J6vXh/71m0FHOvd0EL4NEX4IZqNRWIPM4EMXyS5wEWI4PGYVcay7flcfGGkU65+/m6nejJ4U6bylPAzlAFirNjuH2+KsAiCAI954kRhYwkYlgMpXB3Np4Jh69PvCHPNGr5yDu6PGi1c69wxRmGT3x+Njo9Ml7ZwCdtRr2Mzy31DrkvRZEI4vJIqUsqikLfoababD/YmpZGUiKRgN/vx5qTam2ia3cWHloaULzOGo2GJIIJ4jLQ6XQptb2zqmTkNfHna69Tg4Z234g7S//7RIfy2r4zB1FRgy+u8KS0+XA4HFRzTIwoZCQRw2Jgx+3ZpRGENTrkNfMBMmzR4EhL56h89jPrdymvr9vmw9z75+C7r0URifGf8X03+5BhG5zqR1Ekgrh8UuoQi6OI9Kjptad6pVGrP7gSfD4fTrd5cWwGF5qw+oFTHZX4xA1qWwCHw0ESwQRxmQzsl5Rcm7xx97kRNZL+sr0OzYVcWbOgFdjVXYVsRyLlfqYoEjEakJFEDJvkwbGyIAaDToa5TX1vwyiIN7SHo9it5z9Xu5/hthlm+AIML6zlqUA6DcMjt3uH3JeUbgji8kl2ikwviMHtU8Ub2kx6MMZGvP7gSmCMwefz4YUPGiBruBFUttuCJQvjsJrUVFySCCaIyyd5HjC3PIJIp3o/HfcmEI1GR0z58vnNJ5TX07a64Nca8PmlXkXGHwCsVmtKXzeCGAlo5kgMm+TBUafl3uVY0gB5pCuMRCIx1K6XzXc/2q9MeBZujWH1/7sdP3w9An+Y/4TvvqEX+RmDP5OiSARxZSTf73odgz7LovRG68w1g6WZeEMwGIQvGMbeEicAQCMxnDs+HQ/dqgq6WCwWmlARxBWQPC5U5Mfg9mUpy81Wvm4kxoXtJ5twsoynxWa4Gfa3zIDNJKXI+ANAZmbmULsTxBVBRhIxbIaqS+pyqwNki3FkxRtikow/tfNu2qLEcF3Qj5iowU//yqNIosDw2ArPkPtmZGRQFIkgrgCtVptSzzezVEJOC18O2DVo7PanVV2S1+vFC28fRdDGz3HGQR3yqkyoLFCjXSTYQBBXRvI8QKsBMorNyOCPabQXmCCNkPPkq39R0+ynb7OhS2vBg7f4UqLCFoslJeJNECMFzR6JYWMwGFJy+WeXRtEoZcDl6RdvMCM0guINrx87g4CFG0TzDzLc97Xb8LM3wnD7+SRoxYIASnPjg/bTarU0GSKIESC1LikCc7u6vGVvU9pEkmKxGAKBAD4yqvURoYPFeChJ9lun08FisYzD2RHE5EGj0aREY2eXx5DdpCpf7j7edsUiTvWdHhws5lEkc4jh+OkZ0GsHCzRR/0NitLgsI+nVV1/FHXfcgUWLFuGhhx6C3+9HLBbDM888g6VLl2LJkiX46le/mnKD1NXV4cEHH8TChQvxxBNPoK2tTVkXiUTw1a9+FYsWLcIdd9yBDRs2pHze2rVrsWrVKixevBhf//rXEY8PnhATY4cgCCmTptrSCCIarSLeEDWJ2HumdcQ+74dbjymv59f1wFmZjR/9WZUlfmKle8j9KIpEECPDQIW7eLcq3nCsK5o24g1erxdrtzegs4Cfb8kZAR26Atw2N6hs43Q6SbCBIEaA5HnAnPIItG2q82H7kc4rdp7826sfQtLye3XWdhPOapz41MJeZNlVgSaTyQSz2XxFn0MQ52PYM8g1a9Zg27ZtePHFF7Fp0yY888wz0Ov1eP3111FfX4833ngDb731FtxuN1599VUA3Lv31FNP4YEHHsDGjRtRW1uLr33ta8oxX3jhBfh8Pqxbtw7f+ta38Nxzz6GxsREAUF9fjx/+8If43ve+h7fffhutra146aWXRubbE5dN8uBYmhOH1STB2KZ6b9/f0TAik6YDPT6cdfEJT2Erw6fur8JLa0Noc3OP1eLZQcwsGlw0TlEkghg5ko2kmUUxuN2q57a1r3nkeDuvZFlGb28v3mhWnXOWvdm47xY/tH3ZgoIgkGADQYwQJpP6zJ9TGkGgSx0X6qNciv9y65N7QmHsyOVGly7O0HK0EqLA8OgAgSaKIhGjybAE5SVJwiuvvIJf/epXyM/PBwBUVlYCANra2rBw4ULlAXTLLbdg1y6eS7p3716YTCbcfffdAIDHH38cS5cuRVtbG/Lz87Fu3Tp8//vfh9Vqxdy5c7Fo0SK8++67ePzxx7FhwwYsW7YMNTU1AIDHHnsMzz77LP7hH/5hyHOMxWKDlJa0Wm1aFOn2K72MlOLLeKLX6xUjSBCA2pIIou0OANxje8wdQzQaveL/+9f/vh0w8RnO9Vt7UfvbW3Hf51Qv0pOreoY0xlwuFxhjaeHd7mcyXX9i+Ezk6598v1uMEmSzFYYoQ9QgoCPbBMYYwuHwuPYo8fl8ONTQgVPTeXqOywPUdVTiOze1KudutVohCMK4XIOJfP2JK2cyXv/kcSHPFYc/lg1BbgATBbRmcFGXUCgEq9U67GP/66/eRTSfR4hm79bhA+Rg1QI/irJj6H+s6/V6mEymCfE/nYzXf6JzKZlGw3qidXZ2IhqN4v3338eaNWtgtVrx0EMP4Z577sGdd96JH//4x/B4PNBqtdi4cSOWLFkCAGhoaFCMKYB7HwoLC9HQ0ACLxYKenp6U9VVVVairq1P2veGGG5R106dPR0tLCyKRyCABAQCKEZfMvffei/vuu284X3VUaWpqGu9TuGLi8Tg6O9V+SBU5Juw6lg2Ap9k1m/Sor6+/otx/X0LC1r5QuznEcH1GDD9d04wz7SUAgKtKfZhmO4fOAW2Z+nOlfT7fwEOmBZPh+hOXz0S8/owxdHd3Kw/4wmkueFtFNJYxeLJ0ONnYjHA4PK7R246ODryw6SzY3BwAQNEuGyrm+CFF2tCZlPUz3nLlE/H6EyPHZLr+jDF0dXWphlJxBoxtAlqnAZ15BpxpbrmscSGcSOADM3ewCjKD70AZIAj41LWn0dmpps5mZmbi3LlzI/Z9xoLJdP0nOmVlZRfdZthGUiAQQHNzM9566y20tLTgH//xH1FaWoqqqirYbDbcfvvtEAQB11xzDT7xiU8AAMLh8KDJssViQTgcRigUgkajSTF4LBYLQqHQkPv2eyTC4fCQRtIjjzyChx9+OPVLplEkqampCUVFRRO+VqZ/UOyfNF1bo8GfPnKhuIehJ1NAZ4EZrsxM5OfmXvZnfO293Ujo+P/phu1x3P/cJ3DtP6m1BP/f3X7k5OQM2i83NzctU2om0/Unhs9Ev/4ajUapM716OrC70QCUcevjWGMYV1VnorCwcFzOLRKJoNPbi8NVXGVTF2M4XT8d3/uKOkYYDAaUlJSMy/kBE//6E1fGZL3+oigqtUfXVAO7mw1onRaFrBFw9FwYNdMzUFRUNKxjfuWVdxFw8Olp7UENtkhFuLk2iIVzLQD6UvB0OpSWlk6Y+sLJev0nO8Mykvrz0p944gkYjUZUVFRg1apV2Lp1K/7yl7/AZDLho48+AmMM3/72t/GDH/wATz31FEwmE4LBYMqxgsGgUnAnSVJKZCgYDCqFeAP3DQQCyvtDodfr08IguhCiKE6Km8RkMinG7JyyKGKiBjnNWvRkSogZROyub8En+tIyh4skM/y+qRuw82t5vdeHt/fEcfQcT6WZVRLBwlnhQQOkXq9P+8LsyXL9ictjol5/k8mkTIZqimPYuccKgC8fbgni07HYuH2v3t5e/HLdcUSm8/qEGfsN8BSbMLe8WxkL0kXIZaJef2JkmGzX32w2Ky0A5pRFsGufDQBf3nfWj7tiMQiCcMnPZElm+GskAfRJ+Mt7CyELAh5f6Uk5RmZmZkprgonCZLv+k51hXamSkhLodLoh19XX12P16tWwWCywWq246667sGfPHgBAeXk56uvrlW3D4TCam5tRXl4Ou92OzMzMlPUnT55EeXn5kPueOnUK06ZNGzKKRIwtyYZqniuBLHsChjZVZWbjnsbLrgn626lGePsMpNlHZNz/9CJ893XVpn9ylRtDjbmZmZlpbSARxEQlWbyhujiKXrfapLmJaSBJ0og3kb4UJEmC1+fDFoda9+A7XIKHbvUqY4QoirDZbGN+bgQx2Umei80ujcLbpTZ1bRR1kGV5WCmuP/rbFriz+Vgz/aSAnaFyzC0P45oqVZBFq9XCbref7xAEMWIMy0gymUxYsmQJXnrpJcRiMZw9exbr16/HwoULUV1djbfffhuRSAThcBh///vfUVFRAQCYP38+wuEw1q5di1gshpdeegk1NTWK+MOqVavw4osvIhgM4vDhw9i8eTOWLVsGAFixYgXef/99HD9+HIFAAC+//DJWrlw5wv8G4nJIHhwFoU8KvFtNczvpS1x2k8nvbTysvF5wuAf7/VbsOcmNsvK8GJZeFRy0j16vp4kQQYwSyUZSll1CSHZCI3EnSEcGvzfHo1+Sz+fDHzedRE8Od6pUnBTQJBZg1TUBZRuHw0HeW4IYBZLnATazDMnsgCHKx4W2PnW6Sx0XGGN45aza0sO6MxdxUYPHV3hSnKIul4vuZ2JMGPav7Ctf+Qq8Xi+WLl2Kf/qnf8Jjjz2GBQsW4J//+Z8RDodxxx134M4770QwGMS//Mu/AOCT1+effx6vvfYabr31Vhw8eBDPPPOMcswnn3wSVqsVK1aswNNPP42nn34apaWlALh63pe+9CV8+ctfxqpVq5Cbm4tHH310ZL49cUUMjObNLo2iw5OtLLdajZc1aTrZG8CJTH7snC6GT68ux/deV8PqT6x0Y6jxkaJIBDF6DGwiXVSpQW47X+7O1SMUv3ynyOXCGIPX68VbPar8uH5fHu5Z1AujXo1iUzsAghgd9Hp9StpbdRVDfhNf9mRq0eoJXvI8YM2mg2gt5Nkohc3ALvd0lOfFUvqciaKYljXHxORk2HqtNpsN3/3udwe9n5GRgeeff/68+82aNQtr1qwZcp3RaMSzzz573n1Xr16N1atXD/dUiVFGq9VCq9UqKTazSyP4BctHeRdDV7aA9jwTApehbPOfb24DDHzydcPWAML/az42v8o9UgWZcdxxrX/QPgaDgaJIBDGKCIIAvV6vGELVRVEcatOjdVoMskbA9kPNyHE5x/ScQqEQdh5vQUMFv/ezuoGDXZV4ZnGLso3ZbE77OlWCmMgYjUaldnxOWQTdR4xAJa9X/mBnI8ryLq2X0Y92NgBl/F7O256Bwxo9/mNFe4pT1Ol0TshaJGJiQvFK4opIzUeOICGKyG7mdWsJvYDtx4cnz+mPJ7CRccU8fYzhtlwR3/+jWgf32HIPdEOY9hRFIojRJ/l+ry6OQuxQlUf31XvGPJLk9Xrx8q5WZXnaTgeuuyqGwiy1NoqiSAQxuiSPC3PKI4h3qJGeuq4IYrHYRfsDfXTkNE71GUiZPQx7W2cgIoTGmAAAJjdJREFUzxXHndepTlFBEOByuc53CIIYcchIIq6I5MHRZZMxLTMOfbsq3vDR3qZhNU/7yccHETNyL9G1O+Mo+fR12LCXT8Sy7Al8amHvkOdAUSSCGH2S65JqiiMI9DiV5caYgHg8DkmShthz5InH4zjb1oXDFXzSZIwwHG+owsO3qf3RtFrtZTWyJAji0kkWcaqaFoXbo4o3NJmMYIxd1IHy9bf2K68rttnh1pjxyO1e6JOcog6HY1wbVhNTDzKSiCtiYF3SnLIIwl2qF+lUQBpW0eavT7Upy9d1efHjt01gjEeIvrDMm1Jn0E9mZuag9wiCGHmS7/fCrAR8YTWNpt3BJ0pjFU3y+Xz4+YYTiPWl5lbtMcKUb8QNM0PKNuneDoAgJgPJ44JeC1gLzLD3+SrappnBGFN6rA3F0ZYOHC7janXWAMPRhhlwWCTcc5Pq8BAEARkZl5a2RxAjBRlJxBUx0EiqLY2g3Zsk3mAzXbKR9O6ZVnS5uKd6xkmG6+69Gm/t4BEiu1nCA4t9g/YxGo3kKSaIMSI5kiQIQHapDtldfLkz3wjpEjzGIwFjDN0eD7ZlqRHk7royPHiLV6lfEASBCrwJYgzQaDQpdX+zKxLI7RNvCJtFHD7TfcF5wNO/3QJZw50Z1dtNaNI48JnbvLAYVaeozWY7bwsaghgtyEgirohBg2NpFE2CA7kdfLkzzwh/KHSevVP59oZ9yusFB7rxm8N5SEh84PzMbV5YTYPT9rKysq7g7AmCGA6iKKbc79UlMWS08vSXuF7AvpPtYyID7vf78et36+DL4JOmqjoRZ4Q8fPIGtX7BarVSag5BjBEpdUllEejb1HrFTQdazzsutPf6sWsad3TqYgyNx6fDpJfxmVu9KdtRFIkYD8hIIq6Y5MGxpiQCWRSQ1cwnJwmdgI+PnL3oMc4FQjicwb3ULi/DTfNy8cePefjdpJfx2du8g/YxmUywWCyD3icIYvRIaSpbFIW2Q61B3FXXOSaRJK/Xi3VJrdKE/QW4+0Y/bGbVkUKCDQQxdqQaSVGEOp3K8qmgjHg8PmSz6adefB8xA5+Kztmlxwlk456bfXDZ1HvZarWmjDsEMVaQkURcMcmDo9XIUJEXg7ZdNV4+Ptg25OCYzH/+bSuYyKNG128N4kNhDqJx/vO8b1HqgNkPRZEIYuwZqHAX6VFT2k4H5UtSsroSotEo3t93Gk2lfIzJawP2uyvw0C1qOq5er4fZbD7fIQiCGGGSx4Wi7Di8IbVWuNXJ78WB0aRALIYPHXw/QWZwHyqDVsvrj5OhKBIxXpCRRFwxg+uSogh1O5Xl02H5gik4EUnCO31GlCbBcK0ujtc+4vvrNAyP3u4ZtI/ZbKZJEEGMA8ke3fK8GNw+dQLTZuFKVrFYbNQ+3+v14jcHu5Tl3F0uzK2OYfo09TMpikQQY4vRaFREUgQBmFapR247X9eRb0QkMVjE6auvvIegjWed1B7QYr9UiDuu9WNapupUNZlMKep5BDGWkJFEXDHJgyMAzC6LoNWbDUHmRZet9guLN7yw9TDCZj5QLtibQGP5QgTCvOjzEzf2Itc1WFKYokgEMT4kG0k6LWDNN8HRF8TpyDOBMTZqdUmSJOH4uTYcrXQCAMwhhiONVXj4VjWKJIoi7Hb7qHw+QRBDIwhCytgwtzyKjBZev5jQCdh6sCllXEjIMtZKqjBDYm8RmCDgseWpTlFSryXGEzKSiCtm4OA4uzSCVtGOvA5uOHXlGeENBofclzGGXx1pUpavauzBq1u4Op4oMDy2YnAUyWKxkGeJIMYJrVabIogwsyyB7JY+JSuLiFNtvlGrS+rt7cVP159AQsfHlum7zNBmGrDkqoCyjd1uh0ajGZXPJwji/AwUbxDaVOXZXSc9iEQiYIwbRt/94ya4s/i8oeqEgF3hMtw2N5ASETYYDFR3TIwrZCQRI0Ly4DizMAaNFshs5spTklbApoNnh9xvS1MnWrP4vqWNDKhaAE+AT8BWXhNASU580D7kWSKI8SVFrKUoCmOHurx1X/OoRZI6e9zYmc+jRILM0HasHPcv8kGbZBNRqh1BjA/JzsvZZRH4utVU3DOyBpIkIR6PQ5Zl/K5NbQxv2pmHhCji8ZWpTlGqRSLGGzKSiBEhpZmcjqGqMApNh+oB2nG0Y8g6hW+s3aW8nr+7B6/WlSvLT6x0D9rearVSFIkgxpkUhbviCGLdanrbCU8M0WhU8RiPFKFQCL98+yACDu5EqT6sRQPLwb2LkiZbJhOpYBHEOJE8D3BZZcS0TmjjfWn32ap4w6/f34O2aXy5qAnY5anEgqoQrq5QnSt6vR42mw0EMZ6QkUSMCAPFG+aURRDocirL9ZHByjYd4Qj29zWPtQYYsu1FaPfw6NOtcwOYUTjYqKIoEkGMP8n3e9W0GNxe1ePbatCPiniDx+PBu5Ka5pfYX4gV1wSQZVdrFimKRBDjh06nS0l1raoSUNDCp5k9uXp0+8MIh8P42f5mZZuc7ZkIafR4fEBqvcvlSql1JojxgIwkYkTQ6/UQRfXnVFsaRUtvNsS+wsx252Dxhmf+ug2Slg+C120L4Q+e+cq6J1cOrkWyWq2DjDGCIMae5GiNycAg2q0whfm93pnDPcQjWZeUSCTw5tZjaCvkUeTCJmBfb2mKYINGoyHPM0GMI4IgDOqXZGtWlz/Y1YgPDtajoYzfp1ndDHtbZ6JqWhSLatWm81qtFg6H2lqAIMYLMpKIEWHg4Di7NIJ20YaCtj7xhlwD3AFVvCEuy/h7iBtNgsxQ4tXibBefeF03I4SrKgbXNJCiHUGkB4M8xuUy8vrEG3wuLTp8oRGtS/L5fHjthOo4ydyViemlCcwtVz/D6XSS55kgxpmB4g2JTjUV91BrCL/c3aosl21zwKM14vGVHiTfuhRFItIFMpKIESN5cKzIj8FkZHC18PQ5WSPgw/0NSp3Cqzvq4LfzdXMPSXhPuFnZ98lVg2uRbDYb1RoQRBqRWpcUhbldXd6059yIRZIYY9h3qhEnKrln2d7LcLClCg/f5kuZWJHnmSDGn4HNpj09airu0SwLjpbz+9QaYDhyZgamZcaxcoFf2Uaj0VDaLJE2kJFEjBjJg6NGBGqKoxA7kiRAj3crdQq/2HNGeX/G8RAOdfDw++zSCG6oDg86NkWRCCK9SDaSaoqikLrUe/1oW2jEjKRAIICfvnsKsoZbRBW7LJBtBtxxjTqxslqt0Ol0I/J5BEFcPsnzAIOOwZBlgyXYl3ZfYFLu4+ptFrRq7Pjics8gdcrk1H2CGE/ol0iMGAPrhWpLI/B3u5TlhoSAcDiMvW3dOJvHawsK2hiOsRuUbZ5c5cbAKLvdboderx+9EycIYtikyP4XR+Fzqx7jJo1Okfu9Upo7u7C3kHufNQmGcyem496bfDDqVfU88jwTRHqg1WpTHBa10yXkndOmbKOPMZw5MR0ZtgQ+tVBVpxRFES6XCwSRLpCRRIwYOp0upcnk7NIImvw50CT6vEguMyKRCP7zje3KNlftCGBTTx4AoDI/itvmpjadFQSBFO0IIg1JjiQ5LTKiWjt0fXK/nZncCXKldUmxWAz/9dd9CFm5q7n6gA6nkYkHFquCDTqdDmaz+Yo+hyCIkWNgXZKpNbVtx+ydBpwSsvC5Jd4UZ4fD4aBG0ERaQUYSMaKkijdE0SmaUdDKQ0PdOXqc8fZil4NHhYxhhmDvTGX7J1Z5MDDKTlEkgkhP9Hp9SnF1WYWI3LY+ud9sHXqjsStOufN4PNioV42xyMEi3DIniMLshPIeCTYQRHox0EiKdDqVZVFi6D5cDotRwkNJ6pSCIFAUiUg7yEgiRpTkwbEoOw6HVYazhRs5TBTwr+/XIW7gP7sFO6N4s3cGAGBaZhyrkmoMAIoiEUQ6IwjCIPEGe5t6r2/d13xFRpIsy/jdBwfQlcfHlLIGYH8wVfZbEAQSbCCINCO54Xtpbhye3kzoYzxiNHufFgekAty/qBd2s6xsZ7PZqK6QSDvISCJGlGQjSRCA2pIIhCTxhmM56mvr2SywPg/w4ytSizcBHnqnQZMg0peBSlbotCjLB8/6rijdrre3F388G1CWbXuyMS0vgRur1X4qdrud0nMIIs0wGAxKdFcUgZxKM27+dRZWrtWgfUstdDqGzy9L7YWYkZEx1KEIYlwhI4kYUQaKN8wujaK3Z/DgV3NUwpu98wAA2Y4EPplUvAlwDzENmgSR3gxUuAu4ncpyoyQikUggkUgMsefF2XrkNOrLueqly8NwoL0KD9/qS0nJJcEGgkg/RFFMSZOfUxbBn6NX4feNt+C4LgufuMGPXKekrLdardTig0hLyEgiRhSNRjNocDwXyFYKuvspOqhDSORRoi8s88CgS13vdDopikQQaU6yUyTXlUBvzAVB5vdyh5On3FxOyl04HMZPN9aDidwbXbbThrhJj0/cqDpTjEbjIKcMQRDpQXLK3ZwyNaIsCAyP3k5RJGJiQEYSMeIkT1xqSyPoEU0oaFELq7O7GbZ0LAAAOMwS7k9SqgIoikQQE4Vk8QZBAPLLtMjp5MtdeQbEJOmyjKSz7R04UOLknxFjOH1qOu66PrWGgaJIBJG+JM8Drq4IQ6/l9+7yeQGU5amtAcxmc4pBRRDpBBlJxIiTPDjmOCXkuhJwtKqh9NodMpq1PI3mM0u8sBoHR5GSpcQJgkhPBqbV1JTE4GrlEeCETsDuo23DrktKJBL47p92I2rij6fqvXqcFTJSlLA0Gg1sNtsIfAOCIEaD5HmAyybjZ/+zDf+wyo2vf7YzZTtyiBLpDBlJxIgzVF2S6WAWrAGG4iaGplO1AACzQcZnbvOmbCuKIg2aBDGBGKhwp+lUexbtPtEz7EiS1+fDZot6jN4jJbimKoSqaTHlPbvdDnFgvwCCINIGvV6fco/eXBvClz7ZA4dFjQYbjUZYLJahdieItICeMsSIk6xsA/CUu02xSix5vgjVvy/Cbl0BAOD+xT64rHLKvhRFIoiJxUCFu1CPKsl9JiwjFotBluWhdh0EYwwvvL0b7mwenZp+QsCBSBEevi01JZdS7QgivREE4aIGEDlEiXSHjCRixBmYgjO7LIqwRotXc2ZgjYX3RdJpZXxhgAQoRZEIYuKRHEkqzYnDE1Dv4Xbb8MQbgsEg3mhVJb6Ne3OR5ZKxZK4qBW6xWKjBNEFMAC7UHNZsNsNqtZ53PUGkA2QkEaNCinhDyeCahE/dmCoBCvABlXqeEMTEItlIEkXAVWRChpsvd+QZITN2yXVJ7+87gbN9st/ZncC+zul4YLEPuqTgMkWRCGJiYDKZUFBQkJJZ0v9+fn7+oPcJIt2gvCZiVDCZTPD5eIqMwyKjJCeGxk7u/RUFhsdWuFO212g0F/Q6EQSRnmg0Guh0OsTjXLFqZkkM9a1auDMSiJpE1DX2wHUJhk0sFsNPN50GZvBxoGiXHWcMOtx7s5pqp9PpqIaBICYQNpsNZrMZgUAAjDG6h4kJBUWSiFFhoHhDbamabrPqGj+KslMbTFIUiSAmLsn3e01RFIYOdXn7wUtTuDvd0o7DZU5+vDDDiYbpWD7fj2yHGnF2OBzkfSaICYZGo4HD4YDT6SQDiZhQkJFEjAoDlW1u66spMOhkPLkqtRaJokgEMbEZqHAX7bIry6d644jFYmCMDbUrAECWZXzz9Z2I67kBVL3HgGbRmSL7LQgCHA7H+Q5BEARBECMKpdsRo4IgCDAYDAiHwwCAVdcEkOtsQoZNQnl+PGXbjIwMkvMliAlMspE0vSAGty8TQCsAoM1oBGMM0Wh0UIS5H2+vH1tc3MMsyAw9dWWoKY7g6go1AmWz2Uj5kiAIghgzLmtm+uqrr+KOO+7AokWL8NBDD8Hv9wMADh8+jC984Qu4+eabsWrVKrz33nvKPnV1dXjwwQexcOFCPPHEE2hra1PWRSIRfPWrX8WiRYtwxx13YMOGDSmft3btWqxatQqLFy/G17/+dSX3nUhvkidEggAsqIoMMpA0Gg0VYhPEBCf5XtfrGPSZZlgCPHLUkXdxhbsf/WUrel28Ce3Moxocik/Dw7f6kJxZR+MEQRAEMZYM20has2YNtm3bhhdffBGbNm3CM888A71ej+7ubjz11FN47LHH8OGHH+L3v/89qqurAfCC3KeeegoPPPAANm7ciNraWnzta19TjvnCCy/A5/Nh3bp1+Na3voXnnnsOjY2NAID6+nr88Ic/xPe+9z28/fbbaG1txUsvvTRCX58YTUwm00W3yczMpCgSQUxwtFptSpRnRrmM3BZeYxiwa3Cu23/euqRIJIK/udVGsZp9+bBbZdxxrV95z2AwXNJ4QhAEQRAjxbBmp5Ik4ZVXXsH//b//V5FvrKyshMFgwGuvvYY777wTN910E7RaLZxOJwoLCwEAe/fuhclkwt133w2DwYDHH38cR48eVaJJ69atwxNPPAGr1Yq5c+di0aJFePfddwEAGzZswLJly1BTUwOr1YrHHnsM69evH+F/AzEamM3mCxZZa7VaqjEgiElCcspdTXEEpnY1urR5b9N5I0lvbT+C5mKealfQCuzxVODTC3th1Ks1TBRFIgiCIMaaYSV4d3Z2IhqN4v3338eaNWtgtVrx0EMP4Z577sHRo0cxd+5c3HffffD5fLj22mvxb//2b7Db7WhoaEBlZaVyHJPJhMLCQjQ0NMBisaCnpydlfVVVFerq6gAADQ0NuOGGG5R106dPR0tLCyKRyJD57bFYDLFYLOU9rVabFs0H+7vOX2r3+YmOIAiw2WyKFPhAsrKyAEyd/8dUu/5EKpP9+ut0OkWcoboogo2bbAB4Y9jjnRGEw2FIkpTiOJEkCT/begaocgIA8nc5cVSrxQOLvcqxRFGE1Wqd8P+3yX79iQtD139qQ9c//biULKZhG0mBQADNzc1466230NLSgn/8x39EaWkpurq6sGHDBvzkJz9BTk4OvvGNb+D73/8+vv71ryMcDg+SfbRYLAiHwwiFQtBoNCkGj8ViQSjEH64D9+3v0BwOh4c0kl555RX86le/Snnv3nvvxX333TecrzqqNDU1jfcpjBmMMQQCAeV6AqpKldvthtvtvsDek5OpdP2JwUzW6x8KhdDT0wMAyDRq4PGUAOgAADRrtejo6IAgCNDpdMo+J9s6cbScR5MtAYa6xum4vsYDA2tBZyffxmq1Tqr/2WT6LsTwoes/taHrnz6UlZVddJthGUn96RRPPPEEjEYjKioqsGrVKmzduhUGgwErV65ESUkJAOCxxx7DE088AYBHjoLBYMqxgsEgTCYTzGYzJElKiQwFg0GYzeYh9w0EAsr7Q/HII4/g4YcfTv2SaRRJampqQlFR0ZSqwyktLUUsFkM4HIYoijCZTFNSpWqqXn+CM9mvfywWS+l1JpltMEQZogYBXTkW5OTkICcnB3Y7lwdnjOGpNXsgVTgBADN3mfC+xo6vL29GTk6OcpySkpKUVL6JymS//sSFoes/taHrPzEZ1ky1pKQkxQuYTEVFRcpyck+M8vJy/PWvf1WWw+EwmpubUV5eDrvdjszMTNTX16O2thYAcPLkSZSXlyv71tfXK/ueOnUK06ZNO6+UrF6vTwuD6EKIojjlbhKj0XjeazbVmIrXn1CZrNffYDBAo9Eo6SSV5UBrq4hzZQzuLB08oSgy43Hlu/f4erEjh2cGiBJD+7FylOTEcNOssJKSZzabJ51gw2S9/sSlQdd/akPXf2IxrCtlMpmwZMkSvPTSS4jFYjh79izWr1+PhQsX4s4778TatWvR3NyMSCSCV199FTfddBMAYP78+QiHw1i7di1isRheeukl1NTUID8/HwCwatUqvPjiiwgGgzh8+DA2b96MZcuWAQBWrFiB999/H8ePH0cgEMDLL7+MlStXjvC/gSAIgrgS+nuj9VNdHIW1XV3+eIB4w3de/xhBG/fT1RzS4oich4du9SF5/kCCDQRBEMR4MWxz9itf+Qq8Xi+WLl2Kf/qnf8Jjjz2GBQsW4Prrr8dDDz2EL37xi7jjjjsgyzL+5V/+BQCP7jz//PN47bXXcOutt+LgwYN45plnlGM++eSTsFqtWLFiBZ5++mk8/fTTKC0tBQBUVlbiS1/6Er785S9j1apVyM3NxaOPPjoy354gCIIYMZKjxdVFUaBLrSc93KzKgMdiMfw9KCnr2IECmAwMn7yxV3lPq9UqNagEQRAEMdYMuzDEZrPhu9/97pDrHnjgATzwwANDrps1axbWrFkz5Dqj0Yhnn332vJ+5evVqrF69erinShAEQYwhqTLgUfh6XAC4mMM5poUkSUgkEliz6QDap/E0uuJGYLe/HHff4ofdrCo/ORyOC7YQIAiCIIjRhBIjCYIgiBEhOZKUaZcQghOixOtTOzO4URQOh/HC7nPKdlm7MxAVtXj4Vq/yniAIlGpHEARBjCtkJBEEQRAjgl6vT4n+FJVrkdfOl7ty9QjFE9hz6ixOlHGFO4eP4WBLFRZUhTCjUO1vZ7FYpqQCJkEQBJE+kJFEEARBjAgDxRtqiiNwtHG1UVkjYMehFvxw/VHIGm44Td9pQbfGgs/cmtpwmqJIBEEQxHhDRhJBEAQxYgxUuBM7zcryzjNe7C3gzWO1cYamExXIcSaw5KqAso1er1f65BEEQRDEeEFGEkEQBDFipESSiqII9riU5ffzbQhbeMPZ2gNaHEc27l/kgy4ps87pdJJgA0EQBDHukJFEEARBjBjJ4g3TshLwhh3KcsiqWkPRA0XQaYH7FqmpdqIowm63j82JEgRBEMQFICOJIAiCGDGSI0mCAGSXGJHVlbpNRT2wO1yKZfMCyHao/ZJsNhs0Gs1YnSpBEARBnBcykgiCIIgRQxRF6PV6Zbm6JIbM1lSlOseeLMRFDT5zmzflfRJsIAiCINIFMpIIgiCIESU55a6mOApdknhDZg/DvvYqVBdFcHVFRHnfZDKl7EcQBEEQ4wkZSQRBEMSIMlDhLtaqijdU7LDBozXh4Vt9SNZnoCgSQRAEkU5Qtz6CIAhiREk2ksrzYjgRLMGn/tAG2SDhnbOz4HBKuONav7KNRqOBzWb7/9u7/5iq6z2O46/DARHP4WcYxqAkWOqyJcVSkzRrZCagS6a7lQ7t57XWD61WrBZ/pKFoa5U/Nrcrq87YGhYIaWuTGq60Ff1hSK5A7wLlp4rGOfLjcL73D+e5X1S47e4cvoDPxz/Cly/nvM7eX+H7Ot/POVgRFQCAa6IkAQACyrxsLtQuJd/s079OZl7aMMGmNZnnFBFu+PeJjo7mbb8BAKMKy+0AAAFlt9sVGvrf5+Bm3Nx76a3ubDbZbIb+seD8oP1ZagcAGG0oSQCAgBv05g3Jvf6P58/06OYb+/2fOxwOhYWFjWg2AAD+F0oSACDgzK9LemBWt6InDSgs1Kd/Ljk7aD+uIgEARiNekwQACDjzlaQbYwZ0sOjf8vqkGIfPvz0sLEwOh8OKeAAADIuSBAAIOPOVJElyRviu2icmJoY3bAAAjEostwMABFxYWNhVRcnMZrMpOjp6BBMBAPD3UZIAAEERFxc35Nfi4+Nlt9tHMA0AAH8fy+0AAEERFRUlwzDU3t4un+/Scjubzaa4uDjFxsZanA4AgKFRkgAAQRMdHa3IyEh5PB7ZbDaFh4cP+htKAACMRvymAgAEVUhIiJxOp9UxAAD423hNEgAAAACYUJIAAAAAwISSBAAAAAAmlCQAAAAAMKEkAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwsRmGYVgdAgAAAABGC64kAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMQq0OMB719fXpvffe048//ii3261p06bp9ddfV1pamn8fr9erxx9/XF6vV3v37rUwLQLtf83/119/1bZt29TY2KjIyEi98sorysrKsjg1Amm4Y6Cvr09FRUWqqamRYRi69957VVBQoIiICKtjI4A2btyompoa9fT0aMqUKXrhhRd03333SZJKSkr02WefyefzaenSpXrxxRdls9ksToxAGmr+lZWVKi0tVXNzs2JjY7Vq1Srl5eVZHRcBNtz/f4lzwDHDQMB5PB5j9+7dRmtrq+H1eo1PP/3UyM3NHbSPy+Uy1q5dazz66KMWpUSwDDf/jo4O4+GHHzYOHTpk9Pf3G+fOnTOamposToxAG+4Y+OSTT4xVq1YZXV1dRnd3t7Fu3Tpjx44dFidGoJ08edLo7e01DMMw6urqjAULFhjnz583Dh06ZCxZssRoamoyOjo6jLy8PKO8vNzitAi0oeZfVlZmHD161Ojv7zcaGhqMrKwso7a21uK0CLSh5n8Z54BjA8vtgiAiIkJPPfWUEhISZLfbtXLlSp0+fVpdXV2SpDNnzujLL7/UmjVrrA2KoBhu/i6XS9nZ2crMzFRoaKhiYmKUlJRkdWQE2HDHQEtLi+bNm6fo6Gg5HA7df//9OnHihNWREWBTp07VhAkTJEk2m019fX3q7OzU/v37lZeXp6SkJMXHx+uJJ57QgQMHLE6LQBtq/suXL9cdd9yh0NBQpaam6p577lF9fb3FaRFoQ81f4hxwLKEkjYCjR48qLi5OMTExkqSPPvpIa9as0cSJE60NhhFhnn99fb1sNptWrFihRYsW6e2339aFCxesjoggMx8D2dnZ+uWXX3Tu3Dn99ddfqq6u1uzZs62OiCAoKirSvHnztHr1as2dO1e33nqrTp48OWjp9W233UZJHqeuNX+zgYEBHTt27KrtGB+Gmj/ngGMHJSnIuru7tWnTJq1bt07SpZOlP//8U4sXL7Y4GUbClfPv6OjQ119/reLiYpWXl2tgYEDbtm2zOCWC6cpjICkpSZGRkXrooYf04IMPKiQkRMuWLbM2JILijTfeUE1NjbZv36677rpLkuTxeOR0Ov37OBwOeTweqyIiiK41f7OdO3dq8uTJmjt3rgXpEGzXmj/ngGMLJSmIent7tWHDBmVmZmrp0qXy+XzaunWrNmzYwIt0rwNXzl+SwsPDlZOTo1tuucW/JOv777+3OCmC5VrHQFFRkSIiIvTdd9+purpaMTExev/99y1OimCx2+2aPXu2fvrpJx0+fFiTJk1Sd3e3/+tut1uTJk2yMCGC6cr5X1ZWVqbq6mpt2bKF84Fx7Mr5cw44tvDudkHi9XpVUFCgyZMn6+WXX5Z06Zfh8ePHtX79eklSf3+/3G63Fi1apIqKCi69jiPXmr8kpaamDtrPMIwRToaRMtQx0NDQoFdffVUOh0OSlJuby9XE64DP51Nzc7NSUlLU0NCgzMxMSdLvv//OcqvrwOX5S9I333yjPXv2aPfu3f5l+BjffD6ffvvtN84BxxiuJAXJxo0b1dvbq8LCQv8zBk6nU/v375fL5ZLL5dJbb72lxMREuVwuhYeHW5wYgXSt+UtSdna2Kisr1dzcrJ6eHpWUlPhPljC+DHUMzJgxQ1999ZV6enp08eJFVVVVXVWeMbZ5PB4dOHBAHo9HXq9XBw8eVG1trdLT0/XII49o7969OnXqlDo7O+VyuVh6M84MN/8jR46ouLhYH3zwgRITE62OiiAYav7z58/nHHCM4UpSELS0tKiyslLh4eFauHChf/uHH36o9PR0/+dRUVEKCQlRfHy8FTERJMPNf86cOXrsscf05JNPyuv1as6cOXrttdcsTItgGO4YeOmll1RUVKQlS5ZIku688069+eabVkVFENhsNlVUVGjz5s0yDEPJycl69913lZaWprS0NP3xxx9avXq1fD6fli1bptzcXKsjI4CGm39xcbEuXLigtWvX+vdfvHixCgoKLEyMQBpu/macA45+NoP1PgAAAADgx3I7AAAAADChJAEAAACACSUJAAAAAEwoSQAAAABgQkkCAAAAABNKEgAAAACYUJIAAAAAwISSBAAYs37++WdlZGQoIyNDp0+ftjoOAGCcoCQBAMaEwsJCZWRk6JlnnvFvczqdmjlzpmbOnKkJEyZYmA4AMJ6EWh0AAID/1/Tp01VSUmJ1DADAOGMzDMOwOgQAAMPJyclRS0vLVdt37dql5557TpK0b98+JSYmqrCwUFVVVbrpppv07LPPaufOneru7lZubq6ef/55bd++Xfv27VNkZKTy8/OVl5fnv72Ojg7t2LFDhw8fVldXlxISEpSTk6P8/HyFhvK8IgBcL/iJDwAY9aZNm6aLFy+qq6tLDodDKSkpkqTjx48P+T2dnZ0qKipSfHy83G63SktLdeTIEbW3t8vpdKq1tVVbtmzR3XffrZSUFHV1dSk/P19tbW3++zhx4oR27dqlU6dO6Z133hmphwsAsBivSQIAjHpbt25VZmampEuFqaSkRCUlJZo+ffqQ39Pf36+PP/5YX3zxhRISEiRJTU1NKi0tVVlZmcLDw+Xz+VRbWytJ+vzzz9XW1qYbbrhB5eXlKi0t1ebNmyVJVVVVampqCvKjBACMFlxJAgCMS1FRUZo1a5YkacqUKWpra1NqaqoSExMlSbGxsWptbdXZs2clSceOHZMknTlzRllZWYNuyzAM1dXVKTk5eeQeAADAMpQkAMC45HA4/B/b7farttlsNkmXCpD5X/NyPrOJEycGLSsAYHShJAEAxoTLJaWnpycot3/77bfrhx9+kN1u16ZNm/xXnNxut7799lstXLgwKPcLABh9KEkAgDFh6tSpkqT6+nqtXLlSERERevrppwN2+ytWrFBFRYXa29u1fPlypaSkyO12q62tTV6vV9nZ2QG7LwDA6MYbNwAAxoTc3Fw98MADcjqdamxsVF1dnXw+X8BuPzY2Vnv27FFOTo6io6PV2Nio3t5epaena/369QG7HwDA6MffSQIAAAAAE64kAQAAAIAJJQkAAAAATChJAAAAAGBCSQIAAAAAE0oSAAAAAJhQkgAAAADAhJIEAAAAACaUJAAAAAAwoSQBAAAAgAklCQAAAABMKEkAAAAAYEJJAgAAAACT/wDhmR9yw+yTHwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -465,12 +499,12 @@ " plt.figure(figsize=(10, 5))\n", "\n", " pred_series[\"Total\"].plot(label=\"total\", lw=6, alpha=0.3, color=\"grey\")\n", - " sum([pred_series[r] for r in regions]).plot(label=\"sum of regions\")\n", - " sum([pred_series[r] for r in reasons]).plot(label=\"sum of reasons\")\n", - " sum([pred_series[t] for t in regions_reasons_comps]).plot(\n", + " pred_series[regions].sum(axis=1).plot(label=\"sum of regions\")\n", + " pred_series[reasons].sum(axis=1).plot(label=\"sum of reasons\")\n", + " pred_series[regions_reasons_comps].sum(axis=1).plot(\n", " label=\"sum of (region, reason) series\"\n", " )\n", - " sum([pred_series[t] for t in regions_reasons_city_comps]).plot(\n", + " pred_series[regions_reasons_city_comps].sum(axis=1).plot(\n", " label=\"sum of (region, reason, city) series\"\n", " )\n", "\n", @@ -499,7 +533,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "5c5f2006", "metadata": {}, "outputs": [], @@ -519,20 +553,18 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "id": "b2b95875", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAE8CAYAAAD6wgRJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACkeklEQVR4nOy9eXgcZ5W3fVcvUmvfu1stWZsX2dZiyS47G1mdkBCHnTADhCQEEgJvWDKZhMAACUwGJpB3yLzAJEMYwgDhm8yQkCErgcRZyIJd1i7LtqxdarWk1tJaWq3e6vujutryLtuSWstzX1euWKXq7lOl6qrfc57fc46kqioCgUAgEAgEgoXFEOsABAKBQCAQCFYDQnQJBAKBQCAQLAJCdAkEAoFAIBAsAkJ0CQQCgUAgECwCQnQJBAKBQCAQLAJCdAkEAoFAIBAsAqZYBzBHFryuhcvlwm63L/THCCKI8734iHO+uIjzvbiI8724iPN9WqQTbRSZrgihUCjWIawqxPlefMQ5X1zE+V5cxPleXMT5PjuE6BIIBAKBQCBYBIToEggEAoFAIFgEhOgSCAQCgUAgWASWi5FeIBAIBPNMIBCgt7cXn88X61DOmWAwyPj4eKzDWDWI861hsVjIz8/HbDbPaX8hugQCgWCV0tvbS0pKCkVFRUjSCRdbLRv8fj9xcXGxDmPVIM43qKrK8PAwvb29FBcXz+k1YnpRIBAIVik+n4+srKxlL7gEglggSRJZWVlnlCkWomsWoVBoRaTZBQKBYK4IwSUQnD1n+v1ZtaIrGAzidDrZt28fzz77LM888wzf//73ef3112MdmkAgEKwKxsbG+Ld/+7dT7tPZ2clvf/vb075XZ2cn5eXl8xWaQLAgrFrR1dzczGOPPcZzzz1HTU0NbrebUChEf39/rEMTCASCVcF8ii6BYDmwao30ubm5AExOGXnbt5WZdBPX8jb9/f2oqipS7gKBYFXwne98Z1E+57777jtu27333ktbWxtVVVVcddVVALz44otIksQ3v/lN/uZv/oZ7772XlpYWqqqquOmmm/jwhz/Mpz/9aaampgD4yU9+woUXXrgoxyAQnCurVnRlZ2djMplIsATo2mTGmwR9u5MpsE8xPDxMdnZ2rEMUCASCFc0///M/09TURF1dHU899RSPPvoo9fX1uN1utm/fziWXXMI///M/89BDD/Hcc88B4PV6+dOf/oTFYqG1tZVPfOITKIoS4yMRCObGqhVdBoMBu91Ob28vOX3QtQGcUzYKaKe/v1+ILsGKwO128/rrr+N0OklKSuKDH/wgWVlZsQ5LIDiOv/zlL3ziE5/AaDRis9m49NJL2bt3L6mpqUftFwgEuOOOO6irq8NoNHLo0CEGBwfxeDyEw2ExUyFY0qxaTxccmWJMcvkBmExOBxC+LsGKwOfz8cQTT9DU1MTIyAg9PT38/Oc/Fyt0BcuaH/3oR9hsNurr69m9ezd+v59gMEg4HCYcDkenHQWCpciqFl0OhwOApIkxALzWeECILsHK4K9//StjY2PUtefy/6VfSE1bHj6fj7q6uliHJhAAkJKSwsTEBAAXX3wxTz75JKFQiKGhId544w127Nhx1D4AHo8nOmD+5S9/SSgUYkxNYiKcAMDk5CSqqi7+wQgEc+C004uyLBuAXwBrAQn4HJAN/AAIA19QFKVRlmU78CsgCXhEUZTfyLJsBB4D1gP7FEX5auQ9vwJ8HBgGblAUJSa9BPQvrjV+ELDizpcIdavCTC9Y9oRCIfbt2wdAx4ZiBnMh3Z4P9NHb2xvb4ASCCFlZWVx00UWUl5fzvve9j8rKSrZs2YIkSfzgBz/AbreTlZWF0Whky5Yt3HzzzXzxi1/kox/9KL/85S+55JJLSExMZCZBYiZBQlUhHA4TCoUwmVate0awhJnLVVkFxCuKcrEsyxcDfweUAruAFOBR4Frga2hC7DXgTVmWfwdcDTgVRblFluXHZFm+AGgFPgC8B/gk8H+A78/nQc2VnJwcTCYTxXYPiV6YSIV+dxL5Ni8jIyPC+yJYthw8eJCJiQkOdGXQfY22bdxuhAlwuVyxDU6wpDjRqsLF5NhyED/84Q+P+tlsNvPqq68eta2hoQG3243f7+eOe7+HD3AUFPLsS28BM/j9fiG6BEuSuUwv9gKSLMsSkAFMASFFUUYVRekGMiP77QBeVRQlCChAOXAh8HLk9y8BFwHbgdcVRVFnbYsJupneaJTIjgz+eydtgJhiFCxv9u7dC0BX2vrotqFcFa9PYnh4GL/fH6vQBIJzJhgM4vf7CYXBn3BkRiJsMAKa2V4gWIrMZSjgBgLAAcACXAz8v1m/D8qyHAeYFUUJR7Z50MRYBjA+h23HIcvybcBtAHfccUe0hst8k5KSAkDygB82xDGVlAF0cOjQITIyMhbkMwXaTbGvry/WYaxIRkdH6ezsZNRjpLNK+4oneGE6UaLdlU150RBNTU3YbLYYR7qyWQ7XuC5elhterxeA6UA84USQVBVVkgibNQE2MzOzLI9rOaGqqjjHEYLB4HHf9by8vBPuOxfR9V4gqChKqSzLMvB/gdlreE2KovhlWQ7IsmyICK80YAQYm7Xv7G3rjtl2HIqi/Az4WeTHBXNFrl+/npaWFhLHPUAOUxEz/cTExElPmuDc6evrE+d3gdCN8g1jG/ElwJo2iJ8Ic7jKwKiaDQwRDAbF+V9glsM1Pj4+TlxcXKzDOCNmP+yD8dojzDKlMp0sEYyTUGc0T6PZbBa+3AXE7/cvu2tnoTCZTHP+rs9lelFCM7yDlvVKAUyyLKfLsryGI6JpL3CZLMsmYBvQDLwNXBn5/dXAW5H9LjlmW8zQzfS2uEEAhvO1L6luphcIlhMzMzM0NDQQCqk4t6QBYDswRIJ7GoDp9GRA+LoEy5dAIEAwGCQQMOC3aFmuBKYxhiBkAH/AiKqqBIPBWIcqEBzHXETXn4A1siy/DvwX8F3gm8ALkZ+/Htnvwci/3wAeVRRlGngOKJBl+U3ApyjKO4qiDAHPy7L8FpqR/tSNtxaYnJwcjEYjRfZRLNMwnga9g4nMzMwwOjoay9AEgjOmvr4ev99PXecaBnMh1QNbHYdJ9o0BMGE3A0J0CZYv09PaAMKnxqMiEecDs0nFFNAGyQFVy34JX5dgKXLa6cWIMf5vTvCrC4/Zrx+46phtQeDmE7znj4AfnUmgC4XRaMRut9PX14e1F7rXQ9+ElXxrJ/39/WRmntByJhAsOVRVjRro+9esAaCgxkeCXSU/bRDIw50LwcNhBgcHCYVCGI3GGEYsEJwZqqpGRVfAol27Jn8Q4sEQUMEiEY5c036/n8TExJjFKhCciFVdHFVHn2JM1ivTJ2oGeqfTGbOYBIIzpbOzE7fbTc9AIh3lYAipbJAOAODInibVA74E6BzIIBQK4Xa7YxyxQHBm+Hw+wuEw0zMmAnFgCEOieQYAY1ibTgyZtcfa6TJdBw4coKqqiurqatra2uY1zkcffZRf/epX8/qegpWBEF0cEV2J49qiSq/VAoiyEYLlhZ7lOqRuJGyUKG6CNTZv9PdZfdr0y6AvBxBTjILlRzTLZdQM3HHTKobIUyzOoImuoFnLiAUCgVP6cp955hk+9rGPUVtby9q1a0+6XygUOuM4b7/9dm688cYzfp1g5SNEF0faAeWYhwAYzhNmesHyYnx8nAMHDjDtk+jeqg0acnt6AEhKSgIgcUjL5HpTNIO9EF2CWDM1NcWuXbvYsmUL5eXlPPnkkwAUFRVFM7GKonDZZZcRDof5p3/6J77yla/wyY9fy7Vbynn1uad54IEH2LlzJzff/AlUX4CwAWYCR3xddXV1nH/++VRWVvLhD3+Y0dFRXnjhBR5++GEeeeQRLr/88uPiSk5O5q677mLLli288847/OY3v2HHjh1UVVXx+c9/PirE/uM//oMNGzawY8cObr31Vu644w4A7r//fh566CGAE34+wGWXXcbXvvY1duzYwYYNG3jzzTcBaG5ujn5WZWUlra2tC/gXECw2QnShmekNBgMlucNYpsGTAU53Aj6fj7GxsViHJxCcln379qGqKjXOdYyngbUfqop6iIuL49JLLwUgccIDgDdHyxII0SWINS+99BIOh4P6+nqampq45pprTrqvnuVq7+jm0f99lh//6v/j7//ui1x00UW8+eabWCwW3nrxJQCCqrZgJBAIcOONN/Lggw/S0NBARUUF3/nOd7j22mu5/fbbufPOO9m9e/dxnzU1NcV5551HfX09WVlZPPnkk7z11lvU1dVhNBp54okncDqd/OM//iPvvvsub731FgcOHDhh3Cf6fJ1gMMiePXt4+OGHo9sfffRRvvKVr1BXV4eiKOTn55/dyRUsSYToQjPTZ2ZmYjIZyInUN+vxiMr0guXB7D6LAxu1qUNHvQejUaKyspLCwkIArJajM7kul0tkcgVRJElakP9ORUVFBX/605/42te+xptvvklaWtpJ99ULor7nivdiNpvZXLSJcDjMtddeS1xcHBs3bsTZ1Q0QNdO73W7GxsaiA4+bbrqJN95447Tnwmg08tGPfhSAV155hX379rF9+3aqqqp45ZVXaG9vZ8+ePVx66aVkZmZiNpu5/vrrj3sfj8dzys//yEc+AsC2bdvo7OwE4IILLuB73/seDz74IF1dXSQkJJw2XsHyQYiuCNnZ2QAkuzTzpTDTC5YLLS0tTE1N0dKdTc9asExDZbo26t6+fXu0YXCR7UhZFD2T6/F4Yhy9YDWzYcMGampqqKio4Jvf/Cbf/e53Aa3YZDisNTjx+XxRj1Y4DMYkrYB1ghTAZDKRmJiI2WzGYDCgBrUp9FCkMv3Zlo2wWCzRlb2qqnLTTTdRV1dHXV0dBw8e5P777z+Xw44SH68di9FojNYV++QnP8kf/vAHEhISuPbaa4/rOylY3gjRFUEXXYmRh5Aw0wuWC0f6LJYAUFQXJCMtRFFREVarFaPRiM1m0zK5kTFEr8cKiClGwRFUVV2Q/06F0+kkMTGRG264gbvvvpuamhpA83Tp2dunnnoqKsACYROqBHEzEB+n+ari4uKildGNkrYtEAfhMCQmJpKRkRH1S/3617+OZp3mys6dO/nd737H4KBWQHtkZISuri62b9/O66+/zujoKMFgkKeeeuq416alpZ3x57e3t1NSUsKXv/xlPvjBD9LQ0HBG8QqWNqINewRddFnNg0A2Iw4JBo6Y6UU7CcFSZGBggO7ubkY85mifxUJPK6RrWS4dm82G0+kkeSAAa81MWtKBLvr7+9m4cWNMYhcIGhsbufvuuzEYDJjNZh555BEA7rvvPj772c/yrW99i0svvTRqXA+btDyByafV5tKnMA0GA5IkYTSCKQhBE8wETSTEBfn5z3/Ol770JbxeLyUlJTz++ONnFOPmzZt54IEHeO9730s4HMZsNvPTn/6U888/n2984xvs2LGDzMxMNm7ceMLp0f/8z//k9ttvn/Pn//d//ze//vWvMZvN2O12vvGNb5xRvIKljbRMPB0LHmR3dze/+tWvmJkJ8PP172HGAn/7lxpsWT6+8pWvkJ6evtAhrCqWQ1+65cCzzz5LTU0Nr3VXUH91CgWt8OHg26SkpPCVr3wlOkWyd+9eXnjhBd7s2ETNtRmsqwuzK/5dSktL+du//dsYH8XKZDlc4y0tLWzatCnWYZySmZkZhoeHmQkYGEtJRFIh0zuFyaiSk5OD2ayZ5t1uN36/H084CV+iRKInSEq8j9TUVJKTkxcktsnJSZKTkwkGg3z4wx/mlltu4cMf/vCCfNZSQ/RePMJJvkcnzNSI6cUIRqMRq9V61BRM16hmphe+LsFSxOfz0djYqPVZrEoBwHZQmwLZtm3bUdXm7XY7ABmStgx/LFf76ovpc8FSR1+1OINm+YifVjEZVcxmc1RwgeYDAzAEtanIsEm7/heyHdD9999PVVUV5eXlFBcX86EPfWjBPkuwMhDTi7PIzc2lv7+flP4AlJiZTMxEn4LZvHlzrMMTCI6irq6OQCBAbWchQ+WQNgrb8lsxGIxs3br1qH1tNm0Asdbu5rXgOoZzwNNlBMbxer2iXYpgSRIOh5menkZVIWiJTC0GAhDPcdesLrqMahAwamb68MKKLr0Wl0AwV0SmaxbRyvRjojK9YGmjqiqKogDQX6hNYa2pnSY+XmLTpk2kpKQctX9cXBxpaWkkWFRyXBKqQaJjSJjpBUubmZkZrd+i30zADMYQJJi1FYoWi+WofXXRFWcKIKESNKuEw1otLN2ILxDEGiG6ZqFXps82RlapiMr0giVKe3s7w8PDdPYn01EGxqDKJuORMhEnIisrC4BUl2ZK9hi1Zu5CdAmWKnptroDp6LY/s0s66BgMBoxGIyYjmAISqiThCxwpkioQLAWE6JqF1WrVKtM7Roj3wWgmuIbj8Xq9jEf6MgoESwG9TMRhYymqQaK4UcVhncZqtVJQUHDC1+iiK2FYe5BNZ2rmYiG6BEuRUCjEzMwM4TAEErQBsDmkNbc+WcFQ3eNlDGiD5JC08L4ugeBMEKJrFiaTCavVSpxZiprpu8c0A7Iw0wuWCh6Ph0OHDuH1SXRt1YorOpxdgJblOll5k2imKzgCwIRdeyAJ0SVYiugGem8gnpABzAGwxAUxGAzHTS3q6KLrWDO93+9fhIgFgtMjRNcx6L6uFL0yfYJWmV74ugRLBUVRIn0W1zOZArY+qCx0Eh8fT2Vl5Ulfl5mpTScWZWnT54O5Kj6fhNvtFpkAwZJDF13BOM2rZZ4OIUna1OLJBhbRIqmqVt39VJXpDxw4QFVVFdXV1bS1tc17/ALBiRCi6xh0X1fC6AQA3hwtjS1El2ApEAwGo1W7BzZrBX0dDWMYjRJbtmw5Zd2cxMREkpOTyUwLkOmGoFmiYyATVVWj1bYFgqVAIBDQ/gtK+C0goRIvaVOLp1ppq2e64s0BJFUz04dC2lSlXmBV55lnnuFjH/sYtbW1rF279qTveezrBIJzQYiuY9AzXdlGrTnwaMRM73Q6hZleEHP279+P1+ulqTOH3mJI8MKW7IPAyQ30s4nW63Jq1/JwSBNuYopREAumpqbYtWsXW7Zsoby8nCeffBKAtWvXMjIygi8cT3NdLbddt4s4c5gf/ehH3HrrrVx88cUUFhby9NNPc88991BRUcF1111HKBTCaDRiNETM9EjUNhzguuuuo6qqig9/+MOMjo7ywgsv8PDDD/PII49w+eWXHxdXcnIyd911F1u2bOGdd97hN7/5DTt27KCqqorPf/7zUSH2hS98AVmWKSsr47777ou+/t5772Xz5s1UVlby93//9wB0dnZyxRVXUFlZyc6dO+nu1ppz33zzzXz5y1/mwgsvpKSkhN/97neANtC/5JJLonXA9FZCguWNEF3HYLPZNDO93U2cH0ayYHDYgtfrZWJiItbhCVY5uoG+JyvSZ7E2QFpyiJKSkmgrq1Ohi64Etw+A6bRUQIguQWx46aWXcDgc1NfX09TUxDXXXHNUz8agRZtalMLazyaTiba2Nl599VX+8Ic/cMMNN3D55ZfT2NhIQkICzz///JEpxoiZ/u67vsQ//MM/8Pbbb1NRUcF3vvMdrr32Wm6//XbuvPNOdu/efVxcU1NTnHfeedTX15OVlcWTTz7JW2+9RV1dHUajkSeeeAKAf/qnf0JRFBoaGnj99ddpaGhgeHiY3//+9zQ3N9PQ0MA3v/lNAL70pS9x00030dDQwKc+9Sm+/OUvRz+vv7+fv/zlLzz33HPce++9APz2t7/l6quvpq6ujvr6eqqqqhbgLyBYbERx1GMwmUzk5OQwMDCAtQ96i6FrzIo1qxun00lqamqsQxSsUvr7++nt7cU9ZqZzm2YQLva2QubcslxwJJOb7B0FEpi0mSEoRJcApEsWppaV+sbJx/YVFRXcddddfO1rX+O6667j4osvxufTBgQ+vwFjHEgqGCRNQJnNZt73vvdhNpupqKggFApxzTXXAFBeXk5nZydXXnkl09PTGIIhJsanGJ8Y54ILLiAQCHDTTTdx/fXXnzZmo9HIRz/6UQBeeeUV9u3bF/2OTU9rq4RB65P4s5/9jGAwSH9/P/v372fz5s1YLBY++9nPct1113HdddcB8M477/D0008D8OlPf5p77rkn+nkf+tCHMBgMbN68mYGBAUD7Tt9yyy0EAgE+9KEPCdG1QhCZrhMQfTD1a2bMCYtmQBa+LkEs2bNnDwCNE5vwx0HhQVifP0ZqaiobNmyY03vomS5HsubhcjsgFFIZGBgQBSQFi86GDRuoqamhoqKCb37zm3z3u99lenoak8nEjKr5s8IeH5KkmeQNBgPx8dqKXb1Jtm6qNxgMBIPBqK/LhHb/1jvgnckKxtl1wFRV5aabbqKuro66ujoOHjzI/fffT0dHBw899BCvvPIKDQ0N7Nq1C5/Ph8lkYs+ePXzsYx/jueeei4rCU6Efk/55AJdccglvvPEGeXl53HzzzfzqV7+ac/yCpYvIdJ0Ah8NBXV0diWMTQIYw0wtizvT0NE1NTQSDYfqqtfpa9lYXrAVZljEY5jZ+ysjIIC4uDkf2FMkTMJkCPYOpFOVOMDIyMqcpSsHK5FQZqYXC6XSSmZnJDTfcQHp6Oo899hg+n4/8/HzqDzVwQfFVvPL8M8CpDfSzOWKmD5KakEpKejpvv72HCy/cwX/+539y6aWXnlGMO3fu5IMf/CB33nknVquVkZERJiYmGB8fJykpibS0NAYGBnjxxRe57LLLmJycxOv1cu2113LRRRdRUqJZAS688EL+67/+i09/+tM88cQTXHzxxaf83K6uLvLz87n11luZmZmhpqaGG2+88YxiFyw9hOg6AUeb6TM0M/3QETP9yZYrCwQLRW1trbZysbOY4QrIGIGtBW0Yjabj+iyeCkmSsNvtdHd3k+WEyVJweXMoYgKXyyVEl2BRaWxs5O67745mrX70ox+hqipfvOMe7v2HO0l+8AEuPv884Pi2PyfDYDBgMpm0rFdA4rs/fYQHvvpV/DNe1q5de8YZo82bN/PAAw/w3ve+l3A4jNls5qc//Snnn38+1dXVbNy4kTVr1nDRRRcBMDExwQc/+EF8Ph+qqvIv//IvAPz4xz/mM5/5DD/84Q/Jycnh8ccfP+Xnvvbaa/zwhz/EbDaTnJwsMl0rBGmZrMhb8CD7+vrIy9N62AUCAb7//e/j84X5j80XEYiDT72zl+z0AHfeeafwdc0Ds8+34NSoqsqPf/xjRkdH+UP4AjrKJCpe8XKFo46Kigo+8pGPzOl99HP+4osvsmfPHv40JLP/kjjKd/vYaa/hwgsv5Kqrrlrgo1k9LIdrvKWlhU2bNsU6jChutxu/348nlIQvSSJhIkyq2UtCQgIZGRmnfK3f74+a6MfGxvB6vXiCSfiSJRLGw6TGeUlOThb373li9vle7Zzke3TC7MxpM12yLF8AfD/yowN4HvgLcC8QBn6tKMpPZFlOAn4NWIE/KIryg8jrHwQuBDqBWxRFCciyfD1wJzAN3KQoSu8ZHeECYzabycnJYXBwEKsT+oqgc9hOdnoP/f394ksrWFQOHz7M6Ogo7X2pdF4BpoBKWfyp+yyeCt3XlTgxDmTjzdH8JLqBVyCIBcFgEL/fTygM/kjbnzj11G1/Tka0Mn0oBJgIn6JIqkCwmJx2El9RlHcURblMUZTLgLeBZ9AE107gAuA2WZYNwOeAFxRFeQ9whSzLebIsbwHyFEW5GDgAfEyWZRPwd8BlwLeBb837Uc0DepHUlIiZfjxemOkFsUEvE9EWt0Hrs9igYsvyYbfbyc/PP+P300VXtilSi84hGrsLYo9egX46EE/YAHF+sMSFjjLPzxVddJklTWTNrkwvrnFBLJmzc1KW5ThgB/AmcBBIBSzAtKIoYbRs1suR3f+EJshmb3sJuAhYD7QoiuJXFOUt4OR9S2KI7utKjFSmnxZmekEMGB0dpbW1lUmvRNdWLZWf5+oETt1n8VTk5ORgMBgozh0hzq81dh8aicPr9TI5OTmf4QsEc0JV1SNtf+K1CRiTTytAmpCQcMbX+REzfQhDGIImCAQlwuGwqDAviClnYqS/EnhFUZSwLMtPAnuAEPBA5PcZwHjk3x4gM7Kt/wTb9P0AjCf6MFmWbwNuA7jjjjsW3GsSCATo6+uL/mwyaacm06Cb6Q3ght7e3qP2E5wdx55vwYn561//CkCtq5SpbZDbA+WF/cTHW8jKyjqjczj7nKenpzMyMkJOZPq8a9RGTmYPTU1NFBQULMShrDqWwzWuT+nFmmAwqMUSMOBPAUlVsRi0el1ms3lOMaqqetR+upneFAB/PPhDZswmP9PT02ecORMcz7HnezUTDAaP+66fzM95JqLrekBfbvHPQAUwCbwiy/J/A2No2a8xIA3oiry/boBKA0Zm7adzwmGHoig/A34W+XFRjfQAVquV5557jrW2YV4LqAznSLhbzWTjJTU1lZSUlIUOaUWzHEzGsSYQCHD48GEAXOXa9HZu4yjGYonq6moKCwvP6P1mn/M1a9YwMjJCiisIRSYm4jKAHgKBgPi7zBPL4RofHx9fEmZoPcs1o8ajIhHvUzGbVEwm05xLRRxr7I6LiyMYDGIMhCHeQMhgAvyoqrokjnm5I4z0RzCZTHP+rs9pelGWZTOwHc1AD+AHJhRFmQGCaNOMb6Nlw4j8/91jtl0NvAW0AptkWY6TZflCoGFOkS4yupneYlGxOrXUdteIDRBTjILFobm5menpaRo6bDgLIXEKqqyHAK0217mg+7oso1MATGdpDzZRmV6w2MyeWgxYtIkPk1/z0s5VcJ2Io830EDZp93GRnRHEkrl6uq4EXo14twD+BfiLLMvvAG8oitIP/Bz4gCzLfwFeVxSlV1GUOmBAluU3gTLgKUVRAsDDwGtoU5MPsETRfV2pUTN9FqDV6xIIFhrdQN9nLQKgqMZPSlKItWvXkpWVdU7vrYuu9PAwAOO52q1AiC7BYuPz+QiHw0z7TQTiwBiGRPPZrVqcjZ6FMUna/TsYJ6GqR8z0Bw4coKqqiurqatra2o56raqqXHHFFYyPjx/3vmfDt7/9bf785z/Py3stNZ577jm+/e1vL8h7X3vttYyNjS3Ie8eKOU0vKoryIvDirJ9/jVYeYvY+k8CHTvDau0+w7UngyTOMddHJzc2lvr6ehJFJIB1vtjDTCxaHvr4+nE4nruF42s8zIIVVime0LNfZlIk4Fl10ldiGeD1czJANJp1GYBSfzzfnQpQCwbkSzXIZNJFknlYxGLXWOHornrPBZDIhSVLUTB8yQiBoIM4cJhgM8swzz/Cxj30s2pB6Ni+88AJbtmw5rjyQ3ox7rh0gdL773e+e9XHMhWAwGPUhLza7du3iW9/6Fvfee+85ZSZno5/nF154YV7ebykhei+eAj3TlSlpS+vH8rTTJUSXYKHRs1wt0xsJmiUKD8K6vHHS0tJYv379Ob+/xWIhPT2dlKQQOQMSYaNEx4CWPRP1ugSLxfj4ONdffz1XXnkl1119IX/8/VOYg37OO+88pqa0qW9FUbjssssAuP/++7npppu4+OKLKSws5Omnn+aee+6hoqKC66677qg6XJIkYTabaW5u4sb37uTjF1/Irbd9lrGxMZ599lkefvhhHnnkES6//PLj4nriiSf44Ac/CEBnZyelpaXceOONlJeX09PTww9/+EO2b99OZWUl9913X/R1//iP/0hpaSnvec97+MQnPsFDDz0EwM0338zvfvc7QGugXV1dTUVFBbfccgszM1pWr6ioiPvuu4+tW7dSUVHBgQMHTnnuXnvtNS6++GI+8IEPsHnzZkKhEHfffXc0rn//938HYHJykp07d0bf93//938BmJqaYteuXWzZsoXy8nKefPLJs4pPkiQuu+wynnvuueNifP3116mqqopmFCcmtGoAJzp/JzrPRUVFuN1uAH7zm9+wY8cOqqqq+PznP08oFCIUCnHzzTdTXl5ORUUFP/rRj055zpYCQnSdArvdjiRJrLW7MQVU3FYY8ZiZmJgQS+sFC4bX66WpqQl/QKW3OgkAe5sm9M+kz+Lp0AcVaS7NNTBq0FoAiSlGwWLx7LPPYrfb+d/n3uB/3nqXSy69koQ4TTidLNva1tbGq6++yh/+8AduuOEGLr/8chobG0lISOD5558/al+z2cxXv/pV7vra/fz3m2+zfmMZ//Iv/8LOnTu5/fbbufPOO9m9e/dxn/HWW2+xbdu26M+tra188YtfpLm5mYMHD9La2sqePXuoq6tj3759vPHGG+zdu5ennnqK+vp6XnzxRRRFOe59fT4fN998M08++SSNjY0Eg0EeeeSR6O+zs7OpqanhC1/4QlSwnYqamhr+9V//lUOHDvEf//EfpKWlsXfvXvbu3ctjjz1GR0cHFouF3//+99TU1LB7927uuusuVFXlpZdewuFwUF9fT1NTE9dcc80Zxffwww9Ht8uyzJtvvnlcfA899BA//elPqaur48033yQhIYGXX375hOfv2PM8e6FQS0sLTz75JG+99RZ1dXUYjUaeeOIJ6urq6Ovro6mpicbGRj7zmc+c9pzFGtF78RTExcWRnZ3N0NAQ1n4JZwF0uG1kpvXS398/LxkHgeBYampqCIVC1HYXM1IJmW6oLug44z6Lp8Nms9HS0kKCexpIYjpda6QtRNfq5IWsPy7I+147fPVJf7d27VreeOMNHnzoAS7YdQ0XlZ+PJHmRJOmkg4v3ve99mM1mKioqCIVCXHPNNQCUl5fT2dl51L5erxePx8P5O85nCvjA33ySuz//6dNWph8ZGTlqhXphYSHnn38+AC+//DIvv/wy1dXVgJZJam1tjfZctFgsWCwW3v/+9x/3vgcPHqS4uJgNGzYAcNNNN/HTn/6Ur371qwDRll7btm3j6aefPmWMADt27KC4uDgaV0NDQzSj5vF4aG1tJT8/n2984xu88cYbGAwG+vr6GBgYoKKigrvuuouvfe1rXHfddVx88cXU19fPOT79c0Bb7X8ir/NFF13E3/3d3/GpT32Kj3zkI+Tn55/0/BUUFBx1nmfzyiuvsG/fvqi1Ynp6GqvVyvvf/37a29v50pe+xK5du3jve9972nMWa4ToOg25ubkMDQ2R4gxCgYnxuCygF6fTKUSXYN4Jh8PREbJrrZaJyq+dIi5fory8fN48E3Ak05UyMwokMWk3gU+ILsHiEAwGKSgo4PkX/sizf3mLf/veAzSddyF3//1XMZvNhMNaBtbn8x31Or3Glt4kWy+cajAYCAaDR+2rr2CMMwSYwkxQ+/G0lelNJhPhcDgq/JKSkqK/U1WVr3/963z+858/6jWzMz9ni35sRqPxuGM5EcfG9eMf/5irrz5a5P7yl79kaGiIffv2YTabKSoqwufzsWHDBmpqanjhhRf45je/yc6dO6NTqnOJb3aRWZ/Pd8JFD/feey+7du3ihRde4KKLLuKPf/zjSc9fZ2fnUcczG1VVuemmm/j+979/3O/q6+v54x//yKOPPsp///d/84tf/OKUxxBrhOg6Dbm5uTQ0NJA4qpnpRWV6wULS2tqKx+PhcF8qXVeA2Q9lCQeB+THQz0Y30+enDwD5DOWC/5DK4OAgoVDonEzMguXHqTJSC4HX68XlcmFKtHPt3/wN6UlpPPvbX2A0GikuLmbfvn28733v46mnnjrrz8jKyiI9PZ2afe+w7uKdPPu7J9m+40JUVY2KuhNRWlpKe3s769atO+53V199Nd/61rf41Kc+RXJyMn19fZjNZi666CI+//nP8/Wvf51gMMhzzz3Hbbfddtz7dnZ2cvjwYdatW8evf/1rLr300lMew549e/jJT37Cr371q1Pud/XVV/PII49wxRVXYDabOXToEHl5eXg8HqxWK2azmd27d9PV1QVoq/AzMzO54YYbSE9P5+c//zn33HPPGccHcOjQIcrLy4/b3tbWRkVFBRUVFezdu5cDBw6c9PydCl0Q3nnnnVitVkZGRpiYmCApKYm4uDg++tGPUlpayg033HDaWGONEF2nQe/BmKkOAemMOQwwIkSXYGHQDfQd8XqfxRDWLB8Oh2PeC22mpKSQmJiIHS/pozCWAZ2uTDasGWVoaCgqygSC+UavzXXgwAHuf+BGJKOBOMnIDx78HgkJCdx333189rOf5Vvf+lbURH82SJLET37yE+666y6mpr+Jo7iYH3zvXwFO2Q5o165dvPbaaycUXe9973tpaWnhggsuACA5OZnf/OY3bN++nQ984ANUVlZis9moqKggLS3tqNdaLBYef/xxrr/+eoLBINu3b+f2228/5TF0d3fPqXTG5z73OTo7O9m6dSuqqpKTk8MzzzzDpz71Kd7//vdTUVGBLMts3LgRgMbGRu6+++5oxvCRRx45q/gAdu/efcIs1MMPP8zu3bsxGAyUlZXxvve9j/j4+BOev1MN8jZv3swDDzzAe9/7XsLhMGazmZ/+9KckJCTwmc98JiqgTxTDUkNaJs0/F70ivY7f7+f73/8+Xp/ELyrOJ2yAT+/ZQ0ZaiL//+78/aTpUcGqWQ7XuxWZ4eJif/OQnTEwZ+a9N5+FNgiueP0xFySAf/OAHqaqqOqf3P9E5//Wvf017ezvPhi+gvUxCfn6Ii0pa5+XzVjvL4RpvaWlh06ZNi/65MzMzDA8PMxMwMJaSiKRCpncKk1HFarWeVfmDk1VIHx8fZ3JykvFAItMpBhImw6SavCQmJpKenn7C9+rv7+fGG2/kT3/60xnFMDk5SXJyMl6vl0suuYSf/exn5+zDvPvuu/n0pz9NZeXSalOsn++BgQE++clP8sorr8Q6pJhxku/RCRuGitWLp0E30ydaVKz9EqpBomNYywCIbJdgPtG9XHWDG/AmgaMLKkoGSUhIoKysbEE+U89mJQxpy8K9KVpdInFtCxaSaNsftBWK8dMqJqOK2Wye93pT+tSVMax5pEJm7bF3KjN9bm4ut9566xkXR73tttuoqqpi69atfPSjH52XhS8//OEPl5zgmk13dzf/9//+31iHsWwQ04tzIDc3F7fbTaozRP8aIx5zFqAVrzxR+lkgOFMCgQB1dXWEQir9FRkA5DaPQDFUV1ef1vNwtuiiK2nSA1jwWuNAFbW6BAtHOBxmenpaqw5v0QSQyR8Ay7m1/TkZUTO9MQDEETSDOnPETK8b8Y/l4x//+Bl/1m9/+9tzCXVZMt9e05WOyHTNAX2Vl1aZHqaztRuDyAYI5ovGxkZ8Ph9NXbn0r4HkCaiyaQb6c+2zeCp00WWzaAWAhx0SoZCKy+U65eougeBs8fl8mqfLr60mNIYgIU7rh3gubX9OhtFo1HxLJhVTEMIGmAlo/qHTlY4QCOYbIbrmQNRMH45UpneIyvSC+UNV1SN9Fu1FABTUzpCcqLJ+/XoyMjIW7LOzsrIwmUwU2j0keGEiFfqHk5iZmVlxPc8ES4No2x+T5r+Km1YxGDST+XwV/p2NXpkewBjQBhIBVftZiC7BYiNE1xzQswFrHUMYgypuq8qox4jH48Hr9cY4OsFyp7e3F5fLhXMono5KCSmssi4wf30WT4XBYMBms2E0SmRHahv2TVgBMagQzD+hUIiZmRnCYQgkaNN65vC5N7c+HbroMkREV9goMl2C2CBE1xyIj48nKyvrKDN957D2YDpRFV6B4EzQs1wHApsImiWKW6DYMUFGRsaieAb1QUWyS3sATSWkA6JIqmD+0bNc3kA8IQOYA5AQF8RgMCxok3V9VaNR1cz04ThN8Pn9/gX7TIHgRAjRNUf0KcaUfq22i8ek9akT2QDBuTA1NcX+/fsjfRY1r6CtQxPysiyf1OQ7n0RXMHq0ZrTebC3jIESXYL7RZwaCcdoaLvO0dj9NSEhY0Gtdz3TFG7WBRcCscujQYS6//HKqq6tpa2s7an9VVbniiivOePXiyfj2t7/Nn//853l5r+XO7HPx8MMPn3a2yO/3c8kll8ypQv+Z8uijj5626Ox8I0TXHNEfTIkRM703W6vPJUSX4FzQ+yzWdK9lNBOyBmFrYQcmkynam2yh0a/tLEPEs5irPfyE6BLMJ4FAgGAwSCAo4beAhEq8tPBTi3DETG+KmOlVSeL5F15m165dvPvuu6xdu/ao/V944QW2bNlCamrqUdtPV8n+ZHz3u9/lyiuvPKdjOBULIUgWitnnYi6iKy4ujp07d/Lkk0/OaxzBYJDbb7+dG2+8cV7f93QI0TVH9ExXemgYAI8w0wvOkaP6LK7XhE9e3SQmk4Hy8vIFfxDp2Gw2JEmixD6CKaAybIURj5mJiQmmpqYWJQbBykd/uPrCFlRJIs4HwcAkN910E9u3b6e8vDz6YC0qKsLtdgNa/Tq9Kv3999/PTTfdxMUXX0xhYSFPP/0099xzDxUVFVx33XUn9GjV1dVx/vnns3PnTj772c8yNTjKX/70Mr98/DF+/etfc9VVVx33mieeeCLah7Czs5PS0lJuvPFGysvL6enp4Yc//CHbt2+nsrKS++67L/q6f/zHf6S0tJT3vOc9fOITn+Chhx4C4Oabb442iH7llVeorq6moqKCW265hZmZmegx33fffWzdupWKigoOHDhwyvP52muvcfHFF/OBD3yAzZs3EwqFuPvuu6Nx/fu//zugFWzduXNn9H3/93//F9Cy7Lt27WLLli1Hnfv5ig/gwQcfpKKigi1btnDvvfcedS7+3//7fzidTi6//HIuv/xyfvGLX0QbawM89thj3HnnnQB86EMf4oknnjju/U92DPv27ePSSy9l27ZtXH311dHn9GWXXcZXv/pVZFnmX//1X7n//vujf6O2tjauueYatm3bxsUXXxw9vv/5n/+hvLycLVu2cMkll5z2mE+HEF1zJGqmtw9gDKkM2VQ8k0bGxsaEmV5wVhw6dIjx8XFae9PpKoU4P1SktACwY8eORYvDbDaTlZWFxaKS49KyXF3D2vS5yHYJ5gO97Q9A0KKZ2E0zQXbv3k1eXh719fU0NTVxzTXXnPa92traePXVV/nDH/7ADTfcwOWXX05jYyMJCQk8//zzx+1/44038uCDD/Luu++yceNGHvmX7/Oeq97Lx2/4DLfeemtUhMzmrbfeYtu2bdGfW1tb+eIXv0hzczMHDx6ktbWVPXv2UFdXx759+3jjjTfYu3cvTz31FPX19bz44ovRAdVsfD4fN998M08++SSNjY0Eg0EeeeSR6O+zs7OpqanhC1/4QlQMnIqamhr+9V//lUOHDvEf//EfpKWlsXfvXvbu3ctjjz1GR0cHFouF3//+99TU1LB7927uuusuVFXlpZdewuFwHHXuzyS+0zX4fvHFF/nf//1f/vrXv1JfX88999xz1O+//OUv43A42L17N7t37+bjH/84zz77bFQ4P/7449xyyy0AlJeXR72vsznRMQQCAb70pS/xu9/9jn379nHLLbfwD//wD9HX+P1+FEXhrrvuOuq9brvtNn784x+zb98+HnroIb74xS8CWmbuj3/8I/X19fzhD3847d/kdIjiqHPEYrGQmZkJjJDTL+HKh45BK1XJ/fT39x+XnhYITke0z2LiegCK60JkpwfIz8+P1oZbLPQCwCmuSAFgUxbQj8vlEtf2KiHzv8+s5c1cGfn4VZEVi2F8fiP+VDCEIcE8w8aNG/mnf/onvva1r3Hddddx8cUXn/b93ve+92E2m6moqCAUCkWFWnl5OZ2dnUft6/F4GBsb49JLL8Xn83H99ddz621aL0HVeHIz/cjICCkpKdGfCwsLOf/88wF4+eWXefnll6PT/5OTk7S2tjIxMcEHP/hBLBYLFouF97///ce978GDBykuLmbDhg0A3HTTTfz0pz+NZng+8pGPALBt2zaefvrp056LHTt2UFxcHI2roaEhmlHzeDy0traSn5/PN77xDd544w0MBgN9fX0MDAxQUVHBXXfdddS5r6+vn3N8+uecjD//+c985jOfiRa81Z6fJyc5OZkrrriC5557jk2bNhEIBKioqAC06eG4uDgmJiaO+ruc6BiamppoamqKZjBDodBR99O/+Zu/Oe6zJycnefvtt7n++uuj2/QM30UXXcTNN9/Mxz/+8ejxnwtCdJ0BDoeDkZERUvtDuPKNjJmyASG6BGeO2+2mvb0dz6SRzmrN5LtmuA1SYlPh2WazadmCkSkglelMzbMoMl2C+UDPcvmleECrzWU0wqZNm6ipqeGFF17gm9/8Jjt37uTb3/42JpMp6p3y+XxHvVd8vPYeeqNm3YBvMBhO6W2Klo2QVCRUwgaVcFh7KIfD4aNqhOmfr2+b3WNXVVW+/vWv8/nPf/6o9z9d5mcu6MdmNBrn5NM6Nq4f//jHXH311Uft88tf/pKhoSH27duH2WymqKgIn8/Hhg0bjjv3+pTqXOI7VcPws+Vzn/sc3/ve99i4cSOf+cxnjvrdzMzMcStcT3QMH/7whykrK+Odd9454WecqF9yOBwmPT2durq643736KOP8te//pXnn3+ebdu2sW/fPrKyss76GMX04hmgq+XE4Uhl+ixRmV5wduhZrnp3KdOJkN8BZUVuEhMT2bx586LHo1/baUHNszhh16aAhOhaPYx8/KoF+S8cDker0AcStEeOOahllzweD4mJidxwww3cfffd1NTUAJp/aN++fQA89dRTZ31MaWlpZGRk8Oabb2I0Gnn66ac5//zzMQUkVEkiGD5xH8bS0lLa29tP+J5XX301v/jFL5ic1J4DfX19DA4OctFFF/Hss8/i8/mYnJzkueeeO+61paWldHZ2cvjwYUBrOH/ppZee8hj27NkzJ7P31VdfzSOPPBI9lkOHDjE1NYXH48FqtWI2m9m9ezddXV2AVu7o2HM/n/FdddVVPP7441H7zcjIyHH7pKSkMDExEf35vPPOo6enh9/+9rd84hOfiG4fHh4mOzv7uHZoJzuGoaGhqOgKBAI0Nzef8hhSU1MpLi7mf/7nfwBNwNbX1wPadPZ5553Hd7/7XXJycujp6Tnle50Okek6A/QHU0Z4GEjD4zCCR9TqEpwZfr+f+vp6QiEVZ2U6APb9biiBrVu3znvD37mgexaLsgZ5g2KG7CrTTRJutxu/3x+tcyQQnCm64PL64wgmgCmotf2RJAOHDh3iwx/+cDRrpfuH7rvvPj772c/yrW99K2qiP1v+8z//k9tvvx2v10t+fj4PPfQQkl4kNZJ38Pv90SwOwK5du3jttddOWCfvve99Ly0tLVxwwQWANi32m9/8hu3bt/OBD3yAyspKbDYbFRUVpKWlHfVai8XC448/zvXXX08wGGT79u3cfvvtp4y/u7t7TotqPve5z9HZ2cnWrVtRVZWcnByeeeYZPvWpT/H+97+fiooKZFlm48aNgNZ67O677z7q3M9nfNdccw11dXXIskxcXBzXXnst3/ve947a57bbbuOaa66JertA63lZV1d3VCeO3bt3s2vXruM+40THEBcXx+9+9zu+/OUv4/F4CAaDfPWrX6WsrOyUx/HEE0/whS98gQceeIBAIMDf/u3fsmXLFu6++25aW1tRVZWdO3eyZcuWU77P6ZCWSX+1BQ+yr6+PvLy8U+7j8/l48MEHmZwy8nj1DlQJPlOzh5SkEPfcc8+irTZbCczlfK9UFEXh+eefp7Y9lzd2FZMyDn/b9g5JCfCVr3zluBv1fHG6c/6jH/2I8fFxfpN1IcNWuPKlQ5QVuvnsZz9Lfn7+gsS0klkO13hLSwubNm1a0M/QhbsnlIQvSSJhIkyq2UtCQsK8triay+BgcnKS8fFxJvwWvKkmLF6VNMPULM+uRn9/PzfeeCN/+tOZ+dwmJydJTk7G6/VyySWX8LOf/YytW7ee1fHo3H333Xz605+msrLynN5nvtHP93zHd91113HnnXeyc+fO6LaPfOQj/PM//3PUa7bUOMn36ISF58T04hlgsVjIyMggOSlEzoBWmb5tQLRMEcyd2X0WnY5CAApqZki0qGzYsGHBBNdc0LNdGf2al2YkJFYwCs6NYDCI3+8nFAZ/pO1PnLo4tblORLQHY6QyfcisxXTs9GJubi633nrrGRdHve2226iqqmLr1q189KMfPWfBBfDDH/5wyQmu2cxXfGNjY2zYsIGEhISjBJff7+dDH/rQkhVcZ4qYXjxDHA4Ho6OjpDlDDDiMjEVWefX391NSUhLr8ARLnO7ubgYHB3EOJtBxkdZncYOq1YOJhYF+Nna7nUOHDpHg9gGJTKdrq4TEgEJwtugG+ulAPOFErSyKJS6EwWA4ajpvsdBFl8UcZFJVCZpBs5eFCIVCGCM9GUGb5jpTfvvb385TpKuP9PR0Dh06dNz2uLi4RS9gupCcVnTJsnwB8P3Ijw7geeA7wCOADWhVFOXzsiwnAb8GrMAfFEX5QeT1DwIXAp3ALYqiBGRZvh64E5gGblIUpXdej2oByc3Npbm5mYThyCqvLFGZXjB39CxXS2gjIZPE2kaVAvsUWVlZMRft0R6M02NAIpM2MwREpktwdhxVmytee9SYfEGIW/i2PydDq0pvIhgMYgpIBOLAHzRjMgYIBAJHiS6BYCE47fSioijvKIpymaIolwFvA8+gia4fKIpyhaIo+rrZzwEvKIryHuAKWZbzZFneAuQpinIxcAD4mCzLJuDvgMuAbwPfmudjWlB0M316UK9Mr31JhZlecDomJiZoaWlhZkalp1qbWrF3aeONxeqzeCp00eVIGQTA7YBQSGVwcPCsWp8IlgcL5evV2/74Awat7Y+qYjFoU4t67aZYEJ1ijJjpQ5ImCE9UzV4gOB1n+v2Zs6dLluU4YAfwJlANfFGW5ddkWf5QZJcLgZcj//4TcMEx214CLgLWAy2KovgVRXkLWLqT1SdAF11rbYNIYa0y/eSUkdHR0ePqyQgEs6mpqSEcDrOvdz2eDMhxQXVRN2azmaqqqliHR3p6OvHx8eRbvaSMw3QidLnSCAaD0ZYsgpWFxWJheHh4QYSXXipgRo1HRWv7YzapmM3m45b+LybRel1Brc5U2HRkBaNAcCaoqsrw8PBx9cNOxZl4uq4EXlEUJSzL8nnAXUAL8IYsyy8BGYDuOvQAmZFt/SfYNtuduKzyuUdW3IxidUkMOKB9MIfKYhf9/f3R6sACwWxCoVC07tBAqbb4wlE/jrFAoqKi4oy+tAuFJEnY7Xa6urrIcqpMpEoM+HIoYRyXy4XVao11iIJ5Jj8/n97eXoaGhub1fVVVZXx8XCsVYYgn5Ia46RAeU5CEhIQFEfHBYHBO5VaCwSCTk5MEQkZ8wyYMYRgLzWAwGBgcHJz3uFYqcz3fKx2LxXJGq7vP5IxdDzwe+XePoih7AWRZPgjkAWNAauT/aUBX5P31Nu1pwMis/XROWNZWluXbgNsA7rjjjhM2JZ1PAoEAfX19c9o3PT09YqYPM+AwMGrIAlwcOHBA1DOaI2dyvlcCHR0dTExMcKArg+5rIN4HlWkHAa3FyGKci7mc8+TkZAASB/ywMZ6pZG015eHDh8+pCvNqZLlc43FxcfN+3+rs7OTPf/4zzV3Z/PmaDSRNwqda3yExAT7xiU8syPRiIBCYUwYtGAzy+9//Hp8vzC82X4Q/Dj75lkJOpp9PfOITJ6xYLjieuZ7v1cCJxPrJysXMSXTJsmwGtgOfjWyql2V5HdABrEXLZr2Nlg37ReT/twLZaP6tXwFXA28BrcCmyHSlDDSc6DMVRfkZ8LPIj0uiTpdOSUkJHR0dETN9Ct4s7UHl9XqXfF2epcJyqGE0n/z5z38GoCtN77MYJDMtQEFBwaItB5/LOV+3bh3Nzc0kTo4DOXhztBVmk5OTq+rvNR+stmt8Nn/5y18AcCZrmf81jUES0lXWrl3H+vXrF+Qzz+R8W61WBgYGsPZBbzF0juaSk9lFOBxetX+zM2U1X9/nwlw9XVcCryqKortpvwE8hiaiHlMUxQv8HPiALMt/AV5XFKVXUZQ6YECW5TeBMuApRVECwMPAa8ADkf+WFUfM9FqKfDxXmOkFJ2dwcJDOzk5GPUY6q7RxTsFYGxD7MhHHopvprXHadNOoQzP3u1yuBTNcC1YWXq+XQ4cOaQtGKrVMiH2kG+Ccq3nPFw6HA4CUfs08P5GgFWldDplJwfJmTpkuRVFeBF6c9fNB4PJj9pkEPnSC1959gm1PAk+eYaxLBl10FVsHeSNcxFAuTA5IwAg+n29J+HMESwe9TETD2EZ8CbDmMGwqHCYpKWnBq4GfKTk5ORiNRortI8T7YCwDXM3x2LOmGR8fj2nxVsHyoKmpiXA4TH1vMRNVkD0A5YX9xMdbKC0tjXV4gCa6amtrSRwdB7KYsmqricXAWbDQiIr0Z0FiYiLp6emkJWuV6UNGiTaXDRA1jQRHMzMzQ0NDg9ZncYsmWOwHtfn/bdu2Lbm6QEajkZycHEwmAzmRJTC9Y+LaFsydhgbNMTKUp2VNc5umMRolNm/evGQ8QHqmy2oeAGAkX8voOp1OkdEVLChCdJ0lerYrzanNuI4ZNZOxGCkJZlNfX4/f76eucw2DuZDqga2ONiRJYtu2bbEO74REi6S6tFYpE/Ha1IsQXYLT4Xa76evrY8RjpqtMe7yUSIeBpTO1CGCz2TAajZTkjmCZ1jK6zsEEfD4fo6OjsQ5PsIIRouss0UVXonsKgOlMzUwvKtMLdGb3WexfswaAghofFovKxo0bSU1NPdXLY4YuuhJGJwGYztamXoToEpwOPcvVNLqeQBwUtEJR7gTp6ekUFBTEOLojGI1GbDYbJpMBa6QfSs+EltEVA2fBQiJE11mip6dTI5XpdTO9EF0Cnc7OTtxuNz0DiXSUgzGkUiotjT6Lp0IfUGSo2kKRsVztNiFEl+BUqKoaFV3u9ekAZLdqWaPKysqYd1w4Fv0entyvFUWdTMoEhOgSLCxCdJ0l0cr0OQNIYZXBXBWvT2J4eJiZmZkYRydYCuhZrkPqRsJGieImlXybl5ycHIqKimIb3Cmw2bQRf7F9CENIxW1VmZgyMjY2Fu2lJxAcS1dXFx6Phw5nCj3rtObWZZna1OJilUU5E/RyB0kTYwBM2rXyKEJ0CRYSIbrOksTERNLS0khLCZE9KBEySbQ5cwCRERDA+Pg4Bw4cYNon0b1VW81q71k6fRZPRXx8PJmZmSQnquQMSKgGiY5B7doeGBiIcXSCpUp9fT0A7dI6AAqbw2SmBcjPz1+ShXX1TJc9PtJrNF8iFFLp7+8XvUYFC4YQXedAtF5XxEw/YtAeTGKkJNi3bx+qqlLjXMd4Glj7oaqoh7i4uCVlKD4Zuq8rtV+7tkcl7aEpps8FJyIQCLB//35CIRVXueYBzO7TrpWlmOUCyM7Oxmw2U2j3kDQJkynQM5iK3+9neHg41uEJVihCdJ0DuuhKcGuNXYWZXgDH9FncqAlxR70Ho1GisrKS+Pj4WIY3J6Jm+uHItZ2htUYRmS7BiThw4AB+v5+mrlzcVm2V7pb8TgwGA+Xl5bEO74QYDAZyc3MxGiVyerUyEU6vMNMLFhYhus4BPT2dFoiY6R3CTC+AlpYWpqamaOnOpmctWKahMn3pG+hnE810+UcAmLRrdZTFtS04EfrUoitLW6GY3+AnPl6itLSUhISEWIZ2SvR7eJJL8+FOpWq19ERlesFCIUTXORCtTJ+lebgGc1WmfRJut1uY6VcxuoG+K60EgKK6IBlpIYqKirBarbEMbc7ooqswS8tsDTnAH1Bxu90Eg8FYhiZYYkxMTNDe3o7XJ9FdoYnzvMkOYOlOLepEVzBOjgEwFTHTi8GFYKEQouscSEpKIjU1lYy0ENkDaGb6/mxAmOlXKwMDA3R3dzPiMUf7LBZ6WoHlk+UCSE5OJikpiez0ABnD4I+Ddmcm4XCYwcHBWIcnWEI0Njaiqir1fSV4k8DeC5uLhklISFiw5tbzhS668pMjA+d8CAbDuFwuQqFQLEMTrFCE6DpH9C9t1EwvaR4eMVJanezZsweABs9GZixacciNhaOkpKQsmb5zc0GSpGi2K8Op+V2GQ2J1ruB4orW5irQsrnW/VlS3vLx8ybW5OpbMzEzi4+PJt3lJG4PpROhwZRIMBhkaGop1eIIViBBd54j+YEoc0uoXeTOEmX614vP5aGxs1PosVqUAYFvCfRZPR/TadvsA8EYq6AvRJdBxuVwMDAzgGo6naxNIYZXSeC2zuxxW6UqSFB04Z0XM9IN+TTwKX5dgIRCi6xyJVqb3a2b6CYcwHK9W6urqCAQC1HYWMmSDtFHYlt+KwWBg69atsQ7vjNFFV9KUB4ApaxwgRJfgCLqB/sDUekJGicKD4LBOk52dHb03LnX0OBMHtcHFVJpmphcrGAULgRBd50jUTJ+tGY5nm+n9fn8sQxMsIqqqoigKAP2FWqXrNbXTxMdLbNq0iZSUlFiGd1boosueGCkemQehkMrAwACqqsYyNMESIBwO09jYCMDQRi0Lmt2utY5aim1/ToYuulKmtJW6Ew4zIESXYGEQouscSU5OJiUlhcy0ANmDEDRLtLmyUVVVZARWEe3t7QwPD9PZn0xHGRiDKpuMy6tMxLFkZmZiNptZY50gaRKmkqFvKBm/38/IyEiswxPEmLa2NqampjjUk46zUCuNssXWDiz9VYuz0dsBFWREzPR5MDOjMjg4KFbqCuYdIbrmgaiZvi9ipkeY6VcbepmIw8ZSVINEcaOKwzqN1WqloKAgxtGdHQaDAZvNhtEokRUZ9DunNL+LGFAIdAN9d/xaAAoaQyQnaaVR0iJTdMuB1NRUEhMTsWfNkDkM/nhoH8ghHA6L61ww7wjRNQ/oU4yJbs1MPy3M9KsKj8fDoUOH8PokurZqdX4czi5Ay3Itl2mWE6FPMSYPaFPlU4npgBBdqx2fz8eBAwcIBsP0VWjXvG1I6y26HAz0s5EkKZrtyuzVBs7ukGjpJlgYhOiaB3TRlTKjTbmM5woz/WpCUZRIn8X1TKaArQ8qC53Ex8cvq2mWExFtBzQ+AcB0jta8W4iu1c3+/fsJBoPUdxUwlgmZw1BZ0IPJZGLTpk2xDu+MOWKmj6xCz9Q8mEJ0CeYbIbrmAV10FWVGPAEOFZ9PYmhoiEAgEMvQBAtMMBikpqYGgIHNWmFcR8MYRqPEli1biIuLi2V454x+bWebtJpFo7la1k6IrtWNPrU4aNcyRLmNPkwmA5s2bVoWvUWPJboKfSbS0i0ycBaiSzDfCNE1D6SkpJCcnEx2RoCsoYiZfiBLmOlXAfv378fr9dLUmUNvMSR4YUv2QWD5GuhnY7VakSSJYtswZj+MZIN71Mzk5CSTk5OxDk8QA8bGxujq6sIzaaSrXKs9VxjQDPTLbWpRRxdd0VXoDm0V+tDQkGjpJphXhOiaJ/QvbYZupg8LM/1qQDfQ92RF+izWBkhLDlFSUkJ2dnYsQ5sXTCYTOTk5xMdL5EQu5e4RYaZfzehZrsbBtcxYIK8T1uePkZycTHFxcWyDO0uSk5NJTU0lMy1AzoA2cD7sEh0YBPOPEF3zhD4NkxCtTK95AoToWrn09/fT29uLe8xMZ5U24i/2Lr8+i6dD93WluLRedOPmTEBc26sRVVWjBVGH12qDipwDWvHcyspKDIbl+0iJrkLvPbqlm6hML5hPlu83ZImhi67UiJl+QngCVjx6n8XGiU3446DwoDbiT01NZcOGDTGObv6ImulHtenE6axEQGvuLVhd9PX1MTIyQs9AIl0bVIxBlc0py6ftz6mImundUwB4s8QqdMH8I0TXPKF/YYuytFT0kEMrsCfM9CuT6elpmpqatCXz1drN2d6q/e1lWV7WI/5j0UVXWkgbUHhytayeeBitPvQs1+HAelSDRNF+yMn0Y7fbsVqtMY7u3IhmuoJaVX2PQ7vORaZLMJ+YTreDLMsXAN+P/OgAnlcU5U5ZlpOBDuAziqI8J8uyHfgVkAQ8oijKb2RZNgKPAeuBfYqifDXynl8BPg4MAzcoijI+z8e16Ohmepgk060ZjtsHcthU4GZgYID8/PxYhyiYR2pra7WVi53FDFdAxghsLWjDaDQtyz6Lp0IXXcXWQd4IF+G2g3dQgpERZmZmluVqNcGZEwwGaWpq0lpBlSUBkN09AGuXf5YLjoiutbZB3gwVMWSHiX4jMMr09DQJCQmxDVCwIjjtcFxRlHcURblMUZTLgLeBZyK/+jKwb9auXwN+AFwK/B9Zli3AdYBTUZSLgSRZli+QZTkb+ADwHuBJ4P/M07HEHH2KMaNP60unF9gTGYGVxew+i64S7UadX+slziyxefNmkpKSYhnevJOQkEBaWhppySGyhyRCRon2fs3PI6YYVw+tra1aUdSeHAYckDQJW/I6kCSJ8vLyWId3ziQkJJCRkUFKUogcl0TYKNE2oGXvhE1EMF/MeQ5EluU4YAfwpizLqUAF8O6sXXYAryqKEgQUoBy4EHg58vuXgIuA7cDriqKos7atCKKV6XUzfboosLcSOXz4MKOjo7T3pdK5CUwBlbL45d1n8XREpxidmsl4FE10iZVdqwd9arEvRVuhuKYhSIJFZd26dZEs//JHr0yf1qctGhkzade5uIcL5ovTTi/O4krgFUVRwpHpwZ8AV836vVlRlHDk3x4gE8gAxuew7ThkWb4NuA3gjjvu4KqrrjrRbvNGIBA457l7fZolxTcCJDKZawIfdHd3C1/AMczH+Y4Vb775JgBtcRu0Pou1YWxZPrKyspAkacke17mc88REzTyfMDwNJEUHFG1tbdEHleBolvM1fiw+n49Dhw4xM6PSW2kGIHesCzIgPz9/SRznfJxv/TpPHJkE0vBma1nrtrY2SkpKzjXEFcVKur4XgpPdF89EdF0PPC7LchqwRVGUf5RlebYSCsiybIgIrzRgBBgDUiO/n71t3THbjkNRlJ8BP4v8qJ5BnGdFX1/fOT88UlJS+NOf/kRh+iBvk691q9+vMjY2hs1mw2Q6k9O9spmP8x0LRkdH6enpYdIr0bVVqzaf5+qEErjwwguXtHfvXM75xMQEtbW1pPjGgCQm7SaY0bYvx7/jYrBcr/ETsWfPHlRVpa63mIkqyBmAsgIX8fEWLrjgAsxmc6xDnJfzHQwG2bNnD5nqEJDGWL4BRrTv/Ur5W84XK+n6XkzmNL0oy7IZbVrwL8BGIF+W5ZeAG4DvyLJcCOwFLpNl2QRsA5rRPGBXRt7mauCtyH6XHLNtRZCSkkJSUhLWLJ/WrT4O2l3ZhMNh4X1ZIeherlpXKVPJkNsD5YX9WCwWKioqYhzdwqFPL+alHlmdGwyGGRwcJBQKxTI0wSKgTy2687XrwN7kxWjUPIxLQXDNF7pFZJ19CFNAZcgGIx4z4+PjogODYF6Yq6frSjS/VlhRlL8qinK+oijXAL8B7lMUpQt4EPg68AbwqKIo08BzQIEsy28Cvogpfwh4Xpblt4BPAv823wcVKyRJOs5MPxwW3epXCoFAgNraWgBc5dqseG7jKEajRFVV1Yp6+BxLWloaFosFR84MaWMwY4HOgQxCoRButzvW4QkWELfbjdPpxD1qprNM671ZIh0GVsaqxdnExcWRk5NDgkXF6tSOtcNtA8Q9XDA/zGm+S1GUF4EXT7D9/ln/7udojxcRU/3NJ3jdj4AfnVmoy4Pc3FwOHz4cMdMnRr0vYgXj8qe5uZnp6WkaOmw4r4XEKaiyHgJWroFeR5Ik7HY7nZ2dZDpVPOkSgzM5rMODy+XCZrPFOkTBAqFnufaPrSdolihohaLcSdLT0ykoKIhxdPOPw+FgaGiIVGcQZ6EJT3wW0IvT6VxRRY9XKyMjIzQ1NVFUVBST61eYjOYZPdOVPD0KJDJhN8OMEF0rAb3PYp+1CICiGj8p2SHWrVtHZuYJ14OsKHTRlTjoh83xeJPTAG0F40rLeAg0VFWN9lp0l6YDkN06CsVa2x9JkmIY3cLgcDior68ncXQCyGDaqtXnEpmu5cvY2BjNzc00NzdHn8VVVVVCdK0E9AJ7Beku3iGPwTzwH1QZHBwkGAwKM/0ypa+vD6fTiWs4nvbzDEhhleKZ1ZHl0tF9XYmTHsDKlFVbSCDKRqxcOjs7GR8fp70vlZ4rIc4P5Znadb9ShbZ+D882DAIZjOQbYFATXaqqrkihuRKZmJhg//79NDU10dvbG90+4jGTluynpaWFXbt2LfozWSiAeSY1NZXExETseMkYgdFMaHdmsrFwlMHBwegXWrC80LNc+6c3EjRLFLWorMsbJz09nXXr1p3m1SsDPYtrtQwCVkYcEjg10SUeRisTPcvVYVgLQGFTmIy0EPn5+Ss2u2u32zEYDJTY3cTNlDKSBa6WeOxMMT4+TlpaWqxDFJyEqakpWlpaaGpqoqurK7rdM2mkabCEkYJsurfBpX8+THnREG1tbZSWli5qjEJ0zTO6mb6trY3MPpXRTAl3yAqM4nQ6hehaRszMzNDS0kJDQwMdHR34Ayp9W7W6Pfa2fli78vosnoqsrCyMRiNFtjEs0zCeBs6GBBzZ03g8HtLT02MdomAe8fv97N+/n1BIpb9cm2LLcfavmLY/J8NkMmG1WnG5XFj7oLcEukft2LO66OvrE6JriTE9Pc2BAwdobm6mvb0dVdUWsU16JRr7SxjJz6G70oA/0q1MCqsMS1ZgiObmZiG6VgK66Eoc9AEJeNO1UmXC17X0CYVCtLW10dDQwMGDBwkGg4D2BVbcFYxUQqYbqgs6MBpNVFdXxzjixcNoNGKz2XA6neQ4oWct9HqsOLK7cLlcQnStMA4cOIDf76exy8FwOaR6YEtBJ0ajibKysliHt6A4HA5cLhcpzgCUmJlIygS6cDqdbN68OdbhrXpmZmY4ePAgzc3NHD58mHBYq8s+7ZNo6CtiONdOz2YDvm1HXpPfAVmHJlgX30Z+oRfQrvFAILCoK8+F6FoA9GxWsncEyGPSbga/EF1LFVVV6evro6GhgebmZrxe7QsZDIap7ypg0JpHT7mRaa1YNfk1k8St0frN6RWsVwt2ux2n00nyQADWmpm0ZABd9Pf3s3HjxliHJ5hH9KnFgaw1AOTX+4nLkdiwYcOKb/7scDioqakhyeMBsvFaLYAw08eSQCDAoUOHaG5uprW1NTognplRaegtxG3NpbfMiHfWONjRDdkHpyg2tlGUOwkR33xGRgbl5eWUlZUJT9dKQPe+5Ke5IGKmD7ZqBVJDoRBGozG2AQoAGB4eprGxkYaGBkZHR6PbW7qy6E0swlkez9iseqe53WBtGec9jgbAwHnnnbf4QccY3UyfMDYJZDCdrT2MRPHflcX4+Djt7e14fRLdldpjIt/bAazsqUUdvdK6LW4AyMa9RvMvCjP94hIMBjl8+DDNzc0cPHiQQCAQ2R6moXsNQ1l59JaZmKw68hqbE6wtXgrUDtbleSDSJCQ1NZWysjLKy8vJzc2N2d9QiK4FIC0tjYSEBBw506SPwlgGtPdnsmHNGIODg1FRJlh8pqamaGpqorGx8ai+YT0DiRwOrGdwUxKua47snzEMjsYZ1sy0U1owCgUgSUauuOKKVfl31EVXhuQGMhjL1dqkiCzuyqKxsVFr+9O3Dm812HthU+EwiYmJq2LhSE5ODiaTiSL7KAlezb/YW5tIvs3LyMgIWVlZsQ5xxRIKhejo6KCpqYkDBw4wMzMT2a7S1JXLQNoanOVmPLMGxDkDYNvvI2+mg42FoxCxTicnJ7N582bKy8vJz89fEmJZiK4FQDfTt7e3k9mnMpYhMRiwsoExnE7nqnxYx5JAIMCBAwdobGzk8OHDUaPliMdM88g6htdl0H2JimrQvpCJU7CmMYhtuIeKgj5MNs0on5iYSHl5OVu3bl21xUD1415rd/NacB3DOeDpMgLjeL3eVTfduhKZXZtruEjrqGHdPwlroLy8fFVk6o1GI3a7nd7eXqy90LUBeift5NvacTqdQnTNM+FwmK6uLpqammhpaWF6ehrQhFZLt5X+5EJcZXGMlB95TeYw2JtmcHi72LhmCKM9cv9OTGTTpk2Ul5dTUFCw5BY6CdG1QOiiK2qmj6x4ERmBxSEcDtPR0UFjYyMtLS34/X4AfD6J+r4i3Pl2urYaCGilpjAFoLBJJat7kC157SSmqZAGZnM8GzdupLKykpKSkiX3BV5s4uLiyMrKYnh4mByXhCsfOoasVKX043K5KCkpiXWIgnNkYGCAwcFBBoYtdF0AhpBKaXwrsDqmFnVyc3Pp7e0lyTUDG+KZTE4HtCnGldxndbFQVZWenh6amprYv38/U1NT0d8d6M6kN76Igc0W3LOEVtoo5DUHsHp6KC/sx2jVhFZ8vIVNmzZRVlZGcXHxkh4YCNG1QBwx048CCZqZPiBE10Kiqioul4uGhgaampqiDWpDIZXGLgcDmWvoqTAxNctoueYwZB8aY3N6K9kZAVirZSpLStZSWVnJxo0biYuLi9ERLU3sdjvDw8OkukK48o14jJmAEF0rBb3tT8vUOkJGieL9Kg7rNNnZ2asqS5+Xl8fevXtJGo8UA7bHgyrM9OeCqqo4nc6o0BofH4/+7nBvGl3GEgY3JTC46chrUsYhrzmIdSQy85BlgCyIi4untLSUsrIy1q5du2wKjy+PKJch+s1pTdoA7+JgKA+Ch4WZfiEYGxujsbGRxsZGhoaGottbe9PpNpXQX25heNZoydoPtuYpSgyRFS3F2vbc3FwqKyspLy8nOTl5kY9i+WC322lubiZh2AukMJ2pnStRmX75Ew6HaWxsBGBok1bqJqvDDSValmspeGIWC33g7EgcAKwM5UuEOlX6+/sJh8OrPus9V1RVZWBgICq0Zi9a6nCm0BEuwb0xif5ZnZuTJiG/OUT2kJOK/G7i0yVIB5Mpjg0bNlBWVsb69esXtdTDfCFE1wKRnp6OxWLBkT1N2ih4MqDDlcn6fGGmnw+mp6fZv38/jY2NR1Uedg7Fc2h6PUMbU3HO+hKnjUFeox/HVCcb84cw5mkPj/T0dCoqKqioqCAnJ2eRj2J5opvpU4MjQAoTdiNMCdG1Emhra2NqaoqD3Rk4rwbLNGyxtQOsuim1rKws4uLiWGMdJ3kCJlOgy5VGSd44brcbq9Ua6xCXNENDWvHRpqYmhoeHo9t7BxI5PLMWd2kKfTuP7G+ZhoLmEFmuASrzurCkqpAKBoOR9evXU1ZWxoYNG4iPj4/B0cwfQnQtEJIk4XA4aG9vJ6tPxZMhMei3sp4x+vv7heg6C4LBIK2trTQ0NNDa2kooFAJgYspIw8Bahouz6LoIwkZNUOlf4hyXk8qCbuKyJcgGiyWBsrIyKisrWbNmzaoavc8HuugqyhrkTQoZzFXxNUm43e5FLzQomF/0qcUeizZNXNgYIjklRHFx8aqrxG4wGMjNzaWrq4ucHpXJzRKuGSsljON0OoXoOgEjIyPRxtKzy8g4h+Jp9a5jeF0avbMWLcXNQMH+MFl9g5TndpCcpB5l8SgvL2fjxo1YLJZYHdK8I0TXAhI10w9FzPSpojL9maKqKt3d3TQ0NLB//358Ph8A/oBKfXchbruDrnIDM7K2vzGkUtysktXpptLWTkpSCNaC0Whiw4YNVFZWsm7dumUz/78USU5Ojky/TpLphpFsiY6BTDYVDjM4OBitcSRYXvh8Pg4cOEAwGKavUssmWId6IAUqKytjHF1scDgcdHV1kTQwA5stTKWkA9DX10dVVVVMY1sqeDyeqNCa7XcbGomjZXwdIyXp9FykRgfD+qKlzJ4hyqwdpCVr92iAoqIiysrK2Lx584pdCS2ePAuIns1KntLN9HEQFKJrLgwNDdHQ0EBjYyMejwc4snzYmVpEX4WZ8VnPgfwOyD40zsakw9iyfBDxcxcVFVFRUcHmzZtX1Ggp1uTm5tLa2kqGU2UkW2I4lA0M43K5hOhapmh9FkPUdRUyVqG1u6os6MVsjmfTpk2nf4MVSHRB1NQI4GAyV9zDASYmJmhubuaPf/wjPT090e0jHjP7h0sYKc6k+zwImTShZQxC8X6VzI4RNme1k5kWiN6j16xZExVaKSkpsTicRUWIrgVEF115KYOAg8F8zUzvcrmEmf4ETExM0NTURENDw1H+oA5nCh2sxVWWyNAsQ3z2INibpikMt2uVhyMtHnJycqisrKSiomLVTYksFjabjdbWVhLcWhZ3Ok1kcZc7+tTikD1iIG/0YbIb2LRp07L30Zwtuuhak6ItiFrt93BVVfnTn/7Eu+++G613ODFlpHGgmJE1OXRtg6BZE1qGkErhQchqG2VTxmGy048ILYfDQVlZGWVlZavuHi1E1wKSkZGBxWIh3+ol1aNVNe50ZbAu38PQ0FDUG7OamZmZoaWlhcbGRjo6OqJfZPeYmf1j63FvSKdnltkyeQLWNAawjUbqtORqX/CUlBTKy8uprKzEZrMJn9YCE83i6iVRbGYIinZAy5XR0VG6u7vxTBrpqtCERGGwDVi9U4ug3cMTEhJwWI/vLjIwMBAVZauFvXv38s477+DzSdT1lTCcZ6Vnlr1DCqusOQxZhz2sTzyMI2cmujrcZrNFhVZmZmbsDiLGCNG1gOiV6Ts6OsjqVRlPkxjwW1mHh/7+/lUrukKhEN3d3bz77rsRD4nWuNTrk6jvW8twoZUu+ciIKc4PBc1hsvtcbMnrwpKhQoZWp2Xz5s1UVFRQVFQklnAvIvq160jWsrhuB4Q6tKXhYjn98mJ4eJhXX30VgMbBdcxYtOn6dfkeUlJSKC4ujnGEsUNfENXW1kZmr95dxBbtLrKaRFcwGOTNN98E4BXDeRy+7sh3PL8Dsg5NsC6+jXybFwq17VlZWdHG0mJ1uIYQXQuMLrqSBmegzII3VUulOp1OqqurT/PqlUdDQwMvv/xytPqw3rh0MDufnoojHeKlsJaazm4boSyzlYw0zWxpMBhYt249FRUVlJaWipVyMSIjI4O4uDgc2VPR5fQ9g6kU5U4wMjJCdnZ2rEMUnIJAIMD+/fupra09quSKe53W3ib7oAcKtTIRq11A5+bm0tbWRtLgNJCIN0ObSl9tRVIbGxuZnJykuTObw+8zEO+D0jenKDa2U5Q7EbV3pKenR4WWmHU4HiG6Fhh9GiZpahTIZdIWB6HV6X1pa2vj97//PRBp82ApxlkRz+is8j+5PZDTMsn6uMPaiCkyyM7Pz6eiooKysjKSkpJiEL1gNpIkYbfb6e7uJssJk6Xg8uZQxAT9/f1CdC1BVFUr7FlTU0NTU1O0kbBnwkiDewODGzPoLQFTQGVzyupr+3My9IUhKdMjQCITuWbwrS7Rpaoqb7/9NgBdNq3heYkS4PJ8zQeYmpoabSztcDiE0DoFQnQtMHr6OS95AMjFnQ+h9tU3DaOqanQK45X+apquToj+LmMEHI0z5E+3ax3i12jbMzMzo4b41ewBWKrooitpwA+lcUwlpQNakdTVVkhzKTM9PU1DQwO1tbVRz10opNLUlUt/TiGdlUZmIgt7432w8fUJcgr85ObmilpUHLmHF2W4eJt8BvJgZr/K4ODgqqlLd+jQIdxuN539ybRdKmEIqWzwHwDgAx/4AFVVVUJozREhuhaYjIwM4uPjcWRPkTIOE6nQ4UpjXd44Q0ND2Gy2WIe4KHR3d+N0OnEOxXPwPZrgKv1rCKu7h8qCXkxWTXwmJiZGDfFixLS00X1diRPjQDbeHG2Fm6hMH3tUVaWjo4Pa2lpaWlqihYQHhi3s927AVZHM4KyVwPkdYG0ZpTL7EGkF2r5XXXXVid561ZGSkhKtS5c1BMM5cNiVQ1mhG5fLxZo1a2Id4oKjZ7kOxW0ibJRYXxumKHeC7OxsIbjOECG6FhjdTN/Z2Ul2r8rEZonBGSvrGKe/v3/ViC79S9sSKiMQB8XNKtek/hVStX5aGzdupLKykpKSklW3DHu5oouubNMQkM2oQ4IBTXSpqipuxDHA4/FQV1dHXV0dY2NjgFZIuK6riMECB53nH6mdlDIOa+r9FHjbKC0YjU7lFxYWsnPnzlUhJuaCbqY/dOgQGX1hhnMMDKtWwI3T6Vzx56m3t5fu7m7cY2baZS2rV+g6DEVwwQUXiO/5GXJa0SXL8gXA9yM/OoDngXVARmTblxRFqZVl2Q78CkgCHlEU5TeyLBuBx4D1wD5FUb4aec+vAB8HhoEbFEU50mp8BaKLrsTBo6saO53OVVHVeGhoiEOHDjExZaRjuzaPkd/ZDSVw/vnnc9lll63aOkDLmZycHAwGA8W5I8T5YTQThlriyMHLxMQEqZEODIKFJRgMcvDgQWpra2lra4tub+9Lpd20jr5KC2ORqg9SWKV4v0pO+yDVee1YsrUSLcnJyVRVVVFdXS2m8k+ALroSB6eBJLwZWpP31eDr0gfMDd4yZixQeBDKitwkJCSs6nIiZ8tpRZeiKO8AlwHIsvxL4BmgR1GUdlmWS4H/C1wHfA34AfAa8KYsy78DrgaciqLcIsvyYxEB1wp8AHgP8Eng/3BE1K1IojWNJscAO1P21WWmf+eddwCocW9kKhkcXbClsJf4eIsQXMsYk8lETk4OAwMD5Dihrwi6Rm3kZPbgcrmE6FpgBgcHqa2tpaGhAa/XC8CkV6LetY6h9Tl0XXlk30w35NVPs954kDU2b7S/3YYNpVRXV7N+/fpV4y89G3RfV5rfDSQxnmeCyZUvukZGRmhpacHrk+iStbY8ea29sBbKyspEO7WzYM5nTJblOGAHcIuiKOHIZj+g/3sHcJeiKGFZlhWgHLgQLTMG8BJwEZAOvK4oiirL8kvAf57zUSxx9C+sI2kAsDOUp9U0crlcK95MPzk5SUNDA/6ASs9WrVxGXtMgxhKJbdu2CcG1zLHb7QwMDJDiCkKRiYm4DEATXRs2bIh1eCuOmZkZmpqaqK2tpa+vL7q9uSubvtRiuraY8W7Ttpn9UNQUxubsZUthNyaHdp/JysqiurqaLVu2RLxKgtOh38OLs138JVzAYC5M1kvgdjMzM7Ni72P6gFlxbWK8Guy9sLWoC7M5btW2hjpXzkSmXgm8MktwATwU+Q/APOt3HiATbQpyfA7bjkOW5duA2wDuuOOOBTd1BgKBo25i84mqqpjNZvJyJqNm+i5XGiV54zQ3N6/odL6iKIRCIfZ1r2O4Uhtxb8trxWAwUlhYuGDnXHA8C3GNJyRoiyIso1NAGtNZ2mi4o6ODtWvXzutnLTfm63yrqrba+eDBg3R0dESLCbtHzTSPb2Bgcxr91xzZP7cHbM0eytIOaa1X1mq+yeLiYkpLS6O1kzweT7Sv6UpgIe/hQNRMnzMgMZgLbS4bW0pcNDQ0rMgiqdPT09TW1hIMhumtTgcgr96NsUSitLQUg8Eg7t+n4GQ9aM9EdF0PPK7/IMvyd4B3FUV5I7IpIMuyISK80oARYAzQ5xhmb1t3zLbjUBTlZ8DPIj+qZxDnWdHX17egjXr1bvVZfSoTqRIun5USxgmHwyu2QbDf7+fAAW1ZsbNMWzCwZt848QUSa9euFZmQRWYhrvFAIMC7775LengYSGM81wAezdC9Uq/ruXKu53tycpL6+npqa2sZHh4GtFIPdZ1rGMjNp1M2EIjT9k30QkF9kLyxDsqLhqIVwfPy8qiurqa8vHzFZmN0FvoevmbNGlpaWkjvCzOYa2DMmAW48Pv9K/Ja3717N6FQCKVrLUMVkD4CsqMVSZK48sormZycXJHHvdDMSXTJsmwGtgOfjfx8M5CvKMpnZ+22F7hMluU3gG3APcDbaBmyN9D8XY8Dh4G/i7zmauCtcz6KZUBubi5dXV1aTaNN8UylHKlMv1ILENbW1uLz+ahrz6V3FyROQXVGC4Co47RC0FcwltiGeD1czJANJp1GYBSfz4fFYoltgMuMcDjM4cOHqa2t5dChQ4TD2uRB70Aih0IbcFYmMjyr1EPBIbC2utliayM5PQTpRA3OW7duFXW25hGHw0FLSwsJw5NAKt5sbWp2JXpzA4EAe/fuBcC5SfMkFyiTWNaolJdXkJaWxuTkZCxDXLbMNdN1JfBqxK9lRMtA7ZVl+TWgQ1GUzwAPoq1efAB4VFGUaVmWnwM+JMvym0BtxJSPLMvPy7L8FjAKfGp+D2lpEq1MPzkG2Jiyx0N4ZX5hQXt4vPvuuwD0FBQBUKzMkGYNsW7duhU9pbqasFgspKenA2PRaZeOgSwqSgYZGBigsLAw1iEuC0ZGRqitraW+vp6JiQkAfD6J2r61DBVb6bwEVIO2ND9tFPLrfZQED1OSNw4l2nusXbuW6upqSktLhcF5AdCzOhlBN5CKx2EEDytyiq22tpbp6Wnq2+307IIEL1SlNgNw4YUXxji65c2cvpmKorwIvBj5dwiIO8E+/cBVx2wLAjefYN8fAT8683CXL/qcf27iAGDDnQehzpVrpm9paWFsbIzW3nQ6dkZai7Af0Gq7CFYOubm5jI2NkebSpl1GDdnAIC6XS4iuUxAIBGhpaaG2tpbOzs7o9kM9GXRZ1tJTFcdEpBepMaRS1KCS091PdUEHcbaIAEtLi5Z6SEtLi8FRrB70gfNa2xBvhooZtIOnzwiM4fV6SUxMjG2A88RRA+Y1WvG24r0zZFhDlJSURLPbgrNDDIcWiaysLOLi4lhjnYg2CO4eSKXYMcHw8PCK6sA+u09Xe8oGVINEiRLCYZ3GbrdTXFy84pdaryZsNps27eLWahhNp2vTLqIy/fHo/Q9ra2tpbGw80v9w0kjDUKT/4XuP7J/jgtyGKUotB3DkzMBaMBpNbNy4kerqakpKSkRxykXCYrGQlZUFDJPTL+HKh7ZBG1uTnTidTtatW3fa91gOtLS0MDo6yuHeNNojA+ZNaLYQkeU6d4ToWiRmNwjO7lOZ3CjRP22jmAmcTueKEl16y5+BYQttO7RLrGT0EKRoX1rxkFhZ6BmAlJlRIIlJuwl8QnTN5mT9D5u7c3FmFdJVacQXaUca74PChhC5Q91UFDoxrtG+LzabjerqaioqKlZMVmW54XA4GB4eJq0vhCvfiMecDawc0TV7wNyWUhodMOdbvdjtdkpKSmIc4fJHiK5FJDc390iD4I3xeCNm+v7+/hVlpte/tE2BzdGWP6UFo9FO9IKVhT7dkJ8+AOQzlAv+Q1pD4FAotGrbOqmqSnt7+3H9D13D8RyY2kB/Zcpx/Q9zDoxRkXGQjLQQpEB8vIXy8nK2bt1Kbm6uGLDEGIfDQWNjI4kjE0A63hxN/K6UzH1XV1e0R27b+WLAvBAI0bWI6L6uxAkPYGXKFgfqyjLTu93uaMufTjnS8qejG9ZqLX9W6wN4JZOSkkJiYiJ2vKSPwlgGdLoy2bBmlKGhoVXnAZmYmKCmpoZ9+/ZFTfH+gEpddxFDa3LpOF+K9j9MnoCCOj9rptrYWDgKRdp7FBYWUl1dzebNmzGbzTE6EsGx6PfwTIaAdMbyDDC8ckTXsT1ySyID5rS0NDFgnieE6FpE9GmY3IQBwIo7TyLUpa6oBsH6l7bGvZFJGRzdsKVIa/mzdevWGEcnWAj0qfP29nYynSpjGRJDgWw2MEp/f/+qEl0HDx7k6aefxu/3A9DhTKHdsJ7eLUf3PyxqUbG2DVKV105CtgrZWvHNLVu2UF1dHfEOCZYadrsdSZJYZ3fzemAdbquE+7AZmGBiYoKUlJRYh3jWDA4O0traimfySI/cvM6uaI9cMWCeH4ToWkSysrIwm80U2MZJmtTM9D2DKRTlTjI8PEx2dnasQzwnTtjyp1G0/FkN6KIrcXAGyix4U7SayKvJ1zU9Pc3vf/97/H4/f20ron+9g+7L1Wiph0w3OBqmWS8dosA+JfofLkPi4uLIyclhcHAQW59EXxF0jtjJzujB6XRSWloa6xDPGr3lT+3IJqaSIa8TthT2YbEkiAHzPCJE1yJiMBiw2+309PSQ3QdTpdDvtVHEJE6nc9mLrj179hzd8mf4SMuf8847L9bhCRYQPZuVOOUBLHit2tT5ahJde/bsYWZmhr1thbx7nTYNZQpAcX0Ya18fVYVdmHI1UZWZmRntf7icsyOrEYfDweDgIClOrd/ouCUL6KGvr2/Ziq7x8XEaGhqYmVHp2aYNmPKaBjCulZBlmbi446pECc4SIboWmdzcXHp6ekhyzUBpPFPJ6YDm66qsrIxtcOeA3+9HURRgVssfZYL4AomKigpSU1NP9XLBMkcXXfaEQcDGsEMi1L2yps5PRSAQYM+ePQD0lmpFNDe+E2QbtdH+h2ZzPJs3b6a6upqCgoIVf05WKg6Hg7q6OhJHx4FMvFZt2ely9ub+9a9/JRwOs69vPSNVkDUI2woOYzSa2LFjR6zDW1EI0bXI6EbMpNlmepb3Fxagrq6O6enpY1r+iGKoq4WsrCxMJhMFtnESvVpT9/7hJPKtXkZHR1d8B4K6ujq8Xi/17Xa6d4FlGrZLtWSmBXA4HGzdunVV9D9cDej38BzjAJDJSL4EA1pl+uU4wJiZmWHfvn2EQip9FVrbqDU1HuIKJSorK0Umdp4RBoJFRjfT2y2DALjzJUIhrWCiqi54X+8FIRwOR/0AvbNb/qSEWLt2LTabLYbRCRYDg8GAzWbDaJTIjnRF6ZvQbuArfYpx9vXfk69V8C7Z6yczLUBxcTG33nqr8DSuIGw2GwaDgRLHCPE+GM0E51A809PTeDyeWId3xuzbt4+ZmRnqOtfgLNBW1G7LPgCIYqgLgRBdi0x2djZms5lCu4fEKc1M3zeUjN/vZ2RkJNbhnRV6y5/DvWm0l2kVjDeKCsarDn2KMWkgAMBUQgaw8kXXURW8KyIVvMNalveiiy6KcXSC+cZkMmGz2YgzS1h7tW0949pgern1YQyFQtGWP71r1wBQtHea5KQQpaWly95nvBQRomuR0c30RqNETuT76ZzSMkHLsdbLCSsY14WjFYyLi4tjHKFgsYia6ce12lTebG3Z+UoWXaqq8tZbbwFwWL/+a8Pk27xkZmaKCt4rFH2KMaVfKw0ymaQNMJbbPbypqYmJiQlaurLo3CQR54eyOG3AIAbMC4MQXTEgmhFwRb6ws8z0y42jWv5s1SyCxcOHAM3Ltdz8DYKzR7+uM6UhAMYc2t9+JYuuzs5O+vv7cboTaNum1TFaO3YQgMrKSnH9r1Dy8rTFEonj2nTilFUbYCwn0TV7wNyZrbUwKtkXxJ41Q35+PmvWrIlleCsWIbpiwBEz/RgAXqvm9ViOokv3sjQFNmktf/arbCzUWv6UlZXFODrBYmKz2ZAkiRL7CKaAynAOjHjMTExMMDU1FevwFgQ9y7U/tJmgWaKkSWXDmjHS0tJElmsFo9/DbfFaH033muXnzT18+DCDg4P0DCTSVmVACqusnzri5RIDhoVBiK4YoJvprfHL20zvdrs5ePAgk1NGOmVt2XReew8gKhivRsxmM1lZWVgsKjku7YbdOaw1cl+J2S6Xy0VbWxujHiMdO7SB05quTkDL8opCpyuXnJwcTCYTxRFv7kSq5s2dmZlheHg41uHNCT3LdcCwmZBJYm2DSkneOJmZmcu23thyQNwVYsBRX9jI8nqnO4mZmZllZabXs1z73BuZTNFa/lQV9RAfHy8qGK9S9AFFSr/W3HncpJWKWImiS39o1Y2X4U2E/HaoKuknISGB6urqGEcnWEgMBgO5ubmaNzdipu+b0qbXl8MUo9PppLOzkxGPmfbtWtmigr52QAwYFhpxZmPAbDN9tv6FndS+sMtlinFycpL6+nr8AZXeSMsfR+MQRqNo+bOa0cuDJIxq04nTmUnAyhNdY2NjNDU14fNJdG9PBiBvv/bd3b59u6jgvQrQpxiTXTMATKWkA8tDdOkDhvqJzfgSoKAVKkoGSUxMZMuWLTGObmUjRFeM0DMCyREz/VRSOrB8RNfslj9uq9byR847hMFgEC1/VjH6dZ0e1KZYJuzaFPNKE13vvPMOqqqi9JcylgHWfpAL2zCZRAXv1cKx3txJuzbQXOqia3R0lP379zPtk+iStUGR46AW844dOzCbzbEMb8UjRFeM0B9OiRP66pflY6Y/acufeNHyZ7Wjr2AszBpECqsM5qpM+yTcbjd+vz/G0c0PXq+XmpoaQiGVnmpt+jS/dhSTyUB1dTVJSUkxjlCwGOiiKy9JG1AM5RP15obD4ViGdkreffddbcDgLMWjDxiKOjCbzWzfvj3W4a14hOiKEdHVL3GamX44XzMeLwcz/VEtf4oh0Sta/gg0EhMTSU1NJSMtRJZbImSSaB/IAmBwcDDG0c0Pe/fuJRgMonQWM5gLaWMg5x5AkiRx/a8isrKyiI+PJy9nkpRx8CZBhyuNYDDI0NBQrMM7IV6vl9raWq3ljz5gqBnBaJSoqqoiMTExxhGufIToihHZ2dkYjUaK7KNYpmE8DXoHE/H5fIyOjsY6vJMSDoePVDBeUwRA8V7R8kdwBD3bld6vjfZHwtoKxuWQxT0dsxtb923UBk6Fe6dIsKhs3ryZjIyMWIYnWEQkSYqa6bN7tIHywMzSLnS9d+9eAoEA+zqLGXBA2ijIjoNiwLCICNEVI4xGI3a7HZPJEG0lofeqW8oPpwMHDhxpeVIuWv4IjkcXXQluHwDTaZrRfCX4umpra/F6vTR02OlZBwle2JIiWv6sVqK+rkHtWvempQNLsx3QUQOG0siAQREDhsVGiK4YcqyZfqm3khAtfwRzQRddydNjAEzaNGPuchddsxtbd0caWxfvnSEzLUBJSUn0+yxYPURXME5psxMTdu1aX4r38Pr6erxeL43tVrrXg2X6yIBBDJgXDyG6YkjUTD8+DoA30kpiqWa6enp66OvrO7rlz0grIFr+CI6gi678FK1a91CeZjAeHBxc0gbj07F//37GxsZo7U2PZnk3iSzvqkZvB7QmVbtnD+aDP6AyMDBAMBiMZWhHcdSAIU/rlFCi+MlMC1BUVBQVj4KFx3S6HWRZvgD4fuRHB/A88BTwAyAMfEFRlEZZlu3Ar4Ak4BFFUX4jy7IReAxYD+xTFOWrkff8CvBxYBi4QVGU8Xk9qmWCfqFb4waBbIYdEriOmOmXmojRs1xHtfwpGBEtfwRHkZ6eTnx8PA7rNCnjWvHfLlcaJXnjuN1urFZrrEM8Y2Y3tm5L1bK8a5VQNMsrWv6sTtLS0khMTMSR4yVjBEYzod2ZycbCUQYGBqKiLNYcPHiQkZER2vtSabtCwhhSKQ2KAUMsOG2mS1GUdxRFuUxRlMuAt4FngH8CdgGfBB6M7Po1NCF2KfB/ZFm2ANcBTkVRLgaSZFm+QJblbOADwHuAJ4H/M69HtIzIycnBaDRSbB/BMg2eDHC6E/D5fIyNjcU6vKM4Vcuf8847T7T8EUSRJCma7crqixiMfcu7HVBHRwculwvnYAJtW7U+dSVjWmP3iy66aMkNkASLgyRJ0cFzZq92rQ+FlpaZfrYtpDVxozZgqFUpsE9htVpZt25djCNcXcx5elGW5ThgB6AAIUVRRhVF6QYyI7vsAF5VFCUY2accuBB4OfL7l4CLgO3A64qiqLO2rUqMRiM2mw2TyUBOxHfZ49G+sEttijHa8mdIa/mTO6vlz7Zt22IcnWCpoYuuxMFI8d9krWvBchVd0cbWRBpbN8OGNaOkp6ezefPmGEcniCW66EocnAbAm6HVKVwqoqunp4fe3l4Ghy20b9Mmt4qGDwPCFhILzsTTdSXwCpAGzJ4ODEYEmVlRFN2w4UETYxmz9j3VtlXLETN9AIDJxKVnptdb/gSDYXq3aQ/PPNHyR3AKdNGVNKkV//XmaNfIchRd/f39tLe3M+ox0r490ti6uwMQfeoER0RXqi/ShcGhCZulcg/Xs1yN/k3446GoRWVTgZuUlBQqKipiHN3q47SerllcDzwOjAGzS46bFEXxy7IckGXZEBFeacDIMfvO3rbumG3HIcvybcBtAHfccQdXXXXVGYR65gQCgZgs801I0KbqEj0eIDtqpu/s7Fwyy4737dtHKBRib9d63BWQEWn5I0kGCgsLzyrOWJ3v1cxinnNdiOTEuQErIxG/otPppLe3d1mNrl999VUA6sbLmU6ENW2wpcRFfHw8NpvtpOdUXOOLS6zOt34tF2W6eIs1DOSpTDdJDA0N0dnZGdO2OmNjY0dsIdu1Z01+Ww+shU2bNp3TIEhc36fmZH6+OYkuWZbNaNOCn1UUJSzLskmW5XQghSOiaS9wmSzLbwDbgHvQPGBXAm8AV6OJtsPA30VeczXw1ok+U1GUnwE/i/y44CXa+/r6YmJ6NBgM/OUvf8Fq1sz0I3naw2lkZASHwxHzh1MgEODAgQMAODdrU58FygTxBVrLnw0bNpzV+8bqfK9mFvOc2+12/vCHP1BsHyHep/kVB5ot2LJ8pKSkkJaWtihxnCujo6N0dHRofeq2a+198lqcsBbOP/98CgsLT/pacY0vLrE83ykpKcAE2YPgtkq0ubIpLxrCYDDE9BrYt2+f9n/3Ribl2bYQC1dcccU5zVKI6/vsmGte/Eo0v5Y+ffhN4AXgv4CvR7Y9GPn3G8CjiqJMA88BBbIsvwn4Iqb8IeB5WZbfQjPi/9v8HMryxGq1YjQaKcnVHk5jGeAcimd6ehqPxxPr8KitrT3S8qfk6JY/YtWL4GQYjUZycnI0v2LEntg9pq1aXE5TjNHG1rP61G0rbBeNrQVHoU8xpvdFujCgLRyJ5RTj5OQkDQ0N+AMqPVuFLWSpMKdMl6IoLwIvzvr5DTST/Ox9+oGrjtkWBG4+wfv9CPjRmYe78jAajVitVvr7+7H2Qc9a6PXYceR00d/fT3p6esxiO2nLH6to+SM4PXa7HZfLRbIrCMUmJuMzgG76+/spLS2NdXinZWpqitraWs3LuPVInzpTidbYWvSpE+g4HA4OHjxI4pAXSMabmQLEVnT99a9/JRQKsa97HcOVkBmxhRgMRs4777yYxbXaEQ7QJcDxZnrtBh9rI2a05U+f1vLHGDzS8kf06RKcjmg7oNFJALzZmqdkYGAgZjGdCXpj631dJQzmQvqsPnUiyyuYTTTTFdAaXXvytBI6sbqHz8zMoCiK1ti6XBscr1HGiY/XbCGpqamneQfBQiFE1xIguuR4bOlUpj+q5U9SpBhkrdbyx2aziWKQgtOiDyYyJDcAnlztdrPUyqGcCL/ff6RP3Sbt+1mwd5IEi0pZWVlMM9CCpYd+Dy+xDiKFVYZyVSanjAwPD+Pz+RY9ntraWnw+Hw1dDvqKIGkSqjNFMdSlgBBdSwD94ZRtHATQzPQcqUwfC/SWP67h+GhtF73lz4UXXhhzg79g6aNPPxdbhzCEVNxWlYkpIx6Ph+np6RhHd2rq6uqiXsaetVpj66rUZkA8tATHk5iYSHp6OmnJIawuiZBRom1A83Ut9iAjFAodsYUUFQFQpPhISw6xfv36ZdkRYiUhRNcSwGq1YjAYKHFoZvrRTHANx+P1ehkfj02HJD3L1ezfjF+0/BGcBfHx8WRmZpKcqJIzIKEaJDoGl35l+tl96noKigAo2TtDRprmZRSNrQUnQl/Jl+YMATBqygZY9LIK+/fvx+PxcLA7g/YyCbMfNhvEgGGpIETXEsBkMmG1WokzS+RELADdY5ofJhaegKNa/mwXLX8EZ4/u60rt11Z1jRqygKUtupqbmxkbG+NQTzodZVpj682IFbuCU6OL8US35mGczkoGFvcePtsW0p6hlfMpqQniyJnB4XCcssSJYHEQomuJoH9hU3QzfYJWmT4W/hd9lF8zVKq1/OkRLX8EZ0fUTD/sBWA6Xat1tVRF11EPrfSIl7EmhMM6TW5uLsXFxTGOULBU0TNd6SGtMv1ovvZ4XUzRpfcI7R1MpL1a6xG6buIgIGwhSwUhupYIR8z0EwB4c7QM02KLrqmpqWjLn56t6QDkNWi1XbZu3SpquwjOiGimy6/VUJ7I1fyBS1V0tbe3Rx9abZGH1tpxrbG1eGgJToU+cF7vGMAY1DyMox7Nwzg1NbUoMeg9Qg+wKdojdF2+h/T0dDZt2rQoMQhOjRBdS4RjzfSjMTLT79mzh1AohNK1DrcNMkb02i4Gzj///EWLQ7Ay0EVXYZZWJmIoF2ZmVIaGhggGg7EM7YToD60WKfLQaoL1+WNkZGSIxtaCUxIfH092djaJFhWrM+JhdC+eTcTlckV7hHaIHqFLFvFXWCLYbDYMBgPFtmHi/DCSBYPDFqamppiYmFiUGAKBAHv37gWgb7N2syjYO0F8vER5ebmo7SI4Y5KTk0lKSiI7PUDGMATioMOViaqqDA4Oxjq8o3A6nXR0dDDiMUcbWxf0ioeWYO5Em187tQGFJ14z0y+G6NKnxevGy/AmQn671iM0ISGB6urqBf98wdwQd5Elgm6mj4+XsEYWu3RF2qYslidAXyZf326PtvzZkqYZiEUxVMHZIElSNNuV4dQytsOhpbmCUX9o1U9sxpcAaw5DZbGLxMREqqqqYhucYFkQtYnoBYEjNpGFvod7PB6amprw+SS6Zc3An7df+35t3749pk23BUcjRNcSQn84Jfdro6QJi1aZfjF8XUctk1+jmYWLZi2T12MTCM4U/dpJdGtFIr2RjOlSEl0jIyPs378f7+zG1ge0B+WOHTvEQ0swJ3TRlSVFai7OMtMvpE3k3XffjfQIXc9YJuS4QC48LHqELkGE6FpCxNJMf6TlT2q05c8mVbT8EZw7uuhKmtIauE9Z44ClJbr0xtb7+jfiSQebE+SiDsxmM9u3b491eIJlgt1uR5Ik1tmHMPthJBuGRuKYnJxcMJvI9PQ0NTU1WsufLdp0Zn7NGCaTgS1btpCUlLQgnys4O4ToWkIcMdNr/bt0M/1Cj5KObvmz8UjLH5to+SM4d3TRZU/URv/uPAiFVFwuV8w6LsxmamqKurq6yIpdrVRLfu0wRqMkGlsLzgiz2Ry1idgiNpHOUe2+vlBTjIqi4Pf7qeksxJUPKeOw1SYGzEsVIbqWEDabDUmSKLENaWb6yChpamqKycnJBftc0fJHsJBkZmZiNptZY50gaRKmkqFvKJlAIMDIyEisw2PPnj0Eg0GUrnUM2SF9BGTHISRJEg8twRmjz1ik9Gs1FyciNRcXojJ9MBg80iN0fT4ARXu9JCeqbNq0iaysrHn/TMG5IUTXEmL2KEmvTN81qvWvW0gjpu7l0lv+FLVoLX9SUlJEyx/BOWMwGLDZbBiNElmRy9g5pS0SifUUo9/vP27FbuHeCSwWlfLyctHYWnDGHDHTay3cpqwLZxNpaGhgcnKSps4cukoh3geV/397dx4c93nfd/y9WGBx3/dBEAcPgRQpiXxkUrJcybFV13WnznScybRp69ix5VFGbcb2uFMndWPXbhsf6Thu3KSKJ3XjdCZ2x+M6dlONj6lsS45UPrQIUhJIASRB4l4sjgVA3IvtH8/vtwRoUAKFxV78vGY8EJZ7PHi8s/v9Pc/3+X5L1PInkynoyjCJyvReMv1c4d4m009NTXHx4sWtLX8uDwNw+vRptfyRpEgcEplYBeBGSRWQno4Lm7300kuJxtbDXVByAx6oVssfefP8yvQNBa423VTb3qSJxOPxxAXz9aZuALrsGnVVa7S3t9PW1pa015LkUdCVYRL9u2Zc0uXSHifTb9fy54GO64RCIU6cOLEnryl3n0Q7oDn/fV0EwMTERNrGFIvFbp7Y3d8BQOeZFSrLdWJX3ryGhgaCwSBdzdMULUG0GobDJSwtLTE7O5u013nttdeIRCIMjpVz+XiAvFicQ6sXAV0wZDIFXRnGD7pq8vxk+r3r37V9y58IwWCAkydPUlRUlPTXlLtT4pBIvve+br7ZcSFdXnnlFaLRKJeuV3Pl3oBrbB10q1xvfetb0zYuyW7BYJCmpiby8/NocJsGDM+7NJFk5nX5h59eC93DRjBA9/k4Hc3z1NXVcejQoaS9jiSXgq4M4x857m6cIn8tzlQ9RGYK9uTI8eYEYr/lz8mWfvLy8jh16lRSX0vubg0NDQQCATobpxJH6SMzBXt+SOR2tjS2rnFfUAfOxmipW6KlpYWOjo6Uj0lyh5/XVTbmbaeXumT6ZF08Dw8Pc/36dSKzBVwxrobc/vEBwJ1Y1OGnzKWgK8MUFBRQX19Pkde/C2Bw2m1zJHNV4HYtf/wE4srKyqS9lkh+fj719fXukIj3Nr4+7ZLp07HadfnyZSYmJhie2NTYeuESoBO7snt+0FU6PwvAQpNrK5WsoMu/YDi/eJSVIth/CY52RCgrK+P48eNJeQ3ZGwq6MpC/FVPhV6bfg2T6W1v+FKvlj+wxP0eqfDwGwFyBe1+n4wSj/6XVl3eEWH6ArgtwoDVKdXU1PT09KR+P5BY/6Goq9GrTtQWIxeKMjY2xsbGxq+eempqir6+PhcUAgw+6GnKt/W7b8tSpU+Tn5+/q+WVvKejKQH7QVez376pLbjL9lpY/ba7lT6d1LX+6urqUQCx7IpFM772vl2rdF0aqg66tja1ddfz2kSuAW+VSY2vZrbq6OgoKCtjfFKV0ARbKYShcwerqKlNTU7t67sThp4ke5iugaRhOdAwSCoUwxiRj+LKH9OmSgfyrpBpc0vFskpPpL126dLPlzzGv5c+Gq2CsUy+yV/ygqzLmCqJGm105klQHXc8//zwA57zG1u39cLxzgpKSEu67776UjkVyU15eHs3NzQSDAeqHXZmI0cXd11zcfPhp+GQVAK297vDTiRMndPgpCyjoykB+Zfrupgj5a3EiDTAdLWB+fj4pSce/1PLnnFr+yN7zg67OhjCBjTiRpjiLywGmp6dZWVlJyRimp6fp6+tzja3f4je2vrk1o8bWkiyJvK5x996+UeHyZHcTdG3pntDod0/oJxAIcPr06d0PWvacgq4MFAqFqKuro7goTsOYS+i9GnFXSbvdYhwaGmJ4eJjwVFGi5U9HRKdeZO8VFxdTWVlJZVmMuskAsWCAK2OuQW+q6nX5ja3teA9zldA4Aic7B9XYWpIucYJxYRbYfTL9dt0T2u2CDj9lmR1l3BljHgM+hQvSvuL9/NfABvANa+0fG2NKgW8ADcBfW2u/4D3288DDwCDwQWvtmjHm14CPAkvA+621w8n8o3JBc3Mzk5OTlI+uQ3s+c6FaYJjR0VEOHjz4pp/XX+W6sNqTaPnTs3+K8vJy7r333iSNXmR7TU1NRKNRKkc3mGzMY4Y6YJLx8XHa29v39LU3N7Ye9urStZ2LEOxyWzPFxcV7+vpyd/Er07eVjfMiTUy2wfrlDcbHx4nFYnfc7cM//HTuSjPD73GHn+6vUMufbPOGK13GmGLg48C7rbVvt9Z+BxdwvQN4CHjCGJMHfAj4G2vtI8CvGGNajTH3Aa3W2rcBF4H3GWPygY8BjwH/FhfMyS1uVqb3kumTUJk+0fJnMaCWP5IWiWT6qSUAFqvKgdTkdb344otbtmaqN23N6MSuJFt1dTVFRUW0NS5SEYWlErg6XsP6+jqTk5N39FybDz8Nt3cArntCdaW6J2SbnWwvPoRbkfqeMeY7xpgm4BJQARQBS9baDdxq1g+8x/zQe9zm254B3gocBPqstavW2ucBFRXZRiKZPu4l07e4/6t2E3QlTr2Ee9TyR9IiUTZieRaAhSa32L7XQZe/NROLxRk5urUu3bFjx7Q1I0kXCAQSn+N1Qy6ZPrzqatPdaWX6vr4+Zmdn6R+u4spRyF+L04MOP2WjnWwvNgIHgNPAO4FPA98E/h8QAz7n3a8amPP+OwrUeLeNbXObfz+AbZdXjDFPAE8APPXUUzz++OM7+XvetLW1taS2aNgtv5ZLd3OEZ9cPEGkMMH21AJhjYGDgjrdClpaWfmlrpfW821o5fPjwro8x36lMm++7QSbMuZ8z2FoxDrQy2QLr/RtMTEwwNDS0Z+UaXn75ZZaXlzl/rYXh92xtbN3d3b0n85IJ8303ycT5Li93K7kl4WWgmBtecD8wMLDj1al4PM6zzz4LwOXyQ8TzAnTZGG0Ni9TW1hIKhdLyd2fifGcSf3v5VjsJumaB5621q8aYHwOfBN4GHAMWgB8bY77l3a/C+1kJXPOev8J7nkpgetP9fLHtXtRa+zTwtPdr8lqz38bIyMhtJyld6urqiEQiNIwFGNsHg1MN1FS6N/mdjvXZZ58lFou5rZVjW1v+vOMd70j5lX4mzneuy4Q5j8fjFBUV0VK/TOUsRKtgcKKaA61RQqEQjY2NSX/NWCzGt771LQCGvfY+nWeWqWyMceDAgT2r4J0J8303ycT5npubo7e3l/Ib00Ar8y0FsAKzs7M7Huvg4CCRSITRyUIuP+TWKLpmXoNyePTRR2lra9vDv+D2MnG+s8FOLivPAD3GmABwP3AFWAXmrbUrwDpum/HnuJUwvJ8v3HLbu4DngX7v+ULGmIeB88n5U3KPvzRdMeri0mhBLXDnp182t/wZ7XFXV/t06kXSIBAI3GzqPuptuazUA3u3xfjKK68wNzfHxWvVXDkaoGAVjuS5BGQ1tpa95H+Gt1e793a4FVZW4oTDYdbX13f0HH5duVc3jrJeEKDrlTiH22eorKzkyJEjezNw2TNvGHRZayPAd4CfAF8A/h3wn4DnjDF/C/zUWjsGfA34h8aY54CfWGuHrbXngAljzM+Ao8C3rbVrwJeBZ3Fbk59DtpVIOp72KnjXuQred5rXde7cORYXFzl/tYmh7q2nXpRALKnmr2aVhF0z4MUyF/TvRQ/GeDye+NK6WucaW3f/Yp2W+hVaWlrYv39/0l9TxFdRUUFpaSlNtSvUTMFqIVyZqGdjY2NHFxnhcJiBgQGiC0EGjSt82jp4DdDhp2y1o5IR1tqvAl/ddNNlXHmIzfdZAH51m8d+YpvbvonLC5PXkUim35gEKl0y/cydfTltbGzwwgsvAHC9dVPLn3q1/JH0SJzMXYgCDdxocK149qJW18DAAOFwmOvjpVx+m9/Y+iJUulUu1aWTveQn0/f391MzvMF0bR6RWD0QYXR09A23Bv0SPy9N93CjDFoH4b79IxQVFevwU5ZScdQM5gdE3S2TBNfjRBrizESDRKNRFhcXd/Qcly5dYnp6ekvLn3vU8kfSyH9fNxS5ZsDTLS7wGR8fJx5Pbvqm/6V1Kb+HWH6A7vNxDrTOUVNTwz333JPU1xLZjn/xXBz2yqTUuOT6N0oTmZub48KFC6ysxBkyLg265eUwwWAAYwyhUGgPRy17RUFXBissLKS2tpYSrzJ9PC/A1ak769/ll4m4XHKz5c++xkUaGhrU8kfSoq6ujmAwSEfjLEVLMFcJo5FilpeXiUajSXudkZERl4Q8U8AVs7Wx9UMPPaTG1pISftBVueJOiM81uw2mN/oMf/HFF9nY2MCOHGK6FmrDYNr7CQaDnDp1am8HLXtGnzoZLpFMP+aS6efyXTL9TrYYh4aGGBoa2rblz8MPP6ytFUmLvLw8Ghsbyc/Po9773hmOuvpFyczr8le5zi8edY2tX4NjXWFKS0vV2FpSxv8M76xz2+fhljhLywEmJydZXV3d9jErKyucPXvW1ZU75g6a7PtFlFBBgOPHj1NWVpaawUvSKejKcH7+i59Mv1jnmvTu5MtpS8ufQrX8kczhbzGWTawBsFBUDSTvBOPU1BSvvvoqC4sBrj3oDqC0vabG1pJ6ZWVlVFRUUFO5Rv0ErBcEGBh1gdTtPsfPnj3LysoK5wb3MdYOZfNwsu4ioLSQbKegK8P5QVdVzC1NR3dYmX5zy59rZmvLn1OnTunUi6RV4mTurH8y153MSlbQlei+MOEaWzcNw4kO19jaGJOU1xDZKX+1q2rYFb2eDrqga7stxlgsljj8NNy9D4COM0uUlcY4fPgwdXV1qRiy7BEFXRnOD7q6myYIxuJMNsaJLgSZnZ193WT6zS1/5ivcl47f8ufkyZMpGbvI7fhBV03Aa3PV7D6KkhF0LSwscO7cOVbX4gydrAKgrTdCMBjg5MmTamwtKecHXSWRGwAs1rrtwe2CrgsXLjA/P0/f9ToGewKEVuFoyHVP0CpX9lPQleEKCwupqamhrCROvZ9MH379/JcbN27Q29u7peXP5i+doqKiVA1fZFt+ra6upimC63Gm6uNE54PMzc3t+GTu7bz44ovEYjHOXj9ApBGqp8C0XiIvL4/Tp08nY/gid8Sv3F61HgEg2uJ2Gm4NuuLxeOKCebD2AABdZ9dpql2hra2N9vb2VA1Z9oiCrixwazL9bL5bXr5d0HXmzBnW19ex17qZbISqTS1/dOpFMkEoFKK2tpbiojj1497FxKS7mNjNatfKygrWWpeAfK8L7NrtHIWFATW2lrRJ7Fg0hsmLxZlsijN/I8j09DRLS0uJ+22pK/dAgMBGnIM3lMuVSxR0ZYFEMckpL/+l9vbJ9Fta/tzjHtfutfw5evSovnQkY/hbjBXjXpurYA2wu6DrF7/4BcvLy/Rea2OkA0oX4IEaV5dO3RckXYqLi6mpqaG8NEb9eICNYIDLE+4iY/Nq15a6ckFXV67Lqyt3+PDhtIxdkktBVxbwg67qDZdMP9t6+2T63t5eFhcX6b3SxNCBrS1/dKUkmSSRTD/lthOXalyey5sNurYkIHe6bZjOM8tUlsU4ePDgnjTTFtmpRL2uka07Fn7QNTo6yuDgINNR1ZXLZfp/MQv4QVdXw6Rbmm50S9MzMzNblqY3NjYS+QDDbR0AdNpVqivV8kcyT2Kla30agLkml+fyZoOul19+mbm5Ofqu1XL1iEtAvrfAJSCrsbWkWyKZ3i//U+92LPygy1/l6p0/4urK9bu6ciUlJaorl0MUdGWBoqIil0xfGqN+wuW/+EvTm1e7/JY/V0YquHws4LX8cV862lqRTOMHXR21rh3QZHOc5eUAkUiEtbW1O3quzY2tB+tuJiA31i7T2tqqBGRJu0Qv3bh3YtfbsRgdHWVmZoZXX32VpeUA1x50wVjLJReMqa5cblHQlSX81a7KUX9p+pcr0/urXP3btPzp7u5O8YhFXl9ZWRllZWXUVK5RE3FFI6+Ga4nH44TD4Tt6roGBASYnJ70E5LwtCchqbC2ZoLm5mUAgwIGmSfLX4kw2wnS0gLm5OX70ox8Rj8exY/cQrYKGMTAdV1VXLgcp6MoSicr0U67Oy63J9Nu2/Jm6DKjlj2SuRL7iqGt0PbXuLibudIvRX+W6VHDEJSD3KgFZMksoFKKuro7iojgNo+7z+GrE5Rm++uqrxGJxhh9wnRnaXpohGAzwwAMPUFJSkrYxS/Ip6MoSicr0635l+q11XvxVrpdXvJY/F+P0tEfU8kcymp/cXhxZBmCxsgK4sx6Mw8PDXLt2jchsAZeN24bZP3bzgkMJyJIpbpb/WQcgWlib+Dc72Em4GSpnwTRfJBAIqK5cDtKnUZbYXOclsOGS6Re8ZPrR0VH6+vpYWAww+KDX8mdALX8k8/nv67LFGQBuNLqg6U5WujY3tl4pgv2X4N7OSTW2loxzM5l+HoClhpvdEUYPu3/bf+YGxUVxjhw5QnV1deoHKXtKQVeWKC4uprq6mvLSGA2JOi+uf9d3v/tdwPWZU8sfySZ+Mn1LmcvhirRCLBZnYmKCjY2NN3z81NTUpgsOtw3T2n/zgiM/P3+PRi5y5/ygqy7Pvd+n29xX8PmrjVw/CEVLcF+5Wv7kMgVdWeSXkumDbmk6HA5vafnT6rX8OXHihFr+SEarrq4mFArRUneDsnlYLIGhcAXr6+tMTU294eP9VS6/x2jzEJzouEYoFFICsmScpqYm8vLy6GqKEFqB6VqYmCpiqLUTgC67Sk3lGh0dHYkATXKLgq4scjOZ3hWT9JumApy91sVkk2v5Y7yWP8oHkEwXCARoamoiGAxQ6xXmHlvcWTughYUFent7tzS2bj0/qcbWkrHy8/NpbGyksDBAw4i77eJCtyvxE4tzeN11T1BdudyloCuL+Fc+ftPUueabuVoj97h/U8sfyTb+FmPpxCoAi6XufftGQZff2NpeP0ikAWqmwLS+pgsOyWj+xXP5qKtFd/HRSlfi56U47U03VOInxynoyiL+l1Nng5dM3xxnYTGQaPlTtAT3VajPnGQX/31dMj8HwGJ9IfD6QdfKygpnzpxxja2PuZWxfZsaW1dUVOzxqEXenNbWVgBKo1EAlr0F2Y6pAUAlfnKdgq4sUlJSQlVVFZVlrjJ9LBjg8ngjw60dAHSdcfkAnZ2diaspkUznB131BS65eKbFfeGMj48Tj8e3fczZs2dZWVmhd7CN0f2usfXJWnfBoQRkyWT+jkVD6GYB4I4+lfi5WyjoyjI3k+ndya5weRuXj7t8AL/lj750JJvU19eTl5dHR9MMoRWYqYHwVBGLi4vMz8//0v03N7Ye6vYbWy9RXhrj0KFDNDQ0pHT8Ineivr6e/Px8OpumKXVtGGm7PATA6dOnVeInxynoyjJ+0FUScZXpL761IJEPoJY/ko3y8/Opr68nVBCg3quJen3WlUPZbovxwoULzM/P8+pgLYM9rrH10QJdcEh2CAaDdHd3k5+fx/FnR3jg/8xyf8cQhYWFKvFzF9hRERtjzGPAp3BB2leA/wv8CdAI9FtrP2KMKQW+ATQAf22t/YL32M8DDwODwAettWvGmF8DPgosAe+31g4n84/KZf7SdOV6BChnI+i2YvZP9kOpy+VSPoBkm6amJiYmJigfX4eOfOZDNcAQ4+PjHDp0KHG/eDyeKBMx2HAQgG67RlPtCm1tbWpsLVnhscce49q1a7yl+5p3S4D3vve9FBYWpnVcsvfeMOgyxhQDHwfeba1d9W77I+AL1tqXNt31Q8DfWGu/Zox5xhjzP4A6oNVa+zZjzO8B7zPG/E/gY8CjwIO4YO4jSf2rcpi/0tVVH+ZnGx3E8wJ0XIxzpGOK8vJyjh07luYRity5pqYment7KZ5ZAKpYqnXZxbeudPX39zM5OcngWBlXHg2QF4tzcOkiVKuxtWSPpqYmnnzySc6fP8/q6ipHjx5NtMSS3LaTla6HcCtS3zPGLAJPAg8AJcaYg8CXrbX/C7ea9QnvMT/0HlcP/MC77RngA8A5oM8L4J43xnwpOX/K3aGkpMQrBRGlcTTAeBu0DoxAt1r+SPbyk+krN6aBKqIteTD7y0GX39j6tVAPsWCAAy9t0NkyT21trRpbS1apqKjgkUceSfcwJMV2EnQ1AgeA08A7gU8Dp3CrX33AT40xzwDVwJz3mChQ4902ts1t/v0Ato0SjDFPAE8APPXUUzz++OM7/ZvelLW1NUZGRvb0NZJl3759RKNR7n+lj9lzlZhu1/Knubk5a/6GbJrvXJHJc+6fUuxunOQnG51EGmBhJAjMcPXqVUKhEBMTE1y/fp3J6RBX/MbW45ehA3p6ehLN3zNFJs93LtJ8p5bm+/X5pUFutZOgaxZ43lq7aoz5MfBJYMhaewbAGHMJaPXuV+H9rASuec/vF8ypBKY33c8X2+5FrbVPA097v25/bjyJRkZGbjtJmeZd73oX4XAYCAMz5OXl8b73vY+urq50D23Hsmm+c0Wmz3lVVRUwS/1EgHAzXAnXcbxzgry8PFpbW3nuuecAuLDsGlt3XIR7OyYpKyvj0Ucfzbg+i5k+37lG851amu83ZyefUmeAjxtjAsD9wBUgbIw5AFwFunGrWT/HrYT9uffzw7icro8BfwG8C3ge6Ad6jDEhwADnk/j33BXKysr48Ic/TH9/P4uLixw6dIjy8vJ0D0tkV5qbm5mdnaVybINwcx6zgVpggrGxMUpLS7l48SILN4JcfYvL92odGEpsq2dawCUisp03/KSy1kaMMd8BfoJbcfqg97g/A4qBP7PWLhpjvgb8pTHmg8D3vROJw8aYCWPMz4DrwJe804tfBp4FloH378HflfPy8/Pp6elJ9zBEkqaxsZG+vj6Kp5aAUpaqXW/RiYkJb2UXzkbuYcG4xtYPdFwnFCpUY2sRyRo7ujy01n4V+OotN7/9lvssAL+6zWM/sc1t3wS+ueNRikjOS/SkW5kGSllozIdluHr1KgsLC15ja9eXse18mGCXa2xdVFSUxlGLiOyciqOKSEbwTzC2V00CEG6B1bU40Wg00dh6qh5qInCytV+NrUUk6yjoEpGMUF5eTklJCQ21y1RNw2ohDI7XALjG1sdde592G6WwMMDx48fV2FpEsoqCLhHJCIFAILHaVTPmDixPrtUBcG5wH6PtUDYPJ+ouAmr5IyLZR0GXiGQMP+gqCa8AsFjuVrKGu/cB0LGpsXV9fX16Biki8iYp6BKRjJEIum5EAVhsKOSVa3WusfUKHAv1Aa7lj4hItlFxGxHJGH7Q1VQcBhqJtELB0gEAus+u0VC7zL59+9TYWkSykla6RCRj1NbWkp+fT3vjHCWLsFAOA/e5xtaHlpXLJSLZTUGXiGSMvLw8GhsbCQYD1Hlt3eJ5Abp743Q0z1NXV6fG1iKStRR0iUhG8bcYSyfWErftDw8AbpUrEAikZVwiIruloEtEMoofdJVFZwDo6ItzdH+EsrIyjh07ls6hiYjsioIuEckohw8fJhgM8pb213jwf4d5ePos4Fa51NhaRLKZgi4RySjl5eW8853vpKAgyMNdA9TXrHL48GFOnTqV7qGJiOyKLhtFJOOcPn2a7u5uxsbGqKqqYt++fcrlEpGsp6BLRDJSfX29qs6LSE7R9qKIiIhICijoEhEREUkBBV0iIiIiKaCgS0RERCQFFHSJiIiIpICCLhEREZEUUNAlIiIikgIKukRERERSIBCPx9M9BhEREZGcp5UuERERkRRQ0CUiIiKSAgq6RERERFJAQZeIiIhICijoEhEREUkBBV0iIiIiKZCf7gGkgzHmLcAfAWvACPDPrbVrxpj9wGvASWvty+kcY67Zbs6BRuC/AOXAT621v5++EeaW28z3E8D7vbt83lr77TQNL+cYYxqB7+DmOwb8BtANfAHYAJ601l5I3whzy23m+2mg2rvLv7DWvpSm4eWk7ebcWjtmjCkDrgIfsNZ+P51jzAZ360rXEPAr1tq/AwwC7/Vu/1fA8+kaVI7bbs6/iPsyersCrqTbbr5/G3gYeAz43bSNLDdFgEestY8CfwH8FvDvgfcA/wT4fBrHlou2m+/fsdY+4v33Z9M5uBy13ZwD/EvgbNpGlWXuypUua+3Ypl9XgQ1jTCcQB66nZ1S5bZs5DwIdwB8aYxqAf2Ot/Xk6xpaLtnuPA1eAYqAEmE3DsHKWtTa26ddy4DIu6J0BZowxNekZWW7aZr5fsdZe8X733++SRNvNuTGmAjgGvJCeUWWfuzLo8nnbiX8X+Bzwn4E/AD6dzjHluk1z/jXg68Cv4z4kvwc8mL6R5aZb3uMNQB8u4P2t13uc3DljzP3AfwWqcHP+65v+ed0YE7LWrqZhaDlpm/n2fcn7nyTZNnP+O8AfA4+nb1TZ5W7dXsSL0L8B/CbQDmCtHUzjkHLeLXMeAQastdettePAmjHmrr4ISLZb5rsYeBI4CNwDfNYYE0jf6HKPtfactfYU8Cng94CKTf+cr4AruW6Z708CGGM+A7xgrf1pWgeXo26Z808D91lrlZJzB+7KoMv7cv8r4DPW2kvAfcBRY8wzuIj9T40xRekcY665dc6ttUvAlDGmyhhTChRaa9fTO8rcsc17fANYApaBG0AIUNCVJMaY0KZfo8ACkO+9v/cB0+kZWW7aZr4XjTG/CbRZa7+YnlHltm3mvANo8743/ynwGW9lXV7HXdnw2hjzz4AvA/5poj+x1n7T+7evA1/S6cXk2m7Occnen8cFAJ/VyZfkuc187wf+Ee5i68+ttX+antHlHu+06Jdwp7qWgQ/iVhX/AJcr+tvW2t70jTC3bDPfH8KdoDuDO1131Vr7gfSNMPds9x73c0eNMZ8GrD7D39hdGXSJiIiIpNpdub0oIiIikmoKukRERERSQEGXiIiISAoo6BIRERFJAQVdIiIiIimgYpQikhOMMSW4/qmD1tqve3Wb/hvwCWutKpSLSNpppUtEckUJ8Pu4CvwAPwH+Ma7FlIhI2mmlS0RyhfV+PmqMiQPXcAVhPwFcMsYMAnXAf8dV0H4O1zfuadxn4Qestc94lbf/Ay5gKwV+iCtuOpnCv0VEcpBWukQkV/yu97MPFzBtt6VY6v38W+Dv4yr1fxHXDPwPvH/7JPBx3ArZl4F3A6reLyK7pqBLRHLFD7yfYWvtX+H6H95qA/go8G3v929Ya78CjAKd3m3/wPv5Edx2ZSmuJ6uIyK5oe1FEcsVOepotWWtXjTFr3u9R72cMCG663zou+Ip5v+sCVUR2TR8kIpIr5nArWQeMMb+By+d6M76PuyB9P9AO/D3cqpeIyK4o6BKRnGCtXcPlZ1UBf8nNVao79R+953kbLtH+3biTkCIiuxKIx3eyIi8iIiIiu6GVLhEREZEUUNAlIiIikgIKukRERERSQEGXiIiISAoo6BIRERFJAQVdIiIiIimgoEtEREQkBRR0iYiIiKTA/wciQ4FK2iFWnQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAG/CAYAAACNLZxtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUZdr/P1My6b2Q0BI6hKYUGwLSmwirAiqKwAr2XtDXhddVV2UX1FV/66uosCq7iGUVJQqiIs1FBSlC6CGBkJCQXiZTz++PkzlzBhIgkJ77c11cTM6cmTlnzjzPeb73fT/fx6AoioIgCIIgCIIgCIIAgLGhD0AQBEEQBEEQBKExISJJEARBEARBEARBh4gkQRAEQRAEQRAEHSKSBEEQBEEQBEEQdIhIEgRBEARBEARB0CEiSRAEQRAEQRAEQYeIJEEQBEEQBEEQBB0ikgRBEARBEARBEHSISBIEQRAEQRAEQdAhIqkecbvdpKWl4Xa7G/pQhAZArn/LRq5/y0auf8tGrn/LRq5/00REkiAIgiAIgiAIgg4RSYIgCIIgCIIgCDpEJAmCIAiCIAiCIOgQkSQIgiAIgiAIgqBDRJIgCIIgCIIgCIIOc0MfgCAIgiAIzQdFUXA6nbhcroY+lEaD2+3G5XJRUVGB0Sjx6ZaGXP/6xWQyYTabMRgMF/U+IpIEQRAEQagV7HY7WVlZlJeXN/ShNCoURcHlcnH06NGLHrgJTQ+5/vVPUFAQCQkJWCyWC34PEUmCIAiCIFw0nrVgTCYTrVu3xmKxyICwEkVRcDgc+Pn5yXfSApHrX38oioLdbic3N5e0tDS6dOlywdk7EUmCIAiCIFw0drsdt9tNu3btCAoKaujDaVQoioLRaBTh2EKR61+/BAYG4ufnR3p6Ona7nYCAgAt6HymMFARBEASh1pA5F4IgNDS10Q9JTyYIgiAIgiAIgqBDRFI94qlJLS4uJicnB4fD0dCHJAiCIAiCIAjCacicpDrCM3GsoqICm81GRUUFVquVkydP4na7MRgMWs2kIAiCIDQXFEXBZrM19GFoNLZ5IDNnzqSwsJDPP/+8oQ9FEISzICKpDsnIyMDtdmt/K4ri83xFRQWhoaH1fViCIAiCUGfY7Xays7Mb+jA0kpKS8Pf3P+s+11xzDZdccgmvvvrqeb/vhbxGEISmg5Tb1REGg8GnU3Y6XXzzQzb/b2Whtq0xRdoEQRAEQRAEQVARkVSH6C0Hb/84k2ejHXw7JJCftp0C1EySIAiCIAgNx8yZM/nxxx/5+9//jsFgwGAwcPToUX788Ucuu+wy/P39SUhI4Mknn8TpdJ71NS6Xiz/+8Y906NCBwMBAunXrxt///vcGPkNBEC4EKberQ/SZpJBCNx5Nun57CVcNiMXlcmmLiwmC0Dxxu90UFBRQXl5OTk4OISEhREVFYTKZGvrQBEEA/v73v3PgwAF69erFs88+C4DL5WL8+PHMnDmT999/n3379jFnzhwCAgJ45plnqnxNbGwsbrebtm3bsnLlSmJiYtiyZQtz584lNjaWSZMmiT26IDQhRCTVIfpMUivFK5IyHd4JpBUVFSKSBKGZ4nK5yMjIwG63a5PZ8/LyKC0tpW3bttL2BaEREB4ejsViISgoiPj4eACefvpp2rVrxxtvvIHBYKB79+6cOHGCefPmsWDBgipfA2Aymfjzn/8MqPOQ27Rpw8aNG/n444+ZOHEiTqcTl8t1xhxlQRAaHxLSqEMsFosWNRrYJVDbXhjljSBLyZ0gNF9OnjyJ3W4H1HmJNptaqmO328nNzW3IQxME4SykpqZy5ZVX+rjiDRo0iNLSUo4fP37W1/7f//0fAwYMIC4ujqioKN577z2OHTvms4+IJEFo/IhIqkP05g2jh8QSYFW357X27iPmDYLQPLHZbJSUlACwcWsuf/jxBHcedrHxv6o4Ki0t1eY3CILQuFAU5QzbcI+wOZud+MqVK3n44YeZNWsWX331FVu3buW2226j1GrnqFXhVIFDey+Xy1V3JyAIwkUjIqmO8Ygkf38zcZnqtqII2LpdzBsEoTlTWFioPX5/Zxl5sVAYBR9vKwXUQZK0f0FoHFgsFh/RkpyczJYtW3wyPlu2bCE0NJQ2bdpU+RqAjRs3ctVVV3HXXXfRt29fOnXqxL79h1GM4DRDqS6BJNkkQWjcyJykOkY/Lyk81w2dVV36w7ZiLu8XI+YNgtAMcblcFBcXA3A4vYRDfbzxqOJQb7drs9kICQmp9+MThLrEYrGQlJTU0IehYbFYzrlPUlISW7du5ejRo4SEhHDPPffw6quvcv/993Pfffexf/9+/vd//5dHHnlEK6M//TVRUVF07tyZ999/n2+++Yb27dvzr3/9i127fqN1YiIATt2tXr+OoiAIjQ/JJNUxPuYNug7xuN3XvEEQhOZDUVGRNgB6fVUuFd4piRR653hLua3QLPGUmjeWf2crj/Pw2GOPYTKZSE5OJjY2FofDQUpKCj///DN9+/blrrvu4o9//CN/+tOfqn1NRkYGd911F9dffz3Tp09nyJAh5OaeYsrsP2qvcZrB5VL7BhFJgtC4MSg1zPfu27ePv/71rxw+fJiIiAj++Mc/ct111wGwbNkyPvzwQ9xuN5MmTeKBBx7QOqc9e/bw/PPPk5GRQc+ePfnzn/9MQkICoIqEv/zlL/z444+EhoZy//33M3bsWO0zv/zyS958803KysoYPnw4//M//9NkMi+KonDw4EEUReGLNZm8FK+m5jv9Dh9Obw9AdHQ0MTExDXmYQj3gdrtJT08nMTFRbGCbMYqicOTIEZxOJ+VWB1O2ZJGva94Gt8JnbeKIjwvEYrHQoUOHhjtYod5oCe2/oqKCtLQ0OnTo4BMgbGl4KkQAjufYKAnxFWmR5QrxMZ5S/PMTcULTRlEU7HY7FotFrnc9URv9UY176gULFjBo0CB++OEHFi5cyKJFi0hPT2fTpk188sknLFu2jJUrV7Jp0yZWrVoFqE5OTzzxBDfddBPff/89vXr1YsGCBdp7vvXWWxQVFZGSksILL7zASy+9RHp6OgCHDh3ilVdeYdGiRaxevZoTJ07w7rvvXtDJNgQGg0G7OGOGxnnNG9p495FMkiA0H/SGDK98cMxHIAEoRgMp61XzBrvdLtFkQWhm6Ocp2f3OHBDbdU1e2r8gNF5qLJKys7MZO3YsRqOR7t27k5SURHp6OikpKdx44420bduWmJgYbr31Vr7++msAtm3bRmBgIJMmTcLf3585c+awd+9esrKyAEhJSWHu3LmEhITQt29fhgwZwtq1awH45ptvGDVqFMnJyYSEhHDHHXdo79tU0Js3xJ5QtxVGwradeYCIJEFoThQUFGiPd0d55x8l7ffusy/H62onJXeC0HxQFEUTPiWlDuz+arGOUaeFnCavcBKRJAiNlxobN0ydOpWUlBRmzZrFvn37OHnyJL169eLNN99k/Pjx2n5du3bl//2//wfAkSNH6Ny5s/ZcYGAgbdu25ciRIwQHB5OXl+fzfNeuXdmzZ4/22iuvvFJ7rkuXLmRmZlJRUVFl+sxut2vrkmgnaTaf18TNusJisWgdZ3iOi2Od1HWSvvuliH59onA6ndhstiZTQihcGJ6bodwUmy8VFRWUl5cDsGLVcdK7qNtjcmBgmZOjlV1uvsWkOVtZrVYtkCI0X1pC+3e73SiKov1riegXii0od6NUltoFlCtUBBlwG8Fp8Trbeb4zoeUg17t+8PRDbre7yn73fMqeayySrrzySv73f/+Xd955B4D/+Z//ISoqivLych+XpuDgYG2wYLVaCQ4O9nmf4OBgrFYr5eXlmEwmH8Fzttd6PsNqtVYpkpYuXcqSJUt8tk2ZMoWpU6fW9FRrDbvdTk5ODgDRNgegiqSjVkXb7na7CQwMrO4thGbE6YsKCs2HvLw8re9am+uCJLUT7rTHzuVXmvm4cr/iWIPW9svLy4mMjGyIwxUagObc/l0ulzYfp7nOuzoXDodDG5zZ/b0Zo1CLgtNhwO4PLhMUl9gJCmyZ31FL5vQgvlB3OBwOXC4XJ06cwGQynfH8+cwHrpFIKiws5JFHHuGZZ55hyJAhpKWl8cADD9CpUyeCgoIoLS3V9i0rKyMoKAhQM0dlZWU+71VWVkZgYCBBQUG4XC6fzNDZXuv5jOoExaxZs5g+fbrvSTZwJskTNXC5XPRsXcSPlduLo/yIi4sDICoqSswbmjlut5tjx47Rrl27FjuAaM44nU7sdjshISHs3FPA4b5qGV2AFR78Qyvatw0iYkMmhVGQmwBRUdGYzWqAqH379g189EJd0xLaf0VFBUePHsXPz69B77kNhb7ULr/QgaMyQWyxQWSEP8W5dqgUTuU2CKtcDsDPz08m87cAPMYNQv3gdrsxmUy0bt36go0baiSSMjMzCQkJYdiwYQB07tyZ/v37s337djp06MChQ4e4+uqrAThw4AAdO3YEoGPHjvznP//R3sdqtXL8+HE6duxIWFgY0dHRHDp0iF69elX52kOHDmmvPXjwIG3atKn2hC0WS6P8EQYEBGC1Whl6eTDvZrmwBUB+a+/K3Xa7vdneOAVfjEajXOtmiGddJIPBwDvri3AMViNXXXa66XBFKIqiEJWlLihbEQjfbznFmKHxOBwODAaDDJJaCM25/RuNRu233BJ/z06nUzvvEqeiCSKLQw2U+ikKVirv+Yr3/q8oSrP9TQgq+hK7ltg2GgJPP3QxfW6NXpWYmEhZWRkbNmxAURSOHj3KL7/8QufOnRk/fjyffvopmZmZnDp1iuXLlzNu3DgA+vfvj9Vq5csvv8Rut/Puu++SnJysWYCPHz+ed955h7KyMnbv3s2GDRsYNWoUAGPHjmXdunXs27eP0tJS3nvvPe19mxIeUefvbyYuU91WEAU796iTvGXytiA0XRRFobCwEICiEhuHeqkCyeBWuL6rN6ATWuA1bNiaqpblud1uzS5YEISmiyeL5HK5sQeoA2GDohATpvYHQbqphy6zmDcIQmOnRpmkkJAQXnzxRV5//XX+9Kc/ERoaytSpU7nqqqsANcszY8YM3G43kydP1tZPslgs/PWvf+W5557jpZdeIjk5mWeffVZ73zvvvJPnn3+esWPHEhYWxpNPPqmt1t25c2ceeughHn74YW2dpNmzZ9fS6dcf+sxXeK6bY51Ufbrmv4X07RmJ0+nE6XRiNtd4mpggCA1McXGxZvu76INMigap7bjjXgNjp3tXj41xO/B0u9kub4zKZrM1ygy4IAjnh96AIbfAgStIFUH+FQYCo80oikJwkBGTTZ2T5PRTgysGg0Em8gtCI+WCjBv0bnN6Zs2axaxZs6p8rmfPnqxYsaLK5wICAnj++eer/cyJEycyceLEmh5qo0LvXhXrdONJ4mVYvftUVFT4mF8IgtA00Nt+p7bxdqsDHC6f/Xq2M/Bd5ePiCF+RFBoaWqfHKAhC3aFfG0l3W8ff7VtmZXYouEyqUCopdRIW6qcJrPMtw3r77bd57rnnyMzM5OWXX+ahhx6qpbM4N+vXr2fYsGEUFBQQERFRb58rCA2BFMHWE/pVtS9N9EaMiyK8jhuyXpIgND3Ky8u1ctklKzLITFK3x2fCfbf6GjIM6heMf2UzL0jwbpdyW0FouiiKookkm92FPVC91xvdEBfpu7SHyekVTaVWt897nA/FxcXcd999zJs3j8zMTObOnXuxh18jrrrqKrKysggPD6/XzxWEhkBEUj1hMBi0cprxw+O0gVJ+a+8+MlAShKaHPou0SdeEux5xYjarQRCP/ai/v5lYdQ1t8qNh/+EiQNq+IDRl9HOKcguduCsTQv5WBbPZd5hl0SWL9DMRz3deUkZGBg6HgwkTJpCQkKA5AZ+L2pr3aLFYiI+PF/MBoUUgIqke8cxLCgr0I/aEui0/GnbtVQdZkkkShKaFw+HQlijYuDWXw73VaHBICTx2sxoBMZlMREVFaa8Jy/VGjNduLtDeR1+uIwhC/fLJJ5/Qu3dvAgMDiY6OZuTIkVrbvuaaa84oaZs8eTIzZ84E1FK7bt268dJLL/HoI3cxqH1rxvftxaZvV5Obm8uUKVOIjY3liiuu4PD+Hdp7uPy8QsOTScrIyGDSpEmEhIQQFhbG1KlTOXnyJADLli2jd+/egOr8azAYOHr06BnncvToUQwGAytXruSaa64hICCADz/8EFDXkuzRowcBAQF0796df/zjHz6v3bJlC5dccgkBAQEMGDCAzz//HIPBwI4d6nGvX78eg8GgGdUAfPrpp/Ts2RN/f3+SkpJYvHixz3smJSXxwgsvMHv2bEJDQ2nfvj1vv/229rzdbue+++4jISGBgIAAkpKSePHFF89ytQShfhCRVI/o5yVF5HqjRmv/WwigmTcIgtA0KCws1AY3/9pWhsukDno673ITG60GRcLDw33WdYuq8IqhtCJvPyDZJEFoGLKysrj55puZPXs2qamprF+/nuuvv/68SuD0ayO99tpr9L7qcv79w0aGjBzNIw/dxR133MHNN9/Mf//7Xzp27Mj999+FsbLkzuEH7so5S555SZMnTyY/P58ff/yRb7/9lsOHDzNt2jQApk2bxrp16wD4+eefycrKol27dtUe27x583jggQdITU1lzJgxLFmyhKeffpq//OUvpKam8sILLzB//nz++c9/AlBSUsLEiRPp3bs327dv57nnnmPevHlnPf9t27YxdepUbrrpJnbv3s0zzzzD/PnzWbZsmc9+ixcvZsCAAfz222/cc8893H333ezbt0/73latWsXKlSvZv38/H374oWbeJQgNiVip1SN6h7tYu9e8Ib3cu4+YNwhC08DtdlNUpJbL5eZVcKiP2p5NLoVbBwQDapltRESEz2rfXWJMbKp8XBDs3W6z2c67dEYQmhIDBgwgOzu7Xj8zPj6eX3/99bz2zcrKwul0cv3115OYmAigZWzOhT4DPPiaUdwwU3Xfvf/eJ1i57F369+/P1KlTURSFhx56iJEjR1KYmUNYYivcRigqcRAZbkFRFL799lt27dpFWlqaJn4++OADevbsyS+//MLAgQOJjo4GIDY2lvj4+DMPSMdDDz3E9ddfr/393HPPsXjxYm1bhw4d2Lt3L2+99Ra33347y5cvx2AwsGTJEgICAkhOTiYzM5M5c+ZU+xkvv/wyI0aMYP78+QB07dqVvXv38re//U3LtIG61Ms999wDqOLtlVdeYf369XTv3p2MjAy6dOnC1VdfjcFg0K6BIDQ0IpLqEb15Q59EP35AjSAVhvuaN4hIEoTGj4/t979PUDpY7U477TYw6PZYQF02wc9Pnbjt+X/ckBiW5ZxCMRooivWW20gmSWiuZGdnk5mZ2dCHUS19+/ZlxIgR9O7dmzFjxjB69GhuvPFGIiMjz/lavUjq3KuX9rhTO1XA9OzZE5PJhNvtJi4uDoCiHFUkAZTbFDyfkpqaSrt27XyyQ8nJyURERJCamsrAgQNrdF4DBgzQHufm5nLs2DH++Mc/+ogep9OpmTDs37+fPn36+AR0L7vssrN+RmpqKpMmTfLZNmjQIF599VVcLpcWIOrTp4/2vMFgID4+npycHABmzpzJqFGj6NatG2PHjuXaa69l9OjRNTpXQagLRCTVIwaDQRsoXTu8FW/uzcZuEfMGQWhqKIqiGTY4nS72d/J2pYN1C0bqLXI95bZtWwcRs8dAbivITVAoLbMTEmyROYlCs+VcGY+G/kyTycS3337Lli1bWLt2La+//jpPP/00W7dupUOHDhiNxjNK7xwOB4qiaNvdbjAEqPd3ix0iI1SjJovFgsFg0P4BmPGW2Tp0/gcul6tKQ4Sa2IPrCQ4O1h57SgKXLFnC5Zdffsb5V/c55yo5PN/XeMY+HgwGg3ZM/fr1Iy0tja+//pp169YxdepURo4cySeffHLWzxaEukZEUj3j6ShCgi3EZcLxDpAfA3sPFJLcNUIGSoLQBCgvL8dutwPwxocZnLxUHWS0OQp33KTafvv7+/uUz/nMScyG3Fbg9DOQ8kMOU69ti91uv+DBkCA0Zs637K0hMRgMDBo0iEGDBrFgwQISExP5z3/+wyOPPEJsbCxZWVnavi6Xi99//52hQ4dq29x4hYHF7n1sNBq19/e07ZAgb/WIy+xt7z169CAjI4Njx45p2aS9e/dSVFREjx49Lur8WrVqRZs2bThy5AjTp0+vcp/u3buzfPlybDab1l+d69olJyezadMmn21btmyha9euPmXG5yIsLIxp06Yxbdo0brzxRsaOHUt+fr6P6Y0g1Ddi3FDPeGzAAcJzvB3pN5s9UWkxbxCExo7e9vtXP+9AoEemt+2eXqqjF0nhxd4SnV0ZqthSFEUTXoIg1B9bt27lhRde4NdffyUjI4PPPvuM3NxcTZgMHz6c1atXs3r1avbt28c999zjY9riditQKYAMikJ0qLdP8IgkQBNJ/hYT5squwmkBl0vNqAwbNow+ffowffp0tm/fzs8//8yMGTMYOnSoT+nchfLMM8/w4osv8ve//50DBw6we/duli5dyssvvwzALbfcgtvtZu7cuaSmprJmzRoWLVrkc+yn8+ijj/Ldd9/x3HPPceDAAf75z3/yxhtv8Nhjj533cb3yyiusWLGCffv2ceDAAT7++GPi4+NlsVqhwRGRVM/oRVKM3TtQOlrm3UeySYLQeLHb7Zo18Dc/ZHMkWR0ohRfAY7e1AcBsNhMWFubzOr1IauPvDZDkGrzdsJTbCkL9ExYWxoYNGxg/fjxdu3blT3/6E4sXL2bcuHEAzJ49m9tvv10TLB06dOCaa67RXp+Tb9fySJYKA0GB3iIdvbjQPzZXLlvkNkBhsTe48p///IfIyEiGDBnCyJEj6dixIx999FGtnOcdd9zBO++8o1mJDx06lGXLltGhQwfte/jyyy/ZsWMHl1xyCU8//TQLFiwAfI2n9PTr14+VK1eyYsUKevXqxYIFC3j22Wd9TBvORUhICAsXLmTAgAEMHDiQo0ePkpKS4iMwBaEhMCjnu8yzcNG43W6OHj2K3W7HYDDw7y+O8VqS+vV32Qnvz1DLdGJiYjQHG6H54Ha7SU9PJzExUTr/JszJkye1NULmvnWU3Veo17L/Rhdv3KcONqKjo4mJifF5ndvtZsuWLcTExLDp51M8EWAFIGk//Huq2vYjIyO1yd1C86IltP+KigrS0tLo0KFDtYPq5oJ+bbO0UzYqglQBFF6q0DpODYj4+fn5zPfxBEANBgMZOTbKQtTXhJYqtK18jcViaVS/j+XLlzNr1iyKiop8ljIQaoanUsAzR02oe2qjP2o8LbGFYDAYtIjyxJGt8KusrtGbN0gmSRAaJy6Xi+LiYgDS0ks42FftQv3sMGdYBOC1/a4KTyb5yv5RhJSo2/ISvM9LJkkQGj+KomgCyW53YQ9QB71GN8RGeQ0KThc7+sGxv266jlM3ZvaYGTQU77//Pps2bSItLY3PP/+cefPmMXXqVBFIQotERFID4BFJIcEW4k6o2/JiYf9hdc0VEUmC0DgpKirSBjGvr8qlonLc0HmXQt+e6hyk0NBQzOaqPXE8xi1ms4noynngJWGwdfspQESSIDQF9EImt9CJu3Ik5V+h4GeuXC/NZDojY6A3b4gIMWOoLNJz+nn3a2iRlJ2dza233kqPHj14+OGHmTJlCm+//XaDHpMgNBQikhoAfdpPb97w9cZ8QMwbBKExoiiKVmZnszk52N0rhEbFeLvSs62torfBDcvzDoZ+/E1NK7lcLmn7gtDI0a+NZNO50wXpNFF1zm6e7JK/vwlzpf+300/B4VT7g4aeAfHEE09w9OhRrVTplVdekUWuhRaLiKQGQD+BO8bm7WzTSrydo0SUBaFxUVpaisOhzrZ++f0MTlVOHUo8CDdPUu16AwMDz1r7rBdJsS6vSDpm9e4jmWRBaLwoiqJle0rLnNgD1Pu22QkxkWo5rcFgqHZekT67ZHKor1UMBs28Qb/2kiAIDYuIpAbA399f6yh7t/EOmgrCvZFpGSgJQuNCb/u9S9dWe+dXb/t9On5+flrb79nW2/aLdZbBEiARhMaLPouUX+ZCQW3PlgoFo1F9fLb1gfTiyayrrKtweoVRQ5fcCYKgIiKpATAajdoE7okj4zBXRpMKdBO4RSQJQuOhoqICq1VN96z86jhHu6nbo07Bw7epWSQ/Pz9CQkLO+j4Gg0Fr++OGett+Ybx3HxFJgtB40Ysku8WbFQrz9z4+mzudPpMUoCvVc+peIpkkQWgciEhqIDwlOeGh/sSdUDvKU3Fw8IjqnCUDJUFoPHjmIgF8k+0dJHXZ6yQoUM0IRUREnJe1q0ckRUb4E3NS3T83TiE7RxVh0vYFoXHidrs1AZNfaMdRueyhxQ6R4eofRqPxnCJJM28IM2OofD9XIzJvEARBRURSA6GflxShM29IqTRv0K/BIAhCw+F0OjXb79/3FXC4rzqYCbDC/dfFAurAKDw8/LzeTz9nKeJk5ZwEo4GU9bmAulitDJIEofGhb5cldu9926J7fD5rHHlEkp/Z6GPeYKtcYF4ySYLQOBCR1EDoB0rRFV4xdKTE2wlLyZ0gNDxFRUXaoOWtdYXYK6PHnXe56ZQYCqgr1Z9tHoIefYAkvMzb9vfleOc2STZJEBofnsCl261oayMZFIWoEG/bP59+wGdekse8AQNFJWLeIAiNCRFJDYTevKFXa+8E7sJQMW8QhMaC3va7tMzOoZ7qAMjgVpjUUZcNrmbx2KrQi6SkUG+JTb5FzBsEobGiL7XLzbfjrLxVW2wGgoPUP4xG43mV3PqIJJ0W0sVLz5pNfvvtt2nXrh1Go5FXX331/E9CEIQaISKpgfAxbxhetXmDDJQEoWEpKSnR1i1a9P5xCqPU7R32Gbh2pNpYg4ODfYTPuTCZTNpisyOviNC2F8d6B1fS9gWhcaEvfy/XbffXudKdbzZZL6QCdXORXCbv4+oyScXFxdx3333MmzePzMxM5s6de16fKQhCzRGR1IB4Su4iI/yJy6o0b4hVSEtXF5aUTJIgNCx62+898d4sbz9dyLcmWSQPHlHVq3skEeo0RHITwOlU31dEkiA0HhRF0USSw+HWSu2MboiL9FaCnM98JKjKvEHd7vS+VbWZpIyMDBwOBxMmTCAhIeG8F3r1rPEmCML5IyKpAfExb9BN4P7qxzxAzBsEoSGxWq1aoOK9lRkc76huj8uCB29rD6hOdcHBwTV+b/2cxKhs9f+KQPhus2reYLPZZE6CINQjn3zyCb179yYwMJDo6GhGjhxJWVkZANdccw2PPfYYADkFDtxGeOTWW3jm7rvw81OHUd27d+cvf/kLM2bMICQkhMTERL744gtyc3OZNGkSoaGh9O/fn19//RXwCiqTyYhfpX5xmuHgwTSmTJlCVFQUYWFhTJ06lZMnTwKwbNkyevfuDUDHjh0xGAwcPXr0jHM5evQoBoOBlStXcs011xAQEMCHH34IwNKlS+nRowcBAQF0796df/zjHz6vnTdvHl27diUoKIiOHTsyf/58H4G1c+dOhg0bRmhoKGFhYT7nBPDpp5/Ss2dP/P39SUpKYvHixT7vn5SUxAsvvMDs2bMJDQ2lffv2vP3229rzdrud++67j4SEBAICAkhKSuLFF1+swZUUhNpDRFID4jNQsnrF0OEiMW8QhIZGn0XaUO4VLN0OOjGb1bKa87X9Ph19gCSswNvet6aqhTxut1siv4JQT2RlZXHzzTcze/ZsUlNTWb9+Pddff32VgQqbbm2j04vrXnnlFQYNGsRvv/3GhAkTuO2225gxYwa33nor27Zto1OnTtx+++0oiuLTb5g85g2Kws233ER+fj5r165l7dq1HD58mGnTpgEwbdo01q1bB8DPP/9MVlYW7dq1q/a85s2bxwMPPEBqaipjxoxhyZIlPP300/zlL38hNTWVF154gfnz5/PPf/5Te01oaCjLli1j7969/P3vf2fJkiW88sor2vPTp0+nbdu2/PLLL2zbto0nn3wSPz81BbZt2zamTp3KTTfdxO7du3nmmWeYP38+y5Yt8zmuxYsXM2DAAH777Tfuuece7r77bvbt2wfAa6+9xqpVq1i5ciX79+/nww8/JCkpqdpzFIS6xHzuXYS6wmPeoCgKyfFmNlVuLwz1ncB9IZFqQRAuHIfDQWlpKQBbfs3lkBq8JbgUHpyirvxaE9vv09GLpHiDG0+8KtvljVvZbDZt3qIgNGUGzHGTnV+/nxkfBb8uOb84cFZWFk6nk+uvv57ExEQALWOjd5orK3di91cAAwYFAvwrjVwqBc/48eO58847AViwYAFvvvkmAwcOZMqUKSiKwqOPPsrQoUM5efIkcXFx2uf7KWAFtq7/gX2pe0hNTaVdu3b4+fnxwQcf0LNnT3755RcGDhxIdHQ0ALGxscTH61ahroKHHnqI66+/Xvv7ueeeY/Hixdq2Dh06sHfvXt566y1uv/12AP70pz9p+yclJfHoo4/y0Ucf8cQTTwBqud/jjz9O9+7dAejSpYu2/8svv8yIESOYP38+AF27dmXv3r387W9/Y+bMmdp+48eP55577gFUIffKK6+wfv16unfvTkZGBl26dOHqq6/GYDBo10MQGgIRSQ2Ix7zBZrNx3YhWvJuWjctsoCDBG2GSTJIg1D+FhYXawOjDn8twDVIHW513umkzSJ0DEB4eft5zEE7Hz88Po9GI2+2mf5dAvkHNGhVH+Iqk0NDQizkNQWgUZOdDZm5DH0X19O3blxEjRtC7d2/GjBnD6NGjufHGG4mMjPQpec8vdaGEeOYjKXiSQR7Dhj59+mj7tmrVCvCKLUATRjk5OdrzAEH+BoqBtAMHiG/dRssOud1ukpOTiYiIIDU1lYEDB9bovAYMGKA9zs3N5dixY/zxj39kzpw52nan0+kT7Pnkk0949dVXOXToEKWlpTidTsLCwrTnH3nkEe644w4++OADRo4cyZQpU+jUqRMAqampTJo0yecYBg0axKuvvorL5aryezIYDMTHx5OTkwPAzJkzGTVqFN26dWPs2LFce+21jB49ukbnLQi1hZTbNTCeiHJ0lNe8ITdOIf24GsUWkSQI9Yvb7aaoqAiA3LwKDvVWu0mjS+GmS72TpCMjIy/4MwwGg9b2Rw2Oxb+ymYu7pdAciY+CNrH1+y8+6vyPz2Qy8e233/L111+TnJzM66+/Trdu3UhLS8PtdmM0GlEUBbtF5z7n8q5r5gmWeMrOQLdgbBXb3G63j3lDeKgfRjcoKGA40+Hu9PK880VfheIxgliyZAk7duzQ/v3+++/897//BeC///0vN910E+PGjeOrr77it99+4+mnn8Zut2vv88wzz7Bnzx4mTJjA999/T3JyMv/5z3+qPc6qShb134nne/EcX79+/UhLS+O5557DarUydepUbrzxxhqfuyDUBpJJamACAgIoLi4GICJbIaudQTVvWH+Ke28N0cwbztdaVBCEi6O4uFiLHi/+9wlKBqvdZKffDVwzQ40Eh4SEnHGjryn+/v5YrVb8/c3EZsHxDpAfDfsPF9GtU7iIJKHZcL5lbw2JwWBg0KBBDBo0iAULFpCYmMhnn33GvffeS0xMDMeOndAWkjZaXRw8kErrhDgMBsMFZ5SNRiMulwuj0YDZAR27diM78zj7DxylW9ck3G43e/fupaioiB49elzU+bVq1Yo2bdpw5MgRpk+fXuU+mzdvJjExkaefflrblp6efsZ+Xbt2pWvXrjz88MPcfPPNLF26lD/84Q8kJyezadMmn323bNlC165dazSGCQsLY9q0aUybNo0bb7yRsWPHkp+fT1RUDZSvINQCIpIaGL15Q7TVheeSHCrwNW+QeUmCUD94Fo91Ol3s7+DtIq/y80ZELyaL5MHHvCFXgQ5qBHbt5gK6dQqXAIkg1BNbt27lu+++Y/To0cTFxbF161Zyc3Pp1q0boLrbPfHEPEauXUPbpA6sfP3/adnmi2mf+qyL2aFw+TXD6NKzJ3PmzObvry7G6XTy8MMPM3ToUJ/SuQvlmWee4YEHHiAsLIxx48Zhs9n49ddfKSgo4JFHHqFz585kZGSwYsUKBg4cyOrVq7UsEaiOn48//jg33ngjHTp04Pjx4/zyyy/ccMMNADz66KMMHDiQ5557jmnTpvHTTz/xxhtvnOGgdzZeeeUVEhISuOSSSzAajXz88cfEx8df0FILgnCxiEhqYPQDpe6tvOYNBSFi3iAI9U1ZWZmWwXnzX8fI7qtGiFunwx1T2gJqmz3ftUnOhr7tR1V4AyRpOndLm81WK58lCEL1hIWFsWHDBl599VWKi4tJTExk8eLFjBo1CkVRuO22GWzctoMF99yJyWzmnrvupWzIEODiRJI+A2VGFU2LP/gXix97nFGjRmE0GhkzZgxvvPHGxZ4iAHfccQdBQUH87W9/44knniA4OJjevXvz0EMPATBp0iQefvhh7rvvPmw2GxMmTGD+/Pk888wzgHqueXl5zJgxg5MnTxITE8P111/Pn//8Z0AtlVu5ciULFizgueeeIyEhgWeffdbHtOFchISEsHDhQg4ePIjJZGLgwIGkpKRccLZOEC4GgyKLcdQbbreb9PR0EhMTfRp8Wloadrud3LwK/pB+EpfJQFwWfDFWXYslNDSU1q1bN9RhC7VEdddfaDwcP35cWxvltg8zNFe74Zuc/OVedaGk+Pj4C3K1O/36u91uDh48CMCSFRm8V1lN032bwtLZqqNTXFxcrWSthIanJbT/iooK0tLS6NChg0+VRFPE7XZrc3Fy8mzkBapZH/8K6Bil1t15zJfOB0VRsNvtWCwWLYOkKIoWlCkqcXDCpJzxGSaT6aJLe4WGp6rrL9QttdEfNc+euonhuXix0QHEeswbWikcP6EO1mRugiDUPXa7XRNI327I5nBPdcASVgSPTW8DqAOW2nKc0w+wxg2JxuBWP68o1nsDlbYvCA2D3tWu3Jvcxd/pjStfbCms3rwhLMSMqfJznH6+pg2CIDQMIpIaAXqFG5Fd2TEaDXz1g+qZarfbfTpsQRBqH89cJIBP9lSgGNXBS5fdLiIj1NK4iIiIWs0CeEru2rYOJia3MkCSoFBapkawxd1SEOofRVG0e67D6cYW6LH9htgI7yyF2ugLPO9hMBgwV5rIuUxQUqq657ndbhFKgtBAiEhqBPjMTSj3iqED+b5zEwRBqBtcLpc2ETv9eCkHL1G7RrNDYdbV6hohBoOh1icP69t+RLb6v9PPQMoP6pohdrtdBkiCUM947KgBcvMduCtHSpYKBYtFzR6ZTKZaKZvSCy2TLktVavUeg/QBgtAwiEhqBOgzST1ivVEqvXmDRJQFoe4oLi7WBkavfZ6DtdIrofMu6N9XXeE+NDQUs7l2vW70Iim82Bsg2ZWhhpQ9deyCINQf+sqNCpNXCAXq9qkt10m90PLTaS6Hbh8RSYLQMNRIJA0ePNjn34ABA/juu+8ANeL57LPPMnLkSEaMGMH8+fOxWq3aa/fs2cPNN9/MoEGDmDt3LllZWdpzFRUVzJ8/nyFDhjBhwgS++eYbn8/98ssvGT9+PEOHDuXPf/4zDoeD5oR+bsKkUXEYXWqHWBDv7TFFJAlC3aAoCgUFBQDYbE4OdvUKoRGR3i6yLixo9SKpjb93IJRr8H6uZJEFof5QFEULmJRbndgD1HZpckFcpZnCxayNdDr69wkL8j526RSTPrMlCEL9UaNWvnHjRu3fe++9h7+/P1dccQUAH330EYcOHeLTTz9l1apV5Ofns2zZMkAVUE888QQ33XQT33//Pb169WLBggXa+7711lsUFRWRkpLCCy+8wEsvvaQtYHbo0CFeeeUVFi1axOrVqzlx4gTvvvtuLZ1+40Fv3hCXrXaOOfEKmdnlgAyUBKGuKCsr0wIvf//gGLmt1O3tD8Gtf2gHQGBgIIGBgdW9xQXj5+enRaQH9fEaQhRHe7tmCZAIQv2hzyLllbhQKjM9/lYFY+U8xdpeu8wjlEKC/TBVfrzDD9yVZi4ikgShYbjg2pGvv/6aoUOHauv3ZGVlMWjQIM0a95prruHnn38GYNu2bQQGBjJp0iQA5syZw8iRI8nKyiIhIYGUlBQWL15MSEgIffv2ZciQIaxdu5Y5c+bwzTffMGrUKJKTkwHV5//555/nrrvuqvK47Hb7GeUpZrP5vG066xJPR1dVh+fn56el1COyFbLbGFTzhu9zmHtzIjabDYfDIQtLNmHOdv2FhiMvL09reztCve2rZ65D2x4WFnbR162662+xWCgvL+eKfpGEbLVSGgp5Cd4Sm4qKCvnNNANaQvv3mAx4/jVFXC6Xdux2izebE2IxaNuNRuNFnd/przUYvO9ttoMrENxGKC5xEB7mV+VrhKaLXMv6wdMPud3uKvvd88kGX5BIUhSFNWvW8OSTT2rbrr32Wv7+979TUFCA2Wzm+++/Z8SIEQAcOXKEzp07a/sGBgbStm1bjhw5QnBwMHl5eT7Pd+3alT179mivvfLKK7XnunTpQmZmJhUVFVX6ni9dupQlS5b4bJsyZQpTp069kFOtE44dO3bGtoqKCnJzVTe78BIHoIq61FwnOTnqJG5FUZr82hNC1ddfaBjsdjsnT54EYO2GItK6q+0rKg9mjPMnJycHk8mExWLRSvIultOvf2FhISUlJQBEZ0FpKJSEwdofjnBJzxCMRqO4WzYjmnP7d7lcuFwuHA5Hk1wLSlEULatcUurC7q+eg58DwoINOJ1ODAbDRZX8VzXH0O1243SqbnYmlwKo4qy0wk1wkFPbT9bXafrIHNP6w+Fw4HK5OHHiRJUJhg4dOpzzPS5IJG3fvp2Kigof8dK2bVtCQ0MZPXo0BoOBgQMHMnnyZACsVquWcfIQHByM1WqlvLwck8nkM/gPDg6mvLy8yteGhIRo26sSDLNmzWL69Om+J9mIMknHjh2jXbt2Z9xAXC6X1gH2iLWytXJ7UagfcXFxAMTExBAVFVWfhyzUIme7/kLDkJ2drUX11hd6y9o673GSOEztQKOjo4mOjr7oz6ru+kdERGhCLSwvHU8V9M40I6OHqW2/TZs2tW4aIdQvLaH9V1RUcPToUfz8/BrFPbemOJ1OrT8ocbihcsqgxaZgrszo6Etka4pnMdHT0WcW/I12yj3HYzRo7d5sNkslSROnuusv1A1utxuTyUTr1q0vOMFwQXddTwmc/qb90ksvERgYyPr161EUhRdffJGXX36ZJ554gsDAQG2RRg9lZWUEBgYSFBSEy+XyyQyVlZURFKTaS53+2tLSUm17VVgslkb/IzQajWfcJI1GI/7+/tjtdiaNbMX7x3NwmwwUxnsXm2uq0TnBl6quv1D/uFwuSktLMRgM7D1QyKG+lXMPKuCe8dHaQo9RUVG1er1Ov/5BQUFaG491ufGIpGNWfNp+Y+/XhPOjObd/o9GotZummPVwu91a6Zs9QD1+AwqRQUbtfC7U+lsvhE5/vc+issEmChS1NMhl9m5XFEV7/Pbbb/Pcc8+RmZnJyy+/zEMPPVTlZ7777rt89NFHrF27tsbHW1OuueYaLrnkEl599dU6/6ymSFXXf+DAgTz11FNcf/319X48LeF6edrVxfS5NX6Vw+Hgu+++Y+zYsT7bDx06xMSJEwkODiYkJITrrruOX3/9FYCOHTty6NAhbV+r1crx48fp2LEjYWFhREdH+zx/4MABOnbsWOVrDx48SJs2bZpl2ZnnnOLjAok96TVvyM5RXQJlArcg1B6FhYXajeutNfnYK6PGnXcpdOukzq0MCwur8+itxWLRbpo92/pp24tDZQkAQagv9Iu2nsq346yMAVsqDISGqO3SIwLrAs8gLijQjLmyws5pAZfLdy5bcXEx9913H/PmzSMzM5O5c+dW+X42m40FCxYwf/78Ojne0/nss8947rnn6uWzmgvz58/nySefbJB5inK9zo8ai6TNmzdrBgt6evTowerVq6moqMBqtfLVV1/RqVMnAPr374/VauXLL7/Ebrfz7rvvkpycTEJCAgDjx4/nnXfeoaysjN27d7NhwwZGjRoFwNixY1m3bh379u2jtLSU9957j3Hjxl3seTdK9HbAkdmVrjYmA19+r85VstvtzXrSryDUF4qiUFhYCEBpmZ2DPb1Z8WvbeR9HRkbW+bEYDAYtSzRuaBxmh9r2C+O9+4i7pSDULfp5f2W626xFt8BrXQZM9JFuc+WUJ7cBikpUxeSZhJ6RkYHD4WDChAkkJCRoVTen8+mnnxISEsLgwYOr/czanB8TFRVFaGjouXesY5rSnJ8JEyZQVFTEmjVr6u0zPfPpGsv1auzUWCR9/fXXjBkz5oxoyoMPPojVamXChAlce+21lJWV8cgjjwBqpPSvf/0ry5cvZ9iwYezcuZNnn31We+2dd95JSEgIY8eO5cknn+TJJ58kKSkJgM6dO/PQQw/x8MMPM378eFq1asXs2bMv4pQbL/rsWGSpt8Pel+uduCkRZUG4eEpKSrSJ0i+/f5yCyilHHVJh8tg2gFoGpw9c1CWez4mM8CemMoucG+fNIotIEoS6Q1EUPv74YwYMGEBkZCRX9O3AXX+4DltpGbERZkaPHs1jjz3mI2QmT57MzJkztb+TkpJ4/vnnmTFjBiEhISQmJvLFF1+Qm5vLpEmTCA0NpX///lqFzel4xlQZGRncN+smBrVvzeDEttxxx+3anMWlS5fSu3dvQK2yMRgMHD16tMr3W7FiBdddd53PtpkzZzJ58mRefPFFWrduTdeuXQHIzMxk2rRpREZGEh0dzaRJk3ze1+l08sADDxAREUF0dDTz5s3j9ttv1+adg1q+pS/7KygoYMaMGURGRhIUFMS4ceM4ePCg9vyyZcuIiIhgzZo19OjRQxsD6tfQPB883/vMmTMJDw9nzpw5AGzZsoUhQ4YQGBhIu3bteOCBB3ymbnz44YcMGDCA0NBQ4uPjueWWWzSTLM/xT58+ndjYWAIDA+nSpQtLly7Vnt+9ezfDhw8nMDCQ6Oho5s6dq00H0X/XixYtIiEhgZiYGB588EEf0w+TycT48eP597//Xe352e127rvvPhISEggICCApKYkXX3xRe76oqIi5c+cSFxdHWFgYw4cPZ+fOndrzzzzzDJdccgnvvfceHTt2xN/fH0VRzrhenqV62rRpQ3BwMJdffjnr16/Xnk9PT2fixIlERkYSHBxMz549SUlJOc+r1HSpsUhauHAh99577xnbo6Ki+Otf/8p3333Hd999x8svv0xsbKz2fM+ePVmxYgWbN29myZIlWhYJVHHw/PPPs3HjRlavXn1GKd/EiRP5+uuv2bBhA88880yzrc3XD8i6RnkvTX6QN3olgyVBuHj0TnW/t/Jmji4p8wYn6iOL5EEfIIk4qUauFaOBlPWSRRaEuiYzM5Pbb7+dGTNmsOa7rby9ajXDr52I2erG36Lef8+n1O6VV15h0KBB/Pbbb0yYMIHbbruNGTNmcOutt7Jt2zY6derE7bffXqUFtMdWfNq0aZQUFrJk1Wr+8ennpKencdtttwGqU++6desA+Pnnn8nKyqJdu3ZVHsvGjRsZMGDAGdu/++47UlNT+fbbb/nqq68oLy9n2LBhhISEsGHDBjZt2qQJFk9WZuHChSxfvpylS5eyefNmiouL+fzzz8/6XcycOZNff/2VVatW8dNPP6EoCuPHj/cRCeXl5SxatIgPPviADRs2kJGRwWOPPXbW962Kv/3tb/Tq1Ytt27Yxf/58du/ezZgxY7j++uvZtWsXH330EZs2beK+++7TXmO323nuuefYuXMnn3/+OWlpaT6id/78+ezdu5evv/6a1NRU3nzzTWJiYrTjHjt2LJGRkfzyyy98/PHHrFu3zuf9AX744QcOHz7MDz/8wLJly/jggw+09UM9XHbZZWzcuLHac3vttddYtWoVK1euZP/+/Xz44YdaEkFRFCZMmEB2djYpKSls27aNfv36MWLECPLz87X3OHToECtXruTTTz9lx44dVX7OrFmz2Lx5MytWrGDXrl1MmTKFsWPHasL23nvvxWazsWHDBnbv3s3ChQs1I7XmjNglNSI8VsN2u52JI+J4PysXxaiaN3iQTJIgXBxWq1VrR+9/doxjalUwcdnwyO3tAdXB6nRHzrpEHyAJL3Ph6Zr35XizyDabrU4WtBWEumbT8J+w59RvgM8S58/V31957h1RRZLT6WTSpEm4QxIIDYQuyT2JLKvebKEqxo8fz5133gnAggULePPNNxk4cCBTpkxBURQeffRRhg4dysmTJ4mPj/d5rcFg4Pvvv2f37t3s3LkHR0I8CgZefONtJl1zOb/++iuXXXaZ5rQZGxt7xnt4KCwspLCwkNatW5/xXHBwMO+8844WbH7vvfcwGo2888472jkuXbqUiIgI1q9fz+jRo3n99dd56qmn+MMf/gDAG2+8cdYswsGDB1m1ahWbN2/mqquuAmD58uW0a9eOzz//nClTpgBq6df//d//aVMz7rvvPp8qo/Nl+PDhPuJqxowZ3HLLLVqmpEuXLrz22msMHTqUN998k4CAAJ+KpI4dO/Laa69x2WWXUVpaSkhICBkZGVx66aWa0PQIE8+5WK1W3n//fe0+8cYbbzBx4kQWLlxIq1bqiuSRkZG88cYbmEwmunXrxrhx4/j+++995pG1adOGjIwM3G53leYCGRkZdOnShauvvhqDwUBiYqL23A8//MDu3bvJycnR7iGLFi3i888/55NPPtE+x26388EHH/gkLvQcPnyYf//73xw/flz7zTz22GN88803LF26lBdeeIGMjAxuuOEGn0xmS0BEUiPD43DXJj6I2B0GchIgN0EhN6+C2OgAEUmCcJF45iIB/FDkxrMmSZcDTsxj1KhxZGRkvbpz6UVSUqhBWwIg3+KbRRaRJDRF7Dk2KrIaZxWEoij06tWLYcOGMWDgQK4YNpwrhg1nzIRJdG1d9aCyOvr06aM99gyUPYNKQFvOIycnp0qBs3//ftq2bUunTokcKrLj8IP2vboRERHB/v37GThw4Hkdh9WqlulWZXDVu3dvn2qcbdu2cejQoTPmp1RUVHD48GGKioo4efIkl112mfacyWSif//+1Wa3U1NTMZvNXH755dq26OhounXrRmpqqrYtKChIE0gACQkJPiVv58vpGTPPOS1fvlzb5llUNC0tjR49evDbb7/xzDPPsGPHDvLz87VzycjIIDk5mbvvvpsbbriB7du3M3r0aCZPnqwJvtTUVPr27esTSBs0aBBut5v9+/dr175nz54+89ji4+PZu3evz7EGBgbidrur7d9nzpzJqFGj6NatG2PHjuXaa69l9OjR2nmWlpaesUSF1Wrl8OHD2t+JiYnVCiRQl/VRFEUrv/Rgs9m0937ggQe4++67Wbt2LSNHjuSGG27w+b03V0QkNTICAgK0hSUjsxRyEgy4TAZWfZfDH6e218pumquFrCDUJU6nU2tfv+zI41Dl+CWoHB66Qb2xGY1GwsLC6vW4TCYTZrMZp9PJyCsi+MimHmNxrFeoSamt0FSxxNXP3L4L+UzPWiqrV6/mi5QNfL/1B1YseZt/PP8cmzdtJCkpqUrDhqoWlPXz87pTeoIsVW07W+msZjXuUHD4GVAMBtxuRbMmr6pU73Sio9UlDKpaAPv0DLnb7aZ///4+gsKDfmB9etDobMdR3XN6G3Pw/W48n3E+53c6VZ3TnXfeyQMPPHDGvu3bt6esrIzRo0czevRoPvzwQ2JjY8nIyGDMmDFaieG4ceNIT09n9erVrFu3jhEjRnDvvfeyaNGiM87j9HM42/mdfu3z8/MJCgqqNgDWr18/0tLS+Prrr1m3bh1Tp05l5MiRfPLJJ7jdbhISEnzmDnmIiIio9vs5HU8b2LZt2xm/dU9J3R133MGYMWNYvXo1a9eu5cUXX2Tx4sXcf//9Z33vpo6IpEbGmeYN6iVKPSllN4Jwsehtv5dtLsZ5tXpD6LzDTdsr1RtJeHh4gyza6O/vj9PppFf3SCJ+KKEwCnITwOl0YTabRCQJTZbzLXtrCDyudgaDgd5XXUm3YVcy9/F5TOzbiy+++IIHH3yQ2NhYH0MBl8vF77//zrBhw2r1WJKTkzl27BjHjh3D7K9mnY7s20dxcRHdunUDzi6wPFgsFpKTk9m7d6+WdaiOfv368dFHH2kT/6uiVatW/Pzzz5pTnsvl4rfffuOSSy6p9jycTidbt27Vsi95eXkcOHCAHj16nPP4L5Z+/fqxZ88eOnfuXOXzu3fv5tSpU7z00kvanK6qDDViY2OZOXMmM2fOZPDgwTz++OMsWrSI5ORk/vnPf1JWVqYJkM2bN2M0Gs/IxpyL33//nX79+p11n7CwMKZNm8a0adO48cYbGTt2LPn5+fTr14/s7GzMZrNPOWBNufTSS3G5XOTk5JzVDbFdu3bcdddd3HXXXTz11FMsWbKk2YskSUc0MvRlN50jdeYNgbJmiiBcDG63Wyu1y8u3cai32qYMboUpvbxBB30Erj7RB0iistX/KwLhu82qeYPNZrugKKsgCFXjKcH6+eefefbZF9mxdztZx4/x4+eryM87Rffu3TEYDIwYMYLVq1ezevVq9u3bxz333ONTtltbjB49mt69ezNr1iwOpu7g923bmH/PnQy8YhD9+/fXjvl8GDNmDJs2bTrnftOnTycmJoZJkyaxceNG0tLS+PHHH3nwwQc5fvw4APfffz8vvvgiX3zxBfv37+fBBx+koKCg2mxKly5dmDRpEnPmzGHTpk3s3LmTW2+9lTZt2jBp0qTz/DYunHnz5vHTTz9x7733smPHDm2OlGdA3759eywWC6+//jpHjhxh1apVZ6wZtGDBAr744gsOHTrEnj17+OqrrzSBN336dAICArj99tv5/fff+eGHH7j//vu57bbbtFK782Xjxo1nFbKvvPIKK1asYN++fRw4cICPP/6Y+Ph4IiIiGDlyJFdeeSWTJ09mzZo1HD16lC1btvCnP/2pWhfFqujatSvTp09nxowZfPbZZ6SlpfHLL7+wcOFCbe7ZQw89xJo1a0hLS2P79u18//339SJ4GxoRSY0Mk8mkpWivvSYGg9uzZoqYNwjCxVBSUqJFjV/+dybF6nqxdNpjYORg9cYWEhLSYO6Z+gBJWIE3Wrw1tRxQRV5VJT6CIFwYnv4gLCyMjVs2c/9NU/jDZf1546XneemllxgzZgwmk4nZs2dr7ndDhw6lQ4cOtZ5FArXUd+XKlURGRjL1hgncff0k2iYl8dcly7R9zlckzZkzh5SUFIqKis66X1BQEBs2bKB9+/Zcf/319OjRg9mzZ2O1WrXM0rx587j55puZMWMGV155JSEhIYwZM6bKOU8eli5dSv/+/bn22mu58sorURSFlJSUM0rQzsb69evPanNeHX369OHHH3/k4MGDDB48mEsvvZT58+drrsqxsbEsW7aMjz/+mOTkZF566SUWLVrk8x4Wi4WnnnqKPn36MGTIEEwmEytWrNC+szVr1pCfn8/AgQO58cYbGTFiBG+88UaNjjMzM5MtW7Ywa9asavcJCQlh4cKFDBgwgIEDB3L06FFSUlI0t8WUlBSGDBnC7Nmz6dq1KzfddBNHjx6tsVhbunQpM2bM4NFHH6Vbt25cd911bN26Vcu0uVwu7r33Xnr06MHYsWPp1q0b//jHP2r0GU0RgyKhyXrD7XaTnp5OYmLiWecUnThxQps3MWlNBjnxYHIqfNEhnugof/z9/S8qtSo0DOd7/YW64ejRo9hsNpxOF1O/ziRLNbLj1t1u7r01CYC2bdvWmavdua6/3W4nLS0NgGfePMyaq9TBxKWb3PzjXvX4WrduLQsANlFaQvuvqKggLS2NDh06nHUA3VjwZGcVReFQiQOnGQwotHEbCQ1R25+/v3+tmLgoioLdbsdisZz1/fR2/4cK7Tgs6jF1NJuxWEwYDIbzXr9t6tSpXHrppTz11FMXffx63G43PXr0YOrUqWdkYGqTZcuW8Ze//IW9e/fWSFw1Rqq6/o8//jhFRUW8/fbbDXx0zZPa6I+aZ0/dxPGZl5SlaliX2cCq79QF5WTNFEGoGeXl5dqcnrc/Oq4JpIRjcOdNaqTM39+/Xm2/T8fPz08bPA/oEqRtL47wdtMyL0kQage3261lZU4VqAIJwGIzaALpfNZGqm30AtrsrFwzDQOFJeq85PM1bwB1/aDaWMsmPT2dJUuWcODAAXbv3s3dd99NWloat9xyy0W/99n45ptveOGFF5q8QKqOuLi4OhWZwsUjxg2NEH2UKKLEa96wN9vbSYp5gyCcP3qXp/+6vYOe7kedmM3q3KSGmovkwRMhtlqtjBocy6IdJ7AFQIF33W0RSYJQS3hK7QDKXAqepQAsDq8AaQgDF71IMulioRXew9XcyM5FYmJirUysNxqNLFu2jMcee0yzTF+3bl2dz0nxlLc1Vx5//PGGPgThHIhIaoToM0mdI43amil5p5k3iEgShHNjt9spLS0FYP1PORzuqQ6IQovh0VvaAOpgqL5tv6vCI5L8/c3EZsHxDpAfDfsPF9GtU7iIJEGoBRRF0USS0+nGHqgKJIMCseHeYVFDlEXqM1dBfgZKKx+7jN7t9T1Lol27dmzevLleP1MQGgNSbtcI0Zs3TBgc7TVvaCXmDYJQU/QuVCt2lOM2qe2o8y430VFq1jY8PLxRzBPxMW/I9Q6E1m5WM2EOh8MnAi4IQs3Rl6vnFjhwVTZ9/wrw91eDkSaTqd5L7UAVSZ7PjQgzY6gURE6dn4yU2wtC/dDwowKhSjzZpA6JocTkqh1mboJCQaEaSZaIsiCcG7fbrbk7HT9RxsG+apdncircfqVaq28wGBq81M6DXiRF6epr0oq8gyJp+4JwcehFRoUuQxPg9gYmGjJo4vlsk8mIn0M9PqcZKmxqnyAiSRDqBxFJjRT9YCmycg07p5+BL7/PAcS8QRDOh6KiIq2d/P3Tk5RX+jJ03gWX94sBVIvVxjIxWN/uu8Z6y34Kgr2ltiKSBOHC0ZfaVdhc2AJUYWRyQVyU2g8YDIYGFUn6DJZJN0eqqMS7qLwYEwtC3SMiqZGin5cUoesYfz+hrpPiMW8QBKFqFEXRSu2cThcHunhFx7BQ7yAkMjKyvg+tWoxGo7ZO07gh3lLboljv8Uq7F4QLRx9cPFXkRKkUJJYKBZNJHRI1hKudHh+HO50WsuniohIkFYS6R0RSI0UvkjqFeS9TXoCveYMgCFVTVlaG3W4H4NX3M8ipdIlrdwRuv1H1AA8ICGh0BiiebFLb1sE+pbalZeq5SLsXhAtHP6fP5ucVQiEmXfamAVzt9OgFWrDF+9ilO0YRSYJQ94hIaqT4mDcMjda2F8ZJRFkQzge97fdvOmfI5GyH9rgxZZE8+CwBkK3+7/QzkPKDt9RWSm0EoeYoiqKJi+ISB/bKpubngOjIxlFq5zkGj1AKD/PDWKmHnLqqYOkDBKHuEZHUiPEMljolhhKjjo/Iaa1QVKKKI4koC0LV2Gw2ysvLAfhi7QmOJKvbI/PhsRnq4rFms5nQ0NCGOsRq8XG4K/ZGvXdlqJkkz8rtgiDUDH0WqdDqzcRYbIomSho6i+TBI9SMRgPmyriO0wxl5U7effddOnbsiNFo5NVXX632Pd59911Gjx5dD0cL11xzDQ899FC9fJag8swzz3DJJZdc9PsMHDiQzz777OIP6AJo7L8bWSepERMQEKCt7xKZBafiKs0b1uVw6x/aaeYNDR31EoTGhj6L9OVRB1Ta53fe4yJkmDrnJyIiokHnHVSHXiS19VfYVvk41+Bt5zabzWc/QRDOjUckKYqC3d/b9iMCdQu4NhKR5GPe4FSg8ngzswt4+OGHWbhwIVOnTq02G26z2ViwYEG9Lcj62WefNRoDnJbCY4895rNY8MyZMyksLOTzzz+v0fvMnz+fxx57jMmTJ9f7eLKx/25kdN2I0c9LiizymjfszhTzBkGoDpfLRXFxMQAHjxRzqG/lxGwbzB0ZAagDkPDw8IY6xLPi5+enDdQG9fFmuoqjvd21ZJEFoWa43W6tRC2vwIGjclxmsUFYqPpHQxs26NEPVv10lXXpmcdxOByMGzeO+Ph4goKCqnz9p59+SkhICIMHD672M2ozIx0VFdUoMvMtKcseEhJCdHT0uXc8BxMmTKCoqIg1a9bUwlGdHw6HOo5tLL+b6hCR1IjRR4o76Ny4TvmLHbAgVEdRUZE2GPp/q09hq4w1dN6l0Ku7GnUNCwvDbG68iXRP27+yfxQhJeq2vATv89LuBaFm6EvtSl1e1eFfabH92Wef0b9/fwIDA4mOjmbkyJGUlZUBVZcETZ48mZkzZ2p/JyUl8fzzzzNjxgxCQkJITEzkiy++IDc3l0mTJhEaGkr//v359ddfz3qcGRkZTJo0ibCwMOLi4pg+fTrW4lMArPrXcq4bfRUAPXr0wGw2c/To0SrfZ8WKFVx33XU+22bOnMnkyZN58cUXad26NV27dgUgMzOTadOmERkZSXR0NJMmTfJ5X6fTyQMPPEBERATR0dHMmzeP22+/ncmTJ2v7nP4dFRQUMGPGDCIjIwkKCmLcuHEcPHhQe37ZsmVERESwZs0aevToQUhICGPHjiUrK+us38/peL73mTNnEh4ezpw5cwDYsmULQ4YMITAwkHbt2vHAAw9o1xPgww8/ZMCAAYSGhhIfH88tt9xCTk6Oz/FPnz6d2NhYAgMD6dKlC0uXLtWe3717N8OHD9d+L3PnztUqf/Tf9aJFi0hISCAmJoYHH3xQEwfny/Hjx7npppuIiooiODiYAQMGsHXrVsC33O6ZZ57hn//8J1988YU2p239+vUMHz6c++67z+c98/Ly8Pf35/vvvwfU7On48eP597//Xe1x2O127rvvPhISEggICCApKYkXX3xRe76oqIi5c+cSFxdHWFgYw4cPZ+fOndrznmN977336NixI/7+/iiKcsbvxm6388QTT9CmTRuCg4O5/PLLWb9+vfZ8eno6EydOJDIykuDgYHr27ElKSkqNvtOaICKpEWM2m7WB3IQh3mhBkc68QSLKguBFURSt1K7c6uBgslcIjWvtfdwYDRv0eESS2WwiunLMUBIGW7ergyURSYJw/ugNG1wuN/YA9R5qUBRiws1kZWVx++23M2vWLFJTU1m/fj3XX399jc0RXnnlFQYNGsRvv/3GhAkTuO2225gxYwa33nor27Zto1OnTtx+++3Vvq+iKEyePJn8/Hx+/PFHVq9eTVpaGvfcMwuTG0b/4Xre/uQLADZu3Eh6ejrt2rWr8r02btzIgAEDztj+3XffkZqayrfffstXX31FeXk5w4YNIyQkhA0bNrBp0yZNsHiyMgsXLmT58uUsXbqUzZs3U1xcfM6SrpkzZ/Lrr7+yatUqfvrpJxRFYfz48T4ioby8nEWLFvHBBx+wYcMGMjIyeOyxx87nq/bhb3/7G7169WLbtm3Mnz+f3bt3M2bMGK6//np27drFRx99xKZNm3zEgt1u57nnnmPnzp18/vnnpKWl+Yje+fPns3fvXr7++mtSU1N58803iYmJ0Y577NixREZG8ssvv/Dxxx+zbt26M8TIDz/8wOHDh/nhhx9YtmwZH3zwAcuWLTvv8yotLWXo0KGcOHGCVatWsXPnTp544okqnQ0fe+wxpk6dqgnNrKwsrrrqKu644w7+9a9/+dwzli9fTuvWrRk2bJi27bLLLmPjxo3VHstrr73GqlWrWLlyJfv37+fDDz8kKSkJUH+3EyZMIDs7m5SUFLZt20a/fv0YMWIE+fn52nscOnSIlStX8umnn7Jjx44qP2fWrFls3ryZFStWsGvXLqZMmcLYsWM1gX3vvfdis9nYsGEDu3fvZuHChYSEhJz3d1pTGm8oVQC885K6dAwj+ttC8uIgpzWUltkJCbaISBIEHaWlpTidamnqy+8fI/8KtYtL2g83Tm0DQFBQUKOfz+Nj3pDnxhPP+vG3Ei7vF4PL5cLpdDbqbJggeBj+7X85WVG/ZVCtAix8P+oKwLfULiffgStYFUn+FQYCok1kZ2fjdDq54YYbSExMBKB37941/szx48dz5513ArBgwQLefPNNBg4cyJQpU1AUhUcffZShQ4dy8uRJ4uPjz3j9unXr2LVrF2lpabRr1w6Hw8G7775Lv379SP15G12v6E9oTBQAsbGxxMXFVTmHpLCwkMLCQlq3bn3Gc8HBwbzzzjvaemzvvfceRqORd955Rys1XLp0KREREaxfv57Ro0fz+uuv89RTT/GHP/wBgDfeeOOs0fuDBw+yatUqNm/ezFVXqZmv5cuX065dOz7//HOmTJkCqCVX//d//0enTp0AuO+++3j22WfP78vWMXz4cB9xNWPGDG655RYtQ9GlSxdee+01hg4dyptvvklAQACzZ8/W9u/YsSOvvfYal112GaWlpYSEhJCRkcGll16qCU2PIPCci9Vq5f333yc4OFj7TiZOnMjChQtp1aoVoAbj3njjDUwmE926dWPcuHF8//33zJ0797zO61//+he5ubn88ssvREWp171z585V7hsSEkJgYCA2m83nt3XDDTdw//3388UXXzB16lRAvb4zZ870KS1t06YNGRkZ1c5zz8jIoEuXLlx99dUYDAatnYAqBnfv3k1OTo5271q0aBGff/45n3zyiXa+drudDz74gNjY2CrP4fDhw/z73//m+PHj2m/3scce45tvvmHp0qW88MILZGRkcMMNN2jts2PHjuf1XV4ocodt5OjNG6KyIC8OHBZYte4kt0xqp9kBN5Y6akFoSPSGDbtjvN1bX92cvsaeRQLf+YixLq9IOmb17mOz2UQkCU2CkxV2sqwNl/3UR94rjN57ZUDlYs19+vRh+PDh9O7dmzFjxjB69GhuvPHGGvcVffr00R57Bsp6sRUXFwdATk5OlSIpNTWVdu3aadkho9FIjx49iIiI4Oj+/XS9ov8Zr6nq/m+1qh2Fvh/x0Lt3b00gAWzbto1Dhw6dMS+koqKCw4cPU1RUxMmTJ7nsssu050wmE/379692rabU1FTMZjOXX365ti06Oppu3bqRmpqqbQsKCtIEEkBCQoJPydv5cnrGzHNOy5cv17Z5solpaWn06NGD3377jWeeeYYdO3aQn5+vnUtGRgbJycncfffd3HDDDWzfvp3Ro0czefJkTfClpqbSt29fTSABDBo0CLfbzf79+7Vr37NnTx8jkPj4ePbu3Xve57Vjxw4uvfRSTSBdCP7+/tx666289957TJ06lR07dmjZMz2BgYG43W5sNluVawfOnDmTUaNG0a1bN8aOHcu1116rOSdu27aN0tLSM+ZHWa1WDh8+rP2dmJhYrUAC2L59O4qiaGWgHmw2m/beDzzwAHfffTdr165l5MiR3HDDDT7trraRO2wjR9/JRRS7ALXB7Trm4Ba85g1VdYaC0JKoqKjQBgf/+uIYGZUBt5iT8PAMdfFYPz8/nxtbY8VisWAwGFAUhZ5t/fgedTBXHOq7mHRTOBdBaBVgOfdOdfSZiqJo85FsNpc2R9HkhtjKtZFMJhPffvstP/30E2vXruX111/n6aefZuvWrXTo0AGj0XhGiVxVc0v0Ll0e4VLVturExemCx/NYURTM1QRCqyrdi46OxmAw+ASNPJzeZ7jdbvr37+8jKDzoB7SnC7GzlSKerZxQ/z6nu5p5+ryaUtU53XnnnTzwwANn7Nu+fXvKysoYPXo0o0eP5sMPPyQ2NpaMjAzGjBmjlRiOGzeO9PR0Vq9ezbp16xgxYgT33nsvixYtOmtg+lznV5NFgGtrofM77riDSy65hOPHj/Pee+8xYsQIn0wQQH5+PkFBQdV+Zr9+/UhLS+Prr79m3bp1TJ06lZEjR/LJJ5/gdrtJSEjwmTvkISIiQnt8rvuV2+3GZDKxbdu2M1wmPSV1d9xxB2PGjGH16tWsXbuWF198kcWLF/u4/NUmIpIaOfqym6Rg+KXy8SmL72BJRJLQ0tEPCL7Nc0OSerPqut+J/2i1q2ustt+nYzAYsFgs2Gw2xg2N481D2Tj9DBS28u4j85KEpoKn7K0h0A9Kc4ucKCGVbpdWBXOImqE1mUwYjUYGDRrEoEGDWLBgAYmJifznP//hkUceITY21sdQwOVy8fvvv/vM6agNkpOTycjI4NixY7Rr1w6DwUBqaipFRUX06dW92vM7fUBpsVhITk5m796951wnqV+/fnz00UfahPuqaNWqFT///LPmlOdyufjtt9+qXaMnOTkZp9PJ1q1btexLXl4eBw4coEePHmc9ntqgX79+7Nmzp9rStN27d3Pq1CleeuklLWtXlaFGbGwsM2fOZObMmQwePJjHH3+cRYsWkZyczD//+U/Kysq0gf/mzZsxGo1nZEEuhj59+vDOO++Qn59/Xtkki8XiY1DioXfv3gwYMIAlS5bwr3/9i9dff/2MfX7//Xf69et31vcPCwtj2rRpTJs2jRtvvJGxY8eSn59Pv379yM7Oxmw2+5Ql1pRLL70Ul8tFTk7OWV0Z27Vrx1133cVdd93FU089xZIlS+pMJIlxQyNHb94wdpA39S/mDYLgxel0UlKi2sD9tjufQ5XZ98ByeOAPaomL0WhstLbfVeEJkERG+BNzUm3vua0UsnPUbJmIJEE4N/pBo93Pe98M1umKX3/9lRdeeIFff/2VjIwMPvvsM3Jzc7UB/fDhw1m9ejWrV69m37593HPPPRQWFtb6sY4cOZI+ffowffp0tm/fzi+//MIdd9zB4MGDuXrQZZh0419PxqW6zMSYMWPYtGnTOT9z+vTpxMTEMGnSJDZu3EhaWho//vgjDz74IMePHwfg/vvv58UXX+SLL75g//79PPjggxQUFFQbcOrSpQuTJk1izpw5bNq0iZ07d3LrrbfSpk0bJk2aVMNvpebMmzePn376iXvvvZcdO3Zoc6Q8A+n27dtjsVh4/fXXOXLkCKtWreK5557zeY8FCxbwxRdfcOjQIfbs2cNXX32l/R6mT59OQEAAt99+O7///js//PAD999/P7fddptWalcb3HzzzcTHxzN58mQ2b97MkSNH+PTTT/npp5+q3D8pKYldu3axf/9+Tp065ZPtvOOOO3jppZdwuVza3DI9GzduPKugfuWVV1ixYgX79u3jwIEDfPzxx8THxxMREcHIkSO58sormTx5MmvWrOHo0aNs2bKFP/3pT+d0c9TTtWtXpk+fzowZM/jss89IS0vjl19+YeHChdocuIceeog1a9aQlpbG9u3b+f777+tUeItIagJ4skTJXSOIUs2tyGmjmjeADJYEobCwUBs0vPtjEc7KwVDnnW4S26pp+rCwsEazUOT54FNqe1I9N8VoIGV9LoC2mLQgCFWjd7UrKXVg91fbkdkJMZFqOZ7BYCAiIoINGzYwfvx4unbtyp/+9CcWL17MuHHjAJg9eza33347M2bMYOjQoXTo0KHWs0ieY/n888+JjIxkyJAhjBw5kg4dOvDBBx9gMBgw6yr8Skqd2jlWVaI2Z84cUlJSKCoqOutnBgUFsWHDBtq3b8/1119Pjx49mD17NlarVcsszZs3j5tvvpkZM2Zw5ZVXEhISwpgxY85awbJ06VL69+/Ptddey5VXXomiKKSkpNRo4dD169djMBiqtTmvjj59+vDjjz9y8OBBBg8ezKWXXsr8+fNJSFDXUYiNjWXZsmV8/PHHJCcn89JLL7Fo0SKf97BYLDz11FP06dOHIUOGYDKZtIV5g4KCWLNmDfn5+QwcOJAbb7yRESNG8MYbb9ToOJ955pmzZl4sFgtr164lLi6O8ePH07t3b1566aVq72Nz5syhW7duDBgwgNjYWDZv3qw9d/PNN2M2m7nlllvOuG6ZmZls2bKFWbNmVXssISEhLFy4kAEDBjBw4ECOHj1KSkqKtrZYSkoKQ4YMYfbs2XTt2pWbbrqJo0eP1lg0Ll26lBkzZvDoo4/SrVs3rrvuOrZu3apl/FwuF/feey89evRg7NixdOvWjX/84x81+oyaYFAupABUuCDcbjfp6ekkJibWaFXjvLw8Tp1S1dGMDzI4WBklfzDDwE0T1ZR8ly5dmkQZUUvmQq+/cHYUReHw4cO4XC4KCm3ctOskxeFgcCv8b7E/Y4aqE6Q7dOjgM2G5vqnp9S8vL+fYsWMAPPT6EbYOUTPKgzc6+et9qqNP+/bta61uXahbWkL7r6ioIC0tjQ4dOjSKEnCn06m5XWbk2CirLLULKlVIjPPY7JvrxQBFURTsdrs23/B8cblcWkZAfw5hpQptKs/BYrFU+ZuaOnUql156KU899VQtnIEXt9tNjx49mDp16hkZmNpk2bJl/OUvf2Hv3r01EleNkaquv8dyvCa24BfKsWPHSEpK4pdffjmjrO7xxx+nqKiIt99+u86Poz6pjf6oefbUzQz9vKTwIm++fWe62nF6zBsEoSVSXFysldQs/lcmxZUVdR33GjSBFBwc3KAC6ULwmY+oW0w63yKLSQvC+eDpFxRFwe7vbUMRAd6hT2PPLvsYAei0lUP3uLqM8t/+9rdaWUMmPT2dJUuWcODAAXbv3s3dd99NWloat9xyy0W/99n45ptveOGFF5q8QKqOH3/8sU5FJqgGIxkZGcybN48rrriiynlHcXFxdX4cTRUxbmgC6BVwYhB4KjxPWbwdvZg3CC0VvWHDvrbeLu0yl3fg0BRsv0/HZDJhNptxOp2MvCKCj2zqnKviWO/oSESSIFSNfm2k/EIHjsqYg8UG4ZWudp5SocaMPkMUHmKiUKlcFNfsPe7qCoISExNrZUK70Whk2bJlPPbYYyiKQq9evVi3bl2dmzB4ytuaK2lpaXX+GZs3b2bYsGF07dqVTz75pMp9Hn/88To/jqaKiKQmgKccwOl0MvqKCD51qIOlwlhv5ymDJaElUl5erv323/p3OpnJ6sAhPhPuuUWtYbZYLE3WKtvf3x+n00mv7pFE/FBCYRTkJoDT6cJsNkm7F4Rq0Bs2lDgVqMwkWRxeQdHYs0gejEYjbreboEAz5mI7TjM4LeB2KxiNNbOVvhDatWvnM79FaDpcc801F2SrLqhIuV0TwZMl6pMcSVSeui2nDZRb1ZI7cbgTWiL6LNJmXf1JtyNOzGZ1ANQUs0ge9NnhqGz1/4pA+G6zat5gs9nkBigIVeARDi6XG3uA2jcYFIWYMK8waipzw/TZLo95g9sAhcXeknvpBwSh9mkaPYTgMz8h6oT6v90fUr5XV6eWwZLQ0nA4HJSVlQGw4b85HOml/v5DSuDRm1sDaqS4urU/mgL6dh9W4I0Wb00tB9SBYFWLWgpCS0Zfapdb4MBVqYv8KwwEBqgFNE2h1M6DXsyZXN77fLnd+1ju/4JQ+4hIaiL42AEXessIfjuqltuIeYPQ0igoKNAGBv/aXo7LVGn7vctNbLTaXsLDw5tMtLgq9CKplcHb7rNdUmorNF4aesCuL7Wz6rb7u5teqR34iiR/XXfmPA/zBkFoqdRGP9R0Rw8tDL1Iaq9z/M0xy2BJaHm43W6Ki4sByM6xcqiv2g5MLoVbB6jzjzzrnzRl/Pz8tAHSgC5B2vbiCGn3QuPD40JWXl7eYMegKIomkmx2F/ZAVUkY3RAX6XVJa0rBE4PBoGW9wkO9U8ldfuc2bxCEloqnH7oYd0QxbmginG7e8JlTNW8oivN1uAsPD2+oQxSEekNv+/3yyizKBqtdWaddMGhmLKAuftfUrWMNBgP+/v5YrVZGDY5l0Y4T2AKgIMG7j4gkobFgMpmIiIggJ0ctAw8KCqr3kjaXy6WtjXQyz44rSP18P6uCy0/B5WoYgaQoCg6HA7fbfUHfid1uR1EUDICp3IHTDHZFoazMhdmslg7qM2hC4+Jir79w/iiKQnl5OTk5OURERFxU1rhGImnw4ME+f1utVhYuXMiIESMA2L17N4sXL+bw4cOEhoby8MMPM2rUKAD27NnD888/T0ZGBj179uTPf/6ztvpxRUUFf/nLX/jxxx8JDQ3l/vvvZ+zYsdrnfPnll7z55puUlZUxfPhw/ud//qfJD34uBI/TVd+ekUT+UEJBFOS0BpvNib+/WcwbhBaBoiiaYYPT6eJAJ283NiTIe/NpyoYNejwiyd/fTGwWHO8A+dGw/3AR3TqFi0gSGhXx8eraZB6hVN84nU4tq3KqzImzcqgQ7ABnidpXmM3meh+oejJcJpPpgj7b5XJpJXV5pU4clcu+WZ0QEtRw5yWcHxd7/YWaExERofVHF0qNRNLGjRu1xwcPHmTmzJlcccUVAJw6dYonnniCp59+miuuuILS0lJKS0sBNQLyxBNPMHfuXMaOHctbb73FggULWLJkCQBvvfUWRUVFpKSkcPjwYR588EF69OhBYmIihw4d4pVXXuGNN96gffv2PProo7z77rvcddddF3XiTZGAgABtonr0CSiIAlsApPyQwx/GttbMG6QBCs2Z8vJy7HY7AK9/eIyTl6pR4bZp8Mep7QG1rQQGBlb7Hk0JH/OGXAU6qO177eYCunUKx+FwaDdfQWhoDAYDCQkJxMXF1bupiMvlIiMjA4Dtu/L5m9mKYjQQXgD/b2ArzGYTFouFNm3a1OtxgVoifOLECVq3bn1Bmazy8nJOnjwJwNLV2ewcoLb3fr+6eOJWdbmD+Pj4ZtPvNTcu9voLNcPPz69W7okXXG739ddfM3ToUG39keXLl3Pttddy9dVXA6qC88wH2LZtG4GBgUyaNAmAOXPmMHLkSLKyskhISCAlJYXFixcTEhJC3759GTJkCGvXrmXOnDl88803jBo1iuTkZADuuOMOnn/++WpFkt1u1wZQ2kmazVgslgs91VrDEwW60AmWFotFi5CFF7gA9Qfw6+EKJldagFZUVPgMqoTGw8Vef0ElLy9PawfbdAsq9zjhjSCHhYU1uu/5Qq+/n5+fdl5RFS483XZakdfBy2q1EhQUVN1bCI2Altb+DQZDvd93CwsLtSDhBxuLyRhiBpdCzE43flep7SY8PLxBxgNutxuTSRVpFzJINplMWnYu2qRwzKH+joKdXotwt9vdKMY6wplc7PUXas65+trzuQ4XJJIURWHNmjU8+eST2ra9e/fSt29fpk6dSlFREZdddhmPP/44YWFhHDlyhM6dO2v7BgYG0rZtW44cOUJwcDB5eXk+z3ft2pU9e/YAcOTIEa688krtuS5dupCZmUlFRYWPmYGHpUuXahkqD1OmTGHq1KkXcqp1wrFjxy7odU6nU+sk4402QB0U5ZgM2naHw0FISEitHKdQN1zo9RfU33d2trpg0I//LeJID39AjRTPGGMhJydHuxEVFhY26LFWR02vv9vt1tp3uxA7nm67IMiobbfb7YSGhtbqcQp1g7T/uiMnJ0crP83QleEOTnBobcVsNlNSUtIgxwcXd/3z8/NxOp1c1dfIB3YFt8lAQbz3/l9aWqoZ2giNE2n/jYcOHTqcc58LEknbt2+noqLCR7zk5ubyzTff8PrrrxMXF8dzzz3H4sWL+fOf/4zVaj1jxfvg4GCsVivl5eWYTCYfwRMcHKy5Upz+Wo8AsFqtVYqkWbNmMX36dN+TbESZpGPHjtGuXbuLiiS4XC7GX21mtaKW3hXFmYiLiwPUKFmrVq1q5XiF2qW2rn9L5uTJk1p06NtsK0qSGkHt8ruLTkPVkpOoqChiYmIa7Bir42Kvv8Ph4A+jQ1iRcwrFaKAozqi1+7CwsIuuvRbqFmn/dYvdbtcE0opVx8lOUre3OQo3TVaDsEFBQbRt27ZBjq82rr/FYqGkpIS4OIj7+hjZbSA3XsHhDqFNfBB+fn4kJibW8pELtYG0/6bJBYkkTwmc2ex9ub+/P+PGjdMa6B133MHcuXMBNXPkmUvjoaysjMDAQIKCgnC5XD6ZobKyMq105PTXeuY5VVd3a7FYGoUgOhtGo/GCG4nn++jXJ5qIH8oojILc1mC3u/D3N2O326UBNnIu5vq3ZFwuF6WlpRgMBg6nl2i23352mDM8QrPJjYqKatTf74Vc/8DAQJxOJ+3aBBOzJ4/cVpCboFBW7iAk2CLtvgkh7b9uKCsr08rO1p9wQZL6HSdmOL322Y1g3bSLuf5BQUHaGCgiSyG7jQG3ycCq709xz/REzbRC5ic2XqT9Ny1qfKUcDgffffedj/scQKdOnXz+1nv2d+zYkUOHDml/W61Wjh8/TseOHQkLCyM6Otrn+QMHDtCxY8cqX3vw4EHatGlTZRapJaA/7+gT6v8VgfD1D+qETo95gyA0N4qKirQs0hurcqmojJN03qnQJ1l1sgsNDfUJ3jQX9PMMI9RqQ5x+BlJ+8JbbSbsXWjKeMrNyq4P0ZO+6aTOGq32D0Whs8iWp+vt/TLnX7vtgvvexuNwKQu1RY5G0efNmzWBBz7XXXsuXX37J8ePHqaioYNmyZZqJQ//+/bFarXz55ZfY7XbeffddkpOTNQvw8ePH884771BWVsbu3bvZsGGDZh0+duxY1q1bx759+ygtLeW9995j3LhxF3veTRafwVKht2PcdkQtM1AU5QzjCkFo6iiKos0xstmcHOzhFUKjW3m7seZi+306Pg53xd52vytDbevS7oWWjNVq1X7/b644TlGEuj1pn4G+PdU+ISQkpMlH8P39/bWsWHK8tw/MD/VmjkQkCULtUeMe4+uvv2bMmDFn2ExfccUV3HLLLfzxj39kwoQJuN1uHnnkEUAtgfvrX//K8uXLGTZsGDt37uTZZ5/VXnvnnXcSEhLC2LFjefLJJ3nyySdJSkoCoHPnzjz00EM8/PDDjB8/nlatWjF79uyLOOWmjT6S1NbijRyf1HX+0kkKzY3S0lLNTnjRPzPIU9eLJfEA3DRRnYsUGBjYbDPMepHU1t/b7nMN3nYv6yUJLRW9WcHvumFN5yKn9jgsLKxej6kuMBqN2nSCyaNaYXaofUF+a+94TO7/glB71LguZeHChdU+d9NNN3HTTTdV+VzPnj1ZsWJFlc8FBATw/PPPV/u+EydOZOLEiTU70GaKx/vd5XIxYmA4X1Bp3hDrK5LCw8Mb6hAFodbxLB4LsDvS2231LvAOgpprFgl82/2gPqF8gRWA4mjfdt8cBoKCUBMURdHc6jKzy0lLVgVDYDncO7U1oJo3NReL/ICAAGw2G5ER/rQ6YSAzEU61goNHiunSMUxEkiDUIk0799xC8UTLB14STXjl2DGnjVqGBBJRFpoXFRUVWK2qKFjx5THSu6rbo3PhsdvVxWP9/PyavfW9J5t0Zf8oQiodjPMSvM9LuxdaImVlZbhcagnqm59lY6tMJiftVYiNVv8IDQ1tNous67Pl4Se9WeWvNuQD6lIhTqfzjNcJglBzRCQ1QXwmb+rMG9ZuyAXEvEFoXuizSGtPeheH65LqxN9fzSpFREQ0m0FQdXhEktlsIjpL3VYSBlu3nwJEJAktE32p3ZFob5b5Uj/vPbA5ZVj19/9Ym3d+4pFS7/lKNkkQagcRSU0Q/fyE8AJvJ/nzQTXa7na7ZRK30CxwOp1aKc2uvQUc6qsKoQAr3HedOjHJaDS2iPJSH/OGPK9Y/PE39ftxuVwSQRZaFJ5lAUANFhztqgqFyDyYO01dD8lisTSruYp684Z+Sd7lTgrDxbxBEGobEUlNEH2H30YXLcsxiHmD0LwoKirSsqJLvi/EUTkm6LzTTadE1c43LCysRawL4hNBdnlF0jGrdx/JJgktidLSUq1/+PfmYhSjKh7a73NrWebmlEUCMBgMWsDk2hGt8K+81ee18e4j939BqB1EJDVBPJO4Aa7p5133QW/eIIMloamjt/0uKrFxsJf6mze4Ff7QxSsYIiIiGuDo6h+LxaJFkHu29dO2F4v9r9BCKSoq0h5ndPCW2o3p6M2wNDeRBN6ASVCgH3GZ6raCaPhttzovSfoBQagdRCQ1UTyd5FUDYgmrvE/ktgGnUy2/k05SaOqUlJRo5WOLP8ikqNK8rsM+A+OHxwMQHBzsU4bWnDEYDJr977ihcZr9b2Er7z4SHBFaCg6HQzN0+WR1JlnqSgC0zoA/jFVd7YKCgvDz86vuLZos+qxyRI43q7xmqzoYcLlc2pIJgiBcOCKSmij6gWFMZSSpPEjMG4Tmg96wIbW1N0o8wOYdFDRn2++q8LT7yAh/Yk6qWaXcVgrZOepgUUSS0FLQGzasS/cKgvZHm9faSFWhF0mt3LrSW13zl0CpIFw8IpKaKD42oPneTnLr/nJAzBuEpo3VatVu8u+uzOB4B3V7qxNw/61qyNhisTSbtU/OF98IshoEUYwGUtarwRG73Y5bN2gShOaKRyTZbE7Se6hDGaNL4dYhqomLwWBotssCWCwWjJULyF/eNVDbXhglpbeCUJuISGqi+Jo3eAdF2ci8JKHpo88ibSj3ZkS7HnZiNqsDgZZg+306Ps6WpV5ny3053ui5tHuhuVNRUaEFAf9vxXEKo9TtiQcM9O8bDUBISEizNXTRmzeMvSaOIDU2yikpuReEWkVEUhNFb94wpK/OvCFGHO6Epo3D4dBsfTf/nMvh3ur24FJ4ZKq6empLsf0+Hb1ISgr1CsR8i3cwKCJJaO7oS+12uLztoFN+8y+18+AJlJrNJmKPq9uKw2HLr3mAev+XkntBuDhEJDVhPAOmK/tHEVp5zxDzBqGpU1hYqN3cP/y1DJdZHQR13ukmPk4tLQkPD9fKTVoSJpMJs1mdnzXyighte3GMd6AoIkloziiKoomk7BwrR5O9a6fde6MaRDGZTAQHBzfYMdYHPqW3ud5qkvU71ACT2+0W8wZBuEha3iijGaGPJGnmDcHw3WYxbxCaJm63W7P1zc2r4FAf71yDW/qp848MBkOLM2zQ4wmO9OoeSYTq+Etua29wRESS0JwpKyvD5VJ/6//4JIuKyik5SXsVLYgSFhbW7Etx9SKptdErkk64pZpEEGoLEUlNGJ9Iks684ae9ZYBEkoSmR3FxsTYAWvzvE5RWVpJ2+t3AkCviANX2uzna+p4v+nYfla3+XxEowRGhZaAvtTsc6XW97KsTCs291A7UkntPNn1IX69BhZTcC0LtISKpCaOfn9DapDNvUMThRmiaeAwbnE4X+zt6B0CD/LyD/pacRQLfdh9WoHO2TPU6W0pwRGiOuFwubb7ib7vzSe+m9gsRBXD3zV7XS30gobliMBi087x6YLRWcp/TVkruBaG2EJHUhLFYLDrzBokkCU2bsrIyzbHqH/86RnYbdXubdLjz5kRAFQgtzfb7dPQiqZXB63CX7RJnS6F5U1paqmVJP1hfiMukltQlprrx91eDKi0hi+ShKvOG8mBZL1EQagsRSU0cz4DpqgHRhJSo28S8QWiK6G2/fzZ5u6bux72OVS09iwS+ZTYDungFY3GEiCSheaMvtUtP9Gaah7fzPm6JIgkgIt8bMPlpn6yXKAi1gYikJo5PJKnSvKEsBNb/dAqQSJLQNLDb7ZSVqXPp1vyYzZFk9TcbVgSP3qKmlEwmU4saAFWHfo2UUYNj8a+MgxQkePcRkSQ0NxwOB+Xl6uD/828yOaEml0k4BlOvbQtAYGBgi5qvqBdJ7Sze+/xJo1STCEJtICKpieOzuGSed37Clt/FvEFoOuizSJ+mVqAY1TKaLrtcREaov/GWuHhsdXjavb+/mdgsdVt+NOw/rDoDikgSmhslJSXa4zVHvPe09mktZ22k09GvlzjqMu+6cYVxIpIEoTYQkdTE0UeSEvQ2oIp0kkLTwOVyaWU06cdLOdRX/e2aHQp/HKre+A0GAxEREQ11iI0OH/OGXG8Eee1mVWw6HA7NJVAQmgOePsJmc5LRXe0jDG6FqVeqFpgGg4HQ0NBqX99c8YwB+veNJrJySYCcNlBuVYWk3P8F4cIRkdTE0c9PuLqXd/G8omgRSULToLi4GLdbFfiv/ScHa+U0m8674NLeUQCEhoZqi6gKviIpqsIrhtKKvIESySYJzYWKigrt97zk4+PkR6vbEw8YuGpALAAhISFaVqUloQ+URleW3NsCIOX7HPWxlNwLwgUjIqmJo7cBHXJFjGbecKqNLC4pNH4URdFK7Ww2Jwe6eYXQKJ3QF8MGX/QiqWus9zsrCPYOEqXdC80FvWHD9gpvyW3HUy231M6Dj3lDoTdgsi1Nbf+KokhfIAgXiIikZoBnwGQ2m4ipjCSVhsKG/6rmDRUVFRJJEholZWVl2py5V97P4FQrdXv7Q3DLJHXdk8DAwBax7klNMBqNWCwWAMYNicbgVtt3Uax3ACkDI6E5oCiKNh8pN6+Coz3V37h/Bdz9B7XDMJlMBAcHV/sezRl939hB9xXk+st6iYJwsYhIagboO0m9ecPmPWLeIDRu9IYNO8O9GZFep8T2+1x4giNtWwcTk6sOHHMTFErLVMtfGRgJzYHy8nKcTrU/+MfKE1o5btJehbatVVUQGhraYk1dzGazVoo8YUiUtr0wzvt9SF8gCBeGiKRmgI95g0Fn3uCSeUlC48Vms2mWvp+kZHK0m7o96hQ8OkPNIpnNZkJCQqp7ixaNvuQuIlv93+lnIOUHdS6C3W6XDLLQ5NGX2h0M0wVSFO+9rqWW2nnwjAG6dQon5qS67WQbhYJCNZss939BuDBEJDUD9OYNV/X0Li5ZFCWLSwqNF30W6esT3sxRl71OggLVtU7E9rt6fBzuir1zEXZlqJkkRVFkIUmhSeN2uyktLQVg194CjnZXRX94Idxzs7o2ksViITAwsKEOsVGgD5RGVS4J4PQzsGqdqpjsdrtmjiMIwvkjIqkZoF9ccthVsQSr9xQf8waJJAmNCb3t994DhRzq451ncO+EGEBsv8+FXiS19fdmjHINEhwRmgelpaXa4P6f3xfgMqv9ROJetxZIaYm236ejF0mRxd6A0+9Z6mMxbxCEC0NEUjPB00mazSZiK80bSsJgy695gAyWhMZFYWGhVgr21toC7JXj/c47Fbp0VEtnwsLCWqSl7/miX0hyUB/vQLFY7P+FZoK+1C69nbfUbmhrb7/Q0kvtwFckdY3yfjd5QWLeIAgXg4ikZoKPecMpb1p9w041reRyuaT0RmgUKIpCYWEhAKVldg709N7IJyb5aY/FsOHceLJJV/aP0uz/8xK8z0twRGiqOJ1OyspU86Gv1mWRmaRuj8/0db70uDy2ZEwmk/Y9XDcsRnO7LEgQ8wZBuBhEJDUT9CIpvhrzBhkwCY2BkpISza1q0fvHKKw0ZOqQCpNGtwYgKCjIp5xMqBq9/X905VyEkjDYul21/5c2LzRV9FmklP3e33H7I975d5JF8qJ3u4zLVsVRTrxCdo4VEJEkCBeCiKRmgt684YruOvOGSCm9ERoXesOGvfHezFG/cu/gR7JI54ePeYPO/v/H39S0ksvl0gSpIDQlPCLJ6XSR0U29jxncCjcOVN0uDQaDzEfS4TMvKUvNJLlNBj7/zut26XK5qnytIAhVIyKpmaA3bxg5OJYgtUqBU228+4hIEhoaq9Wq/Q7/+UkGxzqq2+Oy4KEZ7QHVraqlLgxZU/QDo1iXVyQds3r3kWyS0NSw2Wza7/adj46RF6tub3/IwODL1T+Cg4NlzqIOH4e7Mq8Y2n/K+1jGAIJQM0QkNSOqMm8oDofNP+cCMlgSGh59FumHEq8jW9eDTsxmdcAjtt/nj8Vi0b6rnm29WbniUJmwLTRd9KV2v1i9fUHHk96sqJTa+aIXST1beU0uCkK8fYGMAQShZohIakZUZ96wfoe39MbhcNT7cQkCqBOxPWuebN1+ikN91O1BZfDQlHgAjEYj4eHhDXWITQ6DwaBN2B43NA6zQxWeha28+8jASGhKKIqiiaSCQhtHk1WRZLHBnZPjANWoQBaZ9sVoNGrVJJNGttL6gvzWYt4gCBeKiKRmhH5+QjxekZTpkHlJQsOjt/3+50+l2ponnXe6aROvzqMLDw/X5tYJ54en3UdG+BNzUv1Oc1t5J2yLSBKaEuXl5do8ujc+yqS8svI2KRUS26rCKDQ0VLLNVeDpC6Kj/InLUr+fU3EKh9PVQKnc/wWhZshopBlhsVi0Aebl3XTmDVEikoSGxe12a7bfefk2DvVRf5NGl8K03oHafrJ4bM3RZ5AjclQRqhgNpKxXy2ztdru2IKcgNHb0pXYHgr1lYz0d4mp3Lnz6gmxvX/DVenW9RIfDIUYuglADaiSSBg8e7PNvwIABfPfddz77OJ1Opk2bxg033OCzfc+ePdx8880MGjSIuXPnkpWVpT1XUVHB/PnzGTJkCBMmTOCbb77xee2XX37J+PHjGTp0KH/+85+lZKwa9OYNo4fEEliubs9r7d1HospCQ1BSUqI5Ky3+VyYllWOcTnsMDL9arQ0LCQmRNU8uAH0GObzUO5Dcl+MdDEm7F5oCbrdbK8nde6CQo93VgX5oMdxzs+pC5Ofn5yMGBC8+Ri42b19wRDf/UwKlgnD+1Egkbdy4Ufv33nvv4e/vzxVXXOGzz8qVK8+oFbbb7TzxxBPcdNNNfP/99/Tq1YsFCxZoz7/11lsUFRWRkpLCCy+8wEsvvUR6ejoAhw4d4pVXXmHRokWsXr2aEydO8O67717o+TZ79OYNcZXmDUUR3nVTpIMUGgKPYYPT6WJfkjc6fIXRe/MW2+8LQy+SkkK9JUj5FpmwLTQtSktLtazn0jX5OP3U33PSXjchwWoAJSwsTErtqiEgIED7bvq28xq5FISLkYsgXAgXXG739ddfM3ToUB+r3ry8PP7zn/8wa9Ysn323bdtGYGAgkyZNwt/fnzlz5rB3714tm5SSksLcuXMJCQmhb9++DBkyhLVr1wLwzTffMGrUKJKTkwkJCeGOO+7g66+/vtDDbvb4RJVzvSU2329TSxjEvEGob8rLy7VB+lsrjpHVTt2ekAFzp7UF1N9tUFBQdW8hnAWTyYTZrArPkVdEaNuLY7wDSRFJQlNAX2qX3tYbTLk61jvIl1K76tFXk0wc2QpLZbOXahJBuDDM597lTBRFYc2aNTz55JM+219//XVmzZp1Rir8yJEjdO7cWfs7MDCQtm3bcuTIEYKDg8nLy/N5vmvXruzZs0d77ZVXXqk916VLFzIzM6moqKgy5W6327Hb7b4naTY3ijIeT4SsLucHWCwWbXJ8nOLGo4OP2w3a9vLyclmErwGoj+vfGMnLy9N+e//VxWW6ZzgxmYwoikJ4eHiz/17q8vpbLBYcDgc9u0UQsb6EwijIbQ0Oh2qtXlFR0ey/38ZOS23/54ve/XLNjyd91lC7eWICiqIQEBCA2Wxukt9hfV1/i8WC1WolOMiPVplwrCPkx8CO3/Pp2zOS8vLyJvn9NXWk/Tc+zsck6oJE0vbt26moqPARL7t27SIjI4P//d//Zdu2bT77W63WMxaHDA4Oxmq1Ul5ejslk8hE8wcHBlJeXV/laTymf1WqtUiQtXbqUJUuW+GybMmUKU6dOvZBTrROOHTtWZ++tKAq5ubkoikJygot1lZe4MNJETo668nZFRYXYLDcgdXn9GxOKolBeXk5+fj4AW34t5nBPC2AgtBhmjDSTk5OD0WjEz89PM3Zo7tTF9S8qKtKi8FHZUBgFFYHwxZo0Bg9Uy5NcLpeUKTUCWkr7ryklJSVaH7BqdxkMUcvF2h5wkH+pajwQERGhleI3Ver6+peWlmrlzeEnXRzrqGbhvtqQQ0Kst4rEk30W6hdp/42HDh06nHOfC2olnhI4TyNzu90sWrSIefPmVXkTDgwMpKyszGdbWVkZgYGBBAUF4XK5fDJDZWVlWunN6a/1RJoCAwOpilmzZjF9+nTfk2xEmaRjx47Rrl27OrU5NhqNVFRU8IdxUby9I4uKQDXdHhenrjERFBRE27Zt6+zzhaqpr+vf0FitVoqLiykpKcFsNmu/u28yrCht1f6hyy4X3e5JAiAqKoqYmJiGOtx6oy6vf0lJiVa+HFaQjieDvPe4kRsmqN9/69atG0U/2FJpKe3/QklPT8diseB0ujjWXS0JM7gVbhwQovUhnTp1wmQyne1tGi31df1tNpsmJFu50/i9cnuW21/7HuPi4qSapJ6R9t80qbFIcjgcfPfdd7z88svatrKyMvbt28cjjzyi7VNWVsaYMWP44osv6NixI//5z3+0/a1WK8ePH6djx46EhYURHR3NoUOH6NWrFwAHDhygY0c1196xY0cOHTqkvfbgwYO0adOmWncbi8XS6AcCRqOxThtJYGAgNpuNgAA/4jIhozMURcKvO/MZeEk0drtdGmkDUtfXvyFwOBwUFxdTXFzsU+7qCZqs+TGbQ5eo52x2KMwcpGY3DAYDUVFRze77OBt1cf0DAwO177qVwYVHJGW7TNp2h8MhrmCNgObY/i8Wm82G3W7HYDDwz09PcKqHur39YQPDbvS6X/r5+Z3lXZoGdX39AwICMBrVMuaBnQP4DtXlsijK2xfIGKDhkPavoihKk6hsqPGV2rx5s2aw4CEkJISUlBSWL1/O8uXL+dOf/kTr1q1Zvnw5/v7+9O/fH6vVypdffondbufdd98lOTmZhIQEAMaPH88777xDWVkZu3fvZsOGDYwaNQqAsWPHsm7dOvbt20dpaSnvvfce48aNq6XTb57oB0J684bvfhXzBqH2cLvdFBUVcezYMY4cOcKpU6d8BFJaeglPvnGEaZ9m8EyEnfJKX4bOu2HgJdGA2ndI2cfF4+fnp914B3TxGmAUR3i7eJmwLTRW9IYN/y32Ol4mZXtt7MWw4fwwGAzaGGDs0DhtKZBcXfGIONwJ9Y3L5aK4uJjs7GwOHz6slYQ2dmo8Ovn6668ZM2aMjwI0GAw+5TJhYWEYjUZtm8Vi4a9//SvPPfccL730EsnJyTz77LPa/nfeeSfPP/88Y8eOJSwsjCeffJKkpCQAOnfuzEMPPcTDDz9MWVkZw4cPZ/bs2Rd6vi0CvUiKc+vMG3T9os1maxZROaF+URQFq9VKUVGRj12vh3KrgzdXHGe3wUhasgH7YN8uJqQEJiV4t4ntd+3gcbWyWq2MGhzLoh0nsAVAQYJ3HxFJQmNEURRNJBWV2EhPVscWfnaYMzEWUKPvp89rFqonICAAq9WKv7+ZuOOQ3hWKw2Hzz7kMuixW+gKhzvGMFcrLyykrKztDmJeXlxMVFdVAR3f+1FgkLVy48Jz7DBgwgE8//dRnW8+ePVmxYkWV+wcEBPD8889X+34TJ05k4sSJNTvQFozFYsFgUN3sBnT05zvUReUKI33XSjh9PStBqA673a6V01WVhfzPNydYc8ROerKRwn5nzhmIOQmJB1zcfFkIg8aqA5+goKBq5xYKNccjkvz9zcRmwfEOkB8N+w8X0a1TuAyMhEaJ1WrF6VQzRm/8O5PSy9VhSVIqdBqozpsJDQ2VEqUaoA+URpxyk95V/e5++K2EQZfF4nK5sNvtjX5qgtC0sNvtlJWVUVZWhtVqPauTn8dlsbG3a6lzaYZ4osoVFRWMG9aKv/92QjNv8CDpduFcuFwuSkpKKC4uxmq1nvH87/sKWLqugPT2ZjITgQTfzi6oDJL2KFwRamDWjW0wj/aKJ6PRSHx8fF2fQotCv0ZaWK4CHdSI/NrNBXTrFI7D4cDlcjXZie9C80Rfarc/0Dsk6WGTUrsLRS+SEnCzs7KaJNPl7aMrKipEJAkXhcvloqysTMsWeYIdp2OzOflodRa/nHDSxl/hyTkdtUxTY88Qi0hqpgQEBFBRUaFGlU/AsU6qLfBvu/O5tHeUiCShShRFoaysjOLiYkpLS7X1jTwUldh449+Z7Asyc7S7gvO0cjqjSyFpv4EuhQ7un9aW6Kv8fZ43GAyEhKhuVTIXqXbRi6SoChee7j2tyBvNs9lssmiv0Ghwu92UlJQAcPBIMWk9FMBASAncc1MbQJ1vJxnnmuGZo+h2uxncO5hvULPIhdG+IknEp1ATPMLGI4zONo7cuDWX1b+UkBVq5kQnKO0EdDJRuMu7T3l5uYgkoWE43bzhWCe1c/z25yIu7R2lmTfIvCQB1MFzUVERJSUlVUaDPvzsGD/mukhPNlJyuafb8M5LjM+ExMNOpg8OZ+DN0We83t/fn/DwcEJDQ0Uc1RF6kdQ11symyscFQd7MkYgkoTGhn9f4TsopLeiStNdN+NXq7zksLKxJuGA1JjzmDeXl5Qy5IoaQ/2ZSGqqaNzidLm2BaUE4FzabTcsUna2E7viJMj5MyeGIy8DJRCM5CcDgM+/1Jzqpc5eDAv0oKysjNja2js/g4pDRSjPFx7zB6TVvyNBVTYl5Q8vG6XRSUlJCUVFRlfNVftmRx4ebisjoaCa7E9DJt5wutFgdzAyJM3HrH9qd8Xqz2UxoaCjh4eE+A3ihbjAajVgsFux2O+OGRLP05CkUo4GiOO8AU+YlCY0JfandUZ2hyxU6V0ZZz+fC8Igks9lE7HEo7QFlIbBuYy5jh8Vjs9majA2zUH9cSAldbryJzCQF58CqS7n9K6DtYWiV5+Sa7oFY/IyV72HD6XQ26sBp4z0y4aLQmzdc2sGf7yvNG4oixLyhJaMoCqWlpRQXF1NWVnZGOV1uXgVvrDzBwUgz6V0V3KdFgswOhQ6pBnpUOLnnpjaED666nC4sLIzg4GC5Adcz/v7+2O122rYOJub3PHJbQW6CQmmZnZBgi0SPhUaD0+mkvFz1p1638SQZndXtsSfh9uvVUruAgAAJsFwgPuYNed5A6U/7yhk7TC11tNvt8v22cGqjhE5F53jtVmidYSAu001yGNw2KYHwy6v+nZWXlzfqsk8RSc0UvXnD+GFxvLErC1uAmDe0VKxWK8XFxZSUlOByuXyeczpdvPPxcX4pg6M9DZRfdWY5XZujkJThZPaYKJJvizjj/QMDAwkLCyM0NFSMARoQf39/bY5HRDbktgKnn4GUH3KYem1b7Ha7RI+FRkFJSYkWpPl8ZzkMVvuN9gdcmslLYx48NXb0Iqmtn5vfPAtM4zsvSURSy6OmJXSHXQZyzlJCBxCZB/FHFNo7nNw4LIpek6pe3sNgMBAYGEhQUBDBwcGN/vcnIqkZ4zFvCAr0I+4EHOsIBdGwa28BfZIjpfSmmeN0OikqKqK4uNhnkVcP3286yWc7yknvauJU8pmD5oh8SEx1M7ajH5MntTnjeT8/P8LCwggLCxOXpEaCj8NdsQtQB5u7MuxMRY0aSvRYaAx4Su2cThcZXbyBlUl9VJMGg8EgpXYXgZ+fHyaTCZfLxajLwvmSMgAK43xFUnh4eEMdolBP1KSEbsWXJ/g123XOEroAK7Q54i2hGzcsDvPwqve1WCwEBwcTFBREUFBQo7f91iMiqRnjY96Q4+ZYR/WHueanQvokR+J0Oht9PahQM9xut0853emkHy/lrc9zOBJvJqOTgjLYt1Oz2KDDHoU+uLn3lnb4DzvNvc5oJCQkhPDwcAIDAyUj0cjQi5+2/grbKh/nGrw3JZvNJiJJaFDsdrtWyfDBfzLJ7apub3cYRl2vLg0QFBQk96aLJCAggLKyMgZeEk3ED2UURsHJtupg2N/fLNUkzZSalNBt+G8OKb+WekvougBdzl5C1zMMbp2UQPgVVd9HTCaTlikKCgpq0nPfpQdqxugHQtWZN8i8pKaPp0P0lNOdnjq32Zy8+e9j7FSMpCUbsA0+s5yu/SHokOXkzomxdLjszOhtUFCQVk7XlKJALQ199HhQn1C+QG3sxdG+IkkQGhK9YcOWfO+9KSlT1kaqTTwiCSDmhLoMiC0AvvzuJDeObyPmDc2Iuiihi8qDVkcUEh0upoyIInlSRJX7VVVC11x+UyKSmjGeH6qiKPRNtPA9aqMpDBfzhuaA3W6nuLiY4uJiHA7HGc9/+W0WKQdtpPcwUnDpmWnw6BxI2u9iUp9ARt1w5sKuFotFK6drypGgloa/vz/l5eVc2T9Ks/7NS/A+L9FjoSFRFEUTSaVldtKTVYFkdij8cby6fIAnYy1cHD7mDQXe8tvtR2zciHotbDabz35C06DOSugOQ6sCJ8O6BzL2muZZQlcTRCQ1Y/TmDdeOaMX/252F3R/ydeYNElVuWrhcLkpLSykqKsJqtZ7x/P7DRbyTksfRdmaOdwDifDuuwHJI2qNwWaDCHdPaYR7l2wGaTCZCQ0MJCwuTBRybKB6RZDabiM6C0lAoCYOt209xeb8YafNCg2K1WrWgzhv/Ok7JZZVrI6Ua6HabOj9GMta1g178JAXDr5WPcy2+85JEJDV+LqSE7kSYmayOUkJ3MYhIauZ4RJLHvOF4B8iPgd/3FdCre6RElZsAiqJQXl6uldOdbttdWmbnjX8dZ6+/mbRkBecQ32ZtcCsk7TfQOd/JPTcmEH+lr/gxGAwEBQURHh5OSEhIs0mTt1R8zBt01r8//lbC5f1icLlcMhdRaDD0pXapFu9vsLtVSu1qG7PZjNlsxul0Mm5QJJ9Y1e++oJWvSBIaJzUqoVt9ksNu43mV0MVXltDd2EJL6GqC3CWbOQEBARQVFQEQkePmeAeveUOv7mLe0Jix2WxaOV1VqfR/f3GMH7JcpCcbKb7szHlGrU5A4iEn064M5aqbzlzV2t/fXyunk+vffNBHhWNdXpF07LSFpOWaC/WNZ502gLT0Eo4mq9uDS+GeqaqDptlslix2LRIQEEBpaSnJXSOI/raYvDjIaQ1FJTbCQ/1FJDUiPGuHXVAJ3WVV9+dSQndxyF2ymaMfMMXYvQOmozrjM5mX1HhwuVyaMKrq5vXb7nzeX19IegczWUlAkm8nFlICSXvdXB1lZPrkNpjHnVlO5xFGUmLRPNEvJN2zrR/fo2Yei0N95yIGBwc31CEKLZTS0lJtnba3vszFXhntTtyrEDlIzYCGhYW1yIh1XeERSQDRJyAvDhwW+PLbHG69vh12ux232y0D4gagrkro2qQbiD3hple4genXxUsJ3UUgIqmZ42ve4Mf6ygFTkc68wWaziUhqQBRFoaysjKKiIsrKys4op8vLt/HGR5kciDCT3k3BdVo5ncmp0CHVQPdyJ/dMbUPk1b4dosFgICQkhLCwMIKDg2UA0swxGAxYLBZsNhvjhsbx5qFsnH4GClt595F5SUJDoC+1Oxrv7ccu091+pNSudvExbyhx4hn27cpU54V5zBske1c/2Gw2KioqalZCl2QkJ57qS+hOQXyaWkI3bXQ03SZXvfaVlNDVHBFJzRwf84bhrXhzbzZ2C+SL21WDU1FRoWWNPNFVD06ni2WfZPJTiUJ6soGyq84sp2udDknpTm4fEUmfW89c3TogIIDw8HBCQ0MxmapOrwvNE39/f2w2G5ER/sScNJDdFnJbKWTnWImPCxSRJNQ7HjcuUKPiGZ0UwEBMDvxxSltA/d3KGl61i14kdYkw8nPl41OBvpllEUl1h81mIy8vjxMnTmCz2aoUJjabk3+tOsH2k2oJ3fEOCq5zldDlOxnRM4jxI850p/UgJXQXh4ikFoBHJIUEW4g9AZlJkBerOqF16xQuIqkecblc5OfnU1paWuVAdcN/c/j41zLSu5jI7QF6UQQQXqiW041s78eN17U54/Vms5mwsDDCw8OxWCx1cxJCo0c/0IzIUchua0AxGkhZn8vsqe2lxEaod/SmM5/8WqYtZN3+gEtz2ZQsUu1jMpnw8/PD4XAw8ZoY/pWbh2I0UBjvvbfIGKDuyMvL49SpUyiKckYwdP1POXy9rZSsMHUh17KuQNezlNBluukTAbdObk3IFVXf36WErnYRkdQC8DVvUMhMUhtfysYCunUKF/OGeqCkpISCggKysrJwOp0+kaTM7HL+8Wk2R2LNpHdRtMGDB4sdkvZCL6eLe29pS9BQ307Ps6ZIWFgYQUFBkj4XfKLH4aUuPF39vhzvRGApsRHqE0+pndPpIqOTt4+bmKz+Bg0Gg4ikOiIgIACHw0Fi2xBif88nJwFyWivk5lUQGx0gIqmOKCsr49SpU9rf2ScreG9VGkdqUkLndDFtlJTQNRQyKm4B+Jg32LwDpqOl3rkv4nZVN7jdbk6cOKHNNfJEUm02J29/dJztTgNHkw1UXH1mOV27w9DhhJO5E2PpNDD0jPcOCgoiLCxM1hQRzkCfSUoKNbC18nG+xXcuoogkoT6w2+3aum4rVp3gZCd1e9s0GDtZLRUKCgqSe1AdERAQQElJCQBRJxRyEgy4TAY+W3uSO29OxG6343K5pCy7lvn/7d15fFT1vT/+15k1k5nMZA8kQSAJO4IKdWNTAWURbS1axeWqVWx727q09Xr7uO2v9Wu91rW7tYpyW6ncXusCCmgRFcWldWMVyIKQfZ+ZzJ6ZOb8/PjPnnBECJEwyM8nr+Xj0YXoyE87k5HzO5/35vD/vT3t7u/L1bX86jH2zpeOm0JXXAsX9SKGzWq2wWCx8/g8itkgjgLZ4w4wxRrwdK97QbWe1q8HW1tam5OEDwNsfuPBWox+HJ+nQNfPohi2/Axi3P4IVUy1YcsXRjaTRaITD4YDdbuc0OvVJr9cr+6MsOjcX/xsUHSR3oRqEc10SDRVtwYbtbRGgUrR9Y+u5N9JQ0A6U5vvUgdIDHWr6VzAYRHZ29lCf2rDl9XqVNvaJ5w5j97mJz3tdRGzkerIpdPH0OavVysGEIcTf9AigrXZ12aIS/HFfC3pZvGHQBYNBJc2x9nAPfvpeN+qmZgHjEl+X5QfG7ZUxyyzjW1ePgWFh4mieTqdDTk4OHA4HR/7ppJnNZoTDYUyfnIfcN3vgzAfaS0W6k8GgZ5BEQyYeJHm8IRyeKjqLhl4ZNy4WBWfiKcM0OLRB0pRCA96Lfd1lSxwoZZCUPN3d3crX74bVwakJu4Aqb/ikUujigRFT6FKHQdIIkZWVJUp9W00ojhdvKAaq69yYUGFnkDQInE6n8vUDr3Wi7hx1JEmKyhhbLaGyI4xvXzEKZecmPpwkSVLS6Ww2G6fTqd+ysrKUWcz8FsCZDwQswBs72nHJglEIBoOQZZkPXxpUfr8fvb2i3PTj6xvhni065uMOSJh+rQiS2MYNLp1OB5PJhFAohK9dXIK1h1oQMUjoLmXxhsEQDAaVtve1t1tQO11UcrS7gEeXFaOw4Og9Cs1mszJTxBS69MEgaYTQFm9wJBRv6MLtFXYWb0iy+KawgJhFqpkhGjxjCJj5YRhXfSUH864qOup9ZrNZ2eyV14JOhXZdkr1b3Uj6w899uGSBWC/X29vLKog0qLSpdnv1asdvQg9T7YZSVlYWQqEQCvLNKN4hofk0oL1YxqHDPRg/NodBUhJpZ5GePxCAHBsgrdzZi4J5ol1mCl1m4FUZIbQdJm3xhjq3upEZizckj8vlUjaJ++2GdgRiG8BW7YziN/8+PmH0Xq/XK4GRNi2C6FRo7/kSKYJ4kNQSUTuqwWCQQRINilAohEAgoBQMONzgwaGpot3L9gL/fpXYwsBgMDDNawhkZWUpAWteq4zm08S2ABvf7sT3b8hBb28vizckQTgcVn7P+w46UR1be2wKAt84S3wtSRLGjRvH/lYG4BUaIbTFG04vNWJ7rHiD067+CbB4Q3LIsqyMJPn8vaieqv6O59tDytc2mw0OhwNWq5UpT5R0RqMROp0O0WgUsydk4zWIlCd3bmKQlJNzdOVEov6IRCIIBAIIBALw+/0IBAJH7Qnzp5fbEIpV8Ry3T0bB+SKIz8nJYfs3BBKq3AbUgdJalzpQyj7AqXM6nUoV28df70YwtqXHhJ0yJl8mBgOYKZI5mPQ4QsRzkgFgxeJiGHrFTcziDcnn8XgQDotUksf+Uo+uQnF83AFg6QKxUDM7OxtlZWWw2WzsINCgkCRJmU1aPK8I5tjt3a2551m8gfpLlmUEAgE4nU40Nzfj0KFDqKmpQUNDAzo6OuD1eo8KkHz+XtQWq53CWZr6Mw7HsRevU3JpF//PHKNWRu12JA6U0sBFo1FlLXK3M4jq00WAJEVlfHW8+jvPy8tLxenRADCUHUHixRscOWYUN0loGgt0lIg1M5Vjc9hhShJtPvLufPUWm+EKAxCd1tzc3CE+KxqJzGYz/H4/zGYDipqBhvFAVwFwoNaFSZUO3vN0Qr29vQkzRIFAQBkp78u/PuvE6/90oT6sg7NYh9ZyIDBRfC+/A1j9jXIA4u9TmxZKgyc+UBqvcvvEvhaETEBnmfoaBkmnxu12KwMEDz3bCFdso9jKfRKWrxqNtrY2pVodZQYGSSOI9sbMbZPRNFaMKr3KnOSkiXcmAOCvL9fj8ARxvLAVuPP6MXC5umAwGFjuloZEQvGGdhkYL+7513d0Y1Klg/c8JYhGo0elzcVnxfvS3hnA319vxf6OCLocBnSWi0Ac5xy7ezH+84iyzQELNgythCq3jbFBk0Jg175uzJiaxyDpFGjT7MPhCPZVqn//c6CmNHIWKbMwSBpBtDnJBX5N8QbmJCeNdhbpH51RIFZFcOKBMMyLxe87NzeXKXY0JLRBUr5mHcIhV2LBFi6cH3lkWVaKK8QDolAodNxZonA4gi1vteH9A360GvXoHiWhtUxGZKqE43UnHN1AUQNQ3B3Gf10vpi4kSWKQNMS0VW5zW6NoGC9WXLz2vhMzpuaxyu0p8Hq9CIXEmuNf/fkIWmeJgYCyL4BvXTsOsizDaDSyf5VheCeMINriDdNGG/BO7Hh3TuKGcryJByYcDiuVnD7d3YWaGeK4xQd8/2vFAETHgDn4NFS0QdLEIgPejX3dna3e8wySRoZwOHzULFG8AmdfDtS6sOGtLnwRALoL9GgbA3iLABRpuw6JAz6mIFDSAOS1RlGGKC48KwfzLjh6u4P8/Hx2xoeYdqC0OKxuC3DYr74mEAgw02EAurq6lK8/tqrt6/SmXuVrFsnJPGyhRpAv5yQ/VdOCsFFC92j1Icc1CgOnrWqz5m0XwrGqNlU7oxh7ng2yLMNqtTK1iYaMdhPJpfML8ExrB2SdBFcx7/nhLF5cQRsUxTd07YvHG8ILr7ViZ2Mvumx6dJZKaB8FYPbx26viFiC/UUaBN4Izyoz46iUlsJ3dd1l5nU6HvLw8FBQUDOSj0SnQDpR+pdKMbRDrZ5x5iQOlDJL6x+/3K2n26zfW44vJ4nh+B3D3jacBEFt9cLuFzMMgaYQxm80IBoPIyzWjqFlsKNfBDeVOmSzLiVVtZqhVbb4+RR2948OHhprZbEYoFEJ5qRUFezrRUQK0j5bh8YZgs5p4zw8D8bS5eEAUDAZPWFxh+wdt2PZpD5qhR3eJDq1jgFAlgMq+uwW2HqC4HsjrimCcBVixIB+TLjn+zLhOp4PFYkFWVhaysrKQnZ0NnY6FdVNBkiRkZWXB7/dj6YUl+PWnTQhYgA4Wbzgl2jT719qjwGliEGrSvjCyF4qqdrm5ufB4PCk5Pxo4BkkjjHZDuVzNhnKvvtOJ745l8YaB0la1eXhdI9xz1ao2l1w7CgBgtVpPuAiaKNnMZrOSBprXIipaho0SNr3ZhqsuLVfWoXCdXGY4mT2JvqyhyYsXtrajxi2jO1eP9jGAKxfA+cY+36MPyxjVKCGvJYqScBTnT87GxfOLYJjb97NBkiSYTKaEoMhkMvFvK43EgySz2YCSBuDwBMCVB7z3UTvOn13EIKmfent7leDnvY/aUT1THM/2AbfH0ux1Oh2DpAzFIGmE6at4Q003izecCm1Vm/1j1Nvq7Ij6e83NzUVHR8eQnxuNbAkV7twRAKKTu+tICFdBXcDPsrTpR5ZlBIPBhKAovji8L8FgGBvfaMVHdUG0Z+nRVSqhbZSM6Mzjz97kdwAFjUCBK4zJhXpccXEJimZlHfc9BoMBWVlZCUERZ4nSm/Y+d7RHgQnier35SQ/On12ESCSCUCjE1LCT1N3drcza/vmfXkTmiN/nhE9Fmj0g9gLjwHNmYpA0wmhzkqeOUhdyO22JC7kZJJ08n8+nrOt46v8a0DRVjJqOagC+vWoMAMBkMsFqtTJIoiGn7RSVm2V8HPu6XVI7s8FgkEFSGgiHw8rsUDxt7kTFFT7d3YXN7ztRH9ahu0iHtnLAXwagrO/iCll+oKQeyGuPotwQxZJzHJi18PhrhHQ6Hcxmc0JAZDT2PRNF6Uk7UDoaEeyKFW9oDKvtQSAQYJB0EiKRiFItsKHJi+ozxO9QH5Zx/Wy1D8V9ETMXg6QRJqF4w8ISrDnUgoghsXgDp9v7R5uP/F6v+nucfCgMg0EEn9wbgVLFaDRCr9cjEolgzowcvAyxwNhdkBgk0dDS7kkUD4pOlI7b2RXEC6+3Yl97GF12AzrKxT43fe1JBIh1kSXNEvKaZBQFIpg1zoRLF5Yg+9zjBzgmkylhlig+wEaZzWQyQafTIRqNYs40K16DmJl0FiQGSSzPfmIul0sZxHj0763wzRf3YdUuYM5NoqJjTk4OTCbTCQc7KD31K0iaN29ewv/3+/345S9/iYULF2Ljxo147rnn0NDQgLy8PFx//fVYuXKl8tq9e/fivvvuw5EjRzBt2jT8/Oc/x+jRowGIG/IXv/gF3n77beTk5OB73/selixZorx348aNePzxx+H1enHRRRfhxz/+MUewTkG8eENBvhnF70loHgO0l8hoaPKivNTKIKkfQqGQkmf81vttqJ0uA5CQ4wZ+uEqshtXr9XzgUEqZzWb4fD6cNysf1g8b4bUBnaPV7/OeH3yhUAherxetra0IBoMntSfR1nfaseNzH1oMOlFcoUxGeIoETOn70W13AUX1QF53BFU5Er66sBBjzzx+wRi9Xn9U2hzTg4anePEGn8+HC88vgu2DRnhygLZy8TdnMOjZHpwE7eaxPn8vDkxV78mL89WAkwOkma1fQdI777yjfF1dXY0bb7wR5557LgDxAPjP//xPTJkyBYcPH8a3v/1tVFRU4KyzzkIoFMLdd9+N1atXY8mSJXjiiSfw05/+FE8++SQA4IknnoDL5cKmTZtQW1uL22+/HVOmTMHYsWNRU1ODxx57DL/73e9w2mmn4Qc/+AHWrFmDb33rW0n8NYwsRxVvGCOKN2x4swPfudbK4g39EK9oBwDrP/Mher5oHKt2R1EwT6QvORwOZeSOKBXiQZLBoEdhE+CdCPTYgQ8/6cA5ZxVyJmkQ+f1+dHR0wOv1oqurCwaD4ZgzMtV1bmx4uxOHvOqeRJ58AHP6TpszhtQ9iUrlKC44w4a55xcoM9jHIknSUWlzTK0aWeJBksGgR1ED4JkCeG3Am++1Y/H8UUp1RM4c9q2np0eZ+X14bT26zhf36bgDwKqrRJq9xWKBxWJJ2TnSqRtwut3mzZuxYMECZe3K17/+deV7lZWVOPvss7Fv3z6cddZZ+Pjjj2GxWHD55ZcDAG699VYsWrQIzc3NGD16NDZt2oRHHnkENpsNM2fOxPz58/H666/j1ltvxZYtW7B48WJMnToVAHDLLbfgvvvuY5B0CrQ5yfk+tXhDdZdaIYkbTJ5YNBpV8pEbW3yonqnmI//buWLkVpIk5iNTyiUUb+hUN5F8+9MenHNWISKRCMLhMDf3TLJQKISGhoajBkg83hBeer0VOxt60WHVo6tMQnuxDPms4w9MFbYCBbE9iaaXGHDFkhI4vnL8tWRGo/GotDkWVxjZtH2A3C61Pdix14fF88WzjcVcjk+7eezu0Wq7eWaP2o/iLFLmG9ATUZZlvPbaa7jnnnuO+f1IJIK9e/di2bJlAIC6ujpUVVUp37dYLCgvL0ddXR2sVis6OzsTvj9x4kTs3btXee95552nfG/ChAlobGxEIBBIuNHjQqHQUdV/DAZDWoyUxR+UqZ5RMBqNSprH5BIDdsSOd9v0ynGfz3fM3y+puru7ldK7v/q/loR85LNvLIAsy7DZbNDr9YhGo2lz/Sk1Unn9TSaTcm8XRtROUb1fVo77/X4WbEmy5uZmpY3403OH8bFThqukHi1jgFAFgIq+Z4myvUDJESCvM4KxZhlL5+Rh+uLco/4NbcqeTqdTZofi/ztW4Ms2aOilU/uv7QOUGaL4NNYeNEOX0AfgsoZj83q9SkriH587jIZp4vdX0gTcecMYyLIMo9GI7Ozso657Olx/Ek5msGhAQdInn3yCQCCQELxoPf744ygqKlK+f6yHr9Vqhd/vh8/nU/Khtd/z+XzHfG98M06/33/MTvwzzzyjpPHFXXnllbjqqqsG8EkHR319fapPAd3d3ejt7cX5pwNr/TIiegnOURLa2toAAB6PR9lbhY4myzJaWloQDocRDkdwcIKm7Lc+oPweARwVtKfD9afUScX1l2UZ7e3tkGUZFfm9eDPW9Lty9MrfajAY5Nq5JAqFQmhtbQUAvPKmE3+enIWo/tgPZX1ERnGjhLzmKAr8IZx5moT5Z1thqNTOLIUS2hVAdHZNJhNMJhPMZjMMBgMikQi8Xi+8Xu9gfTQ6BenS/nd0dCAajWJWpYxXYsecRTrlb8zn83EmpA/t7e1KkPReVB3cmHAwgK6zOgGIinZHjhw56r3pcv0JGD9+/AlfM6AgKZ4Cd6wRqueffx7btm3D008/reSzWiyWoxpsr9cLi8WC7OxsZXO8eNDj9XqVVK8vvze+SL6vPM+bbroJ1157beKHTKOZpPr6eowZMybl6Q4mkwk9PT0oLgaKNtejpQxoGyWjN2pD2ahsGI1GjB07NqXnmM48Ho8S/Dzy9Bdomy06M2PqgG9fPxGASGk47bTTlPek0/WnoZfq6y9JEoLBIK5Y4sD/1LYibJTgKpFQXCw2PMzJyVGK6dCpa2lpUUbld3gCiOrVzlReF1BYD+S5w5iSp8Pli4ox6szjr13Q6/WwWCwJ64nYjmSOVN//X6bX6+Hz+XDJRcX41dv1cOWJ4g0ORz7MZsNRzy8SgsGgMqC05c0W1E4Tx+0u4D+uOw0F+SKdtaKiIuE6p9v1p5PT7yCpt7cXb7zxBh599NGjvvf6668rMznadRgVFRV48cUXlf/v9/vR0NCAiooK2O12FBQUoKamBtOnTwcAHDx4EBUVFcp7a2pqlPdWV1ejrKysz1Sw+KhaOtPpdCm/SbKzs5WAM7dFRkuZKN7wylsd+NY1YxEOhyHLMos39MHlcimDAJ9Y1d/RtJawcjw/P/+Y1zkdrj+lTqquf1ZWFkKhEPLzslDYKqGlXFS1bG0PYFSxBaFQiH+XSRKfzZEkCdV1btTOEG1Clh/4r14zFl5Yctz3xyuQadcSMfVpeEiX9j87Oxt+v9gOoLARcOUBAQuw+a12fG1JKUKhECRJYvGGL9E++1+oCUI+J7Z57K4ICueLfml+fn6f6zvT5frTyen3ldqxY4dSYEHrgw8+wEMPPYRf/epXKC0tTfjerFmz4Pf7sXHjRoRCIaxZswZTp05VRi2XLVuGp556Cl6vF7t378b27duxePFiAMCSJUuwdetW7N+/Hx6PB08//TSWLl060M9LMdoFmaJ4g3CwI7F4Ax0tGAwq6aAvv96EQ1PE8bwu4Ac3lAMQs5c5OTmpOkWio2jv+dw2McMh6yRseqsdgEgPY758crjdbuV3+firHQjFfvUVu6K4aG7xUa83mUyw2+0oLi7G2LFjMWHCBJx22mkoLi5GTk4OAyRKuoTiDd3qc/+jWpFGJssy+wBfEg6HlcrAe/Z342Bs81hTEPjWolwALNY03PQ7SNq8eTMuueSSo0YXnnnmGbjdbtx8882YN28e5s2bh/vvvx+AeAA8+OCDWLduHS688ELs3LkT9957r/Le2267DTabDUuWLME999yDe+65B+PGjQMAVFVV4Y477sCdd96JZcuWoaSkBDfffPMpfGQCEhvIyYXqiEe3ZlaEeyUcm3bz2I2He5WvJ+yNwGYVs5i5ubkcgaO0or3nHR61U7S/Td3AlJ2i5IhvDRAOR1A7UW1fz7erv9/8/HyUl5ejqqoK48ePx+jRo5GXl4esrCy2HTTotO3BWE2mZ5sxcVNZUjmdTiWF9omtTmXwY8JnMqZPFuu37HY7q4QOI/2+kr/85S+PefyJJ5447vumTZuG9evXH/N7WVlZuO+++/p874oVK7BixYqTP0k6IZ1OB5PJhFAohBUXFWFtQxuiegndo9WHMztMR4tEIspI0oFaF2piaTSmIHDbxaKR5EgSpSPtTNK4HAkfxr7uMqkDI8FgkPt6nCKfz6esV/z9unq0xUabx9QCl16YC0CsqS0qKkrVKRLBYDDAYDAgHA5j6ZxcvBAUhZqcxQySjiUajSqDH93OIA7OEO2mFJVxRZXatrLYxfDCxMgRLD6SNKrYguIW0dlvL5HR0ibylNlAHk07kvSHTZ0IxgbjqnbKmDoxF4AYSeJaLko3er1eGeFcdG6uctxdyIGRZNJuMP2xZu3BpBZ1xo6DKJQO4n2A6ZPzUCCybtFaJvbxAtgH0HK5XEo5/wefbYTbIY5X7pWw7KJRAERlZu4tNbwwSBrBEtYotIiOf1QvYeM2rlE4FlmWlQ6Qz9+LmmnqROylY9Q1AxxJonQVv+enT85DbmwvxPZSkRYGMEg6VeFwWCmI895H7aibJtrVHDdw5zVira5er+d6RUoLCRvLN4n/9pqAl14XpevZBxBkWVbS7MPhCD6vVJ/9cyT198Nn//DDIGkE0zaQeV7NGoUOdcSTI0mqnp4ehMPid/Pw/9Sjq0AcH78f+NoS0QHKzs7mSBKlrYROUYv4b8ACvLFDDIwEg8GEzUmpf1wul/L7++uHHkRiZb8rdkeRlyvaBYfDwTVHlBYS+gAu9bm/q1GstWXxBsHj8aC3V/xOHvufI2iN1SYrPwR869pxAMQAFDfjHn4YJI1g2s78xEI1PawrO3GNAgnaNJo9xepI0hmaRfAcSaJ0pr3n7d3qCOiHn4tqjdFoVOkMUP9oZ5o93hBqp6lrFlaerq7zcjgcqTg9oqNog6Qqh9od7MxiASctbbGmT3LU3830ZjWw5LN/eGKQNILp9XplT6kVFxZBiooRUOcodZSTDaTg9/uVPSX+/EI96ivF8aIW4K5/ExvuGY1GjiRRWtMGSSWSGty3RNRHAQdGBsbj8SgzzY892wBnrM9U8bmERfPEvkgWi4XlvClt6PV65e/x0gUFSh+gm30AhfbZ/9eX6/HFJHE8vwP40Y1jAIgiGHa7PVWnSIOIQdIIF+80lY3KVos3jJLR3ikaxpHeQMZpZ5HedKkj8BMPhmEwiJGlvLw8ptFQWjMajcpGhrMnZCvH3bkMkk6Vy+VSvt6Xp840z9DsQ8dBFEo38dmk8WNzUNQqnl9tpewDxGlnkf7RpT77J+0LI9siAkxu+TF8MUga4RJykmPFGyJ6CS//ow0AF24CYjF2T48oj/qvzzpRc7o4nu0D7vi6GCHW6XQcSaK0J0mSMjCyeF4RzLH+T/do9TUMkvovFArB6/UCADb+ozlhtPn268Vos9FoTGhvidJBwjrFZvYBtHp7e5VCLDv+2Y7qGeJ4tg+4/WtiU2idTsdqlcMYg6QRLiFI0m4w2c7iDXHast9rd7gRNooRo6rPoigvFSPDDoeDZb8pI8SDJLPZgKJmcayrQOz7BTBIGgjtTPPGWvX3V/V5BGazmFViwQZKR331AT5nHwDd3d3Ks/8vH3kRMYj7d8KnUYwttwHgs3+4Y5A0wmnXKFTls3jDl2k3kOvsCqI6toGcLiLjG5rF2BxJokyRULyhXa1k9/oOkVbS29ur7AdCJxaNRpUNplva/KidIR6rhl4ZN8c2j5UkiQUbKC1p24MpRWqaaJdtZBdviEQiSgrt4QYPqmObQuvDMq6fLQZHJUliwYZhjkHSCKct3nDZhYVq8YYSLtwERNnveIfxkb82oieWUVexV8JFc0Wqnc1mU36HROlO2ynKD6jB0CHNWruRPDDSX9o24ld/a4Yvtuyocjcwc5roQOXk5HC0mdKStg/w1cXF0EdEH6Br9MjuAzidTiXN8Ncvtin39YRdwJyziwCIZz8LsQxvDJJI6TSVl1rVhZujZXR2iY7SSGwg47QbyO0fp46ynadTR+A5kkSZJKH0v2bkuJuzxwOiTbWrPk3TRmiWH3GmmdJZPOWuqCALxU2xAk4lMg43iPU4I60P8OWN4w9MVe/rxflqt5nP/uGPQRIl5iTHF24aJLy8dWTvuu31epXO4hPr69Es1l9j9BFg9TfKAYgOZ3Z2dl8/gijt6HQ6ZeR46Xy17K+rWB05ZpB0cgKBgNKBfPpvR9A0VhwfXQ9880q1jbBYLH39CKKU0/YBcmMFnGSdhA3bOgCMvBRct9utlPN/aG09ugrF8XEHgFWXi46AxWLhfT0CMEiihJHlhIWbrerCzZHYadKOEH+guVWmHEks+02UabSzxwXtsZHj0TI83hCAkTdyPFDaNuIdjzq7XHVIbSM4i0TpThskFWpScGvc6uDoSGoTtGW/94xWZ5HO6uHG8SMNgyRK3HU7T7PrtmXkLtwMhUJK6c+t77SidproANldwA+vLQMgcrlzcnJSdo5EA5UwMNIi/hs2Stj0plr2N17ViY4tEokoBRv2HXSi7nQRbGb5ge9zawDKIGazWam8OKNUXWPTbVcDhJHSB9BmkPxx3RdoGC+OlzQBd8Y2jjeZTLDZbKk6RRpCDJIocdftC1i8AUgcIf6/PX7IuljZ790R5OWKDmZubq6yMSdRJkmocOdWR0d3HREzSbIsIxQKDfl5ZRK3260Ekn96rQuhWO2Wql2JWwOwjaB0p03BXbG4GMbYrd9Vqr5mpPQBtLNIO2T13p1cmzg7zHL+IwNbbwKgziaNLbehsE1Nv+l2ihGVkZRu9+XSnzVnaEr6zhWjwpIkMY2GMpY2SCo3qzNG7ZL6SBhJ93x/aRd2h8MR1E5SR9wvKVdH4ln2mzJFvA/gyDGjpFEc6ywSs6TAyAiSgsGgsin0pm0tCRkkP1qlZpDwvh45GCQRgGMXbwgbJWwYgcUb3G638ll/81IbfLG6DFW7gFkzCwCIkr4Gg6GvH0GU1oxGo1KSes4MNWXUXcAg6WT4fD5lpu03fzmCDpFdh7HVwMplojOVnZ2dEIwSpbOE4g1t6rN+07vxCq9hpZjBcKWdRXqhJqhkkEzcFUFBPjNIRiJeaQLwpTUKmsWJe5tFoyjL8ojoNMmyrDSUwWAY1RPVQGhhrnq7cBaJMl38nj9vVj6sYvkdOker3x8JI8cDpU3H/dSort2c3N6rfM02gjKJNkgq7lWDpC986muGc5sQDoeVNYZ79nej+gwRIJmCwG2LcgEwg2QkYpBEABIbyErHyC3e4PV60dsrOjq//ks92mMjxKfVANddwdKfNHzEgySDQY/CJnGsxw58+Iko+zsSBkUGIhwOKyk573zYjrqpakrOndeJst8Gg4ELuymjaIs3zK5U+wOuvJHRB3A6ncoawz9udSIUGzee8JmM6ZNFJTu73c4MkhGGQRIB+FLxhgUFxyzeMBI6Tdrp9k9z1IfD9A41zYAjSTQcJBRv6FRHjt/+tAeAWJs33NNrBkLbmXruIy+ietFGVu6JwpEjfqcOh4MLuymjSJKktAnLLixGll8c7yhTXzNcg6RoNKrMDnd2BVE9Qzz7paiMK6o0WTYs+z3iMEgiRXw2afzYHBTG9k5pGy3D1SOCo+HaQMYFg0H4fCK34PlNjfhisjie3wH84AYxi2QwGFj2m4YF7exxUUQNkhr86mtGwsBIf8iyrBR1cfUEUXu6eITqIjKuPkssXpQkiQu7KSPF2wSz2YDiWPEGZ546uzxc+wAul0vZLPehvzbCHbt9K/dKWHbRKACA1WrlGsMRiEESKRLWJTWL/4aNEjb+Q907ZTgXb9DOIm1uUkfQqz4PI9siZtlY+pOGC5PJpPwtT9NUZHPljIz0moHweDzK7NpjzzYonamKzyXMP7cYgOhMxWfliTJJX8Ub3vhIrNWJRCJKOvpwoV2HHA5HsL9STaebo1crf3IWaWRikESKhAbSrQYJu5tEozicizd8edFmzQzReTQHgO8uKwTARZs0vEiSpOyNsnRBMfTheIqt+prher8PlLZgw/4iNRA6I6QWu2EbQZlK2wcYBc3scljtKg63gROPx6MEfo/+zxG0xvaGKj8EfOuasQDEALLVak3VKVIKMUgihbaBrLCrfxodZnVkebh2mlwul7oxpGbRZtVOGRMqxN5IdrtdKZtMNBzEZ4/zcs0oaontj1Yio6VN5NwN1/t9IEKhkJKO++KWJhyeII4XtgHfXSXScU0mE7Kzs1N1ikSnxGQyKeWtz5+q/h0784dvkNTnOuRmdaA4Pz9/SM+J0geDJFJoizcsm6c2Ci5N8Ybh1kACiRtDerwhVE9TG8rLx5uUrzndTsONNsU2t00MEsg6CZveagcw/FNs+0M7i7TpcEj5unJ/GGazSNFhOi5lMm3xhoVzipStAdrLRSoaMLz6AH6/H36/GBD668v1+GKSOJ7fAfzoRq5DJgZJ9CXxBnJChR2FYikSWkuHd/GGnp4eZZ3Bw3+uhzMWH1bsA1YsFhvHcNEmDUfa2WOHR00ZO9CmjqJyNklUv4oXbGho8qJ2hnh0mkLA6ktEgyFJEux2e8rOkSgZ4m2CwaBHUYM45skB3npfLd4Qz7rIdNpZpH90qYNBk/ap65Dz8vI48DGCMUiiBNpOk7Z4w6vbhm/xBm1DuXeUus7grADXGdDwpg38x+WoHYFO0/BPse2Pnp4epd37zQut8McykSp2y5g6MRcA03FpeEhYm6zZGuDdPWJaKRqNIhQKHfW+TBMKhdDTI7Y72PHPdlTPEMezvcBdXxcLM3U6HStVjnAMkihBQpDkVoOEXfVq8Ybh0EDG+f1+ZXbs6b8dQUOFOF7cDNx+/WkARJ42F23ScKTX65XNERedm6scdxeOrP3RTkRb/apmnFr9ap5N/T1xIIWGA20foNygBkktGF4DJ9r02b985EXEIO7lCZ9FUV4qnvcOh4MDHyMcgyRKkDCyrOkAaIs3DKeUO+0s0nafmkIwqToMg0F8Zq4zoOEsfs9Pn5yH3C5xrL1UXYMwHDpEp8Lv9yu/g2eeb0SzWKqA0iPAzVeJgZSsrKyEziVRpjKZTEpgcMEZ6locZ9HwKd4QiUSU9NnDDR5Unyk+mz4s44azRYAkSRLXIRODJEpkMBiUkeVl89QGwlk8/Io39Pb2wuMRKQTvfdSOmtPFcasHuP1KsYEcp9tpuNN27vNbxH8DFuCNHaJ4QzAYHDZrEAZCO+K8w6/+HiYcVtdtcRaJhpN4mzDn7CI4nOJYazkQDIq/+UzvAzidTiV99tcvtsEXS5+dsBM4f3YRAMBms3G/M2KQREeLN5CTKh0oEP0ktJeKym9A5jeQcU6nU+n8PftPdbq9amcUZaNEq+lwOJSSqETDkXb22N6tptd8+Lkodx2NRofdBpInKxKJKOsWdu3rRm1sICXbC3xvpRhI0ev1rH5Fw4p24KQwVrwhYAG2vC3WJmdy8QZtNVufvxcHpqrpsxcXqM96ziIRwCCJjiFhZLlJ/DdkAjZubRVfh0IZ20DGaatVtXcGUB2rVqWLyFh1lro/BBtKGu60QVKJpK5DbImoj4eRmnKn3T9tzRvdCBvFQErlbnUgxW63cyCFhpWE4g3dapvwz2oxQJrJG8u73W6lmu2Da4+gS+wVj3EHgGsuF7m0FosFFoslVadIaYQtOx0lYe8UTfGGnZriDZnaQMa53W5EIuKzPfJcEzyxgeDKPRLmn1sMgNPtNDIYjUalkz+rSh0gcOeO7CBJO+IcDIZRO0UdcV6u2T+NqXY03Gj7AKdpYoU2Q+avS9KuQ95Tqj7fZ2m2QODmsRTHIImOoh1FGqcp6tZpyvwGEhCdH221qgMVaudnjlGdIeMsEo0E2g0kL55fBHPs1u4erb5mJAZJPp9PSTP89bP16BRLFTD2IHD5xaUAgOzsbJhMpr5+BFFGMhqNytrkJeflKsedxZndB/B6vUpb9sd1X6BxnDg+qhG44wZWs6WjMUiio2iLN1w8jBrIOJ/Pp5Qx/8Nf69FSJo6XHQZuu2YsADGSlp2d3dePIBpW4kGS2WxAUWx/tK4C4ECtSEkdiUGStmDDLota3XNqJws20PAXHyydMTUP+WIfWbSVZ/baZO0s0g5N93dynVrNlpvHkhaDJDqmeAM5fbKmgSwVCx2BzO40aRvKf+rVW2BKg9r54SwSjSQJxRva1dnU13eIe6W3t1dJTx0JtJUvt73birop4nfi6Abuur4cgBhMstlsKTtHosGkzSgpaBT/DZmADZq1yZm0sXwwGITX6wUAvLK1GbVTxT1tdwF3XydGSvV6Pex2e8rOkdJPv4KkefPmJfxv9uzZeOONN5Tvr127FosWLcJFF12EX//61wmL+/fu3YtrrrkGc+bMwerVq9Hc3Kx8LxAI4Cc/+Qnmz5+P5cuXY8uWLQn/7saNG7Fs2TIsWLAAP//5z0dspaWhpO00KcUbzMArb4gGMlPLAodCIaWh3PJmC+piDaXDCfzwejaUNDIl3O8BNRg65FI7QZk8MNJf8aIuAPB/u/yQdbGCDXsjsFlFeh33T6PhLGFjeZc6gJipa5O1g6MvHQop9/TEXRHk5Yr2Lzc3l0VYKEG//hreeecd5X9PP/00zGYzzj33XADAu+++i+effx5r167F3/72N7z77rvYsGEDANExvfvuu3H11Vdj27ZtmD59On76058qP/eJJ56Ay+XCpk2bcP/99+OBBx7A4cOHAQA1NTV47LHH8PDDD+PVV19FU1MT1qxZk6zPT31IqG7jUjtNn30hptozrYGM0zaULxwMKA1l1e4IHDlqQ8nOD40k2iBpYpG6Rq87W00zy8T7fSBkWVaCpG5nELWnxzaajMhY9RUxcyRJEvdPo2FN2yZU2NWuYkdW5m0sHw6H4Xa7AYhS/tUzxfPdHAC+fbHIGpEkiemzdJQBh8ybN2/GggULlAVumzZtwsqVK1FeXo7CwkJcd9112Lx5MwDg448/hsViweWXXw6z2Yxbb70V+/btU2aTNm3ahNWrV8Nms2HmzJmYP38+Xn/9dQDAli1bsHjxYkydOhU2mw233HKL8nNp8GiDpLGapTntGVy8IRKJKA3locM9qJ4pPosxBHxzgejwsKGkkUin0ykFCJbOL4AUFTOsLs0m0iMlSOrp6VFKBD/210b0xCaVK/ZKmHO2utFkfN0m0XBkMBiU6q6XXaC2Cd0lmbexfHd3t5L58qdtToRi8d+EnVFMnZgLQJTy5z1NXzagvwhZlvHaa6/hnnvuUY4dOnQIy5YtU/7/xIkT8fvf/x4AUFdXh6qqKuV7FosF5eXlqKurg9VqRWdnZ8L3J06ciL179yrvPe+885TvTZgwAY2NjQgEAgkd+bhQKKQsylc+pMGQFhWI4vm7mZDHq9PpoNPpEIlEsPgcB/4eFvn5riKd0tj4/f6MSkvr7u5W1lX8dkM7AvPFn3/lLhln3JwHWZZhs9mg0+kG5Rpl0vWn5Ev36280GhEMBlE2OhsFeyR0lADto2X0eIKwWU3w+/1pe+7JpO1Q7R+lPiLPikSU43a7vd+/i3S//jS4MvH6m0wmhEIhjDvNhqL93WgbBbSVyujoDKAg35wRbUI0GlXu6c6uIKpniJkwKSrjiiqzck87HI5B/SyZeP2Hu5NJrRxQkPTJJ58gEAgkBC8+ny9hEavVaoXPJ3Zs9/v9R5VUtFqt8Pv98Pl80Ov1CQHP8d4b/zf8fv8xg6RnnnkGTz75ZMKxK6+8ElddddVAPuqgqK+vT/UpnBSn0wm/349RhUDeXqC7QBRvOHykEZYsI5xOZ8aMJMmyjObmZkQiEQSDYVRP1pT9tvjR1iZ2EpckSUn1HCyZcv1pcKTr9Xe73UqaWV6LjI4SCWGjhL+/+gWWXiBSUGVZHtapqKFQCK2tYt3l5recqJ8sNokpagGuXGxGW1sbjEZjQipSf6Xr9aehkUnXX9sm5DbJaBslIWKQsP6VL3DlEpGmJstyWq/j6enpUSpVPrzeBfcFot9YuRc4a7EObW1tyMrKQktLy5CcTyZd/+Fu/PjxJ3zNgIKkeAqcdmoyOztbqQYEiHr08RLKFotFWSyv/b7FYkF2djYikUjCzNDx3hv/N/raDfmmm27Ctddem/gh02gmqb6+HmPGjEnrRiXOarWiq6sLAFDwj3p0FwDBLOCjvcDXlxZDkiScdtppGdFp6unpUWYYH3jyEDrOEX+7Y6uBb14zCYD4mxozZsygnUOmXX9KrnS//h6PB01NokqL3f0FADHiWtNpRHGx2GB59OjRpxQgpLvW1lZlZPldtzoAVHkwjNKLRdtQVFQ0oOqX6X79aXBl4vX3+XxoaGgAABR4DiHeZTzkNiltQklJSdpulyHLMr744guYTCaEwxEcnKSmDM/VycpnKCsrG/S9kTLx+tMAgqTe3l688cYbePTRRxOOjx8/HjU1NZg7dy4A4ODBg6ioqAAAVFRU4MUXX1Re6/f70dDQgIqKCtjtdhQUFKCmpgbTp08/5ntramqU91ZXV6OsrOyYs0iAmB5Oh4DoeOKpbOkuOztbKXTgcEYQ7zR9eiiElbHAqLe3t89rkU5cLpcSzO3MU//sT+8KK8fz8/OH5LpkyvWnwZGu199isSj3QrlZxsex4+2STjne29vb5wBVpotGo/B4PGI2ucGD2tPFZzYFgW8tK4AkSdDpdKdcAStdrz8NjUy6/to2YVKhHu/HjndZ9crxUCiUtqXw4+sLJUnCY/9Tj7aviD5M+SHgtlXjAIgCFTk5OUN2Tpl0/WkAhRt27NihFFjQWrZsGf7+97+jsbERHR0dWLduHZYuXQoAmDVrFvx+PzZu3IhQKIQ1a9Zg6tSpGD16tPLep556Cl6vF7t378b27duxePFiAMCSJUuwdetW7N+/Hx6PB08//bTyc2lwaYOf0zT9ojaD+meTCYu5A4EA/H4/AOBvrzTg8ERxvKAd+OG/iV22jUZj2jb0REPBaDRCrxediDkz1E6DuyCz7veBcrvdynqB373YhkCszavcJWNSpSjskpOTo/yOiIY7vV6vDDpfvrAY+kiseMPozCjeoK1m+4lDvW9Pb1ZLmufn5w/pOVFm6XeQtHnzZlxyySVHpVjNnTsXV1xxBW644QZceeWVmDNnDi677DIAYnbnwQcfxLp163DhhRdi586duPfee5X33nbbbbDZbFiyZAnuuece3HPPPRg3bhwAoKqqCnfccQfuvPNOLFu2DCUlJbj55ptP4SPTyTIYDEpK5SXn5irHXUWZVeFO21BuaVHLmU/4PAyzWXw+lv0mUsv+njcrH9ZY9nTnaPX7mXC/D1R83UI4HEFNpTrbfEG+2t6x8iWNNPHB0lHFFhQ1i2dk2ygZDU1iGUS6tgl+v18ZHH32xfrEwdEbReqswWAY0lkkyjz9Trf75S9/2ef3brrpJtx0003H/N60adOwfv36Y34vKysL9913X58/d8WKFVixYkX/TpSSwmw2IxwOY+a0POS92YPufKCtDAgGRYCRrg1kXDgcRk9PDwCxP0JNbH+ELD/w3ctEOV+dTsc9T4gg7nefzweDQY/CJsA7EeixAx9+0oFzzioctjNJfr9f+WxP/W89WqaLwKjsC+CGK0SHKisrKyNSi4mSKSsrS9k6I69ZRku5BFkn4eVt7fj366zo7e1FJBJJuxlW7eDoVmcUQCxt8PMwsheJ0uZ5eXkcHKXjYmIkHZe2U5Av1nQjmAVsflNUgAoGg8pC53TkdDqV83tymxO9seVqVTujqBwrRpDsdnvaNfBEqaAtymDvVEvVvv2pGGiIRCLKHkLDSXwWCQDe71U7TZMa1M/KWSQaibR9gAK/molR3a22D+k2WBoKhZTB0Xc+bEdNbHVIthe48+slADg4SieHQRIdl7aBzO1WG8iP6sSoqyzLR+1LlS5kWVbKl7p6gqieru6P8LUJ6ucaSKUqouFIe78XRdROUINffc1wm03SzjZ/ursLdaJ+EKwe4I6rSwGItRlMy6GRyGw2K7Mtp5cZlePddjURKd2CJO0s0rpPvIjoxflP+CyK8lJRxc7hcHBwlE6IQRIdl3ZkuVyTadKmS/91SW63Wxn1fuQvjXDFYqGKzyUsu2gUAFHmPN2rIRINFZPJpHSIppWrHSJXjtqZSNf7faBcLpcy2/z02y6EjeLzV+6KoqhANHoOh4MVqWhE0ul0avGGxcUw9Ip7patUfU06tQmRSERJDzzc4EH1GeK+NfTKuOFsESBJksTBUTopbPXpuLQVrxZ/xa4cz4TiDdoUmn1l6qjX7JA6I8aGkkglSZLSIVq6oBj6sOgQOUvU1wynmSTtbLPP34u6qWowePkkdVSIaTk0ksVnmB05ZpQ0ikGEjmLgQK24d9KpD+B0OpUqlb96sQ2+2BZOVbuA82eLdcg2mw1Go7GvH0GkYJBEJxRvIGfNLEBubBY7XrwBSM9Ok8/nUxruJ9cfQeM4cXxUI/Dd60TZb5PJlLab4BGlSnz2OC/XjKIW0SFqL5HR0iZy7tLxfh8or9eL3t5eAMBvnq1HV4E4Pn4/ONtMFJOQdt+qrkF+dbvYbD4cDqfFWkVZlpXBUY83hIPT1MHRSzQDuxwcpZPFIIlOKGHhZqP4b8ACbHm7TXwdCKRd8QbtLNK7mj7dxLowDAYxWszKNkRH06bY5raJ+1rWSdj0VjsAsSg6PlKb6bTtxG6b2qGa5mLBBqI4bR+gWJOJccirviYdZpO0KfYP/7lBGfQYtx+4eoWoUmmxWIbthtiUfAyS6IQSOk1OTfGGGtEoplvxht7eXng8YpOXdz5sR+3poqNn6wF+eI26ENtut/f5M4hGKm2HyOFR7/cDbWrgMBxmk3p7e+H1il7ea2+34NBk0U7kdQF3Xi86VEajEVarNWXnSJQOtMUbzhqv9gecuem1VjFesCEcjmBPqTroMcurtmPcPJb6g0ESnZC201RmUmeM2qT0XJekLfu97mO1sk0VF2ITnZB2UGRcjjrT2mlSO0TDIUjSziK9uDcAWSc+a8XeCLItYr2Cw+HgbDONeJIkKe3CsouKYY497jvL1Nekug/g9XqVdulP/9uQkGJ/xw1qij0HPag/2EukE9IWb7ho1rGLN6RLpykajSoLsVva/KiZKc5RH5Fx3Wy1sg1TaIiOTa/Xw2AQo7CLzs1VjrsL1WAhXe73gdIWbOjsCqJ2RqydCMv4t7mijZMkiQUbiGLig6XZFiNKGsSx7nzg452dAFIfJGnLfr8Hta2awhR7OgUMkuikxBvIc84qhMMpjrWViWltIPUNZJzb7UYkIs7p0b81w2sTxyt3S5hzNivbEJ2M+Kjx9Ml5yBVrs9Feqt7vmR4k9fT0qO3Ec43wxLZAqtgr4StniIUMNptNCRaJRrqENNx2dU3i6/8Ugw2RSEQpgjLUgsGgkjq78R/NqJsqMkkcTuBH14npLqbY00AwSKKTok3BKWgS//VnA1veEsUbgsFgyos3yLKckJN8sFLt4MxTT5+VbYhOQNshym8R/w1YgDd2iOIN6XC/nwptqt1BzdqFs3Vq54+zzUQqbZswSlO4pSGkzsykarC0q6tL+fqlL0JK6uyE3RHk5YqHf25uLlPsqd/4F0MnJaEEaJe6CPKfB0VZ4Gg0mvLiDT6fTzmH3z5bj9bYZnflh4BbrhY5yVlZWaxsQ3QC2kERe7faIfrnfh8Acb+natT4VAWDQfj9ot3668v1aKgQx4ubgW9dLQo2mM1mbg9ApGEymZQg4/wp6r3hzE9t8YZwOIyenh4AwK593ag5QwRI5gDw7YvFgChT7GmgGCTRSUko3mBUR5Bb06h4gzYn+SOzel5Tm9WqXJxFIjoxbZBUIqmDIs3h9FuH2F/aWaQ3NGlDVTXq2gWuRSJKpC3esGheEayigCzay1Obdt/d3a3Mav9pmxOh2JZmE3ZGMXViLgDAbrczdZYGhEESnRRt8YYFZ+Qox12F6dFp0uYkv7K1WSnnm9sN3BXLSTYYDMjJyenzZxCRYDQalVHjWVXqqLE7Nz3u94GKRCJwu90AgNrDPag9XR11/s4KsWZRp9Nx7QLRMcQHSw0GPYpieyb22IF3/6UWbxjKNFxtoab2zgAOzhR9FCkqY+UkdWCXg6M0UAyS6KTFG8g5ZxfBLtoltKdJ8Qbt6PDLdUElJ7lqTwSOHDUnmZVtiE5MO2p88fwipeRv92j1NZkYJLndbmUj3D9saEcw1o+q3C2jcqwYQLHb7cqAEBGpEtLuO9RZ2O2fiWmloU7DdblcSgGWh59rQk9sbKNyj4RLFowCAFit1oSZcaL+YJBEJ03b0BTGRpF8VmDrO6ldzP3l0eGaWDlfUwi49aJcACznS9Rf8fvdbDagqFkc6yoADtSKEZJMDJLigynhcAQ1E9T0m4Wa7Qy4doHo2LRBUqleDZKa5KFPu/9yoab9Ver9PNeg9kO4eSydCgZJdNISSoBqFnN/oFnMnYriDS6XSxkd/u2GdgRidRkqd8qYMVVMszMnmah/Eoo3tKudjtd3iI5Jb2+vMoqbCbSFXR7/az3aYrNi5XXAqstFwQaLxcJRZ6I+aNPuL9Ck3TuLhj5I8ng8yqzVo2uPJNzPt10zFgALsNCpY5BEJ03beSgzqEFSC1K3TkE7muTz96J6qhoILRutfs3RYaL+0d7v+QE1GDrkUu/9TJpN0qbk/kvTZk3SFHZhO0HUN20a7rxzNGn3KSjeoC3U9IlDTY89vVW9nzmLRKeKQRKdNJPJpIwizZ+pKd5QkLoKdx6PB+GwaBQf+0s9ugrF8XEHgJXLRcGG7OzshFkwIjoxbZBUVah2Qrqz1a8zJUgKh8PweMS6iQ8/6UDdNDEzZusB7rxa3WyShV2Ijk/7LFXS7rOBzW+KPROHoniD3+9Xyvg/+0I9Dk8UxwvagR/+m5gVZqEmSgYGSdQv8Y7TebPykSOWAaW0eIN2NGl3vjpzNNPF0WGiU6HT6WAyiXq6yxcUQoqKjo+rWC1+kilBksvlUjpuf3mvBxGD+AyVu6IoyBdtmsPhYGEXohPQBkl52j0Tq0XQIsvyoKfdazeP3aqZ2Z70eRjZFqM4t7w83s90yhgkUb9oS4DGR5G8NuDN94a+eEMgEEjYFPLwBHG8sBW48waxeazRaITNZhuS8yEabuKDIuWlVhS0iw5H+2gZHq/oBGVCkCTLspJq5/P3onaaWib469M11bo4mEJ0Qtog6TTN8r1W/dBklIRCIWVWePsHbaiZKY5bPcCdXy8BIAZ4WKiJkoFBEvVLQvGGLnUE5729avGGoSoBqp1F+kenei4TDoRhNotZJZb9Jho4bcpdXov4b9goYVMstSZVFS37w+v1JqTkOmPLFMbvl7B4vlom2Gg0puoUiTKG0WhUiiBdcl6uctxZPDRBkva5v+5THyJ68XyfsDOK8lIrADErzDL+lAwMkqhftJ0mbQnQ5iEuARoOh9HT0wMA+HR3F2pmiOMWH3D714oBcDSJ6FQlVLhzq6k1u46ImaShSK05VdqCDXscakru6R6m5BINRLxdmDktD/liH1m0lomZWmDw+gDa7T4OHe5B9Rmi32HolXHjuSJjRJIkbh5LScMgifrFaDRCpxN/NvNmqGlsrsKhDZKcTqcygr3mbRfCxtjmsTujGFsuzoubQhKdmoSKlmZ1xqhdSl1Fy/4IhULwer0AgE3bWvDFZHE8vwP4/nVigbfRaITVak3VKRJlHG1GSUEs7T5kBjZsFdPNgzXD7HQ6le0+frOhHf5Yde+qXcA5Z4mqTTabjbPClDQMkqhfJElSGsi5XymATUzmJBRvGOxOk3aNQbcziOoZmjUGUzSLSjmaRHRKtPuizJ2hVopyF2RGkORyuZSvXz6gDt5UfB5RFngzJZeof7RBUq5LnWH+7LCYSZJlOemDpdrnvscbwsFp6qzw0mJ1MJRlvymZGCRRv2mLNxRpijds/6ADwOCXAHW73comlo/8tRHuWEZd5T4JlyxQ1xjEK3MR0cBpK1paxXppdI5Wvz/UFS1PVjQaVYKkljY/ameoqTk3LxCNhiRJsNvtKTtHokykDZIqNHWR2s1qsJLsdsHtditrCx/6cwO6CsTx8fuBqy4tByA2g+Z2H5RMDJKo3xLWKWgKJry7R6S1DHbxhvjCzXA4gs/L1dGksyPquXAWiSg54ve7waBHYZM41mMX+w0B6TuT1NPTowym/OZvzfDGOnOVe4AzTxejzTk5OcoidCI6OQaDQUlpW3FhoXLcWTJ42wNon/t7y9R7dpZPncniLBIlG4Mk6jftSE2ppCneEB38dUk+n09pfJ/6vwY0jRXHRzUA314l1hiYTCauMSBKkr4GRd7+VOTaRiIRZYQ3nWgLNhwco3aqzjWqs9ws2EA0MPF+QOXYHBS1imNtpTK6neL5nMw+gNfrVZ77T6yvR2P8ud8I3H692O6Dz30aDAySqN+0xRvOn642Sq4hWKegLf/5Xq86ajXpUBgGg5jq5ywSUfJoB0WKNLO1DX71Nek2mxQIBJRO2v88fwSN48TxUY3ALd8QgylmsxkWiyVFZ0iU2bSDJ/lNYuAhbJTw0j9ExBQMBpUiC6dK+9x/X1M0Zkpd4nOfawsp2RgkUb9pizdccF6hsk5BW7xhMGaStJvIvfV+G2qni4Y5xw384JpSAIBer+caA6IkMplMSudjWrlaNcqVM3jrD06VdhbpbZc6c1RVq3aqOItENHDawZO8HjXlbW+LOqucjHYhGAwqFSo3/qMZdVPF/exwAj+6rgwAn/s0eBgk0YBo1ynEizd4coB3/yU2TRiM4g3ajs/6z3yIxjaRq9odRVGBaLAdDocyy0VEp06SJKUIytIFxdCHxX3tLFFfk04zSZFIRNlD7UCtC7UzRDuR5Qe+q9lDjZ0qooHTBkmT8tVnbqc1uYMnXV1dytcvfRGCrIttHrs7grxc0Q/Jzc3lc58GBf+qaEC0DaSjQ1O8YZeY6Ul28QZtparGFh+qZ4o/XX1Yxr9pNpHj6DBR8sUHRfJyzShqEZ2U9hIZLW0i5y6dgiS3262k+fxxUydCsSKXlbvkhD3U2KkiGji9Xq8MnqxYWAxdJDZ4MkpNeTvVIEm7afyufd2oOUP8bHMA+PbFIq2ez30aTHxK0IBog6TRmuINTZHBWZfkcrmUjs+v/q8FvthSKG4iRzT4tOsPcttEZ0jWSdj0VjsAkQqbrPUHpyo+4xwOR1A7US3YcHGpOsLNThXRqYv3A8pGZaM4NnjSNkpGY4sPwKn3Abq7u5WMlD9tcyoDHhN2RjF1Yi4AMeDBCpU0WBgk0YBoizecOzVbOe7MT36FO+0mcuFwBAcnqA3iAps6asWCDUSDI2Hm2KOuPzjQpq4/SIfZJJ/Ph1AoBAD43bNH0C62TcNpNYl7qWiDPiIamIRNZZtFMBPVS3j5DXXwJF6Gv7+02SPtnQEcnKluGr9yEjeNp6HBIIkGRJIkpaOxcE4RssW6SnQMQvEGr9erdHx+9ecjaIttZDmmDrjpSlH+Mysri5WqiAaJNqgYl6MOTHSa1NmZdAiStOsWP9ar5zZZE8xxFokoObRBUqFmv6LqLvXrgfYDXC6XEmA9/FwTemJLCKv2JG4azwEPGkwMkmjA4g2ktnhDjx14/2Ox0DJZnSZt+c9PstWOzzRNFR2OJhENHr1er6S0LDo3VznuLhy8zSP7KxwOK9Uvd/yzHXXT1OqXd1wjqmAZDAbk5OSk7ByJhhOz2axUvpw+Ws3w6DrFypeyLCdsHru/Sv3Z8zQZ9dw8lgbbgIKktWvXYvny5Zg/fz5WrVqFnp4ehEIh3HvvvVi0aBEWLlyIn/zkJ/D71Y009u7di2uuuQZz5szB6tWr0dzcrHwvEAjgJz/5CebPn4/ly5djy5YtCf/exo0bsWzZMixYsAA///nPk1oQgAYuYapdU7xh+051k8n4DNBABYNB+Hwiv/nl15twaIo4ntcF/OAGkT7Djg/R4IuP2E6fnIfcWMGp9lJ15jjVQZLL5VLWL/z1Xx6l+mXl7qhSBcvhcHAvFaIk0el0SvGGyxaVwNAr7r+u0lMr3uDxeJR+3sNr1eyR8jrg1qtF9ojZbEZ2dnZfP4IoKfodJK1fvx7vvfcennrqKbz99tu49957YTKZ8L//+7+oqanB3//+d2zYsAFdXV1Yu3YtAJGXevfdd+Pqq6/Gtm3bMH36dPz0pz9VfuYTTzwBl8uFTZs24f7778cDDzyAw4cPAwBqamrw2GOP4eGHH8arr76KpqYmrFmzJjmfnk6Jdpp7FNQgqbE3ecUbtLNIGw+rwfGEvRHYrKJxzs3NZceHaJBpB0XyW8R/AxbgjR1i/UEwGEx62f+TpV236PGGUDtNXb/wjTNFR0qSJDgcjpScH9FwFW8X8nLNKGkSz+GOEqC6zg1gYEGStuz3Z7nqrNQMTdosZ5FoKPQrSIpEInjmmWfwX//1Xxg9ejQkSUJVVRXMZjOam5sxZ84cOBwOWK1WXHDBBairqwMAfPzxx7BYLLj88sthNptx6623Yt++fcps0qZNm7B69WrYbDbMnDkT8+fPx+uvvw4A2LJlCxYvXoypU6fCZrPhlltuwebNm5P8a6CBMJlMavGGyeqIjitJxRsikQjcbtHQHqh1oSa234kpCNzG8p9EQ0o7KGLvVgdF/rlfzPQmu+x/f3g8HoTDogP16F8a4Ipl31bsk3DBeWJvJKvVyuqXREmWkFHSqg6SvLJdBDrhcFi5N0+G3+9X+g3PvlCPwxPE8YI24Ac3jAHA7BEaOv2qm9jW1oZgMIitW7di/fr1sNlsWLVqFVauXIlLL70Uv/71r9Hd3Q2DwYBt27Zh4cKFAIC6ujpUVVUpP8disaC8vBx1dXWwWq3o7OxM+P7EiROxd+9e5b3nnXee8r0JEyagsbERgUAg4eaMC4VCR6V4GQwGZUo4leIlctOlVG4ymEwm+P1+LJxbiIc+aoIvWxRviI8o+/3+AX/erq4u5b1/2NSJ4Hzx51q1U8aUWxyQZRk5OTmQJCkjfqfD8frTycv06280GpX7ukSKID7G1hzWJdzvqSjHqy0VvK9A/fdnBiLKcbvdntLffaZffzo1w/X6m0wm5R4rDEYQ71bWeaLKcZ/PB5vNdlI/r7OzU3nfVncUgBgcnbQ/DMsiA2RZhsMhnv+pmrkeiOF6/TPZyeyV1+8gyePxoKGhARs2bEBjYyO+853vYNy4cZg4cSJycnJw8cUXQ5IkfOUrX8FXv/pVAOLBabVaE36W1WqF3++Hz+eDXq9PCHisVquyDuXL743faH6//5hB0jPPPIMnn3wy4diVV16Jq666qj8fdVDV19en+hSSpru7W1ksXdQIHJ4AuB3Aa9vqcOZ0G3Q63YBKgMqyjObmZkQiEfgDvaiZpv6pXpAbRFtbGwAxk5TqtRD9NZyuP/Vfpl5/WZbR3t4OWZYxaVQUr8WOu3N1yv0YCASGPKWtt7cXLS0i/2/rDjcOTxQzXgXtwDcWm9DW1qYMlHV0dAzpuR1Lpl5/So7hdv217cLkol68HetWOh36frcL2nv5n5/2oGaGmPm1eoB/u9CAtrY26HQ6GI1GZZPZTDPcrn8mGz9+/Alf068gKZ5usXr1amRlZaGyshLLli3Djh078MILL8BiseCtt96CLMv47//+bzz66KO4++67YbFY4PV6E36W1+uFxWJBdnY2IpFIwsyQ1+tVFuR9+b3xDnlf5Z5vuukmXHvttYkfMo1mkurr6zFmzJhhs9t7Xl6e0qg52g8DE8Tn+qRWwiUXiTSX0tLSfqe5uN1uZUbw/z1Rh67zxPvH7weuu0rMv2dnZ6O8vDwpn2MoDMfrTydvOFx/nU6HQCCAry3NxxM7mxHMArpHA8XFakpbWVnZkJ5TW1ubMjr7drsfqBTHKz8PY8xCkZ5TWFiY8jUMw+H608AN5+sfH6y8ckUe1u5uQTAL6CyT+t0utLa2KvfyK4f8iIwWs0gTdkZx+rfHAhBrkOM/N5MM5+s/nPUrSBo7dmyfnd2amhr88Ic/VGZ9LrvsMjzyyCMAgIqKCrz44ovKa/1+PxoaGlBRUQG73Y6CggLU1NRg+vTpAICDBw+ioqJCeW9NTY3y3urqapSVlR1zFgkQU7/pEBAdj06nGzY3icViUYomlMhRxFNwGnsl5XgoFOr3XgZut1t5/55i9W/uDE9EOZ6fn5+Rv8fhdP2p/zL5+lssFgSDQWRlGVHUDDSMB7oKgJpDPZhQYUdvb++QfrZoNAqPxwNJktDY4kPtDPFvG0PANxfmQZJEO5SXl5c2v/NMvv506obj9c/OzkYoFII124TiRqC+EuguAD7b040zT89HMBg84WeORCLKvXzocA+qzxCvN/TKuPFcm3IvFxQUZPTvbzhe/+GsX1fKYrFg4cKFWLNmDUKhEL744gts3rwZc+bMwZQpU/Dqq68iEAjA7/fjlVdeQWWlGNKbNWsW/H4/Nm7ciFAohDVr1mDq1KkYPVrUdVy2bBmeeuopeL1e7N69G9u3b8fixYsBAEuWLMHWrVuxf/9+eDwePP3001i6dGmSfw00UNriDWdPVGf3nPkD3yfB7/cr5eP//EI96mMjw0UtwF3/Jsp/Go3Go1I4iWhwJRRvaFfXA7z2nlik3dvbO6D02oHq6elR/r3fPN8CX6x+TOUeGTOmiuoNOTk50Gs2liWi5Eoo3tCmrrl57UMXABEAnaioi9PpVGaRfr2hHf7YvVy1CzjnrEIAYrkFi6/QUOp3OPsf//EfcDqdWLRoEb73ve/hlltuwezZs3H77bfD7/dj+fLluPTSS+H1enHXXXcBEB3pBx98EOvWrcOFF16InTt34t5771V+5m233QabzYYlS5bgnnvuwT333INx48YBAKqqqnDHHXfgzjvvxLJly1BSUoKbb745OZ+eTpkkSUrHackFxbCIpWToHK2+pr9rhuKlfAHgTZfa4E44GIbBIDo7eXl5LPtNNMS0QVJ+QA2G6jTV7oZyjaC2ragZqyZGzLGobQOrXxINLm2QVKIpTFCvaQqON1j65RL+BzVrkJcWqwMcqU6ZpZGn32WIcnJy8NBDDx11PD8/Hw8++GCf75s2bRrWr19/zO9lZWXhvvvu6/O9K1aswIoVK/p7qjREsrKyYlWt9ChqAo5UAa484F+fdeIrZxT0ayYpHA4rCzL/9Vknak4Xx7N9wJ1fLwEgpqvtdnvSPwcRHZ82SKoq1OPd2Nfd2WpHJhgMDskmj4FAQGlb1vztCJomieOj64EbV4r1D1lZWX2uXyWi5IhnlESjUZwz0YKtELNGX84o6atst9vtVsqEP/g/DeieI7qm4/cDV31DrDu2WCx9LrMgGixMjKRTpu04OdrVUaQ3/nXyU+1xTqdTKeu5docbYaMYEa76LIryUpFe53A4mD5DlAI6nU5Z87l8QSGkqLhXXcXqzM1QzSRpZ5He9aipfxO+UGecOYtENPi+nFGSHau11VEGhMNixvl4g6XxTePD4Qj2lqtj97N96mw1Z5EoFRgk0Snra6q9IaR2nE5mNikajSodn86uIKpniI6OLiLjG6ero8Hs+BClTrwzVF5qRUG7uMfbR8vweEU1yqEIkrQbTe/Z343a08V5WHzA91eOAiACOm44STQ04v0Ag0GP4gZxzO0A3vuoE4DoAxxrXyOv16u0GX9cX48mUcQOoxqB718v1iCbTCauQaaUYJBEp8xkMinrg2ZXqQGTMzcxBedEtIuwH32uET2xjLqKvRIumitS7Ww2W9pXLyQazrQzx3mi+j/CRgmb3hR7ogSDwUHf5NHlcin/xpNbu9EbaxIqd0VRNkqk+jkcDlaRIhoi2sFSR4c6WPrWZ2Lblmg0esyMkq6uLuXrDyT1fp16iGuQKfX4BKFTJkmS0kAuWVCMLFGYDp2abRFOZiZJO+X+uWYR9nk6tcOVl5eXhDMmooFKqHDnVtNhdh0RM0myLCt7nA0GWZbhcolU3mAwjLpJaluxfKxa+YozzkRDRxsklerUIKkpqnYzv9wPCAaD8PlEtaeXX29C3VTxrHc4gR9eKzoQer2ea5ApZRgkUVLEO05mswHFjeKYMw/4eKc61X482in3J9bXo1nsAYnRR4DVsYWbZrN5SBaEE1HftEFSmVkdwGjXjAIPZsqdz+dTgrDfrqtHR2xfybHVwFeXiI5VdnY2Z5yJhpDRaFRmbi84w6YcdxX2HSRpZ5E2HOmFrBOzRRN3R5CXK9qZ3NxczghTyvAvj5IiYao9oXiDWDdwouIN2kXYH2j+LKccSZxyJ6LUMhqNSuGUuTPUNT/ugqEJkrRtxWdmNaV3SntY+ZqzSERDS5tRcv7sAuSIRz/ayo9dvEFbyXbn3m5UzxQBkjkA/PvSfOVn8l6mVGKQREmhDZKKImqQdEQzcNRXxykUCsHjEXnLW99pRe00MTptdwF3XaNOuXMRNlF6iM8mnTcrH1Zx657S3mgnq7e3F16vKJ21/YO2hPScO64TbYXBYIDNZuvrRxDRINEWbyiKFW/wWYHXt7cDSFyv2N3dra4rfMuprCuc8FkUkyodAAC73Q6Dod871RAlDYMkSoqE4g2VasDkykvcJ+FYtCPD/7fHr0y5V+2OoCCfU+5E6SYeJBkMehQ2iWM9duDDTzoAnNwaxIHQFmxY/4lPaSsq9kThyBHn5HA4uMibKAW0g6W5Xep6xff3i3VH0WgUoVAI0WhUWVfY3hnAwVglWykqY+Vk9Wew7DelGnudlBTafRKWXVgMc6yP1FmqvuZYHadIJKI0locbPKg5Q/xJGnpl3DzXrvxsTrkTpY+E4g2d6szx25+K9JlIJKJsDpks2oINrp4gaqeLtkIXkXHNbFEemG0FUepog6QxJnW9YqsucV2Sy+VSKtk+9FyTUsm2areESxaIEv5Wq5XrCinlGCRR0sQbSG3xhu58kW8MHDsFx+12IxrbW+k3L7XBF6vLULULmDWzAACQk5PDKXeiNKLtDBWGNXuj+dXXJDvlzuPxKIHXY882wi0yclCxT8K8c4oAiI4V2wqi1NCuV7zk3FzluLNY7Wr6/X6lkm0wGMaBCer9Ol8TE3EWidIBgyRKmr6KN7z+gROAWKipHV2WZTmhsayeqDaWC3PVP02ODBOlF2167fQxatltV86J02sHSpuW+3mx2lac2aum9bCtIEqteD/gzNPzkSeK26KtDPD5ReEmt9utFHF67M9H0CYmjjCmDrjl6tOUn8FKtpQOGCRR0mhTcIo1o8tHNKPL2o6T1+tVGstf/6Ue7WK/WJxWA1x3hagBbrFYYLFYBvGsiai/JElSUmGWLiiGPixSa5wl6muSOZOk3U/l+U2NOFIljhe1At+/XnSsTCYTO1ZEKaYdLC2IrVcMZgGvvNEKAAkbTX+Wpw52nN6mDqCyki2lCwZJlDRms1kZXT5znBowOXOPPbocn0UCgE81I9DTO1jKlyjdxQdF8nLNKGoR9317iYyWNjEqkswgKb4WCQBea1C3Eqg4oG4RkJuby4INRCmWULzBqc7yfvpF4gbTf36hHocniK8L24Af3CAGRg0GAyvZUtpgkERJk1C84SK1eEOXpnhDvOP05ZHhLyaL7+d3sLEkygTamePcNjE6LOskbHpLlPuNV7E6VdpKWA1NXtTMEI8tUwhYfYm6n4rdbj/lf4uITo02SKqwqYMW7Zo9zQDgDbfaNkzcH0a2RaTt5uXlcbCD0gaDJEqqeAOZbTGiKDbV3lUA7NonZo3iM0naWaTNTerMUdXnamPJkWGi9JWwBtGjjhgf0KTNJGM2KaG4y99bEYhl31bskjF1Yi4AsZ9KfME4EaWOwWBQiqcsm6emzTlL1Gf59g/aUDtDfG31AHddKRYm6XQ6OByOoTtZohNgkERJlTDV3kfxhmAwCLdbbMe9Z383amaoO21/d1khAJbyJUp32pmkcTlqB6jTpAYryQiS4gUbwuEIqis0lbDs6r/JtoIofcT7AZMqHSgUS5HQWiqj2ynag3Wf+hDRi/t3ws4oykaJtYQOh4ODHZRWGCRRUmk7TkUhNUg67FNf09raqize/NNWJ0Kxt1TtlDGhQqTMcGSYKL3p9XplxHiRptyvu1ANXk41SPL7/crPWPN/DWgpF8fLDgM3XalWwtIOzhBRamnvx/wm8awPGyVs2NqK2sM9OHimuh/ijefaAIiBURZsoHTDIImSSlu84Yxx6qYHLoca8Pj9YmG3xxtC9TT1+OXj1dezsSRKf/FBkemT85DbJY61l4pZH+DUgyRt2e/3NRXFJxxhcReidKUNkvJ61FTcPc1h/HZDu5IyW7UTOOcskT2Sk5MDo9EIonTCIImSSlu84dKFJTDFCtp0lh792of/XA9nbL+4in3AisWjAYgNIbUzUkSUnhJGjFvEfwMW4I0donhDMBhMKPnbH5FIBD09PQDEhtS1p4vj2V7g9qtEW6HX61nchSjNaNuFifnqQGiHVY+D09SU2eWj1K85MErpiEESJV08wMm2GFHcKI51FQL7DjoTXrd3lDpqdFaAG0ISZRrtYIa9W02v/ed+kV8bjUaVvdD6y+VyKQHW0286ETaKGerKXVGMKhZD0Xa7HTodH2NE6USv1yv7qF2+sAhSVNzH1TOB7gLxmvGfAyuXlwEAsrOzmTJLaYlPF0q6hKpXbeoo8pYdakW7p/92BA0V4uviZuB2zYaQVqt1aE6UiE6JNkgqkdSBjuaw+mgZSMqdLMtKql0wGEbNFHU0ekWlpvQ4B1SI0lK8H1A2KhvFsX3UIgZ1veJsv9pecBaJ0hWDJEo6bZBUGFIbwi+86mu2+9TgaWI1N4QkykRGo1GZyZlVla0cd+eeWpDk8/mUGahf/6UeXWLZAsYdSEzLjY9WE1F60Q6g5DUnptyOagC+z4FRygAMkijptMUbZo5RU+qcdhEIvfdRO2pi6wusHuAO7pFAlJG0axAvnl+kbCDdPVp9zUCCJG3Bhp1WdRZpWjcLNhBlAu1gaYE3kvC9qV+oA6PcPJbSGYMkSjpJkpQR3hWL1OINXbGO07P/9CrT7lVf2iOB6wuIMks8SDKbDShqFse6CoDqOrEXWn+DpN7eXng8HgDA1ndacWiyGIXO7QbuuE7UADcYDBx9Jkpj2iBpaolaoMHRDdx9g1iLpNfrYbfbh/zciE4We6Q0KOINpM1qQlGTONZZDPzrs05UzxB/drqIjFVnqSk6zEsmyjwJxRva1bSa194TNcF7e3sRiUSOel9fXC6X8vXzu/2QdbGCDXsisFnF4AvTconSm06nU9qGq1eMRvkhcXzW3jAcOeJ4bm4uB0YprfGvkwZFX8Ubfv+pB55Yxd7KPRLmn1sMALDZbNwjgSgDaYOkfE2VyjpNtbuTnU3SFmzo7Aqi7nTxiNJHZFx/vmg4JEliWi5RBoinxGZbjHh2aSmezc3DL/5dVGzS6/VMmaW0xyCJBkVC8Yag2nE6cJY6+jvHqAZPnEUiykzaIKmqUF0/1J2tfn2yQVJPT48y6/Sr9Y3oiWXiVOyRlE0nbTYbDAZDXz+CiNKE3W5X0mLNZgMqx6p7mo0aNYr3MaU9Bkk0KLTFG04vO3qGqOwwcNs1Y5XXZmdnH/UaIkp/Op1OWYO4fEGhsieKq1gdEDnZIElbsOGAZqPJ2VBnpTj6TJQZdDodysrKUFRUhKysLJjNZuTk5GDcuHGw2WypPj2iE2KQRIMisXhDMQy9iSVAJzeoVao4i0SU2eKzSeWlVhS0i+CofbQMj1dUbTmZICkYDMLv9wMAnnu5HvWV4nhxM/CdVWMAiHLBHFAhyhySJCE/Px9jx47FuHHjUFpamjD7TJTOGCTRoImn3DlyzChpUkeVHU7gB6tY3YZouEjYE6VF/DdslLDlrXYAIgCSZflYb1VoZ5G2tqkzR5Vf2keNiIhoKDBIokGTULyhVe0gVe2OIC9XrW7DKlVEmS2hwp1bXYP42WExgyTLMkKhUJ/vj0ajcLtFyfBDh3tQO0O0CeYA8O3lYi2STqfjgAoREQ0ZBkk0aLRB0hyHhCw/UNQCfOdikV4nSRJHhomGAW2QVGZWB0TaJfURc7yUO7fbjWhUzB79bkM7grGmo2K3jAkVIjDKycmBXq/v60cQERElFUuL0KDJyspCVlYWAoEAbr7qNFzeFYTDblBSZxwOB6vbEA0DRqMRer0ekUgEc2fkYAPE2iJ3wckFSfFUu3A4gtoqtU24KF99PwdUiIhoKHEmiQZVSUmJMvpbkG9WAiSz2YyioqJUnhoRJVF8Num8WfmwesSxztHq9/sKkvx+v/K9J9bXo7VUHC8/BFx3hSjYYLFYEmamiYiIBhuDJBpUWVlZGDt2LPLz85GVlYXs7GwUFRVh7Nix3GmbaBiJB0kGgx6FTeJYjx348JMOAEAgEDjm+7QFG/4ZUduEiY1qBUzOIhER0VBjrhMNOqPRyFkjomEuoXhDZxTxMbi3P+3BOWcVIhKJIBwOJ6TYhsNh9PT0AAA+3tmJ2ukyAAm2HuCOq8WUkl6vR06OugklERHRUBjQUP7atWuxfPlyzJ8/H6tWrVIecrt378aNN96IefPmYdmyZfjHP/6hvGfv3r245pprMGfOHKxevRrNzc3K9wKBAH7yk59g/vz5WL58ObZs2ZLw723cuBHLli3DggUL8POf/xy9vb0DOW0iIhok2nS4wrBawrvBr77myyl3LpdLKQ2+9h03IgZR1a5idxRFBbEtBBwOVsAkIqIh1+8gaf369Xjvvffw1FNP4e2338a9994Lk8mEjo4O3H333bjlllvw5ptv4q9//SumTJkCAAiFQrj77rtx9dVXY9u2bZg+fTp++tOfKj/ziSeegMvlwqZNm3D//ffjgQcewOHDhwEANTU1eOyxx/Dwww/j1VdfRVNTE9asWZOkj09ERMlgMpmUYGb6GKNy3JWjVqTTptzJsgyXywUA8Pl7UTtVvE6KyvjaZM32AQ7HoJ43ERHRsfQr3S4SieCZZ57Bk08+idGjxYrcqqoqAMAf//hHXHrppZg7dy4AkUMezyP/+OOPYbFYcPnllwMAbr31VixatAjNzc0YPXo0Nm3ahEceeQQ2mw0zZ87E/Pnz8frrr+PWW2/Fli1bsHjxYkydOhUAcMstt+C+++7Dt771rWOeYygUOmo/DoPBAJPJ1J+POijiJW7j/6WRhdd/ZBsJ199oNCIYDGLJ/CL8oa4VEYMEZwmU2aJAIKB8fo/Ho7TVv/pLPbrPEY+jcQckXPKNEsiyjOzsbBgMhmHxOxsJ15/6xus/svH6p5+TWRffryCpra0NwWAQW7duxfr162Gz2bBq1SqsXLkS+/btw8yZM3HVVVfB5XLh7LPPxo9+9CPY7XbU1dUpwRQgKhWVl5ejrq4OVqsVnZ2dCd+fOHEi9u7dCwCoq6vDeeedp3xvwoQJaGxsRCAQOGa1o3gQp3XllVfiqquu6s9HHVT19fWpPgVKIV7/kW04X//Ozk74fD4AQFGLhJZyoL1Exr7P61FYYEZ3d7cSGLW3tyszS3vs6qNoYqcfbW1tAIDCwkIlq2C4GM7Xn06M139k4/VPH+PHjz/ha/odJHk8HjQ0NGDDhg1obGzEd77zHYwbNw7t7e3YsmULfvvb36K4uBj/7//9PzzyyCP4+c9/Dr/fD6vVmvCzrFYr/H4/fD4f9Hp9QsBjtVqVB+2X32uz2ZTjxwqSbrrpJlx77bWJHzKNZpLq6+sxZswYVnYbgXj9R7aRcP1zcnLQ0SGq2eW2HUFLuQRZJ+HDPcBNVxYDAMaMGYNwOIxgMAi73Y4tb7bgi0miYENeJ/Cjm8Yj22KEwWDA+PHjh816pJFw/alvvP4jG69/ZupXkBSvXrR69WpkZWWhsrISy5Ytw44dO2A2m7F06VKMHTsWgEiLW716NQAxc+T1ehN+ltfrhcViQXZ2NiKRSMLMkNfrRXZ29jHf6/F4lOPHYjKZ0iIgOh6dTsebZATj9R/ZhvP1z87OVoIahyeC+CPmQFtYOd7b2wuPx6P8/5cOBCGfL34flfsisF4k2u+8vDxlj7XhZDhffzoxXv+Rjdc/s/TrSo0dOxZGo/GY36usrEz4//EcdACoqKhATU2N8v/9fj8aGhpQUVEBu92OgoKChO8fPHgQFRUVx3xvdXU1ysrKuLEgEVGa0ZYBH5ejzgB1mhKLN8QLNrR3BlB3ungM6cMybpxnBwBIksSCDURElFL9CpIsFgsWLlyINWvWIBQK4YsvvsDmzZsxZ84cXHrppdi4cSMaGhoQCASwdu1apYjDrFmz4Pf7sXHjRoRCIaxZswZTp05Vij8sW7YMTz31FLxeL3bv3o3t27dj8eLFAIAlS5Zg69at2L9/PzweD55++mksXbo0yb8GIiI6VXq9XtkHadG5ucpxd6EaMHV1dSESiQAAfrW+CZ7YFkiVeyTMmlkAQKTtafdTIiIiGmr9nvP7j//4DzidTixatAjf+973cMstt2D27Nk499xzsWrVKnzzm9/E8uXLEY1GcddddwEQKXAPPvgg1q1bhwsvvBA7d+7Evffeq/zM2267DTabDUuWLME999yDe+65B+PGjQMgqufdcccduPPOO7Fs2TKUlJTg5ptvTs6nJyKipIrPJk2fnIfcLnGsvRQIh0VgFA6HldceLFMDobP1atUnziIREVGqSbI2L44GVTQaxeHDhzF27FjmpI5AvP4j20i5/h0dHejs7AQAXPvcEdSJ3RvwM6cJlywYpbzu2Rfq8ftK8fgpaQKeX1wGg0EPs9msDJINJyPl+tOx8fqPbLz+mYlXioiIkka7Lsnerc4O/XO/L+F127rU71XWhGEwiHVL8f31iIiIUolBEhERJY02SCqRIsrXzWH1cVNd50bd6WKdkjkAfPeyIgCi8pPdbh+iMyUiIuobgyQiIkoao9GopJPMqspWjrtz1cfN4692IBgrUFq5S8b4saJ6g91uZyoKERGlBT6NiIgoaSRJUmaTLp5fBHNAHO8WxUwRDkdQO1Et2LB4lPoYYqodERGlCwZJRESUVPEgyWw2oKhZHOsqEGl2f/hrPdpi9RvG1AJXrxgDQGwxoU3VIyIiSiUGSURElFQJxRs61AKqr73XhY80j51JLWo5cM4iERFROmGQRERESaUNkvL9avGGPW6gbroImnLcwF2rygCITWhzcnKG9iSJiIiOg0ESEREllTZIqirUK1/v+4oOEb2oalexO4q8XPE6h8MBSZKG9iSJiIiOg0ESEREllU6ng8lkAgAsX1AIKSpmj3rFIUhRGStPtyivZ6odERGlGwZJRESUdPHZpPJSKwraE2eJxu+XsGheCQDAZrPBaDQO+fkREREdD4MkIiJKOm3KXV5L4vdmetV1Sg6HY6hOiYiI6KQxSCIioqRLqHDnVoOi/A7g9utF2W+j0Qir1Trk50ZERHQiDJKIiCjptEHSJLuablf1eRhms9hMNjc3lwUbiIgoLRlO/BIiIqL+MRqNMJvNCAaD+PaqMTjy+GGEJAn//U0xiyRJElPtiIgobTFIIiKiQZGfn4/m5mYYDHo89L2KhO8VFhZCr9f38U4iIqLUYpBERESDwm63Q5ZltLW1IRqNAhAzSPn5+cjLy0vx2REREfWNQRIREQ0ah8OBnJwc+Hw+SJIEs9kMg4GPHiIiSm98UhER0aDS6XSw2WypPg0iIqKTxup2REREREREGgySiIiIiIiINBgkERERERERaTBIIiIiIiIi0mCQREREREREpMEgiYiIiIiISINBEhERERERkQaDJCIiIiIiIg0GSURERERERBoMkoiIiIiIiDQYJBEREREREWkwSCIiIiIiItKQZFmWU30SRERERERE6YIzSURERERERBoMkoiIiIiIiDQYJBEREREREWkwSCIiIiIiItJgkERERERERKTBIImIiIiIiEiDQRIREREREZEGgyQiIiIiIiINBklEREREREQaDJKIiIiIiIg0DKk+geEoFArhv//7v/Hhhx/C6/Vi0qRJuPvuu1FVVaW8JhwO49prr0U4HMbf//73FJ4tJduJrv/u3bvxyCOPoLa2Fjk5ObjzzjuxePHiFJ81JdPx/gZCoRAeeOABbN++HbIs4/zzz8ePf/xjWCyWVJ82JdEvfvELbN++HYFAAKNGjcJ3v/tdzJs3DwCwdu1aPPvss4hGo7j88svx/e9/H5IkpfiMKZn6uv4bN27Ec889h4aGBuTl5eH666/HypUrU326lGTHu/8B9gEzhkxJ5/P55CeffFJuaWmRw+Gw/Je//EW+7LLLEl6zbt06+eabb5avuOKKFJ0lDZbjXf/29nZ5yZIl8jvvvCP39vbK3d3dcn19fYrPmJLteH8Df/7zn+Xrr79edjqdssfjkb/zne/If/jDH1J8xpRshw4dkoPBoCzLsrxnzx55wYIFssvlkt955x15+fLlcn19vdze3i6vXLlSfumll1J8tpRsfV3/559/Xt61a5fc29sr19TUyIsXL5Y//vjjFJ8tJVtf1z+OfcDMwHS7QWCxWHDLLbegpKQEer0e3/jGN9DU1ASn0wkA6OzsxIsvvoibbroptSdKg+J413/dunW49NJLMXfuXBgMBuTm5qK8vDzVp0xJdry/gebmZsyZMwcOhwNWqxUXXHAB6urqUn3KlGTjxo2DyWQCAEiShFAohI6ODmzatAkrV65EeXk5CgsLcd1112Hz5s0pPltKtr6u/9e//nWcfvrpMBgMqKysxNlnn419+/al+Gwp2fq6/gD7gJmEQdIQ2LVrF/Lz85GbmwsA+O1vf4ubbroJWVlZqT0xGhLa679v3z5IkoSrrroKl1xyCX7yk5/A7Xan+hRpkGn/Bi699FJ88skn6O7uRk9PD7Zt24Zzzjkn1adIg+CBBx7AnDlzcMMNN+C8885DRUUFDh06lJB6PXHiRAbJw9Sxrr9WJBLB3r17jzpOw0Nf1599wMzBIGmQeTwe3H///fjOd74DQHSWjhw5gqVLl6b4zGgofPn6t7e3Y8uWLXjooYfw0ksvIRKJ4JFHHknxWdJg+vLfQHl5OXJycnDxxRdj4cKF0Ol0+OpXv5rak6RBcc8992D79u34/e9/j7POOgsA4PP5YLPZlNdYrVb4fL5UnSINomNdf63HH38cRUVFOO+881JwdjTYjnX92QfMLAySBlEwGMQPfvADzJ07F5dffjmi0Sgefvhh/OAHP+Ai3RHgy9cfAMxmM1asWIGxY8cqKVk7duxI8ZnSYDnW38ADDzwAi8WCt956C9u2bUNubi4effTRFJ8pDRa9Xo9zzjkH//rXv/D+++8jOzsbHo9H+b7X60V2dnYKz5AG05evf9zzzz+Pbdu24cEHH2R/YBj78vVnHzCzsLrdIAmHw/jxj3+MoqIi3HHHHQDEw3D//v246667AAC9vb3wer245JJL8PLLL3PqdRg51vUHgMrKyoTXybI8xGdGQ6Wvv4Gamhr88Ic/hNVqBQBcdtllnE0cAaLRKBoaGjB+/HjU1NRg7ty5AICDBw8y3WoEiF9/AHj99dfxzDPP4Mknn1TS8Gl4i0aj+Pzzz9kHzDCcSRokv/jFLxAMBvGzn/1MGTGw2WzYtGkT1q1bh3Xr1uG//uu/UFpainXr1sFsNqf4jCmZjnX9AeDSSy/Fxo0b0dDQgEAggLVr1yqdJRpe+vobmDJlCl599VUEAgH4/X688sorRwXPlNl8Ph82b94Mn8+HcDiMN954Ax9//DHOPPNMLFu2DH//+9/R2NiIjo4OrFu3jqk3w8zxrv8HH3yAhx56CL/61a9QWlqa6lOlQdDX9Z8/fz77gBmGM0mDL+ZuCAAABGhJREFUoLm5GRs3boTZbMaFF16oHP/Nb36DM888U/n/drsdOp0OhYWFqThNGiTHu/7nnnsuVq1ahW9+85sIh8M499xz8aMf/SiFZ0uD4Xh/A7fffjseeOABLF++HAAwc+ZM/Od//meqTpUGgSRJePnll/HLX/4SsixjzJgxuO+++1BVVYWqqipUV1fjhhtuQDQaxVe/+lVcdtllqT5lSqLjXf+HHnoIbrcbN998s/L6pUuX4sc//nEKz5iS6XjXX4t9wPQnycz3ISIiIiIiUjDdjoiIiIiISINBEhERERERkQaDJCIiIiIiIg0GSURERERERBoMkoiIiIiIiDQYJBEREREREWkwSCIiIiIiItJgkERERBnro48+wuzZszF79mw0NTWl+nSIiGiYYJBEREQZ4Wc/+xlmz56N1atXK8dsNhumT5+O6dOnw2QypfDsiIhoODGk+gSIiIgGavLkyVi7dm2qT4OIiIYZSZZlOdUnQUREdDwrVqxAc3PzUcf/+Mc/4lvf+hYAYMOGDSgtLcXPfvYzvPLKKxg9ejRuu+02PP744/B4PLjsssvw7//+7/j973+PDRs2ICcnBzfeeCNWrlyp/Lz29nb84Q9/wPvvvw+n04mSkhKsWLECN954IwwGjisSEY0UbPGJiCjtTZo0CX6/H06nE1arFePHjwcA7N+/v8/3dHR04IEHHkBhYSG8Xi+ee+45fPDBB2hra4PNZkNLSwsefPBBzJo1C+PHj4fT6cSNN96I1tZW5d+oq6vDH//4RzQ2NuL/+//+v6H6uERElGJck0RERGnv4Ycfxty5cwGIgGnt2rVYu3YtJk+e3Od7ent78bvf/Q4vvPACSkpKAAD19fV47rnn8Pzzz8NsNiMajeLjjz8GAPztb39Da2srCgoK8NJLL+G5557DL3/5SwDAK6+8gvr6+kH+lERElC44k0RERMOS3W7HGWecAQAYNWoUWltbUVlZidLSUgBAXl4eWlpa0NXVBQDYu3cvAKCzsxOLFy9O+FmyLGPPnj0YM2bM0H0AIiJKGQZJREQ0LFmtVuVrvV5/1DFJkgCIAEj7X206n1ZWVtagnSsREaUXBklERJQR4kFKIBAYlJ8/bdo0vPfee9Dr9bj//vuVGSev14s333wTF1544aD8u0RElH4YJBERUUYYN24cAGDfvn34xje+AYvFgltvvTVpP/+qq67Cyy+/jLa2Nnz961/H+PHj4fV60drainA4jEsvvTRp/xYREaU3Fm4gIqKMcNlll+Giiy6CzWZDbW0t9uzZg2g0mrSfn5eXh2eeeQYrVqyAw+FAbW0tgsEgzjzzTNx1111J+3eIiCj9cZ8kIiIiIiIiDc4kERERERERaTBIIiIiIiIi0mCQREREREREpMEgiYiIiIiISINBEhERERERkQaDJCIiIiIiIg0GSURERERERBoMkoiIiIiIiDQYJBEREREREWkwSCIiIiIiItJgkERERERERKTBIImIiIiIiEjj/wf8OzWoF32FJQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -550,7 +582,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "d9d2b026", "metadata": {}, "outputs": [ @@ -558,11 +590,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "mean MAE on total: 4168.35\n", - "mean MAE on reasons: 1288.50\n", - "mean MAE on regions: 781.98\n", - "mean MAE on (region, reason): 309.29\n", - "mean MAE on (region, reason, city): 188.89\n" + "mean MAE on total: 4205.92\n", + "mean MAE on reasons: 1294.87\n", + "mean MAE on regions: 810.68\n", + "mean MAE on (region, reason): 315.11\n", + "mean MAE on (region, reason, city): 191.36\n" ] } ], @@ -589,7 +621,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "id": "8c704584-f31e-4cfb-bc53-daa0e8ef8df8", "metadata": {}, "outputs": [ @@ -597,11 +629,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/julien/miniconda3/envs/darts/lib/python3.9/site-packages/statsmodels/tsa/holtwinters/model.py:915: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n", - " warnings.warn(\n", - "/Users/julien/miniconda3/envs/darts/lib/python3.9/site-packages/statsmodels/tsa/holtwinters/model.py:915: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n", - " warnings.warn(\n", - "/Users/julien/miniconda3/envs/darts/lib/python3.9/site-packages/statsmodels/tsa/holtwinters/model.py:915: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n", + "/Users/dennisbader/miniconda3/envs/darts310_test/lib/python3.10/site-packages/statsmodels/tsa/holtwinters/model.py:917: ConvergenceWarning: Optimization failed to converge. Check mle_retvals.\n", " warnings.warn(\n" ] } @@ -626,7 +654,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "22e88655-2321-404a-8a76-a24f41c9d8e5", "metadata": {}, "outputs": [ @@ -635,22 +663,20 @@ "output_type": "stream", "text": [ "mean MAE on total: 3294.38\n", - "mean MAE on reasons: 1194.38\n", - "mean MAE on regions: 811.74\n", - "mean MAE on (region, reason): 332.17\n", - "mean MAE on (region, reason, city): 192.29\n" + "mean MAE on reasons: 1204.76\n", + "mean MAE on regions: 819.13\n", + "mean MAE on (region, reason): 329.39\n", + "mean MAE on (region, reason, city): 195.16\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAHfCAYAAACVud3rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeVxU1fsH8M+dYRVFRE0Q9wVcUBAGY1Nxy73MNVtMtJ9ZrmR7lrZqaWpaafU1zbQyl9JScccFVJwUFERcEUVABVlkn5nz+2OYkfHegRmYnef9evHSOffOvWfuneU+95zzHI4xBkIIIYQQQgixRSJzV4AQQgghhBBCjIUCHkIIIYQQQojNooCHEEIIIYQQYrMo4CGEEEIIIYTYLAp4CCGEEEIIITaLAh5CCCGEEEKIzbIzdwV0ZDG5s7OysuDh4WHuapDH0HmxPHROLA+dE8tE58Xy0DmxTHReLI8FnhNOqJBaePQkl8vNXQUigM6L5aFzYnnonFgmOi+Wh86JZaLzYnms5ZxQwEMIIYQQQgixWRTwEEIIIYQQQmwWBTyEEEIIIYQQm0UBDyGEEEIIIcRmUcBDCCGEEEIIsVkU8BBCCCGEEEJsFgU8hBBCCCGEEJtFAQ8hhBBCCCHEZlHAQwghhBBCCLFZFPAQQgghhBBCbBYFPIQQQgghhBCbRQEPIYQQQgghxGZRwEMIIYQQQgixWRTwEEIIIYQQQmwWBTyEEEIIIYQQm0UBDzGZtLQ0TJkyBUOGDMH69evBGDN3lQghhBBCiI2zM3cFSP1QXl6OYcOG4dKlSwCA/fv3w8nJCZMmTTJzzQghhBBCiC2jFh5iEvv371cHOyrff/+9mWpDCCGEEELqCwp4iEns27ePVyaVSlFeXm6G2hBCCCGEkPqCAh5iEvv37+eVlZaW4vz582aoDSGEEEIAID8/H59//jnmzp2LuLg4c1eHEKOggIcYXVpaGi5fviy47NSpUyaujfVjjFHCB0IIAfDLL7+gdevWaNGiBb788kv6btSTQqHA0KFDsWDBAqxatQp9+vTBkSNHzF0tQgyOAh5idEKtOyonT540YU2sn1QqRffu3SESidCvXz+kp6ebu0qEEGIW58+fx7Rp03D79m3cvXsX7777brW/N4Tv4MGDGjceFQoFVq1aZcYaEWIcFPAQo6vuB4haeHQnl8sxefJkpKSkAACOHTuGt99+28y1IoQQ81i/fj3kcrlG2aZNm8xUG+sUHR3NKzt37pwZakKIcVHAQ4xKJpPh4MGDWpdfv34dd+/eNWGNrFdiYqI62FHZuXMnKioqzFQjQggxD8YY/v77b155bGys6StjxYQCnps3b+Lhw4dmqA0hxkMBDzGqM2fOID8/v9p1qJVHN0L9qktLS5GUlGSG2hBCiPlcuHABaWlpvPIbN24gIyPD9BWyQunp6bybaCraygmxVhTw6Ekmk+Hs2bM0MFJHQumoH0cBj260DSQ9c+aMiWtCCCHmVbV1p4kTENaGUz+mVh7dVP197tyUw/jujy4Jk5OTzVElqya/fgTlG4eD5d8yd1WIAAp4dHDo0CF8+OGHGDhwILp164bAwEBcvXrV3NWyCroMIKWAp2YymQzHjh0TXBYfH2/i2hBCiHnt3LkTAOBiD6S/5YA9k+3hZKdcduLECTPWzHpUDXg2j7fDxnH26sCRAh79yQ4thOL6YcjOrjd3VYgAO3NXwBp8/PHHOH78uEZZbGwsOnfubKYaWYcHDx7g9OnTNa4XHx8PmUwGOzt6O2rz33//obCwUHAZtfAQQuqT9PR0nD17FgBQVAEkZTP4e4oQ5MXh+E1GAY8Oqo6v7dacQ48Wyvvf/dqLEJsup4BHT4oHN8AylDcf2U1qYbRE1MKjg7CwMF4ZTc5Vs8OHD0OhUGiUtW/fHk2aNNEoKyoqoi/XGlQ3L0JycjKKi4tNWBtClIPG09LSUFBQYO6qkHpm165dGo/j0pW/M2FtlZc0iYmJWm8QEaXTp0+rx9eO9310KRjWRvl/+k3WjyJ5+6P/344Hk5WbsTZECAU8OhAKeKiPcM2EurMNGTIETz75JK+curVVr7qARy6XUxpRYlK5ubkIDg5G+/bt4eHhgfXrqQtHbfz9998YOXIkpk2bRl1T9fB4drbYdOWY2vDKi3WFQkG/KTWomp1tXJWxO0+24mAnUraiUdCoO3nSNuV/ODEgKwHLpN9kS0MBjw5CQkJ4ZRcvXkRubq4ZamMdGGOCCQuGDBmC4OBgXjlNQKpdeXl5jV006GKJmNJ7772nfs+VlJRg1qxZuHfvnplrZV2io6MxduxY7N69G/v27cPw4cNx//59c1fL4j148ABHjx7VKIu9qWzhebI1B3Fl7gLq1lY91e+zvweHTk1FyH7IcDVHARcHDr08lQeRMrXpRnH/ClhWAuDoClGPicqydLopbmko4NFB06ZN0aVLF145XaRrd+XKFdy8eVOjTCwWo3///oIBD92N0+7MmTM1dlmjcTzEVIqLi/Hbb7/xyg4fPmymGlkfmUyGefPmaXT5zcnJwS+//GLGWlmHPXv2QCaTaZRlFwFXchRo6MDBv/JinQIe7e7fvw+pVArgUXe2vy4qcPymsqWMurXpR5G8FQAg6jIK4g4DlGU0jsfiUMCjI+rWph+h1p2QkBA0btxYsEtbamoqtZhpUV13NhUKeIip/Pvvv4KTEuqSoIQorV+/HqmpqbzyQ4cOmaE21kWVna2qAQMGqLu1qS7WT58+TZMya3HgwAH11Bpju4sBANuS5YitHAsVSpna9KLqzibuPh5cW+W1oiI9DuyxMczEvCjg0RElLtCP0Pidp556CgDg5uaGrl278pbTBZMwXQKeq1evUsBITGLz5s2C5dRKq5vi4mIsWrRIcNnRo0dRXk6DnbUpKyvD3r17eeXvvfceEu47A3g0H09RURESExNNWj9roRq/09uLQ1s3DhkFDNfLn1B3DQxtIwIHCnh0obh7EezeRcDZHaIOA8C5tQMaeQGlD8DuUZdAS0IBj46EAp74+Hi6gySgvLxc8CJ9yJAh6v9TtzbdlJWVCQbWDRs25JWpuigQYiy5ubmCF5wAcPbsWbpY18GqVatw584dwWXFxcV046cahw8f5rUuurm5oV+/fpB5BAEAQto8uqyhbm18CoVC3QND1Z1te7Ics2bPQVoecKeAoWkDDl2acxTw6ECepOzOJu76DIpKy3Hjxg1wrZXjvmkcj2WhgEdHnTt3RrNmzTTKSkpKKDuWgLi4OBQVFWmUNWnSBIGBgerHQokgKODhO3XqFEpLSzXKmjdvjmeffZa3LnVrI8a2fft2rTd5ysrKcP78eRPXyLrk5uZiyZIl1a6jmhuF8Al1ZxsxYgTs7e3ROWgwMgsZmrtw8GlG43i0OX/+PLKzs8EBGNNN2Z1t52U7vPrqqxCJROpubWFtONy6dYvSzleDMQZFZcBz5mFrtG3bFh07dsRnvyjHMypu0vvPklDAoyOO4xAaGsorp3E8fELjdwYNGgSxWKx+LNTCc/r0ad68PfWdUEtZREQEevfuzSungIcYm7bubCp006J6ixcvVs99og0FPMIUCoVgwDN69GgAQFh4uLpLVnjbRwGPaqwKUVL9Poe24dDSlUPaA4YGncLRtGlTdOjQoUrAo7w8pExt2rGsRLDcq0CDZpj0znfqbuV/SbMAKFt46P1nOSjg0QON49GNtvl3qurWrRuvW1Z+fj4uXbpk1LpZG6GAZ8CAAQgKCuKVU8BDjOnWrVs4duxYtetQdyzt0tPTsXr16hrXO336NN1VF3DmzBlkZWVplDk4OKh/WyQSCU7dUV7SqC7Ws7Ozcf36ddNW1MKpxu+M932UrGDo0GEAgO7duyNWlamtLWVqq4kqWcG9pmFIv/2om+rFuwy5JQwoyADLu6nt6cTEKODRg7ZMbRTBP3Lv3j2cPXuWV65KWKAiFosFWynoDvEjJSUlgsejf//+8PPzg52dnUb5nTt3kJGRYarqkXpmy5YtNX7XUcCj3aJFi1BWVqZR5uzsjBYtWmiUyeXyGgPL+ujxyUYBYODAgWjUqBEAwMnJCQWu3QE8CngA6tZWVWFhIWJjYyHmgGe7KY/RtmSFOmjs1q0bku8yPChhaN2YQ5vGFPBowxhTp6M+fl9zuAMDcLKypYzROB6LQQGPHgIDA+Hg4KBRlpmZibS0NPNUyAIdOHCAV9a1a1e0bt2aVy40jofmNnokLi6ONwjc09MT3t7ecHJygp+fH+851MpDjOXxuXeEXLlyBTk5OSaojXVJSkoSnGNn3rx5GDlyJK+curXxVdedTcXLfxAelDC0cePQ2lVZRgHPI0eOHEFFRQX6tuPwhAuHy/cVuC/2RPfuykCxe/fuYADi0h9la6OARxjLOKNsvWnUEttP85OQxFWmSaf5eCwHBTx6cHJyQo8ePXjlNI7nkerSUT+OMrVVT6g7W//+/cFxyv7p1K2NmEpKSopggpbHE7kAyuyVRNP777/PG5/o7u6Ot99+GwMHDuStTwGPpsuXLwuOJRk1apTG47Dwvjh5q3IMSmWXLAp4HnmUnU3VnU2BIUOGqn9TVIGP6mI9rK0IFy9eNENNLZ967p1uz+JELH9ow4nK8WRyCngsBgU8epJIJLwyCniUGGM6jd9REZqANDk5mfqvVxKaub5///7q/1PAQ0xFqHUnKCiId8EJULe2x504cQL//PMPr/z999+Hm5sbBgwYwFuWnJzMG69Snwm17gQHB8PT01OjLDQ0VH2xHlrZre3SpUu4f/++8StpBaKjo2EvAp7p+qg729ChQ9XLu3TpQpnadMAUCsiTtwMAMpuE4e7du7x1zmUyFFcwICcVrOieqatIBFDAoyehi0xKXKCUlJSEzMxMjTIHBwf07dtXcP3mzZujU6dOGmWMMbpDDODhw4eCwYsuAQ+NKSOGxBgTDHief/55wZsWFPA8whjDO++8wytv3bo1Zs6cCQBo0aKF4ETMhw4dMnr9rIXQ+J1nnnmGV+bu7o4MUVsAjyYgBeg3GlBOTn39+nUM6CCCuzOH5LsKpOZwGDRokHodJycndOzYEWfvKC/WuzYXoakzqJXnMezWSaAwA2jcBjGphYLrVCiA+NuV3drS6f1nCSjg0ZNQC8+FCxdqTDVaHwilow4PD4eLi4vW51C3NmEnTpyATCbTKGvdujU6dOigftytWzfesc3Ly8PVq1dNUkdSP5w+fZqX6YrjOEycOFFrwENBt9I///wjeLH96aefwsnJSf04PDyctw51a1PKzs4WHNv5+PgdlSZd+6OkgqHbE8qLdYC6tQFVs7MpL/u2Jinw5JNPokmTJhrrdevWDRUK4MztRy1lNI5Hk3qy0e7jEFtNMK1qKaNxPJaBAh49NWvWTLBVgi7SdUtH/TgKeITVNH4HUGa6CwgI4K1H3dqIIQm17gwYMACenp7w9fVFgwYNNJY9ePAAV65cMVX1LJZMJsN7773HK/f19cWLL76oUSYU8Bw6dIgCRyiDxsePg7e3N7p06SK4fkh4P5zJ0OzWRgGP8oakoxgY1YWfna0q1Tge1cV6eFuOAp4qmEIO+cW/AABi3/HVth6q5oUqu8r/PSemRwFPLWhLT12flZSUCKZS1ZawQEUoU9upU6fq/Q+9toDncTSOR38ymQwffvghwsPDERUVRVnFqiGTybBlyxZe+QsvvAAAsLOzE2z1pm5twMaNGwW7Ai1evFhjEmZAeePn8TTzt27dosARumVnqyosLOzRGJTKCUilUilKSkqMUj9rUFZWhsOHD+OpTiK4OnI4l6nAtVymMX5H5fGAJ6wNJS6oSpF2DCjKBufeEQXO7aoNBuNvM8gUDKL7yWBlD01YSyLErqYVJBKJCMDPADoC4AC8AqAZgK8AKAC8JpVKL0gkEg8AGwG4AFgjlUo3SSQSMYCfAHQG8J9UKp1Xuc25ACYAyAHwolQqtaoRcWFhYbwUo/W9j/CxY8d4c0y0aNECPXv2rPZ5PXr0gLOzs8aPUU5ODq5evYrOnTsbpa6WLj8/H//99x+vXNeAh8ZAVW/GjBlYt24dAOWNimvXrmHXrl1mrpVlOnToEG9ArqOjI8aMGaN+/OSTT/Judpw+fRovvfSSSepoiUpKSrBw4UJeeZ8+fTBixAheuYuLC4KDg3ktEQcPHoS3t7fR6mnpHj58KDjVgdD4HZX27dsjpbAJgMLK+XjkqKiogFQqRZ8+fYxXWQsWGxuL4uJijPdVXvJtS1LA3d1d8GaFKuA5fUt5se7nyeHGwSST1teSKZKV2dlE3cfhVA3dd4sqgIRMBomXAorbpyDuOEjrusT4dGnh8QfgKJVK+wB4D8AbAD4HMALA8wC+rFzvHSiDoH4AZkokEicAIwHcqXyui0QiCZFIJM0APA0gHMAWADMN93JMQ6iF59SpU7wxF/WJUHe2wYMHQySq/i1mb28v+KVbn7u1HT9+nJfCtn379mjbti1vXaHJW8+dO1ev34vVOXHihDrYUfnnn3+QlEQ/6EKEurONGDECjRs3Vj+mxAV83377LW7fvs0r//LLLzW6pVZVdfC4Sn1PXLB//37BG2lC7zkVjuPg2KEPZAoGf08OLvbK8vrcrS06OhoN7IHh3qrubHIMHjyY19IIAD4+PhCJRCiqABIzGexEHFqJ7tA4ZQBMXqHRnU2oZ4+Pj4/GY1VLWcV1mkzY3HQJeG4D4CQSCQegCYAiAHKpVPpAKpWmA3CvXK83gMNSqVQGQArAF0AoANWVcDSAMABBAI5KpVJWpcyqdOnSBW5ubhplRUVFOH/+vHkqZAGEEhbUNH5HRVu3tvpK1+5sgDIQatq0qUZZSUkJ9bkWIJfLMXv2bMFlukyqWd+UlJRgx44dvHJVdzYVoXF4CQkJ9bYL0YMHD7B48WJe+ejRowW/61SEAp7Dhw9DLpcbtH7WRCg726hRowQv1KsKCotQX6z3bqUMMOtzwLNv3z4M6yyCiwOH+NsKpOdr/31WZWoDqFvb4xTXjwAlueCadwX3RHfBgGfevHka14exN5UtQHlJe01VTaJFjV3aANwHUAHgEgAnAH0ArKqyXCaRSBwA2EulUtVt6XwoA6EmAAp0KOORSCTTAUwHgFmzZmHw4ME6viTjqqioQGZmJgICAnjzpOzevRstWrQwU83MJzMzU/AC29fXFxkZGTU+X6jr2rFjx3R6rkpFRYVe61syodYyPz8/ra/P19cXR48e5W1DaFJIU7K0c7Jp0yYkJCQILvv111/x2muv1dgiae30OSf//vsvHj7U7HfeqFEjwfeih4eHxrwxMpkM+/fvF2y9tXVffPEFHjx4oFEmEokwd+5crce+oqICXl5ecHFxQVFRkbo8Ly8P0dHR8Pf3N2aVLZJMJhPsatqnT58a38Pe3t6I3a1AoJcIYW1FOHJDjtjYWNy6dUvnz7ilfX/VVlZWFs6fP4/3Jygv97YmKS/TevbsqfX1dejQAVeuXEFsOsOcEGXAc+LECbRp08Zk9dbGnOfF5cwvcAJQ1GYIstLTBW/MdunSBX379lW/d+Mqg8YGeReRkX4DEDuYssomYWmfFS8vL8FyXQKepwDIpFKpj0T56/U1ANeq25BKpeUSiaRCIpGIKoOexgByAeRVWbdqWafHynikUumPAH6sfGgxI9gzMjLg5eWFgQMH8gKe5ORkrQfalgldoPv7++v8Iy3Upz0lJQVubm7VprSuSnVerF1ubq5g8Dh27Fitr69Pnz68gOfKlStmPx6WdE4ePHiApUuXal1++/Zt3Lx5UzBbli3R55zs3cu/Izlu3Dj13d+qQkNDea1B169fr3ashS26ffs2fv75Z155ZGQkIiIitD5PdV4iIiKwe/dujWUXLlwQ/I60dUeOHOF1o3JxccGECRM0UnoLadGiBX5+1wGAAuGV43jy8/ORn58PX19fnfZvSd9fdXHgwAE0cgCGdBZBwRh2XJSjR48eCAwM1PociUSCffv2qS/We7ficDDztkUcD3OdFyYrQ9lNZap4t5CpuHHzPq8V293dHX379sWtW7fUAU9OCZByT4GuzQFPLhsiL36LuLWzls+KLrc6OCiTCwDK1p5GAOwkEombRCJpjUcByxkAERKJxA5AIIBkAHEAVO30QwDEVq7X97EyqyM0jqe+Ji4QCnhqys5WlaenJ298ilwuFxy4b+uOHTsmmIK1ui8ToXE8lKlN08KFC2vMxrZ582YT1cbyPXjwAHv27OGVP96dTYXG8Sh9/PHHKC0t1ShzcnLCokWLdHq+ULe2+jofj1B2tiFDhtQY7ADK7IFyT2VCl96tONhXXunUx25t0dHRGOEjgpMdh7h0hjuFEMzOVpUqccH9YuDSPQWc7TmU3ax/n+eqFFcPAGX54Fr0hKiZt2B3tpCQEIhEIgwdOlRjrF5suvI3/e5ZSo5jTroEPAcAtJZIJEcB/AHgEwALAOypfKyaaODLyv8fA7BWKpWWAPgXQBuJRHIcQKlUKj0plUrvAdgtkUhioUx68L0hX5CpBAUFCaYRvXXrlplqZB4KhUIwi44+AQ8gPA5AaLI5W6fP+B0VoUxtFy5cqLdjKB534cIFfP99zV8zf/75J8rLy01QI8u3fft2VFRUaJR5eHhobaWg+bSUrdJCrTtz5sxBq1atdNrGwIEDeWUnTpyod59lxpjg+J3q0lE/rmfwAPXFekDL+jmORy6X48CBA1UmG1WOB6tpfK0q4AGAE5UX601LLhupltZBnlw52ajveADCN7hVN8KbN2+ucSNSNR9PPo3jMS/GmDX8WYzbt2+r/x8UFMSg7G6n/vv999/NWDvTO3PmDO8YODs7s9LSUr22s2LFCt52Ro8erfPzq54Xa9ajRw/ecfjjjz9qfF6rVq14z4uLizNBjbWzhHOiUChY//79ecfGxcWFOTs788p37dpl7iobla7nJCIignds5s2bp3X9hw8fMrFYzHtOVlaWoapu8Z599lne63dzc2O5ubk1Pld1XhQKBXviiSd42zl48KCxq29REhISeMdALBaznJwcnbdx8OBB9u1IO1ay0JG9Eap8b7Zt21bn51vC91ddnTp1irk5geUvcGAPP3RgT7iANWjQoMbf55KSEiYSiRgA9lwPEStZ6Mi2PWfHHjx4YJqKV8Mc50VRXsxKPm/KShY6MnnONcaY8G9uTEyM+jmffPKJurxNY7CShY7s7gcuTCGXm7z+xmaBnxXBWMK2R+gaGU1AKtydLSIiAo6OjnpthyYgBe7du4cLFy7wyqvr+69C8/EI2759u2Cr2Ycffoinn36aV07d2pTjUB4fEwYAzz//vNbnuLi4CI6NqC/d2k6ePIm//vqLV/7++++jSZMmOm+H4zjq1gbh7mx9+/aFu7tgjiNBTz75JOIqO1yEtlG28Ny8eVMwXbit2rdvH57uIoKDmMPRNIa7RcoeAzX9Pjs5OaFTJ+VQa9U4npA2IlxMrp/p+xVXooHyh+BaSiBy74Bbt27x3kd2dnYav8NVx92l5wO38hka2clQdFNqsnoTTRTw1AGN46lbOuqq/P394eCgmb0kKysLN2/erHXdrI3QRWa3bt10yvxH43j4iouLMX/+fF55p06dMG/ePMHxKLt27UJhYaEpqmextmzZwrvR0Llz5xozrgmN46kP3doYY3jnnXd45a1atcKsWbP03p5Qt7b6FvAIdWfTNwFGw4YNkdeoKwDlxbpqREV9uikZHR2N8b7KFN6q7mw1jd9RUXVrU12suztzuHO+fs4LJU9SdWcbB0D4PRQQEIAGDRqoH/v7+8PDw0P9WNWt7crhX3jPJaZBAU8dhIaG8soSExN5qVxtVWFhoWCAp+/4HUA5e3tAQACvvD5cMKk8nvUPqHn8jopQC099D3iWLl2K9PR0XvmKFSvg6OiIIUOG8O4Yl5SUCF5s1SdCrVzPP/+81gkzVYTG8dSHFp49e/bg+PHjvPKPP/4Yzs7Oem9PqIXnv//+46W6tlXp6ek4d+4cr7w2Gf86Bw5QX6x3e6J+jeN58OABrl04jYj2HCrkDDtTlBfcut6QrDqOR3WxLk+rH8euKlb2EIrLyrE34u5jAQgHPI9fD4pEIgwfPlz9WDWnUfHl+hk0WgIKeOqgZcuWaNeunUaZXC6vFz/ygHKAvUwm0yhr3bo1unTpUqvt1fcJSGuTsEBFKMXo5cuXkZeXV9dqWaWbN29iyZIlvPJhw4apuxo4ODhgwoQJvHXqc7e2lJQUwYvN6rqzqQi18Jw5c8amJ86Uy+V49913eeVdu3bF5MmTa7XNNm3a8OYmY4wJfj/YIqHubH5+frzfWl2Eh4erL9bD2tSvgOfgwYN42gewE3E4dF2BB6XK+XVUXdVqohHwVF6sN3l4ySh1tWSKy7sBWQm41iHgGrcGUH3CgqqqdmtTZWrzUqRDoVDw1iXGRwFPHdXncTza0lHXdCdYm/qcqS0zMxOXLvF/TPr166fT893c3ODt7c0rl0rrZ3/hN998k5ce2N7eHitWrNB4fwp1aztw4ACys7ONXkdL9Pvvv/PKJBKJ4HvrcV26dIGrq6tGWWFhoeD72lZs2rQJSUn8cQ2LFy/mZfHUR33u1iYU8OiTna2qsLAw9cV6eFvl5c758+dRUFBQ3dNswr59+6p0Z3vUuqPr73O3bt3U/1ddrHd2zqlX42oBQJ60DcCj7GwPHz5EYmIibz2hHj+DBg2Cvb09AODSPYacYgYPFwUuneYPBSDGRwFPHdXncTxC43dq051NRSjgOXfuHO/C1RbFxMTwynr27IlmzZrpvA0ax6N0+PBhbNu2jVc+b948+Pj4aJSFhoby5oBSKBTYsmWLUetoiRhj+O2333jlurTuAMouHELvQVttpS0tLcVHH33EKw8NDRVMiKEPoW5thw7ZfleYBw8eCH4X1nYCW09PT9xUKOcwC2ujvNxRKBQ2+55UYYzh7LHdCG/LoUzG8G+qMuDRdfwOAPj4+EAsVgZMqot1z4YKFKSfN0qdLREryYPi6j4AHMTdngWg7Kb7eKt1u3bt0LJlS97zXV1d0adPH+W28CgBxOVDNI7HHCjgqSOhgOfkyZM23Y0DUM6ifvXqVY0ybRmGdNW6dWvel0ZFRYVgFxtbU5fubCo0jgeQyWSYO3cur9zDwwMLFizglYtEIkyaNIlXXh+7tcXHx+PatWsaZRzHYeLEiTpvoz5NQPr9998LjhH78ssva93KrdK/f3/eNi5fviy4P1uyZ88e3m9nmzZt4O/vX+tttuwRgZxihpauHNq5KctsvVvbxYsXEdLkHkQch/1XFSgoU2YR0+c3xdHRUd39rerFemb8DmNU2SIpUv8B5OUQtesLrpEnAN27s6lUHccTV9lSprhp2+8/S0UBTx11796d142joKAAycnJZqqRaQhNNhoUFKRX2tDHcRxXb7u1UcBjGGvXrhXsYrRkyRLe51RFqFtbfHw8L6C3dUKtOwMGDBC8c6lNfQl48vPz8fnnn/PKR40ahfDw8Dpv393dXTCJi6238mjLzlaXADIsvI/6Yj2sslubrQc8yuxsqslGK7v0hYejUaNGem2n6jge1cV6xY1jBqql5VN1ZxNVZmcDdEtYUJXmOB7luejoeA+5ubmGqibREQU8dSQWiwUv0m19HI+h0lE/rj7O2H779m3B1rK+ffvqtR1/f3/euIHbt28jMzOzznW0Bvfv38eHH37IK3/yySfx0ksvaX2er68vevbsySsXCgBslUwmE+zGp2t3NhWhgCcpKcnmMld+9dVXvAsWkUiEL774wmD7qG/d2kpLSxEdHc0rr213NpXw8HD1GBRVt7ZTp06hoqKiTtu1ZP8d2Yng1iIUVzDsuaxfdraqhBIXuBVeNEwlLRwrzoHi+iGAE0PcVdmdTaFQCN6Ara6Fx8fHBx06dAAAnMtkKCpn8GnG4cjurcapONGKAh4DqG+JC2QymeAPb13G76jUx0xtQq07AQEBek1YCADOzs7o0aMHr7y+tPIsWLBAMCvd6tWrIRJV/1Un1MqzefPmejNA9/Dhw7xEDQ4ODhgzZoxe23niiSfQvn17jTKFQmFTyTPu3LmDFStW8MonT54sOPlqbWmbgNRW35OHDx/mBcZubm563/h5nI+PDy7kNQTwKFNbSUmJzXaVLi4uRssC5aTTey8rUFQZ1+kzfkelauIC1cV6c3E+2EPbT+oiT/kbUMgg6tAfnItyLG1ycjIv4UWjRo2q/dxzHKfu1iZTAPG3lZ/fm7F/GKfiRCsKeAygviUuOH36NO9D7+rqKnh3V18BAQG8Vopbt24hIyOjztu2VIbozqZSX7u1nTt3Dj/++COvfOrUqYLH5HGTJk0SHDPx33//GayOlkyoNWvEiBFwc3PTe1u23q3tk08+QUlJiUaZo6MjPv74Y4PuJywsDI6Ojhpl2dnZNttdWig724gRI9RZrmpLJBLBtVM4isoZvJuJ8ISLstxWb0oePXoUz/ooW2NU3dlatGgh2Ipdk6otPFUv1hXptnt9o6JQd2cbry4Tes8EBwerkztoI9StzT5LavNjvS0NBTwG8OSTT/LuIN+4ccNmuxIJpaMeMGBAnX+YAKBBgwbw8/PjldtyKw8FPHXDGMPs2bN5d75dXV117mLUunVrwTvJ9SF5QUlJCXbs4A9EFmr10oUtBzypqan43//+xyufNWsW2rRpY9B9OTs7C95Ms8VubQqFArt27eKV1zYd9eNCwvvi9G3Nbm22Oo7nzP4tCPQSobCMYd/VR93ZamrlFuLt7a1xMX+i8mK9xMYnz2QPs6FIOwqI7CHu8ijjor4JC1QiIiLUkxCrAp6AJ8ps/rfZ0lDAYwANGzYUvEi31TtIxhq/o1KfurWlpaUhLS1No0wsFqtTWepLW8Bjq91gAOCPP/4Q/KwtXLgQLVq00Hk7QuNV/vjjD5u/C/fvv/+isLBQo8zV1VUju5A+hAKeU6dOWfV7UCaToaioCB988AHv/dC4cWO89957Rtmvtm5ttiY+Ph5ZWVkaZQ4ODgb7XVGO41ElLng0Aak1vye1cb6pHAf1b6oCpZXzgtf2ODo6OmpMgquaxLXs2tG6VdLCyS/+DTAFRJ0Gg3N+1LVc34QFKk5OTuq5teJvM1TIGfw9OBzY/ZfB6kxqVvuZ0YiGsLAwXp/g2NhYjBs3TsszrFNubq7gXQlDjN9RCQ4OxrfffqtRZquZ2oRadyQSid7ZdFS6d+8OZ2dnjS43ubm5uH79Ojp27Fjrelqqhw8f4q233uKVd+nSBbNmzdJrW+PGjcOsWbM0BjNnZWXhyJEjdUq3bumEurONGTNGfUdSX7169YK9vb3GcczMzMTt27fRunXrWtdTXzKZDAcPHkRMTAyKi4tRVlYm+FdaWqp1meqvuqD33XffRdOmTY3yGgYNGoT3339foywmJgYVFRUGaVG3FELZ2QYNGlTr78HHBQYGYlGm8nIntI0IgBx3797F1atXNS7orV1aWhr6PZELQIRtycrghOM4DB48uNbb7N69u3ryYNXFunPhVbDSAnBOwpkvrZ086U8AgLj7o+u3rKwsXL9+XWM9kUgkmGhJyIgRI/Dvv/+iuAJIyGQIaiVCxsm/AHxpsHqT6lHAYyBhYWG8i3RbHMdz+PBhKBQKjbKOHTuqs5AYgtAXyH///Yfy8nI4ODgYbD+WwJDd2QDlXAsBAQG8O1FnzpyxyYBn8eLFguO7vvnmG73fK+7u7hg+fDhvLMHmzZttNuB58OAB9uzZwyuvbXc2QHk309/fn3dj5PTp0yYNeObPn49Vq1YZdR8tW7bEnDlzjLb9gIAAuLm5aSTjePjwIeLj43XqSmMthMbv1DU7W1WOjo5QeASgQv4ferbg0MgBKCxX3pS0pYDn1L+/YLSHCA9KGA5eU/5OBwYGonnz5rXeZrdu3bB9+3YAQIlMmbygdysGxe3TEHeqfSBlqVhBBlh6HGDnBJHPSHW50PVcz549dQ7Kq7aYx6YrENRKhBYV13Hnzh29Uv+T2qMubQYi9ONz9uxZFBcXm6E2xmPs7mwA0KFDB94XdGlpKc6ft60ZnhljBg94gPozjufatWtYtmwZr/yZZ56pdYuj0IX+9u3beYPUbcWOHTtQXl6uUdaiRYs6vwfNPY4nKSnJ6MEOACxatAgNGjQw2vbFYrHgubClcTypqanqFgQVjuPw9NNPa3lG7QSF9sPZOwxiEYfg1o+6tdkSWZIy1fGuSwqUVzZK1iY7W1VVExcAj8ag2OrkmfLkHQAYRJ2HarRg1bY7m0qbNm3U2dxUadLD24iwd+/eulWY6IwCHgNp3bo1WrVqpVEmk8ls6kKTMSaYsMCQ3dmA+jMB6dWrV3H79m2NMnt7+zrfuRUKeOLj4+u0TUv0xhtv8C7WHRwc8PXXX9d6myNHjuTdsSssLMS///5b621aMqGkDM8991yNWYdqYu6AZ+PGjUbfh7+/PyIjI42+H1sfxyPUuvPkk0/Cw8PDoPvRHMdje4kLysvL0dNeOZ/btuRHXTDrekOSF/DcVGVqs80xyvJkZXa2qt3ZgNonLKhKla1NNRFuUCsO+/bwk3UQ46CAx4BsfT6e1NRUpKena5TZ2dnV+W6wkPowAalQ607v3r3h4uJSp+0KBTxnz56FTCar03Ytyb59+wSzOr355pt16rrn7OyMsWPH8sptMVtbRkYGYmJieOV16c6mIvT5lUqlJpnsUS6XY9OmTQbdJsdxcHJygpubG1q2bImJEydiz549vBT6xqAa7FzVyZMnbWYyV6HxO4bKzlZVaGgobwLS1NRU3Lt3z+D7MofEA5vh3RS4V8QQc0P5Ohs3bqzzGBNtvL29Nd7nJ29VtvDcPgMmK6vTti2N4kEa2O3TgL0LRN7D1OUlJSWCUxTo08IDPOrWllsCXLyrgJMdh5ykg7wbd8Q4aAyPAYWFhfFmK7elgEeodSckJASuroYfuFgfMrUZozsbAHTq1InX77+4uBgpKSmCE5Nam/LycsydO5dX7uXlZZBsWS+88AI2bNigUbZnzx7k5ubC3d29ztu3FFu2bOFlqerUqRMkEkmdt92xY0c0bdoUOTk56rKSkhIkJSWhV69edd5+dQ4dOsSbEsDe3h7Lly9HgwYN4OjoCCcnJzg6Ogr+CS2zs7PjzdNkKt7e3mjVqpVGa7BMJsPx48cxbNiwap5p+bKzswW/1w05fkelSZMmeNDAG8ANBHlxcBQDZXLlb7QxAixTyz+1HhADf6coIKscZjtw4MA6B+UODg7o3LkzUlJSACgv1pPvKtD9iTKwO/+Ba6PfRb8lUyQrxyqJfIaDc3h041HoZk3Lli3Rtm1bvbYfGhqq/m2OTWfo9gQQ0LwMx48fF7yxQQyLWngMSKiF5+TJk7xB/tbKFON3VCQSCW/egOvXr+Pu3btG2Z+pGWv8DqC8G23L43i+/fZbpKam8sqXLl2Khg0b1nn7/fv353WnqaioUA/ctRVCrVbPP/+8QS7sOY5D7969eeWm6NYm1J1txIgRmDVrFqZOnYoXXngBY8eOxciRIzF48GD07dsXTz75JPz9/dG1a1e0b98eLVu2RNOmTdGwYUPY29ubLdgBlMfSVru1/fPPP7yg28fHB126dDHK/no+2Q9J2Qo42nGQeCnPqS3clGSMoX2pMkts1e5sdR2/o9KtWzeNx6qWMsVN6z92VT3qzjZeo1xbdzZ9vxfs7OzU10yqbm2hbTjBxDHE8CjgMaCePXvyuiM9ePCANyDTGpWVlQl2fzH0+B2VRo0aqQf4VWUrrTyXLl1Cdna2RpmDg4Ngy1Zt2Oo4nqysLCxatIhXHh4ejueee84g+xCLxYLbsqVubZcuXcLZs2d55UJzEdWWObqlFhYWCk6iOnnyZKPu19iE7v7aQsAj1J3NGK07KspxPMqL9VAbmoA0J+kgvFwqkFnIcOLmowDSUDckHx/HE3fT9hIXKHKugmWeAxxdIeqkeV1T14QFVam6tanmNAppI8LePbY5RtTSUMBjQHZ2doKDdW3hDlJcXBwv45y7uzsCAgKMtk9b7tYm1LoTEhJS67lPHmerLTzvv/8+b5JMjuOwatUqg96FFxrHcvToUdy6dctg+zCn33//nVcWGBgIHx8fg+3DHIkLhDLqqdKNWzOhgOf8+fNW3eL98OFDwaDN2AGP6s66ahzPf//9Z/Rsqn/++SemTZuGZcuWoaCgwODbv3NoNQDgr4tyKCrjna5du6JNmzYG2b7WTG23ToIpbGNiZkVlhjtRl1Hg7J3U5YwxgyQsUBk2bBg4jsOtAiA9j8HNiYPdgyu4du1a7SpOdEYBj4HZauICoe5sgwcPrnM2p+rYcuICoYBnwIABBtu+UHei8+fPo7S01GD7MLX4+HisX7+eVz59+nSDjwsJDAyEt7c3r1woULA2jDHByUYN2boDCL8HL126pDG2zNCEurNNnDgRjo6ORtunKXh6evIuOgHlvGjWat++fSgr0xz03qJFC8FA2VDatm2La2VPAACCW3MQccruqsa8GbR8+XJMnDgRP//8M9566y1IJBKD9vpgCgWa3jsOAOrJRgHDdjd//L13uwC4XSgCygrAspMMth9z0tad7fLlyxpjEQFlcht/f/9a7ad58+bq70Z11kDq1mYSFPAYmFDAYwsTkJoiHfXjhAKe+Ph4q882plAoBLsHGjLbXcuWLXmTmclkMiQmJhpsH6akUCgEJ3h0c3PDZ599ZvD9cRwn2MpjC93azpw5g6tXr2qUcRyHiRMnGnQ/TZo0EQwajXVxmZ6eLngjwdq7s6nYWrc2oXTUo0aNMupNNI7j0LFXX9x4wNDYiUOPFsadj+fixYt49913NcquXLmC4OBgg82/Ik8/iab2JbiVz3Dq1qPubIYavwMAnTt35iU/OHZdOYjfFtJTK+6mgN1NBpyaQNRB88aj0A3r3r17w97evtb7U3drq9LauHv37lpvj+iGAh4DCw4O5nWtuXLlilV3PcjOzsa5c+d45cYOeLy9vdGkSRONsqKiIiQnJxt1v8aWnJyM+/fva5Q5OzsL3hGvC1sax/Prr78Kdof69NNP0axZM6PsU6jF4/z580hKsu47mkKtO/3794eXl5fB92XKVlqhYLRz585GbTEwJW2JCx4f9G8NKioqBOe2MkW2tPDwcPX4CVW3NmP0wpDL5XjllVcEU7Hn5+dj5MiR+Prrr+t8/rKPrgEAbE+WQ7UlJycn9O3bt07brUqVqa2qE+oJSK0/4JEnK7uzibs+A87OQWOZIbuzqajm41HNaRTWVoSYmBgUFRXVabukehTwGFjjxo0FB9tbcyuP0F3Ebt268SZaNTSRSCR4sWLt3dqE7kKHhYUZvNuNrYzjKSgowDvvvMMr9/X1xYwZM4y2306dOgm+/4QCBmshl8vxxx9/8MoN3Z1NxVTjeBhjgt3ZJk+ebNYMa4bUr18/XuvHzZs3cf36dTPVqPZOnDiBBw8eaJS5uLiYJDVv1QlIw9sq3xtxcXGQyw07FmXNmjXVTpatUCjw5ptvIjIystZdjZlCDscb0QA0u7P169fPYONBVaqbgNQag24Vxtij8Tu+43nLDZmwQKVXr17w8PDApfsM94sZPBtxaNmgzKq7qFoDCniMwFzjeLZu3YqXX34ZCxcu5HVZqQtTpqN+nNAd4up+RKyBsdJRP06oxcjaAp68vDzMmDGDl9EOAFatWmX0iR+FAoHffvvNalPNx8bGCmYHHDNmjFH2py3gMfQFklQqFRwX8eKLLxp0P+bk6uoq+Jm2xm5tQtnZhg4dCicnJ/7KBtajRw8k5DQA8ChTW35+vkF7DqSnp+s8J9gvv/yC/v378+aO0oXi5nE0xENcz2X4747hs7NV9XjAczmH4aHCCXiYBZZrfUG3Css6D5ZzBWjQHKJ2/TSW5eTkCH6v1DWbqkgkUs+hdZK6tZkMBTxGYI6A5/vvv8eECROwceNGfPLJJ+jcuTOGDx+OvXv31unijDFmlvE7KraWqU2hUODo0aO8cmMEPEITSKampiI/P9/g+zK08vJyrFq1Ch07dhRMFDBu3DijHLPHTZw4UfCuurW22ApdaA4fPpzXddRQevbsybuIvX//Pm7cuGHQ/Qi17vTr1w/t2rUz6H7MTahb26FDh8xQk9pjjAmO3zFmdraq7Ozs0NwnGNkPGVo05NDJ3bDjeBhjeO211/Dw4UPeMqFWd0D5mxYUFIT//vtPr32VnlO2Nledewcw7PgdFaGkGedzlYGjIt1601Oru7N1exacWPMGmtDN1a5duxpkAmp1t7b0R93a9uzZY9WtZZaOAh4jEAp4/vvvP6NlyLp9+zbeeustXvnevXsxfPhwdOnSBd98802tLnTPnz/PuyPs6Oho0P7B1RG6o5mamorc3Fyj7tdYd/ATExMFu3IYYnb7xzVp0gSdOnXSKGOM6f2jakqMMWzfvh3du3fH3LlzBc+zk5MTli1bZpL6tGjRQvAi0xqTF5SUlAhmAhJKzmAo9vb2CAwM5JUb8qZFeXm5YFBsK8kKqtIW8FhTi2NiYiJu3rypUSYWi9UXgKYQHt7n0Z31toadgPSPP/4Q/JxNnz4dcXFxmDdvnuDzMjIyEB4eLtjlVAiTV0Ce/BcAze5srVu3NsrErY9PPgoAhy4r03kzKx3Ho+zOVpmdzXccb7nQe6Ku43dUBg8eDDs7uyrjyTjcunXL6seIWjIKeIygXbt2vJnay8vLjXah+dZbb1U7j8CVK1cwb948eHl54fXXX8fFixd13rZQ606fPn3QoEGDWtVVX25ubujatSuv3BjjAEpLSzFz5kw0aNAArVu3xs8//2zwfQh1Z+vTp0+dMr5Ux5rG8Zw6dQrh4eEYN25ctV0yFy1ahLZt25qsXkIBwZ9//ony8nKT1cEQdu/ezbvr3KhRI6NfaBp7HM/evXt5aWOdnJwwbhz/AsbaBQcH8757c3NzkZCQYJ4K1YJQ607fvn0NctdcV1UnIA0z4ASk9+/fF8wm6enpgaVREyDKOI2v330Fv/2wDG4N+N/5paWlmDRpEj744IMag1jFjRg4yAtx6Z4CF7I1s7MZY9yaUKa26CTlnEKmyNTGFHLIYlegwekvITv+FWRnfoT8whbIr+yD4tYpKO5dAivMBKso0bmVhGVIwfLSgEYtwbXRLcOuoQIeV1dX9OnTBwlZDEXlDJ2bitDCBUbt1sbkFSjf9hLKvgtA2br+KN/8LMq3T0HF7nmoOLQQstgVkP33M+TJOyC/dgiKjP+gyLkGVnQfTM5PvmFtjNsBvp7iOA5hYWHYvn27RnlsbKzBPiwqMTExOt8RKioqwpo1a7BmzRoMHDgQs2fPxsiRI6tNA2rO7mwqwcHBSElJ0Sg7deqUug+sITDGMG3aNPWA9JKSEkybNg3JyclYunQpRCLD3BsQGpRozK5ZvXv35t39trSA59q1a3jvvfewdevWatdzcnLCokWL8Pbbb5uoZkqjR4+Gs7OzxoSWubm52LdvH0aNGmXSutSFULKFMWPGGHxw8+OMHfAIdWd79tln4erqarB9WAoHBwf07dsX0dHRGuWHDh0y6iTQhiTUrdIU2dmqevLJJ/HWbeX/VQFPeno60tPT6zRZ5xtvvMHLwAkAuxeNgsMfI6C6RfIsgGffEkGmcEReKUN+KZBXylBQCuSXMuQlfYUds7Zj2Ojn4Nj4CXBOjQEnN41/5eeV3+tVW3cA442vdXBwgLe3t8YN08QsBrnYGeLca2CFWeAaeVSzhbqRH1sCWcyncAZQ48QUYgfe8RL6V3Fd+Xss7jYGnEjzOqi8vFwwq2ldExZUNWLECBw5cgSnbzMM6MAhtI2yW9vjqcwNRXboI3WCBgDQu/OcfYMqx68xOCc3wKkxXOT2UES8AdET/FZAS0IBj5FoC3gMSSaTYfbs2bV67qFDh3Do0CG0a9cOr7/+OqZNm8a7w1ZcXIzjx4/znmuqhAUqISEhvAknDT2OZ8mSJYIXhMuXL8etW7ewcePGOg+olclkOHbsGK/cmAGPJbfw5OTk4LPPPsN3330nmLpVheM4vPzyy/j000+NnhlQSKNGjfDMM8/wbixs3rzZagKevLw8wTuHxuzOpiIU8Jw7dw5lZWV1zkyYm5uLf/75h1dui93ZVAYNGsQLeA4ePCjYrdmUGGMoLS1Ffn4+8vLy1P9W/f/9+/cFW6NMNX5HxcXFBfYte6Gg7Dw6uHNo2Qi4U6j8ja5twLNv3z78+uuvvPJ3XhqIrlnK3xbOqzdQ/hCsNB8ozYNdRRGaNeDQrAEAPN4qkwbELanx4r5qwCMWi42a6a579+4aAY+cAVniNvCSp0KRHgtx97FG2a/8+hHIYj4DwKGk5/+hYaNGQGme+jg+/i/k5UDRXbAi5XQgNV3YC3VnO3fuHG8YQvPmzXnpueti+PDhePPNNxGbrsCADiKEteXwzoE4PHjwwODjKuWpeyCPWwFwYtiP3wTOpbnW46f1uFYUAxXFYIV3ADw6rk4AmOR5gAKe+knbBKSMMYM1N3///feC/T1//PFHeHh4YPXq1Thw4EC120hLS8Pbb7+Njz76CC+88AJmz54NPz8/AMCxY8d4M2F7eHigR48eBqm/roQytZ0+fRoKhcIgLS87d+7E+++/r3X51q1bcefOHezcuRNNmzat9X7Onj2LwsJCjTJXV1f06tWr1tusSa9evSAWizVSrqanpyM7OxstWrQw2n6rU1ZWhm+//RafffYZ8vLyql130KBBWLp0aa1ntTaUF154gRfw7Nq1C4WFhWjUqJGZaqW7LVu28LrgtWjRwiSJH9q0aQMPDw9kZWWpy8rLy5GQkFDnOXK2bNnCC5Y9PDwEx7rYCqEL2uPHjxskgBSSlJSEY8eOITc3VyN4EQpoatPN08/Pz6RdVFVCwsJx6lYinurEIayNCFuTFThx4gQmTZqk97YePnyIV199lVfetkVjfNTzBvBQBnHwbNgPXaqxnMkrUJybibfnzcCpI9Fo7AS4OXEa/3q4OWPEoHC0aOwEVpoHlOaDleajovAe/kkuQer9R5fzwcHBcHNz07v+uurevTuvJT4pryG8Gijn4zFGwMMeZqNiRyQABnHfd1Hs839oUsOcYayiVOcLea5pJ3Ct+N9DQt3ZQkNDDdpdsEuXLmjfvj1O3ExTbr+NCHJ5Bfbt24fnnnvOYPth+bdQ8fcrAAC7gZ9A3O1Z/bfBGFD+sMrxy1cfx7zsm3BvZvhxYwbHGLOGP4tx+/ZtndYrKytjTk5ODMogWP2XmppqkHpkZ2ezxo0b87bfu3dvJpfL1eulpKSwWbNmsYYNG/LW1fbXp08f9ueff7JZs2bxlk2ePNkg9deHTCZjjRo14tUlOTlZvY6u5+VxiYmJzMXFRafj4uPjw65du1br17FkyRLeNkeOHFnr7emqZ8+evP3+888/Rt/v4+dEoVCw33//nbVr167GY929e3e2d+9eplAojF5PXZSVlTF3d3dePTdu3GjuqmmVk5PD1qxZw0JDQwWP8Zw5c0xWl2eeeYa3/2+++abO2w0ODuZtd/78+QaosWnp8/0ll8tZs2bNeK/7yJEjBq2TQqFgX3zxBeM4Tuffjtr8LVy40KD11tW2bdvY233ErGShI1sx3I4BYH5+furl+pyTefPmCb62y0uCWMlCR1b6QxhTVJRpfb5cLmcff/yx1mNkZ2fH1qxZo/GcYcOG8db79NNP9T4O+vjzzz/53yOjA5SvcU1vg+9PIZexsl+GKbf/8yCmkFXU+rdeX2PHjuW91i+//NLg+5k1axZztgPLX+DAHn7owBo5gL300ksG275CVs5K/9ePlSx0ZGW/Ps0UVa4PDcVU50QPgrGEuQMZmw14GGOsb9++vA/Mzz//bJB6TJ06lbdtjuNYfHy84Pr5+fls1apVzNvbu04/Tps2bTJI/fU1cOBAXl3WrVunXl6bD1x2djZr06aNXq//iSee0HqMazJkyBDe9r7++utabUsfr7zyCm+/H330kdH3W/WcHDt2jPXu3bvG4+vh4cF++uknVlFRYfT66WvGjBm8+g4ZMsTc1dJQWlrKtm/fzkaPHs3s7e2rPdanT582Wb2++OIL3v6ff/75Om0zNTVV8HUlJCQYqNamo+/318SJE3mv+4MPPjBYfRQKBXvnnXeMGuiofrMuXLhgsHrrIzMzk4W14VjJQkcWP8NeXZ+8vDzGmO7n5NSpU4JB4TcvdmElCx1ZyRdPMHnudZ22tW3bNtagQQOtx+v1119n5eXlrKSkhDk7O/OW1/a3SVfJycm8fbb2bM5KPm7IShY6MUXxA4PuryLmc+Ux/LIVU+RnMMZMc3GtUCiYh4cH77WeOHHC4Pvas2cPA8BiptqzkoWObHBHjjVr1ozJZDKDbL98//vKY7isA1M8vGeQbT6OAh4KeNh7773H+8BMmzatznU4deqU4JfhK6+8UuNz5XI5i46OZiNHjqzVnbvs7Ow61782Pvjgg2pfr74fuNLSUhYWFib4GkeNGsU2btyo9YKxQYMGbNeuXXrtr7y8XLAl6dy5c3ptpzZ++OEH3n6HDRtm9P3evn2bpaamstGjR9f4vmrQoAFbtGgRKywsNHq9auv48eO8eotEIpaVlWXWeikUCnb8+HH26quvsiZNmuj0Ofbx8TFp69nhw4d5dejYsWOdtvnhhx/yttmzZ08D1di09P3++vHHH3mv/cknnzRIXeRyuWDrvjH+PvzwQ4PUuba6eXdkeR84sKKPHJibk7JOe/fuZYzpdk7KysqYr68v73WFtndkxR+7sJKFjkx28W+96pSQkFDtjbj+/fuz33//nVferFkzjd4dxlBeXi74u/hwTajytabuNdi+ZNdjWMkiZ1ay0InJruxXl5vi4vr69eu81+jg4MBKSkoMvq/i4mLm7OzMPh+kbG1cNEDMALBTp07Veduy1L3KYGdRAyZPM3ywpkIBDwU87N9//+V9aLp27Vqn/cvlciaRSHjbdXNzY3fv3tVrW1evXmVvvPGGYNc4ob9evXrVqe518c8///Dq4+vrq16uz3lRKBQsMjJS8DX6+vqygoICxpjyIk3bsRGJROz777/XeZ+xsbG8bbi7uxv9B4oxxs6ePcvbd9OmTY16wXv37l02ZcoUZmdnV+17SiQSsVdeeYXduXPHaHUxFLlcztq2bct7DYbomlUbqamp7MMPP2Tt27fX6yKzUaNG7PDhwyata0FBgeANFn2/s1Tkcrlg18hly5YZuOamoe8Fg9AFmUgkUrdO1JZMJmNTpkypdQBjb2/Pmjdvzjp37swkEgkbNGgQGzduHJs2bRqbP38+++STT9iqVavYL7/8wq5f163Vw5imTJnCDkUq76wP6yxiwKOWMl3Oyaeffsr/LXYCy1rUgpUsdGTle2rXvTI7O5uFh4drPc5Cn6VJkybVal/66t69O2/f19a9pHy9BwzTyqgozGYlS9spt3lQszeCKS6uf/31V95rDAkJMdr+Ro4cyYZ7i1jJQkd2YIoyoKzrzQBF3i1WsqQlK1noyCqOGb4rXlUU8FDAw3JycgS/rHJycmq9/59++klwm6tXr671Nh8+fMjWrl0r+EVW9e+dd96p9T7q6t69e4Jf+vn5+Ywx/c7L119/Lfj6mjZtyvsRTkpKYq1bt9Z6TN5++22dgpbPPvuM99xnn31Wv4NQS+Xl5YLjyYx1wbFhwwbm6upa48XRsGHDzNadpbaEWm179zZ833Vt7t27x1avXq1T98DH/7p168beffddswWXQnfC//3331pt6+jRo4IX/NYQOAupzQVDhw4deMfg77/1a02oqqysjE2YMEHr+2fChAlsyZIlbO3ateyPP/5ge/fuZSdPnmQXL15kd+7cYcXFxRYz5k5XP/30E/tkoPLO+meDlHfWIyIiGGM1n5OLFy8yBwcH3nGKnt6sctxOaLXjdmpSVlYm2B1Z298vv/xS633pQ+g9smvFTOVr/l9EnbevkMtZ2S/DldtbN4ApZJrdm01xcf3aa6/xXuObb75ptP19//33rIkTWMlCR/bgAwfmIAYLCAio9fYUsgpWuq6/ctzOxpFGGbdTFQU8FPAwxhjr2rUr74NT2wHjubm5goNVe/bsaZAxDwqFgh05coSNGTOGiUQijX04ODiwy5cv13kfddGpUyfeaz9w4ABjTPfzsnv3bt5rA5R3Jo8ePSr4nIyMDObv76/1h+a5555jpaWl1e5XaAzSqlWr9DsAdRASEsLb/5YtWwy+H6FBrY//+fn5qc+btUlKShJ8TVeuXDHaPouLi9mWLVvYqFGjamwxe/yvRYsWLCoqip09e5YpFAqz/jBNmzaNV7/a3sUU2tbQoUMNXGPTqc15+b//+z/eMZg1a1at9l9SUsJGjhyp9X30/vvvW10wo4uUlBT2VCflnfUjU5V31p2dnVlZWVm150Qulwt2iZ4dbPdo3E5O7RPcqCgUCrZq1SomFotr/KxnZmbWeX+6WLRoEW/f82e9wkoWOrGSTxoxRXndun1VHF1cOW7Hiyny+efAFN9hQol+duzYYbT93bx5kwFgZ2YoWxtDWytb8Gp7A6f8wILKcTvtmeJh7VrR9UEBDwU8jDHhAePvvvturfatrV+1tgv1urh58yZ79913WVBQEJNIJGznzp0G34e+XnzxRd5rV2Wl0eW8JCcnC2Z7A8D+97//VfvcgoICwaQDqr++ffuy3NxcweeWlpYKtrCYsnVjzpw5vP0b+o7VtWvXqm3Z8fLyYhs2bDDYYExz8fPz4722jz/+2KD7UCgU7OjRo2zatGk6tZZV/WvQoAF74YUX2N69e3k3Qsz5wyTUOj148GC9t1NcXCz4Of7tt9+MUGvTqM152bJlC+8Y1KbLdGFhIRswYIDW99MXX3yh9zathUKhYO083VnRRw4sf4EDc7ZTvuZTp05Ve06+++473nEKbMmxhx85K8eyJP9l0HoeOHCg2vF5/v7+Bt1fdbZu3crbf0REBCv9XsJKFjoy+Y1jtd62/MbRynE7jkx2eZ/gOsb+DsvLyxPsMmjssZq+vr5s5XBlwPxmuDLArZqYSVeyy/sqx+041+lc6IMCHgp4GGOMrV+/nvfB6dOnj977TUhIEGyZqGumI2si9CMzYsQIxljN5+X+/fuCXUAAsHnz5um0//LycsE7y1UvNm7cuMF7nlD3m+bNm5v0jqlQn+S+ffsabPtlZWWCY8sAsIYNG7LPP/+cFRUVGWx/5vTll1/yXqO3t7dBzmdhYSH7/vvvWbdu3fQKckQiERs8eDD75Zdf1GPQhJjzh+n8+fO8ejdu3FjvcWxCA7YbNWpk1e+v2pwXoW6+APTa1oMHD7SmLQdM2wptLs888ww7OV15Z71vO+WF7rJly7Qex/T0dF7A3dgR7Mr8BpXjdt4wSj0vX77MunTpInieTNnd/OLFi4K/Z+X/zlWOFzm6uFbbVRRms5Jl7SvHAi3Qup6xv8P27dvHe311TbCii7fffptN8FW2Nv71vLIlf8yYMXptQ5F/m5V86VWn86CvmzdvssGDB5s9ec9jKOAxBH0/bJcvX+Z9eJycnFhZme59exUKBevTpw9vOy4uLpYYWRvNf//9xzsGqsH31R2H8vJyFhERIfhDMWTIEL26AyoUCsGBqqo/Dw8PJpVKNZ4j1AVg/PjxtT4OtXHp0iXB94+hWlveeOMNweMxbNgwS/sirLP09HTBO4Bnzpyp9TavXr3KoqKidE4govrz8/NjS5cuZRkZGTrtx5zfFzKZTHA+sJSUFL22IzT/yNSpU41Ua9Oo7Xnp1asX71joOpbj3r17gs9XBdC1ubtsjb766iv29VDlOJ73+irvrI8ePVrwnCgUCsGuf39MUN6ZL10bwhQV1Xdvrou8vDw2fPhwjX2LxWKNOemMTVumttzY/6nHjOhLIZezso0jKsft9OeN26nK2N9hH330Ee+1mWL+waNHjzKvRspxPFnvODARp7yRo+u1onLczgDlOfhluNHH7TCmzFzavHlzBoCFhobW2LXfhCjgMQR9P2wKhUL9hqj6p0/Kwc2bNwv+KBljEixLVl5eLjj3wOXLl7WeF4VCwV599VXB4+fj48MePHhQq7r88ssvWsdTuLi4sN27d6vX7devH28dfTK8GYJcLhe8mE5KSqrztnft2iV4HFq3bl3r42vphM6pri2FKgqFgu3bt0/vFPEtW7Zkb731Fjt//rze9Tb3DRKhGw8bNmzQ+fmZmZmCLd0xMTFGrLXx1fa8vPnmm7W6OMvIyNDaimhnZ8f++OOPWtXHGsXFxbEx3ZR31v99UXkh37x5c3br1i3eun/88QfveL3eW1w5bqe5Qcbt1EQmk7ElS5awNm3asM6dO5ulK6dQApLYfduVx+HzZkwh1+9GWsWxL5XPXdKSKfL4x70qY3+HDRo0iPfafvjhB6PukzHl9U3jxo1ZyhwHVrLQkfVsofxNOHTokG7PP/iR8hgubccUhcafPuSnn37iBb5Tp061lLF+FPAYQm0+bEKzjOs64WRBQQHz9PTkPd/b21uvViJbITSZ68aNG7Wel9WrVwv+qDdp0qTOSRgOHjyodXyFWCxmP/zwAysuLhbM5KPvXW1DEEqcsH79+jptMz09nbm7uwteNNU2OYc1EJoHxcPDQ6cWs4KCArZ69Wrm4+Ojc5DTsGFD9vLLL7ODBw/WqVXO3AHPu+++y3ttM2bM0Pn5QhkW27Zta5L07sZU2/MSHR0tGBBXd9GRlpbGOnbsKPg+c3Bw0HuOMWtXWlrK2jR1ZCULHdm99xyYmFMei2PHNMc/3L9/n3fzMsCTY/kLHCvH7RhvULulEcrU9t1337HSlcrJVuUZZ3XeljzteJVxO9E1rm/M77CKigrBVmhTjbedMGEC+99oZWvha72VN3bmz685tbnsyn5l0ohFzkx23bg3f8rLy9ns2bO1/lZZSDdYwVhCBGJ0YWFhvLLY2FidnvvZZ58hMzOTV75q1So4ODjUuW7WJjg4mFd28uRJwXUPHDiAefPm8crFYjH+/PNPdO7cuU51GThwIE6cOAEvLy/eMrlcjldffRUTJkxAeXm5xjIPDw/4+PjUad+1ERQUxCuLj4+v9fZkMhmef/555Obm8pYtWbIEvXr1qvW2Ld24ceN4n7+srCwcOXJE63OuXLmCuXPnwsvLC7Nnz0ZqamqN++nXrx82b96M7OxsbNiwAQMHDoRYLK5z/c3lySef5JWdPn1a5+dv3LiRV/bSSy9BJKqfP2Xh4eG89+GdO3dw6dIlwfUvX76M8PBwXLt2jbesQYMG2L17N0aNGmWUuloqR0dHtOv+JK7mKNDQgYO/JweA/904f/583Lt3T/24sSOwabw9HMSAuPfrEHd71qT1Nqfu3bvzypKTk8G1UV7rKNJ1u75hRfdQvm0ywBQQh70JcechBq2nvi5cuICHDx9qlLm5uaFbt24m2f+IESMQm64AAIS1UX6n7d69u9rnsII7qNgxFQCDXcQCiNv3M1r9cnJyMHToUKxevVpwuZeXF0JCQoy2/7qqn78SJiYU8MTFxSmb2Kpx6dIlrFixglc+evRoDBli3i8GcxEKeE6dOsUru3z5MiZMmAC5XM5btmrVKgwaNMgg9enRowdOnTqFnj17Ci7/999/eWX9+/cHx3EG2b8+hAKeM2fO1Hp7ixYtwokTJ3jlI0aMQFRUVK23aw2aNGmC4cOH88o3b96s8VihUGDv3r0YPnw4vL29sWrVKhQWFla7bWdnZ/zf//0fEhMTERMTg+effx4NGjQwaP3NRSjgOX/+PIqLi2t87vnz55GYmMgrf+mllwxSN2vk4uIieIFx8OBBXtmFCxfQt29f3L59m7fM1dUV+/fvN9j3orUJDw/HiXTl77HqQrPqd+OBAwfwyy+/aDxn7dN2aN+EA+cZALunFpuushZAW8AjalsZ8NysOeBhCgUq/poGFN4B1zoEdgMWGrye+oqLi+OVhYSEmOyGytChQxFX+T4MrXwfXrp0CdevXxdcn8llKN/+MlB8D6L2/SHu847R6paUlITevXvj8OHDgsuDg4Nx5swZSCQSo9WhrijgMYGAgADBu8E3btzQ+hzGGObOnYuKigqNcicnJyxfvtwo9bQGQgHP4xdMDx48wKhRo5CXl8db97XXXsPrr79u0Dq1atUKx48fx+DBg3Vav3///gbdv66EAp7ExESUlZXpva2DBw/iiy++4JV7eXlhw4YN9eKO+/PPP88r2759O0pKSlBQUIBVq1ahS5cuGD58OPbu3Vvj9tq2bYuvvvoKt2/fxo8//qg1iLZmnp6eaN26tUaZXC7H2bNna3zur7/+yit78skn4e3tbbD6WSOhIOXQoUMaj6VSKSIiIpCdnc1bt2nTpjh8+LDgjbn6IiwsDLE3VXfWlTejVAFPUVERXn31VY31ZwSJMLqbGAr7hrAf/ys4O0fTVtjMtAY8bcIBKFt4arqhK4/9Goqr+wFndziM2whObG+UuupDqOdNaGioyfb/xBNPoHEHCe4WMXg24tChibJ8z549guvLjn4OdvM44NIC9mM3gBMZp/V/165dCAkJ0Rp4TZgwATExMfD09DTK/g1GW183C/uzGLXtPyqU+nPjxo1a1//rr78E+0cuXLiwljW3HW3btuUdl61btzLGlH1wn3rqKcFj179/f1ZeXm60epWXl7MpU6bUOB7j6tWrRqtDdRQKBfPw8ODVJz4+Xq/tZGVlsRYtWvC2IxKJNPq9m3u8iLFpmw9myJAhgv3Atf0NGDCA/fXXXyaZn8gSzsn48eN5x2Dp0qXVPqeiokLwvfvdd9+ZqNbGVZfzcvLkSd5xcXV1VWefPHbsmNb5xzw8PEw6H5ilys3NZR3cOVay0JHdesuBcZXHJzs7m5eBMsCTY3kfKAeWy5K2m7vqZlFRUSGYqe1udjYr+aq1chzPPe1jZOVpJ1jJImUab1nqHr32bczvsDZt2vBe0+HDh422PyEff/yxOuvfS/7KcTxCkyrLrh5UjttZ6MRk14xTR4VCwT777DOtSXVEIhFbsWKFYIIPM6MxPOakzziekpISwS5Bbdu2xTvvGK/J0loItfKo7hDPnz8f+/fv5y3v2LEjtm7dCnt7491Fsre3x88//4yFC7U3zbdu3RodOnQwWh2qw3FcncfxKBQKvPjii4J3ij/++GP06dOnTnW0Js7Ozhg7diyvfN++fbx+4I9r0KABXn31VVy4cAGHDh3C6NGjrXpsjj5qM47n0KFDyMrK0iizt7fHxIkTDVo3aySRSODq6qpRVlBQAKlUiv3792PIkCGC3Shbt26NY8eOwdfX11RVtVhNmjSBi1d3ZBYyNGvAwaeZspVn5cqVWLlypXo91bgdRzsOoqBXIe4+xkw1Ni87OzvBcajJFy9CpB7Hw+/uDACs6H7luB05xGHzIfYeZtS66ur27dtIT0/XKBOLxejdu7dJ6zF8+HDEPta98siRIygqKlKvwwozUbEjEgCDuN/7EHcwfK+R4uJiTJo0CQsWLBBsrXNzc8PevXsxb948s3TRrw0KeExEn4Dnq6++QlpaGq98xYoVcHZ2NnTVrI5Qn/WzZ8/ixx9/xKpVq3jLXF1d8c8//6Bp06ZGrxvHcVi0aBF+/vln2NnZ8ZYPGDDArF8OdR3Hs2TJEsHxAQMGDMB7771Xp7pZoxdeeEGv9du3b4+vv/4at2/fxtq1a+vlxWZtAh6hZAUjR440yWfa0tnZ2SEiIoJXvnDhQowaNQolJSW8ZZ06dcKJEyfqnLjFloSH93nUra2t8jt68eLFUCgU6nXWVI7bKXfvCvunvjRLPS1FzeN4+AEPUyhQ8fcrQGEGuNbBsBuwyMi11J3Q+B1/f3+4uLiYtB4BAQFIeegG4FH3yrKyMnVCHKaQo2L7FKDoLkTt+sGu3/sGr0N6ejrCw8OxZcsWweVdunRBfHw8nnrqKYPv25go4DERoX6gycnJvHEmN27cwJIlS3jrPvXUUxg9erSRamddhFp4Tpw4gZkzZ/LKRSIR/vjjD3Tt2tUUVVOLjIzE7t270bBhQ3UZx3GCWeNMqS4Bz4kTJ/Dhhx/yyp944gls2rSp3rRQVNW/f3+d+i0PGjQIu3btwpUrV/DGG2+gSZMmJqidZQoICODdDLh16xbu3LkjuH5BQQH++usvXvnkyZONUj9rJDSOZ//+/bwMkYDyQvXYsWNo06aNKapmNcLCwngZsqp6NUiEZ7uJUQZHNHxxGzh7J1NX0aJoD3iU43iYQOICedwKKK5EK8ftjLWMcTsqQgGPOca1iUQitA0aicIyhk5NRWhRGW+psrXJjn4BRdpRwOUJ2I/9xeDjdk6cOIGgoCCcO3dOcPmIESNw6tQpq7xZQgGPiTRv3pz3BmGM8TKMvfHGGygtLdUos7OzwzfffGM1zYbG5u/vz0sCUVRUBJlMxlt32bJlGDbMPE3mTz31FBITEzFz5ky8/PLLOHHiBPz9/c1SFxWhgCclJaXGzGE5OTmYNGmSxt1OQBnEbdq0yfIHKxqJWCzWmiXMxcUFr7/+Oi5evIgDBw5g1KhR9TIofFyDBg0EEzJoa+VRJYKoyt3dXTBLXn01cOBAndYLDAzE0aNH6+3ntTrh4eG8rkQqvTw5fPmUMkh3HvMTRO4dTV4/S6M1NXWLHoCjK1heGlhBhnqZIj0OskMfAQDsR/8PnJtlBdzmTlhQ1dDhI3H6duV7sa3yvbh27VrMecYfsqNfgIGD/Zj14Bp5GHS/69atw4ABA3D37l3B5e+88w527tyJxo0bG3S/pkIBjwnV1K1t3759+Pvvv3nrREVFoUuXLsasmlVxdHREYGBgjetNnTrV7C0qHTp0wLfffosNGzaY7cuzqqZNm/LGEDHG8N9//2l9DmMMU6ZMEUxn++677+qcnc5WLViwQOPHv2PHjlixYgUyMjLw3Xffmbx10Rro061NqDvbpEmT6uU8ZNp07dq1xiAmLCwMhw4dom6AWrRp0wb5Di2RV8rQxo1D68phUa6OwKZxynE7ue3GwKHnBPNW1EIIBTwXL14EJxJD1FrZC0OVnpoV56B820vKcTuhURD7WNbNiqKiIsEWDXNlLhw8eDBOVv7cqrq1tXAB3uicAg4MX51QYMLb3+Ovv/6qVZbVx8lkMsyZMwevvPIKLzMwoMwOvHnzZixZssSqb9pRwGNC1QU85eXlmDNnDm+5p6enYDei+k6oW1tV4eHh+P7776lVTIC+3dq++eYbwfmEwsLC8Mknnxi0btaoUaNG6jlzzp07h8uXL2PevHlWexfMFHQNeG7evImYmBheOXVn08RxXLVz6AwaNAj79u2j92Q1OI5DaFgfxKm6tVXeWf9+lB06uHO4o2gOzxd+NmcVLUrHjh15Nx3u37+Pu3fvVklcEFs5384rQEEGuFZPwm5g7X4zbt++jfXr12Pfvn2CvTnq4syZM7w5+1q3bo1WrVoZdD+6aty4McqaKyfuDm0jgogDfh5jD4+GHI6lKfDJ4XLs2LEDY8aMgYeHB1599VUcP36c1wNDF7pMJnr8+HHBaRisDQU8JiQU8Jw+fRoymQzffPMNLl++zFu+dOlSNGrUyBTVsyrVBTxt27bF9u3b4ehYv+ZG0JU+Ac+ZM2fw9ttv88qbNGmC3377TTAxQ30kFovRr18/+Pv714s5iOpK6PMrdNGxadMm3no+Pj6C7+H6Tlu3tqeffhr//POPyQdfW6Pw8HD1xI9hbUWYLhFhbHcxHpZz8Hh1b70ft1OV1kxtj01AKj/5DRRX9gJOTWo9305SUhICAwMxdepUTJs2DRKJROucMLUh1J3N3PNSvfDWSpTLgZ4eHD4fJMaADiLcLWKYsr0CiipJ0/Ly8vDjjz+ib9++6NChAz744AOkpKTotI/k5GT07t2bN2+XijVMJqoP+mU2IR8fH95g5eLiYuzdu1fwTnl4eLhNRNXGIJSpDVCOm9i1axeeeOIJE9fIegil2RQKePLz8zFx4kTBJu4NGzbQoGdSa507d4abm5tGWVFREZKTk9WPGWOC3dkmT55MLbcCnn32WTRv3lyj7LnnnsO2bdvg5EQX6rqoOgHpSB8RvhqivKGT4fcOGnjVv4yKNdE6jqelBBA7gN1NhuyQsoeK/bP/A+fWVu99yOVyvPzyyxrjShITExEYGKh1Qk59WUrCgqp6BYVA1DIAIo7DvFA7KBjD1B0VyKxmxoObN2/iiy++QLdu3RAYGIgVK1bw0vmr7Nq1C8HBwVoDxylTpljHZKJ6oIDHhEQikeA4jpdffpk3b4dIJMK3335LP+xatGrVijfDOsdx+O2332xyhnpDCggI4LVCpKWl4d69e+rHjDFMnz4dN27c4D1/3rx5ePrpp41eT2K7RCKRYOBdtVtbfHy8YKv3iy++aNS6WStXV1fs3r0bAwYMQI8ePfD1119j06ZNRp17zNb4+fnBsV0wSioYPBpycLTjcKLYB34TF5m7ahZJa8Bj7wTOSwKAAQoZxCFzIfYZUat9rFmzRj3PXlV5eXkYOXIkPv7441p15VJRKBSCAY8ljLl17PRofp0c7yno8fRctGjRQqfnnj17Fm+88Qa8vLwwdOhQbNq0CQ8fPgRjDF988QVGjx4tOF+cSCTCihUr8PPPP9teLxltM5Ja2J/FqOssv1988YVOs6/PnDnTQDW2XTt37mSOjo4MALOzs2PffvutuatkNXx9fXnvud27d6uXr127VvB9GRgYyEpLS3XahzFnxCa1Y0nn5MMPP+S9v6ZNm6ZePnPmTN7yiIgIM9bYeCzpvNR3N2/eZAlvt2IlCx3ZjY9as4rSh+auksXasWMH7zPat29fxhhj5YcWspKFjqz0xz5MUVFWq+1nZmYyV1fXGq+Xhg8fznJzc2u1j6SkJN72XFxcWEVFRa22Z0jyG8eUx/DnQUwhU9anoqKCRUdHsxdffJE1aNBAp+tJ1V+DBg2YRCLRutzNzY3t27dP73pa4PeXYCxh7kCm3gU8R48erfFN2bRpU5aTk2OgGtu2GzdusO3bt7OYmBhzV8WqREZG8t53ixYtYowxlpiYyJycnHjLGzVqxK5evarzPizwS7Des6Rzsnv3bt57rHv37owxxsrKypi7uztv+c8//2zmWhuHJZ0Xwpjsyn6Wv24Yk+fo/n1XH126dEnw+kWhUDBF8QNWcWI5UxRm13r7zz//vM4X8x06dGAJCQl67+PHH3/kbWvAgAG1rrOhyTPPM0WF8E3GwsJCtmnTJjZ06FAmEon0Cn4e/+vSpQu7fPlyrepogd9fgrEEdWkzMYlEUuNA78WLF8Pd3d1ENbJu7dq1w5gxY9CpUydzV8WqaBvHU1RUhIkTJ/LmggKAn376CR070vwTxDCE3oMXL15EQUEB9uzZg9zcXI1lzs7OGDt2rKmqR+oxcafBKBxC8+3URChTW05ODu7evQvO2Q12YVHgGtZuPO3hw4fx22+/8cq1Tdp8/fp1hISECCY6qY4lJiyoSuTRA5ydcNeyhg0b4oUXXsDevXuRkZGBlStX1irBgDVPJqoPCnhMrEGDBggICNC6XCKRYOrUqSasEamPhLJcxcfHY9asWbh06RJv2fTp0zFx4kRTVI3UE82aNeMF0IwxSKVSwWQFzz77LFxdXU1VPUJIDezs7ATnCKyafKQ2ysrK8Prrr/PKmzZtipiYGK1TdZSUlOCll17CrFmzUF5ertO+LD3g0ZWHhwfmzp2LM2fOICUlBQsWLEC7du1qfJ61TyaqDwp4zKC6D9O3335r1RM7EevQo0cP3p25e/fuYcOGDbx1fX19sXLlStNUjNQrQvPx7NmzR3DeJ5p7hxDLoy1xQV18/fXXSE1N5ZV/9dVXaNq0KT755BPs2rVL60X6d999h/79++POnTvV7ufu3bu4evWqRhnHcTXO82fpunTpgk8//RTXrl3D8ePH8eqrr/JaxmxlMlF9UMBjBtoCnsjISMELAEIMzcHBAf7+/jWu16BBA/z5559wdnY2fqVIvSN0YbF69WpeKnRPT0+t88wQQsxHKOC5ePFirbd348YNfPrpp7zy0NBQTJkyRf141KhRkEql6NGjh+B24uLiEBAQgGPHjmndl1B2Nl9fX5tp7RCJRAgPD8fatWuRmZmJv/76C7Nnz8bcuXORmJhY76Y9oYDHDMLDw3kRtaurKxYvXmymGpH6SGgMxeO+++47dO3a1QS1IfWR0A0eoa4oL7zwAk1yS4gF6tatG6+sti08jDHMnj2bN4ZULBZjzZo1vOkUOnXqhJMnT2q9cM/OzsaAAQOwYsUKZZaux1ji/DvG4ujoiNGjR2PVqlVYuXIlb1qP+oACHjNo0aIF5syZo34sFovxww8/6JxfnRBDqGm2+pdeegkvv/yyiWpD6iM/Pz9e10oh1J2NEMukrUubUIBRk507d2L37t288rlz52qdX8/FxQWbNm3CqlWrBG+KyOVyvPHGG5g0aRJv3hmh8TuWMP8OMQ4KeMzk66+/xq5du7BkyRIcP34czz33nLmrROqZ6gIeb29vfP/99zTxLTEqR0dH9OrVq9p1/P39tXZbIYSYV8eOHXkTVObm5iI7O1uv7RQVFWncCFbx8vLCokWLqn0ux3GYPXs2jhw5Ag8PD8F1tmzZguDgYPVkxqWlpZBKpbz1bLWFh1DAYzYcx2HUqFF45513EBISYu7qkHrIx8cHjRo14pU7Ojpiy5YtaNiwoRlqReqbmgYIU+sOIZZLLBYbJFPbJ598glu3bvHKV65cKfg7JSQ8PBxnz55FeHi44PLk5GQEBQVh586dOHv2LK/7bIsWLdC+fXu96k2sBwU8hNRTIpEI/fr145UvX75cp4QGhBhCdYlaxGIxJk2aZMLaEEL0VdfEBcnJyVi+fDmvfOjQoXrPveXp6YnDhw9j7ty5gssLCgowevRozJw5k7csLCyMejXYMAp4CKnHPv74Y42WnNdeew2vvfaaGWtE6pvqAp4hQ4Zo7aJCCLEMdUlcwBjD66+/DplMplHu6OiI1atX1yoAsbe3x8qVK/Hbb7+hQYMGguskJCTwyqg7m22jtDeE1GMBAQG4evUqoqOj0bZtW0RERJi7SqSead++PZo3b4579+7xlr300ktmqBEhRB91mYvn119/FUwd/f7776NTp051qtekSZPg6+uLMWPG8ObbEUIJC2wbtfAQUs+1aNECL7/8MgU7xCw4jhNs5XF1dcUzzzxjhhoRQvRR20xtubm5ePPNN3nlnTp1wttvv22QuvXo0QNnzpzBqFGjql3P0dERAQEBBtknsUwU8BBCCDErocQt48ePpwlvCbECHTp0gJOTk0bZgwcPkJWVVe3zPvjgA8GW3e+++463vbpwc3PD33//jc8++0xrF7mgoCCdUuQT60UBDyGEELOaMmWKxgWOk5MT5s+fb8YaEUJ0pS1TW3WJC+Lj4/HDDz/wyidMmICnnnrKoPUDlEl6PvjgA+zduxfu7u685YMHDzb4PolloYCHEEKIWbVs2RInT57Ec889h7Fjx+LAgQPo2rWruatFCNGRPokL5HI5XnvtNV6Xt0aNGmHFihVGqZ/KkCFDIJVKERgYqC7r3LkzZs2aZdT9EvOjpAWEEELMzt/fH7///ru5q0EIqQV9EhesWbMGZ8+e5ZV/8sknaNmypcHr9rj27dsjPj4ehw4dQnFxMQYPHqw1mxuxHRTwEEIIIYSQWtM14MnMzMQHH3zAK/fz8zNpK4tIJKJubPUMdWkjhBBCCCG1pmumtjfffBMFBQW8ddesWQM7O7oHT4yHAh5CCCGEEFJr7du352VWy8vL08jUdujQIfz222+85/7f//2fYKZGQgyJAh5CCCGEEFJr2jK1qbq1lZWVYebMmbzlzZo1w+LFi41eP0Io4CGEEEIIIXVS3TieZcuWITU1lbf8q6++QtOmTY1eN0Io4CGEEEIIIXWiLeC5ceMGPvvsM96ysLAwvPzyy6aoGiEU8BBCCCGEkLrRFvDMnj0bpaWlGuVisRhr1qyBSESXocQ0KCUGIYQQQgipE6GA59SpU1AoFLzyefPmoUePHqaoFiEAqIWHEEIIIYTUUbt27XiZ2oSCHS8vLyxatMhEtSJESacWHolEEgHgQygDpFUA7gH4CoACwGtSqfSCRCLxALARgAuANVKpdJNEIhED+AlAZwD/SaXSeZXbmwtgAoAcAC9KpVJ+UnZCCCGEEGIVxGIxunbtinPnzlW73jfffIOGDRuaqFaEKNXYwiORSJwBzAcwTCqV9pdKpX8B+BzACADPA/iyctV3oAyC+gGYKZFInACMBHBHKpX2AeAikUhCJBJJMwBPAwgHsAUAP08hIYQQQgixKkLd2qoaNmwYxowZY6LaEPKILl3aQgCUAPhHIpH8JZFIPAHIpVLpA6lUmg7AvXK93gAOS6VSGQApAF8AoQD2Vy6PBhAGIAjAUalUyqqUEUIIIYQQK1ZdwOPk5ITVq1eD4zgT1ogQJV26tLUA0AlAMIBBAD4GULULmkwikTgAsJdKparOmvlQBkJNqqxbXRkhhBBCCLFi3bp107rs/fffR8eOHU1YG0Ie0SXgyQMQK5VKyyUSySEoA57CqtuoXFYhkUhElUFPYwC5lc91rVyvalmnx8p4JBLJdADTAWDWrFkYPHiwHi/LeCoqKpCRkWHuapDH0HmxPHROLA+dE8tE58Xy0DmpHW2TiLZv3x4vvPBCnY8pnRfLY2nnxMvLS7Bcl4DnDID5EomEA+AP4CKA9hKJxA1AIzwKWM4AiJBIJMcABAJ4G0AclK1CxwAMAbAewFUAb1Q+ZwiAWKGdSqXSHwH8WPmQ6VBPk8jIyICTkxMGDhwIAMjKyoJYLEbz5s0BAPHx8XBwcFCvv3LlSkyfPh0NGjSodrsRERFYtmwZJBKJ8SpvwzIyMrS+yYl50DmxPHROLBOdF8tD56R2PD090bhxY+Tn52uU//DDD+jQoUOdt0/nxfJYyzmpcQyPVCq9D+AvAEehTErwCYAFAPYA+APAe5Wrfln5/2MA1kql0hIA/wJoI5FIjgMolUqlJ6VS6T0AuyUSSSyUSQ++N+xLMr6mTZsiISEBCQkJmDFjBqKiotSPqwY7gDLgKS4uNlNNCSGEEEJMQyQSYd68eRplr776qsX00iH1l05pqaVS6XcAvqtSdA3KhARV18kEMPixMhmAKQLbWwFghZ51FWSKwW+M1dzAdOjQIbz55puQyWQICgrCmjVr8MMPP+DOnTvo378/mjVrhiNHjuC1117DmTNnUFJSgnHjxuHjjz82ev0JIYQQQkzhww8/RIcOHXDs2DEEBgZixowZ5q4SIboFPKR6paWlmDJlCg4dOgRvb29MnjwZa9aswbx587B8+XIcOXIEzZo1AwB8/vnncHd3h1wux8CBA3H+/Hn07NnTzK+AEEIIIaTuxGIxJk+ejMmTJ5u7KoSo6ZKWmtRALpejffv28Pb2BgC8/PLLOHbsmOC6f/75JwICAtCrVy8kJyfj4sWLpqwqIYQQQggh9Qq18JjQjRs3sGzZMpw5cwZNmjTBlClTUFpaau5qEUIIIYQQYrOohccAxGIx0tLScPXqVQDAr7/+in79+gEAGjVqhMJCZRbvgoICuLi4oHHjxsjOzsbevXvNVmdCCCGEEELqA6tv4dEloYCxOTk5Yf369Rg/frw6aYFqkN706dMxdOhQtGzZEkeOHEGvXr3QpUsXtG7dGmFhYWauOSGEEEIIIbaNs4SAQQcWU0lryTde39B5sTx0TiwPnRPLROfF8tA5sUx0XiyPBZ4TwfTN1KWNEEIIIYQQYrMo4CGEEEIIIYTYLAp4CCGEEEIIITaLAh5CCCGEEEKIzaKAhxBCCCGEEGKzKOAhhBBCCCGE2CwKeOqA4zjMnz9f/XjZsmVYtGgRACA1NRURERHw9/dH165dMX36dABAr169kJCQAACQyWRo2LAhNm3apN5GYGAgzp49a7LXQAghhBBCiC2jgKcOHB0dsWPHDty/f5+3bM6cOYiKikJCQgJSUlIwe/ZsAEBYWBji4uIAAImJifD29lY/LioqwrVr1+Dn52e6F0EIIYQQQogNszN3BeqK66sw+j7YMeG40M7ODtOnT8eKFSvw+eefayzLzMxEq1at1I979OgBAAgNDcWePXvw+uuvIy4uDjNmzMCGDRsAAPHx8QgMDIRYLDbOCyGEEEIIIaSeoRaeOpo5cyY2b96M/Px8jfKoqCgMGDAAw4YNw4oVK5CXlwdAs4UnLi4Offv2haOjIwoLCxEXF4fQ0FBTvwRCCCGEEEJsFgU8deTq6orJkydj1apVGuWRkZFISUnB+PHjERMTg+DgYJSVlaFt27YoLy9HVlYWLl26BB8fHwQFBeH06dOIi4tDWFiYmV4JIYQQQgghtocCHgOYN28e1q1bh6KiIo3yli1bYurUqdi5cyfs7OyQlJQEQNmtbevWrfD09ATHcQgODkZsbCzi4+MREhJijpdACCGEEEKITaKAxwDc3d0xYcIErFu3Tl0WHR2NiooKAEBWVhZycnLg5eUFQBnwrFy5Uh3chISEYOPGjfDw8EDjxo1N/wIIIYQQQgixUVaftEBbQgFTmz9/Pr799lv14/3792Pu3LlwcnICACxduhQeHh4AlON4oqKi1AGPp6cn5HI5jd8hhBBCCCHEwKw+4DGnhw8fqv/fokULFBcXqx8vX74cy5cvF3xeUFAQGGMaZWlpaUapIyGEEEIIIfWZZTSPEEIIIYQQQogRUMBDCCGEEEIIsVkU8BBCCCGEEEJsFgU8hBBCCCGEEJtFAQ8hhBBCCCHEZlHAQwghhBBCCLFZFPDUAcdxmD9/vvrxsmXLsGjRIgBAamoqIiIi4O/vj65du2L69OkAgF69eiEhIQEAIJPJ0LBhQ2zatEm9jcDAQJw9e1bnOkyZMgXbtm2r+4shhBBCCCHEBlHAUweOjo7YsWMH7t+/z1s2Z84cREVFISEhASkpKZg9ezYA5aSjcXFxAIDExER4e3urHxcVFeHatWvw8/Mz3YsghBBCCCHEhln9xKN7mu4z+j6G5wwRLLezs8P06dOxYsUKfP755xrLMjMz0apVK/XjHj16AABCQ0OxZ88evP7664iLi8OMGTOwYcMGAEB8fDwCAwMhFov1qt/BgwexZMkSFBQUYPny5Rg5ciQ2bNgAqVSKb7/9FgAwcuRIvPnmm+jTpw+mTZsGqVQKjuMwdepUREVF6bU/QgghhBBCrAW18NTRzJkzsXnzZuTn52uUR0VFYcCAARg2bBhWrFiBvLw8AJotPHFxcejbty8cHR1RWFiIuLg4hIaG6l2HtLQ0xMfHY/fu3ZgxYwZKS0u1rpuQkICMjAwkJSXhwoULiIyM1Ht/hBBCCCGEWAsKeOrI1dUVkydPxqpVqzTKIyMjkZKSgvHjxyMmJgbBwcEoKytD27ZtUV5ejqysLFy6dAk+Pj4ICgrC6dOnERcXh7CwML3rMGHCBIhEInTu3BkdOnTApUuXtK7boUMHXL9+HbNnz0Z0dDRcXV313h8hhBBCCCHWggIeA5g3bx7WrVuHoqIijfKWLVti6tSp2LlzJ+zs7JCUlARA2a1t69at8PT0BMdxCA4ORmxsLOLj4xESEsLbfmRkJPz9/TF8+HDB/XMcx3tsZ2cHhUKhLlO1+jRp0gSJiYmIiIjA2rVr8corr9TptRNCCCGEEGLJKOAxAHd3d0yYMAHr1q1Tl0VHR6OiogIAkJWVhZycHHh5eQFQBjwrV65UBzchISHYuHEjPDw80LhxY972169fj4SEBOzZs0dw/1u3boVCocC1a9dw/fp1+Pj4oF27dkhISIBCocCtW7cQHx8PALh//z4UCgXGjh2Lzz77TK+McIQQQgghhFgbq09aoC2hgKnNnz9fnSAAAPbv34+5c+fCyckJALB06VJ4eHgAUI7jiYqKUgc8np6ekMvltRq/AwBt2rRB7969UVBQgLVr18LJyQlhYWFo3749unXrhq5duyIgIAAAkJGRgcjISHXrz+LFi2v9mgkhhBBCCLF0HGPM3HXQhcVUMiMjQ91SQywHnRfLQ+fE8tA5sUx0XiwPnRPLROfF8ljgOeGECqlLGyGEEEIIIcRmUcBDCCGEEEIIsVkU8BBCCCGEEEJsFgU8hBBCCCGEEJtFAQ8hhBBCCCHEZlHAQwghhBBCCLFZFPDUAcdxmD9/vvrxsmXLsGjRIgBAamoqIiIi4O/vj65du2L69OkAgF69eiEhIQEAIJPJ0LBhQ2zatEm9jcDAQL0mA50yZQq2bdum8/ppaWnw9fXVeX1CCCGEEEKsGQU8deDo6IgdO3bg/v37vGVz5sxBVFQUEhISkJKSgtmzZwNQTjoaFxcHAEhMTIS3t7f6cVFREa5duwY/Pz/TvQhCCCGEEEJsmJ25K1BX7n8eMPo+cicMFiy3s7PD9OnTsWLFCnz++ecayzIzM9GqVSv14x49egAAQkNDsWfPHrz++uuIi4vDjBkzsGHDBgBAfHw8AgMDIRaL9arfsWPHsHz5cmRlZeGrr77CuHHjwBjD22+/jb1794LjOCxYsAATJ07Ua7uEEEIIIYRYO2rhqaOZM2di8+bNyM/P1yiPiorCgAEDMGzYMKxYsQJ5eXkANFt44uLi0LdvXzg6OqKwsBBxcXEIDQ3Vuw6ZmZk4ceIE/v33X7z77rsAgB07diAhIQGJiYk4ePAg3nrrLWRmZtbtxRJCCCGEEGJlKOCpI1dXV0yePBmrVq3SKI+MjERKSgrGjx+PmJgYBAcHo6ysDG3btkV5eTmysrJw6dIl+Pj4ICgoCKdPn0ZcXBzCwsL0rsPo0aMhEonQrVs3ZGdnAwBOnDiBSZMmQSwWo0WLFujXrx/OnDljkNdMCCGEEEKItaCAxwDmzZuHdevWoaioSKO8ZcuWmDp1Knbu3Ak7OzskJSUBUHZr27p1Kzw9PcFxHIKDgxEbG4v4+HiEhITwth8ZGQl/f38MHz5ccP+Ojo7q/zPGDPjKCCGEEEIIsW4U8BiAu7s7JkyYgHXr1qnLoqOjUVFRAQDIyspCTk4OvLy8ACgDnpUrV6qDm5CQEGzcuBEeHh5o3Lgxb/vr169HQkIC9uzZo3Od+vTpgy1btkAul+PevXs4duwYevfuXZeXSQghhBBCiNWx+qQF2hIKmNr8+fPx7bffqh/v378fc+fOhZOTEwBg6dKl8PDwAKAcxxMVFaUOeDw9PSGXy2s1fkebZ599FidPnoSfnx84jsNXX30FDw8PpKWlGWwfhBBCCCGEWDrOSrpAWUwlMzIy1C01xHLQebE8dE4sD50Ty0TnxfLQObFMdF4sjwWeE06okLq0EUIIIYQQQmwWBTyEEEIIIYQQm0UBDyGEEEIIIcRmUcBDCCGEEEIIsVkU8BBCCCGEEEJsFgU8hBBCCCGEEJtFAU8dcByH+fPnqx8vW7YMixYtAgCkpqYiIiIC/v7+6Nq1K6ZPnw4A6NWrFxISEgAAMpkMDRs2xKZNm9TbCAwMxNmzZ3Wuw5QpU7Bt27a6v5g6kEqlmDNnDgAgJiYGcXFxZq0PIYQQQgghKhTw1IGjoyN27NiB+/fv85bNmTMHUVFRSEhIQEpKCmbPng1AOemoKiBITEyEt7e3+nFRURGuXbsGPz8/070IA5BIJFi1ahUACngIIYQQQohlsTN3BerK9T03o++jYHGeYLmdnR2mT5+OFStW4PPPP9dYlpmZiVatWqkf9+jRAwAQGhqKPXv24PXXX0dcXBxmzJiBDRs2AADi4+MRGBgIsVisV/0OHjyIJUuWoKCgAMuXL8fIkSOxYcMGSKVSfPvttwCAkSNH4s0330SfPn0wbdo0SKVScByHqVOnIioqSud9nTlzBnPnzkVRUREcHR1x6NAh/Pfff1i2bBm+/fZbrF27FmKxGJs2bcLq1asxefJkXL58Gfb29igoKICfn5/6MSGEEEIIIcZGLTx1NHPmTGzevBn5+fka5VFRURgwYACGDRuGFStWIC8vD4BmC09cXBz69u0LR0dHFBYWIi4uDqGhoXrXIS0tDfHx8di9ezdmzJiB0tJSresmJCQgIyMDSUlJuHDhAiIjI3XeT3l5OSZOnIhvvvkGiYmJOHjwIJydndXL27VrhxkzZqhbtvr06YOIiAjs3r0bAPDHH39gzJgxFOwQQgghhBCToYCnjlxdXTF58mR1ly6VyMhIpKSkYPz48YiJiUFwcDDKysrQtm1blJeXIysrC5cuXYKPjw+CgoJw+vRpxMXFISwsTO86TJgwASKRCJ07d0aHDh1w6dIlret26NAB169fx+zZsxEdHQ1XV1ed95OamgpPT08EBQWpX7udXfWNhK+88grWr18PAFi/fr1eARYhhBBCCCF1RQGPAcybNw/r1q1DUVGRRnnLli0xdepU7Ny5E3Z2dkhKSgKg7Na2detWeHp6guM4BAcHIzY2FvHx8QgJCeFtPzIyEv7+/hg+fLjg/jmO4z22s7ODQqFQl6lafZo0aYLExERERERg7dq1eOWVVzSeK5fL4e/vD39/f3z00Uf6H4zHhIWFIS0tDTExMZDL5fD19a3zNgkhhBBCCNEVBTwG4O7ujgkTJmDdunXqsujoaFRUVAAAsrKykJOTAy8vLwDKgGflypXq4CYkJAQbN26Eh4cHGjduzNv++vXrkZCQgD179gjuf+vWrVAoFLh27RquX78OHx8ftGvXDgkJCVAoFLh16xbi4+MBAPfv34dCocDYsWPx2Wef8TLCicViJCQkICEhAZ988onGMh8fH2RmZuLMmTMAgMLCQshkMo11GjVqhMLCQo2yyZMn4/nnn6fWHUIIIYQQYnJWn7RAW0IBU5s/f746QQAA7N+/H3PnzoWTkxMAYOnSpfDw8ACgbPWIiopSBzyenp6Qy+W1Gr8DAG3atEHv3r1RUFCAtWvXwsnJCWFhYWjfvj26deuGrl27IiAgAACQkZGByMhIdevP4sWLdd6Pg4MDtmzZgtmzZ6OkpATOzs44ePCgxjqjRo3CuHHjsHPnTqxevRp9+vTBCy+8gAULFmDSpEm1en2EEEIIIYTUFscYM3cddGExlczIyFC31BDdbNu2DTt37sSvv/5qtH3QebE8dE4sD50Ty0TnxfLQObFMdF4sjwWeE06o0OpbeIhlmz17Nvbu3au1Ox4hhBBCCCHGRAEPMarVq1ebuwqEEEIIIaQeo6QFhBBCCCGEEJtFAQ8hhBBCCCHEZlHAQwghhBBCCLFZFPAQQgghhBBCbBYFPLWQk5MDf39/+Pv7w8PDA15eXurH5eXlGuuuXLkSxcXFNW4zIiICUqnUWFUmhBBCCCGkXqIsbbXQtGlTJCQkAAAWLVqEhg0b4s033xRcd+XKlXjxxRfRoEEDE9aQEEIIIYQQAlALj8EcOnQIvXr1Qo8ePTB16lSUlZVh1apVuHPnDvr374/+/fsDAF577TVIJBJ0794dCxcuNHOtCSGEEEIIsW020cJTusjJKNt1WlSq2/5LSzFlyhQcOnQI3t7emDx5MtasWYN58+Zh+fLlOHLkCJo1awYA+Pzzz+Hu7g65XI6BAwfi/Pnz6Nmzp1HqTwghhBBCSH1HLTwGIJfL0b59e3h7ewMAXn75ZRw7dkxw3T///BMBAQHo1asXkpOTcfHiRVNWlRBCCCGEkHrFJlp4dG2JMbcbN25g2bJlOHPmDJo0aYIpU6agtNQ66k4IIYQQQog1ohYeAxCLxUhLS8PVq1cBAL/++iv69esHAGjUqBEKCwsBAAUFBXBxcUHjxo2RnZ2NvXv3mq3OhBBCCCGE1Ac20cJjbk5OTli/fj3Gjx8PmUyGoKAgzJgxAwAwffp0DB06FC1btsSRI0fQq1cvdOnSBa1bt0ZYWJiZa04IIYQQQoht4xhj5q6DLiymkhkZGfDy8jJ3Nchj6LxYHjonlofOiWWi82J56JxYJjovlscCzwknVEhd2gghhBBCCCE2iwIeQgghhBBCiM2igIcQQgghhBBis3ROWiCRSCYBWCWVSptLJJLxAKIAlAB4WSqV3pZIJF0A/Fi5zQ+lUukhiUTiAuBXAE8A2CWVSr+q3NaXAEIBpAGYKpVKKwz5ogghhBBCCCEE0LGFRyKRiAGMB3BLIpHYAXgDQASAjwB8WLnaFwCmARgK4JPKslcA7JFKpeEABkgkEi+JROIHwEsqlfYBcAnAOAO9FkIIIYQQQgjRoGuXtkkAtgJQAOgMIEUqlZZLpdJYAD0r12kplUqvSKXSAgC5EomkGZStOPsrlx8AEPJYWTQAys1MCCGEEEIIMYoaA57K1p0JALZUFjUBUFBlFbHAtvIBuD+2bnVlVonjOMyfP1/9eNmyZVi0aBEAIDU1FREREfD390fXrl0xffp0AECvXr2QkJAAAJDJZGjYsCE2bdqk3kZgYCDOnj1rstdACCGEEEKILdNlDM+LAP6USqUKiUQCAHkAXKssl1f+q6hS1hhAbpV18yrLblbu0/Wx9XgkEsl0ANMBYNasWRg8eLAOVTW+iooKZGRkAAAcHR2xdetWTJkyBe7u7sjPz0dRUREyMjLw6quvYvLkyRgyZAgAICUlBRkZGfDz88OePXvQvHlznD9/Hu3bt8eBAwfQv39/FBcX4+rVq2jWrJl6H0Q3Vc8LsQx0TiwPnRPLROfF8tA5sUx0XiyPpZ0TbXMC6RLwdAPQSyKRvAhld7bZALpKJBIHABIA5yvXy5RIJB0B3AXgLpVK70skkjgAgwD8XPnv/wFoBuUYoI0AhgCIFdqpVCr9EcokCICFTjxqZ2eH1157DX/88Qc+//xzNG7cGGKxGF5eXsjNzYWfn596XdW/Tz31FPbs2QMvLy/s2LEDs2fPxoYNG+Dl5YUjR45AIpGgTZs2Znt91soCJ76q9+icWB46J5aJzovloXNimei8WB5rOSc1BjxSqfQd1f8lEolUKpW+JpFIJgKIAVAK4OXKxR8A2ABlF7eFlWX/A7BJIpFMBfCvVCq9DeC2RCLJlkgkxwGkA1hW1xdxwM2trpsQNDgvr8Z1Zs6ciZ49e+Ltt9/WKI+KisKAAQMQGhqKp556CpGRkXBzc0NYWBgWLFgAAIiLi8PChQvx+++/o7CwEHFxcQgNDTXGSyGEEEIIIaRe0jktNQBIpVJJ5b9b8GhMj2rZRQB9Hit7CGC0wHbe0reilsrV1RWTJ0/GqlWr4OzsrC6PjIzEkCFDEB0djZ07d+KHH35AYmIi2rZti/LycmRlZeHSpUvw8fFBUFAQTp8+jbi4OMyePduMr4YQQgghhBDbolfAY6l0aYkxpnnz5iEgIACRkZEa5S1btsTUqVMxdepU+Pr6IikpCYGBgQgNDcXWrVvh6ekJjuMQHByM2NhYxMfHIyQkxEyvghBCCCGEENuja1pqUg13d3dMmDAB69atU5dFR0ejokI5n2pWVhZycnLUfRxDQ0OxcuVKdXATEhKCjRs3wsPDA40bNzb9CyCEEEIIIcRGUcBjIPPnz8f9+/fVj/fv3w9fX1/4+flhyJAhWLp0KTw8PAAAYWFhuH79ujrg8fT0hFwup/E7hBBCCCGEGJhNdGkzl4cPH6r/36JFCxQXF6sfL1++HMuXLxd8XlBQEBjTTDyXlpZmlDoSQgghhBBSn1ELDyGEEEIIIcRmUcBDCCGEEEIIsVkU8BBCCCGEEEJsFgU8hBBCCCGEEJtFAQ8hhBBCCCHEZlHAQwghhBBCCLFZFPDUAcdxmD9/vvrxsmXLsGjRIgBAamoqIiIi4O/vj65du2L69OkAgF69eiEhIQEAIJPJ0LBhQ2zatEm9jcDAQJw9e1bnOkyZMgXbtm2r+4shhBBCCCHEBlHAUweOjo7YsWOHxoSjKnPmzEFUVBQSEhKQkpKC2bNnA1BOOhoXFwcASExMhLe3t/pxUVERrl27Bj8/P9O9CEIIIYQQQmwYBTx1YGdnh+nTp2PFihW8ZZmZmWjVqpX6cY8ePQAAoaGh6gAnLi4OM2bMULf4xMfHIzAwEGKxWK96HDx4EBKJBN7e3vj3338BABs2bMCsWbPU64wcORIxMTGQy+WYMmUKfH190aNHD8G6E0IIIYQQYitsIuDhOM4of7qYOXMmNm/ejPz8fI3yqKgoDBgwAMOGDcOKFSuQl5cHQLOFJy4uDn379oWjoyMKCwsRFxeH0NBQvV9/Wloa4uPjsXv3bsyYMQOlpaVa101ISEBGRgaSkpJw4cIFREZG6r0/QgghhBBCrIVNBDzm5OrqismTJ2PVqlUa5ZGRkUhJScH48eMRExOD4OBglJWVoW3btigvL0dWVhYuXboEHx8fBAUF4fTp04iLi0NYWJjedZgwYQJEIhE6d+6MDh064NKlS1rX7dChA65fv47Zs2cjOjoarq6ueu+PEEIIIYQQa2ETAQ9jzCh/upo3bx7WrVuHoqIijfKWLVti6tSp2LlzJ+zs7JCUlARA2a1t69at8PT0BMdxCA4ORmxsLOLj4xESEsLbfmRkJPz9/TF8+HDB/T/eGsVxHOzs7KBQKNRlqlafJk2aIDExEREREVi7di1eeeUVnV8nIYQQQggh1sYmAh5zc3d3x4QJE7Bu3Tp1WXR0NCoqKgAAWVlZyMnJgZeXFwBlwLNy5Up1cBMSEoKNGzfCw8MDjRs35m1//fr1SEhIwJ49ewT3v3XrVigUCly7dg3Xr1+Hj48P2rVrh4SEBCgUCty6dQvx8fEAgPv370OhUGDs2LH47LPP9MoIRwghhBBCiLWxM3cFbMX8+fPx7bffqh/v378fc+fOhZOTEwBg6dKl8PDwAKAcxxMVFaUOeDw9PSGXy2s1fgcA2rRpg969e6OgoABr166Fk5MTwsLC0L59e3Tr1g1du3ZFQEAAACAjIwORkZHq1p/FixfX+jUTQgghhBBi6Th9um6ZkcVUMiMjQ91SQywHnRfLQ+fE8tA5sUx0XiwPnRPLROfF8ljgORHMOkZd2gghhBBCCCE2iwIeQgghhBBCiM2igIcQQgghhBBisyjgIYQQQgghhNgsCngIIYQQQgghNosCHkIIIYQQQojNooCnDjiOw/z589WPly1bhkWLFgEAUlNTERERAX9/f3Tt2hXTp08HAPTq1QsJCQkAAJlMhoYNG2LTpk3qbQQGBuo1GeiUKVOwbds2nddPS0uDr6+vzusTQgghhBBizSjgqQNHR0fs2LED9+/f5y2bM2cOoqKikJCQgJSUFMyePRuActLRuLg4AEBiYiK8vb3Vj4uKinDt2jX4+fmZ7kUQQgghhBBiwyjgqQM7OztMnz4dK1as4C3LzMxEq1at1I979OgBAAgNDVUHOHFxcZgxY4a6xSc+Ph6BgYEQi8V61ePYsWMIDQ1Fhw4d1K09jDG89dZb8PX1RY8ePbBly5bavERCCCGEEEKsmp25K2AIXF+FUbbLjtUcD86cORM9e/bE22+/rVEeFRWFAQMGIDQ0FE899RQiIyPh5uaGsLAwLFiwAIAy4Fm4cCF+//13FBYWIi4uDqGhoXrXMzMzEydOnMClS5fw9NNPY9y4cdixYwcSEhKQmJiI+/fvIygoCH379tV724QQQgghhFgzauGpI1dXV0yePBmrVq3SKI+MjERKSgrGjx+PmJgYBAcHo6ysDG3btkV5eTmysrJw6dIl+Pj4ICgoCKdPn0ZcXBzCwsL0rsPo0aMhEonQrVs3ZGdnAwBOnDiBSZMmQSwWo0WLFujXrx/OnDljkNdMCCGEEEKItbCJFh5dWmKMad68eQgICEBkZKRGecuWLTF16lRMnToVvr6+SEpKQmBgIEJDQ7F161Z4enqC4zgEBwcjNjYW8fHxCAkJ4W0/MjIS586dQ8uWLbFnzx7eckdHR/X/GWOGf4GEEEIIIYRYKWrhMQB3d3dMmDAB69atU5dFR0ejoqICAJCVlYWcnBx4eXkBUI7jWblypTq4CQkJwcaNG+Hh4YHGjRvztr9+/XokJCQIBjva9OnTB1u2bIFcLse9e/dw7Ngx9O7duy4vkxBCCCGEEKtDAY+BzJ8/XyNb2/79++Hr6ws/Pz8MGTIES5cuhYeHBwBlprbr16+rAx5PT0/I5fJajd/R5tlnn0XPnj3h5+eHAQMG4KuvvlLvnxBCCCGEkPqCs5IuUBZTyYyMDHVLDbEcdF4sD50Ty0PnxDLRebE8dE4sE50Xy2OB54QTKqQWHj1du6NfymhCCCGEEEKI+VDAo6OycoZ31igQ8WZzbIuxmAYnq3L7LsOULxQYOE+B//1Lx5AQQgghhBifTWRpM7bEqwwvfcZw4ToAcJjxNUOYL+DZTLDVjAjILWAIfZ3h1l3l48NnlQHPKyPpGBJCCCGEEOOhFp4aJN9gCJquCnaUcvKBV75ilAJaD3O+eRTsqHzwE0NxKR1DQgghhBBiPBTw1KBbO2AEf2oc7DkF/O9fk1fHKv11jGHzAX753QfA2p2mrw8hhBBCCKk/KOCpAcdx+PEtDk804S+L+pbhWga1UFTnXh7Dq8u0H6OvfqdWHkIIIYQQYjwU8OiguRuHn97ijzUp2i9G3xHzIZcrL9iXLVuGRYsWAQBSU1MREREBf39/dO3aFdOnTwcA9OrVCwkJCQAAmUyGhg0bYtOmTeptBgYG4uzZszrXbcqUKdi2bVstX5lhSKVSzJkzBwAQExODuLg49bKZKxju5Wl/bnYu8OMuI1eQEEIIIYTUWxTw6OjpcA5Thz9WyDnizqW/sOjH+7z158yZg6ioKCQkJCAlJQWzZ88GoJx0VBUQJCYmwtvbW/24qKgI165dg5+fn1Ffi6FJJBKsWrUKgGbA8+dhhq1Han7+l78xlJRRK48uGGPYc5Jh8SaG44l0zAghhNRN5n2GV5cqMOJtBX4/SL8rxDZRwKOHFbM5tG4ue1TA2QGe/4cvvlyBxKuaXxKZmZlo1aqV+nGPHj0AAKGhoeqAIC4uDjNmzFC3+MTHxyMwMBBisX5z/Rw8eBASiQTe3t7491/lwKINGzZg1qxZ6nVGjhyJmJgYyOVyTJkyBb6+vujRowdWrFih177OnDmD0NBQ+Pn5oXfv3igsLERMTAxGjhyJtLQ0rF27FitWrIBvD3/834JjQHxHQFGhfLKsAJy0I8AqNLaZlQv89I9e1aiXysoZxixgGPEOw/s/MvSbw7Axmn6cCCGE1E5uAUPI6ww//qMcm/z8Jwxbj9DvCrE9NpGWek/TfUbZ7vCcIRqPXV04rHgtH+M/bQp1gjbP16E464/nP3oLL/V89CURFRWFAQMGIDQ0FE899RQiIyPh5uaGsLAwLFiwAIAy4Fm4cCF+//13FBYWIi4uDqGhoXrXMy0tDfHx8bh27Rr69++Pq1eval03ISEBGRkZSEpKAgDk5eXpvJ/y8nJMnDgRW7ZsQVBQEAoKCuDs7Kxe3q5dO8yYMQMuLi6Iy5uP5OMA3PoBubuBZqOBe39g2PBn0bC7Pf58rOXny98Ypo8CnBwpTbWQ4lKGZz9g2H/mURljyi6DTwUBHk3puBFCCNHPvNUMN7M0yxb8j2FchHIMMyG2glp49BTctRzzJ1YpsHMFnngJF+NWIzr+UXFkZCRSUlIwfvx4xMTEIDg4GGVlZWjbti3Ky8uRlZWFS5cuwcfHB0FBQTh9+jTi4uIQFhamd50mTJgAkUiEzp07o0OHDrh06ZLWdTt06IDr169j9uzZiI6Ohqurq877SU1NhaenJ4KCggAArq6usLPjx8znLgN/H6980GIakL0BAOBe8guWLIzEhy/zv0Tv3Kesd9oUFitbdaoGOyoPS4CFP9PdOEIIIfr5J5bhV4H7xZdvAYd1H0pMiFWwiRaex1tijO3TaRyiTzMkxVYWeM0Fzklw9OwUtH/i0cVny5YtMXXqVEydOhW+vr5ISkpCYGAgQkNDsXXrVnh6eoLjOAQHByM2Nhbx8fEICeHnwI6MjMS5c+fQsmVL7Nmzh7f88bswHMfBzs4OCoVCXVZaWgoAaNKkCRITE7Fv3z6sXbsWf/75J37++Wf1enK5HIGBgQCAp59+Gp988olex6awmOGv4wCeqCxoHAZcmwXXihi0aSFXd+0b358/vmfxZoZXRlIrT1V5hQzD32Y4max9nf/tBmaPZfDtQMeNEFK/MMZw5TZQWg706ECtErp6UFh9BtXv/2IYGEjHktgOauGpBSdHDr8u4ADVd4G9O9B8PJD1M/4+rrzoj46ORkWFcqxKVlYWcnJy4OXlBUA5jmflypXq4CYkJAQbN26Eh4cHGjduzNvf+vXrkZCQIBjsAMDWrVuhUChw7do1XL9+HT4+PmjXrh0SEhKgUChw69YtxMcrm5/u378PhUKBsWPH4rPPPuNlhBOLxUhISEBCQgIv2PHx8UFmZibOnFE2NRQWFkImezSmiTGGvWcaobSkULOCT7wE8ZUXMf2VSHXRh5OFW3nW7RZ8ifVSTj7DwKjqgx0AUCiAN7+nVh5CSP0ikzFM/pzB5wUGv0iGwW8wFJXQd6EuolYzZOZoX74zFrh9l44lsR0U8NSSf2cODlXbx7zeACruI++h8otk//798PX1hZ+fH4YMGYKlS5fCw8MDgDJT2/Xr19UBj6enJ+Ryea3G7wBAmzZt0Lt3bwwbNgxr166Fk5MTwsLC0L59e3Tr1g1z5sxBQEAAACAjI0OdLvvFF1/E4sWLdd6Pg4MDtmzZgtmzZ8PPzw+DBw9WtxwBwC/RQErhSOD+38DZACBf2a/tmTHPo6ToASZNmqRet0dHDmP78fexZDNDWTl9yWbnMvSfy3D2sm7r74sHok/TcdPFnfsMs1Yo0HOKAi99pkB2Lh232mKMjl1tMcawLYZh+FsKvL7KDReu0bHU13s/Mmza/+jxof+At9bQcazJ7pMMv0RXv45cDvz0Lx1LXZWWMXyzlWHqEgX+OETHzRJxVvKDZTGVzMjIULfUyOUMfWczxCXx19u1mMOosPrTHHwrm8F3CkNBkWZ5C3dg8ZjtOHxgF3799VeNZeevKe/KPe77Nzi8Nlq/Y1f1vFi7jHvKlp3UdP4yRwdg8wIOb61huJGpuax7eyBhHQc7O8t431naOZHLGdb8DXzwP833aedWQOz3HJq7WcZxMyZDnZMHhQxzvmH47SDQsinw87scBgfZ/vEzlMJiZXei3w8+KnN1Ac78yMG7NR1HXWyPYRj3kfL3o0/eTnQuScTPnh8BAA6v5NA/oG7H0dK+vwwlr1D5W51xr+Z1PdyB9G0c7C3kNwWw3PPy3CIFthz+f/bOOryNI//D74rRjLHjcNIwOU05pbRX5v7aKzO3V+YrM3OvjFdur732ym1SSAMOMydmiFFg4c7vj5VRMsu27Oz7PHp2NbuSRrM0n5kvNL2/9wIpor/yYCQGj0nEhldneHqAVivxzu0SVnP4tgsfFVTUxIxO61WEEFz4aLjYAZipvZoH7r2VO++8M2zblFESJ+wf/pmH3tt9Z3l2lCgiOpLYMRvh64clTjpQ4uFLwq/ntdvhjchWj7s9eRsEsy8VXPVM+Hm6uRCOukngdO+e51xX8XgFx96qjKzLMhRWwFE3C5asV9uvMyzfJJhxQUuxA1DnggsfEciy2o4dsTFfcN7DSjul+gq5ueASTqt4mpmOnwHl+auatkXm+hcii51nZ3/P+WX3Y5DrG8tKq+CL3/qwcgOUX5aKFmIH4O43BX+tUc/BWEIVPD1kVJbEk1eEdz7Lq+GSx8RuYfLx6n+JGEHsrMPhm8+eZ8uWLYwdOzbiZ/95bnjbFZTDW99Gu5axz+YCRexsKw7fZjPDd49JHJqrtNcpB8HeE8P3u/N1QZ1r8J9znaXWqZiv7XmJYOnGtvdbsgFOvUvgD6ht1x6yLDj3IcEfq1qW+wNK+1U71PZrCyEEL34h2OsywZaiyPv8vgpeUXOStYvTreQjc7iV9xWGbN5LvxmA6wqvxhqsZVsx3P6qei625rtFIuKg2NVJn7HHa3/ntLInOa/0/hbbXvyP2o7tIYTgzteVNjqo+lMe3nYCwzzrkWU4+wFVeMcSquCJAhcdA0fuFV7+xe9EDPk4mNhRIrj+hfALekgKPHN1x9O508ZIHLdfePmD7wl8/t3nRrFuhyJ2CsrDtyXY4KenJA6Y1tSekiTx5JWRhfYj/9592q0thBB88JNgjzMFL3wBnRl3+HYRXPTo7jFI0V1u/Vf4SGYDO0rh/IfV9otEjUNw6l2CK54S+Pzt73vTS0J1Fm8DIQQXPSZYt6Nl+cepV7HBPINUfwmXFd8GwLOfwZ+r1XZsoNYpuOjR8PY4xPM1R/9+qXKTlCRO2PUyk51/Nm6fvwLWblfbsS2+XwwL1sAh1R9zc8ElzHDO57b8C9HLXrYUKdezSmygCp4oIEkSr90kkRweYI2rnhHklw3OE16WBRc8InDWh2979UaJRHvn7Ff/GcHONb+MDp0qBwsrNgvmXCUorQrflhyv2KPPnhDeRntNlPi/g8M/8+RHDNpzrjNsLhAcdr3g7/dGbtMG9BGC8r/9Hdz2yu7bdu3x0n8Ej37Q/j7/+R2e/bRv6jNQWLJeMONCwafzOre/ww2XP6kKx0g89xl8+HN4+bAhOp4Z+SJeycRh1R+wV913CKEI8Hqv2o6gRPIsbGXKNqvuR27aegEEg4y44QZG3HgjGgQ3FF6JOdgUbfUldZYnIg2zOwfUfMENBZejQeDQxjPCs56zyh4G4MX/wPeL1faLBVTBEyUyUyRevj68U1rngnMfHJx22S/9J3JysvOPhCP37ryz3oxxEsdECFD34LuDf5Zn8TolGtuu2vBt6Ukw/1mJ6WPbbsuHL5EwGlqWeXy7Z6fd4xXc86Zg8nmCn/La3m/ySPjzBYmP7pbQRLgDPvw+PPvp7td+7fH1AsGVT3euTW58SbB4ndp+Qgie/liw7xXhAUYamDqaiH6M/10AH7cxk7a78ufqyNYEFpMSJOiyq8bxVsbtAFxTeC32QBWbCuCfr6vn4g+LRVhi72mO+dxTcDZS0E/O5Zcz6vbbGXnjjXhyppDp28lFJXc17vvO90qgDZWWfPUHGBZ9w635F6NF5p30m7lj+EcE0XBqxbNMcC0EFOGtmvv2P6rgiSInHyhxxtzw8l+XD75Rz61FgpteDr+Ah6YR0dSqI+46L/wzO0qVG+1g5Y9VgkOvE9Q4w7dlp8Jvz0lMHNF+Ww7PlLjmpPDy939kt3Ii/3GJYPK5grvfFHh9kfexmuHxyyWWviaxz2SJEw6QeOHayO37j+cEH/+y+7Rfe+RtEPzf3YJmeYwbOXbf8DJ/AE69e/d+wFfVCY6/TXDt8wJ/IPI+lx0PC1+SeP0WibSEYNj2q54RVNbuvm3YnLIqxSQwEN5MvHaTxKSREv84BYr2v5TVlr1IDpRxRbHi1/Pkx7BoNxbgdS4lqFBzJroWcu/OM9AFvWSffz5jH3gASZLQ6PXMevMl/JKBo6veagwC4XArzxSVJmRZ8O8Hf+D2/PPREuTD1H/wXtpNFKXtycep16BBcGPBFZiCTop3wZVP7b7nYKygCp4o8/w/JLJTw8tveUWwbsfgOOFlWXDeQwK3J3zb6zdLxNu6LnhmjpM4OsIszwPvDE5H8p+XCg6/ocnxtjkjMhWx09nwtLedJZESwZzyuhcGv1lMyS7B6ffIHHZ9247goIyir39H4vrTWoZYvfQ4iX+eG76/EHDWA4Jflw3u9uuI7cWCo26OfK2ffyT850GJqyMI7p2lcN5Dg//8i8RfawTTLxB89Wfk7XFW+OhuiRev02AyKqa/951bF7ZfRQ1c+/zu136tCQQUwV28K3zbVSfB6Ycq17NWK/H6bTqeGfkCHsnCwTWfsV/tV8iyci56dlPTthtfbOkbOs69lPu3n4pJdjPk739nj8cfR5Ka7okZMyey4WDFD+q6wquxBWoAePGL3fN6bosvn53H2QvPRi/8fJZyGW9k3AmSxL//KVF85E1sNU0ky7edi0rvBuDfP6EOovUzquCJMgl2ibduC++oen1w1v2Dw0Tr2U+VaEKtufQ4epSL464IEdt2lA6+wA//+6vtTuTYoYrYGTGk8+0Yb5O45/zw/f9YNXhDigaDguc/E+xxloho09/AsAz478MSnz+gYWh65Da9+zyJi44JL/f54bjbBCs2D/xrtjtUOwRH3iQorw7fdtgsePkGCUmSePQyiVl7hO/z5R/w9Ce9X89YQZYFj/5bsP9VgvyyyPvMHAfLXpM49eCW5+JRsz0RTdve/V5NKHzrK4L5K8LL956ozNg2Z8JwiUsvHcmrmXcDcHXh9SQEKli/E+57Z/drx5/yRIuofyPrV/Pg9pOxyk7STzyRCc89hxTBrveQh65krWVWKAjErQCs3kZYdMbdlV2//4Hh3r9jEF7+m3w+/8q8HySJvSYqAaxevc3Ei+Nexi/pOabyDWY6FPvUy54UlOza/c7DWEEVPL3AITMjj3ou2wT3vT2wT/ZNBYJbI/iHDM+ARy/rWZKt3D2kiNHuHnh38MzyfD5fcPztkc2uJo5QfHay07rejhcfA3vkhJff9PLgENnNWbqx7Zw6Dei0cMsZsPZtiaP3ab89JUnixWuliOZZDjcccaNgR8ngasOO8PoUk6wNEfJBTR0Nn9zbNFNmNCj+UPG28H1veknsFuZEFTWCo28W3PyyIBjB7ArgmpMV37FRWZHPxxeujdyGlzwudlv/ic/mCR7/MLw8LVE5Bw368La88TQo2ed8Vlj3JyFYyVWF14MQPPJv5d6xu+BwtzRly/Fs4OFtJ2IP1mI95Cgm/etfSFptxM9OHavj10NfxCOZmVvzEfvWKg5AaohqqFm8mKWnnIZBrue7xDN4fsijEJohu+8CZRBoaLrETbdP4t30WwC4rvAqbIEaqurgot0kXUksogqeXuKhSyTGReiAPvgeLFw7ME/2YFBw7oMCT4TO+hu3SNgtPc8qHGmWZ1vx4LAf/vePglPvjmzTP30MzHtGIiO5e22o00k8HiEf1NYieOGLbn1lzFHrFFz1dMc5dfafAivekHjoEg1Wc+faU6eT+OAuiX0mhW8rrYLDb9h9Egk35Nr5bWX4tuxU+OYRiThry3YdMUTizVvC2zoQVPLzVNUN3rb7bYVg2vmCbxdF3p5ggy8ekHj6ag1GQ9vnY2aKxBOXh2/PL9s9c8o0Ty7aHI0GPrxLIis1clvqdBJv3KrlmeHP4dbY2L/uaw6q+YxgUDFtG2wDQG1x88uCnaXK+hDvVh7ZdgIJwUpckw9hr3+/gUavb/fzp509mtdCM2XXFF5HQqCCz+ZDaeXu0X6RqF2+nGUnnYTG4+SnhFN5OvtphKR0o+dMg0NmNu17xlwInHQV6yy5pPpLuLxYET/f/AWvf9MPlVdRBU9vYTFJvHu7ROsBlIGcjOrJj+GvteHlV50EB83oudgB2HOCxN9mh5ff/44gMIBned74RnDm/ZFHf/eaqISeTknoWRseuVfLG24D9709sDucQgg++lnJqfP850R0ngclhPebt0rM70Swh0hYTBL/fVhi/LDwbZsK4OibB+Z121VufzWymWCcFf73aNsdzRMOUBzHW5NfpkSqHGyjmsGg4P63BQf9I7J/CSjX9oo3JI7fv3Pn4/lHwcEzwsuf/5zdKmt76+SizXnoYqnD583kURIXXzSMf2XeB8AVxTeR5C9h9TYl+udg55elgpf+o6yn+/J5dNvxJAfK2JFxAEd99y4ao7HD7zjxAFg0+gKW2w4gIbiLqwqvx+8Xu21n3bF6NctOOIGgw8H8+ON4fOjzyFJTB69hdqcBSZJ48UY9b0x6CY9k5tCaj9m3VrEvvPY5wbbiwX8exhqq4OlFZo2XuPPs8Bvz5sKBl4xq3Y6mbMLNGZ2lPICiSaRZnq1FitPfQOSFz5V8RZH6ewdMhR+ekEjoZM6i9pAkiSeukJBafVW1Y+CaUlbWCk66Q3DaPe3n1LnwaNj4nsS5R7R86HSVpDiJ7x+XyIoQeGTxemW2YrCYV0bi5S8FD78fXq7Twmf3SUwe1X7bPnJpZH+e/y6Apz6OUiVjgLIqwd9uVO6JbQnwG05T/PGGZXT+fJQkiVdulDC36o8KARc8IvD6Bu+510BbyUVBCT5y4+md+55bz4TiPc9mif0Q4oI1/KPwWhCCB96FlVsGbzs63crzBiDZX8wj244nzV/EOttsDvzqffRWS6e+x2iQuPAYDU9kP4crNFN2cM2n/OurgT342B2cGzaw9PjjCdTUsDz1SB7OeQVZakrkNjcX9p8afp2nJkjcf1ermTJ/Oc56ZRAoGNy92rG/UQVPL3PbWZAboQMwkJJRBQKCcx4M9zuRJGVEvbNmQ51lr4kSh80KLx9oszyyLHjgnbbzl8zNhW8fi44pYANTR0ucd0R4+fOfKwk5BxLzVwimni/44ve295k0Av54QeLVmzQkx0enHYemK6InIYI/xf8WwkWPDr7ZCoBv/hJc0Ubo1Ndukjg0t+P2NeglPr4nctvd/LIYsOa8zfl5qXJetpXrKTkevn5E4rHLNS0iAnaWUVkS910Q/rn1O+HB9wZ++3VEW8lFx2Qrz5vODmjodRJv3KLh2ZyncWri2MvxA3OrPyAQMm0brAMXt/xLsKMUEvzlPLrtBIb4drDRPB3dQx8xZqy9S9918bESu0xDeXnIg4AyU+YuKuabv3qj5rGJa8sWlh53HP7KStyTD+GO9NcJSi3NAe+7sO1z8ph9JVLOuoBltjkkBCv5R5EivH9fNbgGgQYCquDpZfQ6xbTNZAjfdv7DA8PU6NEPIG9DePm1p8B+U6IrdhqINMuzuRA+HCDJ+MqrlUhsd7wW+fgevY+SLM9iin773XehhMXUsiwQVDqcA4FAQHDnazIHXSMoqoi8j8UEj10msex1iX0nR78NJ46Q+Oqh8KSuAG9/N/h8KpZubDvXzj3nS5xzROfbeHimxFu3Di5/Hq9PMH+F4JpnZOZeJyhrY7Zxvymw4nWJo7qQeDkS15wceaDswXdh9daB136dpb3kop/f3/WUBzPGSVx4bhYvZilZ7y8vvpVUXyHLN8NjH0SlyjHFvOWCF74Ae6CKR7afwFDvZraaJvHV0Z9y2RkRchd0QE66khT8+8QzWGg/DHuwlusKr+GFz9uY1hxkuHfsYOmxx+IrKyN+vwP4R/I7+DUtp1+P2htmT2j/vHzqai0fzngOpyaOfeq+ZW61cvLd/ppgzbbBez3HGqrg6QP2GCZFjGBWvIs2R1RjhVVblWSOrRmXA/df1DtiB2CfyRKH5oaX3/d27E8D/7xUMPU8wXdtODGffKBiHmQy9k77DUmRuOn08O/+4ndl1iSW2VEiOOAqwf3vENEEEOD4/WH9uxI3nC51awS9s+w/VeKDf0pEiNrKQ+/Bc5/Fdlt2lh0lIuSfFL7tvCPhznO6/p3H7S9x7anh5QXlcM4A8OcJBgVLNyphpg+/XibxKMGBVwue/SzyeSlJymz+r093L8pia3Q6iddvltC18gENBOHCR2P/Htgd2ksu+uqNSnLR7nDnORIl0/+PBXFHYJUdXFt4DQjBPW8J1m4fPO3oqhec/7DAGqzl4e0nMcKznp3Gsdyzx2e8eFcSGk332u/y4yWQJJ7Ofpo6bQKzHD+j++EdNg0wi4GuUl9QwNJjjsFbXEzC3nuz6PR/s6PKHLbfvRFSQrQmzirx9L1DeamV8Pb5lXxvu0sgjf5GFTx9xBUnRHYo//Bn+PDn2DzZ/SFTttZRxTQaeOtWCXMvddgbiDTLs6kgsrlDLBAICO54VRkBbsvf5MzD4IN/Rg6nGk1uOA2GpISXX/+CQJZj83z76GfFVChSYAxQol19cq/EFw9oyGkjp060OeEAiReujfxb1zwrBnwiuYZcO5HO17m58K8buu8T9fAlErMnhJd/vQCeiBBquD8RQrCpQPDSfwQn3ymTdpwg9yIlzPQPS6De2/ZnUxPgu8ckHrhIgy6KAnzKKImb/x5evng9PPtZ1H4mJggEFD+9SMEfrjwR/j63++1qNEi8eauG54Y+SZ02kVznrxxV9TY+v2JlMZDMpNvj1lcEpYUOHth+CmPqV1JkGMHNI7/glivSGJ3d/fY7NFfx1a3SZ/B81mMAXFJyJ2+/uSNKNY89PCUlLD32WDwFBcTPmsW4dz/igU/CfZ9OPECZRewMc6ZJTL74//gz7iissoMbCq9EEjIrNsO9bw2OczDWUQVPH6HRKGFbI+VZuPzJ2BxpeuAdwYrN4eU3nqb42fQ2+02RIkcdeyf2RjjzywQHXqM4xLY1eH3DaYpQjGanqC2sZokHIszALd0Ye8EfnG7B+Q/LnHZP23l19p8CK9+UOPnAvhE6zbn0OIl/nhteLoQyOvfrstg6FzuL1yc44XbB+p3h26aMgk/v69kMmkGv5OeJ5M9zyyuCBav7t91Kdgne+0Fw3kMyOScLxp0huPxJwWfzoaquc99x0HRY+YbEYXv2znl5x9lSxPxad7wm2D6Iojzd9qpg3vLw8r0nwhMRwu13lVnjJS44M53nQh32i0vuJMO3k8Xr4alBkBz3txWCVz5xc++OvzPBnUeZPpubRn7JhJmZXBUhJ2BX0GgkLjteOQbz4k9kfvxxWGQnqa9dicvdRtKpAYy3vJxlxx1H/fbt2KdOZfonn/CvH+1hZqySRMSE3+3xwMUavt37SWq0KUx3/saxla8B8ND7AzddyUBCFTx9yNB0iRf+EX6BVDtg+gWCW/8lx0TY25JdgrPul7nnrfBtE0d0/SLvCZFmeTbmw8e/9lkVOuSL3xQTtj9XR96eEq/kLnnscg1abd+13dmHK/l9WnPrvwRuT/+fZwDLNgpmXiR483+Rt2s0yvn26zNSn83qROLu8yQuOia83OeH428XAy7qkywr5i+RMthntZFrpzsMy5B4+7bw7wkG4bR7BJW1fdduNQ7Bf35XcjlNOEtmyImCs+4XvPUtFLbhK9YWeh3cdS78+KREZkrvnZcmo8RrN4dHXnR74OLHY980sDN8Nk9E9KdJTYCP74nebPg950uUTlE67GbZxfUFygj7na8LNuYP3HZ0ewQXP1jPXTvOYqrrT3bpMrlp5Jc4bNm8cbPUbVO25px7BIofsiTxXNbjVOtSmVj3J9/c/ErP/0AM4ausZNnxx+PatAnbhAnM+OILPIZ4Hvl3+PnxfwfTZTNLk1HixXvTeC7nSQAuKLmHLO+WxnQlsfJcHqyogqeP+ftcOOWg8HJ/AB5+HyacLfjy9/55kPkDgic+FIw7U/DeD+HbtVp4+zap3eR50Wb/qRIHTQ8vjwVfHo9XcMWTMifeIahxRt7noOnKzMSRPXRi7g4ajRRxdLSwov+jw8iy4MmPBHtdJthUEHmfnHSY/6zEP8+V+lQoRkKSJF68VuLYfcO31bngiBsFO0oGzsPqztdFxJk+u0XJtRMNP5QGjt1P4vr/Cy9v8OfpLRNLWRb8tkJw2ysysy+RST5GmdF6/nMizmp1REo8nHqQYua342OJu8/vmwGMfSdLXH58ePlPefDWt73+871KR8lFo3kemowSb9ws8Xy20mGf6vqT4ypfxetTTNv6+3nSXe54ycvf/zqfXOevVOtSuXnkF5QYR/DARRJjhkan/ZLiJE4/VFmv0yXzVNbTANjevwfnpk1R+Y3+xl9Tw7ITTsC5bh3WceOY+eWXGJKSePZTqKxtua9GowyCdYeZ4yTm/uMYfkz4P0yinpsKLkMjAmwuHDiBhQYqquDpYyRJ4qXrJDKTI2/PL1NGjI+9tW9NFn7KU2YpbngxcrI3gNvOVC7WvuauCDeW9Tvh03l9XpWm398hmH2p4MX/RN6u0SiJyH58UmJIL44Ad8RBM5QoO615+H3Rbxmzy6qUCHbXvxDuH9bAKQcpCRt7Kwpgd9DpJD64S2KfSeHbSirh8BsEu2pi/4H1yleCB98NL2/ItTOlg1w73eGhSyT2mhhe/s1f8MRH0f2tNdsEt7wsM+wUwZyrBQ+9p/i9tJUvpy2sZjhiNjx+ucTy1yXKvpT46B4NFx/b99f0Q5dIDE0LL7/u+f67jntKe8lFH7xI4uCZ0W/jfSZLnH96Ms9kKSPs55fcS5Z3CwvWKOGwBxq/L/NjffoS9nZ8R502kVtGfE6BaSx7T1Qi/UWTK05oOh4L44/gh8TT0cseFp93OXKgjRv5ACFQV8eyk07CsWoV5pEjFbGTmkqNQ/D4h+HX15lzYVxO98/PW8+ARQc9TIV+COPdSzm14llASR/x45KBeT0PBFTB0w8kx0v88ITEyCFt7/P1AmW25/63ezfZXH6Z4qQ797rItvwNHLOPYk/eH8yZJjFnWnj5fe/0vQO+EII3/yfIvViwamvkfbJTYd4zEnec0/8zEwCPXR4e7clZD/98o+9vrN8vFkxpJ4KdxQSv3qT4fiRGIRlrtLGYJP77sMT4YeHbNhXA0beImDBLbYuflxu5vI3IkK/eJDF3Vu+0uV7XcEzDt936iuDPHvrzFFUIHv9AMO18mcnnCh75d9fN1HRaJaz0XecqCUOrvpb432Marj9NYtqY6JgGdRe7ReLl68N/v8YJVz0Tu+dbW7SXXPT4/eGmCMEaosX9F0qUTTiKnxJOxSTquaHgCjQiyG2vCrYWDZy2dLmDzD/rSg6o/RKXxs6tIz5ju3kiRoOSryjaz56Z4yT2HN/0/qUhD1KhH0JwbR47n302qr/VlwScTpafeip1S5diyskh96uvMGZkAPDUJ+HWG1ot/DOCqX1X0OkkXrkngeeGPwfAWWWPMLJesYk/72FBtWPgnIcDCVXw9BOTRkqseVvirnOJmOsDwONTTE+mnCeirvo9XkVM7XGm4qTbFsnx8MqNEl880PuRxdojki/P2u20W/doU+cSnHGf4vvg9kTe57j9FBO2SFmX+4txORKXHhde/vo3fZfTw+sTXP+8zN9uEJRXR95n6mhY+qrEhUd3PzJYX5AUJ/Hd4xJZqeHbFq2DmRcJ/vVl7NljL9souOyZBIIR/IzvOhfO7UKune6Qky7xzu1t+PPc3fXZsTqX4K1vBYdeKzP0ZMGNLwlWbulanaaOhutOVcz4qr+R+P15DXefr2H/qf17v4vEkXtLnDE3vPzTeYof4UCiveSib3UhuWh3sJiUkN8vDnmYXbpMJrqXcFLFC9R74YJHYjeKZXP8NTV8cuQVzC76iHqNldtHfMxmyzQA7r9A6tHsQ3tcfnzT97q08TyZrQidrQ89hGPNml75zd4kWF/PitNPp2bhQoxZWeR+9RWm7GwAKmtFRNPv849UkgP3lHE5EqfffDBfJV+AXvi5ueBS9LKXogq4egAOYgwEVMHTj5iNih346jclDt+z7f02FcBh1wtOu1umeFfPL4SvFwgmniO483XRZrhVjQYuPx42vS9x0TH9P1Nx4HQlUldr7n2rbx5QeRsEMy4UfNBGhDODHp7/hyIMk+Jiq6MEimBsHSFQluGGF3u/7TYVCPa5XPBkO35D15wMC1+S2GNY7LVdJHLSJb57LHIEso35cOkTgqEnK/4jRRX9+/Dy+gSfzVPMCN3e8Fv+OX+LbDbaGxy9j8SNp4eXF1Z0zp/HHxB8vUC5F6YfJzjvIcHPS9uOjNiakUPgomPgo7slyr+SWPGGhieu1HDEXhI2S+yfe09fJZESIX/kFU8JagbIqHC0k4t2hznTJM45JYGnsp8G4Jyyh8jxbGD+Cnj5y17/+W4TdLnY/uSTzJs0lawVH+KVTNw5/APWWWcDsNdEIua/ihanHgxJcU3vl9oP5r/J5yP8ftZceimyz9d7Px5lahYuZOkxx1D9++8Y0tOZ+dVXmIcPb9z+2Afh5pYGfXQtXa48ETb/7W6KDCMZ4VnPWWVKnp73foBP5w2M69lfW0v1Z58NiAAq0kCoJBAzlSwqKiIrKyvq3yuEMtPyj+fazi4PilPxPedLXHUiXQ5vvKVQ8I/nBN/81f5++0xSOu/Tx8ZWB+DnpYJDrw0/FT65V2LvMcW9clxkWfD0J3DLv9r2NxmXozjYThsTW+3Vmsc/UEbBW/PtYxJ/mx39uhcWFvHjqiFc9UzkpJagRGJ669b+CeoQDX5fKZh7vcDbznNep1V8kq49RWLW+L75n0IIFq6Fd74XfPSLEgkyEofmKhHZ+nI2wx8QzLkqcr6lhy+RuPmMlnURQrBoHbz3g/JfdtWGf64ttFr4255w/P4Sh86E4ZmxeZ515bny7x+VmebWXHg0vHpT7I5h+vyC939UTBhbh/gFeP9OqUf5drqK0y2YfK7gxCVX8bfq99lgnsE/Rn+H2aJjzVsSerl3nindQfZ6KXz7bbY99jj+inIAltsO4NWMe9himQooliLLX5MYP7x32/DGF2Ueb5ZHyxR08vq2A0it38GIG25g9B139Orv97QPVrdiBVseeIDKH38EUMTOl19i22OPxn3KqgQjTwu35LjiBHj+2uheY/llgpNOWsR9a44E4PpR37DOOpvkeFjzlkRGcmzes4IuF/mvvsrOZ57BX13NjC+/JHnOnP6uVgMRG00VPF2ktwRPAw634N63BE99QkTTkwamjIIXr5PYd3LHF4OrXvDge4LHP1TC6LZFRhI8epnEmYcRkyZFQggOuErwx6qW5ZNHwjf3lTB0aHSPS0WN4JwHBN+24W8CSrjO564ZGKPDXp9g/FmC7SUtyyeOgBWvRzc/UK1TcM59br78KzwzdQOH5sI7t/VuWN++4IvfBKfcJdq9XhvYZxL84xSJE/bv+oBFZ9heLHj3B3j3e8GWovb3nTwSfn++b0bUW1NQJph2gQjLd6PVKv5v+02R2FKodJDf+6Hj/9Ka2RPgzLkSpx4MaYmxf3515bkihOCYWyIPXP3ytMRBM2Lr/7rqBa/+F574SLTpV3XlifDcP/perP28VHDs1bW8smlf0vxFvJl+Ox+kX8+hufDmdSVkZ/ev4BHBICUffsjmhx7GV6iEs9xgnsEbGXeywt6yc/nIpRI3/b33j/3WIsHo01t2ySa5/uKJbUej0WiY9cMPxM+MkEAvSnS3D+bcuJGtDz5I+ZfKFJ7WZiPnsssYduWV6ONbTpte97wcZs5mMsDWD3snYMk73wnmX3UPp1U8TZFhBJeN/Q2PxsrR+8BXD8WWibfs9VL45ptsf/JJfOWK+LbMnMnkJ54gbtq0/q1cE6rgiQa9LXgaWL1VcPlT4Z371px/pHKjS0kIP75CCD6dp0Tyac+BV6dVTIr+eW50cm/0Jj/lCeZeF346vHJtNRed0Ebou27wy1LBmfcLSiojb7eZ4eXrJc44LLbbqzUf/yL4v7vD2+/l6yUuOa77/8UfEGwtgnU7lNfr3wh2lEbeV6eFBy9WQhX3pyN4NFm0TnDbK4JflnVu/5x0uOpEiQuPhoQeBmeodQo+mac8NH/v4H7RwJAUWPRydMP+dpVv/hIcfXP4uZiZDMMyYGGEGaD2GJWlRE86Y270wvH2FV19rhSUKWbJrU1uRmXBqjclLKb+//9VdUoI8Gc/E2FhfZuz90SY92z/+Uxd8pjMkn/P45HtJ+KX9Fw1+me2mSfxyIU13HR2Ur/USQhB+Vdfsf6eB/Fv2wjADuMevJVxOwvijqR1YqZZe8CCF/smqTXAETfKYYFnHpbuZMbKF7COHcvs+fPRmtse7OoJXb1W6nfsYOsjj1Dy0Ucgy2iMRrIvvJAR116LISUlbP/iXYJRpwk8rWbtrz0Vnryyd0S5EIJTbvVw6FuHMsqzlq+SL+D5UJLc126SuODo/r+eZb+f4n//m+2PPYansBCAuBkzGH3HHdSPHUt2yPcpRlAFTzToK8EDykXwzndw40uCipq290uKg4cuVjpPDR3IdTsEVz3dcQfskJnw7DUSE3p5GjxaCCHY7wrBglb+kROG+Vn9tqHx/wshkGWQhTJTJgsIyorfSsRls/3e+lbwwLtt+wXMGKuYsA20ThUo7bLv5eHmRGmJsPnfHQten18ZbV+7vUHcKJGWNhbQpslfc0ZlwQf/7DvTrr5m5RbBM58qMxPtzaY2YDXDuX+Dq0+WGNuF8ykQEPywRDFZ+/IPwh7O7TF5pOLD0tumL53h5pdkHo2QdLKzJMfDaQfDmYdJzJ4QmzPTnaE7z5UXvxBcESHi3o2nw6OX9Z9pW/EuJcfWv75SokG2R1qiEqikP4V3nUsw8WzBCStu4JjKN9hqmsRVo3/CZNWx7h0tQ/sw4bEQgqpff2XFrfcib1wBQIlhGO+k38KvCScjS9qwz9gt8NdLEhNH9F09//unkjqjOQbh4Qf3Qfi2biTn8ssZ9+CDvfLbnb1WvKWlbHv8cYrefhvh9yPpdGSdfTYjbrgB05C2Q+Re+ZTMC1+0LLOYYPtHUq/OFlfUCI48aTX3LDsEvfBzy4jPWGY/CJtZGcQYMaR/rhERDFL66adsffhh6rdvB8A2YQKjbr+d1COPRJKkPu0XdxJV8ESD/jiw1Q7B7a8KXv6yfefc2RPg0Usl/vOH4LnPINCOic3QNHjySomT5gy8TsIPiwWH3xDeEHqd0j5BufNOzF3l2lMVcdmXyVejzcK1gr0vC2+g286CBy5SOkpen5IQdN0OWLdTETVrt8PmwvbPq/Y4+3B4/loJ+wAw/+spZVXK9frif9qOSteao/dRzN0OnhH5mhRCiUL2zvdK0tBIfhBtYTHBiQfAkTMrOfWwlH4PQtKAPyA46BrBn6s7/xmTAY7dF846XOKwWcRcNLXu0J3niiwreYZaWwFoNMrsXe4efdsumwsEj34geOf7zon9Q2Yqo9ex4Ff13SLBCdc5eHnzAQzx7eC9tBt4J+M2DpsFr9/cN4Ks6q+FLLrxPnRr/gSgUpfB++k38F3imQQ0kUO57jURXr1RYtLIvm3DYFAw6nTBzlaz+PcfsJzZLx2GkGVm/ve/JO23X9R/u6NrxVdVxY6nn6bg1VeR6+tBksg89VRG3nILlhEj2v3unaWCMX8P99e95Qx46JLeH0T48nfBhxc9wfml91Ohz+TisQtwaeM5YCr8+kzfhsYXQlD+3/+y9aGHcK1fD4Bl9GhG3Xor6SecgKRpag9V8ESXmKlkfx7YJesFlz0pWLqx+99h0MNNp8MtZ0hYzf3/oOkOQihRv7pq8tITkuPh7dskjhqgzvWtOf0eOSwsrNEAR86GdTthS1H7PmRdwW6Bl64beOZ/0cDrE3z4s5LPobMhkyeNUITPGXOV7PDFuwT//lEROqu3df63JQkOmg5nHy5x4hwll0sMPpgoKBNMv7B9s6eG/3LmYRInHkC/+B31Jt09LhvzBVPPDw+aMWUU5L0qoe8DE6flmwQPvy/4dH7nkruesL/y/NlzQmwdw/Mekln6yQIe23YMAg1Xj/6BzZbpgGICutcE2GuixOzxMHMcUXt+li1ZxYLr78e26gcA6rQJfJT6D75KuRCvxhK2v0ajtOH1/yex96T+a8OH3xPc+krLrllKPPyx58PkP/Eo5mHD2OuPP9DZIyTf6gFtXSuBujp2vvgiO194gaBDidKSdswxjLrtNmzjx4ftH4mLHpV57euWZXaLMruTHN83bX3Bgz6mPH8kE9x5/JjwfzyW8xIAh81S7n/H7tu79z8hBJU//cSW++/HsXIlAKahQxl5881knnYaGp0u7DNFRUXozENItMfMAJQqeKJBf3cYgkHFVOC2VwW1zo73b87R+8BTV0qMzo6JE7JHfLdIcMSNfXNazJmmRBDKSh347dbAjhLBHme1H10sGuw9Ed69Q4pK3oKBjBCC+Svg6U8EX/3ZuRnI1ARF/Mxf2bmOZAN75MDZf1MEU04rc5z+vn+1xbcLlbDZrdtlyijlIX/6IfSr2VNv05Pj8uC7igVAa249E645WSItMfqz+EIIfl8JD73fdhLh5ui0cMZcuPnvsWFKGYlqh2Ladtzq2zhx18vsNI7lnfRbKTMMpcyQQ602udF3RquFKSMVq4q9JkjsNVHJIdSVEfjteVv48/oHSV/5OQD1Giufp1zKJ6lX4dbGhe1vNSs+u9ecHBv30/JqJfR+69m8d2/xM/rhuThWrSLrvPOY8NRTUf3d1tdKsL6egtdeY8dTT+GvUqa9kw85hFF33EH89Omd/t6tRYJxZ4YHn/nnuXDP+X1nIlrnEsw9dTN3LJiDSdRzz7C3+TP+mMbtep0ifk4+UOK4/Yhqgu6q339n6wMPULNwIQCGjAxG3nADWWedhcZobLlvnfJM+2WZ4IdFfjYV6WMpaIoqeKJBrHQYyqoEN72kmA90xKgsJX/D0fvExIkYFYRQQtt21km7O2g0Sv6a288iZkyAoklP/Sdak5oAE4aHXsMkhqdUcNQBqQPOZLK32VIoeO4zwRv/69jHobMkx8PphyizObl7tN3BjZX7VyQ+n69EkwwE4fBZcMZhElNG7R7nTk+Oiz8gmHVx2zOINrOSf2jUEOVZMCpLalzPSetatEBZVqLDPfx+uB9lJMxGuOhouP40KUx8xyL//VNw8s1uXto0h6G+lg3qkSyUG7IoM+RQph9KuWEopfocyg3ZlBmGIidksOdEDXtNgNkTFJ+ySDnZlv1ZyMJbH2XkqvfREsQnGfg6+Xw+TLuWGl14NuMhKUqAk0uOi27nNhqceZ/M+z+2LNt7Inx/5XoWHXQQwucj+eCDMeXkYB46FFPoZc7JwZiRgaQN90nqiIZrRfb5KHr3XbY99hi+UsW2LmHvvRl9xx0k7rtvl7/3nAfksP5Ugk2Z3elpYJmuMm+54Okz/sUVxbdQo03m2tHfUmwYiZBaCi+dVol2evIcRfxECl7VGWrz8thy//1UzZsHgD4pieHXXsvQCy5Aa1FmGetcSn/r12WKb/iKLeEDd3eeA/deEBOh8VXBEw1ircMwf4Xg8icVH4vWmI1w+1lKNCyTMbZulNGgvFpw+j2C31ZG9iuRJNBqFOHSYikpI3SadraPHKJEretM2O+BSq1TCS/albwmAOlJMHF4g7iRGkVOaqubbaxdK7FGrVPw+jdKFKvWtvCdQa+DY/ZRRM4Re3XOlEA9JrFJT49L3gbB7EtFl2YCQekwDctoJoaGSKGlcg9sMNsKBJQcSA+/L1izvePvTbApoaavPlkKuy/EOlc9LfPxhwWcsOtlMn07Sfflk+YvwB5s/0bpkwxU6LMoNwylTD+UMsNQpPShpE/IYezMHJKTDWx84jmmrnsdg/ASRMMPiX/nvfSbqDCER7iaMkoxWzvtkJgxEwpjwWrBvleEd8+WvSaR9NNLbLrttjY/K+l0mLKyWogg09ChijDKycGUlYXGEO67VJifj+bPP9n28MPU79wJgH3KFEbfeSfJhx7arQG2DTuVqIetr5/7L5S4PYqJRrvC9c8GSHv0JGY45wPgl/TK+aUfSpkhm3J9duO5Vm4YSpUpi/1mGjl5jsQJB3QuHL9j9Wq2PPAAu777DgBdXBzDrrySnMsuw6e3sWAN/LpcEThLNnRs5r7vZPjjBVXw9JSYqWQsdhj8ASU55j1vNSV4PPlAeOKKgTGq1lO8PkFBYTHZWUMahYxGM/CCMfQHn84TnHZP5BwyQ1IaZmtg4ghF2IwfRqdtmWPxWolFAgHFzO2pTzoOQw/KCOrZf5M49aDII8jtoR6T2CQax+Wml2Qei+KMLSi52UZlQVEFbYaZb73/df8nccmxxHyKg7aQZcH3i+GTn52s2Wll+WZlQM0SrCPdV0C6v0ARQY3ryishuKvTvzEv/njeSb+VQtOYsG1HzFba8JCZsf8ME0Iw/YLw2cWLjoFXbtTg2roV9+bNeAoKqM/PV5YFBXgKChpzuLSJJGHMyGgxO6RPSmLnm2/i26Y4M1rHjmXU7beTdswxLZzou0okn9bkeGV2p7+C7ASDgoefKcL43DXkOFaRGGgntwggI1GtS1fEkGEoxuyhjJo+lFlzhjJkgiImG/ypXJs2sfWhhyj7QglHp7FYyLroEsoPvYp5WxP5ZZkSybUzwUeao9NC9TcxkZdQFTzRIJY7DE63cpKOHQrDMvr9hOtTYvm4xDq/LBX8sETgC4RmbIYpQqen0/jqMek6eRuUsNYf/txy1nJYhhLl7qzDehYOXT0msUk0jovbo4y2r9gcpUp1gVFZcNPpEmcfPnisCRqOSb1XsHwTLFqvRLhcuA7yy8L3N8kuUn2FIRFU2Dgz1CiIAhUssx/Imxl3sNU8pcVnDXo46zC49tS+DS8dDV75SnDJ4y27aBYTFH3WvilYsL4eT2FhCxHkyc9vWi8ubtN50ZSTw6hbbiHz//6vW2ZxzVm9VTDlvPAu5mOXSdxwev8fi2BQ8Mdq+PxHN7//VIimvCAktgsbRXear4AUfzFa2p/i1cQnYMkagnPDBqVtDUbK9j2fzzKv4Yctabg9Pavr5JHwyb0S43L6vd1UwRMN1A5DbKIel9hDPSbdp3iXYkJU4xQcPENi/ynRSdKqHpPYJFrHpdoheOUr+Gutkgh4Wwk97sS0x9TRSsS1k+d0zRdoINDeMSnZJRoF0KL1irmPqyN/PCHCEoYmx8Plx8MVJ0ikJw3M9nPVC4acKKhztSx/+iqJa07p/n+S/X68xcWKAAoJIW9xMfLw4Uy44oqI5m7d4cTbZb74vWVZRhJs/TA2Evg2R5YV37lP5ylREYuaTfpoRIAUfwnpvoJGod249BWS5i/EKJSbQVCj4+fUM3kr8Xp2Gbp/3xmXo0TPnDa8mhMPSYol81VV8EQDtcMQm6jHJfZQj0nsoR6T2KS3josQgtJK2FoMW4tga7EILZX3XfXfa2C/KXDrGYrvWKybXXWXrhyTQECwdgcsWgcL1ykpE9bvbHv/sUOV2ZyzDyfmOtXd4ZpnZJ79rGXZ2KGw4T0p6udHNK+VZRsFMy8K714+c7XE1SfH9nGRZcHi9U3ip0M/UCFICFSQ5i+kUp9Bpb7t5KttMSwDDp4BB8+QOGg6jZFrY/C5EvHghQfUbkVubu6ewDOAHygCzgaOB64F6oFz8vLyCnNzc/cAXgl95515eXk/5+bmWoF3gTTgq7y8vEdD3/kIsA+wAzg/Ly+vi5aCKioqKioqKu0hSRKZKZCZooiU1v2AOleTANpWrITmbRBD+eXhFkVH7a3M6Ow3JbY7g32NTicxdbQy43XxsUrb1DgESzbAwnWwaJ1gQ74Suvqy4ySO3ic6M7axwmXHSzz7WUvhsKkAflmmJJiNVf75RrjYyU6Fi4+JsHOModEo4dD3mijx2OWCvA1N4mdbcYQPSBI1+jRq9Gmd/o3MZEXgHDRdSYg9YsjAPmc7FDxAAXBwXl5efW5u7kPAccB1wBxgFnAncAnwIHABUAZ8C/wMXAj8Ly8v77Xc3NzvcnNz3wdSgKy8vLz9c3NzbwdOBqLsaqmioqKioqLSHnFWieljYfrYhpKmDo3Pr0QP3FoMHp8SNWzkAO/w9CUJdom5s2DuLGhjwHnQsMcwiYNnKNG8mvPiF4JDZnb/vwcCilBcvhmWbxas3Q5OVxIJcTImgxKJNnwphZcbwGQMLUPlO0rhm7/Cf/P2s6UB54cmSRKzxsOs8RIPX6r48X06X/DJr7C5sPPfkxyvmKg1zOCMyxlcM7gdCp68vLySZm99wDhgfV5eng/4Mzc39/HQtiF5eXmbAXJzc6tyc3NTUGZxbgxt/xHYG0gFfgiVfQechyp4VFRUVFRUYgaDXmLMUBgztL9rojIQuPx4iV+WtZwx+fJPKCwXnUoa7PEKVm9TxM2yTYLlm2HVVkVst8QY6ePN6L4HxPAMJbnrQEaSGgYxJO6/UGnTT+cp4mdDfst946wwZ6oicA6eqSS6Hkwzj63pzAwPALm5ucOAw4BbUERLAw0hMprHBKwFkoBEoC5CWUmrski/dzFwMcCVV17J3LlzO1vVXsXv91NUVNTf1VBphXpcYg/1mMQe6jGJTdTjEnuox6RrzBwB6YlplFU3RU0LBuGJf9dxwynOFvs63BJrd+pZs0PHmu161uzQs7lIR1Du3872VcfVUFEepWzQMUKyCS75m/LaVKhj8UY9waDE1FF+Jg33o2sW5K6kpO3vaY9Yu1ba8ifqlODJzc2NQ/HFORdF4MQ129wQPLW5tW88UAXUhPatCZXtDP1mXKv9wsjLy3sFxScI1KAFKh2gHpfYQz0msYd6TGIT9bjEHuox6TqXHS+4+82W3bUP59k5fO84VmyGZZuVEN9bYqdv3MiYbLj6/xLR6SKOwQ8KsrLgoNnR/96Bcq10JmiBDvgQuCcvL29jbm6uHhifm5trAHKBhlR5Jbm5uaOAciApLy9vV25u7gLgUOCN0PIiFB+e64B3gMOBP6P8n1RUVFRUVFRUVPqQi46B+99pmUOstAqOuDFmxqzb5JFLpUEXWl2lJZ2Z4TkdmA3cmZubeyfwEvA0MA/wAOeE9rsdeAtlBuiuUNlrwHu5ubnnA1/n5eUVAoW5ubllubm5vwP5QIMPkIqKioqKioqKygBkSIrECQco/iLRIikOZoyF6WNg+hgJKbALW1wK9V7Fvyd8KVq+94HHG1pG2H9IihI574QDVLEz2FHz8HSRgTJ1t7uhHpfYQz0msYd6TGIT9bjEHuox6R7zlgsOuqZ7Xbbs1JCwGQszxijO90PTWkYKU49L7BGDx6R7eXhUVFRUVFRUVFRUOmLONCUf0cot7e83JlsRNzPGSo0iJzVBnWVR6T1UwaOioqKioqKiotJjJEni3dvhpDsFmwtBp4WJI5pM0qaPUQRRnFUVNyp9iyp4ukBQFnxaWs2lGZkYtZqOP6CioqKioqKishsxeZTEunegsg7irQy4RJ4qgxNV8HSSLQ4XVyxey5LKWur0Ru6cMqa/q6SioqKioqKiEnPodBLpgzfCs8oARJ2m6ABZCF7atJMDfljIkspaAJ7ZuINlVbX9XDMVFRUVFRUVFRUVlY5QBU8HbHG4uWvlZjzBpryqsoDLF6/FEwy280kVFRUVFRUVFRUVlf5GFTwdMDbOyo0TRoaVb6pz8fCabf1QIxUVFRUVFRUVFRWVzqIKnk7wj/HDmZpoDyt/ftMOFu+q6fsKqaioqKioqKioqKh0ClXwdAK9RsMLe05Cr2kZaUQWcOWStdQHVNM2FRUVFRUVFRUVlVhEFTydZEK8jVsmjgor3+Jw88CaDjJsqahEidJ6L+cuWMme3/7JDUvXq2JbRUVFRUVFRaUDVMHTBa4aN4xJNlNY+Uub8llYUd0PNRpY/FlexexvFzDmy3nctGwD3maBIFQ6xuEPcOy8PL4qLGeLw80bWwu5eNFqhBD9XTUVFRUVFRUVlZhFFTxdQKfRcP+YLAytTNsEimmbSx1tb5MllTWc9NsyNjtcVHr9vLalgOuWruvvag0YhBBcv3Q9WxzuFuXfFFXw8c6SfqqVioqKioqKikrsowqeLjLKYuS2SaPDyrc567lv9eZ+qFHsU1rv5Zw/V+KTW85EfLCjhK8Ky/qpVgOL97YX82l+acRttyzfSLHb08c1UlFRUVFRUVEZGKiCpxtcMXYYucnxYeWvbC7gz/KqfqhR7OINypyzYCWlHl/E7dfmraekXu2st8e6Wie3LN/Q5vZaf4Brl65XTdtUVFRUVFRUVCKgCp5uoNVIvDBrIiZtePNdtWQdTn+gH2oVm9yyfANLKmvb3F7t83PVknVqZ70NXIEg5/+1ivoO/J1+LNnF+9uL+6hWKioqKioqKioDB1XwdJMxcVZuj2DatsNVz72r1ahtAG9tLeTtbUUd7vdLaSWvbynsgxoNPG5atoFNda5O7Xv7yk0Uuup7uUYDH4c/wAOrtzD3p8Vcm7eOaq+/v6s0IFlYUc2NS9fz5LrtarRAFZUBzFaHi7P/XMncnxbzyuZ8dQBSZVCiCp4ecOmYHGanJISVv7algN/Kdm/TtoW7arg5ghmWTpJIMujDyv+5alOnO/a7Cx/uKOaDHeGzNuPirLy21+Swcoc/wNV56mxZexS6PRz5yxKeWL+dpVW1vL2tiCN/XUKtTxU9XeHZDTs48tc8Xt9ayP1rtvC3X5bgUGe2VVQGHCX1Ho74ZQlfF5WztKqWW5Zv5OXN+f1dLRWVqKMKnh6g1Ug8P2sC5oimbWt32w5ASb2H8xasxC+Hd7wfnj6Ol2ZPDCv3BGUuXbQanxqqGoCNdU5uWLo+rNys1fDG3lM4MSeD04dnhm2fV1bVqVm13ZGV1XUc9tMi1tY6W5RvrHNx7oJV6rnXSV7atJO7V7UM0LK6xsEVi9eqYrsLBGXBcxt2MO2b3zlh+VZ+LKno7yqp7GYIIbhqyTp2tZrlfmD1FtVaQGXQoQqeHjLKbuWfk8eElRe4Pdy1clM/1Kh/UYIUrKIsQpCCM0cM4bxR2czNTOX8Udlh21dUO3hs3ba+qGZM4w4EOf+v1bgjdMAfmb4H4+NtADw4bRyZZmPYPneu3MROp/qwas53xRUc/Wtem8Ez5pdXcZ0a+KFD3thSwO0rIt/Xvi4q56n1O/q2QgMUb1DmokWruWvVZvJdHra4vZz2+wp+Lt3V31VT2Y14bUsBv5RWhpW7gzK3tXGdq0Rmc52LA39YSPZnP3P2nyvVYEwxiCp4osBFY4ayT2pCWPlb24oi3kwGK0IIbly2nrwIQQpyk+N5bMZ4JEnJYXTP1LGMslnC9ntqw3YW7arp7arGNLet2Mj6VrMQAKcOy+SMEUMa38cb9DyTOyFsP1cgyFVL1iKrnXcA/rUpnzP/XNFhnqx/7yjmifXb+6hWA493txVxw7K2owUCPLBmCz+WqJ329nD4A5z2x3L+U9AyJL8ALlm4Rh1ZV+kTNtQ6uWtV26k0vi4q54diddaxM1R7/RwzL49VNQ7cQZmvi8o5Yf4y1T80xlAFTxTQSBLPz5qIVacN23ZN3jrqdhP/gDe3FvJehEhh6SYDb+8zBWMz0z+rTsvLsyehlVomcZUFXLZozW5rDvhZfgnvRDBJG2O38PiMPRoFYwOHZqZw1oissP3/qKjm9S0FvVbPgUBQFtyybAO3rthIBOvKiDy4ZquayDUCH+0o5h95HScKFsDFC1ezrVWCXBWFSq+PE+YvZX4bPp5VPj/n/rUKr2peqdKL+IIyly5ag6eD8+ym5RtwqwFJOuSOlRspb2U9sKnOxd//XKEGdIkhVMETJYbbLNw9Jdy0rcjt4Y7dwLRtYUU1tyzfGFau10i8tc9UMs2msG0zk+O5ccKIsPIdrnru2A2n07c4XFybF+63Y9Qofjs2vS7i5+6bNpZsS3j73rNq827b8XT6A5y1YAWvtCH6JsTbuH3SqIjbrlqyVs2n1YzP80u5YslaImnGETZzWFmtP8CZf65Qw/O3otBVz5G/LGFZVV27+y2rquOOFeH3UpW2cboFmwvUGe3O8vDarayqcXS4X77Lw1PqrHe7/Fy6iw92RB4kW7SrhosXrSbY2RE3lV5FFTxR5LxR2RyQlhRW/t72Yn4axGYeRW4P5/61ikAEE6pHpu8RMZJdA9eNH8HMpPAkru9uL+LbovJoVjOm8QSVfDvOCKNBD00fx8QEe5ufjdPreHZWuGmbOyhz5ZK1u93NtqTew9G/5vFdceRr7pCMZP538CyunzCSa/YYHrbdLwvO/HOlGjUQ+G9hGZcsWhNxhuy47HQWHL4PB2ckh23bUOfiyiVqEIMGNtQ6OfyXJWzu5ADE61sL1ZnGTlJWJdj3SplDrpUpq1LPt474q6KaZzbsCCsfY7ewT3JiWPmzG3ewWb0XRsTpD3BdhEHK5nxTVMHNyzeo98IYQBU8UUQjSTw7awK2NkzbBmPoW08wyDkLVoZN5wKcMzKLcyMEJ2iOTqPh5dkTsUSIdHdN3jrKPd6o1TWWuXPFJtbUhPvtnDA0nXNGhpustebA9OSIgSAW7qrhX7tRiNE1NQ7m/rS4zdHL80Zl88F+04gLzZbdOXk0xw9ND9uv1h/g/35fTkUbQQ52B74vruDChasJRnhQHzkklVf2moRRq+HV2ZMZbg2f6fmqsJynI3SsdjcW76rhyF+XUFIffi8zaTXcMWk0Oin8c9fmrWNdJ0bhd2eCsuC57VtZ56yjoFxi6tVuKl2qCVFb1Pn8XLpoTdhsrVbWEDd/Foufmw4VcS22+WXBTcvUDnsk7l+zhQJ3y+AEQg6/mN/YWqgGdIkBVMETZXKsZu6dOjasvKTeO+iingghuGHphogmGrOS43l4+h6d+p5Rdiv3TxsXVr7L6+eaJYM/r8yXBWW8vjU88epIm5mncieE+e20xd1TxjAsQsfz/jVbdosRuh9LdnHkL0sojtCxlID7po7l8Rl7oNM03fY0ksSLe05kz+TwWcadrnr+/seK3dKG/efSXZzTRmj5uZkpvL73FPShdkw06nlv36kRBy3uX71lUM9ud8RPJbs4cf5Sanzh5n1xeh2fHTCD6yaM4KYRGWHb60MRL+tU08CI+GWZixet5sWt27EeuQqNvZ6yfDOTb6imNkJ7q8AtyzeGd9CDEqm/zeanBToqqiT8305HdrSM/jm/vIrPC0r7sqoxz+JdNby6uclkWghwzx9L3atz8G0MH0S7f80W/h3Bx1ml71AFTy9wzsgs5qSHm7Z9sKOY7wdR1JPXtxTy7wiJMTNMBt7eZ2qLIAUdcc7ILA7PTAkr/75k16DOK7Pd6ebqCM7gBo3E63tPaZyJ6Aw2vY7nI5i2eYIyVwxy07Y3thTw9z9WRDQJNGs1vL3PVK4YNyyieDRptby/3zRGRvBHWVpVy6WL1gzqtmvNb2VVnPXnSnwR/vOc9KSwACQAExLsPLdneH4tAVy0mwYx+HRniSKYIziGp5sMfHNQLnunKiZEp2UkcnJOuOjZ6nRzlWoaGEaDZcEXoUh3GosP29ErQR+gZG0S0+4pocq7+87ORuI/BWV82MpMUgQl9D/NYP0aC8nxsPdEcNbp8H4zHeFraalyx4pNu00Apo7wBmUlyXfovRDg/nUPvKuHIvu1eH6ZiL8w3Dzwmrx1ahTLfkQVPL2AJEk8lxvZtO3avHWDIlThgopqbovgWGvQSLy971QyIuSHaQ9Jknhm1gRSjPqwbXes2MhWx+CbofAGZS74a1XEiHT3TR3L1MS4CJ9qn33Tkrh4zNCw8rzKWl7YtLNb9YxlgrLgjhUbuWHZhoimV2kmA/89KJejs9Pa/Z5ko4GP9p9OkiH8/Pu6qJy7Vg2u2dm2+Kuimr//sTxi9KZ9UxN5f99pmLTh9zWAE4ZmcPW44WHltf4AZy1YuVsFMfjXpnwuXrQmol/jCJuZ7w7es4VfniRJPJU7gT3irGH7/7ewnBc37T5mqR3hCgQ5/Y8VYT562mQXtr+tBkmw4/csZj+3ndIIs727I8VuD9ctbTmwJoISnu+mULE5gaQ4+PkpiW8eldgjBzy7rDi/nYwINg0QlXl8PLh2a19XPSZ5Yv22Rh9PIYP7l/H41mWhN8gcvz8EgxL+76cSrGp5PQeF4LwFK1lWFZ66Q6X3UQVPL5FtNfNABDOtUo+PWwd4BJ5Ct4dzF6yM+DB/dMYezEpO6Nb3ppmMEfPKuIMyly5aS0AeXKFa7161mRXV4Tb6R2elceHocNHSWf45eUzE2YoH12yJmN9noOIKBDn3r5VtdgbHxVn54ZA9mREhKEYkRtmtvLffNIya8Nvii5vyeW3z4A7zvaSyhv/7fXnEGYnZKQl8sN80LBEGcZpz5+TRHJQeHsRgfa1ztwhiIITggdVb2rzHT06w8+3BsxgW4fq06rS8vc/UiANld6/azF8V1VGv70Cjzufn5N+WtRnWWz+sCvP+yuDElq9HMefdDeTv5nmNZCG4csnaFmaVIijh+nYynu0pjWJn6miJRLsielITIFCQjPu3sTS/ZF/bUsDK6vajDA521tY4eDrkjyNkcP88Ad/6IWj0Qf73iIZP75U4YX/w1muRv52B7DK0+Lw7KHPa78t3y1nv/kYVPL3ImSOGcEiECEYf7yzhmwEagaw+EOScP1eyK8Is1fmjsjl7ZPtBCjriiKy0iHllllbV8uQgCo/5TVF5xGACw6xmnpvVeb+dSFh0Wp7fcxKtv8EnC65YvAb/IBCOZfVejv01j2+KIpuIzklP4ruDZ5ETwaepPfZKSeCFCKZZALes2DCoTFKbs6KqjlN+Wx7RJHBGUhwf7T+9zbDozdFqJF7ba3JEX7KvCst5dhAHMQjKguuWrm8zee1+qYn898CZpJnanv0eE2fluVnh519QCM7/axVlu/GMRZXXx/Hzl0ZMTC2hBIAAME0pxDi5AGQNmz8bxyGfr9qtIy6+srmAec0EoghKuL6bjH9HKol2+OlJiWljmp4WI4dIfPWQhNEg8K3Nxrs8p3GbLOD6pet326TWAVnm6iXrCAjRJHY2ZoI+wOv3+Dh0pgatVuK9OyVmTwBntQG+mxlmHrjLqwj33SUoU6ygCp5eRJIkns6dENEP47q89VQOMBtjIQQ3LFvP8ggjPHulJPBghBmt7nD/tLERoz49tm47SysH/lRwvqueKxevDSvXayRe33sy8RHMqrrKXikJXD52WFj5imrHgO90rqt1MvfnxRHPQ1AGGj7ef3q32/HEnAz+OXl0WLks4IK/VrGigzwqA401NQ5O/G1pROf4KQl2Pj1gRpd8ydoLYnDv6i38XDr4bNg9wSDn/bWqTX/Do7PS+PiA6cR14pw8bmg6l43NCSsv8/i4YOGqQTfT3RnK6r0cM29pxBlxrSTxyl6T+OyAGdhD56l5/83ocioR9Qa2fTaeI75bxqrdcGZifa2Te1ZtbnzfKHa2p5JgF/z0pMT0seGDa3tNlHj3duX6rV8wBt+W1MZty6rqIibH3h14eXM+y6vrELKE+6eJjWLnoqvKOXe/JvM1i0kRjSOHQG2JBc0vU8Oit+1w1XP672q+sr5EFTy9TJbFxEPTw4VAhdfHzcs29EONus8rmwsiJtjKNBt5c+8pGLoQpKA97HodL8+ehKbVfTgoBJcuWoNrAEfN8gVlLvhrNbURbnJ3TxnTafOrznDbpFGMsYf7BDy6bhtrBmi4219LKznilyUUtoo01MBdk0fzTO6Exghi3eWaPYZzdoRw4O6gzOl/LKdwkJjJrKt1ckIbUcQmxNv4fM4MErohHCcm2Hk2wkyFAC78azXbnYPHnKMuFML86zZm7c8akcWbe09p0/cpEndPGRMxf9mCihruW72lu1UdkBS66jnq1yURzXENGom395nCSTmZ7J2ayJdzZpJk0CNpBLbDV6NJciJX2cj/cg+O+SXy7NBgxRuUuXTRGrwhgSyCEq7vJ+HfnorNKvPzkxpmjGvbkuCUgyQeuFhZd/04kUBpk0/pvas373Yh+7c73Ty0ZitClnD9OAHfpgzQB5hw2gaeO2ZI2P5piRLfPiaRFAdVWxLRLhhP64mx5dV1nPvXqkFhdTEQUAVPH3DasMyIEcg+Lyjjq8KyfqhR1/mjvIo7VoY7bhs0Eu/sM5X0LgYp6Ig9UxK4do8RYeVbnW7uilCPgcJ9q7ewNILD4hFDUrl0TPiobk8w67S8sOfEMOHolwVXLF6LL4KvRizz9tZCTv19ecQgD0aNhjf2nsI140f0yBywAUmSeGzGHhGTapZ5fJz6+/IBH7Foc52LE+cvpTKCeerYOCtfzJlJktEQ4ZOd48ScDK4aFz7LWOsPcOafgyOIQblHMa38vTyyf81140fwdO54tK0vwg7QazS8sfdkUiO0/3Mbd/J14cA0ie4q2xxujvw1j23O8AEGs1bDv/ebzpFZTQFJpiXF8fVBuWSYDEjGILajVyKZfQQKkin7ZRQnzlvKvLLKvvwL/cZDa7ayOjSw1Sh2tqVhNAeZ97S2XbHTwK1nSBx9iBeCWpzfTCVYZwKgxhfg7mYzR4MdIQT/yFuH2ydw/TAR/2ZF7NiPXcGbJ+S0GZF27NAG80CoXJGJZlV4n+aX0srdIv1GLKAKnj5AkiSezB1PgiHcLOSGpevZFeMjJYWues77a1XEKFhPzBzPzAg5TKLBTRNHMi3RHlb+xtZCfiwZeL4U3xdXRIyUlm0x8fysiVHpqLcmNzk+YuSs1TWONn0NYgkhBIVuD3et3MS1S9dHPAeTjXq+PHBmxASiPUEfElET421h2zbUuThnAI/MbXO4OX7+0ogJg0fZLPxnzkxSTd0XOw38c/IYDowQon99rVMJ6zqAH/I7nfUc+cuSNpPcPjBtLHdMHt3t6zrTbOL1vSeHDVgAXLFk7aCMXNmc9bVOjvo18myuTafl0wNmRByQ2CPexv8OnkWO1YQ2zoPtyFWgDeJdnU318iGc9vty/jdAfWg7y5/lVTy3cQcQEjs/KGJHawzw05MaZnZC7IDSd/n8dhNZo52IegPOr6cie5V+zAc7inebQBrvbi/it5IapR23pIMhgP245Vx+QBx7RpiJbc6+kyXevV1p76rfRyK2hoef/3BnCffvZjO3/YEqePqITLOJRyIk4tzl9XNjDJu21QeCnLVgZcRR4AtHD+WMCAEGooVeo+Hl2ZMxRxg9uWrJupgXis0pdHu4PILfjk5SnLwTI4TjjhY3TxwVMdztk+u3x1TEnaAs2FTn4rP8Eu5auYkT5i9l7FfzmfL17zy3MXJI7TF2Kz8esmeHD53uEqfX8eH+08mMMIM5v6yK65auH3Cd9nxXPcfNX0pJBAf44VYz/zlwZpfDyrdFe0EM/lNQ1uZxjXXW1Tg44pfFEWcedJLEv2ZP4rIIPnRdZb+0JP45eUxYucMf4JwFqwZtUtwVVXUc82seZRHu8QkGHf85cGZjDqNIDLdZ+N9Bsxhjt6LLrMV68HoA6v8Yi2tbEucsWMUnO8PNswcDdT4/ly1ei6BB7EzEvzUNyeDn7Qd87Dex86aVAHqdxLxHTeiTXMhVNlzNwlXfsGzDgB306Swl9R7uXLZFmSELtaP9uOWMGOnjjknhvp6ROOUgiccuU9rM+eMEgiXhg8RPbdjBqxECGalED1Xw9CEn52RwVFZqWPmXhWX8/Y/l5MWYQ74QgmuXrmdlBEfRfVITeGDa2F6vw9g4K/dMCf+dco+Pa5cOjBFivyxz0cLVVEcwgbpj8uhe66w3YNRqeHHPSWhbjTQHheDyxWvx9oNpmzcos6Kqjne2FXLj0vUc/vNihn3xC3t9t4CLFq7huY07mV9WFVFoN7BfaiLfHzKL4TZLr9Y1y2Liw/2mRwwX/P724gEVPbDU6+e4eUspijBqnm0x8eWBM8mymKL6m0lGA+/uOzXiwMW9qzfzS+nAMjFaWFHNUb/mURqhM27Wanh/v2mcMiwzar931bhhEZ8b62qdXD8ABXdHLNxVw3Hzl1IV4X6ZajTw3wNzO+XrOMRi4puDcpmSYMcwrgzTrG0gJJzfT8JXYeHSRWt4a2thb/yFfuWm5RspdHtCviYT8W9VZiSuuW4XZ+wZPlvdGUanGHjgFodiHliYhHv+OIRQZuFeHsQ5ooQQXLdoIyX/HY9/WxqS0Y/tuOXo0ut4KndCpyJXNnD9aXD58RAISAS/m0GwOvy5dcvyjfx3gLg5DERUwdOHSJLEEzPHR0xu+F3xLg77eTEnzFvK7+VV/f4Q8wSDPLpuGx9HGAUbYjby5t5Te+wY3lkuGJ0d0XThm6IK/r2juE/q0BMeWrM1orPsoRnJXBnBx6E3mJYUx3Xjw+2H19c6ebSXk8nV+fz8WV7Fy5vyuWLxGvb//i+Gfv4LB/+0iH/kref1rYUsqayNmP+lLU4fnsmnB3TPob47TE608/reU8JEI8ADa7by6QAYLS6t93Lhmp3sjBBwIdNs5MsDZzK0i2G8O8ukNoIYyAIuXLiKHQMkiMG3ReWc+NuyiEFHEgw6vpgzk7kR/DV7giRJPD9rIiMi5O75aGdJm5HhBiLzyyo5ef7SiH56Q8xGvjk4t0XC1o5IMRn48sCZzE5JwLTndvRjSsGvU/xR3AauW7p+wEetbM7n+aV8vLNEETs/TGw0v9rn7M08/rdwx/qucN2emcz8+xbQBvGty8K7THl2PbpuW5tBZAY6n24v57M3MvBvT20mdhycPjwzYp+kPSRJ4pmrJY7eB1wuDdrvcpHdLZ9fArh44ZrdxlSwr5H6u2PdSWKmkkVFRWRl9cyM6/P8Ui5cuLrdfWYlx3P9+BHMzUzpFd+Otlhf6+SdbUV8vLMk4oyEUaPhfwfnMj2K0cQ6Q0m9h/2+XxhWJ5tOy2+H7YW+trrHxyXa7PL4+KqwjBsimCxmmo38dtheJPfAKbyr+IIyh/68iDU1LaMdaST4/uA9e+SLJYSgyudnh7OeHS432xz15JWWs9kTYEeUI5rdOnEUN0yITnCCrvLW1kKuW7o+rNygkfh8zkz2acfMpr8IyDLzy6u4fcWmiPlI0kzKqPmYCGaP0eafKzfxfAQztgnxNr4/ZE+sHSQ27Q8KXPV8nl/Kp/mlrG0jcW+m2cinB8xgfAR/r87QmefKmhoHh/28GE+rgQGDRuLbg2f1+T052nxXXMF5C1Y1RhVrToOpZVfzajXgCgQ5688V/FpUg+OLGQTL4tGm12I/YRmSTub68SO4bdKoFveUaDzr+5Iit4f9vv+LGm8Q148TGh3r005cxZJzJ3a77ZqzoqqO/f+1Dee3kwEJ699WYxhdztFZabyz79Se/4lO0FfHpcThZ8xVNbi2JSti5/hl6FKdpBoNLPzbPt02Q3fVC+ZcLVi6EdJz6vEesRBJ3/Kcj9fr+N/Bs7p9P+lrYvBaidg5UAVPF4nGgRVCSVDXmZG5yQl2rh0/gmOy0roc6aezuANBviws4+2thSzuwKzuxT0nctrwno0UdZevCss4d8GqsPLZKQn8a2wmOdk9S3raU1yBIAsqqvmtrIr55ZVhwqIBrSTxVQc26L3FmhoHh/y0CL/c8pIaY7cy/7DZ7YbODcgyRW4v211uRdg469nucrPTWc92V33EUdloYNRomBBvY2qinXNGZTM1Ma7jD/Uid6/czLMhh+DmJBh0fH/wnn0iHDpCCMGqGgcf7yzh8/zSiL4QoAR8+OrA3D57sAZkmVN+X878ZokQGzhhaDqv7TW5X4Rsa3Z5fHxZWMan+aUdhjIebbfw2QEzejQ71tnnygc7irkigi/gUIuJX+fO7lFUvf7ki4JSLlm4hkCE/ogSMXAGmeaemVp6gzIXLlzFfzfX4vgkF9lhRj+mFOtha5EkuHjMUB6cNg5N6PyLwU5cm8hCcNL8ZcwrrW4hduzHLeeVY4dG9Zl987INPPexRP2CMaANYj9+GbrMOj7afxpzM8NNL6NNXxwXj1cw7koH+RttSCYftuOXo0tRnudv7D2lxwFySisFe10m2FkKWeNrcR2Uh9TKYGaI2cj3h+wZdRPj3iAGrxVV8ESDaB1YIQRvbyviqfXbKejEdPAYu4V/jB/ByTkZUTMlW1PjaJzNiZR0sDUXjxnKwxECL/QlVyxeEzEX0DXD0rhrdt+MMDXgl2WWVdUxv6yS38qrWFJZGyYkInHHpNFcNyHcvKyveHzdNh5cE27GduW4Ydw0YSQ7XfVsd9az3eluXN/hclPg8kTskESTOL2OKQl2JiXYmZJoZ0qCnTFx1j4zn+wMshBc8Ndqvoxgaz3MauaLOTN63a+oLQpd9XyaX8pHO0vY2EF2+QSDjq8OzGVSF0yEokGV18fBPy0i3xV+37t7yhiu3mN4n9anAYc/wP+Kyvk0v5R5ZVURIwK2ZnpiHB/tP52UHka068pz5dq8dREHyw7JSOaj/ac3dtgHCu9vL+KavHVEunVOTrDz2QEzety+DQRkmSuXrOODZXXUfZoLfh2mWdswz1b88P4+fAjP5E5Aq5FisRPXJi9u3Mntyzfj/qkpP4z92OWcOMvEm3tPieogQq3Pz57fLmDHdyPwrc1GMvuwn7yEUUMk/jx8b8y9PEvb28el3ivY/wYfS1fqw8TOUVmpvLPP1Ki05/odgn0uF9Q4IXvPMlx7rgnbZ3y8jf8dlBuVZOS9SQxeK6rgiQbRPrB+WeaTnaU8vWE7Wxwd27HnWE1cPW44fx8xpEuJ7Bpw+gN8UVDG29sKWdaFjPGnDx/C07nj+73jWefzs/8PC8NEok6CvVMTGWY1M8xqZrjNTE5oPdVoiMoNSgjB+jqXInDKqvizohpnF6MkHZiexKcHzOjXTolfljn858URs5b3JZlmI5MT7ExuFDdx5FhNMTHC3xH1gSDHz1/KkjZmRIdbzeyTmsg+qYnsm5rYq/+rzufny8JyPtlZwh+dtP2O0+v4z5yZTEvqn9my1dUO/vbLYupbmWdpJPhk/xkc1EX7+O7iDcr8VLqLT3eW8n1JRZi5WHvMSUvinX2nYu+C43JbdOW54gkGOfKXJRGv31smjuSmiaN6XJ++4rXNBdy0PHKU0tzkeD7Zf3rUO3uyENy0bAP/+qUe59dTQUhY5q7BOE4ZwDguO51/zZ5ERWlJrHXiIrKu1snB3y+i+oc98G3KbMwPM3Skh98P26tXZv0+2VnCxX+txfn1VAL5yWgSXdhPyuOmGUO5rZORy7pLb3au3R7B0bfI/LpMUoTc8cvQJisDR3F6HX/9be8ezzQ2Z/4KwdzrBP4ADD1kO87x28L22Tc1kU8OmN6t/l5foQqe6BIzleytAxuUBV8VlfHU+u1tmkI1J8Nk4PJxwzh3ZHanIoU0RMT6NL+00510k1bD8dnpnD0qm716OZJYV/iropqjf83r9Elh0WrIaSWChoeWOVZzu+1X6KpnXlkVv5Urr0h5SzrLHnFWvjwwNyr5TXrK+lonB/24EF8nZqR6igSMslsUYZNgZ3JiHJMT7DHRDj1hl8fH4b8sZnuE0MStGWI2NgqgfVITGWO39EgA+WWZn0sr+WhHCd8VV0T0e2iL4VYzr+09uVORrnqTz/JLuGhh+KhmgkHHJ/vPYGycNSpiojVBWfBHRRWf5pfy38LyTs1uN2dmUjxnjhjCmSOyomZm3NXnSr6rngN/XEiNr2XdJeDjA6ZzSEZ0Ayf0Bs+s3849beQe2T8tkff3ndalKFhdQQjBvau38MhHAep/HwcaGfsJy9BlKgMYh2Yk8+DwVEbnDO2V348W3qDMIT8sYsnnOfg2NokdXWYtnx3QewMHQgiOn7+U3wrrcHw2k2ClHV1WFUnHr+TPI/ditL33zHp7qw/m9giOuUXwyzLCxA7A07njOXtk9M3m//2j4Iz7BJIkyDxmPfU54RYsx2ancdPEUWSbjdj1upgbFFQFT3SJmUr29oEVQvBDyS6eWL+9U2Gqkwx6LhmTw8VjhoaNhNX5A3yeX8rb2wojhpZuiwnxNs4ZmcUpwzL7LApWV7ln1WaeiVJ0nRSjXhFEIRE0xGJiXa2T38qq2NrD6FHj4qzMSUviwIxkDslI7vcZsua01+HoDiatplFMDrdZSA762G/4UCbF23qt49LfbHG4OPznJREDfLRHqtHA3qkJjTNA4+NtHc76CSFYWlXHxztL+KKgtN2Q3a3RayQOz0zlELuB0yaOazMzeF9z54pNEZPxNmDVaUk3GUg3GUk3G0k3GckwGRrX083K+0SDvt1OgBCCZVV1fJZfyhcFbfs0tcXYOCun5GRwYk4GI3rBXLE7z5UfSyr4v99XhJUnGvTMmzu71yLu9RQhBA+u2dpm4uO5mSm8tfeUXjeNAnhq/XZufV6Dd/VQpZN7yhK0cYr1wMw4C58dMpu4GL533bF8E4+9aG0SO8esQDeklkvG5PDQ9HG9+tub6lzs/8NfeGsN1H0yC+E2YtijmCP+XsYXc2b0Wqe8N/pgrnrB0bcI5i0HyeJVxE5S07N//7RE/jNnZq/9pwffFdz+qsBoEMQfvxx/Wtsz9TadliEWE0PMRrIsJoaYTWRZjKGliSyzkbhe7LfJQuD0B6gLBKnzB6jzB9heUoohPoEMk4F908ITTfcDquCJBn2lZIUQ/F5ezZPrt/NbebiDb2tsOi0Xjh7KZWOHsdNVz9vbCvkiv7TToX4tWg0n5mRw9shsZibFxdwIQmu8QZnDfl7M6jaynPcXQ8xG5qQnMSc9mf3TEqM6/R1tArLMEb/ksbSq8/mfko16hlnNjLBZGN6wtCkiJ8NsbNFpj8FRn15hYUU1p/2xosszBc1JMOjYOyWxUQRNSbCjC4njHU43H+8s4ZOdpV0W4LNTEvi/YZkcl51OolEfc8ckIMuc8tty5nfiHtceBo1EmikkiMwhgWQykm42UOj28Fl+aadm4pqTbTFxUk4GJ+VkMDHe1qv3xO4elwfXbOHxdeHCYUZSHN8cNCtmhK0vKLOu1snyqlp+Lavi66LyiPsdk53Gq7MnY+jDer+8IZ+r7jcrpllJTuJOykMyKlYQmWYj0xLjGGW3MNpuYYzdymi7lRRj+wK7L5hXUsXh/6xvFDu2Y1aiH1LDuDgrvxw6u08E4/2rt/Dk+u0Eyu04Pp8JAS2mvbby/pV2TszJ6JXfjPY9zOkWHHWz4LeVoLf5MB+3FG1i033WrNXwx+F798pARwNCCC5+TPDa1xBvl9EevwgR3/3B1o5EkUmrwRESKw2vDt+HBI7TH2izQ35sdhpv7dO3vtRtoAqeaNAfHYYllTU8uW4735fs6nBfjURE58+2mJpo5+wRWZw0LDOmR7IiUez2cPnitZ0ShL1FvF7H/mlJzElP4oC0JEb30FSprylyezj9j+WNZpQaCYZaGmZpWgqa4VZzl0aOYq1z3ZuU1Xt5YdNO/iivYlWNo0vXYCRsOi17piTg9Ac6jJzYmlE2C6cOy+SUYRlhwRNi8ZhUen0c/OOiTgVv6W2SjXqOy07n5JwM9kxJ6DNfu+4el6AsOOX3ZcyLEPXu8MwU/jYkldF2C6PtVtJM0fFl7EydNjpcLK+qZUVVHcur61hT4+jQfPa0YZk8O2tCo9DvS15fV8Ilt1kJVtnQDa3EdsxKJE3b9Y3X6xgVEkCjQu07xm5hpM3S60LD6Rb8Ly/AhW/X4NicrIido1eiz6pBr5H46ZDZTE7sm0Ak7kCQvb9bQIHbg29bCq7/TQEkhhy1gfXXje2VPkU072EOt+ComwS/rwJ7fADp6MVoE1sOjNw7dQxXjhseld9rD39AcOytgu8WQWZGAPdRC9CYu2Y50N8cmJ7E53Nm9nc1QBU80aE/Owxrahw8uX47XxaU9ahBbDotJ4dmc/rLaTmauAJBlmzbgccWxw5nPTtd9eS76tkRWrq6GFigPYwaDXulJCgCJz2JqQlxvRYuvK8IyoKieg8BWTDUaoqa2V0sdq77gjqfn0WVtSyoqGZBRTXLq+p6PbpdslHPiUMzOHVYJjPamaGN1WOyutrBkb8uieq12lmsOi1HZaVxUk4GB6Yn9YvZaU+OS6XXx4E/LqKoA8Fo1+sYbbM0CqCGDvtIu6Xb+Y9kIdjudLM8JGyWV9WxqrquS0mEAc4flc2jM/bo12Aury6r4JJb7Yh6A8bJBVjmbOrW92RbTI2zQc3FUJbFhEaSCMgy7kAQRyCIKxDEGQjgalj3B3C2Knd4A+zM17Ntg4WiTTYq860IOXSO6oLYjlmBPqsG6J8oh98VV/D3P1YA4FkxlPo/xoJG5owri3jv5Ogn1u7pPayyVvDzUvgxT/DtIiiqgPRkGd+Ri6DVrMqMpDi+O3hWn4lwh1twwFWCFZthxCgv1XMXIOm6di31JUKAXGnFX5iEcVIRM9Ns/HTo7P6uFqiCJzrEQodhc52Lpzfs4JOdJV3qSM1IiuOckdmcMDR90PlUtHVchBDs8vrZ6apnp8vNTqcntK68Ct2edsPPaiSYlhjHnDRF4OyZnNAnpgKDgVi4VmIBVyBIXmUNCypq+Kuimryq2i5FA2sLk1bDEUNSOXWYkvW7Mx31WD4ma2scvLQpn00OF2X1Xso83l4LqqHXSMzNSOGkYRkcnpmKpZ+v6Z4el7zKWo76dUmnwuJHYojZGDLXsjAqtBxttzDUYm4c0BFCUOT2sCwkbBpmb3piyglKOPx7poyJiZnxZ+bV8I97rBDUYt5/I6aphVH7bqNGgyTRqWtfdhrxFyThz08iUJCE8DQL8CIJtGl16HOqMIwtbTS/2ic1gS/n5PbLANyZf6zgf8UVCAH1v41VfKJMPv77dICjJkQ3x1dXrxWvT/DnakXg/JgHyzYpHfUGRmdByvGr2ChVtPicTpL4de5sJvZx2P7iXYLZlwgKK+CAvbxMPHErBfUeius9FLu9XQpQ0xvIjtC5WZBEoDAJUa+cm7bjlzFhvJdFR+zbr/ULoQqeaBBLHYYCVz3PbtjBe9uL27wI4vQ6Th2Wydkjs/o830Zf0t3j0pBMc6dLyTWT7/JQ7PYQb9Czb2oi+6Ulxmzghlgnlq6VWMIblFleVcufFdUsqKhhcWVNp2c2JGC/tEROHZbJMVlpXXZOHUjHRAhBjS9AqUcRP2X1XkrrvZR6fI3vyzxeyjy+TrWfBOyflsSJOekcm50eU9d1NI7L61sKuHFZ5BDP3cWo0TDCZibNZGRdrYNdXQiU0RE2nZZbJo7isrE5MSF2GnjgCxd3PKUEfJBsHrQJbjQJbrTxbjQJ9cr7uHokbfS6JcKvIVCcgD8/GX9BEnJVS5GgsdejG1qFPqcKXXYVGlNLkWnX6/jjsL36LVBFgauevb5bQH1QRsgSzm+mENiZgiXZw7+vNzFuqMSITDAaun+cg7Kgzh+gqqyUUe1EzxNCsHob/LhEETm/rYR6b9N2gx72mwxzcyXmzoI/5Z3cvXpz2PfcMGFEr4fYbovVWwX7XSmoc8ENp8FjlyuDWUIIKr1+iuqVfkqR20txvYcit4fiem9o6YnqQJHs0REoSiQQEjlybUszaaPdR8rwWqYfWMO0MRL3TRsbtd/uAargiQax2GEorffy4qadvLm1sPHBv2dyPOeMyua47PR+H73sC2LxuOzuqMekc/hlmVXVDhZUVPPXrmr+qqihttWo+R5xVv5vWCYnDcskuweZtwfrMXH4A02iyONrIYZkIZiWGMcJOekxG0QkGsdFCMEdKzfx0qb8KNUquqQaDUxPilNeiXHMTkmI2YSKj38guO1VGX+gjQ66JNDYPWji3U2CKKEeTbwbTZynXf8fUGYYgpU2AvlJ+POTCRQngNxshlYfQJ9VjS6nCv3QSjQJ9bSnCV+ePYlTh2V2/Y9GkafXb+feUNRP4dPi+HwmwV1Ng6waDeSkwehsGJopk5keIDktQHyKF1OCD6fsp8rnp8bnp9rXat3rb3FPTDUayLYoDvjZFhM2n4XyrXY2rTeTt0pHRXXLxpoyCubmwtxZEvtPAYtJ2b7d6Wa/7/8Kywc2Ns7K/Ll79WvQj5+XCv52gyAQhENmwvhhMDpLYnS2Mis1IhMM+vCTosGqpVEIub1NAik0SxQUgji9DrteR1yzl12vw4yO8h1Wtmwws369kc3btAjR9DtxVjhoOhw6U+LQXBiXA8XFxbH2XFEFTzSI5Q5DnT/Ayuo6hlpM/Zbpvb+I5eOyu6Iek+4RlAXr65zkVdYiATOS4pmUEJ0oYeoxiU2ieVy2Olwsrapjc52LLQ43W50utjrcYZ263iRer2NaUhwzEuOYlhTH9KR4sszGmJrJ6Yid+UX4NUPYXEjoJdhcCJsKYGeZQJbb+C8aWRFDCc3EUHw9GpuHQHlc40i5cBubfajJTE03tApdRm2nZpBsOi3Xjx/B1XsM7/e29QVlDvhxIZvqlNw1stuAZ1kOUpUd6ix4ao0g2hGQNk9TWyW40cS3PZsmfFplRlzL4AAALsNJREFURqxh1qH1jJjVS+KIWobv4WbKRB/jMvRkh8TRUIuZIRYjRo2G4+cv5ffyliGgJeDbg2exZwzkHnz7W8H5jwgiGfA0F5Cjs0JiKEt5P3IImI2dOx+CQcGKLfBTHvy0VPDHKmgetV+vg30mNQmc3HGg07X87hh8rqiCJxrE4IFVQT0usYh6TGIP9ZjEJr19XGQhKHZ72OJ0s6XOzRaHS1l3uChweXr0gLXqtExJsIdmb+KZnhjHCJu53zvgPaW9Y+L1CbaX0EIMbSqATYWCwvLO/W+d3UvCiFrSRteRPdpFYrzSljadDqtOi1Wnxa7Xhcq0WEPlNr2ybtNpyTAZ+zSEd0f8UV7FsfOWRtwmghJynRm51kywxoJcayFYY0autSA7TJ0SQ5o4D3K1hUBpfPiM2JCa0IxYFZpEV7szYqDkMKyKkD/t4jFDeXj6Hp39y73OzlLByi2wpQi2FAm2FCrrO8uIKIQayE5tKYbGZCvvRw2Bkkr4eakicH5ZBlV1LT87bQwcOhMOzZXYbzJYze03Zgw+VyJWeHB5rquoqKioqKi0QCNJZFvNZFvNHJie3GJbfSDIdqc7ohiq8bU0rTRoJCYl2JmRFM/0pDimJcYx1m4d8JEqu4rRILHHMNijMQhZ0/+v9wq2FoWLoR1lgvHD4G97Shw+S2KPYSYkyQz0Tr6a/mC/tCROHZbJxztLwrZJWoE20Y020Y2eyhbbGsRQowBqJYZkhxnZ0cw/SRJo02vRD+3ajFhzIomdoRYTd/ST305bDMuQGNZ4ijSdZz6/YEcpjQKouRjaXgKFFcpr3nLoaM5gWIZi8nfoTImDZ0JqwuC8nlXBo6KioqKispti1mmZkGBnQqugNg0O0lucbnZ5fAy1mhgfZ4upGYVYxGyUmDQSJo1sKBmcnce2uHfqGL4rruhS9L7mYoh2xJDeaSVgqUebVR0WuCEaPJU7YcBEsDXoJcYOhbGN8RuazrNAQJBfHlkMbS0Gm1nxCzp0psQhMxUTuIE+I9sZBsaRVVFRUVFRUekzJEkixWQgxWToeGcVlRBpJiOv7jWJcxasajMEt12vI9GgI8mgJ8GgJ9Ggb7luVJYJoXJlXYdOo2FHQSGapHEUuj0Uuj0UhNJLNH91J5/X6cOV8P6DAZ1OYuQQRcgcBjQXQ7IskKTdQ+C0RhU8KioqKioqKioqUWFuZipLj9yX5VV1aCQpTLj0JLmvXiORZTWT00YIbiEEtf5AkwByeShwtxRFpfXeFkZe+6Um8tC0cd2u00BCs5uZnzZHFTwqKioqKioqKipRI9NsIjOr78PASyGBlWDQt5l70C/LlNR7KXR7SDToGWO3oOuBCFMZGKiCR0VFRUVFRUVFZbdAr9GQ084skcrgRJW0KioqKioqKioqKiqDFlXwqKioqKioqKioqKgMWlTBo6KioqKioqKioqIyaFEFj4qKioqKioqKiorKoEUVPCoqKioqKioqKioqgxZV8KioqKioqKioqKioDFrUsNQqKioqKoMOb5mXyj+r8FX5sQw3k5ibgD5B39/VUlFRUVHpB1TBo6LSDDkg4yn2ojFoMKYbkKTdNyuxispAIuAKUPVXNbvmVbJrXiXO9c6wfWzjrCTMSiBxzwQSZyVgHWNVr3EVFRWV3QBV8PQTQXeQXb9V4trmRmPQoLNq0Vq16Gw6ZWnVorXq0Nm06Kw6NGaN+mCOMt4KL451ThzrHNStdeBY58S50YnskQHQWrVYR1uxjrI0LUdZsY6yoo9TL52+QsgCb5kX2SdjyjKh0amWuCoggoLaFbWKwJlfSfXiGoRftPsZ50YXzo0uCt8rAkCfqFcE0KwEEmfFEz8jHp1VvbZVVFRUBhvqnb0P8df5Kf+hgrKvy6n4eRdBd7DzH5ZoFEFaWzNBFEEkGTOMWEdasI60YMpWO4hBTxDnJheOtQ4c6xRhU7fOga/c1/7nXEHqVtZRt7IubJsx3aCInxaCyIpluBmNfvdu764ghCBQG6C+yEN9YT2eIg/1hR5lWaQsPcUeREDpyGqtWhJmxpM4O5HEPRNIyI1HH6eaKe0uuLa72TWvksr5lVT+Xom/JtCj7/NX+6n4oYKKHyoAkLQS9kl2RQDtqbxM2SZ1sElFRUVlgKMKnl7Gu8tH+XfllH5dRuX8SmRf+yOQbSIg4AwScAahrPMfk/QSlhwzllFWrCMtWEZYlA76SAvmbDOSdvA8yIUQeAo9ymzNWgeO9U4cax24troRwW62ext4y3x4y3xULahuUS5pJczDzVhHWbGNbpgRsmAdY9stTeSC9UE8xc1FTLioCbo6L/yDriCVv1VR+VuVUiCBfbyNhD0TSNozkYQ9E7AMN+927TxY8VX7qPy9qtFMrX5nfa/+ngiKxkGOna/lA2DMMJI4K4GEkBlc3JQ4tEZ1UENFRUVlICEJEd2OYC8RM5UsKioiKyur3X08xR5Kvymj7OtyKhdUgdxHlesikl7CMsyCJTQbZB3ZtB5LYkgIQdAVxF/tx1flV5bVPvyhdU+Jl10rK/Ft8RFw9GzEtzcxpBiIm2QnbrId+yQ78ZPjsI629ls7+yp9ODe5cG5y4t7uJuiREUHR9AqEXnJo2dG25u8DAk+Fh0B1F2Yxo4QhzdA0Qj87MSY7qEFPEN8uH95yn7Ks8LZY91X48Fb4ujQL3BmNFxBB7Dk25TofoQyAWEZasA63oLVoe/CPokPQK1OzuMkPp3ZlXY/u/vYJNmzjbdStcuDa7IpKHTVGDaYhRnRxenR2LXq7Hl2cDp1dhy5Oh77ZekN5izKbDknT8mB15rkSqwghCLqDBGoD+OsC+Gv8+Gv9BGoC+Gv9oZdSruzjJ1AXQGvSYkg1YEwzYkwzYEhVlsY0I8ZQeX+ekz09JrIsU1tbS1VVFdXV1dTW1mI0GrHb7cTFxTUuDQZDFGvdfYJeGdkbRGfXxdSAUTAYpKamhurqaqqrq6mqqmLUqFGN7WcyqTOwnSEQCDS2oRACu92O3W7HarWi0fTs+RiD96+IJ4QqeLpIWwfWtd1N2ddllH5dRk1ebT/ULLo0iCHrKAvGDCMagwaNUaMsDVKr95o2t0v6pnJt6D1C4K8JiZcqf2jdFxIySpmvWhEz/mqlvNszY91AF69D+EXXTA67icaswT5eEUGKGIrDPsEWNT8CIQs8RR6cmxVhowgcF65NTnyV/qj8RqyjMWqInxanmMCFhJAx1RiV7xZCEXeyV0b2yfir/XgrfHjLvSHx4guJl5CI2eXDVx6bwrzBFNYSEkKN68MtPfZZE0GhtEupB0+ZF2+pF0+pF2/z9VIv3gpvjwaIjBlGUg5MVl4HJGNMbzrOviofNXm1VC+uoXpJNbXL6vrkGo+EzqZVBFNICPmFD6PBiBCALEDQuC4EIASioV0a1kVov0jrkoSkC720EpqGdb2EpNU0vdc27afRaVp8pqlc6TsEHMEmAVMTINAgZGr9HfpOdRetVYsxXRFAzcWRMdWIMc2olIW2a83RFUdFRUUMGTIEh8PRorPd2fXa2lo6078yGAyNAqi1GGq+jFSWnp7OsGHDMBo7vp/JfhlPkQd3fj31oZd7Zz31BcrSW+oFQBenUwZAR1tbDIZaR1m7HeVQlmXq6urC2qrN91XVVO2qoqq6CofL0e53azVa7LZQ+yTEtdtukdowJSWF7OxstNr+H/DpiGAwSG1tbbvtWFVZRVV5FZUVlcq22hpqHTU468ODuABIkoTVZMVmsxMXape4xHji4iO3V6R1p9PJ1KlTY0a8owqe6NAgeIQQODc4Kf26jNKvy3Gsaf+ijIQ+UU/qoSnobDqCriABV4CAM0jQFSDgChJ0Na03ONKrRA9JL2Eba8U+3o59op24iTbs4+0YM5WHh6fYi2urC9dWN64tLmV9iwv3zvrenbWTwDrK2kwE2YmbFNei89Ya2S/j3uZunLFxbnLh3KzUtysmY7GKLl4HMlETCpaRFhJzE9DF65B9cqNgUV5NAkY0lHmbbWt471eWsXN36j0MqYaWM0IN68PNyD7RQsh4y5oETLSETFtorVqS90sieU4yKXOSsY3rfNQ1OSDjWOukenE11UtqqFlcQ32BJ/qVVOkTdDZlxsiQYsSYYgitKy9jaGlIVdb1SXoCcoDCwkIKCgrCXvn5+RQVFVFTU0Mw2P37p01nwybZsAobFiwECFAvuamXPNTLblxBF0HRs/uzJElkZWUxcsRIctJzyIrPJtOQQZrIILU+FesuK/UFii9kT69BQ7Iey0hrSAAp9wJfipdKXSUllSVh7VhUVERVVRU1NTXIcvd+XELCIlmxSUpbysjUi3rcwk29cOOn5wN3Op2OYcOGMWLECEaMGMHIkSNbLJOTk3t1Fsnv91NcXBx2PuZvzyd/RwGVlbuoqauhzhXuT9xZJKTGNpSQcIt66oUbL96o/IfP3/yco084Gn18TPjUqoKnpwgh2PLDFoKLBKVfl+He6u7ydxjTjaQflUbGMekk7ZPY6YACckAm6A4SdAYJOJsEUcAVCAkjZd1fE8C9w417mxvXdjf+qt1jFL8jTENM2CfYsE+wY5+oLG2jrWgMXZ/KlX0y7u1uRQhtdeHc0iSKfBXtB0LoCcZ0A3GT4rBPsmMZbqY+39Mobtzb3Y2O/QMNjVGDKcuEOcukLLMblmZMQ5RynV2HkAXOTS6lg7qohuolNd26BlUGMBpImBEfmsVJIWFmfLeu4bbwFHuozquherEigGpX1fXa7IVK7xEUQapFNRXBcnbJu6iQK9glV7RYVovqjr8IsBgsxJnisOvs2LV2Rbz4LVh9VqwoHUi7ZFc6kxp747pVsqKV2p81EELgx9/YeW/ohLpDr4aOvdfgxWvw4NF78Gg9uHHjlt2UO8opc5S2K5oMGEjXZJCuTSdDk0mGJp0MbSbpmgwytOlYJGubn60X9S3bLtjQhk1t6qFzgwRWg1VpQ8mOJWDFKluxaZq1nRRqO42tsWNuk+xYJEu77egXfuqbtVuTGKrHLVy4qW8hkBra06Otp17jocpXyS7XrnbrbrfbWwig5uvDhw/HYrG0+VlZliktLY0orAvyC8jfmU9ZRVmnBaFVsmJrbDNb2HmnvG/ZrjbJhkWyoJHC75VBEWzRPvXUt2pH5bxsKAtvZ2X9dvudTM2exiFrD+zU/+hlVMHTrR+WBdULqxtncjxFXR8BNA8zk3F0OhnHpJMwMz7Mfrs38df4cW1z49rmUkTQtsEthrRWLfY9bNgn2psEzgQbhsS+mWr11/pbzQi5FUG0ydmnZnkxgwSmDGOTgIkgbAwp3Q/m4K3wUrOkVhFBi2uoXVGnzLqoDBosoyykzFHM1JL3S+rTEcRgfZDalXXULFFEUPXiGny7em9QQ6XryELmrfo3mnXMd1ElVxKk/ZkTDRqSNcmkaFJJ1aSSokkJLVNJ1aSRrEnGLtnRSzExYt0mARGgQq6gTC6lNFiqLEPrpXIpdaJ9E/s4KY4MTQYZ2kwskoVd8q7GdnSJyGZQzTFjVtpMm9qs/ZT2TNGkEifFYZNsHYq//sQrvJTJZZSF2qxMLqVMKqOMMkr8xbgD7Q+sZWRkNAqgtLS0FgKnqKiIQKB9ywQJiUQpsVnbpZKqSSFFm0qKlEKCJqFT4q+/sY23ccAf+/Z3NUAVPN38YSH4depvXRY6tnFWMo5JJ+PodOyT7DHpVOev8Sud8u3umBdDGqMGfaIeQ5IefaI+tG5An6CUeeI9DNt/GJZh5j4VlJ1F9ss4N7twrHZQu7oOx2oHdWvqehxWtydIekmJJjdWeemTDIrtfsjmH43U0tZf28y2XwuSVqMsdaFli+0Su5y7GDZtWJ+G6Q56ZepW1Smd00WKqVJH4cf7A0krYUjRK+Y2qUZlmWZoep9qwJhqQBev71Qwgs7exkt2lGBz25QZytB1797upr7QEyPz6ErQieR9kxpFjnmoub+r1IgQAl+FD39tgECdX/FrCS0DDsUZP+BQnPcb1luUOQKDwsS0NRqjBn2CDl2cHn28Dn2CHl28Dn28XnklKOsNZTq7jqAroPh1Vfjwlnkbfd285T585V68Fb5Oz1qfWn1yWOc8QUpo7EC27IgryyRNUkx3HqOFW7hDHfkySuWSJlEUWvpo+/6oRx8mYlq3pVUa3Ml7hRA4hKOxzUrlUkrlEsqCSnuWy+Udiut4KT7s/GsQhKmaFJI0yTEvrDtD4t6J7P31nv1dDVAFT/dZd9t6dvwrv8P94qbGKSLnqDRsY219ULPeo0EMuXfU468LNPkztPB1kJG9otl6k19D03vR6r3i86CPD4mXJH2jaNEnGlqIGkOist2QaOgw8WoMRgnpECGUgAJ1IfFTt8pB3RoH9fnRDb2rs2mxjrFiG2sLiRsb1rGhnEG9mKMpFo6JEIL6nfWKCdziGqoXV+NY74zqHUXSSqHAHBI6u06JNtXgZN1MvCiiRhE3hiR9vwjzto5J0CtTvzMkgrY3DXy4t7upz/dEJay7PkGnOJhnmDBlGDGmG5VlZrP1NGPUnc9jDTkgE3QGGwVQoC5ARWk5KampSBqUcHsSTevQqjy0lIDm65IUWhIKYBAKqBFoFlUxICvvm0daDK3LfrlleUAgB5v20dl1jWJG3yBcQmJGa4r+MROyEtzGWx4KAtIgiMpCQUDKmwTSl/n/wSD0jZ3JZE0KBilmHKgBJUCN7Olfnz9DqgHzUDOWYWbMQ82Yc0w4bHWUijKKXUXUOetIs6SRHEwh0Z2IsdyEe3s97q2K72pfmk0bUg1YhpmxDLdgzjFjGa7UuaK0ApvPhqfYE3p5qS/24C3x9MsAYlAEqZQrFREkl1Ej15CkSWohbPr0XJRQrs+GAeHQALE+oWGpBKDxVyvBR/w1SuAof7UfX42fQI1S3p17fvoRacx8b3q0/1F3UAVPd6laUMXCY5aEb5Agca9EMo5OI+Oo9JgaidzdiIXOdbTw1/qpW6OIn7rVdTjWOHBscHboS2BINSiCZowibKwhcWMaYuyTEThZlqlyV1HiKKHMUU5BaQFJSYnIQiALGVmWlWXoJYSMQDRtj7QPAiFkZCHQarTkJAxleNJwhicNJ84U1616+uv81CytxbnRCZIUOfKgUYNG3/q91PJ9KDphrIRv7wzduU5kv6xEctoemgXe7sa1vR73Njf1hfWKD1ZGSMikGzFmhMRL6GVKVwTNYBcyPWEw3b/6gwZx1BgJsdLXtF4RCvfeuO6NWsdYZ9NiSGs5wNEQWrsxqlxom86qQwSbIpT6qnz4K5UUC75KP/4qn1JeGYpYWtkUvbSzPSB9ol4RBzlmzCFR0yhuhpp6FP1TDsjU59cr94CQ/6orZBlSX9D1QD4as0bJETjcotRxuCX0Xqmvzha5ru1dKwFXAE+Jt4UY8hR78JQ0vR9QJqkaMGeZMGaYlEHgBD36RF0LAWNoLmYS9ejj9D1+JgkhlNnrkBBqFEWt3vuqlfDzrgo3OCHt8FQmPTYhSn++R6iCp9s/HhT8PHGe4pCug5T9k8k4Op30I9MwpnUuvK0QglJHKatL1rC6ZHXjsri2GACtpEUjSWg0WrQaLRpJEyrToNVo0DSuN5U1bNdomrZpJQ1JliSGxA9hSNyQ0DKTIfFZDInLxGJo27luIDPYOwyyT8a50anMBq2uw7vLhynThG1Mg7Cx9pqfUiAYoMJVQamjjNK6UkodpZTWlVLmKFPWHWWUhV4Bue9G2JIsSY3iZ0RoOTxpGMOThpMVl4VOO3jzKvsCPlx+Ny6vE7fPjdPnwuVz4vK5cflcuH0unF4Xbr8bl9eFy6e8ah21TBo6iRnZM5iRPZ1ka3J//5WoI4TA7XdTU19DTX0NvqCfdFsa6fZ0tJrYFF2D/f4Va8h+WREUuxTTOd8uX1MY+ZBgclW6sWfYFFPThtxADTO2odDYfZEnSAQF/tqGNA6+kBBS1jUGDeYcs/Iaau5x+Pju0jhDvNXd5DO81Y23zIshxYB5WJOwUV4WDGnd893s6bUS9MpKVMliL/VFSjhuT0koqmSJR4ksWeLpM59bfaJeEXyhdrEMV5bmYWbM2aY+NQnvLjF4/1IFT0/Y+WYBWrOG4NQgw8bntLuvP+hnc8XmMHHTUSSQviDBnEBW/BCGxGUxJD6zmSgaQlb8EDLjh5Bgih8QNrmyLLPLtYtKdyXl5eUMyVA6uTqNFp1Gh06jQ6tp+V6n0fU4ydZgISgHqXBWUFRbTHFdEaV1ZZQ4SilzlFJaV6YsHWVUuCo6lU8iltBpdAwNzQY1iaEmQZRgTujX+nn8HqrcVY2v6vpqqtzVLcvc1dR56nD5XDh9Ltw+ReC4/G78wej42A1LzAmJH0UATcuaht1oj8p39wQhBA6vg5r6Gmo9tY3ipeFVXR9e1ny/SO2j0+gYEpdJdkI2WfHZZCdkkR1aZsVnkZ0wlERzQp/f+wLBAEXFRQwbOqxPf1elfWKwE7db4/Q6KakrYVfFLvYYMZ54Y1yvPcuFEI1Jzb2lHmXWKCSImgSSB2+5r8PeqcYgKTNsEQSNZZg5VsI494gYvFZUwRMNWh/YWk8ta0rWsKp4NWtK17C6eDXryzfgDUQntnl/YNFbyIzLVIRR/BDS7ekkmhNJMCeQaEkMrcc3rtuN0Q3K0NARL2k2k1BSV9I4o1ASKit3lndrRkGSJLRScxGkRavVtXgvIYXMqURoSeN7oNU2ZQm0LGtWbtAaSLWlkGZLI8WaSpotlTR7Gmm2VFJtyjLNlkaqLRW9tuc3QH/QT0ldCSV1JYqgqS0KCZvi0PtiShwlBOXB50DdGRLMCQxPHEacKQ6DzohBq8eoM6LXGjDqDBi0zcuUpUFrwKAzhNb1yj46A0atofE7XD53SKxUUVVfoyxbiJgaqtxVuP2xGU5bkiTGpIxhRvb0RiE0OXMSZn30zHX9QT/FdcUU1hSSX11AYW0hBdUFFNQUUlhbSIWzglpPbb+cmxa9haxWQmhog0CKzyIrIQurQQnjG5SDOLwOHF4HdZ46HB4HdQ3rXgcOj4NaT23T9sayuhafq/crPnt6rR6L3oxZb8GsN2MxKOtNZaZQubK9+bpF31Bmwqy3YNDp8QcD+IN+ArI/4rpf9hMIBvDLfuV90E9QDjZ7Hwjtr5RrNVr0Wj06jR69Vodeq0ev0YcGmVq+12v0ynutLrR/+HqjhUIzKwXlJbWwZmh6adFomrY3t4LQSA0+niGfp2bPo4b15k+oprJI+ynL4uJihgwZAtB4HwdaDP40v+83lTUhyzLCL5A9ir+r2WTEYrWgM+sGlClsbyPLMhWuilb3A+VVWFNIQU0h1fXVaGUtMjJCI9BIGqVPYk5s7IskWZrWEy2JJFmSWm63JkVVKMl+WfExC80MeUo8BOoCmDJNoVktM6YMU9SPtSzLOH1OHF4HTq+TOo9Dee+pw+FtKlfuM0q5sl15D2A32rAarVgNNmwGKzajDWurpc1gxRp6bw8trQYbNqMVo67JukkVPNGl3ysphGBn9U7mr/2NIm8Ra0KzNjurOw5mMNjRarSNN57mN6AEc3yz9YTGG5JWo2ucPWgykVJmFEocpVQ4K5DF7htaONGcGFEMNb1Pw260UeYso7i2JCRiiiiuLW4UNeXO8gE3K6MSm+g0Oiakj28xEzQ+fXybwrzOU6eImVBnpfl6QU0BJXUlA/r6TjDFE5CDOH0dh+xVGRjoA3rsHjs2rx27x4bNa8fqtWAMGNEHDRgCegxBA/qAAUPQgCEQegWblvqgPmK5RkTuXAc1QfxaP0FdEFkfJKiTEXqB0MsIA0gGwABSyF9Qa9KgNWnRGrXozXp0Jh06uw4pAaQECU2ihNTwMnWvg62RNOi1Bgw6PQatQVnXNltvKNfoI4qGoDuIr9qHvypkdlfrJ+gO4nV5qaquprq2mrraOhx1TtwOFx6XB4/bS8AdQBfQtduW+qAerVBMCANSAL/Oj1/jx6/zE9D48en8+LV+Alo/vuZLTQC/zoe/YakNoDVq0Zl1GM0GtFYtUgJoEjXoknQYkgyYkk3YzLbGTr/NaMdmtDV2+m1GO3ajrdODk0IIPAFPSIQ4cfmcjetOrxNnSJg4Qy+3Q4mUG6gJINfK+Fx+Ap6AkovRIyO8cui8bGobQ1vvgwb0gZbvAfxaf9irw7ZrtpT1QcWX1ahF0kHF+ArSR6Tz+mmvduvcizKq4Oku13zxDz5f9Tm1nu5nuVVR2R2wG+2k29PJsKdjxIjVYm02AquMwjYfxW0+Ott8v+bbJSQ0Gg0ur4sd1TvZUbWD/Or8PvUXUmmJSWdicuZkpmdPQwgorC2goFoRNTWe9vN+qKj0FpKQsPgs2Dw27F67smwlZBqWTdtsmAKmXqtTQArg0/nwa/1ohRZ9QI8+qEdD75lWe3QeHKY66kwOHGZlWWeqo85cFyqvw2FyUGdW1t0Gd4suoiRL2LxNbWjztmpHj504nx27Nw6b16bs47GiD/RuNLKgFEQSUq+2HYAsyTiMjlB7ORrbrOF9XahtPbZ6gnFBpAQwW8zYjHZMOiMun1sRLm43ok4Gh4Sl3oLN03D+2Vq0pfK+6XxsECUDifuPvB95ZpCF/1jQ31WBNgTP4PXqjSIBORAVsWPUGZmQPp5JmZOYnDmZyZmT2CNtPEadgaAIKtGq5CBBOYgs5FCZTFAOEmyMXtWsLPSZYOgzQsj4gj7KHOUhU6YiiuuKG2cBSh2lu60Jk0rPSDQnkhGXQYY9nQx7BhlxGSFho5Sl2zPIiEtvNPeB3p3mDgQDFNcVs6NqB9urdrRY7qjaQZW7qld+N1bQarSKuYHBhsVgwWawYjFYsBpsWA0WrEYrFr0Vm9GKNbTNZrBRXlnGdtcOlhUuZ2P5xm7PtHgCHpYULGFJQYTolTGAQWsgwZxAgjkBnUZHcV0xNfU1/V0tld5AwKOfPkZCfQJWr7VxFqAr+DV+HCYHTqMTp8mBw+jEZXTh1Xnx63z4tL7QDIIPX+P7VutaH36dv8V7n86HrIlwjQmaxI+sbxRBTS8D+qCu1boBQ1CPLrSPIWDA4rMQ54kjrt6O3RNHnEdZmgImTE4Tqc60Tv3/gCZAnakOv9aH1WvD5uteWg2f1ofT6GxsS6UNPS3ayq/1h7VdY1ln2lKAVta2aq+W7RSp7ZqWTZ8xBPSY/WbsHjtxnjjsHjv2+jhsPhvxnnjiPfGd/u9uvZs6cx31+nqsPis2jw2Lv3tBopq3o8voxKP34NM2O//aaMvm7/1af4vztPl7AF1QhyFoQBfWProIbRu5fXVBfeM5WWWtIsswpFv/t69QBU8nmJw5ucufSbGmNIqahuWY1DFR8c/oLkE5SLmznKLaYkpCvhzNfTyK60oori3GE+haktX+JM4YR6otFSEL0EBQDhCQgwTkAMFWy4AciJqz92ChIYhFZpwSza9RxMSFRIw9nXR7egt73VhAp9WRk5hDTmIOB4w6IGx7raeWnVU7QwJoZwsxlF+T3+/ngU6ja7QxV14NNuhJLcoSzAmNNtPNBY1B2/MIR06vk1XFq1hWuIylhctZXrScbZXbov1Xu41Zb24ULcornnhTfKuyBBJbvU8wJ2DSmcLax+l1UlRbRGFNEYW1iqmd8r6QwtoiimqLGv1p+hJJkpS8Of1vuT0wkVA6/R4lTL1b71Y63CYnDmPLpdPoCNtWZ6rDq/O2MSbce3UOSkGChiAeovy8FWDymxrbJK4+DnuoMx9XHyoLrdtD+5j9ZpLcSY1fISPjNrrbaL8GUdhQ1iRwerMdtRotQ+OyCQZlHD7FBy7qbdfwW7IWm8fWrP3sYevN29TusWPxW8IEjizJSvsYHbhMThzNBHWjuDY5cRmbnasmBz6tr2/Pxygxzji2v6vQLqpJWyf4c/ufHPHKURG3SZLE6JTRLcTNlMzJpNvTB0Sks9YIIaiur2l0ci+pK6HSXUm1u5rq+molQlLjei3V7upeccBOMCeQYc/4//buPrSu8z7g+PdGb66kK8tpbcuOFLesoTTtlkCfrcNpmlHqdWk7Vko6KC1LmkHLOu+PbqTQhTAC27quG3Qv0C4wtpGW9o91K3SEkMBYSJMx9mCHbV0J3RY3kWIixZZk3RffN939cc69upIlV3Zln+N7vx8w5znnXsU/58dzdX/neTkc6R1JmJrpjijMTB1hpni4u832lYwmrK+vdwugZlogtXoKo0bPVKnkeX4FChQ2HZPXCpe8xpb3kx4r9TKLpSUWS4sslRaT9lpy7J6XFvd0ZOLg5MF0S/JkV77OJhS9u/T1jsjstRwuZASSwv/VC6+ysLLAxWaNWrNGo1Wn1qpTb9apt+rUmjXqPee91xutBrVWjVqznvxcs0a91aDerDE6PNYtVjYXL8mfpMg5wNTYVCafDz8uJ8vVFU7Pn+bU/ClOL5zm1PxpFlYX9jyOg5MHmd0/y9z0LHPTc8xOz3LrgTlmp+c4UpzhwPiB615kt9ttzlfOM786z8LKAq+kBVHnuLA6z6sXNm/0URwrUhwrMrVvKmnvK7K/0+5c716b6l6b2rfx+sToBAsLCxycOUilUaVaryTHRoVKvcrFZpVKvUq151q1UaXSqKTX0vN6+nqjSrPVYLi7icBQehxhpLO5wNDIxkYDW9ojN410NygYSX9m6KZhWulnY2eDg2ZPu7HeTF7f4bVmuklC7+YJyUyFS5/N1Znh0Pt8rs61due8vfnn3rj8RipDFcr7yrSGWr1JTQ6bNh1gm2uXvm99fX3TOpXtNjjovd7bnQub5ocVun/xxWYtlzcUO2uYRlujycjMaJn2Tdf3a1dxrMjc9Fz386Dz2TA3Pcvs9CxHpo4wdNNQ9zOs3qynOzYud3e1XK4us1xJdrzcaJ/vtperK6zV1vY++Dbd0bY31N9AZaxCaaxEZbRCu3Bt/j92NhYopuuJit11RkUmx4pM7Stu83pyrUAh2f2ztpY+0qBMuVZmrbbWfYRBqVamVF+jXCt331OqlSjXSqzVS9vOFvrld3yYb3zy69fk33uFXMNztVYvrjL36DEmRie47ebbeNexd/EzR3+ad868k9tn3n5NvzTeCGrN2qZCqPPB0mmvVFd72ivUWzUOTR5mZqozJWpmoz01w+HJw+wbubI51Xn9cn2lGq0Gr5dfZ7G0yOLaEkvlJZbSYqi3QFqrrfGmiYM9Rcwt3a3Fj+4/ypGpI5mPyvRLTvrJ1eTktbXXODV/ilPzSQF0auEU58rndnz/yNBId3ezbjEznRQzyfkte7rr2/XUWm9xrnyOsZExJkcn9+y5PvaV/LlWOWmtt7pFarle7harlUY5PVao1Cvp9Ur3vFPgluuVtPCt7Pk6xtb6elqo1pObOK36RrtZp5Feq7eu7OGdhUKBI8UjaSGzUcT0tnf7qICfNC9bC6XVixeSL/L1cnd3s43zZEOBUq1EKf3C3/1TL13RlOCRoREmR5ONDzqFR2cjhGRzhMnutU67895u0ZIWMXv52XM12u02tWYtfWRCif975SXG949THJvk9hkfPHqJEMKXgOPAGeDBGOPl5phkXpW9dP4Mx6Zv5ezZs/5iyiG/MOSPOcmfvchJu93m5ZWXOT3/Ai8uvsjY8BhzB+aY3Z+M0hyaPJTbB3zmlX0lf8zJztrp2uFO8bNRCDVodEbF05G+Q5MHOTp1lNHhvVmIn5e8tNttqo3qJTuvXWzWmBgdv6R4yfoG5LWUl5z0yM+mBSGEO4BbYox3hxAeBu4DvplFLLv1lpvfnHUIkpS5QqHAsQPHOHbAB2VKg6hQKCTPXxoaZpyrW5h/oysUCoyPjjM+Os6h4u42h1C2snrk/HHgqbT9JHBXRnFIkiRJ6mNZ7dJ2ADibtleBm7e+IYTwaeDTACdPnuTEiRPXL7rLaDQaLCzs/SJe/WTMS/6Yk/wxJ/lkXvLHnOSTecmfvOVkp+l1WRU8K8BU2t4PXLI1VYzxMeCx9DTzNTwdOZyrKMxLHpmT/DEn+WRe8sec5JN5yZ8bJSdZTWl7Hnh/2v4A8FxGcUiSJEnqY5kUPDHGF4DXQgjPAu8Avp1FHJIkSZL6W1ZT2ogxPpTV3y1JkiRpMGQ1pU2SJEmSrjkLHkmSJEl9y4JHkiRJUt+y4JEkSZLUtyx4JEmSJPUtCx5JkiRJfcuCR5IkSVLfsuCRJEmS1LcseCRJkiT1LQseSZIkSX2r0G63s45BkiRJkq4JR3gkSZIk9S0LHkmSJEl9y4JHkiRJUt+y4JEkSZLUtyx4JEmSJPUtCx5JkiRJfWs46wBuJCGELwHHgTPAgzHGRrYRKYTwZuDfge+nlz4WY1zKLqLBFULYDzwN3A78fIzxv0IIHwM+B1SB+2OM81nGOGh2yMkPgYX0LX8QY3w6swAHUAjh54A/Axokefg14CPYTzK1Q17+G/tKZkIIh4F/JMlJC/gE8FPAHwPrwG/EGP8zuwgH0w55+SYwlJ7/dYzx8ewi3J4Fzy6FEO4Abokx3h1CeBi4jyTByt4zMcb7sg5CVIAPAV8GCCEMA78N3AP8LPAI8JnMohtMm3KSWo0x/kI24Qh4BXhfjLEaQvgi8CvYT/Jgu7zYV7L1OvCeGON6COEB4NeBEySfaUXga8AHswtvYG2XF4B7Y4yl7MK6PAue3TsOPJW2nwQ+hQVPXtwVQngWeBZ4OMbo03QzkI54LoUQOpduA34QY6wDz4UQ/iSz4AbUNjkBmAwhPENy5/pkjPF8JsENqBjj2Z7TOvA27CeZ2yYv69hXMhVjbPWcFoH/JSlKl4HlEMLN2UQ22LbJy/eB9wFPhBBWgN+KMf4oi9guxzU8u3cAuJC2VwE7Wj6cBd4KvBc4BHw023DUo7fPQDLcrezdFWO8h+TGzaNZBzOoQgjHgF8Evof9JDd68vJd7CuZCyHcGUL4N+Ak8Dyb+0ozhDCaTWSDbUteTpEsJ3gv8KfAX2Qa3A4seHZvBZhK2/sB7/TkQIyxFmMsp6M6/wDckXVM6lpho89AMrdXGYsxnkubf4/9JRMhhCngceABYAn7SS705iXG2LCvZC/G+EKM8d0kUz0fZnNfGU5HRnWdbcnLFzp9Jcb4DHA00+B2YMGze88D70/bHwCeyzAWpUIIxZ7Tu4H/ySoWXeKHwNtDCKMhhOPAf2Qd0KBLczGWntpfMpCubfsW8GiM8UXsJ7mwNS/2lextGb1ZBUrAcAhhOoQwhzeeM7FNXirpzQJCCLcDy5kE9mO4hmeXYowvhBBeS9eKvAw4zzof3hNC+H2SxdkvkdxtUEZCCE8Ad5KsS/gr4CvAvwAXgfuzimuQbcnJd4BfDSGUgRrwYHaRDayPA+8GHgkhPAJ8FftJHmyXl8/bVzJ1Z7qmrUXSNx4kWRv6BNAGPpthbINsu7z8cwihmr7+m5lFdhmFdtv13ZIkSZL6k1PaJEmSJPUtCx5JkiRJfcuCR5IkSVLfsuCRJEmS1LcseCRJkiT1LbelliRlLoQwDnweOBNj/NsQwgPA3wAPxRh9DIAk6ao5wiNJyoNx4PeAB9LzZ0iejfLdrAKSJPUHR3gkSXkQ0+M9IYQ28CPgGPAQ8GII4QzwJuDvgE8C3wP+EniM5HfZp2KMT6ZPAf9DkmJpAnga+GyMcek6/lskSTniCI8kKQ9+Nz3+gKRY2W4a20R6/Ffgg8BXgS8Dh4A/Sl/7AvA7JCNDXwHuBb52TSKWJN0QLHgkSXnwVHpcjDF+Cyht85514HPAt9Pzx2OMfw68Crwlvfbh9PgZkilyE8CJaxKxJOmG4JQ2SVIetHfxnmqMsR5CaKTnq+mxBQz1vK9JUvi00nNv7knSAPOXgCQpDy6QjOC8NYTwCZL1O1fjn0hu5t0P3Ar8EslojyRpQFnwSJIyF2NskKzHmQa+zsbozJX6YvrfuZtkU4N7SXZ8kyQNqEK7vZtZBJIkSZJ043GER5IkSVLfsuCRJEmS1LcseCRJkiT1LQseSZIkSX3LgkeSJElS37LgkSRJktS3LHgkSZIk9S0LHkmSJEl96/8BMGvqofEjt8cAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH8AAAKmCAYAAADUyjJfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hTZ/sH8O9J2KDgFmUouBH3AhTFLXVrrVZta2vV2uGote3buke17rf6a+2rrdXWPerCvVFx4UBkiIgg4GLIXsn5/RESEsg5GWRzf66rV02ek3MeSEhy7vPc982wLMuCEEIIIYQQQgghhFgkgbEnQAghhBBCCCGEEEL0h4I/hBBCCCGEEEIIIRaMgj+EEEIIIYQQQgghFoyCP4QQQgghhBBCCCEWjII/hBBCCCGEEEIIIRaMgj+EEEIIIYQQQgghFoyCP4QQQgghhBBCCCEWjII/hBBCCCGEEEIIIRaMgj+EEEIIIYQQQgghFoyCP2ZALBbj6dOnEIvFxp4KMRP0miGaotcM0RS9Zoim6DVDNEGvF6Ipes0QTVW11wwFfwghhBBCCCGEEEIsGAV/CCGEEEIIIYQQQiwYBX8IIYQQQgghhBBCLBgFfwghhBBCCCGEEEIsGAV/CCGEEEIIIYQQQiwYBX8IIYQQQgghhBBCLBgFfwghhBBCCCGEEEIsGAV/CCGEEEIIIYQQQiwYBX8IIYQQQgghhBBCLBgFfwghhBBCCCGEEEIsGAV/CCGEEEIIIYQQQiwYBX8IIYQQQgghhBBCLBgFfwghhBBCCCGEEEIsGAV/CCGEEEIIIYQQQiwYBX8IIYQQQgghhBBCLBgFfwghhBBCCCGEEEIsGAV/CCGEEEIIIYQQQiwYBX8IIYQQQgghhBBCLBgFfwghhBBCCCGEEEIsGAV/CCGEEEIIIYQQQiwYBX8IIYQQQgghhBBCLBgFfwghhBBCCCGEEEIsGAV/CCGEEEIIIYQQQiyYlbEnQIgly8rKwvr163Hnzh14eXnhk08+QevWrY09LUIIIYQQQgghVQgFfwjRkzdv3sDPzw9xcXGy+37//XccOXIEffr0MeLMCCGEEEIIIYRUJZT2RYierFy5UiHwAwB5eXmYM2cOWJY10qwIIYQQQgghhFQ1FPwhRA9YlsU///yjdOzevXsVgkKEEEIIIYQQQoi+UPCHED149OgRUlNTOcdv3LhhwNkQQgghhBBCCKnKKPhDiB6cOXOGdzwsLMxAMyGEEEIIIYQQUtVR8IcQPVAV/KGVP4QQQgghxBBEIhFWrVqFXr16wd/fHytXrkRJSYmxp0UIMTDq9kWIjhUVFeHSpUu829y/fx8FBQWws7Mz0KwIIYQQQjQnFouxd+9e/Pzzz8jPz0fbtm2xevVquLm5GXtqRE1jx47F/v37ZbevX7+OGzdu4MCBA2AYxogzI4QYEq38IUTHrl+/jtzcXN5tiouLcffuXQPNiFRGSkoKVq1ahWnTpmHr1q0oKCgw9pQIIYQQg/n1118xbtw43L17F9HR0dizZw/atm2L9PR0Y0+NqCE0NFQh8CN16NAh3Lp1ywgzIoQYCwV/CNGx06dPq7UdpX6ZvvDwcLRv3x5z587F5s2bMXnyZAQFBSEzM9PYUyOEEEL0LjMzE99//32F+9PT07Fq1SojzIhoau/evZxjR48eNeBMCCHGRsEfQnRMVb0fKSr6bNpYlsXMmTPx6tUrhfvDwsKwceNGI82KEEIIMZwTJ04gOztb6djhw4cNPBuiDb6LklFRUQacCSHE2Cj4Q4gOpaen4/bt22ptSyt/TFtCQgKuXLmidGzHjh0Gng0hhBBieEeOHOEci4qKotQvE/fs2TPExMRwjj969MiAsyGEGBsFfwjRofPnz4NlWbW2TUhIqLCqhJiOixcvco7Fxsbi7du3hpsMIYQQYmBFRUU4ceIE7zbXrl0z0GyINlStRn/8+DGKiooMNBtCiLFR8IcQHVI35UuKVv+YLr7gDyCpB0QIIYRYqitXrqi80EHBH9Omqg5lSUkJ4uLiDDQbQoixUfCHEB3SNPhDdX9ME8uyKoM/1CGDEEKIJeNL+ZK6evWqAWZCtCESiXD27FmF+5xsgOq2ittR6pf5YHNeovjE1xBFHjT2VIiZsjL2BAg/lmURHR2NY8eOITY2Fm5ubli4cKGxp0WUePLkCZ4+farRY2jlj2lKSEhAYmIi7zbq1nYihBBCzA3LsgrBH++aDKZ3EcDPQ4C/7oqw+ZYYAHDz5k0UFRXBxsbGWFMlHO7cuYOMjAzZ7aa1GFybYg0GQLfNxYhLl5QpoOCP+Sg+9S3EEbshurUZAg8/MNVcjT0lYmZo5Y8JSk9Px7Jly/DOO++gdu3a8PHxwbfffoutW7diz549xp4e4aDpqh9AsnpELBbrYTakMlSt+gEo+EMIIcRyPXz4EAkJCbLbTjbA9K5WaO8qQA/PstOHgoIC3Lt3z/ATJCqdOnVK4faUTgI42TBwtGEwtk3Zc0jBH/PAFuVBHF0akBWXQPws1LgTImaJgj8mSCAQ4Mcff0RISEiFLgrR0dHUWcFEaRP8ycrKQnR0tB5mQyrj0qVLKrd5+vQp0tLSDDAbQgghxLDKp3w9fMkiq1CyUsTfQ/H0gVK/TJN8vR8GwMhWQtltP3cK/pgbcdwpoDiv7HYi1dsimqPgjwlycXGBj48P5zjViTE9IpEI58+f5xyvWbMm5xg9n6ZHnZU/gGRJNSGEEGJpygd/RCxwI0kS/HGtxqCRS9kYFX02PVlZWbh+/brsdjd3Bg2qM7LbXdwYWJWeBcbExKCkpMTQUyQaEkUeULgtTrzOsSUh3Cj4Y6L8/Pw4x+hD1vTcvn0bmZmZSsccHBwwefJkzsdS3R/TkpCQgGfPnqm1LRV9JsQwEhMT8ccff+DAgQPIyckx9nQIsWipqam4efNmhfuvJZWlqcuv/rl69SpYljXI3Ih6Lly4AJFIJLs9ykfxlM/JhkGbepJgUFFREeLj4w06P6IZtigP4tgQxftePgBbkGWkGRFzRcEfE+Xv7885Jh/JJ6aBL+WrZ8+eCAwM5Byn4I9pUXfVD0B1fwgxhBUrVqBJkyb45JNPMHr0aPj6+io9MSWm68qVKxg8eDA8PDwwZswYXLhwwdhTIjyOHTum9P5ricqDP6mpqQr1gYjxlU/5GtFSWGEb+ecwKirKENMiWhI/PimX8lW6gosVQ/ycziGIZij4Y6L4gj83btyg5Zkmhi/4069fP3Tp0oVzPCIiArm5ufqYFtECBX8IMR3Xr1/Hf/7zHxQXF8vuS0hIwOTJk6lYvpkICwvDgAEDcPz4cSQnJ+P27dvo27cvjh8/buypEQ5cLd5vJ7MoFknr/jAKY7Qq3bTIB3/85FK+4tLkA3hlzyHV/TFtokdlrd2F7T+U/Zvq/hBNUfDHRDVr1oyzTkxubi4ePnxo4BkRLjk5Obyrsfr164c6derAy8tL6bhYLKbaMSZEnWLPUs+fP8eLFy/0OBtCqrZVq1YpTSeJiIjQKFBLjEMkEuHjjz9Gfn5+hbHvvvuOUoVMUF5eHs6ePat8rBi4lyp5zlrWEaCmfdkYFX02HfHx8YiLi5Pdlk/5WnFFhLcFkufQz4OKPpsDtii3LOXLoTaEgd+WjVHwh2iIgj8mimEYqvtjJi5duqRwVVqeq6urrHh3165dOfdBRZ9NQ0JCgsZL1ylwR4h+vH37FiEhIZzjlAJt+nbs2MGZTvLw4UOqM2KCzp49i4KCAs5x+bo/3eQ6RtH3UtMhvxqdATCitMtXYQmLo9FihJUW7q7vxMCrhmQ7Cv6YLvmUL2HLYRDUaAw4u0vGnt8EK1J+DkKIMhT8MWF8qV/0IWs65JfWlte3b18wjGRZLV/wh+r+mAZNVv1IUdFnQvTj33//RWFhIec41f0xbYWFhViwYAHvNnxdMolxcKV8AUCfPn1wLbFstZZ82lBERASysqj4rCmQ/17q78HAtZrkeTodJ0ZWofLC3VFRUZRKa6JEkWUpXwKfUZL/e5SeI5bkg029Z4RZEXNFwR8Txrfyh654mg5V9X6kunXrxrkdBX9MgzZpJFT3hxD92LVrF+/4jRs3KG3IhG3evBmJiYm825w7d85AsyHqEIvFOHr0KOf45MmT8dLKU3bbX27lj1gsplXMJqCkpETh72pkq7Ln6OAjSXBHvnC3NPUrPz9f7U6nxHDKp3wJPCUNZAQeAbJtxEl0TkjUR8EfE9a5c2cIhRWr8wOSfF6qNWJ8z58/5+2Q0LdvX9m/27VrBxsbG6XbJScn4/nz5zqfH9GMtsEfOgElRLdev37NWXdE6uXLl/S+aaJycnKwbNkyldudP3+e3j9NyM2bN/Hq1SulY1ZWVhg4cCBadAzE49KiwR0bMrCzKtuGVqUb382bN/H27VsAgIApS/kqKGFx4bkd/Pz8cCeZRZG0cLc7FX02ZeLHJ4ESSc00YcvhYISSPzjZyh9Q0WeiGQr+mDAnJye0adOGc5xW/xgf38lJ69at4erqKrtta2uLdu3acW5Pq3+M69mzZ5z1fgQCAWxtbZWOvXz5EsnJyXqcGSFVz/79+yESiVRuR++bpmnDhg2cQQR5r1+/RmRkpAFmRNTBl/IVGBgIFxcXBAQEyFK/bIQMOjYoCx5Q0WfjK9/lS5rydSZOjE7+QWjfvj3yS4C7KZLnsEUdAWo7SLan4I/pEUUekP1b4DNS9m+mTivA1hmAJPhDQXSiLgr+mDi+uj8U/DE+dVO+pKjuj+niq/fTsWNHdOjQgXOc6v4Qolu7d+9Wazuq+2N60tPTsWrVKrW3p9Qv08EX/Bk6dCgAyfdSZWlDgKR5hTpBW6I/8sGfUT5l2QMHH4kxYMAAtGrVCoDywt0U/DEtkpSvE5IbDnXwnPHEqFGj4O3tjda+vkgRuEnGcl+BTX9ivIkSs0LBHxNHRZ9Nl1gs5l35079//wr3Ud0f08WX8tWrVy906tSJc5zq/hCiO8+fP8eVK1fU2paCP6Zn5cqVsrQTdVDRZ9Pw5MkT3lVYQ4YMAQC0bNkSDzOdZPfLpw3l5OQgIiJCf5MkvDIzM2XfJQUMMLyl5DSvoITF8Rgx+vfvLwv+XFdSuJuCP6ZFHHtClvJV7DUQ7Tp0wsGDBxEfH49Hjx7ht2P3y7ZNpFV3RD0U/DFxfEWfb9++jaKiIgPOhsiLiIjgXNZuY2ODwMDACvfzrfy5ffs2SkpKdDY/ohm+4E/Pnj0p+EOIgezdu1ftJey3b9+mlQYmJCUlBf/97381eszFixfps88E8BV6bt26Nby8vABI0qDrtfTHq1zJ36ifhwCM3LaU+mU858+fl3Xsku/ydSZOjBr1PdCsWbOy4I98xy+5lT+UPmQ6RI/KunztDM9DZmamwrj8CjyW6v4QNVHwx8Q1atQI9evXVzpWWFiIu3fvGnhGRIov5SsgIAAODg4V7vfy8kLt2rWVPiYvL49qHxhJYmIinj59qnRMIBCge/fuKoM/9IWJEN1Q1eVLXm5uLm/RfWJYS5YsQUFBgUaPycrKQnh4uJ5mRNSlTsqXVEBAd1wvPfF0sWPQqm5Z+IdWpRuPQspXq7KUrwORklU/DMOgbt26qFmzJt7kATFvJM9h+wYM7K0kK7eoiL5pYAtzylK+HOti05GK53t3UsoKd4sTqRQIUQ8Ff0wcwzC8q3/oQ9Z4NK33A0iezy5dunA+jtqkGgdfvZ8OHTrA2dkZzZs3h6Ojo9Jt0tPTOYtFE0LUFxcXp/FKOkqZNQ1PnjzBli1btHospX4ZV0ZGBi5fvsw5XjH4U1b0GShLGwJo5Y+xsCyLU6dOAShN+Woll/IVK5aVImAYpqzuj3zh7oaU+mVKxI/LUr5KvAYiIrLiRY6CEiC8tHA3mxYLNve1QedIzBMFf8wAX/CHij4bR0FBAe8XJa7gD0B1f0yRqno/ACAUCtGxY0fO7ajoMyGVp26hZ3lU98c0zJ8/nzd9a8yYMZxjVPTZuE6cOMGZPlmvXj107txZ4b7OnTsjTK7JpTRtCJB0zqQOmIb35MkT2UUofw8G9Z0kwZzTj8XILWbQp08f2bZlwR+5wt1U9NmkiCLLUr4eljTl3E7+OaTVP0QdFPwxA3zBn6tXr1K6iRFcvXqVc2l7zZo10b59e87HUscv06NO8AcA1f0hRM8o+GOeHjx4wJuuN3z4cHz//fec46GhoSgsLNTH1Iga+FK+hgwZAoFA8XTB0dERTP12yCuWfP/091Acp1Xphidd9QModvk68EiMzp07o2bNmrL7lAV/qOiz6WALcyQrfwDAsS5ORHIX0L+eVHYOKKa6P0QNFPwxAx06dICNjY3SsZSUFCQlJRl4RoQv5atPnz4QCoWc43xpX1FRURp1SSGVl5iYiPj4eKVj0no/UhT8IUR/IiIitKp7FhERgby8PD3MiKjrhx9+4LwQxTAMli5dijZt2iicgMorKCigtGcjKSoqwsmTJznHy6d8SXX1C8DN55Ln3MOFgXv1sjFK/TI8ab0f+S5f+cUsQuRSvqSkwZ/4DOBFjuQ57OYugICh4I8pkKR8SS4wC1sOx7Xr3BeGw5LkV/5Q8IeoRsEfM2BnZwcfHx/OcUr9Mjxt6v1Iubi4oHnz5krHWJal9CED46v30759ezg7O8tu8wV/7ty5I+uyQQjRHN/KER8fHzRu3FjpmEgkouYHRnT16lUcO3aMc3zixInw8fGBQCBQWElZHqV+GceVK1c4LzrZ29srpAvJk9T9kUsbklv9Qyt/DKu4uFhWNytAPuUrToycInAGfwAoFu6uw1DHLxMgijxQdqPlcN7A+Js8IPq15DlkU8PBFtGFEMKPgj9mokOHDpxj9CFrWG/evOE90VAV/AEo9cuUqJvyBQDe3t4KwSB5WVlZiIuL0+HMCKk6WJblTfkaO3Ys76pJet80DpZl8Z///Idz3NraGosWLZLd7t27N+e2VPTZOPhSvvr166e0cykA+Pv7cwZ/7t69S6vxDCgsLAw5OTkAyqV8RYpRrVq1CrUmGzRogOrVJUu15NOG/D0YZGZm4sWLFwaYNVFGkvJVuhLPsS6icmrInlsu16TPobgEbAqtQif8KPhjJvhqyFDwx7DOnTvHeVWkSZMmaNSokcp9UNFn08G38qd88EcgEPCu/qFVW4Ro5+bNm3j69CnnuKrgD9X9MY5Tp07xNj+YOnWqwmciX/Dnxo0bKk9yiG6xLKtRi3d5bm5uSGEaQiSWfB/ycy/r+FVSUkJ/kwbEl/LVu3dvWFtbK2yv2PFLvu4PFX02NnFsSFnKV6sRvClfUopFn+mckPCj4I+Z4OsydO/ePbrCYkCVSfmSUrXyh5bcGkZSUhKePHmidKx8vR8pqvtDiO7xrfrp1KkTmjRpwvu+SSeahicWi3lX/Tg4OODHH39UuK9Zs2aoV6+e0u1LSkpw5coVnc6R8Hv48KGsQ1R5DMNg8ODBvI9v16UHHryUfF/xrcegum3ZGF2YNBxp8Ke7J4N6pSlfpx6LkVtcMeVLShr8uf+CRW6RYuFuCv4Yj+hRWZcvQauRapX2oOAP0QQFf8xEvXr14OnpqXSspKSETjoNhGVZ2YesMuoGf3x9fWFnZ6d07NWrV3j27JlW8yOa4Vv1065dO7i4uFS4n4I/hOiWSCTCnj17OMfHjRsHQLIClquY/tOnT/H69Wu9zI8ot3//ft4U6JkzZ1YI9DAMA39/f87HUOqXYfGt+unatStnoE4qICBAVjNGwDDo6la2+oeKPhtGenq6bNVx+S5fgOrgT4kYssLd7s6Swt0U/DEOtjBbLuWrHgSe3dUKoj6VK9wtTgoDKxbpc5rEzFHwx4zwpQpR0WfDiI2N5eyuJhAIEBQUpNZ+rK2teVdzUdcTw9Ck3o8UX/AnPDwcIhF96BKiiStXriA1NVXpGMMwGDNmDADJShJfX1/O/VDapeGUlJRg3rx5nOM1atTAN998o3TMz8+P83EU/DEsVS3eVZHU/ZGvGVN2WnH9+nVqgmAA0lIEQgYY1qIs5etErBiNGzeGt7e30sfJF32+lqSY+kXBH+NQTPkajjdp6WrXkpQGYVGYBfaV5l0zSdVBwR8zwne1jJbXGgZfyleXLl2UrhThQnV/jE+b4I+npydq1aqldCwvLw/R0dE6mBnRJZZlce/ePUqRNVF8Xb569OgBNzc32W0q+mwa/vrrL8TGxnKOf/vtt5yfh3zBn7t37yI9Pb2y0yNqSE1N5U2X5Kv3I+Xr64v76fay2/LBn4yMDPo8NABlKV8n5VK+GIZR+jiF4I9c2lA3Cv4YjSiyLOVL6DNKowv78kFYSv0ifCj4Y0b4vjBdu3aN6sQYgC7q/UhRxy/jev78OWe9H4Zh0KNHD86xzp07c+6XVh+Ylri4OLRu3Rrt27dH+/bt0axZM5w6dcrY0yKliouLsX//fs7xsWPHKtymos/GV1BQgIULF3KO169fH19++SXneMOGDdGkSROlYyzL8gblie4cO3aMc6xx48bw8fFRuQ8rKyt4+nRDQobk+2fnhgys5c4sKPVLv1iWlX2ele/yBXCnfAGAu7s7HB0dAUjSvqSFu/3dGbx584bSaA2sfMoX4xGgYfCH6v4Q9VDwx4y0adMG9vb2SsfevHnDeSJLdKO4uBgXLlzgHOf7kFWGL/gTHh6OoqIijfZHNMNX76d9+/a8q7io7o95yM7ORv/+/RWuYiYnJ2PMmDFISUkx4syI1JkzZzhXegiFQowePVrhPlVFn+kiiP79+uuveP78Oef4vHnzONuDS/GlSFPql2Go6vLFtWKkvICAANmJp701g/auZY+jVen6FRMTg6SkJEnKV2mXr7xiFiceiyEUCnm76wkEArRs2RIAkFMkKfwMAK3rMXC2pbo/hiaODQFEhQAkXb4YgVCjv5/7L1jklBbuLkkI1csciWXQOPgTHR2Njz/+GD179sSwYcMUPjy2bduGvn37onfv3tiwYYPCl7DIyEiMGzcOAQEBmDJlikJ+f0FBAebNm4fAwEC88847OHnypMIxjx49iuDgYPTs2ROLFi1CcXGxNj+r2bO2tua96kkfsvp18+ZNZGdnKx2rVq0a70mJMu7u7qhfv77SscLCQty/f1/jORL18V1d7tmzJ+9jKfhjHn766Sel7cOzsrKwYcMGI8yIlMfX5atv376oU6eOwn0tW7aUXa0uLz09HfHx8TqdH1GUnZ2N5cuXc443btwYkydPVrkfvpPSc+fOaTU3or7c3FycPXuWc1ydlC+pgICACjVjpGjlj35JU756NGJQ17E05StWjLxiSaBcVSkC+dSv60lyhbvdKfXL0ESRB2T/FvqMRHFxMe9K8mrVqik+ni0r3C3ISQGbmaifiRKzp3HwZ/78+QgICMCFCxewcuVKrF69Gs+ePUNoaCj279+Pbdu2Ye/evQgNDZUFhoqKijB37lyMHTsW58+fR+vWrTF//nzZPjdv3oy3b98iJCQEy5cvx4oVK2TdjuLi4rBu3TqsXr0ax48fR0pKCrZu3aqjH9/8UN0f4+FL+erVqxesra012h/DMJT6ZUTa1PuR4gv+3Lt3r8oGqE3J06dPsXbtWs7x3bt3UzFSI8vPz8ehQ4c4x6VdvuQJhULevz9K/dKvtWvX4s2bN5zjixcvho2Njcr98L3HRkdH08o8PTt79iwKCgqUjjk7O3OmPSvTtWtXXJfrg+HvUbby5/Hjx5Q+pEfS4I98ytdBFV2+5CkEfxQKdzMU/DEgScpXaTq6U30wHgF48OAB8vPzlW5fu3ZtvP/++xXuv55EqV9ENY2DPy9evMDAgQMhEAjQokULNGrUCM+ePUNISAhGjx4NNzc31K5dGxMmTMCJEycAAHfu3IG9vT2GDRsGW1tbfPrpp3j06JFs9U9ISAimTJkCJycntG3bFoGBgbI3tJMnT6Jfv35o1aoVnJycMHnyZNl+qyK+uj/U8Uu/dFnvR4qKPhtHcnIyZwcFvno/Ug0aNOBdtRUZSZ0WjO2bb75BYWEh53hiYiIFzI0sJCQEOTk5SsdsbW0xfPhwpWNU98c43rx5gzVr1nCOt27dWmnATpm6devydm6j1C/9Onr0KOdYcHCwRheznJ2dYV3fB+n5kuCBn4fiqQW9z+pHYWEhLly4oNDlS5ryBWgR/JFfvUUrfwxKHHNco5QvPz8/BAcHV7hfvu6PKJFW3RHlrDR9wJgxYxASEoJJkyYhOjoaL1++ROvWrfHrr78qvBCbNWuGTZs2AQDi4+MVivvZ29vDzc0N8fHxcHR0RFpamsJ4s2bNZCdP8fHxCgGPpk2bIjk5GQUFBbCzs6swv6Kiogq1UqysrNS6EmWqpFenxWIx70qRiIgIZGZmonr16oaaWpXx9u1b3mBMnz59tFpFwFc4+MaNG1qvTJB/zZCK+Go3tWvXDs7Ozip/d506deIsmHnjxg20adOmUnM0NEt6zVy6dAkHDhxQud3OnTt5V1MSfpV9zezcuZNzbNCgQahWrZrSffOt/KnM+ybht3z5cs7UZwBYsmQJGIbh/f3Lv2Z69+6NiIgIpdudO3dO6ZVtUnlisZg3+DN48GCN/4a6+fnjemIU3mkuRG0HBs1qMYhNkwSDQkND1WobzzVX+f+TMlevXkVeXh6CGjOoU5rydaI05cvZ2RkdO3ZU+Xtr0aKF7N8p2cDTDBaNazDo1JBB3JlIs/y9m+NrpkQu5YtpOQJisVhl8KdXr16wsbFROOeVFu4WChjkxpyDVbD5/A6MyRxfM1wEAtXrejQO/vj5+WHBggXYsmULAOA///kPatasiby8PDg5Ocm2c3R0lLXUzc/Pr5Cj7+joiPz8fOTl5UEoFCoEcvgeKz1Gfn6+0uDPn3/+if/9738K97377rsYM2aMpj+qyUlKkqyrbdSoERISEiqMsyyLI0eOaLRcl6jnzJkzEIlESsdcXV1hZ2cnS1XURN26dcEwjNIipY8fP8a9e/dQo0YNjfcrJX3NEEXHjx/nHGvfvr1azyVXtxpAEnzQtAC4qTD314xIJMIXX3yh1rZ79+7FrFmzYGWl8UchkaPNayY7O5v377Bv376cf4cNGjTgfNydO3cQFxencRou4ZeSkiK7oKdMhw4d0KZNG7U/B5OSktC6dWvO8dOnTyMhIUHtosNEfXfv3sWrV6+UjllZWcHHx0fj7zPNmzfH9QMs3mkuue3vURb8uXDhglbfj+SZ++eSPki7JI5UkvLVrVs3JCcnq9wHwzCwtbWVrZK9lihG4xpC2FszcBW8woMHD+Ds7KyH2eufubxmmKIc1Ht8CgwAkX0dpIobAM+e4cqVK5yPady4MdLS0tCpUyeFIJG0cHeHBgxss+KR+DgCrA0tCFCXubxm+DRu3FjlNhp9483MzMTs2bOxcOFCBAYG4unTp/jqq6/g7e0NBwcHheXbubm5sm4P9vb2yM3NVdhXbm4u7O3t4eDgAJFIpLCSh++x0mNwdb2aNGkSxo8fr/hDWsDKn6SkJLi7u0MgECAwMFBp8AeQ1LmYMGGCYSdYBfAVXx4wYAAaNWqk9b59fHzw8OFDpWOpqalo166dxvss/5ohiu7cucM5NnjwYHh6eqrcR58+fbB+/XqlYzExMWrtw5RYymtmy5Ytai9XT0tLQ1xcHAYMGKDnWVmmyrxmduzYwZmW5+TkhA8//JCzY5SHhwfq16+PFy9eVBgrKipCVlYWOnTooNF8CL9ly5bxdqBctWqVWp+D8q+ZUaNGYerUqUqvtqakpEAkEsHb27sy0yZK/P7775xjPXv25E3H4zJ06FBMXPe17La/hwDb7kqe14cPH6J+/fqwtbXVeL+W8rmkDzdv3oSQAYaXdvnKLWJxsjTla9iwYWp/B2nZsiXu3bsHQBL8Gd9WEkzycxcgJyfHLFcxm9NrRhSxGyKx5L3VuvUoeDb2QkpKCmfwTigUYvDgwXBwcMCIESMqrBC6niRGhwYCCBjADSkQeGr+91zVmNtrprI0Cv4kJyfDyclJ1qKzSZMm6NixI8LDw9G4cWPExcWhe/fuAIDY2Fh4eXkBALy8vBSKOubn5+P58+fw8vJC9erVUatWLcTFxcmuApV/rHxtjsePH6Nhw4ZKV/0AgI2NjVkHevgIBAIIBAIEBARg+/btSre5fv16lXjhGhpfV4z+/ftX6nferVs3zuDPrVu38M4772i9b+lrhpRJTk7G48ePlY4xDIOePXuq9TvjqzsSERGBoqIizvcpU2bOr5msrCzMmzdPo8fs2bMHgwYN0tOMqgZtXjN79+7lHBs2bJjCSmJlunTpwtmq+vbt27ypYUQzsbGx2LZtG+d4//79ebt3KSMQCFCjRg107tyZM6X64sWLaNq0qUb7JarxpXwNHTpUq/d/Ly8vJIvqoqAkA3ZWjELHr8LCQty7d4+3ZqUq5vy5pA+vX79GeHg4ghozqO2gmPIFQFabVR2tWrWSC/4oFn2Ojo6WndeZG3N5zZQ8Kjs/tmo9GgKBgLfMRLt27WSfj++88w6++eYbhfFriSw+L60Qkhd7HtWb0/cbdZnLa6ayNPoJPT09kZubi8uXL4NlWSQkJODWrVto0qQJgoODceDAASQnJ+PNmzf4559/ZF+oO3bsiPz8fBw9ehRFRUXYunUrWrVqBVdXVwCS4nJbtmxBbm4uIiIicPnyZVkB3YEDB+Ls2bOIjo5GTk4O/vjjjyr/RZ3vAzQsLMwichZNSWJiImJjYznH+/TpU6n9U8cvw7p06RLnWNu2bVGzZk219lO3bl14eHgoHSsuLsaDBw+0mh/R3tKlSznTGbgcOnSIs+sN0Y+0tDRZUwdlxo4dq3IfVPTZcObNm8eZ9gyAt/W7KnxBIyr6rHtPnjzhbUigbW0ehmHQ2a877iRLggfeNRnUk6v2QC3fdevs2bNgWRYjW1VM+WrSpIlaqR9S8kWfY96wSMsrK9z96BE1r9AntiAL4rjSz0InVzDukhqEfA185M8BW7RoUWGF13W5os9vH53S4WyJpdAo+OPk5ISffvoJv/32G3r27InPP/8cY8aMgb+/P7p3746RI0figw8+wLvvvouAgAAMHToUgGQ1zs8//4x//vkHQUFBuH//PhYvXizb79SpU+Hk5ISBAwfiu+++w3fffSdbPtykSRPMnDkTs2bNQnBwMOrVq4ePP/5Yd78BM9SqVSvOos5v375FVFSUgWdk2fi6fLVr1w5169at1P5VBX+U1QMi2uML/qhq8V4e3+qC27dva7QvUjlxcXGcaXh8srKyEBISovsJEU4HDhxASUmJ0rEaNWqoVS+LL/hDQXPdCQ8P512lNXr0aHTs2FHr/asK/tDnn27xrfrx9fXVKGhQnr+/P67JdYyS7/pFwR/dOn36NKwEwDAlKV+a1hts2bKl7N8syrp+1XZg8Daevsfokzi2fJcvyfPJV+xZvkkFwzAVFkSk5kgKdwOAc24c2BLurqekatKq4DPXypNJkyZh0qRJSsd8fHywe/dupWN2dnZYunQp5zGHDBmi9dUISyQUCtGtWzfOK6fXrl2Dj4+PgWdlufTR4l1eq1at4OTkpLTlcUZGBh4/foxmzZpV+jhE4uLFi5xj2gR/Dh48qHSMgj+GNWfOHBQXF3OON2zYkDOHfteuXRg5cqS+pkbK2bVrF+fYqFGj1Erd5uuUGBUVhaysLOp8qQM//PAD55hAIMCSJUsqtf+AgIAKHWukXr16hcjISN7C0EQzXKmSgParfqQCAgKw8DfFtKF/S69FXrt2DSzLUgFvHWBZFqdPn0bPRmUpXyGxYuSXxtM1rWEnv/IHAK4nshhcWrjbJSe60vMl3ERyXb6EPpLvIIWFhbx1Kcufgw8aNAi//fabwn3Swt02AjFEyeGw8tQ+5ZJYHstPbLNQfKlffMsFiWbEYjFvvR9dBH+EQqHK1sVEN1JSUjhT+BiG0bhTHq38MQ3nzp3D4cOHOcd79uyJNWvWcI4fO3YMWVlZ+pgaKSc5OZl39d24cePU2o+LiwuaN2+udIxlWd4vz0Q9ly9fxsmTJznHP/roI4VW0dqwt7dXuJJdHqV+6U5GRgYuX77MOS5dra+t9u3b4+6rsi57/u5lpxivXr3CkydPKrV/IvHo0SOkpKQo7fJlZWWl8UUsb29vhe6I1+VWb7VwyqTPRj3hSvkKDw/nLK7v6upaIc2rd+/eFS6YXJNL/Uq6zr1yk1RNFPwxU3xflviWCxLN3L17F2lpaUrHbG1tdVYIr1u3bpxjFPzRHb6TzjZt2qhd70eKL90hMjISeXl5Gu2PaK6kpAQzZ87kHGcYBuvXr8eQIUPg6OiodJuCggLe4BHRnX379nGm8tSvXx89e/ZUe19U90d/WJbF999/zzluY2ODBQsW6ORYfHXzzp07p5NjEODEiROctZvq1avHu5pOHTY2NmjWpgsevpSceLZ1ZeBYFlOg1C8dkaV8tZCcwuUUsThVmvLl5+en8YpHa2trhdXld1JYFJRI3qP9PQSIjqbVP/ogjjkGiCRBHqHPSFnKl6p6P+VXzzk5OSEwMFDhPvnC3TnR9B5KFFHwx0x17dqVc/lsTEwMZ8CCaIYv5atHjx6wt7fXyXGo6LNh6DLlCwBq1qzJ2YpYLBbj7t27Gu+TaGbLli2c3fIAYPLkyWjXrh0cHBwwfPhwzu34UpGI7vD9nseMGQOhUMg5Xh4Ff/Tn+PHjvBeSpk+fzlnwXlN8dX8uXrzIWR+KaEZVypcuutwEBATgWpLkxNNKwKCzW9n3VLowqRvSlK9acl2+pClfmtb7kZJP/SoSQaFwd/wDyibQB4WUr1Zlaefq1vuRV77uj3zh7rpFT6h2GlFAwR8z5ezszFvXJywszICzsVz6rvcjxRf8uXfvHvLz83V2rKpM18EfgFK/jCkzM5O3tXu1atUU6snxpRSdOXMGb9680en8iKL4+HjeoIw6Xb7kUdFn/RCLxby1fpycnPCf//xHZ8fr3LmzrHVxeVlZWRRE14GioiKcOHGCc7yyKV9SAQEBCt2G/Knos04VFBTg0qVLGCWX8nUgsuz3rYvgDwCFwt0FT7hXTBPtsAVvIX5Sen5RrQEYd0kpD5Zl1e70Ja988IcFEFb6HDrbiJAeR5+HpAwFf8wYpX7pV15eHkJDQznHtf2QVcbV1RXu7u5Kx0pKSujLrw6kpqby1vspv2xWXRT8MZ7FixfzBmzmzZun0I2vX79+nKl9JSUl2L9/v87nSMpwNX0AAE9PT970V2Xatm3LWRw6OTmZs8A34bdnzx48ePCAc3z27NmoU6eOzo5nbW3N+/5LqV+Vd/nyZc7aLfb29rypd5rw8/NTqDciX/cnMjISmZmZOjlOVXX16lUUF+ZjqHzKV5zk912jRg2tO+9VCP7IpQ05ZUZoOVvCRSHlS67LV2JiIlJSUpQ+xsbGBh06dFA6prTle1LZcxhzdpsOZk0sBQV/zBgVfdavK1eucBZdq1OnDtq0aaPT41HdH/3Sdb0fKQr+GEdMTAx++eUXznFvb2989dVXCvfZ2Nhg9OjRnI+h1C/94gv+jB07VuNOQLa2tmjXrh3n+K1btzTaHwGKi4t5V9PVrFkTs2fP1vlxVbV8J5XD1+K9X79+cHBw0MlxatWqBQfX5kjOkpx4dnVnIJT7s6bvppVz+vRp9GpclvIVEiNGQWnKV9++fTVKm5VXPvgTJrfyx1P4QrvJEk6iyLIusUKfUbJ/8/19dOjQAXZ2dkrHlLV8lw/CFjy+oO1UiQWi4I8Z41v5c+PGDcqTryS+lK++ffvqJD9eHtX90S++lC9NisyW16FDB976W9QpQz++/vpr3ve4NWvWwNbWtsL9fKlfly9fRlJSkk7mRxRFRkYiIoL7CrK6Xb7Ko7o/uvXHH3/wdmX6/vvv4ezsrPPj8gV/QkNDUVhYqPNjVhUsy/LW+9FVypeUv3+A7MTTyYZBm/pln4+U+lU5p0+fVkz5elT5lC8AaNq0qULgKLMAssLdLWsWITfjpdb7JooUU74agnEru/CrTb0fqeDgYIXb8oW7G7CJEIvFyh5GqiAK/pixpk2bolatWkrH8vLyeJdtE9UMVe9HioI/+qWPej8AUL16dd6W0+Hh4Vrvmyh36tQpHD9+nHO8T58+nCc0PXr0QIMGDTgfu2fPnkrPj1TEt+qnRYsWWq+kpOCP7uTn52Px4sWc4w0bNsTnn3+ul2O3bduWc/Vlfn4+1TGshIcPHyIhIUHpGMMwGDx4sE6PFxAQoJj6JVf3h0oSaO/ly5d4+OCeLOUru5DF6TjdBH9sbW3RpEkThfvkC3c/v0ndMHWFK+ULUN3pi0/5lu/yhbsbObO4d/VUZaZNLAgFf8wYwzCU+qUnL1++5A2e6SP406FDB84luwkJCXj5kq68aCs1NRUxMTGc49rW+5Gi1C/DKS4uxqxZszjHBQIB1q1bx7kaSygU4r333uN8PKV+6R7Lsry/13Hjxmmc8iXFF/y5desWXe3UwMaNGznrTQDA/PnzddbhsjyBQICgoCDOcUr90h7fqp+uXbuiXr16Oj2eJPhTVm/E373sb/vGjRsoLi7W6fGqijNnziCoMYOa9qUpX7FlKV8tWrSodPe98qlf8oW7c2LOVmrfpIxCly+fsi5feXl5uHfvHufjVK38cXR0rNjyXS59L+bcdg1nSiwVBX/MHBV91o+zZ7k/6Fq0aAE3NzedH9PBwQFt27blHKfVP9q7fPky51ibNm04V9Cpi4I/hrN582ZERUVxjk+dOhW+vr68++BLMQoPD+csDE60c+fOHd5UIk27fMlr2rQpZxpSVlYWb9CXlHn79i1WrFjBOd6kSRNMmjRJr3PgS/2ios/aM2TKFwA0a9YMqaIayCqUBID85Fb+0Kp07VVI+dJBly95FYs+l+3f/s29Su+fAGx+JsRPSs8vyqV83b59mzOV3cPDg3fFslT5uj/X5YKwJQncDWxI1ULBHzNHwR/9MHTKlxSlfumHvlK+pCj4Yxjp6elYsGAB57iLiwtv2opUp06d4O3tzTlOq390i+/32aFDBzRr1kzrfQsEAnTu3JlznFK/1LN69Wqkp6dzji9ZsgTW1tZ6nQNfx6kbN24gJydHr8e3RKmpqbx/A/oI/jAMg25+AQgrTRtyrcagcY2ycar7ozmWZXHh7CkMkUv5OvNEv8GfxLeQFe5uwCaDFVEd0cpSSPnyGamzlC+p8sEf+cLdXtYvebujkqqDgj9mrlOnTrypQqmpqQaekfljWZaCPxZGX8Wepdq1a8dZAPzJkyfIyMio9DEIsHDhQt4T1AULFqB27doq98MwDO/qn127doFlWc5xoj6xWMxbR0nbQs/y+N43Kfij2suXL7Fu3TrO8Xbt2mHMmDF6n0ezZs04r26XlJQgNJSuXGvq2LFjnGNeXl4VTvh1xd/fn7PuDwV/NBcREYFWjm9kKV/H5bp8WVtb6+R7jLLXgvQ5tBOKwL6kFVuVpZDy1Wqkwlhlij1LlW/5nlEARL6SPIdtXRmcO8m9CpBUHRT8MXOOjo68rW6p7o/moqKiOOseWFlZ6WSlCBdVJzEikUhvx7ZUL168QHR0NOd4Zev9AJK/Qx8fH85xWv1TeY8ePcL//d//cY43b95co2K0fEGHmJgY3tx7or7Q0FAkJydzjusiqEBFnytn+fLlyM3N5RxftmyZzrtbKsMwDKV+6RhfyteQIUO0rrWlSvmiz37uVPS5Mk6fPo1Rrcp+h/JdvgICAuDk5FTpYzRv3rzC60H+OSyK506fJ6oppHxVbwjGrez7PsuyOln5wzBMha5f0vpbVgIGcZe5Gy+QqoOCPxaA702BPmQ1x7fqp1u3bqhWrZrejt2sWTPO+hXZ2dm8QQyi3KVLlzjHfH191Vopog5K/dIflmUxe/Zs3uDn2rVrNUpLadWqFW+HKUr90g2+Ll/du3evdJFSALxpX/fv30dBQUGlj2Gpnj17ht9++41zvHv37hVSCfSJL/WLij5rJjc3l7d+oT5SvqQ6deqE+6+sUCySnHj6e5QFFZ4/f47ExES9HdsSnT9zUpbylVXI4oyOunzJs7e3h5eXl8J98oW7s6O4vxsT1cQxRwGxpNi5sJViyteTJ0/w+vVrpY+zt7fnvchfXvn3a/kAHpsURk0QCAV/LAHfckBa+aM5Y6V8AZL6FZT6pVt8wR9druKi4I/+hISE4NQp7jalAwYM0OoElW/1z+7du+lLUiUVFxdj3759nOOVKfQsz9XVFe7u7pxzoFVc3BYuXIiioiLO8Z9++klvq0OU4Vv5c/fuXd60T6Lo7NmznIFPZ2dn9OjRQ2/Htre3R8s2HXA3VRI8aFlHgFpyjeLowqT68vPzIUwKRQ25lK9Cuesgugr+ABVTvx6+YmWFu61e3qF06EoQRR6U/VvoM0phjO9crVOnThpd2Crf8l0++NOudgF9HyUU/LEEfMGf27dvo7Cw0ICzMW9FRUW89WH0HfwBqO6Prum72LMUBX/0o6ioCLNnz+YcFwqFWLt2rVYnqHzBh6SkJDpBqaTz589zFpgUCAR49913dXYsSv3S3KNHj7B9O3f73+DgYHTv3t2AM5J0tWnSpInSMZZled/PiSK+lK/g4GC9F/Aun/rVzZ3q/mjjypUrGNK0LNoj3+WrVq1aaN++vc6OVT74I2YhK9xtX5IJNuOpzo5VlVRI+Wqo+Hmli3o/UuVbvie+BVJKC3d3dWNwMuS4RvsjloeCPxbAw8MDrq6uSseKiopw9+5dA8/IfIWFhXHWPnB2duZNL9AVCv7ozsuXL3nbguui3o9UmzZtYGVlpXQsMTERr1690tmxqpJNmzbxtl6fPn261kVLGzVqxJs2S6lflcP3++vTpw/q1q2rs2NR0WfNzZs3j3d127Jlyww4mzJ8q38o9Us9YrGYt9izPlO+pCRFn8tWisinflHwR31nT4VgaMuylK+zcl2++vXrp9N6XHxFnwGATaQLItpQTPkapZDyBeim05c8rtSvarYMHl87pPH+iGWh4I8FYBiGWr7ryOnTpznHgoKCOE/udYnvCnZERAS1u9UAX8pX69atdVbvBwDs7Ox4a8jQ6h/NvXnzBosWLeIcr1mzJhYuXFipY/Clfu3btw8lJdTeVhsFBQU4dIj7S6YuunzJo5U/mrl16xYOHjzIOT527FiN6kzoEhV9rrybN29yXnCwsrLCwIED9T6HgIAAXE9S3vHr/v379F1GTVkPjsDFThI4OxatmPI1YMAAnR5LWfBH/jkUU/BHKwpdvnwUu3xlZ2cjIiKC87HaBH8qFH2Wew6rZz2ilu9VHAV/LAQFf3TDmPV+pOrUqQNvb2+lY2KxGHfu3DHIPCyBoVK+pCj1S7fmz5+Pt2/fco4vWrQINWvWrNQxxowZw3nl9PXr13SyqaUTJ04gKytL6ZiNjQ1GjBih0+N17NiR83l8/PixxdWKYVkWxcXFyMnJwZs3b5CcnIz4+Hg8evQId+/eRVhYGC5evIhTp07hyJEj2Lt3L3bs2IEtW7Zg06ZN+PLLLzn3LRQKsXjxYgP+NIqCgoI4x6Kjozm7cZIyfClfPXv2hIuLi97nUL9+fVSv74WYN5ITzw4NGNiVXj8Ti8W0klkNKSkp6OiYJLst3+UL0P330hYtWlS473YyKyvcLXpGK7Y0xeZnQPyk9HtEdbcKKV83b97kXIHp7e2t1QrZ5s2bo1GjRrLbCivw3BneGorE8ul/GQMxCL7I8PXr18GyrEGLNpqjjIwM3hN0XRbVU6Vr16548uSJ0rEbN26gZ8+eBpuLOTNUsWepTp064ffff1c6RsEfzURERGDz5s2c461atcK0adMqfZx69eqhT58+nIHfXbt26fzqalXAl/I1aNAgnZ98Ojk5oVWrVnj48KHS8Vu3bpn083jr1i3s3LkTjx8/RkFBAQoLC2X/5/q3voqvfvLJJ2jatKle9q2OunXrwtfXl/Nq+IULFzB+/HgDz8q88AV/DJHyJSVJ/dqN5rUBGyGDjg0YXC09Eb169SpvdzcCnDsdIuvy9bZAMeXLx8cHDRs21OnxnJyc4OnpiWfPnsnuyysG7qWy6OzGAGkxYPPSwDjU0ulxLZkoWi7ly6diypcu6/1IMQyDQYMG4ddffwUAPHwpKdxd3ZaBn7sA80+E0HtoFUYrfyxEhw4dFKq7y0tJSaG2mmo4f/48Z/S9UaNGnKtx9IHq/lTeq1ev8OjRI85xXdb7kaKVP7rBsixmzZrFW49k3bp1OkvD5EtBOnjwIPLz83VynKoiOzubt96Irrp8lWeuqV87duyAn58f1q9fj+PHj+PcuXMIDQ3F7du3ERERgdjYWCQmJuLly5fIzMxEQUGB3gI/tra2mD9/vl72rQlK/dLekydPEBkZyTk+ZMgQg82lfNFn+dQvWpWuWsq1nWUpXzFiFOmpy5c8pXV/5FO/ksL0clxLJZZP+Wo1ssK4ruv9SMnX/RGxwI3Swt0NqjN4dO0kdTOtwij4YyFsbW15TzzpQ1Y1VSlfhlw5xRf8CQujD1518K368fHxQZ06dXR+zNatW8PW1lbpWGpqKpKTk3V+TEt05MgR3hO8wYMH6/SL74gRIziD59nZ2QgJCdHZsaqCI0eOcAbMHBwc9HbyaY5FnzMyMvDVV19BJBKp3tgAvvjiC52vJtAG34qQc+fOUctpHkePHuUc8/X1RePGjQ02F0ndH+VFn69fv24yr3tTJBaL0TDrluz2wXIpXwYN/silDVHdH/Wx+RkQx5d+l3F2B+OmeIFCLBbzBn+0XfkDKGn5LhfAa1Etky5IVmEU/LEgqlK/CD9TqPcj1a5dO96VXM+fPzfofMyRoev9AIC1tTVvkVT6sFWtsLAQX3/9Nee4tbU11qxZo9Njuri4VCiQKI+6fmlm9+7dnGNDhw6Fo6OjXo6rauWPKQYM9u7di8zMTGNPAwBQrVo1fPfdd8aeBgDJykyuGk6JiYl4+pRaTnMxlZQvQBJIeF3ihJc5kr+9bu4CCErjP1lZWbyrc6u6B+G30K9REYCKKV82NjZ6Wb0McBR9TpQv+kx1f9Qlij4CiCVNI4StRla4iBwTE8P5/u/k5ITWrVtrfWxHR0eFEhHXy63AO3HihNb7JuaNgj8WhIo+ay8+Ph7x8fFKxxiG4V2Crg+2trZo37495zilfqlmjOAPQKlflfXf//6Xs94VAHz55Zdo1qyZzo/Ll/p17NgxzuLFRFF6ejpvMUldd/mS5+PjA3t7e6Vjr169Msn057///tvYU5D58ccfddoBsTKcnZ1530sp9Uu5jIwMXL58mXPc0MEfoVAIPz9/2Ymnix2DVnWo5bs6Yk9vhnNpytfRaMWUrx49esDBwUEvx1UW/HmdB8SWFu5mk++ALaZUaHWII8s6Kgp9RlUY57sw36VLFwiFwkodXz7161YyixKxJAjr787QiuYqjII/FoRv5c+9e/eQm5trwNmYF75VPx07dkStWoYvbkd1f7RnjHo/UhT80d7Lly+xZMkSzvHatWtj3rx5ejn24MGD4eTkpHSssLAQ//77r16Oa2kOHjyI4uJipWMuLi56LbpsbW2NDh06cI6b2vvm06dPERoaauxpAACmTZuGb775xtjTUMCX+nX+/HkDzsR8nDhxgjOVqn79+ryfT/ri7++PaxypXxT84eaYVPa91FApXwDQsmVLpffLnkNxMdgU6jqrCpuXrpjy1bBzhW30UexZnnzwR1q4GwBa1RUgLuIWXr9+XeljEPND3b4siKurKxo1aoSEhIQKYyKRCLdv36YuURxMKeVLiur+aI/vyqePj49WrTPVpSr4Q533uM2bNw/Z2dmc40uWLNFbi2IHBwcMGzYM//zzj9LxXbt24YMPPtDLsS0JX4rcyJEjOWti6UqXLl04Tyhv3ryJMWPG6PX4mti5c6dWjxMIBLCzs4OtrS1sbW3V+jfXWI0aNdCvXz+DNjRQV+/evfHTTz8pHTt//jy9lyrBl/I1ePBgzlQ6fQoICMC3mxVTTn6/LblNq9KVy32bjk7OrwAwyCxgcS7ecMEfZ2dnNGzYsEKNwmuJYnzUXrISRZx4DQLP7nqbgyUQxRyVS/kapfS9Sl/FnqWkLd+l54XXEsXo1FDyHtDVjcHp06ep61cVRMEfC+Pv7680+ANIPmQp+FORSCTivYpoisGfO3fuoKSkRGfdjiwNX8qXvv8GWrZsCQcHB+Tl5VUYe/PmDZ49e4ZGjRrpdQ7m6N69e9iyZQvnuK+vLyZPnqzXOYwbN44z+HPmzBm8fv1aL4XCLUVqaiouXLjAOa6vLl/yzKXjF8uyvClfU6dOxYwZM5QGbKrK+76/vz9sbGxQVFRUYezVq1eIjIysVE0MS1NUVMRbx8PQKV9SXbt2RcQrBrlFLBxtGIWOX/Hx8Xjx4gXq169vlLmZqofHfkFbjpSvevXqoU2bNno9fqtWrSoEf65T0WeNKHT58qnY5SsjI4N3hXq3bt0qPYfyLd+vJbL4qjSm5O/B4MSJExT8qYIo7cvCUNFnzd25cwcZGRlKxxwcHHSy9FIbXl5enPUX8vLy8PDhQwPPyHwYq94PIKlxwJd6QqlfFbEsi5kzZ/IW5F2/fr3eT3r79euHmjVrKh0TiUTYv3+/Xo9v7vbt28f5HNatWxdBQUF6n4M6QXNTEB4ejujoaM7xzz//HC1btkTjxo3RoEED1KpVC46OjlUm8AOo/vyl1C9Fly9f5qxNZm9vz5tGp09OTk7w8W2Lm88l7w3uzgzcq5eN0+qfikSRZZ815VO++vXrp/cVXMrq/sSls3iVK3kOxUlhYKlVOCdJylfp+xNHyhdfGnKLFi04v4toSj7163qS4gq8U6dOUcv3KoiCPxZGVdFnU+x2Ymx8KV+BgYF6T1PgwjAM1f3RgvSKMBdDrH6juj+aOXjwIC5dusQ5Pnz4cIMUXbexscHo0aM5x6nrFz++Ll9jxowxSOCiUaNGvEFzU+kuxLfqp02bNvD19TXgbEwX3989BX8U8aV89evXT28FgtUREBCg0GraT271D9X9UcQWF6AZEwcAkpSvJ4ZL+ZLiqvsj6xhVkAn2dZTe52GuFLp8+YxWmvKl73o/UvIt31/lAnFpkuewYwMG2Rlv6DtpFUTBHwvTpk0bzg/4tLQ0PH782MAzMn2mWO9HioI/muOr99OqVSu91vuRouCP+goKCjBnzhzOcRsbG6xevdpg8+HrRnXlyhUkJSUZbC7mJCEhgXd1qSFSvgBJ0Jwv9csU3jdLSkp4A4kTJkww4GxMG99qlYsXL5rMSi5jY1nWpFq8l+fv749riRT8UcerG7vhZC25UHs0Wozicgsz+vbtq/c5KFv5A0jShqQo9YubQspXq4opX4D+6/1IlW/5Ln0Oba0YdGxAXb+qIgr+WBgrKyveL76U+qUoJyeHN/puysEfKvqsHN8KEn2nfEmpU/SZSKxbt46zThkAzJw506DFaHv06IEGDRpwju/Zs8dgczEnfL8XDw8PnX6ZVcXU6/6cPXsWL1++VDrGMAxvALKq6dy5MxwdHZWOvX37Fnfv3jXwjEzTw4cP8ezZM6VjDMNg8ODBBp6RooCAANx8zkIk12paKjw8HPn5xm8dXlRUhH379mHu3LlYt24dMjMzjTKP9GtbZf8+EKkY+WnTpg1cXV31Pgfu4E/ZfMSJFLRThs1Lg/hpae07Zw8wDSt+HxSJRLzf4XVdbkI+9etaudQvvjphxDJR8McCqUr9ImUuX77M2Za4fv36Ri8myXcSEx0djbdv3xpwNubBmMWepZo2bYrq1asrHXv79i3i4uIMMg9Tl5qaimXLlnGO16tXDz/88IMBZySp2fTee+9xjlPql3J8v5f33nvPoF2GTD34w5fyFRQUBDc3NwPOxrRZW1sjMDCQc/zcuXMGnI3p4lv107VrV9SrV8+As6nIw8MDLnXdcP+FJPjTuh4D59KM+uLiYqOviM3NzUW/fv0wZswYrFq1CrNnz4aXl5fBT4zZ4gLUz5YENDPyWZw3YJcvebVq1VK6SvreCxZ5xaV1f2jlj1KKKV/Ku3xFRkYiJydH6eNdXFzQokULnc5JIfgjt3rLz4PBrVvU8r2qoeCPBaLgj/pOnz7NOda3b1+jt5Hl+xBgWRa3bt0y8IxM2+vXr3kLYRsq+CMQCNCxY0fOcWN/0TUV//nPf5Cbm8s5vmzZMs4gmj7xrbwIDw9HbGysAWdj+qKionD//n3OcUOvZOEL/jx8+JD3NadvOTk5OHToEOc4pXxVxJf6RXV/JEw55UvK399fVnBWwDDo6l52CmLs76YzZ86skDKekZGBwYMHY8OGDQZbrVvy+BTshZLAgbKUL0MFfwDlq39KxJAV7sbbRLBvKQ26PHHkQdm/hT6jlG7D93rv1q2bzi+WSFu+A8DjNBavSwt3d3MXACzLey5ELA8FfywQX3vAyMhIWi0ix5Tr/UhR3R/18dX7admypUGvflLdH3537tzBtm3bOMfbt2+Pjz76yGDzkdepUyfeVDNa/aOIL+WrWbNmaNeuneEmA8lVa67nTywWIzw83KDzkffvv/8iLy9P6ZidnR1GjlReH6Iq4yv6HBoaisLCQgPOxvSkpqbyrmgzleBPQECAwqoDf4+yi2vGrPtz5coVbNmyRemYWCzGzJkz8dlnn3GuEteltNCyeRwo1+XLzs4O3bt31/scpNRL/aJSEvLYvDRZly/GxRNMA+UXAQ1V70eKYRgEBweXHb/0Oaxpz6BFHYZSv6oYCv5YoFq1aqF58+ZKx1iWpYBBqeTkZN7OL+YQ/KG6P4qM2eK9PAr+cGNZFjNmzODdZv369RAKhQaakSKGYfD+++9zju/cuZPqNpViWZY3+DNu3DijrKA01aLPfClfQ4cOhbOzswFnYx7atm3L2fY4Pz+/yn8OHjt2jHPMy8uL8yTe0AICAsq6RQHwL7fyxxjvqYWFhZgyZYrK7TZv3oxBgwYhIyNDb3Nhi/PhkCKpWZiez+JCuZSvwMBA2Nvb6+345akX/KFsAnmi6CMAKwIACFopT/kCDNfpS55iy3fFIOzJkychEon0clxieij4Y6H4IsdU9Fni7NmznGOtW7c2SFE9daha+UMnoWVModizFF/wJzw8vEp/0O7du5f3Su/o0aN563wYAl+qUmxsLBWaLRUZGcmbBmeoLl/lmWLdnxcvXvCuNqWUL+UEAgGCgoI4x6t66peqlC9jp69LtWnTBm/FDohPl3xn6dSQgU1pfD8tLc0o6bQrVqxAdHS0WtueO3cO3bp109s8xXFnYIMiAMpTvgYMGKCX43LhCv7cfM5CVPq1k4I/ihS6fPkoX8X5+vVrzrqPqrpVVkZQUJCs5fu1ckHYtLS0Kn9Rsiqh4I+Foro/qplDyhcA+Pr6cl7tef36NW+npKrkzZs3iIiI4Bw3VL0fqcaNG3Nerc7JyUFMTIxB52Mq8vPzMXfuXM5xW1tbrFq1yoAzUq5ly5Zo27Yt5zilfkkcPXqUc6xdu3Y6L1ypLlMM/uzevRtisVjpWK1atQx+cmdO+FK/qnLwJzc3l/dClqmkfAGS4t1du3aVnXjaWzNo72q81K/o6GgsX75co8fExsaiW7duennNFd7fLfv3gciKF4cMWe8H4A7+ZBcBj0rrA7MvI8AWUCkJQJryJenypW3Kl6+vr97qHMq3fL+byiK/tHC3v4ckFECpX1UHBX8sFF/wJywsjPMLqKHl5ORg7969+OWXX3D58mWDzYtlWd4vTKYU/LG2tuYtHkxpfBJ89X5atGhh8G4nDMNQ6lc5LMti8eLFSExM5Nzm66+/lhUmNDa+1T98J/JVhVgs5k05MdaqH0BSM8rKykrp2LNnzzhbresTX8rXe++9J7sqSyriC/6EhYVxds6xdGfPnkVBQYHSMRcXF4PWiFGHv79/hVbTUoYM/rAsi2nTpqGoqEjjx2ZkZGDAgAH4/fffdTef4nyIY0MAlKZ8PVVc0e3q6gofHx+dHU8ddevW5byAFZogDU6xED83fgdFUyCKOlyW8uUzmnPFnaHr/ciTpn4Vi4FbyZLXWKMaDBpUo+BPVULBHwvVsmVLztoBWVlZvLVuDCUuLg7NmjXDe++9h6+++go9e/ZEs2bNsGHDBmRlZen12BEREZxf/m1sbIyeclIeFX1WzZTq/UhR8KfMzZs30b17d6xYsYJzG1dXV3z//fcGnBU/vuDF8+fPjVqk1BRcu3YNqampnOPvvfeeAWejyN7eHm3atOEcN3SnxKioKNy5c4dzfOLEiQacjflp3rw5GjRooHSspKQEoaGhBp6RaeBL+Ro0aBCsra0NOBvVJHV/5FpNu5edIBtyVfqff/7JmyauSklJCaZOnYqZM2fqJIVbHHcaVmJJEO9ItBglSrp8GTp9j2EYNev+VO3PQSmFlK9W3IX7+V7n+g7+yBd9ln8O/dwF1PK9CqHgj4USCAS8Xb+MnfpVUFCAQYMGVThxePLkCWbOnAk3NzfMmDGDMy+2svhSvvz9/eHo6KiX42qLij6rRsEf05SUlIQJEyZIlvureN/56aef4OTkZKCZqebp6cm7irKqp37xFXr28/Mz+gouUyr6/M8//3COeXt7877HE8mJKKV+KRKJRLxpl6aU8iXl5+eHmDcs0vIkASA/DwGkIY3o6GikpaXpfQ6vXr3CnDlzOMcZhsGff/4JT09PlfvasGEDhgwZUukLliK5wIEppHxJcQV/5At3s1T3B2zuG4ifXgQAMC6NwDTooHS74uJi3gsP+ir2LNWsWTM0btwYQLm6Px4MWGr5XmVQ8MeCmXLdn3Xr1vEGdrKzs/Hf//4XzZo1w5AhQ3D27FmdFjY2l3o/UnyBvLt372q1dNmSpKWlmVS9Hym+4M/du3cN0jrWWHJycjBv3jw0a9aM98RXqnPnzia5+oEv9Wvfvn0W/RzyKSkpwf79+znH+X5vhmIqdX/EYjHv38CECRNMpiivKeML/pw7d86AMzENN2/e5LxSb2VlhYEDBxp4Rqq5uLiglY8PrpemftV2YNCsdtlr3xANSWbNmsXbteuLL77ARx99hJs3b6p1Mn7ixAn4+fnh6dOnWs2HLc5HSbQkfTYtj8XFpxW/6/bt21erfVcWV/AnORtIK5FcJBU/vwW2pGp/BxVFy6d8cXf5evDgAfLz85WO1a5dG02aNNHbHAFJYFOa+nXjOQsxWxaEBYCQkBC9Hp+YBgr+WDBT7fiVkpKCZcuWqbUty7I4duwY+vXrB19fX/z+++/Iy8ur1PELCgp468OYYvDHzc2Ns/tYYWEh7t+/b+AZSbAsi61bt2LIkCEYMWIE/vjjD6PUQVFV76d+/foGnE0ZNzc3zlpDBQUFJpF+qWsikQh//PEHmjZtiqVLl3LWoyhv/fr1EAhM7yPp3Xff5ZzXmzdvquRJJwBcuHABr169UjomEAjw7rvvGnhGFakK/hiqU+LVq1d5C/OPHz/eIPMwd3zBn7t37yI9Pd2AszE+vpSvnj17wsXFxXCT0UD51C9/D8MVfT516hR27tzJOd6wYUMsXboUgKTmzblz59Tqwvfo0SN06dJFq/RD8eNTEJRIvtcqS/lq37496tatq/F+dYEr+AMA4a9sJf8oyQf74p5hJqQGlmUhyHsFtiATrIG+j4ojD8r+LfQZxbmdqpQvQ1wEkAZ/sgqBhy8lf4dt6jGoZiP5+zCFTrSiR4dQfH4RSq6tR0n4nxA9OgRR/AWIU+5CnB4PNi8drNj48zRXyqshEovQtWtXMAyj9AtubGws3rx5g9q1axt8Xt999x1yc3M1flxkZCSmTp2K77//Hp9++ik+//xzuLu7a7yfa9eucUbea9SogQ4dlC/XNCaGYdC1a1f8+++/Ssdv3LiBzp07G3ROYrEYH3zwgcIV7X///Re7d+/GgQMHUK1aNYPNhS/ly1irfoCyos/Hjx9XOn779m3ejlLm5sKFC5g9ezbu3bun0ePmzJmj9+XO2qpXrx769OnDuVpw165dJnmFXd/4Ut6CgoKMFnCV16JFCzg5OSktBpyZmYm4uDg0bdpU7/PgK/TctWtXg8zBEnh6esLb2xtPnjypMMayLC5duoQRI0YYYWbGYW4pX1L+/v74LeR/stt+7gL8GS45Sddn8CcvLw+fffYZ7zZ/rZ4Lu5PTUMSyYOycIbRzwR+TfTC22XD8ve8IMguAtwUsMvIl/88sAPJLJI998+YN+vTpg99//x0ffvih2vMSPTLNlC+AP/hzJiob/UrLcIkTr0Hgpp8W5ZpgRcUo+Xso6j29AMmaXAawcwZj5wzYuYCxcyn9f+lte/nbNeS2cwbsawDWDioDMhVSvlzbc25rzGLPUtKW70VFRbiWxKJNfUAoYNDFjcG5eEnLd2OmIYvu/Y3ifyert7Ft9dLn10Xu+XUGY1/uuVT23No4VdkVtxT8sWDVq1dH69atOdNhwsLCMHjwYIPOKSwsDDt27KjUPtLT07Fy5UqsXr0aI0eOxIwZM+Dv76/2HzFfylefPn0gFAorNT994Qv+hIWF4YsvvjDofBYuXKg0leHMmTPo1asXjh8/brATQFOs9yOlKvjzySefGHhGuhcbG4u5c+fi8OHDGj2ufv36WLFiBT744AM9zUw3xo0bx/m+cejQIfz222+wt7c38KyMp7CwEAcPHuQcN2aXL3lCoRCdO3fGhQsXlI7fvHlT74GXwsJC7N27l3NcnVUFpEyfPn2UBn8ASepXVQn+PHnyBJGRkZzjQ4YMMeBsNBMQEIApqSwKSljYWTEKHb9u3bqFoqIivXS+W7x4MW9q1sTR7yAgeQPE2ckVxvoA6DNSefHsIlFZMOhtAYvMM5/idtxqtOkSCEb+pFMh0FB6omplC3GMJNUmLY/FpYSKF2uNGfxp0KABqlevrrSm0dmYXKCP5HkSJ14D/GcaeHYVlZxfBPap/Ps9CxRkgi3IBPAMGq/1FFjxBhAYO2ew6fFqdfkC+Ff+GOoCmLTl+5kzZ3A9UYxpnSXnPP4eApyLF+HEiRNGC/6I3zxG8fEZ6j+gMAsozAL7NgkANHt+GYHC32NN2KKkaW/Y9J6v0ZzNEQV/LJy/vz9n8OfatWsGDf6IxWJ89dVXOtufSCTCvn37sG/fPnTs2BEzZszAmDFjYGtry/s4c6v3I2VKHb/279+PJUuWcI6Hh4fD398fp06d0vvJVVpaGh48eMA5bsyVP4BlF31OT0/HkiVLsHHjRpSUlKj9ODs7O8yZMwdz58416AoxbY0YMYKzLXB2djZCQkIwahT3Um9Lc/LkSbx9+1bpmLW1tUn9Lrp06cIb/NF3ylVISAgyMzOVjgmFQqN2RDNHvXv35myxbelFnwsKCpCZmYnMzEz89ddfnNv5+vrKirqaIm9vb7jUqovbyRno7snAuyaD+k7AixzJz3j37l2dn3zev38fq1ev5hyvVs0JGwexQGLFwI8qNkIG9ZyAek7yJ/2PIb7zWKP9HFaS8uXg4ICAgACN56Qr0o5fyhqLRL9mUWLlCKuSXIgTr4NlWaOupBDFnYHoquQ5ZgXWEDQKlAQH8jPAFrwFCjIAsfrfUwBIts97AzbvjWS/KjYX+nB3+UpJScGzZ8+UP04o5P2uqGvBwcE4c+ZMhY5fgCT4s3DhQoPNRYotKUTx/glAsSQzRND6XQhbDJME7grelv4/s+x2vvR26XMr0rDuFCsG8tPB5kvShW0BsM7GSa80NAr+WDh/f39s3rxZ6Zihiz5v376dt8p93759YWtry7lKgs+dO3fwwQcf4JtvvsFnn32GadOmKa21kpaWhvDwcM79mHLwp1OnThAIBEpr6sTFxSEtLQ21atXS+zwePHig1pLmp0+fwt/fH8ePH+etvVFZfPV+mjdvzlkryVD4PtDv37+PwsJClQFLU1NcXIxff/0VixYt0rjOxvjx47F8+XJ4eHjoaXa65+LiguDgYM6Vd7t27TKpgIe+7d69m3Ns4MCBqFGjhgFnw8/YHb/4Ur4GDhyIOnXq6H0OliQoKIhzLCoqCikpKZwt4Y2JZVmF4A3ff2/fvlV6f2FhoVrHMuWUL0ASUPD398e1xKPo7ilZ9ePnLsChKMl3m2vXruk0+CMSiTBlyhTeWiaH5wXDJrF05apDbdh8ECJZGSA9uZQFEDKRk5aMcyGHIMp5A2c7Bs52gIsdAxd7yf+1pSzlq1evXkb/fsAV/GEBpDAe8EAUkPcabFocmNrGSWFls1+g+FDZKursDrNRO3iBQr0+lmWB4nygoOy5VAwgZMoFGJSP84V/mPpttU75ateunUG7DA8aNAizZs3C8ywgMZOFh4sk7ctKAFnLd0N/NpWc+Q/YF5L6pUzt5rAe+hsYG/V/J2xxvtK/V2lwSOG2wnim5LllxZJVQFUABX8sHF8O6a1bt1BcXAxra+VLWXUpKysL3333Hee4vb09/vjjD7i7uyM2Nha//PILtm3bprRWA5+XL19i4cKFWL58OcaOHYsZM2Yo1PA5d+4cZ5FPb29vk75aVq1aNfj4+HCu5Lp586askJu+vHnzBsOGDVO76PabN28QFBSEvXv34p133tHLnC5dusQ5ZuyUL0CS2uTm5obnz59XGCsuLkZERIRBr/hUhrQA+5w5cxAbG6vRY/39/bF27VqzbWk9btw4zuDPsWPHkJWVherVqxt2Ukbw8uVL3kKzppLyJcUX/JF2StRHigkAZGRk4NixY5zjlPKlubp168LX15fzc/DChQtGK6B99uxZhISEIDk5WWnwxlBdOU09+ANIUr/Obi57H/H3YHAoSvLvq1evYtasWTo71q+//srb3W9CP1/4FZyQ3bYe/j8I6rfh3N4FwKBBq/HRRx9h3/Z9CmMCBqhmAzjbATXsJYGhRvVr4Mc5X6Jxg5pg8zPkVjG8BVuQgbjIuzj2MBvn400r5UuKr+7Pg3QHeJQu3hUnXoXACMEfVixG8aGPgVxJAwKmSX/ktvoA5SuaMgwD2DgANg5gqjfU6jgoyq4QHGILMgFxCYTNBvGufDKFej9S0pbvT58+xfUkMTxchHC0YdC2PoM7KSxOnTpl0M8nUfQxiG5sktwQ2sJ69N8aBX4AgLG2B6ztwVTT/IKvSCRC0pMouLuZ3oUDvWCJyROJRGx8fDwrEok0fqxYLGZr167NQhKurvDf7du39TDjiubOncs5BwDsokWLKjwmMzOTXbt2Ldu4cWPex6r6r3v37uzevXvZ4uJidvLkyZzbTZs2zSC/i8rgm/+CBQtk21XmNcOlqKiI7dWrl1bPgVAoZLdu3aqzuchr27Yt53F37typl2Nqavjw4Zxz/PXXX409PZZlVb9m7t27x/bp00fj575Ro0bsnj17WLFYbOCfSLdyc3NZJycnzp9z27Ztxp6i3hQWFrKHDh1ihw8fzlpbW3P+Duzt7dns7GxjT1eBWCxmXV1dOed869YtvR37999/5zyuk5MTm5ubq7djmypdfDbNmDGD8/f68ccf63C26ikuLmY//fTTSn1P0dV/9evX1+nnvr5cvXqVdbEDmzvfhs1fYMuGfmqt8DNIPy8q+3pJSkpiq1Wrxvn7cnGwYt+uasLmL7Bl8xfYskUn56q9b5FIxM6fP1+t58XOzo7dtWtXhX1kZmayQqGQ83GPHj3S6ufWpZCQEM75fTakfdnv7tCnRplf8ZVVsjnkr2rElmSl6vz7ry74+fmZ1HfV6dOnswDYKZ0Est/fl90kr8X333/fYPMQZyax+StcZXMovvGbwY4tpY9zJlNmen11iU5Jl9dyMUTq1+PHj7Fu3TrOcQ8PD8yZM6fC/c7Ozpg1axYeP36Mf//9l3e5N5/Q0FCMGTMGXl5evEVKTTnlS4pv1YSyZbm6NHv2bN7CynxEIhE++eQTLF26VKftldPT00263o+UOdf9efHiBSZPnoz27dtr1Na8WrVqWLFiBaKiojBmzBiz76rg4OCAYcOGcY7zdb8yRyzL4tatW/jyyy/RoEEDjBgxAv/++y+Ki4s5HzNkyBA4OTkZcJaqSTslcuFbEVBZfClfo0aNgoODg96Obcn4Wr7zre7Vh+LiYkyYMAH/+9//VG9sAEOGDFFIdTFVHTt2RD5ri8hXkueqXX0GTqUL8F68eIGEhASdHOfLL79EdnY25/jJ2a1hkyMpFsu4doBVH+5ahuUJBAIsWrQIO3fuVJmaVVBQgHHjxmHhwoUKr88LFy5wpqO5ubmhRYsWas9HX/hW/hy5mQgI5Yo+G5g4KQwl5xaU3mJgPfIPMI6mV7elsLAQd+7c4Rw39MofoKzl+7XEstejv7vke5qhWr6zYhGKDn4ElNbdEbQYBmHnKXo/blVn+p8QpNL43lT4liHqyuzZs3lPGFavXs37JVgoFGLYsGE4f/487t+/j08++QR2dnYazyMpKYmzPolAIOD9QmkqunXrxjl28+ZNvX3p3bJlCzZu3Mi7jTr5wfPmzcP06dN19qFy+fJlzp+5WbNmJlP7wRyDP/n5+Vi+fDmaNm2KrVu3qv3aEggEmDp1KuLi4vDtt99q9bdqqt5//33OsbNnz+L169cGnI1+PH/+HCtXroSPjw+6dOmCjRs3Ii0tTa3Hjhs3Ts+z0w5f6pe+gj/Pnj3jrUdGKV/a69mzJ2eA49mzZ7wdnXSpqKgI7733Hvbs2WOQ46lj8mQ1WyQbma2tLTp16iQ78RQKGHRuWHaBQBct3//991/OVF0AmNGnHtoKS3PNbKrBevQOMFaap4COGzcOly5dUlpnsrxFixZh3LhxyM/PBwCcPn2ac9v+/fubxEUTd3d3zno0yS/TUFK3LQCATY8Dm/PSYPNi8zNRtP8DSDttCQO/hdBLu4vE+hYeHs6Z9unq6gpPT08Dz0hSP83W1haPXrPILJD8HfqVdt5LS0szyHdT0eWfwD4Lldyo7gbrob+axGve0lHwpwow5sqfkydP8tY86NmzJ0aPHq32/tq0aYMtW7YgKSkJy5Yt09nJfZcuXeDi4qKTfelTy5YtOa+sZ2Rk4PFjzbpLqOPatWuYPn067za9e/dGfHy8WkVvf/vtN4waNUr25acyTLnFu7yOHTtyjj18+FDtGkqGwLIsdu7ciebNm+OHH37QqO5W//79cf/+ffz222+oW9f0rr5VVr9+/TiLqku7D5qj3Nxc/P333+jfvz88PDzw3XffISoqSqN91KpVCwMHDtTTDCvHGEWfd+7cyTnWoEEDrVeyEsmqYL6AuiG6fhUUFGDkyJE4dOiQ3o+lrnnz5um1uYKu+fv747pctyH5lu+V/W6alZWFL774gnO8aS0GywILZLeth2yEoJa31sfr2rUrbt68ibZt26rcds+ePejZsydSU1NVBn9MgUAgQMuWLTnHX1mX1coUJ+r/gjIg+Z5SfOQz4G0iAIBx94NVzx8NcmxtqKr3Y4yAh7Tlu5gFwpIkf4f1nBh4lfZrCAkJ0evxxQmXUXJpueQGI4TN6O1gHGrq9ZhEgoI/VUCnTp1gZaW8tvezZ8+QkpKil+MWFxfzFu0TCATYsGGDVm96tWvXxn/+8x8kJCRg165dvCti1GEOKV+AZBVU586dOcd1fSLz/PlzjBw5knflVuPGjbF37144OTlhz549vF+4pA4fPoy+fftq3CmqPFMv9ixVu3ZtzmLiIpEI9+/fN/CMlAsPD0dAQADGjx+PpKQktR/XsmVLhISE4OTJk2jdurUeZ2hc1tbWvMFqc0r9EovFuHjxIiZNmoT69etj4sSJOHPmjNarB3/++WeTXeXFFyiIjo7mbFuvLZZlsWPHDs7x999/H0KhUKfHrGpUpX7pU15eHoYOHapVZ1JtCQQC1KxZE15eXujQoQN69+6NkSNH4uOPP8a8efNw/fp1LF682GDz0YWAgACFVtPywZ/Krvz58ccfkZysvG27rRA49mldCMWS4I+w/YcQ+r5XqeMBkhIGoaGhahXcvnXrFtq3b48nT54oHWcYBn379q30nHSFL/UrMqus0YGhUr9Ed7ZAHFUaeLWrAZtRf4ERmm4PI75gpjFSvqSUpn6V/h2eOHFC6WN0gc1LQ9GBSQAr+fu3CpoHgQf3QgWiW6b7l0J0xsHBAe3ateNcwnf9+nW9tCneuHEjoqOjOcenTJmi1lUSPtbW1hg7dizGjh2LmzdvYsOGDdi7dy9KSko02o+5BH8AyRWmCxcuKB0LCwvDxIkTdXKc/Px8jBgxAi9fci/jdXR0xOHDh2WrIYRCIf773/+iYcOG+P7773n3f+3aNQQEBODkyZNaLXlNT0/nDZqYSr0fqU6dOnGmI9y+fduoXwASEhLw7bffYu/evRo9rlatWli0aBGmTJlikK6BpmDcuHHYvHmz0rHQ0FAkJiaadBv7x48fY/v27dixYweePXtW6f25u7tjzZo1ePfdd3UwO/1wdnZGixYtOD+Pbt++jT59+ujsePfu3eNdOUUpX5XXp08frFixQunY+fPnwbKsXq6m5+TkYMiQIRrXvxMKhXBxcZH95+zsrHBb1X9OTk4Wlw7h7++PpCwg6S0Ld+eyVtMlYiAiIgJv375FtWrVNN7vzZs3edPU1wxxhIdtJgBJS2mrQWu1/REqcHJywsGDB/H9999j1apVvNvyfbfq1KkT5ypTY+AL/oQ+LUK/0tUihgj+iF9GouTkN7Lb1sN+A+Niup+5LMvyrvzhy87QN2nL9+tJikHYv++Lcfv2bb20fGdZFsX/TgGyJcFZQaOeEHb/RsWjiE4Zo8o00YwuqpB/9dVXnFXmZ8+ercPZSrx8+ZJ1dnbm7rDg4sK+fv1a58dlWZZNTk5mf/zxR94uZ/L/OTk5sUVFRXqZiz4cOnSI82fp2LEjy7KVf82IxWJ2woQJKn93+/fv59zHX3/9xVpZWancR4MGDdj79+9rPMd///2Xc59NmzbV6ufWp5UrV3LO94MPPjDavP7++2/W1tZWrb8V6X/W1tbs119/zWZkZBht3sYiEonYhg0bcv5ufv75Z2NPsYL09HT2t99+4+02osl/1apVYz/++GP2woULbFxcnFl0yPjwww85f57ly5fr9FizZs3iPFbr1q3NvvNdZeiqq0pubi5rY2PD+Xt++PChjmZcJjMzk/X391f59+Hs7MwePHiQjYiIYJOSktjs7Owq/Zzzadq0KbttpJWs008HV0b2ezx16pTGr5eioiK2TZs2nM/N4OZlnY3yF1dnRakP9Paz/fHHH7zdEfn+++GHH/Q2L20cOXKEc659+vRhCza2k/xOFzmy4sIcvc1DXJhbdqwFtmzRsRkVtjG1zk0JCQm836Xy8/ONNjexWMw2btyYtbcC+/ZHSee9e5+XvWZ37Nih82MWX99Y9je4siErfpus82NoytReM/pGaV9VhKGLPv/444+8S+kXLVqE2rVr6/y4gKSewpIlS5CUlIQ//vhD5eqi999/36xWLfB1rrl//75OaumsXbuWt1MNAMyfP593xdgHH3yAY8eOcRYKlEpJSUGPHj04VzNxMZd6P1KmWPT54MGDmDBhAgoLC9V+zMiRIxEVFYXVq1ebRZ0sXRMIBHjvPe4UAVNJ/SouLsbx48cxZswYuLq6Ytq0aZV6rxcIBBgwYAD++ecfvHjxAlu3bkVgYKBZdBYCDFf0uaSkhPc1MGHCBItbwWEMDg4OvN9rdJ36lZGRgX79+qmsRVOzZk2cP38eI0aMQOvWreHm5maRq3Z0RdepX+vWrePsAOpWHfhjVFlqqtXAVRDU99X4GOqaNGkSzp07p9UKHlOp9yPFt/Ln0aNHZSk74hKIk2/pbR4lJ+eAfS1ZVcnU84VVf+Wr/0wJ3+dux44djZouzTAMgoODkV8C3E1hAQDNawtQu7QHj65Tv8Sp91BypiwrwHr4FjDVTaMxS1ViHt/aSKXxLSu8c+cOCgoKOMc1FR4eji1btnCOt2rVCp999pnOjsfFzs4OkyZNwt27d3Hx4kWMGDGiwolKixYtsGDBAr3PRZdcXV0500pKSkpw9+7dSu3/1KlTmDt3Lu82w4YNU+v3NmDAAFy8eFFl8d+srCwMHDhQo64p5hb84Sv6HBUVxduOVh8SExPxySefqL19x44dcenSJRw4cADe3toXxrQEfF2t7t69i5iYGAPORtG9e/cwe/ZsuLm5YfDgwdi3b59Gwb3yWrVqhZUrVyIxMREnT57E+++/b5YtylUVfWZ11Cnx/PnzePHiBec4X8c4ohm+VD1dFn1+8+YN+vTpg1u3+E9q69Spg4sXL6JDhw46O7al8/f3x/Wksr89f4+yIJmmRZ+fPn2KhQsXKh0TMsBfo21QzVrSGUrQcjiEnT7VfMIa6tGjB27evMlbMLk8JyenStex1LVGjRpxBilSU1ORX6vsIiurp9Qv0cN9EIX/Iblh7QDr0X+DsTbNOnPyVBV7NjZZ3R+51C8/d8m5ki5bvrOF2SjeNwEQSbqeCf1mQNjMNJtEWDoK/lQR7u7uaNiwodKxoqIihIeH6+Q4LMtixowZvF+k169fb9CVNgzDoGfPnjh48CCePHmCNWvWYMqUKdi4cSNu3rxpMu3ANcG3+qcyRZ8fP36MsWPHQiwWc27j4+ODHTt2qH3Fv1OnTrh27ZrKgEFRURHGjh2L9evXq9xnRkaGWdX7ASR1R5o1a6Z0jGXZSgftNFFSUoLx48cjMzNT5bYNGjTAX3/9hZs3byIwMFD/kzMDHTt2RJMmTTjHDb36Jy0tDWvXrkXbtm3Rvn17rFu3Dq9evdJ6f7Vr18ZXX32F27dv4+HDh5g7dy7n54e5aNOmDWxslLdxTk1N5SwOqym+FZO9evWCu7u7To5D+Is+X7x4UScnLS9fvkRQUJDK92dXV1dcunQJvr76W0liiQICAhD5isXb0lbT3dzLvleEhYWpXb+RZVl89tlnnCuf/9NTCH/30sCSs7tBW0p7eXnh+vXrGDBggFrbBwUFcb5XGYtQKESLFi04x2PzylY36aPujzg9HsVHP5fdtgpeD0Gd5jo/jj7wBTGNWe9HStryXb7os19pEDYtLU1l0FtdxSEzwabHAQAY1w6w6rNEJ/slmqPgTxXBMIxBUr/27NmD0NBQzvFhw4YZtbhyo0aNMHv2bGzevBmff/65VsUETQFf8CcsLEyrfWZlZWHYsGG8AYEaNWrg8OHDGv/evL29ce3aNd7UJ6lZs2bhm2++4Q1AXblyhTPA2KRJE5M9UTWV1K+lS5fy/p0CkrSKhQsXIjY2Fh988IHZpPcYAsMwvKt/du3apbOVJHwiIyMxdepUuLu74+uvv+ZMd1CHtbU1Ro4cicOHDyM5ORkbNmxAx44dLSZdxcbGBu3bt+cc10XqV25uLg4ePMg5ToWedatLly6cacVv376t9EWtlJQU9OrVCw8fPuTdzs3NDZcuXdJodQeRaNGiBZxdaiCsdPWPazUGjUuLB+fk5CAiIkKt/ezatQunTp1SOhbYiMF3gaX9bRghbEZtB2Nfo9Jz14SzszOOHTuGr776SuW2ppbyJcWX+nXvaTpQTXIhVZwUBlakWdMVPmxJEYoPfAgUZgEABL7vQdhON41N9C0vLw/37t3jHDeFlT8ODg7o2bOnrN07APjLBWF1kfoluv8PxPf/kdywqQbr0TvAWJlOgDM1NRXjx483mc67+kbf5qsQvgizpstrlcnLy8M333BXbLexscGaNWsqfRwC3iXB2qz8EYvFmDBhAm+HGoFAgL1792qd8lO3bl1cuHBBtsSUz+rVq/HBBx+gqKhI6bi5pXxJmULw5/Lly1iyhP+Ky8SJExEbG4sFCxaorNlUVfEFf2JjY/W2kkssFuP48ePo378/Wrdujd9//71Sdb66dOmCTZs2ITU1FQcOHMDQoUNN7qqzrui77s/hw4eRm5urdMzW1lYvXTWrMmtra97ViJVJ/UpMTERgYCBvx1JAckHp8uXLaNq0qdbHqsoEAgH8/PwUUk7k6/6oc2EyPT0dM2fOVDpW2wHYNtIagtIYtlXvBRB4GOeE28rKChs2bMCvv/4KoVDIuc3gwYMNPDP18AU3H0VFldX9KcoB+4o/YKqJkvMLwZbWEWJqeMH6nV/M5qLE7du3OVeveXh4mMyFykGDBuFNHhDzRvJ32L4BA/vSeGllgz/iN49RfKws6Gk9+BcIaplO6YDw8HB07doV169fx7Bhw3jTti0FBX+qEFXBn8peqV65ciWeP3/OOT579uwqXytEVzp06AArKyulY8+ePeNtIarMggULcPToUd5t1qxZg759+2q03/KcnJxw+PBhfPTRRyq3/eeff/DOO+8gKyurwhgFf7STnp6O8ePH866qmjhxIrZv324yX0pMVcuWLXmLyes69SsnJwcbN25EixYtMHjwYJw5c0brfbm5ueH7779HVFQUbty4genTp5tUW2F94VsxqYvgD1/K15AhQ6pkgXR940v90rbo89OnT9GzZ088efKEd7smTZrg0qVLaNy4sVbHIRKVLfo8d+5cvH79usL9DID/DbeCazVJoEDg1RvCgDmVn3AlTZs2DSdPnlT6fvDll1+iUaNGBp+TOtQu+gzdpX6J4s5AdG2t5IbAWrJixK66TvZtCKZe70dKVvenNPXLRsigY0PJ34205bs22JJCFO+fCBRLLooI230AYZuxOpixbhw4cADdu3eXpX0nJSVhxIgROq2Da5KM12iMqEtXLegKCwt5Wzo/ffpU630nJCSwdnZ2nPt2dXVls7KyKjV/oqhDhw6cv+9Dhw6p/ZrZu3evyrajH374oU5b1YrFYvaHH35Qq+Vpu3bt2NTUVNlj09PTWYZhOLdPSkrS2Tx1LTs7mxUIBJxz12frdLFYzI4YMYL3d+3p6clmZmbqbQ6WZsWKFZy/Szc3N520DY2Pj2dnz57NOjs7a9UyWPqfg4MDO3HiRPbs2bNsSUmJDn5682uPGhsby/n7cXJyqtTv5cWLF6xQKOTc/7///qvDn8R86fo1Ex4ezvk7t7e3ZwsKCjTaX2xsLOvm5qby76lFixZscrLxWxRbggsXLii0mr47vazVtIeHB+/r5dKlS5zP0VfdhGUtpX92Z8VZqUr3YSwJCQnslClTWHd3d7ZVq1bsxo0bdfberA9RUVGcv2t3d3dWlHJX9vsu3Du+0scTZ6Ww+SvdZPssvrZBrceZ0ufS0KFDOX9nGzao9/MYglgsZr28vNgJbQWy3/fcHmWfZ9q2fC8K+Vq2v4L/+rLiwhwdz1w7YrGYXbJkCedzM2HCBJ2e85gaWvlThdjY2PCuPKhM6tc333zDGyldsWKF2dbXMVW6KPp8//59latwunTpgt9++02ny2wZhsHSpUuxadMmlfu9d+8e/Pz8EBsbCwAIDQ3lrffj5uams3nqmpOTE+/S6Tt37ujt2L///jsOHTrEOW5tbY3//ve/9HeqgbFjua9gPX/+XGVdJS4sy+Ly5csYOXIkmjRpgrVr1+Lt27da7SsoKAjbtm3DixcvsH37dvTp04cz5cDSNWnShHP1TU5OjsoUHz579uzhLDBcs2ZNtdJdiebatm2LGjWU12/Jz8/XKA06KioKgYGBvCuYAaB169a4ePGiWTaLMEVdunRBMaxkraZb1ClrNZ2YmIjU1FSljyssLMSUKVOUjnVswGBJ37L3OesRW8FUq6/biVeSp6cnNm/ejMTERERGRuLzzz836fdmb29vzmYtSUlJyLH3AGycAEhW/nB9T1MHKxaj+ODHQJ5kxYmg6SAIu32p9f6MgWVZs1n5wzAMBg0apLgCT67uT0hIiMb7FMUch+jGRskNoS2s3/0bjI3xywjk5+djwoQJmDdvHuc2f//9N1asWGHAWRkWBX+qGL7UL22LPl+8eBH79u3jHO/atSsVutSDyqYwvH79GsOGDUNeXh7nNq6urjh06BBni8/Kmj59Og4cOABbW1ve7RISEuDv74+wsDDelC9T7PJVnjFSvyIjIzlrIkgtX76cOtVoyNPTk/c9VdPUr8LCQvz111/o0KEDevbsiUOHDvGm6HFp2rQpli5dioSEBJw/fx4ffvghBfUg+YKrr7o/fClf7733nsXWUTI2gUCAoKAgznF1U78ePHiAnj17qqz30L59e1y4cAH16tXTaJ6Em4ODA9q3b69Q90e+6xdX4e6ffvoJMTExFe6vZgNsH2UNG6HkwpIw4GsImxiv0YilsLa25uxYCgDRsXEQuJV+L81OAZv5TOtjia6uhvjpBckNJ1dYD//dbOr8SD158oQzXcre3h7t2rUz7IRUGDRoEOIzgBc5kqBdN3dGVitL05bv7NvnKP63LDBrNWAlBPXb6HS+2njx4gWCgoKwc+dOldv+888/Fpv+RcGfKoYv0qzNyp+SkhLMmDGDd5sNGzZQpyA94Cv6fOvWLd436uLiYrz77rt49oz7w9nGxgYHDx7U+9XNESNG4OzZsyrrYaSlpaF37968J9SmXO9HytDBn/z8fIwdO5b3Q2zAgAEqg0NEOb7Cz/v27UNxcbHKfbx48QILFy6Eh4cHPvroI97uIFwEAgFGjRqFy5cvIyYmBj/88AM8PT013o+l00fwJyYmhrcdLl380K8+ffpwjqlT9Dk8PBxBQUEq61p06dIF586dQ+3atTWeI+Hn7++v0Gra36PsRF/Zitjo6Gj89NNPSve1cbAVvGpKHs807AKr3gt1OteqTJO6P6yWdX/EiddRcn5R6S0G1qP+BONYR6t9GRPfBfVOnTpxrqIyFmnL9+ulq3+c7Ri0qiP5O0pPT1e75TsrFqHo4CQgPw0AIGgxFMLOU/UzaQ3cvXsXnTt3Vms16KBBg3D16lW9Xfg2Njojr2L4gj/379/n7FTCZcuWLbzthT/88EPeFSpEe02bNuUMmGRnZ/MWq5w1axYuXbrEu//ffvuNN8CkS927d8fVq1fh7u7Ou11+fj7nEnDA/Ff+qPvhqok5c+bwtiquW7cu/vrrLwrQaundd9/l/N2lpaXh7NmznI8NDw/Hhx9+CE9PTyxatAivXr3S+PjOzs6YM2cO4uPjsX//fvTo0cPsrpAakj6KPv/zzz+cY40bNzap5f2WiK/oc1hYGO/3mhs3bqB3795IT0/nPUZAQADOnDnDmWJGKicgIICz1XT54I9YLMbUqVOVdgP9oJ0AY3xLU6dsq8N69F9ghKZ1km3OVAV/mEoWfWbzM1B04EOAlVy8FAZ+B2HjXhrvxxTwXVA3xc8Eacv360nKg7Dqdv0SXV4B9tkVyY3qbrAeqtuyEdo4dOgQunfvrjKlF5CcHx09ehTOzs4GmJlx0Lf9KqZ+/fqcnSlEIpFGJ58ZGRn48ccfOcednJw4r8yQyhMIBLxXsblaTf/vf//Dpk2bePc9Y8YMTJo0qVLz01SrVq1w7do1tG7dWqvHe3t7qwwemYK2bdvydmrTtquCMv/++y/+7//+j3eb7du3UwpDJdSrV4+3C175lWoikQgHDx5EYGAgOnbsiO3btys9iVGlefPm2LRpE54/f45Vq1bRKh81de7cmXPswYMHyM/P12h/LMvypnxNmDDB6F98LV3z5s3h6uqqdKykpARXrlxROhYaGop+/fqprKfVq1cvnDx5EtWrm0+XIXPj7++PN3lA9OuKraYfPXqkEMD7888/cfny5Qr7aF6bwbrgss9W66G/QlCDOrHpksqVP25dAEYSfNM0+MOyLIqPTAfeJgIAGA9/WPX8QfvJGhnfyh++dHFjCg4O5uy8p07wR5xwBSWXlkluMALYjPoLjENNnc9TXSzLYvny5Rg5ciRviQsAsLKywubNm7F27VqTrr2lCxT8qYJUtXxX14IFC5CWlsY5/uOPP3J+ISO6wXcV+/79+xXuu3r1Kj7//HPeffbu3RurV6+u9Ny04ebmhitXrmi1gsccUr4ASa43X4BLV0Wfk5KS8PHHH/NuM2fOHAwYMEAnx6vK+FK/Dh06hPz8fGRmZmLNmjXw9vbGqFGjOE9IVRkwYABCQkLw6NEjTJ8+HU5OTtpOu0qqV68eZ6CspKSEM2jO5dq1a3j69Cnn+Pjx4zXaH9EcwzAap35duHABAwYMQHZ2Nu+++/Xrh+PHj9PfmZ41bNgQnp6euFa66kC+1bT8hcmXL19izpyK7drtrIAdo63gYF1a56fjJxD6jDLQ7KsOlSt/bBzBuLYHALCvH4HN419RJ090ewvEUaVNKexqSAIHQuUXykxddnY2IiIiOMdNceUPIEl3uv+CRW6R5O9QPvhz69Yt3tXJbF4aig58BLCS4JFVr3kQeAbodb58CgoKMHHiRPzwg+oAYs2aNbF9+3ZMnjzZADMzPgr+VEG6CP5ERkbyrijw9vamGiIGwJeWVb5uSFJSEkaNGsVbg6Rx48bYu3cv58oUQ3BxccHJkyfx7rvvavQ4cwn+APqv+yMSiTBhwgRkZGRwbtOxY0csW7as0scikrpVXEXLc3JyMHz4cLi5uWHOnDm8dba42NvbY9q0aXj06BFOnjyJQYMGUZpeJeiy7g/fqp/OnTujefPmGu2PaIcv9at88OfUqVMIDg5WeSX4nXfewZEjR+Dg4KCTORJ+AQEBnKsOpN9NZ82ahczMzAqPXdHfCr71JNszdVrBasAq/U62imratCnnqoiEhATk5uYq1P0RJ4WptV/xiwiUnCwL6lkP/x2Ms+mv5OZy8+ZNzmYN3t7eqFu3roFnpJ6mTZvCo5EXbj6XBH/cnRm4yy14PHXqlNLHsSyL4sNTgexkAICgUSCEPebqfb5cXr58iaCgIN6UbKkWLVrg+vXrBitzYQro22MVxBdxvn79usr2jCzLYubMmbwFhdeuXauygxOpPL6TmNjYWOTk5ACQ1MoZMWIEXr58ybm9o6MjDh8+jFq1aul8npqys7PD7t278dVXX6n9GHOo9yOl7+DP8uXLlS6Ll3J0dMSuXbuoA5GOODs7Izg4mHP89OnTGtdTAyQr4VasWIHnz5/j119/RcuWLSszTVJKV8GfoqIi7Nmzh3OcCj0bDl/wJzw8XFbT59ixYxg6dKjKLi4jRozAwYMHLbbgpymSFH1WXvfn2rVrOHnypNKGD8NbCjC1syQgwVrZl7aUpoCdPtja2qJJkyZKx1iWRUxMjGLwR43UL7YoF8X7JwKiQgCAsMtnELYYopsJG4m51fuRkrV8T9Is9Ut081eIY45JbjjUhvXIbWAExkmdun//Pjp37oywMNWBxwEDBiAsLIzzNW2pKPhTBfn6+sLR0VHpWHp6OmJjY3kff/jwYd4ipv3798eQIeb9xm0uateuDW9vb6VjYrEYd+7cAcuy+PTTT1WmE23fvt2kWn0LBAKsX78eP//8s8ptvby8zKLej5Q+iz5fvXoVCxcu5N3m//7v/9C0adNKHYco4kv90pS/vz/27NmD+Ph4fPvtt6hZ03g585ZIV0WfT5w4wbm6TigU4r333tN4bkQ7np6enJ+FLMvi0qVLOHjwIEaMGKGyxtZ7772HPXv2UHDcwAICAvA0A0jNrthq+vr165g+fXqFx3g4A78OlavzM2g1BHW5U5NI5anu+FUW3BAnXlW5v5ITX4N9Ew0AYOq1gVU/868Vao71fqQGDRqkEITtJhf8UdbyXZx6DyWnv5Pdth7+PzDV9dslmMvhw4cREBCApKQkldvOmDEDx44ds+jCzlwo+FMFWVlZ8X755YtYFxQU4Ouvv+YcFwqFWL9+PRW4NCC+5/LGjRtYs2aNyqWPCxYswMiRI3U9tUpjGAbffPMNduzYwZuKxnfV1xT5+vpynlikpKQgJSVFq/1mZGTg/fff51xuDEhqkEycOFGr/RNugwcPrlRdECsrK4wfPx43b97E1atXMWbMGJNrBWspOnTowJk29+TJE95advL4Ur769+9PhdQNjO9zYMmSJRgzZgxKSkp49zFx4kT8888/9LdnBL6+vnByclJoNe1TV/JdMjMzs0JtLSsB8Ncoa7jYSbYR+IyGsAN/nTtSeSrr/jjVA1NTEohlU+6ALeZeZSeK2AvR3W2SG9aOklVb1ua92k4sFvMGf0x55Q8gafl+/7UNROLSuj/uZedz5Vu+s4U5pau2JAF1YbevIGw2yLAThiTAv3LlSowYMULlKmsrKyv89ttvWL9+vVFLXBgTBX+qKFWpX1zWrVuH+Ph4zvEvvviCUhMMjC9PdevWrfj22295Hz98+HDMnz9f19PSqQkTJnAW3RQKhUoLQJoyGxsbtG3blnNcm6LP0hVeiYmJnNt4eXnh//7v/yg4qwf29vYYPny4xo+rXbs2fvzxRzx79gx///03bzcqohuOjo68RdfVWf2TmZmJo0ePco5Typfh8RV9vnv3Lm+qOgBMnjwZf/75p8V3ejFVQqEQ3bp1kxV9BgA/d+7Pqnm9hOhWmhomquYG6yGb6LPNAFQFfwCUpX6JisCmhivdVpwej+KjZQ1IrN9ZD0HtZrqbqJHExMQorUsFSLoga9vR1lAcHBzQyb8XHryU/B22rsfAWa6Kh3zqV3HITLBpjwEAjGsHWPVdYtC5AkBhYSE++ugjfPfddyrLltSoUQOnT5/G1KlTDTQ700TBnypKm6LPKSkpvAVia9eujQULFlR6bkQzfCt/4uLieFeB+Pj4YPv27WZRPLZ///64fPkyOnbsKLvPxcUFW7duNcuiqrqu+7NlyxYcOHCAc9zKygq7du2idsV6pEnql6+vL7Zu3YrExEQsWbIEDRoYZ5l0VVXZuj8HDhxAYWGh0jFHR0cMGzZM67kR7VSm6P/06dOxefNmCvwYWUBAgGzlD6BYb0ReUGMGc7qXthSHAPbv7QRjV/XSN4xBneAPo6LuD1tShOL9HwBFkm57gjbjIGhrGQFzvgvoXbp0MYvVJoMGDZL9HQoYBl3l6m9t374d//77LwrDt0N8v3T1q40TrEfvAGNl2Fqvr169Qu/evbF9+3aV2zZv3hw3btxAUFCQAWZm2kz/jI/oBd9qkUePHimNWn/33Xe8y+mWLl2KGjVq6GJ6RANt27bVqjZBjRo1cPjwYVSrVk0Ps9KP9u3b49atW7h69SouX76Mx48f48MPPzT2tLSiy+DPo0ePMGPGDN5tli1bxnvCSyqvX79+8PLy4hxnGAZDhw7F+fPncf/+fXz88cewt7c34AyJVGWDP3wpXyNHjuSsq0f0p169elpdVZ81axY2btxoFhdBLJ2/vz/uv2CRo6TVtFRdR2DrCGsISlf5WPddAoEbfbYZSvPmzTlXWD158gQFBQUQeJS1+FYW/Ck5vwBsiuR7DlPTG9bv/NdiVm3xlc4w9Xo/UpK6P2WraPw9yp6bhIQEzPlkJLL3T5HdZ/XOfyGopbzmmr48ePAAXbp0UatLdf/+/REWFka1LkvRJ10VVbNmTbRo0ULpGMuyuHHjhsJ9YWFh2LFjB+f+2rVrh8mTJ+t0jkQ9tra2aN++vUaPEQqF2Lt3L2eBTFPGMAz8/f3Ro0cP1K5d29jT0Zqqos+qlq9KFRQUYNy4ccjPz+fcpm/fvmaXGmeOrK2t8b///a9CemK1atUwY8YMPH78GIcPH0ZQUJDFfNE1V6qCP3x/f4mJibh48SLnONXUMh6+1C9lvv/+e6xZs4b+Hk1Et27dwDICzlbTDID/DbeGazXJ85Vbzw9W/rOMMNOqy97envMih1gsRmxsLJhaTQEHyfczceJ1sHIr0EWPT0F0bZ3khsBasmLE1nwuQqpizvV+pJo2bYpkpqyJinznPRshsH2UFZxKrzlvvytC6/cWY/ny5bxlB3Tp6NGjCAgIwLNnz1Ru+8UXX+D48eNwcXHR/8TMBAV/qjB1U7/EYrHKltsbNmyg5dJGxJf6pcyaNWvQt29fPc2GqKNVq1acqz5ev36tVrcCAJg7dy4ePHjAOV6nTh2zSe2zBL1798a9e/ewePFifPbZZ9i6dSueP3+O9evXm2Ww1VL5+PjAwUF5O+g3b94gISGB87HK2k1L1a9f3+wK0FsSTX73ixYtwrJlyyjwY0KqV68OX19fxZbvcqt/ZvoL0b+J5HY264iaE/eAoc82g1NZ9Jlhyur+FGTIunmx2akoPlR2odiq33IIGnTQ61wNKSMjQ5b6pgxf1oUpYRgGHXsNxtMMSRC2U0MG1qV/Zkv6CNGhgeRGzBsxZp8oQUxMDH744Qd4enqid+/e2LZtG7Kzs3U+L5Zl8fPPP2PYsGHIycnh3VYoFOLXX3/FL7/8YhapdoZE75hVmLpFn7dv387bfnrMmDEIDAzU6dyIZjT5QPnoo49UBvOI/llZWfGu2FIn9evo0aP45ZdfeLfZtm0bXF1dNZ4f0Z63tzfmzZuH//u//8PHH39MdZZMkJWVlUL9sPLKr36VYlmWdxXs+++/TxdCjCgwMFCtQPdPP/2E+fPnU+DHBPn7+ysEf/xKgz+dGzJY1Lu0zg8LOI39G4xTXaPMsarTqOgzJC3fWbEIxQcnAXmvJePNgiHs9oVO57Vjxw507NgRXbt2Rf/+/dVKCdIlrs8NAGjRogVq1qxpwNlUzrRp0xBWWnzd3ppBe1cGg5oK8JWfJJBSWMLig/0lyC1WfNyFCxcwadIk1KtXDxMmTMDp06dVFttXR2FhIT7++GN8++23ahV2PnXqFKZNm1bp41oiCv5UYXwrf8LCwiASiZCVlYXvvvuOczt7e3usWrVKH9MjGlB35U/Xrl3x66+/0hdeE1GZuj/JycmYNGkS7zazZs1CcHCwVnMjxNJpU/fn/v37iIyM5HwcdfkyLhcXF973VQBYu3Yt7/caYlwBAQG4lcyiRNpq2kPSbWj7KGtYCyXfXZLdx8C+peFbShMJzYM/1yAKXQ3x04uSO6o1gPWw33X6XfS3337DBx98gHv37uH169c4d+4cevTogVWrVqmdRl9ZfMEmc0n5kmrdujXqdSxrXDC6tQC/Dy9bQfPd6RJZRzBl8vPz8c8//2DAgAFwd3fH3LlzERERodVcXr9+jb59+2Lbtm0qt23WrBnCwsI0TgGuSij4U4W1aNGCMwcyOzsbkZGRWLZsGV6+fMm5j2+//RYeHh56miFRV+PGjVXWv3F1dcXBgwdhZ2dnoFkRVbQN/ohEIkycOBFpaWmc27Rv3x4//fRTpeZHiCXTJvjDV+i5VatWaNeuXWWnRSrp448/5hzbtGkTZs2iGjGmzN/fHzlFwP0XkhNLn7oM/hxphUY1JIGCuIJaaDJpqzGnWOWp1fGrfjvASpLaLo49gZILiyUbMALYjNoGxlF3NRsTEhKU/l2LxWLMnTsX77//Pm/DGl3hq/djLsWe5Q38dJHs3192s0JtB8nf4NFoEX67xd1JuLzU1FSsWrUKbdq0Qfv27bFu3Trec0t5Dx8+RJcuXRAaGqpy2759+yIsLAzNmjVTe25VEQV/qjCBQMCbLrR9+3asW7eOc9zd3R3ffPONPqZGNMQwDO/qHxsbGxw6dIjaSZsYVcEfrqtVK1euxIULFzgf6+joiN27d8PW1rBtNwkxJ3zBn/DwcBQXK65nF4lE2LlzJ+djJkyYQKsqTcAnn3yCHj16KNxna2uLrVu3Yvr06UaaFVFXo0aN0KxZM4VW04OaSdK9MguA+p8eAyO0NuYUqzyuhjEA8PjxYxQVFYGxsgHTsPQ7TkEmwEpSf4SB30HQSLelImbOnImCggLO8d27d8Pf3x9Pnz7V6XHliUQihIWFcY6b28ofAGBqtwDsFLs4vym0xWdH1Q/8lHfv3j3Mnj0bDRs2xDvvvIM9e/ZwNiw5duwY/Pz8eGvwSX3++ecICQmhrtNqoOBPFccXiV6zZk2FL7/yVq9ezVkwkxjeyJEjOcd+//13jYtCE/1r3rx5hc5QUhkZGYiPj69w//Xr1zF//nze/f7yyy905YMQFTw9PVG3rvKaIfn5+RXSuy5cuIDU1FTO/b3//vs6nR/RjpWVFS5cuICtW7fi888/x9dff42YmBjeFUHEdDAMg3nz5im0mpaKazoDtb01625KdM/JyQmenp5Kx0pKShAXFwdAMfULABiPAFgF/kencwkJCcHhw4dVbvfgwQN06tQJZ86c0enxpSIjIzmLEDs7O6Nly5Z6Oa4+MQIBBB5+8negwbTjuB+biJ9//hmtW7fWet8ikQghISEYO3Ys6tevj08//RRXrlwBy7JgWRZr1qzB0KFD1SrsvHHjRmzcuBHW1hQUVgcFf6o4bZchBgYG4t1339XxbEhlTJgwQelKkh9++AEffvihEWZEVBEIBLxFZ8unfmVmZmLcuHG8xfPGjh2Ljz76SFdTJMRiMQzDu/qnfPFOvpSvwMBAzpMhYnhCoRAff/wxNm7ciNWrV9NzY2YmTJiA9+duULgvoUYfdP9kpZFmRMrjS/2KiooCAAg8AsrutK8pSfcS6q7zUkFBgUYNTNLT0zFw4EC91AHiq/fTrVs3s+24KvAq66Bo1etHCDy7o2HDhvjmm2/w4MED3L17F7NmzeK8kKKOrKwsbNmyBYGBgfD29kZwcDDmzJmj8jlycXHBiRMn8Pnnn2t97KrIPF+JRGe6dOmi8RuSQCDAhg0baHm7ibGxscHly5exYMECBAYGYsCAAdi7dy+WLl1q7KkRHurW/WFZFtOmTcOzZ884t2/UqBF+++03+tskRE3q1v3Jy8vDgQMHOLelQs+E6Nboj74A4y5ZdcDU80Xz6fuNPCMiT62iz15BEDTuBTjUhvWov8A4u+t0DqtXr8aTJ080eoy0DtC4ceN0WgfI0ur9SAk7TYGwx7ew6r8Swh7fKowxDIN27dph7dq1SE5OxvHjx/Hee+9VquTA06dPcfLkSZXbNW3aFGFhYejXr5/Wx6qqqPF9FVetWjX4+vri/v37aj/m008/paKWJsre3h4LFy7E/Pnz8ezZM7raaQbUDf78+eef2LNnD+e2QqEQu3btgrOzs07nR4glUzf4c+TIEc7l5zY2Nhg9erTO50ZIVWc1Zhde3T6Eun4TwFjbG3s6RI5aRZ+F1rD58CRYsRiMjle+JCQkYNmyZVo/fs+ePYiKisKhQ4fg5eVV6flYUqcveYyVDaz7LFK5nZWVFYKDgxEcHIzMzEzs378f27dvx5UrV3Q+pz59+mDv3r2oWbOmzvddFdDKH6LRm5KzszOWLFmix9kQUrV07tyZc+zOnTsQi8WIjo7Gl19+ybufJUuW8BZwJ4RUxPf3FxkZiezsbAD8KV+DBw+mIpOE6AHjWBcFjQaCsXE09lRIOeoEf6R0HfgBgFmzZvEWeVYnDUlXdYBev34tq3NUnqqGLJbIxcUFkydPxuXLlxEfH4/FixejSZMmOtn3tGnTcOLECQr8VAIFf4hGyxEXLVqEOnXq6HE2hFQtXl5ecHFxUTqWnZ2NBw8eYOzYscjLy+PcR+/evTF37lw9zZAQy1WzZk00bdpU6RjLsggPD8fr1695l6FTyhchpKrhK2AcExODkpISvR37xIkT+PfffznHfXx88PjxY4wfP17lvjIyMjBw4ED8/PPPWtcB4kv5at26NapXr67Vfi1B48aNMW/ePMTGxuLatWuYNm0a53dePgKBAL/88gv+7//+jwo7VxIFf4jawZ+WLVtSm1RCdIxhGN7Ur7Fjx/KmZdaqVQs7duyAUCjUx/QIsXiqij7v2bOHs8h6jRo1EBwcrK+pEUKISXJ2dkbDhg2VjhUWFuqtrXphYaHKIs+LFi2Ck5MTduzYgbVr16r8fiQWi/Htt99qXQfIUuv96BLDMPDz88Ovv/6KFy9eYP/+/Rg6dCisrFRXoHF2dsaJEyfwxRdfUE1LHaDgD4GXl5daq3nWr19P0VZC9IAv+BMTE8P72G3btqFBgwa6nhIhVYaquj98KV9jxoypVHFLQggxV5qkfunK6tWrOVOsAOCjjz5Chw4dAEgCDrNmzcLp06dRq1Ytlfves2cP/Pz8EB8fr9Gc+II/5lzvR19sbW0xatQoHD58GCkpKfjll184U7CbNGmCsLAw9O/f38CztFwU/CFgGEZlZHro0KH0h0eInvAFf/h89dVXGDx4sI5nQ0jVwhf8OX36dIWW7/Io5YsQUlXxpX7pI/jz7Nkz3iLPLi4u+Omnnyrc37t3b9y5cwft27dXeYyIiAh06tQJp0+fVmtOxcXFCs0ByqOVP/zq1KmDL774Ajdv3sSjR4/w/fffo1+/fujUqRNWrlyJO3fuoEWLFsaepkWh4A8BwP/mZGNjgzVr1hhwNoRULXxFZ7m0bdsWK1eu1MNsCKla2rVrx7mqVVrwWZlGjRrRF3tCSJVl6JU/s2bNQn5+Puf40qVLOQs9e3p64urVq2oF7DMyMjBo0CC16gA9ePCAc061a9fWWaHjqqBly5ZYvnw5Tp8+jVu3bmHu3LlVul6SvlDwhwAA3nnnHc6xWbNm0ZsXIXrk7u6uUSF1BwcH7N69G3Z2dnqcFSFVg52dHdq2bavx48aPHw+BHrrYEEKIOTBk8OfkyZM4dOgQ53i7du0wbdo03n3Y29tj+/btWLdundp1gMaOHctbB0hVi3eqUUNMDX1rIQAklfHHjRtX4f6OHTvixx9/NMKMCKk6VBV9Lm/Dhg20DJYQHeJL/eKiTicZQgixVHzBn6ioKIjFYp0cp7CwEF9++SXvNps2bVKr8QXDMJg5cybOnDmD2rVrq9x+7969vHWAqN4PMTcU/CEy27dvx6JFi9CmTRu4u7tj+vTpOHXqFJycnIw9NUIsnrrBn3fffReffPKJnmdDSNWiafCnY8eOvPUuCCHE0tWqVYszzSo/Px/Pnj3TyXHWrFmjssizpim4QUFBuH37dqXrAKla+UOIqaHgD5GxsrLC/Pnzcf/+fSQmJmLTpk1qVccnhFSeOsEfT09P/P7777SMmBAd0zT4Q4WeCSFE/6lfz549w9KlSznHnZ2dta5/WNk6QCkpKZwBLqFQqFU9R0L0jYI/hBBiAlQFf4RCIXbu3AkXFxfDTIiQKqR58+aoVq2aWtsKBAKMHTtWzzMihBDTp+/gz+zZs7Uu8qwOaR2g9evXa1wHiC/lq23btnB0dNR6XoToCwV/CCHEBDRo0ADu7u6c4wsXLqTOQoToiUAgUPsqbb9+/VC/fn09z4gQQkyfPoM/p06dwsGDBznH27Ztq7LIszoYhsGMGTM0rgO0Z88ezm3o+xoxVRT8IYQQEzFlyhSl9/fs2RPff/+9gWdDSNXStWtXtbajlC9CCJHQV/BH3SLPVlZWWh+jPGkdoA4dOqjcNiIiAvv27eMcp3o/xFRR8IcQQkzEzJkzMXToUIX7AgICsH//frW6WBBCtKdO3R8HBwcMHz5c/5MhhBAzoCr4I62Po6m1a9fi8ePHnOMffvghAgICtNo3H09PT4SGhlY6yE8rf4ip0l24lBBCSKU4OTnh0KFDCA0NxYMHD+Dj44OAgADY2NgYe2qEWDx1gj8jRoygDpiEEFKqbt26qFmzJtLT0yuM5eTk4Pnz57wp7cokJiZiyZIlnOOVKfKsDmkdoE6dOuHrr7+GSCTS6PH169eHp6ennmZHSOXQyh9CCDEhAoEAgYGB+OKLLxAUFESBH0IMpEGDBmjYsCHvNhMnTjTQbAghxPQxDKPz1C9VRZ6XLFmCevXqabxfTUjrAJ09e1atOkDy/P39qSsrMVkU/CGEEEIIAf/qn3r16qFPnz4GnA0hhJg+XQZ/Tp8+jQMHDnCOt2nTBp999plG+6yMXr164c6dO2rVAZKiej/ElFHwhxBCCCEE/EWfx40bp9PiooQQYgl0FfwxRpFndXh4eCA0NFTtlZ9U74eYMgr+EEIIIYRAktZlZ2dX4X5bW1udtBQmhBBLo6vgz7p16xAbG8s5/sEHH6B79+4azU1X7O3t8ddff2HDhg28DThsbW01WiVEiKFR8IcQQgghBJK6P6tWrVK4siwQCLB69Wo0b97ciDMjhBDTpIuOX6qKPFevXh0///yzVvPTFYZh8NVXX/HWAZoyZYrSCwiEmApav0wIIYQQUuqLL75Az549cerUKeTl5WHcuHFo2rSpsadFCCEmqUGDBqhevTqysrIqjGVmZuLFixdwdXXl3cfXX3+NvLw8znFDFHlWl7QO0Pjx4xEaGiq7PzAwEPPmzTPizAhRjYI/hBBCCCFyfH194evra+xpEEKIyZN2/AoLC1M6/ujRI97gz5kzZ7B//37O8TZt2mD69OmVnqcueXh44PLlywgNDUVUVBTc3NwwcOBACASUVENMG71CCSGEEEIIIYRoRdu6P0VFRSqLPG/cuNEki+0zDIMePXpgypQpCA4OpsAPMQv0KiWEEEIIIYQQohVtgz/r1q1DTEwM5/jEiRPRo0ePSs2NEFKGgj+EEEIIIYQQQrSiTfAnKSkJixcv5nycKRR5JsTSUPCHEEIIIYQQQohW+II/UVFRSu9XVeR58eLFqF+/fqXnRggpQ8EfQgghhBBCCCFacXd3h6Ojo9Kx169f4/Xr1wr3nT17Fvv27ePcn6+vLz7//HOdzpEQQsEfQgghhBBCCCFaEggEaNmyJee4/OqfoqIifPHFF7z727Rpk0kWeSbE3FHwhxBCCCGEEEKI1tSt+6OqyPOECROoyDMhekLBH0IIIYQQQgghWlMn+PP8+XMsWbKEc7vq1atj1apVOp8bIUSCgj+EEEIIIYQQQrSmTvDn66+/Rm5uLud2ixYtoiLPhOgRBX8IIYQQQgghhGhNVfDn7Nmz2Lt3L+c2vr6+KmsBEUIqh4I/hBBCCCGEEEK01qhRI9jZ2SkdS01NxdSpU3kfv3HjRiryTIieUfCHEEIIIYQQQojWhEIhWrRowTkeHx/POTZ+/HgEBgbqY1qEEDkU/CGEEEIIIYQQUil87d65VKtWjYo8E2IgFPwhhBBCCCGEEFIpfHV/uCxatAiurq56mA0hpDytgj/btm3DO++8g8DAQLz//vvIzs6W3d+3b1/07t0bGzZsAMuyssdERkZi3LhxCAgIwJQpU5CamiobKygowLx58xAYGIh33nkHJ0+eVDje0aNHERwcjJ49e2LRokUoLi7WZtqEEEIIIYQQQvRA0+BP69atqcgzIQakcfBn9+7duHbtGrZs2YJLly5h8eLFsLGxQWhoKPbv349t27Zh7969CA0NxZEjRwAARUVFmDt3LsaOHYvz58+jdevWmD9/vmyfmzdvxtu3bxESEoLly5djxYoVePbsGQAgLi4O69atw+rVq3H8+HGkpKRg69atOvrxCSGEEEIIIYRUlqbBn02bNsHa2lpPsyGElKdR8EckEuHPP//Ejz/+CFdXVzAMgyZNmsDW1hYhISEYPXo03NzcULt2bUyYMAEnTpwAANy5cwf29vYYNmwYbG1t8emnn+LRo0ey1T8hISGYMmUKnJyc0LZtWwQGBuL06dMAgJMnT6Jfv35o1aoVnJycMHnyZNl+CSGEEEIIIYQYn7e3t9rBnPfff5+KPBNiYBr103v16hUKCwtx9uxZ7N69G05OTnj//fcxevRoPH36FMHBwbJtmzVrhk2bNgGQVHdv0qSJbMze3h5ubm6Ij4+Ho6Mj0tLSFMabNWuGyMhI2WP9/PxkY02bNkVycjIKCgqUthMsKipCUVGR4g9pZQUbGxtNflSTIhaLFf5PiCr0miGaotcM0RS9Zoim6DVDNEGvF/MjFAoVzuO4VKtWDStXrtT5c0uvGaIpS3rNCASq1/VoHPzJycnB8+fPceTIESQnJ2P69Olo1KgR8vLy4OTkJNvW0dEReXl5AID8/Hw4Ojoq7MvR0RH5+fnIy8uDUChUCOTwPVZ6jPz8fKXBnz///BP/+9//FO579913MWbMGE1+VJOUlJRk7CkQM0OvGaIpes0QTdFrhmiKXjNEE/R6MS+enp4qgz9ffvkliouLZWU+dI1eM0RTlvCaady4scptNAr+2NraAgCmTJkCOzs7eHt7Izg4GFevXoWDgwNycnJk2+bm5sLBwQGAZKVPbm6uwr5yc3Nhb28PBwcHiEQihZU8fI+VHsPe3l7pHCdNmoTx48cr/pAWsPInKSkJ7u7uakX0CKHXDNEUvWaIpug1QzRFrxmiCXq9mKdOnTohJCSEc9zHxwfz58/XS60fes0QTVW114xGwR9PT0/OP9TGjRsjLi4O3bt3BwDExsbCy8sLAODl5YVDhw7Jts3Pz8fz58/h5eWF6tWro1atWoiLi0Pr1q2VPjYuLk722MePH6Nhw4ZKV/0AgI2NjVkHevgIBIIq8aIkukOvGaIpes0QTdFrhmiKXjNEE/R6MS8+Pj6845s2bZItKNAXes0QTVWV14xGP6G9vT369OmDrVu3oqioCAkJCThx4gQCAgIQHByMAwcOIDk5GW/evME///yDQYMGAQA6duyI/Px8HD16FEVFRdi6dStatWoFV1dXAEBwcDC2bNmC3NxcRERE4PLly+jXrx8AYODAgTh79iyio6ORk5ODP/74Q7ZfQgghhBBCCCGmoVevXpwX4seNG4eePXsaeEaEECmNw1vffvstMjMz0bdvX3z55ZeYPHkyOnXqhO7du2PkyJH44IMP8O677yIgIABDhw4FIFmN8/PPP+Off/5BUFAQ7t+/j8WLF8v2OXXqVDg5OWHgwIH47rvv8N1336FRo0YAgCZNmmDmzJmYNWsWgoODUa9ePXz88ce6+emJ2ho1aoT169cbexqEEEIIIYQQE1W3bl1MnTq1wv3e3t5Yu3atEWZECJHSKO0LkFRnX7VqldKxSZMmYdKkSUrHfHx8sHv3bqVjdnZ2WLp0KecxhwwZgiFDhmg6VYvEMAzv+Icffoht27bxPv7QoUMYPny4bidGCCGEEEIIqfLWr18PNzc37Ny5E6mpqejfvz+WL1+O+vXrG3tqhFRpGgd/iHGlpqbK/r1nzx7Mnz8fMTExsvu4CmETQgghhBBCiL4JBALMnTsXc+fONfZUCCFyLL+qkZqqVasGW1tbo/9XrVo13nnWr19f9p+zszMYhlG4b+fOnfD29oaNjQ2aN2+OHTt2yB4rTaUbMWIEGIaR3X7y5AmGDRuGevXqwcnJCZ07d8bZs2f19asmhBBCCCGEEEKIAdHKn1JFRUUoKioy9jQq5dChQ5gxYwbWr1+Pvn374tixY5g0aRLc3NwQFBSEW7duoW7duvjzzz8xcOBACIVCAEBOTg6Cg4OxdOlS2NnZ4a+//sKQIUMQExMDDw8PI/9UhBBCCCGEEEIIqQwK/liQ1atX46OPPsL06dMBALNnz0ZYWBhWr16NoKAg1KlTBwDg4uKikHPbtm1btG3bVnZ76dKlOHToEI4cOYIvvvjCsD8EIYQQQgghhBBCdIrSvixIVFQUAgICFO4LCAhAVFQU7+Nyc3Mxd+5ctGrVCi4uLnByckJ0dDQSExP1OV1CCCGEEEIIIYQYAK38sTDlu4GxLKuyQ9g333yDU6dOYfXq1WjSpAns7e0xevRos0+DI4QQQgghhBBCCK38sSgtW7ZEaOj/s3fncTaW/x/HX/fsxmRfxq5oZMsWNWNqjPSlRZGlpBgUiShbWUJGzKAiqRShVVr4pUWkGUWjtMhalhhkLNmXYcac6/fHncMw58wMs8/7+Xh4mHNf132f6z7XfbbPuT7XtTLVth9//JHatWs7b3t7e5OSkpKqzg8//EBERATt27enfv36BAYGsnPnzpxosoiIiIiIiIhkM438+Y+Pj09uNwG4unYMHTqUzp0707hxY26//XYWL17MZ599lmrlrurVq7N8+XKaN2+Or68vJUuWpGbNmnz22We0bdsWy7J47rnncDgcWXE6IiIiIiIiIpLLFPz5z4kTJ3K7CVetXbt2TJs2jcmTJzNgwACuvfZa5syZQ4sWLZx1XnzxRQYNGsRbb71FpUqV2LlzJy+//DI9e/YkJCSEMmXK8Mwzz3D8+PHcOxERERERERERyTKWMcbkdiPEPYfDQXx8PNWqVcPDQ5l6kj5dM5JZumYks3TNSGbpmpHM0PUimaVrRjKrsF0zBf8MRUREREREREQKMQV/REREREREREQKMAV/REREREREREQKMAV/REREREREREQKMAV/REREREREREQKMAV/REREREREREQKMAV/REREREREREQKMAV/REREREREREQKMAV/REREREREREQKMAV/REREREREREQKMAV/8qGIiAgsyyIqKirV9kWLFmFZlvP2zJkzadCgAUWLFqVEiRI0atSI6OhoAJYsWYJlWezbty/VMQIDA6lSpUqqbXv27MGyLJYuXZpNZyQiIiIiIiIi2UXBn3zKz8+P6Ohojhw5kmb57NmzGTRoEAMGDOCPP/5g1apVDBs2jJMnTwIQGhqKl5cXsbGxzn02b97MmTNnOH78ONu2bXNuj4mJwdvbm+bNm2frOYmIiIiIiIhI1vPK7QbkFde0dpB0LrdbAT5ecOKb9GNyrVq1Ytu2bUycOJFJkyZdVr548WI6d+5Mr169nNvq1q3r/DsgIICmTZsSGxvLgw8+CEBsbCyhoaEYY4iNjaVmzZrO7c2aNaNo0aJXe3oiIiIiIiIiksM08uc/SecgKTkP/MtgAMrT05MJEyYwffp09uzZc1l5YGAgq1evJj4+3uUxwsPDiYmJcd6OiYmhRYsWhIWFXbY9PDw84w+miIiIiIiIiOQZCv7kY+3bt6dhw4aMGTPmsrIxY8ZQokQJqlevTq1atYiIiGDBggU4HA5nnRYtWrBlyxYSEhIAWLFiBWFhYYSFhTnTwXbv3s2OHTsU/BERERERERHJpxT8yeeio6OZN28emzZtSrW9QoUKxMXFsX79egYMGEBycjLdu3enTZs2zgBQ8+bN8fHxITY2lk2bNpGYmEjjxo1p0qQJx48fZ+vWrcTExODr60tISEhunJ6IiIiIiIiIXCUFf/K52267jdatWzNixIg0y+vVq0e/fv14//33WbZsGcuWLWPFihUA+Pv706xZM2JiYoiJiSE0NBRPT0+8vLwICQlxbg8ODsbPzy8nT0tEREREREREsogmfC4AoqKiaNiwIUFBQW7r1alTB4BTp045t4WHhzN//nyOHDlCixYtnNvPp37FxcXRo0ePbGm3iIiIiIiIiGQ/BX/+45NHHokraUf9+vXp2rUr06dPd27r27cvFStWpGXLllSuXJmEhATGjx9P2bJlCQ4OdtYLDw8nMjKShIQEhgwZ4tweFhZGVFQUJ06c0Hw/IiIiIiIiIvlYHgl55L6MLK+el0VGRrJgwQLn7VatWvH222/z+uuvc+jQIcqUKUNwcDDLly+ndOnSznrBwcH4+voC0KRJE+f2pk2bkpKSQpEiRbj55ptz7kREREREREREJEsp+JMPzZ0797Jt1apV48yZM87bHTp0oEOHDukey8/PL9V+5/n4+KRKDxMRERERERGR/Cl/D3cRERERERERERG3FPwRERERERERESnAFPwRERERERERESnAFPwRERERERERESnAFPwRERERERERESnAFPwRERERERERESnAFPwRERERERERESnAFPwRERERERERESnAFPwRERERERERESnAFPyRHBMbG4tlWRw9ejS3myIiIiIiIiJSaCj4kw9FRERgWRZRUVGpti9atAjLslJtmzlzJg0aNKBo0aKUKFGCRo0aER0dDcCSJUuwLIt9+/al2icwMJAqVaqk2rZnzx4sy2Lp0qXZcEYiIiIiIiIikl0U/Mmn/Pz8iI6O5siRIy7rzJ49m0GDBjFgwAD++OMPVq1axbBhwzh58iQAoaGheHl5ERsb69xn8+bNnDlzhuPHj7Nt2zbn9piYGLy9vWnevHm2nZOIiIiIiIiIZD2v3G5AXvFN1W8xyY7cbgaWtwetd7VKt16rVq3Ytm0bEydOZNKkSWnWWbx4MZ07d6ZXr17ObXXr1nX+HRAQQNOmTYmNjeXBBx8E7NSs0NBQjDHExsZSs2ZN5/ZmzZpRtGjRqzk9AFatWsWIESP466+/aNCgAbNmzaJ+/foAjB07lkWLFrF27Vpn/alTpzJ16lR27tzpbMuwYcPYuHEj3t7e1K1blw8++IBq1apdddtEREREREREChqN/PmPSXbgSDK5/i+jAShPT08mTJjA9OnT2bNnT5p1AgMDWb16NfHx8S6PEx4eTkxMjPN2TEwMLVq0ICws7LLt4eHhGXw03Rs6dChTpkxhzZo1lCtXjnvvvZfk5OQM7Xvu3DnatWtHWFgY69atIy4ujt69e1+W7iYiIiIiIiIiNgV/8rH27dvTsGFDxowZk2b5mDFjKFGiBNWrV6dWrVpERESwYMECHI4LAaYWLVqwZcsWEhISAFixYgVhYWGEhYU508F2797Njh07siz4M2bMGO644w7q16/PvHnz2L9/PwsXLszQvsePH+fYsWPcc8891KhRg9q1a9O9e3eqVq2aJW0TERERERERKWgU/MnnoqOjmTdvHps2bbqsrEKFCsTFxbF+/XoGDBhAcnIy3bt3p02bNs4AUPPmzfHx8SE2NpZNmzaRmJhI48aNadKkCcePH2fr1q3ExMTg6+tLSEhImm3YtWsXAQEBzn8TJkxw2+bg4GDn36VKlaJWrVps3rw5Q+dbqlQpIiIiaN26NW3btmXatGnOwJWIiIiIiIiIXE7Bn3zutttuo3Xr1owYMcJlnXr16tGvXz/ef/99li1bxrJly1ixYgUA/v7+NGvWjJiYGGJiYggNDcXT0xMvLy9CQkKc24ODg/Hz80vz+BUrVmTt2rXOf48//nimz+N82paHhwfGmFRll6aEzZkzh7i4OEJCQvjoo48ICgpi9erVmb5PERERERERkcJAEz4XAFFRUTRs2JCgoKB069apUweAU6dOObeFh4czf/58jhw5QosWLZzbz6d+xcXF0aNHD5fH9PLyck4MnRGrV692pmkdOXKELVu2cMMNNwBQtmxZ9u3bhzHGGRC6ePLn8xo1akSjRo0YPnw4wcHBfPDBB9xyyy0ZboOIiIiIiIhIYaHgz38sbw88yBurfWVW/fr16dq1K9OnT0+1vW/fvlSsWJGWLVtSuXJlEhISGD9+PGXLlk2VehUeHk5kZCQJCQkMGTLEuT0sLIyoqChOnDiRZfP9AIwbN47SpUtTvnx5Ro4cSZkyZWjXrh1gz0F08OBBJk2aRMeOHVmyZAlff/01xYoVA2DHjh28+eab3HvvvVSsWJG//vqLLVu20K1btyxrn4iIiIiIiEhBouDPfzKyvHpeFhkZyYIFC1Jta9WqFW+//Tavv/46hw4dokyZMgQHB7N8+XJKly7trBccHIyvry8ATZo0cW5v2rQpKSkpFClShJtvvjnL2hoVFcXAgQPZunUrDRo04PPPP8fHxweA2rVr89prrzFhwgQiIyPp0KEDQ4YM4c033wTsNLU///yTefPmcejQISpUqED//v3p06dPlrVPREREREREpCCxzKUTrEie43A4iI+Pp1q1anh4aJomSZ+uGcksXTOSWbpmJLN0zUhm6HqRzNI1I5lV2K6Zgn+GIiIiIiIiIiKFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/IiIiIiIiIiIFmII/kmNiY2OxLIujR49e1XEsy2LRokVZ0iYRERERERGRgk7Bn3woIiICy7KIiopKtX3RokVYlpVq28yZM2nQoAFFixalRIkSNGrUiOjoaACWLFmCZVns27cv1T6BgYFUqVIl1bY9e/ZgWRZLly7NhjMSERERERERkezildsNyCuqfvYdSQ5HbjcDHw8Pdt3fMt16fn5+REdH06dPH0qWLJlmndmzZzNo0CBeeeUVwsLCOHv2LOvWrWPTpk0AhIaG4uXlRWxsLA8++CAAmzdv5syZMyQmJrJt2zZq1qwJQExMDN7e3jRv3jyLzlREREREREREcoJG/vwnyeEgyWHywL+MBaBatWpFYGAgEydOdFln8eLFdO7cmV69elGzZk3q1q1Lly5diIyMBCAgIICmTZsSGxvr3Cc2NpbQ0FBCQ0Mv296sWTOKFi16RY/vxX799Vduuukm/P39CQkJ4a+//kpV/vrrr1OjRg18fHyoVasW77777lXfp4iIiIiIiEhhpeBPPuXp6cmECROYPn06e/bsSbNOYGAgq1evJj4+3uVxwsPDiYmJcd6OiYmhRYsWhIWFXbY9PDw8S9o+cuRIXnzxRX755Re8vLzo2bOns2zhwoUMHDiQwYMHs2HDBvr06UOPHj1StUVEREREREREMk7Bn3ysffv2NGzYkDFjxqRZPmbMGEqUKEH16tWpVasWERERLFiwAMdFo4tatGjBli1bSEhIAGDFihWEhYURFhbmHPmze/duduzYkWXBnxdeeIGwsDDq1KnDs88+y48//siZM2cAmDJlChERETzxxBMEBQUxaNAg7r//fqZMmZIl9y0iIiIiIiJS2Cj4k89FR0czb9485zw+F6tQoQJxcXGsX7+eAQMGkJycTPfu3WnTpo0zANS8eXN8fHyIjY1l06ZNJCYm0rhxY5o0acLx48fZunUrMTEx+Pr6EhISkmYbdu3aRUBAgPPfhAkT3Lb5xhtvTNVGgAMHDgD2nEOXzivUvHlzNm/enPEHRUREREREREScNOFzPnfbbbfRunVrRowYQURERJp16tWrR7169ejXrx8rV67k1ltvZcWKFYSHh+Pv70+zZs2IiYnh8OHDhIaG4unpCUBISAgxMTHExcURHByMn59fmsevWLEia9eudd4uVaqU2zZ7e3s7/z6/OtnFo5EuXbHMGHPZNhERERERERHJGAV//uPj4QHkjdW+MisqKoqGDRsSFBSUbt06deoAcOrUKee28PBw5s+fz5EjR2jRooVz+/nUr7i4OHr06OHymF5eXs5Vwa5W7dq1WblyJd26dXNu+/HHH6ldu3aWHF9ERERERESksFHw5z8ZWV49r6pfvz5du3Zl+vTpqbb37duXihUr0rJlSypXrkxCQgLjx4+nbNmyBAcHO+uFh4cTGRlJQkICQ4YMcW4PCwsjKiqKEydOZNl8P+kZOnQonTt3pnHjxtx+++0sXryYzz77jG+//TZH7l9ERERERESkoNGcPwVEZGQkxphU21q1asXq1avp1KkTQUFBdOjQAT8/P5YvX07p0qWd9YKDg/H19QWgSZMmzu1NmzYlJSWFIkWKcPPNN+fIebRr145p06YxefJk6taty8yZM5kzZ06qEUkiIiIiIiIiknGWuTRiIHmOw+EgPj6eatWq4XEFaWFS+OiakczSNSOZpWtGMkvXjGSGrhfJLF0zklmF7Zop+GcoIiIiIiIiIlKIKfgjIiIiIiIiIlKAKfgjIiIiIiIiIlKAKfgjIiIiIiIiIlKAKfgjIiIiIiIiIlKAKfgjIiIiIiIiIlKAKfgjIiIiIiIiIlKAKfgjIiIiIiIiIlKAKfgjIiIiIiIiIlKAKfgjOSY2NhbLsjh69GhuNyVT8mu7RUREREREREDBn3wpIiICy7KIiopKtX3RokVYlpVq28yZM2nQoAFFixalRIkSNGrUiOjoaACWLFmCZVns27cv1T6BgYFUqVIl1bY9e/ZgWRZLly7NhjPK20JCQkhISKB48eIAzJ07lxIlSuRuo0REREREREQyyCu3G5BXVBxTmaSUpNxuBj6ePux9fk+69fz8/IiOjqZPnz6ULFkyzTqzZ89m0KBBvPLKK4SFhXH27FnWrVvHpk2bAAgNDcXLy4vY2FgefPBBADZv3syZM2dITExk27Zt1KxZE4CYmBi8vb1p3rx5Fp1p/uHj40NgYGBuN0NERERERETkimjkz3+SUpLyzL+MaNWqFYGBgUycONFlncWLF9O5c2d69epFzZo1qVu3Ll26dCEyMhKAgIAAmjZtSmxsrHOf2NhYQkNDCQ0NvWx7s2bNKFq06BU9vhdbtWoVDRo0wM/Pj5tvvpn169c7y8aOHUvDhg1T1Z86dSrVq1dPsy0lSpSgefPmxMfHX1Wbzp49y7Bhw6hSpQq+vr5cf/31zJ4923l/59O+YmNj6dGjB8eOHcOyLCzLYuzYsYwbN4769etfdtwmTZowevToq2qbiIiIiIiIyNVQ8Cef8vT0ZMKECUyfPp09e9IeKRQYGMjq1avdBkbCw8OJiYlx3o6JiaFFixaEhYVdtj08PDxL2j506FCmTJnCmjVrKFeuHPfeey/JyckZ2vfcuXO0a9eOsLAw1q1bR1xcHL17974s3S2zunXrxvz583nllVfYvHkzb7zxBgEBAZfVCwkJYerUqRQrVoyEhAQSEhIYMmQIPXv2ZNOmTaxZs8ZZd926dfz+++9ERERcVdtEREREREREroaCP/lY+/btadiwIWPGjEmzfMyYMZQoUYLq1atTq1YtIiIiWLBgAQ6Hw1mnRYsWbNmyhYSEBABWrFhBWFgYYWFhzpE/u3fvZseOHVkW/BkzZgx33HEH9evXZ968eezfv5+FCxdmaN/jx49z7Ngx7rnnHmrUqEHt2rXp3r07VatWveL2bNmyhQULFvD222/Tvn17rrvuOm6//XYeeOCBy+r6+PhQvHhxLMsiMDCQwMBAAgICqFy5Mq1bt2bOnDnOunPmzCEsLIzrrrvuitsmIiIiIiIicrUU/MnnoqOjmTdvnnMen4tVqFCBuLg41q9fz4ABA0hOTqZ79+60adPGGQBq3rw5Pj4+xMbGsmnTJhITE2ncuDFNmjTh+PHjbN26lZiYGHx9fQkJCUmzDbt27SIgIMD5b8KECW7bHBwc7Py7VKlS1KpVi82bN2fofEuVKkVERAStW7embdu2TJs2zRm4Ssudd97pbFfdunXTrLN27Vo8PT0JCwvLUBtceeyxx/jwww85c+YMycnJvP/++/Ts2fOqjikiIiIiIiJytTThcz5322230bp1a0aMGOEyvahevXrUq1ePfv36sXLlSm699VZWrFhBeHg4/v7+NGvWjJiYGA4fPkxoaCienp6AneIUExNDXFwcwcHB+Pn5pXn8ihUrsnbtWuftUqVKZfo8zqdteXh4YIxJVXZpSticOXMYMGAAS5Ys4aOPPmLUqFEsW7aMW2655bLjzpo1i8TERAC8vb3TvO8iRYpkur1padu2Lb6+vixcuBBfX1/Onj1Lhw4dsuTYIiIiIiIiIldKwZ//+Hj65HYTgCtrR1RUFA0bNiQoKCjdunXq1AHg1KlTzm3h4eHMnz+fI0eO0KJFC+f286lfcXFx9OjRw+Uxvby8nKuCZcTq1audaVpHjhxhy5Yt3HDDDQCULVuWffv2YYxxBoQuDiyd16hRIxo1asTw4cMJDg7mgw8+SDP4U6lSpXTbU79+fRwOBytWrKBVq1bp1vfx8SElJeWy7V5eXnTv3p05c+bg6+vLgw8+iL+/f7rHExEREREREclOCv78JyPLq+dV9evXp2vXrkyfPj3V9r59+1KxYkVatmxJ5cqVSUhIYPz48ZQtWzZV6lV4eDiRkZHOyYvPCwsLIyoqihMnTmTZfD8A48aNo3Tp0pQvX56RI0dSpkwZ2rVrB9hzEB08eJBJkybRsWNHlixZwtdff02xYsUA2LFjB2+++Sb33nsvFStW5K+//mLLli1069btittTvXp1unfvTs+ePXnllVdo0KAB8fHxHDhwgM6dO6dZ/+TJkyxfvpwGDRrg7+/vDPI8+uij1K5dG7BXNRMRERERERHJbZrzp4CIjIy8LF2qVatWrF69mk6dOhEUFESHDh3w8/Nj+fLllC5d2lkvODgYX19fwF6a/LymTZuSkpJCkSJFuPnmm7OsrVFRUQwcOJAmTZqQkJDA559/jo+PPeKpdu3avPbaa8yYMYMGDRrw888/pwpI+fv78+eff9KhQweCgoLo3bs3/fv3p0+fPlfVptdff52OHTvyxBNPcMMNN/DYY4+lGh11sZCQEB5//HEeeOABypYty6RJk5xl119/PSEhIdSqVStLHzMRERERERGRK2WZSyMGkuc4HA7i4+OpVq0aHh6K1+VlxhhuuOEG+vTpw6BBg3KtHbpmJLN0zUhm6ZqRzNI1I5mh60UyS9eMZFZhu2aU9iWSRQ4cOMC7777LP//843aOJBEREREREZGcpOCPSBYpX748ZcqU4c0336RkyZK53RwRERERERERQMEfkSyjDEoRERERERHJiwp+YpuIiIiIiIiISCGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I+IiIiIiIiISAGm4I9kSPXq1Zk6dWpuN0NEREREREREMknBn3zGsiy3/yIiItLdf9GiRTnSVhERERERERHJfV653QDJnISEBOffH330EaNHj+avv/5ybitSpEhuNEtERERERERE8iiN/MlnAgMDnf+KFy+OZVmptn3wwQfUqFEDHx8fatWqxbvvvuvct3r16gC0b98ey7Kct7dv3859991H+fLlCQgIoGnTpnz77be5cHYiIiIiIiIiktUU/ClAFi5cyMCBAxk8eDAbNmygT58+9OjRg5iYGADWrFkDwJw5c0hISHDePnnyJHfddRfffvstv//+O61bt6Zt27bs2rUr185FRERERERERLKG0r4ucXZmCObk/hy/XyugPL59fryqY0yZMoWIiAieeOIJAAYNGsTq1auZMmUK4eHhlC1bFoASJUoQGBjo3K9BgwY0aNDAeXv8+PEsXLiQzz//nP79+19Vm0REREREREQkdyn4cwlzcj+c+Cfn7zcLjrF582Z69+6dalvz5s2ZNm2a2/1OnTrF888/zxdffMHevXs5d+4ciYmJGvkjIiIiIiIiUgAo+HMJK6B8lgRiruR+s+Q4lpXqtjHmsm2XGjp0KN988w1TpkyhZs2aFClShI4dO5KUlJQlbRIRERERERGR3KPgzyWuNvUqN9WuXZuVK1fSrVs357Yff/yR2rVrO297e3uTkpKSar8ffviBiIgI2rdvD9hzAO3cuTNH2iwiIiIiIiIi2UvBnwJk6NChdO7cmcaNG3P77bezePFiPvvss1Qrd1WvXp3ly5fTvHlzfH19KVmyJDVr1uSzzz6jbdu2WJbFc889h8PhyMUzEREREREREZGsotW+CpB27doxbdo0Jk+eTN26dZk5cyZz5syhRYsWzjovvvgiy5Yto0qVKjRq1AiAl19+mZIlSxISEkLbtm1p3bo1jRs3zqWzEBEREREREZGsZBljcmOKG8kEh8NBfHw81apVw8ND8TpJn64ZySxdM5JZumYks3TNSGboepHM0jUjmVXYrpmCf4YiIiIiIiIiIoWYgj8iIiIiIiIiIgWYgj8iIiIiIiIiIgWYgj8iIiIiIiIiIgWYgj8iIiIiIiIiIgWYgj8iIiIiIiIiIgWYgj8iIiIiIiIiIgXYFQd/1q1bR9OmTZk7d65z29y5c2nVqhUtW7Zk2rRpGGOcZRs3bqRLly40b96c3r17k5CQ4Cw7c+YMzz33HLfddht33303S5YsSXVfixcv5q677iIsLIznn3+e5OTkK222iIiIiIiIiEihckXBH4fDwUsvvUSdOnWc21auXMknn3zC3LlzWbBgAStXruTzzz8HICkpiWHDhvHggw/y3XffUa9ePUaPHu3cd+bMmRw7doyvvvqKCRMmEBUVRXx8PADbtm3j5ZdfZsqUKXz55Zfs3buX2bNnX805i4iIiIiIiIgUGlcU/Pnss8+oV68e1157rXPbV199RceOHalcuTJlypTh4Ycf5uuvvwbg119/pUiRItx33334+vry2GOPsWnTJufon6+++orevXsTEBBAgwYNuO2221i6dCkAS5Ys4Y477qBOnToEBATw6KOPOo8rIiIiIiIiIiLueWV2h2PHjvHhhx8yZ84cXnrpJef2HTt2cNdddzlvBwUFMWPGDAD+/vtvatas6SwrUqQIlStX5u+//6Zo0aIcOnQoVXlQUBAbN2507hscHOwsu/766/nnn384c+YMfn5+l7UvKSmJpKSk1Cfp5YWPj09mTzXPcDgcqf7v0aMH77zzDhMmTOCZZ55x1lu0aBEdOnQgJSUFsEdUvfHGG2zbtg1vb2+uvfZaHnjgAYYNG8aSJUu4++67+eeffwgMDHQeo2LFinh7eztHXgHs2bOHatWq8fXXX/O///0vJ05ZrtKl14xIenTNSGbpmpHM0jUjmaHrRTJL14xkVkG6Zjw80h/Xk+ngz4wZM+jSpQvFihVLtf306dMEBAQ4bxctWpTTp08DkJiYSNGiRVPVL1q0KImJiZw+fRpPT89UgRx3+56/j8TExDSDP3PmzOGtt95Kta1Tp0507tw5s6ea5+zevRuAU6dO4evrS1RUFHfeeSfFixcH4ODBgwDEx8fz0UcfMW7cOEaPHs3NN99MUlISf/75J9u2bSM+Pp6qVavi5eXFJ598Qtu2bQE7xe706dMYY1ixYgXVq1cHYOHChXh7e1OlSpVUQSHJ+85fMyIZpWtGMkvXjGSWrhnJDF0vklm6ZiSzCsI1c3FWliuZCv78+eefbNy4MdVok/P8/f05efKk8/apU6fw9/cH7JE+p06dSlX/1KlTFClSBH9/f1JSUlKN5HG37/n7KFKkSJpt7NGjB127dk19kgVg5M/u3bupUqUKHh4eFC1alFatWrF9+3bef/99oqOjAShbtiwA1apVIy4ujs6dOzNs2DDnce64445Ux23atCkbN26kf//+gJ1+d+utt2KMYevWrYSFhQGwYcMGmjVrRu3atXPidCULXHrNiKRH14xklq4ZySxdM5IZul4ks3TNSGYVtmsmU8Gf3377jV27djnTu06ePImnpyd79uzh2muvZdu2bYSGhgKwZcsWrrvuOgCuu+46Fi5c6DxOYmIie/bs4brrrqNYsWKULl2abdu2Ua9evTT33bZtm3PfrVu3UqlSpTRH/QD4+Pjk60CPOx4eHnh4eGBZFl5eXkyYMIGHHnqIgQMHUrlyZecF6+HhQYUKFVixYgW7d++mWrVqaR4vPDycTz75xLnfihUrCA8Px+FwsGLFCnr37g1AbGwsXbt2LRRPiILm/DUjklG6ZiSzdM1IZumakczQ9SKZpWtGMquwXDOZCv7cf//9qeZ8efHFF6lSpQqPPPIIf/zxB9HR0dxxxx34+vry/vvvO0fgNGnShMTERBYvXkzr1q2ZPXs2derUoUKFCgDcddddzJo1ixdeeIG///6b77//3rmEfJs2bejTpw/t27encuXKvP3229x5551ZdPqXW92iBUkHDmTb8V3xKVeOW2JjM7VP+/btadiwIWPGjLlsBbQxY8Zw//33U716dYKCgggODuauu+6iY8eOzgu7RYsWTJgwgYSEBGewaOjQoTgcDqZNmwbYQ+B27NhBeHh4lpyniIiIiIiIiOSsTAV//Pz8Uo248fX1xd/fn2uuuYbQ0FC2bt1Kt27dcDgctGvXjnvvvRewR+NMmjSJyMhIoqKiqFOnDuPGjXMep0+fPowfP542bdpQrFgxnn32Wed8MzVr1uSpp57i6aef5tSpU7Rs2ZKePXtmwamnLenAAc7u3Zttx89q0dHRtGzZksGDB6faXqFCBeLi4tiwYQMrVqzgxx9/pHv37syaNYslS5bg4eFB8+bN8fHxITY2lgYNGpCYmEjjxo0xxnD8+HG2bt1KXFwcvr6+hISE5NIZioiIiIiIiMjVsIwxJrcbkZfkxZE/DoeD+Ph4qlWrhoeHBxERERw9epRFixYBcPfdd+Pt7U1ERATt27fHVZeuXLmSW2+9le+++845kufWW2+ldu3aNGjQgC+//JKvvvoKgNatW9OhQwfi4uLYuXMnMTExWX7Okn0uvWZE0qNrRjJL14xklq4ZyQxdL5JZumYkswrbNZPp1b4KusymXuUFUVFRNGzYkKCgILf16tSpA5BqAu3w8HDmz5/PkSNHaNGihXN7WFgYsbGxxMXF0aNHj2xpt4iIiIiIiIhkv4If3ioE6tevT9euXZk+fbpzW9++fYmMjGTVqlXEx8ezevVqunXrRtmyZQkODnbWCw8PZ+vWrSxZssS5uhfYwZ8vvviCnTt3ar4fERERERERkXxMwZ8CIjIyMlW6V6tWrVi9ejWdOnUiKCiIDh064Ofnx/LlyyldurSzXnBwML6+voA9Mfd5TZs2JSUlhSJFinDzzTfn3ImIiIiIiIiISJZS2lc+dH4ltItVq1aNM2fOOG936NCBDh06pHssPz+/VPud5+Pjkyo9TERERERERETyJ438EREREREREREpwBT8EREREREREREpwBT8EREREREREREpwBT8EREREREREREpwBT8EREREREREREpwBT8EREREREREREpwBT8EREREREREREpwBT8EREREREREREpwBT8EREREREREREpwBT8kRwTGxuLZVkcPXo0t5siIiIiIiIiUmgo+JMPRUREYFkWUVFRqbYvWrQIy7JSbZs5cyYNGjSgaNGilChRgkaNGhEdHQ3AkiVLsCyLffv2pdonMDCQKlWqpNq2Z88eLMti6dKl2XBGIiIiIiIiIpJdFPzJp/z8/IiOjubIkSMu68yePZtBgwYxYMAA/vjjD1atWsWwYcM4efIkAKGhoXh5eREbG+vcZ/PmzZw5c4bjx4+zbds25/aYmBi8vb1p3rx5tp2TiIiIiIiIiGQ9BX/yqVatWhEYGMjEiRNd1lm8eDGdO3emV69e1KxZk7p169KlSxciIyMBCAgIoGnTpqmCP7GxsYSGhhIaGnrZ9mbNmlG0aNGrbvuqVato0KABfn5+3Hzzzaxfv95ZNnbsWBo2bJiq/tSpU6levXqabSlRogTNmzcnPj7+qtslIiIiIiIiUhAp+JNPeXp6MmHCBKZPn86ePXvSrBMYGMjq1avdBkbCw8OJiYlx3o6JiaFFixaEhYVdtj08PDxL2j506FCmTJnCmjVrKFeuHPfeey/JyckZ2vfcuXO0a9eOsLAw1q1bR1xcHL17974s3U1EREREREREbF653YC85qabbrpsDpycEBgYyC+//JKpfdq3b0/Dhg0ZM2YMs2fPvqx8zJgx3H///VSvXp2goCCCg4O566676NixIx4edtyvRYsWTJgwgYSEBCpUqMCKFSsYOnQoDoeDadOmAbB792527NiRZcGfMWPGcMcddwAwb948KleuzMKFC+ncuXO6+x4/fpxjx45xzz33UKNGDQBq166dJe0SERERERERKYgU/LnEvn37+Oeff3K7GRkWHR1Ny5YtGTx48GVlFSpUIC4ujg0bNrBixQp+/PFHunfvzqxZs1iyZAkeHh40b94cHx8fYmNjadCgAYmJiTRu3BhjDMePH2fr1q3ExcXh6+tLSEhImm3YtWsXderUcd4eMWIEI0aMcNnm4OBg59+lSpWiVq1abN68OUPnW6pUKSIiImjdujV33HEHrVq1onPnzlSoUCFD+4uIiIiIiIgUNgr+XCIwMDBf3e9tt91G69atGTFiBBEREWnWqVevHvXq1aNfv36sXLmSW2+9lRUrVhAeHo6/vz/NmjUjJiaGw4cPExoaiqenJwAhISHExMQQFxdHcHAwfn5+aR6/YsWKrF271nm7VKlSmT6P82lbHh4eGGNSlV2aEjZnzhwGDBjAkiVL+Oijjxg1ahTLli3jlltuyfT9ioiIiIiIiBR0Cv5cIrOpV3lBVFQUDRs2JCgoKN2650fonDp1yrktPDyc+fPnc+TIEVq0aOHcHhYWRmxsLHFxcfTo0cPlMb28vKhZs2aG27t69WqqVq0KwJEjR9iyZQs33HADAGXLlmXfvn0YY5wBoYsDS+c1atSIRo0aMXz4cIKDg/nggw8U/BERERERERFJgyZ8LgDq169P165dmT59eqrtffv2JTIyklWrVhEfH8/q1avp1q0bZcuWTZV6FR4eztatW1myZAlhYWHO7WFhYXzxxRfs3Lkzy+b7ARg3bhzLly9nw4YNREREUKZMGdq1awfYcxAdPHiQSZMmsX37dmbMmMHXX3/t3HfHjh0MHz6cuLg44uPjWbp0KVu2bNG8PyIiIiIiIiIuKPhTQERGRl6WLtWqVStWr15Np06dCAoKokOHDvj5+bF8+XJKly7trBccHIyvry8ATZo0cW5v2rQpKSkpFClShJtvvjnL2hoVFcXAgQNp0qQJCQkJfP755/j4+AD25M2vvfYaM2bMoEGDBvz8888MGTLEua+/vz9//vknHTp0ICgoiN69e9O/f3/69OmTZe0TERERERERKUgsc2nEQPIch8NBfHw81apVc67SJeKOrhnJLF0zklm6ZiSzdM1IZuh6kczSNSOZVdiumYJ/hiIiIiIiIiIihZiCPyIiIiIiIiIiBZiCPyIiIiIiIiIiBZiCPyIiIiIiIiIiBZiCPyIiIiIiIiIiBZiCPyIiIiIiIiIiBZiCPyIiIiIiIiIiBZiCPyIiIiIiIiIiBZiCPyIiIiIiIiIiBZiCP5JjYmNjsSyLo0ePXtVxLMti0aJFWdImERERERERkYJOwZ98KCIiAsuyiIqKSrV90aJFWJaVatvMmTNp0KABRYsWpUSJEjRq1Ijo6GgAlixZgmVZ7Nu3L9U+gYGBVKlSJdW2PXv2YFkWS5cuzYYzEhEREREREZHsouBPPuXn50d0dDRHjhxxWWf27NkMGjSIAQMG8Mcff7Bq1SqGDRvGyZMnAQgNDcXLy4vY2FjnPps3b+bMmTMcP36cbdu2ObfHxMTg7e1N8+bNs+2cRERERERERCTrKfiTT7Vq1YrAwEAmTpzoss7ixYvp3LkzvXr1ombNmtStW5cuXboQGRkJQEBAAE2bNk0V/ImNjSU0NJTQ0NDLtjdr1oyiRYteddt//fVXbrrpJvz9/QkJCeGvv/5KVf76669To0YNfHx8qFWrFu++++5V36eIiIiIiIhIYaXgTz7l6enJhAkTmD59Onv27EmzTmBgIKtXryY+Pt7lccLDw4mJiXHejomJoUWLFoSFhV22PTw8PEvaPnLkSF588UV++eUXvLy86Nmzp7Ns4cKFDBw4kMGDB7Nhwwb69OlDjx49UrVFRERERERERDLOK7cbkNfc9JiDfYdz/n4DS8Evb2UuFte+fXsaNmzImDFjmD179mXlY8aM4f7776d69eoEBQURHBzMXXfdRceOHfHwsO+rRYsWTJgwgYSEBCpUqMCKFSsYOnQoDoeDadOmAbB792527NiRZcGfF154gbCwMACeffZZ7r77bs6cOYOfnx9TpkwhIiKCJ554AoBBgwaxevVqpkyZkmX3LyIiIiIiIlKYKPhziX2H4Z+Dud2KjIuOjqZly5YMHjz4srIKFSoQFxfHhg0bWLFiBT/++CPdu3dn1qxZLFmyBA8PD5o3b46Pjw+xsbE0aNCAxMREGjdujDGG48ePs3XrVuLi4vD19SUkJCTNNuzatYs6deo4b48YMYIRI0a4bPONN96Yqo0ABw4coGrVqmzevJnevXunqt+8eXNnIEpEREREREREMkfBn0sElspf93vbbbfRunVrRowYQURERJp16tWrR7169ejXrx8rV67k1ltvZcWKFYSHh+Pv70+zZs2IiYnh8OHDhIaG4unpCUBISAgxMTHExcURHByMn59fmsevWLEia9eudd4uVcr9yXh7ezv/Pr86mcPhuGzbecaYy7aJiIiIiIiISMYo+HOJzKZe5QVRUVE0bNiQoKCgdOueH6Fz6tQp57bw8HDmz5/PkSNHaNGihXN7WFgYsbGxxMXF0aNHD5fH9PLyombNmld+AhepXbs2K1eupFu3bs5tP/74I7Vr186S44uIiIiIiIgUNgr+FAD169ena9euTJ8+PdX2vn37UrFiRVq2bEnlypVJSEhg/PjxlC1bluDgYGe98PBwIiMjSUhIYMiQIc7tYWFhREVFceLEiRybb2fo0KF07tyZxo0bc/vtt7N48WI+++wzvv322xy5fxEREREREZGCJv8Nc5E0RUZGYoxJta1Vq1asXr2aTp06ERQURIcOHfDz82P58uWULl3aWS84OBhfX18AmjRp4tzetGlTUlJSKFKkCDfffHOOnEe7du2YNm0akydPpm7dusycOZM5c+akGpEkIiIiIiIiIhlnmUsjBpLnOBwO4uPjqVatmnOVLhF3dM1IZumakczSNSOZpWtGMkPXi2SWrhnJrMJ2zRT8MxQRERERERERKcQU/BERERERERERKcAU/MknlJwnIiIiIiIiIldCwZ98YN12uG9MICvX5XZL5EqcPmNYvdGw75AieCIiIiIiIpLzFPzJw86dM0x419CsD2yI96VnFJxKVAAhP3ltoaH4nYbgvoZKHQydRjtISlYfioiIiIiISM5R8CeP+jPe0LyfYeRbhuRz9rbte+HZmQoc5Bcz/8/Q72XDuRT7tsMBn8TCEy+pD0VERERERCTnKPiTB736qaFRL8PPm9Mo+wy++1XBg7xux17D4NfS7qfZX8If29SHIiIiIiIikjMU/MmDTp+FM0muy3tEGY6fUvAgrzLG8Nhkw6lE13VeeFf9JyIiIiIiIjlDwZ88aPADEFzXdfmu/TB4hoIHedVbi2H5r+7rfBILm3eqD0VERERERCT7KfiTB3l6WswdYVHE13WdWV/A16vzV/AgNjYWy7I4evRobjclUzLT7l37DUNcpHtdzBiY8F7+6j8RERERERHJnxT8yaOCqlhE9bHSLvyrB/zgyQO9ojhy4kIAYdGiRVhW6n1mzpxJgwYNKFq0KCVKlKBRo0ZER0cDsGTJEizLYt++fan2CQwMpEqVKqm27dmzB8uyWLp0aRacXf4SEhJCQkICxYsXB2Du3LmUKFHisnrGGHpPNpw4nbHjfvAtbNujAJCIiIiIiIhkLwV/8rD+90OLRi4KPfw4sWUSfaIOu9x/9uzZDBo0iAEDBvDHH3+watUqhg0bxsmTJwEIDQ3Fy8uL2NhY5z6bN2/mzJkzHD9+nG3btjm3x8TE4O3tTfPmzbPi1PIVHx8fAgMDLwusXWru1/DNzxk/rsMBEzX6R0RERERERLKZgj95mIeHxdvPWAQUSaOwxO3gHcjH70Sx6Ie0AwiLFy+mc+fO9OrVi5o1a1K3bl26dOlCZGQkAAEBATRt2jRV8Cc2NpbQ0FBCQ0Mv296sWTOKFi161ee1atUqGjRogJ+fHzfffDPr1693lo0dO5aGDRumqj916lSqV6+eZltKlChB8+bNiY+Pv6o2nT17lmHDhlGlShV8fX25/vrrmT17tvP+zqd9xcbG0qNHD44dO4ZlWViWxdixYxnyzPM8+sCNlx/496awc4zL+33nG4jfpwBQXpaSYvgyzvDWYsO67eorERERyV+MMXz4raHTaAcPjXMwf7nBGH2mESlsFPzJ466taDH5iTQKLE+oPh72vsqjkbs5ePTyF/DAwEBWr17tNjASHh5OTEyM83ZMTAwtWrQgLCzssu3h4eFXdS7nDR06lClTprBmzRrKlSvHvffeS3Jycob2PXfuHO3atSMsLIx169YRFxdH79690x2Vk55u3boxf/58XnnlFTZv3swbb7xBQEDAZfVCQkKYOnUqxYoVIyEhgYSEBAYPHszaEz1wnNwEJ9ZcqHxqHZz8Hcp3d30+KRD9gd5886qtuw1NexvuecZO6WvQw9DtBQcOh/pMRERE8j5jDE9ONTw0zvBJLHz4LXR53tDvZX2WESlsvHK7AXnNypZxJB04m+P361POl9DvgtMse+we+HBpIt+vv2QIUJn2sKchh9aN5YmXZvFQo9Qv4mPGjOH++++nevXqBAUFERwczF133UXHjh3x8LDjfi1atGDChAkkJCRQoUIFVqxYwdChQ3E4HEybNg2A3bt3s2PHjiwL/owZM4Y77rgDgHnz5lG5cmUWLlxI586d0933+PHjHDt2jHvuuYcaNWoAULt27atqz5YtW1iwYAHLli2jVatWAFx33XVp1vXx8aF48eJYlkVgYCAA7y01LN9QFEr+D/bPhWua2pX3zYXiYVSofB2Ng+DLuLTvf/aXMKqboWKZqwtgSdb6M97Q8ilDwqHU29/9BmpVgZHdcqddIiIiIhn14bcwY+Hl219fBA+2NNzWUJ8/RQoLjfy5RNKBs5xJyPl/7gJOlgUTex6ieFoZV9dOhP3v8MmXm1i5PnVRhQoViIuLY/369QwYMIDk5GS6d+9OmzZtcDgcADRv3hwfHx9iY2PZtGkTiYmJNG7cmCZNmnD8+HG2bt1KTEwMvr6+hISEpNm+Xbt2ERAQ4Pw3YcIEt49xcPCFIFepUqWoVasWmzdvdrvPxfUjIiJo3bo1bdu2Zdq0aSQkJLisf+eddzrbVbdu3TTrrF27Fk9PT8LCwjLUhovtO2QYMO2/oFvgo3BwPjjOgCMZDn4A5SN4Y7CbybuBpGSY/KF+fclLNu4wtBh4eeDnvAnvGRL+VZ+JiIhI3nXwqGHAK64/r0z/TJ9lRAoTjfy5hE85N+ur5+L9ViiVwtQB0GPiJQXFb7NHnMSP5M3P004vqlevHvXq1aNfv36sXLmSW2+9lRUrVhAeHo6/vz/NmjUjJiaGw4cPExoaiqenJ2CnOMXExBAXF0dwcDB+fn5pHr9ixYqsXbvWebtUqVIZPu/zzqdteXh4XJaDfGlK2Jw5cxgwYABLlizho48+YtSoUSxbtoxbbrnlsuPOmjWLxMREALy9vdO87yJF0ppUKX3GGJ54yXDkxH8bSreFbb7w70Lw8AXHWTp36sC9ofa5tb/VsPCHtI8183MY/rChXEn9+pLb1m03tHracPCo6zqnz8DYOYaZQ9VfIiIikjcNmGY4dMx1+aIfIOFfQwWNPhcpFBT8uYSr1Ku84JH/wcLv4fO/Lim4diL81piTRYIAOyjhag6cOnXqAHDq1CnntvDwcObPn8+RI0do0aKFc3tYWBixsbHExcXRo0cPl+3y8vKiZs2aGT6P1atXU7VqVQCOHDnCli1buOGGGwAoW7Ys+/btS3UOFweWzmvUqBGNGjVi+PDhBAcH88EHH6QZ/KlUqVK67alfvz4Oh4MVK1Y4077c8fHxISUlhQXfkTqYY3lB+W526peHL36VH+C1oReGa43qZrHQxeTciWfhpY8MUY/rzTc3rd1qaDXI/Qel82Z9CQM7GepUV5+JiIhI3vL5SsP85e7rnEuBt79SKrtIYaG0r3zEsmDmEAsfn0sKitaHcg/B3lcBmLfE3ty3b18iIyNZtWoV8fHxrF69mm7dulG2bNlUqVfh4eFs3bqVJUuWpEp9CgsL44svvmDnzp1ZNt8PwLhx41i+fDkbNmwgIiKCMmXK0K5dO8Ceg+jgwYNMmjSJ7du3M2PGDL7++mvnvjt27GD48OHExcURHx/P0qVL2bJly1XN+1O9enW6d+9Oz549WbRoETt27CA2NpYFCxa4rH/y5El6j/oWkv+FlNMXCgN7wdEYOLyE0cN6Urr4hcBA41oWd7uJLc5YCIeOafhtbvn1L3uOn4wEfgAcDnjmDfWXiIgUfOfOGX7fYlj0g+HfNBYZkbzl6AlD35cy1k9vLjakpKhPRQoDBX/ymcDSFsF10hhpUG0c/JcuNfAVw+79hlatWrF69Wo6depEUFAQHTp0wM/Pj+XLl1O6dGnnrsHBwfj62mlnTZo0cW5v2rQpKSkpFClShJtvvjnLziEqKoqBAwfSpEkTEhIS+Pzzz/H5L6JVu3ZtXnvtNWbMmEGDBg34+eefGTJkiHNff39//vzzTzp06EBQUBC9e/emf//+9OnT56ra9Prrr9OxY0eeeOIJbrjhBh577LFUo6MuFhISQo0mfTj+SxdYXR72TL5QWOR6KBZCsbK1GP7E5SORRnVzPUrkZCJM+0Rvvrnh502G25++KIUvg774EWJ/V5+JiEjBlfCv4dYnDY0fNbQfaSh3n+HF+Xrvy8uGvWHY+2/G6u7aD0t+zt72iEjeYJlLJ1iRPMfhcBAfH0+1atWcq3Q9MMbBghjX+9xxE3zzonXVS6DL5T5bYejwnIunjTF4/l6H0c/2ZvSowWlWuWOQg29/SXv34gEQv8CieMDV9Vta14ykLW6Doc1Qw/G0Y33puukG+OkNCw+P/P1cK8jXTFKyIfZ3MEDjIChbIn/3VV5RkK8ZyXp7/zVs/8dgJe8hpHFlXTP5xKlEQ7M+hk07Ly+bM9wi4s7sez3Va8yV+e5X+wetzLgnBBZH5f/HuDBcMydOGwKKoO94WaQwXDMXK/hnWEDNeNqiXEnX5ct+sScRlqx16JibYbRJB+Cfl/FK+Ycn+/V0eQx3o3+OnYRXP7vaVkpGrVxn+N/g9AM/Ja9xXfbLn7gNxErucTgMby02VLzf0HqIoc0QQ80uhg+/1W8e+U1SsmHtVsPOBPVdfnMq0dD3RQfVOhluexJuG1yJiImQfE59mdcZY3/mSSvwA/D0dK18mdecSjQ8OinzffJlHMTvU1/mZT/8YQju66BYG0O5ew3PvO5Qup5kmoI/+VSZEhZvDnEf8R3ymuHvvXpRyEoDXzEcOOKi8KcK+OyLZvasmZQs6ToyF9bQ4tYbXd/Hyx8bTp5Wv2W3FWvtET8nE93Xuy8U1s2xCHCzKNzwmYazSeqzvGTTTkPYAEPvyanncTp+Ch4aZ5i/XP2VX3zxox3Aa9TLcO0DhtB+DvYdUv/lB5t22qNG3vg/e2JZAGMs3v3Gfj+VvG3WF/DuN67Lj56E/lPVj3nJc7MNOxIyv58xMOsL9WVetWmn4Z5nDas32rf/PQaTPoQeUeayVZJF3FHwJx+771aLbq1dl59KhJ5RBodDLwpZ4fOVhveXuS4veVcK8bsP0LVr13SP9Vx314G7Q8fgjf+7khZKRi3/1XDnUMOpdAI/998GC563qFzO4pmHXPfZzn32hN2S+86cNTw3y0HDnoaV61zX6z7BsGKtXhvzuv/7wXDv8NQBvFXrIXygguR53ftLDU17ux418voi+F7PwTzrt78MT05L3T/ejjO0/Xc2lnE4t332PXwaq37MC1ZvNEz92HW5v5/9g5Yrs77QiLy86qlX0h6l/u438NF3Od8eyb8U/Mnnpg2wqFTWdfmKtTD90xxrToF15ITh8RfdvyFOG2ARWDpj+betboJmbhYom/KRIfGs3oCzw9KfDfc8Y0g8675ep3CYP9bCx9vu00EPQMUyruuPf8dw5IT6LDd996uhfoRh/DuQfM593aRkaDfCsGmn+iyv+vUvw0ORhrR+1PxzF5d9MZW84cxZQ5/JDh4ebzh9xn3d3lM0ajIvOnrC0GmM4WzShW3Xn/6d17eG8eTeodx7aFaq+v2n6v0vt51NMvSKTvv18ryJvS0ie7n+nLrvMPzfymxonFyVVesNy1zMFQrQ72Wj0bCSYQr+5HMlrrGYNcx9wOHZmYa/dulF4Wo8Pd2QcMh1+d3B8PD/Mn48y7Lcjv7Zf9j+BUay1ldxhntHGM4kua/3UCv44DkLb68LfeTv5/5D05ETMOFdPc9yw79HDd1fcHD704Zt/2R8v6Mn4c6hhr2asyLP2b3f0PZZ98GDuV/De0vVd3nJtj2G4CcMby7OWP2/dsHE99SHeYkxhh5Rhr/3pt7u7zhJ1bNbAeiVMI4KZ3c4y/YdhiEz1I+56YV3XY+yAwiuCz0bx5P4RBtm7W1DqeS0c8Pe+D/1Y14zdo77Pjl8HPpMUfqXZIyCPwVAm5sterd1XX4mCSImGk0KdoW+Xm2Yt8R1efEAmDkk8yur3R0MDa93XR79gX4RzUqLVxnaj0r9S2ZaHmkN74y08PK6vD+7t4F617re95VP0YS0OcgYw7yvDTc8YnjHzbwU7uzaD3cNMxw/pX7LK06ctuc2cBdwP+/xFw1bdqvv8oJPYw1NHjOs3Zq5/Sa8B5s1Ai/PeHkBLPrh8u1/BNzK56V7AeBnTjN4z5Op0r/e/gq+/UX9mBvWbTdMfM91uY83vBmRwNr293Hsp5+o+u/PDN79JGkNE1r+K3pNzUNWrjOpVgi+LnEDY3d2pdOBV1LV+3wVvLc0hxsn+ZKCPwXElH4W1QNdl6/eCFPm51x7CopjJw2PTXb/JvhSP4tKZTO/3KJlWYx6xPV+/xy0f9mWq7fwe0OH5wxJye7r9bgL5jxr4emZdr94elpM6uu6z5KSYdQsfWjKCVt2G25/yhAxMfV8MFfij23Q8TmjuQ7ygHPnDA+MMazbnrH6pxLhgbEKlOempGTDU6846Dg6/ZUT05J8zk7/0vyEuW/VesOwN1z3w6zAMezzrgrAjad+5L5Db6Uq7z3ZcCpR/ZiTzp0z9IwyzgnV0xLZ4V+OP9mexPh457amJ7+jzZG0I0Zvfq4+zCsuHvVTPXETk/6+j5DjX/PYvrGEHU29PPCT0wz/HFTfiXsK/hQQ1/hbvP2s+wDE6LcNG/7Wi0JmDHnN8M9B1+Wtm9kBgyvV/jaoU911edT7+kJ6tT6JNXQeY9KdA6Z3W5g1zHXg57w2N0PLxq7L319mT5Qp2eNskiFynuHGHoaY3zO2j4eH+1F2AMt+gccmadh0bjLGMPAVw9c/ZW6/tVth6Ovqt9ywa7/hticN0z65uuOsXKdU59x28KjhgbGGFDdBhJubBPD9HdOdt3smjKPi2b+dt3ck2KtNSc55aQH8+pfr8uBqRwn94H5ObdkCgE+5cs6yPntHUjZpz2X7zPnanrtLctcPfxiW/2r/XensNqJ23E+xlAtLDj/5z1BKJu933j52Up9jJH0K/hQg4Y0tnuzgujwpGbq9oGBCRi1bY9x+GL3GH94cmvl0r4t5eFiMdDP6Z+c+3K4wJu59tNzw4PPufxEDeKIdvD7YwsMj/b60LIvJbkb/gP1FVG++We+HP+zlvkfPTj9977zGQfDzTIuf3rC4vYn7uvOWwJi31W+5ZdrH8NqiK9t3+qew6Af1XU76Ms5+Pv60Kf261/jD+EctPNx86hz2hiFB82/lipQUQ9dx7n/sKl8KPhxtMeql2/i63Pn0r8TL0r+mfgw/bVI/5oQtu43b96wATvDCjgc4tWEDAL6VKtFs2TIqPvwwAEUdJxm85/L0r8PH4ZMV2dduyZjzfVs+aReT/m5HqXMHAEiyfAAolnKEgf8MStV/X/8Eb3+Z822V/EPBnwImqo/F9ZVdl/++FSa8m3Ptya9OnDY8Osn9h5fJfS2qlr/ywM95D7TEbZ9NeFfzNV2J95baKwW5+xUTYEAHePXpjAV+zmtcy3I7wfd3v8HXqzN8OEnHkROGxyY5uO1Jw+b49OsDFC0CL/e3gz5Natmrtn0aaXFjDff7Rc6Dtxbr+ZbTPl9pGJTOhLFFfN0fo2eUYdd+9V12O3fOMHymg3ueMRw+nn79BjXh17csRnazGODmB6pjJ2HgdPVfbhj/Dm5XE/LwgPljLCqUsagWaFFjzFgSfKoBUP9UXKr0L2OgV7QhKVl9mZ0cDsOj0a4XsPBxJDL7ZFfObVhj3y5bliaLFlGkWjWCXngB30qVAGh8cgV3H5532f6a+Dl3rVhrj24unbyXSX/fR9lkewb27X716B20iiNe9lLPIce/ptXRj1Lt+/Srei8U1xT8KWD8/SzmDnf/69r4d4zSUtLxzBuGXftdl7dsDL3vzZr78vS0GOFm9M/WPbAgJmvuq7CY97Wh2wsGh8N9vUGdYeqAKxu9Nf5RC18f1+XD3lDQ7moZY/jwW8MND7sfhXeptiGw6R2Lpzqnnri7eIDFV5MsKpd1v3/flwxfxanvcsqvfxm6jHO/RHHFMrBujvvg3ZET8NA4wzmNbs02e/813P60Ier9jNV/9B6Ie93i+ir28/D5HlCpjOsc3I9j7Mn5JecsW2N4fq77xzyyl0WLRhdeS/t2CeCbW12nf23cgdsJiOXqzfwcfliXdpmXI4no/d0p+be9brtXiRI0XriQotfb+c/exYtTd/qF/uud8ByBSal/WVm1HtZv13Mxt4ydYyiRfIBJf7enwn99s8v3eoZf9ynHStTgx1YvOes+8c+zlEm6sNTpidN2AFYj0CUtCv4UQCH1LQY/4Lr8XAp0m6AJMl2J+c3w+iLX5UWL2HPDXE2616W63oHbCbtfeFeTYWbU7C/sZWrTe8975iF7ovQr7cdqge5/xd64QxN2X40dew13DjU8NM5w4Ej69cEOEHwaafF/E12PyqtU1uLryRbFA1wfJyUFOo0x/PKnnnPZLSNLuhctAl9EWdSsbPHRWAt/P9d1V62HMeksiytXZvmvdprX93+kX9ffD+aNsHhrmAdFfC88FwP8YVw398u49XvZcOK0+jAn7Dlgv8a6e7+86xZ4tmvqbR4eFqNevJUvyj4KpJ3+9cK7ho071I/ZYdd+wzAX85x5mHM8u7s3dQ9+C4BnQACNP/2Ua+rVS1WvdMuWVOjWHYAijlMM2j0gVf8BzNTEz7ki9nfDr2uOELXjfqqctZdP3OtTnWeuW8hRr7I8eT+MfvMeVpXvDECA4zhP7xmYKv3r21/sAKHIpRT8KaDG9bTcTiS8cUfqGeTFdiox/XSvqN4W11bMusAPgLeXxbNdXR9z4460l16V1N74P7v/0gv8jOoGE/tcfQBv+MMWJa9xXT76ba18klnJ5wzR7xvqdjd883PG9rEs6NfeHu1zf1j6/VrvOouF4y28vVzXOX0G7n7G8Pde9V92yciS7ufTTRoF2X16QzWLGU+779+J72nJ6ayUkmIYN9dwx6CMBWJrV7Pn2erWJu1+Cm9whgdaut5/9wF4TqsmZrvkc/YEz/+6WS2xanl4Z2TaadG1q1sEDhtzSfrXmxcd3x59oBGwWcsYw+NTDCcTLy+zjIPBewZw2zH7W79HkSI0+ugjijdJe8K7G14Yz5mSVQBoeOoH7jn0dqryd76BkwrE5riJM48xYUdHrjtjT6h2wLsSz1y3iEPeFQkoAoMfsChVzOKmV6L516sCYK/edufhd1IdZ8hr+gwjl1Pwp4Dy87WYN8LC09N1nUkfwuqNelG42Ig3DX/vdV1+WwN4on323HfEnVDJTTrK+Hc0hNOdVz819H0x/cdnbA+LyEc9smTkVslrLJ7r7vo4e/+Flxdc9d0UGj9tMtz0mOHZmYbEsxnb58Ya8ONrFq8+7UHxgIz3aXhjO0XWnQNH4M6hhkPH9LzLahld0v3l/hb3hKTup+5tcDvnljHw8HjD/sPqt6t18KjhrmH2pLIZefvpeocd+Kl7rfvn1sv9oYSb0XevfAo/a9LgbDV8puHHDa7Lvb3g4+ctShd33ZdDegSwqNnF6V+RVDx74Un90yZ49bO09pQr9d5S0l4R0Rj67x3GHUfmA2B5e9Pgvfco2by5y2N5XXMNNV++0H+PJYylwtkdztsnTsP877Ks6ZIB3606SZvPH6BWor2c6SGv8gy7bhH7faoC8GQHKFPCfk7e07ok69tNde7bJ+E5yiftct4+lWjPhafMAbmYgj8F2E03WIx42HW5wwHdJxhOn9GLAsDKdYbpbj6kFPGF2c9kbmLgzPD1sRjWxfWxf98KX8Zly13ne1MXGJ6clv51PP5RizE9srb/nmgH11ZwXR79gb6EpufYSUP/lx0E900/GHBeEV+Iftzil7csbql7ZX360B0W0Y+733fLbrh3uCFRy95mGWMMT01Pf0n3JzvAgI6X949lWbw2yP3iBvsP89+8X+q3K7VynZ3mtXRN+nV9fWDmEIt3R1kE+Kf/fCxfCqY84bqeMdB7ilYnzS4Lvze8+JH7Oi/2s2hWx31fentZjJhyK5+XuSj9a3fq9K8Rbxl2aPRBlth/2H7tvIwxPLpvLG3/G7ljeXpy49tvU+b229M9Zu12LVhX9/zqbacZsqd/qv7TxM8551xiIlt7daXeafvN8ZhnKZ697jP2+tqT3Z0f9XOxYS//j+8r2l/2/B0nL3v+rVirAKykpuBPATeqm0XD612Xb9kNI9/SC/vpM4ae6cwTM+Exe86J7PRYWyhX0nW5Rv9cbvKHhqdfTf8xiX7cXm0mq/n6WEzo7fq4JxNhXDqTaRZWxhg+jTXU6WaYsfCy1WZdat0MNs6zGPaQhbfX1fXp0C52ypg7P26AruOUvpBVXvkEZix0X+fuYHvUjyvX+Nvz//h4uz7G0jUw+cMrbGQhZoxhyoeGFgPdL/19Xo1KEPeaRe97M5dK2/NuCGvouvyPbRo5mR22/2OImOj+taxTOPS/P2PHu+kGi6L9Rl9I/zq9OlX61+kz0GeKPrtkhSenpb3CXtcDU+h88L8RPJZF3ddeo1zbthk+7g2Rl67edqH/fv0L1mxW32U3R1ISMe0juG7fCgBOehRj+LWfEu9X21lnQEcuG4lX4hqL0BkvsN/b/jWk4akfaHtodqo6z840bN2tPhSbgj8FnI+3nf7lbm6LaZ/A92sL94vC6NmGrXtcl4fUs3+Fzm5FfC2GPOj6w/NPm+xJ3MQ28T3Xkx5e7MV+dqAgu3QOh6Y3uC6fuRj+2lW4n2OX2rXfcN9wQ8fRhr3/ZmyfciXhwzH2hM1ZNe+WZVlMG2BxX6j7egt/sJdP1ReYq/P5yvSDtQ1q2v3s6em+jxsFWW5HjwCMnGWI26A+y6gjJ+zn5dDXDSkp6dfvEGYv435+TqbMsCyLmUPcB/DGvG3Y/o/6L6ucOWvoNNpw/JTrOtdXzvyiFqP7XsOHDV2nfy37BeYtuaImy38Wfm/4OI2VXzscnEH3/ROdt2u//DIVHnCz6ksa2oQF8F591/2n0T/Zy3HuHOt794bV3wCQ6FGUkdcuYJt/A2eda/wvH/VzXuvw4vzV6UL/PZrwfKrV9xLPQo8o/YAlNgV/CoEba1iMdZPqYgxETDSFdlK31RsNL3/sutzPB95+Nv0vIlml731Qurjr8sh5hbOfLjVurmHEm+k/FtMGWAxy8YaZVTw8LCa7+RKakmLPryD25LFTF9ijfRb/mPH9HmsLf75n8eDtWbvSHoCnp8UHoy1uqeu+3vRP4aV0UiXEtYwu6f5FlMU1GUgdAnt0grvAXUoKPPi84cgJPf/Ss2azoXGvjD0vvTxh6pMWH4+zMjXX1qVqVbUY5WZE5pkkePxFBV2zysBXDL9vdV1exNdeMbFY0cz1qb+fxbCoW1lU+jEg7fSvp6cb9h1SP16JIycMT7x0+WN316G59El4znk7aPx4KkdEZPr4np4WYd1vZVHp3oDdf0N298fD2BHgD5fDUb2GZgvjcLCpXz8OLFoEwFnLj+eqf8jmos1S1RvYEUoVc/28HDalBTFVLkrf293P2X9gr4Q51c13HSk8FPwpJIZ1gWa1XZfvSIBhbxS+F/YzZw09JhocDtd1xvWyqFU1ZwI/AAH+Fk93cn1/P6wr3CO1jDGMnu1gzNvpPwavDbLSnDMkO4Q1tGgb4rp84Q/2HBqF2T8HDbc/bY/8OJXGSiVpqV0NfnjV4s2hHpS8Jvv60t/PYvFE9/PIgL16xkfLC3c/XonMLOleuVzG+9myLN5+1qJKOdd1du2HXlEKILhijGHGZ4bQ/oad+9KvX6Wc/Zwc2ClrArHPPITb1Um//cWe5FauzntLDW8udl/ntUEW9WtcWZ+GN7Zw9HwuVfpXu39nOsuPniRDc/PJ5QbPMOw7nHpbyyMfM+Cfwc7b1w0fTrX+/a/4PnrdDfMqPcc/PtcCUO/0T7T/9w3AHjnyrp6DWc4Yw59DhpDwkf2rUrLlzfPV32FdQOpfNIoVhac7u39eXuNvcfvrY9nrUx0433+vp6ozcpbhz3g9Bws7BX8KCS8ve2UbXx/XdV5fBMvWFK4XhefnGv7c5bq8WW0Y1Dnn2nNe//uhuJuVUCLfKVz9dJ4xhpFvGSLnpV/3zaEWfdvlXNAOIOpxCw83r6pDXy+8X0C/ijM07GlYsTZj9X19ILKXxdq3LUJvzJl+LFPCTikrW8J9vW4TTKEOwGbWlSzpnhmliln/pYm5rrPwB/s9TlI7fsrw4FhD/6mGpOT06991C/w++8onWU+Lj7fFm0PdH+/pVw3/HtVz7kpt3GHoM8X949fzLoi48+r6deKAa5hX90L6SY9941OlD30Sa6cvScYtW2OY81Xqbc2PfcHQ3U/ggf1YlnnsSa4bNuyq7iewtMVd4UV5scqrOLCvg4h9L1DlzBbATv0qrJ9fsoMxhi2jRrHnbXuS7hQ8mVB1Nr9c0+qyuumN+jnv9tBr2P7QDGf/9dj3AlXO/OUsP5tkL/RzThPpF2oK/hQitatbTHjM/YtHzyjDsZOF40Xhlz8Nk+e7LvfxhjnDcy7d62LFAywGuJlj6Ntf7HS1wuTEacMj4w0T33Nfz7LsNL3H2uZ8v9WpbvHo3a7LV2+ET1fkXHvygqRkw5AZDu5+xvDvsYzt07IxrJtjMaq7hY93zvZjjUoWX0RZFPF1XScpGe4bYdi0s3A9B6/EuXN2cOFKlnTPjOb1LZ5PZyW/QTMMa7eqz85bt91w02OGBWnMI3IpDw+Y2NticZT7pb+vVPP6Fo/f57r80DF79INk3snTho7PuR91d2MNePXpq+/XEtdYDBjnPv3riZeUhplRJ08bHpuc+rFqcmI5I3b1whM7pefUHT1pOGlclozCe/xeiw1Fg1lY5nEAfM0Zhuyx04c27YSV6676LuQ/2ydMYNeMGQAYLCZVeZ1Vxe+5rF5GRv1cbNiEEL6rZvefjznL0N398DDnnOU/b4Ypbr77SMGn4E8hM7AjhN7ounzPQTK0clJ+dzbJTvdyN6HlmAiLOtVzPoBw3sCOFgFFXJePL0Sjf85/SXl/mft6Hh4wb4RFj7tyr9+e72lR1E2/PTvTkJRcOPru772GW/unv6TweaWL2/337csWQVVyrw+b1bFXknI3iuvoSbhzqGHvv4WjL6/E+SXdv1rtvp6rJd0z69mucHsT1+Vnk+CBsYV3fjuAxLOGZWvsgOzNfdwvdHBehdLw3VSLZx+28PDIvuflxN4WFUq7Ln/nG/j2l8Lbd1fCGEPvKe5HOF/jD5+MsyjimzV9e9+tFkcfGO1MP7k0/WvfYRj6mvoxI0a8ZYi/KBWz/skfGbOzG97GHqa3qeYD3Dt/cpbNgxfeGIKqwNzAkez2qQlA7dO/0uGgHaTQxM9ZY8fLL7Nj8mTn7ZcrTyWmZMc06z7ViUylvAf4W9z91nPs9rWXer4h8Tc6H3wlVZ0xcwwb/lZfFlYK/hQynp52+pe/n+s6c76CL34s2C8KL7xr2LDDdXnjIHsJ6NxUurjFE+1cl38ZB7/9VbD7yRjDm58bbu5j2LLbfV0PD3hvlMUjrXMvaAD20Okhbhba2P4PzPw859qTWz6OMTTqZfh5c8bqd28Df75r0a1N1k/ofCXaNrd4LZ1fwnfth7uGGY6fKtjPwyuVFUu6Z4anp8V7oyzKlXRdZ8tu6D+18PSXw2H49S9D9PuGVk87KHm34X+D7YDsmaT097+9iZ3mFdYw+5+TJa6xmD7Q/f30mWI4fabw9N/VeuP/4MNv3dd5+1mL67M42P7SkADeDHKd/jX7S1j+q/rRnVXrDa9+duF2rdO/Mm7ng/gZe8K8uJJtuW/Rq3i4y3fNJMuy6HOvxVkPf6ZUeZWU/74mdt8/gapn/uSTFXBQ6ZdXZdcbb7Dt+eedt79sEsWSUo+kWbd4AG7nAHXltmb+7Oo+w9l/j+yP5trEjc7ypGQ7/StZ6V+FkoI/hVCNShaT+7p/MXlskuHQsYL5orB2q/vUIW8vO93L2yv3v4AOftB9+skL7xbMPgI7zatrpD1PQXpfUjw97flCurTK/T4DGPKgRflSrsufn1tw0ysTzxoen+Kg8xj3ywmfd20FWP6yxdwRHpQpkTf677w+91mMSPszmdMf26Djc/oQdamsXNI9MwJLW7wz0v3x5i2Bd78puP21M8Hw1mLDA2MclLvPHjX57EzD8l/t0U8ZYVkwOgK+mWJRvlTOPS/vD4N7m7su/3uvVrzMqF/+tEfeuTOwI3RskfX9W76URZ9RoanSvy5ePQqg92QF8lw5c9bQK/rCyojXJm7khR2dKOo4CcDP17SidPQsqlf2zvL77t7GnnNvc9FmfFq2HwA+Jomhu/txLukcc7/O8rssNP555x3+evZZ521HrzFMS+7tsv5THe2g+JUYNq4py2sMAMDbJDN09xN4OS68Afy2hXSnUZCCScGfQurx+9wPj993uGCuypB8ztAjynDOTbrXyEcsbrzC1S6yWrmSFr3bui7/7HsK5NDNP7YZmjxq0v3FEuwlhxeMtegUnjf6DOxht+7mHzl0DKI/KHj9tnmnPUoroyObOofbowpaNsk7fXep8Y9aPNLafZ1lv9gBc02GafstG5Z0z4zWzSyeech9nb4vGf7aVTD668gJw6exhr4vOqjZxcG1Dxh6T7bn8jmUwXm2LlamOCyZbPF8T48cn/POsixefcp9yvPk+XYqsLh25ISh02j3k3jfUhcmpfND4NV4pDXE3zM61epDF6d//b0XRs9WP6Yl8h3DX/+l6lU+s5WoHfdTLOUoAGuLhrL87nn07ehmBZerULq4Redw++955Yez67/0oVqJv9P54CvM/NzgcKjfMivh44/ZNHCg8/a1Q4cy5tRAl/WLB8BTVzDq5zx/P4v2bz3LDj97qeeaZ9bT5cCLqepEztM8eIWRgj+FlIeHvTzuNf6u63z4LQVuSeOo92HtVtflN9aA4Q/nXHsyYmgXCx83P+4UpNE/xhhm/p/h5sczNhdFyWtgcZTF/WF5L3jQ6257mXJXXl5gL39dEBhjmPOV4abehvV/p1/fzwdmDrGYP9aieEDe67uLWZbFrGGW22A52KNJxs4pGP15NXbvt1f2yuol3TMr8lGLW+q6Lj+VCA8+bzhzNv/12dkkQ8xvhpFvOWjW20GZtoaOow1v/J+dVno1mte3A7L/a5Z7z8sq5S0m9HZ9/ykpdrA1JSX/9V1OcDgM3V8w7Nznuk6pYvDR2OydUN+yLGYMD+C1Gq7Tv17+GH7epH682O9bDNEf2H+XT9pF9I72lDx3EIDN/k2YEPQ+b4z0z9b5tx6/1z52socfU6qkTh9K2baJ5b9m210XSAcWL2bj449z/heRqv36se324fy0yfU+gzpbVzzq57yQxn4cePQ1zuEFwEMHXuL602ud5edS7PSvwjIPpdgU/CnEqpa30p1rocs4w5NTHfk+RSUlxTDjM+N2uLinJ8x5NudXF0pPpbIWvdysIPXRdxSIX7CPnzJ0ed7w+IsmQ6kJt9SFtW9btLk5b/XXeV5eFtGPu27bmSR4rgD86nl+FbaeUe6/8J9Xuxr8PNOi9715Y26fjPDxtvg00uLGGu7rjZsLs77I/316pbJ7SffM8Pay+HC0RYkA13XWboWhr+f9/jLGsG674cX5hjuHOih1j6HlU4YJ78KaP8HhSP8YGTG0C8RMy96gXEY90Q6a1XZd/vNmeG1RTrUmf5kyHxb/6LrcsuD95yyqls/+fq4WaPHwkFAWlbZTW3zNmVTpXw4H9IrWl8/zks8Zekbbi5GUSk4g+u92lE3eC8B2v3qMrP4xzz5aLNsXRAiuB/Wvs//+0/8mPi6bOn3ozc8ymD8q/LtsGet69sT8t8JM5Z49uT4ykjFzXO9TIsBOycwKQ55ryLdBgwDwJIWhu5/A23HWWb5uu1JpCxsFfwq5nnfDXbe4LjcGXv0Maj9i+Dgmf6Y1rN5oaNrb0H+qIfmc63rPPgSNa+X+h960PPOQhZeLOf2MgYnv5b9+udjvW+w0r4++y1j9de2AKwAAv4BJREFUoV3g++k58+H1atwTArc1cF3+zjd2ilt+db7f0luF7byed8GaNy3q55G0yswoHmDx1SSLymXd13v8RcNXcfm3T69UTi3pnhnVK1jMfsb9fb36GSz8Pu/1154D9mi6ruMcBLYzNOhhGPKaYclPZCjImhk33QBLplhM6uuRJ+a6A3vy7reGuX7fAxjxpikwoyezyvdrDSPecv+YjHyEHP3R5Il2sKHlc/zjcy1wefrXhh04R7oUdlPm20Hp4uf+Jfrv9lRM2gnAbt/rGX7dpwTVKcFgNwtKZBXLsnj8vgvXyLvln2Gn7w0AXH9mHX6LpvLPQT330nP4++/545FHMMl2/mWFBx/khilTWPKT5XYxjEEPZN2oaD9fiwdmD2FbEXup5+pn/+SR/VGp6kx8H9ZsVn8WFgr+FHKWZX/AKnmN+3oJh6DzGMPdwww79uaPF4h/jxoem+QguK/hdzepXgB1r4XnuueND71pqRZo0c3NvCPvLSPf9MvFjDG8vsgQ/IRhWwbSFUoVgy+i89aXFHcsy/3k6sbAsHww8uBSxhimf2q4pW/G0vMCiti/NM9+1oOiRfJ+v7lSqazF15MtirsZTZKSAp3GGH75M//165Uyhhxd0j0z7g9zv2oiQM8oQ/y+3O2vxLOGz1faI21veNhBlY72aLoPvoUDR7L2vsoUhwdawqxhFjsXWKx504PWuZjm5cqNNSyGPOi6/GQi9Hs5f/4olR32HzY8+Lw9asSVlo1hrJv56LKDp6fF6yMDeKV66vSvSme3OW9HzjNs2lm4+/HPeMPzcw1FU44x4e+OVDu7BYAEn2oMu24hJ33L8vazFl459Nnn4f/ZKboAyR6+TK4ygxTsaOxDCZP5cOb6HGlHfnX0p59Y26ULjjN2tL58u3bUefVVsCy3KeIlr4EBHbK2Lc3q+3C072skW/YcEp0OTueGU2uc5SkpEDExf6ZBS+Yp+CNULJP+8qrnff0T1O1uiHov765u43DYK53Uetgw64v063t42Olevj5578PvxYY/bOHh4hmbkgJR7+fN/nDl+Cl7pMATL2UszSukHqydbXF3cN7up0s1q2PxQEvX5UvXwNKf80/fHT5uuH+UYcA095OJntc4CH6bZfHQHfmr31ypd53FwvEW3l6u65w+A3c/Y/g7HwZkr8T0T3N2SffMerGf+5S9oyfhoXE5/57mcBi+X2t4NNoe3XPfCHtp5/MTvWYVPx+44yZ7ct/fZlns/z+L+WM96HWPRbXAvP28HB1hUaOS6/LFP8JnK3KuPXlVSorhoXHuUy4rlIYPRmft6noZVae6Rft+zV2mfyWfg0ejC+88Tg6HvbqXlXiS8Ts6c/2ZdQD861WBZ65bxCHvijzbFRrUzLm+K1bU4qFWF25v9W/E/HJPAeDFOUq+8QRJp8+mvXMhd3ztWn7v1ImUU/aSp2Vat6bem2/i4eXFV6vtdF1XBnXOnrkQBw+vy7La9kpjnjgYursfvo7TzvJNOzVvYWGh4I8A8NAd8JibVaUulngWhr9paNTLsHJd3nqh+PUvQ3Bfe6WTw8czts8zD0HT2nn7AzBAzcoWXW53XT7n6/wzgfDvWwyNH7VXo8mIZx6C2FcsquTxNC9XJvR2HywY9kb++ND743r7eb/oh4zVH9ABfnzN4vpsnp8gp4U3tpg73P05HTgCdw41HDqW9/v1anz7WxEGzXBfp+H19jw/ufGlE+xh7x+NtfD3c13nxw0w5u2c6autuw2jZzuo8aAhbIBh9pdw/FTWHd+yoEkt+3Xz25ctjnxpsfQlD4Z2sedays6JYrNaEV+LNwa7b++T0wxHTxTs51l6xs4xfPeb63JPT/s5WL5U7vX9Mw/BT8EX0r/qnv45VfpX3Mb0g8gF1YyFsGbdGZ6Pf5i6p+0RGUc9y/DMdQvZ51ON2tVgVLec77s+96a+z/fLDWW7nz2TftWTG/h28Itp7Vaondy0id/uv59zx+0vIaVatODGefPw8PHBGJP+qJ8smuvnUj7eFt1mD+Av/8YAVEnaRo9941PVmTzfnipDCjYFfwSw01PeGGwR2cv9ylIX27gDbu1v/2p5+HjuvlgcOWHo95KDpr2N2zzaS/Vrby/lnF+MeMTC1Ry5yedg8vy8/aJtjD3x9i19TYZWpSldHL6Mtoh6PH+keblyXUWLfu1dl/+xjQzPm5MbHA57tN9tAwy79qdfv+Q1sOgFi2kDPfL8iLor9dAd7if0BtiyG+4dbkgsoEOpf9sCA18vk+6S7osnWgRkw5LumXFDNYvXnnbfhqj3Ydma7Omrw8f/S3Ht6yCoqyFyHm5XY8qs6oH2DzgLnrc48H8Wv7zlQdTjHtzexMLPN38/B1vd5D7tOeGQ/YNUYbXkJ8P4d9zXmfCYxW0Nc/c68PG2079eruo6/WvEW4adCYWrL3cmGJ574yzPxUfQ6OT3AJzwLM6z133Kbr8gLAtmP5M7o9Ob1LJoesOF2+c8fJhSZYZz9SjP+S9yfO3aHG9XXnVq2zZ+bdeO5MOHASgRHEzD99/H08/+5eHLOPjFzaifwQ9YFCuaff3cqLY3pwe+zlnLbk+7f2dS/+SF2eEdDnv1r4L6mUVsCv6Ik4eHxajuFuvnWrRsnPH9Zn8Jtboa3lmS87n3xhjmfW2o1dXw2iLcfgm5WI1K8PVki1ef9shXv4LWqW7RIcx1+VuLYd+hvPmifeykofMYe+LtjKQLNa9vp3ndlc/SvFwZ1c39XDGjZuXNN9z9hw1thhiGv+l+Lonzmte3V2G779aC0W/uDO2C26Ae2CNKQp4wzF9uOJdHU2WvxJ4DhvtGQGKS648RObGke2Z0a2PPY+GKMfDIC4b9h7Omn5KSDf/3g6HDKAcV2tsprqs3ZsmhKXkNdAiDNwZbbPvQYscCD94c6kGncIsyJfLG452VXuxnUbq46/I3/o88NxI5J+zab3h4vPvzbhuC27mTclLT2hZ39AhhoYv0r1OJ0GdK4ZnHyRhDn+hz9N/Sh1tOLAUg0aMoI6sv4O8i9QF71afgern3nO7bLvV9by9yIx+UHwyAh0nh98f64jir9K/E+Hh+ve8+kg4cAKBY48Y0+ugjPIsWBUh31E+pYva8eNnt6cFBLKs3EgAPDEP29MMv5aSzfMtuGJnOpPGSvyn4I5cJqmLx7csW746yKFsiY/v8e8yOFt/+lMmxZcfXbTfc9qQhYqLh4NGM7ePnA+N6WWyYm3eXCE+Pu6G/Z5JgSh4c/fPrX3aa1yexGas//GGIzSNLDmeV0sUtRj7i+nx2H4BpH+dggzLg218MDXoalv2Sfl3LghGP2P2W11dhyyqWZTFtgMV9oe7rrd0KXZ431OhieOkjw7GTee85mhnnl3Tf+6/rOjm1pHtmWJbFa4Msrq/sus7+w/DIeIPDcWV9ZIzh5032xM0V7ze0G2n47HsyFPB2x8cbwhvBC49Z/DzT4uDnFp9EetDnPosalfLOY5xdypSw0p0zqvdkw9mk/P3cyoykZPsHlUPHXNepHgjzRuatVL9xvSxiGqVO/2r/7xvO8qVr4N1vcqt1OWveVw7q/98Awo79HwBnLT+eq/4hfxZtCsC1FXJ/dPoDLbnsh6sPyw1im58dnEraupm/J03KhZblHWf27uXX++7j7D/2kPaAunVp/OmneBUr5qyzeBX8+pfrYwx5MHtH/Zzn7WXRa3ZfNhS1l3qukBTPY/vGpqoz9WP44Y/C81pa2Cj4I2myLIuH/2fx53tWhucCAoj5HW7sYRjztiPbZo0/fsrw9HQHjR81rFyX8f3uCYGN71g81z1/D4NvUNPi3uauy1//P/j3aI41xy1jDK9+agh5wvD33vTrlyluj8ia0Nsjx1a0yElP3g9Vy7sun/i+4d+juf+Ge+6cYdRbDv432LD/cPr1y5eCb6ZYvPBYwew3dzw9LT4YbXFL3fTr7toPg2cYqnQ0DH7VkesrTGXWvkOGF+cbmvY2/LHNfd2cXNI9M67xt+f/cZfevOwXmJTJpad37TdMeNdQ+xHDzY/bEze7+1KeETfWgMEP2K+Jh7+w+G6aByMesWhaO/fmT8pND/8PWt3kunxzPEz6MOfak9uGvW74aZPrch9v+HicRclr8ta14u9nMWN4AC9VvpD+FbHvBSqfubAs61PTs24EXl5kjGHLx0tIfuw2Wh+xL9pky5tx1eaxLuDCrwlvDbNyfYVMfz+L7pekXaZY3kypMsO5etSOl1/m2G9uJp0qwM4eOMBv7dqRuHMnAEWDgmiyaBHeJUs666Q36qd0ceh/f3a39IIbg7wwQ17jjOUPQNtDb9PoRKyz3BjoEWU4lVhwn4OFmYI/4lapYhZvDvVg5QyLetdmbJ+kZBg31w4CfftL1r1wGGP48FvDDQ8bpn5MhlJQAKoFwv9NsFgc5cF1FfPWh6Ar5W70z+kzMPWTHGyMC0dPGDo+Z3gyg6tC3XqjnS6UX0dkZYSfr8ULj7k+v+On7CVvc9PuA9BioOGFdzOWRnnHTXZ63h1NC26/pcffz+LziRY13axKdLETp+GlBVCji+GBMQ5+3pR3P2CdTTJ8Emu45xkHlTsahrxm0l2NKjeWdM+MRkEWU55w375Rsw0/rnffLydOG+Z+bWg50EG1ToaRb6X/2Ljj5Qn3Nof3RlnsW2TxxxwPpvTzoM3Nuf8FMC84Pzehn4/rOuPfybnRx7ll77+Gp15xMC2d9/mX+1vcdEPevG5aNrG4+cHU6V+D9zzpTP86csKeyLsgOvLjjyy79U7iH3uQ6qftPNAUPJhY9S3WFLvDWa/X3XB7k7zRf33uu7wdfxepx/vlhto3HA429u1Lyn/LmhcGKadOsePFF/nxpps4tWULAEWqV6fxokX4lC2bqu7nK+H3rWkdxTbkAYtrcnhevAFPXsuyRmOdtwfveRL/lAsr5Wz/B56dWTCfg5c6sWEDCYMHczYhIbebkiMsU1gSa/Mxh8NBfHw81apVw8PVWt85IPmc4aWP4Pm5hsRMpPd2vcPO17+aVSY27zT0e9kQ83vG9/HxhmFd7CXS/f3yxhtoVmozxME3P6dddo0/fD9lNzfWqZIr18wvf9rD0Xdk8HV0xCPwfA+rUIwacTgMNz1mXH4Q8PKEze9a1Kycs4+Fw+Fg9sIDPPN2OY6cSL++pydE9rJ45iHyVEpBbtr+j73aYEbTUC8WeqO9xOu9zcn1UR3GGH75E+YtMXzwLRm6Hs67O9gOtuf2OaTHGMP9o9yvXFe1PPw+26JUsQvnkpJi+PZXeGeJYeEPZOq90JWmN0C31hYP3A5lC+B8PRfLis8z0e8bt19KbmsAMdPyVqpTVtiZYIj+wPD2V+mnEXZpBe8/Z2G5WiEiDzh6wtCw60nGrr6NSkk7AJhZIZJPy/Zz1vk0EhpVzf3Pv1nhyB/rWfl0JH6/LU21/c8ijXmrwjjWB4Q4t1UoDZvesSiRh0ZthT3p4Ps/Um/zNMlM29aaoMS1AFQfOJDrn38+5xt3kez+zuRISmLP3LnsmDLFOb8PgG+lSjT96iuKVKuWqr4x9rQHa1185itdHHZ8lPPBH4BNf6fwVVh7GpywJxpfUrIrL1WZnqrO8pctWuaRIGRWO7V9O39PnMi+T+xIeqUePajz8su53Krsp+BPPpBXgj/n7dhrT9r71eqM71MiAKIft3j0nsx9UTx52hA5z/DSAjiXwZE+AP9rCtOfsggqYEtMX2zlOsOt/V0/fZ9qf5QXB5bI0WvGGMP0T2HIa4bkc+nXL1sC3h1l0bpZwe2ntCz/1dDqadd91ykcFjyfc/12Nskw9HW77zKiSjn4cIxF8/qFq98y4vctdlDhSldyqlEJnupo0eMucny0R8K/hveWwdyvDZt2Zn7/htfDD9Nzf2WvjDp83NCwp2H3Add12t8Kn4632PA3vPON4f1l9upSV6tyWXikNTzyP4va1fPH45UVsuLzTPI5O4C+brvrOrOGWfS6p2A8rn/tMkx8z35uZmTE8w1VYc2b+eN5uOgHw3NP/ciU7ffggeGs5Uff61ewx+96wA6CfB25i/p1quaJz79X4uDmHcQMnEDxnz/Bgwvv+7t8r2dO4ChWFbuHS5dxXfRC3ls04cNvDQ+Nu/xzS/Uzm3h1a0t8TBJ4eND0m28o0bRpLrTQll3fmUxKCgkff8zfEyeSGB9/ocDDg4oPPUSNkSPxq1Dhsv0W/WBoP9L1572oPhbPdM29vp72ajzVRjenqMOe9HlU9fn8XOzCygjVAmH93NwJTmWXM3v28Pfkyex97z3MRS+qftWqEfLTT87V2QoqBX/ygbwW/AH7S/6nK2DgK+4n/bxUcF2YOcSifg33LyLGGD5bYed97zmY8eNXKgtTn7RXxMrLv3hllfCBDmJdjIYqXjSFnQs8KXFNzlwzR08YekbZv4ZnRFhD+GC0RcUyBb+f0nLXUAdf/+S6PO51i1vqZs9jc/SEYeNO2LgDNu6wRzJk9Mv+faHw9rOpR0NIasdOGmYshOmfGvZlYM6ktJS8BvrcC092yN7nyJmzhs9X2aN8lvxsL/V6JSqWgZ/eyH+TtK9abwgb4H4lu+sqkqE5y9ITUAQ6trADPi0aFc4Rc1n1eebnTYZb+hqXqaklAuDP965uxHFuW7vVMOE9e6GEjH5S9/eDn2da1L02/5x35zEOSr8/nPv/nQnARv+mDK7xFQ7LE4AHw07w/vPX5JnPvxkVv3kfywdNocLqeXiZC0O1DnpX5J3yz7Ks5IM4LK/L9nugJcwfm/fO9WySoXIHw79pzGX2wIGp9No3DgD/66/nlu+/x7NIkRxuoS2rvzMZYzj41VdsGz+eU5s3pyord9991Bw5kqJBQS7aYo/6cTVHXpn/Rv3kZqA2JcXw1J3zuPfnpwA45BVI76BVnPC6MGdR77Ywc2jeuyYzK+nff9nx0kvsmT071Qp13qVLU7xHD+oNGoS3v38utjBnKPiTD+TF4M95x08ZnptleHVhxr80eHrCoM4wJiLteQy27rbniXGV0pQWr/+O+Vz3/PFrV1b57lfD7W5GkEzsDc8+nP3XzM+bDA+MzdhoB8uCkY/Y/V8Y0rxcWb/d0LCXcfm8Cb0Rvp9+dcP2j5+yR3Bs3AEbdxo27oANO8hUwPY8H2+Y8oRF//sLR2A1K5xNMny4HF76yLD+7ys7hrcXPHi7nRLW8PqsedyNMazZDHOXGD78Fo6eTH8fd4KqwCfj0g/q51UT3jXZtrSthwe0amKndbW7NedHc+U1Wfl5ZuA0B6+4Ga344O3w4Zi89ZkpI1ZvNLzwruGLHzO/7zsjLR5pnb+usf2HDQ0eOkXUb7delP41jk/L9nfW+fZluL1J/ujLDeuPsuyZ6dRc/Tp+jtPO7cc8SzG/3NN8XroXyR5pjywoXdxO9ypXMm/24TOvO9KcVN3DnGP6jjZcf9Ke9Lla//4EjR+fw62zZeVrzOHvv2dbZCTH1qxJtb1UeDg1R4+meKNGbvdf+L09EtiV6Mcthj2U+329ZZeDT2/tzE3HvgVgeYlORFedmarON1Ms/pdPR+knHzvGrhkziH/tNVJOXvjA41WsGNX696dynz78c/hwnvyenR0U/MkH8nLw57xf/jT0mWL4bUvG96kWCK8+dWFFmNNn7KHNkz7M3LK4LRrBjKct6hSiofPnGWNo/oQhbmPa5WVLwLNdLVIcdnAu1f/G/rXbYbjw/0Xlae9zed3kc/D1T2Q4zev95wr35MAX6xXl4O2vXJcvfMGiXQaGfp88/V+QZ6c9kuf8qB536SyZUbMSfDTWonEt9duVMMaw/Fd48SPDEjejvdLTsjEMfsCizc1XNmpk77+G95baaV2b49Ovn55aVeDeW47wXM+SXFM0b743ZYTDYWg9xPDtL1l3zHrXQrc2Fg+1gkpl9bw5Lys/z5w4bajziPvRwV9GW9wVnPcff2MMsb/bE1Z/dwWLJnl4wKTHLQY/mPfPNS3zvjZMGeU6/atGRVg3N+/O32iMYcXPiXw35i0arJlKsZQjzrJEj6J8WqYvn5Ttz2nPYi6PUTzATvdq0ShvniPY89rV7JL218YqZ/5i1o4WWMlnwbJo+vXXlLjllhxuYda8xhz7/Xe2jRvH4ZiYVNuL33QTNUePptRtt2WgHYZGvVynp5YtYY/6ySs/CLz21j8EPhvCNSn20K7nq73DquL3OMsrl7XTv/LSPFTpSTl9mt2zZrHz5ZdJPnLhOenh50fVPn2oNnAgPqVK5Yvv2VlJwZ98IL9clCkpdqrDqFmGE6fTr3/e/bfB/bdZjJqVuXkyAkvZE0l3aVW4RyJ8vdpw17C8/zRu0cgO/BTWNK+0/HPQcP1DridQD6oCG+ZZeHtdCJBujue/ETzmvxE9EH+F88tkxEOt4I0hBSvfOzdt3GF4eYHh3aWZC3JfrHY1eLqzxcP/gyK+7vvlzFnD/620R/ksXXPlaV3nFQ+ALrdDxJ0WN9Uy7NqV99+bMmLfIUODnoYDR9Kv60q5kvYCB91aWzSoWbjfl1zJ6s8zi1cZ7h3u+v2vannYOC/vjgg2xp4/8YV3XP+Ik547b4bREdmXJpwTjDG0GWK47v9cp389/D/of79Fo+vBxztvnGtKimFh7Dm+m/g+oX9EUzb5wioXyZY3X5bqwQflBnHUu5zLYxQPgMfvtV/T80OaYuvBDpauSbtssMd0Wq8dA0CR664jeOVKPHM4jeZqXmNObdnCtvHjOfD556m2F61dm5qjRlH2rrsy/Lr+aayh42jXr02T+1oM6ZJ3+tvhMAxoO5/7VvUF4KhnGR6r9SPHvMo46/S4C95+Nu+/1zuSkvjn3Xf5e/JkkvZd+IBseXlRKSKCawcPTjU/U375np1VFPzJB/LbRfnPQcPAV+w5gbKDpyc8eT+M7WFRPCDvvHDmFmMMTXsbfv0rt1uSNsuC57rD6O55fwWg3DDqLQcvvOu6vEOYHSTYuBN2JGR87oerVcTXHlEXcae+xGaH/YcNry0yvLaQNOdQyIiyJeCJdvBE+9RpAsYYftpkz+Mzf/nVp3V5eNiT6Ee0sbgvFPz+Czjlt/em9Cz92R4BlBl+PvY8WN1aW/yvKYU6lTUjsuOa6TTawSexrsuf7gwv9c9b12dKiuGz72HCe65XAUrP/bfBiEcsmhSQEZk7EwyNHznFS+tuo1KSnSd7afoXgK8PNAmCW+pAcD2L4Lo5P7ru9BnD3K8MMa/8H3dunkCVsxc60YHF8hKdeTfwWfb5VHN5jMpl7YDPo/dAsaL5pw/dpTJ5mBS+5S7OrbejQ1Uff5xaUVE52bwreo1J3L2bv6Oi2Pvhh6l+IfGrWpUaI0ZQoVMnLE/PTLTBXkzAVbp3uZLw9/y8M+rnvO3/OPgw9GFuPmIPSf+++L2Mrzon1YTkEXdCl9stwhvj/GEyrzApKez75BO2T5xI4s6dFwosiwqdO3Pd8OH4V69+2X4F7bNMehT8yQfy60X5ZZy9PHtWjkpoXt/+QtqgZt56wclt6a0mkFvKlbRH+7S6Sf3lyvFT9jDqK1kePLvUuxY+er5wplLmtMSzhne/gZcWGP7adWXH8PWBR/4H3dtYrFxnj/K50mNdrHY1e4TPw/8jzRF7+fW9yZ3hMx1EvZ9+vdsa2AGfji3QjxCZkB3XTMK/htrdDMdcBDk9POzJyG+6Iff7KfmcPc/WxPcMf17Bc9TDwx55N/zh/DWpc0a98onhzYlxvLj97jTTv1ypUg5uqQvBde1gUKPrwdcn6x+fg0cNMz4zrHg7lg7bI6mVmHrFjR+L3cnc8iPZWaSOy2PUvw6GPWTxQMu89+U5I5LPGap3dr3Yy5DmW2kzJwzHmTMANPniC0qFhuZY+zLzGpP077/sePFFds+ejUlKcm73KVeO64YOpVL37nj4+GS6DZ/EGjq5GfUz5Ym8m6L55rz9lBoUTPEUe7WKCVXfIrZEh8vqlSpmB6A7h1uEN8rdHz6MMRz88ku2vfDC5ZNy33MPNUaOJKB2bZf7b//HwcdLD7E2vjTb99qT5hfkHz0V/MkH8vMH7FOJhnFzM79U+6XKloBJfS26tS6cK6SkJ71fGXJD+H9pXhWU5pWuGZ8Z+k/N/ZfiMsVTeKKdJ88+bKWbTiRZy+EwfP0TvDjfEONiBb+cUCIAurSyR/k0re1+1Fd+fm9yJfmc4e5hhmVpzP9Ts5I9j8/Dd8C1FfX8uBLZdc3M/D/D4y+6fg2tXQ36trOoWQlqVILqgTmbOnQ2yTD3a4h6P3Pp7ed5e9m/uD/zkEWNSgX32ktJMYT2NzRcNoL7/30DuDz9KyN8vKFxkL3C7PmA0NWsRLj9H8NLHxl++Pg3uu6OpPHJ1EPb1xcNZnbgaDYVvdnlMW5vAkO72CME8/sXyzFvOxg3N+2ygCLw652vEz92JABFqlfnlpUr8QoIyJG2ZeQ15tzx48S/+mqaEwBXf+opqvbpg2fRold4/4YGPQwbdqRdnldH/ZxnjOHJ9p9xX2wvAI57luSxoB854l3e5T5liv8XCGppEdYgZwNBh1asYNu4cRz/9ddU20uFh1Nz1CiKN2ly2T4Hjthzqy3/1Z6PcUdC6vIt71tcXyVv9k9WUPAnHygIH7DXb7cnhM5sTrtlweP3wQuPWZTMR5OM5Yb0VhXIKZYFo7vbK68pzStjks8Z6nYzbN2TM/fn4w03VIW610Ld6hZ1r4Xa1QyeyfFcd23+fZ0pKH7fYnhpgZ2ydTVB84zy8IA2zexRPm1DLqR1pacgvDelJSnZXm1p0Q/2l+5mte3l2W+pm/+/tOW27LpmHA5D2ADDynUZq+/hAdXK24GgmpWgZiXL+fd1FcmyiYVPJRreXAxT5rseKeFOEV947B4Y8qBFlfKF49rbtNNwS49TvLLxQvrXX0Uascs3iP0+VTjgU4V93lXZ71OVg96VOOeRsZEZlcqmDgY1Dkp/dNDPmwyT5xt+XrqF7gkvcOuxxanKt/vV4+3A51hzTatUqTHneXpC53AY8kDBWjBhzwFDtc6uVyt942kHjd9sy9G4OACqPPYYN0yenCNtc/cak5KYeGEC4MOHnds9ihShap8+VB84EO+SJS89ZKZ8HGPoPMb1Z/EX+1kMeiBvXwvx+wxzQnrQ/PAiAOKuacOY6u+neY1fqmyJCyOCwhqSbd8Djq5Zw/bISA5//32q7cWbNqXmc8+lmpT7xGnDirUXgj3p/VD++mCLx+/L2310NRT8yQcKygdsh8Mw+0sY9rrJ0BwUzWrDa4MKTj57Thj8qoOXFuTe/V9f2X7RvL2J+iyzPlth6PBc1r4ce3vZk0bXuxbqXmtRt7od8KlR8fJfZgrK60xB8s9Bw/RPDTM/v/p5e9JSp/p/aV13cEUj9HTNSGZl5zWzeac9aXdGVp5MT8Uy54NCUKOSddHfGUvzO3bS8OpnMPVjc0Vzel3jD/3a23PC5NVlv7PTpA8M77x4If3LFQcWh7wrsN+7Cvt97IDQPu//AkQ+VTnoXZlkD9809/XxttPDUo8OsufV+2o1TP7QsHnNHh7eP4n/HfkATy5EOvb6VGdu+ZGsKNEeY11+Hfv7waN32/1XvULB7L92Ixz838q0yxrUhFUjd7A6NBRHYiIARW+4gSJVq+JXtSpFqlSx/69aFb8qVfApWzbLAutpvcY4zp1j7/vv83d0NGf37nXWtby8qNS9O9cNHYpvYGAW3Lfhxh72YhxpKV/KHvWTV1etu9jbH/5LwJPBlDxnL6c4ufIMlpXqkqljlCtpz1vZOdzi1huzJhB0YuNGtr/wAge/Sr1UbkCdOtR87jnKtGlDUjLEbbwQ7Pn5T3ul4ozq2AI+HldwP9Mo+JMPFLQP2AeOGAbPsJccTkvJayCqjz0JnlK8Mu+nTYbY3w279h6jZInieHnaj6Onh/1rp6cHeFj2L1IX/53q/4vremSsXtkS9mgSTXh6ZYwx3NrfsGp95vf19ISgyudH8vwX6LnWDsZldE6BgvY6U5CcPG2Y87X9RfLvvenXd6fkNfYKbhF3WjSpdXUjWXTNSGZl9zUz9m0Hz8/N8sOmUqY41KxsB9FrVoKalS3778pgYT9PX12IyzmI3ClVDAZ2tHiyA4V6tLMxhskfwrpJM7hv91RKpFzBsKn//OtVgf0+Vex/3lX/+7sq+3yqcsC7Mskefs66FcuAvy/sjz/Mgwde5r5Ds/AxF5bjPORVnvfLD2VJyYfTHHFUriQM6GDRtx2UKlaw+2/JT4Y7h7r+Crn6DYsKP7zJX888k+6xPIoUwa9y5cuDQ//971u+PFYGXy8ufo2xgP2LFrH9hRc4vf2iNdcti8BOnagxfDj+116boeNmxILvDA+Mdf2YvNTf4unO+eO6MMYw5tEvufXTh53bDnmV54BP5VTPo/3eVf7bVoUznq5T+8qXgg7/pYaF1s98IOj0jh1snziRfR9/nGrlkyLXXsu1zw5nb/0OfPe7B8t/Naxcj8tVdDOidHE48H9Wgf0OquBPPlBQP2Av/9XQ/+ULkx56eECPO+3AT5kSBfMJl1MK6jVT0G3dbbilr+Hw8bTLPTzsgM75ETznU7aCqlz9/BW6ZvK+lBR72fYXPzL8uCHj+3l6pk7ryqqJUHXNSGZl9zVzNske/ZMVE57npPKl7NSgPvfBNXl0WfrccDrRwRff72PXPwH8uWY3/2zYjfehXZRP3k35pF2UT9pNYNKuqwoOHfIqnyowBND20NsUdZxw1jnpUYwF5QayqExvznhcPhdMUBU7Ne+R/2U8bTa/czgMNR50PYdVxJ3w9jOwdcwYDn71FWf27MFx9sq+kVs+PheCQ1WqUOSiUUNFqlbFt0IF52pcDoeDnTt3ErB1K3+/8AIn1qXOBS3Tpg01R43imnr1rqgtrqSk2KN+Nu1MuzywFPz9Uf6aT9EYw5L7H8cr5qMM1T/mWeq/gFBl9vtU5YBPlYtG5VXhlGdxwH4sOrawRwQ1r+/+h/4ze/fy9+TJ7H33Xcy5C8M6PctVZG+boSzyf4jv1ntz5ITLQ1yR32ZZNArKP32VGQr+5AMF+QO2w2F/iTl0zE7z0uTAWaMgXzMF3Y69hhc/suf/KeKbOshTq0r2fbDUNZO/rN5ozwv06QpczrtQ91rocadF1zsgsHTWXze6ZiSzcuKaWbXe0PIpQ1Jythw+S1UtD8O6WPS8m3z1pTCnXHq9GGPYtd9O6YjbYFi9CX7fCp5JpyibtIfApNSBofLJ9v+lzh24ovs/a/mxqExvFpQdyAmvy+eCCalnT+J8b/PCOVI96j3D8DfT/hrp5wN7F16Yr9M4HCQdPEjirl2c2b079f+7dpG4ezeO06evqB2Wlxd+lSrhV7UqfpUrc+TPPznze+qVE0qEhHD9mDGUuNn1pNxXY/5yQ5fnXX+lnvqkxcBO+e8aOXfiBNvGjePwb2s5vn03nkevfAnnkx7F7Hm7nAGhyiSVqkrD5lW4456qhDQvjaen/b6QdOgQO6dOZfdbbzlXjgM4U6QUiyo9xXt+vUjyKHLV55cWH2+YN8LiwdvzX39lhII/+YA+YEtm6ZqRzNI1kz/tTDBM+8Tw4XLYf/jCL2oRd1o0DsreCYp1zUhm5dQ18/Vqw4Bphm3/ZNtdXJXrK8OzXS0e/l/OrjqW32Tkekk8a/htC8RtgNWb7IVFLp1c29dxmnJJeyiXvJvApPPBoV3/BYf2UPpc6i+0KXiypNTDvFd+KIe8K6Yqsyy4LxSGPmgRUr9w993+w4YqHV3Ps5WZgIcxhuRDh0jcvdsOBp0PCp0PEu3eTcqJzA/vuObGG6k5ejSlb789294PU1IM9SMMm+PTLq9QGrbPz1+jflxJOXOG/X/tIWbJbtb+EM+/W3dT9uweApN3US5pN2WS96aaHyszznr4k1S6MiWqV8ZsXoPj5IX+PuURwKdl+/FZmb6c9iyWVacD2KPq61U7y53BvrS6yR6NVBD6yhUFf/IBfcCWzNI1I5mlayZ/M8Zw4jQUK5pzH1h0zUhm5eQ1Y4z9ZWzrbtj2D2zfa9i2x/47fv//s3ff8Y3T9//AX5L3TJy91y0ut/fg4JhlldGyWwothRZogVKgP7pbyuimUDrogq4vpWXvfXfA7X253MreO97bkn5/yHbsxCPDju3k/Xw8gm1JcXRIlqWX3p/PJ3rFXDItqQG+8wUGV5+VvFFwZpLJ7C+CIKCjPzwMOnAKMTsCl/EuFHjFyqEs3xCOq1ejRxHeF4xCDtx0AfDNaxksqKBtF3Ddj3g892HkeadVAMf+ySQkdBEEAT6zGc62tmClUNhjezt85pHe1dVz52Lu976HgssuG3d/QZP17PsCPvdg9Mvpx+9icNdVM3OfGTQJePkTsb+jDw8C8HmR5+1Bgb9JZkGgEs/biQJPBwq8nZAJ4y/LdDNKvJp7C54ruBsWaW7C1nthJXDuKuDcVQzOXCrAPDx7zmUo/MkAdIJNJor2GTJRtM+QiaJ9hkxUuuwzHq+Atl5/KNQFNHYJwefNPUh4k7E1pwHfu5HBpzfOzuZBk5Wo/cUVqA6qHwmEugbG97sGHXDHFcCdVzIozKFtN9rWgwLOvjv6peSWxxmctWJ6/r95zWY42tvR3daGeZ/6FKTysZ1yJxrHCVh800j/paPNpKqfeAZMAl76CPjfVgEfHogcsLMCB4Ovz1991xlsplng6UCRtwMFng4oBBd8kOLtnBvw78L7xlTfTUZ5wUjYc85KoCSkm5F0+V6aLtKJLOzxePDoo49i9+7dsNvtWLBgAb71rW9h7ty5AIBnnnkG//rXv8DzPC6//HLcddddwbS3vr4eDz30ENrb27Fo0SL8+Mc/RnFxMQDA5XLh4YcfxrZt26DT6XDnnXfiwgsvDP7d1157DX/4wx9gt9txzjnn4Dvf+Q5kMlmi/h8QQgghhJBZQi5jMK8cmFcemDJyIcBxAjoHAqGQGAyNPAccrohvGdHm5cB3v8DgvNXJbYJJYlMqGGxcAmxcAgS2dUefGALtrBf7DjpwKjz0qywCvnkNg5svBrTUCXdUm5cDCyoQtZP1P74iTFv4I8vKgm7RIii1WrDSCV3iTtpzHyJq8AMA375hdgQ/AJCfzeArlwFfuYxBv1EMgv67RcDWQyNBEM9IMCQrwZCsBMfG9p0OCAKyuUG4GFXM0cPiydED56wUw55zV/pHY6RjMIAJhj8cx6G0tBRPP/008vLy8Oyzz+Lee+/FK6+8gk8++QTPP/88nnnmGSiVStx+++2oqqrC5ZdfDo/Hg29961v4yle+ggsvvBBPPfUUfvCDH+DPf/4zAOCpp56C2WzGm2++iaamJtx9991YuHAhKisr0djYiMceewxPPvkkKioqcO+99+Kvf/0rbrvttqT8DyGEEEIIIbOTRMKgski8+D9nFRAaDAmCgL7hkSCoyV8x1NgFNHYCJhsglQAXrBX79Nm0lC420lV5IYPyQnHoaUCsDjrYALT3iUO+b1gESKW0/eJhGAa3XQbc82Tk6p8XPxL7BpqJVVMcJ+DBv0eveirJA2799DSuUBopMIijF371cgZ9wwJe/Aj4nz8IitnmiGFgkuZP+O+plcCZy4BzVzI4dxWwbC5VWUYzofBHpVLhlltuCb6+9tpr8fjjj8NkMuHNN9/EVVddhbKyMgDADTfcgLfeeguXX3459u/fD5VKhcsvvxwAcOutt+K8885DT08PiouL8eabb+JXv/oVtFotli1bhjPPPBPvvvsubr31Vrz99ts4//zzUVtbCwC45ZZb8NBDD1H4QwghhBBCpg3DMCjKBYpygU1LgdBgCABsDgFSyewZ7nsmUSoYbFgMbEjsCOCzwo0XAt/+E+DyjJ3n9QFPvwk8cENy/nbvkNikT/wRA7yeoXLIZYBKwUMpF0dODTyq5CHPQ6aPTGPGvez7+6JXPAHAtz/P0LEAQGEOg9uvAG6/gkHvkBgE/XeLgI8OxwmCYpBKgHW1/qZcKxmsX0Sd54/XlGrijhw5gpycHGRnZ6OlpQUXX3xxcN78+fPxu9/9DgDQ3NwcbBoGiCFSWVkZmpubodFoMDQ0FDZ//vz5qK+vD/7uhg0bgvPmzZuHrq4uuFwuKJXKMevk8Xjg8YQffaRSKeTT0O4zWXh/rRyfit4JSUaifYZMFO0zZKJonyETNdP3GbX/tJTnqTvNRJjp+8tMka0Frjkb+Mc7kec/9aqA+64TMJXuVARB7KfpQAOCYc/BhrEju4lYuL2AdVIjxyfms1uaB9x8sUDHglEKDMBtl4s/PUPAi9uA/20FPqmLHwQtmyNWY56zEjhzKaBVB+aIvzjZ/9cz6Tgznj6LJh3+2Gw2PPLII7jjjjsAAA6HA1rtSNs8jUYDh0P81DmdTmg04Q37NBoNnE4nHA4HJBJJWJAT63cDf8PpdEYMf55++ulgc7KAq6++Gtdcc81k/6lpo6OjI9WrQDIM7TNkomifIRNF+wyZKNpnyETQ/pL+rlgnxz/eKY44r7UX+Ncbfdi8dHwdZgkC0DkoxdFWOerb5OJjqxxDVkkiVzmpvnLxEPp6balejbT36VXiT++wBG/vU+ONPWocbFSAFxhUFnixsdaFjbUurF/oQq5+JJwZGgCGErwuM+E4U11dHXeZSYU/brcb9957LzZt2hRsyqVWq2GzjezkdrsdarUYyalUKtjt9rD3sNvtUKlUUKvV4DgurJIn1u8G/oZKpYq4bl/60pfw+c9/PvwfOQMqfzo6OlBeXj4reiEnU0f7DJko2mfIRNE+QyaK9hkyEbS/ZI6KCmD5/wGHGiPPf2lXIW68dOx0ngeaukOqeU6J1T1Ga3LXN5nK8oH7b8iFQp64oclnuspKYN0K4Ie3Ak434OMAnVoGQAZAl9S/PduOMxMOf3w+H77zne8gPz8f3/jGN4LTq6ur0djYiE2bNgEATp06hZqaGgBATU0NXnrppeCyTqcTnZ2dqKmpgV6vR25uLhobG7F48eKIv9vYOHIkaWhoQGlpacSqHwCQy+UZHfTEwrLsrNgpSeLQPkMmivYZMlG0z5CJon2GTATtL5nhtssF3ParyE1vXt8JdPQzsLtG+ufZf1JsujW55lnp6ztfYKBSUv8zk6WJXN+RdLPlODPhf+HDDz8Mt9uNH/3oR2FDpl188cV44YUX0NXVhcHBQfz73//GRRddBABYtWoVnE4nXnvtNXg8Hvz1r39FbW1tcKj3iy++GH/5y19gt9tRV1eHjz76COeffz4A4MILL8T777+PEydOwGaz4W9/+1vwfQkhhBBCCCGEpNbnzge0US7ceR6ouU7AohsFfOEhAY/9F/jo8MwLfsoLgJsvjr8cIakyocqfnp4evPbaa1AoFDj77LOD05944gls2rQJDQ0NuPHGG8HzPK644gpcdtllAMRqnJ///Of4yU9+gp/+9Keora3Fgw8+GPz9r371q3jooYdw4YUXQq/X44EHHkBVVRUAYO7cufjGN76Be+65B3a7Heeccw5uvvnmBPzTCSGEEEIIIYRMlU7N4IZPCfjjK5Hnz4D+dGNiGOBP9zNQyKnqh6QvRhAmO8gamS48z6OtrQ2VlZWzohyNTB3tM2SiaJ8hE0X7DJko2mfIRND+knkONwpYfvP0XVoq5MDSGmDlfGDlfAYr5gnQSdowt6YSHh8Dl0fsQ8bpRuTnnpHnI/OFCSwrdlC9oAL4zg0MzllFwU+mmW3HmSkN9U4IIYQQQgghhCyby2D9IgG76hP/3ioFsHyuGPSsWsBg5XygtgqQSUcCF54X0NYGsCygVjJQR+4iNg4KcMjMReEPIYQQQgghhJApu+0yBrvqp1b9o1MDK+aNVPSsWgAsKAckEgpmCJkKCn8IIYQQQgghhEzZNecAD/4daO4e3/LZ2kDIM1LRM7cUYFkKeghJNAp/CCGEEEIIIYRMmUrB4N/fBy77toABU/i8vCxg1YKQip75QFUxwkaQJoQkD4U/GYL65SaEEEIIIYSku/WLGDT9B3hxmzice3mBGPiUFVDQQ0gqUfiTAVptTtx+shvfVWfhzKLcVK8OIYQQQgghhESlUzO46aJUrwUhJNTMH88sg/GCgKdOtePM93Zhr9WJb+w/DruPS/VqEUIIIYQQQgghJINQ+JOmGq12XLJlH7596CQcHA8AaLU78XBdY4rXjBBCCCGEEEIIIZmEwp809KeGdpz57i7sHjSNmfdUQzt2RZhOCCGEEEIIIYQQEgmFP2nIxwtw+at9RhMA3LW3Hk5q/kUIIYQQQgghhJBxoPAnDX11XgXW5GZFnd9odeBn9c3TuEaEEEIIIYQQQgjJVBT+pCEJy+C3axZBwUbfPE+easWBYfM0rhUhhBBCCCGEEEIyEYU/aWq+XoP/t6gm6nxeAL6+px7uKM3DCCGEEEIIIYQQQgAKf9La1xdUYrlBF3X+CYsdvzpOzb8IIYQQQgghhBASHYU/aUzKsnhyzSLIGCbqMr853oo6o3Ua14qQ2cXq9eG1zj785ngLtvcPg+OFVK8SIYQQQgghhEwIhT9prjZbh28urIo63ycI+Preenh5av6VrixeH3YNGNHrdKd6VcgEtdmc+NQHe3DTjiN4sK4Rl27djy/vOkLNLQkhhBBCCCEZhcKfDPCN06owXyWPOr/OZMXjJ1qnb4XIuAiCgN+dbMOcl7fi4i37UPvaR7hpx2E4fVyqV42Mg93H4dpPDuKkxR42/dXOfvzg8KkUrRUhhBBCCCGETByFPxlAxrL4QXUBJDGaf/3iWDOOmW3TuFYknidOtOL7h0+BE0aaCb3W2Y8v7zoCQaCmQ+nu2wdP4NSo4Cfgz40d2DFgnOY1IoQQQgghhJDJofAnQyzUKHH3gsqo8728gLv21sNHzb/Swra+IfzkaGPEeW93D+KfLV3TvEZkIl5s78W/WrpjLnPn3no4qIqLEEIIIYQQkgEo/Mkg9y6sxgK9Jur8A8MW/P5U+zSuEYmkw+7El3fWIVa/wN87dAptNuf0rRQZtzabE/fsPx53uRabEw9HCfgIIYQQQgghJJ1Q+JNBFBIWv12zCGz01l949GgTGqI0VSHJ5+I43LTjMIY93pjL2Xwcvr63Hjw1/0orXp7HLbvqYPX6xrX8H0+1Y/egKbkrRQghhBBCCCFTROFPhlmdm4U75kdv/uXmedy5t56Go06Rbx04gUNG67iW3T5gxB+pUiutPHK0CfuHzeNeXgBw19566sSbEEIIIYQQktYo/MlA3140B3O06qjz9wyZ8efGjmlcIwIAf2/qjNtPzGg/qWvECeqoOy1s6R2a1Kh5DVYHflbfnPgVIoQQQgghhJAEofAnA6mkEvx2TS1itP7CT+oa0GJzTNs6zXb7h8z4fwdPTPj33DyPO/YchZc66k6pfpcbt+85Ounff/JUK/YPjb9iiEwfp4/DL+qbsf7tHVj6+sf45r5jMMdplknSCy8IeLa1G3furcd3Dp6kzxohhEyQh+Pxo8MN2PTOTqx7awd+dLgBLo6qlgmZbSj8yVDr8w24dV551PlOjsfde49RnzLTYMDlwU07DsMzyaZ2h4xW/Pp4S4LXiowXLwi4Y089+l2eqMvM02lwf21NjPcAvr63Hm6OQrx0Mujy4LKt+/FofRNOWezodLjwTHMXPvXBHgy5o29vkj7sPg5XfXQAX9tTj3+3dOOPDe248MO9+GczjZhICCHj4eF4XPvxQTxxshXHzDY0WO144mQrbth+mG4+EjLLUPiTwb6/ZB4qNaqo8z8ZMOKZps5pXKPZx8fzuGXXEXQ73VGX0cmkeHx17EqtXx1rwcEJ9DVDEud3J9vwYe9Q1PkKlsVfNyzB/bXVWJmjj7rcSYsdvzhGzb/SRZPVjgs+3BOxD6cGqwNf2H6Ywro05+I43LD9ELb2DYdN5wQB39x/HJ/0D0f5TZKO+l1u7B40YWicHeoTQhLjF8easS3C8fLD3iH8uYG6iSBkNqHwJ4NppBI8saY25jI/OtKADjsNKZ4sD9Y14uN+Y8xlnlq3GF+oKcXt8yuiLuMTBNy+hzoOnm4Hhs34SV3s4dofXDYPi7N1kLIsnlizCLIYw+09fqIVh4YtiV5NMkF7Bk244IO9aLFFP/btGjThG/uOQaDqyLTk5XncvPMItvVFDng4QcDNO4+gy+Ga5jUjE+Xlefzg8Ckseu1jXLJ1Py441Iq79x2Hh8JXQpJu35AZv4nRn+FP65vQG+MGJiFkZqHwJ8OdUZCDL80pizrf5uNwN13gJMXLHX148mRbzGXuXViNC0vyAQDfWzIX8/WaqMuestjx8NHYQQRJHIvXh1t21sEX47NxcUk+bpk70ryyNksbs/kXJwj4+t56uqhJodc6+3DFtv0YHke/Ps+19VCTyzTE8QK+uvso3u4ejLncoNuLL+44QhVcaczp4/CF7Yfx5Mk2cP5jrQDg363ddG5CSJI5fBzu2HM0+NmLxObj8MPDp6ZxrchknbLYcdOOw5jz8lZsemcn/tbYQcdQMmEU/swAP1w6D6VqZdT5W/uGJzwKFYnthNmGO/fWx1zm3KJcPLBoTvC1UiLBH9YugoSJXjnyh1Pt2E5NGZJOEATct/84WmNUxZWoFPjtmkVgRm2vu0+rwtJsXdTfO2a2UaCQIn881Y4v7jgC1wTCgIePNuGljt4krhWZCF4QcNe+Y3i5o29cy+8fNuO7h04mea3IZFg8Xlz98QG82xM5xHuurQf/bKG+mwhJlgePNKDRGn/wl/+192LHQOwqdpJaTVY7Lt2yD6919sPo8eKY2Yb7DpzAPfuPUwBEJoTCnxlAL5PiN6sXxlzme4dPoZvK4xPC4vHixh2HYY/RRKtSo8Kf1i2BZFQToRU5Wbivtjrq7wkAvra3HlbqEyGpnm3twfPt0S/4WQb48/olMChkY+bJWBZPrl0EaYwQ79fHW3DUZE3IupL4eEHAdw6exHcOncRkToHu2F2PvUOmRK8WmSBBEPDtgyfxbOvEblb8ralzwr9DkmvQ5cHl2/Zjx4Ap5nL/78BJ1BnpWElIom3tG8KfGsffn8/9B05Q589pihcE3LX3GAYiDFTxj+Yu/IpuOJIJoPBnhji3KA+fqyqJOt/q9eGblA5PGS8I+Nre+ph3UpQSFn/fuDRicAAA31xYjeWG6JUj7XYXvneISnCTpcFix7cOHI+5zP21NdiQb4g6f3G2DvcsjB7i+QQBX99TTydS08Dp4/ClnUfwx4b2Sb+Hm+dxwyeH0U79o6WMIAh4sK4Rf57AxUqoe/cfxxEj9beVDjodLlyyZR8OjyPUcfM8vrTzMCx0w4OQhDF7vPj6ntjV6aMdN9vwl0kef0ly/bO5CzsHTVHnP3K0Cf+hGyBknCj8mUEeXj4fRUp51Pnv9gzifzGqHUh8j59oxRtdAzGXeWzVQiw1RB8VSsay+P3axVCw0T9+/2zpwrvdsf8OmTg3x+OWXXVwxGgWtDE/G/ctjN6vT8C9C6tRm6WNOv+IyYonYnSySKZuyO3BZ7btx2ud/XGX3VyQE7Naa8DtwXUfH4RlHH0FkcT71fEWPD6Fz4uL43HTjiMwumn7pVKT1Y6LP9yLBqt93L/TbHPi7r3U/w8hifLAwZMxR6GN5qf1zeijzp/TSq/TjR8eaYi73F17j2FbX/SRawkJoPBnBsmSy/Dr1bFH/3rg4Ak6sE/Sh71DeCjOyFC3zC3HtTEqsAJOy9Lie0vmxlzm7n3HMByhxJNM3g+PnEJdjOZYBrkMT0VorheJXMLiyTWx+3D6xbFmHDfbJrWuJLYWmwMXfrAXe4bGDuU+2p0LKvHC5pX41arYzWNPWOy4eVcdfFSxNa1+f7INjxxtirmMVirB79cuglYqibpMm92Jr+6uA08hQkrUGa24+MN96JxEE/NXOvuo6iADcJyAjw7R5yudvdrZh+faeib1u1avDz8aR9BAps+3D54cV2WkTxBw444jOEZdDpA4KPyZYS4sycfVFUVR55s8Ptx/4ATdYZugdrsTt+6qi9mfyNrcLDy0bP643/P2+RXYmJ8ddX6fy4P7D5wY/0qSmN7q6sefGmJfXPx2TW3MztNHW56jx10LKqPO9/AC7txbT2FCgu0bMuOCD/agyRa7I0uWAX6+4jT8eNl8sAyDL9SU4q4FVTF/58PeIXz74Ek6Rk6TZ5o68b04I80oJSye3bQc11WV4LdrFsVc9v3eIfy8vjmRq0jGYdegCZdu3RexT4rx+t7hUzgwHD/MJalhdQj4zHcFnHW3gNd30PExHfU53fjmvtjN2h9aNh/zdOqo859r68FO6vw5LbzdPYBXOsc3+AEghndXf3wQXdTHK4mBwp8Z6NEVC5CviN786/Wufrw8gYPJbOf0cbhpx2EYYzQHKVDK8fTGpZBLxv+RYhkGv1uzOOad7Jc6+vACNdWbsi6HC1/feyzmMrfOLcfFpQUTfu/7F9Vgvl4Tdf6BYQt+f2ry/dGQcG929ePyrfswGKd5j0rC4h8bl+GWeeVh03+wdC4+HWc7/7WpM25QSKbuf209uHd/7AsVGcvgHxuX4fSCHADA5eWFuDNG4AoAPz/WTM1mp9H7PYO4ctv+uHen5+k0WJ0TvUm0lxfwpR1HYKKml2nHy/P46j+H8doOQBCAz/zAhxcOUlVrOhEEAffsP4bhGJ+fzfk5kDeUY7NpKWLd37j/wAm6aZViVq8P98X5foykx+kWm7BTP2okCgp/ZqAchRy/WHVazGX+34ETGHRRk6J4BEHAfQdOxOy4UsoweHrDUhSrxl8xElCpVeGh5bGrhe4/cBw9TkrxJ4vjBdy2+2jM8G5xthY/XjZvUu+vlEjw5JpFiNVS7NGjTThlGX8fGCSyvzR04MYdh+GMM5R7nkKGV85aHTHMYxkGf1i3OGan6wDw3cMnKUBIotc7+3HHnvqY1ZQShsFf1y/FecV5YdO/v2QuziiI3iE7AHx191G0xKkMI1P3UkcvPr/9UNzP5HKDDm+esxpPb1iCbGn0U88Ohwtf21NPlXdpxM3xuGnHYbyVfQCyueKNQ59Hgmu+z+DZ43SMTBf/19qNt7sHo87XSaVQ7liKW38O/OIPGpTWLY267DGzDX9t7EzGapJxevhoY9R+m3i7HIIv+nG03mzDF3ccpkFHSEQU/sxQl5UV4rKy6He3B91ePHCQmhTF88w4hhB+cNn8mCNDxfOF6lJ8atTFTSiTx0edYU7Br443Y3uMEma1hMVf1i+FUhK9Aiue1blZuGN+9GoEN8/jzr314HjahpPBCwJ+ePgUvnXwBOL9L5yjVeOdc9didW5W1GU0Ugn+vWk5SlSKGH8TuGVXHeqp/XzCvd8ziC/vOgIuxjGNAfD7tYvw6QjfY1JW/MzG2n5mrw83bj8Mh49LxCqTCP7e1IlbdtbBG+dDeXq+AS+ftRq5CjmKVUo8VFOEWL2qvdU9gN+dakvsypJJcfo43LD9EN7uHgTDAJpzj0FSII6qx1tUuPFHEjzXRNXJqdZud+LbB09GnS8IwIIja/Cfd0bOc+o/yodwvDTq7zxS30R9hKbI/iEz/hyh+lgQAOfuGpifPgPCCxvAOyKPKgwAW/uG8Y19NMozGYvCnxnsFysXIkce/cDwYkcf3uiKP0rObLV3yIQHDkX/MgWAqyqK8NVRzUomimEY/GZ1LQwxttX7vUP4R3PXlP7ObLRzwIifH4vd/8dPV5wWs9nWeH170RzMjdGOfu+QGU9NYTjy2crFcbh1Vx1+ezL+xeDa3Cy8fe4aVGujb4eAYpUSz25aAU2MZpc2H4frPjmEXjoBTpjt/cO4ccfhuIHBr1ctxNWVxVHn5yvleGbjMshilNzVm2345n46+U2GJ0604p79x2NWbgHABcV5+O8ZK6CXSYPTNmSpce/C6pi/9+MjjdgVY2hjknx2H4frPzmED3pHRhBiZDy0Fx8BoxGrkX092bjp5z78XwsNM50qvCDga3vqYYsSdAsCUHRwGd77UPxeDB2jwrJlAbydkW9eWr0+/Jg6f552Xp7H3fuOjTm2CgLg2lUD117x2GkeUELy3qqYFUDPtnbjZ9QHHhmFwp8ZLF8px89WLoi5zH37j9PQuBH0u9z44o4jMS9QarO0eGx1LZgYoz2NV5FKgV/Gaar3vcOn0ErNGMbN6PbiK7uPxqwU+Wx5IT5fHX90tvFQSSV4Ys2imHe0Hz7aiGYrbcPxMrq9uHLbAbzUEb+PskvLCvDS5lXIjdHf2WhLDDr8ef2SmNusy+HC5z85RBUkCbBvyIzrPzkEV5wmQg8vn4+b5pTFfb/VuVn46fLY33H/beuh5gsJJAgCfnKkYVwjAl1dUYR/nL4MqggB6/211TjT349TJJwg4Ms7j1Dz9BSxen245qMD+Kh/eMw8VuuG9uIjgFQ8JrqPl+CWp6x4pok+Z6nwx1PtUaubBQFgdi3AiR1idTnLAv/+PoO7rxLn8zwD59tLwRlVEX//P2092EWdP0+r351sw7FRo8QKAuDaXQPX/vDQfLhDA+m22P03/fxYM/7dQjePyQgKf2a4z5YX4aKS/Kjz+1wefDdOdcts4+N5fHlnHXpi3O3Xy6T4x8ZlMasGJuoz5UX4bHlh1Pl2H4ev7aGmQ+MhCALu2lcfc8SDSo0Kv161MCHhXcD6vGx8ZV5F1PlOjsdd++ppKOpxaLM5ceGHe7BzHHf/b59fgac3LI14kRnPhSX5+EmcUfoOGi24fc9R2m5TUGe04uqPDkS9Ox3wncVzcHuMJpSjfXFOGa6vih3gfufQSeymKpIp4wUB9x84gcdOtMZd9pa55fjDusWQsZFPMyUMgz+tX4xCZfSwtsfpxm30uZt2Zo8XV350IOaxV1pohebckUEUnDvm4uvP9+MP1FxvWp0w2/CTusaI8wQBcO6cA+N+MUhnGODpBxhcfx6DX32NwSUbxOU4lxS215eDd0ojvg91/jx9mq2OMdXqggC49tTAtW8k+Ln/ekDrz+sGj+dCui/2TZB79h3HhyEVfGR2o/BnhmMYBr9cdRqyZJEP6oCY7L/XQ532BfzoSEPMPmIA4Kl1i1ETo4nPZP1i5UIUxTgZ3jlowh8a6OQqnr81deKNruj7tJRh8Jf1S6CP0dRusr63ZC6qNJHvogHAjgET/tpII0nFcnDYjAs+3IOGOFVSDIBHli/Aw8sXgJ1CiHf7/Ap8KU6lyWud/Xgoykk2ie2kxYYrP9oPc5zRR+4+rSpuc6DRGIbBL1eehqXZ0Tvw9gkCbt55hPqvmAIvz+Oru4/ib+Oo7rh3YTV+tiL+Z7JAqcBf1i+J2Vn+h71DeOx4y0RXl0yS0e3FZ7btx74hc9xl5fP6oVwTuFBlYH93MR74oIu21zTx8jxu33MU7ijBjGt3DdwHqoKv//ItBjdeKH7YJBIGz/6QwZIacR5vVsP+1lII3NgPY73ZNq7PPZkaQRDwzf3Hx1TGuvZUB5t6AcBv72bw89tZ/PfHDALZ+uDuMjAnop/D+AQBX9xxGEepD0MCCn9mhWKVEg/HKY3/xr7jsNDwqnixvTfusNzfqq3BBTGqqabCoJDh8TW1MZd5uK4Jx800xGo09SYrvnfoVMxlvrdkLlbF6BB4KjRSCZ6Isw0frGtEm82ZlL+f6d7pHsClW/ahP05zD6WExTMbl+K2+dErrcaLYRj8dMUCnFUYvRkKAPzmRCuVT09Qq82Bz247gME4zYtvnVuOHyyZO6lKPJVUgr9vXIZsefSbHD1ON7686wiNfjIJTh+HL2w/jBfa43fs++CyefjuBLbj6QU5+O7iuTGXebS+CR9HaH5EEmvQ5cHl2/bhUIzRTUdTrm0JjgAGrxS215fhx3va8MjRRuprK8l+eawl6ki0zr1VYZUif7yXwc2XhH8mdWoGr/+MQeBrz9dtgGPraRGbED1ytAn9LgrPk+k/bT1jmlk6d1fDtbcm+PrXdwJfv1LcjhetZ/DkN0a2qfnD+RA6o5/D2Hwcrv34IDpjVMST2YHCn1ni+qpinFuUG3V+j9ONH8zyjt2OmW24a299zGXOL87DtxbVxFxmqs4vzsdNNdFHYHDzPO7Yc5QuYiKw+zh8eVdd1DthAHB2YS6+vmD8zUomY1NBDr4co5LE7uPEDv3o5DjMM02d+Pz2Q3DE6RMmRy7DS5tX4dKy6M0kJ0rGsnh6w1IsiNP59z37juMTuhAdly6HC1ds2x+zCS0AfK6qBI+uWDClJpiVWhX+tC52/007Bkzj6quGjLB4vLj64wN4tyf6ENIAwDLAE6tr8fUFVRP+G3efVoXzYpyf8AJw6646qtxKoj6nG5du3Yejptg3lopVCnwtpFnmmBHArCrY31yKX9S14odHGug7Lkn2D5nx6ygVVq79lXDtnhN8/eQ3GHz18shHxopCBq88wiBQcO45XgL3gbHnRxbq/DmpBlyeMTctnXvCg597vuzCPVeHX7bffgWDe64Rn3M8A/c7y8ANRT+H6XG6ce3HB2Gmm/2zGoU/swTDMHhsdS20MfrE+EdzF7b2zc42oRaPFzdtPxzzorNKo8JT6xZPqXnJeD24bD4qYzQdOmy04pfHqLR6tO8cPIlTFnvU+fkKOX6/dtG0bMMfLp2HcrUy6vyP+ofxdxrBDYDYl8iDRxrwzf3H4w7lXq1V4Z1z12BdXnbC1yNLLsN/Nq1AniJ6c0CfIODGHYfRaI2+nxGx0/zPbNuPdnvsu4yfKS/E46trE/KZPK84Dw8smhNzmT+caseL46hgIYFKkP3YMWCKuZyMZfDX9UtxQ4ybFrGwDIM/rFuMEpUi6jL9Lg9u3VVHfd4lQbfDhUu37sPJGN+dAFCmVuL1s1fjJ8vn45GQavLgCGBqMZzz9WTDsfU0/PZEG7514AT12ZRgDh+HO/YcBRfh/6vrYAWcO0cq6R77OoOvfTb2sXVdLYO/f2dkGefOufA0ja1uf7a1h/pOS5LvHToJY0gg49xbBdeekeDn7Cv68OubInc18YvbGVy+yf97ThaSd1aDt0fvPuK42YabdhyBJ85NNjJzUfgzi5SplXgwTsemd+89BlucfhlmGl4QcPueejTFGElLJWHxj9OXITsJfcREopNJ8fu1sUeO+vXxFhwYjt8uf7Z4sb0X/4zTJOcP6xajMMYFRiJpZdK4Tfh+cPgUOu2zu/mXm+Nx2+6j+M04OpFdlZOFt89Zizm62NU5U1GpVeGfpy+HIkpHtQBg8vhw3ccHMeymkYgiMbq9+Oy2A2iM02fThSV5+OO6xZDE6vRlgu6trcYFxXkxl7l73zFqOhtHp8OFS7bsi9qsJEAtYfHsphW4PMZgBeORq5DjrxuWQhojBPxkwIif1jdN6e+QcB12Jz69ZV/cz2qVRoU3zl6Naq14AXrb/ApxwAT/fFbrhvaSw4BE7NDdc7wE7kMV+GtTJ+7ed4xCuwR6sK4hYn94rsPlcG6fF3z989sZfOOa8R1brzmHwU++PLKs/b1F8PWP7UftW9T5c8J90DuI/4XckHDurQqr3Co8uxkvfz36d5pEwuDf32ewyp/HGoelUL6/GoI3+jnMR/3DVH0+i1H4M8vcVFMac3jVDocLD86yTk1/fbwFb3XH7vD6sdW1WByjQ9Fk2JBvwB0xRr3hBAG3766Hk4agRpvNiXv2H4+5zJ0LKnFOjKYFyXBWYS5ujHE33ObjcPe+47P2C9js8eLqjw7g+XFUYlxcko9XzlqF/BgdoifKurxsPLk2dnDXbHPixh2H6e7ZKBavD1d/fGDMULWjbS7Mwd82LI06GtRksQyDP65bjGpt9MpJu4/DTTsOUz93UTRZ7bj4w71oiFPdliWT4oXNqxJ2XF2Xl40fLp0Xc5lfHW/B+3GaoJHxabE5cMmWfWiNcwNirk6N185ejfJR1chfnFOG361dFOywW1pohea8kBHAts+FpyUX/27pxu17jlJokAAf9Q3jTw1jB4xw1ZXC+fHIzd2HbmFw//UTC9W/eyNww6f8L3wS2N5YCt4WfrOszmTF09T5c8LYfRzuDTl3de4LD35Um07hL7fq4w5OolExeO1RBuUF4uu+DhU0H6+IOQT8c209eOQohemzEYU/swzDMHh8dS3Ukuib/i+NHdgRZ7SrmeL9nkE8Gufg95W55bimsnia1ijcd5fMidkHSYPVjoeOzq6wbjQvz+OWXXWwxqhYW5mjj9upaLI8uHRezOYMW/qG8O+W7mlco/TQaXfiwg/34pNxHGtunVuOv29cBvUkhnKfrCsrivFAnP69dgyYcM9+unsW4PBxuP7jgzgwbIm53Lq8bPzr9OVQSpKzPbPkMvxj4zKoYnzPNVod+NreemqSMkqd0YqLP9wXt1PQAqUcr5+9OuHNL++YX4GL4wyocNvuo9Rp6RQ1WOz49Jb423mBXoNXz1qN0ihNmK+rKsFf1o9UbEUaAYwb0uD59l7cvLOOwvIpsHi8+FqEfind9SVwbjst+PqHXwS+e+PEqykZhsFfvsVgTa24jQS7ErY3lkLwhB+nHz7ahIE4AzKQ8flZfVOwabRzXyVcu0KCn9MbcNUlbny6rGBc71Wcx+CNnzEIDETcdSwbugOxb2L96ngL/tFMYd5sQ+HPLFSpVeEHce6u3bm3Ho4ZXlHSZnPiK7vrEOvUf11edtymcsmklEjwx3WLY5bC/+FU+6zugPbRo03YH6P5m1YqwV/WL4E8xoVgMunlMvxmdewv4O8dPoXuWXQxc8Rowac+2BO3jwlAHD3opysWJLRp0HjdX1uDqyuKYi7zbGvPuJqszXRujscXth/Gzjh9Qiw36PDcpuXQJDnIW5Sti/u5e6NrAE/QtgvaNWjCpVv3YSBOc8ZytRJvnL0ai5JQDcswDJ5cuyhmn3fDHi9u2Ukjt03WCbMNl27dF7cj9kVZWrx21moUxWkqfUV5If6+cSnk/mN0pBHAeKcMr3f14ws7DsPFzexzy2T59qGT6Bp1nuA+XgzHlpHg54EbgB9+afLflQo5gzd+KkFOnlgVyQ3oYX9vUVgFCXX+nBiHjRb8/lQbAH8n3btGblCqNjYgf203froi9kjNoy2Zw+B/DzII3Ffp2FkM9cmqmL9z7/4TeI+qKWcVCn9mqVvmlmNDjDt2LTYnHpnBFSUOH4cbdxyGyRO9WqRQKcfTG5amLDQIWGbQ477a6pjLfG1PPSyzrK8mANjaN4TH41y8PbZ6Iaq0kTvKmy7nFefh+qqSqPMtXh++uX9mNv+yeLzY3j+MP5xqw+27j2Lj2ztwzvu70RvnzqGCZfG3DUvx9QVVUxoFaioYhsHja2rjVjf8pK4RL3f0Tc9KpSEvz+PLO49gS5wBAxZmafH8mSvjlrAnytWVxfjK3PKYyzx0tHHWDnQQ6v2eQVy5bX/c75H5eg3eOmdNUvvdypbL8LcNS4JhQiR7hsz4ySxrop4IR01WXLp1H/rjHH+XG3R45axVyBtnM9uLSgvw703LoZSwIyOA5YeMAPbWEggcg/d6BnH9x4dgn+E3FxPt9c5+PNvaEzbNfbIIjg8WAv6el275rBeP3MpM+fsyP5vBB7+QgVWIxwJvSz6cO8Irp/+vtRt7qPPnSfPxPL6x7xh4QQx+QjvpVm1sgHJlO364ZC5KYgwaEs0Faxn8/p6RfaD3gxrIuqJXU3KCgJt3HsFhY+yKXTJzUPgzS7EMgyfW1EIZI9j4w6l27JqBB3dBEHDf/uOoM0XvyFLKMHh647K4d7ymyz0Lq7HCoI86v8PhwvcOnZzGNUq9AZcHt+8+GrNy63NVJbiyIjVN9kZ7ePl8FMU4kX63ZxD/beuJOj8TDLk92NI7hMePt+DmnUew+s1PUPXyVly6dT++e+gUnmvrwQmLPe6IXga5DC9tXokrptiJbCIoJRL8c+MyVMWoRACAO/Ycxf6h2dcBOycI+NreY3gzTr9pc7RqvHjmSuQokt9nU6gHl82PGd7xAnDLzjp0zOKO11/q6MXntx+CM06TnOUGHd44e/WkLkgmakVOFh5eHvuu95Mn2/BmV3/S12WmODRswWVb92HIHbuvq9W5WXhp86oJf1bPLcrDf89YAY1UIo4AdknICGDdBji2ngZBALb1D+Pqjw7MyhtWkzHg8uCb+4+FTfOcKoTj/VoEgp9zzrPiT3fLE3ajZPkcFg/f6wAY8ZjgPlgJ97Hwc6lvHThBHXlP0h8b2nHYaIXrQEXE4Gdtbha+OKds0u//lcsY3H+9+JzjGdjeXgJmWBt1ebuPw3UfH5zV34OzCYU/s9gcnQbfWRx9WFwBwOVb9+GefcfQZps5B4S/NXXiP3Eush9aPh/rkzCU9GTJWBa/X7coZlj3r5ZuvBPnAmym4AUBd+w5ir4Ydy/n6dT42crTos6fbtlyGX4dpxnKtw+dRG+cUvx0IAgCepwuvNM9gJ/XN+GGTw5h6esfY94r23DlRwfwY38lTPMkjhuVGhXePmcN1ucbkrDmk5OnlOPZM5ZDL5NGXcbF8fj89kOz6uSJFwQ83DqAF+NUPZWrlXjprFXTNtJeKLmExd82LEFhjOB12OPFF3ccmZXNUf7e1IlbdtbBG+ci7vR8A14+azVypzG8u3lOGT4TJwD+2p76GXV+kix7h0y4Ytv+mNXOALA+LxsvnLkSWZOszttUkIMXzlwJnUwadQQwQGxi+Nlt+2GiTtdjEgQB9+w7hsGQwM7TWAD7e7WAIAY91WsH8O73dAmvkH3gwmysvWykP0LH1tPg7Rz5Xj5isuIZ6i9mwtpsTvz0aJMY/OwY6YJDtaERypXtkLEMHltdC3aK2/OnX2Vw5WbxucPJgHl7NXhb9ON3n8uDqz8+SJ/JWYDCn1nu9nmVWJWTFXW+lxfw9+YurH5rO76+px7NcYYDTXe7B0349sHYFTLXVBbj1jhNBVJhgV6L7y+J3Wnx3fuOYWgWDD/9u5Nt+KA3elMNOcvgL+uXJr1fkYm6sCQ/Zh8yJo8P9x9Ir+ZfgiCgzebEa519eLiuEdd8dAALX/sIi177GNd/cgg/rW/Gm90DCemAdYVBj3fOXYN5MTo5T5UFei2e2bgUkhgnZP0uD67/5NCsuKMtCAK+d/gUXhmMXSpepJTjpc2rUDYN1SLRFKuU+FucYcQPGi34fwdmV/XkEydacc/+4zGrJwHgwhKxoiNW+JkMDMPgN6trMVcXvdmu2evDzTuPwE0dCUe1c8CIK7fFr7Q5syAH//MHN1OxNi8br2xeBYNcFnEEMG+rODrcgWELLt+6H4PUeXBUz7b2hFVVeprzYH93ESCIl2/aJd3Y+qMsSBI8amLA/27Lh2a5f3QxnoX9rSXgjCNVsA/VNdL2mwBBEHDvgeMY3lsWFvwo1zdCuUrs/+fu06qwMCt6lc54sSyDf3yXwdqF4uuhYQl0H66LOQT8KYsdN24/TMfTGY7Cn1lOwjL47ZramG3rAbG0//9au7H27e346q46nLTEHsY33TRZ7fjB4VO47uOD8MW4sF6crcWvVy1MWR8j8Xx1XgU2xaiI6Hd5cN/+E2kVHiTageH4fT08uGw+lhgS3xlpIjy6YgEKYlQhvNEVv5IiWXhBQIPVjhfae/CDw6dwxdb9mPPKVqx48xPctOOIOMxy71Dc/iIm44LiPLx69moUKNOjqWUkZxXm4hdxqsmOmW24ZeeRGT+s8SNHm/Cnxth3fXMVMry4eRVqYly8T5cN+Ya4nff/s6VrVox8Um+y4hv7juFH4+i09eqKIvx94zKoUhSk62RSPL1hacyq14NGC35w+NQ0rlXm+KhPbGJli9PHzjlFuXg2gR2xL8/R49WzViFfIR8zApjtHXEEMEAcOvzSrfsyouJ1unXYnXjg4Inga29rLuxvLwF48bMgX9iNp+5lUaFNXrBeoVHhB1/hIK0UOwQW3DLYXl8O3ikGhGavDz+uo86fx+uF9l68+ZZ6TPCjWi0GP/N0anxzYew+PidCrWTw6qMMKv33HDvb5cjdvhpCjNOTTwaMuJNGwpzRGGEmXyXOEDzPo62tDZWVlWCTlO4/drxlQp0nMgAuLy/EfQurUZuEET8SwcvzeLNrAM80dWLbOEbDypJJ8eH561Cd4s6B42m3O7HpnZ0xT+aeWrsIqwV3UveZ6dbndGNb/zAePdqEthhNay4qyce/Tl+WtgEeALzW2YebdhyJOj9HLsOOCzckLQixeH1otTnQbHOi1eZAi82JUxYb6owWOFLQhv+WueV4ZPl8SDNkX/3+oVP4nX+Ujmi+MrccP02jZoeJIAgCdg+Z8femTjwXp+msXibFq2etwtIYfZVNN0EQcOuuupjhqoJl8eY5q7EiRkVsJup0uPBCWw/+296L4+bx3by5ZW45frpiwZSbH4Sa7PnMv5q7cNe+YzGX+euGJfhMeezR+WaTD3oH8YXth+GKcxf/wpI8/G3DUigliQ/4Tlns+My2/eh2uGF/ZzG8jWIzPlbnhO6avWBVYhOTGq0KL5+1ekyF4HSc/6YjXhBwxdb9+GTACADwtuXA9saykeBnQQ+uvnEQ/9y0NOnnOi6Ow/pXd+PoPxaBGxLP96UlRmgvPwhGIp4vvHPuGqzJzU7qeoxXuu4zw24PFjzchsGtI91tKNc3QbW6Nfj6tbNW4fSCnIT/7WOtAjbeISBw6J+/cQADK6OfgwLAPadV4ftxRoaeKdJ1n0kWCn8ywHTslD6exyVb9mHvJDos/XRpAe6rrU6bk/x2uxP/aO7Cv1q6xl2hwAD4zxnLcX5x9B7x08k/m7twd4wT4WyZFM/WlmHNvDkZeyCz+zjsGDBia98QtvYNj+uCpVilwMefWj/tncpOxs07j8QcIeqysgI8s3HZpN5bEAQMur1otjmC4U6LzYEWu/gYr8PP6VCjVWF1bjZun1+BZWly7Bgvjhdw447DeCtOH1s/W7EAt86rmKa1Sp42mxPPtXXjubYetIyjfxWNVIIXzlyJtWnUb1qA3cfhUx/siXk8KVMrseX8ddPav00ymD1evNLZh/+19WK7/yJyvO5dWI3vLJ6T8AvLyZ7PCIKAr++tHzPiUSitVIIPz1+HuUkciSxTvN09gC/uOAxPnDD/0rIC/HndkqSOatpic+CKrfvRbvbA+uIqcAPi8X50gFChUeLlzavCRuecbRdlAX881Y7v+Afx8HYYYHt9GcCJ4ZxsXi+qPt2AHRdtGPdobFP1Xs8grnrjOKzPr4bgEG9KyRd2Q33OcTAMsMygw/vnroMkTiuC6ZCu+8ymX/Zg+6sjfZgp1zVBtaY1+PoL1aV4fE3sfiGn4v19Ai66X0DgvvH8C9swMDf2Tf9fr1o4pY6nM0W67jPJQuFPBpiunXLY7cH9B07gpUk2ObmgOA/31dZgVe703zH18Tze6xnE002d+KB3KG4fBqM9sKgG31oUvfPrdCMIAj73ySG80zMYdZmNWWq8ct56SJJwNy8ZOF7AYZMFW3uHsbVvCHuGTHFPXEOxDPDK5uTcNUmGQZcHG97ZETOIeXrDUlwepcNTjhfQ7XSNBDs2J1rsDrT6X8cr858uLAPM02mwzKDH0mwdlhl0WJKtm7bhvpPF5vXh01v24UiMUQNZBnh2U+aEyqEsXh9e6ejDc23d2DFgGvfvKSUsnjtjBc5I489hk9WOc97fA2uMPlA2F+bg+TNWpsXFzES4OA7v9Qzif229eLdnYELH0ICfLJuPry2oTMLaTe18xu7jcP77u3HCYo+6zKIsLd49d23Kmqmlg1c7+3DLzrqYTdwB4MqKIvxh7aJpqbjstDtxxbb9aOzlYfnvmogBAiDewHl586pgv2+z7aIMAE5abDj7vd1wcTy8ndmwvb4c8PmDnzl90FxQj3+fsRQXlxZM63rd8MkhvHrADetLK4NBVGB0KgD45crTcHMa9JeZjvvMnX+z48lnRvpKUq5thmptS/B1gVKOXRduRHaSz4v++rqAW34uHhdYVkDlZ4/DVBQ9UGcZ4N+nL8cFJZl3DjMR6bjPJBOFPxlgunfKepMVvzzWglc7+yYcogBi2/H7amumZbSsLocL/2rpwj+au9AzyTbjFxTn4d+blie0tH069DndOP2dnRiO0TP/L1cuwM1z07fyoNXmwNa+YWzpG8LH/cNxRyKJ5Vu1NXggxuh16ejF9l7csqsu6vw8hQz/PWMlBtxuNFvDw502u3NSF3bJJGMZLNRrsdSgE8Megw6LsnRQz9ALsW6HC+d/sCfmsUcrleDXqxZic2Eu8qfpLu1k+XgeW/uG8VxbD97o6o/bXGQ0GcvgX6cvy4iw662ufnx+++GYy2RK2TsvCNgxYMT/2nrxSmffpDscZxngN6tqcUNNaYLXcMRUz2dOWmw47/09sMcIt5N9Bz2dvdDeg9t214OLc2p/fVUxnli9aFrDzR6nC5/ZdgDHGlhYX1w1EiCcfgrKFR3B5QqUcry4eRVqs7Sz7qLMy/O48IO9OGi0wNedBetrywGv2L+OrHoAmgvr8Pk5xXhy7aJpX7d2uxPr394By4k82N9Z4p8qQHNRHeRzBpAtl2LPhadPWzVSNOm2z/zqvxzue3LkczY6+AGmt8nqd/7E49F/ic/VSgHZV+2HMzt6qw+1hMVrZ8+8ptCh0m2fSTYKfzJAqnbKE2Ybfn28BS929GIy15hnFuTgvtpqnJ5vSGjpOMcL+LBvCH9v6sTbPQOTWreAS8sK8Ns1i6Z9FJNEebmjDzfvjN5uV8YwWJilRaVWhSqN+FOpVaNKo0KZWpnUUu9IjG4vPh4YxtZesSlXa4KGxd6Ql41XzlqVMX3GBAiCgJt2HMHrXf2pXpUJU0lYLMrWYVm2Dkv8Yc9pei0U07xPpdphowWXfLgXjnEEJQv0Gpyeb8DpBQacnm9Im86tj5ms+E9bD55v60HvJDvzZhngbxuW4rKy2ENzp5OH6xrxq+MtMZf55+nLcMk032Efr2MmK/7b1osXOnrRNcXR9mQsgz+vX5L07ZeI85nn23rwld1HYy7z+7WLcF1VyaTeP1M929rt76g19nI31pTi16sWpuSG14DLgys/2o8De9VhAYL204chqxoZwTNHLsMLm1diSZZ2Vl2U/ay+CT+rb4avRw/rqytGgp/KQWguPoIKnQIfX7AhZeesv6hvxqP1TXDurYJrt/9mm5SD7rP7IS2w4obqEjyxZvqDqVDpdCH/2xcE3PX4yAdSuaYZqnXh3zmfKs7Ds5uWT1s/lTwv4PofC/jvFvF1Xg4P5vJd8Gmin48XKOV455y1qNSqoi6TydJpn5kOFP5kgFTvlI1WOx473oL/tvXGvZsUyYa8bNxXW4OzCnOmdHDrc7rx75Zu/KOlE+32qZ3obi7IwZfmluHS0oK07hh4PG7dVYcX2nsn/HssA5SqlKjWqlGpUaFKqwo+VmlUMMhlU/5/4+Z47B0yYWuf2JTrkNEypbAukkKlHO+dty6lQ0lPRZ/TjY3v7IQxRgVXqmmlEiw16LA0W49lBh2WGvSYp1NnXNiWLG929eML2w9PuFJynk6DTf4g6PR8AwpV0xcG9bvceKG9F8+19sRsujYecpbBE2sW4ZrK4gSt3fTgeAHXfHwQW/qGoi6jk0nxwXlr06YfmU6HCy+29+K/bT04Ns6Om+M5o8CAh5cvwOJpGLwhUecz39x3DM80d0Wdr5aweO+8dQkZMjkT/L2pE9/cfzzuMejWueV4NMGdeE+U0e3F1R8fwPa3cuHaWyNOlPmgv2ofJLkjTfr0Min+u2k58m2mWXFRdnDYjE99sBfuXi2sr6wEPGLAI60YgvbiI2CkPF49axU2pbBJrYvjcPo7O9FsdcLxXi08p8RjPqNxQX/1PrBaN949dy1Wp6D7h4BUXzMFPPmCgDvjBD8aqQQ7L9iAMs30hipOt4BzvyFgZ734urrSC+MF28HIo1dUztNp8PY5a2BQZHaT/UjSZZ+ZLhT+ZIB02SlbbQ48drwVz7Z2x21LHsmqnCx8a1E1zivKG3eowAsCPu4fxjNNXXijq39SfzcgRy7D56pLcFNNKeakyYl8IhjdXmx6d+ekm71Fo5NJxUqhkECoKk7VkCAIOG6x+yt7hrBjwDiuiojJkDIMLijJw4+Xzk+LoaSn4r9tPbgtzp3s6ZIjl4U121qWrUeVVpVxzSKn25MnW/GDw1Mb8naeTh2sDNqYb0CxKrGBpovj8Hb3IJ5r7cb7vUOTCvNDSRkGG7NUeGTNEtRmWKfdAcNuD85+bzc6YlTOzNWpcWVFEQqVChSrFChUKlCkUiBfIZ+WZjOBjpuf93fcnIiTtnk6Da6pLMJVFcXTejc3UeczLo7DBR/sRV2M4HK+XoP3z10LbYZW9o7XXxo68K2QIcGj+dr8Sjy4bF5a3PCyeH24ZttBfPh/ZSMjgOmd0F09MgIYIF4cPzanCJ9dctqMvihz+jic9d5uHG9iYXtlBQS3eIEtLR+C9hIx+Ll9fgUeXr4gxWsKvNs9gOs+OQTBx8L68gpwvdkAAEm+BbrP7seKAg3eS2Hnz+lwzfS7FwV8/TehwU8LlGubMfqj98jyBbhtfmq6ZhgwCVh/m4DmbvH1oiVOdJ2xEwwb/RtmYZYWZ+QbUKJWotT/U6ZWokgpz+ibgemwz0wnCn8yQLrtlB12Jx4/0Yp/tXRNqs+R5QYd7q2twUUl+VEvKIfcHvxfSzf+0dyFJptjSuu7IS8bX5pThk+XFSRlKNN08H7PIK75+OC0/b1A1VCgWqhcrUKTzYFtfUPom2SzkfGYr9fgrMIcnF2Yi435BuhmyEn9eDrwTiS1hEWVVo0arRpVWhWq/U0CFeZhrJs3J2M6CU8ngiDgnv3H8Y8Y1QgTNVenxsZ8Azbli2FQySSq2wRBwJ4hM55r7cZLHX0wT7I/mFDLDDpcW1mCz5QVwNHXkzbfTZN1aNiCiz7cCzc/saCaZYAChRyFKgWKlIrgY5HK/6NUoFAlR75i4ifGbo7Huz0DU+q4ebRCpRyfrSjCNZXFWJqtS0kIkMjzmWarA2e9tytm5/ZXVxThj+sWp0XgkQy/O9mG7x8+FXe5by6sxneTMHrbVNi8Ply35Qjefqom6ghgAKBgGfxr4zKcO4M7nf3OwZN4cucwbC+tHAl+So3QfvoQGBmP+XoNtpy3Lm06Mv/8J4fwVvcAeKcM1v+tAW8RA2RZTT80F9XhsdWpGyUq1ddMv39JwNceCwl+VrdAuW5s8LMyR493zlmb0kEFTrQJ2HC7AJO/iHTlGUa0LDsw4fdhGaBIqQgGQqWqQDikQJl/Wp5CnjY3Eb08D4vXF/wxuT1o6u6BMjsHVh+HBVkanFWYm+rVTBoKfzJAqg9k0XQ7XHjiZCv+0dw14Y5BAXFUjntra3BZWQFYhoEgCNg1aMLTTZ14tbNvSie7epkU11UV46aasllT9h2vDD4TFSjl2FyQg82FudhcmIPSDG3aNR7dDhc2vrNz0p21jmaQy1CtVaHaX61Vo1OLIY9WjUKlfMxFQLoeZzKJl+dxzccHsa1vOCnvX6NV4fT8HGzyVwbF+jy02514rrUHz7V1o3kcw7PHU6SU4+rKYlxbVYJa/zF1Ju0z/2ruwl37jiXlvVkGyFfIURRSNTRSRTQyPU8hx94hE/7b1otXOxMT1GmlElxaVoCrKopxZkFOykcvS/Q+80pHH74Uo987AHhs1ULcNIOGK/bxPI6b7XihvRdPnGyNu/y3F83B/Ytqkr9ik+D0cbjm7WN448m5UUcAA8SmpVdWFGGeToN5eg3m6tSo1qinvd/CZPi4fxiffuEErC+thOASO0uWFpugvfQQGDkHCcPg3XPXpFWHu202Jza8swMujgc3rIHl+dXBZmqKla0oOasNey86HbmK6e/8OZXfS398RcDtvwoJfla1QLl+bPAjYRhsOX/dtDS1jWfrQQGfuldA4Otm1ae70FwVv5JwouQsgxKVMiQgUoRVD5WqlciSSeMG1KODm7Afz8hzs9cbNs8a8twZ55r1xppS/Gb1zB00gMKfDJDuJ9h9TjeePNmGp5s6JtXEZ4Feg8vKCvFqZx9OxhjCdTxW5WThS3PKcEV54YwdYSgam9eHKz86gL1D0XvtT3cqCYsN+YZgdU9tljat7lQm2wvtPbh11/ibfxWrFKjWqlClUQeDnsDjRIcMTffjTKaw+zjcv/84/tc+uT7SJqJaqwr2F3R6QQ70Mile7ejDc2092D5gnPL7qyQsLiktwLVVxTirIHdMcDDT9plv7DuW0MqtVJEyDM4tysXVlcW4sCQ/rb4Lk7HPPHDwBP7U0BF1voJl8e65a7HEkPoLrYkSBAGtdicODJuxf8iCg0YLjhgtcS9eAn64ZC7uXlid5LWcGjfH4zP/a8RbT1VHHQEsEgnDoEqjwjy9GnN1YiA0X6fBXJ0GuYqp91k4HSweL1Y/exiN/7cYglMMSiSFZuguPxjsf+X/LarB/1uUfiOZBjqnBgBvWw5sry8DBPEzrT7nGG79NJuSC+hUfS899YqA28KCn1Yo1zeNCX4A4BunVeEHaTSS5N/fEvDFR8V1ZxgBS65pREd++7Svh0Yq8QdECuhl0kkFN4lwRXkh/rZhadL/TqpQ+JMBMuUEe9Dlwe9PteEvjR0xy7ATTSuV4OrKYnyxpiwjT+4Syeb14U8NHXijqx8NFhts03CQnAoGwHKDHmcV5uCsolysyc2asU3zxuu51m48fLQJnQ4XJAyDcrUyLNSp1o70vZTIi7pMOc5kigGXB9sHjNjeP4ztA0acmGKwPR5ShplSv2gBG/OzcV1lCS4rL4w5qsxM22fcHI9LtuzFgWFLqldlUtbmZuHqymJcUV6Ykjvu45GMfcbD8bg4znYzyGVYlaPHXJ0G8/2VI/N0GhREqIJMpT6nGweNFuwfMuOg0YKDw5ZJDwbw8PL5uH1+ZYLXMDm8PI8L/tSOLf/n7/+EEaC9JHwEsIkwyGXBbTxPp/ZXC2lQrVVBlgbHKp4XcLAB+NqLfdizLStY9SQp8Ac/CvEceoVBj7fPXZMW6zya0yd2/hwYtdVVVwrnttPEmSwP3WUHseWm+Vg1zZ0/p+J76U+vCvjqL0OCn5WtUG6IHPxUa1X45FMb0qYJX8AP/srjJ38Xn6sVAsqvO4J+3fR0RZBuzinKxfNnrkz1aiQNhT8ZINNOsI1uL/7Q0IY/NXQkrAlLJEuzdfjinDJcWVE0Y/p+SZTAPpNVXIJ2hxstdgfabE602p3Bx06HK+mVCZFUalQ4q1BsynVmgQE5aXqRkkqCIMDJ8ZCxzLSd9GXacSbTDLg82DFgxI4BIz4ZMOJ4gkZqSpRqrQrXVhbj2sqScXcAPBP3mU6HC+e8twuD7vQdfS/UPJ0aV1cW46qKIlRp07/j+2TtM+12J856bxdMnomdc+hkUjEc0GkwT6fBXL34vEarhiLJTYosXh8OGy04MGTGAaMFB4Yt6IrR8fhE/HLlabh5bnlC3mu6cLyA9Q/3Y997/r59IowANlVShkGVVhUMhub6m5HN06knFJgKggAHx8Pm9cHu42Dz+WDzcbD7fLB6xdd2HweblwvO7zcCTcdVaD+pRV+jDl5HeHWuJN8C7eUHwSrFfVgpYbHl/HVYoE/frgve6R7A9Z8cCr52fDQf7iPifscovFj35eP45Jpl09rcdLq+l/qNAt7bC7y1W8C/3xuZnrO2A/yaUxGDHwB4cfPKtOxPRhAE3PATAf/3vvi6IEeA6so9sCjS61wlWXi3FBAAVunD6twsvHvu2lSvUtJQ+JMBMvUE2+zx4k8NHfhDQ9uET8iiUUlYfLaiCF+sKcPKHH1a3bFLJ+PZZ7w8jy6HC612J1ptTrTZnWixOfyPzoQFd1kyKc4oyMHZ/uqe6gy4QJmNMvU4k6mG3GIYtL3fiO0DRtSnIAzSy6T4THkhrqsqwdrcrAkfT2fqPtNgsePLu47gqCk9T3oLlHJ8tlzsuHmZITUdN09WMveZ0ReiU8EyQIVaFexfJrSCJF8x8WohN8ej3mzFwWGL2IRr2IIGiz0hI7eFYgD8ZnUtvlBTmuB3nh4+jseib1hx6rBYxR1pBLBkyfFXC83VaSBjGdh8XIRwh4PVPy3ethM4Br6eLPjac+FtzwU3GL0yXVpihOaiI2BVI+ddqRwJaiKu//hgcLAKgQdsbyyDry0PAMBmOfD4Q2Z8fdn07Y/JOsa4PQK21wHv7hXw7l7gYITBPVedPYSm2kNRg5/rq4rxu7WLE7ZOieZyCzj/XgGf+LtRW1DFo+r6I9hrHUr4sSrVBI6BrzcLvo4ceDtywPXrodrQCOXKdszXa7Drwo2pXsWkofAnA2T6CbbF68PfGjvwu1NtGJrk3dTT9Bp8aU4ZrqksRtYE+zKZjRKxz5g8XrQGq4UcYkjkrxzqiFE1JGMZrM3NDlb3rDDoU97JKIkv048zmW7Y7cGOAZPYVGxgGPUmW1JOtiT+/mCuqyrBhSV5U2pmOdP3mWarA802B3qdbvS53P5HD3r8r/tcbngTMArXeGilEny6tABXVRbjzAJDxg6rm+x95keHG8bVCfJU6GXSUc2JxHCo2l8txAsCGqx2f9Ajhj1HTdaEjNgWC8sAv1+7GNdUFif17ySb3clj7pdd6O0UO7SPNAJYuuLMKnjbcuFrz4G3ywB4o1Sly3yQlRkhrRiCrGIYkqzwTvnPKDDgpc2r0mZ0pFhabQ5seHtncLREwSOB5fnV4IfFiiVlmQktf9KiSDs9Vd6JOsYIgoDjbcC7e8TAZ+shwOmOvKxaCXz+My78L2d71OAnVyHDrgs3pm2T3IBBkzgCWKO/+7sL1wH/fJBDl8uJLocLnQ4XugI/Tje6HC70ON0paUkwEYIA8EYNvB054uezO3vM51NaPgTd5YdQrFKg/tIzU7Oi04DCnwwwU06w7T4OTzd14MmTbegfx3DgCpbF5eWF+GJNKdblZWfU3c1US/Y+M7pqqMvhgkoiwRKDFhvyDNBSM7yMM1OOMzOF0e3FzkEjPukXm4rVmaxTCoOWZOtwbWUxrqosQoFSkZB1nO37DC8IGHZ70edyBwOhQEDU63SjN/h6ciGRlGFwjr/j5ovSrOPmyZqO76bLt+7HrkFTwt87nkC10JDHC2sSm7xHYpDL8OSaWlxUWjCtfzdZOvp4LL2Vg8nk3+elHCRZDrDZDkiynf5H8TWj9Ea94E42wSOBt8vgr+7JAW+OXtksybdAVjEMacUQpEXmqGGWTibF9k+tR5lmfM1v08FPjzbh58eag685ixLW/60JdmJdu9aET35ogEGX/A01lWPMoEnA+/tHqnu6BqIvu3I+8Kk1wKfWMFi1UMD5W3eiweqIuvxT6xbj6gwJZhs6BKy/XUCgG7XbLgd+/00m6nUYxwvoc7nR5XShy+EOC4m6neJj3ziu+xKNd8jh7TAEq3sEe/QRUvX5DixY4sSnP2tCnkKOOxZkRn9pk0HhTwaYaSfYTh+HfzR34YmTreiJEKPP1alxU00Zrq8qpv5gJmmm7TMk+WifSW8mjxe7Bk34xN+BdJ3Jinh5QqFSjqsqinFdVTEWJWFIWdpnxocXBBg93vBAyOkJPu91udHnf1RLJFiYpcVny4twRXkh8pQz6ztwOvaZbocLl2zZhza7M/7CGSpfIcfKHD1W5OixMicLmwoMM26whL3HBZx5Jw+XJ3ZgwCi8I2FQljMYCkmyHcERsxJFEABuUBtsyuXryQL4yPsxo/JAVjEEacUwZOXDYNXju/j93dpFuL6qJJGrnXROH4eN7+wM+8z5evWwvrQyOIIbAORmAfPKgPllwLwyBvPKxNfzygGdOvJ2dnEcht1emDxeDPt/jG4vjIHXo+aZ3F7YfT4UqhQo16hQ7h9KPPC8XK1CiVoBGcvC4xWw4+hI2HPglLiNIynJGwl7zlsN5GePrO+jR5vwi5Dwa7SzC3Px/JkrMuom9keHBJz3zZEh4L93I3DduQzmlABKxcT/HR6OR48zEBCN/HQ6XMHQKF7n9gzEcFQf5UcpyDDYqkHLSTVOHlOirSN6S5HCHOC8VcD5qxmcs1KAzzF7zmUo/MkAM/UE28Vx+E9rD17v6kef042lBh2uqyrBpnxDRh0g09FM3WdI8tA+k1nMwTBIrAw6bLKAF8ROQi8uyce1VSU4uzAnqc2DaJ9JLEEQZvx333TtM31ONx4/0Yp3ewbQanfGDUrTmVYqwXLDSNCzMkePMrVyxu8rALC9jseP/+pA24Aazd3ARAeSZdTusDAoWDmU5Rh3MzLeIfM3FckVqwccUSonWR7SIvNIU65864Qrkq6pLMYf1i7KyG37dvcAPjeqzy1PQwHs7ywZ1++rdT5oc91Q5rjAZtnB6exwa63w6OxgZIkZuVYQAN6khq89B2xXPpwdWeC8kUNTpRzYvBy4YC2DT60BaqsQcbucMNuw+b1dUas7VRIW2y/YkBEd8o/2r3cFfOGh8H8XwwBl+QgGd3NLmWCAV1M8uWAowO7j0O2vFvLwPHTS8HBHK5OGNYUMjJr33l7gvX0CPqkDouVHKoW4Pc9fzeD81cDimpHtOdvOZSj8yQCzbackU0f7DJko2mcym83rQ7/Lg1K1MumjFAXQPkMmKhX7jJvj0WJzoMFqR6PVgQaLHQ1W8XUyRySdDBnLYFGW1h/yZGFFjh7zdZpZ229e6P7C8wxae4FTHUBDJ3CqQ8CpTvF1R3/0io3IBLA616hQSHxkNR74+vTBplzcgD7qu7B6R7Apl6zMOOlKoxqtCldXFuO+hTUZva2v+/gg3u0JHx7c22mAp6EQvEkFzqyGYIve9CYaRuPybx9nePO/cYR4vEsKX2cOvO058HXkgLdGb04nybNCWj4MWcUQcittqNQrxcohjb96SK1CuUZ8zFPIIAC4ZMs+7I7RzPTHS+fhztOqJvxvThcPPiPgh38b34eLYYDyAmBuaSAcYsTnCQiGAlp7BLy3D3h/n4APDgBD5ujrsmoBcP5qMfDZuBhQyCP//dl2LkMdcxBCCCEZTuu/K0YICaeQsDgtS4vTssKHzBYEAQNuT1gY1Gh1oNFqR9s0VQvN06mD1TwrcrKwOFs745pvJYpUymBuGTC3LDBl5ELO6RbQ1BU5GOo3Rno3BrxVBd6qgq9jAsNuy3yQlRqhrjLCUGOGId8LrUwCjVQKrTQbWqkUGqkEWpkEusBzqdS/jCRkvhQ66cg0+TQF9sn26IoF2NY3HOz8GQBkZUbIykY2guBlwZnV4E0q8GY1OJMavFkFzqSOWlUl2JXw2ZVA15g5ISGeGAZJsh2AlIev0yCO4tSnR+i+EopRuyErHxab5pUNg9WMNM2z8ECdyYs6kzXi7yolLPIUcnQ6XFH/fyzN1uH2DBixLZYffJHBGUuBjw4DDZ0CGjqBxi4E+wMKJQhAe5/48+EBACE9FYrBkDCmYmhuWexgyGQVsOWgWNnz3l4EO6KOpKoIOH9NoCkXkJuVuUFqMtGZIiGEEEIImVUYhkGBUoECpQKnF+SEzXNzPJoD1UIW8VH8cUy6M+dilQKr/NU8K3P0WG7Q0+ilCaJSMFhcIzblEI1c9Jltgj8QGhsMWezx33t+FYfNq3mctwY4ewkLgzofUrYwKf+OTFetVeOu06pi9n/DyHhI82xAnm3MPMEjCQuDeNNIOCS4IvV/FhrijWMFJRykJaZg4CPJtU26s3AXx8cMflgG+M3q2owdmTHU2SsZnL0SCP1cDVv8QVCnGAo1domfr4ZOwBghLwsNhj7YD4wOhioKhWDF0NxSBma7WOGz5zjAR2n1l6UFzlkBnL9GbMo1pzRy0zwSjsIfQgghhBBC/BQSFguztFgYoVqo3+UZaUJmtaPBIj5vszuDlzNZMmlYHz0rcvQoVk28uQuZuiwtg9WnAatPC0wRLw4FQcCASQyBxGBIwKkOoL1fvAC90N/XS1EuBXQT8Y3TqvBcWzfa7dGDkWgYOQdpgRUoGJse8C7pSKWQyR8O+SuIBE/0bcTm2CCrGBIDnxJTwvoPiue2eRVYnhO9yWCmy9EzWFcLrKsFRldWjQ6GAtVCsYKhtl7xZ3QwFEoqATYu9vfbswZYNV+sCCQTQ+EPIYQQQgghcTAMg0KVAoUqBTaNqhZycRy6HW7IJSxKVIqwjklJ+mEYBgUGoMAAbFoKRGsaRCZGJZXgkeULcMP2wwl9X1bpA6u0QFoY3t5IEADBJRupEjKpwLtlkBaaxVHWtNM/xHi5WolvL5477X83XcQKhobMI1VCjf5gKPBjGlsMhtoqf789axhsXgZoo4wKR8aPwh9CCCGEEEKmQCmRoEaXeSP6EJJoF5Xk48qKIrzQ3jvl98qSSZGjkMEgF39y/I8Ghfg8RyFDtn96jlyOLJkEPZ0dkOZVo8tVgg67OJx4p8OJDrsLHf4hxn1JHO/ol6sWQiOlvrsiyc1ikJsVPRgKBEESVhydqzSfwp5Eo/CHEEIIIYQQQsiUMQyD366pRbFKgX+3dMPo8UItYWFQyGGQS5Ejl4tBTmioEyHgyZZLJ9xnDs/zMLIsKnVqzBvVbDOA4wX0udzocPiDIbsTHQ5X8HWH3Qmbb3Ijt11dUYTzi/Mm9buzXSAYWr8o1Wsys1H4QwghhBBCCCEkIZQSCR5cNh8PLpsPH8+nVcfHEpZBiVqJErUS6yLMFwQBZq/PXzXkD4bsLnQ4nP4qIhf6XWObk32qOA+/WV2b/H8AIVNA4Q8hhBBCCCGEkIRLp+BnPBiGQbZcbE62xKCLuIyL44JBkNXrQ5VGHXVZQtIJhT+EEEIIIYQQQsg4KCUSzNVpMFenSfWqEDIhmRXFEkIIIYQQQgghhJAJofCHEEIIIYQQQgghZAaj8IcQQgghhBBCCCFkBqPwhxBCCCGEEEIIIWQGo/CHEEIIIYQQQgghZAaj8IcQQgghhBBCCCFkBqPwhxBCCCGEEEIIIWQGo/CHEEIIIYQQQgghZAaj8IcQQgghhBBCCCFkBqPwhxBCCCGEEEIIIWQGk6Z6BQghhBBCZiPOzcO0x4iBLUMwHzSD9/BQlihhWJuNnPUG6Gp1YCRMqleTEEIIITMAhT+EEEIIIdNAEATYG+wY3DKEga1DGN4+DM7OjVmu58VeAIBUK0H26mwY1mUje002DKuzIdXRqRshhBBCJo7OIAghE+K1+GA9ZoW13gpLvfhob7RD4AF1pQqauRpo5mqgnSc+auaoIdXSoYYQMjt5jB4MbRvGwJZBDG4ZgqvLNe7f9dk4DG4dwuDWIXECC+gX62BYa4BhnRgKqUpVSVpzQgghhMwkdEVGAAA+uw8DHwyi99U+GHcZ4R70QKKWQKqRQqKRQKqRQKqVQqKViK+1Ukg1Ekg0Uki1/sfAMv7lJdrAPHE6K6MupjKJwAtwtDpgOSoGPNZ6Gyz1VjjbnVF/x1JnhaXOOma6slgRHgr5gyFVmRIMS00aZjpBEOAZ9MDZ6YKr0wVnlxPuXjckagn0S/QwrM2GPFee6tUkJCF4Lw/TPjMGtwwGm3NBSNSbA5YjVliOWNH2l3YAgLJUKQZBa7NhWGeArlYLVkrft4QQQggJR+HPLOaz+tD/7gB6Xu3FwAeD4J18+HyzDz6zL2F/j5UzkATCpGB45H+ul0JVoYKmRg3NHLFaRJYlS9jfJrFFquaxHrdFbI4wGa4eN1w9bgx9PBw2nVWy4jYfXS00VwOZng5PmYJzcnB2jQQ7wZCn0xmczrv5mO+hmaeBYV02ctaJFQ3qGjUYhoJBkv4EQYCjxYGBD4cwuGUQw58Mw2dLzLFzPFxdLvS82BtsKibRjDQVM6ylpmKEEEIIEdHZwCzjNXvR/7YY+AxuGYp7QZZIvEcA7/HCa/SOa3l5rgyaORqoa9QjAUGNGupqakY0WWHVPMdssB61xq3mSSbexYvrccw2Zp6iUB4xFFJXqKgD1Gkk8AI8A55gkCMGO2LA4+x0wdXlgmfQM+W/Y2+ww95gR+e/ugAA8ny5v1mLATnrsqFfqqfqQZI2vGYvhj4axsBWsSmXsy01x9BIODuHoW1DGNoW0lRskS5YGWRYlw1VGTUVI4QQQmYbuoKeBTxGD/reHEDva70Y3DoEwZuo+vPk8gx54RkywbjHNGaeokgBzRx1sFJIHXisUkGilEz/yqYhzsbBuNsE2zFbUqp5ks3d54G7z4Ph7caw6aycgbpaDc08DfSLdNAv0UO/VAdliXLWVYoIggCBEyD4/I+hz0dP8wkQ+PD5PCcAnADeJ4BzcTDVm+FxNcEVrOIRw53pDIkDPAMe9L3ej77X+wEArIpF9qosGNYakLNe7PxWpp/d1YGCIMBn9sHd74Z7wAOvyTu+5kXj/JjE+zwJ4OH0OeHReqDIU8zozx/v42E+YMbAliEMbhmCab8JmP6PxeTwI01y2/7aAQDiiGL+yiBVuQpSnViBK9OLj1K9lJqOpSnew8Nr8oo/Zh8gCJDnyaEoUNCNMUIIITExgiBkRhIwi/E8j7a2NlRWVoJlx3cy5h5wo+/NfvS+1oehj4ch+GbJZmYAVZkS6hqNv1pIDU2NGA6pK1UZXTnAOTh4jB54h73wDIsVVJ5h/2uj1/8ovnb1u+HqGH+nojOBLEcG/RI9spb6A6ElOmjmaNK+SkgQBLj7PLCdtIk/p+ywnbKJoYtHgMDxUQObjLn4TAYG0NVqxY5v14vDYs+EagaBF+A1eeHu98Dd74ZnwAP3gBvufs+Y555BN3hPehzbpVnSkTC+2h/M16ihrlFDnpN5/TnxPh7OdqdY3bNlEEMfDcNnSVwz6FBSvRR5m3ORd3Yu1JVqmA6YYdxjhHGPKaFNrydKopZEDIXE5zLxuW5kulQXupwMMr0UrDz8O3cy5zMzjSAI4BwcvCYffBYvvCZfSJgjBjo+k3+62T8tsIzZO6aJfiiJRgJFgRgEKQoUkOfLoShUhE1TFMohz1NAokj////J2l8EQYDNZsPw8DCMRiOGh4eDz00mE5RKJfR6PXQ6HfR6ffAn8Fqj0WTk/uu1+ODqFs8N1RUqSNSZfbOU4ziYzebgNjQajRgcHER7ezsqKyuRlZU1Ztvp9XrIZLP7xlG68Xq9MJlMYZ9Hr9cbts0Cz9XqxHcJMNu+lyj8yQDj3SldvW70vdGH3lf7MLRjeHZfGEbASBioKlXBixKp/8SUVbDhj3I2wnRGfJRFWF7BgpEx4z4YCZwArzl+gBP63GP0gnfRBp0oiUbirw7SQb9UD/0SPbSnaVNy0isIAlxdLthO2mA9aYftpA32U3ZYT9pSeoE3kyhLlDCsF6sZctYboKvVpUX4J3ACPMMeuAc88PT7A5wBDzz+ip2wUGfQM+PCelm2NBjIB5vx+oMiWfb0noQLvADPkAfuXjdcvW7/o0t83hOY5oK735O4TppHYSQMsldlIe+cXOSdlYesFfqIVTYCL8B2yg7jbiOMu00w7jHC0ZI+zcvGg1Wy4SGRTgqX2wWlUimeowiAADHIFgSI/wl5LvAhjwifBgERnwsAwPunCeL/b0bCgJEyYKX+5zJWfO2fHvrDSsV54nLMqOXYkfeRjrwvI2ODy3BObiSssXjhCw13LOLzdKjAlmVLR0KiwpBwaFRgJM+Vp+w4Gu/81+v1hl34Rwpzoj33+Sb/vcswDLRabcRgKFZoFOm5Upm4qmXOzcPZ4YSz3QlHmxPONgcc7U4428TXo7tdUJYqxSr6ORrxZqm/z01VhWpaK/+cTueY7RRvOwaCuslcxioUikltq9HPtVotJJLMDtASRRAEWCyWqJ/HiI+DwzCajLDaxg4UEw3LshG3RbxtFWmaQiFWLFP4Q9JOrJ3S2eVC3+t96HlNHKUrWSerJD4xHGIih0MSBl6rTwx1xts0I00xEkZscrVYB12t1v+oA6tkYW90wN5gh63RDrv/x9HiSJvqBABgZAx0p2mD1UH6pXroF+kS1iGqwAlwtDnECp6TNtj8QY+twZ4xTe5mCqlWguw12cG+g7KW6gEAvJsH7+HBuXkIXj74euRREB89o6cHpglRpoe/9ll9Yrgz6KEwPgpZjgyaan8oNEftrxqaeKf/giDAZ/H5O5d3jQl3gq/73Cm58FZVqpB/dh7yzs5F7hk5kx7QwN3nhnGPGAQZd5tgPmyZcWEhSTMsxEAoUEnkD4jk+Qoo8uSQF8jFR//PVCqsBUHA0NAQ2tvb0dHRgba2Nhw7dgwcx0UMBWy2sf0FZhqpVIri4mLU1NQEf+bMmRN8npeXFwyHBE6Aq9cVDHOCwU67E85WB1y97oScXzJSBuoqdVggFHhUFMVv4muz2dDR0RHcjr29vTGDHLfbPfWVThGNRoOsrCyUl5dH3H4lJSUZGRB5PB50dXUFt+HAwED0EGdoGCazCRyXWee4MpksLAi66KKL8Nhjj6V6tZKOwp8MMDr8cXY40fOaWOFj2mtK2N+RaCQouCAfRZcWIv/cPLAyFpyDg8/mg8/GgbMHHjn47CHT7Bw4m//RLi7P2cRlxNf+5zYOAke7WyaR5cigX6SDbrFOfFykg3bBxCpneB8PZ4drTChkb7TD3Tf1joITggHUNWpkBQKhZWKVkCIvenMV3svD0eyANaSplu2k2GlxKvrISXfyAjlUpUqoylRQlimhLFLA3uKAcZcJthOZfwJPEk+eKwuGQWp/H28QAFePKyTYESt1XL3umM1hpptUK0HuGWJTrrxz8qCpVifl73BODuaDZgzvMqVFUzFCZAaZvw8iMQwSAyIxKPJpfRgUBtDv6kePpQed/Z3o7OxEe3t78CLT6UxedZuaUUPH6KBltND6H3Wszj9NBx2jhZrVwCf44BAccAgOOP2P4nNn8LlDcMDF+F/zjuSts0yNEnUpipgi5HvyUYQiFLHFKJIUoZAthIyZ3ma1glqAs8wBc64ZJo0Rg5JBDPjE7dnVK4YFRqMx/htNEgvWv/3825DVQsfoRrYrq4MSSrjg8m87Z9h2HNmezuBzH5J3zJTL5aiqqgoL9wI/1dXV0Ov1Sfvb0fA8j4GBgbDP3ejH3t7eSVVVjZcU0qjbUMfqwEICZ8g2Cv3shU5zIXFdXFyw9AL86Zt/hjxHjqJLCxP2vumGwp8MwPM8GrY3QHJAhr7X+mA+aEnYe0t1UhRcmI/iy4qQd3YuJKrkpdOCIIB38/7wyB8S+R/dPW7Ymx2wN9thb3LA0ewA58isBDmTBap5dIu0YjMpfzXPeO7wTIXX4o1YLWRvdqRFMzdlscLfXEwHdaVarOg5KQY99iYH3XH3Y1UsVKUqqMqUUJYpoSpTQlWqCj5XlihjdsTuMXpg2mvG8C7x4tV8wEwBGsksDJC9MksMe87OQ/aqrJT0MTcTmoqRzMQJHIzCMAa4AQzwAxjg+/2PgeeDsAjmKf8dKStDlkIPnUQHLbTQ8Fpofdrghb+WCbmQ9F9UBoIeCZOcc1xe4OGCa1RIZB8bGMEBj9wNp9QJl8QJJ+OCjbOhz9oLk9s04b/LgEEem4cidiQQCn3MYrImdA4nCAIsgnnUdhsY+eEGYBSGwSeglFUlUYnbTBgJcnQh208bsg21IcGAmlGDZRJ7bPUKnpBQzzkq8BsbIAWeOyUuuCROWHkrBl2Dk/rbeXl5EYOhmpoalJWVTapqyGKxRAx0Ao8dHR3weBJz81XDaMK2T/g2DP9Mhm5TJRLT3JETOH9IJH7mnHCOCWsjBbiRpp0p34x7tPdCZpDh/MZzEvB/Jz1R+JPGbA129L7Wh95Xe2GpG397yHhk2VIUXFSA4suKkLs5Ny07/RMEAe5eN+xNYiDkaHaIIUGzHY5WJ10YTkFYNU+t+Kidr0mrUdIEXoCz0yUGQQ122BpGgiFXT+aWB2cqRaEiJNhRQVUa8rxMCVmOLKEhIefmYTligXGXeAE7vNsI77A3/i8SMo2UpUrknyOGPbln5kBuSM+Ord397mAQZNxtgvmIJS36nCGZxSt40Ml1YoAfQD/fj8FRAcEQPwQOk79pp4QS+WwB8iX54iObh3y2AHlsHvRMlhjosDooMDNHFnQIdvRyfejle9DD9aCX70Uv34Nerhf9fN+kqlOUUKJIUoRitsQfCImhEMuwwTAnNOAZ5AfgweRDASmkyGXzkM/m+38KkM/mI5fN9V/0B4IA7bRXLCWbR/Cgn+9DL9cbvg2FXvTyvXDxEw/hZTIZKisrx4RCVVVVsNlsUcMds3lqIauBMQS3XT6bjzxJPgyMIbgNA8GOhtEkLVBNBV7gwTIs1DVqnLX3jFSvTtJQ+JOGhncbcfTeY7AdT1xTCHmuDIWXFKLoskLkbsrJ6FGvBE6As8sFe5M/FGqy+6uGHHC2OqlpWYAE0M7TQLdopMmWflHyq3mSzWfzwd5oh6XeCssRKyxHLLDUW2dNfzpi56UQOx4New4wkkBHpaOeS1kwLIKdlQbn++exEgZgAbfMhbzT8qH2hzqqchUUxcqUB8SCIMDe6IBxtzFYHeRoSl6ZfcZgAXmuPNj/hjxPFr+TznEeHsdzasC5OJgbzfB1cvBZZ35TI4lagpxNOcj3V/do5iZ+1JHpEGgqZtxrgqPNCZ/FB5/FB69FHH3KZ/HBZxWbdpM0w4ijw8myZJBli4+CIIgdyfe74TUl73PY6GvA3ZY7J/W7LFjksnko8AcCef6LyoKQ51pGm5Gfp+nACRyG+CExVPAHQr3Bx96EVFSNRzZjCIZyocFAPluAAjYf2Ywh4VU5M4EgCDAL5pBtFvLI92KQH4QwTZ2BahhN8DM3EtDlBT+XeWzujAvmJiprhR6nv78h1auRNBT+pCF7sx3b1nwy5feRF8hR5A98cjYaprXn/lThveLwvPZAKORvQmZvssPZ6crcjpYZQJYlhSxHDnmOTHw0yCDLkfkf/dMNMshzZJBmS9Hr6EXV3KpZ0XO9wAmwNztgqbOIYVCdFeYjloypFpHqpNAu0EC7QOv/0UA7XwtZtmxUuDP+UeUmKtNGO3D3+zu+3T2zOr5lJMxIfxn5cijyFf7ngU5WQzpcTeEoPMDIPlNRUQHfsA/2Zv/xNvgoHoMzMZhlZAyURQooy1TIWZctNuVak53yIHQ6CZwg9vkXDIZ84uhVlvBpPosPPlt4eBScZ/Vl7vdukjASBrJsKaTZsrAQJ/g8WwZplvgoTpOJ3//ZMkh10pifec7Nw+MfOdDd7/b/eODuE597BvzT+zwTblpv5s34nOnaiPP0jD54IZnH5oeFPAWSfBiYnBlVIZBuElE1pIIK+ZJ8fzAghjl5IdU7eWwe5LM8FEgWr+BBP9+PnpBAqJfrCW5DJ8ZXNSSFLCycyxsV1OVL8qFmNEn+12S+vHNysfZ/q1O9GklD4U+a+uSsHZNq6qUsVqDo0kIUXVYEw9rstBjmOF1wLg6OVifsTXa4e93g3COj8ghjRvURYo7iEzbdPTL6z3guPlkFGwxpxPBGHh7iBEKdHBlkBn+oky2b0LbMtAv5ZBAEAa5ul1gdVGeB5YgV5joLXJ2J6xxuomQ5MuhO00IzXwPd/JGgJx2qsTJ9n+EcHEwHzWJTsT0mseNbS3pUozAyBor8wEg58ijPxUBHZpCBYTPjuD2efUYQBHgGPP5A3gFHS0hT3uYUBEMsoMhXQFmsgKJIAWWREopiBZRF/tfFYmfkmbQd0pnAC+KgD1YxFPJYvOjr60VRcTFYlgFYBgyDkcew55GmQdwugfmsfxoTYZp/+wm8AMEnQOAE8N6R54JP/M7mvYHXgXn8qOXEH96/fPA1J0Dw8mHL8V4BrJwJD26ypZCGhDwSjSTlx3tArKJ197vhHgiEQx54QgOjkEfBK0AQBPzW8ThymVzkS0IqP9h8KBllqv85BOIoXapyJVQVaqirVFBXqCAvk8OkMqLH14uOwXY0NzeD53mUlZahUFmEXD4XOfYcsF0SOJrFc+RUnidNhFQrgbpaDVWlCuoqNdRVaqgqlBjyDSFXmisOCtDlgqvbBWeXC65uN1zdrrQ5NxiPQD9MPcFAqBf9fD/UjCrYLDJQQZfFZGVM5RUjY4LXNzKD/1rIf/0TuObxmsQRkr1G/0/I62RWphZfWYQVf1qWtPdPNQp/0lTjr5pw6pHGcS2rLFOi+DIx8MlelUUnrCkkcELkoMgrQKqRQJYjg0Sd/BO/TL+QTybPsCcYCJn9oZC90Z7Qu9OKQsVIJc/8kYqeWKOHpdpM22cEToD1hG2kMuigGV6zD6ycBatg/I/syKNs1Gs5O3bZSMtEepQx4qNSAkW+HNIsaVpc7CXaVPeZQHOVQGf/gUDI3iyGRBMNhuS5spFApygQ8ChHgp0iMWibDVWw6WqmHWdmA0EQ4DV54e7zjFQPDXrExwE3PMHn4ut0GnUvEqleKobtBfLgozxfAUWhfzj7HBk4Fw/PkAfeYS88Qx54/I/eYS/cgx54h8VpqahqVBQpoK5UQV3pDz0qVOJjpQrKYmVCbvpyTg72FofY12KTWD3v8D96hqaxopoBlCVKMciq9AdaVSOPkfobHM8xxmvxwd3jgrNbDIbGBERdrlnRlDkRGAkTDGzkIeFNMNgJ3NTODmmtYJh6CM57eHjNI6GQJzQg8j/3jA6OjF54zfGrUSu/XI5FP6+d9LqlOwp/0pStwY6P1kdv+qWuUgUrfLJW6BN6YWFxWWBxWcAyLFiGhYSVgGUkYFkWkuBrFhJGEnw+Ey9sMhmdYE+Mz+6D9ZgN5sMWsUqozgrbcSt4T+zDo7JMCV2gmVagydZ8DWRZsmla84nzcl702/rRa+lDr7UHvdY+9Fh60G/tx7DZCLVGDUHgwQsCeIGHAMH/etQPPzKfF/gIywj+5aIvo1XoUGmoRHVOFapyqlCTW43qnGoU6grpmJIBknmcEQQB7j4PHM0jfbq5ulxgWCYY5CiKRyp15AWKWdUkK1PRd9PM57P7gmGQZ9AfEAWfe0LCIzc8w96E3HiRqCXBMEfur6gMhDmBprOKQjH8TeTgFpyTg2fYK4ZBQ154hj3BsMgbEhoFXw954p5XyLKlUFWqoa5QQV2lgqpCDHZUFWqoymOPnDkdPEaPPwga6V4h8DiZUXolaglUlSpoqtRQVYn/VnW1Wgy3JvHvTdQxZrYHRFKdFOrqkdBNWaqEPFfur9IRAxyZQQ6pLj0qGcdL4AR4LeGhkHvYg76mPuhYHXwmHwzrDSi+rCjVq5o0FP6ksY82bQ/r9Fk9R43iy4pQdFkh9Et0U/6wCYKADlMH6nrqcLj7COp66nCk+wg6TJ0Tfi+GYSBhJMGwKPCcZSOFRf5l2ZHlFRI5CnVFKM0qQUlWCUqzSlCaVRZ8rVPopvRvnW3oBHvqeA8P2ymbWCV01AKvxQdFfkhFzzwNpFppqlczKFqo02vpRa+1D70WcdqAfWBcnfmmkkqmQlVOFapzqlCdU43q3Gr/62pUGiogl6ZvBVWmEQQBHs4Du8cBu8cGu9sOm8cOu8cGh8cBm9sOu8cOm3+ewxuYZoPL64JKUOHMhWdidflqzMmtoePNFLi8LvACD7VcnepVSRr6biKheB8P75B3TCVRMCQacMM2YIe2UANloXKkSscf5ij8TWbT6bs4FkEQwNm5kEoiDzxGLyRKiRjwVKog06fvzaNYBEGAu8c9JhCyNznAe3goSxRjq3cq1ZAXyBMaHkznMSY8IHLD3eOCq8cNV6//sccFz4AnPfs9Y8QRK0dCN3VY2CMzJHYU13Q2276XKPxJYw0/b0TPK30ovLQA/CoO88+ZB4lkcom/j/Ph1MCpsJDnSE8dTE5TYlc6SfQKPUrCgqFSlGaVokRfEgyIspRZs+ZAFc9sO5DNZDMp1EkElmFRmlUSDIWqc/zBUG41qnOqkK3KTvUqTgsv54XRYcSwYxjDjmEMOYZgdpr9wY3dH+LYxOceB+z+wEYMcuxweBywu22weezw8Ym5e5mtzMKKshVYVbYKq8pXYlXZKhTpZ+7ds0i8nBcmpwlGhxFGpwkm/4/RaRx57jDC5DLB5DSPvHaa4PKJ/WxkKfUoyy5DWVY5yrJL/c/LUJ5dhrLsMhTriyGTZOYFIn03kYmg/YVMVLrtM7yXh7vPHQyDXD0hIVHIYzKaS0o0kohN5lSVaqjKVVQt65du+0yyUfiTxngfD1bKTnintLltqO895g94juBIdx2O9R2D2+eehrVOHY1cg5KsEpRllYpBkV4MiQKBUYm+FDlqw4wKiARBgMllRq+lBz2WXvRYetBn7UOvtRdGkwmG7GzIJDJIWSkkrBRSVgIpKw3+SPyvxWUk/mWkkEpGlpWELB82TRL+fgzD+sMHsWNIYdQjxDkR5wkYGVo68u+OvA4sI2GlyNfmo0CbD61Cm5oNMEVOrxNd5m50m7vQae5Ct7kbXeYudPmfz6ZQJ1EMKkMwDKrJqUZVTmUwJCrRl6TdF7sgCHB4HcEQZzgQ6NjFQCdsWuDHPgyL25LqVR+X0qxSrAwJhFaUroBeqU/1asXl8XnQbenGoH0oLKARQ5uQ18FwR3y0e+xJXzeWYVGsLx4TCpVl+YOi7HIYVNkp+64TBAF2jx0WlwVWtxVmf1Nyq9sKm9sGq9GC8uIKaBQaqGUqqOQqqGVqqGQqqGRqqOUqKKXKGfVdTSZntl2UkYlzep3oNHWi3diBDlMH2o3t6BzoRGleKXI0BuSoc5CjzoFBNfI8W5UNqSR9qsUEQYDP7AsLgwKP7sDrbrEqbjRlsQKqKnVIc7mRkEeel9iqqukQ+P7gBR4auQYSNvnNHGfbcYbCnwwQa6ccsA0Eq3kCj42DjXSxGIVKpkKJvgQlWcXI1+TDoDbAoDLAoM72PxrGPCqkimlfT0EQYHFb0GvpRY+lF73WXv/zHvRa/dP8FR+Bu8WzmVqmRoGuAAXaAhT6Hwu0Bf5p+SjQFqJAV4BCbcG0NakIBDtd5k5/wDMS7Ig/3Rh2DE/LuhARwzBQSBSQS+SQS+VQSBWQSWRQSBVQSOSQSeRQ+KfLJQrIpTLIJQoopPKw35FLxNficxnkUsWY95JLFeAFPizUMTqGMWQfGhP0zKbPMMMwmJ8/HytLV2BV+SqsKluFxcWLpv04a/fY0WHsQLtJvGAY/bzH2pPR36MauWZsOJQdeF6OEn1xxP/nXs4Li8sKi9sCi8sMq8sKi8sCsz+8sYQ8ml0Wcf6oZS1uK3hh6nex1TK1Pxjyh0IyFVRyMSRShwRFKpkKGrlmZHpwGTWUMqV4YcV74eV88HLesOde3gsf54OX94qvOS98vC/icy/vg8//O5HeK/CcYQAZK4NUIoNMIoOMlYrPWRlkksDNlsjPxd+T+peVQS6J9j7i70hZ8eZOoE9GNvTH37Re/GGCTfBHfkaa57MME2yeP/Y9mLA+IBkwwQtKBv7HkAvM8Uwb7wXpVC7KQj+/Yc8xdrowql2OeEMrsy6aZyqT0xTxGB14PmAbmNT7Zin1MISEQga1ATlqw5igyKAOPDdAr9CnNBzg3GIVkWfQA6lGAlWFChJVavuACvD4POJ3g9sKq8sCm9vmf26F1R3yE/baFvba5p8W+v2hkqmgVWihkWugU2ihkWuhVWihlWtCpuugUWiglWuhVQSma/3La/zLi7+nkI4dXZfCH5J2eJ5HS2sLBJ2Ao731wSZbR7qPoNfam+rVm/HUMrU/DMqOGA5FC4/UMnXEkwer2+pvshMIccRQp8c6Euj0Wnrh8DpS8K+d+bRybTAoKtDmo0BXiAJtPgr9j2JQlI8CbQFUMlXE96Bgh5DEkUvkWFK8BCvLVmJV+UqsLluFuXlzJ30SJggChh1GdJja/XeC/RcMIRcN9PkECnWFKNQWwOF1BgMdp9eZ6tUis9ToQCk4zX+VIuElkHllkHNyyH1yyDgZZD4ZZD7xtZyT+R/9r0Ofc3JxOf8yMk4edVkZJwPHcvBJfeCkHHgpB17Gg5cLgEyAIAcYOcDI/aM6KlhIlBJIFBJIVVLIVDLIlDLIVXIo1HIo1Aoo1Uoo1AqotWqoNCqo1Crxd5TiKJHSLGnKO3KeTryPB+/k4XNxGBjqR2d/N3oHe9A/2I+B4UEMG4dgNJtgMVnAubiw7STjZGO2myyw/Thxf5DyUvhYH7xSD7z+R4/EO2aaV+IN/ngkXvhiPPdIvOBlHFQaFTRaDbRaLXQ6LbL0WcjSZUGv0kOn0EKr0AUDB/G1OC3wPNq1QSq4fW4xfPHYYAtUZrptsLnF1xb/tMBPIMyxeaz+4N8Km8sGl80FeBB9+wQ+m8HXgfmhn+fwzzEDFl5JYFt5xecSX8ijN+Rn9DwPfBIfPKPm+SQ+8DIeCqUcco0CKpUqGBqxHIOC7ALolDoU6grxwLn/L9WbJ2ko/ElDHM/haO9RMeTprgs+2r3JLycniSOXyINhkE6hg9FpRK+lFzaPLf4vk7SgV+iRr81Hoa4AGrkWvdYeCnYImQZ6hV5sLla+KthsrCSrBIB4Q6TP1hcW6rQb24OvO02ddJwlJB0JgMqrgs6lC/5o3drgozYw3a2D1iVO13g0UPgUYIWZfUfeLXfDrrLDobbDHulHFf7aI/cAk8wQJKwEcokMskBFq7/yVax29T+XjHoulfur0eSQQw6lWwmFXQmFXQ6ZTQ6ZXQapVQLWJoXEyoKxMICZASwAZ+XAOTkIbgGMmwHLz6xtyYOHXWGHRWmBVWWBRWmFVWmBRWmBRWUNmW6BTWUDr+eh1Cj9wVBISCQPD4pG5umglY8sp1Fo4fV5xKDGIwY0Fpc/qPEEAhxrWGhjCwl1rP7leC8PrUs76jOohdatgy74qIPWrYHSqxoT4sh9csj4zOx/LsAj8cDjD4YOVhzAU5ufQpWhEke+dTjVq5Y0FP6kIavbirIfV6Ss5FzKSlFpEEvfeJ4HJ3DgeQ68IIATOHA8B17g/Y8cOF4ctjl0XiJKvgkhiSeXyFGsL0Khrsj/WIhifTEKtAVwmZ3ILyiA1N88gBnTjIANawLAgBm73KhlQpdlQpYBgF5LD5qHWtA63IqW4Va0DLWg1dg66TJuMrMV64uhlCrRZe6Chxvb9wEhZPqwPDsS2PgvHnUuXfC11n8xqfdPC1xYSoX06WsFEC/cPVLxAjBQISIRJGJVETfywyK9AguPxOMPGKyw+IMFq9ISfG4ZFUI4FA4IzNjrCrlP7t9u2pHQze3fjv4AYPQ8tVuddv8/ArysFz6JD1JOmtbBhFPmHNlmSmswHApsz9HTnTJn9LBPANQeddjncfTnMNK2VHtn7siSk7GzZiceP+83WFy0CDvu3p7q1Uma9DoCEwCATqFDTU4Nmoaakv63tHItlpQswdLiJVhasgRLS5bitILTptz/giAIwRCI4zkxQAo853kIo8Iii8uCbksPuv1NZrot3SHNaTphdmVG56aEpEq0UKdIV4Si4LSiqJ2ep6LNc3VOFTZUbRgz3eq2ioHQUAtah9vQMtyC5qEWtAy3oMPUAY7npmX9ZgO5RO4vUddAIxfbx2vkamj8r7VyDdRydbCMPThfrgXH+/DxiU/QaGnCwa6DsLqtSV3XHktPUt8/lRiGQZYyC4LA0/cdSUuF5kLc+eFdwYtIjUeT1L/nY3ywKW2wKWxwy9ziHXqpB16JGNB4pJ5gaBP66I0wzeNv4hP6OvDcx/riV9AIYrMzOSeHlJMGm7JIOZnY1Mjf3EjGS/2hkdh8ReqfJ4+6rLicxq2F3qWHzileqI8nWJFzcuTa85BrzxvX/0+O4WBVilUoAiMEqz3knHxcvz9ZHokHDrljzLbySr1jt13wtTf8ddgy3ojb3SP1wMt6IbAjARcjMGIIFNwOcv9redg2CU7zySDlZZD7g7/QbTbyXA5Z8D3F53KfAjqXFjqXftyBisqrgsqrQqG1cFzLe1mvPxSywqq0QuaTBUMcrVsLiZDcZoM+xhdlm3nHhKfhrz3w+Jttxd6O3rDPLs/wYeGrLOz/fcg2CPksBR852ajlQh8jzROnmVVmAIAmQweRGS8Kf9LUspKlCQ9/inRFWFqy1B/0LMWS4iWozqlKyoUewzCQMBJIIBn3kLS1RbVR51ndVvSYe9Bl6R4JiMzd/hGSxNdGpzFRq09I2pBL5CjSFaJIXzwq1ClEka44bqiTiXQKHZYUL8GS4iVj5vk4HzrMnWjxh0GBkKhluAUtQ62zprmPVq4d6ZxSnYNcTS4MKgP0Sp0/oAmEOP4OD+Ua8bksEOyIP1MZMpzneazUr0RlZSUAoGGwAfs7D2B/xwHs79yPup46eDlvov7JGUGv0CNblQWD2oBsVXbwx6Aa9XrU/KyQjkQtLgu6zF3oMHWi0//TYepAp1l83mXuho/3pfhfSmYbjuUwd2DupH7XJXXBqrTCprDBqrTAqrTBprCKj0orrAr/o9IKq8IKm9IWu9JhujEAJ+HglCS/TyyGZ6Bz66B36sVAyKWH3qmHzqWD3v9c79KFTR9PNZVEkCDbmY1sZ/ak180utwe3m7g9I2zDkG1pU9jglrpTth0FRhD7i5FO3/eQzCcLbqvQbTZmO04w7JPxMuTac5Frz53S+vEML34O/Z8zq8IKu9I2ZvuJn9XA59Q6rf8PA9yy1IxSrZVT+ENSYGnJUrxY99KkfpdhGMzJnRMW9CwtXoICXUGC13L66BQ66Ap0mF8wP+oyDo8jrHqoK1hFFBhCuxuD9sFpXOvpkafJQ7G+KCQIKEShthBOqwNZhmzwAg8f74OP94HjffDxnPiaC0zjgvPHvObE5bmQ+eGvOf8yoV8K4kggzKhHAKOmh3fwGO13or2fw2NHv20A/bZ+mJym6fxfnjBqmRql2aUo1ZegNLsUJfoSlGWXoURfgtKsEhTrS2ZUqJMIUokU1TlVqM6pAnB22DxBEDBkH0LzcIu/aqhVDIWGW9E63Aqz0ww3506ryiGGYZCtzEauJjc4okhglJFI0wI/qRiFMBaWZbGgYAEWFCzA51ZeD0DsTPJoTz32d+7H/o792N95AKcGTqV4TcdHJpGhNKsUpVklwU78g2GNcmx4Y1AZkKXUJ2T4YL1SD71Sj4WFCyPO53gOfdY+MRwyjwREgecdps6U9kumkCqgU+jEf0fgUakXR2SRa2A0GyFRSOD0OeHwOOH0OuD0OuHwOuH0OMRHrxMOryOjR1ybaaxKa7Bvk7GBzegLfzHkES8grfBJKKwcL4EVxCZbqnFWAAqAxqMZCRhcI8HRyLTw0IgV2JGL/+CFfkiYEyHUsSls4Nn069JBKVWi3FCO8uxyVGSXozSrFFKPBHKtAkanCUbHMIz+kTWDI286jbB7ktOPqlfqxbB2GMPa8R2DA2GfLnS7ufTQBcO/0ABJfC7lxe8Zp8w5dpv5t+vINvU/+qc55JGb/6ULpVQJnVIHCSOB3WOHzWOb9u8BrSK5VY2pRn3+pKn3Tr6PK5+5Ku5yCqkCtYW1YpOt4qVYWrIEi4oWQTvDS9Ymy+V1BUfVMjlNwS8Bo8Po/5IIfW2EyWGEyWVOybrmqHPCQp0iXRGK9EVh0wq0BZBLx5bszrZhC90+NwZsA+iz9qPf1o8BWz/6bP3o978WfwbQb+2btiYV8YKd0uwyZCuz0ibYmU37DMdz8HAeuH1ueHwe/3MPPJxbnMZ54fG5/dMC0z3w+pcTl/HEeA9xWUEQwoaJHQlvcoPPs1VZkLCZOcrLZPYZs8uMQ12HgtVB+zsOoNvSneQ1HUsj16A823/B4L9wCH1epCvK6M+B3WNHl6krGBAFOsIOhEPR+k3SK/TQKcMDG71Sj6yQ52HTlDrolVnQK/TQ+38vVjA5kX1GEAS4fW7YPY6QgMgBp8cfFHkdwfAoGBh5QoIk/7JgGMhY/1Dq0YZWH8cw6yO/OzLMeuD5yNDuUgiCAK//pog4THzIc//Q8bGGjB89/Hz4UPSh7yu+H8f7gs3sxeb1I8/5kH4Yxb4ZefCh84XQ+UJYv40jvysEm+0LvACO4YLbJ/QRCBkyPcK0wKRYQ61Hei+e58P2lTGjgUWZNnY6xk6PsKwAAS6vCy6fa/QuOXMISJ+qqjiylVnBcGfkGF0RfJ6nyQvb5uM9xri8ruD5fiAYMjpNI8+jTE95Nau/03SPxANOkh43siSsRPxeUOjEDquVupDXWvEGvjLGfKUOOoU4WtroamSe5+H0Of2dVdth81hhd9thddvEcMhthc1jh83/2uq2we7v0NrmtvuXscHu7wjb7rHD7YtdUfT5VZ/DH676fTL/l6UUhT9pqt/aj7mPhFe5ZCmzsMzfXGtpiRj0zM+fP6WyfRIfx3MwOc1hoVDkx5DwyD8tUsfX2arsYF8s0UKdQl3hlO7sz6YL+YlyeV0YsItB0YCtPxgY9YeFRQPot/bD4o4cFGVasDMetM+QiUrUPtNj6cGBkOZiBzoPTDmkzVHnoCK7PMJFg3jhMNsr6niex4B9ACanCRq5Rjz5luuS/tmn4wyZiFTuLzzPi2Gj1wm7xw6HvyrN4bH7A0nxucMfOto9dv+yDn8w6Qg+D13eHgwwHdP670lXhbrCYNVOpOO1Xqmf0Pslc58RBAE2jy0kGBo53xeHSR8ZcWv0sOk2t80/pLotbvgwHaSsVAxlAqOJhYwupgu+9s+Xi/OylHp/WKMPC29UMlVGfZ96fB7YvQ7Y3GKQZHFZ0NzRDHW2Bg6vAxXZ5dhYvTHVq5k01OwrTRXoCnD9iutQmVOJxUWLkcvnYP2i9ZBIMvMOcSaTsBLkanKQq8mZ0O/xPA+rxwqjwwiLywK9Uo9CXSFUMlWS1pSMh1KmDJ5cxOP0OoMVRXaPHXma3IwMdghJZ8X6YlxSewkuqb0EgHjsbBpq8vcfJDYXO9J9JFipwjAMinRFMSt3qPo1NpZlxSbCuvF1NkrIbMOybPCCOB/5CX//QEWD0+MEJ0xfBYfgH7nXw3nhDVa3euH1V7N6fF54OI//deC5N1jh6vVPCzwPVMt6OY9/mZD38j9nGRYl+hKUGwIhj1i5U5ZVCqVMOW3/9qliGMYfmOhQYaiY9Pt4OW/YcOzBkMhjDalwsYUHSiHL2T12yCWy4P6pDQliRkIcXXD4eL0yJMzxBzkKqWLWnsfKpXLIpXIYVNkAxM9iPp8/a25KZET4YzQa8aMf/Qj79u1DYWEhHnjgAaxduzbVq5V0T13zRwAjKfZs/ZBmKpZlkaXMQpYyK9WrQiZJJVOhwlAxpS95QsjEsCyLefnzMC9/Hq5bcS0A8U5dp7kLDMOgVF8SsbkrIYRkCpZlgx3vk9lFJpH5m4IbUr0qZBbKiPDnZz/7GfLz8/HBBx9g165deOCBB/Dyyy9Dr59YKSAhhBBCMo9cKkdNbnWqV4MQQgghJGOlfW2Tw+HAtm3bcNttt0GpVOKss87CnDlz8NFHH6V61QghhBBCCCGEEELSXtpX/rS3t0Or1SIvLy84bd68eWhubo64vMfjgccTPoKFVCqFXJ65JeI8z4c9EhIP7TNkomifIRNF+wyZKNpnyETQ/kImivYZMlEzaZ8ZT59FaR/+OJ1OaDTh7WE1Gg1sNlvE5Z9++mn8+c9/Dpt29dVX45prrknaOk6Xjo6OVK8CyTC0z5CJon2GTBTtM2SiaJ8hE0H7C5ko2mfIRM2Efaa6On7z+LQPf1QqFex2e9g0u90OlSryiElf+tKX8PnPfz5s2kyo/Ono6EB5efms6IWcTB3tM2SiaJ8hE0X7DJko2mfIRND+QiaK9hkyUbNtn0n78KeiogI2mw2Dg4PBpl8NDQ24/PLLIy4vl8szOuiJhWXZWbFTksShfYZMFO0zZKJonyETRfsMmQjaX8hE0T5DJmq27DNp/y9Uq9U488wz8dRTT8HlcmHbtm1oamrCmWeemepVI4QQQgghhBBCCEl7aR/+AMADDzyAvr4+nHvuuXj88cfx6KOP0jDvhBBCCCGEEEIIIeOQ9s2+AMBgMOCJJ55I9WoQQgghhBBCCCGEZJyMqPwhhBBCCCGEEEIIIZND4Q8hhBBCCCGEEELIDEbhDyGEEEIIIYQQQsgMRuEPIYQQQgghhBBCyAxG4Q8hhBBCCCGEEELIDEbhDyGEEEIIIYQQQsgMRuEPIYQQQgghhBBCyAxG4Q8hhBBCCCGEEELIDEbhDyGEEEIIIYQQQsgMRuEPIYQQQgghhBBCyAxG4Q8hhBBCCCGEEELIDEbhDyGEEEIIIYQQQsgMRuEPIYQQQgghhBBCyAxG4Q8hhBBCCCGEEELIDEbhDyGEEEIIIYQQQsgMxgiCIKR6JQghhBBCCCGEEEJIclDlDyGEEEIIIYQQQsgMRuEPIYQQQgghhBBCyAxG4Q8hhBBCCCGEEELIDEbhDyGEEEIIIYQQQsgMRuEPIYQQQgghhBBCyAxG4Q8hhBBCCCGEEELIDEbhDyGEEEIIIYQQQsgMRuEPIYQQQgghhBBCyAxG4Q8hhBBCCCGEEELIDEbhDyGEEEIIIYQQQsgMRuFPmjMajbj77rtx+umn47Of/Sz27NmT6lUiae4rX/kKNm7ciDPOOANnnHEG7rrrrlSvEkkzTz31FK6++mqsWbMG77zzTti8Z555Bueddx7OOeccPP744xAEIUVrSdJFtP3ltddew7p164LHmjPOOAO9vb0pXFOSLjweD3784x/j4osvxubNm/GVr3wFjY2Nwfl0nCGjxdpn6FhDonn44YdxwQUXYPPmzbj22mvx8ccfB+fRcYZEEm2fmS3HGWmqV4DE9rOf/Qz5+fn44IMPsGvXLjzwwAN4+eWXodfrU71qJI398Ic/xAUXXJDq1SBpqry8HPfeey/++Mc/hk3/5JNP8Pzzz+OZZ56BUqnE7bffjqqqKlx++eUpWlOSDqLtLwCwdu1a/Pa3v03BWpF0xnEcSktL8fTTTyMvLw/PPvss7r33Xrzyyit0nCERxdpnADrWkMg+//nP4/7774dcLkd9fT2+9rWv4dVXX8WRI0foOEMiirbPALPjOEOVP2nM4XBg27ZtuO2226BUKnHWWWdhzpw5+Oijj1K9aoSQDHbxxRdj/fr1kMvlYdPffPNNXHXVVSgrK0NeXh5uuOEGvPXWWylaS5Iuou0vhESjUqlwyy23oLCwEBKJBNdeey26u7thMpnoOEMiirXPEBJNVVVV8LuJYRh4PB4MDg7ScYZEFW2fmS0o/Elj7e3t0Gq1yMvLC06bN28empubU7hWJBP84he/wHnnnYc77rgDDQ0NqV4dkiFaWlowd+7c4Ov58+fT8YbEdPjwYZx77rm4+uqr8fzzz6d6dUiaOnLkCHJycpCdnU3HGTIuofsMQMcaEt1Pf/pTnH766bjxxhuxYcMG1NTU0HGGxBRpnwFmx3GGmn2lMafTCY1GEzZNo9HAZrOlaI1IJrjrrrtQU1MDlmXx3HPP4e6778bzzz8PtVqd6lUjac7hcECr1QZfazQaOByOFK4RSWcrV67Ef/7zHxQVFeHYsWO47777kJubi7PPPjvVq0bSiM1mwyOPPII77rgDAB1nSHyj9xk61pBYHnjgAdx///3Yt29fsJ8oOs6QWCLtM7PlOEOVP2lMpVLBbreHTbPb7VCpVClaI5IJFi9eDLVaDaVSiZtuugkqlQr19fWpXi2SAdRqdVi4bLfbKTQkUZWWlqKkpAQsy2Lx4sW47rrrsGXLllSvFkkjbrcb9957LzZt+v/t3V9IU38Yx/HPWmXlKqRkJRiNoBZ50WjgjQkFXRRNgsK6HER/IBDrJujG3RQVQRD9WVfuIhlFRcmoq6gIVKjdWYxiEZjpzNoop1uOnd9FOfzTzH5ZZxzfrxvHF3bOc+DxYX72Pce6wrM2mDOYzs96hlmDX7Hb7aqtrdXz58/V2dnJnMEvTe6ZuTJnCH9K2Jo1azQ0NDThPsQ3b94UtqYBMzFvHr/mmBmXyzXhP/K8fv2aeYMZs9lsZpeAEpLL5XTq1ClVVlaqubm5sM6cQTHFemYyZg2Kyefzev/+PXMGMzbWM5NZdc7wV2EJW7Jkierr63X9+nVlMhk9ffpU8Xhc9fX1ZpeGEvX161d1dXXp27dvGh0dVVtbm758+aKNGzeaXRpKSC6XUzablWEYhdf5fF67du3SnTt31Nvbq8HBQbW1tWnnzp1mlwuTFeuXjo4OJZNJSVIsFtPNmze1detWk6tFqTh9+rSy2awCgcCED9HMGRRTrGeYNfiZ4eFhPXz4UMPDw8rlcnr06JGi0ag8Hg9zBj81Xc/MlTljMwzDMLsIFJdMJtXS0qJoNCqn06mTJ0+qtrbW7LJQopLJpJqamvTu3TstWLBA69evV3Nzs9xut9mloYQEAgFFIpEJa8FgUF6vV62trbpx44by+bz27NmjpqYmy377gZkp1i/Pnj3TgwcPlMlkVFlZqcbGRh04cMCkKlFK+vr65PP5VFZWNmH36aVLl+TxeJgzmGK6nnny5AmzBlOMjIzo+PHjisViMgxD1dXVOnjwYOEZLcwZTDZdz1y8eHFOzBnCHwAAAAAAAAvjti8AAAAAAAALI/wBAAAAAACwMMIfAAAAAAAACyP8AQAAAAAAsDDCHwAAAAAAAAsj/AEAAAAAALAwwh8AAAAAAAALI/wBAAD4hRcvXsjr9crr9erDhw9mlwMAAPBbCH8AAADGCQQC8nq9Onz4cGHN4XCopqZGNTU1WrhwoYnVAQAA/L75ZhcAAABQ6txut0KhkNllAAAA/C82wzAMs4sAAAAoBT6fT319fVPWg8Ggjh49Kklqb29XVVWVAoGAIpGIVq9erSNHjujatWsaGhpSQ0ODjh07pitXrqi9vV1Lly6V3+/Xvn37Csf7+PGjrl69qs7OTqVSKTmdTvl8Pvn9fs2fz3dzAABgdvHpAgAA4IcNGzZoZGREqVRK5eXlcrlckqRYLFb0PYODgzp79qxWrlypdDqtcDisrq4uDQwMyOFwqL+/X+fPn9eWLVvkcrmUSqXk9/uVSCQK53j79q2CwaB6e3vV0tLyry4XAADMETzzBwAA4IcLFy6orq5O0vcgKBQKKRQKye12F33P6OioLl++rLt378rpdEqSenp6FA6Hdfv2bZWVlSmfzysajUqSbt26pUQioRUrVujevXsKh8M6d+6cJCkSiainp+cvXyUAAJhr2PkDAADwB5YtW6bNmzdLklatWqVEIqF169apqqpKklRRUaH+/n59/vxZkvTy5UtJ0qdPn7Rjx44JxzIMQ93d3aqurv53FwAAACyP8AcAAOAPlJeXF17b7fYpazabTdL3YGf8z/G3lY23aNGiv1YrAACYmwh/AAAAxhkLXzKZzF85/qZNm9TR0SG73a4zZ84Udgil02k9fvxY27Zt+yvnBQAAcxfhDwAAwDhr166VJL169Ur79+/X4sWLdejQoVk7fmNjo+7fv6+BgQHt3btXLpdL6XRaiURCuVxOu3fvnrVzAQAASDzwGQAAYIKGhgZt375dDodD8Xhc3d3dyufzs3b8iooKtba2yufzafny5YrH48pms/J4PDpx4sSsnQcAAGCMzRi78RwAAAAAAACWw84fAAAAAAAACyP8AQAAAAAAsDDCHwAAAAAAAAsj/AEAAAAAALAwwh8AAAAAAAALI/wBAAAAAACwMMIfAAAAAAAACyP8AQAAAAAAsDDCHwAAAAAAAAsj/AEAAAAAALAwwh8AAAAAAAALI/wBAAAAAACwsP8AHUmmkGK1jLgAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -671,20 +697,18 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "id": "e8c5cb12-11c9-4386-b483-21b48d568642", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAE8CAYAAAD6wgRJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAC9Z0lEQVR4nOydeXwT95n/36Pb8n3fGBswp40BQSAEQkLupLnTNmka0qZpsttsm802vTabo+12N5t0m1+zbdK0aTZJmzbd3M1NuEM4LB+AweYw2IANvmVb9zHz+2MkIRkDBoxlm+/79fILaTTSfGcYaT7zPM/380iKoiAQCAQCgUAgOLdoYj0AgUAgEAgEgvMBIboEAoFAIBAIRgAhugQCgUAgEAhGACG6BAKBQCAQCEYAIboEAoFAIBAIRgAhugQCgUAgEAhGAF2sBzBEzrmvxdGjR8nJyTnXmxEEEcd7ZBHHe+QRx3xkEcd7ZBHH+5RIgy0Uka4ggUAg1kM4rxDHe2QRx3vkEcd8ZBHHe2QRx/vMEKJLIBAIBAKBYAQQoksgEAgEAoFgBBCiSyAQCAQCgWAEEKJLIBAIBAKBYAQQoksgEAgEAoFgBBCiSyAQCAQCgWAEEKJLIBAIBAKBYAQQoksgEAgEAoFgBBCiSyAQCAQCgWAEEKJLIBAIBGMWRVH4f//v/7F69epYD0UgOCVjpfeiQCAQCATHUV1dzYMPPkhGRgZ33nknkjRoyzuBYFQgIl0CgUAgGLOsW7cOgM7OTg4ePBjj0QgEJ0eILoFAIBCMWUKiC8BqtcZwJALBqTnvRZfH42Hjxo18/PHHsR6KQCAQCE4DWZbZsGFD+HllZWUMRyMQnJrzvqartbWViy66iPT0dL75zW+KegCBQCAYI+zcuZOenp7wcxHpEox2zvtI18SJE0lPT6erq0vUAwgEAsEYYv369QAsW7YMUEWXLMsxHJFAcHLOe9ElSRLz588HRGhaIBAIxhIh0XX77beTnZ1Nb28vjY2NMR6VQHBiznvRBQjRJRAIBGMMRVHComvp0qWUl5cD4ndcMLoRoguwWCyAqAcQjE8URcHtdsd6GALBsLJv3z6OHj1KZmYmU6dOZfbs2YD4HReMboTo4likS9QDCMYjzz77LFOmTIma5SUQjHUio1ySJIlIl2BMIEQXkJubS05ODn19fezduzfWwxEIhpVXXnkFRVF46623Yj0UgWDYCPlzLV26FCAc6aquriYQCMRsXALByRCiK0joCyvukgTjie7ubqqrqwHYvHlzjEcjEAwfkZEugPT0dIqKinA6ndTX18dyaALBCRGiK4ioBxCMR9atW4eiKADU1NTg9XpjPCKB4Oxpbm6mubmZlJQUysrKwssjS0UEgtGIEF1BRKRLMB5ZtWpV+LHH42Hbtm0xHI1AMDyE6hMvuugitFpteHloUpT4HReMVoToChIqwqypqcHv98d4NALB8LB69WoASkpKANiyZUsshyMQDAsDU4shRKRLMNoRoitIamoqJSUluFwudu3aFevhCARnTWtrK/X19cTHx7NixQpAiC7B+OBEomvu3LkA1NbWilS6YFQiRFcEwiRVMJ5Ys2YNAEuWLGHBggWAKKYXjH3a2trYvXs3ZrM5LLJCpKSkUFpaitfrpa6uLkYjFAhOjBBdEQjRJRhPhOq5li9fzrRp0zCZTOzbt4+urq4Yj0wgOHNC9VwXXngher0ef7+f9Ys3cuixw4Co6xKMboToikCILsF4QVGUsOi69NJL0ev14YvR1q1bYzk0geCsGOjP1bmuC3uDnZ73ewl4ZFHXJRjVCNEVwZw5c5AkiR07doi2KYIxzf79+zl48CCpqalUVFQAcMEFFwCirkswthlYz9W5Vo3cKj6Fvu19ItIlGNUI0RVBYmIi06dPx+fzsX379lgPRyA4Y0KzFi+55BI0GvVrLkSXYKzT3d3Njh07MBgM4fO5c/2xdLmtysacOXPQaDTU1dXhcrliNVSBYFCE6BqASDEKxgOR9VwhIkVXyDBVIBhLbNy4EUVRuOCCCzCZTLgOuXA2OsOv26p6iY+PZ8aMGQQCAWpra2M3WIFgEIToGoAQXYKxjqIo4UjXpZdeGl5eWFhITk4OPT09oseoYExyXGpxnRrlMk8yA2Cz9gLCr0swehGiawChegDxZRWMVXbu3ElHRwd5eXlMnTo1vFySJJFiFIxpTiS6iu6ZgMaswXXQhafdI+q6BKMWIboGMHv2bHQ6HfX19djt9lgPRyA4bSJnLUqSFPXawoULASG6BGMPu91OVVUVWq2WRYsWocgKXUHRlXlpBuZZcYCaYhSRLsFoRYiuAZhMJsrLy5Flmerq6lgPRyA4bUKpxch6rhAi0iUYq2zatIlAIMDcuXNJTEykf2c/3i4fpjwT8ZPNmMuCostqo7y8HL1eT0NDA/39/TEeuUBwjPNedLkOu9hyYyX77t4fXibqugRjFb/fz9q1a4Hoeq4QFosFSZKora0VM7sEY4rB/LkAMpalI0kS5vJjdV1Go5Hy8nIURRE3z4JRxXkvugxpBro39eCodeK3q42uRV2XYKxSXV1NX18fkydPZsKECce9npiYyMyZM/H7/dTU1MRghALBmXEif670i9MAjomuml6UgCLqugSjkvNedGnNWhJnJoIMvTXRM1/El1Uw1ois5wrhPOji6G/bCDgDgEgxCsYebrebLVu2IEkSS5YsIeAO0L25B4CMpekA6NN1xE2II+AI0L/bLuq6BKOS8150AaRakgHoCU43njlzJiaTicbGRrq7u2M5NIHgtBisnqv+3xpoe76D5v89BIhiesHYY+vWrXi9XsrKykhNTaVnqw3ZJZM4MwE52cA1D8s89bcEUoK/5TarTUS6BKOS8150uTwKB9NSAPWLCqDT6ZgzZw4g7pIEYwe3283nn38OqE70AAGPzJGVahpm38dqZEBEugRjjYGpxdCsxYyL0/loM3y0BX73QQJJc4Kiq6o3fPO8f/9+0eRdMGo470VXew98850kAHoqbWGnbhGaFow1Nm/ejNvtpry8nMzMTAC6v+hG41HTis6aHhRFYcaMGSQkJNDU1ER7e3sshywQDIkT1XNlLEvn7Q0K2sw+vEY37dmhSFdv1M1zVVVVDEYtEBzPeS+6JmQD2XHYtHp8XT6cTeqMLlHXJRhrDFbP1fBGR/ixwenD0ehEq9WGUy8i2iUY7fh8Pr744gsAlixZgrfHS++2PjQGiURLCu/vcJJ4q5X4a7dT7U9CY5Cw77bj6/OL33HBqOO8F12SJLFwlkSDOQUAW6UNEKJLMPYY2PpHURQ6V6qiq01vAqD98+gU4+bNm0d6mALBaVFTU4PD4aC0tJScnBy6NnSDAikLUtiwR4crpwNJq6DLsLO20UtSWRIo6sQoMRNdMNrQnWoFi8WiAf4ITAIk4FvA84AWCAAvWq3WVy0WSw7wChAPPGe1Wv9ksVi0wO+BKUCV1Wp9MPiZ3wO+DHQBd1qt1r7h3rGh0uJ0c7RsNzvvcbHwGejc3En+l/OYMmUKSUlJtLS0cOTIEXJzc2M1RIHglPT397N161a0Wi0XX3wxAI69DoxdLj5YquX123w8+t9gWGWj5O4CUdclGDOc0J9raTrPfWTHUHIsmrv24FEemR2PraoXm9XG/GvFzbNgdDGUSFcFYLRarUuAHwMPBZdfbbVal1mt1leDz38I/BdwMfAdi8ViAq4DWoPvjbdYLIssFksGcD1wEfA68J1h25vTwOv10tTUxC5rJXukdjonO/HqoW2jWuOi0WiYN28eIO6SBKOfDRs24Pf7sVgsJCWpNYoNb6jn8sfLNMg6hS/mS3R90QYci3RVVlYiy3JsBi0QDIETFdGnXJTGu1VetDm94XUdyT4adep5b6vqpbS0lMTExPDNs0AQa4Yiug4DksVikYBUoBOQgQ8tFst7FoulKLjeAmC11Wr1A1ZgFnAh8Gnw9Y+BxcB8YJ3ValUilo0469ev5+WXX+aLNatJcztBC/uKJHz7/fgdqkmqSDEKxgqheq5Iq4jd/9dCZxr05KqF9DtLJRJtfloaWsjLy6OwsJC+vj4aGhpiMmaB4FQEAgE2bNgAwMUXX4yz2YnzgAtdko4NfS5ceU4kCYwBHwDaXBure9S2P7aqXiRJEjfPglHFKdOLqCLLBzQAJlSR9Eur1dplsVguBp5FjVzprVZr6Ja5F0hDFWl9Q1h2HBaL5dvAtwEeeOABLr/88tPbs1NgNpvDj/PcfXTFmdlaamDGPg+Nn+0nwRJPSUkJoEYRWlpahnX75zs+n08c02Hkk08+AaC8vJyWlhYCfQGSDjlZufRYw+uWfOiPh5rXa+Fb6rqHDh3i448/Jjk5OUYjH7+Ic/zs2bVrF729vRQUFKDVatn3RiMA8fPN/PbDPgzFTgDmd7bwefZEdFn91FancF2KD2+nlwNbm5g6dSpr165l9erVzJ07N5a7M64Q5/fJyc/PH3T5UETXFYDfarVOtahVib+0Wq1fAbBaressFssvg+v5LBaLJii8koFuwAYkBV+PXDZ5wLLjsFqtLwAvBJ8qQxjnaZGcnMzKlSsByHX2syM1h/pJWvXFfZB/Qz5XXnklAHV1deTl5SFJ0ok+TnCatLS0nPCkFJwenZ2d7Ny5E6PRyPXXX09cXBw7PmlCq8Dnc3RAAI0iI0sadk+GybUK+fn5LFu2jA8++IDdu3eL/4tzgDjHz5633noLUH3n8vPzad/eCUD+lXlsfC8O3YLDoChM7+2gJrEAh1lHsy4H44xOXF+4MR02cemll/K73/1OnOfDjDi/z4yhpBcl1IJ3UKNeyRaLJQnAYrHMAHqCr1UCyywWiw6YB+wEvgAuC75+JbAxuN7SActGnISEBFJSUgDIdanh6LYJPhTg6Odq3UtRUREZGRl0dnbS3Nwci2EKBKck1OD6wgsvJC4uDoCaPx3BaYLmyQEkRWFWj3pON0yR8O/SoiiKKKYXjHoi67kUWaFzvXopOpCuoTc9gKRVyHX2Yw74yHOpCZTuBBPOPNX6x2a1RXkuhnwYBYJYMRTRtRIotFgs64C/Aj8FVlsslg3A74B/Ca73JGqh/XrgeavV6gLeByYE13VbrdZNVqu1A/jAYrFsBO4Afjuse3QaFBQUAJDsc2P0+fEnBOjIAMc2J4qiIEmSqOsSjHoGtv5RAgpxuxzUTQdFq95UTO5XL1b1UyC1S0PXkS7mzZuHVqtlx44dOByOmI1fIBgMRVGiRFffjn583T5MBSb+VOMNz1qcbFeTJRO86r9Stp3dOjegtnabOHEi6enpdHR0cPDgwRjsiUBwjFOmF4OF8V8ZsNgyyHpHgMsHLPMDdw+y7q+AX53OQM8FBQUF1NXVIaHWdR3Qp7FtkpbLtwRwHXRhLjIzf/58PvroIyorK7nttttiPWSB4DgGmqIeXNtBvC/AxgodIFPc302Oy44kKxwskHCbFPZ/doAFd82nvLycmpoaqqqqwrPDBILRwJ49e2hvbyc7O5spU6aw/9cHANWF/tPtZvQ3q9mHkn5VbOU61YyFLqeXjY06pknQX9eH7FWwWCx88sknWK1WioqKBt+gQDACnNfmqKFIFxxLMVZPMQDQs9UGIMz1BKOaw4cPs2fPHhITE8NR2fUvHESWoG6mmkopsfegV2SyXQ4UDeyeDEc/V2tjRIpRMFqJ9OeSJInOdaq4ckyJ46hZh2QMkOZ2kuJTo1ppXhdan4Im0cMeORtjiRHZq9C3vU80vxaMGs5r0ZWTk4NOpwb7QqKrqVi9UB3ZcBQ4ZhtRVVUl/IwEo45QanHp0qXhczmwtZ99xeCJV0j2ukj1qvUthS61/LJhikRftXouC9ElGK1EphYDrgA9m9Xz961OGX04tXiskbUEZDjUc73VlIwyST3HbVU20UtXMGo4r0WXVqsNO81nu+xIikJ/jhe3AXoq1S94Tk4OBQUF9PX1sWfPnlgOVyA4joH1XLZGB1l9XrbMVr/aJf09hObc5jvVQuP6KWA+rMXj9oh2QIJRiaIo4UjXxRdfTM8WG7JHJqkskXd3mjEUq5HaUGoxRJFXFWGuNJnOVLVO0VYV3Q5I3DwLYsl5LbrgWIpRr8iku52ggX1F4G30EXCpppIiNC0YjSiKclw91yfPqj5GlRXqV7vYfuyilOfsR5IVmiZIyFqJpo3NTJ06leTkZFpaWoTnjmDU0NzczOHDh0lNTWXmzJnh1j/6uUkcUOLQJHiI93rJckdPAMlzqzcWupxerD7V5Npm7SU/P5/c3Fx6e3tpbGwc2Z0RCCIQoiuiris05dhaakQKSPTWqs9FaFowGtm3bx+HDx8mIyODsrIyALpW9dGWAd1ZMoaAn7xgcTGoNxZpTg+KBvZOgpY1LWg0GhYsWACIFKNg9BBKLS5ZsgSNRhMWXZ8joStRo1yT7V0MdE7McdlBAW1mP5W+ZLTxGlwHXXjaPeLmWTAqEKJrkGL6+knqYencpH65hW2EYDQSinJdcsklaDQaPH0+8o44qSlXX59o70E7wFe4yB2yjpDo2qK6eYu6LsFoI7Key9vlpW97HxqDxOtHEsJWEQNTiwBGOUCCw4+kVWjSZ6KfqgfUFKO4eRaMBs570ZWUlBRuEHzMJNWvmqRuVA0lQ3dINTU1+Hy+mIxTIBjIwHquT57fj0FRglYRUGzvOe49hU61OXDDFFD2aIRJqmBUEim6uj7vBgUS5iVT60xGm+bE4PeHaxQB0tKOdZPLd6vneFeCEXeBB1BNUkWkSzAaOO9FFxyLdiX5PJh8fvzxAdoywbHNgaIopKamMmnSJNxuN7t27YrxaAUCkGU5LLpC9VyN73bjiIOmEhlJUZgYFF2RLazyXH0gw/4iCZ1PQ8eejrDoqqysxO/3x2BvBIJjHDlyhL179xIfH8+cOXPoXKtGZ/el6dFMVM/pEkd3OIprNBpZtGhR+P1FQZNUspw0GkPO9MeK6aurqwkEAiO1OwJBFEJ0cUx0SUCeS71L2jFJi9IDrkOqB4xIMQpGEzt27KCrq4vCwkImT55MIBAgs9HF9pmqC32+sw+TrF5YysrKwpEAgyyTbPcha2FvCTR92kxmZibFxcU4nU527twZy90SCMJRrsWLF6PT6cL1XO87zIOmFktLS6MMT3MiTFK/8Kj9dG01vWSkZVBUVITT6aS+vn5E9kUgGIgQXZzAJLU0aJIatI4QokswmoictShJEhvebCXN52NzuXqRiZy1OG3aNLKyssLPJ7jVc7p+ikTHF+oFTaQYBaOFyNSi44ATV7MLXbKOD905aHN60cgyRXZbeP2pU6eSkZGBwaD+Zqf43Oi8Cpp4LzulLAx5egKOAP277aKuSxBzhOgCcnNz0WjUQxE2SZ2ohq5Dza+F6BKMJgamFq2vtOHXQN0s9bwt7j/mM5eSkhIluiZ6VKHVMAUc21TPooULFwJCdAliT0h0XXzxxXQFo1z9k8wEJvQjSVDksGFQ1PNWq9UyefJkJEkKn+MSkGFX04pH4pJgivq5oq5LMBoQogvQ6XSkp6cDkO12IMkK/dleXEbo3qJevObMmYNGo2HHjh243e5YDldwnuPz+cLGkSHRZapzsWcSeOIg1eMkNdgaZdq0aQBRoivf2QcKNE4EbY8Gd69bRLoEo4Kuri7q6uowGo3Mnz8/XM+1SRuHofj41GJJSQlGoxGAzMzM8PKJXnXmuSNVoScjWNclZjAKRgFCdAUJXZR0ikxG0CS1cSJ493kJuAIkJCQwffp0/H4/27Zti+1gBec1VqsVu91OaWkpBQUFbN/axcR+J1XlarF8ScSsxZDoSkpKIi4uDlCn1cf3ywR0EvuLJQ6sPEBFRQV6vZ5du3bR19d3/EYFghHg888/B9TIq0FnoGuDKrre9uWgK+wGRRn0/AbIzs4OP873hExS+6gJqDPObdZe5s6dC0BtbS1er/fc7oxAMAhCdAWJjASEXI0rpwRNUrdHm6SK0LQglhxnFfGbQ0jA1gpVdBUHIwGpqanHUi6SFG0E7Ai1BJI4sr4Nk8lERUUFiqKI81sQMyLruXq39+Gz+ZGzDBwqUpC0CnmufsxBESVJElOnTg2/NzLSle2ygwzajH42BxKQDBL23XbiNQmUlpbi9Xqpq6sb2Z0TCBCiK0yk6Bpoktq1Wb3bEqJLMBoY2PrHv9XFkWzoyQCT3xc+f6dNmxa2ioDoCSNTfGqtYsMU6K0UJqmC0UGk6AqlFvemxoVnLU6KSC0WFhYSHx8ffm40GsnIyADU7guJDj+SBvYbMzFM0YMCvTW9oq5LEFOE6AqSkJBAQkICALnOkEmqb1CTVFEPIIgVLpeLL774AlCd6JsP2pnc6aA6woU+9KWOTL1AtOgqdPWqdV3FEDikQfbLopheEFP6+/uprq5Gp9OxaNGicBH9J3I6+qLjG1wPPL8h+hzPD9r/dCUa8RWGUow2UdcliClCdAWJTL8k+j2YvH4CZpkj2WCvUU1SZ8+ejV6vp76+nv7+/lN8okAw/HzxxRd4PB4qKipIT0/nrf85SLwcYMts9ascqneJj4+PugAB5Ofnhx+bZD/GPgmfXqK5QOJoZVtUpEtRotsHCQTnmo0bNyLLMvPmzcMkmejZ0gMSbJqYgGQMkO52kuI7NonpVKKryKuKNiXLSZP5WDG9iHQJYokQXRFEmqSGWknUTdKidCu4W9wYjUbKy8tRFIXq6uoYjlRwvjKwnqtrtYP+eGgqVtAoMhMcNkD1LgrZoIQwGo1RafTsfjWt2DAFDn52kEmTJpGenk5bWxsHDx4cgb0RCI4RmVrs3tKD7FXoyTDim6LeSEyyd4XXzc7OJjU19bjPiKpbdB0zSd3sVdPstqpeKioq0Gg01NXV4XQ6z9n+CASDIURXBIOapE5RG6b2VNoAxF2SIKZE1nP19HopanGxbSYoGol8Rx/GoAv9YFEAiD7HJwXruuqnSHRvtiFJEgsWLABg8+bN53I3BILjGMyfa7MxGUPx0FKLoBbTh0xSE/0e9G4FjclPjT4DXZoOb6cXTaeGGTNmEAgExEx0wYgjRFcEeXl5JzRJbRtgkirqAQQjTW9vL5WVleh0OpYsWcJf/3iQfK+LynBqUb0oGQwGiouLB/2MSNE12dcOwL4ScDTIovm1IGa4XC62bt2KJEksXrw4XES/qiAVTYKHBJ+HLLcjvP6JRJdGowmn0SUg0xE0STUnoyk9Fu0Sk6IEsUKIrgj0en3Y6yXLbUeSFezZPpwm6NqiXtDEl1UQK9avX48syyxYsIDExEQa3+vHr4UdM9Ubg1A915QpU9DpdIN+RqToMgf86Hq1eA0Sh9M1OJodQnQJYsKWLVvw+XzMnj2bOL+Zvh39BLQSB2d4AHXWYmgebkpKSpQn10Ci67qOmaT2ZYWaX9vEpChBzBCiawChL6xOUchwOUGCfRPBs9dLwCMzY8YM4uLi2L9/P11dXSf/MIFgGIms53J7AmTs99AwBbxGiXS3gySfeoE6URQAICMjA5PJFH6e1qvO6mqYoja/DqUXq6ur8fl852pXBIIoIuu5utarv6v7kuLRTho8tRhphTKQqFm6HhugmqTuQD2fe6wi0iWIHUJ0DSBqynGwmN5aakDyS/Rt70On0zFnzhx1ubhLEowgkfVc//d2KzPsfVSXBQ1Rg1EujUbDlClTTvgZkiRFzWIsdqsXtfopEm2ft5OWlkZpaSlut5vt27efq10RCKKI8ucK1nOtzElDm+bEEPCrrauCnOymAqJn6Wa6HRAAbbqDjYoZJOiv62PW1Fno9Xp2794tOjAIRhQhugYwWDF9Q4kWON4kVYguwUjR3t7Ojh07MJlMLFq0iMq/2tCiUFmhvh6KBET2ojsRkef4dOUwAHtLoHebOh1fpBgFI4nX6w17z1100UXheq5ts9XXS+zdaFFT6GazmcLCwpN+Xnx8PGlpaYCasUiyq5NL9pozMRTrkb0K7t0eMRNdEBOE6BpAamoqZrMZOCa62ib4kCU4OqCYXoSmBSPFmjVrAPWipNPpidvl43Ae9KRJxPm95LjtwKmjABAtupJlN5pePR6TxCG9hK/XFxZdYgajYCSoqqrC5XIxbdo0EuwJuA+7ceq19JeqEajI1OJgViiDEXmOF7hsAHQnGglMVAWYrUrUdQligxBdA4g2SfUS5/UTiFNNUvtr1QubEF2CkSaynuvDdR3MttmoKVNfK7b3hIuMI3vRnYjI9AtAYo8aRWiYInFkw1ER6RKMKJFWEaHU4oasVLQ5fWhlmSK7LbzuUG4qIPocn+hTWwjJmS4OJx4zSRW/44JYIETXIEQb7EWYpHYquFrcTJ48maSkJFpbW2ltbY3VMAXnEZH1XJ/8qYuUgI/K2dH1XIWFheFWVicjLi4u3KMOoMCpnuP1pRKHVx+mvLwco9HInj176OnpGe5dEQiiGKzf4oYKPZIEExw2DIoMqLPLS0pKhvSZkSnIXPcxk9QtwbkhNmuviHQJYoIQXYMQJbrcaoi7JmiSarPa0Gg04gsrGDGam5tpbGwkKSmJOXPm4rf66U2EAxNBK8tMCEYChhoFgOhzfEbgEAB7JkG3tQ+DwcC8efMA2Lp167Dth0AwkEAgwOeffw7ARRdeRNcGNZXYPFOdiRuZWjyZFcpAsrKywusm+H0YnCAZAlSa09CYNbgOupicOVnMRBeMOEJ0DUJ+fn54SnKo+XVTcdAkdaNqKClC04KRIlTPtWzZMrbW9TGzy07tLECSKHD2hiMBZyq6crXdSDYDbpPEfpeC7JNFilEwImzfvp2+vj6Ki4tJ6krC3+fnQKIReUIvKErYew5O7/zWarXk5eWFn2c61HY/reZkdKXqxCj7Nkd4JnpVVdVw7I5AcEqE6BoEg8EQ7lGX6XGoJqlZPhxxx89gFKJLcK6JTC2+/pdOJrn7qSpXbwpCkYCsrKzwjK2hECm6JAlM3WpUYHeJhG1bryimF4wIg6UWP54Tj6RVyHP1Yw6o+cBTWaEMRuQ5PtEXNElNUbDnqrN0I01Sxe+4YKQQousERJqkZrrUu6TGieDZrZqkRqYXFUWJ1TAF4xxFUaKK6LvW+/DqoG6G+nqonut0ogAQ3aMOIMeuThJpmCJx6LNDYdG1detWcX4LzhlRoitoirqjXD3fJkWkFouLi6NMfYdCtEmq+j3R5vaxS6sKOVuESaooExGMFEJ0nYATmaTih/4dfUyYMIHMzEy6urpoamqK0SgF453du3fT2tpKVlYWkmkCk4+6qZ8KXoNEpttOot8LnL7oiuxRBzDFd1Td3mRo29RBUVERWVlZdHV10djYOHw7JBAEURQlLLoumn8RPVtseLXQO1m9ARhKg+uTEfkbnuF2IvlBm+Jio6SKN1tNL/PmqLWLItIlGCmE6DoBg5mk1peoh6trSzeSJIkUo+CcE4pyXXrppbz8Ziez7d3HXOj71bv35ORkcnJyTvuzo5pfGw8j9RpwmiX2dKiRgIULFwKirktwbqivr6ezs5Pc3FxS2lJRfAqrZpmRjAHS3Q5SfO7wukOxQhlIYmIiycnJAGhRSOpXPbrqEzPQ5+oIOALkKXkkJibS0tLCkSNHhmfHBIKTIETXCUhPTw+Hs0Oiq32CP8okVdQDCM41kfVc+z71YlRkqiKcuuHUvehORKTo0mv9aNrjANidL+E84BTF9IJzSqQ/V9d69Vz+fI5aWzjJfizKVVBQQGJi4hltIzpjYQOgO8GIXKJOPumt7gvP1BUpRsFIIETXCYg0SU3wezF7/ARMMq050F+jijBRDyA4l8iyHJ65OHP2EnIP+jlYALYUiXiflyy3Aziz1AtEX5AAMvrVafoNUySOrm8XoktwTokuou9EluDwjOOtIs4kyhUi8hwv8akzzwNZLtpSg8X0VaKuSzCyCNF1EqL9uo6ZpModCu4j7vCXtaqqClmWYzJGwfiltraWnp4eioqK+KzaxPz+LqrL1deK7d1IqEanEyZMOKPPN5vNUTMeiz2qc/fuydCyroX58+cjSRI1NTW43e4TfYxAcNpE1nMtnrWY/p12Goo0BBJ9JPg84RsKgOnTp5/xdqLKREImqVl9bA2oxfqRJqkiYyEYCYToOgnRzvTRJqk9lTays7MpLCykv7+f3bt3x2SMgvFL5KzFLZ/4yPK5sQ5woR9qL7oTEV3XdQhNnwF7gkT9IQdJSUlMnz4dn89HbW3tme+IQDCAAwcO0NLSQnp6OmlH0wFYaVHLOSb1d4fbWmVmZpKenn7G28nJyUGrVX25zAE/BjtIeplNialIegn7bjtzp88FxEx0wcggRNdJiJzdFarraipWI1rtm9SogLhLEpwrQvVcFyy6lMTdCj3J0DxBQicHmOBQI69nmloMESm60kw2/EfU2pn6ZPB2eUWKUXBOCEW5lixZQvd69QZiZ7la6D5cqUUAnU5Hbm5u+HmmQ+292BKfiG6yDhRI7k4hPT2djo4ODh48eFbbEwhOhRBdJ8FkMpGZmQlAptuBJqDgyPRjN0PnpmiTVFEPIBhOvF4vGzZsAKDdX8G8/h7VhR4odPSiU+TT6kV3IgaapCb3qjcV9VMkurd0ixmMgnNCuJ5ryVJaP+ugNRucmT6MAT/5zr7wemeTWgwReY4XB+u6HCkSrjy1fqxX9GEUjCBCdJ2C0BdWi0JGyCS1GDwNHmSvLGwjBOeErVu34nA4mD59Ohs3xzHNaaMqmFoMzVqcPHkyer3+rLaTnZ0d1c+u0KVGHRqmQMvaVhHpEpwTQqLrwpILkdu9bKxQU4DF9m60qCm+pKSkqCjVmRIpuoq86vmtyeljr1H1uLNVibouwcghRNcpiPzCFgSnHFdNNoAP+ur6w9ONa2tr8fl8sRiiYBwSque6+JLLkLdp8OthZzCTeKYu9IMx0CR1kq4Fbb+O/kSJbbu7mTlzJmazmf3799PR0XHW2xMIWlpaaGxsJDExkcx2td3apjmq6BqYWjwTK5SBRKXQPU4kH2iT3KzXGYHgDEaLyFgIRgYhuk7BYLNf6ierh617azepqalMnjwZt9tNXV1dTMYoGH+E6rkMmVdQYbOxcxr49BLZrn7i/b4z6kV3IqK8jJJa8bWmArBDH0DyS+EogIh2CYaDsAv9RRdx+NMuepJUD0StLFNkt4XXG46bClAjZiGfLw2Q3KfWjtUlpaFN1eLt9FKWq04LtlqtYia64JwiRNcpyMzMxGhU74hynaroaiv0RZmkirouwXDidDrZtGkTkiSxp62UefYuasqiZy1OnDiRuLi4YdlepOgy6nzou9R0Y0OJRG9tn0gxCoaVcD3XRUuxfdFDTTkgwQSHDYOiCh6TyURRUdGwbC/ScxEiTFITTUiT1WXGQ0Zyc3Pp7e0Vba8E5xTdqVc5v5Ekifz8fPbv3098wIfZ7cdp0nE4D3RVx0xS//KXv1BZWcm9994b4xELxjqff/45Pp+PufMs9NTGYVb8VIfqufqPudAPFwNNUvMc/RxCretq39guiunHMT6fj8OHD4+oD9utt97KDTfcQHZ6NopF4dpEiSv0CqZAMvoZquecwWBgz549p/W5fr+fvr6+QV8rLS2lsLAQgEslDS6dHqVIJu3KNDQu6Ero5C9/+Qsul4ve3l7q6+vPbifPA052vM8nTCYTBQUFQ66vFaJrCBQUFLB//35AbX6915TOzkkaJqyXcR/1iGJ6wbASqucqLruN5I0ODkyA3iSJBJ+HDI86meNsp9JHkpCQQEpKCjabTd2u9ihH7Mn0JgeoXneUi7+qRrq2bt2KLMtn5QsmGF0cPnyYxMREJk6cOCz1U6fC5/PhcDiQJInS3Gl4DF4OFkgokkKm24kmWESfmpp62pFcr9eLwWAY9DWPx0NXlzrjXAY6TAmgQEavTFKfhNaspS+hj9bW1rD/ouDknOx4ny8oikJXVxeHDx+muLh4SO8Rv55DYDBn+trJqqq1WW3MmTMHjUZDXV0dLpcrJmMUjB9CoquLJSzo7wynFkuCppH5+fkkJSUN6zYjz/HCpBYCLSkAVPnc5OXmkZ+fT29v72lHHwSjG7fbTXp6+ogILgC73Q6oQt9j8+OKA0UCgyyHBZckSeGSjuEiMgqhATQBQAJ70Dg14AoQb44HwOFwDPIJAsHxSJJEenr6aUWKhegaAlHF9GGTVPUHov2LDuLj45kxYwZ+v59t27bFZIyC8YHNZqOqqgqdXk978wQKvQ6qgw2uh3PW4kAiz/F0cxeeNlXUNUyQsO9xhOu6Nm/ePOzbFsSWkRJccEx0JcYnovHKOIPBLGPAH17HaDQOezRVo9FECS9dsFjeq9WAQQIFTBrVEd/pdApnesGQOd3vjxBdQyAuLi7ciiLD7VRNUjP89MdD5+ZOAJFiFAwL69atQ5ZlZlpuZVKbj65UOFggoZcDFDiHx4V+MAaapGb2qxHbhinQvaVbFNMLhoX+fvWm1axNAOCot5e/vfh7jPIx0WUymaLe09TUxGuvvXbKz25qamLWrFknfD0yFWZUVHufgFZCMQQFlltdR5Zl0WtUcM4QNV1DpKCggK6uLtUk1emkPTGefcWQWO9B9slYLBZeeuklIboEZ0XIKkKXfQsLDndQrdrAMcFuQ6coZGRkkJGRMezbDfWoCwTU6fRFtLPLoaUnJUD1hlYuuFWIrvHKE088MSLb+dd//VecTieSJBFwavGa/PT19/J/f/wD//S128PrDUwthkTXHXfccVbbj4x0GRT1PJf0ATwaBRMSAWeA+Ph4vF4vDodj2GYHCwSRnFJ0WSwWDfBHYBIgAd8CMoD/Qq1J/Aer1brDYrHkAK8A8cBzVqv1TxaLRQv8HpgCVFmt1geDn/k94MtAF3Cn1Wod9VMgCgoKwqnDQk8P7YnxVE/RM6fOR19dv7CNEAwL4Xoux1zKnHv5VXm0C/25iHIBaLVa8vLyOHToEAATkluob5kBpT1ssfXzb5YL0Wg0bN++HafTidlsPifjEIxfQrVS8fHxKE4ZZxL8+iePc7ipicsvv5ylS5ei1WpZu3YtkiTxyCOP8JWvfIUf/ehH1NfXU1FRwYoVK7jpppv4+te/Hv68//mf/+HCCy885fYjI106RUZSQNEo2CUJE+B3BjCnmunp6cHhcJyTmxuBYCjpxQrAaLValwA/Bh4C/h24FrgDeDK43g9RhdjFwHcsFosJuA5oDb433mKxLLJYLBnA9cBFwOvAd4Zvd84dg9V11U9SD19PZQ/l5eXo9XoaGhrCIXSB4HQ4evQoO3fuxJQ8hdz2OAIGhV1TAUVhYtA08lyJLohu8J6f3ErfETWlvitTQWfXUVZWRiAQoLq6+pyNQTB+Cf0uJpoT0QVknGaJ7z76OEVFRaxcuZK5c+eya9cutm3bxmeffcbDDz/MkSNH+M///E+WLFlCbW0t//zP/0xWVhYrV66kurqa119/ne9+97tD2r5Wq42qFdMG1LSiU6cFjYTilYk3qcX0TqdzmPdeIFAZiug6DEgWi0UCUgEHELBarT1Wq/UgkBZcbwGw2mq1+gErMAu4EPg0+PrHwGJgPrDOarUqEctGPVlZWeHwdK5LLQZtL/QT0KgmqUajkdmzZ6MoClVVVbEcqmCMsmbNGgByZt7Hgv4OdkwDv04i19WPOeAjMTGRvLy8c7b9yBsLk85Dglq3T/0U6Nos6roEZ0dIdOkCiXgM4NeCRlEIlSFv3bqV22+/Ha1WS3Z2NhdffPGg5Ro+n497772XsrIybrvtNnbt2jWk7UuSFJVi1MtqitGv0UAwo2lU1AdOp1M40wvOCUOp6eoEfEADYAKWAL+OeN1vsVgMgN5qtYbO0l5UMZYK9A1h2XFYLJZvA98GeOCBB7j88suHuEtnhs/no6Wl5aTrZGRkcOTIEcwDTFK1lTZaWlqYPn06VquVzz77bNhatIxXhnK8zzfee+89AJzGy5hv7+Rv5dEu9IWFhbS2tp7RZw/leA809yuQu2h1auhKl9m6oYnS0lJAFYdf/epXz2gc5xNj4Rz3+/2nXmmYCEWPFJeEy6xGmQwRsxY1Gg2KouD1qo2oZVnG5/Ph8/mQZTm8/OmnnyYjI4PKykpkWSYpKQmv14uiKFHvHwxt0CICwIQPFzoUvYxfK6NDwu/0YzQa8Xg89Pf3i7quk3CqY30+4ff7j/uuR2YOIhmK6LoC8Fut1qkWtQnbL4FIkyCd1Wr1WiwWn8Vi0QSFVzLQDdgi1o1cNnnAsuOwWq0vAC8En57z+bstLS0nPEghJk2axJEjRwDId6kmqbsmaShaJ5Ohz2DZsmW8+uqr7N2795Sfdb4zlON9vrFlyxbQpZHSX0By4Ci15dEu9PPmzTvjYzbU452YmBiOSBQmtdB+OAdfaR9VvS6++o2r+P73v8/27dvF/90QGAvn+Eg6iiuKgtlsRu9T6ApqmTRzXNhGYunSpbzyyivcc889dHd38/nnn/PLX/6SlpYWHA5HuCbLbrdTUFCAyWTipZdeIhAIYDAYkCQJSZJOatipKEpY/IUiXZJOxqWBREBxqzVnHo8Hr9dLcnLyuTsgYxxhjnoMnU435O/6UESXhFrwDmrUKxHQWSyWlODjkGiqBJZZLJb1wDzgB8AXwGXAeuBK4CVgH2pdGMFlG4c00lFAVP8uTy97Sadmip6r13mwWXuFbYTgjDlw4AAHDhzANOHbWPq7aZwI/QkSSV43aV7XsPaiOxmFhYXhdE1hcgtrjpahL+1je4KfRwqnkJiYyKFDhzhy5Ai5ubnnfDyCc89jjz12zrfR2tpKa2srZkM6sqzg1UtoFIWMlGTmz5/PpZdeyrXXXkt5eTmzZ89GkiT+67/+i5ycHNLT09FqtcyePZu7776bf/zHf+SWW27hlVde4aqrriI+Pn7I44iM5kqoJqmyFvq1GhJR1BmMWfF0d3fjcDjIzMw8B0dDcD4zFNG1ErjbYrGsQ818PxR834eoEah/DK73JOrsxZ8Dz1utVpfFYnkfuNFisWwAaqxW6yYAi8XygcVi2Qj0AF8bzh06l0QV0webXzdNVINwHZs6mX7FdMxmMwcOHKCzs1PMfhEMmdCsRVPBV1nQ1EH1hcdmLUqoveMiUyPnivz8/LDoyojvwN+UgB7Vr8u+rZ8FCxawatUqtmzZwo033njOxyMYH4Sip1q/GWecWoVikP1IwG9+8xu0Wi1ZWVlIksRTTz0V9V69Xh/+foTYvn17+PGTT6pzuSZOnEhdXd1Jx6HRaNDpdOG0qk6W8Wo1eLVa0AXAr2DWqzNzhTO94FxwStEVLIz/yiAvXThgvSPA5QOW+YG7B/nMXwG/Op2Bjgbi4+NJTU2lp6eHDI8DjV/Bme6nNxE6NnUwSzeDOXPmsHHjRqxWK1dddVWshywYI6xatQo0ZnTyHKa4t/CHUD1X/7lzoR+MyBsLjQS5fhsOl0RHBtRXdnDBBRcI0SU4LWRZDqcQdT4JWzBjF+lCHxcXN2LO+AaDISy6jIoPL0YCOsCogB/0shoNc7lcBAKBEbnZEZw/CEf60yR0UdIAmS61NmBfMbh2uZH9svDrEpw2iqKod/KpVzLX3kd7OrTkSRgCfvKdfeh0OiZNmjQiY8nNzY2aVl+Y2IrxsJq+WXuwXbQDEpw2obY6xrhkdMh4jCChYAzWVMHxLvTnkmhnelV8SToZj0bNWsguJVxAL3rpCoYbIbpOk6jGwB41ClEzWQ8e6N9pF3VdgtNm165dtLW1Ycj7MvP7O6kpV5cXOWxoUZg0adKIFazq9XpycnLCzwuSW3AE/bqqtW4WWBYA6k1FyL1eIDgZodSiSZuOO05BQcIQCIStIgb2RTzXRG5LqyhIMqBR6A9eDUPO9CBSjILhR4iu02Qwk9SGkEmqtUeILsFps3r1apB0aBKvYI6jm5qy6FmLI5VaDBF5jhckt9B7NAuA+mIwd5spKirCbrcP2R9JcH4TEl36gPFYg+sBvRZHsum2TqeL2l7IJNWl04EEsjuA2aTWdQmTVMFwI0TXaZKdnY1Op5bChURXe6EfvwaObmhj0qRJJCcnc+TIkTP2VBKcX6xevRqSL2aGy49iCFA/BSRFochhQ5KksD/WSBEpusx6F8kOL3q3RFuWxO4tnSxcuBAQJqmCU6MoilrPJRkwyAouE4CCMRCb1CJwnK2EPtiH0aeVwKCKMbNWFNMLzg1CdJ0moR51AHEBP/EuP7Je4VAB9Fb1otFoUO3MRLRLcGoCgQBr166F9BtZ0N/J9hkQ0EnkOfuIC/gpKioa8T6HkaILoDCxBfNhNUSx7kC7cKYXDJmQs7vemIFiDKBIEgZZRhO0XpQk6bgG1yNBpOgyKT4AFJ1CQK/OrNQG1GiY2+0WaXTBsCJE1xkQ5dfl7gWgvkRDoFXG0+ERKUbBkKmpqcFm60XKuDFYzxXtQj/SqUWAlJSUKO+jguTDuFvVxhFbvf1CdAmGTGjWokmTdCy1GIhdajGEXq9n3759XH755Vx3+XIO7d8fNkkFkJ2BcDH9maQYn3/+eV555ZXhHLJgnCBE1xkQLbpsANRMUYszbVW9ItIlGDKrVq2CxPkUyElkBlzUzlKXl9hjU88FavRhYF1XZ1s2ALvyFaZnT0en01FXVyeauwtOSn9/P0g6jLL2hPVcscBgMPDxxx9z7bXX8umnn1JUVAKoJqkQXUx/Jq79999/P3fdddfwDVgwbhCi6wwYrJi+eaIalu7c1BllG6Eo57yDkWAMs3r1ajW1aO9kbwk44iVSPC5SvW5yc3Nj1oYk8hzPim9H6jah80JrrsShWnu4ubuwRhGciHA9lzYZrd6PrJHQyzLaiN9Ev9/Ptddey+zZs5k1axavv/46oBqddnZ2Aurv6LJlywB4/PHHWbFiBUuWLKGoqIi33nqLH/zgB5SVlXHdddfh8/mOG0dtbS0LFy6kvLycm266iZ6eHj7++GP+8Ic/8Oqrr3LrrbeiC6i/3x6dFrQSeQvyePI/nuSOO+7g888/509/+hMLFiygoqKC++67L5xyfPHFFyktLWXBggXce++9PPDAA+FxPv300yfcPsCyZcv44Q9/yIIFCygtLWXDhg0A7Ny5M7yt8vJy9u7dO9z/NYIYIkTXGZCYmBi+GKZ7nGj9Cs60AL2J0L6pk8LCQrKysuju7ubAgQMxHq1gtOLxeFi/YUOwnquD6lGQWgwRKbq0GoX8+KMkHVJDFWv3tIkU4zgk1LtwuP40Gg1z5sxBr0/DazrmQh/CaDTy6aefkpeXx7Zt26irqxuSoXRjYyOrV6/mvffe48477+SSSy5hx44dxMXF8cEHHxy3/l133cWTTz7J9u3bKSsr44knnuCaa67hm9/8Jvfeey9vvPEGxmBdl6wFjAoOl4OFcxfy2muvYTKZeP3119m4cSO1tbVotVr+/Oc/09rays9+9jM2b97Mxo0baWhoGHS8g20/hN/vZ+vWrTzzzDPh5c8//zzf+973qK2txWq1HldjKRjbCNF1hkSapGY4VQO9vSXg2ulCCSiirktwSrZs2YKbIhIMJUx32qgpU5fHMrUYIi8vL6rWpiC5BX9LCgCbHX1iBqNgyJgw4QzOBRlYz1VWVsbKlSv54Q9/yIYNG4YU2b366qvR6/WUlZURCATCQm3WrFk0NTVFrdvb24vNZuPiiy8GYMWKFaxfvx4gygTYSHBc+gBejYJWq+XmK29Go9GwceNGqqqqmD9/PhUVFaxatYr9+/ezdetWLr74YtLS0tDr9dx2223HjfVk2we4+eabAbWZfWjsixYt4he/+AVPPvkkzc3N4doywfhAiK4zJPLuY4JH7QdeM1kPbrDX20Vdl+CUrFq1CjJuZJ6jk45MOJIjYQz4yHP2kZaWFtNmuwaDgezs7PDzguTDtAfruuoy/Myfpd5UbN68WaTQxwmKogzr3759+6is2YtB68evldDKCnpFDm/PZDJRWlpKdXU1ZWVlPPLII/z0pz8FVC8tWVbXdbvdUeMMzXYMmaqGbg40Gk24vc9QiGzvEzZJlaBfCyaDCTxgNptRFIWvfvWr1NbWUltby+7du3n88cfP5BAfR2hftFpteOx33HEH7733HnFxcVxzzTXH9Z0UjG2E6DpDTmaS2r3VJtoBCU5JqJ5rfn8n1UEX+ol2GxrUKFcsZnVFElVMn9SCqyMVnQ8O50lIXcmkpqZy9OhRDh06FMNRCkYj4XouXSqySa1/ioxyGQwGtFotra2tmM1m7rzzTh5++GGqq6sBtaarqqoKgDfffPOMx5GcrJ6noXqpV199NRx1iox0wTGTVKdOFWMBVwCzOZ758+fzzjvv0N7eDkB3dzfNzc3Mnz+fdevW0dPTg9/vH3ScJ9v+idi/fz8lJSV897vf5YYbbohq7i0Y+wjRdYbk5OSE75RyXeq06I4CP34ttH3RFhZdVVVVwudFcBx2u51N1YfRJMxjnr0zop4r9qnFEJGiK8HoIMXQS+oh9c587a42FixQWwKJFKNgIB6PB5/Pj0GTiDtOFTOhPodwbNbijh07wkXjTzzxBI888ggAjz32GN/73vewWCxn3XD65Zdf5uGHH6a8vJza2loeffRRQK1hi/xsQ9Ak1R+cwYgC8bp4SkpK+N73vscVV1xBeXk5l19+OUeOHCE/P5+f/OQnLFiwgMWLFzNx4sRB06Mn2v6J+Nvf/sasWbOoqKigrq5OzIIcZ0hjJDVwzgfZ0tJCfn7+ab3nxRdf5PDhwwD8oWgBDrOOJ/5TptSv5crtl1FUVMTBgwfZuXMnM2bMOBfDHrOcyfEeT3z88cdcfc/7zMh5gsfbrfzDf0mgUfj2nkrSzXE89NBDwxrpOpPj3dXVxf/8z/+En79ZdyPubOhc2s71DQaKAqv56U9/yr/8y7+EZ2oJjjEWzvH6+nqmT58+7J/b2dlJ06FukuIm4MjyopEVMryOcL/FrKyscGeP4cLr9Z52j9K+vr6wl5hX0tJjjAO/hom9ATQO0GbpaGitR6/XM3v27OPeb7fbSUhIwO/3c9NNN/HNb36Tm266aVj2Z7RzJsd7vHKC79GgP+Ai0nUWDGaS2lCiIdASwNvlFXVdghOyatWqsFXEtpkga1UXeqMcYOrUqTFPLQKkpaVFFfEWJLfQ3q7WddUmerhgnpjBKBic/v5+0KUgGdVZgSa/HL4C6XS6YRdcZ8px7YAUQCfj1AQd873qLEyfz4fX6z3u/Y8//jgVFRXMmjWL4uJibrzxxhEauWCsIkTXWRBV8+KxAVA7Rf0xsVX1irouwQn5ZJUVkpeqVhHhBtext4qI5HiT1MP0dqSj88GhXChIUO/sqqqqBvVHEpy/9PfbQZeCz6SKF4Ny7PyIlSHqYOj1+vBjCdAEK0HsuuNNUgdzpn/66aepra2loaGBX//616PiZkkwuhGi6ywYrJi+qVj9kenc3CVsIwSD0t3dzY7WCWT5fOT7HGyfqS4vtndjNBopLi6O7QAjiDzHsxPa0Cky6Yf0KBqJqgMOJk+ejMvloq6uLoajFIwmPB4PXr8OkyThNSpIioIhop5rNFkgaLXaqLouXWjGpE4DGlC8MglxCYBofi0YHoToOguSk5NJTEwEgiapPgVXSoCeZGj/op158+YBqiPxYKFpwfnJ2rVrIU2dtbh7CjjNEmkeJyk+D1OmTDnrwuHhJFJ06TQyuYlH0B5OAuCLTlvYJHXz5s0xGZ9g9KHOWkxBZ/CiIGHyKeHUolarHTWpxRCRKcYok9TgYrNWNRk7kx6MAsFAhOg6S0IXJYlok1TnDhfJiclMmTIFj8cjIgGCMB+v3ACpV7DA3kFNMLVY3D96Zi1GMrAQvDD5MF1tWQBUG11csEDUdQmiUVOLg1tFxKrB9cmIFF2mUEROL+PTKcGH6usOh0N40gnOGiG6zpLBTFK3TdKBG/ob7KKuS3Ac723wYJQMlDu6qQ670Peg1WqZPHlybAc3AKPRSFZWVvh5QXILRzuz0PqhKUdh+gQ1mitElyBEn92LRqtXU4so6Bmd9VwhIuu6NESbpALgUYv//X6/yFgIzhohus6SSNGV51bruuonqd/Wnq09oq5LEEVrayttvoVU2LvoyFZoz5KI8/vIcfVTUlISdqgeTQwspiegI+uwFkUjccSRgtFopKGhAZvNFrtBCkYFPp8Pr2zGoPeiSBIGL2gkNTqk0WhGlcVAQ0MDFRUVXHDBBTQ3N4eXh01S9UGTVGcAs1lNMYq6LsHZIkTXWZKbmxt2Ns4JFtN3FPjx6aD9iw5hGyGI4pOVqyHtWhbYI13oe8Iu9KORSNGVZLSTZOxFf0itZdzUYWPOnDmAOMcFx+q5JKOapjP5jhlDj7bU4jvvvMOtt95KTU0NU6ZMCS83yOqYfVoN6CQCPj+JRvV8F3VdgrNFiK6zRK/Xk5OTA4BJDhDv8KPoFJoLoaeyhzlz5qDRaKirq8PlcsV4tIJY8/LbB0CXwoL+o8fquYIu9FOnTo3l0E5IpOgCNcXYd0TtC2nVOEUxvSCMrdcJWjN+Y8iF/uSpRYfDwbXXXsvs2bOZNWsWr7/+OqC2Aers7ATU0oxly5YBqi/WihUrWLJkCUVFRbz11lv84Ac/oKysjOuuu25Q65La2loWLlxIeXk5N910Ez09PXz44Yc888wzPPfcc1xyySXRdV34WDwhj1/+9EcsvvVCtm7fynvvvMeKFSu4/PLLue+++8JdRv7hH/4Bi8XCzJkzeeyxx8Kf8aMf/YgZM2ZQXl7O97//fQCampq49NJLKS8vZ/ny5Rw8eBCAu+++m+9+97tceOGFlJSU8MYbbwBw5MgRli5dGvYBC7USEoxthOgaBgYzSa0v0eA/FEDv1TNz5kwCgQC1tbUxGqFgNKAoClsb85jk7kdvDLC3BLSyTJHDxoQJE8J+QKONjIyMqLRnYfJhDnXloAko7M+UqZi1EBB1XWMdaal81n8ld+Uy/16FipsTmHtjAgV3quJckqRBU4sff/wxeXl5bNu2jbq6Oq666qpTjrOxsZHVq1fz3nvvceedd3LJJZewY8cO4uLi+OCDD45b/6677uLJJ59k+/btlJWV8cQTT3DNNddw//3388///M+sWbMmqq5LpwRwORzMmj+PTz/4nLTkNN55711efPFFXnvtNTQaDX/+858B+Pd//3esVivbt29n3bp1bN++na6uLt5++2127tzJ9u3bw62N/umf/okVK1awfft2vva1r/Hd7343vM0jR47w+eef8/777/OjH/0IgNdee40rr7yS2tpatm3bRkVFxdD/MwWjFiG6hoFI0VXoUQ0ut00OmqRae0VdlwCAvXsbcZmvYH5/J7WzQNFI5Dt7McjyqE0twuAmqf6AgdzDGmSthM84CVBFl5jdJRgMo9F4XINpgLKyMlauXMkPf/hDNmzYMGjvwoFcffXV6PV6ysrKCAQCYaE2a9Ysmpqaotbt7e3FZrOFm0yvWLGC9evXH/eZkYJQQrW2WP6lG7DrJNZtXUftjhpWrFjBV77yFVatWsX+/fsBtU/i3LlzmTNnDjt37mTXrl0kJydjMpm45557eOutt8L1YJs2beKOO+4A4Otf/zqff/55eJs33ngjGo2GGTNm0NbWBsD8+fN56aWXePzxx9mxY0fYnkgwthldhiljlMFMUpuDJqldW7qxWCz88Y9/FKLrPOd/Xt4Cxtu5oP9zPgo2uC6xjy4X+hNRUFBAY2MjADkJR9FIAeIOJkBRP3V2mYyMDDo7Ozlw4AAlJSUxHq3gTFDWn909eGdXL00diejT7chayOrzIhnU2X4nmrVYWlpKdXU1H374IY888gjLly/n0UcfRafTIYeMSt3uqPeEoq4ajQa9Xh+uE9NoNPj9fs6EkElqKG1oMJrQarW49RoUFG6/7nb+8cf/iK3XRnFxMenp6Rw4cICnn36ayspKUlNTufvuu3G73eh0OrZu3cqqVat44403+J//+R9Wr1590u1HRpJDNy5Lly5l/fr1fPDBB9x999089NBDovn1OEBEuoaBlJSUcGoozetSTVKTA3SlqCapwjZCAPDuRokUv4div4sdwf7nxf09ZGdnk5qaGtvBnYLIGwu9NkBu4hEcR9IBqAw4WLhQpBjPdzptPtDLyFrQ+RU0mmh/rsFobW3FbDZz55138vDDD1NdXQ2oNV1VVVUAvPnmm2c8puTkZFJTU8P1UK+++mo46jWQ6GiXKnwCWrh48cW8+9m7uHvd4TE3NzfT19dHfHw8ycnJtLW18dFHHwHqZILe3l6uueYafvWrX7Ft2zYALrzwQv76178C8Oc//5klS5acdOzNzc1kZ2dz77338q1vfSt8bARjGxHpGgZC6Zfdu3erJqkOF20pZvaVQPp2JwtnLsBgMLB79276+vpISkqK9ZAFI4wsyxx2zuVSVycNU8BtkshwO0jye0Z9lAuON0ktSG5hZ0s5BvkAe9P9XGG5kPfff58tW7Zw++23x2iUglji9BrQJ/iQAbMbFJ0aqTpRahFgx44dPPzww+Go1XPPPQfAY489xj333MO//du/hYvoz5SXX36Z+++/H6fTSUlJCS+99NKg6+n1+uMnO+lkJk2byiPfeYTb77odt8+NwWDgxRdfZOHChcyZM4dp06ZRWFjI4sWLAbXZ9w033IDb7UZRFP77v/8bgGeffZZvfOMbPPXUU2RmZp5wHCHWrl3LU089hV6vJyEhgVdeeeWsjoNgdCCNkRqMcz7IlpaW4y4sp8Pnn3/OqlWrAPgivZDKrEIuXqPh3r/5WfL5hSxfsZzKykpWr17NJZdcMlzDHrOc7fEea7z2TjVf++8KftxcSeM1vay8RGJ+5yEu7DjEfffdF54Be64YjuP9m9/8JjyjrK5tBm/U3ULZ9as4PAF+3KPwg/uv5IILLhCzGIOMhXO8vr6e6dOnn/XneH0BtjdK6NMcyDqFrB4/UpwaGUpOTh6RSSJer/esfMC8Xm/4/AZo1yegaCG1Vya1V0KboKXB1oBGo2HOnDmjyv4iFpzt8R5PnOB7NOgJItKLw0T0DMY+AOonqYe3Z6tN+HWd5/zmr63oZJm5jp6wP1dJfw8pKSlkZ2fHdnBDJKqYPqkFgKRmtXlxi6RGb2tqavB4PCM/OEFMOdrhAq2CrFPQyAo66dSpxdFG5AxGAG3QYswRNEmV3TIGgwFZlo+rMxMIhooQXcNEXl5e+M4nx2UHBTry/XiDJqmiruv8puZQEbOcPXTmSXSlS5j9XrLddqZNmzZm7pgjRVeyqZcEQz+uVrWuqzrgYtq0aXi93nANi+D8wWYHjVH1yDK7QDaoikWv14+qBu4nY6CthSHYh9GnlUALil8hMU69uRDO9IIzRYiuYcJgMIQjFkY5QILDj6KFpgnQXSnaAZ3P7Grsx6Wdyfy+I9QEey0W23uQGP2zFiOJFF2SpNZ1tXTmIskKDcl+LAsvBEQx/fmGLCt45Ti0QRf6OI+ColErQsZKlCtEZLTLFDR2VXQKSlCLxevUNKkQXYIzRYiuYSS6D6OaYmwokfA3+5mcOxmz2UxTUxMdHR2xGqIgBvzn7+tBUbigv5XqoFVEcX83ZrOZwsLCGI9u6GRmZkZFAgqSD9MmJ5LfCn4d5M9UaxWF6Dq/6Onzg0ZC1stIioJBHnupxRCR57eegFpNrFVw6kIO+6q1g2gHJDhThOgaRiJF1wSv2tpl22T1zqm/tp+5c+cCIsV4vvFJlYl8r5M4s0RjsYRWlpng6GXq1KknnNU1GtFoNFGF4YVJh0GSyGhWL1T9Cer5Lwrpzy86evzhXotxblD0ampRp9MdVyc12hlYGB5yvbDrg15gPvVfp9MZ9hETCE6HsfOLPwYY3CRVRgG6tvaIuq7zkKOdPtrd01jQ10btLHVZocOGXhndLvQnIlJ05SYdQZJkvIfTANilgbi4OBobG6NmgQnGL4qi4PDoj9VzOSEQrOcaa1EuUE1SI2+E9CGDVt2xYnqT0YSiKKKXruCMEKJrGElLSyMuTp3NlRo0SXUnyXSlQfvGdlHXdR7y+7daQdKxwNYYbnBdYu/BYDCMSef2yHSoQesnJ6GNI+25AOxK8DFnwQIAtm7dGpPxCUaWPoeMImmQ9AEkFEz+QHii/GgXXQ0NDVRUVDBnzpxwtwVQo12KonDbbbfh7VM7RgR0gB5QIMmkFtOfTorx0Ucf5bPPPhvO4Y8a3n//fR599NFz8tnXXHMNNpvtnHx2rBCiaxiJ7FEnARl29U5obwk4tjuwzDtmGzFG/NEEZ8lrnziJD/iYrMjsCNq4FNt7mDx5Mjrd2PMmPt4k9TBNpFLQouDTweQLrwZEXdf5QldvAMnoR5HA6AF0apQrZHY6mnnnnXe49dZbqampYdKkSeHlBoOBVatWMWPGDDISg+15tDI+g4KiKJgkVUyeTjH9T3/6Uy677LJhHX8kZ9r+aDi49tpr+fvf/z6sdW6KoiDLMh9++CEpKSnD9rmjASG6hpnIFGORtwuA7ZN0KA7IlnNISUnh6NGjtLS0xGqIghGi3yGzp2Mic+xd7J6qwWuUyHLZSfB7x2RqESA+Pj6qZVFBUguypCG3WU2/aLPVHKoQXeMfRVHodWiQDOoFPz4itRgXFzckKxSHw8G1117L7NmzmTVrFq+//jqgtgEKpaitVmvYlf7xxx9nxYoVLFmyhKKiIt566y1+8IMfUFZWxnXXXYfP5ztuG7W1tSxcuJDy8nJuuukmenp6+PDDD3nmmWd47rnnjjOr1uv1vP3221x55ZVogCMHDnLTBfP49g/vZ9Gti2hvaefVV1/luuuuo7y8nMceeyz83p/97GdMnTqViy66iNtvv52nn34agLvvvps33ngDgFWrVjFnzhzKysr45je/Gfa1mzhxIo899hhz586lrKyMhoaGkx67tWvXsmTJEq6//npmzJhBIBDg4YcfZv78+ZSXl/O73/0OUNsSLV++PPy577777kmP/emOT5Ikli1bxvvvv3/cGNetW0dFRUU4otjfr5bdPPXUU+Fxho5fU1MTU6dO5a677mLWrFkcOnQo6jz405/+xIIFC6ioqOC+++4jEAgQCAS4++67mTVrFmVlZfzqV7866TEbDYy9W+1RzmAmqQ1Bk9Reay8Wi4XPPvsMq9Uata5g/PHnD9uRyWJBdz01S4KzFu3daDQapkyZEuPRnTmFhYX09Khpl4Lkw+rCw8lAD01xZkBNL8qyPKYmCpzvfJj+yVm9/8gJll/TdeUJ3/Pxxx+Tl5fHBx98AEBvb+8pt9PY2MiaNWvYtWsXixYt4s033+S//uu/uOGGG/jggw+48cYbo9a/6667ePbZZ7n44ot59NFHeeKJJ3jmmWe4//77SUhI4Pvf/37U+nq9nsrKSp588kkANLLCwf2N/Md/P881Eyys3rqGgwcP8tJLL1FRUcFNN93E+vXriYuL480332Tbtm34fD7mzp3LvHnzoj7b7XZz9913s2rVKkpLS7nrrrt47rnnePDBBwHIyMigurqa3/72tzz99NP84Q9/OOmxqK6upq6ujuLiYl544QWSk5OprKzE4/GwePFirrjiCgoLC3n77bdJSkqis7OThQsXcv311w967E9nfM888wx//OMfAbBYLGzYsIEvf/nLUeN7+umn+c1vfsPixYux2+2YTCY+/fRT9u7dy9atW1EUheuvv57169czYcIE9u7dy8svvxzu5Rqivr6e119/nY0bN6LX6/nHf/xH/vznPzNz5kxaWlqoq6sDGBOpSPGLOMxEpl9y3P2gQGeeH68e2jd2iLqu84i/rHShURTmOZ1hf64Sew/FxcWjvt7lZESe42lxPZj1Do4ezQNgV4KfnIICenp62Lt3b6yGKBgjlJWVsXLlSn74wx+yYcMGkpOTT/meq6++Gr1eT1lZGYFAgKuuugqAWbNm0dTUFLVub28vNpst3OR6xYoVrF+//qSfr9FosNlsJCQkAKCXA+QWFjJ9wQUgwerPV7F161a+9rWvMW/ePBoaGti7dy8bN27khhtuwGQykZiYyJe+9KXjPnv37t0UFxdTWlo66HhuvvlmAObNm3fcvgzGggULKC4uBuDTTz/llVdeoaKiggsuuICuri727t2Loij85Cc/oby8nMsuu4yWlhba2toGPfZnOr6srCxaW1uPG9/ixYt56KGH+PWvf43NZkOn0/Hpp5/y6aefMmfOHObOnRs+fgBFRUXHCS5Qo29VVVXMnz+fiooKVq1axf79+ykpKWH//v380z/9Ex9//PGY6GssIl3DjNFoJCsri/b2dgyyTIIjgD1By4EJEF/ZjeUnoh3Q+YDXJ7N5Twalrl56Cg30pEok+Dxkuh1jNrUYIrKYPmSSurethJIjCq25EnOvuIGjf/wNW7ZsYerUqTEcqeB0OFlEajC27/Pjj/MhxflI6VWID3jwm/3ExcVFpaBPRmlpKdXV1Xz44Yc88sgjLF++nEcffRSdThe2ZBjYcsdoVOusQnVjoTSmRqMZttqm0PY1Gg1GfMSZ41WTVKOaVv3ufd9l+TXLKSwsDJtiP/PMM2e93dC+abXaIe1LZE9LRVF49tlnufLK6P/H//3f/6Wjo4Oqqir0ej0TJ07E7XYPeuxvuOGGIY8vEAiEl7vd7vAkskh+9KMfce211/Lhhx+yePFiPvnkExRF4cc//jH33Xdf1LpNTU0n7NGpKAorVqzgP/7jP457bdu2bXzyySc8//zz/O1vfwtH30YrItJ1DogySXWp4fKGSRK+Jj9zpx3z6hLF9OOXt1Z345XjWdBdHzZEnRh0oR/rQiQrKytqEkBB8mFcWh1FB9T9TC0VzvTjHbdHwevXhv254l1nZhXR2tqK2Wzmzjvv5OGHH6a6uhpQ64eqqqoAePPNN894nMnJyaSmprJhwwYAXn311XDU62SUlpbS3NwMgJ6gH5dGwaVXWH7hcv725t9wOp04nU5aWlpob29n8eLF/P3vf8ftdmO32wetcZo6dSpNTU3s27dvyOPZunUrd9111ynHfOWVV/Lcc8+F69r27NmDw+Ggt7eXrKws9Ho9a9asCe/XYMf+TMYX2tasWbOOW97Y2EhZWRk//OEPmT9/Pg0NDVx55ZX88Y9/xG63A4SP38lYvnw5b7zxRni97u5umpub6ezsRJZlbrnlFn7+85+Hz5/RjIh0nQMKCgrC//lF3i72kMa2yXpu+NSL+Wg82dnZtLW1sX///qhZM4Lxw18+cQJpzO9v54/l6t1bib2HgoICEhMTYzu4s0Sr1ZKXl8fBgweBY82vjS1mwElHciYgRNd4ptPmB70EGgWdX0HvV/DrFCRJCkdDhsKOHTt4+OGHw1Gr5557DoDHHnuMe+65h3/7t38LF9GfKS+//DL3338/TqeTkpISXnrppVO+59prr2XTpk3h1B3B+2O7XuLSRZey5/AevvnNbyJJEhkZGfzpT39i/vz5XH/99ZSXl5OdnU1ZWdlx6VKTycRLL73Ebbfdht/vZ/78+dx///0nHcvBgwcHjSIN5Fvf+hZNTU3MnTsXRVHIzMzknXfe4Wtf+xpf+tKXKCsrw2KxhCPtgx37MxkfwJo1awaNQj3zzDOsWbMGjUbDzJkzufrqqzEajdTX17No0SIAEhIS+NOf/nTSHp0zZszg5z//OVdccQWyLKPX6/nNb35DXFwc3/jGN8JR0cHGMNqQxki05ZwPsqWl5bjp8GdKR0cHv/3tbwHo0Zt4ZfJcjP0a/vADP5MfLuH7Gx/i/fff5y9/+Qtf/epXh2WbY43hPN6jDVlWSL2yD2O/jv9u/5zv/qcGnRzgvj2VXLX8UhYvXjziYxru471y5Uq++OILADx+A/+57mEW+Q9T/+BeTD5o+8a1aBSFvr6+IV0wxiNj4Ryvr69n+vTpp/2+ukYfHmMAjdlLUr9CssuPN8mDyWQiLS3tHIz01Hi93uMc5c+U1tZWbr/9dv7yl78AYJPi8RgltG6JonYZNBL7fGq91Jw5c8KCwW63k5CQgNPpZOnSpbzwwgvhTiRnysMPP8zXv/51ysvLz3q/hpPQ8W5ra+OOO+5g1apVsR5SzDjB92jQ6bsivXgOyMjICIfYU3xudF4FT6JMRzq0f9GOxSLqusYzq7b00udJxGLbGy6gn+CwoRujLvSDEZlCN+q8ZCV0sEfJIqdNwa2HKZdcid/vHxPhfsHp4fUpuH06NAY1jRU/xl3oByMvL48VK1aELQ6MwebXAR1qfkhWBjVJ/fa3v01FRQVz587llltuOWvBBaq9wmgTXJEcPHiQX/7yl7EexphBiK5zgCRJ4TtcCUi3q4Wg+0rAvs3B/HmiHdB45uUPVauQBbZGasINrnvIzMwkPT09lkMbNgbanRQkHaZTb2LSfvX5hPlqMa9IMY4/unoDoJVBp6CRFUwekIOi63RSi6Od2267LVwKYMSr5lt0Cv5gMC1Br85ujDRJfe2116itraWhoYEf//jHIz3kmBCaUSgYGkJ0nSOiTFJ9qknqjkk6FLvCrAy14LCqqipqBohgfLCqJgGjHGAaRnYGA1vF9p5xE+UCSExMjKpXKUhW67qSWlQXcleuWgsjRNf4o6dfCRfQm10ga2UUjYLBYDhpXc5YIzJVqQGkgHoDZTeo1S5GTt+ZXiAQouscESm6Ctw24JhJqtSopaioCIfDcUrXYcHYwrrTztG+FMp7m9k7XY9PL5Hj6ic+4BtXogsGnONBk1TbkSwA9qcYQKMRomuc4Q8oOD1aJOOx1KI8zlKLIQa2MdIGVLHl0Km/41q/KjCHs/2NYPxzytmLFotlERCaEpAHfADMAbRAAHjRarW+arFYcoBXgHjgOavV+ieLxaIFfg9MAaqsVuuDwc/8HvBloAu402q19g3rXo0CIgtos112UKAjz4/bAB2bOrBYLDQ3N1NZWcnMmTNjOFLBcPLS33sAM/O7t1N9qZp+KO7vJikpidzc3NgObpgpKChg586dAKSbuzDpXNTbC8hqb6E9SyJxehnNO7fR1tYW9jISjG26ewOg0SDpZSRFIc4N3qTxKbpCs/pCFgwGxY8fHV6dBJICXgWdRofH48Hv94/JXqqCkeeUkS6r1brJarUus1qty4AvgHeCL10dXP5q8PkPgf8CLga+Y7FYTMB1QKvVal0CxFsslkUWiyUDuB64CHgd+M5w7tBoIS4ujoyMDAAMikyCPQAaOFAEXVu6w870oq5rfPFRpQkUBYtHoTZoWxNKLQ6lF91YIjLSpQmapDYbEyhtVCMCky9RjRZFtGv8EJlajHOr2iNgCKDX68el6IiMdplQxZeiU1CCmccko1pML1KMgqEy5PSixWIxAAuADYAMfGixWN6zWCxFwVUWAKutVqsfsAKzgAuBT4OvfwwsBuYD66xWqxKxbFwymEnq7hIJ3wEflpliBuN4Y+9BNwc60il2dtBflEBvskSi10OGxznuUosAubm5UTU8avNriYxW9WdFP0mdcbV58+aYjE8wvMiygt09ILWoD4A0NqNcDQ0N4UbMjY2NUa8pisKll14a5YavJwCyBBpwBeu64nWqB9+pUoyPPvoon3322TDvwdgk8lg888wzpzx2Xq+XpUuXDlu3gUief/55XnnllWH/3JNxOjVdlwGrrFarDNxmtVqXAr8Eng2+rg++BtALpAGpQN8Qlo1LIkXXRJ/aKX37ZB0oMFlSGx7X1tbi9XpjMj7B8PLSu+qEifmdW8OzFkvs3Zjj4igqKjrZW8ckWq02KmUaquvyHlEL7FsyEkESdV3jhZ5+GQWQ9AFAIe4MXehHC++88w633norNTU1x5lUf/jhh8yePTucrQgh+RRkWcauV7/fBkWdrXmqSNdPf/pTLrvssmEcfTTnQpCcKyKPxVBEl8FgYPny5bz++uvDOg6/38/9998/JLf/4eR04sG3AS8BWK3WruC/6ywWS8igw2exWDRB4ZUMdAM2INSBMnLZ5AHLjsNisXwb+DbAAw88wOWXX34aQz19fD4fLS0tw/qZkbNfcl2q30vzRAUF6NjcGW7WuWrVqlHtw3IuOBfHO9a8u1H9d4G9j1fL1ItQsb2bgoICjhw5EsORnbvjnZKSwuHDqtjKDzrT73QWkdG1jc50Ce2EiWzdupWDBw+Oq5ltQ2EsnON+v3/IN31dvSAZAQmMHgWdLOEyBNBqtSiKckY3jw6HgzvuuIOWlhYCgQA/+clPuO222ygtLeWLL74gIyODqqoqfvSjH7Fy5Up+9rOf0dTUxIEDBzh06BBPPfUUW7Zs4ZNPPiEvL4+33377uAL4bdu28cADD4Qd6V944QU2b97MM888g1ar5bPPPuPTTz+Nes+rr77KPffcgyzLHD58mNtvv505c+ZQu2Mn/+9v/8ef33iHtW+9hcfn4cKLL+SBBx7A6/Xyi1/8gtdee43MzEwKCgqYM2cODz30EN/61re45ppruPnmm1m9ejU/+tGP8Pv9WCwWnn32WYxGI6Wlpdx555188MEH+Hw+XnvttZNGyNetW8cTTzxBSkoKu3fvZvv27fzrv/4r69evx+PxcP/993Pvvfdit9u55ZZbsNls+Hw+Hn/8ca6//voTHvvhGh/A008/zWuvvYZGo+HKK6/k3//938PHorW1ldbWVpYtW0ZGRgZ33HEHO3bsCHt+vfjii9TX1/P0009z7bXX8sgjj3DbbbcN6fyprq7mBz/4AXa7nfT0dP7whz+Qm5vL5ZdfTnl5OV988QVf/vKXsdvtxMfH89BDD9HY2Mj3vvc9Ojs7MZvN/Pa3v2XatGm8+eab/PznP0er1ZKcnDyoCazf7z/uu34iY+QhiS6LxaJHTQveE3yeZLVa+ywWywygJ7haJbDMYrGsB+YBP0CtAbsMWA9ciSra9gEPBd9zJbBxsG1ardYXgBeCT8eUI32I3Nxc3n//fbxeL8k+DzoPeBJk2jMgeYebRYsWsX//fg4ePMjVV189rNse7YwFt+7T4Winj4YjEkk+B+mp6RwskNAHAuQ7+5g796qY7+u5Ot7Tpk2jrq4OgDi9hwxzB/VyGpfvVehMl8i5cDktf/k9/f39592EkbFwjvf19YVvDtP+tvKcbKP7yye+Yf773/9OQUEBH330EQC9vb3h8RgMBgwGQ7ipdciS4sCBA6xZs4Zdu3axaNEi3nzzTX75y19yww03sHLlSm688caobdxzzz08++yzXHzxxTz66KP8x3/8B8888ww1NTUkJCTw/e9//7hxbdq0id///vfh7R84cIBnnnmGJ+ct4pNNG2hqbmT1X1aj+BVu/N6NbNmyBYfDwTvvvMP27dvx+XzMnTuX+fPnYzAY0Gg04Sba9957L6tWraK0tJS77rqLF198kQcffBCA7Oxsampq+O1vf8uvf/1r/vCHP5zw2On1empqaqirq6O4uJgXXniBtLQ0rFYrHo+HxYsXc80111BYWMi7775LUlISnZ2dLFy4kFtuuYXVq1cfd+xPZ3zPPPPMSZtLf/TRR7z//vts3boVs9lMd3d31LF46KGH+PWvf83atWvJyMjAbrcze/Zs/vu//xu9Xs+rr77K7373OwwGA3PmzKGqquq4jgODnT+SJPHQQw/x7rvvkpmZyeuvv84TTzzBH//4RyRJIhAIhPt6Pv744+h0OgwGAw888ADPP/88U6ZMYcuWLTz44IOsXr2aX/ziF3z66afk5+djs9kG7Xqg0+mG/F0fanrxMtR6rVD6cLXFYtkA/A74l+CyJ4Efowqs561Wqwt4H5gQXNcdLMrvAD6wWCwbgTuA3w5xDGMOjUYzwCTVBcDeEuivtTPfohbTi7qusc/Lf+9EVjTM79xEbbn6tSpy2DBpteO6v+ZAk9TC5MN4NFrygzd96bOXAKKYXjA4ZWVlrFy5kh/+8Ids2LDhuF6Fg3H11Vej1+spKysjEAhw1VVXATBr1iyampqi1u3t7cVms4WbNq9YsYL169efchvd3d1hY1S9Xk9BQQHz5s3DhJfNq1ezee1qlnxlCUtvX0pzczOHDh1i3bp13HDDDZhMJhITE/nSl7503Ofu3r2b4uJiSktLBx3PzTffDMC8efOO25fBWLBgQbg/5Keffsorr7xCRUUFF1xwAV1dXezdq7Yq+slPfkJ5eTmXXXYZLS0ttLW1DXrsh3N8n332Gd/4xjcwm80Ap2wPlZCQwKWXXsr7779PQ0MDPp+PsjK1pYdWq8VgMIQ7BIQ40T7U1dVx+eWXU1FRwc9//vNwNB7gK1/5ynHbttvtfPHFF9x2221UVFRw3333hbMTixcv5u677+b3v//9sPhqDinSZbVaPwI+inhuGWSdI8DlA5b5gbsHWfdXwK9Oc6xjkoKCAg4cOADARG8XbRSwY7KWi7YGmJOrtogQomvs89Z6NRhrsR1iU3khoNZzTZ48+bh0x3giOTmZxMTE8I9hQXILNUfmoDkaB3joyssCSWLz5s1885vfjO1gBSflZBGp/S0+ejygSXGh8waYcFSDJ8GDnCCTnZ19xjNzS0tLqa6u5sMPP+SRRx5h+fLlPProo+GoEBBVzA7HXO9Dlg6hbWs0mmGrbQptP7SNkHCQAEWGbzz4z3z75rtJsUl4TV6a7c188MEHZ73d0L5ptdoh7Ut8fHz4saIoPPvss1x55ZVR6/zv//4vHR0dVFVVodfrmThxIm63e9Bjf8MNNwx5fOfC2Ptb3/oWv/jFL5g2bRrf+MY3ol7zeDzH1Q4Otg833XQTM2fOZNOmTYNuI/KYhZBlmZSUFGpra4977fnnn2fLli188MEHzJs3j6qqqrPqLCLMUc8xkZGAQo8NgN0l6mEvcBeg1WrZuXOnMNgbw9idMjUH0tEqMjN1adRPAUlRmDjOXOhPRLRJqhri2uPMJa1bwWnUoCkoEpGuMYyiKPQ5NWGriHiXKnIChgAmk+msrFBaW1sxm83ceeedPPzww+FenRMnTgyngN58880z/vzk5GRSU1PZsGEDoNZqhaJeJ2Pq1Kns36/2tBp403TR0kt5789/osOj/mZ3HOmgu7ubWbNm8fe//x23243dbuf9998f9HObmprYt2/fkMezdevWIRV7X3nllTz33HNhX7E9e/bgcDjo7e0lKysLvV7PmjVraG5uBgY/9sM5vssvv5yXXnopfG3r7j6+fDvyhg3gggsu4NChQ7z22mvcfvvt4eVdXV1kZGQc939xon3o6OgIiy6fzxf2EzwRSUlJFBcX83//93+Aes5v27YNgMbGRi644AJ++tOfkpmZyaFDh076Wadi/BmrjDIiL0hZbjvI0JkbwG2E3uo+Zs6cyfbt26mtreXCCy+M4UgFZ8qfP+rEJ2cwr7eSxplm/HqJXGcfZjkQDtOPZwoKCqivrwcgM74Dg9ZDta6AC/ce4IsLwDRrDnWfvIvdbichISHGoxWcLg63gj+gQRsUXQkuCVmjoOiUs561uGPHDh5++OFwROm5554D4LHHHuOee+7h3/7t31i2bNlZbePll1/m/vvvDxfSv/TSS6d8z7XXXsvatWuZPHkyGk10bGLZxcvY17SH22+8HIMf4uPi+def/iuTJk3iS1/6EuXl5WRnZ1NWVnZcutRkMvHSSy9x22234ff7mT9/Pvfff/9Jx3Lw4EHi4uJOOeZvfetbNDU1MXfuXBRFITMzk3feeYevfe1rfOlLX6KsrAyLxRK+ERzs2A/n+K666ipqa2uxWCwYDAauueYafvGLX0St8+1vf5urrrqKvLw81qxZA8CXv/xlamtrSU1NDa+3Zs0arr322uO2Mdg+GAwG3njjDb773e/S29uL3+/nwQcfPGVN6Z///Gf+4R/+gZ///Of4fD6++tWvMnv2bB5++OFwmnb58uXMnj37pJ9zKiRFOec16sPBmCykD/Hss8+GVf6L+RdgT9Lyk1/JVMgG/lr2Z1588UWeeeYZvve9752T7Y9GxkKR8VC57B8Ps6ouj3v3vMTROwr5fKHE4vZmbksyjPh05BNxLo/3wYMHoy5kL1d/jQM9JTyQ8yl/vlVL2s69NP70O6xdu3ZIUYbxwlg4x+vr65k+ffpJ12k+4qPDKaFNdaLxByhq1eA3+fEle8nJyRk1pr9er3fQIucz4ciRI9x1112sXKlOLrDZbOGIjU/R0h0XBwoUH1WQfNBKKw6/g+LiYtLT03E6nSxdupQXXniBuXPnntVYHn74Yb7+9a+PuhnuoeM93OO77rrr+Od//meWL18eXnbzzTfzn//5n6P2JvYE36NBvxgivTgCRJukqhZlu0skvI1e5peJYvqxjNcn88VutUB0jlfPtuDNVEl/93mRWgR1lm5kNCCUYoxrVwPp7pKJgCimH6v0OqRwatHkkpFQU4tGo3HUCK7hJjc3l3vvvZe+PvX3OjKtpZcCEJBAAlcw0JeoV4vu77vvPioqKpg7dy633HLLWQsugKeeemrUCa5Ihmt8NpuN0tJS4uLiogSX1+vlxhtvHLWC63QR6cURoKCggO3btwMw0dfBHlLZPlnHTR/7KI9XT1bRDmhs8s6aHly+VEo8e/FMyqY/USLZ4yLV62Lq1KmxHt6IoNfrycnJobW1FVBnMAIcdqaR3NtJb7IeTf4EIbrGIC6PgtevRWtQZ14nOVWvNdkQIC4uMZZDO+d8+ctfDj8eGEHTBEDWgl0PZsCkUdNrzzzzzHEzegVDIyUlhT179hy33GAYPRmD4UBEukaAqEiXO9okNbUrDYPBwO7du+nt7Y3RCAVnymufqCmH+Z2VVAdd6IvtPeTn5Q1p+vt4IfIcD5mkbtJMZHrwN1Q3o1y0AxqDdNn8oJVBpyDJMnEeiYBWRtEo4Zls5wM6nS4qqqcPzazUq5dQXUCNX4gejIJTIUTXCJCdnR0OTyf5POjc4I2XOZqlNr+uqKgACM/WEYwNZFlhXZ0qrMq7+6gORthL7OdPajFEpOiKN7hIi+uiWZ9MaZNajpk6+0JaW1uj/HIEo4OT1fXa7MdSi3qnT00tGtXU4sAC8/FMyJw1hFFRZwj6dYAEkh+0aHE6nSc9noLxx+n+f58/35oYotFoyMvLA0ImqarvzN4S6KvpxzJPNL8ei6yu7MfmSiCddjIzJ9CaK2H0+8lz9p/XogvUui5FkkjuUH+QNNNnAaKua7RhMpno6uoa9MLh9Sm4fVo0wQbXCUGrCDloFXG+EVnXZcSrTu/SKviChyJel0AgEMDj8cRmgIIRR1EUurq6Tuv7IGq6RoiCgoKwP8pEXydtFLBzkpalmwMsLF7Ib/mtqOsaY7z8QS+QwMLezeyYrdZ0FDl6yEpPO65R7ngnJSWF+Pj4cHqlIPkw24+W0+VMIKnPSV+SCU1uPlu2bOGWW26J8WgFIQoKCjh8+DAdHR3HvdZrl7E5JDTBm0S5BzoV8Lo8JDmSRl2ky+/3o9Odu0uaz+eLSh/2a0ygVXC4wewEr9aLzWejrq5uUAPO8ca5Pt5jBZPJdFp1fOKIjRDRJqk9bKGAhhINEKBUoxZci0jX2OKzGtVzqqz9EBtuUf8Pi+09TCubNm5ndZ0ISZIoKChg9+7dABQGZzBadflM27uXrfNAN71cRLpGGXq9PtxGZiBzV3Sy0+wi/pIWEmv28twLk7Dl9uB+yDkquwuca4sOp9PJU089FX7+J+1Sukr9lG6DR5+X6Svo4/btX+bBBx/kV78a/w1XxoIlymhkdN2qjGMiRVe22wEydOUEcJrAeMhIfHw8zc3Ng95xCkYf1l0OjvYmE6d1UCJlsXsKSPL540I/GFFGwPFt6DQ+qjUFTGtUU1dxM+dhtVqHrVWL4NzR3aewrSkFQ0k7ADNq1Akj9onnX+o8hNlsjmr/UujtAaA5W631SupMRINGZCwEJ0WIrhEiISGBlJQUAHSKTEK/DBrYP1Etpg/5uYho19jgpffUH9wLfJUcLEshoJXIc/WRYY47b+/+IkWXVqOQn9SKT6Mlp0Pt0WaaNRen00ldXV2shigYIn/5pB9ZJ6Mv6AZF4aqdWQD0Teg9b0UXRJ/j02W1HYw73Y8/G3BLFGonUF1dLW4sBCdEiK4RJPILmxs0Sd1TDJ59XhZWLASEX9dY4eNKdbp8edtuasrUVGJo1uL5lloMkZeXF7XvBUG/LofTQIJdwZuSgCY7V6QYxwCvf+ZBX9QFWjA1NTPFmY1H5yF+ZjxpaWmxHl7MiIrm6m0ovUYkvczOGaqFxOLsi3A6nTQ0NMRqiIJRjhBdI0jkF7bEr4btt0/WgwzzMxYAItI1Fmg87GF/Rzo6jY/JNl3Yhb64//xNLYJqYpidnR1+HnKm32bMYtpedZmo6xr9ON0KW/YkYyhRSx2yt6gRnd4CG9NmnL/nNxw/S9fcrV5CN+erNxvzU0WHEcHJEaJrBBmsHdDBiTKyBBO8EwD1yyp8XkY3f3y3C4AK0y68kybgiJdIcTvJ0ShMnDgxtoOLMZHneEGSGun6QprItL3qOW2YMVuIrlHO22udeBUNhomq6Lpwm1qz5Cx2nNc3FQBZWVlR1hFZTnU2Y0OuGvme4FN/x0XGQnAihOgaQXJycsJTbBP9XtUk1axwNAv8DQFSU1Npa2sb9waSvV4f+5zuMSsu39uofm3mdW0Pu9CXOHooLS1Fq9XGcmgxJ1J0JRodpJh66JISKG5X0y+mGXOpr68X3RdGMX/+xIkuvwcMMnHdHSzpVmfmKjNkcnJyYjy62KLRaKJqNif7jwLQkSmBHkxdccRhFpEuwQkRomsE0Wq15ObmAiGTVNVEb28J9EeYpI7nuyR3IMBVqyu5qWY/lo828u879lHfa4/1sIZMW5efXS0ZaKQAk4/0UVOmLj+fGlyfjMFMUgH8LjA7FQKZaUgZWeKiNErx+RXW7UhAH0wtJtXsIUmTRL+pj5JFk87besVIIs/xKdpDKF4tJPromKqAAqW6UrZt24bX643hKAWjFSG6RpjIL2yRtxOAnZO0yDaFJVOXAOO7HuDJnfvZ3aeG5A/YXfyy/gCLP9nERZ9s4lf1B2i2u2I8wpPz8vudyIqGKUkHMCcWcTRbwuD1UuB1Mnny5FgPL+akpaURFxcXfh4qpq83JTN1n7pM1HWNXj7d4sHpNWAqaQOgeGM3AH2FfUyfLm4qIPo33KgNoO1UU4tbJwWL6XMuwuv1smPHjpiMbyTYeUDhtdVxvPyRwl8+U3hzrcLfNyp8vEVhdZXC59sVtu5SqNmjsPOAwt5DCs1HFVo7FTptCn0OBbdHIRAYm9mOs0GYo44w0aKrm63k0zBJNUktN88Gxq/oqu7u5dndTWgkeHnWRBLT0nnz4FHeO9zGrl47u3bs42c79mFJT+bWCTncWJhNlml0NdV9e13wh9Wzk53lZgCKnTamTJoU1ZvtfCVkkrp3r1o5XxBsfr1FW8gle3ZRUy6hm1E2rkWXx6vw+7/DkfZ4sjIUjAYw6iP+DEN/rNcxotGlVz/sR5ulg3g/cW4niw/mgR4C0/1MmDBhxMYxmhkYzU3p89GdB9V5eq5FpiK+AlAzFvPmzYvBCM8tzUcVFn9HodeegtoL6ezQaBQMOjAEz/fQY4Mu+Fx/bJleO+D5SdeXTvj6lQsgMyU2UVshukaYqCnHbjsEoDtLNUnN61O9cKxWK4qijKtQvicg80+Vu5AVuD5lAn9/L5v0tAQyDKncZ5jKYX0XO6Wj1Ac6sHb1Yu3q5cc1u5kdn8by1Gwuy8oi06wnzgAmI5iCFyWNZuSOkd0pU3VANUec3NLCexeXAlBi72Ha/MUjNo7RTqToykk8ilbjZ1cgj/tadgJqXdeWt/407s7xEP/yG4XfvA2QxHBclIwGZWii7ZQiTjrlep9Wm9GXqUI5pXEvs3QzkZHJXZ4z6tr+xIr4+HhSU1Pp6VG9+go9NrqJpzlbD3jIdqh1b5WVldx3330xHOnwEwgorPiFgt3cR/H8booyDODTonh1KD4tslf9C3i0+N06fF4Nfr+E1wdeP3h94AsQ9VyWwe1V/4aXE3/3tjwvkZky3NsbGkJ0jTBJSUkkJSXR19eHTlFI6Jexp2hoLIbUHW5ycnI4evQojY2N4ypd9d/1B6jvtVNgiuP/flWC0xEqOFdQK9wy1D9dAH1xB4bSNvQTuqh1dFPr6Obp5gZ8zel49+Tga8oAv/p+o0HBZCD8FynK4iKWm4yDPZcGf33QdeHtNT34AqnkJx4m/VAGeyaBFAgw0dlLaWlpjI7s6CPyxkKnkclLPMKh3kJMngBxLg2u7Cw6/DLNzc3jbrbnh5tUwaXXwYrL7cSZE/B4weML/kU+Hvh8kNf8geDyYbkgDUUAxpEySU0tpm9qQi+V0RHfzsL5C4ZjAOOGgoKCsOiawUFqlem4Mvz4UkHfoyNHkzMua3N/+TpsaHKQ/NUqbDoZ2ynWl4B4nZZEvY5UnZZ4nZYEnY74iMdmrQaTRodJ0mKStBglHQa06NFiRIdO1qJTtGhlLTpZh+yX8PklfP5jws3rR30eJe4U9fkgQi9WgguE6IoJBQUF7Nq1C1BNUvempLC7BMo+8rBowSLe/vBtKisrx43o2tHTz6/qD6hPNk7H6dCytMzDFReYcHmU8F2OywNurxa3Nwd3Vw797T46k9uxZbbhTuvBUNKJoaQTxacl0JSBe3cOnoNpeLwazmwu3OlGIVIBWGxsoGlaKopGIru7iykF+edFg9uhMtCRvyD5MId6C9kTZ6R0n8y2MtDPKGfz5s3jSnR12BS++aR6Tv3sHok7l/WTn590Vp8ZCCh4/ScRZ0MWdMop1+vpddLqbMWR6sYY8DPVGgAJHMUOSkpKhuMQjRvy8/PDNVuZ+h7oiUNKc7FztkzFWg3T9TNYX7cOp9OJ2WyO8WiHh9q9Co+85Cf+pjrQyZQoPvL1WnxaLV5JgwcNbsCtgEtWcAQCeGQFuz+A3R8YtnHoJIkEvZb4oHhL0GtJiAs+Dok5vfo8MyjsIpebJQ0ZKfGA/pTbOhcI0RUDIkXXJH87e0lhxyQ9t8o+LipYwtuoouv222+P8UjPHp8s80+VO/ErCuXeAtZtSqUgU+Gnd+xlRmkucXFxmEymE3SrNwKFQCFHXR7eOdTGmwePUtXdi25KGwlT2kjV67kyJ4srMrKZZU7F55MiBBzHPY5+rpzidXB5wR183m1zYNA4mdO1n3UXqBehqV470ypmj+QhHfUYjUaysrJob1cNgEN1XdWGbKbvbWVbmRQupv/qV78ay6EOG4qi8O2nFNq6YXpeJ4aOv/Laax7i4+PD5/hg/w72ONJ2RKuViNNC3FmXNp46jfvuu6v4w8F2NjKR3M4jlAVmgQ6yLsmM8qYSQGFhYfixJIG5R8KVBlsLoQJYlLWINYdWs23bNhYtWhSzcQ4XLo/CnT9X0C/ciy7DTorHxZVN2zDI8knfJwMYTUhxcWhMZjCZUIwmMJgI6PUE9Ab8Wh1+rQ6vRqOKN0nCrUi4FVWwOYKizeH3Y/cF8CsKNq8fm/fMWy29O72MJWWxsT8RoisGRJmkuqNNUqdp1RlC4yU0/euGJrbb+snWm/j8hRIkFJYXvMraz5pZ+9mx9XQ63QkvQqHni+PiWF6UStfEDFbanHzY0cvufid/PdTCXw+1kBtn5IaCbG4tymFRatIQ6oWGXk/U3t7Oc889B0DKK4Vs+6a6vOQ8bnB9MvLz84+JruAMxi1yMTc2tQJgmFnBltd/F7PxDTd//ADe2QAmnYcrJr5GX9CHzOl0nvZn6fX6474LQxFtJpPpjOuuZFlm9+7d7M+aBEBiXQOTdcvx4WPKteMj4j6cZGdno9Ppwj0Ws5wOmpGCJqk+putnAGpd13gQXT/+ncIeTRsJZS1oZJmrW/acUnBB0B7B4waPG4WeqNe0wb+TTT8yGAzHne9aownJFIdiMCIbDPjsWtzdEs4uGbstQL/NT3+fF7sngNsEbmPwz3TsX2NaAMrO4oCcBUJ0xYDc3Fy0Wi2BQEA1SXVJ+OIUWnNg6pEEAKqrqwkEAmPabLO+185Tu/YD4FwznYBXz4UTvuCCgx5S1k3DF+/Dm+AN/nnwJXjpTujGH+cfkh66CrAYzTSmZtOQmM4RFzy/9yDP7z1IFjKLjRKXJhopTTQPeoE6nYtUfX09AFqXDltOHu44ifiebqamp4YbmQuOUVBQQE1NDQDJpn4SjX30e5LI8AcwuiU8uXlUNx7A6/WO+VmfjS0K33tWTSteXfoRqXGDJ7sVQEZClqL/AuFlmmPLvTIBnxO534Us2dTXgusFIt8bsVyWJCSdHo1e/ZN0OiSdDrShPy1oNChaLYpGgyxpUCQNAUnC6fFwNHsybaYEtLJM7gbVp6st+ShXzFo+UodyzBDyXDx0SG2RNMnXRjM5dGRJKBKk9qehRz8uZqKvrFR49lMXSV9RfwOXtjeR5XGMyLa9Xi9er5e+rj5MtjhM3SbieuIw9cRh6jFhssUR7xv8GilrZXzpXgJZAcgDTb6EIUuPcaIRX1wTVVVHKS4uHvFeokJ0xQCdTkdOTg4tLWraJb3fTVuckb0lMGGHm4lFE2lqbqK+vp5Zs2bFeLRnhj+YVvTKChP78qipTSM74Shf9u+gaP3J60NkjYw3wYsvLMi8wecevAk+VaCZfaCBDI+TjKMHWHD0AG2mBHYnZ7AnKYN2nYG3PfC2x0vG4R5K+zqZ2tdJks8TtS2j0XjS6Fro+c6d6sy7pKYkvihThVqxo5tp82acmwM4xolMvwAUJh9mV/sMDsQplDbCjpkgT57G9u3bsVgsMRrl2eP3q2kXhwtmZu2kPGcHB83JrM8uxqnTRwkkWYrR7L9A8C/8wDf4enGJAEzq6yT/SAZoQFOuifJdExyjoKAgLLpKDQf5zF2AJt5P+zSF7HqJEu2kMZ+x6O5TWPFkgPgrdyAZA0zq66K85+i52ZgCOpeeuG5TUFQdE1fGPiPSCe7EfXFe3KluXKku3Kku3Glu3KkuPIme451Iu4N/QW6++WYhus4XCgoKwqJroq+LNvLYVaLlko0Bli1axv82/y+VlZVjVnQ9t+cg1d19pGqM1Px1CjqNn29mfsSkjyYC0Dr/MJ4kDwa7AYPdgD74r8FuROfRYeozYeoznfDzFUnBFx8tynITvMxI6Med0EVjnpFd2cnsTU6n0xRPpymeL7KKyHX2UdrXyZS+LuIDPjweDx6P54TbGYixIY6ab6uPZ/idIrV4AjIyMjAajeFjW5DUwq72GWw3pjJ9bz87Zkrop6t+XWNZdP3iT7B5JySZ+rl22ofsTs5gZd7kEwosSVHQKDJaRUGjKGgI/hv80yoKGuSoZaH1wu9R5Kj3aqPWk6M/a8A2tIO+N/o92qMtzFLmADDtlqkjeTjHFNEmqX50HSbkQjvWUoVr6yVmGmfy9u636OvrIynp7CZUxAJFUbjvaQVb6T5M2f0ket1cdmTfaRRlDI4UkDD2GsOiKq5HjWCZbHHoPINLEkVScCVHi6qQyAqYzrxIPxY3FEJ0xYiCgoKwQeREbydbyKNhkno6L8xYxP/yv1itVr7xjW/EcphnxL5+B/+xsxEA28pp4NVxU/4nXLAqC01AQ1vZUVoWnbi/pManiRBhA0VZ8LlLFWgG++AVxjOB6wFnopfaCi+b52ipm6zniDmJI+Yk1mcXM6G3n9L+DiY5OzHKQ/jiyuBVsujIkNA5HEwz6cnKyjqDIzT+CZmkNjaq50G4rkszgQf3qVFD/YzZbN68lu985zsxG+fZsHWXwk9fVtOKN0x/h5056XyRVQTABc0dLGrqwJfsRjZ60aIKnbHgSra/oZtsbTYOycHi6xbGejijluNMUvt9dAPV+VquRWFB+gW8dehNqqurWbZsWUzGeDa8+gm829RBwnWHkBSFq1v2YBrwOzlt2jQyMjJwu9243W5cLhculwu324232wtHJVVQhYRVTxzGPiMaefCbEr/BHxZW4chVqgtPsgdFO/zu9SbTiW/szxVCdMWIyC9sptsBAejJlnGYYYJH/eEei/UAsqLwT5W7cAdkMjpz2VufwbTkvdxW5ULviqe30Mahpc2AWjCs0+lwu6ObX8t6GU+qG0+q+4TbkfwSeucgwqzfgMERfO4wYO43cOEGuHADuA1QXS6zab7E9hnQnJJEc0oSa/wlzNzjZ+4eN1OP2pFMA9OaXgKGAAlHEtk5UxV5Ge2HmDFn2rg09xwu8vPzw6IrN/EoGilAszuXCd4dGLwS3oIJbHp1Z4xHeWbYnQpf+5lCIAAXFG6ieYaGHalFoCjctM7OLa+nA6qRriZBg65QhyZPQslW8Gf68KV7cSe7cSnHLlKhf2NNXKNqcdCe2UZyanKMRzN6ifRcBCh099CNmYM5esDLJNRJCZWVlWNOdDUdUXjg9y7MN6iz7Be3N5Prju6Rm5yczE033ITviB/HPgf2ZgeOvQ7se9V/vZ0nMJeTQJujgTwJJUfGn+nDk+7BmeLEpXPicqvfidPJQAyGoijY7Xa6u7vp6emhu7s7/PeVr3yF5ORkEek6n0hOTiYhIQG73Y4WhYQ+BXuqxL6JYGlWp2eHmqaOpULj3+89xJZOGwkY2Pf2FMw6Jz9q2U58VxKuFBeNV+8N37F87Wtfo6ioCEVR8Hg8x90pRf4bejzwuT2p/8SDkUHv1AcjYqooK7YbmLrKgO8TI9uLTVjL9NRPkdg2Q8+2GXqM7gTmbYdFlQpla0EXvLEL6APIWpm/PaCKrBl+F9OnTz/HR3NsE3ljodf6yUk8SmtfPkeTAkzZr2XnNDhoTKC7u3vE6yrOln/5jcK+FshKPor3khb2JOWglWVW/N3OpR8nEDAEMJUYUY6Av9ePt94L9cfer0GPGT1puRnET4rHPNlM/KR44ivM6Ap0kKng8XtO67twthepELndeQBkX5o9LJ83nom0/5kmHaRWnoYz3Y87Ccx98aRIKWOurisQULjz3wOwpA6NyU9Rfw9zu1uPraBAXlU+RUeKWf1f65A9g89i1Jq1xE+JJ36ymYQp8SRMSVCfl5jRxp16gpgsy3g8nuOuCZGP7XY7LS0tHDp0iJaWFlpbW2lvb6ezs5Oenh58vsHrF7u7u0lOThaRrvOJUPqloaEBCJqkpiazp0Ri9kc+ZpXOom5P3ZgqNG6yO/n/7d15fBTl/cDxz85eyW7u+w65wx1kOQUBBbkR8KrWahUVtdZae2ltrdba1qPa41fr2VrbeuFVrQooKqcKw00IOYCQ+76zSfaa3x+ThA1ZFAV2N+F5v168NpvMzjw7PLP7nef4Pg/uV5d/aVyXi9Kj5z7nWqKPheAwOiheVtjf/z527FhSU9UWPY1G0z94/evOBHS/ME/25XTiY3tXK11dXYTbbMxzwsz9gRw2R1MQGUFluIltk2HbZA1mq4uJB5xM/0zDqEIt1gAtJWmgsTtYmJo4qHtBGOjE85McUkFVWyL5BiO5RS7yczXoRo1j+/btLFiwwEel/Pre3arwzLugN3URvGInpUHhGB0ObnvZysRtQTiMDgJ/ZWTUklwSEhKwNdrpPNxJZ4mVzpJO9efDVqxHOumu7qG7uofGLU0DjqHRaTCNMGHuDcZiMmPVoGysGWOswWMLq8vl+tJr4GTBWldXV/+XU1tLG1Nc00CCi3841yvncyhzD7pijU0ojSakaCsFeS4mbJLI0eUOuR6LR1+GnYFHCUxoxWS3cXF18fFucQVSP00jZn8sDtR0GQHxRsyZZsxZZoKyeh+zzQTEB6A5jWXaJEmdxCFJEnV1dZSUlHD48OH+x8OHD3P06NGTBlYA4eHhpKamkpSUREJCAnFxcURFRZGUlNT/veNtIujyIfegK8NRSzGh7M/UcrnTwbzMeRwoOoAsy0Mi6HIpCj+QD2J1ujBXx9JcHM13lc8ZeygARaNQsqiInjC16yQmJuaMvae+C/ObNBO7f0n1fQEdbm1nXVMHH7f3UGaS2DRZYtNkMPX0oK+sQZFSCa+p5Du3XSu6Fr9CYGAgkZGRNDY2ApAUWskXFSDr47myWJ1Eoh+lJkkdKkFXbZPCqocVpBArkZduo8kcQIithx8830POviDsgXYab6zjuhuvo6amBo1GgzHKgDHKQMSU8AH7UpwKXRVddB7uDcZK1GCs83AnXRXd/b+D+gGv0wVpMWWY+wOyoEwz5gwTpnQzphDTN8qA7nQ66erq4o1H3yRICqbV2EJI5tAb/O1t7jcWGg2YWiS6o2HHCJiwCcYEjOH5o5/T2NhIZGSk7wp6inYVKty/tpHApaWgKCysKsLk7E1C6oIRH6cTfTAGySiR/JtEsi/LRh9y+mFEe3v7oICq7+fy8vIBw09OlJCQQGZmJhkZGWRkZAz4OTw8/KSv8xURdPmQ+wWb2KPm9ilLVXBpYHyQOntox44d3HLLLT4p39fx4pFKNtc1E+DSU/leNpMd5Vxa3ApIHJt9lPZkddyDJEmsWLECp/PMLQvxTUmShMmkfkk5HA6OHDlCd0UZsYcOkVdQgKa+idLoRFwTp2GNjYd0tWVuaWrCkOry9aXk5OQBQRfA/p5Uft5Wid6mQEoam1/6wJdFPGWKonDjIwpNhlbClu2iJ0BDjLWTH/3NSWJJEDazjeLLCrnqxm/xxhtvUFlZSWJiIiaTmieur64N+BdnIiolkugLowYcy9nlpPNoXzBm7W8d6yzpxN5sp21vG2172waV0RhrUFsdMtRArO9nU2ogkuHkKSu0Wi1BQUE0bmwkmlgcOSdvPRCOi4+PR5IkXL2JQmOtHRwDDiUYAAfnhU7k+fbnkGWZ+fPn+7SsX8XarfCtR7oJuCgfjQam1peTZO2tYy5I+zCDqMJopAANlpfOoyez+5QDLkVRaGxsHNRa1ffYl0jZE61WS2pq6oCAqu8xPT19yC2zJIIuH0pISOi/YIMcdnRWDQ6TQmU8JLdEA0NjMH1FZxf37S0CoPHDbGLa7fysLB/JpaV2fDX1Y49fUHPmzBmQo8zbOjo6KCws5NChQxQUFFBQUMChQ4coLi4+aTN1+DuvMmL2XLTTLsAcl8ADlyzxcqmHrsTERPbs2QNAWEALZkMHnbYgOqMdZB7VU5ADu9q6UBTF71sOn3kH1lU1ELxiP4reRWpbK3f9WSKyMoie4B4KVxwkZ2YOl112Wf/M5FPhHvx/aYCWYsKUayJECiG8O5xgawjmVjMBLYHoG/Vo6iR6am301Npo2jow+7dGqyFwRODxYCzDTFBvS5kx3th/7vWF6s1E8sLkQeUUBtPpdMTHx/d/nqlJUmPVJKlAki0ZCWlIBF0/ecpF9ah89GYbCR1tTGpQZxxrnBrS12USURKJJhAmv2YhYnrEoM9wl8tFVVXVSQOrvgkHnhiNxkEtVX2Pqampw2oZKhF0+ZBeryc2Npbq6moAItt7qDUZ1CSp+RJarZb8/Hw6Ozv9dkFlRVG4c2cBHQ4nuopotIci+X31RgK6tbSmtFA281j/tikpKUyfPt0rZaqrq+sPqNwf+5IZepKSkkJubi4jR45k5MiR/T9HR0f7fUDgr07sfkkKqaSwIYdDRoXcYijIge6UNEpKSsjKyvJhSb9cUbnCjz+qwLzoEBoJRjfUc/ufAgluMNEd1kXhigIalAYevfFRmpqaSE5OZupUNd2C1Wod9K+rq6v/Z5vNRkdHBx0dHV9Rii+nQUOUFE2ilEiSNolEbRKJUiKJ2kRilFish61YD1tP6KwEm2SjJaCFDnM7KT0puHBh+c7E0yrLucQ952KWsZyPOpORzDaqsxUSinQka1P8/uZ53XaFvx8rJXBaM0a7k4XVhUios8Qz1mYRfiQCV4CL6W9OJWJyOMXFxbz22msDWq+OHDnypbNvQ0JCBgVUfT/3NUCcC0TQ5WNJSUn9QVeqvYFaEijIkLhwi4sZuTPYmL+RPXv2cP755/u4pJ69VFrFxzWN6J06Gtdl82CNTEy7Qle4OlOxLyOwwWBg+fLlZ/TCcjqdHD161GNw1dLS4vE1er2e7Ozs/oCq7zE7O5ugoKAzVjZBFRMTg16v729FTA6toLAhhz2GcC4o7uAtji9+7a9Bl83uYuF/DqOfWQrAtMoqbvhLKIGtgVgjrBy6JJ+Pd33MJ598AsCiRYt48cUX6e7uJjEx8Sv373A4BgRhJ/t3Ktv0/TtqPcLBrvzjgV2bjRhi+wOyBG0iiVISSdpEQgkjxhpDjDUGNFBjriYoXlwLp8o952KAzoa2wYhitrFrlEJCkYZcXa5fz2BsaFG49tkmAi5Sl2xbUF1IkMOOxqEh8/1swkrDcRodnPfKBMInhfHUU09x5513epwtGxMT47G1KjMzk8jISHHzigi6fC4pKan/LijN1sB2EjiULgEuZifNYWP+Rnbs2OGXQVd1Vzf37lG7FVs2ZHP9sVLGt3TgCLBTvPQQTuPxcVvz58//xoMarVbrgC7BvseioiJsNs+5YEJDQwcEVX2PaWlp6HSi2nuLJEkkJiZSWloKHE+SulNJZVXNQXR2BVLT2fTFOq655hofltQzm9PFrNfyaU6vQXHBRYcr+PazkRjbjXRGd7B73k5eefMVjh49iiRJPPjgg9x9991IknTKXeg6nY7g4GCCg4PP6nux2+0eA7TO2k66SruwHbPjqnMx56ZZZ7Ucw82Js3TD29QkqXuStCxBYUzgWNZVrqW6upr4+HjfFPIkFEXh+id66JmWjyTBeQ2VjOhsQbJLZP4vm9DyMOwBdpL+kkDw+CCuuuoqXn31VQAWLlzIrFmzBrRane06PByIbx8fc1+jLrqnExzQHOOi3Qy5WnWJGX9smlYUhR/tLKDN7oDySGZ+4WRFfTkuyUXJwmJ6wo7fBWVnZzNhwoSv3F9DQ4PHVqtjx46d9HVJSUkeg6vY2FhxV+UnkpKS+oOuhJBqNBoX1Z1xaBL3k35MS1GmxNaaBt8W0oM2u4MV6/dSqG9CsUvM2dPINa9GYeg00BHXzobzPuSlF16io6ODmJgYXnnlFebMmePrYp+UXq8nNDSU0FCR8PRMcs+5CJDc00QTJo7F6QA7YwPHQQvIsszSpUt9WtYTvfCBwiemAgxBPUR3WJleX4Zkk8h6N4eQylDsJhuOH9vRjICJEydSUlJCUFAQzz77LDNnzjylllxhIBF0+VhYWBgmkwmr1Xo8SWqEhpI0yKtTPxz9sWn6jbIa1lY1IDm0RL8Tzx3V+wA4Nru0f6YigMlkYunSpQMCoLa2NjZs2EB9ff2A4KqpqWnQcUBtCcjKyhoUWOXk5Ig7qyHAvSXAoLUTG1RLTXs8pcF2RhZpKcqEY0Yz3d3dPsmb40l1VzeXb9zNwc4OXFY9lo0K1603oe/W05bUyr+i/skH//kARVGYPn06a9asISEhwdfFFnzgxJyLuZoK9jhzsEY4sQZBVEcUgZjYsWOHXwVdR6oU7vyoDMPUBnR2hSXVBeh7JLLfySG4OgSb2UbZt0txKU6unnYVNpuN8ePHs2bNGrKysnw2GWqoE0GXj/VdsEVFajddfFc7xYRQnK5hwvsQZAyiqKiIlpaWr5049Gyp6+7hZ7sLAZA+TuVXBQfRKVCTV03DmIFTf5csWTJgrNQnn3zCt7/97f5xbO6Cg4M9tlqlp6cPq9kr55oTu1+SQiqpaY9njzaAkcUK/0WDlDOG3bt3M23aNB+V8rhDrR1csXk3FdZunC2BZL8bxR07D6Pr0dOU3MjDXb/jwMcHALjpppt48sknRZf1Oc496IoJbEBpOA8ptoOCCQoTN2vI1mX71c2zw6Fw+Z9bkSaVADC/ppDwDgfZ/x1JUG0QPUE97Fu8h8/3fMbatWsBuPXWW3n88cf95sZoqBKfFH7APejKcNRQTAgHMrRc4XCwIGcBr+97nZ07d3LRRRf5uKSqn+46RLPNjlIezv3vVxHidNCS2kz5jIHdgOPHj+9fKsfhcPDAAw/w0EMPoSgKI0eO5MILLxwQXMXHx4suwWHIbDYTHh5Oc7OaxiA5tAK50sJObQJLjlWidSooaRls3L7D50HXZ/XNXL1lD612B46aEFJfT+aXhXvROXRUJVRyz7Gf0dDSQEBAAHfddRcPPfSQT8sr+Af3GwtJA6ZmDd2xsCsdJm6GXF0uG3Z85DepUX79koOSjP1otQqjG+rIrW8j++1RmOvNdId0s+n8T3n1rVeoqakhODiY5557jiuuuMLXxR4WRNDlB9wv2KQTkqROjZrG67zOjh07/CLo+m95Le9U1KFxaLn+RRcjeqx0hVs5sqCkf6YiqOMc+rKMl5WVcfXVV7N161Y0Gg333XcfN9xwQ/8yQMLwl5SU1B909SVJPdyZQmB8FemlUJyh5aOj5dztwzK+XV7LLV/sx+ZSoCya9NfieaB0NzqnRFFUIT8t+DF2p534+HhuvPFG7r33Xh+WVvAnfTeMfZnTYzs7OQYUJOgAJ2NN43i14RXKysp8/rm3o8DFE5UH0Wd0E9phZ27ZMXLeHImp0Ux3WBevjHiJN195E6fTyYQJE3jttdfIzMz0aZmHk3MjMYafS0xM7L/7MTvt6Do1OIwK5QmQYlcvUH9omm7ssfHTXWoT+rj3g7moohl7gIPipYUDZioCLF++nICAAN566y3y8vLYunUrCQkJbNiwgQceeEB0x5xj3G8sIgKbCNRb6bQF0RhrI1ddrpN828mX+jjbniw8xqrP9mFzKcTUJpL1n1h+fWQPeqeG7eYv+FHRD7E77VgsFm644QZWrVqF0Wj0WXkF/2IwGIiLi+t/nuGsAaA+VoNLAzk6/5gUZe1WuOzfFegz6pDscNnRAsa8rgZc1rBOHtb9njUfr8HpdHLbbbexbds2EXCdYSLo8gMGg4GYmJj+55HtahqE4gwwVapJUX19sQL8fHch9T02gksD+dHaJlySQsniwgEzFQGmTp1KXFwc3/ve91i5ciXNzc0sXryYvXv3+vXsLuHsGZwkVU0dsV/rIrdYDbY6E1O/dDmQs8GlKPx8dyG/2FuEAsyTMol+LpR7y/ajU+BDzXp+XX4/Wr2WlStXsmTJEmbNmuXz1grB/7jP5MsMKMfVbkQxuqjMAJPDRJwU5/Ob5xufbaNttHqXc/HRUqb9J4PAZhOtIa38uPkuthd9gclk4rXXXuOvf/2rGL91Foigy0+4fyml2NXp8wXpEpoWDSnmVMrKyrz+heRubVU9a8pq0Ng1/OLvViQFjs05Qkdi+4DtoqOjSUhIYMqUKTz55JPo9XqeeOIJ3n33XaKiok6yd2G4i42NHdC62dfFuFMbSfZhkJwK2vQsPv381JfPOV3dTic3fLaPp4rL0Esa7ksfTdtDen5acQAdCq/3rOGPjY8TGRXJTTfdxLhx44iNjRU3DoJH7p/hgfoetA1qwLJnjLouY44u16c3z29utfOe4QAanYusynYuez6GgNZA6kx13Fp+M8eaj5GSksKuXbu4/PLLfVbO4U4EXX7C/YLNsKvBVWG6+t+zIFMdG+WrC7bVZueH8kEALv0vJNYrVOVV0zB64IIiGo2G7u5upk6dyr59+8jMzOSzzz7jzjvv9IvBo4LvaLXaASkV+oKuQ7YUgsIl0spAo9Xyv4NFXilPc4+dlRt38U5FHcF6HS9Pn0DhT+18vywfLfCi9Z/8o/N5xo4dy0033URMTAxarZYVK1aIrnHBI/eci6AmSQXYm6x+jufoctm5c2f/4tjeVN+icPPmQ2jDrZhbFX74Vx0BbQGU6Y7x/crbaHW2MmXKFLZs2UJOTo7Xy3cuEUGXnxicJFVDS7SLtiCYEKQmFvVV0/S9e4qo7baRclRi2cdO6pI7qDxhpmJ3dzebN2/mRz/6EVarlWuuuYZdu3YxcaJYw01Qud9YJIZUAgrV7XH0jHD0j+uSWzvPejnKO7tY+MkOPm9oIT7QyPtzLBT8tJWle9Xxis92/ZPX7a+xePFiVq5c2T92a86cOcTGxp718glDU3h4OIGBgf3Pk3vUvIPH4tUgfWzgWFpbWykpKfFquRRFYemzVbjSa9A4NNz9jI2QZiOFyiHuqvshdoOdyy+/nMcff3xQ4CiceSLo8hMRERH9/ecSENSqjnMpSYPYdnWApi9aujbUNPBSaRVaO9z+TwctwS7KFxUMqDmVlZU8//zzfPTRR5jNZv75z3/yr3/9SyQuFQZwD7oCdDZizPW4FC0lJlv/uK7q4PCz2hKwr7mNizdsp6itk5GhQay7cBLVD9aS9oEa9f3V+T6fGj/ghhtuYNKkSf0ttCkpKT5PZyH4t76ci32ypXIUh0RXuIv2IEhlBHr0Xr95/v27nRQmqDcU171uJ+2Inn32vfy8+W7C4kNZvXo1ixYtEvXbS0TQ5SdOvGDjutSxUsXpGgw1RnTo2bFjR/+UZG9oszu4c4farXjZ/1yENEmULd+Lq3emosvlYuvWrTz//PPU19eTl5fHzp07ufbaa71WRmHoGJQktXcdxh0YySkBjUuBERnsKSg4K8f/uKaRJZ/I1HbbmBEdznuzJ1L/m2PYXjiME3g84AglsWtZvXr1gEHRZ2OxdmF4GvAZbmrAVa8mhi7MU9AqWtK1GV69eT5wzMHDlfvR6F1MkV1ctFFil30n97ffx/gp41m1ahVxcXEsX75cDAHxkq8cnGCxWKYBv+t9mgC8B7wBPAK4gFtlWd5vsVjigBcBM/A3WZb/bbFYtMCzQBawU5blO3v3+QPgCqARuEaW5TYEkpKS+pueMx01lBDMgUwtVzoUzos4j+11X1BeXk5KSopXyvPAvmIqu3pIK1W4eIOGg0uKcPTOVOzo6ODtt9/uL+8dd9zBI488IqbRCycVHBxMaGgora1qLrqk0Ap2VZ3Hflci1+lrSK1QKE3Rs0bey3mjR5/RY790tIo75YM4FIVLU+L4y8RR7LtrNw0vNeJAw6NRJgzJ7/Ct8781KLg6ncXahXPLwCSpCqZmDT3xsCsDLFvUJKneaulyOBSWvlmElNhBTJ3Cjf8G2badx+yPcMkVlzBq1ChAXbjaX1Y7ORd85a2bLMufybI8W5bl2cA24G3gIWAxcDXwcO+mP0MNxGYB37NYLAHAEqBKluWZgNlisUyzWCxRwDJgBvAq8L0z+o6GMPcLNtnWAkBZioJTgjlJ6owpb12wm2qb+MfhCrQOhZv/pbBrUiuOVHVW5ZEjR3jqqaf6Fz99++23+dOf/iQCLuErDUgEHKIOpi9vS0KTDbm9Y+g3ncHFrxVF4bGDR7h9Rz4OReGOnBE8ZRnNxqs/puGlRuwaDQ8l5RJleY8LZk4dFHCdymLtgtDnxAWgYzvVMYqHktT2jRxdLrt27cLhcJz1slz/ci2tiZXo7HDHswq727fy9+DnWHXLqv6AKycnh/Hjx5/1sgjHnXJ7ucViMQCTARlwyrLcLMtyGRDRu8lk4GNZlh2924wBpgPre/++FjgfmARslGVZcfudwMAL1uS0o++QcBoUyhIhV6cup+ONpulOh5Pbt6lryy1/X6HMYEQ3+SBOp5MNGzbw4osv0tHRQVpaGrIsc8kll5z1MgnDg3vQFWVuwKjrpq0nlLrIbkb2jus6oj0zwbvD5eKHOwv47YHDaICHJ+Twi9w0Xpn1Ks6PXXRrNNyfMoHgcTvIyx6cj8jTYu2C8GWMRuOAnIuZTnWN2fpYcEowOmAMVqu1f53Gs+W/ezp5n3wArn7DRdnhjXwyegPXrrq2v9XWbDaL+u0DX2fu81xgAxAKuHcHOnoDMr0sy30jYFtRg7Fwt22/7HeDWCyWm4GbAW6//XbmzZv3NYr69dntdr9YNd19jbqI9h5qg/SUpMOsXeqFsmXLlrNezt8eqqLC3kNKuULyFyH0XPkxLS0tvP7661RUVKDRaJg1axb3338/QUFB36g8/nK+zxX+cr7dW0Mljdradbgpg504Ob93XFd3fDIHiooIN5u/8XGsThc/KaxgU3MHRknDw9mJTGhv5cmR75DZmoVVA/enTsQ+oolLMg543Mf06dNpbW3t7w79uvzlnJ8r/OV8h4eH9+dUzDBV8GFLCtqwLspGKKQdiSJME8b69evPWpd1q1Xhe5uPosS6sOxWMGz4lGOLSrl49MUDtps+fTotLS20tLR8o+P4y/n2Vye2evb5OkHX5cA/gBYgxH0fsizbLBaL3WKxSL2BVyjQdMK27r/LPOF3g8iy/AzwTO/Tsz56vLKy8qQnyZtGjBjRH3Sl2JqoJZaCdIl5Gw1EaqLYv38/CQkJZ+3uZFtNE680tCC5FJa8Gkjtwv00FO/jnXfeobu7m+DgYC699FKWLVvGrFmzvvFx/OV8nyv85XzHxsby3nvv4XSqkzGSQis43JTBLqKYb7eSXAllyXo2lVVx29zZ3+gY9d02rt28m93NHYQb9Lw0Iw9NQRFrL93MaOcYOjR2fjnifKojArg55x94upTGjx/P+eefXiO8v5zzc4W/nO+cnBwKCwsBMOm71CSpYV0cGAdpR9QuxpKSkrNSVkVRWPqrTVjH2IhqVBj70ufYrusiNzJ3wHZ5eXlMnz79tI7lL+d7qDml7kWLxaJH7RbcIsuyFdBZLJYwi8WSzPGgaQcw22Kx6ICJQD7qGLC5vX+fD2zt3e6CE34n9HLvfsl0qE3ThRnqf9O06GlnNc9Ll8PJLev2omhg3ocSB1KsbP/sWV577TW6u7vJzs7mlltuYdy4cSxcuPCslEEY3nQ6HfHx8f3P+5KklnYko8vS9efrWnek/Bvt/3B7J/M3bGd3cxup5kA+uNDCzhdf4tOlm9SAS9vFL7NnUGQKZVH2fwk2Ds4L5r5YuyB8XSfO0g1vU5d125uiRvc5Z2kwfVNTE/O//Q9Kx9jQOhVmvVKK6Tt2wiMHtqiFhYWJ+u1Dpzqmay7qeK2+7sNfAO8DrwD39P7u4d6fNwFPybLcBfwPSLFYLJuB7t5B+fXAexaLZSvqQPwnz8xbGR7ck9NF2axg19Aa6aI1GKbHqHfeZ2tc1z2v7KYi0EFClUL54Ri2bf4usiyj1WpZsGABV111FWazuX8xa0H4JjwNpq9qj6crpad/XNf+HqfH136ZHY0tzN+wg9LOLvLCg3ljykh+c8P36HrAxhjtWLoDu3l65oUU6UKwJO1jZHShx/2I+i2cjqioqAHd6Ck9as/FsQQtoM5g3Lt3Lzab7Ywd87PPPuNbM++hYK56bU3+xE7SnGp0+sGdWcuXLxeTnnzolLoXZVn+APjA7fkm1EHy7ttUA/NO+J0D+K6H/T0BPPH1izv89V2wPT09/UlSO6KgOB2yqkcAatB19dVXn9HjbviwjH/pmtC4IGRtMp/vXIqzs4aIiAguv/zy/taJKVOmkJaWdkaPLZxbBq5R102UqYEGaxSFhh5yi9WM3i0R0fQ4XRi1p3Zf+H5lHTd+vp9up4u5cZH8JEzP5dMv5rraG8jUZeKKcLHnuov4eL2JmJB25mW873E/U6dOZcSIEaf9HoVzV1/OxcOHDwOQpa1gjy2LrlAnrcGQ05GLo93B/v37T3vFDpfLxR/+8Afev389Xff+hM4gDYklOibGbwMP3ebTpk0Ti7X7mMj252c0Gs2AfvK4rg4AStI0BDeGoDsLGY0bi9q5s6AQRdKQvjWEz3b/FmfnYcaPH8/q1av7A66oqCguuuiiM3ps4dxzsiSpnzmMBHdCQqUL9AbWFx0+pf09X1LOtdv20u108Z20RBYdy2f5tIXcWLuaTF0muiQdpr/M4jcfmtBKCkuz12DU2QftJzo6WtRv4YwYkCTVXIuzrjdJ6jiFACWAZG3KafdYNDY2smzZMtb9Yj2pV/yYokwNAW1aZlr34+leJSYmhgsvvPC0jimcPhF0+aEB47p6pxwfyJSQnBIZ2vQzmufF3mLnnr/toDIOwuoldn5Siq75VVasWMGKFSv6m6ElSWLlypXo9fozclzh3BUSEjJgiai+Lsbi7kQMqXpGF6u36G/le+7+6+NSFB7YV8xPdh3CpcCPc1Loeu5P/PS7P+J+/a9J1aViyjKR9+b5fPe5ABQFLkjbSnLo4BlXkiSJxayFM8b9M1wrKZia1a/aPdnq7043Seq2bdvIy8vD+ZGLuZYf8e58Dbhg9JF2YvXNg7YX9dt/iKDLD7lfsCk29QIqT1ZwSOq4LqvVSsEZWCrFZXfx2l0yb052oHFB7YcJRDc/wC2rVw9KmDdr1qwBA6AF4Zs6ccmrvpauitZElExX/zqMO1o6TroPm9PFrV8c4E+HStFqNNw3IprXr7+Kd597l0dD/kCiNpGQscFMf28KP/yPgfI6GBFZx4yUjR73J+q3cCadOKsvzqrW5UNJ6riuHG3uN2rpcrlcPPLII1xwwQXk1U/gO/E/4OnvSiiShojiUGYY93h83ezZs4mLi/vaxxPOPBF0+aEBY16cDnTtEk4DlCXBhJDzgNMfTK8oCp/duZNHR7fj0mpgTzypdX/l5hsuIyoqalB5ZsyYcVrHEwR37nU8Jqgeg7aHlu5waiKt/TMYqwKDsXtY/LrNZueKzbtZU1aDWaflB7ou7r94Ng17G3g8/AmipRjCLKFM+e8k3tit56WPIEDvZGn2GrTS4P2J+i2caYGBgQM+RzOcNQDUx4BDC7n6XPLz87Farae8z4aGBpYsWcLPfvYzlukvYXXQ93jquxpaQzVoakJY2fOxx9clJSWddvoT4cwRQZcfCgwMJDIysv95RLs6y6UkHRKt6h3U6Y7rWvfjD3mhtYmyZA1Si4Gog8e4cn70oOZnvV4vFvsVzrgT16hLDKkC4Au7k9B2iK12oOgN7GxoGfC6Sms3iz6R2VTXRLRRz9y9W/jlymVEdETwRPSfCVXCiJgRzuTXLVR367j1cbXVbF7GWiJNg1MC6vV6VqxYIeq3cMa51/F0UwXOJhOKDkpHQLI2BYPTyJ49e05pX1u2bCEvL48PPviA6yKu50bTzbw7Hw6M1OCy6plXXoRZ3zPodaJ++x/xP+Gn3FNHpNoaASjIkAjoDCRCE/GNW7rsdjsPf+cRjqxz8PYideyM5vNELs/b7XH7efPmDQgABeFMiI+PH/BF0Jeva093JLoIHaOL1W4Y93FdB1s7mL9hOwdbOxgRaCDs6cd44de/YqRhFH+K/T8C7YFEXRjJpJcnIpm1XPdbhdYOGBN/lPMSdnksx8UXX0xEhMdFMQThtLgHXUHGTqR6dWZu/lgFCYlsXfZX3jy7XC5+//vfM3v2bCorK7k76x6u4EoOZcKaper1k3XIyMigIx5fL+q3/xFBl59yHxPQN5i+MF0NkkbqR7F37156egbf2XyZ0tJSVkxdScr7GTx/rQ6nToMtP4HLIj5Erx2cFykzMxOLxXIa70IQPNPr9QPGmCSF9I7raktCN0rbP65rY1U9AJvrmlj08Q6qunrI0UH5Hdez/YP3mBU3m8eiHkfbrSV2UQwT/30eWpOWx1+FT3dDmKmHBZlvesw6n5mZedpT9gXhZAYlSe3tsdg3Qq2MubovH9dVX1/P4sWLueeee3A6nfxt9tPMbJxFezD88TYDSGAsiGOBcYPH14v67Z9E0OWnPCVJbYtQaA6BaTHTsdvt7Nu375T3t2bNGmbkzWD54ZVsujiIoyM0uNqNTK0uJy64btD2gYGBLFu2TCyGKpw17jcWfS1dVW0JWJO6GNk7ruuIRserpVVcvmkXbXYHWe1NfHHVUhpKj3LDpFXcLd0D3RB/aRwT/j4erVFib4nCvc+pQdvCrLcIMgweNyPqt3C2RUdHYzAY+p+n9Kjd231JUr8sM/3mzZvJy8tj7dq1REZE8t5V75OyLxV0Gp6+P5SOQAfOmhAu6dyMThp8wyzqt/8SQZefio6O7k/PIAFBLervS9JhlH4UcGrjurq6urjlllu4+oqrud11ByQk8MYS9b89dGck5yd84fF1ixcvHjCtXxDONPcbC7PBSnhgE3aXgXxdD+GtEFlrx6HTc+v2fGwuhdiDu9h+09Vgt/H4NU9wWfkVuLoVkq5JJO9v45D0Et09Ct9+UMFmh2kj9pETVezx2KJ+C2ebJEkDbiyydBW4unV0Bys0hqtBV2FhIW1tbf3buFwufvvb3zJ79myqqqo4f/r5/O/y92GdhEavYfufE9hjasfVrWPa0U7izfUejy3qt/8SQZefOvGCje1NklqcriGqIxoduq8c15Wfn8+kSZN4+umnuS34dsYYxvPM9RIOPTgLY7k0dD2ShxuhsWPHMnr06DP6fgThRIOTpKqtXds69UhGDWOLj0/qMLzzKoceuJvIiHDeu+8DctePQrEppN6UwtgnRqPRqhX5588q5B+F+LAO5ozwnHVe1G/BWwYkug6qxVWrBkJFIyFMCiNWE8uuXep4w7q6OhYuXMi9996Ly+Xi7p/ezf+d9yRNa5qRjBKGf2TzF0WdBRm9N4EpoZs9HlPUb/8mgi4/5v6llNU75Tg/Q0Lr1JKmTT9p0KUoCs888wyTJk0iPz+fG5NvYr5+AevnSZSkgqvTwJz6IkID2ga9Njg4WCxmLXhFWFgYZrO5/3ly77iu0rZEAkYHcuFmhYDiMjqeeJDa/zzP1KlT+fiBT1D+CopDIf2ONEb9LhdN753DR7LCE6+pySiXZL2CQTs467yo34I3uX+G6yQXpma1ru7LVbu/c3rHdW3cuJG8vDzWr19PVFQU7737Pt9qu5qql6qRAiVy/j2em9srUCQFV34iywzvebxhFvXb/4mgy4+5X7CptgagN0mqFkYbR3Pw4EE6OzsHvKalpYUrr7yS1atX09XVxc8W3c2KrkupiYaXl6pXadw+ExMi8z0ec/ny5QQGBp6ldyQIx31ZklRnhp30Mljw0Dbsn2/mzjvv5D83vETFfVXggqx7Msm5L6t/zEpTm8J1v1W/yC7M3EJiSLXHY4r6LXjTia25sVb18/pQ8vFxXX/+85+58MILqa6uZubMmezesZv4txOofK0KrVmL5ZXz+Imrmma6cNQFs6CtkJCAdo/HE/Xb/4mgy4+5X7ABLie6Ni0uPZQmw+TwKbhcLnbvPp7q4fPPP2fChAmsWbOGoKAgXnr0ZS7Mn4tLgb9+PxCnToHDkawI8jzbZfLkyaSnp5/19yUIfQZ0oQfVoZPsNHVFUh2qdqdPi5rOmjVr+H7mDzh0dxEAub/OIevHGf0Bl6Io3PIHhaoGyIytZ2qi56zzon4L3mY2mwkPD+9/numqRnFBQzTY9OoMxoqKClwuFz//+c/5aO1H1N5XT/VbNeiCdUx+fSL/jbHycVMdik1LbmEYI8M8T6AS9XtoEEGXHzvxgo1oV1NElKRDupIBqJnpXS4XDz/8MDNnzqS0tJSJEycifyIT/3ICjnYHn64K4Wh0Dy6rnoWN+wnQDU41ERkZydy5c73zxgShl/tgeq3kIqE3SeqWLgdoINmezLii8Ry6T83XNfqRkaR/b8SAffx7Paz5BExGJ4vSX0UrKYOOI+q34CvuN88jzJU4m4JQtHA0FTJ0mcRHxrN27Vp+/ctfs3fVAWrfq0MXqmPymxaqsnXcvVu92TBsz+SisLc9HkPU76FDBF1+zv1LKcWmTjk+lC4R3B1MuCacdevWsWDBAu6++24cDgd33XUXWz7dQvMDrVhLu+icHsTfx6lT5lMLNGQHlw46hkajYcWKFWIxa8HrEhISBkxr71v8uqAlElNWIC6bQskfjoAE4/4yhtRVKQNeX1qtcPsf1SBrftYHRJgGL/Yr6rfgS+5BV0hAO1Kd2v13cKyCDh273t7N3Jlz2XnNburX16OP0DPl7Unoxpq56tN9ODUuevLjWWbY6PGGWdTvoUUEXX5uwJRjp9oK0JckNVc3knXr1vHhhx+qgy/fe4/HHnuMontLaNrWjCHWwH3LDaB3oT0WyrKATR6PccEFFwxaoFUQvMFgMBATE9P/PLlvXFdbItJI9eNJo9OQ98w4kq4eWEedToVrH1Jo64QJKaWMi/G8qoKo34IvnSxJ6oE09XO84/MO5Kt20fBJI4ZoA1PfmUTouBDu2nGICpsVZ6OZ8xvsJAV7zjov6vfQIoIuP+fe0hVtt4JNoj1coSkUxgSOBWDOnDns3buXRYsWUfrUMSr+XYkUIPH+3UnUBregdOlY2rQLnYfFfhMSEpg5c6bX3o8gnGjgYHq1pauiNZH2SR1EnB/OxH9NIGFF/KDXPfoybN4HEUE25qa+7jHrvKjfgq/FxsYOWNO2r8eiNFFCAYp+X0LjliaMsUamvjOJ4JHBvFxaxesV1Sh2iYid6UyJ+p/HfYv6PfSIoMvPxcTE9F+wGsDcov6+JB0WZy/m6aef5sMPPyQhIYG69fUU9I59CfhdDi9I5QBkFXeTGlA7aN86nY4VK1ag1Wq98VYEwSP3oCvY2EFoQAs2p5GdnZ1MfWcyMRdHD3rNrkKF+/6udisuznoDs6Fr0Daifgv+QKvVkpCQ0P88U1+Bq0tPjwnqogAFAhIDmPq/SQRlB1HU1skPtxcAYN+azZLItzzeMIv6PTSJoMvPnXjBxvUmSS1K16CvNHDj9Tei1WppL2hnz017wQUZP0vn+q4GMDgxVplZoNvucd/z5s0jKirKK+9DEE7GvTUXjo/r2lVixOFwDNre2q1mnbc74ILM/WRElHjc79y5c0X9FvyC+41FfFANzpoQAArPA1OGian/m4w53UyXw8m1W/Zhw0VPYSwLDUeIMg1epg1E/R6qRNA1BLhfsJkONUnqwQwJeqA9v52eBhvy1btxdDiJXxHHo2kmWsMbUXq0LG/agdZDt0t6ejqTJk3y1lsQhJOKiIggICCg/3lfvq6y5nhqamoGbf+zpxQOlUFyZAczkjx3u6SnpzN58uSzU2BB+JrcP8P1Wmd/ktRPZrq4YNv5mFLUwfX37imkqKMDZ0sg2aXRjAr71OP+0tLSRP0eokTQNQS4X7BpjnoUBSqSFew6aNzWzK7rdtNV1kXohBDafpDJG13qFOPRR1uJ07YM2l9AQACXXHKJWAxV8AsnJkk9Ppg+iYqKigHbrv1C4f/eBJ1WYWH6yxi0g1vCRP0W/M3JkqRW6HXYHOrA+rfLa3nhSCWKU4O0cRQXxr7kMeu80WgU9XsIE0HXEOB+wRpdTvRtWlw6NUlq0W+KaP68hYB4I2P/Pp6rPy1GE+DAVGdgruI5id6iRYsICQnxVvEF4Su51/G44Fq0Ggf1ndEUHj4+FrGhReH63/Wmh8jZRkLI4FYwEPVb8D/BwcGEhob2P89w1qA4NXQFQ1FZOaUdVr6/XV0lpGtLFssTthJi7PC4r0WLFg3YlzC0iKBrCDjxgo1oV9eUK04HV4+CFCgx8T/nseqjVrpi68GmZUWTjKf7oNGjRzN27FgvlVwQTs3ANeqcxAerAdVnB5yAmnV+9WMKNU0wKrGBiXGfeNzP6NGjGTNmzNkvsCB8TQOSpAZX4GwIAgk+OlrB9dv20+l0YjsczXSXixFBuzzuY9SoUeLze4gTQdcQ4T7YONnWCKhJUgHGPzmWjXYjH0rqzMW88nqilMF3ScHBwSxevNgLpRWEr+fEPEN947oKq8Jpb2/nhQ/gzU1gDnAyL/UlJM3grPNBQUEsXrxYdLsIfsk96AoNaEVTbwLgj0129ra04WwLIHR3BlOiXvH4elG/hwcRdA0R7l9K2U51dtfuLD21N3cSOCeWGz8tRDLZCWqUuMB2yOM+li1bJhZDFfxSQEAA0dHHU0P05+tqS+Sz3bXc8Sc1yFqSu47wwFaP+7jkkktE/Rb8lnvQpdFARJs6lqtDq1G7Gj8czSXp7xKgs3l8/dKlSzGZTF4pq3D2iKBriBiQJNVhhR4JJdjOOpxc9lwdjpRacEisaNzpsVvRYrGQmZnpvQILwtfkcTB9ayI/fCqCji6YklFGbsROj68V9Vvwd3FxcQNyaiX3JkkF6Po8g0XxVcQGFnt87XnnnUd2dvZZL6Nw9omga4hwv2Ddk6R+3J2LHKa2bE2sqibCOThJZEREBPPmzfNSSQXhmxmwRp2xjWBjG92OQA5WhBETamNW4qses86L+i0MBTqdjvj44ysrpBsq6d6dQveeZOLKzYwNfcvj68LDw5k/f763iimcZSLoGiK0Wu2ACzbOqo7Zsk+qQzLbCGlxcX7n4UGv61sM1WAweK2sgvBNnNj90pckFdSs8yZ996DXiPotDCXuw0QSQ6pwfp6CfVsaSzJf85h1XqPRsHz5clG/hxERdA0hA5KkOtXZXRqdCxwaLmnY47FbcebMmYNyxAiCP4qOjsZoNPY/z4pSM81PT9lGaqjnrPMzZswQ9VsYMtyHiRi0DlZZXuDmSc8RbW70uP306dNJSUnxVvEEL9B99SaCvxiQJNVZD0o6aGBSXQUR9sGtAPHx8VxwwQXeLKIgfGMajYbExESOHDkCQF78HlLCyogMbPK4fVxcHLNmzfJmEQXhtAxKkhrkeYkfUBfKnjNnztkukuBloqVrCHG/SzK6nEytL2N0Uy1TW48N2lYshioMRe5fSpIGokxNHsdxabVaVq5cKeq3MKSEhIQQFBT0ldtptVrx+T1MiaBrCAkJCSE4OLj/+ZTGCubWHvb4n3jRRRcNmIIvCEPBqXYVivotDEUajWbQAu+ezJkzh9jYWC+USPA2EXQNMadywaalpTFlyhQvlEYQzqxTCbpGjBjB1KlTvVAaQTjzTkwEfKKUlBSmTZvmpdII3iaCriHmqy5YsRiqMJQFBgYSGRl50r8bjUaWL18u6rcwZH3ZjYXBYGD58uVIkvhqHq7E/+wQ81UtXWIxVGGo+7IvpYULF4r6LQxpCQkJJw2qFixYQHh4uJdLJHiTCLqGmLi4uJNesGIxVGE4SEtL8/j73Nxcxo0b5+XSCMKZpdfrPdbjnJwc8vLyvF8gwatE0DXE6PV6j8tBiMVQheFizJgxg7oYIyIiWLJkiajfwrAwf/58cnNzAZAkidGjR3PppZeK+n0OEHm6hqCLLrqImpoaWlpaAHUczLe+9S2xGKowLGi1WlatWsWmTZuora0lNjaWGTNmYDabfV00QTgjAgICuPLKK7HZbCiKMiApsDC8iaBrCIqKimL16tWUlpbicDhIT08XAZcwrAQGBor15oRhTyzvc+4RQdcQFRAQ0N88LQiCIAiC/xNjugRBEARBELxABF2CIAiCIAheIIIuQRAEQRAELxBBlyAIgiAIgheIoEsQBEEQBMELRNAlCIIgCILgBSLoEgRBEARB8AIRdAmCIAiCIHiBRlEUX5dBEARBEARh2BMtXYIgCIIgCF4ggi5BEARBEAQvEEGXIAiCIAiCF4igSxAEQRAEwQtE0CUIgiAIguAFIugSBEEQBEHwAp2vC+ALFotlMvAnwA5UAtfKsmy3WCypQBEwUZblA74s43Di6XwDscCTQDCwSZblX/muhMPPSc75zcB1vZs8LMvyGz4q3rBjsVhigbdQz7cT+DaQATwCuIBbZVne77sSDi8nOd/PAOG9m3xfluXdPiresOPpfMuyXG2xWIKAo8D1siz/z5dlHCrO1ZaucuBCWZYvAEqBS3p//1Ngq68KNYx5Ot+Pon4RzREB11nh6ZzfBkwHZgM/91nJhqcGYIYsy7OAF4FVwEPAYuBq4GEflm048nS+fyDL8ozenx/0ZeGGIU/nG+AOYKfPSjUEnZMtXbIsV7s9tQEui8WSBihAmW9KNXx5ON9aYATwB4vFEgP8Qpblbb4o23DlqY4DR4BAwAS0+KBYw5Ysy063p8HAYdSgtxlotlgsEb4p2fDk4Xzny7J8pPd5X30XzhBP59tisYQAY4HPfVOqoemcDLr69HYnXgz8BvgL8Hvgfl+WaThzO9/PAS8AV6J+QL4LTPJdyYavE+p4DFCAGvSu+rLXCV+fxWLJA54GwlDP+ZVuf3ZYLBaDLMs2HxRtWPJwvvs81vtPOIM8nO8fAP8HzPNdqYaec7V7kd4o/V/Ad4EUAFmWS31YpGHthPPdAJTIslwmy3INYLdYLOf0DcDZcMI5DwRuBbKAXOBBi8Wi8V3phh9ZlvfIsjwF+CVwLxDi9medCLjOrBPO9z0AFovlAeBzWZY3+bRww9AJ5/t+YLwsy2I4ztd0TgZdvV/wrwAPyLJcCIwHRlsslrWoUftTFoslwJdlHE5OPN+yLHcBjRaLJcxisZgBoyzLDt+WcnjxUMddQBfQDXQCBkAEXWeIxWIxuD1tBToAXW8dTwaafFOy4cnD+bZaLJbvAkmyLD/qm1INXx7O9wggqfc78xrggd5WdeErnJMLXlsslu8AfwT6ZhP9TZblV3v/9gLwmJi9eOZ4Ot+oA70fRv3yf1DMfDmzTnLOU4GVqDdbf5dl+SnflG746Z0t+hjqzK5u4AbUVsXfo44VvU2W5b2+K+Hw4uF834g6i24H6gy7o7IsX++7Eg4vnup337hRi8VyPyCLz/BTc04GXYIgCIIgCN52TnYvCoIgCIIgeJsIugRBEARBELxABF2CIAiCIAheIIIuQRAEQRAELxBBlyAIgiAIgheIhJSCIAwLFovFhLp+aqksyy/05m36B/ATWZZFhnJBEHxOtHQJgjBcmIBfoWbgB9gIXIW6zJQgCILPiZYuQRCGC7n3cZbFYlGAY6gJYX8CFFosllIgCvgnahbtLahrxz2D+ll4vSzLa3uzb/8WNWAzAx+iJjet9+J7EQRhGBItXYIgDBc/730sQA2YPHUpmnsfPwMWoWbqfxR1MfDf9/7tHuBHqC1kfwQWAiJ7vyAIp00EXYIgDBfrex/rZFl+BXX9wxO5gB8Cb/Q+/5csy38GqoC03t8t6X1cjdpdaUZdk1UQBOG0iO5FQRCGi1NZ06xLlmWbxWKx9z5v7X10Alq37RyowZez97m4QRUE4bSJDxJBEIaLNtSWrEyLxfJt1PFc38T/UG9IrwNSgAWorV6CIAinRQRdgiAMC7Is21HHZ4UB/+Z4K9XX9bve/cxEHWi/EHUmpCAIwmnRKMqptMgLgiAIgiAIp0O0dAmCIAiCIHiBCLoEQRAEQRC8QARdgiAIgiAIXiCCLkEQBEEQBC8QQZcgCIIgCIIXiKBLEARBEATBC0TQJQiCIAiC4AUi6BIEQRAEQfCC/wfqU2/uFd7h7wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAG/CAYAAACNLZxtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wc5bX4/89s31WXLFuyLau4yFVyN8YNg2kmxISASUJiiBNIQkhuCAmpEFIuhARC2r0k4SY4yeV7gdACP0wgFOMG7t1ykaziomb1tn1+f4x2dlc7clX3eb9evFjNtlmtZzTnec45j6KqqooQQgghhBBCCABM/b0DQgghhBBCCDGQSJAkhBBCCCGEEBEkSBJCCCGEEEKICBIkCSGEEEIIIUQECZKEEEIIIYQQIoIESUIIIYQQQggRQYIkIYQQQgghhIggQZIQQgghhBBCRJAgSQghhBBCCCEiSJDUh4LBIKWlpQSDwf7eFdEP5Pu/tMn3f2mT7//SJt//pU2+/8FJgiQhhBBCCCGEiCBBkhBCCCGEEEJEkCBJCCGEEEIIISJIkCSEEEIIIYQQESRIEkIIIYQQQogIEiQJIYQQQgghRAQJkoQQQgghhBAiggRJQgghhBBCCBFBgiQhhBBCCCGEiCBBkhBCCCGEEEJEkCBJCCGEEEIIISJIkCSEEEIIIYQQESRIEkIIIYQQQogIEiQJIYQQQgghRAQJkoQQQgghelEgEKCxsbG/d0MIcR4kSBJCCCGE6CVut5sZM2YwZ84c/vnPf/b37gghzpEESUIIIYQQveSDDz7gwIEDBAIBnnnmmf7eHSHEOZIgSQghhBCil2zYsEG/vWPHjn7cEyHE+ZAgSQghhBCil0QGSadOnaKysrIf90YIca4kSBJCCCGE6AUej4ctW7ZEbZPZJCEGBwmS+pDf76ekpKS/d0MIIYQQfWD79u14PJ6obRIkCTE4SJDUR7785S+TnJzM1VdfTUNDQ3/vjhBCCCF6WWSqXcj27dv7YU+EEOdLgqQ+YrPZ6OjoAGDnzp39vDdCCCGE6G2RQZLFYgEkSBJisJAgqY/Mnj1bvy1T7UIIIcTQFggE2LRpEwDDhw9n7ty5AFRVVXHq1Kn+3DUhxDmQIKmPzJo1S78to0hCCCHE0LZ//36ampoAWLhwIdOmTdPvk+sAIQY+CZL6yMSJE3G5XIDMJAkhhBBDXWSq3aJFi6KCJLkOEGLgkyCpj5jNZmbOnAlAWVkZdXV1/bxHQgghhOgtkUGSzCQJMfhIkNSHIlPuZBRJCCGEGJpUVdWDpISEBAoLCxk9ejSpqamAFiSpqtqfuyiEOAsJkvqQ1CUJcen64IMPDNsBCyGGnmPHjlFZWQnA5ZdfjtlsRlEUPaOkpqaGkydP9ucuCiHOQoKkPiRBkhCXpk2bNnHllVdyxx138M477/T37gghetn69ev124sWLdJvR3a6lesAIQY2CZL60IQJE4iLiwPk5CjEpeSll17Sb69du7Yf90QI0Re6Nm0ICc0kgaTdCzHQSZDUh0wmE1OnTgXg+PHj1NTU9PMeCSH6wnvvvaff3rZtWz/uiRCiL4SCJJvNpq+PBDKTJMRgIkFSH5MWoEJcWurq6tizZ4/+886dO/H5fP24R0KI3lRVVUVxcTEAc+bMweFw6PeNGTOGtLQ0QLsGkOYNQgxcEiT1MWkBKsSlZd26dVE/u91u9u3b1z87I4Todd2l2gEoiqLPJtXW1nL8+PE+3TchxLmTIKmPhdLtQIIkIS4F77//fsy2rVu39sOeCCH6QndBUmjWSFLuhBgcJEjqY9nZ2SQlJQFychTiUhBZjxSyZcuWftgTIURfCAVJiqJw+eWXowZVdt25h+Llx2jc3ihrJgoxSEiQ1MdMJpN+gjx16pS+joIQYuipqqqiqKgIgMLCQiwWCyAzSUIMVU1NTXoNYkFBAcnJydR/2ED1GzX4awOUPVUhM0lCDBISJPUDGUUS4tIQWY90/fXXM3HiRACKiopobm7up70SQvSWzZs362l1ixcvBqBufZ1+f+OuJkaPHk16ejogzRuEGMgkSOoHkeskyCiSEENXZKrd0qVLKSgoALTaBBkgEWLoMapHqttQr29zH3fjrfXqs0l1dXWUl5f37U4KIc6JBEn9QKbahbg0hJo2WK1WLr/8cqZPn67fJ3VJQgw9XYMkf6ufxh1NUY9p3NUk1wFCDAISJPWD3NxcUlJSAO3kKFPtQgw9x48f19dKueyyy3C5XBQWFur3S12SEEOL2+3Wj+tx48aRkZFB/UcNqP7ov/FNO5ok7V6IQUCCpH4QuU5CdXU1J0+e7Oc9EkL0tMjW31deeSUAeXl5JCQkABIkCTHUbNu2Da/XC0Sk2q2vj3lc406ZSRJiMJAgqZ9EniBlFEmIoadrPRKA2WzWj/2TJ0/KAIkQQ4hxPVJn0wYFTAnaJVfjziYyMzMZMWIEIM0bhBioJEjqJ5FT7TKKJMTQoqqqPpPkcDi47LLL9Pvmzp2r35bZJCGGjq5BkrfeS/O+FgASpybgmu4EwN/kp6O0Qx8waWhooLS0tO93WAhxRhIk9ROZahdi6Dp27BgVFRUALFiwALvdrt83Z84c/bYESUIMDYFAgE2bNgGQkZHB2LFjqdtYD50TRKmLU3FOceiPb5S6JCEGPAmS+smYMWMYNmwYIM0bhBhqjOqRQmQmSYihZ8+ePbS0aLNGixYtQlGUqHqktIWpOKZGBElSlyTEgCdBUj+JbN5w+vRpfdRZCDH4GdUjhYwaNYqRI0cCWqF3IBDo030TQvS8M62PpFgUUi5Lxjk5HCQ17WyStHshBjgJkvpQ0BvEfcSj/yzNG4QYeiLrkeLj46OO85B58+YB0NLSwuHDh/t0/4QQPa9rkOQ+5aatuA2A5FlJWOItmBPNuMa6AGje10zGsAwyMzMBad4gxEAkQVIf2XffAd7Je5/Sz5Tja/QB0rxBiKHo8OHDVFVVAdrFktVqjXmMpNwJMXSoqqoHSYmJiUybNk2fRQJIW5ym306emQRA0KvSfKBFH0RpamqipKSkD/daCHE2EiT1EbPDRNATBLRcZJDmDUIMRWdKtQuRIEmIoePo0aPU1NQAWqMWs9nM6fV1+v1pi1L120kzE/Xb0rxBiIFNgqQ+kjQrSb/d1BkkjRo1Sl8nQZo3CDE0nKlpQ8js2bNRFAWALVu29Ml+CSF6R9dUO1VV9aYNJqeJ5NnJqKqKL6iSNDP6WkAGS4UYuCRI6iPJs5L12007moHo5g2yToIQg18wGNSDpOTkZKZPnw6Av9XP9k/tpPwrx/E1+UhMTGTSpEkA7N27l46Ojv7aZSHEReoaJLUfa8d9yg1A6mUpBCxw4wc7WbrrGLuH+1Cs2gBJozRvEGJAkyCpj7hynFjTtNqExp1N+qyRNG8QYujYv38/dXVams2SJUswm80AnHj2JKffraN9Wwcn/t8pIJxy5/f72b17d7/srxDi4oWCJLvdzpw5czgd2fp7USrrquv46HQjHUGVP1ecJHFqAgBtR9tIc6UxatQoAHbu3EkwGOz7DyCEMCRBUh9RFIXkGdo0u6/eR3tpOyDNG4QYSrqrR6p5pxbQ1pVs3NIISF2SEEPBqVOnOHbsGKB1rbTb7dRtiKhHWpzGm6dq9Z931Dd3Sb9v1gdLm5ubKS4u7qM9F0KcjQRJfaTG7WHPIguvLO+8UNqh1SVJkCTE0GFUjxRoD1C+q4Hv/UDh2w8rlBY1oKqq3gYcpC5JiMEqph4pqOqd7SxJFhKmJfBWRJBU4/bSMdOl/9w15U4ySoQYOCRI6iP3bD3AA8NreOlGE6dTw0HSyJEj9YUld+zYIVPtQgxSgUCADz74AIBhw4YxZcoUAOo21vPenCDHRytUjVB4O99HR0UH06ZNw263AzKTJMRg1TVIajnYgq9eW+YjbUEqe5tbqHJ7o55zNFfRb0vzBiEGLgmS+sjs1PD0enFeOEgCZJ0EIYaAXbt20dSkHddLly7FZNJOrzX/rmX31PBF0eFxCg1bG7FarcycOROAkpISvZZJCDF4hIIkk8nE/PnzY+qRIlPtQvZbOrAkWgBo3NmonwdAZpKEGEgkSOojM5LDayOU5Ci07G8m0LlukjRvEGLwM6pHUlWV0o21HM0LP+5oHtRubQCi65K2bdvWNzsqhOgRjY2N7Nu3D4Dp06eTmJgYs4jsvwyCpO0NzSR11ih7qr0k+hPJysoCJKNEiIFEgqQ+8ovfh4Ok4tzO1bb3aq3ApS5JiMHPqB6p7WgbWxPdBM3hmSS3Q2F3mXYhJXVJQgxemzZt0jvVLlq0iKAvSP0m7di2j7DRMNrE/sZWAPzViQQanQDsbWjGNTt6UdnQYGlraytHjhzpy48hhOiGBEl9ZE6OVT9BlmeBz6IVbIIESUIMdj6fT0+7yczMZMKECQDUvns6KtUuZIfSjr/FLx3uhBjE1q9fr99etGgRTbubCbQFAEhblMbbleEUWl/pMPxV2uyRN6hSWWDV72uS5g1CDEgSJPWRy6Yo+gnSZ1WoGAWNOxoBGDFihEy1CzGIbdu2jba2NkBLtVMULTCqfKeWPVM6HxRxWB8eq9C4s4m8vDzS0tIALUgKjUoLIQa+yKYNCxcupO6DiNbfXeqRfKXDCFSFa5OPZIaP9cZd0rxBiIFIgqQ+Mm8SBKojUu7yoMmgeYNMtQsx+Bil2vlb/Ww/1UBrvBYweUuHYe7QTrlHxkH9tgYURdFnk06fPk1paWkf77kQ4kJ0dHTowcyECRMYMWIEpyPWR7JdnsTGWi31LtDsIFAXjz/iGmCPrw3HKAcATbuamTldmjcIMdBIkNRHMocppHnDo0glOQrtZR14TmutQaV5gxCDl1HThroN9eyaGH6MrywdtVK7SGpOUNhXpF1AScqdEIPPli1b8Pm0Vt+LFi0i0BGgcWsjAM5sJx9a2/EFtdkiX9kwkuMVzE1xqD7tsmt7XRPJnYvKBtoCOOodZGdnA7Bz504CgUAffyIhRFcSJPWhyzLjUf3ar7w4V9sWSrmTuiQhBie3283mzZsByM7OJjdXO7hr3qll99Tw4xy1abRWpuk/b21tRg2qEiQJMQh1XR+pYUsjQa8WFA1bnBq1gKyvdBjXzfWTP9KLv0YbKClv6yAwO05/TGPEekltbW0cPny4Lz6GEOIMJEjqQ/MnmQjUJABQk67QHB9OuZMgSYjB6aOPPsLtdgPheiRVVTm0pZbyLC3VLlCdwL3XWVGrk/XnHRwdpPVIG3PmzNG3SZAkxODQNUiqi0i1S1qUytuVpwFQvWb8J1OYP76GCZkNUWn3pflm/XajNG8QYsA57yDp0KFDrF69miVLlrBixQpee+01AF5//XXmzZvHokWL9P+qqqr05x04cIBPf/rTLFiwgLvvvpvKykr9PrfbzYMPPsjixYu54YYb+Ne//hX1nq+//jrLly9nyZIl/PjHP9anuAeb2fkB/NWRKXfhRWWHDRtGTk4OIFPtQgwmRvVIrYfb2Jrq0bd7y4cxf1wFOSYFk08LnA6Pg4atDaSnp5OXpy2ktGPHjkF7fhPiUuH3+/nwww8BGDlyJLm5uVGLyB6bZqbBqx3HvvI0bCZYMKWNSaNb9AZOAEUpPv0qrGmnNG8QYqA57yDpoYceYsGCBbz//vs89thjPP7445SXlwNabv2GDRv0/zIyMgDwer088MADfOpTn+K9995j6tSpPPTQQ/pr/vGPf6SpqYm1a9fyyCOP8POf/1x/zeLiYp588kkef/xx3njjDU6dOsWf//znnvjsvUpVVTo6OmhoaKCyspJjx46RZD5GsHMmCaA4V+twpXbmLYdOkO3t7Rw6dKhf9lsIcX6M6pFq/10b1fp7WFMSYzO9TBnVhqVSS7E5naZweI82+hxKuXO73ezfv7+vdl0IcQF2795Na6u2/tGiRYvwt/hp2q0NeMZPiufd9nBTJl/pMOZP6iDOoTJ5dEvUQOn2pmYSJsYD0HKglcJJhfp9MpMkRP877yCpqqqK6667DpPJxMSJE8nJydEDmu7s2LEDp9PJihUrsNvt3HXXXRw8eFCfTVq7di1333038fHxFBYWsnjxYt5++20A/vWvf3H11VczefJk4uPj+eIXv8ibb755AR+17x0/fpyamhqam5vx+Xw47Sqjg+G1EUpywd/sp+2o1jpYmjcIMbi0t7fri8COHz+e0aNHA3DyvVr2h5o2tFm5OltBUWDS6JaouqSPahsBad4gxGDSNdWuflOD3uJ/2KJU3qrU6pHUoIKvfBjLZmgB1chUN8mKmWCLHYBdDc3Ez9TS79SAiuWkVa9p3LVrl2SUCNHPLOf7hJUrV7J27Vo+//nPc+jQIaqrq5k6dSqbNm1iz549XHXVVaSmpnLbbbdxyy23AHDs2DHGjRunv4bT6WT06NEcO3aMuLg46urqou6fMGECBw4c0J87f/58/b7x48dz8uRJ3G43DocjZv+8Xi9erzf6Q1os2Gy28/2oF81ms+m1CgDBYJApaR4+aLNhivNSkgNBBeq3N+Ia72LGjBn6Y7dt28ZnP/vZPt9n0XtC61/JOlhDx4YNG/T0uCuuuIJgMIi/xc/m+kY8Dm0myVOexlWzWrXjP6sVz9ZcbGgDS3sSvbhr3VEDJFu2bOGuu+7q+w8jepUc/0NH5CKyCxcu5PRz4XqkpgUuiltOAOCvTAKvhSsKtONfUaAg18326iRsCTW0B4KcnmmH/9We27ijkZkzZ1JaWkp7ezsHDx5kypQpiMFPjv+Bx2Q6+zzReQdJ8+fP50c/+hH/8z//A8D3v/99UlNTmTlzJs899xwZGRkcPHiQb33rW6SlpbF06VI6OjqIi4uLep24uDg6Ojpob2/HbDZHBTxxcXG0t7cDxDw3Pj5e324UJD3zzDM8/fTTUdtuvfVWVq5ceb4f9aI1NDToU/IhU0abeLcqCdvYWjqcCpUjVFI/OEHgch/Dhw/XH7d58+azztCJwen48eP9vQuih7z66qv67alTp1JeXk7z+y3smhR+jK0qmZEJpZw+DaPSwNUYhxIA1azVJR158yjD5gzDbDYTCATYtGmTHPtDmBz/g5uqqvpMUlJSEvHx8ZS9W6HdaYJ/xdWCdvmCr3QYU7OaCborOd05Xjp2eB0fVSViG1cDwI6UJgo6X/vUhkrGjh2rv9dbb72lX/OIoUGO/4EjNGt7JucVJDU2NvLNb36Thx9+mMWLF1NaWsrXv/51xo4dy9Sp4V63U6dO5VOf+hTvv/8+S5cuxel06qvRh7S1teF0OnG5XAQCgaiZoba2NlwuF0DMc0NBh9PpNNzHz3/+89x+++3RH7KfZpJSUlKimlcEg0EmZ7Xg35CGbaw2HV+cC5OOBPX1EcaOHUtJSQkHDx5k1KhRWCznHceKASoYDHL8+HGysrLOaQRDDHy7du3Sb996662MGDGCfXsOhFt/B2BxmoPMjOEEg0FOnz5NwRg/JdVO3CM7ODlSoeOImamfzaegoIBdu3Zx9OhRUlNTSUhIMH5TMSjJ8T80HDp0iLo6beZo4cKFjIwbyeGSYgCSpieyLWKmwFeazrXL2hg+PHz8z5+i8NcXwh3uKtLtTHeaCHYE8R32s2z1Mn7xi18AUFZWpl8biMFNjv/B6byuwE+ePEl8fLxenDxu3DhmzZrFzp07o4IkAEUJFy3n5eXxyiuv6D93dHRw4sQJ8vLySExMJC0tjeLiYv01jhw5ond7ysvLo7i4WH/u0aNHGTVqlOEsEmgpbv0REBlxuVxRvweTycTotA7sjdHNG1qeb0V1q5hdZmbPnk1JSQlut5tDhw5RUFBg9NJiEDOZTHKSHAKam5v1DlSTJ08mMzMTVVXZu/s0NQs6W3+fSua6Qg+Koujf+fQ8NwcqU2BkBwCbTzUwz2Ri7ty57Nq1C1VV2bVrF1dccUW/fC7Ru+T4H9w2bdqk3168eDENmxv1n81XJLO1Xku1C9S7CDa5WDajJur4L8jzEqhNQA0oKGaVHQ3NfK4wkYaPGuko72B2bjjtfufOnfJvZYiR439wOa9vKjs7m7a2NtavX4+qqpSVlbFt2zbGjRvH5s2baWhoALSRlueff55FixYB2hpAHR0dvP7663i9Xv785z/rFxUAy5cv53/+539oa2tj3759rF+/nquvvhqA6667jnfeeYdDhw7R2trKX/7yF66//vqe/B30GpvNhtlsjtpmMsEUlxW1c7CpJFcr2Gza0wxI8wYhBosNGzbohdWh1t8tB1vZMiJcExk8kcblk9qjnleQ66a1apj+8w7aCfqC0rxBiEEgZn2k9eF6pH0zzXQ2q8VXms64TA85I6Jb+ie6guSlBwic1tLojrZ2YJ4dMWtcqugpd7t378bv9/fSJxFCnM15BUnx8fE8+uij/OEPf2DJkiV89atfZeXKlVx++eVs2bKFlStXsmjRIr7//e+zatUqPdCx2Wz84he/4Nlnn2Xp0qXs2bOHn/zkJ/rrfulLXyI+Pp7rrruO7373u3z3u9/V1wwaN24c3/jGN7jvvvtYvnw5I0aMYPXq1T33G+hlRjNeM3J8BOq0E+TxkeC2awWbIIvKCjFYdNv6e1p49ni6PQ6HTY163rRct1bQ3elQjkrz/hbmzZunbwt1zBNCDCyhIMnpdDJr1izqNmjrI5lsChviwgMi3tJhXDm9zfA1CvPcUa3AywvCST2Ri8p2dHRQVFTU459BCHFuLqhxQ2S3uZD77ruP++67r9vnTZkyheeee87wPofDwc9+9rNun3vjjTdy4403nu+uDghG9VgFuW4C+5KwpLeimhSOjVHJ6VxUdubMmfrjJEgSYuAKLSKrKApLliwBoGx9LYdv1e5XGu0sz48dBU6OC5KdBN4aGx3DvZRlwamt9Uz84kTi4+NpbW2VmSQhBqDjx49TVlYGwLx58/BXBWgv09JmXZcl8f5pLWAKdlgJVCexbIZxkX5hrps3tiVBgZaadyQjSCjJrmlHE7PnzOaFF14AtOuAadOm9d6HEkJ0SxIje5nRTFJBTgf+6nDhZkkuNHYGSUlJSUyYMAGAPXv2xLQzF0L0v/r6enbv3g1AYWEhaWlp+Jp8bGhtImDWZpLcFeksLWg3fH5hrpvAKW0kOWhW2FxyGrPZrKfbnjhxglOnTvX+BxFCnLOYVLsN4VS7sqtctPm19Ftf2TCGJwWYmu0xfJ2CPDf+qvA1wC5fK7ZhWi115EwSyGCpEP1JgqReZhQkpSQEGe516T8X5yq4T7pxV2o9QkMXSh6PR18vSggxcHzwwQeoqpZGF6pHOv1BHbsmhx+T40sgJd54TYyCPDeN1eG6pK0dWk1iZMqdzCYJMbDE1iPV6z9vHxte+NVXOoyrprfSXX3+hFEebG47wQ5tcfmdDS0kdi4q62vwMXlYeG0kqU0Wov9IkNTLzGazYbe96cMUgh4t27E4F1TCs0nSvEGIgc2oHqn637Xs6WzyqXhN3DDGbPRUQKtJ8Fam6j8fGB6g42SHNG8QYgALBUlms5nLLrtMn0kyxZl4z68NdKgBBd/xVK4sNK5HArCYYWq2F3+VNpvc6PPTMjc8cBo8GmT8+PGA1rwhtGC1EKJvSZDUB4xmkwpzPQQ6U+6akhTqUsJBkky1CzGwheqRzGYzixcvRg2qbCmqpTlRS7XznUjh2kLjVDuA/FEebB4bzgYtkCrOhZqtDRIkCTFA1dXV6ZkdM2bMgJMKnmotHb7h+kROdWipdf4TqcRbFOZN7P74ByjM6yAQkXJ3LD98ORaZcufxeDh48GCPfhYhxLmRIKkPGC18O71LTnJxLjTubAS0E3BofSUJkoQYWKqrq/WLpVmzZpGYmEjz/ha2jgw3aUhpSmF0evete60WmJLtwXyyM8XGprDlQA2jRo3Sl0bYtm0bwaBxup4Qom9Fro/UtR5pz2XhHlje0mEsntqO7SxtsQpyPVEd7g4mhWeLGnc0RWWUyHWAEP1DgqQ+YDSTlJ/lQTkdXhuhJFehaVczakAlISGBiRMnArB37148HuPiTyFE31u3bp1+O6r1d8R62lcOO/uC1gW50XVJHzU0oSiKXpfU3NzM4cOHe2anhRAX5Uz1SB+mhf9Gh+qRzqYw142/OpHO0kZ2tjbjytNS7pr3NjOzMNzpVtLuhegfEiT1Abvdrs8MhdgsMNYaDp6KcyHQFqDlkHZyDY0i+Xw+9u3b13c7K4Q4o1CqHYSbNhzeXENpjnaMKzUubpx29hqCwlw3bVVp+s+74zwE2gOScifEABQZJC2Yv4C6TVqQ1JxjYZ9bqz/y1yRgcdtZPPXMqXYAGal+RsSpBOvjADjY3IZjtjazHPQEyXfl64+VmSQh+ocESX1AURTD2aRZWQECjVoqXlkW+M3hRWWleYMQA1OoaYPVamXBggV4G7ys9zbr95tq0pg85uyzv4V5boINLuytWnB1JA8adjVKkCTEANPW1qb/HZ44cSK2Sjv+Ji2d9vAN4YYLvrJhzJvYToLr3NJkC/I8evOGgAqnZodnoH2HA+Tna4GSLAciRP+QIKmPGNUlFeSGV9322RQqRknzBiEGshMnTnD06FFAa9cdFxfH6ffr2D0lPFM81+Wiy8SxocxUP+lJAZwntJHkdpfC9l01zJ49W595liBJiP63ZcsW/H4tKNJS7cL1SNsnqvptX+kwlk3vvqtdV4W5bj1IAjg6Jnxf445G/TrA6/XKciBC9AMJkvqIcYc7t97hDjqbN3QGSdOnT8fUuciCBElCDAyRqXaheqRT79ayb5K2zdRu5pP5qtFTYyiKNlDSXhlOudtc1UBSUpJek7hnzx7cbncP7b0Q4kJEptotXryYug1aqp3bDtutWmpdsNVOoDaBpd3UIxktBVKYF72w/D6bG8WiDZA07ZTmDUL0NwmS+ohRkDRqmJ+45jj955JchdZDrfhb/MTFxTF5srYy5f79++no6OizfRVCGOtaj6QGVTaU1OJ2ahc2wVNpzJ1gHNRYLLHtrgrz3NTVpOs/71DaUVVVT7nz+Xzs3r27Bz+BEOJ8RdUjzVtA/UcNABy+3Ians/OCt3QYBbkeRiQHDF8jLS0tZtuUbA9KkwvVqy0FsL2xifgp8QC0Hmlj5iRp3iBEf5IgqY9YrdaYiyRFgWnJFlS/9jUU5wIqNO6KXlTW7/ezd+/ePt1fIUSsUD2S3W7nsssuo2lPM9vHhC+K8pV4rAatf81mM8nJyTHbC3Ld+E8nYO2Mq4qygrSVtEldkhADhM/n48MPPwQgKyuLpNokgh1azdG+Rdbw487Q1c7hcBAfHx/TwMllVxmf6dNnk2o8PryXaUESKuQpY2U5ECH6kQRJfchoNmlGjpdArdYKvHq4QktcOOVOmjcIMXCUlpZSXl4OwIIFC3A4HNS+E9H6OwgrxlgNnxsXF2dYlzg1x42CQuIJ7b7GZIV922r1NuCg1UMIIfrHrl27aG/XUuoWLVrE6c7W30EFtmRozRRUrxn/yRSWzTAOkkIBktUae34ozIuuSyqfFn6Mt8gry4EI0Y8kSOpDhnVJee6onOSSHGiS5g1CDDhG9Uh7PqqhMqOz9XdlAldPNU61i4+PN1wKIN6hMn6kF9+pZH3bhrLTTJs2DbvdDshMkhD9KWZ9pM5FZItzoUHRZpF9x1PJTguQl2Hc+j8+XpsdMqpLKshzE4hYVPZQRnhmunFnk34d4PP52L9//0V+GiHE+ZAgqQ8ZBUnTcjxRzRtKchUadzaiqiqFhYWYzZ25yhIkCdGvQql2oNUjeeu8bFBa9G3DPcnEO2KbNiiKQlxcHCaTqduR5JraEfrP29wt2Gw2ZsyYAUBxcTH19fUxzxNC9L7169frtxfMWkDjdm0Qc9/iyFS7dJbNaDXsamm1WvUBj9D/I2kd7sLXALv9bVjitb/70rxBiP4lQVIfcjgcsSPJziCjguE0nOJc8FR7cZ9043Q6mTpVy+U5cOCAPuUvhOhbqqrqM0lxcXHMmTOH2vdOs3tq+Hi+Oj32AgjA5XLpnSoNR5Jz3XTUJGPSOgyzP92Pr8kXVZe0bdu2nvooQohzFAwG2bhxIwCpqakMbxyB6tcGQnYWaMe+qoKvLI2rumn9HZpFAgwHSfIyvMQpZn3NxH1NLbhmaUGTu9LDjJwZ+mMl7V6IviVBUh8ymUyGHa6mZ6gE27SLp5IcLdc5NFoVGkUKBoPS5UqIfnLkyBFOnToFwMKFC7FarVS8X0PReO1+c7OVW6b4DZ8beZFk3AbYDQEzqSe0+6qHKxzddlrqkoToZ0VFRfos7sKFC6nfqHW1q0qHcqd2vAcqk0i1mrTj2EDXICmUHRJiMkFBjkdfM9ETVKm9LDxwOsaXLcuBCNFPJEjqY0YXSdPzPHpdUrtLoWq4tpAcSPMGIQaCmNbfAZX3KurwW7XRZFd9CiNSgobPPVuQNDbTi8seRDkZTrn5oKhGOtwJ0c9i65G0gGnXtPBjvKXpXDm9DbPB1ZTZbI5p2GJcm9xBICLl7tiE8Iu5D3r05g379++XddOE6EMSJPUxw5Hk3OjCzchFZaV5gxD9L7IeaenSpTTubGJnbrjAel5CnNHTcDgcUbPHFotFHxUOMZtgWk70eklbmpoYO3YsKSkpgBYkqeq5LVIrhOgZUesjTV9A895mAPZeHj6mz9T6Oy4uLibF3ihIKsgNzyQBHEwKN4CIrEvy+Xzs27fvAj6JEOJCSJDUx4wKN8eN9GI+naD/XJKr0LSnmaAvSEFBgZ7HLEGSEH0vGAyybt06AJKSkpgxYwY174Zbfys+hc9MNH5u5CwSaE0cuutyWV8zDKVzMmpPnAeC6LNJtbW1evtxIUTfCAVJLpeLrNYxoEKrCw6O1A7UQKMTR4eD+ZOMF3vvevxD911uA6fj9TUTd7a14MjUrhWadjUxe6Y0bxCiP0iQ1MeMRpItZpjosqF2XiAV50LQHaTlQAt2u51p07S5/aKiIlpbjUeshBC948CBA9TW1gKwePFiLBYLH26rpiFFGyG21yQyaWTA8Lnnc5Gk+mykVmoj1BWZKif2N0hdkhD9pLy8nOPHjwNw2WWX0bhJy+7YMwUCnZNDvtJ0Fk5px27tvqtlV0bHf2pCgKw0P4EabbC0vN2Nepl2298aYHrGdP2xknYvRN+RIKmPdTeSPGOMj0C9dkF1fCS4bbGLyqqqyq5du/puZ4UQMfVInhoPHzrCnawmWhOMnhbV+jeS0aKyBblanYH9hHZRpZoUPthdJXVJQvSTmHqkzkVkdxWG0+d8pcNYNsO4q11kV8tIZrO5my6X0Sl3x2eHHzOyY7Q0bxCiH0iQ1A8Mc5Lz3Pp6SUGzQtmY2CAJZBRJiL7WtR6pa+vvm7Nj2/qC8SwSGB//6UkBRqb5aK1K07d9WN0gQZIQ/SQySFo4ZSFtxW34zbB3mnbsB90W1OpElkw7e+vvrowGSrqul3R0TPi+jv0dTJ48GdBmtjs6jNP7hBA9S4KkftBduo2/Spo3CDGQBAIBPvjgAwDS0tKYNm0ah9+voThXu99e5+DKceeeagfdjyQX5ro5VZuh/7zT0kF6ejq5udqb7dixA7/fuM24EKJnhYIki8VCXsdYAA6Nh/bOQ9dXPow54z0kxZ29q2VX3XW4i7wG2GfrgM6xmMaI5g1+v5+9e/ee9+cRQpw/CZL6gdEJckRygOQOl/5zSa5CW3EbvkYfU6dO1S+qJEgSou/s2bOHxsZGAK644goIwrs1dagm7eol0590zq1/Ixl3uHLjcztJqdVesDgjSOOpdn02qaOjg/3791/cBxJCnNXp06cpKioCtEHKlq1aLXBoAVk4c1e7rl0tje7valKWF4vHRrBVS9Hd3dSKM1+7Jmg50MKcwjn6Y+U6QIi+IUFSP7BYLIYrbxemmlC92kJzoZHqxp1N2Gw2CgsLATh8+DDNzc19tq9CXMpiWn/vaGL3uPDI8TUjYmuOwLj1b6TuZpMBEiq04CpgUdiwrVJS7oToYxs3btRvL1qo1SOpwK7OIEkNKPgq0rhq+vmn2oHW5bZrvZLNqjIpy6uvmdgaCNC0UHsd1a8yLalAf6yk3QvRNyRI6idGo8yRi8o2JCvUJRsvKrtz586+2EUhLnldmzac+ncNe6doP5vdJlZOMn7e2S6SjI7/yWM8WMwq3lMp+raNFXUSJAnRx6KaNuQvwn3SzYmRUNtZMug/mcLkDD8j04zTX892/CuKYtjUpWvKXenU8GzUiNYMzGZtEFVmkoToGxIk9RPDkeTc6Lqkklxp3iBEf/H5fKxfvx6AjIwMJk6cyDs7a2h3aaPJqU2JxMWWFnXb+jeS3W6PXWTSppI/2sOp0+G6pO3+VmbOnKlfHEkbcCF6X2SQNM47AYCd4YmczlQ741kkm81mGAB1Zdzl0kMgonnD4fRwvWP7/namTNFGaA4ePEh7e/tZ30MIcXEkSOonRkHSlGwPak34BFmcq9C4owlVVaV5gxB9bMeOHfq6ZEuXLsVT7WVnSrir1LwU40AoLi7OsPVvpDMtKtvUlkhio/ZzUZofs2LT10o7cOAALS0tF/BphBDnorW1Vc/WmDJlCp6dHqBLPVLZMJbNMK5HOtsASUi3A6W1iahB7b32BNsw2bVzSWTzhkAgwJ49e87xEwkhLpQESf3E4XDEjCQ77So55vAIVHEu+Op9tJdp7T9DJ1UJkoTofTGtv9+tZffUzg1BuD3f+PR5tlSbkO4ukkAhtVw7D7gdCh/tqNZT7lRVlXRbIXrRhx9+SCCgzeAsWriIug11NCRqzZQA/KfjGWm3MGGU1/D5F3P8Z6X7SHGoBE5rr3GktR3LLG0dtvZj7cyZFG7eIBklQvQ+CZL6SXc5yTNGBQk0aSfPsjHgN0Hj9kasVivTp08HoLi4mIaGhr7cXSEuOV3rkTb/u5oTo7QLpcR6JzmJxo0ZLmYkObSorHoynHa7/kiN1CUJ0UciU+2WjL0Cb52P3dPC94e62hn1ZTlbV8tIVqs1pgOeonQuKtuZcqcCpy4PnyemusI7IoOlQvQ+CZL6kXFOsptA56rbXpvC8VHGdUkymixE7/F4PHqHq6ysLHKyctjcHh6YmOhIMHye0+k8Y+vfro/tKmeEjyRXgNM1w/VtW1ubmTdvnv6z1CUJ0Xsig6R8Xz7QtfV3+hm72p2pq2VXRgMl0/M69GsAgJJx4ddLa0rTzy8SJAnR+yRI6kfGJ8joVbeLpXmDEH1uy5YtuN3arM6VV15J0/Ym9uaHW3/fkhfbwh/OPdUGzjCSnOfmVEs6rs667L0JXvLz8/UZKplJEqJ3eL1ePvroIwCys7Px7wviscL+idr9wTYbCe0uZo7rMHz++Rz/0M1AaZ4nqoHTwYRwWl/r3namTtVyfouKimhrMw7WhBA9Q4KkfmQUJOWM8GFrDI9Sl+QqtOxvJuAJSvMGIfpI13qkA6/XcFAbVMbeamZhxsXVI4V0l3IXVEyMKNMCsZY4OHisWR8kOX78OJWVlef1PkKIs9uxY4c+OLJ4wWLqN9WzfxL4bNpsjq9sGEsL2rGYY5+rKAoulyv2jjMwOv6n5bgJNjkJurUBlF3uViyp2u2mHY3MnqWdB4LBILt37z6v9xNCnB8JkvqRzWbTW/uGmEwwJcGCGtBOysW5EPSqNO9tZuLEifpJWIIkIXpPZD3S0qVLee9IjX6hlO1LMEypsdls2GwGPcHPoLvZZADriXDA9f7eyqiUu23btp3X+wghzi4y1e7KnCsJtAXYNa1rql33Xe3O1tWyK6MGTomuIGMzvQQ6Z5PqvX46FmkDp946H3PzwucBySgRondJkNTPjC6SZuZ6CdRqJ8WqEQqtLq39p8ViYcaMGQCUlpZSV1fXp/sqxKWgvb1dT7kZO3Ys6ebh7M9w6/dfMzr2mIXzn0UC43SbaZ3NG5qrhunbPjrdGNW8QeqShOh5UfVIgYkEFdjV2StB9ZkwVyexYLLx+kQXcvybTCbDgRWteUM45a58Zvgxk2zhFaxlsFSI3iVBUj/rrnlD1KKyOdC4oxGQuiQhetvmzZvxerU6gKVLl1K+tkZv/W3yw005xo0ZLuQiyWiQJDkuSPZwL2VNGdi8KgC7bG7pcCdELwoGg2zatAmAYcOGoRSZOJYNTUmdqXbHU1mQ78FpVw2ff65dLbvqdr2k6nBt8tGs8Hsm1ydjtWqpuBIkCdG7JEjqZ8Y1CZ6oE2RJLjRJ8wYh+kTX1t/vvldNXZp2oTSi2UWcJfa0aTabDY/lszGZTIZLAUzPc9Oh2BhVpqXj1iao+O3JZGRkAFq6XTAYjHmeEOLCHDhwQF9aY8n8JTRuazLoamecanc+XS2NnttVYV4H/uok1M7YaJ813CiiZU+rvrj0oUOH9AWvhRA9T4KkfmZ0YZWaEGC4L1wAWpyr0F7Wgee0V5o3CNHLIps2LF6wmD3mRv3necOMR4vPt/VvJMOBks66pLjj4fPA+7uq9LqkpqYmjh49ekHvJ4SIFZlqtyz7aoKeYDjVToVAeRpLC7pv/X2hjI7/8aO8ODERrNfONwfb2jGP0x7XtKeZOTPndO6Xyq5duy74vYUQZyZBUj8zm82GOcnTh6sE27Up9ZIcbVG5xh2NTJgwQT8hS5AkRM9qaWnRmyJMmjQJU4mDfZPCqS63je25VLuQMy0q21GVqm/bdKJO6pKE6CWRQdLE4ERq0uD4aG3gI1CdyIzRAVISjGdvL+b4t9lsMQ0fLGaYkh3OKPGrKjWLtAGTYEeQeaOkeYMQfUGCpAHAeLrdg79zQbm2OIWq4VrKndlsZubMmQBUVFRQU1PTp/sqxFC2YcMGAoEAoNUjbXqxhqN52n2JzVZyXLHrI5lMpvNu/RvJ6PjPH+3Bbg1yvD4DU0AL0naobVKXJEQvUFVVD5Li4uKwHrGxqyB8v680nWXdLCB7IV0tIymKYlyX1JlyF1I6JTxAM948Qb8tg6VC9B4JkgaA7go3A7KorBB9qms90kfV1QTN2mjyFJtxqp3L5Trv1r+RjEaSbRaYPMZDNfFkHdfevyIxSO7U8JWbBElC9IyysjJOnjwJwBXzrqBpd3NUPZK3dFi39UgXM4sUYtzAyRN1DXBomD/8njUJemAm1wBC9B4JkgYAoyBpUpYXTkcvKtu4swk1qEqQJEQviaxHmjt2Poezw6vdf2Kc8WjxxV4kdTeSXJDrBkUhuTx8365yNxMnTgRg9+7d+sKXQogLF5lqd82Ya2m3waHx2s+BJgdjnRay0v2Gz+2JIKnbgdL6eFSv1rxlT7AdpXPApnlXCwUF2oDJ4cOHaW5uvuh9EELEkiBpALDb7bEjyVaV8Ta73t2mOBf8zX7aitukeYMQvaChoUEvgi4sLOTomz72TNHus3oVLkuJ7UKnKEqvXSSFFpUNnErWt20oqdVT7nw+H3v27Lno9xbiUhdVjxSYxN4pEOgMSHyl6Vw9wzjVzmKxXFBXy66MXiMj1c+IJD/+Gm02qdLjxTNXS+ttPdTKvMLLAGneIERvkiBpAFAUxbgN8Bi/3t3m+CjwWKFxexPjxo0jMVE7cUqQJETPWL9+PWrnqMTSpUvZuKOK1njtQmms24nVFNu9zuFwYDabL/q9DdNtOoOkmtoR+ratHS1SlyRED1u/fj0AVqsVe4kjuvV32TCu6qYeKS4u7oK7WkayWCz62keRCvI8+CNS7k5c1hlMqTB3ePg8IBklQvQOCZIGCMPmDRGLygbMCmVjtLokk8mkzyadPHmSysrKPt1XIYaiyFS7pQuXcjQxnMJydW7s8Qk9k2oDxiPJI1P9DEv0c4wURp3SgrejcT4K5kiQJERPqa6u5siRIwAsnr6YpiNt+uLRQY+FYR1xTB7jMXxuTx3/cKba5HDzhmNjwwFZnpqn35bBUiF6hwRJA4Rxd5voVbeLc6FxZyMgzRuE6Gmhpg0mk4lhbdPZPyXc+vvaEcYpNT11kWSxWGIWo1QU7RzgM5kZUarVQwVN0BKfqRdtSxtwIS7Oxo0b9dvXjbmeI2Oh3aUFI/7yNK4q6MBosuhiu1p21f2isuFrgAPx4RpJx0mnnoEi1wBC9A4JkgYIoxPk6GF+4prDHbVKchRaDrQSaA9IkCRED6qtrWXfvn0AzJw5kx3/bqY8S7syymi2kWaNTamz2+0X1fq3K+MOV1rKnflkuInLpqP1zJgxA4CjR49SX1/fY/sgxKUmsh5pUnByTFe7ZTOMu9pdbFfLrowGSqdkezB5bASatPv2edpRE7T3bN7dQmFhIQBHjhyhqampx/ZFCKGRIGmA6G4kuSDVrHe3Kc4FNaDStKdZmjcI0YPWrVun377yyis56KnVf56f1rupdiHdpdsANFYN07dtaWiKqkuS41+ICxcKkhRFwV7qYGdnl301CM7aZGaP7zB8Xk8f/3a7Paa+yWVXmTDKQ6BzvSR3MEjDFdr7uk+6WTBlgf7YnTt39uj+CCEkSBpQDDtc5Xr07jb1qQr1SdC4o5G8vDySk5MB7SIpVHAuhDh/kfVIM/OuoXicT//5hhzjVLu4OON1ky6U0UzS1Fw3iqJSHEhnWJ12jO+3uZk5b57+GKlLEuLCNDc3s3v3bgAWTlxIqddLzfDOVLtTKSzJ92K1xD6vp7paRjKZTIYNnApyPXptMkD5jHCDh1kpklEiRG+SIGkAMe5wFd3dpqRzUVlFUfSUu6qqKk6dOtVn+ynEUBOqR7JYLLQfyGa/thQRrg4Tk5yxKXU91fo3ktFIcrxDZdxIL/VWB9kl2oyy1wLx+dP0x0hdkhAX5sMPPyQYDAJwffZyfRYJwFc6jKu6af3dU10tjV63q4I8d9Q1wNFR4QHRMb4x+m2ZURai50mQNIAYniBz3ARqIoKkHIXGHVrucWRdkpwghbgwp06d4vDhwwDMnTuXvcdP43FowUqh4sRkULUdHx/fI61/I3U3khxKuXMeD89cFTdZ9ZnkrVu3ykyyEBcgqh5Jja5H4ngaC6cYB0k9PYsUYjRQOj2vg8DpBFS/drm21xpO/7Met+vXDTKTJETPkyBpAHE4HDEXXgmuIKOD4RNnca6Wi+yudEvzBiF6QGgWCWDRgus4kdGi/3z9+N7tatdVd10uAdoqU/Vtm6sa9LqkmpoaKioqemV/hBjKIoMkX62L4lztdqDOxWWjtJlcI315/OeO8JFgVwnUas1byjwevDna7Hbz7mamF2pNXIqLi2lsbOyV/RLiUiVB0gBiMpkMu2VNH6kSaNZOnqXZEDBpKXfSvEGIixdZjzTCey37Olt/mwIwPyl2ZLenW/9GMpxN7pxJKutIJ7FF27ddtDMnoi5JUu6EOD8ej0c/bi4bM5/tmQHUzgWjvWXpXDXduKtdT3e1jGSz2WLS+EwmmJbjiWoFfmqJdv7xN/tZPGGRvl2aNwjRsyRIGmC6Wysh0JmT7LErnBipBUnZ2dmkpaUB0rxBiAsVmkmy2+2crrDrhdt57TbizbGnyLi4uB5PtQsxOv7HjfTisgcpcyQwrlh73zarysjZ0rxBiAu1fft2PB5tkdjl2Tewa1r4mPaXDmNpYd+m2oUYzyZ3RDVvKJ0cDqRmJM7Ub8tgqRA9S4KkAaa7NsD+6vAJMrSobGTzhtraWo4fP95n+ynEUFBWVkZpaSkA8y5bwHFHeM2hq7P6pvV3JKvVGjOSbDbBtBw3QcVEUkX4/NCamKXfliBJiPMTmWo3wTKFfZO120qbhalxNtKTAobP6+mull0ZzyZ7CETMJB1K8+u3R7pH6bclSBKiZ0mQNMAYnSDHj/JirgsvJlmco9C0qxk1oErzBiEuQmQ9UuHYOzk2Mdz6e/GI2JQ6RVF69SJJUZRuO1wB+E4l69t2n3aTnZ0NaDWJfr8/5nlCCGOhIMmEiWO2ODx2bSbJXZbOsunths/pja6WXRlnk7gJtjgItmlpfnuD7QQ7J75MpWb9OVKbLETPkiBpgLHZbDGreFvMMDHeihrQzooluRBoC9ByuFWaNwhxESKDpLj6qRwer91OazORbY9dIMXpdPZK699IZ1pU9lRTOg63lla7zdPC3M66pPb2dg4cONCr+yXEUBEIBNi0aRMAs9Jns2NcOFXdd4Z6pN7oatmV0fGfmhAgK92np9y1BAI0ztUCo5YDLcwu1K4Djh07Rn19fczzhRAXRoKkAUZRFMORpBnZXgKntdmkU5kKbU5o3N4ozRuEuECqqupNG5wuFzVqBwGzdgF0eXxsp0no/XoEOHPzhsOOFMaXaNvqrEHGX75Qf4yk3Alxbvbv309Tk7aUxvLsG9jVuT6S4lfI8sWRm+EzfF5fHP9ms9mwMURBbnTzhuOXacsFqD6VJblL9O3SvEGIniNB0gDUXU5y5IJyx3K05g2jR49m+PDhgDRvEOJ8FBcXc/LkSQBmX3YHtTnhQu2lOcbd6/riIslokGR4coCRqT5aLVYyy6z6dsu4qfptCZKEODeR9UjxGdNoSNYGRJTyJJZNcxs+pze7WnbV3WxyIKJ5w7G88CDONFd4FVwZLBWi50iQNAB1e4KMbN6QowVJkc0b6uvrKSsr66O9FGJwi2z9PcHxSb31t80HM+NjAxW73Y7Vao3Z3tO6H0nuvHg7ETGa7I/X0/8kSBLi3Kxfvx4ACxaKhodrDFvKR3SbatebXS276q7Lrb8mETWo/Xwg3qvfN6ItQ78tQZIQPSc26V70O6MgKSPVT3K7i1ASQHGuQuu/WvG3+Jk9ezZr164FtBNkbm5uH+6tEINTZD0SgUSakhoBKPDbsJv6J9UuxOFw4PV6o7YV5rn5144ETtcNw+Krw29V2N7WytSpU9mzZw/79++ntbW1T/dTiO4EAgF8PuO0tf6kqiqlpaVkZ2czLX4ap2abyLJqx7uJOKaMqSEYjH2ezWbD7TaeZToXwWCQQCCA2+2OqTvuSlEUgl12YuKoDsale7C1xWNJbadD9RCYaMbWBkqrwqRJk2hvb6eysvKi9lP0jvP5/sXFM+oUeyEkSBqALBYLVqs15g9MwXCFbR1WTE4fJbmgqtC4qymmecOtt97a17ssxKCiqqoeJMWlTqQlo0W/78ox/ZdqF+JwOGhubo7aVtjZ4e6wPZW8cjgyDk5Y/NywcDF79uwhGAyyc+dOFi9e3Gf7KURXqqpSVVVFY2Njf++KIZ/Px09/+lMAEuzJtCVos7ZKQMF+RxWBQICAQffvmpoaamtrL/h9VVUlEAhQVlZ2TjNSRgHmH+8tx2eJQ7Fq9UjJP1ewdGgz4P9t/W/cHu0cUVxc3OsNZsT5Od/vX1y85ORkMjIyLur3LUHSAOV0OmNOktNzPXxYnYgtp47WeIXqdJXGHU3Muk2aNwhxPg4ePEhNTQ0Ac6bcT8lkP6CdSBcMiw2S+qL1bySjdJvJYzxYzConbS4WHVM4Mk7bnjz7MuB3gJZyJ0GS6E+hAGn48OG4XK4Bd0HY0NCgz9KmJI+hKV4b1VfarYyIU4hzxNb1KopimAJ7PlRVxefzYbVaz+l34vV6Y2qMXU1mmnxBlDht/1P9CnG12oxTR1wHNc3aOW3EiBEkJCQgBo7z/f7FhVNVlfb2dv1vfGZm5gW/lgRJA5TxSHIHgfeTIKcO0BaVLdzRxLj78sjMzKSyslJv3iAHoRDdi6xHGm0q5I2cRgDGtJoZbos9LfZ1CpvdbkdRlKiLJIdNJX+0hwPlDmzH4wGtdqI1SRaVFQNDIBDQA6S0tLT+3h1DHo8HAAUFn8uOYtP+VqptLpIT/Rhk2mKxWLBYLu5ySVVVTCYTNpvtnP4+m81mAl2mtOJdJhobzJg64zW/zYRN0R5jtlioQbso9Pv9fTqoI87ufL9/cXFCA401NTUMHz78gmdWJTFygDI6wU3J9hCsCRdtl+QoNO5sRFXDi8o2NTVRUlLSZ/spxGCk1yNZkvGnefTti1ONLyz6OkjqblHZ0HpJLdVpKEEtgCryqvoCt1u2bOm7nRSii1D2Q191gbsQLS1aaq3THIdby1rDFIAEG4YBEtAvNSRG7+myByFggs5ypQ4lSGgYxRoIB3FtbW0xzxXiUhM6D11MbaQESQOUwxG7TovLrpJjchAaXC7OBU+1F/dJd1RdkqTcCdG9YDDIunXrAEgd9Snqxrfr9y3Kiot5fF+2/o10pvWSis2pjDmhbTuKh+nzLwegoqKCqqqqPttHIYwM1JFyn8+nzyQ5ElJQO/fT5DGT4DLo1oD2WfojSDL6HVotYDarqH5tVNyvQiA0E+ZR9f1sb2+Pea4Ql5qeOA9JkDRAKYqC3W6P2T5jjJ9gg3bBVpEFXis0bo9t3iCEMLZnzx4aGhoAmD1iJfsnadvjPQpT4mKPufj4+H656DOcSeps3nDEkUh+54SxqsCoJVfpj9m2bVuf7J8Qg01oFgnA7wgf636vlQSncZDUX53IjN5XUcBlU1F94dQhb4L2ONWvkuDU6pC8Xu+A7CwoxGAjNUkDmNPpjGnlWZDn5vWKJMyp7QTMCmVZKvk7Gpl1rzRvEOJc6Kl2io2k5ATcTi1gmqvYMBsEQ6FUtr5m1LwhZ4SPJFeApnYLKcftgFbAbc6brD9my5Yt3HjjjX21m0LEUFVVn7EZCEJ1IK2tWh2fCTNuR+csUhBsZhNmk3GQ1Btd4u68804aGxt59dVXz/g4k8kU0wrcaQ/S2h4RJDkgNM8db42niSZAm01KSkpCCHHhJEgawLqrSfBvS8Q+uRLQUu7m7Whi0oiJjB49mhMnTrBjxw6CwaD04hfCgN60IflKfLlN+vbFY2KDIUVR+i1ICq3zEFm8rSgwLdfNxgNxuE+kAlpq3QlzuFZRmjeI/ub1egdU2mdOTg52u10PkhzOJDydBUgWj0KSS+Waa66hoKCAxx9/POq5Z/o7esUVVzB9+nR+/etf98p+GwVJLruK2hy+dOswqyR33nYo4WuGtrY2CZKEuEjnfRV96NAhVq9ezZIlS1ixYgWvvfaaft+aNWtYtmwZV155Jb/5zW+iOjMdOHCAT3/60yxYsIC7776byspK/T63282DDz7I4sWLueGGG/jXv/4V9Z6vv/46y5cvZ8mSJfz4xz++ZKaRjYKkvAwvtsZwa8+SHIWmPc0EfUE95a6lpYWjR4/22X4KMVj4/X7Wr18PwLgRt3NkshaAKEG4LC125sblcvXreiNGs0mhlLtSNZWMau0cewgvw0ePBrR0u64XVkJc6vx+v16rY44PDyqoHgsJToOFkeidWaTzYZTm67QHIahoDRwAN2qojwNmfzh4krokIS7eeQdJDz30EAsWLOD999/nscce4/HHH6e8vJyNGzfy4osvsmbNGl544QU2btyoB1Ber5cHHniAT33qU7z33ntMnTqVhx56SH/NP/7xjzQ1NbF27VoeeeQRfv7zn1NeXg5oi6I9+eSTPP7447zxxhucOnWKP//5zz308Qc2m80Wc5I2mWBakgXVp311xbkQdAdpOdgqzRuEOIsdO3Z01iUoTEybRmWGdhEyqcNMkiX2gqivu9p1daYOdwedyeQXa9v8Cky8Tkuxa2xspLi4uM/2UYjBILLjm89pBUBBxaRYuecrd7Fhwwb+67/+C6fTidPppLy8nA0bNjB37lzsdjuZmZl897vfxe/3A1rK3AcffMBvfvMbFEVBURTKysoIBAJ84QtfIDc3F6fTSX5+Pr/5zW8uaJ+NZrHMJrBbw3VJKuCLCzdvMJu07RIkCXHxzjtIqqqq4rrrrsNkMjFx4kRycnIoLy9n7dq13HLLLYwePZphw4bx2c9+ljfffBPQLkycTicrVqzAbrdz1113cfDgQX02ae3atdx9993Ex8dTWFjI4sWLefvttwH417/+xdVXX83kyZOJj4/ni1/8ov66lwLDkeQcD/7OVuB1aQoNidC4vVGaNwhxFno9UsJc7GPCRdwL04y71/VXql2IUZA0rTNIqrU6GFMeDuwSZszRb0srcCGihZo2mK1OfBYtqLB6FBKcKo8//jjz5s1j9erVlJaWUlpaisVi4cYbb2TOnDns2bOHp556ij//+c/87Gc/A+A3v/kN8+fP56677qKyspLKykqysrIIBoOMHj2aF154gYMHD/LQQw/x/e9/nxdeeOG89zkUfHXltAf1gVIAX1zn7aBKolO7NpDmDUJcvPOuSVq5ciVr167l85//PIcOHaK6upqpU6fy1FNPsXz5cv1xEyZM4L/+678AOHbsGOPGjdPvczqdjB49mmPHjhEXF0ddXV3U/RMmTODAgQP6c+fPn6/fN378eE6ePInb7Ta8gPB6vfpq2vqHtFguerXsnhBKgTmfVBibzRaz6nZBXgeBHUlYRzUCUJILU7Y3MuPGGfpjtm/fLik3A8yFfP+iZ7377rsAOFNvonpCO6BdgCzMcsUcZ3a7HbPZ3GPfV08d/8lxAbKHeymvsRE8kQRojSdakkbpj9myZQu33377xe+06DGXwvEfDAZRVVX/b6BQVVWvR7LFJRG6QjB5zCSkBrFbE7HZbDidTkaMGAHAj3/8Y7Kysvjd736Hoijk5+dz8uRJvvvd7/Lggw+SmBj7HNBmfx5++GH955ycHDZt2sQ//vEPbrrpppj9OhtFUQzqkoI0NoUHSNw2CM15x1niaOg8J0hd0sA0kI6NoSx0HgoGg4bn3XOp2z/vIGn+/Pn86Ec/4n/+538A+P73v09qairt7e1RqSlxcXH6dG9HR0fMiGxcXBwdHR20t7djNpujAp4zPTf0Hh0dHYZB0jPPPMPTTz8dte3WW29l5cqV5/tRe83x48fP+bFut5va2tqobaMSLPir8/SfS3IUTm85TVJbAqNGjeLkyZPs2LGDY8eO9XtOtYh1Pt+/6Dler5dNmzYBMD3lag6PrwMgtR0SmhuoaYkesU1KStLTfnvS+X7/DQ0NMSPCEzKTKa8ZzvH2VFIa62lIVjhqVrR83GCQjRs39sq+i4s3lI//QCBAIBDA7/fraWkDgdvt1tPt1IjrCcVvwax48fvRL6ZC+11UVMTcuXOjjr25c+fS2trKsWPHGDNmjH7x1XVg9umnn+aZZ56hoqKCjo4OvF4vhYWFgHYeCgQChs8zEvqdRrKag+B3abl2CnREdOazquEB4ZaWFsNsFNF/zuU7Fz3D5/MRCAQ4deqU4bVwbm7uWV/jvIKkxsZGvvnNb/Lwww+zePFiSktL+frXv87YsWNxuVz6SA1oIxihBRidTmfMCtBtbW04nU5cLheBQCBqZuhMzw29R3cH/uc///mYEdSBNJN0/PhxsrKyzrnzXCAQiJluHw6ke510dP5cnAvef/oYmTSSefPm8fLLL9Pe3o7b7Wby5Mkxryn6x4V8/6LnbNy4kY6ODnBOYMRolUNW7bi63OpgxIj0mMdnZ2cbrlV2oS70+7fb7TQ3N0dtmzdZ5d974JArhfyj8NEccJsgb8lVHHv/3xQVFZGRkdGj+y8uzqVw/LvdbsrKyrBYLFgsA6d5biAQ0EbvTSb8du13b/WBw2XS9zO0aGzkz2azOeraIXSf3W7HZrNhMpkwmUxRj3nhhRf49re/zeOPP878+fNJSEjgl7/8pd51MlRr3PV53TFqpx5vAZMCqt+MYg3gA/xmsATAGgj/3t1u94C49hEar9cr30cfCgaDmM1mRo4caTipci7O6yx28uRJ4uPjWbp0KQDjxo1j1qxZ7Ny5k9zcXIqLi1m4cCEAR44cIS9Pm+3Iy8vjlVde0V+no6ODEydOkJeXR2JiImlpaRQXFzN16lTD50YWIR89epRRo0Z1+4FtNtuA/0cYOrGe62PtdnvM6MOMkbCxxY4pwcOxbK3ZTfPuFubMmcPLL78MwM6dO/XfqRg4zuf7Fz1n3bp12o3Uj+PNa9S3L86JixmIsFqtvTYCe77fv8vliloEE6AwT7toKnEkcO0xLUgCyFy0lGPv/xuv18u+ffuYO3duj+236BlD+fg3mUx6HU1/LMDcndDgqsWVhNqZYmtzKyQkBfX9tNls+qCkyWRiypQpvPTSS0C4y9yHH35IQkICo0ePRlEUbDYbwWAw6rNu3LiRyy+/nK9+9av6tmPHjhnu17n+jowe57AHcfvMYNVmmXzxJixNQVSPisVswR/QuvkNpO/hUhaZYiffSd8InYcu5px7XkFSdnY2bW1trF+/nkWLFlFeXs62bdu4/vrrycvL47HHHuPqq6/Gbrfz7LPP6jM6s2bNoqOjg9dff51rr72WP//5z0yePJnMzEwAli9fzv/8z//wn//5nxw7doz169ezZs0aAK677jq+9KUv8YlPfILRo0fzl7/8heuvv/6CPuxg5XQ6Y4Kkwlw366qSsCXU4HEonBjZuajsrPCisjt27GDVqlV9vbtCDEihpg1jEm/g0GQvoGD1w5zU2GCov7vaRTIK1vJHe7BZgnj9JuJPuaBzXlnNmag/ZuvWrRIkiX5hs9nIycnp793QlZWVAWCOSyCUBKh4zbjs4QvX7Oxstm3bRnl5OUlJSdxzzz38+te/5mtf+xr33nsvhw8f5kc/+hHf/OY39QuunJwctmzZQllZGfHx8aSmpjJu3Dj+9re/8dZbb5Gbm8vf//53tm3bdk6pPUZCF3lGdUkdbjOhy22vS8HZuexbkiOJurY6fD6fzF4IcRHOK7SKj4/n0Ucf5Q9/+ANLlizhq1/9KitXruTyyy9n4cKF3HzzzaxatYpbb72VBQsW8PGPfxzQTpi/+MUvePbZZ1m6dCl79uzhJz/5if66X/rSl4iPj+e6667ju9/9Lt/97nf1E+y4ceP4xje+wX333cfy5csZMWIEq1ev7rnfwCBgNGtWkOvGXx1e66E4Fxp3NEUFSdIGXAhNR0cHmzdvButwJo1IpyFFu7QodFtwGIwwDaQgKZTWE7XNAlOytdmkU/XDiGvTLvZOOML7LYvKiv6iKAp2u31A/Gez2bSUfUUh4NTST81BFZvVTOSA/je+8Q3MZjMzZswgMzMTn8/H2rVr2bp1K4WFhXz5y1/mC1/4Aj/84Q/153zrW9/CbDYzefJk0tPTqaio4Mtf/jI333wzt912G/PmzaOuro577rnnon+fXTlt4TbgAG5rOOBzmcN1V9IKXIgLp6jSZqPPBINBysvLyc7OPq+pP4/Ho4+EhXh9CnMeScV10y4AlmxSuWethWVHljJu3DiOHTuG0+mkubl5QOWGX8ou9PsXF++9997jqquughFf4OPXrWLDci3A+EZcIreNS456rNlsZuzYsT2eEnEx3//x48djLnYefX4Yf30nhcuaa3B9bC+7CrT9bf/OV/CUlTBhwgQOHz7cY/svLs6lcPy73W5KS0vJzc294BqAntbW1kZRURGK04UpU1twOb4NklwOEuNiO16FAryepqqqPqtzvueWQCAQ07zF54fDJ+yY01rBrGICsiu0ZELVpVLcrJUpjBw5kpEjR/bQpxAX6mK+f3FheuJ8NDTP1EOM4UiyVWW83Y4a0A624lzw1ftoL+vQ10vq6OigqKioz/dXiIHmvffeA8CVsoLKfLe+ffGY2BmjuLjYGqX+ZriobJ72OYpcyeQXh8e6cpZdB2i1nQ0NDX2zg0IMUHo9Uly4FbbZbSLeadyKfSB2hDUKqq0WsJrDs0lBwGfXzltKxBpKXZtmCSHOnQRJg0B3I1vTs30E6rSLvFMZ0O6IXVRWUu6E6KxHMsUxLXEKJZ2lAVmtCpm22FnWgZRqF3KmIKnJYiPzZLjmIK5AUm6FCNG77rq0FDRFVbFgprvJvIE4y9fdoI3TrqL6w0GdN77zcT4Vm1k7J0i6nRAXbuCdDYQho+Ltwlw3/iptdEw1KRzLia1L2rFjR1/tohADUmtrq1afk3Itw0efRjVpFxLz7bGBh6IoMWu6DQRGx//IVD/DErUy9ObTKdi82mxSY2qm/hipSxKXMlVVtc6QNjtBi3a543CDPd740ifUJGEgMtovlz0YVZfkcYSDqUS7VrMcat4ghDh/A/NsIGJ0N5IciGjeUJKjBUkzZ87Ut8lIsrjUbdy4UVsgMvXjtI8Lrze0eGzsjJHL5RqQF0lG684oitbABWC/OZVxnV2GG6xmTMOGA7Bly5Y+3U8hBhKPx4Pf78fkCg98ON0KcYnGpdgD8dgPMdo3pz2oLZDU+XHcZmneIERPGrhnBBHFaCQ5K91HXHP4RFicq9Cyv5kEZyLjx48HYPfu3TEFn0JcSt577z1QLOTGX8GhSVodgssLhcmxAw8DMdUuxHA2Wa9LSiI/vJwcibPmAdpMkvTmEZeq0Ppipoh6JIvPjKWbsqNBFyTZtGNb9Wv3eVAJdD7Mplr1x0ldkhAXZuCeEUSU7kaSpw0zEXRr24tzIeBVadnXrNcleTweDhw40Of7K8RA8f7770PiQsalt9Du0tJRZnusWAzy/AdykGQ4m9w5k3TcHs/YsvDnSZ+/GIDq6mqOHz/eNzsoxADT2toKZguqXQsY7F4Vi6P7y56BHCQZ1SWZTOCwBiEi5c7r7Gze4A1/FplJEuLCDNwzgohhNJI8Pc9DoLMuqSVBoXYYNOxokuYNQgCNjY3s3LkT0lZgya3Tty/MdMU81ul0Duh2+UZB0tQcD4qiElQULHUJmAPayHIwe4L+GKlLEpeq1tZWlIgaQ1cHOJOMH2symQZcV8tIiqIYr5fUtXlDXOdjgioOi3bOaGtrkxllIS6ABEmDyLkvKtsozRuEANavX08wGCQ++QZO5GtrIykqLMw2bv09kDkcjpiLpHhnkHEjtaLsfcFUciq07fUuJ0qCdjUodUniUuT1evF4PCiuBH2b3a1g7Wa5lIHY+rurc2reEG50SaJNuzbw+/2Sdi/EBZAgaRDpPkgKD40V5yg07WhixowZ+gWVzCSJS9X7778PcYVMcVk5MUo7Hia0mEgxKEoYyKl2oF0g2Wy2mO2hlLsDzpSouiTLxKmAzCSJS1NraysoCkpnBoYloGI2mbudLRrIqXYhRvvusqsQMEFQu6/DpIb6OOA0hbNPpC5JiPM38M8KQmc0kpzoCjJaDQdPJbnQXtaB3esgPz8fgD179uDxePp0X4UYCN577z1I+zipWVX6tvmu2MEGm81muBbZQGOUchvqcHfYmRi1qGzK3PmANkji9/v7ZgeFGCBaW1tRnHFa8S5aqp0tvvsAaSCn2oWEArk///nPjBs3DpfLxZ/+8FtMpvCisgHA15k1bA2GB1V6qi5p3bp1KIpCY2Njj7yeEAOZBEmDSHcjydNHBwg0aDUW5aO1E2TjjvCisj6fj/379/fpvgrR306fPs3evXtRUj9Oy7hWffuS8Qkxjx3os0ghZ1pUtt1sZdjpcBDlnDJD297eTlFRUd/soBADREtLC0pc+Lh2tYM9cfDOIoE2k9Tc3Mx9993H/fffT0lJCV/4whdwxdQlaZ9H8YGC9pl7aibp8ssvp7KykqSkboq7hBhCBseZQei6awMcWlTWb1Uoz4Imad4gLnHr1q0DezZ5jlyOTtBaf6e2Q35C7EDDYAmSjI7/cSO9uOza5ysNJjP6lDab1JI6DBza46UuSVxK/H4/HR0dKC7tuDapKla/CcVqHCQNhnok0IKkkydP4vP5uP7668nMzMTlcuG0BcEXvpzzhk4TKjgt2gBqU1NTjzRvsNlsZGRkDIqZNyEulgRJg0x3I8mxzRuapHmDuKS9//77kHYjOcNO4rVpf9DnBmwxf9zNZrPhcTUQWa3WmAs6swmm5mizSTvMqeQf1barioJlwmRA6pLEpaW1tRXsDu3gAJwdYHYaX+6Eusa9+OKLTJs2DafTSVpaGsuWLdNnX6644gq+8Y1vRD3vpptu4s4779R/zsnJ4Wc/+xmrVq0iPj6e7Oxs/vnPf1JbW8uKFStISEhg1qxZZx2wrKioYMWKFcTHx5OYmMjKlSuprq4GYM2aNfpi8ZMmTcLpdFJeXq51uIto3lBSWU7yjGReefsVvnD3ahYsWMDrr7+O1+vlmWeeYdKkSTgcDiZOnMh///d/R73/5s2bmT59Og6Hg9mzZ/Pqq6+iKAq7d+8GjNPtXnrpJaZMmYLdbicnJ4cnnngi6jVzcnJ45JFHWL16NQkJCYwZM4Y//elP+v1er5d7772XzMxMHA4HOTk5PProo2f8PQnRFwZuv1thyGgkecIoD+a64frPxTkKjS82Mb9gLiaTiWAwKDNJ4pKj1SP9DiW3Xt+2aHRsB7v4+PhBMyqqKAoOhyMmdaYwz83Wwy6KnMmsLlZ5d4n2eayTpuHfu0OCJNGvZs+eTVVV1dkf2EMCgQApw9J59oONQGc9UjfZYWazmcrKSj796U/zi1/8gk984hO0tLSwYcOG8555efLJJ3nkkUd48MEHefLJJ/nc5z7HggULWL16Nb/4xS944IEHuOOOOzhw4IDhOUdVVW666Sbi4uL44IMP8Pv93HPPPdx2222sW7eO2267jZEjR3LttdeyYcMGRo8eTXp6OipBUBVUvwnFEsSraPv9o9/8iB9/58ek/CAFm83GU089xS9+8Qt+//vfM2PGDHbt2sVdd91FXFwcd9xxBy0tLdx4440sX76c//f//h/l5eUxwWFXO3bsYOXKlTz88MPcdtttbN68mXvuuYe0tLSoIPKJJ57gpz/9Kd///vd58cUX+cpXvsLixYuZOHEiv/3tb3nttdd44YUXGDNmDMePH5f13cSAIEHSIBMaSQ4EAvo2ixkmxVs55jOhWIOU5IK/2Y9SpTBp0iQOHDjAvn37cLvdg2bEXIiLUVlZyaHiahJnz6N80oeAgsUPl2UZB0mDiWGQ1Nm8odLmJPeEGTr7WyXNmkfH82vYt28fbW1tA77NuRiaqqqqOHnyZJ++Z7AzCFFQcXaAaaTxTJLJZKKyshK/38/NN99MdnY2ANOmTTvv91y+fDlf+tKXAHjooYd46qmnmDNnDrfeeiuqqnL//fezZMkSqqurycjIiHn+O++8w969eyktLSUrKwuAv//970yZMoVt27YxZ84c0tPTAUhPT496DZtFxe8zgyWod7f7yu1f4aYrP0GxW5te/uIXv8gTTzzBzTffDEBubi4HDx7kj3/8I3fccQfPPvssiqLw9NNP43A4mDx5MidPnuSuu+7q9jP/6le/4qqrruLBBx8EYMKECRw8eJBf/vKXUUHS8uXLueeeewD4zne+w5NPPsm6deuYOHEiFRUVjB8/noULF6Ioiv4dCNHfJEgaZLobSZ6e6+FITSLWUY3UDlNoSlBp3K7VJR04cAC/38/evXuZO3duP+25EH1n3bp1kHoDk5w1HEnTLpamtphxmaMvlEwmEy5X7MKyA1l3SwEAoCg0KUmkn26gdpiCf3QOWKwE/T527tzJokWL+nZnhQDDgKA3+Xw+0oaPAMDuAZPFhGKOnblRFAWTyURhYSFXXXUV06ZN49prr+Waa67hlltuISUl5bzet6CgQL89YoT2/pHB1vDhWsZHTU2N4e+kqKiIrKwsPUACmDx5MsnJyRQVFTFnzpxuZ72d9iDNfjMK4fWQZkyegeIHEybqGuo4deoUX/jCF6KCHr/frzdhOHz4MAUFBVHnmLNdMxQVFbFixYqobQsWLODXv/41gUBATw+O/N0oikJGRgY1NTUA3HnnnVx99dXk5+dz3XXX8bGPfYxrrrnmjO8rRF+QIGkQMgqSCvLc/N9eLUgCrS5pWmfzhr/+9a+A1rxBgiRxKQi1/k7Mrta3LUiMDS5cLteg6WwVYpRyOzw5wMhUH6fqrWxTUskvbqB2GATMZsxjxxM4fJCtW7dKkCT6RV+me7e0tHCkqhpTmhaQuDrAEnfmrnZms5l///vfbN68mbfffpvf/e53/OAHP2DLli3k5uZiMpliUu+MFme1Wq367VAwY7QtGAwa7o+qqt2m4Z0tJdhlV2lqjq5XdDm1AaA4Sxy1wVoA/vSnP3HZZZdFPS4UyBi9z9lSDs/1OZG/B9B+F6Hfw8yZMyktLeXNN9/knXfeYeXKlSxbtowXX3zxjO8tRG8bXFcHAuimeUOXRWVLchQadzZK8wZxSXr3/U2Ykq+hYXx4MGFJ/uBt/R3JbDbHXHBAeDZpry05ar0ky0RtJFvqksSlQGv9Hf5b6GoHc1z3qXYhiqKwYMECfvzjH7Nr1y5sNhuvvPIKoKW2VVZW6o8NBAK9sqzG5MmTqaioiKrHOXjwIE1NTUyaNOmMz3Xag+A3gUFME2+NJy0tjeHDh3P06FHGjRsX9V9ubi4AEydOZO/evVHrKp4twJ08eTIbN26M2rZ582YmTJhwXl0DExMTue2223j66ad5/vnneemll6ivrz/7E4XoRRIkDUJGI8kZKX6S28P1BsW50HKglakTpuonKmneIC4FFRUVlNbnMlbxUpqrXTGMbFbIiott/T1Ya3QMF5XtXC+p2JnIhGPhkV37lEJA2oCLS0NLWxuKXTvWrX4Vqx8U15lnkrZs2cIjjzzC9u3bqaio4OWXX6a2tlYPTK688kreeOMN3njjDQ4dOsQ999zTK4upLlu2jIKCAm6//XZ27tzJ1q1bWbVqFUuWLIla0sOIw6aiKER1ufN3XuE5FG1g9a677uKXv/wlv/nNbzhy5Aj79u3jmWee4Ve/+hUAn/nMZwgGg9x9990UFRXx1ltv8fjjjwN0O5N1//338+677/LTn/6UI0eO8Ne//pXf//73fOtb3zrnz/3kk0/y3HPPcejQIY4cOcI//vEPMjIySE5OPufXEKI3SJA0CBmNJCsKTM9QCbbaATiWA4Ggiu+onylTpgBw4MCBHlt1W4iBSmv9vYJRmScIdtYhXEZsgOR0OrFYBmfGsdFs8vTOIMlrMmMJOEls1gJE28SpoJgoLy/XWwkLMRSpqkpbEO0PItoskuI0oZhiL/BNJpN+4Z+YmMj69etZvnw5EyZM4Ic//CFPPPEE119/PQCrV6/mjjvu0AOW3Nxcli5d2uP7rygKr776KikpKSxevJhly5aRl5fH888/f9bnmhRw2IJRQZLPrn0+c0A7z91000089thjrFmzhmnTprFkyRLWrFmjzyQlJiby+uuvs3v3bqZPn84PfvADHnroIcD4nANaqtwLL7zAc889x9SpU3nooYf4yU9+EtW04Wzi4+N57LHHmD17NnPmzKGsrIy1a9cOulRoMfQoak+sLibOSTAYpLy8nOzs7Is++CsrK2lubo7a9vSbKfyh/RS2cVru8aM/DXL1lybwn7t+xl/+8hdAmwafP3/+Rb23uDA9+f2L7n1u1Z3875FHWbz4EPtm+wF4MjUtprNdeno6qampfbZfPfn9d3R0UFFREbXN7VWY/fWx+AMK3245yJ5rT7FtpnaR1PzAlwmUH+P111/nYx/72EW9t7gwl8Lx73a7KS0tJTc3t186qba1tXG4vhmlc4Y4s1olPsGMZVjsYIjRmmO9SVVVvF4vNlvsWm0XwuPxxNT+VNZbqHermJI7AEhxK6TUdC407S/Fj5/ExEQmTJhwzu/z7LPP8vnPf56mpibDGWxxbnr6+xdn1xPno6F5pr4EdL+obDgXO7SobOQ0vaTciaFMVVXe/rCRJHMypRO1wmqnB2aNiu1gNxjrkUIcDkfMH1qHTWXCKK2W4EM1NbouaZLUJYmhr6W1FaWzWYE5qOLwgMl19nqkwcho/522IKo/HPi5IybQ4yxa4NjW1nbGZgx/+9vf2LhxI6Wlpbz66qt85zvfYeXKlRIgiUvS4D5LXMKMgqQp2W6C1Yn6zyU5Co07mqR5g7hklJSUUOO/jPzE47TGa0HEjBYz1i7pNjabDZstNgVvsAgtBdBVKOXuoDOZ/OLwdsvEqYDUJYmhrcnt0fLOAGeHlnWnOM+cajdYGQVJLnsQggoEtM/mNql6H4c4qzYoFAgE8Hq93b5uVVUVn/3sZ5k0aRL33Xcft956K3/60596fP+FGAwkSBqkjEaS4xwquVY7alDbXpwL7pNu8ofn67UXMpMkhrJQPVLcmFp924LUoTWLFHKm9ZLqrQ6Gt1hxdHTWJU3Wmjds3br1rC19hRiMVFWlnfAsiqsDFJdxMDTYZ5HAuJGC1QJms6rXJamAp3MsyIFdf1zXJUQiPfDAA5SVlempSk8++eSgW0tOiJ4y+M8Ul6juRpILx/gInNYuAE9mQocdOva79QXtioqKaG1t7dN9FaKvvPpWESbnBE5PCDcoWTxxaLT+7sowSOqcSQKoSEpk/LHOH5KSMWWMpLGxkeLi4pjnCTHYud1u6Ey1U1QVZ0f3qXZ9WYvUW4wCPUXR1kuKbN7g7ezsZ4pIw5MGTkKcGwmSBrHu0m38nSl3qknhWE50XVIwGGT37t19uJdC9A1VVVl/IJVx5lpOdC5YP7ZeYZgzumjbYrH0S1F5TzOqEcgZ7iPJFQBgu5LKRFkvSVwiGlrbwKIFAg4PmFUwGSwiqyjKoE+1C+m2LikiSPJ0phsqKtg6u3yeaSZJCBEmQdIg1l26TaBr84adjdK8QQx5hw4dotW+lIyRJ/Vtl5ntMY+Li4sbEhdJRt25TCaY1plyt92UGl2XNEnqksTQ1eTz67ddHYBJQbHHHudDYRYpxLguSYWAWV9U1mMJD5SEmje0t7dL2q0Q50CCpEHMaCQ5L9OLtSGcSlSSo9C0q5mZ02fq26R5gxiKXnnjI0icj3dsk75t8bjYtLqhkGoXYriobGeQVOqIJ+eUCYtPuxgKNW+QmSQxFLlN4UYsrnYwuYxnjIZCPVKI0edz2oOgone58yrhRWVDQVIgEMDj8fTZfgoxWA2ds8UlyGgk2WyCaakmgm4txag4F/xtAXJtuXo3L5lJEkPRi++7SQl2UDZeG1FOaoOpmdFBhMlkIi4uzujpg9KZOtwFFBPNqXHklWvbzRmjUFJS2bVr1xm7Wwkx2LS7PWDT/hbavCrWAJjijGp2lCEVJBl9FrMJ7FYVIlPuOifUbRHNG6QuSYizGzpni0uU0UhyYa6HQGddUnOiwulUaNvbTkFBAQCHDx+OWYhWiMEsGAyy/9RYxqcdx+PQRldnt1swde0AOURS7UKMgqRQuh3AQWcSE4+G77NMnIbX62XPnj19sXtC9InatnZAO65d2jqqKK6hPYsE3ddXOe3Bbpo3mFA6f09SlyTE2Q2tM8YlyLDDXW6XRWXzops3qKrKrl27+mwfhehtH207gC9uEfbs0/q2BelDs/V3JKPjPyU+SPZwbaZooz8telFZSbkTQ1BzuBxJC5IsCopt6NYj/elPfyIrKwuTycTvf//7mPtdXYKk0MCRAtgVbTZJZpKEODsJkga57toA+6tiF5WV5g1iqPrjP8owKRaq87VhZHMAFnZp/a0oypBKtQPtos9oUdzCzpS7/bZkxh8DJdhZlzRJgiQxtARVFb9Fu5QxB1Ts3u7rkYbCLHJzczP33nsv3/nOdzh58iR33XVXzGOcdjV6UVlzxKKy0rxBiHMmQdIgZxQkDUsMMNwXHkUvzoXWQ63MmDRD3ybNG8RQ8u6uOMY7aqhN136eVGciwR49aux0OofMSHKkMzVvaLHYUBLsjDmhbTdn5aLExUuQJIaMRrdXWyCIzgVkMV4fyWw2D4kgqaKiAp/Pxw033EBmZqbh7LjDqmJSws0bgkAbPgBcZmneIMS5kiBpkOtuJHn66ACBRu3iqTxLq+Ec5RmN3a5NtctMkhgqOtx+TnZMJ330KX3bfHts6++hlmoX0l3KbUhZciITO1uBKyYTlvwpHDp0iMbGxj7aQyF6T217+EI/VI9k1LThbPVIL774ItOmTcPpdJKWlsayZcv0up0rrriCb3zjG1GPv+mmm7jzzjv1n3NycvjZz37GqlWriI+PJzs7m3/+85/U1tayYsUKEhISmDVr1ln/9lZUVLBixQri4+NJTExk5cqVVFdXA7BmzRp9Yfi8vDwURaG8vNzgNcqZNdHE26+8wl0fv4HLRg7nubdeAOAfr/yDW2+9lQULFjBt2jT++7//O+q53/nOd5gwYQIul4u8vDwefPBBfD6ffv+ePXtYunQpCQkJJCYmxnyml156iSlTpmC328nJyeGJJ56Iev2cnBweeeQRVq9eTUJCAmPGjOFPf/qTfr/X6+Xee+8lMzMTh8NBTk4Ojz766Bl/Z0L0FsvZHyIGOqfTGdOtqjDPzbqqJMzJHfisChWjVKbsbmX69Ols2bKFo0eP0tjYSHJycv/stBA95C8vFYNlAu1jw81IFucnxDxuqAZJRjNJ+VkebJYgXr+JHaYU8otreetKbRTdMnEqvp1b2L59O8uWLevr3RWXoNl3Bamq753X9gVcoZ4NmAOdNy0KGSkqm/4rXKx0piCpsrKST3/60/ziF7/gE5/4BC0tLWzYsOG809GefPJJHnnkER588EGefPJJPve5z7FgwQJWr17NL37xCx544AHuuOMODhw4YDirpaoqN910E3FxcXzwwQf4/X7uuecebrvtNtatW8dtt91GVlYWy5YtY+vWrWRlZZGeno7f7zfc1989+kPu+9lPefh3/0UqDv768l959KlHuf/b9zM+fzzV1dV873vfIy4ujjvuuAOAhIQE1qxZw8iRI9m3bx933XUXCQkJPPDAAwDcfvvtzJgxg6eeegqz2czu3buxWq2AlqGycuVKHn74YW677TY2b97MPffcQ1paWlRA+cQTT/DTn/6U73//+7z44ot85StfYfHixUycOJHf/va3vPbaa7zwwguMGTOG48ePc/z48fP6HoToKRIkDQEOh4OmpqaobQW5bgIHE2FiFaA1b2jqrEsKLSa5c+dOrrzyyj7fXyF60rP/aiFVaaVibABQGN4EYwuiZ5Lsdrv+h3yosdlsmEwmgsFgeJsFJmd72F3iZGMgjRsjF5WNaN4gQZLoC1X1cLK2t1797AkxJpPpjKl2lZWV+P1+br75ZrKzswH0GZvzsXz5cr70pS8B8NBDD/HUU08xZ84cbr31VlRV5f7772fJkiVUV1eTkZER8/x33nmHvXv3UlpaSlZWFgB///vfmTJlCtu2bWPOnDmkpaUBkJ6err9GMBgkEAjEvN6nVv0HV33s46CAPQi/fPqX/OybP2P+VZfTrraRn5/Pfffdxx//+Ec9SPrhD3+oPz8nJ4f777+f559/Xg+SKioq+Pa3v83EiRMBGD9+vP74X/3qV1x11VU8+OCDAEyYMIGDBw/yy1/+MipIWr58Offccw+gzVw9+eSTrFu3jokTJ1JRUcH48eNZuHAhiqLo34cQ/UGCpCHAaCR58hgP1KTrP5fkKDSubWT2t6ObN0iQJAYzVVXZWZ7FtBHHKTFrF0Fz3daYC6KhOosEWjG63W6no6MjanthrpvdJU5O2OJICJrJqA5SNULBPHYC2OxSlyT6TEZq77xuIKgS7GxJYApq/2FWwAQZKeGZlbOl2hUWFnLVVVcxbdo0rr32Wq655hpuueUWUlJSzmt/QstsAIwYMQKIDraGDx8OQE1NjWGQVFRURFZWlh4gAUyePJnk5GSKioqYM2eO4fuaTCbDIGnylNmofhOKNUhV/WlOVJ3gaz/5GspPFUKtHILBIElJ4W64L774Ir/+9a8pLi6mtbUVv99PYmK4EdQ3v/lNvvjFL/L3v/+dZcuWceuttzJ27Fh9/1esWBG1DwsWLODXv/41gUBArwmN/D0pikJGRgY1NTUA3HnnnVx99dXk5+dz3XXX8bGPfYxrrrnG8HML0dskSBoCjEaS7VaV8S4rJ/wmFEuQ4lzwVHspzCrUHyPNG8Rgt/WgDw/DseYc0bctyhz6rb+7cjqdsUFSZ4c7VVE4nRHHxKMtVI0AxWLFMn4iW7ZsQVXVIVHMLga27U/3Tvnz3roWAop2sT/mhIolCLZxNhRL9L/pszVsMZvN/Pvf/2bz5s28/fbb/O53v+MHP/gBW7ZsITc3F5PJFJPOFlmnExI5Wx06roy2Rf6tjtTd8Xi247S7IDA+zgV+M1iD+nv+5sHfUFBYwCmvVsM5fvx4vevnRx99xKc+9Sl+/OMfc+2115KUlMRzzz0XVVf08MMP85nPfIY33niDN998kx/96Ec899xzfOITnzDcT6M0wK6z+oqi6Ps3c+ZMSktLefPNN3nnnXdYuXIly5Yt48UXX+z28wvRW6RxwxCgKIpx8XaOl0CNVptRk67QHA/pTcP1mSdp3iAGuz/8owpLMMCpfK142+6FuV1af1ssFsPjYygxXAogonlDkTM5Zr2kqqoqTpw40Sf7J0RP8wSCeoBk92gBkmJXYgKk7hZc7UpRFBYsWMCPf/xjdu3ahc1m45VXXgG01LbKykr9sYFAgP379/fgp9FMnjyZioqKqBqcgwcP0tTUxKRJk86470YctvB6SWnDh5ORMZKyE2Xkj87XZ6wyMzPJzc0FYNOmTWRnZ/ODH/yA2bNnM378eMPGEBMmTOC+++7j7bff5uabb+aZZ57R93/jxo1Rj928eTMTJkw4r86iiYmJ3HbbbTz99NM8//zzvPTSS9TX91JRmxBnIEHSEGEYJOVFLypbkgMtu1uYMUNrBX7s2DE58YhB7c2tVsYmVdLcmQ1SUGfCYY0+rQ31WSQwTrkdleYnLUErXF/vSyM/qi5JSwGSlDsxWDV4wjM5caGudt20/j6bLVu28Mgjj7B9+3YqKip4+eWXqa2t1QOTK6+8kjfeeIM33niDQ4cOcc899/RKd8hly5ZRUFDA7bffzs6dO9m6dSurVq1iyZIlUescGjGaTXLY1KhFZe/99vd48pkn+cOzf+BU+SmKi4tZs2YNv/rVrwAYN24cFRUVPPfcc5SUlPDb3/5WDxQBOjo6uPfee1m3bh3l5eVs2rSJbdu26b+n+++/n3fffZef/vSnHDlyhL/+9a/8/ve/51vf+tY5/w6efPJJnnvuOQ4dOsSRI0f4xz/+QUZGhjSZEv1CgqQhotsgKWJR2eLc2EVlJeVODFalp1SqW0eQOjo8wjvfFXscXApBksViwWKJzp5WlHDK3W4lmfQGSGnoXFR2wiQwmfQmLkIMNg3ucOe6UOtv5QJaf4M2c7F+/XqWL1/OhAkT+OEPf8gTTzzB9ddfD8Dq1au544479IAlNzeXpUuX9swHiaAoCq+++iopKSksXryYZcuWkZeXx/PPP3/W5xp9TrtNhYBJW1gWuPGOVfzmod/y/177f9zy6Vv40pe+xHPPPafPJK1YsYL77ruPe++9l+nTp7N582a9CQNoAWddXR2rVq1iwoQJrFy5kuuvv54f//jHgJYq98ILL/Dcc88xdepUHnroIX7yk59ENW04m/j4eB577DFmz57NnDlzKCsrY+3atef0PQrR0xRVllzuM8FgkPLycrKzs3v8gPf7/ZSUlERtU1WY/8ORKCs/AmBqkcr3/6RQ+59VrPr8KgAeeeQRvve97/Xovghjvfn9X4p++f+8PPAHC1NvfJ+T2Vo++0ujRjByWLiznclkYty4cQOi7qa3v/9Tp07R0tISte0Pb6Tw61eHAfBi00b+co2bD+dov4vm79/LwtGZrFu3rsf3RcS6FI5/t9tNaWkpubm5vZriGggG2dfYigpY/JB1SkUBbONtKObwsR5qajIQqKqK1+vFZrP1yvkoEAjE1EkFg3DwuB1TYgeKXQsqs06pWP3QrDRT7avGZDIxY8aMAXGOHMp6+/sXsXrifDQ0z9SXoO5GkqcNVwm2aYvNluSA3xNkalK4247MJInB6n/fbCHN2qwHSNmniQqQAOLi4i6ZP0jdzSaHlKckRNclTZrG9u3bDbtiCTGQNXkDhP4luzq0AElxmKICJDi3WaShwuizmkzgsAZR/eH73J1rzzsVLUU3GAzidrtjniuEkCBpSDGqSyjM9eCv0uqSOpwKlSMg+XSy3s1GmjeIwaiuSWVfeRI5GeEC53k+W8zjLoVUuxCjIGlajgels7hdW1Q2fJ9l4jTa2tooKirqq10UokfUuQ3qkeJiB0POp1nAYNddgwqnXYWIuiSvq3NR6WC4w1x7e3vv76AQg5AESUNI93VJ4eYNxbnQvKuFmTNnAlBeXk5tba+t8idEr/j/NoOKCSU33Hhk0ei4qMcoiqIPBlwKHA5H7PpQziDjMr0AvO8ZxqhKiGvrrEvKnwKKInVJYlBRVZW2gJY6pgTB0TkJYtS04VKZRQ4xmk1y2YNRzRs8nZPtCmBH+6Gtra0vdk+IQUeCpCHEaCapINdNoFqaN4ih5aV1Piz4OTVeCwDi22D6pOiAyOVyXVIjySaTCZstdjYt1Aq80uRESbYwobN00ZSYhGlklnS4E4NKqy+A2hn7ON3axT4KKM7YtZEutSDJ6PO67CqoCnSm3HnMeh8HHIo2sCozSUIYkyBpCLHb7TEnyaS4IKNwoHauXVeSC23FbcyZHF65W1LuxGDS4VF5exuMTT1BR+e4wKwGMxZz9OnsUppFCjFMuQ3VJSkKdZnxTDwaXZckQZIYTE53hLvaxbdr/5YVpwnFdOnWI4UYfWabRcVkCrcCVwFP51iKy6ItvN3e3m646KsQl7pL7ywyhJlMJsNOPtOzfQTqtNqM4yPBbYeJtvDCdDKTJAaTd7aDx28haUy1vu3yhEuz9XdXZ2veUORKiq5LmjSNffv2yUiyGBRUVaXFH65HcuqpdrEzKJdikGQ0k6Qo2myS6o9NuXNI8wYhzujSO4sMcYYXSbluAp2LyqomhWNjIK4qjoSEBEBmksTg8soGbcSzcbyWR68EVRZNS4x6jMPhwGq1xjx3qDM6/seN9OKya1PJG3yp5FSA3aP9Dq0TpxIIBNi5c2ef7qcQF8IdCBLobERi9YC5M0PC1GV9JJPJdMml2oEWJBkFh05bdF2StzM10Rw0Y+q8DJS6JCFiSZA0xBhdJBXkufFH1SVB085mZs2aBcCJEyeoqqrqs30U4kIFAiqvbQwy3NlA7QjtYim/ykRKSnRAdCnOIgHYbLaYiySzCabmaKPEW7ypWCwKY0u1+0zDhmMaNlxS7sSgUGeQaocJFEdsPdKlqtsOd34Tob7pbpt2UwHsijatJLPJQsSSIGmIMapJyB/lwXQ6Qf+5JNS8YZY0bxCDy4cHoK7ZxOhR4dbfl3Fpt/6OpChKN0sBaEGS32TCk+ViYrHUJYnBp8kbESSFWn+7YmeNhnqq3Z/+9CeysrIwmUz8+te/jrov8rOvWbOGj33sY/pMcmg2ya9AoDOOdKANrF7sTNIVV1zBN77xjYt6jUvNnDlzePnll/vlveX7OjeWsz9EDCZWqxWz2Ry1QKTVApOSzBzzWDDZ/RTngrfex5ycufpjtm/fzg033NAfuyzEOfvnRu3iPpDboG9bnBPdoMFqtRrW5l0qHA5HzAVPqMMdQEVKPPnF4fstE6ex9Z1/9tn+CXEhfMEgXkX7u2byK1j9nU0bXJdWql1zczP33nsvv/rVr/jkJz9JUlJS1P2hIMnj8fCTn/yEv/3tb1jMWgMHn8+MYtN+h247xLdrzRsafA1684YL/d29/PLLl2SK88V48MEH+da3vsVNN93U54G9fF/nZmgPt1yCFEXppi7Jo7cCb0pSqEuBcYzT75eZJDHQqarKKxtUrGYPp/K0EeW0RpX8fFfU4y7VWaSQ7lJuQ3ZYUhh3DMyBzvWSJk2ltLRU1ksTA1q9OzyL5OgIz4R2XUR2qM8iVVRU4PP5uOGGG8jMzMTlij7/hRaVfeWVV4iPj2fhwoUAOO1BiGreoOD1ebF3ziSpqkpHR8cF71dqaqpe59yfvF5vf+/CObvhhhtoamrirbfe6rP39Pm0xicD5fsa6Ib22eQSZXSRND3Pjb8qui7JfsKhj0JJ8wYx0BWVQ8lJhbzhJ/F3DoDNabTGXBRJkBR7/I9IDpCZqv1xfKdtGHYf5FRo95lHjUFJTJaUOzGgNUQESYmdCyJjVlBsPRMkvfjii0ybNg2n00laWhrLli3TZ2SNUpNuuukm7rzzTv3nnJwcfvazn7Fq1Sri4+PJzs7mn//8J7W1taxYsYKEhARmzZp11r+1FRUVrFixgvj4eBITE1m5ciXV1VonzzVr1jBt2jQA8vLyUBSFsrKymNdQFIUXX3wxKjvEZVf50f1f5Juf/Qx/efIJLpuXz6wVszCrJupr6vne977HyJEjSUtLY8WKFVGv6/f7+frXv05ycjJpaWl85zvf4Y477uCmm27SH9P1d9TQ0MCqVatISUnB5XJx/fXXc/ToUf3+NWvWkJyczFtvvcWkSZOIj4/nuuuuo7Ky8oy/n65Cv/c777yTpKQk7rrrLgA2b97M4sWLcTqdZGVl8fWvfz1qhv1///d/mT17NgkJCWRkZPCZz3yGmpqaqP2//fbbSU9Px+l0Mn78eJ555hn9/n379nHllVfq/17uvvtuWltb9fvvvPNObrrpJh5//HEyMzMZNmwY//Ef/6EHKaDVzi1fvpz/+7//6/bzeb1e7r33XjIzM3E4HOTk5PDoo4/q9zc1NXH33XczfPhwEhMTufLKK9mzZ49+/8MPP8z06dP5y1/+Ql5eHna7HVVVY74vr9fLAw88wKhRo4iLi2PevHmsW7dOv7+8vJwbb7yRlJQU4uLimDJlCmvXrj3Hb2nwkiBpCDIcSc51468OT8uXdFlUtrKyklOnTvXZPgpxvl7doP0/bkz4D9mC1Oj6G7PZbFiTcymxWCyGaRT6orJBJ2TamHg04jkTp0iQJAasoKriVrUgSQmCs3OywORSotLDuuvudjaVlZV8+tOfZvXq1RQVFbFu3Tpuvvnm81476Mknn2TBggXs2rWLG264gc997nOsWrWKz372s+zYsYOxY8dyxx13dPu6qqpy0003UV9fzwcffMC///1vSkpKuO222wC47bbbeOeddwDYunUrlZWVZGVlxbyOyWRi06ZNzJw5U9/mtAdBVdi6/gNKjxzhqZdf5bnfPk97Rzt3f+VuXC4Xzz//PBs3btQDltCszGOPPcazzz7LM888w6ZNm2hububVV1894+/izjvvZPv27bz22mt8+OGHqKrK8uXLo4KE9vZ2Hn/8cf7+97+zfv16Kioq+Na3vnVev3OAX/7yl0ydOpUdO3bw4IMPsm/fPq699lpuvvlm9u7dq3+ue++9V3+O1+vlpz/9KXv27OHVV1+ltLQ0Kuh98MEHOXjwIG+++SZFRUU89dRTDBs2TN/v6667jpSUFLZt28Y//vEP3nnnnajXB3j//fcpKSnh/fffZ82aNfz9739nzZo1UY+ZO3cuGzZs6Paz/fa3v+W1117jhRde4PDhw/zv//4vOTk5gPbv5YYbbqCqqoq1a9eyY8cOZs6cyVVXXUV9fb3+GsXFxbzwwgu89NJL7N692/B9Pv/5z7Np0yaee+459u7dy6233sp1112nB7Zf/epX8Xg8rF+/nn379vHYY49dEgOSUpM0BBldJGam+knuiCNUqVScCy2vNzPns3N49913AW026eMf/3gf7qkQ5+7VDVrxcV1n62+rV2V+QfRJOi4ubkjXI5wrp9MZdTEC2npJb+3Q0ivqM+PIL27gjWu035Vl4jS2bNnS5/spLg0br/wQb43ngp8fVMHfGVgoKpzubP2NWVsHSKcohH60Dbez8L355/T6lZWV+P1+br75ZrKzswH0GZvzsXz5cr70pS8B8NBDD/HUU08xZ84cbr31VlRV5f7772fJkiVUV1eTkZER8/x33nmHvXv3Ulpaqgc/f//735kyZQrbtm1jzpw5pKWlAZCenm74GqDVLTU2NpKZmalvc9hUFMDpcvHQb36H1WZjVLLKCy/8HbNi5oc//CHx8fFMmjSJZ555huTkZNatW8c111zD7373O773ve/xiU98AoDf//73Z5xFOHr0KK+99hqbNm3i8ssvB+DZZ58lKyuLV199lVtvvRXQUr/+8Ic/MHbsWADuvfdefvKTn5zPrxyAK6+8Miq4WrVqFZ/5zGf0mZLx48fz29/+liVLlvDUU0/hcDhYvXq1/vi8vDx++9vfMnfuXFpbW4mPj6eiooIZM2boA8mhwCT0WTo6Ovjb3/6mL1r++9//nhtvvJHHHnuMESNGAJCSksLvf/97zGYz+fn5XH/99bz33nvcfffd+muNGjWKiooKgsGgYYBfUVHB+PHjWbhwIYqi6P8+QQvC9u3bR01NjV6H+/jjj/Pqq6/y4osv6u/j9Xr5+9//Tnp6uuHvr6SkhP/7v//jxIkTjBw5EoBvfetb/Otf/+KZZ57hkUceoaKigk9+8pNRM5mXAgmShiCz2YzNZovKzVUUmD4ywNZGJ+bkDsrGgDegMmf4HP0xEiSJgerUaZVthxRGJNbSnKxtm1KpEDdHWn8bcTgcNDc3R20rjGjecCguiYId4eYXlolT2fr68xdVuC1Ed7w1HtyVFx4kdRU4+0POS2FhIVdddRXTpk3j2muv5ZprruGWW24hJSXlvF6noKBAvx26UI4MtoYPHw5ATU2NYYBTVFREVlZW1OzQ5MmTSU5OpqioiDlz5sQ8x0hoYdjIrBKTAmazytj8qVhtWkdQtw32FO2h/EQ5S5Ys0R7XeaHudrspKSmhqamJ6upq5s4NN3oym83MmjWLYDCIkaKiIiwWC/PmzdO3paWlkZ+fT1FRkb7N5XLpARJAZmZmVMrbuQoFMiE7duyguLiYZ599Vt+mqirBYJDS0lImTZrErl27ePjhh9m9ezf19fX6Z6moqGDy5Ml85Stf4ZOf/CQ7d+7kmmuu4aabbtIDvqKiIgoLC/UACWDBggUEg0EOHz6sf/dTpkyJakefkZHBwYMHo/bV6XQSDAbxeDyGA9x33nknV199Nfn5+Vx33XV87GMf45prrtE/Z2trqx44h3R0dFBSUqL/nJ2d3W2ABLBz505UVWXChAlR2z0ej/7aX//61/nKV77C22+/zbJly/jkJz8Z9e99qJIgaYhyOBwxBYwFeW42VydhTu7AZ1WoGKUy35ej3y/NG8RA9dom7f+Zo09S3rltvjk6rVRRlKg/Wpcyo5TbyWM8mE0qgaDCBl8ql7eXMfqkyolRCubcsTR0aBdF48aNM3hFIS6cbfiFd5tUAV8wnJ5mDqgoKKCA0nU5pC4zSefKbDbz73//m82bN/P222/zu9/9jh/84Ads2bKF3NxcTCZTTIpc15laICrNNTTYYLStu+Ciu0GK8x28GDZsGIqi0NjYGLXdYlJxOsIDSV6nQjAYpHDSdH74kx8AMG7cOP1iPfLCuuv7nykV8UzphJGv0zUtWFGU805xBGLO+8FgkC996Ut8/etfj3nsmDFjaGtr45prruGaa67hf//3f0lPT6eiooJrr71Wv266/vrrKS8v54033uCdd97hqquu4qtf/SqPP/74Gb+Ps32+rt99fX09Lper2zTxmTNnUlpayptvvsk777zDypUrWbZsGS+++CLBYJDMzMyo2qGQ5OTkbn8/XQWDQcxmMzt27IhZYyw08PjFL36Ra6+9ljfeeIO3336bRx99lCeeeIKvfe1rZ3ztwU6CpCHKaCS5INdN4N+JkK8tHFucCwtKzaSmplJfX8/27dtlJFkMSK+s1/5wevMa9W2Lx0fPGrlcriHf2epcORyOmAsOp10lf7SHgxUONrWkYIozMbFY5cQoUExmLBMms3XrVgmSRI8717Q3I20+P0datIVOTR6FnGrtItOUZMaaGb6EMZvNF9XSWFEUFixYwIIFC3jooYfIzs7mlVde4Zvf/Cbp6elRDQUCgQD79+9n6dKlF/x+RiZPnkxFRQXHjx/XZ5MOHjxIU1MTkyZNOufXsdlsTJo0iaKiIpYtW6ZvN5sAVdFXkvXYoXBSIS+//TIjUkZgi7eRkZERM+swYsQItm7dyqJFiwDt8+/atYvp06d3+zn8fj9btmzRZ1/q6uo4cuTIeX2OCzVz5kwOHDjQ7bls3759nD59mp///Of679mooUZ6ejp33nknd955J4sWLeLb3/42jz/+OJMnT+avf/0rbW1tegCyadMmTCZTzGzM2ezfvz+qdsxIYmIit912G7fddhu33HIL1113HfX19cycOZOqqiosFktUOuD5mjFjBoFAgJqaGv07NpKVlcWXv/xlvvzlL/O9732Pp59+esgHSXJFMUQZjUpMzXETrA53uCvJVWjaGW7eUFNTw4kTJ/psH4U4F81tKu/vUrHZOqgaoxVvj6xWyR4f/W9cUu3CFEUxXCuqsLMVeAAT3tw48rssKit1SWKgqW0Pd7WzR9w2uXqu9feWLVt45JFH2L59OxUVFbz88svU1tbqF/RXXnklb7zxBm+88QaHDh3innvuiZml6QnLli2joKCA22+/nZ07d7J161ZWrVrFkiVLYlLKzuaaa65h8+bNUdssZu14VztbgXtNcPMNt5KWnMZ937qPXbt2cfjwYT744AP+4z/+Q78e+NrXvsajjz7KP//5Tw4fPsx//Md/0NDQ0O2A6vjx41mxYgV33XUXGzduZM+ePXz2s59l1KhRrFix4nx/LeftO9/5Dh9++CFf/epX2b17t14jFbqgHzNmDDabjd/97nccO3aM1157jZ/+9KdRr/HQQw/xz3/+k+LiYg4cOMD/9//9f/q/h9tvvx2Hw8Edd9zB/v37ef/99/na177G5z73OT3V7lxt2LBBT58z8uSTT/Lcc89x6NAhjhw5wj/+8Q8yMjJITk5m2bJlzJ8/n5tuuom33nqLsrIyNm/ezA9/+MPz6lg8YcIEbr/9dlatWsXLL79MaWkp27Zt47HHHtNrz77xjW/w1ltvUVpays6dO3nvvff6JODtbxIkDVF2uz3mBBbvUMmx2lD92tdenAvtZR1cNiU8yietwMVA8+ZH4PMr5GScQDVp/6bntlhi/31LkBTFaKAksi6pIjWO/KgOd1Olw50YcJr94cAooT1cjWQyWET2QiUmJrJ+/XqWL1/OhAkT+OEPf8gTTzzB9ddfD8Dq1au544479IAlNze3x2eRQBvcePXVV0lJSWHx4sUsW7aMvLw8nn/++fN+rbvuuou33nqLpqYmfZvJBAoq+MIpVeYkF2v/vJbRGVk88MADXHXVVaxevZqOjg4SE7VB1e985zt8+tOfZtWqVcyfP5/4+HiuvfZaw7TekGeeeYZZs2bxsY99jPnz56OqKmvXrj2v2b5169Z12+b8TAoKCvjggw84evQoixYtYsaMGTz44IN6I4v09HTWrFnDP/7xDyZPnszPf/5zHn/88ajXsNlsfO9736OgoIDFixdjNpt57rnnAC1r4a233qK+vp45c+Zwyy23cNVVV/H73//+vPbz5MmTbN68mc9//vPdPiY+Pp7HHnuM2bNnM2fOHMrKyli7dq2+aPLatWtZvHgxq1evZsKECXzqU5+irKzsvIO1Z555hlWrVnH//feTn5/Pxz/+cbZs2aLPtAUCAb761a8yadIkrrvuOvLz8/nv//7v83qPwUhRLyQBVFyQYDBIeXk52dnZfZIWVFFREbM43IN/G86/hh/FkqmdOJ/6VhDHF9zc9PBNAHz/+9/nP//zP3t93y5Fff39DxWf+XGQ/3sXChdtpqJQ+/f8eEsiCxYm649xOBxRXX8Gor7+/pubm2PWHDlWZWX5gzkAfH74CW55v4j7fqpQO0xB9Xrp+PJtNNfXY+ss7BY951I4/t1uN6WlpeTm5p7xAvpceQNBDjR1rj3jM5F7KoCigGJTsOWF/42aTKYB/29WVVW8Xi82m63PUto/+clPMn36dL797W/r28prrLQGApiStAGT5CaV1Cbw4qXcX46iKMyYMeOM/0aDwSCTJk1i5cqVMTMwPWnNmjX853/+JwcPHryoVMqBwOj7//a3v01TUxN/+tOf+nnvhqaeOB8NzTO1AIyLtwtz3fgjU+5yYGT7KP1nad4gBhKvT+WND1UgQO14LUBytavMmR69UrjMIsUyOv5zhvtIdGmj8f9uGQYK5Bdr9yk2G/7R2ezbt68vd1OIbkWm2lk6/Hq7b6XLLFLXYnOh+fnPfx5TtO+0BVEjZpK8zs4GE9hQ0OoYQ93xQsrLy3n66ac5cuQI+/bt4ytf+QqlpaV85jOf6dX9/9e//sUjjzwy6AOk7gwfPrxXg0xx8SRIGsIMF5XNc+Ovil5UNlgc7mITat4gxECwbhc0tyuMGFZDh0vbNuV4EFu8cQceEWaz2WIuHk2m8KKyJzocmHMdTDwaPt6tkwqkLkkMGI3ecAc5V1u4W6sprufqkYay3Nxc7rnnnqhtLrsKQRMEtd+h26r3ccCOVsfY1tYW9RyTycSaNWuYM2cOCxYsYN++fbzzzju9XpPy3HPP6WsqDUXf/va3zzstTvQtObMMYUY1CWMzvVgbwqPwxblozRtmaUWhdXV1lJeXxzxPiP7wz43aBfyI0af0bQudrqjH2Gw2wyYFopuBkoi6pIaRcfpMEkhdkhg4AsEg3tCKSAGFeG84MIqsRwrVZohYRr8Xp13rDhiaTQoq4OucqHEo2vmivb096jlZWVls2rSJpqYmmpub2bx5M4sXL+7FPRdiYJAgaQizWq0xI8lmE0wdphJs0/K3S3LA2+Jn4bhw20dp3iAGAlVV9SCpfazWzl4JqlwxKSnqcbI2UvcMmzfkhYOkImcCGTWQ2Kz9ni35U9iybVuf7Z8Q3anrCKAveuRRcSja3yzFrqCYIwImmUXqltHvxmwCu1X9/9k77/goyvyPv2dm+6b33oAk1FAVRcUu4imeJ6hn9+y9lzt7xd5/d3bPimcXxY4iIC10CC0F0ntPtu/8/phkNks2kAAJBOb9euWV3dmZ2WfLPPt8vtUv5M7ekc7VKZJ29iRpaByqaLPLQU6gRdLYDIeal9RuEaiMgdFmX1dwLS9J40Bg5RYoqxUwWdqoi1esn2klXqKH+HuNgoODAx2uwe49SYs9kQh0yUuyWMlvd/hVxNLQ2B/U27uU/m7zfWdF676ranewIwhCj96kriLJYVL2MYnKesFms/XY8FZD41BCm10OcgIWb9gpLyk/HWKafXGxmidJ40Dgq4WKdyMloUTdltPo8fvRlyRpn1TROlgJ9N6EB3lJjVHyOxbWhqIL15HdpV+SlD1amwM09iuyLGOnQyTJYG335SZ1DbUTBEETSbshkEiyGL3g9r1vjo5pQo8OERFZlrtVxtXQOBTRZpeDnJ4syZ6dmsq6NruIi4sDtOINGgcGX3WE2unTatVtJ6RH+O0TFBSk5SPsAkmSApZG7vQmOT0SrqE79UsaruUlaexfmhweZKHjN8gpYukoKCADgkULtesLgd4js1EGWVB7Jrok8HS8rT3lJWloHIpoM8xBTiCRFB3qIdptRu7wpuenQ0teK5PHTQagsbGRwsLCgRymhoYfBWUyG4sEEN3UdOTQhDXKjBvvn4+kVbXbPbvLSyqJsJJSBmZbR15S9iiWaSJJYz9S26X0t9huxyAolQVEs4Ag+nuSNXZNIJFk0suIAmpTWRlwduYloeUlaWh00ieRdPTRR/v9TZw4kV9//RWAuXPncvjhh/s9XllZqR67ceNGzjvvPKZMmcKVV17p1+TQbrdz3333ccwxx3Daaafxww8/+D3v3LlzmT59OlOnTuWhhx7C5XKh0TskSQpY+WtsshtPvbLALEkAmyRzVLJWvEHjwODrRcr/+LhKXAZlUZRdZEey+hZFgiBgsVgCHa7RhZ76pXWyWheKKMOwDruIGBbB0oLtmjdZY7/R5vWJJFOrb7Guhdr1nUCedkEA0855SR3LBM2TpKHho08zzMKFC9W/t99+G6PRyOTJk9XHDzvsML99OsO3nE4nd955J+eeey7z589n1KhR3H///epxr732Gk1NTcybN4/HH3+c2bNnq2Wo8/Pzef7553nmmWf47rvvKC8v56233toXr/2QYXchd15JYHsKZOuy1ce14g0a+5MvFypuzogknzFlguQ/XVmtVm2R1AsCXf9ZyQ4MOuU9nt8SiaAT/PolNUTGUlZWNmBj1NDopN3lwSt2hDm4RCyeLuW+rf6lvw9VXn/9dZKTkxFFkRdeeKHH/d566y1OOeWUHvOS/CrcqcUblPmir8Ubjj32WG6++eZe76+x9zz44IOMHTt2r88zadIkvvjii70f0B5woH9v9niW+f7775k6dWqvyu+uXLkSs9nMjBkzMBqNXHHFFeTl5anepHnz5nHllVcSFBRETk4OxxxzDD/99BOgdFw+6aSTGDFiBEFBQVx++eV8//33ezrsQ5LeFm8Ir/fle2ieJI39RU2jzJ8bAGRahyqlvyW3zKlHJvrtp4Xa9Q6j0dhtQWnQwYhUBwD5dWYMWWb/fknDR2t5SRr7heq2LqF2Tg9mQfEWywIIZi0fqbm5meuvv5677rqLsrIyrrzyyoD7ORwO7r//fu67777AeUkGGTwidOggh1EJu5OQ0KHvc/GGL774gkceeWRPXpLGHnL77ber0VwAl1xyCWeeeWafz3Pfffdx991375eKhgf690a3JwfJssyPP/7I3Xff7bd97dq1nHDCCURERHDOOedw9tlnA1BYWMjQoUPV/cxmM0lJSRQWFmK1Wqmrq/N7PDMzk40bN6rHHnHEEepjw4YNo6ysDLvdHnDx73Q6cTqdftt0Ol3A5OWBpvMLONBfRKPR2C10ZniyHarj1PsF6QL27xwkJiZSVlbGypUrcbvdh+wPUX+wvz7/wcY3i8HrFbCENtHcoduHFrgJP9vk9z02m82D6r3cn5+/wWDotuAZk2ZnTYGSr9SQaCVjfjt6l4xLLyh5ScuW7dEPrkZgDoXr3+v1Isuy+rcntLjdqvlWam1GLygRD2KHQJJlWQ21G6whoXsz7h07duByuZg+fboarRPofJ999hlBQUEcddRReDyebvtYjF5cTieiW0IwePAI4NaB3g0mwUir7KKtra3XIc3h4eF7/dr2BU6n84BY7+2KffUeWa1WrFZrt/P19fzTp0/niiuu4IcffuDUU0/dJ2PbHS6XC71e36/fm855yOv1Bpx3e7O+3SORtGrVKux2u594GT9+PHPmzCEuLo68vDxuv/12IiMjOe6447DZbN08TlarFZvNRnt7e7cyvlarVY2H3fnYTuuxzWYLKJLeeecd3njjDb9tM2fOZNasWXvyUvuFkpKS3e+0D5FlmZqamm5fwjRjLNUOCcHoIT8d7GV2Jo6ZRFlZGc3NzSxYsICMjIwBHeuhwEB//oONOT9FAxYSE0vprGs3pLyJmpoadR+j0Thow8H2x+ff2NhIS0uL37a0SC+g/ECtFfUc4YaM7bBlGEhxCcz/5kM17Flj33EwX/8ejwePx4PL5dojA5vLK+MWPR0nEzC2O6AzIswMbrfiZRJFsZsxdG/54osveOyxxygoKMBisZCTk8Nnn32G1WrlpJNOIicnh2eeeUbdf+bMmYSGhvLmm28CinH30ksvZdu2bXz99ddERETw3HPPMXnyZK655hp+++030tLSeP3115kwYUKP4yguLubWW2/lt99+QxRFTj75ZJ577jliY2N57733VM/RkCFDANi8eTNpaWndzvPxxx9z2mmn4XQ6kWUZt9vN1VdfTVNTExMnTuS1115DkIzMXbKZmtoSnr3vnyyfPx9REJkwdgI33HoD4eHhhIaG4na7ufPOO/nwww+RJIlLL72UyspKmpub+fTTTwG6vUcNDQ3cdtttzJs3D4fDwdFHH81zzz2nGsTfe+897rjjDj744ANuv/12SktLOfLII3n99deJj4/v9efW+b4XFBTwzTffcPrpp/PWW2+xZMkS7r33XlauXElkZCQzZszgkUceUdeTH330Ea+88gpbt27FarUydepUnnnmGWJiYtTx33zzzfz666+0traSmJjInXfeycUXXwzAhg0buO2221i2bBkWi4UzzzyTp556Sl2jXn755TQ1NXHkkUfy4osv4nQ6mTlzJs888wx6vb7Xr6+0tJR77rmHX375BYfDQXZ2Ni+88AKHHXYYjzzyCHPnzmX58uU88sgj/Pe//wV8i/8ff/yRxx9/nOHDh/uFZdbV1ZGens7XX3/NcccdB8App5zChx9+yAknnBBwHJ1pM1999RUNDQ3ExsZy+eWXc+eddwLQ1NTEPffcw9y5c7Hb7YwfP56nn36aMWPGAKhjvfbaa9WUmvb2dk4++WS/743T6eTBBx9kzpw5NDY2MnLkSB599FGmTp0KKEaCW265hT///BOn00lqaipPPPEE06ZN6zZml8uFx+OhvLw8YJGX9PT03b7/eySSOkPgdDrf4YmJvlCYUaNGce655/Lbb79x3HHHYTabu1VKaWtrw2w2Y7FY8Hg8fp6hrtaLnY9tbW1Vtwfi0ksv5fzzz/d/kQeQJ6mkpESNJR5IJEnqZkmemOnlm+oQ9MkNNIQJ1IXJHJ9yPF/zFQAVFRXqBaSx9+zPz3+w0G6HxXmKmBfTfaW/j0kJVn+8AKKiooiIiOh2/IHM/vz8IyIi/IrlABwzVgf/U26v1MVzBOVk5ysiCWCLVyQpKUmrILaPOBSuf7vdzvbt29Hr9Xv0m1vb4ivKpHMLmAXf77wuSIegU7xJer1+n34vKyoquOiii3jyySf561//SktLCwsXLlRfhyiKiKLo95pEUfQrsS8IAi+//DKPPfYYDzzwAM8//zyXXXYZU6ZM4dJLL+WZZ57hzjvv5PLLL2fDhg0B84RkWeacc87BarXy+++/43a7ue6667jooov47bffOP/880lPT+ekk05i2bJlJCcnEx0dHfC9WLx4MRdccEG3MS9YsIDQ0FC+/fZbKuol7M0OrjzzL4ybfAQf/W8eUW06Zr85mxtvvJGvvvoKg8HA008/zZw5c3j77bcZPnw4L774InPnzuW4445Tz7/ze3TVVVepgjEkJIS7776bM888k40bN6LX69HpdLS3t/Piiy/y/vvvI4oiF154If/617/44IMPev3ZCYLA888/z7333qvmum/ZsoXTTz+dhx9+mLfffpuamhpuuOEGbrvtNt5++21AuR4feeQRsrKyqK6u5tZbb+Wqq67iu+++A5RF/ZYtW5g3bx5RUVHk5+djs9kwGAy0t7dzxhlnMHnyZJYvX051dTVXXHEFt912G++88w6grLkWLFhAQkIC8+fPJz8/n3PPPZfx48dzxRVX9Oq1tba2cvLJJ5OYmMjXX39NXFwcq1atUr93kiQhCAIGg4G77rqLbdu20dzcrL7GiIgI9bU///zzahGvTz/9lISEBE4++WT1ezh58mSefvrpHq/bl156ie+++45PPvmElJQUSkpKKCkpwWAwIMsyZ511FhEREXz33XeEhoby2muvceqpp7JlyxYiIiKQJImCggK+/PJLPv/8c/U17Py9ueyyy9i+fTsff/wxCQkJfPnll5xxxhmsW7eOYcOGceutt+JyuViwYAFWq5W8vDxCQkICjtvr9SJJEgkJCXvcT7HPIsnlcvHrr7/y3HPP7XK/rhNARkYGX375pXrfZrNRWlpKRkYGISEhREZGkp+fz6hRowDYunWr6sHIyMggP98XLL9t2zYSExN7fMEGg+GAEES7ovNLMZBYLBbsdrvftpwMO19sDEWf3ABAQTocJgxTH1+9ejUXXHDBgI7zUGB/fP6DhV9XytgcIBic1Ka4AIHYKi9TpqX7zSkhISGD9j3cX9f/zouyxCgPkcFu6lp0/FkVyq0JBrK2OeFUZT93+jC2bt3KyJEjB3SsBzsH8/UviiKCIKh/nRz/81Kq7Lv3/Li9MjKKkUTwgiiDepZiwXe7F73RYk0G5p80ebf7AVRWVuJ2u/nb3/5GamoqgGoB9z2l0EOlON+26dOnc/XVVwPwwAMP8J///IdJkyYxa9YsZFnmtttuY+rUqVRXV6uhcl355ZdfWLduHUVFRSQnJwPw/vvvM3LkSHJzc5k0aRJRUVEAxMTE9OhxaWxspLGxkcTERHV8nd85q9XKv//9bwwGA7FNEq+/9V9EQeT+F1/B5BZIrJD590P/IfXoFBYtWsSYMWN45ZVXuOeeezjrrLMAePXVV9Xc8K6vv/M92rZtG9988w2LFy/myCOPBODDDz8kOTmZr7/+mpkzZyIIAi6Xi//85z+qV+z666/n4Ycf7nPvu+OPP5477rhDvX/RRRfx97//nVtuuQVQvE0vvfQSU6dO5d///jcmk4l//OMf6v5DhgzhpZde4rDDDqOtrY2goCBKSkoYN24ckyZNAvy9Dh999BE2m4333ntP9Uy98sornH766Tz55JPExsYCSgjiq6++iiRJZGdnc+qppzJ//vwe88h25uOPP6ampoYVK1aoRsFhw3xrtM73SRAEgoODMZvNOBwOv+/F2WefzY033sg333yjRlS9++67XHLJJX7zUFJSEsXFxciyHHB+KikpYdiwYRx99NEIguDnvfztt99Yv3491dXVqhB79tln+frrr/n888+58sorEQQBp9PJ+++/T3R0tN+5O783BQUFfPzxx5SWlpKQkADAHXfcwY8//si7777L448/TnFxMX/729/U67PzuxOIzvPuzZzb56MWL16sFljoyp9//klDg7LY3rx5M5988glHH62UlJ4wYQI2m425c+fidDp56623GDFihPpBTp8+nTfffJO2tjbWr1/PH3/8wUknnQTAtGnT+OWXX9i8eTOtra28/fbbAxYzeTARyPO2c1PZ/HSB4Kpg9b5WvEFjoOlsIBsfX45XUn4AhmxtQWfx2XMGgyHkQKPTctsVQYAxHf2SmtolvJkWhhaB4PX1S9KKN2jsC6rsTipsjt3+1Tic1Dpc1Dpc1LhcVLldVHb+2Z1UdP714ly9EWWd5OTkcMIJJzB69GhmzpzJG2+8oa5n+kJXYdW5UB49erS6rdMbXl1dHfD4TZs2kZycrAokgBEjRhAWFsamTZt6PY7OqJGuxuTOReLIkSPV+dNs9LJpwypKigo5KjWRiUMSSDwykSFTM3A6nZSWllJRUUFVVRWHHXaYei5JknYZMrhp0yZ0Oh2HH364ui0yMpKsrCy/12GxWPwWufHx8T2+N7ti4sSJfvdXrlzJu+++S1BQkPp3yimn4PV6KSoqAhQj8IwZM0hNTSU4OJhjjz0WUMIdAa655hrmzJnD2LFjufPOO/nzzz/9Xl9OTo5fKsiUKVPwer1s2bJF3TZy5Eg/L19cXFyfXt+aNWsYN27cXkVNGI1GLrjgAtW7tGbNGtauXcsll1zit19njq/D4Qh4nksuuYQ1a9aQlZXFjTfeqBZXA+X9bm1tJTIy0u89LyoqoqCgQN0vNTW1m0DqyqpVq5BlmczMTL/zLFiwQD3PjTfeyKOPPsqUKVN44IEHWLdu3Z6+Nb2iz56k77//PmBJyWXLlvHAAw9gt9uJjo7moosuUoWOwWDgqaee4pFHHmH27NmMGDGChx9+WD32qquu4tFHH2XatGmqW7ZTpQ4dOpSbb76ZW265hba2No4//nguu+yyvXjJhyaBPG9psS4szb4KYfnp0P6jjdTkVHaU7GDVqlV4PB4t3EZjQHC7ZeYulgGBsJRKOoNDM52tfvtpVe32DJPJpIYrd5KTbue3tcr7WRoRRJy9kdRS2J4CUnIaCxd9y6WXXro/hqtxEBFr2r1RwyvLeDryZgVZQPB4EIUOO64oIKgmXaGLe2nvnrMTSZL4+eef+fPPP/npp594+eWX+de//sWyZctIT08PWCQiUL/GrrkmnWukQNt6Kt7RWZSit9t7IjIyEkEQ/IRe5/FdCzGYDTKy7CV7zDgee/11AGJrwOiCWm8d+jCdKrh2fv5dJdr39NjOr2Pn3BxBEPYogX/nnHev18tVV13FjTfe2G3flJQU2traOPnkkzn55JP54IMPiI6Opri4mFNOOUXNdTv11FPZsWMH3333Hb/88gsnnHAC1113Hc8888wuP4/dvb6+FG7pKa2kr1x++eWMHTuW0tJS3n77bU444QTVY9pJfX09Foulx+ccP348RUVFfP/99/zyyy/MmjWLE088kc8++wyv10t8fDy///57t+PCwsLU27urht0ZHrdy5cpu686uuV6nnHIK3333HT/99BNPPPEEzz77LDfccEMv3om+02eR9OSTTwbcfsstt6iuzUCMHDmSOXPmBHzMZDLx6KOP9njs6aefzumnn963gWr4odPp0Ol0auIrdFiSE7ysbTIhhdopSgGHzcOJ40/krZK3aG1tZevWrQwfPnw/jlzjUOHPDVDXLIAg0zSkFRAw2WWOnRzrt58mkvYMs9ncXSRldGkqK4VwKpCVr4gkQRT5s6pugEepcTDSm7C3zXU2bIIiPKwOCKpoxSoqiyp9uh7RqKgko9HY53Cs3iAIAlOmTGHKlCncf//9pKam8uWXX3LrrbcSHR3tl9Pn8XjYsGHDPs/ZHTFiBMXFxWruGkBeXh5NTU19+h02GAyMGDGCvLw8Tj75ZCBwJS9RhFGjx/Hz9/8jIiqaoJAQIsNlQlsg0htFtbcKnU5HbGwsy5cvV6ODPB4Pq1ev7rFHz4gRI3C73SxbtkwNt6urqxuw9cT48ePZuHGjX9Xkrqxfv57a2lpmz56tvs+BImeio6O55JJLuOSSSzj66KO54447eOaZZxgxYgT//e9/aWtrUxf+ixcvRhRFMjMz99nrGDNmDG+++Sb19fW98iYZDAY8Hk+37aNHj2bixIm88cYbfPTRR7z88svd9tmwYQPjx4/f5flDQkI455xz1OrV06ZNo76+nvHjx1NZWYlOpwtYRKS3jBs3Do/HQ3V1tfpdC0RycjJXX301V199Nffccw9vvPFGv4mkgzMwWiMgPYfcKf2SXAaBkkSYFOFzq2shdxoDxdcdoXbWqHrag5RF0LBNdjKP8MWC63S6PU7APNQJ9L6NTnMgCMr7/ntzOKJZ9GsqW2IK6lOvFA2NPUGWZexyhwFPBp2jWS3aIIsygsGXe9EfAmnZsmU8/vjj5ObmUlxczBdffEFNTY26oD/++OP57rvv+O6779i8eTPXXnstjY2N+3wcJ554ImPGjOH8889n1apVLF++nIsuuoipU6d2CynbHaeccgqLFi1S7/f0vs2cdR5h4VHceuHfWbXkT7ZVbWdR7iIeeeZhqqqqaGtr44YbbuCJJ57g66+/ZsuWLdx00000NDT0eM5hw4YxY8YMrrjiChYtWsTatWu54IILSExMZMaMGX16HXvCXXfdxZIlS7juuutYs2aNmiPVuZBOSUnBYDDw8ssvU1hYyDfffNOtV8/999/P119/TX5+Phs3buTbb79Vvw/nn38+JpOJiy++mA0bNvDbb79xww03cOGFF6phlvuC8847j7i4OM4880wWL15MYWEhn3/+OUuWLAm4f1paGuvWrWPLli3U1tb6eTsvv/xyZs+ejcfj4a9//Wu3YxcuXKgK6kA8//zzzJkzh82bN7N161Y+/fRT4uLiCAsL48QTT+SII47gzDPP5Mcff2T79u38+eef3HvvvX1aQ2ZmZnL++edz0UUX8cUXX1BUVMSKFSt48sknmTdvHgA333wzP/74I0VFRaxatYr58+f3q/DWRNIhRKBF0tgMO+7KrnlJkOLyuWFXrlw5IGPTOLSRZZmvFiqL84TEUnV7YnG13w+x1Wrtl0XSoYDJZOr23gWZvQyNV8JLNleYMY+ykukLIUfKGsmqVasGcpgahyBNdi+y2FHV0iPhbXOooXaCRVS/t/0V+h0SEsIff/zB9OnTyczM5N577+XZZ59V858vu+wyLr74YlWwpKen90vlV0EQ+OqrrwgPD+eYY47hxBNPJCMjg08++aTP57riiiuYN28eTU1NfuffmYgwE6+9t4C4xCRuv/gCph9/ONc/dD0uh4sgq2Ikuf322znvvPO46KKLOOKII9Qcn10ZrN555x0mTJjAX/7yF4444ghkWWbevHl9Kn/9+++/IwgC27dv79NrHzNmDAsWLGDbtm0cffTRjBs3jvvuu0/Ng4+Ojubdd9/l008/ZcSIEcyePduvvDsoXpl77rmHMWPGcMwxxyBJkhoNZbFY+PHHH6mvr2fSpEmcffbZnHDCCbzyyit9GueDDz64S8+LwWDgp59+IiYmhunTpzN69Ghmz57d43VwxRVXkJWVxcSJE4mOjmbx4sXqY+eddx46nY6///3v3T63srIy/vzzz12GVgcFBfHkk08yceJEJk2axPbt25k3b55arGXevHkcc8wxXHbZZWRmZnLuueeyffv2PovGd955h4suuojbbruNrKwszjjjDLWSIyhezOuuu47hw4czbdo0srKy+L//+78+PUdfEOT93fnrEMLr9bJjxw5SU1P3S3Ujm82mJiV20tgmMuWJKEJmKmr/qKUytywxcfxSpSb9lClT/KxRGnvO/v78D2Q2FMqMvkSZiob+bT518crt237fytk3najul5iYOGjD7Q6Ez3/79u3dEnP/9W4Mny9WvMlfZ65D92UVdzwgUBEnILvd3FO9hTtvvnk/jPbg4kD4/Psbu91OUVER6enpffL45tfbaUER60EeHVJJFZGiEl6ki9MhhSmLws6SwYMRWZbVRqcDZeiZNWsW48aN45577gGUPlNdQ+4BHC6BbWUGxLB2BIMSqpVSJqPzQKmnFJtsIzs722/e9Xq9DB8+nFmzZnXzwOxL3n33XR577DHy8vL6JK4ORAJ9/p3FE959991+f/6SkhLS0tJYsWJFt7C6O+64g6amJl7vyEs7WNjT+agrg3O20dgjAsVyh1m9JApGZI+yPT8dbNtsZKdlA0oFmJ0nVQ2Nfc1XC5X/gsWuCqTUHR4O+4svvlsUxV53f9cITMCQ2y55SZstykIoq6PrgqDT8UuB1lBWo39p8/h+Y6w4MeP7norWDo9SRylfjd7z9NNP+4mbQO+fQScjijKy2+edcHTUvDCiLCw3b97MG2+8wdatW1m/fj3XXHMNRUVF/P3vf+/X8f/www88/vjjg14g9cSCBQv6VWSCUmCkuLiYu+66i8mTJwfMO4qJien3cQxWtBnnEEIURbWGfVfGpTnx1CilvytjBVrNcNIQJTa1vb2dzZs3D+g4NQ49vl6kVPxJSCxTtyVurCY5w1cK12q1aoukvaSnkNtOlrjCAPzykjY4uicCa2jsK9qdXryScv0LHhGPrQWzoHxPvZKMoPfv86PRe1JTU/0S2gP3eQKLUQaXTyTZO5YJpo7PweFw8O677zJp0iSmTJnC+vXr+eWXX/q9CMOcOXOYOXNmvz7H/qRrP6z+YvHixaSmprJy5Ur+85//BNznjjvu2Ke5VAcTfa5upzG4MZlM3ZrKjsmw81NxKLq4ZgAK0mBs8Dj18dzcXLXRr4bGvqa0WiZ3i/LjHZZeQXvH9riGSr8f9cEaZncgEUgkDU1wYjF6aXeILK8I5sYME1n5vjmiJTaRmpqaXfa30NDYU6rbfF4kEyLuVrevAarFd/1rImnv6fTG7VyG2mzw0trSxZNkFABZFUlhYWF++S0ag4djjz12j8qqayhos84hRqBF0ph0O+6dmsom2BLU+1rxBo3+5JvO317RS22qsjgPaZYZPsK/v8jueixo7J5AOR2SCCM73vfyej3icCtR9RBR39FUdtgIlixfMeBj1Tg0aOkSzh2mFxAcvu+nLthnx9VE0r4hkDfJYpTBK0BH2L3TADKgF3RISNhstoClpTU0Dna0WecQI1BOQlaSA7E2WL1fkA7Sdt+Pk1YGXKM/6axqFxxfg9Oo/EgP3dDGhFN83kyz2aw1Nd4HCIKw25C7kggLApDVUeVOMJmYtz5vgEaocSjh8si4xQ6R5BUwynbM+L6fokVZonRW0NLYewKJTbNR8SzJHSF3XgGcHTaqTm+S1gpA41BEE0mHGHq9vtti06CD4REC3nZlVixIA2eNi0npkwBYs2ZNwO7iGhp7S2OLzG+rFZGUnOYr/R2yuUAt1wpaqN2+pKd+aZ2skRSvcte8pKV1jf0+Lo2Dh96G91S3uqFD+xi8Eu2tNrVYgEfyIuj6t/T3oUggkaSTlAIOfsUbdspLamtrG5DxaWjsK/ZFmKEmkg4xerIk56Q7cHc0lW2zClTGwHGpxwNKGcW8PM2SrLHv+X4ZuD1K/LstTennIXlkYoVKv/00kbTvCBhy28WTtLApFF2oTq1wB1BssGpx7Rq7pbMKWXt7+272VGh0+kLtQvRCRz6Scl/LR+ofemrIazZ6VU8S+Io3dIrW3n6mGhoHCp3f2b2pjqgVbjgEMZlM3axCORl2PlkZCum1gFIKfJQ8Wn08NzeXnJycAR2nxsFPZ6idFNpGY3hHn6R8L5nHJar7GI3Gg7YE7P4gkEiKDfMQH+Giol7Phh1mrDlWEhY2EdQq0xok4M3IJL+ggGFDh+6HEWsMFiRJIiwsjOrqakBputlTmJzXK+Nwt4NHBhmsJi9Ndg/Ojn5JklnC4XAcNGF2sizjcrnwer37/TU5nc5uRg+D6AKnDtnhBAFsIjhlGbHDlt7S0tKt6JNG7zmQPv+DHVmWaW9vp7q6mrCwsL3yRGsi6RAkULhNToYd97xQ9X5BusDUNb5qVitXruQf//jHgIxP49DA4ZT5fpkMCKSmldLQsT1qbQmTbp6k7qd5kfYtOp0OvV7fLYR2TLqdino97Q6R1pEWxD+ayCyAVTkgBofwzYpV3KaJJI3dEBcXB6AKpZ5ocXhpdCuNjUWvCDov7ho3DYIyE+hEHdQqwutg8CTJsozH40GSpP2+SPZ6vd0KMTjdArVNEkKzE6GjJLuzAUQZGrwNePAcNJ/F/uBA+vwPFcLCwtT5aE/RRNIhSCBLckKEm1CbBY+s9E3ITwe+BAkJDx6teIPGPue31dDSrvxYWDNqVJFkKNpAdPQx6n6aSNr3mM3mgCLpx5VKAZctFitDUfKSVuUon9GvO8q4baAHqjHoEASB+Ph4YmJidpnLev5nReRblav+OE80Q7ctYtgnShPzlvBmRv6f0oMnOTkZnW7wL1W8Xi/l5eUkJCTsd6Fht9upqKjotv2G/yQjjS3GmK08dtmHMtn58Hb72yxzLuGDDz5g4sSJAz3cg4ID6fM/FAiUf78nDP6ZR6PPSJKEwWDA6XSq2wQBcpLc5NZbkSLbKEkEm1dmasaxzC/8lbVr1+J0OjEYDPtx5BoHE18v6gj30Lspj3MAAtG1MhGpvipKOp0uYANkjb3DZDLR3Nzst82/qWwoQ0X88pLynP69VTQ0doUkST0uUmRZZoGtAa/BiyzDX4YY+PGFYjJKhgEgZCt5SGaz+aAxkni9XiRJwmQy7fdFssFgoLq62i/kzmgEq0kgb1s4QUOUpt5rrTLDSmQi7OHsaN9Bbm4uRx111P4a9qDmQPr8NXqP9kkdogQs3pBhx12phNx5JIHtKXBMgmLRdzqdbNiwYUDHeDDhlWXmbK/gq5pm6hzO3R9wkOP1yqpIikipwisp3ooh65oZc5wvFy4oKEgLTegHAl3/I1IcSKLymawstRI03EpqCRgcyrbG6Hg/w4qGxp7y3fp2vKFKXqy1OYjkYAFjvs8YknxKsvKY1hutXxBFMaDxqesaADoiSoBMneLh0yJKNA41NJF0iBK4wt3OTWUhU5el3tcmyD3n6bxCrs/N45Ht1Yz8dhHnL1rDVyVV2NyHZoO+3M1QUaeIn7RhZep2cfVaJk3S8pH6G5PJ1E18mo0yWUlKjkh+uQH9KAs6LwwrUh4XI6P5ZfXagR6qxkHIG2tq1NtjDVZqamrIsCv5bi5cBE9Qrnvt+u8/emosL7ca8bYpESOFQwS8AmRIGejQa2sAjUMOTSQdogQq3jAqzYGni0gqSBMIrwtX769cuXJAxnawsbmplec2Fan33bLM9+U1XLZkHdlz/+CGFRtZWF2P9xAqsfxVZ6gdMrUJrQAYHTJy4wbCw5XvnCiKWCyW/TTCgxtBEHq0JAPIskBZpPLeZ+X7vpdfbdgyMAPUOKhZ3lqr3j4vQ8faX9YRJykJ1o3RDYhGEYPBoIXa9iM9RZOAoHqT2o1QEQt6QU+GlM7WrVu7helqaBzMaCLpEMVoNHazJAeZvaSb9MhOJY48Px28ZTJBopLMrVmR+o5Xlrk5Nw+XV1loTgg2E2fy/fC3uNx8WFTOjN9XMubbhTy0bht5Ta37a7gDxtcdpb/1MU20WJTbWZs9xB7uE+VWq1ULtetHdtdUdrWkWPGzt/keX9HY0u/j0ji4WVvsxB7eCICuzciEaJHq332eJcM4pdy/5kXqXwJd/0lRbiKC3T2E3GUhyzKrV68eqCFqaOx3NJF0iNJTU9mx6Q7c1Yo3qT5CoD4UTkw/AYD169drfRL6yDsFpSyvU5qkZgSZeTkznrWnTeGrqRP4e1oCQTpfYnO5zcGLm7dz1I9LOOanJby8eTvl7Qff+72tRCZvhyJ+hmeXqNvD1xYx6Qgt1G6g6CnktpOltcEYYg0MKQLJrQjZUnPwgI1P4+DkpaV1CFKHYUQORhAEDFt9BYFSp6UA2vXf3wSq/iUIiqHE4xd2r8zVWR15SVpEicahhCaSDmF6ikl2V3YJuUuHydFHAuByuVi/fv2AjW+wU9Zu56F1PjP88xOGYxRFJEHgmNgIXjlsJJvPmMqbk0dzSnwUui5ekw2NrTywbhujv13IX39fyUdF5TS73IGeZtDx9SLfbW9ivXq7afXvaj6SIAha0nY/E+j6T4t1EWJR8uTWbTcTNC4IowvSi5XHPVGxFNbUDeQwNQ4y5lf7vEYzkgw0NzeTZlPcFXbBTsTECLUKmEb/0ZOhNCfdjrs6BLmjmGVBhvK/Mz9ZiyjZM9rdHja12dnS3EpZu50Wl/uQCrEfrGglwA9heopJ9izq0lQ2TeD0jRnq/dzcXL/Eeo3AyLLMHas20dpRmOHC9ESmRIezY4d/PLdFJ3FWShxnpcRRa3fyVUkV/yuuILfD+yQDC6rrWVBdzx2rNnFqQjSzUuM5Li4S/SAtI/pVR6idYHZQFqkIv5RSGWdYBcHBiqfCbDbvkx4HGj1jMBiQJMmvqaQowug0O4vzrNQ263CMU0JysvIhv2MamJO7hn+eesL+GLLGIKei3kNjaB0CIDh1nJoisfzTjcSK8QDURdci6LK1qpYDhMlkoq2tzW9bToYd3BKeuiB00a2UxgvYjDJJjiSChCBNJO0BzS43J/+6nK0t7ZBXqm4XgCC9jmCdRLBeR4heR7BeR7BOR7Be2ul+l8f1kt82q05C1K6XfkETSYcwgWKShyY40TfEqPfz0yFovi/ERnO1946vS6v5oVxJTo41GXgoZ9huj4kyGbh8WDKXD0umoKWNT3dU8mlxBUWtSt8gm8fLFyVVfFFSRaRRz1nJccxMjWdCRMigWVBUN8j8uVEGBDJGltHpR0pb10jMlOHqflqozcDQ0yJpcZ7ixdtqsZKI0lT2u5OV79hvpRX8c6AHqnFQ8MriRgSjYhhJcgSjEwSq5lcTiyKSDGO1fKSBJJChdHSaA0GQ8VSGootuxStCUSqM2ApDpWGs2baapqYmQkNDA5xRIxB3rtqsCKSdkFHykltcbrA59vj8XcWWT0j1Xmx13tfEVnc0kXQIo9fr0el0uN2+MC5JhFGxMpubTUghdopSwd0qk6BLoNxdrlmRekGj08Xdqzer958cn02YQY/X2/tmnEOCrdw9agh3jcwgt76JT3dU8kVxJfVOpYN9ncPFG/klvJFfwpAgCzNTFcGUHnRgV4Obu1ipnAYQmVKpiiTvqlwOu/EwdT9tkTQwmM3mwJbkDpbag5lpFMks9CJ4ZWRRYItncHowNfY/3xTXQLRy+6QopYCNfptefTzttDQEQdCqWg4QgQylwRYvGXFOSqpCMY5W2jPkpysiKUuXxRr3alatWsVxxx030MMdlHy6o4L/7agAwCqJzEiOpcXt6RBHHppdblrdilBq3cOWIF3FVnk/ia2QTlHld//gF1uaSDrEMZlMtLb6V1PLybCzsTIEKcSOwyhQmiBzfOgJfFDwPhs2bMBmswWcXDUU7l+7lWq70nRzekI0pyfG7OaInhEEgUmRYUyKDOPRnEx+q6rjkx0V/FBeg92jiK6C1nZmbyxk9sZCJkWGMis1njOTY4k0GnZz9oGns4EsopfSKMVDFtQqs2PbL0yYcB6gfCf1en1Pp9DYhwTMS0zrUuGu2MylY4LwrmgmqRxKkqA1LJJml5sQvfbzodF72mxeSow1SiK0V2DWEB32djsp7akgQIvQQsaEVKxWK+IgDSUebEiShMFg6NYkOifDTtHGnYs3yH7FGzSRtHt2tNq4beUm9b4xdygrfkrGoAe9BAY9xOogSafc1utkxdOq94DeDXo3Hp0bWfLg0XnwiG5cohu35MYluHHiwSG4ceDGLruxyx5sXuX/nrCvxVZIl1DCTnGVFaIYgAcL2q/cIU5AkZRu573FoRgyqwHFijSxdBIf8D4ej4e1a9cyefLk/THcA56F1fV8UFQOQLBex1Pjs/dZKJxBEjklIZpTEqJpdrqYW1bNpzsqWVhdT2f654q6JlbUNXHP6i2cGB/JzNR4psVHY9bt//yeNpvMz7lKqF3UkDpsHRpuxEY3dcMl1XqseZEGjkAiKTzYS0q0k+IaAxt3GDGNt9C8opmsAkUkIYr8sKWAWaOyup9Qo0e+XwY/LQklJgpMBhmjHowGlP97cFuSBpel9r9L2hBDFAEe0RZEqF5k1debCBWUsv81UdUIoqBd/wOMyWTqJpLGpNv5YnEMXrsO0eSmIENARiZTlwloxRt6g9vr5cpl61XvkGNzHAWLkynY5VECoO/42wsEGUHvBoMHweDu8tdx3+hG0Cv3RaMbyeRGNHY8pneDwY2s94Bu78XWzgwzhGoiSWPw0FOvFPcXker9/DSBo4pS1Pu5ubmaSAqAze3hltw89f4Do4eSYPEtQstrYeMOPe2AxShjNoLJoPwZDfRJTIUY9Jyfnsj56YmUtdv5vLiS/+2oUHssuWWZH8pr+aG8lmC9jjOSYpiVGs+U6PD95gb/aQXYncpzD8sqoTMgMXhtPkOO0ELt9ge7siQX1xhwukWqY5Q5InubzC9Tlc9v7uZ8TST1gW8Wycz4J0BYx5a9r2olSbJPPO1KWO1WdAl7LNS63jbodz2HfbilBjp+VqaEKN+p6t9qCEURSfocZTmiVbUcWEwmU7cGsUorAAFPVShiah1NwVATCTF1EUSL0Vpuci94Oq+IFR0FmGgx075gAOdLWUB26sGp37uZRvAi6D2Kd8vg6RBWHWLL6FZFlf/9LkJMve8TW+UVg0t2DK7RauxzAlmSY8I8xLhN2DwCgiRTkA7Gj03o0OPGpU2QPfBMXiGFHUUWDo8K45IhSepj3y+VOeMecHsSOrZ0n7pMBlkVTV0FVNfbgR8zYDKk8ldDKscbWtggVLLaXUmTrLjLOxvWflhUTozByKkxcZyVFM+YiCBMht0vbvYVnVXtABojlR8PwStTt+pX/nLhWYCSJ2c0GgMer9E/9GRJnrtMCbdZLVkZh1LhrpOVzd2TkDUCU9Moc8XT+77Ur8cD7R7Y+1ZqvRmbrBi5BVn5E2UEQVaaiHRuE2QMBhm9XsZgAINBxqDvvC9TPqxa7Tny9yHK0kO31bcESTstFbPZjE6nLUsGkkCG0mGJTswGL+7KEPSpSsn//HSIqYNMKYvF+YtoaGggPDy827EasKSmgWc3FSp3ZIHmH0aCS8eJ49r54TkLsizgdIPLDU43OF3+t50ucHk6bnfu5wq8r99tj6wev8vz73TObrfV+yIut4izZW89W17VizV8xODygGuz0SGOKIoYjUYcDv/405xUJ4trg9HFNlMeL9Cml8k0DiPPkae52gOwobGFl7bsAMAgCrwwcbjqsaltlLl0tszucjLtTuVvz+hc6AQBQ0EYgi6hAUNWJYah1aolp9rp4L+lO/hv6Q7cNUE4t8bh2haL0WXqgyjb+b6w2+NMBvj2TyXUzhrdSmWwkk81rBDy2pczbtwjyug1L9KAYzabu1uSuxRvWF5l5chUE+ywE13jpSZapMoUhMPjxShpuSO7QpZlrn5GproBxMhWhk+s5pjxOlwecHllnB4Zl0dW77s8XlxecHtl3B4Zl1fGLct4vDJuL3hkOcAfeJHxyrLff0XIoIoaBBlB7BQ07CR2umzv3KZuRzmuL68bcHT8ddL5TTG3m0mz6nC1u0lsTQQB6qhl4qTx2vW/HzAajQiCgNylZ49OgpFpdtZU+SrY5acLHJmr5CUtdi1i1apVnHCC1gpgZ5qcLq5atgFvx9tpW5qOpyqUqFB47NI6BMGCJAn0jy2gfwSILCvrl56EVXexxk5iTcLplnC6DMRF9MsQ+w1NJGlgMpm6iaQxGXYWVIagi1UWT4VpMNV4HHmFeeTl5dHW1qaFRXTg8crctCIPT8ePzK3D08kKUX7sZVnm6mdlqjrKuI1KdTBhuBGHSxFENodPHO18v/P2HvWQlQXcZRG4yyJoX5CFPr0WQ1Yl+hRft3tddCu66HzkI/Nxl4bTtiWOhoIYcPV1WujtAkqZwEeOK6WzxW7yuloYm6p6j7RF0sATyJucnezAoPPidIusLTQRPD4Y2w472fkCNdEg63Tk1jYwJTYywBk1OvnwZ/jiDzCOKcFyzFbKgTktAXYUAKnjby/YR6fpV06OUDwX+T9swyAot6uiqhBFUbv+9wOdTWVtNpvf9rHpdlb+7t9YHlDzklauXKmJpJ2QZZlbVm6itMO9K1eGYV+VBsC/b4Po0N5XuD2QEAQBvQ70OrDsQY9nj91D6+ZWmje0YLIaUUtcDgI0kaSB2WymqanJb1tOuh3P2lBAaXyWnw4TW3IA8Hq9rFmzhilTpgz0UA9IXttWzOoGRUxmhVi5OTtdfeyjn+HzBcrtiBB489YaJuUk9al6k8cj43AFFlC9uW9zSNidsdidsTQVO9luqqIspJIWqzJmQQB9cgP65Aasx25BKI3CvTUe2/YIXM597ykQo2vV2+5Vyzn81MMBJT9Gq5o48ASyJBt0MDzFwdpCMzuqDXgP8+UlLTxCEbvfbs7XRNIuKKmSuf4FL6bDijAfVrRfxyIJAjpBQBJAFASkjj+dqPwXOx7r3K/rPsp2UX1c/RO7Pq4co+vyeOc5O7e1NLcQoxM4O0oxrlXNryaZVAD0Y3QYDAYMhgOvIuehQCCRNCbDjvxjBJ56C1JEOztSBJw6mWFyJiKiFlESgI+3V/BVSRUAkltH3Q8jQRa44GQ46xjYsWM/D3AAcNQ6adnQQvOGZprXt9C8oYW2bW3IHuX3JfYvMUSfoIkkjUFEIEvyiBQHco3PL5qfJnD60nj1fm5uriaSUEp8Pr5BSdYQgBcnjsDQEYJUWi1z/Qu+hef/3arke/UVSRKwSHtmwUEdWScmIBVIpbClnU+LlR4OnQ1r0XmR06qR0qpJNeo5MzGWGQnxZFtCsDuF3Xq9ut+XsTmg3SFTXdvCkCQbH4QoXsuIepktRb8wa/K/ACVhe7A0xT2Y6MmSnJNuZ22hIo62Ws1E4J+XtKC8egBHObiQZZnLnvTiHL8V85hSdft5saEcl5aETpR2LUrE7qLEJ0IIsM13rNhF/HTus7+x2+3s2GmFKG3xLT9Sp6doXqT9SKA1gFK8AdxVoUgR7bgl2JEMw4pMJEspWm7yThS2tHNXl/6ITT9nI7eaSIyGl24Em82GzWajra0NvV6PKIpIkoQoioPyd0/2yrQVttOysaVDDCmiyFG569LhLRsCudIPXDSRpIHBYEAURb9mp2ajzNBgkXKbHtHsoiAdpHo9IUIozXKTNkGiLIRuW7WJ9o5+Rf8YmsxhUWHqY5fNlmnsqK5+3okw89gDy5KUEWzhrpFDuHNEzw1r3yos5a3CUjKCzMxMjWdWajyj+tSwVpn8m5qaqKys4o/6dlwlyiMj1zv5Vb+dUaNGAVqo3f7EbDZ3F0kZdvhVub2s1cpfrBKxNR6Cmzy0hEoUyBIer4wkDr4f+P7mlS+9LInYiCmzSt12//A0ThKdpEQEo9fr1QXSYF0k9YWd20x4Wj3EtMUCUCaXMeXwydr1vx8J5MGPDfcQF+6ivjIE43ClGWp+OgwrgixdNj8V/kB9fT0REYMsyaQfcHWU+27rSDx2b4nHVaB8v/9zi5PGugocDge1tbUBr/fOuUCSpD7dHqh+Yp52Dy15LTSrgqiFlrwWPG27N/oKOoGg7CBCRgWrf4MJTSRpqJbk9nb/ilVjMxwUV4VgSKujNUigKlpmRPsIltqXaK524NPiSuZXKpV/EsxG7h09VH3s31/Bzx1vUUIUvHC9l7Y2G+3t7bS3t3ezJO1PujasfWxsJvMr6/jfjgq+79KwtrDVxpMbC3lyDxvWdi6SFpb4FkvmNZsZN2EcBoMBQRC0HLf9yK4syQBrd5j4+/hgGhY2MjxfZPkEcOn0bGxqYUx4SLdjD2XWb3dzb+E6DJnK3CAC96VGcYreQ3V1HZIk+S2SBEHwmwv6slAaLOJqZ5G04+didB3Lj6rISoxGY8DvoMbA0CnaPR7/Re+YdDu/7vAVbyjobCorZfITP7By5UpOOumkAR7tgcfsDQWsqlfC1/XtZhp+V/K2rjrdQ1ZsCU7nrnORPB4PHo8Hl8vVp+cVBGGPBVZPc4ejyuELlesQRW0FbdCLdCpdqI6Q0cGEjAohZGQwIaODsWYGIRkHb4EfTSRpAAQUSTnpdr5cHwppvhKgR7uOYWnhEjZv3kxLSwvBwYPLKrCvqLU7+efqLer9ZyYMJ0SvXE7bSmTu+LcvzO75a1poqKmkdGk7DdsbcKQ4kcKljj8RybRnk1x/LJL04r5vWOv1emlra0OWZZY6HGAEvUumav18Dr9SyUeyWCz7XSweygRaoCZGuYkIdlPfomNdoQnr4VYaFjaSnS+zfILyvfujvEYTSV2oa3cy7ac1SClKjqfoFZidEcnRoRa/nK+uyLKsLpL6Sqc1eed5YXfzxkB6r1wuV7fCQFXzq4ghDgBpjKiF2h4AmM3m7o3lM+z8tDoS2SUi6L3kq8UblJ4/mkhSGsi/sHk7AKIsUDd3FLh0DE2Em86o8IvQ2dfIsozbvSeVnUCQBTxlXlz5LuxbHTi2OrBtseOu6935zKlmxTPUKYpGBWNKMh1017EmkjSAHprKZthx/9Kluk2awKk7RgDKxbl69WqOOeaYARvjgcS9a7eqYWlnJscyLUFJRPR4ZC5+XFZ7l1xyip2clEoa3mmk/o1GACrxz+UQzAJSmIQUJirCKUwRT2JYh5AKE9VtUpiEaPaJiZ0XRX1x0+9uMgvUsPbTHRVsDNCwNkgncUZSLOekdW9Y2ymQ8u0uao3KQnHEFljTuoTrJl8GaKF2+xu9Xo9Op/P7wRUEZZH029ogmtol6hMUIdU1L+nHwh1cP3LwdE/vTyptDqZ+swpbmHJ9CC6J54bFcHjoXvYY2QVerxev17tHC6WBCvHZeeENIG1Wlh5e2UvatFTt+j8AMJlM3UVSuh1kEXd1CPrERmojBRpCZFKb0jBiPOQjSuodTq5etkE1INqWDcFTE4IowovXNSNi2+XxA4W3zYuz0IljqxPHNifObU6cBS5kZy8q0+rBOMSAYagB4zADxkwj5iwT+hC9Oi94RQ8tUgvt9e175L06kNFEkgYQ2JKcFuPC0hyELCsLpvx0iPomGgEBGZnc3NxDUiT9WlnL/3YoMdqheh1PjPV10n76Y1iyUbmdES9zw19Kaf21TRVIgZBtMm6bG3dF755fMAldhFMXQdVVaHURV4JZ6DY59TXEJ0oSuXZoEjdkpZLX1MqnOyr5tLiCCptiIW51e/hoezkfbS8nwWzk7JR4ZqXGMSIs2BdqV9GmPn/C2ipyrW6GDx8OaCLpQKCnRdJva5XPZjUWsgRILgNjuweHRWJNqwNZlgflj9++ZHtrO3/5ZRU1orIo8rbreTghjcNDd53EvD/Z2xCf3s4dLS3+idqeRg+RbVEAFHkLOf7IY7FY+pLnqNEfBFoDjEx1IIkynspQ9ImNgFIKfOJaiaG6oYd0brIsy9ycu0n9DTTWhtOQmwLArTM9DI2ppgfncb+OyVPjUYVQ539Xae+MKGKoiDHTJ4gMwwwYUvUIOv/5XUbu1oC8V+ffaY4wmUxERx/Yle40kaQBgE6nQ6/X+/1giiKMSXKzrkEpAVqcDG6PSKKYSKm39JCcINvcHm5buUm9/0hOJrFmpcfP2nyZ+99WZkVBgNmXVSEV2il/xFfyWneSRFBiEN4mL54GD55GD55G5ba32durlkOyXcZd6cFd2bvwHMEgKF6ocKlDTPkLLGmnbYKlu6jqikEUuTBI5MJRyaxuczCvtoWf65pp68hfKrc5eGnLdl7asp0RIVZOCDZwYqiZRbXtoLxV2Ff/ycSJE9HpdJhMJnT901lPow8ECrcZ0yUvKbfMxIRsK62b2sgqFFg3CtokHQWt7QwNPnTzyTY2tvC3Bauo7lg0eJpNzHSM5JTUmv08sv6hM8RnT8N8Kuf7illURlQQFhamhdoeAAQSSWajTGaig/xK/6ayE9fKZOqy+HL7F9TV1REZeei1AnivsIxvy5SoEJNXT+XcEYDAmCFw+cllyN7+VUiyW8a5w4VzqxNHvk8UeZt6Ed4ngD5Jh2FYhxgaasCYaUCK6t88x07Pd18NM/sTbWWioWIymbp9ecek21lVqZQA9UgC25NlRraOorSt9JB0tT+xIZ/iNmXheHRMOOenJwDgcMpc9JisNn697ox2RlgaKL2xWnVpB51qRb7CQ0RsWMCJSHbLeJq9eBs9HQLKq4ioBp+Q8hNVTb0UVU4Zd5UHd1VvRRU+z5QqorrcDvd5rEaESYyKC+am2CAWNdv4saGdJc02Op8pr7mNvOY2XilrQO4QSInlMhvLf+ev55+pvC+aF+mAINAiaXSaA0GQkWWBtUUmgscF07qpjex8WKcUJWRJTeMhK5KW1jZy3sLVNHVc+J46K0lrxnLLTWX7eWQHLhXzKwlHqYgmjZG06/8AQZIkDAZDNw9BToadzSt8YfdqXpLky0s6+eSTB2ycBwJbm9v45xpfTnLdD8OR20zodfDCtY3g3bceZE+r188z5Mh34ix0Qi+0hmAUMAzRq54h4zADhiEGRMv+N0xI0oHc9lpBE0kaKiaTqVtoRE6GHfevIRhH+EqAHll7JD+2/cDWrVtpamoiNDQ00OkOOlbVN/GfbcUAmCSR5yYMV8XOg+/IrCtQ9huZ5uXyY0qpuLEaT60iF0w5RqLvjKSmsWfrsqAT0EVIENG7iUP2yHibvX7CyU9cNXrwNHQIqkYPniZvryrUyE7wVHvwVPcykVwPUphEVpjEiDCRK2NN/DnMy++JHjZblXN01XLD1zv43LOVww9XijZoi6QDA5PJ1K2pbLDFy5A4J/kVRraUGpGOVIRU9jbfcb+XVXJhRuJAD3e/83NFLZf8uRZbhwfVXRmC/fuxPH9vAzrJ/0KTPTKNHzVh3+SkPrUBfYIeXbwOfZwOXZyuWzjLwUxnPpJbdpN2spaPdCBhNpu7iaQx6XbmLAjD02xCCrFTlCrgEWW1eENubu4hJZIcHi9XLl2vXvfGwkQaCpWQsX9d4CYxtHaPw+xkWYkS2VkQuct757WVIiUMQ/0FkT5ZjyAdmPOLJpI0BhUBizek2/FUxqj3C9IEpqzKVO+vWrWK4447bkDGtz9xeb3cnJtHpwf9zhEZDOmwnv+5Xuapj5Xtep3M7IsraJxdg3Or8mOjS9AR93gMgmHfTlSCJKj5R71B9sp4WzrF1E5CqtGDd2fvVZMXeqOTXOCp8eCpUXYWgaM6/iqj4c/DYPFhAlUxAkaHTMjC1QSHBpOVlYVer8doNO7pW6CxDxFFEYPB0K0S2ZgMO/kVRtwegcJgMwYgvRgklxePXmRRRxn8Q4nPiyu4ZtlG3B2rIVdxBK3fj+a+c92kRjX57Su7ZaofqqH1V6V6aCPN/icTQRctoYvToUvQoY9XhJM+Xrmviz54RJS7yk1Iu+KV2OLZzGnHnjooFkqHCiaTiaYm/+9vToYSOeGpDEEKseMwQmkCpJbGESqEHnIRJY+uz2ddo2JMDnFZ2PHTMAAmj4C/H1OG17N7hZSUlAQuaNnSSsvGFlo3ttGa10r7Zhue5l786IqgT9H7QuWGGTAM06OLPLCW9F6vl+rqakpKSiguLqa0tJTk5GTOOussgEERZntgvaMa+xWj0djNkhwe5CVRZ6DZKSEYPOSnQ0hTKEaMOHCQm5t7SIikV7fsYENHZ9hRYUFcl5UKQGu7zEWPy3RW+bx9ZhsR35bR+LuyIBKtAvFPxSCFSz2WAB4oBFFACpWQQiVI2/3+slfG2+pVvVGdHitvg7+46urJ2llUxdXAWd/BX7+TKYuXMdvh9ZJfOGzqYYiiqFmRDzBMJlM3kZSTYeeLxYq3eHmjieMj9VDnIr3IS36mSI0sUN5uJ8FyaPS5eSu/hDtXbVa9o85tMbT9PJLDswTOO9q/W7TX4aXq3hraF++iypUXXzjs2gBhOhLoojsEVJxO8UAlKEJKF69DFy0dsJbinalbWK/eLg8tIz4+fj+ORmNnAhlK02NdBJs9OKtCMWQqOTj56ZBaqpQCP5Ryk3+rrOPVrco1rkOg9PNR4JYwG+H5a+rxenouZuCuceP8xk1TfQs1+Wto3dKG7N79mkCySoSMDCZ4ZBBBI4OwDLdgHmZCMApq8RWv17vL2/2J3W6ntLRUFUHFxcWUlJRQUlJCaWlpN8/kUUcdpYqkwWAg0USShoooihiNRux2u9/2nDQHv9UEo09spC5SoDFIYEjjUPLcGw+JCbKgpY2n8goBEAV4ceII9B0WkDv/I1PQkX4wKdvDDNs26t7rsMSJEPtINIYM/4arZrOZuLi43U5sO28baJEliAJSiIQUIkHq7ssYy3KHp6qxi2eqi5CqXrmNuQXfs8i5kPsm3wdooXYHGmazubsluUvxhtUFRs6cGErtj7WMLJDI73AqL6lt5G8pcQM51AFHlmWezitk9sZCdZtjQwLtC7KxGAWe/EclouALs/O2e6m8qxrbSuX9EwxguEbPkJwhCLUCthIb7Tts2Ipt2EpsOOt6SDDwgLvSjbvSjT3Aw4JOwBCvx5BgQJ+oVz1RUryEFCMiRAgI4oEhoip/qyIIpbeeNEYzkhxoGAwGRFH06+0jijA63c6ynYo3nLBQJkuXxYri5dTU1BzwVcr2llq7k2uXb1DvC6uH4qlVvsuP/sNFuKlnj7p9vZ3yW6uQ22TqqO9xP1OCieBRwV36DwVjSbPs1fUry3KPa4rd3ZZlGVmWqa+vDyiCSkpKqK6u3v0gulBSUqLe1kSSxqDDZDJ1F0kZdn7Z7l8CdFTtKPJaNx70rnZZlrkldxP2jvjjq4elMC5C+bH4cbnMv79S9rOYZB6blE/dfb5KdpE3RmCZ7F/aVhAEYmNj+xxi1jnR9UZMBXp8IBCELqIqpbuo+tdV/2SBfQEAhx9+OHq9PqDlUmP/Eah4w9AEJ2aDF5tTZF2RiaAjLdT+CNnbZL4+VfnxXlLTcFCLJK8s88/VW3g93/cDr8tLo+H3DEDggYvaiQv15XN6mj1U3FaNY6PiGRLMAnFPxuDN9pAyLjlgmIm7xY2t1EZ7cYdwKu64XWLHtqMdV2PgvATZLeMoceIoCWzFFgwC5iQzpiQjxiQjpiQjhkQD+ngd+kQDYrjQ49yyLw0zsiwjbVIWRXbZzogzRqDX918PKY2+IwgCRqMRm83f8zk2w86fm8ORPQKCJAcs3jBt2rSBHu6AIcsyN6zYSJVducai2yLYujgZgBPGwxkTy+jJYWNbZaPijmpkm+9aEiSBoCwrwSODCRmtNGINGRWMIdIQ+CR7QdeS/T3hdDrZsWMHhYWFFBQU+P0vLCwM2OtsdxiNRpKTk0lKSiIlJUX9n5KSou6jhdtpDDrMZjONjY1+23LS7biX+TeVnVRwGP9r/YSCggIaGhoIDw8f4JEODB8UlbOopgGAFKuJe0YNBaChReay2b5J76FptXhml6rVZkL+GkzozOBu5wsNDcVg6PtE2HWi6+vCQpblPbIi7UvvlcvlYsWKFQBERUUxZMgQoqKiDvn+OgcagSzJOglGpdlZsdVCeb2e9lRFSA0tBMErI4sCC8qrYcLw/TXsfsXl9XL98o18WlypbhtePYw/5ys/9idM8HLGxHL1MXe9h4pbqnBuUxZUYrBI/LMxWHOsu/y+64J1BA8PJnh493kDwNXs6hBMNtpLOoRU5+0dNtwtPYgop0x7YTvthe0BHxdNIuYkM5ZUM+ZkM+YUE5ZUK+ZkE8YkE7oIaY8s0d3GX+LGbFeMRhvdG7nijMt6fC809h9ms7mbSBqTbgeviKcmGF1cMxVxAq0WmUyvr3jDwSyS3i4o5ccKxQAaLOjZ9olS7js0CJ66og6PJ7AXuH2pjcq7fRVurYdZGPP4aEKGByOZBtaL0tDQEFAEFRQUUFJSskfG1JiYGIYMGUJGRob6v/MvJkbJZd/VHLEna6GBRhNJGn4EsiRnJTsQa32u9Px0OMObod5fuXIlJ5544oCMbyCpsjm4f+1W9f5zE0Zg1SkT2w0vyJR3OI1OGekg56ONuBqVScY80UTULRHdFkQWi2W/TAqCIOxxH6LdLY4CPeZ2u6msrKSoqIiioiIKCwvZsmUL7e3KIu3www8nLi6OkJCQ3Ty7xkAjCAImk0n9rDrJSVdEEsAqr5lknYDZIRNf7KQ8zUiBzUmDw0W48eDyDLS7PVy2ZB0/dSyQJEHgwqDhPP+KkksTGgSPXlSJICiLIHe1m/KbqnDtUBZNYphIwotxGIcZiI2Npba2NvAT9QJ9iB79SD0hI3sQUU0uv/C99h3Kf1uxctvTFtjU7bV7actvoy2/LeDjkkXCnGzCnKKIKEuqWb0dkhqCPkbfba4LFOJT9MN29fHy0DLi4g5ez+NgJtAaYEy64hF1V4aii1MKjxSkQU5eMAliwkEdUZLX1Mp9XdYBbb+MQG5XIkGevsqJVRc4fK7tj3Yq76tWDafRJ0UR8WAYoZkh/eJB8Xg8lJaWBhRBhYWFNDQ09Pmcer2etLQ0PxHUVQz1Jlx2sHuLNZGk4Yder0eSJD9LoEEHw6OhqMWIGOygMBWMNjPhQgQNcj25ubkHpUi6e/UWtf/JOanxHB+nNMz77HeZD39W9gmzeLmlaCWuImUm1KfoiH00uls1KlEUiY2Npby8nMGEKIo9Tuh2u538/Hw2b97M5s2b2bJli/p/51LyXTnjjDMICwvrpxFr7C1ms7mbSBqT4QvBXbldz8jRwTStbmZMgYHyNGX7srpGpiUcPHkJTU4X5y1aw9LaRgCMosizo0Zx4x2+1/jEP9oItyjiwlXmovzGKtwVypwhxUgkvBiHIVVPe3s7F198MUuWLCEkJITg4OC9+uss194Vfaie0DF6Qsd0Nz7IsoyrweUL4esM5+sI5bOV2PG0BxZRnnYPrVvaaN3Sg4iySphTunqizFhSfP9NYcqiu+wn39xnPcwS8Fwa+59AIdARwR5Sop1UVHXtlySQkycf1MUb7B4PVyxdr4bbJ9QksXFTFAAzjpI5bmTgMLvWX9uoerBGLWQUc1o0Y18fQ0lFSfed+0Bra6saArezCNq+ffseNWkNDw8PKIKGDBlCUlLSoMgb6k80kaThR6clua3N/wcxJ93OtspQDMHVOEwCpQkyWc1ZLHUtOSgnyO/Lqvm6VOkMH2nU8+hYJUO9sk7m6md9IWivBm3A85vyXonBInFPxyo5OTsRExMzKC0qsixTXV2tCqCuYqioqKhP4XihoaGceOKJXHjhhf04Yo29JZAlOaeLSFpbaCR4vCKSsrbJ/HCCLy/pYBFJVTYHMxeuUitaBukkPpySw9PPh1PXUdfizKO8HD9K6R/nLHJSflOV2hdNl6Aj4eVY9PF6Vq1axc0336wmOFdWVnZ/wj4iSdKei6zoYIIzlNvxwXEEBwej0+lw1rlUwdTeEcpnK+nMi7LhtQcOx/G0eWjd1ErrpsB5C7oQHeYUM87NLiQkWr0tjP7LqL1+DzT6B51Oh06nw+32D98ck26ndFPX4g3K/0xdFr+X/kZVVRWxsbEDOdR+58F129jUpHyv40UrGz9Twu2jw+CRi2rweLqHuLZ830r1Y7VqT8KoMyIZ/8ZYpTfGbpBlmYqKih7D4vpaJAEUQ2dycnJAEZSRkXHQpkrsKzSRpNGNQCJpTLqdOStCMQzzlQAdvWM0S11LDjpXe7PLze2rNqv3Hx+bRaTRgCzLXPG0rC6S7gwvJuw3RUghQdzj0RiSuwshq9VKaGjogBVQ2BOcTicFBQV+Iqjz9s45artCEATS0tLIzs4mOzubrKws9X9sbKyWgzQICCSSYsM8xIW7qGzQs367CePRyj5ZBb59Flf3XLVpMLGj1cZZf6ykqFXJy4g06vn06PGsXhrM3D8Vo0BMONx7bjkg49jioPyWKrwd4bb6dD0JL8QiRUm89957PPnkk6pn3mKxoNfraWlp2av5wOPx0NjY2Kdrc1cYjcaeRdXIYIIPDyZCF0G4O4IQZwjWdivGFhO6Rj1CrYC32quGFe2Mu9lNy4YWJBTj0Tr3Oi6besk+GbdG/2A2m7tFA4zJsPPt8mC8bQZEq5PCNPAKqE1lV65cyfTp0/fDaPuHnytqeH2b4vkxCKJS7tujfIdfuN6BQWjqdkzzVy3UPOWrchf+1zAm/mc8os6X52m32ykuLg4ogoqKirrlg/UGq9XaowhKTU0dFLk/ByqaSNLoRiB3e06GHfdcn8WhIE3g5JDx0Azbt2+ntraWqKiogRxmv/Ho+nwqbEoM9vFxkZzdUbXrnXnw7Z/KPscIdUxdskU9Jvr2SMwTur9vkiQdULH3dXV13TxCmzdvprCwsE/9FIKCgrqJoOzsbIYOHapVrBvk6HQ69Hp9t9CNnAw7lSv1tDtESiOVzzikFSIqbNTHm1nb0EKb26Pm7Q1G8ppaOXvBSio7qlglWUx8fsx4DO0WbnrJ5zV95qoWgow2bOvsVN5WhbdNecyQZSDh+VicRid333E33377rXrMiSeeyJNPPsnYsWMRBAGbzUZLS8s++dvZqNVXHA4HDodjj3OmBATChXBipThixViSjEkkGBKJk+KIIpowTxiSLOGVvSy1LuGR9If2arwa/YvJZOomksZm2AEBd1UIhoxa2qwClTEyQyqHoENHbm7uQSOSqu0Orl+ep96PKRjK+jIl/+bCk2UOH1LOTo42Gj9ppu5Fn6Eo9OwQJrw0DlEn4nA4uO+++/jggw+orKzco4JICQkJPYbFRUdHawbIfkITSRrdCGRJTox0E2o34+1SAvRSZxIiIl68rFy5klNOOWU/jHbfsqy2kbc6yvxaJJHnJgxHEAS2V8jqIinB0cYdFWvVeOPQc0IImRE4mTomJmaPiybsKW63Wy2WsLMgqqvruZdDIFJSUvxEUOfthIQEbVI+iDGZTN1E0ph0Oz+uVL7ny6v1HJ5owl5mZ2S+joXxyuWwsq6JY2Ij9sOI957ltY2cs3C1moc4LNjK51PHk2AycsJ9Mi0daVoXnuzh8KFVtC23UXlXNbJdmRdMOUbino6lvKGM6y++ni1bfEaUu+++m4cffpjS0lJA8bhaLBYsFss+CVHyeDy0tbXtM9G1c0Ph3SEjUy/XU++uZxN5sFM1chGRCDECu2zntFmnaXPHAU6gNUB2khO9zounKhQyFDGdnw4JVQbSpPSDJuzeK8tct3wjNQ7lS5xJFMvmJQGQFA33nFPdLRSx4b1G6v/TqN4POz+E4Q9lYzAaKC4u5uyzz1aru/aE0WgkPT09oAhKS0vDYtHy+PYHmkjS6IYkSRgMBr9OyYIAOakucuuC0MW0UB4HTp2OZCmFHZ7t5ObmDnqR5PB4uSk3j04bzz9HDSXFasbrlbnkCZlWGwR5XDxbuxqxo1KU5QgzkdcHjukNDg7u1wpuDQ0NbNmypZsYys/P71MCp8ViITMzs5sYGjZsGFartd/Gr3HgEijcpmtT2VXb9JwyMYTKMjsj8yUWHq1sX1LbMChF0q+VtVy8eC3tHQna4yNC+OTocUQaDbz4qczvq5X9UmLhtr+W0bqgza9ylfkwE3FPxLBoxSJuv/12mpuVCmBBQUG8++67/O1vf+vXcFtJkggJCdln843L5dpngqulpQWPx0Ottxaz2cx11123T8ao0X90Fgbp6vEw6GVGJDvYWNmlHUi6wDFLlaayB0vY/Wvbivm1UjEmRuoNrHt7OKCI+ldvsiF6m9V9ZVmm4c1GGt7xhd6FXxZK0o2JhIeH8+OPP3L++eerxkmDwcC4ceMCeoQSEhIGRd+gQw1NJGkExGQy+YkkUBZJSytD0cW0IIsChWkyWXXZ7PBsPyisSC9sLmJrsxK2Mj4ihKuGKX1QXvwMFqwBSfbyUNVaQhqVmGFDhp7Yh6MRpO5WUUmS9pmFeMeOHQFD5PqaxJmYmNjNI5SdnU1SUpI2OWv4EciSPDLVgSTKeLwCa4tMWI+0wteQne/bZ2lN48ANch/xRXEl1yzfgMurLAinxkTw3pQcgvU6Nu+Qufs130Lx+WuacM2vo/qRWtWTbJ1qIfqBSF575zVeeukldWGZlZXFl19+yfDhg69/lF6vJyIigoiIvRe8sixjt9tpaWkhODhYC8cdBIiiiMFg6OZRzMmws/aPEGQvCKJ/8Ybvyr+loqKC+Pj4/TDifcOGxhYeWrdNvW9aMQJbk5LPc+2ZMiMSKtRqdrIsU/dqA00f+URTxNVhRF4SQUxMDA8//DAPPvigOh+kp6fz0ksvMX36dO33dhChiSSNgJhMJtUa2klOhh3Ppq4lQGH0xlH85Phh0FuRNje18tymIkDphfLCxBFIokDedpl7XpdBlrm6YjPZHb0GxDCRuKdjEK2BJ7u4uLg+lc5sbm728wp1/t+2bVufQl+MRmM3r1BWVhZZWVkEBwcOCdTQ2Bmj0djNkmw2ymQlOcgrNpFfbsA7TOkVElUP1jo7bZEmltc14vJ60Q+SRcDb+SXcsWqz6j0+PSmG1w8fjVEScbtlLnpMpiM9iWvPdJOcW0D1U3V0HhB0ihXzTUZuvO1Gfv31V/W8M2bM4L333tN6gaGEFprNZk0cDTLMZnO3354x6Xb4NRxPfRC6qFaKE8FugCyPr3jDX/7yl/0x3L2m3e3h8qXrcXYYSya4U/hlkdL2Y1gS3HJmJR6XopBkr0zt8/U0f+7ztkfeHEHYrBB0Oh1//etf+f7779XH/vKXv/Duu+92W1NpHPhoIkkjIIF+0EanOfBU+YoQFKQJXGQZA01QUlIyaEuAemWZm3PzVEvyjVmpjAoLxtWxSHI44fT6EqY3lCkH6CFudgz6+MAlvUNCQgI2WfN6vZSVlanip6t3qK/9k2JjY7t5hLKzs0lJSTnk+xpo7D2iKGI0GrHb7X7bx6TbySs2IcsCa91GwswiXpuXzHwvqyPB5vGytqGFiZGhPZz5wECWZZ7dVMTjG3zl+S5MT+S5CcORRMUz/MSHsKKjyGVmMlzQtIGaV3w5fSF/DaZpRgMXn3s927dvBxRB8OCDD3Lvvfdq1mKNQc2uWgF4KkPQRbUiiwJFqTLDt6VgESzk5uYOWpF039qtaiTJUHMQC14cAoAowr9vbsfjUkqByx6ZmqfqaJnbUfJegOg7Igk5M5jCwkKuueYaduzY0XGsyCOPPMLdd98NoImkQYgmkjQCEsiSHGT2kmaWqLXrEE1u8tMh0hGNGTM2bIO2BOi7BaUs76jrnRFk5vYRGQA89p7Myi0woaWWKyt9Sdgx90RhHtP9BwSUymAxMTHdtn/77bdcffXVlJWV9Xpcer2eYcOGdQuRy8rK0pqxavQ7JpOpm0jKybAzZ4Fye0W+xMxxodT/2cDYAhOrD1e2L6lpOKBFkleWuXfNVv6zrVjddlN2GvePHqoWFFi1Rebhd5W5TxJlng/Po+GVGnX/0L+HkDtkOf88959q493Q0FDeeOMNZs6cOYCvRkOjfwgkkpKi3EQEu2mtCsU4SjHs5afD8G0wTMoctGH388qqeadAKapikkSavx+Fy6kYOe44VyY1ohKPB2S3TPWjtbT+1FFNUoSYf0URNM3KZ599xsMPP6ymKURFRfHxxx9z4oknAhzQLUA0ekYTSRoB6Wwqu3PN/rEZDn6sDEVMq6MlWKA2SmBY8zDWudcNyhKgZe12HuwSg/z8xBGYdRK5m2UefR9S7K3cXbpO7QMXdlEowdO6e4k62TnMzu12c++99/Lkk0/2eExUVFTACnLp6ekDXhlPQ6MTs9ncrQ9P1+INawuNXDYhmPo/G8j2XUIsrW3khgEaY19xeb3cuCKPT3ZUqNseHDOMG7PT1Pt2h8yFj8m4PYAs82rIZvjY5+kN/UcI79a/zZu3vKluy87O5vXXX+eoo44aiJehodHvGAwGRFH0W9wLguJN/qOka1NZAZDJ1GWxMHcBsiwPquqFFTY7N67wlfue1JzJNxuUgkU5Q+HKaRW4HB5kl0zVAzW0/d5R5lKC2IeikY4Q+ec//8mXX36pnmPy5Ml8+umnJCUlDehr0dj3aCswjR4JJJLGZNj5bnMI+jQl7CQ/HbKKh7POvW7QWZFkWebOVZtpdStxxhekJ3B0TAQ2h8yFj8pYHU4eKF6Dxas8bj3WQsSVYT2eLzQ01K8aXFlZGeeddx4LFy5Ut02cOJHjjjvOTwxFRkb2zwvU0NgLAlmS02JdBJs9tNgk1haaMB+rhOUmVIKhxYEz2MiS2ga8sox4gC2UbG4P/1i6jh/KlfLFogAvTBjBBRmJfvvd95ZM3nYQZZn72zaRnOfz/lquMHHnwtv5888/1W2nn346jzzyCNnZ2YNqcaihsSs6DaWdntJOxmbY+X1dJF6HDtGoRJTIQKYuk08rP6G8vJzExMTAJz3A8Moy1y7bSL1TKVN5RHA0c19NAECvg1duaMXlaMPr8FL1rxra/+xYD+kh7tEYalNquOm8m9i82dd8/oYbbuCZZ57RGrgeJGgiSaNHzGYzDR2FCjrJSbfjXtDFipQmMGr5KD61fzLoijd8U1rN9+VKCE2MycDDOZkA/OsNmfztXh4vWUucq6OSXZaBmPuiEMTAiyC9Xu8XZvfzzz9z/vnnU1OjnF+n0/HUU08xY8YM0tLStHwFjQMeg8GAJEl+TYZFUbEkL86zUtusozZGKd4gAGn5DraOM9LodLO5uY0RoT17XAeaZqeL8xatYUltIwAGUeDNyWP4S5J/aOwfa2Se/USpZHlbxUYmNVQqDwjgvMDOFe9fpuYP6nQ67rrrLi644AJiYmIwGo0D+ZI0NPods9ncTSSNSVeaynqqQhBT6mkKFaiLkMmqzQaU4g2DRSS9smUHC6qVBrBxJiOb5gxHlpXf+Acu8RIbVIW7zUvl3dXYVihedMEgEDc7hiVtf3L32XerrRIsFgtvvvkm55133v55MRr9grZS0+iRQJbkoQlODA2+xU9BOmTrlRK35eXlfS5AsL9odLq4a7XP+jN7XDZhBj2/r5Z5/hOZG8rzGNneCIAUJRH/VAyiuefLJS4uDlEU8Xg8PPjgg5xyyimqQEpOTmbhwoXcdNNNmqVZY1Cxq+RtgOVlEtahivd0XIGv2MvSmoZux+0vqu0OTv99pSqQgnQS/zt6fDeB1NKu9EPTeTzcU7KOqZ0CSYIdpxVxzr9nqfNbVFQU77zzDhdeeCEWi4Xw8MC90jQ0BjOBrv/RaQ4EQcZd2TXkDiLFSCKFqEFjLF1T38yj65X+BQIwvGQERUVKMaYjRsL5Uytwt7ipuLXKJ5DMAjFPR/Lvxf/HddddpwqkrKwsli9frgmkgxBNJGn0iF6v75YTo5NgZLwHT4PS/Xl7MhgIIlqMBhg0IXcPrN1GdUdt31MTopmRFENzm7JIOrt2Oyc2KTkLglEg7skYdNE9O13Dw8OxWCxUVVVxyimn8NBDD6kFL6ZPn87q1auZPHly/78oDY19TKAql2O65CWt3KojbJKyWBqR78vF6xQk+5viNhvT569gfaOymIk06vn62AkBG97e/qpMeZmHB4rXcERLR5EGPfyeM59r37tGTcjOycnh888/Z9KkSYiiSFxcnGb80DgoCSSSgi1ehsQ5cVd2bQeifP+zdFmDYg3Q6nJzxdL1uDt+p08PTeOLT5Q5wWKCl65vob26hfKbK7GvVcqgi1YBy0MmrnvlOt544w31XGeffTYrVqxg5MiRA/9CNPodTSRp7JKAluR0u2pF8ugEipMhS1Jc7YPBirSoup73i5Q8gyCdxFPjlVyCW16Wid9azcXVvu6YMfdFYRrecxiNwWAgKiqKP/74g3Hjxqm9UkRR5PHHH2fu3LlazpHGoKWn67+TtYVGrOMUT1JaCUh2Jbb/z5oGv8qY+4NNTa2cOn8Fha1KyGyixcR3x01iXET3ynvzlsh8+JWLR7evZFybEn6DEd4Of5Onf3lK3e/cc8/l/fffV1sdREVFabkHGgctOp0Ovb57q4sxGXY81f6eJFDyknJzc/f7tb87/rlmCwWtShjhmNAQfno9XX3siSs8WNsqKL+hCsdGxTAihog0XdfIrH/OZNmyZYDy3jz77LP873//03oQHsRoIkljl/QUbuOu8m8qm6XzxSMfyNjcHm7J3aTef2DMMBItJuYulvn982buKF2vXhThV4QRdLw18IlQEltjYmJ46qmnOO6446ioULxPcXFxzJ8/n3vuuUfLPdIY1AS6/sODvaREK4uHvGIjUrZiRJC8EF+g9A6psDkobrN3O3agyK1r4i+/5VJhU6zAw4ItfH/cRDJDul/PdU0yNz/q4PHtKxlhU1oByGYvj7oe5vPNnwGKMeSxxx7jwQcfVEWRxWLRSvFrHPT05E2W7Xq/iBKXTlkHVFdX96nVxUDzdUkVHxQpYbNWnUT46pFU1Ci/0ydNhOkZJZReW45zmzLHSeEiK09ZwQX3nk91dTUA0dHRzJs3j1tvvVXzIh/kaCs4jV0ScILMsOOp9C/eMNKkuJoPdCvSM3mFqgXpsMhQLh2SRE2jzG2P2rm/eA0mWSl3GnSylfBLdt3rRZZlZs2axT333KOWST3hhBNYs2YNU6dO7d8XoqExAEiSFNBT0hly53CJbHLp0IUq4ahjCnz7LqndP3lJ8yvr+OuClTR0VKwaFx7Cd8dNIsnafS4DuP0RG7euzmWoXQnJc5lc3FJzM0tqlQp28fHxfPjhh/ztb39Tj9HC7DQOFQIZSsZ25CV2GkvdeoHiRBiqG4aIeMBGlJS227k511fue6Y5i6/mKUIvNAie/Gs1Rf8owlWkzB1ipMh7Kf/l3tf+hdvtBuCwww7jl19+4aSTThr4F6Ax4GgiSWOXBJogY8M8RHmNyC7l61OQDkPEIUhIVFVVHbBWpA2NLby8RemErRcFXpg4AgG4/kk316xfQ7RbsTobRxqJvidylwugvLw8TjrpJObNmwcoXqX777+fH3/8UQ3F0dA4GNht8YatAuGTwgAYm+8TIktqGvt7aN34sqSS8xatpq2jrP/RMeF8dewEokyBQ+L+93EbR32QS4pDaQ7ZarBxQ+W1bHNuBZR+J59//jmjR4/2Oy4mJiZgGJKGxsFGTwWczAavf/GGDLAIFpKk5ANSJHm8MlcvW0+TSxE702Ji+e//xamPvzizhZprNuIqUR4nUuZB13189NuH6j6XX34577//PqNGjRrQsWvsPzSRpLFLRFEMWNp2bLoDd7ViRaqJEmgL0pMmKXG9B+oEeXNunpqoeevwdLJDg/joJ5m0ORvJsjUDIMboiHsyBtEY+NKQZZn//ve/zJo1i5KSEkDJS/jhhx946KGH/BrJamgcDATyJncVSWvyDYRMUOaCodtB6BAoA+1JereglMuXrMflVa7x0xKj+eTocQTrAxddKVzWivPWFcR3lPmv1dm4qfoaSrzKdX3ZZZfx5ptvEhHhX+TBarUSGrprL7OGxsGCyWTqZjDUSTAyzY6nqnvxhkwp84AMu39x83b+7DDcJFlMNP6cRX2TMuZLxrQR/1Qu7gpFIDnDnVxTdhXLtiv5R0FBQbz88svcfvvtJCUlaWH0hxDaJ62xWwJZksak7zxBKpVt4MAUSa/nF7OqXhFCmSFWbs5Op7RaZv4dBUxtrgLAaxRJeCYGXURgodPS0sKNN97IE088obrejzrqKNasWcPJJ588MC9EQ2OACXT9Zyc50euUENM1hSbMY5R9DC6I3K7k9eS3tFNtd/T7+GRZ5rm8Im5duYnOQN/z0xN454gxmHowWjSta2LVWcuJcCrjK9V5ubXmciq9lVgsFp5//nnuvPPObtU9JUkiLi4u0Ck1NA5KBEHowVBqx1MXpEaUdBZvyNJlH3Bh97l1TTyxsQBQmkjPkEfy/ULFEzzO0Mq5Py7HXa38pjcFNfGPwksobi8GIDMzk88++4yTTjpJrWSrceigiSSN3RLQkpxux13ls6YWpAkHbPGG4jYbj3Xph/DixBEYRIHZV1Xwt7JCQOkYnvBIFMahgcNyNm7cyFlnncXPP/+sbrvzzjuZP3/+oGmcp6GxJxiNxm6WZINeZkSKIjB2VBtoTzSovybZvuKQLO3nUuBeWea+tVt5dIPvSa/PSuWliSPQ9WDtbVjRyMLTcrF0VOIrMJq4o+Ea6uQ6UlNTmTNnDqeeemrAY2NiYroJJw2Ng52ecpPxin4RJU3BkKnLora2Vo202N80u9xcuXQ9ng7R9o/kdF58NQyADFszj+SvwFOvCKQKfTnXlFxJvaxUuJwxYwaffPIJaWlpaiVbjUMLTSRp7JZAluSRqQ7kan9P0gjjgVe8QZZlbl25iXaPYvW+bEgSh0eF8dZzjZy4cKO6X8jV0ViP6m4hkmWZOXPmcN5556mTfnh4ON988w1PPvmklpegcdAjCMJuS4Ev3w4hI5UyuJPyffNCf+Ylub1eblixkf/bWqxue3DMMB7Oyewxn7D2jzqW/jUXsV1ZFG0yh3KP/XmaXTs49thj+fTTT8nMzAx4bHBwMCEhIQEf09A4mNnV9b9zREm6lI4BwwETUXL3qs1sb1NCaidFhLL84zRa2iGrvYlny1YitChzQQEF3Fx9I01yE3q9ngcffJDZs2erArGzYbzGoYX2iWvsFoPB0G1yMBtlMsPB26q44QvTIE5IIEgIora2luLi4gBnGng+K65kfmUdAPFmI/eNGUbeChuWp9Zg6Khk55waRfSF3QVSW1sbd9xxBw8++KDaSHLSpEmsWrWK008/feBehIbGfqankNtOVmyRCOso3pBdKEJHtcel/ZSXZPd4uOTPdXy8XSm7LwrwwsTh3Jid1uMxVT9Wk3vuKmSbkjO1xhrBvab1tDd+ww033MD//d//9SiCJEkiJiZmn78ODY3BQMACTuEe4sJd/sUb0gUkQWKIbsgBIZI+21HBnB3KHBGkkziifhS/rxYZ2dbA48UrMTgUgZTn3sjdDXfQKreSkJDARx99xLnnnqsaWyIiIgJ60zQOfjSRpLFberIkj0m3q1237SaBsngYJilW2ANhgqxzOPnnmi3q/WfGZ2Nol1l67irC3IroqUkOJfthazfL89atW5k5cybffvutuu2GG25g0aJFpKWlDcj4NTQOFAItEMZm+DeVDepoKmu1QXBpIwDrG1to7qgmta9odrqY+cdq5pXXAGAQBd4+YgwXZST1eEz5lxWsumgNXkeHeAuO5sGYMPR1D/Lvf/+b6667bpdW4tjYWC3MTuOQxWAwBCxKNGbnsPvOvCQpe7+H3e9otXHbqs3q/dtSs3nydRNjW+t4eMcqTJ4OY4lrNfc1/4t2uZ2jjjqqWzVLo9GohdkdwmgiSaNX9NxU1r/rdnZHXtKBIJLuXbOVOoeSdzAjKZZp8dF8OWM9cY1Kw8sas5mcf0ci6P0F0pdffsmsWbMoLFTylaxWKx9//DEvvfRSwJ4xGhoHO4Gu/8QoNxHBigBaV2jCOMqX3J2xTbnuvDIs34d5STV2J2f8vpLFNYqHyqqTmHP0OM5I6rnsfskHpay5Yh2yWwkB/j00jseTRpHgfJjPPnmHY489dpfPGRISQnBw8D57DRoag5Ge1gBymxFvi3LtF6SCV1DykvZn2L3b6+WqZetp6TDQnJ0cx0evxzG6roYHuvRDXOFczkMtD+AQHFx33XW89tprhIeHq+cRBEHrh3aI0yeRdPTRR/v9TZw4kV9//VV9/N133+XEE0/k+OOP58UXX/S7QDZu3Mh5553HlClTuPLKK6moqFAfs9vt3HfffRxzzDGcdtpp/PDDD37PO3fuXKZPn87UqVN56KGHcLlce/p6NfaQnoo3eCp94SkHUvGG+ZV1fNLhZg/V65g9LouFt24ldL1ifW4VdYTNzsAc4VWPsdls/Otf/+Kee+7Bbles5NnZ2fz++++ce+65A/8iNDQOEPR6fTdPiiD4Qu6a2iUKXCLGWMWIMKnQNy/sq+INJW02ps9fwbpGpelrhEHPV1MncGxsZI/HFP1nO+tv2khn2bsfwhN5NnEUQ4J/4Ov3byc1NXWXz6nT6bQwOw0Nel4DAGrIncMkUJoAmbpM6uvr2bFjx4COsZNn8opYXqdU2Uy1mondmo1uWRX3Fq9Vw+z/dC7m0dZHMIeaee2117jhhhu6ecsiIiICikONQ4c+iaSFCxeqf2+//TZGo5HJkycDsGjRIj777DPeffdd/ve//7Fo0SK++eYbAJxOJ3feeSfnnnsu8+fPZ9SoUdx///3qeV977TWampqYN28ejz/+OLNnz1Yvrvz8fJ5//nmeeeYZvvvuO8rLy3nrrbf21evX6CWBJoq0WBfmFiuyV7Gy5KdDtmE4sH+LN7S5Pdy60tdV++GcTNo/q6H1/e0AeBDY+vfhZE9qU/cpLCzknHPO4fPPP1e3zZo1i2+++YYJEyYM2Ng1NA5UAs0BXUPulm9CzUvKKfB5lZbU7H1e0uamVqbNX0FBazug5Bd+d/xEJkQG7lckyzLbnilg07984bZfRKbwcvxwokPq+ealnF4tfuLi4rTeZxoa9FzASRLlbhEl8VICIULIfokoWVrTwDOblCgQSRC4LX4kS56v5u6S9eg6rCULHL8zu/VxskZm8vnnn3PMMcd0O4/RaCQysmcDjMahwR4HWX///fdMnToVq1WJQ583bx5nn302SUlKXPgFF1zA999/z4wZM1i5ciVms5kZM2YAcMUVV3DiiSdSUVFBfHw88+bN49lnnyUoKIicnByOOeYYfvrpJ6644gp++OEHTjrpJEaMGAEoHY8fffRRrr766oDjcjqdapK9+iJ1ugMiTMrbkczc+X8wIYoikiSp/YFAsSSPTnaxvjYIXUwLZfGgMwYTJ8ZT2VBBQUEBGRkZAz7Wx9fnU9ymLN6mRIcxrdzIsttWqRaBuaMyuemqNlXEzZs3j/vuu4/2dmUBZjabefDBBznzzDNJSUlBluV9IvgG8+evsfcM9s/fYDB0uw5Gp/lE0sqtOk6fEELVt9WEN4GxqhFHbBgr65tod7l67Fm0O1bVN3HOojU0OJW5Z0iQhc+OHkuy1RzwvZRlma0Pb6PoFZ8V+8OoND6KGYokyXx4vw7ZY9vt84aEhGA2B36OPWGwf/4ae8dg//wDXf8mg0xmooOtlV0r3Akcv0hmmC6T3NxczjrrrAEbY5PTxVXLNtDRT5pbM9P59aZWbi7JU3//f3b8xEttLzDznJncc889GI3Gbq9LEARiY2P32W8/DP7P/2CkN9UK90gkybLMjz/+yN1323g5KgAAM6pJREFU361uKyoqYvr06er9zMxMXn31VUCx0g8dOlR9zGw2k5SURGFhIVarlbq6Or/HMzMz2bhxo3rsEUccoT42bNgwysrKsNvtAS0b77zzDm+88YbftpkzZzJr1qw9ean9woHSP6CvNDY2qkKik6GxJlZXhaCLaUEWBQrTZLLqsqh0VvDDDz9w2mmnDegY89rsvLatFACDIHATZpafvwbRo0x030UmMfXWVupq63E6nbz66qt89dVX6vFpaWk89NBDpKWl4XA4KC8v3+djHKyfv8a+YbB+/na7nZqaGr9tcUESgpCILAus3CrROrpFfSx5Wxv5sWE4vTI/bNrGuOC+V4da1tTObfkV2DpWPdkWIy8PjcFbW82O2u77y16Z8icqaf7SN443I0L5MnYYANeeXo/BuZnq6l0vfCRJQq/X90u40GD9/DX2DYP586+vr/czlAIMiw9m08oYZI+AIMl+TWUXLVo0YCF3sizzr8IqStoVw824IBPyY05mrvf1UPvOPo+33K9x1z13MW3aNJqamgKeKzQ0lMrKyn4Z52D+/A820tPTd7vPHomkVatWYbfb/cRLe3s7QUFB6n2r1aouqG02m+px6vq4zWajvb0dSZL8BM+uju18DpvNFlAkXXrppZx//vn+L/IA8iSVlJSQnJw8KOvth4SEdFskHTFKYs4voTC6DOgIuVs7nAXO39mxY8duY/73JS6vl4t/XUGnnea2IalI11QhtCpVbFZaI4m8NY0JWSWUlDi45ZZbVDEOcMYZZ/DAAw9gsViwWq37vEnsYP/8NfaOwf75e73ebgnMMUBGnJOCCiMFlUGET4in0lCN7JTJKTCRf5SyX5Fk4sw+zgVzS6u5Ob8AZ4dAOjIqjA+n5BCsD/yz5XV7WXHFSpq/VQSSV/byqqWSH+JPAmBilsz1Z7Ti9UTv9rmTkpKwWLq3BdgbBvvnr7F3HAyfv8FgoKWlxW/b5BEC3yyX8NQGo4ttpjxeoM0sk+nM5Pu870hJSRmQwgef7Kjgx3qlKFOIXsflS2MI/XW7+viX7gX8FPkVc16aQ3Z2do/nMZlMJCcn7/MxHwyf/6HIHomkzhC4rom8FouF1tZW9X5bW5v6I2M2m2lra/M7R1tbG2azGYvFgsfj8fMM7erYzufoqWa9wWA4IATRrhBFcVBeJBaLpdvEkZPhwF3pqyxVkCZwmi4LUMT0QL7O/2zZwYYm5fsxMjSIKbMbacxXvjslBiu/njiK/xxXyq+//Mo999yjTvZGo5F7772Xs88+G0EQkCSJ+Pj4fhv7YP38NfYNg/XzF0URk8mEw+Hw256TYaegwojbK7B2h0DM2FAaljdyREE4nRl+S+sa+/Sa/1tQym2rNqlhM9MTonnziNE9hux5HF5++9sCXEsUK7dH9vCi+AO/ZrwAgMkAL13XjOx17nbxExYW5mfw29cM1s9fY98wmD9/q9Xqt84DX16iuzIEXWwzAIWpkJmXRUNDAzt27Oj3sPvClnbuWu3LP7w+30roq9vV+3N0RZSPXc5nsz/bZUNoQRBISEjo1zzEwfz5H4r0+ZNyuVz8+uuvTJs2zW97eno6+fk+t+bWrVvVCyMjI8PvMZvNRmlpKRkZGYSEhBAZGdnrY7dt20ZiYqJWcWQ/YDQauy0wIoI9JOp1eO2KYM5Ph3TdEHToWbly5YDF3xa2tPNknpKsKQpw0zILjb/WA9As6Xlq2Fjuv6KGJ2c/xvXXX68KpNTUVD755BNmzpypvraYmBitJ4qGRgB211R2WZ5A2GFhAMTWgNRRiW5ZbSMe7+5j+2VZ5oVNRdyy0ieQzktL4N0jx/QokNxtbr465mtVILlkJ/82vsvGI59U93n4MjeRlpqAx3fFYDAQHb17T5OGxqFITwWcgs2ebsUbQsVQ4sS4fi/e4PJ6uXLZelrdSsTI8RUiI2b7isW8F6on6fIyXn7l5V0KJIDo6OgD3siuMbD0WSQtXrxYLbDQlenTp/P5559TVlZGbW0tH374IaeeeioAEyZMwGazMXfuXJxOJ2+99RYjRowgPj5ePfbNN9+kra2N9evX88cff3DSSUqIxLRp0/jll1/YvHkzra2tvP322+p5NQYWURQxGo3dtuekO/BUKZNPc4hAU4SeIVIGTU1NFBQU9Pu4ZFnmlpV52D2KIDvPEY7lRSWe2CUIPJY8hr+f28xt157Bu+++qx43bdo0Pv/8cz/Xe3Bw8G4nUg2NQ5XdNZVdU2AgeJzihRGA2K3KYqXV7WFDU0u3Y7siyzIPrNvGw11yCK7NTOHlSSPQ9WB5ba1u5aOxczDnK5EHdtnOF+mfE3rlO1Q2KnPVsWPhb5PLe5WAHRcXp1l5NTR6IJChVBRhdLodT2VXkaTsk6Xr/6ayT24sZFW94sGKafbw9yd9OVNvxKRx4iMiF190wW6va7PZTFhYWH8OVWMQ0udfg++//55TTjml24Vy1FFHcdZZZ3HRRRcxc+ZMpkyZwhlnnAEo1rmnnnqKDz/8kOOOO461a9fy8MMPq8deddVVBAUFMW3aNO6++27uvvtu0tLSABg6dCg333wzt9xyC9OnTyc2NpbLLrtsL16yxt4Q0JK8c1PZDMgcwKayHxaVs7BaWYwligaOv7tefezV+OHoRnh4+V8jWbNmDaD0fLn33nt5/vnn/cJqJEnSeqJoaOyCQNf/0AQnZoNioFhbZMI02mdIGZHv+4lZUtPY43ndXi83rMjjlS2+JO/7Rg/lkZxMxB7C4wrXFfJxzv+Iqlc8P23eNtafupYZz73BnN8UMRdsgWeuasDlcgQ8R1ciIiJ6DOPW0NBQwtF6agXgbTbhtekBKEhXWpNldlS46y8WVdfz/KYiAESPzHX/J2DquNRfjc9m4h1RHDc5ebfnEUVRaxqrEZA+xxQ9+eSTPT526aWXcumllwZ8bOTIkcyZMyfgYyaTiUcffbTH855++umcfvrpfRuoRr9gNptpbGz02zY2w477T/+mstmLs5nr+Jrc3FzOO++8fhtPlc3B/eu2qvcvfNOF0aZYjD+PTOWPqAgc/8sCpzLmhIQEXnzxRUaPHt3tXLGxsVqYnYbGLjAYDIii6BdGq5NgZJqd3K0Wyuv0VLplLGlm2rfbOKogil869ltS28DVmSndzmn3eLhi6Xq+K1PC4QTg2QnDuWRIUo/j+PXzXym4sogklAVQs9yMcLfMtVfdx6iLfR6jp652EayvY3dOJIPBQFRUVO/eBA2NQxiTyYTN5l9CXwm5FXBXhmJIr6U1SKAqWiazPIv/rfwEWZb3uQBpcCjlvjsv7ZnfyAzZAV7gxYQRiCcncOm0alpa3Ls6DaCF2Wn0jBZXoNEnAlmRspOcCHXB6v38dMjqKN7Q3672e9ZsobGjf8rUjSKjVihxyUuDo3k3dhiOjVeBU6m8d9xxx/Hll18GFEghISEEBwd3266hoeGjR0tyl7ykJRu9alPZjAoDQptSqXRpTWO3kLdml5tzFq5WBZJeFHjriDE9CiRZlnnxvhcp+kexKpCahEaGvZPBrDtncvUzMh1OZU47Ak4es/swO0EQiI+P16zIGhq9IJC3dUy64r7x+PVLgiG6obQ2te7zsHtZlrkpN48Km/K8IzbLnPaz0ij+maRR5CYn8tL1Nlpamnd7LqvVSmho4KbUGhqaSNLoEwaDoVvlF4NeZkSMF0+jMnluT4YoYwIhQmi/Fm/4obyGr0qqAAixC5zzriKWCo1BPJM4Cm/dF1DzIZIkcccdd/B///d/ASdDnU6nhdlpaPSSnkJuO1m5VVJFkihD2LZqAGocTvJbfH3Wau1Ozvw9Vw2VtUgiHx81jjOTfdUyu9La2sqVp19J2MuRJEgJADQbmjn2l2OYMGMCH/4MX/yh7BsZCrMvq8PlcgY8V1ciIiK0QkAaGr0k0LUSEewhJdq5U9i9gFEwkial7/OQu//ml/BtmTKvBLXKXP2ujEcWeCJ5DAtC43nxRi+SZ/d9jkRRJDY2VjOQaPSIJpI0+kygSTInw467I3HTrRcoTlS8Sa2trWzdurXb/ntLs8vN7Ss3qff//rGHkFZokAw8nDIWm6cO8q8lNjaW999/n3/84x89ToRxcXH9WvJTQ+NgIpAlOSe9a/EGE9axvn2G5XvU20tqFUFU2mbjtN9WsKZBKeYQbtDz5bETOD4uMuBzbtu2jTMn/JVjF59AtKTkINnC2jljxWnEj42ntFrm+hd8HqMXr3eipz7gubpiNBqJjAz8nBoaGt3R6/UBw9LHpNtxV4Wooa2dTWUzdZn7NKJkSeEObl++Xr3/jw9kgpvh0ZQcloTE8LepcPyoKjwezy7OohATE4Ner99nY9M4+NBEkkaf6akMcGeFO1CKN2T1Y/GGx9bnU97hah+9UWbKcnAKAo+k5FBjMMO2q5hyWBZffvkl48eP7/E8oaGh3Roda2ho9Eyg6z823ENcuAuA9dtNkCQhWRXDw+T8cHW/pTWNbGluZdr8FWzr8CrFm418e9xEJkWGBXy+uXPncs7Ec7my+irCReVccrKXvyydjiXJgizLXDZbpqNFGn8/EY4YVr7b16GF2Wlo7Bk9GUpx6fDWK7+nxYng0EOmLmufrQF+W7iQ07/8Ba9eyR86/g+ZcRvhgZTx5AZHExsBT13ZSltb627OBEFBQVqYncZu0USSRp8JaEnu4kkCpXhDZ17SvhZJy2sbeTO/BACjQ+bSj2UE4IWEkWyxhEHVO9x4QTqvv/46ERERPZ5Hr9drYXYaGn1Ep9MFtL529ktqd4is3+4hbIIyH4wvDQOnEvb2S2Utp83PVQ0cQ4IsfH/8JIaHdm/e6vV6eeCBB/jXWffyT+legkQlZ9A40sjJv5+IMVqpovfvr+DnjikmMRruP78Wl8u129cRGRkZsKWBhobGrulRJIG6DvBKAkWpkCllsWrVqr0Ku5dlmeeff56/vvEJ3mSl+EtChczfv4WHh0xkbZDiDf7PrV68jurdnk+SJGJjA4f1amh0RRNJGn0m0ASZFOUmxGFCditfqfx0ZXIUEPapq93p8XJTbp5a0eZvc2Vi6uDj6HQWhMUjukp4858hXHvttbsNodN6omho7Bm7WiQBLMuTCe9oKqvzgKWgAoBah4t6pyJgRocF893xE0mxdje6NDQ0cPrppzPvie95KPgRLILSByn0iFCmfncU+jBFpOWXytzxb1+Y3as3OcDd0O18gca/KwOKhoZGzwQylGYnOdHrvH7G0vx0SJFScDW7yM/P73ZMb2hubmbWrFk8+M7niH+ZAYDOJXP9/wT+N2USK3WKd/nS6TAxo7LXYXZaJVuN3qCtEDX6jCRJ3cplCgLkpDnxVCvW3upoAW9IEIliIqtWrerVxNUbXthcxJbmNgDSt8uc8hssDI7iw+ghALx5h4ejJo/Z7XnCw8OxWCz7ZEwaGocau8tLWp2vJ2SiL/w2dZt/yeAjo8OYe+wEYkzdPTnr169n0qRJNP/cwr1B92MUlH2iT45i8meT0AUrixuPR+aix2TaO5726jNkRiVqYXYaGv1NICOJQS8zIsWBu0vYfUG6gCiIDNMN26OIko0bN3LYYYfxy0/LCLv+X+r2834W8f7tcD4pUQRZSiw8dHELbW1tuz2n1jBeoy9oIkljjwhoSU73bypbkKbkJbW3t7N58+a9fs4tza0816Vx3OUfyBToJJ5PGoMsCFx3pospo3bfE0HriaKhsXcEuv5HpjqQRMWrs6bQhGmETwAdscG3/7SEKD49ejwhhu4he3PmzGHy5Mmkl2RwZ9Dd6AVln/i/xjHhvXFIJp93+OmPYclG5faQRLj9b9W43VpPFA2N/kYUxYChqjnpdrz1VmSHcp1uU5vKZvU5ouTjjz/msMMOo2ZrLSOuf5mWMMU4kpMvcMmFh3HrPF+I7pt3eLC3amF2GvseTSRp7BE95yV1Ld4g7LPiDV5Z5uYVeTi9yiLstJ/BWu7gkbQjcYgS2Slw/V8qe9UTRQuz09DYO4xGYzdPjNkok5mo5Brllxto9LoJylaSuKcWJxL05qv832Ej+e+ROZh1/qGwbreb2267jfPOO48TPCdyS9BtSIKyT9L5iYx9bQyi3nfNriuQuf9t5VoXRfj3zXbczt33RDGbzYSFhe3x69bQ0FDoqYATCKqxtDFMoD68b8UbnE4nN9xwA3//+9+x2oM48/T/Y1OOEvUR0gavzxjPlZ8E4eio7n/j2ZAdX9mrnKfY2Fitkq1Gn9BWihp7RKAJcnSaA091F1d72r6rcPfvjfksq2sCILZa5tTvHDycNoV6vQlJgpeua0SQ7bs5ixJmF0jgaWho9J4eLckdeUmyLLA8z0v4YUq+gCRIhP5WyFSjgH4nA0V1dTUnnXQSzz33HLNM53C19Vr1sbSrUhj9wkgEySfIHE6ZCx+VcXU4jW47RyYjqqJXY46Li9PC7DQ09gGBfkfHdhZvqPJvKtvb4g0lJSVMnTqVV155hXgxnlszX+DbmWHq4y+NH8HHK8LJ7QhMyUqBu2Y10d7eHviEXdAaxmvsCZpI0tgjAlmSgy1e0oIEvG1KKEtBGqTq0jFi3KviDb/kruLBVb5eS//4UOadlGEUWJQF2F3nuUmJqOnVmLUwOw2NfUPPlmSFZZsEwib5wm+H60awfPlyv/2XL1/OhAkT+P3337nYfCkXWy5VHxt6WwbDH8tGEP3nmYfelVlXoNwenQHXTK/Swuw0NAaYQNd/YpSbiGB3t0q30VI0hjbDLnsm/vLLL4wfP56lS5eSLKbwWMSzzLkiEpdBuf4vjY8n0ZTAI/9VPMiSBG/d6aatpXa3Y9UaxmvsKZpI0tgjBEEIOEmOzXCoE6TNLFAdJzFEN5TVq1f3aiHTFVmWeePNN7nws9/xmJTFzdTFMs2WcH4yZwIwIRMuPq6sV+PVrMgaGvuOnkJuO1lbaCRorK8H2XDdcD+R9Oabb3L00UdTVlrG1ZZrmWU+R30s64FMMv85rNv1umSDzJMfKbf1Ovj3zTac9pbdjtVqtWphdhoa+xCDwdAtbF0QAvRMVJvKBg6583q9PPbYY5x88snU1taSLqXzdPgz/PS3SIqTlOs/22rh3gnZXPSYjLujBtQ950NyWO/C7LSG8Rp7iiaSNPaYnizJO5cAzdJlYbfbycvL6/W529rauPjii7n7zS9wjB8NQGiTzFllITzinACA0QDPX9OA7HXu9nwREREBx6uhobFnBLqe0mNdBJuVVcy6IhPEC0hhyuIkWzec5cuW43A4uPLKK7niiitwO93cbL2V001nqOcY+fRwhtyY3u3cbTalml3nmuj+i73EBvUuzE5L1tbQ2Lf0bCi1I9sNeBoVI0pRCrilwMUbGhoamDFjBvfeey+yLDNMyuSZiOcpHBHCj8crAskoCrw5ZQyPvSOSt105btwwuO70Rmw2/6qZgdAaxmvsDZpI0thjeioD7G9FEsjWDQd6n5eUl5fHYYcdxv+++A7rZTeo26/INfEQExVzFfDQJS5ignbvajeZTERGRvbquTU0NHqHwWDoZp0VRRjdEXJX06SjoMxF5OFKP6JQMZTiFSUcc8wxvPHGG+jQcVfQPZxoPKnjYMj5v9GkXpYS8Pnu+o9MfofTePJIuPC4ql73RAnU/FZDQ2Pv2FXIbaex1GUQKE5UjKVd1wCrV69mwoQJfPvttwCM1I3i2ejncVhMvHaRz4P8cE4mtduDeO5/yn2DHt68w0Vz0+5/+7WG8Rp7iyaSNPaYQBPksEQn+sYg5A5rb0FH0ib0TiR98MEHTJo0iU15m5hw8XO0dpT9nLhNpCRmEgXVyld2ag78bbIWZqehsT/pqRVAJ0s3+prKAqTYU1i+fDlGjDwQ+hBHGY4GQNALjH97LInnJAR8np9XyLz6pXLbbIRXb2zFbmvd7fiCgoIIDQ3d7X4aGhp9J5ChdHSaA0GQu4XcDZMyWbN6DR6Ph7f/v707DY+qSvcF/t81j0lVBhJiAhRhNBAGEYiCiIpoA0EbkHtRaAZFG20RQW25euRcRcIk3cjUcltztHM4KigIqLfvI9p4bbAlIsgkBIIyZSSVoZKa9/mwM1RIVSqQqlQS/78vVKo2VSvP3ruy3rXetd6330ZGRgby86WSHqNiRmNV/BoILjn+8jsBFVHS3+t7u8ZhelIyZq8QUbdx7avzgFht8J1sARaMp9bj1UM3TKlUNqlarZADackueEqlGgYXkoAoXReYhZhmN2+oqanB/PnzMXPmTFRXV+O+wYtxcozUYdLYgRmWdGz5h7SblkELrH6sBB6PK2gb4+Li/O7CRUSt5zdI8lmX9P1pOaKH+W7e0B9a6LAyfjWGyqW0WZlWhmH/ORSJk/ynxFkrRczJaugQrZjvhVFRGLRtrIlCFF7+7n+jzovURGejmol5FgF6mR7mGjMmT56MefPmweGQygXMSHsYS9UvAQ7g73cCR9OkAKmLRoU3b03Dkk1Afm1W7ah0YPY9ZbDbg+9kazKZWDCeWo1BErVKoJFkT+0XpCgTcK6bNNV+5MgROJ1N1w+dOXMGGRkZ2Lp1KwDgDv09OD93XP3rT+luwgvvN6TLrXzciSh1WdC2abVamM3m6/6diKhl/I0kp1sc9Y9/OKeBur8KqM3KS1cOxobkTejtkTZeURjkGP7BLYi/K/Cuk0+vF3GpdvPKe4YBD45oeU2UawdxiCh0FAqF31TW9J52eEoMEN1SF9N384a9e/fWH/fvmf8bj5TMgugQ8ctNwPtTGrqkG4en4bvDSmzdLf2s1wJ/edYJq7U0aLtUKhXi4+Nb8ZsRSRgkUasE6iRdWyehn6IfHA4Hjh8/3ujY7du345ZbbsGRI0cAAIP0g2GZvgQFCdJoUrpLg0M/9EVRbUw0IUPEvenB0+xYE4Uo/PwNksQYPUiJlwZDTvyiRrXHheh06fsgSZ6ExOpEAIDSrMTwj29FzG0xAd//o3+IeO//So+jDcC631eipsYWtF1Go5E1UYjaQMDZZK8MniLpHizqIqDCIAVJgNRveH/RB7j1wAiILhFOJfCXhUq4agdTft+nG4boYvHoqoYZ5DULAJ2MaXbUtngVUav4392mpnGdBIvQpKis0+nEwoULMW3aNFRWSlv4juw1EgsGr8Lee6TARuEFJpgH4eP90s+x0cDy2SXweIJvJR4XF8eaKERhJpfL/d5ndeuSHC4ZDp92N1qXBACqLiqM3H0rTEMDrxcqvCri8TUNHaJ1T3mhRlHQNikUCqbZEbWR5tYl+qbcScXl+6J3797Yt+xLGN6LguiR7u9dzxvws1HahGWAyYB/G9gbT64TcaV20ui+EcCU267Wp+g1JyYmhgXjKWQYJFGr+PuCTDB7ECcq4XVIqS55FiBV0RsyyHDo0CGcP38eo0ePxvr16+v/z8xpM/Fawkq8lSnCI5eCoke798DyDYb6Y9YtsEMjswZtk06nY00Uojbid4crn3VJB08A5pENaa+aZA0y9gyHsX/gmR5RFDF/tYiScunnB0cDd6VdbnGaHWuiELUNfwFJryQntCov3AU+GSU9BfRS9cauBbtxdaUVqL2Vf1kYh13J1dJ7yWXYOnIgdn4l4L++kF43GYA3n3agrOxq0LaoVCoWjKeQYpBErSKTyfxujDCop7N+d5vyaAE1MTqkyLthz549GDp0aH1RSZVKhc0bN+MP8oXYlViDcz2kAKm3Xod/bbegvHYDq/9xt4iM3pdb1B6m2RG1nUClAOr8kKdC3PhYdJudgsTJCcjYOxz61ObrlvzH58An30iP403AyscqYLcHr4kSFRUFg8EQ9DgiCg21Wt3k761CDgzo0bRmouAVkP/q+frnDAtuwpr0hmLQywf3RZRTjwXrGmaQNywC5O7gaXaCIKBr1678208hxSCJWi1wyl3jdUl9Ff1w+fJllJVJC4x69uyJAwcOYEzBWJw4VIIPMxu+3O6034wvvpMuz6Q44OX/WcSaKETtkL/7v3+KE0qFNFR8JF8Du9OOAWtvxtC3B0Ob3HwqzM8FIhaub+gQbVrkgehsWZoda6IQta2AA6UWO0SbBt4q6bWz3QGvT/zS4+keWHe3A1ed0i61E26KxyxLEh5dJeJqhXTMtLHAPeklfjd8uhYLxlM4MEiiVvO/eYO9cT6yRUA/eb/6nx988EHk5uYi/kQXnNt4Hu/MEODQSN+gUxKS8eaWhv+74ekayMWKoO3Q6/WsiULUxvyNJKuUIm5OkdYPnC9U4Upx8LUEAOD1ipizQkRF7d4Mv7sPuLXn5RYv1maaHVHbay7ltm6w1K4VcKmr9FrvP6bii+lq/KNISqHrqlXjz8NuxtufCvj0oHRMQgyw5gk7rNbgO9mq1WoWjKewYJBErebvCzKtuwMoblhzIM0k9YVCocC6deuwY8cOeI55cWzxCRy4taE2QleNGkc/TEVNbZ/q8UwRA5OvBG2DXC5HYmJiaH4hImoxQRCCrkv69kTwtUQAsOEj4MvD0uOULsArj7S8Jope33wKHxGFh9+U255NN28410eGfq/2RfWjXfDasTwAgABg0/A0lJcqsejNhsGQt5YA7pqCoJ/NNDsKJwZJ1GoqlarJdps6tYjesSI8VunL83w3IFljQd6xPDzzzDOozq/G97N/QIVaxHvTGr7cRlT2xb+OShs+pN4EPPtAQYvT7FgThSgymtvhCgC+OyULOht06mcRL2zx7SS54bIHr4miVCpZE4Uogvxu4GTyINHsarQuqfq5JCTMT8FjB3+Eyyvd60/364HR8TGYvUJEVe2yw3kTgBG9i+FyBS8YHxsby4LxFDYMkqjVAo4kWxz1o0gupYBfkgBDkQGuchcOzTgMV5kLOVMFVBqlIGmMqQv+9lepsyOTAZsW2iB6qoJ+vsFgQFRUVNDjiCg8mhtJBoAfzqmbXVfgdov43esi7LWHPPVboF9iy9PsWBOFKHKUSqXfVNd0ix2eYiNEj/Q3/vvyCiw9/BPyKqXd7AabjXgxLRV/+hDYL5VKRPdE4NU5NbBarUE/V6PRICYmcJ01otbiXxYKCb/rknra4blm84ayb604PPcIbGds+LE/8P9HSl+eUQoFTu/oA1dtCaTF072wxAafapfL5ayJQhRh/gZJkuPcMBukG/povgbV1YF3p8vKAf51UnrcJwV4blrLaqKYzWbodLobazQRhUSggdJBPe2AWw5PqbTj5MnyKryXLxWD1yvkeGvkQORdELB0a8NgyF9fEFFdyTQ7ah8YJFFIBNzh7prNG/LeOIeSr0phVwHvPNJw+Q0u74UTJ6Up8/RUYP74Ky2uicI0O6LIUiqVTe5DQWiYTSq3yXHyvP/Ume9/EvHv2VInSSYDti5xwW5jTRSijqTZorIFTTdUWjG4L7prdZi1XISjdgb5mWlA2k3FcLtZMJ7aBwZJFBL+viAtCS7obFqIbukyy7MAXocU+HyUKaCodpZ8gM6E3f+RBABQKoANf6iEx1Ud9DOjoqJgNAYuSElEbSfYuqSDx5umztkdIma9LsJdu+zwxUeAFFPwNDtBEJhmR9SO+MsmSevugFwmNsooAYDJyQl42JKE5e+KyP1Jeq5fN2DpjGqUl5e36LPMZnPQ44hai39hKCQUCkWT+kQyGTCwmwue2l3uCrsIqNQD+d2Az++SpsjVMhku7OoPb20BhX+b5UGikTVRiDoa/zvcNaTM5Z5RNNmE5eW/ijieLz0e0hv4/W9KW1QTxWw2++2UEVFk+Lv/tWoRfZMdcBeY6p+7SafBumH9kfsT8Np70nNyOZC9VESFtTDo57BgPLUlBkkUMv5zkmvgLmwYRTqdCry7SF1fVK5PmQXnf5LWFGSkATPGtCzNjjVRiNoXv+sSe9ghCNKs0NFzmkbbeX99RMTa96XHKiXw1hInqiqDp9mp1Wqm2RG1M3K53G/6W7rFDm+FFtXf9MLNCiO2jRoMtajArOUi6sZM/tdMoJu5qEVpdvHx8UyzozbDIIlCxn9RWUejfORt81U4o5HWJqQoDdif0w0AoNMAf36yAi5n4MXddaKjo1kThaid8TdIYtR50TNRmhk6dVGNsnIpSKqslnazq8uqe3UeEKsJXg+tLs2Oo8hE7Y//XW6le95xuDtuu9gbA0xGvLRVxMmfpdeH9gEWPmhDRUXwgvE6nY4F46lNMUiikAm0u43HZyapQC6NFAkAivb2A7zSJbjiMQ+iVcHT7JRKJdPsiNohmUzmt15JukVKuXN7BOT+JA0dL9koIr82JhqVDswcW9KiNLvY2Fi/3zNEFHn+N3BqmD0+nKfEvlw31n0o/axWAW+/4MXVUqbZUfvEIIlCRq1WN/kCizF6kKSRwWtrPD3e/WoKCk5LI0LjhgGZt7ImClFHFyjlts6/Tgr47KCIt3ZLP+u1wOZnHKioKGvRe7MmClH75S+bpEeCC0atNDjy/VkN5mahfgZ5+aMC4nSFLS4Yf+26Z6JwY2+TQibQSPIgi7PRuqRYmQaHP+wJAIg2AGsft8LhsDf5f9diTRSi9s1vUVmfHe6+OqrBvJUNaw5X/x7QyZhmR9QZ+BsolckaUu6uVirwc6HU7RydDswdX4mqquAF4/V6PdPsKCIYJFFIBdoG2HW+YaH11f/XF3BJNVXWPemGWigJ+r6siULU/vm7/3vf5IRWJQVG/zyhx5VSqRN13wjggRFFcLn810/yFRcX53cAhojaj2aLyvrQa4H/87wXpaXBU+zlcjkSExND1kai68EqnBRSWq0WVqu10XPpFjuc7ydDdMsBmwquS1LKzJQxwJ03X4bTyZooRJ2BSqWCTCZrtEOlQg6k9bDj0OmGWWCzEVj/VA0qKlgThagz0Wg0qKlpvAFTuqVxkPTGk4BOVgBbC9PsWDCeIoW9Tgopf6NIN3dzQKkQ4TqdWB8gJcQAr/7uKpxOR5Pjr8WaKEQdQ8CR5Gs6SW8uFCFzFwR9Py7WJupY/N3/Q1Lt9euSxgy0YfKIEthstqDvZTQaERUVFfQ4onBhkEQhpVKpmtQvUilF9E9pvHPVhoUuyL2siULU2fjrJN3ap2Fk+b5hlbgzrbBFNVHi4uJYE4WoA/E3oBmt9+LtRZfwysNF+PMTV2C1Bt+oRS6XcydbijjOYVLIaTSaJqNEg3rW4Gi+1HmadkcVbulR2uI0O44iE3Uc/jpJYwZW48lJpSi3ybFwcimqqoIXjNbpdDCZTGFoIRGFi1KphFwub7Jj3UCLAwMtwTNH6iQkJDDNjiKOVyCFnFarbRIkzRlnxXc/6ZAY48ILUwvhdAbvJMXExLAmClEH4++eFQTgD5nBZ47rMM2OqOPSarUt2rUukKioKBiNxhC2iOjGMEiikPPXSUqKdWPnK79c13vExsaGsllE1AYUCgWUSmWLdq0LhDVRiDoujUZzw0GSQqFgmh21G1yTRCHX2tkfptkRdWyt+Q5gTRSijq01939CQkKTdc1EkcIgiUJOLpe3arE1a6IQdWw32kliTRSiju9G7//o6GgYDIYQt4boxjFIorC40S9J1kQh6vhudMt+1kQh6vhuZKBUqVQyzY7aHQZJFBY30kniYm2izkGtVl/3fWwwGFgThaiTuN4+AAvGU3vEK5LC4kZmklgThahzkMlk15UyK5fLkZCQEMYWEVFbup4+gMlkgk6nC2NriG4MgyQKi+sdSWZNFKLO5Xo6SayJQtS5tHQmSaVSIT4+PsytIboxDJIoLARBaHEniWl2RJ1PSztJrIlC1PmoVKoWpc8xzY7aM16ZFDYt7STFx8ezJgpRJ9OSQRLWRCHqnARBCJpCFxMTc8ObvBC1BQZJFDYt6STp9Xqm2RF1QkqlMugaQ9ZEIeq8YmJiAr6mVqtZMJ7aPQZJFDY6na7ZaXTWRCHqvARBaLaTZDKZWBOFqBPTarV+U+k1Gg1SUlKYZkftHlfKUtjI5XKYzWaUlpY2eU0QBC7WJurkoqOj4fV6UVxcDFEU6583mUxMsyP6FYiOjoZOp0NNTQ1cLhe0Wi20Wi3XIFOHwB4qhVXddLpvoFS3UQMXaxN1fmazGQaDAXa7HV6vFzqdjmsQiX5FlEol73nqkBgkUVgJgoC4uDiYTCY4HA4IgsBRJKJfGXaSiIioo2GQRG1CoVAwtY6IiIiIOgSumiMiIiIiIvLBIImIiIiIiMgHgyQiIiIiIiIfDJKIiIiIiIh8MEgiIiIiIiLywSCJiIiIiIjIB4MkIiIiIiIiHwySiIiIiIiIfDBIIiIiIiIi8sEgiYiIiIiIyAeDJCIiIiIiIh8MkoiIiIiIiHwIoiiKkW4EERERERFRe8GZJCIiIiIiIh8MkoiIiIiIiHwwSCIiIiIiIvLBIImIiIiIiMgHgyQiIiIiIiIfDJKIiIiIiIh8MEgiIiIiIiLywSCJiIiIiIjIB4MkIiIiIiIiHwySiIiIiIiIfCgi3YDOyOl0YsWKFfj2229hs9nQt29fPP/88+jVq1f9MW63Gw8//DDcbjd27NgRwdZSqAU7/z/++CPWrl2Ls2fPwmg0YtGiRRg3blyEW02h1Nw14HQ6kZWVhf3790MURdx2221YunQptFptpJtNIbR8+XLs378fdrsdiYmJeOqppzB69GgAQHZ2Nv72t7/B6/Vi8uTJePrppyEIQoRbTKEU6Pzv3r0b27Ztw8WLF2E2mzFz5kxMnTo10s2lEGvu/gfYB+wwRAq56upqcevWrWJBQYHodrvF9957T8zMzGx0TE5Ojjh37lzxt7/9bYRaSeHS3PkvLi4W77vvPvHrr78WXS6XWFZWJl64cCHCLaZQa+4aePfdd8WZM2eKVqtVrKqqEhcsWCBu2rQpwi2mUMvPzxcdDocoiqJ47NgxccyYMWJ5ebn49ddfixMmTBAvXLggFhcXi1OnThV37twZ4dZSqAU6/9u3bxePHj0qulwuMS8vTxw3bpyYm5sb4dZSqAU6/3XYB+wYmG4XBlqtFo8++igSEhIgl8sxffp0XL58GVarFQBQWlqKjz/+GHPmzIlsQyksmjv/OTk5mDhxIkaNGgWFQgGTyYTk5ORIN5lCrLlr4MqVK7j99tsRHR0NvV6PO++8E+fOnYt0kynEevToAZVKBQAQBAFOpxMlJSX49NNPMXXqVCQnJyMuLg6PPPIIPvvsswi3lkIt0PmfMmUKBg4cCIVCgdTUVAwfPhwnTpyIcGsp1AKdf4B9wI6EQVIbOHr0KGJiYmAymQAAb775JubMmQONRhPZhlGb8D3/J06cgCAIeOihhzB+/Hi8/PLLqKioiHQTKcx8r4GJEyfi+++/R1lZGSorK7Fv3z6MGDEi0k2kMMjKysLtt9+OWbNmISMjAz179kR+fn6j1Os+ffowSO6k/J1/Xx6PB8ePH2/yPHUOgc4/+4AdB4OkMKuqqsLrr7+OBQsWAJA6S7/88gvuv//+CLeM2sK157+4uBiff/45Vq9ejZ07d8Lj8WDt2rURbiWF07XXQHJyMoxGI+69917cfffdkMlkeOCBByLbSAqLP/7xj9i/fz82btyIoUOHAgCqq6thMBjqj9Hr9aiuro5UEymM/J1/X5s3b0Z8fDwyMjIi0DoKN3/nn33AjoVBUhg5HA4sXrwYo0aNwuTJk+H1erFmzRosXryYi3R/Ba49/wCgVqsxadIkdO/evT4l65tvvolwSylc/F0DWVlZ0Gq1+Oqrr7Bv3z6YTCa88cYbEW4phYtcLseIESPw3Xff4cCBA9DpdKiqqqp/3WazQafTRbCFFE7Xnv8627dvx759+7Bq1Sr2Bzqxa88/+4AdC3e3CxO3242lS5ciPj4ezzzzDADpj+GpU6fw7LPPAgBcLhdsNhvGjx+PXbt2ceq1E/F3/gEgNTW10XGiKLZxy6itBLoG8vLysGTJEuj1egBAZmYmZxN/BbxeLy5evAiLxYK8vDyMGjUKAHD69GmmW/0K1J1/APj73/+Od955B1u3bq1Pw6fOzev14uTJk+wDdjCcSQqT5cuXw+FwYNmyZfUjBgaDAZ9++ilycnKQk5ODl156CUlJScjJyYFarY5wiymU/J1/AJg4cSJ2796Nixcvwm63Izs7u76zRJ1LoGugf//+2Lt3L+x2O2pqarBnz54mwTN1bNXV1fjss89QXV0Nt9uNL774Arm5uRgyZAh+85vfYMeOHbh06RJKSkqQk5PD1JtOprnzf/DgQaxevRp/+tOfkJSUFOmmUhgEOv933HEH+4AdDGeSwuDKlSvYvXs31Go1xo4dW//8+vXrMWTIkPqfo6KiIJPJEBcXF4lmUpg0d/5HjhyJGTNmYN68eXC73Rg5ciSee+65CLaWwqG5a2DhwoXIysrChAkTAACDBg3Ciy++GKmmUhgIgoBdu3Zh5cqVEEURKSkpeO2119CrVy/06tULZ86cwaxZs+D1evHAAw8gMzMz0k2mEGru/K9evRoVFRWYO3du/fH3338/li5dGsEWUyg1d/59sQ/Y/gki832IiIiIiIjqMd2OiIiIiIjIB4MkIiIiIiIiHwySiIiIiIiIfDBIIiIiIiIi8sEgiYiIiIiIyAeDJCIiIiIiIh8MkoiIiIiIiHwwSCIiog7r0KFDGDZsGIYNG4bLly9HujlERNRJMEgiIqIOYdmyZRg2bBjmz59f/5zBYMCAAQMwYMAAqFSqCLaOiIg6E0WkG0BERHSj+vXrh+zs7Eg3g4iIOhlBFEUx0o0gIiJqzqRJk3DlypUmz2/ZsgVPPPEEAOCTTz5BUlISli1bhj179qBr1654/PHHsXnzZlRVVSEzMxNPPvkkNm7ciE8++QRGoxGzZ8/G1KlT69+vuLgYmzZtwoEDB2C1WpGQkIBJkyZh9uzZUCg4rkhE9GvBb3wiImr3+vbti5qaGlitVuj1elgsFgDAqVOnAv6fkpISZGVlIS4uDjabDdu2bcPBgwdRVFQEg8GAgoICrFq1CrfccgssFgusVitmz56NwsLC+s84d+4ctmzZgkuXLuGVV15pq1+XiIgijGuSiIio3VuzZg1GjRoFQAqYsrOzkZ2djX79+gX8Py6XCxs2bMBHH32EhIQEAMCFCxewbds2bN++HWq1Gl6vF7m5uQCADz74AIWFhYiNjcXOnTuxbds2rFy5EgCwZ88eXLhwIcy/JRERtRecSSIiok4pKioKgwcPBgAkJiaisLAQqampSEpKAgCYzWYUFBTg6tWrAIDjx48DAEpLSzFu3LhG7yWKIo4dO4aUlJS2+wWIiChiGCQREVGnpNfr6x/L5fImzwmCAEAKgHz/9U3n86XRaMLWViIial8YJBERUYdQF6TY7fawvH9aWhr++c9/Qi6X4/XXX6+fcbLZbPjyyy8xduzYsHwuERG1PwySiIioQ+jRowcA4MSJE5g+fTq0Wi0ee+yxkL3/Qw89hF27dqGoqAhTpkyBxWKBzWZDYWEh3G43Jk6cGLLPIiKi9o0bNxARUYeQmZmJu+66CwaDAWfPnsWxY8fg9XpD9v5msxnvvPMOJk2ahOjoaJw9exYOhwNDhgzBs88+G7LPISKi9o91koiIiIiIiHxwJomIiIiIiMgHgyQiIiIiIiIfDJKIiIiIiIh8MEgiIiIiIiLywSCJiIiIiIjIB4MkIiIiIiIiHwySiIiIiIiIfDBIIiIiIiIi8sEgiYiIiIiIyAeDJCIiIiIiIh8MkoiIiIiIiHwwSCIiIiIiIvLx33epSj2Bh7jgAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -702,7 +726,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "id": "616da722-26ee-4630-9728-64d7ab7980e6", "metadata": {}, "outputs": [ @@ -710,23 +734,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "mean MAE on total: 3243.16\n", - "mean MAE on reasons: 1207.85\n", - "mean MAE on regions: 776.80\n", - "mean MAE on (region, reason): 315.56\n", - "mean MAE on (region, reason, city): 198.72\n" + "mean MAE on total: 3349.33\n", + "mean MAE on reasons: 1215.91\n", + "mean MAE on regions: 782.26\n", + "mean MAE on (region, reason): 316.39\n", + "mean MAE on (region, reason, city): 199.92\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl0AAAE8CAYAAAD6wgRJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACfWUlEQVR4nOy9eXhb5Zn3/znaLcuWF9mW7STOQhIIcdaTsISw71B22rcMA3SjTId22r5D6XRaoMt0pi2dMtN3CqWdMqWlv6YlQAcIlCVAQqCFkxAghEBwYsebLMmLbEvWfn5/PDqKEzuxHS+SnedzXb5sHR3pPDo+R+d77vv73Lei6zoSiUQikUgkksnFlOsBSCQSiUQikRwPSNElkUgkEolEMgVI0SWRSCQSiUQyBUjRJZFIJBKJRDIFSNElkUgkEolEMgVI0SWRSCQSiUQyBVhyPYBRMul1LXw+H16vd7I3I8kg9/fUI/f51CL399Qi9/fUIvf3iCjDLZSRrgypVCrXQziukPt76pH7fGqR+3tqkft7apH7+9iQoksikUgkEolkCpCiSyKRSCQSiWQKkKJLIpFIJBKJZAqQoksikUgkEolkCpCiSyKRSCQSiWQKkKJLIpFIJBKJZAqQoksikUgkEolkCpguxVElEolEIhlCZ2cnO3bsIBwO43A4KC8vz/WQJJIjIkWXRCKRSKYlH330Ef/f//f/kU6nAdi1axc33HAD8+fPz/HIJJLhkelFiUQikUw7dF3nueeeI51O8+q+xWzbt4hUKsXmzZtzPTSJ5IjISJdEIpFIph1dXV0EAgHaAnZ2XFKGosPS7WZobSUSieB0OnM9RIlkCMd9pEvXdbq7u9m/fz+bN29m165duR6SRCKRSEagsbFR/O6djW5SSJsV9gcqAejo6MjhyCSSI3PcRroaGxt5+eWX8fl8xGKx7PKTTjqJpUuX5nBkEolEIhmJpqYmAPrKy7LLQuYyoJ329nbmzZuXo5FJJEfmuBVdIE7aVEqnvbMQf18pqxa04vP5cj0siWTC6Orq4oUXXiAQCFBQUMCVV14pZ3dJpj26rmcjXV1zD17GBkpdgIx0SfKX4za96PV6ARiImXj8jOW8eukc+sNmuru7iUajOR6dRDJ+EokEDz/8MO+//z7BYJDm5mb++7//+5DIrkQyHenq6qKvr4+2gB1/9cHlfdVmANrb23M0Monk6By3osvhcFBaWorLqePxK+gmhYaOCgAZ7ZLMCHbu3EkoFOKd/VX8rvR0duyrZWBggLfeeivXQ5NIxkXWz9U3G4CaA2K5v1onFtMJBoMkEokcjU4iOTLHreiCg9Eud5uo8dJjEmkXKbokM4GGhgYAWivnEvCCzysuUM3NzbkclkQybrJ+rjLh5yrfO0BZEJJWhX0+D7qu4/f7czlEiWRYpOgCCjojAERLCwEpuiTTn3Q6TWNjI6mUTmC+SLmEasTp3tbWlsuhSSTjYjg/V1nUR2mbDkBnygPI73FJfiJFF1AU7wagzytOYHmySqY7xqzc/T433ZnJXYEqnVC/mZ6eHgYGBnI7QInkGDncz2WLw+IaHwVB4cUdcBcD8ntckp9I0QXUlYqZLoEaiCd0AoEAyWQyl0OTSMbF/v37AWhLzMou000K+/2ijpE0GkumK4f7uar3Q4FDxxURN8/9lVZAii5JfnJci66ioiKcTicVZXFKuyBug/3tZaTTaQKBQK6HJ5EcM4bo6vOKu35bXCzvsQjfohRdkumKIboMP1dxi4jaVheK7+xgLaRSOh0dHdmejBJJvnBciy5FUaiuFvONDT9AMClmMMqLkmS6kkqlOHDggLjwLBCn+PztInI7UCZ8i/L4lkxHBvu5Oucd9HMB1Fb04+qDSCE0+4tIJBJ0dXXlaqgSybAc16ILoKqqCgBnQPgBIsXSDyCZ3rS0tJBIJPiwxUNfMRSHoKpLzFgM1cg6RpLpS1dXF/39/bQFCwh4wRYTfi4As1mhPDNHxBcRaXT5PS7JN0asSK+qqgn4FbAAUIDPAg8AZiAF/Lemab9RVdULPAwUAvdrmvZbVVXNwC+AhcB2TdO+nHnPfwA+DnQCN2qa1jvRH2y0GJGuwnAIKCBcaYO0PFkl0xcjtdih1ABQ1ZBmQZWfLWlROqLfpwBdRKNRHA5HDkcqkYyNg/0WawGobhR+LoPCjjgsthEudAPie1y2dZPkE6OJdK0A7JqmrQf+CfhqZvklmqadrWnabzKP7wR+CJwF/L2qqg7gcqAt89pCVVVPU1XVA1wBnAFsAP5+wj7NMWCY6b1OUdNlsB9A1/WjvVQiyUuynpda0RKlyBeiqDBFRYdoCtzgE9FdeWMhmW5kj+1yw88lyv24XOJYd/aJ+/dIhbiZkMe4JN8YjehqARRVVRWgFAgCaWCTqqr/q6pqXWa9tcBmTdOSgAYsBU4Hnss8/yywDlgDvKJpmj5oWc4oKyvDarUyu7KPwn4Iu6A14CIej0s/gGTakUgkaG5uJp7QaZ+vADDL3gJASWumCLBZmukl049D/FzZ+lxi5vmaNWsA8FiEmb67Whz77e3t8uZZkleMpuF1EEgAewAHQiT9WNO0TlVVzwJ+iohcWTVNM6aKhIAyhEjrHcWyIaiqeitwK8Dtt9/OBRdcMLZPNgZKS0vx+/2Ut0F4EbSFK5nDfnbv3s38+fMnbbvHM4lEgtbW1lwPY8bR0tJCOp3mg+YqBpZBWRDm1fQBUNAZBooYKBNRgYaGBubMmZPD0c5s5DE+sYRCoYN+rpMO+rkURaGmpgZFUZhX3YUtDt3lENhjo4IIe/fupbCwMNfDn3HI4/vo1NbWDrt8NKLrQiCpadpiVVVVhOD6BICmaa+oqvrjzHoJVVVNGeHlBrqAHqA48/zgZScctmwImqY9CDyYeTiptypz5szB7/fj6ojDIhthZwkAsVjsiDtOMj5aW1vlvp0E3n//fQACNuFVrNiXgiLxnDsZBIrorTZDv7iIyf/B5CGP8YnFSBUe7ueqqanlhBNOoKSkhO7ubiraoHUuHOiupKKsBUVR5P9hEpDH97ExmvSigjC8g4h6uVVVLQZQVXUJ0J157k3gbFVVLcBq4D3gNeD8zPMXAdsy65152LKckm0H1CsCcAMZP0BHR0fOxiSRHAtZz8tsJwBFge7sc/Mr/ChpHX+1TiSqEAwGicViuRimRDJmjuTnqqsTDhePR7T/cflEeZRem1hPptEl+cRoRNfzwGxVVV8Bfg98B9isqupW4OfA/82s9wOE0X4L8ICmaQPAU8CczLpRTdNe1zQtADytquo24AbgZxP6iY4BYwajxxIEoLvmoB9AIpkuRKNR2traGIgqtM0Tx/A8lygVYbFYcBel8PgVUhaFBp+oRydvLCTTgaP5uebOnSseZ4qlFnSHARgoFzce8hiX5BMjphczxvhPHLZYHWa9duCCw5YlgVuGWfcnwE/GMtDJpLKyUvgBqjqxxqGrHIIfWoEwfX19FBUV5XqIEsmINDU1oes6e9qqia+EynaoqRzA5XJRW1vLBx98QEl7moDXRDcewE9bW5v0dUnyns7OTuHn8g/1cxnHb3m5mCBSqncCbnqrTRCSN8+S/OK4L44KIgpQUlKC3a5QkTk/mzrltHrJ9MKoz9VVINLlZftFmmXevHnZaG5BQKRkIqXCTC+Pb8l0wIhy7e8XvURr9ht+rhrsdjtwUHTNqwygpHUCVTr9EYXu7m6ZRpfkDVJ0ZTBO2KLD/ADyoiSZLhgXptCcAgCKu4QVc968edTUiEKpxXExb6WvWgS529rapniUEsnYaWpqAqC/vBSAotZD/VwAdrsdt9tNUaFIo6fNCvszaXT5PS7JF6ToymCIrsP9APJklUwHwuEwHR0d9IXNtNfpKGmdE0qFn2twpGueR/hb/DU60YyZPpFI5GzcEslIjMbPZWAc5yXtonpRtyLM9fJ7XJIvSNGVIesHSIvoQG+12DXyZJVMB4yL0ge+WpJWBW+rQkVZnNLSUkpKSnC5XDidTsrcCcr9kLQqNHSUo+u6PMYlec0hfq5Mv8UTD/NzGRi9dAuCAwAMyDS6JM+QoivDkfwAXV1d0g8gyXsMP1dPkUinlDbGgUMjAdkbizYRBehKi3Wl0ViSzwzn53Ic5ucyMCJdRTFRKqXfKyJjUnRJ8gUpujJIP4BkOmNcmHrqxEXIHRLlT+bNm5ddx6hjVBAQUYBIqZiVK0WXJJ85kp/r8NQiHKy5OKtEpB8D1RBP6AQCAVKp1BSMViI5OlJ0DUL6ASTTkd7eXjo7O+kKWWmbo2NO6Sz0HPRzGRiiqzh2qJleii5JvqLrejaKO5KfC6C4uJiCggK85TFKuiHmgKaOUlKpFIFAYMrGLZEcCSm6BpGtTC/9AJJphHFR2husRTcpVB9QKHWnqKiowOVyZdczRFddaSYKUAOxmIgCJJPJqR+4RDICnZ2dhMNhWvxOAl6wRw/6uWbPnj1kfUVRst/jpW2ie5w/LjMWkvxBiq5BGCer9ANIphPZUhEl4uLibooCQyMBTqeTwsJCKsrilAUhboN9Pg/pdFpW7ZbkJcax3dRv9FvUj+jnMjC+x50B4cWNuET7X/k9LskHpOgaxJH8AH6/X/oBJHmJruvs27cPgK55VgBK+/3AoalFEFEAI4VuRAE6pZlekscc7LeY8XO1iCzEcKlFA+N7vLA/BECkygZI0SXJD6ToGsRwfoBGXxnpdFr6ASR5SXd3N729vXR0OuioBUtCZ3F1KzD8hckQXU7DTF8izPSySKok3xhcn6trnsg6lMeEcBqN6KpyiO/szkwvXZ/Ph67rkzRaiWR0SNE1iMF+gLJMJCCQED4YGQmQ5COGn6shZEynV3A5daqrqykoKBiyfnZK/YBIofd5RXRMRgEk+cYhfq4q4edaXNNxRD+XgcfjwWKxUOcNURCBvmJo8TuJxWL09PRM3QeQSIZBiq7DyPoB/Bk/QJH0A0jyF0N09ZWLtlXu5qOnX4x2QLNLxPEcqBEp9I6ODmmml+QVR/Jz1dbWHtHPBWAymaisrMRsVvBkArhtfZWA/B6X5B4pug4jm34JZ/wAleLklierJN8YPJ0+aKRfoiIie7ify2BwCr20S6TQ97fLFLok/ziSn2twv8UjYdw8uzpEi6v+ghJAfo9Lco8UXYdhnKzeAmFGDtZCKqVLP4Ak7wgEAkQiEQ74CglWgWMATqxtx2QyDWmPYqAoSjbaVdqaSaEnhZle+rok+cKx+rkMsuV/Qv0ADHgcgBRdktwjRddhlJeXY7FYmFPVizMC/UXQHiwkHo/T3d2d6+FJJFmMKNeBiPBzVe/XsduVEdMvB6fUi9ISEbcbkL5FSf4QDAaP6Oc60g3FYLLeXJOI3vbIXrqSPEGKrsMwmUxUVVUJP4CYBEZrv/QDSPKPrJ+rqgSAopYwMHIkwIh0uSJGPTphppeiS5IvHPRzZW4oBvm5bDbbiK83Gl/Pr+rEnNQJVkJ3yExvby+RSGTSxi2RjIQUXcOQrfNi+AGcwlMgRZckX0in0zQ2NpJK6QTmmwGoTIn04JH8XAaGb3G2O1OPrhaSSVEgVdajk+QDRr/FPk8JAEUtQiiNxs8FYLPZKC8vp8ChU9kuSkY0dcqbZ0nukaJrGLLpl94+QPoBJPmHz+cjFoux3+emuwwK+2HxLD9ms/mo0+kBSkpKcDgc1HgGcPdAtAAafbI/nSQ/GOznMvoteuJH7rd4JLLlUXziRqLHUg7IiK4kt0jRNQzGyVpuDgLQnSmuJ09WSb5gpBbbEiL94t2nY7EIA73FYjnqawdXpi/PmOk74iIKII9xSa7J+rk6nAQzfq5F1aP3cxkYKcaCLpF2HygtBJAtryQ5RYquYaisrERRFOZVdmJJ6HR5oCtkpb+/n/7+/lwPTyI56OfyijpyRW29wMipRYNsaZRsPTppppfkB1k/V/jgBJGx+LkMjGO8ONkFQF+1SMPLY1ySS6ToGgar1YrH48Hh0KnI+AEapR9AkiekUikOHDhAKqXTsUCcwtUmMetjrKKrMGyY6cXFTF6QJLlmiJ+rVfi5xpJahIM2kbnlImUe8OpEowqdnZ0kEomJGaxEMkak6DoCxglbnPED9FpExW8puiS5prW1lUQiwd7WcvqKoTgEC2q6sdls2ZmJI2GIrlqXSLUEZx2sR5dOpydt7BLJ0ZgoPxdAYWEhRUVFlLkTlAcgaVXY5ytD13WZYpTkDCm6jkC2uF5XprheuROQokuSe4zUog8hsKoa0pjNCnV1dZhMozuly8rKsNvt1HjCFPVCxAlNPjfJZJJgMDhpY5dIjsaR/Fwmk2nECSLDYXyPl2R66XbpohCw/B6X5IqjO24BVVVNwK+ABYACfBb4EVCaWeWLmqa9parqPcC1QCewXdO0/6uqqhn4BbAws+zLmff8B+DjmXVv1DStdyI/1ERgnKzuVBfgptdrhj55skpyT9bPVVMEQJEvBPNGn1qEg83dm5qaKG/V6StW8EUrmU8v7e3tVFZWTsrYJZKjcSQ/V03N2PxcBl6vl7179+IMRoECIsXinJHf45JcMZrb4hWAXdO09cA/AV8F/kHTtDOAzwDfHbTuP2madramaf838/hyoC3z2kJVVU9TVdUDXAGcAWwA/n5iPsrEYoiueRV+lLROoFonkvEDxOPxHI9OcrySSCRoaWkhntDxLRB+w1n2FmBsogsG+bo6hJk+nDHTy3ZAklyR7bfoyfRbPEY/l0G25uKA8C6Gq0QhYCm6JLliNKKrBVBUVVUQ0a2gpmn7Ms/FgcEGkO+qqvqKqqrnZh6fDjyX+ftZYB2wBnhF0zR90LK8w+l0UlxcjLsohSegkDIr7Gv3AHLKsSR3NDc3k0ql+KC1iogTyoIwr6aPgoKC7BT50ZIVXf2Z5u5Vsrm7JHcc4ueaJ2YalseOzc9lYIiuWtehvXQ7Ojqkd1GSE0YjuoJAAtgD/BT42aDn7s38APynpmkrEWnD/1BV1YYQaUbqMASUHWFZXmJclNzt4uTsRoguOcNLkiuM1GLAIo5Nzz4x0WPu3LkoijKm9zJM99XOTGX6jJm+vb1dXpAkU04wGCQSidDc4SRYKfxcRgP3Y/FzAZSWlmKz2age5F080FFMMpmks7Nzgj+BRDIyI3q6gAuBpKZpi1VVVYEfA59QVfXbwF80TdsCoGlaV+Z3h6qq7wOzgB6gOPM+bqArs+yEw5YNQVXVW4FbAW6//XYuuOCCMX+4sZBIJGhtbT1kmdMpzPMFwQGgkEiJ8AM0NDRQW1s7qeOZ6Qy3vyUj88EHHwDQN1scm8WBbigSF5eR9ufh+zydTmOxWJhd2YerTzR3b/YXM7e6j/fff5+SkpJJ+xzHA/IYHxu7d+8G4ED40AbuHo9nVJ0SjrS/y8rK8Pl8lLdBXzH4BiqZRx+7d+/mhBNOGOadJKNBHt9H50gaYTSiS0EY3kFEvdyqqt4CzNI07TPGSqqqFmua1quqqhM4EWgHXgPOB7YAFwEPAR8hfGFklm0bbqOapj0IPJh5qI9inOOitbV1yE7q6+vjrbfeoijaAxTS77VATCyXomt8DLe/JUcnGo0SDAYZiCq0LRFRrXmuZgBWrlyJx+M56uuH2+c1NTUcOHAATyv0nwjtkUrm0kcqlZL/n3Eij/Gx8dprrwGD/FwtEZgFixYtGtV+PNL+njNnDj6fTxQCPtFOpFB4F+PxuPz/jAN5fB8bo0kvPg/MVlX1FeD3COP8g8CJqqq+rKrqQ5n1fqSq6mvAS8D3NU0bAJ4C5qiquhWIapr2uqZpAeBpVVW3ATdwaLoyr8j6AYqFxyVQIxoD+/1+2RhYMuU0NTWh6zp72rzE7VDZDjWVA7hcLsrLy4/pPQ82d8+Y6V0lgEyhS6aWYf1cx1if63CyvXT7hKslUim9i5LcMWKkS9O0JPCJwxYPmburadrnj/DaW4ZZ/hPgJ6MeZY5wu92iMXBFFHcPhEpEY+ATZoUIBoNjNi5LJOPB8HN1FYiLSNn+JJSKWYtj9XMZGL4uZ18IqCRcJSvTS6aeQ/xcJw32c43cwH0kDNFVYQ0CFXRVK9AhRJeu68d87kgkx4IsjnoUjFpGAGWZ4nr+uCyuJ8kNRiQgNKcAgOIukfUfa6mIwRiTRbwOMburs1bJVqbX9UnP6kskwMFj+3A/11j7LQ5HZWUlJpOJud4ubDHoKQN/p4NIJEJfX994hy6RjAkpukYgG5r2i9pcEZdsDCyZesLhMB0dHfSFzbTX6ShpnRNKhZ9rPKLL4/FgsVio84ZwhoXRuC1YSCwWo6tr2DkuEsmEM6Q+V4uoz1VXVzfu9zabzVRUVGCzKlRmStAd6JE3z5LcIEXXCGRFV6aWUbhS3HXJk1UylRgXpQ98tSStCt5WhYqyOCUlJeOaZWgymfB6vZjNChWZiUit/eKYlzcWkqlgsJ8rmPFzeRLi+3W8fi4DI6Lr6kgC0GcXlYrkMS6ZaqToGoHD0y9dNSL/L9MvkqnE8HP1FIk79NJGEXkdT5TLIFsk1SfeM1xYAsgLkmRqCAQCRCIRDvgK6awExwAsrvGNqz7X4Rj+24Juo5euSNHLQteSqUaKrhHweDyYzWbmVPXgGIBeN7T5C4jFYvT09OR6eJLjBCMS0FMnZl65Q6Ip9USKLmGmh3BmdpcUXZKpIOvniojyAxPp5zIwjvESXfggQ9Xi0iePcclUI0XXCJhMJqqqqrBYTNn0S0ufuGuSKUbJVNDb20tnZyddISttc3TMKZ2FnvH7uQyMC1KVLRPNrRXR3Pb2dhnNlUw6TU1NAPRXHNpvcSL8XAZGpGt+ZRBTSidQpdMfNtPT00M0Gp2w7UgkIyFF1ygwfF2ujgQA/QUlgBRdkqnBSC3uDdaimxSqDyiUulNUVFTgcrnG/f4VFRWYzWbmertxDIjSKG3+AqLRqIzmSiaVQ/xcczP1uSbYzwXgcDgoLS3FVZjC41fQTQoNHdJML5l6pOgaBYboKghl/AAeByBPVsnUkC0VUSIuEu4mcWc+URcls9k8JJrbnInmyvSLZDKZCj+XgfE97m4TfUVDJmGml9/jkqlEiq5RkK3VZRL9v7qlH0AyRei6no10dc+1AlDaL9KAE5FaNDBSjEW+TDTXKVI9bW1tE7YNieRwpsLPZZC9ee4cAGCgVESJpeiSTCVSdI2CrB+gqhNLQqezErpDZvr6+giHwzkenWQm093dTSgUwtdpxzcLLAmdxdUiHDWR6RdDdBWEhJk+UiGjuZLJ50h+rok8tg0M0VUUF/Xn+ryiIYs8xiVTiRRdo8Bms+HxeChw6FT4hMm4sbMSkCesZHIxolz7ekSqpWa/gsupU11dTUFBwYRtx2gHVGk91Ezf1tYmzfSSSWGq/FwGhuiqKxVlIgLVEE/oBAIB2UtXMmVI0TVKsndJPnFyhiyiwbAUXZLJ5GClbuE/cTeL1MhEX5QqKioyrVK6sUdFq5SOTgcDAwP09vZO6LYkEji6n2vWrFkTvr2ioiKcTicVZXFKuyBuF7100+k0fr9/wrcnkQyHFF2jJOsH6BLpxIGyQkCKLsnkMdjPFZwnUiFlUXG8TaSfC8BisVBVVYXNqlCRsXE19Yi0uvR1SSaDg36uie+3OByDe+mWZnrpBhIyYyGZWqToGiXZmS9JUVyvzyvC4fJklUwWgUCAcDjMAV8hwSqwR+HETCRgzpw5E769bDS33SiNInw2csKIZDLIRnErSoDJ9XMZZNu6BWIARIqKAfk9Lpk6pOgaJcbJOrdchKH91ToDUYVgMEg8Hs/l0CQzFCPKZUQCavbpOBw6tbW12O32Cd+e4etyhvoAiFQIz5gUXZKJRtf1rIm+0+i3GBfH2ZSIrnCm+0KV7KUrmVqk6BolhYWFFBUVUepOUe6HlEVhX4fwdUk/gGQyMERXX1UJAEUtIrU9WRclYwajxyyO525ZmV4ySRzi56oQfq5FtR2T5ucyMERXtVMc4501kErpspeuZMqQomsMGBel0nZRXK8rLYpVykiAZKJJp9M0NjaSSukE5otIQGVKeKsm2s9lUFVVhaIozKvqxBaHrnIIdNkIh8P09fVNyjYlxydT7ecyKC8vx2KxMLuyF2cE+ougLVhIPB6nu7t70rYrkRhI0TUGsp3qg6Ii+ECJLK4nmRx8Ph+xWIz9PjfdZVDYD4tn+TGbzRNeqdvAYrFQWVmJ3a5QmalM39QtIgPyxkIykeTCzwUHe+mazQqezDHe1i/N9JKpQ4quMWBEulwDPQD0V4oK4fJklUw0RmqxLSEiAd59OhaLMNBbLJZJ2272GPclAei1SzO9ZGLJlZ/LwEgxFnYc2n1Bfo9LpgIpusaAcbLOKsoU16uFZFLUeEmn07kcmmSGkfVzecXsqqI2UStrsi9Khuhydot04oA000smmKP5uSYrijuYrJm+N3OMy166kilEiq4xUFJSgt1up6ZygOIQRAugsaOEZDJJMBjM9fAkM4RUKsWBAwdIpXQ6FohTtNokciGT5ecyMERXts9ojewzKplYDp+VW71P+LlmzZqF1Wqd9O0boqvcLL6zu2vEhBEpuiRTgRRdY2Bwcb2yTHE9f1T6ASQTS2trK4lEgr2t5fQVQ3EIFtR0Y7PZsmUdJguv14uiKCwY1Ge0K2Slr6+P/v7+Sd225PjASC32VZYAB/1cdXV1U7L97ISRSnGMd3kOHuOyl65kspGia4xk/QB+UZsr4nIDMhIgmTiMSIAPIbCqGtKYzQp1dXWYzeZJ3bbVasXj8eBw6FS2iQjA/qCYQCKPccl4OaTfouHnSk2dnwvEMV5eXo7DoVPRLnvpSqYWKbrGSNYP0C+K60UqxfTmjo6OnI1JMrPI+rlqigAo8oljbbJTiwZGNK24PWOmt4l6dLIdkGS8+P1+BgYGaGx30eXJ9FucQj+XgZFGN3rp9lpEb1N5YyGZbKToGiPGyVppE56XrhpZQFIycSQSCVpaWogndHwLxLE1y94CTJ3oyvYZ7RbpRMNML6MAkvFiRLlaBmoB4eeyWafOz2VglP9xdmd66ZY7AXnzLJl8Rpx7rqqqCfgVsABQgM8CHuCHQBr4O03T3lVV1Qs8DBQC92ua9ltVVc3AL4CFwHZN076cec9/AD4OdAI3aprWO9EfbLLweDyYzWbmertxDECoBNresVNTESUUClFSUpLrIUqmMc3NzaRSKT5orSKyDMqCMK+mj4KCguyFYrIxIl1legAooafGBF0y0iUZP8P6uWZPnZ/LwLh5Fr10i+n1mqFPRrokk89oIl0rALumaeuBfwK+CvwLcBlwA/CDzHp3IoTYWcDfq6rqAC4H2jKvLVRV9TRVVT3AFcAZwAbg7yfu40w+ZrOZyspKLBYTnsz52dIrIgMyEiAZL0ZqMWjJtOTZJ9Ifc+fORVGUKRmDEemaXx3EnNQJVuh0h8z09vZKo7HkmDman2uqorgGxjFeV+5HSesEvKKXbmdnp+ylK5lURiO6WgBFVVUFKAXCQErTtG5N0w4AZZn11gKbNU1LAhqwFDgdeC7z/LPAOmAN8IqmafqgZdMK44Q1Ckj2O0oAKbok48cQXb2zRLqjOCBak0zlRclms+HxeHA6dCrbFXSTwv5OaaaXjI/D/VwFEeHnMpvNk9pvcTicTifFxcWil25QEb10fcK7KFOMkslkNKWtg0AC2AM4gPXAfw56Pqmqqg2wappmVAgNIcRYKdA7imVDUFX1VuBWgNtvv50LLrhglB/p2EgkErS2to5q3YIC4XFx9vQBpQx4xOP9+/ezcOHCyRrijGIs+/t4IR6P09bWxkBUof0kEdWqcwk/l9PpHPf+Gss+d7vdBINBittTtM8202spB9r44IMPsse/5OjIY/xQ3nvvPQBaogf7LdqsChUVFfj9/nG//1j3t9vtpre3l5K2NMFKE116BRBkz549mEzS7jwS8vg+OrW1tcMuH43ouhBIapq2WFVVFfgxUDz4PTRNi6uqmlBV1ZQRXm6gC+gZtO7gZScctmwImqY9CDyYeTjpDvXW1tYj7qTDSaVSvPbaa5QqQaCUnmrheQmFQqN+j+Odsezv44UPP/wQXdf5oK2a2Eqo8MGsyggul4slS5aMO704ln2+YMECGhoaKOjqB9xEPIUAhMNh+X8bJfIYP5RXX30VgL4KUWbH1RqG2bBo0aIJ2U9j3d/z5s2jubmZgs4o4Mz20o1Go/L/Ngrk8X1sjEbOKwjDO4ioVxFgUVW1RFXV2RwUTW8CZ6uqagFWA+8BrwHnZ56/CNiWWe/Mw5ZNKwxD83xvEHNKp7NCJ9RnJhQKEYlEcjw6yXTFSC12FmQqZu8T6et58+ZNmZ/LwDAal6ZF1e6QrEwvGQeD+y0afq6K5NTW5zqcrE0kIlL4speuZCoYjeh6HpitquorwO+B7wDfBDZlHv9TZr0fZP7eAjygadoA8BQwR1XVrUBU07TXNU0LAE+rqroNYcT/2UR+oKnAbrdTVlaGM1NcTzcp7A/I4nqS8WGIrtAckb4r7hL3OlNtMoZBZvoqP+aUTqBKJ9Rvpqenh4GBgSkfj2R6c9DPVZT1cy2a5c+Jn8sg20u3WKQ2ZS9dyVQwYnoxY4z/xDBPnX7Yeu3ABYctSwK3DPOePwF+MpaB5hvV1dV0dXVR7Evhm2UmZCkH2vH5fMyfPz/Xw5NMMyKRCB0dHfSFzbQv11HScEJpM5Ab0eVwOCgrKwO6qGhX8M2C/f5KVrjaaW9vl8f4DMGoCxeNRid1O7FYjAsvvJBY0sonC0xYElCw+CIsFgsfffTRhGwjmUzS2zu26kMXXXQRuq5zndmOboKCBZdiMafZvXv3pHd/mO4cy/6eiTgcjjHVmRuNp0syDF6vl/fee4+CzghQxECp8LzISJfkWDCiXB/4akmqCtXNUFEWp6SkJGe137I3Fu3ixqInc2MhRdfMoaWlhaKiokkvSdLV1UU0GiWUKiRaqODsTVFkG8DlclFcXDzyG4yCeDyOzWYb02uCwSDxeJweCok5FApDCVz2GCUlJTidzgkZ10zlWPb3TEPXdTo7O2lpaRn1zbGconGMGKHp4qSwtPV6xV2RFF2SY8EQXT1FFQCUNopaQbmIchkYvi5nl1G1W9xYSF/XzCEajVJeXj6pgkvX9Wztq6RdbMeiJwBh1cglRnTClBBztdIm8T2eSCRyNibJ9EFRFMrLy8cUKZai6xgxRNfc8owfoFonGlUIBoPyhJWMGaNoZE+duAi5Q8LAng+iS1TthlC1uCBJ0TWzmOxJGslkknQ6TSxhImkBUxocNjFJZCpb/wxHVnSlRRHitFXsC/kdLhktYz1/pOg6RlwuFy6XizJ3grIgJK0K+/3l6Lo+ITVnJMcPvb29dHZ20hWy0jZHx5zSWegRfq5czeyCg6JrQdXBqt39YXM2VSSRjIZYLAZAIi1SUdaYjqKIIry9vb387GdHn0vV2NjI7373uxG309jYyNKlS8c0NkN0WRQhApMZ0ZVMJmUvXcmkID1d48Dr9fLRRx9R2qbT5VHoTHmAIO3t7bJ+iWTUGKnFvcFadJNC9X4odafweDwUFRXlbFwFBQUZP1kPFR0K/mpo6Khg+XwfPp8vp4JQMnF8+9vfnpLtfPwzXwbAnEiDTYiurq4ufvazn/GFL3zhiK8zRNcNN9ww4WOyWMQl0G5NYkpDygyJAQWrJU0qlco+L5FMFDLSNQ6MFKMzIO76I8XiAil9XZKxYKQWQyXCz+VuEsdTLlOLBkbz65JWMYW+xyxapcjm15KxkrQN9XN9/etfp6GhgRUrVnDHHXdwxx13sHTpUurr69mwYQMAX//619m6dSsrVqzgJz/5CY2Njaxfv55Vq1axatUqXnvttWMek6IoWK1WFEXBkskoxlMi+pVMJsfxaSWS4ZEyfhwY6ZfCgW6ggHCVFZJSdElGj67r2UhX91zxZV/a74eq/BBdXq+X3bt3U9AZBooYKBNVu+UxLhkrw/m5/u3f/o1du3axc+dONm7cyAMPPMDbb79NMBhkzZo1nHnmmfzbv/0b9957L0899RQgyqs8//zzOBwO9u7dyyc/+Uk0TTvmcVmtVhKJBKakDnaFlHLQTO9wOMb/wSWSQUjRNQ6MSFetyw/UEKyF1D6djo4O0um07N8lGZHu7m5CoRC+Tju+k8CS0FlcLfqZ5UP6zoh0uZOiGUVvtRn6ZaRLcmwM9nMd/v346quv8slPfhKz2UxVVRVnnXUWb7755pCSEolEgttvv52dO3diNpv58MMPxzUmI4VoSqYAC7rFlN2ORDLRSFUwDkpLS7HZbFR7wrj6IOKEAx3FJJNJOjs7R34DyXGPEeXa1zMbgJr9Ci6nTnV1dV40ljaiufMrhJneX60TiSp0dnZmDdISyWgxJ0Saejz1nX7yk59QVVXF22+/jaZp2XIUx0rWTI+IwKXkDEbJJCJF1zhQFAWv14vZrODJNFv3Dch2QJLRY/i5+jxlALibRYudfIhyATidTtxuN+6iFB6/Qsqi0OAT3jN5jEvGyuH1uYqKiujr6wNg/fr1bNiwgVQqRSAQYMuWLaxdu/aQdQBCoRDV1dWYTCZ+85vfkEqlxjUmQ3TZrEkUXSdp1UmlIJVKyXZAkglHphfHidfr5cCBAzj9MTjRTtjlBkQto/r6+hyPTpLPDPZzdc4Tp2JZVAiZfPBzGVRXVxMKhShpTxPwmujGA/hpb2+nrq4u18OTjJO77757Ut43kUgQCASIJUz0FDmHrc9VXl7OunXrWLp0KZdccgnLli1j+fLlKIrCD3/4Q7xeL+Xl5ZjNZpYvX84tt9zCF77wBa699loefvhhLr74YgoLC8c1TpPJlGn5k8KSVEhYIZa04jQnSCQSOS/gKplZSNE1TrIzGPt6gQoGKsQJ2tHRkcNRSaYDgUCAcDhMc4eTwElgj8KJNT5MJhNz5szJ9fCyVFdXs2fPHgoCEcBFpFSY6WWRVMnRMNLP8WHqcw32cx1eg+tHP/rRIY+tViubN28+ZNk777yT/fsHP/gBIKLDu3btOqaxWq1WUqkU5oROwmqY6aXokkw8Mr04TgzPS4VVVBDvqhF+gPb2dllcT3JUjChXUzjj59qn43Do1NbW5tUXvXGMF8dFy6u+GnGvJkWX5GgYXqu0VcwGNPxc+XRsG2Qr0yfFGNNm2Q5IMjlI0TVOKioqMJlMzPV2YY9CTyn4Ou0MDAzIDuySo5L1c1WWAFDUEgHyx89lYIiueR4RvfUPank1XhOzZGai63o20nV4fa58bJKcFV26SH/KdkCSyUKKrnFiNpuprKzEZlWoyNz4t/RUAdJoLDky6XSaxsZGUimdwAJxV12ZErMx8snPBaLlVVFREWXuBB6/aJXS4BMtr2QaXTIcRhudQ/st5r/osluE6EpYIZ2W7YAkE48UXROA4ety+cQJ22cvBaTokhwZn89HNBplv89NdxkU9sPiWX7MZjOzZ8/O9fCGYES7StpE+qVLFzMYZYpRMhzD+7kUbDbbpDfYPhZMJhMmkwmLWceSBF2BeFKmGCUTjxRdE4Ahugq6+wGIeER9JSm6JEfC8HO1JWYB4N2nY7EIA30+9nszRJczIEpaREpFyyspuiTDMZ38XHCwHRCAOSEiW0ldnIdSdEkmEim6JgBDdJXqwkwfqha7VYouyZHI+rm8otp2UZvw/+Wbn8vAEF1FsYyZvlqa6SXDM938XAYHzfRCdBlmetmDUTKRSNE1ARiia543gCmlE6zU6Qub6enpYWBgIMejk+QbqVSKpqYmUimdjgXiFKw25aefy8BoBzS3XNxIBGogFtPx+/3yoiQ5hOni59qzZw8rVqxg5cqVNDQ0HBRdaVFsNT2OdkAPPPAADz/88MQNVjJjkKJrArDb7ZSWluJy6lR0KOgmhX0dsmq3ZHhaW1tJJBLsbS2nrxiKQ7CgphubzZYVN/mGy+WisLAQT0mCsiDEbbDP55FmeskQpouf64knnuC6667jrbfeYsGCBdm0vtUkRFbSBroO0Wh0zGb62267jZtuumnCxyyZ/kjRNUFkaxm1C+9Cj7kckKJLMhTDz+VDCKyqhjRms0JdXV2mMnb+oShKVhCWtooLUDAlzfSSoYzFzxUOh7nssstYvnw5S5cuZcOGDYBIsweDwq6haRpnn302APfccw8333wz69evp66ujscee4yvfe1r1NfXc/nllw8bldq5cyennnoqy5Yt4+qrr6a7u5tNmzZx3333cf/993POOecAovG1oijYLGnWza7hR3f/M+effwGapvHwww+zdu1aVqxYwec///ls66H//u//ZtGiRaxdu5bPfe5z3H777dlx3nvvvUfcPsDZZ5/NnXfeydq1a1m0aBFbt24F4L333stua9myZezdu3ec/xFJPiFF1wSRNdN3ilpLA6WiNYUUXZLDMURXX40woxf5QkD++rkMst0XgiJlPpAx07e1teVsTJKJQ1GUCfkpLy+ntraWJbNLWFXuxsKRU4vPPvssNTU1vP322+zatYuLL754xHE2NDSwefNm/vd//5cbb7yRc845h3fffZeCggKefvrpIevfdNNN/OAHP+Cdd96hvr6eb3/721x66aXcdtttfOUrX+Gll17Kfn4hvGAgEmbp6tX8adMrlJaWsmHDBrZt28bOnTsxm8088sgjtLW18d3vfpe//OUvbNu2jT179gw73uG2b5BMJnnjjTe47777sssfeOAB/uEf/oGdO3eiaRqzZs0a+Z8nmTZI0TVBGBekbNVurwhVS9ElGUwikaClpYV4Qse3QKRaZtlbgPz1cxkYka6iAXGn3ucVHhgZ6ZIcDYf1yKKrvr6e559/njvvvJOtW7fidrtHfL9LLrkEq9VKfX09qVQqK9SWLl2anaBiEAqF6Onp4ayzzgLg5ptvZsuWLUd87+wMRrOZ8z52JWmThVdffZW33nqLNWvWsGLFCl588UX27dvHG2+8wVlnnUVZWRlWq5Xrr79+yPuNtP1rrrkGgNWrV2fHftppp/H973+fH/zgBzQ1NVFQUDDiPpFMH6TomiAM0VVXLvwtgWphNA4EAtJoLMnS3NxMKpXig9YqIk4oC8K8mj4cDkf2GMpXjBT67JKDZvp4QprpZwq6ro/7p6+vj9bWVvbs62RHZ4j3WnqO6udatGgRO3bsoL6+nm9+85t85zvfAUSqL50WacloNHrIa4w0pclkwmq1Zt/XZDKN+zjMFkm1OzCbzaQtCrqu84lPfIKdO3eyc+dOPvjgA+65555xbcfA+Cxmszk79htuuIH//d//paCggEsvvXRI30nJ9GbEgkCqqp4G/GvmYQ3wNDAfcCNEW72maaWqqt4C/DPQCrRqmvY3mdf/ADgdaAQ+rWlaQlXV64GvAAPAzZqmtUzkh8oFRUVFmW73Yco6oasc9neUc+KcLvx+f94apCVTi5FaDFqEgPHsS0GRiHLlk8l4OIqLi3E6nXiJUNoF3WWwv72MxXO65TEuAY7g57IduT5XW1sbZWVl3HjjjZSUlPDLX/4SEKn27du3c8kll7Bx48ZjHo/b7aa0tJStW7eyfv16fvOb32SjTsNhiC4QvsWUVeGMM87g05/+NN/4xjeorKykq6uLvr4+1qxZw5e//GW6u7spKipi48aN1NfXj2v7APv27WP+/Pl86Utf4sCBA7zzzjuce+65x7wPJPnFiKJL07TXgbMBVFX9H+AJTdNeyTw+G7h50Or/oWna/zMeqKq6HKjVNG29qqr/DFynquofga8CZwFrgG8Bn5+ID5NrvF4vDQ0NlLbpdJUrBJMVQBc+n09ekCTAQdHVO8sJQHGgG4ry388FwvNSXV0tjvFWne4yhUCygsV0097eLo/x4xyjPpeuD6rPdRQ/F8C7777LHXfckY1a3X///QDcfffdfOYzn+Fb3/pW1kR/rPz617/mtttuIxKJMH/+fB566KEjrju4MLGiQ9IC8+cv5o477uDCCy8knU5jtVr5r//6L0499VS+8Y1vsHbtWsrKyjjxxBOHTY+OZfsAf/jDH/jNb36D1WrF6/XyjW9849g/vCTvGHXpa1VVbcBa4NODFl8P/GHQ4y+oqvoJ4L80Tfs9IsL1XOa5Z4FPATuB9zVNiwPbVFW999iHn18YoqsgEAUKGCiWVbslB4lGo7S1tTEQVWg/SVyU6lwiyDt//vxcDm3UGKLLmTnGI5mLjDzGJYlEAl3XiSfMJAsy9bmsCUA5oui66KKLuOiii4YsX79+PR9++OGQ5Yen9fr7+7N/f+tb3xp2OytWrOAvf/nLiO8FIkVpsVjYu3cv3QlRGiWWsnDllVfyqU99CofDccj6N9xwA7feeivJZJKrr76aq666ash7H2n7L7/8cvZvj8eT9XR9/etf5+tf//qQ9SUzg7F4us4HXtQ0LQ2gqqoJOAd4IfP8E8BS4FLgq6qqVgOlQG/m+RBQdtgygPycI38MGJ6XwkgPAP1V4gtAmuklAAcOHEDXdT5o8xJzQIUPZlVGcLlclJeX53p4o8I4xl0RYabvl2Z6SQYjtRjXxTGRr/W5RiJbJDXTDiitHLkd0D333MOKFStYunQp8+bNy4ouieRIjKXJ2/XA4LjoeuAvmqYlADRN68ks71NV9WXgJKAHKM4sdwNdhy0DSA23MVVVbwVuBbj99tu54IILxjDUsZNIJGhtbR3XexhfLDWFfqCaYC2k9uv4fD6am5sxmeS8BYOJ2N/TjXfffReAzgJhmC/fn4QSqKqqmpKyCxOxz41jeLa7g79QQ6AWkh+l6ejokMf4YUyHYzyZTGbF0ngxDO+H+7ksFsuEbeNo6Lo+IdsxjmFTKgVYspXpY7HYEG/a97//fb7//e9nHx9PfRonan/PBJLJ5JBzvba2dth1RyW6VFW1IvxXnxm0+JDUoqqqxZqm9aqqagZOAX6GEFlfBR4GLgK2AXuBkzLpShV4Z7htapr2IPBg5uHYygEfA62trUfcSaOlpqYGm81GbUU/hf0QdkGzv4i51f0UFBTg8XgmaLTTn4nY39ONQCAAQO9sMQW8uLMTSuDkk0+ekn0xEftc13UcDgc1ngHcPRAqgf2+MhbO6sl6UCSC6XCM9/b2TkhrHl3XM+nFoX6ugoKCKWn/E4/HJ+yzhMNhzLoQXSmrAinRviuf2hjlmona3zMBi8Uy6nN9tLel5wObD0stns3B1CLAV1RV/QvwGvC4pmmNmqbtBDpUVd0KnAxszETG7gNeBr6X+ZkRKIpCVVUVZrOCJyN6fZFK8VumGI9rIpEIHR0d9IfNtM3VUdI6J5Q2A/lfn2swhpkeoDxTmd4fl5Xpj3cO8XNZwJzxcxnpxelEtmyEJYGCTtKik04L0WWUsZBIjpVRRbo0TXsGeGbQ4zTCvzV4nW8D3z7spWiadscwyzYAG8Y62OmA1+ulubmZwo44LLYRLiwBhOhaunTp0V8smbEYJtk9vhqSqkJ1M1SUxSkpKaGkpCSnYxsr1dXV7N+/H6c/CicXECk+aKZfuXJljkcnyQWH+7ksGT/X4Dpa0wWTyZRpx5XCklBIWCGWsFBgT5JIJI5Y/kIiGQ3SgDHBZFul9Im5ApEKcYLKSNfxjVEqoqdIRD5LG8VFajpFuQyyE0bCPcDBCSMy0nX8MpZ+i9OBbGX6jJk+mYlPyCLAkvEiRdcEY1yQPBbh3+muEXd57e3tY+5UL5k5ZEVXnbgIuUOime90FF1GPa5ZLtF9ITgLUikxYUSmX44/hq3PpR+9Plc+sGfPHlasWMHKlStpaGg45DlDdClJcTynM43ojyejvGRykKJrgqmoqMBkMjGvugtbXFTt9nc6iEQih9SUkRw/9Pb20tnZSVfIStscHXNKZ6FH+LmmQ1HUwyktLcVut1PtCVPUCxEnNPncJJNJgsFgrocnmWKG9XPZ8t/P9cQTT3Ddddfx1ltvsWDBgkOeM4qkmvWU8HJZhZiUoksyXqTommAsFgsVFRXYrAoVmSoAB3qk0fh4xvBz7Q3WopsUqg8olLpTeDweioqKcju4Y8Aw05vNCp4WEb31xUTaVB7jxx/j8XOFw2Euu+wyli9fztKlS9mwQVh9586dmxXwmqZlq9Lfc8893Hzzzaxfv566ujoee+wxvva1r1FfX8/ll18+rCjauXMnp556KsuWLePqq6+mu7ubTZs2cd9993H//fdzzjnnDHlNRUUF3/72t7nisrN45803+NMTG7j00ks5++yzufXWW0mlRKWjv/u7v0NVVU4++WTuvvvu7Ou//vWvs2TJEpYtW8Y//uM/AuJ74Nxzz2XZsmWcd955HDhwAIBbbrmFL33pS5x++unMnz+fRx99FBDn0plnnpmtA7Z169bR/UMkec1Y6nRJRonX66Wjo4MiXxLmWuizlQHN+Hw+Fi1alOvhSaYYI7UYKhHi290UharpmVo08Hq9NDY24vTHYImDsEuY6dva2li+fHmORyc5FpQzjzU17Mz8DMa4mUijbznyvf2zzz5LTU0NTz/9NAChUGjErTU0NPDSSy+xe/duTjvtNDZu3MgPf/hDrrzySp5++ukhBUpvuukmfvrTn3LWWWdx11138e1vf5v77ruP2267DZfLlRVFgwmHw6xatYq7776bN/a38j9/uo8Nf3yKokIT3/nOd3jkkUe46aab+Jd/+RfKyspIpVKcd955vPPOO9TW1vL444+zZ88eFEWhp6cHgC9+8YvcfPPN3HzzzfzqV7/iS1/6Ek888QQgBNarr77Knj17uOKKK7juuuv43e9+x0UXXcQ///M/k0qliEQiI+4bSf4jI12TgGGmd3SHARjwiLpM0kx//KHrelZ0dc8VkYDSfj8wvUWX4esq7BcXybBXeNVkpEsyFurr63n++ee588472bp167C9Cw/nkksuwWq1Ul9fTyqV4uKLLwZg6dKl2aiyQSgUoqenJ9tk+uabb2bLli0jbsNsNmfF25svv8z7O3dy1ZWXcMEFF7B582b27dsHiD6Jq1atYuXKlbz33nvs3r0bt9uNw+HgM5/5DI899hhOpxCkr7/+OjfccAMAf/u3f8urr76a3d5VV12FyWRiyZIldHQIr+SaNWt46KGHuOeee3j33XenZVRcMhQZ6ZoEDNFVku4E3ISqTdAjRdfxSHd3N6FQCF+nHd9JYEnoLK4WRdzq6upyPLpjx5gwUu3sAKpE94XGg2Z6WZl++nG0iNSRiMfjBINBYnEzPcUFmNNQHuvDZDLh9XpHTC8uWrSIHTt2sGnTJr75zW9y3nnncdddd2GxWLKTMoxK9wbGjEijSbaxDZPJNGGzCx0OBw6Hg3A4jJLU+dj/+SRf+8pdFFsjFBYW4na72b9/P/feey9vvvkmpaWl3HLLLUSjUSwWC2+88QYvvvgijz76KP/v//0/Nm/efNTtDZ7laUy4OvPMM9myZQtPP/00t9xyC1/96le56aabJuTzSXKH/GacBAzRtaAqgJLWCVbq9IfNdHd3D/kCkcxsjCjXvp7ZANTsV3A5dbxeb/YOeDpSXl6OzWZjdmUfrj6j+0IxiUSCzs7OXA9PMkWMtz5XW1sbTqeTG2+8kTvuuIMdO3YAwtO1fft2ADZu3HjM43O73ZSWlmb9UL/5zW+yUa+RMGYwnn7aGbzw5J8IZGYc+/1+mpqa6O3tzQqwjo4OnnlGlLLs7+8nFApx6aWX8pOf/IS3335bvM/pp/P73/8egEceeYT169cfdftNTU1UVVXxuc99js9+9rPZfSOZ3shI1yTgcDgyBS97qOhQ8FfDPr+HZfM66OjomNYRDsnYMNIdfZ4yANzNA1AzvVOLIMz0Xq+XAwcO4GmF/hOhPVLJXPpob2+noqIi10OUTAGxWAwY2m9xtPW53n33Xe64445s1Or+++8H4O677+Yzn/kM3/rWt7Im+mPl17/+NbfddhuRSIT58+fz0EMPjfwiDoquExct4Avf+Cafu+EaTOkkFouFn//855x22mmsXLmSE088kdmzZ7Nu3ToA+vr6uPLKK4lGo+i6zr//+78D8NOf/pRPfepT/OhHP6KiomLEcbz88sv86Ec/wmq14nK5ePjhh8exFyT5gjJNakdNi96Lg/nDH/7A+++/z6aBU9m7ysTKZ3o4c+5uLrroIk499dQJ2850ZTr0pRsvuq7z4x//mHA4zO/KTidQBWc9vZ8V89u54YYbWLhw4ZSOZ6L3+bPPPstf//pXXvCv5r2z7Jz8cozzq7Zz6qmnctFFF03YdqYr0+EYf//99znppJOO6bW6bqSTdbpsLpJmKO6NUmBLUl5ePuWFUSe6F6Cu69n6ikF7EWkTlPVFsFrTVFZWZstKHK/I3osHOcJ5NGyoV6YXJ4mqqioACoIDAAyUugDp6zqeCAQChMNhmjucBKrAHoUTa3yYTCbmzJmT6+GNG8PX5ezLmOllZfrjCqM+VyxhJmme3v0Wh2NwmtSSqUQRTwuhJet1SY4VKbomCeOCVBTvAqDPK05WKbqOHww/V1M44+fap+Nw6NTW1k7b9iiDMY5xr0PMxuysVUildNl94TjB8HMlZkC/xSNxeDuglCJFl2R8SNE1SRhm+rpSMf03UA3xhE4gEJD9u44Tsn6uyhIAilpEnZ3pWIV+ODweDxaLhTpvCGcY+oqhNeAiHo/T1dWV6+FJJplh/VxM336Lw5FtB5QphqpbhJiU3+GSY0WKrkmiqKgIp9NJRVmc0i6I22F/exnpdJpAIJDr4UkmmXQ6TWNjI6mUTmCBuChVpESLguluojcwygKYzQoVogoGbWGRVpcpxpmNruvE43HRb9Ge6bdI/vdbHCuG6LIgRFZStgOSjBMpuiYJY3YXQGmbCE0Hk2JGl0wxznx8Ph/RaJQmn5vuMijshxNndWA2m5k9e3auhzdhGCnGQp9INYULSwApumY6M93PZWCY5e3WJIquk7LqpFKQSqWyrYAkkrEgRdckYoguZ0CE4SNFxYC8IB0PGH6ulvgsALz7dCwWYaCfSbOehpjpK2Vl+uOB48HPBSKaa7FYMJnAklDQUYglxWeWKUbJsSBF1yRiiK7CcA9wcHaXjHTNfLJ+rmohtIvaeoGZ4+cyMNoBVdkzZvpZ4oIrzfQzm5ng59qzZw8rVqxg5cqVNDQ0HPKcruuce+659Pb2Zm+SzEnDTC8+81hSjHfddRcvvPDCBI08v3jqqae46667JuW9L7300mzvypmCFF2TSHZ2l1N4uDprIJXS6ejokBekGUwqlaKpqUn8rxeIU6zaJExPM8XPZeDxeDCbzcyt6sYxAL1uaPE7iUajM+7LUiIY7OdKTGM/1xNPPMF1113HW2+9xYIFCw55btOmTSxfvpzi4uKsr8uUTKPrOkll7L6u73znO5x//vkTN/jDyGXU7bLLLuPJJ5+c0Ibcuq6TTqfZtGlTptD4zEGKrkmkrKwMq9XK7MpenGHoL5Kzu44HWltbSSQS7G0po68YikOwoKYbm82WjQzNFMxmM16vF4vFRGWLWNbaVwnIFONMZbCfK2UGc+rY/VzhcJjLLruM5cuXs3TpUjZs2ACIiHAwKNruaJqWrUp/zz33cPPNN7N+/Xrq6up47LHH+NrXvkZ9fT2XX375sEJo586dnHrqqSxbtoyrr76a7u5uNm3axH333cf999/POeecM+Q1jzzyCFdeeSUgWhWtX7+er3/181y/7lTa/K3cf//9nHvuuSxbtoy77747+7rvfve7LF68mDPOOINPfvKT3HvvvQDccsstPProowC8+OKLrFy5kvr6ej796U9no4Zz587l7rvvZtWqVdTX17Nnz56j7ruXX36Z9evXc8UVV7BkyRJSqRR33HEHa9asYdmyZfz85z8HRFui8847L/u+f/rTn46678c6PkVROPvss3nqqaeGjPGVV15hxYoV2YhiX18fAD/60Y+y4zT2X2NjI4sXL+amm25i6dKlNDc3H3Ic/Pa3v2Xt2rWsWLGCz3/+81lf3S233MLSpUupr6/nJz/5yVH3WT4wc8wleYjJZKKqqoqWlhY8rXBgEbSFK5nDfnw+H+Xl5bkeomQSMPxcPkVUI69qSGMuUKirq8NsNudyaJOC1+ultbUVV0cCFlrpd5YCjbS1tbFkyZJcD08ySjaV//mYX9uS/eudIc9d2nnk7gTPPvssNTU1PP300wCEQqERt9XQ0MBLL73E7t27Oe2009i4cSM//OEPufLKK3n66ae56qqrDln/pptu4qc//SlnnXUWd911F9/+9re57777uO2223C5XPzjP/7jkG1s27YtK1osFgv79+/nx//+H9StP5O/bH6Rffv289RTT1FVVcVVV13Fli1bKCgoYOPGjbz99tskEglWrVrF6tWrD3nfaDTKLbfcwosvvsiiRYu46aabuP/++/nyl78MiMjxjh07+NnPfsa9997LL3/5y6Puix07drBr1y7mzZvHgw8+iNvt5s033yQWi7Fu3TouvPBCZs+ezeOPP05xcTHBYJBTTz2VK664Yth9P5bx3XffffzqV78CQFVVtm7dysc//vFDxnfvvffyX//1X6xbt47+/n4cDgfPPfcce/fu5Y033kDXda644gq2bNnCnDlz2Lt3L7/+9a+HdG15//332bBhA9u2bcNqtfKFL3yBRx55hJNPPpnW1lZ27doFMC2i6zLSNckYvi6XX9yBhZ0lgPR1zWSyfq6aIgCKfOJCMtP8XAZG9M6ZuWBGKh2AjHRJRqa+vp7nn3+eO++8k61bt+J2u0d8zSWXXILVaqW+vp5UKsXFF18MwNKlS7PnnkEoFKKnpyfb5Prmm29my5YtI26jq6uLoiJx/prNZmbNmsXaNauwJOH1lzfzyitbuPDCC1m9ejV79uxh7969bNu2jSuvvBKHw0FRUREf+9jHhrzvBx98wLx581i0aNGw47nmmmsAWL169ZDPMhxr167NWhaee+45Hn74YVasWMEpp5xCZ2cne/fuRdd1vvGNb7Bs2TLOP/98Wltb6ejoGHbfH+v4KisraWtrGzK+devW8dWvfpX//M//pKenB4vFwnPPPcdzzz3HypUrWbVqVXb/AdTV1Q3bJu/FF19k+/btrFmzhhUrVvDiiy+yb98+5s+fz759+/jiF7/Is88+S3Fx8Yj7LNfISNckY4iuglAvUM5AhbggSdE1M0kkEjQ3NxNP6PhOEN6PWXYRB5hpfi4Dw7tYYfUDHrpqFOg4aKafSbPZZjJHi0gZDO632GlzkRpnv8VFixaxY8cONm3axDe/+U3OO+887rrrLiwWC+m0MOdHo9FDXmNsw2iSbRxfJpNpwrxNxvZNJhGXKCwsBERlel2HW//uy3z2U/8Ht9udfe6+++4b93aNz2Y2m0f1WYxtg/jf/PSnPx3S9/R//ud/CAQCbN++HavVyty5c4lGo8PueyOlOprxDS6ZEY1GKSgoGLL+17/+dS677DI2bdrEunXr+POf/4yu6/zTP/0Tn//85w9Zt7Gx8ZDPMxhd17n55pv513/91yHPvf322/z5z3/mgQce4A9/+EM2+pavyEjXJGOILo9FmOm7aw7O7pLMPJqbm0mlUnzQWkXECWVBmFfTh8PhyB4LM43KykpMJhPzq7uwR6GnDDo6HQwMDIwqXSSZPkyknwuEX8rpdHLjjTdyxx13sGPHDkBEhbdv3w7Axo0bj3m8breb0tJStm7dCsBvfvObbNTraCxevJh9+/ZlH2eFXVLntHPPZeOjvyMcDpNIJGhtbcXv97Nu3TqefPJJotEo/f39w3qcFi9eTGNjIx999NGox/PGG29w0003jTjmiy66iPvvvz/ra/vwww8Jh8OEQiEqKyuxWq289NJLNDU1AcPv+2MZn7GtpUuXDlne0NBAfX09d955J2vWrGHPnj1cdNFF/OpXv6K/vx8gu/+Oxnnnncejjz6aXa+rq4umpiaCwSDpdJprr72W733ve9njJ5+Rka5JpqqqCkVRmFfViTUOXeUQ/MAKhOnv78flcuV6iJIJxPBzBS0i+uPZl4IiEeWaqREfs9lMVVUV7e3tVLRBy3xo6qmiqryJ9vb2GTf76HhmSH2u+Pjqc7377rvccccd2ajV/fffD8Ddd9/NZz7zGb71rW9lTfTHyq9//Wtuu+02IpEI8+fP56GHHhrxNZdddhkvv/wyJ5xwAnBQdJnTSU475zwO7P6QK664AkVRcLvd/Pa3v2XNmjVcccUVLFu2jKqqKurr64ekSx0OBw899BDXX389yWSSNWvWcNtttx11LAcOHBg2inQ4n/3sZ2lsbGTVqlXouk5FRQVPPPEEf/M3f8PHPvYx6uvrUVWVE088ERh+3x/L+ABeeumlYaNQ9913Hy+99BImk4mTTz6ZSy65BLvdzvvvv89pp50GgMvl4re//e1R/a5Llizhe9/7HhdeeCHpdBqr1cp//dd/UVBQwKc+9alsVHS4MeQbyjQpXTDpg2xtbaW2tnZS3vv+++/H7/fzR+fptNXBGU8dYPWCFm644QYWLlw4KdvMdyZzf+eSX/7yl7S2tvInTqPxJAX16SDr5n/IJZdcwtq1a3M6tsnc508++SQ7duzgua41vL/OSv2LEc6t2cn69es599xzJ2Wb+c50OMbff/99TjrppFGv39nZSSwWI5QuJOpUcPamKLINUFRUlPVA5Yp4PD5hJSva29u56aabeP755wFRksHv9xNPmOgucmJKgyfWj8kkOo8Yosy4kY5EIpx55pk8+OCDrFq1alxjueOOO/jbv/1bli1bNu7PNZEY+7ujo4MbbriBF198MddDyhlHOI+GvQsZMdKlquppgCEfa4CngZWAGUgB/61p2m9UVfUCDwOFwP2apv1WVVUz8AtgIbBd07QvZ97zH4CPA53AjZqm9Y7pE04zvF4vfr+fIl8S6iz02sqAFnw+33ErumYi0WiUtrY2BqIK7SeJ863ONbP9XAbZyvShPqCMSIW4M5dp9JnDcPW5rIjI13SqzzUaqqur+dznPkdvby/FxcWYzWYR0bOkMacgZYZ40oTdmiaZTGZred16663s3r2baDTKzTffPG7BBaK8Qj5z4MABfvzjH+d6GNOGEUWXpmmvA2cDqKr6P8ATCNF1iaZp/YNWvRP4IfAysFVV1UeBi4A2TdM+rarqLzICbi9wBXAGcAPw9xwUdTMSr9fLO++8Q0F3GHATLXMC0kw/0zhw4AC6rvNBWzWxlVDhg1mVEVwuFx6PJ9fDm1QM0eUx+4EyumsV8Esz/UziED9XgfBz2a2pGddv0WBw+QMjhRqPx7EkhOhKpK3YiR0iun73u9/larg5Y82aNbkewrRi1EZ6VVVtwFpgK5AGNqmq+r+qqtZlVlkLbNY0LQlowFLgdOC5zPPPAuuANcArmqbpg5bNaAwDdUmqE4BQjdjtUnTNLAw/V2eB+H+X7xezj2ayn8ugqqoKk8nEvKpObBnvYqDLRjgczhZElExvhvdziSjXTD++gUMq0wOkTWNvBySRjMVIfz7woqZpaVVVr9c0rVNV1bOAnyIiV1ZN09KZdUNAGVAK9I5i2RBUVb0VuBXg9ttv54ILLhjDUMeOMQtlMjBMfvOrArySnkegCvrbFaCL/fv3z8i7xJGYzP2dKz788EMAemeL1FpxZyeUQElJSV581sne5yUlJaTTXVS2Qss8aOr2UlF2gF27dlFXVzfyG8wwpsMxnkwms2JqJIzSDYf0W7SJiRSjfY/JxEh/ThbZGYypFGAibRGPY7FYXnz+qWay9/d0IplMDjnXj+TnHIvouh54CEDTtM7M71dUVTWSuQlVVU0Z4eUGuoAewKhWNnjZCYctG4KmaQ8CD2YeTmsjPZCZxRLC41cIeGG/v4L6uX7MZnPem20ng+lgMh4LkUiErq4u+sNm2pbrKGlYUCJOwlWrVuXFDL7J3udz5syhq6sLly8J8yz0OkqBA8Tj8Rn1vx4t0+EY7+3tHdVNn67rmfTiUD9XQUFBXtw4TqSR/kj09/djUZKAlZRVgaTotXqsszenM1Oxv6cLFotl1Of6qNKLqqpaEWnBVzOPizO/lwDdmdXeBM5WVdUCrAbeA15DRMhA+Lu2ZdY787BlMx7D8+JuF1Gvbl14fKTReGZgVGfe46shaVXwtipUlkcpKSnJC8E1FWTN9N0inTjgkWb6mcJw9blmsp9rOIz0ot2awqRD0gLJpEI6nc5mMySSkRitp+t8hF/LOLI2q6q6Ffg58H8zy34A/BOwBXhA07QB4ClgTmbdqKZpr2uaFgCeVlV1G8JI/7MJ+ix5TVVVFQDO4AAAA6WiPpf0dc0MDD9XT5Fo9lzaKKIAM33W4mCMdkBlpkwh4Frx9SJF1/RnJvq59uzZk23E3NDQcMhzuq5z7rnn0tt7cGK9oihYLBYUBSwZG1csJfbHSL6uu+66ixdeeGFiP8A0ZfC+uO+++4hEIkddPx6Pc+aZZ05Yt4HBPPDAAzz88MMT/r5HY1TpRU3TngGeGfRYHWadduCCw5YlgVuGWfcnQP63A59AjCiAK9YNFNLvtUBUiq6ZQlZ01Yk2Ge5QEDzHl+gyCgEvqOrk5YROZ4VCcK8V6JOFgKc5sVgMGOrnms5RrieeeILrrruOb37zm0Oe27RpE8uXLx/Sy89isRCPxzGldLAppJWDZnqHw3HEbX3nO9+Z2MEfRjKZxGKZHrXOB++L++67jxtvvBGn03nE9W02G+eddx4bNmzgb/7mbyZsHMlkclSFXyca2QZoijBmMM4pEW0MAtUQT+j4/f5DelhJph+9vb10dnbSFbLSPlvHnNJZ6GkGZm6T6+GwWq1UVFTgcOhUtonoR1OXiPDKaNf0ZTLrc4XDYS677DKWL1/O0qVL2bBhAyDOm2AwCICmadmq9Pfccw8333wz69evp66ujscee4yvfe1r1NfXc/nllw8bcdq5cyennnoqy5Yt4+qrr6a7u5tNmzZx3333cf/993POOecMec0jjzyS7UPY2NjI4sWLuemmm1i3bh1tbW089LP7uPG8s7nikjO49957s9v97ne/y+LFiznjjDP45Cc/yb333gvALbfcwqOPPgqI5s0rV66kvr6eT3/601lBO3fuXO6++25WrVpFfX09e/bsOeq+e/nll1m/fj1XXHEFS5YsIZVKcccdd7BmzRqWLVvGz3/+c0D40M4777zs+/7pT3866r6fqPEB/OAHP6C+vp7ly5fz9a9//ZB98Z//+Z+0tbVxzjnncM455/CrX/2KL3/5y9nX/uIXv+ArX/kKAFdddRWPPPLIkPc/0mfYvn07Z511FqtXr+aiiy7Kfv+cffbZfPnLX0ZVVf7jP/6De+65J/s/amho4OKLL2b16tWsX78++/n++Mc/snTpUpYvX86ZZ545ZAxjZXpI4xlAcXExBQUFVJUP4O6GUCk0+spYNLubQCAwY/vyHQ8Yfq69wVrSZoVZ+6HUncLj8eS8SvdUU11djd/vp7g9SVudhV5bOdBCW1ubLASc55T94flJed+ujx955vmzzz5LTU0NTz/9NMCoenU2NDTw0ksvsXv3bk477TQ2btzID3/4Q6688kqefvpprrrqqkPWv+mmm/jpT3/KWWedxV133cW3v/1t7rvvPm677TZcLhf/+I//OGQb27Zty4oWgL179/LrX/+alStX8thjj3GgsYHfvPASlrjOV//2OrZs2UJtbS0bN27k7bffJpFIsGrVKlavXn3I+0ajUW655RZefPFFFi1axE033cT999+fFRsej4cdO3bws5/9jHvvvZdf/vKXR90XO3bsYNeuXcybN48HH3wQt9vNm2++SSwWY926dVx44YXMnj2bxx9/nOLiYoLBIKeeeipXXHHFsPt+LOO77777jtpc+plnnuFPf/oTf/3rX3E6nXR1HTpn7ktf+hL//u//zksvvYTH46G/v59/+Zd/4Uc/+hFWq5WHHnoo+z9YunQpb7755pBtDPcZEokEX/ziF/nTn/5ERUUFGzZs4J//+Z+zY43H42iaBggRb3DrrbfywAMPsHDhQv7617/yhS98gc2bN/Od73yHP//5z9TW1tLT03PU/8dokJGuKUJRlKywKmsTkzEDCWGmlynG6Y2RWuwtqQDA3SSm1h9PqUUDI41e0CXqJhuV6eUxLhmO+vp6nn/+ee688062bt06pFfhcFxyySVYrVbq6+tJpVJcfPHFgLgwGzdABqFQiJ6enmzT5ptvvpktW7aMuI2urq5Dbpjq6uo49dRTsVqtvPLKK2x79SU+efYZXH/hej76qIGGhgZeffVVrrzyShwOB0VFRXzsYx8b8r4ffPAB8+bNY9GiRcOO55prrgFg9erVQz7LcKxduzb7PfPcc8/x8MMPs2LFCk455RQ6OzvZu3cvuq7zjW98g2XLlnH++efT2tpKR0fHsPt+Isf3wgsv8KlPfSqbOiwrG7Y6VBaXy8W5557LU089xZ49e0gkEtTX1wOiLInNZhtS8+9In2HXrl1ccMEFrFixgu9973u0tLRkX/OJT3xiyLb7+/t57bXXuP7661mxYgWf//zns9GxdevWccstt/CLX/xiQrJSMtI1hXi9Xvbv348zEAMcRIqEX6C9vZ0VK1bkdGySY0PX9azo6porTLWl/X6oOr5FVxkBoEQUAu6Ctra23A5MMiJHikgN7beYpMgWnZB+i4sWLWLHjh1s2rSJb37zm5x33nncddddWCyW7IxAoz6Ygd0ufJNGo+Zs/SyTacLM1sb2TSYRlygsLMxuA0TtyMtu+TsSVigORSmwJyekGr3x2cxm86g+izEuEN9FP/3pT7nooosOWed//ud/CAQCbN++HavVyty5c4lGo8PueyOlOprxTYYt5rOf/Szf//73OfHEE/nUpz51yHOxWGyIb264z3D11Vdz8skn8/rrrw+7jcH7zCCdTlNSUsLOnTuHPPfAAw/w17/+laeffprVq1ezfft2ysvLj/kzykjXFGJEugr7RQg9UikO4I6OjpyNSTI+enp6CIVC+Drt+GaBJaGzuFrU5zoeC4Iax/iC6iDmpE6wQqc7ZKa3t5dwOJzj0UnGyvB+LuFfMi7A46GtrQ2n08mNN97IHXfcwY4dOwDhH9q+fTsAGzduPOb3d7vdlJaWsnXrVgB+85vfZKNeR2Px4sXs27dv2OcuuOACNmzYQLRHRF1afX6CwSBr1qzhySefJBqN0t/fz1NPPTXs+zY2NvLRRx+NejxvvPEGN91004hjvuiii7j//vuz/rIPP/yQcDhMKBSisrISq9XKSy+9RFNTEzD8vp/I8V1wwQU89NBD2dmJh6cXAYqKig6JXp1yyik0Nzfzu9/9jk9+8pPZ5Z2dnXg8nmzZDoMjfYZAIJAVXYlEgvfee++on6G4uJh58+bxxz/+ERDH/dtvvw2IdPYpp5zCd77zHSoqKmhubj7qe42EjHRNIUYUoMoRAKoI1kKqScfn88n+dNMUI8q1r2c2ADX7FVxOHa/Xe9QZOTMVm82Gx+MhGAxS2a7QPhv2d1ZR6m6jvb2dE044YeQ3keQNR+u3ePgF8Fh49913ueOOO7JRq/vvvx+Au+++m8985jN861vfyproj5Vf//rX3HbbbUQiEebPn89DDz004msuu+wyXn755WGP1wsvvJD33nuPG668AN2kUFhQyM9+eh/Lly/niiuuYNmyZVRVVVFfXz8kXepwOHjooYe4/vrrSSaTrFmzZsQZdAcOHKCgoGDEMX/2s5+lsbGRVatWoes6FRUVPPHEE/zN3/wNH/vYx6ivr0dVVU488URg+H0/keO7+OKL2blzJ6qqYrPZuPTSS/n+979/yDq33norF198MTU1Nbz00kuA6Hm5c+dOSktLs+u99NJLXHbZZUO2MdxnsNlsPProo3zpS18iFAqRTCb58pe/zMknn3zUz/HII4/wd3/3d3zve98jkUjwf/7P/2H58uXccccd2TTteeedx/Lly4/6PiOh6PqkF3ufCKZ9RXoQIcx//dd/JRZL8N/z1zHghGtf3smsqghf/OIXR8x5zySmQ7Xu0bBx40Z27drFn0Nr2XOqhfoXBzi35i1OO+00LrzwwlwP7xCmap8/9thjvPvuuzzbewofnGJm+Z/7OHvOu5x77rmsX79+0refL0yHY/z999/npJNOOuLz/f399Pb20hdzEHFbcAzouJUwdrt9XCmWyWAiK6S3t7dz00038fzzQycXRKNRurq6CMds9Ltt2GJQqvdjtVopKCjA5XIRiUQ488wzefDBB1m1atW4xnLHHXfwt3/7tyxbtmxc7zPRGPt7osd3+eWX85WvfIXzzjsvu+yaa67h3/7t37Jes3zjCOfRsFEUmV6cQkwmE1VVVZjNCp6MxaW1XxTTlEbj6cdgP1fnPBE0LouK/+Px6OcyyJrpuzNmeo/wUMiyEdOPw+tzmRLCxzOd63ONhurqaj73uc8dUhzVwKiHZTOLNF7Siki/JhLceuutrFixglWrVnHttdeOW3AB/OhHP8o7wTWYiRpfT08PixYtoqCg4BDBFY/Hueqqq/JWcI0VmV6cYrxeL62trbh8CTjBSrigFGjE5/OxZMmSXA9PMgaCwSDhcJjmDieBk8AehRNrfCiKwpw5c3I9vJxhiK7SdBBwCzN9jxRd043J9nPlOx//+MeHXW42m0U6y5LGkoKkGWIJMw5bil//+tcTknY9HikpKeHDDz8cstxms43K0zZdkJGuKcYwGjt7hXkwUiFmY8hI1/TDMNo2hTN+rn06DodObW3tcXFROhLGMT6/yo85pROo0gn1m+np6WFgYCDHo5OMlqP1WzyehYXRDgjAHBfOl6QuHo/UDkgikaJrisnW6lJEf7qeanEHKUXX9MOoU9NXWQJAUYuYpXM8pxZBmIXLyspwOXUq2hV0k8J+v0ijy2hX/nEkX+/h/Ratsenfb3GiMESnKSn2Xdp8sB2Q5PhirL54KbqmGKM/3XxvF5aETmcFdIWs9PX1ySn104h0Ok1jYyOplE5ggfjCrUgJo97xLrrgYPPr4nbhAeqxCNO1FF35hcPhoLOzc9gLxxA/V/L48HONhqzoSot9krYIESpF1/GFrut0dnYete/m4UhP1xRjtVopLy8nGAxS0a7QPgcaOyspc7fKKfXTCJ/PRzQapcnnpnspOMNw4qwOzGYrs2bNyvXwco7X62XXrl04u8JAMQPl0kyfj8yaNYuWlhYCgcAhy3Vdp7e3F13X6Tfb0U1QEE3QZU7jcrnysrnyVDZ9TqVS9PX1kUyZGOi0oqQhlIqhKMqQfTlTmU5NticTh8Mxpu98ucdyQHV1NcFgkCJfivY5ZnotZUArPp9Piq5pgjFrsSUuTrbqBh2L1cTs2bOPa7+LgRHpcic7gWJCNWYISdGVb1it1mEjs62trfzxj3/kw+ZSnrnwJIp64eYD23A4bNx5552YM+m0fGIqS3QMW/7nlZ3MqozwpS996ZAaUzOV6VASJR+R6cUckDXTd4t04kC5KKIpfV3Th6yfq1q0cipqFxMjZGpRkK1MX+VHSQszfX/YTFdX15C2LpL8w7ipaE8J8Vy1L43ZLGbl5qPgmmpMJhOVlZWHlv/pk+V/JCMjRVcOMC5IIgoAvV7xJSZP1ulBKpWiqamJVEqnY4E4haoV0VBVii5BQUEBpaWlFBWmqOhQSJsV9vlFQ3B5nOc/RquYfq/orejyiZuK47G11ZEwvsddHcLHFS4oAWQ0V3J0pOjKAcbJOq8iEwXw6gxEFTo7O7MzhiT5S2trK4lEgr0tZfQVQ3EIFtR0Y7PZsmk1ycF6XSWtonFxt0mY6WXz6/wmlUpx4MABUikd/3xxifAq4n82d+7cHI4svzC+xwsyPRgjHtEKR/bSlRwNKbpygNPppLi4GHdRivKAQsqi0ODzAPKEnQ4YqRefIvwMVQ0i9VJXVydTL4PIVqbvFGn0SJkLkJGufKe9vZ14PE5DWxm9bijqhRNqu7BarfKmYhDG8V1mDgIHy//ISJfkaEjRlSOMu6SS9kwUQBeiS56w+Y/h5+qvEamXIl8IkFGAwzEuSu6kuCj1VQtBKiNd+Y1xfEs/19GprBQervlVnaL8T6Us/yMZGSm6ckQ2NB0UpuKBEhkFmA4kEgmam5uJJ3Ta54s721l26ecaDkN0zc+k0f3VOpFMGt2oASXJP7J+rupD/VzypuJQbDYbHo+HAodOhU98FzR1iptn+T0uORJSdOUI44LkinYD0OcVZQbkyZrfNDc3k0ql+LClkkghlAVhXk0fDocjK6QlAqfTidvtxl2UwuM30ujSTJ/PDPZzdWT8XNWmVkCKruEwzvkinyiSGsoUAZbHt+RISNGVI4yTdZbbD0CgBpLJNH6/n1QqlcuhSY6C4ecKWEXqxbNP/K/mzZt33LdGGY6smb4tk0ZHptHzmYN+rlL6ioWfa0FNN1arNfu/lBwkm7HoypT/KRNFgKXokhwJKbpyhNvtxuFwUOMZoDgEMQc0dpSSSqUIBoO5Hp7kCBh+l95ZorZacUBEKmUUYHiyZvqg6EsZKRVpdCm68pOsnyudmSQi/VxHxRBdxckuAPpk+R/JCEjRlSMURcmesOWtou+ZPyZTL/lMLBajtbWVgahC+zwR1apzST/X0cia6eOiJl1fjWiCIUVXfpKdJOKVfq7RYHyHzy0XrX8Gl/+RfRglwzFiGyBVVU8D/jXzsAZ4GjgBMPocfFHTtLdUVb0HuBboBLZrmvZ/VVU1A78AFmaWfTnznv8AfDyz7o2apvVO2CeaRni9XhobG3H647DETsTlBsQFafny5TkeneRwmpqa0HWdD9qqia2ECh/MqozgcrnweDy5Hl5eYoiuuR4/W6nDX60T3aUQDAaJx+OyeXIeIf1cY6ewsJCioiKgj/IAdFYo7Oso5+S6IB0dHbIPq2QII4ouTdNeB84GUFX1f4AngGZN0/apqroY+DFweWb1f9I07alBL78caNM07dOqqv4iI+D2AlcAZwA3AH/PQVF3XJFtB9QfAioJV4oLkKzVlZ8Yfq7OgkyEcn8SSqSf62i4XK7sRcnjh2ClQoOvnJPniovS7Nmzcz1ESYb29nYSiYTwcy09WPTXarVJP9dR8Hq99PX1UdKm01mh0JXyAEF8Pp8UXeNE13USiQTJZJJEInHI34f/PtpzR/p95ZVXTnn/yFE3vFZV1QasBT6taVo6szgOpAet9l1VVe8Avq1p2mbgdERkDOBZYB1QAryiaZququqzwK/H9xGmL8YXWaXDD1TSVaNAm0gv6ro+Iy/k6XSa5uZmGhoa6O7uxuVy4XK5KCwsxOFw5PVnzvq5ZovK08WdnVAiowAjUV1dnbkopQlWmujSK4Ag7e3tUnTlEYf7uSr3pTE7pJ9rJLxeL3v37sUZjAIFDLhFanYm20TS6TT9/f0Eg8EJFUGHv3ayJ5Xlog/sqEUXcD7w4iDBBXBv5gfgPzVNu0dV1SrgBVVVVyNSkEbqMASUHWHZcUl5eTlms5m5VT04BqDXDW07C6ipHKCnp2fGdaqPx+M8+uij7N27d9jnzWYzhYWFhwixwY+NZS6XC7vdPqUCLRKJ4PP56A+baVuuo6RhQYlIvUg/19Gprq7mww8/xBkYAAqJlIqL0kz1dSUSCfx+P21tbSiKgsPhwOFwYLfb81q8DOvnmitvKkbCyFgUDnQDBfR7rZCYmaJL13W2bdvGa6+9xsDAwKRvL5lME45aGYhZiMatxJNWEikzibSVpG4hhZmUYiGtWEgpZnSTibTFTNpsQjebSFtMpC2K+LGK30kbzNvdxKoFrTnx3Y1FdF0PPGQ8UFX128BfNE3bAqBpWlfmd4eqqu8Ds4AeoDjzEjfQlVl2wmHLhqCq6q3ArQC33347F1xwwRiGOnYSiQStra2Tuo3hKC0tJRgMUtEGzQugpbeSmsomdu/ePeO+7LZs2cLevXtpbHfRFKvDmo7hIEKRLUJ5URi3K04q1Utv78gWP7PZTEFBwbA/TqfzkMdWq3XcAs1ILe7x1ZBUFaqbobI8isvlIhKJEIlExvX+U0GujnG73Q5AUawLKKSv2gIDcODAgZyMZzJpb2/nxRdfPOIdtMViwWazjerHbrdjtVoP+XsijuXhSKfTB5u4G34us+gcUFhYOC3+T7k6vo3/R63LD9QQrIHUPh2fz0dzczMm08yZr/b222/z5ptvAtDS4WQgYSOespBMWUjqFpJYSGEhrZhJmzI/I4iglBVSVkgO+klYIWHVSVon58ba+74o7eH3+zP2h4nnSGnLUYkuVVWtwBrgM5nHtwCzNE37zKB1ijVN61VV1QmcCLQDryEiZFuAixCi7SPgq5mXXQRsG26bmqY9CDyYeaiPZpzjobW1dcpzuwBz5swhGAyKTvULrPQ7S4Em4vF4TsYzWezZs4cPP/yQvrCZ105eRqBq6DrWOLj6oKAfHH061nAay0ACayyONRGlQAlTZItQVhTJCLR++vv7R9y2xWIZEkEb/Hvw3zabbdiL2s6dOwHoKRKtP0ob4+CBE044Ydr8n3J1jBcXF/Pcc88xt9zHNmbjr4HYbp3u7m4qKyuxWq1TPqbJwO/389xzz5FIJHi3sZJ4yobdFMNpi+FyxHG7BoAkyWTymEW6oijY7fZs9MyIoA3+ffjyw/8eLtrW0tJCMpnko9ayQX6uLmw2O8uWLcvrCJ1Bro7vmpoa7HY71Z4wRb3QVwxNPjfza3txOBxUVFRM+Zgmg+bmZjRNI5lM8+f06Xx09mSLSfE9bIuLa4MlceiPOQGmpJ79bUromFJplGT64O90ClMqjVlPYtJTmPUkFiVJbYmYTV1UVJS3nq7zgc2apqUzMxIfBN5UVfVlYL+maZ8CfqSqaj1gBr6vadqAqqpPAVepqroVeCtjykdV1adVVd0GdAN/M8GfaVpxsFN9P1DKgMcBzKzQdDgc5sknnwTg9fgqAlWikntpu07MpTDggv4iUausu1z8iBPOnPlxcDBgKrAZAq0P7P061nAKaySJJRbDmozhVMK47BEqivtxFyUJhUKEQqERx2qxWIYVZx9++CEAPXUialMcCoJHphZHQ1FRES6XC+inLAhdHtjXUcFJc4L4/f5pI1qPRjQaZcOGDSQSCV7dt5jtl5UPu549Co4B8dsWBUtUFz+xNKZYCnMihTmZwJJKYNXj2JQYDkuMQnuUYmcMlzOJrkfH5UWxWCxDxJghAn26KPor/VyjR1EUqqqqOHDgAOVtQnR1RCuYTy8+n29GiK6BgQE2btyIruts9a3kowtMWONQ3AOWpBBA4meQCErqmJJplKSOKZU6RASZ9CTmQSLIrKSwWZJYzQnslgQF9gQOW5ICu6gTd1SsmZ+CsX+uvE0vapr2DPBM5u8UMGSet6Zpnx9mWRK4ZZjlPwF+MsaxzkgM0VWmBIBSeqpN0DlzRJeu6zz55JNEIhG0hjm8f7kVc0pn5RsfsXReAKKInyCE+swEegvpjxUyoDuJWxwk7XaSBRbihWbiLoVIkRBocTt0lQNZgWbJ/DiGjMEWEwLN2Qc2Q6ANCIFmS0YpUCK47GEq3GHcriQ9PT309PQMeZ+ukJX2RTrmFCzyNANSdI2W6upq9u7dS2mrTpdHIZgUM7za2tqmvejSdZ3HHnuMrq4udjVW8M4FQnDVNEHaDPECiBbAgEMn5lCIHXKIKpkfE6P5OjaldAoGFOxRsA+A1RBusTTmWBpzPIUpkcSSTGBJx7ESx26OUWCN4nLEKCmM43Ak6e8fPkp8uJ+rrq5uvLvnuMDr9XLgwAGc/hicaCecKf/j8/mor6/P8ejGh/EdHgqFeGe/l/cuEoWhVz/XxikLGoe+wBBBE4KCxWLBYrFk0+vG36P9fbTniouLRx7CBDMWT5dkEqiqEnm2+d5OzEmdYKVC9z4z0EskEsHpdOZ2gOPk7bff5oMPPiDYbeW9dWL69EmvRFk6L0BhYSGlpaXZC4C7KIm7qJeD8ywOwxBoAUOgueiPOYnohSQsdpJ2OwmnhUShWUTQiqDPEGh2EWEZKtDch2zCHoXCfiHQjAiaZSCBJRYnabeRNivM2g+l7hQej2fS/AAzDUN0OYMDgJOBGWSmf/nll9m7dy++Tjs71i4kYYPFb6S4uOivYgVRX5RkMk1v2E7/gI1wvIBo0kpct5NQbKQsNlIWCymrhZTdRMpuIulQSDgU4g6IZYRb3KYQdkHYNXgEg6PCI1/tbDFwZESbLQrWAR1LTMccTdNWf6ifa6b5SieLbPmfvl6ggoEKERGfCTfP27dv5/3336crZOXtU+aTMsNJryY4ZUEjVquV0tLSCRdDxt8WiyWvZ7QfC1J05RibzUZ5eTmdnZ1U+BR8s6Cxs5JSdzs+n4/58+fneojHTE9PD8888wwAb9hX01MKtY1wRtkOQOHjH/84c+bMAcTdVDwep7+/n3A4nBVixt+HLxMCLYSYADsMA+In1a4T6rfR1eekL+5kQC8kYXWQsNtIFlhJFJqIFokUZ1/xwUjEUIF2MHbtbopClYxyjQWjPErRQDfgFA3eY9NfdO3Zs4ctW7YQi+n8pXI13eXiGD/T+gYAFRUVxONxYrEY0WiUMneCMncCCI/85jrZ4xjRbYqBqEJv2E5f1M5AzE5MtxPHTspkJWmxkrZaSNnNpGwmkg4TSbtCvADijky0rUAnbleI2xl0vzE42gYl3Qf9XLI+1+gw9lOFNQhUiPI/vulf/qejo4M///nPpFI6rztW01UO1c1wRqEGwLXXXsvixYtzPMrphRRdeUB1dTWdnZ0Ut6fwzTJnOtW3097ePm1Fl67rPPHEE8TjcV5rOIG9l5uwxWH53t3YZyksW7YsK7jgoEHYbrdTXj68H2bwe8disWHF2XBCTVzojiLQIuLHEGidfYX0xQuJUnAwxem0EC80gQInpIW/64QTThj+/SRDMC5Ks0t8QC3+Woh/oOP3+0kmk1gs0++rKBgM8vjjjwOwpXcNTStEg+i1+9/G6dVZsmQJ119/fXZ948YiGo1mfwwxdvjjIy0vcCQpcESpYpSeriQi0paJtqVSOr39FvoGHIRjDmIpGzHdTlKxkTRbSVmsVMTaMM9XOPHEE6Wfa5RUVFRgMpmY6+3CFoOeUvC9Z8dLhL6+vpykscaLUeInmUyy7cDJfHSpCXsUVu15D+cscXxLwTV2pt833QzE6/Wya9euTKf64hnRqf4vf/kLTU1NtPid7D5bzPhbsjnEwroeKisrWb169TG/9+DaR6MVaKMRZwcFWg+isskRqIbZs2ezcOHCY/4MxxvFxcU4nU68RCjtgu4y2N9exuI53fj9fmpqanI9xDERi8X4/e9/TzweZ9u+hey+zIY5pbNi6wHmzA8zZ84cTj311ENeM/jGwu12H+Gdj04ymTxEkI1GtB3+d6k7Rak7zNGibaWlpZx99tnHNMbjEbPZTGVlJT6fj8o2aJkHLT1VeMsP4PP5pqXoevbZZwkGg+xpKuW980sAWPpikBPmh/B6vaxduza3A5ymSNGVBxzaqb5YdKrvn76iy+/38+KLL5JK6eyoWE7YBXP3wBmzdmEymbn66qsnvdKwwWCBNlJ/RF3XiUajRxVnuq5TU1PDGWecMW1TBrlAURSqq6tpaGigrFWnu0whkKxkMd20t7dPK9FlRHE7OzvZ3VjOO+eL2WlLX+hj1fxWioqKuP7660c1W3asGD6XwsLCY3r94GjbcIItFovhdrtZuHAhDsfQSSmSI+P1evH5fLg6kjDPQp+9FDhAe3s7ixYtyvXwxsSuXbt466236A+b2bnsJOI2WKSlOGP+h1itVq699lpisViuhzktkaIrDxjcqX4rc0Wn+l0HO9VPpzpGqVSKxx9/nFQqxbbmk9l/iYIzAqt8OzFXKZxzzjl4vd68LLaoKEq2oOpMmOadbxiiqyAg2qVE3OLuf7r5urZu3cqePXsIdNnYvmYxcTss0tKsr30Xs9nCJz7xCVwu16SIrvEyONommViy5X+6+4ESBjzCBzrdeul2d3fz1FOihfK25Go6asDTAaenhY/r0ksvxePx5OV3+HRg5pTKncYYnerL3AnK/ZC0ik71uq5PuxP2lVdewefzsa+1mN3nlACw5KUgs6sizJ49m9NPPz23A5TkjKyZPiJc4f1ecTMxnUTX3r17eemll4gndF4rW02XRxiL1/MmZrPCpZdeOu1LYEiODUN0leii8GbIKy6v0+n4TqVSbNy4kVgsxmsNJ7DnVAuWhM6KHR/iLkqxbNkyli9fnuthTmuk6MoTsidsuyi+35UWkZbplGJsaWnh1VdfJZ7QeWv+UmIOOGFnmnWZkPRVV101o1piSMaGIbpmucWNRKBWlFHo6OiYsnTzeOjq6mLjxo0AbOlSaTxJwdUHa/e+i6swxerVq1m1alWORynJFdnyP5VBTCmdQJVOX9hMT09PThorHwubN2+mtbWV/W1F7DpXeHFP3tzHyXODlJWVcemll0pbxTiRV8A8IVvnJSiaiA64RSGe6XKXFI/Hefzxx9F1nVc7VtAyX7QSWRveAcBFF11EWdlx29tcApSUlOBwOKjxDODuFiUM9vvKSKVSBAKBXA/vqMTjcX7/+98Ti8V4vWEB751tR0nrLH+lmbnVfcyaNYuLL74418OU5BCHw0FpaSmuwhQev4JuUtjXMX1unj/66CNee+01olGFHfPrGXDC/F0662vfxWQyce2118q09AQgRVeeYIgu10APAP1VIvUyHU5WgOeff56uri52N5bz/tmioOvJW1qpKIuzcOFCGQGQZM30AOVtIqLrj4uLUj7fXOi6zp/+9CcCgQB7mkp5+3wR0ah/IYy6oBmXy8XHP/7xaVn2QjKxGN/j7rY0AD0mMbs637/H+/v7eeKJJwB4tXcVLfNEvbZTet7CbFa44IILptVkl3xGiq48wbgY1RT5gYOpF7/fTzqdzuXQRuSjjz5C0zQiUYV3li0maVU48S9J1p7QREFBAR/72MdkSFoCHDzOnX6RbokUi9IJbW1tORvTSLz22mvs3r2brpCV7StPEmnzt9KcWfM2JpOJ66+/XnYmkACDzPSdImMRLc3/8j+6rvP4448TDofRGuawe70NJa1T/1oTleVRFi5cyCmnnJLrYc4YpOjKE0pKSrDb7cyqjFDUK1IvBzpKSCaTBIPBXA/viAwMDPC///u/AGzrW0VHLZQH4FTzdgAuv/xyeUGSZDHulgvDPQD0V4k2rvl6UWpoaODFF18kmUyzrUglWAVVrXBGUhjnL7744kOK/EqObwzRVRTvAqDPK6Kf+Xp8A2zbto19+/bRFrDz7vpZ6CaFk1+OZsufXHnllfKmeQKRoitPUBQle8KWt4rUiy8qjIz5fMJu2rSJvr4+3tpXzftniDukpW/sx+1KUV9fz5IlS3I9REkekTXTu4SZPjhLVEn3+Xx5F9Ht7u5m48aN6LrOK8HV7DtZwRmGte/vwu1KsWLFClRVzfUwJXmE8R1eV5qZLFID8YROIBAgmUzmcmjD0tzczObNm0km07xZsYpeN8z+CNZ7hBf3mmuuOeaacJLhkaIrj8ia6f1xACKDOtXnI7t27WLXrl10h8zsOmUeuklhydY4K+a3U1RUxKWXXprrIUryjNLSUux2O9WeMEW9EHHCfp877yK6iUSCDRs2MDAwwF8b5rLrnAJhnH+plfm1vdTU1HDZZZfJCIDkEIqKinA6nVSUxSntgrhNdF5Ip9N5N1kkGo1mbyq2+lbSeJJCYT+ozW9jsyqceeaZsuH5JCBFVx5hiK7CflFUMVKZv6mXvr4+nn76aQD+qqh0ecDbAuuKxR3SVVddJStaS4ZgmOnNZgVPS8ZMHxMR3Xzxdem6zpNPPklHRwd7W0rYeZ5IiS7dPMDaBU04nU5pnJcMy+CMRWlmskgwmX8zGI1jPBQK8fY+L++dKyY/1b/cxhyvaGN11lln5XiUMxMpuvII42SttIk7oq4acRfd3t6Orus5G9fhGLO5otEof22YywenmLEkdJbt+oACh87atWunbaNuyeRz0Ewv2oiEi0REN19mMP71r3/l3XffpTtkRlu6hGgBLHhH5yzvWyiKwvXXX3/MvRMlM59sxiIgju9Ikei8kE+ia8eOHdnJIe+cMp+UWeGkbQlOWdCIw+HgmmuukTUVJwm5V/OIiooKzGYzc73d2KMQKoG2gJ1oNEpvb2+uh5dl+/btNDQ04Ou0896ZIgqw5OUIJ9V1Ul5ezvnnn5/jEUryGUN0GRHdcJWo/ZMPomv//v0899xzpFI625xr8VdDZTusi7yB2axw4YUXypSL5KhkRVfYOL7zK2Ph9/t59tlnSaV0Xrcf7KpwhlO0+bnyyivlTcUkIkVXHmF0qrdYTFRkMi2tveIEzocLEkBnZ2f2oqQVr6KvWBgv11XtRFEUrr766mnVK1Iy9Riiq9qZMdPX5oeZPhQK8eijjwrjfMdKGpYpFERgza73KHWLFihy6rxkJAzRVe0U5X86aw4e37nOWCQSCR599FGSySSvHVjCRytN2KOwas97OB06a9as4cQTT8zpGGc6UnTlGUYrCZdPzHTpc5QA+XGXlE6neeKJJ0gkErzedCINyxTsUVjRuAubVWH9+vWy75xkRMrLy7HZbMyu7MPVB2EXNPuLSSQSdHZ25mRMhnE+Eonwxkd17DpHNCtevrmNE2aF8Hq9XH755dI4LxmR8vJyLBYLsyt7cYahvwjagoXE43G6u7tzOrZnn32WQCDABwdK2XV+KQBLX+zkhFkhqqqquPDCC3M6vuMBKbryDCMKUBDqB2CgXHz554Po2rZtGy0tLRzwFbL7HFFp+eTN3cyv7aW6upozzzwzxyOUTAcMs7HZrODJlEdpjwgzfS4iurqus2nTJtrb2/motZi3z6tFNyks3TzAKQsaKSgo4BOf+ISM4EpGhclkoqqqShzfmYxFW3/uy/+899577Nixg/6wmbfqTyJug0VamjPmf4DVauW6666Tk0OmACm68gwjNF2mCzN9qEb8i3Itutrb23n55ZdJJtPsqF0u+nK9p3P6nN1YLBauvvpqzGZzTscomT5kfV0dojxK2FUC5EZ0aZrGzp07CfWb0ZYsJZLpOXdWxXYUReG6666jpKRkysclmb5kZ6J3JADod4qoUq5sIt3d3Tz55JMAbEuspqMGPH44Pf0mAJdeeikejycnYzvekKIrz8h2qq8OYk7pBCt0Qn1mQqEQkUgkJ2NKJpM8/vjjpNNpXm1bRtMicPXB6q6dmM0K5513HhUVFTkZm2R6kp3B2Heo2XiqL0oHDhzImopftawRF6MOWNevYbGYOO+88+RMXMmYyZrpQ2IC1IBHlM/p6OiY8rGkUik2btyYbda+5zQLloTOcm0v7iJRxHr58uVTPq7jFSm68gy73U5ZWRlOh47HJzrV7w+I0HQuTliAzZs3EwgE+LC5hN3niOnPS17poMYzwLx586S5WDJmDNHldQizcXCWQiqlT2l5lN7eXv7whz+QTqfZ0rYiaypWd75PmTvBySefzOmnnz4lY5HMLLKN3S3Co9g9qPzPVPPSSy/R2tpKY3sRu84VN/Unb+5n6bwApaWlssjvFCNFVx5inLDu9hQAIXMZkJsTtrGxkddff51oVOHtE5eQsMEiLcVpCxqw2+2yL5fkmPB4PFgsFuq8oazZuDXgIh6P09XVNenbTyaT/PGPf8w0+Z3Nu+eL4pDLX+hg8ZxuKisrueKKK+SxLTkmKisrURSFeZWdWBI6XR7oClnp7++nv79/ysbR0NDAtm3biMV0ts+rF6nz93TW176DyWTiuuuuw263T9l4JFJ05SVGirGgU6QTB8pcwNT7umKxGE888QQA23pW0DYHSrvglKSoOn/JJZfIei6SY8JkMmXN9BWtYllbWBz3U3Fz8cwzz9DS0kJjexE7z56dafIb47QFDTgcDj7xiU9gs9kmfRySmYnVasXj8eBw6FS0C+He2Dm1Zvr+/n4ef/xxALb2qLTMA3c3rOnegdmscP7552cb0EumjhGnKqiqehrwr5mHNcDTwEbgh0Aa+DtN095VVdULPAwUAvdrmvZbVVXNwC+AhcB2TdO+nHnPfwA+DnQCN2qalj+VP/MAI9JVnOgCiujzmiE89aLr2WefJRQK8e6+SnZfLDwJJ792gLIFCU466SSWLVs2peORzCyqq6tpaWmh0BeHRTbChSWAaAe0dOnSSdvu9u3bs7O43lhYT9gFc9/XObNMAxSuueYaysrKJm37kuMDr9dLIBCgyJeifY6ZXksZ0IrP5+OEE06Y1G3rus7jjz+ejeTuvtSGktZZtu0A3gUxFi5cyKmnnjqpY5AMz4iRLk3TXtc07WxN084GXgOeAP4FuAy4AfhBZtU7EULsLODvVVV1AJcDbZqmrQcKVVU9TVVVD3AFcAawAfj7Cf1EMwDDhDnXI/wu/mqdaFQhGAySSCSmZAx79uxh586d9IfNvLv6BNJmhZNeTbB6QQuFhYXSByAZN8ZddtZMXynSHJN5c9HS0sIzzzxDKqWzlTW0z4ayIKzr0bBZFc455xwWLlw4aduXHD9kzfTdYQAGykUKeypunl977TX27dtHW8DOu+szkdxXYqxa0IrL5ZK2kBwy6vSiqqo2YC2gASlN07o1TTsAGLeEa4HNmqYlM+ssBU4Hnss8/yywDlgDvKJpmj5omWQQLpcLl8tFmTtBWRCSVoX9/nJ0Xcfv90/69sPhcHZ68WuxVQS8UOGD0x0irXjFFVdQWFg46eOQzGyMiG6VPVO5e9bk9hrt7+/nD3/4A6lUiq2t9XyomrDFQN3+IZ6SBCeeeCLr16+f8O1Kjk8M0eVOCjN9r1eU1Jls0dXS0sLmzZtJJtO8WbGKXrfoGnJG6XYArrnmGvn9nUPGUgntfOBFwA0MTgcmM4LMqmma0cMjhBBjpYPWPdqyIaiqeitwK8Dtt9/OBRdcMIahjp1EIkFra+ukbmMslJSU0N/fT2mbTpdHoTNZDgTZs2fPpG5X13VeeOEFIpEIWsNs3r/cijmlU/9WA665KRYvXkxhYeG491W+7e/jgXzb5+l0WvQarerGMQC9bmjZ6WRWZYQ9e/ZQXFw8YdtKpVJs2rSJvr4+duyr5d2LiwBY/oKfk+YHcbvdrF27lra2tgnbZr7t75lOvu1v48ahrtyPkp5LwAsDAYXOzk4aGxsnpdhuLBbLlvfZ2r6CxgsVCvtBbX4bu1dhxYoV2Gy2CdlP+ba/840jdWcZi+i6HngI6AEGfxtaNE2Lq6qaUFXVlBFebqDrsHUHLzvhsGVD0DTtQeDBzMNJn0Pe2tqaVy1s5s6dS0tLCwXBKFBAxC1248DAwKSOc+fOnTQ1NRHstvLeutkAnPRKlPq5fkpKSrj66qsnZLZLvu3v44F83Oder5fW1lYqW+DAQmjtq2RWZSPpdHpCx7pp0yY6Ojo44Ctk5/o60mZYsiXO6fM/wmazceONN054cch83N8zmXzc3+LGoZfyoEKwEhp8HpbODWA2myd8rLqu8+ijj9Lf3887+6t470IRzVr6so85C8LMnj2bj33sY5hMEzN/Lh/393RgVHtfVVUrIi34qqZpEcCiqmqJqqqzOSia3gTOVlXVAqwG3kN4wM7PPH8RsC2z3pmHLZMchhGadkVEr65wlbgrmszQdE9PD8888wwAb9hX01MKNU1wRplIK1511VVyerFkQjFSjK5JrNy9c+dO3nzzTfojCn+dv5y+Yqj7AM4sFtW4r7nmGlmNWzIpGN/jJW0iCdSti+NsMr7Hd+zYwe7du+kKWXl77QJSFoWTXktw6oJ9OBwOrr322gkTXJJjZ7T/gfMRfi0jffhNYBPwe+CfMst+kPl7C/CApmkDwFPAHFVVtwLRjCk/ADytquo2hBH/ZxPzUWYWxsWoxpUpHlkrOtV3dHSQTqeP9tJjQtd1/vSnPxGPx3mt4QT2rjZhi8OKD3djtyucfvrp1NXVTfh2Jcc32cr0IWGmj1SKWbITJbra2tp46qmnhHE+tZa2OijthNMDO7DbFc4880wWL148IduSSA7HEF0FnVEABkomp/yP3+/PdlZ43b6aLg94W+CMAg0QPlxZ3ic/GFV6UdO0Z4BnBj3egjDJD16nHbjgsGVJ4JZh3u8nwE/GPtzjh9LSUmw2GzWeMK4+UTzyQEcx82r66OzsnPC2O3/5y19obGykzV/A7rNFPZklL/WycE4PlZWVnHPOORO6PYkEDoquCqsf8NBVq4DvoJl+PDOswuEwGzZsIJVK8WrzUj68xIw1Dqve2Evl3CiLFi3i7LPPnpgPIpEMw6EZCyf9VVaIT6zoSiQSPProoySTSV47sISPLhWdFVbufh/nbB1VVTnppJMmbHuS8SFjjXmKoijZ4pHlGW+vb2ByiusFAgFefPFFUikdzbOCsEukX9bViKrFV199tew+L5kUKisrMZv///buPDjq8zzg+HcvrU50IK2QLAQ6bO5TL8aAwECMbWJwkMG4TdomdpqkzaRHmmln0rTTZNIjadKZOM2kaabTpmlnWlqMiO2MY9NgDMgo9osBAwJsSwgQQuhc3ccev/7x7gpMJCOhZVe7PJ+ZjLwrrXj2zWr3+b3P876vg9KCTtxD4M2G5jY3g4ODdIdmv+5EMBhk79699PT0cLKhgNNbTE/k0gMdLJ7bRk5ODlVVVbJsXtxV4aSraIapWLQVgt8fpLW1NWIVi1dffXX0mLYzHzPl+cUHO3lgdhf5+fk89thjEfl3RGRI0jWN3TipfgSAgTQzPRzJpCsQCFBdXU0gEKDm8iIuLrKROgArm0/hdNrZtGnTaBxCRJrD4cDj8eB02skLXVw0dZvX21RKjAcOHKCxsZGm1lROVJaY/pYaH5WlF3C5XDzzzDMkJydH4ikIMa6srCzcbjeFnkFmdMNQCjRez8Lv99Pe3j7l319XV8fx48fpG7DxzqKFjLjh/uNBKkvO43K52Llzp1wwTzOSdE1jo5vr9Yb7XSK/eeThw4e5du0aDVdnULc5C4CFr7dTPMusdpEDf8XdFi4xZlyLTDP96dOnqa2tZXDIxq+Kl4/uU7Qh1fS37NixA4/HE4HIhfho4YoFQE6zWYTfOhSZioXX6+XFF18EoGZkFdfvg5mtsMZnFohs3bo14m0oYuok6ZrGwn+sea42ADoLI7t5ZFNTE0eOHGHEZ3GidDHDyVB+MshDc8xswI4dO2S1i7jrRpvpvWb7voG8FODOkq6WlpbRD6LDw6toKoGsLnio+TjJyRbr1q1j4cKFEYpciNsbrVi0hioW6VOvWAQCAV544QWGh4c5Vl/G+TVOHH6L5fp9sjMDLF68mOXLl085dhF58ok6jXk8Hux2O3NndZE0bPpdWjpMv0tvb++UfrfP56O6uhrLsjh6fTlNpTCjG1b1ncThsPHoo4/K+XMiKsJJV67TXFx03WcuLpqbmyd1cTEwMMCePXvw+/0cubiA8w85cfosVhyrpzBvmLKyMjZv3hz5JyDERxitWPSFKxbmIPWpJF2HDh0KHdiezplN5qD4xb/sY3FJG9nZ2Wzbtk36FacpSbqmsXC/S5LLhifc7+I1f2BTXVJ/4MABOjs7qWucybmN5kywRUea8cwcory8nIqKiin9fiEmKj8/H7vdTmlBB0kj0DkTWjuSGRgYmPDFRTAYZN++fXi9Xk41zOLdLVkALD3gZWnJdbKysmSfIhET4YsKT9KHKxYtLS13VLFoaGjg6NGjDA9bHJ+7lIE0KDlrsf4+s/Bp586dsp/iNCbvQNPc6JLj634Aet2m32UqV0n19fW8/fbbDAzZeHfpPPwuG/Nq/TxY1khKSgpPPvmkXCWJqHE6neTl5ZmLi9CpIpe9pu9lohcXBw8epL6+nuY2NyfXluJ32Zhf62d9yTmcTifPPPMMKSkpd+spCDGu3Nxcc9zVrC7cQ9CddWOFbk9Pz20ff7O+vj6qq6sBOOKtoKkUMr3wYNc7OBw2Pvaxj8ku8dOcJF3T3Ojmel19AAzmmg+OO026BgcH+dnPfgZATc9K03zZBmvs5jDUJ554goyMjKmGLcSkjO5Mf81cXPQkm4uLiZyFWFdXR01NDUNDNmoLzUkKRRdhg9s0FD/55JOyAlfEzFgrdK/2mNfjZN7HLcti//799PX1cby+iLoNbmxBiyVHLzNr5jDl5eWsWbPmbjwFEUGSdE1z4Q+L7KBZXuwtMP+X3WnS9corr9Db28vJhgLOrU/CFrRY/NZFMjMCLFmyhEWLFkUmcCEmobCwEIBUryknTvTiorW1lf379wNweEBxpdz0Jq6+fJKUZIuHHnqIJUuW3L3AhZiA/HzTFnKjYpEFTK5N5M0336S+vp7rHcmcrizGsttY9MYwFWVNpKens2PHDqlQxAFJuqa5cNJVMqsNe8Ci3WPR2+/A6/UyNDQ0qd919uxZTp8+TXevg9OrS7DsNhYeGWF56TUyMjLYunXr3XgKQtxWeKZrps1sItl1n3lr+qiZrqGhIfbs2YPP5+NowzzOrXPh8FusOHqRIs8AJSUlbNmyZdzHCxEt4dd3ivfDFYvr169P6PFXr17l4MGDBAIWv8pZQXcWzK6HymxToaiqqiItLS3ygYuIk6RrmnO73WRnZ5OeapF33YZlt3Gx1ey9MpnZrt7eXn7+858DcMy6cTbXuhnmMOtPfOIT0vMiYiY/Px+bzUbprE6cPouOPGjvctHX1zdmM71lWezbt4/Ozk7ONObx7paZACw50MPy0mtkZmZK47yYNkYrFpiKRXeoYjGRma6hoSH27t1LMBjkcPMyLi60kdoP6vIp3G4blZWVlJaW3r3gRUTJO1IcCF8lzbgWOqnebj5gJjo1bVkWL774IoODg/yqfi4XVpul9EvPvkdKssWqVasoKyu7O8ELMQEul4u8vDySky08zaZEcqlz/JW6hw4d4v3336elw807D96PLwkeeCtA5ewzOBwOdu/eLVf+YtoIlxdLPG04QhWL7j4H3d3dDA4Ojvs4y7J4+eWX8Xq9nG70cHazeU0veb1ldANrOT80vkjSFQfCf7ApHQMADGabP7yJTk0fP36cDz74gJYON3XrTe/MwkMDLChuZ+bMmVKCEdPCjYuLUDO9e+yLi/Pnz3P48GGGhy1qPRV0zYTCS7De8RYOh43t27eP9ogJMR243W5ycnJIT7XIDVUsGidQsThx4gRnz56ls9vFKVVOwGlj/pt+HiprIDk5maeeegqHwxGtpyEiQJKuODD6YTTSCUDvLHOW1kRmujo7O3nttdfMYdYZK82RKPWwLv8kNpuNqqoqXC7X3QteiAka7XvpNH0vA7m/vjN9e3v76JL5wz2ruPQAZPTA6oZTpKdaPPjggyxbtizKkQtxe+ESY2azqVh4HeaiYrykq62tjVdeeYVAwKI2qYKOvFBLSGhV7vbt28nKyrr7gYuIkqQrDoT/WOfMNDNbbQUwPGzR1taG3+8f93HBYJDq6mp8Ph/HLs2jfpkN9xAsv3iGJJeN9evXy54uYtoIJ105mE0kvYUf7nsZHh5mz549jIyMUNNwP3UbknAELJYfuUTxrH6Ki4t59NFHYxO8ELcRfh9P7vxwxWKspMvn87F37178fj9vXlrA+yvtuIdgRd050lMtlFJynFWckqQrDqSnp5OWlkZulo/sDvAlwcXrM7Esi9bW1nEfV1NTQ1NTE5db0qjblAvAwte9lN7XQ0FBARs2bIjWUxDitsIfSmUF7Tj8Fu350Nntoqenh/7+fvbv3097ezvnLufy7iOmNLP4/3pZWXqVjIwMnn76aSm1iGkr/Pq+tWIxVtL12muv0drayntXsjnziDmObdHBLh6Y3YXH45GLizgmSVccuPmk+uzQSfXtfpNEjTc13dLSwqFDh/D7g7xTuIzBVCg9a7Fu9lkcDgdVVVXyASWmlaSkJHJzc0lJtvBcM830jR1mZ/p9+/Zx/vx52r0udMUDjLjh/uNB1t93erRxPj09PZbhC/GRJlqxqKurQ2tN34CNEwsXmNf6O0HWFtfhdDrZtWuXtITEMUm64sTooaltZm+uwRkzgLH7uvx+P9XV1QSDQY42L+XSPEjvhYpOc5j1I488Ql5eXvSCF2KCRvsXmwMA9DjNVX5DQwMjPouaLEVnLhRcgQ3W2zgcNj7+8Y9TVFQUs5iFmIiMjIzRikXOOBULr9fLSy+9BMCbw4qWotCJISPmtb5161Z5745zknTFiXDSlTZgTqrvzzcn1Y+1gvHgwYOjU9PnNpnkbOEb1ynMHWTu3LmsXr06SlELMTmjzfRd4Wb6G9s+HO5UNC6wkdYHD75/mvS0ABUVFaxcuTImsQoxWeH38awxKhaBQIAXXniBoaEhautLObfWbPa77K0PyM4MsGjRIlasWBGz2EVkSNIVJ8IfRoVpJslqL4RAwKKlpYVgMDj6c5cuXeLYsWMMD1ucmreAkSR4QAdZU1aP2+2WoyLEtBZ+nYePveoONdMfqy/j7EZz1tzyQ1eYW9BLUVERjz/+eMxiFWKyxqtYhNtBwj24Zzaan1t0sJ8lpa1kZWWxbds2ee9OAJJ0xYmcnBxcLhf35fWR1gf96XClNQOfz0dnp2nMHB4eHj2H7mjnSprnQFYnrPaboyK2bt1KZmZmrJ6CELcVTrpK81txBCza8i1ON3g49YjZq27J/w2gyq6Qnp7O7t27cTqdsQxXiEkZr2JRV1fH0aNHGR620MXL6E+HkjqLDYWnsNvt7Nq1i+Tk5JjFLSJHkq44EW6mdzhs5IaOo2sZME3G4Wb6V1991exc3ODh3MPmD3TRm1fIyfQxf/58li5dGpPYhZiomzeRzLtmNpGs3VTOcDKUnwiyofAkdrudp59+moyMjFiHK8SkjFex6O/vB+BoVwVXykKHtneewOGwsXnzZtnaJ4FI0hVHRq+Sro8A0J9mZq1aWlq4cOECJ06coK/fwemKcgIOGwtqfKiyK6SlpcnUtIgb4d3kZ1wzzfQDqZDfDJV+00z8+OOPU1xcHMsQhbgj2dnZv1axuNpmVt0ery/i7MOmhL70yGXyZw5RVlbG2rVrYxy1iCRJuuJIOOlK6ekBYCDPzGZdvHjxxoqXoZW0zYK8FljrNodZb9++Xc6hE3EjPBuQ2mGa6VMHQNWdITM9wPLly1FKxTI8Ie6Y3W4nPz//QxWL5v58WjrcnK4sxrLbWHh4mIqyJtLS0qQHNwFNqCFCKbUR+EtMkvZ94DNAZuj2Eq11tlLqM8DXgKvAVa31p0KP/TawFmgEntNa+5RSTwNfBgaBT2utmyL3lBJXOOnKdbQBuXQV2KAVmpvNX6+un825bS4cAYslx+tJLw2wYsUK5s2bF8OohZickpISAJZkvcdQ7QpmdVymvLSHwsJCnnjiCfkQEnFt1qxZNDU1mYrFA0n0p2XyVnY+3VlQ1ADrs44DNp566inZey4B3TbpUkqlAF8BtmqtR0J3V4e+txH49E0//rzW+gc3PXYZcJ/Wer1S6mvALqXU/wJ/AjwMrMIkc1+IwHNJeB6PB7vdTmlhJ0kj0DUT2s4nkZczQme3i7NrZwOw4I2h0RUvjz32WIyjFmJyCgoKWLx4MWfOnOEx3oJMyMrKksZ5kRBuVCx6gZnUr05hMBVS+6Gi8V3cBTbWrVtHaWlpbAMVd8VEyotrMDNSLymlqpVSs2763tPA/9x0+4tKqSNKqd8I3V4LvBb6718A64D7gXNa6xGtdQ0g3d0T5HQ6yc3NJcllIze0J+qlLrOq61fOCrw5UHgJ1mWfBGDHjh243e4YRSvEnauqqmL79u0sW7aMjRs38rnPfU5W3oqEEC6f5zrNGaODqeb+xa9fZ25BH0VFRWzatClW4Ym7bCKXjflAOfAQ8AjwdeD3lFJ2YBPwx6Gf2w/8FEgDfqmUegPIBsJbpncDOaH7em76/XIWzSQUFBTQ2tpKxjU/zHHSm5TNsfok3ttmxzUCyy6cI3m2xZo1a5gzZ06swxXijtjtdlauXCkbn4qE4/F4sNlslOR34BoxO9PPP+Yf3Utx586dckRbAptI0uUFarTWI0qpXwJfDd2/HqjVWvsAtNbe0P29SqlDwILQY2eE7s8EOm+5DyAw1j+qlPo88HmAL33pS2zZsmUiz+eO+Xw+rl69elf/jUhISUkxX7v6gUx6itOpLzJ1/4Wv9/BAcRfZ2dnMmzdvWj+feBnvRCJjHl0y3tEVT+Odl5dHa2sr89/oZygnhXVJbwNQWVlJf3//6BYS01k8jXcsjLfNx0SSrreBryilbMByoCF0/4dKi0qpGVrrHqWUA1gN/BCTZP0JZgbsMaAGeB9YoJRKAhTw7lj/qNb6x8CPQzetCcQ5JVevXo2LvVB8Ph+1tbVkWx1AJo3zzf1zLkBl4bvY7U5279492jcwXcXLeCcSGfPokvGOrnga702bNrFnzx42F50avW/16tVUVlbGMKrJiafxnk5um3RprduVUtXAG5jk57lQaXEjN0qLAF9WSm0FbMB/aa0bAZRS15VSR4DLwHdDqxe/BxwChvhwI764jXAyVeJp41CwBMtuI2UAVjafwjnLzsaNG6d9wiWEEPey+fPn88lPfpJ33nmHkZERFixYQEVFRazDElFgs6y7PokUCTLTdZPnn38er9fL/6Sv5dpsqPh5O5Wl71FUVMSzzz6L3T79t1+Lp/FOFDLm0SXjHV0y3tEl431bY+5tM/0/ncWvmT/f1BRXnj/LmpebWTPnAi6Xi6qqqrhIuIQQQoh7kWx6E4fWrVtHY2Mj0AJ043S62LVrFzk5OTGOTAghhBDjkaQrDqWnp/Pcc89x6dIl+vv7KSkpYcaMGbd/oBBCCCFiRpKuOOVyuSgvL491GEIIIYSYIGkAEkIIIYSIAkm6hBBCCCGiQJIuIYQQQogokKRLCCGEECIKJOkSQgghhIgCSbqEEEIIIaJAki4hhBBCiCiQpEsIIYQQIgri5cBrIYQQQoi4JjNdQgghhBBRIEmXEEIIIUQUSNIlhBBCCBEFknQJIYQQQkSBJF1CCCGEEFEgSZcQQgghRBQ4Yx1ALCilHgSeB3zAVeB3tNY+pdQc4D2gQmt9JpYxJpqxxhzIB34IZACHtdZ/FbsIE8s44/154NOhH/m21vqFGIWXcJRS+UA1ZrwDwKeAMuDvgSDw+1rr07GLMLGMM94/BrJDP/IHWusTMQovIY015lrra0qpdOAi8KzW+uVYxhgP7tWZrivAZq31BqAR+ETo/j8DamIVVIIba8y/g/kw2iQJV8SNNd5fBNYCG4E/j1lkiakdqNRaPwz8FPgs8DfAE8AngW/HMLZENNZ4/5HWujL039+MZXAJaqwxB/hD4HjMoooz9+RMl9b62k03R4CgUqoEsIDLsYkqsY0x5g5gLvAPSikP8Bda6zdjEVsiGus1DjQAKUAq4I1BWAlLax246WYGUI9JeruALqVUTmwiS0xjjPdZrXVD6Hb49S4iaKwxV0rNAJYAtbGJKv7ck0lXWKic+Cjw18A/At8Cvh7LmBLdTWP+L8BPgGcwb5IvAatiF1liuuU17gHOYRLez37U48TkKaWWA/8MZGHG/Jmbvu1XSiVprUdiEFpCGmO8w74b+p+IsDHG/I+AHwBbYhdVfLlXy4uEMvT/AD4DFANorRtjGFLCu2XM24EPtNaXtdYtgE8pdU9fBETaLeOdAvw+cD8wH/imUsoWu+gSj9b6pNZ6NfCXwNeAGTd92ykJV2TdMt5fBVBKfQOo1VofjmlwCeqWMf86sExrLS05k3BPJl2hD/f/Br6htb4ALAMWKaV+gcnYf6SUSo5ljInm1jHXWg8CHUqpLKVUGuDWWvtjG2XiGOM1HgQGgSGgH0gCJOmKEKVU0k03u4E+wBl6fc8GOmMTWWIaY7wHlFKfAYq01t+JTVSJbYwxnwsUhT43fwv4RmhmXXyEe/LAa6XUbwPfA8Krif5Ja70n9L2fAN+V1YuRNdaYY5q9v41JAL4pK18iZ5zxngM8hbnY+let9Y9iE13iCa0W/S5mVdcQ8BxmVvFbmF7RL2qtT8UuwsQyxnj/LmYF3duY1XUXtdbPxi7CxDPWazzcO6qU+jqg5T389u7JpEsIIYQQItruyfKiEEIIIUS0SdIlhBBCCBEFknQJIYQQQkSBJF1CCCGEEFEgSZcQQgghRBTIZpRCiISglErFnJ/aqLX+SWjfpn8D/lRrLTuUCyFiTma6hBCJIhX4K8wO/ABvAL+JOWJKCCFiTma6hBCJQoe+PqyUsoBLmA1h/xS4oJRqBHKBf8fsoH0Uc27cjzHvhc9qrX8R2nn7bzEJWxpwALO5aVsUn4sQIgHJTJcQIlH8eejrOUzCNFZJMS309RjwccxO/d/BHAb+rdD3vgp8BTND9j1gKyC79wshpkySLiFEongt9LVVa/3fmPMPbxUEvgy8ELr9H1rr7wPNQEnovm2hr1/AlCvTMGeyCiHElEh5UQiRKCZyptmg1npEKeUL3e4OfQ0Ajpt+zo9JvgKh23KBKoSYMnkjEUIkih7MTFa5UupTmH6uO/Ey5oL000Ax8Dhm1ksIIaZEki4hRELQWvsw/VlZwH9yY5Zqsv4u9HvWYxrtt2JWQgohxJTYLGsiM/JCCCGEEGIqZKZLCCGEECIKJOkSQgghhIgCSbqEEEIIIaJAki4hhBBCiCiQpEsIIYQQIgok6RJCCCGEiAJJuoQQQgghokCSLiGEEEKIKPh/NkK+vKVwy2EAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAG/CAYAAACNLZxtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9K0lEQVR4nOydd3wUdf7/X7M1ZVM3mwYhhR56CQiBRHoIciBCUPEQ+Co2LNgbnIoHoiie+DtOQeHO80RFRZBQROkoVYr0QAqE9LKp2+f3x+w0SCAJSXaTvJ+P87J8dnZ2yn4+8+5vhmVZFgRBEARBEARBEAQAQOHqAyAIgiAIgiAIgnAnSEkiCIIgCIIgCIKQQEoSQRAEQRAEQRCEBFKSCIIgCIIgCIIgJJCSRBAEQRAEQRAEIYGUJIIgCIIgCIIgCAmkJBEEQRAEQRAEQUggJYkgCIIgCIIgCEICKUkEQRAEQRAEQRASSElqRhwOB9LT0+FwOFx9KIQLoPvftqH737ah+9+2ofvftqH73zIhJYkgCIIgCIIgCEICKUkEQRAEQRAEQRASSEkiCIIgCIIgCIKQQEoSQRAEQRAEQRCEBFKSCIIgCIIgCIIgJJCSRBAEQRAEQRAEIYGUJIIgCIIgCIIgCAmkJBEEQRAEQRAEQUggJYkgCIIgCIIgCEICKUkEQRAEQRAEQRASSEkiCIIgCIIgCIKQQEoSQRAEQRAEQRCEBJWrD4AgCIIgCKI1wrIsioqKUFFRgWvXrkGj0UCv18PDw8PVh0YQxC0gJYkgCIIgCKKRcTgcuHLlCkwmE1iWhd1uR3l5OSorKxEeHg6dTufqQyQI4iZQuB1BEARBEEQjU1paCpPJBACoqrbi4uVqAJx3KT8/HyzLuvLwCIK4BaQkEQRBEARBNDIlJSUAgIIiE+7fk4uXtAz+/mk6AMBqtaKystKVh0cQxC0gJYkgCIIgCKIRsVgssNlsAIA1P+QgPwxwKBmc04lZDryXiSAI94SUJBfgcDhQXV0Nu93u6kMhCIIgCKKRqa6uFl5ftjDC65IwcRuz2dych0QQRD2hwg1NjNVqhdlshtlsRnV1NXJycmA2m8EwDNq1a0eJmwRBEATRyqiqqhJeF4WL9uhiPXD+khFdO/qRkkQQbg4pSU3IpUuXBHc7wCVrSv9tMplISSIIgiCIVgbvSbp6rRI5HVgAojdp+/4SdO3oB6vVCrvdDqVS6aKjJAjiZlC4XROiUt2og+YViJYjsiIRROvHbrejoKAAV65cQV5eHgoKCijUliBaMVarFVarFQDw9bZ82JWM7P10o0N4TXIAQbgv5ElqQrRarZCY+dg/M3C1kwJFBhb/ySxHpyhfWhwJopVjtVpx9epVWCwWsCwLi8WCkpISVFZWon379tBoNK4+RIIgGhlpPlJaNXPD+yXeoufIbDbDy8urWY6LIIj6QZ6kJkTaUduiYVAYArAKBtv2FgOA4GonCKJ1UlhYCIvFAgCoqLTAWM69tlqtKCwsdOWhEQTRRMjykUJvFLOMBlFxImMpQbgvpCQ1IVqtVngdUC0qQ5dLydVOEK0dm82G8vJyAMD+QwWYeiwPT+Sy2LE3DwBQUVEhy1EkCKJ1wHuSCopMznwkILAQMHBTHwVhLCoqOYMJlQEnCPeFlKQmRKokdQoS3eslXnJXO0EQrY/q6mqwLCcgrTtUgTI/oMIH+PEkJ0CxLEsCEkG0Mmw2m+A9/mpzLmxqzmsUnMnCP5dbD2xqBqk78wFACMUlCML9ICWpCVEoFELOwfjhejAObiE0BpOrnSBaO9KQm8Jg0TBi9Bdfk5JEEK0L6bw/Xy4qP6FVdviUip7jE5mcIsXnKhIE4X6QktTE8N6kyPY66As45aggFIKrnZQkgmid8MJSSakZ16LE8WJqJkkQrRZp0YaiENEgMrK3F0JVopJUqBDFL1oHCMI9ISWpiZHlJeVyf60aYOuuAgDc4kiudoJoXVwfcmMRlwEUBwFnLpQCIE8SQbQ2pMaRnEhuLKAYGD08BAO6iAWFy/Si+EXrAEG4J6QkNTFSJcm3TCzecDyTsxyRq50gWh/SkJszJY4b3t9+oAQAp0xR8QaCaB3cYBxxVvgPzuAMoX26e0LH1XJBYThgs3EyAXmSCMI9ISWpiZEqSe20oseogCFXO0G0VmT5SJKQG550Sa4CzX+CaB1IQ+2kxpGQSk4ZUqmU0OdwYxU+wKHjXDsQWgMIwj0hJamJUavVUCo5ISmhj48wTq52gmi98MJSUbGYj6S0iYpRqQ9VuCSI1oasP5JBnOPDunoKr/0KReVpz/EKAIDdbiePMkG4IaQkNQO8N2lQvwBytRNEK0cacvO/n3JgdYbcdPyTERSl0jCxwiUZSQiidcAbRyoqLciJ4sZ8jcD4EcHCNnqHqCRlS6Y+rQME4X6QktQM8EoSudoJovUjtSafk4TVhZXbEJzjrHAZzOLqtUoANP8JojVgt9uFubxuUy7MHtx4SAb37OfpHaEWXht9yaNMEO4MKUnNgIeHh/Dat1As3rCPXO0E0eqQ5SOFikLQqN5e8MvjrMisgsFPuwsBcM0k7XY7CIJouUjzkU5JnvPBRvmzPelOA1RWp0c5RBwnJYkg3A9SkpoBafGGQItVeH2FXO0E0erglaSCIhOuRXLCUGARVwLYv0Kc/xeLREGKBCSCaNnIjCN60ThyR0etbDs/Hy0MuZxHuTCYRXYu9zlaAwjC/SAlqRnQaDRgGG5R7Bwiht+Qq50gWhdWqxVWK6cIfbkpBzY1N+/5EsAdfETFqNiT5j9BtBZ4Jamq2opr0dyYTxkweWzoDdv65XPrAatgsGWX6FF2OG5sF0AQhOsgJakZYBgGGg2XvZ0Y502udoJopUityReqxOIM4dWccjRyoCcYBzf/jSFUvIEgWgPSfKRvN+fA5CxmJ81Hkobd+1eKxpLzBWI4HskBBOFekJLUTPALpI9ODUOO6Gqn5G2CaD1I8xIKw8TlddwAHQAgNMQDhnxu/ueHsSgp5eY9zX+CaLlI5/0fOaLSYygVX/v7+wuvY/zEtaHYgzzKBOGu1FtJOnfuHObMmYPExERMmjQJGzduBABs2rQJgwcPxvDhw4X/cnNzhc+dPn0a9913H+Lj4zF37lzk5OQI75lMJixYsAAJCQmYMGECtm7dKvvOTZs2ITk5GYmJiXjzzTeFcJaWhDQvya9A4mrfUwSAXO0E0RrgPUnZuVW41oGb5/p8IOEOsQSwfw43blcx2PxrPgCa/wTRkpEZRwJVwuuBHbhKdgzDQKfTCT0Tx8YHCNuUGUSPMilJBOFe1FtJWrhwIeLj47Fz504sXboUy5YtQ2ZmJgBg0KBB2Lt3r/BfaCgXi2uxWPDiiy/i3nvvxa+//oqePXti4cKFwj4/+eQTGI1GpKamYvHixXjnnXeEfaalpWH58uVYtmwZNm/ejGvXruGzzz5rjHNvVqRKUoDE1X6BXO0E0SqQ5iOt25IHu8qZj5TFyrbzrxDn/6lr3PYsywq9lQiCaFnwxhGz2YbcKG7MuwK4JykMAPf8VygUQth9145+COTsoygI4z7HfZ5kAIJwJ+qtJOXm5iIpKQkKhQLdunVDVFSUoNDUxtGjR+Hp6YlJkyZBq9Xi4YcfxpkzZwRvUmpqKubOnQudToc+ffogISEB27dvBwBs3boVY8aMQWxsLHQ6HR566CFs2bKlAafqWqRKUow/udoJorUhzUe6WC3JRzLLy3tH68T3irTi/Ke8JIJoeTgcDuHZ/f3WHFRykbUIzQC0Ws6r5OnJJSmp1WKPpABnMI3ZA/h5bwH32mwGy8qNKgRBuA7VrTeRk5KSgtTUVMyePRvnzp1DXl4eevbsif379+PEiRMYNWoUAgMDMX36dEydOhUAcPnyZXTq1EnYh6enJ9q3b4/Lly/D29sbRUVFsve7dOmC06dPC58dMmSI8F7nzp2RnZ0Nk8kkS4TksVgsN1hkVSqVYMFxFQzDCK72MXf448uqMgCcq51fFKuqquDr6+uyYySaFj6cisKqWicVFRXCXC4KFw0hyYN8wLKscN/HDvXH19XlAACjZP5XV1fT/G/F0PxvnVRWVgr39HCWFYjixKqgYpswtz08POBwOKBWq+FwOKBQKOBb6gBvpz5ysQoTRrFCAQhXyytE40Pz3/1QKG7tJ6q3kjRkyBD87W9/w+rVqwEAr776KgIDA9G/f3+sW7cOoaGhOHPmDJ5//nno9XqMGDEC1dXV8Pb2lu3H29sb1dXVqKqqglKplCk83t7eglX2+s/qdDphvCYlac2aNVi1apVsbNq0aUhJSanvqTY6paWlAAB/XzMCs4DiIM7VfuXKNWi1KpSWlpI3qQ1w5coVVx8C0QRcu3YNdrsd2bkm5HQAAAaGPKBjHwfy8/OF7fR+FgRe4eZ/fjiQmZUNTw81SktLyZvUBqD537ooLS1FeTln9CjwFz3DXf2twrxXq9VQKBRQq9VCrrbeYQbAeZhyHYywrd1uh5eXVzOeAdGc0Px3H6Kjo2+5Tb2UpNLSUjz77LN44403kJCQgPT0dDz11FPo2LEjevbsKWzXs2dP3Hvvvdi5cydGjBgBT09PVFZWyvZVWVkJT09PeHl5wW63yzxDlZWVwiJx/WcrKiqE8ZqYPXs2ZsyYIT9JN/AkAYCXlxfOnz+PoKAgBORmoziIc7UfP8dg4phgMAyDDh06CD2ViNaFw+HAlStXEBERUScLBtFysFgsgoHj3z9lwD6QE5YMWSyCx3BFGxiGQV5eHoKCghCYw81/ixY4dobB3Uk0/1s7NP9bJwzDwNPTEzabHXlR1wAAnlXAzHui4eWphlarRWRkJBwOB7KyshAczK0H8b1Y7AAX9VIeqBLGAwMDERQU5JqTIZoMmv8tk3opSdnZ2dDpdBgxYgQAoFOnThgwYACOHTsmU5IAyB70MTEx+OGHH4R/V1dX4+rVq4iJiYGvry/0ej3S0tKEfVy4cAExMTHCZ9PS0oTPXrx4Ee3atavRiwRwjVvdQSGqCV6xUygU8Cu1A+AEqWOXTPjLWO562e12tz1+onFQKBS0SLYyzGazsOZdtohrXzuLXRgPCAhAXl7ejfM/3Ywpzm1sNpssf5FofdD8bz04HA5YLBYwDIMff85DeTtuPCwD8B7CPce9vb2F+80rVCaTCaOHGbD0SDZMnkBxqCgzWSwW+n20Ymj+tyzqdaciIyNRWVmJPXv2gGVZZGRk4PDhw+jUqRMOHDiAkpISAFyZ8K+//hrDhw8HAAwYMADV1dXYtGkTLBYLPvvsM8TGxiIsjKv8kpycjNWrV6OyshKnTp3Cnj17MGbMGABAUlISduzYgXPnzqGiogKff/45xo8f35jXoNmQCj9hKjE5M5cVbwOF2xBEy0NatKGwnTifJw71AwAolUr4+fkJ4+0lNp4ChuY/QbRETCaTkHf0+yUxVD6oSCzWcn3UC28EVamUMHCOJ5QGAn+e4+QnCrknCPehXkqSTqfDkiVL8K9//QuJiYl44oknkJKSgqFDh+LgwYNISUnB8OHD8eqrr2LmzJmCoqPRaPDuu+/iyy+/xIgRI3DixAm89dZbwn4feeQR6HQ6JCUl4eWXX8bLL7+MqKgoAJy36plnnsH8+fORnJyMkJAQzJkzp/GuQDOiUqkEC8IdsWKeVVmgeBtogSSIlgevJF3KLEdOe05oCs4B4vrqAXCCEp+XAAAj+vsInzUaaP4TREtEahwp8BUDc3oGiblJ1+cXSaNgfAtFY+mO30sBcN5ku11eEZMgCNfQoMIN0mpzPPPnz8f8+fNr/VyPHj2wbt26Gt/z8PDA22+/XetnJ06ciIkTJ9b3UN0OhmGEEqB3DgmC1+FsVHlxrnYeEpIIomVhsVhgs3F9Tr7dXgDHIG5ZNVwRBSBeUOKtyIP7B8F3TxbK/ICCcMBms0OlUpIniSBaEHwTWS4fiRvTmoCUCSHca61WqGrLI40o0Vvs4MWwjHJxvTCZTDcUuyIIovmhwMhmhleSVColgpyudmMA8MepYgCkJBFES0NqTU63iUtqe5vYKLqmPil65/yv8gZ2HqA+KQTRkmBZVlCStu7Kh9GfGw/LBPx8OEWopgJTGo1GyD/qFiLaqY066plIEO4GKUnNjFRI8i0U6+X/esQIgHO12yTCFUEQ7o0s5Ka9uKTenRAIgMtH4q3H0qIsfsXi/P/tDLcPh8MBq9XapMdLEMTtU11dLRg09p6rFsb1+WKoXE2lvPlS4ABw18hgKOzcPkpDxIIvpCQRhHtASlIzIxWS9FZRSMqqEK3HtEASRMuBtyafv2RErjMfKeQa0KdHAADOmsxbjqVGkjBGnP85DspLIoiWBD/vASDPW/QCxQaIc7m2ViV8XpJB74GgfG5tKAhhUVLKzX1aAwjCPSAlqZmRCkk9w8XXRh9ytRNES8NsNgue3/W/FIFVcAKP4YqoAEmtydLiLUN6iONlAVThjiBaElIPcn4UN+81FuC+CVySsUajgUpVc9q3NC/JP4/7a1cx2LyTayhrsVgo7JYg3ABSkpoZhmEEb9L4O4OhJFc7QbRYpIJSpqSUfwe2ZiWJYRhBQBox1AAvZ5/swnbiPmn+E4R7w7KsYMz4eU8uSrjIWoRlAgH+tecj8ciUpHIxPO90tlXYP60DBOF6SElyAfwCqQ/UwpArutoLirhFlyzJBNEykIbc8PlIjIPF3YlcqJ1SqbyhOTQ//6V9Usr8gIPHCgHQ/CcId8dkMsHh4Awhv54UDSX6vJvnI/FIlaT2El2qSE1htwThTpCS5AKkC6RfHudJcigZpDpd7VarVViACYJwT1iWFTxJf54rQV44n4/EoGc3Tkny8vIS8pF4ZPO/QJznO4+VAwDsdjsVbyAIN0bqQc71EkPlu+jEuX4zT5JKpRJC8e4c4CuMl+lJSSIId4KUJBcgE5IqRcvTmVwut4FlWVgslmY/LoIg6o7FYhGaPn6/q0TMR7pac6gdj7SZpEESlndV4kAiAYkg3BeZB7kDN+9VVhbTx3P9kdRqtSz/uCZ4OSCurx6+XHFbFIZxPZcAWgMIwh0gJckFSJWkKJ14C4o1ZEUiiJaC1Jp8RSHO3UhJ1bpb9UkZECMqTEZ/0SJNIXcE4Z5I+yPtPViAIgM3HpbFIDSYm+83C7XjkTWVzeH+VuqAfYeLAJAMQBDuAClJLkDqah81yE8YNwZRhSuCaCnI+iNFiPlIU0fpAXDzXCoI8UiLN4xLNEDjlIWKw8RtSEAiCPfEbDYL4fDbjpYL4/rcmxtHrke6NvhKeqYdOFUBgMJuCcIdICXJRfALZO/YAPiXcGMF4eRqJ4iWgNSa/MepYuSFc+OhVxl07cgZPupS3crLU41gZ/GG4iDgzIVSAGQkIQh3RWocuaYRvb+dPMWS3fX1JEnDbq9ZqNItQbgLpCS5CGleQqDT1W7yBH7ZXwCAWxypTwJBuCdms1nIR/pxX4kwfqt8JB7p/PcrEOf59gPcvmw2m7B/giDcB2k+UqEzH0lpZzF9XDCAuuUjAfKw2/7SsFs/6plIEO4CKUkuQuZqLxEFq0PnOCuVw+EgVztBuClSQemKpGFktKpuSpIsH8EsKkPpFaLCRN4kgnAvpBUtDx4rRAFXpwFhWQzah3sDqFuoHVBD2K2zVlNJqLgNrQEE4VpISXIRUiEpVJLonWOj4g0E4e5IQ24KIzhrsMLOYtpYLotbpVLd0B9JilarFazIPcJFq3OpjqzIBOGuSPORUg+WCeP6nLoZR65HGnZrcEaUFAexSM8sF76PIAjXQUqSi1Cr1VA4K2IN6Cxansr8SUkiCHdGak0+fLwI+c6CC2FXGXSM9AFwa0FJoVAIStTEkcFQ2jgPUmmomI9AVmSCcC+kHuRslWjQiFKLHuC6epKA6yJK8rl9sAoG2/ZxFe6sViuF3RKECyElyUVIXe1jhhugdcpDVOGKINwbqTV50wGjMB6UXT9rMj//A/y1CM7hlKOCEBbZuVXC9xAE4T7IPMjtuTnLOFhMGxME4NYe5OuR5iYGmERl6KIkBJ96JhKE6yAlyYXwQpJWq4LBWeGqRA+cv8QJXmRJJgj3QyooZUuqW8Vo6mdNlhVvyBOtyD/t5Iq3SJvVEgThWqQVLU+cLhEqWko9yPXxIgGQKVQdA8S1pMSDeqYRhDtASpILkbnaC0UBa9t+qnBFEO6KrD+SrLpV3fKReKTzP7BKnOcXisTX5E0iCPdAarT4ca9Y0VJfTw+yFKVSKVTCGz8sUBgvC6Yy4AThDpCS5EJkFa4krvZ0o7jo0gJJEO6D1Jq8/1CBrLpVZHsdgLoLStL53zlIYkX2pOINBOFuSI0jVxhRdIpU1K+J7PXw60B0pA/0nBMZBWFAVTVX3ZbWAIJwHaQkuRCpkNQ1RCwjXOpNQhJBuCMmk0nIR9pypFwY11+rvzVZqVQKHqe7EoPAOJzFG0KoeANBuBuy/kjtOdGJcbCYOkoPgJvP0md6XZHlJeVyfy0aYNtu6plIEK6GlCQXIq1wNeFOgyAkGYNJSCIId0QqKF3TisaMzp6iENOQEsDtw71hyOfmfX4Yi5JSzjhCRhKCcA/4uX/mQinywrn5HnKNQdeOfgDqH2rHI1Ws/IxiRMkfl7lnP8uyVLyBIFwEKUkuhl8gQ4M9BSGpIJSEJIJwR6QhN/mRznwkG4t7x3Nxd2q1WsgxqAtSAck/hxO87CoGm3/NB8DlQfCeK4IgXIPFYoHNZgMA/LCrGKyCm/vSipYNCbUD5GtAmKSUeD6oHQhBuBpSklyMTEhyutptagZbdotCErnaCcL1SPORdv2WjyKuTgPCMxm0C+WsyPW1JktDbfzLRSvyqWtW4TvJikwQrkVqHMmyi2JThL3hRRt41Go1lErOKx3fSyeMlwWSkkQQroaUJBcjKwMsEZJOXxWFJFogCcL1SPORfj5WIYwH5Tbcmiw1kkT7iGG2RRoqAUwQ7oIsH6mdKDZNSggAIM8vbAj8OjAsTg+vSm6sKFx8n2QAgnANpCS5GKmQ1F4iXxUoyYpEEO6E1Jp8TVKBrotXw/KRAK5cuErFFW0ZOzRAGDdSCWCCcBv4uZ+eWY7c9tx8D84B+vTg5qynpycYhqn187eClwNUKqXQM7HMDzh6oggArQEE4SpISXIxKpVKcLWPGOArjJcFkZJEEO6ELB8pihOIVFYWMyaGAah/PhIP702O7eKPwEJuTFoCmDxJBOE6pPlI3/5cCIfSmY90peHGkeuRGkt9ikTP9M6jZQC4non8MRAE0XyQkuQG8EJSXF89fI3cWGEYYLNx4XekJBGEa5HmI/28JxfFXNVfhGcyMOi5+dsY1a0Cc7i/Zg8qAUwQ7oA01O6yRfQWtbeJ4fENLdrAI10DgqyiknRFtMuQHEAQLoCUJDegJiGpUgccOEKudoJwB6qrqwVF5ZeTouQSlCsKSg1VkmR5iaXi/o5RCWCCcDlSD3JRuCgyJQ/mIj8UCkWD+iNJ0Wq1Qrhej3DRG12qo4gSgnAlpCS5AbI+CcWiFWnfSS453G63w2q1NvtxEQTBIbUm50qaPXeTFFtoDE9Se62kBDAjLs8UckcQroGf+1evVSKnAzc/DXnA4P5BAG4/HwkAGIYReyaODIbS5mwsHUq5iQThSkhJcgOkQpKBFZWkaxZaIAnCHeCtyTabHXnOfCS1Bbj/Li4fSaPRCAUY6ou0BLA0L9FIeYkE4VKsVqtgoPx6Wz7sfD5SVuPlI/HwckCAvxaGPO57CoNZFBRxBhIylBBE80NKkhug0WgES1T/GDH0xugnWqxJSCII1yDNR9q+pwClgdx4eAagD+QEm9sVlPiQu8H9g4S8xIJ2Yl4iCUgE0fxIPciXqkWjZZi58fKReGQRJXmcEuZQMvjJ2VjaarVSY2mCaGZISXIDGIYRFshxiQZonOkHJaHiNiQkEYRrkOYj7T4jyUfKa5rEbb2zBHCVN7DrN67cHRVvIIjmR5qPVBgqikvjBnBNXxUKhSyn8HaQKUmV4tpyLo+rake5iQTR/JCS5CbwC6SXpxoGZ/GGomCuLwNAniSCcBVSQSlXJ3p3ewbcfj4ST215iQdOc50lHQ4H5SUSRDPDe5IKikxCPlJgIZBwRzCAxslH4pEqW1GSgg3FGgq7JQhXQUqSmyAVknzzRYvxtn1chTur1Qq73X7D5wiCaFpk+UjRnECkMQPTJ9x+PhKPVEAKY0QlKcdBAhJBuAKbzSZ4br7anAubmpv7wZni87mxQu0AQKlUCuvIqEF+wrg0N5EiSgiieSElyU2QCkkBJlEZulgiCkwkJBFE8+JwOATBZPOveTD6c+PhGVyCNdA4idtqtRoKBbccD+kh7q8sgAQkgnAFUg/y+XJRMQqtuv2y/7XBG0t7xwbAv4Qbo56JBOE6SElyE/jynwDQWSIYlXhQ8QaCcBXSfKR950UlJSi/cQUlaV7iiKEGeHFRdihsJ25D858gmg9p0YaiEPE5PLI3N98Zhmm0fCQe6f74nonVXsDOA9RYmiBcQb2VpHPnzmHOnDlITEzEpEmTsHHjRgDApk2bcP/99yMhIQGTJk3C+vXrZZ8bOHAghg0bhuHDh2P48OH4/PPPhfdMJhMWLFiAhIQETJgwAVu3bpV9dtOmTUhOTkZiYiLefPPNVhmbr1QqoVZzTeTGDdODcXALYVkwlQEnCFchFZTy/MSQut5BotDUWCE3vICkUilhcBZvKPMDDh7jijeQJ4kgmg/ek1RSakZOJDcWUAyMSeAqKjVmPhKPLOxeEkXy+1nuWCg3kSCal3oH0i9cuBDjxo3D6tWrceHCBcydOxd9+vSBxWLBK6+8gu7duyMzMxOPPfYYYmJi0L9/f+GzGzZsQFBQ0A37/OSTT2A0GpGamopLly7h6aefRvfu3REZGYm0tDQsX74cH3/8MTp06IDnnnsOn332GR599NHbO3M3RKvVwmq1IjrSB4EXSlAUDOSHARWVFui8NaQkEUQzI81Hyo3mxrQmIGVCCPdaq73tfCQemYBU6AA6czasncfKMbh/kNBUmjemEATRNFyfj2TpeWM+UmOH2gHyNSCEsYO3Y+fY5LmJ0sgTgiCajnp7knJzc5GUlASFQoFu3bohKioKmZmZuOeee9CrVy+oVCp07NgRgwYNwpkzZ+q0z9TUVMydOxc6nQ59+vRBQkICtm/fDgDYunUrxowZg9jYWOh0Ojz00EPYsmVLfQ+7RSDLS8rl/lo1wNbd5GoniOZGmo+0YXsuyp19XsPTAT+fxstH4pHO/2BJP5SrEgcSGUoIoumRepDPSjw6wRWN3x9JijQ3cUAnSW6iPxVwIQhXUG8TaEpKClJTUzF79mycO3cOeXl56Nmzp2wbu92O06dPIzk5WTb+wAMPgGEYDB48GM888wz8/f1RVlaGoqIidOrUSdiuS5cuOH36NADg8uXLGDJkiPBe586dkZ2dDZPJVGM8sMViuaGXgEqlcgvLC98IrraGcGq1WlCC/Ix2AFxIz4kMM+5hWbAsC5PJJLM2ES2HW91/wr2orKwU7tVvl8xAO265DCq0CfNUq9XW+X7e6v7zHimWZdE3SoNfwG1n9FcK31dVVdUkFmyi6aH533KoqKgQ5lyhQQytHdbFAyzLgmEYaDSaet3Lut5/tVoNk8mEMcOD8P6JHJg9gJIwCMdTXV1Nv6EWCM1/94M3SNyMeitJQ4YMwd/+9jesXr0aAPDqq68iMDBQts3KlSthMBhkys2qVavQq1cvlJeXY+nSpXjrrbfwwQcfoKqqCkqlUqbweHt7C2Eu1dXV8Pb2Ft7T6XTCeE1K0po1a7Bq1SrZ2LRp05CSklLfU20yrly5UuO4zWZDfj7XXdvAWABwlqo8MMK4zWaTXQ+i5VHb/Sfci9LSUpSXc33K8v1FQamrr1WYjyqVCsXFxfXa783uf0lJCSwWCwb2ADR5gEULFIdB+L7y8nJUVlbW91QIN4Lmv/uTm5sLq9WKykorcqK4MV8jMKAHNxe1Wm2D7+OtPldSUoKKigoAgCEHuBoNFOuB3w5nomOkJ5RKJWw2W4O+m3A9NP/dh+jo6FtuUy8lqbS0FM8++yzeeOMNJCQkID09HU899RQ6duwoeJPWr1+PX3/9FZ9//rksqbFfv34AgICAADz//POYMGECrFYrvLy8YLfbZZ6hyspKwVrq6ekpEwr4xaM2V/fs2bMxY8YM+Um6kSfpypUriIiIqFWDZVkWDocDI/oz2AouzqZcr0RwMNe8LiAgAAaDodmOmWg86nL/CfeBYRh4eno685G4Sgoe1cCsqdHw8lRDq9UiMjKyzvury/3XarUoKysDAAT/cYUTkIKAknItunb0g0qlqtd3Eu4Dzf+Wgd1uF0LaPvs6C+bunBwTkgGED+d6owUGBtaYX30z6nr//fz8BKOIb0EW4OzNdvQcMCSOkwPat28PpVJZ6z4I94Pmf8ukXkpSdnY2dDodRowYAQDo1KkTBgwYgGPHjqFnz57Yvn274Mnx9/evdT/8D4RlWfj6+kKv1yMtLU1QtC5cuICYmBgAQExMDNLS0oTPXrx4Ee3atau19KZGo3ELhehmKBSKWieJp6cnqqqqMDROD++D2ajUAUXhEBROq9VKE6yFc7P7T7gHDocDFosFDMPgu605qOjAjYenA953cOuLt7d3g+7jze6/l5eX4L3yK2Bx1Skgbdtfim6d/GG328GyLAlILRia/+5NVVWV8Lw9VegAH/YebLQJ4w2d+8Ct77+0al6gyQ5eTEs3OmRyABVwaZnQ/G9Z1OtORUZGorKyEnv27AHLssjIyMDhw4fRqVMn/P7773jvvffw4YcfIjw8XPa5S5cu4cKFC7Db7SgrK8P777+PwYMHC8pMcnIyVq9ejcrKSpw6dQp79uzBmDFjAABJSUnYsWMHzp07h4qKCnz++ecYP358I52++8HnG6lUSgQ5ywCX+1IZYIJoTqT9kQ5liCV3g4rEMJemrm6lN4tJ4pfLxTh2WgMIoumQNpEt1IvGiDs6cnOT9zA3FdI1oItBtGOXeFPPRIJoburlSdLpdFiyZAlWrFiB119/HT4+PkhJScHQoUPxyCOPoKysDHPmzBG2Hz9+PF599VUUFxdjyZIlyM/Ph7e3NwYNGoQ33nhD2O6RRx7B22+/jaSkJPj6+uLll19GVFQUAM5b9cwzz2D+/PmorKzEyJEjZd/R2pCVAS5ygNdjd/8hlgG22WyNVnaYIIgbkQpKBYHiXBsQLlpvm0JQ0mq1YBgGLMuiR7gae8ApakadXECivESCaBr4uV9VbcU1Z8qCrhyYPJbrj+Th4dGkngCFQgGNRgOLxYLkO4OwJqcArIKB0UA9EwmiuWlQ4QZpQQaeTz75pNbPxMXF4fvvv6/1fQ8PD7z99tu1vj9x4kRMnDixfgfaQpGGERrsopJ0RaxICrPZTEoSQTQhvKBkNtuExG2vSmD6BC4nwcPDo0lC3ngByWw2Y+LIYHx6KRd2FYOSUFFAIk8SQTQN0nykbzfnwNSZGw/NAFTDuPnelF4kHq1WC4vFgnahXgg6yaAgBCgIY4WeibQGEETzQIGRboZGoxHijnu2F63WZT6iQEYLJEE0HTJBKTUHlVxBTYSlA1otZ5xojnCbAH8tgnO4taAghEV2Lq+4kRWZIJoCaX+kP3LE0FpDSdOG2V6PNKLE39kz0aZmkLqTK+hgsVioZyJBNAOkJLkZfP8FAEgeGQyVlVsIS0PFbUhIIoimQ5qPdOSqmI9kKG4eQUnqTfbL446DVTD4aSfXVNpisVCvDYJoAqRKUqEkzHZgB85g2dT5SDxSJcmvTMxNPJHJ9YBkWfaGfpAEQTQ+pCS5IfwC6eejhSHXaUkOJksyQTQH8sRtUVCKayZBSSogBVaJAtKFIvE1eZMJovGRhtnmRnFj3hXAPUlcmK1Wq22WymRSQ0k7SSHfQsl3kxxAEE0PKUluiMySnC9akrfs4irckSWZIJqOmhK3rxeUmrIEt1RJ6hwkfk+JJ1W3IoimwuFwCPPq+61imG1oRvOE2UpRqVTCGjO8t04YL9OLIhsZSgii6SElyQ2RxSNXSizJBWK4DwlJBNH4XJ+4Xe2MqpPmIzV1ToJSqRR6oNyVGATG4Qy5DaHiDQTRVEjDbA9nScr+N1OY7fXwcsDg/oHQca3TUBgO2GycTEAyAEE0PaQkuSFSJSnaT7xFRR5kSSaIpkSak3DMhYnbvDe5fbg3DPnOkNtQFiWl3Lyn+U8QjYus7L+/GGbbL0x83VyeJEDeM1Gfw41V+ACHjhcDoDWAIJoDUpLcEKkleVx8gDBeRn0SCKJJkeUjBYnC0R3RXDEVVyRuS6tbbf5VrG5FIbcE0XjwBhKbzY68KG7MoxqYNqF5wmyvRxZ2XyjO9T3HKwBA6JlIEETTQUqSm8ILSV07+iGwiBsrCOMSSgFSkgiiKeCVpIpKi5CP5FMGTEkS+yM1d+K2f5koCP15jQsDoupWBNF4OBwOIYR1w/ZclPty42EZgJcnZ7BszlA7QG4oCZIYRLIlkbYUdksQTQspSW6KdIEMcLrazR7Az3u5MsBms5n6JBBEIyLNR/p6cy5MTodRaDoX8gI0n6Aknf9RPuIyXaihfmkE0diYTCbheXrwkmiADCoUc4KbM9QOkPdM7NVB7Jlo9KWwe4JoLkhJclOkQpJvqWhFOnKRs3Q7HA5YrdYbPkcQRMOQhtqdyBeFo2Cj6MlpzupWKhUX7jduqL8wbqSQW4JodKRzP99XDLPtJaku2dyeJGnPxPF3Snomhojb0BpAEE0LKUluilRJClOJSlIeS1YkgmgKZPlIBnGexXfmQt+aKx+Jhw+5i+3iL4bchnOlyQHyJBFEY1FTPpLWBKRM4DSS5s5H4uHXAGnPxELqmUgQzQYpSW6KWq0Wch/u6C5asMoCqE8CQTQFvKBkLDfjWhQ35msEJo7mBKXmykfikTWVvcb9NXsA23dzxRso5JYgbh+WZYW5v3VXPoz+3HhYJqecAM0fascjXQOoZyJBND+kJLkpDMMIC+SIoQZ4Oo3cxWHiNmRFIojGwWazCfPpq59yYXbWTXBFPhKPrLpVqRj+d/Qyd5xUvIEgbh9pf6S958QWAHpJyG1zz32e2nomnqeeiQTRLJCS5MZI+yQEOYs3lAYAJ8+UAKDFkSAaC2l/pNNFomU2pMw1jSQBuYDUXit6jPIZ8iYTRGMhnft53mJIXawkasMdPEkxkp6JxdQzkSCaBVKS3Jja+iT8csgIgLN+U58Egrh9ZPlIwaIAktCdE44YhpHNx+ZArVYLeRAJ/XyEcWOQuGyTgEQQt4esaEMUl/ejtgD3TQgFwFWZ44uoNDfSnoljqWciQTQ7pCS5MbKcBIuoJGVUiK9pgSSI24cXlEpKxXwkvxIg6c5gAJwluTnzkXj4NWDoQAN8OdsICtpxCeYAeZII4nZgWVaYQz/vyUVJIDcengkE+Ls2H4mHeiYShOsgJcmNkfZJiA0VLVlGb3K1E0RjYbPZhNye//2UA4vTNhGawQr5SK4SlKTeK72zeEOVN7DrNy5xm4o3EETDMZlMQuGDnSdFj5I+z/X5SDzUM5EgXAcpSW6MQqEQ+iQkjwiG0s4thMYQcrUTRGMhDbc5axSFjZAK1wtKsupWxaIH+cDpSgDUL40gbgfp3M/xEo2PXXTiM9ZdPEkA9UwkiOaGlCQ3h18gDXoPBOVxC3dBKIuiYk45IiWJIG4PWT5SiCgojezFKUbN3R9JitSTFMaIAlKug/KSCOJ2kRZtKOjAPV9VVhbTx3Nl/9VqtZAT5CqkSlKoknomEkRzQkqSmyMrAZrHWbntSgabd3G9UqhPAkHcHrygVFRsxrVIbiygGBgVbwDAWZL5sNfmRtovbXCs6M0yUr80grgtpP2R9h4sQBE33RGWxSA0mDOKuDrUDrhuDailZyIpSQTRNJCS5ObIwm3KxfCfM9c49zr1SiGIhmO1WoX58+VPObBy0a0IkeQjuVJQkvZLGxVvgJfT6VUULm5DAhJB1B+z2SwYGLcdLRfG9bmi0dHVoXbAjWuAh9P5VRwqbkOGEoJoGkhJcnOkSlKkJE66SE1WJIK4XaThNudEOQmhla7PR+LhQ+5UKiUM2dyY0R84fJwrdUUCEkHUH2mY7TWNGLrWyVPMS3T13OeR9kw0OAu4lAYCf56jnokE0ZSQkuTmqFQqoUfDqEH+wnhZEIXbEMTtIhWUikLFOTWmrzcArnhKc/dHuh5Z4rakX9rOI2UAALvdTv3SCKKeSA0khc58JKWdxfRxXNl/d8hH4qmtZ+KO30sBcBU67Xb79R8jCOI2ISWpBcALSX16BMCPMxyhIFzslUJWJIJoGLySlJtfjWuRnAU5sBAYOYxL3HZlPhKPVEAy2EUBKUtiGyFDCUHUHWk+0sFjhSjgpjtCrzBoH84ZSNwh1I6n1p6J5aLXi9YAgmh8SElqAUgXSL2zT0K1F/VKIYjbwWq1CqVzv0rNg03NKUPBmeJccgdBSdovrV+0uBYY/cQQIRKQCKLumM1mwfOy5WCZMB50TVRA3CXUDpCvAd1CxJ6JpTqqcEcQTQkpSS0AqZLkUyIu4r+foV4pBNFQpKF2F8SXCK92n3wkQJ64nTwiGBqnLFRMxRsIokFIQ+2uqkRFI0rtXgYSHoVCIYT+3TUyGArqmUgQzQIpSS0AabhNqKRXSo6NFkiCaCiy/khh4lKYNNAHgHvkI/HwSpKXpxrBzsTt4iDg/CUjAPIkEUR9kM399txzlHGwmDYmCACXC8w3cncX+LXIoPdAUL6zZ2IIi5JS6plIEE0FKUktAGmfhAGdROuW0Z9c7QTRUHhr8tVrlcjpwFlmg/KB4YNd3x/peqTKmm+BaO3euo9LUqTEbYKoG9J8pBOnS5Dn9MiGXWXQMZIzkLiTF4lH3jOR+2tXMdi8U+yZSGH3BNG4kJLUApCG24xNMEDrNBqXSPokkJJEEHXHYrEIIarrtubDruKUIUOm+5X/BeQCUpBZVIYul4ueZfImEcStsVgsgkHhx70lwrg+2z3zkXhkSpKkZ+LpbLFnIskBBNG4kJLUQuAXSK1WBYOzeIM03IYWR4KoO9KchDST6C1qZ3GvfCQerVYreLV6hItliY2UuE0Q9UIaaneFEUWgSIV7NZG9HqmS1F5yeNQzkSCaDlKSWgiyXimScJvt+zlLmNVqpXAbgqgjspyEduIyOH6QmI8knXOuRqFQCDkSE0cGQ2nj1oCSUFHBI08SQdwaWX+k9tzcZxws7r4zEACgVCrdau7zSHsm3jnAVxgv05OSRBBNBSlJLQRZnwSTqAylG0XrFy2QBFE3eCUpPbMcORGcwmHIBYYO5PKRvLy83CYfiYdfAwL8tQjOERO3s3O5c6H5TxC3hleSzlwoRV44N/dDchjEdvEH4F4e5Ovh14C4vnr4ckEkKAyjnokE0VSQktRCkCpJXQxin4QSbwq3IYj6YLFYYLPZAADf/lwIh9KZj5TlnuV/eaTFG/zyuWNlFQx+2lkAgDsvh8NR42cJgpDP/Q27isEquLkfdNW9Q+14auqZWKkD9h0uAkAyAEE0NqQktRCk4TbJdwaBcTj7JARTGXCCqA/SULtLVnH+RNjcMx+JR+ZNrhSP9UKh+JrWAIKoHencz7SL4k+E3b2LNvDIwu6LxGM+cKoCAGC326lnIkE0IqQktSD4BbJdqJfYJyGUhbGcE4woJ4Egbo0sJ0GSjzRxqB8A981JkB5T50DxuEu8RG8yrQEEUTu1zf1JCQEAuLnvbv2RpEjXAANEJemahYylBNEUkJLUgqipT4JNzWDLLuqTQBB1hbcmX7xcJuQjBecAA/roAbhXfyQpSqUSajVX2e6uEQbBm1xK3mSCqBPSXMTc9uLc79ODU5Lcde7zaDQa4fj6x4jht9QzkSCahnorSefOncOcOXOQmJiISZMmYePGjcJ7a9euxejRozFy5Ej84x//kAnsp0+fxn333Yf4+HjMnTsXOTk5wnsmkwkLFixAQkICJkyYgK1bt8q+c9OmTUhOTkZiYiLefPPNNutOlipJfmViiM2pLLFPgsViafbjIoiWgjQnYf0vhUJOgjQfyZ3Dbfi8pPbh3qI3OYy8yQRxK2rLRQy60jLmPiDvmTgu0QCN83FfEiJuQ2sAQTQe9VaSFi5ciPj4eOzcuRNLly7FsmXLkJmZiX379mH9+vVYu3YtvvnmG+zbt09QoCwWC1588UXce++9+PXXX9GzZ08sXLhQ2Ocnn3wCo9GI1NRULF68GO+88w4yMzMBAGlpaVi+fDmWLVuGzZs349q1a/jss88a6fRbFtLE7QjxJQqU4m2kBZIgakeak5AuyUnoYHfvfCQeqaEkIJf7a1Mz2LRD9CZT8QaCuBFpqN1lSXhae0kuojsXbeDh1wAvT7XQM7EomPOOAeRJIojGpN5KUm5uLpKSkqBQKNCtWzdERUUhMzMTqampmDp1Ktq3b4+goCA88MAD2LJlCwDg6NGj8PT0xKRJk6DVavHwww/jzJkzgjcpNTUVc+fOhU6nQ58+fZCQkIDt27cDALZu3YoxY8YgNjYWOp0ODz30kLDftoZKpYJSybnVE/v7COPUJ4Eg6oasP1L7lpeTIDWU+JfZhNd/ZpM3mSBuhnTuF4WLcz95MNdzyN16o9WGrHhDvugF27aPq3BHPRMJovFQ3XoTOSkpKUhNTcXs2bNx7tw55OXloWfPnli5ciWSk5OF7bp06YL/9//+HwDg8uXL6NSpk/Cep6cn2rdvj8uXL8Pb2xtFRUWy97t06YLTp08Lnx0yZIjwXufOnZGdnQ2TySQTGHgsFssNQoJKpXILwYe38N6OpVej0aCqqgqD+unhs68K5b5AURhgtdqgUilRXV1NlmQ3pTHuP3F7VFZWgmVZnLlgRG47FgCD0Gyg93h/sCwLDw8PsCzbJLl9jXH/1Wq1cGxRPgwOOceLNAphvKqqyi3WO0IOzX/Xws/9q9eqkNOBm/tBecCgMfomn/tA491/jUYjHGNAtR28GHex2CGMm0ymFuEVa0vQ/Hc/FIpb+4nqrSQNGTIEf/vb37B69WoAwKuvvorAwEBUVVVBp9MJ23l7ewuWm+rqanh7e8v24+3tjerqalRVVUGpVMoUnpt9lv+O6urqGpWkNWvWYNWqVbKxadOmISUlpb6n2mRcuXKlwZ8tLS1FeTnnVtfnAOW+QIUPsG1nBuL6+EChUNAkdHNu5/4TDcdqtSI3l4tR+/rnUrDDOSFCf8WO/HwxXK2pcx5v9/4XFRXBbrcjriuDb5xjpQaFcA5VVVUICAi4zaMkmgqa/82PzWYTIlf+u6kU9iHc3A/Kcgjzxs/PT8hZakpu9/47HOIxt/O0gBfjSjwVsnXMx8entl0QLoTmv/sQHR19y23qpSSVlpbi2WefxRtvvIGEhASkp6fjqaeeQseOHeHl5YWKigph28rKSiG239PTE5WVlbJ9VVZWwtPTE15eXrDb7TLP0M0+y39HbVaS2bNnY8aMGfKTdCNP0pUrVxAREVEnDbYmAgICBEHPtygTfMTkqUwFJowJBgCEh4cLVbAI96Ex7j/RcEpKSgQDQo5azE+IAovgYG7uREZGNlnITWPdf5VKhcrKSgQHA4E7r6BYDxSEAzqfAHh5quHh4YEOHTo04pETjQHNf9dRVlYmhKBdcYhzP9zsEOZ+REREk3pfGvv+W61W3D3GC9+WlgAAyoIVwrn4+voiNDT0tr+DaDxo/rdM6qUkZWdnQ6fTYcSIEQCATp06YcCAATh27Biio6ORlpaGYcOGAQAuXLiAmJgYAEBMTAx++OEHYT/V1dW4evUqYmJi4OvrC71ej7S0NPTs2bPGz6alpQmfvXjxItq1a1ejFwngXNHuoBDdDIVC0eBJIi1RamAd4JWkbDMjjFut1hYRW91WuZ37TzQck8kkzJHCCO76Mw4WU0YEgmEYwaPd1CWAb/f+e3p6Cp72wBygWA+YPYCf9xRgclI7WCwWMAzj1qWM2zJtZf67U2PT8vJyIRRNFaNChNOG+JchPmBZFgzDQKFQNGk+n8PhgN1uh8Viue37r1KpYLFYEBnhjV5ZRpTqAXUkUFVtgaeHGtXV1ZSb6GY05v0nbo1arRZy+G+HeilJkZGRqKysxJ49ezB8+HBkZmbi8OHDGD9+PGJiYrB06VKMGTMGWq0WX375peDRGTBgAKqrq7Fp0yaMGzcOn332GWJjYxEWFgYASE5OxurVq/H3v/8dly9fxp49e7B27VoAQFJSEh555BHcfffdaN++PT7//HOMHz/+tk+8pcL3SWBZFn0jtfgFnHWszE/eJ0Ea+kgQbR2WZYXqVifPlCC3HTcems0g9i5/AFxVu5agWEgNRH4ldgDc3D962YzJEIs3kKGEcAUsyyI3NxelpaWuPhQBm80GlmVhd7B4Lp4LRVU4gGAPFaxWKxiGQUZGRpMeA8uysNvtyMjIuO11xm63C17xv/UIgM2p9FksdqiUnKE0PT39dg+ZaEQa8/4TdcPf3x+hoaG3db3rpSTpdDosWbIEK1aswOuvvw4fHx+kpKRg6NChADgvz8yZM+FwODB58mT85S9/AcAJ9u+++y4WLVqEd955B7GxsXjrrbeE/T7yyCN4++23kZSUBF9fX7z88suIiooCwHmrnnnmGcyfPx+VlZUYOXIk5syZ0+ATbunwfRJMJhOS7jTgozO5sGqAEolnnSrcEYQci8UihNts2F0CDOWWvqCrYv6eO5f+liJVftprWRx1vs5n5FUuSUkiXAGvIAUHB7uF4UFa8bGw1AJWyx2P1sSifQAXdaJUKqFS1TtFu97HYbVaoVarG0VJ4vOn1EUWVHtx+9NVsQjRc+ekVqvJY+FGNOb9J24Oy7KoqqoScvR4h0xDaFDhBmm1OSmzZ8/G7Nmza3yvR48eWLduXY3veXh44O233671OydOnIiJEyfW91BbLbySpPPWwJADXIsEioJYZF6tQGR7HfVKIojrkJb/vSLpKxalaHlKEh9GYLfbkdDPBz+C85AZg+T90nx9fV11iEQbxW63CwqSXq939eEA4I6JF0ptDMBonEqShRUMCRqNpskVCpZloVAohGiQ28HhcAiKn4caMDnPiZWcU2OFGxGNQ2Pef+LW8PmF+fn5CA4ObvBcIDNDC0RqIfYr4OKsWQWDLXvFPglU4Y4gRKRKUoEkH2na6CAA7lPcpa7wa8DQgQb4GrmxwnDA5myMSd5kwhXwOUjuZHCQPgvtalE49fEUxZ+WJrRKFTqd5DzsKvE8SAYg2jr8OnQ7uZGkJLVApEpSQJXYNO5iofiahCSC4JDmI/1xqhh54dx42BUGnWM4b0tL6ykizUvSX+P+VuqAXb8VAuA8SU3V74UgboU7KR28smCzOWB12kFUNsBXxwXSKBQKtzreusIrSjpvFXiHuE1S1JbmP9HWaYx5TUpSC0SqJHUMFF2IpZ7iawq5IwgOs9ks5CP9uK9UGA/Kbnmhdjwyb3KxeB6/neHaJTgcDrepLEYQrkLaHLbEaIXDKTOpLKwgQLVEBQmA7PjVzqluVwKVVVyuEnmSCOL2adpMRaJJUCqVUKvVsFqtGD8sEF84+yQYDeJiT54kguCQ5SOpRENCtFq0tLY0JUnqSQplxFYAOXZ58YaWFEJItB5YlnWLZxBfhlyj0aBaDLSAWqI/uKK4waxZs1BaWooNGzY0eB9S5U5hYwFnQYryKju8vTjRji9vThBEwyAlqYWi1WphtVoRHekD/cUSFBm4hpJV1VZ4eard4gFFEO4AH2oHAIUdOIFBYWcxfUzLzEcCxMpVDocDd8R6YSu4JG5jgLx4g4+Pj6sOkWjDWCwWoem5K+FLZUdERMAmydfReYjzhFeS7rzzTvTt2xcffvhhnfffkM80FlLlTiWJrLNIFECHw0HFGwjiNqBwuxaK1JIc4HwWWTTA9t1cyUOz2UwxyUSbhy8FCgAHjxUi31kqP+wKg+hIToFoaV4kQGwFAACj4g3wcjrLisLFbchQQrR1+JAzh4MV8pGUdsDPh7MPt+Smy9Lj9pQUpJA4k0kGIIjbhJSkFoosJ8EoxhEcu8wJRtLeEATRVjGbzYKg9NPvZcJ4S85H4uENJSqVEoZsbszoDxw+zlW5pLxEoi0jVRBKjDY4nNKO2iIqGLw3ZtasWdi9ezf+8Y9/CIpTRkYGdu/ejUGDBkGr1SIsLAwvv/yy0J+ots/Y7Xb83//9H6Kjo+Hp6YmuXbviH//4R6Ofn1TB8/NRgXGer7SCH+UlEcTtQUpSC0WqJIVJcivyIc9JIIi2jDQfKVsjhp101IpzpqVVtuORrgG+haIwtPMIpwxKG04SRFtDqiRV28XXKslrXkn6xz/+gSFDhuDhhx9GTk4OcnJyoFarkZycjLi4OJw4cQIrV67EZ599JvR0rOkzERERcDgcaN++Pb755hucOXMGCxcuxKuvvopvvvmm0c+RV5JUKgVUNmcvKBULq81xwzUgCKL+UE5SC0XaUDK+lw4/gbMal+lJSSIIHll/pEhOiFDaWNw3PhgAN49aWj4SjzTk1mAXizdkSRxIJpMJOp2umY+MIFyPVEGwKSX5SBpJwQOnkuTn5weNRgMvLy+EhnIxua+99hoiIiLw8ccfg2EYdOvWDdeuXcNLL72EhQsX1vgZgCus9Oabbwr/jo6OxoEDB/Dtt99i8uTJjXqOfF4iACitLKxqBizDwFhmQ1CgRqju11JDCgnC1ZAnqQXDW5KHxenhXcGNFYWJ75OSRLRlpP2R9h4sQCGnFyEsi0H7cG8ALdeLBEDWub1flOhVMvqJHjNaA4i2Sm35SP5+XDOhW+UjnT17FkOGDJFtEx8fj4qKCly9evWm3/2vf/0LAwcOhMFggE6nw6pVq5CVlXWbZ3Qj0mNTSiLrTDZRQSRvEkE0HFKSWjC8kqRSKRGUw42V+VFOAkEA3O+fF5S2HikXxoNyWn4+EiAv3pA8MhgaZwpisaR4A60BRFtEqhhUVNnA3iQf6Wb7uF6J4vd7M+Xqm2++wfz58zFnzhxs374dx48fx+zZs5skR1h6DlrJ6dgkh0d5SQTRcEhJasHIchKKxIVw11HKSSAIaajdNQ/Ru9LZs+X2R7oefg3w8lQj2Fm8oTgIOH/JCIA8SUTbRKokmSWPwJrykXg0Go3QdBoAYmNjceDAAdm+Dhw4AB8fH7Rr167GzwDA3r17MXToUDz++OPo168fOnXqhEuXLjXKeV2PVFnz8RbXOLuk3Dl5kgii4VBOUgtGqiQFWcWchKtiWxiYzWaoVHSbibaHtD9SfpQzwdnK4v4JXP6AWq2GWq12ybE1Fh4eHjAaOYXIt4AFornz3LqvBF07+sFqtcJut1OvFKJZ0Wg0iIqKctn38797ALB7W2F3znOvGvKReKKionDw4EFkZGRAp9Ph8ccfx4cffognn3wS8+bNw/nz5/G3v/0Nzz77rPDZ6z8TGBiITp064T//+Q+2bduG6OhofPHFFzh8+DCio6Ob5Fz5vCQvTxVU5RbYlIBNLXrCyJNEEA2HPEktGK1WK1iSYtuJwl6pjygQUbgN0RaR5iP9ui8PxVzfWIRlMQgN5vKQWroXCbjOUGIWLdrpZaJgRGsA0dzwoaCu+k+tVjv/asD4cLl7SgcQ4Ft7PtLzzz8PpVKJ2NhYGAwGWK1WpKam4tChQ+jTpw8effRR/N///R9ef/31Wj+TlZWFRx99FFOmTMH06dMxePBgFBUV4fHHH2/Sa82jtHJ/HQqgrIJzofHFGwiCqD/kYmjBMAwDjUYDs9mMCSOC8a9LubCrGJSGiNtQuA3RFpHmI+04XgkM55a61pKPxMMbSliWRWyoCnuc41JDidlshre3t2sOkCCaGalSUFpmhd1ZtEFlBhS62vORunTpgt9++002FhUVhUOHDtX6XTV9BgDWrFmDNWvWyMYWL14s5CWtXbu2zudzKxQKheA1U9pYANw5Vpoc8OP6ZVOFO4JoIORJauHwluQAfy0MudwiWBDCIjefs6KTkkS0RaT5SDleosLQzUfcpiVXtuNRKBRCCfO7RoY4hSSgJFQUiMiTRLQlpOFllZab90dqDUiVH2nwsFXiPCJPEkE0jNazUrRRpOE2/nncQsgqGKTuKgAAWCwWikkm2hxSJSlPko90nzMfSaPRtPh8JB5+DdAHyg0l2bncNSBDCdGWkD7vpP2RvFS15yO1ZKRKkpeHeF52ybmTDEAQDaP1rBRtFGlDSb9KMSfhXL5Y0oeEJKItIc1H2rY7FyV6brxdBgODnpsvrcGLxCNdA+SGkkIAZCgh2hb8b51lxf5ICgcQ6F+3/kgtDen5+OpUUDinul1iAyJPEkE0DFKSWjhST1K0r3g7i7XUUJJom1RXVwtCwc5TokcpKE80IrSGfCQe6RoQIDWUFJChhGhb3JCP5HwMqi2AQlG3/kgtEf6cFAoGKmfxBpsKMDmLuZCSRBANo/WtFm0MpVIplPgeM8RfGC8LEi1lJCARbQlpqF2upHdIdz9JWEorVZK6BIpLeoknVbkk2hZSj2mFWZKPZGud+Ug8sgp3knOlCncEcXu0vtWiDcKH28R28UdAMTdWEAaYnV30SEki2hJ8qJ3NZkees2+QxgLcmxzGvdZoWlXvMKVSKeRXjU8MAuNwWtJDyFBCtC1k+UgK8ffv2UrzkXik56SU6EKSrgAUcksQDaD1rRZtEKklOTCH+2vyBH7Zz+UkmM1msiIRbQKHwyEoSVt35aM0gBsPy+AKGwCty4vEwxtKItvrEJTvLN4QxsJYzilH5Eki2gL8c45lWVidj0WFAwj044wirS0fiUd6Th4ShdAmkfBIBiCI+kNKUitAqiT5lorWoiPnubAjh8MBq9Xa7MdFEM2NyWQShIE9Z6uF8daaj8Qjy0vK5f7a1Aw27cgHwBVvICGJaM2wLCt4S4zlNlk+klLJ5+y0TpFHqvz5+ajAgJvrdonCRPOfIOpP61wx2hhSASmUEZWkXFa8vRRuQ7QFZKW/fcWQup56cS60psp2PLIKd2ViwYY/sznjCMuytAYQrRpZPpJJfN3a85F4eCVJo1ZAZeVe29Qs7HbuWlC4HUHUn9a7YrQh1Gq1sPgP6iZayY0BpCQRbQteSbLZ7MiN5sa0JuC+u8T+SK0pH4lHaiiJ1InW4yKNuAZQyB3RmpF6SqwSycZDrF/SapSkTz/9FBEREVAoFPjwww8BXJeX5LSTsAwDY3njFm/YtWsXGIZBaWnpbe+LINyd1rFitHEYhhGEpBFDg+DhjDIqDhW3IQGJaO04HA7hd/7TjlyU+XHjYRmAn0/rzUcCAJVKJSh/YyVVLksNZCgh2gayog0azlDAsECgX+vqj1RWVoZ58+bhpZdeQnZ2NubOnQvgugp3dlEZqraIrxtDSRo6dChycnLg5+d32/siCHeHlKRWAq8kabUqGK5xY6WBwJ/nSgCQgES0fqT9kfZdFH/vQQWtOx+Jhw+569ktAIFF3FhBuFjlkgwlRGtFmo9UVm6Fzeks1lgAlap15SNlZWXBarViwoQJCAsLE9Y06fmpJbogH3xrtVobRUnSaDQIDQ1tFQonQdyK1rFqEPLiDYXiQrjj91IAgM1mg91uv/5jBNFq4KvaAUC+nxhS1ydIjLdpzUpSTVUuzR7Alp153Guqckm0UqS/67Jq0aOktNY9H2n9+vXo1asXPD09odfrMXr0aFRWVgIA7rzzTjzzzDOy7SdPnoxZs2YJ/46KisLbb7+NmTNnQqfTITIyEj/++CMKCgowadIk+Pj4YMCAAThy5MhNjyMrKwuTJk2CTqeDr68vUlJSkJfHzeG1a9eiV69eAICYmBgwDIOMjAwAck9SSeEV9Nf7YfuG7/HXe++Cv78/vvrqKzgcDqxZswbdu3eHh4cHunXrhn/+85+y7z9w4AD69u0LDw8PDBw4EBs2bADDMDh+/DiAmsPtvvvuO/To0QNarRZRUVF4//33ZfuMiorC4sWLMWfOHPj4+KBDhw749NNPhfctFgvmzZuHsLAweHh4ICoqCkuWLLnpdSKI5qD1Bee3UaSJ23qLHfytzSgXHxImkwne3t7NfWgE0SzUlI/kUQ3cO5GLO9VqtVAqlbV9vMUjXQP8SuwAuHM9etmMyeAESYvFIlOmCKI5GDhwIHJzc5v0O3hFye4AWAbQBwdjy0+7hPdv5vnIycnBfffdh3fffRd33303ysvLsXfv3nobFZYvX47FixdjwYIFWL58Of76178iPj4ec+bMwbvvvosXX3wRDz74IE6fPl3j8bAsi8mTJ8Pb2xu7d++GzWbD448/junTp2PXrl2YPn06IiIiMHr0aBw6dAgREREwGAzC5xUKBRwOB7w8uef/R2/+Dc+98Xf8+45PodVqsXr1aixatAgff/wx+vXrhz/++AMPP/wwvL298eCDD6K8vBwTJ05EcnIy/ve//yEzM/MG5fB6jh49ipSUFLzxxhuYPn06Dhw4gMcffxx6vV6mRL7//vtYtGgRXn31Vaxfvx6PPfYYEhIS0K1bN3z00UfYuHEjvvnmG3To0AFXrlzBlStX6nXtCaIpICWplaDRaMAwDFiWRbcQFfY4x406USg0m82kJBGtEmk+0oZtuShvz42HpwO6OzQAWrcXCZB7ktppWRx1vs5n5HlJpCQRzU1ubi6ys7Ob/Xul+Ug38yTl5OTAZrNhypQpiIyMBADBY1MfkpOT8cgjjwAAFi5ciJUrVyIuLg7Tpk0Dy7J47rnnkJiYiLy8PISGht7w+R07duDkyZNIT09HREQEAOCLL75Ajx49cPjwYcTFxUGv1wMADAbDDfvgFS/+7/2PPo4Rk/4CA8tA563G4sWL8f7772PKlCkAgOjoaJw5cwaffPIJHnzwQXz55ZdgGAarVq2Ch4cHYmNjkZ2djYcffrjWc/7ggw8watQoLFiwAADQpUsXnDlzBu+9955MSUpOTsbjjz8OAHjppZewfPly7Nq1C926dUNWVhY6d+6MYcOGgWEY4R4QhKshJamVoFAooFarYbFYcNfIYKzOzINDyaA0RLRWUV4S0VqR5iP9dtkMtOeWtqBCsRx2a1eS1Go1lEol7HY7Evv5YCO48ENjkLzCna+vr6sOkWij1KQQNCZiE1mADyoPMgRDra5bPlKfPn0watQo9OrVC+PGjcPYsWMxdepUBAQE1Os4evfuLbwOCQkBIFe2goODAQD5+fk1XpOzZ88iIiJCUJAAIDY2Fv7+/jh79izi4uJu+v0KhUIWVh/btx8AoLzKgeqqAly9ehX/93//J1N6bDabUITh/Pnz6N27t8wrPWjQoJt+59mzZzFp0iTZWHx8PD788EPY7XbBey+9NgzDIDQ0FPn5XB+3WbNmYcyYMejatSuSkpJw1113YezYsTf9XoJoDkhJakV4eHjAYrHAoPdA0GEG+WFAQQiLklIzAvy1pCQRrRZpf6T8AHFZ6xsqvm6N/ZGuR6vVoqqqCkMHGuCzNwvlvkBhOBeCqFIpaQ0gXMKt8nBuB4fDAYvFAgDIzjejzFkC36tCDJW7VZEBpVKJn3/+GQcOHMD27duxYsUKvPbaazh48CCio6OhUChuCL2rqUG7Wq2+4TtrGqutZxHLsrWG4dWlUML123g6DUNWFlCw3Hd+8sknGDJkiGw7XpGp6XtuFXJY189IrwN/rPx16N+/P9LT07Flyxbs2LEDKSkpGD16NNavX3/T7yaIpoYKN7QipGE0/rlix+3Nv3LWGovFQonbRKuEV5LMZhtyo7gxrypg+l1hAFp/PhKP1AIc5IxuqtQBe34vBMB5kmgNIFoTUoXDKpHVtRLppi6V7RiGQXx8PN5880388ccf0Gg0+OGHHwBwoW05OTnCtna7HX/++eftH/x1xMbGIisrS5aPc+bMGRiNRnTv3r1O51ATdiWDkJAQhIeH4/Lly+jUqZPsv+hoLomzW7duOHnypMyYcisFNzY2Fvv27ZONHThwAF26dKnXmuvr64vp06dj1apV+Prrr/Hdd9+huLi4zp8niKaAPEmtCJmSVOEAn7h9+hpn8WJZFmazWSZIEURLx263Cw/177fmoCKKGw9LB7yGcNbL1h5qxyOrclnsAG8H23+6EiOHcQKl1WqFRqNx0RESRONSc38kFoG+nHhzq3wkADh48CB++eUXjB07FsHBwTh48CAKCgoExWTkyJF49tlnsXnzZnTs2BHLly9vkmaqo0ePRu/evTFjxgx8+OGHQuGGxMREDBw48Jafv74XFMMXs3BKeq+//jqee+45+Pv7Y/z48TCbzThy5AhKSkrw7LPP4v7778drr72GuXPn4uWXX0ZWVhaWLVsm7LsmnnvuOcTFxWHRokWYPn06fvvtN3z88cc3VM27GcuXL0dYWBj69u0LhUKBb7/9FqGhofD396/zPgiiKSBPUitCKiBFSGTCQjU1lCRaL9J8pENZYghMUFHbyUfikRpAwhhReMyx0xpAtD6k/ZEqq2ywOiO61FYGGg1nJKxLmJqvry/27NmD5ORkdOnSBa+//jref/99jB8/HgAwZ84cPPjgg5g5cyYSExMRHR2NESNGNPr5MAyDDRs2ICAgAAkJCRg9ejRiYmLw9ddf13kfUoVQaePO3aZmYbHYMXv2bKxcuVIoJZ6YmIi1a9cKniRfX19s2rQJx48fR9++ffHaa69h4cKFAFCrcbV///745ptvsG7dOvTs2RMLFy7EW2+9JSvacCt0Oh2WLl2KgQMHIi4uDhkZGUhNTW01va2IlgvDUuxFs+FwOJCZmYnIyMgmm/yXLl2CzWbD0RNFmAeux0OHNODrezoAAAICAoTkUaJ5aY773xYpKCgQwjIe+DILl3py409cYvDAlAgwDIOOHTu6PNyuOe4/y7JIS0uDw+HA1p25eDOQy9WIOQN8eR+3BgQGBsrKBhPNQ1uY/yaTCenp6YiOjm6WiAVpPtK1fDOMknykyGDOaKhSqaBSuT5ohi/Bz1eibSpsNhtsNs5AlF5ohsmL+64gE2AI5DzIWq22zsfw5ZdfYvbs2TAajW0ir7OpaK77T4g0xnpUr5Vj+PDhsn9XV1dj6dKlGDVqFBYvXowtW7YI71ksFgwdOhTLly8HwPVJ8PDwEH4cs2fPxpw5c4QT+fvf/47du3fDx8cHTz75JJKSkoR9bdq0CStXrkRlZSVGjhyJV1999YYkQIJDq9XCZrNhQB89/HZXwugPFIaJidt8mWSCaC1I85FynP2RvCuAaRPaVj4SwFmitVotqqurMXq4Ae8ezka1F1AULm5DniSitSANtbNI5E6N5HVrVUhrQyqAqyT1IUw20R5+s0IQ//nPfxATE4N27drhxIkTeOmll5CSkkIKEtEmqZeStHfvXuH1xYsXMWvWLNxxxx0AgFdffRWvvvqq8P6MGTOQmJgo+/yGDRsQFBR0w34/+eQTGI1GpKam4tKlS3j66afRvXt3REZGIi0tDcuXL8fHH3+MDh064LnnnsNnn32GRx99tF4n2lbQarVCl/DAHMDoD1R5c4nbI4eFkIBEtCrsdrug+H+7OQdVHbnxsAxAG88tb20l1I7Hw8MD1dXVUKmUMFwDsjpx68Dh40WI66snQwnRaqgxHwliPhLQ9pQk6flqlUCF87VdohM5HI5ar0tubi4WLlyI3NxchIWFYdq0afj73//ehEdMEO5Lg1ePLVu2IDExscbmpOnp6UhPT8fo0aPrtK/U1FTMnTsXOp0Offr0QUJCArZv3w4A2Lp1K8aMGYPY2FjodDo89NBDMo8VIefGxG2O385wihOfuE0QrYHq6mrh9ZFs8XdtKBbzkdqaBVS6BvgViGvAziNlADjFkg/HIYiWijQfqapako9kYaDVcp7jtqYgAfLiDb46UVm0q0Qt6WZZFi+++CIyMjKEUKXly5e3OUMTQfA0KFCXZVls27YNL7/8co3vb9myBcOGDYNOp5ONP/DAA2AYBoMHD8YzzzwDf39/lJWVoaioCJ06dRK269KlC06fPg0AuHz5sqymf+fOnZGdnQ2TyVRjjKHFYhFilIWTVKncopoTv6DX1iOhMdBoNMICGAKxutU1KyOMV1dXt5nwI3eiOe5/W6OiokL4XRcEictZXAe1MO7h4eEW17y57r90DQiyi2vAFZMoHFVVVd2wPhNNS1uY/w6HAyzLCv81JdLvKK2wA96cEqC0iuM19TdyB5r6mPgeRFqNAqpyO2wqwKYGHA4WDCPeJ8I10LVvHvg1wuFw1Lju1sWI0iAl6dixYzCZTDc0JOPZtm0bnnnmGdnYqlWr0KtXL5SXl2Pp0qV466238MEHH6CqqgpKpVKm8Hh7ewt5BtXV1TJvFf9gr66urlFJWrNmDVatWiUbmzZtGlJSUhpyqk2CtAdCY8OyLAoKCsCyLDqH2LDdeYuNfkqhu7XJZBI6bBPNT1Pe/7ZGbm4urFYrqk1W5ERxY7pyIL6fAvn5+dBoNG53vZv6eKRrQBeDDTuda0Cpn0JYA8xmM3x9fZv0OIiacbffY2Nit9tht9thtVqb3IvDfxcASM2iapYVPKUMwwjbuAvXG3GbAum1UVoBmwpwKIBSoxk+OjKQupLmuP8Eh9Vqhd1ux7Vr12p0DPBVHW9Gg5QkPgSupooxJ06cQFlZGeLj42Xj/fr1A8BVV3v++ecxYcIEWK1WeHl5CXkFvNJTWVkpuHc9PT2FHBuAsxzz4zUxe/ZszJgxQ36SbuRJunLlCiIiIpr0AaJQKGAymXD3+ACs+jMXFi1QEgahqp1Op0N4ePgt9kI0Ns11/9sK0v5Ia9dfQXUXbjw0HYiI537fAQEBblPJrTnvP8MwMJvNmHZXANaczoVFA5SEMbQGuJC2MP9NJhMyMjKgVqub/JlrtVqFsDKbmgu15fORVCqlUMTEneCrmzU1vKIKAEq7BQB3nUxWBgFOuU2tVlOVtWamue4/weFwOKBUKhEeHt481e0AbmH65Zdf8MEHH9T4/tatWzFq1Kib/hD4BwTLsvD19YVer0daWhp69uRq9164cAExMTEAgJiYGKSlpQmfvXjxItq1a1frCWs0Grf/ESoUiiZ9SHp4eMBsNsPbSwNDDpAdBRQHAZezKtAx0gcWi6XVPqRbAk19/9sKlZWVwkP+eK4N6MItZ8FGmzCu0+nc7lo3x/339PSExWLh1oBr3BpQZADS0svROcaX1gAX0prnv0KhEHJimloAdzgcYBgGJrMdNg0LgIHKysDTTyU7FndBGmLV1MclPXe15Kusku9mWbbV/g7dkea8/wQHvw7dzppb70/t379fKLBwPTabDT///LOsfDfA9e65cOEC7HY7ysrK8P7772Pw4MGCMpOcnIzVq1ejsrISp06dwp49ezBmzBgAQFJSEnbs2IFz586hoqICn3/+udDgjagZqQLpVyBOzK17iwCILkiCaMlIizYUGER7z5AYznrMMEybK9rAI1sD8sU1YMs+rp8UrQFES0aaX1BSZgPr9JSoLOJvvS0rAFIh3NtDvA7S4g2tOTeOIBqLenuStmzZgnHjxtWoCf/+++/QarXo37+/bLy4uBhLlixBfn4+vL29MWjQILzxxhvC+4888gjefvttJCUlwdfXFy+//DKioqIAAJ06dcIzzzyD+fPnC32S+P5KRM1IQwwCqu3gb/OlEnFRNJvNVLGGaNHweYsVlRYhH8mnDJg8NhQApyi0VUFJugbozeIacNkorgEmk6nG6qQE4e7I+iNJcuA1ktdtde4DogWdZVn46lTIrbTCoQDsEomPigcQxK2pt5K0dOnSWt8bNmwYNm/efMN4XFwcvv/++1o/5+HhgbfffrvW9ydOnIiJEyfW70DbMFIBqXOQEvudr0u8xMQ1UpKIlow0H+mrTbkwdefGQ9MB1XDud96Wf99arVYQknqEqsB3uCvVydcAUpKIlkhN/ZEAwN9H/H235pCmTz/9FIsWLUJ2djY++OCDGwplAZySaLfbwTAMVFbAouUKOFRV2+DlqSJPEkHUgbZramnFKBQKIZRxQmIQGAdnMSoLFh8a1FSWaMnwXiQAOFkoho2FGNtufyQp0jXgrpEhUNq5NaAkTFwDqKks0VLhBXyz2Q6rmvttq62Al6d75iM1JmVlZZg3bx5eeuklZGdnY+7cuTVuJz1/pU30GpVXiusleZMI4uaQktRK4b1J7cO9oS/gFsv8MBYVlVz5SRKQiJaMVEkqNIjW42FduVyctpyPxMOvAfpALQw53BpQEMIiO5e7dmQoIVoiN+QjMW0rHykrKwtWqxUTJkxAWFhYrR5z6TVQsRCq3ZklDiTyJhHEzWm9K0kbR5aXlMv9takZpO7k+qRYLBayIhEtFl5JMpabhXwkXyMwYWQIgLadj8QjLd7gn8fNdVbBIHVXIQBuDSAhiWhpSH+zZskjTH2b+Ujr169Hr1694OnpCb1ej9GjRwvtR+68884bQtomT56MWbNmCf+OiorC22+/jZkzZ0Kn0yEyMhI//vgjCgoKMGnSJPj4+GDAgAE4cuTITY8jKysLkyZNgk6ng6+vL1JSUpCXlwcAWLt2LXr16gWAq/zLMAwyMjJu2EdGRgaUSiXWr1+PsWPHomeXEKR+8zUA4Ntv/4u+ffvC398fPXr0wD//+U/ZZ1966SV06dIFXl5eiImJwYIFCwQFC+DavIwYMQI+Pj7w9fW94Zy+++479OjRA1qtFlFRUXj//fdl+4+KisLixYsxZ84c+Pj4oEOHDvj000+F9y0WC+bNm4ewsDB4eHggKioKS5Ysuek1I4imokF9kgj3R6ok+ZXZAXDW9hOZFqSAc7NbLBa36yNBELfCZrMJDfm+2pgDc09OIApNB1QJlI/EIzOUVIrFG84ViCGJZrO5zXvciKZn4MMO5BY30s5YBizUAAC7QwXWGVWmhBhixjBAaKADR1bVTVnKycnBfffdh3fffRd33303ysvLsXfv3nobEpcvX47FixdjwYIFWL58Of76178iPj4ec+bMwbvvvosXX3wRDz74IE6fPl1jOCDLspg8eTK8vb2xe/du2Gw2PP7445g+fTp27dqF6dOnIyIiAqNHj8ahQ4cQERFx0z5wr7/+Ot555x38v3/+CzlQ4Pv/rMUn7y3BRx8uR9++fXHy5Ek89thj8Pb2xoMPPggA8PHxwdq1axEeHo5Tp07h4Ycfho+PD1588UUAwIwZM9CvXz+sXLkSSqUSx48fh1rN3Y+jR48iJSUFb7zxBqZPn44DBw7g8ccfh16vlymU77//PhYtWoRXX30V69evx2OPPYaEhAR069YNH330ETZu3IhvvvkGHTp0wJUrV1p1A2bCvSElqZUiFZDaaVnwdp5CiYXNbDaTkkS0OKShdn+WiEJMSLko/JOSJF8DOgUq8ZvzdYmnGJ5oMplISSKanNxiILugsfbG1PK64eTk5MBms2HKlCmIjIwEAMFjUx+Sk5PxyCOPAAAWLlyIlStXIi4uDtOmTQPLsnjuueeQmJiIvLw8hIaG3vD5HTt24OTJk0hPT0dERAQA4IsvvkCPHj1w+PBhxMXFQa/XAwAMBkON+5Dy5JNPYvLkyQAAxmjB6mXvYf5bb+Ouu/4ClUqB6OhoXLhwAZ988omgJL3++uvC56OiovDcc8/h66+/FpSkrKwsvPDCC+jWrRsAoHPnzsL2H3zwAUaNGoUFCxYAALp06YIzZ87gvffekylJycnJePzxxwFwnqvly5dj165d6NatG7KystC5c2cMGzYMDMMI94MgXAEpSa0UtVoNpVIJu92O4X188CO4njJlelFJMplM8PX1ddUhEkSDkPZHKgwRBf47YznFiPKROJRKJdRqNZe/kKjHfwuKwCoYlIZQAReieQkNbKQdsQALzjDicLBwOH/KjANQKp1eJABgmHp9Z58+fTBq1Cj06tUL48aNw9ixYzF16lQEBATU6/B69+4tvA4J4UJ/pcpWcHAwACA/P79GBefs2bOIiIgQFCQAiI2Nhb+/P86ePYu4uLh6Hc/AgQOF18bcAuRmX8VbzzyJt+c/Dd6RZbPZ4OfnJ2y3fv16fPjhh0hLS0NFRQVsNptMTnj22Wfx0EMP4YsvvsDo0aMxbdo0dOzYUTj+SZMmyY4hPj4eH374Iex2O5RK5Q3XiWEYhIaGIj+fSwWYNWsWxowZg65duyIpKQl33XUXxo4dW6/zJojGgpSkVoxWq0VVVRUG9w+E7vdsVPgAheGAzWaHSqUkAYlokfCepKJiMR/JvxgYm8CFnXh6erbaylb1xcPDA1arFZHtdQg6U4yCEKAgjIWx3Aw/Hy0VcCGahbqGvd0Ku90u5Mdk5ptRpePmuW8Fi3bBnOdUo9HUOydJqVTi559/xoEDB7B9+3asWLECr732Gg4ePIjo6GgoFIobQu+keTo8fNgZIIb+1TRWWy4gy7K1huE1ZE3T6XTid9u473x9+Ue4o/sAhOo1wvHxx/j777/j3nvvxZtvvolx48bBz88P69atk+UVvfHGG7j//vuxefNmbNmyBX/729+wbt063H333TUeZ00hi9JrAnDXhb8m/fv3R3p6OrZs2YIdO3YgJSUFo0ePxvr16+t9/gRxu7TtzOZWDh9uo1IpEXSNG6vwAQ4d54LDSUkiWhqyfKTUHFi45zxCMlioVJSPdD2yvKQc7q9NzWDTDirgQrQ8ZP2R1KIw7uslijINNZAwDIP4+Hi8+eab+OOPP6DRaPDDDz8A4ELbcnJyhG3tdjv+/PPPBn3PzYiNjUVWVpYsB+fMmTMwGo3o3r17vfcnVRbDQ4IRHBaO7MwMtIuOQceOHdGxY0fExMQgOjoaALB//35ERkbitddew8CBA9G5c2dkZmbesN8uXbpg/vz52L59O6ZMmYI1a9YIx79v3z7ZtgcOHECXLl0EL1Jd8PX1xfTp07Fq1Sp8/fXX+O6771Bc3FhJbQRRd8iT1IqRVrfyLXKA14n3HK/A0IEGwSp3vVWHINwVaT7SWaMo3IdKen9QqJ2IrMJdmQ38kv9nNmcFZ1kWZrNZth1BuCu8kmS1OWDVsAAYqGyAjy/3DGtof6SDBw/il19+wdixYxEcHIyDBw+ioKBAUExGjhyJZ599Fps3b0bHjh2xfPlylJaWNtZpCYwePRq9e/fGjBkz8OGHHwqFGxITE2Whc3VFei18vJR45KWX8d4rL8HP0wf3T06G2WzG8ePHUVZWhmeffRadOnVCVlYW1q1bh7i4OGzevFlQFAEu1PmFF17A1KlTER0djatXr+Lw4cO45557AADPPfcc4uLisGjRIkyfPh2//fYbPv744xsq6N2M5cuXIywsDH379oVCocC3336L0NBQ+Pv71/v8CeJ2ISWpFSO1Igc5RCUpWxJhYzabSUkiWgxSJalIko80qjflI9WEdA2I1DE45HxdpJHnJpKSRLg7LMsKXs9ioxWsZ+P1R/L19cWePXvw4YcfoqysDJGRkXj//fcxfvx4AMCcOXNw4sQJzJw5EyqVCvPnz8eIESNu84xuhGEYbNiwAU8++SQSEhKgUCiQlJSEFStWNHifCoUCDocD3l4qTL3/QXh4euE/K/6BD95eCG9vb/Ts2RPz588HAEyaNAnz58/HvHnzYDabMWHCBCxYsABvvPEGAC4ssaioCDNnzkReXh6CgoIwZcoUvPnmmwC4ULlvvvkGCxcuxKJFixAWFoa33npLVrThVuh0OixduhQXL16EUqlEXFwcUlNT23xLB8I1MCzFWjQbDocDmZmZiIyMbJYJz7IsLl68CJZl8c1PV7E8grPCdT4B/GdmBwBAUFCQUC2HaFqa+/63Ri5fvgyr1YqCIhOmpOfBpmYQWARsHsn9nr28vGRJz+6Eq+7/pUuXYLPZ8Oe5EjxsLgcARFwGvrmbu2b+/v5CkjnRdLSF+W8ymZCeno7o6OhGV7xry0fyqWDR/jbykZoLvu2GRqNp1pxJq9UKu53ztF8utsDsvC3tHQx8dJyBlIwkTY+r7n9bpjHWI/dcTYhGgWEYaDRc0kbyiGCorJw+XCopqkN5SURLwWq1CkLS/37KFXISgjNEOw/lI90I/3Do2S0AAUXcWH44YDZzJdOpeAPREpDmI9kl+Ug+nrefj9SakSqNSpu4VlZUi9eTmkoTRM2QktTK4QUknbcGhhzuAVJoYHH1GtdJnJQkoqUgLf19vlIcD6sS85FISboRacid3pl7bvYAtu7mijeYzWYq3kC4Pbwgb7M5YHUWbFHZAF8dlzXQ0Hyk1o70mkjzK6ySKU/znyBqhpSkVo5UQPLL5xZCVsFg8+5CAFx1K7IiES0BaT5SYai4dI0dwJW5VSgUFDZSA9Jr4lcqKpRH0jgPEh8GQhDuijQfqcRoFfojqSxiyWlSkGpGel28tOJru1J8TUoSQdQMKUmtHFkJYInFPa1QfE3eJKIlwCtJ2blVyOnAPdT1BcCdQ7gGjdQfqWaka0A7jSgM5TPi8k9rAOHOSA151eKjC2qJfc9dc5FcDcMwwrro56OGwrkE2CT1mshQShA1Q6tKK0cqIMUEiLe72FOsDEYCEuHuSPORvt6SJ+YjZVI+0q1Qq9VCj5KEPj7CuDFIXuGOINwVWX8klWgI0XmIv2FSkmqHvzYKBQOVsweuTQWYzZzGSZ4kgqgZWlVaOUqlUijxPW5ooDBuNIgPGhKQCHdHGmp3sVr87YaZqD9SXeCNJYP7B8KnjBsrDAdsNu76kaGEcGd4JcluF/ORlHbAz4fLspF6S4gbkV4bpSQZqayCK94iDWckCEKElKQ2AC8gdY7xRSCXioTCUKCqmjMpkYBEuDuyfKRwcdlKjuM8I5SPdHP4a6NSKRF0jRur1AF7fucWBJPJREIS4ZbI+yPZ4HBOf7VFFP7Ji3RzZBXuJNNcYmOi+U8QNUArSxtAGnIXmMv9NXsAP+8t4F5TdSvCzeGVpKvXKoV8pKA8IH6QAQDlI90K6RrgWySGLu0/zZUJdDgcQjgjQbgTsnwkSQlrlf32m8i2FaRro4cYaQ+7ZMmkvCSCuBFaWdoAUgu7r6S61bFLYnUrEpAId8ViscBm48JCvtqSL1RlCs6ifKS6Il0DQhlxDcixU/EGwr2pNR9JI75ua0rSp59+ioiICCgUCnz44Ye1bvfZZ59h7NixsnBEvmQ6IO83dbuG0jvvvBPPPPPMbe2jrREXF4fvv//eJd9N96tuqG69CdHSkVqRw9Usjjlf57HyxG2+8SxBuBPS/kiXzOJDvZ2F+iPVFbVaDYVCAYfDgTu6eWMbuJLfxgD5GuDj41PbLgjCJfBKksPByvKR/P24XNu2lo9UVlaGefPm4YMPPsA999wDPz+/Grczm81YuHAh1q1bB4C7TizLQqtVQlVmh03FVbhzOFgoFMxte5K+//57If+ZqBsLFizA888/j8mTJze7ok/3q260LfNLG4UXkABgcHdvYbwskKzIhPsjy0dqJ/5mJ9zhC4CzIksNAcSNMAwjXKPRww3wdF7SojBxG1oDCHfjhv5IlI+ErKwsWK1WTJgwAWFhYbUaiL777jvodDoMHz4cgPw68RXuzFYLjOXcP263eENgYKBbGFlaUs+3CRMmwGg0Ytu2bc32nXzUkLvcL3enba0ubRheQLpzSBC8nAJSMQlIRAuAV5LSM8uRE8E9xINzgcH9gwBwXqS2ZEluKNLiDQZn8QZjAHD0RBEAqnJJuB9S70altWnzkdavX49evXrB09MTer0eo0ePRmUll7NXU2jS5MmTMWvWLOHfUVFRePvttzFz5kzodDpERkbixx9/REFBASZNmgQfHx8MGDAAR44cuelxZGVlYdKkSdDpdPD19UVKSgry8vIAAGvXrkWvXr0AADExMWAYBhkZGTXuZ926dfjLX/4i/JthGDz88MOYNm0aVn/0PsbGdsXkQQNQZWaRnZ2NBx54AIGBgdDr9Zg0aZJsvzabDU899RT8/f2h1+vx0ksv4cEHH8TkyZOFba6/RiUlJZg5cyYCAgLg5eWF8ePH4+LFi8L7a9euhb+/P7Zt24bu3btDp9MhKSkJOTk5N70+18Nf91mzZsHPzw8PP/wwAODAgQNISEiAp6cnIiIi8NRTTwn3EwD++9//YuDAgfDx8UFoaCjuv/9+5Ofny45/xowZMBgM8PT0ROfOnbFmzRrh/VOnTmHkyJHC72Xu3LmoqKgQ3p81axYmT56MZcuWISwsDEFBQXj66adlqQ1KpRLJycn46quvaj0/i8WCefPmISwsDB4eHoiKisKSJUuE941GI+bOnYvg4GD4+vpi5MiROHHihPD+G2+8gb59++Lzzz9HTEwMtFotWJa94X5ZLBa8+OKLaNeuHby9vTF48GDs2rVLeD8zMxMTJ05EQEAAvL290aNHD6SmptbxLrVcSElqI9RU3croD/xxqhgAKUmEeyLNR/r650I4nPlIQZSPVG+k3ja/AlH4/OUIVxPcbrcL15og3AFZPpJSNIR4NXI+Uk5ODu677z7MmTMHZ8+exa5duzBlypR6e1aWL1+O+Ph4/PHHH5gwYQL++te/YubMmXjggQdw9OhRdOzYEQ8++GCt+2VZFpMnT0ZxcTF2796Nn3/+GZcuXcL06dMBANOnT8eOHTsAAIcOHUJOTg4iIiJq3NfevXsxcOBA4d+8IWnXrl1ITzuPld9vwD+++hrl1VVISkqCTqfDzp07sW/fPkFh4b0yS5cuxZdffok1a9Zg//79KCsrw4YNG256LWbNmoUjR45g48aN+O2338CyLJKTk2VKQlVVFZYtW4YvvvgCe/bsQVZWFp5//vm6XWwJ7733Hnr27ImjR49iwYIFOHXqFMaNG4cpU6bg5MmT+Prrr7Fv3z7MmzdP+IzFYsGiRYtw4sQJbNiwAenp6TKld8GCBThz5gy2bNmCs2fPYuXKlQgKChKOOykpCQEBATh8+DC+/fZb7NixQ7Z/ANi5cycuXbqEnTt3Yu3atfjiiy+wdu1a2TaDBg3C3r17az23jz76CBs3bsQ333yD8+fP47///S+ioqIAcL+XCRMmIDc3F6mpqTh69Cj69++PUaNGobi4WNhHWloavvnmG3z33Xc4fvx4jd8ze/Zs7N+/H+vWrcPJkycxbdo0JCUlCYrtE088AbPZjD179uDUqVNYunQpdDrdrW5Ni4dyktoIsupWhQ6gE/dg+fWIEf16BcJms8Fms0Glop8E4T5IQ+3SraJgFCER5qk/Ut2QFm8w2B3gbWRXxJQvmEymNvHgI5qXfSN/gyW//oY4Fiyc/4Pd+RcAihiAAQAGYFCzF1kTrMWwX4fU6XtycnJgs9kwZcoUREZGAoDgsakPycnJeOSRRwAACxcuxMqVKxEXF4dp06aBZVk899xzSExMRF5eHkJDQ2/4/I4dO3Dy5Emkp6cLys8XX3yBHj164PDhw4iLi4NerwcAGAyGGvcBAKWlpSgtLUV4eLgwxiuT3t7eWLHi/yHfg8tH+WntF1AoFFi5ciVUKhXUajXWrFkDf39/7Nq1C2PHjsWKFSvwyiuv4O677wYAfPzxxzf1Ily8eBEbN27E/v37MXToUADAl19+iYiICGzYsAHTpk0DwIV+/etf/0LHjh0BAPPmzcNbb71Vx6stMnLkSJlyNXPmTNx///2Cp6Rz58746KOPkJiYiJUrV8LDwwNz5swRto+JicFHH32EQYMGoaKiAjqdDllZWejXr5+gaPKKCX8u1dXV+M9//gNvb2/hmkycOBFLly5FSEgIACAgIAAff/wxlEolunbtivHjx+PXX3/F3LlzhX21a9cOWVlZcDgcNSr8WVlZ6Ny5M4YNGwaGYYTfJ8ApYadOnUJ+fr4g4y1btgwbNmzA+vXrhe+xWCz44osvYDAYarx+ly5dwldffYWrV68Kv5nnn38eW7duxZo1a7B48WJkZWXhnnvukXky2wIkEbcRpEqS3ioKSFkVokXLbDaTkkS4FbJ8pPbiA2TSsAAAXLgC5SPVDY1GIyRv94vS4ldwhS+MfmJNYLPZTEoS0ehY8s0w5TRetEJjZ5306dMHo0aNQq9evTBu3DiMHTsWU6dORUBAQL3207t3b+E1LyhLla3g4GAAQH5+fo0KztmzZxERESHzDsXGxsLf3x9nz55FXFxcnY6DL3Zzfe84hmHQo0cPBAZ4obCSy/H688/juHTp0g0CtMlkwqVLl2A0GpGXl4dBgwYJ7ymVSgwYMKDWYg9nz56FSqXC4MGDhTG9Xo+uXbvi7NmzwpiXl5egIAFAWFiYLOStrkg9ZgBw9OhRpKWl4csvvxTGWJaFw+FAeno6unfvjj/++ANvvPEGjh8/juLiYuFcsrKyEBsbi8ceewz33HMPjh07hrFjx2Ly5MmCwnf27Fn06dNHUJAAID4+Hg6HA+fPnxfufY8ePaBUiutraGgozpw5IztWT09POBwOmM3mGg1+s2bNwpgxY9C1a1ckJSXhrrvuwtixY4XzrKioEBRnnurqaly6dEn4d2RkZK0KEgAcO3YMLMuiS5cusnGz2Szs+6mnnsJjjz2G7du3Y/To0bjnnntkv/fWCknEbQStVisISD3D1djttMmV+sgFJOmkJwhXwz/sL14uQ057FgCDkGtAv/GBAKg/Un3gizeYTCYkjwzGij9zYNHIcxMpL4loCjTB9TdksADgDEuzOwCHc5ozLKDi7SVMbX6k+n2nUqnEzz//jAMHDmD79u1YsWIFXnvtNRw8eBDR0dFQKBQ3hMjV1DZDWi2MX5dqGqtNuWBZtsb1rLbx2tDr9WAYBiUlJTe8x+dwqq2AWQvYWQf69OmH//xnLQC5QVUqWF///TcLRbxZOKF0P9dXV+NllPpyvdzicDjwyCOP4Kmnnrph2w4dOqCyshJjx47F2LFj8d///hcGgwFZWVkYN26cEGI4fvx4ZGZmYvPmzdixYwdGjRqFJ554AsuWLbvp/bjV+V1/74uLi+Hl5VVrRET//v2Rnp6OLVu2YMeOHUhJScHo0aOxfv16OBwOhIWFyXKHePz9/Wu9PtfjcDigVCpx9OhRmVIHQDCaPfTQQxg3bhw2b96M7du3Y8mSJXj//ffx5JNP3nTfLR1SktoIDMNAo9HAbDZjwshg/OtSLuwqBqWh4oSmvCTCnTCbzUKOzLc7CsEO5pYrwxXxIUP5SPWDV5K8PNUwXAOyo4AiA6eEdo7xpTWAaBLqGvYmxWq1wm7nvJ3pRRaYnDKkwQQEBXK1wHnjX2PAMAzi4+MRHx+PhQsXIjIyEj/88AOeffZZGAwGWUEBu92OP//8EyNGjGiU7+aJjY1FVlYWrly5IniTzpw5A6PRiO7du9d5PxqNBrGxsThz5ozgdbgehY0FtAy69emDn3/4HgaDAb6+vjVe05CQEBw6dEiolGe32/HHH3+gb9++tZ6HzWbDwYMHBe9LUVERLly4UK/zaCj9+/fH6dOn0alTpxrfP3XqFAoLC/HOO+8I17mmghoGgwGzZs3CrFmzMHz4cLzwwgtYtmwZYmNj8e9//xuVlZWCArJ//34oFIobvDG34s8//0T//v1vuo2vry+mT5+O6dOnY+rUqUhKSkJxcTH69++P3NxcqFQqWThgfenXrx/sdjvy8/OFe1wTERERePTRR/Hoo4/ilVdewapVq1q9kkSFG9oQvIUowF8LQx63CBYGsygo4qzHZEUm3Alpf6QMh7hURThISWoo0vAbv3zRYrtlH5fkKxVMCcKV8BZ3lhX7IykcQKB/4/dHOnjwIBYvXowjR44gKysL33//PQoKCgSBfuTIkdi8eTM2b96Mc+fO4fHHH0dpaWmjfLeU0aNHo3fv3pgxYwaOHTuGQ4cOYebMmUhMTLwhpOxWjBs3Dvv27ZONSa+Xyjn9x09NQUCgHtOmTcO+fftw6dIl7N69G08//TSuXr0KAHjyySexZMkS/Pjjjzh//jyefvpplJSU1Hr9O3fujEmTJuHhhx/Gvn37cOLECTzwwANo164dJk2aVK/zaAgvvfQSfvvtNzzxxBM4fvy4kCPFC/QdOnSARqPBihUrcPnyZWzcuBGLFi2S7WPhwoX48ccfkZaWhtOnT+Onn34Sfg8zZsyAh4cHHnzwQfz555/YuXMnnnzySfz1r38VQu3qyt69e2tVZAGuGMi6detw7tw5XLhwAd9++y1CQ0Ph7++P0aNHY8iQIZg8eTK2bduGjIwMHDhwAK+//votqyhK6dKlC2bMmIGZM2fi+++/R3p6Og4fPoylS5cKuWfPPPMMtm3bhvT0dBw7dgy//vprsyi8roaUpDaErLpVHrdCOpQMfvqViwG2Wq233VCOIBqLmvKRGAeLKXeK+UjUALl+yHITzaIydNkoznsylhCuRtqzp7TMCrszAkhtARSKxu+P5Ovriz179iA5ORldunTB66+/jvfffx/jx48HAMyZMwcPPvigoLBER0c3uhcJ4JSYDRs2ICAgAAkJCRg9ejRiYmLw9ddf13tfDz/8MFJTU2E0GmX75/FUc689vbzw7/WpiIiIwH333YeePXtizpw5qK6uhq8v14vupZdewn333YeZM2diyJAh0Ol0GDdu3A05T1LWrFmDAQMG4K677sKQIUPAsixSU1Pr1cB0165dNy1zXhu9e/fG7t27cfHiRQwfPhz9+vXDggULEBbGxRYbDAasXbsW3377LWJjY/HOO+9g2bJlsn1oNBq88sor6N27NxISEqBUKoXGvF5eXti2bRuKi4sRFxeHqVOnYtSoUfj444/rdZzZ2dk4cOAAZs+eXes2Op0OS5cuxcCBAxEXF4eMjAykpqZCoVCAYRikpqYiISEBc+bMQZcuXXDvvfciIyOj3sramjVrMHPmTDz33HPo2rUr/vKXv+DgwYOCp81ut+OJJ55A9+7dkZSUhK5du+Kf//xnvb6jJcKwt9M9jKgXDocDmZmZiIyMdEkDvMrKSsEy9MyKyziYwIUvJey1Yek8rlJJZGTkTRc+ouG4+v63JFiWxaVLl7iwlnMlmFtdBlbBIDQb+CG5AwDAx8dHVr3J3XGH++9wOJCWlgaWZbHm2yx86owM6XqMxdrZXNUkg8GAwMBAlxxfa8Yd7n9TYzKZkJ6ejujo6Nt6jtjtdiHn50q+GRU6TqD3rmDRwZlrpFarb8ifcGdYloXFYhEKqDQHKSkp6NevH1555RVhzGw2g2VZ2GwOpJmtYJ35SZ38OIOTQqG4pfHJ4XCge/fuSElJucED05isXbsWf//733HmzJl6KVfuSE33/4UXXoDRaMSnn37q4qNrnTTGetQ6V2qiRqQ/kkgf8dYXa8TXZEUm3AGLxSKEff2wuwSs03ocJMlHotLf9UehUAjCxl9GhUDpbMpZEiYKbbQGEK5G1h9JIfF+qBq3P1Jr57333ruhWiUvoKtUCqhs3GubioXVJoY3Xk9mZiZWrVqFCxcu4NSpU3jssceQnp6O+++/v0mPf+vWrVi8eHGLV5BqIzg4uEmVTOL2oVWmDaFUKoUS36MG+QnjxiDxZ0CJ24Q7IA21y5IsU1EM5SPdLryxRB+ohSGXE5IKQlhk53LXnNYAwtXwgjrLsrA6I0QVDiDQj3t+NWY+UmsmMjLyhsR6qXKptDqvM8PAWMYVyZGGOko/s3btWsTFxSE+Ph6nTp3Cjh07mjwnZd26dUJPpdbICy+8UO+wOKJ5ISWpjcHnJPSODYC/syFzQThgs3FWexKQCHdAlo8UIeYjTR3F9WxQqVTUH6mBSD3K/rlOIUnBIHVXIQDOi0e5iYSr4PvZAICx3CbLR1IqubWAvEgNR6pcKiXT3GQTFaPrlaSIiAjs378fRqMRZWVlOHDgABISEpr8WAnC1dBK08aQCkiBudxfkyfwy/4CAGK8MkG4CpZlhcp2J06XILcdNx56lUHXjpwHlELtGo5UuQyoFIs3nC+wCa/JWEK4CqmCXmESX6skQjwpSQ1Heu20kstokzjmyEhCEBy00rQxpAKSb4m4EB48y1nuHQ5HjU3yCKK5kOYjbdgjNkMMyqZQu8ZAugZ0ChQT34s9xdeUl0S4CqmRziqRUDwkNRpISWo4Uk+Sj7d4Ue2SfC8ylBIER71WmuHDh8v+GzhwIH755RcAwKZNmzB48GDZ+7m5ucJnT58+jfvuuw/x8fGYO3eurDGbyWTCggULkJCQgAkTJmDr1q2y7920aROSk5ORmJiIN998k4T420AqIIVK8jtyHZSXRLgH0lC7KyrxIR6tJCWpMVAqlUIi9IREPRgHJxAZQ6ixNOF6ZEUbNNxvkmGBQL/G74/UVuGVTC9PFVROZ7JNLSpH5EkiCI56KUl79+4V/vv888+h1Wpxxx13CO8PGjRItk1oaCgAzjL84osv4t5778Wvv/6Knj17YuHChcLnPvnkExiNRqSmpmLx4sV45513kJmZCQBIS0vD8uXLsWzZMmzevBnXrl3DZ5991hjn3iZRq9XCAhnXVRQ0y/xJSSLcA6mSVBDh7IliZ5Ey1gCAy0ei/ki3Bx92G9leh6AC7hrnh7EwlnNznzxJhCuQ5iOVlVth4+o0QGPhqrEB5EVqDGR5SU6bs0MBlFXUXryBINoiDV5ttmzZgsTERHh7e99y26NHj8LT0xOTJk2CVqvFww8/jDNnzgjepNTUVMydOxc6nQ59+vRBQkICtm/fDoArATlmzBjExsZCp9PhoYcewpYtWxp62G0ehmEEb9Ko+CBonbJQcai4DSlJhKuQ5iMdPVGEfK73H8KuMugY6QOAvEiNgSwvyenUt6kZbHY2lrZYLCQkEc2O9DdXVi16M/gqbAApSY2BrMKdJNerUpIDRvOfIABVQz7Esiy2bduGl19+WTZ+4sQJjBo1CoGBgZg+fTqmTp0KALh8+TI6deokbOfp6Yn27dvj8uXL8Pb2RlFRkez9Ll264PTp08JnhwwZIrzXuXNnZGdnw2Qy1dgcymKxwGKxyE/STSzPvIXM1a5stVqNqqoqaDRKGK4BV2OAEj1w+nwpYrv4obq62uXH2Bpxl/vvzphMJthsnDVz434jEM8tUfpsh/DQ1mq1LfIautP912g0wvX0K7eBfxScvGLFfU4rcnV1NTWWbkTc6f43FQ6HQ/BCNETIttvtwudk+UgKUWhnGKbFC/CuPn7pNZR2ILKy8pA7CmtsGlx9/9sK/DrkcDhqXHfrYnBpkJJ07NgxmEwmmfLSv39/rFu3DqGhoThz5gyef/556PV6jBgxAtXV1Td4nLy9vVFdXY2qqioolUrZw9jb21sIubn+s3xjtNoe4GvWrMGqVatkY9OmTUNKSkpDTrVJuHLliku/v6KiAiUlXEK8b4EDiOF+KD/tzkOQv+hFakndzFsSrr7/7kx5eTlKS0sBAFfU4gIWwZqQn895ORQKBYxGoysOr1Fwh/tvt9uF6xmmsoJ/FBSqGWHcarXe0IiSuH3c4f43FXa7HXa7HVartUEeH5vNJggzYj4SC19vBjabDQzDtPic5OuNuA1h9erVWLJkCa5du4Z33333hl5IPGvWrMH69euxefPmG97jjVEeahZGcNfarmSEcZZl6yUDjBkzBn369MGyZcvqezptisa4/zyLFi3Cpk2bcOjQodvaT3x8PF544QVMnjy5cQ6sHjTl78ZqtcJut+PatWs1/pajo6NvuY8GKUl8CBzfmBQA2rVrJ7zu2bMn7r33XuzcuRMjRoyAp6cnKisrZfuorKyEp6cnvLy8YLfbZZ6hyspKIaTm+s9WVFQI4zUxe/ZszJgxQ36SbuRJunLlCiIiIlwaMlBdXS08qPWWdPBRl7lmNYKDgwEAoaGhFNbUyLjL/XdnsrOzhbla2IH7jSrtLB6Y2A7BwTqoVCrExMS48hAbjDvef5vNhrsSNdhoKQcAlAUrhTXAz8+PGh02Iu54/xsbk8mEjIwMqNXqBj1zWZaFQqFARaVNyEdSWxh4+HP+DmnRkZaIxWK5bVmkrKwM8+fPx/vvv4977rkHfn5+Ne7TbDZj0aJF+Oqrr2r9TofDAX8/FQqqrHAoALsaglxX32v9ww8/NPi+txUa4/5Leemll/DMM88I+5w9ezZKS0vxww8/1Gs/CxYswAsvvICpU6c2+9rUlL8bh8MBpVKJ8PDwBkdF1FtJslqt+OWXX/DBBx/cdDupmzYmJkZ206qrq3H16lXExMTA19cXer0eaWlp6NmzJwDgwoULgiAUExODtLQ04bMXL15Eu3btaj1hjUbj9pNUoVC49CHp6ekp3J+uwSrsdY6XeiuFcYvFQlbkJsLV999dYVkWJpMJDMPgwJECFDjz5MKyGET15/KRvL29W/y1c5f77+HhgcrKSvTqHoCAX8tRogfywwGLxQ6tVgWLxeIWx9nacJf73xQoFAqh+lx9Q7V4DxLDMCircgA67vMqKyvsi99/S0QaYnU753DlyhVYrVbcddddCA8Pr3W777//HjqdrtamrwqFAmazGRqNBiorYNECNhVgtjjgoVWCZdl6Hader6/3uTQFja2INBaNdf+l+Pj4wMfH54bx+u7/rrvuwty5c7F9+3aMHz++UY7tVlitVqjV6ib93fDr0O2sufX+1P79+4UCC1IOHDgghHCdO3cOX3/9NYYPHw4AGDBgAKqrq7Fp0yZYLBZ89tlniI2NRVgYl5WdnJyM1atXo7KyEqdOncKePXswZswYAEBSUhJ27NiBc+fOoaKiAp9//nmz3cTWikKhEBaRCXcahBLApVQCmHAhJpNJEJS2HCoXxvXXqPR3UyBrLO0s3mD2ALbu5sLtqLE00ZxIcwasEhlP2vC0KZXL9evXo1evXvD09IRer8fo0aOFKJY777wTzzzzjGz7yZMnY9asWcK/o6Ki8Pbbb2PmzJnQ6XSIjIzEjz/+iIKCAkyaNAk+Pj4YMGAAjhw5ctPjyMrKwqRJk6DT6eDr64uUlBTk5eUBANauXYtevXoB4AzIDMMgIyOjxv2sW7cOf/nLX2Rjs2bNwuTJk7FkyRJERkYK+yq8mo2X/m8WEmM6IDoqAtOmTUNGRoYw/202G5566in4+/tDr9fjpZdewoMPPigLz7r+GpWUlGDmzJkICAiAl5cXxo8fj4sXLwrvr127Fv7+/ti2bRu6d+8OnU6HpKQkWXuYusBf91mzZsHPzw8PP/wwAE4mTUhIgKenJyIiIvDUU0/JopL++9//YuDAgfDx8UFoaCjuv/9+IdSYP/4ZM2bAYDDA09MTnTt3xpo1a4T3T506hZEjRwq/l7lz5wqRTtJrvWzZMoSFhSEoKAhPP/10vcNFr169invvvReBgYHw9vbGwIEDcfDgQQDAG2+8gb59+wqv//3vf+PHH38UlINdu3Zh5MiRmDdvnmyfRUVF0Gq1+PXXXwFwXsPk5GR89dVXtR6HxWLBvHnzEBYWBg8PD0RFRWHJkiXC+0ajEXPnzkVwcDB8fX0xcuRInDhxQnifP9bPP/8cMTEx0Gq1YFn2ht8NXw27Xbt28Pb2xuDBg7Fr1y7h/czMTEycOBEBAQHw9vZGjx49kJqaWq9rWh/qveJs2bIF48aNu0FTPXjwIFJSUjB8+HC8+uqrmDlzpqDoaDQavPvuu/jyyy8xYsQInDhxAm+99Zbw2UceeUSYIC+//DJefvllREVFAQA6deqEZ555BvPnz0dycjJCQkIwZ86c2zhlAhCrW4UGe8KQx93LglAWJaWcckRKEtHc8FXtACBbI8YPd/IQBXVSkhoPaYU7/1K78PpIGlfykmXZRo2fJ4ibUXN/JBaBvmLAS1MpSTk5ObjvvvswZ84cnD17Frt27cKUKVPqbSRYvnw54uPj8ccff2DChAn461//ipkzZ+KBBx7A0aNH0bFjRzz44IO17pdlWUyePBnFxcXYvXs3fv75Z1y6dAnTp08HAEyfPh07duwAABw6dAg5OTmIiIiocV979+7FwIEDbxj/5ZdfcPbsWWzbtg3ff/89qqqqMGv6RHh5e2P1T1vwv/Vb4e3tjb/85S9CK4ClS5fiyy+/xJo1a7B//36UlZVhw4YNN70Ws2bNwpEjR7Bx40b89ttvYFkWycnJMiWhqqoKy5YtwxdffIE9e/YgKysLzz///C2v8/W899576NmzJ44ePYoFCxbg1KlTGDduHKZMmYKTJ0/i66+/xr59+2TKgsViwaJFi3DixAls2LAB6enpMqV3wYIFOHPmDLZs2YKzZ89i5cqVCAoKEo47KSkJAQEBOHz4ML799lvs2LHjBmVk586duHTpEnbu3Im1a9fiiy++wNq1a+t8XhUVFUhMTMS1a9ewceNGnDhxAi+++GKNRQief/55pKSkCIpmTk4Ohg4dioceegj/+9//ZDLdl19+ifDwcIwYMUIY41v41MZHH32EjRs34ptvvsH58+fx3//+V5DTWZbFhAkTkJubi9TUVBw9ehT9+/fHqFGjUFxcLOwjLS0N33zzDb777jscP368xu+ZPXs29u/fj3Xr1uHkyZOYNm0akpKSBAX7iSeegNlsxp49e3Dq1CksXbq0SaOe6h1ut3Tp0hrH58+fj/nz59f6uR49emDdunU1vufh4YG333671s9OnDgREydOrN+BEjdFq9WivJyz1vvnAflhXMftLbvzcf+kCKEEcEsNbSBaHtL+SPmR3O9OaWNxXzKXF6NWq1t0PoK7IfUkhatZHHW+zmfkPdOkyhRBNISRP/+OPNMtFG6+qhoL2OGsZMcCKoXkGVSP51GIhwa/jrnj1huCU5JsNhumTJmCyMhIABC8LPUhOTkZjzzyCABg4cKFWLlyJeLi4jBt2jSwLIvnnnsOiYmJyMvLE/pIStmxYwdOnjyJ9PR0Qfn54osv0KNHDxw+fBhxcXFCeJLBYKhxHwBQWlqK0tLSGsPxvL29sXr1aqjVapjNZvz73/+GUqHAwn98DIZh4FHF4tNPP0VoaCh27dqF8ePHY8WKFXjllVdw9913AwA+/vjjm1rvL168iI0bN2L//v0YOnQoAE4wj4iIwIYNGzBt2jQAXMjVv/71L3Ts2BEAMG/ePJkBva6MHDlSplzNnDkT999/v+Ch6Ny5Mz766CMkJiZi5cqV8PDwkBnbY2Ji8NFHH2HQoEGoqKiATqdDVlYW+vXrJyiavELAn0t1dTX+85//CIXFPv74Y0ycOBFLly4VcjkDAgLw8ccfQ6lUomvXrhg/fjx+/fVXzJ07t07n9b///Q8FBQU4fPgwAgMDAUBWCVqKTqeDp6cnzGaz7Hdxzz334Mknn8SPP/4oFDBbs2YNZs2aJZPv2rVrh6ysLDgcjhqNEVlZWejcuTOGDRsGhmGEeQJwyuCpU6eQn58vPC+WLVuGDRs2YP369cL5WiwWfPHFFzAYDDWew6VLl/DVV1/h6tWrwm/3+eefx9atW7FmzRosXrwYWVlZuOeee2Qe1aakQYUbiJaPVEDyK7cD4Cz3f17hrDwsy8JsNlMJYKJZkPZH2vN7Poq42gEIz2LQbgDnPSIvUuOiVquhVCpht9uR2NcHm8Bdf2OQ+IA0mUzw9fV11SESrYQ8kwU51e4bndCnTx+MGjUKvXr1wrhx4zB27FhMnToVAQEB9dpP7969hde8oCxVtviiKPn5+TUqOGfPnkVERITMOxQbGwt/f3+cPXsWcXFxdToOfi2t6fndq1cvIdyeYRj88ccfyMi4jGGRzuJbLKBguLl/6dIlGI1G5OXlYdCgQcI+lEolBgwYUGs5+7Nnz0KlUmHw4MHCmF6vR9euXXH27FlhzMvLS1CQACAsLEwW8lZXrveYHT16FGlpafjyyy+FMb4UdHp6Orp3744//vgDb7zxBo4fP47i4mLhXLKyshAbG4vHHnsM99xzD44dO4axY8di8uTJgsJ39uxZ9OnTR1Z5OT4+Hg6HA+fPnxfufY8ePWRV1fjqz3Xl+PHj6Nevn6AgNQStVosHHngAn3/+OVJSUnD8+HHBeybF09MTDocDZrO5xsJos2bNwpgxY9C1a1ckJSXhrrvuwtixYwFw17uiouKG/KLq6mpcunRJ+HdkZGStChLAVc5mWRZdunSRjZvNZmHfTz31FB577DFs374do0ePxj333CObd40NKUltFKl1OMITOOx8XaiWW5FJSSKaA2k+0rajFcAwbmkKyhEfwrVVtCQajlarRVVVFQb3D4TPb9ko9wUKwwGbzQ6VSklht0SjEOJxi0R6Vvg/2BwsWKeBW8ECSt6TVM+ohlt+pwSlUomff/4ZBw4cwPbt27FixQq89tprOHjwIKKjo6FQKG4Ikaspt0Tq6eat9DWN1aZc1Ba90ZAiCgzDCHniUqSCPcMwcDgc6NevH95c8SmsKs57F6VVQalUyATa67//ZqGINwsnlO7n+siAhvbAur7FjMPhwCOPPIKnnnrqhm07dOiAyspKjB07FmPHjsV///tfGAwGZGVlYdy4cUKI8fjx45GZmYnNmzdjx44dGDVqFJ544gksW7bspvfjVudXnz5pjfXMe+ihh9C3b19cvXoVn3/+OUaNGiXzBAFAcXExvLy8av3O/v37Iz09HVu2bMGOHTuQkpKC0aNHY/369XA4HAgLC5PlDvH4+/sLr6+/T9fDV6M7evToDSW7+ZC6hx56COPGjcPmzZuxfft2LFmyBO+//36tZfBvF1KS2igqlUqwIt85wBffg0toLNPLlSSCaA6koXbXPMXFsYsX5SM1JR4eHqiqqoJKpUTQNaDcF6jUAXt+L8TIYSEwmUwUdkvcNrcKe7NYLILwmGa0wKoGGLCIVqqg1XLrQVMb7BiGQXx8POLj47Fw4UJERkbihx9+wLPPPguDwSArKGC32/Hnn3/Kcjoag9jYWGRlZQml4gHgzJkzMBqN6N69e533o9FoEBsbizNnzgjW/ppQKBTo27cv1q9fD4O/AapgzmscZAEC/TklU6vVIiQkBIcOHRKKcdntdvzxxx9C0YCazsNms+HgwYOC96WoqAgXLlyo13k0lP79++P06dO1hqadOnUKhYWFeOedd4TrXFNBDYPBgFmzZmHWrFkYPnw4XnjhBSxbtgyxsbH497//jcrKSkHw379/PxQKxQ1ekNuhd+/eWL16NYqLi+vkTdJoNLDb7TeM9+rVCwMHDsSqVavwv//9DytWrLhhmz///BP9+/e/6f59fX0xffp0TJ8+HVOnTkVSUhKKi4vRv39/5ObmQqVSycIS60u/fv2EHn78b60mIiIi8Oijj+LRRx/FK6+8glWrVjWZktQ665ASdYJ/6MT11cPX2ZuzMIyzIgOkJBHNh7RoA5+PpLKyuDeZC0mhfKSmQepR9i0SLZwHTnNGE4fD0eKbdxLuDR8GBQBV1TZYndNcZWEEBampS6YfPHgQixcvxpEjR5CVlYXvv/8eBQUFgkA/cuRIbN68GZs3b8a5c+fw+OOPC02vG5PRo0ejd+/emDFjBo4dO4ZDhw5h5syZSExMrLEIw80YN24c9u3bd9NtGIbBvffeC71ej3mz78Ox3w4gOzMDu/bsxXPPPYerV6+CZVk8+eSTWLJkCX788UecP38eTz/9NEpKSmo1nnTu3BmTJk3Cww8/jH379uHEiRN44IEH0K5dO0yaNKle59EQXnrpJfz222944okncPz4cSFHihekO3ToAI1GgxUrVuDy5cvYuHEjFi1aJNvHwoUL8eOPPyItLQ2nT5/GTz/9JPweZsyYAQ8PDzz44IP4888/sXPnTjz55JP461//2qi95e677z6EhoZi8uTJ2L9/Py5fvozvvvsOv/32W43bR0VF4eTJkzh//jwKCwtla/dDDz2Ed955B3a7Xcgtk7J3796bKtTLly/HunXrcO7cOVy4cAHffvstQkND4e/vj9GjR2PIkCGYPHkytm3bhoyMDBw4cACvv/76/2/vzuOjqu7+gX/u7GuSySSThSWEHQSRRRZZVJTKInYRqVupuFvbp7ZqRWpb6yMKrn2eqmhR4elTfvhYtVYUkCIqioAKVVlECAkh+0wmmSWz35n7++PM3HsHEkggycxkvu/XixfhzmRyw5175nzP+Z7vOWM1R7nhw4fjhhtuwJIlS/DWW2+hqqoKX3zxBVatWiWugbvnnnvw/vvvo6qqCvv27cP27dt7NPCmICmLyTtI1vggmc8EfPqFEwAFSaR3yNcjbfukCS2sgBBKqzkU29jUP80i9Qz56HwxJ41A1kdpRpn0Dnl6latNeg+qItLxng6ScnJysGPHDsyfPx/Dhw/HQw89hKefflrcbuTmm2/GT3/6UzFgKS8v7/ZZJIAFLW+//TYsFgtmzZqFyy+/HIMHD8b//d//dfm1brvtNmzatAlut7vD5ygUChgMBvzrX/9C/379cd9Pb8TV0yZj2f0/F9cjCoKABx54ANdddx2WLFmCadOmwWQy4Yorrjjt7N7atWsxceJEXHnllZg2bRoEQcCmTZu6NNj10UcfnbbMeUfOP/98fPzxxzh69ChmzpyJ8ePH43e/+5247UxhYSHWrVuHv//97xg9ejRWrlyJp556Kuk1NBoNHnzwQZx//vmYNWsWlEqlWHzMYDDg/fffR0tLCy688EIsWrQIl112GZ577rkunefDDz982pkXjUaDrVu3wmazYf78+Rg7dixWrlx5Sipawm233YYRI0Zg0qRJKCwsxM6dO8XHrrvuOqhUKlx//fWnXLe6ujp89tlnWLp0aYfnYjKZsGrVKkyaNAkXXnghjh8/jk2bNol7l23atAmzZs3CzTffjOHDh+Paa6/F8ePHuxw0rl27FkuWLMG9996LESNG4KqrrsKePXvEGb9oNIq7774bo0aNwty5czFixAi88MILXfoZXcEJtBFGr4nFYqiurkZZWVlabCbo8XjEFII7XziOr6ezc1q4h8fy26XNfGkEv3uk2/VPF4FAACdOnAAAPPhcJT6aybKAJ3waxfN3lwNgC3ozvYBAOl5/QRBQUVGBWCyGLR824o/5LB9/8CFg/XUDAbD1DYnSt+TspeP1727BYBBVVVUoLy/vdHocz/PgeR4AcNwRQsDIZifyfAJKCtlAnkajyfj/s0RJfY1G02vpq4sXL8b48ePx4IMPdvicRJnvNl8ENRzrDmqDwOB8lm6nVCpP6QPEYjGMGjUKixcvPmUGpjutW7cOK1aswKFDhzK+H9Le9U+UHO9KWfCzVVNTg0GDBuGLL744Ja3u/vvvh9vtxl/+8pceP4/edDbt0ckyu9Uh50Q+k1QIKdWmPkybypLeI1+P1GiURshGmqX3Ic0k9QyO48R24PKZhdDHL4WzRHpOohNFSE9I2h9JHd8fCQLyzFJbkOkBUqo8+eSTZ9xDJvF/azSooIxP5PFqaYZPEARUV1djzZo1OHLkCPbv34+77roLVVVVuP7663v0/Lds2YLHHnss4wOkjnz88cc9GmQCrMDIiRMn8MADD2Dq1Kntrjuy2Ww9fh6Zigo3ZLHEiIYgCJgwWIdtYKN57jzpwykUCvXoRl2EJIIkno+iaVC8IlQYuP5K1lPXaDRQqaip6ilarRaBQAAqlRKF9cCJoYDbAuz92omJ46wUJJEelQiSgqEoeI0AgIMqwkGfy+55CpDOXllZ2RkXtCdmNTiOgyoCRJXsj8/Pw2RUi/vmrFu3Dvfddx8EQcCYMWOwbdu2Hi/C0NHemn1FVVVVj/+MnTt34tJLL8Xw4cPxxhtvtPuc+++/v8fPI1NRzyOLJUaRg8Egrri4EH860ICwBmiVbd9AHSTSk5LXIznQGi/gU1oNWC9kMxxU+rtnJe2Z1hwDhrJO6QdfejBxnBXRaBQ8z1OgSrqdfBap1cNDiKfaqcK9tx4p2ykUCrEimpJnQSoAeP0xmOIVm/v375+0voVkjksuueSsyqoThlqfLJdItTHo1SiMF29wFgJV1V4AlG5HelYgEBAb8A8PSml3BY3SAm5KtetZSWm3vNRprZEKDtJgCekR8iBJFhdBI/uagqSeJV8fJR8GkdXN6NLePoT0JdT6ZLmkEsB2qVXc/GkLAJbP2l7dfUK6g3w9UpNJSvMcbZGaJgqSepZWqxU7SuPKpA043bnJabeEdLek9UgaqbOeJ2sLaI+uniX//9XLrkFUKX1NMxEkW1GQlOXkqTaWgBQMHWuRvqYOEukp8vVIjfH1SJoQcN0ClvNJ65F6nrx4w/xLbdCwAndooeIN5Cx1tlOdCJJCoSgiavY96ghgMEjrkShI6lkcx4n/x7lmFbj4tYvKml2aSSKZqDuCewqSspx8JmlYgTR616qnUWTSs2KxmNj53vyhHW4LO156HLDkxdNAaRapVyTaAZNRg8J6dsxZCByt9ACgNoB0TqIKmXyGuCOnrEfiaD1SqiT+n5VKBVQRdh14tYBwmA2W0kwSyUSJduhcqiPSEG2WUygUUKvViEQimDfTir86nBAUHNw2KgNOelYwGBQ/fHccDgA21hwV2Gk9Um/T6XTippO5dgF18Vm9zZ+2YNjgHDHttqNNDAkB2J46eXl5sNvtANj929FMEM/zYip3IBKGEN96QhERkPjIicVi4h5KmU4QBEQiEcRisbSbHZNfCy4YhgAOAgBnWwT5uayDmY7nnUnS+fr3NYIgwO/3w263Iy8v75w+tyhIItDpdIhEIijrb4L12xY02wBHCdDmC8Nk1FCQRHqEfLTZniM1RWOs0ugxVbbrHfIZZWswisRHQ6VbGu0PBoMwGo29fWokwxQXs1TZRKDUkWg0Ks4mOfy8mN4VhQLBNtYG9KX9cQRBEAca0q2THIvFxCCp1csjFG8OvCHA62IXRqVSpd15Z5J0vv59VV5entgenS0Kkgi0Wi28XlbNztIINNuAiAbY8pEDixb0QygUgiAIdGOTbpW0HqmcHdMGgWuvZI2aVqul9Ui9JFG8QRAEjCpW4ZP4cZcpOe2WgiRyJhzHoaSkBDabDZFIpMPn1dTUgOd5NDkCuM/egpiSg8UJrJ5eCoANkJxrByedxGIx1NfXo7S0NO3SCKPRKE6cOAEA2LrDjndHss/6Id8IWLG4HwDAarUiJycnZeeY6dL5+vdFarW6WzIfqAdCkivcuaMA2Bvr6+oQFoGNgITD4aTnEXIu5OuRNm5rgideJKC0CsidQuuRelsi7TYcDuOqy4rwyvFGRJUcXMWUdkvOjlKp7LCTkkg7UigU2LDJjuoJSiAmwPSdAMVM1oHMyclJKiyU6WKxGJRKJXQ6XVp2krVaLSKRCKZdkIvVXhcAQNBJ65UEQehT16O3pfv1J+2jK0WSgp9+WmmBpp2T3h7UQSLdSb4/0qdHpcppBc3SeiRKtetdiQ6QNV+LwkYWHDmKBDTa2YZJVOGOdJfEBtIAUBGQAvGSEN3/qZLoBwwbnIN8JzvmKAFCIbYmjPoAJBtRkESSpiVnnG8Wj3usFCSRniFfj+TIlSa0x9mkkWeaSepd8sGSvEYWwMaUHN7d7gAAhMNhKgVMuoX8/m8ulj5n5kwwAWCzFzRr0bvk978lvrF8SAf86xN2/yfS7gnJJhQkEQBSAzltYj6MbeyYk/ZJIT0kMZIsX4+kCwA/XiCtR6JKar0rac80nzSif9ghVRejwRLSHRL3v8MZRMNA1vHObwYumWYDwGaRaA1s70pKu3dJgyFfHmUBbSwWO+0aM0L6IgqSCACpgVSplCiI75PizQH27GsGQJ0j0n3k65He2tIAb3wtcGkV26cHoFmkVJB3kobmSwFqi2zPNBosIeeK53mEw2zH4g3vNYJXs2DIVi3NUlCqXe+T3/8lKilIahJoz0SSvShIIgBOGkVySg3kx/tY1btoNNpn9qsgqSVfj7S7KiweL3BK7y8KknqfUqkUSy4vuNgKLsaukbuIijeQ7iNPtfvOKwVGRX7aHy2V1Gq1WFBg8kjp/99jobR7kr0oSCIAklNtCqNSkFQjGzimUWTSHZLWI1mk9UgTiqWvaSQ5NRLtQFl/EwocLDiylwhwe1nniNoAcq7kRRucsjWIl45lHXOO42g9UgpwHCcOll42vRC6+GVqobR7ksUoSCIAAI1GI+aAj+kvbeDnzqGpdtK9EkFSKMSjIb4eyeAHrlnAPo11Oh2tR0qR5OIN7G9ezeG97Wxj0HA4TIu3yTlJ3P+trhAaBrFjeS2sYw7QeqRUkqfdF8bT7l0W4JtDrQCoD0CyDwVJBAAbRdJo2HqQ+bNtUEVYR8hVJD2HGkhyrqLRqPg+enNLA3ysmBVKKgGDngXnNIuUOknFGzxS+tM3NWzBtiAI1A6QsyZfj/R/7zUgzD5yUFQtQKViAyN0/6eO/P7PbZYySj743A2AXb9oNHrK9xHSV1GQRESJBjLXLO2T0mwTUNeYGPmnzhE5N/L1SF+ckColFbbQeqR0IJ9JGmiUjjs1tC6BnDt5qt3BVmlG0tZG65HSgfz+zw9LQVK1V/qaUu5INqEgiYjkDWSunX2ACQoOmz9iFe5onxRyrpLWI+VLa5AuHMhmkTiOo5HkFFKpVFCp2HWZMyVPPO4ulD4qqJNEzlbS/kiFUkrtzBHsnqf1SKklT7sfWSS1zy4Tpd2T7ERBEhElrUeQ7ZPyHe2TQrpJYiTZH4igYTA7ZmwDrp7L1iPR/kipl2gHzh9tgaWFHbOXsjVkALUB5Owl7v82X1hcj5TjBuZdyvZH0ul0YoU10vsUCoVY4fLK2TYoolThkmQ3ao2ISB4kDc6V3hotOhpFIucuGo2KsxBvbG6EP55VU1IFaLVs1JJSbVJPPpKfH1+8HdIBWz5mxRuCwSAVbyBdJl+P+NrGRoTib7Oi4xDXI9H9n3qJ+7/QqkOBnQVHjiIBrS527agPQLIJBUlEJN8n5XvTLeJxTyGNIpFzJ1+PsLdeth6pldYjpZOktFuXNKO8t4IFuIIgiIvvCeks+f2/v1l6XxW6pfufUm1TL7nCJRsMiao4vPchVbgk2YeCJJIk0UCOGJKLfCc75iiRUm1oPQI5W0nrEaxSvvvUclbiitYjpQf5TFI/tdQZauKoeAM5e8n3v5SdMG0w+8yh+z89JAVJbdIa5IN1VOGSZB8KkkgSeQNpaWB/h3TA1h0OADSKRM5eopPU5gujPr4/kskL/GiutD8SrUdIPbVaLa4LmznOLB73WKl4Azl7SesRB7FjJi/wgyuKAdD9ny7kfYABsol9p5oGSUj2oRaJJOk41YZ9wMViMUQikVO+j5DTka9HeP29RgTjA8YlVaD9UdJQoh2YNjEfZg875ugH8DxrE6iTRLri5PWIgXjnu/g43f/pRl7h8tKJOeJx+SAJ3f8kW6jO/BSSTeRBUrFKlmojJI8iJzaeJaQz5Kk2X9ujwAjWMSp00XqkdKTT6eD3+6FSKVFQD3hzAJ8J+PQLJy6ZZhOLNyTKBRNyOvL1SPvqIsAQ1vWg9YjpSavVgud5TBxnRc4OHzy5gKOUDZKoVEoKkrKUIAjin1gsJv4t/7qjv9s7lp+fD5PJlOpf67QoSCJJ1Go1FAoFYrEYpo4yYBPYAm2PhUaRyNlL2h+pQFqPMGMYW/9C6xHSi3ywJMcZQyLp4NNv2nDJNJs4o0yDJaQz5EFSs2x/tEm0P1pa0mq18Pl8AABrA+DJBfxGaZCE+gDpp7sDmI7+7k48z5/5SSlGQRJJwnEctFotAoEALr2oEPov6hAwAM4S6TnUQHZdMBiE3++Hx+OB2+2GWq2GSqWCUqmESqXq8yPyiU6S2xsS1yPluIGFlxcBoPUI6UZevKGYi+LreJBUzycPllCQRDojMUgSCvFoHMSOGXzJ+6PR/Z8+Ohok2bmfDZJEo1FEIhGxGi7pnMT/G4BOByWpCmB6Qyacc5eCpJkzZyb9OxAIYNWqVbjsssuwceNGbNiwAbW1tbBYLPjJT36CRYsWic+dNGkSdDqd2BlcunQpbr75ZgCsA7lixQp8/PHHMJvN+MUvfoG5c+eK37tx40asXr0aPp8Ps2fPxvLly+nm7EGJIEmlUqKgAagZArgtwNcHWzHuPAsFSV0gCAIaGhrg9XohCALcbjeamppOCYqUSqX4Rx48tfd3pnUmeJ6X9kd5txGh0ex3LzoOqGbR/ijpSD6jPHmEEe/HZ5Td+clBktls7uglCAHAOkKJ+/+tLQ3wDWLHS44D2otYF4RmkdKLPEgqhBQkNYSTtwOhftiZxWIxOBwOeL1e1NfXg+f5jBgUdXtDaLQH0ewMo9XDw+Pj4fXH4AvGEIgICPFAOAaEBYDnOPAch6gC4FUcYkpWNj6qBqJqgFcDvIb9ba0D/uenAwEgI4qAdSlI+uSTT8Svjx49iptuuglTp04FwKqePfjggxg1ahSqq6tx1113YfDgwZgwYYL4PW+//TYKCgpOed2XXnoJbrcbmzZtwrFjx/DLX/4So0aNQllZGSoqKvDss8/iueeew8CBA3HvvffilVdewZ133nm2vzM5A/kocm5zDDVDWAP5wecujDvPAp7nwfO8uLiTdKyxsRFer/eMz4tGo4hGo2d8HsB2RW8veOroWKrJU20OOGMA2DkVuWk9QrqSzyh/b1YhnmpnRpkq3HVOopPk9/tRW1srtp2J+1ihUIh/5P/u6OtM6GDJBQIBsTP05YkIMIh9blhb6P5PVxqNBhzHQRAETBiswzawa+XOS95YPt3Xk6RaNBpFbW1tt2/A3V4A4/HH4D/HACaiAcIaIKIREFXG2xktgML4H3BIfH6fLYNH+rrPzSTJbd68GRdffDGMRiMA4OqrrxYfGzJkCCZPnoxDhw4lBUkd2bRpE55++mmYTCaMGzcOs2bNwtatW3Hbbbdhy5YtmDNnDkaPHg0AuPXWW/Hoo49SkNSD5KNI1rA0ilTdJt3koVCIgqQz8Hq98HhYi3Cs2ovHtrYgpOegDZ6ANixAH4shRwlYzQoMsGkweqgJ5QONYrWnjiSm4DtTZZDjuE7NTiX+9EQHLGl/FJv0u80aqRfPUR6Yk/Qgn1EurAdODGUzynu/dmLiOCsFSZ0QiURQW1srbp0gCAKi0eg5dQ66GlSdHIj1dqAlHyRx5EmfGRcUSV/TTFJ6SQySBINBXHFxIf50oAFhDdBaJD2H7v8za2pqEv+fDhx24a3tLkQ5X9oGMJLubx80IUATBtSyRKQ+GyQJgoD3338fy5Yta/fxaDSKgwcPYv78+UnHb7zxRnAchylTpuCee+5BXl4ePB4PnE4nhg4dKj5v+PDhOHjwIACgsrIS06ZNEx8bNmwY6urqEAwG2+1YhcPhU3aDV6lUaZE7n3hDpPsbQ6VSiaMeo0tU+Dh+3G1SiscDgQB9sJ0Gz/NobGwU/78e+agVRyYnGh4u/keeNscDXhdUX7XC7OWg9wI6H6AJCNAGBeijMZiUQL6BQz+rCsPLjRg51Ayt9vS3cCJXubNl29sLnDoKrDrb0fL5fBAEAa2uEOoHsWO5rcDcSwohCIJ4H6f7fXGuMuX+T9BoNOL7N7c5BgyNzyh/6cGE8/PB8zzC4TANlnQgFouhtrZWTDU7UuHGJ1+6MKAkhv4legwaYIBB3/V0pa7MOnfkdAFUZ2e3Oitx//N8VFyPpAsAixcUQxAEaLVacByXMffF2cq0+1+tVrPPeZ0KhQ1AXRngtAFV1V4MGmhCMBjMmN8lFdxutzhI+s2hVjzY1IbWGd3RZ+rBACYCqMLxPxFAGQGUPKCKCFDwgDIqQBkFVDEBKkGAGoBaAeiUAnRqBQwaDkadArkmJXJNKlgtahRYtSgq0CYN/iY+V851wOhcdaYdO6tPt3379iEYDCYFL3KrV69GYWFh0uNr1qzB2LFj4fV6sWrVKjzyyCN45pln4Pf7oVQqkwIeo9Eojj4HAgFxtgqAOL0bCATaDZLWrl2LNWvWJB275pprsHjx4rP5VXtETU1Nqk/hjFpbWxGJRDB5DPAXHxu5cBVzsNvtAIC2trZOpZFlq+bmZnEE9c+vu3BkVucaR17NoTUfaM1PHGkvoBKAaBsUh7wwtXEwtAG6NkDjE6ANxqCNxKAXosjRxFCYw6GsWIXh5VoYjd2bPy7vNHX0N8dxaGpqAgCs39iK8IUsrabouICWUU4AQE5OTlZ92GbC/Q+wAafE/Z4XDANg7W21LyYej8ViNFjSAafTKX6ObfnYhf/tp4dvtB5ABAhGgKMe6AKALghogoAmwEZZVSEBqrAAdUSAio9BE4tBywkwqAWYNAJyTRwKLUr0s6lRbFOfcea5J3AcB47jxHtcPkN18oyVy+WCIAjYusMN73D2Hio5DrSVt6LNi6xL2cqU+9/r9cLlcgEAcuwx1JWxz6C3t9Xh+ist4vMybY1sb4hEImhqahIHB578ikfrmLN7LXkAow4DSnkAEwGUvCD+UUQFqKIClIIAFQSoIUCjEKBVCdCpAIOWg1nPIcfEIdesRH6eClaLqgfbkAiACFpa2tp9tK2tLaVr3MvLy8/4nLMKkhIpcO2NIL7xxhvYvn07Xn311aSR5vHjxwMALBYL7rvvPixYsACRSAQGg0HcaC4R9Ph8PjFHWa/Xi6UoAfafmjjenqVLl+KGG25I/iXTaCappqYGAwYMSPuGRaPRwOv1wmYDCrbUoKkUaC4SwClzUGjVQaPRoKysLNWnmZY8Ho+4qH3fN07sGS+9V6d+GMLYfho0uaJwhwAfOITUHEI6BUIGIGgCfGbAZxQgKE4/YhRTcvDksvKsTGK6XQkgOSDi3FEY62MwtAH6NkDjB7SBGHQRAQYIyNUAtjwVyku0GDuKXePuIAgCbDYbAOBYUEq7K26Lisf79++fFWsSMun+B6TRPkEQMGlwGJ+A/dtrUYvXzmq1wmq1puwc05XL5RLXbBw/0YY3c0PwtRMLBPUQN1aWJAZGgDOlz3D2CPRBHroAC7TUQRZoqYMCVBFAzQtQx2LQCYBeCRi1HHL1HAotahQXajCwn+GUUd7uVlhYCAD4ptEHDGfHCpp52GwDAAAlJSVZUQAk0+7/QCAgBnSWQBUSA3W1fo14/xcXF9MgyUkEQcCJEyfE9/39z1Xh2CzWVza2AWP28Wc9A5MJ2htAae/vRJp9bm7umV80hbocJEUiEXzwwQd45plnTnls69at4kxOXl5eh6+RaCAEQUBOTg6sVisqKiowZgwLtY8cOYLBgwcDAAYPHoyKigrxe48ePYp+/fp1uIZBo9GkRUB0Ol1NV0gFvV4vBqR5jQKaSjlElRw2f+TATxcNFOvbp/vv0dt4nkdzczM4jgPPR/Gn/X60jWWPDTkA3HeNEaWlJWdMVfMHIjj4nQdHq/2od/JoDQhoE4CgUoGwjkPIwCFoBPwmoM0sIKo6/esJCg5tZqAtqS/S3rULAXUO6CoAk5cFVNp42p8uHIM+JiBHDdjMCgws0eG84Sb0K9Z3qiF3FknPufQ8g9hQGo3GjFuMfi4y4f5P0Ol0CAaDmD+7CM8dakREA7QUQ7xe4XA4Y36X3hIIBJLagN/vaIXjfPaY1QHk1wMRLRDRAWEdENIDQR0Q1p7+ddsjKDj4DYD/lDEGeWpve9cnCiAA2ANQNgjQ+zloEzNaQdmMVkSAmkd8NgswKAGzjkOeUYlCixqlNg0GDTDBmn/mk7fnSN2NsQXStgcmkymr3kOZcv/LqxEPy1fgs/jxVr0y6f6XZ/oQwOFwIBwOg+M4vPFeHT6fKr3vZ/zbjz/8fETKPu86E7y093dXv6cv6XKQtHPnTrHAgtzu3bvx5JNP4oUXXkBpaWnSY8eOHUM0GsWQIUPg8/nw9NNPY8qUKWIwM3/+fLz88stYsWIFKisrsWPHDqxbtw4AMHfuXNxxxx344Q9/iP79++PVV1/FvHnzzvLXJZ0lL96Q2xZF4q3ybSMLjgRBQDgcpgX3J2lsbBTXC/zhpWpUzGD/byYv8KsxBqhUnVtLYNCrceEFVlx4wZlH6Xk+isMVHhyu9KPOEUGLPwYvDwSUCoS0LKAKGYBAPEgKd2IMQRzhtiWOtLcoNAw4W6BpiAdUiXVUfoEVpojGYFYBVqMCNotSXI9kaQEun8lG2fR6fZ9rVPuSxOJtk1EDWz1QN4itSzha6cGwwTm0HcBJeJ5HfX29OAt374vVqJgZL3PtB25oC+Lanwxr9z3v9oZw/IQfdU0hNDnDcPli8AZj8PNAUAAiCg4RFYeImgOv4ZICraAeCOoE8Oqu30tRZXsDKEDyjFZ7nXqWSoMaH9THWNqgNgBo4zNaqhDEtEFNVEDD+az90AaBxQtYBQCtVpsWFTjJqZRKJdRqNSKRCK6YYcX/uFoBAB5bchlwIvH5fGhpaQEAOJxBrOeiiMQ/b8/7XMBd11g6/F4KYNJTl4OkzZs344orrjjlP3vt2rXweDzi3kcAMG/ePCxfvhwtLS14/PHHYbfbYTQaMXnyZDz88MPi8+644w48+uijmDt3LnJycrBs2TIMGjQIADB06FDcc889+NWvfiXukyT/GaRnyIOkMhOHz+NfOzXJ+6RQkCRxu91iaujOzx3YPUE2grSfx4Q7rbDb7TCZTCgpKQHP84hGo+Lf8q/lf5+pdKhKpcSYkRaMGdlxA5zA81HU1Plx8GgbaptCsHtj8ESAgIJDUKNAWM8hZAQCJtZpOjUV6FRhDdBiBSDGcx2so4orOi5AdSntj5QJdDod3G43ACDXIaBuEGv3t3zagmGDcxCJRBCNRqmjC2lPtMQs+3//9Ti+vEj6f5m9n8fs73ecWpJr1mLceVqMO+/sz8HhDKKyug0N9hCaXVG4/FG0hQT4o0BIACJKBSIqSIFWPMgK64CQDvAbzpzm256Ihv3x5pz8iDzQYkqqgdwp7POFUrXSm1arRSQSQXmZGdYjrXDaAEcJy3Qw6NUUJMkkijUlLH+jEY1T2WegrQH4z6sKAbB13CUlJeIG6hTApLcuB0mrVq1q9/hLL73U4fdceOGFeOuttzp8XKfT4dFHH+3w8YULF2LhwoWdP0lyzlQqFVQqFXiex2WT8/B3nt3c7gKp4xsMBtM+n7S3RCIRcTE7z0fxfGUA/lHsseFfAX+4azAEQYBCoYDNZuvSHkaxWKzd4Km9AOtMBRBUKiXKy8woL+vcGgCHM4j937pRVR9Ck4uHOyxbR6VXIGxgAZXPjHbXXLSn1C/NplGQlN6StgMISDPKx9zS+ywYDFLKDVixlkShhk/2OPBuuQKx+C0+bmcMv72rHHa7HUqlEhaLRSzln6jwdPK/z2ZflUKr7pzWE/J8FHWNAZyoC6CpOYxmVwSugABfWEAgCoQ4js1oxYMsXiNLG9R1tMYq2QA77Y+UKXQ6nZh2b2lis8hhDfD+xw78cG4pQqEQBEGgDj5Yue/EAMnKNZU4EE+zU0UEXBtSoNimh93uRV5eHnJyThlNIGmKareSDmm1WvA8j3HnWZD7kRduC9Bcwj5IVSoljSLFCYKAxsZGMUD57YvVqIqn2OS4gfunSAGJxWLpcslkhULR6XV2iU7WmWanOltGuNCqw+wZnet0tfnC+OZbNypPBFHfyrPOlQAEVQqE4uuozK0x/PZmtmBbpVLRTGSakwdJI4tUSGwn7jIlbyqZ7UGS1+sV02xaXSH8d0MA3njhpLIjwDNL+4nPLS4u7lShgvYCp9N93d5jXaVSKVHW34Sy/mdfcc4fiKCm3o+a+iDsLWG0eKNw+2PwR4A8HYf/uG0gAJbOle3vm3SXlHbviiKRcr2vMogfQkq7lz8vG7W2torB5J59zfhglPQZf+GuKK77RRkEQYBarRYLOpDMQEES6ZBWqxXTx6wNbCPJgAH48DMH5swqplGkOJfLJY4gb/ukCZ9Pkm6rS77jMWYWS4Mzm82n7OHV3RI5ymr1mct9Jza2PNPsVOLrM41sm4waXDSpEBdN6ty55ufnZ/17J90lAvRwOIyFl9nwanWTuB1AQrYPloTD4aQ0m9+83oDaKWzG3dICPDjaDINeDUEQkJub2+nA4FwX+J+8eW1XA6zE111l0KsxYkguRgw5fZZBQUFBRhQwyGby4KdEI7X/DiSn3WdzkBQKheBwOOJf8/hThR9tI9hjgw8BT9zFqgBzHAer1UqfeRmGgiTSIfkof05rDIk1Jru/9WPOLIiblKZ7NcGeFA6H0dzcDIA1kC83hRAcxh4buVfAg7exKo0qlQo2mw21tbWpOtVTcBwnplWeSaKzdabZqcTfZwqo8vPzT1sBk6QPnU6HcDjMUrn2cGjsBziKBDTaAyi26cUd5bNRLBZDfX29GEw89EIlDkyX0myudnAYdykbJDEajb3aVspL8Z6txGbUXZnROvnrk9uCxGh6NpT9znRqtRpKpRLRaBTTx5rwLti97rEmB0nZKhaLoaGhQXyPP/CXEzg+S8oiuW+MSaz8WlhYKK7vJJmDgiTSIfnoUBEXRSJIauCTG8hsDZJOTrNb/pcTqI43kHktwPJLpEIKRUVFGb24vSsBFYB2g6lYLCam2GXzyGOmkV+rvEYBjf04xJQc3t3uwK3XDkQ4HEYsFsvKWYHGxkaxk7jhnzX4RDaLPHVXFLf8gg2SaDQaFBcXp9UgSWdwHNel9ZPtSQRaiQIfmdwOZiOtVgu/348ZF1ph3FMHnwlwlkiPZ3OQ5HA4xN//r2/VJBVqmVMRxfib2a7wJpMJeXl5FCRloOz7VCOdplarxY7PxKHSAltPHo0iASwPORAIAADe3daAL6dIHaTLj0cxbDBbnJmbm5t1u8orlUpoNBoYDAaYzWZYLBZYrVbk5uZSgJRh5DPKFp+0zuWwQ1qAn43tQGtrK7xeVtDmaKUH6w2CuNfRyL0CHo+n2SgUCpSWlmZtcJAItDQaTdb+H2SyRHutUilR0MCOeXKBvV87AWTnvQ8AbW1tcLlcAIDaeh/eMEn7FZ7/WQz33cwWJapUKhQXF6fqNMk5oiCJdIjjOLGB/N6sQmjjWTWtNIqEUCgkptn5AxH8jzcidpBGfy7g3qWsgaSFmiTTyYPaIRbpI6NFL3V4sy3lLhAIJK1D+OMuF5zxPcVKaoDHr7SJaTZFRUU0MEAylvy9m+OU1qh9uNcDgJW+TlR1yxYnl/v+/aZmONjWXyipAVZeJ3WSSkpKaHAgg1GQRE4r0UBqtSoUxkeRWqzAd8fYtHE2BkmJNLtEHvKDL9eglmXVIL8Z+P08aQPYTE+zIySxqSQAzJ9pBRdj73t3UXYWbzh5w9j71tTg2Bj2mMEH3GHWoNjG6mBTuV+S6ZK2AYhIQVKNX3pONt3/if3QEtUj/7i6Et9eyNpCTQj4qUYFSx77P8vPz6cy9xmOgiRyWkmjSA5pAe7WnWz37cRmktmkpaVFHDl/47067JvGgiAuJmBeQ0wsn5uXl0clbkmfkEi5Ky8zw+pgHQJ7iQC3l3WOsmUmSRAE1NfXiyPnT6+twt7p7GOUiwmYcyiKKy5mqTV6vR42my1l50pId9BqtWJFtvP6SVVTXabsTLtvbW0Vq9l+tMuOHeNk6xA/5/H975UCYG1mQUFBSs6RdB8KkshpyYOk/KAUDFXKNpPMpgYyFArB6WS52G2+MDbEouDV7ANkzB4BP79xEABKsyN9i7wdsMSzTHg1h/e2sw2Uw+HwWW1+mmkcDoe4DnH7p03YMkwJQcHu//GfxbDsVmkdQmlpKZX7JRmP4zixONOCS21Q8uw+z8ZtAILBYFKa/er6IPzxcdBh3wAr7pTWIZaUlND93wdQkEROS945GlEojZi4jMmbSWaDxDR7ojO4bG0d6tm+iChsBB75UZH43JKSkqys9kX6JnnxhjyPNFiyvyYCgN0bfb0d8Hq9aG1lM+jOlhCebwmhLV7Fuvxb4Jlb2SbJHMehpKSky5tGE5KuEv0AS54WhU2s499sE+BwshnkbJhJPrnc929eqcWJoewxSwuwbEpO0jrEbK3629dQL46cVmIzSQCYd0mBtB7BJo2QZEMDCQBOp1PsCP7tHzX4apqUZnNVK8R1CBaLBXq9PmXnSUh3kw+WlMkySJs12ZFyEwqFkjeMfasR9WzQGPnNwPILzNBqWVBUUFBA6xBInyK//3ObWB+AbQPAZpIjkchZbTycSex2u7gZ/EsbqvHvi6TP//l1MYwengcAyMnJoXWIfQgFSeSMEg1kv2IDCuwsOHIUS+sR+nLnKCEYDKKlpQUA0OoK4U2trNznLgG3XsumlDQaDeUhkz5HvkfWnCl54nF3gfQR0lcHS07eMHbZc5U4FF+orQ4DP3ZzGDOS7YlmNpuRn5+fsnMlpCck7ZXWJtsGoImtzRMEQQwg+iKPxyPucXSs2ot3bGyvOAC4YFdymj2tQ+xbKEgiZ5TUQDaxv3k1h01Zsh7h5Gn25f+vAY392GPFdcCKa1m5z0SaDaXZkb4o0Q6cP9oCCxsvgL0fK4EN9N3BksbGRrED+Ne3avCZbD+0i/bwWPIjlmaX2DCWkL5Gnm5bZpZtA5AFM8mRSAR2u138939+2IKW+Dho/yrgiZ+yQg2Jz3+qZtu3UG+OnFHSVLtsPcKBWmk9Ql8eRXI6neLv9/JrJ/DNVDaCpIwKuDrIwZovlfuUf5gQ0pfI39v59ezvkA7YuiOxX1Cozw2WtLS0iBvGHjriwv/lCojElxqM/kLAyp+z2v+JDWNpgIT0RUqlUpxJvmxyrni8r88kn1zu+7fPV+K78ezzXxcAbs/XwGRkDYLVaqU0+z6IWnRyRvLO0QBZDOBQ9u0GEmCbRibS7BrtAbxjgTTN/lkMN8ZHkbVaLaxWa4evQ0imSxoscUmDJV8cZdXeYrFYnxos8fv9YiWrUIjHo/s84ghyaTXwxI+kWaPi4mLaMJb0afKZ5Lz4TLKjFOB51hb0xZkkp9MpVrPctL0Rn02UZpFn7OMxZ5ZU7p/SbPsmCpLIGalUKnEK+eIJZvG4x9q3p9oTaXYJv3+rCY54v6j0BLByKcu5S0yzU7lP0pfJB0v6qaUZIzvX99qBkzeM/fXLNagaxR4zeYG787XiDLLFYoHZbO7opQjpE5JmkuM1TIJ64IOdfXMmWT5A6vaG8Ko3jGB8omjkPgH/+TM2i6xUKunzvw+jIIl0SqKBnDKhAGYPO9bcx0eRHA4HIhGWUvj8347jwBTWCKoiAq5TKJOm2WkUmfR1arVaHCyZOU4KCtzWvjWjnNgwNpFis/LlqqRKVnOPRjF7Biv3r9fraT80khWSNpZvlSrZfX6Ybawai8XEz8tMF41Gk7f7+N8G1A1ij1kdwO9nS7NGRUVFUKvV7bwK6QsoSCKdIm8grfHJFZ8J2LWXjbT0tSDJ7/fD5XIBAGrrfdhcrBA3jZywK4pFC9gskk6no2l2kjUS7cC0ifl9drDEbreLKTbvf9yIf42WNoyduDOGe5fShrEk+8j7AEWclG7bwPe9meSmpiYx4Puv/zmOr6dJ65B/0AyUl7FBotzcXJpF7uMoSCKdkjSK5JRGkT79hi1qjkajfWoUSb4nysPvNcMZHyzuXwk8Lts0sri4mDpJJGskZpRVKiWs8eINbWbg0y+cANhMUian3Hg8HnFwpNEewEveMPzxfaGGHACeuk2690tLS2nDWJI11Gq1WJhk0jBpHzBPXt8Kktxut1is5cDhVmwukwZIx38WS9rug8p9930UJJFOkQdJNkEKkupCUoDQFxpIIDnN7pm1VTg4mf2OmhDwU7MaBj2bWi8oKKA0O5JVkoo3JA2WtAHI7JSbUCiEpia2xwHPR/Hgu3Y0sJgIVjvwh2l54oaxhYWFVMmKZBWO48T7f87MQmjjmbWtJdJzMr0PEA6HxXLfPB/Fqi+9cLMt0FB2NHmQhLb7yA50hUmnaDQaccZk3CCpo+TOlfYEyPQGEgDa2tqSNo3bNkj6/Sbu4XHl5ewTQa/Xw2KxpOQcCUkV+eLtYk4KkuozPOUmGo0mbRi7fHU1Dk+MD46EgRv8HIYNzgEA5OTk0L1PslIiSNJqVSiMp923WIHvjrHPzEy89xMS5b7lbUDFWPaYsQ24e4BeHCQpKCig7T6yBAVJpFPko0hzLy6EOl7p1yXbOzHTF21Ho1FxJBkAHt3Wgtb4cqOyo8Djt7NpdoVCQWl2JCvJU24mj5BSbtz5mRskCYKQtGHsK6+fwK5p0uDIjM95XPd9qdR/UVFRSs6TkFRLSrt3SGm1W3e2AmAbryYKnmSa5uZmsQ/zjy312DNVSqW9+ACPmVNYzr3RaKRBkixCQRLptEQDaTJqxFEkZ4GAqmqWv5tpnaOT2e128DwPAHh8TSUOT5I2jbvFpkkaRdJoNCk7T0JSRT5Yctn0AuhYfQO0yFJuMm2wpKWlBW1tLF3w64OteLMQ4NXs3h+zJ4YVd9OGsYQAyUFSflAKhird0qxyJvYDfD6fWO7b2RLCX6M8wrJNo393h1TumwZIswu19qTTktYj2NkokqDg8P6nbNF2Jo8ieb1eeDysXNeBw634aIQ0inThl9KmcQaDAXl5eak4RULSgjzlxlbHjrkswL/3Z16lS5/PJ24Y6w9EsPKgV5w97l8FPLFYiv5KSkpocIRkNXkfYHih9BnpMmZu2v3JhZoe/HsDGvuzr20NwCNXSiX+i4uLqVhLlqEgiXSavIG0BKRg6GiLNIqUSFnJJDzPJ6XZPbnHC08u+7r8W+CxO8sAUJodIUDyuqScZune3/Y5W5fA87w4I5vOIpFI0mbR966tw/ER7GuzB7inVA9LHmvz8vPzYTKZUnGahKQNhUIhDhTMv6QAXIwNlrptmVvAqbGxUWyvnni5Cvunsm6xKiLgxyEO/YpZWrHFYqE2IAtRkEQ6TR4kDcmXRo5a9dLXmZZqA7A0u8QM2COrK3HkAnbc4AfuHqyHSsV+P5vNRpvGkayXVOmSl4KkEwHpOeneDpy8YeyKv1Tiq+ns41ARFXBlVQzTJ7MRZIPBgIKCgpSdKyHpJHH/9ys2oMDOgiNHsQC3lwVH6X7vy7lcLjHV9ouvnNg2QurLTNoVxfWytYjUBmQnCpJIpymVSjFImDdD2kDVk8GjSB6PR9wTYe/XTnwyVppKn7qPFztKRqMRubm5KTlHQtKJVqsVZ1PHDpQGDdw5mZNy09TUJHbm3t3WgA9k9/2knVH8x5JBANiGsSUlJTR7TEicfJAkL56Awas5bP6Ilc4Oh8MZsVdaKBQSy32HQjyePeyDlxWwRPm3wJN3sQwSKved3eiqky5JNJDlZWZYHeyYo4Tl8wPp3zmS43k+aU+EP+33oS2+efbQA8Af72CNZGKxJiEkuXjDlbOLxEqXmVK8we12i2X+6xr9eDkSQSBeqG/oN8DTss4RbRhLSLKktckeKe1+/wnWBxAEIe3T7mOxGBoaGsRgbtlfTqBqFHvM7AHuHWVMyiCh/RCzFwVJpEvk6xEs8bWOYQ3w/scsYgqFQhkxigSwXOREus3Df5H2RDB5gXvGJDeS1FEiRCKvdGlLVLq0sb3FgPQdLAkGg0kbxv52iwNNpeyxwkbgkVmWpPueNowlJJm8D9BPtlVQsyJztgFobm4Wz/Fv/6jBl7KS/5cfiWLiOCsAwGQyUaGmLEdBEumSpFEklzSKtK+SjRxnwigSwEaTfT4fAGDn5w7sGi8FQdP3R5IayZycnJScIyHpSt5RSlS6BIBNH6dvpcvEhrGJQZwHVlfju/EsjU4bBJZElSgvY1PJOTk51DkipB0qlQpKJQsqZl0gFTLwWKXuZDrPJLe1taG1le3rVNfox98Ngljyf+yuGH5zSzkA9ntSBgmhIIl0iTxIKtVInSMHlzmjSJFIJCnN7vnKAPzxdJvhXwEP3zUEAEuzo40jCTmVvB2wBtrfLyWdOkqCIKChoQGRCEsJenFDNfZcJI0eX7KPx6L5/QDQhrGEnEni/p98QT5MbPIYzaXs8xRI3z4Az/NJ5b5//64D9ngcVFwLPH5Syf9EMEiyFwVJpEvUarXYcFw0VjaKlJ8ZQZIgCGhsbEQsxjpzv32xWsxFznED908xi88tKiqiNDtC2iEPkkYWSfdIqyk9izc4nU5x5viLr5x4u5RDVCWNHj98l7RZJG0YS8jpJe5/lUqJgnp2rM0M7NmXvnulJT77xUq2L1bi0IWsDdCEgCVKFaz5Usl/g8GQsnMl6YM+CUiXJRrIGRdaYWTVM+GULdpOxwYywe12w+/3AwC2fdKEzydJHbyLD/MYM9ICgKXbmM3mdl+DkGwn3y9l4WU2KKNsVtlVnH6VLtva2uB0sjTANl8YTx3zwZ3HHhtYATzzk1LxucXFxbRhLCFnkLRXmlOaPf7kG9YhiEajabdXWmtrqzhQsmO3HTtkFS2nfM7jh3NZO6DT6ajcNxFRkES6LGkUKb5o25PLRmiB9EqzkQuHw3A4EgUmeLzcFEIwvi575F4By29no8kqlQo2my1Vp0lIRkh0lAqtOhQ2xvdLKRLQaGcbJqVDOxCJRJLSa+79az1ODGVf57iBX5cbYDKyoMhqtdJmkYR0gnwmuSAmBUl1sls+He7/hGAwiObmZgCsEu8LtUH44rf60P3JG8ZTyX8iR0ES6TJ5AykfRfporwdAeo4inZxmt/wvJ1A9jD2W1wIsv8QiPreoqIhykQk5g6T9UhrZTFJMyeHd7WwgIhwOi/dbKsRiMdTV1YnpNX9cXYlvLmIfecqogO/XCJgygY0YG41GWK3WlJ0rIZlEo9FkzF5pJ5f7fuCVWumzvxV4YJI5qaIlzSQTOQqSSJcljSJFpE5QTUB6Tro0kAmtra0IBNgJvrutAV9OkabaLz8exbDBrIJdbm4ujSYT0gnylJs8n1S84TuHNECSynbAbreLP/8fW+rxkayC5eSdUfzsBjZ6rFarafSYkC7gOE4MJuZdYoMqkki3lZ6TLn0Au90uVtx9+bUT+Hd8oISLCZh3Iiam2JvNZtownpyiS0HSzJkzk/5MmjQJH3zwgfj4unXrcPnll2P27Nn4r//6r6T9cg4ePIjrrrsO06dPx+23346GhgbxsWAwiN/97neYNWsWFixYgC1btiT93I0bN2L+/Pm4+OKL8cc//lGsUERSQ6vVih2KMQNko0hmaRQpnabaQ6FQ0lT7X70RhONx3ujPBdy7lJX8VKvVKCwsTNVpEpJR5IMlQy3SR4lTn/p2wOVyiRvGVte2YR3Hi6m1w78Cnjhpw1iaOSakaxKDJLlmLQobWH+guVBAbT1b95MOQZLX6xXbgapqL/5RCESV7FzH7RLwH0sGAWCf/VTRkrSnS0HSJ598Iv559dVXodVqMXXqVADAp59+ijfeeAPr1q3D66+/jk8//RTvvPMOAJZ28Zvf/AbXXnsttm/fjjFjxuD3v/+9+LovvfQS3G43Nm3ahMceewwrV65EdXU1AKCiogLPPvssnnrqKbz33nuor6/HK6+80l2/PzkLSaNIF6f3KFIizS4RsD/4cg1q2NIj5DcDv58npdhQmh0hnadUKqFWs0GS+TOt4GLsHnPbUlu8IRAIJJX4/932FrHMb1E9sGKOVUyvKSoqSpoRI4R0TtKeiQ527wsKDpt3sLXJqU63jUQi4sbRAPDH7S1oiddj6HccWPkTVm2K4zgq9006dNbpdps3b8bFF18Mo9EIANi0aRMWLVqE/v37o6CgADfeeCM2b94MANi7dy/0ej2+//3vQ6vV4rbbbsOhQ4fE2aRNmzbh9ttvh8lkwrhx4zBr1ixs3boVALBlyxbMmTMHo0ePhslkwq233iq+LkmdRANpydOioCm+aNsmLdpOlyCppaVFHM1+Y1Md9sV31uZiAuY1xFDWn6XW5eXlie9lQkjnJAKM8jIzrA7WDthLBbi97P7v7ZmkkzeMvW91NY6Oi59rALhFpUb/Unaf5+bmUnoNIWdJHiRZZOm2R9Ig3TaxL1piPeJDL1TiuwmsfdIFgFtzNMg1S+W+9Xp9Ss6TpL+z2gRGEAS8//77WLZsmXisqqoK8+fPF/89fPhwPP/88wCAyspKDB06VHxMr9ejf//+qKyshNFohNPpTHp8+PDhOHjwoPi906ZNEx8bNmwY6urqEAwG2x0BDIfDYv6p+EuqVGmxGC8xqpLK0ZXuotFoxI5IXpOAxv4cBAWHdz9y4JZrBiAUCoHn+ZTuN5JIsxMEAW2+MDbwUXFn7TF7BNx9RxkEQYBarYbVau3x69KXrj/pur54/dVqtdgOWBqB5iKAV3PYtN2Oa6/qj2AwiGg02ivrfQRBQF1dnZiO/fzfqvHFdGl0+LKveVx5+wAIggCtVovCwsJevRZ98fqTzutr119+75fnKrArfrxFpxSPBwKBpGCqtzidTnGrj/c/bsLOCVJX96K9PK74GWsH9Ho9LBZLr1yTvnb9+4LO9E/PKkjat28fgsFgUvDi9/uTFrwbjUbxTRoIBE4ZpTcajQgEAvD7/VAqlUkBz+m+N/EzAoFAu0HS2rVrsWbNmqRj11xzDRYvXnw2v2qPqKmpSfUpnLNgMCiW087xRgCwIPTb+pCY6gIgJQ0kwDpMTU1NYofpj6+3oX4WSw0qbAR+OUshnqfNZuvVa9IXrj85e33p+gcCAXG9X44rAoDdY/uOBzE7fn/J03N7ktvthsfDKmz++0AbNpapEYvHSOfv5HHb1UbY7XYoFAoUFRXhxIkTPX5O7elL1590XV+6/k6nE9FoFJNHAf8vfsxTyImfrX6/HxaLpeMX6AGhUAgOhwOCIMDni+AVVwxBtuwYw/8t4D8WpbYd6EvXP9OVl5ef8TlnFSQlUuBUKunbDQYD2traxH/7fD5xx2K9Xi9u4iV/XK/Xw2AwIBqNJs0Mne57Ez+jo+nRpUuX4oYbbkj+JdNoJqmmpgYDBgzI+B3d5aPDg/MC+Dx+3G3UiHsM2Ww25OXlpeT8mpubxRnF9W/X4puL2HuViwm4qhUY/b2BAFiaXW/tidSXrj/pur54/eWzxYOMfuyNH3fp1EntQE+ntbW1tSEUCkGn08HtDeEVTwie+NrDsiPAMzf1h0HPArh+/fqlJLW2L15/0nl98fqrVCr4fD7YbED+hzVosQKOEiA3Nx9arQo6nQ4DBw7stfOJRqM4ceKEWIDp7tXVqJ3O/q/zm4HfXWKBzcY2iS8uLkZOTk6vnVtfvP7ZoMtBUiQSwQcffIBnnnkm6Xh5eTkqKiowY8YMAMCRI0cweDD7lBo8eDD+8Y9/iM8NBAKora3F4MGDkZOTA6vVioqKCowZM6bd762oqBC/9+jRo+jXr1+Hi201Gk1aBESno1AoMv4mUSgUUKvV4Hkec6bl4bUAG8F1F3Bi8BSJRFLyewaDQbhcLnAch1ZXCG9qBURV7JzO3yXg1p8NAsDeKzabrdfPsS9cf3L2+tL112g0UjswNQ9v8l4AgLtQIbYD4XC4R3/fcDiMpqYm8efdv6ERtVPZz8trAR4YaYLRwD4TCgoKYDabe+xcOqMvXX/SdX3p+uv1ejHrx9IAtFiBkA741yfNWDinBJFIBBzH9Vp5/aamJvA8D47j8Oe/HsdX09jPVUQF/MDBYehl0lYfqRrA7UvXPxt0+Urt3LlTLLAgN3/+fLz55puoq6tDc3Mz1q9fj3nz5gEAJk6ciEAggI0bNyIcDuOVV17B6NGjUVJSIn7vyy+/DJ/Ph/3792PHjh2YM2cOAGDu3LnYtm0bDh8+jLa2Nrz66qvi65LUSgSqo4fnwcIK2sBRCoRCbOFmKhZtnrxx3PL/14DGfuyxonpgxbVSRZvi4mJqrAg5R4mU2nHnWWBpYcd6qx2IxWKor68X8/x/90IlDsQDJFVEwNVNwPix+QBYqnZ+fn6PnQsh2SZpY3mXtNZmbwULnGKxWK9t2eLxeMR020NHXNg0QAFBwYKk8Z/FcNu1bEYrMThKSGd0uYe4efNmXHHFFaeMDMyYMQM/+tGPsGTJElxzzTWYPn06rrrqKgDsTfnEE09g/fr1uPTSS/H111/jkUceEb/3jjvugMlkwty5c7Fs2TIsW7YMgwYNAgAMHToU99xzD371q19h/vz5KCoqws0333wOvzLpLvIGMr+R/R3SAR/sZGsUQqFQ0l5ZvcHpdIppdq+8fgLfTGXvU2VUwKIAB2s+VbQhpDvJZ/Xz69nfQT2wdQdbs9iT7UBTU5MYhL3+bi12TJKSI6buiuLWeMdIrVajuLiYNowlpBvJ+wAlKilIahKkgim9MViamE0GWNn/x/d44IqPhwysAJ64pT8Aqdw3DY6Szupyut2qVas6fGzp0qVYunRpu4+dd955eO2119p9TKfT4dFHH+3wdRcuXIiFCxd27URJjzt1FIk1PF9858f82dIoUm+lPwYCAbS0sKFshzOId3KBWHzjuAt2xXDj3WXieVut1g5fhxDSeUn7pbiiAFgH6YujASycw9qBcDjc7UVcWltbxZHjo5Ue/K8mJm4SPXKvgMdlG8b269eP9kEhpJup1WooFArEYjFMHmnAJrABSo9sc+lQKNSjKa6Jct+J2eTfvliNipmsa2vwAXeV6sT1iAUFBbQvGukSCqfJWZN3eooV0ihSo5DcQPaGWCyGxsZG8d8Pvd4obiBZegJYsaQUgDSSRCPKhHQPeaejVC3NGNm5nmsHAoGAWF2T56N4ZJcLzUXsseJa4PErbeKGscXFxSmrsklIX8ZxnHhvXTa9EDq2TSJaSqTn9PReac3NzeLPeHtLHXZPlsb+L/6axyXTWGqdwWDo9Up7JPNRkETOWmIUCQCmjDKIx08eReoNDodDTLN7/m/HsT+eZqeKCLhOoRQ3jrNardRhIqQbqdVqcZZm1jhpxNhtldqB7uwo8TyftGHsr188gQpW8wcGP3CHQYNiG0ulzcvL69UKVoRkm8TnqUqlRGE83dZlAb451AqgZ/sAfr9fzB5xtoTwVz4qziaP+kLA7+9iBcCUSiUNjpKzQkESOWsdjiIVS8/p6VEkgDWULpcLAFBb78PmYmnB5oTdMSxawCo36HQ6WrhNSA9ItAPTJubDxArcobmUzfIA3ddRSqTW8DwrCvHsuuP4crr0MTbnAI+5l7IGSK/X0wJtQnqYfCY5t1nKKPngczcANqgRjUa7/edGo1E0NDSI/17+fw1oGMC+LmwEHplfID5WXFyctGUNIZ1FQRI5J+2OIuX3zigScGqa3cPvNcPJtkhA/yrgcdmCTVq4TUjPSHSUVColCurYsTYz8OkXrOxld7UDzc3NYsnhj3bZsWmorILVpzEsu00aOS4tLaX7nZAellTAKSwFSdVe6eueGCxtbGwUB0uefKUK31wkVbVc7OPQv5TthZaXlweTydTtP59kBwqSyDlJWrTdwShSoiHrCXa7XSwx+szaKhyczDpFmjCwxKhOWrBJaXaE9IykdsAptQM797PNv6PR6DmXAvZ6vUmpNc/Zg2iLZ/eVfws8e6s0IFJaWkojx4T0Ao1GIw5GjCyS7jmXqecq3LlcLrS1sbZl79dO/Gu49LMm7orixh+xKSWtVituLEvI2aAgiZyTpPK/HYwi9dRsks/ng9vNgrFj1V5sGyRrKHfzWDiHrR7V6/W0YJOQHiRvB4o56d6vi3TPuqRwOJw0Y/ybNxtRN4h9ne8Ell9ghlbLOmgFBQUwGAztvAohpLslNpYHgCtn26CIsrWC7iJpFrc7+wChUAh2ux0AS+d95pAP3viyw/LDwKrbWdl/KvdNugO9e8g5ScUoEsBGpuWdpke3taA1vtyo7CjweLyhVCgUlGZHSA+TF3GZNEzaf6w7irjEYjHU1dWJJX6XP1eJQ5OlwiyLW4AxI9kgCG0YS0jvSwySFFp1KLCze9NRJKDVxe757l6TmCja8pvV1agczR4ze4BfjTCKgyWFhYWUPULOGQVJ5Jz09ihSgt1uF9P4Vq6pxOFJ7Odpg8AtNk3SqHJv7dNESLaSF3GZM1Mq4uIslZ5ztjNJjY2NYuXKv71Vg0+nSIMx03dH8dNFbEBEo9GguLi43dcghPQceTCS18j6AFEVh/e2sxmfcDjcLRtKOxwOsT+x4Z81+GKaNBg7+zCPCy9g+x+aTCbKHiHdgoIkcs7ko0iFTfFRpGIBzpbuHUVK8Hq94iaSBw634sMRUqdp8hc85sxiHSWDwYC8vLxu/dmEkPYlOkparSqpFPC/97N1RGfTDrS0tMDrZeXyDh1xYUOugEh8zGPUFwJW/pwValAoFCgtLaUNYwlJgaQgqU1Ktz1Yz9YhCoJwzv0An8+H1lZWEKrRHsBrWgG8mvU3xuyWiraoVCoaLCHdhoIkcs6SFm03xUeRlBw2f9S9o0gAS7NramoS//3kbg88uezr8m+Bx+4sA0BpdoT0tqRSwA6po7TtLIu4+P1+NDc3AwBCIR4r9nrQEq/qW3oCWPXDIvG5RUVFlFpDSIrI770BsuWAzeru2TOR5/mkct+//acd9viGtcV1wMprpN1ri4uLabCEdBsKksg5SxpF8kr7IRzoxlGkhKamJnHPhUdWV+LIeBYEGfzAXeV6qFSscbTZbGIaICGk58nbgcKIFCSdCEjP6WzKXaJTlBhcuXdNjbj2wNgG3JWnRaGVBWUWi4U2jCUkhVQqlVhN8tKJ0r3otZ57kCQIAhobG8XP/RV/kdYkasLADYIS1nzW9uTn58NoNJ7VzyGkPRQkkXMm7xwNNEkzN85uGkVK8Hg8YurNv/e34JOxUprd1H08Zk5hpT6NRiNyc3PP+ecRQjpPq9WKM7fnl0kDFO6crhVxEQQB9fX14qzTE69UYV98w1guJmDud1FcPpPNIun1eirxS0gaSPQDJo6zIodNHsPRDRtKu1wu+Hw+AMDOzx348DxZev1uPmmz+IKCgnZfg5CzRUESOWfyUaTZk6TgxFPQfUESz/PJZT+/bhP3SBlyAPjjHSzNTqlUUj4yISnAcZxYJOXK2UVQs1oLaJEyYTo1k+RwOBAIsOmnf+1oxNaRSnHD2Ak7Y7jv5nIArN2hDWMJSQ/ywVJrfE2i33huG0oHg0E4HI749/P4c3UAvvi+sEMOAI/fJaXXl5SUUFtAuh0FSaRbJBrI8WPzketix5plo0jnuuO2fLr94b9Uo2IsO27yAr88z5iUZkebSBKSGol1SSajBrb4EgKnje1jBpy5o+TxeMTF2Q5nEKvdYbFTNPgQ8PRtbJNI2jCWkPQiD5JyWs59Q+lYLJaUcnv/mhpUD2eP5bYCvxlvTvrcpyq2pCdQkES6hbyBzI93jvwG4KNdiYXXobMu3uB2u5Om23ddICsBvD+SVPaT1iYQkjpJRVzs0v2+6WM2mhyJRMTBjpOFQqGkoiwPvN2EBlbdG1YH8PvJuUl7oOj1+vZehhCSAvJ73wYpSGoIn912IHa7XSz9/+rrJ7DvIlnK7fEozh/NSnybzWZKryc9hoIk0i06GkXafYgFN7FYrEuVrRIikUhSmt0LxwLwx9dlDv8KePiuIQBYml1RUVEHr0II6Q3yCnf5ASkYqnRLbUJ7HaVoNIr6+npxw9jfPFeJbydJi7Ov93EYMYR1hMxmM+2BQkiakW8sP36w1A6487q+sbzX64XbzRY2Vde24S0Lq5gLAOfvEnDPTSzlVq1W0+c+6VEUJJFuIe8cFXGyUSReGkXqaspdoqpNouP02xel3bVz3MD9U8zSzywqotQbQlJMPlgyqki6H1tNUkfp5HYgcZ/LR413TZWeP+NzHtd/n6XZ0YaxhKQn+YbSV1xcCE18TWKrLIbpTB8gEokkzSg/vNUJp419XVoNrPpJifjzSkpKqNw36VEUJJFuoVaroVCwt9OEIVLA5DmLUaQEt9sNv98PANj2SRM+nyR1ui4+zGPMSDaanJOTA7PZ3O5rEEJ6j0KhENcGLLzMBkWUpdy5ijtOuWlpaUFbG1u38M2hVrxRAHGTyPP2CFhxt7RhbL9+/cR2hhCSXhJBkkGvRqFsTWJVJ9cknlzu+/cvVOLwRNYWaIPALSYNcs1SuW9KuSU9jT5tSLeQV7aaM7MQ2viAUYts0LcrQVI4HE6qavNyYwjBeHs4cq+A5bdLu2vbbLZz/wUIId0iMatcaNXB1sg6OI4iAY12VrFOPprs8/ngdLL1Sv5ABI/v96KVLTFE/yrgycVSA1JcXEyLswlJY0lp97I1iZs/bQFw+jWJABswSQyM/mtHIz4dL1t//CWP+bNZe6DX62G1Wrv13AlpDwVJpNvIR5EKGtmxlgLgaKUHQOeDpJPT7JavOSFWtclrAZZfIq1HKCoqoul2QtJI0ubSTayjFFNyeO8jNugRDocRi8UQiUSSqlfdt7YOx0ey7zN7gF8U62DJk0aNabaYkPQmT7u3BKVg6Fir9HUirfZkgUBAHDBp84XxF2cYAQN7bPhX0jYfVO6b9CYKkki3kTeQuQ5pFOn9zzo3ipTgcrnEfVI2bW/El5Ol0aTLj0cxbDCrYJebmwuTydQt504I6R7ydiCvTbrfDzdJhVuCwSDq6+vF9uCxv1Ti3/ENYxVRAQsqY5g1lc0QGwwG2iSSkAwgn+kdZpG6l626jtckAqeW+35gXR1qWbII8p3AQzPzxHLfRUVFUKvVp7wGIT2BgiTSbZLKgMsrW7WevrKVnDzNzh+IYJ07jHD8ZUd/LuDepVJVm8LCwu46dUJIN5G3A0NkHaUWvdRRamhoEDtLm7Y3YttYaSBk0s4ofvnTQQBYOi2NGhOSGZRKpRjAXDFDSofz2E5fBrypqUncQ+n5vx3Hvy+SBkwWNgniwGhOTg5t80F6FQVJpNvIO0dDC6QOUauhc8UbBEFIGk168JUa1CRGk5qB38+TGl1KsyMkPck7SgtmSvesS9ZRSmwHUNfox5qglFYzdD/w9F0srYY2jCUk8yT6AeVlZljZ7h1wlLBBT+DUPoDH44HHw1Lyvzvmxnv9FBAU8VLin8Vw53WsPaBy3yQVKEgi3UZe2WrBxQXgYizYcZ9hFCmhpaVFHF1+Y1Md9sXLAHMxAXPrYijrz1Lr8vLyYDQae+R3IIScO3lHqSDeUbKXCnB7pfuf56P47WYHGvuxfxc2AQ/PtIhpNTabjapXEZJhktYlxdcmhzXA+x8nCjFJG8uHw2Gx3DfPR7Fipxut+ex7BhwDnrilPwBpwIQqW5LeRu840q0SnaP+pUYUOOKVrUqkzlFH+ySEQqGkRZsb+KhYBnjM5wJ+sWQQAEqzIyQTJHWU4qWAeTWHTdvt4vEHVlfjuwlSed8lESWGlLHiDDk5OcjLy+u18yWEdA95RkmuW0q731fJPvsFQUA4HD6lQNNDL1bj6Dj2XIMfuNOmhUHPZqQLCgqS2hRCegsFSaRbJVW2io8i8WoOmz9inaNE4yh3cprdsrV1qGcz7ChsAh75oTTFXlxcTKNJhKS5pHbAI3WUvqlhKTcvbajGnoukdNmL9/FYtKCf+L2UVkNIZpLf+6Ua6bPeIetuJgZFEwWaNv6rAbsvlNJqZ34VwewZrA0wGAywWKSKtoT0Juptkm6VNIok6xztP8E6R4lRJDmn0ymm4f3tHzX4ahp7W3IxAQtbgGIbS7mxWCwwGAw9ev6EkHMnH/UdKLtlm9UK7P3aibdLOERVbBZp7O4Y/ngXW3yoVCoprYaQDKZWq8X1wheNlarPeqzSPe1yucTMkVZXCGuDEYTiTcbILwU8fNcQAKw9oMItJJXok4h0K3nnqJ9sdrxZkTyKlBAMBtHSwkqEt7pCeFMriJ2n83cJuO3agQBYaVEqA0xIZlCpVGLBhTlT8sTjriIFnjzqgys+MDzgGPDk9SXi47RhLCGZLzFYOuNCK4xt7JhTus3FGSQAWLahAQ3sYx4FTcB/zpM+54uLi6lwC0kpCpJIt1KpVOIo0qwLpFEkd4H0VkusSzo5zW75/2sQF3EX1QMrrmWtKsdxlGZHSIZJdJTGnWdBHhsHQW05UD2MfZ3jBu4dZECumT3ParXSvmeE9AGJe1+lUqIgvibRkwvs/dqZ9Lyn11bhm3i5byUvYJGHrWcGWIEmag9IqlGvk3S7RAM5+YJ8mLzsmLOEVa8BpJmk5uZmMfXulddP4JupbAZJGRWwKMDBms9eJz8/n6pcEZJh5LPK1vrkx5RRAVediGHKBDZqbDQaYbVaQQjJfPK0+xyntE/ih3s94tdfH2zF1iHSusSJn0Xx00VS5ggVaCLpgIIk0u2SRpHinaM2M7BnHxtODoVCCAQCYpqdwxnEO7lATMmCpAt2xXDjjwaIr0WdJ0IyT9L6RFc06bELd0Zx942DALA1DLTugJC+Q37vWyNSkFTjZ3/zfBRPfOOFJ5f9e9B3wBO3swCJyn2TdELvQtLt5CPI8lGkT75m00rRaBT19dLQ8kOvN8JezL4uOQGsWFIKQEqzo84TIZlH3g4Mk21rNvwr4MmTNoyljaEJ6Tu0Wq34uX1eP7V43GVm9/kDL1ajcjQ7ZvICvxish1bL1h4VFhYmBVmEpBIFSaTbyRu4gpgUJNWGpGCH53kAwAvrq7E/nmanigi4llMkrVGgvREIyUxqtVpsC+65qRwX7eAx8ZMoVs0rFDeMLSoqonuckD6G4zhpY/lLbVDybN2xqwh4bWMNvpgiFWOY/S2Piyax1Dqj0UjlvklaobIhpNtpNBpwHAdBEDCuTIPtYIGSJyd5tLi23odNRRyEeKg+YXcMi3/ORph1Oh3y8/N79bwJId0rPz8fDQ1s5fbTvxic9Fhubi5yc3NTcVqEkB6m1WoRCoVgydOisIlDYz+g2SZggx2IxAtYjtkTw4O3s3ZBpVKhuLg4hWdMyKloJol0O47jxBHk+ZfaoIqwUaTWk9q/h99thjO+NrN/FfD4Lf3F76c0O0IyX05ODoqKik65l61WK20YS0gflrShdBPrA8SUHOzxUuBF9cBjV0udAir3TdIRvSNJj9BqtQgGgzAZNbA1cKgfCDgLBdTW+9C/1Ihn1lbh4BQ2s6QJA0uMahj0LHe5oKCAcpIJ6SPy8vJgNpsRCAQgCAL0ej11hgjp45IKt7RFIe9uqsPA9VEFCq0s1dZiscBoNJ78EoSk3Fl9Uq1btw5///vf4fV60b9/f7z00kv485//jM2bN4vPCYfDuOiii/Dss88CACZNmgSdTieOKC5duhQ333wzALZvzooVK/Dxxx/DbDbjF7/4BebOnSu+1saNG7F69Wr4fD7Mnj0by5cvh1qtBklfSSVA7QLqB3IQFBze+7gZl18Uw7ZBstKfu3ks/AWrbKPX6yknmZA+RqlU0p4nhGQR+VrDQWYOe2SPXbibx+J4+q1Wq6Vy3yRtdTlIeu211/DZZ5/h5ZdfRnFxMY4dOwaNRoPly5dj+fLl4vNuuOEGXHzxxUnf+/bbb6OgoODkl8RLL70Et9uNTZs24dixY/jlL3+JUaNGoaysDBUVFXj22Wfx3HPPYeDAgbj33nvxyiuv4M477zyLX5f0FnmQZPFLo0hHm6PYs60FrZNYsFx2FHg8XvpToVBQmh0hhBCS4ZRKJVQqFXiex8JLC/BubSt8JmDIAWBVvLqlQqFAaWkpfeaTtNWlNUnRaBRr167FQw89JO5rMXTo0FNSo6qqqlBVVYXLL7+8U6+7adMm3H777TCZTBg3bhxmzZqFrVu3AgC2bNmCOXPmYPTo0TCZTLj11luTZqxIepK/J4ZYpLdZxVAVvo0HSNogcItNI5b+LCgoECviEEIIISRz5eTkAACGlJlxSzOH2Z/y+POCIrG6pc1mo898kta6NJNkt9sRCoWwbds2vPbaazCZTLj++uuxaNGipOdt3rwZM2bMOCW94sYbbwTHcZgyZQruuece5OXlwePxwOl0YujQoeLzhg8fjoMHDwIAKisrMW3aNPGxYcOGoa6uDsFgsN3SseFwGOFwOPmXVKnS4kaMxcthx2RlsfsqjuOgVCrB8zyumJGPv7ldAICmUuk5kz/ncfnPB0AQBBgMBuTk5PTp/5tsuv7kVHT9sxtd/+yWjdc/JycHra2tiMViuPaq/uJxQRBgNpthNpuz5v8jG69/uuvMhsVdDpLa2tpQW1uLd955B3V1dfjZz36GQYMGYdKkSeLz3n//fdxzzz1J37tmzRqMHTsWXq8Xq1atwiOPPIJnnnkGfr8fSqUyKeAxGo3w+9nWzIFAIGlBXyLwCgQC7QZJa9euxZo1a5KOXXPNNVi8eHFXftUeVVNTk+pT6BWtra0IBAIw64H8Y0CLLNNy0GHglz/SwW63Q6FQoKioCCdOnEjdyfaibLn+pH10/bMbXf/slo3X3+VyiYPXHMfBbDZDo9Gguro6xWfW+7Lx+qer8vLyMz6nS0FSIoXq9ttvh06nw5AhQzB//nzs3LlTDJK+/vpreDweTJ8+Pel7x48fD4BVMbnvvvuwYMECRCIRGAwGRKPRpJkhn88Hg8EAgC3k9/l84uu0tbWJx9uzdOlS3HDDDcm/ZBrNJNXU1GDAgAGdimAzndFoREtLCwAgv6FGDJIMfuBng3QoLWWLNYuKirJiv5Rsu/4kGV3/7EbXP7tl+/XneR48z0Or1WblGqRsv/6ZqktBUllZ2Rmrym3ZsgWXXXbZaYOSxBtEEATk5OTAarWioqICY8aMAQAcOXIEgwezyieDBw9GRUWF+L1Hjx5Fv379OtylXaPRpEVAdDoKhSIrbhKDwYDW1lYAQGErj4r4223qPh4z77YByM4dtrPl+pP20fXPbnT9s1u2Xv9M6Jv1hmy9/pmqS1dKr9fjsssuwyuvvIJwOIzjx49j8+bN4qwRz/P417/+lVS+GwCOHTuGI0eOIBqNwuPx4Omnn8aUKVPEG2b+/Pl4+eWX4fP5sH//fuzYsQNz5swBAMydOxfbtm3D4cOH0dbWhldffRXz5s3rjt+d9DCDwSA2Bn+4qR8m7+Dxvc94/PEOVtlGqVTSDtuEEEIIISTtdLkE+AMPPIBHHnkEl19+OXJzc3HrrbeKqXa7d++GVqvFhAkTkr6npaUFjz/+OOx2O4xGIyZPnoyHH35YfPyOO+7Ao48+irlz5yInJwfLli3DoEGDAABDhw7FPffcg1/96lfiPkmJ/ZVIelMoFMjLy0NLSwtyzVr8V3xfBIDlJRcVFdGmkoQQQgghJO1wgiAIqT6JbBGLxVBdXY2ysrKsmW4VBAFOpxNOp1M8ltgPyWw2p/DMel82Xn8ioeuf3ej6Zze6/tmNrn9momF80qM4jkNBQQEsFguCwSA4joNer8/KhZuEEEIIISQzUJBEeoVSqUwq5U4IIYQQQki6ojk/QgghhBBCCJGhIIkQQgghhBBCZChIIoQQQgghhBAZCpIIIYQQQgghRIaCJEIIIYQQQgiRoSCJEEIIIYQQQmQoSCKEEEIIIYQQGQqSCCGEEEIIIUSGgiRCCCGEEEIIkaEgiRBCCCGEEEJkKEgihBBCCCGEEBkKkgghhBBCCCFEhhMEQUj1SRBCCCGEEEJIuqCZJEIIIYQQQgiRoSCJEEIIIYQQQmQoSCKEEEIIIYQQGQqSCCGEEEIIIUSGgiRCCCGEEEIIkaEgiRBCCCGEEEJkKEgihBBCCCGEEBkKkgghhBBCCCFEhoIkQgghhBBCCJGhIIkQQgghhBBCZFSpPoG+KBwO4/HHH8eePXvg8/kwYsQI/OY3v8HQoUPF5/A8jxtuuAE8z+PNN99M4dmS7nam679//348/fTTOHbsGMxmM371q19hzpw5KT5r0p1O9x4Ih8NYuXIlduzYAUEQcNFFF2H58uXQ6/WpPm3SjVasWIEdO3YgGAyiuLgYP//5zzFz5kwAwLp16/C3v/0NsVgM3//+9/Ef//Ef4DguxWdMulNH13/jxo3YsGEDamtrYbFY8JOf/ASLFi1K9emSbna6+x+gPmDGEEi38/v9wpo1a4TGxkaB53nhf//3f4Wrrroq6Tnr168Xbr75ZuFHP/pRis6S9JTTXX+HwyHMnTtX+OSTT4RIJCK0trYKNTU1KT5j0t1O9x7461//KvzkJz8RXC6X0NbWJvzsZz8TXnjhhRSfMeluVVVVQigUEgRBEA4cOCBcfPHFgtvtFj755BNhwYIFQk1NjeBwOIRFixYJb7/9dorPlnS3jq7/G2+8IXzzzTdCJBIRKioqhDlz5gh79+5N8dmS7tbR9U+gPmBmoHS7HqDX63HrrbeiqKgISqUSP/7xj1FfXw+XywUAcDqd+Mc//oGlS5em9kRJjzjd9V+/fj2uvPJKzJgxAyqVCnl5eejfv3+qT5l0s9O9BxoaGjB9+nTk5ubCaDTikksuQWVlZapPmXSzQYMGQaPRAAA4jkM4HEZzczM2bdqERYsWoX///igoKMCNN96IzZs3p/hsSXfr6PpfffXVGDt2LFQqFYYMGYLJkyfj0KFDKT5b0t06uv4A9QEzCQVJveCbb75Bfn4+8vLyAAB//vOfsXTpUuh0utSeGOkV8ut/6NAhcByHxYsX44orrsDvfvc7eDyeVJ8i6WHy98CVV16Jffv2obW1FV6vF9u3b8eUKVNSfYqkB6xcuRLTp0/HkiVLMG3aNAwePBhVVVVJqdfDhw+nILmPau/6y0WjURw8ePCU46Rv6Oj6Ux8wc1CQ1MPa2trw2GOP4Wc/+xkA1lk6ceIE5s2bl+IzI73h5OvvcDiwZcsWPPnkk3j77bcRjUbx9NNPp/gsSU86+T3Qv39/mM1mfO9738Nll10GhUKBH/zgB6k9SdIjli1bhh07duD555/HhAkTAAB+vx8mk0l8jtFohN/vT9Upkh7U3vWXW716NQoLCzFt2rQUnB3pae1df+oDZhYKknpQKBTCvffeixkzZuD73/8+YrEYnnrqKdx77720SDcLnHz9AUCr1WLhwoUoKysTU7J27tyZ4jMlPaW998DKlSuh1+vx0UcfYfv27cjLy8MzzzyT4jMlPUWpVGLKlCn44osvsGvXLhgMBrS1tYmP+3w+GAyGFJ4h6UknX/+EN954A9u3b8cTTzxB/YE+7OTrT33AzELV7XoIz/NYvnw5CgsLcc899wBgH4aHDx/Gr3/9awBAJBKBz+fDFVdcgX/+85809dqHtHf9AWDIkCFJzxMEoZfPjPSWjt4DFRUVuO+++2A0GgEAV111Fc0mZoFYLIba2lqUl5ejoqICM2bMAAAcOXKE0q2yQOL6A8DWrVuxdu1arFmzRkzDJ31bLBbDt99+S33ADEMzST1kxYoVCIVCePjhh8URA5PJhE2bNmH9+vVYv349HnroIZSWlmL9+vXQarUpPmPSndq7/gBw5ZVXYuPGjaitrUUwGMS6devEzhLpWzp6D4waNQrvvfcegsEgAoEA3n333VOCZ5LZ/H4/Nm/eDL/fD57n8cEHH2Dv3r0YP3485s+fjzfffBN1dXVobm7G+vXrKfWmjznd9d+9ezeefPJJ/OlPf0JpaWmqT5X0gI6u/6xZs6gPmGFoJqkHNDQ0YOPGjdBqtbj00kvF4//93/+N8ePHi//OycmBQqFAQUFBKk6T9JDTXf+pU6fi+uuvxy233AKe5zF16lTcf//9KTxb0hNO9x745S9/iZUrV2LBggUAgHHjxuHBBx9M1amSHsBxHP75z39i1apVEAQBAwYMwKOPPoqhQ4di6NChOHr0KJYsWYJYLIYf/OAHuOqqq1J9yqQbne76P/nkk/B4PLj55pvF58+bNw/Lly9P4RmT7nS66y9HfcD0xwmU70MIIYQQQgghIkq3I4QQQgghhBAZCpIIIYQQQgghRIaCJEIIIYQQQgiRoSCJEEIIIYQQQmQoSCKEEEIIIYQQGQqSCCGEEEIIIUSGgiRCCCGEEEIIkaEgiRBCSMb68ssvMWnSJEyaNAn19fWpPh1CCCF9BAVJhBBCMsLDDz+MSZMm4fbbbxePmUwmjBkzBmPGjIFGo0nh2RFCCOlLVKk+AUIIIeRsjRw5EuvWrUv1aRBCCOljOEEQhFSfBCGEEHI6CxcuRENDwynHX3zxRdx5550AgHfeeQelpaV4+OGH8e6776KkpAR33HEHVq9ejba2Nlx11VW4++678fzzz+Odd96B2WzGTTfdhEWLFomv53A48MILL2DXrl1wuVwoKirCwoULcdNNN0GlonFFQgjJFtTiE0IISXsjRoxAIBCAy+WC0WhEeXk5AODw4cMdfk9zczNWrlyJgoIC+Hw+bNiwAbt374bdbofJZEJjYyOeeOIJTJw4EeXl5XC5XLjpppvQ1NQk/ozKykq8+OKLqKurwx/+8Ife+nUJIYSkGK1JIoQQkvaeeuopzJgxAwALmNatW4d169Zh5MiRHX5PJBLBc889h7feegtFRUUAgJqaGmzYsAFvvPEGtFotYrEY9u7dCwB4/fXX0dTUBKvVirfffhsbNmzAqlWrAADvvvsuampqevi3JIQQki5oJokQQkiflJOTgwsuuAAAUFxcjKamJgwZMgSlpaUAAIvFgsbGRrS0tAAADh48CABwOp2YM2dO0msJgoADBw5gwIABvfcLEEIISRkKkgghhPRJRqNR/FqpVJ5yjOM4ACwAkv8tT+eT0+l0PXauhBBC0gsFSYQQQjJCIkgJBoM98vrnnXcePvvsMyiVSjz22GPijJPP58OHH36ISy+9tEd+LiGEkPRDQRIhhJCMMGjQIADAoUOH8OMf/xh6vR633XZbt73+4sWL8c9//hN2ux1XX301ysvL4fP50NTUBJ7nceWVV3bbzyKEEJLeqHADIYSQjHDVVVdh9uzZMJlMOHbsGA4cOIBYLNZtr2+xWLB27VosXLgQubm5OHbsGEKhEMaPH49f//rX3fZzCCGEpD/aJ4kQQgghhBBCZGgmiRBCCCGEEEJkKEgihBBCCCGEEBkKkgghhBBCCCFEhoIkQgghhBBCCJGhIIkQQgghhBBCZChIIoQQQgghhBAZCpIIIYQQQgghRIaCJEIIIYQQQgiRoSCJEEIIIYQQQmQoSCKEEEIIIYQQGQqSCCGEEEIIIUSGgiRCCCGEEEIIkfn/SHlRKtFAOVMAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -756,7 +778,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.10.14" } }, "nbformat": 4, From 0d5c7220ff229700df03c2ff36e87a78646d0031 Mon Sep 17 00:00:00 2001 From: Cristof <45030708+cristof-r@users.noreply.github.com> Date: Mon, 8 Apr 2024 18:07:26 +0200 Subject: [PATCH 027/161] Implement TSMixer Model (#2293) --- .github/workflows/merge.yml | 2 +- .gitignore | 1 + CHANGELOG.md | 7 +- README.md | 1 + darts/models/__init__.py | 1 + darts/models/forecasting/__init__.py | 1 + darts/models/forecasting/tsmixer_model.py | 846 ++++++++++++++ .../test_global_forecasting_models.py | 11 +- .../forecasting/test_historical_forecasts.py | 12 + .../forecasting/test_probabilistic_models.py | 19 + .../test_torch_forecasting_model.py | 3 + .../tests/models/forecasting/test_tsmixer.py | 371 ++++++ docs/source/examples.rst | 10 + docs/userguide/covariates.md | 1 + docs/userguide/torch_forecasting_models.md | 1 + examples/21-TSMixer-examples.ipynb | 1025 +++++++++++++++++ 16 files changed, 2307 insertions(+), 5 deletions(-) create mode 100644 darts/models/forecasting/tsmixer_model.py create mode 100644 darts/tests/models/forecasting/test_tsmixer.py create mode 100644 examples/21-TSMixer-examples.ipynb diff --git a/.github/workflows/merge.yml b/.github/workflows/merge.yml index d8b5ae732f..87bc82f63b 100644 --- a/.github/workflows/merge.yml +++ b/.github/workflows/merge.yml @@ -87,7 +87,7 @@ jobs: runs-on: ubuntu-latest strategy: matrix: - example-name: [00-quickstart.ipynb, 01-multi-time-series-and-covariates.ipynb, 02-data-processing.ipynb, 03-FFT-examples.ipynb, 04-RNN-examples.ipynb, 05-TCN-examples.ipynb, 06-Transformer-examples.ipynb, 07-NBEATS-examples.ipynb, 08-DeepAR-examples.ipynb, 09-DeepTCN-examples.ipynb, 10-Kalman-filter-examples.ipynb, 11-GP-filter-examples.ipynb, 12-Dynamic-Time-Warping-example.ipynb, 13-TFT-examples.ipynb, 15-static-covariates.ipynb, 16-hierarchical-reconciliation.ipynb, 18-TiDE-examples.ipynb, 19-EnsembleModel-examples.ipynb, 20-RegressionModel-examples.ipynb] + example-name: [00-quickstart.ipynb, 01-multi-time-series-and-covariates.ipynb, 02-data-processing.ipynb, 03-FFT-examples.ipynb, 04-RNN-examples.ipynb, 05-TCN-examples.ipynb, 06-Transformer-examples.ipynb, 07-NBEATS-examples.ipynb, 08-DeepAR-examples.ipynb, 09-DeepTCN-examples.ipynb, 10-Kalman-filter-examples.ipynb, 11-GP-filter-examples.ipynb, 12-Dynamic-Time-Warping-example.ipynb, 13-TFT-examples.ipynb, 15-static-covariates.ipynb, 16-hierarchical-reconciliation.ipynb, 18-TiDE-examples.ipynb, 19-EnsembleModel-examples.ipynb, 20-RegressionModel-examples.ipynb, 21-TSMixer-examples.ipynb] steps: - name: "1. Clone repository" uses: actions/checkout@v2 diff --git a/.gitignore b/.gitignore index 453913f0b7..1e3939db7f 100644 --- a/.gitignore +++ b/.gitignore @@ -16,6 +16,7 @@ runs/ htmlcov coverage.xml .darts +darts_logs/ docs_env .DS_Store .gradle diff --git a/CHANGELOG.md b/CHANGELOG.md index b2e6da8fd9..258086b94e 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,14 +9,15 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For users of the library: **Improved** -- 🚀🚀🚀 Improvements to metrics, historical forecasts, backtest, and residuals through major refactor. The refactor includes optimization of multiple process and improvemenets to consistency, reliability, and the documentation. Some of these necessary changes come at the cost of breaking changes. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). +- 🚀🚀 New forecasting model: `TSMixerModel` as proposed in [this paper](https://arxiv.org/abs/2303.06053). An MLP based model that combines temporal, static and cross-sectional feature information using stacked mixing layers. [#1807](https://https://github.com/unit8co/darts/pull/001), by [Dennis Bader](https://github.com/dennisbader) and [Cristof Rojas](https://github.com/cristof-r). +- 🚀🚀 Improvements to metrics, historical forecasts, backtest, and residuals through major refactor. The refactor includes optimization of multiple process and improvemenets to consistency, reliability, and the documentation. Some of these necessary changes come at the cost of breaking changes. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - Metrics: - - Optimized all metrics, which now run >20 times faster than before for univariate series, and >>20 times for multivariate series. This boosts direct metric computations as well as backtesting and residuals computation! + - Optimized all metrics, which now run **> n * 20 times faster** than before for series with `n` components/columns. This boosts direct metric computations as well as backtesting and residuals computation! - Added new metrics: - Time aggregated metric `merr()` (Mean Error) - Time aggregated scaled metrics `rmsse()`, and `msse()`: The (Root) Mean Squared Scaled Error. - "Per time step" metrics that return a metric score per time step: `err()` (Error), `ae()` (Absolute Error), `se()` (Squared Error), `sle()` (Squared Log Error), `ase()` (Absolute Scaled Error), `sse` (Squared Scaled Error), `ape()` (Absolute Percentage Error), `sape()` (symmetric Absolute Percentage Error), `arre()` (Absolute Ranged Relative Error), `ql` (Quantile Loss) - - All scaled metrics now accept `insample` series that can be overlapping into `pred_series` (before that had to end exactly one step before `pred_series`). Darts will handle the correct time extraction for you. + - All scaled metrics now accept `insample` series that can be overlapping into `pred_series` (before they had to end exactly one step before `pred_series`). Darts will handle the correct time extraction for you. - Improvements to the documentation: - Added a summary list of all metrics to the [metrics documentation page](https://unit8co.github.io/darts/generated_api/darts.metrics.html) - Standardized the documentation of each metric (added formula, improved return documentation, ...) diff --git a/README.md b/README.md index 1786c968a6..4d482214cc 100644 --- a/README.md +++ b/README.md @@ -255,6 +255,7 @@ on bringing more models and features. | [DLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.dlinear.html#darts.models.forecasting.dlinear.DLinearModel) | [DLinear paper](https://arxiv.org/pdf/2205.13504.pdf) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | | [NLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nlinear.html#darts.models.forecasting.nlinear.NLinearModel) | [NLinear paper](https://arxiv.org/pdf/2205.13504.pdf) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | | [TiDEModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tide_model.html#darts.models.forecasting.tide_model.TiDEModel) | [TiDE paper](https://arxiv.org/pdf/2304.08424.pdf) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | +| [TSMixerModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tsmixer_model.html#darts.models.forecasting.tsmixer_model.TSMixerModel) | [TSMixer paper](https://arxiv.org/pdf/2303.06053.pdf), [PyTorch Implementation](https://github.com/ditschuk/pytorch-tsmixer) | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | | **Ensemble Models**
([GlobalForecastingModel](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms)): Model support is dependent on ensembled forecasting models and the ensemble model itself | | | | | | | [NaiveEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.baselines.html#darts.models.forecasting.baselines.NaiveEnsembleModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | | [RegressionEnsembleModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.regression_ensemble_model.html#darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel) | | 🟩 🟩 | 🟩 🟩 🟩 | 🟩 🟩 | 🟩 | diff --git a/darts/models/__init__.py b/darts/models/__init__.py index edcca507ea..3409aaa2ab 100644 --- a/darts/models/__init__.py +++ b/darts/models/__init__.py @@ -51,6 +51,7 @@ from darts.models.forecasting.tft_model import TFTModel from darts.models.forecasting.tide_model import TiDEModel from darts.models.forecasting.transformer_model import TransformerModel + from darts.models.forecasting.tsmixer_model import TSMixerModel except ModuleNotFoundError: logger.warning( "Support for Torch based models not available. " diff --git a/darts/models/forecasting/__init__.py b/darts/models/forecasting/__init__.py index 9fa591ca27..37a50aa4bc 100644 --- a/darts/models/forecasting/__init__.py +++ b/darts/models/forecasting/__init__.py @@ -46,6 +46,7 @@ - :class:`~darts.models.forecasting.dlinear.DLinearModel` - :class:`~darts.models.forecasting.nlinear.NLinearModel` - :class:`~darts.models.forecasting.tide_model.TiDEModel` + - :class:`~darts.models.forecasting.tsmixer_model.TSMixerModel` Ensemble Models (`GlobalForecastingModel `_) - :class:`~darts.models.forecasting.baselines.NaiveEnsembleModel` - :class:`~darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel` diff --git a/darts/models/forecasting/tsmixer_model.py b/darts/models/forecasting/tsmixer_model.py new file mode 100644 index 0000000000..0e53080739 --- /dev/null +++ b/darts/models/forecasting/tsmixer_model.py @@ -0,0 +1,846 @@ +""" +Time-Series Mixer (TSMixer) +--------------------------- +""" + +# The inner layers (``nn.Modules``) and the ``TimeBatchNorm2d`` were provided by a PyTorch implementation +# of TSMixer: https://github.com/ditschuk/pytorch-tsmixer +# +# The License of pytorch-tsmixer v0.2.0 from https://github.com/ditschuk/pytorch-tsmixer/blob/main/LICENSE, +# accessed Thursday, March 21st, 2024: +# 'The MIT License +# +# Copyright 2023 Konstantin Ditschuneit +# +# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and +# associated documentation files (the “Software”), to deal in the Software without restriction, +# including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, +# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, +# subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all copies or substantial +# portions of the Software. +# ' + +from typing import Callable, Optional, Tuple, Union + +import torch +from torch import nn + +from darts.logging import get_logger, raise_log +from darts.models.components import layer_norm_variants +from darts.models.forecasting.pl_forecasting_module import ( + PLMixedCovariatesModule, + io_processor, +) +from darts.models.forecasting.torch_forecasting_model import MixedCovariatesTorchModel +from darts.utils.torch import MonteCarloDropout + +MixedCovariatesTrainTensorType = Tuple[ + torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor +] + +logger = get_logger(__name__) + +ACTIVATIONS = [ + "ReLU", + "RReLU", + "PReLU", + "ELU", + "Softplus", + "Tanh", + "SELU", + "LeakyReLU", + "Sigmoid", + "GELU", +] + +NORMS = [ + "LayerNorm", + "LayerNormNoBias", + "TimeBatchNorm2d", +] + + +def _time_to_feature(x: torch.Tensor) -> torch.Tensor: + """Converts a time series Tensor to a feature Tensor.""" + return x.permute(0, 2, 1) + + +class TimeBatchNorm2d(nn.BatchNorm2d): + def __init__(self, *args, **kwargs): + """A batch normalization layer that normalizes over the last two dimensions of a Tensor.""" + super().__init__(num_features=1) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + # `x` has shape (batch_size, time, features) + if x.ndim != 3: + raise_log( + ValueError( + f"Expected 3D input Tensor, but got {x.ndim}D Tensor" " instead." + ), + logger=logger, + ) + # apply 2D batch norm over reshape input_data `(batch_size, 1, timepoints, features)` + output = super().forward(x.unsqueeze(1)) + # reshape back to (batch_size, timepoints, features) + return output.squeeze(1) + + +class _FeatureMixing(nn.Module): + def __init__( + self, + sequence_length: int, + input_dim: int, + output_dim: int, + ff_size: int, + activation: Callable[[torch.Tensor], torch.Tensor], + dropout: float, + normalize_before: bool, + norm_type: nn.Module, + ) -> None: + """A module for feature mixing with flexibility in normalization and activation based on the + `PyTorch implementation of TSMixer `_. + + This module provides options for batch normalization before or after mixing + features, uses dropout for regularization, and allows for different activation + functions. + + Parameters + ---------- + sequence_length + The length of the input sequences. + input_dim + The number of input channels to the module. + output_dim + The number of output channels from the module. + ff_size + The dimension of the feed-forward network internal to the module. + activation + The activation function used within the feed-forward network. + dropout + The dropout probability used for regularization. + normalize_before + A boolean indicating whether to apply normalization before + the rest of the operations. + norm_type + The type of normalization to use. + """ + super().__init__() + + self.projection = ( + nn.Linear(input_dim, output_dim) + if input_dim != output_dim + else nn.Identity() + ) + self.norm_before = ( + norm_type((sequence_length, input_dim)) + if normalize_before + else nn.Identity() + ) + self.fc1 = nn.Linear(input_dim, ff_size) + self.activation = activation + self.dropout1 = MonteCarloDropout(dropout) + self.fc2 = nn.Linear(ff_size, output_dim) + self.dropout2 = MonteCarloDropout(dropout) + self.norm_after = ( + norm_type((sequence_length, output_dim)) + if not normalize_before + else nn.Identity() + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x_proj = self.projection(x) + x = self.norm_before(x) + x = self.fc1(x) + x = self.activation(x) + x = self.dropout1(x) + x = self.fc2(x) + x = self.dropout2(x) + x = x_proj + x + x = self.norm_after(x) + return x + + +class _TimeMixing(nn.Module): + def __init__( + self, + sequence_length: int, + input_dim: int, + activation: Callable, + dropout: float, + normalize_before: bool, + norm_type: nn.Module, + ) -> None: + """Applies a transformation over the time dimension of a sequence based on the + `PyTorch implementation of TSMixer `_. + + This module applies a linear transformation followed by an activation function + and dropout over the sequence length of the input feature torch.Tensor after converting + feature maps to the time dimension and then back. + + Parameters + ---------- + sequence_length + The length of the sequences to be transformed. + input_dim + The number of input channels to the module. + activation + The activation function to be used after the linear + transformation. + dropout + The dropout probability to be used after the activation function. + normalize_before + Whether to apply normalization before or after feature mixing. + norm_type + The type of normalization to use. + """ + super().__init__() + self.normalize_before = normalize_before + self.norm_before = ( + norm_type((sequence_length, input_dim)) + if normalize_before + else nn.Identity() + ) + self.activation = activation + self.dropout = MonteCarloDropout(dropout) + self.fc1 = nn.Linear(sequence_length, sequence_length) + self.norm_after = ( + norm_type((sequence_length, input_dim)) + if not normalize_before + else nn.Identity() + ) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + # permute the feature dim with the time dim + x_temp = self.norm_before(x) + x_temp = _time_to_feature(x_temp) + x_temp = self.activation(self.fc1(x_temp)) + x_temp = self.dropout(x_temp) + # permute back the time dim with the feature dim + x_temp = x + _time_to_feature(x_temp) + x_temp = self.norm_after(x_temp) + return x_temp + + +class _ConditionalMixerLayer(nn.Module): + def __init__( + self, + sequence_length: int, + input_dim: int, + output_dim: int, + static_cov_dim: int, + ff_size: int, + activation: Callable, + dropout: float, + normalize_before: bool, + norm_type: nn.Module, + ) -> None: + """Conditional mix layer combining time and feature mixing with static context based on the + `PyTorch implementation of TSMixer `_. + + This module combines time mixing and conditional feature mixing, where the latter + is influenced by static features. This allows the module to learn representations + that are influenced by both dynamic and static features. + + Parameters + ---------- + sequence_length + The length of the input sequences. + input_dim + The number of input channels of the dynamic features. + output_dim + The number of output channels after feature mixing. + static_cov_dim + The number of channels in the static feature input. + ff_size + The inner dimension of the feedforward network used in feature mixing. + activation + The activation function used in both mixing operations. + dropout + The dropout probability used in both mixing operations. + normalize_before + Whether to apply normalization before or after mixing. + norm_type + The type of normalization to use. + """ + super().__init__() + + mixing_input = input_dim + if static_cov_dim != 0: + self.feature_mixing_static = _FeatureMixing( + sequence_length=sequence_length, + input_dim=static_cov_dim, + output_dim=output_dim, + ff_size=ff_size, + activation=activation, + dropout=dropout, + normalize_before=normalize_before, + norm_type=norm_type, + ) + mixing_input += output_dim + else: + self.feature_mixing_static = None + + self.time_mixing = _TimeMixing( + sequence_length=sequence_length, + input_dim=mixing_input, + activation=activation, + dropout=dropout, + normalize_before=normalize_before, + norm_type=norm_type, + ) + self.feature_mixing = _FeatureMixing( + sequence_length=sequence_length, + input_dim=mixing_input, + output_dim=output_dim, + ff_size=ff_size, + activation=activation, + dropout=dropout, + normalize_before=normalize_before, + norm_type=norm_type, + ) + + def forward( + self, x: torch.Tensor, x_static: Optional[torch.Tensor] + ) -> torch.Tensor: + if self.feature_mixing_static is not None: + x_static_mixed = self.feature_mixing_static(x_static) + x = torch.cat([x, x_static_mixed], dim=-1) + x = self.time_mixing(x) + x = self.feature_mixing(x) + return x + + +class _TSMixerModule(PLMixedCovariatesModule): + def __init__( + self, + input_dim: int, + output_dim: int, + past_cov_dim: int, + future_cov_dim: int, + static_cov_dim: int, + nr_params: int, + hidden_size: int, + ff_size: int, + num_blocks: int, + activation: str, + dropout: float, + norm_type: Union[str, nn.Module], + normalize_before: bool, + **kwargs, + ) -> None: + """ + Initializes the TSMixer module for use within a Darts forecasting model. + + Parameters + ---------- + input_dim + Number of input target features. + output_dim + Number of output target features. + past_cov_dim + Number of past covariate features. + future_cov_dim + Number of future covariate features. + static_cov_dim + Number of static covariate features (number of target features + (or 1 if global static covariates) * number of static covariate features). + nr_params + The number of parameters of the likelihood (or 1 if no likelihood is used). + hidden_size + Hidden state size of the TSMixer. + ff_size + Dimension of the feedforward network internal to the module. + num_blocks + Number of mixer blocks. + activation + Activation function to use. + dropout + Dropout rate for regularization. + norm_type + Type of normalization to use. + normalize_before + Whether to apply normalization before or after mixing. + """ + super().__init__(**kwargs) + self.input_dim = input_dim + self.output_dim = output_dim + self.future_cov_dim = future_cov_dim + self.static_cov_dim = static_cov_dim + self.nr_params = nr_params + + if activation not in ACTIVATIONS: + raise_log( + ValueError( + f"Invalid `activation={activation}`. Must be on of {ACTIVATIONS}." + ), + logger=logger, + ) + activation = getattr(nn, activation)() + + if isinstance(norm_type, str): + if norm_type not in NORMS: + raise_log( + ValueError( + f"Invalid `norm_type={norm_type}`. Must be on of {NORMS}." + ), + logger=logger, + ) + if norm_type == "TimeBatchNorm2d": + norm_type = TimeBatchNorm2d + else: + norm_type = getattr(layer_norm_variants, norm_type) + else: + norm_type = norm_type + + mixer_params = { + "ff_size": ff_size, + "activation": activation, + "dropout": dropout, + "norm_type": norm_type, + "normalize_before": normalize_before, + } + + self.fc_hist = nn.Linear(self.input_chunk_length, self.output_chunk_length) + self.feature_mixing_hist = _FeatureMixing( + sequence_length=self.output_chunk_length, + input_dim=input_dim + past_cov_dim + future_cov_dim, + output_dim=hidden_size, + **mixer_params, + ) + if future_cov_dim: + self.feature_mixing_future = _FeatureMixing( + sequence_length=self.output_chunk_length, + input_dim=future_cov_dim, + output_dim=hidden_size, + **mixer_params, + ) + else: + self.feature_mixing_future = None + self.conditional_mixer = self._build_mixer( + prediction_length=self.output_chunk_length, + num_blocks=num_blocks, + hidden_size=hidden_size, + future_cov_dim=future_cov_dim, + static_cov_dim=static_cov_dim, + **mixer_params, + ) + self.fc_out = nn.Linear(hidden_size, output_dim * nr_params) + + @staticmethod + def _build_mixer( + prediction_length: int, + num_blocks: int, + hidden_size: int, + future_cov_dim: int, + static_cov_dim: int, + **kwargs, + ) -> nn.ModuleList: + """Build the mixer blocks for the model.""" + # the first block takes `x` consisting of concatenated features with size `hidden_size`: + # - historic features + # - optional future features + input_dim_block = hidden_size * (1 + int(future_cov_dim > 0)) + + mixer_layers = nn.ModuleList() + for _ in range(num_blocks): + layer = _ConditionalMixerLayer( + input_dim=input_dim_block, + output_dim=hidden_size, + sequence_length=prediction_length, + static_cov_dim=static_cov_dim, + **kwargs, + ) + mixer_layers.append(layer) + # after the first block, `x` consists of previous block output with size `hidden_size` + input_dim_block = hidden_size + return mixer_layers + + @io_processor + def forward( + self, + x_in: Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]], + ) -> torch.Tensor: + # x_hist contains the historical time series data and the historical + """TSMixer model forward pass. + + Parameters + ---------- + x_in + comes as Tuple `(x_past, x_future, x_static)` where `x_past` is the input/past chunk and + `x_future` is the output/future chunk. Input dimensions are `(batch_size, time_steps, + components)`. + + Returns + ------- + torch.torch.Tensor + The output Tensorof shape `(batch_size, output_chunk_length, output_dim, nr_params)`. + """ + # B: batch size + # L: input chunk length + # T: output chunk length + # C: target components + # P: past cov features + # F: future cov features + # S: static cov features + # H = C + P + F: historic features + # H_S: hidden Size + # N_P: likelihood parameters + + # `x`: (B, L, H), `x_future`: (B, T, F), `x_static`: (B, C or 1, S) + x, x_future, x_static = x_in + + # swap feature and time dimensions (B, L, H) -> (B, H, L) + x = _time_to_feature(x) + # linear transformations to horizon (B, H, L) -> (B, H, T) + x = self.fc_hist(x) + # (B, H, T) -> (B, T, H) + x = _time_to_feature(x) + + # feature mixing for historical features (B, T, H) -> (B, T, H_S) + x = self.feature_mixing_hist(x) + if self.future_cov_dim: + # feature mixing for future features (B, T, F) -> (B, T, H_S) + x_future = self.feature_mixing_future(x_future) + # (B, T, H_S) + (B, T, H_S) -> (B, T, 2*H_S) + x = torch.cat([x, x_future], dim=-1) + + if self.static_cov_dim: + # (B, C, S) -> (B, 1, C * S) + x_static = x_static.reshape(x_static.shape[0], 1, -1) + # repeat to match horizon (B, 1, C * S) -> (B, T, C * S) + x_static = x_static.repeat(1, self.output_chunk_length, 1) + + for mixing_layer in self.conditional_mixer: + # conditional mixer layers with static covariates (B, T, 2 * H_S), (B, T, C * S) -> (B, T, H_S) + x = mixing_layer(x, x_static=x_static) + + # linear transformation to generate the forecast (B, T, H_S) -> (B, T, C * N_P) + x = self.fc_out(x) + # (B, T, C * N_P) -> (B, T, C, N_P) + x = x.view(-1, self.output_chunk_length, self.output_dim, self.nr_params) + return x + + +class TSMixerModel(MixedCovariatesTorchModel): + def __init__( + self, + input_chunk_length: int, + output_chunk_length: int, + output_chunk_shift: int = 0, + hidden_size: int = 64, + ff_size: int = 64, + num_blocks: int = 2, + activation: str = "ReLU", + dropout: float = 0.1, + norm_type: Union[str, nn.Module] = "LayerNorm", + normalize_before: bool = False, + use_static_covariates: bool = True, + **kwargs, + ) -> None: + """Time-Series Mixer (TSMixer): An All-MLP Architecture for Time Series. + + This is an implementation of the TSMixer architecture, as outlined in [1]_. A major part of the architecture + was adopted from `this PyTorch implementation `_. Additional + changes were applied to increase model performance and efficiency. + + TSMixer forecasts time series data by integrating historical time series data, future known inputs, and static + contextual information. It uses a combination of conditional feature mixing and mixer layers to process and + combine these different types of data for effective forecasting. + + This model supports past covariates (known for `input_chunk_length` points before prediction time), future + covariates (known for `output_chunk_length` points after prediction time), static covariates, as well as + probabilistic forecasting. + + Parameters + ---------- + input_chunk_length + Number of time steps in the past to take as a model input (per chunk). Applies to the target + series, and past and/or future covariates (if the model supports it). + Also called: Encoder length + output_chunk_length + Number of time steps predicted at once (per chunk) by the internal model. Also, the number of future values + from future covariates to use as a model input (if the model supports future covariates). It is not the same + as forecast horizon `n` used in `predict()`, which is the desired number of prediction points generated + using either a one-shot- or autoregressive forecast. Setting `n <= output_chunk_length` prevents + auto-regression. This is useful when the covariates don't extend far enough into the future, or to prohibit + the model from using future values of past and / or future covariates for prediction (depending on the + model's covariate support). + Also called: Decoder length + output_chunk_shift + Optionally, the number of steps to shift the start of the output chunk into the future (relative to the + input chunk end). This will create a gap between the input and output. If the model supports + `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start + `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model + cannot generate autoregressive predictions (`n > output_chunk_length`). + hidden_size + The hidden state size / size of the second feed-forward layer in the feature mixing MLP. + ff_size + The size of the first feed-forward layer in the feature mixing MLP. + num_blocks + The number of mixer blocks in the model. The number includes the first block and all subsequent blocks. + activation + The name of the activation function to use in the mixer layers. Default: `"ReLU"`. Must be one of + `"ReLU", "RReLU", "PReLU", "ELU", "Softplus", "Tanh", "SELU", "LeakyReLU", "Sigmoid", "GELU"`. + dropout + Fraction of neurons affected by dropout. This is compatible with Monte Carlo dropout at inference time + for model uncertainty estimation (enabled with ``mc_dropout=True`` at prediction time). + norm_type + The type of `LayerNorm` variant to use. Default: `"LayerNorm"`. If a string, must be one of + `"LayerNormNoBias", "LayerNorm", "TimeBatchNorm2d"`. Otherwise, must be a custom `nn.Module`. + normalize_before + Whether to apply layer normalization before or after mixer layer. + use_static_covariates + Whether the model should use static covariate information in case the input `series` passed to ``fit()`` + contain static covariates. If ``True``, and static covariates are available at fitting time, will enforce + that all target `series` have the same static covariate dimensionality in ``fit()`` and ``predict()``. + **kwargs + Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and + Darts' :class:`TorchForecastingModel`. + + loss_fn + PyTorch loss function used for training. By default, the TFT + model is probabilistic and uses a ``likelihood`` instead + (``QuantileRegression``). To make the model deterministic, you + can set the ``likelihood`` to None and give a ``loss_fn`` + argument. + likelihood + The likelihood model to be used for probabilistic forecasts. + torch_metrics + A torch metric or a ``MetricCollection`` used for evaluation. A full list of available metrics can be found + at https://torchmetrics.readthedocs.io/en/latest/. Default: ``None``. + optimizer_cls + The PyTorch optimizer class to be used. Default: ``torch.optim.Adam``. + optimizer_kwargs + Optionally, some keyword arguments for the PyTorch optimizer (e.g., ``{'lr': 1e-3}`` + for specifying a learning rate). Otherwise, the default values of the selected ``optimizer_cls`` + will be used. Default: ``None``. + lr_scheduler_cls + Optionally, the PyTorch learning rate scheduler class to be used. Specifying ``None`` corresponds + to using a constant learning rate. Default: ``None``. + lr_scheduler_kwargs + Optionally, some keyword arguments for the PyTorch learning rate scheduler. Default: ``None``. + use_reversible_instance_norm + Whether to use reversible instance normalization `RINorm` against distribution shift as shown in [3]_. + It is only applied to the features of the target series and not the covariates. + batch_size + Number of time series (input and output sequences) used in each training pass. Default: ``32``. + n_epochs + Number of epochs over which to train the model. Default: ``100``. + model_name + Name of the model. Used for creating checkpoints and saving torch.Tensorboard data. If not specified, + defaults to the following string ``"YYYY-mm-dd_HH_MM_SS_torch_model_run_PID"``, where the initial part + of the name is formatted with the local date and time, while PID is the processed ID (preventing models + spawned at the same time by different processes to share the same model_name). E.g., + ``"2021-06-14_09_53_32_torch_model_run_44607"``. + work_dir + Path of the working directory, where to save checkpoints and torch.Tensorboard summaries. + Default: current working directory. + log_torch.Tensorboard + If set, use torch.Tensorboard to log the different parameters. The logs will be located in: + ``"{work_dir}/darts_logs/{model_name}/logs/"``. Default: ``False``. + nr_epochs_val_period + Number of epochs to wait before evaluating the validation loss (if a validation + ``TimeSeries`` is passed to the :func:`fit()` method). Default: ``1``. + force_reset + If set to ``True``, any previously-existing model with the same name will be reset (all checkpoints will + be discarded). Default: ``False``. + save_checkpoints + Whether to automatically save the untrained model and checkpoints from training. + To load the model from checkpoint, call :func:`MyModelClass.load_from_checkpoint()`, where + :class:`MyModelClass` is the :class:`TorchForecastingModel` class that was used (such as :class:`TFTModel`, + :class:`NBEATSModel`, etc.). If set to ``False``, the model can still be manually saved using + :func:`save()` and loaded using :func:`load()`. Default: ``False``. + add_encoders + A large number of past and future covariates can be automatically generated with `add_encoders`. + This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that + will be used as index encoders. Additionally, a transformer such as Darts' :class:`Scaler` can be added to + transform the generated covariates. This happens all under one hood and only needs to be specified at + model creation. + Read :meth:`SequentialEncoder ` to find out more about + ``add_encoders``. Default: ``None``. An example showing some of ``add_encoders`` features: + + .. highlight:: python + .. code-block:: python + + def encode_year(idx): + return (idx.year - 1950) / 50 + + add_encoders={ + 'cyclic': {'future': ['month']}, + 'datetime_attribute': {'future': ['hour', 'dayofweek']}, + 'position': {'past': ['relative'], 'future': ['relative']}, + 'custom': {'past': [encode_year]}, + 'transformer': Scaler(), + 'tz': 'CET' + } + .. + random_state + Control the randomness of the weight's initialization. Check this + `link `_ for more details. + Default: ``None``. + pl_trainer_kwargs + By default :class:`TorchForecastingModel` creates a PyTorch Lightning Trainer with several useful presets + that performs the training, validation and prediction processes. These presets include automatic + checkpointing, torch.Tensorboard logging, setting the torch device and more. + With ``pl_trainer_kwargs`` you can add additional kwargs to instantiate the PyTorch Lightning trainer + object. Check the `PL Trainer documentation + `_ for more information about the + supported kwargs. Default: ``None``. + Running on GPU(s) is also possible using ``pl_trainer_kwargs`` by specifying keys ``"accelerator", + "devices", and "auto_select_gpus"``. Some examples for setting the devices inside the ``pl_trainer_kwargs`` + dict: + + - ``{"accelerator": "cpu"}`` for CPU, + - ``{"accelerator": "gpu", "devices": [i]}`` to use only GPU ``i`` (``i`` must be an integer), + - ``{"accelerator": "gpu", "devices": -1, "auto_select_gpus": True}`` to use all available GPUS. + + For more info, see here: + https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html#trainer-flags , and + https://pytorch-lightning.readthedocs.io/en/stable/accelerators/gpu_basic.html#train-on-multiple-gpus + + With parameter ``"callbacks"`` you can add custom or PyTorch-Lightning built-in callbacks to Darts' + :class:`TorchForecastingModel`. Below is an example for adding EarlyStopping to the training process. + The model will stop training early if the validation loss `val_loss` does not improve beyond + specifications. For more information on callbacks, visit: + `PyTorch Lightning Callbacks + `_ + + .. highlight:: python + .. code-block:: python + + from pytorch_lightning.callbacks.early_stopping import EarlyStopping + + # stop training when validation loss does not decrease more than 0.05 (`min_delta`) over + # a period of 5 epochs (`patience`) + my_stopper = EarlyStopping( + monitor="val_loss", + patience=5, + min_delta=0.05, + mode='min', + ) + + pl_trainer_kwargs={"callbacks": [my_stopper]} + .. + + Note that you can also use a custom PyTorch Lightning Trainer for training and prediction with optional + parameter ``trainer`` in :func:`fit()` and :func:`predict()`. + show_warnings + whether to show warnings raised from PyTorch Lightning. Useful to detect potential issues of + your forecasting use case. Default: ``False``. + + References + ---------- + .. [1] https://arxiv.org/abs/2303.06053 + + Examples + -------- + >>> from darts.datasets import WeatherDataset + >>> from darts.models import TSMixerModel + >>> series = WeatherDataset().load() + >>> # predicting temperatures + >>> target = series['T (degC)'][:100] + >>> # optionally, use past observed rainfall (pretending to be unknown beyond index 100) + >>> past_cov = series['rain (mm)'][:100] + >>> # optionally, use future atmospheric pressure (pretending this component is a forecast) + >>> future_cov = series['p (mbar)'][:106] + >>> model = TSMixerModel( + >>> input_chunk_length=6, + >>> output_chunk_length=6, + >>> use_reversible_instance_norm=True, + >>> n_epochs=20 + >>> ) + >>> model.fit(target, past_covariates=past_cov, future_covariates=future_cov) + >>> pred = model.predict(6) + >>> pred.values() + array([[3.92519848], + [4.05650312], + [4.21781987], + [4.29394973], + [4.4122863 ], + [4.42762751]]) + """ + model_kwargs = {key: val for key, val in self.model_params.items()} + super().__init__(**self._extract_torch_model_params(**model_kwargs)) + + # extract pytorch lightning module kwargs + self.pl_module_params = self._extract_pl_module_params(**model_kwargs) + + # Model specific parameters + self.ff_size = ff_size + self.dropout = dropout + self.num_blocks = num_blocks + self.activation = activation + self.normalize_before = normalize_before + self.norm_type = norm_type + self.hidden_size = hidden_size + self._considers_static_covariates = use_static_covariates + + def _create_model(self, train_sample: MixedCovariatesTrainTensorType) -> nn.Module: + """ + Parameters + ---------- + train_sample + contains the following torch.Tensors: `(past_target, past_covariates, historic_future_covariates, + future_covariates, static_covariates, future_target)`: + + - past/historic torch.Tensors have shape (input_chunk_length, n_variables) + - future torch.Tensors have shape (output_chunk_length, n_variables) + - static covariates have shape (component, static variable) + """ + ( + past_target, + past_covariates, + historic_future_covariates, + future_covariates, + static_covariates, + future_target, + ) = train_sample + + input_dim = past_target.shape[1] + output_dim = future_target.shape[1] + + static_cov_dim = ( + static_covariates.shape[0] * static_covariates.shape[1] + if static_covariates is not None + else 0 + ) + future_cov_dim = ( + future_covariates.shape[1] if future_covariates is not None else 0 + ) + past_cov_dim = past_covariates.shape[1] if past_covariates is not None else 0 + nr_params = 1 if self.likelihood is None else self.likelihood.num_parameters + + return _TSMixerModule( + input_dim=input_dim, + output_dim=output_dim, + future_cov_dim=future_cov_dim, + past_cov_dim=past_cov_dim, + static_cov_dim=static_cov_dim, + nr_params=nr_params, + hidden_size=self.hidden_size, + ff_size=self.ff_size, + num_blocks=self.num_blocks, + activation=self.activation, + dropout=self.dropout, + norm_type=self.norm_type, + normalize_before=self.normalize_before, + **self.pl_module_params, + ) + + @property + def supports_multivariate(self) -> bool: + return True + + @property + def supports_static_covariates(self) -> bool: + return True + + @property + def supports_future_covariates(self) -> bool: + return True + + @property + def supports_past_covariates(self) -> bool: + return True diff --git a/darts/tests/models/forecasting/test_global_forecasting_models.py b/darts/tests/models/forecasting/test_global_forecasting_models.py index b8b020f342..dd3e6faf8d 100644 --- a/darts/tests/models/forecasting/test_global_forecasting_models.py +++ b/darts/tests/models/forecasting/test_global_forecasting_models.py @@ -33,6 +33,7 @@ TFTModel, TiDEModel, TransformerModel, + TSMixerModel, ) from darts.models.forecasting.torch_forecasting_model import ( DualCovariatesTorchModel, @@ -155,6 +156,14 @@ }, 40.0, ), + ( + TSMixerModel, + { + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 60.0, + ), ( GlobalNaiveAggregate, { @@ -527,7 +536,7 @@ def test_future_covariates(self): @pytest.mark.parametrize( "model_cls,ts", product( - [TFTModel, DLinearModel, NLinearModel, TiDEModel], + [TFTModel, DLinearModel, NLinearModel, TiDEModel, TSMixerModel], [ts_w_static_cov, ts_shared_static_cov, ts_comps_static_cov], ), ) diff --git a/darts/tests/models/forecasting/test_historical_forecasts.py b/darts/tests/models/forecasting/test_historical_forecasts.py index 236933b714..e92eedffdc 100644 --- a/darts/tests/models/forecasting/test_historical_forecasts.py +++ b/darts/tests/models/forecasting/test_historical_forecasts.py @@ -38,6 +38,7 @@ TFTModel, TiDEModel, TransformerModel, + TSMixerModel, ) from darts.utils.likelihood_models import GaussianLikelihood, QuantileRegression @@ -235,6 +236,17 @@ (IN_LEN, OUT_LEN), "MixedCovariates", ), + ( + TSMixerModel, + { + "input_chunk_length": IN_LEN, + "output_chunk_length": OUT_LEN, + "n_epochs": NB_EPOCH, + **tfm_kwargs, + }, + (IN_LEN, OUT_LEN), + "MixedCovariates", + ), ( GlobalNaiveAggregate, { diff --git a/darts/tests/models/forecasting/test_probabilistic_models.py b/darts/tests/models/forecasting/test_probabilistic_models.py index 7b728efcbb..169f9b6a1e 100644 --- a/darts/tests/models/forecasting/test_probabilistic_models.py +++ b/darts/tests/models/forecasting/test_probabilistic_models.py @@ -35,6 +35,7 @@ TFTModel, TiDEModel, TransformerModel, + TSMixerModel, ) from darts.models.forecasting.torch_forecasting_model import TorchForecastingModel from darts.utils.likelihood_models import ( @@ -194,6 +195,24 @@ 0.06, 0.1, ), + ( + TSMixerModel, + { + "input_chunk_length": 10, + "output_chunk_length": 5, + "n_epochs": 100, + "random_state": 0, + "num_blocks": 1, + "hidden_size": 32, + "dropout": 0.2, + "ff_size": 32, + "batch_size": 8, + "likelihood": GaussianLikelihood(), + **tfm_kwargs, + }, + 0.06, + 0.1, + ), ] diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 73ec9bb19b..0e04f821b8 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -41,6 +41,7 @@ TFTModel, TiDEModel, TransformerModel, + TSMixerModel, ) from darts.models.components.layer_norm_variants import RINorm from darts.utils.likelihood_models import ( @@ -66,6 +67,7 @@ (TFTModel, {"add_relative_index": 2, **kwargs}), (TiDEModel, kwargs), (TransformerModel, kwargs), + (TSMixerModel, kwargs), (GlobalNaiveSeasonal, kwargs), (GlobalNaiveAggregate, kwargs), (GlobalNaiveDrift, kwargs), @@ -1505,6 +1507,7 @@ def test_rin(self, model_config): (NHiTSModel, {}), (TransformerModel, {}), (TCNModel, {}), + (TSMixerModel, {}), (BlockRNNModel, {}), (GlobalNaiveSeasonal, {}), (GlobalNaiveAggregate, {}), diff --git a/darts/tests/models/forecasting/test_tsmixer.py b/darts/tests/models/forecasting/test_tsmixer.py new file mode 100644 index 0000000000..6ae3abe39e --- /dev/null +++ b/darts/tests/models/forecasting/test_tsmixer.py @@ -0,0 +1,371 @@ +from darts.logging import get_logger + +logger = get_logger(__name__) + +try: + import numpy as np + import pandas as pd + import pytest + import torch + from torch import nn + + from darts import concatenate + from darts.models.forecasting.tsmixer_model import TimeBatchNorm2d, TSMixerModel + from darts.tests.conftest import tfm_kwargs + from darts.utils import timeseries_generation as tg + from darts.utils.likelihood_models import GaussianLikelihood + + TORCH_AVAILABLE = True + +except ImportError: + logger.warning("Torch not available. TSMixerModel tests will be skipped.") + TORCH_AVAILABLE = False + + +@pytest.mark.skipif( + TORCH_AVAILABLE is False, + reason="Torch not available. TSMixerModel tests will be skipped.", +) +class TestTSMixerModel: + np.random.seed(42) + torch.manual_seed(42) + + def test_creation(self): + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + likelihood=GaussianLikelihood(), + ) + + assert model.input_chunk_length == 1 + + def test_fit(self): + large_ts = tg.constant_timeseries(length=10, value=1.0) + small_ts = tg.constant_timeseries(length=10, value=0.1) + + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=10, + random_state=42, + **tfm_kwargs, + ) + + model.fit(large_ts) + pred = model.predict(n=2).values()[0] + + # Test whether model trained on one series is better + # than one trained on another + model2 = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=10, + random_state=42, + **tfm_kwargs, + ) + + model2.fit(small_ts) + pred2 = model2.predict(n=2).values()[0] + assert abs(pred2 - 0.1) < abs(pred - 0.1) + + # test short predict + pred3 = model2.predict(n=1) + assert len(pred3) == 1 + + def test_likelihood_fit(self): + ts = tg.constant_timeseries(length=3) + + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=1, + random_state=42, + likelihood=GaussianLikelihood(), + **tfm_kwargs, + ) + model.fit(ts) + # sampled from distribution + pred = model.predict(n=1, num_samples=20) + assert pred.n_samples == 20 + + # direct distribution parameter prediction + pred = model.predict(n=1, num_samples=1, predict_likelihood_parameters=True) + assert pred.n_components == 2 + assert pred.n_samples == 1 + + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=1, + random_state=42, + **tfm_kwargs, + ) + model.fit(ts) + # mc dropout + pred = model.predict(n=1, mc_dropout=True, num_samples=10) + assert pred.n_samples == 10 + + def test_logtensorboard(self, tmpdir_module): + ts = tg.constant_timeseries(length=4) + + # Test basic fit and predict + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=1, + log_tensorboard=True, + batch_size=2, + work_dir=tmpdir_module, + pl_trainer_kwargs={ + "log_every_n_steps": 1, + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + model.fit(ts) + _ = model.predict(n=2) + + def test_static_covariates_support(self): + target_multi = concatenate( + [tg.sine_timeseries(length=10, freq="h")] * 2, axis=1 + ) + + target_multi = target_multi.with_static_covariates( + pd.DataFrame( + [[0.0, 1.0, 0, 2], [2.0, 3.0, 1, 3]], + columns=["st1", "st2", "cat1", "cat2"], + ) + ) + + # should work with cyclic encoding for time index + model = TSMixerModel( + input_chunk_length=3, + output_chunk_length=4, + add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, + pl_trainer_kwargs={ + "fast_dev_run": True, + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + model.fit(target_multi, verbose=False) + + assert model.model.static_cov_dim == np.prod( + target_multi.static_covariates.values.shape + ) + + # raise an error when trained with static covariates of wrong dimensionality + target_multi = target_multi.with_static_covariates( + pd.concat([target_multi.static_covariates] * 2, axis=1) + ) + with pytest.raises(ValueError): + model.predict(n=1, series=target_multi, verbose=False) + + # raise an error when trained with static covariates and trying to predict without + with pytest.raises(ValueError): + model.predict( + n=1, series=target_multi.with_static_covariates(None), verbose=False + ) + + # with `use_static_covariates=False`, we can predict without static covs + model = TSMixerModel( + input_chunk_length=3, + output_chunk_length=4, + use_static_covariates=False, + n_epochs=1, + **tfm_kwargs, + ) + model.fit(target_multi) + preds = model.predict(n=2, series=target_multi.with_static_covariates(None)) + assert preds.static_covariates is None + + model = TSMixerModel( + input_chunk_length=3, + output_chunk_length=4, + use_static_covariates=False, + n_epochs=1, + **tfm_kwargs, + ) + model.fit(target_multi.with_static_covariates(None)) + preds = model.predict(n=2, series=target_multi) + assert preds.static_covariates.equals(target_multi.static_covariates) + + @pytest.mark.parametrize("enable_rin", [True, False]) + def test_future_covariate_handling(self, enable_rin): + ts_time_index = tg.sine_timeseries(length=2, freq="h") + + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"future": "hour"}}, + use_reversible_instance_norm=enable_rin, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False, epochs=1) + + def test_past_covariate_handling(self): + ts_time_index = tg.sine_timeseries(length=2, freq="h") + + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"past": "hour"}}, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False, epochs=1) + + def test_future_and_past_covariate_handling(self): + ts_time_index = tg.sine_timeseries(length=2, freq="h") + + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False, epochs=1) + + def test_future_past_and_static_covariate_as_timeseries_handling(self): + ts_time_index = tg.sine_timeseries(length=2, freq="h") + ts_time_index = ts_time_index.with_static_covariates( + pd.DataFrame( + [ + [ + 0.0, + ] + ], + columns=["st1"], + ) + ) + for enable_rin in [True, False]: + # test with past_covariates timeseries + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"future": "hour"}}, + use_reversible_instance_norm=enable_rin, + **tfm_kwargs, + ) + model.fit( + ts_time_index, + past_covariates=ts_time_index, + verbose=False, + epochs=1, + ) + + # test with past_covariates and future_covariates timeseries + model = TSMixerModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, + use_reversible_instance_norm=enable_rin, + **tfm_kwargs, + ) + model.fit( + ts_time_index, + past_covariates=ts_time_index, + future_covariates=ts_time_index, + verbose=False, + epochs=1, + ) + + @pytest.mark.parametrize( + "norm_type, expect_exception", + [ + ("LayerNorm", False), + ("LayerNormNoBias", False), + (nn.LayerNorm, False), + ("TimeBatchNorm2d", False), + ("invalid", True), + ], + ) + def test_layer_norms_with_parametrization(self, norm_type, expect_exception): + series = tg.sine_timeseries(length=3) + base_model = TSMixerModel + + if expect_exception: + with pytest.raises(ValueError): + model = base_model( + input_chunk_length=1, + output_chunk_length=1, + norm_type=norm_type, + **tfm_kwargs, + ) + model.fit(series, epochs=1) + else: + model = base_model( + input_chunk_length=1, + output_chunk_length=1, + norm_type=norm_type, + **tfm_kwargs, + ) + model.fit(series, epochs=1) + + @pytest.mark.parametrize( + "activation, expect_error", + [ + ("ReLU", False), + ("RReLU", False), + ("PReLU", False), + ("ELU", False), + ("Softplus", False), + ("Tanh", False), + ("SELU", False), + ("LeakyReLU", False), + ("Sigmoid", False), + ("invalid", True), + ], + ) + def test_activation_functions(self, activation, expect_error): + series = tg.sine_timeseries(length=3) + base_model = TSMixerModel + + if expect_error: + with pytest.raises(ValueError): + model = base_model( + input_chunk_length=1, + output_chunk_length=1, + activation=activation, + **tfm_kwargs, + ) + model.fit(series, epochs=1) + else: + model = base_model( + input_chunk_length=1, + output_chunk_length=1, + activation=activation, + **tfm_kwargs, + ) + model.fit(series, epochs=1) + + def test_time_batch_norm_3d(self): + torch.manual_seed(0) + + layer = TimeBatchNorm2d() + # 4D does not work + with pytest.raises(ValueError): + layer.forward(torch.randn(3, 3, 3, 3)) + + # 2D does not work + with pytest.raises(ValueError): + layer.forward(torch.randn(3, 3)) + + # 3D works + norm = layer.forward(torch.randn(3, 3, 3)).detach() + assert norm.mean().numpy() == pytest.approx(0.0, abs=0.1) + assert norm.std().numpy() == pytest.approx(1.0, abs=0.1) + + @pytest.mark.parametrize("batch_size", [1, 2, 5, 10]) + def test_time_batch_norm_2d_different_batch_sizes(self, batch_size): + layer = TimeBatchNorm2d() + input_tensor = torch.randn(batch_size, 3, 3) + output = layer.forward(input_tensor) + assert output.shape == input_tensor.shape + + def test_time_batch_norm_2d_gradients(self): + normalized_shape = (10, 32) + layer = TimeBatchNorm2d(normalized_shape) + input_tensor = torch.randn(5, 10, 32, requires_grad=True) + + output = layer.forward(input_tensor) + output.mean().backward() + + assert input_tensor.grad is not None diff --git a/docs/source/examples.rst b/docs/source/examples.rst index 72b2557920..9fd96c177a 100644 --- a/docs/source/examples.rst +++ b/docs/source/examples.rst @@ -177,6 +177,16 @@ TiDE model example notebook: examples/18-TiDE-examples.ipynb +TimeSeries Mixer (TSMixer) Model +======================================= + +TSMixer model example notebook: + +.. toctree:: + :maxdepth: 1 + + 21-TSMixer-examples.ipynb + Ensemble Models ============================= diff --git a/docs/userguide/covariates.md b/docs/userguide/covariates.md index d9ec6cc72e..cc4c564b87 100644 --- a/docs/userguide/covariates.md +++ b/docs/userguide/covariates.md @@ -152,6 +152,7 @@ GFMs are models that can be trained on multiple target (and covariate) time seri | [DLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.dlinear.html#darts.models.forecasting.dlinear.DLinearModel) | ✅ | ✅ | ✅ | | [NLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nlinear.html#darts.models.forecasting.nlinear.NLinearModel) | ✅ | ✅ | ✅ | | [TiDEModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tide_model.html#darts.models.forecasting.tide_model.TiDEModel) | ✅ | ✅ | ✅ | +| [TSMixerModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tsmixer_model.html#darts.models.forecasting.tsmixer_model.TSMixerModel) | ✅ | ✅ | ✅ | | Ensemble Models (f) | ✅ | ✅ | ✅ | **Table 1: Darts' forecasting models and their covariate support** diff --git a/docs/userguide/torch_forecasting_models.md b/docs/userguide/torch_forecasting_models.md index 0c2ba84fde..662bc4bc66 100644 --- a/docs/userguide/torch_forecasting_models.md +++ b/docs/userguide/torch_forecasting_models.md @@ -116,6 +116,7 @@ Each Torch Forecasting Model inherits from one `{X}CovariatesModel` (covariate c | `NLinearModel` | | | | | ✅ | | `DLinearModel` | | | | | ✅ | | `TiDEModel` | | | | | ✅ | +| `TSMixerModel` | | | | | ✅ | **Table 2: Darts' Torch Forecasting Model covariate support** diff --git a/examples/21-TSMixer-examples.ipynb b/examples/21-TSMixer-examples.ipynb new file mode 100644 index 0000000000..1d1735f909 --- /dev/null +++ b/examples/21-TSMixer-examples.ipynb @@ -0,0 +1,1025 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Time Series Mixer (TSMixer)\n", + "This notebook walks through how to use Darts' `TSMixerModel` and benchmarks it against `TiDEModel`.\n", + "\n", + "TSMixer (Time-series Mixer) is an all-MLP architecture for time series forecasting. \n", + "\n", + "It does so by integrating historical time series data, future known inputs, and static contextual information. The architecture uses a combination of conditional feature mixing and mixer layers to process and combine these different types of data for effective forecasting.\n", + "\n", + "Translated to Darts, this model supports all types of covariates (past, future, and/or static).\n", + "\n", + "See the original paper and model description [here](https://arxiv.org/abs/2303.06053).\n", + "\n", + "According to the authors, the model outperforms several state-of-the-art models on multivariate forecasting tasks.\n", + "\n", + "Let's see how it performs against `TideModel` on the ETTh1 and ETTh2 datasets." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# fix python path if working locally\n", + "from utils import fix_pythonpath_if_working_locally\n", + "\n", + "fix_pythonpath_if_working_locally()\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "\n", + "warnings.filterwarnings(\"ignore\")\n", + "import logging\n", + "\n", + "logging.disable(logging.CRITICAL)\n", + "\n", + "import torch\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from pytorch_lightning.callbacks.early_stopping import EarlyStopping\n", + "\n", + "from darts import concatenate\n", + "from darts.dataprocessing.transformers.scaler import Scaler\n", + "from darts.datasets import ETTh1Dataset, ETTh2Dataset\n", + "from darts.metrics import mae, mse, mql\n", + "from darts.models import TiDEModel, TSMixerModel\n", + "from darts.utils.likelihood_models import QuantileRegression\n", + "from darts.utils.callbacks import TFMProgressBar" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Data Loading and preparation\n", + "We consider the ETTh1 and ETTh2 datasets which contain hourly multivariate data of an electricity transformer (load, oil temperature, ...).\n", + "You can find more information [here](https://unit8co.github.io/darts/generated_api/darts.datasets.html#darts.datasets.ETTh1Dataset).\n", + "\n", + "We will add static information to each transformer time series, that identifies whether it is the `ETTh1` or `ETTh2` transformer.\n", + "Both TSMixer and TiDE can levarage this information." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
componentHUFLHULLMUFLMULLLUFLLULLOT
date
2016-07-01 00:00:005.8272.0091.5990.4624.2031.34030.531000
2016-07-01 01:00:005.6932.0761.4920.4264.1421.37127.787001
2016-07-01 02:00:005.1571.7411.2790.3553.7771.21827.787001
2016-07-01 03:00:005.0901.9421.2790.3913.8071.27925.044001
2016-07-01 04:00:005.3581.9421.4920.4623.8681.27921.948000
........................
2018-06-26 15:00:00-1.6743.550-5.6152.1323.4721.52310.904000
2018-06-26 16:00:00-5.4924.287-9.1322.2743.5331.67511.044000
2018-06-26 17:00:002.8133.818-0.8172.0973.7161.52310.271000
2018-06-26 18:00:009.2433.8185.4722.0973.6551.4329.778000
2018-06-26 19:00:0010.1143.5506.1831.5643.7161.4629.567000
\n", + "

17420 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + "component HUFL HULL MUFL MULL LUFL LULL OT\n", + "date \n", + "2016-07-01 00:00:00 5.827 2.009 1.599 0.462 4.203 1.340 30.531000\n", + "2016-07-01 01:00:00 5.693 2.076 1.492 0.426 4.142 1.371 27.787001\n", + "2016-07-01 02:00:00 5.157 1.741 1.279 0.355 3.777 1.218 27.787001\n", + "2016-07-01 03:00:00 5.090 1.942 1.279 0.391 3.807 1.279 25.044001\n", + "2016-07-01 04:00:00 5.358 1.942 1.492 0.462 3.868 1.279 21.948000\n", + "... ... ... ... ... ... ... ...\n", + "2018-06-26 15:00:00 -1.674 3.550 -5.615 2.132 3.472 1.523 10.904000\n", + "2018-06-26 16:00:00 -5.492 4.287 -9.132 2.274 3.533 1.675 11.044000\n", + "2018-06-26 17:00:00 2.813 3.818 -0.817 2.097 3.716 1.523 10.271000\n", + "2018-06-26 18:00:00 9.243 3.818 5.472 2.097 3.655 1.432 9.778000\n", + "2018-06-26 19:00:00 10.114 3.550 6.183 1.564 3.716 1.462 9.567000\n", + "\n", + "[17420 rows x 7 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "series = []\n", + "for idx, ds in enumerate([ETTh1Dataset, ETTh2Dataset]):\n", + " trafo = ds().load().astype(np.float32)\n", + " trafo = trafo.with_static_covariates(pd.DataFrame({\"transformer_id\": [idx]}))\n", + " series.append(trafo)\n", + "series[0].pd_dataframe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before training, we split the data into train, validation, and test sets. The model will learn from the train set, use the validation set to determine when to stop training, and finally be evaluated on the test set." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "train, val, test = [], [], []\n", + "for trafo in series:\n", + " train_, temp = trafo.split_after(0.6)\n", + " val_, test_ = temp.split_after(0.5)\n", + " train.append(train_)\n", + " val.append(val_)\n", + " test.append(test_)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets look at the splits for the first column \"HUFL\" for each transformer" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGvCAYAAABvmR7LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr+ElEQVR4nOydd1gUVxfG39mlVwEpoggooiLYNYq9K4m9RY1Gk2isSSyJqfZYYoktflGTqElM7CbWqLEF7A07qChFBRVBpcPuzvcHsmyZ7TvbOL/n8ZGduXPvuTO7M++ce+65DMuyLAiCIAiCICwAgbkNIAiCIAiCKIOECUEQBEEQFgMJE4IgCIIgLAYSJgRBEARBWAwkTAiCIAiCsBhImBAEQRAEYTGQMCEIgiAIwmIgYUIQBEEQhMVAwuQ1EokEDx48gEQiMbcpvEF9tH5svX8A9dFWsPU+Uv/4g4QJQRAEQRAWAwkTgiAIgiAsBhImBEEQBEFYDCRMCIIgCIKwGEiYEARBEARhMZAwIQiCIAjCYiBhQhAEQRCExUDChCAIgiAIi4GECUEQBEEQFgMJE4IgCIIgLAYSJgRBEARBWAwkTAiCIAiCsBhImBAEQRAEYTGQMCEIgiAIDYSEhGD58uXmNkMlf/31F8LCwiAUCvHJJ5+Y2xyDIGFCEDbI86JibE1+jMzCYnObQhBmo3379kZ7SF+4cAFjxowxSl0nTpwAwzB48eKFUeoDgA8//BADBgxAWloa5s6da3B9LMti+fLlqFatGpydndG+fXvcvHnTCJZqhoQJQdggQ+LiMe78Tbwdd8XcphCExcKyLEQikVZlfX194eLiwrNF8hQXa/dikZubi6dPn6Jbt24IDAyEu7u7wW0vXrwYv/zyC1auXIkLFy4gICAAXbp0QU5OjsF1a4KECUHYIBefvwQAXM56ZWZLCMI8jBw5EidPnsSKFSvAMAwYhsHGjRvBMAwOHTqEpk2bwtHREbGxsUhKSkLv3r3h7+8PNzc3NGvWDP/++69cfYpDOUKhEFu3bkW/fv3g4uKCWrVqYc+ePRrtSk5ORocOHQAAXl5eYBgGI0eOBFDq4Zk4cSKmTJmCypUro0uXLgCAZcuWISoqCq6urggKCsL48eORm5sLoNT7UiZEOnbsCIZhcOLECQDAzp07Ua9ePTg6OiIkJARLly7V6tyxLIsVK1Zg/Pjx6NevHyIjI7Fp0ybk5+fjjz/+0KoOQ7DjvQWCIAjC5mjatCkyMjLUlhGLxRAKhUZtNyAgABcvXtRYbsWKFbhz5w4iIyMxZ84cAJAORXz22WdYsmQJatSogUqVKuHhw4eIiYnBvHnz4OTkhE2bNqFnz55ITExE9erVVbaxcuVKLF68GEuWLMGqVaswbNgwpKSkwNvbW+UxQUFB2LlzJ/r374/ExER4eHjA2dlZun/Tpk0YN24cTp06BZZlAQACgQArV65ESEgIHjx4gPHjx+Ozzz7DmjVrEB0djcTERNSuXRs7d+5EdHQ0vL29cenSJQwaNAizZs3C4MGDcfr0aYwfPx4+Pj5SIaSKBw8eICMjA23atJFuc3R0RLt27XD69Gl8+OGHGs+/IZAwIQiCIHQmIyMDjx49MrcZKvH09ISDgwNcXFwQEBAAAEhISAAAzJkzR+qNAAAfHx80aNBA+nnevHnYvXs39uzZg4kTJ6pso3///hgyZAgEAgHmz5+PVatW4fz58+jevbvKY4RCoVS4+Pn5oVKlSnL7w8LC8N1338ltk42TCQ0Nxdy5czFu3DisWbMGDg4O8PPzAwB4e3tL+7ps2TJ06tQJ33zzDQAgPDwct27dwuLFizUKkzLBWblyZbnt/v7+SElJUXusMSBhQhAEQehM2QNQHXx5TAyladOmcp/z8vIwe/Zs7Nu3D48fP4ZIJEJBQQFSU1PV1lOnTh3p366urnB3d8fTp0+NahsAHD9+HPPnz8etW7fw6tUriEQiFBYWIi8vD66urpz13L59G71795bb1qpVKyxfvlzr68IwjNxnlmWVtvEBCROCsHEKRGI42xn34UAQmoZTJBIJUlJSEBwcDIHAssIZFR/mn376KQ4dOoQlS5YgLCwMzs7OGDBggMbgUzs7+UcowzCQSCRGtS0lJQUxMTEYO3Ys5s6dC29vb8TFxeH9999HSUmJynq4RETZ0JAmysTfs2fP5LY/ffoU/v7+WtVhCJb1bSEIwujMvHbX3CYQhFlwcHCAWCzWWC42NhYjR45E3759ERUVhYCAACQnJ/NqFwCtbLt48SJEIhGWLl2KFi1aIDw8HI8fP9Z4XEREBOLi4uS2nT59GuHh4Rq9JaGhoQgICJA7vri4GCdPnkR0dLTGtg2FhAlB2DiHHj/TXIggbJCQkBCcO3cOycnJyMzMVOnNCAsLw65duxAfH4+rV69i6NChBns+1BEcHAyGYbBv3z48e/ZMOsOGi5o1a0IkEmHVqlW4f/8+fvvtN/z4448a25g6dSqOHj2KuXPn4s6dO9i0aRNWr16NadOmaTyWYRh8/PHHWLNmDXbv3o0bN25g5MiRcHFxwdChQ3Xqqz6QMCEIG0c75y1B2B7Tpk2DUChEREQEfH19VcaMfP/99/Dy8kJ0dDR69uyJbt26oXHjxrzZVbVqVcyePRuff/45/P391QbYNmzYEMuWLcOiRYsQGRmJzZs3Y8GCBRrbaNy4MbZt24YtW7YgMjISM2bMwJw5czQGvpbx6aefYtSoUZg4cSKaNm2KR48e4fDhw0bJkaIJhtV20MnGseTxUGNBfbR+tO2f97Yj0r+rujjh+lttVJa1NGz9GgLUR1uA+scftnc2CYKQg949CIKwJkiYEISN87igyNwmEESFYuzYsXBzc+P8N3bsWHObh9jYWJX2ubm5mds8mi5MEBUBU+UfIAiiNIGbqiBTDw8PE1ujTNOmTREfH29uM1RCwoQgKgASFhCSLiEIk+Dn5yfNxmqJODs7IywszNxmqISGcgiCIAiCsBhImBAEQRAEYTGQMCEIgiAIwmIgYUIQFQCW0qwRBGEl6C1M1q5di4EDB6JZs2Y4dOiQ3L6NGzeic+fO6NixI1asWCGXR+HmzZsYMmQIWrVqhTFjxiA9PV1/6wmC0AqSJQRBWAt6C5OgoCBMnToV9erVk9seFxeHHTt2YOPGjdi2bRvi4uKwZ88eAKWLAH322Wd4++23cezYMWmaXIIg+OVRfqG5TSAIqyMkJATLly83S9sJCQlo0aIFnJyc0LBhQ7PYYC70ni4cExMDAPjll1/kth84cAADBgxAtWrVAADvvPMODh48iN69e+PSpUtwdnZG7969AQCjR49G586dkZ6ejipVqii1UVxcrLTstJ2dnXRlRmNStmATnws3mRvqo/WjTf+4Mr2yLGs158TWryFAfbQmVP12FPsnFAqxc+dO9OnTxyjtzpgxA66urrh9+zbc3NyMch537tyJmTNnIikpCTVr1sTcuXPRt29fzrJ8XD9tU9sbPY/JgwcPpKIFAMLDw/HDDz8AAO7fvy83d9rZ2RnVqlXD/fv3OYXJhg0bsH79erltAwcOxKBBg4xttpS0tDTe6rYUqI/Wj7r+iTmEyaNHjwBHez5NMjq2fg0B6qOlIxKJkJWVhZSUFJVlZPv37NkztWVLSkpgb6/d7/D27dvo0KEDACA3N1ftCsTacPnyZQwZMgSTJ09Gt27dcOjQIbz99tvYtm2bWo+MMa9faGioVuWMLkzy8/PlUtq6uroiPz8fAFBQUABXV1e58q6urigoKOCsa9SoURg2bJjcNj49JmlpaQgKCrLJBZkA6qMtoE3/RBIJcDFJblu1qlVR3dXZFCYajK1fQ4D6aArWrl2LefPmISUlRa793r17w8vLC9988w2mTp2Kc+fOIS8vD3Xr1sW3336Lzp07S8va2dnB29sbwcHBSvXL9q/shbss3XxwcDDu37+P2bNn4++//8bEiRMxf/58JCcno6SkBIcOHcL8+fNx48YNCIVCtGjRAsuXL0fNmjUBlHpfAODGjRtYtWoVZsyYgZkzZ+L69euYPHkyzpw5AxcXF/Tr1w9Lly7VKo389OnT0blzZyxatAgA0LFjR1y7dg1bt26VjmKo6p+pr5/RhYmLi4ucssvLy4OLiwuAUg9JXl6eXPm8vDw4O3PfMB0cHHgRIeoQCAQ2e6Mog/po/ajtH0ekqzWeD2u0WVesuY9NR0uQkaWmACuAWFwVQqEAMGLW4QBv4OJ6zeds8ODB+OSTT3Dy5El06tQJAJCdnY3Dhw9j7969yM/Px5tvvolvv/0WTk5O2LRpE3r37o3ExERUr15dWg/DMGqvkUAgwIULF+Dn54cNGzage/fuEAqFEAgEYBgG9+7dw44dO7Bz507p9oKCAkyZMgVRUVHIy8vDjBkz0L9/f8THx0MgECA9PR2dO3dG9+7dMW3aNLi5uaGwsBAxMTFo0aIFLly4gKdPn+KDDz7ARx99hI0bN2o8H2fPnsXkyZPl+tK9e3csX75cY/+sXpiEhobi3r17aN26NQDgzp07qFGjBgCgRo0a2L17t7RsQUEBHj58KN1PEITh0AwcwhRkZAGPnmkqZb5VT7y9vdG9e3f88ccfUmGyfft2eHt7o1OnThAKhWjQoIG0/Lx587B7927s2bMHEydO1KktX19fAEClSpUQEBAgt6+4uBi//fabtAwA9O/fX67Mzz//DD8/P9y6dQuRkZEICAiAnZ0d3NzcpPWtX78eBQUF+PXXX6UjD6tXr0bPnj2xaNEi+Pv7q7UxIyNDqYy/vz8yMjJ06qsp0PtbIxKJIBaLwbIsRCIRioqKYG9vj5iYGCxatAhdunSBo6MjNm/eLB2OadKkCQoKCrB3715069YNP//8MyIiIjjjSwiC0A8JR4wJQRibAG8NBVhALBZBKLQzusdEW4YNG4YxY8ZgzZo10ufR22+/DaFQiLy8PMyePRv79u3D48ePIRKJUFBQgNTUVOMZi9JhHVlRAgBJSUn45ptvcPbsWWRmZkoDTFNTUxEZGclZz+3bt9GgQQO5cIhWrVpBIpEgMTFRozABoLSQp6Uu7qm3MJk3bx727dsHALhy5QpmzpyJH3/8Ea1bt8bdu3cxYsQISCQS9OnTB7169QJQOjTz3XffYe7cuVi4cCEiIiIwZ84c4/SEIAgA5DEhTIOm4RSJRIKUlEcIDg4223BVz549IZFIsH//fjRr1gyxsbFYtmwZAODTTz/FoUOHsGTJEoSFhcHZ2RkDBgxQmglqKIpxlWV2BQUFYf369QgMDIREIkFkZKTattWJCG3ERUBAgJJ35OnTp1oJGlOjtzCZNWsWZs2axblv1KhRGDVqFOe+evXqYcuWLfo2SxCEBriEiZ0FvhURBN84OzujX79+2Lx5M+7du4fw8HA0adIEABAbG4uRI0dKp8vm5uYiOTlZ77bs7e0hFos1lnv+/Dlu376NtWvXok2bNgBK839pIiIiAps2bUJeXp5U7Jw6dQoCgQDh4eEaj2/ZsiWOHDmCyZMnS7cdPnwY0dHRGo81NdYZdUUQhE642AnNbQJBmIVhw4Zh//79+OWXX/DOO+9It4eFhWHXrl2Ij4/H1atXMXToUINydoSEhODo0aPIyMhAdna2ynJeXl7w8fHBunXrcO/ePRw7dgxTpkzRqh9OTk549913cePGDRw/fhyTJk3C8OHDtfJ6fPzxxzh8+DAWLVqEhIQELFq0CP/++y8++eQTXbppEkiYEISNwZVgjSAqKh07doS3tzcSExMxdOhQ6fbvv/8eXl5eiI6ORs+ePdGtWzc0btxY73aWLl2KI0eOICgoCI0aNVJZTiAQYMuWLbh06RIiIyMxefJkLF68WGP9Li4uOHToELKystCsWTMMGDAAnTp1wurVq7WyLzo6Glu2bMGGDRtQv359bNy4EVu3bsUbb7yhdR9NBcPSXQxA2XhoilnHQ/mG+mj9aNO/3BIRqu8+Lrftfp/2qORgHQnWbP0aAtRHW4D6xx+2dzYJooJDbxoEQVgzJEwIogJAflGC0J/NmzfDzc1N7p+HhwciIyMRFRVlbvMAQMk+2X+xsbHmNk8nzJf9hiAIXiANQhDGpVevXkqxGBKJBI8ePUJISIh5jFIgPj5e5b6qVauazhAjQMKEIAiCINTg7u4Od3d3uW0SiQT29vac6+iYA9kFcq0dGsohCFuDxm0IgrBiSJgQRAWApQEegiCsBBImBEEQBEFYDCRMCMLGIN8IQRDWDAkTgiAIgiAsBhImBGFjkMeEIGyXU6dOISoqCvb29ujTp4+5zeEFEiYEUQEgsUJURNq3b2/URepGjhypkxhITk4GwzBqc4zoypQpU9CwYUM8ePAAGzduNEqda9asQWhoKJycnNCkSROzJ2QjYUIQNgbNFiYI66K4uFjrsklJSejYsSOqVauGSpUqGdz21q1b8cknn+Crr77ClStX0KZNG/To0QOpqakG160vJEwIgiAIm2PkyJE4efIkVqxYAYZhwDAMkpOTcevWLcTExMDNzQ3+/v4YPnw4MjMzpcft2LEDUVFRcHZ2ho+PDzp37oy8vDzMmjULmzZtwt9//w2GYSAUCnH27Fm1NoSGhgIAGjVqBIZh0L59e6ltffr0wYIFCxAYGIjw8HAAwO+//46mTZvC3d0dAQEBGDp0KJ4+fQqg3Pvy/PlzvPfee2AYRuoxOXnyJJo3bw5HR0dUqVIFn3/+OUQikVbnadmyZXj//ffxwQcfoG7duli+fDmCgoLw448/6nK6jQplfiUIgiB0Jq7jGRQ/LVK5nwUgFotxX5gCxojtOvg5ovWxlhrLrVixAnfu3EFkZCTmzJkDvLanXbt2GD16NJYtW4aCggJMnz4dgwYNwrFjx5Ceno4hQ4bgu+++Q9++fZGTk4PY2FiwLItp06bh9u3bePXqFTZs2ACJRIKcnBy1Npw/fx7NmzfHv//+i3r16sHBwUG67+jRo/Dw8MCRI0fAvnZzFhcXY+7cuahduzaePn2KyZMnY+TIkThw4ACCgoKQnp6O2rVrY86cORg8eDA8PT3x6NEjxMTEYOTIkfj111+RkJCA0aNHw8nJCbNmzVJrX3FxMS5duoTPP/9cbnvXrl1x5swZfPjhhxrPMx+QMCEIG4MrmRoN7xDGpvhpEQrTVQuTMkTQ7s3d2Hh6esLBwQEuLi4ICAgAAMyYMQONGzfG/PnzpeV++eUXBAUF4c6dO8jNzYVIJEK/fv2kqeZlF+lzdnZGUVERAgICIJFIUFSkvv++vr4AAB8fH6kNZbi6uuKnn36SEyvvvfee9O8aNWpg5cqVaN68OXJzc+Hm5oaAgAAwDANPT09pfWvWrEFQUBBWr14NhmFQp04dPH78GNOnT8eMGTMgEKgeGMnMzIRYLIa/v7/cdn9/f2RkZKjtG5+QMCEIgiB0xsHPUe3+Mo+JUCg0usdEXy5duoTjx4/Dzc1NaV9SUhK6du2KTp06ISoqCt26dUPXrl0xYMAAeHl5GWIyJ1FRUXKiBACuXLmCWbNmIT4+HllZWZBIJACA1NRUREREcNZz+/ZttGzZEgxTfpZbtWqF3NxcPHz4ENWrV9doi+yxAMCyrNI2U0LChCBsDHKOEKZA03CKRCJBSkoKgoOD1b61mxKJRIKePXti0aJFSvuqVKkCoVCII0eO4PTp0zh8+DBWrVqFr776CufOnZPGixgLV1dXuc95eXno2rUrunbtit9//x2+vr5ITU1Ft27d1AbHcomIsqEhTeKicuXKEAqFSt6Rp0+fKnlRTIllfFsIgiAIwsg4ODhALBZLPzdu3Bg3b95ESEgIwsLC5P6VCQWGYdCqVSvMnj0bV65cgYODA3bv3s1ZnzbtA9DqmISEBGRmZmLhwoVo06YN6tSpIw18VUdERAROnz4tFSMAcPr0abi7u6Nq1aoa7WvSpAmOHDkit/3IkSNo2VJzHA9fkDAhCBuD4kkIopSQkBCcO3cOycnJyMzMxIQJE5CVlYUhQ4bg/PnzuH//Pg4fPoz33nsPYrEY586dw/z583Hx4kWkpqZi165dePbsGerWrSut79q1a0hMTERmZiZKSkrUtu/n5wdnZ2f8888/ePLkCV6+fKmybPXq1eHg4IBVq1bh/v372LNnD+bOnauxj+PHj0daWhomTZqEhIQE/P3335g5cyamTJmiladqypQp+Omnn/DLL7/g9u3bmDx5MlJTU80W+AqQMCGICgFpFaIiMm3aNAiFQkRERMDX1xfFxcU4deoUxGIxunXrhsjISHz88cfw9PSEQCCAh4cH/vvvP8TExCA8PBxff/01li5dih49egAARo8ejdq1a6Np06bw9/fHpUuX1LZvZ2eHlStXYu3atQgMDETv3r1VlvX19cXGjRuxfft2REREYOHChViyZInGPlatWhUHDhzA+fPn0aBBA4wdOxbvv/8+vv76a63O0eDBg7F8+XLMmTMHDRs2xH///YcDBw5Ig3/NAcOy9H4FWOZ4qLGhPlo/2vTvWWExau85KbctsVc7+Do5cJa3NGz9GgLUR1uA+scftnc2CYIgCIKwWkiYEARBEIQe/PDDD/Dw8ICbm5vSv7LhH3OSmprKaVvZP3OmnVcHTRcmCBuDM8EaRZkQhNEZNmwYxowZwznU4ezsbAaL5AkMDFS7gGBgYKDpjNEBEiYEQRAEoQeVKlWy6BgTOzs7hIWFmdsMnbHMs0kQhN5QODtBENYMCROCIAiCICwGEiYEYWNwOUzIi0IQhLVAwoQgCIIgCIuBhAlBEARBEBYDCROCsDFoajBBGJ+QkBAsX77c3Gao5K+//kJYWBiEQiE++eQTc5tjECRMCIIgCJukffv2RntIX7hwAWPGjDFKXSdOnADDMHjx4oVR6gOADz/8EAMGDEBaWppWi/9pYteuXXj33Xfh5+cHhmHU5kMxNiRMCMLG4Ap0JR8KQSjDsixEIpFWZX19feHi4sKzRfIUFxdrVS43NxdPnz5Ft27dEBgYCHd3d4PbzsvLQ5MmTTB//nyD69IVEiYEQRCEzTFy5EicPHkSK1asAMMwYBgGGzduBMMwOHToEJo2bQpHR0fExsYiKSkJvXv3hr+/P9zc3NCsWTP8+++/cvUpDuUIhUJs3boV/fr1g4uLC2rVqoU9e/ZotCs5ORkdOnQAAHh5eYFhGIwcORJAqYdn4sSJmDJlCipXrowuXboAAJYtW4aoqCi4uroiKCgI48ePR25uLoBS70uZEOnYsSMYhsGJEycAADt37kS9evXg6OiIkJAQLF26VOvzN3z4cHz00Ufo3Lmz1scYC8r8ShA2BnlHCFPQ8chZPClU/0YvFokgvJFm1Hb9nRxwrEsLjeVWrFiBO3fuIDIyEnPmzAEA3Lx5EwDw2WefYcmSJahRowYqVaqEhw8fIiYmBvPmzYOTkxM2bdqEnj17IjExEdWrV1fZxsqVK7F48WIsWbIEq1atwrBhw5CSkgJvb2+VxwQFBWHnzp3o378/EhMT4eHhIZe+ftOmTRg3bhxOnToF9rX7UyAQYOXKlQgJCcGDBw8wfvx4fPbZZ1izZg2io6ORmJiI2rVrY+fOnYiOjoa3tzcuXbqEQYMGYdasWRg8eDBOnz6N8ePHw8fHRyqELBUSJgRBEITOPCksRnpBkeaCJWL+jeHA09MTDg4OcHFxQUBAAAAgISEBADBnzhypNwIAfHx80KBBA+nnefPmYffu3dizZw8mTpyoso3+/ftjyJAhEAgEmD9/PlatWoXz58+je/fuKo8RCoVS4eLn54dKlSrJ7Q8LC8N3330nt002TiY0NBRz587FuHHjsGbNGjg4OMDPzw8A4O3tLe3rsmXL0KlTJ3zzzTcAgPDwcNy6dQuLFy8mYUIQhGnhTLBGfhTCyPg7OWgsIxaJILQz7mNGm3Y10bRpU7nPeXl5mD17Nvbt24fHjx9DJBKhoKBA4+q7derUkf7t6uoKd3d3PH361Ki2AcDx48cxf/583Lp1C69evYJIJEJhYSHy8vLg6urKWc/t27fRu3dvuW2tWrXC8uXLIRaLIRQKDbKTT0iYEARBEDqjaThFIpEgJSXFIhe5U3yYf/rppzh06BCWLFmCsLAwODs7Y8CAARqDT+0URBfDMJBIJEa1LSUlBTExMRg7dizmzp0Lb29vxMXF4f3330dJSYnKeliWBcMwStusARImBEEQhE3i4OAAsVjzUFJsbCxGjhyJvn37Aiid5ZKcnMyrXQC0su3ixYsQiURYunSpVOBt27ZN43ERERGIi4uT23b69GmEh4dbtLcE4HFWTkJCAt577z20a9cOvXv3lotW3rhxIzp37oyOHTtixYoVVqPiCMIqoN8TQQAonUlz7tw5JCcnIzMzU6U3IywsDLt27UJ8fDyuXr2KoUOHGuz5UEdwcDAYhsG+ffvw7Nkz6QwbLmrWrAmRSIRVq1bh/v37+O233/Djjz9qbGPq1Kk4evQo5s6dizt37mDTpk1YvXo1pk2bppWNWVlZuHXrFm7dugUASExMRHx8PDIyMrTrpAHwJkxmzJiBVq1a4fjx41i0aBGWLFmClJQUxMXFYceOHdi4cSO2bduGuLg4raZYEQRBEIQuTJs2DUKhEBEREfD19VUZM/L999/Dy8sL0dHR6NmzJ7p164bGjRvzZlfVqlUxe/ZsfP755/D391cbYNuwYUMsW7YMixYtQmRkJDZv3owFCxZobKNx48bYtm0btmzZgsjISMyYMQNz5szROvB1z549eOutt9CzZ08AwNtvv41GjRppJYoMhWF5cle0bdsWf/75J6pWrQoAGDFiBD744AP8888/CA8Pl56cv//+GwcPHuTsbHFxsdIYn52dndQNZkwkEgnS0tIQFBRkceOhxoL6aP1o07+0vAI0Onhabtv1N1uhirOTKUw0GFu/hgD10Rag/umOtvXwFmMyaNAgHDhwAKNGjUJCQgKePHmCyMhI/O9//0NMTIy0XHh4OH744QfOOjZs2ID169fLbRs4cCAGDRrEl9lISzPunHtLhPpo/ajrX3qRckDcw4ePUOxgXSFltn4NAeqjLUD9057Q0FCtyvF2p2rZsiVmzpyJn376CQDw5ZdfwtvbG/n5+XBzc5OWc3V1RX5+Pmcdo0aNwrBhw+QNJo+J3lAfrR9t+sfkFQDXUuS2VatWlTwmFgT10fpR179x48Zh8+bNnMcNGzYM//vf/0xhokpiY2Px5ptvqtz/6tUrs14/XoTJixcvMGXKFMyaNQtt27bFgwcP8NFHH6FmzZpwcXGRC/TJy8tTuf6Ag4MDLyJEHQKBwCZ/RLJQH60fdf3j2s4w1nc+bP0aAtRHW4Crf3PnzsWnn37KWd7Dw8Ps56N58+ZqF+WTtc8c148XYfLo0SO4ublJ1wMICwtDkyZNcPnyZYSGhuLevXto3bo1AODOnTuoUaMGH2YQBPEamqdDEKbDz89Pmo3VEnF2dkZYWJi5zVAJLzIoODgYeXl5+O+//8CyLJKTk3HhwgWEhYUhJiYGO3fuxKNHj5CZmYnNmzejR48efJhBEBUSmi1MEIQ1w4vHxM3NDQsWLMCqVavw9ddfw93dHYMGDUJ0dDQA4O7duxgxYgQkEgn69OmDXr168WEGQRAEQRBWBq/Bry1btuTcN2rUKIwaNYqvpgmiQkPr4hAEYc3YbkQSQRAEQRBWBwkTgrAxuFcXJgiCsA5ImBAEQRAEByEhIVi+fLlZ2k5ISECLFi3g5OSEhg0bmsUGc0HChCBsDJqVQxCmh2EY/PXXX0arb+bMmXB1dUViYiKOHj1qcH03b95E//79ERISAoZhzCa4tIGECUEQBEGYgJIS5eUiVJGUlITWrVsjODgYPj4+Bredn5+PGjVqYOHChQgICDC4Pj4hYUIQFQFyoxAVjLVr16Jq1aqQSCRy23v16oV3330XSUlJ6N27N/z9/eHm5oZmzZrh33//1autkJAQAEDfvn3BMIz086xZs9CwYUP88ssvqFGjBhwdHcGyLP755x+0bt0alSpVgo+PD9566y0kJSVJ62MYBpcuXcKcOXPAMAxmzZoFALh+/To6duwIZ2dn+Pj4YMyYMXKZ1NXRrFkzLF68GG+//TYcHR316qepsK5VvQiC0AhNFyZMQbvV7fEk56maEixEYjHshEIAjNHa9Xf3w8mJJzSWGzhwID766CMcP34cnTp1AgBkZ2fj0KFD2Lt3L3JzcxETE4N58+bByckJmzZtQs+ePZGYmIjq1avrZNOFCxfg5+eHDRs2oHv37hAKhdJ99+7dw7Zt27Bz507p9ry8PEyZMgVRUVHIy8vDjBkz0LdvX8THx0MgECA9PR2dO3dG9+7dMW3aNLi5uSE/Px/du3dHixYtcOHCBTx9+hQffPABJk6ciI0bN+pkr6VDwoQgCILQmSc5T/H41WNzm6ESb29vdO/eHX/88YdUmGzfvh3e3t7o1KkThEIhGjRoIC0/b9487N69G3v27MHEiRN1asvX1xcAUKlSJaVhkuLiYvz222/SMgDQv39/uTI///wz/Pz8cOvWLURGRiIgIAB2dnZwc3OT1rd+/XoUFBTg119/haurKwBg9erV6NmzJxYtWgR/f3+dbLZkSJgQhI1B/hLCFPi7a1oLhj+PibYMGzYMY8aMwZo1a+Do6IjNmzfj7bffhlAoRF5eHmbPno19+/bh8ePHEIlEKCgoQGpqqtFsBUqXaJEVJUBp/Mg333yDs2fPIjMzUzrclJqaisjISM56bt++jQYNGkhFCQC0atUKEokEiYmJJEwIgrAuSKwQxkbTcIpEIkFKSgqCg4PNtppuz549IZFIsH//fjRr1gyxsbFYtmwZAODTTz/FoUOHsGTJEoSFhcHZ2RkDBgxAcXGxUW2QFRKydgUFBWH9+vUIDAyERCJBZGSk2rZZlgXDcAs8VdutFRImBGFjUJwrQZTi7OyMfv36YfPmzbh37x7Cw8PRpEkTAEBsbCxGjhyJvn37AgByc3ORnJysd1v29vYQi8Uayz1//hy3b9/G2rVr0aZNGwBAXFycxuMiIiKwadMm5OXlScXOqVOnIBAIEB4errfdlgjNyiEIgiBslmHDhmH//v345Zdf8M4770i3h4WFYdeuXYiPj8fVq1cxdOhQpRk8uhASEoKjR48iIyMD2dnZKst5eXnBx8cH69atw71793Ds2DFMmTJFq344OTnh3XffxY0bN3D8+HFMmjQJw4cP12oYp7i4GPHx8YiPj0dxcTEePXqE+Ph43Lt3T6d+mgISJgRBEITN0rFjR3h7eyMxMRFDhw6Vbv/+++/h5eWF6Oho9OzZE926dUPjxo31bmfp0qU4cuQIgoKC0KhRI5XlBAIBtmzZgkuXLiEyMhKTJ0/G4sWLNdbv4uKCQ4cOISsrC82aNcOAAQPQqVMnrF69Wiv7Hj9+jEaNGqFRo0ZIT0/HkiVL0KhRI3zwwQda99FUMCxLjl/AMsZD+Yb6aP1o0787r/LQ4p/TctuuvtkaQa7OpjDRYGz9GgLUR1uA+scftnc2CYJQgt4+CIKwFkiYEISNQQnWCMK4bN68GW5ubnL/PDw8EBkZiaioKHObBwBK9sn+i42NNbd5OkGzcgiCIAhCDb169cIbb7wht00ikeDRo0fS9PPmJj4+XuW+qlWrms4QI0DChCBsDIoaIwjj4u7uDnd3d7ltEokE9vb2CA4ONpNV8oSFhZnbBKNBQzkEUQEgsUIQhLVAwoQgbAzSIARBWDMkTAiCIAiCsBhImBAEQRAEYTGQMCEIG4OGcgiCsGZImBBEBYBymxCEbXDq1ClERUXB3t4effr0Mbc5vEDChCBsDZqCQxAAgPbt2+OTTz4xWn0jR47USQwkJyeDYRi1OUZ0ZcqUKWjYsCEePHiAjRs3Glzff//9h549eyIwMBAMw+Cvv/4yuE5DIWFCEARBEGakuLhY67JJSUno2LEjqlWrhkqVKhncdl5eHho0aKD1YoCmgIQJQdgY5C8hiFLvxsmTJ7FixQowDAOGYZCcnIxbt24hJiYGbm5u8Pf3x/Dhw5GZmSk9bseOHYiKioKzszN8fHzQuXNn5OXlYdasWdi0aRP+/vtvMAwDoVCIs2fPqrUhNDQUANCoUSMwDIP27dtLbevTpw8WLFiAwMBAhIeHAwB+//13NG3aFO7u7ggICMDQoUPx9OlTAOXel+fPn+O9994DwzBSj8nJkyfRvHlzODo6okqVKvj8888hEom0Ok89evTAvHnz0K9fP11OL69Q5leCqACQWCGMTdHaaLC5T9SUYOEnFqNYKATAyO3JL8lHibgY7o7uEDBCndpl3Pzh+OFpjeVWrFiBO3fuIDIyEnPmzAEAiMVitGvXDqNHj8ayZctQUFCA6dOnY9CgQTh27BjS09MxZMgQfPfdd+jbty9ycnIQGxsLlmUxbdo03L59G69evcKGDRsgkUiQk5Oj1obz58+jefPm+Pfff1GvXj04ODhI9x09ehQeHh44cuQI2NfDr8XFxZg7dy5q166Np0+fYvLkyRg5ciQOHDiAoKAgpKeno3bt2pgzZw4GDx4MT09PPHr0CDExMRg5ciR+/fVXJCQkYPTo0XBycsKsWbN0OreWAgkTgiAIQmfY3CdAziO1ZVRJDpeyP0rydG9Xy3Kenp5wcHCAi4sLAgICAAAzZsxA48aNMX/+fGm5X375BUFBQbhz5w5yc3MhEonQr18/aap52UX6nJ2dUVRUhICAAEgkEhQVFam1wdfXFwDg4+MjtaEMV1dX/PTTT3Ji5b333pP+XaNGDaxcuRLNmzdHbm4u3NzcEBAQAIZh4OnpKa1vzZo1CAoKwurVq8EwDOrUqYPHjx9j+vTpmDFjBgQC6xsYIWFCEDYGeUcIU8C4+Wv4rrEQi8UQKnhMCkrykV2QLf0c6KHbAnOMm79O5WW5dOkSjh8/Djc3N6V9SUlJ6Nq1Kzp16oSoqCh069YNXbt2xYABA+Dl5aV3m6qIioqSEyUAcOXKFcyaNQvx8fHIysqCRCIBAKSmpiIiIoKzntu3b6Nly5ZgmPJz3KpVK+Tm5uLhw4eoXr260W3nGxImBEEQhM5oGk6RSCRISUlBcHCw3Fv7vqs78d6W96WfX01N4s1GLpt69uyJRYsWKe2rUqUKhEIhjhw5gtOnT+Pw4cNYtWoVvvrqK5w7d04aL2IsXF1d5T7n5eWha9eu6Nq1K37//Xf4+voiNTUV3bp1Uxscy7KsnCgp2wZAabu1YH0+HoIg1EKzhQmiFAcHB4jFYunnxo0b4+bNmwgJCUFYWJjcvzKhwDAMWrVqhdmzZ+PKlStwcHDA7t27OevTpn0AWh2TkJCAzMxMLFy4EG3atEGdOnWkga/qiIiIwOnTp6ViBABOnz4Nd3d3VK2qmzfKUiBhYkSKxBJzm0AQnJBYISoiISEhOHfuHJKTk5GZmYkJEyYgKysLQ4YMwfnz53H//n0cPnwY7733HsRiMc6dO4f58+fj4sWLSE1Nxa5du/Ds2TPUrVtXWt+1a9eQmJiIzMxMlJSUqG3fz88Pzs7O+Oeff/DkyRO8fPlSZdnq1avDwcEBq1atwv3797Fnzx7MnTtXYx/Hjx+PtLQ0TJo0CQkJCfj7778xc+ZMTJkyRav4ktzcXMTHx0tzrTx48ADx8fFITU3VeCxfkDAxEvOu30P13cewMiHZ3KYQVsaim0nofvQ8rmerj/DXFsryShClTJs2DUKhEBEREfD19UVxcTFOnToFsViMbt26ITIyEh9//DE8PT0hEAjg4eGB//77DzExMQgPD8fXX3+NpUuXokePHgCA0aNHo3bt2mjatCn8/f1x6dIlte3b2dlh5cqVWLt2LQIDA9G7d2+VZX19fbFx40Zs374dERERWLhwIZYsWaKxj1WrVsWBAwdw/vx5NGjQAGPHjsX777+Pr7/+WqtzdPHiRTRq1AiNGjUCUJrArVGjRpg5c6ZWx/MBw7L0LgWoHg/VFu9tR+Q+n+rWEnU9lQOszImhfTQGP91Nw7EnmZgRVQt1eDg/ltBHXUjOzUfjA6cAAG52QqT266i2vDb9u5b9Cu2PnJPbdrFHK9Rwd+Esb2lY2zXUh4rcxx2KMSYLXpjBOsOx9Wtozv7Z3tm0EFodOmNuEyyOjIIifHYlAf88zkS/k+rfNHShRCLBlayXkFihxs4oKJ9umCvSfuxaHdZ3FoiKQG5RLjac34irj6+a2xTCwqFZOQYSn/UKvySlmdsMq0D2IZxRqH0KZk2MOHUVh9Iz8UFYEBY2DDdavbYEDe8Q5uabgzPx87mfzW2GUfnhhx/w448/cu5r06YNDh48aGKL5FE3zRgAbt26ZZHTiUmYGEBSTh46/ntOc0ECAMDXzLVD6aXppH+6l0bChCAsFFsTJQAwbNgwjBkzhnOow9nZ2QwWyRMYGKh2AcHAwEDTGaMDJEwMYPLF2+Y2gVBg36OniNJczOSUSCT4O+0Jqrk4oYVvebImPvwYVjiiRRBWSaVKlSw6xsTOzg5hYWHmNkNnLPNsWglZxeqnimnD86JifBN/B388eGwEi4iRZ64j1wKnbf96/xHGnLuBmOMX8SA3X7r9ZYl2C20RBEFUFEiYGMAzI8RJvHv6Kn64k4KJF27iwCPNyXSsGVPlIFyelqm5kIn59HKC9O8/k8tF6Hc3jZ/1kiuehJwoBEFYC7wKk40bN+LNN99E27ZtMXToUOlKjBs3bkTnzp3RsWNHrFixAtY6Y/lZkWHCJLOwGKefvZB+fucURasbg93PXsl9ZlkWt1/mQiyxjO9ZsbjcjtS8QjNaQhAEYXnwFmOyZcsWnD59Gj/99BMCAgKQlJQEBwcHxMXFYceOHdi4cSOcnJwwbtw4hISEqE08Y6vMunbX3CZUCL65egdr7qTizaq++K1VQ3Obg2JJ+VCTkIeIYMuQXwRBEPrBizARi8XYsGED1q9fjypVqgCANADnwIEDGDBgAKpVqwYAeOedd3Dw4EFOYVJcXKy0eJGdnZ3SiozGoGwVR4lEu/iEAi3WPlBVl0giAQsgvUD5bVnb9vVB1z4av31W4TP/fQWANXdKUyvvf/TMbH1nUC4YWJaV2qGoSzTZp801VDzPZdvM1XddMff31BRQH5XLWRu2fg356J+2QcK8CJOnT5+iqKgI//77L7Zs2QI3NzcMHToUAwYMwIMHDxATEyMtGx4ejh9++IGznjJxI8vAgQMxaNAgPswGAKSlaZeTJL1Ic+BrSkqK0rbsEjGG3UqDiGVRyU6o1THGRts+Gpv0vCK5z3z2VVUf7z1Ihr2A/2iXPc9e4UFhMUZV8YKHnVBOmLx49Urad1ZB4Gp7TtRdw4xcZcH7+PEj2DsZX9Dzibm+p6aE+miaex6f2Po1NGb/tF2hmTdhkpubi4cPH2LPnj149OgRxo8fj5CQEOTn58PNrTwVuaurK/Lz8znrGTVqFIYNGyZvMI8ek7S0NAQFBWml6oT5hcA19T+o3QUsPqkTIv38qkSEJn+flH5+XqLsdQkODtbeaB3RtY/G5tWLHOBW+ZfcaH29cE9pk1wfZfa3uJSEv9s1RiuZKbvG5saLHMx+3WaxozNWN4sAczFJOo/X3d1d2nf7G2mAzPdA0znR5ho+z3oJ3H4ot61KYCCC3V05y1sa5v6emgLqYzl83vP4xNavoTn7x4swcXR0BACMGTMGTk5OqFmzJmJiYnDq1Cm4uLggNzdXWjYvLw8uLtxreDg4OPAiQtQhEAi0uggCLWID5t1Iwid1Q6Vlv9EipkTEAg5Cfr8E2vbR6O0y8m3yaYO6PvY+eRlZg7rw0q5YwmKKzAycLSnpWPNGpPyMJIaR2qb4PdL2nKjrH8Mobxcw5rnmhmCu76kpoT7yex8wBbZ+Dc3RP15aCw4Ohr29Pee+0NBQ3LtX/gZ7584d1KhRgw8zeEXbUbd+Jy/j1et8J5u1yFUSsPMoTj55boBlBACNM71mXL1jlOneimxNScflrFeaC76Ggl+JisDkv6aa2wTCiuBFmDg7O6NTp074+eefUVxcjOTkZBw8eBCtWrVCTEwMdu7ciUePHiEzMxObN2+WLiltTWg7w/m/p1kYd/6mTnX3PXlZD4ssHz5S0t94kcO5vf6BUzib+ULlcasTUzDpgm7XRRu+iE/UWIZR8TdB2CIsy9pkOnqCP3ibLjx9+nTMmTMHnTt3hqenJz744AM0bdoUAHD37l2MGDECEokEffr0Qa9evfgygzc2JD3UXOg1Bx8/4yWRVkWhWCzBgptJsGMYfF6vJhgGkLAs7AQCDPyPW8SlFxQh5tgFtUM2h9ONn4hNladGlY7lIw6XEqwRloS15qkizAdvwsTd3R2LFy/m3Ddq1CiMGjWKr6Z552hGJlYmJut0zMKb9/kxpgLw0700rEhIBgC429th84PHSC8oRKibC55oGI5JfJWrdr+50SZWiSCsmcevaLkNQjdoET89OJbBfwxIVlExvB2ta3onX+xITZf+LZuU7rqKYRxZWv5zRu1+CcuaVRzw0TK9oBKWwquiV2izuJ25zSCsDNsNJeYRU9z4w2SmFVd07HmMCF9wIwm/3X+EF1ouyDj10m10OnJOpSdG1VdDdniFkdtOWDrZRSVIzSswtxlWyR83/jS3CYQVQsJED+hhYhwKRJqz5wLgNSHa0tsP8PHFWxh77obGsucyX2BD0kNcyX6FQf9d4SxD4+mmZ8GNJAz877Lcqs3GIruoBA32x6LR/jiceZZt9PptnReFL8xtAmGFkDAhTIaivPjhjnYZH/mYUquINoGwD/PL35rT8o2z+B4vQzmc22xTMF3JeonFt+7jaMZzjOBhEcyVicnIFYnBAhgaF2/0+m0dbb53lx9yi3ylugqyUbJnHEqOz6UXABuHYkw0IGFZMAAYmYcjhSsahxQt3eOxT23sTZVR+UFKgUiMjMIihLpxJx8kSrmXU+4lufnS+IHOsmti5YhERq+fAA7ePojG1RppLFe8uS/Yh2cBAIIqjSCs8xbfphFmgjwmaniQm49G++PQ5eh5FInLU6rRRArjsO/hU41lRCZcIOumFsG0msgXc9ur6gUv2reS0jaxhEWbw2fQ5MApbEtJVz5IAxXpXZJ+itaPNl4V8YOTUlECAJKUWD5NIswMCRM1jDl7A2n5hbic9QorX09XBehmqC8vS0RKn7OKirH2Tipuv37bLRCJceH5C0heP8kLVTzo+WDcec1xJsaGyyMS+ywL93NLvUljz91QmUSOMMFLQkVSeTxgyIhLUuZ9/BC3BhmvMlCyqZvcPvHVzQZaRlgyJEzUcP1FeWrxBTeT0OPYBTNaY/1Mvnhbadu48zfxRXwiWh06A7GExYD/LqPb0QuY/XpasCniS8p4VWJ6V71iXC/LskjOlR/ianv4LHalZmhfKcfTwBaH5B/k5uOLK5oz7RLmY+utrXodN/vQHDRa2hhf7P8SLVZEKxfIN35yRMJyIGGiA+cyX+DMs2ysuZNqblOskrs5eUrbjsgEneaJxTjzOo38qsTSwFg+ZlqoQqCjL0zbYSYJK++sZsBw/g0ADfbHYcolZQH3wdnrOtlWEeh38jIyi+SneV/JeonvbibhsZGCkwnTM2Lzu1h6Ypn0c1Z+lhmtIcwBCRM1KD40AGBwrHYR5ITuyA6XAcDdV3loffgsd2Ee0NU50+PYRbnP6QXcD8NPZVYb1sRDeqBqDVfwdKd/z2PhzfuI3BeLK1kvzWAVYSh/3fjb3CYQZoaEiY7kapl7g9CdZbcfyH1+45/TZrJEOy4pPPj6q1h8Ud26SqaaLnw3Jw9fXknEhecveGjRMul5/KLmQjrA9aJCGE5+sem8ooR1QNOFVbAzNQNFJpwRQpgfQx87Ca+Uh6oshXdPXwMA/Hg3Ve3ChraEqhlS+mKruWD0obCkEAzDwNHO0eC6KCcJoQh5TFQwmsb0Kxz3cwvUuv+Ndf9kweLGixyUSCS8zCqh27xqknPzkV2k3fIDBDcPXzxE3UX1UHdhPWS80iEoWwWFIhq+JOQhYUIQMsQcU+3+3//omVHaWHc3DW0Pn8Wg2CsokZCMMBX/PclC4wOn0GB/LF5quTYSXR1lPts7Hc/zniMzLxOf7/vC4Pp+PveLEawibAkSJgQhg7rhuwOPVSeEy9Mj9ujkkyy51ZKNBbnGuSkLXM8VifE/LWfWPSkskv5NGrKUx6/Kk/4lPKXp2oTxIWHCgaXd2EUSCRbdTMJ3N5Mgpruj2VD1tdiVmoGafx3nvf3r2TnYkZqBYo7vwNPCIhzPeI7jGc+VEtnZIl/Ha/dATJHJCSMrOou1jB/bo0V24orG5YflQd63ntyCxAixeOvOrDe4DsJ2oOBXDizt0b8h6SEW3bwPAPBzcsTImtXMbBE3ua8fiG72tve1yheJIeJQJjdf5Jgsx0i7I6VTpz8M9Ma3oSHS7Uk5eYg+dKbCDAud1iGXUK8TF3H1rTZK2zkXOmRZPCsqhp+T4QGdFYlbT24hskqkQXVM2/MpxrQcbSSLCGuHPCYcWJjDBH8mP5b+rc/aKabgYV4B6u2LRcTe//CQI7+EtadVn3n1Duf2NibMs1LG2sdZSJJZvC7uaXaFESVA6Yw5bVG1CjTXb3zkmWuos+c/rE5M1tOyikn0ytZ4WUg5YwjjQcKEg5NPLSvToOzNNZnHTKhpeQXIV4iV0HZY67MrCcgpESFXJEb9/XFK+9ua4QFuTP5Jt6wU2B2Pnpf+zZUp1lb5/vYDtXlh9EUsYbH39bDNjKvGj/uxFR6/fMy5fcXJlSa2hLBlSJhwYClvTCzL4sST53guM70xo7AY6++Wu7GX3LqP4afikcrhpSir43zmC9zVkGPj0ONnaLg/Ds0OnkKhWAwJy6LvyUuI2heLrcmPMTj2CjaqeSA8K5Sf5WBLUzKfFxXjkYVlZJUNtq04vhJg7vV75jahwsKyLOosjODcl12QbZQ2ikRFmguV2ZNL8T+2iu0FAxiBJ4XF5jYBAPDemev4++ETpe3TryTij+THuPUyV+rCTy8owr+d31AqezTjOQbFXoGQYXClh/JiWC+KSzA0Lh5nX69Rk15QhG0p6XAQCHDySannaNz5mwBK17XpG+QPTwd7pXoUF6Or+fcJZA3qguTcfKudzfCkoAh19/5nbjNUMufaXa2DOAllisUSOAhL3820SZ7moPglr2DsuLpT5T5jTBgImBGI/BLtPcIlBz6Bw6A/DG6XsDxImHBw+2WuuU0AAE5RUsbVbPmYjctZrzjLvXMqHgAgZlksT0zGBG9nuf2zrt2VipIyPuFYBbiMZ0XFOPk0C3U93FDLw1W6neuW/b87Kfg6/o7VvdFLWBYChsHHF2+Z2xS1LFdYW0hbWJYFY8JVmy0BicKD86d7qfjxbgpGh1XH3IbhKoNhZanuWv7beZCbj3V30/BmVV+09vPmw2SL40wKv8OxuogSAJDc2sWTJYS5oaEcG0eTt+Lic92C1lYmJGPk6Wto8c9p6SwcAJwPuq+sUJQAwOYHpePohy0srsRYWOM1MRTFa5kvlqBYwuKHO6WrWHMtCJijEG8l+w3vc+IS1t5NRa8Tl5RET0Wkogldgl9ImCjwzEKGcYyF7C1TwOHX0PWW+vvrhzYL4NSz8nFlW7otWbqnxFAq4nP0kgYBzrWqs1DpYVv+WTYgve/JSwbZZi2oH66xpTuA7cOKLTvXEQkTBWxtoS6xzM2Ez5caW7st8Tn7ydzY2ndcE5mFxRpjcew5fhyKN0dVv5/Yp9lIsJDhX3NjackpCWWKdwxH0aIqECfuN7cpKiFhooDyW5J1klsigve2IxrLGSueRmAj562M/v9d1lzISqloj46ltx9gq5r8P8ViCXqeUPZ66HKeKvpK5AzDYHv8DlT6yhtvre9JAsVCkWQlQXJjO1Ccg5I/+5vbHJWQMFHAmh+weSIxZly9A+9tR1B9t+YU6ctuPTBa29Z71rh5kMs9/doW0DR13FIR6fnwL5ZI8FTNEK26IHMuKKZEGZaV4P2tH4BlWfx3PxZDfx9mbpMILoqt47dPs3IUsOZ7znc3k7A6MUWrsrdf5mLeDcNyQsieKivWcxWObC1X1jU1mYXFWHs3FW/4eKImx37FmWhGa7dIu7iysq+4bCbmMqz5vmEMdlzdIfd5/60DWBW7ykzWEKqxjhs1CRMFrHn8fZWWogQA1t3Vbq0RbWGs5AtPWO4MigkXbuLI69kzRxuFIlhhv7NQPwevWINqWKrCc6jqqEkXbDs4Wh9eFiqnK/jmn5lmsISwBWgoRwHrlSXmxUKfdQQHljr+f0RmSm9ygbIXw1FPYXJEw7TvLBUepGvZ8g9bdV9xa36hISoQVnKjJmGigIXes40Cn32zjq87AViGx4RlWZx+lq0y3oXLQn2n8iuu/6QthWL5mBZV540teWmxYo+LRUe/w6BNg5GclWxuUwiTI/8dlmTKrwvFFryAOP53sEXmXXSVhIkCxnjz6RzgYwRL+MXYjyYayrEeLOEhevDxM7x1/CJaHjqN9ALlHCIvFUSBWMIi5vhFvdrSt7faHCdOXgnxjQ8wceu7erZiWq49voZv/52PfxIO4Z3fh5vbHMLMiM//T/o3KypC0aIAlPz1AYqWKA6kmhYSJgoY45Y9s34tI9TCH2KWxcb7jwyuJymnPNfH8SfPDa6PMA3mlyXAO6euAijNTPy/O8rxTjueliZE+/leGr69fg/XX+j/BveqRL9kUoovKVxT69nsWADAjbSTerVhau5mlge8X0u/Lrfv8cvH2HJlK14UvDCxVYTJUPL6lX/HxVd+Ld+s4/IAxoaCX2UolrDop+dbmSyWOuX43POXGOvliG1qcjrowjdX72BCbfMqa0J3LEGYaMKOYXDiyXN8ejkBAHAvx/Q3Si7H0nWeZgaZCiEjVLmv/8YBuJlRGtibNS8TdsLSx8OtjFsQSUSwjm8OoQvsC5mXgiLdlifhExImMmx58gIpeZa1vL0xuf4iB0ezXTE9KcncphBmxM5ChbMiu9PKl7XXNdeIMeAa1s0TWXYqb01ce3xN5b4yUQIA848uxHvNRyIlOwU91r0JAGhcrTHv9hGmRXJnP4pWRcGu0xxAbDnLsZAwkeFhkWXmdzAm05MyzG0CYWZ+vf8ILX29zG2GRg4+fmbW9rk8JtbuM1hyYinndolC8rolx5fg+5PfQywpDxy+/NDCsiHbOWsuY0NI0uPB5qRDENYNjEDfKAyO9dKe30XJtiGAW4D89sIXerZhOBRj8pr/3UnFzmfKc/H1wdpvXrpSKNZv1gNhHi5nWY7LVhUMVE/jJYzPqyLle5+sKLFIRLabnVkR9tUjFK+LRskffSG5/ic/jeQqvLSa8fqTMAGQ+CoX31y7q7kgwcl3N++b2wRCB0RmnpUjlsi3vzoxRWOuEXPAdZYSrTSdPwDceXpH5b7Zh+aa0BLjIcm4DlZkOUMQfCGO/w1gS71aJbvf178iKxnGJWEC4I6RbzbWcemNhy2vK2OLaMqEyjeH05WHaAbHXjGDJerhWhNn+pUEM1hiHKbv+0JpW5lY+fncz6Y2xygU/9gMJb/3NLcZvCN5Jv+9Y/WeOaX66SQIaatnncaHhAmMP/RSyaFihe789zTL3CZImRROs4Q0ITbzWCNfa96YghIZbw8rlp8pVCK27KEnsUQ5cLfDmk5msMS4SJJPgrX11Z1L5F/+RGeNvw4RE9jE6HXqCwkTAD9y5FEwhCrOTkatz9KxhEXhqjg74n6f9phZPwzD/Ctxlgl2rVjBcqoQ83ATT8rJw5/Jj5ErkzPkYV4Bfr//CC/0+H7kiM3/oEnL1zBDj5V/0P987heD2tt4fhM+3/cFsvKzDapHFVyzjHKKcvDn5S28tGcNaBI0ksw7YEssYaam/LWTXN+qXzXqhnIsIPFiGbwKk2vXrqFZs2bYuHGjdNvGjRvRuXNndOzYEStWrLCILJSGJG+qX8kd8W+2hq+jA+wFDA52bMZZLsjFCd2qVNa7HUI1j/t3RPybrVHJwR4AYK/it3eqW0sTWmW5GNtjIpJI0OzgaUw4fxNvx5UPyXT69zw+ungL487dkCv/3S3NMUmXcsw/PPj5lUT1BRh7uY/3n6vuV5GoCB9uG4v3t4xGfrFyTparj6/io90fY82p/+HTPZ/pZa8mVN1rP9w+lpf2TIvuX2rxje0oWlQFJQemcO4XXViH4tX1UbyupcV5ZNgsw1aGV1ErD3XqB2/CRCKRYNmyZYiIiJBui4uLw44dO7Bx40Zs27YNcXFx2LNnD18maI0hMSFfRdVEdVdnxL/ZGjffaos3KlfiLLchuj7erOpnQEsEFwIGcBIKYS8zfS7U2UGpXGKvdnCxE+K9mtVMaZ5FYuzg16MZ5Vl/Tz97If37WVFpUOIhCwxs1YRWM80E8t+zB8+TsTp2Ne5lKucJWh33A/68sgXbr27HwqOLlPaffnBG+vf2q9t1N1gLbHqhQT2+0yU7hgNFLyE+vwYsh1gU7f+otOpnt8Fmmje2iH1leKbuUqwjApI3YbJr1y5ERkYiNDRUuu3AgQMYMGAAqlWrhsqVK+Odd97BwYMH+TJBa3L1XOQLAFyEpZkUne2EqOxUfqOq5e4qV45lrSYg2qoYEhKotC3Gxx29q5WLwC8ja8L39bVZ0qQuDnRoajL7DKEVT7lGuII6DcEcWVn5Jnj3cY1lGIUsqocSD+HLA1+j9co2AID7zx+g+PWMkRP3TkjLHU48olQXn/Ept5/cxpS/p+Fsyjne2jA37NObBlag4RkgVH7ZMSXs40vGqefpDTU7LUe48hKl+fLlS/z555/YsGEDli1bJt3+4MEDxMTESD+Hh4fjhx9+UFlPcXExiovlp4LZ2dnBwcG8XxJZglyclJITlSJ/kVmWVXvhFzYMx+fxqqfzWSrcfTcdvar6ydkgkUggYBisb14PP7eIwqsSETzs7eTKWEtg1Zf1auDNE8a5IcnyskRk1OvGKI5/c9Rt7u+JrpRI9L9J55fko/P/uuB86gVE+Efg1KRYuUUuJaxYej7K/l8Vu1quDl3P182MWygRF6Nh1YZK+9r/0BEFJeYfGuOT4t97wmFqst7Hi86vhbAV95AOUHrrVrwmitfQ1OjTbsm2ISr3sSz//RNomRiOF2Hyww8/YMiQIfDw8JDbnp+fDzc3N+lnV1dX5OerftvasGED1q9fL7dt4MCBGDRokHENNgDxsydI4dheUiL/BuT1KgsZahK4iV5ZftIrLlJSuHpvGj4P9kXNwhykpCgvrpaWlib9WzGUMCPXEoLZyunn6wEWwG6Z78eYQC/4577grU1jXrcX2S801m3O74k5OJ96AQBw68ktnLx2Us5bUVRcLP1+pqWl4VHOYzzJlU+5r8v5evDiAfps6wegdC2cxlUaY2W3FXC2c0LC8wSbFyUAgLynOn/Hqsj8LT76NR5W669yf/qD2yjJ4V5nSPZewxdVOLbp85viqqeMwvtxkH3lf/ToEeDkZdT+yY6gqMPowiQhIQE3b97E9OnTlfa5uLggN7f8IZKXlwcXFxeVdY0aNQrDhg2T28aLx+SCfoFEj/p2gKOQWwHaJzwGCkvFSQsfT4SGhCBRjbsx0M8XuG/69UAMJTg4WO/zZwjja1XHtAbKqzhLJBKkpaUhKChIpTp/nvUSuP2QbxO1Zl27Zrj9Mhe7j5Q/vOZHv16X5CI/6xoFBxtvWrV3sQBILY8jqV69OhiGkftelLUnZlmzfF/MSZUqVVAoKhfD6bnpCAoKkn5Pp/w6VemYsvP109mf8SzvGT5p+zGc7Z0hkUjw0V8fI/1VOn7otxoBHgH49ER5sKyYFePC4wvYlrQNKdkp2HV9N/8dtBCCnPMg8IvQXPA1imnZFH8Tsvv9Mv6BXZM35fZrc68xFlwp5PT5DatLRefwLF7uc9Vq1fAwM88k/VPE6MLk8uXLSE1NlQ7Z5ObmQigU4uHDhwgNDcW9e/fQunVrAMCdO3dQo0YNlXU5ODhY1LCNIs726k5fuevW1d4OAoFALkBTubi1DDDIY+ovbHm7jNq2BQKByv2MhZ1rgUBQ+iBX2MZ3m/qQXlCICedv4sNa1dEt0BcAlGw/mP4cb1WTD/Qua++3JMsRhKbief5zuc+FokJpIKpAIEBGjvL6VQKBAEfvHMO0vZ9Kt33V5Utsv7oDv1/aDAD45O/J2PbuVs7v856be5H0vGIt1ila3wpO3+jveVb7mxAVqdyv7l7DJ/zfI4TSdkzdP6O31q9fP+zevRubN2/G5s2b0bZtW7z99tv4+OOPERMTg507d+LRo0fIzMzE5s2b0aNHD2ObYCEoj1HbC1RHvxo7INHWMSSO2BRByDvbyq/EujG6Pmc5X8dS4W0pVz+7qAT3cuQzIbMsC+9tR+C97Qjq7Y3FiSdZGBIXj/zXQeOKX+s1d5RdzAWvy/72wFizC6yHmPVvKW3jEiOK7LlZPmNxZWxpQq0LaRek2/5JOAQA+O/+f0rHVjRRAgAQFxl2eMI+lfskV3+HJNP6YgANwoyzNYwuTJycnFC5cmXpP0dHR7i4uMDd3R2tW7dGv379MGLECAwcOBCtWrVCr169jG0CL3goeEd0mTFRdnntNVzojgE+uppldvjOQ7O+RSQGVA9AgJO854yx8GlvHRSuZXt/7ms7o36YKczRilclIjQ6EIfmB09j+uUEFIrFOPjoKWr+fYKz/L5HTwEoX4uzmS+UyvY4dsEichZZItqcFrFEjB1Xd2LdGfmYu5TslIoRQ2ICSrYMUL9/9wcmskQeiZFEJlugW+I+xqmSUdrVB95zp8+aNUvu86hRozBq1Ci+mzU6Z7q3RL29sdLPxn4ssgAc1HhULBV9112ZERWGOdc1xxr0r14F/atXQe8TF5FRWD5CaoiYN8dZVhS2Zfg5qfeYTIsIxZJbD4xuz4TzN+Hr6ICZ9cOkQzEbkx7i1evMrevvpeHfjEyt1kHS5lpce5GDR/mFuJxlnBW8rR1ZkVYkUn7TV1zZt1hcjPe2KC/eVlwBFrCzFNiX/Ae5ciE68IlBx7NFOYCDG4oWqQt9tSwsa7DdQnEUCGCvMI6rz4NR/SPcOt8m9c0i+kld7aKzy1B8Kze2uOhVTfvkd7PqKwfd8sWXkfx4VP5MfoyVicnYnVYecF2sMC3QkMUZuRKUWec3nB9kzwXXsEun/3XBliua0443WcadadrWyLKEL09uulmaZUtUz1xlc9LBqhkWFN/ajaLvqqLkN+XhREuGhIkGZtWvhf+6tlASIsYeSrBWL7c+HpPWr4fBNDmIfmheT+U+g2JMOI7+ICxI6+MrOxovIDuqUumUej6u/4wozaLmk4u30Ov4RcQ9zUJuiX6JBt05vEGtD51R2vakkN7uy4h7EIdmP7+B6fs+59x/+eFlGqKRYViJA4qM+BsRnZjHuZ1lWbAsC8nTW9z7i0y/ACWbzr3ytiTzLoq+r4Wi78MgyeIe7inZNgQQF0Ny/yifJhodEiYa+KhOCGp5uCo9yvTxmKgLcGVhneKES5iMUfGQdxYKMKVuKNa1iAIA/BrdQG3dnQPK1xZSPv/6SxOuQ1v7eWt17Oz6tdDY20NzQQ78FeJkljaugwBnR73qMha5IjHinmWj14lLWJmYrNOxxWIJfrmXhicFykMR9zm8LR+eu66vmTbHuB3jUSwuxtoz68xtilVwiRWgfrHxfiuqhAlYFiV/9EXxmsbcu/OeGc0GrVHhMRHtmwBIRIBEBNH+T0xrE8/wHmNiKwgYw4cS1OkOK9QkALjFVucqlbHunvJ4bFs/b3wt8xbvZqf+6yd7jhUXWjRXNM6kOiEAgOVN6+KTi7d1OvZIp+ZYfOsBnhcVY1KdELl1lSI83RDs6oyUvALMVOPpCHR2xGMOIWAOfriTgsRXeZoLvsaQoSGCyDbwVy++vhWSh+dh13qa6kJFLyG5+4/q/TLPAZaVwDH1GCQIhyC0jUG26QNbnCfzt3KSSWuGPCZqsJP5Eir+JD6poz5GQlehYa0zFrg8JqqcGYrbJRrOkrdj+eqtivEPhmAMUTOihu6LAVZzdcaKZhH4vXVDpcUehQIGxzq/gX0dmkrFDxcLG9VWuU9fT46+6CJKCMKUsAXZECfuB/t6OIx9kYKSne9CfO4HFC1Vfe+W3D+mtl7J/fI1lCS3dsH7+ASINnVROfSjla25TyC+8w9YnddLkr2TWefzQxUkTACEujlzbl/VrDyLoOLDTNUxZcyIKg+QLAv0VDUzAwCquThpsNIy4Qp+VRV/o7jdScid4hkATndrqeSlsnW8HO0R7eul1O+JtcszPLZUsXo1AGxsKZ8rpWKdPYIop3hzX5T82R8l+yYBACQZ2g0jlmwfpna/aO94SDLvAgDEeydIt4vPrAQrEessLliJGEXr26Dkjz4QnfxWt2Nfpsp80OlQi4eECQAHFVnt5Mb/FR4Wmtb4erOqLzZG18eW1g0R/TrYU6jmQdtKQ4zDxR6t1DdoJjg9Jloe+4aPJ5r6eMJewOD3Vg2wv0NTvB1cBf90bIY6nm5yZRVjSgxZZM3Sc6Ao8kW9mljZNAJHOzeHl4O9ynJcQu77JnVRy131sg8EYYuwD88CKE2MBsCombWLV0e9bqTci8sWZKNoRR0UfR8O9iV3dmPJo0soXBaGwllOKNkzrjTQNisJeC0wxP8tLK1LW+953tPy9tMvo3BJKIpWN5QO8VirFx4gYaKWZj6VpH/reqIYhkGvav7o+jptN2CYqK3B8XDxd3JAFRMFT05VMb03VyRS2sYwwLY2jdClSmX57UrlGPzTsRnu9GqHmKp+aOnrhTVvRKK5Gq9AGRvv65/aXF9HzGgdZu4YE2c7Id6pURWNvD0BAO0quXKW4xIm79ashnM9WmFx4zq82kgQFg0vy1CU39ElCX8DL9OA3HSU7P+Ys3Txz+2AV6X3LfHlDZDc2qVURvTfIhR9VxWiyxtK683WMoeRuBjITQebmYDi/zVFyd6JKFoYoGN/LAcSJmpwsSsfalB8Y2d58J1NkHHZa8Otnm3xfZO6ctsu9Ig2yIYvI2vqVL75wdNK2wRg0LlKZWxt0wjVXdUPUQkYBp5qvADldcpTlgjMlOiambfea69PZUfN/dMFoaoYHnW2VHI3qg0EYS2wRTlGFybi+8fkPCaySO7s5/ZWSOTvWZKMa2Cf35XbJjo2EyjIgmjPOIhOfY/iFdovSlgGm/0A4ks/AUXWuWI9QMIEADAhXLMgMIbzX5VnrV+QP4DSKavqptA6ygw5RVZyA8MwaKeQ6lztQoEamNsgHNMiuBdV5PLYqELVcINB2VqNOPqiWFU7f+2mCocoxBV5ql3EEdjWthEWNKyNI53e0MU8jagaxVIbk2PFbl2CMATRP9MgOjjFqHWW/Bqj9jclPrtacyUSMUr+7K9yt+jIF7C54BEtIWECYEhIoMYyfGaLbyMTX/JmVV+V5e71aQ8AcLMT4ucWpYGOjkKFjLQG2FHmsYnr1lJuex2OPC7qiPIqfzs31vNQwGNcyNo3IjWWae/vjdoe8nEvRzo3x7QI1RH+VZyd8GF4dQRrCJTWFVWnVF2ul4p5eyMqGpKHF5S2ia9sApulefkLnVHhMQEA0aFPVe4rQ3xqiTGtsSlImKB0qqYiaxSyjioGTOpzo1c1/CP7psswDP5q1wQxgcoCxdVOiKxBXZDctwNqeXDHGagLsNWWCE83tJfxIujS193t5BMTyR5rSNCpMfpVboc8fk6a43R2tWuitC3M3RVfRoZJM9maClXfowo2iUklNd0o2LeiUrz1bT2m3eqL9ndGltY00gkSJioIcZV/y1W85xvzDV5RF7X198bvrRtiXHh1hLg6Y0/7Jgrl5Q+QzYnh4+ggDdJ0Fup/eWVFhC7CJMRV/qFQR0ZAKQ6F6GSPMR+6OlTW2NtDSWwpMlWN14QPJlWrzLldXa9s0WNSVcUU+28saMVmopz/DfgB/u6lw9bhvuE6H1/Xv67mQvmZkKQqx73xghbuYFYiQdGGLiiaZ9ocQ9YOCRMVKH7lFJ9lmoI6deHCc+4gpW8b1sblN1trTJf+c4soTK0biv0dmsJRKMCixnWQNagLJtYO0dsm2f7qMhyjKLKWNY1AsKsz6ni44lMV8Sta1av3kYbxc4v6SnE8iihmsP22oe43XV2o4eyAY52aK233tDdukK2lc657NHpX85fb9m6Nqry0xbUeEADENJ3KS3u2xt0vEzGsyTDc/TIRrxa8wMUp51HVU7drtXPkds2FGAYofKGfkbqiZiinDEniXrApsRrLEfKQMFGB4rNY0UOiz1otoSpczAcePeXcri2BLk74KioMLRWGFAyZOaTvHCTFs1LNxQmXYlrhVLeWKm/uWtXL41COOjRlp+Uqo/iw5IP6XsqzbLiGJG0ZFzuhkhD+vqnusxi0oYGKWU1jmw3kpT1bo8xTIsveD/boVEe1SlpmW9ZCMBgHLTwmeYbd2ysqJExUoDjdyxjPxXdCA9HB3wfhCvEhdjwFBxgSeKp3smOOvggYxmBhYcwYE12o7qJ5+ElxlowlxnpYc7IldcgOa/oasOpz/+rqcz6ouqbmXoTRmgmrrFtqAu1gwJrKY6IVFngzsAJImKhAcXqsMb5edgIBdrZrjLPd5XON8JV6XZdHUTeFZGhTZBKqzaxfS7G4Svj6GRrTGaCqKsWcMNffaqOVF0JJxNLNyGTI3sC08W5pU48uuBrgBST4gIVozzhzG1GOJb6lWAEkTFRQxVk+hsSYQwmK8OUNUHxgbm/dEK08uYeTVjSTd4G38PXCtjaNsCm6PnoE+sJfi5krAH/CxBQek3drVkPPan4IdHbE4U7NVQZXKmIqx7EhVHc17pRlS0FW1Jd93fX5pmh6ObBRh5PtISo0twUKkDDRB5L7FoAdT7EBivfSDgE+8Mj1w9rnBfB2dMBP99Kk+7imzHaW8aJ08PfGW1X9EJ/9Cn2C/LE6MYWzTb70gzFnQamzcZOaBHeqkFjBUyvIRoWJ7KU0xGNCjw/d8HPzw9Nc08VPtAhuYbK2CPNDwsQC4MsbwJUhtLK9Hda9EYmsYpGcMNEEwzD4tVUDsCyLP5PTVZezglu8sW2s7yU/FZCP5Qr0wfKvhOEwHB4TQ+shLI8lvb4ztwmECaGhHAuAvxgT4z8gGYZR63Hg6/Zuyc8ND4U4A1M5UMaFVzdNQxZIWW6ZGjK5cSJfz5zR5/Rrclqq8sZYgxDnA1OL71q+2se5WRJsery5TbBKSJi8xltmfZf/unK7Db+ODEMlBzssb6pFoh8d4OsiqLt1OMssUGhMLFlAlMG3iaa6ZT/Kt7TxdNNRlltmQu1gNPH2RKibM35QyNasC4281CfAUhSbrnZCZPTvpHd71o5Eyym5dXzqYPOw3/Vq48jYw/iq85c4MvYQnO2tcyhSfHGduU2wSmgo5zXX32yNX6/eQvuwUNRWkbNgSkQoJtcNMbrb92khP+mK1b25u9oJMa9BOHanPcHcBrq9jajrPV9vkFagd6SYSpjkicQmaslycRIKcaRzc7AsK/1d6vNdGVGjKqZdTlC5f2hoIM5kvpB+TuvXUY9WbAeJRDthsqbHajSuqz5zsir83f0wvdNneh1LWDckTF7jKBSgq487glWsQVMGH2PRL0tEmgvpgaZgwPG1gzG+tuaVlXXBGgQE714dE43laOqGNXivjIUhv8vJdUJgp2FV7ghPN7X7KxpeLl7ILsjWXNCA60JxPxUXGsqxAPyc9E8MpY69D02fddAa7iW2MpRTUW/cb1X1M2p9Zefx83qql0wQq7ioFfUavFFdeUkEYyNg6PFUUaErbwEsaVyHl3of8hSDUFuNV0nENRXICPBULS+YTJiYqB1bp+w8qhM8YiuYEq4L8dOumNsEjVTUwGJTwATonhbBlJAwsQA0LRKnL9omCNOVmu6qhUmhmJ90Y0m5+UarK7vY+ENnk14PiQU6O6KqMz/nXRFrv217OVjGooPapJW3tZT+NXwMWxF7eqfpWpUz5DtKHhP+cBi+Hw4TrprbDJXQlbcA+Fp7rZXCon6mwMfRMh426nDjYUbSl5Fh+L1VAxzp3Nxki+lZ+yjCG5U9lbZpc20+qhOidr8ub9rNfTwxNCQQgHpPlyqPSUV9q6/hE4q4Sf9h8zu/8dZGRR0mMwnOXhD41la5W1CnlwmN4WjfrK0TAIyb1VQW2YykxhQM6qx1s4K1Q/jwJDkKBYip6qe0lAGfaPreWPpDU9vEgv9TmAbc1EdZ0OjLP52aazV1XlWMSRWPKkazxdqoH1gf0SGt5LZ93PYjo9VPHhM+Uf/bs2s11UR2cENX3gIwxQu2MZuw7MedZvhazdnUWHs3tBVOUSqm75sSVb9RhmFw47NrpjXGgnB3LJ+tFOEfgbk95hitbksX1laNppuHmW8uJEwsAEtYXVgXLMHFakjAMF9rE5kaa79xW8DXSA51AdYtK3uhumupN0xxFerqXtXxasELvJyvxfRZK2DvB39rXdbBzgH7R+/FR20mYdu7W5T2G3KvII8Jf1jCPVwddOUtAL6+IrJDOXyJH1n6BPnz3kYZtTTkm1GHHcOgoVfpW/iYWkHGMonQEW2/kbILTPo6Gja1frKa+BR10/aFAgZxXVsirmsLvFuzGmcZhmHQv35/g+wzlINj9htcR6BHoE7l29Rog3kxc1HdS/clEio5V1K5z9Ifnpqw5oBpxqOqWdsnYWIB8PUDlP1ZmGIoZ3CwdYy3MwyD3e2aYEfbxphTP9zc5uiNld+3OT0+it4sBkBlJwcsbVwHPQJ98Vf7JprrVah2U3R9MABCXJ3xRWRN/NQiCv2C/HGxh3x8hL+G2Tlu9naI0DCsNKBBP+nfM7vN0GirsWlYtaHJ2zSEbSO2QCgQwsuZK1Dfur/gxT80NLcJeiFsNc3swsTyIxUJvZEV7KYQJqbwyhgLTwd7dAzgZ5q2qdD0QmbpV4NrRK2SvT1eyEznLvtOjQoLwqgw7bxbiuelZzV/XH2zNSo7OcBOIEC/6gHoVz1Ab7vVEVM3BoveWoiXhS8xsfUEzD08T+t1ZXTFyc4JhSL5XEWWNrznKFQv9lqEtMDt6Tfh5uiGwFnyniiBhmy8lg6bmWhuE3SGqdYC9l3mmdsMEiaWwKRJk1C/fn2MHj3aqPXKrgBqTK+Mqqos65Zo+1iRDuTEXYsZXMbqYjVX0ywCxzAMxrUaK/0sFAgh4Sm3j6UOdewetQvT9nyK/vX7wcXeRWP5AA9ukWiZvbNtHN7eam4TAJAwsQhWr14NAGjZsiUiIyONVi9vwa8qbhm2ElRqLThZ+RtlQy8PRDRyw+dXrO/NUluEjBAlKOGlbq4YBnuh5rQAnWppWhWZgYejB14VvdLLrk7hHXFl2iVIJBKkpKToVQdAwa+84abaW8i4mS5OUB105S2Ic+fOGbU+voZyVGGOhG5EKZWtILGdIt0CK2NMreroEeirsoxIw3hVXl6e0gPakhwJQoHxk/mpw15oj4VvLVD7UP+h/yoAwNwec2An4H431VeUGBNL9QhZO4IqjcxtgkZImPBEQkICSkp0e1My9g+Rt6EcFdvtrfwN3tawhPv6DwrJ0WTxdiidBTMstHwWyPhw7Ve73rVrF3x8fPDmm2/qbyDPCBnTChMAGN9qHE5MOMa57+X8bAR6lp7vj9t+hEez0kxpmk6Qx4QnLOHGoAG68jywaNEi1K1bFx07dtTpOGMLk97Vyt1y79YwXpS1JXyvLcAEs6PrUN13jfTL/WJvwBCdOi+ao7D09tMj0BfLmtTFvAbheLem/Pc0wtON61AAQP/+/VFUVISDBw/i1q1betsoS6AW6+bowuiWH0j/rhcQYdS6V/RdrvMxivcYZ3vTxN5YKw4T4s1tgvFRIfjs2n9jYkNUQzEmRkQikSAuLg6ff/45ACAuLg7Z2dnw8pK/Oaua325sYdKvegDS8guRJxJjYm3t30Q1QaLA8tBmNkaIm/YPoY9qh2Dt3VS8UbkSCsVinH/+0hDz1MIwDEbK5Ab5oVkEJlwoFRrHu7yhVR0FBQVGsSXI1RmPC4qMUhcAfNphGiSsBF7OXsgtzsXNDNUCysvZC9kF2idpG9RwIIQCIT7YWho036teT71sFDACuZlD5hpCqeTkiReF5d8zrtlM9oO2oGTb2yazSeDLz8rvZkVGmDBeoWCzHwAAhM0+NJdFSpDHxEisW7cOQqEQ7dq1k9sukcj/uObOnYvKlSubxCYBw2By3VB8HRUGJ6HpXcqE9dI9sDLu9m6H3e0aG/Sg0ufIwcFVENe4Bp7176j18CDLsjhz5gxevHihR4vlCI38THZxcMHs7rPwSbuPNSbcSvziNkY2e1fruoUCIQY1HIhj44/i25i5WNF3hcqyVTyqYP2gdVrXrY5utbsZpR5FBArxOFzDYMKIPry0XaGQESb2Q3dDENEPdr3XgXE1zXNJG0iYGIkPP+RWm4o3oxkzZiArKwv5v6yGUCxCwc7NpjDPqFharoSKiq5DObrqCzd7OzAMY5abhLNQoJMgatasGaKjo9GgQQOwEv2n5/YL4ie/CaB8vdwd5IepnOyd0KFWB53rbRrUBJPaTIKPq7fKMolf3MbgRoM49yl6Jp7kZKht71DiIZ1t1AbFGUUuDpqnGpsCQd0+5jYBEDqACWio//HuMkOkMsJE4FsHDoP+gF2jEfrXzQO83HOKi4sxe/ZsxMTEoF27dhgzZgzu3bsn3b9x40Z07twZHTt2xIoVK6w6da8mWJbFy5cv0bZtW7Rt21a6vejQHmS+8xYKt22SbrOWKHQrMbNCwXVNjCUg+bje9XlamC81NRVJSff1Pv7dGvJJviTPn2FpVA1DzSpF4T43ssFIjiLmvxc+yXlqlnY3Ddkg/fv6Z1fNYgMXdm2/MGv7Du+fhOMnd+AwOg4OH56DPn5Iu/ZfSv8WNv1ATUnLgBdhIhaLUbVqVWzYsAHHjh1D27ZtMXVq6TLKcXFx2LFjBzZu3Iht27YhLi4Oe/bs4cMMi4BlWXz99deIjY1FbGys/E6FN7vTp09bxI1JE6RLrBNdhArf38J2/qrf7g2FVZFp9dChQ7Czs8PIkSNVzpgTKgT6vpw6Gk1F+Uaxq1ud8iGQ8a3GccaT8JUlVheaBmlO+88H0aHRiJv0Hy5PvYRgL+WYOJZl8Tz2uRksMyOMEIKgN8C4B4AR2kFQpQGY6tE6VyNs+C7s3loN+/6bIKyh26QMc8BL8KuzszM++KBclQ0ePBgrVqzAixcvcODAAQwYMADVqpW+mbzzzjs4ePAgevfurVRPcXExiouL5Q22s4ODg2ELeXFRFguiGBNiKGKxGBcvXtSq7Lp169CvXz906dLFqDaUwVcfFes3BRIJy9ke3300N7L9k12kEaxyn1lWIrdNlyGOCA9X6bGGCFFV10HCcl8/2WPUXUORSKRyn+JxcXFxiI6ORvfu3QEAmzZtQkBAAObPn6/WdgDAazuN8X1qFtQUq/utQmp2Kia2moAZe2Yq2R3oof16U+pskigslayL/ZrSyGtbnz6/xciASJXHpO/OwNUx19H2Q2fYORgn2FkTSr8zPvEJh123xWBz0yHeU5o9WNhxltK5YLxCwaae0qlqlhFA0Pg9ANpfDz7updouM2CSWTnXrl2Dt7c3KlWqhAcPHiAmJka6Lzw8HD/88APncRs2bMD69evltg0cOBCDBnGPlRqDtDTlef0SiQS5ubnw8PDQub7U1FSd8pkMGTIEly5d0rkdXeDqozEwJMujrjx5koGUAtVJoPjqo6WQlpaG/Lw86WexRKx0/rOyspGSUn5TffJSuzf/72oGIOvxI2S9/lxUqP8slUePHnFub2GnOSuoumv4xx9/qNxXkp0FoHz16S5duiglL1y0aJHKuDA5WBaPHz/W67fPRZvKrYHKQPbTbIT7yC8gmZKSgiqogv51+mFnwi619YxrMlbt+cvITFeqW1sePnyIVkHROJV2WmUZXeoz1m/x9pg7AIALf36Plu+O1VDaOKSkpMAuKx2qUwDqz8sWs+B5dpb0c25ge+TYhwMeIXCv9x7AMMgJ7AMonGvP3BzoGn1jyL3ZmPfS0NBQrcrxLkxyc3Mxf/58jB8/HgCQn58PN7fyoC9XV1fk53PfMEeNGoVhw4bJbePTY5KWloagoCA5VSeRSNCsWTPcunULu3btQo8ePXSqNzAwEM7OuuUKCA423tReWVT1US8u3FPaxJfdADAmuxDr7j2Ufvb3D0Cwn3KODKP20QKR7Z9rRg6QlQsAYASC0vMvc118vL0RHFy+8N2DJ8+BO481tvFeI/mkaO1zxbh4+4Fe9gZVqwZcK78pBjo7Ym6DWuhRTXXqa22u4b///qvy+JZ+3ijefRh2tSORu3wuxIWFOH78uFI5ld9Xhe92lSpVjP7dlkgkENyT71tZGz8P/wljUz9El7Xcs1/+GrULrUNbw06o+vadbfeCs25tCAgMwIgWI9QKE23qU3Udd8cCFxOAyQOBypW0Ngu3USpMCl6ZbhXz4OBgSJxzodo/pycObqjcaTJKZISJu6s7hC+84FHfHUyN0mVKuAY8xU/aQpz0t07N6fP9Nee9lFdhUlRUhKlTp6J169bSoRoXFxfk5uZKy+Tl5cHFhVv/OTg48CJC1CEQCOQuwuHDhxEfHw8AeOutt+RiQFiWxVdffYXffvtNbZ2PH2t+GJQhkUh4/xIo9lETt2/fxubNmzFs2DDUrVtXbb188VVULTlhIhAwatvTtY/WhkAgQH0vD+xKewIAaO5TSam/DCN/jhgtM2kq1jO5biiW6ClMvBzlf7/jwoPRt7p2DxZV11AsFuPEiRNqj8tb/q3ctk8++YSznCF2GBu5a6WmvY7hmmMEGIVYGV3szy/Jh6eTeg+RLvXJnr+0JywGfFN6D016DGybrbmeU9dZnP/lCWpr3aLxEAgEYPzqQewTDvb5HaPUmeW2BFn3aqLmU1ZumDRjdwZu7jiHmp+EovY34SqPZ5p9CPE/U3Vq05Dvrznupby1JhKJ8OWXX8LX11fuphAaGio3Q+fOnTuoUcNIUe9G5Pnz51i4cCEOHz7MuT8/Px/t2rXDggUL8PDhQ84yQKnQuH9f+1kCLMti/vz5GDJkCG7fvq22rFgs1rpeQ2jQoAG+/fZbNG3a1CTtcaHNSrQVjbG1qqODvw8aeLnju8aaE0HpO7vG2U6IfkHaL+4VE+iLfkH+WN8iCm4K180YgdObNm1Su9+oAeQ8TkHzdi5/H7asGXkM7IXqXwhFIhZr/2bxx5HSc/1fPIsGoySYs1H9ub+QUP73dmUnlhLFJSxaT2BR+1fTz9IR1CyN9WMEAghH/GeUOkV1pyN+QS2kbhcgru0psMJyb3peSmksR9Jy9S8BjBpPmaE8/fcZ7q9JhijP6D4ineCth99++y2KioqwaNEiuR9dTEwMFi1ahC5dusDR0VH6Jm5pjBkzBrt2qR7n/fbbb5Vn2XCgq3h49eoVvvrqKwDAiRMnkJ6ezllu+/bteP/99zFkyBCsXbtWpzZ0pSxGRtWQGwBUMTCVd1FREX799VcEBQVJgxStlWfPnmHWrFmIiorC2LH8jYU7CAXY2a4xb/XLom34W4vKlfB764Yq9xvj+fv++++r3W+oMBE/ewKh72shVlKsvrABNA9shm61u+Hyo8v4453f5faZM1fQ7A0sBnRV/2j45QAwdmnpefbzArpMKf37WhKLCX0BH09l+1/msuj/jW7X5lWe5jLGRlCnFwDgOb7E/U5nUOPjUIheiowSZ5Jd8i6AuwCAkhciXNn2NRr1/wawc0faVc2Ze1mW1UvEPt6VjsB+5Z7KklclYBgGdu7l1zk/tQAXB18GABSlF6L2bNVeG77hRZikp6dj7969cHR0RIcO5QmDVq5cidatW+Pu3bsYMWIEJBIJ+vTpg169evFhhkGoEyUAtIvoh2ERzRkZqhMdlQUAr1u3DosWLUKlSpVUlj1w4ABycnIwYMAAvW3RxNdRYQYdv3z5cmkq/1u3bqkdMrJ0xowZg7/++gsAEB0djfr165vXoNeY4lGnbqXgUhv4t0Kb35xsnJsiufOmw/HN/ii5eBoQi1FUVIScnBy4uxs39wrDMNg64k8A/A6D6sof/wKpWXZqvzBzNpULjHV75cVGXiHg46l8zJfrdBeM5nAk2XWZD4FPGK74lCaSuzKq1FvTcZLhdT/cKn9Pf/E4Eqc3rIOoyBXiEvUhrTc/u4X0vzIQtTISHKdXLfGjr0mFSV5SHuLanwEjZND2TCs4VXECAGSeyJSWf7AmxfaESZUqVdROkR01ahRGjRrFR9MWh1gsRr9+/TQKHXWwLIsrV66gTp06nPE4ilOqZbl69ap09dXZs2dj+PDhetuhDieh6htrXFwc/vrrL4wbNw41a9bkLFMmSgBg69atmDVrFoDSvv/444+lIq1ea6PazBdlogQAzp8/zylMRCIRrly5gkaNGsHOjh/HpTFv6pqcEGPCggAGGBteXb1NBtqRlJSksYw2HhPZODdFJBmPUfDzKunn5s2bAwCuX7+OyMhILazUDS5RYs6hHbYoCKeuZcG1geoystpPcUhGleVr/lLe9jiTRWBl+SNy8lks/pNFzUAGRbot0A4AEBW5wM7RkNwz/J377DMvAMin2i/K1eyLKc4qRsrPpbNjLg27IieS7Np/DdGJeVq1X5xVjJPN46Sfj0WeRPf0LhA4CJB5zHJyxFiOTLcisrKyNBd6jUQigaOjYcMcS5YsQZMmTfDGG2/o5Ka+c+cOBg4cKP08c+ZMNaUNw07NjbRNmzZYunQpOnXqJN3GsixmzJiB4cOH49mzZ3LlZW/Khw4dwvjx4zFnzhz5MhztPHjwQOe1UgoKCtCpUye0aNFCzo7c3Fxs2bJFp8BlLlQ9YEaNGoXmzZtjxAjTpYI2xFsxqY76qP6FjetgYaM6Gte2MfR5q02OH76SFEZFRfFSLxemTLQY7qvwZszaAaw9d+GyImrM+/R/LCQSFiwLJKTZQ91odsggFpsOsqg3QoKI4RLEXmXh0Z3F3E3AyAUsPlyi+3nIf2G8ldRluaFjwKkiz1MaAax+a5YVpBWq3inQ/sXm31rKgT0JMxMhLhQjY+8TfUzjBRImeqAqIJYLQwNUFy9ejM8++wwAcOPGDc43Rq4l33/99VfUrl0bd+/eNah9RX777TfOt0ZZYSKb/Er2Bis7l/7QoUOYO3cufv/9d0yYMEGuLtk3yC1btqi0JS4uDgsXLsTz58/x77//okaNGvDx8UFOTo7W/Vm0aBGOHTuGc+fO4aOPPpJuHz9+PIYMGYKqVavinXfe0fpBsXLlSrnPDMOgpKQEU6dOBcMwqFu3Ls6cOYPffy+NKfjzzz8565FIJLh3755SuyzLKiUXS0xMxNGjR3lNKtfYW1fnMTcCA8RRVlYWHjzQPDtI2/PQtWtXnb4r1oQuZ9nRTjHQldEoTCRqfg5bjwHbjgPjlwExXwdiyBzVZUtEpQLkVjJwOwVoO8lwQZZyuS/ndmFDLV8CVJy8p3fbojDHR0+rgKt7Zul97LVJ11Xuy72jnXeo6Al3PqLkdak4E3NeL7v4goSJjuzZs0cuq60mJBKJQW8/ZaJEHR06dEBaWhquX7+O69dLv8Dvvqv9KqVA6QPvww8/RIcOHdQm4xkxYgRu3ryptL0ywyIrKwtLly6Fvb29dCaWqr6fPl2eI2H79u1y+2S9DKqOz8vPR5s2bfDFF1/g3XfflXuTnj17tkr7FZEVEqdOlWZTzMjIkJsCvnnzZqmNJ0+exJo1a1QGAn/88cdKfVm1ahWWLVsGAEhISEB0tHJKacV+Dh48GLVq1ZIGQgOlgq9NmzaIjo7G1aul495Pnz5FnTp10LlzZ7z11ltq+2pREz/04NNPP9WqnLaZk48cOYIZM2YAKBU9hw8f1i7pmhWgyx1HOQ0+U+o1UcNT5Wz6cvywm8W6vaV/7zypgzEGcOvIx7h15CM8u8edst2+zzo4fpoGptob6iuSMBAXqchKLFYv2Pgg+3w2cm6qHnp8tF07r+6trxJU7nt1VXWySnNAwkRHevfujbw87UPFJRIJjhw5YrT2VQ0NjBgxAvXr10f9+vWlDy1d2LdvH9atW4cTJ05g6NChOh/fKTICgYGBmDZtGgBgxYrSJdgVH7hr1qzBs2fP1L7VluWNYVlWZaxSmYgAgP3798vt0yWeJzu7/A6blpaG7du3o2pVZVfw4MGDkZqaivbt22PChAnSGBhNCAQCJeGlyNKlS+Hj44PVq1dLt+3YsQMAsGDBAum2X3/9FWfOnEFmZib69OkDAHIzsg4ePKiVTebk4ONnmgup4L//jDNlU5bly5eDZVk0bdoU3bp1w7p164zehqXTvHpzpW2sBo+JJuKuyX8uEbFw4PmZnpHQERkJnaDOX8S4+kIQ1EJtPSeaxeHWl+pTNQBA9qN6GsvoS05CLoqzipH8UyrO9NDgzWC1e+NI361+1WhLgoQJB9qubaMNOTk5eP7ceEFFqoSJbMKphg0b6lyv7HCQrDdDW3Kys1BUpOwqVBQmEyZMwKBBg9R6kcriRP7880/OYSoAOHr0mM42isVipKWloUmTJmjevDlevnypVGbQoEEqRdM777wj/Xvx4sVatckwDM6ePau2zLRp05CdnY1JkyahZ8+eOHaMu2+y6d1TU1M1t63hszl4XqT79Ns7d+4gIyODt5krOTk5Wg0R8YlEwiI33/QLeObks5jVfRaHQcZNbNl6AotiPQJZeUHBQ5QWrzhNl0XaRlW5qRiZv/i7XlfHXsOpzmdxa7pmgaSKrNQGyMuqhqt7vzaiZaaBslZx0KxZM6PVJRvwaQz4ujnzMQsgOzubM/D3xIkTqFNHdUKwMtGiLr9Nbp5q1yYAZGZmws/PT/q5oKAA9evXl0vup26KNReKeWu0ySmgLvcLF/v27cO+ffvktl2/fh0CgYBT+KlDJBZj6dKl8PLywnvvvafTsXyh69fs5MmTaN++PZycnHRe2kF7m8wr2UQiFs0+ZHEnDTjwHdCuIX/2sCyLb35isf71V+xpNvBudw/c/vwmGk7bjKy01zmENAzl6Mp5/Z+vRkFQo/w+LKj9FsRnS2ddCVtNw/0fmyKo4V5zmcbJq+uGxz6lXumDrFTT5DkyNiRMeEaXBfy0ga+bKNeU45ycHJVrkoiSEmFXszRJtDiDe6E2b2/VS9v/+OOPKvdpk8OEK85Flg8++ACenp64fPkyxGIxAgIC5ESJMdi7d6/GHDzqctFoi755UE6ePImtr4fWqlevDqf65r9J6frtbd++PQCgsLAQhYVqZiYYgDGT4I1fJsH//gIa1QIu/cRo9XvdcRKIfx2j3vETFqLjwNV7xn0bHzlfgvljGFxMAL5VWEFj0z/A7PcC4Zw9DZIyHW1kYWJOUi73QfCo5dLPwtB2YN9aBTYnHXatpkJcEqdwhHbfUonEMs4Rq2oohzG9B85Y0FBOBeXhw4c4ceKE1DuxfPlyuf3Xr1/HO++8g379+nEen7diAUTJSSi+dBavPjHu27h2D2L1N4+9e/fi999/x61bt5CYmIiTJ40fgVcWOMuyLJYtW8a5ZpIugbj6oG5I7NA//0j//v333w0eyrEXGC6KFacsFxcXY/369XjzzTcxYcIEZGaWJ3mS/ZtP1K1UrAslIhb/+6v07yt3gV1afuWey4woSiTAsctQO01261HdHzib/gGGz2Px/iLuY0MGsUh7Wv6ZhX7TWs1F4okxKvc9udMWYon82j92TUdD8MZXyIzVP9+JRGRYGghjkZfFnTtIVKg6iaClYxmSz4JQl6zMEggJCTE4ZiU/Px9RUVHSWI42bdoo1alJHEiePEbO9HEG2aEKc7vWteXo0aP49ddf8dVXX6ldL8lcFMgMI23atAn1+gwAoP5mOrKG6hwQl3q0whfxiYis5I5FN7Vf/0kdS5cuxZdffin9nJ2dLZ1KrSlo2BIoE4YMw6BAYaTtuz9Z9G+v+bssVghpGj5PvfB4ezaLwZ24671wm8XVJKBehHIdxy5rNKUcPfNtmItH199UX0DCQiKSIOn7+2AYBjUn18DJlnEofGiIF84yPBIlhe64snsuPAMSkJtVHXU6rMGLR/Xw6ok5lj00DiRMFOBrHNuY+PjoP5ceAH766Se5RGTarPljcViIdtF1WrYxef78uU5J87788ku4z1rKue+H5vXQ1NsTYe6q02JXc3XGb60aAoDewkRWc544cUJOlAClAc9lwmTixIl6tcEnX375JaZNmwZvb2+8fPkSnTt3xktJBDoM+h/W7XeSK3v+NpD0iEXNqvJf1utJLC7fBd4ILf2sKEzSnwN23k+hjr9iWbRtADzOBCJrlNb//CWL5h+WPixH9DUwpw1rQ850lgHLAmmbHuLuwtI8UAJnoX6iRMsZMKaEZQXIflgf2Q9LXybj7jeHtQ+GkDCR4dUry5rLzQePHj3C5MmTzW2GRmRnoBDcVKtWzWh1DQ6uAoGRPFWFhYVwcnLi3FciEuPPP/+El5cXevToYZT2TMmCBQuwYMECNGvWDDVr1iydwdfmHO7u5y7f6H0WYVVZVPEB/p7PIL8IqD+qVDyMe6sSVk8DRBw5GBkH9bkp+n5V/ra+fQ4woD2Dk/Hl+38/ArUp5TVjXR4TdRS88gckLB7+UX5PSZiRqPoAPcVH5oNmqBx6Qa9jDYEVKz7GrVuUALbQAyORl5en1zRba6Ms/4Uls23bNs0PXSsZ7uETnYNB1cSjGCpKJBIJhgwZAoZh4OzsLJcYTpYHKckYOnSoWlFy5MgRXLhg+hu8Lly4cEFtVuIycvJL400OnAXsO7Lw7FF+Df63rzSbroHJoTFwRmmd6cZc6sSGgl/FxS5I/zsDBVp6SCRKD3rtyH5ouiUL0q6WDl2xLIP8bOO9oFgKtvPtM5BNmzaZ2wSTYMycKnyhaiYQwR8ZGRkICAjQ+/gtW7bIPajnz5+Pb7/9VqncixfKuWMU6d69u952WCOKQznqYCXcMUJMWwnkRuEMHXKwIWECsNIhHG3QeraNwqyXrNSGOthkGEmnRyDnaRhePQmHRGzcnDOWAHlMXqOYSpywdMhjoivqZvBUrVpVmm1WH27fVk5UMW/ePOVZSbbm6RIYFpOWV6BKmMifp5InQyApDEb+ddX5NnIMWVBXQ/uWRvrtDtoX1mLabFp86XIOBS/91c5mUazpwpalUnvysoKReqW39nYZgETkhIyEjjbpLQHIYyKFzwXQCMLSkUgkGDhwIAYOHIgff/xRmoPm1atX8PDw0HB0qQhR5JtvvgEAeG0tX/RS4G1Y4LbFUW+PQYefvAqIOVfEkxcGhfd+MKgdfSjJ7An7ypaVeKyMV0/CUaWu8kq5XDAMq3Y1ZKDUA/HicSRepteGLu/rOc/CcGzV3zL1DMfL9LqIilmodR2EMuQxIYgKgiQtWfq36C53Ks7t27dL1zuaPn06KlWqJF3ozhgIPCoZrS6LoFJHgw7ffERVjIn5PRYlGeX5iUQvy9eXEedb2zRUzR4TidgRz5JaojhfdVJIrVqS2ONZUkuD6iBImBBEhYHNz0POzCnI3/wT8tctV1lu586dAIDvvvsOLMti7ty5xrOBPJNybDnKPSuHLfEyrGIjZP0Uv2yHgsR1KExaioKbuyHK7gBJQSgKEywgHk+nGBrzizxCN0iYGJHw8HA8e6b/6qmEDtharAIPcMWUiBJuoGjPNkhyVa/FwTAM0tLSlLYXFxdjy5Yt8PLS/6FZctb4KwRbO4u4Es8yliHgRJkDUJIxCmAdUXBrJ/IuX4SkINzcZmnk0s75ePG4LhKPjwVrhtTxiSc+NHmbxqbkpflWXSRhYkTatGmDypUrY9KkSeY2hSDUo0bYvXz5EtWry6e5Li4uRp06dTBkyBC55Hy6UnT8kN7HEpaAdbwQvHxcD5d3LsSjG8bOlaNd/x/f6IanSeXDX0W5BnrAzIEZE9uSMOEBe3t7c5tg+1jH/dFmWLFiBR48eGBwPeIU46Syt30sI905oR8sK8SNA9PxPKUxCnMq4+pe48VpmQwz3mNpVg4PWMtaL0QFRsesXp999plRmmVfZhulHoKwfAS4umcmSkWmFT4TzGgyeUx4QF2+CMJYWOEP3YJgX2Sh5OpFsBIJ8tZ+b25zCMLqYLQOMLbOe5U5X7BJmPBA796ak+y0bFk6pcyQbJsEoRYNAjl3/pd4OWYwio8dNJFBhPbQy00b9QucmwcLXMSPN8hjYn7at28v/btJkybw9/fXuY4yhdm2bVuNZdesWYMzZ85g9+7dctsrV66sc7sVEhouMwpsjuYU8YQZMMJ0X2tnYAcGXu7mtoIwByRMAKSnp+PEiRPSz3FxcUhPT8euXbuM1sbKlSvlPguFQrRo0QJRUeULP7399ttKsyEIgqh4iLK6gxWXrtBcmLTIzNaYj2UTLesFJO3qW9K/H9/qbEZLTAAN5ZiXsWPHyn1mGAYMw6Bv377YsmULGjVqpPJYNzfV6yrIojiFuCwOxdXVFefOncOyZcuwZs0aCATKl+TNN9/Uqg2CsETKssyKHz80syVWhNgdeVdOI//mVrkMrBUJBoCd0NxWyJN+syvuxr6HxBMf4tm9aHObwyvmdErTrBwAFy9elPssG/QzePBg1K9fHxEREXJlhg8fjqVLl6JGjRrSbaqCXk+ePKm0TbZs8+bN0bx5cwCAnZ3yJdm7dy+nYCEIayD3u5mwb9oSJVfOm9sUq4ItCoG4KMTcZhAysKwQafGmWajP7FCMiXnRNIuGKzr5119/ha+vr1b1h4aGAoB0YTQAKmNYuHKgMAyDbt26adVWhYFiTKwG9tULFB87CDb7ublNIawIdxdzW1DBIWFiXtLT0+U+KwqR8PBwCIX6+xTLvB0nTpxA9+7dsXz5cpWzcUaOHCn3uXHjxgCAf/75R+/2KwJjx46VrmYrS0JCghmsIQjCUIZ2Ub1P6FBgOkMqKOacLkxDORwoXhCBQIDMzEz06tULsbGxuHz5snSfrLdF1YUs2x4VFYWDB9VPzRw5ciTS09ORnJyMmjVrYsiQIfp2w+J5//338fPPPxtcz48//ohhw4bBwcFBacE5QwQlQRDmw96OAaNi2jRjIWsJ2TQUY2L5VKpUCf/9p7wAmURmtVRVD0Fd4kMEAgG++uorzn2+vr42s0jg8OHDsXr1aqxfvx4ZGRnw8vKCs7OzUrnt27fDz88PISEhaHg2UWl/+/bt8eGHpQtmlZQoLzpFWXiJioltTzdOv90JNaN/AwAkHJtgZmtsFBrKsSx0ecsWy6T2ViVAjPVwVJwBdPHiRbUeB3d3dxw+fNgobZcRGxurVbm6deuq9PawLItff/0VTk5OYBgGVapUgZOTE8LCwpTKDhgwAG3btlU5jbpv377Sv7nOf4UWJpSBmLBRivO9cP7P73Ft35d4fKuTuc2xTUiYWBa6PMxkPSaqhImxZtTIPoQ///xzNGnSBB07dpQrM2HCBJSUlKC4uBivXr1Cly6qB2rz8vK0SgZXxoEDB9C6dWul7evWrZP7PG/ePNy6dQt//PEH5s2bJ7dPXawMl8dEFd26dcOECRMwfvx46Tau6+buThmaCMIWyc2sgcwHbwAsDdfyAaWkNzOrV6/W+1hthImxLvDs2bMxdOhQvP/++5gzZw4A5Uyx48ePh52dncoVjt955x1s2rQJN27cgIuLC44cOYIBAwZI98uKn927d4NlWbx69Qosy6JHj9IlxFetWiUt4+7ujtGjR8u1ITsU9eWXX+LixYvIy8sDy7JqZxfpIuAmTZqE1atXy02v5jrPlEmXIAhCD8hjYl7GjRsn9Rwo5jTRhLFjTNTh5uaGzZs346effpIKD8XhHScnJ7V1fPXVV3jnnXdQr149AICDgwO2bt2KuLg4ZGdnY9euXcjKyoJIJEKfPn0AKHsdJk6cCIlEAolEglevXgEATp06hbFjxyI+Pl6uLMMwaNKkCVxcNM/900XAcQ1SKB4vkUjAMAymT5+udb0EYRtU4CFMwuohYYJS4XD8+HEkJSWpzfKqTT3mRlNOFkdHR6VtAoEArVq1QqVKlQAAXl5eGuNsyrLjlhEdHY3//e9/aNCgge5Gy9hhKPv27UP//v1x9epVqX0LFy40qM7atWsbbBdBELpTkUPEzA55TCwDfYZcZs2aJf174MCBnGVkvSp8wyVMevbsCQBo2LChyezQB508JioEWI8ePbB48WJERkYayyxMnjzZaHWZFAp+JQhCTyiPiRXz2WefwcXFBVWrVkWLFi04y/AtTBYsWIAvvvgC9erVk0uRX8Zvv/2GgwcPon379igosNzERJbgceKiQs/sIawU2xClZT+9c26V8UZupnmNIUwGCRMDcXZ2xqeffqq2jIODA682TJ8+HV26dEGdOnU4H+6enp54++23IZFIkJKSwqsthmBojIk6Tp06hVatWul4FEEQ5qTM6UevBhULy3xFtQF2794NHx8ffPTRR9LYDb4oCzB1dXXltR2+4dNjEh2t/0qgmuJ2CIIgCONBHhOe6NOnD3r37k3DADrAp8ekYkJnibBu6PZZMTGLxyQ7Oxsff/wxWrVqhX79+uH8edtcDp1EiW4oekwmTZpkJksIgiAIc2EWYbJo0SL4+vri6NGj+Oijj/D5559L82EQFRdFIacqDT2g34QTbXKpcLdFngeCMCf0ilexMLkwyc/Px8mTJzF27Fg4OTmhffv2qFmzJucCeUTFQtFjYuyVgQ8dOmTU+giC0I7BHTWX4YKczhUTk8eYpKamws3NTS5VeK1atXD//n2lssXFxSguLpbbZmdnx8ssl7IpvabMOWJqLL2PihlmXV1d5Wxt5u2JC1kvAQCVHew4+6Guj/oGwFrq+eJCkv0cAi8fAABrwVPDCX5hi/3K/xarzwZtCv6YAWw9ptsxpdml+bGH0AwfzwttJziYXJgUFBQozR5xdXVFbm6uUtkNGzZg/fr1ctsGDhyIQYMG8WZfWloab3VbCpbax+HDh+PBgwd4/vw56tSpg5YtW8pNb57o747vigpR28URfrkvkJL3UmVdqvq4adMmvPvuuwCAJk2a4NKlSxrtev78uY49MR95a7+Hy7APIM54jJLL53hrJ2fe53D/ujSj7qsvJ/LWDqEfbHE1FKV8ATuvf1F4/ztzm/P6dxys8zGZmS4AfEGB3Kan7B5qzOdFaGioVuUY1sQD6AkJCZg0aRKOHDki3fbdd9/ByckJH330kVxZU3tM0tLSEBQUZLGJvgyF+ljK9u3bkZmZCQ8PD4wYMUJjnU+fPoWfn5/GckQFpI3Y3BZYBeITgLC96v21qgFT3wbGLpE/ZstRYNhcYFbKZTTLtZ4XBFug65NORn9eWKzHpHr16sjNzUVmZqZ0OOfu3bvo3bu3UlkHBwfek5MpIhAIbPahXUZF7+PgwYMBAFu3btWqLl9fX6PZRRAVkdLfouohgR5vAMH+DGQ9I6W/YRbkLTEPZfdPczwvTP50cnFxQdu2bbF27VoUFhbi5MmTSEpKkq7uSxAEQVg3097WrbyqIFeKfa2YmOW1+fPPP8eTJ0/QqVMnrFixAgsWLICHh4c5TCEIgiCMTN1g3SUFlzipXOn1PsPMIawMs2R+9fLywsqVK83RNEFIofwkhKXTtA5wMcHcVuiOrj8tVR6Tjo2B7m8AsNwlvggesO1AA4IgCCtmcAfr9BXoKvkZBnB35trOYP8i6zwHhP6QMCEqLOQxISydivQNbRkJtGsIODlATowwDA3lVDRImBAVFl0SB61YsYJHSwiCm4qknRmGwfEVDDL3MohpSVKkIkPChKiwiEQirctOmjQJZ8+e5dEaglDGWoWJvnYzDANXZxIlFR0SJkSFRRdhwjAM3njjDR6tIQhlrFWY6Io6KUKrtFc8SJgQFZYOHTrofEx4eDgPlhAENzWrmtsC/TDWrByiYkLChKiw1KhRA3v27EHLli21PmbZsmU8WkRYF8Zd/ZqL/u14b4IXKoqnh+AHEiZEhaZnz544deqU1uWdnTnmNBIVE6Ebb1V3fwM4soyBQFAxXAnkMSFkIWFCVHgYhsGLFy/MbQZhAjZu3GhuE7Ti4GIBOje13qc1OUwIQyBhQhAAPD09ERQUZG4zCJ4ZPny4uU3QmaZ1zG0B/5DHhJCFhAlBvOaLL75Q2hYcHCz3WSymZe6tGWtcVXvrLOt7alOMCb8Ej65ubhN4xSxr5RCEJTJ69GiIRCK4ubmhcePG2LVrF0aOHClXRpekbARhDIL9zW0BYWkEvVMVKetTzW0Gb5AwIYjX2NnZYdKkSdLPDRo0UCqjTphERERg+vTp+OKLL/D48WNebKwIeHp64uXLl+Y2gzAAnacL82OG7WLjY1/W59ckCDOiaijniy++wM2bNzFixAhag8dALl68aG4TtMNEDwdrfAZRHhOesfHzRR4TgtCBiIgIuc/Hjh0DALRp00a6rXbt2khPTzepXbZEjRo1zG2CRUEPbZrlowhj49PIyWNCEDpQo0YNrF69GgCwevVqdOjQAR06dICdXbnG/+WXX8xlXoWlalUrTZFKACDxRchDwoQgdGTChAlgWRYTJkzg3B8aGoo7d+7gm2++oYRseuLj46NVuZ9++glr1qzBjh07pNuqV7etGQvWuFYMjWbyC2PjT24b7x5BmIdatWphzpw56NSpk9py06ZNM5FF1sW6deu0Kvf+++9j3LhxaNGiBX799VfMmzcPX3/9Nc/WaU//dsCl9dYnLAylqm/534GVNZfXpL0q3hnUgBWKVV0gYUIQPDJ16lS5z02bNpX77OTkZEpzrAZ9vB7Dhw/HV199ZRIvVUxMDLR5XNoJgca1bfshwkXv1sCbLYFqlUXYv0hzeU3P2TAaqZPHxr9SJEwIgkfat28v93nHjh1Yu3YtoqOjcezYMZrBYwCqRF1oaKj074CAAF7a3r9/P54/f25wPTUCjWCMBSIQMNizADi55BHq1yzdNmuU/k/TsGo2/iTWERt3mJAwIQhTYmdnhzFjxuDUqVPo0KEDCRMDePDgAef2Vq1aYeLEiWjRogX279+vV90BAQF49913DTFPK/wqKW9rXZ/3Znll5cflT01jPUB9u/pqLlSRoFk5BEEYwoIFCwAATZo0QWCg/CuyojCpV6+eyewyFbGxsWr3b9++Xec6L168qNYbsmrVKpw5c0ZpejcAVKtWTWP96enpGDp0qNoy2mhKjbETHPv5fOT0agV0a85jAwCcHY1fZ/WR1eDTTruAaEvHzk1ocB1c35t6i+vCpaaLwXVbAiRMCIJnpk+fjqtXryIuLk5phoWiMDlw4IApTTMJslOpFalduzY6dOigc51eXl5623P48GH06tVLOu1bFaaYDcMlbvhsViAAFo/jt1/61C7U8CQS2AlQd15tveyxNFzDXA2vhOMkBw6oYni9FgIJE4LgGYZhUL9+fc6YCEVhUr16dfz999/o0KED9uzZYyoTzYaLiwvc3Nykn7UNejVENNStWxd///23yuneZbRr107qlVm1apVebeljJp/CpKaFxrTYesyELMYYveVKsCZwsJ3Hue30hCCsEBeXctdr2QO6V69eOHbsGHr27Knx+Dlz5vBmmylgGAaOjo7Yv38/PvzwQ/z777/mNgk//vgjAMDBwQHXrl1DbGysRhGjiSXjuZ+8nEM5Rn5If9QfqFkViKoBzDQgABUwzDZ18VSCiqRMjAHH6RI6CW0mRS4JE4IwIx9//DG8vLwgEAj0CtT8/PPPcejQIYwZM4YH67RDIpGgsLCQc1+fPn3UHlvm+YiJicGPP/6IWrVqcZbr1auXXrbpGlzcsmVLfPjhh9LPvr6+aN26NaeHxkMLj3zZi+2k/uabgVPVl8GdzQyubmDg7sK/AFClMdRdCUvUJQ3X8xSFbBSXifxH9wg37nJWCgkTgjAjnp6eSE5ORkpKCtq2bavz8XZ2dujatSt8fc03a6HM68EFy7Lq35QF2t2CHBwc9LJNF2EyatQonDx5Uuvy9nbaP00d7BmM6aldeT6e0QIBIxVXlQx4hrUx4Fmt7lJY4iQTh8r6fec0wtNQji1BwoQgzIyHh4dWM0W4KHvYWMK04zp16uh8TP362j3p+Opf165dpX8PHDgQ9vb2Oh2vyQuipe7iFcVTF+Sv+aE2oD0w7W3l7b9+pflYVX1WK0z0OE/VRwXpfpAu8PSTMsZXWehi+MweS8YCfjYEQRiKJQiThg0bKm1jGAY1a9bkLN+gQQN89913WtUdHR2tVK8x2LBhA3r37o2pU6eie/fuasvOnz8ffn5+2LRpk3Tb71+rt0MfK00xrOHtoX5/3WBg8Xj5x8OUQUBwgHrjKrkBg1RMslL3FY3SYkFp50CF4HEGCBzI30wUz0YaTpK+GOG3KnBSECavL4uDt27C2lIhYUIQNoBEIjFLuxcvXpT+PX/+fE7B4Ofnh23btslte/HiBa5cuQJvb2/Oer29vaU5SD777DNMmjRJL/s0CbbAwED89ddfWLJkiUax88UXXyAjIwMjRoyQbmsZyWDyINXHWELsRF8dRgjt7YDKnsC0t3U3PDgAuP0bAxcn7mNVXYkJfYG3olXslLWtkvxDl2GA4Pf485rYe/DzkGeN8FNlFB0mr09u/VWRhlduAZAwIQgbwFwekyZNmkj/Dg0NxY0bNzB//nzptrlz5wIoHSaRxdPTU60QYBgGJ06cwMGDBzFv3jzY29ujY8eO0v18pZrXBJfNUTXU9UOfNnQ/Rh3hQcoVcn1dqvsDj3YxSNnOwMNVdyNmjWIQ4KP6OK422zUEVk8WaO0BY2TjehjGKlcxjlyinPRPF9zrqQ4Scgt3Q935ug+pWhqqMx8RBGE1mEKYXLp0CR988AGuXLmiskxERATq1q2L1q1bw9nZGZGR+r/B+fj4yA2v/PHHH1i/fj06deqk9eKHsuUMsUVf9Mn8yoVQCIjFhtujjm9HM/CtpJsgcXIAQqsAPaOBEd3UlzXGV5SVyFRiAd4offB6oxJaHGiO+DHXUPiQezabOhg7DiEn89He0/of6+QxIQgbwBRDOY0bN8Y333yjsRzDMGjTpo3SSsqG4u/vj6+//hotW7bU+hihUIi4uDh88cUXeq+bYwgfD1D/9NQ28+ubLYxkkLp2Ocqt/6x865heyiW+Hc3g1m8CLBongEDDTBGuNrs01U1dVOlb7imr1NRTp2PLaPJbI72OMxYMw8D7DS+0v9QG9l66DxdpHK6xQi+SIiRMCMIG0NdjMmrUKCNbYnm0atUK8+fP1zqrrDFpEKb7az3XEcZ2iPlxZPTn2jaqB7BtNoP/VjGoXb3UssDK5ftl/9aEYh/e7c4980cd9RbURUAvfwSPro7A/voFvqobCinDFOnvBXYC+Mf46XycRz135S+JzLnVZsaOc1CpJ7HOrHC57SHjggEAoRNDdLbLmJAwIQgrQnERwDL09ZjoG1RKGAdtM7+q0yXazGhRZOssBo6v03Q42JcOxXTmcHAJhQwGdmDQpkG5UQe+Y1DVF+jYWPUMHC7e6Vpex6KxDDZ+KYCjg27CzcHHAY03NES9hXVLhzPUnJgq/VTEIWkh8kLHhehkl77YuRp/2q9/jB9caqhfzK/V8ZZosb85QseHyG2PmFcHnRI7oO5s865LRMKEIKwIVQnJpk6dqld92gYdzps3DwDQokX5mEJF8LZYCj2jVV+nmSMZfDZEt/oa1mLwaCeD3EMMCo4w2LNQ+wDUBmEMUrczOLpc8/CNLFE1GexbxODHqQw+HqCbvfrgVIU7DsmSAmbDptXUb7VhxdMu81lgL0DbU63Q7kJruIW7winQCaETQuSKO3g5wLuFF6cCcOQrsZwOkDAhCCvC2dmZc7u6BG0LFy6U/u3v7y+3T5uH0d69e/HZZ58BAKpUqYLDhw9j4cKF+P7777UxWYohKwLbKg52gL/CjGmuS/L+m+qHPaIjlQ9ycwaOfq/6+vp4MnB1ZnQSF2XocwwAvNmSwYe9GZ09JSpRJzI4FEhAT3+LUiYOPg7ocL0dBM7aPYrLhl40/W4FDgK41nBFm9Ot0CG+Lbyjy397LiHc9xBLgoQJQVgwsova/fnnn/j9999Vlk1MTOTc/tlnn+Hff//FyZMncfjwYbl92giTt956Sy4japcuXTB9+nR4euoWfHj27Fl88cUXamf1VCQEDIs1U4CTK+WvAdclEQoZLB4vQGUVp7xXa/nP/37P4NkeBh2bWOnUFS1xqqrd7KwyjJ1m3mcUdx4eXbD3sIejL/eSDoro2l+GYcAIGfh180WVvgFwq+2KJpsby+1vuL4+/Lr7IvrwGzrVzSfWP6+IIGyYTp064fnz53j48CHq168PiUSC9evX459//lEavqlRQznYYM2aNWAYBp06deKs393dnRe7uQgPD5fLcWIrqHoBX/ihelFwYvEj1K5eDQIBg9rVWSSmlm7XVUowTJnALDfEyQFwcrRtUQIALtXl3/592nqDETCo9XkYMvZkyO1z8LFH+JdhKHlRorZOgQ7eHL8JlVEtuiqujr6uvdFcGOjFqTa0qtr9DMOg0U8NOPcF9quCwH78ZdDVB/KYEISF4+3tLbemTKdOnbBt2zaN02ZPnTqFsWPHKm0/ePAgKleujFGjRiE0NFRtHdrmC6nISDieKbGrGXyqIe6jmm95YpJNX5Y/DJdN1E9Q/DmTAcMADcKAlvX0qsIq6XS7PXy7VEbQ8KpovrMpmu9sCq9mlZQyrHa41g4O3g4ag19bHCj3HFQdpHlJ6IBe/vBp56OP6VK01SWKQqyM4PdNP+OMT8hjQhA2QtlKw4cPH8a8efOU1pcpo3v37njy5Ik0kLZfv37YtWsXZ1ld40gqIooPlZpVgdb1lcVFsUh1HW9EMLi0vnSGTJ1g3YSJ5+vZr293YtC2AeBXSf8YEGvE0c8RzbY0Ud7ByidjE75eX8bOQ/Vjr/aMWqjUqHy8rO782oAAKHpShJCxwbg4+HL5voV1AEjACBi8saspDvgc0mhr7Rm1NHeIA48od3i39kalppWk2+p9Vxdpmx+h9je1ILC3LR8DCROCsCEOHDiABw8eICwsTG052dk927dvR1JSEiZNmoRDh+Rvrr6+vrzYaUv0awuMWVz6t7cH8O8yblGw8aD61+LGtTWLiS/eYTD1h/J62jUsnbZbRmDliiNINBHQOwDJa0vHx2pNL19I0tHXEWHTaiBj/1PUW1gX4nwxGDsGlTv4KMVcOXg5oMEPUQBKcwW12N8cRRlFsHMXwrutN1IfpupkU7VhKoLUNXhMWp9QfskIfr+6zXlKyjCqMElOTsby5ctx/fp1MAyDli1b4tNPP4WHR+kqjYWFhfj2229x8uRJuLu7Y9KkSRpX9CQIQnuEQqFGUaKIQCBArVq18NNPP6F37964efMmxGIxoqKi0KdPH34MtSF8PBnc2ATcfQi81RKws+MWB1mvDG9rYj8AYODpCgzrAjg6GG+lZVvD+w0vNFgThcInRQgZI/8AD/+iFsK/0M17wTBM6RTb1+iTO8jBhzvTq1OAIwof6Z6e3lYxqv8nNzcXnTt3xt9//429e/eipKQEy5cvl+5fu3YtXr58+f/27j0mikNtA/iz7ArLRQTEbgSsIEgvB5QoqFERUFBBEKQisZr6US22GtpGbapV0rWiVlu+fNb2DysJ1JQoVuMtIlUsItoaIw0KtopapHIpcq3l3oX9/uAwxz1CAd3dGXefX2KyzMzOvq+bFx9ndmeQnZ2NHTt24NNPP0V5ebk+SyCip+Tm5obCwkK0t7ejsbER165dg1yu/wtAmaJ/ecgQEyjrN5QAwP+EP/vrWA6TYV28DCsjZVBayRhKBuAa7wLPdz2E0zhisbCywNzyOf2+XxP+fVQGEP+qq1Kg1yMmPj4+OjfKiomJ0TlHnZ2djdTUVNjZ2WHixImYNWsWzp49i7feeqvP/XV2dqKzs1O3YIUClpb6vwBMb/oV6/bxxsAen3/G6s/GxsYor9MXU30P1QnA/33X83jfBtPs8XGm+j72Gkp/fmm+sLCx6HdbG09rhJaFQKaQQa6Uo+zL+8K6Vz9/xWTmsL8LRP43g37G5MaNG8JXGB89eoT6+nqdw8ze3t64efNmv89PT0/H/v37dZbFxcVhyZIlhikYwIMHDwy2b6lgj88/U+8PMM0eC/5Xjso6BQK8OwCYZo//zdR77O3PK9sD92LvQ9uuxbissfgt/j9nAx4+rEVbedtT7b/9xVZRzyzo8/0b6FuAvQwWTG7fvo2srCx8/fXXAIDW1lbI5XKdrx/a2tqitbW1330kJCRg2bJlOssMecTkwYMHGDNmzKBT3fOGPT7/TL0/wLR7HNtzjzST7rGXqff4RH9jgbHFY6HVaGHpbIlanwb8VfIXAMB9ujvsxtoOet+/olR47OLqAruxA994UN/EfP+GFEzWrl3b71Ub33zzTaxatQoAUFlZiXXr1iE5ORmenj2fhraxsUFXVxfa29uFcNLS0iIcMu6LpaWlQULIP7GwsDDJIXoce3z+mXp/AHs0Fabe4+P9WTn95wqukw/44Za6FI5THWDv/fQXMrSQy0X9+xPj/RtSMPnqq68G3Kaurg5r167FypUrERwcLCy3t7fHyJEjcffuXeFzKKWlpX1erZKIiOh5ZjPWBpPS/Z55PzLTzXT90vu3cpKSkrBgwQLExsY+sT4iIgJpaWloaWlBcXExLl68iLCwMH2WQEREZDrM6GJ5vfT6GZMLFy7gzp07qKiowIEDB4TlBQUFAIDVq1cjJSUF8+fPh729PTZu3Ah3d3d9lkBERGQyzPEb4XoNJpGRkYiMjOx3vVKpREpKij5fkoiIyGTJ5OaXTMzw7BUREZF0vZTcc1Xa4f+yg9LN/G6kyXvlEBERSci49zzgHDwSdt52Znl1XwYTIiIiCZHJZBjhN2LgDU0UT+UQERGRZDCYEBERkWQwmBAREZFkMJgQERGRZDCYEBERkWQwmBAREZFkMJgQERGRZDCYEBERkWQwmBAREZFkMJgQERGRZDCYEBERkWQwmBAREZFkMJgQERGRZDCYEBERkWTItFqtVuwiiIiIiAAeMSEiIiIJYTAhIiIiyWAwISIiIslgMCEiIiLJYDAhIiIiyWAwISIiIslgMCEiIiLJYDAhIiIiyWAwISIiIslgMOlHVVUVpk+fLnYZRGaPs0gkDcaaRbMMJlFRUSguLha7DIM4fPgwYmNjMWPGDERFRWHfvn3o6ur6x+ecOnUKSUlJRqpw8Do7O7F161ZEREQgKCgIiYmJuHv3rrA+IyMDoaGhmD17Nvbs2YPeuytoNBp88MEHCA8Ph7+/P+rq6nT2u2TJEgQGBgp/AgIC8O233xq1t4FER0djxYoVYpdhcJxFXeY2i5WVlVi7di2Cg4MRHh6O9PR0o/Y1GJxF4zPLYGKq0tLSkJGRgS1btiA/Px+pqak4f/48du7cKXZpT6Wrqwuurq5IT0/HDz/8gFmzZmH9+vUAgEuXLuHIkSPIyMjA4cOHcenSJZw8eVJ47qRJk7B79+4+93v48GEUFBSgoKAAp06dgkKhQFBQkFF6Gozr16+jqakJt27dwoMHD4b8fI1GY4CqaCg4i4Obxc8++wyurq7Izc1FWloasrKycPXqVaP0NBicRXGYdTBRq9XIyMgQfpbq/1YG46+//kJ6ejo+/PBDTJo0CQqFAt7e3ti2bRtOnDiB+/fvo7GxEZs3b0ZYWBjmzJmDvXv3oqKiAjt37sTVq1cRGBiIpUuXit2KwNraGqtWrYJKpYJcLkd8fDyqqqrQ1NSE7OxsLF68GG5ubnB2dsby5ctx5swZAIBCocDSpUvh6+s74Gvk5ubi5ZdfxpgxYwzdzqDl5OQgJCQEAQEBQk+9h1APHTqE0NBQLFy4EPn5+cJzoqKi8M033yA2NhZxcXFilf7UOIvmOYvV1dWYO3cuFAoFXF1d4efnh99++82Yrf0jzqI4s2jWwcSU3LhxAxqNBjNnztRZ/tJLL2H06NEoLCzEli1bYG1tjRMnTuD06dMICgqCm5sbNm3ahClTpqCgoAAHDx4UqYOB3bhxA05OTnBwcEBZWRm8vLyEdd7e3k/1C+3MmTOYP3++Pst8JhqNBufOnUNYWBjCwsKQk5MjrPv7779x7949nD59Ghs3bkRycjIaGxuF9fn5+UhLS8OhQ4fEKJ3+jbM4+FmMi4vD999/j87OTvz+++8oLi6Gv7+/ocoeEs6ieBhMTMSff/4JBwcHyOXyJ9Y5OTmhqakJRUVF2LBhA2xsbKBUKjFhwgQRKn06zc3N2LFjB9asWQMAaG1thZ2dnbDe1tYWra2tQ9pnVVUVbt68ibCwML3W+ix++uknaLVaTJ06FSEhIUKNAKDVapGYmAgrKytMnz4dPj4+uHz5svDc119/HU5OTrCyshKrfAJncSizOHHiRBQXFyMwMBCxsbGIjo7WCTli4iyKh8HERIwYMQJNTU19friuoaEBcrkcTk5OUCqVIlT3bDo6OrB+/XrMnDkT0dHRAAAbGxs0NzcL27S0tMDGxmZI+83JycGUKVPg5OSk13qfRXZ2NkJCQqBQKGBvb49p06YJ/1OzsLCAs7OzsK1KpdL5MOELL7xg9HrpSZzFwc1iV1cX3nvvPcTExODy5cs4efIkcnNzkZuba7D6h4KzKB6zDibW1tZob28Xfq6vrxexmmczYcIEKBQKXLp0SWf57du3UV1dDV9fXzQ0NOj020smkxmrzCHTaDT46KOPMGrUKLz//vvCcg8PD51vBZSWlmLcuHFD2ndOTg7Cw8P1Veoza2lpwcWLF3Hu3DnMmzcP8+bNQ2FhIc6ePYvu7m50d3fr/PKrqanByJEjhZ+l/D4OhLPYQ8rvob5n8dGjR6itrcXixYuhUCjg4uKC4OBgFBYWGqL8IeEsijuLZh1MvL29cfHiRTQ3N6OiokLnk+TPm+HDhyMhIQG7du3Czz//DI1Ggzt37iA5ORkLFy7E5MmT4efnh9TUVLS2tqK9vV34apijoyNqamoG/CqjGLZv346Ojg6o1WqdYY+IiMDRo0dRWVmJuro6ZGZm6oSMzs5OdHR0AOg5H9z7uFfvPxLBwcFG6WMw8vLy4ODggKNHjyIzMxOZmZn47rvv0NHRgatXr0ImkyEtLQ2dnZ24cuUKiouLMWPGDLHL1gvOovnNoqOjI1QqFY4fP47u7m7U1NQgPz8fnp6exm2sD5xFcWdRYfRXlAiZTIaIiAhcuXIFCxYsgLu7O+bNm4eSkhKxS3tqq1atwvDhw5GSkoI//vgDTk5OiIqKwsqVKwEAKSkp2L17N6KioiCTybBo0SL4+voiICAAKpUKoaGhcHFxQWZmpsid9KiursapU6dgZWWFkJAQYfkXX3yBmTNn4s6dO3jjjTfQ3d2NmJgYLFy4UNjmtddeQ3V1NYCeT8kDwLVr14T1OTk5CAoKgrW1tZG6GdiZM2cQHR2tc4gY6PnFX1RUhGHDhsHDwwMRERGwtrbGJ598IqnTUE+Ls2i+s7hr1y6kpqZi7969UCqVmDt3LhYtWmTEzvrGWRR3FmXa3ivhmJE5c+YgPT0dL774otilEA1KVVUVFi9ejB9//FHsUvSKs0jPG86i4ZndqZzepD569GiRKyEyb5xFImmQ2iya1amc7du348qVK9i8eTOGDRsmdjlEZouzSCQNUpxFszyVQ0RERNJkdqdyiIiISLoYTIiIiEgyGEyIiIhIMhhMiIiISDIYTIiIiEgyGEyIyKASExPh7++PxMREsUshoucAgwkRSc61a9fg7+8Pf39/VFVViV0OERkRgwkRERFJhlld+ZWIDOvRo0fYsWMHCgoK4ODggISEhCe22bNnDy5fvoyHDx+ira0Njo6OmDp1KpKSkuDs7Ix9+/Zh//79wva9N4SLjIyEWq1Gd3c3srKycOzYMVRUVMDKygpTpkzBu+++C1dXV6P1SkSGwWBCRHqzbds25OXlAQCUSiX27NnzxDa9oUSlUqGrqwvl5eU4ffo0ysrKcODAAahUKnh4eKCsrAxAz23YLS0t4ebmBgDYvXs3jhw5AgAYN24c6uvrcf78eRQVFeHgwYMmcZdXInPGYEJEelFRUSGEkhUrViApKQn3799HfHy8znbbt2+Hp6cnLCx6ziQfP34cKSkp+OWXX1BRUYGYmBi4ubnh7bffBgB8/vnncHFxAQBUVlbi6NGjAAC1Wo3IyEi0trYiLi4ONTU1yMrKwjvvvGOslonIABhMiEgv7t27JzyePXs2AMDd3R3jx4/HrVu3hHWlpaXYunUrysvL0dbWprOP2tpa4chIX3799Vf03t5LrVZDrVbrrC8uLn7WNohIZAwmRKQXj98PVCaT9bm8qKgIarUaWq0WI0aMgIeHB9ra2oTTNl1dXYN+jd5TPI+Tym3biejpMZgQkV54enoKj/Py8vDqq6+ivLwcd+/eFZaXlJQI4SIrKwvOzs7IyMjAl19+qbMvpVIpPH78qMorr7wCmUwGrVaLqKgoLF26FEBPYLl+/TpsbW0N0hsRGQ+DCRHpxZgxYxAcHIwLFy4gPT0deXl5qKmpgVwuF46EeHl5CdvHx8fD0dERjY2NT+zLzc0NCoUCGo0Ga9aswejRo7F8+XKEhoYiJiYGx44dQ2pqKg4dOgRra2tUV1ejpaUFH3/8McaPH2+0nolI/3gdEyLSm+TkZMyePRtWVlZobm7G6tWr4ePjI6yfNm0akpKSMGrUKHR0dMDd3R0bN258Yj8ODg7YsGEDVCoVGhoaUFJSgvr6egDApk2bsG7dOnh5eaG2thbV1dVwcXHBsmXLMHnyZKP1SkSGIdM+ftKWiIiISEQ8YkJERESSwWBCREREksFgQkRERJLBYEJERESSwWBCREREksFgQkRERJLBYEJERESSwWBCREREksFgQkRERJLBYEJERESSwWBCREREkvH/AvoLzcUGqXQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "show_col = \"HUFL\"\n", + "for idx, (train_, val_, test_) in enumerate(zip(train, val, test)):\n", + " train_[show_col].plot(label=f\"train_trafo_{idx}\")\n", + " val_[show_col].plot(label=f\"val_trafo_{idx}\")\n", + " test_[show_col].plot(label=f\"test_trafo_{idx}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's scale the data. To avoid leaking information from the validation and test sets, we scale the data based on the properties of the train set." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "scaler = Scaler() # default uses sklearn's MinMaxScaler\n", + "train = scaler.fit_transform(train)\n", + "val = scaler.transform(val)\n", + "test = scaler.transform(test)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Parameter Setup\n", + "Boilerplate code is no fun, especially in the context of training multiple models to compare performance. To avoid this, we use a common configuration that can be used with any Darts `TorchForecastingModel`.\n", + "\n", + "A few interesting things about these parameters:\n", + "\n", + "- **Gradient clipping:** Mitigates exploding gradients during backpropagation by setting an upper limit on the gradient for a batch.\n", + "\n", + "- **Learning rate:** The majority of the learning done by a model is in the earlier epochs. As training goes on it is often helpful to reduce the learning rate to fine-tune the model. That being said, it can also lead to significant overfitting.\n", + "\n", + "- **Early stopping:** To avoid overfitting, we can use early stopping. It monitors a metric on the validation set and stops training once the metric is not improving anymore based on a custom condition.\n", + "\n", + "- **Likelihood and Loss Functions:** You can either make the model probabilistic with a `likelihood`, or deterministic with a `loss_fn`. In this notebook we train probabilistic models using QuantileRegression.\n", + "\n", + "- **Reversible Instance Normalization:** Use [Reversible Instance Normalization](https://openreview.net/forum?id=cGDAkQo1C0p) which in most of the cases improves model performance.\n", + "\n", + "- **Encoders:** We can encode time axis/calendar information and use them as past or future covariates using `add_encoders`. Here, we'll add cyclic encodings of the hour, day of the week, and month as future covariates" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def create_params(\n", + " input_chunk_length: int,\n", + " output_chunk_length: int,\n", + " full_training=True,\n", + "):\n", + " # early stopping: this setting stops training once the the validation\n", + " # loss has not decreased by more than 1e-5 for 10 epochs\n", + " early_stopper = EarlyStopping(\n", + " monitor=\"val_loss\",\n", + " patience=10,\n", + " min_delta=1e-5,\n", + " mode=\"min\",\n", + " )\n", + "\n", + " # PyTorch Lightning Trainer arguments (you can add any custom callback)\n", + " if full_training:\n", + " limit_train_batches = None\n", + " limit_val_batches = None\n", + " max_epochs = 200\n", + " batch_size = 256\n", + " else:\n", + " limit_train_batches = 20\n", + " limit_val_batches = 10\n", + " max_epochs = 40\n", + " batch_size = 64\n", + "\n", + " # only show the training and prediction progress bars\n", + " progress_bar = TFMProgressBar(\n", + " enable_sanity_check_bar=False, enable_validation_bar=False\n", + " )\n", + " pl_trainer_kwargs = {\n", + " \"gradient_clip_val\": 1,\n", + " \"max_epochs\": max_epochs,\n", + " \"limit_train_batches\": limit_train_batches,\n", + " \"limit_val_batches\": limit_val_batches,\n", + " \"accelerator\": \"auto\",\n", + " \"callbacks\": [early_stopper, progress_bar],\n", + " }\n", + "\n", + " # optimizer setup, uses Adam by default\n", + " optimizer_cls = torch.optim.Adam\n", + " optimizer_kwargs = {\n", + " \"lr\": 1e-4,\n", + " }\n", + "\n", + " # learning rate scheduler\n", + " lr_scheduler_cls = torch.optim.lr_scheduler.ExponentialLR\n", + " lr_scheduler_kwargs = {\"gamma\": 0.999}\n", + "\n", + " # for probabilistic models, we use quantile regression, and set `loss_fn` to `None`\n", + " likelihood = QuantileRegression()\n", + " loss_fn = None\n", + "\n", + " return {\n", + " \"input_chunk_length\": input_chunk_length, # lookback window\n", + " \"output_chunk_length\": output_chunk_length, # forecast/lookahead window\n", + " \"use_reversible_instance_norm\": True,\n", + " \"optimizer_kwargs\": optimizer_kwargs,\n", + " \"pl_trainer_kwargs\": pl_trainer_kwargs,\n", + " \"lr_scheduler_cls\": lr_scheduler_cls,\n", + " \"lr_scheduler_kwargs\": lr_scheduler_kwargs,\n", + " \"likelihood\": likelihood, # use a `likelihood` for probabilistic forecasts\n", + " \"loss_fn\": loss_fn, # use a `loss_fn` for determinsitic model\n", + " \"save_checkpoints\": True, # checkpoint to retrieve the best performing model state,\n", + " \"force_reset\": True,\n", + " \"batch_size\": batch_size,\n", + " \"random_state\": 42,\n", + " \"add_encoders\": {\n", + " \"cyclic\": {\n", + " \"future\": [\"hour\", \"dayofweek\", \"month\"]\n", + " } # add cyclic time axis encodings as future covariates\n", + " },\n", + " }" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model configuration\n", + "Let's use the last week of hourly data as lookback window (`input_chunk_length`) and train a probabilistic model to predict the next 24 hours directly (`output_chunk_length`). Additionally, we tell the model to use the static information. To keep the notebook simple, we'll set `full_training=False`. To get even better performance, set `full_training=True`.\n", + "\n", + "Apart from that, we use our helper function to set up all the common model arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "input_chunk_length = 7 * 24\n", + "output_chunk_length = 24\n", + "use_static_covariates = True\n", + "full_training = False" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# create the models\n", + "model_tsm = TSMixerModel(\n", + " **create_params(\n", + " input_chunk_length,\n", + " output_chunk_length,\n", + " full_training=full_training,\n", + " ),\n", + " use_static_covariates=use_static_covariates,\n", + " model_name=\"tsm\",\n", + ")\n", + "model_tide = TiDEModel(\n", + " **create_params(\n", + " input_chunk_length,\n", + " output_chunk_length,\n", + " full_training=full_training,\n", + " ),\n", + " use_static_covariates=use_static_covariates,\n", + " model_name=\"tide\",\n", + ")\n", + "models = {\n", + " \"TSM\": model_tsm,\n", + " \"TiDE\": model_tide,\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Model Training" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's train all of the models. When using early stopping it is important to save checkpoints. This allows us to continue past the best model configuration and then restore the optimal weights once training has been completed." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1ab2f4e3c6a14b4687d70b402b9920ac", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Training: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c8efee5bcaef467499408860f691509d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Training: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# train the models and load the model from its best state/checkpoint\n", + "for model_name, model in models.items():\n", + " model.fit(\n", + " series=train,\n", + " val_series=val,\n", + " )\n", + " # load from checkpoint returns a new model object, we store it in the models dict\n", + " models[model_name] = model.load_from_checkpoint(\n", + " model_name=model.model_name, best=True\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Backtest the probabilistic models\n", + "\n", + "Let's configure the prediction. For this example, we will:\n", + "- generate **historical forecasts** on the test set using the **pre-trained models**. Each forecast covers a 24 hour horizon, and the time between two consecutive forecasts is also 24 hours. This will give us **276 multivariate forecasts per transformer** to evaluate the model!\n", + "- generate **500 stochastic samples** for each prediction point (since we have trained probabilistic models)\n", + "- evaluate/**backtest** the probabilistic historical forecasts for some quantiles **using the Mean Quantile Loss** (`mql()`).\n", + "\n", + "And we'll create some helper functions to generating the forecasts, computing the backtest, and to visualize the predictions." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# configure the probabilistic prediction\n", + "num_samples = 500\n", + "forecast_horizon = output_chunk_length\n", + "\n", + "# compute the Mean Quantile Loss over these quantiles\n", + "evaluate_quantiles = [0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95]\n", + "\n", + "\n", + "def historical_forecasts(model):\n", + " \"\"\"Generates probabilistic historical forecasts for each transformer\n", + " and returns the inverse transforms results.\n", + "\n", + " Each forecast covers 24h (forecast_horizon). The time between two forecasts\n", + " (stride) is also 24 hours.\n", + " \"\"\"\n", + " hfc = model.historical_forecasts(\n", + " series=test,\n", + " forecast_horizon=forecast_horizon,\n", + " stride=forecast_horizon,\n", + " last_points_only=False,\n", + " retrain=False,\n", + " num_samples=num_samples,\n", + " verbose=True,\n", + " )\n", + " return scaler.inverse_transform(hfc)\n", + "\n", + "\n", + "def backtest(model, hfc, name):\n", + " \"\"\"Evaluates probabilistic historical forecasts using the Mean Quantile\n", + " Loss (MQL) over a set of quantiles.\"\"\"\n", + " # add metric specific kwargs\n", + " metric_kwargs = [{\"q\": q} for q in evaluate_quantiles]\n", + " metrics = [mql for _ in range(len(evaluate_quantiles))]\n", + " bt = model.backtest(\n", + " series=series,\n", + " historical_forecasts=hfc,\n", + " last_points_only=False,\n", + " metric=metrics,\n", + " metric_kwargs=metric_kwargs,\n", + " verbose=True,\n", + " )\n", + " bt = pd.DataFrame(\n", + " bt,\n", + " columns=[f\"q_{q}\" for q in evaluate_quantiles],\n", + " index=[f\"{trafo}_{name}\" for trafo in [\"ETTh1\", \"ETTh2\"]],\n", + " )\n", + " return bt\n", + "\n", + "\n", + "def generate_plots(n_days, hfcs):\n", + " \"\"\"Plot the probabilistic forecasts for each model, transformer and transformer\n", + " feature against the ground truth.\"\"\"\n", + " # concatenate historical forecasts into contiguous time series\n", + " # (works because forecast_horizon=stride)\n", + " hfcs_plot = {}\n", + " for model_name, hfc_model in hfcs.items():\n", + " hfcs_plot[model_name] = [\n", + " concatenate(hfc_series[-n_days:], axis=0) for hfc_series in hfc_model\n", + " ]\n", + "\n", + " # remember start and end points for plotting the target series\n", + " hfc_ = hfcs_plot[model_name][0]\n", + " start, end = hfc_.start_time(), hfc_.end_time()\n", + "\n", + " # for each target column...\n", + " for col in series[0].columns:\n", + " fig, axes = plt.subplots(ncols=2, figsize=(12, 6))\n", + " # ... and for each transformer...\n", + " for trafo_idx, trafo in enumerate(series):\n", + " trafo[col][start:end].plot(label=\"ground truth\", ax=axes[trafo_idx])\n", + " # ... plot the historical forecasts for each model\n", + " for model_name, hfc in hfcs_plot.items():\n", + " hfc[trafo_idx][col].plot(\n", + " label=model_name + \"_q0.05-q0.95\", ax=axes[trafo_idx]\n", + " )\n", + " axes[trafo_idx].set_title(f\"ETTh{trafo_idx + 1}: {col}\")\n", + " plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Okay, now we're ready to evaluate the models" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Model: TSM\n", + "Generating historical forecasts..\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "809ff39dfd7b4192b102d9151b2c1417", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Predicting: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Evaluating historical forecasts..\n", + "Model: TiDE\n", + "Generating historical forecasts..\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ca2e5b2a7d634d7ea619998ce8a11dd7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Predicting: 0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Evaluating historical forecasts..\n" + ] + } + ], + "source": [ + "bts = {}\n", + "hfcs = {}\n", + "for model_name, model in models.items():\n", + " print(f\"Model: {model_name}\")\n", + " print(\"Generating historical forecasts..\")\n", + " hfcs[model_name] = historical_forecasts(models[model_name])\n", + "\n", + " print(\"Evaluating historical forecasts..\")\n", + " bts[model_name] = backtest(models[model_name], hfcs[model_name], model_name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how they performed.\n", + "\n", + "> **Note:** These results are likely to improve/change when setting `full_training=True`" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
q_0.05q_0.1q_0.2q_0.5q_0.8q_0.9q_0.95
ETTh1_TSM0.5017720.7695451.1361411.5684391.0988470.7218350.442062
ETTh1_TiDE0.5737160.8854521.2986721.6718701.1515010.7275150.446724
ETTh2_TSM0.6591871.0306551.5086281.9329231.3179600.8571470.524620
ETTh2_TiDE0.6272510.9821141.4508931.8971171.3236610.8622390.528638
\n", + "
" + ], + "text/plain": [ + " q_0.05 q_0.1 q_0.2 q_0.5 q_0.8 q_0.9 \\\n", + "ETTh1_TSM 0.501772 0.769545 1.136141 1.568439 1.098847 0.721835 \n", + "ETTh1_TiDE 0.573716 0.885452 1.298672 1.671870 1.151501 0.727515 \n", + "ETTh2_TSM 0.659187 1.030655 1.508628 1.932923 1.317960 0.857147 \n", + "ETTh2_TiDE 0.627251 0.982114 1.450893 1.897117 1.323661 0.862239 \n", + "\n", + " q_0.95 \n", + "ETTh1_TSM 0.442062 \n", + "ETTh1_TiDE 0.446724 \n", + "ETTh2_TSM 0.524620 \n", + "ETTh2_TiDE 0.528638 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bt_df = pd.concat(bts.values(), axis=0).sort_index()\n", + "bt_df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The backtest gives us the Mean Quantile Loss for the selected quantiles over all transformer features per transformer and model. The lower the value, the better. The `q_0.5` is identical to the Mean Absolute Error (MAE) between the median prediction and the ground truth.\n", + "\n", + "Both models seem to have performed comparably well. And how does it look on average over all quantiles?" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "ETTh1_TSM 0.891234\n", + "ETTh1_TiDE 0.965064\n", + "ETTh2_TSM 1.118732\n", + "ETTh2_TiDE 1.095988\n", + "dtype: float64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bt_df.mean(axis=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here the results are also very similar. It seems that TSMixer performed better for ETTh1, and TiDEModel for ETTh2.\n", + "\n", + "And last but not least, let's have look at the predictions for the last `n_days=3` days in the test set.\n", + "\n", + "> Note: The prediction intervals are expected to get narrower when `full_training=True`" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAIgCAYAAAB+nMGxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1fW/3zuzVV2W5N6NbbBNtSEGQwBDIJQkQGihhP4NgR+ElgJJ6CGhhppAaCZAgDQIJPTQq4MxzQ33Iqu37btT7u+P0a52pZW0stUs3fd59Gh39s7s3dnZO/fcc87nCCmlRKFQKBQKhUKhUCgUCsV2oQ10BxQKhUKhUCgUCoVCoRgKKANboVAoFAqFQqFQKBSKXkAZ2AqFQqFQKBQKhUKhUPQCysBWKBQKhUKhUCgUCoWiF1AGtkKhUCgUCoVCoVAoFL2AMrAVCoVCoVAoFAqFQqHoBZSBrVAoFAqFQqFQKBQKRS+gDGyFQqFQKBQKhUKhUCh6AWVgKxQKhUKhUCgUCoVC0QsoA1uhyJFFixYhhOj076233uLaa6/tsk3y76CDDsq5HcBBBx3EnDlzcurnnXfeyXHHHceUKVMyjrE9JD9XfX191tfnzJmT8T4bNmxACMFtt92Wtf1tt92GEIINGzaktnV1Tr766isA3nrrLYQQ/P3vf9/uz6RQKBQKRTZ2hPv9119/zRVXXMHcuXMpKSlhxIgRLFiwYLvvj+p+r1BsP66B7oBCsaPx6KOPsvPOO3fYPmvWLHbaaSe+/e1vp7ZVVVVx3HHHcdFFF3HKKaekticSCTweT7ftioqKety/+++/n/z8fBYuXMgLL7zQ4/0HkqlTp/Lkk0922D5t2rQB6I1CoVAohjOD+X7/6quv8p///IfTTz+dvffeG9M0eeaZZzjhhBO47rrruPrqq3t0vP5G3e8VQxllYCsUPWTOnDnMmzcv62tFRUWMHz8+9Ty5Yjtx4kTmz5/f6TFzbZcLy5cvR9O0VF93JPx+/3Z/foVCoVAoeoPBfL8/+eSTufDCCxFCpLYdccQR1NfXc/PNN/Pzn/8cr9e7zcfva9T9XjGUUSHiCsUOxP/+9z8OOOAA8vLymDp1Kr/73e+wbTujTdK4VigUCoVCsWPS3f2+vLw8w7hOss8++xCJRGhsbOzP7ioUijTUTFyh6CGWZWGaZsafZVl9/r7V1dWceuqpnHbaaTz//PMcccQRXHnllTzxxBPbdLxk3tSZZ56Z8z7ZPrtpmtv0/p3R/tjtFxAUCoVCoegPdsT7/ZtvvklFRQUjR45MbVP3e4Wif1Eh4gpFD8kW0qTreq/feNrT0NDAiy++yD777APAoYceyltvvcVf/vIXfvjDH/b4eEIIdF1H1/Wc9xk9enSnrx144IE97kN7li1bhtvtzth26qmnbvMigkKhUCgU28qOdr9/6KGHeOutt7jrrrsy7u3qfq9Q9C/KwFYoesif//xndtlll4xt2cK0epvRo0enbrZJdtttNz777LNtOt6kSZN6PEl4/fXXKS4u7rD95JNP3qY+tGfatGk8/fTTGdvKysp65dgKhUKhUPSEHel+/9JLL3HhhRdy/PHHc9FFF2W8pu73CkX/ogxshaKH7LLLLp2KnvQl2W48Xq+XaDTab33YfffdKS8v77Dd5/NlPHe5nKGls1C65I2+/eq1z+cbkHOrUCgUCkV7dpT7/SuvvMJxxx3Ht771LZ588sleWQRQ93uFYttROdgKhaLXKS8vR9d1Kisrs75eWVmJrutqtVqhUCgUiu3glVde4ZhjjuHAAw/kH//4R0ZJsP5A3e8Vio4oA1uhUPQ6Pp+PBQsW8PzzzxOLxTJei8ViPP/88+y///4dVsIVCoVCoVDkxquvvsoxxxzD/vvvz3PPPTcgZbnU/V6h6IgKEVcoeshXX32VNZdp2rRpVFRUDECPMvnkk09SdTYDgQBSSv7+978DsPfeezNp0iQANm7cyLRp0zjjjDN4+OGHe70fv/vd7zj44IPZd999ueSSS5g4cSKbNm3izjvvpKampkPuVU/46KOPsm4/8MADB8V3oFAoFIodn8F8v3/vvfc45phjGD16NFdddVWH/OxZs2ZRVFQEqPu9QtHfKANboeghZ511VtbtDz74IOeee24/96Yj9957L4899ljGthNOOAGARx99NFWmQ0qJZVl9VnJk33335f333+c3v/kNV1xxBU1NTZSWlnLAAQfw8MMPs9dee23zsW+//fas2998800OOuigbT6uQqFQKBRJBvP9/vXXXycajbJhwwYWLlzY4fX0+6G63ysU/YuQUsqB7oRCoVAoFAqFQqFQKBQ7OioHW6FQKBQKhUKhUCgUil5AGdgKhUKhUCgUCoVCoVD0AsrAVigUCoVCoVAoFAqFohdQBrZCoVAoFAqFQqFQKBS9gDKwFQqFQqFQKBQKhUKh6AWUga1QKBQKhUKhUCgUCkUvoAxshUKhUCgUCoVCoVAoegFlYO8g2LbN+vXrsW17oLsyYKhzoM4BqHMA6hwM98+vGLqoa1udA1DnANQ5AHUOYMc9B8rAVigUCoVCoVAoFAqFohdQBrZCoVAoFAqFQqFQKBS9gDKwFQqFQqFQKBQKhUKh6AWUga1QKBQKhUKhUCgUCkUvoAxshUKhUCgUCoVCoVAoegFlYCsUCoVCoVAoFAqFQtELKANboVAoFAqFQqFQKBSKXkAZ2AqFQqFQKBQKhUKhUPQCysBWKBQKhUKhUCgUCoWiF1AGtkKhUCgUCoVCoVAoFL2AMrAVCoVCoVAoFAqFQqHoBZSBrVAoFAqFQqFQKBQKRS+gDGyFQqEYwixatIiSkpKB7gZnnnkmxxxzzEB3Q6FQ9AA1figUCkXPUQa2QqFQDGM2bNiAEILPPvtsUB5PoVAMXvpi/NB1neXLl/fK8RQKhWIgUAa2QqFQ9CGJRGKgu9ArDJXPoVDsSAyV391Q+RwKhUKRC8rAVigUihwJBoOceuqp5OfnM2bMGH7/+99z0EEHcckll6TaTJ48mRtvvJEzzzyT4uJizjvvPAD+8Y9/MHv2bLxeL5MnT+b222/POLYQgueeey5jW0lJCYsWLQLaPEX//Oc/OeSQQ5g1axZ77rknH374YcY+ixYtYuLEieTl5XHsscfS0NDQ5WeaMmUKAHvuuSdCCA466CCgLSTzt7/9LWPHjmXGjBk59bOz4yW57bbbGDNmDGVlZVx44YUYhtFl/xSKoUIu48fUqVO59957Oeuss/ps/Dj44IPJy8tj9913H7Tjx9FHH42u62r8UCgUOySuge6AQqFQAMybN4/q6uqc2lqWha7rvfK+o0eP5pNPPsmp7WWXXcb777/P888/z6hRo7j66qv59NNP2WOPPTLa3Xrrrfz617/mV7/6FQBLlizhxBNP5Nprr+Wkk07igw8+4IILLqCsrIwzzzyzR/395S9/yS233EJeXh5//OMf+cEPfsCaNWtwuVx8/PHHnH322dx0000cd9xxvPzyy1xzzTVdHm/x4sXss88+vP7668yePRuPx5N67b///S9FRUW89tprSClz6l9Xx3vzzTcZM2YMb775JmvWrOGkk05ijz32SBkRCsW20pPxozfpi/HjT3/6E1dffTW//vWvgd4fP2677TamT5/OL3/5y0E7fjz++OMsXLgQn8+Xek2NHwqFYkdBGdgKhWJQUF1dTWVl5UB3o1OCwSCPPfYYf/nLXzjkkEMAePTRRxk7dmyHtgsXLuSKK65IPT/11FM55JBDUhPmGTNmsHz5cm699dYeT5CvuOIKjjrqKDZu3Mi1117Lrrvuypo1a9h555256667OPzww/nFL36Rep8PPviAl19+udPjVVRUAFBWVsbo0aMzXsvPz+ehhx7KmDR3R1fHKy0t5d5770XXdXbeeWeOOuoo/vvf/6oJsmK7GUrjx3777cfll1+OpjlBhn0xfgBcd911zJ49e1COH6WlpYwePTp1DpLb1PihUCh2BJSBrVAoBgXtJ2dd0dse7FxYt24dhmGwzz77pLYVFxczc+bMDm3nzZuX8XzFihV873vfy9i2YMEC7rzzzh5/lt122y31eMyYMQDU1tay8847s2LFCo499tiM9vvuu2+XE+Su2HXXXXs0Oe6O2bNnZ3zWMWPG8OWXX/ba8RXDl56MHwPxvj0ZP3bdddeM52r8cFDjh0Kh2FFQBrZCochKPCEJx2BEkeiX98s1zNK2bTZu3MikSZMyvBt9TTLEUQiRdXs6+fn5Hdp0t58QosO2bPmFbrc7Yx9wzklnfdke2n+O5Hvm0s9spPc9eaxk3xWK7SHX8WOg6Mn44ff7O7RR44caPxQKRc+RUpKoT+Ap93QYR/sSJXKmUCiysrEGPl4uSRi9O+naUZk2bRput5vFixentgUCAVavXt3tvrNmzeK9997L2PbBBx8wY8aMlEemoqKCqqqq1OurV68mEon0qI+zZs3io48+ytjW/nl7kh4my7Jyeo/u+tnT4ykUwwE1fpBTP9X4oVAoehMzaBFcGcIK9++YojzYCoUiK1vrJVsboLoRJo4a6N4MPIWFhZxxxhn89Kc/ZcSIEYwcOZJrrrkGTdO6XRW9/PLL2Xvvvbnhhhs46aST+PDDD7n33nv5wx/+kGqzcOFC7r33XubPn49t2/z85z/v4LHpjosvvpj99tuPW265hWOOOYZXX3212/DOkSNH4vf7efnllxk/fjw+n4/i4uJO23fXz54eT6EYDqjxI7d+Jo/3zjvvsPfee5OXl6fGD4VCsc3YCRuZsKGffUXKgz0EkVL2eqiXYngRjUvqmiGegA1V6npKcscdd7Dvvvty9NFHc+ihh7JgwQJ22WWXDKXbbOy111789a9/5emnn2bOnDlcffXVXH/99RkCRbfffjsTJkzgm9/8JqeccgpXXHEFeXl5Perf/Pnzeeihh7jnnnvYY489ePXVV1NK5p3hcrm4++67eeCBBxg7dmyHXM/2dNfPnh5PoRguqPEjt/Hjzjvv5C9/+Qvjx49X44dCodgu7LiNbfX/HFZINXPeIehJ3unqzZJwTLLH9KG1fjJQubeDif46B1vrJa8slowogkgUvj1fUFrYf7krXTGYroNwOMy4ceO4/fbbOeecc/rtfQfTORgIhvvnVwwNso0f6tpW5wDUOQB1DkCdA9j+cxBeHyG4LED5geW4CvsvcFuFiA9BKuslgTDsOlWi64PDKFL0HVJKahqhvBhcrt75vhtaJLYNxfmC+mbJ1no5aAzsgWTp0qWsXLmSffbZh5aWFq6//noA5WVRKBTdosYPhUKh6F9kwsY2+9+XrAzsIUY8IWlogVgCWsIwomige6ToawJh+HCZZHwF7DWD7V5UkVJSWQ/5rUK2hXmwphJmTJC4e8mA35G57bbbWLVqFR6Ph7lz5/Luu+9SXl4+0N1SKBQ7AGr8UCgUiv7DilrIASg2oAzsIUZLGEJRMExoDikDezgQCENT0PlzuyS779SxFEyPjxeAogLn+Ygi2FwL1Q0wYZiLne25554sWbJkoLuhUCh2QNT4oVAoFP2LGbZgALKhh2dA/xCmOQSmDW4X1DWr9PrhQDDq/K8ogaWrYcWG7RMlawpCJA55Xue5SxdoAjbWqOtJoVAoFAqFQrFjYEUGpuSfMrCHGHVNErcOBX6nvJI5AHkHiv6lptHG3xShwCMpLYRPVsGaLdnbStl9XevaJomuZ3rBy4pgSy00B9X1pFAoFAqFQqEY3NimjR0fGANbhYgPIQxTUtvsGNcFfqhpcjza5SUD3TNFX5EwJE21Fv7aMLJco2SUH8uSLF4hcbtg8hhBLC5pDDrCZZX1YNtw0J6Q5+sYRm6akqpGKPRnbi/IE1Q3OmJnJUrsbMBRC2cKhUKhUCgUnWPHbexunEp9hTKwhxAtISf/elQpeNzCMb6CysAeygQjEAlLyhMmdlUUMdJHWbGgplHy0XLJxmpJXYvTTkrI80E4CuurJLOndDSUm0JODvao0o7vVZQPa7fCdCV2NuCs2wrege6EQqFQKBQKxSDFTthIw4YBqKikQsSHEC1hSBiOcQ1OHnZtk/J0DWUCYTDjNjoS2RCDgAHAqBECXYNNteDWYeJImDpWMHqEoKQAVm6EUKTjtdEUhITZdg2lM6II6puhprGvP5WiO8Jx9btWKBQKhUKh6AyZkNjmwLy3MrCHEA0tTu5sksI8J0y8u5zbXIgnJJ+ttlUO7iCjOSQRlkTYEhI2dn0s9VpFiWDCSEFxgcgo3TWiyEkdWLe143dZ1SDxdhLX4tIFmgYbqtU1MNDE4s7/3vhtKxQKhUKh6H0STQli1fGB7sawJeXBHgCUgT1EsCxJdSPk+9q2Ffid0OCm4PYdO55wcnr/twKqGrbvWIreQ0pJTRP4dBspBCLPhayKIhNdCzoIISgthFWbIZjmxY7GJbVNUJjf+b4jimBLHbSElGE3kMScQAWisa7bKRQKhUKhGBjiNQnCGyID3Y1hixW3sQdIs0YZ2EOEQMQp11SQJk7ldglMy/FWdkbCkBhdXHwJQ/K/lZJVm8Hjhi1121cCStF7ROMQDEOeLgEJhW4IGMiG7ldLSwud8PK1lW3fZVPQyeEv8He+X4HfyeHe3kWbHREhRJd/Z555JgBvvvkmBx98MCNGjCAvL4/p06dzxhlnYJpOnNJbb73lLHKUlhKLZVrIixcvTh2vM6SUKQ92JJFb399++23mzp2Lz+dj6tSp3H///d3us2nTJr7zne+Qn59PeXk5F198MYlE2xtu2LAh63l4+eWXc+tUN/zhD39gypQp+Hw+5s6dy7vvvtvtPvfddx+77LILfr+fmTNn8uc//znj9UWLFmXtc/vvQaHobXoyfpxyyimUl5f3yfixLajxw0GNH4qeYoZNrNbUPUX/Y3fjcOpLlMjZEKEl5ISN+soyt/s8TtjvzInZFaPf+0ISN2CXSTBhJBmhxCnjehNMqADDgoZWwayiLryciv4hEIZwHIqxQAqEJrDdmiN2Ntrf5SRLCMGIIsnqzTBljKS4QNDQIpESdK3r/TRN0hCQTB4zvITOqqqqUo+feeYZrr76alatWpXa5vf7WbZsGUcccQQXX3wx99xzD36/n9WrV/P3v/8d284MUyosLOTZZ5/lBz/4QWrbI488wsSJE9m0aVOn/TAtMFpziiLR7vu9fv16jjzySM477zyeeOIJ3n//fS644AIqKir4/ve/n3Ufy7I46qijqKio4L333qOhoYEzzjgDKSX33HNPRtvXX3+d2bNnp56PGDGi+051wzPPPMMll1zCH/7wBxYsWMADDzzAEUccwfLly5k4cWLWff74xz9y5ZVX8uCDD7L33nuzePFizjvvPEpLS/nOd76TaldUVJTxvQH4fL72h1MoepVcx4+jjjqKM844gwceeID8/PxeHz96iho/1Pih2HasiIUVs7ETNppH+TT7Gytsow2AwBkoD/YOQ1KszLKye48bAxJNo4NRVeCH+haIZRFF2lDt/DW0wJtLJW98KtlcI7Ftp1byJyslKzbAuArwegT5PojEnfaKgScYAcsG3ZDQquotitzIxnhK7KwrSgqcyIe1lU5UQmW9ozLeHfk+p8a6bQ+vSIbRo0en/oqLixFCdNj22muvMWbMGG655RbmzJnDtGnT+Pa3v81DDz2Ex+PJON4ZZ5zBI488knoejUZ5+umnOeOMM7rsh2E6RjZAMCpZtGgREydOJC8vj2OPPZbbb7+dkpKSVPv777+fiRMncuedd7LLLrtw7rnncvbZZ3Pbbbd1+h6vvvoqy5cv54knnmDPPffk0EMP5fbbb+fBBx8kEAhktC0rK8s4D+0/Z3ssy+Kyyy6jpKSEsrIyfvazn3HGGWdwzDHHpNrccccdnHPOOZx77rnssssu3HnnnUyYMIE//vGPnR738ccf50c/+hEnnXQSU6dO5eSTT+acc87h5ptvzmjX/nsbPXp0l/1VKHqDnowfv/jFL/ps/GiPGj8c1Pih6AusiIVt2FixgckDHu5YYRORRbS3P1Ae7B2ElhB4cPJfp4zNfE3KjvnXSQr8sLnOCekdk1bXJxyVfLVeku9zFKcTpqSqAbY2SCaNchTIV26E8SPB52k13oRA1yS1zZIpY4eX93Iw0hCQuHWQCQvR6nUWXh3ZEMeui6EXdz1REUJQXixZXQllxdAUgKKC7t+3wO9cj8EIFOfQPlfmnWdTnYtCuQTLGucI+ontv2mNHgGfPNg7a42jR4+mqqqKd955h29+85tdtj399NO59dZb2bRpExMnTuQf//gHkydPZq+99upyP8MEq9XA/uCjj7n47LO56aabOO6443j55Ze55pprMtp/+OGHHHbYYRnbDj/8cB5++GEMw8Dtdnd4jw8//JA5c+YwduzYjH3i8ThLlizh4IMPTm3/7ne/SywWY/r06Vx66aUcf/zxXfb/9ttv55FHHuHhhx9m1qxZ3H777Tz77LMsXLgQgEQiwZIlS/jFL36Rsd9hhx3GBx980Olx4/F4B0+S3+9n8eLFGZ8zFAoxadIkLMtijz324IYbbmDPPffsss+KwU/O40cv0xfjx+LFi5k0aVKXbbd1/Ejn448/5mw1fgBq/FD0PrZhIxO2o2Qdt1AmV/8ipcSMWGjugfElq297ByEQlpT7YeUmydhyidfTZuAGI064cDZxKl0XWLakKQRjytu2r9goaWiBKWOc5x6XYOIoR9BsY7UziR9X0WZcJynMg8o6J3w8WyknRf9g25LaJuF4nGN2yoMNIArcjtjZhHyEV+/8IEBxgaB+q2TNFkkkDqPLumwOgN/riN01h3rXwK5udK6t3BicQ9cJJ5zAK6+8woEHHsjo0aOZP38+hxxyCD/84Q8pKirKaDty5EiOOOIIFi1axNVXX80jjzzC2Wef3e17GCaYresKf338Xg477PDUZHLGjBl88MEHGXmM1dXVjBo1KuMYo0aNwjRN6uvrGTNmTIf3yLZPaWkpHo+H6upqAAoKCrjjjjtYsGABmqbx/PPPc9JJJ/HYY49x2mmnddr/O++8kyuvvDIVXnr//ffzyiuvpF6vr6/HsqysfU6+dzYOP/xwHnroIY455hj22msvlixZwiOPPIJhGKnPufPOO7No0SJ23XVXAoEAd911FwsWLODzzz9n+vTpnR5bMfjp2fgxODnhhBN4+eWXOfnkk7nkkkv6ZPxI56677uLwwwff+HHKKad02mc1fih2FOyEjW1IbMPGjisPdn9jJyTSkAiXGBDtqME5S1VkIKWkIQDlfqcG8dpKyawpbQZVS8gJ3R5Zmn1/vwe21ktmTXb2qWl0RMtGloLWLt/W6xFM6iLiqSjf8aI3tGQa7Ir+JRRxxMaK/XZrnHja91jggpoosiGOGJvX7bEqip3Jqa53TDHIhhACTUiagpJJo3tvkWV0rql3EizLRNdd0Atvn/P75oCu6zz66KPceOONvPHGG3z00Uf85je/4eabb2bx4sUdJqNnn302P/nJTzjttNP48MMP+dvf/tatGE+6B3vzhhX84ORjM17fd999OwgFtf9ekzeb7vL02yOlTG0vLy/n0ksvTb02b948mpqauOWWWzjttNPYtGkTs2bNSr1+1VVXceGFF1JVVcW+++6b2u5yuZg3b16HG2C2PnfV31//+tdUV1czf/58pJSMGjWKM888k1tuuQW9tX7h/PnzmT9/fmqfBQsWsNdee3HPPfdw9913d3psxeCnN3/HA/W+uq7zyCOP8KMf/Yivv/6axYsX9/r4kc6KFSs49tjBN36ccsopVFZWsuuuu6ZeV+OHYkfDTthI00baqBDxAcCO29imjebRu62u0xcoA3sHIJ6AcKtIZVE+LN8IE0ZJCvOcm0Vza8mk9sZyksI8aAw4YeFeN3y1TmKapPbvCa5Wj3hDQDKmXHmwB4pgFKIJGJUvsUyJ8LaFwAhNIN0adlXEETvrQrQMoChfOBESRV02yyDPB1vrYfedup609IRcwyxt22bjxkomTZqEpg1OGYlx48Zx+umnc/rpp3PjjTcyY8YM7r//fq677rqMdkceeSQ/+tGPOOecc/jOd75DWVn3IQQJE5JTSVvKlOBZZ4wePbqD56a2thaXy9Xp+40ePZqPP/44Y1tTUxOGYXTwDKUzf/58HnroIQDGjh3LZ599lnotV/Gi8vJydF3P2ueu3tvv9/PII4/wwAMPUFNTw5gxY/jTn/5EYWEh5eXZVwM1TWPvvfdm9erVOfVNMXjprTDtwcDo0aP5xje+wRlnnNHr40c6uXh1Bmr8GDVqFJ9++mlqjFfjh2JHQyYktiHR3AIrOnBq1sMVpwa2RMsX2DlWXOlNhs4daQgTjkG8VbNqRKHjsV61ybkxSunkTud5O98/z+ccoznkiJptrNk+73O+DzbXDj+Rq8FEsLWsorBkRw82QJEb2ZiAltxGlfEjBQU9WHDJ9ztpCaEcVKyHO6WlpYwZM4ZwONzhNV3XOf3003nrrbdyDu9MN6jHTpjF/xZnTmQ/+uijjOf77rsvr732Wsa2V199lXnz5mXNn0zu89VXX2UoH7/66qt4vV7mzp3bad+WLl2a8rK5XC522mmn1N+IESMoLi5mzJgxGX00TZMlS5aknns8HubOnduhz6+99hr77bdfp++dxO12M378eHRd5+mnn+boo4/udCFGSslnn32WNcxVoRgM9Pb4kc6sWbM6jBdq/FDjh6J3sBOO11rzaJjBblbCFb2OTNhISyIGSEVcebB3AMKxtkm1EIKKEvh6M0waLcnzOoZzfhe1i3XNyT+orJNsbXBEqjyubb/givMd0bRAGEoKt/kwiu2grlnidQswJViAnjkBEB4daSWwq6NoJZ5t8jJLy4aEjfB3HCbyvFDbBM1BJ0JC4fDAAw/w2WefceyxxzJt2jRisRh//vOfWbZsWYfyNEluuOEGfvrTn+bsfUo3sL/1vQu58fJvcsstt3DMMcfw6quvdgjvPP/887n33nu57LLLOO+88/jwww95+OGHeeqpp1Jtnn32Wa688kpWrlwJOIJAs2bNcjzwP7uR+pp6rrjqCs4777xULuhjjz2G2+1mzz33RNM0XnjhBe6+++4Oqrvt+clPfsLvfvc7pk+fzi677MIdd9xBc3NzRpvLLruM008/nXnz5rHvvvvypz/9iU2bNnH++een2txyyy2EQiEef/xxgFRI7Te+8Q2ampq44447+Oqrr3jsscdS+1x33XXMnz+f6dOnEwgEuPvuu/nss8+47777cjr3CkVf8sADD7B06VL2228/TNMkkUj0+viRzsUXX8x+++3Xp+PHrbfeSmNjI1dcMbjGjyuvvJLKyspUrWs1fih6m6SBLdwaVkgZ2P2NnbDbwv0GAGVg7wCEo5nXSFG+oCEgWbFBMnWsIBxzVKC7Is/r5NmmC5ttK36vYGu9kxeuDOyBoSnoRCbIuI2w7KwrdKLYjV0ZQRvth9IuQhyyIE0be2ULMmKi71mGaKfCqGkCgZOHPWGUShVIss8++/Dee+9x/vnns3XrVgoKCpg9ezbPPfccBx54YNZ9PB5PpyGI2UiYEi3q3Kxnz9qHy371J+655zquvfZaDj30UH71q19xww03pNpPmTKFF198kUsvvZT77ruPsWPHcvfdd2fUsG1pacmo7arrOv/5z3+44IILWPjdhfi8Pk794akdSvPceOONbNy4EV3XmTFjBo888kiXAmcAl19+OVVVVZx55plomsbZZ5/NscceS0tLW/2/k046iYaGBq6//nqqqqqYM2cOL774Yoaycl1dHfX19annlmVx++23s2rVKtxuNwcffDAffPABkydPTrVpbm7m//7v/6iurqa4uJg999yTd955h3322SfHs69Q9B377LMP7777Lr/61a+ora3tk/EjnWRI9jXXXNNn48eCBQvw+/2ccsopOY8f7Wt+p9Nb40dVVVVGvXA1fih6m6SBp3mEqoU9ANhxu1d0erYVIQdCWk3RIz740mZ9lc1+0zezqXkiEo1oXFLbDNPGClZtlkzrpmxWJCZZXwUTR21b7nV7NtVIpo6F/Xfrv8HCyb3dOKhzb/ua5Dn4aM0Eyoo1XA0xrKUNaGOyu5HtmihilB9919Kcw2SkZWOvCmBvCCEEaLuPQMsillbdICkthMP2Eb2Wh50Lw/06+GiZzcZ3m9jn8ABfPOdDluVx2OE+/BUehCZYtGgRl1xySQevzraQaEhQ90YdrgIXI789ss++5zPPPJPm5maee+65nNoP92tgMPLFF19wzjnncOGFF3LmmWfywgsvcOONN2bUNf7b3/6m6gZ3w0Bf2705fmwrPT0HPR0/dgQG+joYDOzo56Dpk2bCa8J4yjwYAYOR3xqJu6hnfs0d/Rz0Btt6Dlo+ayGwPIS3wjn/ow4biauw//zKyoM9yJFS0hgEX7uSxn6vQBeSmkbZ4bVs5PkEO0+U6L2Ui1CU73jEY3GJz6s8mP1NwgSPW2CbXa/QiRFeqI4gx/gRo7rII2hFWhJ7TQC5IYQo80LIxN4cRoz0IVyZA1uBH5rDToRFgQoT7zdCzRau5jgAXmkTWhlgqwhRPN5L3kQ/Vrx7MRXbloSiTjRMV8SqYhgtJppHx47b6L6uy74phie2bXPHHXdkqMaD45HtLLRZoVAohjJW2EK4NTSPpmphDwBODeyBs0/UNz3IicYhEnOExdozugzWVjr1qnOht4xrgEI/bKqFhkDu76/oPVKORKPrHBPh1pAuzfFGj/B2CPVOR9oSe20QuTYEI7wIr450CaiNIetiiHZe8jwf1LVAS1gZ2H3FEUcc0aHsjmUBluTC+h/z7V1/TkwKrHybREOC6JYYwWUhpCWJ18XxlHmyqsivqXSqCew2DaaNy15Sx4pZhNZFaDRdyBqL8oQysBXZ+ec//8mcOXMIhULbtH8ikSCRyBRkdLlcGd7v4UIyPLqrMOlcOfLII3nvvfeyvnbllVdy5ZVX9un7bys97YOUEinlgPa5txkM38NAsyOfAyklZtxAeAAX2MLGjJm47ezCgJ2xI5+D3mJbz4EZMcEDUkik5owPvXEec/WiqxDxQU5ds+SljyRjy22mlbWFiA8G1m+V7DkD9pjeP/1RoTJOntimTZv4ZP0EKkp1rFXN2BvDaCM7905Ly4aaGNqupWgT8rO3kRJ7XRC5OgjF7gxhM1kfg0I3+rwyRDsxtXVbJfvsAnOmqlSBvqCyspJotE2q3bIkb/y9Ba0+wj4/LKTpywlU1sAe0wVjyx0xQzNgYjQbCJfAN9pL3uQ8Jyyq1YaOJeDNpZL6iIbu19l1Kuw2TeBuJ3xYvyrCl882sAUvRfE4C8+roHBslpW+AWA4XQODnZaWFs4++2weffRR7rjjDiZPnpwKEb/11ltxu92MGDGCk046ieOPPz7rMR544AEefPDBjG0nnHACJ554Yn98hCFLdXU1sVgs62slJSWUlJT0b4cUCoWiF1ixYgWbN29m4cKFuFz96yueMmVKTu2UB3uQE46CYYF7gGTmuyLfD1vqYNepvRd6ruiaqBMZTF7SzonZ3da5FrqGzHNhbwwhyr0dVMGlYWNvDiNXB6DI01E1vMQD9XFkXRwxOtOQ93uhqgHmTN2eT6XojHHjxmU8D7eYjNLq8E6SlJTEaQKEBtG4BJxceHexG3exGytmEa9JENkcS4VJCQFb6iTBSsHEcS7iM0tZ+rWLUESy10xHn0FKyZZayWdvRAg0C0qnaATXQU2NTeHY/j8HisHNfffdxw9+8IOUOnSSvfbai6effprRo0ezfPlyrrjiCsrKyjj44IM7HOOss87i1FNPzdg2nD3YmzdvZsKECdu9eJQu6rUj0ZvnYEdFnYMd+xyYIZO6N+rRC1y4/DqRLRGKZhVSNLuo032am5s7LHrtyOegt2h/DmpqajjhhBOIRCLcd999GdUBklgRi9o36tD9OkIIjKDByIUVKgdb0UY4NqAieF1SlO+okjeHulcxV/QOyfrX/lZRcBm3wJXDoFvkRlZHsSsj6Ds5A7y0JbIuhr0hBI0JKHIj8joOCcKlIV3CycWu8GZ4sQv8jqJ5JCbJ8w3WK3XoEKk1sIMmerkXcFZb3DqEIh3b6j4dfazufM+WE6gUiUsqKyX5FUBzHH9NmAk7FbGmUhCMSvaaAbVNkq8+T+CpilMx0Y3uEYSEZGuVxU579t9nVQx+Vq5cybJly/j5z3/e4bX0xaE5c+Zw8skn8+abb2Y1sD0ez7A0prtC07RhO6FOos6BOgewg54DC2RcohdrCCnQNR0raHf6OU477TSefPJJbr31Vq644ooOr++Q56CXSZ6DTz75hEjEmfQsXryYCy64oENby7QgLtHznTmQsEW/n8Ph/W3tADQEJJ4eLoPY9THsrVlm3L2MzyOIGdAY6PO3UrSSNKR0TSBtCQkbcogeEJpwynZtDiMDBrI5gf1VE/ZnjRA0YKQPkd9FblCJBxriyPp4xuY8n7MI1LxtqZeKHhKujGEBWlo4t9cNwagjXJYNoQk0t4bm1qhqFoQMjcISDVHmRW4O426MM2UMNAbhraWST1ZCcSxOqddGb41myPMJampsghGVUaRo49NPP2XTpk0ceeSRHH744bz22ms88sgj3HjjjR3a9melAYVCoRhI7Ljknc/e4eifHM1TL/6ly1rY4XCYJ598EoCHH364P7u5Q7JmzZrU49ra2qxt7LiNbYBQImeKbNi2pCkIvp6VMEZWR5EJO2tppd7G44KaJsn0CWry1B+0hCVlyfBw00ZaskvhsnREvhsZiGCtbkE2J8CwHeEzT/fCVcKlYesCe0sYUe5LlfzSNSekuDkEY7etFKsiR6yYRbQyjulzkb4I63ZBJA5xoy2yIRvBiGRLHZQUgECAV0e6New1AfQiNxNHugiEJRX5NmJjDPLbbg/+PEFzs0V1AxQqQTtFK8cddxyHHXZY6vntt9/OhAkTOP300/nggw/YZZddKC0tZeXKlTzzzDNceumlA9hbhUKh6B/shMUvH72KDTUbWLbmK4595jisGFlrYX/99depx+vXr8e2O/d0K3I0sBM2SNltCmVfogzsQUwk5ggSZVMQ7wxp2o7xZDu5tbkaX9uK1w2BcJ++haIVKSX1LaQZ2BIsG3qg7CxGeB1F8CIPoqxnP3+RzMVuiCNGtl2UXo9TE3vWZLXI0pckGhIkAibS50VL8wZ6XE4EQSzRtYG9pU4SjUNpWdr3VOpBVkWx1wXRZpVQlC+waxLYQQMq2r5joWt4LJMN1ZJp40AbwJuWYvDg8/nw+dLGAq+XvLw8CgsL+fjjj7nmmmuIxWJUVFTwwx/+kG9961sD2FuFQqHoH5YvX8GGmg0AhKNhKpsqGZc/DivWtYEdj8fZunUr48eP78/u7lCsXbs29bimpiZrG8fA7q8eZUcZ2IOYcAxicSjvXBMhy04mMtpaBzdqQR8b2B63M7E3TYnLpSbdfUk0DqFo2gbDBoucQsSTCK+OGL1tLkjh1rBF0ovtTa0MFvidcm3RuMSvaqL3GbGaOJZNh+9ba40iiCWy7wfQHJJU1kFpQeZ2IQSUeZFbwsgRXhjjdyJgNNDS38etUWTa1NRLGgOC8pJe+1iKIcS1116benzppZcqj7VCoRiWvPT6ixnP11atZezEsVlrYacb2OAYkMrA7pz2HmwpZYcUJDsx8GXNVAzCICYScxyUPVHolmHTCf01bWQ0e75Hb+J2QcKky8m9oncIRdud56QHux8V3EWpB9kQh5a2jhT4nL61qDxsrr32WvbYY49eP64Vs4hXxrDzXJ2uyjpK4h2RUrK5VmKYZF0AEV4dPLpTpq02ht3gRDhk4BK4hSQetdlar/KwFYq+4Nprr2WvvfYa6G4oFIrt5KX/vpTxfM3mNUhbYsc7Gn7tDex169b1ad92ZAzDYMOGDanniUSCQKCjEJQZshAD7PRTBvYgJhSVPVYQly0J0AVSCGSkfwxsw3TyPxV9SzDi2NNJpGkjWksz9RfCrTm532liHbousO2hL3QmhOjy78wzz+SKK67gv//9b2qfa6+9NvW6y+WivLycb37zm9x5553E45mCcQcddFDW455//vkkGgyMoInl1bOWFXC7HKGzbDQEoKoeRhRBTcMWfnXXKRx9/kSOu3gG9z55JYaZcELFAwb25rBT+i0t7SBhxLn3b7/k+F/N5sJTSjj3zO+xfsPmjPeYPHlyh37/4he/2PaTncbbb7/N3Llz8fl8TJ06lfvvv7/bff773/+y3377UVhYyJgxY/j5z3+OabZdsxs2bMh6rl9++eVe6bNC0Z5cx4/XXnsttU9vjR+9xaZNm/jOd75Dfn4+5eXlXHzxxSQSXa+ux+NxLrroIsrLy8nPz+e73/0uW7ZsyWjTfvzQdZ2bb765V/qsxg9Ff9PY2MjHX3ycsW3NZsfrasW6N7DTQ6AVmWzcuBHLsjK2ZQsTtyJWn6fIdocKER/ENAagJ5VLpCWRjQmEX3fUpQN9b/W6dTCVgd0vBMKSDFvalE5oTD/3Q7g1x4s9IT+1ze1ywpAHb1G57aeqqir1+JlnnuHqq69m1apVqW1+v5+CggIKCjLjsGfPns3rr7+Obds0NDTw1ltvceONN/L444/z1ltvUVhYmGp73nnncf3112fsn5eXR2xNDABDiqwBCx6XozBvS5mRn22Ykg1VjsfZpdv88s4fUFJYxu+v/DeBUBO3PHwhEslFp/4Oyr3IqiiiKFNN/g9P/ZKPPn+Fq06+l6K9pnD3n37J0Ud/hy8+X4Kutxni119/Peedd17qefvzsC2sX7+eI488kvPOO48nnniC999/nwsuuICysjLmzZuXdZ8vvviCI488kl/+8pf8+c9/prKykvPPPx/Lsrjtttsy2r7++uvMnj079XzEiBHb3WeFIhu5jh95eXmEQm2rlb0xfvQGlmVx1FFHUVFRwXvvvUdDQwNnnHEGUkruueeeTve75JJLeOGFF3j66acpKyvj8ssv5+ijj2bJks7HD9u2aWxs3O4+dzZ+VFRU8P3vfz/rPmr8UGwvL774IradaUiv3rgaBFjRTONQSpkxDoDyYHdFtsWH2tpaZsyYkXoupcSKmBnVVgYC5cEepFiWpCkE/p6UBg2bTli4zwn5lEEDafVtHoIQAokKEe8P6prBn277mDaZFnc/4dexWxLIRNuNwjMMxO5Gjx6d+isuLkYI0WFbthBxl8vF6NGjGTt2LLvuuisXXXQRb7/9Nl999VUHL01eXl7GMUePHk2+t4B4ZQx3kZtEAvQso7bbDcvWfsrBZx3MuEPGcsi5C3nh7X8z5uByFi/7krJiWPLVm2zauopfnPdHpk/ajbmzD+T8k67nxbcfJxwNIjw6Ylweorht0AlFArz87pP86KTrmTvtm8ycujvnXfFnVq74ktdffz2jD4WFhRn9zsXAXrRoERMnTiQvL49jjz2W22+/nZKSktTr999/PxMnTuTOO+9kl1124dxzz+Xss8/mjjvu6PSYTz/9NLvtthtXX301O+20EwceeCC//e1vue+++wgGgxlty8rKMvqsajEr+opcx4/2IeLbO34UFeUm4rJ48WL23HNPfD4f8+bN49lnn0UIwWeffQbAq6++yvLly3niiSfYc889OfTQQ7n99tt58MEHs4ZoArS0tPDwww9z++23c+ihh7LnnnvyxBNP8OWX3Y8f+fn5WY+ZzraOH+0N5XTU+KHYXv79wr87bFuzaTWaW8MMZkaW1tXV0dLSkrFNebA7Jz3/Okl7JXE7IbETuVfY6SuUB3uQEok7AmdF3d9jUsiQ4eRfe3SkbH0etaCg7y+yuDKw+5R4QhKIQJpgL3KgRBx8LkR9DIImlDkeCI/LEeWzLNkjzYB03lv4IYnaeLftJI43ZZ2+sVf85Z6RXvZ/Y99eOFLu7LzzzhxxxBH885//zFozOJ1EfQIjaOIf5ydWKdGziMbbVpjf3X8qB8zdnweuuZ+NWzfy899fBUBJvlNObfna/zF53C6Ul45J7TdvzkIMM87qDZ+xxy4HdChpsXrjZ5iWwbzZByMDEgybaZPHMmHyHN56+30OP/zwVNubb76ZG264gQkTJnDCCSfw05/+tMsJ58cff8zZZ5/NTTfdxHHHHcfLL7/MNddck9Hmww8/zCgDBXD44Yfz8MMPYxjZw2bi8XiGsjU43sFYLMaSJUs46KCDUtu/+93vEovFmD59OpdeeinHH398p/1VDG5yHT96m8E+fuRCOBzm6KOPZuHChTzxxBOsX7+en/zkJxltPvzwQ+bMmcPYsWNT2w4//HDi8ThLlizh4IMP7nDcJUuWYBhGxm947NixzJkzhw8++KDT8eP444/nhBNO6LLPvTF+uN2Z0Tqgxg/F9mEYBq+8+goAxQXFzJw8k8VfLaauqY6WeAB3qGuBM1Ae7K7IZmC3DxGXCRvbtHHn5V5hpy9QBvYgJRyFaAIqSnPfRwYTkJwgezSEIZFRC1HQ8SbSU6QtsZY3o4/LQ5Rm1gLSNSdffCiHBw80wYijIl6S7hSMW/0qcJZE6ALblsiQgShzrgWP2zGw4wZs65iWqI0Tq8p9gmzS9xoDfcnOO+/Mq6++mrHtD3/4Aw899FDGtlt/divf2ek7SA0MK7sH+82P/4EtLa698G6mjM1nVPlMjjiwkgf/+lM8bucaaWyppbS4ImO/wvwS3C4PjS3Za0k2ttTidnkozC/BDkaRMYvCPMgvHsmGTdWpdj/5yU/Ya6+9KC0tZfHixVx55ZWsX7++w2dJ56677uLwww9P5WrPmDGDDz74ICOPsbq6mlGjRmXsN2rUKEzTpKmpKetxDz/8cO68806eeuopTjzxRKqrq1NGSDJMt6CggDvuuIMFCxagaRrPP/88J510Eo899hinnXZap31WDF56On7s6OQ6ftx3332cccYZXR7rySefxLIsHnnkEfLy8pg9ezZbtmzhxz/+capNtt9iaWkpHo+H6urq9odM7ePxeCgtzZzIjBo1KmOfbOPHl19+yVNPPdVpn7d3/Kivr2fMmDG0R40fiu3h/fffp7m5GYBD9jmEgoJCFn+1GID1tesoLSrJqIWdzcCur68nEAjkHH0ynOgsRDwdO2EjDTngImfKwB6khGMgpeN5ygVpS2RDIiVOJITAltLxYPcGERPZEEcWujsY2G5Xu/JRil4nFHXU2t1pBrWM2YgBMLABhEfHboijTXIsfo8bmoJOqkBeD+q2p+MZ2UUR5zSSHmxd13vNgz0QZCstceqpp/LLX/4SANu0iW6J4a3y4ipyY1mOyJ0rywLGpqqvmTBmNkLkEUtIvt4smTI+W45yxzOWrR/ZEC4BURNNEwgkoahI7Ztejmm33XajtLSU448/nptvvpmysjJmz57Nxo0bATjggAN46aWXWLFiBccee2zGe+y7774dhILa901KmXV7ksMOO4xbb72V888/n9NPPx2v18uvf/1r3nvvvVTOZ3l5eUaf582bR1NTE7fccouaIO+gDNTveLCOH0lGjhzZ7bFWrFjB7rvvnpGvve++Hb3y2X5zuY4fXe3TfvwoLi7mxBNP5N5776WiokKNH4odhn//uy08/LAFh1HXVJ96vrZqLXtM2iOjFnZ6/vW4ceOorKwEHC92X1Qk2dHJKUQ8biMtZWArOiEYkT1Lr404+dcZ3mpdQ/aS0JkMGhA0kE0JmJT5msftGIDbcqNV5EYwIjMEE6SUkBgYDzYAfh0ZMJxrzu9Kid1tTy5+rmGWtm2zceNGJk2ahKbtuDISK1asYMqUKRnbiouL2WmnnYjXxgmuCBKtjuEqcuEqdhFLOAa2N1tAinTS8VvCklAU6puhtN3i94jikaxc92nGtmC4GdMyKC3K9Gyn72OYCYLhZgpceciIs2AXDtbhyduPQBiKs6Raz58/H3BuhmVlZbz44oupkG6/3+90WXZf7mv06NEdvGO1tbW4XK6MXMv2XHbZZVx66aVUVVVRWlrKhg0buPLKKzuc7/Z97srjrhjc9HeY9kDT1fjRU3L9LX78caYyclNTE4ZhdPASp++TSCRoamrK8GLX1tay3377dfpe6eNHRUVFn4wfZWVlne6nxg/FtvLCCy8AoGs6h8w/lCXLl6ReW7t1LTIhM2php3uwjzjiiNQ1tHbtWmVgt8O27VT4fGFhYUoTIZsH25kTKZEzRRYaWsDXEwXxkIlI2OBp+0qFV0MGEkh7++vWyuYEGLZjVLXL/XW7nNDghFIS7zPqmsGbfj1Y0qmDPVArdD4dETWduusosbuesnLlSl5++eUOSrbSlLR8EaD+nQaiW+P4xvnwlHkQQmBaYNtkzcGeOHYGm7Yuo6ElyuZaKC+BVeuWZLSZNW1vNlSuoKG5bcL5ybI3cbu8TJ+8R9Z+Tp+0By7dzZJlbznXmmFTX13JpnVfMWn6vp0K2y1duhQgFYI5adIkdtppJ3baaSfGjRvn9GfWLD766KOM/do/33fffTPKFoEjtjRv3rys+ZPpCCEYO3Ysfr+fp556igkTJnRZY3jp0qVZQ0YVisFGZ+PHtjJr1iw+//xzotG2ULRsv8WvvvoqQw391Vdfxev1Mnfu3KzHnTt3Lm63O+M3XFVVxVdffdWlga3GD8WOyNdff50ymOfNmEdpUSk7TWxb8FqzeXWHWtjJ9l6vNyO/X+Vhd6SysjJVnjC5CAcdc7DthD0oMlaVgT0IMU1JS7gTT1UnyICBFO1qInt1ZNyC2PaFiUvTRjbEEcUeZMyCcKYl7XGBYahSXX2FYUqaQ+BPj0Q0bUchPltCbj8gtNZa6+0iJJSB3RHTNKmurmbr1q18+eWX3HPPPRx44IHsscce/PSnP021k6akcV0jq99aTUOskWBegLpAHc3BZuc4lvOX7Ss/ZP730TSN2x+5hKbmVXy24nX+9vJ9GW3mzjmYiWNn8rsHL2D1xi/4dPk7/OmZazjywNPJ9zulfuqbqjjrqvkpT3dBXhHfPuBUHnjmaj5d8x6rN3zBTb/+IVN22pVZexxKMOoICf3+97/ns88+Y/369fz1r3/lRz/6Ed/97neZOHFip+fl4osv5uWXX+aWW27h66+/5t577+0Q3nn++eezceNGLrvsMlasWMEjjzzCww8/zGWXXZZq8+yzz7Lzzjtn7Hfrrbfy5ZdfsmzZMm644QZ+97vfcffdd6dCPB977DH+8pe/sGLFClatWsVtt93G3XffzUUXXdTNt6lQ9C+5jh8AkUiE6urqjL/OtArSOeWUU9A0jXPOOYfly5fz4osvdlDaPuyww5g1axann346S5cu5b///S9XXHEF5513XipXtLKykp133pnFi52c0+LiYs455xwuv/xy/vvf/7J06VJOO+00dt11Vw499FAg+/jx4x//mEMPPbTPxo8rrrgi1UaNH4reIj08/NA9net7wqgJeD3O5G3Npsxa2JZlpUKed9ppJ6ZPn57aXymJdyQ9PHzOnDmpEoXtPdhWbIAq7LRDhYgPQsIxx1ApLey+LbTmXzfGU/nXKTwaotly8rDztuOrDpmOWFqJB+pjyLCZkYftcTn5wcrA7htCUUfgrKw4baMpHS/2QIWIA8KjIetjyCkFCCFw6RCKKLG79ixbtowxY8ag6zrFxcXMmjWLK6+8kh//+Md4vW2/I9uUPPHSEzzx0hMZ+y/cZyF/vf1vmJajy+DUuc6MSvH7CrjxJ09y52OXc/nNC5k4dibnnnAN1913ZqqNrun85pKnuPvxn3LJb4/C4/axcP73+dGJ16XamJbB5uo1xBKR1LYLfnAjuu7ixof/j0Qiyp7zFnLTnc9j6Dp1TZJCr5dnnnmG6667jng8zqRJkzjvvPP42c9+1uV5SYZUXnPNNVx77bUceuih/OpXv+KGG25ItZkyZQovvvgil156Kffddx9jx47l7rvv5vvf/34qJ7OlpaVDHdGXXnqJ3/zmN8TjcXbffXf+9a9/ccQRR2S0ufHGG9m4cSO6rjNjxgweeeQRlT+pGHTkOn4APPjggzz44IMZ2w4//PAOhmd7CgoKeOGFFzj//PPZc889mTVrFjfffHOGh1zXdf7zn/9wwQUXsGDBAvx+P6ecckqGIW4YBqtWrSISaRs/fv/73+NyuTjxxBOJRqMccsghLFq0KGWserOMH+eeey4nnXRSl33e3vEjiRo/FL1FhoE9z1Gv13WdaeOnsXzdctZXrsewjFQt7E2bNpFIOF6JGTNmMG3atNT+ysDuSLqBvdNOOzFy5EiCwWAHA9sMmWjugZ+HCplLIouiX9laL3nlY8mk0aC1ipwJbCaWbGJT80Rku8ADGTIwF9ch8twdjGy7KoK+ayna+B7U+2qHvTmM9VUT2pg87Noo2rh89NklGW3WbZV8a55gwqi+u6iHSu5tT9lUI3n9E8mUMaAJycSSTWzcMArj40ZEha9DaaX+QkZNZMzC9Y0KRJ6L6gZJeQkcOq9vv5uheh2EVoVo+qSZvEl5WV+vapB8tloypkwgdMmUA4Ksf7cQaWX//qvrN3Haz/bi/mvfZKeJu253/6SUUBNDm1eGVu6jKSiREr6zQODupVSFRYsWcckll6RUWDtjqF4DCsVgubY3bNjAlClTWLp0ab/ngm7rOch1/NgRGCzXwUCyI52D5uZmKioqME2TyWMn895d7+Mb7Si+nv3rs3j+recBeOfOd5i192zK9hvByy+/nFq4+fnPf85vf/tbSkpKCAQCTJ06lbVr1+5Q56CvSJ6D+++/n1tuuQWAV155hWuvvZYPP/wQcMrrJcuC1r5ehxk08VY4C5BW1MIIGIw6bCSuwv7zKw/Pb2uQE46CTZtx3R0ybCLiNnizfJ2acOphbweyIQ4u59jCpyOb4k54cjuUB7tvSCq0p4f/S0siJANmXAPg1RExyxHAo03szu6FnP/hiBW1ugxrMnupIMC2ksyzp1WDIc/rRFYEI13uplAoFArFkOaVV17BNB1NmsP2OSylEg4wfVJa6HfteqyQ0y5d4GzmzJkIIVJe7I0bN6aE/RQO6R7sadOmZYgr1tXVAc7c2I5ZaO6BN28HvgcKwPEOxROS5qCkMSjpid0kgwZSZFfME14d2WLkpLiZ9dhxC7slgUiGmPtdrXnYmbN9gcq/7SvqWySe9otuhr3N32lv4eRh02ZguxyhO3UdbBtm2Oo0rOn3f76D/U6ZxLm/nMTRP57EUf83iTlz5nDU/03iyju6DqXsdQzHwPZ6BLGEMrAVisHOTTfdREFBQda/9qHPCoWi5yTVwwEO2fNQhKvNvNppYpuBva56DVbMxk7YGQb2jBkzAJg6dSrg5Gdv3ry5r7u9Q5EMm3e5XEyaNCmjBGEyTNyO29jmwJfogj7KwU4kEvz2t7/l448/JhwOM3PmTH72s5+lykcsWrSIJ554Atu2+d73vsfFF1884HLqA0E8IVm5SdISgkDEMUzirQZKcY4R3VJKR4DMm0VaGMCjIaMWxG1on6Ody/GDBiJqwkinNIZwa0jDRoYNRFGbCpuuQyiq8m97G8uSNAay1Ja2BoeXWPhcyPo4cqrE44bmkHMNb2st7OGMFbE6vSmcecxZ7Drzu1TWQ3mxEyI+fl6YLZ/k49Gzh5SPLp/I64/UZ31tmxEgY2bbUwEtod773Z955pmceeaZvXIshULhcP7553PiiSdmfS1Z9qo9kydPHvBF3J6ixg/FQGCaJi+99BIARUVF7D1zn4zF8gwl8cq12IaNFctuYLfPw548eXIf937HQEqZMrAnT56My+XKMLCTSuJ2wkYaNlphD1Si+4g+MbAty2LcuHE8+uijlJeX89RTT3H55Zfzr3/9i/fee4+///3vLFq0CJ/Px49//GMmT57M9773vb7oyqCmOQRLV4Nbd8JrPW7I9zn/9Vxd2FELGTE7Cpwl8WoQNCBqbpuBHTAcYaX0/mgCGTQhrSJFMjxY0buEohCNQUk7wTtpDI4yBPh0ZNiAiIk734VhQSwO5CjQp3CQllMbs7OwptKiUirKi0FvM7AnTw4iN3eeg90XCJeWqoUNjrJ9bXO/vb1CodgGRowYwYgRIwa6GwrFkOTLL7+ksbERgEMPOhS3dGUslqcb2Gsr22phJw3skpISysvLgTYPNjilug455JD++AiDnvr6ekKhENC2CJHVg52wsQ2Grgfb7/dz7rnnpp6fdNJJ3HXXXTQ3N/Piiy9y/PHHM378eABOO+00XnrppawGdiKRSCnspTrscqUS2Xd0IlGJQDK+ItuFkLlyLLAz/qdaRRNopgV5boTWcbVZ6AJbsyFuIOjZio6UEpqiaPkaQm87tpavQUsM7PxUDrDPLYnEnBJjueaO9xTbtjP+DweCEYlhSXxuEIi268C0EB6R8b0MCHkCEbQgkkAr0NGEJBYX2Hbfit2l/x8KWFELy7bRfTpSZP9OTVvi8oDQSX3v/f79+wDDBGkhhKDAJwmGIRqTeD39d0MbjNfAcBWgUSgUiuFMuor1zKkzHY2cNAOvMK+QMRVjqKqrStXCDjeH2bRpE+B4r5NRvEpJPDvJqiFAKho6PQc73cBGSsQAVthJ0i9yal988QUjRoygpKSE9evXc+SRR6ZemzFjBvfdd1/W/R599NEOJSdOOOGETkOddkS+uXP3bdKZULIlc0MJMA0g1M2e2xgqmlo8y5ZY25Z8ObHE+d8fKSPDLS/lgJkdt02eF4B5AINFBMMRmJhYAiQgbSzsM4bcddCN0Pf0sR23Td6vu999X9F67kucf9VVA9SLQXQNTJkyZaC7oFAoFIpusGIWSND9PY/qzEa6an1RgVMTvn3a604TdqKqrorGlkbqWxr49MPKVArGzJltk7z2HmyFQ3IxAtoM7Kwh4nG7vX9ywOhzAzsUCnHTTTdxwQUXABCJRCgoKEi9np+fn1EzMZ2zzjqLU089NWPbUPJgf7zMZl0VnXiwMxHYTCjZwubm8akyXVJKrM8aIWhk1KVuj2yKQ6Eb155lPeqfXRvF/rwRRvkzFaylhJoo2h4j0Cqc/K2EIWkIwGF7C0oK+86DvXnzZiZMmDBsvEWLl9us3dp2jSSvg/Vv+JERG1E88L8FGUiAW0OfV86Weth5Iuw1s+++n6F4HcTr4tS91YB/jC/ryqthShavkOga5PlaQ8T3C7Hhg4J+DRGXcQsZNnDNK0fkOxExG6olB+wmmDymfz3YQ+0aUCgUCkXfE14bRtpQvGvRNu2faEwQ2RyleLcihBC0tLSkXiv0Zz/m9EnTeffTdwFYvmkdy+PB1GvJ/GuAiRMnous6lmUpD3Ya6R7srkLEzYg1aOS7+9TAjsfjXH755ey///6pEPC8vLxUHD1AOBwmLy+7SI/H4xkyxnQ2mkLgdoHsQTKtREsZ2HZ1BFmXgGIPdDHJlrqODFjYCRCe3K88u8nAtjU0W+sYsG4KCFqICud4ui6JJiBhij4LEU+iadqwmFTbtqS2WcPj7niNyIRESq3L772/kC4XMmCghWx03UVLuH/CZYfUdWCCMFvPW5bVV9sEwwDdQ4ZBLS3Rvwa20JExA5kA8lvHISn77Ttvz5C6BhQKhULR55hBE7kdZS+NZoPoxih5E/x4RngyPdh52QVopqcpia+uWsuGpjajPN3ATipkr1u3jnXr1u1wQoN9xYYNG1KPuwoRN5qNjBJpA0mf9cI0Ta666ioqKiq45JJLUtunTJmSUcvs66+/zgiJGC4kDEk0Dt5tFLqTIQN7TRBcWucK4km8ulO7Nmp23S79+JaNrE90Kp4mvDqyIZH68WuaQEpVC7s3icQgEneEpNojLQmDQMQBnGsBw0aGDDwuVQt7W+gurMm0wLJAH+D7htAFwpbIRFvus98LNU0D2CmFQqFQKHLEDFpY4dznw+2xohbx2gSx6hhAhge7wF2YUaIrSWaprrVs2tJRQTxJ0kMbCARoaGjY5n4OJZIh4kKIVDpWaWkpuu7YKLW1tUhLYgZMtO5son6iz6Zrv/nNb4jH41x77bUZ4cVHHnkk//jHP6isrKS+vp4nn3xyWNZhjMQgZoB3Gxz00rKx1waRIQNKuz+AcGkISzrlunIlZCIjJuR1EuTg05FhE2KZx1Q1kHuPYASinRjYmDY9Kpbe12gC2RjH43ZqYauFlp5hJ6RT86oTTBtse+ANbGhdBzDaDOw8L47QWVwtqigUCoVi8GIbNnbMcuolG9smkmkGTLAlkQ1R7ISd4cEu0AsySnQlmT6pzcBeW72Oqtq28O/p06dntFV52B1JhohPmDABn8+pA6tpGhUVFYCTg21Fne9V8w6CiRJ9FCJeVVXFCy+8gNfr5eCDD05tv/vuu9l///1ZvXo1P/zhD7Ftm2OOOYbvfve7fdGNQU007hginm34BuzNYeTWCKLcl3P9cCmlYzDniAwaYNqITsoG4dMRgQQybCL8zocQJCfZg8jw2wFIGJKaRijKd/6S32koClJ2UrLNYtB4sAFEgRu7IY57okXA1IklOlkYUGTFipqILu4JpgWWDYMiGlqQ4cHO80FTEAJh9Z0rFApFT1m1ycalC6aNGzz39KGKHbOxDCfpzo7bnZbG7AwpJWbQxFPmwWgyiNfGMz3YroKsJaLGVowlz5dHJBZhQ9UaAkEn7Gv8+PHk5+dntG2vJJ4eCj0caWxsTC1ipJ8bcMLEq6urqa2txYyY2HEbT9lgmCj1kYE9ZswYPvnkk05fP+usszjrrLP64q13GKIJOtaXzgHZHMdeF0QUuDs3frMg3Bq05O5elg1xyBLmkjqeJrAlEDbBKd+namFvI1UN8M7nEpcGxQUwrkJSViRoCMhODSph2cjB5MH264iaBK5ggoTmJ64iGXqEGbYIm4Laasmk0R2/V7N1bUwMhsUrXYO0WtguXWDZkmAERqlSuwqFQpEzkZhk2XoYPUIqA7sfsOI2MmEjRWtqVkH3+6RjJyRW1Ebz69iGTWRzLMODXegpyGq0a5rGtAnT+HL1l1TVr0+lV7YPD4dMD/b69evZb7/9etbJIUa62Fsy/zpJUujMMAwaqxsxDYlhg2cQRIkPDjN/GBKO9kTarA1rTRBMiSjsYfK21wnplmb3ITEyYWE3JxB5XV+hwq0hm9osKbfL8WIpekZTUGKajnEdjMCnq+C1TySrt0C+r7O9RM7RC/2B0ARS1xANMaRUqQI9xY5YBGKCzbWShNEx1NrcDkGW3kboAhnLjIbRNOc6VigUCkXubKx2ItgC2YvpKHoZO24jLYk0pWNg93T/mIWdsNG8AneJm1hVjObG5tTr+Z7sHmxoy8NOFy5rHx4OqhZ2e3IxsAGqK6upbpSs3To45iL9Ugdb0ZGWsGOQ5kryBykb4ojy7KrrXeLXoS6OrIkhxnW9v2xMICImjPR3e0y7JYGWsBEeDbfLMaxMU+IaROHLgxkpJVvrnTDbPJ8gr9Wgtm1Hld3fSYq9FNu2QNOXiAIXdkMckW8SS2yjet8wxDZt7LhNIAHBqLNIVV6S2SaHdbH+w61BzEJaMlVSLN8Htc3O9TyYFn4UCoVisBKNS1ZtduaCkZhTjtGt5k59ih23UoKidqLnN1Yr6uRua24N4RXE6xI01Tvh3n6/HzduRJYcbMjMw04yZWr3HuzhTrqBnS1EPMnWDVW4oiPRYv3WtS5RHuwBQEpJc6hnAmeyMQ6AGOHJWie3O4RLcwzi9cEuc7Fl1MReFwSP3v37eHVH5CzsKFp53JAwlfeyJ4Sizsp1fru1DE0T5Pu6KHk2OBboMvE714MrlCAcG4wdHJzYcRsjbhOMa0Tj0BLueO4MUw4eaQOXQJoyQ+jM73Wu5bBKEVEoFIqc2FwLDS0wugziCUebR9G3WDHLuZcmQ8R7iB2zwHai9gBcBTotzU4OdnFRccbCc3t2mrBTh20TJ3Q0uouKiigvd3IvlQebjMpTXXmwt2yoIWxpxBMMivJmysAeAJIDaU9KdMkWx4gVvu0IOih2IwMG9sZQ1otPSum81pzIWZ0cWzpq4jirsIapFKR7QnPQWbnO66k41GDKv25FCAEuDU9zjJbQwA9uOwrSkEQikrgtKPBDfbNTWzqdeKJLSYT+xaU5LvV2BnYk5qQ4KBTDhcCyANHKQeIuUexQxBOSVZskBX4nUk05J/oHM2Q5lXU0gdWTyjqtWDE7Y7HbXeKmJdRqYBcUA3QaxZXNgz2ufFqWlm1e7MrKSuLx4b3ykq6k3t6DnW5gb66uISo1TGtwpNUNlinbsCKacBTEczWwpSUd0bHtRAiBGOHF3hxB1nc8nqyNITeFESO8qdW5btE1ZLNjUbt1R4xJGdi50xxqqyPeE7YliqE/EAUuPKE4oXpzUKwg7gjYcZtoWGJI4eThZ/EEx43BUaILAF04BnZaeJ2uCWzb6btCMVxINJlYkUEwk1PscGyuhdomKC8GXRdYtvJg9wdWyERzC4RbYAR7XgvbCBgZda6lJglFQwAUFRZ1ue+0CZnGoa65GJE/LnvbVkNSSsmWLVt63M+hRNKDPWrUKAoKMlXpMnKwa+tIoGHaysAetkRizoTZk6sHO2Qgw71jtQqf7oTGrAtmlNqRURN7bRB0zWmT6/G8GjKQQNpO7qVErcLmipSSqoZt8F6DY+QMRnw6esIi0ZBQSuI5Yhs20ZhTB9vrFiSMjp7guDFISnThhMYJKZDtaoi6XdDQohZVFMMHK2IiLXXNK3qGYUpWbZbk+RzjOokysPsWaUmsiIXm0dDcGla4544As8VE87R9Z8FIMPW40FfY5b4+j5+K0vGp5yNLJmEEsrdNz8NO1oAejoRCIaqrq4GO4eGQmYNd3VCPv0DDssBQBvbwJDmI5lzDOmhkeIu2FzHCi2yIY292JL97GhqegVdHxi2It13NyrDKjUgMmkMd86+7QtqtN4NB487MRAiBK0/HrI621kRXdIcdtwlEJJ7W7A+XDg2BtnNnWRLLAn0QlJ1IIgUZIeLgCPXVNTsCfQrFUMc2nXI/2yKUpBjebKmFmkaoKGnbpmko7ZI+xopZ2IZEtHqw7YREZqna0Rl2wsaKWmjetvlXINRmIRf5irqsqx0zYOzINiNxbPk0gltjWY389FDozZs359zHoUZX4eGQ6cFuCNRT6HcC7MyeByf0OoNzlj7EicQkPRHalQ1xR7m3lxC6QBS5HaO6JbFtoeFJPBrEbWjNZdHVTSJnmkNOKHBep6W4spD0lgxWDzbgKnIhGw3C9YNghNsBiEVsIjGBr3VtK88HTQFS5bpMGyy7LQf7y68/5Nd3ns4bb7wxQD12kLHMJeI8r3M9h1SYuGIYIA2JbW6bUJJi+GK2eq+9HnCl3ce9bkeTRdF32HFnQSzpwbZ7WKrLSpbo8rTNx5P519B1iS6AWBxGVbTlYY8dPY1Io4Ud7diHdGNyOHuwuxI4g0wDuzlcj88LSOXBHrY0BXMPD5fx3GpS9xRR4IaEhbUuuE2h4anjaAKkRLYa2G6XEjrKlZYw2Dj5qzmTrNc0CEXOkuh+F8QtIjUqlCEXAg0mCUvgSRrYXgjH2+qimiZYVluI+O2PXsIHS1/mwgsvpLahckD6LFwCopkLKD6Ps0Kvfv+K4YBtSKSlPNiKnlFZD1UNMLIkc7vH5SxOqgigvsOO2UhTYkgwAZmwsXpgYNtRGzshM7zU6R7sApGfYXy3J2bAuFG7pJ5PGrcz8ZBFvKVjCmh6iPhw9mCnG9jp5ySJz+ejqMjJfQ9EGhCtCnTKgz0MkVLSEu6BwFnQcGpSb496eCeIMh9URbctNDzjQAIZcowpd+tNQglcdU9Vvey0znWnmK3ndZDXypRenfDGaFtIu6JTQk0WliZwt3ozNE0gbQi0lusyLceDrWtQ07CFLTVO2Y54PM5jz90yMJ12ach24k6aJpDSqeOtUAx1pOVM1pWBrcgV25Z8vVni1ulQ79rrdrQ2lIZN32EnbJCwpQ7W1Qqk1XMPNjKzDFe6B3vE2DJcRZ3P1WNxyX57Hce+e3ybBXseyUH7HotpQrixozU4duxYvF5HoGfTpk0593Go8eGHH6YeZwsRBxhZ4XixA5GG1DblwR6GROPOAJqzgd2cQArR89DtHBBuDUZ4ESN923V84XWUxKWUeFpvEgmlJN4l0bikMdiz/Gtgh/BgA9j5LiK1CYwmdSF0hZSSYKOFbDfZ8nuhrskp15UysHX4YtUHGe1effdpNlSu7M8uO7gEGDbSzJyceD1Q1aAWVRRDH2lIpEUHsT+FojNCUacM44gsYtMejzN3UkJnfUeyxFYoAvUtTmRYTxbIrCyh3MFwmwe7tLSky7l0MAqFefnccPETXHfRn8n3+zElhOs6zpM0TWPKlCmAY2APR6fV0qVLee655wAoKytj9913z9qutLQCgHCshYQRRxNOGbyBRhnY/Uw07gyi3hw8l9KWyPr4NoVu54rw6RklB7YJr+7kYyZsPC4wDFWqqztaQs7NtqAn+deQMmj6YsGlN3H7daJBi1idmi10hW3YNDfbeH2Zv8E8n3N9hKNtayoCwecr38/cX9o8/I8b+qu7bbg0x7Bol4dd4IeGgLNSr1AMZWxDIk3b+a8idRQ5EI46YcK+LPM/t+5EKykPdt9hhk3QIByDaKw1JL8HHmwzaHYokZruwS7M77xMly0loYgT5ZnEpYPp0glXJ7KOIUmPbTwep6qqKud+DhV+/etfpx5feOGFuLXsnsmSoorU45ZgA7o+OH5HysDuZ6JxMExnMO2WkOmU5/IPIvngbHg0R+U8auF2OaEZysDumuYQ2HZmiY7OkDELuz6GtT6IvWXHSHB16RDVdKKbo6qMTReEgzbRiI3X1z5cUBBvzWe20mzYz1c5Brbb5WH06NEAfPjZK3z59Yf0K14NYhZ2Zeb1WOBzJi/Nof7tjkLR30jTRlrS+TPVGKfoHid9zkmnaY8QToqN8mD3HVbQxBQaCRMicYgYrUZ3jphBs0OOdSDUpkxXXFDc6b6JBCRMUtVCwFk0lx6deNDCDHWMaZ48eXLq8XDLw37//ff5z3/+A8D4MeP5wQ9+QKIxu2GR5ytPPW4O1uFSBvbwJNKDEl0yaEDcRngHt4EtXBrClMioiUsXziqsukl0SU2T7DJNQIYM7E1hzE8bMD+uw/6kHntlCwR2jJULtwsMr5tovYGxg/R5IAg0SxIxidffcTxw6dAYkBit9/+ahi1U1W0AYNZO87j00ktTbf/0t+v6NYRMCIEo8WBvCSOb2n7sui6wLGVgK4Y+djJE3FYGtiI3ApHuK8hEVBWWPkHaEjNspQxsvwcaIwIzmJuBbRs2VqSjgZ3uwS4q6NyDHTOc6M4OAscejXjIwgp17EdZWVnqcVNTU079HApIKfnlL3+Zev6zH/0Mr9dLor6jYWGaEq877Ty11KFrzmLGQAsGKgO7nwlHcy/RJRtjbbV5BjlSOAZ2EuXB7px4QlLfDAV5mdulaWPXxrC+bMJcXI/1VRM0JZxc+ZF+tDF5iBHeDsd7f6Ob19d6GEwpOi4dTE0jHrYxmgeBnOMgJdjiCCVlq53p90FjACKt4dbp+de777yA4447jsnjdgZgxdpPeO/T//RPp1sReS4wJdaGUEaUgs8DNY2D6GJUKPoAaUqEcDzYtjKwFTnQ0OLoa3SGx9VWPULRu9hxG9uwSeAsAhflQ8gQhFusnBan7ZiNlZBZPNhtOdhdebDjiaRYaaYBoLsEsQRZDf2SkpLU4+bm5m77OFR4/fXXefvttwGYPn06Jyw8EYDY1hh2O92X5hDkaW0GdnOwHl13Iv8GWuhsx7DehhDNodwEzmTCwm5MIPIHt/c6iXDryNZSA4LBEZ4xWGkJO2G0+a3519KysTYEsRbXY3/agL01gvDraGPzEGVeRJ6r05zrdza4ueaNAn73Tj5vrOv6wrJtm/eW/Ifla/7X2x+pA27dGdxMRNZVR4VDU7OFpmWPaMn3OhEv4aijIJ6ef737zgvQdZ1zT2zLUXr47zdgmm0rW6Zp8Onyd/jnaw/w+od/5bMV77K5ajWRaO8VWxUjvFATQ9a0Fb/O9zsCMoNBZESh6CvsmOXol1gSVA62ohviCUkwQpeVQ7weZ36g6H3suI00bBLSMXt8XohbGoEWp/RWd1gxCxm30bztDew0D3YXOdjRTubEbh2itiDe0LFBaWlp6vFw8WBLKbnqqqtSz6+77jpE6xTSCJgY7cLEG5slBa4RqedNAceDbVkDX6qr92s/KTrFtp0SXdkELtojAwYiakJFT2WmBwiP5uSMmza6LghFJTC4hbgGiuaQY3wmy3TIxgRyZQB8OlR40fTc1r0sGx5e0nZ9vLHOwyHTOg8d+OPTv+LZ1/+Errv4w69fZ9rEOdv3QbrAKdkksbwu4jVxbMPO6qUdzti2pL7OxtPJGlrqHFqOgnhb/rWXWdPmAgbzd/8Wu86Yz5dff8SWmrU8+/qfKB8xlg+WvsTiL14nHA1kPbbfm8+Bex/DZWf+Hk3b9u9FuDWkR8PeEEKM8CJ8OgV+qKxzrvNRI7o/hkKxI2LFLDSPhrRQHmxFt4RjTn51RUnnbTwuJ70uYUhcO4ZvZYfBijmGdKx1WioQ4BY0N1nYcQvd2/V90I7ZSFt2EDkLpKmIFxV2bmCHIpJsUzu3CxKaTqwugW3aaGlRq+ke7JaWlo47D0Gee+45PvnkEwB22203jj/mBOperwOcqKF4fRzvyLYwkNpqk1J/20JEc8DJwbZs5cEeViQVxDvkYGRBBhJIRIcf86DFqyHjFkQtPK21sBXZqWuSmSJ3cQuJRJR4EDka1wCvrPFQGWg70KdVbqKd2Ncvvfskz77+JwAsy+SFtxZtQ897juXRMUMWRosKE29PKAqxsN3lgpvX40zMGpvb8q93mTYXj8cJfxBCcN7x16TaP/DXa/jN/efx5sf/7NS4BojGw7z83pP876v/bv8HKfEgmxLYWxzXS1KHQXliFEMZOyYRHk3lYCtyIhxtFbnqYv6XLHOqhM56HzvuWFvhuEgJjeXlaTQ32yTC3VtiVjR7m2QOtqZpGGY+ZhZRVykloWj2796tg6E7VVesdkJnw82DbVlWhnL4b37zGzAkdmspRD1PJ7YllkpJSxiS2hqLkQXpHux6NM0xsAfag60M7H4kEnfyMLoLEZe2RNbFEd2sqA0q3BrCsJFRC4+7tfyBCpvrgGFKapqcckZJZMSip97+hAmPL82MbjAswadbO15cy9f8j7sf/2nGtjc+/gfReN9bQAkpkKbEaFZJ+e0JRiAesnB5Ov/u871Ou5Xr0vKvZy7IaDNrp73Zf+7RHff1F7Fw/ve5/Mw7+fHJN3Lit/8fh8w/nl2mzUu1+XcvLLQITSBK3Nibw8gWJ8zN41Z52IqhjRW30JJRSJaqha3omqTToSuBW2Vg9x1JD3Qk2lYqy58viEahKYd7lRk2s6bqJVXEi/KL+HozbKnteCzDdNImPVlihl0uMIUgEbE75GEPtxzsp556imXLlgEwf/58jjrqKOyYUwoRwF3oJtFkkGhy5pNNQQg324wqSlcRr3eiExh4D7YKEe9HonGnzmEqNNi0kVVRRL4Litxt9ajDJjJkIApycHUPEoQQ2ABRE3eBl1irt74rQY/hSEvI8UiOaluYRAYNR8isBzy/wktdxNmnPM+mvvXxh5vdLJjUZszWN1Vx7X1nYJiO4VOYX0Iw3EwkGuTdT17gsAUnb+cn6hy3C8JxED6NeF2cgp3y++y9dkQCYRBRq8vQea9HUFwgWbkuM/+6PT8++Uaq6zYSjYXYe9dD2W/PI9htxr64XB3HEMsyOe1ne1HXtJWPP3+NmoYtjCobv12fReS7kYEI9sYQ2pxSCvxQ1+ysMHvcO0gUjkKRI9KSSMNORZgpD7aiPbZhYydsXPnONLsp2H3Yt96aFqQ0bHofM2ph2ALDanNyuXWBZUNTo013d0CzpaOCOLTlYBfkFxGOwsYaGDlCkudtu+/FWkt05WfJ+NQ1gSUdY9AIGPhpazScPNhSSq6//vrU85tuusmxK+I2SQVfzas5efQNcbzlHqfcbdSiqKAEXXdhWSbNgbrUMUwVIj586LAqGTSwVrZg/q8ea3E91tcB7PoYsjmxQ5Tn6oBLQwYNPC61CtsZLWFIGKSMDmnZEDWdHPYcCUUFf/ncGYQFkmsXhvC5nAHoo81uks6UhBHj2nvPoLGlFoDdZu7H9Rc9njrOi+880RsfqVNcOkRj4CrQSdQlsOLKy5NObbON27KgmzSQkgKRUhB38q/ndWgzqmw891/7Jo/97n/8v1N/y16zvpnVuAbQdRdHHng6ALa0eemdx7O26ymizIusiiLrYuT7HY+NChNXDEVsw0ZaIFwCpDKwFR2JbonR8rmTpiOlpCGQu8NBzZ16HzNoYgiNhNHmwQZwu6GqpmslcWlJzJDZQeBMSpnKwS7MK8awIBSBzTWZx4olHNGtrhZYTM2ZJ6UznDzYjY2NrF69GoBvfOMbHHzwwYCTO5+O7ncR3RJD2pKqBok3YaC5dUoKHCXxpqSBLZwF/oFEGdj9SCCcKXIg4zbClIgyLxg29rog9if1WOuCO0x5rnSER0MGDNy6JGE6oa2KTGqb2q1ix21kwoYcPNifLn+H//v1Qfz4xlW0xJz2B09NsHOFxdyxjte6Oaaxql5HSsmdf76Cles/BWBU2QSu/vEjzJk+n0ljZwLw1eqP2Fy1ukf9t9oWE7vFrTuLCdKrYYUtTBUmnsI0JY0NEq+wu/2tp9e/3mXaXDxu33a//xEHnIamORfiS+88kaE+vq0Ij44EZF0Mj8vxFDT3nmC5QjFokIbEtloFj4QysBUdsSImRmMCO2ETiTkpgl0piCfRNQhG1PXUm0gpsUImBo7H2pW2qO33CVrqzC51g6yohZ1wNBfSiSViJAzHKM73FyIllBbCllpoCbV9h8mytaKzVEABhkvDaDGxYm1u14KCgpQI6VA3sGtqalKPZ86cmXpsRSzSaxu7il0YjQmi9QkaWyQ+w0R4NEqKRwJOiLiUEl0MfLngHc+K24FpCbfLv07YjriVS0MUe9BG+6HC5+Q0jshhJO6EAauH7NWRMQsRtxE4CwqKNqJxydZ6p/5iirgFRm4G9uPP38LardW8v+EbAOhCcsaeMQD2ndg2knywyc1z/32IV99/GgCfJ4/rLvozJUXlCCE44punpdq+9O6TOfe/MSK48IVCTni6mM0t3ffX5XJyjwypIS0bo0UZ2EmCUYiEbDy67NaDnVH/embH8PBtobx0DPvufjgADS01fPT5q71yXFHgwm6II2MWbt1ZUFIohhq2aYOZFiKu9EYU7TBaTKyohRWxCMccdXBfDh5sr1vVwu5t7LijIG6IjvMWj18QD1g0dq4J2qpAbqO100tJr4Gdn+fUwM7zCRImbKyR2K2T8XBU0kmlVcBxRoTRsKIWZprQmaZpFLd6sYeTgT1q1KjUYyNgoKWlmek+HSsmCdUYJKKtUYBujZJCJw/bskxCkRZcuvObG0iUgd1PmKYkEM5UEZRRg/a/OqFriMK0fOwe8vdlXo75SzHXvpFPbaifcx89GiLhKIl7PU4OpqKN+mbnxpluYMuYBVlKP7RHSsn6LStgws/B5ZSCOGJGgnFFTvjMN8YbCJzB/INNbv78r5tT+/70nHvYaeKuBOOC37+fR2PR+ei6c6d/9YNnUvnZXb8//P6DPNY0umiOabywsvuZgtsFCcsJj9K8OrFqFfeWJBDGuTlICa6uv/v29a97i6MPPjP1uNdU5f0uRMRCBgwK/FDT5Aj7KRRDCWlIbBOELhCaUOkvigyklJgBAytqY4Yd72h7z2lneNxO9J+VRY1asW04BrZNzBYd9GQ1tzNvrWno/DdsxyykJTNKaEFmDWy/tzAVoTqiCKoboKH15WDECUXvDJcOMVNDmrKD0FlBQQkATUPcwK6trU09ThrYyciD9jo1ul8juCGKEbLQLRs8GqVpQmdNgTp03Zl7dhX639coA7ufiCaccNn0kjwyZPVY3Korlmx1cf/iPMIJjfc2ejjn2WL+tcJLfy2uC00gJcioSZ7PqYM70DkQg4mqBudc6OmLKnE7I/ylMxpbagiZBTD2QgA0Epy2e1tMU6lfMmuks/K5qcVF0HLKFuy/11EcuPf3ALj7wzz+87WXv64Ywdh9nLzb5kBdTt7L19Z4+HBz28W7trF7fQBNOPmJcRP0fBdGk+GE+ygIhCWaaSOs7j3YbfWvPewydS62hDUNOvHtFMKZO+sgRpdPAmDJsjfZWrt++w5I6xggQDbFKPA7gn4toe0+rEIxqLANCdJZGBW6wE4oA1vRhh2zsWISO2FjhSxCEZlznRCP2xHEUkJnvYcdd5SoQwnRUcnbpZGn21TV2JidLAZb0ey/75Y0A9vrLcbVemxvq8d1Q7UklpBE49kVxJMk0+lMS2JF2wxsw5R4/SXOezU3D6ix2Neke7BHjnTCvZORB+3F5dxFbiJ1CWR9HJd0ooBLiypSrzcH6nBpjsjZQBZ4UAZ2P5GsgZ0MEZeWdMStesnAbo4Jbn4nU6U5agru+SiPS18sZGPztr1POAFvrHNz/Zv5/PyVArZ0FxosBDJskOeFSEzlYSeJJyRb6qC4nZC2DJndGlgAG7d+7XivNSf/trD5ScrzMwfbfSek3ZFHOGWb5s1ZCMDSrS7eXN9mIG92fR/KjgOcHNyuqA0J7v04L2PbukY951SEeAJc+Tpm2FRh4q3UNIFXSCRdl22pbaxsy7+eOhevx8/v38/jR88Wc/49I7erD5qmcfRBZ6Se/+ftP2/X8ZKIPBeyLo4bScJwFtoUiqGENNNmbZozEVQoklgxC5mw0Lw6iRaDhgB4c8z687qde6YysHsPO25jW5Kokc3AFvg1SaDJpqmTe5UVNrM6QpIlugA87qIM8bQRRU7U4qaa7uufJ9PpTE3DDLQZ2NUN4Gk1sC3LIhQaujfTbCHiycgD0a4SiZ6nEw/ZaGED2fq9lLQr1aXrYA5wLWxlYPcTkZjzZetJYyphIQ272/DQXJASbnsvj8ao83XuNdbgyBlt4bjLal386F9FPLbUh5nDPCAQF7yy2sOvXs/n+KdKuOntAt7Z4GHJVjdPf9m1wJLw6chmwwkPVkJnKeqaHU9euoEtpXTKseWwyLJ+6xqoaC2pZYVoWfEzmgP1GW3S87Ap+w4Ae836JoYF93yUaSADiJmPQt4ufPLVG9Q2VmZ9XynhtvfziRiZ12kwoVEX7v7adekQiraGwEtIKKEzwlFJUwDy9O6jF75YlRkebkt4e4MzU3v7Cz9f129fpYHD9/8BLt2587/87l9IGL0Qxp+vQ8SEgIFLh/qWobvqrhiepIuaKQ+2oj121PGYugpdxOoSNAdlRvRiV7hdAtNSSuK9iRWzSZhOKSxXFg+2jsSM2Z3mYRtBs0P+NWR6sP3eYjxpt2OXLpxUySaJYWYql7fHrTt9M4WGGXSi/KSUrK+SFBQOj1JdWQ3s1hrY2UqZmpqAmJkK+S8pbPNgN7U4IeKW5aQpDhTKwO4nQtF2qR8JG0yZkwdbSvii2sWWuuyT6X+t8PJRa/husc/mhzO/4ifzA9z27SDjipyry7QFj3/m5yf/KezUCx034Q8f2nz/yXxufS+fjzZ7MOzMQeXL6m5Kp3s0J684oYTO0qlpFXvS073Vho2MWzmV6FpaCbidMgQ0/gfMRr74+sOMNhOLbcYUtC7XFX+TiorZjKmYzD+Xe9nU4lw7O1eYLJzq3LmlXgC7/ANbK+DV957K+r4vrPLw6VbHAKvIszl6Zttdf11TN9cCzk0lFHVuFppPJ14dH9JhTrnQHHLOiU/vflKekX89cwFbA1rGYseLOeTCd0VpUQUHzHWiHVpCDby35N/bdTxwdCSkJbGb46k87M5C7xSKHRE7LfVJaAKZsIf9uKZow4pZIJ1c0UjAIhqwcy7RlWR7U4AUbVhRy6kzbXQM1RaaQNgSr2ZTWdfxNyxtJy86aw3scJtF7vUUdjCiSwqgOYwTqdZFkoDWml5pIrBjFrZh0xyCyjooLSlOtRvKBna2HGzndyQRWRTiYm4XnlAi5aDK9GDXoWvKgz0sqKqXfLVeZopbxW2EaeckZvbIpz4u/XcRB/10HLe8nU91sG2fdY0aD3zSVph+ZuIeLrl+Hr+440R2HRXnT98LcMpuUXThDByr6l2c/3wR/1nlyQjx/Xizi3OeLeKfK8uQoi2WpSzP5nu7xJhc4hjqlUGdpmgXXjeP5uQVRy18Xqht7vbjDXkShmRTTTv1cICY7Sy05LDIsjo8te1J/bNAW25uEiFgWv6G1icuxu78Y+ojGo9/1lYz+yfzI1y2IMK0Ea2jTt5MmLGIF9/9C7adafBtDWj86X9tnu/L9w+z66g2D3QuedgelzNRMEwnTNxoNrDCwzsPuzHghIbrMTuH/Otk/WsPu0ybx+qGzHP+37Veoj0MCggl4JkvvXy82ZkNpIud/buXxM6E34WsjZPvkQTDqh62Ymhhp2lnCF0gLemkfSkUgBmxQDiKx9GQjRE0MyvIdIMQEI6r66m3cGpgOyW69CzGmgQKXTb1LU6EWTp2SkG84zytJZjmwfYVo7U7tiYEZUVQ0n7u1wmGpmElbKyoY+xH4lBa2ubB3lo9dA3spAdbCEF5uWMs27HOnRARoaN7NMh35jHpOdhNgfqUBpChPNhDl6ag5OMVEtOE8uK0H1/CQuYQHb6lReOvrWHZthS8strLmf8s4p6P/FQFNW56uwDDcg506MQq/vfO5QAsXfEOz772AF4XnD03xt1Ht3mzY6bg9x/kc+0b+axt1LnujXx++Xoh1aHWybudgMp7OMhzG0+d2MJF86PsM75tFr+8tnPPpXBpYNmO0JnX8dbFE8P7RlHf4hgYxQWZ22XcckSuukkTsCU0uvZrfRJFNL8MZHo3k7gDr6QeJ4oO4/7FecRM5/jf2TnO9HILnwuuWRimwNM6eJV/j9q8U1m64h2kdEJqAnHBLe+17Xv0zDjzxplMG9E2WuViYLtbc4tihpM3Y0WsYZ2HLaVTqi3P2/r9d2Fg1zZWpoTHkvnXqxsyf3sRQ/DW+txL+kUN+MUrhTz4SR6/fL2Qhz7xsev0/Zg4ZjoAX3z9IS+9+yRbazdsn0cu34UMGXjjJnFDGdiKoYUVt9Bc6QY2yOG9bqhIw2xxPJ5CF8RiEhmzOhhfXeFxQ2Doptv2K1JKrLCJ2ZW5I8CHTTgGTcHMl6yYhR230bwd9w+mebDz/MUdXgfweQR5vhy+ewFxKZAJSSxksnar45QpKCxJNakewh6rpIFdVlaGqzWO34yYWb3XliVJGAJ9tA/hdeahJe1EzpIMpAe7+xhPxTYTjkoWL3fyLSePyXxNxiw61AvIwkNL/FitlriuSSxbYNqCf63w8a8VbfnQ00aYGGuvyJgUP/rsb9l3j28zbtRUZpZb3P/dAH9cnMeLXzuxSu9v8vD+pnaT8+Y3Yc2FEF3FipYJiFPOBgSzR7ZdpV/VulgwqQsjSYCMmPgroKXBycPOVeBjKFLdIJHZSnTELSd0ups83MUbI0j3OACKjE+YPGsKX3zxBRsqV9AcqM8Ijdny9Z9h9A/APYLVoSmsCDg3hWKvzVl7xVLtxhbaXHVgmKteKwAETL6Rqz6OIP/nx2638jO6wOJHezvJ9BOKbdy6xLAE65u6N7BdLidMJ5EAkeccN9Fo4B/n72bPoUkoCk0hKPBJJ3+oi8WV9z99MfV49533B+jgwQb4zyovR8zoPp4wYcG1bxSwsr5t2H/6Sz/1EY0jDjybB56+EoDbH/0JAIX5pcyYvAc7T9mLw/f/AWNHTs7pMwIIt4Y0bGRLAt3rpr5ZMnVsP5cNVCj6CDvaVgObpAfbtCHLJFwxvEiW6Ep6PKNxcLl6Nsv3uCAYBUp6v3/DDWlIrJhNxBSdS57oGlrMRuY5TrHxI9saWlEbaUpElnt1eg52vr9ou/rp1iGaEEiPpLrayQefOBIKi9o82NU1Q9ODLaVMGdjpNbDNgIXIEjmQzKfPS0u7KCksSz1uStMnUh7sIUjCkHyyUrK5DiaOyqIUHDaz/mDT+bLaxXsbHct0hN/mndsrOW2PKD5XpmfJq0vOnr2Sdz/+a8b2eCLKHY9dmjK6/W64bEGE6xaGKPJmhl4U+2yKKy+DLw+F6CoAaho28/WGzwCYPartBrGsput1GeHWkQEDj0tgWMNb6MwwnWugMEuIkIxaOZXoenVlm/E0LW8V8+fPTz1Pz8MOhptZs3EJNL0EgGm3/bzP2ztKoTfzutlnvMkP92hzLVoir4NxLZD87IAI/tbwNl2jLV0goBHrZt4gcMJ0koqoel5rHnZ/1Y4bZDQHHcFDvy4doaQuUkTe/PifqcffnPddpGwzsMvybGZNdE7qynoXa7IY3ulYNvzunXyWtObT+10SrTVt5PW1Xj4yL6KsbEbGPsFwE0uWvcmT/76dn912HJbdszuV8OrYtTEKfJLqRrCH6XeuGHrYcSuV3iF0J09ThYgPfoyASbyub9XD7KiNFZcpj2fI0vDGexa15XUrFfHeworZ2IZNxMqiIN6K0AUy5kRdVtZn1k62W/Pps1X7CITaPNhFBdtnYLt0p6yltGHTZgtdczR70j3YVUPUgx0KhYjFHAdQqga2LTHDJpq743lPGI5n2pU27fG4falFjuag48EWYmBLBSsDuw+wbclnqyWrtzgrUHo7z6WUEhnuukSXLeH+/7V5+c6cG2XMCIuz5kV5/PgWjpsVw605k+SL943wzjs3Y0vHaP7BUZcwunwi4IQRty+/s2CSwYPHBNh3QgKfS3L0zDgXz3yelnV3AeDztlmD73zyAgAlPsn41hDz1Q06ia4MK68GIRNp2GgCWoax0FlDi2NUtS/PBeSkIC4lLK1tXZmzDeaNCfONb3wj9Xp6HvbnK993bgwNmUJVsypMDtsp+936tD0M5uR9BNF1EFlBEevZdZTB3uMMDpiU4KoDw+w2OvPLntoaJm5LwYYcvNgIiLWmCbjyXRgBAzM0gHE7A0hDwDkPmiUdq7eTEPHq+k0sX/s/ACaP24Up43ehKqQRSjjXy/Qyk5MPaotle/HrzkNEpHRU5N9pVR/36pLfHRbkmoPDeHSnP5/X+Cna73N+fsE/Of27P2Wf3Q6lpLAtMqK6fhNfr/+sZx8234UMJPAZJtGEUsVVDA2k5dQ3ToWIa0kP9vC9z+0oxKtjhNb2bb6KE1JsoXk1EoYkamt4E2Zmabdu8Lid1CrF9mPHLcyYTdTSOlfydmkQsyjwypQIaRIzYnVqKbWkGdjF22lge1or77SEoa7Gorw14jzdwK6paxqSgqGdKoh3kvueMJ3pU/uo0GQ0Z1NriLhLh+gALlQpA3sbCUYkqzZJPlpms/Rrm+UbJKs3S9ZvlXy5TvLVehhbDp4sqy8kbKdEVxfG1Vvr3axqDeWcXGLx7bSyW6V+yQXfiPLXk1t4/PgAu5eu4fUPHe91QV4xJx/5Ey49445U+z/97VrqGrdmHL8sT3LDoWGeP62ZS/aL8Pp7D6Zeu/AHv0ETTt/eW/JCajUv6cU2bMGqrjxmXt1Rx45Z+D1QOzSjWnKipkli2U7pjXSkJaGbRRaArxt0glbrwN38BjMnTmbevHmp7yc9D/vT5W87D5peRsO5mWtCctG+ETpL/9IE3PidMeQt2wuWzCH64Sx+td8afntYiGsWhjl4aseV92mlPcvD9uit4W6A5tewYzZmy/CbPSTzr/N9OHHzFp2GiL/58bOpxwu/4dQrT/dSTy+3+O6+4VQ0y+tdiJ0tWurj36ucWCpdSK5ZGGL2KIsFkwxuPTxIYWs0y/pmD4vWH83hh1zJTZc8zd/uXMH/O/V3qeMs/vL1Hn1e4dMhbuOJGsQTEFEGtmIIYBs20iIVIu4Y2CgDe4CwDZt4fW6z6E2VFsuXG32q+J4eUhxLQELX8UgbYp1HAMmw6ThdWvG4HC+dYvux4zaJuMSQonMD2y2QpsSv20TjjlMEwDZtEvWJrEYeZOZgFxVupwfbBaYFdRGBETBTedvpBnZzc3OG8T9USDewR44cCTg6F7IzA7uT38bIEeMBiESD1DdVoWsDq8avDOweYNuS6gbJ4uU2L30kee8Lydeb4bM18PEyybtfSN5cKvlkJZQV0bmwQcKGLgzshAkPL2nzXv9onwh6lqaFXsmoApunX7wLy3IG52MP/T/y/YXMnX0Qh+9/CuBcbHc9fkXWm4omHDGljz9/FYCK0rEctuBkdpvpiGpV1q5n/ZblABl52F2GibsEwnCEPfw+Z0UuNgwVMU1TsrEaCjuWoHbyrw272xJd725Ikx5t+CeTxs6gsLCQ6ZN3B0jlYYMjbAegE+EHuwbI99j837wo08u6Du0tyCviOwedBYBhJvjnaw902X5qmtDZuhyFziJRsKVMhVlZ0eGnCBQIO7XQC/JAGq1VBLL9sMkMDz9on2MBMmpezyg3KcqTHNxaci1iiFR97CRSOmrhT37eNpb87IAw+4xv+x3PHmVx15FBRhU430dNSOf+xa2q80Kw/15Hpdr21MAGwK2hN8ZVXVfFkEEaEtuSbQa2LkAqD/ZAEa9NEFgWyMlojoVsqqolNQ19912lhxRH42AJgcuSTkpYZ/usC2JvalM10zSBupp6Bztuk2gt0dWlB9u00UwJsi3SLLIhSrQyhqcse4RYMgfb4/aTt51CQ67WWtiBuKBAmqnrOT0HO9jSRGAIplx2VQNbZHFSxjsJ+545Zc/U41Xrl+LSHWPcHqASisrAzpENVZLX/id59X+SZeudHJmpY2HiKMGUMYIpYwVTW/+mjRMUF3SeWyvjFsKwO/VePbvCS02rove8cQZ7j+vc21fXuJVXWmsY+735HHvo/6VeO/+k6xlR7KwGffT5qxmT9nReeufxVHj5kQeejq67OGDud1Kvv7vECRPPMLC7UhIXAikkxC3yvM7EOjgEV92SbK6R/G+FTW2TzLjJNwQcFfX26uEAxK1uS3RJCe+25uAjLfIib1La+n3uvsuCVLsvvv6QusatbK5eA8DOU+Zy1jzJv05t4fg5uVk1x33r/3C7nPd64a1FhCKBTtumG9hrcwgRd7sdga1E2kqiFc89XG6o0BxywpXyvDg10DsZIjZWrmLdlmUA7Dx1bkpcLF1BfHq581s8eue27/c/q9oUP0IJuOGtfB78pG1158JvRDhkWsel34klNncfFWSE3/lO3tvkYWOzc12Wl45h6vjZAHy94bNU6FWuiHwXdlMcETOVga0YEkhLgml30FBROdgDgzRs7LhE5pBrGQ1aBAI2X6+3+syLbYbbQoqjCUAIZ6zvxIMtoyZ2YxzZmEBaw+++2NdYMQvDcNIus5XoApxULVOCYZPng631EG9OEFwexF3oQutknpbMwc7zF3UUse0hybJSIUMj39XqhCPTgx0JN9MSGnrjTFYDO253mvseiYGeZeqZbmCvXP8puu5EBQyUkrgysHOgukHy4VeS+hYYVQpTxjoGdLYvPicSNlJk3785JlIeJ03IlHpzZ/z15XsxTMdy+d4h51JU0LbaVZhfwsWn3Zp6ft9frqKyZl3G/qZp8OLbjzvvp+kcccBpACzY68hUm3eXODm9E4rtVDjpsloXXd+fBDJi4XYJDHPwCJ31xU11TaXkfyvh1cWSdz6TbKmVWJaktkliWuDJspAi4zbCpssyTRuaNSoDraNIy7tMGVmWumb22Hm/VLvPV72f8l4D7DXrgB5/hrKS0Ry634mAE/HQVT3kIq+kIs+5DtY1dncdOOqYhuGU6gLQ3BpWePiFiNe3SIRovWEYzkp5Nt5IWwhLhoenC5yV+GzK85ydZ1ZYqZrmK+pcrGvUWVmnc/6/ilI51wBn7hnl2FmdW7hleZIT5rSpzD/1RVuFgn12O7S1D5JPvnqzJx8ZfDoiZqGHDYKRoTcxUAw/bMPGNtuN3VIZ2AOFnbCxYxa20b1xGg9Z+HTJxkpJTWPf9MdoaVMQD0akI8SkgQxmj2uVzQlE2ERGTEjTJnHlIG+i6B4zaGJ0Y+oITSBwFmsK86AlKKn9LITRYuIe0XkB86QHO8+3feHhSXQNvHkawpSOA4ZMAzsWaR6SKZe1tbWpx0kD24rZnRZaisSdeWV7dp6yV+rxqvVL0TWwrNRaRb+jDOxuiMYlS1dLDBvGVQi8nu0vNeOU6Mp+M160xEXEcN7j8OkJppR2fmU0ttSkBMx8njyOP+zHHdrsP/covjnvuwC0hBr4fzcexpJlb6de/+jzV2locVaP9tvj25SXOvXEykvHMHunfQDYULmSTVWr0USbFzsQ19gS6PzyER4NGXAMf01jUKy6BSOSdz6XvaoqGAhLapocMbuyYthYA68vkbz+iWRTbWu+bTbi3ddBfzc95Lfhn6laxQBzZszPyMNO5V8De806cJs+y0nf/n8pA/6fr91PwujcIJvaatRFDEFNqOthxKULLBuSQqrCJbAiw2ul3rYlVQ1Q0BqtLRPZFeSllLzx8T8A0ITGgXt/D4DasCAQTwqcWaldhYAj00p03fJuHpe82FbTvsBjc93CEKftEaM7jp4ZTy2gvbHOQ1XQeb99dj0k1abHediaQOoCXyhOs6rrqhgCSEOClJkGtgBbhYgPCFbCxo7b3YboSymJRSR+3RGpW7VJ9nplA2lLrJBTA9uWkkDYESwTHqeySrYFflkfR7oEmDYylJmHrdh+zKBF1Bad6tAkkQCGjd8L8aoYDSsj+EZ7O3WkWZZFKOLc1Dqrgd1TRpYKSkudcHVao/w8Hi8+nzORjIabaQ5BPDG0xppsOdhm0MzqgLIsSTzh5Ky3p7x0TCpqd9X6pWjCxrLBUh7swYeUki/XOsJE48q7b58zEYtsSdXBmEyJEWGFCCz7f7y1+DnC0WCHtlJK/vrSvSQMZ+J89EFnZNRDTufi025h0tiZznuEm7ny9yfy7Gt/QkrJC2meyqMPOjNjvwPmHp16/O4nHcPEv+oqD9ujQdRCms6ANRjK9zUHoTHg5ML2FvUtTmmFfD/4vYKJowRjy6E+4IQZlXaysCmDJt2N+O9uTFs5rX829R0C5Psz87A//uI1wFlo2Xnq3G36LONH78SC1pzbxpbalHBeNqaN6JnQmaRNbEK4BFbMGlalulrCzl/SwCZmZVUQX7V+KVV1GwCn9nVZyWigXXh4Webd4pBp8ZTY2ZpGF6btHHeXCpMHvhfsumZ9Gn43HNfq5bal4JkvnZv6rGl7k+cvBOCTr97sebkuvwtPME4wYGMpL59iBye7IS1UDvYAYbeKitndLJxbcRsjLtGRVBRINtZAdS97se2YjRV3hJniCWdR2esGPJrjWGmXGiWjJnZDHJHvduqpN7ctlnpab/+Guq62Gdu0seMWYVPg7twRnUK2pu65t4QIJQS6v/O5TTDSNi/Pb70/9gZCc0LFZaLtPltU5EwkI+EmwrHBExHaW2QLETeDZqcK4oaV3YMthGBmqxc7HA1QXb8eyx44RX5lYHfBphpYuQlGjegid2MbkOHs5Zn+t7EZROsoUPsk73/0CDfefy7fv3gGP7vlBC688EIuvuFITv3pnhz5o3H8/dU/AuB2eTnh2xd2+n4lReXc/cuXmb/7YQDYtsV9T13FDX88hyXLnJDPMRWTO3g+s+VhzxnZ9qPvKg8bj+YMEDEnDzsYdqIBBpJQFBqD9KoK45ZaiVvPzBPxuATjygXTx4us4eHQeg10IXC2pUVjfVPr+Q18CImtTByTWad495ltedjBcDMAu87YN5VLvS2cfMTFqcd/feneTo2pDKGzHPKwdQGRWGuJKrfmCAUNYH3C/qY56NQ19Xlaa+aGzKxjQNJ7DW3h4dAWHg50EK0r8MBBUzKlMk/aNcbvjwwyqqBnkQLf2yWOv9VYf2W1h4aIwOVyM2/2wYBTG3vVuk97dEw8Gm7bJh62lZK4YodHGnaWADSJ3YMyTIrew4pY2JZEJro+//GojWXY6FLi0yRSwtebe9eLbUUt7JiN5tWIxh2BJY8bp3RpwoZo5kxfNicQURP8OsLnQjbFU+W8/K2+lvAQ1q/pa+y4jRGziXdVoiuJLiBqYW8O448kaHZ7uhTHSq+BXZDXOx7sDNKu5+Ji5/ihYDOmxZATOmvvwZaWxIp0YmBnqYGdTqbQmTNXMQZIU1cZ2J0QCDuh4W4XFPh70bg2WkM/sijjfVGZ5mkKfJx6aFoGS5a9xUsvvcSyNf+jpmFzKu8aHGGypKerM/L9hVx30eP84KhLUtve+eT51OOjD/ohmpZ5OYwqn8CMyXsAsGbTl2yt3cCMchOX5gw6XRrYbg2RsJExizyfkzMx0KtuTUFJKEKv5YKGo5LqRijJJmLWBbL1vHQlcNbeew1keLABdt95Ae3Za9Y3e9aZduw8da/UcbfUrOWDpS9lbddTD7bb3SZ0J1yidWV5+ExI65oluta6EBMxkREDfJnnzbIt3l78HAAu3c3+aREkq+vbfmszyjveLU7eNUaJz6Yiz+ambwU5b17UEUZ9t4bEPSuw13eMgslGkVfy3VbhNMMW/H2Z48XeezvCxHFruKRNImwpoTPFDo9tyA65gUIXw2o8G0xYURNMu9sQ/URMYidAR4IpGTXCcaJUNfRiX2IW0pJobo2moMSWjniV0DWwWu/7acj6GFIXjtfSrztK4636JMkQ8aFmTPUn0pDEY06JLk830xThEsiggb0xhK/cTTguulzcSOZfg1OJpVfRhZOT30rSgx2LhrEsg+bg0HJOJHOwi4uL8fl8Ti35ThTEO6uBnSQzD/szwBE6GwiUgZ0Fy5J8vkbS0AKjR/TyweMW0rCcsgDtWN3YZlQdt+9cbr78H3zvkHOpGDEuo11RwQimjJ/F3nMO4YTDL+Dc7/8qp7fWNZ1zvv8rrvq/B/C425KDXbqbwxecknWfdC/2e5/+G6+rzYO2uUWnJZb9IheitcxEzMKlC0xrYA1s23ZE6jQN6pp755h1zY43PBX2myvxVtWFLjzY723MzL/2efI6XAdzprflYSfZczsNbICT0rzYz7x4d9a8sbGFNl7d2Z5rqa5YHEzLqQ8qDeksNg0DLEtS1ZiWfx02ETHb8Wqk8eWqD1J6CHvvegiF+SVOe+nUQwco9NqMzO943sYX2zxzUgtPnNCSKsNlbwph/WszcmMY87nNOff3+7NjuFu/2xdWemmJCfaeszD1+uIvep6HrSOQMVsZ2IodHjthd9BPUAb2wGAbthMNZdLt/SQedcRHNbeT7+zzCBCwcmPvebGtqNOHQNgJQc8o0SmckPAkTnh4AlHgzPuEW8vIw05GxQXCQ8uY6k/shE08Kkl0VQM7iUtzjFpT4ilxkTC7jnZM92AX5veuB1u4NGSkY4g4AEYzNU19I9g7UCQ92OkK4nYPa2AnSToFwVESR4AxQNGSysDOwppK529cRXaJ+O3CsJ1yAFm8l1vCZc4DM8issYXMnX0gF536O/5y62c8dvNHvPPOO7z04Gb+effXPHj9O/z2smf40UnX4/f1zIW6cP73+f0vXkgJmh3xzdM6zd8+YF6bF+2dT5Jh4rmV60KI1CCh69A8gEJnkZjjRR9R6JRL6o28pq31jldS62H6QHdl2mpCglVJj2XoM4itZ+KY6R0iDNLzsAGKC8pSJZW2h73nLEwdZ+X6T1m1YWmHNroGk0ud73ZrUCfSzaDncTkDY9xoXSm2HKGZ4UBzyEmRKEwa2EEDqXUcW7KphwM0RATNMee7n5EmcNYeXWuTdpBSYv7n/7P33vGWZWWZ/3ftffLNuXLsruqcm4buplGS0gYEaRBBFHWcURyRccY8wqAO/tRB0UHHBBgQRUQkB0mdoOlc3V053lA333ty2GGt3x9rn733iffcUN1V3ff5fOpT556wzz47rLXe933e55nyX1NTxZYqtvUYTClec7mOhMuO4FNH4gwPbGX/rmsBOH7uSZYzc+020QCFAsuluLLW2iY2cVHDLbsN4jvCECtSlDex8ah6kqNWbjmySrrKbUQFykuGjPXDxDxMrc59sCXcvIMCzpzXQkw9IfajiJqQCcZgnx4eZjKZBmq5Ngs5l96YfXshQtoSy1IoIVZepyVMqEjEUByBFkVrJ84brmD3dG1cDzagC3Alx3cmCAfY0k6TK/K8SVaXy2WyWZ2sqAqcybLWVai3QoTWHthV9HYPsH10LwAnzz2FkjaVzR7siwPpnOLQSUVvCp3h3GD49kx1N/tySVCQXhYs/yhbhoJqpRCCHVv2s2PHDmKxVrLUq8PBvTfy4d/9Fn/8a5/jHW/+3y3ft2NsP3t3XAXA0dOPMr90nqvHQgF2G6EzETX8RX0yBrNLz13WLV/SA9JAj/5/vX3YpYpiamH19HAAyi6K1smb+8LV6wXdk7tr24Gm7w33Yd9w5Z0NQfhaIITgh1750/7fX7zvo03fF+7DPrtCH3Y0ovtgKlbwu19IAXbFhnhMoJRCLVYQ8drjZTuWr3OQiHfx4hu+x38tLHB22VBnXCd1PIs6VUsLlydae5vX403XVjCFvlc/dThO0a5VE394tXZdpkGk4mxadT2PcejQIW699VY+8pGP+M995CMf4ZWvfCUvf/nL+cAHPvC8qLrIcqMHNqZ4QWlKXCyoVrBFxFiRQVCp6L5rI2JoFhl6TDYEHB1XlDdAI8bOOCyVDM4vaVeRGsQMVMHxva41PdyoWQuKpIlKW34fNkAm/9zr11yqkJbCdjpbx4uogbEthfDYpck4LGZpyW7IFcI92P3r3tcaRIVmZHhCZ9UebACnooXONlKs97lEM4Ezt+yu2gM7jIP7NE3cdipMzR6m/BwlIzYD7DosZHTPy1DfxgfXgKaIN7HoOhbqsST/CKND2xves9FIJrq55vLbiETayyuG1cTvf/SztUriKwid6SycJJUIgtznAvkSSKUHzYq9frr6fFpvozu14lsboMrNLZqquPdMswD7YNP3viQUiN1x491N37MWfNetP0Qi3gXA1779r5QqjaP5/oHO+7ANIVAqsOoCPfm9EDC3rAJ6WtFFFRxI1t43jz79dV+o7vYbv5ekd+whoIcDHBhaORWrpML5/FTD8/J45wH2WLfkFfu1zkPOMvjnpxLcfPWr/Ne/89RXOt4WgIgKYpa9adX1PIWUkve///1cddVV/nP3338/n/jEJ/jIRz7Cxz/+ce6//34+/elPt9nKpQFZkY0VbFMgLfm8SCBcSpCWrnSZCUMvytvAKik97RpCq0V72DII52bgSw8rTky0t/EsT5dZ+s5yU0E75SoKyzYTy4JYhEaB05ihv7fkhujhdeunah92yK6rVHn+BFPPNpQlKVZUjWlPqVLgkae/7jvwtEIy7hVjWrytpgd7A1XEAc1wDXlhhyvYxUIGpZ4/vfktA+xVemCHcXBPIHR2ZvIJve58DsbmzQC7DvNptXKvhge1XME925l4kP+ZUnN7pqPzwRVjFh6nv2dkVdu9kLj9xtf4jw+fepiBpGJbj56gji+aWK3mtdCEkoo/t0JnmUJIZIr1V7CnFxWGsUZ1+VxzFXmA+YLg8Ly+APuNaSgdA2B3iwr2tQdewrvf8RH+x0/+Kd8dohWvF6lkD9/9oh8CoFjOc+/DjQvjWqGzzm6aSkjsWra8cJ4/sB0thFfTf2019l9/9pt/6z9++Ytqz+PJNgrizSCfXEZN6RtNbEv67SjyeHZVAcCPXFvGU1Lgo08m+a1HXo15zSdh7O08fPwo7mrMJaMGUUeSz8lN25nnIT75yU9yzTXXsHfvXv+5z3/+87zhDW9gx44dDA8P89a3vpUvfKG5aOKlAiUVsuJiROoDbECqTauuZxnSUiiptO90qf3YaFue+ntE6EKHNxbGooK927RGyL1PKr78sOLUlGoYpyqzFZa/k6Zwskhl1mrYvlt2mTrvki4bDDSLt0LCr2H18DBEpNqHHWSiHbkZYK8VriUpWtSs6f/wQ7/Ar77/Hn7uva8kX2yddI5FBJYN+RZr1mw+ZNO10SripkA4gTJ+OMDOZZeJmLCUfX6MNVWBMwhZdOVdn0kQRjsP7DCu2BcInZ0afwzX1cJozzY2rexDsGzF9GLnolUqa6Mmi6htKcRKEoXVzxTcpsFVuII9FJncEKrvRmHX1gNatEwpznsevVePOpzPmdiu4OSiyVWjTSa3qKF7jSsSs1vgSkU6r23Pnm0spLVFEmhfyoWMomWKbAWUK4qpeehdS/VaKl3BbBFgh8XNesvfIO093r21eYANtQyDjcRr7voxvuDRw79w30f5njvfXPP63sEgwOpE6Mw0IV/Sx11EDJzC8z/AXkjrpNIWT15B5SyUUhghBsNTx7/Ft5/8MgDDA1u5+ZrvrtnGcY8i3hWTbO1pP0soV+J8MaheR75vB+59s8ijWcjaqNkyYktnA9yufsnL91l89bT2iynaBgy8FgZeSwF4x78v8fvfJ+iNdzDRRw1iyiaTdylVzI6TmJu4+JHJZPjYxz7Ghz/8Yd7//vf7z585c4a77w5YNQcOHOCDH/xg021YloVl1QYtkUiEWGztloMXAm5FIpXCiAmUCF33EXAdhWu50NlSoCWklDX/vxDR6TFwbQdlKoiBYzlt318pOZgxhYgLlCMRbrCIjxi6ku1KxUIa7nsStg7BjQcEw32CyqJF+tE0juWiIorCZJHYlmgNhXVm2mZmQTIwAmYE6r3chAkyqhAVW/tdxwVGs/fFBeQqCPS4G49IlnMg5cWzJny2sN57oZy3cUyIJ5ROggGPHb4XgLNTR/ndv/gpfvdd/4hpNp+QYjFFpqTYKhqPfTqf9h93d/cgzI0LeAUgIxLhOAgiNQF2IbdMd1KykAbHUavWALrYMD097T8eHh5GSomdtxEJ/DG2+n/FVbgCUjH889kMl+25GsMwkdLl1PjjSEPhoJBSbsi42ml8trnMCSGd15XN6mJ4Jaicrf9lbMTIyrOqcpX2QawLrpSCo/Pec/Y8WzdY8X+9iEXjjAxuZ25xkvNzZwC4eszhK6f0BPD0bKRpgC0MgVSaEi2ArgQ8fVox1AvD/c/eoFCuKHKlwFcyGYelrM6GmS2k/tthIaP7onaNrWFnKi7KlohE8+vl3rMBXd+e+RgA0UiMrSN71vBl68OV+25m97aDnDt/jKdPfJvx6RPs2nq5/3p3DLZ0u8zkTU4vm54lSevtxSLa01MphRERyOLzO8CWUmmfVaWz4c36r5VS/OW//C//7x//oV+t8TFfKgoWi3psuHywtcCZ/50PLcCi7sMQ+3sQB3oRs2U4qjP18ngGo8MAG+CX7izyoh0O356M8shUhFwlGLtOZgb56qkir7uqg76PqIEpJXZRK4n3dq38kU1cGvjgBz/Im9/85lqlW6BYLNLdHYhUdHV1USw2Lwd9+MMf5q/+6q9qnrvnnnt44xvfuPE7vF5c0/qlybnJDfuaiYnOlf+fr+joGNwGLjrZe+7cuZZvG71S/4Mqfa35udobKgAU0vofAFcGz+fIkBvPUAMTbvwxgJWYPWFfsFbCkzagx+wXX6YTpm1+2vMea74XtsC1PwKge5Ns2yZXWPZffvipr/OP9/4av/Vbv9X041U+TjOe6pIKzuPBOyPsPbg6NmtnWADgcKgH27TPcOMufTyeD0PEsWPH/MeGYeh72DvwFrVrC3dPnpv2dLbdK644yOHDhxmfPsbBVy0iUimmlqZgaf37HGZqtcNmgB1COq+FmBp6Z5pASYXK2rqfZtmCkQ7ExywvuKrrv5zOG+Qsb9Gde5ixoR1r2f0Liu2je5lbnCRXSJPNL3PNaJCF0EriLRbZQvjWFGMDcHYGvnNE8bIboGsD/cXboVCmZlGfjMNyTidT+tYgUja7rH1Q1xKcU3bBVtDbmAFbLAqe9kTjdvU5TE1+CYDtY/tbZlgvJIQQvOaut/L//ul/AvClb/4jP+H8GCptEX3rPkR/jH2DOsAuO4LpnMH23tbZwWgEyrb2JBQRgVvSNL0NV+q/SDC9COdmQ1Z/Jd1/LUK0wPsf+xxHTj0CaJ/zV9/+ppptnAjTw5v4X4ehKi7OV4JscOT7tiOEwDjQS/WT8lgW7trS8W+ImfCK/Rav2G/hSnj4bIbf/MdPw/ZfaNi/dhCGwECLPG4qiT9/cPToUZ555hl+5Vd+peG1VCpFPh803RcKBVKp5rSft7/97bzlLW+pee5irGDbGZv5r80TG4hjhNo8ZEViLVcYefkI0b72miYrQUrJxMQEO3fuvKiYbM8mOj0G2SNZsk/liA3GcMuS0VcMYyabj0lf/vAipdkKvWMxVMYicsswoqf1uVrOKUTR5hayyKxFYlvSn6uK5wr0Xt9L75U6qXR6SvHQV/OMzGSIbGtNbVMZS7cHpW0YSzSd+5QjUcsW0Zv72bV7nhNz20nnDF79IkFv9/NzrmyF9dwLSilOfnKOJ04ohrZHMYRgYXmm4X0f+chH6FdX8wMv/4mG1xxXsy5vOSjo7ao99tnpIFmYPrKVM3Mb24ctF8oYW5JEruytSV5OzsPZpZ2cm4XvulGwa+zSvibCzKVrrrmG7YPbmfv6ApHuCBHvXlZCkd+ao3Ksm8ePwtjgyr9578jNHOYwUko+/sETvOn2W7jsB0aJ9Dx7a+nNADuE6UVFvNMjUnF1f3FXBDVfRu3rbtozUPsZz6KrLoA/Fuq/Jvcwo/suvMDZSlCOhIKj6cx5h5dGX0YkWuER+2HOz5/hwJ4BumOSvGXwzFwEpZrrdoWVxIUQ7BpTnJ2GR44qXnKN7n+60MiXtEVUNXGSiGmxrbUE2JatGJ9dGz0ctOiGkAphNl4r95+LoTza+vXDs4x7Pa6t+q+fDbzqJW/kr//lvTiujfPQPNLU6T/3W3NEXrOD/YMuD47r955aMlcMsEsVKFuQiBpISyIthRm/tCeIZnBdxdFzCoUi4Xk5qoKDqEjoi3nvcfibT/y2/5mffsP/bEikhBXEL19B4My9fw68e824dgBjl764xVgCeqOaIn46r+mRK41VTWAa8OJ9fex3P8op9XMgIhybXwUtTgiwXEqN7YubuETx2GOPMT4+7lPB8/k8pmkyOTnJ3r17OXnyJHfeeScAx48fZ9++fU23E4vFLrpguikcwBIYpoFQIfVnQ4AtwBUbFhQbhvGCDbCrWOkYqCIY6Pe4ltvy+EupqGQlAgOFgaqAsqGdDFFS2iw9kSU9ZDF2MIVA+GzuaFeM8tkKPfu15erRCYhaCqEMlNt6PlOGico4oAwMaTSRuwWEiaooZEHPpbGoQb5ikC8L+nuff3NlJ1jLvSAtSbkkcByB8I710nLgxzY6tIO5Rc1i+JO//1W2j+7nxivvqtmGiaBcUswuQm+yVtU6mwv1YMf72p73NUGYyKyLwqhREc9l0wjDxDAUZ2dg9xZxSRcp5ueDc7J161bOTSjsJcVIf+0YC2BVBK5DR8f64N6b+Nw3/x6AE2efwL3l1md9TH1hj94hlCu696ZjVeiyC5ZE9Me0IEUHHrPKkogmi9vjYQXx3COMNqlgq2UL9SzYgLhPLFH53UNYv/oY1m8fwn7/Yey/PM73TN7Je3reyz2JNzI9dxZDwEGvopYuG6TLLS74mKEDdc/PzzQEO8e0z/ihU6qlBcJGIldUNcG/8BSt1yK4tpCBTGFtlW9AW3S1EJoK08O3G4/5j3e16b++0OjrGeKOm+5GIPgeXuk/r6Y0zW5vSEn8TCdWXY5ObhgRgXTV89Y7dmoBHn7iBL/89n3857fcyplTz+h2EgKLvi/c9w9Mzp4C4JrLX8yLr/+ehu2cqFEQb13BVgUH9+tedt4A8zW1Nn/GAS8DbkvUmfVJed927V1QPALARCbaWuSwHoYgWnHIFp4f4iybgNe//vX827/9Gx/96Ef56Ec/yl133cWP/MiP8M53vpO7776bf/3Xf2VqaoqFhQU++tGP8prXvGbljV7EULYW1WqmIq5cBe7mtf1swi1rTRthCpSjauytwrAshWvp1iRhCIRaWZAuMlNALlSo9CcbbFWj/VGsZZvKbIWlnG4561WtxUt9xA0o2IiVqmgRQ/dpEwR1mc1xc1WQlqRSkqjQvbqcDYK5V73kTdzzPT+n3ytd/tcH387kzMmG7Qz0wtnpRj/yTE63CBjCIJlY64KwDSICLIlyZU0FO+9973Cf9m9fzLTawKWBsIr46Ogox0+7zM5LbadXB3sVuqphJfHTk09gPwcdiZsBtod0HnKlVQiclV2QSvdTSoVMd1CWsVxUkzj06EIoMMk/zOhgbYDtPrxA5b1Pcfot5/xAdaOhLBf7X87i/MNpWG79W16X+GFmpnUz0I6+4IqdzLa4lKIGynJ930nQleQtQ/DUaTg2fuEnjcWMFjYLY60qjHPLCikhsgZ6uCo5yIWyVlSpw3JJ8JRHD9/R61Je+o7/2u4WFl3PFu6+68e4LXob283gupQzOsCuVRJvH2ALrzpfsbRtk7Il0n7+BdiOozhyVnHfl/6KuZlxjh95lHf8+Et48OufRnjV7FKlwN/9++/7n/mZe97dNAtdDbBTUcW2NuwA99EFnfQDjFuHMUZrW1b8AJvV2XU1w23XvRLyT+htYa7ogV6FiBnEKjbLF6JVbRPPCRKJBMPDw/6/eDxOKpWip6eHO++8k9e//vW87W1v45577uGOO+7gB3/wB5/rXV4XZIugrHrvtnp9ExcGsuQiTIGI6ARHK+vHSkkhbUnEY8wpIbQ8dxuovEu022SxyXglTIEZMyieKTK/pLAtRcRydUGhDYRpYOzuaWgTbHhfwkRlgqJNPAZzy20+sIkGSFtSKkjMEEsyHQqwB/pG+Ol73s1t12n7yXwxw2984Ed9u8wqUnGBacDJSUWhHFxfWc8HuyvV27KCrCou7qFln8W5KkQNlO1CpT7A1hdCKiEo2zA+e2mPOdUAO5lMIswuCjmX5Zxq6v1eKKsVPbCr2LP9CuIxHdCdnnwcZzPAfu6gVRo7D5xUKfBpE3ETNVdGrVCNVSWXeuVqV4ZooOWzYM83VLDdJzQt1zptoSY33udKTpewP3BECyR5ENtTGFf3Y9w2jPnyLVS26f3uNXoZOFENBIMJairb4qqPGWApf/FfRVdC0NcFj52AiQs4QLiuYjkfCJxVkUroavRqKujpnOL0eehZi3p4wcF9Jq1VnAcaqZD3n4sivezLXXssxmcC4YddzyFFHODGK+/ijT0/Wvtk2kIVHbb2SJIRfQw7URJHQNlSiIhAOq0XRJcyJubg/CJMjz/hP1cq5nn3n72Nj937QZRS/OuX/x9LGW1PcefN389Vl93qv1cpOLts8PGn4swV9DG9bNBpKyCnQkGz+dJG9T3j8o0LsK/YdzNxO7g+Tyx0mGyKCmKupJiTbb1mN3Hp4j3veQ8/8RM/4f/99re/na9+9at8/etf553vfOclTWUEr3WqzaV7oRLgm2iEdCTSkroq7V1XrSrYlZLEtRWiGmwpBW2Su1VB2mTKIFvQDMd6RIeilGcqjB+vkDK0vk4rd5BVo+qH7aEroavklefhfHmhoCxFoaiIxJtXsAd6RzANk1//z3/Jnu1awW5q9jTv/bOfxHFqA+LBPs1cPDmpcL17PFcNsJOtVYmdfz6L83ensP/i+IrxQQMihtbrsVy6u7sDi9lcOvgN3XB6GorlS/e6qAbYY2Nj5EuCSl5StgRLTZYppQ48sKswzQiX7boOgPnlceaWN0DdbJXYDLA9TC8q4qtpAcvZAdW7K6IzVCtlqQoOoq7/+lzaoOx4z+W02NHI4Laa96iFQEBMbmCArZTC/dY89gcOo2Y95aGoQeRNe4j+4pVE334Z0Xv2ELl7B9HX7fY/d+38AZRUbO8NVbAzzS8lYQhQSlf86zDo9RM9fqLRc3KjkC9BqdwYYCc9X+5Ch4JL+aLiocOKTB6GVqnyrrI27tPLqPkyYizZtP/13rPBxffSPTbnzh8HNP1ox9j+1X3hRmOyxEEag3w1U8IQsKtfn9vZvIG1AoUnampfSSF0PVs+zyjilq04ck4RjypOH3+y5jWlFB/69P/mt//8p/n4F/4UAMMw+anX/wZKwQPnovzB/Sne/PE+fvpTffzlI0Emp53AmXIk8pRH++6N6p7rOoieqPbEBtRUscZndbUwDZMrRoNZ7uEzHU5cEYOIlFSKLqUOhMc3sYmLDcpWrd0dVesAbxMbD2UppKOCNZUC2SJxZ5UV0iGoZgrNoGoJT5A23mVQsjS7sR5m3CRfUGTOlumLSB0MbZCmjIgYNca9qYReq6ylre2FikrJxbJqdX7SdQE2QFeyh99550fp7xkG4PEj9/JnH/uNmm0JBCMeJXtiTts95UvVCnZzD2yVs5FP6WqzmilpgdFVQJgCIRXKlhiGQXdPP6B9sKvo79aONlPzLTZykcNxHBYXtRr72NiYvr7zNpGEYGZJNbRTVuyVPbDDuGJfQBN/6vQTG7DHq8NmgI3O/ixmoKdTerirdEDteV+LuKl7JbKtF61KKVSx0aLrWE3/9Xfo7R4kGQ88bJQjYSlYjaqpjRth3U9P4PzrOS28BoitSaLvuhLz1uGGSkNy7zDPqGcAGJZDyMPpzirYAAJUuXnkNdSrJ418kwlsI5AvaVGteop4IqazYfkODmepooPryQXYtYVV+Q6q5QruU8uo5YoOrpswJNJlwZMz+jrY2uOyt99iYvqE/nt0D7FovOEzzybcewPlzWPOUf+xmtYnbYeXaFEIzufaDynRiF4oSG/gfL4F2OdmtHq4aZ8nk9aMkFte/Gre/ubf9N9z7yP/TrGsA+K773orO7dezp98O8m7v9bNl07EWSjWHsOdfS4/cLB1RKrOFfxqjHF5a7qacSBYCMgT66tiv+zKIOF2dL7Dcxg1iCiJXdhUEt/EpQnXls3VPEHPc5sU8WcN0pEoJ1SVFrQMmq2y7mX1+zpNAeV2AbYWpDViBijI5Juf12Ikgn2+RKJktxQvXTNCifhYRGA7kN0MsDtGqaBwHL3mqCJcwe73AmyALcO7eM/P/61vkfnpr3+If//q39RsLxoR9KTg1BRMzJZxHN1K2ZVsrh4un07XsF3kd1YfBSuh+7ABP8AOV7ANQ5BKwIlJhXMJjj1hgbOxsTGWl10ieZvufpPlXGNCyXY7r2BDbR/2M2efbPPOC4PNAJvAsqmrU3vYiqvFmUL9NiJmIOfLLQWssGRTClFNgJ1/hNHBWgVxtVSpvUk3KMBWGQv3vjn/b+P2EaK/cCXGaOuD8O2eQHjL/tp5xrolpmcAP9WqBxsvG5trHmDHo56i9wWaOAplffjqg2LT8ITOVgjsLVvx8BHFmWnYNao/txKU0mIrcr6Mc2gZVbB1cN3isw/U0MNtzs+dxrJ1BBLuv5ZzZayPnmH8Fyax/vw41p8fw/rgUaw/PYL9sTNa1X6DoZYqyEM6Y1owinyk+OFgf7wAO6wcPtku0YL2wrYcreoOIDtWyLr4Ua4oDp9TdCfh9MlgML/8ihv40Ze/k/f8+N+QCCXPErEUP/aD/4Ovn47ymaNB1TluKm7dbvOzLyryN6/L8KHXZdnR13oxGA6Ww73W9TAObhxN/KXX3wHlMwAs2mPhYktLCMPrwq9sKolv4tKELMmmSVJAV7A3KeLPGqSlhcrC56OVpkelpEAGApPCFG3nS2VrQVpMQSLmtZM1WdstuSaxioNKW63XfmuESHgWRd7gapraOmwTnaGUlzh1AVk9RTyMay6/jXf9+B/5f3/wY7/OI09/veY9PSmBq+CZ04GyWHeLCrZ7qJbZJZ/JrKkXW3mJoJ6eAQByueWaa22oTwuwzV6CPfphgbORkREWphxirkusJ4Jlw2KdTpLraP2kTnHFvpv8x8cmnmh6D19IbAbY6EFL0VnwBPgK4jWCFl0RrfpYbDFoV6T+TEOA7V0tSkL+0Yb+azVfW7lS06UNmcTl4WCAMF82RvT1u1dUwMzvcDnnaIEzMV5CTOR94aWprEnLFpOYtupqtt/VattKge5akc4pWiWVTUO/3gqOo3jsuOL4BOwa0xnMeiilkAtl3NNZ3MNpnMcXcb89j/utedwnlhC2RIw097usIkwPv2uPxf2Pfc7/++pQb67zqXHkI0sUHiwij+dQp3KoM3nUuQLy0UXc+2ZZC1TeRp7ONT0/7v1z4K1Zlq9yOeGc8F+zJtMANa0C7RItoOk9lu0JnZkCt/D8qWCfmdZOBMP9cOrYE/7z+/deh8rb3HHr9/Env/EFto3uBeDHf+hXsMxt/NGDQdD9sy8q8m8/muZ9r87zw1dX2N0vWxbMqqgJsC9r7cUp9nT7FoHyeHZdC8KBvlG6pQ6wlZHimcnFjj8rLLlJEd/EJQm37CJaLfAMgaw8f8azix3KkihX+VVpYQrcYosKdqWO2m8KXShpVxARurc7lYBCSf8Lo1RRpAuCZL+pW25WwWzrCNUKtpc0SMVhdokND+SfryjlJFLUFleWMzrAjkZiTQPjV9/xJn7k7ncCWln8t//8pxifPlHzHq3eHcy5zXqwVc5GnaxTx5MK95GFhve2g4gIKOniVHeP3l/pupRLBf89VfvZM9OX3nURDrAHh8YoLNrEhXZaSiU0G9ANrUvdVQoMbx3ZQ0+XTkycmHzyWdcweMEH2Eoppub14NXxZ7x+4pqKZMJEVCQq07w0oyxXZ0RDQZrlhIShikfAzTM2tLP2c/N1XEpboebWz6+UzwTpLuPGwY4+s21sL58qf9L/2/3mrB9cVVzBYrGVVZepq/ctqpWxCCxmNv7CV0oxn2nsv64iGYf5TPMJS0rFk6cUz5yB7SPN/bqVJZEncriPLyGPZTW7YMnSiRTh9b0Otw+uM2XB49OaxbCl2+XAkMs3H/53//W7bnmt/i5bok61l1+WT6w+halsifXHR7D/7Bj2nxypYUiokoP7kJfxjQh2v/4lXHHlzcy6elB0JnNUKsWa6upKFeyoKXClZi2IqIHbKiF1iaFQUhw5B71dOlF3MtR/vX/71YiSAwmTfTuu4kO/8yAf/f3Hed2r38HvfrOLoq2vj5fvq/D6qyrEVtFjpEoualxPtmIsgehrLSQhogZivxeAZ+x1jyP7BoNs/FefbrQ3aYqIQcRy2ia2NrGJixWy3LqCLUyBuyne96yhvlotIgK3idYLQKXo1iYqI0K3xrUqVlhSC6EBsShUnMYiQCYP5QrEh6KopcrKFl2rRXVz3j6mEpoiXh/ob6I5SlmnIemRzun1TH9PYxtkFT/5+t/gjhvvBqBQyvKbH/hRMvmgGm0IQTwaBNjNAvUwPdy4biB4/qGF1SVIooZuLSWgiENtHzbAcC9Mzl16DIdwgN03MEZl3iKW1Bd+d1JTxJfX4SoqhODgXk0TzxQWOHNufF37u1q84APsfAnShc7tuQD/gg9DCIEyBWqxRWkmlBGt4tSyiVv17cprgbMGivhC4yJYnV8fn1qVXeQJL1jriyK2dyaLvW1kD1+3vsay1De3fGqZg0awLy37sKOGnrBaTH7JOCxmazNVG4FSRU9GrQLsVFy/3qwf9PiE4tApGBuEZLxJcL1UwX1yCXkyg+iKYGxNYYwkEENxRF8M0R31KV71sBx47HyEv3k0wS9/qdunh790j83U7ElOjT8FwMG9N7J1RPe6qrN5f6Lt+75e4u+7gdj7biL2/92E2KMroGqm5NO2O4U8lgHPYk5NFbE/cBjn85MoW+I+tKCZF4BxyxCR3gS/+bN/w7Spe7ITJPjrv/4ttvd0XsGuYjGrPUndkvO8yMifnFIsZXV2G+CkV8GOJ5Js79+DUkFCLhKJMja8k799PMHR+aD3/p0vKa5Yra6HPJkLJvI29PAqNtSua9+o//hQh+KLImoQt2zShc1KzCYuLSipkJZsKlIJIEyQF6BNZxPNIW1V0w8vTIFs0VddKipqZmNDaOp1C0q5yjt+BVkgMEUj220xqzAEmFETMZqENsnNNaGayPHm/WRcC7Zu9mF3hkLawQglPaSUpHOaadXfO9zyc4Zh8Kv/6c/Yv/MaAM7PneGvP/HemvdUrHAFu5E1FqaHmy/fgvCYZWqhgjq9iogxavi6At29QaAe7sMG6E4JCmWYnLu05tS5uaBNtbt7FDIWRkqviSKmQEqYT6/vN12xN+jDfuyJR9a1rdXiBR9gp3M6yEo1Cu+2hMrZTbOVoiuCXKo0KGarguMpgddeKNXFNQA57Xu8EkUc1i90Jo9n/UHbuLq/Y+uUbWN7sbH5bPkz3o7Abecm/ddbKombAmRzJXEIJo5OFb07Rb6kg+x2FexSpVFgbWZR8cQJ6OuC7mTtsVG2xD2Vw3l80RMuSyFSnZUcHz0f4X98sZsf+sd+fvlLPXzsUJJTS8FnX7bH4psPfzr4+9bX+o/lydCA/pIUImHqiqRpYN4QMBDkk6uzIpBPpeueAPdrM9jvfwb33iC7aN6lrZ/6ugfZf+vN/vPnDx3l81//v/QnvFaBzMoNMn3dcH4e8pbXR3eJV33SOcXRcU0NF0JQLOSYmtAV3X2XXYdIO4hY7XF57HyEfzqkBx1TKH7jZQW61rA+CwfJ4vLVBdhqBVVTJRXuo4vYf3MC9/HG6+plVwVCZ1PFvgZrk6aIGkQdl1Je+n34m9jEpQBpN/b8hiFMgdq0UXrWoGxJuC9NRAykJZvaIZVyEiMsdBox9BqohTCUKto1ji+pBCxmwPHWTZathXFTXmFGJMzWvflrRbX66u2jaQgUkC20/sgmNJRUFLK1Fl3Z/BJS6jXoQO9o42dUoFqdTHTz3l/4B18z5dtPfLkmIZwvtu7BVvkQPXwojtiewrwtCOh9VmAniAR+7VWKODRWsEGvq06db24pd7EiXMGOiSFMy4VksFbqTmn/97I3rnbqgR3GwXCA/fjDa9/ZNeAFH2AvZhWCzpWhlSOh4NT2X1eRNBEl16eJK6mQ54u4jy8iJwuIwdpIz++/Bt+ia3SwLsCuVrBDFOX1Cp3JZ9L+Y/Pq/o4/t21E945+vvJZLPTqeMfxWbpc/bitkjjU+DqGkYhppe+NtqDIl9r3bJimwHFrA+xCSfHocYXlBjZiVShX4T69jDyWQSRMjNHmquDNUHHgvV/v4vHpKJZb+5k9/S4/+6IiV4zU0sNfdks4wA7o4albahkHxnWDfn+ZfGKp48qgcmRwLSRMzFdt9bPmar4Cniq+cWVfjfjdwMFdwb6be/jrf3kvfREdgC2WDEorBE6puKBiw0xGoBx1USuJhyfdVq8fm1DkS9DfrY/dqROH/Ncvu+w6LWwSYjMslwS/d28XyjtpP3lziStG1lb58gNsA4x9rfuvqxBbktCjV5ryVA73gbmmiS95Iov9gSM4HzuDPJLB+eczDe8b6xZElf5+mbyWZ052MHlFBRGlsAouxc0+7E1cQlC27vmtt9qsQhjieSXaeLHDKbo150KY3nxSl7BV3ngTCZ83U3gBduPco1xPLyfEVKgm46trlGxBFwS6LqDBh+/tHVKQjEVgbp0VvRcCrKJLuSSJxFp7YIehlipYv/c09geO+OJ3Y0M7uPbyF3ufnWNyJmiDKhRb92DLp9J+Lc28bgAhBMY1A5DSawB5aLkpC7YpIobPsqiKnAHk8+mGtw70aK/06c7lUJ5zhANsYQ/4/ddVdCU0wzTtFf1XI3BWxZX7buGtd/8yv/6Wf+AX/+svr3eXV4UXdIAtpeL8wuqq15RdfQM2CbCFl2FUyxVUwUEeTmsFZlsitiYbqljHPQVxoWwo6EX56FBAEVcVFzI6WhHbU0RG9fvV+eKa6ZXKVcgjaf1HPNST2QF6uwfo6eonq7Lcz/0AmLbke5enAJhspyQeNaCF967hHbeNturKFtSKlFvThLRnweG6iidOKmYWYXszBlHGQs1XtGhZV7TJG1rj8ekoBUsfn4Gk5Hsvr/Brd+X5+JvS/PXrsvzw1RXGp09welJboV2x72bGhnU/viq7qImgzzY6XFsxF71RxL4QBanDBIw6lfNp+8ZVfUS+ZzvRd12F2N1V8z7zZWO137clCLb3mHuRSjJ19kv+cyslWgD6e2A6LchlZUvl14sBZ6fhG48rCqXm99t8Gk5OwVh/8NzJsMDZtqsRBacmwH7/AymWSvpauGW7zT3XrC3StGds1Jz+rNjV3bIlIQwhRKAmbkucfxvHeu+T2J84i5wqIqeLWH91HPsvjtdeR45CHsnUbQu2d3nPxUb55qEO6FcRg6jUVl2bQmebuJSgXKWtntpVsB21qST+LMGtC7CNiEC6qsGqy3bAKUuMUJFCGAKhWtiqNXF8iXjJ+GqAveTRxVdj2QnwwOOf5/P3/n1nbJ8qQtdTKgELabAvQUumZxPFgsKxFLFQgF3tv4Zaiy4A94E5WKygJos1BajrDt7uP37y2IP+40IpmAvrfbDD9HDjeh0Ui6iBefOQftJRyMc6YxoKQ/jBergHu54iDprhEI/CkXOKYvnSuD7CAXbc6iearI0hDCEwDZhd1r9nNR7YVfT3DvPm7/1v3HDZdzEw0Jne1EbhBR1g54paqKKnsxZkQAc7ookaeBUiFUEtVHTVerwAAzHEQLyBhp23YNyj08aso6AsIma0hroS7ucWw3ESB710acnVYlprgDqT85XOjSv6WvaTtUJVAfmfMv/gV01/cGkclGofWEUNVN5pSt8CnZnaaIGGxYyujrdDIqYnLIBj44pj41rUrJmivFyogFRrEjO5/1wQkL/r9iL//c4ir9hvM5gKfvO9oer1d4Xp4adzvpK3cXnzhIgZEqqTT3Q2eLuHQkJ31+qJwNiSJPqOKzBfuxMxHMe4faQhCSNGEn6l+8pu3afk5A/7r7dLtFSRigssJZiZl8iLlNKklOL0ecUzZ+HBpxX5Yu1+Sqk4ek5h2boHqopTx5/wH+9NXq4FEL3jtVAQfGtCX5T9CcmvvLSwZvHZwsNBANzqumiGyKu2aUXxKiyJ/PYC9h8dxv4/h2up4wPBDRQWRqzi+h1BMuY7p+YaXq+HLwxZcTcD7E1cUtAUcVpWsHVfL8jN4OdZgSzXVruER6etT9haNrhlWVvBxtOAaJbc9TywqXt/LAoLGYXjKubTqyzMAEdPP8a7//RtvP8j7+KbD3+q8w+GAuxqRW+j2X7PN5QKEqdSSxGvKogDDPTVBthhJ46w+Of1oQD70PFQgF0MGIVhingNPXwwVqNvZLyolia+2iJZT6gHuxlFHGDLkK5gHzqlkC1tfS4eVHuwo9Eo8WKKeE9jDNHTBcve6dloHcELjUtsdzcWyzkotunRbYqyi4KWnsZ0maiMHVSt482DzhMh/2uZeQiAkcHtGEZwSsIK4sZoIgiwAblGobNwds5YBT28im0jewCYcqewdujfNmxX6HVtzueM1n64MUNX5FuIwCTj2mtyo4SPbEeRKax8bpNxLRpy5rziyZPQ3w2JWOO5VZaLmi0hulafQnMlfGtcB9iJiOLmbc2z198IBdgvveUHg+8O0cNbBVLGtf1+z5b7xPKKx1FJpZUuAaJGTW+uMASRl44R+9VrtX1bXXJImAIxplcXw+4QW/p2QCmgT3VSwQbo7xHML8Pi4sVJq0zntbfkrlEYn4MHnlJkC8FxPb8AZ2dgS11S9OQxrSAuhGBP137oD4LUc+ng2Lxqv8VAcu3Xe+GhUIDdgcBZFWIoTuznryD6367CeMkIxJtMA/0xIm/eS+xXrvF7ouSRjG6RCeGarcFvmykPsrA83cEOgLDclqyATWziYoSyvf7eFqsmYepxtf4e2cTGQ7kKWXEx6iji0qFB06NS8cTpmszrzXqwVUV7YNcXH1JxTQ2fS69etwfg208GLK/Tk0c6/2AowI7HBJaz2Ye9EooFhXRVjchZDUW8Jwh2VcFGnQ/ok+F194E9N5CI6SD50LEH/XVVuAc7LHIWVg83rx+sWTsZW1OIXZ4g7XQJ1aEwaLWYEe7BLjSpYIMuDG0bhiPntFDvxY5qBXtwYATK0hc4CyMZE75ey1oo4s8lXtABdjqvMAw6FvkCfTO24x0L08DYnmpatQ7jqdngQrKXdWYsTA8HPGE0b7vDceKhAHstQmdKKdxqgG0IjCsa7QVWwrbRff7jbCIY5UftEo4UzBZaXFKxlZXEC+WNs6CoCpytVMFOeb1VT51W2E36rqtQS5amuK8hwD48FyFTCSjB8SabODd1jLNTetK9av+tjIXE7nyBMwFGC0q/6IpiHPBeS1uoc+1nYHUmr7UEAOOK3paJoFYQW/WkIyTcMHwblI77r3WqJJ6MCyxHcXbi4gywZ5f0tdHbJdgzBpPzOshO5xSOozhyrqruGlwzruNw+qRWgd8+so/UYG9NMm48JAK3q3/tv1spReE73hgQN/yJezUwtqWI/vBuYv/zeiI/vFtn23uimHdvJ/Yr12DePISIGBhX9esPVGRNph/gsqHQb+i+ke889R8rf7FpELMc0puLxE1cQtB0YtFyXhem8Gjkz+5+vRAhLYmsYxMIU4Bq7MGulCSurTAbmAcC5TQ5WZZLs9AkEYeSBfPLCkdqy8nV4FCIYpwtdC5G2kw4b1O/oj1KeQmqdm0fDrD7Q0xRWedXHQ6wI5EoV112KwALy9NMz58FtH1XFeEKtvtkIz08jLWInVUTPeEe7FYVbNDrkd4UPHESZpcu3iBbSulXsPt6RxCytUND3At9jM0A+9KB3WiTtyJUxkY0EzhbJe49G4r80l8FmgichW50MZogcTBIma4pwJ4p+9Rysa+7Y/XrMLaP7fUfL6pATWHU1vvaKrgSpoGQOjvcDMlYc0XvtSJf1F7L8RVapaMRnRGeT8OOkebvUUqhZkso02jNXGiD+8eDnbhzd/Pq9TcfCYmbhejhquD42VWxLdW2gm5c3zlNXD7VSA9fDcTWoA97X2R/TQV7sgMl8Sp6U4KJ84qFi0y4RUrF2RnlVylMU7BnK8wswgNPa8/riTlNyQpj/NwxbEuvfvaPXeULivmvh5T2d/atI8CeLuMuea0e+3oQ5trHJJEwMV8yQuxdVxF/9/VEXr61pg3CuLbff+yzHjxs65HEDO93dN3Ad5766srfFzWIWg6ZXHsBuU1s4mKCtANv5GYIAuzGOc51FcfGW2s5bGJ1kLZEObIpXb+eQWCVtd+1Ub94jwhoYuulLNdvfwvDELoftlBaOXFfD8suc+T0Y/7f2dwq3D7s2nkiGmm0DNtELfI5F6PudNdUsEMU8fqksZqv1LQyNuvDrq1ga/ZYO3p4FcYNgz5jTD6+5AuqtYU3F3elApZaPp9p9W4Ahvr0uvbRYxfvmLO0tITr6t/fkxgmlmi9hun3OtpEsxvzIsYLOsBeLZQltRJ2M0rlKnBm2eCsRxXd3TUPlra6aqkgjq5gR7dGAiXCNQTY4R7KtdDDAbZ6FHGAKXvKfzxqeQF2m+BKCVDp5qlX0xS4cuMC7KpwWSfshG1DsGusjWBJwUEuVhA9q09IKAUPeP3XhlDctqNFgB2ih98VoofLUyF6+GXt+2yNa/p9OpH75HLLfnelFG41wDYFxpWrZzIYoQB7B9tBFqGir4dOK9gA8aTAzjucmLy4gq3FrE66DIQOuWkIdm/RthFPnVYk4xCrW+CFBc4u23Ndw/U3ng5XsNdOJa2x51oFPXwtMA70+pO8fCZdc12ZBuwf8n5Hch+PHn18ZQGfqEHMdSkXJOW1SUlsYhPPOpStmgZeVQhDgGwUzlJKs10eO6ZYXJ/1/CY8qKplWn2ALURDBdsqK4SrAl/p6lsN0TzAKbp6YGuCZFzPDV2rpIcfOf0othOsfVZXwa6dJxIxWM5vXDvd8xG5jGqgE6dbqIjLE7UVbGwJ6WBiqunD9gLsQin4TDXwraGHXzfYdO0p4qYOskEzwo60D5QBXyC1xwx0U9pVsKvYPqz7sZ88qXAvQuHFsAd2T3SIWG/r2OFSC6yr2AywV4Oyq2nOsfXxFL5xJkh/7ok/5T9uoIhXPbB7o4i4qRWAt3lZsayt7X9WgbXac4URrmCfK5z2H494Fey2SuK9UeRU0bcxq4chIFNY/0CQyWtf4t4OWbOphCDaSrgGjx5edhHJ1QfYZ5ZNZvL6erl+i0NPvPH3nZ06yrnzxwC4+rLbGBnc5r8W9r8WKwTYIhkJguWcjTqda/o+NVHw1emNy3vW9LvCFexR26M9eTTxTMUgV+lsQBSmwUBMcnpa9+BfLJhZVFhOYz++YQh2j+lFzmiTwn+Ngvj+axter1LE+xOS3ibXQqcIB9hGB/7X64GImYHyeN5BncvXvH55iCZeiuzn6ZMPtd9gzCCqFFZ+/UrinS4yzy9owbqZRd1H72wKUW1ilXBXcDsQpvB6sGuvrXMz8PgJyBTYTChtEKTlWabV07RV4/G3Sp5fdn0CvVUFu+C0FDLtTelqWjy6ugV/mB4OkFlNBbsuwI5HtdBZ5RK+li6kV7PjKApZl0jdOapWsA1h0Nutg1y1VIHFxkkozB49uPcmYlGdUTlUV8GOx5JEI3o9X0MPv6E1K9BvuUL3Yq+EKm26iyDAbqYiXg/TEGwfgaPjF2c/dlhBvCc+RKyJwNmljs0AexVQZRfhyAZ1yVVtQwUBtkAxYN3rvzYa6rtVRcfvkRXDQe+12BEENmoVQmcqY6Em9PvFtmSDJ3enGOgdJRHXkevx9NP+8yM+RbxNFioVAVshxwtNF8apuK4ariczq5TimTOKbBGGNiDuUK5CThc7skBqhrB6eEt6eEhRNKweDiGBMwOMvSsrRfvZUbTYWTPIp9LB+9dADwc09dlrMRgoeQe6Ruisw6ElIkhIiWXB0XOKqXlFpUnP2UbCcRS5YuvvcBzF2RnoSTZ/3TAEg72iqdL8qWce9x/v33VNzWu5imDZs+daV/+1I5GnvCC3N+oLzl1IGNf0+4/raeI1fdhdN/DwSjTxiMCUkkrR5ey0Whfd8ej4yp+VUvH4CcXXHlV84SHF5x5UfPoBxVcelhw5uylItYlaZAvNr0lZko0BXROEbbrm04pHjimiEYgbknxx83rbCFSr1A0CnIbALdV6DJdL0n+tBqZWHQ9T+pUtodJ6jWcYgp7U6td/9QF2trByBdKHK2tYQ4mYDq4v1T7sQklx/1PrG/fboWSBU3CJxZsH2L09Q5heM28NPXwoJCIcUhKPReNcuf9mAGYXJ5hdmPB7sLur9PCCrW1PoSU9vAojNF+ruc4pm5GcIBbXn813UMEGXSDo74anTlMj0HoxoDbAHiSyysKlPJ7FvX+uwZbvYsJmgL0aVBXEVyGKVo+Ti6YfhF6/xSG3HKhJhiniNfTwkeCGNEI3ruxUhRCQh4Py4Frp4aB/e1VJ/Nji0z5lboujB4qVAivRH0POlGosyKpIxrX9xHqy/BNz2pd429D6zpOPjKVV4XtWaOZugQdC/de372r8YUopnx4uhOClt/xA8FrG8i0jxM6ujoJ848q+gM57aLmhH1ApFfRfi7VfC0IIv4qdqETpFX1QOuG/3qmSeHWRs6VfcnISvvyw4nPfUjx0WHJuZnV+jhWrPc28YilOTSm+8ogOtpayrb2tF7Paq3s1kI7k5HGtIN7fO8JgX61/+ESo/3pX39onBXWu4Fc1jAM9G3OdrwDjqn5/tnCfTtcc58sGa4XOHj9yX9ttCSFACIbiksdPwBe/o8/37FLnbQJVH9jz8ysn5HJFyOZh27BuBenv0TqV47NwbrbtRzfxAsTRc4GAYRhuxW1t0VVFyFs5X1Q8fERRKMFYH6TOpElPro51tonmkFbz8VNEBG6p9rVSQTVnfHs984Qp5ZbUwmcb6AdkOxaHTz1S81w2v9TxWKdcVaN2Ho2A5egq9qWIdF5bo6bzK751TShVwC64RELsM6WUTxGvoYeHBM7MlwTPh626AK47UNuHXfAq2D49/HTet1I1rx1oPycPxv12hfrvaQeVs+nu7gcgn093/Ln+bq0bsFECwhuFcIAdFp3rBCpjYf/1CZxPjePed/FO4psB9iqg8nZDH89qEaaHf9dei7mlSf/v0RA1uFZBPAiww5mx1QidbUT/dRXbPJp4xS3jdutLaNTRA8VM3qjX5KiBSJha6XOiUJPpBx1gtxM6q1YdW01M5Yri6dN6Mk3GNyboWI/39XTO4NSSrvIeHHYY6Wrc7zNTRxif1oHpNZffxvDA1uC7a/qvOyvHi7iJcbVHEy86qLr+IjVT8q8tsa8H0b22xAHU9mHvMffUBNideGEDepHjSBJCsXebYJc3zh45B199VPHFhxRzyysvRLIFxVceVnzpO4pDJyWTc9q3WikdpB8b16998wnFck4H0I8fV1h247bPLyqUbOyvXgnzx86QyWvhv/07r2mYZMMWXbvWIXAWzrqbF7j/ugqRiiD2eRmHxUoNtW1Pv4spvOPYfQMLy+c72KKi25Ts3y5IxeHwGZ1c+cbjmsa9EqrtBOnCyguHTCGwYzQNQTIuGOgRdLdgKGzihQvHUUwvaSum+r5FWe6ggi20D7ZlKx49pphehB2jQMkhWrTJLzmbvbMbgHoaeBXCFMg62nepKFsG2LgSwqJolqsD7hZqxmvBsTOPU7FqBykp3Rol6raQirD/aXVeuVQr2Ms5xXxG/38hUCwqlFVr0VUo5bAdXeCoBthKqWAujRuYNweKpWGKONT2YT9x9D6KZZ0d6PIUxNXZIFvgz5MtIAzhF83UQqVhHdzycyWX7q5+oLMe7CoMQ6DQlf3nArOzs3zwgx9kYmKi4fkqBodXGWDPlvV9QW273MWGzQC7QyilUFkbsY7+a6XgG2cDwauX7rGZW9TCUD1dAyQTQY9FjYL4SIgiPprw6UudUsRVwQ6EHPqibekrnWBbSOisnNQZ+R7bJi5dpBLM5FeoYg/EYa5cU6UHrehtu1oBvOE3KMVRr6rw5MnmPZTHJ/SCpl7Zea1Yj/c1wIOh6vUdu5pXLj77pQ/xpsSbuTP2Ur7rltfVvBbOrq4kcBZGmCbufOU8cjLwQwrTw82QOvRaIOoD7HI4wO7wPokYOjvvnU/T1PTrPVsEe7boLPe5mZUnoPMLMLOk3//oMfjKI4rPfVvx5e/oIP3+Q4pSBXaPwbZhwc5R7WF9+Gxt1bRiKc7NQF93my9rgZNPPuo/vqyOHg4wsQEWXWqhjPvwgv93K1/0CwHzmqCdIEwTj0VCvyd1Fcu5HK5c4feZBhT0PdHbJdi7TTDcB2en4TtHmic+wpjx7EdKlZUrIUtZhSE2iNGyiec1MgXIeUmbcKJXKc9LuYPASzqSQ6cUJ6dg55hO6qiCQ7RkY2WdzT7sDYBbcpo6eghT4FZcf0xXSlEuqQZFaUCPQaG5B7SgmJBNervXgTA9PGIGa4JsvsM+bFfVeGGDZuC0a3O6mDGzBCgtwHUhkk3FvNQJidA5TGcDQa3+Xq0Zo2ZKkPesSvf1IHqivg1rfYB95f5b/F7r7xwKrCirCuIyZItqdGCZKUa9opmrmrI5m0EJRXdCf1+pmMd1nBU+Efo+WLfeyVrxYz/2Y/z8z/88L3vZyygWg8V9WORsZHSs2UdbQhWC364miy0FfZ9rbAbYTVCv2gho6lDF1X7Oa8SReZNZT/Dqpm0O3TGHea/aE+6/hroKdogiLsyAmqsWKqgmvtJKKeR0CefrM1h/fgzrfx3yB2jj6v51LzS3jQZCZ9lIEAQOd9CHDdqmB1Mgz+YbLDVaCZ0tZODMtH586BR8+7CiFBLKWEgrDp+FoT6a9sauBevxvoZaevgduxtXVQ8d+gqpRy3elvpxfq37N3jF4h01A4WfXY0IxJ7OIz7jYJ+vPKnOFbD/+AjWnx/DPZKptecKBUxrQTjA3hvZB6XToPT57LgH2xT62mzSR6N7nXUg3M5qwnEUp84rulOwZVAHa7vHoCsOyzmd2Nq7FcYGBaY36UYjgpF+ePo0TIXsKOeW9SK7b/W20pw8/oT/eP/OxgB7vRZd8nwR64NHfYG65I1JRP8q/WLWgdo+7NoMuk8TFxFU6soVF48iZqDybs0CKxkX7BrT9/r0YuvPVizFhJf8VipwDGgGpRQzS5C88G3qm3geYDmn7R3Llm4tqMJXre4g8JqYljx9BsYGAxaMyttEHRc74zxnC93nE9xic4suERXgBEJntgNOycVssiQRpkCoOlsvW6I2OA/3ZCjAvvHKu/zHHQudSWqSAOApiTfXML2oUaoolrMw3A+5C0RbzmVdDFWrGr/cREE8zAQTnlCov9bO2DVr63gsycG9NwGQzgUJ7u5UL8qRqGoRYyiuA/U2cCQ84gSJ8U77sEUiQnc0ZNXVgdBZFZHIc5eQeeaZZwA4c+YMv/d7v+c/H65gj60ywKYYSi6U3Zp46WLCBQmw/+Iv/oJ77rmHW2+9lS996Us1r33kIx/hla98JS9/+cv5wAc+cNHRpeRCGffRBeRkHYXZVxBf+yGrp4cvpWeRXqVndLBeQdzLoAkQIfEFqKOJ11Wx3aeWsf73U9j/5xncz01q4YWwrc5N6y/vhpXE52UwcFW9sCczHRyjgRgsVXQWMYRErFFNWinFiQmF5RWBtw/DsXG470ktlOG6WtisVIH+7g0KrtfpfZ0uC56e1YH5jl63oec2k1vkDz/0Tq6KXOU/F304j/OPp/WAvViBZc+zfHf3qijqImoQ/bF90B0kBtSpHM7fnPCpvWJX17qDMzGW9Hvw95h7QFWIuDOADrA7ubWFIRBKtRSq6E1BttA+4JpL62tmMMSWNgxBd0qwZUgw1CeaWrD1dgmEAY8eD0TPphYUQuAH4p1CWS6nzgWif/t3NVEQ9yjiiYhitEm7QDvIs3nsPz8GOU/4cGuS7e/busKnNhaiP4bYoccedb5WR6FW6OxGljNz9R+vRdTQfrN15900BRETTp9v3Y89twxZb9hLxtpfG4WSrnBv0sE30Qnm01qQDIJrDDzfZVchViDmlCw4dkqSikN30guulUItWRgxA5lzKF2kvrSXEtxi8354YQqko7SlGmDZ4JQkZqz5eK5UbXJXlVw2MsJ2HJtnTn4HgKG+MV8sC1Zh1eXKhgp2PKrnxUvNDSGdg0IFhvugWNLJ7I1GNqOIoWqE6moDbE1HDrfPVZ04/MoyNDAsw37YVXQle1HnS34CxNi9cmb+P07F+Eq2L/ieTvuwEyZdsdUpiVcRi1y4nveVkMkEC/rf//3f59SpU0AQYAsEA72ri0vCFWzwnHEuQlyQAHvnzp380i/9EldffXXN8/fffz+f+MQn+MhHPsLHP/5x7r//fj796U9fiF1YM3SPahn5VFp7vnonUpVdhKs6oog1g1TwzbM6oIkYijt22bX912EFcaWCjMxArOE7fasuav2w3WfSOH9/yg/MfAzFMe4YJfqOgxirqIS2wraRIMCesoK+ihFbB2+d0IOFaUDCRJ4r1HhRJuOQyVNDEV3IwJkZnfUEiEU1fXhyHr75pOKp03B6WosYbRjW4X0N8O2JKNKbqO/YbRMmDSil+KO//W8sZ+fYHdlT8zn5xDL235zADVmqrYUGbBzsI/Yb1xF5w+6aFgP/9bWqh4cg4qaf/Nlt7sHAwCjrwbNgGWQ6tOpSgoYMvb+fhiARhzPTCtmCBjQxp5Br6JkG2DqoBVeePKmD7Ik5GFjLLVKWnJrUAXY8lmTHlv01L1sOfuvErj6X1ZBI5LEM9l8ch5K+T8TuLmLvOEB0eG3X5noQvm7C12hNgN19A0sdBNhUFXvrMNynKf+LLWzbzod6tLuSupLTiuGQzmtqXGptpgmbeAHBdnSLUXdSBzDzIe0HXcGWGG3mf9dVjM9DPisZ6Q+9UJGogoPRG0XYLsXM2vUXNgFKarq+0STpLCIC5SikFzTbrlZ/N1rZaglRO/cUHV0F3yCcOHeIckUv/q87eDt93UEg0WkFWwjRwPS7VJXEMwWQUjPIJBsfYLuuIp+TmCi9xvSwnKmtYCtXIqs2pj0RxBYdWIfZovWB7/VNAuzuVB8yZFtp7F558XBoJsJkLAjE1WxnAbaIm/TEgsA8l+u8Dzse06J49rOckHFdl0IhOMmVSoV3vvOdQBBg96QGMc3VrWUulQD7gqzQ7r77bgA+9KEP1Tz/+c9/nje84Q3s2KGDybe+9a184Qtf4LWvfW3DNgAsy8KyaoPFSCRCLLYxtEiBFr+ompirgo1aKmFsiYMhUDN5ZLGCsacbUXEhohDm2i7QZ6YjLBb1DX/rDpvelGRuOQiwtwzvCLads3XFHDBGEggz+F5hKoxdoR7q6SLCVMhTOZx/OOUrGYp93ZjX9WNc2YcYiYdo4eu/wUZGthKNxLAdizOFk8DLARi19EBxPmd0dpwGo7pKPJvH2KWDyK64YiEDuYJgoFeglOLkhMJ1oDvhHQMkEdNg31a9IDp0CroTVc/ijRlAVL6CcB2M7tiathmmh9+5t1JzPL58/z9x/2Ofo1t0M2x4WYH+qLZlsxXqRA43rG55oKfm/If/bwdhCow7hjFfMoR8JoPztRnU2QLEDSK3DKz5Wq75jq1J1EKFuIizxdjCbOEIdL8UgKmcwUDXyn1CwlQI10HQvIo90qeYT8N8WjDSL5BSv09KSb6omJxVDPcG9/FqYBqwc1RxakoX4wslGB5b/bYKmSXOL54FYO+OK4lEDcLXzVTG9BMuO/vdFY+9ciRqvqLv609NBi0eB3qI/uR+jJQeSzbiHK4G5vV9uF/QuhHymWXEd+tqwGUjofPcdT3LuUPt980AoVywbAS1CbmuBMyldbJjsLd2EV2qaCu3wR59DaTiksUspPOiqbBhOi8RVNtGavfHELo3W26Qy4fRtNFzE5cKlnO677qq4bGY1QvSaETgFFykpRAtKqEAk/OK2YxgdLesbcMqOHr9MBRHzJYpLDvA2sUlX+iQlkQ5CqMJm1B4yuAyVMGWFRezq9V5C9hTSilUcWMUxOW5PM6nJ6gY5/znrjt4O92pIEDqtIKtAFFfwY5BxVMS711DO9NzhZklRdy79BMxmFlUXLVn4xIapQpYZUV3tPZ4pXN1AfZ4wU/uGpf1+vdrTQW7LsC+6rJbMc0IrhvMdV3JXr0tD6KDCvYzcxHm4xEkusK5Gquuqmo5rK6CHY9q9kCpgs/QuVCoWJoFZBiCXK6xj+Fzn/scn/nMZ/we7L6QqnvHqAuw5QspwG6FM2fO+ME3wIEDB/jgBz/Y8v0f/vCH+au/+qua5+655x7e+MY3bsj+DCXgjgOhJ/qB7fXvcgHvRrseYG2NLx/+u0B46p7XZNl7ewHn8Cn/uWvuHGLvS/W2i0+UqA7LfdcbbHlp8J17bs8jb5Ic+xNAQiSdZ+vYAud+c8K3m+j93h62vXeLR222vX8bi127d3Lq1Cnthe3RL7crPVBMl4X/WzrDsvdP47IRyC7rfwBbumHLFcG7d/YHiYnd6y/ENkc/cAWs5XwXyoJH/1bv2Gi/w2tel/ZFViYmJvizd/waoKu+VQy8uove7+lh4l1TyKz0YwGRFOz7UYmI1O7HnttXyfd5mQk/t53KWQuz1yAyWAHWn/6eP2yw8JS3T+ZezuePgNdOU9lisfelnQ58S96/5rh8BIoZOBeqalZVKW/as+rdbrp9gG1Xru3zj5wMbFhuvO1gw/V/+KEgKXbDDcWG192My+I/LlM+UsY6Z2NP29TnG3pe0c223x7DiAWslVVfBxuAUx+LYp2zUWfy7LxmmciAnkb6/yVKutQNyf2Ioc93OAY0r3Tv6tf/nzvX+NqNu4LHewan2DMIVh7ONTkUXQJe1uKctvuOtWDv3r0rv2kTFy3SeV3xjEUEXQmd1MsVdeuJ6y3oWumXZPKK09PQ1SWI1DFtVFErhxsRA1NAbnmzgr0eSEshHYmZamTKVQPsatBcKXnBeCvmgSGgyqCzFcpy18xSDMP58nnUuQJXsovXJ36YT5b/lesO3lHjsJDttAdbNYqcmYZASnVJ9fNXLMViRrOOQBdFlnLa/SWxQa4vJUu3BETqWsLCFPH+3mHk8UZ6OLQPsJPxLg7suYEjIcu1rlQf8klv4okaNbo0zZAuC61RZMBcNMkWu4SaK6OU6kgbqac3WPCuRkk8FtUJmVLlwiZkyhXF1x7TooI7RxWVfLBgGxoaYnFR93P9l//ys5TL+vgO9q1OQRz0mFrz91QR5coa1sLFgGc1wC4Wi3R3BxSKrq6uGlW5erz97W/nLW95S81zG1nBfuyY5Og47BwVKFviProArkL01m5fVVxUuoLojSGSqz9kroTPPqCv6pipuLxkcOa+Ho4+ElZXuowz9+kqrvNQMGrm7B5K9+kK5p7b85x9sBvlapl/NVumcrLCmf88BQUvG3dFL5VX7OfsAxf2Qhvu3scpTjFZmgwCbM+qa3opwtGv9xDv8FDJ2SJiKIF5TT8ianJ2RnHzQbhyt+Dbz+jq4u4tAoFkZ/8kE+kdqAusz+c8uqArDwOr55Z+/lgMy9aD5W1bHM49oM+rK11+6X2/Qj6vB+S7D7wBdMsyOdVLKTtC5Gd7sP7iBKR1UkTs6eHst0ITQN118FzDtR2qgfGeyF4eDFl1PfFwFzd3cJ7UYhkxnKhRqa5H1dLjVbcK4lHFxMQE27fv4JtPCJaysGVo/cdiOaeF0qKh/mtVcaHiNowJ9bjvi//iPx6N3ujfy1U88lgwcfekIw2v258Yx32g9YLLvG0I6+7dnHvIy7Q/h9eBu39QG0hLOPMhl8iL9Hnrj1qkS0BsC8ceLzb8xnrI2RLGnh7MJgr5UirOzcGd1wj2bQ9+37eflpyZgZ0jyh8LphcFwwPw3TfWXmvFsuJLDyniMehJNR6juWVFXze88paLa1LexHOD6UXlz1nxmKBiKz/AttJ2S4Ez21GcmFRULOjvEuDImgWzSleo+kSZEcgtbQbY64GyJcpWzXuwq8fco8JWykr357VYeAvT8NmCWK5WoEqs3SnG38eQtsxPJH+SufgSu7ZejmUHQVvHPdhQayUWQqGsYA3MrecCmYJmiFRb+bqSWmA0U4DEBrXwlCrgViRG3SmspYiP1gichR1axGBMJ12kalASB+2HHQ6wB0S/35J5truH3/5kP7/9yjx7B5qfr8NzwaJ4It7FFrukK+lZG/pWjmu6+4I10moq2M9WQmY+DbPLWhtlah5mJtL+a9/1ytdy5vQZHnv465w/P+U/P9i3ht7Ougo2jkLNlNftkLTReFYD7FQq5QcXAIVCgVSq9QGJxWIbFkw3g0IHvwqBXCijlhzYkoT6BWskgvD6HdUa5sbHz0dIl/UAf9sOm6QpUC6+RRfASP8Of6Gs5kIK4kOJmgW0coUOsLenPC84AuGj3V1Efmw/CHNN+7kabB/ZB0CJIm5MYVrCVxEHmFw22TfYIfdyIImcLkOygHGwj4gpWMzAQkZwZlox1K/PURUK44IG2KriIvMSEY00XgsrYLkk+MvvBNf0d++1/fP3L1/4M546/m0AxoZ2ctfO74EZneETYykvcZIi9vNXYv/tSdRsGfOlW5oGUNXr4DnHWPBbtRf2t/2/JzNmR/uoMFEFidHmnPZ0afusuWXB7i168bSUM5heEowN1F4fa0V/T3V/ArjTBdSiReTm9jLUJ48d8h/v33Ftw+8eXw6G2p29suF1GfYrjxmIkQRiNIEYSWDs6dIqp0o03NfPxXVgXNGP+zXdPyVP5FE36/L/li7JWW/dcj7T+BsbN2Qi03bT8y4MiEUUp87D3m1a/b1QUkwtGHSnQHlnSWGQSOgkS8WupYnniopcWdHf0/z6kEoh1Sa1exO68jKfhu7QcsQQujKtJNiLFmayeeA1PquYW4bRAaAk9JwstYqxciQqYyO8oC2aMCgv2li2IraBvb4vJEhbacG5Npobfg92WWl6dSuhUlMErjGW1P3Y66SIq7LrOz3orzD5xeg7YcmitztgMnasIm6IpiKgz6Vw1VqQzus8QdQ7bxFT4EpFtqAV95uhKuLWqRhyqYJOlNSN6eEKdl9iEDWuLWnEcBwxGLLBNQ3EcFxXlefLKKlqRG6vP3g7//yFP/H/HskHAe/D5gAzeZN/OpTg117WvHB4eC4YQybiKW71zp+aLSM6CbC7+/3H+VX0YFdxoQPsaU8fpVrwyE4HiYxspY8f/qkP8ORjN9XQ7Af6Vk8Rr+/BBq8P+yILsJ/VlcXevXs5efKk//fx48fZt2/fs7kLTaGkQp4voqJrU4wO49iCyT8eSvAXDyf5w/tT/NZXu/jjB4OT/l17g57yaoAdMaMM9gUy9TUe2MPNU3tiW+2FJMYSRH/qckR8/dnXTrAtpCReTOi7tqdU0fYIrGzVFYYwDcRgHHWugJoukYxr6tCxcYXtQlfiWV6IFB2d1Y6v/vb44EMpchX9ue/ea3HdFj0QLGfm+Lt//wNAZ9l/5ac/iDkfREtiLGTF1h8j+gtXEvvtGzAOhKSxL0KIobi/INlj7oXKWQzWYNVlS5TbOiFjGoJoRIudVSfbqQWF4+pq04WAUgo1X0Hl7RohvnpUCiWePvEQoM/t3h2NnOSqRZchFNt6an+nKrv+PS+2p4j97o3E3nUV0bfsI/LqbRgH+i4qD2exq8tXaPWFYoAd/UESYaHYQWI0ZkDRbakgP9SrPVPnvHXErKce3lPHwutOQKGse8zCqArqrFYRfhMvPKTzuroWVptPxLVDgVt0cUsSI9E4ni1lFWenta1fxBQ6GJIhSm/B0crUXoAdSRq4m0ri60J1vGg3JlZVxMslFyFrLZtq4M89yvPAZt1rwLD6tOtlRJMygf23J+mL9fuvdVrBFqbQwX8d4rGqDeWlcS3NLyuidcvCiAkLmdb7P+F1EE3Ot3xLDfIlhWm7DWyTaoDd09VPZLzi35/issb1lS905ihI12pAXX35bRgiGAf60wHf+mhS99c/ej5KK1vm+gp2FZ32Yfd0hUTOsumOPlNFxLywVl3litZN6Q/pvFmVYFLePtbL7S+6hte/+b/WfK6q6r4qVAPs0Gm+GPuwL0iA7TgOlUoFpZT/WErJ3Xffzb/+678yNTXFwsICH/3oR3nNa15zIXZhdchYqCUL0bc+4ZHPH4/xjs/08qFHk/zL0wm+eCLOg+MxpnOBPc9tO4PMZlVFfHhgW00VxVcQNwW0oCjXmNkPxIj+zAFE6tkjJGwb2eM/zpg6S2UoxYCj973j4MqDSJgQN3FPZElULEoVGJ+FsTX2WGsa2drUi1TJBalW3c/xrfGob8XWE5f83G1BFvMTX/5zKpYeRH/w5T/FtQdeEtDI+htbD4QQF10/STMIQ/h9S1uMLUSUoC+qr4eprNmRVRee8it2+zcP92lLpqr/5/hM7WC+4Si6qKrgYLG5WJtj2/z2r/0IE3M6cbhv5zUkE7U75UqYyOgxYHuvbFhkqKli0HO/q+uiCqabQUQMHWQDLFkobxESDrDTVgeNXjHPqqvcPHkRjwmkgvE5fXAmZgPxlDBMUyBlYzUnLKijXHnJLEQ38exjOaeTMZHQwjwV19dUYdnBLUvMOuqwUoqz0wpXQpdnyVWll1YX8KroIBzl2yxGkgZO2aWQ3qSJrxXSkrTVHRUC1xOwKuYVJu0DbKtSoZIvgCV9Zsx6EO7d/Zfyx5l09TpPnS9hfnqOWFTPl6uqYDdxW0jEoFzRnu0XO2xHMbvcaJfYldCJ02Z2Y66rOH1eP3/olOooOEznIObKGosugLQXYPf3DNfSw5s4tNT0YdfRxLuSPVy2+7rg74VgzjvqCdilywYnFhsLTI6Eo977I4ZiIh6sE2SHSuJhkbx8enUV7Fj0wtiiVTGf1gnwcI93IdSDnerSyYwf/5l3Mzi0xX9+YJUiZ2F7T7E95QfZF6OS+AVZwf/O7/wOd9xxB48//jjvfve7ueOOO3jssce48847ef3rX8/b3vY27rnnHu644w5+8Ad/8ELswqogZ0u69zq29urvfWejNZXqenTHJP/plhIJ734slnLkCmkARocCZTUV6v0Qg/GWfV9ibzfmd41hXNNP7D8f6IhespEIV7Bn3cAwfqTqhb2KCnYVoj8GJYfYuSy5jMRxIbXG6rU8l0cez678xiZQeac1pawF8hZ84FvB+f+5F5UYSOoJIZNf4t+/phX1o5E4b777nZpCVlWK33Jpm/RWJyRTmGw1ttJj6Mms7AgWix0cx4ihZ58WfWZVJOOCsq0r16AniwsZYKu8rdV/pacuWwfXcfid33wrD9z/GUDbc/38j76v4X1zBQPLo0vv6mvcTjjzauy4uChOrWDsDxYm1Sr2WKgyn3P7V95I1EA4SlMqW2CwF87OwNS8YnoJBlq0dcejMBuyVaoX1JHHsx3boWzihYfzC7pXP4xUQqs0ZxerCdfasSxX1EyrvvAYZFAbYOecGltlI26iLLlp1bUOSFu1bTsWpsD1xpRSUQsutUpaLuRm+dH33MQ9P7CLqXOnWJV/YguEA+xjzlH+yP1jzdYB5ONLvKn7zQDk8h0G2G0q2GVbX6MXOzJ5zTJqCLCT2rkj24RRPbus/4FW9H/ypMJ1WwfZrqvI5iRRJWsSKuVKkZJnlTbQO4I85WXohVYQr0fYqks28ah+xYvfAMBQ7xbiXvI325UgHQmKYQ9PNhbrTi6a/jrgJTttzseDg9GpF3Z3qt9/nFtaRQ8/uqUgX6LtMVwPqvRwM7R2LuSDNXhXd5/3fy8//44/BMAQBlddduvqvii0FhMDccSYPo5qprTmotqFwgUpeb7nPe/hPe95T9PX3v72t/P2t7/9QnztmiBKDnKmvGa/Y4AnpiP87292+TY833+wwsv3WfTEJT1xRW9MEavb/NxS0H89Ohh4YJO1fV/GZv7F/n4LQeT7d655n9eLsaGdGMJAKslkZZybuRaAUbvMUVZfwa5Ci7eV2BrJkdjVy1oEPJTUPuKqaGPs7EL0ds5MUEqhliuIJhYg7fDXj6RY8GzYbtlu88r9QVr5k1/+C98L8zUvfQvDA1txj6T911dSnrzYEZ6Qdpg7WJDngcsBnWgZXsmqyxR6QdrB4NjXBedm4NrtOqiqr2ZuJFS6gjIEKFB5CwiCX9d1+b13v51vfkWLm8UicX77Fz7KtQde3LCd8XRwLe1sEmCryWB1IXZeGp4rxr4eXHQfmzyVw7xpiC3dwfmzjFFsxyIaaZ34E0IgUS0r2AC9Ke1TfmJSUSi1ZrR0J2EhEyjSVim/VUEdlbV10uwST2ZtYuNRLCuWso2tB9GIwHYU2XmH3iaJ7sWswrIhHu6lNrwebFcFc0mo8i28CncpuxlgrxWy7LalcYuIQJY0Y6VUlK30zQC494nPkPGo2t+89xP8yIt/dtX78+FPvo/HjnyT/Tuv4boDL+FFkwd9E7ZJd4K9l99A5Lv24vytdo15o7iHB837OJc/15l6tCHA1TT2cJIn5l2fxTIM9bX5/EWATEFbptXrDiRigrKtyOR1MjWMs9O61x5ga6/k+ITBcJ/iit3Nj1epApWSohup1QQ91CqIj6JmPIboQAzR1bjub6ckDvBDr/xPHNhzPTvlTvhrrVI73lu78w9PRXnrDbWfPTIffNcNWx3GM3HSZpR+115FgB2qYGdWV8GOx3RSsFSp1ZrYCFTp4X11y5diIRxgB8foZbe/ng/+3GeJb+1n19bLV/VdNf3XXSYikdJsUKnZgGLPhaQ1rg7PqsjZxQhjuaLpn2sMck4smPzWV7uxpb7pX7m/wi+8pFhTAH3m5Hf49Nc+RDyWZKh/C8MDW1nKBFXf0aEgwK7tv24vrPRcIhqJMTq0k5mFc5zOHYfY9wGwy7PqWk0PdhjCNGAwQWqugLE9ASNrOAZFB1W0Ie8gZ0qYqwiwqUhUyV1VL/uTMxE+e0wnQxIRxbtuL/qJ8Hwxw7999S8B3Wv/prt/AQA1HfTcPN8C7LR1FsTLAJ1ouWHrCp+vqnbaK0uVDXTD1IJ+XD8hbySUK1ELll4cK1DLtr8YklLyh+/9T/zHFz4K6Hvh3W/9K2666q6m2xrPBNfSrv7GJIKa9CrYEVHTi38xQ+zu8hMjyqtgj3aFflt8N+nsAiOD21bYkND3asuXBd1JTS9MxFpXorqSuk8vnYctcb2gqwrqKKmTN2rZahCt2cQmqv7Xg02CFNOEzPkyAz21UZrrKqYXdZW7BoaXLHR14kgVnZoAGzx/2OUVko6baAmn6LYVOBOmQFZcHBdcS7UNsM+eP+o/njp/qoFavBIW0zN89LP/B4Ajpx7hs9/4CB/s/XP2RPZiK5sZOcNrD96Oee0A6uVbcL82g4HBS2K3c6p0klI5TyrZ3m1BC7F511STRE/xErDqWsgoIi2WVIbQDh57Q7N/OqcYn4VBdKEi8uQi/UacQ5kYfSrGll3RhnG8ZIFdkkQFmhXnIRxgD/aOwmmd3BLdzdeF4fVMs8DXNEyuPfAS3PvnqN7Fx7tqB48j8ya5iqAnHlSLnwn1X1896vD0bISJeBf9xTTkbFTJWdGlqCupPbuVUuTTSw1Jl3aIR2HR1sdpowPsKj1811jt84VQgF2liANQdrl8x/VrY28WgvWC6Iog+mLIh7X9l5woYGwG2BcHlCMxZouIpLmmvsfJjMGvfaWbYtWSaYfFf7+zNrguVQq8+0/fRjq30HI7o4Mhing4wF5LcPksYuvIbmYWzjFROgdeoWo3uhq3VDIoWNC1Bua6SJjItEItW2sKsFXBQVQkDMSR00WMHanO+9NLjvbF7OksKK848P4HgtHqp24uMRaq5H3qP/6KYkkHIK+6402MecmUsI2HuMSramGmxXZzB0+XjvvF3k5bBRSsSBEH3W9bnagTMbEBHXMtkHf04rg/pm13Slr4TiVMPvB77+CLn/mI3p9IhP/5Xz7Ei/Z8d8tN1QTYdRVsVXR8zQWxPXVJ9N0DiJiJ2JlCnS1oIbisTbw3SpwMFfogsZvl7IkVA2wRM1CZ1gE26OrMmWnY0aZVK2IKXFeRKcCWoTpBHderhFgOlFxoUrXYxAsXS1ndeWs2SbwkcUnPuojh2nFsOa+rQUN1ST5RZby4Sts8lt0G+51IXJCbbX/Nb6I13FJtgF0oKWaXFXu2CgwhMCICaUkqZYVTkW1Fwc9MHfEfT82dWbWCeDpbu64zMNhu6vXcefc8Esl1B2/Xr904iPs1XfEcMfRglskvrRxgC6EFAlxJfVenaUC2cHFbdbmuYmYpaNepR1dCi1mGq/kTc4pCGcZEMF/2ZIosnsnzndMWg2MLvOh1NxEfjqGUZqBMzimcitJCu6GgMx0KsMeSQba/WfXaf74rogUKm1h1VSHHA9GPJ6L9ta8pwePTEe7aE9zn1QA7EVHsHXDZO+gyEe/i2mIa8JTEVwgODcMgleihUMqSL2Qg35m9F+g50nEvjFVXM3o41PZgVyniAKpgr7lBubaCHalh/V1sfdiXxmruAkEuVDByFqymwulhsSj41S93+/ZbV486/M/vLoQTZwB87pt/1za4Brhs17X+Y1/gjNYK4hcLxoY0RX1ezvnPbXWCAen8GqvYACIZQS2UfYrQaqCytu5769aDpJztTKER0L22TfrtWuGjTyb8av1VIw4/eEVw/oqlHP/6lb8AwDBM3nz3LwbfUw2wjVpK0qWIcCJou7EdK/eM/3fHrQJCdEQRB9g2tKrdWxNUzgZHanGiuImwJBRdnn7yQT79Ce+cmib/83f+kZdc/gq/x64ZxtPhCnZdgD0VoofvuDTo4VUY+xr7sHs8wUNi25hbbj/u6feZqJIbWOU0QcQUXL6j1oKrGeJRLWzWIKjjSN0XW9EVxU1sogqlFOcXtKBZM6RwKeUlTt3EPp/WFm+RVvOE1AG2olGVOpI0KacdnIusX/BSgJIKWZaIcIUyB2fOw5zXkioiAulAuSRxSxKzRVVaSsm5qVAFew0BdrEcBFkvvv7V/Mwrf52o0AHPpJzg6stexL6dV+v96g8CoWFD965kO+nDrrZQNRECqyqJX8zIFiFfbOy/rqIr6b3HWxKVK4qTU1rbQOU9C9ruKMZokp59EX72T+7mrp95CX/4O3/CsXHJfzyi+OJ3FI8dh764RKjaey5cwR6OhhSru1snWv01WdZuqREizwXMsyeFngtNEZyjcB/2XF4wX9DX1pUjDqYB+wacGqGzTmniPV39AORLmbb6Ja2w0QF2K3o4QDEfXJxdoQq2ytq+8OOqUQj1YHdFNQPUG4dbBthrOE4bgRd0Kl+mbVCsqWr0/76TYiavF857Bxx+55V5X8CsCssu8y9f+L/+3//rv/4dpjBZSM+wmJ5hOTvHwb03ccW+m/z3XEoV7LFhXY1dVstIQ2FIwWAl5IWdNbh8eI0Xdiqi1YlXkaEDr/96sYJIRHQ2tCuCmiqitqU6on2rvNWx0EnFgX8/qldmEUPxS3cWauhon/nGh8kVdJ/MK178BraN7tHf4SpfcEkMJ2oWC5ciRNyEvihkbLabOygsP0N0q8KWYlWtAs2UUpt+37Ogsq0WKj7NTBgCKRWq5HDkqcDn+2f+6/u46/bX4jw035JuplRg0TWckqTq3nYpCpxVYezr8Ssy8nQO84ZBBuJFFoqAMJhYau4FWoOYEdjitUlSqIxOhLY7991ev/Z8Wgvq+P3artIBjy1ReXttbSebeF4iX9LV6FaUyaTrUqgoyq7hKzCULe173SpgUGg6r1q2mi4iI0mDStahmHHpHW583fYCKdtpFF57oUPaCuUojNBYkSlo5sqZGcVAr056KFdilxROWWK28BufXZzwxa8AlnKzlOwCqegKFeUQSqEA+/Ld1/O6Az+B85h2lLjhrlfy0h/6OUyjSrkytfVnRfoV7Gyhgz7acNtBHRIxfQ3bjvL9pS82pHNajC3Rwk4zGdNWjJk89KR0C9hSFnZvUajjtUyPI6ceYnr+BAAf+/d/Y+uLf57EUIzBHkgOC+R5hUttPT8cYA9Fg+x8qwo2eFpAZ/S5VfPlBm0UlbNhUUeqzrYuHKHP8c3bHJ6YiWC5goenoiill5OHQ/3XV43qpMG+AZdPxoOBp1Orri6vDztfzra1D20Gw9BWZhvJeGhFD4c6irjXg60siSq7axaVViGKOClTu5psS6ImippNV0e1V7aEvzpOfDiB/eZ+GF2fW9Rq8IIOsPXVv/qPFSx4YFyfpN645H2vztf0WlTxhXs/yqLXa33nTd/HHTfevfIuVT0Uo8aaKuvPJqoVbIWiFLfoKsXpCjUE6eBqbVQ4ETVQjkTl7NUppHv916IayfREtbrgfHnFCqFSCpW2G3rmWuH+c1EKlp7oX77PYneov7ZcKfIvX/pz/VuE4Ee/7xeD71koBz6Ml3j/dRViJIHK2PQZfchckW29knNpk/NZA1fStg8OdNWB8sVRXVQVF5mxatsKTIHK2oyfPeY/dd1Nd+mJwpItKx+ZivB90eur13BpCpxVIfZ06/FTgTqtFyOjXS4nvJ80me4gYRIRCMebcFuMd6ro4J7IYl7WC/2tx4KuhLZxG5+tE9RxFLhAIuJbim1iE6AX/6UKjPY3f11UXKTSSs1VzYflnP57bLDNhsuuFtZrMpdEEgaFWUkh7dI73HjNL3qsykwBRjcD7BooSyJd5Xvbu64i7QlkLWe1ld++MW37WClJhOVitAjszkwebnju/MLZGkbhSiiUQxW6ZE9NFbJv71bMkMijEALRF0PNlRmuBti5xZW/xAAhFcqRDcvVeDS4HvsuntbTGizlVFtTFsPQPcXpvGLrEJyaUiTiYFoSt25N8PiR+/3H5xdOsFtUMMNMT0dR7w0aDrD7zJBKZlfr9XVNH/Z8GermZjkeJGayYz14nZFs73VRaJGzhaLB2bTB3gFZ4399tRdgj3QpFkOZvU5dLnq8ANtxbUrpHN27Oj/x8age8zYSrejhUCdyVq1gl12tir9GW+EwRbyaJBE7u1AT+iSoySLi8qBa7n7lPCxWiCxWOPlrRxj95C1r+t614NIunT1H+NZEzJfb/+69FsOpxuDadiz+6Qt/4v/9lh/4bytuV9kStagXgGI4ftGL8YTF2bIRfSNFLJeUq4PqyTUqiVchogZyfnV8Fr//Oh5UH0XCRE4UUSv1+HqiNNXProQvnggG9u+9vHbh/rlv/p3f+/OyW1/LzpBSYo3A2SXef11FeEIacgbY2q2vAVsG1Ki2iBiovKMrlc8xVM5GFB1IhtR/4yYqbdUE2Dt3H9SieDTSQKuooYe3s+iKGZdcq4BImNqHEs8io2CzrS84DnOFlRNVQnh99G0oXCpnozKW7oNvg2hEYLs6Q18jqOMqcCUiZer2EWtTwXkTGotZBaqNG0HGwowb5Eqe7ZZSzC1p4SyjDZtC5W1dXWoSYEdjBq7TWkl8Kae/q9B5Z9MLBtKWKFsivORZoaITJKmEpqiOz0KmBMoFq6x060kLGv/ZED28iqnZ06van3AFO5noXpmB6CUI4yJOr+glm19GKTifM5AtuuGEELoM2qSCHY9Cxbp4rbqk1GKArdgeVSRiug97blknSYd7gaKXvA7h8SP3+o+X8/NkT0/XzAvKrq9fw3ImCLB7VBCMik4o4jSnbqtzwXmfGwoYD8Ndklu3B0WlKk08HGBfOeKJrAnoH41Q8hgOzhq8sAsLHSRoQohHIVfS52UjUK4oJueb08Mh6MEWQpBM6WOvKi7CUasWFPRRDAfY+vgaoQRImBUoJwu439AsO2UIdv/S/rV95xqxGWCvAd84E2XILvOO84f54anTyHN5rVQbwlce/GfmPSuu2657FZfvvn7F7cqHF6iOstWF68WMagUbYEEFN3rVC3utSuI+UpGOFtZhqIzuv66hkvZFIWPV9Lc3RcmFioQOqCszOYPHp/XNvb3H5dqxYB8tu8zHv/Cn/t8/+v21yZUagbPnUQW7iu3GDoYTwQTUUR92TxSVtXAeW8Q9m1s5GdIh3PH8qnrwQdORlRC1QXPcRJVdJr0Ae3B4C909fToh02ahXWvRVfubVMGGZS+htj110SfUmqHWDzvPrsEg6bRY7jBhYApN3W4BlbF1L1xp5cA4FtGVrLCgjl/5SZj6/i5cHEyJTTy3kFL3X7cSX1KuRBUcIimD5RxIpa3iFjLQ045sIoTWDnFkm/YfQaGJF3a1JxygUL5gEo6XLKSlKeJVkbNCSWsXxiKCrqSg4sC5WZCOpJJ3EbK58jY0r2CvNsAO92Cn6irYzRKmtX3YI6RzS/yvr3Xxtk/08UcPtF7zKWgaYBuG0AyLi1RJPFeEXEGzi9qhK6kr8ScmtbZBPCZQJadmXV0o5Th25vGaz42fPYoKF2FKsiFwS+eCADvphnakHUV8hQBbng3O+7neIOAd6ZLcuiMUYE9FqThwYlGvKXf1uTVs1z1DkqmYPu9iudKRj3PYCzu7tIhSnY8TsYhmd5U3qI4xn9ZMm1bsiSpFPNXVG6zJyy6KDuzpWqBe5Axq2X9VdoFyJM4/n9W2iYD9ohFSlz+7NI/NAHuVyFUEj0xF+aWpp7l7eYqhb09h/+lRrPc+if3PZ3CfWsYpVvjY5z7gf+YtP/BLK25XuRLn6zP+3+ado23efXFgeGCrf5OctwNf78sNHdCst4JNwkSUXFSuswWxkgq1pPuvwxCmARGBnCy0FU1TRQdUZwJnXzoZTJTfc8DyY6yKVeK9f/aTNa0B+3ZcVfs9oQB7TTYFFyFqAmxzB91G0Fs210EFW5gCY0sKETFQhzO4h5Y3pJqt5sqopc5XH1UPdVHPYogZ5NOLLC9rQb+duw/q9+fbi3WEFcR31wuchejhxiVGD69ChITO1Okc+0eCCSzrdNbLKGKmrlI3WShUNRVQQG7ldpPuJMyl6yomrtIJk4ih/WQ3A+xNoCtm8+nW1RdKLqrikug2KFf0onQpBxUbki1ox4DumbVVey2PqKC00Hg9ZwuQ9liVS9mGl5+XUEp1XFGrJl6r645cUdUc5uE+mF6ChZzAyjkIV9KKn3xmAyrYVYcQgFSiOwjGeqNNW83CAfaIMcITuZu4f1w/9x+nYrQk16jmImegf16hdHEmY5aXJeWcS3IFvd6uhNbNOL+ozyF4fc6htdihYw8gZe0BGk+f0us6LzBVFbdh/VZlEibiXUTKwWttK9iDsUA4q05JXLnKpyMzEGNSBWufkZRiR69kS7fez6dnIzw5E8FVeltVengV+wa0kjiAUKEW0TboTgX053wu3bE4LEAspsevjRI6a0cPByjm9SAW9sBWRbvlPdkRqvO3KQKm6mjCfzx/rMTfPp7A/dpMwBYdS2Df1MaG5AJhM8BeJe4/F2VrqcD19eIUeQf58CLO356i/NtPkFjSF9BNV72Mq/avzPmXjy0F1ayDvRiXgKJwNBJjqH8LAOeKZ/zn9xt68MlVDLKVtd9IwhAooTrvm6z6Xzfroe6LwVIFtdx6ZFG5zm58V8KXTuhJ0RCKV+/X28wXM/zq++/h209+GYBoJM7bfuhXGr+nGmBHDRi8OJTiy5bCXQdtyAhlfHeYO4i4AaNhudz5MCN6ojCaQM2Xg2r2GpTkwRO3KLqotN3AMGmJoqOrqXX9QcIQTMwHi69dew6iXK8a2k5BvI1FV5jKJC4xgbMqjL3dPiNPns6zcyDoayuqDuXeY4ZWQ22mJF7wNBV6ozoIX+Fa6O+G3VvqBHXcUF+e10u/iRc2lFKcnNT2XPEWwbIquQhLEU0ZVGythDy9oEis0BctDDyhndZMqEjCID/fOC4tZqGY1+NEelnirnHsWy+UUquqjK0HJyfh6dOdfZe0JFVvRqUUy1ktklVF1BTEozA1r8gsSx0jNUmY247FxIwWy9oSYuJNroMi3k23v/hv1e5TU8FOXMdh9/XBPknBqaUW14zAs+lqRCy6fiVxpRSVBavzebJDTBwqEj2bXbFaqW0WNSOhJyV0YjVt1whhPX74vobPjadPa3bTYkVfrxW34XxXe7AHekdq2EuiXQ+2aSCG9NpMzZdrjouaKflBrbG7m4ViMP8Pd0mEgFu26++xpeAfDwXXwlX1AfZgEGBD8z7subxBvhT8pm5PRRwgl0trVlaHiEUEtrMxAfZK9HAIKOJhD2yVWYeCOKEKdiriX1fCED7rd9iu8MyDRdyvTuv3GcBrd7VkslxIbAbYq8Q3zsR4zdKk/7dx4yDGNf01IkdR2+SV8VcD8NZOqtdS+Wq8AJFXbm3z7osLVZr4ucIp/7kdMqjQdmzT1AKrseuq77+u2U7UQKFtkZpWyqoCZx0ojT8xHfH7S2/Z7jDcpVjKzPJL/99reeq4VplOJbp537v+qbF6XXF1RQ4QWxIXBS1YKsV8OhDXWRMGYrhCD/TbjR0Ie9Z/abm4ut8oIgbGWFJXs49n2yZF2qLsoizX97DuBCpr60CvSdA8sRQOsK+AstT9vG0tuvRrXTHJQLL2uruUBc6qEKmI3+agzhdJOA6Gq5OPttlEVrQZYoY+5k3Okcp556M7qvspV1BNFULQnay73hzpJwGqvfRrTdps4vmB+bTu120lbgboCrYA09Bzx9yypkO2pYeDV1J0oM1cYiZMClkXp842bnZJEV/U82cl5z5n1N/8iQKFkx24AGwAlvOKuXRn75VWIExbsnTVsz7h0d+tkyHFrItZ54lcxcTMSVxXH/sr997CQJe2zZqaW12AXQhVsHuLwYXROsAOgrrh4R9Didog78hci6qqEC21I+IxfV2up6/WyTosP7RM+pE0zgYxfHJFxexZi75KpaM2v7FB2FrNyVZcVLlWD+exUP91FeMzx1GmQE4VdNBb19trOxa5QhrQAXbV9gtoa9MFrTC4DwABAABJREFUIVaeo/ziF4A8GiyUxO6uGo2ZoZReA4X7sJ+eDc5xfQV7T39dgF1HR//66Shv+ec+7v7NbRS8XajpwS6kmyemV8BGBNgLGY8e3mI8dB2HclmPIVUPbGVLKDdfo3eMahKrjuIvQ0XJXzl3yG+pML9rC2x7bgoYmwF2CK7UF/SR+eYT43JJcHhK8Iq0lxmJGkRet4voT1xG7L03EPnJy7RFB3Bd5DquO/ASrjt4+4rfK59a9mkoYm83xt7ObSKea1SFzuZCXtijIS/sDenDLjjarmsFNO2/DkH0xVCzpdqenSrKjQN6K9SKm1WYnj/HL77v+zk18TQAfd1D/OEvf4obrnxp4z7Olv0M/MUicFaxdQ+Uq9Y+SQtDUO7RA982cyuqfN5/bam0tmFG9ER15niNHoaq7CJshViF/7FKW2CIptdQOMDeueegDvYs1VJBvGQHQl+7+mQDY9SvYCdMP1t+KcL3w1Ygz+SJe2OBim2nUFp5kS4ihq8kXg+V0efDD8I76MNu2IblBnTdhKkXe6vQddjE8w+nzytsB1KJNkJl2YDRFDGhWFG4UldJ2yJq6MV+m7kkljSwS4pSNlgcW7Ziesqly7O3q5Qk+Wcnxm2Ak3Gw0s8O0yNb0P+cFhToMGQ5uJcLJW2VGasrRBpC0NMjWFhUmDSniJ+dPOI/3rv7arZv0eJH6ex8TdC8EsIV7FQ+iPSNVoKVYYo4etwcTAbXwJH55kGfMIWea5ogEdXtC+vpq3WLLnbaJn8sz+L9S5Sn16+adn5OUV6wSbhOR21+3UkR3I9FF1FxfT2cpcwcZ6f0OTuw5wZSCd2KNH7+BKI/hlq0tEVTnWVJOrvgP+7vHQ4q2BHRNjEOdX3Y82XkZAHrL4/jfiFohzR2d7HgBdj9CenL99y4za7xxAboiUl21OmwJKNgDQTrQBmqYFcc+H8Pp5BKMLkQ4bEpfaGHKeK5YmbVop1CrE/fQSlFZb7CzIPLRI6nfUX/ehSLTTywvaLHav3m/e+2ZNAqURdgz/cHcVO3DJgk5qu2rem7NgKbAXYIXzoZ43e/2c0vfLaHR6YaB7r7zkV5aXrWP3nGDQO+lY+IGogrepkQurq9x9zL217931f8TqUu3eo1BBXsBRkISfSXgwB2MrN+JXFsbdfVDq36r2u2FTfBEMgzucZBqTqgr1DBzlYE93sWbX1xyRbjEL/4v+/m/JymyI8MbuePf+2zHNhzQ/P9vAgFzkpl6ElCb0r7Ga4VTr8+11ERI7ocJFyWS+uo0ov2AlhtUXZ1iwFAceVJSNlSX0Mt7CMmFwKWxq49V+iAUKmWLITJMD28vv86a0NG/65LVeCsivo+7C5jyXshwukOS1PNlMSVI7WnfTLiH59mQfiKsEK6CjEDYW32Yb+QsZRVnJ2G4f7W71FSobKWr8WQjGmGz0piTaATg2JnV1tabCQucG1FMR1cz0tZKJwrkvRcOKQtKTxH6tBu2cV5FloppFTkS54SdgdVNafgYngK4vmSQsnmau7JhGCoW5GKN0+WnpkKAux9269k+9ZAXfj8KqrYYZGzeGit07KCHbIcHbbLIMv871fliZs6aGhV3MEQOrhognhMB9frURJ3y5JyBRI7k9hph8UHlsgeySHXKDbquorTp2wS0tUaGKu0R1QlR7voeuP+E4cDe66brnqZ78oyuzhORZZBKeRMSQdfoYAvLHA20DsSjPtdkRVp62FdGedT49h/fAR1PBBGEHu7kdu6WPTWNyNdwbFKReGasdo55spRt2kHYmpbDNejZdgzwUn87LE4iyH6+TMeuyEsclYoZ1ddwY5Fted4MziOYnqhefCtpKI8U2Hp22nmv77AwhM5kvlKy+uykA95YHsBtq8gvlaKeBOLriqOJ3tr/lZA5I171kVHXy82A+wQqqrQCsEf3N/V0D9cTw83XxIIkbmuwx9++Bd4pPgdAAxhcG30uhW/Ux7NoKZ0VCN2pBAHelf4xMWF0aHtAFhYWDF98SfzG1jBBkSsA7uudv3XYQzGUYvlmv5XaBzQW+Hrp2PYnkXb1b3H+aX3fa8vaLZr6+V84Nc/X2PJVY+LUeCsYuvF5vbh9U3SYiSowsaWy6SieqBeawUb9LlXmeYCWCtBFWydro0YqEwHq7e8rSfgFr2T43MnAYhG44xu2aUZDy0ul9m84LPHguPR0H89GVx/xs5Ls/+6CmNfIGwmT+Xpiwa/7fR8hxmbiNFY5cg7Wjk8FZyPTpkIYSgrqGIJIVCCtSdtNnHJ48y0olDRvZ4tUdECZ9UqVyqhC2PdHd6qK80jERMcB4ohJfG5aRsxVcDo0UFYRCqyheemlUGWJbLkrjnA6hRly1M1tleee6QtsZctTG98Xspq26GmiBgkIwqjxdRzNhRg79lxJdvH9vl/r6YPuxjywY4uB+dKjDaf23NEyJs6MBixK5jjv8VlQy4Hh/W4NpM3WWrWUmUKWimgRSMCx12fknh22eHYhOLMLMS2xDGTJplHMyw/lMbpUGQ2jPk0LE47dEckojeme6RX0ZZTL3D22OGAHn7jlXexa+sB/T6lmJg5qTU6MhVNwwt9LmzRNdAT9GCL7tb911XUVLDDDjQDMSJv3kv0Zw+yXDGQnoDZcKr2XgnTxKGRHl7FniHF+Zi+XoyFEkoqSjZ87FBtkubwbDXADijiuXJm1XNiPKqp3c3WVBNz8OhxRb5Y+1pltsLSA0ssfGOB4tkiMhWl0Jckrtwa26wwqv3XEBI5W6+CeJjiXxdgH3ZSZMzgvE5euxVjz3NrDr8ZYIcQrrYuFg3+5FvBbLpQFJTOFDlQ1lkZsT2F8BbGFavEez74E3z5gX/iaecp/zPqdHuqkVIqaMQHzFdsbXnhbZRv3UYjbNWVi+mFtZm3iaIng/X2YAOaJp61dEDTAu36r8MQhkD0xbS1Wqi3V2XtjkQQvngiyEA/+KU3Uaro33xw74380a9+ltHB7W0/L6dDfbdbnvvASnqDbE9SMNwnSMSgVFnbtRbdGlQyE1mTgYSecJbL66jOevZYq1HKrEJlbUTM0H23GVvTx9q9P+eAVE2tdRzHZnruLAA7tl6GaZqQsWveW7DgC8dj/NIXunnrv/TxueNBgL2nvoJdI3B2afZfVyG6o4gxvRhQUwW2xoL7aqLDyoWIGQ1K4ipv11gdiaixNoEyq1b4RsRM1LIVCJ9t4gWDbEFxegqGVspjVy0bPUaTaQhGB0Rb7+vVwBACFREUF/X1rJRi8qkSScvxe0NjQrL4HCiJK1chKy7SUsjysxNgWzYrVuudnINbdDFTJhVbkStColVnjSFoaSwNnPEo4sl4F2NDO9kRCrBXoyReLOtxPGJGEQveWBczoLcxgFMK/vjBFHMRPVYO2SXkxB9RrhR9b2RoQRM3tA92uyB1Pcnx4qJD3hIcOweHzyncZITEtgTFM0WWvrWEtbi6CvTEnELmHcyIgJSpk90dsoZ8gbMQm/CJI7qCHY3EuebyF7F720H/tfHp44hkBMoSIWsZZVWBM4CR1Nbgmmhj0VWFGE3UJtC7I0R+aBexX7kG8+YhhCFq+q/DFWyAW3fU/t5WAXZY6Mxwdb/3Z47GSdeJwx5fiGC50Ns96D+3lJ9DdcDOC6PqnV6pO6VSKk5OKWaWakXzlKtIP5GhOF4iNhIjtTNJCZOSaxAzZMsAv1gIBq9qgK33de1jaJh5Vs80PL0c4d4+T3Q53sWjV+9Z8/dsFDYDbA9K1VI6QVesv3ZaD5T3nolxd7h6ffsIQgjyxSy/9kdv4ltPfBGAY+qY34ctT60QYJ/Koc7qAVqMJTCu7m/53oy3HpcX2aIwHGAv4VFDFRyMVK26zPWvYxMmoujWZq/qsFL/dRiiKwqOwj2T116nUlOYVhI4O7locmLRu6lz34GC7rl+2a2v5f/88r/T17OyarKqUoBSEehZeZDvFGtNwJQrkIzrykx3SjAyoPvh1oLkjmDg7ykmGfAyugXLoLJWRu4ae2+VJXX1M2ZC3NDVqDYTkVIKuVCuUS0NY2bhHI5H3dw5epm26ig4fo/YF47HuOef+vk/D3Tx5EwUFZpEXrLT4qZttQfgubboUigqlsJ21IaMKT5NXMJ1bvDbZ3IdTqYx7xyFFFHVYgXCyY64oZkqq6iqKVfqqka4opgw9ViyBnGYTVzaODejyBbbK9+CVhBv1/6xEVBRg9KiTiotzToUThZIDEX9OSyuFNmC7s1+NiFtiXK1YrdchULxWlC2wHYgElnZasrJOriWwogZFEr6s8lWiu6mQDmKZov5YinHzMI4oKvXQgi2j64twK72YPcmB3w7SDHSXLz0yZkI956NsRDVAXYU6Bd9ZPJLXBkKvprSxE3PW71Fkjhisma2g1KK8pKDaxoMD8DELDx5UpGzBMldSSqLNksPLlGa6iyCL5YV52ah17UREaHnVGvlNj8fVYEzjz0yMTHB9Pw5AK6+7FbisSS7QizB8fNaDV4MxBoYjDUBdixk09RJgJ2KYL5qG2Isgfm924j92rWYd47WJNVrFcRrj/++AZchr7/eEMpnKdRj34DLZEjorHy+xD8/pa8RgfKvDVsKTi6abB/dS8Lzzj46/jiUnFWxA2IR7R1fqguwZ5dgehFcFxazwfbsjI2TsYlviWN6a+S8JyVkmEbLdXkhFGD7FPGshVih970tmnhgg47fTi+b/M3Y5fzynlt4177bmHc2bn29VmwG2B4WS4KSowfFvngwiP3Jt1LM5QXfOi64K6N7pWXcxLhhkOXsPP/991/LoWMPAjob+uu/+DcY2/XNoqZLbekbTqj32nzF1raTueVtpvIcqYq2wpgncgYw4wS/pxpgF21Bej0VTMJ2Xc0H6E76rxu2ORiHmZL2ySu7ukq6QoD9b0+Fvn/mIwC8/XW/zm/+l78mEV+5Gq0Ktu/lK7Ym10yTqUehpJiYW1vluViB3q7A1mjLoEACzhpUlmNbg7JQv9XLYEg1e3mtQmdtBLDaomr7FDOCvtt2VKqSqwW1Ui3o4dMn/Mc7B/dq+yhbb382b/CBb6WwQoHl9l6Xn7ixxN+/IcNvv7JANLRZpVRAEU+aMLiC788FwFIWciWduJtf1n6W04uK84uKcgsxnXYwQn3YB0vBfThfXJmKB+ierJCSuLJcZNpChM9HzNDaCatJtlSrPmF2StxEVFzEGujmm7g0YS1azD6a4cSEor975USsKjjr82rtAEbcoJh1kSXJ7JEidtYhNhjcOzHXpWytXNndaChbIV2FtCXus1DBVmgl8JWspuy0jfCmkUIZpASj1TkyhR5PmrDSzp4/5j/eu/1KALaN7fWfW1UF2xNE2x3fC96hatV//ZWTepyfjwavDxsjZPNLXDESDrBbV7BpMS/Ho9qjfS2tVLIisYtaeCoWEWwZ0ufi8ROKmWVIbI/jliVL316icLqw4nfMLEEmLemyQy17EQO11OGFXKeH8+CDD/ov3XjlXQDs2nbAf258+jigHWdEne1pOhRgD5hBAeDTE138328n25Ec9G6/ehux/3ENkVdua1qACVewR+sq2ELAT9xUoicuefN1ZZItpsItPZKZZLB+fPpph0xFb/e79tl8z+XBov/wXATTjHBg7w0AzC5PsrA43bJ9oBliUc0YqVcSPzOtkBIGemByPija2Ms2siL94Bq0jkUs4rlyLFeaXhM1FeyuXp0YL7V3XVkJqkUP9mzeoGAZ2IbJM10DVAxzXa2JG4Xnfg8uEoSr16/Yb/HyfZ63sWXwnq93s+PUPAmlb6DorUNMLZ/hXe/7fk6Oa0p4b/cgf/DL/8ZNV92FsT+kqtuCJi7HC4FgwlAc4/rBpu/z4V2/xXUoRV4IJBPd9HQNADBZOec/v1cEFbrJDaCJi2Sk9QDdaf91eHsRA7oiyNN51ELFU6xsvZ+L2RxfPuG97pZIZD/N//qvf8dbfuC/dRwo+6b3gLFBAme2q8gUYOuwDphW/XkHhnqD/R/s0TYnuTats1WGRj1EV4Q8OqM/KkcYCKmjLq1D6EwJsWolcVV2EY6EiPD6bkXbAFtlLERZtryGJmZO+o93DO7T7QWWhKjBPzyRwJH6992+y+JPvz/LR16f5a03lNna02SBmrHB62tbSQzpQsBxFZYNB3cJbrtK8KKrBLdeIbjhcsHerVrMabVV7XAf9rZQq03a6qw6LyIGwlVBIiXnIMouhJNmUQNhq9UlWxzVUMEWpvZZ3VQSf+HALbpMPlEkM15hoAOTDpWuXHBxnGjSoJCVVOYqzD9dQHRHMUTwnRHX8f23n01IW+rkoaOp4hcSZUsHIokopNtYTWnl4qD/ejmniLTLp5sCbBmIG4ZwZvKw/7gaYCfjXQz1a3rp6ijier7bHd3jP9cswK44cN85HWBn40EQOOIF2MMpxWiXPtbHFiKNhWrTo7y3UFpPxiFXWJuSuCxLrJJEeZVZQwi2DAqUgqdOK+aWBYmtCYyIwfJ30uSO5FpWTJVSnDmvSDgeQ8gLykTKRC3bHSle1+vhPPDAA/5rN3rOLFuHdxON6ONZDbCbIVzB7hVB7/KSEedTRxL82UPJdTEsF0IBdn0PNsBrDlh88s0Z3n5T6+SCIUCNBOvBhbOW97zibTeUuDoklnbYS75cue8W/7mjZx5bFRtLCIGiNsBezinGZ2G4D3pSOvFeZc2WZys1zL6KrZk1yTiaHVhsboOaz4V7sPsCBfELEGA3849fz5pzo7AZYHsI91/v6HP5ry8uMeLdMMfnTe5eDujhnyt9hv/0Wy9jclarCo8MbOOPfvWzXLH3JgDE/mAGVy1o4u4Dgcpy5Lu3NJ0IqpBS+etD+yLU5qladZ3JByrL29yNFTrz7bqaoNP+6wb0RlF5GzlfQtFemOZ3v7yEiuhEQiL/Jf7kV/+ZO268u/n+ZG2sPz+G9ceHcR+c8yeVGgXxDRA4q/pXbx+GrUNa6KRV8NsMrlQIoQfUKkxTsH1YUKo031aupBif0ZY1zbBgLgIwJIYYMoIRfK0VbL1TApVd5cqh7Opz6gWvImq0VTJVSxbKaF3ZmpgOAuydg/t0tVsqzhdMvuRVJrpikv9xp+6naxcz1wic7VhbH/5CZu2rgnReT6Rbh7TQ00CPYLhfsHVIsHerYKB35WpSPURfDDyrseS8ImLpdpGC7O94G0rgT9Qyp72qw+OiEEJnytcSYNePrxEDkbnIspWbuGCoWIqpszY9i3nECitqZbmaIr4Co2m9iMQNrLJi+VSR5VmH5FBdxGgrlFTPSQVbuUDEwF2jRWKnyBcVphEoYbfy53ULLk7OwUyZOK4ik29DDwcdtdgtKthTR/3He3dc6T+uCp1l8ovki5mGz9XDcWwsW5+cHWbQKtcswP7WRJSi7YlhbQvO87AxTDavx8pqH3bZEZxN11171Qp2i/aYVEJTftslxlvBLbnYJQnR2mM10CNwpZ7zAWJDMSK9UTKPZ8kcyjStWi5mdAV7IKLVov0kVTKiE5odCKaFBc6UUnzrW9/yfmM3B/feCIBpRtg+ppXfJ2dP4TjNF8bhALubIAlcFcP61JEEf/dEB9YALTAfoojX92BX0Un+vGt7kHTZWtTrg1fss9jZJ9nd79Lt6dk8MxdBKbhqfxBgHznziE6IrQICTeWvYnxWjzPdKUEyLihbeg3gll2seYtIT3A91rRneGywZmvzcAU71d2rix5eUWLNaEERP7PcOFYvF5/78Pa534OLBBOhIHBnr6QnrvgfL9UX+rXFZXZ5YlbHjHH+9Cvvxnb0TLBzy2X88a9/nt0hyoqxt9tv/WnWh62KDvJJr185aWLc3L53t2JDzJtMIqauWl5MqNLEZ5xAsG3YDgfYG1DBrnqLNsFq+q9rtimE9h+eK9d4J9bjvrNRDuVu0H+4JX751dvYt+Oqlu93Pj2h++snizifHMf6nadwvjiFPBV4I2xEgL2U1b2El+8SDPYEfpidolTtv67blaE+SCYaRVPSeUWpDFuGWguqpBPBbxzKBR6U67Hq0gJYjq46dgiVt2vPadyAnNN0IlKWq/uv2/Rl1VSwR/bpDL6Af3gi4auIvuHqCj3xlfdRTYSE7tbQf+24yq9wrCahAnrssF3YOSqINFl8JmKCfVsFtqMz1atBVbFTuLA/p6tAZTGyIg3PhylQOQullGaVNAtwjFXatrlSV37qfqtImBhZa1X93Ju4dLGY0X2DPcUKanaFiLXktZesNmG7SsRMfXnOnLEpxqKkkrXXqHIVUSVJ55/lHmxHgtK9zk7+wgbY2aLuCU3EtOhSq2SCk3VwSy5m0qRY1sFkS4EzPN/omNmUkRSuYO/Z3hhgA37xpB3CFl3bCOxVw/ZOVXz1VJANuHxfKCgzRshUA+xwH/Zc7X4LUyBka5GziKnH7PwaWGxuWVK2tRp5PWKRWk2WaG+E6ECMwpkSTq7x2phaUJRtiNsOKuQDLbwecrlCorxe4OzM5BEWF3XS/rqDt2OawRxdXXO7rsP5+bNNt1cNsKORGHE7+Gw2EpyPv38iyb8dbnMxtcH8ChXsTrFjVDDrtQ7sruQxkbz1Bn0zmAbcsF/HG4tFg7mCwZX7b/Y/e2Ti8VXriUQjQYW6VFGcmqKG2RMxYG5ZYS/bOAWHSGhtVNCuaBiG0O2biqZtW/UU8fqix1rQSuQsXMGOeZZ3i5sU8YsHEyGK+E7PUuembQ6vv6pcY831qexHATAMkzd+78/zZ7/1HzV9yKBPfNXjuFkftnxsyaf6mDcPrUhFq9g6eAJIJLQw1cWEqtDZvAyq8j3FDa5ggy+O4Dw8j/PoIu6hJdxjae2Vu4r+65ptxk3ojWmBjCaYzRv8wX3BhDm09Hu89MrLWm5Pnsohn1iqfbLo4P7HNPKp5eB71xlgV7OPB3YKUnFBKqGp3YVVTLCliv5MrC5z3ZUQjA3UemIv5RSuC1fv1fQxq0WMU+wKLs6+TPB719UP4wtgdbbYU0r5CuI+4qYndNaYaVVZW/fjJtsF2LoHe3hgq6Y7FRwmSlG+elpfNz1xyeuv6qzUtN4KdrYIvd7ls1pGy3IORvpgpL/1e0YHYccILGZXF8CHLTGuKXrJFRFtbjvTBNVECkVXVzGa9MOLuInKdm7bplyFaGa/lzD19bTZh/2CgAQQAjNhIs/m9VjQAqrkVd+auAlsJKIRsIVBes5GJiOY9deoK0lGlL4Pn0VxU+Ul1oyYWJNFU6eoemDHol6A6LZO3Dq5gDacL2shpugKrh/G1iSiSYBdrWAP9I7S3zvsP79aJfFSKMAeld52RGOAnSkLHp7SC7ihlGT/vmCfqj3YAFet1IctRMsebADDgMwakjFuSbciNKsxxKL6nIQ1WSI9Jm7BxVqoXYhWLMWZaZ30V2mrQTBUJEzUfLn9tVz2BM68APvxOnuuMKpWXQDj55vTxKsBdn/PMBSCez5jRmsC4g8+lPJ75FeDBW9u641L4uvQ1No36HA6oSPclHT54W1ZtvcG+3fjZeE+bJPBvjG2DO8C4PjUk7ir9GiLx4IAe3JOrwv6Q45WPSkteFac1yIJYSbZUlYRCZ/aiKEZfXWoFzlTRbezcn47tKhgn/YC7LgZiMmVHUHpOWb8bgbYHqY8ingiohhKBQPAj22f5fas9jlOqyIPWg9w9WW38f/e83V+5o3vIZlo7rNW04d9JhiIlVK4DwW0FeO2kfqPNsCyodf7mqHe1jSq5wrVBENWZXFNPSjEchaml8EM0+/XhX4vy2hJyFiouTLybEHf3N1rH91EV6RpksOR8Lvf6KJYVSOc/zivvUq0zMApV+F8atz/23zFFoybBhvFcgZiTSf+1SBbgP3bYaQ/8PcdGWgd+DaD7cJgb/Pfoi1pdMVzIaOp5NfsE2wfEfSkQBjN++Ws/uBxdzqg2a0vwDZrBLBWhCVrPGzBY0A4zYXO1JKlGRAtFmyZ3KK/CNq55TJIaEupvz/Z61ev33hNma4O5mflyKCC3RWB/tVN6gpFqQJbhvX3lldzvh0tYrJrTGC2WZwaQlPFuxKQybd8WwPEnqAaf3Uo8p/OdXjuvUSKWih7LR9N7pGYsTrbNkfRLEdQvR7aKctv4nmI/hgqbSEnm3NpVclBThdrqm8XCoYhcPrjlAeTxGNN7kcXEkJSKD27c770qmFGzEAWL5wXdtWiK+ZNr4LWXs6VBQvTYxRk82rN6/TlzBxpj1kVpocDbB/d7z/uJMAuhDywh2zdPsZArGEtce/ZqK/R8fK9FmYoma97sHUi+rJBl4ihr7tmAbZSrXuwQbPR5pZbvtwSVtrBRtQGTR5iEc+nPHRehBCYcYPyVG2wPLOkWXX9UY8yXL/GSUW04nQ7u66SW6OH89jh+/yXbryqLsBuInQWhitdsjld/R7oHalhPmUiMe4+UOEt1wcViT+4P8WD4x2KcqKJUdUe7Fb08E6xd8DlTCIoIb++v/ZE3hwSOntmrtqHravYFbvMqaOHWm5buUprPoXmzFhUjymFkuLEpCKVqBUM7E5BrqBYOF32dQ9AryGyhVr2iIibqLTVYINayAcBdnd3Hypnr09BnFAF2xQ+w6hkw3lvjbFnwK1Rc3+uhc42A2x0oDGd14diR2/QP6mUwv3kCaq33FfdL/DOn/hD/uhXP9OWIgyt+7DVeMEXuxK7uzoSu3JcXVUE6OsSOHL11NALidGQVVch7qWg0xZbuvXi9f9n773jJMvO8uDnnBsqh85pumd6wu7M7K52NmhnFVZhxUpYgAAhCYxsQJgPhMWPYLAtbAMOGKwPf8b4c5CtzxYyGBAYYbHKaCWtVtLmvJPzTPd07spVN57z/XFurFzV1TO92n5+v/lNhVu3qm8457zv+7zPc700AKsu+AEQSasgwxGQ0SjoRAx0MrYt1Yb/+XzUE5WAdgk493P4nje+r+X27Ik1/9zuiUN61wyUH98P9Z/eAenBSaEYDUB63VDfv8kVn5oaAebGw6uMbNLxOOyC2mvaHDJtpIe7GE4B2QRwfU1MsnfsJ5gYFt+XiIn+m3qbBwDggT7CRMFfxG6JIu4IvPBu1aODCuKhHaHBUoLbTAR0bavXgf7ryUNAVMKlvIRHF8Qsk40y/NCRzitgbjNYf3zRq5rSud4Fzqo1IBH1K9BGDy0BuTIwnhX9152QiBHsnxa9+N22pJCJmLeoOmzIns/01VyX0YGTSGE5HRwtLJJc27Zuky0Waz1WEtK9dcwuvitAKAFJKWDXKg2tBrxswn4lD75UAxntvy+zV1R1wUCqB7EYopTfcCVx5izEqUJhmxysts0BtrPAUmQgX2q8V5nBYG4KgTPGOXJlQSnvBxcd/2sA2DdzOPRekCJ+ffVSx325FexhMgyViR9Em/RfuywnQAjoEoWCxZ1+bDqGQlkEgaosgmwAuFqQUNLrxj+CthXsWESwm7Qe3EQ459ByFixCITUJsBXH0qk+kSunZWhrRojhcGVZVDYl3Rbjc32LRYSKft12dqsBgTPbtvDSaaEgnk2PeYJ0LvZOtQ+wi+VNMEeYOJsZC9GLC5KK4TjDT92l4T2Hxc3FOMG/+kYC17tsaczXCGwnwb4VejgAJFUgOusvxrK5sFfqsf06iDOPuWvSowde771/8uSTrXdeNsEWK56DDeCuE4FLS8BKrnFNoMoEVtFCccWEHChelZ1kX0j/oIUNajUQYMeiSbHu2aJwpHcOE7K3drqUkzxb1P3DNoaD4ro3uQ97N8CGyH64lajZjH9y2Es5xK6Ki3rVXoX09in8rbf8HVDa+bDR/ammfdj2k35fqtRF9Zpxka11L+hkDIjIvS2sB4VcSfjm1mN8ZMZ7nKdO1dJkuCUmBi7NItjokia6U/DsdRl/+pIzWTITOP3juPPQHRgfnmm6Pa9YsL606D2Xf2jOCxBIRoX87j1Qf+N1UH7tNkjfv6fpPjqBcY6NvHh8YE9jFTIZE5Zb3fRhuf7XqRYMZUpFtXpiGLjjAMFoxv+uiEKQTjSvqsjjSdhcDLTxon8vbUnkDBDBcZd0XldBvD7pQlSpUeisaIpBO94mwA5adE0eBJEo/mhp2BvUf+yO1hYc3m+yOaw/uQT2Sl68oFBID021/UwzFKvAxDAQj4jv7ra4ZDiV3LkJ0trapg7TI8DEkOhf7QaEEpC9ooqdsWVMmuJCvLrZXYDtJlJQs1u2fHi2bd2qG9u8NS1NpUBpV+jstQaSUoCqJao6ThKI5w3YL+VEu9HE9iRsm/4WIsbRSNOAkUDiHJbdXkncHrAmi60J9W2iEnCDwd4mL2zXA1txbvWoKpKA9RRiq2TBqtqQ4hJqmkgythU4a4PLi36APV9XJJke3+c9Xuiigu32YIcFzsIZ6+USxSsrYnLYm7VxwAmgSUb8AcN0GOVS3tv+SIAmfrpZFdtqPe7FI+Ja6sVNhOkMWtmGTWlTijh1xs76tkQp4dLExfipGxyreYceXrUdWnHd/EsIOCXg+dbzAS/6AmdnLj3vHeO7jry5IRm9Z/KAp7rfjCIeFDgbSo8DTmBvg6AiyRiNi7X1L9xfw9v3i7/DtAk+f6a7fuywwNnW78Effae/P349fMOnExx7h8S5v7AhQbOAIwGhs5Pnn26oIHv7qliirSpQoHCZCYvrQmSwWf99zLSQ32CgMf93VWpizRHSb2lhgxqkiCekxNYVxDn32A+tFMT3D9UF2DdZSXw3wEbYomuP03/NNRvWX1/zXv9v1Y9jcnpv1/sM9WFfr4JXLXDNBnve6c+NSqB3dq5kmpYvAgIItchkrDWVqhdwCO/bXJOscT0MS6gMFiuN700EKtjBPuyDkj/SLwyoD/tGIFcj+Ng3E14Ahcv/FCg9he95wwdafsb60qIn9EDvGQn1o7ogqiSq7X3w2yybY3lTBNCAH2CF9k9ElVnvImao6cBwGk2FrlxMjwF33yJUpusxkiaeN3sQmaFRrDDRUpGoqEip4phsdaAjitR9tdER02hAVBL3YSA4YwUDsFhbHYRQBXvqEM5tSPiWY7kyHGP4/sPtb0bOOKxPXwJ70aF9yQTKhw6CzjVvL2kF0xKT4cSQfyxl2p1n+WZRBMvDXVSvXUgSwfw0gSIJKlk3oHv9v+mIo8S7WOiBhu0mUmKtxwsOdF3B5oLu0+K7nIB+F685kOEI2GIV2DTA1jXYL+cEhXE82tbRY9AYSgrmEUHjd3LCvVaIcov7b2md47GXeEt7q35gV20QmYDKVNBLt8mqy/XAdufDiNPvWy/UaZUscFOIrpU1UVFV+wywLwUq2PUV0Ygaw9jQNIDuKOKuB/ZsGwXxrwWr1/sNL9dHh8V2EpFClcV2QmegpK2YlSKLPvZebN2YxmDWGGyJNqWIA2KYrHcNqaeJl6ri3MWiAC+3XoCQmAS+0VxcUgicGZ7A2QtnAvZcRx9o2F5VopgaE2vyq0vnwFh4n8trV7zH2dSoV/0sygo4IV4gRgnwkeNVr6XxqxfVRpu0Juhk0dUryLDqMcDY9cYsyW3OtWFzgrPrMg7M3Q5FFsmAU5efBVokwnjJAMpmqIJPHXGy9XxrRltc11HURKXbRaEimI+h3+3YftUriVfKBee7KCIkumUFca4FWiQCBZGLAQXxA8M2hmO7FPEdhaBP8560mEzsr1wXfrUAnjaewuPmd0IUom5Q34fNnt/0Jkx613Bzldw6GI6CeMxJqlFCMJrtz++wHuWq2G83/V1VTagMNguqsqlRRFSRTFjQ/aTEHPd5bYPwwr5R+OMXot6NKRe/Biz+OyhyBA/c8wNNt2eLVbAnnGxphEJ+d/Mqd7/QTY6VHDA5DNy2v/3iL5NwaV3tF1yWDWSTHURiCGkQQHORjImJqX5hl02NYNEWooAKkzEviYsrV6NbaxNQKVC2ulJ95iULDbMAIChrmi9sxTkHX2uhVh2AK3AGiAD7U8/7i6i//ToN7fT1OOOw/vcVIWwIABKB/JMHQG9Jd/w76lGoiHswG1D7VB313XbQTQ5KhVIp7TG5M5Qi2DclvrvURZBN54MBdh4AsFruXh+BKJI4P+0y3TJtSzMMQW9u1bOL1zZIVAI4h32xCPvlHKDbIrjukt0xKERUgkSszXdaHBFVJMjqwRjHmWscq7nB9mgzLeAfzcXz7UD9GibqWHXVC50ZOcO7h8tVMQY1S0h0A7eCTQjB3plbG95313ilSs7rjW6FphXsgMAZ52F6+IP7/T+YZP0qqVLx5x/XqgsATq6Gx03SIcAGxJxcqHQ/0do1G4bGYFPSKLLnQA0oTgchZ3yaeKkqWi0VCeA5s7XGTFwWCdRmyXLNFslvZz6+ev2M91ZQNTsItw9bM6pY21wMvfeVb/+Z9/jWfXcBTktIQXKS44GgOBvlOD4r3t+oUjy/1HnOCiqIb7UHG3AYYG7LaN5oqAgfDfhhn1iVoMgqbtl3JwDg+vplFNZWUQ/OOPimULCrZw5QItbz8WiT5J7FECsbqFHZS9jYNsdmyY9FQr9dlcBz4RvaVRGPJ9IgBu9ohdsJdt6/N0hI4Mx/vFvB3oEIK4gzsOtV2N8SVTgTJj5e/c8AgOmxfT3tt74P237Cp6xI93emhwMie5SOhQUIMgnxmG0hYmFciBWMZbsLyGq6qJ6DNH4vIcSjTl+u+NW+KcNPpQ5KSXy7wTnwratiAJaJDevkBwFwvOHY9yIZbwyKOHeEzZxDIn3PlEf/6haVGsfCGsfSJkexwkM9rxWNY7MIzE+JPuhmlesgUgkgHW+vJm5aHIrcmh7eDZJxf0EURCY1ikXmq+4fZGIRotsE1a20u6pUUIw6VC455y3FNIhERS+32ytUsYS/dht6OOB7YEfUGEp8Fk9cE+d3LM7wfbe0obtxDuuvroI95bSFUAL57+6HdCTb9vuagXEOwwJmxsJBcjLWOdmWK4nkzHDvMT0AYH6K4Og+0Zaymudtxx0ym/BaY45URVJhU++hn3VIBZmMt2V5CLXxLi8mw76hFcldvHpAhiPgK5qwaxyNbsk+ZltACbhuIeZQp+up4MubwNWV9v7RvYIzDmYE2msIts0Lu1wNqxGrirCaCgbYnHMYawakKAXjHOv5VnT6zmCM4bITtE2N7UMs0miRONODknjNC7D9lq9gBfvCpoQrjp/17RMmJlP+wp9k/Z6iqOY/nkwyZB3P42ev1vBTP/XTMC1ngKeCst8OMRVYy7fdJARbY7Bt0lbdWVWAmoaG9kAp7tPECxUutFw1G7xmtbS4I7IjNtokQcqrVkjgLEjTD9L3gwgqiV8J9GGvbi7iO89/EQAwkpnAG44+5FU/i5ICSjiGouG/56ED/kT6lS4UxYMU8dEBBNgAQKb9RVk9Tfy2ALvhZJ3QGQCceOmJxh1WLfCaCZJWwGt2iL03MwbMjrf4ISUTRLPBYxKKTlKroolWgab6B1EJvGyKNZqDSiDAZqvalhPdViDAdhXEGfcVxCeSNpIRHkqc7FawdwCC1dWZpAXrM1ccXw/gs+yzWGbLGEqPIx5LtdhDc9B5f3v72Q3wRXHDkD1x0JnuohvT8hXEXSTjnSvPnUTQckVBFz0wI1Sh2wVkbpVyJE08cYR6jDtK4hd1P8AeLgUD7FfHpXZuQ8KGM3CmrRcAU2QFH3rj+8GLJuwTedhPrsF6ZAnWX1+D9YcXwB2VeDIWgfTARM/fWagKRfD5SUCSxLm5vs6xsslRqQG3zgGH50jTPpl6UEIwPtxcgMxF1UmWJLag4xNRxHVTfw1mUyNYsP0Ae870U99b6sNWKYjJhYJ0O+iNCuIhEOG1DAj/dOisraK7aRmex+aeyYN4acWfXX7kds1TwG0G9vwm2ONOUo0A8gfnId3en8BdpQYko8KjPIihZHNWiQuXPj492lr9vhMoJdg3RXHskDjnyxutE3IkKnlZ+H16FTHbQslKd81eIJR0tC30bNu6ADd2K9i7aA4iU9A9CZAelfxvFIhEAY0hqooAJyh0xhjHuWscnAs20qACbGYwcIuDOnMNVei2WXW5Htj1CLa/2WUbVtmGlJBRron+4n7nreX1q9B0MR/VC5y5CAXYq+29sF2K+B7qVLBjUsjN5JE6engQwWsuw1IwTHFyCfH7sBnN4JtPX8fTL39dbCiRju4JsYioNutGdwOuXbM6thipiiN0VremcGnitQUNK5tc9MVXHRXwNqwwolCwdfH3cpsJYbOSKfRQ4Fc5XaG5qakpRCPN18tzLYTOPveNT3kCZ+9+609ADgjGFWQV2Shv6Dk/PmsiFRGf+fYVFZUOiev1ir/PsQFQxAGATvs9/KwuwN6TYd7vO7kqg/NwH/apE41CZ7xiCUeOtCLYD4E+bEUmLVsEeckCbIZIjGK9IBJd5ZqrmdDkMxEq2GIBmrgrcpaIpoC12pbH2WYV7OUSRc1yBM6cHvUQRXxX5Ozmw+3BHokxRF/aAL8sBmE+quKP8p8CAEyPz/e8X5Lw+7CDF1631WtAVFTrq5ZRlSCbbD6pcohK6NJ6695M0+IwbWB+kiCqEowPta+CuQHZxDCQiDSnpLoB9jX7mhfaR9erUBzT91dLBfuJa342uXBFnPt0chj3TL8Zxu+9AuuT52H9xRXYX1yE/c0VsBN5b3vpPXM9i+PUDI6ILCqTh/dSHD9K8PojBLfN+wJj81PdC1MBgvot09bqz27/dTurpm4wkmnsw1aVKNbohvd8Sgsqifc/3Ig+Hx6aIJqilYK4u5+oBJ4TPsp8XevYE7S0dgWMie+cnTyAcxv+dXzHRPuFJ3vJpxjKH9gH6c7h9r+9DUo1YHpUJDaCSMRIU1aJi3JNMBWyyaZv94SRDMGxgwSzE6J3q1RtEWQ7+gMUwOFaATYU5LUBBrmubVsHcO70sO7Ocrt4NUIi4JotmEJmOAm+sglcWQHGnXxdvSaLsWn0Za/FTQ5mc9+xQyGwSoOvYAc9sIOQKFAMUJytsgW7ZkOKUhTKItCrHwO7xaXFk97j+ZnmLjC9VLCrWhkxxDEuiTIgGfdZEDbz+68lwvGWfeGqRDDYGA1YdQHAkfHA8U7d71OfKQFs3lLMChA90DUdKFVbbhKCVRQWXe0Y94os6N/N1ohyRkZ5SUdxzRL911WrMxU4LoNv6rCeWIP9+BqsJ9ZgPbkG+2xRtAgBKFXynjXmvn37Wu6qmRe2Yer4wjf/CAAgSTK+760/EaqYFyQlRCN2oUrCRg0QjLtvXm4fEG5LBTtQeOOL4aoXIb5XekGnWCzSsJL4qaca9scrTtJCpiAWF+yCLsDWNRCFIh4RraRVTbQetNJ3JjIFbOaxAy3ThOas/eJyQvwGdWsxgN2kgh0UOHMFBFMR7vXT71LEbzLKFkFeE4fhUFyD9Tm/+rb+Zg4LYmCcmeg9wAYCfdguVAp6rLuFtmlzyHLznodmwQ0gFr6pGDA5IjwRmwXZ60VgatifnDMJAkJaB+RVTfhvRxSCoXTz6qgrdKZDh55yelxXNMy4Vl1F2pVwxM1GMMC21/4PAODt9/0wyOeW2gZ39PgopCM9KEg5KJSB8WFxzgAhOjaUItg7SXDsEMXUSO+Vx3RcUIebsRI4OBjv3H/dDZIxNA3uynH/i0er/uMtD3aENFjr1INrNojNGxRMPUQouGYBeQMsb4R6eZohrCB+COc2xPYS4ZjPtr4euM3BzjvuAXEJ9J6Rtt8DADbjqNQ47Lq+dt3kUGXf8zyIWMRxFWhxWGq6EDdrJ2bXC2IRgtv2Ccp4VWtuCRcU+HP7sJfLg5tqiETa2tV4sDlgY7eCvYtXJ5yKJeEi0e66Q3DOcfaaGMdjETF3B0XQags1bD6eg3a997I2s5gQfXQr2CoF02zPumtQqPfAdlHfb26WLEcJDVjL8baMoU4ICpzt29O8gr0n4IXdSUm8qpXwPZHv8Z4H6b0vLcseE+6+PSYydXTkYBuZ8MLe9J7fOhI4b+nj2MyLdkVIBNzmbcc+VRY0+2KBoXathvwLhZYMBM45rKIFHbSpZIn3W0EA3jzAluISKgUb+rqJeMRhhXVy2YlJIgDXHLXxqASSUUWCYkQsdoPJjXYB9uzUIe/xFSfAfuzZh5F3FMTfdNf3YXRoCrwS9sAeaVFxfuhg9zRxV+QsoTLEu7fPbgsyEfOiMr7UmCW5LZB8ObkmY2x4GqNDwo3k9LlnYNv++5xz8A1fNI6T7gJsXhOq44jLiDhtgIWqYFa2tccjxBO4q1Z956Q4TYAMdafM3g52obGCHRQ42+8E2JT4Vewtu9dsEa/5AHu55o/Y71xb8D1qjw3jYvSq914/FWwg3IcNOOJmbSipQRiGUNZsFmCn4mioUubLgvZyeC/B0X2kaZBd1ThUCZib9Kui6YTwNm5VEbcYMJwmzveSpnTPoJJ4LubcXCbDbXLFeUhCohA7EetVgrNOABWzzgGGyBz/wNT7wU46XkVpBfKP7IX8kwegfORWKP/odqj/6hiU9+/r+ftMW9hE9BNEt4MkCVZCs/NZromALBVrfK9XJB0/7HoLD6RkVLmYHNKBVPpW+2FIRBJ2E+34xpoN3u5QRiQQ3QZbroFULU+1sxWuBgLsqYnDuFoQf8O+IbvtYo8vVLx+cXow3VHcg4NjZVNUCtbywPUNjo0CR1XnKJQFNTzd2DKIWERULZotfkxbjAcjmcEGmJQSzE0SJOPNv7dZgL0ywABbfEkX21gcnHEx4+5iF682uAGVxUAIvF7I5Q1RvZ5wEuRRFcg7U652XUPumTy06xrsau+VZ25yMAt+gO16YQ9Y6KzeA9tFVBVzlOEk7swNEzRCUdWBfEWsU/pF0KJrf4sK9tT4Xm8u7lTB1moVvDf6I95z6Q0+M/Frl8Le1w3IKF4bX9ALGwCi+knAsbpE6jg23ADbqWCjRXsOtzn4pg7lchGrX1nF+jc3UHyxCH21eaKFGRx2jUFnrRXEXVDS3EmCEAIdFHxVg0wAXjRAou0HZ0IIyFAEJKuCpBSQmAyi0NAcubji0/PbBdjJeNoLMK8unQXnHH/9tf/hvf+D7/hp8SBUwVYxHG9+DG8dtTHnOAm9vKLgeqn538K5X8Eea7GvfkAU6gnl8RWtQdT1aNM+bEETr2kVXLnoszSg2ULZ21njEEUSCZAO4EXRf42oBAICSoHVTY6q3jwW8X57VALfNMEZ9wTOACAeTXVu++oCzSjiF+ssulwMOQmUvEZuamFvZ0c8NwDXAwH2fKHgPZa/d9rrAQGAmT4DbLo/HGB3433tQjcFNbtZz0Mq5gTFTl9WVefQTeDWOeFZHFUbg2wOjlwJmJ1AyHpJkQlGM0BZa/gaEeTLoioKiO9Um4iiTYz4Qh/L0or3+LDtZ7J2eh/2k4Hqde36pwEA82O3YOoJf7KUf2AW0hvGIN0xBDqfAh2PgsT6S6sXyoKqPdxba39XGEqJgdFmQpSqUOG4vs5hWsJ+Kz6AADuqOn3YdeuHbGYU122RnIiVdMiOfUZuqxVslYoe7DbVFF402lYsiWNPwWsWOCUdA9+FgEUXSb4OzIneD460X7yyc/4E041ieK4kkmbHDhHcd0RUibMpsQiVKDDdIglDCcFQsnmgW6n5oneDBiXCC71p5XxIFT1fEBRxyvnAA2yXStgWFhNczd0AexevRlAirmGTIaYKP/r66jUgkvClGlC9riH3dB7c5FAyCsx871YjzGQA5964SCMUXB+8F3a9B7YLlw7vrmuMnAEpLqFQEZ9pW0HrgOsrYj1HqdTSEUZVohgfFmuZxZWLbZO585szGJeE5op9MAbqVLA5B55aEONfROJ4w2zjIEkkCl0Vr4/VUcQvXX0SqLwiniTuwJq7LpVaB9i8ZMJ+Zh3WMxuILZZQqACxPTHQqARtqUWAXbNhaTYMdA6wVUX0zDeDpsiQSjr4uuYInG29HXChywo24NPES5Ucnj3xDZw4L6jS+2YO43W3vBFA2EKqICstbbUIAR466B+vr7aoYhd1AtMW98ig6OHeb3Bp4jYHXw0vym8dtUAd+vMJx8btaKAP+8Tz3/Ee84oFogWKCK4TSwc2Ci+Y4PDHgFhErCWaJcRCiEqCHajZqJQDHtiZ3pmdzdBM5MyliEdljum0/3e5LQCMExQG2Z7WI3Z2xHMDsOQG2JxjeFOIVSEhAyMRLK76N3mvFl0uSEL2qthkXwJktvvVrm4J26VmkCSC4bSoUhoWR74EHJgWfZou6oPszaKogs2ON15wboW6nu5b0cQi3c0cJyLOJFg3Zo8HAuzLtp+Y2OsobQI73ws7SA/HxsMAgJ+f/geAYz9ADqZAj/UnUlUPxkWwOzPWW391t0gnRHJmZVOozVIixNLuO0xwZC/t2a6pFYbTjUFWJjXqCZ0R7qvJb5muo1LRe9tC6IwzDl62miqIhyBT8ILZVWLkasCiq0T8JNuh4U4Btp9YoofaB9iaIa6Fg3sIskmC4bRoEbjnVor7jxIcO0Qwlm39+XSSgDWZM6u6UA/faq99K6TiBFaTw0AI8arYcWZjr17GUotKQN9wzjFv9oe7sLkQq9yliO/i1QiZiBYHiyMWEX21V1fC1WvAEaFaN7D6RB62ZiM6FQWNUJg5UU3qBdzkId94IhGhLD5gL+x6D2wXEUUk9atObsCu2ZDiEjYKHKvr5/H5b3yqo31WK+RKws0hkxyBLLeOFNy1XqVWDFG3g+CM4/68r+Asvd0XN71aoB49/I5JC5EW04wRF8c0S7IoFv3vOXnhGaDkCFYRGcs1Z1EnESGb3KQkx1Zr4Os6yJAKZU8MVVmBxQE5JUNfN5qyGeyaDVNjsAhpEPyqhyqLtWa9kjgA5E0KldngqxqIwdtbLHaJ4Np77969bbcN9mH/lz/7Z97j9zz40/71FahgF2W1aQ+2i+85YIA4N8HfXFCbMjZDFl0DEjhzQaaCfdjhrEZM8Su1l3MSKkZY6OxkUEm8YoHzQD98VBLioG1aHbkttGlIwHs0HhFxAKEd7PFUKpTHqxbKRf8eTST6tC+pQ6iCHZdRMYDlsogp5ofsUB49KHS2cRNp4rsBdk0MtBOmBllz6OGzCRBCQhXsfiniAKD8xAHIH9wP5UMHe6MCcyDZxiNzKCnoD2s5YG5C2OnU7z8YZBsmsG+KeJnvIDIJQfetpxVrJjCe9SdCSSIYSjVWzEazU6BEXE6nyz5NZazkq0jv5Aq2bgHPXRfXgsI2gPKzmKYzOHp9n9hAIpDfOzcwKnexIoLgscEk9xqgyAQTQ8BoFrjzAMF9RwkOzFAk44MNNlKxxsRMvZL4rCGuga32YBOZgti8tYK0brdXEHf3E5WAogkk2id8OOdeBXtseAaXC/7Ed2ikdS8T123wy05iaSTi9ZU1A+PChm1uQgTD9YhGCEYy7ZMwiQggy+F2EcMSFjhBpsqgEYuIak0zxwISoIkfreZxvTDYBbonTtdO9M7muxXsXbx6QQmIzcAtR0lcB85e5bAZQnO4qpmwT+ZRy1mITgt6KY1QYcHUSRSyDszkTVeFdm3wFWwXvGKBb+rgjDtiln4Fm1scBidYXtfxOx//Yfz7//lr+I9/8tGev49zjnxRBNjZ9GjbbbsROmOnC5i0hbjZKesUlEP+4P3soh+83zvdmpJrp8WBpoTC3PADqVMXngHKz3nPN+1JAI7DAuOibSD4t9lc2M0lBNU64rIAdEBOSrArlvASr/9+jcGyCGxOIHVRwTbMRraabnLUdIJIjApWGPhA1kjucSeEdA6wp4N92MKGLR5N4nvuf7/3eqgHW1JCAVg9xhIcd0+L+X2pJOGVlcYMyfo2CJy5oDM+vbDeqgvw7bo4CE6vyTi093WQJPEbT73iK4nznBGmZssExGTt+7DLpqj2x/0LQpEJLCZcTNqBUCctUbFQWfRbHhLRwVA0gz3YSMih/usDdQWPYAJly8zJLWDnRjw3CC5F/LDm08PdKrN7k2eSI0jG+4+ESEKGdNcwSKJ7JQTGRH9uu56HVNxX975llrSsVLlB9u37CaZaaC1FVRE4B61ALJtDIkCmThArkxA3XBCyrGDE6YU5mX/Rqxolcv4AsZMr2M8vydAdyg82vwiA4xfTvwzi3LfSWydAxwfAq4YISKoaMDPawvJgQDg4Q3DvrQQzY6Rv5dVOSMbENRpcMGVSI7hiX/aez2uimjsIwQkOtA6qPAXxDtdZUgaZjrcWQnOQL62jVMkDAOamDuG8oyBOwD1Bjaa/8VLZE6Khh9pPLusF0V+9f7r/PvyE2wsfOAflKpCJN+/bHhRiEUHxbFbFpvv8Lz5SzWOpNODrz1k4tLNt4xYHCWbwd7GLVxHcYBMm86ySlnPhRByvWaBnCuBFE2zMV7GmUQqms54DY0ERr/8hg/fCdj2wOedg54uwntmA/cIm2EoNhDGU3H5fSlCoAE++9DVsFpYBAE+99FWwdsyVJqhqZZiWqB5kU90H2K2EzuyvL3uPP8c/BxoQ9nr2uh+Q3d0mwA4KnSEnfluxnMO15fNA5WX/t5O9sJl7/JsIPBYNERQ5tFlFIrBtIUJJqBDBM9aaBNg1CxYTCZtOFHHZGefrmYtVTbjKqFmlMaDrE5xzb+09NjyDSKS9QFawgu3ioTf9WNhWN0ARL0qtRc5cvLOD2Nla0KJr0BTxQAWbXW9Uqg32YZ9YlRFRYzg4dwcA4MrV0ygVc+AGE0JlAY0ZbzxpN2cWTKH5ULeGmh4hSHVTnJEpWM5A+dqa91Kv9sat4FWwZQKoFBc3/fts/3A4abBTvLBf0wE248CyJk7SMTsYYCeg6VWs55YAANN9KohvBbolFDVjbXqO4lHhY31kH4HaIYCKqgSz46197wChUmxZfkWqqole3VQdqz0RE/Fzveq4K3S2WV4FH3MsKjY0JKm4MXZyBfuJa/6BNlf+Em9WH8AdVAxayKqQ3jE1sO+q1sS5Gxva3oU/pdtDPw8iooogOzjxZlOjuGT7C5NbTRFgD2Sgk4jwzGwCXrMB5lvMtAIhXXgtI9x/PT1xKy45GdPZDEOsTa4s1H/dhh5eqokE1qE9W0uAyJLohw6eA80AJkfIwFoBmiGm+pTOepCZOCznvj9SLWCj1pxq1y+8oLkdddViTWrru9jFqwiEAJZfFWR11WtesoBNHfZIFKblv05lCm7xnoXO7JrdMH5ShcIqDtYL2/PAzhlgqxpIQgLf0MGe30T89AY2z4rEvBSTsFnkePzFz3ifLVcLXqWyW7iq0kDnCvae8fYVbHapJJKoAK5YV3BK8f2XTRt4cVlMDsMxhvmh1sGXPOIn7GlZbHf64rPihWpArCp+FAWH3s7R2IPNCoYIiurmtKoutpMSMrQlrcG2zSpasAmFzQGpwzrBpQbrdVNvTRckISkuicRMcuty2sXyJspVsR7f00Vr5t7pWxtee8/bfzr0PNiDXZSVjgH2m/YaiMni+D16WYVWd/kHKeKt+rn7BUkpnoYJv15t0AG4fcK/p59bCgudAcCpV54CKqZIPteLuMoUvNBcm4FzLhJcW7DTIlEJKJuorPstD4nYgCniCRmEkJYCZ8DO8cLeuRHPDcBqicBkYuC4JVDBpnsSWFq74j3vV+BsK9AdQY9ImwCbEBE0J6KDWUSn42LB7PpcV3VgNNNo8ZOIAtEmfthBoTPNnVgYcJciAqzlEm2ofO8EcO73X0vERiz/Lfxf8Z/z3pd/aNazOhgEilXHU3xA5+1mghChBRCceDOpESyzZU9JfF9NLEZyNYIeWwIbvy9CQ5NlEFyz2/p59oqggnhi5Lg3VhxsQw8HAgE2EQrizWDaHKUKcGDG1z/YCoZSfj+0bnKoCjC0DeJ5QSgyQSzauOgChIhPISPO/6RZQ0K3UdQHf73zapsBhXERoOxiF69acHBT3Nh7J4HZ8bq3HdcEKhHU9LrBlaDnAJtprCHAJgqFXe4+wGaGsIiqXGquiuV5YMscbLEqkqIJBXQsCoxGENEsVJ/PAwB4hOLaShnPn/hyaB8nzj/ZZM+tkXcCVAAYSrUXmg1RxFcvNLxvf82vXv+l9heIxfx2mFNrMjQn0XH3tNl2+FHH/LlBKYsNT118xvmSIojhtFklbsd6zheODS6iOHPo4XXrE1UG8k6XkpySYRYsmDl/oHYtuiyJNjIWWkCiYTs4QDyn1NHdmIx17ZDTDsGkRjfaR9nUKFIJX5TgriMPYO90uKrt+mCXJBmMEAy1oYgDQFQG3uJ4YldNgm9fCScOghTxQVewAYBOO8mXmg3kwxPsRJJ5SucnV2UUNBISOjv50uNijWQz4U8dgOfE0szqrWQJkdjkFrzwohJ4zkDV8u/9QVSwOeew8+I4uwriF5pYdLkIUsRvphf2azrAvuKcIMI5povOaJRRQNLKwPqv+4VhioB3kPZNnZCIAemkoIkzzsE5MNykh1NVmqtHB4XO8q5VF4DbmHhsc4LlQYsdDQDnNyVvwDyuvYyPJf8lRqnIctPDGdDbsgP7Lt0U1LjJ4e+ehX8qTkJ+2JnUCDg4LlniHhrRNSRsEzYnKG01yFKl1j3YJbNhQtkKgh7Ydvx13uNDbRTEeckEd2hdZCbe0md7PS9aBJoJDvaDeBTeOShXgWyykXmyHcgkBHW1GWoT/iR3pJYfqBe2C15tYzticXS9etzFLgYAzjjsE3mwtSaWHP2AUsCxyJKaMJJ4xQQkAkUWbSGhjyq0ae9tO9hV27Po8vajEtgaAzPauDdwDjNvoniqhNWvrmH9mxvIP5OHttyoYO1ZdFVMUTELUKWJTKGOR2BkRcNnlUl47NkvwTDDVNlXzvUYYBf9ALtTBXtybK+nJ+Mqj7tgSzWwU6IYs2qv4lHjG4hH/QA7TA9vn5SIjWe9x1FdHIOTF57xXhtRnN8sZ3F53WVFEfCgyFnZEoyuunlGVYXys2lxUJWCWwzmpj9WuhZdrJNndXCfClAsw6uocs6RK4qizCARpOXPTHYOsAkhIZr4ex78e40bOUn5gqQiE+Vtfb9dBGnif/5KFGZg2g+LnA1+jgl6qrPFxkTVcUeZnnGCZxaVsNDZy08KqnczJl+Eghs20KQPmxcNQGdbKiYRhYIMR1AlgQB7ED3YOhMCjAAQl2EzIfIGAFMpu8GHPFTB3qWI3xxcy4k/f8aoQnXKP3RW9A6GFMRvQoBtM3TX8zBAEEIwniXQDccSI9K6h3M4TRoW1q2suuZ1X0l8J9LEn7imIG6b+PDSafz6+VUckA8CALhCRPV6QEkOzeBYLwBjWREAfbcgGRNsC5fR4Pa4BWnifh/2VgNsCjSxjOE2EwuNLdCb6rEQ8OIs8DnvcbsAm53vTA93kyx7p1rrJvSKZNQ/B7oJTAwP1lu9FRJR0pL6zed8CuTRah7Xt+Per1rNs/EAuMEwUErDLnbRAfbXlmB98jzMPzjVXkyoSxCJtG2D4EUTRJWgyoJxxgIUIRqhsPLdK4lzxsGMxqoXVSiYyWC38MLWV3RsPp7D6iNrKDwjbMJie2LgjKN4otQQmLsBtrxWFdTmuqqnosBjCxXKHI8//xnU45VzT3X1N7kIVrAzqRZCNO73yyqG0qLKvVlcDb1nf8OvXv+V9pewYCEWCrD9lX67/msAkIZ91aikEQdjDKccivhwZhx7s/7nz687x1BCaP7jBQMwGoOiqCKOs1sEoVEJteuaFxwzzQYzGExCuh4iVVnsz3Qua90RPWvHsuwHvVawAeChN34AAHB4/m688dj3ht7jlu88UpA791+7uGPCwgGnt/fCpow/eck/X25BJipzJNTtDbB5kz7s+wPWb08sKJgcnUM2KdZdp155EiynN2cTKBREZw3aJZxz0aoxAAV4kpBRDbgHJQZRwa76YylJyFgqUY8pcmCocXwc2q1g33xcdQLsQ7Vw/zWAsAf2xIEb+rs4ONBB4Gy7kEkKwYtC2VEWb6I4DogFPUFYPXrc6cEGEBK5mqwElcR3ltAZ5xy1Z3P4+Pnv4Ac2r4E6s81VfhXq3z8MMtpBOrEDdINjvSA8qCs1YGpYKLnfSGbCdiOqiuvBVaB3FzAXbT9AnXcG3K1mE4OCVbxmga1qsM8XYT+9IQLsyOCGtJUNQdFTZBULZT9YPthG4Kwbe65SVdC3BylAFlFF60a+LCoKQzcogROLIMReCP2mA/5C9ki1sC33PjcZYLQ4H4a9a9F1A/Cv//W/xrve9S689a1vxY/+6I/iscceAwA8/PDDOH78OB544AHv3/Lycoe9vXrBbQb7205AptngS40L454hE/AWgS03nIWyQh0XgbBlYq9K4szkQhiwvgdbpeBGc6suZjDkn8ujeqkKOSkjPp+AOqKCSASRiQi06xrKFyqhz2gGYOUMSOvh6rX3fcRP2p1f2MTLZ74OABgbmsYdt9wPAFhev+Jp5HSDXirYAJB25rBCadOv2G7qYM8LdWQWI/iy/iUAfgBR0gnOrosxbl/WxminymZKgQ1xTDMsjWtL51Ctifnj6IHXYy7jV1CvFsRxIpQIIU84QdFa86BIkUXLkKvGLqdkGDkTVkl8n10VAXaNka6quYBIfBiWL6ZZ051CzIAr2EFafjc92ADw/W/7SfzF75/EH/yTL3iK2h6CHtiSgpEO9HAXlAC/9qYqJMd3+n+9GMW5dQmc+xXssQTbli6kThXs28YtJFRxHTy9IINxgv0zRwEA5VIelVyusf8aAaXv+jGhYoHn9YH00APC4s7FIALsoM0aEjKu5P2/bb7Jeiwiwzs+ud0e7JsDN8C+JXAx0DoFceDGU8QNpxDXTuBsu5COA8m4+A1j2TbWQDGxqA/2X04EAuyLpXNesJPJ71yrrvL/voafPHUCI5aYNTSu4b9XP4E/nvsrj83QD0xLBNXlmqhW33GA4PhRgrtuEV7H302o78OORRKIqnFctPx7aP8AlcRdWM+sgz27IarGmg0yHBlor/za5iIAYGRoDy7mxKQ9lbKRjLSomHIOdtYZS2QCMt8Y5XJwGCYwNWABMkIIhh0XgKG071u/3YhFHKGzJsWa7OQErjERcBzQiljKbQNd2+RNGQ2ACL47Cd7tYuv44Ac/iIcffhiPPvoofvM3fxO/8Ru/gWJR3Af33XcfHnvsMe/f5OTkTf612wd2qgCU/IUg75Ge3RQSEWJ9TbyPfdcECkUCTDM8H3tK4l32YXOTgdkctI4i7nthN/4GfU2HkTMRnYlCrqMpU5lCHVZQOlWGvu4fC80A6GpVVF5j7fs9v/7k52AzcUzfdt8P4Y5Db/DeO3G++yp2Lz3YgLCaBADT0lHTyuBVC+anLgDOIajcKUOHyCi7Feznl0SgA3SuXgMi2ClSMS8OYxgvnf2O996RA/fglnF/LlupOclaSkRSEegqKPKEzuISWNWG6VyTtsYAzqFbnS26XCiSEMF1q+JVTchcDFpI1V17U0IxNd7eoiuIocx4Y3ANv/8aEAriwz2Ikh0atfHjd4osBeMEH3ssgbxGvOrpoAXOXJDRiO+U0aSCLVPg9TPi7yobFCdXZSQTWe/9arnYWqysiVAszxuiFWVABQo3UQQMqAe7Eq5gBwNstx+9Hm4i5Wb6YG+hm/3Vj2sOh/9W3Q+wyR6XIi4q2KlEFunkUOOHBwDGOPIVUXkKqggbpuihuRkVbEoJxrMcNU0E260QVYX/blX3EwHjIzPe+6u5BZDJGPiVCpSigZhtoSbJO8qqi+cNqE/6FLCzIyp+58JPYI2t4ifn/3H/+wXHWl702O6fIUjGbmwv/c2AYDr4AVQmNYIrG5fBOAMlNBBgb/04iKqHBRKVwBPytiil17Syp2SaHr0Py86E2rb/el0H8mL1QeaTTZXKq5rolx4ejLBmCMkYQTrOMTF04xgSEVVUMHRTjAmh3xPP4FH7FczSB6Fw7iwUBjvZEZuB63ZzlqO+64F9I7Bv3z7vMSEEhmFgfX299QeawDAMGHVy9LIsQ1UHlWVmkBQOIm1fTz57qu5vzut9fZ/7GSJxkIgQbySWDVI3dXLTBAUDIoBCAE44NBtwNROJQsDAYFYtKKxzZcoyLHBmA4oMTuq8liUOU7MQqbPHql2vgUkckNHwGQCQszLMxSqKJwsYun8IVKaorBuI5Kqgk0rL46NGxevfftanhz/4hvciV1wDPi+ev3L+Cbzt/vd0/LsAIF/yVcSHsiMdz0sm5XuhlTbXIP+FBu5WElMyNm4zgC+Ip/FYAkTinqIzANw7a3Z17stKBUN6FhmawbMvft17/ejBezA8GgeeZgChyNnjYn8RAMwGuA2UdHFdxFWQJsc+EuUo1pzzQgCogLaqITobhVkzwCQOk3FEImi4tlpBVjg0E+AEKOsMitL9Z7tB0KJrYnQWakQB0N995KEW8MCWFYwkWE/7++BdNTx+TcH5DRmX8xJ+/zv+wngs2du+ugWRADIt1s98XYddthu+5/45A9+4JMbHJxZlJFO+lXDZKmCyxe+iCQpUDIDbwrqLc/BNDTROQGRgELolVd0PsBPJ5NaPUeAckqSMq4FC3d7hxmMDAENxhqsFCZpFoHOAKhycs54t/pqBdqld8JoNsGs6x0qJQOIM+91sy0gEJC7DMDWverWd1etyTYjclqrAhsWRionKk24K9e5B9Wf2iuE0QbnG24okEUIwnOFwDhMAUblMJ4dRLG9iZWMB5IAYIADgVlbCC9LQjqpgs4v+IPB/hudwYe5hrJ0TAfct+471vd9CWZzHAzMEyRvcR3+zoDrrNw4OAoJMagQrG9ewwBYwJ81hr16GxNlABCfc3iISlQF7e47vWoB+qGTv9x63o4fzLuy5SlWhBNyq9WIrSMZE4D60DcF7K1BCkEpwLG00vkcIQU7x7Tp4zgDn0YFS6jgA0rQnnwu13d0K9g3Bv/k3/wYPP/wwdF3HW9/6Vuzfvx8nTpzAiy++iHe84x0YHh7Gj/7oj+J973tf089/8pOfxCc+8YnQa+9///vxgQ98YCC/Tx4C7vsZACh12rQvmKsmzp8uhF5LqGVMP9D/9+17YznwbLFxgyyAAwAgtnNXKqFvnAbW2CpwBd3hHsBEk+rrNLCBdWxcqUsijIp/5XbHdRooo4zyovidyRRw308AaPY9DuYBLC8v49SFxwGIJM47/+48SqVR/NPfF0HBuaXHMd/l8dU+7rcm3Pm9USST7T83+9U08BSQJEmkP7MOviDmLWlEwt7/MoP1Rb96PnNrBPMPlPDSZ0WlTpE43vMjOcRbMJ2COJnRACfHv3jutPgOScI7/85BSJIE/Ml5IH4LKmQWe9+0An9dfw0YAnAEcM9/PRquh2mggAIKVwpADMD9wO0tPtsKwX1OTQODMy8VWF9f9/p3Dx6e8+6B8L3QGwqVEq47j4uSirteV8X8A73t7w/2a/ihfz4F0yb4zlU/6XfosNb1Ndgrlh6TkXfuW/280XAM3neM4mPfTIBzguc3JLz1lijwqHgvczyH+fs6/a4A9fwt7oPOzItuYP3bPABxLR95hw1CtnaMNheqcFWdxu8xseyQPSjheODd+aY6AHOvRPDikliYZu8zsG/CQqF6HYVux8I2mJ/vLi58zQbY5xYADoK9WhmKk9FwKcFLa1e9vpvtDLA1A5gZA2bGCNbzYpG6vCFEJPZPb9vXdsRwmiCb7Ez9ScUEdcwNqgAhdFYsb4r+qAm/BH/E3MALyhBWyhSmDSg7oJBtnfdv+pMjIygu/LX3/Ja9d/a1T9PiqOnAHftfO8E1IAJsWQIs59y6QmcXrQuYk+agcI49egWbtZvQ99AH1gKZIyt2hzfvtLPo8ujhAOgtjVGuzYTD/Pg2+Z8n4wR3HMCWPLX7QTpOsLDafDFpxCzAYbilajoKegzZ6AAz/pSA15osCmwObvOu/M53sXV89KMfxT/8h/8QzzzzDM6fF/7xd999N/7sz/4Mk5OTOHnyJH7t134NIyMjePvb397w+Q996EP44Ac/GHptkBXsCy9U8dxfbmLs1u2R1rf+ZsmjD7sonmTQH+udHkkkjn1vLOPyd5JgJsDXNcj3jIBkw5Q2+3wB7EoFdFz0g6zmOPZNAQdn/GteW9IQ3RPF8H2dWXi16xo2vrWB+GzjMdKWNUSnohi+399P+WIFK9/K4eVqFIpMcNdBgmiLxKGRM8AZkLkzjcf/Tw5FQ8LQROuqumkzPHbh89467IE734fL30oDSGPfzBFcWjiJkydP4eTfkJDIWCssX8sDAFQlitXnJrHWIctHS1NIkiR+O/U7oFec45mSIf3MLbi+GMPFp/1Eq746jG9/PoOra+LvOTpmYeWp7kQwqoHKW9oUc8b+Pbdh+RlRsVasJ2DiFnASxeNfzGBKMcBNBvn2IVgv50BU2pJmb1ocxSpw72Ei1mo2R21Zw+ibh1E6WUI5Z+P5FQXJmHCG6QaFCkdUAW7fT/D0GY6ojJbnvB+8ctb3/x5WD+Hyd5LevcD7TKZbz/oU64KsAtdVXOrxvowC+LvHavgfz4bvDWVT7nlf3cKiGgCRtNPO6litjjUcgyNjFk6uKji7qOLOkYPe62e/qWNMb/67uM39MWUoArZchf1yDmQiNjDm2+aqKKzFoynnvt0arFf8tdXqtRTOL4p5YSrFcP3J5n+nWvaDjGe/HMemXMPbf2YM2bEBiwa0wWs2wD57Tfx/MOB/TfaIm+f6DVIQt2wgmyTev9kJjo0isLrJkU7c3OCsG9ptIiYCK8P0rRomRmZx7spLYMzGupqDS7RKLZ8C9h8EB8FymWI2c/MNsWvnKogBsEAwdGsMz336BQDA2PAMhjL1hqOdwSFUwqdHxb/XEiIKoMiAZYkA2xU6u2RfxNsgFtT7tRJytc79bzsBq4EAu0x9oZVWFHHOOJibsIlLIZESF6WqaLvYTgX5Gx1cA8JtAEAo0ebCThEvwB4xdSwWKLLR3rx524EoFLzUJOlhM6dB8LWT5LrZkCQJx48fx5/+6Z9i//79eMMb/H7Z22+/HT/2Yz+Gr3/9600DbFVVB0gHbwYK2yR9L9LbgTMO60lH/Ioz2LCgEBXmagXqFr6P20RwcU0CZhLQuvYKtmkBVPL+JgqgVAII979TUiTYOQsEJCQQ2QzEAohFQp/39iNLsEuCUkqISKxrVzRULBnVKgVjwPU1wdpqhkg2guqVKipnq6htMEjjkbbnQpEoHn74Ye/52+/7EW/72w7eh0sLJ8GYjZPnnsfdR9/Sajce8kVxfrLpUYDRjiTYYXUc/yr1OzgkO/ZPSRnKz90KMhYDt4Fq1deViUdSePaav2i/Z9rq+jqzk/45da1Bjx54vff5FL0KlwN0cV3C5CQF122wDRMo2eCTaksWl0QAXQNqVYJ0VJx/YgLGsgFW4bAhwTQIaAxd/16ZANUaUCgRVKtAKtv9Z7vBwlJAXHj8gLdvbvd/7wbnh4KsYDjK+9rXj96u41tXVJxd98Om0Vh/++oGZNJfQ+hnNfCpxmNw/x4RYAPAKjvmvV7Wy21+FwE3AVbloEMUbMUAhwTSxX3RLao1UW2PR1MDOT7Bc7jJVa8Hfi5jt9z/cNSPMTYqFHvjBITQrundg8BrNr1/5qr4PyxwFu6/BoDp8e5UDHuFaQurnqAYUUQhmB4hOHaIYjSz8xeGiajoE9cCrXNBL+xf/uR7vcd7Dd8P8/zqANRVtwheMhHLid9xLpbGLcMLqOkOnb1PenihLI7JwZlGv9LvdiiyCKxdC4+spyQeFjq7mZYJvWA9d917vGEKYabROMNQCwVSvlDxrEDowXTTxWxVByaHhcLrdxNiEYe90CTODVbdxkxt8BoMChWKzfUiUBYHbL5LEb8JYIxhYWGh4fXvVh0KfqEEbIj57XnreSzYIjknlVjXFllt9w8AZvj65iYTokQBBelWVl3dKokzk7e0bCIKBdMYmCH2bawbMNYMlCQZlAj3kaurQLHa+u+NTkZRvFyFGVchdxgDF1cu4qWXXgIAHJy7A3NTh7z3bj90n/f4xPnOftiMMRQckbNssr1Fl4t7Xz6IW5zgWlMNKB++FXTSX6yFRJyiyZ7suULI+p8bpSL5fGT+HthPr0P/96fxjzeGIDsMyzOrpkgY2gDLGeC0vdaGm+wsBc6JFJegrxpgBoNNCWwG9BJvKLIoqGwWAb6NAmfA4NijQZGzgqRiONZfcUeiwD9+oAKF+sdzu0TOAIBMxbz7UTvb6CcP+H7YAHDN8L3AgyrezXdOwCsWeNUC29RBEoOttVYdzZ1BCJwBYZGzBctPxM5lWx//oBd2Trs5lNnXbIB99po4+IfcC5H4FezgTd6tTUCv0AyxME1szQXqpoJSgqGU738MhJXEN8x15JjIv87b/kL7mQvXbthvbAXjvN/Pci6dhVT+pve8n/5rw+KoGSKDn4h9dy4k24ESglhEWMUAvhXKRcu33NivlQeqIr6d8CrY0XloTAzoh9rRw4P2XE3o4brJoUh4VSTOekVMba0krgwnPQuvUUvDwqA1GGQq/K7r+7BtJ8B+jSW6bjSq1Sq++MUvolqtwrIsPPLII3j22Wdx11134Tvf+Q5yuRwA4PTp0/j0pz+NBx544Cb/4sHDDoibfUX/ElaZ6BYkjAClAfQ0ci4SRkFoNrhhC7sRB02tunpQEudW68UqVQmYyTyrLm1Jh6lzbFQp4lEhsFjTgKvL3KN1N+wjQiHNJWBGZMgd1vNfe+KvvMdvP/7e0Hu3H/I1MV451znALlVyYFz8bdl0ZwYVu1JGdkUszHIshy/f+kQouAYQ8vmNRFJ4wRE4S6msrRBmPZRh36lkUprEQ+o78cavHYT16cvgVyq4vTyCYxVRfT+/7mhKMA5eNrsKiiIqkCvBOydySoZVMsFMBsuJrOtZR21/ryTsvzSDb0vucmE71t6VoMiZGgq8esXeLMPfP14FJRwHhi3MN/FgHhRIRAIZEetm/YIhdEXqsH/IxpgT5F+tzgBUxDCVaqFh2yC4Alw7c1L4ZesMiA0uALUsE7ohileJ2IAEYSr+cb5k+LHE3mzr4x9MpOS0m7PufM1SxM9cAxRmY58zUJLxqGfxcz1Uwd4eirimA+NDr/5qVjpOYAcy5sHgVFWiKCU1DFWBDKLIWAYKsorTyx2yazcAyy9X4BrGkPkkLlx+3nuv1wDbpYbvGQOmukuQf1ciGQdW8+Lx6JAQEcjzPDTVQNRQMa+VUKgJ9q60w+PstU2ngp2823vtYJuFEzvjT2jNBM5c7+tUH85vVtmCFJN2rOWUIhPEoxzFSqM9WDozhBwvYIRkMWpqWChsQwXbNAHdBuL+dMYtBsIaPX13MVgQQvDZz34WH/vYx8A5x+zsLH77t38bBw8exMMPP4zf+q3fgqZpGBsbw0/8xE/goYceutk/eaDgVQvsZZFEKLACnjCewO3y7f77OaOp13NvICKYDn6vboNYXHB2HSiSiOc102/boDIFtznsWudKm1W1W94vVKFgBgfTGGzVRu1qFZoio6IBY1mxzUgauL4h5sCRTNPdwLQILIe91wqcc3ztCV89/G33/XDo/YmRWYxkJ7GRX8bJ80/Dtq2m9kwuevXA9rzMAXyq+klIdmNQHgywN+09KBliQrtr2uppbouM+RW+d0behXdG3gUUwudq2BRiVFcLKgi1RetLzQbGO1dnoqqwbtQNcU1IUQm6xgACWCzs/NEtCBH7ayYstVUsOu2ZlEqYHO3eoqsdghVsxKUt6//8wGEDb95rIh3h276OIdNx8HUdXBd902Q03HpGiKhif+5MBBaXgOw7gM2HPQeUVvjYp38JX3vmM/jBB/8ePvLOfz5Qy9CKFrToGkw/nFfBVggulQMV7BYWXQBCdmw57easA16TATbnHGeuioqa7AwwJOB5vLgiAux4LOX1kg4apiXExG42mMEAKibifqDW6QXcfug4fvPvfxLlah5vvvv7EX+kBPsxMWHt1cp4KTmM5dKNExloBXJZTJAMwPxdMTzm9F8DwKF9vQmcFcpAMgocmH7tUcODiKrEy5SPD/utAmvRHGaNCWRsE8OWgbxGMBLfPrucQcCliNP06z3tolYK4uxKGfyis+AaiXhZZxccHIbVn/c1Mxn0VR0gBNGJCKT4DlAHbIJMElhrMqdnUiNYZysYoVkMWQaW8oP9XiIREAZwnYXrMDbHQOXKd9EUsVgMH//4x5u+9yu/8iv4lV/5lRv8i24s2HMbXnX5a8YjsGBiha147/NNHdi3xUWmTAQdPAjNBgcPjSeyJJLdekPRnHRVwWZaa994IhGACy9sfdWAWbRQliNgHJCcOS+iEqDCcWWZYyjVnD5sWO4van1vXrx2AlevnwUA3H7LcUwE2s4AkdS5/dBxPPr0Z1HTK7i4cBKH9r6u5f5yAYsuV3yzFXjJBHtRJEyKrIhHjW/gnvKDDdtVA0HEpYpvT9oTPRxAYmwYJt+AQuqi1ZGI13aQ0q4D2IvVWgIWK4Iy0frSzVojqgKFigiy3aSLlJTBGYdZz4roEpIElDW0dZnpB0GLrsnROciygkFYRrnBWY1KSCUHMye0ahUbNMhkDHhJXI98VW8IsAHgfifABgAMfx+w+XBHivjjL38ZAPDE81/GL/zwvx7obw62TySiA6aI13tgt61g++doc5cifuOwWRSDzqFaoOrkBNimZWB1Q1CYZ8bnt6VvjDEOSncGPby2qEFfMTpv2AKKLFiYbt8XIQRvufcH8O63/F2kk0NigHAwrwmqky5Nh1gCNxp62cJYUQREV2JJ3L7XxoWrLwMAJkf3IpMcbvfxBtR0YM84XpPU8CAigbxJsBf/GvyWANGHvfOHHZcirmSPe681o4hzzmF93u83ld860bBNVQPikf68r5nJISdlJA/FYWzoMDb6v1e3E/EIaboWyqZGsc7EApcC0DYtDKAtNQQOLirYQVitqaq72MUgwDmH/WSQHv5lzE0dwoodCLBzW79fiUTA665vXrXRqmG6vlWDKgTGZuffYWs2SAdGnV2zUbtaA5cI1vIE0bq4cCgNrOSBlVzzzzdrI6nHi2e+7T1++30/1HSb2w/64/KJ80813cZFLxVs+4k1kZyDoPsbMFAoNXoQ1gIV7LN5f5/3TLduI2qGdGoYF2y/jWp5aBPKLxyG8n6/epvWxPjJIGGxSEHSKshQd+VjSgg4EwG2i8hYBNGJKGo62jIJWiGiiP1FBlwn2SysQHN0cGYGqH3kVrALkrIlevjNABn1k/V8XWu6zbEpE6qrRj/8bgBAudo6wDYtw9MbqmrlgdLDgTp9ggH0YHPOASfAJgkZVwti/TiWYIi3uQZTEQ7J8Ye/WRXsnb/S3QaMZAgqXyH46Wl/4HT7r1fWr3r9OttFD68ZIrNYT6e8GSC0fe9VJ6iyGKTNFomkYIB9i5kXD6L78NQr32z+gRuAM89o3oVfnEpjaeUcNEPQsPqhhwO7wTUg2AyEAIxzjGYnQYk4yueNs942Qkl8Zx+rSq3kTRJ27A4AQCbCMJZonJzZqYJXvSZjEdDjjQu4UlW0g/Tjfc0NBqoSZO/OYui+IXDOUb1Wa9qPdTMRiwBwzn0QmdQI1phfQUprOtYrAz7/Eg2JoABwKtiD/Zpd7CIIvlAFXxK9hqesU1giy/jZ9/9zrDKfYsw3m4sT9QSJALodShjxogGiNi7fCAFqevgepBEKq2C2FVzjTNC/STsmGyHQ1wxoKxrMqIxSrbFIoEgEqgxcXuYwzMbvq+mdabXruSXv8d49h5tuc/stfoD9yrkn2u4vXwoE2KnWPdjcZrAfd8YqAnydPAoAnkBaEB5FnCZwPi+CiOmUjalUb2updGIIv1f+GP6w+kn8g8IvY/O9UdB9SSDQX512100ALuUkkJTitTN2A0UGcuUm58IQ1ehekYoDM6MYKK0YCGsfzQyo/5ozDlSdAFtWt1WUbDsQCrDXmo8lURk4NuXMf5EZIHGsLUW8XMl7jzWj2tFdoFcEq+cD6cHWmZf0sqIyyk47Rrv+a0AU/tyEys3qwX5NBtiAWOzGlhyrBUo8W52ggng/WTTGOZY2OIw29BtNF4PUzbDUCYIPgEapyGKQtrsIsA+YThadyHj89Oktfe9WkD/lW2xkjyRw9vIL3vNbeqSHG6ZIMiQinbf9boeq+ErikiRjZGgKAPBS0e9vFwH2zh521t3+a3UGFh0CIPqv628VzjjsQPVa+lt7QOpWj6YtUjBj2f7uM2Yy0JgEqlIkDiQw8uYRRMYjqC7cfCX+IGIRUdGop6dmU6PYYP4CdcwavJI4UQh4OfzF3No+8Zld7AJAQ/X6PQ9+CPOzt3kiZ8BgKtiQiaChO2sKbjHRg9skwFZkoFwNv0ajnZXEmcnBrfaaBVQlsGs27BpDhcuOPWfj9kMpIFcErqxwbBQ4ilUOTeewbY6q1rlqulnwj99IppERBAiv6GhEsA5fOfdkW7ZKIRRgt275Yy/ngaIYR+htWZhJEYwVypsN23pVuqF3wXZsze6Z6V3QTpJklKM1/IX2aZxlZ3DrvrsAICRglrL8yuXlXO9jZ1QFimXACiRlGecwDKCfzkBKCNRt0A7ajgAbVcvLsxYlNdSX+2oAGfUzWHy9dbLu+J7AtTf87rYiZ6XAe6ZtwLQGy4obdAUbgeR5WfFL1u36r10MOee7oNGBM+e6wc5e6W4jrJIFtiwWqWQqBqKIQ3F9ZWsCZxVNTHL5cuttDKs/uuigwSwGqhAQiYD1WcWWHXumVutZEpGAYUFnmqxpIM5EeGJhEza78Ytg3QIyS36Gbf7uOM6EAuxjve3PEQ+J7wC6/82GKvte2IDfh32mfAK2MyHPa+Udb9W1mnMUxJN3ea81o4ezZzbAV8Tih+xNgN6R9d/jHLkSx1oOGM+KRWc/4CaHnPAXVZFRFSNvHELyYB9qaduIiApEmyiJp5PDoQr2qKkPXklcpYDGhHWRC53tKojvYtvAGYf1vAjcaryGp/E0/va7fxnpRBZFXkSNOwmw3CAq2FTY0LlztKcg3ngftbLqYlp7JXFuMnCbexRxw2zs0aUKhblpQE5IWC/wlkrglBBkEsC5a8BTpziePMHx+EmO77zCUSiLOaIdNvJ+gD2cbR5gS5KMowfuBSAq3qsbjbZwLnJdUsSD4mbSm8aRcfq1y9UCLCs8sHkV7NEf8l5741x/ivFHD7weAHD30bf5AUlAsDEdsCDsK8COiGp1NcAwtm3BOuyHIr5dWNiOCnbQoktWMPJqo4jHZcDRXWFtAuz7Z4MB9veh3KYHu1QJ928EBfsGgaDIWT892PWOm0F2Wp76rRGdKtiAryTOQFA0bny4+5oNsIsvF72eQTLrCwcsrG7tJq/UxGLatsOTnAvGBXUxtQMoxdzkIAoFVYWVRz+ghCAaaR1gA/AsLhSLYcwUo7xGJ3H20gt9fedW8MwlioNOf0ouGYOSUUIV7HZiKc2gGUAmMXg/yBsNZmzds1WRCSKK3y4wMSoCbAaGalYsGKaMKsrFnZ1FXnP6r4fjx/HB1Qu4t7TWYL3CDRvWlxe95/L37QEhBBwcpSrH0oao6L/uAMHrDhDIfapZM5NBToVXpFJMQnRaZHQG4bM7CFBCkEo0VrBVJYKS7DNGtkVJXKbgph3uwzbYwKlvu9iFh5IJ6lCxXzZfwve986eQTY8iGklAlhSvD5vnjK3fo5JTwXYo11yzQQwmFPTrIMsigR+8D6lMBdumXYBtcXCbgToB9plrHK9c4qGqpxSTYJUs2HEZuVJ7DZlEjGB6lGByBMimRBUVRLDdOrXG5Yoi0I1Go0i0qYDddtD3w36ljR92iCJeZ9N1JU/xS59P4Xf+FOCXnFafiSjIwRQyKV+LpVgJV7FrWhkgstfzGlc4jk321n/t4p/83H/Db33kD/HPPvwJ7zUiUyAizm+GRABb0BIu5XsfO11rrXIgwDYssUbthyK+XVgMrL0HZ9FV54H9KqtgAwGaeN4IJ5EDmEgy7HMDztR9KBmtm5NLAYo4AGhapfmGfWIrFex/+604fuCPs/jKeT+QDgbYazzogd1NgB3wwt4NsG8c8s/7GR4aUBAPVrBnJnqrYDPOwTkwMUSQTgDFauM2+g7qv2ZOfyeNCAuOfhHrEGCTKf+P3ac72bLoITx74ut9f2e/uPCi5inHs30pWJaJC1dfASBE7VKJbE/7s2wgMyBlypuJ6uUqjPWtU4XiMUERB8JK4qWM2DcFIK3uLHpzPVyLrr/H7saPr13Ev7j6Au565DR4wT8+9mOrQMGhEx7NgO5PQTc4ltZFBvboPuDewwR7xsnWrPi4sFaph5wUQXe/ibHtQDpOmo4DZmBRM2pqWBx0BVuhIvgw/O/hpuMZu4tdbAPMTX9yL0hFvO9dHwEgRD5TiSGsuX3YFgfK/QVeHiQiehCDFWznu+qhOgyipkribay6mMHATCGoVqoK5s3iGnBlORBgxyUkb02hbFDUDEd3oQMICBSJIKYSpGIEmURnJwW3gj02NtZWZLZbP+ygyFmmGAevifPx8rKMX/p8CidWZdxx4bq3jfSmcRBCkEn61e58ndBZtVYC0g8AsmghOr7H7Nv+KRlP44F7vr9h7eHSxDM0A1RPAgCuFyn0Pi4nSoBy1T+XlrXz7DJdirgkyZgYmR3IPoOtQwVZxUhs58yX3cKjiXOAb7ShibtVbEJRjhxv2TZRH2APvIIdVBHvoQe7pBN86VwEhk3wxy9E4f38qn/BX2dBi67O5zLohZ03bnw2aQfdXjcWhef9PgSyJxBgO1m0aCSBofR4T/usaWLSGc0C06NhSo63jSEyv/Xqm52wHQtpbnLIcQlyWgarV+HtAbEIaaB1BBHsw97r3syxg3j25Df6/s5+oFsALvk3/+jtCVy5fgaGU1XvlR7OuFCDj7/K+6+5zUGjUtsevW6RiPrrwPER374kF/MXOcmNwWZMB421zesAkXHE8q/byOkcjN87AfuJNfCyCfvry+INAkjvFomEzRKwbwp4/RGC+Sk6GI0FInoo6yEnxWQxiHMWhHZdg631t89oROiK8To5cZ6SYXOxzzFzG3qwqbAQ4s7v5twJtncr2LvYJmgBTzp5KI5k3F9IphLZsFXXFmnihBIQzr3qFa/aLbVTJCrm4voAu5OSODM5wEUP9lqeQzOAoSRwaQlYL4Tv57wjmDVokSsAMEzdo7COj7dffx3Zf7cnpHniXGsl8XxRtKj8cvpXgf94AcZvv4QLf76M3/piFGWDImUZeGtBjOdVSUbpNhFYByvY9UJnVa0MjLzHe/7GuW1wd3AC7AQSIJUTAAAOgqt9VLGjqnDPcYMu0w2wd0gFmzHmOctMje5t62veEwLVz6Kk7Hh70GYgYwGhszYB9n2BPmyefZcn3FuPcl2A7SqKDwr9VrCXSv4653pJ8tTCgxXsq6Y4FtkoQyba+VwGGQt5fbeCfcNQeEFMkFwiIJMiQ2RZJpa3YNFV0YCRjPADHssIC4tqnaKnbgDDqebZ53YwnGqZPkCbHmYySAkZSlYRfth9olPmNhhg7zfcCvYBnLzwTOhm3G48taDgcDnvPVcOJOsEzo71tD/dEL2nN9tuzdZtWCWrb1siZjDQFjZLvSKi+PsJVrCX6GXv8XB+hwfYuUVEU2/GRL34h2bD+t9XYPzeCcAJ5uh9o6CTMa/1YyxLkIgOZuHJLOFLS5soxrr0536D4abfZzJYFQtWob+KWywievqsuo+n00PIcUGxHLV0LJUotmBc0BruGGZz8W+3gr2LbYKZ8xevejQczaYSQ3Ve2Fufszngi5yVTE8zphUarLo6KIm7TiKGyXF9XTDsEjECxoHzCxyaw3CzbY61PBDrsUDQLXIFvw96bKy14jcgFu8H5m4HAFxaPNlSOTlfWsct0i14SH5IvKAz7HlqAR8//W28d/0yfta8gojjHPOVzDR+/dEMKoZwQHBRKPkUccaYCEpGfhAAIFOO1+/pr/+6HdwKNgVFouKLwvZDE4+qouBTdeIzt42rnR/5jcRGfhm6IZhtAxM4Qzg4K8hqqKL5agENKYk3t+oCgNvGLUjcWVsNvROlSvM+7GJdD3ZtG3uw47Fk159bLofHtCeuOTT3wDlcssWx6Kb/GtiliN8UGDkD1UviZrZHo57y7+rmAmxbnMxeBc44OGwGjGbEgJWME4wPAcVKeBsASMX7sOtxJkBbs2FtlXLm7ZNDTkpCRGkL447SxosOAMhY1KsmHTCdmy86D9vmeOnMd/r/4h7x2EUZh51J2EirIEORsMDZ/LGe9qcZQFwVQfaNgrtA0ld1VK9UUb1ShblpwMybsCv9BVvMYJBUuiWxOxeqcy1w8JAX9jnNt+qaLA12QB801javYzb9ff7z+WHQewPqs+6Ar1DI75wGAJgmoEqDFbsTGgkEtImYkbdNG7eCXmHXGJQhBXafybaY2lxJPJMcwbqjJD5kGaA2x3JpwFOPTH06oM3FfbIbYO9im2Dn/DYXs86+L5XIYNUeXAUbgKhYW8xRELeaCpwFN22w6uqgJO62iG0UxZol5cjSjGaAjQJw8ToH4xylmtCZ2a4Wt42AgninCjYAHNkvhM4457i0cKrhfdMyUK4W8NPxn2l4L2Ob+Hsr5/Dgxcvea58f3oNzGzJ+85EkkglfYC3ohV3TK0DiTiAqvKrvnLSQ3I41QFDorHbFe3ylC6Ezxhj+7f/4Jfzy734/ltevQnXGZZdVudNMFhZXfC/wQQbYweDMjMpQB1QYv5EgYwEl8TYVbJkCoxBMBygjeHmp+Ty+3RTxYNEs2QNFfKluTfC4E2AHaf5FSbzWTf81sEsRvymQIhLu+uSdiLxrCubBjPd60KKr1wC7pguKZCaQsJkcFgs80xEKcS2dkn1MTq7vbfpwEvqasaWKcxBUpZBiEkDQdwVUlX3/42YgMgVxlMRHNQ3gHKAKEN2LZ058o2H7iwsn8ZVv/9lAM2u6BWycrXmZ6shBQV1xK9iEEByc603gTDeBoXTvbIR+wRlHzbFnUrIKMnemMfLACMYeHIOckvoOtpjBQCIUNCbUZreCiCJoZ5YdrmAvFi5jPSYu/NlaGfoWev63E5xzrG0uYi56r/da6pYElB+bh/KzhzxFfACQ3jIOkhHPNVNUcLvpS+wWzGSgCoXUhCLu/wgyME9sptuQ4pLnOdkrFJkgHm2snmVSfoANAKPbYtVFwcsOi8Pigv+4SxHfxXah4F/kLBG+P1OJocFbdQHgOhP913pzBXEXTa26OiiJc0uIXC6ucSiyT/+mhGA0C1xdAZbWRfBt2UI4azuwGVAQ71TBBoDZyYPe46DNk4tCaQPHlftxhyLm9kU1jp87+EZ8LTPVQNjSD2RQSos56sVlBV9Y+z4AYpwqlAMBtlb2qtcA8Ka920APR9iqK13zvcG7qWA/9fJX8aVv/S+8cu4JfO4bn/LOZ7nmrkV31vy7VXvcVgiqiEvJwUXX3OZeL/92I+SFvd66gg0AM8oZ7/FzS80DjXI1H3peG7DIWdAHuxeKeH0F++SqjIJGwK+J38cJsKKKv2lvF/3XQLiCvUsRv0GQ4hKm3jOJ2PtmYd7m99mEffh6C7ArNWA4CcQj/sQzlBJ9TCXn+q3pQgQq1k+Vy7lOkrcmkdgfR22xtvWFNRETr+T47PYbtKuyQw1tl1QaFoNExLaRtp3FSfQgnqvrw37k8b/Az/+LB/F///dfwC/89ru8vpyt4ulFBbcU895z6UAShqnj0oIQD5mdPNhWsbQZGBNMhRsBzjm0xRoiY06i4q0jSN+eRnwuBnVEBY1IYH0H2BxKVoEc33oftmfVZQvxFneAXd1YwHpGaB1EOUNxcXsWJVtFpVZEzVYwR/zqRWpW3LD0lgzUX70N0rtnIH3PFKSHpr1tdEMk1wbZl8gMDilK21awpQgdWB820xhohAIUfY8t6QQaRHgyqZGQVdfIdlh1KVQEHqYjBmVjt4K9i55hmDpOnn+6ozcsKfn3HE+HF+4NPdibW69gE5kIlXydgZjNFcRdqDJQqbfq6qAkbms2SjrBZjFcJABE209UBc4tcKzkOCIdGGtbQa8V7GC1M6hC7SJfWMOH4j/tPf/DiYNYiCRgvn8e6q/eBnp7VrxBgOQ7J/G7D5URlcVxO12YAQ78PoBwBbtSK4X7r2cHTw8HABKwZ0zZGmAJ9t3lXOex8+lXvuY9Xl4X1W9VFv7kgFiL7pT+a2CbPLAh7HhdKJkBlq9zOvi6dmNcPOISaMrpR25j1QUA+5PXvMcvbww13Wa7KeKhHuwebLqWS+ELknGC5y8S8CVRVMqPxVHpsYI9tFvB3jk4ffFZ7/GeiQNdf46Dw7SA0Wx4QSdJBNNjBJohtnGFQ3pdhHOnvxMQXpSZO9OITkahLbXPZrXdp80BIhTEaUwSGe4+hdSULgJsMuJn4SadXhvEDuDq0jlPtfmvvvoJ/O4nft6j6V+5fgYf+VcP4bmT3+zrdwVxdl3CbVV/YCH7Uzh/9WVvIXXLvrtafbQpTJtDlm6cwJm2qEFOK8jclWn6Po1Rr42gV3CLQUkrUEbULVewVcXxRa9TEl/dvI7isC8mqF3dmUria5vXgczbMaf7JaCghgCJSJAfnIL8vTPCSsWBZQPpxGADOm6yjll3OTEYcTpAjAlKWgGNSn2PBVG1sZc/mxrFuu0H2GPbYdWlUsBkIghhTg/2bgV7Fz3id/7bz+EXf+dv4V/+5w+13U5yhgeNa1DrKGnpxBAKvACNO/PzICrYEgHXLHDNBudoa0GnyELEqlFJHLBaBdhVho2yEEhTm7geZJIiKNsoiCLBdiFYwe4mwJ4OFEIWVxqT8fTZImalOQDA6XgK30mNYzxh4z2HDdCpGJSfOgjlH90O5dduAz2QwuExG//iHWUo1BnEpj8CZB8MWX0t5C0gKdYLWXIZo4ltCrKCFWySBirC7WS1IqHS4ZJ65uVHvMcbeSHgFlWBUk1UrzVjZ3lgb1eAbZfETWASguSA3F64KzgYl8Wcs80ghECddbJabay6AGA8SYHy8wCA69Vh5GqNf3O5EtYq2C6RM0olRNTuB4v6CjYALL1U8dYT57NZ7/Vue7AjMpBQxfHK7/Zg3zxoehXffu4LAIBkPIPD++/p+rO6Iaix2Sb9/KMZ0ZdZqYl1X7qPm5xbQt3ThZyUkTmWBo1K0Nf6y44L+qkIsCWnit3volp2Amy7XYAdoNZOmm6AfQgA8MyJr+NT/+dj+E9/8uveNq5lRamSx0f/3fvxV1/9RN8UdgBYLlHc5lBj7IQCMhrBqQvPeO8fPXhvi082h+Hard0AgTNtRYcUkzB0bxbqUPNmLynWP0VcWEFRKBlly6wISglikYBVl6Mkblo6ykP+cMOuN1e4vNlY21wEhh7CnGMnZ6sSkGlfsmGcg2yDmjwzmGfH1QrqiNrWfqdbcCaSeJFxVVTF+xwLmvW41VPEx7bDqksmICYD120xXnYIQnaxi3q8cOoxfOvZzzmPv9V2W7UqopMNtoF4PFylSSVE5cilifOcsaW5C4DwU9IZeNVqqSDuQmlh1UVVCnOjebW1nLewXiJIx5vvk0BoysQjvTug9IJNR80b6C7AnhyZA6XiXNRXsLlmY+w5f0D6/yYOA4RguE5Jmo5HQSf8QOCeaQsfvi+QAD7035Ar+8+fXfb7SveqJzv+xn4RoojTNFA94T2/0oYmfn31cohyvZ4TxzSiApouxHh1Q/Ts7hS4506R1ZB2y5bh9GAXJBWB/P7WULOBqAQSkULWkNsJdda56Xh7RkwilgY2v+Q9f3qhce1SqqtgD96mq+j9lm7bJxn3A+zZjI2UExQrV/xq+JOyYBsnVBaifnfCiLPtrsjZTcQTL37Fy+TcdfT7IUvdzyLlGpBNNRc4ikUIJoeBXElU9pJ9BGTM5KB1lLDIWATZY2kwvXVfVTtwk4OqPv1UySp9B9iUCAqZ2TbA9qOPCbeCHRX9U//tz38Lf/TXv+e9/8Hv/1X80ceew/HXCdVPxmz8pz/5dfy7T/4DGEZ/1QC6VEWciR8o7U+CEIKTF5723j964PU97U8zRC/9ljyOu4CxYQCcI3tPBpGJ1hGcHJf6Co7dwIpGqBC7I9gy7Skebe6FnU/6ixR5dWcG2Kubi4ik34FJx7qNTkQ7ThL6NiZbpFj7MoOckUWvwhYhlOQp5JTjKtCnOrmqAKjTY8gk6yjilj7wCjYhBJwQseCxWINV2C520Q6cc/yPz/yO97ymV2CzFv3Kug3FEtfvJtsI9Rkulyi+vPk+4M7HsBoXIlgwGf7T1xT88QtR1PplE8tCa4Hn9Y4K4hIVfvRnrnIsb3CPKi6nZOirOsxi+EdwzrG+xlC1SNvqtEQJ0gmyrcrTQYp4Nz3YsqxgalRUqBdXLoYSGfajy1B1EaR+y3oGp+JZAMBoF0rSP3BYx+sm3Fa2eVxW/o733kvr/u86kBhMC1tTBALsFEkD1Ve855faCJ09c+JroefruSVwziFLBDYH8mXRRbNTKOKccyytCRr75OgcJDqYH8Y5h+T0SRdlZWAe2Lxsgo5ExPm5UQH2nB8ot6OJJ+MZIPdF7/lTi00C7Dq1/cGriIv99dJyuVkjMG0xrsykbU+V/0hJJAM4AR6zhX3e3gzrlGMMwaWJ6zZF+QYTJ3cDbAdff/Iz3uO33PteFHpgTRgWMD5EWi7EJ4YJIqoQQetnEc4NBqo27ju2V/TfWpXexRaYyUIKxUpa3lL1Mh5ttOcJIkgRn7FEcEXiooIdVDX8+R/7bXzovb+OZDyNf/mLf4wfe/cvee994dE/xkc+8pG+qgGjqwHf0gPixj/pVLCjkQTmZ470tD/DEkmV7YRZMGHXbGTvziC2pz3VptOiqxVEooVAikmQEjJotP9WARfxiLB3ARDKRpfpCnTHt1QpDkBZdxtwaV3DLPUXUNJk5xtWN7dPTb6twBkEm4VIdMvq70xjkKIUUlyCMiRvSY9BqWsXERXsMEV8rUqhDVwjhoNrlqCH7xavd9EDnnzxK6GEK4CWFpI8EKBusI1Qn+H/eimKs+V9QPqNWIn7Y9/J0wx/+HwMn365zyycRMR1rbO2AmcuJoaBUhV4/jzHc2c51vIcJE5hVyzoK+EktVFjWFpliMa2N3juBq5NF6UShoeHO2wtMOO082l6BZtOgM6LBuxviMcWt/Ap7jMSgt64rUAJ8KtvrgJMrMiLmQ/i5WUZRZ3gSsWprNfOYTrZf5teJwQr2EPSEFDxK9iX2wTYT78cDrBNS/f6bmUK5EoclrVzKOLF8qZn0dVv9ZobNuyn12G/uClYHgCg2aDOQqQgqRjp4rx3/B7GQSwOMh4DSSnggaoS4xxXljkq2uCTu+oef3HRTugsEU8DxScAU5zvZxdl2IE/m3PeUMEetMiZO2721n/tj2mTSYY3zJqI2ybmHcsvcyyGstxb/7WLIGNlNd/TR7eM3QAbQLlawFMvfxUAkE2P4/jr3oSajq6qILrJocqNwiBBZJLAaFr4X0t9CO8wk4FGm3jhEgJluL/KMzc55Ljk0Sil+NZG26iK0I1cj2AFe9Z2K9jzcFU6KZXwj3/mP+NH3vlhbzuJSviZ9/0Gfv1nPw5VEQuTRx55BFeu+5ZP3UCzgJmin6UjexNYzy0JOjCAW+ePQZK6F8Bwr4tEbPsWI5xzGBsG0sfSiM+34O0FQJX+fgszGKgqgUZFBVuKSrAHoCTuYmJ4xntsVq9i3TmPscoAaJPbgLOFCcwFepLIROceIs0ROBukmnxQI6Ed5IQMKS6BbZEmbms25IwCKlPIie7vhXqoSqMXdjY1ghzPweZiYhx12AHXB60kLlOg7ATYuxH2LroEYwyf/KvfbXg9qIYbQsEPUDfYRqhSc3rNv6ZXFT+YHnfaor59tU+FMCfA5obdVuDM25wSjGYIRjPAZhF47izHSxeAnClh7VQFZmDNsLTMUCxzpFI3/55xe7CH0mOgtLvlaUjozOnltb583euP/YL+eVxX/fXHSLy7eWcmzTCS/0/e89/7VhzfvKSAu8vmjc8i0YPPb68IBtjD6miIIn61BQPItAy8cOqxhtfdPuyICtQ0sVaTdsjqf9VZhwHA2NBMmy1bw/7CIqxPX4b1Rxdh/NYLMP7gJKzP+/styGpXiZWOqFrgCRlkSAWJyyG9EcsW8191G3IuPVWwYQP5vwEAlAyKU4ExSdMrnsaRi0FSxE3LgOHM74l4DwF22f+NkymG189YuL2Wh/vq6oSvPdRt/7WLoFXXSq7NhtuAHXKL3Vx869nPe2JXx+/8QSRiEhKxRquLZqjUhHJuO+stSggO7iGYHe9vAuMmF/TdJlBS/VWemckgBQZwGpP68kE2iyb0Vb2pMEoQJC4DTpLApYhzogCRWUTUGP7FL3wKD73xA00/+47734ef/KF/5D3v1B9Xj5UyxUFNLJZsQkCmYl71GmhOD+fgLW3HDFP0uSW2UeCMGQxSTEJssjNFGUBDC0Ev30MjIpAjEoEy1D892EWQJhzMSFeLF7DmLDpVywa2+D3bgevmgZ4DbMYGL3DGTMFaoR0q2FJMgpyS+2oTCX2fzqAOi0lcSsh9e6IrsqhiB9tFYtEkJFnBBhNKvG6AvS1K4mUL/AbR9nbx3YFHn/ksLlx7peH1SrV5gB2uYK97FHHdCvTGll/EyqWf97Y7qojFxKWcjPVqH2OFRERUZPCuKtguFIlgfIhgOAWsbgIvrcp4+ikDD39RxzeeZ3j5AsPFawyUAVKfc8igYDMbuaJguoxkJzps7aM+wOYFA+wpofmgER1/WvsTQJ3ytumlkjnHvwQUvwMAuF6S8J+fCiS7N/4a8TYBNjds8NIWFMbjwQr2MGCuAbYIhpoJQgHAifNPNRWtWs8Jm6+oCtQMJ8DeIRXstWCAPTzdZsvm4JzDfjkQOXGAX6uCPeGzpgqS0nVipe13lS3Q8ShIRAKJSQD1bTItS9h0bofHuDLbZQXb9Z0O9GE/FejDLtZ5YAMi6B4U+lUQD3pgTyUZkhGOt3Nfuf8JxWezzGW2EGDne/rolrEbYAP4+lM+Pfz+Y+9FKg7MjAqKVSdoBjAxRDoqg6cTpO9FODMZpGTz0VBqEXh3Arc55MA+pRjtS0nczFuwKjaULhLzLk08o2mgjh/1P/j5z+GP/+/n8IZj39v2s3cffav3uFmGth1WNzj2OINIPhsHkSlOBeiAR5oI2pUqwLUV38M8CLfntlnP/aDgUXa7PL9EpSC0d09kZjDIKcUL4tVhdcse6xHFpwkHe7CLuVPYVPyshL25s6y6bAYU5bswF8jo0g4UcctRkx+k/zXgUPeV9hZdLtQxFfYAkhVu5VqOC0ZDP4ryhBDE6tpFCCHIpIY9mnjWNqEwe/BK4goFN5nwPt216NpFF7BtC38YqF4fmLvDe9yqgs2DFWy+gXhUBFmXchIYd6678nNYtXzLnCOyv5h4tklfZCcQ4tC3Oe9LvE+RCSaGCSYnKJIqB9nQsbgOPHMauLzAkY6ym37PFErrYM66YLjPAHth5SLYxbJXWfyO+gSKvACofuA23EMvbjY1BJz9GYCJoMZw+kRhrALFx71z3xRFEzxv9N16R1QK4ti+pqkTOGmiV3m1QtFMKuWZV77uPb7t4H3e4w0nwFYVXx/lZrcDuFjL+R7f48N9VLA3Dd+XPquCTDUmxVeV2JZ7sLnNQQCQUWdNEJVEsssQc69piwRzvQbJICBlKODosXSuYAPINQ+wy00C7EFWsCvBALsXD+wgRTwlztMdAdefv6z4bXt7s72dx6Ag2kruxl7zr/kAO19Zw/OODdTk6F4cmL0HikwwPkwQUYCa3vpGMS0OWW6uHj5o0EiLADsmgcgErFe7AI7Q4l3q16rLmfBVWYibthtYXCVxyoExUwwSljqHoXRnMZP9s7d7yuIvnPoOWA/CTtWrmnehaxPiZAUr2EcONCqIayYwPgSs5xtbBTRTnHO6jSrFtsYgp+SuK9NUIeI66LHqyEwGOeDjKrdI5PQCVfGtYkayk6BO3/X6xmWoI/5gf+HSzqpgn1qTwKWUX8GOUCDbvrFaN8XfO+hkC3N0FzpRxAGhn7AVcFvcw24yh8ao8ETvs1UgEW0UPMykRkNK4qPb5IUNgwGmvasgvouu8JVv/5lHK37drW/EA/d8v/deqx5sbzEPtwdbzCnnNgJjZ+V5T0UcAKZtX13nmTYBdtkA/vEXU/jx351AWQ9fw0G7zn5BQKBmFaQqGqZTDPPTBPvGOVRKbvo9sxGw6BrJ9BBgj4e9sPk1vyL3ovEiAEBJ7PNeG+2hkplJjgC1M8CVfx5+Y/NhAAyxNgE2tzhIRgUq/Vexpay4phLcqZzrIsA2bYJ8EwumZwL+1+9689/2Hq/nRRDrBtU7qTkrXMHuPcBmF/37VDo+CvVXb4P6m3dC/vF5fGtsCl8amsG3xycR2aoNdsUEkjKIuyaIhJXELUuseyKyYDkOEoQQkFEni583WlqyekGtuYKIcQoAcH5TxobDmqnvvwb6EzkrV4v4y698HKcvPhd6var556IXkbOlACNjMmmDazayG+J3XY4kUZTFMY/KHOPJ3tYlsxkbb5jW8c6ZCo7M3dgr/zUfYD95+vNe1vTtx39Y9DVLQDpOMDEM5NuwJwoVIB0HUp1bZLcMqcVCWwTGUu/VJoIQ/ZRQAjkl9xRg+z20HIrUhRd2EyXxxS77MCUq4XW3vhGAGCQuLpzo8InA9y4GKL974jAtA2cvi4l3eny+aYBv20A2RZCIAvm6dZZlAZmA3RpnfMv2VvVgug1luHvVLKpQEIWAmz3+DiYqli6khASqkC1VsWXJz5TLsoKR7CQA0Ws1PevPchcu7qwA+/HLFiLMxoTTL0nGY10piCdiQKTPHvhWYI4HdjftAXJKFsmVPs+ZXbNBHYEzwNF22IKSeFQlqM+zZeuEzkatbfDClgmI5Xhg71awd9EBhqnhfwbcK376vf/Up1iiTQU7QBHf5BuIRoT/z7kNf2yLW2eR4zkYENXuZEVDXBE3xbPX5ZZ6JZ89FcUziwqeOB3Fo5fC4z9JKiDpASgpJmSgZPp2P+bOUN3fDCiI91LBnhjZA1kSSYvFlYtgV/2A4YWSSKRLsTl/3z1QxLOpEfFg4d9hJu5TVrHx1wCARCcabFIG30L7jpQRY2TUdtZOTgUbAFYq4TVhrrCK81dfBgAcnLsDBwNsDLcHGwCGHT2gnYItB9iXAoyz/eIPI2kF9K4R/P70bfh/p48iltpqdA3wqi3WBE7Rg1ACkla8liTTFvFALCqYrYOGF2C3seqSqOQF2ZHyN7zXn3aSevUK4kB/Ptj/87Mfw3/5s3+Gf/T//EhIpDiYlAyOpZ3gVrBTEYaEKs4pcYaklx3bQ0AEy53ygLxqgRf9E3B4zMY/e1MRP3NrEW+5o80HtwGv+QD7Oyc/6z1++/EfBiB8nQFgepRAIoDRxF+4UBGvzU+Tba1kdhI7olEKOd6bb61bsaqnnypZpadKuKCxEoAQyBLvKcCeNAVl7noPVay7jr7Ze9wLTTy+5g8gifkYLlx9BaYlBqhm9HAXmSRwcJZAM4WYHeB7HgcpwfqKjtrVAev/s96qyUQloFLvFPH6RIsUl0Gj0pYox4QQoSrv7MLtw86X1jE763OHc8vWNihJ949nFmXs0SveoEgmulMQH9oGBgszOJQuFwVyUoYUk2DX+jtnTGeQYjQkdKhkFbA+fdVVubFCkkmFrbpGt8ELmxAiAgWbo+MsvIvXPD73jU95i/vjr3sItx86Hqq6lFupiAco4jXV8MS4zjsVbAKONBH7XeMOayNn4O4p8bmiTsPVbne/HPib834AvVrXZ0tSitAy2SIIJeAyBV/VRJLcWWPcbGwGK9g9BNiSJGNqTFiiraxeBV8Qaws+rGDdEKrkUEWSV6Yc6UgPFWw3wIaN7x37PO6ZNjFpfgHY/DwAtK1gg3OndQstK46dIDsVbMopYoh7FWxAaMsE8cyJb3iP7739QS+xDfg92IBIBkebuNLcLAQD7PF+erDdCrZEQOZ8s+uqCWiW+Du3qiDOLSbWSqPhXjCSUoTnGcT9G48SZJPbFGCP+euRdjRxN7Dlm1/wXnNp4s0q2P1QxF2h4WqthKdffsR7PZiU7LYH22LAelVcy1NOdZoHWAmvxP0AuxsFcV40RZvYDsBrOsBeXr2Gs4vPAgD2zRzG3umjkKjoHwWEDdNoprGCWalx6AZweI5gYmh7BypP7KhFLyYhBHKP1SbPoqsuaJcTEtDDOMQMBqJKIFRMXLIkKr+tELbq6q2CDQB3HXnAe/zC6e6FzkZzjtQ/IRiej3b0v3Zp7hEZmBwG9k4AGwXxum42eh6L40Bg64OpyHLHZkjqYTFFZaeC3UNQxEwGIhFIAYV6yfFC3qoqdTJAEw4KnZWoP8BndR2P96uqO2CUDeBSIYk5PaA2P9lZ4IwDSG6HmjznXSv7U5VCySp9B9i2xqAMq6FquZSQQAj6UnpXZMFkDbaLZJNhiviYqaOgUxT1AR874iSZdivYu2iDml7Bn3zu973nH3rvPwGA7irYDkW8wPKIRMUYYdq+N/FshiEdE4HyiuUENgbDG0bDNHG2UIH5qQueQNOZdQkLgfnQXXRuB0hKBtvQhOq+xbETSMMbfVawAb8Pe8qedP4ewJj0j58tCWut4RjrKffmB9gA1S/hY+8qY6rwe3CPV7sebAKnqJBUxHHuA24FGwAyNA3oV73nDQF2gB7++jseRDY9Bup4SgcD7J2G1c3rAET/cNuERRPwguEFm2QuEbIr3QjcP7303TdF2RLBdKZuvRKVQl0bqizYr506GLlugy1WwHtYMwaD+3ZCZ24ftrb+DaRU8UNc1kyzAFvrw6YrODY+/uKXvcfVPnqwV8vU065w+6/ZBX8/wQr23qH2x4tzDsK5SLbvAJea13SA/dVv++Jmb7/vvbBsYV3gVrApIZgZI7C5EDMCRE92sQbcMgvMdG4d3jKY4YgdtejBBgA1o/RUuWwloCTFJKCHRTXThQI1kQDKhNd3fe9lCIEK9j4mssxLJdrW3iuIvTO3YmRETHgvnflOg91AM3DdxkTVqZbHEpBVilNBBfGDjf3XliNWEVHENbB/iiCbEnYnuiE8j6NBph4XFT+rMJisGdMZaEzq2TpNisk9VR2FgjhtUKpWR9QtJwsiCvHWbEGhs2XLp6qNWRq+emEbzKP7wItLChhonYJ4+wq2aYvWiO0Su+um/9qFOqb27V/OLQa1buEgxSVQlYAbvU9Sbg9+MNmWDoicAb6S+MCr2AoV6vS7AfYu2uDk+WeQL4mEz1vufY9Hpw1WsJupiHPGAYcivsE2vEXklbwEk4lr7tCIhZSzKFyx/aDxnqg/tjy3QGH+zwtgL+dg/fllcMZD1WsAXt/kdoDEZEBnYBsauG7tvAp2Dz3YgGj1AoBb5Vu918rDThmRyDCJCDqGe1SSDgbY+ZKgiLs9q4QQrz2gHpxxcEpAYhLIRMz3Zu4RUtYfH1MkHaaIBwJsxpgncBaLJHD0wOshUck7jusBivhOAmMM6zkRYPfXfx2kh4eD82CAvVUFcV61QKZiIHXeZiQqgcsUtmkDxNdjEWzO1t/JNnXkVRWsBdW7GchYMMBuJ3QmkoSmWcXdU2K7ikFxclVGqdJIEdeMKmzW23ovGEg//fIj3lq80kcPdrj/moHrNviCM1aOR8EChaaOFl06A49QcJk4dp03F6/pAPtvvvWX3uO3H3+vZ12gBOKakQwwnASKFUETzpWAA9PA3CQZqO9tK3Cvgt36u6S41FMC2qtg1wfYcQlUpV33cjKdQYpIgETBbY6Y2oEiPuQvIKacPleTka4z9YQQvOENbwAgaC1uH3U7VK9WvYt8NStueFfgLKLGMD9ztOEzpmPDFXF+bjRCcGgPAeOi7z6b8j2PXeEZOSnB2qJVkgtbZ6KS3KNCPI1LPVWwXYq/VOexLqdkNJUo7QFqIF4LVrCXywtCPAwiyHp6UUFeu/mLu2evi0F8b6CCTTtYdGmOmvzAFcSdY98uqVYPl07ea9bW3b7epUBOyKARqa9Ei+uFHUy2ZVMjWAuJnDlWXQNXEieAbr/GZ7ZddEK+uOo9vuPQ/d7jRLxDBbtieWNjMMAOUr4PjdhIO4KcKwGhsyFNw6xjMTNxbl2oHwNAzYZZtPD1up7r9cr2XsQkKoEvaeA1wWS62ei3BxsAZiYOAABulQ97r60n8uKB4lOlR3usZGaSfoBdcAJsV8gpFkm09up2WTQyBR1WPYeDXuGKnAGOkngLivj5qy+hUBa/766jb4HiiEKNDAl7snxxDZY1YOWtASBfWoNli9/Vj0VXUODM7b92cTnvH7vJVP9rM9d7ng41mehjQkncqjIokqhgJ6JiDtRbHG5es1C1KCpDCVQZBS93d17IaLcBtu8Zfdto3nt8YlUKVbCD13atxyp2cGwsVwt45fyTAIBqzV8/dduDHVYQt8Evlz0mLT2QwvFZ//gcGOlwHjUbJCoDMvGYLDcTr9llyMmTJ3H+svC+PLz/HkyP74Nti4WhHGDmypKoYmuGoAnvmwIOTHe25RoUuhE7kuK9KYlzk0OOSw2qob0qiTOTQc7IoseIccQiaFuNJgr1KDbDmk9x6aWK5QbYQHc08dIF/3tKYwls5JexsiHsU27ddwyy3EhRNm0gqghrExejGWDfpBg4U/GAwJkTpEanopAipG+abhBMs6FklZ4XPVKM9tTrxXQGOSk3fI+ckABKtyTcFlEEG8SyOSYCmenVjQVPhXPU1MEY8I2LN7+K7VrnzDrVCaags4K4ASTj4etkEOAmB1UJpA4e2EHISVkkx3qsYntJljq2BFUp5GR/rQKK7Ni0BYo2mdQoCjwPi4sXx6xt8sKOOV8uv2antl10gUJ503ucTvkeq50o4g0e2E6f4flAgH1wxPYq2EElcZ4zcO+0CcoZ3r92KbTfE+cYinr4mt1OijgAIKUAJQOo7Qxbu82Cn/QYyvRGD9zjUMRvkW8RL0gES4pz7CN+4NZrL26wgu0H2GKOaEuBtRzbM5kAaRUkrQB9eGIHKeJpmgaMZRAuEjMrZf+9p1/26eH33v527/FooA87SMHfKVgN9V/3XsH2enUpQPaGK9jn65JefaNkgWQUIN2knU2hIFEJVo15RRlVIUjFW/dh84KJUiaGqdfFURxOip7hbgoaCVlYg6FLL2wAo6ofUC+XpVAFeyJQ+OjVC7veYeGJF78CAJi7MIyfjX8YUUTbesQHEfR0n0qxED2cHkjhZ+6p4R0HdPzzv7OJqVT7+5frNkhWEbFGHwmtQeOmrEJyuRx+6Zd+CW9605vw3ve+F0899dQN/w1/+qd/6j1+8Ph7AYjgUHVowUGMDQnBq5lR4NAeAqmPycgsWjDzvQ+w3YgdSTHHt7aHwFhKNO6TqkLoqOtFOheVM0IJOOMhWnAruEJnMd1E1KGV9CJ0dv/9frXhhdOdhc7sBd9/lE0l6uy5GvuvAcCwhDJ06HcTgvkpgrnxsGq86L+miExEoI5EYBa2niVmBoMy1LuYjdSFZ3L998iZxu+REhKkGN1SskBVRKLKssMV7NXNRS9wjXCGtG3iqzcxwOYc+B/PRrFYkhBhNiadyioZj3a0rTHM7bHoEwwTqSeKuJR0z1lvk4qt2aBRqWm/vzqs9CSe6IISgliksYLNwLDBxCJ1xLHpuzbgCjZRKOhU7KZbDu1iZ8Ol+wLhSk7HADvkgb3p0SCDCuIHh9sE2DMm3lpYwYwRFsU8ed6/z1RJTKIlnULfRq0eIlOxsLd2hmaBW8FOJ4e9Cmy3mJnYjziJYw+dBQCQ6Rg2K05LijrlbdcrRTwd6P9sCLDb9QvbHESmIgCTCMhEFLwP4dBgBXsiOgOAgxoiKF2tUM+t4ZkTgQD7tge9x24FG/C9sHcS1pz+awAYG+otwOYVE3zFma9n4iB1TLzzm45AHOHY36F3t+33GDboZLzpnEIIAckosGo2FFkU6ABgKNXcqotXLXCZwJ6MYyRDwffEwVIKkO+sihay6sq1tupKBCrYMfissZUyDVWwg+uyXoTObGY3KI8/8cKXwc4Vcc+Vw/jB6A/h/4r/bNciZ8sl/7xNJVkDK2E0wfFP3l7BTzzUwjYxCMZBshFh2flapYh/7GMfw9jYGB555BH84i/+Ij760Y+iWGwuKLId4Jx7ATYhFG99/Q8CEMFApMm4HlEI7thPcHSe9F2tMjd12NU+gmzORW90G9AYhdRDgM1t3lKhWskoXe2HM4canRIVUG4DShd6VSGrLrN3obN9+/Z5VKJXzj0J02o/MKnLYiCwQBCdjXXsvwZE72gz4SpFJrhtnoYq2MzpZ5diEmKzMbABVLA5FxTdXkFV2lOrAGcccpPASoqL/u9+fZABQZVSHJpwKMAOVLABYMzUcHpNxkLhxg9FjAP/4YkY/uQlkU2ZCSiIS1PNe+tccHAQAiSig1+Y9uKB7YLKFMqI2vP1xzTBYmhmA7iVVoF4tLGCDcBTEs/YJiLMxtX8YAPsbvG5Myp+65kh/PcXEriwePMn4l3cWBTLgQA7UMEOViWDdEcPhXAFOxZNwmbABWcxP52ykYxwpJJZAOEebGzqeN24iR9bv9iw240lcbMMxViIErlR22aaeFIRSYObHGBzzj0f7OEe+68B0b97RL0NlDgWSrMJ5EuNAXavFWxJkr1kSaG8Cc6514PdVpDL5qJ67RxXOhQBVNqTqBUQrmCPRcVxsWuC/VA1CcoGQbla9AoHMxP7MT2+z/vMaNb/210v7J2ErVh0NbPncmFYwGVHdHAuw/r2wOaMCxGzNno4JKHAsoBExG8dTMSEVWXQ/o5zDp43UBmOIz2p4vAckB2WUBpPAgbrqoUgbNXVfO2bjPkBNsx1RJyE3UqZolzNAwAolUL3WS9e2M22vbZ8HoVn/PaFhyLvQkpvv4Zy4fZgE3CMqSb4NVEUI2MRwfzoEtxkgExBEjJIQu6rJWPQuOGr2mq1ikcffRQf/vCHEY1G8ba3vQ0HDhzAN7/5zYZtDcNAuVwO/dM0DYyxLf178cUXceHCBQDAbXvvx+jIBIjEAcIRj3Fw0vhPLtQAw2r6Xqd/jDNwGYjOx2BUTZhVs/vPSxyICDEIAE3/Hs455CEZtml393uov8/6f1Kait/bYR+2aYPECEiMACrAwaCqHJLCwSkDkXjzf6N+cDXpemGXaevt6/8R4tl16UYNpy8/03JbWBaSeXGzXokmMTnMcfJiQEH80D1NPyfJHGq0y3Nr2ZCSFBwcypgMkqQwtf6uE044bNsGUQESIy2v35bXgczFv16urWjj93DOoYwosM3+/w4qA/E4hw2OZDLlZftXNxdAh/xBc8ypGH/tktr9NeBMGL1sX//PJhwfeyyOh0/7CmXzC//Ve0ynom0/bzGOSJQj1mK82Mo/ZjNICXFNtRvH6q8DZViGZXc3Brj/LNOGMiw33T+JU3CFdzUe1P+LxcLnJ5sRi9SNQB/2iKlhoUhhk/7O4VaugZdXZJzIRfCZM3HkSu2Pc7f/dvHqQaHkU8Td5A8AKLIKVRFjQnOKeKCCzTaQiKawUKTQbbGwPuhQUVPxLAAgx3Ng1LGeyRlQT+WwRxdzUoX6q/6sIfb74H4D40n/WtrY5j5sxGVh/RXduv3XVlCuFjzrzF4sulxIVMI96fu852Q2jnzRGWtUnyLej5q064VdKK1D0yuebkXbCp3FhcK0y4ZMKSAZtWc18WAFe1R1rlPtsvfaSpnihVOPeSJTr7/9HaHPj4Yq2DtP6GwrFl08IHBG6gLsS3kJNnfvyS3QQEwGrtKG6ngIMQm2DcSifjAdjwgWX6iKXbaAuIxCJo49Y0AyTrB/CigkYsBErKW3dRBkNGjV1ZwmngzpSBQw4Ywny2WKouNZnYpnQ8nEXgLsZuKPAGCd9qvjEpGQeaK74+72YI/EOZRrFa/yTA70aNau2SAxSVDp41L7ftUbhBs+ql69ehXJZBKjo/6kdujQIVy82JjV/eQnP4lPfOITodfe//734wMf+MCWfkMmk8FXvvIVPPzwwzhy5AjmHxDUg3nn/aZEhGnAwhbov3uAIgrAKFDrZT/TwBpfA0TbMK5du9Z8u3Hxz0QXBnzTwDrWsX5lvfE9FcD9QAndMQqu564DB8VjCRruv6X99vkCx5Kj6j9jiwB73YJ3DrrB97znXnzlW38OALhceQQ/+MDtTbervliDm1M7H03hR96yjnO/+QIAYHZ2Fvd8fwzNznbb66Ae04ABHeUrzgB1rMtz0A5zwHJlGWjTFtPyOjje/bnDNLDGVoErTd4bEf9KW7jmDwXmyz1z0zh79izWcgsYfb2N5S+J191e3EcXZfzWL5V6ErPd98be/RsBQDMIPvIfR/H1CyIbLFGO3/rbV3D+V04DsWMAgMl3cKTe3PkK4OjyOukF9ddUG4Sugx7vXfe7csghd6XRvgMAcB9Q7uMvHJoG7r/Lf86YDEppnRe2juuRBHBQw/xMf9dZv9fApc+LyVuVOVLSVVxpdg/0iPn5+c4b7WJHoBCoYAdpwICgiRum1oIiHq5gH44lQ/TwQ85iPuWInHFwVCIaUrU4eE6H/Tc+JfaPxg/gw8tnAIhkEwB8zwEDLyz7+1vfRiVxQHhiB909bhaCCuL9VLAB4LB6FHCY97lM2W8DCFSwR/tQk04nRwCcR1Urh3r321HEuc1DIpWEEtDJGOw1Db2c0ZBNl5QVDwJCZ5fWq/irz/0773mw/xoARocCXtg7sIK9upUKdpBKPL9N/demsKJFmwDbVRKPIBxgR1Wh0xJRnOp12QQ/kAKPK5gacWypRghUFbCm45A2NaFW3saeNWh120rorF6ocTLJcLUgwbAJSroobqQSWcQCCvj1lO92CCqF33bwPpw4/xRGyAjSlXhoO/lEFWypBjrVWiy2ZgJ5TQTYkym7rWhdJ3DNFu1hMhXnbAcQ0254gF2r1ZBIhKkDiUQC5XLjQulDH/oQPvjBD4Zek2UZqrr1ns29e/ciWbkHC8+VcekxcWGsbHLcNk8wPRoeAquLNUQnozBWNShZtSNlux7GpgGqEoy9YwzgQOGlIkpnyohNRtvSQJnBYGzoGH1wFHJaxrVr1zA7O9tUubJ6rYbNxzcRn4032ZMPbnNoyxpG3zaCyGjjxKpvGFj/xjoi4xHQNkJB+roOOSVj7G2j2HwiB21ZAxmO4KlTHKoMxCLNpxFRwBKZ1HkuMvmXlxVc+Gaqoz8lkTj2vbGMPaqfpf3Gl5/Ge+5ufiNa3/T73C4l0nj5S+eg62JQumXPfbj0WOPnDJOjXAPuPUy68jeuXqsicyyD1C1igK9crmDziTzic7EGYTpmMNSua6AqQWy6+aBjbBqgUYqxB0ebCtsxxlpeB2bBxNoja1BHIi19013YNRtm0cTYg6NQmtBwtCUN649tIDbTfz/rlRWOs1c5JoYJstFZAGdhGAYuX+Zw87C3Rap4GMCVVQVf+EwWR8c7T4budXD5O0lwu7ffVjOBf/LlFF5aFn+zInH85oNljK9egSnt9bZb3RjG+mOtF57rBY6JYeC2fYOvMNVfU83Q7DowiybWvrYOJaM0KMM3A2cctes1jL5lFNGJxr+V2xyrX10DZ4Ca7c2vfLPI8exZjvEhgDhLynRiGOuGH2C7yZVvP5KCPN9bgL2Va6BiABeXxN+zL2Ph0IG9HT6xi+82FJ1AKarGEY2E58xELIVccbW5TVewB5ttIh5LNSiIA/BoxQBQlMtIIS4sZJye0ZOxDL6WnfIC7FFLx76sjYPDNhYCqrob2y10tkMQ8sDuI8DmnGPOFAFamZVw1ah4NmwkMuOttXuliAN+BRsAltYue4/bUsQZA+pEKsmQCkQpuGa3r4gGIAcq2Ck46xXN98L+/x7+FDauCDeV0aEpHDv85tDnR4IU8R3egx2stncC12zwRYdKPBVrCErDSa8tBNgGA9KK6KdvhagErlIogYqpJBFkkxzXN4A0AJRMkISCcjaOdAQYy4rtRtLiX74SwdiehBD4ikktRY3JWDcVbJ8iXq4WMJG1AYj5rooRABeQTGRDCaJeerCD4+KR/fdgs7CKo4WD3mur9irGpXGAA/aXF0F/6mCz3QAIK+FPJhnYy2GBs55gMcESAYT2QW+f3hbc8NE7FouhUglnSyqVCmKxxoBDVVUkk8nQv2g0CkrpQP5xRmCbBNwW/2yLQKYEhPv/uMFBLCB1IIHYRAzmhhV6v5t/rMKgDkUgyRIkRUL2dRkk55PQFnWx/xaf4zoHlSQoUcVbRLf6W5SEAgoKbrben/v3UEohR+Xm+4nLkGQJXOuwnxqHmlHF5xQJMAlUiYByAtPwj2n9Pwz5A8QeSwyQhk2wVqQtPxP6PICJoTlMje0DIPxMa9Va023ZVV/gLDeUxKlzfv/14fl7m37G0AkkEETlLs+vRaDE/GMZHY1BicpgZRbaDhagLWiIT0XBdQA2ml8rVXFcJUlqea5bXQeSIoFSCdxsvu/660CSJShxpfl1kFK6ug7a/VMlcU9xm4S8sNdtnzlxi+wnQb56NtLVNeBeB91uG/z32acVvOW5c/jh9cuISwy/+1AZb9hjYXX9OmalOQCARW0g1f63GDpBOkr7PjYdr6kW92e760COypAkCTA6n3/3HpZkSYwdLa4nNa2CV1nPf4MiERAWHgsyqRGsN7Hqurwh93Uu+70Gzq35yYKDWWtg88kuXj1wq5tBBXEXbgWoqpUaqf+OirjJDRR5AfFoOMB2KeLBqnhOyjd8x+dn51GhMmpUfHbE1PDQQR2EhIPAbVcS3yHYLPj05X4o4sgbiFlibXHGPovFtQvIF0Uyj0bF3CNTjnSkjwp24BpZWvOrx+19fomoogWRkEGyEfAe1MRJzO/jjnMnEaRf9t7fqImAYig9jt/9lT9vSBYFVcR3YgXbpYhnkiOIqO1tMYPgl8tehZLMNyY6ghXsA8P9U8S5yUA6iAwzQoCEDLmOkpxJEti244letkDm4igwGXvGhfUrAFBKsH+aoKIBdC4BklK8MaYZuqpgB3qwK1VRwfYQ2QdAjE/RaKCC3UOAXQ16XcfTuP/Od+Iu5W7vtf9Q+ffIccGIY6/kwRZaV8eXAgJne2Im+FWxLRmN+MFyF+A2AygBcbSLiErBKdmSE84gcMNH77m5OZTLZayv+wutc+fOYf/+/Tf6p4TAHD9jpW5MNHMmIqMqIhMRxPbGwS3W80njFgtVgKhCkT2WRnwuitqC1tK7llvCQqcbsSMpRruy2OKOKFerCme3Vl3c5lCS4mKWFHEhU0IQUcPqwQ1IKUL8A8CY7mfgrvaoJnzsiMjUmpaBE+efbrqN5YglWCCwJmI4eSHQf32gucCZaQtKTzdidpxzgIb9ipW0jMh4BGYhPKhrSxqiExGkb09DTsqwys0PEjcZ1Exv1UIXVKUgMunKqovpTJzrVtdBXIIUpVsSOovIAIi4t4IB9pLhZ63HTc1Tzf36JbX9tTMApJ68jr+VW8TPrJzDf02fwbEpcZ7W15YwRUUGvZo22lbtmduDtw3MStdXvRMDoRmoSkGU7u36bJ1Bikpt/daVIRnM6P0aUGVh1xUWOhupo4g7AfYNFjo7ux4IiLaw+NrFqxOMMa+CnUk2CbAdJXHOeQN10qWIbzDx+Xg0hfNOtWwswZB1+jBdkTPAafEKgMzGETmcAgjBuiwGkVFLx4PzYsE8GgiwXzMV7C1SxNlV/zydtc5gceWiV8HmDkV8OMZ6akFykQ306AcD7LYVbM4brAIJIaATMcBiLdd89SBO8AYAUcsJOLRAP0t0L8aGpvH7H/1rzO850vD5eMzXP9lpPdi2bWEjL35TMw9sbnPYz26g+ly14b12VGKbARcdgbOZlI3EVgivjIPE26/HDAuQMgqkugA7HoFY/xQMkLQCPhED5/Do4S4mhoFYBKgRCWQqBt5OqDQZsOraaB5gB3uwy1W/BxsAEBVsrWQiE6pg9+KDHbToikdTuP917/IC7Cqv4CXrRXyefsnbxvriYsM+XAQtug4Xcn7/9cFe+6+ZOC6uOLAqAQoRdnk3ETd89I7H43jLW96C//pf/ys0TcOjjz6KCxcu4C1vecuN/ikh2EKALuSBzTmHXbEQn0+AysKKSRlSelICF2rbBHIynAWTYhIyxzKQkxLsSvMbihkMUrzRp7gZpJgIiFiHgEhYALUO2gklUNLdKYm73rk0QuH6RcRUocbeCoQSkCGxqEhXNe9zZ9d761a46/AD3uMXm/hhc8MGWRPV0avRBEYzxFMQV5UoDsw279tuZtHVCtxwPITrqGCxPVFw059E9XVB+87clUFkPILIuAqrRZaSQ9hk9QOiECfA7jx5M4M3tehyQWUKZUgF68NaxIWqiISVbQPjI35/1XJxwVPlJEUDb5wTx6KoUzx2pb/kQjeomsDkuk9vGv7WAuwTeQCAuVT0FGjtkfbXomGKJEy8+4R71+AWB5EJaA8e2C4IJZCiUlfnH+jOb70fNXvAsWmTwmNBJjmC9UCAPe5QxG+0knhwrDk0tHVbvV28ulCpFcGYuDCDAmcAsFSiWEt/GIgf9bZ1wU0GVEVCxrWb0+gUqqa4fw4FxJSSjsgZACzb4cBGemga9+5x9uMIqsWYjVFJvDaSCFawdwLRcfuxGaCI91PB5oEA+4x1GmcuvSCEv4gCJokkSq8WXS6CSZjlQIDdygebc0d5ukmSXtDEJaDa/bzqVuVkw5kTjEWAi8/LiUP4/V//HPZMtqbhutTr9fxy14H9jcBmYRWMi2u9Wf81e3YD5h9fxpWfXYD19fA9xAICZ3R/ONFxtUBh1IkO9gPvPEbaz0+GCagpGYoUPraJKBClDEbRBt2XRMWWkIoDo5nw57NJYGIIyJXQtv8acKy63Cr2pt60mNKsB9tDdB8A0cIS65ciHhgTE7E07kgdQ5ZmAQAvmS/Bho1nYy8AQyKzwc8UcfrpKqpNptqlQDvMnmVfB4YezjRu3A6aDZJSQNxzpVIQWXrtBdgA8NGPfhQrKyt4xzvegT/4gz/A7/7u7yKdTnf+4DbCtgFJClewrZINKSUjOumIIUUo4vPxlsFRMzCNgcYkSMnGG0dOy1AySusA2+SQWthp1YNQAjmjdKw2cZNDjrfu8QAAOdu+asUsBiIRUKcXPVjti0W6EO8bFjeeZDFkbdHTdnq9t0X2nYff5D1+vokfNr9eA3HGu3PRNDJKAcvronfpln3HIMvNA7lWFl3N0MqvWB1VISUl2GUbVtmCXbORuTODyJi4jqJTUTCTN0x2zGAiYG9jCdEOhHQfYHGLtbRqc6EMd76e2n5eEveUxRCqYIesugomfuAWn8nwlyei2K41wCtLEg7UCRdZf3IRbLUGuubf0/J0e3Nr3RQCJtFtsO8WFl20J4uuIKSkBGZ2GWB34bcuxSUQiYD1OFF5Xth1FewCL8Dk4lhP2iIDv1CkN3QedCvYKuWYy2wzZWIXOw5BgbNg8MQ58M++msQ15QPAbQ8DoOE+7MC8v+kE2OuW3zca7PVUlQiiqqDrLhq+ECGZiYMeyeDuaQsE3KtgA351PCoD6bjY12ulgh0UORvKjPf8+foK9plLz4snih+sj/ahIA6EkzDXAz3YLUXObA4uUxCl8dyRuAw6FQv18ncCcRLu1CaIIAJwC9BFVTCWOYLJ0bm2nx9xaOKaXkElUH282QgriDcJsC/4v9X660VYXxMUd24y8GsBKnE6PBGfD3rSb0VB3HLOY4d+ecMCImnJY3K6iKhAvKJDy0RAJmMoVICZUSBeZ+1JCMHeSQLNgAgMwUVhrgVCVl258HXELYZktE0F26OIh0XOtF5EzoIV7FgK9ILPMHjOfE58TTwG+SGflVB++Dp+428SDWs7r4LNOdKXnQBbIqCHeosHuWGL5JULmQgv7C6LDduFmzJ6Dw0N4T/8h/+Ab3/72/jMZz6D48eP34yfEYJtOxXswL1k5gzE9sSEH6yD2FQUNCHD6tJuwa7ZkGO0aTBDCEFkKgK7RZWQm52DoCCUDoExIILCZsF+EHK8vQIfMzioSr3KLZGJt72qkLafBcJ9JPuYuDlPr8k9BVYj2UnMTQnJ8jOXng/RVgCAL/g3/flYGmbpjPe8FT3cRbcaeq38iuWkjMhkFMaGAX3NQPpIEvF9frlTHVEhJSTYdVlsWxOU3X4DbACQ4rS7CiYHpFiH6yAhb0mJUZbFPWXXe2FvLvr9NYzjjnjN65M6sy7j5Or2VDQvnzURdTLm3J3jdAbrkxeQzfm9a4m9Y233oxtAOiGCyEFDtHCQrkTKmkFOSF21CHjbJ9szBuSEDNoFM6YZ4tFwBTubGgEH96y6XOVkixEsFm/MVFTSCRadvq99KbOexbmL1wAKpWCA7QtYvbQi44rLpojuAzIPhPoNQwJnXFzDq1rADaWuWuYqib9cewFkf1L0af7wHP5/9t4zXLLrrBJee+8TK9+cOudWblmyki1LspyEEw6ywTa2MfMxDAMzMAM2DJjxDMwQ5iMMGMz4AzwEg3OQA86WbDkpWam71UGd082p8jl7fz/2CftUnUo3q1Xrefrpe+tWrlP77Pdd612LEIKsJXDFoIspXZkzUe5/uEfe12SBrlrDcSNhen48+LmvQ4m4cEVwvp8kU7KJ50V+wQw3+UsxOANkY9CHKhFvVmCDoU4i7oOOJQGbQeTbLP4UFdG2nt0AABNSCbRQ0VBswfeoRmdTG8jorJWDuJiImni5XzoH52vnIU4tNo1yijMdXBKqHDBonVldLSpVINXLoFkMrqL8dAsuMmmC/FAaghJUHdQZKPsY6gVSCSAPaZiGJmNekaiu8RL4yUU4Xz6Hyh8/jcr7HoX9udng74uFeeQsEWRhBxLxxDJMzpS9dtLOgB8Nm5CPVR8JLqcv6AP3nuvVhVnQ4wt1RJof0bW1mgeblesf2ZEKmeg2ILiM7yXKXoYQApJgTd/HtUB3e+HB4bK49gtsXpYsbWJzVAeq53RYoxYqM+2x2G7Rhd5nNJzpNHI6QNBwrpt1cKC1I+cUrqiTq9c9ZkIDWGODAF7moCYN3NSJIoUy2lCUEiUW5FpTds6mi7RjOdyB/VImzrmLJ458P/ocFWOFY1YGhw5+Mvj9yl0vRBz8OXxLB6qzVSwebb7o8KqAltRiP1t71IIgQHK7jfSV6YhiQEszmH06nPnoCZaXXbAUW3JxBciimbcosP0531ppe919WRRo0yiCO7xu9pdRyWC7HOjPjQTvwfjUWSCndDHmKnjjFeE80acOWlgN5E+ETRfn9hEQLz5CTJRwSyk8JqzNPXW3VeG40sBkNdDJWEgcaK2xTqPHqcr1rVUzh9rye76UWXzbJBE1i88E+XPYdtWB6Ul1T62RTFzdfO3MdOXhz0eoBbZqYPXlIzWd1f43RxhsoTDYvkT8bD4XXFY7z+87ic/lZ6D92z0w/uu1oNvCTe2v3JrH8Fh4wlQjwAZz8ntRcQkWK5e/TNxnsG0z2Xy2OQbiYjHYSI/bU9E/KhFdKyERn4/EdDWYE3WFPPnpDZyg0zroaCKSqd4Mqmz4t3/mQ/j19/wFbt67L7hsvEVWuurOPTm7ceawJyIFdnQGWwgRFtjKntL9ynk4nwpd1OOinI7FmA4uCRUuC70YJULkag6Q6WFgNg1G6oQQKI+X0bMvCSdjYKEAZBKhe3gt0gmCkV5gpuJFTDUhyoiS/uP83+Oo/sVhuN+4AHHeM4x9Yg6jpiQ08sU5EIKQxfYYbCkRDxnsTgpslcxKaakgj/yiexHnufTXSdhpEEZw5LpQXfG28eO477Ci2BHAxUX5Wd2hpIt0LA+veFnltfVPQmt7XG610C2wPbiulHT4RUBlpgJjwITRX09n+kV3O2ZCtQZntdCzOrSkBidOJk7Q0SwmsxlAWhREAqBG8xO2ntOgJRmchfgOKy+70NJhEUAYge+JryvGVo2gMth7SFgIH57obN7zuv3hHPZ93/q7yN/8CAcHBCesFJ584p8BAAM9o7jx6pciDlVHeiOYuuw+EoM2VQSICoeWiS8MzEEDmSvSyF6bBa1ZoAkhsMbsuvlmXuIwepc3g6zOwzd83h5L2urYohYDNUlbMvHShTLKF6IdZ0KIfC9dQNP0QKo2Pn0ulIgDELMV3LGjgh5PwvfdU3okvmElkK8A6YnwJJLYl4b+rl1ATeReGeVgdigOXAgQIr0G2oFwBcqTlbZn3zoZC4lDu9JyXuagFpNqlSYghMDo0duexS+cKaJ0UR4HRs2h7MfdxDqJz3QL7C7WBmqWsV88LZYJvnOytsB+IxYKDRhsr8A+NS+VLzmLo6+mgPONzqpOGZVqqW4sa1sPx0tD812I2fD+h3rC79vzYQ7bj+nqXcr89ZlwD5Hvr/lOKwX2UhnsXM2cvo+GjQBHyD1RE3kMHUvIeKd8G2uQQogM2iN4+W1vxVg2vO9W50q1wJ7aQE7iakRXnUS84ACe2Vfy+gS014YKOJXZrs2/5gI4Nu2ZDiZC08GlQFQ4SEpvOk4JyO1WMkHliKbXiK5OV6FndfRfmYKuEUzMAqMx8nAVW4YIqoJC2O0X2GggJb/GuhZAGKkVzGEzG9AHkU5mI8dvZxLxsOmYnbIDNcFJOxyF8ZtPXzCHcdKUj7O/OIeTB0uYK8n3YL5MAv+K65Wm55Lmr5Na3V6OWKzlXni10S2wPThcFlaAlBy4RY7kdjuWSTKHDJj9BqotWOxGBmcqWIJB79Hh1siFgjnnDhjswPm5mUEZab0JZxaDNWqh2qjArgjoStNAfY90LTS2avgUFAZ7zA1jmg53aHR20zV3B9KiHz7xNTz+zIMAvBmdS6HBGScVwJFf4Lfc88swVFmeAseRz9/QZfNET2twmzg6Ci6gNTClYBZD7kA2Ml6gwujTQS0WuX/BBbT0Mgtso7VEn1c4iNGaKWc2BWvRZAjgCoiYq5l66DPhz2HPzk/AVc6LYq4KgwGv3SdZbC4IPntoZS26n7ykYZfSeSVjCZA+E/o7doRycQBT+kxTB/FqVao07DZJ9sp0BW7BRXW6vWJOOPK4Wyp89/FWBb1b4jJ5wG59CtCzetvJCcIVgUGir2YR3gGZSfkFtpKFvQZO4g88/Hn80d/+Mp46+kM8o6wxOzJdB/HnI+bVGWyvePrmCR3lIE/dn3caxDMzyizgXA2DbW7GQkUet7v73DqHajULeyE/G/tciJIYoRbw0QL78t6mlcqFgBXrVB4OROevsTkaUwVj+RLxuCg3oJlEXEqLm51HSEoHHUtGVAsNr6vsMXxZuTpX26rA7lOjujqQiIu5CtwfT0Msw+i0GcZnGkvExUSoaDO26tDuHAJ73eboHeSMyF4SkKZZftHWbP5aVDlEpcXrcltHdPmwDMDoNcCrUsnnLDhIX5FGz5CGpCXr4LGB5oX6YA+QTQFTXMfcnIupOYHxGYFL03I98s+jZCwBZLx1w6SgV+eg3bsN2r3bgvvab1wJQM5gA8BQWnmt1jakkz1LloirDHbynHLs7Q7vL2ln4HDgR+d13Ncbfm53T57HV4/JRqY/f225DrbPzsor9Bggg50pGEXJBekx6xshOgVZ5zTsy3vl7gCuKw26AMCZd6BnNVjD8R801SgS2xJw807TjWwzgzMV1rAJXo5+2UVVSLfvDuJ6WMKL2Go00+0KENrefZqDppxtiuuQcRGJ9iEaCZhzXat3D64F6Q2Zgp5C2I18ZqKzTbahW3jX698X/P7hj39ASovOFwDv/HPMysAtHJWPlRnEq178tob3F4noEmhLGrsUt2dAFi16bygT94+jVoxiK1CDotWawssczGyDwdYpaIK1Ns7zJOdxj2ubYbNlSJnDnmVz4ZU85ubVe8uBE+eXjhgtZ8s6wRPnGXZ485SlrBVsWuieLOZuC9/zmVRzE5hyFbDM9hlsN+/C3mzBWXDaMwoT7bPQcaBGe07yosqlCqWNOfJ2Xe399cVHrZO4z2BPKAz2kOckvloS8UJxAb//4X+Hr3z3o/iP//Mn8NCJWQCApQmMJboF9vMRcwsKg+0VT/96JNyo3zbwVPDzwbntwc+qpHeKT0LLht4xu2M28/4MNgAs5Gfq/g4gmvWqFFtDPeH9Xe5GZ6qD+JIY7FNecUAJ0rtHon9UGWx7aWyWbSZjM5obuYjDFS2NsQCAjtreLHbzE11E+uopHTspsPuVGex2C2whBKr/5wicf3wWzufPtL7BEuBLxAkhkecIRFlqY6v8jmgvHoL2k6HkOI7pbHf+WkyWG8Zc+SCEBJFYjeC6AozKAtvfE5fHy7DGLCS22jB0gt6MdApvJA/3kbAItg4BVk6DrQO9WWDTILDD6z2UveWHGAzGf7oC+i/vh/GB66C/cxfYC/tBrwzfj12QrvLFch6u69RlYacTORi6FSSndBLTpTLY+knv2CXA3pe+KDB2vHLXjXjqkoZ8heL+7DDKVL43d85dwNeeZuAinL++Nj8N5tUZdH+2rT2JCiIQ2wghBoUgaGoYt9q4vFfuDuFnH1fnqkhsTTSdT7SGTbC03lBGDTQ3OIs8bk4HYTQiOedVDqrTlnOyKggl0HONI7ZaRXSpMHr12AixIKdXWXgIIyBMHsiG5jlHNyuw7VDOoc2Vg9zPI1NaawfyGtx9673YvklGqhw+8Si+88h9dQZnKJ0EANz7yl+MPVH6qFRlRJdUHsAzd2rQrPAXhA4UBioIJUhssuF6sS+8LN2jlxrRFdyv1prB9I3u2lnI2ols8yXnJGZeW80TjxidOSGL6Usje2yBl+6QP+crFF89tnIs9vjxCkyPYte3RFmO0ztn8OH8X+P+8rdxdEfzGbVS1TM4a8JO+OBVDqIRJHckYY5YKF9qY+aOLP2YAmSDheq0pZM4r4qG6opaMNtzEm8xEiNl5+HaUpuFnU3XM9jbmVSanJ1bHSfx8xMnUan6s3y9KBLpUNyrXQDBKjxgFxsetSZnx6cZjnjOw7v7HLxyy0nAlRvOE6V9wXGpso3TfBpMKbDjZj0zKoNdmI1/MknpdyLvX2GwcwqD3WLG9rmO5WRgi5ILMS6/32TExtjYzugVVoDBBqJGZz4aMdjCEdIKvgVUFrup4iipMtjyGIwU2Pnm54uoRLzNGeySC3FJvq/i2eZN56XCL7B7M4N1qS6RAntL2IRitw1C/ze7wV4+Cu1V9cZobc9fE8TuV4LHdzkEJS3Ntsqeos0ywsQNAEjvSwWjgUM9wNgAkGwjneaGfQQvfxHD1TsJrttJcMU2ih0j8nZ5ZQKPJHXQLclgv+df5svHN7mj0CDf08XifF0WdjqVAyEkkIkXl8Bg97MBkEuySUE2JzG8ZTv++gPfxl/81ldx64FX4ftn5OMXmYaZvfL7k+Audp2bwGPntYDBvmExbLh3Kg8XFRdCJyDJGOWnQdc9C/vyXrk7hKYBbskF1QmsseYyBS2twd5ioTrTvMDWexsbnAX3la0vZkVVgJoUpIFRRiM0cxKXhRBti8HWUhrMfhPVGiOuwOU4oXyxNa+44gKUElh68wIbUGTisxVc0Ss3FoUqwdkO3YQZZfi5N/128PvffOp34Z4OTwjHrAxQOoFMqhevvvNdTe/L5UAqIQsJalDo2cZybVEVoEZ9BnYn0PsMOedd5uCeZHc5DuJAewwmr4imr02FltZayoN9yTnR6+Oc1Fx5NarrfOls8LO6sXyDYnb26YNmoxGjjrBYJjAvhicQY2u0wJ6Zn8Bny5/BH+Z/H+ZgA1bCg+MC2WR738nqnFTCmEMG0vtSgBBNRw7CsZBlMNgmBdWJzOxtBiECk8JWYDaTzaYWjRZe4WCev0Ncsy0bM4O9RcgC2xWr4ySuuv4i9YLgx/PHP4H3/+0bcPLcoRV/zC42NmpjulRzs1furqAnnQCmvwgAKIskHrsgFzHf5GxRLEqvhtR1we3i2DI1C3thcTb2uRBKArlnI4n4VPHynsFeTga2OJsPFP1kSxJ9ueGARQMAGFIerVGBjLn0k4lqdOajIYMNgLS5htNRG0hoQBNHcZXBFl7yyKCSlX5poflj9WYHg2b6ZJsz2EJJyREzlRVnAatOBTPzstHaykHc2BLdq9C9WWgvH603tQJwVInoilOVKI8AYTGgkfy9wmVx1uJzrDjSu8k2ZYGtpRiSu5Iwh0NyYNcmghfsae87TAiBntKkEtXbx/ufXbUNRR/ZKgtmDRp2sh0AgHxhrobB3hqsTb7R2VJysG9K3BJcRvfIUZqxoR3Yt+N6CAH84LT83CgR6Lsj9DF45cw5fP6wiQsLckb6Bn891ghojCt8U5RcSdjFEVM6lT4I62h01i2wFehMSjq1rA6jr3UBkthkg3hFeRyEK2D0tL4fZlLo/UYk+otXOLQ2WUYVzaKVOmGwAcAaNeWsitJdlQ7iLLI5J5SAMALhvQ222UaB7RudCeC6xNKMzoQAPv20iSfKr8FVe+8AAJy79CzmjkrzDNczOEPpJN708l+I5P41gqkDvCxjyMx+oyFz1ygDuxMYPTr0nI7qfBVuWX7etYZonYLqtLVEWIi2C3lm0dYz3WUOahIQjULUMKdqrvxgX3givTR3JjBvUc19dvS6ODAizyTn5hl+dHZ5M+mAnL/eqcwN0c3R42BGiYjpyTSO6BLwDM7aJNbdvAN7sw2qUVijJpI7EiiPN5aliYoAMSjYcgpsnUppVBsnlXYfh1ryObUssMsc1GCywHe8ZpshRy8AQNcMJO0MLvGQRRmuhh4Mq2F0dkHJrb3x1veGf1h4BIdPP4Rf+oO78Y//+I8r/rhdbFyoJmeW3YtvHJcFtsGkgiZlZ4CJjwfXuf+EIc+BXgEsDc4oHPtqAEDK4NENrId2JOKAIhMvuEFjbLhn4zHYE9Png5nOlcR0hMEebnLNeqjz13RLEoQQjA6Gsn6Y8pzTa/O6GflOkI0xOmu4nxCipfO0D5LSQTclIOabsNgRibjcI5qaNNYDgEstjg/GtOC81vYM9oJSzbki+vsKYHLmQvB64wts7zzJCPSR9vYAQoQMds7i6G/hGk9sBhQbFOG+g3gLBrtSley1rsmRu9S+NNJ7U5F9u6ETWGb7Bx+zWez5VteBcgtlGt0aHpP7tP0AZEGsMtg0sSPwIfJVGMVOTM68Yvx6PWxY073R3Oqz8zSIw7x6yEFyhw2MysbX3uI8Lh0p4ulxhi3lPAY9hRnZke4ongvw5q9zBgiL+Q54e+Eug73O4FyAEiln5GUOPdNeYWv0G7BHLVQm66WffsevVSSWD2vQjGyKO5FwqmA2axitxKvSlKvdot3oM0BtCl5UpOsVKQNVC0uiyQLbdxO0zdbHtDqHvY+qRmftf8G+d1rHX/4ogY89ZaP/gHQRp6Cw5uR9nDMTqFAGS4zjdS/9uab35Ud0mbrHxNkUeq8u57CLMQV2xZtjXkYxRBiBvdmCW3DByzLObbkgOgHVWhdY7TLv1GIyRq5JB5tXOPS0DqqTOmmyJo3twYWIMNiXps6GTuLz1cjxqrLYn3p6+TLxH1/UsNvrugp4JiEKZudDyXKzArtSlS7ziTaeEq9yEEpgDsgrE0KQ2psCSzJUZ+M3K7zKwdpwd28FlmBN5dzCleaL7R67hBLpkNpiFl82iRiIRoOouKQVSsQByWIvikUsCNnwyC2G3/3VmMO+OBFGulTMK4KfB025qTc0Ey95yUtW/HG72LiY9yTi6WQO3z9rY6Eivwe3b6sgZQok7Qww82XAkcfod0/pqC64ARMyySeBzb8Bl8m1Yt9AvcEZAGRSoUR8vlmBraaMeEV8X8YFJfLxporrv0178sgP8LZfP4C3//r17cuM28SUOoOdHezotuJiuH6QTXJdHxva4V2gA7r8jGod3jtFLYNtmQlQGv+5EIKmDuK1oCMJWUQvxhd7RGHnRCG8jt/UmS6QoInZCP6M88zcOFy3tfeEqCmoxUx7kWLtomlEFxcQk17R1W+2HVk5WSCYK8v3fVeM6aAKAjnL3FDpVeUgDSJYVVS8kTHAO8fvSra9528EqlNoaS1wJPeRTQDK6TIWPoMNAHs1GeW2WJiTbupc3phYYQPK8ppEpVK+7aSTfGEeBARXwjufmhRkS7TZ9P3T4Zp2y+YqCCHQbgn3Vi+fPo8TM1pUHr6/Q/dwQPodNFBjEkqkOqRFU2I1sf4r9waAw6WUUWdyk6tl2/uCEEqQ2J6A4KJuQ8tLshBtZXDmQ8/pUmLrb2KFWJL8mCUayzlFlYOlO8jVzmgweo2Imzgvc+jZaJEuJeJhEWa0IWuPOokXQDya9JkOGOwvKsY0D17cjJtueBf66QAMIgu3s55U7O4DNyLZRM4FRCO6ZPyWBmYxb6GrP3vxqpB5xW3M4jaD2WdKeb3TOp+8HVBDdu0aZWEHMuQ2s7aZLUcKmhVsvMKh92hgdv0Jy8+Wd92aGWy1wBYAFAOhmzZXMea5Xj52Qcez08tbpp46R7G9LDfLYsCqM6CZ6aDA9uVgreDMO9CyGnQldk3P6kjtTaEyXalrgLlFF5WZKqjNlq1i0FKsTkmgQo5AdFbI69nGoycBhIDeo0ck6om6LGwpEz/vyg2WuViB4WVhr4aTuCoRP1eQm2RbE/jb3/oI3nLnf8Y7X/ub2Lx5c6Obd3EZwmewM6lefFk5h7xyt1yDEnYa4CVg+j4AwGKF4tAxRbLNKLD1dwBI+ePbr43f9UYZ7NmGz4dkopGFgFwzezxTrqkNwGA/9NQ3wbmLxcIcHnj4vhW974jJWacz2Erh5+8pggJbD++rz14ei1U7g50w4/cTggsIQjoa7SNJDXTEbmx2ZrFwp65IyQe9AluAYKLFMdLnzWFzwSPnu4ao8RYSM80NwTpFpMDuiRbYmK0EzSwy0H6DXZWH12bSqxBCQAhPek8JRIzxj3A40EaiS9WV+dYrDT2n16UBDfSQwOisEciwLWePAez3GOzFwrxsNnheRNzYHKRX+Qw2FxzlSovqHUClWkbVKWM724405HeA7srUMcg/OBO+dzdvlsc1PdAL4T23O+cuwHKd5c1feylNpEGSDwCQBJOf5Tph/VfuDQDX9QoBDYBAw+ilOJjDJswBsy6Gxy260LyZjHagZTVoaS0iE2+3CFLBEgzMiM8uFq6QEvI2QQiBPWaBK3OjvCqLz8j1GAFYyJob3vvY9L6VLGxzvozNWfl8j08zVNow9x1fJHj4XPg8qi5Bat//xGY9dJk853Xnfuqlr2t5f9WaiC7/NRr9RuwIQLMM7E6g9+rQshqIRpftIA7Ipg+1aMNFhVek/L1tBtv0Cuxy82x1ZjOwFKtjsHXmzeFyIJXIQtfk5z4zP1GXhR08JgF+UmGxv7IMs7P5MoF7oQjdd2mvjXFBTYHdhEEpVdo3OHMWXdib7LpiObk9AWvYDKTizqKDwqkCqjMVJLcnkL1uCV3cGjBba6E48LwYOooAbDx6okLLaCB6OKLQKAv7vBtmoG52pCnhajDYvkTcTG7FZEE+md19DizDwpvv/BW89o7mypYunvt45veO4uyvPo7UF0+i/JeH8Bvsffi99P/Ef8Jv4I6HnsHewhzG0i6uHZYnHkO3oDEdmPhEcB+Hnw0P/unelwJEHqvvuK6Eq4bi6cNoTFdjBhsKg+3PeQMIzD9nSqRj88+VhhrN89ihB1b0viMmZ53OYPsFdkIL5KVjvkTcXBmDM0Ca4alINJKHu0Ka1nXAYAMAsRqvr4R4TBzCmC6gQydxxeisnTlssbi6DPa4koFdF9E1Gc5fk4H2I5vadRAHh9xkZA3ZvIgb8RRoywleCMDuQP7dLrS0VpdxnUvJPWqliTqRMALijcANsiH0kl4sFuZk8ewV2ILamPWyqNUs7HaMzvx14IB+fXCZP3/tY75M8NS4PF43ZVxs8vb2xGJgB2STO8FdvHLmHK7wzR/7zGi+dzto47vW7Hu1FugW2PAYbApopN4huxWoRpHckYBTcCOb2nYNztT7MQdNOIvh/XQS0eWDMAItrcfPhQsvJ7kDGH2GZNb9blpMA4IQAqrTIAdZ1wB4suCGUBhsMVXGvgF54nAFwbHp1u//V46Z4CL6Wh44M4A7docxXOeMBAyyiKGeXMv7q3pmFTKiS4DZ8jXKha7++oJ31qxoBKpT2KPWihic+WAWaygRl/PStG2DK2pSWbA3YLB9V3lmMWjJ+m6hpsn1z3XlcdKTlQzxzNy4PMH591Mjm37pzkqganjyUuv3+egUw9GY8YInL9bkX2+u3xhNz8kZbH9GuBGqbRqccYcDFDAH6iX/zGJI70+DOwKFkwU4eQep3Un039mP3lt7YPYvf0ygVRa6qMqZ+U7WAmY3HxXwHdOZzcASWqCgqM3CzqbkLOM5N2QwrtLkiX2lncQ557g0JSNmsiMvDy7f0786ua5dbEwsHl5E8cl5aBcLwLN5XKcfwHX6Aeytbsbdcxfwxyd+hN89+QjEsXkIIUAI8WTiXwFx5dpx4bzCYNueEz2O4KevKcU+JlBbYNfPLpcrRTz81LdQthRzU6XR2OcZWXFBMLPORmdqNM/jhx9sS2bcLmaU9Vd1Xm8F4YpA+UR6wnVz07DnJK5EdPUuVyJey2AbDTKwHe5t+jv8vFrIoANDL0UiPqQanbVisJUs7KmZ1hL/tZSIDzbJwO4kE/lY2wW2ACgBsRlo1gBqjEcDZrTNOsBa/im7DsH5VtlDJ23JlreSidfOYeeL81JB4xXYQNiQ8U3OgPaMzgpe1OnV2jXBZaSmwH7orB7szW/ZHD2O2M2hQvAd48cC4oPu6zyeC66Q37NmahGdAm1K31cD3QIbcvNvaAAc6dytOmS3A2vUgpHTIrOV7RqcqTD7DSkxWqZDtd6rw1l04CzW5HSTzjN29VxoxCW8hSmuOKM6DWawdc0zjGuWktBjBLnJYrqMvcqm95nJ5gWVyxE4v1IicPdOuSBXOUGvcXtwvXNGAptz7RXBVQdIJ1D3GrWUF1EUs/NfisIgDuaQCWPAWLkCO9F4BtvNOzA887Z2QAiRMvmmzvQE1PYY0ZpFklH5z2dgejNyczqfn4ZQFADqxhIA0qbANs/o59gUa5qJfWiC4d99Po1fuC+Djz4ePSE/rsxfAwDd1JjBzmUGGi7yAgIE7cvD9YwGo8FMvTVmIbUrgfRVaQzc2Y+eF/bAHDA7P8E0ADWbZ6HzCoeW1jt6PJaQvgsNIwD9xo3FwJLhqIChxzuJn+fhBmsPJIO90k7iU7MXUXXkcWX23hY+Xn83//p5hTb2V4MX51D96yOo/vlhuE/PImVnAVEGm/0SACBdDDf9U5oJVKdxa+KfEeet4yOdCNUocQz2Bz/6m3jfH78ZH/xCmIKhRoH1K6zr5DpnYasMdr44j6Onnlix+/Yl4j2K23VbmK8EzW+1wN6/4wbs3X4AWmJbcNlyGexcjcmZbTYosF0ho5OajPnwuCYlI81fu09qVHiwtq5qFnbtPPhKS8RnmjDYioM47UAifsyTiCd0geF0k8+bC4BBvue9Zj15UOGAQVoanDmugMYAa+XSRAOwJJPKQWXfRQnBUC9QavFRqHPY+7T9yBfmZIFdPhlc7kdkqVFz7Rid+Y22PdpeeUFSq2OeI/LwLdGNG9mUADwPHEsor61DeTgA+V1jtLlaxKDNtkKrjm6BDVkImoZn4GXITWInYDZDYmciiLTq1ODMh57TwUyK6oKzLIdqe5OF1O4UnIKL4skCypfKcAuulA93yIoTJmXi0ojLm9206++DGCR43bomJffNjDeIRgMGU0xVsH8gXNAPTzR//x87r2Hcy368YczBL7ywiIQuH5tPhvdzzkxiLNve63U5kLBImD/uvUYtqYHaLGI44Xc4l+P2rMIcNtFzY0/bRW8rNJMIC0c0LPwaodn8beAqb8kTQm23kBAC0wibLT6DLYTAohHmlWOuvkN+1ZCXES4IDjaZzf/Ws4ZX/gJ/+6iN//uYFTyNxy9q2F3yDM4IQEajBbbL3cD0qNX8ta61Z3DmLDiwx6yG3zVCCXpu7EHuuiyM3pVvf1OdAqRxxudSDBQbOZsG91nmYCYFtSm0pBYZF9E1tcCWEjFVIr6lGp7YV9JJXHUQd+yw476nGbvRxWWHAx+5Fru+dBtm37kPh99VwhumX4c38v+Ne/fdgT8bvQLTCTu4rjidh/N3x/AL5OcBAO6ljwIA+hylwNYt4Oj/g8Fk8+PItlJgTH7PagtsIQS+88gXAACPnf9++AdlHVQL7Kl1LrBVBhsAHl0hmbjjVDG7IOcwO56/VpqyaoGtaTr+4re+ijf+xAeCy5YtEU9HTc4SZjL+HOuxaqTBpr/qCBw8Bcws1NyWNVcdRSKpPBZ7KBUef51IxNsxqVNHFQBATK8Og00pqxsL4EqB3S6DPVsimCj4BmcOmgpHuQAolSx2OmYOuypjR9GC4FIzsFcazJb7/1qjs1yayL11E5k43RJlsBcL83L9KYV+JAGDrYw6tCMRzxcXMESHkKWyIKabE5HGkMOBH3mjm2mD46rBaKOGEALt5ug+i2sEdFeH8VyA3LQzNFWLEINBrGNUV7fAhvycTMPbJHqdo05hb7KhJRicBadjgzMfWkaDltFQnalKVnCJBZzRY6D31h4M3t2Pnpt7oWU1VKYrde7fbd9fvwlQArfggjWQF1ODBptqU5eLTqVFskPgJF5wsM2uQGfy9odbMNhffCZcdO/ZU0bWEnjDFXJRHi3Lom2Raphjemx8SiOoEV0+Oy0LBhbJL5ZF+PLdnn2QFSzWAWk6FwfhSnZe77S4slhDlQ2veHJjK8xXr914mHroKp9TitgZMhs+t9mYAltZnJ9qIhN/9HxUKfIPP7bxN49YmCsRnJkk2OqdOOiQXRcDMb8wBe51UlfC4Ew6dAPm4Cq0tduEn4Udp7qQaD8DO7hPnYIlmzRaKhxaVvfGRcLNot9s853EfSZIZbD7i0pU1wrOYasGZ/NEGh8lDY7RzDoPtHaxpqAaBfEyUedK0yijjNLAG5FnOr7aM4aj77oW2tt2gIyEhfYB51q8xnwdxPRXkNQ5eqtKgT39cWDqM01zkAG5rvsy8VqTswsTp4Kie5pPB7WVmoXdl9yYDDYAPHZwZQps1f+ibxkGZ8hFqxxCCOYq4WV99nIl4lEGO2GnJdNZC0fIud4GyJeA4V5geh5wlQYoYQSiWVqHmoWd9wvstZ3Bbtdluh1MeDPYfblhMBp9vwIG22I4VDBx9FxrJWjb8nAA4EKObjICJHWZo6zKxCtcMrPN5CnwUkV0wF6FApsaFFpKq2toZxJAOimPo0YgaR1OVu4Bd2m7UMgvYKEwG5GIXwwk4uoMdh4XFijmSo0L1kJxAbu1PeFj1YzcPXVJQ95LZbhxUzVW4UMP9AZGbADAdqXl+twpHAGYrLnyQ/fGNdbJ6KxbYEMW2LZBPIfspeXu6hkd9hYblelqxwZnPgglsIZM8LILLcmW5VBNCIGe0ZHancTAnf0YeGk/stdmluRUbfTq0NMMlckKaCI+q5ma4Qw2IQTZVDsFdliEaLNl7OqVi9y5eYb5cvxrn5yn+N4p+RnlLB44FL7xyjJyWjXI1DtnJgBCMJxuzVbFRXT586mEEBj9eiSqS3hGYcuJ6FpNNGoQuQUXLME6Zi+pxUBq5oF88AqHlvEKK5MEGcgqbDNksHsz4SZq0p0MxwRiCuyrh1oX2DNFEhRlKSP8jP7lSRu//fUUtpcWoXnbV9JEHg40j4gpV+XJjbVQGVQ9efhKRK4tFdSQBUVDJ3HRfkybCr2n/oTvw08X8B/f/1wZk1nYtRLxvMijpMnPPDm/OlFdFye9AlsfRt6VxdDuXrc5u9HFZY3ZhUmAGED/TwKQctKbtjhgB3qh/+oV0N66LbjuexLvwQ66GTeOzAUMtgtg7uSvyttarVmXjOckXstgP3PyseBnFy5crwBsJBGfKmycGWwAePrYj1CpNtnlt4mpuZBNXbLBGQDSU9/QVFn/5Zuc1TDYifgCW7iiaZZvvgj0poHRfuDClPIHzyi21tjKR8Qp2Suwk0Z4zmtVYKsz2K0k4kKI+tzrKo/Mfy8VLgc+9EMNc4O/DbBU/fy1wwHvc51N2fil+3J4xW+O4v1fS+HkTPxrFAJ44qLqIN5iz+dCVj6MgBgUJKtDKAW2qHKQZOs6oFIFEhagdTpv3yb0Hg1uDYNNKcFQD1BoIRMXm2Wz0CQmUnMmFhZnIxLxS15GtSoRf3Iii3d8Mot3fiqDiXz8a8oXF7CH7Q1+ry2wvx/jHl4LYjFZZHtg+3LNX0wjcNF6Tt5gsnjvMtjrC43JxbFTdk9FYqsNogHV2WpHBmcqjD45i8tWwEDLB2Eyjze5I7mk50QNCmvMAnc49AYzzbTGTCBlt3Y+VWc3xKUi9imzkUca5GF/9sEkHC5fwyt2VYLxi7Qp8I7Nc8EBfc6QX/x2GOy4iC61K6Zn9ciJT44SLC8DezVBPdOH2oLYLbjQM1rHs97MltFfcXPdvBItrIheH+mlKycgXyIOALOLE0BGLshxBfZgSgQyzEMTWmwT8rEL4fH46r1l/IdbQrnxwQkNu9T56xiDs2hEV+MCu+oA2VTr7467UIU1Zq2oIqFTUIOCaoj9vPzxhqWodLSU3tSdnCXUAjscGbGNcFxENQuaNeRnwxaqSEJ+91eywA4Y7PQLgsu6BmfPb8wvTAM9rwQ0KXG8dUsFpreEEELAbugHu10Wejox8Oup9+Hu4dPo9wrsolEF53KNaRX9CIRGZ4XSIhwn3HA+8+yjkeuVLO9vC9VACdafDL9r681g52vko5VqCU8f+9Gy73dacRBfDoOtSsSD+/aM4TQqkDGXt8FOJXOgJPwMEqkMUIlZSzhvymCXqsBIH8HVOwi4AAol73kxInfjHTDYQMhiT+Rp0/1WKpGFaciiq+UMdsmNLUhWQib+jeMGPnkwDYz9ErD7w+ivzcCeLAfqp8erYfH34CkD/+azGfzBAwlcXJCfw0yR4BNPmfi5z2bw0SdC9cnuvhaNACEwUyA45zU4SJ8ZZTiFAGljj1RxVieiy4eW1mMNunIpAkaAaoMRMADQt4fGYwMLOSwWZoHqBOBKhafPYFuKRPyHk7sByFhCNb5QRS2D/RuHhvD+byTxv79v46OPW/jOSbmfo0TgxrHGn4N214h0Dh+1QV/Q2/B6zSAcITfuTUAYkd/HLoO9vtC99Ws5RlNGvyFjraq8Y4MzH1pWh5bWOmYZVxvmoAktrTdsQNTOD/uymWZO4uo8rDhfwL6B8IR1OGbmVgjgY/eHm5pX7Ym28V6WCYupc14G9kgzswsPVUdKfUwjPoZMC/ISvTnvKgdLaStmSrXSIDqVkrParOWSC3Ooc2aVWayxwZUX0QWE0uTawk5T3k5Vhj09Nx5GdS06sdFi/hx2ySERGZiPxxR5+IFRB6/ZV8F/ui0fOJD789cAQGIjusZjn1v0JXqFYhvycCHWVx4OyO8itVlsdvlyxhsamT9KY8CQFScGiRT4SZsECgbVLGiChhTOdUboJN7Mu6ETBAV2Si2wuwZnz2fMLU4DA28Jfr9rR33RwO4Zw6QtGefNbAt2fW8cOc8sr2iEDbyE3cDoSoGahb1YCJ3EVQYbABZ1734FAG/+tW8jzWAX5usue+zgd5Z9v5EM7I4ZbMVtOld/XvPfs16b13pvdgxGGdKJXPB7oifbIApTsqJxcLmQ6VApYGwA2LNZsthCeHFDlMQmlgA1DLbCJA96YwSuIEFDIfb2hKDfY7FbzWCLWoMz//IVcBL/xrPK5zRwLxbTb4o+hhLRdcbbwxmev44AwdeOm3jXpzP41S+n8NaPZfHXDyUiTdmdvU4Q+doQrkAZFEIAxbKQ8+1MRpsK4bm5tOHD5HjGuKsFf19VS5Rkk0AqIdUQjaDtyAU/j5QGMe+PqHgs9qVF+foDBptlcLIQRtx+7bgROxaYL8xjl7YLADCuW3h0PoHvnTbw+cMW/vZRO/BGunrIQbpJU4v0mTDedxX0X7lCSvSXCNIGkUESWrfAXi/4hwCDCDKElwpCCBLbEzAHzCVJsQFASzOY/caGY0eNXgPmgNFwdpMwREw6bFMaQFSb7GfpWLg68XMF7FU2v8/EMNhPXdJw/IIsqK4Zrgb5esFznA0X53OmvG81yqIR/IguzTMaqY0hYykGZtMg+oxXlqd0WG1Qg9Qxzv4ivZQRCH++unb+Nojo8gtsTTqJx2Vh+1Bl2DPz4yBKVBeWIBP3GWydiWBm+1V7Knjv7QVQIkIHcUpARmIK7LmQwc5l4wtsPyO9lcGZs+BASzd2D19LaEkWKxFfzngDsxmIRuoK98AY0GtOUoOCaLQuqguISi0vitDo7EoqCwxXEJxfWJm1zzc503tuDS7rMtjPb0wvLgJ9rwEAJHUH14/Wn6CIRvH9fQdRFHIHm34m/NsiC5ncdiTiKaUo82Xiruvg6MmoC/cswuLbn8NOGQKm50uyngx2pVpG1WPwR/2MaayM0VkkA7uJgigW/vlCI0DNfqvqArMl+Z71LTOiy0c2GapvEulMvCmZEA1djYslIGnJAokQgiu2EeRSwOQclAJ7aQw20IZM3JvDzhfnmztGq/Jw5X0Vy3QSny2RiOIMAB6vvgmnZsPnrTqInzcT2JJ18YM/PYt/c2MBaU8O73CCJy7qcJWY1quGqvjPL8rjz35ioamzPwCACwiNYqgHuDgNIKWD2EzOYVc5hE6byvyD54rVycD2oSUZqEEgKtFjgjEpEy82+TjoaAJlIa+w1d2CRb/A9ozOyi7BbImEMV29rwZH+JovLLDY/ZY2LZAgch911GocafrSna2bMYS0cM5vhSbftcjj2EyOBawDNlYVtw7gXgY2czvLB24Ec8hEcncSeu/SGGxCCDLXZmGPtZ//txZgNkP6ijSMmGxfwHMFV74rtgkYrYzOMnqwgItzRYym3WCm6PCkVtdB+9IzYYVzz576L7C6OJ8zkhhNu5HNfSNUHSBlh0xcbfwWSzCwBAvnsIVYsUit1QDVZYGjFtjSAZ4uSRlBKIEWY3Ali7VobBtLsLrYC81L7+JCRFjimfmJCPMQa3TWpMA+P09xcVE+9pUDTiD1BIC7d1bwR3fNYUtZbojJiB1rpBGViMcX2OWKHB9oxWBXFxxYo1bHKQSrATWLWsVyxhuksymrUzLUZqtTw1MyKFFdPiwzCUOXa9vpyung8u3uyjqJl8qFIN9cJK8HIF1NRzowPezi8sPp8l6AyU3lbZuLDfdnvI/hQ/m/rLt8loRMbjsS8UwkC3sWAHDqwhGUKoXI9SZ5uA4JL+6TkJDFnlzHGWzV4GzT8E5sHZUzmEdOPIbFGGa7EyyVwRZCBIwq6THqNupqbnifvTLf+WwibA4mszmpauPRJjYBGroaL5aATFLO7QJAJklwzU6C+TxQEZ4KsIHsN85FHIiOwF1abL5uRrOwG8vE1Qxs1ZEaHTLYkzMX8I+f/184cvLHAIDvnAzzkVGVx7sjdPz3b6VQ9l7S3JnwMc6bCbz3JYvIpTjeem0J//Cmefz0NUVYmnyP+hIcP3VNER95wxz+9J5FvHJ3BVYb2xvBAegE2RSBoQF5h4DkvDnswEG8+XvpExar4SDug9oM1GBwY0YRcmkCQqQqIg6EUZyi8vw6gH64c97euCYLOzA5639j3X189Vj9i0vPhJcdtTP4pZsL+Od7Z/Hnr57H79y5iF+8qYD/8pJFvGr3yrrOx4GQNvPmW8jIVxPP+wLb9QpsynldsbAUUI0ic0V6WZtsPaMtaUZytWGPNS4eaiXilBJkbGkO1QiEEBCfxS44IPPVIA97pkgxrhgtLFaA+z15UcrgePHW5gX2zj0afvW2Qt114tAookt9nkafAV4KF7qVysBeDRCd1M3gunkXWootWVkho7qii7ks1lhE9aEl6xlsjcl/rgvkFJZiZm484v6qGvz42JrjQef6qfFo0+XRGnl4La5254MFLs7gDEBQhAGNZ7DLVSkF01rFqLl8Q7DXgCfXjjOlW8Z4A7UomEViC2yWCNMXqE5BjLDBY0gFHhxXSANEbw77RPFYcB8j5fC72o6T+NeOGrjnt0bw9ZhNAABcmjwjf0hcBYfJx9vT7y5bKtrFcxvjNMxDf/nuxsxm0s7g65Wv4dvlb0Uun0FoVtbKRRwA0qlc8PO8x2DXzl8DwMVKqOYQMVFd+QpFsYVp6GqhUAoL7KSdwYH9twMAuOB48sj3lnXfkQK7kxnsohuajMUZnBVXzuDMRzYZFtiJbEZmXatNZ1cyo40ckYueg7i69m4fAbYNAxemWzDYiXgGe3CpTuLN5rAXwvsnSoHdqUT8C3//V9j/jX786x/9OQ4eewjfPqGs1U+/HshLFcfJWYYPPWSj4gIXT4aPccsBin2D4Z4rZQr87AtK+Kc3z+EvXj2Pj755Du95QalOydgSXDKfw73AzjFgfMYzyXO5/Dytxp+hD8eVe5rVLLCZScFS9Q1twJOJ20Chic/gWT1cU3Jz3udYk4WdsFIATQI9r5DXszhsr4Fx/0kjaHwEj7sQNgxPplJ4+a4yBpIC+wdcvHhbFT95RRl37qiu+nlWCAEB0TAOLwKDSjfxdcDGq+LWGC6XM6LM4dDS+oplET/f4L9v6rxIJtVcIg5IKYsPfq6AfUoe9ucOWfjYkyb+5MEE3vuVNMqufIy7d1UibKUPMeFpZrI63nt3CdeNtDdvKYRk2WojulToOR3CESuegb0aoJon6VYL7KILo99c8vHNklpdweaWeV30G7NZ3fV0BjDPZyJppwMGsx0GmxLgSo/Fni1RnJ0PH+uxc+FBcP1o/e6Tnw2LtjiDM/85+GjEYEuDs9g/hc/dFSBMRrptBDRiqJcz3kAIgZ7TYwvs2tEDlghnwA1drrFOMIctC94ji4eC62eV3JFWRmezJYI//m4Sh88Y+JPvJlGIKTyCDOzBtweX3dLA1bSL5wfyDkHekuMCpHoRVw831g0mbSl//GDhz5G3wmNTZZrbkYinYxjs2vlrADhTDNUcPoMNROXN6zWHrTqIJ+00Dlzx4uD35c5h+w1OQkjTmMRatDI4izqIr5BEXGGw7WxWzlrXFNgyl7f+c5IFAdCTjp5/NY3g6p0Ehk5QcJu4iK+ARLw/114WthrRRUYT8GMXOpGIC4fjlWdfjKv0q/BvrJ/Hn37ofwRO36Z7Flj4AXD4p2Ew+fzvO2zhv3wthT5vsHjOMPBTN8bv37KWwL4Bt7UUvOGTExA6hcaA3ZsIbAPIMw3QKETRBUm3Vp+WvYiu1SywAcSebwFpHNuTbi4Tv5hQIvDmvLWqHM3Cts0k0PsqgEmTuBdtreL27fK7VagSPHg6+l70lsI57eE9BPbShLrLhytk174NBtuPaFwPbNwqYY3AuXzviRO6IXfROYhGZPGmrAW20cbBr8xhi3MF7FNmJD/+lIUPP5zAF4+YeEbJxr5nb/2qIgpOEF9B+juT1xMii8DaiC4VWpIB1JPDrmAG9mqB2ixiciYcAWOJYwsA6lh9QDqu69koG0pNWjebpslzF7gb3UjNzE2A5MLnFFdgA9E87Cc9mTjnwGPePH5CF9gTk30pzoSy40YM9qxXYGtMjxgSBffhvZiE1fxYdosuqE3BNkqB7XXg66PVljfeoGX1uhls4QroNcaALMEiDLau+DH4mbJ5vgjhvV/GTAk6lddvVWDfd9hExWu2lRyC+0/U73IuTJ4GQIHBn5bPhwjcGWNo1cXzBw9P2wCVbGeq8LWmG/RkQhbYBVHAd/c8DmR1kH4Tj3FZHFNCA1fmZlDXFH8G+7DHYFNCA0+KEwtHg+vFMdhAlJVdS+SLUQb72r23BY7ay53DvjghGwu92SEw1v7+q12DMwDoXQEGW7gCe7dcBwDQNB079lwNktKjTuL+pj+GLStVpM9LNqbPO9hDsHcLMFehDU3OYLNwBK/QoMDOd8BgN8nCViXiJGsA3jm6EwabPzSFHiGbS5RQvIjdC09AD2v+PgCAXjmOX3xh2AQ/chboceVjmMNmxLtlJSE8Ob7GgL4skSx2VZOzumW3rYguf2xs1QvsTOPkjmySNPXums4oox0VGYeWQGgsetGXiCvy8Bdvq+Dlu8LP+avHQnUIr3Jsqsg175yRwKuu7ey1rCj8ZlY7+dlGe4X4amBjVwlrBMOQaxdbony2C4BqBIQiUtTZpmQum8UJRArs8wXsH3RgsPjrpwyOf/sTc9gZV0wp8nAy2H6BzT1nT43FR3T50FIaqMXgzDsbOgPbB7PCWWjucHlCWYYxGzUpCCXgyooe57iuZiAHz4V6EmFf0ecV2PP5abgp5X1sVGDHzGE/c1bHnGdic+1wtW6zLBaq4Me9EwwjIMPxm2HfRTyX6Y/93B3P4KzV/LVb4tC8Wf2NAGp6TvK1c9hieeMNWoMRGlpzuZbUgrXAz8IOoroUo7NqzvthoYqdSblpPjtHMV+OPyGWHeBzh6IfxpdiIkUuTJwEcncAptxYvHBTFVlrfbIwu9gYeHAyPE6G+INNr+sz2ABwRjsH4zevhv7eqzBVlg25hJ1ua8yilsEuV4o4cU4qN7aM7sXY0A4AwNlCyCxFGexwvZ1skE272lBnsBNWGqlEFnu2XQcAOHnukBz1WQLmF2cwtyg3/JuHd3V029YMtjKDvRIScYfjZTe+Ge//r/+EP/ubB9A/MApktKiTuCMkyRDDluVLUtLbyHV6y5BUxVVisrUB6YMCz21ZZbCzZmiEN95RFnYTJ3HFRZyktTBjvOhCFFurAoXL4XwzWsC/TOwBE/K1Vc79vfd8RnDP3iru8BjTUcWXIDGyekkcXEhCSPNOWbs3EyRTFAXLkMVYk71dxRE4fUlgsQSM9K1eBraPRskdAJC05aHmNNpfZ3RcdOXnvJPthAEDV9Ik7pk+g1859xRe8c0noZ8gQO898rH4HK4ddnD1kIPhlDxZP3peC/wfjj5dgWfojqNaGXsG1nGv0wGDLQvs9dmvdytKAKZ31Cx3/vp5DUqAmmgo30m8UkXDbiTpM+WCVubg5wrIWQL/9a5F/OCMjl5bYDTjYjTNMZrhyCY4tr94ASe+Uy/NixTYA+0vzi6XTQCdyYJRj+mGAwBLMmg2ReliBdbwxnN5rwVL0OCzcAtyRra2GO7o/iwGYlLpaOnfjQBYTcQCMWRhxx0O6i1qhBCYhoAfpdrjsTZCCMxhFmnP3KURg72n34XOBKouCQrsBw+GTZRaJ2B+chHVvz8exN2QrcnYWR3OOWYX5AavkTyxVJWd6lYO4rzkQt9sbZjoNmooc9BeQ97vhC/H34HZ0rFOSuK9/ympUzhQnUSUDEkLmPGUpmoWdjFZheH1eW9NLuLwggVXEPzDYxZ+8eb6HJKvHzcCd2AfhyY0nJyh2NYTbk4vTJyKyMPbcTXt4vLF1AJwaN5rspVOYMS61PT6SUX+XSgugHgdvEJRLmLtzF8DiEQ7LeRncfz0U3BduV7t3X4AJc/NuYwyuEVASwJQGOyNENUVYbA9Zv/AFbfj8AnJxD926Du46+Z6k6RWOHfp2eDnTcM7O7uxWmDHnLOn1RlsewUaa44AMw3cccdbghguYmlRxtnlgKXJYrgG+SKwb6tsNsahLwP09FIsXhJodKohSSaVeoWQYCBEstin51gQvdToFNTuDLbwzpsgAJI6SI8RLOViptIyVok/Ml1niNbLBW5amMD32DiKMzI/fbB3FIQA//HWPI5MMozNhgU2GVg9k18uAKYU2D1pgt2bBJ48aWAsoYHENKCrjsD4jMy+3jQA7N9KMNpfd7UVB0swUI3EmmCnbMmglyry57q/J7I47BzCMBuGRSx8vOeT0KsGcOFwcJ3il0vA6H55/eL90Kgc/3jZrgr+4cc2uCD4xnEDb7m6jKOPl7HNu90J51EAB1b0tXaEJs2sWhCNyiK7oTxk9bCxq4Q1gkUFiFa/SeyifUgGO+qqaegECauF0ZkanzRTgSg4eOEmB798SxFvv66Eu3ZUsW/ARaZJph6gzF+jM4m44xXYmhczxhpIvwkl0D2js42cge2DGqGkzC040LPasoz3qE3BDBI4ictZ9Pr3ixoURCd1EVGmXs9gA8DMwqR0k0djibjBgH1ehNv5BYapAsGDT4dnlAMj8gATQsD93jiqf/VMUFwjo0P7yS119wkA84vT4Nz1nlO8wVml4nWKW8yuC1csKQJttUAMCspIxHBOVD3X92WMN1CbgZqh0Zlbjk9foGZUyZAwCVzv81ezsBfscFN1T+984BD7ucNmJL4FkBujTz0dfrffcFsYmfTlo9Ft6bnJS0DfG+Rj67w7f/08x1ceZ+D+ATnxsYiKIg5+IQlEZ5CLXpewnflrIGpytpCfwTMnwvnrfdsPRFjFqldMi7lqcB7tV2Im1yuqq5bBBhAYnQHAY0uUiZ+5GJocbhrqrMBWzxUkzuQsMoO9Mgw20aPyb2KzKKngitjiDJC1d1+m8TmEUoJNowzVSjiWVAd/DrvkRphzXybuRy81QsRFvJ0Z7IQGwkhEIdBKJi5cAVdhr/+x8PfBz/dMnwUmPh78PtAr1UUpA/jzVy/grSOhgeBqFtiCywawpnxUuzcRJPs15HUdsBmEEChVBKbnBc6OC5wZB/qzwF3XE9x1PcGmQQIa00hZafjJHXHQNYJMUhbYcUjaGRx2wmJaJ/WNKHO2FCgLzPkvBZffvTMqE58pEuBsOHJ3yY2aP645uAAMGtvMisUysraXg+d9RUkJoHMBarIug70cMK/Armm15VLNC2ygfg57KYgy2O0vzq4rm2CMxkd0qTByOohOoGc2TiHVCFQP5+F5mcMYXN6wENWojH7yCmxelbFftZJoalJQjdY5iVuGfK+BaDEbMToruhDleOMhNQ/7sfM6HvIi23ptjq05DlHlcD52Es6nTwdRJ2RHCsavXAEak3/tP7aPnmyDAtuRx3Az+JvhjWJwBsgsdGqQSGQar3IQnS1LfcESFMwMM9Fl/Ft9+gLVqWS6vfdGjepSGexpLdxUpRaKeMvV8nvMBcFfPxT93H50VsPpOfk41wxX8Vs/PQPdk0d+/ZgRjEMKIXCBXwtoshh4ybZqrCliF88ffOFR5fic+Biyqb7GV0Y0gssvsF3XCeK12onoAuol4j7rC0gGu0+JpioYXpPYFXBn5cGsGnStV4EdMTlLyNd95a4boWtyDX7s0NKMzs5eOh783HGB7c9gEwQzwip8ibhGRcvmfFtwBIjNoo11k0lmzFtjhSMQlxNVdQQ0JiO6mmGgj8DUgVID4yqiOImrLPag0oSZaDKHrWtG0NxsNIMthAhysIk3MhlpYLQosPmPpyEm5Qv4cfUx/Evpn3HRW/wP5KcxMvnN4Lp+gQ1I47Ktjspgr45EXHABDkkIqQV2Jkmw50oDE8M5nJikOHEBmPKi6TcNAnccILjrBQRbh0lDFcJqoFV0cE+aNDQSTiWyeKDybUxxqdK76F7AodQx/OveXXgi4c3HC2CwUgKcWYjZbwS3HctwXOl535yaZfjzHySwy4vkcyEwbU+uxMtbOhzeVlZ5gHUa3esW2BTQOAczN75x1UYG1QgIQ50LZtKKSkVjbzsaspF8qQX2pFdgUwLS26FEnALEjY/oUsGSGrSktmHmbJuB6JJB9E2uVoJd1dJKgd3AcT2usAOkmsEnkHqVYnZmbjzaIT+xiDioc9iffNJCoSw/p+tGqkDJQfUvDoM/HBp4sNuHoP/8nqaOoO04iAvhHcNNwEvSTZ0lN04VRwgBs7VoFvoyMrB9UI1CS2kBg80r8ekLxIhGxfl59AIiUtyMQ8n/nSzjzVeVMOAxTj86q+MhxSn+E0+FjbM3X11CLsXxIi+ub65M8X3P8XR2YRLVnjcF1717V1ce/nzG2XGBh5/1jvnCQSD/ROBk3wiWmQSlcm3LexvLQilcm9plsFOJbPDzvMJg65qJ7ZuuiLCKCyxkip1xud71KxnOG0Ii7r1u07Bx1e4XAgAuTp7G+fGTHd/v2YtKgT2yxBnsjB7I91X4EvFem7eMDBJcgE+UIuNtdddxeP0m3WSek7gi2Y5ZW/MlOSITZ3CmIp2myKWBhUZboAZRXQNKgT3ewuhs0CtqJ6fPR5QJAUou4J8zPCKB9KoMdmPbasEF3G+Ehfu/FP8ZwtqBL/ZsCy77pa1vDX7eufnK6O19FSJFR3u4jsAFOAhYDYMNALvGCK6+guGF+4G7byC45xaC19xGcMcBih2jBPo6GGX5yR2NkPS2zjwmkjOVyGBOzOGds2/HvTNvxHvm3o37dz6Ck1eN4JCyLo1WCsDUF1AqzkRu//Jd4Wf9w2cZtpTl+neKn4OeWD2FQTsQrgA6qddMti5z2M/7ilKjAHU5tKy+4WW/GxmEkWAmU4VlACDxC0Bw2xqjs04huAgWZ9LXWRSV60p3T1FBw4guH1qaQctqy5LYrhWoIRUFbt4FteiyDM58aOnQuKqR4zohBCyh1ZlraRqCRktPVpGIz0+AXpkLfne+cSHG+Rq4YsAF8e7g6JQaz+XAvf9SqHwwKLS374D22s2xGy8VvsEZEF9gV13RpsGZC2azDcVgA9I3gEcYbAEtGT8j2An0nA63HDLYcRsAOSpAw6guQ45hOG6UwT7nng1+FpMlWBrwczeEs9cf+lECLgeOTjI8flE+zqaMi5u3SJZFTRTwZeLPnLsA9LwMAGBjKqJ+6OL5h4+rasaJjwEAMunmEnFCSMBS+wxuRCptt5C1eGCUBUX2xcnTAWu7c8tV0DUDvdmwwJ5WMrarXoFtaEDalN8h1bhrLRFlsEPp/HJl4ue894IxDcN98WM8cRBVHhhxxRmcVV0EPg1tRXSVXPmv0GSdEN7MtQLCiOck7q2xQsS6GudLQF8WMFukqlCNoDcjR2ni9ktqVJf6XNtlsAFgz3Y5N8sFj42LE6rBWcorsBUGu5lEnD8xAzEuiY65viKedJ4ABu7F13OjqHp762vzV+Lfv+V/4D1v/G3cfuPrwvsVIlAhkl6zvXzjpYALcEKg6fVMdNImuPlKiqt2UGwZIuhJr09RXQst03hfkbIAy5Su5nV/s+W6IyCQF1LenU72YCjJcd4I99yjlQIw+alg/MXHS7ZXAoXYzuI8/GdxtPJUxARyXSAESCeyNJ0C6xDBvPErhVUGZQDj3YiulQAxaF2kgG3J+dtKsznsYTvMWlwKgz1fDWRanUqLXC6fn18wNsu31pIa9Kz+nGCwqU5BNMBZcKAlGLQVcMhX2f1mjuu1hR0QbR5GZrDnx0Gv7gmc38WJRYjj9Z31lCmwo7dePn6gtwT3Qa9QpgT6v98Hdl3zzXPw2HPNC2w/iqNVgc1LHHpPPYu73tBSLNLokJ/Z8o9dllIy0YWIjSajBgXVSF1Ul+MAPZlwBvv83OlwBt9rkt25o4J9A6E87QvPmPjE0+GH8KYrS/5ygetGQ8fTR85puLRI8e0TBkDk8b43eQhrMCrXxQbGv3xDOSd5M6CtJOJA6CTuM7j5klpgt8dgA6FMfFZRzOz1Ch2VwZ5wwvXIZ7CBMKprqkDRpE+9aiior1th7q/bH+ZhP3rw/o7uk3MeNBtG+rdC09pXWEXmr3P1i3PU4KyN+esKl2tQg/Ek+aDxxTPSejAPTYBYlqxcAYZ62ogsZQSZhEDSkqZodVCzsAtLY7Cv2HlD8POh44/UX0GN6PLVX1k9UJ81YrAFF3C/HrLXB7ed9p7cvaV0AMMAANWPSURBVJjXDDyY8UYh8i5eM/hG/NRP/Acwqpw35qtBo6LTmNWOwAFOAP05QJL4aCYRNw2pjijGFNhqM8xHOpHFUIrjglJgj5XngdmvwnGrqDrhHaUM4Davkb1HabIdcY90tP6tGjppfugUostgrz00Kp0dWaJbYC8X1KAQNeczy5BFSlOjM42CDHsF1kSpTl7sQ8xXA4ly5PIlzl8D0njLNCQT18plmzCCnptyMPpWOfxwBUB0AqJRVOcdGIPmsllLQDqJ+3O1zRzXtSSrUzLomnQ35UJE5p2n58alC/XdocOp8/X4+TA1DxsAxjIu+p6eAIpyY0Sv7wUdbZCDEoPoDHZ8gZ2y0bKLzascRgyTst6ojUwTXEBbgXXOP+H7SoO4DQDVFRdzyBlsn8EeGdgWsHo/PvQdwP8+5R2IogNKgH+n5KN+5FFLFs0AsibHyxTJNyXAK3fL3wUIvnLUwGOTIRt261g4NqBClF00DRHt4rIA5wJvuoNg/xhHyj0JFI8AALItGGxALbDrGexkmxJxIJqF7WPf9usBIDKDfb4cqjmqSoHts7BVThrG160mfIk8EI0v27vtuuD3Rw8+AJc3KVBrMDl7AeVKEci8CPntH8EPznSwLrWI6Pr0wbDoHkm3/o6LCgdJ1quugr8LL8E5Jn2BWAwQnoqOEpCaDGzO5W1bzV8DMjrKMCgGsgKLMQV2hMFWJOKDqfYZ7EiB/ezDdX9XM7Dhqd6IRsMm6HQ8g82fnoW4KJ802ZLEs/pJILEfSF4DADi4PWwkud+fqLv9UlNgOgYXcEFgms+drqtP6MTtfQkh6E3HM9hJRQbuI53swXA6ymBvKV8EuHz/CzUsti8T310K14CjzpF1Z7CJaM9BPIDJAI20HBdZaTzvC2xKpRHGc0H2u9FBDRoYTAWXEel02NLozC+MOCAu1LPY7oPjKP/OEzj982frirflFNgQgKERCKdxwaiCrlOeXqfwGURCAKNnZUzZqCcJ5xXe1HGdGrRu7l7znNpdN2py5rM69NpekH55YhXHFsBP1LPYV9VIfV8wXIb7QBi3w+4Yrr1JU0RnsOtNzioOkG1lcOYVmVp646ka4uK4VsJngiUoqO6NH+iN0xdYIlQyUEJgm0DVkZLQG666EwCwWJjDrBGevH2DnCsGXdy5Q+4aFioUXMgz42v3l+sMy16xuwxK5OfwmYMmplzPPGfhYVy9KRf73NwfTsL6q4PA/z2O2cfmOn8TunhOgFKCX/9pgs/9WgV7pn4tuDzTBoPty8CrTgWVaqlGIr68AttnsJN2BqYhBylPF04Gf49jsIH1mcMuNGDuGdNw/RUvASAd0o+efLzt+wzmr3f+CWb0W/HHDybbZudVFrW2wD48wfAZr8A2mMCr9zWeGQ7gctnk5yJ2PAmugNDkyEstiM1kl6/CpQS1Zn9QKAEJu/X8NSALbMKAgbTcl9blGzeawU60X2CPXOrFX+f+P/yE+RocPPZw/etdqJeIA4pMPO9AVKKNFCGi7DW7ewRz+Smg/97gsi3XJUKV2rOL4JeiHQR/3QdW10EcroAgBGYLX5WNBL+B7Y9l1SKd8NSfNZuuVGyBncNwimNGM1D0FASj1fCzqJWJv2DUwYGRKvYU5TmyIio46Z5YVwZbHrOiMwbbZuCb06BrrD59blQLqwiNcxiJejfkLjoHNepnsAEgkyBwWjS3o07iNYtv2YXzr+cAAMUnS+A/no7+fTkFNiS72qxgfC6CaERGzyUYtBVyPacmA9WpNLhq4rheG9EEyJxxxiRpmLBSMHT5OflFLmEE7K7mLHZtgX334kXAkwvS/VnQ4ZgwyCaYmWtucibQ2uBMVGT0lbaBDM58SAZbKg78jVSjyI9O4EeHOAsOiNE4fUFLRiXqCQvBOnDztS8PLj+ePxL8HJgVAvi5FxRgsPD2OhN4bcyGeSApcMOYPDYWKsp3ePwfMTKwLfa5iaPzIK4Aji9cVt/7LhqjWDgf/NwqpguIsrX54kJUIm61N4MN1BfYCTsduGYTQtCblSz2ifnwe1BtUGBP1sxh8/MFiPnVNfHLF+Tr1jUThh5lF1+ffAM+kPrv2M6246GnvhF381icvXQMAAESVwCQsu522flInKPSFHc48CffSwTNuHdcV8RYpjWDTYSUQwvFETwCx9vMxzQsYXlO4iXXK7CjryFfAtJ2aEbV9Hlo0scmYwukE/K2kb83YLANDchZ8nm3kog7XzyLTXQTfjbxHiwszuDCxMnI34OILiBiEBoxIq2J0xSn88FoHxlLgO7PYnZxBhh6h7wMAi/ZXgW9OTzH8h9EWWx/dhtY5QLbY7At+zlUYHv7LN5ghCFpyWOgdgwzFcMyp5M55CwBUwMueI293qoB6pWCxVI+cn1Ggd9/8SxGK3JP/qx7HC5cJNv0oFgVcAHBaEdz+oQQiKyx5j5bz/udBXUFdLsb0bUSoDEz2ICcYSVoku8IRKS9vMbojD8yFciAAcD51qVI53W58iJKWkd0PdcgXaSZLLBXwOAMAJgpXdadRbep43pQ2CnNFk2T+w/u+ptKyRhPK3PQ9AW9gHciF8/Mg5+OdlMHkiKYt4UQ2P5EuGFmd3XGXgOhyRmlLBKnA0iDM43JorAZ3KILZrHYOeT1hoxMk07eoipAdQK6AtI46h8H8w6Y1Th9gSW0yDGgZmHfeNVLQYm83cMXHwyuozIZQymBN18VfrdftrOCHjt+DXnV7prCWzhI5r+CVMwcmnA5+LNesZTSkNq3jpuFywC/93u/h1e84hV4yUtegre85S34znfC2KaPfOQjuPvuu3HXXXfhz/7sz+IZwjXCQlE2Zi0jActsPUoSLbDnl8FgR9eWvduuA6XKnLA3h32pcD7IWXYiEvF4Btt9aBLVPz6Iyh8+HZnJXWn4DHZtNJmYr2Lv0yO4wbgRv5V6P378ZPtxXWcvHAeMYaQ5xT3TZ9BfLeH8QnvbURGRiIfn+089beL4tDzX7ehx8OarWrPXosohdArSa0i5dxxL6EiGO3YG22QgJoMoOLHXKZSBkT60tbH3jWIpgNE+oFhTYEcY7JrP25/DniqEa2wtxGwF8CTeFrEwTEdw6HhUJh6ViMcX2LVRXfyJ0JyP3TYIQgjOl3cC1nYAwIGRMvqTAuyGvqAB4T48BfcHE3B/PA330Bz4mbCwW+0CW2gUpv7cKbB9uKX4DzZhyT12seZwt61UcI71kU72gBDgJ/aWA5k4A8UglU2+WgYbAIjii3TUkU3AdZWIOwJg6IzBXic87wtsgwrJyMR1J7voCI3k05YZGhw1QqMsbMEF3O+MR64rzhUhjoWbHe7HO5g0clJoBS4EQKSKoVVE13MRNMGg5/Smxm2dQstocBYdWbw1YbCpjgh7yag3g+udI3IeYzy/OA3H8XI3GYX20pDFdr9Wz2K/7doSErrAb+49A+rJzMjWJMi2zosknz3vSfdHNrwAUKkAVhsGZ27JhZbRZe7zBgPRSeDkzSscxKBgK8BgE0Kg5XQZ0dUkfYHq0Yi+2izs/d484ONT4SZPLbAB4KeuKeHunWW8cFMV774+VLbwU3lc+L1L4KfkxuzmzdWAxQEAzHwNY7l42kicKYQb6R3pbnrEMvG2t70N9913H+6//368//3vx2//9m9jfn4e3/3ud/HJT34SH/nIR/Dxj38c3/3ud/H5z39+3Z7nfEEW2K0cxH1ECuxCTYHd0Qx2TYHtzV/78BlsAHBTch2pXqoGzYj+mCxs4fBA1YWSC34yPt5wJeCbvNU2FfjZPLzJDAyzEVx5fgcW8rNt3efZS8dhWLvxBycfxi9eOIw/OPEQLsbbJdRBxMxgn1+g+PvH5PedQOBXbyu0N6JZ4ZKBTmqSsY1jCR0BGPGMGaFEMsslV854KtcRQkAImVXcDohGQSiBcIHeDIFes5VRGezaddIvsLkgDd3mg6aih61sKw7WFNhQXcSVxrwam6XOYQsh4PoFNkWQCHLJeFVwndfu9xzfExrotd53r+jC+eQpOP/4LJy/ORrGc+rhvPeqgAOC0bqIrucEYsgrQI7B9GTq57AJIXVGZ76a5t/dVMRtB8JjdZSNAgCK5SiDDSDS/DjiFdidrH8rDi7kKEaDPZf83q1fI1fFxtM1rjEMHU1z5rroAA1clG3F6ExvcMQRiwF9JjBVhrhQhOAChBLwZ+ZDhjrBgII8Abr3XwTdnZEOntNeRFe/1dFm2c/Apm58pvNzHVpGA+1Z2cJPy2gQVS7Z8QaFO9XDiCY/c5kQAtMQ8BukqiR7dmES/T2ysKY39AFfvwDMVsAPzYGfK4AqzZdX7anglfvK0P7xNPw2DLtzuOMiiXOO2YVJAEAuWz9/XaoCuVQbBmdlDqN/Y64fstFBIKpyo0d1uiIz2ACgZ3RAI03TF2pHBfwsbC4EKCG46dqX4+ljP8JFN2ykqBJxALA04H2313syVD96ArPjZSBXgPEb10BnBC/fVcHH/azs8X/A8NZtsc+LHw1nvrGjy14vF9u2bQt+JoSgUqlgcnISX/rSl/CmN70JmzZtAgC8/e1vx5e//GW87nWvq7uPSqWCSiW6Q9Q0DYaxMuaBnDtY9HJes6leENZ6A5ZMhpvIQnkexcqi8rdUW/cBAJl0LvL7vp3XRW7b3xsW2GW7isQMhSgKkKoLGAT96bDomywSECbg/mASmFPYxply28+nEwghApO3pJ2OPIY4F92Mv8l6Mw4+8l3cfOdPtLzfs5eO4d36f8RWb0M/XC1h8qELIFfK84L/OLGvadYrLm0GmqQQQuDPvp9A2ZWLzeuvLGP/cJuMPndAkpqMm+zV4I67MY/pgqR0EMQziCTLQHQBkqSR61QcgYQpR+Q4b+P8RAWgCwhwpJIUPZma9yDLQPpNiMkyxMlFiMki6JBc74YUo7PJEsVQtv71i5PRAnsL24rHnn04+pkueN9BApCMFn4OfeE5TsyFx5o4UwgYbborDZphmMgDhcQd8rLqRdyyzYBPpGp3DqLy4+k6r57gLdiaANUBvzPb9DhYAgTlIAaBRnl7n8kGAOfysxWaABc81rA2mwbIhACp2cKmEtlI0yuTyQbvpT5swj9KRukoHsUjKFYW6t5rcTb8nvsMdiqVXpX1phHU44CAg5gA0RH7nbw4LVCpAluHw/eJEiEVlLzN72IL1BIyjdAtsHWsmIT2+Q6qRRkrH7pGkLAEZhelK3PD248lwKfKQJVDjJdAhm243wlNrPR7twJfOY3qBQf88Dz4xaKvPQeAwESjXXA3zEFnWW1Fmd6NgPTelS8emCXnsLUWhZUa0eTD1EMGu1cpamfmJ4ICm2gU2p3DcD4jYz7cr58Hfeeu6AOczqPwqMdeD1igV+Q6fh0LhVm4rjy99MYZnHkFdisIgRWJQFsNUI3KWem8C7gCep++Im7ygDQw01NaU1dyqocz4IQS2czUpNEd1eQc9t9+6ndRRhlzdB5ZngmiuppBFByIce96s1XwZ+bArsjhHdcVcfLSBfzokY8CEx/HyA2/FHv7aIG9AeJGLgP8/u//Pu677z6Uy2W85CUvwY4dO3DixAncc889wXX27NmDD37wg7G3/7u/+zt8+MMfjlz25je/Gffee2/s9TtFUZsDF7JQHd6SxfYX15so1mLz0ybwBflzctslaJMhxbrrZobtL2h9HwCw45IF/HP4+8veugcjI+Ftdz2dA74qf3YHFoHzknUa3T4Lc4eJ1CwFPisNi4oWx7ab53HsD8LxGADIWAsYenFnHhTtoFgsgnvu4H0jicj7dubT81B5c5OY6Pt+Bdvf3/x9qVQqGJntx2tT+yKX7336LDbt06APhGvKtlujzLzgAofnZEFnbtaw/cUL+MyDSTxyThaAI70OPvBL40g1GCVp8IwAnAZyAK4GgLjnX21wOYDrvH9Y9P4pGADmpuW/trA//HGn59WovgdTpzMY/1OpvEqeOIfhN8lz194FAhz09j+by9h+U31T8tk/n4fKz29lW/Gps5/A8A3jsG157Bz7wwqqAFiWYccd4eOWNzt49q/lz0ktjzHvOBj/4CT8b8XgG230vHgB9302E8Qk9jmfxe6XhGw2AFRu24rSM2XwPAfPc7je/4QBuddnYWyuf59rj4PlYCeqgDOPU6dW7C7XBPwGF4sNjsHUKHDz1fWX9wwkccEbdzcMA/te6sA/jgtJF6c+Jv824jHYyS2TdWvj0d9fBAdQ1ao4y2XSwc6bGLbf2N76t5KIHgdnYq+zJdfgxoPA9ATQ7lexGbZv397W9TbmznCN0JMGnBzrGpytEAgjdeZWPrJJYHy2xe3HEoAnNxLnC+AAxBFvM9xngl6dQ653AZf+WK4Y7gOXQK8InRJ9F+p24XLp1slc3rRgfK5iNaSvzGKgNpMMZqPHZQTUZnDmo110y5DFFVCThT0XHQGgL+wHvnEBmK+CPzkL54GLYFf2gPTJz9f55sXw+dwxtKSicVY1OIuJ6AKARAuDM17loBoB24AGZz5YgqE6W4VwBdgKNhKZRaVCoonqQ50BJwYJorqqriy0t4/tx0DvGCamz+FU5SSu0a4BCo6cZ2xSuItaj4YfToJdkYOtA7emPosfnXo/AGBkYGv9bcsuhCcr51kDtI3kgC5a433vex9+7dd+DQ8//DCOHTsGACgUCkilwi5VMplEoVC/8QeAd7/73Xjb294WuWwlGexvfP6J4GfDGcKJ77RurFQuhevCiUequHAsbP7MHRnCiUJ7zZnSudAfojc7iOLR3ThxTGFXZsPj9NJCHmnIAvvst3TQc2m4XCadOJzg8SMWDv+/FeBidG2dfVKg0MZr6hRTsyF7RSs9kfet9GPv/bAopguT6KW92DyxBUc/5ELzpMJxOH3sMP5j4leD388YSWyu5KE7HCd+Zw76T20DYQLbbl3Eye+lINzwvRJzFfi0W1W38IMvZfGBz4Yy2H/3giImHk6hPggqHvxSEWx/FnQsCZGvwnl4EiSpgyijNOp14iBmy3AenQa2p5AfSGHOe8syCWDvZmDv1vYb95MPTKE6W4U5YGKxxCF2LOLot5PQmDcaMGAD+iRQFZj53DwKB7aBmAxsPDwfP/1wEldWouuyyDsoPxtViGxhW+E4Dr76T8dxzd5bIIRAdVKeoLmlRz5rUeEATgIAFg5znPhOGkIIVL7gVakEmLGHMXW/jn/4inc74WK4fD9OfCemSWZ6/2qmNfIng4eRd9vgOFgq+MUCLvVmcPtr0hgbeO4w2GfOnIH5jAnCKfRs/d6r6gg8dFiOPKaUfYvOw/GUdCL6/RVzJgBZMI9R2c05/YSLE4PqdapwLskv3CVzKvBRmj86jBOltWtOq8cBn6iA9Bhg19SP+nAucGZccm7bFAa7VBGYWwBecTMJXNfXApcXZdchRvoJcr2s6yK7QiANJOIAkLBJXUZ23e1Ho3PYKnvNXjQIQgmyr8tK505I8zPxbNjR6tQcw+Vyw09d3rRg7CIEtSm0ZOvvjJZkENUoi2AoxiJqLJYalwUARKeRyC3382dR+Z9PovKHT6H6mdPgT87KP2R00Be0jtuJw/R8eGzVOohXXQFGgUSLfg0vSam8tgENznxoSQZeFRCuWFGnc5aU5nnNXrs6Aw5IibihyaguQDaAfDfxc06YAVwrE68FPx9NGeCHZgMn5QsTIS0RW2CfXAzkiXxLVx6+kmCM4aabbsJDDz2E73//+0gkElhcDNfnfD6PRCLeXMwwDKRSqcg/y7JAKV2RfzOzoRFTNtkH4ZKW/xJmWLgt5heQL4SvxTYybd2HcAnSdrjJ3bv9eoDTyN970uFaN8VDltz50TS4A1BB8MJNUg4+mwfy/xo2GP2GtpistP18OvmXVz6/hJkOLufT1SDSiWxO4hu93w2uV/rEs+AlEXt/3AH0z0+hl8rN8cOpPvz69huwSOXa5P5oCu6pQlBM1d1+MpTFP1pI4mc+kcV8WZ6Lbt9WwS2bnLZfG3cAVAmEoUOAQlg6wDSIQvS5o0ogmCavE/fP1DFdZDg/w+C4FHu3UNx5gOGVNzHs3651dJwynQFVmfOb8AwpC2XluZg66AHvnFficH80DeESDNjh5urSAq17re7x+tnaTWwTGBgOHn1EXq8gAP+cndaj7wFjgKfUEjPyWOPnyoHiiGxPAQkDPzxlYKrgnWemv4z+RPufR6N/ccfBUv9xh8AVDLq2MuvKWv0DAD1lSKZfkLp/BqNImQSFfPT1puyQgEolctH3I2kEc8w+g10o5KPHzcnwuDmrhaqZRAfr30r9848DXgaEHv99LFYoDJ2Ccxnt6V/OBYUrVvbzaAfP+8qSWrTrIL5CIBoJJKG1sA057+w2MGoAEJm15UfnpXs4AFgM7MZ+AABLUrBb5c9wBdwHQ/az0wLbceWIACGk22RpE8xi0NKtXfdZUgOvkYhrSn2nssa1BTYAsJv7QTZHGQMxXgJ/cDwYCdBuH+woqkFFs4iuSgUwjTYcxEsuWGpjJxAwm0kd+wrH0GlJDT035JqO1/hZ7P6oACEEthU1O/QL7PP8XHBZrYFPLWoZbHDpSgu0LrD5kVAe7m7uFtirAc45zp49i+3btwdsNgAcOXIEO3bsWJfnND0zGfzcrsmZauqVL85H8qBrHbWbYdeWqwOjszte+Pq6v/fnwgL7aXoocBLnj0zD9dQ6776+CAKBO+YuIrnoFTV7MoFqS0yVV8XYJ68Yu6mGSfxs+B2km5KwbhzBE1WpEtDmBNxvK00ABfyhKfSckQvrHGX409ErMa8Z+OhgeFw4nzsT+1qEAE48Gy4ejxSScLx5yj6b4xdjZNFN4QgInQRsNWEUJKNDKEZnggsIApAmJrhFQSFsDS+8muGeWwhuuoJi8xCBtYTEBmpS+MkL1FOg1VgTgN0WNqfd701ACBGYnAHxWdhCNTjzCAqd6Bilo4GTuOogTlI6hAAWlei0wEl8vgrhcPAnw6YVvVoe3194RlGcXPhrZNvIm19LSC8S8pw0OdN7NPBKY5aqJ02C5rUPNQu71myREBKsH0N0CBS0zuRMnA5/P0HDc2utedqagnNpaByDQhmwLS8StkU08FrgeV9VMIOAXmbu0esFwggIBeKysG1TFi21WX2R22d0wNuwi/NF6d4JgL2wX5qgedBePAj4smDlsZbCYBtMymroZTZ/vVqgFkVqTwp6b3PGn1leYadArYVVBnt67hJqQQwG/Zf3Qf/VK8BeNQayLRkZP6BpCnZrvLS7HahFfW2BXa7KbMlWBmdukcPs29gSY2JQ+TmswjHearSG6hTUpOCKkiFpSYm4j+v2vQimYeO8qxTYE80Z7KDAVl6O+8NJCCFw0SuwKaEY7N1Ud1uupg9sjpd8dtE+CoUCvvzlL6NQKMBxHHzjG9/AI488ggMHDuCee+7Bpz71KZw7dw6Tk5P4p3/6J7zqVa9qfaergJnZsMBuJwMbiLqIF4oLERdxu4McbNtK4SP/4wf4Px+4H3fd9Ma6v/fmQpOzE4Vj0H9qW/C7++VzcB+fxvYejlfsKOMtEyeCv2kvGwF8d+cqjzhArxQiBbbiHKwaH5FNCdx41V34UOGDcL05d/cbFyCmo40yMVWG87nTwe9/PnoFZrxc7S/2bMY5LzZInFgEf2K27rn8/gMJfPWRcE0e1y2kDY6fvqaID71uHn2JDhsMFVcyeMregmSN0CgEkPsLjTR0LAaAyQWCwWtT2HWVAXuZMYjUpHVKP6fmdzqWANkq1y5xsQjx7CL6E0LGjSK+wFZd5tkNYdG7hW3FweMPyYaGUmC7SR3v+2oKr/9oDp98Sn5GQSSagDQhVQpsdnUPLi1S/Oisty8onQJm/hXZNptZawXOAfYcLbC1pFa7pYogacmRR66QWOoalk5m627jF9g60TFIB+tiuvyUDgA4yo8EP3ey/q08CIge/wEWSvJ90DZIgb1xhwfXCFpKaxgv1UVnIJrMcYwz2zR1OYNbqjSPPiKjCYhnFBMiEu3YAgDJGaAHekOGGwDSeqQIbweuC5hEgBpkQ7OQGwmEENibWpvpUKN+o6FrACHSRboVg+0/FhlNyIz0l45A5KvSVf5iAZvfaeLiNINY4iKqPmauxuSs7LRncAYuoGU29hJKDRp07VfKQbyjx7cZhDKLbxkkwk6Zho0D+1+Mc08eDi5rxmALh0NckgW4uc1AVTPBjyzI9IHjC7gwKQvsgd4xaFq0CSTyTlCck7EEYG/sz+65AEIIPve5z+EP/uAPIITA5s2b8bu/+7vYtWsXdu3ahaNHj+JnfuZnwDnH61//erz2ta9dl+c5MxueK7Lp/rZuo7I0KoNtmUkw2tn5IpvuQzYdz+alElkYuoVKtYTpuUtgB3qRS81j4i/lc3b++QRIzsB79GkkKvL4fSLZg60DGfT0TQe+omKqLKOmVhC+gzgAJBNqgR1lsLf09qCQqeK+8ufweusNgCNQ+eBh2TQHABA5P+3F433FeRDfz74suA+HUvzN0G68/8zj8vfPnwX/N1uCv8+VCL7xrIlfqITjIbdfR/De2+ZgL/UllzlISouy0wkNBHKNIoTI6rZJJJDrCjgusOM6C9oKzHZSndY1pgmRRRNVvEbYbYNwTslmi/u9ceg70+izBSYKBOM1BbaouNLtG9IIluxIA9+Vyr8tbCsenPsuxqfPoX8hVBB+czyBR7ycsPueMfGmq8qRLGx+dAHighKTmTPwpUcNCL8LfvH/A8CRSW6sAlsIacbLnoPbPZZgoIyAOzy2Zkna4R7bV9+pa1gtgw3I5B0fI3QUBaXAFlxA+BFdOQMXS1Iibi9h/VtRCNEwA9txgb4MwfS8CPx+1hPP+x1GN6Jr5UAYARiJZbAJIcimBObrycoI6FgCrlJg06tygbmVCvaSoUiBTQY6MzgDZJyeSQSIzroM9grDz5UPNiqQXUWNycaGymDPNiiwa0GSOtj1fSCsF/aVC8B3lv78Igx2jcmZEEDSbr5ZEq4AKFnRuebVgDQao1Ku3UTmuFrQkgwlZVTAiHm7brrmZfjLx78FLjgooU1nsMV4KVCtmHtN8IF+WWADKH/vQhBJEisPPzYfjBfQXV338JWAbdv40Ic+1PDv7373u/Hud797DZ9RPKIF9hJysIsLYR60tbLKB0IIerNDuDh5ClOzUlrd9+5eTD0kJdVwBKofOYakyYJi+qMDOzD6mI1fUfOJp8rAtpVlluKyv4UQ4D6DbTOg1wAhBDdcfRf+6Tv/iNuNO+SM9VwVYq5esnZJXMKH6SPB72NpF+cWGH6YHsCl4SyGLs5BTFcw8y+zwA7Juj07LTf0A9VwbbjzehnVs1SICgetMYwiNoMwCEiFAyYDqkKOvjVYO6cXgL4sMLJCSmgSUzhYhoyNVD1B6DU9wOfOAHkH/EnpQTGQ5JgoUMyWKCpOuNaK0/kgQ5lsT4EMhw3ybdo2AMDB4w/h9sptweWP5xPSVR3A+XmKQhUwe8In4D4QbuTo1T1wOPDlIx7TDQ5x6e8AtD+OsRYQQsAVANOeowx2QgO1KXiJg6bqj0fLIEjZAnP5sMCOSsRzdbdRjYFH2SgWSiFjLS4WZU48ALolifzjcl+e6GA8ZjVAQBAXcs+5ACFAb8YfR12HJ1eD53VVoWd1GP0bW+L5XIKUiMfPYANA0iJ1cqe6+xiLmuCwFw/FXo+OJkD2hBugTuXhwf1wDmauD7t3OYOaFKQmqktncjbG5UDCSsE05Il+usZFfC0wMx8+pioRd1wBjTZXWQDe/LVFwTawwRkglQREJ6A6kbL9NQZLaJGGm6ED8FQMPm669uWooopJLpseYrLxPKk4FzJn1m6ZLABPqk6eXkCKyAIjtsA+GhYLdPc6zpB1seaIFNhtzoVGC+z5oNhMWJ1vMIUQ4KcXIQrxMu4+bw57IT+LSqUEQgj0e7eA+DntC06g7DiUzOLJRA++eszAuBme98RU64i7ThFhsP33Y14xONuUCBqoN151FwqigD/N/zFKWlmO9NT8ExkN/2P+d1G0wvGN68e8IpwQfH3fzmAUaPJvp4O54GNegT3oF9iMAKllkiNCgCRr7sPWQCwN8OewHQ5YLDapQgiBuUVg11jUwHM5oDEFtm0A5Zo5bKJRsJs9JQaXueiROexCuJ/hihEs3ZGWhIVnSLuFSZXAoeMPQyyGzZBZFu6LBQhOTDNAYbDVMR52dQ++f1rHdFE+5pj2FFC5AKD979qagAtwEFDjuVlgU1v6Rbmlxpvo3kx0DDNSYCdydddXGexRNhqRiKvz12RLMlj/1HVxrSFcAUHjG1FFTx3bk944EvHndVWR3JFsS+7aRXsgmjeD3aDAtgw/trqJ0dmmkB0gYwnpTtkA2p2hOQzdsjRWgbkCLKWtSqTV8xnUoKB6dP5W0+R53XUla+MXto0k4qsJP6aLEoqMMpNZrsoisC0H8eTGj/jzPweW0Jq6/K/e4xOoX3dTBwyGiBnLYO8Ydm6+Cud8o7OiC8zW7Cg9qAZn5h5TbjQ9J3niAncadwEAhvtjHMSPecUCI03XlS4uP6gmZ+3OYCesVHBeWCzMBZvPJTE4jpCLXzF+19enzGFPeZ4URKPQ37mrLn5y+tZN0kwUBP/9u6GJXO3M80pANXbzX3fE4EzxMTiw/3ZQQvFI9WH8Cvs1mH90Q92/U+8QOOYeBaxtwe1eMBouBk/QjIxpBMDzHM4X5ZpwvLbAzhlLimf0ESirapqOhBGQrA7hSdmFK0AajJIsFoFUAti0gnFPcYVDLi0Z7FqwmweCZoT7gwkM2eH7qM5h8xNKY3F7Sr7GQVlYjdIxaNBw6NlHcPZcWLjNaAZeMBo+6LFpDaS3nowiYwmQPhNfeCY8RoedrwQ/t/tdWxNwQBDynGWwCSEwenTwUuPKMZ0gkQb27q3XBH/bs+26+vtU1pYROhoxOeNKgY3NdiAfX1cGm3vraMzIRqEEpGz5zzS6BXYXlxkIkzPYjeZiLbN1Z4n0mTLbeNSG9sYtTQtfujsD7Z07ob1hC+gNnXVK/SKfcQ59BfOBu5AIGezwpM2o9/l7F+W8Ant+cRqO08T9bhXgF/XZdH9knqhckbNMrRgJt+jC6NGXtclbC1BDfg7N3L5X+/FVczpDl42W2jXgpmtehoPOweB3lW1WoUZ0WXvk5oDeFCoQXmFKE63hgS2R24npcsAAkq3JSM5tF5c/VAY7bhZRhVioQsxVQCkNzHymZy+Be+5TnTiIB6hwIKlDVOPZpz7FSXx6NpTfkqQG7T27Q5XG9hRuu8tCjyWP5bM9dwbX5S3i7ZaCfKGewQ7mMhFVnKWTOezfeQMA4PSFI7g0FUbv+Th70WsIWKFr+PYeF71ezNT5eQbtlWNB4ev+cAr81CKOTWlIuFUkucec9yxTeVjl0kE8RtVDMkZonupwKYOPweQcsGUQyKZWsMD2mqCqgidpR5uUwXV7TFA/b3y+iqsmwyaSP4ctXAHhG1Vl9YCF9mXiGtEwxsZwZLYfp8+Gi/Krrud454FwrT0+zUKTMwX06hwm8gSPnJdKgJG0C2MxnN1q5DuwLnAFOAF0gzxnCRU9p8eOYPrIJCU5UPSWgh2br8Qf/dqn8YFf+nvcePVL62+Q1oNidZSNRRnsU97PFCj1xRunrTlcLgvsGLKgWAYGcgClBLZRbw64HugW2F2sGAiVUlQ0YrB1ucFu5iQOANqrN8P41StB28ipZVf3gN06CMI6O5Q5lwUfozJSqouVhe8grWZhE0JgGgjMJ3qzyhz2wmTtXawahBBBgV3nIN6mwZlwBfTlbvLWAIQSsARbvwJbp5HoPo1Js7vaOJGbr305Hqs+GvzOj86jFkKIkMHO6tB65Wuiw3bgqrtd247dbE+kYAGi7uF0V1ce/nyDX2Cnk7k687taiMVqIOX2N5P+bDSwNIk4qhzEpIitlAD0ZkMGe1J5LACgAxaM/3gFtJ/cAv1dO1Euz0Kc/B0AQJFpmPWafIvnVl4JlI+JJqs1OFNxw1Vhwf/wU9+su7+zl47LHzwGm0BgMMkxmpEnhekiRcnSob1yJLhN9TOncWaWhOw1pNHpslDhIAarY7ABAAkGIkSwZsVFdFUcAUqBrcMrW6hJFWDUKDZpyn1KNaawYreG59DdRy8EP/sMtjhXCOdod6SDwlKdw95iXg93zz8j50jVkADwuhs4tve4IN7xenyayWZETbOBXtOLJy6G55a7dlSwkA+bWZlU82bWmsKTiBvWc7O4BhCMpDUaoTJ1gt4MkFd6bQf2347bDtwT21QgNIzqGqbDKBZlM0aUXOl3AoCMJFDgYVNtSQ3GlYIrZDRrDIPtuDKqDJBS8Y1gctYtsLtYURCdNuywGTqB1UaBvRZwuYw00OjK5gN3EYIlGHgNY2PqYWdRLW7VmejVxkJ+Fo4rD8IepcgHAMHbMDjzi8UNPn/twxwyoKXX57lSk4LqiGRhJ816BnvvjutxyZpEQcgTOT8yXz9qMlsJJLZ0NDrawxQW+5XmK5GpYSnVgp3u7hqcPd/gF9iZNiSrBACoNOv0N5NcyU5aikRSVDmgUxBBYjfHjRjs4Dn1mmC3DcI1gf/+V+/B7NH/F8g/BQC4aMomQKqawH1f/duOn1szREzO7HTU4CwhDc5U3HDlXcHPDz/1rbr7O3vRL7C3AwAGkhw6A8bS4ft7foGBvWgQ5k7vvs8W8NKZ8xGDs2Uz2BXJTJMYsyRiaxAmlUU4gZxpqcH0HDCQBYZWuH6USSzRqFPblON1tXPYAEB2pwP/mcy5edzqucj6BXZEHq4Y4JGhcPZ2a/IuQMsEBTZJaqAaga0DYxn5uZyYYXB59H0nQxbooIWDE2GBfdWQg7mFaQDSbd/Ql+aNsyrgApwQGC3O7xsZWlIDNQhEpTGL3ZeVXkfNRjFV+CbCOtGRqMjPS5zJB71AsiUZUbIsqcG4UnBFLIPtegZnaW9bYBldk7MuLkNQo3GBDQCZVD17tR5wXUCDANPRNThbJWgpFmGwgejCFymw59ZuDrtRBrbjCmis+fy1cAWKZ4owevUNH9HlI3NFBvbY+nhNEJ2AaDTSaEnY0SxsAGCU4ap9t+DJ6pPygrwjXUwVqPLwWjNEem0PykRuEG8370DWCVlqIYR0EAcAk4Is0a+hi+cmqtUq5hdmAbQ2XRIOh9C8bOSyGyuHXNoMNgcxGYRGQvmxgsgM9szFur8D8jj+i4/+Bh479AAADmv2kwCAi0b43f7MJz8YW9h2gn89rOG9/6Thq0f1aA62nQHmqkHeNtmUrGPF9my/LpDgP3rwflSq0bnws5eOAywN6HLOetgrrEcz4fpwbp6CMIKhXwubn++6dAw7FDY9Tq7cCUSFSyl4HGwmjc6KDgSRJpGR2wqBfAnYtYlAaxAXtFQQRuuSWHSNIJVoUGATAnZ3yPb/8vmD6K+WQon4iVDyGxjmQap+fGylw4AQYYGdCs9rO3vlQl1xCc7O08j7Tq+Rn/OhcXl9AoH9/S7mF2WBvaHmrwFpBgcC87nMYCcYqMngNpnDziYAU4s/XuKgzmH3VqUpmjp/TbcmI14MalzfmsMVgMnq1p1iWTai0t62YKVMB5eLbmXRxYqCGhSiSecoaZEN0VlyuDd/bRHQ7jzmqoDZWh0LaejhPFmPIotcS6OziIO4EtFV8QzOGjmI8zJH4UwR1oiF3lt6oaWeGwX2ekLGhEXd5K0a4zMf2zftw2PVx4Lf+ZGoTFx1EK9lsInJ8Lghi/MESSD14Qm4D47LLM+LpcD1mO5IdzxO0sVzG1NTHUR0VThgUCnnLsUX2MmlMDgCMhPaoIFkV4XKYPsmZ7X43Df/Bl/49kcAALpm4G13y0zxi3r4XRgkg/jvf/UenL5wtPPn6IF9+iT+22M/gPaJEzUxXamQvQZANyXqb0sZbrxastj54jw+8a8fDP4mhJAMtsdeA8BIyiuw02HBcH5efj+TNyRAD8giLutWce/EieA6y2awhQBpYFBJKAHJGBB5R+bt1shR5/Jy1nWsvTj1jkA138cmukD2pIFKA2KCXt8bFLtp18F/OvsUJhakUoL7BbbNQIaUNbPXDLKEt4gUbO7C9DdumXCEYmdf+Lkcm2Ig/rpLAHptL4rV0OF9a44joW/kAhvghMA2NkbxtRRQg0JLa+BNnMQTljw+821aMqhO4v28Dy53axzEUxuGwRauiPVPKZaluVnSOzx1rS5Ofl3Q3Wl0saJoxWBb3nmxXfnKasFnsHWLdSXiqwRq0rpCSnXvVNnjtYzqasRgl6ry5GTGdD+dRQel80UkdyXRe3MP9NwyI2KeJ6CanMVX3eSNBm/d1tF9+HGTOWxxISywaxlsAPgc7sO46x1HFQ7nM6dR/esj4A+F8/2kKw9/3mFSMX/KtIoNqkimmfRaEBUeO2/YKYMtuAAoAUnpcp43xuhMncGemqkvsB9+6lv4y4/+ZvD7r7zzT3DL3p0Aogz2MB1GvjiP3/qzn8acV+h0gvlZF7dNSwb9tumLGCrKx7DMJBjTIvPXZFO8EuStr/plUM848qNf/BNcmjwjX9fsRelSrBbYHoM9pjLYC+FJQn/tJlSoPD9bSud+OQW24EKOATSJLSRZXTq/a7ROIj49D2wbbj1KtBT4M9i1jemEx7rG7ZsIIdDetBXw5tKvKczgthOn5Axt3mssbktFDDkJJUHBPeIQDFYVdZASf7arN6zqj01rYLcPgb1sBNo7doIO2zgypYELeb/7Bx0sFuaCcYrMRjI4AwAuIHQKfYVVB2sNo9eAG9Ok80EIwWAPWRKDPUJHUSwugp9SGjP9ZtSLIbGeJmcCiNmvF0rAYA4Bs61vEO6jW1l0saKgRmOTM6A9J/G1gMsBQ3Awm0mn4y5WHLUO0kDjAnstZ7Bn59QCO5QhlqvxBmeVqQoqM1Vkrsui54bsho/m2migNou4yRsaQAnAa9aJraN7cYafwSSXBZF4djFyu0AibtC66CIAOFM4gV+c/7f4lvh2cJk4vgD3gbBg6RqcPf+gFti5Fpt+KR3WpUyWi9jNZMLuMOKtygFdRkKRpBZbYKeTOeiaPKanaxhs13XwR3/7S0Hh8tZ7/gNefttbMJrmIBCRAntf9ioAwPnxE/iXL/5pZ88TwMxTi1BXt9dUXgkASHpu6qIFgw1I5+LX3fUeAEC5UsSHPvZ+AKrBWVhgBxJxdQZ7Pjwfi6yBTwyG1w+QXQaDXeUQBo11EA9gMzlOolP52XkoVQR0beXNzXwQLT6JJWnKoqGRfw1JaNB/envgjXbvhRMof0txo99Rf8z6RmcMwNX5mfDytFpgh0/k+DQDsTVorxgD8xjzg+Phe3jloIP5RTVvfqMx2AJco8/JiC4VWprFjpmoyCTlXivOGK8WKoM9xsZQujQXjoFsSYJQEk0TWM8ZbCHkd7IGDg8NzoBwn9nIDG6t0K0sulhREEbqiioVttGek/hqw3UBk/B1M396PoAaXjc+Mk8GEC+nUXURX1uJeDyDDQGkaliJylQF3BXovbkHmavSoDGmOF00R+0svqH7J//o9cYGt4MxDT/2ZeJVDnFSdtJF0QGmvJitEbsuHk0Igfn8DAqigE8n74P+83uCSJoASS3intvF8wNRBrvFpt/lkmlOaIBOkTBjGGyr8wKbGLJgQ0qPNI18EEKCOezJmhnsRw89ELiYH9h/O372Df8FgGxUDSR5RCL+ou0vD1icx5/5XmfPE4CoGcvYy4fxAv0GJBMZKTk+4zHYCa3++6Xgna9/bxDD+J1H7sMjT3+7zuAMAIZTchFImQJZM4zq8nFhnuLjPdtwTmkiIK3HbrLbhqdSaBS/BciCFSYDsaPznrOLQH9W/lsNEEpiVYAJq7HRmQ+6I40f7ZHxhAwC9OHwuKfb649j1ejs2ryidlBGn3oTAj1ehNrxKVYnuz04Hl73igEH84thod6OoeBaQnCpSHiuF9gsoQUmjI2QSUi5dKEdmXhGh0NkQT3CRuCeUozxPL+SwkZhsEn9yIbrClASzl8Dcp+psfU3OuvuFrtYURAtfr7Sh65tDCdxlwM6+HPGqOq5CGpSEJ1EDK405i18bq3J2VpKxJUZbO85cM+Fsnb+2sk7SO1MILk98ZzNzlxv1M7iG5o8ATo1M4WapmPT0M6wwEYoExcXFAnjaD1zVqoUUPVMetKpHOjuDIz/fCXYi8ImDr0qt+Fzy7tYeUxMhA21ZiZnQijS4QQDDIqkHldgd8jgVDhgUUznCVytfmzGhz+HvZCfQbkcmoN964efDn5+7V0/C0rDbdtYhmNKt1D11iZjkWLz8C4AwImzB4PvRLtInZmru+xn7HchaXoGZ3nf4Eyuh1MFgh+d1eqaZalEFv/Pm38n+P0v/ul9OHHukPzFrGewgdDobKJAUfbWhmNTDA6l+D/De4Prkd4VcBBPas29GCwvlqpGrVQoAZsGZNbuaoHqtI6hpJQgm5JjTM3w7IHNOGTXVP86BYlRG6jNxmsaMNhAaHQ2V6aYKoSvW4iwwE4bHJuyHHMbmcF2AegU7DleYGtJBmpR8HLj6pExgoEcUCg3vEoAQgnmTalMGaEjIGeUc60XlZsvqF4M68dgE3hjGwqKZdmAihTYDGAbQCnbLbC7WFG0YrAB6SS+3gU2AGiMgDWTiXWxLFCDgmg0YnClMxmP5nLAtlIwPWZi3Rhsz+Ss4sjCz6zdu3GsW4b05QJaYyqjawSmXs9gA/4cdr3RmVAcxGlMgR1hTpJyY0dMBu31W6D/h/3Q3rAF2qs3Let1dPHchMpgNzU5cwSEJg3OiCHl3Amtfs644xlsh8O1NYzPADNVBhDUR9AhOoftNwUq1RK+++gXg8e96Zq7I7cZy3BwQjDusdhiqozdW64FAFSdCk6eO9z+85wuI70gKa+nEjkc9TbSu7RduJHeEDU425xAxQV+6Qtp/ObX0vjIo/XKkLtvuRdX7roJAHDm4jF86f6/l3+wZYFtMIFeO3wfxjLhgnDBm8M+NiXX3ofTA7h4YATI6mB3RDPuO4Wo8roishaEEpBeA8QOr+e6sgnbl13dJh0162ewASCXInVNyVr0pwX+cNPVyNPwnEW2JGPjyFQn8RQP77hRgQ2EhmYAcH6BYq4s73f/oAtKEER0AUCmlaHgGkNARjw99xls6RvUzEkckMcLINWCrbBoy/OrTgwkjoeFeyyDHWP8uFYQIJLEU1Aoy3iuhJII5zPY3QK7i8sKtQd/HFI2aTamvTYQAprWdRBfTVCDguokYnDFmGxAuq6URfoz0OtRYBNCAkar6kjpsqXsLQQXAPEkWV0sGXEeBwk7Pq5v6+gezIgZnHSkY7A4W4AoOODnFXOl0frN/ILCwKSTuejjb06C3ToIYnc/x+cjIgV2M5Mzz0Hclw6TnIGkXl9gxxmfNYUrUNJ19GeBgqBS4hgzh606iY+PS5XND5/4euDk/eLrX12XK+y7bwdz2BWOK0dfEPz96KnH236aqmv/o6k+/MPgruD3u/N3RJ2FNyVxbIphPC/fq68cM+rkmJRS/PLb/wCUyO9/wKab2wAAwykOlQhW57DPeXPYx5WCznrdZpi/fS3Y1csPn25nLaA7MpG1ZrEoWbLeVSbwqBlvFGubAKHNC6aBJMe4YeMvRveH97evgZ49Z8CJG3mqKbBVo7Pj0+H79nSNPBxADYO9sUzOBAeo/twvsAkj0HN6UwYbkHPYtgEU25CJF5Mh46V7EW+k35SeEZCJAD6WFFO4UmCkjsEulIGBHCIKQ13z9pldiXgXlxMIJRBobi5geuv3ujqJuwKaQcDs7ldgtUAoAbMZRIxE3B9D9Bnk+cVpOM7ayBp8x/Jsqg+MyRNIpSpnllTpHy9xUIt2Tc2WCWl2F2VlEmZ4DKjYOiqloI85HostAH5sAcIvsAli56g38uxfF+uLKIPdrMB2QSwm56Uh3ZSTZozJWYcSSUIISqCwLQCm12GMcxJXsrAvXZIGVd/8waeCy+686Q11t/Hdt9U5bN/oDACOnFxagf3jZC8eSfXhqUQOANBX7YH7YDhaQzclcGgiLLBmSxSHJ+rXyZ1brsJr7vrZ8AJ9CGBSgTKcir4HESfxuSiDnTY4BpPL3y37a1BTgzMPxFNg+ZgvAEM9gGWuNoMdX2AnLbl3Kjc5TQ4m5e0eyA7jCy+8Auy1m8FuH4y9LqEEk6n6BhKpUWztrDE68xGZvx6UBfa84ly/0STiAgC9DBhsANB7dPAmTuKAjMPszbQX11XJ1N8X2RIeG2pcX8cNxpWERiKmg4AsolWDM0DuMZk3irie6FYXXawoiEZkkdLkux84ibeQO60WuBAgrvAysLtfgdUES7KIRJwQAtMIFz51Dnt2YbL25isOIQRmPQa7RzFZq7hSZqTCLXMwi0FLXgZn5HUE0QmohshxYCp56Cq2je0DgKhM/Jk5iItSwkb6rdgczGYMdhfPb7RbYPsO4j6IzZBMxrmIt7/BFC6HoARFMGSTQCJFUabxBXa/wmBPTEwgX1zADx7/KgAglxnAgf0vrruNL6u+oJiAbTa2BGxOuwy24AKu53ewSDUctTMAIfh7hcWGz5glNSBnRApsAHjwdPxs9Lt/8jeQS3uh0daO4PKRdHT3O6pIxM/PU0zOU0wV5Pl5Z6+LFbHAqHDAIE0juhretAoM966+h0MjI03LkI3JZkZnahPiB5lBaLcPNZ01P2tHC2wuOJCMMthjGQ6TycX6+FT4vh3yGiqUCOwbqC+wN1pMF79MGGwA0JLtqbH6swSO25rMcnIxIwRbQjNHlcFe1wKbRhls1xVgNDp/DUiixNS7EvEuLjMQjQA0fsbMR+Akvk4FtssBjXPoFu3OYK8yWJJFTM4A2Yn3P/uok/jSjM4cp4oPf+ID+PAn/htct/lBlS/OB1LFWgdxP2vUBy+50LO69BXoYsmgumSCuFJgN8rCHhvaAUoZnqo+CQfys+SPTstMWgBkLN4FXC2wuwx2Fyre+9734r/95v/Gm1/0a83nB0U0AxgJDclMru5qHW0wqwLQCbhGMdpPkEsCBV2PqHp8qDPYly5dwoOPfAlVR7oUveSG1wZqGxVhVFe4w9QXCDYNyfzqZ88cbEsZJM4XQIpyN/pEshc9Xt31dLIHD7OZyHV9g7Naxvp7p+O/1KlEFj/3JhnVFRfRpb4WH+fmGQ6dCgv2nX0rtFOueI7uynnfdQVOXhSoOo33LKWKgKkDvWswftpozI4QglwKKDUpsJOGgK3J1zGRb729P6ZFHfEXxAI4ou81o8B2j8U+t8BQqAKFKnBiRr6H23tcJLyPXs1ezySXL+XvBKLiQizEH+tCCHABsMumwGYgjNTtrWqRSUjVQ6WF16Horf/ukq1h8yXvMdiUUFhmvephrUA0IllsD4WybDrVFtiAbEh1C+wuLisQ5uc4Nj5Z6RqBba6f0ZnrAkxwGBmtWzytMlgM25hNyRl8AREpcqeX6CT+3Ue/iI99+c/xsS//b3zh2/+36XVVt/LAQVzIWWuz5hzDKxx6T3dud7mQZnckmoWty42bU7NO6JqBTUM7UEIJhx3PoEnZRMQ5iAO1Jmdru7HrYmPjrrvuwlvf+B68/pZfapgEIIQAEYgUXkSnSPZFjyWN6UFedVuocHBGwWyGdAIY7QeKTGZs16J2BruVPBxQoroUBltMlbFr6zUAgKpTxsnzrY3OVHn4Y6levGhLuCP/h2x07ptuSmK6QHBxMbq2n51nOD0bv6V8xYt+Cv/+bb+PK6+6N7isViKeMQVShh/VRXFQYcRVmfKyUHFBktHz/mJJ+rJOzDa+2UIByKaAXIcJbUtBMx+bdIKAN6mpCJHHAyAL7Gb+VlUXOEiiL2iGz8QqydQ87GenGQ5PaOBCPk9fHg7UmJytcaNTzFUhZivx44lciiqJ/tyP6QKk0Rm1GHipeYGdtIF0srVMnPVYqAilCtcIyEi4pvgMdsJOr2+aihGNzSuUgJRdn/4CyMu6BXYXlxUI87KPW4xLpRPrWGBzgLkCdu4yWGk3OGodpAEpxTY1+fnnMgqDPbc0o7Nnzx4Mfv7Kdz/a9LpxGdhVBzCY7HjWQkt1C+zlgugEVCeRLGxTBzQt/gS4xZvDfrTySN3f4hzEgVoGu1tgd9EhHAGhk7rZ3NRQVOba8QazylHRGRI2Qcr2ZgUtFnt+VGewDx8+jEeefgAAMNS3GVfsvLHhQ4xlolnYYrqMPVuvDX4/2sYcdqTATvbhBWMONCJP0MdyV2B8JPw72Rydv06b4YtpxGITQvD6l/4cNm1/eXDZSA2DTUgY1TWep/jxs+GCvGuFCmzhCCAbXeiLJWmSVKzIuMY4LBaBsX4Zf7TaaFZgJyzZmHSbKAT9ArvsEsyXG9/XeJ7iVI2fwKyYiW1076wxOovmX4efzbxncpawUjD0DhpRKwGHywZZnBJBCHAQMO3yYLCpRaElKNwWRmeEEAzmWse72XYKF9wL4e3GEhH/gUJxEcD6OogDqBsPK5SBoV7Ersm22Z3B7uIyA9Go7A43YbCB9XUSd12AQcDKdYun1YbvIK12lRO2/Fcs10rEl1Zgn7t0PPj5yKnHIwV3LRpGdOnRiC7hCmnS1jU4WzYI8czuVIm4JiPb4qK6tnkFtjqHHdxXjIM4EGWw010Gu4tOUXGldLhmA5caiLJwnRqciSpHydCR9FiWXAqw0wwVTiBqLG4zyR7omlyEnn76aXAuvxx3vPAnI9nXtRjLcBSZhjkmi1sxVcbubWGBfaTFHLaouBAn5Ab6om7hgmFjc9ZFj+YVWvYuPHugDLIzDXpND+j+bDB/CwBvvTqkx77XYA7bx8WF8HUMp+u//GNe0c0FwQNPyO+6TgU2Z5e/UxZCgHAROCP7KJaBvizQkwJmF+tvx7mAEMBAbm2YO39mOo6JTVryPNVMJq7OYY83kYlfXKCY1MxIpNcMn8H03KW660aiuqYYDk7UG5wBoUQ8sw4O4gSQKQBxsmlXgBMC3SSrmmG+ViCEgNosogprhGyKSF/FJnvyhJXCBX4++J1ujSob/JiudXUQByQTooDzMI6s7qoaWU8bZQDdAruLFQZh8l+cRLx0qYzKlDwz+GzhejiJOxwwNNGdv14DUFM2XNTiihKCvoxkDFSJ+FJnsM+Pn4j8/rUH/6XhdaMMtizuq1XJDGgKO+GW3K6D+AqC2iyyJjAmze7ijA59J/Gj7hFUNOUKKa0uQsbHfJfB7qINNEy3KHPAZiA1kXJa2oKpsMMJq1ONsECJsiBGJmkD2V6KEidyPlsBISQyh+3jrgbycB91UV3zVewaCZ3EWzHY4sRi0BD/cbIPlEr5dpacDa4zmRiB8Qt7of/MThBGcVgpsF66s4JtOfkcDk0wTBcaFzAXF+X7mzY4UjG1uGp0VqzI627NudBXYhmucAiTgtTELnIAQz0EO8eAmYX6m+U9GWrPGtUWRGs8ZmfoUgnRzOhsQCmwm81hX1iQ6Q6nlZnaWTEby2Bv73HhlytHpxgOjcsPJGfxYHbe5W6gJGqaN78KEA6XGfYGlUZ2teACnADGKjvAryVYItq0boSULffbzeawbSuJc+654HfVQdxxqihXpMlopw3GlQZRPr+KI6Br8fPXgIzqWm90C+wuVhSEEYCSOpMz4QrwkgtnUW6YTWP9nMS5K6AbpFtgrwGoLk96omYzmU3KMYJcpj+4bGYJM9hCCJyrKbC//v1PNjT2mZgOu7Q5r7gvO/WLNC9xMEvOTnaxfLAEi5icAdKcJI7B9gtsDo7TVrjJJ6OJhvLcLoPdRTOwtCbZrVI8EyodxGN2ZAkWkUV25CAuBIggcHQWxMgQQjA6ylACiy0E1DlsANgysgc7Nl/Z9HHqoroEkChbGBuSjt3Hzzzd1Oisdv56KMWhMyDhngoun3HCwt/lwOFJ+V4NJDj6EwK3ejPbAgTfPxPfBHN4WPDVGpwFryXm8hUzOCtzKTFVmqaVqoDhbdI3DxIkTGCxGF2n5gtAXwZIJdamOKMaAWEAGrzsTLK5Qexgqs0C25uhP2WGTaNZPhN7HrZ1YFNW3u+xaQ0LXvNj/4ATuLsvFuaCBtaaZ2CXvQx7S4s1EJQz2ASmdRkV2HZ8nFstdE06aseda33YVgpfr3wNM3wGF/RLoFeE2en5khLRlVhnBluNzctLX4RGufTdAruLyw6EEFC9/otfnXegKxuYwEl8HeawnbKAaVNQq3v4rzaoSUE1Al4jZUolZFc1aS9PIj63MBXJaJT3M46Hn/pm3XXzxYXIjPbmYS+CRgCJms42L3PoPTrIZSAn2whgBkWt445tys16LTYN7wIl8rupysRpA3k4EM5g22YykNl20YUPmtLg5kyIxQaViRAgyRgnXUaRSqoFdgcMtivgUrkGppRDtzdHgYQGXqnf8apz2IBkr1vNfPtRXaqTuJgK57CrThmnzj/T8Pbci+fiAB5P9gYFu1k9GlxnvBQykqdmGUqOfE77PXnwrVvCE3mjOezxRRoYY9XOX/tQGWwfKzZ/XXZBckYktsp3IfYZ6s1DwORc9HalMjA2sHbnAcIIwGjDJBbbJE3NywbalIhf8OT6JxVVxgSfwFSMRByIN5pT5eHzC1PBz2uuIqq4IDYD7TXixxO5gAt6WRXYtANZR8KWXjONYJtJnHZP4Wdm34Y/z/0fOS7jIV9QIrrWmcFWHcQXCsCmAUBr4FnQLbC7uCxBDVqXg+3MV2XBwmSxFTiJr0dUV5XDSNBuBvYaIM7gCpCbmqQNCJKC5W0Ml1Jgq/LwkYFtwc9fiZGJf/IrHwwcUu944esxMrA1GFGoNTjjVQ491y3UVgrEoHW5142ysA3dxOigjPP5/NRngB4DsBnoDf31V/bgS8TTXXl4FzEghID3WSAOr1dXCSGL2AaKpmQ6ZHM62mBWOKqEwkqziEImlwKsHg3lQmsGu5F7uIowqkup4qfbm8MWC1WI81L+edxKY0EzgoKdFkMviwuF8HWr89f7vfzjPf0u+hLy9Tx6QUcxpnF+YVGZv041YLAz9ZevVIENh4Nkomt6oSQ/D9MgIIRg+wgBIVJ+CoQy1LWI5/JBNN8oNr6KbhRx6KPtGWzv8/hGbgSVbQYeqvwIP6h8v6GSTDU683HlYPjZRCK61tpBvMJBsjpgMpkGUAsuwCmBeRlJxOMMZBshaTV31DYNG5RQcHAUS1EjgkKEwV4fkzNfGeE3x3yTv8Emvgga8wwB22D5VwvdCqOLFQc1oicH7nCAElgjFqhFg2iBdXMSd2QGdrfAXn0QQsASWp08mBCC/qycJfOl2kuJ6VLl4a++42eCuerv//hfIyf86blL+MRX/goAwJiGn33DfwEgu7q6FjU486Elu/LwlQI1iOdCE0JvslH0ZeJTlXFM/Vwaxu9cCzocz2ALIQIGuxvR1UUj8KwJkdCAYk2hUOWxDuI+kqlc8HNHJj9VjjKhSGUpEkrSVcICMv0M5XJMVJcyg713+4FA5t0MjaK62nES58dUebiU9W7yitxK8TxQlnOZZxasgDVVHcT9ApsS4JbN8mRedQkeOlf/5b7QwuAMAHJWmOPsY3tMYdcpBBdy+anx1ChVgEFlyRjuBYZ6gCmPxV4syH3KWs1fA15TuoGPDSATGJo5iUdnsJvMw3ufRypDYf78HvzXxfejjHLD83Atg82IwJ5+1eAsZLDXXCLuKVCISSFYvYEgXAGhURj6ZVRg6+3vX80Wr5sQAsuSc9eFmgLbj+gC1nEG2/8ueGz1YkGqTvqyjW+ia94Y6jo6iXcrjC5WHMSISsSdOQd6VoO1yQYzKbgXLZCySaxEdNWfnyNgZrX1zfN7HoElWexcVCYpiy7fSXwhP9N0VjAO58efDX7eMrIHd9/yJgCA41bxrR9+OvjbP3z+f6FUzgMAXn3HuwKGtFqVG1SVweZVDsK6DuIrCapLQx11XTA0uTGPi8bxC2wAOH3hSCQypBaF0iJcV270uvPXXTSCMBlov1UvE69wKYlsVGBnw11cpwV2SdcxkCORcw0hBINDDBWH1JmuqQX1S29pzV4Ht8twXNCjBfaura0ZbHX++sfJXu++5I40X5wH8k8CABYrDFOeeZlfYDMisFuZj75Vyc6Ok4mrDuKNJOIyqstVrufGmqF1jLILYbE6gzMhvPOQB8YIdo0RFMpyXVooyOxyvUl01kpDSsTjTc6AMOKwkfrP0sLotEYz2PkKMF8O5+EN3UIqIY/zOBdxoF5JsLPXhaW8nfNKBvZampxFMuwtBuik3t+ACwh2eUR0+SC6p3Rog6E1dQCkuamwb+BY9PZJPtQRvHWL6QoKbHnMzuVlMyzRRPKvM4Ax6f2wXugW2F2sOKhJIzmfzqIDe7MsrrWsDu4tfpYhT6hr6SQuIEAcDrMb0bVm0JLxbpe+u2UmFTqJT3foJH72Ulhgjw7uwMtue2vw+1e/+8/yOheP4Yv3/z0AOWv09tf8p+A6FQewzOgGipc4qMW6BfYKghoUVENdga01iOraOhYW2KcuNJ4fBboZ2F20DzJggYgadrDiOYg3aOIkM7nw5w4YHOFwuJYWGJyp6OnXQDQCXtN4vPXAq/Dal74b73jHO/Dal/5s2481luGY0i1UvUJeTJeRSmQw5jUSnz3zdNCECp6fEEGBXaUUBxO54L4Ab2PtFdgA8OwMw2IFOD0r36edvS5M5TR63YiDhC7f1x+e1eua5xcXw/V0pIFEXH18ANi1kgZntgYoppXlioCp1xtcjg3IyK6ZBekR0UyGuhoghIAajQ2sTF2unc0MYn2Z+GSexpIYcZ+F3+huxGD3JgR67fDO1PlroFYivoYMdoVDGFQqUEwmjexqvleCA9DpZVVgU4PKNaSNCtIwpOqhGZsbFNjNGOz1iunym/C6bEpWHWC0v/n3sstgd3FZgmqhoRGvSDbQGjIBAHpOCwps05BfgrV0EnddyZoZqctopd3goEb8MmMZQNoGBnq3B5c9fvjBju7bn8EmhGBkYAt2bLoikEb6mdh/++n/EWTK3vuqfx+JBqtU6zdYbsmFluia4K0kiE5ANBoZFTA8JibuBKgy2CfPNS+w55WNXZfB7qIZSM6QcW/5UCkjHcQb06SpzNIYbM4BWCxicOajt5/CSFCU89HNsa4Z+A8/84f4wAc+0JFZ32jaBScE4x6LLabKEEIEc9iVaqnO6EyMl4A5+T4cy2RRpQyMiGA+Ol9TYJ+YYXhmUoMntg7k4T4MBtw4Ju9voUzx5KVoE9uXiBOIiNN13GvxsbNvZTYHouSC9OgRJUGhLOX6teu/bcrIrvFZaca6lvPXPqgRJSkif6PS7bypk7hXYLuCYKZUX4hciFET+BFxpXK+rsjyocrEawvs+UiBvYbrcMVzh7cZCCUy5zyGwYZ2mRXYOgXRSVtRXYbWuiljeXFtxXI+oqzJF8NjYd0ZbEZRLEuD1L4WT0XX/Bns1X96jdDdQXax4iBKnnB1TpqbGX1ys6ApEi3bK7DXcg7b5fJLZya7h/5agZq0bv4WkEVxXxa4dv+rgsvuf+izHd23X2AP9m6CoctBx5e/6KeCv//VP/8WHnj48wBk7vWbXv4LkdtzASRrZEbSQdzojhCsIKguu+1C6bZrTMq44grszcO7gve/mQMyACzkZ4OfO5nBFkJKyLp4/oAYFGTQhigoB50QIE3UKgnVRbxNBltwAccFzBSNzWlN5RhSOYbS4sroF4OoLn8Ou8KBRQe7VZl4zRy2+51QCvxDWxoIDqc5fJPtQmkBKCgM9jTDofHw/L1voP6L20wm7kvE+xMCRpPv3dVDYRXwgrEV2hwIAVKjNS+U5Wx1nPx78yBBLgn0ZGQs1lqDmjTeDdtDKtHcFTriJL5Yv9e5GJmHl9ftyYaJHo2cxP0GiqUJHBhpzGCv6Qx2hQNJLXSHT2uR8wwAQAiIy4zBlrP6bRbYujzXNjtmfAZbCIFSpRBcrjLYyfVisL3vAqEE83nZ9Mq2CHSgVMaTrccYavAc1u+hu7hcQbTQHdjNO7C32EHRzRIsmMX0ncTLa8lgVwWoRmB2Gew1QzB/GzNrm04Q7N52I/p7RgAADz/1LSwW5uquF4f5xZmguPJnqgHpvKsxubl77NADweXveN1/hm3Vr8q1DuLCFdCz3RGClUScmzwhBLYV31U3///27jxOkqs68P3v3lhzr33rvVtqLUhoaxaDdgmMGhmEkcAMPIwwiDFYNkZ4HrafnoUHZBuMDfbwZrCwxTDGg1jGBtkCY8wigQFbWEYChITQ1ptavdaaW0Tc90dUZmVWZVZlVdeSWXW+n48+qs7MyorMjIyIc++557iJalX4pw/9lChqfpZc6sxJKYCU1/LDxTqhe714PeJ0RXEFTddfA2zeenr15+H+ba39kSCiaDSJjFVX4KxCKUXfJptSYbkC7OlWXbXrsI8X2V1TSfynNeuwzdEC0b/GRamMZ/Gl7Kbp54m3JwjKFEt5mPoJmPgL+sQJq2EF8Vov2BxgTZdx/vJPPW77WoqP/WuC//Mjj9Hqmt/5p5SevzngvVeP84l3H+bsgVOffjLTo+qzB1GKJejvavw73RnYOhS3AVqLgdZ4mV3zwGkxrboarcOureg+nI7f456aALtZJfEX9D/G7qn/ypX+n9Ll1++7Y7VFzlZzDXY5RGVmBnOUb8/pTmEMsM7WYC9mBltPn2vnbdXlz4wk1WYw1K/BXuMiZ8BkEbYMtPa99F1JERfrjLbj4lVhMUS7Gn9g5irWSlhxJfHpQmfZZFxoarWExQjtKXyZwV41cS9sGp4IMklI+Zqfu+AVQFyc7F8e+FJLz3vw8EwF8U2DMwF2Lt3Dz53/srrHbhrcyd5L/q+628qhwbLqA+xKapQlFcSXlVIKKzF3Lf587UMqaeKF4iRHjh9o+txjNTPYi0kRN9H8RVLEOtXlxCnhE0FcQbyyfrOJS696NW9+63v51et+n3O3Pr+1v1E2lFD0D1po3Xgf6xpy0aEhmi9SalGjVl3mWLF+BrsmwA7+6VB1XePRi4aZsOMAZXOlwFmlNY8pkYj2A/D0qMWPpwucZbyoYUuttGc4b3pmc6qs+NZTLp/9kc//968z0/jNWnRVKAUXby9z6bmF1l78QgoReBpSM4OmleN8bYGz+m1QPO9MxZlb1+b4YC0QYC/cqmvmdxsG2OMz+/vQrBRxaL4O+2//6f/j0e/fxj1f+i1+/LN/q7tvtKbIWTa1im26DHXF65RvzRnQj0x8XbqeAmwAK2G3FGBDXPOmUb2TitrJh3xhptBZO6zBrlSFL4cGx4K+XGvfSwmwxfozfUERnAxwel2c7pmzgZW0sFxFOB1gp1a5knhYjHB9jSMB1KpRjkI5ek5BH4jbR2RT8LxzX1m97RstponXtuiqncEG+PmaYmcAv/Lq/wfbrr8qqVQQr23RZUoG7UoF8ZWgk9acdm2eo2h2HVm3DvvgT5o+7/gSZrANBqXAX+BCVaw/ytKoIR8zFdSt32zGcVze8J//H37x2l9FTbV4tVaOKNsWPb3Nn7erR+PbhkJxsa9groatuo4XSSdz1WNjpdBZ9Eye6N+nZxuTFj/aPVL9nboCZ9My7AMgiBTj07PQZ/WHNJtAevOFebZ3heiGDYnhrIFVTFkDKIaolB1Xiq/cVKZhgbNarqOwV7F6eC1lzW1rWMt3KkWrGr/Hg+mZ/fSRo3OzsSop4q5l6EnEz1EXYJ9snCL+5IGHqz9/5z/+se6+SpuuVCI751y7UkxoQCtU7ffXs8CtryQeGbCc9RdgNzqnNrNQ1kOyJsCeajqDvUZrsKcvEsYm49TwVusiJLx1FGAHQcBv/dZvcc0117Bnzx6OHj1ad3+hUODWW2/l0ksv5eUvfzlf/vKXl/PPizahp09KwVRIcksCVTOCryyFnXWIivFev9qVxKOSwU3ruBCbWBXa03PSg2v15RRbhy+ivydOU/z+j75Rt662mQO1M9gD9f1in3fuVdUU4+ec9nwuuegX5vx+KYj3P7fm+iMshmjPwkpKivhysxLWnMq4rkPTk35tgD3fOuyxmirirc5gByFoq3H/c7H+6R4PHB237Kpdv9mEUgrd7zdsN9hIVAoh5cwbwKW7bBJJRT6/POe+TdmIZ5yZPxj9+3HMVMDp254LQLGU56lDjxJ+5WA1hda6Yoin817Nc9S06JrWbc8Nthqlh1ec2R/y8VeNcc8bT/K/rh/lj182zi0vnuT15+V5xwumuOb0UtPfXQmmFKK6Z62/LsQX35kGBejaQe0yu0Y8Bxyn+YzkGX0hGTfeV7+zzyFfkyVoDDwznSI+lI6qAyW1KeLNunnsP/yz6s/f/UF9gF1ZqpPLrOb66xBcXb/Ew9fxYErNd9VEoNdhgG0l9Nz15k24C1zSJLyZFPGjJw5Wf26HGezKaNNEHjYtom2e584/qLDSlj3KuPDCC/nABz7Q8L6PfexjjI6Ocs8993D77bfzh3/4hzz11FPLvQlirVkq7iOc0Lj9c69gne6ZVl2eM92rbpVGmaJSRKJLpq1Wk7Y12ms+0ppOgG1rLrkoThMPw4Bv//s9Cz7vgboWXfUz2JZl84F3f553vvGPuf0372q4XqdUjv927X1RIcJO21ieDMAsN8vTc6Jpx24+wLa9tlXXwUebPu/YRG2brtZSE8vluOqxBNgbVMaJK4pPlVHp1s4HKuOArVsKsoOCwc3ZDSuIV+iEpqdXU8wvX6GzJ/00T01fKJtnC5T/6jHO3HJB9TGH/uMnRA9Of18yNtaLBjgwpuueA+pnrfrdmbW1FfMF2BW2jitUnz8ccM3uEjdeWOBVZxdxVjnIUShUqv4zzhfjKsRrNUO9kGYt4ypcd7pAZJOPwbHg0u1xVF0IVF3BueN5RSmMX/dQTT/yhVLE84UJjp44VP33kwd+wqEj8fV7GAbV2imLKTR5yioZKN7MTqWs6eUA09eYJjJErNMU8SYdWhpxnTi5NGqSMrZleKbWxJ/9r//CsZPPAG0ygz19fWAMDHa3/p114tUCa2ZZp2ls2+Z1r3td0/vvuecePvShD5FOpznvvPO49NJL+cpXvsJb3/rWho8vlUqUSvWjnbZt47ob76qoUuRnvmI/bcMy4BjcPhcra83ZZp1SGGUwymA7BteLL6/VAgc/ZZm6/y+FUhF+r+6M97GBjtoPauiUJhorYRqkDaZThnTK8HMXvYL/80//HYBv3v93XHN542NJ5fM/+OxMgL1peNuc/WJkaCsjQ788/a8G+4w2pNOqbpuCckiyJ9H2728n7gfGAaNN3fvtegbPiy+AZl/8bN0UVxI3xvD0oUfqPt/aY8H4VE2Anc21dHwIMCSSBscxy/Yeai2DMp1CaYUeShAeLdSt35xXxolbAE0FkJv/GqQYGPxs4xZdFVbCoqfHInEyYjJvSCVO7Uqw0qrr97eez3/f/6+4+TLmyQkuj/ZwB5qIiP5/n3mt9lXDKM9i/1j8xXO0qbZ3qp21GkqOwaw09jP71jDvchFMOcLYas5nXCxD/yIu1FdbbSeWRrRSJD3DifHmj7lyV4l/eDTOTvj6Ey5X7YoD7mfqWnTNfI51M9gNUsT31wxoV3z3B1/hVVe/lfHJkzPr2lezwFkpQvd6dVmSACrtED1biOc9I0OEWp8p4q6eN9OhVqUtbjloPLB89c/dwJfv+xt+/LN/48iJg/y/f/5/8Sf/9xfjdn3ELQRdZ22qgioTf75pH3pzCzy4hmM3z5BbDauWBzk2NsaxY8c47bTTqrft3r2bH/3oR01/58477+SOO+6ou+2GG27gNa95zYptZ7vbt2/fWm9Cay6EMmUmnm7QT1EBL4Rx4pP4hTvmPmQ+21/UuEdjK3ZcAnCCp546sdBD21rH7AcVw/F/ZRqnBz53K5xrdvOnnxzh4MGDPPDwvXSd8zTd3c1Hw585HqeIDw8Pc+ZVATDP1UYDld2u7rdG4AQnONEh+0fH7Qc13/uKPbuaP3zz5s3s27ePfYcfYfvFY3MyEba/aIKSnlmK9Nyft7Ht1veDKUrLlkW1Y8ciD2RiTaluF9XrzVvgrO7xlkL1+USPj6HmCbBNZCiHiqFe3bTAGcRVgHN9NkNHijwxBalTTFeeadWV5BuXPYeXfv1BKEZkn7b51eQ7+Grxn9g2Nr3eustFv7CfyMDB6YBruLZFV82s1UAyIjUZMVmK79yaC0l7a3jVuhiFMP58a2pqVALBdk0Ph0qh2PmD7HQSDp9sfv+5gwF9yYijU5p/2+8wWlDkfMOhiZn3Yrim4Fwm1Y1l2YRh0DBFvDY9vKISYK9Zi64gqqsgXqESVnXdLpEhUgrbUVgLDFx0GuXMv1a/lmtPB9ghNAqTXcfnvb/2P3nH+17Ks8f288gTD/DBv7q5OtjWaovCRo6NGcIQBpYwqGUiU8217u9eXGFSZ41X+q3an5+amsKyLHx/pmdFKpViamqq6e/ceOONvP71r6+7bSPPYO/bt48tW7a0/UxJVIo4+cAo2bMz2Jm5u1h5rMyRrx3FyTlYvsW/PhxRLEOuSUXPCmUZtr9ogif/JY0Jl/BFNYajj+a54IZeTntuG59d59FJ+0Gt8UcnGP2PUZJbGi9K3H/E8OMnDRef9yo+c/CjBEHA33z0XvZe9oY5j1WWoeecgxw/Hp/UB3I7eeK+xR38wzAe/b/oTFXd70xkyB/I03dpL/5Qg946baQT94PikSJHvnGMxLBfnaGJIsN3HzZgIN1gBm+k50z27dvHxMQE//qFcQZ643X6tceCI4fiC4BUIsO+77SWnnj4uOG0dImtOx36L+9bplcoOkrKRu/MwCKWDKluF0VcoXj2rFlVOSLQmr7+hS+v7C6b/mSBQyFMFgypU6hqX1k/DfBDJ8vLf3kX5Y8/BpFhr/9yXuy+eObvXj2MsjVHJmbShWt/f6ImwE6nsuwMQh46XClwtspFyk5FMUT1+3Up14VSPIM33/r4taZshVrgsJ7w1LzTc1rBFTtLfPaHPqFR3Pekw7Vnlhr2wIY4A6cnO8CREwc50aAP9oFn5gbYDz7ybaby4/UtulpcprMcmrbY8y0U04MpEUSA762v4BpqWqCGZsGsB9tSeK5hMt/8Md25Ad7365/i12/fS6E4yTf+9e+q96WSS0sPj4yhWIKED+NThkxy/u0slgxBFC8ftS0Vt+iafm0jvYv7DB0btF67XtiLCrDf8Y538MADDzS8781vfjNvectbmv5uMpkkDEMKhUI1yJ6cnCSZbH6Uc113QwbT89Fat/0FtfY1fT/XfBTTSTnYjoUpGJSncC3FxASYFi8uTKiWFmCXDaHRuEmn7d/DhXTCflDL9mxUoKqpPrOlPVARvPiCV/KZL30UgG9874tcc/H/1fDxtbOOIwM7Fr0/FIvxMdu3ZrYpKkZYtoWT7pz9o5P2A9uzsbSCMtXgxFIKR0VMFsC4cz/D7SNn8r0f/BMAT+5/lP6uzXX3m1BV12BnUj0t7wdhAK6OP/tOef/E8lIqnpFe1O9kHUzCQuUDSDUOzE0pxDiaTNfC+5WTtkk6hpFeePxg3LZuqSqtugyKA+MW+rIc9i9tJ/ibONMnp7sACLo07vPi8/OBsZngpLbtVu0MdtLPsEOHPHQ4fr2dFGCbcoTuqr+GzBch6TFv+v5aiwPs+Y9lXgvjQldOB9gAX3vc5dozSxyqSxGvjzy6c3GAfXLsKGEUYumZ/WPfM49Vf37uGS/iwUf+hXJQ4vs//iaqZho1u8QiZ9GzeZguJtgKE0QYu3GLPeVbcfu9cgSRIVQKbx22ZNSuRju0FGBDvM+fXCDBa+eW5/A7N/0Pfu+/vbGa7QH1VcYXY6oQZ+cM98Jj+yHpm/g6oIF8yXByIv5+TubjKvmqHFHZI1qtHl5hW3EtiHCNVrQsKsD+6Ec/uuQ/lM1m6e3t5bHHHuOcc84B4NFHH2Xnzp0L/KZYb7SjsVI25ZPxmqDEKvWqi4ohytH4GbmgXm3a1fOmMqX8eFZh28j5DPVt5ZmjT/PAw/cyOn6sYVXS2gB7dgXxVpSCOGWqdvwuKkRYvpYWXStEOQpla6LQ1FXXTHpwssmqj9mVxJ93zpV190dRxMR0xflsqqul7Ygig1YL95IVYjblWegel+hQYU7hrIryaIDdmyKbayHA7nJQtmY4Yzh4VDFVMKRSC/5aQ5VWXc9OWtXCZdaFvZixMuHf768+7skzj/Gc6Vzw+gJnMyfh2jXYqWSGS0fKfPEnPknH8MKtNSWp25iJTLykZNb666kCbB1q3wJnML0cYYGAyatp1WU3eexpPSFbciH7Ri0eOmzz7ITi0ETNDHa6/sKrsg47MhGj40frCp9VUsSVUrz6Jf+ZBx/5FwC++x//yNmnPa/6uCXPYEeABaaS1r+QYhRXEG/UYs+zUM50JfEIjFJ463AGWzkKZWmiwKBbmItMeopwnv7qFS+64Brecv2t3PHZ36/ettQZ7Ik8bBuCHcOKsUnD0ZMw2GAXKYeG46Nw2mbYPqzIF2GqCGPPGsan4n02u8hjo2PHQfZatepa9kijVCpRLMYVMcrlcvVngL179/Lxj3+cyclJHnroIe69915e8pKXLPcmiA7gdNuEhXj01Pea98JdTuFUiErbeCkJsFebduMR+dltmipcR5FJQLGsuOx5cU/sKAr51r//Q8PHP/nkk9WfZ1cQb0WpDKlkXCymIiyE2BlHWritEO1qlKXmtBVJ+s1TuDYPzizQPljTlq1iMj9GZOJfzrR4YVcK4hY3UkFcLIXq8aFBa5zIGCZPBpwsaPztyZZmSJ0eBydnkwhChvvg5OSpbVtlFnq8qBkrxsc2+/IhDjwnHsF6sPwDvm/9e/XxtTPYI/PMYJ8/HPDX14/yv64fpS/ZIeuvS1E8izkrwC4F0J9r72BLObqlANt14qJVTZ9HxbPYAAbFN55wqyniWS8iNesY2KySuDGG/dMp4gM9m3neuVfiT1er/96D/8To+EyKeKudHGoZY1DGoHpczPEWG8OXQlTCqutvXqEcDb6Og/DpImfeKRYRbEfa0Sh77jm1mcUkBL/mZTfz0hf/UvXf2dTiP9coigsY92YVjq3YORIXmpss1B9DIhMH3iP9sHNE4TmKrrRipFexcxDOOzPeZ+eradGIY61ul6LZlv1K8tWvfjUvfnG81ucXfuEXqj8DvO1tbyOdTvOyl72M97znPbznPe9h+/bty70JogPY6ZkGuAv151suYSHC6vNwnfV3oG132tMoRxHN0+KmOxtf/FQCbIBv/tsXGj62fgZ78QF2EM4tchMVI5wemdZcKcpWDfuhu/P0fB0e2F79+eCRJ+fcP17boqvFGexyJXtBWp2LJVBZBzyNKYYYDPmi4dmThmeOQ3CsxKZzEjz/hW5LBZW0rfFHEgQTAZv6Fb4D+eLSA9jaNO+DNbPT7t4tvPbE9fzu+G/z+MGHq7fvr3nM5prfrZ/BjmeuhjIROb9DgmuI11/7Vt0MZ7XAWRuvv4a4yNlCXVUqrbrmC7ABrtgxU1j0K495HJmc7oGdmXsurqskXhNgnxw7Ut0nNg+dhuv47HnO5fF940f53oNfrT52STPYgcHYGj2chKSNGV84S8KUIlSu+flaZZ24pZ6ByFb4i2hp1SmUM31ObdICdTZv+pwXtVBaWynFO9/4Ia564fX0dQ/zyivfvOjtmyzElb+7prPLe7KKbUNxxlrtNhwbjWend29Rc3pcm8BgeUvLKqzMYHfEGuxW3H333U3v832f973vfcv9J0UHqqThGmNWpXWCiUx8Yd3t4MvM1aqLR1r1vCeCuMCP4bRtz2W4fzuHjjzJfzx8HyfHjtKVrS9EVTeDPbi06s2J2SljxmCnJepaKUoprIRFOFV/8eQ6zWv1dGX68L0UheIkhxoE2EvpgV0qQ09u8aPhQgCQsuM2QJNlDk94+A4MdkGvF5IZ0Wx+aRq3t/WLea/fBQUZD4b7YN+RpW/aSE3bpQNjFmf2x/8e7t9O2QmJShFP7P9x3WMAHMvQn6qZwS7U9L49herBa8kUQ/SAX7eWuVACv80LnEFrKeJaKZKJOK12PptzEWf0BTxy1ObJkzMXW0PpuVFHd+0Mdk2rrtoK4puH4qyiF5z30mqG2Y8e+171/iVVEQ8icDSqx0NvSRE9Mhp/z+a7NoxM02UaQHyfAUKDsfS6a9EF8TlV+xZhvrVlG64TB51hCLqFSx3X8fjtm/5HnGGwhIbSE3nYMUzdpNbWQcWxUcOxUejvigufaQVnbFUNizya0GAlljY4YlkKxzaMT8WDUatt/Q3piI5gJXV1Nsux44qX0UrmiRdDilozsMled60aOoH24s87Ks8TYCfiWcVybZq4ibjv+3MH7Soz2L25QRLe4hbmRJFBKeoGWqIgQlkaO7UOz8JtRCctolmDLI4dryVs9P1XSjHSvx2Aw0f3EUb1uV5jkzMBdqbFGexSg+wFIVqltIJ+j+OHQ3qz8LyzFM89TdFjynTvTuH2Lm4E1+lxsNM2wXjApj51Sq1lamewa9dXW9pi2/BuAA4++wTFUp4wolrwaiQTUTveNFmTIr7UtZdrLjRzWjhVCi61c4GzCt3CjGs6ER/PFlJJE681u8AZxOfTitpWXftrKohXlu288LmNl3cuqQ92OYpbTrkavTkZt8EbbdzSE6ZTyqFxBfEKz0IZg4kMkb0+A2wAKzH/xEWtuDL3wlkPsy0luA6nr7P6Zi3HcB3Fzk0KY+DkhGGiAKdvmfu4iqhssFpspdiI765dkTMJsMWasBIW2rMICxHudBpHeSW/BPmQcsKhd1BmKNeC0mr6RNA8VyfhQTIB+RJc/vzrqrf//Tc/WVfNcio/wdGjce/jpcxeVwqc1a7BDadCrKSFnZX9YyVZCWvOPuA683//R6bTxIOwzNHjB+vuW8oMNqZB9oIQi3DUuPi+4sxNcduZcCJEJyxSuxY/NWr5Fv6IT3k8IJtSDJ9C17jNuZkv0f0HnLrMkB2bzwbi4OSpg49wZFJTjua26IKZANu2HBy7Udfc9mbKEdgalao/nueL0JOhIwbZVQsBtu8qTAvpr5fvKKFmrcMZTs894NamiJ+oSRFvNIPdnRvgzB0XznmObKq1Vol1ygaSNkqruJDg9jQUwubXC5X19fMEXsrTGFtDKZ4dX7cBdtKeM2jdjDO9NGpFr7WnTeTjTJFcg+LjfTnYMhg/ZvsQbB6Y5/toDMpbeqiacBuWzFgVEmCLNaG9uFpzVAzjGSxrZUeZwnwI3R65dPufWNcrK2nNWX9bSytFVzpO4ztt67mcseMCAH729EP86LF/rT7u4LMzxa5GllBBvNIH1a+Z3AgnQ5xu55RGSsXCLG9uNXnXBttuXohkuH9b9eeDR+oLnY3XzWAvfGFnpi8ypcCZWKoT44Yw6bBrt0Miiq/cisdKpHYkcLuXtmN5Ax4mjGfbhnviL0hpnmNlM1tyEdu64i/Sj4/Y/NuBmQBz+6Yzqz8/eeAnPHqscYsumClylkpklzR7teZGS6guF3L1n0c5WHwl4rWiW1h36jlxITPTrIjFtN6k4fzh+mnLRjPY3TUB9rGaFPHaFl1bhk6r/vzC83++7vfTyRyWtfhBahNEqJruHWrQh34fc6LJLHYpQnlW4wriFb4VVxkvhuBY6zfA9vS8/dBrKaVI+YufwV6KqQIMdjNnTXVlO3YMK87aBrtGVF2x2TlMXCR3qXxvHRU5E6IVSimcLoeoGGGvcCECExmKASR6nY45ua5HVsqet8gZQC6lmL5m5bqr3lq9/Qv//PHqzwdqAuylFDibKsJQT/0a3KgU4Q103kxNp9Gujtux1LCteGS92Um/rtDZs0/W3Vc/g71wgF0O4r/lSy07sQRThbhP6wVnaTaf6RNMBJTHytgpi9TOpZ9c3B4HO20RToakpyfBi0vohqUV/PIF+eq//+cDieq1d2UGG+Bn+x7hzn+fyZM+Z6D+y1cpaJVMdN76axMZKBv0SLJhL2n/FC7WV5PVQjFW3229SvLsNPGFipydGKtZgz2dIu7YHv09m6q3v/C8l9b9/tJbdBlUYuagrGyN3pamadxViqbXaM8Twrga5VkYZUCrdRtgK6d5kdBGUomVn8Euh/G66p5s833YdxW7NumFiw4rTqmzi+/OXFOuNgmwxZpxsjYmNGil8NwV/NJPr7/ODtiSGrqGrBbSfJJ+JV3YcNnzXklXJs6XvPf7d3P0xCEADjzzePXxi23RVSwbHAt6a9b7VFqHOZIevuKUo+bMYCulSHjNM1hG+mc+40NHnqq7b7Ez2OXy3OUBQrSiFBgOHYPnbIczt6l4QC4ylI+VSO1M4cxT0XghdtrG6/MojwXV2ZylBNgAF28rs7M7DpgfOWrz3X3xdtXOYH/v2JnsG40jjrP7A15U09vaGFMzg915ATaTASZpoXrnDpgaOqd7QCtpsa4Tv56ghRnJS7aVcXR8rlMYBlJzow7PTZBKxGvuK1XEwyisZo1tGtyBpWci1V1bzqG/e6T672xmCQXOAEW8/rrutj4PNRgPApnJMiYfYMoRJjKYcjhvBXGIzysq7RCh0E48ELEeaXduVth8PHdxAflSTOYhk4LcKU5oGRPnZihn6aGqYy/q7VlWEmCLNWMlreoXPeGuYBpHPqToOgwOr9MjbIfQLVwwpPx4VL5YiitY7r3sjQCEYcA/fPOTwKwZ7EWuwR6fgu5MfZpgmJf116tFOxrU3H7oKb/5AFtdivgpzmCXgjhlrFHamhDNRJFh32HYtQnOP12htcLtdrASFlbGIbnj1Ktm+SNeHEBMTzkvdclUPItdqP77Ew/4RAZ6u4biQShnkAPe64E40Pq1F07VzRSWygWCMA64O3IGe6KMHk7OWZ9beV87ZXBtoSriMFMVupWU37Rn2Ls77jH9wi3lplWVK7PYlSrih4/uq+4PlQJn1W1UihfUzGLnltAr2UQGo+cOKCil0FunT9QGTCHEjJYwRwqgFMpf+HytMjbG0ljruMhZ9ZzaYpFgb5myt8qhoVBq/DcrWYKnWuvABAZtxa3IlqrSC3stSIAt1oxOWCg77o2c8FYuRTwqhkRdHl0Z2d3XUqUqqplnvZBjKzKpeJ00wC9c/ib09Ij5P3zzf1IOShw8vLQ12AZDqQxDPfVrfsKpEDtrY0kF8RWnXY12mFP11HdV02Vkg71bqvvAoVlrsGsD7JZmsIP2b9Ej2s/YVFys56IzVDWl0UpbeAMuqV1JnOypX7W6vS46oQkLMyfChdbWNvOirWV298VR18+O23zrKSde97j5LNh+O8aKA+drdpfY3VcfyU/VVhBPdFYFcVMMwdbo/rmz10EYZ0d1zAx2C4OAWimSfjxw2Iq3vyDPX71qlNuunGz6mJ6uuJJ4vjhJvjDB/pr115tr1l9X1KaJ57ylFDiLwFbQYJZSpePvlfX8PuwX9mO/oB/7+X1YF/ai+vyFn9uzMK6Fttdxirgb90yfPWjdjOfEXTuCFh8/m8FwcsJw5EQ8U33omKFYE2iXg7j1bnfm1AexTWhQtkKdQop4pUvJWpCIQ6wZO2mhfU1UjHCd1qphLpaJTHxi7XJOOV1FnBrtapSlFmwp0Z1R1QuG/p4RLr7w5UCcsnbf/XdzYDrA7sr2LyqFcaoQp6D35upvD/Mh3oDXmcV8Ooxy4pNlNKus53ytiWzbYaBnMzA3RbwSYCulSCdzc353tjCiYa9NIeYzPhUX7MkkZ/YdpRRdF3aRObNBmdwlsLM2bo9LMB4f/Bw77tm+FErBm2rWYn/ygQSRgdzwXhh6EwAJq8ybL8rP+d3K+mvovBRxM1aOU8Nzc6epg7jWFW6H1F/QLc7+ZRaxptbSsLUrmjfg6MnWrsM+Ul9BfNYMNsCe51zB+WdeQtrP8ZLzrm9tQ2oFBmwN7jwVwS2NStiojIPq9tD9fktV1pVvEboWlrN+A2xta5Sj5y0gW8t15i8qOp9iOV4moxWcu0ux50zFlgEYnYJnTxjKoWE8D7nkqaeHQzwQr2x9ajPY9trNYHfIWJ5Yj3RCY3lxgO1YVvOCFqeiGFJSmlSvLTNXa0y7GuVOnwjmuchJ+fEFYmTi9fmvvOpXuPf+LwLwmS//N46dfAaATTXFr1oxPgVbBupbNBljMAbcrg656upw2tVoe+4gS2VWyWDi9XizDPdv45mjTzExNcrYxAlyuS5gZg12OpmrWxs4n05JERXtoxTAYM/c/dJKLt+Vm1KKxCaf/DNx0Ou6cYC91JTO520KOKs/4OEjNk+etPj64w6PWjfC9IX187L30uXPbbNU2wM76XdOgG0igwoi9FCiYXGzUgCOs3wpsitNWar6Wc3Hd1XLVaRbMbuSeF0P7KG5AbZtO3zwnZ8jGC1gYWHK0eLWzJajOJ3/FIKopjwdz2Cv4wBbuRptKaLA0MpL9GqWFfgNzoVRzb6kVLw+PjKG42PxAPXWAdgxoqoD1dkUDPfCU88YDp+M6wHsHK4vIrtUJjBou7We8M3YFmv22csMtlgzSinsXFxJvDKDFS3jiQKAfEjecegfsjqi9+V6VnsimE8qAV7N7M1zd7+oWgH3sacfqj5uMT2wwygOpAe66/eBqBBh+VrWX6+SON1rboDtTPfCbjaqPlJbSbwmTbwyg91K79UgNFhaKoiLxSkFcWHE7lWINd1et5oanPGXXugMpmexL5yZof7Tf0lxuDQU/2Pyh6RH/3fD36sNsFPJDkoRnyhD2kH1Ne4GEQSdNYNd2Q8WSv2tDBgudTnBbL3TKeIAJ8aeXXAGG4DQYNl23GprapE9oKZbdK1IBplvEQwlsbL2ug2wtTN9Tm0x5VtrRcJtvG5/PG945jg8ewIOn4BnjsUp4IePx9dl55+uOHuHqssCU0rRm1Ocf7ri/NMUm/qhL7c8n2UUmGrm41I5dpwgsRYkwBZryumKWzdVLrCXex22KUWUcx59XbKrrzXtKrSrMAu06kq4cSp3ZR22UopXXvkrcx63abD19dfjU/FIa9esbM5wKsROWdgZCbBXg1IKK2E1nMF25qmGWxtgV9LEwzBkYmoUaH39tevIDLZYnIkpSCfmHjtWgtPl4Exn02RTasHiVaYYEj2Tb1rX4sLhgOcOxlF6Iai5SP3Zb/DUgR83/J2pTp3BnghQwwlUk1TjchgHCZ2yFKgyaxfm55/G9pzWW3W1ojs7E2AfH3222gM7k+oi16xKeGTiNO5eD7PA9s5mAgOplTn/KqUI+xI4nu6Yz32xlFZoX2OC1i+eU4m5+0sYGcYn4Ywt8IKzFS84S/H8sxTPO0vxvDMVF+5WDHY371mttWK4V3Hhbk06uTzvtQkN2j+1kRHHlhlssUHZ0wdW11r6upBmTGSIIgNph6ykh6+5OLiyF1yDrZSiOzMTYANc9XPXz1lju5ge2FPFOI1pdvXoYDLEHfQaphSKlaGT1pwsBtee/yJxuH979edD05XER0dHq7e1EmCXgukWXR0ygyVW3sSUmbfoIsBEPq6IuxqV55Wl8EfiGdjEdA2neWcmJ4N4VLrJoKVS8MsXFupu80b/Hka/wZMHHm742uvWYCfbK8A2oyXMieKc2TpTCMHV6P7mha/KASQbT263pUpWVelYkajYPHiqtOpqpZJ4K2p7YR989gmOHD8AwKbBXc2D1NCABarXR2Fank0FwBiUt3IRUBh2TtbCUjUatJ5P0lNzJrOOjUF/F2wdVHRnFD3ZeGa6L6fo61J4K5HCvwBTjrASpxhgSxVxsVFZCQulFRYRtl56a5KGiiElrUl023VtmcTasVIW0QIz2ACZlCKqeVjCS/Gyi/9T3WNaTREvlg2uDb3ZBieIyOB2y5TmarKS1pzRdq0Vvjtfq67t1Z8rrbpOnjxZva2VFl3lAFLJzpnBEiurVDY8/SwcHZ3/ceVg7tKSleT2xFGgb0XzZnVAfAFK2oFS82PqeUMBF43Es9i+bThT3QXEgfSREwfnPL6uinibzWCbySDul3w4jzk+E2ib8TKq14d5qrkHYZyJ0Ckqx6nkrjT5g/mmQau33AF2TYr4D3/6verPTdPDIQ6wHY3KuZByFpUmrmDeAmenKozWf9aSnVxcgO069a2w80WDAnaOqLZqYWlCg5U8tTDVttW8RVRXkgTYYk3ZWTsuFDO9DntZe2HnQwqOQ7bPIimVg9uCnW7tRJDy4oyGcs1FxSuufHNdcNRqD+zxqTi9c/YgS1SKUI7CkfXXq8pqUrAk4bY4g330SWDxM9jlIK64KwTEWS0D3fHxoZliyeA6q5MeXlFJEXeCEM9ZYB12ZOICUfPMcALcevkkb7loij+5ZpwzR/qqtz+xf26a+GShPdt0GWNQCvTODPq8HkjYcaB9rBgXNxtOzDt4Zgx4buddB+Sek8EfSZDf33gpgFKKlL+MAXZNFfHHnnqw+nOjAmdVYTwLrVyN6vMwLQbYJogwtp7TA3s5hdH6z1rSvtVyH2yI349KIdlKAbOtg9DTPl/3Kr2YgnlNNCrmthokwBZryvIt3D6XcCKc9wJ7KUwpIp/2GOrtvJPqeqUcTYMi0XMk/Tjgqk0THxnYweXPuw6As88+m0yqa8HnMRhKAQz3qjkXX9X11xJgryrtahplvSb95hks6WSWbLoHmJnBPnFipgd2KzPYAL4nxwIRmyrEA3mODYVS44vTiXzj2g0ryZoONlTZkPKhWGr8OBOZ+CrZ1QvWtUh7hl96bpHdfSE7Np9Zvf2J/Q/PeWxtiniyndp0hSYOxpI2elMSa08v+vweSNvQ7aJ6Fs7/7pQe2LWspEXXhVmcnEPxmWLDx6QW0aprIdl0D5YVv1FRTe/ULQ16YFeYyMSZBYDq9lCRaS3gC0zcA/sUqkQvJAzXf2FL7aiG59RmPCdOGigHcGIcujKwbWjuNdKaM6dWQbzCX6OlIRJgizXnDXiEpYiEv3wBtokMGEOYdOhKt9lBYwOzWhypdmxFNjn34vKWGz/Cf33nX/PXf/3XLT3PVD5ed9doZDaYDHF63WUZIRWtazbI4i6QmjYyPYt99MRBSuXiomawI2NArf8LLdG6YgmG++J1hyfGGz9mfHr9tb0GaZOmFJJLx7UDGipF4Gl01l1Um6Ydm86u/vzkgbkBdl2KeBvNYM8OxpSj0SNJrIt6sc7rmbcvsjFxCmynpgq73S65C3KgoHRibkqD76pl69SltaY72z/n9nlTxCMDlYGhnINJ2FBofDFXDgxjk/HMKZWWXisYYBtWp37CWtKuZjF9biu9sKcK8fFl14iK2721GwVqGdZ+r9V5X64sxZpzumy0rXCVWb52jsWQsq1xZf11W6mMRrYyut2VUXMuLn0vyYsu+Hm6urpa+ntj+TgNNNFg5tKUI7wmLV3EytGuAjW3rchChWiG+7cB8cXy4aP7FjWDXQ7iEftOvcAWy88AXWnFjmHFZL7xY8II+rvW5sIziiDlq+YTU8UwTsvtckG33qZny/Dp6Ome8R01gx1EKFvDrAFRZWtUYv6p6SCMCx114gx2RWKTT+68HOFEmWCqPnj13Ti+Wq5WXbVp4hXz1jwxoKZLNauEje524/Xy04LQcHLCcPCY4cR4HI8fGyUuzudbKGtlQ5G1KnK1WuK+4wsXbKywrXgW+8QEbO6HgZ6V3b6lqGToLMcESMJTqDWIdiXAFmvOyTnYKQuruIz54fmQom2Tylmy7rKNKFehnbl9kBtJ+fFE51J7o08VDe5Ekb5obo5lFESgFU6ug6+4OpR2NNphbqsuB7QirvzfwHBN1fiDzz6xqBns0nSLLpnBFhAXOHNtyCRhsDs+1kzk6/e7fNHgr/L661raVng6Lv5ZbhA8m1KEyjqQtOIZwFJr50/X8aqzkU8fepQwrB/FnMpPVH9uuxlsR8dB9mJ/NZzuINDhA2ypXUnSZ2UoHS7UDai4blwteb6CeIvRnasPsPu7R0h488xUKBVnF1T+2edDOaJYNhw6Zjg2Fi/FOGMLPO8sxdnbFUrB1GSESq78OXi99sCu0I5CWa1dV8H0uv0E9GRgx1Dz1ltryQQGbS/PDLZjwwqP4TQkAbZYc9rVuAMeusULhIWYMMIUAqayPv1dak3S+0Rj2tUoR7dUSTyViC+I5i3y00RkDCfHYTgV0ZXTFA4W6kZ3w6lI1l+vEeUolK3jQY4alX6VzdYSjtS16npqcTPY5XiNt2XJsUDEBc4SXhxg59Iw1Ds3TXwiP33/GmVAWb6FT4TnQqnRMTCIUBkHPCtuczRPJfHZdmw+C4ByUGL/4cfr7qubwfbXaHShkSBCLbFlTymIU2I7eQYb4p7HmTPTeMM+hWdm2q/5TnzsbLqcYJFqK4nDAgXOAGUM1BxbVc4BT3PiaMimfthzhuKFZyt2bdJ0ZxQD3YodwzA+YQhXsEVXxXoPsJWjUS1OXFT0ZuH0zSxbz+rlZgIDtl6WGey16oUtAbZoC16/i20iLB03vD8V5kgBNZig0Juib43S+0Rj2tNou7UTge/GVZ+nmqRvzmd0ArJJw1AvpHYm0b6mcLBYDbLDqQCny8Hy1/mZtw1pt/E+4NrM25ZoeGBb9eeDzz5Z36arhRnsTHLJmyzWmalCHFi7TlzYZ9uQolSuz56YLMBw79oNythpG12KSDYodFZZU4wft7lUWQezmAB701nVn2evw56cXoPtu0lsu31SPkxg4srhSxAE8QzveuiHbPkWuXOzKEtRHo1HXhw7Pl8uXyXx2QH2PAXOjMEo6jMLUjYq66KmAnqn+ynP/h5tHVT0ZeGZiZUNQxTrP8DWrkJZelH9x0f6NJv62zcEjAKDttR0+vupcSwJsMUG5uQcXF9jhdEpFTozJ0vxSXhnBu3pNZt9EI1pW6M9TVRe+ESglGKoVy16BrscGgol2N4PiaTG3+TT84Ju7OTMTHZUjHAHOzxfsEMpWzUcbbctcJz5ZrBrU8RnBdjp+ReRGdN4Hb7YmIolGOia+fdgd1wtvNKyyxhDGK7d+msAt88hLIR0paE4O3AKDMaZWXusMg4Ei5nBnil0Vtuq6/H9P+aZo08DkEy00ew1gJluSbYE5SDOiGq7KslL5A16ZM5OUzpeJipHKKVIJ5ZxBntWiviCPbAtXZ8irhSmL85KTPqNf822YOsQJNOaIyeXq/jOrE2LDFpvgADb0Wh77rKrTmZCg7LjJYWnyrFhCStLTpkE2KIt2DkbL2djlcOmrXoWYgohFEOs07LkPZeUP7f3sVh7VspuebalKx0X42jWRqeRY6PxBXN/OopnSz2NN+jR/YJu7JRNfn+cWudm18F0RgdSSmH59pyLAaUUyXla9fV2DeHYcVG6Q0eeqgbYWmmS/sLFmNZ7L1TROgNkUzMXbqmEYstAXPQH4vaACW/t1l9DPINd2TYz+3BZDFGuBZWUad9CLeLaupIiDjOFzh554gFu+aNXUChOAnD+WZcsedtXzBIvtsth3E1iPUmfnia51adwMD6fpZNqyddOsy0qRTw0cSQxa4a64Lu4CY2nGp/rTcmQzWnOOctmIh/XPFhupfL6WBqwEGUptGe1tPSuU5ggQvsapZdpDbbMYIuNStua1IiLUwqWNINtIoM5XkRtTaGGE0wW4uA6sc5OquuBN+gRFcOWKl6mE9CdiddDtmKqaLAt2DGi0FFc/ENPtw/xBjy6X9CFk7WxkrL+ei3plEXUYLR9vlZ9WmuG+7cCcYBdWYOdSXWjdfNTWRAaLC0BtoiVygbHnrtkYHN/3OooDA3jU3EK+VoO0FppG2UpfN1g6VQpitNwp9MnVcLGOAv3w64Y6tuG78ZvwJMHHuahR7/Lb33wVYxPngTgzJ0XcfPr/2hZX8+pqKbELzFdNAjjc8l6oh1N9twsVsqmdKy0rAUcFzWDHVVmsOs/m0nHwe+1sfKNp9WjcoRyLHZt1+zeAgePNi9wuVT5IiTc9ffZN2IlrUWliJ8qY8yK/j0TmGVbwmdLirjY6Px+D882SwuwjxZQvR56Z4YImJiK18+tl5Sw9cQbcNEpm3By4Q9aKcVgT7w+cqEWJJXCZlsGoDujiMoROmGha078Xr9Hzwu7SZ+Vxkqt87yxNmYlNKZBSutC/VyHpwudFUt5Dh48CEAm1TXv3wrC6VkMCbAFcYGzpDc3wB7ojgfzTk7E669HekEvw+zJUtkpCyth4UbRnGKP1QriFf7iKolrrdm26QwADh55kt/+k9cwVYin7597xov4wC2fW/B7tapCg7H1ktdjGgNeO/b5PUVuj0v2nAzBRIBjwnm7MCxGd02bLttyGOrb2vzBoUFZ9VXEAfJlRc8On3Cq8T4ZlSIsT2EnLc7bpejrgn3PLm+QnS/F3+mNUOhW+3pVU8RLR0pMPj65YkG2CQxWcnlC1EwSdgwrUk2WK6wUCbBF23C6HPy0RZBfXIRtxspga6zdWZRnsf9Z2NQPp29e/wfVTmRnbPwBj/JoawvGujLge1Aozv+40Yl4xmnbYPy5RyWDnZk7S+32umTPzMjgyxqy3Mannsosc7PBlJGaVl2VDIiF1l+Xw+kCR5KwIKgvcFbLdRTbh+DkZByQ9ebW9vhg+RZW2sYOQhLurEJnxqBSMzu0cnXc7qjYeoro9ulCZ8YYCqV48fmec67k9nd+ur36X0PcostW8SDCEii1fjNYUjuSJHemUMeLOPbyrMPurUkRHxnYjmXNc/AMpyuIz0oRjyLo2eajLEXYoAVrVIriLA2lSCfjKuM9WXjiGSgtU6BYKkFfblmequ3ZSWtVA+wwH+INepSOzW2DuhxMZLCWWNRwNq1VnNW4ygOmEmCLtmFnbLycRbSIANtEBibK6F0ZVLfHkZOGhAd7zlQkfQmg2pFSisRmH1OO4s9vASlf0ZuB8XnSxCuFzXYMK/zpYlamHGGnZZa6HWlX0yiGTifiQLjU5Jw93L9tzm0LzbSVg3iARlp0CZhb4KzWcK/CseIZ7rVcf13h9blExYhcemYG24QGtJrTskrl3MVVEq9Zhw3w4gv28vs3/y98rw3L7QdRXKV6CTPYxhgw6zeDRVmK1LYErgOObZalkrjnJnjxBXsBeMmLfmn+B4cGXF03YF0O4mUYXZtdvEGP8vG5lUqjksGpGQAf7FFcdr5i1wjsOwwTU6ceLEZApk3bUC035ei4ZPoqqMxae30u4WSw4Cx24VCBwqHCvI9pRHV45oGM6Yu2oSxFciSB+snYwg+uKEUY38Lq95ksGCbycMlz1ZpWfxULc/tdrLRNMBHitLAWur9HceCYwWAankMqhc2GZk1mWqvQY1MsXrOLgYQfB9lTxbgH+my1vbArFprBDgJWPTVsoyiVSvzBH/wB3/ve95icnOSMM87gv/yX/8Jpp53G3Xffzfve9z5cd+aD/OxnP8vQ0NAabvHcAme1+nIzM17t0NbNydkQQSalZmpWlMJ4JnfW+kSVtJh3fcUsF5w5U8Tsihf8Iv/3r3y0rdpy1QlMXMhtCaWAgzAucLReZ7Ahbn9pOZqkAyeX0Naykdt+7X9yYuxZenKD8z8wMqhZmQWVPvPZlCLakaRwoBBXha4d5DQGK1V/7s+mFC86BzJJww+fgGLZsLVradtfDgyOtTHWX8P0oPUqCadCrJRNendcyb50rIQ30LjgUXksAAVR2cTL9hYxSLaar2klSIAt2kqi3wEzXdSklRTeIEI5msBSPHMUzt0JO0dWfjvFqbFTNokRj4mfTbUUYHen41mlqQKkZxUemirMFDarm6VU8bok0X60q0CpORddWil6c4bj+xv/3nBNinjFQjPYYQRJadG1IsIwZNOmTdx555309fXxv//3/+aWW27hC1/4AgDPf/7z+fM///M13soZzQqcVViW4vTNhjBqj/odVspC2QrfikAposigShHKt+cG2AkbpeKsrlYq7+7aeg4f/K3/w/jkKC++cC+WbuPByCBCJZbWVrEcxFkx63UGG+IBS2Ur0m7Es+PL8zkqpRYOrplup+TVn2fzBejJgu8pwkEPJ2dTHi3j9tR/hlaD87PrKC7cHWeQPPDo9N8wZtGzs/npIH/DBNirONsbTAR4Ax5Ol0P69BTH/+U4JnTrB1CI943ysSKZc7MUnylSPlnG62+98vBqvqaVIAG2aCvJHhtcTVQIW1t/ERhIaPYf12wdhOfuWv11FmJp/BGfiZ9Ozh3ZbiDhxYHXwSP1AXZkDCfG4fQtcWGz6u1BVG1dIdqPdjXaiQuZzP7s49lFQ2QMelaQM9S3Zc5zLTSDDeBKy/MVkUgkeMtb3lL992tf+1o+8pGP1PUob0WpVKI0a12Abdt1s9+nwhiDpeNlJGk/HnCJosbHnF2b4v9H0dq0vKn83SiK0EmNSmocFZJMWpQNuGGI7vbQylC3ziKhIKlRYYhyWjvuXXhObSuu9umhqyxT939DhEpbKBb/mYSRwXXA1s0/83ZUux8syDbgKhKuwbIMahVPe0pHaF/VfTalwDDQHa/DVp7C3+4z+sNxnN54lMOEBmMDbvPXt2MYkp6hMA5ThYhUYnGfXbFkpmst6GWvTr6aWt0PjAO48aCnXuGmz0EQkhlyiKIId8TDGXQpnijOCZ4LRwu4wy6p05Pgw9gDY7hq4WO6CQ048WuKomhx34VVMF/XkloSYIu2kuixsdJxhelWAmxTjjjpuGSScNEZM+tvRftz+1ycrE0wHuB0LTy90J9T7DscB14VJyfiImhbB2aNnJbitDXLkxnsdqRshbI1URBV26hVpJPxmuliaW6bPc9N0Nc9zNETh6q3ZVLdTf9OpViaFDhbHQ8++CA9PT10dXUB8IMf/ICrrrqKnp4eXvva13L99dc3/L0777yTO+64o+62G264gde85jXLtm2Xnjnz8zOHmj+uXezbty/+4dz4fxecU3vv6PR/NbqAVwCsTNGhtbD9RRM1/zox/d8idcX/64TPvJHqfrCQc+OX+sKV3Jim6j+bSlr3U09N35AGXgjj1Cz/2wLPTD0DT7Ggs4YPLHqL5mxDh2tpP9gDAXPXuy+7ETjGMY49dSz+9+nx/0oU5zyuTImpZ6fAY+4+MJ8t8MzEIag5BLT8XVhhO3bMzaRrRC47RFvxHIXu9wj3j7f0+KAUUcjZXLxb0ZOV4LqTWL6Fv9ln/McTLQXYXRlIJeLUL4j7GxfLijO3zR1YiYIIbas5wZtoD9rVaFs1rHpa6Vs6Ptm4j/1I//a6ADubbh5gB0Hc/3I9r79sFxMTE9x+++28/e1vB+DCCy/k05/+NENDQ/z4xz/m3e9+N729vVxxxRVzfvfGG2/k9a9/fd1tyzmD/fRhwzf/I67fcP7pcM7O9j0uRFHEvn372LJlC1prxh4cY+zRCfZFHk8/YxgoFdEX9qB75xYWCH94YrplZWcXHVCWYfuLJnjyX9KYUBE9M4X13G704OIXxj973NDTBVdc0L6feSOz94OFHPnaUUaPB/zgsEMutXqtqaJnprDO7UYPxZ9NOTQ8ewJeskdVK/EbYzjx3ZPkD+ZJjCQoj5cxgWHg6v5519lW3oPv/WwTvVk9p/L/fJ58xvCi5yh2dXg3mVb3g3Aq5NmvHcHyLeyate1ROaJwuIjX62IlTj21oTxexpQN/Vf1VftUR6WIo/cdI5wI8QY8jDFMPT1FZnea3AU5lIprSJz4zgnyh4okRuY/PgVTAeFUyMBV/VhJa9HfhXYhAbZoK54DVpdL+FRra8nGJ2HwHM22ta2bI5bIH/IZ/8lkS8UvfFcx0G3YfzT+97ExGO6BoQbxVVQy2End8UUy1ivtaJSjCMZDnFx99KuUoi9nOHqy8e8O92/nwUe/U/13dp4Z7HIIzjpff9kOisUit9xyCxdffDGvfOUrAdi0aVP1/nPOOYdf+qVf4utf/3rDANt13WULphtRyhBGplrgrBOWEWmt0Vrj5FxUyTDYq9n3dEgh1CRdB9OgCYxJuUT7C+iw/V9fK0yoiAIgUBjLbviaF1IIDCm/9bTOdlPZDxZiJ2zcsIxGUSyCtVo1BAKF0TOfzUTe4Dlzv2epbUnyT+YxZYPJG+y0je23FoL0dWkOH9ds6m/tNYWRIYri9l+d8F1vxYL7gQ+W1lACNV053YSG4r4C/qBPYTqwPdVJh2g8wh/2cZIzJ1XtazK70hz/lxMQQPl4GS/jktmdxbJmgvrk5iT5JwsQMv+1fSl+LZZn1b3mVr8L7aJztlRsCLat8LttAkdDg96JtSJjCELYtsVaNwfRjcbtc3G7bIKx1nqL9GZVdaWgY8H24cYnUFOOe2yK9pU+I4NyFPl9U0RB/dqqTELFlUcbVEUeHthe9++FZrAdKw6yxcoIgoDf+Z3fob+/n3e+851NH7fWRcOCMF4q0A7VwRfDTlsoS5P1I4ZSISeLGprMRKmEvVqdelZPaDC2jjsPLEEQxgUy1zsrqbEw+O7y9MJuhYkMRqm6dkpThbhAmefW74negIfb41A+Ec+A2pnWZ1N3DSsKJQgXaAdVUZheXpTusO/6qdB2PKFQaZlljCG/P483kqD7BV2kd6coHMwTlU9tHXNUjPAG536hEpsTuP0uhUMFwqmQzHMycwrYegMednbh6z0TmOllZJ19NJMAW7SdVI9F2bdhgX7Y4+OGVAqGh2Q37lTa0SS2JAjGW7si6ErPtFzaOghd6cYH4KgUYWckqmpnqR1J+i7pxRvyKezLE0zM7APpZJwqXijO/b3ZrbrmW4NdDiCZYE6xNLF83v/+91MsFrntttvqguh/+Zd/4cSJeF3mT37yE+666y4uueSSZk+z4gxxoNVpVYXtlI1OWJiiYTBjsHI2k6XG+7NKWBhLYYL2KAa0LAIDtopbky2BMWyI2ixWIm7plk4sX4A9kTcUy/MEtZEBS8X/TSuUYKDBIVm7msSOJMFEuOjz81Av9HXB8dZWDsYVxP2N155R+xbR9LKrwsECbo9D954cTs4hd36O5M4U+QOFOQParYrKcfFYJzf3s9OuJn16iqgUkdyWILlt7uiGlbRIbPEpjy4cYFsJa80HZU+VXIGKtpNOKIKkixmfnHc0fnIi4vR+TUICqY7mDXooWxEV5xa8ms11VLVP7ULpYpYvFcTbndvr0vOiHiZ+MsH4T8YJxgO8QQ/fVWRThuNjkJx1kTQ8K8BeKEV8o11kraZDhw5x991343leXer3n/3Zn/G9732P3/u936NQKNDf388b3/hGXvKSl6zh1kKuwcxau9MJjZ2yCCYC0lbE5p0uj55sMjvnW3EgWopghSsJr5ogivtfL3EGGzZGkUM9vT45nVAtz/TO5+REnCE4no+XYjUUGrCo29eMad5nPjHiM5GaoHyyvKj1wJ6rOG0TfOeH0JdbuIVrvghDPWy4zEYrYWHKEcVni2jPouuiruoSLMvTdF2YwwQRU0/nSW5NLti9ZbZwMsROW01r5iQ2J8icnSG1q/lz+8MJJn4ySVSKmi7hM6FBL8N68bW2AQ47otMkPUXo2vHoaBNTRYOvDX19VsNeiqJzuD0ubq9LebSMN7BwLt/mAUVIXBBvvs4ysl90BsvTZJ+bwe1zGHtwjMKBAoktCXqzimeOzf2AR2pSxC3LJuGnmz63MfHafbEyhoeHuf/++xved8EFF/Cbv/mbq7xFzWlgoGutt2LxlFJ4/S7FI3F18J27bPY/A2OTZm4g42qUb8FUAMl1cnkXGEhYcZC9SMbEhe02Qg2GSrDiuafecG10Mg6uN/UrnjhoMBhUo+mOyICl4wwD4tZYntN8GYaTdUhs9gny4aJbaG7uV2RShvEpyKbmf2wpiJeTbTRWUhNMBDhZm+4X9sy5nrIScdBtQsjvy5PYklhUkB1MhiS2+k0DY+1quvd0zfscXr+L2+fGPbGbXO9F0zPYnU6uQEXb8Vwwrp539np0EvpSEdkuKWTV6ZSlSGz1CSbiypELSS6Q7mdCA0oqiHcSpRSJTQkyz8lipgfWMknQOi5YUyub7iGVyEz/3L3gbIZUEBcQr8lsNrPW7uysjQkilFb0Dtrs2gRHRuc+TimFyjmY0npKEY9QS7zYLodg2xvjGFBZr+o5Bq1Ycu/n8SlDsQRnblVs6Y/fu1Kzzk+hiQO06b89VYwzjuarc5DYkogrWi9yADyXVmwfgmMN9vtalUGVTlsKshy0a2GnbbLn50hubfwG2Gmbrj1deIMexcMN1mDNw5Qj/BYmQeajLEVyW4JgMsQ0qLES/yGzLlqsdv4rEOuO5wC+hbF1w7VkQRifQPrTRgpZrROJzQlSu9OUR0tMPVW/HnexonKEdhVaZrA7jq5pw5JJxmtm87OuAZRSXHPZGwB46Yt/qelzRcagVPPZKxOBXmSKnOhcC134tzM7baNsPZ0ubnP6ZkU6AaMTcy9QVdqJUzfWCRMYSCztPF8pcrhRZrCVpXAtg2vH9ScWayJvyBfhzG2wqT+uX5FMzD0GV4XxGmxlxefaqSL0ZMGZpziVN+CR3p3CbrCOdyHbBhWWBYVS8/27VI6vITdSgbMKp9shd0GW9GnzT/E7WZvUziThIgbiolKEshV27tS/TN6gh5WyCCebTKgYUItoydau5ApUtB3XAe1ZRBbQoOLh2CT0ZCDjGilktU7YKZueF3TRd0U/6TNSBFMhk09MUj7ZbOi8OVM2aEcyGzqRshVKK0xocGxFLh1ftM32q6/7fR544AFueu3/2/S5ypWL6yaHiKgQ4g6sXGso0V4q/dU7kZ22sZIaO2mhE5qujOL0TXB0lLmzQL6FMlQzQTqeMahFphNXVNr0bYgZ7OnWhx4Gx1l8obPJgmE8D7u3wJYBhVIKrRQ9GciXmvxSaMCd+WyKJao1Uppup6VI7Uyhl5DyP9ANw700beEI8bYmOrCY4XLw+lwyZ2QWbG8L04N20+faVgSV9ddLGBiZzck5+ENe8+s7xbq4fuv8VyDWHc8BJ6EJtdUwwC4FMNKn0Ip1sU5DxJRSeH0u3Xu6GLiyj9xzc4SFcNFBdlw8Q1LEO5F2NMqietLvySqCJoPcudz8V3JB0LwHdiX4mN2DW6xPrg09uc4rcFZRmbl2etzqkojTNiuySTgxq7Ky8i2MqxueOzvWEmezytPHgI3Qpk+7Cm1rVAQpb3EBdjk0jE3C7s2wbUjVLbvJphTGgGm0sjsyqOnzbGWgZyWXYWitOG2TohQ0b9mVL0IuNf8sugArbWElNOEC3XoqwskAb8BDn0KxwVrJLQlMaOYE+JX9aCk1F9pN578Cse54DjieIvDtuBrqLOlE3LIBpJDVeuV0OeTOy5LckaTcYguvimi6B3ant3jYiOL1fDpOCyVO6bV1fAG4WOUwDq4bXWiF+RArYeFkJcDeCIb7FM8/q3OPB0op/GEPt3cm4yKbUuzeCsfHZs1iJ6x4xncdrMOurKddagXxIIiXBmyEc0GcIh4PTqaTiwuw84W4cNj2WcE1xNdbrt14HbapmcEuluP6OSu9DGOkD3pzcGys8f2FUny/mJ+VjNdrtxpgm8Dg9i9fQ3lv0MMb8Cg+W5+iVumBrTt0MLSWRCei7bhOfECf1DalYjRn5HS4J+5EorTMUq53Xq/bcgpTRVQyOLJ0oCMpZzpFfHqGOZ2I+5k26oe9kCCMf7eRcCrEzthYacmA2Sg6PcjKnpMltaM+etkyoPDd+uBHWTpu17UeZrBDg7E1aokBdinYOKnCSqu4D3I5IuEpzCI+/kIpnvW1GtSkSPmNa2EAcfr+dCrvVCF+XGaF32/PVZy1TTE+FdfjabBJHVvMcDUppXD7HML8wjtKVIyzApcjPbxCu5rMWWmiwBAWZoL8SoAtM9hCrAClFJv6wc/ZTEzBM8fg0DHD0ZPxwbSvW8UFF1y16FYPorM4XQ6Wp+sOwAsy66PFw0akbIW2Z1LEbWt6DeASAuxyCOl5AmxvyOv4oEtsbOlEvN509hpZ5ep521x2jMDEFaqXuB4zjOKgb6OwEhYmMPguKNUkrbuBMIqrdDeitaI7G6+vnqumgnghnjm2VyE1e8cwbO6Prw1rBaHBtjbOoMqpcnJOS8eJYCLAztjY2eWduPBHfJLbkxQPz+xcJjRoW8sMthAr5aIzNFe/2OK5O+GC3XDWNkV/V3xf2p+uFO1oSRFf5+xsfFAPJhYRYINUEO9Q2o4r4VZSxAG6MzPrsCNjKJQMo5Px/RP5eS4OzHSv9Nk3G4Mx4HZJerjobK4TFwKcMwDl6fVR5CyM4pmsUyh45C/Q1nE9sZLx8hrPBduiaf2KWpExoOYfiMilFQ0TyUxcRRygGEB/bnXea8dWnL093qZ8cWbD8sXOLma42uy0jbIUUYNuPbWCqRB30FtSYbr5KK3InJHCSmjKo3EajgkMymLZ1nqvpc5/BWLd8jM2mZxmIAXbhxXn7op3V6UUUclg+XpdlPIXzSmt8Ac9wsnWFpRVLiols6Fzac+qCw7SiXjZyMGjhsMn4qrilarAE1PzP1ejAmdRPsJK6CW1iRGi3fTl4hTfWsq11s8MtqurbaAWy5jmXQTWIythYyKD78SF3cot1ActlsF347XqzVTXYQf1+5QCsHW1depqtsHb1A87h+tnsfNFSE1ndYiF2WkbnbCICs0DbGMMhAavZ2U6brg9LundKcrHS5jQEAUG7VlxPZYOt4EOPaLT6ISFdi3CYjRnrbUpR1hpV1I8NwC3142rmBqz4OdtygbtKsls6GDa03Uz2OkE7NoUp4snvXhdtefBJOA4UCybOTPVQWiwdOP2PMFUiJOxsdNy+hOdL5NUc1t1WZoWs4PbWxChsksbLK0USNsILboqtKPAxMG178YDLwvFvMUSJN348c2kvDhoLRRnBixMZDBKoWzF0VHo74rbaK0WrRVnbYP9z8YZTbmUIl+E7UOdX29hteiExs5YBKNB0/NhmI/QCY3Ts3JfpNSuFPn9BUpHSxhj0P76+NLKVahoW9pVWEmLqDg3zykqRdIDe4Owcw5W0mqtGEc5QkkP7I6mfV1X2E5rxY5hzZYBRW9OkfTi/qwAGT9e+zdbEILdpEVXOBW3G2mlV6gQ7S6diOPpurZFtooX4XY4ExhILO08X57nGLBeaVeDigPMdKK1SuKFEuTS8wellqXoyc5aihDF6eGRUkzmYfcWhbvKGYV9XYoztsZ9sY0xBCF0ZTp/v18tcWtUb94aN+F4gNPlruj1tpWwyJyZJiyEhPkIK7k+MhDlKlS0LaUUds4mKjUeipdCVhuDnbFwcjbhxMJXC1HZoB0ta7A7mPZ0y5Xjexukx0J8ce1Yc9NDTdzQFWeF0t2EWG3pBPizqzxbCjV7VrsTGRO3HFuCIIiPARtpBrtSbd0YQzqhCFtYg91q1e1cShHWjnGHBiw4no+D7y0DS9zoU7R7i6I7A8+eAK1k/fViOTkb5pm7CPIh/qaVLwia2JIguTVBOBWsmwzE9fEqxLrlZB1MkwIMlrTo2hCUUvhDXkv9Gk0pwk5ZMjvZwaxFFDfJphVKQTRrvWk5iIOO2W1n4nYjGmeZq6EKsVaSftxKqbaSuLI1RjE3dbwTLXFWtBzEqdIbawZbVYtEeu7CqwQqS2nmW39dkfLjjIByZfAzNKAVo3nF7i2QWKNicumk4pyditHJOM1dAuzFsdI2ylZEDdr6ReUIbSm87pUfkFaWIn1mGm/QQ7vrY/JMIhTR1qyEZvY1ggkNKOmBvZE4XfEBfqHKuFE5wpKlAx1N2arl9aPZZFz9dnJWFeUgiC8IZwsnQ+y0JctLxLqhlKIvN2sG21agO79VlwJYYjXhchgH2M4G+qprJy78WmnVpRsMPtYqlsFzW2tlVmkJV6jsZ6FhsqzI5TTbBtd2QHv7EGwdjOtzNDrui+bstIWVaLwEL5gI4wzC7tUZpfL6PTJnZ3C61seXViIU0dasRDwbWZsyGpXjpveSBrxxOF02VsoinJp/FtuEBju1Pg7OG5Vy9PSV9cIcW9Gbg6l8/e1hBEl/7pNU2o2shwqlQlR0pVV9SyZLgQWNeyt1DmPratrzYlUG2TZSwSvlKLQ906rLteOZ/GYKpUqXhoXfI8tS9GRqBnIiw3hRc/o2RTq5tu+x6yjO26XYNTI3a0nMz/LjAeeoQYZgMBHgDfurWtMmszuN178+ysBLhCLampWw0L4mKs6MrlXX2Uorpg3DTtm4XQ7BQuuwDZLZ0OEWG/z2ZON+qGbWtHej1FCzgu1GhFgr6URc06yaEm6pePqywwNsbLXkHtilIG7ZtJFoV8fpvoHBs+PZ6XyDGhUVpTJ0pVt//tqBnPxUhJ/RbBtqj4B2uG+mlatYHLffnVPozBgDkVk3we5akL1RtDWd0FiuIirNBNimHKF9jXbb48AuVoc35BMu1K9Rydr8TqeduALyQssBKrJJ8J2ZYmeVQHt2gbOoGGF5Svpfi3Wn0iu+WvDPnu4d3ekp4o5ecoAdRpBObKxrBKXjzD4TRFiWYqgHpoqNH1s5Ti7mPUolwLbiddjjE4bhIU23VO3ueI1qkoSTIVbCwl2l9PD1SK5ERVvTtsZO2/Uz2KUIO21vqNQvAU6XExdwaTIrYwKDsmXpQKdTtkJZtFxJPOlDNjXTriuYLm40u3pwMBlgpWxZfy3WnXQCEm5N+q5dSRFfy61aBpWBgiUwZmMVOKuwElbc3gzoyylcG4rlucfSShG4xCLWLFfWYY9OgKMMmzfLsXQ9sBsUOgsmAtweBystmaJLJVeiou05XQ5hbYAdGLlI3oCcLhs7aRFMNU4Tj0pRvHRAemB3NGXreQdS5jxeKfq7FMXp2btyGM+yzL64DidDvAEPbcv+IdYX245bFVVmsJVScXGwTp/BPsVWnBupRVeFnZwJsLMp6MnA6OTcxxVLcQp5ahEZwLYV72cnJ6AnDT19cixdD6y0PV3obGZELipE+CO+TGSdAvl2iLZnpWzqSokbIz2wNyDLt3B7XcKJxtMypmyk+N06oG2FslX1IrEV2dRM6mJlBntOD+wwwu3ZgFfcYkPozVIdZILp9OpOX4PtL20gvRzE7af8DVhuQfsWZno+QinFcF/cDzua1Y6lUIqPm4stCpZLx8XOBrsX11JRtC/Li1tXViqJR6UIZSscqVdySuTbIdqelZy7m66XRvRicbxBj7BBv0aYri6fsGSGssMpR8WdAxYx+5ZNxusDpwpx6mNyVvXgqBShHI2TkwBbrE+ZpKov8+dZLWeBtCu1xHoaJyegJxv/t9FoV9VNSPRk49TuyVmdFsohdKUWPzvZnYYtg5BNs+QK76L9uP0u0XShs2A8wMnZ66Zd1lqRb4doe1bCql8fIj2wNyyny0bbjS8KopIsHVgP1BJmsC0r7gU8VYwvHGf3Qg2nQuyUhd2gmIsQ60E6OZ3FUfneeOtgBruF9lGNjE3FvZGdJueK9UzPanPoOYrBHpioCbAjY1AsrWd0Oqk4fbNGKdX0XCw6j51xqIzQhZMB/rAvkxWnSN490fYs30J7ulpJXDuSBrxROTkHO9V4eYApR03vE51DKYV29aJn37oyCgxEEfizOgwEEwFuvxdffAqxDs0udKbs1vvJt5tqu7ElXOAXSnGLquHeDn3xp6gyq2xqZrH7uxSWBaXpwZdSOV6fvpgCZ7VMaEAp1BIHQET7sTMW2lWEhTAuENgn6eGnSq42RNvTCY3lzfTClh7YG5d2dbUvY6MUYsuX/WI90N7iA+xcMq5wG5m5xY2iwOD2ygWDWL98N14mMVNJXNfXLukk09/9paQgHx+D/q6NmR4OcYr47AygXDoudjY2XeysUIqD68QSWxyb0KBtZMByHbFTcaGz0tESVsrCkfZcp0y+HaLtKaWws87MDLanpAf2BuYNx1cFU/vyFA8Xa5YOIJkN64T2LcwiWwz5nqI7PbeCuDEGpeLqukKsV3E1/Zpe2JZCdeAUtokM5uT0i1jkQLoxhnwRdowotO68174ctKNRjsbUtObSSjHSpygFcXp4sQRd6fj2pTCBiVuoSYr4uqFdjd3lUD5ZxuvzsFOynOpUydWo6AhOl10NpKyU9MDeyBIjCQC6n9+FnbUpPFNkal8eZSnJbFgnrCXMYAP05hQpf1aAHZjpfUNOd2J9y6UVYaUGpK2AzprBNlMB5lAelY6/wGqRx/PJfDyLP9i9ElvXGZSr0Q3aHPZk4zXXk4U4QSCTWPo1lAkN2lJS5GydcftctKfxhpaY2iDqyBCF6AhW0q5eKzhp2W0FpHemSG9PUTxcYurpPMF4GSshJ/z1QLtLS2/tSsetZ2pTxKOyQbtaAmyx7qUToBREUTyoZLSCMP65nZnQYI4V4yyk07NY2xPA1KKf5/h4XNwsl27v17uStBOniEezikT6rmKw2/DEwyVsZUgtdQE28eelLKTI2TrjZGy8AU/aWS4TiVRER7B8Xc230JLqKaZpW5PY5OOPeETFSNZgrxPKVnGksEjppOK5u+pbdJlSJP3RxYaQToDvTK+xtTVYKi5K0MYBdn4sIDpWJDnio3dlUL0eSi1+cC2KDEEIWwfb97WuBqUVVkJTHg3m3DfQrdhfDnAdhe8alloFLwoMdspq+4EbsThOt0NyW0LaWS4TueIQHcFKzvQ31q7stqKeUkqC63VEO9OBwRLMXj4SlSO0J/3RxfqX8uPiVfkicYr49Ax2Oxs9WOJkbwbrgl50n7/k5V+jk3H2ymDPMm9gB9K+1bDNYdaLyGQ1flrjLvH4CtMp4pIRtO7YKZvsOVkZOFkm8g0RHcFKWNUDuiUHdiHWtXgGe3mey5QNdkYGX8T6Z1mKnux0oTNLzcxgt6kwitBA1O2hTnHg/OQEbB2AhCfBgZ20iMpzP3eTj9i8xWZwk0U4tcgqkrXPExh0Qo6pQsxHIhXREbSrsaYP6JLqKcT6pqy5vVyXKipH2BlZDSU2ht6solgGLB3PRK3wDHZ0tIAZKy38wAaK4xFeUmOlrWqP5qUoB3GngE39ElxDPIPdqIZFMBGw6XSXHc/xCSZPIcAOTbxsTwjRlHxDRMeorAuRFHEh1jftqLhI0zIFB1JdXmwU6bjJQhxc23pFA+woijh8JOLEsWimtdYiFMZC/G4bL2tTWlqMDsSz190ZGNjA1cNraVc1LCBvAoM/4OF2u6eW2WAMllyHCTEv+YaIjlFJ85S1P0Ksb8pe3gBbZlvERpFOgGNDqWzA0yuaIj55IiSVsyhty1AqRpjjxUX9fnkqZGini+dPz7ov0dgU7BgCR6paA9OTELPeiqgcoWyFnXNwcjbKUUSlqPETLMQgPbCFWIDkzYmOYWdsKM4tYiSEWF+UHbeaMUvPYgSm28lo6YEtNo50AhJeXOgs7Wii0Cy6nIHBoFr4rcnRkJ2n23Bhikfut9h0/CQcK6J6F+6jG0UGbQzdm1zGgANHF96uw8cNUwWwLLB0/H8FuDYM98l1QYWe7k9tovj4BxBMhNhpCycXX/bbqXgd9pIyAhXSA1uIBcg3RHQMf2jpfRuFEJ1D2RqlVcNKuIsRlSOUIwG22Dg8V5FLwVQRcK0lpYg/exyeOT7/7+WLBi+M2Lzb55ydmuyOBKNbuzG2IjpSWLB+Qn4ywk1oeodsutJQamEGe7IAZ++AM7fClkHoy0EqAVsHoTe7mFe4vim3MkA58xmEkwHegId2NNrRuP0ewcTcVl6tkh7YQsxPZrCFEEK0Fe3EF4inmt4alUx8QSlrsMUGMtQD+54lrsy9yEKBxbJBaXAsmMgb0onGgdTJSdiUg94Rl2RSce5OuG/CJ3MGWI+OYY4VUX3NB8ULYyHd3RbpPodUoBYMyMuBwbZg14iir6t+m4wxktlWQ9sa5WhM2cB0S2MTRLh9bvUxbq/LxE8nF/3clawg5cj7LcR8ZFhfCCFEW1FaoR1FdIoz2KYcoT0VF/0RYoPozsT7e6RZdLu70UkY6IJtg/HPUYPAtxQYrCBiYEBXa6PsGI7/O2h89Jk5CA0maL7GN5gM6d3qoh1N0gel5u8akC9Cwo1nrGeT4LqecjXamjl+RsUI5ehqoVgAJ2tPP2Zx67BNYFD2TBq6EKKxZf2GPPnkk7zzne/kqquu4uqrr+bWW29lbGysen+hUODWW2/l0ksv5eUvfzlf/vKXl/PPCyGEWCf0EtNba0XlCCtlywW42FByaUj6UAgXd4lXDg1hBCN9is0Diu4MnBif+7iTE9DrhXT3WdUWeLatOHenIuHCmOegsi40SUGOIoOKIro3xWu1E148Y16eJ2O5UIJkAny3+WNETLvxDHNlgCOYDLAzNnZuJmnVztpYycX3w45Cg7K0FDkTYgHLGmBPTExw9dVX84UvfIG7776bcrnMhz/84er9H/vYxxgdHeWee+7h9ttv5w//8A956qmnlnMThBBCrAPaP/Uq4lHJ4EgPbLHBpBOQTcJUoFCL+AqNTcRrmXuz4DmKncOKckBdj+owioPwwWSE1+ei7ZnLyL4uxdnb4diEJur3MPnGEXN+yuB7ip7h+LuZ8MBz4iC6mUIp3i4ZLFuYUgrLt6o1LMLJMF5/XfNZWb6F0+0QLrIftgkMylJS5EyIBSzrlcc555zDOeecU/33ddddx5/+6Z9W/33PPffwoQ99iHQ6zXnnncell17KV77yFd761rc2fL5SqURpVnNE27Zx3Y03hBlFUd3/NyJ5D+Q9AHkPYGO8B8rXRESYBhFC5bZG99U9TkeopFqV90lrueAU7UEpxUif4QePK4yKaxlUqkk3ExlDsQxn9SssK37sQA8M98DBYzDcGz9udAJ60pDzI7y+udXCd29R7D9iOLLfY8DWmFKIcutrIOQnQnp64vXXEM9K+978AXYQQldagutWWUlN6ej0cTI0uL1zr5u9AY/8vvyinteEBmXHS3iEEM2t6ND+gw8+yM6dOwEYGxvj2LFjnHbaadX7d+/ezY9+9KOmv3/nnXdyxx131N12ww038JrXvGZlNrgD7Nu3b603Yc3JeyDvAch7AOv8PcgBz4NxmpcXnhhukL9aawSOcYxjTx1b3m1rYMeOHSv+N4RoVXdGEVkKLOJigQsE2GOTcWp5f9fMbVoptg/DsTHDZN6Q8OMg+PRNYJV1NT28lu/FBc++fsKhnLJxJwLoqQ+wg4mQ3h0uViK+XSlFLm0YO9x42yprs1PSSKRlVtImCgxhMUR7Cqdr7mdVadllwnhWuhVRPsTf5C84YCPERrdiAfYjjzzCXXfdxV/8xV8AMDU1hWVZ+P7METKVSjE1NdX0OW688UZe//rX1922kWew9+3bx5YtWzbsTIm8B/IegLwHsDHeg4mfTXLy+ydJbknOuc8ow8TwOOlDGZRpfKFnIkP+QJ6+y/rwBxfuyyvEetKVBi+hKUcKNzTzXu0Z4v7SZ28HZ9ba2lxasW3I8MjTUA4hk4QeP8SyZwqczbZ5AE7bovjpgSQjoyfr6qyFkcEOIrq31X8nu1LwWJOxtFI5TiFPzz0UiCYsL64gH06E2GkbJ+vMeYydtbFSFmE+fkwrolKENyDHUyEWsqgA+x3veAcPPPBAw/ve/OY385a3vAWAAwcO8K53vYtbb72VXbt2AZBMJgnDkEKhUA2yJycnSSabHzFd192QwfR8tNbr9oK6VfIeyHsA8h7A+n4PLNtCBappAA2gTPP7TclgWRonYa/b90iIZjJJyGYVhVDhLtDubiIfF0Ub7Gn8Xdo8oDh8wnDkBJy7C+xShJ2Li2Q1opTirO2w/3GXyWc06UKI8uPH5gsG14WeofqAL5VQQOPtLJTiNHKZwW5d3KINgqmQ9JZUwxlqK2lhZxyCk+WWAuwoiEArnKzUtRBiIYv6lnz0ox9d8DFHjx7lHe94B7/yK7/C5ZdfXr09m83S29vLY489Vl2n/eijj1ZTyIUQQogK7ahFtxiqFZXj1jTaleBabDxaKwb6FD8L1LzV+M1UwPik5rQtioTX+AvnOYodw6CUYbBbET4bkjotNW/Bse6M4qxzbB74sUNyvIxVCbDHI/q6Ncne+gA74cVf9ygyWLO+svkS9GTAlXW/LaseP0OD12D9NcQDIf6Qy+gzhZaeM5wKsVNWXTVyIURjy15F/Oabb+blL385v/iLvzjn/r179/Lxj3+cyclJHnroIe69915e8pKXLOcmCCGEWAcqMy7z9cadT1Q2aEejfQmwxcbU16MJdfMA25RCCgfz+KWAod75g9ehHjjvNBXPNBtwuuamHM92+mZN7+kJRk+E1e9xOBnSM+Bgp+tnv5MeuC6UGhQezxehN7fgnxM1tKNBKbRX3/96tsp9rRxnw8kQp9upDpYIIZpb1mGob3zjG/z0pz9l//79fPKTn6zeft999wHwtre9jfe973287GUvI5vN8p73vIft27cv5yYIIYRYB5Sj40I6EXGhpkUypQin15FiPGLD6soobF9TKpVpuGq2FDFuuwy5Adnk/OtqlVIkPYiKEdpVTddf1/I9xVnneXzvQYvSRICVtLHCkO4tiTnfy0qrrmIZErMmXCMD2aR8jxdDuQptE/e/niel287aaF8T5aOmKf8VYTGSehZCtGhZA+xrr72Wa6+9tun9vu/zvve9bzn/pBBCiHVI2wplL67Cba2oHGGlJJVRbFy5FCSzFsVnSg0D7NJUCL5Nf3dEVI7iWc8FhPlweu1ua9+tbTttntjpcfiRAsktNr5l6N40N2XZdeJZ7MlZ2cpRZNAKUomW/pyYph2NcjT+kDfvIKOdtrHTNsFUOG+AbUKD0swbrAshZkjunBBCiLajbAWWxgRLSxE3oWk5CBBiPbIsRU+fpthkie3oiYiBbS69mx3Kow1ysxsIJkOcXhdtt3b5aFmaMy5M4CrD8WMR2Zwm2TM3ZVkpRVd6bi/sYhl8RwqcLZZ24zZqTs/8hYKVVviDHmE+nPdxlYGV+dLNhRAzJMAWQgjRdpSt0JbCLFABuSkD2pNTnNjYunssogZrsAslg6UMp53hkNqeJJhoLcA25bBp0axmhnZ6bNpi4Y0XyfXbTQe+cmlFedZm5IvgexJgL5ZyFKmdSbyBhT8rp9uZtxAeTA+s5JwF08iFEDG5+hBCCNF2lK1QFkuawTbGgEIqiIsNL5vVWBrKswKoE2OGgR7FwLCF1+9huYqwOP8spgkNaLXozBA7bbP9OT79TkDPZrdpKnrCg9m1tgqluKe3bcsa7MVQSpHamWqpIJmdtdGemncWOyqEeEOy/lqIVsnVhxBCiLajbY2yVXxRv0gmiNdtW1JBXGxw2ZzCc6FQnLltqmBwMQwPaOykjdvj4PR6lE/OP4sd5kOshLWkdbhdOxKcebZD/9bmQVrSA63jddcVxTL0Zhf958QiODkHb8CjdLzc8P5KFpGTlfRwIVolVx9CCCHaknatJQXYUdmgXS0p4mLDc31NNhX3kgYwGE5OwHA2ItttYSUtlFYktyaIWliHa2fsJaUJu30uiU0+zjw9lCuVxGtbdRkDaakgvqKUViR3pDBB1PB4WxlYme+zE0LUk6sPIYQQbUn7emkz2OUI7SgJsMWGp2xNJgnB9FKLiTwkfRjORFgpq7qMwhtw0QlNMNU8yA7zId6Ah1KLD3ithEX387pw+5uvCa5t1QUQRgatZf31avCHPNxel9Lx0pz7wskQO2djpWT9tRCtkqsPIYQQbUl7Swuwo1KE9q2W2g4JsZ5pR5FKaCwDQWgYm4AtA+Arg1tTzdvO2vgDHsHJxmnCAESc0iymnbLnDc5dR5FKQHE6xiuUwHclwF4N2tUkdyYJJ4K4hkWNUxlYEWKjkqsPIYQQbcla8gy2wc7IbIsQylYk0+DbhmdPQCYJI31xdX47PRNgK6XwNyeIStGcAAsgKkZod/EFzharKz2TIl4oxeuykxJgr4rEsI+VcQjGZ3L0K/uC2y3rr4VYDAmwhRBCtKVWe+3OFgURVlrWCwqhbIXrabK+oRzA1sF4VhiYs5ba63ex0hbBeH2aeFgMKRzM4/Z7Sypwthi5lCKY/vPFEnRnQGuZOV0NdsYmuc2nfGImiyHKR2hfr/jnLsR6IwG2EEKItqScJV5YG1pqTyPEeqcdjbIU3SkY7IHhPoUpGbSrsJL1l4B22sYf9imPzgRY5dEyhUNFUrvT9Lyge8mDXq1K1BQZLwXQk5XgejUltiTRzkzLrmAywMnY2DJgKcSiSIAthBCiLakFLuYbpbJWSIsuISr95BW9acPZ2xWeowiLEdq1sJJzg6bEiA+RwYSGwjMFwqmArotydO/pWlL18MVKTLfqqkgnVvxPihpur4M/7FM6Fi+Er66/liwCIRZFrkCEEEK0JW3Pf1FXOFiYc5sJDShVrY4sxEamdFxN39WGbCr+PkXFECtlYTWosu/2uzhZm8nHp7ASFj0v6iF7VgZlrU6AlfTBn477bUsKnK02pRTJHUlMaIjKERhweppXfhdCNCY5H0IIIdqSshUohQlN3QW+ieKZa2UpgskAOzVzKovKcTEmLTPYQgDT1fhPzmR7RMUIZ2vjolWWb+FvSWBnbXLn53Byq1vcKuGCM/0nfQdSMoO96rxBD7fPpfhMEe1qHFl/LcSiyRWIEEKItqQchbJmAuqKcLpXr7/Jp3S0vm9rVDJoR6M9WYMtBMRBswlmvkMmNDjzVAPPnpOh9+LeVQ+uAWxbVdPCk4mZgmxi9WhHk9qZIsyH2GlrxSvHC7EeSYAthBCiLSlLo2xVFxwABBNxG5n07hQ6YVEeq2krU5nBdmXNoBAAOqExUfxzpW6BlWo+AKVtvWop4Y10peP/92SQ3strxB/xcHtd3EFvTfcFITqVBNhCCCHaknbiAk2ze2GHxThacLtc0juTlI8Xq4FDVI5bdMmFuRAxy9Ew/f0wZYN21KoULFuqdCL+7uZS8h1eK3bKJn1WmsSwLIIXYikkwBZCCNGWlK3QlqpLEQ+LIVbN7HRyZwor7RCMxrPYUWn+9FchNhrlKJj+CoWFCO1ZWIn2DbD96VZdSYnt1lRmdxpfAmwhlkQCbCGEEG1J2Qqs+hTxYDzErlkb6mRt0qclKZ0ox7PYxrR18CDEalO2hukxqagYYiUtdIMK4u2iElhLBXEhRKdq3yOsEEKIDU2puMVQbYp4OBngD3l1j0vuSOJ22ZSPlwGkgrgQNWrb3UXFCKfLaeslFNlk/P9Mcm23QwghlkquQoQQQrSt2gC78n+nu760sJ2ySe1OUR4tg0IqiAtRQzkKpeNaBiY0OLn2XkLhOnHwb9vtOwgghBDzkQBbCCFE27I8CxN35Yp7Xqdt3O657YOSW5O4fS7aVmhPLsxXQ6lU4r3vfS979+7lsssu46abbuKxxx6r3v+JT3yCq6++miuvvJKPfOQj1UJ0YnVpR8ft7gKDMbR1gTMhhFgPJMAWQgjRtmpnsIOxAHfAbbjG2kpYZM5IY+ccLJnBXhVhGLJp0ybuvPNOvva1r3HppZdyyy23APCtb32Lz33uc3ziE5/gM5/5DN/61rf44he/uMZbvDEpW4GtCYth21cQF0KI9UACbCGEEG1Lu7paAdkEBn/Qa/rYxNYE2XMy6ISc2lZDIpHgLW95C4ODg1iWxWtf+1oOHjzIyZMnueeee7j++uvZvHkzfX19vOENb+BLX/rSWm/yhlSpxh9Ohm1fQVwIIdaD9l6II4QQYkNTtgIMYT5Eexq3x236WO1oEpsSq7dxos6DDz5IT08PXV1dPPHEE+zdu7d63+7du/noRz/a8PdKpRKlUqnuNtu2cd3mn/V6FUVR3f+XhQU4hmAswO/2wF3m519mK/IedBh5D+Q9AHkPoP3eA61bG8CXAFsIIUTb0tMFj4LxAKfLwc7aGGQtb7uZmJjg9ttv5+1vfzsAU1NTpNPp6v2pVIqpqamGv3vnnXdyxx131N12ww038JrXvGblNrjN7du3b3mf8Kz4f1NM8fTTTy/vc6+QZX8POpC8B/IegLwH0D7vwY4dO1p6nATYQggh2paariQc5kPSZ6biasiRBNjtpFgscsstt3DxxRfzyle+EoBkMsnExET1MZOTkySTjfsu3Xjjjbz+9a+vu20jz2Dv27ePLVu2tDxT0opj9x1n4rEJei/uIX16euFfWEMr9R50EnkP5D0AeQ+gc98DCbCFEEK0LW1rUAoUuD3N11+LtREEAb/zO79Df38/73znO6u379ixg8cee4yLL74YgEcffZSdO3c2fA7XdTdkMD0frfWyXkxavoXlWDhJp2MuUpf7PehE8h7IewDyHkDnvQeds6VCCCE2HGUrlAYnbeE0aM8l1tb73/9+isUit912G0rNtEfbu3cvn//85zlw4ABHjx7lU5/6FNdcc80abunGZnka7WqpIC6EEKtAZrCFEEK0LeUolK3wBj0sT8aE28mhQ4e4++678TyPK664onr7n/3Zn3HxxRfz05/+lDe+8Y1EUcR1113HK17xijXc2o1N+3H1cKkgLoQQK08CbCGEEG1LWQo7bePN055LrI3h4WHuv//+pvffeOON3Hjjjau4RaIZZSusjCUt7IQQYhXIkVYIIUTbsnwLb8jD7ZM1ukIslZOzSW5O1KXxCyGEWBkygy2EEKJtKUvRdX5urTdDiI7m9Xt4/ZIFIoQQq0FmsIUQQgghhBBCiGUgAbYQQgghhBBCCLEMJMAWQgghhBBCCCGWgQTYQgghhBBCCCHEMpAAWwghhBBCCCGEWAYSYAshhBBCCCGEEMtAAmwhhBBCCCGEEGIZSIAthBBCCCGEEEIsAwmwhRBCCCGEEEKIZSABthBCCCGEEEIIsQwkwBZCCCGEEEIIIZaBBNhCCCGEEEIIIcQykABbCCGEEEIIIYRYBhJgCyGEEEIIIYQQy0ACbCGEEEIIIYQQYhlIgC2EEEIIIYQQQiwDCbCFEEIIIYQQQohlIAG2EEIIIYQQQgixDCTAFkIIIYQQQgghloEyxpi13gghhBBCCCGEEKLTyQy2EEIIIYQQQgixDCTAFkIIIYQQQgghloEE2EIIIYQQQgghxDKQAFsIIYQQQgghhFgGEmALIYQQQgghhBDLQAJsIYQQQgghhBBiGUiALYQQQgghhBBCLAMJsIUQQgghhBBCiGUgAbYQQgghhBBCCLEMJMAWQgghhBBCCCGWgQTYq+QXfuEXeOihh5b1Oe+++27+03/6T1x66aW88pWv5HOf+1zDx33iE59gz549y/73l+JjH/sYN9xwA8973vP4x3/8x+rtrb6Wih/96Ee87nWv48UvfjE33XQThw4dqt5XKBS49dZbufTSS3n5y1/Ol7/85RV7PYuxFvvAnj17uPjii7nkkku45JJL+Ku/+qtl/ftLJfvB6u4HExMT/P7v/z5XXnkll19+Ob/7u7+7rH9/qTbyfiDWJznXxzb6d1vO9zHZD+R8Dxt0PzBiVVx77bXmwQcfXNbn/NznPmcefPBBUy6XzWOPPWZe8pKXmO9///t1jzl8+LB57Wtfa1760pcu+99fin/4h38w3/nOd8wv//Ivmy9/+cvV21t5LRXFYtHs3bvX/N3f/Z0pFArmIx/5iHnLW95Svf/DH/6wufnmm834+Lj5j//4D3PZZZeZJ598csVf20LWYh+46KKLzJEjR5b1by4H2Q9Wdz9497vfbT74wQ+a8fFxUy6XzcMPP7ysf3+pNvJ+INYnOdfHNvp3W873MdkP5HxvzMbcD2QGe5XddtttfOITn6j+++677+bmm28G4P777+fVr341f/EXf8GVV17JK17xCr773e82fa5Xv/rVnHvuudi2za5du3j+85/Pj3/847rH/Omf/ilve9vbcF13RV7PYu3du5cXvvCFc7anlddS8f3vf59EIsErX/lKPM/jrW99Kz/+8Y+rI1n33HMPN910E+l0mvPOO49LL72Ur3zlKyv+2lq12vtAO5L9YPX2g5/97Gf85Cc/4Td/8zdJp9PYts2ZZ565oq+tVbIfiPVKzvXy3QY538t+ENvo5/uNuB9IgN1m9u/fTzKZ5Ctf+QpvetOb+IM/+IOWfi8MQ370ox+xc+fO6m33338/o6OjXHHFFSu1uSui0Wv5pV/6pWq6x+OPP85pp51WvS+RSLB582Yef/xxxsbGOHbsWN39u3fv5vHHH1+9F3CKlnMfAHjDG97ANddcw2233cbJkydXYItXhuwHy7MfPPzww2zdupVbb72Vq666ije+8Y088MADK7npy2qj7wdifZJzvXy3Qc73IPsByPke1t9+IAF2m0mn07z+9a/Htm327t3LgQMHmJqaWvD3/vt//+/09/fzcz/3cwAEQcCf/Mmf8K53vWulN3nZzX4tAJ/+9Kd52cteBkA+nyeVStX9TiqVIp/PMzU1hWVZ+L5fd18r72G7WK59AOCOO+7g7//+7/mbv/kbCoUCv//7v7+Sm76sZD9Ynv3g2Wef5Xvf+x7Pf/7z+cd//Efe9KY38e53v5vR0dGVfgnLYqPvB2J9knO9fLdBzvcg+wHI+R7W334gAXab6erqQikFUN1RpqameOCBB6qFK37913+97nc+97nP8bWvfY0PfOAD1d/97Gc/y/nnn183mtMJGr2W2RKJBJOTk3W3TU5OkkgkSCaThGFIoVCouy+ZTK7odi+n5doHAC644AJs26a7u5t3v/vdfPvb36ZcLq/ei1ki2Q+Wbz/wPI9NmzZx3XXXYds2V155JZs2bWqLQkgLkf1ArFdyrpfvNsj5XvaD2EY/36/H/cBes7+8QSUSibod4NixYy393gUXXMB999035/avfOUr3Hnnndxxxx10dXVVb7///vt54IEH+Od//mcATpw4wTvf+U5+4zd+g1e84hWn9iJWSLPXMtvOnTv527/92+q/8/k8+/fvZ+fOnWSzWXp7e3nsscc455xzAHj00UfnpFGtpdXaB2bTOh5PM8YsboNXmewH81vsfrBr165T3ta1sFH2A7E+ybm+uY303ZbzfXOyHyxsI5zv1+t+IDPYq2z37t3ce++9TExMsH//fr74xS8u+bm++93v8sEPfpAPf/jDjIyM1N1322238ZnPfIZPfepTfOpTn6K/v5/3vve9vPSlLz3Vl3BKgiCgWCxijKn+HEXRvK9ltosuuoh8Ps/dd99NqVTiL//yLzn77LMZHh4G4mIKH//4x5mcnOShhx7i3nvv5SUveclqvLyWrNY+8LOf/YxHH32UMAwZGxvjQx/6EC94wQvaogiO7Aertx/s2bMHYwx///d/TxiGfPOb3+TAgQOce+65p/oSTpnsB2K9knO9fLdBzveyH8Q2+vl+I+4HEmCvIqUUe/fuZcuWLbz85S/nd3/3d/n5n//5JT/fnXfeydjYGG9+85urKSS33347AJlMhr6+vup/WmtyuVzd+oS18L73vY8Xv/jFPPDAA/ze7/0eL37xi/n3f//3eV8LwGte8xq+9KUvAeC6Lh/4wAf41Kc+xRVXXMEPfvCDurVGb3vb20in07zsZS/jPe95D+95z3vYvn37ar/UhlZzHzh+/Djvec97uOyyy7jhhhvQWnPbbbct0ys5NbIfrN5+YNs2H/rQh/jMZz7D5Zdfzsc+9jE++MEPksvlluvlLNlG3w/E+iTnevlug5zvQfYDkPM9bMz9QJl2zh9ZR6666iruvPNOtm7dutabItaI7AMCZD8QYj2T77cA2Q9ETPaDjUtmsFfB/fffD1BNYxAbj+wDAmQ/EGI9k++3ANkPREz2g41NipytsPe///1897vf5Xd/93dxHGetN0esAdkHBMh+IMR6Jt9vAbIfiJjsB0JSxIUQQgghhBBCiGUgKeJCCCGEEEIIIcQykABbCCGEEEIIIYRYBhJgCyGEEEIIIYQQy0ACbCGEEEIIIYQQYhlIgC2EEKIlpVKJ9773vezdu5fLLruMm266iccee6x6/yc+8QmuvvpqrrzySj7ykY9QqaEZBAG/9Vu/xTXXXMOePXs4evRo3fMeOHCAd7zjHVx++eVcc8013HnnnfNux8c+9jFuv/32ZX99Tz75JO985zu56qqruPrqq7n11lsZGxure8wXv/hFXvWqV3HxxRdz/fXX89RTTy37dgghhBBrSc73p3a+lwBbiHXkpptuYs+ePdx0001rvSliHQrDkE2bNnHnnXfyta99jUsvvZRbbrkFgG9961t87nOf4xOf+ASf+cxn+Na3vsUXv/jF6u9eeOGFfOADH2j4vB/84AfZtGkTX/3qV/n4xz/OXXfdxb/+67+uymuqNTExwdVXX80XvvAF7r77bsrlMh/+8Ier999777389V//NX/8x3/Mfffdx4c//GG6urpWfTuFEELO92Ilyfn+1M73EmALscHdf//97Nmzhz179nDw4MG13hzRxhKJBG95y1sYHBzEsixe+9rXcvDgQU6ePMk999zD9ddfz+bNm+nr6+MNb3gDX/rSlwCwbZvXve51nHvuuQ2f99ChQ7z0pS/Ftm02bdrE+eefz+OPP97SNt1///28+tWvrrutdtT8F37hF/ibv/kbrr/+eq644go++MEPNn2uc845h2uvvZZ0Ok0ikeC6667jRz/6UfX+j3/847zrXe9i165dKKXYvHkzuVyupe0UQoi1Jud70So535/a+V4CbCGEEEvy4IMP0tPTQ1dXF0888QSnnXZa9b7du3e3fNK84YYb+Md//EdKpRJPP/00Dz30EHv27Fm27bz33nv5+Mc/zqc//Wm+8pWv8MADD7T0ew8++CA7d+4E4tH8Rx55hMcee4y9e/fyile8gjvuuKOaFieEEEKsV3K+X9z53l7S1gsh1tzY2Bi333479913H11dXdx4441zHvORj3yEb3/72zz77LPk83m6u7t5wQtewM0330xfXx8f+9jHuOOOO6qPf8UrXgHAtddey2233UYURdx111387d/+Lfv378fzPJ7//Ofz67/+62zatGnVXqtoPxMTE9x+++28/e1vB2Bqaop0Ol29P5VKMTU11dJznXfeeXzuc5/jkksuIQxDbrrpprqT96l63eteV03tuuiii3j00Ue54IIL5v2dRx55hLvuuou/+Iu/AOD48eOEYci//du/cddddzE5Ocmv//qvMzg4WP3eCCHESpDzvVhLcr5f/PleZrCF6FD/9b/+V7761a9SLBbxfZ+PfOQjPPzww3WPqZxsBwcH2bJlC8eOHeMf/uEfeNe73gXA4OAgO3bsqD5+9+7dnHPOOWzevBmAD3zgA3zoQx/i8ccfZ/PmzWit+ed//mfe/OY3c/z48dV7saKtFItFbrnlFi6++GJe+cpXApBMJpmYmKg+ZnJykmQyueBzhWHIb/zGb3Ddddfx7W9/my9+8Yt89atf5atf/SoAr3nNa7jkkku45JJLeOaZZ5a0vT09PdWffd8nn8/P+9wHDhzgXe96F7feeiu7du0CwPM8AH75l3+ZTCbD0NAQN9xwA9/+9reXtE1CCNEqOd+LtSLn+6Wd72UGW4gOtH//fr7+9a8D8QHg5ptv5sknn+S1r31t3ePe//73s2vXLrSOx9L+7u/+jve97338+Mc/Zv/+/Vx33XVs3ryZ//yf/zMAf/zHf8zIyAgQH3Q+//nPA3Dbbbdx7bXXMjU1xQ033MDhw4e56667+NVf/dXVesmiTQRBwO/8zu/Q39/PO9/5zurtO3bs4LHHHuPiiy8G4NFHH62mW81nbGyMI0eOcP3112PbNiMjI1x++eV8//vf5+qrr+Yzn/nMvL+fSCQoFArVf8+uWDqfRs999OhR3vGOd/Arv/IrXH755dXbs9ks/f39dY+V9HAhxEqT871YK3K+n7HY873MYAvRgX72s59Vf77yyisB2L59O6effnrd4x599FHe+MY3cskll7Bnzx7e9773Ve87cuTIvH/j4Ycfrh5QbrvtNvbs2cOll17K4cOHAXjooYeW5bWIzvL+97+fYrHIbbfdhlKqevvevXv5/Oc/z4EDBzh69Cif+tSnuOaaa6r3l0olisUiAOVyufpzd3c3g4OD/N3f/R1RFHH48GG++c1vVkeSF7Jt2zZGR0f5/ve/T6lU4i//8i+X/NomJia4+eabefnLX84v/uIvzrn/2muv5ZOf/CSTk5McOXKEz3/+89ULDCGEWAlyvhdrRc73Sz/fywy2EB2odiSt9qBXe/t//Md/cNttt2GMIZfLsWPHDvL5PE888QQQp+q0+jd2796N67p19w8PD5/SaxCd59ChQ9x99914nscVV1xRvf3P/uzPuPjii/npT3/KG9/4RqIo4rrrrqtbq/TqV7+aQ4cOAXGlT4grggL80R/9ER/60If48z//c3zf56UvfSmvetWr5t2Wyn6fTqd597vfzW//9m+jtebXfu3X+OxnP7uk1/eNb3yDn/70p+zfv59PfvKT1dvvu+8+IG6L80d/9Efs3buXZDLJddddx7XXXrukvyWEEK2Q871YC3K+P7XzvTKS4yZEx9m3b1/1gHTjjTfyjne8g6eeeorXvOY1hGHIhRdeyKWXXlrt6fflL3+Zvr4+PvGJT/Df/tt/A+B//I//wZ49e/jhD3/Im970JgDuuuuu6kji/v37edWrXoUxhltuuYXXve51QHwi/sEPfkAqlZozgi7Eavjwhz+M4zi84x3vWOtNEUKIFSXne7GRder5XmawhehAW7Zs4fLLL+cb3/gGd955J1//+tc5fPgwlmVVR6prqzK+9rWvpbu7mxMnTsx5rs2bN2PbNkEQ8Pa3v53h4WHe8IY3cPXVV3Pdddfxt3/7t3zoQx/i05/+NIlEgkOHDjE5Ocnv/d7vyQlXrLqJiQm+853vcNNNN631pgghxIqT873YqDr5fC9rsIXoULfeeitXXnklnucxMTHB2972Ns4555zq/S984Qu5+eab6e/vp1gssn37dt7znvfMeZ6uri7e/e53Mzg4yPHjx/nhD3/IsWPHAPjt3/5t3vWud3Haaadx5MgRDh06xMjICK9//eu56KKLVu21CgHwwAMP8IpXvILnPOc5XHbZZWu9OUIIsSrkfC82mk4/30uKuBBCCCGEEEIIsQxkBlsIIYQQQgghhFgGEmALIYQQQgghhBDLQAJsIYQQQgghhBBiGUiALYQQQgghhBBCLAMJsIUQQgghhBBCiGUgAbYQQgghhBBCCLEMJMAWQgghhBBCCCGWgQTYQgghhBBCCCHEMpAAWwghhBBCCCGEWAYSYAshhBBCCCGEEMtAAmwhhBBCCCGEEGIZ/P/3CKHickvfJgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8cAAAIgCAYAAACoORvUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gkVdm376rqODlthE2EBZYlL7jLSkaQoKKSBJWgKK9+KllRJEhQkiKgr0haRBR8VRSUjKASVxYQEFhANu/MTuownavqnO+Pmu7png7TPduTz31de21P1amq01XVdep3nqRJKSUKhUKhUCgUCoVCoVBMYfSx7oBCoVAoFAqFQqFQKBRjjRLHCoVCoVAoFAqFQqGY8ihxrFAoFAqFQqFQKBSKKY8SxwqFQqFQKBQKhUKhmPIocaxQKBQKhUKhUCgUiimPEscKhUKhUCgUCoVCoZjyKHGsUCgUCoVCoVAoFIopjxLHCoVCoVAoFAqFQqGY8ihxrFAoFAqFQqFQKBSKKY8Sx4opwYoVK9A0rei/Z599lssvv7xkm/S/gw8+uOx2AAcffDCLFy8uq5833XQTn/nMZ1iwYEHOPraG9Pfq7u4uuH7x4sU5x1m7di2apnHDDTcUbH/DDTegaRpr167NLCvnOw7VD4VCoVAotpaJMN6/9957XHDBBeyzzz40NTXR0tLC8uXL+f3vf79V312N9wrF1uMa6w4oFKPJ3Xffzc4775y3fNGiReywww58/OMfzyxrb2/nM5/5DN/4xjc45ZRTMstTqRQej2fIdg0NDRX37xe/+AW1tbUceuihPPzwwxVvr1AoFAqFYnyP90888QR//etf+cIXvsC+++6LZVk88MADnHDCCVxxxRVceumlFe1PoVBUDyWOFVOKxYsXs2TJkoLrGhoa2HbbbTN/p2dK586dy9KlS4vus9x25fD222+j63qmrwqFQqFQKCpnPI/3J598Ml//+tfRNC2z7KijjqK7u5trr72Wb3/723i93mHvX6FQDB/lVq1QjBL/+te/OOCAA6ipqWG77bbjRz/6EUKInDZpYaxQKBQKhWJiMtR439bWliOM0+y3337EYjF6e3tHs7sKhSIL9SaumFLYto1lWTn/bNse8eN2dHRw6qmn8vnPf56HHnqIo446iosvvphf//rXw9pfOk7o9NNPL3ubQt/dsqxhHV+hUCgUivHMRBzvn3nmGaZNm8b06dMzy9R4r1CMLsqtWjGlKOQGZRjGiA8aPT09PPLII+y3334AHH744Tz77LP85je/4Ytf/GLF+9M0DcMwMAyj7G1mzpxZdN1BBx1UcR8UCoVCoRivTLTx/o477uDZZ5/lpz/9ac7YrsZ7hWJ0UeJYMaX41a9+xS677JKzrJBrU7WZOXNmZqBMs/vuu/P6668Pa3/z5s2reIB/6qmnaGxszFt+8sknD6sPCoVCoVCMVybSeP/oo4/y9a9/neOPP55vfOMbOevUeK9QjC5KHCumFLvsskvRBB0jSWtra94yr9dLPB4ftT7ssccetLW15S33+Xw5f7tczmOhmPtZepB2u91V7qFCoVAoFNVhooz3jz/+OJ/5zGf42Mc+xn333VcVAa/Ge4Vi+KiYY4VCkUNbWxuGYbBp06aC6zdt2oRhGAVfABQKhUKhUJTH448/znHHHcdBBx3EH/7wh5yyUaOBGu8VinyUOFYoFDn4fD6WL1/OQw89RCKRyFmXSCR46KGH+OhHP5o3A61QKBQKhaI8nnjiCY477jg++tGP8qc//WlMSjep8V6hyEe5VSumFG+99VbB2J3tt9+eadOmjUGPcnnllVcydRTD4TBSSn7/+98DsO+++zJv3jwA1q1bx/bbb89pp53GnXfeWfV+/OhHP+KQQw5h2bJlnHPOOcydO5f169dz0003sWXLFu6///68bcLhcKav2UybNi0nAcjDDz9MfX19Xrvjjz++ul9CoVAoFFOW8TzeP/fccxx33HHMnDmT7373u3nxyIsWLaKhoQFQ471CMdoocayYUpxxxhkFl99+++18+ctfHuXe5HPrrbdyzz335Cw74YQTALj77rszpRyklNi2PWJlKZYtW8bzzz/P1VdfzQUXXEAgEKC5uZkDDjiAO++8k7333jtvmw0bNmT6ms1BBx3Es88+m/n7zDPPLHhMKWXV+q9QKBSKqc14Hu+feuop4vE4a9eu5dBDD81b/8wzz3DwwQcDarxXKEYbTao7VKFQKBQKhUKhUCgUUxwVc6xQKBQKhUKhUCgUiimPEscKhUKhUCgUCoVCoZjyKHGsUCgUCoVCoVAoFIopjxLHCoVCoVAoFAqFQqGY8ihxrFAoFAqFQqFQKBSKKY8SxwqFQqFQKBQKhUKhmPIocaxQKBQKhUKhUCgUiimPEsejgBCCNWvWIIQY666MGeocqHMw1b8/qHMA6hwoJi/q3lbnANQ5AHUOQJ0DmLjnQIljhUKhUCgUCoVCoVBMeZQ4VigUCoVCoVAoFArFlKdicfzuu+9y5plnctBBB/GpT32Khx56aCT6pVAoFAqFQqFQKBQKxajhqnSDSy+9lCOPPJI77riD9957j6985SvssccezJs3byT6p1AoFAqFQqFQKBQKxYhTseW4o6ODj3/84+i6zs4778z8+fNZt27dSPRNoVAoFAqFQqFQKBSKUaFiy/GJJ57II488whlnnMG7777Lli1bWLx4cV67VCpFKpXKPZjLhcfjGX5vJyjpLG0TLVtbNVHnQJ2Dqf79QZ0DGJ/nQNdV+g2FQqFQKBTDEMfLli3jsssu44477gDgu9/9Li0tLXnt7r77bm6//facZSeccAInnnjiMLs68dmwYcNYd2HMUedAnYOp/v1BnQMYX+dgwYIFY90FhUKhUCgU44CKxHEwGOS8887j8ssv58ADD2TNmjV885vfZPvtt8+zHp9xxhmceuqpuQebwpbjDRs2MGfOnClroVDnQJ2Dqf79QZ0DUOdAoVAoFArF+KUicbxp0ybq6uo45JBDANhhhx3YZ599ePXVV/PEscfjmZJCuBS6rk/5l0F1DtQ5mOrfH9Q5AHUOFAqFQqFQjD8qejOZN28e0WiUf/zjH0gpWbt2Lf/617/YYYcdRqp/CoVCoVAoFAqFQqFQjDgVWY7r6ur44Q9/yC233MIll1xCfX09J554Ivvvv/9I9U+hUCgUCoVCoVAoFIoRZ1gJuZYtWzYSfVEoFAqFQqFQKBQKhWJMUAFfU4wVK1bQ1NQ01t3g9NNP57jjjhvrbigUCoVCMSlR471CoVBUjhLHihzWrl2Lpmm8/vrr43J/CoVCoVAotp6RGO8Nw+Dtt9+uyv4UCoViLFDieJRJpVJj3YWqMFm+h0KhUCgUI8FkGScny/dQKBSKclDieCvo6+vj1FNPpba2llmzZvGTn/yEgw8+mHPOOSfTZv78+Vx99dVceOGFNDc3c9ZZZwHwhz/8gV133RWv18v8+fO58cYbc/ataRp/+tOfcpY1NTWxYsUKYGDG949//COHHHIINTU17LHHHrz44os526xYsYK5c+dSU1PDpz/9aXp6ekp+pwULFgCw1157oWkaBx98MDDgFvXDH/6Q2bNns3DhwrL6md7fPvvsw3bbbcehhx6a0/aGG25g1qxZtLa28vWvfx3TNEv2T6FQKBSK0aac8X677bbj1ltv5YwzzqCxsXHKjvfHHnsshmFk9pdGjfcKhWIiUHFCrtFkyZIldHR0jOoxZ86cySuvvFJW2/POO4/nn3+ehx56iBkzZnDppZfy6quvsueee+a0u+GGG/j617/ONddcg67rrFq1ihNPPJHLL7+ck046iRdeeIGvfe1rtLa2cvrpp1fU3+9973vccMMN7Ljjjnzve9/jc5/7HB988AEul4uXX36ZM888k2uuuYbPfOYzPPbYY1x22WUl97dy5Ur2228/nnrqKXbdddecWtVPP/00DQ0NPPnkk0gpy+pfen9PPPEEjY2NbLfddpl1zzzzDLNmzeKZZ57hgw8+4KSTTmLPPffMvFAoFAqFYvIzFmM9jMx4/8tf/pJLL72U73//+wBTcry/9957OfTQQ/H5fJl1arxXKBQThXEtjjs6Oti0adNYd6MgfX193HPPPfzmN7/hsMMOA+Duu+9m9uzZeW0POeQQzjrrLObNm4eu65x66qkcdthhmcFz4cKFvP3221x//fUVD5YXXHABxxxzDABXXHEFu+66Kx988AE777wzP/3pTznyyCP5zne+kznOCy+8wGOPPVZ0f9OmTQOgtbWVmTNn5qyrra3ljjvuyBlAhyJ7f83NzbS0tGTWNTc3c+utt2IYBjvvvDPHHHMMTz/9tBosFQqFYgoxnsd6qGy833///Tn//PPRdccxbyqO983NzcycOTNzDtLL1HivUCgmAuNaHA9+WI+nY3744YeYpsl+++2XWdbY2MhOO+2U13bJkiU5f7/zzjt86lOfylm2fPlybrrpJmzbxjCMsvu7++67Zz7PmjULgM7OTnbeeWfeeecdPv3pT+e0X7ZsWcnBshS77bZbRQPlUOy6664533XWrFm8+eabVdu/QqFQKMY/YzHWV3LcSsb73XbbLedvNd47qPFeUS6WZXH99dfjdrs577zzciZZFIrRYFyL43LdncaCtJuRpmkFl2dTW1ub12ao7TRNy1tWKD7H7XbnbAMghCjal61h8PdIH7OcfhYiu+/pfaX7rlBMJYQlMIMW3rbqvYwqFBOF8TzWQ2Xjvd/vz2ujxns13ivK569//Svf/e53Adhzzz05/PDDx7hHiqmGmo4ZJttvvz1ut5uVK1dmloXDYd5///0ht120aBHPPfdczrIXXniBhQsXZmZWp02bRnt7e2b9+++/TywWq6iPixYt4qWXXspZNvjvwaRnim3bLusYQ/Wz0v0pFFORZHuS0Osh7IT6nSgU4w013lNWP9V4r6gGa9euzXxev3792HVEMWUZ15bj8Ux9fT2nnXYaF154IS0tLUyfPp3LLrsMXdfzZokHc/7557Pvvvty5ZVXctJJJ/Hiiy9y66238vOf/zzT5tBDD+XWW29l6dKlCCH49re/nTfzOhTf/OY32X///bnuuus47rjjeOKJJ4Z0sZo+fTp+v5/HHnuMbbfdFp/PR2NjY9H2Q/Uzvb/HH3+cI444gqamJpqbmyv6HgrFZCexJUmyM4UZtDBmlu9mqVAoRh413pfXz/T+/vGPf7DvvvtSU1NTcn8KRSGSyWTmsyojphgLlOV4K/jxj3/MsmXLOPbYYzn88MNZvnw5u+yyS06GxkLsvffe/O53v+P+++9n8eLFXHrppfzgBz/ISc5x4403MmfOHA488EBOOeUULrjgAmpqairq39KlS7njjju45ZZb2HPPPXniiSe45JJLSm7jcrm4+eabue2225g9e3ZerNRghupnen+//OUvWbZsWV5MlEIx1bGTgmR7AjtqkQqqFwGFYjyixvvyxvubbrqJ3/zmN2y77bZD7k+hKIQSx4qxRpPVDlSZwkSjUbbZZhtuvPFGvvSlL2WWCyFYt25dJlv1VESdA3UOpvr3h8LnINGeoOvZHnRDwzPNQ9vBrUNaoyYy6j5QTAYKjffq3lbnANQ5gK07B9///ve56qqrALj++uu54IILRqKLI466DybuOVBu1VvBa6+9xrvvvst+++1HKBTiBz/4AYCaLVUoFGWT7E6BAFezCzNgYkdsXPXq0axQjCfUeK9QjA7KcqwYa9Qb2FZyww03sHr1ajweD/vssw///Oc/aWtrG+tuKRSKCYC0JYlNCYxaA6PGINWTwgyZShwrFOMQNd4rFCOPEseKsUa9gW0Fe+21F6tWrRrrbigUiglKKmBiBk28071ouoamQarHxL+tf+iNFQrFqKHGe4VidMgWx+WWClMoqsnEcQBXKBSKSYbZk0JaAt3jPIr1GheJjgRSqFQQCoVCoZh6ZFuLleVYMRYocaxQKBRjgJSS2MYEun/AgcdVZ2CFLaywNYY9UygUCoVibFBu1YqxRoljhUKhGAOssIUZSOHOii82fAZ2UpAKKFcyhUKhUEw9lDhWjDVKHCsUCsUYkOpJIRICo8bIWa4bGqmuZJGtFAqFQqGYvCi3asVYo8SxQqFQjAGJzUk0d/4j2KhzkexMIkwxBr1SKBQKhWLsUJZjxVijxLFCoVCMMlbEItmdxN2QXzDAVWdgRWzMoHKtVigUCsXUQmWrVow1ShwrFArFKGMGTayIjVFr5K3T3TrSkpjBwkm57KTAVAm7FAqFQjEJUW7VirFGieNhomlayX+nn346AM888wyHHXYYe+21F3V1dey4446cdtppWJbzcvvss8+iaRrNzc0kEomcY6xcuTKzv2ry97//nX322Qefz8d2223HL37xiyG3Wb9+PZ/4xCeora2lra2Nb37zmzkPrbVr1xY8D4899lhV+vzzn/+cBQsW4PP52GefffjnP/855DY/+9nP2GWXXfD7/ey000786le/ylm/YsWKgn0efB0UimqT7EqhGRqaXvi3rXt1kh3596FICYKvBAm/GR7pLioUin4qGe9POeUU2traqKmpUeP9MFHj/dRGuVUrxpp8nz5FWbS3t2c+P/DAA1x66aWsXr06s8zv9/Of//yHo446im984xt8+9vfZvvtt+e///0vv//97xEiN56wvr6eBx98kM997nOZZXfddRdz585l/fr1Vev3mjVrOProoznrrLP49a9/zfPPP8/XvvY1pk2bxmc/+9mC29i2zTHHHMO0adN47rnn6Onp4bTTTkNKyS233JLT9qmnnmLXXXfN/N3S0rLVfX7ggQc455xz+PnPf87y5cu57bbbOOqoo3j77beZO3duwW3+93//l4svvpjbb7+dfffdl5UrV3LWWWfR3NzMJz7xiUy7hoaGnOsG4PP5trrPCkUpkh2JnCzVgzFqXaR6TeyYnUnYJW1J6I0wkdURfLO8SCGLimuFQlE9yh3vjznmGE477TRuu+02amtref/999V4XyFqvFcocawYc6Riq7n77rtlY2Nj3vKf/OQncv78+TIVSckPP/xQ2rad1+aZZ56RgLzkkkvk4Ycfnlkei8VkY2Oj/P73vy8ruUx33323nDNnjvT7/fK4446TN9xwQ07fLrroIrnzzjvnbPPVr35VLl26tOg+H3nkEanruty0aVNm2W9/+1vp9XplKBSSUkq5Zs0aCcjXXnut4D5s2y54DizLkueee65sbGyULS0t8sILL5Rf/OIX5ac+9alMm/3220+effbZOdvtvPPO8jvf+U7RPi9btkxecMEFOcu+9a1vyeXLl2f+LnbdRopi52CqMNW/v5QD52Dd/etl17PdsvufPQX/dT3bLdf/eoOMb4pLKaUUQsjgGyG57t4NctMfN8tND7ZLK2aN8bcZHuo+UExkhhrvS93bU2G8L/X7nirjvXrGbd052GGHHSQgAXnQQQdVv3OjhLoPJu45GNeW4yVnCTp6R/eYM1vgldur420+c+ZM2tvbeerPT7Pzsp0QlkD3FN73F77wBa6//nrWr1/P3Llz+cMf/sD8+fPZe++9yz7eyy+/zJlnnsk111zDZz7zGR577DEuu+yynDYvvvgiRxxxRM6yI488kjvvvBPTNHG73Xn7ffHFF1m8eDGzZ8/O2SaZTLJq1SoOOeSQzPJPfvKTJBIJdtxxR84991yOP/74kn2+8cYbueuuu7jzzjtZtGgRN954Iw8++CCHHnoo4Mwarlq1iu985zs52x1xxBG88MILRfebTCbzZoT9fj8rV67M+Z6RSIR58+Zh2zZ77rknV155JXvttVfJPisUW43U0IziVl/N0EBCKpjCN9tH5P0o4bf68LZ50N06qd4kIikw/PkxywrFRGMsxnoYmfF+5cqVzJs3r2RbNd6r8V5RHBVzrBhrxrU47uiFTV1j3Yvhc8IJJ/D4449z9KlHMW3aND6y90c48tgj+eIXv0hDQ0NO2+nTp3PUUUexYsUKLr30Uu666y7OPPPMio7305/+lCOPPDIzsCxcuJAXXnghJw6oo6ODGTNm5Gw3Y8YMLMuiu7ubWbNm5e230DbNzc14PB46OjoAqKur48c//jHLly9H13UeeughTjrpJO655x4+//nPF+3zTTfdxMUXX5xx8frFL37B448/nlnf3d2NbdsF+5w+diGOPPJI7rjjDo477jj23ntvVq1axV133YVpmpnvufPOO7NixQp22203wuEwP/3pT1m+fDn//ve/2XHHHYvuW6HYWnT30O7QRo1Boj2JqzZG+N8hXHUuXHUupJCIlMROCPJfbRWKicdEH+vBGe8fe+wxTj75ZM455xyWLl3KYYcdNuXG+1NOOaVon9V4rygHla1aMdaMa3E8c+vDV8b0mIZhcPfdd3PhqRfy2BuP8dY/3+Lqq6/m2muvZeXKlXkD05lnnsm3vvUtPv/5z/Piiy/yf//3f2Ulokjzzjvv8OlPfzpn2bJly/KSZAxO+CGlLLi81Dbp7dLL29raOPfcczPrlixZQiAQ4LrrruPzn/8869evZ/HixZn23/3ud/n6179Oe3s7y5Yty2zncrlYsmRJpk+l+lyqv9///vfp6Ohg6dKlSCmZMWMGp59+Otdddx2G4Vjbli5dytKlSzPbLF++nL333ptbbrmFm2++uei+FYqtRXOVIY7rXJghi+BrITRDx9PsSOF0nLFI2iPaR4VitBiLsb7axzUMg7vuuouvfvWrvPfee6xcuXJKjvennHIKmzZtYrfddsusV+O9ohJUzLFirBnX4rha7k5jzczmWXz605/mhG1P5Oprrmb3A3fnF7/4BVdccUVOu6OPPpqvfvWrfOlLX+ITn/gEra2tFR1n8ABTsC8zZ+bNwHZ2duJyuYoeb+bMmbz88ss5ywKBAKZp5s3wZrN06VLuuOMOAGbPns1f/vIXttlmG3RdLztxR1tbG4ZhFOxzqWP7/X7uuusubrvtNrZs2cKsWbP45S9/SX19PW1tbQW30XWdfffdl/fff7+svikUlZJ5MS3hUp3G8Osk2y0Mv4Fvdn7SGJEQBbZSKCYek2WsB2e8/MhHPsJpp53GVVddxcKFC6fceD9jxgxeffVVdN25rmq8V1SCcqtWjDWTZ0Qax4ik8xIrAU/Qx6xZs4hGo3ntDMPgC1/4As8++2zFLlYAixYt4qWXXspZNvjvZcuW8eSTT+Yse+KJJ1iyZEnB+KP0Nm+99VZOxs4nnngCr9fLPvvsU7Q/r732Wma23OVyMX/+fHbYYQd22GEHWlpaaGxsZNasWTl9tCyLVatWZf72eDzss88+eX1+8skn2X///YseO43b7WbbbbfFMAzuv/9+jj322MyAPRgpJa+//npBVzOFohpIs18cl2E51jSNmu1qCgpjTdewYqrWsUIxnmlubp6y4316rFfjvaJSlOVYMdaMa8vxROe2227j9ddf55DtDmH6vtPRwjoP/Oh+/vOf/+SVREhz5ZVXcuGFF1Y8iwzwzW9+k/3335/rrruO4447jieeeCLPxerss8/m1ltv5bzzzuOss87ixRdf5M477+S3v/1tps2DDz7IxRdfzLvvvgs4yTAWLVqUSSLS29vLBRdcwFlnnZWJpbrnnntwu93stdde6LrOww8/zM0338y1115bss/f+ta3+NGPfsSOO+7ILrvswo9//GOCwWBOm/POO48vfOELLFmyhGXLlvHLX/6S9evXc/bZZ2faXHzxxWzatClT2zDt1vaRj3yEQCDAj3/8Y9566y3uueeezDZXXHEFS5cuZccddyQcDnPzzTfz+uuv87Of/azic69QlIMwnYmycizHUNz1UfPoWGHlVq1QjBduu+02XnvtNfbff38syyKVSvGrX/1KjfdZqPFeMRS2bWPbA2ObEseKsUCJ4xFkv/3247nnnuPCH19IR28Hdf46dpy1I7++/tccdNBBBbfxeDxF3YCGIu3WdNlll3H55Zdz+OGHc8kll3DllVdm2ixYsIBHHnmEc889l5/97GfMnj2bm2++OafmYSgUyqkFaBgGf/3rX/na177G8uXL8fv9nHLKKdxwww05x7/qqqtYt24dhmGwcOFC7rrrrpLJuADOP/982tvbOf3009F1nTPPPJNPf/rThEKhTJuTTjqJnp4efvCDH9De3s7ixYt55JFHcjKCtre359SHtG2bG2+8kdWrV+N2uznkkEN44YUXmD9/fqZNMBjkK1/5Ch0dHTQ2NrLXXnvxj3/8g/3226/8k65QVIC0Hcuxbmyd047u1rCilqp1rFCME/bbbz/++c9/cskll9DZ2UldXR277rorf/rTn6bUeD+4pnM2arxXDMVgMazEsWIs0GQ5gSuKYSOFpOPxLSR2jlO/uQE7bGPHbaYd1oa7ceRzza5YsYJzzjknb3Z2tBFCsG7dOubNm1fUzSnN6aefTjAY5E9/+tPodG6UqOQcTEam+vcHiHfG6Yh2ULehfqvOgRWxsBOCGUdOm3DlnNR9oJisjPW9PR7G+0rPwWQc78f6PhgPDPccBINBmpubM383NzfT2zsGdd6qgLoPKjsHyc4k6BreNs8o9a44U/NqjSLSkhlrEYCr3oUVtYitj49hrxQKxViQiTku0626GLpbR5p2Jp+BQqFQKBQTnex4Y1CW46lEdG2MyHuRse4GoMTxiCMtiRS5xnlPs4fYhzGsSGUJdY466ijq6uoK/rvmmmuq2W3FJETakuiaWN79qBg9hFWdc6+5NYTp1DpWKBSTDzXeK6YiShxPTaSUWEGTZGcKKzr2yUZVzPEII+1cyzGAq9FFfG2M+KY49TvVl72vO+64g3i8sMW5WKmE008/ndNPP73sY4wHVqxYMdZdmJRYEYvYuhieVjfuhpF36VfkI0wBVfCC1nQNZOW1joUlSGxOYgZSNOzWoOKVFYpxihrvFVORwWLYNM0h61wrJj4iKbDjAitsYgZMXLVjK0+VOB5hpC3Bzi9w72pwE/0gRs2cGoya8t6Wt9lmm5HoomKKIEyJSApESlmOxwppyaqI4zTl1jqWQpJoTxB5L0p8UwJXrUHtDrVjPgApFIrCqPFeMRUZbDkGRyB7PGMfh6oYOURCIFI2UkBiSxL/tv4x7Y9yqx5hhCWRBd5f3U1uUr0pwm+F8yzLCsVIIE2BSAhkSrnijhWyim7Q5dQ6ltIRxb3P99L9j16SnSm8073OvaDuA4VCoVCMIwqJY+VaPfmxYzYiJfG0ekhuTmCPcT4VJY5HGGlJRIEYT83Q8M3yEXk/SuSD8RGArpjcSFtiJ+xMrV3F6GPFq1ebuJxax5H3o3T/vYfYxgS+6V782/gw/Hq/F4GalFMoFArF+KGQEFbiePJjx22Q4Ko3MPsszN6xveZKHI8w0hYUi5QwfAbuRjfhN/tIbE6Mar8UUw/lVj32lOsGXQ66R8/UOi5GcnMCzaVRM8eP7nUe9+nYLWU5VigUCsV4ophbtWJyY8Vs0EF36SA1kt1KHE9q5BDZad1NbhAQ+ncIMzz2GdoUkxdpCuykQJjVs14qykdKiZ2q3rnX3RoiJYqWc7KTAjNsFc1poMpAKRQKhWI8odyqpyZm0ET3OJLUqDVIbIwjrLF7R1HieISRloQhDHXemV5SPSbhN0LK5VUxYghTgCWxY+oeGwukKTN1jquB7tGRKYGdKCy47YiFHbcx/AXEsaYV3U4xNbjttts44YQT2HfffXn88cdz1r355pucfvrpHHDAARx99NE8+eSTY9RLhUIxlVBu1VMPKSRWn5URx+4GF2bIwgyMnceAEscjyOWXX86yY5dR1K+6H03X8G3jI7omTt+7EaRUbq+K6mPHHVFsx5QoGguEKaqafC9d67iYq7YVsZCWRHfnP+Z1t4ZdYZ11xeRizpw5nH/++ey66645y7u7u7nooov48pe/zDPPPMNvfvMbdtlllzHq5cTh8ssvZ++99x7rbigUExplOZ562HEbkRSZ0C/doyMtQbJn7K67EsfDRNO0kv9OP/10LrjgAh6646GM5fi6O6+l7YBW2g5oZcbB01l47I4c+/+O5Re/+wWmNPFO89D3nz7iGxIcfPDBBfd79tlnV+07rF+/nk984hPU1tbS1tbGN7/5zSEfQslkkm984xu0tbVRW1vLJz/5STZu3JjTZv78+Xn9vvjii6vS57///e/ss88++Hw+tttuO37xi18Muc3TTz/N/vvvT319PbNmzeLb3/42ljUgDNauXVvwXD/22GNV6fN4wU7YoGsIZTEcE6QlhwyzqARNS9c6LiyOzbBFsdKQmkvDiqj7YCpz9NFHs3Tp0rwSKffddx/HHnssH/3oR3G5XDQ1NbHtttsW3U8qlSISieT8SyQSCCEmzb+hxvvTTjuN8847L2OBF0Jw2WWXZda7XC7a2to48MAD+clPfkI8Hs/Zf7Hx/qtf/WrVvsPatWs59thjM+P9N77xjSGvUzwe5//9v/+XGe8/8YlPsH79+pw2g8d7wzC49tprq9LnZ555Jme8//nPfz7kNk8++WTOeH/RRReRSqUy6z/88MOC5/qRRx6p6j2Tvg+m8r/hnINCtb0n8vNE3QdDnwMzZmFbNppPQ2oSqUn0WoP45ji2ZVe9L+WgilwOk/b29sznBx54gEsvvZTVq1dnlvn9furq6rBqLPqMgWzUOy/YmT/85I8IKQiEAjz/2nP8+Fc/5neP/44/3/JnPG4P4TfCSEty1lln8YMf/CDnuDU1NVXpv23bHHPMMUybNo3nnnuOnp4eTjvtNKSU3HLLLUW3O+ecc3j44Ye5//77aW1t5fzzz+fYY49l1apVGMaA++YPfvADzjrrrJx+9/T0bFWf16xZw9FHH81ZZ53Fr3/9a55//nm+9rWvMW3aND772c8W3OaNN97g6KOP5nvf+x6/+tWv2LRpE2effTa2bXPDDTfktH3qqadyrCgtLS1b1d/xhkgIDK/uxKlawkl8oBg1RKq6lmMANLCLWI5T3Sl0b+F4Y92tI5K2ug8Uebz99tvssccenHjiiYRCIfbbbz8uvPBCGhoaCra/++67uf3223OWnXDCCZx44omj0d1R4eWXX858/stf/sJPfvITnn766cwyr9ebM75t2LCBYDDIwoULuffeexFCEAgEePnll7n66qu56667+M1vfkNdXR3gvPyffPLJnHvuuTnH9fl8rFu3bqv7nx7vW1tbeeCBBwgEAlx44YWEw2Euv/zyottdcskl/O1vf+MnP/kJzc3NXHPNNXz84x/noYceyoz3lmVx7rnncvLJJ2e2q6mpYcOGDVvV5w0bNnDMMcdw0kkn8aMf/YhVq1ZxzjnnAHDUUUcV3Oadd97h05/+NF/72te4+uqr2bJlC5dccgmBQIDvfve7AGzatAmAe++9l4ULF2a2bWxsrMq5HvwdpjqVnoPNmzfnLVu3bh1NTU1V6tHoo+6DMs7BErDIcqOeDSmSrN8QrWo/FixYUFY7JY6HycyZMzOfGxsb0TQtZxk4blZ/+M0fePSaAQuky3Axo3UGALPaZrFo+0UcvO/BHHTGQdxy381c/OXvEl8fx4pa+H3+vH2Wy8qVK/nqV7/KO++8w+LFi/ne977HZz7zGV577TX23HNPnnjiCd5++202bNjA7NmzAbjxxhs5/fTTufrqqwu+CIVCIe68807uvfdeDj/8cAB+/etfM2fOHJ566imOPPLITNv6+vqcvgshhhTHK1as4NJLL6W7u5sjjzySj370o1x55ZUEg0EAfvGLXzB37lxuuukmAHbZZRdeeeUVbrjhhqLi+P7772f33Xfn0ksvBWCHHXbghz/8IZ/73Oe47LLLqK+vz7RtbW0d9vke70gpESmB7tOd2tspqX79o4w0ZSazdCQuqfcNEW9RBpqhYUXz3aPthI0VttALxRvjuGTbMeG4MilxrMiiq6uLxx57jFtuuYXp06dz5ZVXcuONN3LFFVcUbH/GGWdw6qmn5ixzuVx5FumJzLx58zKf33rrLQzDYMmSJTltrrjiCv70pz/xpz/9iTlz5tDU1ITf789pd+SRR3LiiSey1157cf/993PllVcCjgiePn163j7LZeXKlfzP//xPZry/+OKLOf7441m1ahV77rknjz76KB988AFPP/10Zrw3DIMzzzyTn/70p0XH+//7v//jnnvu4aSTTgJgzz33ZN68ebz//vuZ8d7lcjFnzpxM34UQbNiwgTlz5qDrxZ8tK1as4PLLL6e7u5sjjjiCj370o1x11VX09vYC8L//+7/MmzePO++8E4DDDjuMNWvWcO+99xb1oPvlL3/J7rvvzo033phZ5vF4OPXUU7nhhhuor6/PhK0tWrSIPffcs5LTXDblnoPJzHDPQfY7WZq2trac3+BEQd0H5Z2DyAcRgq+GqJmTa/yLrYvStF8zddvVjkZXcxjXr8fPHfoiqc78+IORxDPdy0f/tqxq+5MSMEq/BO84byGHfeQw/vL3v/Dds76Hb7YPkRCkek2klJnSK+USjUY59thjOfTQQ/n1r3/NmjVr+Na3vpXT5sUXX2Tx4sWZgRKcgTuZTLJq1SoOOeSQvP2uWrUK0zQ54ogjMstmz57N4sWLeeGFF3LE8bXXXsuVV17JnDlzOOGEEzj//PNL9vnll1/mzDPP5JprruEzn/kMjz32GJdddllen7OPne7znXfeiWmauN3uvP0mk0l8Pl/OMr/fTyKRYNWqVRx88MGZ5Z/85CdJJBLsuOOOnHvuuRx//PEl+zyRkKbj0qt7daQpEabAoLBwUowMIsulenO3ZKfinqoZNnVJ/F5oaSj8DNDdOnZfvji2IjZ23MbbUPgRr7t1LNN0yjmN/rijGMd4vV6OOuqozMvol7/8Zb7yla8Ube/xeLZaCI/FWA/DG+/TL3iDX/TS7rnpddmfs1m0aBFHHXUUDz74IFdffXXO9sN5gY5Go3zyk58sON7ruo6u67z88sssXrw4xz3+qKOOIplM8tprrxUc71977TVM0+TjH/94pl/bbrstixcv5qWXXsqx3l533XVcddVVzJkzh+OPP54TTjghc+xCvPzyy3z5y18uON6nt3nppZc44ogjcvbx8Y9/nLvuugvbtguO96lUCp/Pl7NNbW0tiUSC1157jYMPPjiz7rjjjhvx8b7UOZgqVHoOCpVtsixrQp9HdR+UPgd2n0BHR5O57zmG20Vqcwpt+7qKddDWUpE4PuCAA3L+jsfjXHvttRx22GFV7VSaVGeSRPvoD5hVRUi0Mn4TO87bkWf/9SzgvLhqbp0777+Dex/8VU5Cr5/97GecdtppJfd13333Yds2d911FzU1Ney6665s3LiR//mf/8m06ejoYMaMGTnbNTc34/F46OjoKLjfjo4OPB4Pzc3NOctnzJiRs823vvUt9t57b5qbm1m5ciUXX3wxH374IZdccknRPv/0pz/lyCOP5Dvf+Q4ACxcu5IUXXsiJ+y3U5xkzZmBZFt3d3cyaNStvv0ceeSQ33XQTv/3tbznxxBPp6OjgqquuAgZc4+vq6vjxj3/M8uXL0XWdhx56iJNOOol77rmHz3/+80X7XCmpMSxqnk4GZfgMzKCpatyOAdnnvDcMti0xSkycJVKSDzZJbBu230YyZ7qGrue21zw6VtRGComWtc6OWEi7cDIucGKOnbrXKvmfIpftt98+5+/RSBA5Kcb6Cth555154okncpb9/Oc/54477shZNlHH+zfffJPf/va3Rfs8FcZ7xfBQCbmmHtllnLJx1btIdaew+mzcRSb6R4qKjvbPf/4z8/n999/n9NNPZ+nSpVXvVBrPdO+I7Xs0jimlU8ZJG8JynG6bPTOiGRqfPuDTnHPquTTt04S73rlU06dPH3Jf77zzDnvssUdOfPKyZfmz44VmYoZjqR68TXbc1O67705zczPHH388X//615k3bx677rprJrbngAMO4NFHH83ECmWzbNmyvKRYg/uWfnEr1ucjjjiC66+/nrPPPpsvfOELeL1evv/97/Pcc89lYqba2tpy+rxkyRICgQDXXXddVQfL2Po4NJNxbx5N0smgNI+GFBKRUqJotMlOxhVLQF8cmuqKtw9HIZaEGi+8vQ76YpIdtgGfd+Be191OSSaREDn1jM2wVTJLflpIq0mSqYtlWdi2jZQSy7JIJpO43W6OPfZYrrnmGo466ija2tpYsWIFH/3oR0e0L2Mx1o/lcQuNs6eeeirf+973cpZNxPG+sbGRE088kVtvvZVp06ZN2fFeMTxUKaephTAFImZnMlVnY9QapLpTmIHU+BbH2Tz66KMcdNBB1NaOnE9eNd2bx4T+d+FyxPF7695n7qy5Ocua2prZ1rctNbEamndrKjs2sJyZ/pkzZ+YkGQEIBAKYppk3W5u9TSqVIhAI5Mwmd3Z2sv/++xc9VnoCZd26dey555488sgjGdcZv99fUZ8Hz3J3dnbicrlobW0tut15553HueeeS3t7O83Nzaxdu5aLL764ZGD+0qVL82bxtxYzaEIzxDfHqd8uP65mJBGmRNrSuRclSFVPe9QRCZu011AsCX2x0uI4GHEm1xprNXweyfotEI1Ldpwz4Gate3SssImdtHPEcbIrheEb2m2+WKZrxeTnqquu4i9/+QvguNBedtll/OIXv2Dp0qWccsopfOlLX8KyLJYuXcqFF144on2Z8GN9hbzzzjt5409jYyM77LBDxfsar+P9Bx98wLRp06bseK8YHspyPLWw4zZ2UuBuyg+T0DQNzaWR6EhSM686yYjLZVjiWErJ448/nnGJKUQqlcq7oSdbko402anKc5bbAslA4iPp6BKkljswvL/uff728tN86wvfylonQQPvNl6i66MYLQYNO5UnqHbeeWfuvfdeotFoZjB64YUXMn0UQvCRj3yEq6++mk2bNmXckx577DG8Xi977bVXwZTne+21F263m8cffzyTibS9vZ233nqLH/3oR0XTpK9atQqAadOmIYRgzpw5uedJCHbZZRdefPHFnH28+OKLmfXgDGB/+ctfcto8/vjjLFmyBMMwhkzTnk629Zvf/IY5c+aw5557Ft3m1VdfZdasWRWlfi+FnRRYcSc2NPJhFN9MX1nipVrYKQuBABdIl8Qy7ap9t3Ip9juZKphxC9F/yV0uSXefYNsZRWJwbElPn6S2FjQDfAbM8kp6w/DGGsm208Hj0tA1iQzapDaZ1GLQ2uBkJbdiJnqtnvesyUYaEithqvuA/LjQqcDll19eNFPxySefnJN9WFE93n33XR577LGqlTdctGgR9957L/F4PDPev/TSSzltli1bxtVXX017e3tmvH/iiSfwer3ss88+Bfe7zz774Ha7efLJJ/PG++uuu65of1577TWAzHEKJVJatGhRXh8L9fnhhx/OWfbEE0+wZMmSgvHG2Wialsmn8tvf/pY5c+aUrEH92muvFXTTVow+ShxPLTKJQQu4VQO46lykupKjXlljWOL41VdfJZFIFHTdSTMVyjuk6enpQQiRVwYgHAkjfZLEDk7dtlRdElNP8aH7vzmlHW699VZ2WbQLp513Gn21YQBsr03YCLG2dg1sDx197fCKk/yksbGxZH/SLnCf+9zn+H//7/+xceNGrr32WoDMbOpOO+3EDjvswIknnsjFF19MMBjkoosu4qSTTiIQCBAIBOjo6ODzn/88N954I3vssQfgXMPzzjsPy7JoamrimmuuYaeddmLHHXdk3bp1vPrqq7z22mssW7aM+vp63njjDa666ioOP/xwttlmm6Lp3E844QSOP/54vvvd7/Kxj32M5557jkcffRQpZea8Hnvssdx6662cddZZnHzyybz66qvcdddd3HTTTZk2jz/+ONdffz1PPfVUZt+//OUvOfDAA9F1nccff5xbb72VW265JVOf+Q9/+AMul4tdd90VXdd5+umnueWWW7jooouqW9phkfNfYvs4G7dsLN12EP/+978577zz2G+//fjhD384vON/BCL0wTbQQzc967qHt5+tZMqWNZgJd/zlDu674D4uuugilh94FH0lmu86J3/Z9vmL+ukkGoRosP/PxWX0ZzYECBBYFyijcfUZT/dBueUdFIpKsCyLjo6OTLWGZ599lquuuoo999wzzxofi8XyLKVerzcv5ncwp5xyCt/73vf40pe+xCWXXMLatWvzyhQeccQRLFq0iC984Qtcf/319Pb2csEFF3DWWWdlMlVv2rSJww47jF/96lfst99+NDY28qUvfYnzzz+f1tZWWlpauOCCC9htt90y1SpefPFFXnrpJQ455BAaGxv517/+xbnnnsvhhx/O3Llz8/qa5pvf/Cb7778/1113HccddxxPPPFEnkv12Wefza233sp5553HWWedxYsvvsidd96ZE8v84IMPcvHFF/Puu+9mll1//fWZJGJ//OMf+dGPfsTvfve7jFv1Pffcg9vtZq+99kLXdR5++GFuvvnmzDuSYmwpJIQLJelSTA5EwnZsgXoRD1sdpEXGE3e0GJY4fuyxx/jYxz6Gy1V886lQ3iFNa2sruq7nzZDW++vR4hr+tTXE58fwRLy89957fOQjH8EwDBpqG1g4fyfOOfVczjjuDLwhL4ScbY2kwf3338/999+fs88jjjiCRx99tGhfwm+G4TWdu7+9gu/d+V0+8YlPsGjRIm644QZOOOEEZs2alenn448/zte//nVOPPFE/H4/n/vc57j++uvxep04LCklH374IQ0NDZltbr/9di666CK+9a1vEY/HOfTQQzMzs+BMFFx//fXceuutJJNJ5s2bx1e/+lXOP/98enp6iqZznzdvHr/85S+54ooruPnmmznssMP4/ve/z1VXXZU59rx58/jrX//K+eefz69//Wtmz57NTTfdlFPWwePx8OGHH+Zci5dffpn//d//JZlMsscee/Dggw/mZNpsbW3l+uuvZ926dRiGwcKFC7njjjuqGn8U3xyn+8UexBIb91seDJdB24GtGEVK7QzmzDPPZM2aNaxZs4Yrr7wyL2nOUETXRgm8HKRmbg3xzQlqFtTQvHfpSZZqM5XLGkgp6XhiCz++4cckUgl+ct1tNKdOYM8dNaY15Q8KGzol76yVzGwdOiRDbIlj7NTAOnct+yyEBXqC3pcC1Mwt7YaU7E7iqnMx7ZC2YX+vbIaKB8z0dwrfB4qpxX/+8x9mzZqFYRg0NjayaNEiLr74Yv7nf/4nM86muf322/MMCkceeWSeaBxMXV0dDz/8MGeffTZ77bUXixYt4tprr80pb2gYBn/961/52te+xvLly/H7/Zxyyik5Ito0TVavXk0sFsss+8lPfoLL5eLEE08kHo9z2GGHsWLFiozQ9Hq9PPDAA1xxxRWZ8f7LX/5ypvRTMdJuzJdddhmXX345hx9+OJdcckmmtBU4E1aPPPII5557Lj/72c+YPXs2N998c873CoVCrF69Omffjz76KFdffXVmvP/zn/+cVxf5qquuyhnv77rrLhVvPE5QluOphRUrnR9lrNBkhakoTdPkyCOP5Mc//vGI1YibLKR6UnQ+2YVnpofovAj1mxvyUpWXS2xdnMY96mlYnF+PMI20JZ1PdGInJbpHI9WTwlXnonZBDZ16Jwv3WJipczzapC3r8+bNK/uFeMWKFZxzzjmZOscTmch7EXpWBRBLLeo21pNYG6dpvybqy3CV37hxI3Pnzs2Ij+eee47ly5dXfPzAv4LUzKshuSWJp81D20HF47ZGguHcA5MFYQreeeBdFn9hVwCa6tu45dJ32H4bWDgn91xIKVm1WhKKQGtjGeK4M44+p5aemY3U+GC5v4/IuxFq5vhLbmcGTUAy/ePTq+Ku9O46gWnBbtuX3tdUvg8Uk5vxcm+vXbuWBQsWjMl4P9xzMJnG+/FyH4wlwz0HX/rSl7jrrrtylv385z/Pyb4+UVD3wdDnoOeFXhIbE/hm+wpsDWbYRFqSGUdNL1p9YySo+EjPP/88dXV1GTdbRXGkLZGivIRcQ2HU6CQ2J5Ci+FyGGTQxwxbuehfuBje1C2rRvTqhN8MEVwa3ug+K4WOGLHSXcx9ouoarwU30vShWNL9G7WB++9vf5iQw6erqqvj4IisBl+bSsOPWqJRoUTiIlKCrd+C6hSI9uF0m3SEQg37TsSSEY1BTWttm0Fw6MmbTVAe9IUnX+iRGgcyPedu50+Wctj72V0rJhk7oHBsPbYVCoVBMApTleOogpcQKmwUzVY81Fffo0Ucf5cgjjxz1gswTEWlJkLK4L30FuOpdmCELK2xxzTXXUFdXl/evZW4Ln7/m8zk3Wlokp/qGFmGKkUFKiRlI5SQccDe7SQVMYuviee2tPovIexGS3c6AcN999+Ws7+6uPFbYjovMJI3m0pCmzCktpBhZpCVzxLGUEtPsIRqHyKBbIByFRBJ85UaguHSIW7gNsBKC3g6rLHd93a0jTVGVck6ROPSEHVFv2+q+UiiqRbHxvq6uLs9dWKGY6KhSTlMHkRDYCTkuxXHFMccqaUH5yCq+JBo+g2QySSpgcvbZZxdMbNa7MoDeV/gm2267BbT/pYNpu0yrWp9GmtNPP53TTz99rLux1TjZg0WOYNF0DXezh+j7UWrm+J1i54EU8fUJomtiWIEUvm18tDe38+9//ztnf8MSxwkbqWmEY5Ial+ZkCEyJUXVTmcoIM1ccA0SindTWzSQchYasini9YYmhg1ZuII5bQyYFpAT12HR32izYsXQ2V3AmSRzL8dY/p3rDEIkBfsfyXT+6VRcUiklLsfEeBkojDWb+/PkTzjNosoz3iq1DWY6nDnbcRiTtUa9hXA7jr0eTCGHJqmZY01wayc4kLQtaaGlpyVlnRSxq/LUYLYUtRu4mN/GNcZJbktTMLdNfU1EV7JjzAHA15ZoC3U0uYuviRD6IIi1BbEMCO2bjaXJTs10tsfUxVtx3T97+KhXHkZhk/QabjvVg9kj2mKfhtgTSnFgvTxMZmRJ0BXPFcU9wC02N0BOWbDvdEcKm5ZRrqikcflMYlw4RC1KCBs0iGIW+pE7zEJbntEdLNSzH3SGJpkM8BbGEEscKRbVoackf7xWKyUohcayyVU9O7LhAWhLNPf48kZU4HkGkJYfhuF4cV72L5JYkdsLOq5FrBkxHWLUWfiPWDA3N0Iivj+Of41Nu8aOIHbORlsyz0mqahqfFTfjNMJqh4Wn14Js+kMHUO9PL7x/5v7z9lSOOhZB0BWFdh2RduyT5nsDn0kjEIGppNJjVEUWK8hCWpDuUK44DoU5qfBDog6Qp8bo1wlGIJmBaUwU7d2lolkCmbFxJGxsIRiTN9eX9xrc25ti2JZu6oKGGTP8VCoVCoagU5VY9dbDjNjB0hYuxQPlUjiDSrq7l2FXnworamMH8+OFkdxK0ErXCAHeLh0RHoj9LrWK0sGN20XXuBjf+uX5q5tXgqsudq3rl/VfY2O3UQ95rt70yy8tJyPXuOskT/5L8Zw14NMmMRkFTo/NzjyUBKRHKcjxqSFPQHe7JWdYb6sTvhXgS+qLOslBUIiUYFeQp0DQNqWmQEshAEl+tQUdvfqKvYtjJ4vdnOQQjjihuqAFNg2hc3VcKhUKhqBzlVj11sCOW89IwDlHieAQRKVHVC68ZGghJKpD7oBCmINGezBNXg3HVGIiETaJdmXZGk1TIRCtRKqdYGZ3fPzFgNT7t8NMys2tDWY5jCcm7652ETgtmazT4JAjA0PC4nfhQpCPYFKODMPMtx73hTvT+axqKSoSUdAUqSMQ1CBk2kXEbf6NOXxRC0aG30d26M0BtBb1hSJrg9Wh43RCIbNXuFAqFQjFFUeJ46mCGrHGZjAuUOB5RRFKgVfkMG37DKemUlWzDDJhYYQtX/dBe8q56N7G1ceVSO0o4mapNDF9lN0LKTPHnZ/4MgN/r54hdjqSpvgkYWhyv65AE+qA1XRLbliAkGBo+j5NZOGVJdQ+MIiJh0x3OvW69wS0A+L3QFXSsx33xCuON0+gaMmpC0sZd48ISjmv1UGhuDSu6dZbjjl6Jpz//l9cDwT4mXDIghUKhUIw9ShxPDaQtsfrMsspOjgUq5ngEESlRlRrH2bjqXJhBE6vPwt3gvJGaARNplZd5OJOYqzOJf1uVmGukEXGBHc+PER+Kv638G4GwUzT24x89irbt22iuaSYQDpQUx4mkZPUGJ/uxnnbNtSTYgA4+w8kqnDA17CrUt1WUh11IHIc6AUcc98WgvQdSJnj7k1O8/d9XePH1xxAi9zq5DDcH7ftJtpuza2aZ5tLAdCZBNEPD75Fs6YV5M+TAfVAA3a0j4jbSlsN6ViWSki2BgQRcPrfjth9PVi7yu4OSDzdL9ls0PgdLhUKhUIwsKuZ4amDHbOyUxF1X2bvxaKHE8QgyEuJY9+uIToEZMHE3uJFSEt+cQPc7l7IzIOkJS3aeqxUMck8n5oqtj+PbRiXmGmmsmI1ICNyNQ5fWyeb3T/w+8/n4jx2P7tFpbW7jw44PCYfDpFIpPJ58/9v1ndATgvmzBpZJS6DZAnQNQ9OwpSRhaZlkCIqRx4radIdyxXEg7Ihjr1ujx5T0xSXu/idyXzTIRTd8lkSysG/0Y//8Nfdd/zouV/995daRSTsTxlFXA4Gw41rdXF+8X5pLw04IRFJg1FQ+SAX6HE+EOf0V4rwe6O1zMlZXKo7beySbeyBlSjzjMHulQqFQKEYWZTmeGthxG5kU6K3jczJ8fPZqklAtcSyEJNZfi1TTHHGb7HQeFlafTSpg4uqffekKSjZ3OZaoYrib3STaE1ihrYs1VAxNsUzVpeiL9fH4848B0NLYwqEfORSA1pbWTJtC1uNkSrJ6vaTOPyihky1BG5gscenQlwRRIlGYonpIKekLhkmkcmP9e4NbMu7HLgNCEajtF5TrNq8uKowBekJb6AltGVjg0iBqofV7KLgNrSzXat2jI1Ni2C72PWGJLcDof865XRqW3Z/0rQKEkGzohHgCEuo9SKFQKKYkqpTT1MBOCKQYnsfaaKDE8QghhUSaWy+OQxHJG/+V/Pt9Sao/u7BT0imBSAnMQAoRszFqDFKmpCfkxC12Boq/FLtqXdhxQbxDJeYaaeyYDRXeAo/846/Ek3EAPnXIp3D3Wwdbm0qL4w2d0BmAtsZBKyyZEwPq9UA4qZGK2io2dBSQlqSzuzNveSIVI55wslfV1ziuyL7+Sl6dPRsz7T516Je48dt/5sZv/5kD9vlEZnlPsGNgZx4dUgL8A9Zfvwe2DJG1WnNpCFNiJyoXx1I6JZxqvfnrovHK9hWMOFbolKXEsUKhUExV0lbiurq6vGWKyUOpKi7jASWORwhpSaQNVFCSJRvTkvx3k2DVe5L2nv6Xx/4ssEatgdVnYwZNkluSjqu01l8jNQlNdbC5GxKpUgLZIL42jlAZi0eUVCBVkdUYBrtUn5D53NrUkvk8WByblmT1Bkmtb8CKl8HKvcY+DyRsnVhUIlU5pxFHpASdvYXLb/WG03HHGnOma5ns1VuyxPHuO+3PHjstZ4+dlrPj/D0yy7PFsWbo6PPr0LwD4rjOD+GY868Y6dJvw7Ec98UcQVtfm7vcZTjZtyuhJ+SIYlsocaxQKBRTlbTluL5+IB5IiePJhxU2x63VGJQ4HjGkJftdBircTkq6gpJXV0veXQceF8xq1dA06A07L5y6W0fYkkRHguSWZCZLdTDi1FVuqIVIArqDxY/jbnaT6k2R7KzQ/1FRNlJIrKBZUar6eDLO31f9HYC5s+ay3277Zda1NA5Yjjs35VoiN3Y6VsK2pgL9sATZ5muPG1JCIxodvjutonykJenKEse6PnA/BEL5FmWAzt4BcTyjdU7mc1vTzMznHMtxAdIuzl3BoYWqGEZytt4wRBNQM8hy7E2XC6uATd0Sb3/4tBLHCoVCMTVJi2NlOZ7cjOcyTqDE8YghMuK4spmRDzdLXntPEo7BrFao8/cn2PE7LrPJfkuf4TdIdqQwIzZGnYFtSzoDTuZbXXPqjW7qkth24Rdj3aWDppFoV+J4pLBjNnZCoFdQxqk70J3JTrznTnvmJExry3Kr3rJhIN7U6rcaez3gKnS/JQVkLdfQwKURiwjlOTAKCDNXHC9YsCDzuSe4pdAmbOnZkPk8vXWbzOfWCsQxQGMtrO+AQF8JgayBnazcxakrKDEM8pL6+bxOzHGyhOdKNpGY8+xqqHXyiUXjyptBoVAophpCCCzLyYWjxPHkxU4K7JiN7h2fmapBieMRQ9oCbJlxWyyHaNxJSuP3wrQmLacES43PyQAb7HP+dtUZmBELhER36fTFnayxtf3VmRpqHTfs3r7ix3PVuUh2JJRAGiHsuJOpupIyTj2hnsznhvrWnHXZluMtmwdE1aZupwzQ9KYiO03ZeZM0Xp9GKKTcqkcDmRJ0BQfE8S677JL5XNRy3LMJALfLQ1P9tMzySsVxrU/DFvDfTRLTKj5RZkcKJ+dLpiTBAsLaspzM0nUFqsH53JBMlZ+UqyfsPLvq/I5XQ7h4HjKFQqFQTFKyRbByq568iISNSAl0r3KrnnKkY44rsRy390hiCacMy2B0TUPXoDvUbzmuMbCCZqb8SigClu1kqQXnf61/n8WSLrnq+mOXAyoT4Ehgx+yM98Afn/ojB37xAP74xz8WbZ8yJe+tHRDHhtGSs761ceDvLRs7kdLxDHhvg8RtOG60hZCpXMsxgM+rEU9ALKImRkYaYUl6smoc77zzzpnP6ZjjwaTdqqe3bJPjhl2pOAZobXS8TjZ1FX4OaG4NK5prOXaSbUmeXiV59CXJyrcFoazM18GII2IbCjyrPG4nsVaszHx/W3oluu7U5fa4nISCKlGcQqFQTC2yM1X7fD5cLidkUGWrnlyIhECYlVVxGW3Gb88mONKSTpZYvbwXvWhCsrHLSW6jFUlvXOeHrqCTaEvTNGq3r8XT5kFKSWfAcavNpqEOugLOy2Yh0rHLqV714BkJrOiANe6Hd/6Qdz58hxtuuCGvXSIlWdchWPmO5I0PBsSxbrRkSngBtGS5Vfd0d2P12XT0wuYemN5cuA9SSCeL8SAPBp8HEiaEQ0ocjzTSFHRl1TjOthz3FrAcR2IhYnHH5WN667Y56+pqGvG4nXpP5YpjQ9eor4UP28kRuGl0t46I28j+EIxITPKvdxxh3BOGGj+8+SE88S/JWx8K4klJbx+kTArWI9Y0DSnLE8cpU7Kpe0Bke9xOzHFKPZIUCoViSpEtjr1eLx6P81KrLMeTCzthg6zMs3a0UeJ4hJBCouG8KHb0OsusIvG/AO3d/VbjAm6Kafw+p9xLqD9rdTpLdTTuWHHqfIPaezSSFnT2Fj+u4TdItCeUpWYEMAOWU0dWSto7NwPQ2dmJbQ9Y6cIxyarVkv+scSz/MCCivJ5WurJKcmXHHPcEezGDKf67yUnCVkikAGBLR/QMshzruoaQ0BdW4nikEaakO1TYrbq3QMxxdhmn6S254ljTtIz1uFxxDFDv10ia8N/N+XkINJeGsCRmzObDzZKnVkne/BBaGmDOdI3GWo3tZoOhw8tvOyJ5/ZaBBFqF0DToiw39TOkNO8+u+rQ4djnCWCXlUigUiqlFtgj2eDxKHE9SxDBKR442ShyPENJyRAtAot/6t35LYRfncqzG4LhWG3p+9tlwDJImeDz529T7nbJOySKxpa46g1TAxOob3zXHJhrSlphBE91nEIlHSKQcM5oQgkA40P9Z8uEmSTgKM1uhqU4jHAlk9tHW1MKm7oFJlbqa+kzN40Ckl651Jhu6CmeozmAJEPniGJySO7096rqPNCJh093vVu331TN9+nRchnMdC7lV54jjQZZjGHCt7osGSabKLyjc1ggdPU5m6GxsTaOzS/DcqzZ/f12SSMGCWQPJAMER5S0NGvNnORN0H25ySsYVw+cpne8gTXdIYouBkIC0S7YSxwqFQjG1GGw5drudcVKJ48mFGbHGdRknUOJ4xJCWzFTPifX/rte2O7F/g2nvlkTjpa3GaWp90B0aENzgiGWXq7CwrvU7yW6KlXUyagxEzKmZrKgedszGTgp0r05PsCdnXfrv9h7nX1sTmfq24chA21nTWglFnYRF0C9Q+uOOeyO9bFgdJ5mQ1PpKPGRs6fwr8CDy+jSC3XbRjOaK6mAnbHrCznVtrG9D13WaG50kW4FQvuV4y5DieEbmc7Fs14VwGxq1fvhws2PVjcYla9sFr3wA73wg2NQumN0KM1tykwFmY+gaM1s0Fs7VqKspft95+xNrWUWSgIEzObR+i5NsMHv/QjgCXKFQKBRTB+VWPTWwQo5X5XhmfPduAiOzXgoT/b93w4D3Nsgcd8O01bihrrTVOE3atTrY71qdSEkCfY5oLoSuaXg9sLGrPwZ6EJqmgaGpesdVxo71Z6r26nQHunLWdQe7iSUlH26W+L0DSdQAQn29mc/NDW0YmjN5kvY4aO3PWN0T7qVjg0WrUTjLcAarXxwXEDsen0YsbBOODfdbKsohGooRjjkzHOnM0y2N0wEIhruxRa71PrvG8WC3ahheUq40DbXO8+PttZKV70reXgum0GhpgG2aJF5PdWZz/d6hM1aHo05G/cba/HXKcqxQKBRTC+VWPfmRtsSOKXE8ZRGW41Nv25Jkv1G2qd6x4q5eP1BWpaNn6FjjbNJZq7v6s1aHohBPOS+jxWiodeKUQ0VKpGRKOqXGfxzARMGK2dCfqbp7kOW4O9DF2nZJXwwaB7mmhrIsxw21zTTWOp4C6WvX0uRYjlNmklCgjzpR2uIvLYHWnxhuMG6fjhUTBZM0KaqDlJLOjgHrblNDWhw71l8hBaG+7pxtst2qZ7RVVxxraLQ1Oc8DrwtmtTnu/LquQQUl3eQQbT1uJ+FbqaRcvWFn4tDvHRwP70waKhQKhWLqUMxyrLJVTx7suI1ISTQljqcmIiXQDI2UBWa/YUhDY3ozbAk4dUfTdY3ra8qzGqepq4GeftfqQNh5iUy75RbCbWhYwhHmhciUdFKu1VXDilgZt/rBbtXr2nvY2AmtDfnXPdTntPV5avB5a/B6NEwLOvsTc7U2tWXamgRhqGtmS9CcxG2D0Qwd3RYEA2pSZKSQlqSrZ8BzoLkh13IM+Rmrs92qpzXPzttn21aIY3CeB9ObNWp8Ws79J5PlxZ/LhI39RgAZKG4WNvT+jNUlLMebuyWeAkm9PC5V61ihUCimGsqtevIjksKpcVwsiew4QYnjEUIkBZruCJus5MQYukZrA6ztgA82Fa9rXAq/17HIdIWcf4OzVBfCZUCgr7A1Jl3SKdmrHkDVwgyY6F7n5zXYrfq/G7vQdQq6sIYijlt1Y/1AZuq6Gic2OZGUObWOTXcQGUgirRLi1ipe5xpDw6NLtnQpcTxSSFPSmSWOmxqcyY3mpuLiOO1W3dQwDa8n36VkayzHRTE0iJcnjsWWOLIjhugtHYqhAdF4cQtwV9DxahmMxw19MVXrWKFQKKYSyq168mMnnLKR47nGMShxPGKIpJMEKWXmimMAn0fD52FYVmNwrMQuAzp6nURepVyq0/i9jiulWSRBjuE3SG5OqhfSKiBtiRU2MXwGQJ5bdWdvDy0N+dsJIQinxXHdgAiu9UE07kyENDcMLO8zQ8iYDX0lrMelhLNLw6tLwkFJrEw3VmEKdY9UgDAFXb0D4rilMd9yHMgSx5ZlZgTvjALJuGBkxLHm0pCxIeLXcazLckMUBMgtCaRd/P7yuJ2Y4mJEEk42/bztXE72/aR6H1IoFIopQzHLsWVZCKEm8ScDIiEylXzGM0ocjxAiJdB0SBUxxjTVaUxrgvoSGV9LUdefhVpIcJWREt3ncRLxRIvEALrqDFJBVdKpGoiUQFiO4IB8y3E83l3QDT4aDyP6kzM1ZFmOdc2ZTNncJXG7B5aH4wGwBTJSXNQ4VuUi94fuWI5jUVGWG2tyS5Luf/SQ3KJUS7kIU9IVyBfHrY1ZGaezMlZ3BTZnJh8KJeOCEbIcu3RICacmdglkZwIZNtFm+pF9JoSKT8x4PRDsIy8RYPr7aRoFs2J73U6t47i6zRQKhWLKUKyUE6i448mCFbMnhPKcAF2ceEgpEWZ/zHGJ37N3K3zu/T7oi0JNGVZjyIo7LpKZOFPSKaDeSLcWaUmkkGj9L/6DY44jsZ5Cm+Uk48q2HIPjftobAUFLTnvNrSN7Sri3JkXBMk4Amq45pXNMkcl+XvD7SElsbYyeF3qJrY1j9Q1tYVQ4SFPQFcwSx02OOM52q862HOdkqm7dpuA+a/z1+L2OP3L1xLHmZNgvkWhLpmzE+ihajQvNrYOkpGu1z+0I3MFlmdb1d7mtsfB2bpcjjhMqgb5CoVBMGYpZjkG5Vk8WrLA17l2qQYnjEUH215bVDI14UmKMwFnW0Nh2en6241K4dAgWyUycKenUpR5AW4tz/UWmyPlgt+pguIg47ssWx60561yGhg5oWpbluK8X/C5EKFU8mVLSLllsXSKpMSTrOgqX+pK2pO/tPnpfcgp0u2oMrIiawS0XYUp6wgPZqJsLuFX3ZlmOO3s2ZT7PaJ1TdL9p63FVLceWKC2OOxPIUAoanNl8zW84rtVFXPe9nvxyTt1ByWvvO/dZsfrcuq4hUeWcFAqFYipRLOZ48DrFxERKidVnjvsyTqDE8YggLYmwccRxAnRjZI6ja1pF8cp+rxMDaBVxnVQlnaqDsCTSBvqve3cw1606OKh0T5occVzfmre+pRFmtA5YjoN93eAz0OKW4+JaAJkqbjl20Kj3CLqCTmmdbOykIPhqkNDrYVwNbrzTvOg+nVSvEsflIk1BV2jgeqdFcTFxvKVnQ+ZzMbdqgNZmRxzHEhFi8b6t76ihOTWxi4hjmRKO1dhvZDwiqHVBtLhrtdulYdkD5ZziSckrq2XJDNbZKHGsUCgUU4dSlmPlVj3xEUmBSEoljqcqabdadMel0D1C4rhSfN7+uOOhSjoF1ENoa5CWRPZ7Dkgp89yqw5FebJFv6U1nqgZorG/JW+82NGa1DZRyCkd6+48BRPNdnaXoFzsF4jqz8UqnFveWwMCkiR2zCa4MEHkngne6F3eDCwDda2BHbOykmkApB2FKuvstx26Xjxqf4+rh9fip9TtZ2bKzVWfXOC7mVg25ccfZ4nq4aLoGQiJ6C2c/l51xRwQ3DrysaC4dKUCUcuvHEce2LXntPcmmLtimrWRzAAwdIiUyXSsUCoVicqHcqic36TJOWoFKLeMNJY5HgLRbrSU0TNvxWBwPuA0Nyype7zhT0knFHW8V6aRGmqYRifWRTOWKByllJit1NuGsmOOGunzLMeSK5nSMsuYxCsd+2o5IL2U51lwaJCzq/E4sqG07pZ/6VvcRXRfHN8eP4R+Y3TG8OiJpY5eR2VgBImHTHXI8Bxrrp+XUm05bj3NjjitzqwborlbG6kYP8r0w9ptBZJbrvDQFYkMMvPqA1Ti9jd9AdsaRRSzOLgNCUcnq9ZJ318PsNqec3VB43KrWsUKhUEwllFv15MaOp2scjxNRVILx38MJiOx3qzUFWDa4XGPdowHSL6vFMPwGiU2qpNPWkJ3xd3C8cZpsF+qBZaUtxwAety+TjCnT3mcgw2Z+3LElnHTmpdyqDQ2ZsGmuh+4Q9IQhuSVF9P0o3jZP3kNM82gIU2LHVFbzckhGkgQiTrx2Q12uybS5XxzHEhHiSUcJdva7VXs9fhrqCt8DMELlnGpdMN2H3BLHfrUXsTmGFBLZmYBgMsdqnKHOBVHLiUUugM8D3UF4/QNorge/t7wZY68b+uL5ma4VCoVCMTkpla1aieOJj0jaIMmbZB+PKHE8Ajhu1WBKJ+bOGCdu1eC8rAb6HAthIdz1LsxACjOoXKuHi7QG6rj1BAvHFxeKO84WzE11xX1P0/HIGeuzz0BL2DC4pFN/YrjS4tgp4eM2wLShvcOm7+0+pHRi0AeTtnzaMeVWXQ6dW7oyE02NddNy1g2udSylzCTkmt6yTY6VeTAjUs4Jx1Vam+FzXKzf6EW8G0JsiILXKJjYTTN0pJTI3sIvLl4PdAZBCGiuL39A9KQzVqv3IYVCoZgSKLfqyY0dF0Uri443lDgeAYQlQUpM24kHLVTTdqzwe50YwGL1jo0aA5GwSbQXaaAYEmnJzC9rc9dAMq5af33mczBcQBxnu1UXsRwDGYtiONKLEE5WbClkjiss4CRYsmXpmGOX5li6LUlDDax7LUZ0QxzvjOI1wjRDwwyryZOhkFLS2TEQD9zUMFgcD9Q67g11Eo70kkg5tdaml3CpBmgbIXEMzgSI1uSBJi9iXcQpFdboLt6+xuW4VhdI5Ffvh8Zax526EjxuJY4VCoViKqHcqic3Vp9VsnrKeEKJ4xEg7VabGodhmW6Xhlki7hjAVe8mtjauslYPE2nLjOV445YBwTtvm50znwu6VWfFITfUNhfdf7rMk5CCvlgQAM2t58UdS0ugCVn6YWRoYAuwBA3SJLo6QszlRi8RKK97dUyVsXpIpCXp7BmIJx5KHJdT4zjNSFmOs9F8BtoMP9oMH1qpenS1boiYyHD+y4uua7Q2augVulG5XWBaShwrFArFVEFlq57cWH3WhMhUDUocjwhpt9pkanzGy+l66bhjd5MbM2CS7Cyz5ooiB5EUmZiKDR0DluP52+yU+Rzs68rbLtwvmOtrmzCM4oHq2fHI6W3wu/Ljjm3JkD4shgY2kBK4NkSRcZuQXjpIXvca2DEbO6HijkshTUlX74CHQFN9rvl0sFt1To3jEmWcnG0HhPVIiWNwYoO0ITIKaoZTl1j2VM/bRNNUrWOFQqGYSii36smLsAR2TInjKY20AQ2iSccCMt7we52atsWS3WiGhmZoxNbFVWKuYWCnHFfnRErS3j1gIc4Vx/mW4/SyUomYILcGcqhU3LElkQxx/QwNLIHoiCM3R/HP9NIZANMqkbTNp2MnbJWUawhEStDVO2A5bm6YnrO+OUsc94S25NY4HsKt2uetoa6m0dk2uPWlnLYWrcaN7EwWdK3eGpQ4VigUiqmBEseTF5EQ2CmJpsTx1CXtVptIONmhxxv+/nrHkRKGHnezm0RHAis0Dn3DxzkiKUCHYB/0hstzq7Ysk2g8DORbGAfTWJctjvvLORWKO7YEDBHvrmmaY6XrSYDboLZRpy8OoUjxbXSPjrRUxuqhEElBZ++Ah0BLY65bdWuW9TcQ2lJ2jePM9v2u1T3BjrGfxKotnbV6OLgMCJfwcFEoFArF5GFwzPFEz1YtiyS+nYrYSYFMCfQJUOMYlDgeEURSOJ6q1vgUx55y4o5rXYiYTVwl5qoY0W857g5J+iLZbtUD4jgYznWrDkez4o2HsBxnr88W2YPjjrOzZpdCSokMmdDsydSg7Q4NvaESx6URKUFPVuK1weI423LsxByXV+M4TVocJ1PxzMTKWOG4VktkFWukq1rHCoVCMXWYbJbj+MYSL9lTDJGwkbYsmc9mPDEOnX4nPnZKYEtHgNb6xro3hdE0CEcks1uLz+IY9W7ia2PUbV9bME4gnpRs7nbKtEhAOkm6AWiohWlNTgKwqYSUEpkSpCynbnA07ohXw3DR2jQDv99PPB7Pc6vOqXGcZRkuRI5bddZ22XHHmteApChdxqkfrckDupaJk67zQVcQtpst8bgLb68ZGma/V0HKlKRMqKuZWtd6KOykoDuULY5zPQIa6lrQdQMhbAKhTjTd+Y1pmkZb86wh95+TlCvQkXGzHis0j4EMVi9PgcflZNW3bYkxQTJcKhQKhWJ4TDZxnOpOQRtIIae8KdJODh1yFeiT6Bo01o39eK/E8QggU2Jc1jjOxucZiDsulknW3eQisSlBsiuJfxt/3vo1myUvvgVa/49eo18k45TPbaqDudMlM1s1WuqnhnuJtCXSloQTGvEkhCOOOGqqa0XTNFpbW9m4cWNenePsMk6NJco4ATRmWY7DWdvhM9C6TSfu2GtA0i4rbb7mz30M1PphSwACEZhRJGm27tUxgyZSSlavl3T0wqF7o0RMFiJpZ8Sxrhs01eeeTEM3aK5voye0hZ7QFoRwBo+Wxhm4XZ68/Q0mWxx3BzuYlxXTPiZ4DWTcRqZEVeKKPG5HHCdSzj2pUCgUislLqVJOEy1btTAFya4ktDnxtkbdOBUDo4SI2UOG+a3rkNT4xoc4nuJzGSODSApM4VTIqUQc27bFhxvfxhYj767q90IsWbzeMYDu0jOJuQZjWZIP26GuBrabrbHdbI0F/f9vP1tj22lg2/D6B/DEvyRP/MsRx+M1g3e1kLbzrzcCGjLj9tzYH0fc0uII275oIOc6Z7tHD52Qa8ACmV3+STOcutrpuGOZKs9yPBhd09CAnhKu1YbPwIraxMM2/90MG7ugPT/H2JTGitp09btVN9S1YRRwJ2ppcuKOA6FOAmEneVc5LtUwOuWcykUIwZqu1dgJE+LVyVOgah0rFArF1GEyWY7NkIUVdd7xhKnKoloRG72IJyI4HoihKPTFRrFTJVDieAQQKRtLOjeBNlQpnSwu/9lpfOXSA/nZfRePVNcyeNxOHdHoECER7iY3iY4kZih31m5LwHEbbmkovJ3LcOqbbpcllAH++YZkc/fkFcjSEpgpQSCqoWsRTMt5oDc1OIK2tdVxiZZSEs4SttmW46ETchWOOQbQXBqiN+m48ZgCKqwvm6a+BjoDEI0Xvla6T0ckbTZvsuntD3f97yY59omhxhFWn5WJOW6obSv4LEjHHQs5MHiWk4wLxpc4vvnXF/KVHxzE1b8+G1mlEl9uAyxbiWOFQqGYCkwmcWyFTGS/KLYTShxbfWbJMk6RuJMoONYfSjXWKHFcZaQtkZbEFJWJEiEEL7/xFACPP/9bUubIJsLS0NA12NQtSZrFb0RXnQu7QGKuDZ1ORu5yYopdhkZLQzrREzzzqmTVakE8OfY/gGojbYmZkliaRiQ2kHQrHSecthwDBLOSNYVzYo5LW47ra5vQ+t1TBovjdNwxMcvJlDhMN+can/OQ6ugtIo7dOsIUrFtv4XY57tcbu5zrOxwmm6iWQtLT1YNlO1bUxvppBdu1NMzIWzZ9iBrHadrGiTgWQvC3l/4AwMvvPo2skuVY0xxPiLgqt65QKBSTnrQA1nUdl8s1ocVxsjuF5nYklkiq5KV2UqJ7S4vjZKrfW2wceNArcVxlhCWRNiRsJ+62XMKRXkS/m20yFeeN1S+OUA8HaGuCjh54b4PEKjFT46o1iK+NZ1xDIjHJhi3QXMRqXIpt2jQaauG19+Bvr0o2bJGkSojziYa0JLYFAohE863BacsxQCgr7jjbPbqhvnRCLsNwUVfTlLcdAD4DEraTfVoMXxxraNTXOIK32CRGNA6d7TZtjVDj00iasLZ96GvZGZCsbZe8s1ay8m3BYy8Lnl4lJ5XLvUgKOrsGahw31E0v2K6lMX/5RHOr3rTlv8QSTu0v004R2VI9/3oNZTlWKBSKqUDacpwWxRO1lJNICVKdSVy1Tj4XUUYyqsmONG10d3FR1BuW+L2Qsh2RPNYocVxtbIkUknhKq6iMU2BQaZ9/vfV0lTuWj6FrTG+GDVscl1hRxHrnbnaT6k2R7HTu2PYeCMegoWZ4x62v0Vgw26kD/NQqyV9ekPz9deEkduqRJCawRVlaEsuUCDRCkQHxW0gcB3LEcVZCriEsx9ltsrcDJ+4YIZ16s1thOQYnnjwahy1FrMeBmJOx2u91jtHaAGvai9emNS1n+ZOvSP72quTF/0jeXQ/BCKzrgE3dBTebkIiUoLNnQBwXtRw3FbAcl+lWnV0KaizF8XtrX8/5u3fzZsetvwq4XKrWsUKhUEwF0uLY6/UCTFjLsRkysaI2Ro0jAlTZSxCmRCtS4zgdb1zrA+T4mBBX4rjKCEsiLEHCAncFucCDfYPE8ZsjL47BcYtuaYAP22F9R+GYUd2lgwA7YiGE5MPNzgyPNkTmuVIYusY205x4ZE1zBPpzb0geWyn564uSdR0T84VYWhLbBltqhKMDaq+QW3W2S3T258YhYo6z28TifZm45jSaW0dGLEccDzPmGBzrcY0PNnSR53qfNCWdUZ16y8zcMw21TjKFDZ35105KydtrneWzWgaSuM2doTGzRcPnhfc3yHERa1INRFLQ1Zt1/esKX9NCluNy3ao9bm+m7NdYiuPVg8RxoLcTquRG5nE5E3EKhUKhmNyUEscjma1aSkl8U9wJRasCZshCWDJjKU0n5prSyOKaIR1v7HMu+7gIuVTiuMpIW2CmwJJaRZmqA6Fccby+/X06utdXuXeF8Xk06v3w3gZo7y3cRnNpmGGLrqCTjKt1GC7VhXC7NJrrNbadrrH9No5YDkYdF4uJiLQl/RV5cmoQNzc4lsOibtV9A/WQa/31Qx4nu9xTeLBrtd9Axi00Icsq5VSKhlroizrJubLpCUPE1qnTbaeeMs6Dr6EW3t9InvV/XQe8vdb5XChOfVqjc+9NlozXIiXozvpNNzcWthw3NxRwq24rz60aBlyre4IdYxa3/d7af+f8HejthHiVxLHbiX23rIn5PFAoFApFeaStw2lRvLWWYytileXFZEdsIqsjpHqrY7JMbkliZCWfsqPWpMurUjElXkUjcRDCMZq5XRAZBxPiShxXGWlJUimJJTXcW+FWDbDyzaeq2LPS1Pk1PG54d52ku0AJn3Rd242dAssGbxH3iK3FZWjUeB3xNRERlsTq1wXBcOmEXIFwfsxxY11LWRb5Uhmr03HHJZ9GZaJrGn4vbNgiM27RQko2d0ncNTpYMsdK2NIAPaFcF+nesGTVaomnhCeFx+3kcp4sGa9FUtAdHLj+TcXcqgdZjmt8ddT6y595SotjyzbzJ0lGAVvYfLDujZxlwUhX1TJWe92QssaHm5VCoVAoRo5qulVLIQm9HiK5ZeiMjiIlMMMWVt/WJ5O0k4JUTwqjdkAAiJSc8nHHpQw1vWGJpz+83O2CSIKiYZ6jxbDE8YoVKzjmmGM48MADOeWUU+jr66t2vyYs0nKyFZuVWo4LiOPRcq1O01SnYdvwzlpJdzD3xjR8BvGQxboNgqa6ke2HzwPh6ECM6kRCWhI7YznOTsjliONcy/HA+rSwaagrnYwrTXa7/Lhj3Yk7pjrnr7HWiQvuCqaPB7190NCgo9kyRwgZuiOm39/ouEgnko4wDsdgWlPp40xr2rqM1+MJOzlQ4xiKW44Hi+PprdtWFK5QraRcL7/xJP97/yUV72ND+/skUrnTvIFINzJa3VrHcSWOFQqFYlJTTXEskgKzzypLlIqkwIrapIJb77ptBU2siD1IHIspL46LlXFKxxv7+y+1p39CfKxDzCuIinW4//77eeGFF7jjjjuYOXMm//3vf3Nu4KmOtCWmrYF0rG7lkl3WR9d0hBS89s5zpMwkHrd3JLpakLYmx/L37w8kO82FbaY57rK6Vyew3iRkC+buUIHqHwY+jyO+onFoGtrDeFwh7f64WQ2CWW7TTQXcqtNx5olkjGTKKTid7S5diqb6bJGdbzHUalyOVbcK6LqG1+NkFp/e7CTosm3wuDRndm+QlbCtCTZ3O9bjjh7Jug6YP2voGPUan0ZHr2TNZsm0ppHxTBgt7KigJ2vyo6WIOPb76vB7a4kno4AjjishWxx3BzvYbs6uFfc1noxy5f9+mUQyypbuDVz+/+4pe9vBybgAgvEep5xYFXAZGqYtiZQxuaJQKBTVILomhp20adh5gr2ATHAGu1VvTbZqO2FjR+3yxLEpkClBqiuFFBJtK3K1mCEThEB36RkDhbAkIiGgcdi7nbCkq9wUE8fpeOP0+O5xOaF8CXMgBnksqEgc27bN3Xffze23386sWbMA2GGHHQq2TaVSeTfz4LplkxHbtLE1geGSaP0aUjNkzv+FCPQNZLbdZ/HB/OvNv5FIRvnPf19i710PHNE+Z6MB01ogHJO8s0GStGHeDA3NLekO2vibTFy6Cyq0SmqInP9L4XM75ZAicY2G2oklkmzTwtIkHrfMxBS7DDd1dfVohsTn8+Hz1pBIxgj19aAZknAsO6t1a8n7JE1jY1bMcawnbxutJT2oVEcgtzRKuoKwsQc6w5KGBtAM0HwaxFI519XrArchWb3eiSHedhq4Da2se2Bak2TdFli4raShbmJd+2ysmEl3ljdIa3MLmiELPgtamqazacsaAGa0blvW9U/T1jKQ7bo33F7Rtmm6g5tI9IvzF//9OOF4T1kZ0wHeW/da3rJgvBstaYJlobnyB8RKngUAXpekOwjzZo5cFJCuqwgjhULhYEUszJ4UKHE8akgpM5qhKpbjuMBOCKwy8l+IpEAKJ3GWHbVx1VdsN8yQ7EyhewcZkKTEnqKWY5HoF8dFyjhlxxuD878t5JiXc6roDujs7CSZTPLUU09x//33U1dXxymnnMLxxx+f1zYtorM54YQTOPHEE7euxxOA1o9DK5G85fP3z1+WJnaD486o6zqfO+NY/nXe3wBY3fsonz1gr5HpaJmknSa3PxG2J9/9uxLmNG0sq938FjCjsC66VYcbfepg20/BtkTou8Y5V61tLWx34MC1nza9lQ0bYvQlullwQB+RNzdk1m27sJ4FBwwdprDQ9EP/z0tr3lzWNlvL9v3/58smE8gNEp/b5Py/Q4EkzSXvgf7tAj3OvwnLXOiKO9e/ubmZ3T+eBAZin7KfBbPntmXE8U77tFV0LRclGuFXzmfRuH5Y90Hny+syn23b4j+9v+PUo04ta9t1N72atyxudLLd0Qmg9G+93GdB+l5at65ks61iwYIFI7dzhUIxobDjNlafhTBFydqsiuqRLX5LieN0TpKhPNHspGMNtiJDh/jYCYHh1RH9172UOLaTgsTmBDVz/XlxtHbc7o83zt9+qrpV2/05aYpZjrPjjbMZ6zwjFYvjSCTCxo0beeihh9i0aRNf+9rXmD9/PkuWLMlpe8YZZ3DqqbkvWFPBctz3XoRXHg7S6/fT2uD8cDRDMn//CGtfqEPahX/QWzYNxJzO9x6Drl2AkIInH/knnztg7GYvTUvSE4KWegitjTNttzqMhZX7hmgI5jRtZENwW2QZoe7rOyWL5sNeO06sgan3pQCrXozT5/PQ0+1c0zpvG2v+WZ+5D2o904ANBAIBPnjWzztvJzLba5GZrPnn0Nc7sX7A/XbdfyJlbbO1WLakowdq/NBS79zHMmEhkwLXvm1og2ZLbSEzs4FQ/j3QG5ZoGnxsXy1TQ3kiYSdstjzZRXeXo+5rvdN5/5k6XC6t4LOghlmZbT2RHSq6ltbmAVH3weuBYd0Hb7+cO2n3wL1/Yf+5Zw99bMvkP2+9A8A2MxYQjgToiwZp39DDh/9noO/Vit7my9uu0mdB0pT0huFjSzSaGybe/aBQKCYWIuZYHe2Yjd44sd5BJirpeGMoXcop/J8+3PUuaubVlNyfHXcmN+wyyihZEQvdqyNSYsikXMktSYKrgtgJm/qd63JEuhmysGI2/tmD1J6mYVepgsNEIz0poBlaniPj4HjjNIYO0YSkGkllh0tF4jh9w37lK1/B5/Ox/fbbc/TRR/P888/niWOPxzPphXAhNBsSMQ3dp+UJYWnnLwNnJiydubi5YRoN/lZ22m5v3vnvK6zbvJqOzk3MqDAWsVq4NI22BsetsbbGhQha6FuR5Fyil/VC7HY5onyiuTuKpCSV1IiLCJbtPMwb69pyrntTVh3jUChAKDQQM9xY01p0AiWbhpqsmONwb1nbbC0Gzr3gdpE5ntQNZMxGxiV4c6+Vrhd26h7qHmisk6zpgM3dGjvOmXhiyLZsYuEoiaQTR15f24Ymc3/72c+Cac3bZJbPbJ1f0bVsbRgQ1t2BjmHdB4FQron+rfdepmPLxiFLSq3d8B4p05nYWThvT/674S36okGC4W6EpaHFZMnrXO6zwON2BspgVKN1gseiKxSK8Y+dsLCTjrByNxYwaymqTrbluFQpJytkUU5EjhW20HQNkRRDegDYcRvNpaGjk+xOUbdT8f0mu5JYfRbhf4dx1bqomevPrDODJhQooam7tKpkwp6I2AlRVGkOjjdO43E7ccdjWbmkIuUxb968nAB5RT7JqI0pKivjFI33YVrOrFlaOO2322GZ9f8axZJOhTB0jRktGrUNOiQE0hx59xC/B/pizszSRMJOCGxNIxLNKuPTkOtbnJ1MK9DXTTArcVNjfXnZqhuzBfYolvDxurWcRHOakZ+xemvRdY1aL7y3UU7IjOUiKdjSPZBDoKFuGnqJBB/HHnwaO87bncOXncAu2+1T0bGaG6ZlZq6Hm616cI11gKdf/sOQ22Un41o4f8/MsyuejJKwk1VLygXgMihYYk6hUCiqibAE0nQSKFmxqWntGwuGshynxbFI2piBoccWq8/GqHU5ybBKuDRLWyLiNrpbx/AbmIFUJonUYIQpSLYn8LR50b06wVdDJLsG+p3sSKB782WV7tGdmsuToExlpYgSv6HB8cZp3C4nIZc1hj+/isSx3+/nsMMO48477ySVSrF27VoeffRRli9fPlL9m3AkohIL52WuXILhgRfpdMmXfXPE8d+q1b2tw60jU3ZeduKRwOdxYg6iiaHbjhekkJgpgY1GXzSrjFPdIHGcJZZDfd054rZccVzjq8NlOBNVoymOCz3cpUbV74m2JugMQMcEjDsWqdwax41Fahyn2XbmDvzvZX/jO2f9b0VlnAAMw0Vzfyb0YYvjrOdPmr+99PshB/LV2eJ4wZ40NQyUpQqmepB9ZtVeBur80NEL1gScLFEoFBMHmZII23nOWH3Vm+BTlKZ8cSyw+kyEVVzwipTAjtu4ag2kKRCpEm2TAmFJNJeGUWNgx+yiVl4z4JRpctUZeKd5EQmb4KshrD4LO2aTClq4CsQba24dkRCI1NQbv8wSFvNi8cYeF5jW2MYdV+yz+u1vf5tgMMjhhx/ON77xDb785S/nuVRPZZIxgSU1XBU4rGfXOE6/6C6cN2CJefXtv2Na46DQp1tHsyQyOfLi2OOGpOmUc5ooSEtipcCWGn3R7DJOueI42+ob7OshnFWnuKHMLMGapmUyCoeySkaNFFJKLrvli5x47q689f7LuSsNDRmq7v3p6ndL6gxOvMFEJAXdWdbYxrrS4nhrSZdz6g11YovKf5vZz5/Z050Y5rWb3uXDDf8puV3acqxpGjvM3T2nlnMg0YNMWFWbNKmvcWqfB4vnNFQoFIqtJm05dtUapHqnpivsWFDIrXpwKSdpS6dcZkoi4sUFr52wESmBUWMgh7Aci5TjDam7dXSPjjBlSXEsrQEXbd9sH6muFKHXHQuyHbUwavItY7pLQ1hTr9axFBI7WvhcFos3BnC5wLQnmDiur6/n+uuv5x//+AcPP/xwwUzVU5lk1LEcDnYTKEUgq8Zxc7/1Rdd1liw+BHDcFP8zWJCMAZqmOZagUbAcO8eaYJZjS2KZEqFpOYJ3sDU42606GO7OqVNcruUYoKG/baivd8TdddZsfJvnX3uEQLiTR/5xb846rcZABFNVnzSpr4GNXRPPWihSkq4scdwwhOV4a0mLYyHsYU2UZNfj/vRhZ2U+P/3S74tukzKTGfE8Z+YO1PrrMxN7AMF4L6RE1Z4VHrdGylTiuJrcdtttnHDCCey77748/vjjeesty+Kkk07is5/97Bj0TqEYG0TKEWBGnQs7apW0OiqqRyHL8WBxLCyJtJ3yQKUSXIm4Y6VNZ0guaTlOCYQJmqv/nV1zEmsNRkpJfHMC3T9g+dJ0Dd82PmJrYkTXOHVdBscbg+NWLVMSMQqGpfGESArsZOH3t3S8sb9ALWMNDSkmmDhWFEeYglRcQIEfRymyLTfZyZr2XXxo5vPKN5/e+g5WA01DjlIcjsuAUGTiCCNhSSxTYEOu5bh+KLfqLCFdpuU4u61pJTN1akeKju71mc+9oUFuuH4XWsxCVtkFrd4/Ma2FVp9FR3BL5u+Wptkjery0OIbhuVanY44b6lo4dOlnMQxn8H/m5T8iROGXirWb3skknFs4f08g9z4PRrrAlsgqZuh0u6BrAnoSjFfmzJnD+eefz6677lpw/e9+9zvq6upGuVcKxdgiTYG0Ja4aA5G0sVXc8ahQSBxrmpYRyKbpWG2lLYe8LnZSgBxIjDWU5Ti7reE3SHYl8wwOVp8T6+yqy7UM624d70xHIBv+wvGUmqEhRWkL9mTETthOKGYB0vHGxfKxaDrEiwjr0UCJ4yoS6Y6wceMmpKeCgGMKxxwDLFl8aCYGcbyIY82jV10EFcPnge7QqByqKkhbYJsgNY1QOCvmOC8hV7ZbdTeh/oRcPm8tXo+fcsm2Mo903PGWnoGatIOtk5quIbXqu1Z7PRopC3pHvoRzVbGjFh1ZIrWtcRTFcaBycRzsn5xrqm+jsb41MynXFdjMG++9UHCbwcm4IPfZFQh3gQ4yVj23xDo/tPcwIZO0jUeOPvpoli5dWrCqRE9PDw8++CBnnHHGGPRMoRg7RH8SUM2jIVISq4xSQIqtp5BbdfbnbLdqJFglxhaRPSmraU7G5GJtkyKnrIbhNzIxxNmYQRM7bhd0mzZqDGoW1OCZVrpCT6l+TEZEwonnLkSxeOM0XpeTlHesqKiUk6I4qVSK3ffbnXUb13HeGb9i1syjy962UMwxOOJnp/l78e6aV1m76R22dG8YsrzKiOPWIWYhLYHmGtm5FZ/XcatOJCW+CVDvNu1Wja4RjAwIyDy36obcmOO0sK3Eauy0zxLHfT3MbJs7nG6XRWfvgDgOhvNddzWfgexKIhdItApCCobC54bN3ZKFE6Skk5QSK2bT3tueWTatZfTEcXewvUTLfOKJCImUMwKlxe1hS4/npX8/ATiu1Xvu/NG87VYXEsdZCbkC4S40t1HVibS6GidBWzCSX/pBUV1uueUWzjjjDHy+/DrVg0mlUjkvtgAul2tKlnJMe1oU87iYCkz0c2CbFtKQzuSeITFjJl5R2b080c9BNaj0HMTjAwlmPB5PZjuPx0M0GiWVSmGbNgKBVquTCptF952KmOABqUk0L5jR4m2tlHO9peaIOL1GJxlKkQqb6P6Bd9xEdwLphoQpae+VzJtJbuUOd395yyylnd6n1CTSJbESxfsxGTETFlIfOAdpUqakLymprQGtiC3R65ckLLCkQNf776MqnLpyy8MqcVwl3nzzTdZtXAfAyjf+zNEHlC+OgwVijtMs3eMI3l3zKgB/evp2vnrSD6rQ263AoyMjphNLWDey4tjvcWqdRROOUB7vSBtsyxlUs69p06CY05xSTqEuwsMVx/UD7UN9I5vWuTPLchzs60FKmZtZ2d8vhCIWNFSv3Ft9DXQFIJaQ1PjGv0AWSSeZS0e/OPZ7a6mtqR/RY85oHZgw29DxQUXb5uY7cO7TZXt+HL+3lngyyj9feZhvnHotHnfuD/C9tf8GQNd0tp+7OGd76LdGe3SIVm8izePSMG1JsE+J45HkjTfeYP369Vx22WWsWrVqyPZ33303t99+e86yE044gRNPPHGkujju2bBhw1h3YcyZsOdABz4CfYRhNvTQTc+64SW9nLDnoIqUew6y28Xjcdatc96nDcNRT7FYjPZwO/Tn/+3DpG9duPDOWpx/fZgwG0xSxdv6gKX91zvNHNiS6IB1We2agX3BxqRtAVQSyBaZ1QezIECAwLpABVtOAvZ1/ovMynUB3GNeeZunp9c3bK7Ob2nBggVltVPiuEpkz3p19a4v0TKfbMvxYCvjMQd9kd/89SZSZoKHn72Hk485p2IRVVXcOpopIClghMPRPG6NlCWJJaC1cWSPVQ2kLbAFgJYRqy7DTa0/Vxx5PD5qfHXEEhE2dX6I6M8w3FBBMi6Ahrqxcas2rSTxRISarO+leQ1kTxLZZ6JVURzX+qEnDL1hqBnaiDXmiJTATtls7t4MQGvz7IqS8w2HHeftnvmc7e5cDsEcrxVnYs7nrWH53sfw1Iu/IxILsfKNp/joPsdk2iVTcdZuegeAubN3wu+tBXI9IgL94rjaE2luAzp6JTtOEE+CiYYQghtuuIFvf/vbZZcVO+OMMzj11FNzlk02y7GdFBgF6pcORgjBhg0bmDNnTtkWisnGRD8HoTfCRN6L4N/GT7I7iavWRdshrRWV2Zvo56AaVHoOGhsHXvJmzJjBvHmOekp7rwghmOGZQfc/e/C0eLATNtMPnZbn5ixtSeeTnYCGu9GNGTIBybTDp6EXmKTtea6XZE8K3/SBCeD45jg182poXtIEQLIrSfc/evBO89LZp/H+Rske22s01Ja+J6Qmiczqo669nlRXCleti2mHtpXcZjIRWBUkuj6GvbdJXXs9mnTO14ZOybvrJDNaip8/ISVdQdhrtkWDH6Z/bFomS/hooMRxlYgGB+aROnvWlWiZT1oc19U05llomhun8/GPnsJDz9xFIhnlz0/fwRc/dVHB/djCZuUbT7L93N2Y3rJNhd/A4dW3/0F9bSM7ztuj4HpN1xASZMJmtF5PJ0rGamlJTAvQBjIAN9YXHlQb69uIJSI54qRyt+osy3FkeJbjQKiTN99/mX0XH4LfV3y2oytLHIPz/WoGiX7cOrI3AdvUDKsvhTB0DaSkOyTZdvr4F0QiKQiFQsQSjqtya+NsjMpSEFRMY30rM1rnsKVnA++vexNb2Bh6eQctlgzwsGXH89SLvwMc1+pscfzhhrexbSfea6d+l2pwrOQ+by2JZDRjOdZMJymXVledCZP6GugKOm5ZHvf4vx8mGtFolHfffZfzzjsPcJLgRKNRjjzySP785z8XdLP2eDyTSggPxk4KQq+EaNy9AXdjefexrutTVhSlmajnQMQEuqajSQ2Xx4WICjBB91X+XSbqOagm5Z4DyxqIIfZ6vZltsmOONaGh2TqG28DqtZBJiT5o4tWKWcgEGHUGmtTQDd2JHzbJZK9OI6VERG0MXc8INwCX14XZbaJJDc3QsIM2JCWGy8BMSaJRSCQ1GmvKG4M0qWG4DGRcgM2oiryxxA7aGC4dG+ccpM9xICTRpIa0i58/DQ3blM559o7+b2lqXKFRIBoYEMeBcCfJVPkFegP92X+z3RKzOfGo/4fe/7L74FO3E0/kp++VUvKDn53B92/+PBdcd1zm5bUS/rnqL1x0w2f42g8OZ3PnmuINNQ0ZH536fy4DghMkY7W0JJYFuiYzluOmIte0UMmmSso4Oe2zs14PTxx/5ycn8YOfn8Gt911ctE3KTNIT2pKzLFjgeFqNgeitfkmnuv6STrY9/u8DkRK091uNAVqaZlWavH5YpON+E8koG9vLd60OFEkGuPcuB2bu3edfe4Tf/OUnmRrKhZJxZfbRv00g3DUipd/q/E6Wy4mWwXw8YlkWyaSTlTX9uaamhkceeYT77ruP++67j0suuYTZs2dz3333ZTLITjVEwsYKW1hhVfN2KiASdqasj+7TsRMqY/VoUChbNQyIY9M0+5M7SXS3jrBkwXJOdkIgUgLd038N3TrSFAXLOYmURKQk2iCxatQY2FEbK2INlHDyOe/gSVOSSEGqwnQaulvHNiViiiTlEqZTbmvwhIRpSUKRwiWcCpEco3JOShxXiWzLMUBHd3n+8YlkjHh/GZ5i4nhm21wO/YhTa7IvGuCvg+rMAvzl2RU8/9ojAGzuXMOWnsr98596wbEUSSl5f90bRdtp7tHLWO33Om61I13HtxpIS5ISkEyGM2VumooI3uaGfNea7ARb5dBQ15z5HB6GW3UkFua/698E4NV3/lG0XXdgc96ybIt3hpEq6VQDoQiERrZaVVUQScG6zoGkWA11I285hlyRuroC1+piyQANw8UnDj4NcOon3/XHqzn/2k/R0b2+LHHcFw1iWikwNMe1ukq4XRqmBYEJlsF8PHLVVVexfPlyXnvtNS677LLM57a2tsy/hoYGdF2nra2tIrfSyYRICqw+C3OUxjzF2CGlxE6ITFkf3a0jLanE8SgwlDhOpVJIS5LtsljouoikjbRlxoVac2kIUyJT+e+QIikQlkAf5IWke3VEyvnd25H+Ek71jqNtLAm2qLzMkObRkCnhlJmaAthxgTBFnpU8Xd/YV4azkdvltB8LlDiuEtHeweK4PNfqYFZZnGJWRoCTj/5m5vP/PfYzUubAg2Td5vf4xQOX5rTvHOQGOxSmleLVt/+e+TtWwDqdIZ1oZxQseT4PxOJjWwy8XIQlsFIQiRWvcZymsa6AOK6vzK26IcutOhypPMlDdgbqrt5NRb0dCt1LhSzVI1XSyefRSKScuOPximVJ1nVIXnnT5pXVA+J42xmz8Q7T/XdjSOelDS7KmRfKFqmVxB2XSgb4+U9cwCnHnoeuOcPEW++/xFcuPZCX33gScAT0dnMW5WyTW8O7B81jIENmVSe3vG4n7lixdVx++eW88sorOf+WLFmS02bJkiX84Q9/GKMejg9EUiCSglS3EseTHWlKpClzEwhKsFU5pxGn3FJO6WTQuqFh9uV7c9jxXPGZrp5RyHIsTdF/vXPHaGciUMMMm6QCuSWcEgnQtcrLDOkuPVOjeSogEjYiKfMsx5E42BJcZbjUuV3O+78Yg+FeieMqIG1JpGeQOO4qLylXIFTYcjOY+dvszP57HQVAT7AjEw+YMpNc88uv5gmbzt5NZR0/zX8+WJmxYAMFXbczuHVkSsAo/Mi9HoinIDpGs0eVYCVsTDQi0eJlnNIMrn0MuQm2yiE75jgcrdxyPFj0tncVntApdC8F+gpn78yUdKry08zjhvae8SuIPmyHv70q2bjBIhgbqDU8a9rwyjj1JTXOeaSeS56q585VQ2ciWzh/IEdAJeI4J+Z40D1pGC7O/Mx3ufHbD2XKhMUSkcyE3vxtdsmry539DAuEO52kXEkbCryYDJe6GugOQrKAJUChqDZ2UiBMiRUyC75gKyYPIiWQdq5Y0lwaqZCaGBlphrIc27aNGTdBG3B5N4P518WO2Zk2OcsLWGxFMv96p9F9OqnOFMnuJOgamqZh25KU5Xg0xpIgKn3Pkf11lacATv1omfHCSBPok7jK9KbzuCBl4eTyGWWUOK4CVtQiPMjns71rbVnb5sT8lRDHAJ87+pzM5wcevQVb2Kx48IcZ11i3a+CBUqlb9b/efDrn7yEtxylR1VjCoofqd6OcCEm5zLhEAH3RAatqMW+AQu7WxVywi+Hz1uBxO8Ip1Fe5ON4ySBxv6vywSLv8eylURBzjNxw32kh1n2YNNbAlULkr02gR7JMYOsyoETnieFrz8MTxK5tcBBPO4/mPb/voiZWeZa2vbWL2dKdEwQfr3yw750A5z5/dFi7ltiv+zhHLT85Zni3IC+0jEOpy6qKboixxLPtMxPtDuwfU+aEvrlyrFaODSNpoBthxGyuq4o4nM9KSSEugZ4kl3WdgBqrr/aLIZyhxDJCMJul3ZEL36thRO2/CygyZmXjjDBoFLbYiJUBSMGTE8BuYIYvk5gSuWkfNmbbjUu33OoItMYw5E3sU3pvHA4XiwSuNN3a7nPOcHIO5KSWOq4DVZxGNJHOWdXSXZzku160aYJft92GvXQ4AYNOWD/nZfRfzf4//DHBKBp3zxRsybSt1q145SByXshxr/RmE5Sj9yDVtoohjgdA0wtFst+rCgrexgLt1pTHHMBB33DeMmOPB98jmLYWTsBW6l7LdcbPRvAakRNXjjuv8jhvTeBVEgT7wuCTEbbrDA27VbS3DE8erNg9kxU3ZGg+8Wb71OGUmWLd5dVnHSXuu1Pjq8qzA2dT667noS7dy6dfuoqGuBbfLwxH7n5TXLts1O9jXDYYGlgSrDHEctRCB1JDhGi5Dw7ZVUi7F6GBFbYwaFyIlsSNT48V2qiJSAmGRY+0yfDp23EbEp4bFb6wo5lbtdg+MhclYYiAe3KsjkiJHhEkpsSNWXpyrZuhYBX67IikoVnbFqHGuuxWxM/HGpgWWDX4PmGblyaI0d+F+TEYKWfCjifLjjcEZ6y17bJJyKXFcBcywRTSRq97ayxTH5bpVpzk5y3r80DN3ZWYzv/TZSzJu11CZW3VX72bWbHw7Z1lJyzGABjKx9bPo0h56wHG7oDc8/mdtzbjAlhp9kWG6VVcYcwzQUOtsE44GKp7Z7hxkES5mOS50LxXKVp3BrSN7qjubYRgaUkJPaPzdB6YliSbAp0ukKegOOeLY4/bRUNs8xNb5SAmrNuWWjPnLau+Q1uPhJOVKT86V8+wBOHDJJ3ngx2/xu5+8zW4Ll+Wtz6113Imma2hSOmEYQ2EKSNllCWm3a+JksVdMbOyI7STs0VBJuSY5wpR5rqC6V0ckBJZKyjWilGM5TkSTOcnSRErkJOUSCYGdlOiDapLrbg27gNeHnRAZAReN544nuksf8CToF9um5ViP3W4nDrbijNUeDatAnPRkxAxZedchEnOGd3clJTw0JY4nLKmuFNHUIMtxkfjNwRTLFluMvRcdmJchdq9dDuSzR/wPdTWN+L21AGwpM1s2wCtv/S1vWcmYY3ASVmzlj1xGLew3AkNaoH0eJxnTeHZrklJiJgUCjXCWOG6uL9+tejhCKm05Nq0UiWRl6ZwHi95NRSzH6XvJ563FMJwZ1KJu1fSXdApUv6RTrQ82dA4jzmeEiSWchHEeBNiCrqAjjqc1zxpWht8NIZ2uWH+mzf7sI+VYjytNypUyk0RiIQCaBiXjKoXb5aG+tqngujy3avrzp5hlWI6TtnPPlNFW00AoQ45ihJHCKRejuXV0r06qS4njyYw0RSbhUxqVsXp0KEccp+ID4tjxYMx137UTNjKVXz5Ic+vYcZGXC8WKWuhujURKsnqDJBLLXe9ucuNuGTi+aQESdM0ZmStNFKu7dUTcRpQxATyRkUJiRay86xCMSFwVqk6XDrExCKdT4ngrsZMCM2gSNXN/JdF4mL5ocMjts2P+hnKrBic24nPHnJP5u762mW9/+Wfouo6maUxv3RZwhE+5YnKwSzWUYTn26MiotVWJl2QohQymIFZaZPs9zkMoNo5dq6UtsVJgaxCKDFhVi1qOB4nm+tqmjPCshK3JWD3YXbqQ5VhKmRHRM1q3panf9TtYQhyPVEmnhlrHlTY8zko6xRLOzKZXCmLRCNG4EzdbDZfqExYn8RrOb+wvq730lrAe7zivsqRc2dewUGmx4ZCbkCur3FcZgpe4DTaOG7ZCMQ4Q/cm4dLfWH4NoTplSLFMRYcrCbrZa4bJBiupRVsxxIpmb4El3wh7SiITze9UGl2ZyO+WcBifDsqNOTeuUBYlkfgyxu8mNuyErxCnrVbUc0WYPChHSPHrBfkw2nOuQWyLLsiWBCuKN07hdY5OQV4njrcSOWKQiNjEzfwqpnHJOw3lBXb7X0Ryx/GRmTZvPJWffQVvzrMy6Ga1zACfusKSA6ceyTFa9/SxAxuoMQ1uOcfdnod0K66DsSUKfhSwQuJ+Nz9svjpMlm40p0pLYlgRNyylzVGzCY7BoHk68MQwSxxVkrLYsk55gR86yrt5NpMzcGYhQX09m2fSWbTOx0qG+nqKTL5mSTsHq+sL4vRrxFPSOs7jjeMoxNmi2pCcwEG+8Ncm40hy+fZJP7Ozc+Clb44G3iluPa/31zJm5AwAfbviPU2e4BIFQZRNz5dDcOCjmGMDQh/yNA8i4BbZATvJZdcXEQaQE0hRo/eLYjtsF3TMVkwORKvyc0t06ZpXHM0UuQ5VyAkglTaeOUj+6JzdjtZ0onGBLc2tIU+Qk7xKWQCRtdLeOZTmxsKkhftqprMkTVxk1eDtD/cfqf1fS3ZoT1z7JxbGdsBFJkeNWHUvHG1cojl2G475ujvKkuRLHW4nVZxGPCRJWvnJrL6OcU9r10Oepwe+rK+uYuq5z0Zdu5d5rX2GfXQ/KWTe9dZvM53KScr39338RiztqY+keR2QeKkNbjo2tylgtkzai16mmLod42UgH5Y/nck7SklimROpaJlmV2+Whpsg19bi91PjrM38XszAPRbY4riRjdXewHSFzH9BSyrx7NjtT9fTWbTIxpaaVIhovrlI1n4Hsrn5JJ7cBm7vluHKxj8alM16agq7sZFzDEMemDf/ucGaqW/yCBc2CExcnBqzH75a2Hqddq00rxdpN75Q8VqUhHeVQ62/A7XJeZtLPNs2lDSmOpd2f0dqWynKsGDdkLMcuHd2jI005ZRLqTEXsuMgrPQNO3LEZMKs+nikGKMutOpVCyyoDpHsNrLCVSeJox62Cln/dlW+xTf+2NbdTESWRgtQQ8x+JFBj9qsnjcqzNVokEkuGosy797qq5NKQlEYnJLY5FQiCt3BJZ0QRYVoXxxjiXcyx+dUocbyVm0CRpaSSS+T6/5ViO0y+o1bLcTG/ZNvO5nKRc2S7V++3+sYz1eMiYY0NDEyCHOQMmwyZa3EZr8CCDybLETiQ+fgcmaUtsU4KuZeJxG+tbS8acNmVlrM4WuZWQjjkGCFeQsTp74iS7j5u2/De3XdY9NKN1To6ILxV3jN9ARqtf0qm1ET7YBB9uruput4pAxHH9ISsZFwzPcvx2l4uE5VyPvWebaBq01EiO7bceJ22N35WwHuck5VrzesljZWccb26szvNH07TMfZ0R3y4NElbp37jpJDNzxPHkfnFQTBycUi9ZCZo0sMIq7niyYsftojVv7YQoWJ5GUR2KiePsbNWpVIqOkFMrF/IzVlvh/EzV0J99XMocy7E002W79EyiraHeMeNJMjV63S7HolmszJCQTtkiGKisoGn9cdJTwHI82IIfjsnMxMJEYAJ1dfwhpSTZlSKlG5gFLMcdQ1iOLcukL+rEiVbr5XRG64A4LqfW8b+yknEtWXxIxno9pOUYkBrDtxwHUkikI6Li9pB1UL3u8edOm420JJblnJNgf8xxU4FyTdlkC81hu1XXZrtVlx9znF3jeMe5u2c+b+7MTcqVLaKnt26T851Kue1rXgMtJR2BXEVqfRq1Pnh1taQ7OPaTJbJ/APR6nOztOZbjllkltizMqiyX6iXbDEwsnLQ4gaffevzwu14C8cKTLpUk5cq2HA+Ogd8a0lboUF83trChP+tnybhjUzgWYx1lOVaMGwa7P+o+g1R3cfNSqt/1VtVDnpiIhHCSjQ7C8BlOJmQVdzxilONWnUwm2dg1UL3EGCyO++y8eOMMkgKWY8fl2rSdEk2lQveElCRTZBJKuV1OcYVimZTjSecfQHcwy9tNy3+uVINUT4rg66Gq73c4FJpECoQrjzceS5Q43grsqI0VsYhKDcsqZDkuLY5zahwPIaTKZXqWOB7Krbon2MF/178JwMJ5e9DcMC3jBlyOOMbQkOGh65IORtoC2Z1A87vAo0NSOMl4SuD1OLVkx1um4jTSkqSSgkQqhG07L0aFahlnk33Nh+9WvfWW470WHZj5vGmQOM5xq27ZtmxxDCB1kOHqx2lNa9KIJGDVakliDLIYZpNIOa5VPg8Qs+nuG4jjHo7l+JWsZFx7zxqYWGipkRy7U5b1uEjm6h3mLkbXnMf60OJ4IOa4Wm7VAE39E31CCvoigf5axwLMEtcq5WT6xm0gk0pYKMYH9qCcGoZfxwxZRS0/iU3Oe0Dkvei4Cv1QDI20pRODWsByrBmak7lcieMRoxy36kjUJJp0xn/Iui5xJ57Yjtt55YOyyYk5TnuF6BqJpET//+y9d5ws2V0dfu6t0GF68sybl9PmvNJqd5UFiiDAAoSEjbCxZJOxMcYJ7I+FDQgbYYyxMIgk8QMRjJCEggUraVfSrjanF/blOHmmZ6ZzV7z3/v64Fbur4/S8sDvn85nPm9dT3V3dVXXrfu8533O8yKBWMmnXY5d95ph6LHAr5rhuhlFPpVrYn0wUAnfAijoAsAsOrGULvBvzyy2GW2l2qu6n3/hqYrs43gTcigu37qLiKnBZeGGripzgdpJVb0XPXy+y6meOhazx/Xe9HQAC5tg0O9/cyZAKsVAHe2EdfNno3kin4so+46wqV2kZl2Y8bZDWZCFiXKOmXNwVcFygaoZmXJ0M1qJxTqN9ZBwD/btVr25EiuPbIsXxyoWG7drJqttkHcPrO163t6RPa/8OGet05Ly4qgsmdVM6XOqqgDAY1sr9F8clk+DsmrzzHh53MZGNf64fvCtkj//2VApzpebhO5POYf/umwEAFxdONhmsRREbfwakXAHi8WWFcl7KqhnaMsfC4SCCSEnjy7wfaxvXD9wqizGJgSlXwuSWmQzGrJwB1y7UYM5fw/EK22gCdzi4i0RZtY9tRcDWoZviuFKzYbgEtXpocgVIJ3FmMnCbNxVlPohKYn4B0QUuw5KsZjuZtOMCjAGKEn+81fbR3GTbCaXVVKeJ48dm4ZQduFX3mpD+u2UXpOE4OAzQ21xb1xq2i+NNwK0yWBZg8ThzvHvHQQDSkIu3CeOMF8fd54y2w9T4roA5Wu2QdRzvN34bAATMMRccpl1v+3ySVYGpNETBBn9xA+y5dfDFuuwdbANRsgGHg0R6QzqZcqV0uap3rTpWCybgMqBaC9nUTmxwtM+8X1n1aJ9u1VFZ9Y3770IuOwqgtayaEorJsZ2xRZxoz2oi0opc9OgQ1dUPFIVg9xRw4hJwvnNr/ZahbsqbpgbZM5v3eo5VReuoHGjEC0sqPGsv3Len+TubzAq857bQufqjjw6BJVxqvrSaMRcX5k60fL9Yz/GAxh8gfl4XynkQhYIw0X5ccLhs01Bpx9zzbWzjSoFVWSyOhGoU3BWJzI+1YsGpyMeJQlA+Xt4upq4jcFtAsGRDLsBzRi5sH8+tQlRW3ao4LtcduEy6SvusLFEpnLIj44NskdhzDMhrN+o07zuTCyFgOlL95bDwdZv2z5XSay1SHCsUTdnIPjYq0tEaADQNWC1IaTXRKNwaGyhpIISAs+6A2wLcuLqLy9zmYCYH1ePXUY8+XFcd28XxJmCvW7AFlVIMr+dY19LYOX0AAOC4FjZKKy2fX9wC5kZRVEx60U7tmGPGXDzvRTgND43h1kOvBoCYY3bHOCfIcHU6nQamUkDVlUXy8+stM26FEOB5EyQVjjBEVyA6mJxoqnQUvFazjoXLYTtAtR6yt50K3kN7bgt+P7jn1r7et1+3ar/oTekZjA5PYveOQ8HjtmM1bTc5thOqqsUK/o5RYToFsTnEFqySAkA2TTCcBZ4/K7BauDrsseHdz4krAMaxVpTF8dT4LlDa2/D63EIoqX7N7uTr4Z/ca2DPsLypn8ir+MyJZp1SzJSrjbTaX5zTtXRLV/V+EB3LfOm2IGjPHPsRKgqRhfI12j6xjVcOpFyTxRZxAYAQwCnHxzQhBOqX6qAey5yaTsFes1E5Wd2WV18nEC6HcERL5pimZGxQr21k2+gOUeZYVUPvjWhxXKzZGM56DK9376UpCrfoSMY0ap7XAKIRuHUWXI+sJhdCXCYl07oKCNG6OHZcgAuARqKkdC05RcVxBap1r90KQC4NFCtyW5m5zAfqWO33w3OLXXXmuJHB95V9kcN4XWC7OO4T3OWw1x04qgLOEcgXU3oau6YOBNu16zuOG+IMpucYCLOOi5U1WHZy/tHJC8+hWpfN+6++/S1QFDkYRSfJXfUdeyAqBZlMATMZySRfrCRPcOuuLISHwsEPKQpU3Y6MMyHXbnHsWgKMAYYVGiIMeWxsK7zl/vfgZz7w3/ALP/q7uOXQq/p636HMSKAUqHTZcyyECIreHRN7QAjBnpnDAKRiwD9nLdsICuAd3jk1NtJ9zzEhXt7xFrq7To0SmNbV6z+u1AUoBeBwWIYRsPe9xjgJATy3KK8JTRG4cyZ5QSGjAf/mTTUQL9zgj5/PYLYYH8a7NeUqBk75U21d1XtFS3VBu+vbYLIwVoicfG47Vm/jKiOIcWow+FHSCux83EvB2XBgrVrQxuQCF6EEqZk0aueS5dVCCFhrNqyVa1QK9QqEZI6Ti+NSpYT3f/j9+OEP/zBqG7WrsHcvf/jFcSqVit2PosWxYTnIZaQ9helNK5QUBTM4nFL7RXiqySg23wyL1aSztcvk7cbvJW4nq26EpsjtGzN4a6ZsA0xr/meQ2xWrUoEgbN7kZ7AZsLosigkB3KtcHHMjzuDXvCEus10cvzLAqgyszmAQCkIByyuOdTWFXdPR4rh13/FWMMdAd1nHMUm1128M9M4cN4IoBGRCh1g0IFaaC3NRcUAsLgtiHykFwmIdTblURRYj1yIcm4NzAcMMi+NcdqTtcxRFxfe+7Z/jba97X9/vSynF8JA05erWrbpcKwSSed/AbY/HHAPAotd3nI8oD/xzKrqI06nnGPD6jjcGn3ccxd4dwPI6sF7esrdoiUJFOqkLh2O9EI1x6s2per5MsVqTd+e7Z1yk1Nbb3jXD8P13yDuOwwh+/bG4vPqGfXeAUvlarYpjxlyUPFf1QZpxAXHn62ABkEg371YQdVdOShUiZz7tzLu2sY0rAG5z2QvfUBzTjAK34sq4Eg/GogluCSiZUBGlZBUQjcbk1UIIWKsWCk8XsfbIGkpHS9vM8jUC3zMlaaHwM1/7DB578VF87bmv4m8/97dXetdeEYgWx1FEo5ws20HKux6jzDG3GJyC3ZI1BiRzzB1p3CWEgFtnQcaxywCq+ARM8vXoJExPNU3KrRsdq+umfE3F2x8CAl0D8iUBqHIhxq0Mroh1awyCCShZFW7p6kbNMUsanXEA6yWBxTWPOW7lIn6NYrs47hNuTUoHShZBSgUcT4qqaWnsjDLHbeKctqLnGOjOlOvZSHF8/11vDX7vlzmOgugKoFHwi9Wm/kFRsCGUhhuQSkDczqZc13Kck20KcEJgmOEO5jowx4OC71jdrVt1PJ5Jniu7dxwOHptflcVxtC/ZP6eGMiOB4VzHnmNA9h3XnS3pO/ahUMmjVpNFElsG1xWo1OV5CZsjHzHjmprojTl+NiKpvq+FpDqKD77awJ4ReW2dyqv49EvhhCKlZwLJ/uWFUzCtZu+AcnUjmJQPujiOy6rlGEdUCrRwehVMSLdqlXrFMbaZ421cdQTMcUO0j5KhYAYLzH2YyWBcrkMdaV7RSk3rgbzaXLaw8UQB+UfWUD9fA1EIWJ1vSazLNnqHdC9O/ttSfjH4fX62fQrINvqD33OsN+hvo//nQt4bFQrUvCJWFr0C3GrdbwxEmGNbssfCkdv7RluqIuOZWqkTTas5p1dVZNHcyDaXa56iLIKhtFxMN2wCQgFngEWsXHwjILp009/qBTfBBJwERSDnAuurLubzAk+dFHjmlMDscsILXAfYLo77hGAy19awCFJaXFa9c3p/sN1Sl7LqQU5QO2UdW7aBc3PHAQAH99yGidGZ4G/R4tgw+iuOAQDjupRXz8YlSKJgSyOvCAL5bYcCKq3Lng37GmSVnDoHB0HdiDLHV6o4ln3HdbMKx+0cnRQtjme8onfvTFgcL65cbN5uSm5HCAn6jjv2HANAioKYvKPh2mahKkCxemXPC8OWK8ZpXZrMRTOOe3Wq9iXVQDzfuBXSKvDv3hjKqz/5fAaXI/Lqmw/eA0DK5M9713oUWzX2NL5eEBelEohWPVYOlznIUeZ4O+t4G1cZQdRLAxtFNZnb7TvOWisW7KILbVRreg1fXl09U8Xa19dQv2xAn9CR2Z+FNqqB22ygvYfb6B/CEUALcitfCO91K8utfWS20T9aMcfR4phQec1pKlDx1nx9ooXb7WOc/NgnbknZL3c5iOdlA3jsripNX3lCcWnYaCqOKSEQPF4ccyFQqIb9xj7SKSm1LlVlXrq1ag2siHU2HFCdyNxnc+sX3Ky8jcLTxaYC/6kTAt96xsXFJdm7PTkKzExcX4yxj+3iuE8Ih8NyBCxHNuX7Jka6loozx21l1XLAVRVtoIVUp6zj83MvgXO56u0bcfnIDIA5BuSkgIzp4HNViEKkr6rmAJnmFXaiEqBDb2pKl30m12LfsW0wsMbiOHNli2MAqHQhrY4zx7KXeHdEVu1nHUfjnqJqBF9aXaqsd477IkTmHbcwaBsUMilgrYQrKlGsm/KmqDsu+IqJdSPMDW7Xc+y4ssc4+D8DjizJifV4huPQeHdyqztmGH7Al1dzgl+PuFff5BXHAHDm4otNz435HQy4OB7JTQR98IG6wDfaSmKEHe41fVEQQkBAuo+F28Y2tgjcas0kgkpTrsCIS6MtJZ1KVoE+oUOf0pHdlwmk10Qn4PZ2du61AmZxqatNwFohHC9Xl1YTt9nG5tBNcQwq5xG6CphWpNeXEDCTN8UHNUHIRS/ZMiGkrJohWBTxmWC7gWMQQsCwmmOcvLeGaYcDhWEBhtlcHBMQqAqQLwgoWQVu2R3ItS+YgFN0QNNKIDHfalMubjGYiyaqZ0LDQdcVWFoHdNvFjh0KxnIE2vVmUR3BdnHcJ4QrYDpy1YlQBpd5F62WRi47guGhMQCdZNVykB20IU4nWfXpiy8Ev9986J7Y3wYhq/ZBhlTAFWCXqhBepJUgJHkSoSsQFQciKZvG30SVg9a1GOfkWhyCEtSMsPF1qEPP8aDQq2N1rOj1eolHhycxlJH762cdryTIr4HQlMtlTuzztgJJKRDrg1slTUJGl7LqK7lwYliS5KQlG6i7yNc6M8d/+EwGd/7YfnzXJ8fxw389gn/5xWH84ldyMFwvwmm302p+loh/+moD+0bljfD0mopPHUkDaDDlunyk6XkBo4vBM8cKVTDiqQuCIlyl8tpOMuVyPKbYGxeEEO3Nu7axjSsAZrGWTKKSVmDlrcCIS59oZo2jUHMqlHR8Zk0IAQRivcvbuHpgBgNt4VS9VgyZ49X8asxD4/Qsx9zKttJls+hGVi0g59mNvb5KisKtuE3meU0gXruExSGYbJmIKhFVVS5e2w3iLd/RWksojlVFGnD5qJuA5UrSrBG5DLBRBSzFa80ob15R59YYmMWhpGggMWf1rb1/+t9f7Xwd1pKckFsO4NgCustki9R1juv/E1wlMIfDsr1Yh0j0ja7JVa+dU1Jand9YgOsmafM5ipWtMcTZ0UFWHTXpiU6igc0bcjWCTKaAZQNiSTaEknTC6AIAKdrRlIt6vaXXInPsmgKCIHAAB65McVy1ATUbSqK7yTpO6iUmhASmXKvrc3BcOy6r9hhmAL3FOQFe37ELbOEkMJOSxeqV7DuuWwC4AF+og6QUrEUNuRJ6jhkH/vpYGg4jsBjBclXBibyKF5ai/ca93SxTKvBv31gDJfIG/2dH0ji2ouDw3juC3vDTF59vel6htHWy6uhrFst5WeyqRBbAdvNNWzgcBFJtEmA7LmUbVxmsxmWvfAKUjAJWZahdqoM1GHH1BIKrHr2yDQlusJbs/1oxNJ9cK6wHjJ8QAucWgOfOiGvWLPR6QTfMscPlXFpVZBHrO1arIyqUjNK25xiQ9xhmuLH+cssJ5dKqIvuPG3uIHSYLZDXhMtdUOe/wF/9rJgAhJdeN8OcppbqUYw+iOGZ1Bm4y0DQNFtz4Fi+4sToD9eJYK6eq4A6XxXGdQ+UMuM7Mt5KwXRz3CW5xWZgoiOXC6ppkbnxpNRc8kb0tVzcCafMgzbgAYCgzHMi0V9eb39svjlVFw+G9d8T+NkjmGPCMeDIq+JzXe5xtllQDkJm4joDoMFEgBKga19ZNSDABxxYAJUFxrCgq0np2S9+3bBH86OdG8f+MDwOT3y8fq3YvqyaExIq43TOyOOaCY2VtNjhvhzIjGMoMB9uN5SJxTt2YcqWULe87VhQCxq5scVysCGhVG6JoAyMa1jakaQulCsZHm6/pskXgcnnTSKsCI6l4oTiZ4Xjtvt7l57fvYPjH98oVIy4IPvKNHCyexg377wQAzC6dbXIWjy5qbGVx7Li2VBconuleC+ZYRPWrhEBsmxRt4yrDrbZmoqhnymUtmdASjLi6BdUpnOLW+jFsozOE8DKtWzHHEVn1enEtWNCoGfKes7QOvHRRBJmumwUzGdYf33jFSO6FEC2LY0rD68v1imO/8AyY44yCzN5Mx/chGoFbZRA2D1QhhhUSncRz8Wh0n3Yc3326+TV1VW7v9y4XKgJaiyGBgEClwFpRQElRWGudPWI6gdVcCB5ZXKYEbm1rzxu3xkA1gtTOFMxFE/VLBkxbxkgpXAAdFimuB1z/n+AqgdUZapa0Z3eSiuOoKVe+ue84OjmNZscOCj4jmN9YAOfhRNMwq5hdOgMAOLT3toDp9jFo5hgAMKoFWbekxUVDCJErbx2KY12Tjn/XErgrwBxZHNcMuXO5zOhApfJJeHxWQ75GIUCBQ/8dgNKVY7Uvq54YnYGmhquye3bcEPw+t3wuiHKKKhGA+PnaVZwTJRAEENWt7TumVLpEXikUq0CmYkjTHo0i7zHHk6MzUGjzXbRghOfDWw7Z+MwPlfDlf1LAn7+viN/9njI++d4ShlP97f8P3W3i7hn5/eZrFL/5rSzuvPG1wd+Pn3sqvi9b5JTvI5aHXc7L6xtIlEsLO37NE5UAbWKftrGNrYbgshe41f2KqtKUq5URV7egOoVbdrY06m4bnSFcAeEmZxxbtoVKLZx0rJXXgqK1UpfF1b4dwKlZYHZAXl1u2ZU/r5Di2HXD8b6xOLZZOEdxeeS+QADD6u26oRoFq7kyC9ibc1p2nBEmBLAaTF8dJpVfScWxpoYstuMKVGrN/cZRDGWAjTLgKBTOhi1Z7E3Arbgx1RXVyUCdsJPAai6IRkFVCnVYReVkBfWCCzgchKGl4uZ6wvX/Ca4SahUGm0unassO6apQVt0+zmkre/6A0F3YZQ42SuGIfW72WCD/aJRUA4NnjgFZ+JLpdOcNFRoU0a2Q1oBSDQNboR0EhMvhOjzGHHfKOB4EnpmPTMoyh4HpH+zIHNuOiY2SPPeiUmkA2DMTmnIdP/t04Hw901AcR2XV0SKrHYhOITY2v0raDhkdyBe39C0CWLZAvcSgF0yQnAbHtYNrulWMU8EMh9vxjLwhagqwIydw0xRDpv85NhQK/Ic31zCsy9d99LIOe+qHg78fP/NkfF9KUUOuwS/OxR2rI+dIktN8ncdtQBXSFAG3jW1cSQQxTm3kgUpGgTqktM1W7QSaomAW33asvsoQjgBvURyvF+PqqLpVR3ldFssVA+AcyGUI0hpw5LxAdQDyarfG4JadV0zMl88aA809x5YbKY5ZOD/UFPn99wKiSRM8tyhVIS6ThW+06NUUoNrQuhd1tG6EqgJf/Prv4YP/8R/iyJkzMG1pHtsKvrS6DgVujcHZpLTaWrehpMP7J01Js6+tWnDjjuzZ9sdGbUKDW3JQPVMFsVlcBXYdY7s47gNCCBhVAYvHnaqBsDjeNdWeOd7qnr9WplynI/3Gtxx6VdPztoQ5RncrSSRFIcp224s6pUs7/Gup71gwAdsCCBWoecXx0BbHODEOPL/YoN3Z9+9R6lAc5zfCvEbfjMtH1LH6hZPfDLeb2BxzDADIKBC1rXesLtdl4brVqFuAs2pBs1wgq2K9GIb5tTLjKhrNxfEgsSMn8PNvDDON/37pASAr846PNRbHXiFPqYLhofGB70uUjQ6KY0Kkr0ADhOnGCwyFSqn1NbQAto1XFqSbLQdpUxynZlJITada/r0bSHdZvuWmXFbewsZThSvq5n89gXtxcknFcTTGycfyJTneFyoiYB13jANrReD4AOTVbsmBW2ObZhWvF0SL40bmuGqGq8a+rBqQcuaakRy71ApUpVLpZ0pViMO8jOPI9FRV5Pwyeq04MkY4EWsbS/jzL/xnfOPZr+I3PvlrYBxtXZp9SXjNlakMbqX/4phZHKzKQCNePlQnckzZItUBNzmYE2ZKE0KgT6dQO1+HUrJafk/XG7aL4z4gmIBtShktJSTIOAYAXZd9DzunOzHHW8vctIpzamfGBWwNc9w1UoqcPLeZKKR1mZ92LTlWC1fAtgUcVgcX8mbmOz9vFc6sK6jYjSnzd+J89UDyEzwkmXH52BPJOj53+Wi4XaOsejgime3GkAuQfcdbvAp+JU256oYAX6xDzSoglMQWHabGdyU+JyqrHs9szST1jQccfPct8uKwGYV256cBksLZ2aMwrDBz3D9u48NToHTwt4EYc+wtBEq5dPzaFlzIx9QG5tgV21nH27hqCJjjLZYHBpnJW2zK5RRd2HkL3HhlFFu9gjtSVu0fbyFEUBytFROK47klMJdjtSDvO4A0DN09JeXVc5tMe7LWHZnF+wpkjqPFseMKlI2IIVeUOdYk69vYH9wORCMQ3sIX1UhiL7GmyjmmG7kkG2XWUZy6+Hxwrjx/4km0zn8LkdKA9RIASmAX+lfUsZoLZrIG5piC2xxsi9Qo3OYQdnzhUM2pMA0O3XBfFpJqYLs47gvC8QyYvBWgWHEcyKpDyeryWnNxHDfEGXzPXyvHaj/GSVNTOLj71qbnZTNbwxx3BZ2CdHCsVhUphTGupeLYM+Qy3TDWaJC51UmISqrv3xX2Q50V34V2C6mtHKgBWfT6iyN+kS+323xxTCjZctZC12S02pUojitLNkjJBhmRN+61Qlgct2KOk2TVW4GffKCOg2PyGnJStwIHfwWMuTh14TkAcuLnG6mNJRiHDQKxnuOKtxCoEAijYZXckZEQiDI2CpFu1dtZx9u4SpButmJTkulewLa4aHWKDpwyg1vd7uVPgrClUsU/3gt54MKiVxwXmluH8vk1VIoMNRPIRjrGMikprz5+sf97HTMZWNUFoQBrHC9fprAjwcJRWXWx2thzHGeOHafZWbodiEogWCihT+ol9nuIo0V33UqOcQKAs5fCqMSNUh7lauv4Vh+ZlJRuu5oCe8XqWyXF6kwu6kTynalK5WfcogU3P8apUWVh5lLQyhYQ2ZcL8yfwy//nR/GlL31pS/ZlK7FdHPcByRRyCNUvjiOyalWOlLqWxuToDABgKYk53mJZ9UyCrLpaLwUZtjfsvxOq2tzkqKkpKIqU615p5lgWUGieQCfgWpJVc4fDdQDDjhbHW8scP7sQHrufeZ0JVOUAXVVuwQtLyVaJp/IKTq6Gk7BGWTUhJCatDrdr7DluL6s2rTr+7Ue/Hz/9y+9AoRQuoRO9z7iTHkCAKxKpUb5sgnARGPbkI8Vxq57j4hVgjgEZ7/Qfv60KXfHeY9ePAzQTSKsrtWLQuxVd6BgkEnuOVQrYDXJph8siOHqjVf3ieJs53sbVAbd4NwTQYEAI2BYWrYIL2GsWuLFdHLcCbxhrqobAyob0NonGOPnIr+dR3uAwTOl1EcWOcY8V7BNulYEZDOqwCrf6yvBeaMUcFyqAIBFZdYQ5VigB4z0yx17UkWSOKXwfsGgvsR8TFS26TTM5xgkAzkZUdgBwce7ZjvvhtweaRIFb7/+6bHl+iK2LiPNjsKKGsy4TcEBB92aB4fB4feIzv4qvP/U5/Lt/9+9i3kzXA7aL4z7AXQ7DEFDVZuY4pYfLiL60uljOo16vx15jqw25kmTVZy+HK1y3JEiqAXnC++zhFWeOAYCSjq7GqgKUrqArcSc4lgDjgGleGea4YhGcWpMj9YExhj2jKvSV3wr+/hdH4+ZnjAO/82QGP/PFEXyp9NPA8AMAmpljIC6t9tEovx7KDAcZuklRTt989vN44eQ3cfriC/jaU38T/sHLAk3qOx0UdH1zE5NuwOoM5YsGlEiEy9pGJOO4FXO8xT3HURwa53j7DX7OxRAw8e6gOI47VQ9+7JGvG+k59hcCVU8uHXWsdrgsgqNSLLrNHG/j6uJK9nrSFIVT2rqildUZmMEhgC13sb1e0Xi866bMq60ayczxWmEN5Q0GLqScOgpKCSaz8vV6dVMGvGgeJrOzWc19RfSJtyqOVzYEMhHrZ98kNAqzV1UykTJ6nzluhN8TbHuXJGMCtpvsVC2EiM2rAeDspWc67gL1ivQqJ+Am7zvv2CnaidnORCVwNtHL3A7c4k19xY4rJe6qTmJF89zSOQCAYRhYWLm4JfuzVdgujvuAcAVsQ0DREpjjSDTSrkjf8fx8KGcFQjkqIQQjuYmB7+PE6ExQwPjFcad+Yx++KVfdrLXcZqtAUgpEyWl7Q0jr0gr/WoFjC3AB1K1wp7bSkOv5RRVcyHPv/l0WhOFi3H4UMM4CAF5Y0nBi1Qtotwh+8Ss5fPakVzATCky9D0AzIwwAe3bEi2NFUTExNhN7jBASyGZLCbLqUxeeD36PyrjhhcZvZaRTRgc2KoC7hayjsWSivuFCGw6L43xXsmp5zBQqMJLe+gnPWw5FZg1T78PJ88/CdZ34wtzo1hTHUVl1jDl2eaw4FjaXDHxkgkkoAREiORN5G9u4AnCrrTNvBw2qU7gVR7YXbAHcKgMzGfQxDfZa+3vrKxUicr8QQgSmn+WaLIQbsV5ZQyHvtsyzzXp2x8W13heCfRbRd1YWbfpdXy5IklVbtkC+CIzkwuKYsXjBp1CgZvb4/RAS5ALbbb5bnzl2XE/clFAc5wuLTa1lJ893Zo4Baea7USYACJwOKS1JEFzAKTigqeYyjqYonOLWzLPcejw6CvC+o4bebSEE1iJGpfPL57dkf7YK28VxH2A2h+0AmuYHkYfMsaZFmOOIY/XcXNj3C4QTxtHcZCBjHiQopZjyJul+ru3pi+EKV7vi+KoyxzqFMBjQxogipcsekCvhStwNHEuAc8AwQ8pyK5ljX1Kd4gw/9JVnYf/SEdyXfjUw9+vBNn9xNI35EsW/+OIwnltskM+PfTuy6VyiaVgjczw9vjsxs9eXVher602TregiTNTF2R9Qt7Q49ky5alskuxdCoHiuDocQaKnwBuEXx4SQpsUEHz5zPDHMQK/AvPvenS5GU951NPFdMF0Z5RZl+7eKOdZUPbgGgsmDQiRL3MAcJ13FAtiWVW/jqoHV3ERGZisgDXS2zpSL1VwIDihDCtyau2UuttczmBFO+B03ZA03Ksmy6vXKBgpLTqzfOAriMfQbC72bLdl5GzStBM7KrwRTriTmOF+UsZ1jI62ZY10DKj1yOOqQEsQQGVYyI6xQoO4V3Q4DXDe5OG5kjQHg/PxLMK1688YNyKSkMsGhBNZK7+eJrwihmeYdozoFrzPwLVhgdqusycXfdjzX78iu1IwKzIgJ6HZx/AqAZQqwyCpJkiEXEM86jjLHQohAaji2RZNTIMw6rtSKqBuVoGhJ61ns33VTy+f5zLFp18H4Fb6RpihgMaBN33Fak30m14pjtS+rrhthcdyvWzXjwJ+9mMa//nIuYH+jEAJ4xiuO7zPWkSpZABN4nXgQWP1TwJKLME/M6fipL4xgvixfYzTFMT3kHcuhezA5fUdM/uKjsed4x8Sepm2AsFeVMTfIdgbkzev83EvB/9eLK03PFavWlrEkaV2u+G6VKZdgArUig6MoMYMO35BrfGQamtoccigEUPSY46nRKzPZUah0r5b/yQIT34XjZ59skFVvjSGXfG05tvl954TKzi7hxpnjRBCyLavexlWB4AJunYHoV6g41smWusvaJQdUIVKmW5fRL9uIg9V5oBTwnYqHh4BiBchvJBhyVdZhFVxk9eb7mLAYeEFOTvIXelul5TaHU3ahpGngrPxKiHNKKo4X1uR3m0mHc2rXjS+saypgOtLVulvokzoye2WqjGknF72qGi6wB6xownAQNeMaG5b3O8bcxKK5EWkdMGzApAqcUu+LVqzGwEwOpQVzzCw+8AU3IUTiwqHtvU20dztKjADbxfErAmZdwInILJyIrDoVZY6nk5njmlGB48rnbBVzA8R7Rc/NHsPymsxbvmH/XW3Z6mws6/jKSquJQgEuJHvcAromC6BrxZTLtjiEAOox5rj34thwgF96eAiffCGDo8safvnrORgNJOvlIsVaXV62D6qhjHunmAGEA8z/RvBY3ZED1cExht/5ngoe2OXtH6FITb8rcR/2zDQUxwl9yQAwNjwZ/F6MFFuXFk4F5zbQPEACgKg4QLn/+IJ2IESaulU6L9z2BeEK2JYAA4HqOZsy5mLDWwSYaiGprtgELveK4+ErZ4oTk1ZPvw/Hzjy55TFyPvyxzbBqwUq6QANzbDTEOEXQsnAGQPMG3AuVln/fxjb6hcw4FgG7tNXYSndZIQScNRs0TaUTMxfbplwJYGYoo3eY/BnOygV4P+d4YnQCiseIrJXW4dQYUqJ5jBJlB8Q7ltVZE7WN7pVSbs0FNxmUtCJjvtgrkzmuGQKzy8DEMKBGFptd1sAce87SPfcdQ14blp18+9FUwLRkv7HjXS40gUyImnF911v+SfD7ifPd9R0LAdQFBauznvOO3ToDeLKjPtW9/PT6YM8d4QhwWzQxx07CKb5WWIr9f7s4fgXAtgR4REJgxZjjsDjeNXUAb9DeiD8Z+1PsezJkkYNoE2zt5DRaHD/2fGil3sqMy0cmVhxfJVOuSuvRjhACgWunOHYNDkEJavX+DblWqwT/6v8N44m58EaQr1F86khct/VMxKX6tkh01IQzLn9Z/iMMaeF397p9Nn77u8vYOcyxNx0u0Li5NyTux/jIDmRSQ8H/k/qSgcaonlB2FpVUA7I4bupxYxx8fetof1UBCpWtYaaFK2AaAiKii94orQbRV63NuOT2P7R6Hv/mb56A+Z+OwP6fJ+B84hycz87CfWQZfGHwFf09O12Mpr0b5Ph34tj54yiUQjZ/KxfnxqKmXJGCPFr0CoMlx+UoRCpIWoBUbIhteeg2tgDcY+saJ4Bbja2QVbM6g1tnUHzpJSWwt025YhBcgJs8yGe1HQAC0BQCLoD1kry/7ZjYgclRed9bL68DDgdNkK2Kgi0XAQFYNYb12e4rN1ZlMl/bZwPFlTWHu1po7Dle3gDKhlyg0LSorDp+7qpq71nHPlxvESSJOdZ9x+qIxD4JPkM8PDSGtz74/cHjJ85113ecUoGNmly0cno05XIrbssKjlBp+MXNwY4pzOTgntN3FJYj0Lh2sF5sKI69pJzrBdvFcR+w6gwcEVe7FrLqqYndeG/mBzBFp/HA8oN44qtfwCNPfxZff/pzwTZbOTn1ZdVAQ3F86N62z4syx1c6zgkASFqBWLfbZr9RIuMWrgXYJgcoUDX6M+Q6lVfwM18cwfkNyeYP6RwalZ/t0y+lMVsML9NohNNMpNkmzXSMklGAG/i+/U/i5kkXH3y1gf/ythqy3lNG+UuAkINlid6VuC+EEOyO9B23klWPtsg6biyObceMya4BgGRViBVzywyXMilgvSxjOAYNwQQMQ4BGCrpuYpwKBgUVAu9fuwiVcaDmQizUwV8qgn9rFexL83B++yT45cFebwoF3hSRVpf11+LomSeCv2/l+DMeXUDx+5wVCnjyUcEFYLqJS/dEIRBtbuy0zeLZNraxGXCTywKlhaKhHUzPB6PXsYcoW+Muy2oMrM6D4ljJUDhr9nVpynVmjuPS0uD3mzsCwg0ZuGgxJHioepkan8LUmFRMbZTXQDlvGqME4xBrJkhG3ss5pSicN7r+vp1GVp/gFccc67qOS0sCaU06f9NIU7Db0HNMIIvAfphj20WsPTIKVZXFs+1AmnYlrJOtFZaw4bUM3bj/buzbdVNAipw4/2xXxzyTkio3BwR2AmHgFB1Uz1TBEs4BZ8OGkmoTj0mkedYg4atqGhcO62ZzDnQjc1yqrKNcLQx0f7YS28VxH7BqHFFHnVZu1QpVsEPdGfz/7Kcfxa/+3o/ik5/9teCxrez5izLHUdfgdmZcwDXAHKcVmXXc5sJOaTID71qAawiA9Mccf/2ihn/95WFseGZNu4cZ/vd3VfD+u+SCi8sJPvZUFsKrI46uyJvu7owDdSNOne9VpAR6t3IC/+cfVPCBe8yY8VO5eBGoSifpApsJemAbsSfSdzwz1VlWXWpTHAMJ0uohFajYEKWtKXAyKdkvtBXKAuEK1A0RM+Na68ap2iAYcy1o/g1TIc2jLxNwPnWhbVHYD76tQVq9EFnB3aqcY6Ax69jrO44WvYzL3vMkV2BVMsdJEwxhs0C2uI1tDBoyxzNZrtgJZW+9stajMIbqFO4WxDm5VTcmvVQyCtwau+5MudaKAs+fARbXtmDB0+HgTIB645Bph8WQ7YT3tsmxKUyNy/HScSxwUQUax+qKC1FzAa84JjkNG7NW11E9zoYDGul1J5TAfQWMddHimIkUlgvA+LD8PyEk8PGI5hz7IAQw+jBndV3p8ZLEHAcZyo5n2pVQKZ2LSKpvPngPKKW49fB9AOT9bnlttuM+pCN5x/aaHRhocYejcqaK/NfXsf5EAcWnC3Br4Tnk96bTdOsSjmq074ioVuCWvGdHFw6FEDDs5kWGxuIYQGzuca1juzjuA1a9sTiOMMd6JvhdcIFRhL2nb0+9A7ThK7/jxvsHtl8LZYpffzSLr52XVOFMgiQ2m85hz8wNbV/najPH0CmIzeVNpgXSOlCuy56Qqw3XlLLqKEOa68KQ69kFFb/y9RxsJs+lu2cc/O/vrmD/GMc/utvETE7eFJ9f1PDNSxqOLqtwvG3fkSuh0eZ3n1ccl6vN7poAsLI+DxS/Hvz/yFJy3/mrbnsTAGncdtP+uxO3GRtullXbjomL8yebtm0sjolCIQCIta3RxWdSsjDeClMu2+IwDQE94rmV34gWx7sSn1c0KaYii2jKa6eg/9p90P/T3dB+5laQA56UfcOG+5nLA93nu2Zc5DTvvce/E1Dk9T2Sm9gSp3wfUel9yZfeq0Rq1QDA5l5GRgtZNUOyY7XB4n3L29jGAMEt3jS2douap2aq9zj20BQFq7kDd5d1y25srqJkFDDj+jLlclyBI+cE1goC6yUxcNabO3Ic8nuOoyyYYYTF8fTYFKbGwwU/w92AaGD7RdmRr+XJTtMjCsobDLWlzqsl3OVwCnYogYeMc3ol9IhHZdWGo8G0gGw6PG/9WNKk4lhTe3esBqRsmnFZCLfcL0eaZiUV0Gcipls3HpDzpNtveE3wWFd9x1RK9w2iBH3HVt7C+rc2UHy6CEKB7P4Mapfq2HiyGOSUuzUX3JK96S1f28tPH+T1IhcO44+5TPYcNzLHSX4z8yvXT9/x1s2MXsYwKgw08s21klWj6sSK4Qk6gf/81v+FlR2yiLph3x24+5bXD2y/fv+ZDL41q+OhcylYrIa3HmiWxN7krXC1w9Vmjgkh4MS70cxkErdJ6VKOYlhALnuFdzACwQVsk4MqYXFMCY19h4nPE8AnXwg/27tutPCvXl8PBpi0CvzUAwY+/LB8nd99Oov794Q3htfQ5qDnvUFxnCxdWV2fB0qzwL5/C0DmIb/lUPPN5t1v/seYGJvB7ulDLXviY8WxJ5m9MH8iuHlRqoB7TudJgyQZ0qRr9SEG0k4a1AcUSsCF2JLi2KgLuAzIasnMcWtZNcGUG44TZFSTbM6YDjKmQ/vAYdi/eQIwGfjzG2C3jEK5bzLxtXqFQoFvO8TwxTMAlAww8d1A/i+3VFINIJbfXq5tyF9UCuF6E3OHy+I3Sb6qUAjbC5hs6G8SJgN5BfThbePqgNs8UUbZDQpVYApAxRDYOd7986hO4ZQdGc0yoAgpIQSsdRtKJsJEKkS6cVddpGZSbZ597eDsnMClJYG95QrMGkH9vhEMJU8L+oJwBLiLgF03rLAYKkf8NKbGpwNDLgCosg2IqsyNlkaQAnzVANHDbdI6sEEUrJ8xMHrzUFM+bBSsJqN5tPGwdYpqFKzGgvd4uSLKHJfqKdwWmdMJLqAqOoBaU5QTIE25apZsZaA9ZCQ6ndaHiIxzsuzmwg+IxzjdfOAeAMDtN4Rk14nzz+Ltb3hvx/3QVWDDJJjWBaqnqzAWTXBbIL0nHYwF2f1ZGPMmNp4oYOy+Uc8XQYDorT8v1SmYwcFNHltw2Qy41Tw2OkwWyKmGxNC1YjNzfD2ZcvVcHP/Yj/0Yjh8/HgwSr3rVq/Dbv/3bA9+xaxlmVUDRosxxVFYdGiiJhGDvB+3XQHtn6xilJJxdVzCa4tiRa70CJEQouQWA33o8i6ksx2huEqUIk9hJUg1cA8wxAJJSIDasljeFtAaseXFOV7U4ZgKWJSVZNa84HsqOdLyRHV1RcSovj9ehcRf/5o31JkOD1+938OBeG0/N61irU3z5rJzMUCJwIOG47KVSKRAUIg1Y3ZgHyhcA7gBUw5Hl5MtfUVS84VXvbrv/cVZQFsdRSfU9t7weL5x8FABiQfABhlRgxYAo2iAtFkA2A4UCpZpA37PcFvCLYy3y1eW7klVTTEbGCTIaj3siEymo7z0A91NSduR+5jLogSGQqRZBmj3i22/wimMAmHrflSmOh8LqIFiwUUjYc+xwEC6SJ4x+JnICcyzqbhczm21soz+41RYmcR1g2iKIfymUAb5LJDrcJkG6y3qO1SPN47JbcwEBqLnup2zc5HArzewSVQjsooOhFs+7lrBeEjh2ERhnNjL5Guqugmo1h6EBTfYBjzn2ZPSOK2BHWLBCpGVoYnQiVnyVzAKExaQCJqUAdSadqrPhvqkKgZNSUVqy4RQc6JPNMX8+3CoDt3loxgXJHHPL6/NsUwhd74gWx6abCiTVAAAmoKkec+wmM8d1U0Y6ZXtY73E6EPK6ItWJLpMJKY3wnaqHMiNBBOath18d/P3k+e5MuTIp2Y7BdKB2rgZtUkd6Jv6GRCHI7EvDXDSx8XgB6d1yXtBunklTFG7FATPZwIpjt+Y2jY2OF33WSlZNCQ0MS+dXzg1kP64E+lqi/PCHP4xHH30Ujz766CuuMGYOg2nwmCFPlDmORjmJBFdIfrLUU6/lp19K4Sc/P4If+9sRbNRbXwgLZYqKFR5OLgj+6yM5jO58R2y766U4RlqRk+AW/TaKIntCrrZjtXAFHFuAqkDV6zkeynTuN/7Lo+F58g/vspoKY0D20vz0gwY0JV4g3DbNoK5EnI29c3FfB+Z4ZX0eYFVophzU50oK1tqcU+2QZMh15mK4kvq6e78j+D2ROaYEQiEQq1tzANM6kC8O/nVNQ8gV6sgBy2+EK6STYzuTnoaCSWKyaow1322VV02AvsZjiy0O51MXIdhgGNI7d7hIE09tMPEdgDJ8ZZnjasgcBwWvw1urV73YmcSs47IDbBPH29giJOV4doO6Gbrm1i3JQHYLohBACLAWfgOVlyqonOrtXuzWGLjJmvoSaUb2N17rplyuK3D0vEC9wjGyVgVlHKi4KC91dts2Foyu3X+FIwKpqO3Kokn11iACI0EAuew0psbCMbNobMjC2DtmomyDWBxoXIxIK6iUOMx8+xOCefLpaMFDVQruvvzjnKKyakp1aNFWGy5CWXUL5th2e3esbmW05UNTAduWhV+jrLpQWg2KvxsP3BUcs1x2FAd23wIAOD93HJbdWb6W8fqOnfE0Mgez0EYSKnHIOVN6Txrc4ahdqHVcwCMaAXfEQOOcWJUFLQM+7KB3O9wfxlwUPLOyg3tvC8jU68mxest6jm3bRrVajf2YpgnO+XX9Y9YZuOBIZQGiCBBFwI7kuuppPXgc1fBqVXd6o60A+PNrwTbtfs4WKP7wWcmqVW2KpxbVltueWg+v3uGUvBhMl2Bp58eA1MHgb7cevqfj+2az4ZqyYVe62tdufgB0v32WgroMMGwQ8MQfhXLUzat7PjCbgXEORReoeW7VuaGRtt/BhSINIpl25hi+/Uar5fZ7xhn+0d3xAvL+vRbEklccD6sge+Q5soPOQIeOcm2j6XVMtxoUKGP8ePBaR1dan1PtfoaGhqB5LQTFyjqIInD60gsApKT6gXvfFrzHRmkp8RygYypEyQTM1se435+hNEfN4KgbbKDH2zAYFC1+HvvRbEPZEaQz6cTvq2BSTEZk1XRCS9xO+4F9INPyexVzNbCvLA7k2lM1gVfvWPXePA1MfA/Gx6aDv+cNgrMFCtDBXOtEERgZiTDHtYI85jpAqRyfCGMgWvJzqeZtx1jsuILLMYGm5TEY1HHdxjYAKeF066yvGKeaCfinku3053nAjARX2qKD+pwBe723gpZVXQhXNBX6SkbmqrLata2+OLcgcGER2M0MYNUEmU6DcIHSfIci02AoHS3DWuludSIqo3fcuElT1Gwyk57CxGjEiLK2DuKGjtViw4agzWxeJgWUmILaRUMaELaAXbCDOCkfRCMQXrTYyxlR5nhstIH+ZQKq18foJPQc+327vTpWGy0yjn34MVGMNW93JkFS7cPvO2bMxemLL3bcD0oJOAdqJumoOCSEIL0zDXVYQ2pHe5qcEOnkPaiIOCEEWN0NjOt8JDHwhXI+YItnJvdi3z5J3Cwsn7/mF+V89NVz/NGPfhQf/ehHcfPNN+Pnfu7ncNNNzTLhT3ziE/iDP/iD2GPve9/78P73v7+/Pb2GcPf7/N/kZFf5w3BF96Y3OxgZkTbK+RNV+EPr5I9MYOXXVwEBkCN5HPxw+/4TwyL40Q/vgsvDbS5y4NCbki2aFy6GE9Hf/Kk1fPxLI3j2TBoOGQfu/BJw5I0YyTK8/r2TIKS9zfN8ZM0kNb3R8j37wcHX98pEr7b8y/4x+e/lwfoX9YzbfgAwjDLcfy0H7undubbf2efnw5XBn/i+Im58S/vv5D88WMXXf3EXZvPyee95/Trwp3LAG7pThzqhojQr5Su7lT0wxVrT+58/H/Z63LTrEvLen88LgX/e5/GdmprA0tISKuYqdr5mFZcXTwEAbrnlZrzue8eBfy+3q7LF2P40nwOLGDjG5D8rCYruzWDkAPDAPweA8PPULLnoMDk11vK4Vz47EpNVH3yXDZpNZjaM3TO49KFZwAXY15ax9/0qsq/efO/AP89RPP5b3n9m/gnMXXl8/IyGJ0+mg3PrH7yuht/40bVEA5JesdvSgJ+Tv1t0tem7OXBXEbgLiH6XzUi4/gNRQhmXLzf33veDQ4cOdd5oGy97+FElUcfgblGqith1U60LzIx3X2QTVfYdN8KYN+CWXBBCwGqsa2m10yIHVUkrsDccuNXuX2sQsNdtqMNqV9/tRlng2HlgjLqgs1Ugq4KoFEpOQfGiAe4Ot4zaslYs2Ks2nEkb6EI8HjVBs524SVM0ppCqU8hF9r1YXpOEs8UhbAaxboFkm7/PtA5UNBXlZQcT63ZiUSOYgFNwoDSw/EQlEOzlzxzHiuPhhOJYae1WDci1DavH+G7TSjba8rGydg5ffeILeP2rfhAzDZGWZyNO1b4Zl4/bb7gfX370UwBk3vF7cGfHfdE1ec7vn+luvNASWi8SQcnAFsG4LWSfcwJz3IioU/XU+C6kx21cunQJpl3HenEZUy2MS68l9Dwy/st/+S9x+PBhUErxV3/1V/jZn/1ZfPrTn0Y2G5+8ffCDH8QHPvCB+JupKnS9dc/F9YCVWRuP/ckaRndpUD35TGk1PDuWnp3CuseoOcfC3s/s3WnQm4fBT1fgzDs4/0kC5aZhtML/+lYWF5bi8oonjmZw8dHk5zx1RH7/BAI71jX8xwcM/OyKhtmSAmRvBW7/HA6zX8alxzq7KJfPhfFSi2fslu/ZC4gicPD1VVx6PAfBuhsAxIYFjGhQX5VsTLRWEsimgXfe33nFbatQXrLw9U+soayG54BiTyR+Z0QRoDea+NJT8liNpjnuV0hX3++/f30dv/XYEO7c6SL7PIP/bmZ6GAQKAFkk7FX24uTy2abXfC5yLu6lBlQq4HKCR1/I4uKjPd5VPAzpUwCWsLFRwFf+/ELAwB2cfjXmn5zA2Mg0iuU8FmbzuPjocOI5wNdMkMk0lLvGBn4MLy4LvOUeggM7B/e6D/1VEcbZKkYPymPIOEOpJHvNM8pk4rEUAsgXlcCQi+YoZl8caXMdDEP9Tgb3CwuAAOb+Tw36j8xset/3ckBx82DqNDD+Dvy/CwAaVE6ff2IIlRUVv/BttcT4it4wjHQqC9OqY3WxHHw3Yr2Ow9/LcPHRIYiCAzKevALOV+pQbh0D3RtOcPm6Cf7COjZqBDO3Z/HGH+jB9Wgb2+gAbnNwh0MZ6m11iDGBYlUaRQL+ZBc4vFt0Pa5RnTTFOTGDoX6xDm1Cl262PRS0dj45B5UoBGDCc0G+MqZcQgiUjpUxdDCL7MFs7PFyTU6wZaas/H1xTaBaF9hfqoHXXGCXVEfpoypqeQvmqo3s7mY/BiEE6pfr4DaXTHsrT4MIWJ0jyDhuuBUWIrJqkElokeK4UMkDCoGoOUBZAeoOMN3sn6FrgAOKep3DXLESi2O3xuAaHFrDsfXZv5c7c2yakdbEVMNxZVFZdfJcRVHkYlS3HiNcCFhO++L4V3/vQ7i0cBKPPvvX+KNf+UYQJwUAZy+1Y44jplznngXwTzvuT1qXfceOK+KS8k2CpiicYn/zu0Zwi4E7HFrD2GhaAo2XWLSVbmp8J6bHKB555BEAwPzyuZdncXznneEqyI/8yI/g85//PF566SXcf388kkjX9S0thE1LQPdCwq8kbEvm2hJKg8mtbctVL0IIVJIKHo/2HKtTKpQHp8BPS5aEPbEGeji5UH1yTsPnT8oBIqUITA9xzJcVLFUUrJYppofisgTLBc57sur9YxxDCgAF+Mg7qviJz+mouhlg9I3Q0v+sq8I0o4cT/LpR67qY7QaCke6LY02FKDFwU4AkWNarqnQkdlyCdGrrz4NiRSClA5nIezGbgBlAXQ0ZrKF068LnD/9uBFzIv33fbRZShEB0sbB3ywTH7/4Dee64D4d6PbIzC0Ru2PvofjxVfVq6b0YmZYsrIb2+e2IGt6VdHFvRsFhWsFyimGlj9tYKY8Oy/4pzhueOfTN4/OYD90IwgsmxnSiW89goroA5Aop344qdAxkdfM0CrXEgl9xr0y8El+dHJ3f2buG4AkZJgJLw2q9Uy4FMaGRoIvG4V20pPfKZY3WH2vE6oG/aCfzdEuBw8NnBXIMUwMHUcZxn3x57XKMCt067OJVX4XCCRy6kwDnBL75l8wXySG4CplVHuVoIx0X/3zqDAAVafDbhSJMiEqG/hCHAHQLuyu9vUMd2G9sAEJgf9dpzXLekrHPMu6VndKAqO0aQ6bL+pCkZ58IsDsUzZTKXTNhFF9kDGdSrLlitu4KWWRxuxQVtYcRDVDKwSXM34LaAW3Jj7ymEjGg6eSl0vPVBKbCbWuDzdZCJVHAv0zMU9RWgOG8lFsf2ugPLK0CZwSXTPtx+msuMsI/SauhD9WXViqKC0lFEY0pKlXUQXZHGqxqFAIl50fggIAARqFMFxpyB4VtyTew5q7ngBgOdSpgzE7zsmeNqLdKCqDV8B0xAo617jgHZd1yud19cum5roy0A4JxjdvE0AGBx9Sw+85WP4we/818Ef/dl1ZnUUFM06r5dNyGXHUW1XsKJ8890JSPOpIC1omzFGN88FxWA6hRu1YVgAv2YDEbRamw07LBH30cjczxyMFzgnl85j3u9uNBrGZueWVytycnzZwTOL1z597UMASEAGpk1Wp4hl66lYwVJ4FZNAWVcAb1rDPCcDPmxgjScakDBIPiNx8KV1Z94oI43HwwHhGMrzQP92XUFzCu4bp0OX3PnMMe/f3No3DQ887am5ybhakc5BUgrIKYLUU2+iac1acJQ78H4ZDN46qTA154TmF0JsxYdW4ALoG5FiuNs8qJHwSD462/KQSKtCvyD2/rbcbEUKY53ZUB2hJOEfco+OK4F067HnhOVAR3aezvu3RWeJ0eW+itKx4ZDRv/pY18NfvdN3ybHJNvpMic0ZGoASSuAySEKPTYMdYGUDqwme5P1BcMCHINDi/QjViKfa3R4IulpKBoUw8xByuvB0XZ0XpMklIDs9caBDbtt5ncv+NdvnUKq9k1k7SP4wTur+Oi7KvjcB4r4n++u4sNvrUKj8rz+xiUdv/qNoUQ/rF7gO1ZXaoXgmvH76kSrGCcfKgEaejBFzUGie902tjEAcJtLtrHHiWTNkKyjP0nUdSnbrPXQd0xTRDLXXg8rdzlqF+pQsgoIlYWXnWDymQRWdcEMFotxikLJKAGzeiXgs07WqhWMAxeXgKPngUwa2D0FHNoFHN5NcHg3wYEJAWW2ChDEFsY1FbB0BaULZmImtLkkY3C0MQ3MZHC7kJRyM3QnNyzEFgR9WfXY8JQsfulQIPEtltdkUWwyiLyZuIDvI6MDRaHBWndQvVBrKpj8/UxkuQkZWN/otYi6KbCyHs6FND2++COYgOq5VXPBwXjzdzGcBYoVYHalu/PZcWUvcavF30qtEPTMAsCfff43goKvWF5DfkMWHzceuKupBqKU4tbD9wEACqU85ufnO+6PQqXBbLmPvOZ2oCkKbvGBnD9JY6MQAobZzMBHY5ymxnfF2paulzinnirbSqWCJ598ErZtw3EcfOpTn0K5XMZtt922VfvXEoYFnF8UYG0MDrYClhE6G/qwg+K44aIuexP+EU1OdlUaZpe6Avz5eMEgBPDRx4ZQNOVhed0+G999i427d4YT46Ti2I8EAoDbpuOT6Dt2hmfthtVZUg1cI27V8ByNBYAWhYGuyRXnK+FYbTsC1TqwvAF8/QWBp08KlIsMtQUTjAkYRinYNpdNdqv+7EtpWI48tt99i4WRVH/nrlj0Cl+FgOxIg0ymgit5r+LFOTU4Vp/xZECUUNyw707cEzmnXmwR6dQJ0axjP8ZJVTQc2ns7gLhzc5JjtQ+SUsCXjYFP1IbSQLEKWPZgXtewAMfiUCORGtHveWQouTguGBRTEdM+tYviGADo3oj8cH4wd81b9u7Fl37mLnz+x/fjR+938KrdLlLe7rx2n4tfihTI37yk4yObLJB9x2rGXNQMr7fYX9l3eeC0ngSiEAg7vKkLISCKDkhqmy3extaAm7zp/t4NqoYAIR5LCARu9lWj+xejGgW3OVhdnvPWig0rb0OfkIUBTVM4XbpMuzUGwVoz4DQt83OvlCkXN2Uuq1NlYFWGfFHguVMCaR0YyxGoSrw1ii/UZA/vRHxORQmByKiorTuw1+MLBcxkMC7VofoZ8hyedLzNfrnS7Mo3GapbYYyTECJwqx4bnkJaAyp1EiQ1FCt5qdqyOUTVlfGELZDRgZpNwIZUlF4oo3KiErvfOUWn5YIM1UhXRf71iOV1ga+/IJDfiMahNvYc82BBAkhmjxVKMDIEXFoCCpXO14evVEjKLwaAUsNivmHV8Pt//UsAgLOzIdFwU4Ok2odvygUAzz//fMf9AYBsGriwJLBWGtw8iOoEzOSwNzavEuFW89joMvldNhXHhTbF8crLsDh2XRe/8zu/g7e97W1417vehUcffRT/63/9L+Ryuc5P3gKsFoC1UuftBgnT4E3EhZ9zrKvhRS0YB3xr/og1O30gjAJgT+eDG50QwF8eS+Fpz6xpLM3xr98gs29v3+GCErndseVmlu9ErDiOD6IjKYERz716vtxdH1X2WmGOARCNtmQVCZHFcy+RGf3CsKThw54pYGoUOH6K4ev/t4il56pwR1Oom6GpUFJxXHeAvz0hzw+VCrz3jv4qeuFyiLx8LtmRBlGp/JmUr71H2QsCEmNqLdvApYWTAIADe25FOpXF7dMudM89+sUlFf0YCEbjnPzz+PDe24Ob21SXxTGGVKkOaBFj0i8yaTnZqdQ7b9sN6qaAsEVMOhfNEB/JJfe/FkyCyUjcWzfMMQCQfZFe2/kBfYgOeHCfi//ytmoQH/bNSzp+7RtDfZ0fQPw7CeOc/OK4A3OsEMBiYTFge86wCX2U29jGIMAs1nM0uhAChUrYb+xDV4H1HvziCPXcZU0e9M4CCApcJaPArbOgeG4Ht9J+MqykFcmsdigeBwVucYDLHOfyqoNnTgrULWBHgmGZMBn4bA0kpyUXjCqFYYgmN2prxYJTdgOzIqIQOB2YdrfsgtVlDixjAlZEIlozyoEB1NjIFIYyQMUAxkfkfa9U3QCnAsSVkXONRkVR6LrspTY1DdqohtKLZZSPVSCYVKHZ6zZoC+aZaNST07984LoCL13keOR5gbUykNI6yKqVcN7rtOg7zmUk+3puXsBx29+wHFcmBbZqy4y6lPt4+Mm/wdHTj8f7jQ+2Ko7DNtMXX3yx7b74GMsRMAacuCi6KvC7AVUpqE5QfL4Ic7G/Oadhye+T283RV7YrJertiuPJ8Z2YmZlBWpeL/S9L5nh8fBx/+qd/ikcffRQPP/wwfu/3fg+33nrrVu1bRxSrwHz+yjLHtZpokmI4fnGsR8wYKm6wykJGw4ud7sqA7JeTXrFoQMzXcW5dwc99OYc/ei5kiv7tG2sYz8gXyGrAjRPyhnipqKBsxc/QU3l5ZqZVgYNjzTfOvSOyOF6rUxhdLCApigrdy2u+mswxACCjgJfsGIMUBaW9rc73C7841jUgA479hRKcizVcYilwVUG1A3P8pdMpVG154rz9Rrupb7xbiBUzyHglu8LzjeyQv6dJGlN0OsZoXpg7AcbkzdWXPOsqcMcO+dhqTcFStXc2Liqr9nHzoVcFv3fLHEOnIBZrmWndL3SVwHYHWBzXBAgXiLpPRL/n4Vwb5tjpnTkmESMqMTdgvVUbPLDXxX95a1ggf+OSjq9d6M8/YjQXniNBcezJ0Egn+apCZAHtq4NMJnNF+3AS3sY2uoFbZU1xOp1g2TLGKd1wiaRTcuyxnB7GegKwugun4MBcNKFPhi+qZBSwOu+K7bXXHNA2CouAWb1CjCQzZVwSYwJHj9lYWgf27kjeVlQcEIMBLYzHUipQpQqMBSOQVgshUL9UB9VoMKbQNIXTIf7KLbvgjpDGRa4Us/gT/ahT9djwFFIaweFdBGNecSzVMGUZ39RGUg2EioJqXUAbUaFP6igdK6N0tBQp0Fuw/BoBt3iijPx6RLkm8PhxgSdfktfI/h0ErhMWx42yajABJVIcsxaO1YAkLvJF4PJyh+K4w2lfrISL3vt33Rz8/r8/9R9w6mLIBN+0P7k4vvXwq4Pfu2WOAWByVPoUnLgkUK4PZl6b3pmGcAQ2nu6tQBZC4NKSwEPPCJyZE3ArbtP9ujH6zIc/30vpGeSyo6CUYs9OyR4vrV1uaax2LeG6nmWoipRRGNaVK5CNuoDScCL4Qd9ROUggqUacOQYA5cGQcTvx2XX81BeGcXwl3OYH7zLx4L74SuFdERns8Yi0er1OsFqTO3TzlJvYQ7FnJBwJFiu9scdXmzlGWpGT4lbSalUukmw1TFuy+9RgYC8VgGUDo4czmJykmBgFqvVIz3EmLl8XAvjCqfDceP9dfQRg+q+1GFZ6ZHe4mEKm433H5Qij6UuegbA4BhCTVh9Z6l1a7U8Sorgl8vpdy6o9+bwwBr86TglQqg1mfChXOBQ0FschQ9+SOTZI4FQN9MAcT6UAb4J7pZhjHw/sdfGLbw4L8t97OoOK1SOlhvbMccejohAIlwP+BNhgIK7ouXjZxja6hVtxQfXezvOaKU1p0g2irowu7xs99R3rFE7JhTFnghkcaja8X8uCVnSWCtscbtmB0sKMK3g9lcApXJlJKjMYBIDFMsXcGQd7p8O4pEaIkixoW7lMpzTAVDSY6w7sNTnPcjYcWKsWtPHwICgZBW6tPdNubdjBeG67crIfFMcRp+rovS7aTlSsrIHOZFo67sf2W5dKAiEE1JyK1I4UKscrKB0tgxkcShvmmDvXf5wT57LYevh5gbMLwN5pYHxYfveO3VpWLRhvYI5b+5NQSjCWAy4to6082elw2pcixfH3v+PHg3nTxfkTePyFLwMA0noWe3fdmPj8XHYUB3bfAgA4efIkbLu7opSAYHpcmouduChQGxDxk96VhnA4Cs8UYS513pe6KVsHv3FEYHkDmF0BnKrb1KbRGH3mw+85nhrbGbRL7PWMyxhzsbw+O4iPtaW4rmcZozlZGC2td952EGBMwKoyKA1zW9vrJ4wXx+HVd6SWwa/95Rj+4OkM/vi5NP6C7oalyxc5NJvHuDcw7Blh+Mg7KvjR1zTfTe+aSe47PtVGUu1j72g4qM6XujvkvinX1WaOiUIBLloaEqV1oFTDlveeGxZAag7Y8QLEigkykwFRKXSVIKMT1Oohc9xoyLVYocGixIO3mjgw3v9NLmrGRWPMcVgc76V7Y4xmtDiOFq/37grP0Rf6KI6jsmofN7cojtfaMccAQAlEBylgP8ikgJVkL7CeUSwJaKShOK5113M8GWOOuzNAk6ZcHntctLfk+2mHNx108MYDciJSNCn+6LnmmJJOiH4n5Zp3ILo1O1Llte8zx6LuQvTTELqNbXQB7nLpGNyHU7XgzRJNSgk4lw603YLqFG7JQf1SHfp4wjhBCdxy++LYrXlmXB3YTCWjwF6zNuX1wLmA20HCyrlAec1BvkIwW1QwJmzoLa5jwQXEmgWSaX0/0jXAFgSmFUqrjUVpxBVdEFAySuBYnfheTMBesYIFCNuRJk1JxXH0XjceKZST5LetkNHlQorp1XZqVkFqVxr1S0ZbEziqEXCHX9dxTjUjLLZMCzi8C0hFFqGifcRNzLHDA0MuoHXWsY9smoAL4Py8aKnasBzR1tcxWhyPj07jX3zgvzdtc8P+O6HQ1tfYwT1SVeu6LtZLK233OQoCgplxoFABTlwWMAdE/qV3pcFtjsLT7QvkhbzAIy8IHL8gmfj9O4BCSaC84YJozcxxIwyzirrnLzIZiWzauzN09b4epNVXLgF+C0CJXEW8uChwaBe2POvWcgDX4EhHThDG3ECyqmuRyWOkOP7Kag5f/XJcastG9uEfrl2ECoHvK8wC37kX33+HBb3FtXZni+L4RBszLh97I8zxQlkB0HmSfc0wxwCgUoiiDURkpj50TU4+DAvIZROeOyBU6gL6bAXCtkB2ZppWtauR4rhRVv3sQjiwv3kTrDEA8KUIc7wrwhxHi2NlX1iIADjtFceKouLwvtuDx2+ZYkirAqZL8NyC5q0Adr8vYw3Fsa6lg9VSoJE5XkI7kJQCUXIkYzDA6zibkg6QhiViEVy9wnEFjLqQEyclmTlu5VYte44bZNVd3ivp3izYeXmj4fM1KLeN9bzvm8FPP1jHcwsaDJfgi6dTeOeNFm7f0b0UM84cy4WE4Ph2KpKpJ6v25YQVp21f3za2sRn4plFKLn4TFkKgVANGssk9isWqaIoy8aGp0iBo/0x3Yw9NUTBTxjBlDzQvRikZCssz5Wo1TrIqC6TCbd8ro8Ctul3FHbXCkXMCF5eAbFpgLAcMZwkyugABcPqywHqFY6MkYD3rwq4RpMco0jYDag7QWAQBQM2FqDkgbWL9VFVOyp2UCmPBRPbwEIzL9abPEGXaE7OFKy7cKgvYZtubPvkS6Kisejxyr4uyyLEcZP91XQdPvfD3YLt2Q0HYZpTSZcFTrIbxXkpaQWZvOmiVSgJRCYR7/TLHc6sCL56TUUW7JmXx2gg7whw39Rw7IpYx3CrOKYqpUWBpDbi0JHDzvubawLDbZxxHi+Ox4SncdsN9+I43fgB/99ingsdbmXH5iLYUlSob2DlxsON++6CEYGZcsrYnqMC9Nw4mtja9Kw1zyUTh6SLGHxxHemd4XTiuwEsXZVEMAAd3hYzwYo2hXBIY3hX/0pKK40YzLh+x4vg6MOW67mcak6PSQXijB+OLfmE5gGtxKJEcNdtNloNEmeONRvc9AF+c2AfHu2C/tzKPH7y53rIwBoCxtMD+UTkpPbumBL3Dfr8xEI9ximLPSIQ5LvfGHDuu3VbGciVA0gpE0ZYSywakdbnia2zxLpZqAinXBcmqiXKvdsXxc4vhTftNd/ZvrS2EgFj0iushFYhMBhrjnPxCxLBqQV7foT23Bb3kgHRqvH+PPJFKFsWJ1d4mSI09xzfsvzO2wjs2Mg1K5Pm2XujAHKeolFUP2JQrOyBTLsMCbFNAg4iNmjG36jY9x5O+rFolUEa7H3bjfcdXVloNANNDAv/01eGCzv98PNuTe3W0D7sxzosMt+9jJgoB4TLySTAumfN2g+Q2trEJcMtzLm5gR6oG8NIFkehvwpiQxU6LUznjLc51MgjyQVMUTsGG6sU3NUJJK3CrTLpqt4DTpcmWkqbgBoNb6b+dJV+UEtBSFTgzBzx9QuDRo/KzPnVKFs62KZAlDNNTFGNjCsA4RAups6g4gM1B2pjuERAIAI6uwik5qJ6uwi660EZ7Y9qdkgNuhXJmu2GzWM9xpCAezUVl1fmm1/3cw3+ID//vf4rv+77vQ7UWzgsoIdA1WSy6EaUb1Wj7/nAijdquN+bYT4l47KhAzZBRXUmFMRCXVWsNxbFwONRIcdzKkCsKSggmRoDLy7I+aIRptS+Oi9WIasC7h/2zH/hPsZa5VmZcwfOGW9/7ugGlBJOjsrapDjCRJb0rDWZyFJ8rBrnj1brA48cEnjsNjAwBe3eQmFRaB0exwEH0xkWGZg+maIxTlCC53pjj6744zqQITEdKAbYali2NJZTICRLtJWhZHKsp3LrPxv94dxn//V0VfOQdFfz8dzpw7pbFBTEZ2DOd5Tm+tJoJgpN5FYwDp9dkQTM9xDGVTf4O9jQxx51xrcQ5AQDSCoSR3HesKgTuFsc5MSZQrQqoEC3ZriCmBvHi2OXAi0uhA/nt+zdRxVfc4DsguzOx1VCSVcGzXm+Hsi8YjM/PHg/y+qKSZx+v3x+ep9+a7S3vOJPOxYrtxtdXqILxUem60taQC5BFj80HbsqlKoPJDzQswLYElAZZdcyteqhNz7HHHJMxvSdmnO4bfJxTr/je2yzcOCHPu4sFFZ890bm/zkcSc+yjk4kNACmjduR5IWwW9GBv45WDjbLA4lr83sZdjsqpKowFA2xAjBozOQQTIGr8+ixWgfUKcGFRmglFUbPkvKDRqdpHWpdjR7fSaqpRpGZS0KeSX5BmKHgbl2khpFS4E2sMhJm6/RbHjitQNYCxHDAzQbB/huDQboKDO+XrHtpJsG8HwWSaQyeRWCmFxDxZYvtfsLtqu1ApUHNk0WgXnJgRVxRKhsJqYcrlFJzYDNiw4hP9VrLqaKFcTGCOnzryEACgVqthduls7G9jOWC9BKwWO37EOAiuO+Z4flX+OzEC7J4ibZlP39RW0xLuj3ajrLq7OVQmRaCpwKnZeDwS5wK2214lV6pEFWHyeI+PTOMnfvC/ApC+Mvfd8W1t33+kgTnuBymNSPJnwPPb9O4UnKKD4gslrC67+OYRgXMLwL4dwMhQ83Ea0TiKJQ6bx/9WT8g4js71psaSmeOFbeb4ymB0CLi4LLNotxKWJQBXgEauKtuJMsdhoSBK4QW8oaZw+34b9+52cd9uFw/sdfHafQ5G3z4TbMO+uQLRoW+2Me/4clGB6cqTtZWkGgAyGjCV9eKcuu45Dhmrqy2tJhoFHN6y7xjY2uLYsADLFFBpvDCKwmeOCSHIpoeDx0/mFdQd+Zz79jigm7jiRERSTXclaMinZdEyQSdgl+W2py++EPw5qTh+cJ8TxIR9a1brKbKHEILRCHt8S8Lr+yuHhXI+aD9IfC1PAicGXBwD0hx5s9EIdRPgroBC4hItv+DTtTTSqWRdv1njyHHvsyexG+0wmZKmdLjyplw+FAr8q9fXPb4G+JMXMlipdlfgx6Rl1T7MIQgBmIAwGYjFgW1Z9SsO+SJwZi5+/TobDkovlrD2jXXkv7KK0oslmEvmphx9uS1zPKPXtxAC+YJANiXVSefm46xf3ZCMo64mXw+qQuDy3ky5tJEWEUaQ0SzCFS37aJ2CAytvJ7OoSa+nU1j5/hZs617/bKrTWzk8FttGUgpEwW6a7wiHQ2y07zf2oWtywVMZVmHOGcn92fCY9koz0y64gLliQcmG79U40Y+ywmMtiuOo/BaQ58vZy2EObiNjqCoEugrMLXeOG4qBEDDj+imOhRCY8wirbBftTI7nVt0oqRZCxmSpXUQ5JWF8mMB1gZOXRbCw5bB4b3kS/F5ySpUY2fGdb/5hfPyXvo4/+OVHY6xoEkZjqqn+jZEIGXwiCyEEmb0ZLJww8NjnyljdEDi4C9C15GM1pHJYFlC14mNjEgO/FlEJRmXVI7nxQF23zRxfIYznpPQgST4xSJiG8KzZIsxxJL80pYfFsd9z7BCCsqLh4ExzYUB3ZUBu8WQaBRv8eKFpmyjunAkHhWPLKk5EJNXtimMgZI9LFu3KdfaaYo4BudpcSr6Jq4rsCd4qmDbgmB2YY684zqRzoJEK+LlIv/F9ezZnqMQXwxlWNMbJh7ozPGZpTyEQM+M6dG/Tc0ZSInCtXqoouFTsbUiISquTim//BsIFT+zPioEQiOrg9fHZlJxgt4v06ATDltFDja9Q8SY/rZyqDQcYMsPPFI116waEEBCfPS47La+Brcat0wz/4Fa5EGi6BB97MtvVQspIbILQfnxLhoBwGGBKt9tWDrbbeHmjWEXMmMYpuRCuQGZPBkIQlF+qIP/1deS/mu/KjTUJ3OJNOZ51U773UAaY9lq45lbD/agY7Y19AFkTDsoxHwBAAaeFVNhcscAt1tGp2oeSVWBv2H2x73VTtpp1Ko6FzeOxbWlFttA0phNUHYi6C3Sx77om78t8SEVmXwZKNvk5NJ3MtLtVF27FhTrkLTwKAcOSPeI+YqZMLdyqG+9pS/nLsRarSq3YtE9jw9K1Ot/8p5agGrlimdSDQKUOrBe7396XVSfFOIHHpdbtopySMDUmF6dOXBKomQKOA7gMTakzUfjHfjQ32cRk37D/TuyY2NPxfaP3vn6ZY0Ce64VK5+16ARcCl1cFTtVS4LNV7DWqrXgfAAB1BSDi+cuOKxca2mUcR4tjIHSszhcWYVhXRwnXLV4WxbGiEChUNt9vJSyDe3k+4VlkRYpjLUFWvaGmAEJwcGfyBa2+JcIef2Ol7QR+JiewY0gWuSfzaizSqVNxvDfSd7zQRd9xJlIcX23mGIj0HSd8PykN2Bjw4BGFYQGuLaAAbZhj2fTeZMa12HtxzE+X4H5hDmItPsmLMsfRGKfgsZmwYB4xJPPvF8eaquPgntsS3y8mrb7cW/F2+40PAAD2zBzGvl03Nf2966xj+MfY2VQRm4RsCqgYm1MXlGsCCuKTZyFE4Fbdzql6KjJGkLEemWMANNJ3fLXYYwD44H0GJjJyHHliTsf7/2oUv/BQDn/8XBrfvKRhudI8rmTTOSievX/U2btrUAqYXr/xdmH8ikXNlL2tPqxVC1SXUlp9XEP2QBbpnSnY6w5ql/q7RpJyPEs1wHSkPFpVCEaGgAsLUuothECh0rk4zKTk/WlQiQpKWklke7nDYVw2oLQxs2p6rawCVmdwy70v3Bp+vGGn69Lh8UVFnYJYzUowUXYkc99FVJuuSq8RyyEtC2NAytSTmHa35IJbHDQt38txmwsmv/BN6RmkU+EYHFVLNfYcn718JPb/pDFPoQRpHbi80j17TDTaNpLqWkO+CNR6WMf1ZdWNMU5gAoKLGKPcC3MMyB71HeOSQDt5SbYCtGOOhRAoeYveow2+Kr0g2nNc6qPn2Edal20Zg1TGLuSBk7NAOkcxtjsFcaEKsdxa3iJsjpQuj6s/jjmu/B4bFxmiPcdRWTUQl1Yvrlzc/AfZQrwsimMAmBgGFteA4iblk+1QrXIoAi2ZY19WLVwe9IZuqPJiP9SiOCY3jQQsoJitQVxqX4j60urvXb6It3/tGO6oFaAQgZsm2w+c0b7j+S76jq855pgSbxUxoTjWZeHTk0ypB/isIXhr5thfLc5lwuK4bBGcWZPf9cExhqmhzvvHF+tw/vgc2DdWYP/WSfBT4Sp0EONEATKTbnoujZhyTdhjqBkVzC2fAwAc3ndHzPEximhx/Phcb8Xbj73vw/jwT38S/+Pf/W1irMFUtDjuZMqlUymrHnBvVSYtFzg203dcrAIpIhCtjk2rFpjVtXSqNgimIqZ9vTLHAED2RvqO567eamtOB37ygbDwKBgUzyxo+POjGfzXR3L44U+P4neejCsaCCHBwkE/piREIRAWgyg7bU16tvHyhmGG1y8zGew1u8lVmmoU2oQGe9Xuq5CQGcfxKVG+IB3qfQfjXEZ6GJxfEKjU5X2nlRmXj7QuDYBqA2r9oWkFrOqCNZgX2nkbdsGBNtq9saJfPHaKh0pCzRCNRHsihMlQqK7j2JknwTkHIQSCAKIW3neEEODrVtdu9L5c3bQ6bwsKOA191XbBAYm0yNgem6jFZNWyOB4djrOHmdRQUCw3yqrPXIoXx5VqMXGXxnJAodx9zCDVCLjJemobWMgL1M2rE303nxfQe/D3dFvIqsFklJ/ao1t1IyghmJmQ3/dcXoAL+VgSTKsWzOsbTUeFyeB+fg7ssc5xE/Ge4/5l1b7p7KDGD84FFvMCKQ0YzhCQIRVEJWBnyjIVJgl1hswQRc2QRAMg20karxkgzhxPjM3E/uYzxwCwsHphIJ9nq/CyKY5zWYKaCSytb91gUKv6OafhY06s59hb9Yqswq57jx3YkXzzIYRAeXOcPW6HO2dc7LLq+Cer53FXrYBfufw8vpcvI9VhIIpmHV+PzDEUInuUElbfU57Eaqv6juumAGGeNCxhldx2TDheAZSLZBy/uKSCC7n9O4YKcD4zC+N4m9U5l8P9i4vhZzQZnD86C/eRZQiXQ6zKD0im04mr61HH6hmxA6cuPBf8P0nyHGyb47jBM1w6s6YiX+ueoUvpGbzpvu9uks/46IU5RooCFmuW220SCiVgLBzUe4XjCtRNQKcCUQokKhMebsUcm/GM476Y430Rx+qrZMrl49sOOfgXr63jvt0ORlLNE7XPn0o1ub76kvNKP7JqhUhJtckA/WVzu9pGjzDt0DfALbtwayyRMVSHVLhVF3ahtwm0YAKsHi+ODUtgowrkGjpYpkalodKFRQGjjRmXD00lcFw5N+EDUMUoGQpmMLjVeHFsLJogQvSc00xUAnu994KjUJWSz06wi1X85MfehZ/7b9+Nz3zl9+R7phSIjch7mky2jLRhgRtBIN1yO0FJKbAjTLsQMh+ZRuTbtiOZMJ8F45yj7BU0jZGF8jFZ+DQacp2bPRr7f6WFWoZSgnQKmF0VXTGCRKPgTvdxTuWawLOnBRa7j2EeGKp1gZUNGX3WLey2smoRk1U7XRpyNUKhBDsmgNUNtG0JKkYK2UbmmD2+CvbNFbifmwM/316uOLrpliIJhQ7WdNaPExuOHB8yngJMBnaqJFseGiBMF5pO4bJwkdJ2JV/UqBzx53ljw1NNhMyemcPB79d63/HLarYxnAVOXgbWS4MvkIWQOacKeEzeFzXkSvnMcSXuVD2R4chlWu8TfdUEMCLvMvylYpOcNoq7ZlzcaoRsoi44/umJ42BPNUcKRBHNOp4v9cgcG9dAcUylYVOr4tjawuK4VPUKoxbr5LV6mCM2FJFVB/nGQuA7nj0J9mgel398HryFOoB9dSlkh32DFwGwL83D+YOzwWdPklQDAMZ0OEQObHuVfXj2pUeCP7UrjgHgDVH2eLZ3drMVosXxWidZtUK3zJRLU6UUsh8YniOtJjgQuXRiTtUteo6lU3VEVt0Hc4xxHfCMY/hcfeCy815ACPCe2yz893dV8Tf/qIRPva+I//LWKu7YETrpny/Exxf/uzHtOiy7xxUKxVOMWHy7OH4FQ0AWpEIIOCUXEAI0aYFQIQCRsutewEyZDUwihjTFqmSsMw3zdUoJxoe9/eGtGagoxkeAC0tSzrhZUI2CuwIsIkt2ay7MBRNqr4Z/kNJqa80G7yGjTUpPuyuOL188jY2KtC7+8qNeTmxagai5ctELUlJNTAb0oA7R1NZqIM5FME7SDIVbcYO+arfC4FRcKEMho+DntfrHslIrBCkPUQMuH37BXK5tgHHvMwjRxBy3K4rGckCxAqx0UTdRjYA7vOs4p4tLAvOrmzei7AdrJdlzPNQsbmuJ0K06uec45lbdo6w6Ck2REuvxkdbbRFneqKEkAIjFUDnFXmxP+6dTWaR0ubLWj2oqCkoH56uTL0rmXGtQQZLpNMSGBX6+AhFRaAouZMSmSpHS5POFkL3bjeCcY6MkCb7JBMIkyhxf61nHL6vZxvSYHCyfPCGaIhc2C9sBHIuDKiQmsYlO9gJZdUOM057R9pN9olIob5CRNxCA+83W7PH+UY477WLsMQrA/evLcL+21HLivGuYB67E3WQdZ6815piiZXFMqfTR3YqsYyEEynVAg0CzHZNEUsaxEGG+8QG3hvSGLJCEJWD/4Tnw1Xglz+dqYA97chRKoP3MrVDeuTvcj8gqZZIZFyDNioq6LNR30V14/tg3gr8lOUlH8YYD0eK49wlWK0z2IqsGAEogtsB4JJsGVgty0tQrDAuwXEAVPKYc6DbjeMqNFMd9MMcxU66aC7SSPl1hECJ9EN5wwMFbD4f7dDofl7FEJxg9r6CrBMIVIEx01Yu4jZcnCJET7qoByfq1WShRcyrMhd6cq7nNIRweY13XSnFJdRTZlHQdHu6SHcvoBLk0cGZWYK24+bkJIXFTLmvVlgZTw71l1QOAMqSA1dyeIp1MW0qa0x3W+oTDUdgI5zOXF09jcfWSLIINBtTle4qSA0F6M9zTVeDkhbNYXF1s2DeBF88JrHpDjZJRwAwG5t1X3IoDbjAomUjqSGPGcYQRTmSOvYJZCBEUPivrc01McSvmGJCFeDYNzK4IWB3YY+KNg90wx5W6wJk5uXjgLyhdSSyuyeumYy96BL6sWk9kjnlMbt2PrDoKTSXI6K33Lbro3cgci3y46MaPF2JFZBJ89ngzsmpAXmfFavtjKYToOL8xbYGVApBLGLcIJSCTKYj5emwRAI6MuINKkM1IH4a6Jc24GlGshKkkUwlu3rtnDgW/bzPHVxCEEOyfAZbXgadODLbfwnIAxxJonJ/ZSbLqUlxWHWVtW0F53XQQU8KPF1teBIQAdzlhMfbl8dA1j315Aezzc4kXrKZI+Swgs447jZeZa7HnmCOxOAYkp1sbsN09IBlD0/aZ42RUo8yxFxI/X6ZYqcpV8O/GavwJNQbnD84EWY/C4XD/8qL8fACUt+8C3TsE9Z27of7IDU2MGUmKcfL3ZUgu1qhEhbVUBCAXbQ7svqXt5zw8zjCTk+fpSwsE9YdXwE+X2j6nG/Qkq4aUj4lib6xPN8impLKg27zRKOqmNKmnLG7GF10NbskcmySQVQsCYLi/hYdrxZSrFW6ZCmeXp9fi7M9wLOu4xxV0hQCMQ5Crx5Zv4+ojo0sWt7jBYK/bUIZaM4zqsAqnzOBsdM8wcZPHmGPTFlgvtWe/xnIEw9nuC4DhrFzEPTUrNs0C0bQCx5NCCyFgzNalQVkfpnVKSgG3BNxK94qduimNyjpJymFzFErx+99TR78iGX4hJHvMBMSa2VWEUxQvnnwIP/PLr8cDP/QAFlcXAMgWmNOXBS4vAxseaxr0VXumXE5RnhdRksO0467jxWqH4nh4OtzWK6SjEU4+yi16jn2MDEll2vyqaGvY5u9rN8zxxUWBcg3YPSkXlHqJEdss6qbAwppkxbsFc11wLj9XU5QTEyAC0GI5x1vr2h0tZKPHXggRV3VW3I4eQf68oFTd2NQiRUqXBWk7Ami9BBw9H4+aa8RGRZ4PrcY1klKAjAJ2vhImYzhc/qgk8E8o15pzwYH2TtWA7NefHpekzzZzfIVBKcHBncDsCvDMSQGri56UbmA5ALNFkzNbrDjWfeY4nnG8Z7TzgEayKsghb0QpO8BG8lUgXI6dFXlBLugZ/MmBW6C8O1IgP7oK9zOzic/1HavrDkHBaL6JCofD+ews3IcWkU1di8VxsiEXIFdJC1uwm4YtVQMaWh/DakTm7vccPxuNcIqsRGq7vQlAwYbzh2chTAb20CLEitdPvCcL5W1hQancNQ7tX9wKTHg3DY2C7mtdHBuRhZi9yj4AwI377wocg1uBkFBa/Z61WSj/bw7OH52D2NhcoTqSmwgyCrspjmXMB4OwkydqgonEnpiOL6vLY1npo640bE9Qb8dbKqJOpO3cqoPieFjvO4qIRI751TTlaoXDE0zmgAM4vRY/16LfTbnWR3FssG3W+BUO4q2NFpdb9xv7oBoFhIC13v3Yxa14xnGpKhUjmR6kod1gclSOQadmO7OF7aBkKJyylAo7RQfWqg2tD1VKACozkruFNMBsne8cwGYoluJa8iePPCR/UamcgPcQ4eRDCIE//9J/BwCYloGvPvk1cC5wdl5gfg0YHZLuxEHBSSRjLISAuWw1RV3VzAYzrihznCCrTnKsPtsgqQbaM8eAZI9HhoAzc8ALZwXWSqJtEdWJOa7WBc7MA+PDQFowGIaIubxvNdZKcgE6iZlshegcullWLZ3OVSXqVr21yinfiA0ARqJGm1W3ySyUH2t/fEe884QxFzWj/0iVbloH8yWB+Tyw1IKkFkJgeV1AU9u3gpBRXfYfnytD2FzOe7yccgKZDLRRlj4sasO0Mloct8qB9h2ry9WNmIv3fIniL46mElMvrgaujb0YMBSFYN8McHZBDjjuAFyMbQdgjmhKE7GdiKxaTZZVd8McAwA9FBak/GLyhSSWDSjegH8mM4pbd3Cob90F9f0Hg5ZY/mQePN98FUUdqxcSHKvZN1fAv7UK9tAixjdCpupakFUTSmTObItVsZQuJzSDlhCZlpRcqZx3dKoGQlm1L6lOcYYdK97fxzQc+KP9socUgFg04PzeabCve0WjQqD+w4Oy9zYCuisL/V/dDuV79kL75zeBtInqcMfDfdznFced+o19+K7VD/g3By7AL2+uEKOUBo6F64XODo/QqbwBtXCb5fM1sDPlxL+13w8CLvorjss1IQs/l7dkjlu5VZdrwLhnIEI3MXm91pljXZEFMgDMlWgsxmMkxhz3JqsmCpXj2lDvctFtvLyQUoH1JQfgPLHfOAolq8CcNzvKHn0wMx7TtlGR9/pu+ol7AQHBzLg0BTo7154tbAcl7UmFa67MNjbDBYN+7oFKRoG1anX93LrV3tTIh7B5rNgAgKOnv4W6UZGmXEUbouQADgfRuy+Oj515AuciTO3RM0dwYVHg0pI0TBsekgWvrxSiKQp7zQGrMbhlN7a4IryMY6VVcRxhiX1Ec499A6czkRindEpWh92Md7kMwdSYZPWePy3w0sUWygJC5HnaBpeWZS/4WE4AZ8ogK0Zf97x+sbQuGXilxSJwubSB+dmzscf8jGOghawajcxx/z3H3SCaSRx1q07yAmLHWqs8gUZTrv6l1f441Ko4Nm3ZRkCJVA7UreZ9qtTlglE3RmlkKgWxYoJfqkI4HARhy0M2LV/HtJudqqMESCuT1j1Rx+qV0LH6l78+hD96LovfeKyHlZUtxMuyOAbkiuaeKeCli8CR8521+J1gOZDSgoaLPklWHSuOte6YY6CxOE4uSMVsWKzMDQ/jfXfKq0V5YArKu8Ie1aQVrWjWcVLfMT9eDH4fKocrddcEc+yjxWTCl3uYA15UDLIcHd6S9atFiuOh7CgcBry4JAfz1zvrIN4+K7eNQptWof/4TYErp5ivBw7Iyjt3g7aQTJOsCvUtO0FvGG67v1HH6r09Fsd3zbiYVmzcZITFZzRbuV/4K4jFyhpsu/0BIiqVq8VJjokWk6xptb8s5JQqzSR6RbEKpKg0BokacsV6jlswxyiFn5f2Y8blY1QDvH5CMVe7qqZcreBLqwUIzq6HxexIbILQuzEJ3TPUs+RyG53x8Y9/HO973/tw//334+///u+Dx7/whS/gh37oh/DmN78Z73nPe/DpT3/6Ku5liGwaKM5ZEF2oCNQRFU7RCSS0neDWwoxj2xHIF4BssrXDpkEpwfS4VLddXunvOqa6lAo7RQfGJQNKTl4fjitw7ILA0fMca8Xu5z1KVpGmVdXuFvIr9WYVXSIcjkItzhw7ro3nT3wTyEiVEM8baNJndsCnH/rd2P+fOX4EZxeAsWEgpRFoCoHrohQzFQABAABJREFUhouhSkaBW3Zgr8mYr2hx7DLJgmuRISaaX9wY5wPE2eRieQ1CiKBYH8lN4OCeWwHIhXPfsKsdNIVgxxjB6BAwtwo8d1rg/AKPuZtTjcBt48dRMwROz0pJM3EERNlGar2O/MZgoxFbwbQEFvKStU9CtVLED7/nJvzj770Fj3/jC8Hjfr8x0CLKCdh0lFMviBlyRWXV0X5j/5ei3VbJFV0034xjNSAXb4rV5Ou56Mmld07KBaHZ5ebt1ssCtgOk2vRb+yAKBRnXwS9XIfJmzG8nm5YLT4254ACwFvGVacw49hHNOp73okYtFzi/IS/A02tqVwtvW42XbXEMAJmUzDZ76SKwvDmzOFg2AJt1KI69wsSbEFuEokpV7O6SOSb7h4LXFy2K4yhr9KH3KHj17nCwVF4VDuL8aPOFGDUGa3SsFhUndpGnauGd4lpgjgGvhmzFHGtyAcMYcLuqYUlCQdii6dj7qEWKyVx2FCfyKkxXbvt2N7zJ0tskq0xn0tA+dFPoSA2A7BuC8m3JMpReoO8ObRj3KnsBdDbj8qFQ4Hsz61AiA2Hgnr0JROU1+XwXdq0EELWE4jhvQhRsgEHKfHpENi1lX70oSfwYp5TiqRYi50A3btVqNZyc92PGFTyXkJA9NljLtosoBJc9UleqkL5lKhxfon3Hg4q02MZgsW/fPvz8z/887rjjjtjjtm3jF37hF/Dwww/jN3/zN/H7v//7eP7556/SXobIUJlvbKmdqzIlpYDZAvZ6d8Uxq7iBGVepBtSs3tx2e4WuEuQy0r3a2YSyzVwyZbbxmAbOBc4tSJfipTXguTMCz50WWFzrHBfkm1Y5XeYdF6tAuovhTNgMhepa0+NPHnkIRKMgrgBqDKSHCKf5lfN44sW/iz125vIJpDUH2VQ4PqsKUPCKCZ9pN5dNKZ+PJY4Ariu3Dz5ftO80UVYdL47zhcWAIb/pwD2x+0FUWdYJKZ1g16SUrl5cintkEJWA1VrPJS8tCxSrUlINkwE2R8awsT7v9K1Q6AVrJXnttGImXzr6BCplOf4//OW/CB637XayagGQuFu1swm36m5QivWbJzPHj4/sCH5Pmmv7iJpRljbBHAPSd6FUQ+KxzHvmgZQQjA0D8/m4U7nLZKxXtocxjWRUEEqaso8VSiCEXFBqHIrXiu17jgFg/66bg98vzp8AACxXIxF6LkHVHqxipx+8rItjQEpWGANWC5sbHOqWgMJ5sLrsw47EtIQ9x/Li3VBTmM4JpLskPYiugOyVI4tYNSFqzYNAwBxTgO6JL22TyRTIHu/58/WmftEoc9yYdcxPxQdwLaLqvmaYY4K2Pce2O/g4p2CF3GZtZNXR4ngEzy14B1wI3LLhDYgKAb0pZH3pwRzUf3yDNGEbUqH+o4NN51Y/GB6dwAqT8uWDyiHsTO/B3l03dv38B5z4KhIfcHG8urraZksJoitNA7KwOfhsTfapMS4lzj0ik5JywF5MufwYJ51K10z04FZtucCQGbkGN8McA8HYAEh3805w//wC7P92HO7/vbSp9+0WcVOuZOZ4sxOEbQwO7373u/Ha174Wuh4/L9/73vfirrvugqqquOGGG/DAAw/gxIkTLV/Htm1Uq9XYj2ma4JwP5AeCQ6EcaduGsF1YCoUgIvGnbHDUbGngRjMExmIdjLG2r89cBsd0gRQgiMBGlUNRBRQVIIro+Qfo7nnDOQHDFSjVkz9L9MfhHLZnTOf/kAyBU3cBygENuLjCMZcXmJ4Q2DkNTI0LVCyBYxc5nj3LcXmVgYMnvj4UQCgCVtnqeDxsm6Fa58ikOAiSfwDI300XhZosNhRFRVqXY9hTxx6CIAzQBIhlg+SUrr/fz37148GCn09IOK6FQvl0bLuhnEDZELAZB0kTMM7hVF2Qofj5Y3MBTgT0VPjcKHM8PjbVtA/jY5Ge42oeZ2dfDP5/88G7MJIbC/5fNTZ6PoeGhwU4BCw3crxTBMxx4dpu0zGp1hnOznGMD3MoVAC2AwqGtM5hrxio1Nqc/4xhMc/gOO2vk04/KwUGhXKoimg+D8CxtjoffCdnjjwDsVQFuAs32pqo6/HziLsgGqBpsjh+V+o78Kbn7oC4WO7r2uzmJ5ZzPDIePC7Ww8nlZyYPgHl9GPxYAaA88bVGRiItRbX1Te1XJiPgcIGaE7926zZHoSYwkvPO+6wcxy7nOZiQ13uhJlCzBUaHe3zfaQ0wbNAhGr+2hgRMV0DT49uvF0Pn+KmpnYlj4k2H7gzPg8tHQBSBxWq8Hlk1SLA9VeXPwO4nXeIVoVXLZYHLK8CdhwTUTgYSLVCtAyrjQIMkwbIjxbGWgnC4ZHbQvVN1FPRQDswrgPmlGpQ7xoK/CYtBrMiBhOzMJPbo0LvGwBYku8yOFaC+JSxMdgxxaFTA4QTzDT3H/ES8OCbFcL+vFeYYAq3dqgmBEAL1ATPHUlLLvbTzzj3HQ5kRPHtODuS77ToyZblD5GAOJB3/zpU7xkD/890AJdIlcAAYyY3jG87T+C7le5AmafzM+M9Cod2/9q7VYvyBog1huJuStUaL45WVFYy1kF0FSFHpYmpzEM+pW+RNoGSDTKRkjngfbEtal4VuuS7ld93Ad2Wd1gQEQ+wcqHgSYUpo4FIeRdGkDRnHm4vIIvvCL07M14B7W0i5AYh1C/xFWbzz59YhvnsfyBb37e4f5UirAqZLYszxyDZzfN2CMYaXXnoJ7373u1tu84lPfAJ/8Ad/EHvsfe97H97//vcPZB90AG+WKlUcPAwANbSztmGA/PtuwIGN6mwX9y/PzN+CiV27gWTOo3scfH1390xfYNitVU9s7df7fABQRQXTe4Dp17R/ftu92g0UsIHC5c4yu3v2ddwE+8bmgdcDVVcWx9PTU7jzzjvx1a9+FYVSHtWxx3HPW+7pZs8CFItFPPS4ZB2z2Sw+9KEP4WMf+xgAYEN7Cm9/04Gm55jeD3YDdcgFPAfhREEB8ODNDc/5WOiPce93ppBKxY9Q5qYM8J/l77a2jDXxbPC3N3znzXjmmRLwuPz/8E2LOHTvDvSKw96/wTt7XXNzC3OJ28eOyRiAm/z/FFFYL6LQYV1yfpPTvAkdeFNCKMa+MVkUO+VwgW1+9QKm9l1CLpeDmb8cPD42ZGP/WMRQ9jXyZ+kxBwQEP5b9CaTLadBHLuPQB5uP9SBQ99R+IyMjuOnbg7MHF37XgAWAgeBcZgTHhsZxb20DYt3G7pk1pG9ppmVvLGaB/0/+rkwv4tCb+jfliqLxVe49FP+//19/CT21G3jtbZt5Rwags1qt/KuyONZ1Hfd8hwpCwj31x8RDyGDnR3ZieXkZ5+eP4MAbSnikPhp7HbLfwqFXx1mM5cjiymZw6NChzhvhFVIcj+WAxTUp+9jZ3D7SFWp1AVWIJvbQaZRVN2Ycj/TGcJFDOeAbcmAWFytAtDiO9KdGJ8pR0LsnwP5OnqD8WAGIFMcKlXnHsyUFCxUa1HvC5eBnGqQ/BRuZ1BAMq3btMMdAy+IYkEHp1bpAzFllE2iU1BItWWgRLY6FOoGzXmHwnTxkSemto03PAzDwXsqR3AT+zPgzvFn/NgzTYbzKuhv8bBn0pjap9x6EyUAWmnuMxbIBcqjLajIBUw3M8S2dxqaUAtRtwHABXZfn53xNuj5pVJ4DfTDH0onWz0Dv7hwxPOMZRQBuwwKJ71Y9PDQOSpvPjYJBMBUZH8gmmWMaY47b94Kz5yIzIQ7wl4pQHmiWBw4SCgVunnRxdEXDSlVBwSAYzwiMDEVXzzfZ37KNK4rf/d3fxfT0NF73ute13OaDH/wgPvCBD8QeU1W1iZHuF2fnBJ48IbAvX0Rx1sDwnjRedXPz9bZaFDhyVmA4C7zmVilNrc8amHzdOLIHWpu8OCUH+Yfz0MdTWK0RHL8gMDXaW06rD6IIHHx9FZcez0Gwzs8v1QQ0Bbj/VgKlhXLIcQWeOSVQqct73M4J4OAugpwO2AUbG0TDqcvSlDKXaf2e5boAY8CdhwkmR5q3cyouhMMx/dapJjfnKFY2BL76nMCeqWTjJQKOfWPzmN3YDfuJNaytybFoOLUDd+97N76KrwIA/uaTj2Hk+9/Y9vtpxF988Y9hGHLS/K43fAAHc28DIIvjx79yGvfvit+nltcFbjtIsG8Hgblswq25GDo4FFNpzecFTl4SmJkIH1uZLwIAsukcFp9uHjdtxzu3D/8PfK3+IVx4/P8EfxszXwtRvhT8/9RjJkYrvd8/VwoCh3YBN+7xIj5tDnvdwtRbp6CPhdeWYQl89VkBlwFTo/IzsFMl8MU6yGQKa2fquPV7JnHXg8nXwIUFgUdeELhlH/CGu0ks4qpbLK8LPPyCwK5JQPXOCf88mCvuhQDF+YhfjhACX/vURdy549W4MBfey20xidni/uD/7tENoGBjfXUUWZJFmsgC1Dxt48IjQ1uSYrCW9+7rmSlcfHQ42F/rkpzbL+tpMELx2MgO3Ovdz2Y/aUN7d9y4TQggf+kwQDRAOLh4tBa8Xr9Y2RC4aS9wcFf4uY+d58iXwmPvo1ARSGvArQcJjp6X40w2vbVy5cV5WbtMju7CpcfknDNpTDy8614sL/8dqtUqHv/MOo6fjy9HHn16CDd4rZ31dQfMFXjnT00j1YOj/WbxspdVAzL0m/HuzHiS+vNcV8A0BBQkGHK5DcxxY4xTr8zxwdamXFEpJd3fojjekQaZ8eTdl2phVpmHvV7fscMI8jWPlbtQbbKoh8EwmZYX+zXDHFMC0aYoSutAYTALcwCkuZftADqELMhaGnKFsupFYweEV3g9WAt7V1oVx4OGpupwdBefMP4oeMz9zGzb780Hv1AJFl+qNCzaN9t33MgcdwJRZS+a8BQYIm8CGxYwpoWu5X326aV0IF/sfvsgV5B5MWKREdM3l2rlVF0wKCbdwRXHZESXxlwAxEJdyssTIISIF8cA+NErU5Qm9R0PD40Fj20zx9cPPv3pT+Phhx/Gr//6r7edMOu6jlwuF/tJp9OglA7kB4SCmQJsw4Ga1lCuEtg2QAQJfgQHFlYA5hJUqgTVGgEFhUIprBWn7esLCzArAueWgJfO+69LIRjp6wdA19tmNLm/lRqJfZ7oT6FMUK4Q7BghGMsSLKwQPHdSquFKNIXTl+V2Q3r7fR5OUTg2welLQK2GpvdR0wpYhYNXedvvy7QpHJeCUgUCNPEHAIQFlDYK4J4h1djwNB648x3BefPkCw/19L3aloPPfuUPAciFzu9724/jxr13B6939tKxpucohGCtID9rajyF9IQ8L6Of27YA1vC8gudWPTYynbgvGk0jO7QL2P0vwekILtLvAyDHupnxA/H4ukqxr/NIAUGlEu4nVSm4BcAmseNRrFJsVCjGh+V3zwUBL7oAVQBBQaiC/ElT+lY0HEtCCObyBIRQzOUpCpX+rtHVIoHtUCgN5wSA4Pe1fNiPCgBnLh8DGc/AUcJ7ucrV+LlkCghBodAUsiQy52UCfMHs+xptd47587nR3GT4t4IrI40ALHqtAU8O7wjcWfiR5mP8hRMp/Mqz7wbufRxQcihXCpveP4UQbJTCc6JeB9aKBFmteduRjNz24gJQrRKkE7YZ5I9RNwKiaHJsV9sx8cb94XV7+sJRLDZ4IK1UlGBb7sqfgd1PusQrojgGgFxG3kzaGROUqgJff0FgraGIthzAsQVUNDPHUUOulJaOOVVLWXWPzHFOA5n2itv5upRpe4gaZrVijgGA3h0yNfxYMfa3mGN1yVuRPBnZJhsWRXtTcgXvmmGOKQHa5FanNCmZHZT5hGHJY69TrzjuIsrJEvK4pDjDzjXv8VENZOcWurs0YHR4Eg9Zf4+TjpQxibwZxkW1gTgfriw8OROu5K2d31wjd689x4DsmRF1B4JxaUKnUfgRVwKQzvF9IJuSMQTVpKiMBJRr0uhCMLnk4RcJjmsH18Vwq4xjk8Rk1RjZnKwaAOgBb/HMZOBHkgtNcakKNGS88rMVmSXaI0TB6mphxcfNCX3HiqIGEWeVPtyqt3Hl8dBDD+ETn/gEPvaxj2FsbOxq7w5o3QVMhtSIkpj3WawAa0WZI+zy0NVVHVFhr1hgLaLhGBO4POvixEWBcwsE2XQzA7OV0BQS298krBYEFCqZbF2Vhk2qApy8BBw/L+C6wPhwd/s8NSbj5U7NNpt0UZUCXMCptB8n6laXuhubo1AMx/vx0WlMje/CTQfkxPjc7LFYLmonfOOZzwVRMW949Xdh946DyGVHsXuHlCJdmHsJjMX3PZOSn9dyBKhOE7Og61Y8ksZ1nSCfeGy4tdomN3EvQLw5VPoWQBnFjfvvBiEEwxG1TKVa7PozRqGrct98x3FCiLRdsePjcc30EjX8xXubQ1hMxiIC0Cc0VBcsGGvNHjaVOrBSkGoE0wFm+3BPL9cEzi1IhWY7rOUXYv8/67l7u0rEVLYgwL2EDCGElxAjo5yGSHzOKxJUbptFPJ4xasYV3k8XdLkfBS2FC6PyviZWTfDlkEQQAvjr496cL/dq4NBvxDJ9+0Vak54p/rVbqMiUlnSqeVs/Q3t5Q86NyYAUla0Qj3Fqby5784F7gt/PXjqCpYae45Xq1S9Nr/4eXCGM5eSkeL1NROrFJYGTl4CnTgqUIjcrywFck0sNesM3ZtkRM4GG4rjQB3MMeNJqAGAiFt0UMMcaBZlpnTMRLY5ZQ6RTdH/my4pkmfx+YwoorwkHhN3qHgCSOb4WomMIJYDT+vtM6YN1rDYsgHFAEaJtz7HvVp1JDaFqy4Lg7tpGkEdNbx3tS6rUL/buvBECAn9G/zw4X9lXlyDW238xPFIcj741lAiVLg+uOO6GOQYAoikQJUfelNYtYKyBde2TOR4Zkn3kT7wkUDM6v0axKm8sYBzRrf3JE9DaqTrKHDsZtaUsvxcobwh719gjy4nXJXs2whp7mdpgAvxEsaf3Yk/kYf/qMdgfOQbeZbb0LdNR5jhcaPMdq8u15IJ+G1ceruvCsmS2rf875xxPPvkkPvrRj+K3fuu3sHv37s4vdAVA6i7ABVSNgonm4nhxTYAJ6QKd1mWOMBcC6pAKt+rCLjT3y22UBR47KvDUEQbHJdg1hZjb8ZVCJrK/jahbAmslubgfxXCGYOeEvOdNjXX/XgQEO8aBlQ3g3EJz1BPRKOy19veJQkXEYo9aQTgcpXLE2GpE3lNee887g8eePPJQV/sthMCn/z6Mb3rvO34i+N0vti3bwOWlM7HnZVJS/dMu67duxF13o60fowkxTj5SI3GXd4y8FjcflJP+mFqmzzHPNxm1GmpabsbnQKWqQIwQ85yq/eI4PaLArjGsXWy+j+eLsrgeygDjOemQXTe7v7cKIXDyskCp5rlkt8HaamNxLHOhnUg0k6ZqYMeLYJcq8h7PAVACVdExROKy8Ghyy6AQjXFq5VTtM8cA8HBmJtyfyFx7tkSxWImcVLt+FPPWrZvev5TnmyJzxgVWCgJ6m8I3lyEYSnXvsbIZxJyqW8Q4+bjpYFgcn7l8HMuVBkOu7eL4ykHXCBzWWlpdqQucnZc9ycvrwNMnRTBIWLZkjmlCz3FTznEpUhxrOnYN985wxfKOL0l2StScIL6F7Mm2dTYmOzMgU17m8oWKNDDysDeSubxQpjK7zSuayKHhwO0aAHaq8gTngscWAa4aKNqyWCktHDgGAT8zWTABwkXL79xnjnPZUZQtuc19EVdeP8LpSuFnfugjeO87fwIf+ulfhvJGb/B2BdzPzrZc5BCGG6zEkl0ZvO4einVdnkNT5TpOrPQ/VOSyo4GraLfMMVIUqLrgczUIhTT0FhEIt/dFJ0D2yB3YKTNGHz/evkAOes51BJESPkqVcAKV5FQNAMU6MOGND3x4MP2X5HBORr5Byt35qXjRKhweMsopCu0HQtOSdpETSWBPehPbsgPn98/A/cJcRxZ5V45jJCW3ObOmBHmFw953VKkVm9idbVwd/Mqv/Are8IY34IUXXsCHP/xhvOENb8Dzzz+PT3ziEyiXy/jQhz6EN73pTXjTm96Ej3zkI1d1X2nRChaXFCL7Z31U6gIrGwiM/obSQMWQDIs/Zlur8ZuCZQs8flwyXlMZjpEcAb2CC5hRDGWk4qmSYEC/UQIME8gkCI8oJchlSM+MkEIJpsaAy8syZ9ll8ocxAZKmMFZsMDt5fBVCFkKpboYzm2EjEovjF8cPRorjp452VxwfOf0tnJs9BgC45dCrcOdNDwZ/uzky0fazhn1QQgAhz5EklKsMxWo9nnFcjkT5JMQ4+VCGboo/MPI63OgV6tEF00qt2PI12kFTAccJ5yGAPJ/tQrxaXi/LljIfwmQgLg/umZpC4OgqimcN8AbF1fyqgK5KVnosJxeDF5uTt1pieR04OwfMjKMtAWDbFoqFeIzj3NJZGFYt7tuTy4JkFIhTZfCzZQiPlJDMcZyaFltQHBe7yDheTGWhEHk+PTaSXBw/MdusUJgd/rcompsbY1RFtojWTTm+FSvAcIc89pEhkugNMGhEVSCtYpx8TI7txMSoXOg/u5SHw+P7t+q3fDIBcqLQt1JwM3jFFMeAvGleXkbTaikg5SQlLyPuoDd5fuakgGUL2C4AJkDQzB7GimM9E+s5xogWk+t0i2hxLC5KNo/PhgNBq35jH4SQkD0W0ozHRyNzHGWT6G2jIBPhKDuNkD28JvqOKQHa5DX6A8egmOOq4a3IMgG0Gfj9HpWh7AhKJgWEwGu8zEMoBPTGzmZYg8TenTfiJ//hr+D2G++H8s7dgZyXnyqBHy8mPodfrAb9xvSGYSgUEDvlQskQd/HFp/ofXAkhAXvcLXOMlAJhMmDdAmlkjRUCmP0PlqoSFsjtGOS6KRdbJHMcN/GKsgutmGOr6MpWDKD5M/QJQgiUbw+ZePZIXJbIjxclcwCA3jUOctNIePxPl+V32gVE3YVYjE8+2DdW4Pz2SfDV1gtlhAA3e33HRZMGN7lBTBa3MVj80i/9Ep599tnYz2te8xp8/OMfx1NPPYVHH300+PnFX/zFq7af3GKgVRvwzFhSupzE+0zryoaA5QIZj/VNaQS2A5S8W5Y6rMJctGJy1MU1YLUg7/Up2x2IqqNf6CqB48oM0yi4EFjeaM8M9YuURjCSBU7PAo8fE3jiuFwseOYixTMvunjuheQsWV/Snuoq45ijWG1mjm8+cC/GvZzY5098s6uF97956PeC33/gnT8ZK8Ru3B9hoS4daXqurkkz1saFYcMy8e3/7I340f90F547/oXg8UKkOB4fjpssxT5fqsFZcvh1gVw0zhz3J6dVKAEX8jsPHhtSYectcG+R0rIFaoZUHwQwGRrvaGJIQ3XVji0SVesCKwVg1JtOUkqQSUlFQTetaa4rcPyiABftjeAAYGOtWT7PBceFuZcamGMdJKcBo5okhmzp86OqerOseqm170a/KFXCYz8aWfRuZI7v2SUXeNe0NDam5HxdLBrBdk/MhQdEM2VGPFen8FvfymKzIkxCpJS9WJWqgpR+dRb1GhEtjqNqwVa4ybtWaqL5GtswKGxXzlmVz89C//hJLP7lQtN2W4lXVHHsS6sbTZsMS+DMnJQeECJdI/fNAGcXgBfOCtRMyOJYNK+O2dGMNi0FpxjeVLKTffYYTqaAYbmUyS/VILho6Ddu7bzpIyatjjBGkxmBtCqvzoUSBT8Z9svS28dAxsPmhUkRDg7XRN8xJQCXztHtMKis42IlLIxaMa6Oa8O0ZRExlJHM8W67jl3eeZEU4XQlQdIK1PeEGQ/u52ZlP1IDxLnwoiA3Sg3O1A3huVC8ZOHsev+fwx8sS6VSV5MholHAYhAETRNXopDEz9AL/AL58jLwZEOBbDsC+aLA3Krsw9I1T7EQOQViGccteo6jC2Xa+Ob7jX3QO8ZCX4ILVfDL4bXJng1v7sprJkEogeKPBT1Iq/n50JyN7MkGihmxaMD5nyfBnsi3vCZujfQdn8rLcyZmULNtyrWNHsArLojFgLS8J6Z1yaYalrx3L6w1sye6FqrE1BEVTtmFvSHvzZwLnFuQjBmlkMZ/fUY8DgopTfYWR6+pSk0uAgx3vt33haEMwXhOusxTIifdRKdwLY7ZC24i21r3ct/T3az1GQyFekSm6hXHlFI8eLc05rJsAy+eeqztyzDO8PyJbwAAJkdn8Kb7vif2d19WDYR9rFFkU5JlMxqU9Q898RQuL55B3Szj137/J3Dk9LcAIJZx3E5W7XhtZwFGHsTMlCyYo2qifnuOfURl1WpWAaszuF5feN2SzHKMOa64QIOLcypNUDYAYz6cHOWLUm4ePb+mRmUP8koXQ/SlZWButbsEmLV8mH+bSYVF7plLR+BGimNVlR+EZFSQ6bRspdMpVEWLG3IBgCsgVgY02fNQivUcR5hjr9XAIQR5LY03Hgj3+YXJSKvT0QIKBsGJVXnfOzDm4gbz5wFHnlOPzer4yrnNLZSndbnwt7wuulNwXCHEe447h+EF1236hsS/5+sU3FOvEZNBn7qyH/YVVRyndQLLaXarnVuVRfNERJevqwR7poCXLgJLawKU86bVOCBkjgkhUBUNrierNqiC6dYxpG1BCAE96O2MySCWjVhxTNuYcQWvsScb9BuKc6EZDyEIspfLJQbhOWKTqRTIdApuTgsmwmMslANfK8WxYKJtnJOqyHiMzYJzgaohTTHa9bdGnapz2RGULILXRCXVV8iluh3o3eMgt3jsdckBe2ixaZug35gA9LA899Td4YzzoFnFp470byo2ORbKj9aLXfYdT6dBphLeUyHN7up9wC+QL3oF8ulZgUePcHzxcYEvPynw1EmBlObFldhcBmJ6iBt3JF/oasR/QB1gcUwogfJt4ffpm62Jsg3h9waP6yDecaR3RQz6upRW87Phea28aze0n70tcMGHw+H+zWXwF5IZkbhjtSxoosxxeduUaxs9gNdkv7EvkdY1wHJlgbxakON0rqGAzKYlE1u3hDSaYiLopV3ZAJbWgekxAA6XppdXkTkGZE9xqQrUIuuGGxUB25Es71YhpRMMZeRPzvsZGSao5R0sJeTi1k3ZB9tVz3HNRbHWLKsGeus7XspfChZUb7vxfqhqfCwdyY1j55RsHzk/ewyMxxdOU7osIKsRIYzlCFxYCOc0jmvjP//2P8aF+RPxvtM2suo6GhgvZRiXivKLGcqOBERKZRM+CwoFapEeYJqi4LaAW5bzuZrhmYZ6X4kQAqLigOgNxbEO1FQN5csGHO+5C2uydzxK+OgageDApaX2c6iaIVnjobScK3dCfiXMqH3NnW8Nfj93+SjsBubYB9EoyGQKhMq5dWPPMTB4aXWUOfZ7jgUXASO8rGXBCcE9O13kdDkH+aIesqT8WAFPzWtBYsnrDziYHhPA2bBH/mNPZZt6bHtBSpdJl6VasxfB1cRaISyOJzv0HAORvuPM4eCxw+PhwvrGogN+SpJ3YljD5LdvbRRlI15RxTEgb5qXl8MVWtuRk+JcpjnXMJMimJmQJgUqkqW1fnGsa2lZ1Hr9vRtqCntH+y/SSExaXQ3NuLKKZJY7PZ9EGCMuGqTV8qK+p7IhjaYgJdVfv6jj/f93DCtef+iIHe7DtSGrhtzfBFm8j5QmV9s3C9P2JCueGVMrVVvVCJn3XHYUZZPiNZE+q2uhOCaEQPu+/QE7wh5dAY9IZoURSmjJrgyI51hOdoU3o4NmBY9d1nGx0N+QEZXZRFcY2+53SpErx41QCODygUiqVIXg4E65QPatYwKXluVlvnMSuGE3we4p7/0dHtuXbpjjVG1wMU6NoPdNhnLp40XwVRPs+Y2A7VXumwz2lxzKhUqUU6WuWPdASUDlYgndnYX2s7eBPhjeoHw/hEbcEnOs9pjjXHvmWAjguUUVi+VX3C1pG50ggOgA7PeRlmrAfF62SzXKjjMpWTyXvVNUyakw5k0IJnBxSYBxT45oc2lvfZWZY90zk/Sl1S4TWFqX85UrDZpRMVSzcO4Sa5LX1r3c964MJh2OYi0sNKPF8atvf3NQCD155KG2hp8X5k4Evx/ee3viNj4LZdp1zC+di38e73wpRxbN51YE1opxHXvNKOMX/+cPxqTZYy1k1VwAFTbW9PhLq55DP1UwMiIXpDdTHGtqgpkYBZyiVxx7xGlwPCzPqbphsSelAbaioFZgMOYMFGZNLF2wMcptiJINUXWCYzA5CsyuImZK24jTswJrRW+BqQusLYXF8f13vRWKIr+nM5ePwInEHepa8tw2SVYNAHw+oVF/E4j2HI/4i95lJyBIFlOyGp3MctzmmU+e4UNwvRY0MVfHidPh/fV1+x2Mj48D658DVv4EAFB3CH79sWy7aWxbpDTpUL3VC2e9Yj1qyNXBrRqQ7RUAYszxvbvCuYP+fD6Yz7C7J9r6LG0FXnEzkbEcsFYOC6j5vOw9mmpRw+QyBHumgakhgaRmAduLatG1NITFoHlGFut9OlX7iPYdsxfWgarH/O4b6tr5uBVj5GcdPxBZJfsy3YFf/UYOFYtiQZEDgMZVjBA5wF8rzDFEe+Y4rcvV1MaYil4RxDhpgLBZy57jOHM8CrPOcZd/M7zCEU7tQKbSUN7ureZxwP30ZWl2AYBfiPcbB8+ZTgUqgoOWPP5/frS/pcpYcVzoXByfmz2Gzz/yx6gZCcHVKpE5x306Vje9nEJwcBfB4d0E+3YQjA+TptVw4cT9Bjr1HDsMGIo4qQy6OCYqhfImT84lAPaNZfCISzW9L9S6EUpA7/T20RWxVookiLINsSrHNbJvKGgLILoC9R0R9+Jycl/iRFZgOisXLs6uq+Ai3r+VxBx/7mQK//7vh/FTXxjGSvXaueFv49qEpkpmtVwDRhJkxwQy7mi9LMcIbUSFU3SQn7MxuxK539tc+lioV3cqRECgqaEUvFiVEURXhRkaUpGDi7VFt0leW6k3OCO3gXA4Cl7PMSEEIxGJcjYzjLtufh0AIL+xgJX1uZavc3H+peD3Q62K44gp19nZ5r7jTEr2HXMhUKwKXF4GFBJWnZoqi7K1whK++sT/DR4fb8Ecr9cJmPCkRFZY+PlyWgBBBNpmHPp11TOEjdzrlIwCa1W6zJeqMuYrQINTtQ9VIXA5ga2pKL5QwuUvrcF5Mo/MkTW4T6/BfWYtMOTMZeQcaj6ffH9dKwqcngWmx5sJpVaIFse7pw/i4G7p3Hx58TRq9fAeH2WOo9DUBFk1BhPnJFwO588vwPnkORilcF/8GC+RD6XbC3oWuiIwpAG37wgLuYX94bmdOSOP91ia49ZpVxbHAHD+X2E8JRUQR5c1PHKhvzkBJQQKvbZYYyDsOR7JTQQGrO0wNb5LfsdpyRxTInDXjPxOFcExc1KatwoCsLv6lOFuAq+44jiTIjAtKa12XYEzcwLpFKC0WZXIpAgU3oI5/v/Ze+84S67qWnidqro5do4zPd2Tg6RRzggESCBAJAHGYAwY/Gwc8DPG+PnxGbCxjQPwAMtgywRjhI0RwSQhiSgJGEmjkTSjyTM93TOd082xqs75/jgVTt18O0zo7vX7jXT73rqxTp1z1t5rr100ybEHEFyhF1weK0O7GJBevzXBsZHmJNXWa2wM2NmlE7YZT3+YQmLMynAWZBn3ztgyzWm3fdV1Svz+iyNzTAAdNcmx28XrRJdad5wvAppuyMeKtZyqbXLs94bRE0/Czfh5P98tnOpBfmE3SKdRq3o2Y9VziP2NiUiOZcmS0vYXslAoxc/PuHDffh/+66AH/3PUg0dOubHvnAu5yjzJQnsTmeNCMYf3/8Pr8On/+FP8+7c+Vn6ARHg2/3w6GKrUSY7ruFXH8wTtglkfIssnqzYh39ABGMSVPjkHZvRZJAMBSB3OxUm+vHKgrBKoUH8ubSnpARFSrCQeS5S3xzFhZo+zKsG5hOT4jSr1ezTrsNJFCV87dHEElNZx8cIlUywkKFxK9Q26zwvMJ3igVHJLYBrF2RN5ZPJAyG/U0KuUe4mcBzfXegj4gFiaS8Fn4wwMnNScbxBFgswYSLKI0SnnWhtPNVhvDAAaQ8wIwEeCbZAlp2fFjqGrrduVjLRMnBk7at2ulzmu9lo+I2iezvKWnaoOUGYTq99+w4fQ1zlY9rxqNceTYpue+f8BdP5aZuYYsMlxOpsok3o3CsVs5ySacvllaCkNekbHXKKCUzVlJd0djOdJQM7rgn/Ah4TfA7R5IXV4QFrcIBKBfjwBOp3jgYwAcGrcmWQoqpyMHz7DkFeBSKDxsTk3ZZsptbf0WK7elOo4PvKM8H0rD66yzLFie2DU86CpB3pggf97Po7ds3YW0zz3Yo/jCbcfrT4KQoBdHTY5fiJi1x1fZ/T2vn6DClmCTY71JF7R95R13MGpBmoTqqCzhSDcxO+/0qCUWvu6Rsy4AB4w2zJwBeDjv3mbT7U40/WpWfgMkwC2NQIEl3//VA9rjhwDvGH22Wlu5GHVHtVDkZa1cQKcsmomtHGKK250B5dAjmUCMlBOhEkz5LjEjKf4j4ehffcchjIJbM8lENH5530q0AZNkiAThs2tGqZdNjnulvhAv2gyxw3IqotN9DrWtMrOjDlBPsaKTmIkIiPIqt2+dkSLQraw++IK7RFFgvK6jdbf2g/GwZJqxXpj6znGd5DBsLGQAWUEXzvkxb897cdn9vnxd48F8MEfBfHe74dqyoTECXOuTs3x1OxZS4q2//BPyw9QjCDJMmWO64FRxqWXTWSOYzkJ7aodoVnuzDHATUvkGw3Zn/BTyNeUZzvIUAgIGNLqowmuhqgCJzl2Oq0TWQKC/HXE+a4U2ztEabVSs+Y4kScOs7cHT3owl714Fv51XFyIJWfxe395Hf7331wPxqr3nQl4uOw0aUqVXTLOHc4j6hculiIFu0iGmikFn4nxfxcyM0TcMiL5PM5OM0uOrOsMyWxjTtUAAE1HzOhzHA2Xy5NNZ2egvAWTiOExLqv2uv3o6dhU8Rjxtcz+uSLcbk4yz07z9kNtESBfsMlxd8dG/O0f/3fZ54wEq5FjYeucOw4pwx2Jp9Iy5o25yyTHjDGHwqwZuBSuQhJNuWSfDD2nIzOnIlvg+1kLhXKnahMeNw9uFFRgPkUQCBAeAFckkIgbhBDoRxNg8wW0hnhg6dAwsO8wxYP7KL77C4bv/4q3PO1pwIRLhNjjuC3a7ThfR0/ZhLFa5liWZAQlW01plR2q1JHZXQxEf41tWZ7F9Lh9lnFYqVN1q4//wjs6NN7BBsAvC2Er8bArG0eLWsBNG/hJs8gxgBbYfbhH4hfOqHW5kUwvQDP4RL0exyIGNt4IKFEAQFCaR2eQ70tetmCPF7b3/GeNgTVKjqNBYDYGHDvLJSmNGApA1StGl21ZtQdUkBmqQbdT7rIISJuC5fc1QY4BQLpSGFjxIvSfT6P/Pw7joyNPW3c/FexA1EvxDy9L4/97YQYzbjtz0ylzR8aLI3OMurJqSSJgrPFexwdOMDx2sLydTzbv3EBVCowAdo9jAJA9XYgI5hIkuPjI4EpB2hKGdI2xsuV1aF8fseuNe/1WvbEJse54L6kuxx2OKTi9UH2yb0ZWvZC0yfO5qZPIlkqrJQKi07o9d5cNOgMoSgy57OxrKFCJHBO0GbVUqiKvmGO5fGunc2wqBNLe8s9DZAJpT5T/oVLQ49U3a9ZmQSEgFeYgEjY2MCm1atTeYco1K9d0q35mUrEMTABA1Qn+ez17vI4qeHT/dzE1N4qZhRE88ez3qx5nZpQXUnyMJpiC7JyGKLEDN422NjsfIOByydk4768euJCXQECBr6AiM69ZfW9Np2rRIVcfz4BOVe4+kMmnrHrSlgrkWJRCn6hAaAG+75icHQEAbOrbAamKpjsSakNnWz8A4NToIVDqXBsICAgB5hIMPg/v/SuSY6/Hj97OQfz1e78Kr0GKejo2lZl/mXCS4zPodNmy8CNG9jgSsWv1Flt3bNZLi+SYSPy+1LyGfMHZxoml1Kp7FY+LGzlNL/BzWVrPTlo9gEqhH41DSqsI+oDnTvFOLskMNzttCQFDvdzctlEwxjA3zyW3fl8IPm/QkemfT9jrvSlvrwSxz7FY/sWWUHfMGAM9Za+Fm9gAWkmrQ+lUKXMMAAE3sKmFzx+nF2TQ3XzdlQDcmp7GVb38pLW22q9VyE2i3Sg5Go1LS27rdLFgZOKYdbuzra/GkU60dNn9yuXiKIJuYBPN4GrTq6DVDTYYqvLslcWaJMd+D58cpuZ58/JGwKpljo3J3+PyIjNnz2DSMsgopdJBEXWDhJt7XWkgCOXtm7lbsUDuvcxePGIDUXz27iQu79bQH6Ho3mi/R3fwVgAXR+aYEALCUFdGQ1BCbqsgX+Dteo6OAo8fZIin7Ocks7zeh7tjV88ci+SYuNoR1gVyHLj4yDEAKK/q58Zu4FnESvXGJqQeO33xW30L+PQrkvi7O1L40IvS+NNbMrhji71wHJio/n2bMeRaSMxYtxljOHX2kONxLlUn5y1zDJ3x7LHDkItnP/2+UMVo92yaoM0InBWCK9eCgITddrADRpsnX+Xz0Ii0ms0XgBgfw2QgWLH/KzHnNgYgXTl7vK3N6Vhdy5Dr6YnyOe37xz2I5S6SlN46LirMxWy3/XrO9z4PL6EqqgwTSQkeqoOIYzargSyTGZdOgW8f8eDhpxef8jVdq3l7pQs4/j0SSJEhoKk4Nc6gaZywF1TAa17+Rd7tQj8SA50pz97FRDOuSDk57mzts+aFU6MHK5pyjYwft+4f3FBZUm1i60ZOuHKFDManT5c9HvLzdk4Rg2M5yLGbE+Ltg1fiH//0W3j5rW/B+9/56arvJZLjW3bvxhtuusr62yTHZuYYWHpv91zB+dtIHgmp8YLDOZwxBpYsd6o24XHz4MZ8wjBhrTC+SLsHLKNBP5JAh0vDUC/Bxi6CrlaCSJDA5yEN1xmbYAXdMmsys4pDG3ZDIuWf01UlGAEAAYmfozwKkDbaSaKl1B2zqTyQ0hz3Xe++wXKqBuya4wKRMOfyosVv7513GaZclBH8PGhLq+/IT8NnfBUxc5xMxzAQ5c9JFyXMr5I17jmhHdvuLdfXONIJb3i3dbuQeB4A8OqUXZ8uXd9R1e9npbEmyTEhBCE/n1QaaaDNKCurOQQAXdeg6/zCcrm8yMzZF5m3denEiGwMOM6Q1EB/40qQ97TA/e5tcH/oCij3DIBsCVlSstN9bfirVxfQEbAn3xdebX/PLs8eAFLFzPEy919vCKyBN3a7eZ++Wg6YAN80JbPA5j5gYg547CDDTMzIMmSMCLlu9FVuoOaYKa2WVB0AEDj/dRKNgARcUF65ofz+CuSYCOSYTOWwq1PH1X0abt2k4o6tRfz65famaP949e/LI8Z8QRObxVfCQsmG98TIs2XHMGJInc8HdAbQElm1QfCqOVWfGrcDUMsRKKsF5cU93FvALUF+UfV6H7IlBPiMoMiROG9hUwIxii5trRKxFSTi1eqOgx5mtYw7vSDD56ssq2YMeHqcz5UumeGV23mwpaATPPD8evZ4HeUQ5494qrqsGuB1vJkcMDoNxFJAICqDzuQ5kWAMLFvu7LtYfO+4B5/5ZQC/8+lODNdQ0dSCz8vlv5FywcZ5BSEETAaixSJm48DUAi810qntz8LmC0BSBaGAfjQOFnPKteJCj+NKmWNCCLYa8tp4ag6zQtDDxLBgxjXUV4cc18lEB7wEPa3EcjYvzRyb2DF4Fd73jk/h8u03VX2vCaHm+P+87QO4bYft2XK4QuZ4Ke3rXAqQLok9yH4ZmVmNd1EwyUNe50mcKuRYIgSU8lKDYJWplRAC0uEFSxShH0uA5bTKBzaB9OwcCkag2Ox/6/X4sbF3e9mxtTLHfqOVUw45kD6bHNMltHMS1zsTN7hutHocM8r4OAcw6faBEWLJqgGnKde/jLVh0ihJHIjFwTLlsupEet7KNgPAaGx1SKvFXuV7d97S8PPSzJ4X5qf3gao6bprh87sGgtRlld3izwfWJDkGeEG71aalHirIKgFbUg1wWXUxbhOjUPvSN8TEK3NjLvPvJiXVZa8XUCDf0AH372yH5y+ugPKe7dj5no28l6+ALRsJioZ8qUuXgPbXOTLHjAH/fciD1/1nBB94KIhsHTOmZUcdThQN8pqtWAWjYxGT83yScyu8320sBTz6HMPwBEOuYPQ41imvca5ac2xPrrocQfgil1WbkK5pc7QLA3E6pFsIu6wsM6sgn+sLU3QZdSLPzygo1FhLzexxKfktxUJyxvH38QrkGMB5zRxDhxUgoZRaMrlK9cYAMDVhL4D+ZZgLaoG0euD+wB64/+IKSP3V5wgiS7a0ukBBnyonFrXqja3XEcg+q+JYDdimXColGM8E4XXzuUzMHI8nJcxk+Pja06nhrXtzcMn8vP7PMQ8S+dURWV/H8kEkx2ZNazW4ZAJNB+JpBokArpACFi8CGQ1QGa+9Xyan6ifG7Ovi+UWa7UiEoLeNXBQtWohfgZwogqg6RqaYo1SJMQY6mQNzSby1ZEHn9apCVj6WFXvGVt7kbhNdpisYaYlmXPUyx43WMJvIF205rkiOG4GZOW73U3gUIOplVneSk/MyipqTFC21nVMm6wz2y34ZmbgGV1FYcAu0olO1CEXmgf9akn0iGQR5Ogc6WVky3wxmx+xMoEmOAaeJmgmXq7rKKgC+tmWR4aq8Fn4sG89anTeaBTspJjf4/69wXYGOgBFkjhWtMr4JY/0yZdWAkxwnizJ+EebZY4nxFotASeY4tYBNUXtvsBrqjvOFLI6e5mWafZ2D6GxtXFY9mba/f3bhGSSeGEGwyOeQX4U7MU3qt61dKaxZctwUdMZ7qpYQpKLgRutxex1u1e3dyzPoRYMkaWD5wskk5II8FALxlH9OQgholA/KTjUH9P0JMgY51ijwiV/48a/7/cgUJTw94cLfPRqwzJgYZYueqBpGHVl1wEuQKwBT89WPKxQZxmaBiMElJInLh4oq8MRhhqLRxokTo+qZ44wgq1YRLskcX7zkmEgEyusHrDFNNgTK6o0BI5Js1h0nVSsaaj8OXNVrkCCd4NB0fWl1Np8uryMWEEs4yXGlzDEIAavFxJcTJQGSdDYBamSFKzlVz2UJmBAok1tWTlZtgngaq2uWb7A3qdpDE47MAK+/Ms6LRwKpolSxao4BoIYpl9kHEgB+edaFkBFISKTtjJIoqb6mT0W7n+HlW/m8mtcIvnnkwi2O67g4IfbTjCVqk2OAu/lOLwDhALi7e0HnQZ2iXrfHMWMM2kPj0P7nbEWlhQmdAs8Lc9+Z1ZAR8ilAVkUbUTE2y4PJivm1EirYfAEk7OJrRLsXLKnybGOWzymxOpljwEmQKhlpDTfQxqnSa1WrYRZRLXNcDzkViOf51rknZM9xuzvtYODJecUhq04uQVbtMh2rxbpjhSCTZvCqzvp5ojNumlgFkSDf89STRhOZAG4ZyC59jZ0dt+uxRbMmMZhhwiVXXiuZzuAlnNEnPZvw5JgCqc84Z0XqMM1qFExnvI0lgJzHhWe6eabfRdzYqfOsdqkZFwBH5rg/TBHy2PPCL8O2goAe4gERZ+Z4wZJVA6uDHB8+9ZRlxnXFjsazxgAwmRTGav40tF/ZiZMftPRjOn3hKOo6OW4EmrE5LiFIBUfm2At3hmcNM5LSeFa6DuQXdkHaGYH8gi6QofOntfJ18knKwyhafJdjWt2CVIHg/zwcxIMnnRvWX5x14z+e9YKlVKifPorih54FnVh6/7mqaEDPHfQBw5PcjboSZuO8titSkmjrbSdwuXhNuscFnp2kaKjmuMACliGX7pYrtlO4mCB1+6C8YzOkq1qh3DNQ/ThBWs0qRJKv7rVX7Ur1oybExvALierZ49I6wvHpYcfvDBiLd/78yKqZznh7DGMM1HOqfn5aQZsmOFU36ROwkpAGgrZJX0aD/ohNNNh03grwSYOhqpssR+a4RjunWzcVIRF+/f3wpAehIN8gJ9MxKwvytFCnbgZZ3nRZHorEH//WES/ShQufRVvHxQOHrLpEZVIJJiHwugmXoCoS3/SqlM/vNeZpeiwJ/ZFJ6I/NVFRamBiOyciq9jhdDeSYyAQMBL6CinSWt0c02wbRmTygUSu4bmUbZ/LQDalqPG3/XpVqjgFYsmqgnNAyxnDGcKpui3Y7eqVXQkuk08pMnhw9WGbKVYpcYXGZY7HeuCdUOYt4eFpZFkMuwCbHRYEcFzXe0tgj9njK63Wd1z0uYrUxqweiECvQsRTMCZnjNiFzvKWZzHHBJpQZVxhfOuAD6bfPGVuEtJqNZfiPCOBJTyu+KdttnLameVuvUjMuAGgRMselLZ1O+MLI+vl3oCdTYDkNHo/HKilLpucd5Phil1V/5bsfx5v/5Ar89IlvVj1GrDfe2yQ5tsoT1Fn0sjDC0/y3G3f7cTDQsk6OL3rolQlSqaw6YPTlWnC50RFYno07Cbvh+q2tUO7ecF575pJWe5LqUnMYdb8Vf/j9EJ6Z5Btjl8zwxj15a/P7lWe8mPnCCJ+kcnrNjcTSPhgBU+tnplvCvBXBbLzy45PzDCCV+1u3Rwi29BnGE5YhV+XXEWuO89SHiGHIRStkYS9GyDujcP36EKTe6psDse64kszqyh67pYFZP1oJznZO1U25YhU2vGVZBZmACQvmikJ39jgXZcGVao4PTSvOHsfRlc8cNwPlrj6rzlJ/fAbUMBxhgqSalPY3FuGoOa6eOW7zM9xotLOYz0pAy8v4e+oa0uk0NAo8a8wnUS/F5lZ+PruCDC/dwq+jrErw7aPr2eN1cGRzKUeJT6xOzTEAyJKTEJCAArpQ5OZFtHoPewBg52wCVau28fkSxcyZBXlVONESrwzMFhD2MszEuQ8Hy+tgUzmQkt6jRDYIslF+4zDkqpI57m7fiFAgCqBcCj0fn7KMrIb6d6MRmNnjbC5luVxXg5k5JoTAI7SvrAexx7FIjneXkOPlMuRyyQS6DuRFHlwAiooMd6ZoKfVYslhV4bYoKBLPyi6xj/DcnF1L3i7sAbZs3FO2p61ac5wTyLGk4ExMBu0RTLkWQY7FFk7PBltxyN+CDPj79MTawHRnRnrcUy6rBoBdnfZnY4RA32W3T6WHeVDfbAmWSC0g4IbFD0biF+88oWpFfOU7/4jZhXF87r/+v6q9usV64yt23Nzw6xdUBj2h4rLMAl42exTvCfye9dgPW/oAQjCTWSfHFzdMaW0NWbWPBOE1Bk/G66mWaLxkQFrtSaqrmEPWtRvnEnxRiHopPv6yFH772hzedTVfCO+ZG0H0nJ3dq7VpXhJk0pARk1sh0CkwNls+8xRV7lJdmjWuBKZxw4tqgQkzo+lx+5DJywgZBm0Xq1P1YiD2a66UOY54GbYarXuGY0pVl+FGHasXEuXkuExaLRsL90pL+AFeViH8KZqrRELl5Pj5aQUdYo/ji4wckxYP5Bca8i/KoH+Hy96cZlyV642B0prj6pljALhrmz1HxgOvsW/H4zg2o1jZtit7NMec+ebL7cDbN454zr+vwTouSpTOG9lcyhGkbgheGSSngcWLdTNtos9CJc8FEwdLaozTRcnqd3tJwy+DpVW0yipcMjdyYvMFXrNdYY0jLsnaO4hmaS3hzrJjAU5Mtxgu0wuJGYcqYPicYMZVp97YRK1MdClMcuxx+6u2iKqEyXTlzPFAlMLv4nPWkRkFkUjUemwphlwA93kRZdV5FdAUGXJBB7IaL2dLa1WdqhcFhYBphhntEjC3YJ/TNkE95vMGsaF7q+PYan2OxZZrWVmBSgkmQnYAl5Y4VjOVQv3qMIofP1z2mPWck3Yw+LlAGzRJwn6jNMmlymBn0mCzlTLHzj2HmDnuCFC0XBu1/tYPxgHYCrNUJgZKqVV3nFXJRTtPTM+fs+TS84lpPHv08bJjcvk0jo88AwDY2LPVscerBqZRqP9xGvTDz+IrJx7Fx0aexh/ECrjSxR3fmUzwo2gvAGAmLaGg5jAyeWS5vlbDWCfHDYDpDISxsj7H4qLswybrtnaRuhQ3Awc5Fr7nQFTHZ16Zwq5OHUW1gHt25/EbLTP4jRln6wSWWpndLCFoeLKOBoGz0+VtEGbj3JQi3Ii/WQkxKoVZcxz0haGl7UlSDq0ycmwM/UrkGHBKqw9UkVa3tdj1ONXIsaoVrY1E0G/L0o6fKdnoKIRHtM+HKVcJAa+VOU4XgeEFGW1C4IxELi5yDADyC7sBg+TSownQYwnQ08ZmwS871AJl8Mq2w2+dINg1fZoVJV+Qrwbc3KwjFovhacHd/Kpe5+v0hihePMSJd6og4cET69njdQBzQr2xiUbqjkUQiYBJxKghrr0xdZDj6VzFYBxjqOi1MHyRSyYbAXHLgEYhZTRs7CKQCHjJlIuU7Yes5xhSa9E7IiK0ximFw5RLILRnxu0N8WD/zoY+bzOmXCY5XqwZFwD0BG3SJhFbWr2Qk5CldkCgmcxxIr2AD3z8DfjfH3slEsZaKEnOfUy+AMAlgRQoWEbjdfQFvaYZV9NQJJ6IWCo5TthrvVhzDJSbcilVyDHyzswxAJwseq01TDTlYoxBe2AU9MAC2GQO2tdHyjqXsKIONsIVKHGfF9Nuvt49EbY/Hz0ctzLHeUnGguJB2EPhKrmsd3ZqVjb5zi0FbmxqmLHSYwnQLLWC6JRRpLOJS8KUa2L6jOPvn+x7oOyYQyefsDr2NFpvTJ+LgT4Xg1RF+Ve8IYism5/X0zNJ/N4/3IqP/vtbkc2uYKlmBayT40ag0YoR5mLRJo0eal9ULLQayLEgq87yye3qXhWfuiuFnhDF409/H6/+vSG87yOvwOuffQ5yCYWs5WK7JEiNyaoBXmsWT3MzFhFTCwxggNKIBElnqKV7Md2qA/4IIJhVrSpy7JEBI1jCpipvEK/utQMDT1fpd9xI5lh0n71s2w2Ww3FZ5tiUvJ+Pdk4lsrJaNcdHZhQwELSbNccKsdy+LyYQjwzlrn7rb/U/z1jSNWlzuOrGFzBM2sxNSY2aY4An+E2DLUACut8BgGeORQn+1b3l88U9e+wAg9k7dB1rG3Ox8nmjnmN1JRC/ApYo1uxxzLQSo58CBeLl4/1cQrIMmmRizxUjq4AcAzwbTM0MWrwIFis6SiuqwTwvQX8Eblf14JaY7T0pENrhczY5blRWvXnjZdbt0YnjNY+1yLG7WXJcWVYNOKXVJ6bardvJJmqO/+3rH8HTh3+KQyf2WbWebgVICdwglWWQFQJGwE0y83pdp+qmYar0lkiO55P8mpUkGS0Rp4JAbL8FAO4qNceicWRGNojTgmx3Z8jrwAIfo/pPp0CftiX9bCwLesTpWcJG0ta6fixqr+H7W7dDY/y99ENxsAV+vU+6fUBJGycTXgX4p1cm8dcvSeGte/MgEoG0x3hNlSH9ywzCQTs4lEzPY6DlEiDHJWUJjz39XRSKzuTIYuqNRTn7QX8Lvt26Ed/vT+L/JP8Ub429GUeGRhF28feZScuYjY9jITmFT336k4v8JovDOjluBFVqLkRZtVezLzD5IpNRLgaOzHH8l3Afvh1/e0caQQ//Lf7jO/8AVSvg7tidcBklYMeDEYwbETg1sUJOwjJpeLKWJQKXAoxOMStyaEqqG8oaAzXJl65rVv1bwB/mUjMDZBWoB0RYplwqtRYhEbs6NXgVs+7YVTGe0N4AORaNutpbeq3NztTcqBVFB8BJp750yVcjKHWpTaZEcuzMHJu1h2bNMYm6z6tXQDOQrmy128MJY1eqVW9swjQZK1CH5K0SXra1YEmk0fVOABLGp9M4Ost/q40RHZ3B8gEzENWt540l15eqdVTukR5fBDlGQAHSWs0ex2w2X9Y2kFaQVotZ41sHbfK8Gky5AABGIIHlNNCZHEApSAO9oeNJLquuVm9soppj9bBhxiXLCjb0bC17XiWIZS61OiIAQL64uMzxlJE59sisXGIrkONnh32W+qlRQ65jwwfw4GP3W3+PTXFFnkvhhmi6zvcyqRwnzMQjgy0U+RxMaztVNwsiERBGarq014K555pL8jW9NdIJWXJeE2WZ4ypu1ZUyx6cXZJA++9zRsSz052PQHxwve7r+8IQjeyxKqp/x2WMmI7twiBkZ03jRUo2NVzDjEtEZZLh+g2Z5+8mXC+2bfpxyjMtE2tnO6WI15ZqYcWaOs/k09j33sOM+R73x9vr1xmJHDE2S8P8NXIX7erYjfYUHB7WDiLEYPvXlP8HC9BP8Ca4WQA7hqm234+5XvXqJ36g5rO84GoHOUEl+JcqqvUW7Rs8TXQVZDp/M5ZMAukg7igs/B4z2NSPjx3D63PN4pedVuMnNL4gkTeJ+/1cxb0SIXZpesd53ySAE0BuvNW0NA5Pz3JkaAOYSPJscadD4m6nlLbxMZITFN+CLQBGimxdzG6fFoJ4pl1sGLu/i338+J2E0Xj61tEbry6pFKV5bpAvbN+21/nb0wZT4OKjV1oslimCxciLfNErGQK3M8fPTCny6hgA1xsJFKKk2QSQC5TUbyu/fWp8ci1LxenXHnUGGa/qM38M7ALS8FAdHWkANOU6ppNqEIgE9QT7njCcvXuOSdZw/VJRVLyZzLBGQXj9QQ+VVqca40n0iOX7lDjsQtGrIsVmjPZ0Hnc6DNKCMy+fzVuC4Hjnu7RxEwMf3T2bmWNWKODd5EgCwoXtr1VrUUrgUD2SZnw/RjboUlFIrC9YMOabMrjnuCVGUxj13tGvW+T9w0oNQgK8PYilOrc/06a/8qeO+iVlOUNwKoGpAwWjpVCgarSa9MlhGq6vgWSwYAc9ILwYFHaqqWq7lpZJqAFa9OcCDIFVrv0tqjoEK5PjpeWhfPQNTxCjf0Ws9zsazoIfj9rFC9vIXbqfk/wmlvD7cJMdt/sZ+C7I5aCnG0o9msK1oO2EnUvPYeAnIqisZ2v143wNglEE/Gkd6dNbak23q24louL3s+DLMFyz1zWhLBJpxvq8csvchs7EJoGC3/3rPr38NH3z7V7B7954lfJvmsU6OGwCrMjmIrZx8qp1pDbZf+sSIEAJi9GftkDogQbIWmx/vewBD8hDe5X+3dfwnMx/H08c+g7g6Yt331V+swIZWBo/mN+igGPQRZPLAlDHfTS8wMNqgpBrgC0MDbZz8/g4EVHuTT4KX/hgQYfU6RvW646v6ard08nr8CIf5Jqi0XZMJ0YyrJdKJbYOCwYogreZR7fKsrgg6nYd+OlVWb9Q0ihREmCmr1RwXdeDYnGJLqnHxmXGVwtHaCQDCLpAOb93niaZc9eqOAeAVgjEXut+NI1N91p+iJL8UfRF+fvMawUIVo7d1rB1UCqothhwDhnlUjfKBRsmxacblVRj2dGnY1M3H82hCbqTr4EUPs0abLuS5wqSBTgxzc7YZV7QOOSaEWBnEudgkYokZnJs6ZZkBNWrGZb6Wz8PVMKKreSkKRVuj7GuCHC9kCVSdjxmxx7GJgBsYNCSzx865EAzxeS6djddtLfXDx+8vKx+anBkBIPQ6LnLX6qLKCTM8MpDTwVJaQ9n8xYAVF9kVIqtjdnbWWn8rmTUFfCFs7NkGAFYgoeJnEDPHBjlOFiTE22wJID2asIi8tLcV8kt7IN/Raz2uPzzBjcuyGphh0qV3+RCTnZL/Z8LlmZNqZlzVQGQJ8lWcdLMCw82HLsfLPC/nnzsdg98FdAb4dxq9SB2rJ6yx50FbhCc2njz4I2QeOwvt86cgfXYEYfD9XMOSaqEjxiHjfHtkhl39/ZZrPQD4YMvi2zqvX8rXWDTWyXEjqJI9VAVZtV+1F4xo5+ogRqa02kVcaJVakcunwRjDT/Z9A2/3/xZchG/8F/ZoOBPivezmk49azx8fo3h8dJnlxRLhWeMmXIoDXmB4gqFQZDg7A4QalVSDB0aqtfrI5Gxy7PL1IqwJ0dtVnDmu5tpaq98xY8Dnn/Ihs+ck0PO7mI9PVSStoqy6NdKJbZuutP4u3TgwoKYhF0sWweJFYIn170x1OtWLzqNhQS51ck5GUSclZlwXv7xeeUU/4DFqJi9vaUwG7mjnVD9rccMGFWG38bu0vhKnYjwKLBOGK3qqn5/+sL0pGktenBH2dZw/VJJVL5Yc1wObKnfBLp37ptMSZjJ8XO7s0OCSgW19/HpQdYKJ1OrYYhGfDDZfBPHKDc0PIjmulzkGnPLaE6PP4YzgVD3Y1zg5BrgLMsCddKvBrDcGmu1xXL3e2IRZd0wZASK3AuByUtOfpBKS6Rj+7YG/sv72G99hau4sdKpDkggY48Q4X+CiKUUmxt6E8cjsctYbm5CJo41SM6CJIqanxTKp8swxAPzOr/0Vdm2+Fr/9hg9VfS0tUy6rBoCTqq9M/UE2+KG8aRMIIZB2Rax+yGwiB3o4zo0njW1DakMEpYhFtjoy0oBNjkvbONWCfFcfpMuiAACJEfxB4L14p+9dSKQ48dsU5a+VVQlmMxdX4JdSisnZUQBAT8cAXnT96wAAmq5i9pkTAABZI9ilcC+AxZDjX7p48KAnRCHLEt7z5r/Btk178Zuv+QDedfdvWsfN5i7Mur86Zu46YLHCknq1sbxe0bhDlFUHhf3hasgcAyWmXFI3svk0Dp96Eu4YcLXrav5Aixvdb70O9/3lo7jt2ldjgQqZP62If37Sj1yFvW9WBf7zoAcPHPY056kkEU6MmzifrWEupz52FoilGmvhZKHBzLHi7UZEX8WZ41a3NVs4TGoEbIpStBmLx8EpBWbAmTHgX/f78NXnfNDldmDo4yiQjoqbhdLMcX/XZisTcLzUlAuoWhPONMoX9YwGulRptUod/SPNzLFL8TjMXJ6fMeuNhczxRSyrNkGibrjeuxPKmzZBvquv/hMAkLC9IWnEfE+WgNs2GBl3yYWczqPGOzs1+GvED/rC9vkdX687XvOYr0iOy1u/LQes+mK3ZKkp2HTesZcQWzhdZpSVbO+3r4dVI60OuPiaG24s2Nc8OXaacg2PHbX+biZzDNjEMpevLqsWJddeT+MbAodTdRVyfJWghMn57DrMWnXH//7tj1lB1xdd91rs3clJtaoVHQGhgsrbODkgS2BZvWb9/GJBFAKWbd4/hukUbDaPqSlb6dFWhRxfd9mL8en/+yDuuPnXqr5eNmX/1llmr+fDCwqkfoHIRlxwvWOLlUUnhJRlj+kJe98x3R0tey/dsxXSbuf9E1aP48b3ncQtw/X2IbS+1c6Iv953D658ZhCsqF/UplwLiWmL3/R2bsKLb7zHeiw9bWd1B2QehLh8+011X5MxBnqa//bMLeGoh2edTQXGS296I/75L36E37j7/egXkgozuQuz7q/63QYr6tCHU0Cduriqz2cMyGncAKgEoiFXxGACOVmG5Lm4BvqiIZpySV3I5lP48b4H8Crv3db98i2dIIqEoD+Ct939p4hRewFo0QqYzUi4/zmnTHM0LuH3vhvG55/243NP+vFv+2u0jSnFIsix20Wg6cBcnIFSwFXDoVQEo4YbcrXMcdaOghF3JyJC5ni1GXIR2e5fyWYLFbO+hABXGtnjvEYsh+GvPOfF158XxoDkAQY+gvlKzrOOmuNuSJJkOVrOLow7HgchVUsekNe5HMwng03mFx0cY5TxMH2FmuNw0JllPVRixgUAuMhl1SakTh/ka9t565YG4Kg5brCn+St3lGcgakmqgZLMcWKVzKvrWBR0qmPeUJb0dQ1Z95vGT8sJVrDdb0mXz1bO6Axs3g5+ifXGl3droAsF7Gixs8urhRwTmUDq9oEojW0Z5+ftDXQ9WTVQ0s5p5DmcGRPbODWZOTbIbq6QqSplXmzmeKIBcry3R7XqjmPyVdb91RyrT509hO/+9IvGZwngt9/4EfR2bLIenzSMkWQZSGcZUlkGRRhWxCdzuXuDc3dTUCSgSJtfPxMqWEp1Zo4r1Bw3ikLa/q3TadsE6tSCDMk0v/JInBiHnWuutDNiGU+yyRzok8Z8IRGciZZnjovKBpBdUeFvGXHDKKyZzDHASxK6/qgD8Re7oDO+lg3EuqF+9jg2B+z94uhFRo5FM67ejkFs2Xg5NhqmeIpAVjcpmzC0YU+Z90olsOk8kOLrfaYvDGrUqvWGy3/TrqB939ylljk+ePAgrr32WnzpS19axo+zAsjpvCZjsf1QVcqfW2FRKJitnJQoogYxSntXTz9Oh2O11I1UJo79T/0IL/a8FADA3ATydXYRvt8XQozaktN2nW8uHjjsxVnDoOknp934ve+GcU7Y6D5w2ItHRxokkxJ4zXETsmqAZ4vPzQKhZowpNcYXhQYyx1BaEdFXr6wagF2LqtKqUmXLeAnAgQkFDzzvwb8/Ywc/FGL8Rp1vxaGJ8r51VuZ4w5/jY/u2YnhBcphynRDcTCEToEqvPJbXQYoUpMXDDaMWa1iiO8cAYwyJlEmObUk1ZcBhY6PcS+3N8aUgq14MnDXHjf22Qx0+IP4jx32VWjiJWM8cr8NEPDkLSvn13t+1GR6jM8JKyKrZTN6SXpIeH+/1bj4meC6Y5FiRGHbEF1D8q+ex8S+OWIHS1dLOqVk4MseR+uS4t3PIyviePHvQIsdBfwQdLb21nloGU1YNAPkqplwiOfa5F5s5rrz2BN22a3UG3YBnAEBlUy7GGD7zlT8DNcxO3/qq96GjtRc9nYPWMWZLHbcCpHNAKmOYcRkgQRdIv79q+deSoBhu1U06VtOFAsDQkKy6EehZwZAr8RMoEv88wwsypGva4PrDHXB/4DK7tZMAQgiUO4UxZBB9stGPKVUg0hrfz1Hiw0LUD9LF9zsTrWGYzmutDRpylcJ1Syc+nP4LZBkfj+xcFrvO2IqAiy1zbNYbA0BPJ88O334Dzx63Sva+Z5M8iL076rtUA05J9WSXHZTorRBk6gjY981kL6HMMaUUn/jEJ7BrV3MRvQsBltfBcnpTmUYHirRq9tCUHfg8W+E3Fu28b/Vshk1DLgDokrvw2P7v4kbtOngJnzTka9pBfDYJ9PtCiDGbHF8Z4guQRgk+/csAPvwfLfjrnwaR1/hvKTr//ePjAYwlGhiOi8gcA0A0BLhkoKWBLjUWdMrfq8qikxZqjqnSgojGN/pUJlYN52qCaNTEZitLq68S6ke/e8yDzz1lRyN+9/oMXrT558aLSfjOmc2lT+c1x73vBTb9FZ6bduOLB3zYJpJj0ZRLJmCFGpljcNMdMIDOLVJarRv17cbpzBezUDX+WmK0dDQuIVXkBw1Il5aselEIuywD/0Yzx4QQ+ONfs/4OuCm2t9euZ+sIULhko53Ges3xmoZoxtXe0mPJdVeEHAu1xaTLW9FzIZYjVpB3W5sO+Wnjc2QprsrxzOlqyRw3Cwc5DtUnx5IkYYvRtm9mfow71gIY6t/VdCs8v0COqzlW55ah5rg7WJ0oXStI69FyJ4DKsuof7/s6Dp/ibWv6uzbj9Xf8DgAuZTUxIZhyFVTuWO0uib03mtFvGorEfT2acKxmGgWbzoP4ZAc5rmTI1fBrCoZcufwR9AZ4Pfl4UkJeI5A2Bh2lPqUg28MgA07iLG0JYy4j/G4J2y/nXFKB67e2QnntRnxtx07r/kYNuUoRDrbigPo0Ppz6C+u+1jmbLF50mWPBqdoci7df/3rIkBEmdmeeHqkHV25ptL+x/X1PhO29U6Ugk0cBol4+5i6pmuNvfvOb2LNnDwYHB6seUywWkU6nHf/y+TwopcvyjxAKmVAQ1PlXVEF0DYRq9Y+t9E8znuchIDJz/FN1vglu8Wy3vjcNucuOI8bmrtL9F/M/qcNZc/yzfd/CKz22pFq5rdNxvN/vx4KQOd6s5NEV5AP/mQkXvvwj+6K6Y2sBX35jHC8a4kQjqxJ85KcBFFidz6QAkswApjd1HhWJob+DwSWzxp9HdRCJgrgqfxbRkEuXIwgbmWPN54KkVD7fl+I4sP512koCNp+veExbiGKwhUfNTbIIAL95VRZv2JvHK64cAfJnAQDDmQEcmpXt30aimKNbgKG/t573/IyCbUNOx2rr/TwA0bWKYwF5DcTFf2spLAELWUBdxBxgjQH+Wqmcs42T+VkOz9q7lU7TrVomIGG57De6pMeAeR26CWDU1bNkseHntelPALlhAMBtQ0UoVa4t85/iYug1Fs/xlAQmGe9vPG+51pN1XPwQay/bW3osuW4yvQBNW5rpXilEcix1l2SODaMuUVJ9WZfq2PztlDgpm0hJKDRfsnnJoxm3ahNbSnreAs1LqgHA57VJUDVTrnxRrDlughwbbZza/BSeGuKwayqS43jZcd/5yRet27//lo9ZLatEWbVJjs12TqrqzByvKGSjZWITmWMWLwJpFfAry5Y5lgyFWFaSQfPD6PUbtasgDQWgCCFQ7nAqEKStYcxmhcBL/MfWzXMJGaTVA/nmToxRw5hWYgi5F0eOXYobfm8Qx7RjUMHHhjSTQ7exPz57kTlWTzpk1Zv4/zs34drB2yAJrTtkImNP9KrSp5eBUbu/MXwyDis2F6iUOQaATiP4FMtLzfkSLROa1n4mEgn853/+J774xS/iE5/4RNXjvvjFL+K+++5z3PeGN7wBb3zjG5v/lBUw2Mr/1UUUwGUAMG/8axJRAJsAoHyS9f6Un+w21yYY4x3+AYLBWys3n990U3X3xIsVh/5Sg5JT0C114Qp2Obpkbunuu8GHTa9XYX1xAyzAoDIVLuKCBwX81W/N47c/1Wk97lYYPvwbC3jTbWkQAnz6xjRe+5FunJpw40xMwRdOufH375ov6x9YjpUxYXEgCqAPKP2OJuSf2hsAd5sXYWODprRLVccAcGmOAwDIeCnOPsBvh90pdN1aueXP7WMKPv9De/J798sT+LM3xUEIsHCgHTj7EWDb5wEA/3HMja/fEwMhwOlzWWhbvwwQe1pKFST03tyNUCiEVCqF0xPPVPhtz6EM1xj/IB471vR3RhTAqwFzDGQP26/RvzVkfZbhw3bgIFTkAR9Xt4Kh2yqf60t1DIg40ycjf0wD0io23ZREI7K+rl4fzh28DQjdgL/6zN+gJVw/s77tgBejBxSoOoF3VxZ97ToGbwWAJEZHqzvANoNagd51XBwQexy3R3scRk+J9PySMlOloGLmuNtwxFUIL7UxHjskmHFdLyV43aeBTZRnJikjOBuXsbWOQmK1oVlZNeCsOzaxOHJsZ46rtXNaTM1xTgViObPHce3zubVNR0tQRywtA9HbAaKUZY4ppRg2XLl7Ojbhmj0vsh7ratsASZJBqY5Jo9exYpBjAJBrtCBbThCJAIxLqxt9R7ZQBGOApEiWIZfPE0DA14xszwmX8cUzkgwUJ9DjTwDoB8Cl1bs6619fZFsYZCgINpwGQi6QgQDmDvDz6SFZFDJ2ydY5QcW4YJzzFl95X+tmEA62YSo/inE6jk3SJrDZPIYuVzGVlpFVCWYyBF3Bi4Mhm5ljQgi62jda9794z2uBXziP9cXq51gLJwuAIY2XNocwmeYBDYkwR32xiK4AxYk5gIJgPn/+lZhNk+N7770Xb37zm61+pdXwjne8A295y1ucb6YocLuXR2b4s2co5uJAV2uNPoWMQd8/DzaRhbSnBfLm5i9OOpmF/nwMUnf5BDo7wk9qq9Jn8ScdXpx5zPk+RGbYdFMaI78MgukXl2V7PRR8FEoOaJPa8Vrv6637tcv7yr4nAHhdIcRoDJ1yJwoTOobSCl4wWMSjZ9zob9fwwReksVUmGHncfu6f35jFe/7HhbxG8I3HgxgAwSt2VJfB0qks5MtaKp6T5QRbKEA7MAfS6aso7Ro/aS+w2YkAFKNITZPdFX+bS3kcAACLeWASzPizFNkK3xEArhCi2q/akcebenWMPB4CkRm6BrqA6S8DfX8MBHbjwCkv7r+/FddvUPEH324B3HxekVgBlHDC+fCDUWzdcCUOHHkUMzMzeOo7GbS3dIPlNbC8DuXadhCvPZUxnUI3TDdIkH8YOpODtCEAeVu5AUfN7xwvQHt6HqTdCyIRHD0stGlKd1nned8hHigIEw3EaDuheT2rai4oRVH2AigAOnDmQW9DEnIP7QSK+4H5b+L0Yx9GW7it7nNaVPt3+tWPwri6T8P8mRy6dvpxyz31jUDWsTowF3M630bDtt9FLDm7rOTYyhz7ZN77mxCQLh/YeBZsPg+mUhw0MscEDFsWFhzP7y7kAOPSP7MGybFpyOX1BCyDrHrYOrC37L6hRZDjRmTViyHHU2mh3riGpBrg7vy37Mnju/sCgBIGQjcglY47jpmcHUHe6Ldc+j0VxYXO1n5MzY1iYmYEjDEQQsDAGiapywVG0HDmmKkUbCYH4pfBGLMyx0vJGjMGeE1yTBgAhi6vfb2dWlAA1Pe9IITA9fYt0J+YhbQtAiZLmDfqWX0kjkL2mHWsWS6hUyCRN+qNFympNhEJtWJqbhTD6mls8mwCKHCZlMEvwfcOo3EZXcGLQ2ZiqhU6WvvgdtmB/2s23gL8YtpxbLXWniIy+wUlzpYQJkb5787Lpio/50KbcjVFjo8dO4bDhw/jAx/4QN1j3W73shHhSmBG2WmtqYIVdNAMBYgElmNgi1CRszwD00nFjWzRyBC1SnZm1N/iqrrprfY6FzO0sAQscPnEbhfvaVaMMLi3RCp+F783hFhmAZ3oBDIamAr8n1szeP3uPF5ydxxTT5aTgo1hhj++OYO/+Tlf1D7zKz+2turY2lbFbEmXwFSyqPPZDKhGAJUAVEKlaVF0q5bz9sWrBJWa5/lSHAcAwIJu3i5CpWAzharfYVe7jr+7I4WsSnDzgApQYv1+7e3tACgw8kFg97cAAP/2pB/Pjqs4sWBkogtjuC78MPYV3gkAODLlwtaBvThwhNcEnRh+Dm17e8AggxV0MJUAXnsssJwOmqWcGJuf0euCPlkA2UAddfL1QDXC110mgelAImlH/8P+VjCdYDpNMGNEQq8N2ZsxEnavqrmgDCF7fqcLGqRgfTPCcMAms4lEDK2B+mY7fYLs6lxMwVXdOqjKfz9JWn21/euojPkSWXVL2F53l7PumOU0wKijJ912YJR0c3IMCmTGCxhe4Nf8UKsOZTjpWCPC6RxgcPe1WHdsZo4baeNkor97M7yegMNEa1PfjqbfWyTjuVwDmWN3Y+S4kR7HIl5wWY6TYwBouQPJzCHH48OCI3eldlW9nZswNTeKTC6JZCaGSLAVQS8n3ucVzHBvb+TQhCGp7vAik0shm+W/81LIcTLL4DUMyzKGoWeHx1YmmNdhIyB+BcqL+GeJ5QhUyq9tF50B1BlAiwNKFGOG+WMsTyyO0dKkU3UpIkEeCB7VR6z7tqopAPz+kZiM6/ovPDlOZxOWykGU9wOAX/Oi9BPSyfrkOLtfSCRtjCB90nCqrnEddYqmXPnzP4c2dZkdOHAAZ8+exV133YU777wTjzzyCL7whS/gox/96Ep9vqUhr3MjAZ8Cpi4ucstyOlBlA2YacrUSOxsV7lhdLsUsUv59vC/ayOU2FcAdqw0CwQCkVbhkYE+3Bp+neuTt9iEVr97Bf09VJ/j80zXaO5mRkZWGRiuSYhOiW7UkzA9KaHWNARNEIiDtRjun+dq9w6/u03DrJrXM6Nvj8SASagMWvgNXdj8A4GxCxjePGMSYFoGjb8TuljmrHcaRWRnbB/dar2GZckmEj4OSghTTqdrR99GngGQ1Xg/VDHQGUUslOo6abtXPC7WHe332IrBqzbgMiI7VrMFWeaLDdyK9UONIG+uO1esAgDnRkKtEVh1LLCM5LpVUW7ftMpLxkwVr03xlewHsjJOEuTIqPIZJ51ojx5qmIh6PA4Aju18PsiRj84Y91t89HZvgX4QUd6Vk1Y30OBZx6x7BtLLljrJWTvXaVYmmXJNGJi8cIAj4znNQVSF8L90A2HyeG2HKksNAr20JbZym5+x9Rpbxa1NhWatedzgmN9u8BAAcZlySanzW7HEAwExaQl4DYoJT8lIzx+baNyKQ496sPT4vFlMusY1TjzAGAYClyksM62WOmc6QPWAcE1RwUraDV7WuowudOW5qp/G6170O3/rWt3D//ffj/vvvxwte8AL82q/9Gt773veu1OdbElhOA9EZd6yt5mpb9zV0kCp9cS1yDHsBdbWsHrdqACBtzmxQUVahXFt9wQv4Qg5TrkoXUzX8r+tyaDOic0dmlOoTHiFg56NCnzqJUSkyWV7v6FLckHP24kGCq5McA4JjNWVAbHEO0Kb8kZ6uoEAZ/mMg9QQ6W1ow1MJ/05GYjP4+2/ThuEGOiUxAKMrbtBV4UEMM4BCJgCkS2Ey+Yo/mqtCZI0CSTNu+BWYW9PkZ+3xvcwkb6+jqmgtK4SD/DTpWiw7fyQbJcX/EvrbWyfHaxbxRc+xSPAgFok5ynFw+DwrTcAvgZlwmRKKcOmsfc6Me446+JdhstG1Za+2cYkLf6WYyx4Cz7niwf2eNI6ujMbdq+37RwKsWpuOAV+d5s3o1xwDQGdUx1GLMi8GrEcs5x4gjc1yBHPcIWbvxmeGGPuNKgLgksGz9jCYrUrDZAoifr3uigd5SSh7mY/bvlqF8z6VqRWxuNTrEaAQTi1gXZgXiS/OGb0nuBACuSB1PyljI2XuIxbZxMmGufWLmOBzPwtTVna92TsfPPIOPfu5d2PfcwxUfF9s49XY4vTiY2MLT7MiSVMEy1ccHG8tyBS+AsfYoPvhjO+DVF65+HYmZ49nc+V/3m3pHr9eL9vZ265/H44Hf70cotPhC+5UEy+lgMFrxaM03MmeUAXmNR84qoKgWAMhopfagrmUnfylCbndGVYtX+EE81S9ivzeEGLMjpKxKP9xKcMvAzg5+kWVVUn0jLJGm++4tChqvb6kGM3Mc8Eeg5OzJwaxzXY0gHXawhFZp51QPbVFu6qbHf4are+xNyoCyH5j8LACgNdJp9YpkIFigA1bk9cTIcxbBZaiQOc5qFYMaJKiAzhccxjl1UTJnVMocHzXIsUQYepnwm6ylzHGDvY7DATtzXKnvZyW0+Ri8Cj8PY+vtnNYszM12e0sPCCGOrGQ8NVftaU2DTVfOHItEWRKO2Txvj2PSY2eXL3fxrNBcVkKqcImXUDQBMVDRLDneOmCT48XUGwOAtxG3aoesuj45ZnN5/MZ3foX7Tv0CA/lUQ5ljALjGlMkSCfNst+MxM3PscfscfY1N9Ar3TQqE5bxDJkCRgum1vzOXVGtAgK+Hpe7yi0U8Zr9vRufXmqbb5BgATjchrTYxK2SO1QwPPrjUEeu+cwnJMuMCgNZlklXP0lloLv5aZCqHbmMsjcYXlwFvFvd9/SP42ZPfxt/+6+9A1crX7UptnCyk7L2TJHg41coei/2Nv1XoQNEoJ+sJ6bh9qPq+oTMokuOLPHNcig9/+MN4+9vfvkwfZQWQUnnWWCacGDcrxdUoz0pV6SFXVPOAuwetxgAryHJN4ngpwic066agaL2zdg2QvyRzjCYyxwCwTTAuOTFXOQNLJJwXcsyKFKhR026T43b4i8L3DKzizHG72Ot4kZnjFjuKfM/mI7iiW8WLhorYXLjXur813OVwoDw667I2TvHkrC3ZIqQsa8PSxnVfCq/M+x83I63WGcQeC2K2MxxqBWU2YesJUigp+7VXu6wagtN0o0GwcEgkx41ljgmxI8xTKQl19mjrWIUoqDlrvm035g9HzfEyyqrFGjpRSo2o28qWtKV4UG8gqsN9xiivIYB8o00GtzKbgK2l7HF8CZnjW69+BbYOXI6utg14+a1vXdT7+1dAVq0/swC3TtGqFfH+8efR4mpMZiz2O065r7du5woZS7460LsdslQ+PhztnATCct6hcLfqer2ObUk13zMtFzlOJ+z3zer8Otc0bcnkeE5o45RP8oxxkNhS8LGEXEKOl27IZSIdNILo8SK2Bvk+Kq8RzKRXPkNqnpdMLonjZ54pe9zRxqmGrJpstU2ZWYW6Y8qAsYSEs/vtBMjBQAskwnDP7jz+9dVJdASq/6Zhjx0Un7sANcerdhfPKOMn0i3ZtYk6RVPxgCLlWSlf5RNTVAuAdyNaNT64c343ant4X3rw9bUipZyAR3MjPcjga6ttuhPwhjBBbQlQM7JqANjWbkemjs/JePHmCgdJpFxKuxIoUh41rQBKKbJ5HhHzBjYiogukaC3IqsGj6YtBuyCxYvlRfPzlWwAAH9hvt2RqjXZhl26PhSMzCgZ6tuHpwz8FwGVmfMFlDj8BplOeGXaXX+eEEMAj880vBaBTMJVZ1znp90MSyD/A3Ter1hwHWjGXIchr/PENUR0YFcbBqpdVn5/MMcDrjk8vADojmEpLqG/9tY7VhFjaWW8MoERWvQI1xyEXSMAe44QQbso1mkG3modP1/CWoRTYL/jxpM8PaaOdhezTsoCxdRiOybis+8Kb7ZwPiOei0R7HJnzeID77oZ9Y7syLQUNu1U32OaYz9lo3mE+D/mgC0sv76z5vT7cGQnNgkg9q6DboOoUsSxgdP26pn4b6d1d8bk/HgHV74kJmjhUJ0DRAZUAVKxhW1MFmCiBCYsBBjpdQc5xJCZljdQLA8meO8yleaxx1LcBclc4lJAQFn5ylGnKFg3ZnhpgviWiMj7vLkcaj4LdH4pKVSV4piNfEs8cex56t1zseFwMxPaWyanM/75Mh9fthngE6lUWuQPDEmIKT8wpOzMs4Na+gWGD42jSXws8qHrg7Pfj0rSns6Gig9Rbh0uqzCRmzufPfB3r1FnDldZ75c8uc4FBWsS6oJlTKn1Mlc1wo5uFzD8FvGG9ogdW3GSaKhODvXwH5lf1of+fVdY/3+4LOmuMmZNUAHA7VJ+arTHjnS1at6lWNx7L5tLW4uQN9iGhrJHMsyKrZomXVNjkWTTtiCS7HcyluBP0R9IQool5+no/Oyg7p2cS0Ed2USvwE8hSsqFckxwCAsAtsNg/9cAz68QTomRToZBZ0Igs6ki6XjqnOAEkyw8e2RCQE/RGr5QMAbAhTmyRKBFjF8noAPGhoZugbrjluPnMMAP1CbdJYYvUuW+uojIWUQI6NLFQoEIUi82ssvkzkmKVUq+zCkTU2MBmwye8NngRuVW0PAmlb2DIsBIC2rJ1NGYmvnTErZvGbzRybWCwxBnj7KBMNyaobIMfalHOt038yBTpav1e9WwZC2kHjjx4cMV7HacZVubba7wtZwQUxm3feoRCeWKqx52JxFchqjr3PfMxu+bOUzHE+Lcqq+dhSNRVdQYqAmz82vND8nks05EKBt6js9Nk1wOcSstXXGgDa/MuXOZ522dfI5qItOz4fplzi2H/u2ONlj5uBmHCwFUG/kB1mDDD28yTscpSc0Ikc3v3tMP720SAeOOzFwSkXsirBtlzCdhrfGMZnX90YMTZhmnIVKcFcos7By4zVO2ObTtVi5rhJEydWpCCUVSVIqppHi3vIviO0OmWUUn8Aygu7G2qB4/c5a46blVVHvMxyITw1r1SWUErgkvcVDiWxGpnjjOBUrXh7EBYzx6swSGLBr1hKiuWQVYvkeCHBF9OWSCfP0hC7Bj1dlOCO2PVo48ZmgcglTpqVnKoFEJcEqdcPqccPqdsPqcsHqcML0ukF5gpgcyXfSaWO69/MdgYDUUiS5CTHUR3MJIlhV9V5Y7WAEGJljxuWVQuGXIlU4+TY6Vi9diSq6+CIpe2NthlcE+uOl40cC7VzYo0xABR14CcZu8zoTZ1x4FTSPn5rGCSgQAobvVOTNqFaS47VYuZ4seR4KVhuWTVjDKRUJcUA7b/O8EBsHXSR563b+87y/9dr42TClFbPJ6Ydn/l8ghACwgxpdRWw+TwYcZpgmpljQghaI53VnloTlAF61v6NM4bJnaYVQQiw2TDtnM1KVj/iRmEacnllDdA5QY0Gw1bm9lxCtvogA0CLd4mZY0E1Nc7Grds9aTuTu9LkmDFm9dYGgMOnnjK8kziKah5zMZ6dL23jhIIQIAm5OB+Ics5Dp3KYzTh//w4/xSsVey7Ycr2/ak/jahBNuc4un+diQ1i15JjldYBxYstdbVnThlxQa7fyKaoFtCobrb+VVeZUvRj4vSHEaNz6u1lZNWDXHec1grOVskQSMWSxK0eOGWV8IqhCcMQ2ToqnCxGj7pwSVJXhrwYQQmxpdbxYc8GshkqZY01TkTCcoFuFWkLTlAsAktJ26/b4tCHdlwmYkDlmBR0MpGliShQJTCag5zKO7DFTqWOWND+j6VR9ThifG/2anXWKrs5AWRlMA8K83lAvzHCgxcr2nZ042fDbiJnjdcfqtQdRVt0mZKGiIU6OY6k5ULp0NVE1My4A+N4xDw4JhVMDuTToCYMcuySQQU7K3P18fJNEET0+Ph+MxM6/LPBCYSk1x8sBh6w6X0VWLRBNj6tG20gASKiQjHVuf7ANsQ7++my2AP0H47WeCQDY4LWzvs9M8fdyZI77apBjsZ3T7Gjd91opMIKqmWOmU7D5AkjJvsckxy3hDsjy4tR081kCr2bvAbJGHb+q833lkCCtbqbfMWN25jjstq/5aKgNG4xAbE4jVlAr6KZwL1EQKGaOR3R7TARjGStb/dyUsqLKKFUrQhfK1YpqHkeHeUtNltcxNT5qJZ1qtXEiIT7HST18PEtFig6je8/dO/L4+q/F8Z9vSuCFRXsukLc0b9wstnM6t06OlwfcsVa8p9y4p+5r1DEgKKoFtMn2Rt7XsnrltI0i4AtBg4qkYbnfrKwaALYLdccVTbkkwsnrSlr76YwT8CqZ43TOJsfE3YGIMVlr3jWQMVxi3XElchxPzVmTcqvhZg0AuwVTrvFsp7XIWr34SpzoG2k5UQ2kxV2ePRYCJJqmIpvjEWZTHnxOyGJuIGunjZMJ0XSMNSCtlmUFu7deBwCYnB3B2PTpht6nL2LPxeuO1WsPlWqOAduUi1IdqZI+sosBrdLjOF0g+MpzXowKxIs+H7dlhkNBEKP8yr3BuCYYsNfDM5fpouQwAFrNcMiqF5kxXAoacqs2smdetx+SVHsbzIR647OeIBZeudlSJumPz4CeTFZ7KgCgJ1gE8ny9Op2IIFtkVua4NdJZsxd0j8OU6wJKq2EknCoho/PHBGWhrmtWmdRSJNVTKRl+aq/pYuYYwKLrjtNFgoLhmhyQ7PMXCbU5WgdmVX7MUs24AGfmeCo7YQWWyXQeG433nE7LePf/hPHlZ7xoQJTQNCqpD549+jjYXB7FjzyH9s8l0SXx/VdpGycIe3mzKw/psefITQV+re3p0tDiY6DTObCz/Hx5tnlAWpt3CtnVqeFlA1m8ZVsKOzfWP345sXrJcUoFEXL4lVq+1EVOr1pvDAAFNY9WyZYJ+tvXxoa4Fvw+Hh2y6o5TWtPy521i3fFchQlPMmrIVzBzzAkXrXqFiJljKG0IG5O13oD0/FKHs+64eWl1a6TDqikzybHY/kOUYG1r1yATfp6PzbnR3c5nyPGZM3xcmU705rWdquJU3QCIIgEKAT3Ls8eWw71BjsXNtxkFPmfIoEJuimBuDTlVGxBNudCgKdd1l7/Yuv3UwR839JyIh1n1ZeuZ47WHSjXHANASWV5TLlFWTbrsjd9/HfIgWZCQUNzIuo0xL7jeS9vsjLKr374mdkp25lKUVrOiDv3pedDp6i1QLlWY58GluBHwnX+LUq/bD4nwOaKerNrbQI/jolBvPBfwYftOF+S7+qz71K+NgOWqB2XDwRYgxnvK6kzGL4Yzlt/CYJ12VRdLOyeiEKDKd2QZlZcfCetuLDkLatSaLoUcT6YlBPUK5Ni4b7HkWJQA+4jTZHNDpJyVLrWNEwAoisu6HhLpeTv4ltXwvivi6Azw91V1gi8/68NvfzuMAxPLu5+sZFD33LHHoT8fB1QKWSO40XUTgNpO1TAyx2IAcZNxrXUZUmj6lJ01jr5qcfPA3h4Nv3t5Gq/fnMX2dXK8dFR0rCWkaTLFcpplS18JRTWPVtiRZGmV9TheDPxeTo5jzCDHKnXWhDYA0ZTr+HylzDFWnhzrRma6as2xbaIgIWKZDqxmMy4TjnZOi8gcy7Jiye1Mcjwft2sKxRYtXsVeAEfjEro69wAA8oUMr1E2MsfQeNkEq+JU3TCibmC+wEm/bpRiGGMgIbZxCrQip9p1SxsiFEgK5HCNkOPFtHMSyfGThxojx4QA/YbcbTotnRc/vnVcPKhUcww4ZbtLrTtmjIGZRKjFDeLlm+2ZNME3j/A5zyUxuHrLjbpEcuzeYO8DBnQ7UyOSY/2hCWj/eQbqvcdqEqtLEWagMxpuX5Kx1mJBCLFIb76KW7Upt/a665txTZ+x5/X2AQ9kCZBv7gQx+7zGi1D/Y7jqeQwFbHIMAI8N22tmvV7OIkG50I7VLFd5H/fMvp/iC4/8HUbHj1v3zcWXp43TVEoqyRxzAmZmjjdFdUhG8PzQROOBpjmhlljR7XkjHGzha3kJWpZoxmUiEuKO1cn0gsPTYIeexudfm8Sb9uStZMBYUsafPhTCPzzmbzqvVw2VMsdHTu+HNmNfJ90yP1812zhVIsdG5rgryBNL+tOGWaFMEH75pdfH55IlxyyjVc8E54z6t5JNcjP1kYwyTuqqZI51XQMlPrRSYfJfJ8cIGJnjGLWjcSzV3OIf9DCrr+npBbn8NJ+HmmNLVl1FIi0acnl0O/q8mts4mXDIqpfoWL2QmIFOdUuCBaDMvGOnUXfMQODteJF1/8TMGcOJHnwuyOvcIGWRmWNAyB6fy3AHHmpnjp8VnB072/oxJppxRZz9kx0Z1VWMxbRzGuzfie5ufv6fO/4LFIqNbWrMOYGBYDq3+q+zddgwyXEk2Aa3y1aumDXHwDJkjhOqFciVhKzxl57xoWhIMF+zqwBvf0mNasjp3OrutwNGXQV7bIvkmB6O8xtZHfToebZhXUHoVEciyTfFF6Le2ITPcKyumjk2ZdUNOFXnJ+01bucuPu8QicD1pk2AEUBhJ5JQP3OsYrA4HIgCiZ9Zf59asMdK3czxxdLrWOYdQkq7OaSScXzw796E//rZvXj3X9yK//fl9yGWmMF8TFR6dJe+WsOYSksIiJljys+bZnQHcSuAj3Kn6amMH+Oz9WvAAWcbJ0m1iXw4uHKZY8D2Kkll4mCd9jxBJ3PwuYB3X5vDZ+9OYnenhrBWxF+OHsDenx7HgTPLQ9UqBYs0XUVmzM7y9kq9AJySfv6hK5DjTq+1PxrIpyETxiXVx5KAse+XdkegRC+9UqhLlhzTMylIE5WjgqySY61M6jYxd0A1ZJVKZXJUKOYAzwa0Ck5vZJ0cl8uqAWdGrUGYplyqTjBS6vRpyqpXuuZYr+5WLdYce1R7s6aEVv+mXWxXsmjHaoMcU6ojkZrDgkiOhZpjANjVYS+Oqu8q6/bY9DAgExCN8sBXQQeKbGmZY8DOHk/nDXLM7/7xvgesQ2695lU4J8h7N0R0R83tWjHkarbmGOCZnRe84AUAuPrmueO/bOh5omP11Do5XjOglFrkWMwaA8srq2YV6o3PxiU8coqP8ZCb4tcvz5cZdUlbQ44MqZg5DqVycMt8nTo4pYAxrrAQfQ3ooaXXSl8sSKVjlpxWPDfnG6YpVyVyTCm1AnL1yHFeA4IJfmxKVrBHaE5CWj1w/dYW3sEBvDa5+OljoKdTjtcIBVsALQ5keWZ1ttgFED6m6pHjaLjDak11ods5MZWW7aH3//xBK9BAGcX3fvbveNufXYtvPPI565jSa7YZiJljBiAPfi5UozvIweO/RGb2UX6w5MbPj55t6HXFzLHZxgng5LjVx+B3OfeWy0aOBVOubNReL8W5Z6iV4pN3pfBhdgJXp+fxguQ0PI9PLMv7i7Lqzja7Tzebt+ejHrkXHrev7Lw5lGFmzbEiWWV2/cUMun0aZMkpqZavq15TfzHjkiXHUCmkqVxlK/28DganrTyRCN88N/H60GhVclxUC4BnI1o1PqhURQbxXHrRkeWGLasWM8eLMOVqE0y5SvodE2mR7uNNgGkMhFXvtyjWHHuK9mXkCq/+TTvxyNbkuFy9jhfEmuNwCTkWTLni2GLdnpg5Y5wfXjIhOtQvBVb2eDZvqQcmZs7g6Gnu6jjYvwtD/bucbZwi1FGDuGZqjsWAYIOZYwC47bbbrNtPNSitFh2rJ3Prc+1aQSwxD53yNaRUoimWYCyVHDvMuAyjmX3nXGCGs+cbLisg5GEgXU5ZtSipBgC5VbYCdGShgN2G8mUmI2MyLYGOOAkbPZZsqCXQpYAL3cbJhM8gx/l8pszzpCC0svHVIcf7hyW0GwmQdMQPpSRYLg2G4P7DHTyDBgBZDeq/noD2hE0OzGwhUk8AABhxAcG9kCQZA73bar4/IcTKHk/Nn3M4DZ9XKBI3tFWdv+WvHv2+fYjRhSBXyOCgEPBcUs1xSrYyx8xjeAeBy6p1XcNn7v8zIPGodfz+iTrO4wbEzLGWtYMO4UALL+EpyR4vhyEXwJUvJuK+jGUazCad6ilS1LF11N4TbT4y0bAyqxZEWfX1l78UACBDhr9gJzw6pU70tQ+W7X0ryaoBQO/i15CLMeyS0mBpFfSIsT8OuyDtuPQk1cClTI4BkGSxvC8pDMl1KamRSV33aQdUXsdYTVZd1Ao8c2yQ4+Jq7m3bBMyIbUzIHC+lnRNQxbF6ETXkTUGv3cYrnbUdDt0Fe6zJwbUxDixpdUZblEO0gxzHprAg1ByXyqq7gxQtRuR2PNsOc0Ux2zkx8LZbLF/qUL8ERN2c7BqGXD/Z9w3roRffcA8AlJBj3V68CCzDilUPgRw340x/8803W87jTx76UUPPETPHk+uZ4zWDmVk7a9JWItEUCZjokrwYVMocH56xx9mNG4qOx0xIW52bP0KIpa5hC0Vc1WVfF89NKmBnnJlFqBT0eG3H40sFIjmu5cK80vAZNceU0bKyjWZ6HB85Yq9t3p7Kbruk3QvXH+wA2W6MA51B+69RzHyWE+RQCTnmd16P/q7NcLvK69dL0dvFTbl0XcPMQmOy4WWHwhVaotmDrut44skfAuAy9i//3X686kXvgCQ5A5eLJcdFHZjLEoEc23txVVPxnZ9+kbfEmv8uYKgVTmc2N/TaIjkupE9Zt0OBKABgQ7iUHC9P5jgStDPHycICSJsxT0zneSmnAfrsAiQhmefSKbSHa2eP2XyhbjtFMXPc1zWEDd1b0CF1QoZ9zhSiYEfLZeVPNvfxMgH89vHpFvsa2q6moR+Yt1Sd8lVtNX2bLmZc0uQYRb2sLynAN2mkVFopGTUTDUpxWZHyzGGVLFRRzcPrHoCfGnVwobWRKaoHRXHB4/Y5yDEW0c5pS5tm9X6r5FjNgJWvOa5xTTtqjoU+u2vBkAsocaxeYjunufiUQ1Zd2v6DEFtandUUkAA35RoXZWYaAxKq1U5lqTCzxyhSgDgl1S+6/nUA7B7HEmHoCVGbHIddl+yC0CyIIgFGnX0zke1wOIzdW64FwIMcEw1IBvvXZdVrEjNz9qZQbOMEOAlYPLVEcmxmbwivpWMMeH6aj7Ogm2Igyscf8SkWQSYb/BVVIlbpCWW4OmBnip+ZVEDPVJD6rhJptdh1QMzqn284ex07f++cSI5rGHLlNWDhrD2ntQ1U3+MRnwLXO7dCvsX+zvOfXwCdzFmEC0knOR7aUFtSbcJRd3yBTLkI4bsxUeFw9PknkEzxfd7Ve16EztY+vPc3/gH3/eVjuOGKOwAAO3bswIberYt6z5m0BAaCgGnIJZDj+fgkvvStv+V/qNNA6kkAQEbaiIlU/T2AKat2ywyZJF97gv6IFbAtNeVqWTZZtZ05TqQW7ECbSoEFO9Gn/8qey4qG8zp9cg50prI/h/bQOIp/ewjqJ4/U9FbKl4z9K3bcgh6pPHixJbgdAO8HPW+0oLOSXCGXI6s8G7avoY35NOhT89bf0nX2973UcEmTYxZwAbEC2II9gbEi5S2YPCVfzWr50iChUqkl4aiEYjGPVteA/fKR9c2aCb835Kg5rmbIxVJq1ayy32VPUMMxuULPt/NQc1zj5TM5I9JPFPhU+/utBUMuoNSxuvm6Y5EcLySmrU1VKBB1GO6Y2NVp/8aR3rsAABPTw2CMIaNLSMR1w6l6GeW2rR6Qbi9Ojj6Hc1M8unz5thvR1dYPymAZcvWGKBRGLQOKtVJvbMIiBym14eAjUNLS6dBP6h4f9DBEvXxOWCfHawczc9WdbyPBNmujthRZNaMMzGirRNo9IC4JY0kJiQLfR+zu1BzejMpbhyC/tAfKrw9VejmHL8MgzcKn8Ovi+BgBG+cbVNLhtQyd6JEE2HJZ0l5AOGTVF7Dm2CeS4xITonyxsczxk2MudOfs54ombZVAZALlNRsh326vbfRYArKscC+W7CFAN8hN6HoM9jVIjgXX4Mnz1Ot4eu4cvvbgZzA5O+p8QJBV/+qn37Vu33jFndbtgd5t+Oh7v4qvf+p5fPvb34YsLW5NnkpLUCiF2+wE4rX39M8cfczag915y68jUrTNMn8xUv/9zMxxh59aLRrDQla31JSrdbncqoX3cLRzAjflAsBbSY7xMToeCuK/zH7DDNB/MI7hc4fxzUf+xeqeoT85B/0RPkeyuULNvtsiOfZ5/Ni74xb0yOXkuN/F+yZ95KcBvOlrUXzlgAdIG/ubEl+dMcNnCACGzs1aQUYyEIDU2ZjM/WLEJU2OIRMwiYBNZO26EtOxtnSTLJu9cRtbgOrVABXVAlqFQeVpWSMyygbg9wWdNccVDLnoRBbFvz6I4l8+h+K/HIf+zEJZxGtbO78YNUocTp8cKyurZkVaLs0XYNYcE3cnIprw/dZM5nhpjtVlNcdG5rhatmFXh309Ki0vAHw7kGv/Hfzh97x4/Y+68aZ/D+G5CXnpZlwCiERA3LIja3y7IamezUgoGA62GyK6Qx2xVuqNTVh1xxRAunGVyLWX3W7driatfuzp7+Er3/lHzMX44m9KqxeKMnLNC1LWcQmiFjmWZcWq41sSOZ4rWIFz0sMJk5k1BoDdXc79gNTtg3JnH6SOyrJYkRxL8wVc1sXXso6FlBV0JVtCkHZF+B95HexUqvRlLjmI0vaLwa0aKDflcsqqq/c5fnTEjX7hWFLlXJdCusZWM9BjnKiEA60A04D0fuMDDqGz+8qGXq/HJEcoUUutIP7mX38H9339I/i//+/XoBvqSBDikO3ue+z7xt0E11324rLXaI12we1e/Fo4lZLsrDEA+MpJb8AXxrte/0EM+U5b9/18uPa+MFMEsipfu9sCurWXs2rD4cwcy4Qh7FmevaZIwGPJWQc5Nss69H32NXR6Ww++3TaAeYX/jvT5OL7wyf+Lf/7P/4svfvOvQU8moT3gDGCwE9XJsRgo8noDuGLHzRUzx53oQLJA8Pgof999x2DPWyUlY6PEh6wRAPGl7ESJfO2lacRl4tImxwBI2A06k+dtGGA4VasVjLRkg0w1SqiyFJCr/zxFNY9WyZYMuKLr5NhEwBtChmVQYMaFUiFzTA8s8M0IA9jJFLT7h1H8q+egffss6ARfkLY76o5LJkaGMjm99ZBG69Ze1EWxulM1YNcc+0MDiOgCMVormWNRVr0Ix+p2gRyfmzpltRgorTc2sa1ds/r/zXnuAK45DAz9PY7O+UEZgUoJfnLWu6zkGOCtSX72xLcAcMORF1xzN//MCdGpmjokxWuljZOFRThWA8DmjXvQFuHma88eexxF1RlkeXT/d/CRe9+OL337Y/jtD92Gx57+ntXOCQDGE5f88rWOBiDKqis530YNEhZLzJaZLzUKNimQIGPD+rxQb3xZZ3O+Cg5lzXwBe3v4dbE7G7fulwaDkC6zN+T6KpBWzyzYzr9LMWJaKmrJqp3Zs8rkuKBxM7Y+k0xIBKStMaJHOjxAi0FmhtNgKuXtnABL/gsAqq8xcuzIHJ8nWfXoxDEAwNnJk9j37EMAAKIQwOjlPDUxiuEzzwMAtg9eVVYKtRyYTMsIiHsrb/ne6u2v+TO0RDqxozsAZE8AAI4vBJDIV9+7iU7VUXfemjNE4toX1q2yvhYfq9bRs2n0ddlKk1NnD1nGfwAv62A5DfQZQ3XplVHc04qCJOP+DruW+vX6awEAmbPzUL98ukxBWcu/wCmrDqAl3IGhQLkpXLgQxGnBCFcT1/UScjyTkTHqCTrug0uCtLcVlzIu+d0F8cqAzkCnjZNuOlWXZv3M3rgNyqpZXqtZN5gvFtAKe0CsuQ1xDfhLeh1XMuqhpaYkAJDVoT8+A/UTR6A+MILtLTbhKDPlkuEwhxDBpnJLNzgp6jVdj81oozewcW1mjls9ttPiIjLHkVC7Zdxx6uwh6/7SNk4mPAqwpc0kRpWnrRMJ15Kdqkvx7NHHMZ/gZmHXXf4ShIN8M1tmxhUXxvhayxwvotcxwOfoa4yMQ6GYw8Hjv7Iem12YwCf//Y+tv5PpBXzk3rfjzMnvWPeJfabXsXoxMytkjqPlhKvFqDtWtULVvrb1ILrFmhvWw0bm2CUxbG9vjhxLYru7+QL29vDn787aBFgaCkHaHrZaTtLn402VJVyMmJ47Z93ubt9wwT6HQ1add8qqcwV7jFSTVT855kJRBfoMCTZp94DUSJaIIIRANs25NAY2nOLtnACHKddUobEWR52tfVYt7PmoOaaU2mVjAB54+J/5DUUCy/E1eN/jtku1WV+83BDbOAGA5HfusTf17cTdt78TADDQtxVY4GsDg4Qnxqrvx0VyHJTtsWCu7QDfb5jX7BXdyydRGujdbgVujp56CmjzWEkYNpWDvn/e2tdKV7ehr50/9khLL+IhPi/tcu3GnZ6X4e2JN/MSUgDSzgjIAA/0sNk82ELlhEVeuBZM07oNbi6hVpmKIuPrtycl4dSCvb5GVCFIES4lx1IZOZYub+Hc7BLGJU+OAa6Bp5N5sIwGllYrZ/wkgOi0oboepjMgr1d1qgaAhRxDm25nMUqlBmsZNjk2ImBZzfG7s6Ju1VSQdg9cv7MN0lWtjmw/3TeHoe8cR8Bo4VHazgmElLUVsF4/qYLGCmC5xbc9YGr1zDFjzFo83L5ehI2ee0WX3PACeqmDKBLQajgtzuWbzthIkmRlDbM5O1DSWsPE5aWb+e8sgQLxHwOn/xivDHwMA2F+ns+kXCguc6eLnwiSatOlGijNHOvOzPFarTkGLAVPoxDleKa0mlKKv/u39yCViQOANU4A4OQx+3yMxdfGtbbWYWaOXYobEcHQxkRUdKwWDKGagehULfX4EMsRjCX5mrO1TYe72ZhnxGWtZ2wuj82tOiIuDdtNI8eoGyTqBnHLkHYY0uqMBlbBrOtSwtQcl3h2dnbC7W5MhtwIfjrswu9/L4THRhrbZzUuq65Mjn8+4kaHmofHqHdtVFJtQjLJMQB6IlnRlOvobGODSpYVdLfxQMPE7Mii1RGNIpNLOt7j0Il9OHbmAB/PKgXTKX718+9Zj68YOU5LCAqtqySf89z/wVs/ZgUNBnq3A/N24PSXZ2uQY8Gp2ifZxqrhgDPT+ZEXp/H3d6bwvluyWC7IkowdQ1cDAOYT05iNj1ut4dhcHvSX9vwl39hh1T5TIuGHm+2s8x8G/gjtjM+FpNcH5S1DkHZGrMdpFWl1rijIqj1+MMYQ1fhYnaHTmKJGIHKhiFNz9u/Uotlku5TrTKcljHid5Fi+9tI14jKxOnYXfgXIaqAzOcOpujxiQQhpvP2PRsE0BrhqSTNcjgGz1rJFtWD2Ol5ggmO1IK1mZzPWeSCbQ5C2hOH69SG4P3QF5Lv7LVJKTibxydGn0KbmcSYmoyAQH2K4j5eCMcalnVmtqhFYPTDGWwNV09LkCxlQow5H8fYgonFCoPnWVoBEMqXVBWrb/NcA0ygKpwtWdqSSRLKWPOs1uwr4j3sSuPelzwKH7gAmPoXU/JPY1srPs84ITpfVptvI5dP46OfehY9/6Y8a6hdZKObw2NPcdMTvDTo2AWU9jtewrJo42jk114vx6t0vtBQE+5/nplxff+hePHuMG6x0tPTi3z76C7z/nZ/hG97cSeu5P33uMFR1vfB4tcMkx23R7op955ejnZNphgMXD/qJLZz2dDW/jhCJ2G1a5guQwHCHLw6vQbayfbaJjXRZ1P4cl7C0ulDMWd4R/f39y/a6lAGf2efHsVkFn97nRyPc0NegrLoSOTYl1f1CfabVx7hBSFtDlrKKk2MjK1kcAwq8HdPxOaVhT9GezkHjs2cQX2I/73owg5IivvHw53jmWKXIJVJ4Zv9PAXAlx+YNe1bkc5RmjolfwZ6tNwAAXn7rW3DF9putx/q7twDJXwFFPv72j1cPlIttnNzU/i3FzDHATWGv6tWW1eMTAHZtvsa6feT0U3bdMbVL1MhgEFK3D60+Br+LD5JH3J3IdpaUC4ZdcL1zK4hXdvRbr6acLHWrRlqDrPHfY1KfxKRukGONYX7Kfq9WUR0pkGNV527WoyI5bnGDDNnz26WKVUGOCSEgAQVsPMtrTavUHTLWoFt1kQIarZk5juU9aFOrR1PWMgIlsmrA2euYDtuLlTQoSNN9CpQXdMP1v7ZZfdT6shl8YvhJDOTSOC3IPCCTypb1eZ33uy3qi2+arjNAB1BlUhR7HLvcnQgaEzj1rw1JtQmnKVftumPGGNQvDmP4TaPQvn4WQGVy3BqpLKs20ROi2NTdZxGq8elhbBPMuo7XiMZ//+dfxs+e/DYefPQreOLgIzXfBwD2PfewlXW49epXweO264NMchz2UES8DCwukuM1FihzyKqbI6tBfwQ7h/hm4ezkSTz29PfwxW/+DQA+r3/gXfciFIjizlvejH/5yM+xo8eOjp+eyeOhhx5ahi+wjosV+XweiSRfR9oqSKoBp4nfYky5WEG32qiQbh+IRCxJNbA4cgzAIsfQGJBUcb1mr4enwvY4lnZGrICwfii24pnBlcL0vF1vvJzkeDQuIWm4hsdyEkYMxQiLFVD8+GEU7ztRthcQa45rZo4rtHJ6csyFvEbQX1w8OSYBBd5dRkZwModOl7DWGXXHWZU4FEi14GjnNDvS1GdpFmmhLt7Ez5/6H8wkJwCN4cC+H0M19r437L2jYsBqqcipQKIgWT2OAV5z/LE//m/80wcfxv/+zU86jvd5Auhu7wcWuNw7rxEcmKy8FxBl1Yo2bd0OBVsrHb7s2LX5Wuv2kdP7y/qmAzxrDPB83kYjezydkXH6Mltll2d5uN65xVKqkf6AtW+mp5JcAVuCfMEpq2bz9r5tkk5igtr+DlRo0enIHAvB8Lksb7d13BdBysM/h/LC7mUvb7sQWBXkGACPZiRVTmxrmfI00i5BpXxBq1FzvJD3WAOmKOOS19cvJ0xZtaOdk1B3LNYbS4PlESZpKATX7+/k9RgA2rUC/v7MU1h4TqhTJuASn9KNRF4HihQk5AabK1ScIOpCYzy7WeUCTws9joNEcOQLrK0AibOdU+26Y3o0AXqE/276QXOz2zw5Bri8ssuUmc2cwXbBLOd4hZ7YJo6cftq6fXbyZNXjTFRyqQaArGovsKarpVVzTOAgi2sBxGHI1XxASpRWf/Rz74JmmLC88WV/gL07b7Ue6+3chE994L/hJzw45Qpfhle+8pWL/djruAQwMSH0OG6pXKMp9jpeFDmeytlOrEa98SEhc7y7STMuE6Xz46ZE3Pr7l5K9ESc+BdJWI+uTUMHOOWtkmwEr6lxBdwEI9pTQ9mc5ybHoGg4Az07y+VX/FW8bw44nQQ86M+5mPSVQoZVTnczxoyN8PltK5hgAAjfYrz2YF+qvU/usm0dmGguoi6ZcK113nMrY+xtTnk6pjv/52RdANIp9vxDqjS9fGUn1pNGrWCTH8MrwevzYMXQVJKl8j7+xZ1uJtLpykHo2I+zrCnZApzRzvFLYWZo57ikhxwEF0uWiczYnxwwER90UX8x+HkfVI/ho5q8g9dvjnEjEnkdyesV5pHTsi+R4SswcA+gu2qUmLULmWEwETqf5eShIMr7zsqvg+qOdkG66cC71y4lVQ46JRACPDOR1Xg9Z+aiqDscimEpBzNesgngxgDaDHBe8l35/wuWEKat2tnMy3MR1BjZiXLQRF9BaeQKTOr1w//4O5Hv4xe+nOi7/8XG7jlgifENToktiWZ3fH1TAMiqQWcTGRjdafjVCjmFLWaTQWs4cVyfHjDLoPxy378jqYBm1CjluzPXSdH3M5tNoc81YTtYn5qufgxMjz1q3zdq4akimY3jyIK+BbYt0Ye/OW6zHxkrMuACBFIZca6bu3IJPtv0CmswcA85+x6bcfevA5Xj7a/+s7FhZVrDF6DeqkgjiqUszy7aOxjA+bs8bleYLwCmrXozkVKw3Jj0+5DXglOFxsTGiI+Jd3BizMsfgraJ8YzyDmZIV/CQdcXSVdEqr44t6P0YZ1PtOQv37w9AfHK//hGXG1PxZ6/aGDctnxnWohBw/Z2QE6Zi90afHE45jasqqHX2OnW7VjAEHJow6VlUgx03WHANAUCDHvQmBMAiO1ccarDvucZDjlW3nJGaOX/nC34TLaCP0/Z//OzKFNPY98SAAwO3yOoKXy4mpNL/+RFk16iSgNvZsBeKPADo/v/vOuSrK1s3AtkwY1Jx9nZTWHK8UQoEo/6zgZqRam3OfKV/b7uAwYlupybQHD+S/jj9J/TGeKT4NVXMGox3S6gp1x6Y5HSEEHpfPkdSYYlOYFDLHvQ5yLCgDBXI8I0jUW9pkSP2BFVESXAisrl1cqxukt3pTd8iE10fWg0rBUHtBLBZ88Bt1p5pvfYMmosyQC7D6wLKxrO3GNxSqeSGRkAve92zDIaNex6Pp9kZGJjwrXFKCwTIaQMDrzlXqkHM3DI1yZ/MqyoGMQI791F5cXaG1pR4Qe3nWklXT52JgEznHfWwmvzRy3Gn3fpydO42hVj4QzsYlZCuc8kR6wUGIJ2fPlh8k4LGnv2tlMF94/WshS/a5LTPj0u2a67VWbwwYZS2mOdtMHvqB+aaev3nDZQ5prMftw5//9r9Ym7JS3LRRxUt6MnjPTblarcjXsQogkuNqrYEcNceLIceTTjOu43MKNMoH1u5FSqoB5/xIjyaALH+tI74oMpqEk4LJpLQ7ateoLlJazaZzlqGX/rMp0EV0EVgKpoQ5ta+vr+7xZ2IS/vKnAfzodO0ylNLM8XPTCnTKwMYFcnwi6XD6blhWXZI5nkxJSBgS7o0miQ4qIIsomfJd5gM8/LVaZwMgxgnucE1CMoK5R2cb2zP0Cr2OJ1dYVi3WHG/o2YoX3/AGANyo65+/9yHML0wBAK7ccUtVQ7Ol4sgM/10csmqjzzHTaEVF4EDvdoDmgDgPai/kJByr8PuaNcftAYpUxl6rzlfmGAB2GtJqXddwInbUQfxNSbUJMwAPADM5p/GVOJYBQNoumHKVBIwAOzDkcfshSZIjc/y7v/t3eO8ffcr6u8c4NuqlFjmmHhnEZe9/ZtL27c7A6koSripyTAip2X6JyARooP8tK+qwVqoqkPOCFCK4ugbFUhHw8QtYJMcmSa1Wb1wNHp+Mc+1R6+9Cyjh/EuFZ4xIlAEsU7YtXkcAWmt8gsLwOolV3q07n7EnHq9sLuye8tjLHiLptR9YqGzGmU+gPlWcx2GwBbSUySVlWbOOSOhD7BU7MnMG2Nlt6dLJC9vjkyHOOv+tljp89+ph1+0XXvc7xWJkZV0qzZZlrrd7YgHyzTW61r42Anq7Qqq0KJEnCDVe81Pr7d3/to9hgRNYr4Z7dBbxrawJvvKKASHCdHa9mOMhxtZpjIaBWjDXv9kxL2jiJZGzPIiXVgDNzTI/aa8ZhY457bsp+HxJ0WSY2bK7gyGY3CnpKuOYoKs67K4kpoY1TI5njzz/tw6MjbvzDY37EcpWv4+k0wUzGSXBSBQmjZ6lTFZbWwCYq9y8ubeXkqLssyRwfMTK5AV1FqMizcouRVAO8L7C0lZ9TV17CoMzXrKHeTRhs4evVSFxGroH4fU/HgHV7fIUzxxlhfxP0R/H6O37H+vvhA1+3bt+w984VeX+dAj8+za+dIBV+HINAspl8xTKujb1Gv94artUFDVb9erufIZm21Y3h81RzDDhNuY6e2Q/5el4aIl3f7pg3AGBj1OYs88Wo47FSckyibmu8srOZso4t5vFmUEMkx707t6N32zaLFfYYmePbNhUtWXWxpJ3WtEiOVxkPWlXkuC5kAlZs4ARm9Zr1xgDgKQqS0tD6Bk2E5VZdoeaYDtsLeKOOdsGovThOTJssBAY5tiOIrKiDZTUurwdA/DLoQpEbrjQBFi+ASaRqVjuTtb+DXxWi/2tNVi0Rq66OzRUq9q6mT82DzRkTsN/+rSpljlvDnRVriSqhV8gcj00PY3uHUHdcIVosSqoBYGZ+DJRWnwvGp4cBABKRsHmj042zvMfx2m3jZEK6qQPSDUbEW2dQv3QKdKbxDf47X/d/8ZIb34D/9caP4BW3vW2FPuU6LjU4a44rk+NoqB0REsE/hD6O9557F7RHJioeVwmMMTtzHHKBBFzLYsYFAGjx2KU5QlbziD8KAHhm0rnRlC+zA4MimW4U7KRTRkmfjYGOZ6scvfwwA46EEPT0VD5XIk7O8d9ZZ6RqX1oxUNHqs+frsWPl5Eh06F2sW/VRI2PZLxyzGEm1CbGl0/X+GwHw1kc7DRNJygiOz9XfN3g9fnS38360w+cOQ9NWzqVfrDkOBSIY7N+Jq3e/qOy461eohdNzUwpmDelzv0for2tkjkEAwlDWE3xjj0GOF74HGK7wpXXHohlXR4AimbH3qOczc1xqyqW8agPcH9kL5Z6BsmN7QtRSGiT0dsdj+ZJ6ekAYcwygJ517MjNQZAaFLHIcdoG4jVakLZyc9xSz6Atq2BktWirZtMf5e4qy6vXM8aUMCZVNnErAshqIUp3wFjQgJJAiFlxbpKgeTFl1nMUteTpLqmCU2Zljv1wxIkspxfT8mOMcdXfa52LMJMcy4dJn8XrMcTMuU8oErwKS05qSVjOdgs0V7Ym4AsSaY5/40mvMkAuA3aOTMqj/dhJ01N6IMJU6Nqqu12+0H5stJ8e12jiVQpRVT8wMY3u74FhdYbNRSo5VrYj5+FTF12aMWdH5zrYNZfJeU1YtE4aeEHWaUK1BWTXAN8TKazeCmAtzTod638mGr72WSCf+7N2fxRte9nurpmZpHUtHI7JqVxL4x8gnscu1GwCg72tCWp1SLbkz6fGBMuCwEVyLeil6Q4vf8BGZgJR6aigEsVZO3J6fVqAKcVuy2SZ0zWaOmc4cqiwT57P2eNrIHHe09MLtrh0kTOQJ5nP29nNflb60zwuGVW+8zCbEudHy30eUkdaSVYsGXWXk2Mgc9xft5yw2cww4yfGbtrwTf/8n38Rdt70NO4RgbiXpbyXsNPrjFoo5DI8dXvRnqgex5jhoBHLuufN3HccM9e5CZ2t96fxi8PApe+z0uIS11WuTY/iVMj+ZUCDKy7LUWciZpwAAZxMyxoQyKLGNU4efWpljl+Kp6Fy+Uhjo3W7tk4+eegqMMZCAUnHtc8ucIANAmnVDVLWK9fMmyDax37EzyGYe7/X4wfI6kDbmPiFbnY/w8e6nOi4L5bFJtq+7BcWZ1TYzx16FIexZXeWla4scy4TXqNZo58R0xglWjTZOsxkJrUIbJ4TX5oa4GsxWThQUOYX/TiyloTBc5Fl5cJfqSoZnH/z0r+Mt79+LL//P31v3Dfbax83PGZuVCrJqltNBNGaZGRCZgIE4nLLrIqny7HONGiNbVi0jILSQIGswSCLf2QtimkAUKNT7ToKe5ZsP/ZczlkGTtDsKaW8LiMeWYYcDLQ7i2Wi9MQB0dwxAIvw8T0yfwaaoDo9smnKVbzaOl5BjoLq0OpGaRybHsxB9XYOOxygDxpL89XvDFIrkdGheq7JqgF9vrt/YDNJrlJzEilC/cMooU1nHOppHPUMuOpFF8Z+OoVfqte9MqA41Ry2U1huPxCRkinxe2dOlLb2mvUQiSTYGsKePXw95jTjc9Um719r31muNVwo2nuGdGmDULxsKFnosUVHRs9zI5dNIpHn9ZnfHxjpHA6Nx5xy9f6JyX9pDU3xvJRGGl28tIOLh6613VsiYGcFwNpLhG344jbbquVWbgfi8Bqtd5G6yNKdq67ntHqCFnwvXmIorN98MWZKxUyDHR0tMuVheR/GfjqHwkeegfv4ktEcmQE8kcPnG6+3nCJ0XlhtizXHQz4nWNbtfxGt6Ddx4xcpIqnMq8Pgo/72CbooIMw1YYXWhISBAUOb+MiUwP6M+8w3rvnuf8GPKcL8WM8dtAYpkmmeOw8GW8xqUlSTJCnbMJ6YxI7RBqwSznRMlXsBtByVKZdUAIG0OWspXejxpjW+d6igUc0Dwasx3fwIHj9jrskiOF/x2yegeJYMe2OR4mgg+M8zOHHcF6arz/1hb5Fgy3KprtXNSKZjGbPfVCpjJSGgV3NvkNbwhrgRTVg0AGclYZJIqss8ItV0V6o3T2YTlEPydn3zBkr36I/YwpVkdUymJS3opcxgzsKxWZqRGPBLYbL5MglMNLKUBGq3heC5kjl0tiOgCMQqsPXJMXBJc79gCYtRWIa9Dve8E6OkU9B8bmVkCyC/rBZEI3Bv4ZofNFwDq3PA2kzl2KW50Gu2cxmaGIRGGLUbd8WRKRiJvX7+xxAxmF8ozKNVMuUQ3UFG+DXADiqLOX9syyogL0q81PhcQrwzXb221MujsXAbaV880fP2tYx0iTHIc8EYcfcYBgJ5OQf3n45YZns7szZ6oYKkFR71xt8+RqVySpNp8zXYnsZIGQ9jbY7/us4K0mrgki9Sy2XxTplxivbG0IwLlDjtYoP1gfMVbO4n1xl3t9euNz8Sc5DivETw7pYClVKjfGIX61WGkkhQjBone0qoj4AauMH67gYxxfl0SpCvb+G3KLK8DSZIsglxNVi1DhvylMRQ/9jzoSBon52XojM/tW3TBG6WzvA9toyCE2NljIbu/IULhd5mmXArE00P3z4ONpIGUCno0Af2hCaj/ehIv/cle3Bv+LK5UrsKR008t+jPVg6iMCwWi1vf4jbvfDwBwK1686KbXr8h7PzbiRl7j5+CFgyqIWRLnkQXyykC8CghQZsxlSavnvwWZ8P3jU+MuvONbYXzhaS/Oxu19XbtftzLH57Pe2IRJjgHUPZ+iYzX8O6ybuQrkmLhlkCFjfx0rWmVtBfPYLfci6XspvvML4TkCOR6T7Qz6ZpqBVyiKP6fb81k8T6y90GqTVANrjRzLpKxOtQyqQZ7rZY4FcixFFz95rkaYchEASErGoq0zpB8VFpyhcnJs1nkCQCI9jxOjz/I/fPaGJaireHJcIKHiNZkocpdqx4dRwNK2dK4e6Fze4cZXCZmsUduktCEs1v6sQXIMCATZPKc5Hepnj1u/uXRlK6QePuG6BwzyqDOwhYKDHLc10ONYhJnVzeZSSKTmsa3NPsdi9vjE6HPCc2wjr2qZY9HwRDweAM4lBafqsNnjeL3mWASJuDlBNjI69Pk42KnythLrWEc9fPazn8VfvO9TuOfm91n3MZ1Bf2YB6n0nrGzpuGcKn878P/uYs431CmYrZMZlvWZJ5lgaDGJvt0iOnWuGVd8qSB4bARXqjaWtIUhXt9nGPGfSoMdW9voT51LRPKoaRuLla+z4EykUP34Y9FezoAcWMPeILY83AxV7e1T4dRU9Kj9vpNcHaWdlh16/0eu4zK3akJZe77sR7GQKmC9A/dIpnDljB1e6cwaRUIiV+V0sJEHmygyZq0RgSasXchJmhN671QI7BMAmZRC/H/hDHDm1f0mfqRbMzDEhxJHoeOF1r8Gn//xB/NNfPIxNfTuqPHtpeERwLr9jSwEsZ5wTsY0TA0iLGwiWS6s3mtnt/DBe1vEDRI02q6pO8NWDPnz1oL1Xj7hyUI19/PmsNzZRWndcC6JjNfx2Br9S5hgoGXPGNZEvZgE5AgQ5KW/LC3OfME8dh02Ouws5K/gIAJPEYyUeRDOurlVmxgWsRXKsozFyXMOQqzRzrLSsk2MRAYEcx1ncup150riQ3RJIX3l9R2n/vqcO/RgAHG0UgrqKpwzzDkZgyaqZRrnMxl0ypN0SUKQNSatZTuPH1WnbYGeO2xE2MseaLIF41lYrJxHEzTOGZYoAiTiyGBY5RnndcUuz5LjTJq7jM8PY3iHUHQtSNbHe+LZrXm3dnpqrnDkenz4tvIczc3xOkANuiJb0OAbWbM1xKaReP5RX2Rmk82kMtI7Vg9tffAeu3vlWXOl7I7TvnUPx3mMofvAZaPcPW+VR0o4Ifrj1F3hKtfvH0kbJsVnbSwDS5cNhI3PskW0lylIgtnMCAcimILpDFN1B/tqHZxQ8Py1IqxvsHS+CadRq4YSoG2jzgMgE8p32vKs/OLai6g2xjVMjmeMRIXMcYip+f+II7vrVYUdAQDplE12LHHdrGMoLpp69fkibQ5bxmcOUy8gcl5oWmYRiyL3FvjOt4fKHj8FNdUiMwp/kvz1p91Ys/2oG0paQ3aZL6D2701F3bK9XdMTOirv+dDeUNw9CurnTWlu65W74YvKi2pY1AnN/E/RHygwyd225FkP9u1bkfafTxAoW9YV07GjXrOCX1caJMTACEI8M0ukDK+nbOCB0OfAkfoAvvT6BN+3JwyWVj30PBDOu89TjWMROwbG6fuZYmIt8dmCiKjkWat3NayKXzwDhmwGjHK27WE6OGQOeKdp7OG8y7/ANiSkenDX2QA4zrnVyfIlDIpxM1ao5LlIQRmpOiFNpu+Y4xwpwB89fIf+lAJfigSLziVx0rDZ7EpOBAHfFK0Fpi4InDXIMwRwrpGt4ZtKFog7ePscMdOR07krtcb4uIYS7lMfq16CxpAqS1+s2mzfrUYmrHREjc1zwrpMi4jEI8oBd7yVd3+6QFnpEclziWN1MzTEA9Ar1wOPTZ7C9XXCsFmr5RHL8gmvvtm5X6xfpzBxvdjzmzBwb5NgMvASUmnL8tQax57zYMmId62gEVKO4f+NjUP70KWz95Qj0n01zEij4PEjXtEF5x2aEWluRYAlM6twAkJ3L8BKqGmA6A5s2MpAdXswVZUyn+byxs0OrJR5rGCI5Jj0+EGNtuWWAzxkqJfjAQyHsO8dJgbQYcjyasfY0uYEwfnDCg3QRkC5vAek3WrZM5EAPxmq9zJIwNW+T4546NceM2eT4OhrDvSNP4OUxoezF2Hq1z6XgNfrcXmaQ4w0Rij26TTBZrx/EK4NsMtac+YLV5sd0rM7m0w5ZuUkoBmRnhrsnmcYfTBzFIM2CGIGEpdQbW1/Hr4BsNNyBp/OW0minEMw1645ZoggYexWywQ+p0wf56ja4XrsRykvsYMdN7ptXTFptZo5NM67zhR+f9oAZJ/+lW4oguqDyNPdkDAAhPNDU6gYhxHGdi3XRo5PHEXQD7742h8+/NolbBuw9YNBNIakz1t8XInMcCkSx0SDzp84e4vXAVeCUVdvfsbSe3gTp8QFG9xR6OgWmUT7uI7dYx/QIZl7mPDWTkTAMvyXIZHMFXmpoYEFx46xhcCb2OO5al1Vf2iCEt+dh9WqO6wQKJ5ISWo2+Xwt0Hh7X0ifQCwE2V7lf3FJBCLGk1XP6XNnjUpUWTqKsGgCODT+NRHqBByqMyTGoq8hrxJa/GZMny+kgKgMqSKKJTwFbKNRt48USKhhY3UixGVn1+PoR1o16N9/alFSXgnhluN61FdI1bZCuaIHycqejpXvADiKw2Tz27uCTtUvxOGpwGkG/kDmemBlGX9iu4zoh9Do+ceZZAEDAF8bmDXsQCfIatakqNcfmOCSEWO0zTIiZ4/6I4XxvkGOybszngEgMrHZe61hHg5AUCVolFU+rG9KVrVDePAjlTZtAZAktYd5G7Jh2jB+jMYdkuhLYXN4ilaTbKanevQz1xoCReezhyjLpWrsNy29emcNVvUZgVSf4ix8H8fBJN0iHcM00SI5FSfW/LHThk78M4P/9MsAd5IX5V//heN2AwWIhzqWlc2Yp5nMEqaKEFySm8MFj+9GW5ecpJ8l48votVks4hTHsycbQF9bR4jPOEwGuZPb3PefnBFjaLkqr+eOmY7Wua5Z8FrDJcT/p53cQgBn7htsTk/iD2WPWsUtp4yRC2iZk8ozs8Y4Kplx01CY70ianCkvaHbU8VW5y3bwi0mrGGDLG/ibkj9Q5ejnf1ympfsnmIu8+YoCY+yvGeJJLIryEKehyqA2i4Q6rTvrsxAnr/t4wxYdvz+AfX5bCK7YV8Oe3ZZDJim2czn/mGAB2GtJqXddwYuS5qsdFvMwyo3NmjquQY0JsaXWRgo2kOZEOi+SYX3eqS7bUkqfmZaiSjDmD07D5vLW/AYzMsdHK0tnjePWZbq4pcgzwwFMtWTUr6EAd9dFcDAhQfkHG6Dxk+dIkRkxjtQMFS4BZqzJbnC57TKpgxgWUy6oZYzhw+GfGC/ILMmSQ0afGXHavYwDIadwOv5Jlnl/mDtTp6tJqpjOwubw9CdeAWXMc9W6AbAwWWkeKvZZAfApcvzbInYtLfhf3Jqes+qYrX45P/fkPcN9fPVq1VUs19Ar1wOPTw5AIrOzxfFbCXJZgLjaJ+QQfg9s27eWE18hszMUnUVSdpI0xZpHjztZ+uF3OmsFzhlN1xEMR8TK+gJvzSWidHIsgfsVSfaxnji8+/Mu//Ave8IY34Nprr8VDDz3keOxLX/oSXvKSl+D222/Hpz71qRU3dKqGxOY2PBdowdfaN2Hunm1wf+gKeP78crjeMgT56jZrvm8Jc9XJcc0mNmy0trS6tN744HL1NxZAJALXe3fC/Wd7IN9iK2N8LuCvX5LGiwZ5kJ0ygr9/PIDvLdgkqlHHatGM64CPb/IfHXFhPktAtoUtLwg2VwB9an7J36kSpua5IZdX9qHlsAvpX1b/7UdiMry6hv81eQxGgwEc80XwB0M34H73BgeR3JtZKDsXA1n+fXUQPKVzAuCQkRrk0+sVHKuN/q6UUuSLWUiQ0MO4aom0e3DyxbbEeuu8nWFfjswxUEKOjRrQqJehJ8RJxYl5GZkiuBGX+d4l5JiEXaAb+Ho0oAxg7rgzmbAcyObToEaP4KBBMs8Hjs3JOGeQrsu7VXSHqOU8DsCZOQYAQkAUCaTLa9clg5NC05RrNjaBTM7p1L63R8P/vjmL6/o1Z4/jwPnPHAPAriak1b0hI/Pt6QNkvr+uJqsGSq6Jw3GkcnkgxMm4Hyl0qjz4NuX2WfPoKcOtfdI0P8zqoDN8ntRAkJJdFWXV65nj1QDGasqqkddrOlVnVTgK1OOIX7J9OYnw3+WGWXc8VZhwPiATkIHK5Lg0cwzY0mqTZAV1DWAMT467AELAVCNznFKrmqgRWeJOlska0uq0ymuW65BcxpiVOW5x2ZJgsgZ7HC8GclC25D5sNg9CCHZvuQ79JfLlRtDdvtFq52RKobeJ/Y5nFYeketumvdbzAH4uZxacLRSSmZjQxslpxpUpctINCPXGQlR1PXNcDsvoI15csUDcOhaHDRs24H3vex92797tuP/xxx/HAw88gC996Uv47//+bzz++OP4zne+c0E+Y+Gt2/Dnm67Bl7u24mRXG0iVAFQ0zLOyIjmu51gt9hKeCQXwwxN8rMqEOepBlwqiSDyDXLJPcMnA/7ktg9fstDPEnznaAs0oOWokc6zmdGhGEOCc2495I+NDGcEjp7jsVHlFv3W89vAETwAsM6ZmuSHXG6O/DvrtcZz7w3Hop1IVjx2JyXjlwjlEdbvN333X7MWkx49TCwoWesKWeu/K9ILDGI1pFME4P2/nPAEcmOXBVtLrtwwx6akkmEYr9jouGEZe3VI3XOBjiXT78Hi4C//V7vSXAJaPHJONQStQSE8kLZfla/sMeb1O8LMzbseYlYTyJBPuK+0AS+d0BJrmDPgzxpWND59041tHPMhVzwdURNrRxina3JOXgEdOiUZcxj4tJ1yDIjmWYDEXqdXDM//C2rKxd5t1+9zkyarvaTpVAxcucyyach2tY8rV5RcCTj7+HSv1OTYh7YhYXEbfP48zc35A4r/zFeSYldgZlf1WC7NT8yY5FkpFF/j5SLjcYITgnCGrNjPHEmFo86++bhRrjxwTgGnVFweW1UBqkOOJpOww40pIlReAix1MN4wNVuj1/T6+MM2qzswx2eCv6AadziYRT3EJ9s7N11htGJ56/ie8pZOxsMhg8FEdo3EZMwWZS0Yo4/XCpWZc4vt6ZLDZQtUMCEupgErrOlUXijloxqIekdus++XQ2jXjahbWhiOlgeUWvwl1uzzobOMbv/HpYTDGyuqORXK8fXAvAKCnY5N1X6m0WgzQlLZxMvsbA7ZTNS4AOU5kGCYXGOJpBrWWueBFAEtazQC20Fjv2XWcH9x111244YYb4HY73Xh/8IMf4J577kF/fz/a29vx1re+FQ8++GDV1ykWi0in045/+XwelNIl/9vab4/vc0kJRGYV/7VGOTke1oehET4HsHOZqscTmYFN2RvLT420QaV8NXzNrhxCvurPq/cPQMPHygrD79+UxTuv5p+FEYJzCt+YqrMFPHDIjbE0qfjcjA78+zc1yMaadjDQitfusgn1D095AIlBHgpAuizK70yqoL+YXvR3q/g58nEroLjLYwdatG+dBUDLjh+fZXj9/KjxfQHlVX24fpM9b++b92E8zIPrmwppXBHK2r/tTM6qBz7tDeHwtAIVDJILkHYYmbICBc6lrT0IAOSKKRCZIa9y8rlRqDcmPT4cnZVxf+dmPBm0pe8AIHV7lmUcSG4hk5fTgbE0iMzw8h32XvJHxxSwMT4OSKcHUlgpHy9XRK3jr5Ovx5mJwziXIvjmUTf+8mcBvOlrEbztGxH8/eMB3PuEH19+ztvUZ07nbcIYCoSXPDYauRZUMPz0DJ+DPDLDC4YK/LlFISPsN659QkFcDERiIKAgURlSiwKSV63XG+izyfHo1LGq75sSZdXhlmW9Jhr9DTZt2GYlko6cfgqQyq8X81+71zaoM6XVhSK/Nk7FJPzRD4K472kvIBljLiRD2ttijTnvaZvw7iR2ueOUy48fDbtAZGaR5HlveVAo6+HnaDotocAYpo3McUeAQnEtfRxU+ycp/N9yrCdme9hGsPa0oBIBqtSeMp3yx2o4cYwnJbRq9qKaukTJMW9XRXhPZ8qW7MhYClNW7TDkQuUWTgAwOWtLqjf1bkc01I5fPftDxJOzOHX2IAb9IUtRE9JV5GQFT8168aqNOpDXwfJ6mYTX+YEUsGQRiBeBFk/Zw2yuULFeuRTmJgAAAmgFwM+/K7z2LqXFQurwQj/NNylsNs+j6otEb+cgpubOIpNLIplewPb2Duux43MKZKGOpzRzDJS3c5qYsclxf0nmeFSoNx4wM8eCiuR8yKoXUgyMAoPdwHwSiCUBjTJ43UDQB7hrBPYuBMQWEWw+DyxTJmYdK4czZ87grrvusv7etm0b7r333qrHf/GLX8R9993nuO8Nb3gD3vjGNy75s4QVFwBuRBTzMAzeWnm97cz4gD8FNGiY9ExiQ34D2GwBGy6LQ4lWDlye+scsKADVJeFANsgjxelnMXrgD7Hp/V9ekiJs002N9Vk28cEXpLDlZ0F88EutGPf4MVhIQ2EM//MLgs/tj2KgU0U0SEEZQCnPDM8mZNx91nbWv+q1Cm5/zzQm/7YL+455MZaQMddVxHXbCyhsiGL4jXGAAvTnU9jwx76qv0uzOHz4qHW719UJGPycTeQRnTqH1l9zSlaHPjdneXUE7wxj4z0q7hmN498P8M37gaSEjL8N/Ql+rveEpxC9lRPL+LcTmDReZ9gbQkEnSPTw75hIujHxNH8slJ1D15AL+Dn/u2XHLAavTkE+yx2eB+RN1udpuxU49Q0FlBB87aoduGXkCRTPqvDu9mLwpUtz2RfHQTzuxuSzxudLz6LzVoZNDNh5wIejZ93QxnJWiU74eg96q4z1/Z9LIzAbxDZlG741OoPP/yQCVsUo53SOVL1mKmFKmbRu9233NfXcaqh3Lfxwvw+pAt973XldFntezN8zWUjDtGlr26WhzfFZBEXiHeYNHmi4nm7A5/6T35OQnq/+HX46Zd3ccbMHg1ev3F6+1m9w5dVX4PHHH8dCYgbuoWPo7++veNzmqQnghLEnMUy5lGgC7dek8bYP9mJ8TsHz0y687lUJXLvNMAxuCWDk7XwPvmeCAsbW5/K2BACe3Jl0+3DgnAvv/+05zPwbz6ArG9yAPRQAAKzVKJECQbqvaJ2zjb1qQ+Ok2TmxFFMzY/UPagCDg+UKkUpYczt6IhEeWayEIgVTqeUoWQnjSRltQp1iWm6sZcRFB40ZQQDKJ+TlJsdGNCyPPJgLIAaHkDZXNuMac2TshrB10xX41bM/BMCl1YO+e6zHQ7qKGfjw1IwHr9QyQE4HKeq8jUUVEK8MlihCP5GEfHmLo7aY5XXQRLE2uTaQNnscyyG4WA9McuyPrrlLadEQpWpstgAsgRz3dQ3hwBG+AxqfOYOdQ22IeinieQkn5mVIRuY4HGxFVxtvMSL24ZxsInM8KrQf2WjJqoUexyucOZ5PMBAJ2DNE0NVKoOsMySwQTzPMLHCyHPYxBHwXD0EmbQIZXq87viSQzWYRDNrXZCAQQDZbnSS84x3vwFve8hbHfYqilGWkF4PuHi7bo4zg2EkPzjxWef0AQnC5PFDVAk5qp7EB/Fof+RqBvKv8OSyvQx3ni9JpJQRGCKDngONvxf7sUez/bhbtLd1lz6sHIjNsuimNkV8GwfTmrsPrZeCfX53EwjfdgLHM9BUzmPT4MTrjwuhM+XOuEOomNw1FcOYxBS/s0rDPUJd/4est6LiN71Hk69LQ982BZiiGP5qC69X1Wy41ggP77TrmcDbqeGz6nxYQD/dYcng9q+GmU3yO1UGgXrUBZx7zwseAjoCO2YyMx573Ie5pw2sxwl/jeypiRiZZ/Zmd2Rw29hgP/jCMjpk8GPEC4IRn4ZE81EFbKnv6CYrWbAjD5/g5EZ2qnxltQ1Hl929okUBethvKwRjY9jDOPLa4MVxpHDDJC4Ar6RYeziFzOf/8L+5TcfSsGzuzcev5GV+06lhXN4eAWU6iC/tawdrtcRZwUezq0nBsVkGqIOH4WTeGHw2h0TjPyf32ekZjnTWut/po9Fr4yiP2XHNzRLfeU3vGXi8WJv1IPhYCy2tgBQrlunYQt0HW4gVozyyARNwgLgmehSus5x18cqTqdxg7Ye/dM6f7cSa7+O9aDY38BoNtN+BxPA4AeOirR3H7jTsrHqeOxO0//DxzPHu2iA98ogvjc/b+88vfiKL9FkOJwoIg/fNgY1kMpArYkkvglJRGYNIe15NuH2biCj5+n62acEXLg9jUYz/nuz+wzdoilNQcJ0uZEwEgO69C1xjueE8HPL7zp9Bce7JqmYAVq8iqC0abpxoZxPGkhBZBVp1WLtH+nZohIZYlnkVeZoi9jrWAcUEQQBosr6MBgIlpsX3OEK677CXW308d+gmI374oumU+gT8z54aap7w/MUPd7Dfp8IItFHjNj9AOhKVUkJzuaBlVDaaTI1pehoguyH6C6+S4UZBOIZs4szS3dLEP8fj0MAix645TBQkJlY9D04wLqJ05drRx6izJHCfsecHMHJ8vWfVcgkGWgcsMYgwAskzQEiIY7JFw7S6Cbf1AIgPQC2SeVAmOzPG6Y/UlAb/fj3TajvJnMhn4/dXbFbrdbgSDQcc/r9cLSZKW/M/nldAb5eP5XFwG1QiYXvlfwMezi8e149Zno2cyFY+lE/a8M2LWpp75EyDLs6DnJk5XfZ96/wAs+rlbWiiuvtxeS+7pjOOyLhUSMXo6EwZFYnDJDO0oWj1/Sa8P8LrAdIJbN6oIuPn69ugZN9I5/tryS3vtGsTHZkFni4v+nOK/yRkeYIySKFx6yTqY16F+b8I6NvHQLPcNAXCovwuk1cd/M0pw4wZ7Lj3qiyJv+EnQ40lQjf+mdMzebw0b6rRnJvj3ht8N0me0rhrLIoKodWw2y8dBLsdrji1yLBMcVO29yo52HXArkK/pAEKeJf0upeMAAeHzjedAYyqYTnD7oAqXxLDT3FsAIBtDVV+39UZbNnxZ3F6TPvPKJL756wn87Usz2GmsgZmihLm01PBnTqXszxD0RZc8NupdC/GMhCfO8nWzzUext0u3H88I+3S3wu9Tjccgg0Hi/0JewO8GS2hgOkF7pN8qyzs7cbLqeydTgoTc17os18JifoOdQ3bd8eGT+6se59KmAGqsoT6eOZ7Sr7C8Ekz8fNiNQsF4bypBvtFW071iYQxIPo5A1n6OWV/8zcM2Ie7oKw8KuaP2/uapc/btTj9d8m9Q6x/V+L/lWE9K+3bXwpokxyjSirWnLKtx0lhLVp2S0KHaC2vWtfytkM4LVF7HSxRS0717sTBl1QAQ32rU6N4druoGPS7IWfs6B9HdvtHqAXf09FMoKPbCeXmE/+Y5TcLzMwqXtjaQ+SYSAenwgo5nQYdTYEbtEksUudN1A69hmnGh7TUIC2YYJLBOjhuFM3O8RHIsSJ8fevyroJQ66o4R5AuPKakGgM62fosoT805M8dmkIYQgp5OZx9MU1btUxg6A8bYEcnxCsiqGRhmYgwuhWeMO6KVx6hECPo7CaJBIH4RVXo42jmtZ44vCQwODuLUqVPW3ydOnMDQ0FCNZ6zw5+kwevhqBPPZ6nN0wCC5hwuHrPvo2crKLio4VY94gsD894DJz1n3jU2drvS08wJxfrzClcEn70rjod+M40fviOHht8fxw9+M48G3xXH/NWPWBk7aajvTehTg9iEeQM5r3OgJAEjEDfkFXfwgnUF7qMQsc5GYmuNO1b2y3TYq9OIg4DXI7VNzoGczYFkNnl/xzKkGgtGrnPLRGwRyrEkSDpsOwkkVbCbPvUUmjPPW4kYwwl//6IyCgjHliw69/aku67bpVp0vZCFDRp/M35u0e3B43iYCu5bRiK0SpB1Cy6ljXB4Q9jDcvLGInbk4AEBzyzWNwJTeIGZkw5+lQBHVCgh7KHZ26DC83HB9cR73zJ6BT9cciqd6SAnZ6/NhyPWzM27ohiT89s1F6/MD4Oa4BoiZuDD3acJxRCbctdo4XpIkbOzm7uNTs6NV+wcn01x1QQg5r87cpRBbWNZyrM7lE0DOMBjzbQVcnTjje6/1eGeAf/90UcK+MXsvIu1thWpk2W9LTCEY3wdvxtivygS5AB//qm7PrYM9sIxTTYTahPaYc/aY6gyuTqPNtUeOJQJQVCSELFVEPf3JeFJGl0COM55LkxwzjYEEXVxavRLkWMgcj21PwPO3e9H7/1WXqY0LmePeLp4NvPayFwMAKKMYXbBdB3cE7E32kxNusHgRxNPYAkAUCaTVA3YmDTqWAdMZ2GyhoRZOgEGOiRtovQsRXTAYCl44p+JckaFQZFYPxIsdpNXDg1RYOjneu/NWdLTwmsRnjz2Orz90L7YLjtUI8VYJ2wVy7FLcaDeeU2bIZQRpOlr74Bb6l+c1YCrFp8uBqG5NEyI5xgpkjmfjgM/LM8btkdpzk8dFsKmXoKDh4jHqCrksJc46Ob64oGkaCgVuUmjeppTirrvuwje+8Q2Mj49jbm4O999/P17+8pdfsM+5qd3efJntXirBzByP5s7YjvhnM1YQVMTpw/bcPSIXgZPvsnquA8D49AUkx0JvXVNZU2lbIvY3JlucssaXb7W/34Mn7QCV/KJu2zX5wDzo5NKVb6b6plfqte7z7/VBudP4m3FzLv1nU5BVPjc/0tKLjn7nfLm3R4NPsc/VoZAti6Ynknz+MPxipD4/9vZwIqtSgp8M8w2+2DKpa8GudTbdqvOFDHqlPriI4VRtmHEB3AxqsHVl+7VKO0VybGdp7+5MokXj5+xMKFIzUE8IwXRXnL8egOuTs+gL29eI/vQ87vzZIbxj5hTeOX3C4ZVRD1bZGGD1C15JiL2NX7q5xLCxUisnCu4NUHJBSGE3IBHrWt/YyzOrlNGqga5khmeOg/4IZOnCGaqGAlHLJLRSxxYT2VwayBmqGMkD7PomNMMU9vr+It53i30ti+7fxCPj2R6+9/YwipdkdLiMvQxpceMFg86AkEtifI/T5gzQRDoUKJKRFBCsfLvWyfEqgUzA9PJ2TowysAW1Zr1xpgjEchK6Dfv0OToHyX3hLiqm0YoLf6MgPhnEI9VubbVIBITMcSafqvm7AnaP47ZIF3yGJEaUVh+dtI2VBtxFEIMIPjXlAStQoIZTdSmIlzc9pyeTYGfTYBm1IUk1AKRzCSD6IkAJI6IJ9aYXSFatU4aFBJDOAVPzwOQ8w1yCIZ1j0JcwNlYSRCaW3JbN5pc0hn2eAD7w7n+2MsFf/ObfwJW3x4pJjsXMMQD0GNLqRHoeWaMXYjIdQ8poZVEqqT4Xl60FwZJUA3ZbN69s1UAtF3TKQCmwYyNBa7ixWp3uFqC7FZhP1D/2fIBIBKSVL9RsvrCkc72O5cVHP/pR3HzzzXjmmWfwoQ99CDfffDMOHDiAW265Ba973evwtre9DW94wxtw88034+67775gn3NTuz1mztYgx2ZAllIdrN/Y2OX1sgBcIk+QPitkjs+9Hy+99na8/7f+ybpv7EKSY79itSVic9WDh8xslSQRSINOcry1TcfmVr7pPTarYCRmbIZ9CuQXG/3kGaD/YNzxPEYZmN7cZtdU3/S77HIV9wYX5Fs7Qbr4eWDnMtANAySVEHytfRCDLU4i6paBa/rsYGNmwCaS7GQSbNze/JM+v9UjGgA+95QPsxnCewMbe4GWWbsUIGeR46yj3jjf6sdUmo+p7e1aLS/WZQHZGKjY0mlXzp6wn5CjmM3Unu/ly+zAwU2pGfSF+W+pH4pB+9oZi7q8MDGFsSZaWztbOUWqH7gMGEtIODbLx/lQi4ahksCE2L/YbuXEODkuPU9uiZcMGCWCYjuns5MnKr6/mTm+UD2ORbSEufQ5k0uWtecykcklgazdqg7hG/n/PBTvuzmLvd0a2v38+z855kI8byQgGPC1oO0v8Hr5ZkjmW7R58JItzqD1phYdiuRUfQGAHHE5gjAmVmOPY2AtkmOJADotr7PN6bytTA0SN5HkzevN/nzT+jTcrnLn4/MFNpXj/5pczACjhZNLAryyNUEvJ8TMcTZXW+eZyaUQ+//Z++8wy7K6XBx/19rh5FQ5V1d1TjPdkxPDBMIQBLwKKFwRuCKKiggXRa4CBlDE+7uKfr1IELNcRFBymhkGGBgm59Q5VlV35ZPP3nut3x9rh7XP2SdW6K6Zep+nnz5VtU/ee631We/7ed9l4TbisMYAsH/HNQjb/RCPnPyR+/uwYWBnrxg4T2RVnFvkQKi9U5kkNRAOsDMFEeHUIvOcL2SB7lcDgBfppZKG581aomIC0QhwcAfB5TsJdo0DXUnhaHp+EZia58iXLj5W2WVHTC4cxFeAA7tuwOtf9k7xcJaBv/7sW9ETtXdDYweQTvahJzPou8+AZMrlLO7kXdth6TwEgBPSonxMKo4d5ngt+o1LFSASAlLBbfqBoJRgywCBpgCF0sXxnZMe+7u2OLC0Ged0seBDH/oQ7r//ft+/K64Qm0lvectbcPvtt+POO+/Eb/7mb67IuXmlmOj15rfTS/XHeXnOqQx6x/ETfmn1vacoxmyZ7SwxsXMkh/e8+S/QmxlCSI+I57mAsmoAIL32umLJCMwl5ksVj1Uei9ZsPhMC3FaPPb6+zzWvZE8tofy/HkT5dx5A+b33o/LbD6Dyuw/C/GprzrCcc1dWPRH2NhT1MR1EIVBfMyYdLP77ZmYEC+Fw4EL72jGvMOjbGgLsTWd2JAt+yvseyVAUlw+beNFWMQfnKxR//sMYoFDQSXEe6EXFjWwqlm1ZdaWAMdUb+0+GvcF1d+/assaA2Cx0pd8lC9zONeZSvvGTkTS+dajxunLLlZfinG0Geml+HuOhCqynlmD+81HBrtqIMgvRo4stvz5ZVr3WzPF3Jdb4RdWsMVBHVg2A0trxSKdCBWkTPeNScXzi7DOohmWZbotc4gJlHMtISSqJbH4h8Jh8YRko1L6X37y2gK4oh0KBW+12CosT3GmrKU4tUTyFBB6Oiefoot5zke4Q9vZZGIh7n/U2e5NC9gsBRNvYaKr2GundLI6fI1CCZdW8YIJUGjOQZ7LUJ6meYdPQtchavdKG4CYDQgpITwh8puQzmGp6XyfjWKdiUm0j+6tV+IrjUuPi+KzPBGmre1vXwrh01/XimJw3WfOihaukHeb7Z0IgSgencncIvGg2ZbVlZPPLQLdgUbqd4jilX7DFY8UAdBVIJ4C+jDBnumwHxbX7CK7YSbBlADBMYGpWuB1X1kAl0Al80sEVSqsB4Bdf8zvYMS5cKk9NH0Zl2e47VFOYnHhBzfcjm3JN2bJAOcap2qnaYV4AYIvjVF2yvFi4Neg3LpWBRBTQtfbOrUyCYLQfWMxdHOZc/jin9qTV5jfOwPj0IfD5TUn28xWyrLohcyyplQpSawU76Y8QOfzAnBslNKWewwd+9TNQVQ2UUlcxcvb8cVjW2vafNoJvfAwwsmOHvTmVbkvW/B0Abt1agWZnjH73sA5b0QyiUU/yDAgjUou7xSsYYN01HViUV2MpO4eSXXi6PccU0IbEeEi3J0Ev8Zi5CqH4954tGEkyaAFf5S2TFbxoaxlXDRt41Z6K10tdZrAkV2xqG1v92tVFdNts2QNnNXztWR1kh3ceHFAPAJBl1X7m+DF4x+7uW5/v2993LAo0pzi2ADwbSeFbh3U0Etlk0v24Pyw+d41zXPP4UZj/cNhd15JRr+jfcfocWp0GcnmPwY6tIXPMuVccj1ZyeNlTh8CO+69THiSr5gCChgCNCoNZm/QaH5SZ48M1h2clhjwZv/DMcTLmFaxLufnAYwqlLFB82vc7de7f8cIJby0ss8DO5/vYjNhg+lpXbUQU6Q6BEjFWONjWbRfHVcwxEirGqorjVIghcuE6CtcUz8/i2GK1fbYFs6kpk+g39uRYoji+QMyxXcgru9OgIzEhTy21uPNpZxxDV+x+wNUv7OSFSr7YON9MLo6Hqhg7R1qdZVKBXTBx5Yg3IDy62Nl3QAgB7Y2ABOQe18OZYjegD0JnFhL24mmtI3waoWIA8agwZJKhqQQ9aYLd4xRX7yG4dBtBKi7ktmXjIiiYJMMRtkLHakD0Ef/uL3/CVRosn/eMLfqGX1hz/ECPxBzbfcc+p+qGGcdiApYzjtfiHKiYaFlOXY3RPoJEDFi+CJLmOi2O2ek8rNunwJ5egillUm7i+YXuOBBVxDV3ern+kiUW9YrEpVTBndZk5pjlTfzUI6fcnwv9C76N3JEBsTlrWWaNWV81HDZyLRDUdyyDPbXo3pbNuGQkQxw32EzsUpnix5LDLL28G/S6XpDeEEh/GGQoAjIS9XwTuFCmNcP0nPcZ9TDR/0i6QsLo04b6UyOulPhL3WOY08I1kmr3WAq878YCPvKSHJIh7n9veUcNpAIp8ToTIY73XO99D397bxTzQ2n35wPaQQCerLpYyrvFMaMc95W8GKFda2zG5YDu9BfHvGSB2wZx5+IxFBUVU1kFj043btV6vM8zHBt66pzLmtJLMtB+bSdyuviMDi7NYXGxNQLEb8i1dsXx4+cUTOcU6MzCn5x6EPq952B86lnwnCQpdtazlHgJMowDAY7DhBBxjtlrm4GecVC7j1g2e3WwLLGzcmF6oZBMyMVxsA4+X1wWPcfMHg/KZ8AP/4bvmIkMwza7neKZWRUnF6lbHP8k0YtZvuw73pmb/9ueMvb2mdjbZ+JWW43h6zm228actY+D52q/MfA8LI4JISBcGFLJYPNlsfPUAGeWKfol57tp6wIWxwYTPY5xFXRPCnQyDiyUwfMtDPBOxrEtRVkLzjPWhqxalrOOVBUljilXjnuPwQsWtmYsN97iRH79itOTlb0AJEk1LmxxbFpAsn7KCgAgEiIY7iW4bCdBT0r0J19ouLJBrA5zDACjg9vxKz/3R+KHordbnOi6rObYwV45zilAVl3Vc3zSLo7DKvfcGdcwxslhfOP1TUsbIhIimBggKJQA8wKbc/kcq9uIc2JHvU01WXa4iecXCAEGw2JeO5ejKNWZ4mSfi5yZAxkUqi4+XQQvW+CMY/mfjqPXEOfgExrDyS3nfY8x0u8plxr1Hf/fz/0eXvWOLfjH//qzjt5TMzRS1nCTuU7HiCiiz7YObtvhXW9feToEJ8WSUALtv41D/5390N+7D/q790J/1x6ot3imma4zdAM4G4tpkobObJOrKsaJZELQ37UHT75iF/6pT7gIb6lTHFdDNthyH2846lMCXTVi4mX2+yyaBH/2bLcrx96vXQIFiutWXSkVMUQFw11OczwzJ15zX8xCT3R9xkmS0MRGBMRnzJ5YdFl7Mu59l994tnHG8tHu7VhU/PMO3Z2C+oYJEJXixJjIrdU5w+IDrZlQOD3H0UhiTU2qvntYnCM/PXcCmZJ9jpYZrNun3GN40b7Qw4r3fXOA1HlZJKq4LYaqqmHQbp06M32kJp1mWWJnLwbmOBXvdm8v5xrIqq0ccOhXECvcCTzxSliV8zU9yi/e5rHA3z2i43G7OGa8jG+WvuI71imAU2GOv3xFFn/5iizi9mknX8fENjisllX3PUcl1cDzsDgGAE6Ir+eYVxiQbdxvDAjmeKAiM8czbo/SeoNXGEhCFcW+SkG3p0B2pIC84XfQDYJpF9YqEf84D4y2WgnakVXLjF21nHWobwtG+reijDIMbr+vogldhduzdDKrooO267bBOXCOiGigjKQguJDFMQCE9da2NygRGbnli6DtczXjnGS84oVvwnUHXwaUvEKXRLfVHOdjjm1ZtXMeEkIw1LfF/XvZBM7a7o5jKctNDfNdZ6ssqy5XgHAIiK1geBnsBvoywPklXNCe806ZY7kgdgqcTTw/MRgRC2UOgjPLwfN09ZxDxuxCg9uGUN+bRuTwIgBgSdHwUXo7ojG/kZXDHAP1+44Ns4Iv3/F34Jzjy3f8XadvqSEaFsdHcy6rRnenQJT64//BQdPtJ3xoSsNrP5fCx34Qxb2n1RrbFQAgg95OKzvb3Ml6xmaO5RinGjkmxBjwcKpHrL3gtaY0A0nrvs8CAOhQ7aD4K1cW3Cibh2d0nO1LAwCiJIqd6i5XVh1eUqDY1dXRUAolU7yePX3rO7bI0mrrO16k1sC+KBIh8cX84ISOXLn+d5snA7gn2ef+TLYnoL5pqxtFWtjjFVzaY625crl9uCuMcZrOUvzR7TF8+huJGkl3xQTuOq6hyyjhtbPHfX+zfnTemyMc5lg2S+XcTbqoBgmrvn5rZ6OrVClgbtGvPPIXxxeeOU5Jr2EpW4c5ts9hde5z2F3+CJB/FIB4fzJumay4xNFXngm5hnNa6RF8q/Q1WFzq5e6uvwFDoqq7iUPsPv6a4niTOb54wDnHE8c4/t/jYTy9uIIFqcymFEyx8GpaHFOfrHr6QsqqLTuKyQZRCOhkHHRnyi9NCYLBQKJiN45oFFylaNjg0gGiYW8HtB3meMi2tJdxw+WvBABkbfZ4+fwsSuWCO8EajGAqu/an8olFirK9COheftj7wwUqji3GQQkQbrzB7EMqBmgqLnjvMYlpQFRcb0GywY4flxC8581/gaTq7b4uGrXsQ3d6AJoqPrip837muCcz5ItxOrUU7FTNs5JbeZvnQLGJWVaxAsTCwd+tVbRgLDa5xgEoCsH2EYJYCJhfbnr42iGjuzNNW7JquQeNAbyFxfomnpsYinjn+6k6plzRiH/OoeNe36X1/RlY3xTOzAzAx0b2Y27xyzXS0VaY4+NnnoZhJxUsZmfdgmI1QXpCniy8qjhmTy66t+nedMPHoQR4zR7vmstXKL51OIT3fyeB130uhb/4URTHJD8FIhWeza63bJng4XMZIDTqi3EKKo4B4LiUt1tPVh0Est2/gUGGa6VSMR34n1KUzRcNr2g8oB10ZdXxrPfa7rM8WfILt6zvjrFcHMtqGn0y7poqVSyCu08GzysVC1goh/GvvZN4NKTgh7gb2pu3+dSP6R1RTNvzWPfZRV8bUBA4566seqW5v595IILvHQvhI5/rwsd/FPUtL+85rSFXoXjTuSOIMPs8cDJ1LQ7zW2cEWWMXx7InDLcNuQKhUciVuH+jy993LLOzq8Uc87LVsbmtLKtertNznLdjtmKRJMIh7xoolf3XaSbCccWw2EzMlr3PSsn+GPN8Ht/H9wGI66pZwob2tu1Q37rNNdaLaH4Drk1ZtYQPf/jDeOlLX4oXvvCFeP3rX48f/OAHa/G66uJb9wL7fpHj7x6K4fvTHdIqnPuZ44Ip2NQGPv75CrBY8mTVJjcxx2YvXHHMeU0xTwgBSeuARhsadHGTA1F7MFKpMDhY5WJJllXnmxTHjhFSV6rPt/vv4I2v/C1cfcmLXWm1WqF4xx/eiiTxdlyPtRF03ynuPulVKr15zxiBJNuoTlcRFRPQdSDSxtMnokKGnb8opNV2AVrHkbVTpBLd+PN3/h/357MBGyeUUvR3i3iD6dmTdoyTmDCHq9QLJxa9+/tinJY6l1UvNWlXLFeArgQCjd7KsxVU5o2WJuJUnGDXOAHnQLZwYTZEiEIBu6+fz5ZaUqnwxYrv8wUAdvIiaKDexAWBI6sGgNN1TLmcnGNA9OeRMa84Zk8uuazS53on8ZCaBYqHfPcBgOEWmOPDJx71/bwWsU9EpWJTCXbcnX3NcM5hPbEoDlKIr3+1Hn5mTxl/8pIsXrS1jKjmXXvLZYqvPhPC2/4zhd/9dhwPnFWBsOo971SxYfTa73w7jvvYO4GrjmNo+EPu7yuZ4F4QpzgOKRwDidYX1dXS6qDiGAAuGzLxql1iI+G+iMeaHoi8BAVbLqUVvHaZ4+E4VMrxG9cUcMN4883G1QQZi7mbwy4SKtCl+17LM7PB5/p0loKDYE4L43eTM/iT+T/CQmnWd8xYhuP7KSGTpxxgjwbLdR2UKgXXhC6xgn5jiwH3n/X6pb/8VBh/dU/ELZC/c1jHtuIyXrxor98iCvRf3+2uSdlD88InwDlFwlXMcb1WbF20CDrXSqONruW8xByvQs8xNxj4uWLHaQx+Q64GPccQ3gqOtwrg9dPLePHWABO/pbsAAF8I/Se039oD7X9sb/q6SEyDsift23SRTbk2ZdUS3vjGN+IrX/kK7rrrLnzgAx/A7//+72N5ef1oiRsv9diUB2bDLbvw+UAJeEVigJYrNaHi1TizrACcY8Bmjs+xc2Bg0LQOmwJXAG5xgBKRUVyNiCp6iSv+YqNaVunuxmkEUGitQdkKEQ7F3IV9I1l1sZTD/JId41TV5+kgEo7jj3/zX5HoET00ERLB2alj+Ma3ftc95o7HnsJ3f/x5fPfHn8ed936prjRlJbj7hFcADRjn3NsXSlZdMYCQKgrkVkEpQV+XiAm60GjmyLoSTA6OIh0WA/dUHRmmE+dUKufx1NH73d+3YsYF+A250OIGiXMdNmLvnWMS0eAxiVscekaFmW3NQKYvQ7BjFMiVgGL5AhXIjrS6zDxjnQaodi4F4Ity2cTzC46sGgBO1mGO5Z7jQjErxpeqDeSHY134t95JYOHb4j5Vm7GpeBcSdu5pvaL32ROP+H4+s0axT+74WLbbviAKViyIwZtsTbSUtEAIcOWwiffdWMAXfm4RH7olh5smKgir3lhw3xkNv/OtBH7lywnMOdlxFQbUcYlfKhE8O+tVKYPcW6y/44e9eNcnelCUvZWk1pTxjNea0gro1oS3UtWoFw0XgLddUcRkxsSsFsYpu4DYhX6cH/oG/ujOGCLGpe6xuXQIf/HyLF69u9xs+bfqEJFO/gKUjsdBCMG2bu9cPzQXXAn6WgtKghU9fPJx3zHJEMfDfR6Dbj0UzEg6kJ2qV8IcH55XfIwlAHzl6TA+/uMoFksE955S8bZpL5JIefEQSHcIyovsfncOmF/yjN6ILKtmqMscuypIey3bqEXCzxyvQnG8UAbpjbSVGiMjlfA2c5aytd8T59wtjqPhuJ85rtQqPK4bM3wbYZRwVOZEcayHwqDD0YZkYCNsl87P8RbbIzYi2v50tmzZAt1ejRNCUKlUMDs72+Req4domODWy8XthYqCw3PtM4ZEIUDF3ollHHzBaDrJnFmmSFgGorYMZIaJHobQBSiOYdiRUwGvmegUJKaKCdVG2eA4MQ2U7PdMAC+ySqXi81jl4pgQ4jpWN5JVN3IIrn687kFPuhUncbCst4P/g6eO4U8/9Q786afegQ9/4m1490dfBbaKEVXncgTPOhNV7kH0Eel7T1244jgW4FTdDOk4gUIB40IbNcl9x6sorXYwZLMTc8VgEx85zumBJ77n3a+GOZaK44y8qdY+c2w6hqvh+sZoTjxXLGBoYWUGRSdQMxrMZt4CEkb7CLYOAQvZCyOp9/Udt7AREmTAtckcP3/RHzbdPrp6zLGsOsqXsiCU+NjjfFjHx0b2gRECLHwHgN/h2oGzqD4/f6ZGsggAh9aBOQYAGtB3LEuqlSaSahnOXKirwA3jBn7vpjw+/3OL+LWrC76M0yPzKr6d9x6X1THlOjIvfQfGeQxVxLVpgWBKjeLLP47hA99JoGKPdycXvdaUiTYX1CSigh4QBQw92NUwUSSiAR9/ZRbvujaPo91ik0MBx94KxV3HdYzZr7NIOH7/1cvYtQ7ZxvUgS6sBuMZqcR0YTojXdXReCfRTOSOroYri/Js6d7z2OQYjOB4S1wA/nmsYiefLOF4Bc/ygxBrffGnBvW6/+kwI7/56Atcuncc++7lIbwjKdb0AAOW6Pk+1cEa67nzMMRoyx1CJq4Ic6fe8RmqY41U05OIlCyAEJK523J4o9xzLrLaDcqUIZtcesWgSkQayakCQJjdKrQJbMwa4KYrrsJTt3Ql+dl8ZL9tRxjuuKmAsvckc+/Cnf/qnuP766/GmN70J1157LSYna4uaSqWCXC7n+1cqlcAYW/G/l1/jPc89Z1QQhbf3TwdgWiBgICUDMAyQGG14n7M5f7/xjGUXx6FQS88JoP3XWe8fs0AjBCRExHuo+kczGsAsEIWDU4bFPEd/N0fJ5AAYoHHQEMSxlINECAhhq/f67H/OrnyhlK37GZydlRyCB7Y0/gwlGdLP3/LrIOWjALMH++ge3/l34uwzOHTq4VV7Lz86LRU/s/+JjBSkTjNay4+zmucBJxypuPi/nX+JGEcizlE0Vvf7bvf9036pJWG2uOrPNSTJf6bztdf3YF9wcTwyOOk77sSSJAdMWt57cZhjnYJESUuvybKlLt0ZDsMKPqZsccSiHJFI7XdnFA3QpILIWBhM4bAsq6XvHBSYHAbGhzjmsxx8Da73Rv+o7E5uL9AaHc+k4pgM2kXCfAUoVsTjafZxqzCfrOYm2ibWBjr1+ttOLSmBirFoQEKCsi8tfkEJ/nbrXiyqIYBbwOLtAFAjqwb8ckw5ZhAQEU9HTz3h+109+fVKEWTKxRxJNQC6p7UC5pFn7sbP/OYO/M7/fq0vuzmqAT+9p4x/+Jll/P5NOezqEX87KjHw9fqOj8rF8dH3Y6QsFvS5WAh6SBSvD57V8KE74zAsf79xq07VMtSfm4D+vn1QXzve9NiwCrxyVwW3vsT7/A5kzyPELNdQ9aTxLHoSF8ZM1QHdkfSlaFLJddzJmi1bJFApcVaONLOTGc6eP1Zz3FiGudJqALAers8e56Ts35XEOD141lsr/f4bF/C+F+bdAnlqAXjrzLPu35WfGnUZTKJSqLcNoxo+4opwkHo9x7qddWyzt93pAVd+XMMc51ePOeaLFdDBCEhPOLANqhXEY2n3vssBzLHDGgNOz7FX4BYDimMAeKnkWr2319tYllnnTpAOc7zn+gL+297VVftdbGgcpFYH73vf+/De974X999/Pw4frg3YBoDPfvaz+NSnPuX73Wtf+1q87nWv6+Qpfbh0VAEgAq0fWlDwwRc07mkNRgVADkgDeJXzc30sPaVjoOKxW9NsBgAwtJdjosXn33LdaseRnAr+9eX2P4jXtTXwoBnv5q3OjdU92dM9MZybB4qVrPveqz+Dbzz2lHv74AsHG36WM/cyzNvq11/79Z/Hq/7n9Xjzxxcxk+sHje/G+z/wh3j6yUfxhS98AQBwaOnreNkLap2KO8EDP5Im0rn/Qlf6fYABkDDBxIvybQ2Kq3UeOPxmJ2f/3tFVeQkdwXn/5WELRz8rfhdFDsMdXcf1sWeWupER1mgZE5f5WZBLs33A58XtE2c9mddVL+vDxE7xWsoGcPYzYmd520gF217ovcZnPlABB6D1KZi8sb3vtO/yPPoub3xMIE9qiydKVhG4CsijvecdHQUuxFeftRhOf1ncTkWyALrrXgesxPCMvSjXt+iI3xDB/D+Lsbc3MYvEDXFMvAAAlnHixOq09ExMTDQ/aBMXFKMphqmsgqJJMFcg6In5K2S50HWKY3pNL9SUjoVwCLd/X7TlxK1nkLOWau7joLpXcXJ0r/vzibPPoGL4VS5rxRxXF8d8qQJ+SlwXZCgCkmnN7+Tbd/8/ZPOLeOCJO/Hw0z/E5Xtv8v1docALJwzcuMXAX/woigcfk4rjqebMcbpwGGFbTZge0fGnt2Xxvm/HUShT3Htaw4e/F/O52nZSHBNKgAZy6iDQbQkwMFBQHJi9F303ZkDt5cZpfhqX1Cuy1gkkoYGMxUR/rU59vdTbu03cdVx8pofmVExk/OtTv6z6EADgbABzPJ628PnUAN50Tpyj7KF54JbBwNfjzzhOd/CORLLD4+dEWTEQtzDeZ+LWbRVwBnz0BzG8Zu4k+u3rh+xIgu6ukpYf7AL53rT/vPMpJAnqZY8SxY4nLdhO7pRiuH8SR049jqnZEzBNA6oqCncfcxyrzxw76rB6yjBeMAGdgI7GAMbBCYRZbgMH+SAoVEEilsFybh5LAYZcsm9PNJxoaMjlYP+AiV+7uoCTSxQv2zKF/7R/H9ZXxhw/X9BRcQwAiqLg6quvxr/9279hcnIS1157re/vb3nLW/DGN77R/2Sq6kqyV4LxcWBrl4kj8yoePRbC/d9KoruNjDqeFye8clUP2Kk82LPLoAONd1OePhTCbsOTjzuy6qVjaRz7Qa2JlAyicGy5LofjP4qDWytvbmEzBdDJJJTJ4Ofli2WYD8yhnAghXyG4ZCsB48DDz3L0RUzA5FCv6nWb7K3Dy2AncqB9q7uTqjIx8BUKBRz5YQRbbyjWfAaP3+uZamkLexp+luZiDsAiAODsj3Xoe6/A3v4YZnIA4wq2ZH4de6474RbH3/7q3fipg/9rxe8jVyH4yVP2xFw8DBQeRzxqv864juM/rF1gBWE1zwPGOOaWgMt3EaTj7T/W3DLHQ89y9KREH/J6oPr9czMGkBMAB7JPWE2vo3YRXfCGt4fuiWNb3j/c0dmdgfdjp/bg2DkxHhyZU8C4+HwGVLivkVcYWFYs+Ewt1PJrn88zXH5bHtGzcTz0NJAvAZmE//OfnuPYv5VgsLv2eymczCNzdQaxLTEsP7aM5adyiI62d91mixwPPssR1kQe8nqAnVMBiGt94SGOXqDudcCO5gCb4LL6E8jSJACx0z/1dY5ZnsDcsSL6d0dxw89e+IzKTawPRlMW7rUVPKeWFPTE/L0S0QATSEIJlL1p3CdlxkaKd7tbSoHFcYNexWpJtXMM57xj1qgequPu2FNeT2gzl2oZMut0zyPfrimO3ecjwN5+E19/JooCVRBlVt04p6MOE8xNDJaXAScbtTuEvf0mPvPuc3jzn/WjbBH88KTuModA+7LqTkEiKs5o0xg1hjCuDGM45601pul0g3uuH9SfGYd15zTopRmf6dH2bu8zOjyn4CVVe/xO/3ZUY6jwZZgAps4fr3n88TTDtJ7A05EUdhWXwKeKYNNF0AHJlZwLNfBq9Bw/PqPCsMf0y4YNt5f71q0G9OIi9v2jYLc5AbRXjdZcM4QSKC8fgfmZQ94v5Z5jAI0a1klUBVsy3Pp5uH8rjpx6HJZlYnrupLvx5fQc61q4IZPK84YouBdYzWYU51ywxtuSICldFMoOc6203+6ZdIvjWr8cuTUxFvUzx/WKY0AoQwDgxBlvDIisUFb9fMGKt84YYzh9+nTN73VdRzwe9/0Lh8OglK7Kv6uHvZ20n5zQxWK71X+cgpUBbhCweRMgStP7nFlSXKdqwJNV62q4pecE0N5rbPTPIEBIAwcN/hfSwAjF/DmG0R6CngRBTCNQCUElywGqgquKezw0FdxYpdcm/YvKBim5fOBncHZayjjunmz8GYa84obnGbhFMJ7ydqSPzSnoS49ifEgUPU8feQBLS4srfh9HZ70CCYvfRQghhJg9UCa1th4r6DNgRvvnRqlMoFCCiEpAePv/UhGCsEqQy6/+997q+wdRgC7bxfh8CcxcxWvEIhiUnBTPLNGav/d31Ur0ejNDCKkx95gTEkMynmbe/Re9hTlJtH4OGHZupQKKvhRFoeD/e6UCEBDE9NrvjJc5KFUQSoVAKUW4PyJ+X+FtfffJMEUmQrCcXcfvPe0tLNj5csPx0DrqceZkLA4y4skN2Ym8fc2IY1drPtnExY/RpFcwnAzoO5bjA6sTEu4/4zE/yvKdAICwHnWZJBmNXG5lMy6nGC+W85hfmsGqI6mJxTYAfr7sl1S3URzLbrY/fvhbDd3id3Sb4ITgRMj+LBcq4EX/JoRhST4MhWcwTHrdvzls99W7yvijl2Sh2a00zvyZ0FlbRMZKcSrmFcT03kX39ox6ft1eQyPQoSi0N05C2eff5NsmFceHqnx1DAuYyYnzYjjJMGh7Z0ydP1Hz3Tpxl9+TpNVMklYvlgje/MUkXv6PaXzu5EuA/jcDarrjnuMHJEn1ZUP+8+baU6ddzx7lml5fgS6D7kqCbPXWjqTarbrRHlRU8fnn1NvoytrsbCv9xnQwCs5R26+dNYCYCuow/iEKonuy7nbhmHIVilk3Ks5Btaza13Ncae7FUaysnqz6+YK2VgWFQgHf+MY3UCgUYJombr/9djzwwAM4ePDgWr2+GlhFC/M/msdLz5zEQXuH5Z5TbRoiUSL85ouWcIGs3pmqQq5MsFSmrlM1IDKOAfjyUNcDnHEQgsYGYmEFc2UVPRGGLQPENscCIiGgXORuxrEL1Z8Pt1qQi+N8HcdqJ1s2kwyOcfI/oJR3VxAD7xZpF/q4PWFfue8WAADjDA88cWf7L7wKJ+SYqPxj6JL6jVca48SLJvjJfNsuh504VcvQVILetHAwvpCgsiNrGwZTrWAo6X2mZwMcq5OxjG9BDQBD/Q3MuKQeZtmpulO38kwC0DVhmOegVBbRXLGAdYNVsKDGFKhJsUmkd2vQUirM5dZcq2X0dhGYFsDW4LoPAtEVNw+8mSGXbMZFxuPCpCUm3jM/lW8pCmoTzz2MSuYvpwP6MDVVd+djOSHBYsCDU+L8iesMxsLdAGqdqh3IY0A1cyzHOF1/8OXecWsR50QJiN2rz+fKYIfsBXJSqxtnFISCVBxPz57AyalDdY8dTTGEVV7Vd+yXVp9aUmAye/2QfxSDipRxLBnvXT5s4oM356BS73rdkrHW1Rl6KuWxcDTrnT9zocaxRhcaqTBHX0zMN4fnVJ/P00yOupsNQwmGwb4tAIRp09zidM3jpMMMP0z2u8lI1gNz4HaU6ZefCuHMsgKLE5wqbwN2fAa4egr/cfYV+NYhvTr0pClkM67Lhr05kpcsWHfbGxIKgfqiYGk3IMxX1VePCjl1VPFHeRHSmDnWFUBKZgna6OKcuz3HzWKcCIhw0t6bBifiOgRsI9+cCToeEwa4sGXdYaXj4ljufa7OOvYXx63JqmWUSl5xHAltMsetoK3imBCC//qv/8LLX/5y3HrrrfjsZz+LP/7jP8a2bavT19kKlh/P4p6fug89PziFF2fFruADZzXXFbElKASwRD8BL1lAqIlTtS1hcZhjg5pY4kKCsu45xwYD1ygQFONkYzEH0LSG8QyDromBhFKCTBIoF5iXcexAJasuCQOAWMQrPIIcq4vlPObsHfdqh+BARKTXbRfHE1L/klPEXrn/Re7v7n3s9rZecxCOSQUSCk9WFccrdKouWsLtOtdeYdipU7WMrqS473oVSEGQpYPWXavLvqTD3I0rmQrIOiaEYKDHzx4PV8WJHffFOAU7VaPFc4BV7XrHo0Ay5s+cLlaAVBxQA3qWzJwJvTcEarNJVKOIjEZg5tovjrviQDQMFNfRU8NdOOdMWPngBQTn3ItxiiggfcLkhDquwwULmHtuG4FsIhgyc3yqTjybI5OW55tDc160zMFBE4WCWBgHOVUDYvHYmxEFn1z0WszCETsuZ7B3C3ZNeqYBa2bK5fTZMu668NK96bbm62LJzyzd88i36h6rUGBrl+Uvjqf8i2+fU3X+EQxRqTju9ZMF14ya+L2bPEOmg4Ptj1UrwVKmiBL37wDnWA4lfX1zjTuBI60umsRnwHVGuj2ctDDU662dgqTVY2kLC1oIDzuF4EIF5hdPwrQ4vvFswPqV6nhmaRAf+2EMv/2teMsF8lKJ4PC8WKNt6zKRCnvrCuvH54CS3Qt8RTdIqvGuPh2KQv/9S6D/r0v8cmbOGxbH0CiINMkGMcelct5lZpsyxwQiT7w/AmVfBlwlYOdLwGIFJK2DDvo3qUhMdTce2kUq7sU5yVFTgF8JE4skqnKOmzPHcgG9yRy3hraK40gkgk984hP43ve+h7vuugv//M//jJtvvnmtXlsgkvsTIHbBt68kCtSSSXDH03P4yCffjq/d9Y/NH4SK6CKeNQCLNc37OrNMQTh33aqzuncyhrR1djw0mNgdq8McV0yO+WVgxy4NiZC/6ElGCSxWyzoTjYKDg3doQ18PQe6hMuTogeH+5sUxkZhjFMVAO5BgCNnSLaeI3b/jGrcn4/7H71yxG+1xH3P8BLqoN4i1WhjVA69Yol+l1N4WrWkBqTo5uK0iHQdiIaBwAdljelmXOwpZ35+Bde/qxcIRAgzZkRgzORoYiTHQO+b7ufo8PGmfU5rCMZiQHmDZkz21ukFimIAmnUqUEAx0EV/mtGnW9iA74CZHqMe/qAj3hUAoAWtztzocIuhJ+QvztYbMKhln6ixO5yuAXeyTsZgb2yJH8rDNvOPnJTIR7mZ3nqqTdRy1N2RlpkWWVF82VEaxnLePre8V4SyqZYOcU1OH3EzR7eOXNJRfrxbkzUMHdE+6rceQZdUA8JNHvt3w+G3dJo5JiprqOCefU3X+UYxotsUfBUimtui5YdzA/31VFr99Qx6v37++k00oEsHjxmO+3520TiAcvvgLhO11pNVns97toSTDkM0cA/VNuQDgs/07wOy1Lrt3Fse/MYfzBfHzNaMVXGn+HnD6/wBlz+j18RkNf/OT1j4rH2ssSaq5wWB9/5z4gQDKTQPVdw0ECSkgVcQVIfUNuQARZcoJ3LWsfI2esa/RVjOOuW2w5Zhr0d6wiE/TKXjRFLnU1a8vqnYci5pKeK+luu+41q26cc5xNYqVzeK4XWy4ZislrCC5X0xq3YUi4pZYZP2/nxzFHff8B/7PP7wbzx5/uOFjEEpAOAcvm2hF43NmWUGXWYZmM2yLqneirjtzXGGCUalT0J9fAMb6gW3bVYAQX8Ebi4idYbN6502l4g+rXRzLPcdVEzQAnJ6RYpyqGLvgB5R6jm3mmBJv8D+7TFE2xXdycPcNAICF5XM4cuqx2sdqA460NkJzgDmHbuIVxytljgknYkBVadvS6tAKve10jaB7nQukatCRGNTXeAWq+R8nwI6tnmu1k3VscYKZfO01I2cdA8CQdB4aFnDa3qUfS1lQpLt3knFsmIBWJdpIxz1pNWMclNbJNzYYiEqgVmVqa90atIwGY6kDaXVabJatm7S6xxsrK6eC0wFc1hgAHfcW6FQqjvlm3vHzEoSI6xAAzuVqs8t/fFLD8vDHgcF3IG/orvz+fmnRvqdr0b3dKK5m2LeoFvOUbMa1ffzShsZdq4VqJhY6Bd3WnnFh9dz7+OF7a5gpGTu6LRwPJ1wZbnWc0xF5szj3CAYd5jgTqrsu2dpl4SXbK7JtyLogEo7jIfMh3+9OWCc2hCnRtm7vBD80531wtczxFvfnwOLY9mU5GkngiRd45+zwXcex387UfeXOMmj+fuDY/wTuncDvXX8GuuLlE3/j2eaLjQenvLnp8iFvfrTum3NjD+n+jC+/uyM0YY6hElfanIxn3ALYuUblHOGGzDGzWWrp+WhPGOolGdCtSZD+gPehd15SNZRVFxoUx5uy6jXBhiuOASBzhTep7SktAgDOsn3u7z739Y83fQwOACUG0qTfGBCDkWzGdap8AgBACXX7PdYLvMJAEvVnmFIFGB8gCKdU0BAFK3sFV1TjCOtAgVd97RoRUnNzdRfJsSbMsZwhWd3rGQQfc1zwJg6nOOYgrlHLlfvdfCrc+2jn0uqFIsFiSXxeSSJk/DJzvJLimBsMXCWg/WGQuAbkWytwLMZBCRBeufE7upPrWyAFQbmuD/Q629TF4jD+/kit+UWHGJT6jqeWa4e7QWlhAQDD/V5xfHrZ6+2qDrv3yaoTrX0Rhln7nTnS6lxRSKrD9fqN86LfWEtWOW6rFJGxMKwWzx0Z6YSQVq+XcoB0e4sJ43QwcyznG9Mt3iRORiXmeLM4ft5iJOWN9XKczaE5BR+6I4Zs7GXAtr8Cv+oU/td3IvjOYR1P2tEyoykLMeotOuv1HAPBcsxDxz0zrh1bLkVvZsjtcT6zZnFO/s13ujPpczVuBaWy/3phzML9j99R9/jt3SbKVMGULd3k00Vwmw3jXGKOK+eQNkuIQHwG8ubXxYJoOI6HjdriWJalXqzYUY85ls774QTDoNSSFpR1LLcD3dszAOWmfgAA5cDvnnoUu9Q8rhw2kSs4btUcN0xqeNe1XtH18XuieGa2/lqZc4851hSOff1iPuImh3Wn1y6l3NIaa9zwiRrxWToVZI9symVvdJ1fOItiOe9njhv1HFtcVEhVLU4kE4KyKxW4EURCSg0p1Srk4ngp62eOZQ+FaCTRslt10DGbzHFr2JDFcfqKtHv7RipOdEsdAqKiQP7BA1/BqQamEwDECdxCvzEgmON+yYzr0LIIyxsb2rH+uzCcg0SDC7JSRRS/3UlAjalQwhRWyVvUK5wjlqTIW1Vfu0rtPuy1k1VXu4cC/gXFSH8LzHFYYo6L3oAv5yY6Eugr90nF8Qr6jmVDphg7CQC+nmM06Z1piJIlNmcSGkh/2GXDm6FiCiOuyCoUx2m797R0gds41VePgWy3z5e8CePvDrctNQ/CcMJ7jLMBfceDVczxYK/Xg1zPjAvozJDLMGsLX0daXa6I7yARBUJaQL9x3oLWo4MG7EyHekMgCgGrtKk80Aj6MqIwXw/IsupKneKYO8wxEU7V7n2jqrv45mcKqz5WbWJjYFRKJ3Ck1WUT+JO7YrC4dN1QDfeeieCjP4i5G1yXDxlSARAc4+QgSDJ96KRXHG8bv8TNUQUEY2dZq99PW80ctyupNsyK218pm4f+5NHv1L3PeFq0KrnSapODz4odtHlps7iRGdfFgkg4hhPWcSwwryA6YR3fEAVCV5SjOyLO98NziuuZ6njghFWOTIRjsHfM7UGfaiCrBsScprx8BFODaQBAyjLweycfATUtZPOL4nFDMaiqhpdsr+BVu8T3blgEH7ojjsVScGV6NksxkxPz5b4+01UIZO/IuQaMZEcSdKTz9bKQORO31SYQGhWbR5IKT97oOjtzzJ9x3Apz3E5msU4F2dSBKVdKLo5rmGO55zjpqztaKY6L5U3muF1szOL4yrR7e1/Zm+zQ9QoAwtTl/33jr5s8Cgcps4bGVg7OLFMMSMzxlCkYxB1bDrT6klcFnHNhNlCn33g5L9igTEL0SWgZHUwqMFiFI52mKKPq/ioRA0pQU+YK4JNVF2tl1Wck5niwtwXmWJHeu1RITgQUx4O94xgdEEZxTx25zx3428UxSUKmGWKR5DPkSqyAOS5ZIAkNRKWgGV1Iq1swc1ipU7WMcEhIqxdzwOwS9zknryeIQqD9wlbPnXW6CPNfj664D15mjuVeLQcDUjHcnR7wTRxycSxvwADwnLUV4nNRbwSLBecKp23X6lwJ6KqzXucGQ6g3ePGpd+nQu3UYS+2bzHQnCThEbvZawyerPl0rq+ZlC3xKjLNkIFLrjeCwxyYHnb/ANuubuCAYlTapTtsqoc88EHEVQwl+HDj1UV/fpIMrhk1/714dQy6gljlmjOHwCdGe09896i5knSLatAzMzNU+50pBIioQtysNAtDd7UXsyJLqfduvdjes733s9rrFvEKByWpTLrvvuNqMa5gOe691pXLZNUAkHAcHx33GvQCACq/gmHXUx7xdzHCk1dkKdX0zprNOjJNw/ta1MHpsAzl5TeUgE+FI6GIePLmogIHgDwcuwRld7NRmFvIwP38ceXvjSI5x+tWritjTK17D+TzFh78XC1wm+vuNxTzEOcfs33tFnnrzSlljCNa4kVs1IYJwMGuZY0BsdLXacwxmP1cTTyIfQgqIpgAdmHI5UU5AE7fqaAeyah9zvDHO/QuNDVkcR0bD7oTRPZcFcbbUul/pHvPdH38e5+bP1H8QhYIT3tT1MVsmWK6KcZqxY5zWuziGycFVUmMC4CBXBEZ6hTM1AOjduo9N4gZDLKmAqMS3GCaEALqy6rLqZoZcjqw6nehBvMFCxQdbBs8L3iJp3Bfn5J3SjrSacYYHn7yr9RcuQTbjoiWhGHBl1SHaOFKrGUwGkrYr3KQGElddMyLD4nWlzqvhVC1j5yjBpdsI0nGxwXJ2jmM5z9elYJJBoirUt253v2P25BKMjz8F65H5jovkoURjWfVAzxg0VXwHW4Z3+f52oo5TNSDJqhNaW86x4YC9lHgESMVEP3IiUvtYzGRi8yAZ3E5BFILwaGfS6kwCiIeB/DrUmiSqut9tkKyan8y7KRxE6jd27y/1HSvnLmCj/CYuGOTi+OQSxQNnVXzxSVGU6QrHFfrfA8ffD9w7iXde8iBeur2MZIjhwICBK4aNmt69ehjoHoOiiOvtzMwRnJk54rIv27dc6h63Hn3HylU9AAB6ZY9ov2kDcq9hIpbGFXtFzGE2v4Anj9xf937bu00cC3CsrjbjutiZYyeq7+8Lf4c7Qt/HR3J/jCzPbgjmGKg15ZrJUVchIc9tjilXNr/gU0cAold/3N7cPV+g+N4xHScrIfzR6AGUFXuufXgBf4AP4krtKsSjafe+mgJ84JYcMjaD/dCUhs88UNv3E5RvzJ5eRvlZmzUejYK02StfA8eputl0G1V8JEP1NSr3HCdi6fqPw7ggZNpgjomTJNMByZBqOcqp2pBr0616LbAhi2NCiLtQoiULu63T4g+JazA4dAUAsZP7hW/+Tf3H6A6B9DV3mnbMD+Se42lL9FAEFcd8vty2sVLLMJiQbYRrvzbLEvnHvWnvQlZj/sKNVRiSPQqiUYJClYyWhKnbV7RakHu6qnOOS+UCZhemAPj7PJuBOKZcRdM1XOmLeS6mcvTOVasQ6SQ/Hs+JGI9umzleUb8xszdmpIw8szuMpTkTZ+c4FpaB2cXg+66GU7UMXSMY7iW4bCfBlbsJdo4ClAJT8+vfi0x7w9B+Yas7MvHTBZj/dBTGnz0O657zvmuLGwzsfAns2WVfr6qMvhiDYseIBMmqw6Eofu0NH8HB3S/AL77mfb6/OcWxSrlvIcIt5vaHt3oOMDufPMhEjRKCgW6CRKR+v7ESU2rMuHzvozcEqlNY5fak6Oudd+0soI0Zs0Yl4es3Hq/d3aabxfHzHsMJ5sYCHZpT8bEfeOfE264oYjDinEMMw+GTeO8NBXzxDUv485floFJ/e08jQy5V1TBox7ydmTnqM/ncPnaJe3s9HKvVl49A/4NLob52vPnBVZCZ42g4jmsufYn78z0NXKu3d1s4FvI2qBxTriML0gZdrnGM08UARwm0xJfwL8a/uAzyRug5BmqL4zPSHDYkqaL8plwBfcdSO8Kn7eL2VDiOMy/b6habE8okPpT4Q7zH+E2wo9510hPl+MBNeXce/fzjYfz5D6Mo2vubFgMetnPEEzrDti7xms3bvcxl5ZbBlceFOkuRRrJqACSsylHHK2COOaDSxjLuoOePaR3VAEkpymkp6y+OHXKJEIJIKAZN1d3Nu9Zk1d44sCmrbg0bsjgG/CzCpVnbjZhQXH/rXyFky0W+/v1/qmlsd+9Pm/Qu2HCLY0OsHvPIo4gCKFWwdXSv71huMdGL2AGD0xIqTLDGAYYcywUgGQW6pM05JaaAal4vIjM44t0qEpEAh+Kwsvo9x+H6zPFZKY+vpYxj90HtYpUBsM3GCAG2pJ3IHgUFe9C+ZOe17rlw/2O3u8V0q+DcY6J7YwylwhQiiCBK7HMvuQJdc4WB6xQkqmJuiePoWY5zXEdIB3YNM+zeIs7NejLnlTpVB4ESgnScYOswxcHtBJEQUL4AcZB0RxLa/9gOMuRViny2DPMLJ1D5yGOo/MWTKH/wYVR+90EYH30cxiefhfFXT8P88qkahlmhwEBcnCdns17floxX3vRmfOy9X8KerVe4vzMZcNruaRxJMp9TNbLe9d1Ov7Gu1rpVO+hOASN9JNBkzSpY0Lt1KA1aQLS0BjWhwsq136fdkxLnmrWe0moG8Hm/tJof93bAyZYA5ngo6i6M6Mxmcfx8hK4C/fb1fGpJwawdRXPZkIFX7y4jFpUTEmrVStUMTCM4jFOpUsCPHv6m+/v1Zo4BseDupLiQY5wioTiu2n+r+zg/ebR+cbyjx8J5LYwcFQOWE+fkMMcKYUDxaQw5zDEJjnG60IhIkVSLy+fd2xuFPZMdqw/PqT4zrhEp99tnytWk7/i8ndrQF7Ow48YktLfvgDXozWMT5jiMv3kGxqefBV8QLMr+ARO/epU35n7zUAjv+EoSh+YUHJpTkKvYOeJDpgg+OZ4DPyLOPdIXAt2b7uTt+8Ftg6xml4FGIU/08vpSFMdSz3GsQc+xxQPX2s1A4mpHsup4NAVKxPPVi3KKhOOg1O45tzd4Ng251gYbtjiG5F66ZcHr9Tlr7cPLb/wFAGJS+9J3P7mipzmzrEBlDD12cXzW7jeeGN7tFl4uKmxNikwHvMJA4sGTZLYADHaLHlIHSkwFDSuwnL5jzqFGVQx2o5Y51hUEVg4rQCNZ9dkZb3ezLeY4IlUXsmO11BPqMH66Fsalu64HAMwtzeDoqSdafh4AmCsQ5O1BfyJtIVdYQkbuN15JjFPJAomoWDYpygZw2Q7gxTfruOygjpEow3Av0N8FLFSt71bTqboRomEh9y1eIKMuujMF7bf2QHvbdpCt0o5P1gA/XQjcgLK+PwPz/x0XzK4Ep++4ZJK6hiLVOLPsydeq+439TtWtnQMVSxTGQbJqAIiGCCYGSeC1zcoWQr2Nv3CiEOi9IViF9ovjVBxIRNbHmEt2rHaMWgChpGAn7YV8TA10viUadTdM6EJ5VQzbNrHxMJr0X99xneG9N+RBiX9DVpZQO/AbcjWWecqMk8yybh9fX+Z4JfAZ8YTjSCd7sHtSbAIeP/M0psfxLqIAAOOPSURBVM6fCLzfeNqCpsLrO142UF4yXBO0/kgW4IZXHHfVj3G6kIhKxXFpA2a99sU4kiFxvj87p/hinOoyxxLx4KC6LQgAXr6jAoUCdFsS518fwoezf4RT1kn37+zpZRj/6J3Tr9lTxm+/II+w6mSNK3jnVxP4xH3eOviyQTE3Wvd4GxHKLQNts6+B4BBMSLPH0ikI4JIh4VAUvV2iN/70dHvMMQkwx2yKDuOcKKVI2MV6PVm1vKHnnMPFcnNZ9aYhV/u4+EazFkFGo3DMKUfzCmCInZaHpyN49Yt+zZUc/Oftnw50Sm4VZ5Ypeo2S+0F5/caX1h5sMJCIWrM4Xyk4OAyLA1ZwjBPnHIYFDHT7L2QlRKEmVLCi5FgdpsgkSG2ksUpaynxuB7EGbtWHT3qZkfICoynkrGPJsXpC7juW+oRXIq0+JvecZizkCst+M66VyKpLFkhGQ65MMNQDHNhOMTigIDYegZmzQAnBWD+BQoULuYPVdKpuBEIIupNAOTiOdl1ACAHdmYL+qzuhvXM36CUZsWtMAKQ0kC0x0ANdoFf3uLvJ7IE5mH9/BLzinQ9DsmN1QN/x3/wkgp/+lxTe/l8JfOwHUXzxiRC+d8z7gGv7jb0PhTSQOsswDCAcApR2nC8B0epAKbQWnkfv0jpqjdBU4Vq9HpFOcl+irzieLQF2YU/HY3VZMseUi2Az0un5itGq6/E3ry2gNybOe9+GbDPmuInPhcwKl+22qt7MEDLJXvf3yXiX27d4MRbHPll1RFw7srS6nmu1SoGtGctzrAYwc6jsOn/3hxeQIilXRXUx9hsDQLhOnvFqFgjlir0+WwMQ4kmrF0sUj0576x85iWFIihSdCpJVV10zlHDctt0bf7PFJfzIuBvvWPoV/GDLg4C9zuSnCmDnvYnhJdsq+MSrlrHDZrQNRvD4jNRvPGz3Gx+xZcAhAuXyBgVoO2Dcm/8bgGgUvCbOSRAw2fwCzpwTueWEEMQb9Bxz1iFzHFJACDrySUklxGdVE+VkG9rKa2qnON5kjtcGG7c41hUwm4UYISOIzH4DAFAwCE6WtuBF174OgNgp/ur3/r7j56mOcZq2GphxrRFzPLcEzMyLBXaQU3WhDMRCIsKpGnq3DqtsiUUzIaAhimRMMFhy0QWNesZmqwRZ0lTNHD926B739t5tV7X8mHWzjmXHal/fsRfpdN9j3235eQDghFRkjyUrKJXz6JYyjrES5hgASegoG8BAlzfah3p1gAoTpnRcqAEc9phXLFTmDYQUvipO1c2QiArziwuZgeyAjsWgvWkr9I9cBv1PL0Po9y+F/uu7of33SWiv3QL1TVtd4wz21BKMTx0CL4rzQ+4XrnasPr5A8cUnw8hWKI7Mq/jW4RD+5t4o/ulhbze8ZtddYo5bdSs3TMHOtgvTzjdW65hxyVATqjDb66DfqTtJQAjWbJHnQF5EW48uwPzGGRhfPAHzPzzGIsiMy4Hcd2yd2CyOn4+YlMb6mycruHnSux5jDVp5ALRsyAUEb9pur9oUJ4Rg2D7u3Nxpt4i+WCDLqsN2D3Grfcfbui2fKdfyca9I6tHPY0iRnKovwoxjwM8cy1jNAuH8ErBQK1JYNWyT+o4Pz4t5IKRwdEWDpcNBzHF3lIMy71y4fCCPnph3/5yd5sHAMDW2BOVGz1maPbHoe6yRFMNfviKL1+7z76YOxC0MJRj4YgVYEBvIkX3h1VMUcLQWraRTQfZIBrPD0rXs9GTHoykotIGhqoXOWOAQBddoR9Jqp++4WM6jYojNC9M0XNWDnzkWc2E7xTEhpFbxuolAbNjiGADYgBjgFKJg+9zd7u/vOKrj5172Gy778B/f/r+oGO3TIpzXxjg1cqrmJgP01WVgC2UOxoHBDMdCMdipejkvImCSAZuhakIFGMAMBqoT0DBFMiqMf2SmiKgEnHYWXl4PClXcC1jewTbMCp468gAA4Rbc2zUUeP9ASLJqORe4HnM81DfhyrafOHIfcgFSu3qQmeO+sJDj+ZnjzipUbjFRdIYVUCqcih3o3Tq0pApz2QQhBKN9BLoKFM5XgLkKzApHNFcCWSPPNxmxiIiMuhB9x/VANAqi1A5byv4MtLdtd6PZ+LEcjL95Bny5gkFfcey/77cPN1/Ube2qn3Hc6gYJ40A03P64YOVNaBkNSqS5K7qa1KBEFVjFWgldM6TjYvyYXQIqq+xaL0NeRPMjOVi3T4H96Dz4Ea+QCTLjcu8vtdOw45vF8fMRt0xW8NJtZbx0Wxm/ea3/HJDZ4GoTSKDdnuNtNb+TJdXucdLC+8xMLWt3IVGU3KqdQnFiZI8rM33k6R/6CmgZO3r8jtU46y3Cu9QpvxlXz8VnxgUAmqq7aQQyVjPORqHCJHOtsL27toVoMMF86uJ4NOVKcoN6jitGETzvtZXtTz7m+3tWajeIR9Ogez2zOvbkYs3jaQrw9iuL+JOXZJEOi/n1tu2iIGbHpD73A6tYiDnTUrP1td4469hBw35jQPTRd1LY64qQXqySY7U8jvmKY7vn2LQMmGbjRZojqw7r0ZUboz1PsMGLY+/C21nKIkxFEfvjkxq6e7bjhstEtNP80jn85+2fbvvxnzinIFuhPuZ4hk1DVTRMjOwJuIfdM7hKTJvFhGvxlgFgspchHCNYNGq/skIJGO0L7ldU4wqIQsBKDFSjoCEFqkrQl67qMdSo2JFbbcdqe0KWZdWHTjzqblbs2351W4/nY46lIiAT8XpzZOYYAK7cJ9hjyzLx0FPfb/m5nCKbgCOjzgIAuojHHNeTVTPOcfIcR7lS57MsC4VBgSqIhUTPpwOqU0SGwzBt06dkBBgwi1jKMtD9aRR2dCE1FELhVLEjhrAdRENALAyULlDfcbug25LQfnWn6wDOp4owPnsYQwlvcSHLqi0G3H5ELJxUyvGvr13EX79yGb91XR6v2lXC5UMGfuWqAoarehzlnuNWN0g4B0IdCA2sMkO4vzVWRglRaBkNVr79lZqiEOwaI+jPAItZYGZ+jTKvkxrIYP2FNJmMg0zU7wUlfWF3A6SeQ/kmntvQFOC9LyjgvS8oIF51+TXrOW7VrRoQuefVrsbbx2vbqdbLlKsTVLtVA4I9cthjw6zgwTpz4vZuCydCMVi2jjU+7xXaKXJ6QzDHQHAhvFrMMeNC6kvo2imsZMdqB8PJ2t850urZhbMu6+jgySP3gU//PcAZsPQDaFl/tKXDHANAIpYC6Q273yk/nvMRETKuHDbxTz+7hE++eglvvFSs6dgx7xqLHlzN4piL3uUmVQtRqGB85TinABVIolG/sXjCtmKcXGg2idWRY7VXsDvFsayAiUa8xaI/zqkxe+wwx5sZx61jQxfH1oB3cuxSduBgr2B1yxbB3Sd0vOGV73L//tkvfqRtQ6avPSMGBznGacqaxuTIHuiafzIQjCsHiag+M4CV4PyiMGWaGCSIUY7hYQXzJepzla2YHJoq3G6DoMZU0AiFsWyChimoLi72njSBIY+vql0cdyAFaQSnB0y+wB979sfu7X3br2nzAYOZY9mxeq5AsVz2BjVZWn1vi9Jqxj1jr8EEg2ksAoBPVl2v39QwxQIuW09hV7JA4hryTEEmWcsohvpCAAGMZRPFkwWM7gpDv6wby+koWFJH17UZxLZEUDpd7MiAqRUwg8EqMnSngNIF7DtuF3QkBu3XdwF2fjQ/VcDgac+AQ5ZVP3BWxVxRDIFXjxjoi3Ps6rXwip0VvPPaIj760hx+dm/AzkCbsmqLcahKZw7jhABKvLmk2kGoN+TLNm8HXUmCA9tFpNdAF7CUA6ZXuUgmhED/1R0Y+uMBaL84Ce2Xd0B7525ov7MP+gcvhfarO0W2ZL37U+Kyx3zRQGlqnTKoNrEh0E7PcbSJIRchBMNVjFOQ14hsKHmxFcd+WbW3MJal1T984GuB992StgCV4rS9CO/NF4Q5aZSBWgsYpIPusRcrcwwES6tXqzi2mFg66YqY99cCgwnmRlU6qN6wBTxTLs45pmdP+v728FN3A9OfBO4ZAB69GcfP+NfC2cKiezseTQu/jz1p8QsGsKf92ckyIhow2cVcQpc7zDERsupVA4fdc9y8YCVRFVxSQAUyx/EmzDHQUXFMCAGJqSuPc7Idq+upXSJSP30zabVXHG/2G7eKDV0c87SOIhEVyC51N27b4f3tjqM6to9fip99ya8CEDukH/nkr7TcE5QtE9x1XKxmh01xH8YZzrFz2DFxoPYOBhPsa1wFVyhqHa/aw3KeI6wD20cINJWAlRnGJjT0dBGc99b6yOYF85ipM8/TCIUaVWBmTahx1WWXUzFHDmS/To0ICclqxzlJxbGzYfC41G+8f8e1bT0ekeWlVYWh7Cos9wtfuut66JoYpO9rMdJpJkdRMsVnNZ62XDm27FZdz6nYsoBISJhnBYFXhBlXsQwMBGxeao60eslAYn8SYy/qwrY9Os4tAKoCxLtUZK7KIL43gfL5Moyl1dM9szJD8UwJpakSytMlxO2NX4612RVfC9DeMNSfHvN+vuMsusPi3JiSZNXfkSTVL9nW+g6AK6smAFooXA0TUNX2mWPXJ0BvfYLW7N7kTtsjKCHoSRHs30Zw+U6CwW7hebCqBXJCQ+q2JJQDGdAdSdCxGGhvGCTRWlyNsj+Dyu4M9DdsgRJVmh6/iecP/AkJtcqCvC0fjYRijfsNbQz3eYVvd6ofXal+92detsAN5nesvtiK43KtrBoADu6+0V1o//CBrwYurjUFmOjy+o5VzvGus0/gnVNPYu9jo7hEExJzTjhI18UX4+QgElQcr1LOsWUBiiJMMitr1H5ESa20eiiAOfbHOfnl/Q8//UNxw5wDwHHs9JO+v8su7o7BnBy/FCStDgIvmuDTYr1MhqNQ4qs4PrssfQvzYVQROxc2BrrHXJNeB8lYY+aYcAABLVwtIaZ0RDQ5hlyAl3VcrziWz+FSE8dqZxzYdKpuHRu6OAYhOMQPAwDSNI2rU2H0x8Wg8cBZFQtFgrf+zO9hckTkER8/8xQ+/YU/aumhv3tER8USF+GwJS72eT4HE0ZdMy6iKyAxFVDgMwNoFxWTI18Gtg4TpOK2yVCZId6nYd8EQaHs9QUuF4ChbuE4GwRCCLRuHWBc9B/bSMaEZDZvEy9EoWILdI2yjhlnKBaLYIzh8UP3itcQ78LY4PY2H1B2q/ZPGONpbzBy8okBIKRHcOlOEek0uzCFY2eeavo0JyRp9kTGciePbqc4DiuB/d+A6D/SFPEvqH+TAEBEBSFAOl77vSkhivieBLpv6ELq0iSUsILtowSZhGAfY2Ehv04fSCF1eQpm1nRl2J3CKlgonCqifK6M8ICOzJUZKDEFUcqgqxfWtboT0D0pN/aHny7gJkNESyyWKAoGkKsAd58U1WoyxHDVSOsrG1dWndBamqidjONOimOqCj+AVqEmVCgRBVZpZQoQSgi6UwT7JwnG+kWBfDEYswGAcn0fyjcNQbuutyUX7008fyAbcgWlVDhS62ZO1Q5kxkk24+KLFWCxAj5Xdp1wAeDMzNG2X7MD0zTwT1/+GP7PP7x7RQkbMmRZtcw06VoIN17xUwDEwvnHj3wr8P47ui0cC3nF5c1L07j89BQmpwfdjWIjzi/KGCcHkQDH6shqMceCXEc0tLbeHNXS6uFEfeYYAKakvuNiOY9njj3oO/b4madhMe8xc1U9x4CdNW+TEezpZeGp0wTseM7tDaYT9Y0VOwJDy8Uq0f1rM1XVMNgz7vtdI+aYcw5O0FDF1PD5Q62rvWSkJOZ4OW8Xx3VMBGUWuNiAObaY5bYxbjLHrePiHdFaQNko4tHCQ+7P5FQeN0/YpgCc4K5jOnQthPe//W9d5vBL3/0k7n20sbSWc09SHbZMROxRb9qaAVDHqdpgYiAJKysqMhnnmF0CRnqB4R7/39SYivF+YLwfmJ4DGOPgHOjvanwBaykNSoT6TH0iIVFs5SUinYTpior6IMjW87lcDifPPotsXlDf+7Zf3bY5AJGKY1T1wUzIjtUL/sHxyv23uLdbca0+tuBdGuNpy2UcumxZdaMYJ5MBugbEo8HxOFynKKoqomFhhBSE+GQMkdGI+/kkogS7x4FUVLDSgNhBTe5KILYtBmOh8+q1eLYEY6mC6HgEPTd1o/sF3YhORKCEKMJgiEc2lrQaEJtCyos9w5iXnTruegGcXVZw1zFv8+uWyQq0Fje4OeNATowHrTpVV0yxeKJtZj1ykwMqBW1j4anEFagJFVZADnQnoJRg2zBBV1KYdW1iExczVFVz3VhlxsWBU3Q2M+NyMCqZcm0fvxTc4mAzRbFwHo0BnCMSjqM7Ldx9T093VhxzzvF//vE9+If//Ci+dtc/4qvf+2xHj1ONoq849k82t17zs+7tO+75QuD9t3Wb+GGqHyVSfwzK7b64l5FrKas2mVBzZRJrJ6sGaovjIOZYjnOSHaufOHQvTMtfuVeMki/yKVvVcwyIwpDutvv1SpYnl24A+Rg6ucrFMeeCeGoFGhXMr4RqaXWzjGNQ2lnPMQCEaEftlT5DLps5lttDZGWMvMHTiDmWVSFBG0WbCMbFPao1wdnZI3jafNr9mZ/M49at3ir+9qNC6rNleBfe/ro/cH//sb97JxaWvZDyajx5TnFNna5LeBf7DJuGpoawZWhXzX14hYnFskrFblOHxfFCVkietw4TdzEtsk4JlIgw09qzhYAS4NwCEI8ERzjJEFEwGpSw/+se7AaKZekCDit1c1L5fBnsfAl8qQJeMFvaRQT8F3Mul8Njz3qS6nbNuAC4O5kAwKtk1XLkTrUplz/S6Y6mTyMX1xMZhlxhCRFEESG2zrhRcWzLqvvS4vOtBgkpyEFBKiYcoVvFjlGCK3eTmiIrMhQGJ51F+LAKAyyOzNVd6Lo2g/BgGIQSUJVCjavgFY5MEihusOIYELIwMig+4MGFLA7aO7Fns9TnUt2OpBp5U+xgo/Wc64opNkraBWccVCEgWusTNCEEoV69I8fqegiHCLaPECgEyBYvDvZ4E5uoB0etVN1zLEeiNDPjcnD9wZdh69h+DPZuwW1X/zz4TBGkKwT1QJcwLQIB59xdeC9mZ7G01P4u0t9/6U/xrR/+q/vz8TPPtP0YQQhyq3Zwyc7r0ZMRfcP3PnZ7TbYqIJjjaT2KX9h5I941eRXeOXk15t62D/+27av4lcW34RcW3oDidRc3GxUkqw6toqw6pAPREFnTxqNtkqxaU7ib6y1jqI6s2pVUAxgb9HoPj0rS6pyv59i7Nty+Y9RGOgVBdqpedea4DZkz0WlN+kq1KVfDnmMGUR21odryP78CrlIYZbFYqLTYlpRMyD3HDnNcx626ReZYLpxXq53g+YANXRyfmT2MZy1vEmEncpjIMExkxEDy1HnVjW551S1vxVWXvAgAsLB8Dn/+d++su6vztWe9hfNLu70Tc4ZNY+vYPqhq0KKYg8RUURhrnTHHHBxlQxhwRUPeRckqDDREQO3CcKAb2D4q8vX6MkAs0vgCVmIq1KQKGvJ/3aN9BMkosORcOyEFYLUFFjcZuMFA+yOAroBXGPh8BXy6CHa+cQ+37B6azWZ9xfH+7e31GwMQLoTObl6VrDoV5uiKiNd/bEHxmYYP92/FoC07evzQTwIzMGU4xTUlHCMpC/nisiepRuPCyGKiOE7F7Zzgqv5PktJRNCgGutAWc65rQupa8/teHXpGg7HU/ta1sWBA79ERGQ7XvBY1rcEqM6RiBOAbq+8YEMy68iLPNOYN544AnOOBMxqeOCcUCFvSVqAbaD3ITtUt51xzodRoF9zkIApAtfaGaS2jga+ykXl3imDrsPA4MNYw6mkTm1gpHEfX6jG+XiRK48dK4BMfvAP/8P670Ud6QbfEoVySAUnpYgGuio1weeF9/Pjxtl7vV+78LP7lq//b97vp2RNtPUY9+GTVVf2GlFLcfPV/AyCSHO66/79q7r8lY0GlHAVFw6FICqfjCfRvD+MsncIpdgrzfB7hizw3tfp9h/UoKF2dpa/JgLAu5nuVrl1O/EiSIaaLQX0sZSFIhNSV6ncVklMScywXx6++9Zfc23LfcTYvNnR0Lew+BgDQnUk4T2Y9udiQCeUGAz9pLya7Q3UNSzsGF67gLUGzs44bxDk17Dm2Cakg5rhY5jhylsNq9F2HhGP24rx4/mwRODvLcX6R2/GswfeVC/ZAQ66ot572uVU3LI69v23KqlvHhi6Oz84eRp7nccIUEwk/UwQ3GG6d9JigO232mBCC977l40gnewEAP3n0O/jynbXSpWyZ4HvHxH3iOsM+zdt1mbFmsDMo35hzEE5EcQmxa9VJcVwqi4HWifaxipYwRpoqQUuqUKLUfS+7xkQv4FBP80W3GlcQHY9CS/sHq2RMLHjn7I1uolPYHbF+5EyQhAa6NwXlmh6o1/RCvapHSG5YY/OfWub4JwBEH3BQZmQzEEKE2QJqmWPAy6RdLlMck9hfQojLHpuWgYee+kHd57AYcHJJ3HckyaArQK6w3HrGMReFbCoGxEJAvpo9jqvgEO7AqwGqUUTGI7By7TU9cc5hFUxEJ6KBvTVqTAWYkFXrKlDZiOzx/gxIv5js9xSXcEl+Ad885H13L95WbiuWnC97H0KrzDHQWYwTt7id69zeeaImVCi6MPFbTYz2EQz3Chf9i6X/eBObqIZT+MomkIBnxiWOaexU7YPJgRID3ZMG3ZXyvCZCiliEV5lyHTvWetbx3Q9+HX/1z7/j/kzt1f/0+ZP17tIWHFm1poYCN/VlafXtP/6Pmr/rir9daUvGgkKBctnbFA9d5MVxNWO+mgWCJRXHugYYa9R3rFDgXdcWcGDAwC9fGUxIUEpdafXU+ZNgjKFQzOLZ4w8DAMaHduLyvS90jz96qpY5TlQpKkhEBdlqf37zFfCZ+ukA/HTeXfeuOmsMCFl1qy1GTtaw1Yg5biKrVoKL4+W8WNfNLATcz31+iqJFoBMxB1+xi+CSrQQ9aWHcNjUb7Ecj9xx7hlzSpp5ENoX11tyqZVO+TVl169jQxfHpWWHG9YxlS6sZBz+dx82T3gh1+xHdZRAzqT68960fd//2mf/4I9eF2IFsxPXirRUoi15lM82mg/uNTQ6uEm/SDCvgVvsL03wJSIUYlMUy8scLMBYFq5e5rgtd13T5eg9TcYJr9hCM9TV/XEIJ4ttjoHrt1z05RBCLCHdsqDQwo5kXTZCBCIhChU19WAFJ6yJzVKdAg+iYmJTL9uyzz+Lc3GkAwO7Jy+sw8C28n4jdd1ysZUqvGfW+e8dwycGVLUY6TWUpDPsccBywc4Ult98YANBkV1RThEladwoo2HOZs4lQURVEdCGfXy2E+0OgIdqWnNbMWlASat0cXSVKAUIQCQPRyMaUVlezxz9//igsLr5bSjhetLXNN9VmjJNhcSi0w+LY5FBC7Q/RakKFElVWVVoNiCzk7aMEqTgwX9vOuYlNXBRwCl/GmS//08/AtMYcAxD0YEgB6Q/7Dfh0KloeDOZjpVotjh8/9BN8+G9/GcyWebz+Zb/hmn7NLk7BMFc+4DoL46C+WwDYOroP40M7AQBPHP5JTQQQ4O93nbQ3n0sVuTi+uNmoaln1qrJn9ka4rhFEw2trynXzpIE/f1kOlw/VV4g56jjDLGN2cQqPHboHzDbeOrDrBgz2bnGltbIxac5mjuO2U7WMVqXVayqphr00bdW3QyMg9saVgxHJPwBoIqu2uNiUDmKOK0BvWnzXjeTSi0xFf0L8PREhGOkjOLid4uo9BF2pYD+aWCQJarvoZx1ZdZ1xy59z3FrP8aasunVs6OL4rF0cP2s96/6OncijP86wv1+MUieXFByZ9xjEqy95MV56/c8DEDvLX77z79y/yUZcAPDynWXweW+CmqlXHBtMFIl2Ty8JKx0xx5UyQ6ZUhpbS0HVlGr0v6kHPTd2Ib4v5nKYd9HcRhDuQa8pIJwgmB22zHZXUmAhwQwT58ZReK6kJ2Y7N5fqLcFlWfeedd7q39+9oM9/Y96D291lmNb3P145639fdJ/wVyaW7roemCtbw3gaRTjLj7PQx54v+4rheYeRIjzX76+pKEliOJLliPxZVkYgBiVUcp7SMhlBvCMZi67OzuVhBZCQSeG4BgBJRhFOyydG9QfuOAYBe2gX0iuv6ksIC9tm9x5cPmeiOtnedujFOQEuyatMUjEInGcfc4qDh9odoqlFo3TrM/OpnYEdDBDtGCRgHSpVN9ngTFx/kOUd2eq3n+toUJhfjYBVrRSgRBpEGb5s5PjV1CL//8Te6LrIvuva1+B8/8/vo7xYRdJxzdyN5JXCY43qMESGkypirlj3e1esVYzvs3lc5EnPDyapXWVqq2suFZNQrjts1Ylot+Ey5zh3zSaov3XUDFKpgy/Au9+/FUg6GWZF68dM1j6nIxXGDSCd+1CuOyWQbyoxWwVo35CKEiNhPiZ3tTg/4isOmzDFBYDHOGDDcSzDeD0zVtukDABZzQLRLDewNj4QI4pHgqE9Kqfu6loKK4zo9x5vM8epjwxbHFrMwNScmoYWUd1E6PQ+3SNJqx5jLwRte+VuufOmL3/6Ee2I9dd4z4trbZ2Iiw8DnBXNscAN5tRgcPVRhokh0egM12lJQuYxyhSG8VEbXtjC6b+xGfGccekZv2825E2wdJgjrQMEktRnNWQNGVMXRnFYzEBBKQJIaeAPmWJZV33vvve7tfZ30GzvPG5GKuSp2rC/OsaNHjDqH51XM5LxTPBKK4ZKd1wEAzs+fwYmzwaYnx6tinADBHPt6juswx6ade6jZf07GgLBmuz3bMtcCFAx2t+9e3AiEEETGIrBKrKWJmRkMnBBERuovbJSwAhqiYGWGZHRj9h0D4jxVX+Q5V//8eTFuvGRbgFtaE8g9x63Iqg1TbJToHcqqlXBnOZGhnlDLpnntoiclVA9BZnOb2MSFhi/rWOq59ckTWzTkAmDHD9S2NyzmOHJUBTcYBnrHXcanWXHMGMNHP/1rrkPw5Xtvwnve8peglGKw18tnn5491fprrAM337QOcwwAt1zzM+7t2+/5Qs38cetkBS8Yr+C6sYqrtCnbxZSqaB0rwNYLNbLqVWbPnKSDeIR4Syd7nug0b75TDPV6plxT547jkaek4the+0yM7HZ/d+zM01UZx7XXBekOua1J/GTev0FsgzMuYpwAIKaC9ASr0VYEDuEg3Sqiim8OJIRgWFJ4JGONDLm4cLyuWn8zxkGIWNft2UKgUCBf8n/HnHPMLQETEwrCdTbFE1ECq87edaqqOJa9E+TiWN702ew5Xn1s2OJ4ZvYkDEuszrShhGiAhzDlAoAbtxhQbC/3O4/qvnpvuH8SN175KgDCXfKbtkukzBq/YkcZnHOwObGze56dx8TY3pogcUCwqySueRdSHXlyIxRmKoh1qRi5NtWRlHIl6E4RTAwCs3lak9Fs5k2c1yKYGCZ+Z2sbJKE1DDuXeyQqdtMqpQr2bL288xfcIOsYAK4fk6TVJ+pLq+977PbAhz8ewBznCsvoIhJzXKfn2LLETrIzYUZDYiAtFAFeEo9lcYKuxOpveoT6QlATKsxsc8bQmDcQ6tER6q1PadIIhWIXx27f8RrKxtYS9EAXFqJigj+Qn8c+cxHXjXXwZnzFcXM6uFJiiIZFbnC7EMxxZ8WxmlABSuq6z68EhBAkYxv3XNjEcxvyAlJeWNZjYJqBm9wfIWhjfhlYMBRwzqGpOgZ7RGF77NixhhuU3777c3jazp0dG9yOD77js66iqb9n1D1upaZclmW6DG89WTUADPSMYd92oeQ6cfYZHDn1uO/vIRX44C15/OGteUTs6dR53Iu93xhYO1k1YxyUAKp9akRCghNhnIM7MZNrtEFZD4MSc/zsiUdw+ORjAIDJkb1I2U7IkyN73WOOnX4SOSnGKYg5BkTyAwCAA+ypWjd2Pl0E7PUNnYivDanDbQVHiyBh1U/0APjpW98GTQ3hZTf+98bnAXM8ePwoVQTZEY8A/V3AthFget5/zPyyiPbaMq4GWvgA4jHqwZF7l8p5lCtF36aevPHXkSGXvskct4oNWxyfnD7k3h4d2i4yBwFgyYD1wBxSYY4rR8TqbbZA8ei0f3L7+Ze/y739+W/+NRYLpmvEFdMZbpyoAFkDxJYOTrGpQDMuAKI/QZamBsiTG4EXTVQKDENXJxHq6kB/uQrYOkyghggM5sVQWSUTcyUFozt1HNguepPz1V4QYaXe9Q/AfzE72Da2v+FOdjOQqFQwBJhyXT8mSaur+o6v2v8i9/a99YpjmznWKMdwUkxu+aLfkKuepNa0nH5j+7USgr4MseVW4nMNa57p2mpCjauIDIVgLDWuWpoZcTkghEBNaWAVhmgEiIQ3LltIFIJDuzz2+JX6HELBavKG8O2axxs/AC9b4KfyiJMO5c0EbZtxOdCSKpRIez3o7cDHkmxiExcR5DlHXljKsup4u4ZcVZtUls0gxZLUzYB3WKlCoYC5xZnAh8oVlvDpL/yh+/Nv/PeP+l7vQM+4e3tmhcyxLKcMhxovim+V2eMf/3vTx3Z6ji92STVQKyVdzYxjRdoIj4TFRkKlyLxe1XUujmVZ9Z0/+aLbz35g1w3u72Xm+OjpJ5H1McfpwMelTaTVcr4xWe18Y98LaWM+DEh5uO0Fb8CX/+YY3vPmv2h4V86498VKKJbF9xwLi/XRzjEhkV7MicmQMY6FHLBrHEhklLrzd0gXJmtWwCQqm3It5xbcTT1dC7ubaEA7smo563yzOG4VG7Y4PiUXx4PboVzd4/5sfuEE2NmCz7X6Xx8N+8jcrWP73Ginc3On8RffPYayZMQVVgE+7XXMn7ROYMfEpYGvhXC4TtUAQFRaK0+uA24ymHNl8PEEBvZcuImmNw2MDVMsFIXDHwfH7GkTXaMarrpKR2+aYLALmK9KQCJhkedWT8IZVBx3lG8sQ5JVuzu0EsbTDMMJURQ8NqNiqeQNUKMD2zBg7/A/fugetyfLgWEBp5fEZTGastw2M58hV0QRZg8BMC2xk6xKg2IyJthk2xcDscjqmnHJCA9HAMbBGkzKzYy4ZGgpVUSJEYKuBNyF4EZEzy5vMrkMnTlKubLqmArSzDnTYGARFXoH5nziyQDaRsaxDBqh0JIarDXoOwaAiD1Hb0SZ/Sae25BNIGW2OFeU3aqT4Iy3toFN4Jlt2iiWgGgY6O1XkC8TcMvvWP2l73wy8KH+8T//DIvZWQDAjVe8Ggd33+j7u8M+A8DUCpnjRhnH1bjxyle7qrg7fvJFWKzxuOG4VYc2gExzrZhjRyXmMMdhXRQ9lWULJG5vnjdoOVsL9HePui2Dslz60t3Xu7cnRva4t2uZ4+B2AzIWczeD2TPLwotGgiupBkC3rEG/MSBY2HYYaZ0GklRygVkXFhc+QlUoVYCupDCnBIBMgmDXGDC7KArjuWXRdjQxSNy2tCBEdNF6F9R3LPdCL+XmXPVLtdpF3vCSN8JqXvOmrLojbNzieMorjscGt0M52A3qFMgGg/EPR3BdbxEDcTHIP3hWw4+qWESXPQ6N4+7zIlaIEo5X7RL0GJv2aNKT5gns2HKw5nVwi4NTgMgXgUpq5MlB4JyDny+hkIoivisemGG7XiCEYPsYBQ0RVEoM5xc44grDpddFEbcjpMb6CQyzKrc3oohBpE5sjGyO4mD/js77jYEq5jiAGSMEuH5cFDGME/zklCb9jeCKfbcAAAyzUhPpdHqZum7G4xnxnixmoVDMusxxw4xjCzV9JokIENM5CqZ43P6MN7iuNkK9OrSMBrNB5rG51NiIS4YSVR3CG6n4xmYLd+3XYX+1iM/X32mtB865K6tupd+YGww8qkELyA5vCQTCDbeTuxKCUL8Oq7Q2xXFY39gy+008dyHPOYU6zHE0nAA/lQeyLWTDc17DQhXKQlo5Ma4AGoFZYrjpyte4ctLPfe2vfGafAHDs9FP4zzs+DUDIkd/++j+oeSq/rHplcU5yv3Wz4jgV73KjDucWp/HoM3c3PH4jyaqr33u1QVenMJlg/xyCkRKCRBQwlk2QbrtH11jf4lhTdfR1j/h+RwjBJTuuc39OJbrRneoHIIrjrB3jBNRnjgklIroTAAwG81+Pue+Ncw521L7OdAoyvFYFGGmrYiEaBa+Kc2oZnAcSIGUD6K6K4Nw+IiKazi2ImKfd4wTRMAEN08CEGADQG8yfjvwd8DPH0Uj9TZ6GzHGpdQXJJjxs3OJYZo5ti3b1NWMgI/YJM1cG/fdjePsV3knzf++N+HZq9u+4RrgmT/7/wKkYzF6zu4yxtC2lPX7OPXZamanJSQMgOVVLBZtGRd9xs0pioQIS07A8kMDIEIXWRj/FWqC/C+gbUHF+jkO3GLZtpejd4rGLfRnhyJiVpNVEV4QrYCV4ER6UJ7li5jjamDkGmkmr5Ugnv7Ra7jeesPuND514BDESQ5iIc6SRS7FpeayaA0Uh6IkylJn4ftei39gB1Smi4xEYdRZ9zGDgIIgMh1t6PCWiAFTIjJy+43KD+IKLGUSjoL32omWm2H4/bsHyJtpWnKpLDEpEgUba/7yc3W7aaq5jADT7Na6Fc2rYzvUM2vnexCYuJHw9x6U6PcewmbA685YDzrloG6qamwtloC8NDA5SJFIKcssMe7ZdiV9/40fcY/76n9+Hux/6uvs4f/2v73Njdd7wit9Cf1URAwjppFO4zKywOJZVUeEW5JS3NMk8dsCYF5G1EYrjWrfq1SkQLEvMh7KxZiIi1gAkbc8Pa+D50AxOnJODbWP7a4reiVHRd5zNL+L4mafd39djjgFAubbPlTWzxxZgfOpZ4fmyUAHsVi4yHuu4Fag5eNvMMVTii3NqGSQ4xgkQm2IyomGCvVsIlgtijTzebz8EJVBjwQQEJQTxqDDsrEZKZo6zs/WZY73FnmMpzi6yyRy3jA1ZHHPOcdJmjnszQ650l2gU2pu2ulE/7MklXHvkJA4MiAt3OqfgC0/4i4LLrv9ToOc1AADFmsWbDhTBOcc3fvAvOPHQI+5xyclB0CCnvAoTO0y6VByrtrNlA+aYG0xctFsT4HEN/ZkLWxgDYpAfG1fQFWXYljbRPxmGmvQu7liEYLgXWKyWVqc08DrMcbWkaWRgKzLJ3pW9UNmtuk5xvKvXQiYiXtP9ZzSUpMMO7n6BK625T4p0uve0ir++xxs8xlIG/v2b/x9+609e2ZIZFyD2Q4LitVJhLnYxsTb9xjJC/WEoOglkDR0jLr2BEZcMJSp2P1mFIRYWUsKgfL6NAjJkz2ymUG20A3d3HK1lHJeKHNE4QVjnbbuWclPkLHbKHAOAmlRdt/HVhqoQxMJAZQPL7Dfx3ITPrdpnyCW5viIGktbBm6i7YIlxu5pFYkxIKvWwgsFBinKBgYPjNS/+Jbz97W8Xx3CGD3/il/Hk4ftw133/hUeeFmzsYO8WvPa2d9R9yn5bWj2/dM4XmdQu5F7DZswxAFx76UvdQvLuh75W9zgnfgrYKD3Hayerro7oCxkmWFgBbFXWhVjVyX3HgL/f2MGkJK1+9Jkfu7cbFcd0LAbtrdtcuTE/moPxN8/AemTBO2ZijSTVgFCwEeD0OY7ZpRbmU53WZB23hariuGJwaGptcQwAWwaBbcPCwVpe/2kN1HmJSHBxLMuqp2dPuX3jtbLqDnKON4vjlrEhi+Pz588jZ0tBRquilUhXCNobJ91RyfrWWfxW7xSozd7866NhzObFHysW8J0ZT25iHXo37nvkS/iDv3kL/vdnfxMjREic5jCHX3rjB4NfTMUCiam+3TKi2JmIjXYNKww8rCAXDSEZFX0KFwP6BxXsGiXIhDnCI5Ea18GRPiGtlY0ESEyr686tayFoqsc+ryjf2Hm+JrJqQMidrh0VmyJli+CBM14xEwnHXXfOmblTOHb2CP723gje/50ElsrikhiMlfHFz/8M/vbzH4RhVnxmXPVinBwE+DggpjKEEuIPyTVWtuhdGvTeEMozZVTmKzAWDRhLBoxlA1beRHRLtGVGUgkrojguM1BKMNwjTCnYBcpxXCnIoDc58KnWpdXsdB7mv3kRLXSi+WKzWAIGR1VoMaXtApVbwpmzHXfOaqhxFWpMWbO+42SsKfG2iU2sO2I+Q67lwNuxSAJEDxioq2FywT5J8kjT4lCol1PfN6ohRDhKtlnhe9/7Xtx6rWBhK0YJ/+sv34D/+7nfc+//az//YehafeXOgBTnNLOCrGNZVt2KAWY4FMXWsf0ABKNYMYLdF30Zxxtgsb1WUU4Wqy2OtYoJpTcM04714goF79RzokNUF8eXBhTHct/xM7ZzOlBfVu2A7kpB+5WdgM2I8qkirK9552gr82KnIBBsbsUEsvVrQe94hYL0hYGcGZhq0vi5UFMcFyvCkTyoONZUghsvJdg67L8PjdUfYyIBJArgL46nzh93b8ei/uJYU3U3Pq5VWfVqtRQ8H7Ahi+Onn/ZkINXFMQDQnSkoL7WdaTnQ8+XD+LlRMTGWTIJPPyDO7n9/PIyzWfvkXfo+cP5f8OFPvA0/fOCr6KE9iFFxInXtGMOILd2uBjcZILFIZ2c5ShUuepAbFceGyEZeKlMM9QSzjRcCik6hcQY1oSDUU8su9qWFtHpZHpxsx+p67Ji8WNm3Y4WSaqAlWTXQorQ6PIHf/k4P/l1SFExGj2D57j149Ok7AIienZcdeL3792b9plrAZqHKODIDqv33tf2uCSWIbY0h1KvbxRUHOAc3OfSBEMIDrWcQUp1CiSlgtrHIQLeI8VluYXK6GEEGvZmNn22NleFzZRifOeSaq9D9adArexrep2IyKArQvyUEJay07RrNTVEcr0RWTRQCvTe0Zo7V0TDBph/XJi42yD3HMlvsGBQRQhDt7RL5rc0ezGTCeE9ijgslEdHnFMeZPg1dMY6svT6llOK9v/SXrtlWNr+AucVpAMBVl7wI1xx4acOnHOiWso7Pd27KJcuqW10Uy4VkPZOfklQcbwhZ9Rq5VVsMiOjeGcQ5R0gRkYpFZ+mhkXU35RqUso4pVQI9XmTm2LS8xtd6UU4y6FgM2q/vAjJV60NqG3etGTxZdavTDt2aBNmRBJYM8HwbBhmc1xbHZcH2hvTgUUMNWNepdnHMAtjrsG5Hf1Wtm2W36inp+o9V+fcQQtxzuVVZ9WbPcevYkMXxU0895d4eG9wReIxyyyDoHpuOLVh4ff4kEiFxgn73SAh3HtXwr4+IgogSjr6Fj/ruvzu2z72tDjXYDeMAsWW+hikmyMUsgLDScMeQGwyIKTAtYLD74iiMAVEMUY0gNBAONGwKhwhG+4BFyeSZhBVwvb58RZa5XbLazHFAlJODg4MmIqoYeH58SoP8dVy5/1ag53XAwQewyO3JhFWAI+/C0W/tQD57HICQ7X/sf34RN+16pXfnOpJaxkW8R1BxzC2OyckOsoM6RHQsgr6X9GHg5f3of3k/+m7rQ/9tfei9uaclIy4ZWlpzmc+QRjDSKxaIG5E9pkPewoidbc4c87wB49PPusY9ZCIO9Q2TIE0iJQpZjliCoHdAgdalgZXaZI4ZB12hrBoAtJS2JlnHgJTruZFd2jbxnIPMsPh6jm1DrogehzIUBYko4ASNrw+LizYpaZOqUAYSMXH+AwCNKOhOEVjcuxY0VceHfv0fsHXUW0doqo53/PyHm75+mTmenuu877gdt2oHciFZneTgwMccrxILu5bQtbDLsAGry3ar0lLEylsIxRXEBzSUbdKdNFgXrRVk5njH+KWBvi+jg9t9n4mDZsyxA9obhv4bu7w2JQBkOFrj6r66IAARHgCqItbbTe+hENDJBMiuJJA3vbSJBuCMg1NS0ztdqgA96fZesd4tNhCM5VoSJ6QH+3akEnWY44Bs9ojevDjeNOTqDBuyOJaZ47HBYEaXUAL1Z7zMQO1UDm8+6PXKfPiuuBvd9OpdZbz5JV7xc8W+W/Bbt/2J91j9wbujnNlmHbZTdakCpBNCfkHCSmPm2GQoahriUaD7IpFUAwDVKNSkhshQfdnXcK/43Ezn/UUUMSjW2SGdtM0fduzY4Qup7xhhiTluIJfRVbhZ19kyxWMz4n65CvBvhy8Ddv8boNoffvEw8Mj1wNm/cu9/01WvwSf/8Ps4sPsFrksxAJBUcL+uaUc7BMmqAaCrey0njvogVDCQYuOj/Utei6u+BeRAN0Fio7LHKc31JOBTjZljXrFg/N1h8PNipUP6wtDesq1ujJeMYp6ht4dCjykIdeku894quCl2rlciqwYAJbJ2Q3zYntzLm6Zcm7iI4Her9gq8vGtskwDtCtvGmaRxFq3JQaquoaJtxuW0HClhimQcSIa5z6wyFkngw+/6Nwz1ic3XX3j1bwebelah38ccd14ctyurBvxFdKFucewtxDcCc0wI8b2v1SyO5Y1wM2tC79HRM6CgaC8XSExbd+Z4Yni3Sxq97Mb/HniMroUwFqC6bNRzXA2S1KH96k7QfWkgrEC5ZbCj19sKOOfghMPiBIoiTE9bjZUklICOx0H3pMHLFvhikzsyLozHFP91bzEgFWtvPnbWW2a+dpIMa2KNWt13nJSY43NSW0UsWrvJ4RjtyexwNeTCedOQq3WsH5W1imiFOQbsIiajAwsV8NMFvGJbEV99RsexBe9tZyIMv3iwhJj+euhaGIqi4vqDL4f1+RNwhjQyUGcCMBi4TkUhDHGxRnQgX4SYeJs462UNisE0kIheRMxxhELvUhFqYNjUmwYyCWApJwp7olCQmAo+Vw5kVX/rTf8bV+6/GT/91ithHCMrVmIShQh38JJV15DLwfVjFXz/uHgvPzqpgRDgo9+P4lxecqXWH8Y1mf+CPvJiAC8GAOyevAKX773JXQDJO471ZNVucVz1Z86EHEgJK0Dn/ioXDErUX9SHdYLRXo4njgPJGAdtx0HyAoMQAjIYBT+SBZaF1IrEar9PbnGY/3IM/IS9A5DUoP3SdpBo8yGzYnKonCHTpYCGKZS4AhDbNbrFj4pbHEpMqen5bxdKRAFRCJjBOtoYaYSQLib4ilHr0L6JTVwoyIVQUM9xPJ4WhkmGYIVhcqBOpwk3mUhjkMAYkJYSB2iYQo9QDBKGQ+f911hPZhCf/IO7MLtwtm5rVjUGZeZ4BY7VPll1C27VABAJeZ9dqVRHVl2WZNWhi784BoSs3JHVr0Zx7OS7y8wxK1kID4WRilDXlRxRFdwsrqsxl6Ko+MSH7sDc4gwGe8frHjcxvNvnVK2petubHSSiQnvzNkEUNVFTrQgcACEwOaAoIi2hWPZaG5q+TkJARmIAJbCeXgIWyiCZOhe9xUUUq8QcW4yDkuB+41agaMIgVZFSbSgliEU45pYAueyNRRJQFBWWZbpmXEBwLKrDBBfrXKuAVzhrqu5mmW+iOTbkJ+Uwx5FQAl127EE90PE42MI8YDDQmSLecZWO937LO8nedkUR8ZCwwbvpqte4vzdn7AmACMYoEAYTph62lKRYBlIxMWCajIDUkZ1yJuS3ZapgpPfiKiy0pIaua7rq5rMBgK4RjPVxPHxYYr1TGvhM8CSQSnTjlTe/CSMjWRw7FnBAJ4iI4pg3kFUDwNWjBlTKYTKCrz8bwpeeDMHm+xHTGd55TRG3TI6DkHc2fByfHKdOcWxZYuCuZo5FYSJy7zZicUydAstkbg/sQDfBqXOijSC1wZQ6dCgC64hgkfjZIsj22u/T+sEM2BOL4ocQFYVxV2u92rkCkNQ5Mn2iuFXjquv4TcOtFajc5L6JtFPQMBWO1ZXVL45FHAXHzPyqPuwmNrEiqKqGkB5BuVJ02eKKUXZdlmPJFAgh4JqIImzoKscBIimVDFM41sqLcse0MA0OPWBqCIeiLRfGANDbNQxKKBhnKyuOy53IqlthjmVZ9QYpjmXmWF/5hGVZdsaxfWpYJQs0rEDv1hC3CzgAYmPlAnSd6Fq4YWEMiDinO+/9kvtzPJrueDN2TQtjQPQAEwIGAlURRepCtvndqkGHooDFYT2+UH/DgnGAUl9xXLLNuGIdnu56TwjGeQPKoH9OT0aB6ar5kxCCZKwLC8vnfL+vNuQCvLYG0zJgmgZUtXYAKtnX8aakuj1sOFl1oVDAiROiSX24Z2vTi5mMeycEP5HHwSETL9shZJJXj1Tw4q21EgvOOPiMLcHuCtXvo6gwISl2pBMW0JMiQvLBiDCpCiqQTYYKKEJx2nYPw3qgUWHsYKiHQKGCJQPsvut1nARcBq9oNsxxjevApQOCXS6ZxC2MLx0w8MlXL+PWrZWWovP4sn2eRFVf/5kM0wJCmj/3EABYmQtJ85r246wdFKfAkhyXw7roPc8XN17vsexYzeo4VrOHvBlL+8Vtvl7lZihVgJ4Yh54WdKoSU6BEKFixdXkdt3jLhXQjKBFlzeKcACAZI4FxFJvYxIWE02fp9BzLDHI8nQFgs0lRpXlPqGzGVRZxdglpkUx1CiWiIEo5umvXr21DU3V0Z4REdSXFcaETQ66Id1y94liWaYY2QM8x4N8caJVFbwSLieJYtZch5rIJLaNBS2mIR0TLCQARJ4T6ZqUXEpPDu30/xwOKr4sGdoyTycW6sye1gnknotRfmwOAw4JLxXGxLEz4YvW7DRs/5WgYVonVPGckRMADhh+579hBUM+xP84peC3jXK8bwVn+YsKGK46feeYZ9/ZwT23PRDWo5J7HToqd1HdfV8A//swS/vDWfHBhtFDxnGn7618N3GAgVeZG3SkgHgVKjIIrVOxCVcPgKIMgllKQ3KDna08K6EoKaTVg91hTsn6xBY7UlwFosvC/ftzbANEoxy9fUcDHbsuhP97ahMU5d3uOGzlVW0zIfarBKgxKhILWcTm82KFEvTgnGQNdBImoYEo3EmQTkSDHar5UAT8j3hQZiYLuaH3RUK4I9igZ8eToVKXQ0npbrtHc4lBWoTgmlEBNqG33PLeKTTn1Ji5GOBJEJ+fYF+OUSksHqg2zjglHjVN1KlabLqGmVHCDoy8jfr9Sk7pBO+t4OTfvy2puB8UOeo7Dsqy6jlv1Rus5BvwF8WoUCdUqMbNgITwcBqEE0bBXRLlmpY362i8QJmwvGAfxFs24Lgjs4tjiQpmZjgtytxExUg9EV8CddoogWBCVUVVx3JWsJT5aRagnBDWuwMr51wAhDSC0lmCQ45wcBBpyycVxHVMuR0GyGePUHjZccbxnzx489NBDeN8vfQK3HPy5pseT4ah7kvMTYrIgBBhKsup+exdsxlsw1+03BoTkKiqKpYott4qFgb4MUGRE9C0EXYAGQ5Er6O8jUJSNWTCpKsGWAWHKxBgHIqqQl6+T+YTjEA6gad/xS7dVcOOWCq4cNvD//VQWr9tfRltjXN70vscGxbFhBRcLvMKgxNUV949eKBBKoCZrC6xwiGCkD8gWvB6sjQDSH3FHPh7gWM2e8RbSdFd7bnnZopi4o2HuM8PSurW2C9TVkkFr6fafu1WEdcGeGGvkiL2JTXQCJyGhUMyCc45cbsn9WyzuLTJJg9YFbnFwCp8BX6ksPDeqoSU1cJOhy37ohWDStWX098iO1ac6eoxO3KpbMeQqbbCcY6BaVr0KxTETRZqi2G1TKkHIdiYmhKDL6dwLKSBaC+qEC4C+rmFfwZVoIcbpgoFxuzgm0O22Bl1r3ZTLB400NuJjHNCoTypeMYHuZOfrNzWhIjQYhrHkd8sOhwBdqTXlkuOcHEQDXMd9zHHAZhbnfJM57hAbrjgOhUI4cOAAbr7qv2H3ePPMXKJSkBFxUvDZMniAa1w1+HRrxTHh3O03LpXFQjEWEY52JqXC7CNgB5kbDGZIRU9qw338Poz1E/RlgBMzANNIQ8fqVYdkEsWbMHIhFfjAzXn8yUtymOxqP/OVPeUtrBopCcBF1FHN/Q0GLbUh2/td1CuwBm32OLuBnKuJRkF6xffIZ0o1agf21KJ7m+5uvTjm4KgYQH8KoIqQojvQ4m1+/xwrdqp2oEaVQOnWaiASsh0324iQ3MQm1hqOrJpxhlI5j/zcgvu3eFy6pm3ZayBMJhbRUnHMAKTjtfegIQpwL8PetFa2YTQgFcczHUqrOzHk8uUc1zH5uVA9x7xkgS8bHanTLt9zEwBguG8C/T2jK34tbgsVIUJSnVKhdXkb5845QlQKhOm6O1a3AkIIJqS843jsIopNqQYHQIUhV1gXPcftOFb7oNutkPWYY8YBqbWQc9GM12m/sYPoSFhsuEnjQlgDdF2YWsroRFZdDGCODbPsmnptFsftYeNWZ21Qf35pdfMtXV9xXC/GyWTgKgWRYpyiYe/CVXQquLSAC9CqMCgJFanWNnMvWqTiBDdcIgrkkzMELKGCr1FvYzV8rsFNmOOVwpL6T+mB2kFLRlDGMbjo/dzIUKMKEPDVhkMEo/3i/D87yzE9zzGf5ciXuBf1dRGCOD3EFgc/V3Z/z00G9qzNHMdUkNHWpUilirj+UyEGEqI+Qy0lroBqpHUGl6wec6xEFBDSmQStGTRVLFLKm8XxJi4iyAvJfDGL/PKi+3M8kXZvE52KrOMgGbSdcQx7w7NicJe1qoYSpp4jPYDeVGeGQQ7k4rjTOCeH+VUUFZrampmgbNpTL+dYZo7XU1bNFytixXq+BDZdAF+utFwov+qWt+KTf3AXPvGhO6EE5Pu2C4sBIfsjNXMmwkMR16wSEDnYAHBsimPOUlHKs4vSm2NSKo4vaubYNuQyGbHVSgTpuJA7tws37aQOm88t7lOLVAyxEdKpU7UDvTcELaX6Mo8VhSAWqs06TsaCiuMA5lhvLKuWN7g2ZdXtYeMWx3EVpEWpChn3qlA3mqUBXDOuRk7VFSZ2l6QYp+6k2I1LRIFIhKBCaGDWcaUCRJLKhnP5DUImQXD9PoKBbuBsUUjL1gVSscnXsDjmWQP8kF0sdekgY8FfmiMrrnaqduJ7NqoZlwMlovgWfzLG+wmu3E1wYDvB5JCYRAwTmJkXPbgXI8ig1HcsmXLx4zm3h53uTLblwpktiL6kMGVQHHdyG2pMBQ0rsEqtKxdWizmmEQqqEfA1+C4IIUjGa3e+HTDOsZjjG0p2v4mND1mCmF9eQt7wCr2YzBw7WcdBawmTiWvQXigXyqJtKrA4jiiguneNjfYTgANlo7PzfkCOc5rrkDm2ZZbRcLzllp6Wco7lKKf1NOTiHHQ0BnpFD+hkUhAk50tg54pNN/4IIZgc3dty73UzmJZg/Rxoaf+u+IBd21y9myDTr6JcYpiZB6bmOYwGPe7rjYkRz5QrflEXx3B7jiP2pkRPCih3whxDONDzepv3jLsbYgBQrHik10qghCgio1GYy/7JMhELKI4DmeMmsuoAQy65YN5kjtvDhi2OaVQVu0mtHBtgylUPwqlaDP6kJ+TbQfLBYOJvuudU7UhpHEOGMlVqimPOOEomkOlRoAdIcDci0gmC6/cTDA4rmF0EzHUw5fIxx20YHbUL9si868KtHOyqu8iojnZwwE0OohJf/+lGhDDlCi6wKCXIJAiGegh2jFJctZviun0EvRkg38HO7npAdqyW+459Evo2JdWmBfRlCLjBQaOKj/mlOoWWVGGVml8b3BJumXXHnjYhHKuVNes7jkdIoO8gIAz78iWgWFqTp97EJgIhZ4IWFpeQZ3WKY13xso6rYXIg7HlFFErCTyBo3qZhCqorYHaR3ZUABnuA+eWaQ1vCQPfKmeNiBxEusvy62IIhV3gdc44JEYwf7QlD2ZGEcnUv6IFusbmxzrJlbrdQOUV5tcrHOWd2jhPccKWKS7ZSXLaTIBMHchdRnOOV+291VQWX7Lz2Ar+aBuAcxI5yCtnGpvEo6XzLNarU7znmXPSJ2yiWgVSd675dhAdCIhZTOl+jIVKT9FLdc0ypEngdy9drIHNclpnjDS5VXWds3BV7RG3dHTmjAwmxzcdP5hvb6s+X3YmynqQagCh6dcVXLEUdh0JC0JsGSoTWvj6TwSAUvf0bm0msRjJGcNVBFV09FOfO8RW7dTaFZMi1lsyxX1Jda5LgHmdHO2hVfl2szECrJLYbEc7iz2pRNq9rBN3Jznd21xpUcqxmU95qxS2OCUB3tl4cF0si6iGTAFiFQ03U6uv1Xh2s3HwjR2yoAHS1mOMQBQ3Tlr+7dhHRIVQFVTM84xzFsjAozG8Wx5tYR8jMcS63iDzzFol+5piA1HET5iYXObU2SpVgMy7AvsZC3qKXEILRPmEeVCi3Pxf2ZAahKGIM6TTOqVDymONWEfH1HF88smrOhfpEjlEkGhUEhr6OXicSNNXeyFSIz1+iGkpURSRK0JvgSDVQ2VwIDPSM4TN/fDc+8aE7cfnemy70y6kPBlGtUJFzDNjtixQdtW+RRnGlHGLDzEapIljq1YDeo0Pv1mEseidByDZxlWX3qSq36lgkEUjMyJndQR4Bm8xx59i4xXFYAW9xUCSEgDp5xyUL/Fz9lRpr0YwLjIPo/l4kOQMtHSewNLWGOWYVIdVKd2/sYikIqR4VO7cqSOkM2TXeHSWSIdda9RzzubIrwyeDEdDB+ueDaQnX3mpZNaswUI2uSmbthQQNUZHV20Jx5yARJYFF00WBpAbY6gMnzonPld2xgYzH/eqEJsgVRYxbJETATQYtwNVcbdGUi1kcRKGrJqsmhEBLqeBr6FitKbWLvuU8kIwJl8/NLORNrCdkCWKhmEPBDC6ORdaxGiyrZsxtm3IYwmQs+JokhEBN+E0L03GCoV5gMdv+GKgoKnozwwA6K44ZY657bTtS4pbcquUF93r1HFvcDhb2f/5EpWKjfL3doIlwq+YGB9Eaq3yUCHWz5mPh+iqbC4Whvi3YNrb/Qr+MxrA/M0K9NVY8IiTWpU7UabpS34gP8MU4cW6vZVYBRCGIjkdgFrx1VFizTS2lObJaVi0rYWT4ZdVBxXE+8NhNNMfGXbGHKHhIaZpx60DuFeUNpNWtOlVzydGuWBG7P3JxnIgCUEiN8rtSYNDjClKp54akWgbVKeJdKuKqtfYGPQmv+LDumW3JaK1dWA9LrPHBxkZcpiUGbbW6ODY41LjaVu/qxQhCCNS0BtZG32osIpzC14M9btfshBDi5R1nDfCsAfZ0Z5JqQHz/btQDRyCToMZVYQbSDDYbsVqyagAiimuNFpDhkDAskfumGOfIl4CRXqAnLWI3Ou2/3MQm2oWvOC5lkS97+mbZkAsAEKmfdewwTGXblCfZQKGsJlWwKgZ6rE/k3naSBT9o9x3ni8vI5hfbum+p3JkRTyTUmIkC/G7V69ZzbHERjanWjokkrqzZxl8QmO1erKlCXUBVCqrXH9dFW4sojsObufCdgXOxngZxW9ciIaHWLHawviA6BVcClJ2wJfH2PG1ZHApdeb+xjFBfCEqEwsyKCTMcEvOjXBxXy6qDnKrFfaXiuFSoeT/FDseBTWzg4pgQAp7UwCutMVlUMuViJ+oXUq4ZF5rIqqXiuGQbdYRD3gAZjwChKK2RfJQKDNFuFfFV2om62KB364gpHNbatQEDEEZpZIc9YJQsGJ88BHZ8dQtkJkmqlSYu1ZYlNkiqpS+svPFjnBw4WZ6tIhoS10UnjpLtwGIcJ6aBfKm94osOSX3HU0V/v3Eb+cZlg0PXxIaYY8CmBCgFlJjSkryeW6JPna6iJ4EaVWv6mlbtsRVRAMjMca4AJCLAQBdBPCJub0qrN7Fe8PUcmznkS551tC/KCRDS6YDNNQLJjKskFuOJBkuCIEf/WIRgtE+oKNrdwPM5VrfJHsuL4nZk1aqquT2o9WTV5QuRc+wwxwFjIonWqnTW9KXYGceqnXFMNALaQKZLKIGW1NziWFE2c+HbBgc4AQjxCAhCCHpSHa4vNAqoAII2bDnc4rhYFsXrahbHakpFfFsc5dkKWIVBVQgiIf/8maySVUdaYY6XsuCn/btwm7LqzrFhi2MAQEwLdIMOAhmJwtFRtMQcUwLS2zj+gNhXadmo7UmIhYFwjKBsEJ+TolHi6BlUW3aP3GhQEwpCytoP/IQQaL+4FWSrPWiULBifehbs2AryMySwqYJ7LpAtMZCuxueCaXkuijI441Cizw0JfbumYoQQdKc6zCJsA6WKMMxYbjNrWXasZidzYIdtdimpeaxyCyiWxaI5FhEyO1rlVO1ACStQYs03SpjJQXW6qmoDJaIIj4Y10vSlJMdNDo5sARjuFRuGlBD0da39ebCJTTjwuVUbeeQK3sZXrKo4FlnH/muNMyGEdtQbxbJIo1AbtDrQsIIgreZwr3B0z7bJHvevpDj2ZRy3Z8TjFNN1ZdWSIde6RTnZapog5hghBYTzNYmqC3wplihwNUUwx0pYaTpWqykVrMIQ0jdz4TsC42BE9BvLpqfpOIHZCRGjU7F+r2JaOeOiCHeK44pYy0frhNZ0AkIIEnviiG2NonSmCG5xJKscq6PhOBTF2/SJqMHXsC/nuJATKhjpPcnFcatZ55sQ2NDFMQ8LQ6xWBkUSUtzFMJ8uggdEqnCLez2HvSGf+UPtwXB3l0xLZP7KUBSCTIaiwgicJhMODs6ATPdzg0kMghJVEdIJVMLXfHeUhBRo/2MbyHZ7IVRmMD51COzIygtkH2t8sL4RlwOLIVAyRcjGzzh2IOKciC8CgTMOY9mEmQ9uKk1ERWvBWvYdlypALCSIhXbOOSIxx9aPzrtGfHR3qq3Nq2JZSIcpEYY8RK/PEId6mrMc3OINmYhOQCNC+rdWjtXRMAG3HzpXFBsFgz3eZ5iKESikM/OUTWyiXcgyxIKVRz4vNr4opYhE/QtNogVkHVtc9Ldqnqy6N9N4TFAiNLBtIqwT9GdEFFQ7GJSK45k2i+OCrzhub1HsHF+q61YtNo0podDUddIJWxzQgjcMSYiCq8GxmWvyUixRo6u2rFqJN5/f1ZgCcFEYh/Xa6J5NNAEHLJCaRBCH0W13Y8RNmqlmjpmQb8vMsRPRupqgGkXq0iRCg2GUzhYR1oXFgYNKkSEZzrg/h2jwNezLOeYlO5bOe0+ygiS8nrFrzwG0tQKrVCr4gz/4A7z85S/HC1/4QvzyL/8yDh8+vFavrSl4SAHXWrfxd/OOOcBP1Q78fK7kDrANJdWwLxbVK8yjAaxhd4bCAnEX3UaZQ9WA5HPQjMuBGlMQTVLoYKvmyshNBj5XBjtX6/JFdAXaW7eD7LQXQxUG49OHwJxs4k6ej3PPpZoC9JJM4zvY0KpYBSeSZ6ObcTlQIopwPS5ZMJZNFE8VUTxVBKtYqJwPXvnFI3Y/6hqyhhUD6EoJ9rIddob0h70RUMoebEdS7UglU7ZRD6swKKH67qVKgIt1NbjJQVc5+kuJKFDsvre1QFgHKAUY48jmgaEeO6LCRiIKRCNrL7HfxOrh6aefxlvf+la88IUvxKtf/Wp8+ctfvtAvqWX4eo6tPPI5wRxHY8naha5uy3XllhGTiQpIo+4c30hSDdiO1XU2tZJRsXnUziahzBxPrZOsGvCY5ro5x3ZxHNIj66eAszhIvZaUsCK+w3XqOzaZYI4VKmTVrSjDxMayuB2PbBbHbYNzMEJdObuDWES0s3XicUMiAXFOjAMUYAQ4c56DEKC/a23OcTWmIn1ZCmpchbZcAaFifLAqFhaPlZDp6nGPjYRTgYSeHO9UJmVR9JvBzPGmrLo9tLUCsywLw8PD+OxnP4s77rgDN954I97znves1WtrjrACEmrdxr9Z3jGflvqNGzlVA65BQMU26ogFHB5PUnCFgNuUSqnIEY5SpDLPjWIpCEpMQTihIIyVm3Jxg4GdLwGzZZFLx1EjC62YHFwl0N68zTNRMhiMfztWP+S92fOeyAMLopoj25MgidZ6mvSquoeVGYhOQEPPjc0QGqFQdILyTBmswhCdjKL7Bd1IH0wBlAZ+3pGwuDY6Mc1oBc5iMxklGOwhKJVbX4ASlYL0VumlFAK6Pdj8IgjFst2LaA8trMKgNDBgU2PiXKg27pHBLb7q0V9Uo6DRtcs6jtimIgs50aM11O1//5oq+sM2+443Dj7wgQ/g+uuvx5133omPfvSj+PM//3OcOHHiQr+sliDLqguVnFsc15hxAaKwqs46tvPpoVHk7Zi2RmZcgL15WKc4djcJ25gTfT3H59v73IvFlcuqK0YJllVbxZXKdnG8jottbjGgXlySTkWc0zo5VluWcBh2NgaUFuZ3JSrODVZhiEfJmnuyPNfAuShYq2XV8YiIEuxo0zUaYMTHgIoFnJilSMWBmw8STAyu6KU3hN6lI3UwBU3h0EsGjCJD9kQZ8e1RDI/3uceFU2nw5dpFlK/nmJbFWGYGM8ebsur20FaVFolE8Eu/9Evo7++Hoih4/etfj7Nnz2JxcXGNXl4TKBQkpgItxssQyZSLB5hy+Zyq++s3GXCLg1MCohCUApyqHSRTFJpOYNpGQUaBIZUh0FroO9yoIJRA7wkhSTtnjnnZApspgi9UQLpDoAe7oOxOC6mLVIAxxjE1K3pNiUah/uJWkC32ALBsNIzsagTrwTn3ttLEpRqw2UPiH7QBe1dZp2336l6soCpFcl8SvTf3oO/FPei6OoPoWARaRvdlfPruQwi6kmtXHBum+NyjYSF/CofamyhlaTUAkIl4fYYiAIWSyDYOaQ5zzKE1YIdVOx6qIYPLV19WDQBaWlsz5jiki8X/Uh4Y7Eag4WBXQkjs2zUm2sSFwfT0NG677TZQSrFr1y5s2bJl4xTH4Sq3ars4ruk3BoRcV6P+4sqR8SoEi1mgv6t5cUwogVpnbo9G2ldOdKX6XXOsmblTrd8RVbLqNl1qZTaqGCCtdpjjdYtxAgRzXKcIJYSAJNYuqq4apiXmGQeNnKodyI7VkU3H6vbBAdOWVcvMsaYSJGOd+VlUz/OMc8wvMWRLBHu2EtxyGcFIH1lzdURkJIKeyxLQSibyp0so9kWx96UZ9A94zHG4uwuweI0hqq84NgsgMRXcqMMc6xd/ccwYB7tIss5WVKU9+uij6OrqQjqdrvlbpVJBpUpLqaoqdH11RgZCGBQCkIwKPlsAacEEivbrgoEsWII5psx34vMZrzimw5H6j8kYoANEAyoGQyoOaCqt+VJjUY5wksB0HQMsJLs1QOVgbH0G8gsBtUtBJMxAyhzEcRa0P8tm3xMvmCBZA3Q0CjoQAdI6CCXgJRMkBBAwt6+rZHBk0mJgJIowUVD2pWEeFxM6P5sDGWnPSYFbHOzRBfGDRqBcmm7+mi2OkA6ounBUdGCZFtSECigid9L5zjfydx8e8z5P532QEEDDBJZpgZLaoi4ZByjlQIvnQDswKhzRqGCoFYWgr5tjehaItUhq0OEI2EPez8reVFuvjxGOrjQBJ7avAGUgMVr/O7YXVWbZrLuQ5goHX4MxQolTMDD3tbYCs2jBypoI9TUxJyRAIsFRsYDhPhL4HMk4RyzGYZgrPw+oxkGU1fuMKH1ubGCtJl73utfh61//Ot7ylrfg6aefxszMDPbt21dz3FrP9SAMiv19t4p43NsIX1g6B8Oo2L9PglRZShMC8DgFXzCl57BA4hrALZhMRDJx3ry3UU3auchV5z8hQE+G49gU3DmxGRSFoL9nBKenj2D6/Mma9UojlAxJVh2NtfXZRSNScVzJIpHwK2mcPNWQHrxGanWubwdEgzv/B4EmFfBp1tFz8qIpTL1aNUBUOMIhiLFU4YBaO6fXzPUqQGMUZs5EKKJA1zk44aAbPOKxEVbzPCAKA1cJIiEGzqnvOuxJMZydRY2pXtPHDAFUceYRjvOLQDLEMD5OsHsPQNWVF2qtrvnSu2KI7DJwZhrYfWMC4yNAd7fndZMYyMDKaNAKFZCMNxdHwt4GVamYB4lTEGK5n7mcfRyJNqhp1hBB5wHPGeDLFZDeiC+ycnaZQyHCw8UBVTk4uL2GXvn10upc33FxnMvl8JGPfATveMc7Av/+2c9+Fp/61Kd8v3vta1+L173udZ0+pQ8TXeIfAOAAALRmwnTyQAj5HxWAnImRyXnoI94EfuSv8qgAIBrB5GsqIGoz6nMK4/atehvq+3/Ku33F6w0ABk6ebK9/aMOBAl23Adeilp3fcl2rcUvL9j8JPwUAjbcI8xGCk18VtxPmIgZe0HhRX43cj/M4lRNSssSNMYy8uD2LUd9ZOARUUMaJE/7d91On2mMBNgT2iP9KqO0Ljw4B10pr6tbPgdbhfEtjQ8BYwyP9yCnAqa96P4/9gorQltYN3Sbs/917DAFzmMXcidmG9zP2VWDUO5dbfIy2oQO4GshWX1ctoILmlNeWIWCLfbveJ3hgwru9kvNg4gUAsIwTJzr3FvA93sRE84OeZ7j22mvxwQ9+EJ/+9KcBAO9///vR1VWrpFnruT4+Alz1S0Crc7yDSCSCYrGIOalftyejYywdMP/e6NyQr0kDQBbjGXGzJdLcJqZzg7WvtX8I6G/tpbuY2D6E09NHUKoUkNp7wrdgboTwM97YseWgiokXtP7Z9X05BNwvbnftncGE1GbCOXeZ42S33vBxV3+cn7P/BSAN4BKg3XOkEzgjRQ4AhoGZygxQ59zwzfWT4j+KMq7cvoYv8CLD6p0HiwAWa67DlAq8YGcHD5cGsANwzpmt0p9OnVndNVora76d1wHibSzj1ClA07x2vv2TFnbe5qytvDGKcw5FUWBZFpixiIkDC756SPl3z6V/xwuAkZG1vz7qIfg88K+NG83C0+dOr8rraHWu76g4LpfLeM973oMbbrgBr371qwOPectb3oI3vvGN/idbxd3k7z3EMLsI9CkGzAfnQNJ6Y3dpG2YiBWcpffILBMrlQn7FTYbKcfuk6wnj+I/r9x3yogluMKhX9eDEHMW1ewm2jQTvaDz0jQUcfTCPK/67hSc+R3H1y1Po3t96T+NGhFWycPLr5/HQUYJ4lwpdJyAKx5brcjj+ozi4VftZ8WwFvMRAt8VBR+M1O+Scc1j3nhfyqoQ4h6bnOLYMEpyZ5UhGhcSGF6MAxEW0+BMDxR8E58PVg/GlRfd2abQPx1q4f77EwTlw9W4CRXIrLZwqIHUghcQOwWIwxnDq1CmMjo4+55iqxYeWkD+aRyQgAolxjvuf5jAYxyUvztc9BzrB9BzHngmCkV7xeIbJ8cAzHIblmWQ1Al8KAzgDACBdOs6c7AI51dprW8pzaApw1W4CSoWLd2m6hJ6buhHqCd6Ucc4Beh9FbDi4F7BwqoDuG7oRGVrF/AgA5dkyZr83h1B/CLSFsZJbHMWzRRCFINQbAtUa34cxcR0oAY69Ds6c53j6FMNVr1zZeTB3rIj+3VHc8LOtmeVtoj0sLi7i3e9+Nz70oQ/hxhtvxLFjx/DOd74TW7durWGP13quf+LuHJ785iJ6d7bX4xpREyiiiPl5L3mAhgZwcrF2+4ydzsN6ahF0QDwHmy5A2Z3GGT2KyUHgmn2tjdf5U3nMslnEpxIg3H9uZ4tiHExEAL3FDPOUOgngBwCAe78yj11bt7R0vzNPer3C2WPdLc1jDqyltHv78N2AOu3dt2KUXRaMGonAx20213cCPl0AvawbtDt4TOSLZZgPzIH0hFtmgHnJBLIGMBABP10AGWjNYGxmnmP/VoLeCIORNdB7cy+0pH8pHTTX5w7lsPjQEsIjEdz3JIfBhFfGcxWreR6w6QJme5KYuDqOK3f7r8VzCxzfuZ9juAdQ2mDied6Aef8sENNwLkexZ4KgFxVoKQ09L2xtE6rp625jzXdugcO0gCE75eHmm2/GX//1XwMAIn0344FnhpA+PAdCiVC1QESOhvUo8sUslnIGjh/qBXt4HsQex2ZPe4X0+Ud6YRxrbz28GnDOg2Pfi4CdE8w3nYyL6ExpPc8Yx+ySCALql5IBCnMGLJPjJe/oRWgdk1/aLo5N08T73/9+9Pb24l3velfd43RdXz1ZVQA4F21BPKyBUwUocqCFgYaMeQtS61AWZCwObjDw8yU4ih0yEGl4MfMyAELBCAXjFNEwqSuPiSc1MJt0CSsE0aT+nCuMqkGjFPEuHdozZZTKBJq0WOYWqfls+WJF5MPuSqHQHUVuniAeBeIR6TgCcEUF8gYQJSgbHCohGEgTnJ8HCgUgGSOAroL0hsDPl8HPFsHKvKVNEwdMClEnWxItDeqVsnDrVSmF7AVFTAItrNZ835TS59w5oCc05CuoWRACgAKCdJTh5Hnxc9A50AkY5///9v49StarrvPHX3vv517XvnefPvdzciMJScjhGhLCVQkRgpAwiD8UR6PDTb+ASxwXi6iAC5AZmHGtEUHDcgYXIC4dUBEGL4CMqGAUFIZIIJdzcpKce5/uruvz7N8fu6q67l3V99O1X1ln5Zzq6qqn6tnPs/dnfz6f95skEYSuaLyvpwQz+YT/9xBkgwHeI+0hnzxG8q/nUM+dg0QOrCe7tAxH9oAyMpMkpQSpJE7grnp+RSIh6bSI0IlGJBLHUxs+RtzIRTkKXVrxcexHdaGKG7kkVQ1ljEBRH5QQRpG1zxeYjUwfOqxvHCQV87u77TraKZw4cYJ0Os1zn/tcAI4ePcqNN97IP/3TP3UEx5s916MlcWX4sRL5ac5efKLlsVQ6h+4itaIdB6qy8R66KoiFohJL5qd7z+/tOJELi6DLumMDKu0ZYeWlZXDTg73e7MSBxt9PPvEIVxy8caDfWy42lVN6g81jjef7TR7Ry0stv1ssrOh4+G7Uf520Qfd5HWu0VkjldD13ANpz0aK2DhzAHcKs+SrIo1nknpDq42VYTCBafUkcV8EVAiqgpMIJO+f4Os1zvRu5iFigkIR+wuI50P76v5+dzkaMAx1LylVJ4HeunTKRxnM1y6W2NeNqr+k4aBQXz2uiSDCVFXAG1CbMvYOs+Wbb4vE77riDT37yk+RyOXJ7n8z9j8DYVIrkgQVk6KFLMVoqgijNUuEixcISOA5JIhFlM8cXmu4Dgbtxm1VrQZ+uIPakkUcyiNBBP7Bk1M9qx1Qug8IojzcfZ1IVJNWtXzcP/U7vfve7KZVK3HPPPVsn498PT5rG+kFFufY1KVb//WnK7/kWlff/G9WPPbDynD5iXOYXa0rVicRzuitV10mlJar2LWdToHaJrc9qhLMeKZmsqlhdPlVkcTHh5EyOB2WKxYIJjJ841/lcEaiGZ/RS0SgVZlJGEKlZkEHsrZ3jqkY/Prgol9Ya/WitdCXnNnbnVqMa0yGyoRMj0iU3WHV4p7Kal3M2JdhonYVS2WxKtIvhTeYEngul8mBv6L72CN67bkA9c2rg906MeXOLv3lSHlyATToC3e6xSM3+S5nWjo3GqOmKgYVrKher+DM+yhV91bWHIR1CZmMT4pZN4MCBAywtLfHlL38ZrTUPPvgg//iP/8jRo0e3+9AGJhV0Zkm6qlUDwlvxOtZaI4CFiiAbwcwQxQluzgRXlfOdE5+URpxwGPGgmcl9jb8/NoSdU6HF53htVk7trwMrYlxgeo63hDgxq+Z+m3O+QnhyIMVqnWj0qSJyb4Q8nEakXeRUgL64uoJonGgjCuUYwU3hioEEuQBkqBDK3EszoRGTtAyINiK4XpcxEPprVKx2JSjB0kXN3mnjR65j3dOGcauRUnLXXXfxQz/0Q2RTgmoMciYAT6KLMXqhgpgICKKaL3lhCTzVYktXF+QSQuC52zPx1lW2xRVZ5FV5RGjukcJt9SYvV8F1QQp2hCjXUKPg5MmTfPazn+W+++7juc99LjfffDM333wz99133+q/vEkIIRB5Fz2gCquIHESX0s9m5OFVSg9iDa6i2GNx3kwmI3Adc6LDlFw1iNgtuDmXVACVLgFAndJChbPnQV+V58qnRjz/RsFtzxQ8/UkCz4FCqe13PdWQ3i+VYWrMZKFyKUHcdPqbN0C6+Vn35GwZal5ycs/gJXxxm3olYDLhnhiZzZDmib8b6bBTzXu9FMsQeeYabCYTwUQOLgzjeewNd10Wy+acZ5uGSVJOkIFatfwYQPqKuNj5XemahYxQGz9uhBI4GZd4gHuljjUkmnA+MCqrA240rIYUokVsw7IzSafT/MZv/Aa//du/zXOe8xze8IY3cNddd/GsZz1ruw9tIHQ1aVGsrtNVrRpavY5jjXYkCyXJ/hkIhsju1bPF8VK1q3hXLj3cJuHc5ErmeJjgeD1q1WGLWnVrcFwsr9xUty441sZUuE8FmFACUs5Atp76dNG4YFyWbVSViZkQoTvVgNupxuZQXGXu1SpQAyeJVCgbitXDjCkLpiJJtCpV15HS2AQOq1gtpGBZKFJOwnStjFcn7JjguJmovr7M1jZyzpcQ1QQ5FxKEzcGxRDiqIzgOvGjbkpm6lrhU+9KtFWu+arH/LFdNbK+62E9vB0MtV+fm5vj617++WceyZkTKNXXWA+LceZD4bx4zfmCuMDddV5pF6YH06sFxohGesXEaz/TvH/IjRVTbWUxnJHJEgmMn4xBmJDye0GsPZul0lclDAc+7I8Jt2hFMEs3MuMkezzcl80TtphUnxpy93lOaCs2EVY01jhLIfRH1OoLkkSXUMwbLCCaPNpVUzw8eHCca/Lbd46ScID2FHJHgWAWy5uOokV3uKqmgM7u+GhrdV4GyWDHjo/2mL4Rgdtz0IydaN8p4N5JCEfIZCP3mzLHGyQ12S1WhIr4Y034LNpljidyEzDGYzFbhxOrVFNXFKk7awZvwUCmHyoWNMyjO1q7bJOl/fi3byzOf+Uye+cxnbvdhrI1y0uJ1XKdvcFz3OpbGU1V4kvmptY1PlXGoXqziZlurj9IheA6UKrph/9aPtWeOm9Sq1+hzDK1BNkCptJI5DvytC46N53T/70ukXJLHi33vKPp8GXyFujzbyGABiDEPcr7pQR7rLeIZJ2bxbjLHGpUefD3XauekELUM2W5WrN44BAjRc4N9LCMaLgjDcD5WHMloUvUWLM1Am9tbTRSYNW6SgJiL4NECZBzEuN8IjiuVMolIzL2sluSpW7Ftq8dxr91AvzVzXKmatXyhbBJO6/NSWj+7w3A3MDcaneiBxBjkvhTy/3dk1ef1Qica4UmKZZOh6ofwJKla6WWYVQOX4FzqOGmHKO/gHI+pxgq3bQ7RWlMpJsxfFbYExmB2Ag/vgYcf162ThxKgTW9J5K/4TqZD47NaKoMT1rxra72P+vjg6UN9Ym3BMZgFTzNJOUH6YkfuQm4GzRM/UeeCQUrB2BA6dInWPHoa0qEm36M/T+vufroA41kTkC8VTCZ5oylVYCrf1i9cTfp6HDfj5l0qpzvL+HRsNhc2o6waQKWdgTYSKwtV0pelUKHCSSmSPhUgw5KJoAicXQAlzEYXmEvWcSCyWRXLeiknRKnOG07P4LjZ69gRLFUl+THJVH5tbx/Ohyz9v6WO4DgVmDLQYtn4gq9GPjNJ4EUUy8s8dqqHJHIXmsuhgyEXxjuvrFqDp1atphGR6ntv04UqlGPUNWMtdjgAwpGIuYDk2xcgr3tm2eLYBMeugmI1QXWZ63oeX80Hu3S6jJ8ya4ZytbPyydINDbJ3cJwOjV1aPUEyCIvLmiDrMNnSkalX1dbYDiLfrHGLFYjGPcSkjxj3EZ4kbLZeKywRRgq9aNYWjczxkNUjzZSrGikY+HvtoMclKRxJ806W1mbj/NyiESbbbnbFyl2EDtpTA5XUbAiJBk+SJJBZRQRMeoLxWsmGm3V2Rp/2FiCkIDvv4SUx5S69NeXFGCdSTB/svkKYHTfB70JzbOtKhBAsF8ymRD2orhvBF2plNcJXiGlT665PFlpM0fvRHBwPU1ZtjqH130k5wcm4o3O+lcBJOyR9rsHsAOrRdc4tmKqM5VKtv7eNSqxxFKR6bPL7rmB2AhY7naXWTf29O4JuPXiPuZNpLSlqvERVI5QYSE16LdT7ofv5tdZLqoNZ8+WqVRadw1K/bjORmfBdx5TLKWk2M84vbn+/keXSRpdj0rnOQDjdIzgWQiBCZTLHVc1SVXJgr+jYuB2UcD4wbSZtLQyNvuMB+yOFEMxOGXXtx888QpwMtmqsZ3ylkATekCrfTcF0cwYaoNgSHG/CrmM3qoOJbBEoBKLnvU0vVBB7U4i57kG9nAwgVFDo/R3HiSn9lNKIDyp/uEpAlVboSkLggufavuNBSRLjD96trBpgegzmJ+H4qcFf89R5mJ+XrW2R2uiB7DRC32ymlcoglERdlUfWtHWCluB4ESKn0X5Yv36Hba1o5olzZiN7zfRaA9eSXWCqBMFsAniKljbJ7WJXBMcEyog1lbdou0FDXWWrX78xmBKNTMZc0SozGiXVddLTHoGCchedi+WzVdKzLhNz3bcCU6HgwAyca7ZlU2bii2PNWLb1ghvPiJaJptF3nGj0ycGyx42y6kDB+GDbuUlS31Vre7yS4GR3R2HGoLh5t2Mx2Ey6dq1UVyl/qlQ15Rj2zQgyESx0aRsvlU2ZdtTn+stGYmDl6WEoliAMWoNjrY0A26A95r0yDkYQZPPuEypUCEc0Js9uNJdUw+b1YD31Kskzr5Y86xrJTddKnnWt4OrDRnjEBsiWdRFrUrl8x8O9BLkASLnoSkKlaDKCeybXPu69CQ9vyqd8trMRMpcWdNkX68neGVPlVqmWeeLMYF6fxVo5ZRCkht6g7VdWXX9dgGCLMsc60YgB7onCU2hHmGC622skGjHh9/w+RNpFTvYX5qrGTZlezdCVgE7KMfd4KUiF3ddGlk50YiwCe2WOfU/wlMsFkQ+nL6x+cRVKGseBA3uVcUKpb6iI1V0ZtgOljDhgXeBWpBwjQAeE4cr1WiwsmVgITZzEVKpmFy7w17aRValqPHd9wWrPVZgjG21V1arZJPdrGjI2c7xBCCUQaWdgUa6NoJQI/FXEuACkJxs9mCocsWAp55JKC8pdhIfKSzHzV0WoPqVSe6cFUpqyDjDqdpVE4CvItV3rdcXwepZRtohyrR4c68UKXDB3HrFnML9DgEpsAuP2smoScIYoudoNqFT/DGNdVKKwinDG6QXYM276ifdNwXJxZWexTrEM6Yi+mZ3Qr7URDrMSHYDlIkzmWsuMdEUjXTFwj7mqC5i1VTXoWG9qn7oKmsrfe1BZqBLM+Q3xQOmtnm3eCIQQ7JkQPOmQDZAta8eoTQuibGeWuGdZNTU3BK1ZWtbkJxUTQ7SBdLyWEqQOhSSlxDgXNFHvOy4P2CM5P7PSAnb88Qf6PHOFelC7lozRoGXVa11wD83AmWNp+i27VS8VqujIQeT6b3qL2f7CXHFsFvD1e2H93jgoKlixe8yEW5fPudRJdK2cvc8SejIvuP4ywcISFFcRkDx1HvZPw/SMbGwWa21WGcNYf24l7a4sdYJw5TosFpZMhaVeKamGtV+ry6Xe1XmDoBOjHNMVRzTKqsu14DjwjNBpvAOui505CtaAyHkMtR27nvcSglIiCL3+Nk5gJsn6DVSNSP9pHSfjkB5ziJdbJ5rychUVKKYP9G+6ms6bIKRR0qEEy1VBOkg6MobpwFxUpXpp9d6Vm0EygGK1bhLjkkP0GzcLdLQgGBkxrjr1YKpXEKVqweRioXupNMBSUeMpODAnkEIwPS6Iar3DzVSqRoSjH6FvStc2cnc+0ZpE09EHnZQThCdRA5ZVq1AhA9URpOpYD2QFtVZkKFF9gmOd1Eqq51YuMOnLVbPNG4kNkC3tiDhBnymhFyurt8lUErQnSHUpq05l+oiE1ObpckGzZ1417ldrJZgNcLIO1YXW2tl0re94UOuZvbNNwfFjwwXHw4pxQbtadb+y6i3qOUYbBd7VcGu2nl3Gh16qIif8WlatNy3CXF1IdM3yp97+MmRwLD3ZyFSGvujrCW8xaK2JNTiO6FlWXefIHrhiP5w41dsOqFwxQfCReWE2iz1p2sESUy6/EzPHYPRVui2bmsuqi4UlY0snBcvLa1esr1MomXvVmqnZ3nZDKNGwzytXIHBNssP3Nt72cy3sntV7oBCbnNlooDXlxJR8DtKTVO9DHBUbpzrKl6QmHWQlbsn8LZ+pkp52mNrbPzh2HMGRPWIlMHIlpUQwme4UzKhn8Rt9x3siY5jGYKJcSbMY15A2Tk7bjmZSSRBKDBwo7RZUOFgQNZGFx892Tl6J1py/CPtmVoLPyBfsmWztPa+PpdWqNjzXBNareW0Pw1LBlHKPta05jTq5HLgEWQbGD7ndzknHelPHjRACJ+v27A1vL6kGExw3FhBbhA2QLXXUhEflsrxpdUmM4rA+WSB5vNA9w1dOEJ4iNdZpUNw3c+xKKrUMxvT0+q9BFSmiAxGVC603oHrf8cDB8ZCZY601xXqv4RqC475q1c2Z460KjoXo73HceJpA1Erjm9FaI2JTUr3qa9SEuXQh7rnJ69RsnIQrjIjbEMhgZY4MPED03ii21DD7tUhHdAi7tqOU4LojgukxOHmm7WW05vyi5uEnYM8EzE3U5jZXoCu65hSxM3uOYaXyrn1cBm2CXHWv42JTcLyWzLFGo7VpcVRrrcCLtfEo74aSZo0eaypVyNQ+xmrneKu4ZIPjfKZV1EIECu3IgcWX1oqOjRl5MZGMD1h21ShPHLHMMUB2r4+TJFSa1gelxYS5KwOcASaW2XETBC0ua6q1fpBMl8ooIQTjmabMsSsRszVRrscLDa+1XuhHVyb9YZSqK7Uyq2a7oLgQo0JllIFHCKNY3ZkNbeeqg8br9rFzxparzsIS5NKwf7p1cpodF/gOFGqlUuWyKUuMBtjRzKc3Nji+WIA9k53ep0k5wUk7A6nlgxmvvXq0N7usy833Fk6rXqiVVDe1BDQvILaSeoBcqZqKAstoojIu1X0ZnBsmUM+cwnnaJPKGccSkjz7TJcIsJRA5pNrKqqVSBEGfe7snWShLMqEmP74x12AwHyBdQdwm8pRLCZIBlyrDZo5L5QKJNi++FguX/mXVzT7HW1NWLbSGAYNQkXE6KwgLMTp0EPnBdERWE+ZyazZO0hl8M7Tx2k0bjYFn4hgryrUKWpMgcFyTMFmNdCS44TKTZV1YMuXSZxc033/UVJE95TJ4xtUCVRO+lKEiqSRmU9+RrV68O4goMOue9vEStmWOcSUoSXGpOTge/j5QqinqT2TNhtCaSp3rHuXdcITJKseaOKFhp9VRhblNXLLR2tyEQEhWvM1Cx4g2bHYTR2Ik5WMhVlWqrqMi8zWPYnCcmXRMf1VtYV0pxihXMH1wlbRfjXzGZA7PLsLFoiRMSVJe94VyplZ2Us8sNkS5dGvZdDcaStVKIGYGOzag4XXdTLwc4+bdkSujl4FE+Z0Kre2kAsE1hwQzYyaDXI011VhTKMGhOdEReGYimB6HC7V7faFsSn3CAU5TKuheirQWCmWN78DMeOd1r6saZwjPSzA9+R2ZL735giAqcrqW8+lEk8Qaf7b1izWLQNXRH70V7Jkw1//i4I5sll2McCUi5yFnQ9TRLHgSvdDaiKcrCSLrkmqzckpn8n21JM4VBcoT7J2TG3bv9iZc/Bmf8tnWHbp0aIKsQbxZ85lJUqH5LCcGyBw3B7RrKat2HQ+lnNprtZVVN/kc+1vgc6wTk4wY+J7oK0TbV6qXqsgxr8XXuB+9hLnq6wqTOU4QrhhakKt5o9H3am0/NjjuT2KW3f4QFn97pwXXHDZKyw+cMO1vx66EH3664ClXyJa1u5NxTOa4ZgW7U8uqG3ZObX3HzVZtJjgWCE/x8Mn7G49n0+NDv99y0ay9cmkz5tckkhXr3psN9eA4MRnqutCdq9gRFRWX7Op9Km8a1M/X5gHhSeOvutmiXLUyAemIVcs669SD4lGx9WkmyLtEGUm51ndcOFslnHSZ2T+AyWONA7OCODbnenJK9qzSSAVmp6veY9osypX0EeXSpRh9qgjUBDlW8VOsU4k1joTxNuXspJTgTY+eeaEQAifXu2S3mdAXXH1IMDdpAuRTF8w1PdvlHl4XapLCiNiUyjCWbc3W934fNuxGe2HRBOmZLmtCozI9pDhLpDqDVAFykzyOG+8bmL63yoVKS8BbXYxrJdWd16ZKqy3rOW5nPCuIk05RNstoI3Ie8kgGlqodFWMi5XT4HPeycQIolTXnS5KD+yVjY8NnBHseoxBEh1LoatJi3ZYKTCZokNJqIUQje/z4mUcoV4p9n9/cJ7yWsmohRCOo7ivItRVl1XGtZ3HAahrhS7QEXZPX1VpDNUFMDb7hDZgS7LYMdDVeEYXSVY0TqaHXdM2ZSkeZtp/KiClW62oynLij1sRaEAx3CnnSQcFVB+FpV5mg+LqjsqudpJOqZY5jjVQ7U60aTGAc+p2VcC09x8Ul014QKf7+W/+n8fhTrrp56PcrVWAyb1pHPddUSa7+O7p1rdUvc6wEQgmqlQRHmc8H5vpyd4Cd0yUbHLuO4OAsXGyKeUTW2/SyahJNRQtcX/S1kWkmnN8q4Yqdh5NWZCcdqsvmyipdjJm9IsAdYvExO242QioxTEw5PRfpUdgqdNIsyqWP9xbl0o8VGkHKMCXVi8vGiznXVLGiTeoad8RsnOq4uf5ex80EnuBJBwV7p8yu4aE50VMEZyxrxNnOL5r7bSYcbAKr+wOuV5SrEhvLrrkJ0XNBJIfsP6v3aCfVpoUcW1BWnXOJDkXoWFN6vMTyg8sUjhcony7hz/o4qc6xu5qH9WaSTRmxvW5KnZbRRs6nEPMR+nTRqM3W2jREoDr6i3v1GyeJ5vgpuGy/4MABB+HIoYWW+uHP+LhjLsXHSo3jU2ptfcdaax594sG+zz2/uOJ/uFYhnnpQvdyWOS5ttSBXIzgeMGAJlBFWq7eAFGOTTV5FpbodESpjHdm0Qi+XTYzu1Muq1+hG4WQcklqLUCYarcyxjhOjAbM8xIfWkAB+MFzQ6rmCm66VPPmo7FvlqQKzSa1rY22nBsdCCNMm1p45bu45rvUZxz7843f/GoAozHDNZc8Y6r2SRCMEje8tHMBeSaN5/CycudD0YKyhx1pfKAlKUC1pXNcIcoEJjNVaM9UbyCUbHIPpRXTUSsmuSHcvF9xQYk01EQShGKjnEYZfNO8mhBRk5j1EredXKJg9NJz8ne8JDs3BeBryk7KnzYIUgrHsyiJazIYNpbx+dk66SYxLDiHGVSiZwF029ZkmxQQZSJzMaAbHvUp2e+G7pq/02kOibw+/FIL5KZNBVGJ1lfjG63vmprvevuMLizCe7Syhb2bYSVVFrbZKulaCtOmZ40gx8axxpn9omqnnTzL+zDFShyO8KY9ob/cdv+0Ul4t8swG1XFj9uZbRQiiBPJxBZFw4XzY2Pr6EQJFKt95QegXHJ8/A9BjccJnAyzvGkm0Dg2PlS3LX5XCzisJDy8S1jeJcytzPVrOdgcH7jjWak6fXV1YNK0F1h1p1aYt7juPELKIH3TD0lBHJqm/kLVWNAvWwgWzkmEC7lKDRnLuoWSwae8HAM0Gek1pjcJxWjTVM6A/ee74rKCbGcmuYKqRacBwMWcI+KNKvKYjHGunJHV3hOZYRHZsp7WrVAN9+8OtcLJgo9anXPA/HGbxSE1ZUqrO1SzwMVg9Wq7H5nThZaRfRiUb0U9jyFOWKxnPAq+1fOY653LfbzumSjtomc+bPudpGqQhqht6bqQOeaMpakEpL/E26WHcbmSkPWcuKhePuqhZO3TgwI7hsH2Ryil62adAqdCIc2VCe1qeK6EL33cqkqR9ZDJjlL1U0rtNpJxQvxzgp1TX7NgrUS3aHuQZdRzCZ752RrTORMxskvsfAVRtSCLKp9QXHSc1qYH5KtGyEtDNsxleFChVIkmJrcLxVO9fKl/hTPqkjKcaeNsbMD00T7u0+/rdTL0EIwVRebKiwmmX3INIu8nAGygn6YsVojwSKKGrdyeoWHF+oKaE/5XJBOhI4kTOUsN6ghPMBEzdPkL4yTelMmdLjJabymsN74NyiEQ7qx6CK1cUykKyvrLr594qlJZKm6K3YJMi1JT7HsTZZ4wHviUIJRMpp2DnpSoKcCoYPeDxjCxUXYh47A1LCtUcEl+8zFoNokN7agmPlr7TThB4IOUItI8UYEbnD2a5q45XrbWJwLKTpA9/ITbHNoJutUtiuVg38/X1faDz2jOt+aOj3WSoZMVOvtlEfeKtrt9SV/ptjsn6ZYzDtsNWyJh2stMk5SuA4NnO8LpQSHJg1vqmAURj0JKyiTLwuYk0Z2TeDZGklO+3g1Dx/p44GBGsoR8pnBNdfJk0Wvs9OayowO0+VuC7K1VRafaJ79rjxuAAxN9iEv1QwQgWZtqq1uBDjTfo7VvFws1FRzTdwE9obHCXYOy0Yy5iM86BkU2Jdu5ALy+ZcT/axSIXhLSCEbO3R1lWNcLavrKtfQGD8OcXmbjz2IZtqva4tlmbEbGgEGJeqiFpwqxynRZ26PTguVzSnL8C1h83GF4A74RHu35xyYSftkL8xz8SzxpCBpHy8yJHphGtqiuynzuueQdKgmeOlAgjW72/anHEuNmWPt7znuKpNNniY4DZj7Jx0MTZB7pAl1WA25IqBy5lTMVN5uOFyo3vRfBzDinE1fq+2gQxmo9dVUB2R0mpdjk1Gfph5RAMC3E0LjhXCE8TF2JybHUzkG2ezZpePMGq6VmvB8df+8S8AM46fdu3zh36fagwTTVo67gC5nkrVqGkfnDW/V6po0MbyrCeeMMFx27Lbd23P8bqZHRcEHhRK2vSW+GqlpGYzSDSxo8ilRzP4WQvpCQevFhDPHFifUJX0RN/McSo0u7F1my+5t78ol441+qSZ8MWEb6oPBqBYNmOvXRQqqWq88eEz47sFGdSC4z7CeEOJcbQxN2mENoahvtu6lt15jWapAPOTvT3NdaJBrC2obbZVWimr3nm3ZRVIpMuW2znVyUaQDljxPLdYmhBSIA+lTZCcXZljmgPidKY1OD5+Co7OG2u5Ov6kR+rQ5mVEhRREByImb5kgfVmK8mNl9uQSrrvMaJg8dqa7n+j89OGV4+6TOS5XwHVW5rk1Z46bgupmr+Ot7jnWsUYMGbCI0AGtzUZJzoMhLRXjWPPoac15XPZPwXVHBdmmntX6/LXWLKP0FUIJdGy8jl1n/ZoYlwI60WZzQQ1Z3VmbXwcJ0NaC9CXSMRVcaodnjqPAtIk1j5cWteriMidP/IAHH/w2AFcdOkYuMzHUe1SqGkeZfvg6Xu2777eGqlRNcmoiZ9ZpZxdqP+hTUSc8s1EStimRh74tq143Y5mVNL6QwohybWJwrBONduXA/cYWcAJFZsYEjNP71xkcO/0zWI4S5NLG7gfaMsddRLn0qWKj/2VQMa5SWeO7xmu7maSamGzgiPYbgynVVVF/r+PiyQFVaLoghegZpPYi9Oq2KcO/31LBbLhMd7FvqmOC2rWpXDrRyljRsXmNvjut24T0JMLdnIqAgd5fCqbGBhcwsoweInRQ1+SN1kSNqKnvuDlQXlzWhJ4plR32frIROBmHsWN5MlekKJ4sMZGG64/W7O3OdVo8RWGGidwM0Ds4LlU0ngtJshLMSrW+smpoVawuNgXHnjukfPBaiE3SYyh8icC4UMiZcOCsc5JoTp3XPPiYqVR5xo0O++dER0W3rtY2MdcaHHsS4QqScoLrCEJ/RES5ygnak+Z8DhEca10Ljjcrc+wJpG/WlDvdbrWbnVN7z/HXvvJnjX8/4+oXDv0eyyUT5Kab9r5cd3U7p0ps1kpCCPZNm82MUpm+LRGJNNUYfls+KfCEzRyvFykFh/aIFYXijAM9BJs2gmpZ4wRy4J5Hi2H8gNlNCDPrE/YRnkDWrBR6MZZZKaMV06ExRQeSR7oEx02l1mJAMa6L9ZLqto3zpJCgIjXSwTGAk3O6BsdxwZwUvcV3vaCmWL2WntWLyzA3AVEfj8WVXuHhb6cqUmazJ9boarJjBUHM7rrYNjsngHxa7Aj/Q8vORaTdluqfZq/jZiunUxfgwGynDd9WIpQge22WYC6geKJAFJhgfX4Szix0Pn++Vlp9fuEUi8sXOn6+XDRzUqWyEsxq1qpW3dTH2FxWXfM59r0QKbdm+SiGDEJFoEwQ5klEdmXVfeq85vuPah55QnP6gmapqEkSjdZGcOv7j5oA4NlPFrzwmODgIQcnUsTF1ohAV3XN43htn99U4axsNGaitW3cXnIUY0TkIDPuUKKdOgapwN0kd0whBE7GbVgL7WQcR5CJWhWrm4PjxcVF/q45OL5y+JLqQgkmsrQ4h3iK1fuA9YpoWj4t2DOpWSjQ1xq1rI2octB2bp3t0/9scMkHxwDTebOjsljQEDoIIdZVutmPSgxeJAf2OLYYrnjaxpSqSccoV/ZbpNfLaBNdC1rqGeGzZfRS6yykm8S45ACZY40RZ5od7xSQipdj3KyDCnfAlb2NuFm3xdOzTuns9njxOEqQCo0VxzAsF43o2kyfrDHUgmNHDN1zDEaUSwaSuJSsySt5qxBKoCJn2zLHYLI5kQ+F/javFkuDZq/jeua4XNEoCQfntn8hrEJF/ilZnIxD6YkyriPYPyNQslPFukWU6+QD6LMlkhPLDfvKYtn4sDfbL6XCNOU1bGg19xy3llWb+XJLbJzAlEcPu+noK4SrjIJ5xiVONA89ZiwWn3ql4MgeUyZ6cQkeehweOGGC06ddBS96quCK/QLfE6iUQkWKuNB6z0sqGunIoYP2OsIVRoixdn5TgaAa735RLl2MEeP+0OczjjXS2dwKDyelkFIYpfMdTj7dutHfLMh16tQT/PPXjYXT1Pg8B6eu6Poa5apmudQ53jQarWsb0U149czxKps4XlMGeO84+L7gYp91VykxGWa/LTjuJ3C9VeyKFFcuDbMTcOIUpEKFdgSikpjtjg2mWoUwFB0n09IftUHercKTSCVIqppeZzcKVrxtAw/kvoj4QTPBJw8uoq7ON56bNGeOBwiOi2XzmmNdBNniYkx6em079bsJFakOZcMWj9xaWfxGK8L2I5eCx88O9txKrBtqi/umW32su6Fj81nWUlatIoWq2Tnpqt5Wy6TVUGlF6dT2mQ37rmA8qzl5epfs6lo2neZS6vrfT12AmTHzZyfgjXnkbshx9v+epXKhwljWYW4CHnnCVK3UaRbleuS73+GK516HyLrosyWqEwFSmEXt4vJKMDsznmZhaXUxwXZWK6vequBYiCE8juu/40pIOYgJj3IVHjkFeybgqVcZ1XsQJIlmqWgqgwol8/2068gIIfDGPZYeaK0409Wkljle2/wlhEClHCoXzC7fRM6Uoy4srT7XXMoIXavslALRTzimDR2DdDY3YFKRQtSqo3Y62ZRoEeRSjoeQEp0kPPzAPzUef8aNP9zTMuv0BbNBtFjQTOZWlKJLZbN2bhealVLgu7qn5kc1NhuOzeXRKQ9mpwTfW+r9nZYTSc6D9uSyO0CP82azK9YYQpjd1lIFdCA3VZSrHEMut7rtjGVzkK4JQrplJusEnvlT310T+1cm+uqnHiR5zFzhWuuVsuqMa3aaV2FxGcaynVZCWpudaTc3umJcdVRQs0ZoOkflM2WCKZPSl47Y8gxkFKx+vSZac/ai5vR542f8lMsFV+5f/VrXcc1CZA29wkIJnKxDUorRCchw596SnZTq6TG+VUxkxWZ2zVh2GS1l1Zk8caIpluDoXtFSNrjdhHtDMk/OUjlfISkl7J8xfXhLxZpfqNbMZw82nv+oOom6cQJ1KANCsHwhJh2ZEt3m4Hj/XIpyZfhWhGZBrkJTJrruc7wVStVaG/XutWTz1NEMS9mQ46fgin3wnOvrgbFBSkEmEuyZFByZFz0FVt18ZxWUrmicaEgF7TacjENSWckcH5yFpWKrCvFuQlcSk7SKHFCCYeqqTeZYbpogFxghURXIHV9WDZ12TidOixZRrjrPfPqL6ea/VKpoXAWX7xNkIyMCWKqNxeWiuYd001QK/d5l1ZXY9CU3B8e6qpmblmRyva/fohZEUed63nVArdLjvNns3JXYkMyM1SaGstk1pI8g0HpIYshld83XdskhpEAGsu8iveFtW0tyyWvziAO1m8dSlcqH7yc5VYTzZaj1wcoB/I01mkoMM2OdAVNSTpD+aItx1amXCtf7jnWsiUsJ0SHzHUtPostbuwgIfbM72U0JFkwJ9cnT5uZ+3VHBDZcJJgfcBNOxXlevsJt3zXelNWoHl3XJYYVxNoFsBL4zIgI2lnUzMTXX+Pvk9DznLppM3fzkNh5UDzKXpUlfnqL4aBFvocRcXODiDwokjy3DY0XmJw81nnvi/IOmrHfcQ86FlB4vM5U3LSRLhZVgdt9U2qyLHq+QPLrcd1O5md5l1WZjecs8jpWsBVODo7Xm8djlfEVx7Ep45tWCVLi2e7OTNve8ZgHQpKqRa7CjbEaFqiVw2TMpmMp17zUfFI2mVNGcX9ScPKs5cUpzcXmHBNuFGBEqSDtGqVsObgsYJ6Bcsal9qNKTJji+BDLHkW9KnMtVzckzmiiATFuq1/dDrr/x1q4Z+oUl01O8b9qIAO6fgbMX4cKSplSByTxd1zKR31vOqVo1mX2vqaJWx5ooElxecwPotvET9wiOHcdU3yc2OF4/6UiwZxLOL2JKjSob/63qRIOEKLXzL6DdjArUqsJApvTE/F04EvenL0PsrU3oFytUfvu7xN8613j+IGJchZIJstpVqgHi5QQVKlR6+wOI7UaGEuWJRil1+WwZf9IjmDXpdtn0s60i9E0/TDfLjGqsOb8Il++HG68w2YRhskr14HitOGnHbKTrtSlebxVqB3hApkLTezwK1ieW9fOyO/8TN936Mn78P/5nDh5+EhcWjX1T0Edgb7uoC3RlrkwTzAccvimLf22OxcNjyGMT7PuhGxsiWI88dL/5HSHQ8ym0L8lhdoyaM8dj2TSzqZjC+SpiwkefKgykx9KtrLparVCNzYXne1sVHIuGoOYgFEpGWMt34ZbrBE8+InDWcU9VKcds9BZX5isdJzip9c3z7doSriNMD7w2bhjDUIk1j5/VnDxjysR9D47sgf21bPROQBdjRN4z4kxKghTm/A5AUtW43uZWeqhAokK1o+ffOlFgKiNPnjb7K0+/SpBJtwbHT7r++QSZFFq0bexoTaUKs5Nm4z/wBU86KLjmkKg7ZpGJun8Hnit6JvzLVRM8N1ub1oXrDu81Y729rU1rUxXi+51Cn66qZY63sUpsV6W59k4J7n9EQ6RgE77UajlBOoJUavsXiaOMivoLcsFKWUiiNVIIROjg3n05ld/+LvrRAlyoEH/meOP5g/QbLy7DzHh35eJ4OSY6EBjBsBFHOhIn7VA+U0FrTbxYJXt1phFAqpRDuZ9KwybgOWZSWSp0lsSfvQhTY3B4bo0TcKyR6wgcVaiMd3eythLCrUJ6sqGsvV3lZ0IIpvKakzt/DWPZAUzN7OVd/+WPAVhY0qRCs07YqahAMfa0lWboK6cSvvZtyE2AJwWzew7x6PEHOP7w/WZxKQQXHZfgcIqgeBGt3ZbgOHQicuUS8nCa0oEQr3gOfb5MMfJYKppFbeiZDd/mLFM3tepSZSXS2pKe43pwXJtT41gTa/C6BDBJonnsrCnvvPoQXH1I9FzkD4OTUg3FalXPFmuQ69SzUb7s0N6YzMGeSXj4CZib0AP35S4VTNXkoT2CdGg2EKUQPHrGKHPvCOIEka+lFR3jdTyonVOSgLvJm1kqUkaA7RIQU623DRZKRmBu34wgnW61bLvmqS8hcQS4wkSYtfG6VDAWTRMr3SZIKdg3bcbQE+d0z753r0+0WKlCum0JrasalXMIahtBiTZtIqlai1ulCo4v8EOJbstlOsr8iWN6agttNjt3JbYGxrM1NVNh+ho22jKmUjY7WFGP/hTL1qACtWp5WOibi7nZIkFEDu7PXo6Y6ZQaX02pWqOpxjA91v3c60qMN2HNr+s4OYeknFC9UMXJugTzK9+5m3YaSp1bhRCmv6bdzqlS1SQJHJhZ+860jrVZ7KwRFZkydC3Wpni9VUhfIl1Bss1Nv7m0sD7zlqE5swAHZyGf2bnXWDuH9wgmc0ZAB2DfgcsBKCwvcvb0Y4Apk5y9OiKadKmcrTTKqqMwRflkmamrImZvyHCy6vHYWJZTT8QUFqqMZeDK/aZc9bEzrd7KUZfMcV2pGram55ian3BdkOuRJ0z26YFHNT84abKlF5c1C0smW5yJ4NbrBU9/0sYExmCy+e6Y26FYvV5XARnU7qVN2htCCA7Omnvb4nKfX26jUjUCSnMT5nPXs3fpwGTg2j2ztxodJ0aEK6pFV0qY7PGgwXEM3gCaIetBepLxZ4xfEsGxlIKZcbjhMji61zyWSrVGtDfd/BIWq8bZpVmUa7FgxIv9Lvoo+bTg8n2ypyq455rMcjf9Aq0hbNvA0G1Jg8v2mvtMUjvvxbKp4AlCOtbzQggCz/YcbxiZyOyALibKGI1vcOlmuaTxfGHLqrcZ4UpW21QNa2bppbYEpUi5uD93BWKqKUD2JYz3X22XairV2S67ajrWIG2/cTNO2kUnmvK5MtHhCCe18t3ISHYViths0qHoeNuzC6YaYDK/9tddrwWTiiTKNyrsaxH12iqkJxGuRFe2d7GViSC0VnqWISiVa/ZNszv3+upGFJiyx4vLJnO6d/9ljZ898vD9JIkmTmDPPpfUFWkqC9VG5jjlRXiTHvnrcxw9qJjKw5GnBFz/gizXT1S4/pDm8B7BUy4X7JkwAfiFJXNth116joulFala39+C4DjRxqu4llmNtRFJfO4NguuOmLm4UDLZsOsvg+ffKDgwu/Fiqd6Y19A4qZeky3Xep6Xf/V6ajow418XllSBiNaoxZLr0VEcBBL4JQvqhtUYXqptmf0opgUAZLSAAR5hzOmhZdazxd2AbxHby1CsF1x5ZGevNwfENN9zA9dfMc7Zoxhi1DZhSRaMULcJ0w+DWsrm9AlavTYs2aXPfuHK/YCIHT5yndjwQRgI/6q4h5LvbW1a9q4JjIQTzk7CMRARqw0W5qmVNKiWQO7j0cRQYZGKSsibK1aU3UWRc3J+7HDFZU0++Or+qrVA/Fb+4EKNChZPZ+buOW4UKpcmophyifa0LqY0WdtKJZvnhQkMArBehDzTtfJYqGiFg/7Ro6ZUZGmH62tdKvQxdKHb0vUX6clv6xdtxlCCfXnV/zGJpcPqCsUWa3iH2TcNwcNYc+/FTsGff5Y3Hjz90P4u1MsnJHEQHIoJZn4uLteA4TJO/IYeTcZifgtueIXjWtYorb8kwdllE6WQJrTWp0Cy0rzlsNg9PntF47kolVaOsutwUHG9J5jgxziOY7KerjPDq4T2Cp1wh+eGnC17yTMEPP0Nw4xViIEeCtVDXEdFamz5KJdalMQFmo7HXvXR+SjCRNe0+gxJ0sRZ1lGAsDYU+wbEuxujHCugLZVjepDRdMUZk3Ma5RAoTeQwY/GsN/g52cdgOpGzdBGoOjm+//XbmJwUIQRyoRub44rJx4cilO15uIBpex23DJE40UnQpu9ZGBbxOOhJce1hQKJnNymLZeDb3qgQNfVNWjTbJp620/oRdFhwDjGfNoEnSDrq8sRd7taLJpKXtK91mBg0gcinRc5dL5Dzct16N+3OX49x5cNXXKvZR8YsLMU7aWelJshhxskAS7Q1w861bis39VhtBUk7QcUL5XP8t8rDJ/xrM4mNu0rRjrJf1Cnm4Yx7C2dlWEkIKnEitO3Ncz1CUTpXW/Boz40Y4zWJZjTg2C7Gj8wK5xQusjcBzBddfJpjMg5s52nj8+EP3c2HJBIzpSKB8SfqKNMs166XcRBZ/xuzmCiEa5ZLSk+Suz+LmXUqPm2vQ9B2aLPLMOBTK3cqqV4LjYAsEuXSsoVaWWRfDTDfF5EIYFeqxzOZaazppB+nVvOgrGuHJdQfHQgqc1IqdUzOuIzi4xwiKrlYSXQ9M/C7BMZgWlGoXZX8da+PYcbGCPJBG5LxNS9PpcowYWzlAIWoiawNmjjXg7uCKqp3AxMSKIfpLXvISZsbNumZRO+hKQqI15apRRV9rIsCpeU23j6dq1VgvdYxBrTsSWQdn4fAcPHratAOMZQQyUB09x1ATAAMT3Ltiy9dGuy7KG8uYG2jBdQe++AZFJJrAinFtO8IVHT663agLL/UyEheuRB7NriqClNQmoGyPPqa4EONPedb7ugkVKrwpn+hA5yKqW7/VekjKCW7ObVEU7UbgQeCaaoJCyWQi9k1vzMJqvb3CTlohQ7mjy6rBiKmt97xVL5rZtbocr7mULxUIxnPrOgzLLqdS1Tx2VvPgY6bPbs8OtG8alD2TghceE7zshVc0HvveA/9OuWIyjXXkpKBSU5TO9tn1c7MuueuzkGiqiyur3WxKsGdC4HvdyqpXLKK2JHOsNcI36ahCyVRubYfKuBFqMorVSVWb9pd1BscATkahe9xLJ7Nm/bJaSXS5auxzumWOwayFpWy10dGLFfTjBUTWRV43jrwqZ/qBN2g+bkcgEKnWDXLhycFFczU47upPG2Ve//rXc/311/PGN76Rpz3tabiO4NAsXNTGMmypaHrQ15MIkEIQdPE6Lse14Lg9cyzoWFsrZapUUqEJjiPfJEu6reUb1l3VBJ3a+gGw65oko0AwkdM89rgiJURD0XG9xIlGagitx/G2Iz3jR5dUE5Tqna0NPXPRliut5uTN1Etruylg1lkumYu4W78xgE7oyI6OOipSjB3Ld+3DlrWdd13WsAHCSkkpQUUK4QqSUtKz/9f4X2sePWPK5A/O0VOZcVjWmzlWkTLCXDu4rBpMED+oV2o3tNaUz5vFu5NSxIux7dW3bCiLy5rTNb/Y6TzccJlg7xT43s7eeFoNzxU8+6n78X2fUqnEE4/+O2MZU1Jdp1mpOpPp4jnYRDgf4s8GlB4vGTu5Go4DnhsihSTRCYVaJrrYnDneCp9jaIhxFcpweAMqfNaCdCRu3qN4sljrFRbIDRhLKnJ63kuVEmRDzakL0O8sVirgVWOqDxbRl6U7Sk/rtj/FMqQC0BfK6GqCvCKH3BchPEW5qnnonGJPIWEzpBy0L5Gptnu8Z+aRgb5FAc4O3zTebp7ylKdw3333tTw2NynwQkmlqllchiPzEKxz3EY+nLnQ+lilajauugmadksajGcF1xzS/OsPzPiUXncNGre+tI81hFu/RtjZK7E1smdSUJQK7YoNE+UqV8GRmii9K7+ySwrhCITT6Y3WTl2Uq5cnqkZz+vyKEmgvlotmx62bil9STpCuFePqRq/vZKN7V5Oyxsm6uHmXykJ/A9xMJCgUzbiYn1p/1ljHxopjvcGxP+2Te3J2R5dVQ02ltcdll5QT4lL/VpbqhSpubSHuzwZULljDYsvG8cgTmsWC8TJ+4THBi54quGK/Kb/dDUgpuewyI8r12Inv8axrkhb17cXFwYNjMPed9vuwEd4RBDU7p+5l1cNnjnU1GapSROgVG6ckMWq624U74Zr2nYrGidSGJFxU0PteCpBNt7ptdKNchahawYkc4kLnvdd3BZkIirUOFl2oIg+kUUcyiJq9z/mLkJtQLBfWt+nZCxE60K4C7Q2mVq3RCK17KihbejORhckpyYUlgRJ6zUJczYS+KfdvplptbXeApnVRjwqLo3uN0GA+3VtDyHGMqHmcYMbLFrMrI73xrMlwxI7csOC4UgFPaiKbOd52pCeRAwTHZve1uygXmN3UuuVTqU8fZTU2vRHdiJdjnEjZ4HgIhBCo9PrLc+voaoKXdwjnA+JVREXqGyZ7p3qXyQ/13rFGqPVnjoUSeGM9auN2ENLvrRRfeLRI6WSpZ4CstaZ8rkJ02Myk4ZyPjvW6MtEWSzOVKtx4heDZT5bMTwmcXbiovvxyI8pVqVRYvvBwy88uXlxRcWr3Pu1Gfd5qDm5c1yxKQ9/8/nKX4HgtZdX6sQL68cJAWhPmeDQ4gjgx1V3tC/CtpL6hl1QS5AZpi9Tvpb0Cy8jvdFdop1KFlKON3VSPuW88a4JoqJU4p1ur3C4uw8SEpLIOiR59skBychld7HwRMeZ3ZLRXa2WrkySmH96WVQ+PlIL9exVlLRmL9JqFuJpxuyxz48SM1WaSaoJwRM/A13ONAKDviZ5jwVWghPE219tQUbcrI718GtJpScFxYZVMxqCUqxB54Gyw0q5leAbNHAPkMqLn7uvFZbO7Np4xXpHdKFU0nmt8BLtRXaziTnrrFugYNdzMBnoda40MFN6kD7K/D28qNIq1zX1663rrWIMSIyPSJ2vWKu0BbXWpigol4YGI0qPFrgFv5VwFN+cQ7TMlmd6kh5t1qCyskh6xWAYgTjRS9m5/2S3Ug2OA+++/v+VnzcHxIJljJ+MgA0nS5OPrKpO1Cfxa5rhUL6teMd/1hxTk0nECnkJkXPSp4uoZ5ESjlbGiqW9ip7eokrsbKqWQriAuxjipjQuOe61jkkqCeGwZh4RKv83DxNgcyVAS99DcSIcCBMTlGK2a/IaBYlnjuzAxqRBSUG1PCw6AriTgSsR8BAtl9OliywaISHf5vpSgb9q8RpyAVOzKTa6tYGZWMj4umM3o9Tly1Gi3a6rT3raoq7qxTl+NXtVyrgMKTYKwmeONwnMFcxOw7Lld/bPWQqVq6uPXmyGyrB8hBCpUAwXHYa2ntV2UK9GaahWmxwWzkyaA7mZuXiiZgKrbrnVSSdAaov3bOGtfoqhIbYjXsU40CIEKJN64i5sxfay9SAWC644IUhtk+2Eyx3Jk7gvSr/V2t2X9y2crBPMh+adk8WcDCo8WW36uE031fIXU5alGf6MKFOG+kKoNji0bQLliRGHCDdAx2Mn0C46HLat20gon3VqS6yhTzRzUMsfF4hJaa0ql5p7jIdO4VQ0OyMMZRMpZPUCualCAMtYvkW96ZrcLJ+0YVd2qRnobFxxLT3ZtL6qcqxBmJX65SrmHKFeiNaIUE2QVwbTfU4A2FdZcGi7GiFBBU+b73EWYysPhA5IgFBSX1jAnF83rqqvyyOsnIOOiH1s29lDQEow3UGKQ2NgExxLcnV9UtSPJjyuOXuGSZ/X2paSSUDhe6FvJ5TZKnc1zEm2qOtqVqs26aDDbW+ka26n293UccLSmKkRTA/LWsSuDY4DpMUHFdUzfygYReNbjeKcgw8GEgSLfXNDt2ePlotnsGMuY7HEmgqVC5+8XSjCVo+uuW/lMGX/Kw5+xd+5hUe09SGtEVzTSM5sl0pP4cwGVi/2DrW7CEWt+/1gjN6Cs+lJB+hLpypasf1JOEAJSB0KclEPuhhwqVJROr6zqKucquOMeqbaNJH82QEg2rMTesvtQA065pYpZpI1ycDxsWbWQAm/SaynJFTVV2npwnOiEYnl5fWXV1QThKMRkgLo6jwgd9Ok+Vm6JNhG6KymUTGnwdtpwSU/iZh2kI3oKPg6LCkw2ut0aT2tNvFQlvScgSuKebWGVCvjVmMyMizflG5HSLvfR0IOUD6WLNb/hpiqn5RIcnBNEGUkmK1heHj441oUYkfeM+8d0gLphHHlFbiV73C7GBeDIgcS4ksQEKdbKaW0IITj87CxupKic7x0ga60pPlpESPq2ptWD47pidaVq4tb2jHIjczzAeROuQDp0tFtIIXBJqEplrL+2mF0b6Y1lwMsoypp1Z48TrUGA5+odL5gzKqhQkQyYOfbdzr7jiwWYGTcbHr5rvB0X24Lj+nnPpjrPuY41STEhdTgamZLajUTWvY7X2W+alBOkp5A1P8xg2jcleRvkobwa9bLqkQmOPaPU2mxBUj5Txp/28adNVOJPeuSuyxIXYqqLVXSsqVwwWeN2L3Bv0sUdd/tO3JbRJgpMm/tqpbilsnnubhfv2ciyagBvzO24D/su+N5KfXqxuNSiVj10cFzR4JkyaTHmo67OgyfRp4vdn1+trbUcSaUKE9ntP6felIfwVM8+ymERSiBD1RHQxksxKuXgT/tkUlDq0X5UroKrE7LzPk5aoULVVZRLCGN7Vy5qRH5lI3+pqIk845OtAsXYuCJei0ZPnLS8rvAU6kgW57rx2ufsXB8JJdBCrDpPJ4npO7Vq1WvHn/LJXp2mcqHSUwS19FgJb9zFyTp9hVI9xwTIda/jSs3j2Gvb/9CxRgWDCdcJJUF1by/wRULVlbUy/K1l167qcylIjymKrF+Uq1IBX+pa87i9SHcCyu8u/96OowTpyCyc6tRLQiZzK+dyKi9QCspNF2ixZHZds12qpivnK7h5l2DPNtZ6XcI0vI7Xu3FVTpD+ym6+O+6iUop4aWO0BlZDx9r0jo2Ix7UQAhU5jY0pHWuSstkkat44jA6GZK9KUzpVpvRECW/SI9rXuaCWjiQ8EBIv2tJqS3ci33i59sqg1SlVjN7IbmdycpJ8Pg+sv6waTN9xe9bRCBe2eh23qlUP2UpUTUxJbw0xbgJk7Ur0mS4Z5LiWOa6tULdTjKuOk3ZwUmrDMsdgvvt27Y3yuQr+noBof0g05iC6BLwA5ZImCsAfc1GBws05PbN+ab+2XGouqV4w/t+5tAlWs2MSJ9H9e5zb0NXEZIHTnc2oItenok4J82eV4DiuahxHoHb5htdmkzqSIjoQUXy0s52hvjGduy6Hm3dJSr3XZE5Nj6Au3laNzUZa+4akrupGwmI1pCsQqrvXsS805W4qYFvArg2OlRLsmZcUhFp3cFyugis1fjg6GaKdjnAH61kBs1HSXFa9WDABb/NCKpfuFOZaLhlxl6BNiU9rTeVilehIhAqsQNtakL5a8TpeB0k5wcm6jeDUSTn4k/6WiTzpWI+cGJuTUY3McX2TyJ9r3SQSQpB5UobUoZC4EJO+LN2zlD6Y9pFB96yHxRIFELitG5zdqMbdq3x2G0KIRvb44YcfplBYCVqHLasGE6C1Zx09VzTUqsEEx8XSyuQ4rM+xrmpo6z2VkwHqyhxaa/RS285HrBG+NKXy7vaKcdVRKQcn62xoa52TVi1VOEk1Aa2J9gWoSJGZ81ClKkmXILKyHJMeV7g5E5h60x5Jqft8GooEJ5IUnRV18lIF9s+s2BnmJh0ClTRsnwaiUOtj7lY63Q8lTPSxWnCcYJSqt7GkfjcgHUn2yRncvEv51MqNNC7FVC5UyFybIdgTmMxxnxYnIQShD3HtVlGump72dnRVo8LBrpNGWXWXzLErtsfjGHZxcAwwlZfEaRddWt9CuVyByNUoT9oS2h2C9HpbyrSTClotEZaKMDveutslhWBuQlCurAhzlSt09YarXjSKleG8zRqvFekJpL9+r+OknODmWm+ewR4fXd6qzDHIEdsgUZFjLJi0prJQ2yTqkk2RniT75BzZJ2cJ9/dO/bhjLv6UZ0urLV3xXEEqNNZ7qxHt8n7jOvXgWGvNAw880Hh8LWXV3bKOjmorqy6ts6waEF3uk3ImRB7OwEKlJUjUsYZAUSjVlKp3QObYG3dJX5ZCdVNfXiOqzf2kcr6KN+Y2WlRy+3w8dPeqiWJMNOk1WlXcrGs2GrpU1AVJTJBzKGCeu7BsdFZmxpqek3PIh5rlHpXu3WjuNx4KJUzAu0qWOo41ricQdtm9btysS/baDHEpIV6O0bHpM05fliJzmdkIcyJn1aRTKljJHMdxTQ29DZ3ogRNH0pGmzL7LWHCU6Lq22Ap29ZAby0CQdyl32U2rxIOXj5RjyAQ1U2ubOd4R1EUlVrWEAMKgLsqlqVQ1joTxLj1MEzmzC7ZUNOPDUd0n5cq5CuG+EDdrzffWihACJ+OuX4hJd4p7eRMeMlSreh5vBDrW23bz3i6kL0HXNonSinBPn8A365C/Ptf3OxJCEO4PiUvJQNezZfQYz/Qvq67bOO12Ma46zX3Hn/vc5xp/X0tZNYA347eUU7rOiiAXdCurHi5aFZqeojryQAoxHxkF63omMUnAN2JcudTO6CMXUhDuDTe0hUYGrZv88WKV8GDUyE5nZ138lKS01DpPJlojKwnpPSuly07GQfmya1msLiWM73NZKps3u7AI85OQjlbeXAWKTLhqvNpKW7/xwDjSBMerTP9xbDbH2n2SLWsj3B+SvixF8YkShUeLBHMB2WuyjZYoFSqQ/XvBfbc12eR1O/2it39xN6TfKbCrtcaRg2egN5pdvarLRJCZVBQqKyc70ZqzFzWnL8Cpc50WP+0kWqM1hC5IB9tzvEOQnjC7TYOIcnkrolwXl00Jda6LF2bgCWbGYHEZCjU160xbOVdcjBEORAd2wFb2JU63fqtmqovVvsGzrgmmte9QOlkHd8yjuopq9YagR6+sul61UTlXITwQ4mbXX/bkTxtRmepFW1pt6SSbEg2F1G6Mio1TnZe+9KWNIO3Xf/3XOXnyJLC2smqgcQ3XN6dcBVHYOzgeJnOsE40WIHrcJ4WSyKNZE2Sdrdf0CoSrKJWN1dBuRfoKoYz2RnU5RgaSYHZlEHt5j+y00+HAUCmbzfvM9MoGvZN2UFH3TWEda8b3+FRjs5EUJ7B3unUtK31JKjDiSqXK6usqXU1AScSwJdVgRCzV6pljYo3rsssjla1DCEH2SRmCGR8VKnLX51pEMmUokZ7o23dcV6auC9b63U6/1kMJ18mgs+dYVzRuKDfM2WRYdvWQE0KwZ15RrolyFcqak6fNxf+kA4IogOUu9j3NLC5DJoR8WPPtsmXVOwLhSIQ7WHDsOoJ0aHrWimWYmxA9bSGmxwRKmrKjiZwp62imfLpMuCfAm7T2TevF3PS6nz8da4oni5RP966l1BVzA5ZtO4tCCMK9PnFha/qOR62aRAWmDEo4dBXZWgtO2iHcE1C5YEurLZ1Eq3SwjIqNU53rrruOn/mZnwFMQPxLv/RLwNozx07GQfqSpGgWxY4Dkd+mVl1aY1l1NQFXQJ9NRBE5yMuzaEAvVox6lCNIgEy0e++vyq+tYyqaytkywWyAm18JeIUS5A4EJG0Ck+WlGDclyU45Lc/1Jj3iQluWuZoglCA/rXAUnLlgNFeaS6rBbHpGoSDyNIVB+o7r/cZdxLhWQ0hhKglWc5XQRj9oVAQvtwIVKfI35hh/eh6/bR2rQmWqD/q0u9X1seo2Tn6P0y+GiJVU2BkcJ+UEL5A4NnO8OUzMuOjI4cyjFS4uw+F5uPEKwYFZwey4CYL6sViAPZPmvi790eot3MmYzHF3hbtu5NLmXPquKbfvRT4N+drPx9KtN+SkkqATTXQosjfrDUAFsmd/S3Upxh3z+t6kk3JibCO6XJfeuIdw+t/kNwQNcsSCY+lJhCc3fJMo2BMYG6512ntZdh+Rb/pgKz02Q0fFxqmZd7/73YyNmQjnf/7P/8nf/u3frjlzXFdirmcdPQdSUXvm2CyWXMdDqSGyhdUVz+J+yMkAeSQDFysIBFUErtoZYlybRcM3vpSgY010oLNsOzvnIQTE8cpcVl2MCSdc/LaqHW/c67AujZcTExBNOaQCePwc7J/pFBqVgUT5kokooTBAf78uxoi8O3y/ceNg5aqZY6FBOVgL1Q3GG/cI5jp3HKUrUSmnf+bYAaVMosl1zKZkMzrWIMRwmeMuZdVJReOGAndA1euNZtcHx+N5QfryNBkv4foDmiv3C8LaTWFuQuA6vX3klouawIeZMdGwbLHsDKQreyrcdSMVCKSC8Vx/cQ8pjTBXLt1ZUl05W8Gf8vFnRyQ9scn08zquXqziZkzQ26v/JSklKF90tQxwx1zcnLP5pdVi9DLHMpB4eWfDN4n8aR93zHoeWzqJAgi83orVo2Lj1Mzk5CTvfve7G/9+4xvfyPnz5xv/HiZzLKTAm/IbitVKQbqprLrQVFY9tBhXNTH3yAGCKLm/1n/sCIqJJPR2hhjXZiE9iQokpVMl3LyLN925tsjNujiZ1paTynJCbr/fcf91Mg4IWubUpBDjZB2inMNEbf2zZ7Lzvi09E6hnPECv3nJINUGMrX0tJFy5qs8xWhsbJ7v03jKc/OrBsZsklE4W8VyzadmMjvXQLajdEgy6nBBknG3zuN71Qy4KBM96bsgNz47IlEotN5NsyvSznF/s/rsXlmBuwogW6Hhw3y7L5iOUQPqq4be6GqEPuQhmxlcv0ZkZg0OzoqOUr7pUJToU2dL6DUIGtf6WLn3FuhzjTflGWKvY/UadlBNU2ukq1iEdSTAfEi9tXnCstVk+DFM+tBuQriR/Y37DPb6lJ4kOhlQv2uDY0krom+C42GNojIqNUzt33303119/PQD/8i//wt///d8DEAQBjjNcL6g35jY2m6UQZNIrZdWFJrXqoYPjirFx6nafrlQ1y8WVObzRfzwTUhSSVGjO+25GpYxvfHQg7CpcmB1T+JMe5Zo9oU6MDk52uvOLcdKqw5YrLsb4U+a5M2OC6TGYHuv4VZPF9gSRmxiNlj7Z43X1G9fxVN/Mcd01RCmsINcW4qadvpsWrgNOoUJ5KSEUccd6Wlc1wpFDWZ4Jt7OKMKkkeHmnIzO9VYzEqm5qQjJ+TRrhSKqLK4tlIQTzkwINHcrVpYpGKZgdNydex9qUgVp2DDKQHSVEvUiFxvB+Irv6cz1XsHe6NYiOSzEqlHgTVqF6o5C+MiVlbZUbcTFGBopwb4Cb7q06nVR0w+OxG06m/01+vehYI9VoKti7OXdTFizBXIAMFNUtUBq3XDoIIchn+i/YR8XGqRmlFL/1W7/V8fgwJdV1nIzTEIcCyKfbfY5NWfXQHsdx0tXGCeCxs3DiNBSb5gAROThPHqMgHaby7PoWJifj4OWdrmWuYHpus/t9ygXzHelSjPYl6YnOwFSlFE7aafWM1zTmyX3TcOPlomv7gRACFTkEQpOOYLlf3/E6+o0b7+dJ6ONOECeghDbHapfeW0azQFfXnyuBlySUUx6R7pynk6rRZxpKrdoVHdasOtY4KYf0NjmmjsyQ86d8UkcjyqdKLXYh41kTMF1oyx5fWDRZ5eZSLZsx3FmoUA1cVu0oweX7JP4aSzTipRgVOaZsybIh1L2OdVvmuHqxipt3TZnZlNc60Tejdd8b+SC2BOsiBqFGr+d4M3HzLsFsQOXsAE1vlpFiLG1UqdsZNRundm666SZe+9rXtjw2TEl1HSdTVzs29+PxbHNZ9VKjrDrwhmwCTkzA241yBQ7MwKOnO20Z4wTy6d1/b1WRwp8Lccd7B5oT8x5VKdDlmMpiFZV1SE90zn1CCPwpr1FtFZdipC8a3szpSDA70fs7dTJmTTWRXSVzvN5+YzBex302PpIEFOC4NnO8laiwpqDexykk8My49eIuVX+xRjjD9RwLZZKULfcAbXRpVhNj3CxGKtpLH03j5FwqZ1dmWCkF89OCcgWS2iK6GmtiDfOTrdlDa+O0s+imcLdZxMumNMlukGwcDa/jcruASEww7yOkwM17fUuv+nngqbAmdrJeL+Ue6Fib0jIbHG8Ydc9jHVthLksrqVB07YIcNRunbrz3ve9tCYjXEhyrUOFkV7KO2aay6qXCAuVKEVhDWbXWXfuN49hU5x2YFeRScPrCys+SRCPE7u43rhPtDxl7Sq5vhjw77ZJELnq5SnUpwZsMSIfdn+/m3cacmRQSc14H3NRXkYOOtWlRECulzR2ss9/YvFn/ebNSBUdqXMcGx1uJDKRRru8hZpqUEsKUMJaZonN86GpiRDuHOGfClUi1oj9Tt+mUviQKBHIblt0jtdJ3Mg7pK9NUFqotC6+pnFEzritXX1iC8XRnCe4wNfSWzUd6W6cerqsab2KXNz9tA07GIWnyVNSxBinwxrzGz4XTuYuZVIw9RbvHcTMqVOYm30dcYj2Mcln1ZuLP+Lh5K8xlaSXyTaIpTtpboEbLxqkbs7Oz/Oqv/mrj32spqwbwZ7yGnVMus/Ia5y+eXnnOMB7HWptqyS42TktFSPmm1Pe6o4LFwoo4arGMEePaxUrVdaQnVy1lzaQFzrRP9WJMOYZw0sHrkaxR6ZU5M16OcccH39SXvun9zITm+y92Ka3W1QSkWF+/MRiv4z4/LpSM5ZS3TT63o4oKFSrovW6KCzFe2sHfE+CnOp+n4/4Vfd2Qbt33uvYadZvOQBoBsG0YAkNFex/+8Ie58847eepTn8rnP//5zTqmTSU6EBHM+pSeWLnqXUcwPwlLBbNTVqoYg3TVtrNl5eR3FtIVPa2ANpKkYtQ2nawtqd5oVKha+o6qF6u4aYU7vhIcm1K/1tLqpJwYAZE+OgDSMwbymxkcCzV6atWbjfIl0YGQymYrjVsuKaIAAreztHoUbZy68cY3vpGbbroJgJe//OVreg036xqhQa3JRiuZ4/MLK8Fx4K8Ex7r2X09ijXZk1/LbpaKxTYwCwaE5ODpv+o+1Nj67YQCpbSqp3GmkQ/AmPCpVTUVKxmb7a23U58y4nHR42fZD+RKE2WzK9Oo7LsaI0IHU+vRXhCMbY60blSrkUqZ1ybJ1CClwsm7f4DicdEnPuIQ5h2qb6KmuDi9eLBwTHCf1iodygvAkylf4nvFd32qG+gT79u3jrW99K1dfffVmHc+mo3xJ5so0SVUTl1YW3NPjglQIj50xN4XJ/Mrv1H27bFn1zkK4sqOJfzOIl2NUpHCyVoxro2kXuaterOLP+A3VTuVL3DG3S3CsazYY/WdOJ9fflmA9mOBY2FL7TSCYC1C+6N1vbhk5It8s2ottvZCjaOPUDdd1+au/+iseeeQR3va2t63pNZyM08gaeZ7Er/UXn1s41XhOc+b4sbNw5kLHy6xQScARXTPHhRLMjpu/KyV48hFBtlZeXSiZyj1py2kBIxKanXEpuQ6x75Cf7h0tKF/i5l3ipRghjIf1oEhfmv7PqmZmzLQbtovV6kKMyLlGUGs9KAFSQJfpuRprlDSVBWI7ampHHCfr9C6rLidk5jzyOUl6j0e81DpHr0W8WDgr4w6M2Kp05bZmjoeKx2+77TYAfu/3fm/V55bLZcrl1lnMcRw8b/tLU705j/BAQOH4MuG8ufmHAczPaO5/GPbNgOeJxo5okiQIT6OVJkmGX2jXf2ctv7tb2JTvwNFop3Z+NjGrXy1WCWYDhLu+4x/1cdD183s0ziESEhLcKbflOe6Uy/KJZXRTf0tcjfEnPLTQfQW3VFaRkLT87oZ9Hp2gAneo8znqYwAG+w5UXuHP+RROlgi7KHJoqdFibffjbki7ANvxOI4gm9KcPt/6+KjaOHXD8zz27t275t930g5OymQd3UgS+mlK5WWKpaXGc/wmQS6xUKaiJPRyDahqs4ndFkjVs4W5JsGtXFpw/VH48r9oKjGMZ+05bWZ6VvFY6JGEDqmg/3fjTXks3r+EN+4OJSIqfYnwJLqimZsQnL4AJ8/A7ISmUQRdTRDjG9DDoIT5k+iO/uNC2bRJRJ7V+tkOnJTqWpVZv24n5xz2zUuWfuCz9N1OL9xhW1Cla9rTGj3H5QR3wkNIQT6t2TMpOvyUN5tNS1bfe++9fOQjH2l57M477+Suu+7arLccjjnz5yILjYdm9sDMU83fL7Y//yCcvHAS+u2SrsIjjzyy9l/eJWz4d/A0WGSTexP3QIUyFx9aWP25AzDq46Dj8zefw3k4xSl4qOnnPvD01mvVnJMSiw91XKmtdPvdjWIPlCmx9FAPo/Q+jPoYgAG+g3nz5yJdZFP3wAJlFh5axw25iUOHDm3I61g2l7EMPPJE5+OjaOO0GQgl8CY8lr6/jJtxCYJUx2IoqGWOy6UYpxyTJDGJdpDdBKWqCaQchGpdLBdKpqc1l2p9+qE5o1z9vROjIcY1DJlIUNibIQyN/3M/3KyD9ITxPU4PHlVIX6Jc06/sRooj83B+UXNh0VRn6LjWbzxENronTi1zHGto21upVxU4ypZVbwcqVCBqmgFN13VSNO1s9Q0XN+sgXCPeJesbYJqhVcyFFEhPUq1loZNygpMzJz7wBVcdXP9nGpZNC45f97rX8ZrXvKb1zXZI5hiMkfq5vz9H4dEi4Z6VO02lqjt6l6pLVeJiwvTzJ82gGZIkSXjkkUfYt2/fyGYoNuM7qC5WOfVXp1FpB2eTRBt0rCmcLDB58wTB7PoaoEZ9HHT7/HEp4dQXTyFcaYQe8i4Tt4y33JArC1VO/c1pk9WoneflR5bJ35gnfSTV9b3qlE6VOPU3ZwjngqGrC4pPlKguVEgdSnX93cKjBVKHU+RvyA38mqM+BmDw7yAuxpz+69NoBF6+dfVUeLRIdDBk7Mb8Jh+tZSeRiUTDVQKsjdNm4E16XPzuEp7QREFnvXrd57h6poIz7sKFCqWyJvQ775G6qpFRZ1Z5qQiZlGlha8aUV0O5qjsC51EnHYGfd/H91TeDnLSDSim8KW8on2jpGqXias3OKxMJjs7Dt36giaoad4P6jYHWzHEb1RjGMgJd1h0bK5bNR4UK6QmScoLyV9bWcSHGSSmcmhibkzWVJtWlGK8eHAtj0zks0pPoBdO/rBON08P+bavYtHf3PG/HBMJdkZA6mKbwcAld0o1dD091EXmqgJIC5at1LWillCO7IK6zkd+BEzhIIaEMYpUyo7USL8c4voOX8zbsuEd9HDR/fhEIlCtJShq9FBM9KYtSrRsdXtbFDR3ixQQRmFuWiAVu6Kz6PTqhi3Kkucb72D51QxcS3MhFFzUy6vK7ZdZ8Txj1MQCrfwcykkT7Uyz8ywIi1zqXiEQgtBj573DUqCtW1zMa1sZp4wnmArwJl+q5ClHYGRz7XohONJXlhHB/Cl2NKS4mhH6XazFOoMu9c6kIB2e79xTnM4Jbrzdl9JYV0jUF6VRgeu/74aQdvLyH26vcvQ8q7VC5UGz8e88knFuERx6H2aSKnIvW328MxgZRiQ6rxmqscWStcqBky6q3AxkqpKdIShrVdG+Nl2P8w1EjWSBdiTfts/z9ZRhzTYubWJsOiwxlo+cYGFrUa6MZ6ZVFMOsTzPqUT/dxO8fsflrhnZ2HcAXCE8RLm6dqGy/FuFl3aGl6y2DUvY7j5RjhGPGtjudIgTflNUS5kmpiynC6LcbaUKFErdXOKTG/30uYAkBZe7dNJZgLkJ4gLlphLotRpfacFcVqa+O08ahQkb48TbwUkwo607e+F8JChVLoMnF1iuy4orTY4/rUILpYLsar9BTbwLiTwINUCONZVs0GCyXIXpshmBu+2s1Jt9orSik4vMeIpV24sEH9xrVj7JY5rvcbp0NjZGFdYrYe5Rt7saTUKbZVt9ms4094jaC24eCxhg0NFSh0vKIhI/3tXXMPtbKrVquUSiW01o2/X8rCMkIJ0kdTJJWkw0e1GZ3obT9Rlk6EEGSvyiAcQeFEoa8w01qJiwn+zHClSZbhcDIOlYUqTsbpGhwD5oZcF3Iqa4S/ulI1mJ1NFfVWXuxFw4Te628FZW2cNhdvwsUd86haWycLK1mzYj04tjZOm0K4L8Sb9Eg7nUbDvheilyuUpyPykw75vT66xz1SCKAtOC5XNJ7b2W9s6Y8Qgj2TgwuV+dP+mtoA2+0VAVKB4PBkQkUqit4GFpy6qiNzXChBLl27prVG2mt7W2h3+jCuPXQIvDk5t+Grrava2DKtJXPsSdDaeBx7YmjF641mqHd/17vexU033cR9993HO9/5Tm666Sb+6Z/+abOObUvw53z8aZ/ymd7ZY13VA2WpLFtPdDBi4lnjuDmXwsOFvpscw2KU+fSaSpMsg6NChVCCYI/fU+XQyTgIR5obcDlBeWLgMmknP7ydU11gQoaS2AbH24YQAnfcJSleupuwlo3Dc02AXKpN19bGaXNQviR9eYq01yU4TnxIOSQTAakAsrMuMklaesHBLKZ1FwvMpaI5h1kbHA/Nk4+YHuDNpNdad8KNmT/ocLLodJzrtSK8zsxxvd+49ozaDotlq3GzbkM9GowGiAoUTpvAm1vrO46XYnSskY5cU89xfS2VVBKEq7Y95hpqC+iee+7hnnvu2aRD2R6kI0kdTXH2/55t+Ja2o+PhTa0tW4c/4zP+rHEu/PMFCg8t488EG1IGnRQSZCBxstsrDLDbUYHEzTv4k73LtZyMg4oUcSEmKSe4eXfgNgc37QxdVVBXZfQmPAoPF3o+by07pJbhcHPuplSFWC49hBCMZzWnayLl1sZp8wj3hmTGsh2P+4lLdTrCyzhGNXnKwfcExaImiprORTUBV3RkjpcKNbtM20s6NFvh+6xqQYlONKLp/eLlmKPXRJxcFiwXjUDYuvGkeZ/aPyvN/cYAQiPsFLsttK+h4+XYqJ+nWh+XnsSd9Cg8XMRJKYQa3soJjJ0T1BMTg7XNbSZ22AHhfIA34VE+2z17vBZTa8vW4mYdxp4+RvrqDKVTJSoX1m/vVF2OjULyRtgWWHoifYk37vYsqQYzYbt505tsZP4HPydrUpgvJaiUg9tjY8SUXQtb8rUFOLXJ2AbIFoBcSlBtaoWzNk6bg/Qk+fmxjsf9KEV5LDQ9sAFkJhyCXJe+41gjHNXhcVyqwMyYvW/uVKRvMn+6qe+4fu/N7/UYz8DF3vvFw+FJaBo2xdJKv7F5Y4zdk2XLUYFEyBXv4biQ9FQ/96d8055aNeLGa+kTrycakorGSTktGzPbgY34MJNA6miK6mLcfQGmsWJclwDKl+Svz5G7Pkulx0bHMMSFGH/G3/aLdLfjTXhkn5xbdRPCm/JISgk61rhDbFjIWtl2Uh28NDcpJXjjTqPku71cX1fNjrYtq958VMqUWK1JVM2y64hqGkPWxmnzGdvTGRyHM3kKnksmMtlfJ+WQn3YotwfH1QRcafxsa9TPme033rlITxrv2qY5L16OjTXUmMvcBCyXNua9hKNotocplIyXeUNDwApybRsqVIjmeTdJerYYujkHqQRJMV6zPpN0TAl9Ukpwstuv8WQjvhrhfIA35lI5ZzKO8XJM8bEiyw8uoyJly6ovEYQU+NO+6U8dIhjqhlHms/3Gm41QAn9yddu3RhZXm4B3UFQgkZ4kKQ+eedSJxkm7xu8v6AzMdGJaMKzNxOajIoXqcg4so0kUgKNguWhtnDab/Fim47FofoxiGSaa7N1ze31ovz4rCSJSLZmmZdtvvOORgUS6skWxunqxijfm4qQcxrMCKSCON6CSpy3wrSaQT7c+ZsuqtwcVKVTN6zipJgglO8S46jhZF5VSVC9Wh7bMrCNcgVCmrHq7PY7BBscNVKiIjkZUzldY+sEylYUK3oTH2NPHmHreJOH+cPUXsewInJSDDOW6RHySkhF9sv3GOwcn45hNKjmckqEKh8s86ppSp4okMuhuBaVjkzW2u9qbj3QkTs4lLlg7J4spo/Y9WFiyNk6bzViuMzj2p3IkCWSb+otz0y5SGI/aOrqqIWydP5cKJmscDe8wZNkihBSoUKGbMsdJMW7YQo1lTNnzYrHXKwyBEohax3Gj37i5l1lgK/e2CaEETtohLiUkhQQVqZ7Vfaqmz6Krek1tbGDKqkVdoXyNr7GR2JV/E9G+kHihijvm4U95ODnHWvhcgshQ4kSK6lK85n7h6nJsbgY9dsosW4+Tdsx5JUYOYONUp36TL63iZ15HVzTSNQsEIQVO1qX4aOtKwJRVr82ywDI83oTbVxjNMjqEvvF8PXHBZC+tjdPmkc93CY79iCrGc7dObtLBjySlpQS33mOsNaLtPl0owVUHV/fptWwvTsahdMrMl0Y9WDY0QUJfMJXXnDg1fHl8kmieOGesmkJftJTcd/Qb17FT7Lbh5l0Kj5aIAXfM7Rv4+tM+0pcob20nTLom2SB91RCF2062/wh2EE7KYexpY6QvS+HmXXsDv0QRQuBOeOsqw4yXqnjTvu0130EIKfCmfZQnUUOW7ri5we2cklJibtA1tUY338UnOdE1VUZ7j9gKnJTTbr1pGVGkFORTULY2TptONtsZHAsV4dfEuOqkJh3CNlEugWgR49Jak+jOslnLzsNJK3StLa26aFSK3fxKi9nchKC4BlmX46eNHdvJM3BhybQmaWnalOr9xk5bNZZdh28fKu2A1sTFGG+qf+ubm3VMQnGNayLhCKQSSFfsiDbW7T8Ci2UTcHOtHm3DklQ1/sTqfbCWrcUbc42N05BWAfWb/CDEpQQVyoaVgApVs2YIULN386Qt+doiVMpBOp3CaJbN5WMf+xgveclLuOWWW/ixH/sxLl68uN2HBJhFtFLWxmmzyWQ6g2MtooZSdR3pSMb3ulSagmMtQDTdp4tlkxm0Ylw7H+nLxpxXXazizwYtc24+Da4Dlerga6zHz2pCF555teDYFXBhEU5dFEaNOtEd/cb19iarVr19NJIQmp7OHXWcnIObHX5tVkc4wgTIntx2GyewZdWWXUqz/cuwAUxSTZDK9hvvRMK9Id4aNi2GyTQnxRhnj9/YsVahAtE6lnTNssCyNTiRQgbKZPXXOPlahuMTn/gE//f//l8++tGPMjs7ywMPPIDn7YwNw1QoyEba2jhtMl2DYxmRS4HTVs6e2+PDPyyvPOC0Zo6XiqZkNrMR/riWTUX60sx5WkOs8duyhvW+44vLMN5phd3B+UVNuQo3P1kwNymYnTC9xf/4T4Kzi5CNEhypWsdGAghhBbm2ERWqhiPHai2GKlCkDkctFQbDIISoKV3HNji2WDYLlXIaKsPDCgRUL5oyIidrlap3GtKTawpK6zf5pLJ6cKVjjdt07lWkjNp1JUH5K5suO+EGPioYHQFJdTnBsaW0m04cx9x777185CMfYW5uDoCjR492fW65XKZcbq2xdBxnUwPp0NPk05rAEyTJzsksJUnS8v9LnShqjWSlUmihmMgltH/EzJTECzVxYrLHIhQIHwTmicWSZv80CCFJdrln+SU/Dlzzp1qoIlIClVMtn8VRMDuW8IPHaAhqtVM/76VyzMKS5MYrYP/Myrk/OAv+9XDfd+DU+YT8tCSKTMUBQEICrkZLfcl+j5f6OBC+QIQSqUBGctXPER4yDePNzxvmOxCBQHoKrfVK5cAGI+Vg6zYbHFt2JU5KoQJFXBwuONaxpnquTO6p+R0hCmDZGFSwolg9SOaxXnkAIINacFxqCo5jvSP6YkaFuo5A+ezSdh/KSPDEE09QKpX44he/yCc+8QnS6TQ/9mM/xitf+cqO59aD6GbuvPNO7rrrrk09xifvhcICPLSwqW+zJh555JHtPoQNYWGh9cuNwpBbrjwOwEMPtT3ZgRt/EsBkjw//UBk40fjx/jzdf28Xc0mPg6dCFWNt+ui5R+Fc64/nMubPalw2fYLLps3fu537q5tuKR2Si/vh5MWTsDO6OdbMJT0OrjX/e+Tk+j7DQN+B2Ydl8aHNO+GHDh0a6Hk2OLbsSoQSuPm6yvDgGeDy6TLetE/qoK392k20WDL1yTwaPz/RYiWgfImKFNXFauMxW1a99bhZtyESY9lcnnjiCRYXFzl+/Dif+cxnOHHiBK9//es5ePAgx44da3nu6173Ol7zmte0PLbZmWOAhUVNdoeJOyVJwiOPPMK+ffsGzlDsZKrVasu/PT/NV767jxceE8yMt373Wmv++ndPsXC+yg13VvjBV1KoaycAeOKsxvPg1hsEmWhnnbPN4FIfB3Ep4dQXT1E6VWLsGXmyV3bWTp9d0Pyff9RM5sDrIsKUJDEHx09w/Pw8T32S6vocrTVP/J9TVEoJbt5rUZ5PSgnlcyWmnj/VUsl1KXGpjwOA8984j0wrslcMsBPShWG+g8KjRYQSBDPb3y9jg2PLrsWb8Fh+cHn1J9ZIKglxMSZ/Y27NXm2WnUkvS6Z2kmJi7AjaepTdvEv5TFPpqMD2vm4xTkqBEJtWbmVZwffN4uTuu+8mCAKOHDnCbbfdxle/+tWO4NjzvG3pRc4P0Ou4XUgpL9nFcDOe5xEEAcWiuW96foTnStKRQHbR8hjbG3Dm4Vq22XfQSJaLmuWK4NhVgtwO28zYbC7VcSACgXIlju8QjAVdP0M+rYlCzYVlmMx1ntdHz2oOjsP1lysCv/d6SrkKXdB4SrYKXyYgkEipLsnvsJlLdRwAZK/MGqGsdR7/IN9Bau/OSUpdmmfLYhmA5tLYQSg9XiLcGxDsDVZ/suWSw8k5q6odJ6UEFciOzREn46DblDmF9VfdUlRqpbzdsrkcOHAA1700szWWjSWdXskYeX5E2KZU3UxuxoVaT6kIFEmiefQ0XLkfDsxuxdFaNgIhBCrl4KSdngJLjiOYG4fFLvbzC0uauiNTKuw/T0pfdnUW0bFGWEGubcfJOCOZLLLDzrJrUSmFdEWnR20XqssxCEhfkbHexrsUJ1KwylBIyglOzu1QOFeRUaxuRthxsqWolEKFkqRog+PNJgxDnv/85/O7v/u7lMtlHnzwQT73uc9x0003bfehWbaYZsVq14vIZ+iaNQbITjmouhaDJzl5BmYn4JpD3TPNlp2Lm3HwJr2+gdFUXhAntFTzxLHmifNw5YHB3kf6Ch13Ph4vxSYwi0YvMLNsP3Z1Z9m1qJSD9BVxscudtwmtNeUnSqQOR/gzO8OqxLLxqECt2FP0ICknuPnObhMVGE/j5h1uaTPHW4p0JE7GXfV6tmwMv/RLv8T58+d5wQtewJve9CZ++qd/uqOk2rL7yWRWRBocL2K8T+thftLBq1VsFWJBouG6I2LV7KFl5xHsDUlf0d8aYCwDoWc8rOs8egbmJ+HyvYOdc9Ujc1xdjgn2BkNbcVosG4HtObbsWpQvcTIOlXMV6NOfVr1QRaUd0penG962lt2HsWQS6LJG+L3PsxN1CY5DhairXQfS+C/a4HjL8SZdiicKoOy+7maTyWR4//vfv92HYdlmmjPHnh/2FdTyIkVmxgVKnFqWXHMd7J3egoO0bDj+5OqJgmwKcmnjdxz6cHFZIwVcd1QQDKipJD0JbRvWSSVBOgJ/wiYrLNuDXWFYdjXepEdc6p1p0rGmcq5M+ooUbs722O1mZCCRnupZZq9jDUJ0LSOToUR5pkRfxxqhbM/xduCknPZ1lMVi2USag+MgiEiF/Z8/vtcENDPTkqsPCrvhvIuRUjA/CUsFiBPNE+fgqgOwZ3Lwc95tHq0uVHGyDu64XZNZtgcbHFt2NU7GaQiEdKN8uow3Za2bRgHpS2QgiXsIOtWzwt16nKQjcdIOcakeHAvbc7wNqJTqKG+3WCybRzq9UlobhlFPMa462QlTefPkKxVBnwody+5gPCtAwIlTMDcBTzo43DmXrmhVqQaqi1XC+dDqv1i2DTvyLLsaJ6VA9lZDjAsx6ctTI6nGN2oIIXBzDrpH5jgpJyhP9BQAcfMuST04doTtOd4GnJSDDCWJ7Tu2WLaE5sxxKp0iXKVcds9R84TZaTunjgJjGVNSLRrl1MPNi8IRLWKX9bWaP2VLqi3bh+05tuxq6gq3cSHGSbcO9/K5Cu64SzC/Sp2YZdfgZHvbOcXFGH/aR6juk7tKO6C1CY6l7TneDmRobLZK5dJ2H4rFMhI0B8f5TLRqmbTr25zLKJEOYTpveo/3TA7/+/XssNbGuql6sYqTsSXVlu3F3sUsuxoVKVSkiNvsX7TWVBcqpI5EKDuZjwxO5HSUcNVJygnuWO8JWYW1STzGlFW7NjjeaoQQeONez3NosVg2luay6nzOth9ZWhFC8LSrBE8+srb+cuEIhFpplalcrBLM+sZdwmLZJmxUYNnV1BfT7WWYRvDBJdxjs8ajhKzbOXXrQ09qZfg9UKFCOIKkGCM9aYVmtgk359iNCYtli2jOHGezNji2dJKOBO4aK6mEuxIc60RDovFnV2lst1g2GRscW3Y9bt5FV1szx5XzFVIHQyPYZRkZnLTCzTqUHm8ty9WJBkHf3nMVKuObXTDBsWV7MP7l9vu3WLaC5sxxLmODY8vGYsQtBTqGeDlGpRSeLam2bDN2hWHZ9TgpBUI0soXVZRPchPts1njUcNIO+RvzSE9SPFlsPJ6UE6TfXam6jgwkyhfEhZrXsWVbcFLKltxZLFvE0aNHG3+/6opD23gklt2IdKVxIKhqqgtV/Em/Qx/GYtlq7Ai07HpUWiF9SVJKUKGifKZMdDCygg8jSrAnYOxpec79w3mKJ4sEc4EZG6sEx0IInJwLScH2qW8jKqVQdnPCYtkSXvSiF/G+972POI75kR95yXYfjmWXIZyauGWiSUoxwZ5V5NAtli3ABseWXY+KzGI6LiYNJeLUwdD2jI4wwVxrgCykwB1zkW7/oMvNOSCFLevdRqQrbTuExbJFSCn5xV/8xe0+DMsuRUiBdAXlMxVkqIzgosWyzdgVnmXXIx2JO2ZEucpnygSzPv603Z0cdeoBsvQkpdNl3LHVAy4VOahQIhx769xO3AkPu7VlsVgslz7SU1QWqrhjHk7Obnxath+7wrOMBO64S1xMSMoJqcNRTy9by2hRD5DDeR8ns3qZvQpVQ7Xasn0EMz7+jN3gslgslksdGQiEgmhvYCv6LDsCu0VjGQnctAOJxpv0COasTYBlhWAuYOLmCWPztAoqNH3J0gbH24qt/LBYLJbdgQwUTsbBnbAl1ZadgQ2OLSOBSimcnEPqSMra8Fg6cHODibOpUKFSNnNssVgsFstGoHyJN+bijVmRVMvOwAbHlpHAyThEByLCvda+ybJ2pCdJH0nh2kncYrFYLJZ142RdosPCtrtZdgw2OLaMBNKV5G/IbfdhWHYB1h/bYrFYLJaNIZy3rW6WnYWtL7VYLBaLxWKxWCwWy8hjg2OLxWKxWCwWi8VisYw8Nji2WCwWi8VisVgsFsvIY4Nji8VisVgsFovFYrGMPDY4tlgsFovFYrFYLBbLyGODY4vFYrFYLBaLxWKxjDw2OLZYLBaLxWKxWCwWy8hjg2OLxWKxWCwWi8VisYw8Nji2WCwWi8VisVgsFsvIY4Nji8VisVgsFovFYrGMPDY4tlgsFovFYrFYLBbLyGODY4vFYrFYLBaLxWKxjDw2OLZYLBaLxWKxWCwWy8hjg2OLxWKxWCwWi8VisYw8Nji2WCwWi8VisVgsFsvIM3RwfO7cOX7+53+em266iR/90R/lH/7hHzbjuCwWi8VisVgsFovFYtkyhg6O3/ve9zI1NcVf/uVf8uY3v5m3v/3tLCwsbMaxWSwWi8VisVgsFovFsiU4wzx5eXmZL33pS3z2s58lCAJuvfVWPv7xj/PlL3+Z22+/veW55XKZcrnc+maOg+d56z/qS4wkSVr+P4rY78B+B6P++cF+B7AzvwMpbYeRxWKxWCyWIYPjhx9+mHQ6zeTkZOOxyy67jO9///sdz7333nv5yEc+0vLYnXfeyV133bXGQ730eeSRR7b7ELYd+x3Y72DUPz/Y7wB21ndw6NCh7T4Ei8VisVgsO4ChguNCoUAqlWp5LJVKsbi42PHc173udbzmNa9peczzvJHMHFssFovFYtndSClHfqPFfgf2OwD7HYD9DuDS/Q6GCo7DMGRpaanlsaWlJcIw7HiuDYQtFovFYrFYLBaLxXKpMFSj1f79+1lcXOT06dONx/793/+dw4cPb/iBWSwWi8VisVgsFovFslUMFRxHUcQtt9zChz/8YYrFIl/60pd44IEHuOWWWzbr+CwWi8VisVgsFovFYtl0hNZaD/ML586d453vfCff+MY3mJmZ4Zd+6Zd4+tOfvlnHZ7FYLBaLxWKxWCwWy6YzdHBssVgsFovFYrFYLBbLbsOaO1osFovFYrFYLBaLZeSxwbHFYrFYLBaLxWKxWEYeGxxbLBaLxWKxWCwWi2XkscGxxWKxWCwWi8VisVhGHhscWywWi8VisVgsFotl5LHB8Sr8yI/8CN/61rc29DU/+9nP8mM/9mPccsstvOxlL+PTn/501+d97GMf49ixYxv+/mvlwx/+MHfeeSdPfepT+fznP994fNDPU+ff/u3fePWrX81NN93E3XffzcmTJxs/KxaLvOMd7+CWW27hJS95CX/xF3+xaZ9nGLZjHBw7doxnP/vZ3Hzzzdx888383u/93oa+/1qx42Brx8Hi4iK/9mu/xvOe9zxuvfVWfuVXfmVD33+tjPI4sOxO7HxvGPVr2873BjsO7HwPIzoOtKUvt99+u/7mN7+5oa/56U9/Wn/zm9/UlUpFf+9739MvfOEL9Te+8Y2W5zz++OP6Va96lX7Ri1604e+/Vv7sz/5M/93f/Z3+iZ/4Cf0Xf/EXjccH+Tx1SqWSvu222/Sf/Mmf6GKxqD/0oQ/pn/7pn278/IMf/KB+05vepC9evKj/+Z//WT/nOc/RDz744KZ/ttXYjnFw44036lOnTm3oe24Edhxs7Th429vept///vfrixcv6kqlor/zne9s6PuvlVEeB5bdiZ3vDaN+bdv53mDHgZ3vtR7NcWAzxwNyzz338LGPfazx789+9rO86U1vAuDrX/86r3jFK/id3/kdnve85/HSl76Ur33taz1f6xWveAXXXnstjuNw5MgRnva0p/Htb3+75Tn/9b/+V372Z38Wz/M25fOshdtuu41nPOMZHcc0yOep841vfIMwDHnZy16G7/v8zM/8DN/+9rcbO0h//ud/zt133006nea6667jlltu4Qtf+MKmf7ZB2epxsBOx42DrxsEDDzzA//t//4//7//7/0in0ziOw5VXXrmpn21Q7Diw7FZGfb6317Zh1Od7Ow4Moz7fj+I4sMHxBnH8+HGiKOILX/gCP/mTP8lv/MZvDPR7cRzzb//2bxw+fLjx2Ne//nUuXLjAc5/73M063E2j2+f5D//hPzRKJL7//e9z9OjRxs/CMGTv3r18//vfZ2FhgTNnzrT8/PLLL+f73//+1n2AdbKR4wDgx3/8x3nxi1/MPffcw/nz5zfhiDcHOw42Zhx85zvfYf/+/bzjHe/g+c9/Pq997Wu57777NvPQN5RRHweW3Ymd7+21DXa+BzsOwM73sPvGgQ2ON4h0Os1rXvMaHMfhtttu48SJEywvL6/6e//jf/wPpqameOYznwlAtVrlv/yX/8Jb3vKWzT7kTaH98wB84hOf4Id/+IcBKBQKpFKplt9JpVIUCgWWl5dRShEEQcvPBvkedwobNQ4APvKRj/Cnf/qn/MEf/AHFYpFf+7Vf28xD31DsONiYcfDEE0/w93//9zztaU/j85//PD/5kz/J2972Ni5cuLDZH2FDGPVxYNmd2PneXttg53uw4wDsfA+7bxzY4HiDyOfzCCEAGid4eXmZ++67ryGw8OY3v7nldz796U/zV3/1V7zvfe9r/O4f/uEfcv3117fsoFwqdPs87YRhyNLSUstjS0tLhGFIFEXEcUyxWGz5WRRFm3rcG8lGjQOAG264AcdxGBsb421vextf/epXqVQqW/dh1ogdBxs3DnzfZ35+njvuuAPHcXje857H/Pz8jhDtWQ07Diy7lVGf7+21bRj1+d6OA8Ooz/e7cRw42/bOlxhhGLacuDNnzgz0ezfccANf+cpXOh7/whe+wL333stHPvIR8vl84/Gvf/3r3HffffzlX/4lAOfOneMXfuEX+Pmf/3le+tKXru9DbCK9Pk87hw8f5o//+I8b/y4UChw/fpzDhw+TzWaZmJjge9/7Htdccw0A999/f0fp0XayVeOgHSnNPpbWergD3mLsOOjPsOPgyJEj6z7W7WBUxoFld2Ln+96M0rVt5/ve2HGwOqMw3+/WcWAzxwNy+eWX8+Uvf5nFxUWOHz/OZz7zmTW/1te+9jXe//7388EPfpA9e/a0/Oyee+7hU5/6FB//+Mf5+Mc/ztTUFL/6q7/Ki170ovV+hHVTrVYplUporRt/T5Kk7+dp58Ybb6RQKPDZz36WcrnM7/7u7/KkJz2Jubk5wDT+f/SjH2VpaYlvfetbfPnLX+aFL3zhVny8gdiqcfDAAw9w//33E8cxCwsLfOADH+DpT3/6jhBsseNg68bBsWPH0Frzp3/6p8RxzJe+9CVOnDjBtddeu96PsG7sOLDsVkZ9vrfXtmHU53s7DgyjPt+P4jiwwfEACCG47bbb2LdvHy95yUv4lV/5FX7oh35oza937733srCwwE/91E81Si7e8573AJDJZJicnGz8kVKSy+VaavG3i3e9613cdNNN3Hfffbzzne/kpptu4p/+6Z/6fh6Au+66i8997nMAeJ7H+973Pj7+8Y/z3Oc+l3/5l39p6a352Z/9WdLpND/8wz/M29/+dt7+9rdz8ODBrf6oXdnKcXD27Fne/va385znPIc777wTKSX33HPPBn2S9WHHwdaNA8dx+MAHPsCnPvUpbr31Vj784Q/z/ve/n1wut1EfZ82M+jiw7E7sfG+vbbDzPdhxAHa+h9EcB0Lv5LqNHcDzn/987r33Xvbv37/dh2LZRuw4sIAdBxbLbsZe3xaw48BisONgdLGZ4z58/etfB2ik/S2jiR0HFrDjwGLZzdjr2wJ2HFgMdhyMNlaQqwfvfve7+drXvsav/Mqv4Lrudh+OZZuw48ACdhxYLLsZe31bwI4Di8GOA4stq7ZYLBaLxWKxWCwWy8hjy6otFovFYrFYLBaLxTLy2ODYYrFYLBaLxWKxWCwjjw2OLRaLxWKxWCwWi8Uy8tjg2GKxWCwWi8VisVgsI48Nji0Wi2UEKJfL/Oqv/iq33XYbz3nOc7j77rv53ve+1/j5xz72MV7wghfwvOc9jw996EPUtRqr1Sq/+Iu/yItf/GKOHTvG6dOnW173xIkTvOENb+DWW2/lxS9+Mffee2/f4/jwhz/Me97zng3/fA8++CC/8Au/wPOf/3xe8IIX8I53vIOFhYWW53zmM5/h5S9/Oc9+9rN55StfyUMPPbThx2GxWCwWy3Zh5/r1z/U2OLZYdgh33303x44d4+67797uQ7HsQuI4Zn5+nnvvvZe/+qu/4pZbbuGtb30rAH/7t3/Lpz/9aT72sY/xqU99ir/927/lM5/5TON3n/KUp/C+972v6+u+//3vZ35+ni9+8Yt89KMf5ZOf/CT/8A//sCWfqZnFxUVe8IIX8L//9//ms5/9LJVKhQ9+8IONn3/5y1/mf/2v/8Vv/uZv8pWvfIUPfvCD5PP5LT9Oi8VisfO9ZbOwc/3653obHFsslzBf//rXOXbsGMeOHePRRx/d7sOx7GDCMOSnf/qnmZmZQSnFq171Kh599FHOnz/Pn//5n/PKV76SvXv3Mjk5yY//+I/zuc99DgDHcXj1q1/Ntdde2/V1T548yYte9CIcx2F+fp7rr7+e73//+wMd09e//nVe8YpXtDzWvGP9Iz/yI/zBH/wBr3zlK3nuc5/L+9///p6vdc0113D77beTTqcJw5A77riDf/u3f2v8/KMf/ShvectbOHLkCEII9u7dSy6XG+g4LRaLZbux871lEOxcv/653gbHFovFMoJ885vfZHx8nHw+zw9+8AOOHj3a+Nnll18+8KR355138vnPf55yuczDDz/Mt771LY4dO7Zhx/nlL3+Zj370o3ziE5/gC1/4Avfdd99Av/fNb36Tw4cPA2Yn/bvf/S7f+973uO2223jpS1/KRz7ykUY5mcVisVgsuxE71w8/1ztDH73FYlk3CwsLvOc97+ErX/kK+Xye173udR3P+dCHPsRXv/pVnnjiCQqFAmNjYzz96U/nTW96E5OTk3z4wx/mIx/5SOP5L33pSwG4/fbbueeee0iShE9+8pP88R//McePH8f3fZ72tKfx5je/mfn5+S37rJadx+LiIu95z3t4/etfD8Dy8jLpdLrx81QqxfLy8kCvdd111/HpT3+am2++mTiOufvuu1sm3/Xy6le/ulESdeONN3L//fdzww039P2d7373u3zyk5/kd37ndwA4e/YscRzzj//4j3zyk59kaWmJN7/5zczMzDSuG4vFYtkM7Hxv2S7sXL+2ud5mji2WbeDXf/3X+eIXv0ipVCIIAj70oQ/xne98p+U59YlyZmaGffv2cebMGf7sz/6Mt7zlLQDMzMxw6NChxvMvv/xyrrnmGvbu3QvA+973Pj7wgQ/w/e9/n7179yKl5C//8i/5qZ/6Kc6ePbt1H9ayoyiVSrz1rW/l2c9+Ni972csAiKKIxcXFxnOWlpaIomjV14rjmJ//+Z/njjvu4Ktf/Sqf+cxn+OIXv8gXv/hFAO666y5uvvlmbr75Zh577LE1He/4+Hjj70EQUCgU+r72iRMneMtb3sI73vEOjhw5AoDv+wD8xE/8BJlMhtnZWe68806++tWvrumYLBaLZVDsfG/ZDuxcv/a53maOLZYt5vjx4/z1X/81YC7gN73pTTz44IO86lWvanneu9/9bo4cOYKUZg/rT/7kT3jXu97Ft7/9bY4fP84dd9zB3r17+bmf+zkAfvM3f5M9e/YA5qbxR3/0RwDcc8893H777SwvL3PnnXfy+OOP88lPfpL/9J/+01Z9ZMsOoVqt8p//839mamqKX/iFX2g8fujQIb73ve/x7Gc/G4D777+/UabUj4WFBU6dOsUrX/lKHMdhz5493HrrrXzjG9/gBS94AZ/61Kf6/n4YhhSLxca/29Ux+9HttU+fPs0b3vAG/uN//I/ceuutjcez2SxTU1Mtz7Ul1RaLZbOx871lO7Bz/Qprmett5thi2WIeeOCBxt+f97znAXDw4EEuu+yylufdf//9vPa1r+Xmm2/m2LFjvOtd72r87NSpU33f4zvf+U7jhnDPPfdw7NgxbrnlFh5//HEAvvWtb23IZ7FcWrz73e+mVCpxzz33IIRoPH7bbbfxR3/0R5w4cYLTp0/z8Y9/nBe/+MWNn5fLZUqlEgCVSqXx97GxMWZmZviTP/kTkiTh8ccf50tf+lJjF3c1Dhw4wIULF/jGN75BuVzmd3/3d9f82RYXF3nTm97ES17yEn70R3+04+e33347v//7v8/S0hKnTp3ij/7ojxoLBIvFYtkM7Hxv2Q7sXL++ud5mji2WLaZ5F6v5ptX8+D//8z9zzz33oLUml8tx6NAhCoUCP/jBDwBT4jLoe1x++eV4ntfy87m5uXV9Bsulx8mTJ/nsZz+L7/s897nPbTz+3/7bf+PZz342//7v/85rX/takiThjjvuaOnPecUrXsHJkycBoyoJRn0S4L3vfS8f+MAH+O///b8TBAEvetGLePnLX973WOrjPp1O87a3vY1f/uVfRkrJG9/4Rv7wD/9wTZ/vb/7mb/j3f/93jh8/zu///u83Hv/KV74CGOuU9773vdx2221EUcQdd9zB7bffvqb3slgslkGw871lq7Fz/frneqFtbZnFsqU88sgjjRvK6173Ot7whjfw0EMPcddddxHHMU95ylO45ZZbGr5tf/EXf8Hk5CQf+9jH+K3f+i0Afvu3f5tjx47xr//6r/zkT/4kAJ/85Ccbu3jHjx/n5S9/OVpr3vrWt/LqV78aMJPov/zLv5BKpTp2ri2WreCDH/wgruvyhje8YbsPxWKxWDYVO99bRpVLea63mWOLZYvZt28ft956K3/zN3/Dvffey1//9V/z+OOPo5Rq7BA3KwC+6lWvYmxsjHPnznW81t69e3Ech2q1yutf/3rm5ub48R//cV7wghdwxx138Md//Md84AMf4BOf+ARhGHLy5EmWlpZ45zvfaSdLy5azuLjI3/3d33H33Xdv96FYLBbLpmPne8socqnP9bbn2GLZBt7xjnfwvOc9D9/3WVxc5Gd/9me55pprGj9/xjOewZve9CampqYolUocPHiQt7/97R2vk8/nedvb3sbMzAxnz57lX//1Xzlz5gwAv/zLv8xb3vIWjh49yqlTpzh58iR79uzhNa95DTfeeOOWfVaLBeC+++7jpS99KVdffTXPec5ztvtwLBaLZUuw871llNgNc70tq7ZYLBaLxWKxWCwWy8hjM8cWi8VisVgsFovFYhl5bHBssVgsFovFYrFYLJaRxwbHFovFYrFYLBaLxWIZeWxwbLFYLBaLxWKxWCyWkccGxxaLxWKxWCwWi8ViGXlscGyxWCwWi8VisVgslpHHBscWi8VisVgsFovFYhl5bHBssVgsFovFYrFYLJaRxwbHFovFYrFYLBaLxWIZeWxwbLFYLBaLxWKxWCyWkccGxxaLxWKxWCwWi8ViGXn+/+eEKG5Ik3fIAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAIgCAYAAAB+nMGxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXxcVfn/3+fe2bMn3aEb0Aote0splB0UQUVAFkUQRFFc2AS/ylcWWeQrq6z+RLaCIKK4AMpSQNBCS4HSAgVKKXRv0myT2Wfudn5/3MxkJpkkkzRp0ua8X6+8MnO3OXPvnXPPc57n+TxCSilRKBQKhUKhUCgUCoVCsVVoQ90AhUKhUCgUCoVCoVAodgSUga1QKBQKhUKhUCgUCsUAoAxshUKhUCgUCoVCoVAoBgBlYCsUCoVCoVAoFAqFQjEAKANboVAoFAqFQqFQKBSKAUAZ2AqFQqFQKBQKhUKhUAwAysBWKBQKhUKhUCgUCoViAFAGtkKhUCgUCoVCoVAoFAOAMrAVCoVCoVAoFAqFQqEYAJSBrVCUwPz58xFCdPv36quv8stf/rLHbbJ/RxxxRMnbARxxxBHsueeeJbXz9ttv5+STT2bq1KkFx9gast9L0zQ+++yzLusTiQSVlZUIITjnnHNyy1999VWEEDz55JNFj/vjH/8YIUTBsilTpnR7PuLxONBxLd5+++2t/m4KhUKhUOSzPTzvV61axWWXXcasWbOorq6mtraWefPmdfu8LRX1vFcoBgbPUDdAodieeOihh9h99927LJ8xYwa77bYbX/ziF3PL6uvrOfnkk7ngggs444wzcssNw8Dn8/W6XWVlZZ/b97vf/Y6ysjKOOuoonnnmmT7v3xPl5eU89NBDXHfddQXL//KXv2CaJl6vd0A+Z968edxyyy1dlodCoQE5vkKhUCgUvTGcn/cLFizgX//6F2eddRYHHHAAlmXxxBNPcOqpp3LNNddw1VVX9el4nVHPe4Vi61AGtkLRB/bcc09mz55ddF1lZSU777xz7v3atWsBmDRpEnPnzu32mKVuVwoffvghmqbl2jqQnH766Tz88MNcc801uc8AeOCBBzjppJN4+umnB+Rzqqurt/o8KBQKhUKxNQzn5/3Xv/51fvSjHxV4hY877jiam5u58cYb+dnPfobf7+/38dXzXqHYOlSIuEKxnfDWW29x6KGHEgqF2GWXXfj1r3+N4zgF2+Q/CAeac889lw0bNvDiiy/mlq1atYrXXnuNc889d9A+V6FQKBSKkURvz/tRo0Z1CbkGmDNnDslkktbW1q36fPW8Vyi2DmVgKxR9wLZtLMsq+LNte9A/t6GhgW9+85uceeaZPP300xx33HFcfvnlPProo/063tq1a7vkUPXGtGnTOPTQQ3nwwQdzyx588EGmTJnC0Ucf3a92FENK2eUcd55IUCgUCoViMNken/evvPIKo0ePZsyYMbll6nmvUGx7lIGtUPSBuXPn4vV6C/62JgyrVFpaWnj00Uf5/ve/zzHHHMM999zDjBkz+OMf/9iv4wkh0HUdXdf7tN+5557LU089RWtrK7Zt88gjj3DOOecUnUnvL88++2yXc7y1+WQKhUKhUPSF7e15f//99/Pqq69yxRVXFDzb1fNeodj2qBxshaIPPPLII+yxxx4FywbyYdMd48aNY86cOQXL9t57b5YvX96v402ePBnLsvq836mnnsqFF17IY489xpQpU2hoaOjTrHgpHHLIIfzmN78pWDZhwoQB/QyFQqFQKHpie3reP/fcc/zoRz/ilFNO4YILLihYp573CsW2RxnYCkUf2GOPPboVPRlM6urquizz+/2kUqlt2o6ysjJOP/10HnzwQSZPnswxxxzD5MmTi27r8bjdS3chdZZl5bbJp6qqakjOsUKhUCgUWbaX5/0LL7zAySefzOc//3kee+yxAZsEUM97haL/qBBxhULRJ84991yWL1/OM88806PYydixYwHYtGlT0fWbNm3KbaNQKBQKhaJvvPDCC5x44okcfvjh/PWvfy0oCTYQqOe9QtE/lIGtUCj6xEEHHcS5557LSSedxEknndTtdtOmTWPy5Mn85S9/QUpZsK6pqYlXXnmFY445ZrCbq1AoFArFDseCBQs48cQTOeSQQ/jHP/4xKPnh6nmvUPQPFSKuUPSBFStWFM1l2nXXXRk9evQQtKiQt99+O1dnMxqNIqXkySefBOCAAw7IhXetW7eOXXfdlbPPPpsHHnigz59T6j633HILp512GkcffTTnnXce48aN45NPPuHXv/41Pp+PK6+8ss+fneXf//537rvmc/zxxxMKhfp9XIVCoVAohvPz/rXXXuPEE09k3Lhx/O///m+X/OwZM2ZQWVkJqOe9QjEUKANboegD3/72t4suv++++/jud7+7jVvTlbvvvpuHH364YNmpp54KwEMPPZQTKJFSYtv2oJccOeWUU3jxxRe56aab+OEPf0g8Hmf06NEcffTRXH311ey66679PvbPfvazosvXrFnDlClT+n1chUKhUCiG8/P+pZdeIpVKsXbtWo466qgu61955RWOOOIIQD3vFYqhQMjOsRwKhUKhUCgUCoVCoVAo+ozKwVYoFAqFQqFQKBQKhWIAUAa2QqFQKBQKhUKhUCgUA4AysBUKhUKhUCgUCoVCoRgAlIGtUCgUCoVCoVAoFArFAKAMbIVCoVAoFAqFQqFQKAYAZWArFAqFQqFQKBQKhUIxACgDW6FQKBQKhUKhUCgUigFAGdjbCY7jsGbNGhzHGeqmDBnqHKhzAOocgDoHI/37K3Zc1L2tzgGocwDqHIA6B7D9ngNlYCsUCoVCoVAoFAqFQjEAKANboVAoFAqFQqFQKBSKAUAZ2AqFQqFQKBQKhUKhUAwAysBWKBQKhUKhUCgUCoViAFAGtkKhUCgUCoVCoVAoFAOAMrAVCoVCoVAoFAqFQqEYAJSBrVAoFAqFQqFQKBQKxQCgDGyFQqFQKBQKhUKhUCgGAGVgKxQKhUKhUCgUCoVCMQAoA1uhUCgUCoVCoVAoFIoBQBnYCoVCoVAoFAqFQqFQDADKwFYoFAqFQqFQKBQKhWIAUAa2QqFQ7MDMnz+f6urqoW4G55xzDieeeOJQN0OhUPQB1X8oFApF31EGtkKhUIxg1q5dixCC5cuXD8vjKRSK4ctg9B+6rvPhhx8OyPEUCoViKFAGtkKhUAwihmEMdRMGhB3leygU2xM7yu9uR/keCoVCUQrKwFYoFIoSicVifPOb36SsrIzx48fzm9/8hiOOOIKLL744t82UKVO4/vrrOeecc6iqquK8884D4K9//SszZ87E7/czZcoUbr311oJjCyH4xz/+UbCsurqa+fPnAx2eor/97W8cffTRzJgxg/3224/FixcX7DN//nwmTZpEKBTipJNOoqWlpcfvNHXqVAD2228/hBAcccQRQEdI5v/93/8xYcIEpk+fXlI7uztelltuuYXx48dTV1fHj370I0zT7LF9CsWOQin9xy677MLdd9/Nt7/97UHrP4488khCoRD77LPPsO0/vvzlL6Pruuo/FArFdolnqBugUCgUALNnz6ahoaGkbW3bRtf1AfnccePG8fbbb5e07U9+8hNef/11nn76acaOHctVV13FO++8w7777luw3c0338yVV17JFVdcAcDSpUs57bTT+OUvf8npp5/OokWL+OEPf0hdXR3nnHNOn9r7i1/8gptuuolQKMT/+3//j2984xusXr0aj8fDkiVLOPfcc7nhhhs4+eSTef7557n66qt7PN6bb77JnDlzeOmll5g5cyY+ny+37uWXX6ayspIXX3wRKWVJ7evpeK+88grjx4/nlVdeYfXq1Zx++unsu+++OSNCoegvfek/BpLB6D9+//vfc9VVV3HllVcCA99/3HLLLUybNo1f/OIXw7b/+MMf/sBRRx1FIBDIrVP9h0Kh2F5QBrZCoRgWNDQ0sGnTpqFuRrfEYjEefvhh/vjHP3L00UcD8NBDDzFhwoQu2x511FFcdtllufff/OY3Ofroo3MD5unTp/Phhx9y880393mAfNlll/GlL32JdevW8ctf/pK99tqL1atXs/vuu3PHHXdw7LHH8vOf/zz3OYsWLeL555/v9nijR48GoK6ujnHjxhWsKysr4/777y8YNPdGT8erqanh7rvvRtd1dt99d770pS/x8ssvqwGyYqvZkfqPgw8+mEsvvRRNc4MMB6P/ALjmmmuYOXPmsOw/ampqGDduXO4cZJep/kOhUGwPKANboVAMCzoPznpioD3YpfDZZ59hmiZz5szJLauqquJzn/tcl21nz55d8P6jjz7iq1/9asGyefPmcfvtt/f5u+y999651+PHjwegsbGR3XffnY8++oiTTjqpYPuDDjqoxwFyT+y11159Ghz3xsyZMwu+6/jx43n//fcH7PiKkUtf+o+h+Ny+9B977bVXwXvVf7io/kOhUAA88sgjrFixgssvv5yampqhbk5RlIGtUOwAZJoy+Eb5EEIMdVP6Talhlo7jsG7dOiZPnlzg3RhssiGOnc9xsdDHsrKyLtv0tp8QosuyYvmFXq+3YB9wz0l3bdkaOn+P7GeW0s5i5Lc9e6xs2xWKraHU/mOo6Ev/EQwGu2yj+g/VfygUClixYgVnn302ABUVFbnInuGGEjlTKLZzrLhF9IMYZqsSexlMdt11V7xeL2+++WZuWTQa5ZNPPul13xkzZvDaa68VLFu0aBHTp0/PeWRGjx5NfX19bv0nn3xCMpnsUxtnzJjBG2+8UbCs8/vOZD1Mtm2X9Bm9tbOvx1MoRgKq/6Ckdqr+Q6FQ9MRzzz2Xe/3xxx8PYUt6RnmwFYrtHDtlY0Us7KQNdUPdmh2XiooKzj77bH76059SW1vLmDFjuPrqq9E0rdfIgUsvvZQDDjiA6667jtNPP53Fixdz991389vf/ja3zVFHHcXdd9/N3LlzcRyHn/3sZ108Nr1x4YUXcvDBB3PTTTdx4oknsmDBgl7DO8eMGUMwGOT5559n5513JhAIUFVV1e32vbWzr8dTbN9873vfY8WKFTlDb7/99uPOO+/kmWee4frrry8IEf7LX/4yZKHcQ43qP0prZ/Z4//3vfznggAMIhUKq/1AoFDlefvnl3OvGxsYhbEnPKA+2QrGdY6cczKiJlVAz/oPNbbfdxkEHHcSXv/xljjnmGObNm8cee+xRoHRbjP33358///nP/OlPf2LPPffkqquu4tprry0QKLr11luZOHEihx12GGeccQaXXXYZoVCoT+2bO3cu999/P3fddRf77rsvCxYsyCmZd4fH4+HOO+/k3nvvZcKECV1yPTvTWzv7ejzF9s/VV1/NwoULWbhwIXfeeWdu+Zw5c3LLFy5cOGKN6yyq/yit/7j99tv54x//yM4776z6D4VCkcMwDBYuXJh7P5wNbCEHOulGMSgMVd7pcEKdg+LnILYyTvN/W6jcq4K6g2qHuIWDz3C6DxKJBDvttBO33nor3/nOd7bZ5w6nczAUjPTvP5z43ve+x9e+9jWOPfbYguXPPPMMCxYs4K677ur1GIZhYBhGwTKPxzOgAlnDkUQiwcSJE7n55ptz/YfjOGzYsIGJEyeO2HtbnQN1DkCdA1DnAArPweuvv84RRxyRWzd+/Hg2bty4TdtT6nVQIeIKxXaOFbNAgtVmIh2J0LZfobPhzrJly1i5ciVz5swhEolw7bXXAigvi2JEc/PNN3PzzTczffp0LrnkEqZNmwbAu+++y9FHH01tbS2nn346p5xyStH9H3roIe67776CZaeeeiqnnXbaoLd9W/LBBx/w6aefss8++xCLxbjrrrtwHIf999+fdevWFWy7YcOGIWrl8EGdA3UOQJ0DUOcA3HPwt7/9rWBZU1MTa9as2aaTD1OnTi1pO2VgKxTbOWabiadcx0452EkbT7n6WQ8mt9xyCx9//DE+n49Zs2axcOFCRo0aNdTNUiiGhAsvvJBddtkFTdN44oknuOiii3jyySfZf//9+dOf/sS4ceP48MMPueyyy6irq+PII4/scoxvf/vbfPOb3yxYtiN6sFtbW7n66qtz/cf+++/PwoULC8pyKY+VOgegzgGocwDqHEDhOXjnnXcK1lmWRVVVFbW1wy96U43EFYrtGDvjGtXeKi9m1MJOKAN7MNlvv/1YunTpUDdDoRg27LnnnrnXZ599Nk8//TQffPABBxxwQME2X//613nllVeKGtg+n2+HM6aLMWvWrJL7D03TRuyAOos6B+ocgDoHoM4BQCqVKlrVoKWlZVg6OUb21VIotnOctI1jOGhBDRwHK6mEzhQKxdDR3SCwN6VshUKhUCi6Y+HChViW1WX5cBU6GxQD2zAMrrnmGo4//ngOP/xwvve977F69erc+vnz53PMMcdw1FFHcccdd6B01hSK/mEn2w1snwZCYMW7dj4KhUIxGMRiMd544w0Mw8A0TR577DGi0Sh77LEHixYtIhwOA7By5UqeeOIJDj300CFusUKhUCi2R/7973/nXs+ePTv3erga2IMSS2rbNjvttBMPPfQQo0aN4vHHH+fSSy/lqaee4rXXXuPJJ59k/vz5BAIBfvCDHzBlyhQlEqRQ9AM7ZYN0vUNaQMdsMXrfSaFQKAYAy7K45557WLt2LV6vl+nTp3PHHXdQXl7OkiVLuPrqq0mn04wePZpvfetbfP7znx/qJisUCoViO+SVV17JvT799NN5++23gRFmYAeDQb773e/m3p9++unccccdtLW18eyzz3LKKaew8847A3DmmWfy3HPPFTWwR2rpjmI4jlPwfySizkHXc2AmTaRHIoVECwrMhImVsdC8O272h7oP1DkYjt9/JObH1dTU8Ic//KHouksuuYRLLrlkG7dIoVAoFDsabW1tLFu2DIB9992XPfbYI7duRBnYnXnvvfeora2lurqaNWvWcPzxx+fWTZ8+nXvuuafofiOldEdfUFL96hxA3jkoAw6EGFGY0L5u88g4P+o+UOdgOH3/Ukt3KBQKhUKhKJ3Fixfn0omPOuooxowZk1s3Yg3seDzODTfcwA9/+EMAkskk5eXlufVlZWUkk8mi+46U0h2lMBBS/bYt0fXtV2hGlSsoPAcCQdPLTTimxFfjQ0pJamOKUYfWERgfGOqmDhrqPlDnYKR/f4VCoVAoRgqLFy/OvT766KOVgZ3JZLj00ks55JBDciHgoVCIeDye2yaRSBAKhYruP1JKd/SF/kr1t0Qky1bB7N0F1RXbr5ENqlwBuOfASTk4KYke0BFSIBAIW+Ak5Yg4P+o+UOdgpH9/hUKhUCh2dBYtWgS4TtbDDjus4Lk/XA3sQRuZWJbF//7v/zJ69Gguvvji3PKpU6cWKIqvWrWKXXbZZbCaoQCklKxcL/l4A3y8QSrV9h0EJ+3gpB00f8fPWGgCM2oOYat2XIQQPf6dc845ALlav7W1tYRCIaZNm8bZZ5+dKy/x6quvIoSgpqaGdDpd8Blvvvlm7ngDyX/+8x9mzZpFIBBgl1124Xe/+12v+6xfv56vfOUrlJWVMWrUKC688MICTYy1a9cWPQ/PP//8gLT5t7/9LVOnTiUQCDBr1iwWLlzY6z733HMPe+yxB8FgkM997nM88sgjBevnz59ftM2dr4NCMdD0pf8444wzGDVqlOo/tgLVfygUOwabNm3is88+A+DAAw+kvLycUCiUi4bON7CTaUk0MTxsnEHzYP/qV78ik8lw4403FnT2xx9/PDfeeCOf//zn8fv9PPbYY13CwBUDS30LfLoJxtTA6k0wdbz7WrF9Y6dspC0LBM20gIbZaiKlVHVnB5j6+vrc6yeeeIKrrrqKjz/+OLcsGAzywQcfcNxxx3HhhRdy1113EQwG+eSTT3jyySe7CHJVVFTw97//nW984xu5ZQ8++CCTJk1i/fr1A9burO7Feeedx6OPPsrrr7/OD3/4Q0aPHs3Xvva1ovvYts2XvvQlRo8ezWuvvUZLSwtnn302Ukruuuuugm1feuklZs6cmXtfW1u71W1+4oknuPjii/ntb3/LvHnzuPfeeznuuOP48MMPmTRpUtF9/t//+39cfvnl3HfffRxwwAG8+eabnHfeedTU1PCVr3wlt11lZWXBdQMIBHbclArF8KDU/uNLX/oSZ599Nvfeey9lZWWq/+gHqv9QKHYc8stzHXXUUbnXY8aMIR6P09TUlFu2tgGiCcncmcNg/CsHgc2bN8tZs2bJgw8+WB5yyCG5v3feeUdKKeWDDz4ojzrqKHnEEUfI22+/XTqOMxjN2KGwbVt+9tln0rbtPu1nWY586S1bPvycLV95x5EP/cuWr75jS9ve/s55f8/BjkT+OYh9HJPrH90gmxe2yPpXmmXzwhbZ8OwWufkf9dJKWkPd1EFjONwHDz30kKyqquqy/De/+Y2cMmVKj/u+8sorEpBXXHGFPOaYY3LLk8mkrKqqkldeeaXsrWvOPwcPPfSQnDhxogwGg/LEE0+Ut9xyS0Hb/ud//kfuvvvuBft///vfl3Pnzu32+M8++6zUNE1u2rQpt+zxxx+Xfr9fRiIRKaWUa9askYBctmxZj23tjGVZ8pJLLpFVVVWytrZW/vSnP5Xf+ta35Fe/+tXcNnPmzJHnn39+wX677767/PnPf97l+2c56KCD5GWXXVawz0UXXSTnzZuXe9/ddVMotiW99R899W8D0X90bstw6z966uMHov8oxnDrP4bDc26oUedAnQMppfzWt74lAQnIV199Nbd87ty5ueWmaUoppXz9PVv+e+nwOFeD4sEeP358rj5ZMb797W/z7W9/ezA+WtGJDY2wvhF2GuW+H1cHa7fArs2w85ji+0gpMUzw+4bBDJCiW6yEhdAE6Yzkg7WSaROhPKBhRkzspI0e1Ie6iX1i9nkODa0lbCjBtndC1wGx9WWaxtXC2/cNTLbMuHHjqK+v57///S+HHXZYj9ueddZZ3Hzzzaxfv55Jkybx17/+lSlTprD//vuX/HlLlizh3HPP5YYbbuDkk0/mX//4F9def23BNosXL+YLX/hCwbJjjz2WBx54ANM08Xq9XY67ePFi9txzTyZMmFCwTyaTYenSpRx55JG55SeccALpdJpp06ZxySWXcMopp/TY5ltvvZUHH3yQBx54gBkzZnDrrbfy97//PTczbRgGS5cu5ec//3nBfl/4whdyeVjFyGQyXTxJwWCQN998s+B7xuNxJk+ejG3b7Lvvvlx33XXst99+PbZZMfwpuf8YYAaj/3jzzTeZPHlyj9sORv/x/PPPc/XVVxdso/oP1X8oFEOFlDLnwQ4Gg8ydOze3Ll/orLm5mbFjxxKOgz5MZFm2SZkuxdBgmJIP10p8XvB5XWM54BNowl0+rhY8nkIj2rYl766WNEXgqP3B61FG9nDFDFtofo3WODSGobpcUrmThrQkdtKGuqFuYd9oaIVNTb1v5zI8u65TTz2VF154gcMPP5xx48Yxd+5cjj76aL71rW9RWVlZsO2YMWM47rjjmD9/PldddRUPPvgg5557bp8+78477+TYY4/l5z//OUbY4Mw5Z/HG0W/wwksv5LZpaGhg7NixBfuNHTsWy7Jobm5m/PjxXY5bbJ+amhp8Ph8NDQ0AlJeXc9tttzFv3jw0TePpp5/m9NNP5+GHH+bMM8/sts233347l19+eS689He/+x0vvNDR3ubmZmzbLtrm7GcX49hjj+X+++/nxBNPZP/992fp0qU8+OCDmKaZ+56777478+fPZ6+99iIajXLHHXcwb9483n33XaZNm9btsRXDn771H8OTU089leeff56vf/3rXHzxxYPef9xxxx25/gPcsqmLFi0qyIMeiv7jjDPO6LbNqv9QKEYOq1evZuPGjQDMmzcPv9+fWzd69Ojc68bGRqprxpJMg8/LsEiTHJ6jVMWAsLbBzb+eMq5w+bjaDs/2Lh0TzJiW5J1Vkg/WgKZBcxuMH7VNm6woEcd0sBMWmk+jsVmSMmBzC0waK0GAlbC3+jM2bJHUt0jmzNg204HjSk29k2DbFrrugQHoP0v+3BLQdZ2HHnqI66+/nn//+9+88cYb/OpXv+LGG2/kzTff7DIYPffcc7nooos488wzWbx4MX/5y19KEuPJsnLlSk466SQAzDYLs81kzn5zCgxsoMuDRrYLHfb0ACq2Lv+hNWrUKC655JLcutmzZxMOh7nppps488wzWb9+PTNmzMit/9///V9+9KMfUV9fz0EHHZRb7vF4mD17dhfxxWJt7qm9V155JQ0NDcydOxcpJWPHjuWcc87hpptuQtfdaI65c+cWzIDPmzeP/fffn7vuuos777yz22Mrhj8D+Tseqs/VdZ0HH3yQ73//+6xatYo333xzUPuPjz76KNd/ZDnooIO6CI1t6/7jjDPOYNOmTey111659ar/UChGHi+//HLu9dFHH12wrnOprp2nQMZwPdi2DZ4htnCVgb2dYJh9U8VLpiUfrJFUltGl9rXXIwj53fUT6iDgd8OM3/5Y8vF6mDDKNcy3hCXjRykP9nDETjnYhoMV8BCOwZhqiCWhJQLVXg2j1ej1GD1hWm7YeSwJe+4iCQUG/z4oNczScRzWrdvE5MmTh22Jpp122omzzjqLs846i+uvv57p06fzu9/9jmuuuaZgu+OPP57vf//7fOc73+ErX/kKdXV9CzvIH1QarQZW1EJahX3FuHHjunhuGhsb8Xg83X7euHHjWLJkScGycDiMaZpdPEP5zJ07l/vvvx+ACRMmsHz58ty6UsWLRo0aha7rRdvc02cHg0EefPBB7r33XrZs2cL48eP5/e9/T0VFBaNGFZ8p1DSNAw44gE8++aSktimGLwMVpj0cGDduHAceeCBnn332Nus/emrLUPQfY8eO5Z133sn18ar/UChGHi+++GLudb7AGXQ1sJNpSJvg94E1DAzsHeeJtIOzsV2FvjFcmqH9yUZJSwTqKouvH13jhhV/tlmSSEkWfyBZuQ52Hg1Bv6AiBOu2uIaWYvjhpG2cjCRqaCTTUBYEXYf6VonwC6yIiXT6f+02NMLmZognIRwbwIaPQGpqahg/fjyJRKLLOl3XOeuss3j11Vf7HN4JsMcee/DGG28gbYnRmMHOOCx5q3Bge9BBBxU8pAAWLFjA7Nmzi+ZPZvdZsWJFgfLxggUL8Pv9zJo1q9v2LFu2LOdl83g87Lbbbrm/2tpaqqqqGD9+PG+88UZuH8uyWLp0ae69z+dj1qxZXdr84osvcvDBB/dyRsDr9bLzzjuj6zp/+tOf+PKXv9ztRIyUkuXLlxcNc1UohgOD2X/MmDGj4LcIdHmv+g/VfygUQ4Fpmrz00kuA2w921jroYmBnwDDAdlwDe6hRHuzthMawZHwFLPtEclhIUhbs3qPYFnM90XVVoGnFt9M1QVW55KN1sLFJsqERJo/ryLmuLodNzSpMfLhip2xw3Fx5jw4CQVXInVRJVuuEUjZ20sZT3vefuGFKPlonCfohlYHmiGSn0SqSoRTuvfdeli9fzkknncSuu+5KOp3mkUce4YMPPuhSnibLddddx09/+tM+e58ALrjgAg455BD+7/r/49DqQ3nlrVd58b8vFkydnn/++dx999385Cc/4bzzzmPx4sU88MADPP7447lt/v73v3P55ZezcuVKwBUEmjFjRk5IqbW1lcsuu4zzzjsvlwv68MMP4/V62W+//dA0jWeeeYY777yTG2+8scc2X3TRRfz6179m2rRp7LHHHtx22220tbUVbPOTn/yEs846i9mzZ3PQQQfx+9//nvXr13P++efntrnpppuIx+P84Q9/AMiF1B544IGEw2Fuu+02VqxYwcMPP5zb55prrmHu3LlMmzaNaDTKnXfeyfLly7nnnnv6fO4VioHm3nvvZdmyZRx88MFYloVhGIPaf1x44YUcfPDB3HTTTZx44oksWLCgS3j4jtp/XH755WzatClX61r1HwrF8GLJkiVEo1EADjnkkFyqRpbOBnYsKdF1NzxcGdiKkjBMSWMbjK+ALa3wzirJQTO7CpQBxJKSpR9LYinYpZdJ1bpK+GwztMXdPO38UHKvR+A4UoWJD1OslEXakIQTUB50l/l9gpaYpCUt8EsHO9E/A3tdAzS05+43R1zhoL12kd1O1ig6mDNnDq+99hrnn38+mzdvpry8nJkzZ/KPf/yDww8/vOg+Pp+v2xDE3siGVF51xVVc13Idh+59KJec8RN+86fbcttMnTqVZ599lksuuYR77rmHCRMmcOeddxbUsI1EIgW1XXVd51//+hc//OEPmTdvHsFgkDPOOINbbrml4POvv/561q1bh67rTJ8+nQcffLBHgTOASy+9lPr6es455xw0TePcc8/lpJNOIhKJ5LY5/fTTaWlp4dprr6W+vp4999yTZ599tkBZuampiebm5tx727a59dZb+fjjj/F6vRx55JEsWrSIKVOm5LZpa2vje9/7Hg0NDVRVVbHffvvx3//+lzlz5pR+0hWKQWLOnDksXLiQK664gsbGxm3Wf1x99dX88pe/5JhjjuGKK67guuuuy20zFP1H55rf+QxU/1FfX19QL1z1H4qB5qmnnuIXv/gF559/Pj/+8Y+HujnbHfmTfcX6v84GdjgGocDw8WALWUoSjmJIaQxLXnzL5uBpG1jdNJH1jRoHzoA9dykMW2qNSt74QFLfCpPHgkfv3SBynO4Np6Y2V4H8+LliWKiJu7m364Z17u1gkz0HlY2VrHs3zQdRP+PrXA82QCQh0TTYuyzF2MPqKJsa6tPx0xnJgrckyQyMqxUk05K2uHsPVFcM/T0A6j6AruegbVkbsZUJvBUennjpT1w9/+ouXp3hzDnnnENbWxv/+Mc/Stpe3QOKHZWhvrfnz5/PxRdfPKT9R1/PQV/7j+2Bob4PhgPb+zn43Oc+x6pVqygrKyMWi/VL1Xp7Pwdbw+zZs3PpH0uWLGH27NkF56ChoSGXnvGVr5zAOZf+HYBIHI6bKxhXN7Rj1pF1tbZTwjEwLfe1zysYVQXLP3FVnrPUN0v++65kS9j1PJZiXEP3IeTghomHY26YuGJ4YUYtwimBR+swrgEqQm7edCQOVtzqsl9bTPL+pw7JdPF5tXVboKkNRle774N+SBkqD3s4I21JpiGDJ6Sj+TQcpZugUCgUCsWQ0djYyKpVqwBIJBK5UOfu2Lx5M48//niv240UGhsbc8b1vvvuW1CSK0t+5E7DlkYyBgR8IBkeHmxlYG8H1LdI/HlaIlXlAk2DpaskbTHJ2nrJwvdcxecp49z86oHADRN31cQVw4tkxCac1nLh4Vk0IdB1aE5pGC2FSuItEclr70teXwH/WS5paiu8rsm0m3tdWdZxDwnhGvGNbeoeGAqOO+44ysvLu/xVVlbm8v6smIUVt9HLdDS/hjSl+4RRKBQjmu76j/Lycm644Yahbp5CscOyePHigvdNTU09bn/cccdxxhlncNFFFw1ms7Yb8kUKjz322KLb5FcyaGxszCmIw/AwsFUO9jAnnZE0R+hiSI2vgzX1sOQjSXObqyA9cczAh0Nk1cRnTpXDIkxc4RJpc0hJD9WBruuqQhBu1ghvsagzHTSvRmPYVYoPR2G3ndy86lfekew/HXbdyTWk19S7ImlTO+XuV4RcRXHTUvfAtub+++8nlUp1Wb5yncVOte5yM2LiZBz0gCsAcuphp3L+L87vss9wZv78+UPdBIVih6O7/gO6L3t1zjnncM455wxiqwYe1X8ohhuvv/56wfumpiZ22223otsmEgnee+89oKthPlLJz7/uzsAGGD16NC0tLTQ3NeI4WeeQzEX9DiXKwB7mhGMQT0HtmMLlQggmjpGs3wI1FVBbOTiGj1ITH560hh08XlEQHp7F7xO0CI2WJoupSZstpmDxB5J4ylWKF0IweZybY//a+5JwzDWyV66DqvKuaQPlIVf0LByDMTXb6hsqwK2nXYz6hEV15QYcR2KGTchPCZFgJ4fB9K1CoRhSuus/FArF4LJo0aKC9z15sPPX9ebpHgk4jsMLL7wAQHl5OQcddFBByb98xowZw8qVK0kk4hiZJFAGKA+2ogTCcVcRr1jYt9cj2HUrn58yaoJXIILFbwWlJj48iSYk5eO6vx5lFRqNTQ6ffWrxXiNkohY7BW2cj02wJNoeVYyu1gilJe9+6hrbbXHYZULXY/k8AtOStEaVgT0ckNJNB6ES4klJZksGPdhRvkJ4BFZsGEzfKhQKhUIxwshkMrz99tsFy/IrXnSmsbEx9zocDmNZFh7PyDXPli1blptoOProo/H5fN1um68knkk0AWUIMTwMbJWDPczZ3CwJdn9vbTXO2jiyMd3jNtkwcVOJJw0bDEsQ9He/vqJMkEjB+y9FkG82MfazFpz3wzhrE8hNSWTYzc8uC4hcOa7R1XSrchnwu/eiYujJGG59coBIs4UVs/CUdRjYml/DjJhD1DqFQqFQKEYu77zzDplMpmBZqR5sKSWtra2D1rbtgaz3GuCLX/xij9vmG9iphDtRoQlIG0M/XlUG9jAmkXK9hhV9q7RUMtJ2kFEDmejZ26XUxIcfml8rGh6eWy8EwVFetIxNbZ2OGOVHGx9CGxdESols6phU8eiCSWMFlWXdH68i6BrhidTQd1ojnWSmo6pAvMnCSTtogY6uXPNr2Ekbx+i+lqxCoVAoFIqBp3N4OPRsYOd7sHvbdiRQav41dDKw4+551DXIDAMfgzKwhzHhGCTSbuH0QSFlIw0bGev5TlRq4sOHaMw1mkLlvf90K0d7qdo5gAh5EHrH9qLCi9OYRqZKDyMuC7r3oirXNfSkMh0Pj7YGE0Rh5IHm03AMBzs9DGKkFAqFQqEYQXQWOANlYJdKJBLJTVBMnz6dqVOn9rh9voGdiLUb2Lob6TfUKAN7GBOOSaQcuLJbnZFpGzIOMm0je/F2qTDx4UFTo2s0+cu24qcb9EDCQraW3gPpmkBKaI6o6z/UpPIizyIbM2h5+dfQbmBnHOyk8mArFAqFQrGtkFLmDMT83OG+GNg95Wvv6Lz88svYtjvO7S08HAoN7HhbM/b6OJ76hPJgK7pHSsmm5t6919LZCoMnbYMlwXLA6NnbpcLEhwctTe51El69ly27R2gC4dNw6pN9un/Kg66ivLM199wOzi9/+Uv23XffQf2MZFqSdVinIxaWr/BeEJoACY7yYCsU2xW//OUv2X///Ye6GQqFop989tlnbNmyBYDDDz88F11Wag52b9vu6OSHh/fVwA5/ugFnRRuexiSmIZFyaMeqysAepsSS0BbrWv86i3QkTn0S++1mZDhTfKNekAkTvBrCcL3YPaHCxIcey5I0NrQb2PpWRjVUeF2hs2jp03wVIWiLQySxdR+9vSKE6PHvnHPO4bLLLuPll1/O7fPLX/4yt97j8TBq1CgOO+wwbr/99i4iKEcccUTR455/fmFN67YE+NoFRq2ETbpYNy7ASnZNAVi/fj1f+cpXKCsrY9SoUVx44YUYRs+RDJlMhgsuuIBRo0ZRVlbGCSecwMaNGwu2mTJlSpd2//znP+/xuKXyn//8h1mzZhEIBNhll1343e9+1+s+L7/8MgcffDAVFRWMHz+en/3sZ1hWx/lYu3Zt0XOd/3BXKAaSUvuPF198MbfPYPQfW8O26j90XefGG28ckDar/kOxLcnPvz700EOpq6sDVIh4KUgpcwJnfr+fww8/vNd9Ro8enXsd3lyPKPegpy3shDXkSuIjVwd+mNMWd8WMxtZ2XSdjJs6aOLI+iczYOOVe9JoeJKW7QUZMhE9DZtxQ8d7IhonPnCrxelTJrm1NOCZJb0rDflt/LOHXkWYGpyWNXl2aTH3QL0i3uHWzayq2vg3bG/l1GJ944gmuuuoqPv7449yyYDBIeXk55eXlBfvNnDmTl156CcdxaGlp4dVXX+X666/nD3/4A6+++ioVFR0n87zzzuPaa68t2D8U6lA5lFISiYO3veeWQpA2uv4WNa+GFS00sG3b5ktf+hKjR4/mtddeo6WlhbPPPhspJXfddVe33/viiy/mmWee4U9/+hN1dXVceumlfPnLX2bp0qXoeof3/Nprr+W8887Lve98HvrDmjVrOP744znvvPN49NFHef311/nhD39IXV0ds2fPLrrPe++9x/HHH88vfvELHnnkETZt2sT555+PbdvccsstBdu+9NJLzJw5M/e+trZIh6tQDACl9h+hUIh4PJ5bPpD9x9awLfsPx3EGREm5u/5j9OjRfO1rXyu6j+o/FFtDvoF98MEH8/jjj9Pc3KwM7BJYuXIl69evB1zvfyl9V6Wsyr1uM8NQ4UVrTeLELCzblxsrDQXKgz1MaW5zw0A7l02y18ew3mnB2ZyEGh9iVABnSwoZ71vCgTQcZMoGvw6CkgSvVJj40NKyzsDppaRaXxBlHmR9qtf8+3w8GmxpHZlRDOPGjcv9VVVVIYTosqxYiLjH42HcuHFMmDCBvfbaiwsuuID//Oc/rFixoouXJhQKFRxz3LhxVFZW5tanDUhnIOB1r4Hw68Tald3f+XApR557BDsdPYHj//c4nn7uaYQQLF++HIAFCxbw4YcfcuNv/kDauw967VFc96tbuO+++4hGo0W/cyQS4YEHHuC6X93CMcccw3777cejjz7K+++/z0svvVSwbUVFRUG7SzGw58+fz6RJkwiFQpx00knceuutVFdX59b/7ne/Y9KkSdx+++3ssccefPe73+Xcc8/ltttu6/aYf/rTn9h777256qqr2G233Tj88MP5v//7P+655x5isUKVvrq6uoI291RvU6HYGkrtPzqHiA9k/9ETb775Jvvttx+BQIDZs2fz97//vWj/8eijj7LffvtxzDHHcOutt5bUf9x666197j/Kysp6bXN/+4/OhnI+qv9QbA1ZgTNN0zjwwANzHtZkMkkymSy6T2eDeqTmYPdFPRwgsSaJ8Z6NrrlWdFusGSEEmkfgRE3lwVZ0xXEkm1ugLC//WqYsqAb5cQzh9yLGubHj0ishYuA0pdHLvaV/SMoCw4GQB+HRoBclcciGiUu2hCXjRykP9rZESknDigRbGxleQLkXGtPIcAYxtptchE5UhKC+BQxT4vMO7D3w2lGLMRp7T3eQuN6Uz/R1PRQqKx3fGD+H/PugAThS6ey+++4cd9xx/O1vf+P6668veb+sgni15j45vOU6kTjEk3HO+NkZHLL/ofy/K3/HZ59+xpW/uwIA25ZsaZX8/V+LmDR1T1ZsGo8QYNtQPv4LZDIZli5dypFHHtnl81565W1M06R20udzyyZMmMCee+7JokWLCh6CN954I9dddx0TJ07k1FNP5ac//WmPA84lS5Zw7rnncsMNN3DyySfz/PPPc/XVVxdss3jxYr7whS8ULDv22GN54IEHMM3ifVYmkyEQKBSvCAaDpNNpli5dyhFHHJFbfsIJJ5BOp5k2bRqXXHIJp5xySrftVQxvSu0/Bprtqf/ojkQiwZe//GWOOuooHn30UdasWcNFF11UsM3ixYvZc889mTBhQm7Zscce22P/sXTpUkzTLPgNl9J/nHLKKZx66qk9tnkg+g+vt+uYSfUfiv4SiURYsWIFAPvssw/l5eUFIcxNTU1Mnjy5YB8ppfJgt9OX/GvHcoh9EMWyNCrL6whHt9AWcycmREBHtmbaRZmHzlZRBvYwJJpw//LDcGWbAeOB0X4EHWFVQggIeZCbksidQghfaeJXMm0jLAfh1ZA+DZm0kI50BZJ6QIWJDw2J+gxtn6Xxj/ICpZfX6gmhCxwd5JYU9MHA3tzsRjIUS1/YGozGDOn60gfI1gCdh6Fi9913Z8GCBQXLfvvb33L//fcXLLvnnns4++yzAdfANm3QDde49JdpJDPwp+eexHZs7rz8TkKBENMnTGfTpo1cfv/lfLhW8kGT5OPVDVTWjGHSGNB1ge1I1m+pweP1serTevLHx1JK1tTDf96qx+PxkZE1JFKSsqD7mx87diwNDQ257S+66CL2339/ampqePPNN7n88stZs2ZNl++Szx133MGxxx6by9WePn06ixYtKnjINjQ0MHbs2IL9xo4di2VZhMPhosc99thjuf3223n88cc57bTTaGhoyBkh2TDd8vJybrvtNubNm4emaTz99NOcfvrpPPzww5x55pndtlkxfOlr/7G905/+ozsee+wxbNvmwQcfJBQKMXPmTDZu3MgPfvCD3DbFfos1NTX4fL6CviCfhoYGfD4fNTU1BctL6T/ef/99Hn/88W7bvLX9R3NzM+PHj+9yXNV/KPrLkiVLcsJa8+bNA+jVwI5Go110DEaigW1ZFv/5z38AmDhxInvssUeP2ztpB8eQWH4PFeWjXAM72oyUEj2k42yxMCI2VA5doLYysIch4RikDBif5/yRyay4lYbsHPZQ4YUtKWRzBjGhxHyrtE1ubsertZfsst0STj1QXQ6bW9ww8fGjSvxCiq1CSsmWD5Okkw51Ewc2BE1UeHGaM2hxE1FCBITXI7BsSVt84A1s35jSdASyHmxd1wfMgz0USCm7pIB885vf5Be/+EXBsnyVzFQGpASibifg8wnCMVi5ZhUzd5tJKOD+/oVPsN9UN9S0vgWmj3EnR5IRDb09DELXBFPGuUqbH6+H+mY3MsWyJB+slby7mvY0lY4a6GXB4m2/5JJLcq/33ntvampqOOWUU7jxxhupq6tj5syZrFu3DnCFX5577jk++ugjTjrppILvetBBB3URCup8jrIDmM7Ls3zhC1/g5ptv5vzzz+ess87C7/dz5ZVX8tprr+VyPkeNGlXQ5tmzZxMOh7npppvUAHk7Zah+x9tT/9EdH330Efvss09BzuNBB3X1yhf7zRVrR2/01n9UVVVx2mmncffddzN69GjVfyi2C/LrXx988MFAoYFdLPS7mDE9Eg3slpaWnHDjPvvs02uf4mQcHMPB8HioLHPPsWWbJFJRQoEKZMYh02bBxD5E9g4wysAehjS1SXSt8AEgewjhFppAejWcTUnE2GBJCtMyZroJtQA+DWKWK3TWiyPT6xFuyKkKE99mmK0mbZ+msMp9OeNooBBBDzJsIFuNkgxsAL8XGloln5s0sG0pNczScRzWrVvH5MmT0bTtV0bio48+YurUqQXLqqqq2G233brdJ5GWCMdBtri5+JomcCSYnZz5Qrilutx9oKoMakeN46MVbxZsF4+1YVsmgfKxvPaeZNbuUN8iWbkORlfD5InjMU2DRCxMS7SGnce417yxsTE3gCjG3LlzAVi9ejV1dXU8++yzuZDuYLA9vaWEEhrjxo3r4h1rbGzE4/EU5Fp25ic/+QmXXHIJ9fX11NTUsHbtWi6//PIu57tzm3vyuCuGN9s6THuo6U//0R2l/haXLFlSsCwcDmOaZhcvcf4+hmEQDocLvNh96T9Gjx49KP1HVt25GKr/UPSHfIGz7jzYnekcHg6uId6fiavtmfzJh/xz1h1OxkHakhRQWdHh7WuLNVMecoXPMmGDXo2aQWT7HZ3uoEgpaYpAKG9SXFqOmzPdE1U+CGdKKtklpUTGXAVxcL3iwnZcNfESyIaJu/kNisEmsTZJuMXBU9b/2tc9IQK6WxPbLk3srDzkRjBkDHX9+8vKlSt5/vnnu1Wy7Y62GPgzFjLR0R9oAiaMnc4Hqz8glUnllr/z6VLALeklhGDm3gex9tMVtDR1qBm/tXgBXp+feQfNxnLg9fdd43qn0VBZJpi+xyw8Hi+rV7zIpia376ivr2fFihU9DpCXLVsGkAvBnDx5Mrvtthu77bYbO+20EwAzZszgjTfeKNiv8/uDDjqooGwRuGJLs2fPLpo/mY8QggkTJhAMBnn88ceZOHFijzWGly1bVjRkVKEYbvS3/+iOGTNm8O6775JKdfQfxX6LK1asKFBDX7BgAX6/n1mzZhU97qxZs/B6vQW/YdV/KHZELMvK3X877bQTEydOBPpnYJum2a1w4I5KvoE9alTv4bF2xgEJiZSgOt/AjrYfx6eRacgMaS1sZWAPMzIGJNMQyI8ETttIo2fjV3g1pAOyPtXjdrnjpW3Xc92ObF9eCtXlbhkxpSY++JhtJpHVSaIeL8HBikSs9Lo5/m2lKdGXByGecu8BRe9YlkVDQwObN2/m/fff56677uLwww9n33335ac//WnBtslkkoaGhoK/bK6xlJJIAvwpA6yOyZCADw7c+2Q0oXHRry/i4zUreXHxi9z77O8BqGwX45099wtM3mUGN1z5LT5ZuYylS17md7f/lC+f9F3KyisZXydwUpu45sczWLPqLQDKK6o4/sRzeez3P+X1hS+zcNEyzjzzTPbaay+OOeYYwBUS+s1vfsPy5ctZs2YNf/7zn/n+97/PCSecwKRJk7o9LxdeeCHPP/88N910E6tWreLuu+/uEt55/vnns27dOn7yk5/w0Ucf8eCDD/LAAw/wk5/8JLfN3//+d3bfffeC/W6++Wbef/99PvjgA6677jp+/etfc+edd+ZCPB9++GH++Mc/8tFHH/Hxxx9zyy23cOedd3LBBReUfF0Vim3BQPUfPXHGGWegaRrf+c53+PDDD3n22We7KG1/4QtfYMaMGZx11lksW7aMl19+mcsuu4zzzjsvp1S+adMmdt99d958042Uqaqq4jvf+Q6XXnopL7/8MsuWldZ//OAHP+CYY44ZtP7jsssuy22j+g/FQLBixYpceb2DDz44533uzcDuLhx8pIWJ99XAdjIOUkriaait7GpgS7+OEbWwE0MnJa4M7GFGIu2W4sk3sGXaRpRQSklUeXGaUshoL4ZS2nYVxPMF0XSBTJYmGuWGicOWsPJgDjbJtUniYZuU7hk0A1t4NHAkTtTofWPAowss283JVfTOBx98wPjx45k0aRJHHHEEf/7zn7n88stZuHBhl1JW9913H+PHjy/4+8Y3vgG4/UImI/G1pRH+jt+uzwto5Tx4/WOsWvsxR37nSG6471f88GRXRTzbl+i6zv/d8U98vgAXnHsI1/78dA454qucf0nHQNrvtdiw7mMy6Y5yIj+69DcccuRXueP6r3PsMYcQCoV45plncoNNv9/PE088wRFHHMGMGTO46qqrOO+883oUKIKOkMq77rqLfffdlwULFnDFFVcUbDN16lSeffZZXn31Vfbdd1+uu+467rzzzgLPXSQSKagnDPDcc89x6KGHMnv2bP71r3/x1FNPceKJJxZsc/311zN79mwOOOAA/vSnP/Hggw8W5FUqFMOBgeo/eqK8vJxnnnmGDz/8kP32249f/OIXXUqA6brOv/71LwKBAPPmzeO0007jxBNPLDDETdPk448/LihH9Jvf/IYTTzyR0047jXnz5pXUf3z3u9/ljjvu6LHNw73/SNenibw/sryQI5li4eHQNw92vgCaMrB7xopZmGgYFtRUd6R7tMXc8yb9OnbSwYwMnRiukEPpP1d0YcMWyYtvS6aO78jBdjYmcD5qZddTbdYsrEDa3edlOJuTaJ+rRN+1+9qXzuYk9rutaOM7BE1kOANlHjxzes99AGiOSLweOH6u2GZq4jtK7m2pmFGTpn83U98m+LDJw4RRAqFLph4a6/U+6CuyNQMVXvTZdSXl/Wxqkuw0Go7Yb9tfh5F2H2RpjUqee9GgbnUz3hoPu3w+yZqFFdgmNLXBnBmCmor2PsOR/POlzzj3ujn8fv5bTNu7eAhnX1jbIJkxGebMGLxzPn/+fC6++GLa2tp63G6k3gOKHZ/hcm+vXbuWqVOnsmzZMvbdd99t+tn9PQel9h/bgviqOMkNKcYcXdqYqjPD5T4YSgbrHCRSEimhPDRwY6hvfvOb/PGPfwTcmvIHHHAAAJs3b86lNZxwwgk89dRTpDOStz+WzP6c4Gf/czF33nknAMcddxzPPfccAE8//TRf+cpXRsx98Ktf/So3QfbUU09xwgkn5NYVOwdNrzTTstFgWZOPT9a8wNV3u+KC55z4c8484TLqWyS7aCn2/GIVlTO6t4cGkx33am2nJNtTqAsEzhKmK+VbAqLci9ycckPAu0Gmra6l4XwapB2kWVoeblWZChMfbJLrUtgxixZbd72Ug0lQR8ZNSJUWTlMehOYIpDNqfm5bkcqAHTXRLRsR6PBga5rAdtz1WSIJiBntP/ISf9O9UR6E+lawlPaCQqFQ9IiddnCSNs4A9b+KgePDtZIP1w7scyzrwQ4GgwUTUvne2KxXOpF2x8+xVKEHe8aMGV22HSn0xYMtbYmdtDHQsB2oreqYxAq318LWNbA8GpktxpDlYSsDe5gRibsK4vnISIcgWa+Ue5AxE9mc7uFDTDcsOB+PhjTbS3WVgAoTH1ykLUltSOGEPMSSYvDyr7MEdETa7lGtPte2lgwhn1R52NuQG264gelTKvje+WM54do9+NL3JrPnnnvype9N5vLbTkfTIJ7q+C22RiVW+6ScLCG9pBQqQxBNqGuuUGxv3HDDDZSXlxf9O+6444a6eTskVtzCMSVORhnYwwnbltS3QEOrG+k1EGzevJm1a9cCMGfOnAIBPZ/PR1WVq2qdNZozJsSTkEgVGtIzZ87MvR7JBnZPCv/QXqLLdDCkO8apLsjBds+bpoHp1TEjJnZyaPKwVZmuYUZrDPz5+deGg0zZiEBpBrbQBPh1t2TX+CCik7UubcdVIPZ3UqT2agjTcfO9SyzXVFnmqonPnCq3WZj4SMFO2Thph6TUSRkdQlWDhRACR7iTOYztvqyBjJvYn0bx7FaJbftoi8O4nvtCxQBw/vnnM3OvE/n0hTB1o3S0Mo2dZyfY+HYZPj2E7nENXykltuMOHiZPmMyCG9ajT6zp/QNKwOcVGJYkHINR1QNyyC6cc845nHPOOYNzcIVihHL++edz2mmnFV2XLXvVmSlTpgypAm9/GE79h52wcQzHNbDLe99esW2IJl3PsQBiSagagGvz6aef5l7vs/s+XdaPHj2aSCTSYWAb7mcnMx0ebL/fz6677prbZ6QZ2C0tLbnXvXmw7YyNNBySto6uQUV5YZkucKurWB4dO5HBilh4yra9uasM7GGEYUoSKQh2UhDHcKCiDzHCVV5oySDDBmJUoHBdylUkF2WFxxOawEG4n1Xqx5TB5hY3THx875oEij5gJ22cjENCeJAStG1QD1EEPMiWDNKR7kRNEWTERLYayLRNwOfWTN59sppcGWxqa2up9PqZWFFOzcQQmhemTIkhN7i5+Mm0JJkGw4JYwh1EjKkG4gI5gLO3Po9bA33aRHXNFYrthdraWmpra4e6GSMGx3JwMjaOpTzYw422GKQzbtZlJDEwBnZ+Sa1Kf9d839GjR7N69WoikQiGYZAxvaRNN9Isa2CPHj26QBAt36M7Esh+X03TqK6u7nFbJ+3gmJJ4RuDzQtBfRsAXIm0kcyrimgaWI0CCETUJTAj0eMzBQIWIDyMSaUibnTzYaRthOdAHD7HwaEiKl+ySaRuRccBb7NJLNz+7RFSY+OBhp2wcy6ElLvAPdv51lqCOTJqQKH4PSClxGlOQMJFpy62HHYGUysMedKSUxDZl8PhE0ckPvw8M0y3x1xRxr4euCbd8X6K08mulUBGCxrCqga5QKBTd4YawSqTp4AxQio5iYGhqk3jaAzgj8YF5juUb2AHZNSIk33BuaWkhbUhsG5rbnJxhOWbMmKL52iOF7Hmora3NVRjoDifjYFmStCXwtruJs2HikZjrCdc1sGzAr2E0ZLo50uCiDOxhRDLtho4UGFRpGwklKTvnIyrbS3Z1zqnNHq/IIF14NIj1TdI+5HeNLMXAYqccDFsQSzH4+dftCL8OhtN9HnbCQoYNCHggYlIeaBfrUOW6Bp1kzMHaksFTUTzoSG8XOovEXQO4PPuM92rudbMHZiBRHnTD61SJNoVCoSiOY7QLxgqhPNjDCNuW1LdCWdAdVzW0Dsxx8w3sECHsTmKxnUt1xVNu+cyWljC27W47ZswYamtrc2P9kWpgl1oDO226TgVf1sCuaDew4y3Yjo0mwHFABHSMNmtI8rCVgT2MSLbrkhUoiMdN0PsejimCHkg7OI2FYmcyYXWvSO7VkAkL2QfhB5/XzSWxB2gAr3AxwgYpS3SpiT7oaAIZKV4PW7YZkLYRFV5kwkIDbEeJXm0Log0GZtzq1sAGQEBrzE0zKctGQ3mFO9AzBubh4tFdQ75VGdgKhUJRFCcjcUyJ5tO6GFuKoSOScMXFyoPuM7ItBsn01o9dY7GOB2JQC3apvVzMwK4og6amDgXxMWPGoOt6TuBrJBnYmUwmdw5LqoGdtDAdgWWDp31IVFXhnjcpJdF4K5oOjgQCOnbKxoxu+3rYysAeRkSTssD2lVIioybC13O4RHeIMg+yPonMG1y7x+vmsvs0V3G4RCVxcENTM2ZhiSDF1iGlxGozSbTnj2yL/OssItieh20Vzrq74eFp997Ju0+yediKwSVWb2Db4PV1fy/4vW5EgUfPu2d8GpgSBtCLEvS5ddC3NwEkhUKh2BZkw8I1r8BK9M/AznrcBir6aKQjpSQckaRTDn7pEPJJEhm3MsbWku/BLveXY0UKowDzDewtWxpJZdznaDjc1GWb7P+RlIPdF4EzACtqY0gNKUGQVRLvOMdt0WY0AbYNjhBIW3a5JtsCZWAPI8KxTt5Kw0FmbHeQ3B8qvBAzkc2u9SsNB5m0wN/N8byaWzO3DzlDfq8bppEq7vRU9AMn5WClHVrTWkE+/jYhqCNTNsQ7zfYlLGRbBso87v1oOJC2KQ9CS1TlYQ8m0pYkNqSRfj33MClGwAutESgPdSwTuoaw2/uRAaIy5HqwE10lHrASFnZaeWwUCsXIJRsWrvk0rLjVr8lIq10LRYWY9x9pS1qXhGlc0MiW5xrZ/M8thJY3Yb3RhFgZwc44RAbYwK6srCS9pdDjlG9g1zc0YVpuaHOsrdCDDR0GZjweJ53uodzuDkSfamA7EithkbJFQUnjbIg4QFusCU1zPdi2A7pf63JNtgXKwB4mWJYkmuhkYGcVxPtpYAtNgFfD2Zx0w75zxyvuERceDWG5pbpKxaO7YRrKgz1wWEkbI+GQsjUC20rgrB3h1cBy3NSEPNzwcMetl60JkBKZtikPQFzl5A4qRtgk1WIieykzEQzA6BoI+QuNcClEl+u5NYQCrnHd+ZpbMYvWxWFS64tY3gqFQjFCsFM2CIHwujnY0uy7ge2YrmHtWGryur+YUZPU+iRW3MY2HMJx8AcFwiNwNiQIbo7S1Lr1Exj5IeJVtVWYYbMgNaDQg92EaYPHsknEOjzYWQO7czj5SKCvNbClKYmZroJ4lpqCWtjN6Jqbg23boJfp7jXZxpP/ysAeJiTaBc4CnRXEbemKj/WXKh+y1YA2A5myelUkl9CvcFJlYA8cTsomlXQwpFbQgWwzPBqypeOC5oeH5/QBBMikha4LpFR52IOJ2WKQTEi83UWetCMQXYxrcEU+5JY00h4YT4imuX70lmjHwM9O27Qti5BYk8RWqrkKhWIEY8UtNK9A82j9LtWVDTOXjupP+4sVs3EMiX+MHyPkI+X1EqzxIMq8iFo/oYYEze/FMc2tO8eRSIfSb/WoaqykXZCHne+V3dLYhBUx0VaGSbbU55Z3DhGHkWNg9yVE3DEcjJRNxtZyAmfQoSIO2RBxkfNga14Nx+rfRNfWoAzsYUIyDeluFMS3BuF1p3GchpR7PNmLIrkm+lzWR9MgnlKzrAOFnbTJmG7H4OmHwN3WIkI6TpvRkbufDQ8v77g5hVeHdrXxgA82N6vrPxhIKUluSJGUWq4cRZ8p8yDjFkQHzotdFoRNzeA4EsdyiL4XJbk2iSeo46TVgFChUIxc7ISN8LgebGn0r1SX014KUSoPdr8x8/Ju48ms6rQ7phIBHX+tl8zHURo/TG7V50TDeSHiFZVdcn4LjeZmRHMa0ZAiuaXDwC7mwR4pedh9CRF30g7ppMQQhR7s6oqO8xaOdRxvgPwK/UIZ2MOEZMb1Hmt55bNkrH8K4p0RlT6cLSmclgz04g0XXs0djPcBv1eVahpIzIhJyt72hnWOgAeRtnMl22SbARkHEchLLcgqztuS8iCEowOjxqkoxGg2iG8xMAOegtnaviC8GtgOTtvACSVUhNxr3hiWxD6IE1+VILBTAM2vqZxBhUIxYnEsBydjo3k1hMcVWOqXB7t9olIZ2P1DSkmmMYMedMctkYQsyNkF8FV5Mb0emt6MkNrY/9Sm/BDxsmBZl5zfAqO5qRGtMQV+nWjzltzyzjnYMHI82H0xsO2MQzoDpiNyCuLQ2YPdcd6Uga0gkeqkIO7InhW/+0JQh5QNKQvRS5gpPs31dFt9EzqLpVxvlmLrkFJitpnELa3fBtXWInTh3n9xsyM83Nv5ydSuJJ62KQtCPK3CxAeD1MYUmaTE0PSCh0lfEQEd2ZgeMEXaoN/VXvjwtTiRFRF8o3zoft3NbRtAQTWFQqHYnnAyDo4pEV7hRgtK+uXBzqmIKwO7X9hJGytmoYd0bFvSGnVrX3ehwks8A+G3I6QbMjim0+WvN7IiZ6FAGbquo5d5CvKwQ6EQoZCrPtrc2IQeNxGjAkTyPK0jOUS8bx5sG8OUkKcgDoUiZ5FYR8i5PYTDkSEawis60xKlMN82YyMzdqHXsJ8IISDkQbYZiNpiPUweXs0VRErbUF6ace9rLw+Uyriho4r+42QcMnGbpK3hC/S+/WAhfDpOcwa91o8MZxDlnZLBfRq0uaW69DIPjpSEY5IJo4bQ876DYcUtkuvSOGUe7IhbfqvflHvdSIS4CVUDI00/1kqx5a0YY3b3Mr7cfZQIrV3UR8qeU1EUCoViB8QxHKTpoHnbn5kC7H6kzWQNbEeV6eoXVtTCTtr4anzE0m4aZnV51+0CXoh6/djpDK2LWhGdNIqELqjap5Lgzt0PbrMGdjBQTiQuqSzTSW02MSNWzoM+evRo1q1bR7i1Gc0jELogkg67+wXLcga4MrB78WAnbdImdB5eZOtgA7SpEHFFFtuWRBJuXbwcW6kg3oVKL6LMC70Z7NlSXX0IafJ5JBlDCZ0NBHbSJhV3yAitMB9/WxPUkVED2ZDqGh4OBUri4JaciCgP9oCSrs9gR01Mf7vx2kOJrt4Q7b9rOUBh4jJl4V0bQ+iwMeXBah8ECo9AWlLVblUoFCMSJyNzHmxwn5V2qm9pd9KWOIbyYG8NVsxyvZy6IJ4C0wJvEYHfgB8SGWCUHz3oRmHl/xktRkEudzFicTdEPOArJ5lpjwLsJg87GmtFVrjjqba4awhWl4/KlXJTBnbPBraVsN0Iz07jY6/HR3moCsgLERduhaahQhnYw4BUpl3grJOCOI5EdE4a6SdCE4hqX69eJddwoqS6uVJK7E9j6GtiqlTXAGGnbNIJB1OK/otaDQQBHZFxcFoz3acptCuJQ7uBPQD1JBUujumQ+CyBXuEhPUDaZCKg42xJuSX7thIZNpAxk+qdfTS1wZbW9s/QBY7NNlfrVCgUiuFANhw8O9YSXoEV71ucqpNxcuW51GRl/8g0G2jtqW3F8q+z+L1uBZ9kWuCp8OCt9Bb86SEdo7n7h7CUkljCNbD9/goy7XPY3eVhO9IhLaLYtkU07j44K/21pOvdmtf5BuZIEznTdZ2qqqput5NSkg6bpG1RNIUyGyYebjewdQFG3+a2BhRlYA8DEu0K4vk1j2XKZiscVluHAJnu/a50NiRwPokimzPgSFIDp6E0YrGTDmlTuDU0h+wGcCdaJO1Ce53Dw7Pb5CmJ+33uBIupZtsHhMyWDEaLgbfGSzzFwOTjl3nc69mDiKFsySBLyDmTTWnwang9GgE/rG2QZEzZPnPvKK+LQqEYkXQWNNO8GnbCynkoSzqG2VFSSKqyh33GMR3MVqP3/GtAa58ISaSLr9cDOlbM7DYXO5lM4rSXUvP7KnIVdTzlHoxWMxfqP6quw3BOJFtyxjVARaiO8EdJpCNHtAe7rq6uRyegY0hSCQeD4iVs62rGAZBMx4kno2gamANXPKXPKAN7GJBMuwXR9XzF8Ji5dfWvtwLh0XochAM4DSmcj6OgC2TGRjNtEqpU11ZjxkwSme5nW7clIqSD0YMOQJ6SuM/jlsBIq0mWrUZKSXJtys1nFoJkmgGJZhB+HTIOMlL8IjnNaawVYeSWntVUZcJyIxva866ry930gPpm18DGdkt3KRQKxUjDTtsFCaLCK3AM2aeoHsdwcp5r21Djqr5ixdz8az2kk2jPv+7OwAb3+RqOFT/PWkDDTjk5Q7kzkZaOGth+XzmJlPsM10M6dtLKhZfXltXmtkskmwtKSZVXjiayLkW6PoPf76eiogIYOQZ2tg52rwJnGZtU0sGkeITn+FFTcq/rm9agaWAMocjZMBjGKxKdyhtJW7qeJt/WC5z1C5+O05LB2ZgoqibuNKexP2pzc1Tq/JBx8Nu2UpEeAIxWg7ilF52d29aISh/ahLLuN8hTEvd53VAcZWBvPWarSbo+hbfWy7oGSSQOwQESvBP+9jDxTt4UmbFxPo1B2MDZlET2oAwi2wy3KkH7xIsmBBUhWNsASQscS+UNKhSKkYkdt9C8HQa25tFwrL6V6nIMJ5fKo6oy9B0ramEbEs2nEUt2n3+dJeCDaKJ4BJ7m13AMBztR/DqEm9s6juOvIG2CZbvpUkgwI66zqkrrCH2OJVpoi+YZ2BWjMSxBYnUcaXd4sUeCgZ1KpUgk3PzCXg1sw8FISvBoRSM8J4yZkntd37QOTbjXfqhQBvYwIBzrFAKasV3DZaAEzvpKhQchBM77YezlrTjN6dyAXEYMnJURsCSixp8Tu/JbNtGkKtW1NTiGQzLskBZaQT7+sMWnuUJ8GRuP7pZtSqs8/K0mtTGNk5G0pHU+3QxV5eDVByhdoMyDjBqQ6HjqSClx1sSQLRnEhCBEDGS4+EyJlBJnSwrh0wpCucpDrpdgUzOu+J3KwVYoFCMQK24XKFELn0AaDna7gb25WdIYliRSstuwccdwyxCBChHvD2abiWgfPrfFZa8VOPw+1zlQLEzcLbUmsboxsCN5BnZFqBwzz9Gg+TUyDWnMiEml6DCwo4mWglrNleWjsSt9pDalSW9O5wzNcDiMZQ2hhbgNyHqvoRQPtkMyJd3k6iKMzzOwNzeuRddcFfGhsktUma4hRkpJOOYqGebIKohXD1GIuBBQ7UOWe5CtBnZrK9qEIGJcEGd1DJmwEGPyXGqawGdYJA23YwkNYXmp7RlXQdwmg5fqYeDB7o1cnnbazs0lqjz8rcNKWCTXJsn4Paza6KYKlAUGLhdfBHRka8Yt2deeWy8b08j1CUSNzy3P5uCqx48q8kNOWMi2rmXbBILqcsnGRqgpg1FKmEehUGwHmG0m8VVxKveqzJVU6i+O5eBk7Jy4FrgebGm7HuxYUrJ4hSSecsd8IT/UVUpqKgTj6qCmwu3rpeHkNHj6U0N7JCOlJNNkoAd1LFvSGus5PBzcCWzLlt2W8hIerVsl8Wg4mntdUeYa2BkTKgBPmQejzSLxWZJqf3XHPrEWbKvjeNUVdSQswdiARuT9KKNqRuW+S2trR672jkhnBfHUphR6SMdX09XLZGcckmnwVxQ/1vjRk3Ov65vWomluNMFQlepSHuwhJqsgXiBw1l76SGhDW0dWeDS0MQFEpRdnQwL73Va3JvLoQIH3Sng1PEmDjKmUxLeGbIkuqYuc8MbwR+aUxIWAVEYZVltDuj5DKmzyaZtOPAm1lQP/GcKn4TS5USkyaeGsjoGuIYLt5cAqve76eNcBhWwzIN21bBtAKCBIm67HoDtBGIVCoRgumFGT8FttxFcnMcNbr4bkZJyCEl05pGsoR+IQTcKEUVDmd8d+n26G/74nWbWh49lppzryuKXStOgTdtzGilnoIZ1oApKp3g1sAF1z1caLofk1zFajaMRBW2tHDnZ5mWv55ZTE2/Ow0w1pRo/pEC9ri7UU5GDXVo0ilgD/GD9mq0mV3uHt3tHDxDsb2IlPEiQ+TRbd1kjYpEy6TaGcMHpq7vXmRtfAdqQysEcsWQXxghJdyeEVEiICOtr4ECLoQYwJdjX8/Tp6xsJM2srA3grslE3SkGhDPLHSF/KVxFWprq3DsdzSXJuiGo1tgjE1W1f7ulvKPK6hnLBwPou5omf5s8VBHVI2TnNhvJyUEqch5YqldYPfC7GUysFWKBTDGytmEX4rQqYxg7Qdt27yVuIYDtJ0CjzYAAjX+I4kJFK6+cDlIcHoasHEMYK6SrfUYTaU1UraaJ6sga36075gxSzslI0e1GmLS2wJnhJSrPw+CEfBKWJE60EdK2njpLpaapE8A7siVAEC0u3CdLk87LDJ2IljO/aJNReEiNdVjyJlgGlDYHyASjpm1keSgV1XV4eVsElvShcVlUu0Wj2WsK0oq6Ys6J67bA62ozzYI5dk2g1hyBdgkFET0bmDHgaIkMftMDrj18CQiIwysLcGK2YRT4lhIXBWMr48JXEvxIpPPCpKwGg02PiJwfq0l9pK0AdroiWgQ9rGWRtHbkwi6vwFk2ZCCETIg9ycKhQ5jFmuMV7efWaR3wupNBhpJcyjUCiGJ1bCIvx2G5n6NMGdg+gBnUzT1uc3ORnperA7CWoJTWCnLBpaXEGtzpQFIJ7qeH7aqY48bmlLZWD3ATPqTpRIoDEMwRL1bLLXIC/iO4cW0HDSDlYRoy+aZ2CXBSvw6hDPGwd5q7zoQZ0xdWNyyyLxViKxjtzj0bWj3dxt0/WW53u7d/Ra2Pnfr7ai1i2x1maSaexqTCTbbAy0bg1sIURO6KyxdSPSMbGlW6VpKBh+VtwII9lJVEGajitA5N9+Lo3waAhbomVskipEuN/Em0zSUsO/PRnYXg1p2K6SuMcVOTOUwFW/aFyTYV2DJBDUCPgGL4pBCAEeDWdLCgJ6cY90hQeiJrKl4yEn2wwwnB492D4vGI4gEVEhjQqFYvhhp2zalkZIbUwR2DmA0AV6UMcMG1ud75zdv3OUn/AKUmGL1hiUBbvuF2gX2Yok2kPCUx153NKWuZJdit4xmo2cengsWfx8F8PrETgSNrd0FZ/LKsHbicIoByllgQe7LFiB1wPxdIcn3FvtxT/aT0VZBR7dHdxFYi20FYSI1xaIxI4Z12GMb9m0peTvvj1SYGBX1SINB6ELUhu6VjtJxx3w9JxCOX70FAAcx6YpvAHHUR7sEUsXhcOUjczY0MMgdjgiAZ9l0RYb6pZsnziWQ6LVIiO07c6DjSEh45bqUnn4/cMxHZo+SZHUPFSXD36KgKj2uYPAquI3m9A1pAayvaSXdCROQ7JH4xpcA9tEkIgpA1uhUAwv7IxD2zsRkutSBHcOonncIbBepmMl7K0OE++uFJfm1Yi22CRTkrIi2pFCuMlAkbjEMRwciw4PtqM82KXiGA5Gq4Ee0okk3BJNvk7RBAtef4Jv/fwAnnjuzi77V5e7ofrRIqluQriRDwWfl3GIxjpc3qFgOT6P+7lGp5R+x4HK8joA2vJCxMtDVfg8bpJ4pn2fuuoONe3NKzeX9uW3U/JVxGsqanFMiW+0j/SWDFak8HynkjZ4ejZbswY2wJbm9UjAHqKAOmVgDyFSdlU4lCkLYbizNNsTwiPwp013Brab0hOK7rGTNsmYjaVpA1eSaRuQnamXqhb2VmG2moQbTDwV22ZiTXg1t8xeDzPBotKH05SGmAUxExkxoaznwhMCV1k+FVN9gEKhGF6kN6ZIfJYkuFOgUOnbqyEtmQsv7i92N6kxwqsRjzlYhuw2Hzjghy1hd7JVWk4uHU+FiJeOGbWwkzZaUKMxLIuWO33smVvY3LiG+/5yLU88d1fBuoBPYFpQ31KkHrZPw2gptJqdjEMsEc+9DwbK8Xpc4zrTaRxk2lDRbmBH8kTOqitcY1oTEE+5n1tXXZvbb/3qBmDHHVcXeLDLawBXfd1OO6S3FIb4JqISb6A3A7tDSXxz0xpQImcjk4zhhogXhASnbaSgx4HvsMSv401ZZFJOl45F0Tt20nHDX4Zh7n3vuGrUuiZwHGVg94f4lgzxJARCw+f6i4AOGQenKY0TzoDVc3h4Ft0riEVUDrZCoRheOKZECNdY6oImMNu27uFlJ6yuAmeA5hVEIw6+HpJBQwEIxyAZd5CmLDiOowzskrBiFtKSpCyNSBzKi0QLtOXlPt/3l2t44bXHC9ZXlkF9KyRShedcD+pYEbNA0d1JO8TiHWGbZYEKPLrAdjq80VlMCyrLXGPask2SKXe/6ko33zpfwybfg72+OQxAa2THvAfyDeyasho2N0u2hCWekE5qfbogPSKVlvh6KVs6YUyHknh90zpAGdgjkniqvURXvoJ4mzEsBc56xafhtW2MuK1qIfcDO2UTT4G3c3mP7YB8JXFQBnZfkbakdXWatKYXFcAZSkSZB1mfRDaki5bmKobXJ4hGHVVaRqFQDCvslFVcqBW3pFKm0UA6/TdkrITdtUQX4GgQjUrKPN33iWUB1+ESDTtIRxa0U+Vgl4bZZoAmiCRcA9fX6XkqpSSZLsxjvHX+xSxe/nzufSjglvZqaO2Uh+3XsNNOgbq1nbaJJjqOFwp2FGguZmCXl9V1aXN1hbvM53HT60xLUlvVsV0k5U4INGzZMSetswa21+slJEK0JWDVBokZ9GA0GxjNHQNKN+S/5+NlRc4A6hvXAsrAHpG0xd1QEp83LxQoZoJv+8q/BsCrodsOZlwpifeHTNQkkWL7EjjLkqckLkTXmV9Fz5htJrFGE9PnGX7pARVeV+wsZkJ5aTenPyDIpKXKw1YoFMOKhs02a5vALmKwekI6VtzCivfPkHEsp0CcLJ+UpZFJS0J6932iRxdYDsSijitqk0W2i98qekQ6kkyjm3/d1CbxerqWuUxnErlQa01zx9mOY3Pd//suKz5ZArj7VJbBpqaOclvgGthOxsHOuz+ctEMs1REiHgqUu8cQkOok+GtaUFHMwK50vdU+r7tNPAUNrWV4dHd2IJFqBWDtJom5A0YyZA3sUaNGYcYsDKnRHIG1TQLHlqTrO8LEbVt2qyCeZXTNBHTd3SjnwVY52COPbCeQI2W1C5wVXhbDhn9/6mP15l7urCEkm4urSnX1j9gWE2N7EzjLkqck7veqWth9xWgxiEVt9GFYOUBowhVctGXJkTU+n8AwJLH4jjcYUCgU2y/xNpu1jYLVm2Su5nQWLdheiilmdrN3zzgZxw1BL+LBjreXY/XRc5/o1aG11aHALhSqDnYpWHEbK25hejTC8eLq4YlUh7f5wL0/z5FzTgLAMNNccccZrNn4EeDuG09BU1vHvkJza1rnl+qyklbOwBZCEPCXAa6XtXPJUsOCilAxD7ZrYHvaxdHW1Es+3SyoLHfzsLPlvNrCDo3hPpyQ7QApZYGBbURtbE1QFYKNTdDqeEhtSOW0DRxN61FBHEDXPYyrmwjA5sY1gMQcogiQ4TeiGyGYlqShFcrzOgGZthGmdJWZ83j4nSC/eqWcU64bRzQ9zDxc+egCLWGSTKuHQV+QtiTRYmFo3df3G9ZklcTbhc5iyR1XkGOgkVKSWJ8iaupFBVmGA6LOjzauxFontAsG2RBXBrZCoRgmSEdiJBxsBJ9ths82y1wpJWjXvZH0W+jMMRyk6RT1YEfjEk0DevFElwWgpdlGdvJgq3Sb3rFiFk7aIWpppNKF4sFZkukOb3N5qIr/+e49zJp5BADxZISf33YqiVQMTQhCAVi/pdBrLHSBGe2YgLGiNvH2Y4YCFTntJK/HDffPj5QwLZkTOcunqt3AFggQ0NACo6qgpt2zHYm3IqVEOJKNTTvWMzWZTJJOux7q2po6zLSDrWkEA65Hf21UJ9pk5sLES53kH9euJJ7KJIgnmzG3Truw3ygDe4hoi7uGSHkob2HSRlIocGZY8K9V7sg7mtRZvH74ujiFT8eXNGlTA+s+4SqIO0i999m54UhOSTzj1sLOFFHQVBTHilhEGwxSHk/RAcF2iSYQtkM0qgaFCoVieOCYknTGIRAUVJXDJ5tgXUNhzWMtoGE09u/h5WSk68HuVAHGkZJw3I3skcmeR/qhAKSiNim74xjCI7a6PvdIIJsb3RoFXesaHg7khMXAzZf2enxc/cOH+NzU/QBoaWvgjXdfAKAyBJF4oRdbC2iYLWaudKUVt0ik3ZC9bHg4kCvVlcm73GmjI986n2yIOMCYahhX55YWq2rf1rJNYrEYVT6H9Q07VgpevsBZXU0tZtrBEgJdg5oKiKUFm1oEifUpADy+0sbH+XnYza3rlIE90miLubL9+TX6ZMx0tfrzeH29l7jRcZleWzdM3VwAfg2vbRFtdZQHsw/YSZtE1EbvpfzA8MZVEleluvqG0WIQb3MwdH37TA8ogtCFG+oYVoNChUIxPJCmg5GWaD5ByC+oDMKqDbChscPI1kM6ZpvZbbmtnsgawaLTGC6VcUWzAkGB7OW4AZ8b6pxx8gxsTXRbX1vRgRU3MW1oiRYPD4fCEPGygCtIFgpWcOZXLs0t31D/CQCaJvB73fsj64nWA269dCftuH+mQ6JdNC1f4MzrccdB+Y6GVAaqK7sa2DUVHQa2romck6UqzxhvbW0l5JVEk9DQWtLp2C7Ir4FdV12HmZY4mpabIKmrhPqMhw2r3LzT3kp0Zckv1dXUuhZDGdgji4ZWWaCGJx2JjBiITnmYz39S6NZ6e6OXVP9ShAYfn47HdkhFLIzh2sZhiNFmEIuDz7/9ea+zCK+OjJj42mtAKgO7NNKb06Rlu35BkRn3YhhmhrdXvEoymex94yHC54F4TGKYaqJNoVAMPY7pYGYkertToywoCPlh5TrY3O5I04M6dtLGivV9RN6dEZxIucaWNyggZffsfJAgDIek2cnAVml3vWJFLOKWRjLjRgIUI19BPN8gnjh+Wu71+vrVudeV5W7ptJao+14LaDhpGztpY2dsjKRFKpPocjxNE0jZYWBLKUlnoDbPW50lW6arM1XlhQa25kgCPlhbL3cYB1ZBDeyqWmxLYiPcdArA7xX4KnQ2bXR/j75giR7s0R2luhpb12FbwBCcM2VgDwEZQ9LUVph/TcZ2Bc7y8q+3xDXe6SRsZtiCtzcNT1eX0AUeDcyYEjrrDtuWpDKSjOHm9liWQ9vaNIam9aogbpgZ3nzv5YJOCaAxLtgcHeKfsl+DhIWwJVKirn8JWDGLdFOGsOMpOf86HGnkh9cew89uPpVjjz02p5I53PB6IJ2SxFND3RKFQqEAI+VgGxJPnghZRUjg88InGyWJtGzXj5BY/cjDtjM2xeZI4+0hvcKju2rgPU06Wg5+3SGcr7WjCxylIt4jjuVgxS0iGfe8dZdqVxgi3hHSPX7UZDy6OwDb0PBJbnm2qkdLtF153KshLZnzYofb8o6XFyKeJd3uaDItN2I1v/xWlqoiYeNQGE4eDoeRGUltJTSE3TD4HYECA7uiFqs9wCPf2VBdKUg6ruJ7qSHi+R7sLc1rsJ2hKdWlDOwhIJd/nW9gJ23IOK5ibzsLVvuQ7Tfa3uM6XMKvD1AetuUw4N5wj+4aDsrAKs7SjyX/fF3yzCLJM69LnnnJYtnbBgnh6dXAvu8v13D5rV/nG9/4BrZjE0kLbl8U4swnq/jWX6t4f8sQlnfz6+4EUcrtIZUHu3eMVoNUm01KlFb/uqWtgUtv+iprN7lKp5s2beInN3yVTVs+G+SW9h1dAyOjDGyFQjE8MFIS2wGtk8p3VbkrSJVo76uER2CE+z4wsuMWmqfrkLo16go24RHuKL8nY9mU+DVJ0hS5ElFCd3OwdxSv5WDgpByMpENLWqOsBy2TfAO7LFiZe63rHnYauwsAGxs+xXbsvO2gMQyZ7MSIEFgJCyfjEI7ll+jq8GCD+wzMCv6atlsqqqqiBk103CNCdKiFdybf8G5paQHTJugXpDNQ37Jj3Av5BnZNeS227GpACwQ1E90Bkqb1PUR8S8s6bAccZWCPDNribskGb37+dcoCKXP5O46EFz5xbyqB5KeHJagIuXfIGxu89FVUsjUpeH2dl8feDfCr/5Rx3j8q+MofqvnKozU8uWLg1JU0v46IGqSUgdUF25bUt7qdrdeDGwYTNbHTDlV1GprW/eyclJL/vvUUAJ9+upb5i6Oc89dK/vmxH6e9U3rhk56vo5SSdz78b64UxUAivBrCcpApC13rmLVXdE9mS4aUJUiZolcDuzlcz6U3fpX19Z8ULG9s3cRPbjyBjQ2ru9lzaBAaaI4ysBUKxfDASDs4DnS2gQUCISDZ7hTQgzpGUwbZx9I+VsLuUqIrbbh9YNCH+8Gm7MXAdvAJSdrWck4KobuVRlSpru6x0zbRiEPS1rrNvwZy+dLQkYOdJRsmbloZtjRvyNvOnYBpa7elNZ/AbHXHbeFEnoEdLDyezwux9pKlpuXOrfi8WoFBXVVeh64Vd4xU5eVmt7a25vL3K0Kwpp4doiZ2gYHtr8buJvLAW6J6eJZQsCIXet/QtBYH5cEeMTS0yC7eSpkw3er07bzX4KEh7v7wZu1kMaHS4ch93NFq3NB4t770ek4rm3S++Zcqrv53OQ+9E+SVz3ysCXsw24U05i8LEs0MUP6vX0OkbZJxFdLUmWjSra1YUwFVZYLqckGlYVAeEpQFe/4pNjSvpyWyBaoOg/3e4o8f7UrMKNznzY3ebtNMkqkY1/z22/zPLSfzw2uPYd2mjwfqa+WQws0x83khqmph94idsknXZ8h4PUjZfUgbwJaWja4RveVTAMaNmsQ9V73A5z73OcD1bP/kxhNYt3lVl32llNj2ECh8CIHXtmmJbP+DAIVCsf1jpF0Ptl7kUev1QFusQ+jMSrg1lUtF2hInZXcp0ZVIudFcAZ/riRaORPagCC4tB11KHCFIuNWLEJpwNXqUnkW32CmHSEziINB7cFR0VhHPZ9K4jjzs/DBxTbgTMK3ZMPGAK4RnRkyiqY6BTucQca/uhoiblswZ2LomCjzT1UVysrNUVXQY4q2trWC4+fs1FW5O+I5QEzvfwK7yVWO1n+uBIOvFbo00kM6kcIbg56MM7G1MOiNpirizUFmklMg2s0Dg7PlPOlxaX5zmTmV+YVaHqNFr3YSJJ1IxFi79J23Rjhv3gaXBnDGdRReSKr/b0actwdMfDZAX26fjsWzamoZItm8YE4lDOkPOWykNB9maQZT1PlnyweolMO482PsVKN8nt/yYXTPsPdYNZ2tNaaxu6TobuqH+E358/bG8tvSfgDtD+/eXfz8A36gQ4RHIiOEKXKXAGYoebTvBaDWw4hZtjl4gdtiZhub1XHrjCWxuXAPAhDFTufVnT7P7rvvz2GOPseukmQC0Rhq59KavsuS9F3nhtcf57eO/4NKbvsrJF07juO9N4Inn7twWXyuH0AV+4dAaU/eBQqEYejIpt750sUgxv89N2zMtiRbQsNNOn4TOnIyDY8kuHuxE2g1NzX6mhF492BI31S6aaA8R14RrwO8AHsvBIhOzaIl2L26WpTuRMygUOtvQKVKsLAhNYTBMie7XsNM2ZsSiNdl9iLjX216qy6CgTFS+gd1d/jVAdXmH8R0Oh90IBkvi9bgCajtCTex8A7vaX4WBKDoB1h8mtNfCBncc5fS9MMBWowzsbUxb3DU+CvKvDccN/2jPv44b8N+1rhVW4Xc4eJJrQB2+Vwqv7v6oFq3zFZ2Ruen+H3HNPedw+W9OQ0rJew0eltW7xvi4cptfHB7nvhMj/POsNu7+SgxNuAf5x0f+gpp9/UV4NbxIos3KwO5MOCbRtLw65zHTrYsZ6j13+r1Vb8PkX+bee9MruOP4KD8/LMkRu3TE4y/ZWDjxsnj58/zo+i+wvr7Qu/nS4ieJJwdYKcOnI2Mmfs0ho5TEeyTTmMF2JLFU9+HhiVSMy246kYbm9QDsNHYXbvvZ04yt2xmA2tpabvnZ35k2eW8A2qJN/OL2b3Dzgxfwtxfv5d2VrxNLtOFIh/v+ci3/fHX+tvhqLpogIB1SaXKeGIVCoRgqzISD7Ma7GfC5z6tUxn0+CwFmpPQ8bMdwkKbTxYMdjkm8nSdQe8nBBgj6oa3dOSp0AbZEDkWM63ZC02aLREYUjquLkMgb83Q2iCeO3y33el2n8VJZABIZd/yuBTScjIM0bFoTeR7sYKEH26O7hrXrxe5YXp0X+p3/ujNdcrAdSTY3tKYC1m/Z/mtiF3iwgzVkpIY+QFJC+XnY9e152NsaZWBvY8Ixd0ZT1/M6+qTVLnDmXo5XP/Nh2O76o3Yx8LXfcGUByeyd3E6/JaWxsqnwTmwO17No+XMAfLLuPdZs+ohHlnVM6X1r3zRH7mIytcbBq8P4CofDp7jHa0trvLB6YGpsezRIR21VoicPKSX1LRDKCxRwogbYElHClN07m33gG+e+afkX5lv7MbHM7ZwO3Lmj984a2I7j8MhTN3HlnWfmwqKm7LQ7h+z/JQDSmQQvvv6ngfhqHfg1ZMbGa9uqVFcvGK0maaGTNuhWQfyVJX/LGdeTxk/jtp89zaia8QXbVJbXcNNlf+NzU/creoz8EiB3/uF/WNgexTDo6AKvdEgZEB++1cQUCsUIwUjaoHeT46kLTNvNtQW33nFmS+kPMCfj4BgSkaerY1qSaAIC+cGBunD1drpBmjYg8Ps6SjwJXSBtVA52DzRvNpAercfwcOiUg93Zg50fIl5fqGmSTeFqibbrJDlgphxi6e5DxLP7GKYrkJb1q+TnYHdXogugorwm54xpbW0FS+YmYCpDbhrelu08TDxbB9vv9xPQApjOAHqwx3SU6mpqXUcfJRUGBGVgb2PqW2SXAbVM2WA7OUMrv/b1F6cVdvKHTOl4/9q6wgO9suRvBUqTf13yIcsbXINrp0qbo3ft+sA4ba8O99JfVgQGZJbHE3BVOJPKc5UjkXJzsLMCHNKRyMY0ItD7dF08GaVBP6JjQcN9gMNHn70NwNhyhynVbvzLyiadSFpwz+P/yyNP3ZTb5bDZJ3DXL57nnJMuzy17+pUHB1aZ1KchTInXtN2ZW2VgF0U6EiftkLI0V+ywm0Hff976R+71z777W+qqxxXdrqKsmhsv/SsnHn0exxx0Gt877ZfceOlfefL2lTx5+0ecftwFADjS4YZ7v8fyla8N+HfqgubmGzq2EjpTKBRDj5VwoAcDTIgOcU49pGNGLexkaXGldnsNbJF3/GTa9YjnRygJXcuJVRUl5YBH4PMILCu7T3sOtjKwi5JK2DRudghV9J68m0x1hHQHOxnEZcGK3DO2c4g4uFGn2TBxNEE67hDLdC9yBoCAVEaSSrsebSgsv1XdQ4i4rulUlNUA7Qa2LXNKXZom8HpgY+PwuycyjaULBGY92HU1dTgm2Jo2YAZ2gZJ461psFSK+Y5NMS1oiUNEpjEUmrVz9xDVhjZXNbkzRrrUW0+oK74qDJpm5sO7X1xWKWr38xpMF2/63cd/c6zP3SRe9cafV2cya4Hqx62M6r63b+hJg3jIdK2zSFh1+P/6hIpKAVDrPg52wkHETSsi/fmfVu1B3AgDCaoawG6Xwweq3ctscuLN7DSWC/35m8MwrD7nbC8F3T7mKK3/wAMFAOVN22p19dp8HwIaG1bzz4X8H6isihHBzzFJuHpkysIvjmO5gKW4UF9wBt971uytfB9yZ2OlT9u3xmOWhSn78zf/j5+f9ltO++GNmzTw8J6Dy3VOu4gvzvg6AaRlcdddZfLp+xYB9n6Lobt6gLiVtcdUPKBSKoUM6knTCccOtu8HvgXC7vaSHdOykXXIetpPp6pmIp+g6geoVkLS6ndiWaaujjZ2a2ldV85FCY4NNKuEQqujdnMlG83k9fnzerrpDk9rzsCPxFiKxloJ1+WHielAjHbeJp+N567sa2F7dvQ9SRp6Bnee17ilE3F3vGuDhcBhBodBddTk0tEI8OXzuCythEf0gVlDmbsWKFVx88cW8/fbbBdtKKQsMbNuRWA4DGCI+Jfe6qXWdKtO1o9MWh3iaLmUEZMREeN276oUevNcAVQHJ3mPdTn9TTGdtm3sJ121exer17+dteDipwAGA670+apfurZ18L/YT7we6VaIuFeHT0UybViV0liOSAIc8sZOYCRkH4e+9N3l+pQWae1/MrPoUpHteP/q0w8CeM7GjQ3vxoyhOu6LDV4/6Ll8//sKOvG/gq0d9J/f6qX/fX/Qz62Maj70b4L2G0tXqAdAEMmYiQNVC7wZpONiGQzgpCsMH8/jv28/gSPeJcMQBJxZcv74ihOAnZ/+GOXsfA7iDjMt/cxr1Tev6fcxe0QQ4kqDu0NSGquGqUCiGDMdwyKQcNF8PBrbPjTTLmNI1ch1Zch62nbG7GMQtUYmn8+PTo7me6CJ52FJKyNhuvWzaa2dnl0sVIt4d9ZttsBw0X+9jqazIWefw8CwFYeIN3YeJ++p8MDZIKi9EPNgpBxtcdfp4ys3BzhrYB+93HBVlNVSW13LQvl/ssb3ZPOxEIkHGzJBfn7ci5ArzNbb1eIhtihWxsKIWMu/+/v73v88dd9zB1772NZw8Kzcej2MYrl1SV1WHZbm1wgfKg11bNRaf102RbVQh4js+rVGJIynIE5GGAwkLAhq2Ay996sYTeTXZrVE8b3JHp/96e5h4vvd63KjJMOmq3Puz9i3uvc6y/3iL3Wpdo21Vi4flfSgBVhSfhl86NGyy1cC6nYYWWRAqJlvSXQtydsOK6Odyr8+YU8v48W4e7srP3sFuN6RnjrEo87md16rIOMDtzeftf1xu34wFDy8LsF7/GjWjXGGsN5a/wJaWjbltTBv++G6A7/69kofeCXLZ8+Us2VD6/SD8GjJqoAtJbBjNrA4nHNMhmZSkrO4Fzl596++510fMOXGrP9Pj8XLlDx5gj11nA67q+M9vO5VUZpDqqbUL8wR1mStVo1AoFEOBNCWZjET3dm9gB9rznrOpbVpAI7UpXdIYxo5baHnP84wpCcegrPMEqi5cI6lYqa72yKbsYC3Q/tg1LECgVMSLkMpINm+yCfkKw/O7I9HuwS4azk3PSuIA5QFobnPHSaamk8pXJS/mwfa4xnW+Z3ZM7U48cdv7/OnW97toqnQmvxZ2W7ylYGJGiOEXJm5ETcyYVTAZtGaNWwFl/fr1BV7sghrYFTU4mubqUw2QVappWi5MvCm8HqsnccFBQhnY24hiIlcApCxkxgafzictOm1p95IcONGkKlD8hzNvUn4ethcpJf9+468AaELjqyf/AaqPAMBvrefIqT2PboWA0/O92Ct6qXXQC0JzRTpibbbKv8QtzdYacztnAJmxcVoNRFnvM65rWyVJr1uKSU9/xJxd6thvP1fQKpVJsHbjR4Brq8+a4E6SWKIcKg+kLFjJXtMOyh3rniUh/rA8yPzl5UT2eAumz8cJ7Z1Tl15e7+H7T1Xy4DtBMu0ie44UXP9qOZ+2lhi343NzzHzSVrWwu8ExJMmEgylFzkuRT3O4nhWfLAFg0vjpTN15RsF624FVzbo78OoDQX8Z11/0RyaNnw7Api2f8ejTt/brO/SKBjgQ0KUrdKb6gR2W733vexx88MEceuihHHrooVx44YW5dfPnz+eYY47hqKOO4o477lATroohwcrYmBmJpwcDW9cEttNhYHsrvRgtBmZbz15s6UismF1QoiuWcI8T7DyU8moIw0EWq7FtOW7n3u7Bznq/swrUyoPdlaY2iEcdgiVUmZVS5jzYnQXJskzKM7DXN3Q1sMsCbhRqWxySGUk6071oGrgGtmGBlefBBvB5A0VD1DtTlSeIFkm0FniGYfiFiRsNGaThFEwGxWId5+jpp5/OvS4o0RWsxtbd3582gFbphDFTALc0bX1rw8AduESUgb2NSKZdBfHOZQRk2kZYDsKrFYTj7j+h+059TLlk+ii3113d6uHZZatoaN4AwL4zDmNR65zctsanVxBPtBQ9Tj6HTTEZV+56Q9/e5C3doOoGnxeMiEUk3vu2OzrRpBt6lq3RKGMmImlBsHfP8F+Wd5SVmOJ5EyHIGdgAH3z6Zu713J3z7pma45mz19F4PK4F91GTznOrOtylDh4Yexbsv5Q/bz6Za/4d4LLnK1gfca+7JmROOC1lCa54sZzmZAlhyn4dMg4+0yaRBlvljXVBWo5bukoIROe4QuA/bz2VM0SOmNM1PPy2RSF+8I8qfnBn9wqk3VFVXsu1FzyC1+PeC08u+C3rNq/qZa9+oAmwHbzCzUNUSuI7NldffTULFy5k4cKF3HmnW3P9tdde48knn2T+/Pn8+c9/5rXXXisYYCkU2woj7daR1jw9P8M0jVzklR7SsVMORnPPBrbRYmC0GHgrO2ZLs7oTWqe+W2gCqQlkUxEFWNMBm5zSedbjadmAEDjFvN4jnE1NEj1pIry9mzKGmca23XFzfz3Y2RS/lqgr3pkxuxdNAzf/3rbda9gfz2y+BzuaboN04T2QDRNvauv7sQcaO2VjtFmuIF/7RIDjOCTySpl1Z2DXlNXgCPcEFRsT9Zfxo6bkXq/fMogpcd2gDOxtRDjm1oMt6zSjKZMWsr0TfjfPwN5nXM/uqUMmdXT6v3l3LhwchX3fJDbpPt7f0t7RJ1ciGx/njXcX9No+XYNT9+xImr1nSZA/vhvgwaUBfvdmkNsXhXh4WYBEiaGemk9HxE3CMWVgReLu5LS3/eEu2wykEL2GNDkSXt/YPoMpLQ6b7HZUs2bNym3z4eqOkJsD8g3s2uNy+T22A3cuDiHbO64DdjKp8HV01Hb5PBau65j52WO0xW+/EuOer0TZvX0ipympceVL5aR6SUkTmgAp8Vk2hlISL4pjOEQTPZTnejM/PPykgnWGDa985u74yrshIum+P4x2Hrcbp33RVRa3bYu7Hv2fAfcsCuE+JqXlIOhQ51WMHJ599llOOeUUdt55Z0aNGsWZZ57Jc889N9TNUoxAjLTEtsHTi4Ed8LneyWx/qId0kutTSKf7/iu92VVN1trLrDpS0hShW6+qqPDitGS6lOuSpoOwnJyBnSvzZIHQigupjWQSKcnGRkmFtEoysLMCZ9B9Dvao6vEE/GVAcQMbOsLE0xl69WDn03mypRQqy2tyr6OpsBvtmkc2THzDMAgTNyMWdspG82k5Qb5UKlUwtnj//fdzIeOdDWy7hBD/vjK+3YMNsKFp/YAfvze2MtlWUQqmJdnQKJGyYwYsR8REeNzQiKxhXB1wmFTVc2d6xC4GjywPYDntx9ODUDGLT/I9xuuvBxxee+dfHHvIN3pt57HTMjyyLEAko/Feg5f3GrrGrxq24LzZJcR7+jT8cZv6Joe9dh3Z8zjNEUm7hh3SlsimTEnluZbXe4jb7Z12eAFzjnZDhWfMmIHX68c0MwVCZ9UBB2/qXczgPlC+L1N3dY3zf63y8UmL+1OfWmNx/TFxDBseXrSZJ1d4IOTmeFf4HL4zO8Xx041cNZPrjonz439WsCWu80mLh//7bxlXH5noeTZWCLwZk4zhCp11FvUb6aQTjlv/ukh4eEPzelZ+thSAXXaeWRCyBvBxs45hd/Qh7zd4mDex72KC3/jSRbz8xl9oaF7P8pWv8cqSv3HU3K/1+Tg9IYWbh+3zQXNkQA+tGGbcfPPN3HzzzUyfPp1LLrmEadOmsWbNGo4//vjcNtOnT+eee+4pur9hGDnBmywejwefr5tZqB2YrBCQMxSyt8OEgT4HmZQFmsTjk4geHr3BoCRtQsp0DWRPlY7RliHTlsFX3fVetNM2yU0J9GoPsr26SzwtSZmSihDFP6tcQ2wxIJJGBEO5xcKxwSPRPAASobvHM20JXrBNe7u7JxzLQdqg+/s3BuzpPmgMS5IxixqPhfDqufPVHUmjIxowFKwour2uCyaO25VP1r1HfdM6TCfdJZS7vMydQPHqHQa2R/fi8/sQousxPV6J43RzL/RCdWVHiHjMCCMcC6RdENVWWyFpDEM0LikPDbyRWipGNIODgxYQWGkLx3GIRLo++J9++mkuuOCCwhDxsmocn0D3FP99Zq9Vb9e4MxPGTsq93ty6FsdxBuQ3pJUYx64M7EHGMCVvr5R8uBZ26hTRKW3HLdXk1/m0VSdpuj+OvcdZ9DbZNaHC4c4vxXjy7fX8+/2PITQTgtNyv+JpdRbNxiuEgaUfvEoqkyDYPjPXHQGPm4v9+7dD3W6zdJOH82b39q0Bn0YAk0izQzItCQWG7oc/lFiWpLEtL3IhbiLjJqKq93JoC1Z3PNC9rU+wy863AODz+Zg+eW8+WP0WmxrX0BZtprpyFOs3r8JsfAEm7wPAh611VJebPLi0w8K9cG4KXYOgBt8/bDxLXz6SNYmdIDidK751CrOmzyxoQ01Q8qtj4lz4r0qSpmDReh/3ve1w/pzuJ1mEX0OPmVhVkrQxMq97T8TbHAwbit0C+bWvi4mbdZ70eq/B2y8DO+AP8aMzbuDKO88E4N4nruLAfb7Q6yx8n7ElwXavkGXJXj1Iiu2PCy+8kF122QVN03jiiSe46KKLePLJJ0kmk5SXd4RNlpWVkUwWzxV46KGHuO+++wqWnXrqqZx22mmD2vbhzIYNG4a6CUPOgJ2Dcph1LkBpOWsWEMt7Xx+ph+4mCfdw/2XoeCbO3rWUT2kufFsNTKfTJ0PlXnFMwMQgti7KSKS7++CwvYG9SztG/P0tudfjdw0w9dBY0e322GcKn6x7D0c6iJ1XMHX69C7bZC+vdYt7PcorytjlsOL31tTSmleUaVYAfu++FmOb2OXzKaDTuah2/7U0Qe/JoIOIF5jrVstpo422dW2sXbu2y2Z/+ctfOOGEE/j0009zyyr3r6T2gARze/mIKQf3LefUmTAGfuO+ToTWsql1E7T26RBFmTq1tKuqDOxBJGNI3lopWbkOdh4DgfYSEdKREDPbw4RsRKWXd9eVHh6eZfooG9ZfCx+5AmdX/OhRdp7yJVqSgpljbO5vO5Z/vvowhpnm7RWvcOisL/d6zFP3zLBLrU0sI/B7wK9L/B7Jba+XsT6i81lYJ2lCqDf70Kvhw6E1atMW9+byj0ca0aSbf1pX5b6XMRMsB9FLSYmkCQvXtp9kM8yM6np03QNupWlm7HZArg72h5++xcH7Hcfid1+A1mdh8tUALNno5cMmD3HDnW37/K4Z9sq7t4QQfPWob3P7I5dC+AVeXRRm1vTbu7RlSo3D1UfGufzFchwpePKDAPuOt5g7sZt4cb+OTNtgOqSNkR29UIx4xMZGFNZHbefVN/+Re13cwC7sst/dCsX/g/b9IgfteyyLl79AS2QLD//j1/zwG7/q9/G6IsF21fOjCbcWaIV64uxw7LnnnrnXZ599Nk8//TQffPABoVCIeLxjQJRIJAiFik/efvvb3+ab3/xmwbKR7MHesGEDEydOLNlTsqMx0Odg9WtRli+IMmp6986DLFtaJXtMEew82u2f040ZvFUeRh1WV5DWJaUk/EYbqc0pghM6JrHf/8wtTTiqqvvJRJm2kGkbz/51iDL3OW+vjeGsjqKNddsodMmUg+NsfquMqUEbzS8Yc8yY/nz9ISP+SZzUxjSjj+y53nN3dHcfxJOSBW9JAvE0wY9aYWyw11KWn3yUlxYXrmXNwuKTybWeGYCbK7z4n5vxHjCryzapjCSehEjYnTAMeCq7Pd7WkF63c+71uvejfPqMD88BoxCBwgfpxibJpDEwb++h6S/stE3Ty80Ir8BJOfhqvdQdWkdra1drdsmSJVRXV2OaHePHUZtGs35ROY1hqKvseh2zv4W1i8qRdumT9JaxO0IIpJSsXLaBMdUTCJbg3BooRmbvvQ1IZyRLPpR8vB4mjnHDQWXMxNmQwF7agvVmM87HEYRPQ/j1goHzPuNKq72YSsdZ9I6b01ZRVs28fY5itzqbAydalPsl8/b/Um7b1995tqRjCgGzd7I4cheTgyeZzNrJYs+xNnu3G2aOFKxs6n2ULDSBJgQybY9oobNoAtKmO7kipcRpypSUL7RwrY+M3b5d8xPsPW2/gvUzpx2Qe/3hp24e9uLlL0B8KRiNALy10Zurq17mc/jeAV29zkcfdEou5+j1d57NiYB0ZtZOFj86sGP/19f10En5NMg4aGmbVGboc4OGG4mIlcuzy2fTls/4ZN17AEyfvA8TxhTOkloOfNBY+Nv7tEUnvhV57j/8xg25WpH/ePl+PtvwQf8P1gWBNBx8XsiYqi76SCE7EJ46dSqrV3fUkl21ahW77LJL0X18Ph/l5eUFf4FAAE3TRuRf9jyO5L+BPAdGQmI5GtIWvf7hCCJREFIgpMBX4cVqMbGjdsExnbhDpiGDr9KX29YwoLVNEPD08jkeDzLm4IQtJJr7l5BIqRe2BUgmBJrQwHDbNNTXpU/X0AKZdMXbBvI+aI5qRJIaQcCxBJRwbROJDo91MFDZ7XYTx+YpiW9aXXSbgEdjVKWWy+sOBSpKurf6+lcRqsu1JZpoQ2ZAWqLjnmn/qwhp1LdqJNNDc384cQcn7uAJeNz3aYmmaUUjlizLYsGCBbS0dPjb68rqSKfc3163v0vo8/nz6kFGVbul0La0rsdxBq5vKgVlYA8CqYzkjQ8ln2x0jWufB5xPYlhvNmG/H4aoiaj0oo0PIap82A68t8UdOFf5HSZXl5YjsGj586QN9wY+bPYJOWXgLPvufkhOLfGNd1/Askoz3Iux59gOw6vzIL97JAHLYkt45BpZrVGZy2cmYSHDGSjr/fzlh4ez5RFm7nZgwfoZu3XE6X/46Vu0RZv58NM3AUlZehEAptNhxH17vzQ1wa7XIegv48C9jwEgGm/l3Y8XddumY6dl0NpzjFa1dO+BFx7NVZC2bGJKPboAKSXRsIPH17XrzfdeH17Ee72qWSdtFRrmEsGKLf13C48fPZkzvnwJAI5jc8cf/mfg8vx0AYaNRxdYtjKwd0RisRhvvPEGhmFgmiaPPfYY0WiUPfbYg+OPP56//vWvbNq0iebmZh577DGOO+64oW7ykOEYjipTNkQYcRtKFFEK+CCSAKdd2EwP6DgZSaapsANLN6Sxkw6evOd5NlKnt7JRQgiET8Np7KizLdM2osjEa9oEqYG0t79a2HbawTYcnPTA5Y5LKVnXIPF5cFU/S3RoJlMdnp6yIjWrsxQoiRcp1ZXFskwM01WDL6YgPhBU5pfpireCLQtqYWcZajVxM2K5Qn8eDaELpOkgbVlQouuwww7LvX766ae71ME2zIGrgZ1PVugsmmyltW3bplgMioF97733cuqpp3LAAQfwwgsvFKzb0etiGqbkjQ8kn26CiWPB5xU4GxLIz2KIoAdtQghR50f4OwyUz8I6ifZQ2lLyr7O8/MaTuddHzz2ly3qvx8eBe7nGUzwZ4b1Vi0s6bjwZxXYK1QpnjOkwsEsd0AuvTsi0aI64Hv2RhpSShtaO2ucyYkLahl4EzrbEBe9mc22THyPib7HHroWJ73XV4xhbNxGAj9csY9Hy53K/pb1HtxVsu2utxVd27966OWz2CbnX/327+zI6AQ858b214V7qMAvwWxZtIzh6oRhm0iEed/AV0SR4NT//+oATu6zPrzJwwM4dbutiYoR94bQv/pidxrqexQ9WL+Gpfz+wVcfLIjTRUbdTKEX5HRHLsrjnnns4+uijOfbYY1m4cCF33HEH5eXlHHLIIZx88sl861vf4tRTT2XevHmccMIJvR90B8QxHVrfDGM0qR/BUGAmbGSJ+g9+n6sQnT8hqAd1UuvTOTVxx3JIrk3hKS98lkfi/5+99w6T5CrPvn+nquNMT57NUdpdaaVdrbKQkAQCJHKywcaAbYwBY78OGMNrjBMYjAG/hs/GxiY4EowxOAAiCwkQykirzTlPjj2du8I53x+nuqp6pnume3Y2zGru65rr6lBd013hnPM8z/3ctwLVoGJ0KqoT7jlHz91ltyazyXHBUUILpDqLTOSsLFGWwp2nAro1oe8XtxSsRwfH4cwI9HYAWUcn9BtAvlgtclYPa1dc7tPNT9dREgcolEIB+0Jrl4T2q1sDIZOfRMjafugXWk28PBYwM4Up/GRQuEXoJS95CR0dulfyW9/6FoODgwAk40kSLa3aAv5cBNjLNvqPT548Vn/Dc4BzEmCvW7eOd73rXWzbVi2Y9EzwxTzapzg+AOtXQCwikCMl5NEMtEYQLbUD02bsuQAsu8xXv/cP/HTvAwAs617D9i215QGqaOI7Z6eJO47NZ7/yAX72d7bwtj+5k1I5KD+uSkm6k3qQPDAawW1kvIwZxB2HfE4ylZ9780sNuaLuwW5N6mBbjpQgaszZK/TgyVD1euSLXL726poD+NWbNU28bBX58rc+4b/+iuvX+pVmgHfcVpg1M3jLNS/wacI/eeqbM5IrYVT8110lOD45SxU7ahLNW5QsraJfgXIVU7szlIaemeXMbFZildWMAPvUwGFO9O0H4KpNN7Gid92Mz4YD6TdeF/io7j6LCjZALBrnt9/4Uf/5P3zpj3jwyXvPap+AV8HWA4UZ8pddwqWDrq4uPv/5z/Pggw9y//3386lPfYqtW7f677/5zW/mBz/4AQ888ADveMc75hz7LlWURyzKg2WcfP2xdQnnBspVlAsSs0bwWguxqLbGyoesqiOdEexJC3tSswCtUQtrwibaGYzJUs5uzzUdImFCWaLSFjied3CNCMNxdXuQcpVvf7RYoCyJtCWyPL/r3s7q9UbZS0xJqTh8RjvyJGKg8g400HIH1TZdLcn6FedYNMHK3g2AtuqqVwQslBrb39lACOFbdWWyEyiUvhhqoDMFQxO6P/18QloSe8wi0qrXgzrA1tdzuILd3d3tu0qk02kOHz6sX2/vRpoCR4IxD6X1ubA6HGCfOrHw/2AWnJMA+6UvfSm33nrrDIGSS90XczKr2HcCutq057GaspCHpxAIRFv9KlO4/3rHSpuJqeGaQY5Sigce+x9+9Y+ezaf+40+Q3jYvfPYv1O0LuPmaF/jU8Yef+lbdwWJw9BS/+5GX8+VvfwIpXU4PHuax3d/33xcCtnlV7IItOJVu4E6IGhiOi1t6ZgbYUzmdBW+JAwUXNVlGpOYOhn4UDrDHvsK2zbfU3O7qTUEfdv+IHjg6Uj3ceOV1vHabpnP/0nVFrl4+++SWTKS45ZoXAJDOjLLvyGN1t93SE+xrNpo4cYNo2aGYlz5NXClF9mCWqT0ZnKn5tyssZuSyCtdSROPVi70fhryvnzfN+xq0l3mFOdKdlGxf4bB5tV50HB4z5/Qnnws3bX8er3uJ9saWSvIXn347uw49dHY7NQTYEiUV8ShLbIYlPGNR6i9iTVg4ueYV/5dwdpCWpFxWGNHGAmzhcY4L4Qp23ERakpJHEy8OlhBKYYSCu1wR8kWaEnQVcRM5VNSJSFfVrGC7LjhUgpbFFWBLSyItNW+KuDul75dSn6bSD4zBqWFY0Y1OTliy4QA7H/bBnoUiDrBu1WYAiuU84+mhmtuEK9jniiIOek0HkMlN6oV4nTaBC0UTtzMOTt7FrAqwNUU8XMFOpVI1GUxdbV24hoHrniOK+LIN/uOTJ48v/D+YBedV07UZX0xYXN6YUir2HVfkS3DZKoEq2cijaShZiOXJmv54AFLBHm/h3B6XfOpfXsNT+x4gHkuycc1WNq3fxqZ12+juXs7vffwT7Nq1y/+sEIIX3v46fvHV76zrD5dKpbhh23N4bNd9jE4O8MefeD0vuvP13HbtC4nF9Ezwo8e/xsf++Z1VAxDAI7u+w123BjfE9pU2D57Sx37fqMmmZXMsFpICcpKkshmZMNi85uzunsXmD5rOSQwBpiGQmRLCcRCt0brXAsBIzuBARUQuvxuKh9l2xTtn+AAKU7Htipl+ac+67m4iUYO331rgrbfMXrkO486bX85PnvomAA8+9XWuvfq2mttdGWoVODweQZh1KtEtBjHHwsnbpLOCzpQgfzLP1P4M0nGx8/a8z+Niuw7CyGUdTCExYgJheHRDKfn+w18G9D39nFteMeN+PjphUvT6r3essjEiiluuLHN0IIZUgv1jJjetPbvF+9te9ydMZkf43k++jO2U+dNP/CL/3x9+nU3rt8/94VqIg3IkQrokY4J8EWxbNVxJmg0X4zXQjPjJEp45cLIOxf4SZtzEnnhmJhYvJKStsEsKM9b4uBONQDqrYGXwGbMlQulMiZY1SUpnSkSmqRFn8mDZmrnYMFIRVNrSVHFXQY3PKgWWFCTq0IMvViipkLamtYcp3g1/XinKExZ0QGm4RHnC5tDpCEJ4orFT2qmEBooWML3iPHuAvX7lFh7ffR+gaeK9Xatm7q+JgP1sUKlgl6wCJatAi137f2mauGJgTHHZ6vPHFHKmbJQTJJtExKOI29UBdltbG3feeSeRSATHCdYq3alupCGQ54givnnDDl5y+y/Tk1zHc5/zgoX/B7PgvAbYzfhiwuLzxlzTrv98rKw8qF+6OXA6Srasr6prLhvjofs07btsFTl0YieHTuys+blnP/vZvPe97/Vo+Jb3VxuvGX4hj+3Sg8Vju+7jsV330d7ezste9jJc1+U///M//W3Xr1/P+Pg4+Xyen+7/PutumyQS0ZfJPavL/MNjWnH6FKquj+B0bEKrWp861dDmc2Kx+IO2CnhOhS3ZieeXOXsZ7/7vhAbPUd1j/5I3bmPt2upjvfHZOdbcvJ7ERxKUSgGX7VWvf07D5yWM1117Gx/7lxiWZfHw7m/w/27/g5oBw8qywLi3DakEp0pizv+1iSGwvHMvAC8nUPFJPBsslusgjJYuuPktEL4OfvKTnzA0dhrQQiC3vCrFdC/U+74VDCzPvyPHxmfneJbRwr8/oK+X01HFz81xLpSCw/1RHt6fYNfxOCu7HF51W56r1geL/r+97QO8/e3D/PCHPyRfzPJHn/h5vvrVr7Ju3UzKeuPoo5JD7us7i93UwMV0DTTqjbmEZxZKw2XcnEO0J4aTtZGOxDgXK8kl1IRTcrEthdnSeNARj+lqoOMqIl5CMNoRpTxWJnckj5N1SK5PVn1mfEoRbXJFLeImyikjx8uaplQn+ei4ApRaVCJnylEoRyGiBk62+eSvLEmcnA7M3bLk9IESZ7IpVnvC2sqSCKd21b8Wqinic1WwQ0Jng0e44ernzNimmf2dDTraAqGzTGmKltKyutsm4zCe0cmJ89WOUx63EOHEkAHS1ec+TBFPpVJ0dnbynOc8h/vvv99/vavVq2BLMBoUImwG61dt4bde95fkxx2u3XF+be7Oa4DdjC8mLB5vzGJZ8cOd2hdvRTfIYznk8QyiNzGnJdM39wYNO8nJw/7jVEsH+WJmBqV749qt/NrPv49bdrwAMSE48eDc3++63l/iTa8e45s/+jxjk1pYIJPJ8KUvfalqu+c962d455s/xl/90zv48RPfIJ1O881/PciOK3U1s8WFmKmwXMFje5IN+f7J4QJyQxtjXW3cc5OgZxZvyDn3tYj8QYtlxXcfV0RNaBMuzpNjiIQ5w79wOv7nB6FjOvZVejpXYh3fyokT+rhN9wO8YsP17D6kxeuikRjrzZdy4sH50JXauOHqu3j06e8xPDzMt/7tMNs231xzyw2dLicmIxw6E+XgA23E6/wkOVQgu7adSE+cG+w0qixJrExgTVoIU7D8nmVVvqKNYjFdB2Eopfju1/NYe9K0bwzGvX/5+4Ae/txrfrnmfXX/w63+4zV5k5MPp7jlqsA27UePt/CzK2ZWCYo23H8szs6BCDsHoqRL1cfrM9/qYHOPwz2byzx/k0V3i+Ldb/hXhs+8lgPHfsro6Chv+Pk384k//iad7c15mSrLReVsIjf14iQiDE/AC28+uzGggsV6DSzhmQXlKgqnChgtEcy4gZ21cQsSo33pmj1fsEoK15JEm6hgJ7yWlkIZ2r2h2ogbSEtijVkYcaNq7ipZislcc/TwCkTChIKjrb7qBEW2N7Qvph5s6bUHmQkDJ9t8BdvJOUiv8m0kTE7sLGBe3kIs6rWmlV2UUI0JylFdwZ6r4rw+FGCfrqMkng9XxM8hRbw9FVh1ZUuTrJylnz0R022JpQaU7BcC0pZYI2XMkJK+ELrJQjlyRgUb4JWvfGV1gN3WjasEsHiu7UZxXgPsii/mHXfcAczuiwnaG/NiC6Zr4dBpyeC44LLVoNIW7ok8oi0OhomaY1zZPRDQjJzxB/zHf/Ib/8zVm27kRN8Bjp3Zy8DoCW574Wa2d74egyjIxi9Hgyi/9Mrf5w0vfxe7Dj7E9x/+Mg8+eS+lsm6MjseS/NYbP8KL73gDQghuu/Yl/PiJbwDw8FPf5ZrNzwb0xbK112H3cJTBrMlY1qCnZY5vISKYOZdii0GmIFjWdfaL62a96C4ETg1JJjL6mpCDZVRWQioObv3fP5IT7B/xrof8HigeYtu2V2mPx2nbVnz+rrr8Zj/AvnbrHSRjbXNec/Vw5w2v4NGnvwfAjx/7BldfVrv3+4oeHWBLJTg2FuGqZXX+oTCJ5xyyfWWyPQ69V7QglMCMmLglCTYYyfmfx8VwHYSRLyryWUjKwNdxKjfBT57U1PyOVA+37XiJ/14FroQ9nsBZZ0Kyvk2hXMGKLpc17S79GZNDoxFKZVGV7Cg78Nv3tnFicvZh/uh4hKPjET79eAu3rbP5ndsM/vwd/847P/wyTg8eoX/4OB/45Fv52O9/ranfq5SBsgTKEURMk5KlKFliQbPUi+0aWMKlj1JZMZLWFp3WuIU1ahFfFkdEBHJMIYsutJ/XpdczGuWiRCrRVGtKNCJwXMXEFKAUsagWP4ukIhT7iyTXVlevswVtz9XeWnt/syIV1UJnQtV0nDINnbBHsKhUxCuibGbCRJZcpC2retbngpNz/YRCRkQY7y+zfLMF6GOvCi4Ne3RR3YM9ZwV7ZXUFuxaKoR7sc1nBrlDEATKlSdQsiuzxGExmoVA6PwG2k9X91/Fl0/6ZomYFG+AVr3gFv/u7v+u/3t3WjdPcqVw0OCcrE8dxKJfLKKX8x1LKS9IXc3hCcfA0LOvSmj6yrwCuRCTnnkClgl1e/3VbTDJ4KlDuvfKy60gmUly9+WZe8bw38+uv/zNe/epX+5L984FpmNxw9XN4z1s/yVf+v328561/z+te8tv8w/vu5yV3vtHPnt6y424MoS+NR5+utlkL23U15IcdM1B5h4hQjE1dehmqWsjkFftPQWebd000qh5+Kixupunh1191x6yfuXHbXf7j5940U0BiLiipsP/lKOX3PsXtiTv96+vBJ++tK4hXJXQ2Nss1EDOJ5izcUQurO+n/fiNqoGwXOU/rjsWKXBHKeUks1Lr3g0e+gu3o9o57nv3zM7zsAY5PmBRsfeyuWVFt47djpaZ321IEvfsevrwnURVct0QVt66z+PVbCvzdyzP89q0FtoZ0FKQSPHQ6xvvuT9Ha0s2Hf+8rfu/ZroMPMTDSpAKnKXR2IFR1KS65FC3hEsfQBDy8V7H/pKI4UNL+sHHtD4uUOIUlJfHzCbuktH5Yk6vdaAQOnFI8tl9brz6yR7F3LMJpO8bptMGZEd3vOjzprW0ateeaBhE1PGXo2p81zcAybFH1YDs6wDaSJq7dvNCZM2X79O/+CUHUgMhEoPmi8vacDNEwKpRu04z4rin10NHWQ1urDmzrBdhVFPFz2IPd0RZUsDPFNDgSVcfGJxYR2I4OsM8H7CkHZSuM2LTzYNTuwQa4/PLL2b490HXpTnXpAHvxXNoN45ykUf/8z/+ce+/VweLOnTt53/vex6c+9SnuuOMOjhw5wi//8i8jpeTVr371ovbFdBzF3uMKy4HVrQI1WUYOFxGdjaWOTk4afv/19uUWP/3RbgDWrthEqqXD306VXdzHRimkABbmRk4mUtzz7Nq97B2pbq7efAt7jzzKmaGj9A0dZe1Kraq4fYULe/R2+0YiPGfjHKItUQNVsGkVLkMTEVx3YUSOLmYcPKWYysHlq9Hq4enG1MN/HFYP9/qvb9r+/Fk/c/1Vd/KuX/lr8qUsL7rjDU1/V7k/jdyXBiB23yTXXXknT+5/gOHxMxw++TRXXnb9jM9UrLpgDiXxFhPGHOiNkynAGu9lERVIW+GWJGfn4Ly4kCuCLLr+okApxbd+/AX//Zfc+Ys1P7crZMM13cbv2lUO3/Y6S3YPRbhulX5/KGvwH3v0IsIUij+/J8f1q5wqEZGty1xedVWZ02mD+47F+NbhOOmSwcHRCP/8ZJJfu3ktr3r+W/mn//ogAI/v+QGvfsFbG/69lYSKcnRlxjAqFiKX9v2/hGc28iWYyMBP97gURgusXR4a+4XALSwpiZ9PWCWJdHWg2gx6OwQKpW2yHLAdSOcFY24EmamOBqScZ/Xag1hWP+CLmNqXW8UWl02XDrDBTBo4GRu3LIk0sXwtj1uYMQMXGM9C14oocrSEUXQgZkITFl0QqH63JNrmLHYIIVi/agv7jj7O6OQAhWJ2RpW6qiJ+TiniQQV7qjihrwFHQb3rWVQr4J9LWBO63W8GPFu5WhVs0DTxvXv3ArBi2UosR3EpOjiekwr2+9//fn76059W/d10k1Y3ulR8MZVSHDytODkEq3s9n+P+AjhS99Q0gF0hX9vV8dN+JWvr5TdUbefc24fz9T5Ovb0Pd296wX7DbLjtuhf5jx8JVbGvClW89jXivxszwFK0CpdcQftCX8oYnlAc6YcVXXqQVlMWlFyY45oYzYuAEVDYB8WDrFlxeZXFQC0IIXjJc36R177wN+ZFlXV/POw/VmNlXnn56/znP/7pN2p+ZlO36/tsHxmbxQs7YmCsTJJsNZjIgOstDoQhQDFvb8zFiqmcwnCkPyEdOrGTk/0HAG25tmHNlTU/N93GL4wdoYA7vN2nHk9ieVTzn7m6zM1rnLoKnes7Jb96Y4kP3ZMj4imb/+feBI/3RXz7NsBXVW0GSqGr2EA8yjPSrm8JzyxMZhVtLdBetjh+xGaoHPHZQEbMwFpSEj+vsAoSRGC/1QwEgqgpSMYF7a1aP2JFt2BVT/XfmmWCtiZE1Gb8n4iBqDNARwzdg+0icBcR60s5CjwrM+WqpuZ7t+ji5lyUVxmNmhBpi0DeQY2XwXK1b3iD1msQVJxbk+1zbKkRpon3DR+b8f75ooh3pEIiZ/lJzXaw618HEQOm8uc+EaNcpfuvW2auAYUpkCW3qoLd2hpkoH73d3+X22+/nbtuvIvn3fR8SrZOJF1qWGpemyeO9cNTh6G3w7NlmLJ19bqj8Z7x8II4VnjUf3zlxqBqqCwX+dS4fiLB/vwJZN+5X6Xedt2L/ceP7AoC7I6EYn2HHiiPjJuU5kjGV4RA4lJSsiHdvMD1ooHralqg7UCqReiky3AJIg3Qw6uq118B5q5eny1kfwF1vFrV/Lr8dr894CdPfqMmTTwe0UJnACfTJuW53NrimrKUn0Zbmq835mLFaFqRkK5Pe/v2g6Hq9XNqV6+lgj3eONEWl2zsqj5mK9okK1L6XOwfjWC78ER/hJ+c1tdTV1LyS9cVaQRX9rq89aZg24/+uJX2nu30dGo7hKcP/oSy1di+fAjhU8TjUW1lI+XiqcIs4dJA2VJMZs/DolMp0jlIRBVtuRLxpMHB09A/qt83EiZOxllUlcjFjnLORS1i1lwkgq6iK+GLfi0G6GvcO+6qufneyTm4RZeso9cinSlPPCtuIgeLumhhK13AaRB5P8BuLBiueGFDbZp4vgnbr7NBNUV8ElzqemGD7sOeyJyzr+PDztg4OQczVTvAdkuuX8FOJpO+GxHAsmXL+PEDP+ZL7/sSrakWypZmuF1quAR/0rlH34jipwcVyTh0pLxAaqAAtmqo9xp0ZacSYKdikvH+7/vvXRmqYMu9aQhnLS2J/U9HtW/iOcS6lZtZs0IL0O098pg2ufewzevDdpWYvQfXh0IVHKImnBlRdXt7FzvOjMDJIVhVSTg2QQ//0cmZ/dc3b3veOfiWAdwHh2e8Ftlf4OYtdwHQP3KC42f21fzsFb16opdKcGxi9tRj1OsLyoViM2EInGcQVbJsKbIZRUxor9NiKcf9j/4XAMl4K3fd/KqanzsxaZK19DC9Y4VDLX2wHSv0cbRczYL45KOBQvnbbirS2oRO5GuuLnPrOs2kmSobfOTHKW6+5m69f7vErkMPN74z0ANdKMAu21rhdAlLOJ8YnoSdh5XPojlXKFlQLEHCclDjJVLLY8Rjupd3YEz3YrtlibvUh33eYOclNQfORQLTDAXY5cWzdpJeBRsAQVNe2E7O1SJZZU+3pXL+2rRvuBwpIVyJaLCx3rLL2I5eM7ckG6NzVymJDx6d8X7hQlDE8xMIV84qdpeIQb4I9jnu13dzLrKsMON1KtjloAc7TA+vQJYkrq0QUYFtN6+RsBhwCf6kc4vRtBa9cBUs6/Ru+oyNHCwgOhrvKD2VNpiq+F+vcDh88ilACzBsXh8IALhPjvuPo2u8/Wdt7H88giqeuwBFq4lrmriULk/sCeih21YE/3dvA0JnImpC1qanA86MwvjUwn/fC42ypdh3UhGPQtyzA2mUHj4WoodHyoehcICIGeXarbefs++rMjZy54R+kjQxbvSypLbkZ1cFvdwPPlmbJn5FSOjsyPjc14A5jbYkYgZO5pmzyMwVoVhQxIQE0+BHT3ydoqfif9ezfoZknQm6mh5e+34Pv/7xh1roy+jrbdtyh7s3NRfNCgH/944Cy1r0BL5rKEpx+Tv995umiQuBsvS+YjEdYBfPU3/YEpZQgVLadimdm3vbs0G+CCUbotkSWLpdrKNVEI1obY6cI/TCsvjMGfsuJJRSWHkHFVm8AbYhBEqBrQTSWjysL2VLv4BtNOmF7WQcFDA2ba0oYqYW+So4TWliVdG5GxQkW1cVYB+e8X6xFDBJz6nIWcimSxe6xOwV7Kgeg8610JmchaaOKZDloIJdETir+rwlUZZEGgLHpW4L22LGJfiTzh2mcjq4zhXxze6BpqvXAE8PBsH4VT15Tg0cAuDytVf7CocqY6EOe1yPrhgb/3UdwpPDV8Ml7M8dO6e2DbeG+7BDNPFtYSXx4QYaJ6JaSbwlCmULTg4tnixsozjarxga1z7oFajRBunhIfVwZ0h7k2/bckvdoGsh4D4y4lcWzVuXYd6x3H/vqonL/e9crw97S0+DQmceknGq+rCNqMDJO6hnCF04VwS7JDU73BR8+8Ev+u+99M5fqvu5XaEAe7rAWQXhAHsgq8+FQPFbtxbmVbjpSCj+8Ll5v8/+wdFrMbp0u0I40dYQTAHeojBqaqGgpQB7CRcCmcK5p04WymAVJZGRUtV6oDMlNHvDFiDVUgX7PEE5inJREVnEAXYFjvS8pRcJA1C5yleGFlHRlBd2ecyiJIwZbWUAojWKythNsRKaseiqYFXvBiKmXqefGZpZwT5fImetLe2YnkJfJjeOEspTna+NeBQs69wH2MpRdfVKjYioUhGvWcG2JMpVWltAgbHUg/3MRaGkePyAYmRS+1v6CrlTVtPVa4DH+oLtu9Ruf9AMqza7T034A5R5UzeRrgjRt22GFj1xqyNZnP86dc4G3O2bn0VbayegFYQrImxr2yUdcX2D7x+JMGeMFDNQlgsll+52ODEA2cLimCQawVROsf+k7hMyvUFfZW3keDU9/NuHY/zOvW187KEWHj0T9XuXf3QydO149PCbts3ef61chcrZyNES8nRO+2g2CGVL3EcqTYFg3r4csbYFsUr7S5r9Fs/b+HJAZ26PnNo1Yx9hobPDswidVTC9D9uIGUhLPWOsurIFheFZVp0aPsK+o48BsHHNVrZefgPDOYOP/LiF99/fysceauGzTyT50u64H2CnYpLLumovUFa3SXpaqo/jy660quzUmsU1Kx3edL0+WVIJuPprsOrX6R85WVPwpR6EIcDS36MyZi4F2Eu4ECjbMDA297yj1PzbmAoliEyWYMqCGq1BloMuQD2D2mMuJJStKJdVU/7LFyscT89isVh1yXJAzTdihu+FPRe0wJlDQZrYtfQAUxGYshFN9F8XQv3SjfZgm2aE1csvA6B/+DiurJ5PK/uMRRNEIufOD0UIQWdnJ0DQqjnLcTQMgeTcK4krSX1rLUNglSzKZf0l6lWwAVwpcN0livgzDlIqJjKKw2cUD+1RnBqCDStC/SCAHCxAuTHf6wqKNjw9qLdf1iKZGvqR/96Vl4X6r58K6OHmTbpkbixLEP3VzeBlZOUT48jHx+b3A+dAJBLlZk9FuFDMsuewFmITIvDDzloGZ6bmuIw8JXHKLh2tupJwenhxTBKN4Fi/IpOH7pA4pRzIQ9n1r4uiDZ94pIX9oxG+fTjOH9+X4jVf6uRPf9Dqq7En3dNQ2A/ATdtn9l/LQ1OUP7yXg3ceofzup7Devwv7o3uxP3EQ6y/2II81piAnn56AnD5/xo4uRGcMIQTGLb3+Nq/pCSzcvv3jL87YRzwCGz2hs1PpucXupvdhP9O8sMen0P3XruRbD37Of/0ld/4iQgj++uEW7jsW5yenYnz7cJwv703wT0+2+DZ+16xw6k5AQlRXsdvikjff0KQYWQ38wjUlblytVzjSaIHNn4RrvssPnnqi8Z2YQlMFQ981X7p07v0lLC6MTOpk+Ww4cFLbb84H6UGL2OksxM0ZqtBCQMnSnrH25FKAfT4gHYlVUphNqE1fjDANTfuV7uLxwnYtieGtU42oob2wG5jvKwJnE5YgUmNZLQyhiwFNCArniwF1pRk699qVmwCwnTIj431V71Vo5+dS4KyC7m5NjZzKTYAhdMFqFhgCcsVze52EEyjTISKCXCGg5deuYOsKuCPBXaKIPzOglGJkUrHvhOQ7jym+/ajiwd26cr1+JVUezipjIweaUw4HeGogii31fp61zubwyZ3+e1u9AFsOFFADepEs1rdiLA98Eo2NKSKvv8x/7tw3WNd4/mxRpSb+9Hf8x9tDfdj75ujD1rZMClVyEULQ3gpH+qB0EQt2OFmH/Im5PcUKJcWJQehqC7EaMjayv/q6ODAa8c95BSVH8PDpGMrj2dhD/w5AZ/syNq3bXrWtkgr7v0+jRsqoWgOnVDj3npmz8qKUqhI3M+9cETy+odtXuN4wvJLWmJ44fvDoV2uqR28JCZ0dn0PoDLQNQ0XJV0QF0tJe2Jcyjh07xj//87/w//7inXz4z1/Maz60g//+/qcBiJhR7r7t5+ibMniif/YM+Fx+87euDd5/yw1FOhJnf2+ZBrz/+TlefmUoFd75Ar44+CbuPRSjoSKfISBEa4xFYeoc98EuYQm1EDEgV5qdJm47iqP9MDCPnLVbcpl4aoqY7UDXzDVB1NQMHiOufYGfKe0xFxJ2QQspLfYAO2JC0REoVy6aAFuWpb+eEDGtxdFIgO3mXcolSbpo0BKvvY2IGr5DTSMozIMiDlrst4LpNHFflfwc0sMrqFSwS+U8tluGOdZNsShMnmPHHteStT2wAWFCPmTRVauC7ZZdUNpjXqrqwuWlgqUAexoOnFR8/wnFo/t1pbW7HTat1j6HsVAfj3IV8mRWC5m0NF69Bnj0TLCYvm2dxaETOsBOxFtZv/oKAGRI3My8sYfpMK/txtjqlUwnLeRTE019h0Zx8/YXYJr69z3y9Hf9hfLVVX3YDfx+AcqjxXW364pe/7kpvC8IymMW2X0Z7PTsgU3/qBbO6QyNsbLfq16Hrou9oWP06qtKvHhLmc5EMEgaQuIM6srmjVc/d4antTqahXEd6JgdBuKyVoyrOjBu6IZuvZhTZwrIA7MryKlj2erEzYbgi4vWKMa2Tv047/JLW38D0NnfWmJnYaGzRtTkk3GYyOo+7MrkeCl7Yd93331s2bKFt7zlV/nmVz/B3v0Pki0G5+c5N7+SjrYe7j0UrCJ+8doin3lVhr96cZb3Pz/Hu27P86G7s3OKlT3/covfuS3P79+R52VXLpxMdzIKv/vsAh95YQbD6gdAihb++uFW/ui+FHPm9UyqbEUqXtiLpY9wCZcOhACUFiqth5FJGM9oO7m5Kt1hKKkYfzpDeaBEdEWipu5GJKIVxo24gVtcUhI/HyiXJNJRmOeOwXteEDGhbOu+1sVi8SbLEs/xEyNioJzGEup2xiFfFhTKWhF7IRAOsFubqmAHAXb/UNAapZTyKeLnUiungq6uQEk8U55CzaHInojqdem5tMRUlkTUqasIU5DNz17BdgsuImLgXMLDYHOR4SWOEwOKpw5DaxLWLJs9m6IGC6j+AqI3Met20yFV0H8dNxUbUkMMj58B4IoNOzANUzf+VwJmU2Bc111zX+bdq5EHdTre/cEgxo09TWX1GkGqpZ0dV9zGzgMPMjR2ilMDh9i4ZitX9rhEDYUtxZwVbAiUxEH3KSfjiiN9io3TWAEXC5ycQ2moTOFMkY7O2rOz6yqODShaEkH2TU1ZyIECorN6ZtgTCrBfu63MyjaJK+HgqMnu4QjHDnyeHxa10F0t/2u/ZxpY+d4VjMdXo1z9P929kzj/qgd/97sDGFd11BVWcx8c8R+Hq9f+a7f0InfrPp/nGXfxKf4SgG8/+EXuvu3nq7a9ojdIshxpQOgsEddZ1VwROrzx9lL2wv7c5z43I5DsblvOpg3XsPXy6/mZu99OyYHvHNHXStRU/MzV5XlVn4WAV249d/5XN61xeX7sg9w3eBOseisAj/dF+f6xGC/eMsv/NTyKuKsg6imclrWdUbJOdWIJSzhXSLXoxO6OTarmvNM3qnBdyJchW4CWBqf3/PECE/vzWG1xOhK1x96oqXuwXdNAlm3cokukAQvHJcwfVlHhyotzjdEMIiZYjsCxlba/usihlELWqHA2klAvj1rkXQELWNWcr2d1vQq27ZRxXafp/c0X4QB7qjRJr70aJVXd9X485jmXlHU8cy4gy7NVsAX5whwV7LyrxW4v4QB7qYLtYWhc8cRBRTQCXW1zBNdTFu6xLLREEE2KZxweM5ko6s/csNrm5Omn/PcqAmfqaMYPRo2rOhCttSdhY2MKsUlfuGqs7AdGC41qmrhWE49FYJNXwezLmBRnL/T6SuKV7GtvJwxNwOD47B+7ULAnbIQhKBwv4ORq98sNT+q/ng79XCmFPJOfoSjvSE0RB+htkaxI6aDSNGDbCpfX7yjTf/BT/vY3bbur6v+ojI3cl9ZP2iK03VWdDTS2dSLWaO9j1V8Itp0GNVZC7vfe64hi7OicsY24oh08wb5Un8G2FbplYdfBh+gfPl617eVdgdDZoQYq2FFT4IT6sC9lL2ylFA888AAAiUSSd37gO3z1k4f5jz9+ig//3pd506v/gPZUFw8cj5HzfK6fd5m1INTuc4Xbd9wOR98Oh97sv3ZwdI7zbghwpa96WvHCXhI6W8KFQFsLpLO17boKJcXpYT03uVJXsRtBeaRMZk8GN2piR8yafaOgK9iOC7YUqCUl8QWDk3XIHcrVZMVYJYmUi19AyTR1jtKyVJWmxcUK5Shw1YwAbC4vbLfoYmdtJsvmglWvAQrFkE3XAgTYYQXxRkXTzgZVFexiWq+j5/DCLlvnVuhMWm7dAF8IQa4YDKDTK9hKKdyii4gsBdiXPCaziscOKEoWrOieI7h2JO7xLBSdpnuvoVo9/NZ1NodOhANsHcyEva+NGvTwMCIvWOU/dn8wWLev62womTdefZf/+PiZvf7jde3BnTGYnVvoTFlS+0IDsYjAEFog7GKji0pH4mRtYsviOBmbYn9twaiTgwopCVoH0hZyqDijen1swqTk6G2uWeEwvbiczoxx5NRuADatv4aujuVV77tPjFGRajef1YuYZjkihMB80epg++8NzLgOVNnF/uKJQJX+9uWIGqsOYQjMmz2xMwlvWv92/73v/OTfq7aNR/CVrU9PGXMKnYHOxKdzXh/2JeyFffToUfr6tCjKjhtu57qb76Ej0VW14FAKvnYgKOO+cmtjs6H72CilP9vNyCfHzmsf5w1XP1e3i4z/r//anL33pgCJbwkXjYDtLgXYS7gwSMS0XVatPuyhCR1Ut7fofu2KXsRscPIOU7syyLLEaY2BAlHHuyZi6mvfcoLPLuHsYU3a5I7na9pAWSVdwTYW+Uo3aoLjqS0vBoq4chTSpWq+E1EDJzf7fO/kXXKTkqw0GmaPNIKqHuxEm3ZfOZ7F3ZfGfXIc9yfDOPcNIA9Vt9h1tPXQ1qqD275QgB3e33mniBcndAbQrn8dREyBI8+dVZfy1OzrVbABCqX6Aba0FMrW6v6Wo2asief9vSbLON/tR/Y1mB09x1jkw87ZI19UPL5fMTGl7bdU1sY9OIWaqk17lGfyMFRqmhpeQbj/+lnrbA4eDwTOrrzselTJRe5J6xeSJsZVHbPuT2xpQ6xvBUANFmv24MqTOayP7MX66J4ZA0gjWLlsvf94ZKLff7yqLcigDeXmWGjHDO2HG6II9XZA3yiMNf+VzincgotblpgJA7MtSv5oYUbmNZ31qh1V1esCOBKRqD4WYXp4WByugif3/9B/fNO2avVwJRXuox49XIB5ay+1YFzVgVjnVbEHisi96ap9OP9+AnXGG3Q6opi3Lqv7+yuK9QBXTW7ye/C/95Mv+bSoCipWUI0KnVX6sB1XYUQFbsG56BIsC4FK9Rpg647naTp0yfVFXwAOjJocndDH9opeh63L5k42qJKL8/UzkLYZ/5cJnP88dd6C7NZkG9u3PAvcDJROAHB80pzdps/Q1jKVAFsIgVJLAfYSLhzi0Zl2XUopTg0p4lFNS21JwEh67h7G3KEc5aESiVUJCuX6vrAAhtC0V8vWtkV2einAXgjIoos1amGNz1yzWXkJRv2kx2KBYQgdUzmLQ0VcOWoGhdmICZzs7Ne8m3PI5yWWNIgvoDBdmCK+7qlW7b7y94dw/uUozpdO4PzvGdzvDGB/9giyv1rctlLFHp0coFjWa6hCKVQRb6Kne76oCrALk56uyexMBsG5C7Clo1Aus3qR50IB9nSKuCxLpCMREUHJ1snHhYDzv2dwvz+I/S9HLwoRyWd0gF22NC28b1QrhCMV7rEs8vAUzpPjuEczVWICarKMPJGFVGSGBUcjGMsLjox7C+oeh56k5JCnIN6R6mFl73rknknf4864rnvO/yOEwAxXse8brApY3ANT2J8+DONl1GgZ+7NHcL52ui7NSA4UcO49g/voqK9MHo8l6WzXAVnYqiAcYM9VwfaVxIvB8WxJ6GrCiYH53wiuq3jykGQqt3A3k1vQapdG3CDWFcWetCkNVI9UfaOKXBHaWrwBZsJCDhcRXTMbS8MCZ9fUCLB/ujcIxm7aflfVe+pwBib1wkFc0Y7RU7txVQiB+cI1wW/wqthKKZz/OR3QxhMm0bdumVWYT/Qm/NYDY8Lh1Vt/EYDxqWEe33Nf1bbhPuxGaOKJuA6u8kW9yHTLl6YXdjjAvmL780gaUgt9hQLsrx8MzuWrGqxeyyfHIXS83MfGcb504rxVNW7xbPvI7wG0Ev7QLPe+MARCVQvzCNGcgNQSlrCQaGudadc1mdXtSl2ebmhLAnIFrfpdD0oqysNlIu1RLepT0KyeuWA5euxzppaUxBcCds7BzbuU+meeLCvvzhoELCYIoVsMFkUPtqstKcNsOyNqIIsucpbA0M44TOUXLuCqIFxxTh2Z/XqYbncapon3eUJn8/HVPhtU9WAXJr22q9mvgzBbcKGhHKkTKLOcp3x5Foq4LVG2QkQFZWvhGCZ+5XrK9tfNFxLP6AD78BltybFuhRbekn0FGCwgVrcg4gbyUAb3yXFtmVVycY9mdX9t2/wkKR/tq65eD46eIpPTYmZXXn49Qogqengt9fBaMK7uQKzWSgbqTB51xBM+e2oc51+OzjCldx8cwf6bA9rDG6/6enAK69OHsD++H/eHwzhfPYX98f3Iw3pfy7t18DaeHsJxdMP1yrYmKOIAUQN5IoscCSbC7nY4PTJ/y65MQVt+7T6mcBcoyHALDkgvODAFRtIkf6yA9I5j2dLXTUWoS0mlb2ypEPHqEUepIMBujUk2dLrT3lc8uc/r1Y21sG3zs6q/y6OBuJl5W/2qM4CxtR2xwWMzDBWRuydxHxhCVgTSTEH0TZswVrXMeQzMkLDeS3tf5T/+1o+/ULVdWEm8EaGzSh/2kT7FaE7glC49L+xw/3Vraxu9a24kYSqUE9iWTBYFPzqhWwna4pK7Lpt7MlBK4T4ciNThHW65cwLnC8f1/s8xbrnmHv0gv8t/7dgczAUFVdn2WATSFweDawnPQKSSM+26BseVFgTyBMqSMZ0InK0P2827OEWJkTRxXUWhBNE5lgZCQLGsMBIGbkniFi/NFpnzCWfKwWyNUB4pY2eqE9h2vpo1tNhhS7EoKtjSUShnGkU8ZiAtNauwaW6gTNpaWHo4BAG2gYFRsTntiGK+eDWRV6/HfHHQYqeGq1sC11YF2Eer9gdzU8QXIolWVcHOTSAQc873iZhOHJ4LhqByddK8HkXcdhTpXDB4nh5r5fCZ4PvKstRJGEMzehbCA1s5EjKBGJQcqt3aeT7xjA6wS5bubYlFhFZ/PpGD1igiYiBao9rMvuwid03i7ppAjZYQvfOXvg3Tw29dZ/vVa4ArN16PKjgoL3smeuN+sDQXhBCYzw+q2M59gzgPDuP8+wm/d9fY0YX5ynXgZRTVUBH7rw/gfO009l/tw/7HI6gj1Zk7NVzC/sxh7H89ypb2qwCQSjKWHgSaq2ADiJ44lCXungnc0zmUVLQmNI0lM7fldE1kC7oaerQfTg7Nbx/T4WSrJ+VYd5TySJnykK4yDoxpm7Fur9qhRkqo4SKihvdpf8YgXdLHZttyd4bYyvEz+5iY0kHTtVtvJxYNri81ZQWiZO1RjKs6Z/3eQggioV5s539O434roPRHfn4jxpb2WfdRgbGt06c7rhzuordLX1+P7f4+4+ngQF/e5WJ6QmeNWHUBLOvSNPGnT8LeQ5LjJ13K1sW/aGgUBw4cYHhYe41vuuoO1iyLYCql70XvuvrOkZjvi/7iLVZDlS91LIsa1skpcVmKtX+52t+f3DOJ82/HzrkAzsY1W1nWtRpyu/3Xjk/OkVgR+BRxCLywL8XWgCVc/DANUWXX5TiKE4M68K7AMAQSPb/Ug5N3kSUXM25QsvVCMTbHfRyNBF7YsrRk1XW2kI7ELTjEuqM4BbeKJq6UopRz52QB/uiJr3HfI/+JlBd3otc0oGQpP9F/MUM5SrdXhA69ERXIWbyw3ZJLesyhiFnX/3q+qFScO0QH3nIFY00LkbtXY96xHPOOwFFFjVQzIWoJnYUp4rPZfrkPjWC99yns/zp1Vt9/eoCtlJqzgh2P6bHGmkuAeB6oF2A7rmLvccmj+xTHB4MAe7KQ4uApHXgD/jUsldYVWBARwinb1xgCHeNcaDyjA+wKfOGykoNoD4JgYQhEdxx646iMjeiK1RSGagQlB54a0PvuSUq29LgcOh4InG29/AbdI1u5+bfWt1qqBWNHF2KZTvup4zncr50J3rttGZFfvJzIc1YQfcfVOnEA4CrcB0f8Rbv+cnHMl67x+7oB5N40v9b/i/xy8k1sMDcwMqZp4t1JRczUX3gwO3f1UgiB6IkjoiZq/xTySIYICtuZfSEzGzJ5LZDQEoddRxWZ/Nkv2u1JCzMWnGcjaiAiBvnjeVxHcmzA69VzFO7RDO7eSTANRGzmMZit/7p/+Dhf/MJHeX/qA/xmy2/z7C0vrHrffWxMC0ThiZs1kIkXW9oRG72MakhEx3zx6oYZEQCiPRrsZ6TEz13/NgCkdPneQ1/2t4tFYF2H/pJ9GWNuX2R0FXt5p2BZpyBfUjzylMt3H1ccP4tWgYsJ999/v//4hlueR6pFaBaJo8DUx6jifS1QvOLKBsXNHgrYDJE7l9H23BTRt27yk2bywJTuPTqHlWwhBDdf8wLIhwLsOXvvRVWAHY/q5Gb5wjO4lvAMRcWuy3UVo2ntfd01LfcYj8DILJ7ZTs5jOpmCUhksVwfQsyFq6sq4MD0l8eLFHyxdzJAlibQUImZgRI0qmriyFeWywpyll/fRXd/jg//wFj7y2f8zo/2pGZyPZGHEhLIjFgXjSzkSAVVrWCNqaAvaOhVsJ+eSmXSRMWPB7LkqqKh+d5uhNVCIiSoSpu+eooaKVeezZoAdFk2bhSLu/HAIXIV8ZBR5soZ1QYOooojnJrx+gTkq2NFzpySuvB7s6SriI2k4MwIIkASL+o1r2pjIwmhaP5dWJbmplwbGArQEqHT1gkINLgXYFwVkXx6GinWFy0TUwFiWqLJeahZPD0awPN/iW9bZGIIZFWx5Osj4hAPcRiAMgfn8lTNeN+9ZReRn1/s3grEqSfQdV2E+p9oDWVyWIvIrm4i9ZzuR568i+ltbibxuI7Tp3xxRJq9Lvp6/7/g0l33exP78MdQjI1xrZkEphnIGjc4xoj0KHVHksSxyfxrTdpnIzG+CGk3rTN3yLpjMwd7jak5hmtkgbYmTdTAS1bdGvDdGaaDMwJEyA2PQo8q4uyaQhzOIZERX52ugqv96uQ54LbvE5772l7z1T+5k+8Ambo7dwksTL+P5D+/AfXhE905Lhfv4mP6gAPNZs9PDK5hexQYwntVb1affKIxrOv3Hz2+/23/8nQe/UDUBrfbU5B0pGCs0PqRETEFnSrCmQ5Itws7Dat6tAhcTvvGtoP/6ttu1p7lyFMJbjD/WF2XYEwW8eY3D6va5F0wqbSH3eTZ8bVH/3JhbO4i+dYsWEUT37LvfG5h7f2fRTnHjtrugdAxcvWCYiyIOVFXW41GdVS8uBdhLuEAI23X1jWrF49g0d4aWhGYqOXUqRfaU7Sc9yzYo6QmZzYJIRAtV2V7uc6mCfXZwSxJpSYyYINoRoTxa9oW0pC2xixJjlgD7Wz/+vP/46KnddbebDR/57G/w8+/cxk+e/Oa8Pt8oIiaUXdGQl/SFhnJUVTUxeKO+F7adsZmclMSTs68hDp98mq/94J+qrLLmQiUgXpkI1kbTWz3FCq/wVHQhZM26avlGDKG/k08RL81NEVe56j5gp4F5uR7a29v971BpK1VzJFpiUa33cC6EzvT5ra5gO67izJAiFoG2pKDshHqw29pQCvpG9EXheteA44LrLhBFfLI6k7BUwb4IILIeNTwVnZdwWaN49ExAH751rY3rOhw5qQf0lb3r6WzvDVSeAbGuuQAbwLihGyo0ZQGRV68n8qI1MyrhImIQeeU6or95Jebdq4j+zlZiv7kVc3uXH4hX7Jpi77kG864VSCNE8SybyF2TOP99mvfvfIx3DOzHcgUTxcazjiIZQSxLIPsKtJ2cZGRUNp0Fth3FZFZXr4UQrO6Bw31werip3VTBLbi4JYmKCiazivEpxdiUYqIomJhSnHgyDyeyRPZNoCbLiBWJuj7lEFSwo4biyl6HJ/f9kLf9yZ187mt/ie2U2RG91t/WKCuc/z6N/XcHcX84BF5GztjaMcP6azaIzW1+AGZs7yTysxuaYkNUYG4Psqatx7VNE0D/yAme2v8j/73VoVaBgUyT95AhMGzJyi7dJjDR+Jx5UeJYn8vDP/khAKm2TjZd4Z1fR6K8FUeVNddVjc1+7qOjAZvh1t6qscrY3E70bVt8urj7wFBVsm7Gvp6ewPrTnVh/f3Be1e4tG64FlC90NpQzyc8WLBtCOwh4iFUC7CUl8SVcIFTsuvrH9HzRUWON3OK1L2VrrNOUUtgTtp+ILZYVohEZElMvKsu2rujZ6aUs09lAllyUqzAiBmariZNzKY/pYyptiWWBGak9901lx3ls9/f955XWt2YwPN7HfY98hcnMCB/+7K9z7PTeuT80T0RMTYIqLQBL71xDOnUU9QV1K/DpQZt8SdA6Cz18z+FH+O0PvZi//eJ7+OI3Ptbw96kExMtjQRFqeoBtrAgKbOE+7Fg0zope7aTTN3QMpRSFkMdzPZEz1VdNy1SHM1okeR4wDIP2lNbFyeQmtHhcDV9UlbP9QLPi2HFOAuwaCfqRSc0E6vQOR9EKfn9LSxudKa23VCgp3LyLETVwJAtGEZ9RwR4pnRddmtnwjA6wlSMxT2bBkvMWLmvo/6ig/zpqKm5YbXNq4BAl7wK8YuP1ns2Td9MmzXn1egvTIPormzFu6iHyq5sx71g+6/bGZW1EXrwGY319kQaRMIm8fB39bzT4TP5TPGY9StmovpBfmB4gLt3GhM7C+44aiBUJ4pkyuf4yuSYTTpm8Hjwq/TrJuCARhV3HFLnC/CYhN+/ilCRHRwSP71c8fkDxxAGtNr97PMqZ3UU6B6cQMRNjeXLWloHxgmDAo85f0evy79/4MO/52GvpH9EWRz2RXtaZ6/TG8WA/6nS+qnfamEPcbDqEEER+cROx915D5E2bGqKW19xPdxyxxrP+6ivw6hvf5L/30X/8Pwx7ivJVvfi55q8B8jamqSeD0VkomRc7+kYUX7l3N7mszjBfe+NzMU2vuusoEIKpkuBJr1VkZcrl5jVzW/UoR+I+5tHDDWparBmXtWHe47EUFDhfPlFzcpEnczhfOgFliTqeQx6qYQg8B1b2rte0OC/ABjgxSx+2MIXmz1aeC4FiKcBewoVFPKrFzdK52gF2PKoD4VpCZ7IocfIOZlJf97mCDp7ngmnq6rVl6z5se9Je0iI4C7hFSb4Ih89IFFqdvUITtwoSaUvMWO3574eP/2+V7eTYZPMBdr4QeIyWrSLv/+SvkM2nm95PIzBNcJWgvAhYD1qIbeZxFxEDu4ZVl5N3GDtSpByPEKtTSxhPD/HBf3iLf872Hnms4e9TKGq2VW8ktCauV8GG6rZJApp4sZxnPD1UVcGuZ9NVy4vZ+e5ZVLFTuuCRyU2AKVBW9fyuCg7uvnRVct0wIDvPtfBsmC60ZzuKU8OKeMzTuACKVkCJT7ak6GjVY+nwhF5ni4gWvJWKBWkJUNNVw6VCjV7YRcYzOsB2+guY46W69N6FwrEJ06fOXr/SIRmFpw782H9/6+XX62qlN/CIda3zqjiCFm6I/sJlmHMIYjWLnsvW87Xy//KB3Pv56Mq/Jfo7V1WJsHU55Yb6sKdDmAaxpIFzKs/UVHPZpmxBU2DioQl0eReMpWHfSTWvhYuTd+gbU5waEnSmYFWPCP5WR1ixIUbLuiQiNXdCZt9IUNne0jnFF+/9uP/8mitu5a9/4Sv+c/P25UR//QrE8mltCp0xjK2ze6HXgjC9fvd5XkcVhGniN4ub2L7lVgAmpkb4o79+PflillUhNfmmK9gRgSq6KKUF7/pH5/aevRhh2YpdxxR7nw7o4dffHHiaK9sFVJXS+rPX2w1lbuWeSX9sMLZ3ITpqr0DM560MEiLDpRlUcTVRxv6Xo1X90HL35NxfYBoMw2DTum3TlMRnaZ8xmLEY0B6di+88L+HSQVurniuikWBRGEZl7Kyl6+HkHGRRYiQMpNKWjXMJnEFAIbccHWC7ZYlc6sOeN9y8w2RecXLIO5chmrhVUjhO/Qr29x/5z6rn8wmwS+XqKuXg6Ek+8tnfOCeCaVETHCWwy+q82TLOF9KWNSvY9bywM6dKDJ2xMVORmp7ljmPzwX94qy8ICzDgFSrmguPYfjGrxwzcUURb9Q0rQhVsOUNJfJP/uG/oaHUPdj2K+JnQteHZoqqj2Rk2YI2ivU1/90Iph6UsKLv+GldZLu7BKdRAARWi4Cdi54YVKL2CQQUjkzCZga7QoSiGbLqSyRSGIYiYcGpQ4hYdRNTAcanNdJgHZgTYgBqap7jTAuEZHWBTcMHgnFLDoVo9/FnrbIbH+/jc1/7Sf+3aK29Hhm5GYx708HONzrZeohGdiBiePIOxvhVjQ3A39djlpivYFRhdMcRkmclTzdHlMnk14940DMGqHjh0en5U8eNHbc6MQEdrdeBegWhp3AN9z1AwgKupB/3B8BXPezMff8836E0HqjrisjZN9f29q7VlhLcoiNy1YoaQxPmEcU1AE1f7MvzZb/0ba5ZfBsDJ/gN84O9/lRUtwXlrOskSNXR/ri1pb9V99On5a4FcMJwcgqFxOL4/FGDfFATYlCUYRlWAvbmnsUpEWNzMvL0+K0WYBpFf2FiTKq5Krg6u89WLG7kvPS8a1aZ11zQudGZqkbdwwisagaklq64lXEC0xhXOyRy9yfr3YTIOwzVyUE4+oCaXLSg7c1t0hVGpYMuSxFkEFcmLFaVJm/GCQa4Ip4cVJAzcvFYTL5e0V69ZY2g6M3iEg8efrHptLN28DUmxPHMB/9ju7/PFexunLzcKwxBIIbDK6qL3wpZlWbNlopYXtmu5HHgkz1g5Qk9n7bXOZ778Z+w98mjVa+nsGLnC3AyssOJ3pxGsZ2b0YC+fu4INWugsvM96Imd+BTthEnnFWv9157v9NbefCxWKOECmNKWryLa2/5SHMqihom4lDM218aiuGtfTkZgvKj3YEFSvE/HqSnTBC7ANwyCe0Me2ux2GhiW5rMKICB1gL9RXqxVgX2Chs2d2gH2OYbvwP/vjfHVfUCF/1poyH/uXd/gZsHue/TquvOx61FkInJ0PCCFY3qO9sIfHzugbODRA6Qr2/C4nETGIRAWjB/JNeQaOpCFRg3zQkhBEI/DTg6opyvGZYcWBvRbxVoOWxNkHtXu9CrZAcfLgv/qvv/Q5v6hpsie8QVqAcZlOVoiIQeTu1cT+cAfR37kKY5aA6nzAWJH0q+rqZI522vnQO/+DtlY9UT257wH+6xt/gCEqavLNV7BxJFiSZFyr8U40z1q+oCiUFPtPKlriDrt3amZKR2cvGzdtCzYquQhTcHQ8SLps7p6bHi77CyhPfVSsSCAun91z01jVMpMqbrk4XzzuTzaiN45xVYf/vdTR5lPcm9Zvr6KIz2rVZRr+YqCCeEwH2Ev02CVcKJh5hzXlAolZBARa4jrhN91G0Mk6/uqpZIFt05DVHmhJgmJZ+arKcskLe15QUpEecchZBqt6YHQKxqYEIiIoDpSwSwpHiposofse+eqM19KZUWynuSR/KVSlu+Hq5/qsh8997S95fPf8VcnrwhDYlrrgvaVzQZZlzdY03ws71Id9dHeZM0ctOldHazJJvv71r/Nf3/s0ANFIjK2X3eC/NzByfM7vEqZzd6iQVcD0ALs14ov6TvfCnhlgz64irjKWto0CxJoWjBt6EMv0YlUdzyGPNr/I6QgF2NnipOZWWy7yaAZ5Jq9dhGIGuPgstURMK4kvtKBoOEEyNKHHyM5pYUvl3kgmU/590ZqAQl6RnpKaIr5AQ59SKujBTgRrkQstdLYUYJ8DKAU/ORXlrf/bzicfayFn6cN83Uqbx376z75A1LKu1fzmG/4CIOi/Box1Lef/SzeA5d06C1cs58kXM4iOYIDqccoMNdl/G0asJ0bmVIn8YGM9E6Wy7p2r55e4shtyRXh0n2IqN/cifmRS8dhuF6Msaes8e8+AvBWoK6/vsNl74NsArOhZx+b1O1B5Jwh41rRom4gQRHsUY/38WwUWEj5NXOmK59oVm/jAb3+OaERTlb/1o3+mxdC9aANNB9iGDrw8CnEsCgNjiyvoOj6gGJuCycGd5HN64rzu5udhGKG++rIEU3DUuyZipmJD59yLJPfhgBJn3r68oethOlXc/v8OIA94vYJJk8ivbsF4Vm/wP+ZBE9+8fju4WSjqBc6JSZO6ubFoJYkSzKaxqO7BPhcenUtYQiNQWRs1UZ4hjhNGRegsM61QaY1ZmHF9L5et5voII5GQ8JDS1fAlNA9ZkkymJY4pSMYEURNODStEKkJ5pExxzEahZii7Syn5waO6PcsQBldvutl/byLdHO0tHGDfdu2LePPP/CGgF/wf/uyvMzh6dv7H06FML8C+2CnidQLs6V7Y42nJvocLxGKCZA318BN9B3jve9/rP//NN/wFd9z4cv95fwM08TCdO6W8BHXMQMRnrvP8KnbOQYXYXmtDAXbf0LEqBfNkfGZBTPaFGaktCFNg3hMomDvfHWg6uRyuYE8VJ8FRyFM51Imc1suJGmBo+7+KR3Y8BiV74YXOKufXshWnhxXJ2Mzxr2gFAXYFQghaTcnIqEJFwHIUC0LQzDvaChWvQOlpGsmlCvalhcNjJr/37RTvvz9Ffya4gV9weZm3bNvPZ//z/f5r73rz35Bq6dC2TBU6SUcU0d64YvT5xPKegOYyMt5XRbHptq159WBXkEgZ2JZi7EChoYEnW/QEzmo7qyGEYN1ybeP12H5Fvlh/n+ms4rH9iuKUS2dcQg0/62ZxYDSCVHrk6BZHfGGOO258GUKIKjVJ4/L6PooXA8I0cXePDsauueI23v3mv/Ffz41rul3OMsiWm1CTNwRCBT267S2akllcJHZdmbziwCnoboNdT/7Qf/36m+7yHytXgiPJS8MfEy7rcufsv1YFB/mUFkwjYWI06GM+nSquRr3Z1YDoL23CWJ7AuLLDt/aSe9NNL9g2rL4S04z4NPGSI+r330cMhC01Td5DRUBqSehsCRcCSinkSAkUqPFylY1cGNGIwHa03kcFbsnVVo6ewFmpyepQxQtbKoVYUhKfN8o5h7FRSbJVjztdbdpWbdw2cXMuVtbRKk/TsO/oYwyNnQbghm13ccXG6/z3mlUSD1PEE/EWfuGl7+C2614MQDaf5rc/9GI+/eU/5fiZfc3+vJowI1AqqhkiUxcbpOXWrmBHhGZtlCRlS/Hk42XKQyXaVs3sr8gXs7zvE79CsaiDpBfd/npe9tw3sdprUQMYGJ47wA4Hw62OF0DXETUO92GrkSA46+lc6QfSZ4aOUvQo4sl4a1Ui3f9s2BForf6ccV13wAY8kUMdaY451tEWoogXJsFVqP4CdMSCAo0hwFtvgNaWkPLcBdjDk9rusJZIZIVGP93GrCMuyeYU2ZJB0aJmC0ezCCdJRVcMsdI7z5MWqnThEphLAfYC4vG+CL99bxt7hoObd8cKm0++IsPv35nlU1/4dV9s4RXPezM3bdc9mmqk5C8+jYuQHl7B8u41/uOR8T4IVbC7nTJjBQNrbtZrTUQjgnJrjPSJItbY3AuObEHbnUTrCJiAzqhtWKGN7396UM2g+RXLioOnFD98WjGahtUpF2Erv//5bLAn5H+dH/qW//iOG3T2VR0PenjEpos7wBZrWsCzCVNHsqiiPskvuO3neNOr36M3KgYTXbNVbEVQwU61aEXe8ak5PnSR4EifIpPXi7unf/pD//Wq/mtHL4iOZ4P7ZXP33IO+3Jv2s7LGjT01M+71UEUV9xB59XqMKzRFTkSNQDyv4KCONzfZx6IJ1q+6oroPuw5NXBhaIT4svhKLgGUtBdhLuEAouKgpC9ET15WqbH0qhWnCZDaYO9y8i1tyMb2KW7ZYu8+3HiIR3T5mO2AmDaxxu4pyWRF5XIxij+cT46OSfE7RktLztWkIEjFtBeQKgZWX1CqPfe/hL/uP77nt5+jtCsbJZoXOSlZ1gG0YBu9569/7OiXpzChf+e7f82vvey6/9qfP5Svf+STj8+j1riASFRRLF3eArVz9/WoG2EJo1kbJZc9xxeD+It2tCqNGf8U3f/Rv9A9rhtTmDdfwO7/0lwghWLvicn+b/iYo4lGixF29jqnnGmTUURIXQvg08eGx00xlx4H6/deqb6amkjCmVbG/199UFTtMEc/kJwAFyQiiJXTsTKHtPEMJcyEgv8CCospSWBJODSlak8xgiSilKJV0kqElWR1gx4TClTCRUVqLYkE8sIOY4YeTKUZSQRw1ne5/PrEUYC8Qjk2YfPCBFK5XtVzb7vJnz8/xsZfkuLLX5avf/Xv2HX0cgFXLNvJrP/c+/7Nn6399vhCuYA9Pr2A7eqV8NjRx4ib5nKRwcm7lv3RW0Qh72jQF61bAkX7YeUThOIpiWXHgpOS7jyse2qOwHdi4EoQlUYIFoWXvDQXYJ/Z/FoCu9uVcvVnT0XwlyVD/9cUKIQRmhSYuFXJ/EP3+4ivezfpVW6B0zH+taSVxIfwso2loC6exqYt3AVHBREZxpA96O8F1HHbvfBCAnt5VrNt4ZbChLcGVHJ0K9V/3NNB/vSegbps3dM+yZW2Yz1vpJ2/Mu1ZgPru6n9/YEWImzIMmvmnd9saFzqAqk2wYAgkMjF+48zw+pThw8uK/zpaw8FAZC1GS0BrRY1qmflI3GdPWMpXFsJN3UbbXQ92EgngFFS9sywazxcQtuLi54N6Y9KaG7JII4KwYHXFwpSIWEh3tTOnjNyEjWBPWjGS5ZZf48RNfB3T18dk3vJTersAbuekAe1oFGyDV0s5H3/1f3HHDy4iYwRrpeN8+Pv2f7+NNf3ALh08+3dT/qSASEVhWdQ/sxQbpKJRLfXtQAWf6JPv32/SUiph1XDFO9B3wH7/zVz5GPKaD31XLN/qv9zdQwa5QxGcTOPNfr+OFDbB2lQ6wpZKks2NAbQVxpVRAEU+a0B38PuPaLv9/qJN5VBOK4lUiZ7lJjJUtM3+HIXRwHQqwYxEtHruQkLYkUxBk8tBeI2QpW0Wk0tdoIjFtA1uRjMPguE6yL4TGdDjAfjzfyjenOoP3LiBNfCnAXgCM5QV/9P0URUcPKHdssPjHn8lw+wYbIeBk/0H+9X8+DOhg5fff8rdVtInq/uuLOMDuDlHEJ/q0mEBUX0KVAHu+QmfgKR6aUQpnSlg1FAErUEoxktYKr40gFhGs6YV9J+CxA4rvPKZ4aI+uIFy2CpZ1CgxDoHL2gtwRtqsp4gAd0Rx2Xgeft9/wEkzDRBUd1IAegMXKZHUG8iJFmCYeDvyEEPR0roRSkEkezDXH+al4YVfQ1gJ9o+BexH1mSikOn1Hki9DRKji4/wlKRX0fX3fz86qTNI4CF46mQ7ZtcyiIq5KLPOwJoXRE55V4E6ZB9NeuIPa+a4m8fN2M942rOvwFqNw72ZTAIOiqQrVV1yznPWJAoTqp0NMOx/tr2yCdDxzrV5wZuXivsSWcO6jxMsrQ45eImajRct1qUmsiaEkCcHK2by1jOboHO9aEgrhp6jmioiTuliVOLrg30t6au7SkT1AXrqsY6HdnOH0YhqAlDn1Zg2JBIeLVE/ojT3+XfFGPq3fe9AqS8VZ6O4MKdrPV5VoBNsDK3vW8/7f+jS9/fC+//caPsvXyG4PPWAUe3vntpv5PBRETXBdK58DbeKGgHKlbjuoE2EVbcOCATXKqRFxKaKk9bwyNBf3rG1Zv8R8n4630dKwAGqtgVyji3SJYw9BWe80V9sKWsyiJV1Czgp2xfUbMdMtdYQjM5wfXmzzYOFUvTBGfyo3X3Ea33FX36Mdj2kJroQRFlVJIS1KWAiFmVq+h2qJrehJCWS4t3pjqShqyKp0TIYr4SDTJoUhwXi6k0NlSgH2WKNjwR/elfJ/rrb0Of/CcfFVW5m8+/25fnfK1L/wNrrnitqp9+AriAsTai1PgDGBFTzVFXAgB7Xpl0W1XAuyz6MOOQUFEKE05FE/VvymKZZ3drydwVgvJuGBFFxw4qasHl68OAmvwVAgzNmIB+q/3j0awXL3fRHmn/3qFHi5P5nxrAuMip4dXIDamIKUnJXkoU0X3bWvtqg6wz8ILG3SAnc5e3HZdI5NwrB9WeHPe00+E7bnuqtpWORLhSo56XtGGUFzWNXuALQ+k/Sy0sb1r3lZtwhT1s/VxM6CJZx1frbxRbF63HUonwNELmBOzKImLqIHKOVWTfEerVhI/PXz+F4u5guLUEPWF2ZZwyUKVXeR4WasGA7RGUFl7hoVdBcmEnnMy3jRtjdkYXuBWtnSQHW0iR2p4NFnL8QJ8IbAzQTQ94jlfNNvb/UzCeAYyY65PDw+jvRXSOUGptwVzWvL6vpD39d23/TxANUW8yR7sqgA7NjMJ2tHWw6te8Bb+7o+/y0d+7yvB95+ah4coOjnjSChMnJ/si5NzcMvNVcuVowM8UWM6kErRl4bChENXrqhtT+swBofGzgDQ3d09o493jUcTT2dGq3qsa6FCEa+qYLfXyYilIn7AP6OCXSvATsxcv1UVzGqs540rAyXzZjyxqyvYE3W3U+D3YINeV5eshRtPlKNAKop2/eC4GLIxm3FflFyMqIFAj4HGQvRgTwa9ZqPRBCfjoQLmUgV7ccKV8Oc/THHMWzivTLl88O4cidCY3jd8jD2HtX/fmuWX8eaf/cOqfShHBmrSyxKI5MVbzVwW7sGe0F5+lYEqJR3i0j0rinjcsxSwW6LkTxaxM7UXPLkiFMr1Bc7qIdUi2LxWVAXWPmypKayxs7slBrIGH/lRMKBMnv6K9787uHbr7cC0/uuLnB5egTAExvZO/cTWvosVtLV2QjGgiDfNYgh5YQMkYoKyc/HadUmpe/dtB1JJfR09+fgP/Pevv/n51R9wFGUJp9IVVXk5p6WP3JP2H/v0/HOAesyEClTWxnlwGFmjj+nyddsBBQVt1zWUM8nVm8Sjhk7KhKy6hBB0tsHhM+df1G5wXC/Sl/DMg8rYiKILleArbiDKUgfZNWAaAtfVFRdpS5yMjemJChUtcByI1qPDzoKKgr4RF1gj+sYpW1oPJPz+MxGu5w3u1hEoGhqXyKxDNDFzdW4IQaoFpnLVAkrpzBiP79Hj9LKu1f583HM2Pdh1Kti1cPm6q/3Hk1Mjs2xZH1ETnKhJvq/cNONoPsjuz5I/3lyvgh9g10gKD0/A4JRBd1zqKm+d5K/tWIxNDgCwdu3aGe+vXh70YQ/MoSReoYh3NUIRFyKoYk/Zvt4MwNoVm2ZsX5MiHuq/rsU8E6loQBPvLzQswtUeFjnLzdLSJaiiiMdjWlB0oYTOlKOQrnbKqZdYLJaCayYZq74vlGdZ2taik5aRBQmw9fjpAuPROJlIDKdVn+OlCvYihFLwyceSPN7nBZgxyYfuydGVrB707n/0v/zHL33uLxOLVkeFaqDg3wwXo/91GPFYks42be8zMt4HVGcCz8YLGzzFQwWlSAQ352CN116t5wo6QReZx6KmLoquFto6iwB7KGvw7m+nGPXYDCuTaaz+fwbg1mtf5NtayZCg1MWuIB6GGQ7GHh/1H7enusGdAlvTlpq36gq8sCuIR6D/LO26pFTsPS45s8AV0uEJODUcVK9/dN9XfYGzlas3smrNZdUfcCQnc1Ffn2Gu/mtly8BWqzWCuOzcXSPG1R0+lc/dXU0TlyNFrL/ej/u1M9ifPjzDe7U91aV1GUJ92Ccm6sy4Nay6QKuvT2a1EOH5gusqjg3oBMkSnnlQkxaKIAAQQqAEs9p1RSO6Z9/Nu7hFFyMZVLDnI9lR8cIG3YdtT+lKYTqnE8gAhUXipHC2cByFPU20y/G8we3JmVkG11Wc7pMkheu3qE1HW4tmpyRD7b0PPP4/vpvH8299LaZXOkvGW2lN6qrieNMiZ0EgMVeA3dHWiyH0923WDqwCwxC4iQilCRs7fW4zMEoprEmb8mD99oman3MUSs7swS6VFccHFLGEQbRsQ9Soy8waGe/z/2etAHtNWOhseHaaeKGoCxpdYYp4qn5PR7WSeBCVrl1ZI8CuQRGfq4INIWFbCfJEY8yxVEuHf/3Uo4gDuoQdCrCjpm6HXChBUeUoHFtiOaJugF0IVbBboiHBMamg5ELEoDWh9ZHmk5yc8Z28AHsiEsf1jlGh2zv2eQdyFyZbuRRgzxPfPBTj6wf1jRgxFO9/fn6Gr61Sih88+lVAT+LPf9ZrZuxHnZ6pNngxo6IkPp4ewnHsqgC72z67ABv0wiNXAgxwsrVXwJNZtTB9GyGokotwJGKeigvDOcG7v5NiJK8n7Q2dLlcX/xikXi3d6Xk3qrKLOuP1Xy9P1M2kXowQW9qhy0sSHMqgxvTk09baqTfwaOKjeWN6HDU7pnlhg6b5jU5CYZ7ql1Iqdh9TPLofdh1TWPbCLFaV0sGZlLrtYHS4j4/9+dv999/0a386k/JmS45NNa4gLg9NBerh2zrri8UsAEQygrHFo6xN2b7gouzLY3/yEEx5E1PGDnrCQ9BCZ3v85/WUxGtZdYFeMLYm4fCZhTtHc2E0rSn+nYsnt7WEBYJyJGq0NIMpJlojs9p1tSRgJA2HDtn0DUhOjgkOn5GMpuc3F0UjkPfW7mbSxC1q66/JrG5hgmeOyNnRfth9rPrer9g2WlMzkx7jGZgcl7RGVN0A2xCCld2iqkc73Pd8z7N/vmr7nk4tdDaWHkIphfvEGNbfHMA9kJ71uzdTwTYNk852XaCYL0UcgKhBOS+xzjFNXFraTstO21UifHN+zlGgqivYSilODClt6dSj/ZorziS1UKGHQ70AO2TVNUcFO19qvIIN1X3YYSXxZLyVZV2rq7adHmArpYIKdmuk7m8MtwY2KnRmGiYpb601ewVb+PePfqrPw4JRxF2FVVZYbv0AO9yDnYiG7otKf76n/bIgwbUt/fae0VABM90R+r/DC+xT1iCWAux5wHLhc08HN+Hv3V7gulUzg8FDJ3f62bUdVz6bZd2rZ2wjF4mCeAXLe7VYklRSC4KEPLu7nTKDWZOz0VKoCDKImFHXrmss01z/dUMoucz3a4/lBf/3O20MeeJe6zpcPvLCNE/u1P1eiVhLYMl2Ku83fopFVL0GT6DjtmX6iQL3EV3Fbmv1Ji4vwFYIRppoFZjuhQ2QSmpK5nzsuqRU7Dmu2HkEejt0xfn0WaxnwhibglNDsKwLpJR8+E9/hWxGT3bPvefneNEr3jTjM6rkcjQX3Ceb5xA4C9PDwxTuc4WwmrjcPYk8lsX+h0MzelLl0zP7vjav3w65uYXOall1VdDboQPe/tEaHzwHOD2scN3mlJ+XcIkga2tbrtZpJz9pzmrX1d6i7/0ndzkc69dtDccH9PjUMY9pOxoJvLCNqKGrQlmHgTFFwhsqcqWFEya6mJEpKAbHq23JpJfoKA9ZM47ByKTCKbpEpGzKUnPUa2trSbaxcc3Wqvcqfdhlq0gun8b52hnUmTzut/tn3WczATZAtyfONZkZRcr5KYGbBuQcQXno3HocypKLtLQAnz3VeDCvaoiTjk3BmWHo7gDTNDCWJ2ctZoQFzmpTxIMAe+4KdiXADijWdXuwAWM2JfFpfdgzKOKTlj9vGuta6vaXh5mLzfRhV6y6Zq1gm6KqWAGaZTPfYsV0SEdRLoGlZgmwp1Ww/XvYVprJtoBFg7CC+EgsiMvGwvLmIxeGJr4UYM8D9x+PMVHUh+6ODRYv3Fw7ELz/kYAe/oJbX1tzG9+iyxSI1cma21xMqPLCnuirrmA7FkVHMFWe/82TjOmFh2WaOFmnZg9Wrth8//VcUDlnXnKG4wXBu77TxoAn7ram3eX/vTjLQN8j/iB4y467fYuJKnr4psXRfx2G+axef1HjPj6GslzaKwF2qA97Xl7YoeqRYWiFytF0c5NCJbh+6rAO3DpTukJ64NRMH/T54PiA9m5sTQi+8oWPs/OJ+wFYtmItv/eH/1B7Qi27HMs0VsFWjkTuS+snCRNjy7lPwhjbOv2ZwP3pOPZnD/uVZnFZSluNoH251TRqwqZ11/g92DC3Vdf0iR90q0c8qj3Fz7VyfL6oODUMXe1zb7uESw8ybYE7k6kkIsasdl2xqGDTasHahM2yXoNVPbpCurxLzFCybgQRz6rLb1MwBdkRi/EpnVwET4/kGdDGkCt4f6E1sPTGCSfj+NXTr3/96/zyL7+JHz28j5QhUZ5AXKOozMddXptbGGGhs4n+QU1jhVnV5aE6wI5Hq9dvylUzPlsJsKV0Zw+SZkEiBlkiFEfKOHWE+RYCsiSRtq5EN1MtV44kXK2wbMXxfm2rmmzwXhkOVbDXrZvpgLEmHGDP1YNdqWBXUcTrZ1fF8toVbJipJD5d5EyG+6/X1s+8ibZwH3a+8T5sL8AuFLO+cPKMfRtiRitWLALpBWLEKEdRLmtL21oK4lDdg52ItgSUdVvqRukmEmNzIl0tcFZBf0tofT2yVMFeFFAKvrI3OIk/v732iXNdhwce/x8AopEYz7nplTP3VXT8Hg+xevaM3sWCsBf2yHh1gN3jK4nP/3fEYp71CQZuycXNzxx4SlbjFl2NQCmFytqIefRf/80jLfRndFCxqs3lr16cpbdF8ZMnv+lvc8cNL/MfL9b+6wpEaxTjWi8TXHSROydoT1Uq2MFE17SavNBK4mGkknBmVPfoNQKlFHu94LqnHdpa9CC+rFNXSE+dZRV7IqM4MaB9r48c3Mk//t0feV9d8N4P/BvtHbW9qp2i5LgXYK9MuaTi9X+POpb1F3fGVR3nZUwQrZGgJyzvaFsxwNjaTvRtW4IquhXqDfewaf12cHN+cuXEpIlbrzATMbQVXg0s64SBcS0+Nh25guJY/8JQyAfGtLDKfKqOS1jkkAo1UkLE67As4rPbdSlXoabsGdZP80EkooPnsnc7mAmDidMWuYLyk8e2fekriVd8xPMhlXYIAmy35GJP2ZRKJd74xjfy+c9/jn/4+DtpM12aoco5jk02nwZ0L/R0hK26sgMhKk2IfloLJUsHVIl4K4YRXBfuk+NY73kS60N7cH405AdQlQAb5i90Fo9ByTDJTzo1e9QXCm5JH2Oz1aQ0WGpYVE05yrexAzgzohjP6Dm5UQyGKti1AuxkIkV3x3IABuaw6spPFzlrMWefVzui4N3j08U9ZwTY0ynifXMzUpWCew/GON3TqV+QNOzgEVYSz+br0MTNaoo4aBvBbGFhGDHKldgOsya3whTxZCzlrymUIxFSIRawx7Oqgh0KsE/HW4PrcCnAXhx4oj/iqwFvW+5w9fLamaedBx5kMqMH0GftuIdUS8eMbeZSG7wYEfbCHp7o9226QIucgRb7mi+Ed0cUXANlK5waAbbrakG0BUNZaupqkwF20cYXuetMSP7qxVmWteqs9U+evBfQyZVnXftCQPeK+JZsPXFER/0epIsZ5u3L/cfuQyO0tXTqJ6X5V7BFRFR5YYOmZWbyMNnA3KOUYt8JxVNHoLsd2luD68M0tGLlgVPqrNSqTwwq8mWIiiJ//odvxHH09/2FN/1frr/5ebW/l6vomxSU3IrA2eyZajek5B2mbp9rmDuqkwPGdV1EfmUzImZiXh+8J3dW08RX9q7XiwxP6KzsiroJtopVVy3EogJDaG/qyiIgV1DsOSb5zuOKHz6tldvPBq6rRXaS8dkXB0u4NCEKjk7wTKeHV9Ayu10XRUczOOoE6M2gUsGuKIWbSZPMuA1l15/bLDcIwC9V2I5OqBdKkAmWQ7hFj0EjwBq32b9/P7mcngiOHnwMs+RAE8nHcLW4o61nxvthJfHycHUSUU3Uz3JUKthheriSCuebWgSWtIX7jT6sP9+N840zrE2s97ebbx92LAqWFJRsQXn03NHEK+cgkorgZBycOq4u0yFDCfF0TnFyUCc0Zzi3zIJwBXvNmjU1t6koiU9Mjfg08FooeL7nFZuuuXRvqpTEJ62qtqa1q2aniDcicPaNQzH++pFWvpAJ1lGN0sQ7UsG1O5WtY9VlCO2KE0qIxKIeM3QBxhPlaoHG2WLkMEU8GU0GFWxLLnjbSzjADlewx50IdHuVuJFSUwm5hcJSgN0k5qpeK6ktCiriZqAVK2uh6ma8yBXEK1g+3Qs7XMF2zt4LG3R/Wjqrs6BOjYpXI56jypWouqW0aSjPT0H86cEojtSTxp0bLVakFFJK/vv7n2bUs5i4/urn0OplOdXpfFAdvHzx0cMrMNa3ItbpyUMNFOmY9CaSkBf2QLNe2AkTOVFG9uX9ATgeE1g2DE/MPTCOT8GuY9CVgo7WmRN5TweMpeHk4PwG2UxecaxfZ+H/4a/fzemTBwHYsvUG3vwbH6j/wZD/NcCWWQJsJRVyb1o/iRoYV5w/HrOxo8sPPIxbe4m84XI/yy82tUGb54F+cKrKukQIof2w83P3YVesuqZn1ytY1gmnR3SPeyWwfvyAXi90t8H+k823DIQxmobhyeYqKUu4dGDkLCjLuhXsuey6VMlFlGVdYa1mUEkkW96tZCQMJkYlLTK4t1wJpXPbZnvBUbZ1pT4Zg9HJUA+2Z9NlJCOUhkrsfGpn8JlijjMnDiKaOA9T2SDA7qwRYPd2rQz+93h11TLssTsdFSpsImRFJA9lIDPtGiq5uD8a5lU7n8M7W99FkuS8K9gC7aNejpqUBsp+v/pCw8k7CFNgJAzcsmxYtVyWXV/gbCytKNvQmmwuoVnpwe7pXEE8XpuuGFYSHxg9WXdf+WKWJEkSwlu7NyAsW6UkPhqs82dWsIN1XJXAWXu0ZgHFkfAfu/W+97QGCfRGA2yfLQhk8nUCbBOQVFt1RfW9thBK4sqRFMqzr8OrKtjRVODL3SAbsanvU1XBDuj9UyUDY5X33JaIOu0/5xJLAXYTODJusnNQ35xr2lxuXVc94MihItaH91D+w6e4c+8OXhh/MauSa7n12ntq7s+vZrJ4KtgrQhXskYk+SJj+gqPLOXuKOGgKVLYA0jSwxoJjXBFBaYQeLs/kkccbo92okotwVdN03Cf6gxHm5jUOR07t5nc+9GL+4T/+2H/9uTe9KvhOi5weHka4it3ytDdwlfsRSj9uNskiUlFExEDunUQeyfpqvm0tcHJobpr40ISiVIaOVO2J3DQE7a1w8PT8xD5ODiqyBRjte5qvf+VTAMQTSf74Q18gGp2FiWArjoaUtTd3168CqBM58Cq8xtb2+oHAOYBojRB79zaiv3c10ddurFKAFYbArLQFOKEkgIdN66+pUhKvH2DXtuqqIBkXOA48cSAIrC9fDd3tgq42QcmC3UfVrNfCWFrx0B7JqaGZ250Z0eJm8+mZXcLihzFRnrUNSAiBMmapWBa1EGY9a6H5oFJRKjqCYhFSVN8blzpFvGyB7UJHSquDW7ZmsFS0VyKtJk7G4emfPl31uSPHntbjSYNIhwPs9mUz3g9TxM2paW4wk7NUsK2ZFWz5xFiwr5evxQjplhhKcHf8Hl6SeBnj87TqAh3cZKQ+NueKJu5MORgxQ1d0DUG5jujsdMiyRJgCqRTjU82385WtIhNe8mFF7/q624X7sGdTEi8Usw0riPvb1FESX969tspqN1zBfnin1Hav1K9e/+BYzHeamYrE6Evodb/qa6wPuyPkhT1bBVu5sirAjkX0WLMQ44ldVlh2fYEzqLbpSkaSvrCvstz5+RrOgrC9Ypgini4JxMrgPBrj5z9buRRgN4Gv7g1GitdsL1VRJORgQSvvTloIV3Fj5Ebe0fq7fCb5GfjMSZwfDyGHi1X0CL+CHTcQyxZYtescoaOtl2hEH4eR8T5NtfSq2AvRgw1axKNoQdY1yI/Z2N7AUxFBaUhBPOegxsqN9Q3NQ0FcqYAeHjEUjz/4x/zmB+7m4Imn/G1ecucbuefZr/OfX0oBtnFtd0C13JthRXw1IDFtTY0byhlNM3JERww6YsijGdx9aVTBobNNV6fHZlETtx3FiUFt7TUbetr1Iu5Ek1XsfFFxpA+62mD3zgf919/0a3/K+su21v2cUgo5WuTYZDATzUYRl3tD9PDzoB4+HaItirG69sLAuC6Y2N1pauKbplWwTzRp1RXGmmUQjQaBdZjKvXqZTrYc7a99/iazikf2KfaegPufUvzgScXJQR1o54uKk0NL1lzPVLh5ByNThpbZ6U+iJYKarG3XpbL2gqrfmkbghZ0rQEkJ4sUgWBIhr+xLFWVbU+U7WrVtWbYAylZIT5DSTJi4ZcnTO5+u+tzhU7uao4hng6C3FkU8LHIWL1RfI2qi9sJcSknZ0ouSSoCt8nYgUpmKYN65nOjPbST2RzswXxD8j+si1zFxFlZd8RjkLAPbkpRnobDPF8pVuAUdYANEUibloVJD1XJZVghTUCx5grRNBtjD433+41XL6gfYYSXxvjpK4q50KZbz8wiwayuJG4ZRVTmviJydmTL4wY9D924NgTNXwn/sqV7n70p636vBPuz21mAezuTqVbCFDmid4FwZnovHQlSwi0WJ48xewS6FRM5aYq26Lx+0vswC245WAuycEaFoRkjF9O/OlI1pAfb578NeCrAbxEhO8MAJXalqj8sq5XA5UMD+1GG/d8shqFIZGKgTOdyv92H/v31YH9yN/aUTuD8Z8T1mxbrWBc2Kn0sYhsFyz25seOwMSimfJp6SDjHpMtiERVMtRE2BbcPefoOf7na5936H7z0ufa/M+Bzjo1IKlXNQRRsKc/cNqYzV9E3fnzF8Wy4yD3HvD/4WqfSNvX7VFfzV7/8v73rz3/jCJ8qWqJPeoNMZg+7F2X9dgYgamLd4YjGu4mWtr9Cve0JnJUcwWWz+mhbJCGJ5AjVQwH16gmjGwpUwOF5/oTma1oFz5xyse8MQdKbg0GkdNDeKU0OKyZze/6nj+/3Xd1z/nLqfUUppFsXhLEcz+lx3JSU9LXUElJTCrdhzmQLjqpmaDRcSYkOr74GujmSqxMo2rd8OpZNa7Aw4nW7eqquCWFTQmaqtDhyLCDpSsOc4TGWrj+NUTvHIXsXYFGxZowP1sSl4YKfivicVB08viZs9kyEzjqZ3J+dghbTUtutSqiJwtnCskoipe48BpvJKs8GmLJRn3xQxq5W1L0VUKmqxqMBy9D0qyxIZqr4JA3bv3131uSNndjdF1U9nggC7FkW8s30ZhqHPbao8LclYp4JdtoKm8aQXYLtPTfiVQ/PGHl/MSbRFMV+8Gtmqn18VvZrJ9Pwo4hAUISzTpNQ/u9L5fOAWXaSlfMZHJBXBybnYU3Ovp6SlbZiyBd0CEWtyqTM0GgicreidKXBWQRVFfLh2BbtC4e8SIY2Rtrl7DI06FWyA9au2BLvyaN6Hx0w2h/rA98dm9iH95FSUM1P6Gosa+nztDtPEj89NE29vayDANsQMingFxQXIxRRzClvNHmCHK9iJWKv/XVTR0Xo7CwQlFXgB9kg0QUtUsbFLry8KtsBZvlTBXhT4nwMJpNIXxquuKpPwLq7pwbVcE+eXpt7IO6d+h2+oe2HZtPRdxkY+OY7zv6f9l4xFQg+voKIkXiznyRcz06y6yozmjXDybF5YvQw6ugRxJKroMpGFPk/cc06xDFvpRXzR1YulWaAsiUrbiERzC6cn+oPf7Ix+A4B4LMlbXvMnfPrPfsh1W++o2l4ezvg2VMYV7ZeEyJJ52zJfpfEF4nkYGLj5w/77zQqdVSAiOvOo8g7OnknaHYtTw9RVke4fVSgF0QYG7p52mGiiil0qKw73BSItJ48FAfaGy6+q+znVX0AezDAio2RtfRy2zGbPdabgTxTGljZE8uIyaRYiRBOX2i+7gg2rr8Q0TV9FfiRvMCtxpE4PdiPoadeL8H0ng3+QKyge3acYmoD1K/R5ikUEa5YJ1i7TyZenD2t15maEdpZw6aASgMw17gpT23W5J3K4uydw907i7p1E7kvrhO08nCbqoeKF7bg6MZRIGf68BRA1q4W/LkWERdwMoVko0pZVDILBwiCZXKbqc8cG92lrxwYRpojXUhE3DZMeT+G7W1azh+pRxGt5YIfp4cbN1f9HCIHwrDlbRAvJ8fkna6KmwHGhHIlgp62GBcgahSxLpCUxvHYaI2YgbTVnH7aSCmlping6p625BM2NuUPjwdp4ZYMU8f6RYzW38S26mqxg0xnzEzjTvbBfc8+vs6x7DXff9vOsXr5R//+MyZZicI1+4kwv2ZBdrVLw77uD6vX/eZa+dvY22YcdrmDXtXkzhS6XTwuwI6aeK88WxbxEIepadMG0Hux4Czie6FpZzssOty6ytv87R2MJ1ne6dIZcWjKphF88W6pgX6TIWfDNQzpQjpqKV27VmRDZX8D+1CG/Sio2tPLDbU+Rcac47B5m/BZJ/D3XEP39bZgvX4u4sr1m1lVsXFyCV2El8elCZ12OhVSCkbOsYgsEsYhBPAadpsvKbsGa3gYHasvV9Bipqw6zImejCg60zD/AZuK77LjiNv7pzx/i9S97B9HIzJRtFf13e2dT/+tiheiOY1zdCUCn6uTW6G3IQjjAnv8CQhgCY1kCii7t+RKTWW21NR3FsuL08NzVa3+/QtDdDgdOaeGyuXBiUPeRdbfrRfrJ4/sA6F2+hlRbZ83PyL487oEpRMLkWDmYVDf31F4EKUfiPjDoP78Q9PBGYITUxMM08Vg0zoZVV0JJL4xsKZiox16YxaqrEQghWLMMjnuHq1BSPLZf0TcGG1bMdBeIRvS4cdlqWFnbRW0JS6iC6IzBZBk1UkINFZGD+k9IFkRBvIKKkng6qyvZyZQnsuatJ2JR/XqjNoWLEflioEbcEtcihG5ZokLBwcGhgzM+Vyjn6B+uHVTVwlRu9go2aCXxTtFJTFTP32qydoW4GA6wYy3I/gJqQAdjYn0rRoieWkF0c6f/eGW29vdoFEJAQQncomzKp7oRuCUX5SqMEA3fiBmUh2evAipHi/xKtDXXfOxUh0aDAHvVsg11t2tJttHV7ll11algF6ZbdNEgRdwQiOWeT/V4dcvI1Ztv5kt/tYs/eNvf+68NpAWbSzrAHokmOOkk+fQTwfl/oj/CMU/s9Ipeh5dfabG6zSUdiWs7KUCdyc/K7oLq9oZMrrZNlxACoQho2R5iUUg3Jks0K0o5V2fDZkGVing8pYNgx7uvF7KCPU3gbEOHS3si+N1TdsSn+4vJsm//d76wFGA3gG8fjlOw9UVxzyaLrqTyKteHwFO7FBtbib7tCr775Ff8z1XUw43lSSJ3rST2tiuIffA6or9xJebdqxBb2jDvWH5B6aBlW+HUoJLMhulK4iywF3YVIoamcDeDsgRbIVqjqInZ+7BlxoImffksB3b2e4NEeYCU6ONPfuOf6mZblauQ+7wm4riBseXSkTE2nx0Ixrws8fJpXtgLoLbbGsEYLSHKLgNjM8/j8ISeNJqh/na16SrogVNqVmpdJq/Yf1IL8JiGYHJ8mGxGT2obL99W8zOyv6CD67iBaI9yNCT4Vav/WhUd7H86gqzQw6MGxrbOxn/MeYRYnfS1ItSJXJW4yKb126F80n8+PA+rrkaRiAmS3hr4yUO6/37DCjBnafMwjNq08yUsYTpEMoLoTfh/xjL9J3oTC9rKVfHCHpvSAkTxmIEyhM+6ika0ANilbNWVKwZU09aE7sEu5KoXwftO7PMfX775Gv/x4VO7aBRVImdtM0XOQPdhrzBWzHyjHIhXhVGyqivY7uMhcbObZ1bJwXNk8HCZVb862wjiUUjnBEZEUJoj8G0WFYuuMCIpE2vM8gXoakE5CiUVRVtQKDXffw0wNBauYNeniEPQhz0+NVxVNa2gEmB3iiDAVqkoww1oxPh92KpaSdzfj6uQRzLY/3WKt37vUVqkPi4nW/Q5/s6ROE8NRFAKvrgrCLbfsKOEEHDTGn1j72lpvA+7I9VABVt/ZabTSONRfb+dbcIun3Ux5giSK9T8aCROxIiiHKmZa45c0B7s8BpkNOpVsBPB754KCZ0JBcUT55cStBRg14Ej4cn+CH/9cAuffzq4OV67rYRSCufLJ/1BV2xMEX3rFew8/hB7jzwK6D7czeuvmbFfETEwNrURefEaYm+/ksir11+w/mtXKkbTmjLbDKZ7YYv2IOO7UEriFYi4gZqyqzLac0FZrubktERQhfp92Eop1FgZEWuuKvH46TK28lYFk9/lN1//Ibo6ltfdXp3M+d/BuLKjKXuRix1iSzuiV8+i10R2kCoN+O8tyDXQGoG8TYdd5vTITNGf08OKaKQ56q8QghXdcLRPB+i1oJT2XU7nAlunE8eChd7GGvRwOVTE3Z9GxAz/njgaogFunkYRV2kL+5OHUEc8alhEEHnDZYhUAxS2CwAhqPjxFQABAABJREFURFDFVuDuCg6e34ftYThf59zPYdXVKHq9nOTxAVi/EiILLJyyhCWca1Qq2LlQFVdEDZ91FYsunPLvxQilFPlSEGAnE1AoQ2ZKEmZ/7zu613/8klf/qv/46KnqvuzZEO7BriVyBlpJfLlZI8CmttBZmCLeGm1DPuUFPBGBcd1MFpLlwHt39pL2TvZW4yqKhcbsmWohEdXCcDJpYg2XcWskAeYLt+gyndkdSUVwCi52un6CVHoV7FxZYDuNtW1NRyXANoTBslAxpxbWrAgpideoYudrUMT/+XAbb/xKB+/6Topcuf73m64krkVLS7g/HcP+ykmsD+zC/vRh5COjtNlBFiy1PUiifPyhFp7oj7BvRF/kGzpdnr1eb3vzGn0cm7HrSrV2+oniehVs/eUF0/u0YlF9DZ7NeKKUIpdVzGacAgFFvCWR0gG1JbVFl8sCV7CD+3IkmmB9h6QjVMGeriReOLwAJfwmcOms9BcIP+2P8JcPtvBzX+rgPd9r495DQfX6tnUW6zul7sfq14OrWJkk8pbN/NePPs0ffPzn/P3c8+zXXfQVk4mM9gd2mhyXl/cEWcVz5YXtI2bqgLkBCwMfltQDTNxAlGT9Puyiq5Vhm6SH/+uPAk/OTW0D3H3bz82y9aVJD69AGIEglylMdrhBdX4gc/bXgDAERA1ap4pkcqqKJp7JKQbGtUdyM1CWpCVfxnZh/0mFWyN5MzwBh8/Aiu6gb7NCDwfYuKm6gq0sF3k8q6llIf/LI+N6Ym2NSVa1BUGl7C9gfeIAaqgijR8h+utXYl6k9PAKwmricmcQYG9etx3KQeXBFwCcjjmsuhr+Hl5CZcNKLX62hCUsNlR6U4sWtFQ6SRJBC0XE0BXuSzXAth1t0xXzAmzTEEgJuayqCu72HNEBdiLWwl13/qz/ejMV7IqKeEsiRSxau6w6vYItVoUCrBp92OEAe1N+Y2DRtKOrpobGg6eiPDkYY2+rrm63Gq1MHR2csV2jiMf08StHIjg5Z0Fp4k7GwZhWCBCeOrWVrn9BVuyh0gWdQJoPKgF2T9eqmu12YaxZHgid9dew6ppBERfw7QFNd9s9FOVd30nVFWMNK4k73+nHev8u7I/uxfmPk8jHxnzdJYCyMHiobTn/vmMbO17VxY4V+lwM5Uzef3/Qv/b6HSWfXX3dKpuIodjb0niAbRomqZZOYBaRM9AFpmmV6riXsDsboTOrLLFKisgcFnkVingy0YowAEvrKgi3ObboXAjfl5UKdjjAnq4kvhRgX0D84FiMP/heG987GidrBYcmZiruWG/xW7dqmy33e0GVTt7dy4c/93/41Jf/FOlRRG7e/gJ+9p5fO+/fvxlYjsKV0JUSCANkEyqUK8IU8Yk+CPW0dFUo4mfZg+0j5vWlFRunlaq8Ax4lVBmevUqt7bI2ouRq9dYG8eS+H3Ey71G7lMt7XvuzsyZSlFK4Fd/gi1AdeiEgrgiC6uvMbaQieuGxYNdAWxQxaRHJ25wZCa7TkTTki9A6s9WtLpQrkYenkEcyrOqQnBqG09PcUhxHse+Evj9SyeDchhXEp1PE5WBR05W6ggVBuiQYK+hjsKnb9e0f5aEp7L8/CBnPRaA3TvS3t2IsAi0GY3kCscazpOkrID3q3OXrqivYdTUYGrDqagbTe66XsITFhmIJEpWYL276IoBCaNX9S5UiXrbxqpzBaxETJkZsHcwBmVyG04NaVXrjiq10i256O1YCcOTUbqRsbBxJZ8fZYG7k91rfjVux0ZqG3q6VLA8F2EaIzh2ulFVQClGSrxgL6N716OEHRvUP3RMKqOzDs1Qh54BpCFwFRUsfK2t8YTIxSimcjO1bdIVhJEzKg/VVy5WjsC1FuiBIzsN5tlDM+oHjqlkEzipYHapg99ew6poeYKtUlIwVrPeOTUT43W+1MVxjvgpXsBkvVwXUgG7n2tHF0Cs384Yrn8tfrL+Wqc09mIbg924vEDP1MbJcfX5Wplyed1lwjpJR2LbcYTIa50ys0oddmLMPuz2lf8usAbYQM1hiEU8Y72ysuooFsC1FNDZHgO3dG0mvgq0sF2zZlDBhQwgF2BOJBCtTko4QRTxdEhgbUvCaDRTesJl1v315rb2cMywF2CEcP2zxmSM/4YMnn6RHWDzvMos/uSvHf70+zftfkGdFSiL3pn0hC2dlhHf89+t44LH/9vfxhpe9kz//3X8nHmti1X8BMJGBVd2wbjnEPRP6RrGsO9yD3Y/omFnBHlooirghUIKaPVD1oHI2wsuwibipRSpqTAgqbaFE472ZxdPjfPvzX0W0XA3AqsQwl69cOft3GSj6g4DYdPGpQy8EjMvbkEIf3+ujN9Bu6kXDZNGguACLQxE3wZZ0lksMjEHWU8I8NaSVoRs9f0op5Mkc6lQeVXKJoUjEtCJ1KUQ9PzWs/1ZNWyfVUxBXRQd1Oo9ojVS1e9SihyvLxf7icT/AFBtaif7WVi3otkhQ5Yn97X5AT/ptkSD7PlQnwG7EqmsJS3imwDQ1bTPqBZQiYvhuE6CJWJdqBbtseb89NCW2JiA9LlHemL4v1JazedXVqEmLLat1612hmGVgtLa4VRiu65DNT/Krybdwm7oV59+P657QaejpXFldwQ4F2NTwmq5UsHuNXlZMekFzV6z6cyEcrATYIUqwOHV246ApIFNQRNoiFE4UsBbAE1sriKuaAXak1cRO27j52t9bOYpcXlGwAp2MZjA0fsZ/vKKBADusJD4wMjPAzpeyCITfg+20zGy/6s+Y/O432zidnlax74lXVT9pMTGu6sB88Wqib7+C2PuvJfrLmzi0ejklU5/bte36uKztkLzp+mr18V+4pjRDQLvSh+3bdUnVQB+2bnHIFaZwnDoLrAotuwbOZjwpFCSOrYjMEmC7ruP7wyfjrVoQzZJV49pCQXpsClsIUt0mpgEdIRXxqZKBaI3ANV2onkTNa/pcYinADuHKA/2ssYrckJ/gX5xd/OFzcjz3Mpukd08qWV29/viZv+BYn6YvJeOtvO83/5Vffc0fYRoLpzR6LlAoKyImrF+ps4yJWHNZ8ngsSadndTEy0acrwB5Nc7lcYJEzAEPUrUJPh3I9MYWK+mUyoivaBXfGdmq8jJjLF7Wy/ZSF+3dH+L/Om3hX/14MJbnnqs45Pxemh5t16OH5kuLMiGqKRXAxQcRN8sv0+VltrmadNeS/t2C9+KkIyXSR7JRkLK1fG5vSgmWNQg0WUceymnHhKLAky7tgaByO9utjXygp9p5QtCaqqcezKYjLgaK+PkNMjkNjJn/7SOCnWhE4UwPFQBhxUxvRX7/you25rgfzll7dG4+263K9a7y7VYCrF521KgJVOM9qnktYwsWI3nbdhlKFkJ7AQlnrXIwo27o9LUwlbklAKetSll6AfTQkcLZ2G6rg+AE2wJGTc9PEK2JQa0yvMFCWqJGZolW9natY4fVg28LBWBuM3zUp4p7I2Qtid/t0f/Pm3pqaOpYLxzzBy9PxFBlTj/ktI/FZRVjnQjymRT7NzghuwSH91BRu4eyCdlmSSMutGYyYLSZuwcWu486iHEWhJHDl/HQxhqsEzhqoYDdAEW8TbUSEnq+KiWCufdHmMus69LEaLRi881ttHB4LLkZhCKK/fgWRt2wh+p7txP7sOqJv2ULk7tUYW9p14h/ozwTHaU17MK+9dluZK3p11XtlyuWFm2deQzd5fdjN2HV1hLyws/k6SuKGQNkzrwMhtHL/fFEsKJQLxiznNqyun0y06vFMgiq6sMBts9K7L8ciCdZ16t/VMU3k7EJiKcAOYfVkcGGbB9O4Pxyqel/uTaMGdWbmsHOYH2XvB2Dtik383R9/jztvfPn5+7LzhEKRzsKaZdDVpr3s2lubp6Et96rY45ODmhrv9Z1WKOJZy6jyATwbiJiphc4aCUDLUlNjKv1DcQNRdmdaA+UcHXi3NFZRHn/iGFGpt33e1BDv7tvLLavnPmiyQg+HuurQmbzO3JcWVgj0vKK0PhhKtqVH/McL1oufiiJyDsl8mdPD+jooO1pRuhGo8TLuoSlNwWyLIBzdE2Qanm3XSUhntbDZ6CQs66z+fD0FcZWzkX15RFsUYQikgq/sjfOOb7bR7/32zoTk1nX6WlEDweRj7uhalIJ3ojVC5FWBDoPz36dRRYeutl4oazrncE7UV2mNnL2S+BKWcCnAMIRfva6gsnBXShGLXLpe2JU1R5iBFDclTklS8mi1uw8FAmebNl6DKjhsXtOcknhFQbzLCAKTioZOGL2dAUV8wpjUaxovWK5NEdf7uDv+Qu+HgHlTbQG1YxMmtpc02NI5zN6EpgS3uopD++ZfUkzENOW3bAsSq5OUB0ukd2WQNSr0jcItSaStfBZgGJXkQb1+b+ko0jlFbJ4540YtuipItbT7xZ56FPGwwFkmFvTfb1/h8PGXZNncreeiqbLBu7/Txkgu+N0iFcW8qkO7CNQJDvtDWjNr2oOg1jTgL1+U5fduz/Oxl+R8rYEwNnW7dCVlVduAPDK76nDYC7uu0FmdCnb8LK26igWlxdNmac2qsuiqUMSlQuVtxEIKnJVcDE+bqdJ/DVT1YC8F2BcJynmXNcXqK8/9dj/yqL7YlVQ43+v33/tC8XMAPGvHPfzdn3yfDWuuPH9f9iyQK+gs8foVwYXX3irmIXSmlcSlkoylh3xvwRbHIer1oi8UTZy4gSo50AittKx7PSoBthCaYj69Aq6yNjiy4QBnYnd1dvS5mWEu/84RXTGvAzVW8hMyYkNrlfiV/3VtzSZoa9WKoIsWm4P+4Sumgh8ysJCtAqZBR6HI6KQeQNsa7MJQORv34BQ4CtER09cE+BNQVxtkirD7mOLQaVjWNVOVvJ6CuOwv6N6sVISJguC930vx6SdacLzF1JW9Dp94WZZ2j7YkQwF2pZd5McK4vhtjq9d7n7FxvtlHZ3svlHSAbbkG6TqTm4gaqPwl2li6hCWcLeLemFl2iUa0zoQ8iyrnxYpyjbhSOICrqEiuVATOhBBcdvk2RNFtvoKdHSNJkoQI2nAq83IYCSdBXOgAbEQO62DS09SoJ3K2zljPanO1/o6b2xDdtQXUKvRwgJtWFdhb+rH//PEfl6hRbGwIsag+joWSFiFLrE5SOJojeyDXWEGiBmTJBUlddxuzxaQ8VNv+tJiX5Irz878GGBw75T9eMYdFVwVrVugq9nh6aIZVV76YoUsEAelkSDRtRUrSlVT81UuyXOOJkhVswb2HmvvylQq2IVSVkClAKgYvvcJiRar2OtEQcONqm8lonBNxvYZSZwqoKcvf90d/1Mo/fieg6rWHKth1rboMoXueayiJZwvM+9rI5SQmcwTYoXPgU8QrzNKFtOgKe2DHEqz32AiJCCQi+vdNlS9siLsUYHuYOFz0D0ah0hSkwP7CcdSUhbVzGIZ04HDQOcCT9k/52bvfzgd+5wukWhaHr7FUikweNq6E1kRwoSfjmrnRjABB2KprZPxMlZJ4t6Mv/IUTOjPrelFOh7IkQuGLpEDtPmw1Xg5o5A0gOay3dRDYXiZT7ZnE+Xztfi4gEDdj9up1Tzus7Na2FosVyct7yErNANmUj2N4x3ohWwVEe5RYpkxxUh+ozgbo4ars4h6c0oJ2vdMmTjsQE1rZDcf6dX9SR+vMSaCWgrjK2Mj+AqIjxoHRCL/2tXaeHAjug9ddU+KvX5pldYg2pvq9hZ2gur9rkUEIQeQ1G/xgQD46xtXi6mov7Hr3f9RAlc7eqmsJS7gkUWnUdJRv1XUpCp0Vygpj+hDhSOJCMVUycByHIycPAtrvuKWlDZImvWvX0tOhK81HTu2eM1hIZ8erqpjgJUanIWzF1W+dQSmF6PQCsqI7Q2i1WM6zJbLFf25sqb8OPDAaVDmvXR1lz8Rn/Odrxqf46r75RaSGtxYpeDltI24QWxYnuy9L4eTMJEIjcEtyhkVXGJHWCHbGxqnBQprKKsr2/APs4bGgB3tl79wVbAi8sAEGR09VvZcv5ug0Ov3nIyL4YpWgNxWDP7krj+HpyHz/aJxZ6iZVUCqoYK9ISaLzIOxV7Loebg+sXuXeNLuGIvzWvW1870icv/hSt09fb7SCrVwF0xxS4l5CZr592OkpbSk4m7VwoRQwgX2bLhf9XRZUQTy4X0ejCTZ0BvFBhSa+VMG+SFA6HmRddl2/MVBGzjkU//UQQ19+0n//34tf5Dff8GH+zxs+dNH3W4eRzkJXO6zurb7oWuI6hm1G6Gx5WEl8mlVXtyd0NpBZoOqlKUApVCNWXWU5c8Kd1oetyi4ybSEatOfKDI+x3NU0pKPJdj647jqkF8DLvWmczx2rGWTLkFqpUcN+SSqF7cCqXkFHystG24uzUtHW1sUu52kAWmSUzUXN/BhYKIo4IBI60dJp6esr0oCCtDyVQ42WENMpXoaoEtpqTQh6OmBdbRvUGQriSilkX14zJloifPTBVtIlfb13JyUffVGWt91UrJpwlVS+LZfoievfs4ghuuJEXhok2p7TdzOxYrBAqid0tlBWXUtYwiWJSnLYkcQiZ+9de7EiV6gWOAPAlsQMSc4SnDhxgrKtI8dN63TVWnTFES0Rtmy8FtAVyoEavbdhTNUIsNVgYcY6IVwRG7D7yRWmEN2xmu+DrmBvDgfYa1vrfodDXgU7aiq2r26hjzPklJ4Ltucn+cLOxLyT0aYJ6VzwWyKpCEbCZOrpKcojzfedOVmnqkAxHUbSQBZlTT/s9KSLEkHg3ywqFl2mGaG3a1VDnwkLnU2niRdK1RTxAaUDbIFiWWuwZutuUdyyVi+ARwsGTw821jqYLgnfxjfcf90MbvBaDR8JBdijj03xnu+myIYqsE/26zV2R0MVbDSVe9q6NB7Vybr5KInbjqJQUDWp7mGUSkEslahUsKX2R19ID2xCdnGj0QRrO4LfWqGJZ8piuh34ecVSgO3B7Avo4eKyNqJvvAy87KV5psxKqVfeB92D/Myvv5OfufttF+R7zhe2qzOLG1cJYtN6a5JxLZbRXIAdLKyHJ/ohHGB7fdj9C+CD7EOIhmilqlRDSKHSh+3ZLKisjSg6mkvSAI499Lj/eH9LB0+29VJ+4xZ/sJD7p7A/c7gqA66ytq8GKZYnaqpEZwvQ3gq9HZBKaspzYZHSxGPRBHtl0C93c1EP/AsqdgeIlgipXGMHSdlazEakojMWDCJizLDdaG8VdYVZZiiIpy3kQAHRGWMkL/xrfWOny2deneHG1TMXH2qsFFTNVy9eengYxm3LEJ69WFsxyRtLQQ9i3Qp2RSl5gay6lrCESwmV6pByFVEvwK5Fp17syJWYsVhXttKuJo7gwIED/uub1lXbIm7ZcK3/eK4+7HRmtIomDOhk+zShrvD8PSyHGZscRHQFFc+ZAXaeLWYQYIu1tcf0qZLw9Ti2dLvEowYd7T3ss/X37nRtlhcKfOaJ+TGakjGYyoMbqlbGe2NIS5J+aqpmpXk22BkbI15/3hZCgAH2NMVypRQjI5JYg7ootVAJsJd3r224eFWhiMNMJfFCMVt17k+7eh3W3aKITdv9i0IiZN852lgJvm+qdv91M+hKKrb0OJyIpxiM6mugfSBDctqC/GmPHVdREYc5erDlzAp2NKKt8eaTsCuWwS6pOf3NwxTxlkQKYQiEQgf7C0gRl6H70W2PV53PipK4VGLBtKDmg6UAGz0wtI/oYChrRuhcG0O0Ron+8uWoaUeo+2e3c+v1L7oA33L+kEoLN63ugRWdM983DEFbS3M0tGqKeF9Vf3Glgt2/QBVsABE3UOkGAuy8PaOvutJzq7L6hlQZG4WYNUsbRu5AoBx/oKWTzd0OnTvaib5li9/rrY7nsP5qH+7DIyipkPvTVBj3xjWdNfebL8LqXohGtNjcsq7FXak4mjjpP765MAboIKtRulVDaIv4/tFzQU1ZOoiuxVSICE1TbqAXqUpBfNkaWp0k8kxe9/AnI+wbCVaJd2606EzU3qdPDwfE6sVLDw9DGILIz2/wJ86fkdvY5LEX6gXYwhCwZNW1hCXMDldheLZ2i3leqAXbUZStGhVsR2J4/s779wdJzU3rt1dtdsXGIMA+emr3rP+rFkUcZtLEwwH0sDvMWHoQ0RWqYE9Ul/3KpSKXRzYB4HYaiDqCqYdCytRbl+lgt7tzBXudPf7r1xQmebwvOq+5Mh7z+rCnVSUTqxKURy0KZxqniktHIosuxhzaNGZLhNK0PuxcEXIZSSI5v4Amm0+T9+aOlQ32X0M1Rbxvjgr2aakD7BWtMw/0rets2uP69YdORck1EJj1hda4a+dZwQbPrksIv4ptorglN8Yrt5bobdH73TscwXYDH2yATL0KdpiWHUJlLTyfCnaxDJY1d4BdqBI581gdCu3c0kRb5lwojQb3a3xZtarexaIkvhRgA4yXSXrR5cFkh98zaaxPcfrGoJ9gtD3N2juurbmLixljad3ne8V6gVknqOxINdcDXEURn+jzRc4AVqMrjP0LSA8mbs65IFdS6YCqxuTg92FLpSnDDfrhua5D+3hQfd7f0ulTiYwt7UTffoXPdMCSOP99GvvTh3GfGPM/Y2ybObkXLUU8Css6g/PR0SoQAtwmOS1SKgYnFLZ7AbkwgNXqMuDqZMTl2QwJ18GRgtH8AiZaTEP7ojcAlbZQSn9mBiKG7gF2Zj9mynIZ33/SVxDf0L0Z5/Ex3XvtCdqEA+xty+vfRGEF8VoV7MmsYmBMNaWFcDHAWJ7EvEfT+Uxh8KaRo8CSVdcSlnBWCNE7L7UAu5YHNqCZLUphCjh48KD/8qZ11QF2VQV7DqGzWhRx0DTxque1Kthh0bJpFexUPuELp6nVMxlqFRwICZz5AXbHcvbYQYC9PT9J2RWcnmp+roxGNPtweoAtDEG0PULhWB63Af0aAFmUuHU8sMOIpEycrIOTCea7yawWC47Hz44eDo1ZdFVQXcGubhfIT1MRr4icrWibOfdETXjB5focW67ggRNzS6FXW3TNP2Fcqw/7jeYgv3Nbkes8CnnJERwcM+nwVNMBxtLVTkc+DAGy9vpGoO1Im0WxrG3Y5mL/F0MU8WTCE24TCiFpuKjVCOzx4H7sWF59rjqrlMQvXJi7FGAD8nRwQRxp7aCnJTg5e7sO80+Fz/Kw9RDHnjVZV6r/YkXFMuGK9YLkLANfRZSi0cV9Z9syot5gNTJeTRFfjR7pxwsGxYUSZ4kZc1NKyy7KlrrHczqSJirvoMbKmmreoD3XgcNPcLnYDMBALInTEuVntwUzmbExRezd2zBuXea/po5lUSe9a6ojWpM6ls1Db6emhlfQ3qrtupqliRfKgNIV8QuJttZOdtpaq8BUimsKOihdKCXxCirJHFWYJZh1PXp4PZ/zSEjZchaokRLHH3jMf75h9ZWI3jjGqhaEx0na7wXYAuUvoGohrCBuTFMQL1sKy4FEfHHatZl3rUS26Ptus1/BniXBtmTVtYQlzA4vYSrE/BbEFxLKVbP6MZdtTVWdHmArS4IQxGJBBbs91T2jH7e3axXdHToYOXp6dqGzqexYlUWX/7/6p02YXgBdUiUyaorx9FB1BXuaVVdvIQjcjHX1+68PVgXY+ph0d6zgmHuUgtLrhGsKk6AUR8YaW5eEIRB1/Y2jXVGsSYdif2OLCtezORVz0LzNhIksyyo/7NFJiXDUrAJYs6E6wG5M4Awg1dLh06YHhqsDbE0R1+dJmoK8oY/vitba1+aLtgRB23ePzE0Tr7bomn/C+OrlDp0JycFkR5AEGJhElV2uWxUc412DUVb2rsfw6POnB4/U3J8QmpatahRdIhHdntgsimX0mmmOGKjKpiseVLAbLYw0CsNTWk+bUdb0Vr/XHg6wlyjiFxbyVBBgj/W0VSnQD42f5r9L/8WHch+kc+PqC/Dt5o9CWWHZOrjuapv9ImuJB/0ZjcAwDJZ5XtgjE9UiZ8vcsE3TwlSxRcRgTv5UpSJZi94UNxEliRopIsoqsEKZA4cffoKY0IPy/mQnb76hNIMCLBIm0dduIPproWq2B2Nb54wJx3EVroJVPaIqYRONCHo7m7frKpSgu+3CVznaWrvYae/0n1+XmwBY0Ao2AJ44mErPEolmbB3AtdZZsEQEOPg90fWgii6nvIoswMYNV1VVxIu29jgF2NjlkprpxBbsqxJgt0SqElJSKcYzsH4F9LRB9gInSuYDETEQK3S2qMO1aXVthnNGXS/sJauuJSxhdqiyvnkq1jqLCcW+IpM/Tde0cgIdYDsOM1WXSy4iIiiVhhkb0yywTeu21SxsVKrY2Xx6hnp0GOnsmB9k/f/svXecZNl93fe9L1Su6urc05PT5oAFNiAtQAIMAIMoggSYRIikJFqWLEGSFSiKlqhgypRF2ZREyRRtg5JMirQpkCZlUgwgMrhIm/Ps5Jme6VzdlV+6/uO+VFWvqququ2d2sX0+n/lMd3Xl996993fP+Z0DhA7ZcQZbShky2MvuMgBrmzf8LGz/Pl09x/OtaFVvHi8nvraU8LIvEZ9IexzynaunJubx8HjRVpsIU47FotXg1fXx1kspQ5nYdkNoAiOvU3+tjjeEYshruUhXog0j5dUFbZ9FlFJyc02qeKRxC+zYMRxFIg6wOK9k4qubS3zhqd8N31NcIt7OpsLisF9s1plpl9N+LvbLawaXK4O/h4DB1oVkoc9zDgNDg3/8TTU+8kCb9ANldaMj8V7e4i0xP5enbxikzDRHfNb+6o1zuF7yZoGEHpMzGJyF7bY96hd7DQABqg2J7nk7Ht+OmK5AIo4yKt4rSNcj3VDn3oqZDTOwA5RjEvF+caG3AgcFNmBfjM62xkKh42/j7qrdbtiupFKFk4twqHfztgfZdOQwOCzm/AK70axSl/XQ9KtsRxPRXvZhD4qOAD+iy5GqGO9+qObnYbdcpMbQSoTtK9HO+fJ0ge+4s39Rp91R8tlsf+LVQH90pud+1QaUCzCVkOoxVVQ9d94Ig5HjQiY9nFti25JcW5UjPf+wKBUmedZ5Bleqwe6huuoPWm/sMYPtHzvvRrPvAs7bssD1Es8FULJx4XpK8TAINZvLa6+Gv55YvKvjzy+vGnj+1uy9c/0ZG7ltQ1VNlOJwtuP829xWkWMnFwSzUwLHGe34v16gz0as/CGrQdMRbPfbPTbFQVTXAQ4wCH44cspQm27jZtfeDrRXLdqr7b4GW21LFQDd87BsOqALrizF+q+75OEBzh5/IPz53ACjs44ebA2Erx6Sa+0omaTmhHLaFU8V2OuVG0rSOpGchb1oR2sDvQ+DfX1bC52g75p1QvIvYN87+rDrm5xbH53BBsik1DliJaSQpKZTWOsWraWdd+7d5vDjsZHTsZbbSFfSsqBRk6R0ObaR1c31WETX7Ghr7cfu/6bw53/4r3+E3/vcr9Bq19GkRlGohVY93ZmB3Q8fGJLFljIikBaK3q4TqO6edfkLDzeZeNtEeJv3fIVDRY/DM+o6emHVwHLg2OKdAFh2q2NjogNC9PRgg1rnN9vJ54q9blE/X8dLOA8qNTClROzwOeMMds6XiIvJVBR5tweQ1xph8bpqZjg60bn2CkzO4EAifnvheGh+dM6VdJ7pqc6v5Obq6LEBtxuBqdnhGTh5SAxVTBq6IJ8FawQWNGCwAdYqN0JWLtfcnwJb+NvdfRcabXegxF2kNOSmhcgON4m9eu0qx3lL+Pu7Hs/uOIgqNvsE5t++D/Nv3dcT3SGRNNtweCbZsbqUV5sdw7LRtqOcZqdL+JEugxdh1SYY+v7kqhbzk9RlnVddVZAeb9eZtlusNfZnB1Fu27DV+0VJTyKXW4j0YDZAwkCJuPQksuFweSUqsI8t3tFxn6D/Ou/avKe+3JOVGj5XjC3RYv3XLUvienD6sCCTFkwVIJcZz4TkdiOeM75oqTF1UBb2QVTXAQ7QH8HmU8rPrh3FI+V2wnM82stt3JqbGOUEyfOP9KQaj3WN81deCG8/1a/Ajhmd9evDdj2Xan2TclBgF8ywwIZoXI73X6/IFcBnsCGSiTecsCCXruSIVIrGm/Jm3zXFyzHJ992z0Vg3VVapNM91GZ2d39B3ZXSWpH4TukBLadTONxIlw3G4zYQUlj4wCgZO1cHesmm0oNWWmOwNgz0/PRqD/X3f9ld539u/BwBPevzcxz/Gx3/znzIhJtD8irBiDFdgv++UhaGp7+mPzqf6Ho/1hqDl7C6iKwnitMp7B/Be2kI6Hm+/Sx1Y2xW8uGpw/NCd4f0vL73S55l6XcRBjSeWnbzGdBou9raD09Xe4TiSWhNSjMZgZ3yJuMjoQ6+7d4L32jb2L0XS+OVivkc5eGBy9jqBvtZC+CzYy9kJDsXMD6SU3FwfPTbgdmNjOzI16xc7lIRyQRmPDIvZyUgyv7JxHVFSZ7nZdjA89T3uaVRX4Abdx7AjMaIrjrwBzT6u0gn4N1+0uaelJuCGLrjj3p1NLwJofaK5Gi1VQM2Ukx+XTatM7GH7qev+881PqcJ8p8LMslGO8fsgJy/mywA8bT8Z3vZQbWPPGewQjoe3nvCBqzayaveXh8cxiMFuu3htl8s3VYE9M3mIQm6i4y5B//VPXn2We3//Fez/60LP00CnY21gcOZJyca2yt6eK6u/ZdKCmQmVEftGg4id74cs9QEOoroOcIAxERTYRv8F8esRzpYTMtdW0vgMNNsJZkmOF2blnr8SRT6eOZZcYN9x/C3hz/0Y7O3aBkhCibgomh0bnHJJTbRxdrqWUmPX2qYykEqK6pLLTVKo9c5lEakcu/Hyaq+DOMBUSRXY55xXsTV1+72NCi1HdDhTDwtDF7hef/+W1EyK9nKL1s3BLLa9ZaMNGbOlpTU8S2JvOTRa4FoSHcZmsJd9Bts00kxNzI/0WNNI8RN//t/yoW/6b8LbPvGHv9jRe7+mR8dxNu30Va9NZCRvP6p2gDaaGl+5nrzuuxZb2x7ZhcFZN4Shod3trzNaLt65Ku+4Ozpuz9w0OHE4XmC/2v0UwTMlKsRSJrSd5LWiU3Owtmy8rjV201JrxpTcOWqrkcBg7xXcr6yr4trf6HotU+TFs72tu50mZwcF9m2DvhJVMi9nJ1iMFdjVeoVGUzW2jOJqeLth2XB4drCpWRJyI95/dio6sVc3rnf0Ye9HVBc+IxnEbfWg7iAGBNmLtI52rNBXNhzHa+s66xt3UHbVQOsu6mOZd7iepNGWVGqSlU3J5rYqhgd91zMTwzu6Ny2Vo20agqnSYIMs25UYhpIIjZJ5PixKebWIeSpWYL+lvr5vBbbIG8ibzZ5JRG7bYHk7Mtjooi/jDIDlsVlZodqoAHC8Sx7uSXhxVUeXHvfVlaGbfGUbmbCoDBZyEBXYG9swWepVmcyWBR5vPJm4mI4z2IML7CCqK3GD5AAH+DqDbLs9MU87wlUFZ8rPwn6jFNh2xUbaErNs0r7ZTmRNq83eDGxsqXxWdBEy2IZucvTQ2Z7Hg9rwLJeUuei5y88kKtsq22sURQldqLlAFDsZ7MB4Mn5sWnk1J1SqqziOjZjqNTqT16Id0OtGFOPZjbjB2Z0zvQy2i8uNlJKkz9ktJhyLV8cwOgNFLG43kucMzdQQuqBxodG3rUpKiVtzdozoikPoAmu1TdNSDtNIxqoqpJShWnR++giaNvqTaJrGf/sD/4Qf+56fCm+LO4jfRM1P5YxHZquNXG31LbI7ZeLJ0uZrHQ7ie7tRrN0fvW/v2QpvjxXYT98wOL4YL7BfJhG6SFSI6ZrA85IL7BsXLV54xeXSZafjemq0VHuhIeUQJmdJPdi7g5SS1X+3jv2rl0JW/suFGf7OiYeZm+k9VyZiBXblQCJ++6AvRwPly7kJDhWjE/Lm2vimC7cLgWS4NMZ5ncuArjN03FOHRHxzqaPAPq77UV17yGAHRYjc7K0OpVRy3kSDsxEhJfz8F1Pc04xcQ8r3zg14RC8sR3J9VbK+pYrZTAqOzMEDZwQnFgYPUBMFf5cxoUem432iJrRyQfiPE0mKoBCNlnIpn5kQe5tN7aNUULvFLzsvY+tqkfKW2gbr9X3aQcybUHM63F2llHhDxrAJQ0MOcLqVba9j8jreJQ+/UtGoWRqzdgsj1prgPrPR+1yBwZkuEHNpmpbE8+D0oiDTxRhMFiGfHt3s7nYjXmAf2kkiDoiSibfUQNYOzM4O8PUL2XaxfvZ5rJ95Dve5zeEf56qCU/fZyf1QHe0HWitthKmhF3ScmoO93Xt91xrJGdi40HZbXL2pjCVPHL4zTCvphhCCO2JGZ8uxHt4AykE8ZnBWMhELUXRHEoMtJ6JWtPWt5Q4GO3Aa965GRcSN9Eri+7PcyADzSMmlGOsLnSxFqSMX5aXw5zPNbc6NaXSWSSs/j34bs6npFM3rLazV5BPJa3m4bYk2pAEsgF4waK+02d520aVU0VBjEBFb1XVa/qbsqP3XcQgh+MFv/2v8jR/5X9CE1mFutyTVcZwrqCg4MZtRRXbChsMjh20ms2qR9CdXzUQW9Po+MdgA2p2lcC3rPl/hUNkJY8BeWjWYmTkTSt/7ScSFLgZ6zHRv2DWrLhfP21Qagq89ZfPllyRN32ix2QbPkapg3OH07HAR3wMGWzoe9q9eYu3fRZnfS/fM84+PPUhLNziUsLmRT0k0od57Xx+YW4CDAttnsBuaztV0gYUYg31zLWa68AYxOKv7RVQ8/mlYBEZnSX3YEsnaluwo+jol4ksdzsinDfW9bjT3MKoreC+b7V7pi63iJfaiwP7URZOX1jLc4zOXoOK4RsH6lpL+PnqP4O33Ch67R3DPCY1j8zsrCwpZKGZ3jutqWep4FXLR4wb1YTfaMFuGfBZl6rjHecuBRNzF5UZROcBOuhbFzfq+FPRCE0hNyfVC1B1kxRpOHm4IaDl9d/Rpu1xeiXp9ThzuZLCD/uugmAzgPdO5iJaWi1xVB1MsZBG6xqbvGj5b7n3ZlCmYnYTaG8xNXKR1Gqb6nAGDfXNQFnbOgIaDt/wG+6AHOMAIkFfq4BeZ3rPDF9i4nTm2bwQG22172GsWRl5HT+u4LdnTh+04yhSrJ6LL9hCOx6XlV/F8Z+RTx+4d+HqnjkZ/Tyo0KtX1jiJLFA3VD+r7RcibyigzzmBr09HiaX3zRmdUl38/92q0+b6e3Up8b+c3dGxPzfXd8Y0pM03RV3y9bL0U3n6mtYsCO6UKoWafdYOe0cGT1C8lu0R7bQ9puSMx2EZex6m7bN50SGsSIYc3kI1j3Azsfvi29/wwf/8vfZwZMyJGNgx1zOfzHgjQJlOIyTRyrfcL0zX4ptPqgnM8wR9f6N3kub6PDLZI6arIBqg5NJ9rhXFdjic4t5FncU45p1+5cQ7PS3h9TfRtwdI15Qoex6uvOWyue8wtGkxKm+fOw6efkixvSD+iS6q10pA92EIIMqneiNpR4C03sf/Vy3hfjUgL/TuO8PmHzuD5GwyHEvrpNRGx2AcM9m2Ct2Gh1dXA92p2gsmcJBMb9DsY7Nk3hkS8aan+Xm2MXUTTEBSyyQYkW/6mVDwuJM5gd0vEj4po0NrTPmyAhgPVrjfZ9lRP5x4U2IFz5N1+gS2FRBwbXhJQbUiyaThxSFAuKIZylElHE6rA2mlB1Wypfuqcv8GeT/fvw/akYrsnCoJsClL6eDJx25VcvilpWr0TdLBgALiUjjanzjS3960PRhRNvPV2yILKbRvabhjlNRCGpmRtCVEWEER0xQrsLol40H8dFJPh46438Faj81/ebBLsZYjDOWxHSfW7Y9rimJ1Qt7vDWMO/jtDMq+Mw6VhkXYeVARFtQghEwcS71hgs1T/AAd7AkJUYOzrKZpJLWGALQcgmvZ7hVGycmoteUOOvZgistc6JrG0rg/QeBtv2kMDFa5GDeL/+6wBHF86EPwesdxxb1fWOPlxRVGsUcSgXveZaK2SmMTUKM9Ph/dcqNxBTnT3Y0vXghhrfr7nXENnkuSYuD48bnAWY9mXiz1S/Ft52trnNa+vGUIkg3UiZqpWgNmBj3pxO0bzaxN7onfzdpotnyx0zsOPQUhpOy6O+apPSxt+yv9GhFt2btfa73/btfP/jfzn8PciXXih4CCmgYKLfpZhimWCW+oGz0ULqv7yS7kmZCta1piaZze89gxCXiVf/uNoZ13XTCDf821azY4MihC6Ur0HCyZQ2YSsSYbC+JXn5VZdCSqIVDFKex4kZj9UKfOpJydK6b2A3TEyXLxHPpvNjbbaA367wxRXs//UlpO9fI9IC88+ewviGBW7WomsuTorGETiJb7XEXiaEjYQ3dYHtxOK5XslOcKhL5hH0hMCt7cH2pByLXQwkwxP58YuZibwyQIjDciRNS7FtcRO0Yr4c7lB1S8QXZDQ47WkfNspt1OsaEGXbRdheGBU2LiwXnl82KDg2x4OduMM5RGq4TQLPk2zX4cQClHK7OQ5CpSwMmGnbttpMCQYxXe/fh92yVPFdyqn/U6nxCuxqnb4mbAGDDXBNXgt/PtxusrZfRmcZHZpuZD6z1gJDG25gN4TvZN2nwK7bXF7t7yD+vF9gH+4qsAG8p6Md13j/tbaYpdHeWWUyUVAqhmHN7l4vsMvRz4esxmAGG6BgQN0+YLEP8HWLDvnxaru/YqYbvkQcVF709hvA+NDespGuF+Yo6wWD9nILLyZVbdtg2wk92I7q71yOFQtHFk4PfL14f/a1hAK70i0RDwrswzGZ+PVGyEyLqRQzU1FajMrCNqPs7M028mYL4S8VX3POkUkns3Qv9TE4CzBZUuzqFesS0pdln21u03TEWGsm4b/JerP/+WXkDby2R+1cHbeL3XRbHozBQNtCw1qzSWvejlGq/bDcoRbdu7V2qh19j5tGTCIOYAjEZBr9bAmaTs8m7/Gyx33zapF0uaLz5I3ohPUkLFV9BnUPIrqSoN09ERaz1U/XeHAhGkeevmGGUV3Qpw9bE6rNJEHRmDKVQs51Ja4ref6CpL3tKrImpYPtodsex+YFKRNeuwYZU6pNvx0LbFVXZdPj9V/Lqo3zf76G84kroQmtmMtw4v84iv4WdS3fiK0rFgrJ8vzASdxyBe3bFFbypi6w3QtRgf1yrtPgDAgdxOHWFdi2K1lag6VVqLdGK7JbloprKO7CVyCXFcRre4lkrQKL07AwrYq+oMdHCBFGl61sLCGLvSZnsPcMtsjovb0zlpeYqzkqXlo1aLuCu5uV8Db9ZHHox69tq6L38Ozu3kcpr6Tc/WTCnidBQLGriJ/IJ/dXN1pBBJhA1wWlPkqFQfCkkvaVCyLRbb5UiBYyV+1oR/qwVd8/ozMhEBld9fLWHbxNCzGMPByUk7UjE53EpSuRNZvLy8kO4pWWCM/rs9R7Hh8vsLsdxJtt5fKvD3DjNA3B/NQbrw+bDqOzJnVLozagB0poApEzkdcayIPIrgN8HaKDHbM9qAyn9RZSKoUNiu19I7SMtG620WLmkkZex6m52FvRhNG21EZ9r0TcBSSrfjwWdKrkkhBnsK/cONfz90p1rUsi7hfYMSdx75XtSCkwmWZmciH829rmDWWK6pMHctNCXovG+3PuOTKp5AVXwGCbuuTUZH8GWyKx59QYOeO0mbTbvLo23popZcJmdfB90gtp6udqVL5SwY15kHjt8QpkN6XjrrcxPY9xK+yb+8BggyrWAgQxXXM5F6mpHmXwCZSTRXVsu9Rs3313tI79rRejuW21rmG7QUTX/sxbImcgzqi1p73kMFlrcszPe35lTWdhPt4ekeAkrgu1E5CwIFQeP6pmuHQTLtyAWdNW2nFDIByJ9KvSqZLgjqMwnZfq+YaUiGfGMDjzzm1j/dwLeC9FbRfaO2dJ/fd3k7krSim56W9uFNMe+T7x2nGjs6327Sl139QFthMvsLsiuiBisFNmZuTYgHEQ5FcfnYOzR9VEdGNd7mh2FaDR8hnKXeS559LqGnN8t6ytmjI/O70oKOaUtCRemAUTYKtdp2lG1UAx5siy1ww2WUNJgmuxKm9AnvEoeGpJTYp3x/qvxZD91y1LKQhOLQrMXTLppiE4OqsYTC+B8WhZ6liVujbPC1m1cLG7di0tW7lTBygVRs9VrTdV0T83qcbY7veVMjOhouFq8zKuP4Edthqs71MWNgBFE7ll412tIxrOcPJw/OLOk4lRFlguGxvLfR3EA3k4wKLtF9CGQBxXk4pcbuHd9A10lmLU06EsnhcZ0w3CdEmgieFNB18PMOejayWM6hogEwfU4rXqIFdu8W5C3UZe790cOcAB9hJxBhsY+jyXELavpEw1vztd4/rVZcmTr3iJPbW3Gm7DxdqwMQrR2KilVBuOsxUtGoL1Q89meMsDTWNtM3LljieVJKGYL4dO4kkMtpKI9zLY8agu78VYD/VUiplyjMGuBFnYfnFVc/Bi68ZzzquJDPZWS7BU9Tdgp1zMhClpciLqD66Wo3NC9WGP5ySeSak2vkFrRj2tkzmSpX6xzsaXNnGqaiFgb9tDJax0wzZ1ZNNF1G3G1Yjf3CcGO2gltAydth+zu5B31QLGLxSFEGiniohDOUXcxK6ldx+3Q/n3E1dNlvy1bNxB/Mge91/HoR2NRcpV7LAP25MCO/tw+LdEo7OwwE6WiLctWNuCZ89LcimJ2XQQKaX+k1KGUVjgExkq2mRg1SilDGO6Ro3okq6H/e/PR+v6goHxY2cwP3S8w7TW8QgVkUn91wE6srAPCuxbC8/ycC+rxdVSKsu2kepgsKWUoSvl/PSRXTOjO0EiWdmE6Qm486jgjqMab7tTsDgDlZrqkdgJbVtFNu3mvWbTURC97Spzg9OHBYWc6t3NpzvdTOdiO8wrzRuhRDvTjBXY1b09zURah7bXsTspa45iJHeJp26oCbjD4OzkzgOFRLJRVU7hMxM73n0oHJ4VTJdgI2FHutlWueUps/NY5zNqQyTeh227EkNX/doBcunR+1KqTTg0rT5fJqX6/bsRyMS36utYZbXjeMhqsLFfTuKAMDXwFOMsNTFSnJoUJGdhtz0uX48mrW4H8ReW1QJISEnJp5nFdBr9oajfz3t6Qxno3PCpp6kUlq6TSXUei36YyCs1yhtJJp5bjD5/aHS2w/UvNAFpDe9qY6Dr6V5Dq1i3vqg/wJsPXYy1tzLkBS1EuDgO+msDXw7Pk7x40eOzz0jOX399GKDZFRu34aDnOqtJYWq0VqIJqZ9ySrZdhCFY3VAFdjab7VAN9cNRX0a+sbVCrbHd8bduiXjAYDNhQvA+G9FOs2KwuyTi0BHV5b1YUf9LjwvO+cQC+5W1wfJwgOkYabOaq4Q/n2lu8+oujM7a1s4GqZqpkT2apXW9xcaXNrG3bJyqM3QGdhyWpyE8T52rY4oVb64qBjuTyjFRnN7h3sND+psH22Z0/OYzrqp8YutFYWropwqQ0jrWA7oG33WX+jIlgt96SW20dBicTeyj8iquxqs5vOVQdC4tWSciJ/HrSRJxOnwc4jANgePC+euSjW2YzXuKsQ4KWSF6ElakKxEMri9spx0aFI4sEd+yw6JeLGZJ/ff3ot9T7rnbSk3Dk+o99Ou/hs4s7O2DAvvWYvuFqspdRPVfAx0RXZXtVdq+O/CtcBDf2FLF0d3HBZl0FLt0/2nBQ2dFGLvVL4LB9SSagNIu+q8B0qYgl4GWDWsVVVAt+uOdEILJUmdhNRNzEl/dXIp6nLZtpvyYgz03OQNlTBFzf5R1WxVau0DDhpdXdQzP446mv6s9lUKUdpYEbNWgkIHjC6MZmg2CaQhOLPoRLV070rarpDvdCPqw4wV2o6WY52Ks5zeb9pnuIdnRtqXyWOcnBSlTUC4km6kFRmfVegU5owpsU0raa/u7AhQ5A7ncRORG3/lPkibLtsuVm1GB3eMg7vfXTTttNP87FNNptAcmQ5Wc9/SGysT2GXJtMUejrVzfcxl2hK4LFqaU+/sbBYWjUfxMUGAPMjoLMWFCpd3j6CpdibfcxH1hU8Xw7SW22onyuQMcYK8gpRybwUZG/ZNKlaSK07Yl+crLkideVLe37eSx+FbDqliqh7er9cUo6FirVtjz22zLnihdKSU0XdBFyGAvLCwMNZceXejfh71VXWdS+Jt+pgZ+r7MQokMmHkBMpchmCiH7trmlIrg6orqaar647l2jSTOxwH6pw+AsedyKqyLjWdq7MTrTNRXVOcymrGaoIru93Gbjixt4DRdtiHjLbtSafrRX2xtpczuAIrOUZ8v8zNGx1k/u85tY/+x5rF98BfeJVWTdVvO6X7Bt+PLwfMojb3iqcu5u0croUdtYDB+8wyKtq9v+67k0DRuubcUjuvZvDhH5qO1S1h0eXIjOpedWMhyaOwH0cRLXhJrfBqzxrq/B/BSIlu9F4x9/YWodBBYArofc4dA0muNHdMXHSe1MKdoM60Jn//UABjsWi7d1m6K63rQFduUrlfDnl8MCOzpYN+KxAfvsIF5tKEuzO4+JngJZE4K5ScG9J32zgz5GJ422kgwPw4zthHJBsebZNJw6LDp6RYu5TuYzLuFa3VhCTPgXRcPhWEFdoJtNjfoe11ciZ+BVLGTLVaxX2wNzdxfRczcNXCk43aqS9j/kMPFcjitptODkoiCf2dsLebYMizOw0bkxj6H3ysMDdPdhNxJ6fgdFsiVhqwGzE1G++lRJJJqkBX3YtmMhZqJJSE+IwthTFAw1GQ3bfx1A16CRzGBfWo76muIO4rYLr6yp17lPjyYUMZNBlFKIU6pvSq618b6yFv19MUfbGk1lMlUSGPrOmeivFxj5NFtSbU4dGiaqy4fQNTA15SjuKudTb7WF+/Q63lPreBdqwzN/Q0A6Hlr3AuIAB9hrNN0ehYxcHnIs1ES4+Wfq4LiwWoHPPyt57gIsTKn5wXZvf4EtpaR1w1JRUF3Q8zpu3cWpqOut2uxjcOZI6nYtlJguLCwwDAb1YVe2Ywx2yewYd7WkAtsvpEsFVZRX6xX/9t5N9tccVcx3F9iuB5+9FN3/zgQHcYCpmET8mnUVfDfys61tGhahHHlUGBps1YebL4QuyB7NYlUcrA17pAxsUMe91lS99rLujJWBXamuYfuePfPTR0d+vPvMBs5/OI9caSHPVXF+4zLWP3wG+99F58KKUMd1oeCBJ9VGQHcbn6GpzaGugnQiI3m/H9nVsAW/fy7dFdG1fwy2iLVbyJrNREZyclIV2a9t6BxefCsALavRkwMvhLK96+4rD5DLqHVkISuQLRfhyqhFIKUp47f4QnIIMibovwbIjtiDHU9boNyf1Ior4haK/b/7A4n4bUTla1Hfzcu5CTKG7JAULHfk8o1+0Q+LliWpteDsEZib7D84ZXzpTrOVzGI3WzBVYte9vwD5jKCQgZOHep2w837WctDj21NgF6ML42wqWkgs7TWLndURTVfFMlke0nF3LREP5OF3j5h/vbGt+pIP7Z2yKXp9ITi+IMikoRpzB82l+7tQ5zNRH3YQzzXZxXabhiA/pNGZ40pcDxZmIna+kAVN6+3Djkd1eeXoyTNb+6tzFppAlFMj76ALQyATgtpl0+b6xqXw97hb7Wsbemhw8pZUrMD2Db70B6PvwP3cSvSki1kQo7nLl/JqIb221T/f/PWGNX0dgGnHIu25LA9RYANqUl1vIa/UcZ/ZxHtqHbluwXQGUTSRS829k5DXnY4eswMcYD/QzV7D8Ay20EWYY6v6IuGVK5JLN+H4POQyIrz9dhfYbs3F2bLDeK44NENT/ZV+H3atkRDR5XhI12OtejO86dChQwyDfk7irufSqFcpaSpPWBQ7X1Qs9k6gYlqtX4JWp+36JlLKDol4gHOO2oDtzvr9nZfTXK6o7+GuWadvn+hUOdpA2NheRhxRzzPlWEw7bV5dG78Pu1JL9m5JgtAE2SMZMouZjg0ST0qurnhsVvs/j+23LaQKhhpTBxh39sPKepQ4Mjc92NSuG+7TGzi/cgG6v2IP5KVobg4ysOfynpJN6/S8V6ELVVgmFKTffU90zf7WS+mQwU7rkuncPs7LXRJxgLf4LLYnBZnZbw3/nNSHLUXvhkGAhSnBoWn/O2i5ne3zpuYrALoK7B0+auAgDuMw2NEglrShFeDmsAx2XCJuHRTYtxSVr1YAaAuNS+kii0W3Q7bUwWD3kYjbrqTakDTaEisoZkaA7UjWt1Sk09H54QamYh62E3x5HBcmi3vDnpbycHQ+2Qk7n1ZO5UHPV0cW9ub1iMEGjuuxLOy97sPWBBKpdr0sV8n9dykRf+qGwazV5MNrF6PX2aH/2nElrlTHzxhjchmE5rUmTsOllBMcm1MRWcE5NjnAhbqQhUxaHaOWpX5OYruTItmSsN1QqobpUudrJGVux6O6arlIblHafp02EhtK2ia7JiFZc6nUFPucTnX2Agb91wBnZHQxihk1iWsPTEYjazyeZjpLdkSXf00I7j4uOD6vWjbaCfnjrzdspSLTgENWY+gCWxgaUtNwX9lGrjZhMo02l1GtH0UTtu0wTme3kHWH25bdcYA3DWSSY3jdUeffTtAEMhallMsoJ/GThzo30oWAxoiJI3sNe8vGbbrofTKhtbRO62Ybx1G+Lr0Z2IrBXt2OHMTHYrBvRqxltbbJhIgmLVEwqbYjdVePRDylgd9iFDDYnudSb1YhLhH3cc5Vr5WNMdhbLcG/fyrq//lLjzZ65PAB4gz2xtYK2tFoYjjb3ObcmE7i6ZSal3fqw45DCNFx7Dwpubgkef4CLG/0P7datiqyzYxAzGWgkCzrHYSVjevhz7OTwxfY7tMbOL8aFdfaozOYf/Vu9G+Yh64C7bq/CTLvM9j9ojxF1kgsSE9OejzkG4xd39a57hvYLZbccUj7oRFPRAnGjHgfdiPzSPhzYlQXDMU8y6rVueGQ0sCSHXOkHKKdqoPBHrEHO74ZObDArkbnabcxdRzlDhfxA4n4LUN7tU3jklrwn8uWcDQtwUF859iANZ8Et2xV9K5sKtfvG+tyYBYhQNOSrFZUIXvmsEAbUjJ6ZFYNnPFi3nIkKXN38VxxFHOCu49riQWjrgsmY/23cZOz1Y2oBxvgMLECex/6sEXWQK61kA0X4TFW/0+ASktwbU3wP1x9hrLrOzWeySIWBoQVo477VFfxuRdw6g5IQlnd0TnV/x5EcJQH9NrrumCqGE2yKvu69/65rEDuMGZKJK02HJnt3EBImYKJfK/RWZzBrqQilchss8nrMoXJECoKJ1YIS9eDpkOlrgrsydJsx2T8QsxBfKEdbRwIv+dcFEzEma4TIqvTyKQoF5TPwSgwDcFdxwUnF5XhXaN9+4ts25Xc2JCJOe31XFQEL45QYIPapBAzabS5bIengtAFUhN4S809cUyWVQtxCw3VDvAmRZzBjslv5TDtDroAyw3P94UpweFZgRab56SUpDyXSq3fk9waWBtqnuo3B+t5A2vDpll1sd1kBhtXsrY1eoG9MHMM0++xjTPYHf3XwAU7w3f/apnv+/UJ/uWfZHleFjqKCjGZCsf5+EZxtb6J6JKsSiQXnPMAZGKFxL9/KkPVZ8u+6XSbe+b6T3r5bImUqeaMja1lxJHoeXbjJJ4yVdE7bsRjUFy/ek1t3qxv92fD25Y6dIbux0rtmsE+MtRj3Ke6iuvHZjC+9zjasTzGdxwl9ZP3q2L7fQtcfegwf1RWSsuFgjrPRL9e84weRuN147vv6d3cPbyP/ddAB4MdFNgPLjhoQr3Ha+1T4d8To7qkTGTkO+7iSWTV6fhOhCZASmRc5WV7Q2RgRwX2yC7isc3I/7rcPxo33oM9n+//2UoHEvHbA6Ng8PCvvZWNxw/zST+SoTsDO97PkFRgty2JocG9JwXvuE/w9nsEj90jeOsdgrNHFHO4UklmtasNSaUGZ47APSdGi3Sam1SGZ3EWu9FSu9uFIYyT9gIThWgXOJ8thRPM6sZ1RCkqsOfseIG9D6dazkDWHeRmGzluPoSPp5d0Pnb9BU63VAW7zAqZj945sFc2yIVenN179tretEnPpfDsIKZFcOqQwAkSDAbX/ZQLyiWyO54rjmxKtSAnFUkB6k11biU5oyf1YcezsCtuhaa/klq0Gmw2X4fDjeG7hsaLrbaH07TYqqss63JxJvyTlFGBnTMl2W3/HNdER9+Q/pZoYQeKLbE9wfTEeOeJoQvuPKrGlq36/jBWliO5vqpUOYMgUXGCKR1aCYSyVYoef8hqst3WaAzZ7iw00TcqRkyYygRta8gn6wPpSeSGPZac8QAHGAWyEl0g2tlo020omXjQDzpI6luxyFzYorK1c1SX53gducd7BelJ2jdbPe7hcRh5Hbfh0Fi3se3eHmxpewiiWCwYXiKu6waLcycBuL58Add3Md6srnY4iL/UUgukSkvjt1/O8Df+YILLsQxrMRWx1KV8NH5v1zbUZl9sbbOVrdPyCYSgB/vChsZ/eUU9R8aQ/PmHB2+iCCFCo7P1yjLakYgJP+Mz2OPsJQrfZbO2A8mThHhxPZEjNEyt9TldWxbK2G7M/GtQ68YAw0jEE4vr7znesbkjhFDF9rcd4Uv3naSlqxNurqD8PRJz0/ATavp86Y8dsTuMkGH/C2yR0iNnb18iXkhL7vb7+m828pBRCttLiU7iYue2qrbb6SAevjhdBfbOGdiNDon4aIyft6EK7JbQ+M0r/c2kgh7s6ZzX6+UQQ9zk7MBF/BZCz+rMffMszz90gj+YVDtm3XbvAYOdTedDuVAcGzVYmIbJomKkCjnBZFEwPyU4c0TjLWcFEzm4ua7Y6vBx25K2DfcchzNHRi/M0qbg2Hwni930jZO0/dSqxFDI+gkinkQIwZzfh722eQPmoip/ohJJhPeFwTZVv4xsu7tfLH/6Ju/dXgagIS1+99indnSkrjfVdzFb3t1Ld0N6EulKjJKpBjlf4jM7qc452NmFupAFw/DN0PqMc1lf7j+oD7vaUL3lSQx40IcdL9BLMQZ7u7bJtm9dPme3WN98HTKGuu+0Gc/Cbrtsb62HC9ZyKSqwb9Y0NvyNgrtnbFhXC2gxlerYvdfuK3eck/JQFkPbnQmhpglOHRbcfWw0+d8waNtSpQbMqMVUcwBLvrGtzqlCVkUH9WAqWogutv0s7BFY7H4QaR0cD2+30VpNF9m0kel9SDc4wAFikJVocNXuGL3Alq5MjNkJn6ftkbIc2tvujlFdzStNtp7fHnynMeBUHextpyP/uhtCFyChtmJjO2pe6nwSiZQyjOiC4RlsiPqwbccK/XO6M7BXtASZdzpiytbT0aQaV2IlGZ2tZjfCnzPpHFLCv/lSLowP+sEHW8wM0ZsbyMSr9U2sggwl6meb29Tagisr47HYaTM53nMQuovrXEaQMtQmeq3PXkGzLdlFbQ10SsTnpgYz2HKthfNrF8NeYO3tvcV1N5a7e3Zd2VtMBhhAdukafNfdnTvKR/bR4CyEz2LH20oeORyNKxNHfwAY4CRu7bDuarm+g3hXvJ6hQS22OLR3dolvdZicDc9gSylDBnvVzHBly0hUPDZttUEGg/uvQe2h5FPqPgcS8duA61vRx1+MXSiu54axAQuzx3tYzIC9PjLbP5JpekLwljuUrLNah/VtyfKGRNfh/tOC4wva0LLwbsxPRSx2UGRPFG7dCZTLKCON7j7sltWgXmyHA652s8F0Lojq2p9TTaR0ZM3py3oNA/fFCo+9eCn8/Z/Xf46ZO0/u+LhqQzl8Z8bIjhwEx1+s5E7m0LM6rh8LognB6cPqtXZyoc77PdLd8VxxpE3FYie5gYMqugy9v/le0IcdZzHjC5Pt+iatyejFG8uvg7DWLghNIGTnLq9se2xVI/fvcjGKnnou1n/91lIzmrymOxdvImd0LKjt2RzZzM7Kg50QmN6dOaKOiTtkzNogNC3lBXFyEe4/JTi9qFoR7ISFfaMtcV04e1RQKigpYjf0uWgXIYjq2osCG5T83rvRQLbGj+ySdQdhDVhkHWAsPPvsszzyyCP88i//MgC/8zu/w2OPPcbjjz8e/rt58+bgJ/k6Q5zBFnEGexgnceFv/g0yN7Q9zLaNVXN3NDqzt+yw5WgvYVdsvJaHlhl8PWkZncZSGyllLxngj79B7jSMWGDH+rCv+jLxSpdEfNl3kp4vuPzd99R4x1GLy9mowH62He1Ex5VY2zVVTMejum6mI/PKTCrH5y+bPH1TbSweKrp87z3DbQJOlaOorkp1DXFUjZ1l12bWbvHC5Z0jQpOQSSkCoDWkZ4dMKK4D6Bps1ZKfp9ZIcIQfEYFEXAjRkUGeBOf/uxb2FGuPTGN8aHBxDZ1zz3zBAwZIxFPaQDb+A2fbZI3ou9h3iTixPuy6o9h34OFYga1Pfzugitu4GgD81qodCmzZdJWzejdJZWrIWvSa0vZ2JLI6GOz0CBLxhovmjwErZhZXitAoMI7lWnTbQmHnzY2AxT6QiN8GLMUK7LjT40ZlGcfvw02Sh2/WVHZceYfzJ20K7jomePCMIG1CqQAPnhHMD3ALHwZxFrvZVoNpv8im/UDaFBRzUYHdkYVdu4GYVTvB8maTo35UV6WlUduP+iqnK8nomAZn3nIT+1cuhhfCfyjpfMn6DHeefGjg45ptSdqEuam939iwt2yyxzKkpk2MktEh68slMMlJMPw+7O54rjiEUEVSu89xqVQVO9/vPA/zsGOPjy9MqvVNvOmIFbCXXwdhrQmQgi6JuMtmPVZgxxjsp5ai1cRDcQfxmV5Jgf74vNpsSms0jpaYmWBPWgmEEBz239LmLnsvGy1JparaVe48qtpVTi0KjswpT4l4753jqvueXIS5skobSGrvKkxPseVVgCiqKz4x7gp55Va7G7MzWbMVAbJHefUHAM/z+Bf/4l9wzz33dNz+6KOP8rnPfS78N0rR9PWA0LinYCgTRL8P21sdUiLuMbCHUrZctLaLUx9cYEspsdZsPMvD26Enc1S015VB0k6bvkZep71pIxLc+2VbRTyt+hnYppFiaqpXOdgP8Szsq35U11Z1jbJWDm+/KVWBXM5I3n/a5h9/U52PfjTLtmFS0wx+VR4K40QTGeyFaIy/ZEYthLpZ4Be/Eu2c/sVHmkMXnVOlyOhsc2sFLdaHfba1zXOXxi+wW9bwSqdaEy7dUOvIXFfUaDatVEvdm7meJ6m396DA3lAF9lRpLuylT4J3oYr3XEX9UjQx/vSxoXx3ggI7Y0hKaQmIvoWiMDSkLvoaehVS8J13qQstZ0pOTY2/0TsswqguSZjBfnbapZRW77FqPgRC3edSt9GZvjODLVtOsgohpani3PLbT2xvx4ox3oM9islZ3EF81fcluLDRu2a40RHRtfM4FjiJ121tp1b0fcGbusAOGGxNSH9nS+HmWn+Ds7Yt0XZgr+MQQsnGH75T8NAZQXmPmOaAxV6tqEExM944PDamShHzOReP6tpcitw5Hcm9Irrg9jyqCyCjq77vHeTcSZCexPm/LiB8p8TPl+b4dfczaELjzPEHBj62Uoe5qdEil4aB5xtJZBYyCCFIz6XxxowTOrkoOLEw+P0VsyKxxa9tSYSmzNUGnefdfdgdC5NaBWMu2vUX+52FvQvEe41kw6HSWA9/DwpsKeFJP8otY0iOe1ELROAgHod2R4nU370f8yfvx8mbe3btQ2zTRI7vLF5rSrYbcMdR1a4SsEqGLrjjqGBuCpY3Vc+1RJkyLkzDiQV1TqRTJMZ2TBZnWfIUEzXrtEmNEtW1A4QmEBkdb2l8V3q5aXUYqB1g9/jEJz7Bfffdx8mTOyt/3iyQroRt3/yrrAy0gs1nNto790YG7SuDVCoNR+XX1u2BBbbX8nDqLp4jkfbe+Te4TZf29RZmcef5V8/pWNsOxmrCtdvyELpgzS+wZyYXh1pfBUhisLsl4kFUUyEVff7CrMmvf+ej/PCd7+GanuMLPmNc6jI5A9DfOYf+7jmMP32Uy0RrxD+6coSb/gbiQ4ds3nlseJVAnMFe37oZMtgAZ5pVnj0/XvWqaQLPG97orO2HsSS1nmUz6nm6ZeKhg/guCmzLbrOxpdQAswMMzqQncX472tQwPrCoWoZ2gJSwUldj/XzBi/ZU+210m5qK8BqgGvmxtzX5iffU+V+/bZvCrVh3x7Ow6+rc0jV422FV3Ntkofh2ICGqSxN+BN6Aa37LRiT1pJu+P01bMdx4DGFyNl5MV9zgLCiwzycU2B0Z2DtIxAHKMaOzmn3r5/w39Spjyc+ym817HZ4HN1bjEV2dBfZmVeXSTvY3ucOu2KGsIkAmLcgMyT4Og4DFNnWYmRiu2N9L5P1dTonsjOrauN6RL3mHFfV87YdMXAg//3gMZlCutpA31KxxKZ3nf1m8F7b+mGOLdw7cfbMdiQZRhuAewq7YpCZNUrNq5DYnTKRkLOfk3BDnXDYNiN5s9Y0qLE6rjZRBKGQ7jdK63Vdzi1Hhmd58fUZ1CUNAM9qJljWHSjPqsZv0Tc6ubmmsN9Q5fN+8gx5jUcV0mpWKShCIS6vFVBo7ZZA2+kv1d4OF6dF77QAqNUmjBXcdg1OLvSkGmZRS35TyKh5ss6qO9R1HIlPGjKl6Ke2uybtcmuWGG+ultJod2ZW7RsmErfHkMLLtIms2ZPZhs+9Niq2tLf7Tf/pP/PiP/3jP35555hne//738+EPf5jf+I3f6PsclmVRq9U6/rVaLTzP25N/4KGbEqHfwn91K9yAEpMpdVvAgkpgo9n3sQCaAZouwXMReIn/sBxETpBqW9SbTt/Pb1UtXNvBcz2cdv/7jfqvudLCqtvoJR0p5MB/6GAVDbLrVdhqdX4O26ElmiFbPDutpMLDftfHDp8Oz6WrN88hdEmlutohEd/0C+xSxut47PvudLA0NR780QV1nEoTMYl4YwOhS7Sijvk9RzHeO0fbV+agl/itV5UxiiYkf/kdDTRj+HNkqhy1H21WV9CPdxqdPfF8m636+ljnXzot2W56Ox4XKSRNR6LrEk3v/c5TKbXOq7U7H9P2o2nT6fGvkfXtaJ6Ynz7c91rwnt5AXlPfuTiURX/79FDPr1Jc1Xw1X3DVcTQkwpTJ11RKIjICIby+z2makm++o83pWffWjCOxAls0nfD2R4/G5sBJlYd9eenlzsemAeEh+owheA60bURO9LyulhZoKKdc4bmgeYjU4GuyaUUFdi6XG/ozxufzlZRfYG/qPedBfB1xaGLn738iG61NalIg5V7NJ8Nhl+KONy42q5Kq3/je6yAeK7BnowJ7GPbabbu0V9p4jiQ9s7/bW/NTgrUt2dfEaj+Rz6oeXsvqkohvLKHdlyPgAw/XogtOGZ3tfQ/YuJCXovf2yfKicgWtfoU77//egY/bqsP0BEwN2GQZF27doXBXAc3vKTdLBlpK4Fke+j6YMmUzkDaUGiFQQdRbSv5+bH7njZt4HnYh29W7Vt9g4nB0DRRfx1nY0pdeSceDlkulGWew1SLoyaXIvOuth2zkM7ECeyaN4yrp9MomFPOSYlZ9d42W+m5y+1BgH50XLK8rNrqQ3XnDx5PKATydgvtOCQ5N9+/nL+YEdx6DZ89LbBvuOa7MHANk0lEkTHyDcrI0w1KswF60GqzU9i7iQBja+JkBdUeZusyYwC0wqHkT4Bd+4Rf4gR/4AUqlzt24t771rfzar/0aCwsLvPjii/zNv/k3mZ6e5hu/8Rt7nuPjH/84v/RLv9Rx24c//GE+8pGP7Ml7NCbh0T8PMMZu1JhoPN0Mec6J+2Dh8Spr5wSrX1W3zU5WKD3e/xw88c5gflrpex++Wf13miZwjcuX+9+Vh9V/S5tLsDnEBxgWj0FtyO/1+CIoz+OuXvxvggsXojd/4g415kbfwU7QmJmZYW1tjaX1c5x8vEr7366EDLbMaziamlMXT1icfDx6vyck/PMnslxZNXnqhkHuvgb3HE7BP8Z/7GrH/QHk/+r/PvkBWo563g+/p8b7vqsy5PtVuMcuwcfVz17pCovfvMWLP9Mga+c429pG6pM8XfkdfuQD3zDS8wIEWpJhjszEIrz9wdGeSwcevWPkt9WB5Sei3PKzD871fM+g1BfyD6IoryN/b4rC24c7L7bOR+uPM2fbsedf7f+gbx/qqW8Z1l7zWP20+nn22Dalx9Xs96H7NX72Mz5LPPWtcPl/4Gb1pcTvEK4l3ObjA8EP/eQO/nc1xPei/040sJx9l+DkHcONC8tfrRFQGgGDfXFL48S7qx2dXNsx9cmj79vmyOzgOfzYkg6v+t4L7/HYaiyxNWiMHBLDKrXetAX2+ZgXQK+DeKzAno4K7M2qclQexF57LY/UdAp72973AjttCh44vTd9naMim1bFWdPqysKOS8SByUod/A2A/TI6GxfexWiQfilXhq3PgbS5Y0D/tedJLFtFc+21a7vbdNHSGpn5iPXVCzp6zsBt7E+BnUlFTuIZf6d6y4+QKw3I2g5gGoKJgmRlUxWRKTNDJpWjZTWo1ivkchrXzQyzdovpusowvtVqix1hqD4l6XjQ9pC2S6UeK7B9BvvJG7H+60UH+Ul/QhLgTKQwmnD6sGBmQnL+Oqy0JTMTqhfu2DxjmxoOQjErOD4vefky5DJy4GtYjnIKny7BnceHa1eZmRDcc1wZoc13tUSmDP/csSAXU8hn0nnWtKiHfdFq8HJthr2EigN0FBtd6JXn94NsOMmGLgcYCy+//DIvvPACf+fv/J2evx0+HM0L9913H9///d/Ppz71qcQC+0d/9Ef5oR/6oY7bDMMgldqbOfT80w2e/M8bzN5568xK3K9Fm8nVRoHm54q4TQdQY8vNz8B6tncxIXTJiXfWuPTFAu71Jvo9ZbTDvbvosungfGUVkTGorlikHpnhW785nTi+br+wzfYLarE78/g0mUO73/Cyt2xWP72GUTAwulq0qk3J6qbEdsHx/7kOVJtg4pGvt9HuLaMt5pGWi/PlNZ6+GC3Oc55ad136YgHpDnetLk6fZW1tjbW1NZ77rx43r1bCArudjs4juW5w8XOd3/t7jzj8x1UTKQW//KtTfOvJSK68dKHac//Kqtpc1Wa+K0iL4uGc7LnfTrCvnwh//trnX+N7f/fP8pH6d/JI6lFKrs283eKJL2d47+HRd/NtR7UAPXyXCDd7++HJVz2qTZjsMycEkV+P3h0l31xelrx6RTK/Cx+aZz4fKcXSzZM935/QJYWXL+MsK4WZdneJVXuB1c8N9/xPXYiOe66mc+HTBeR6C+PhGcRE8tjiPLUOVbvD1O52wl2PCt/lL5usG9F3dGba4bV1AwpvA3OWV195jQufLYRjgLQ95LaF8cgMIm/2PLe33sJ7ah1ms4n97N5qE+1wHu1IDuera4iCqaLD+mD1csREb7wwx8UBedZxWM9Hm4hBgb3d0PnSf51Q0n5/TLzgexJoQtJ6McfFHUoKsRZ95q/9XooPvG2a8mzv97BfeNMW2BcigoXFrmy7G/Ee7Fm139q2JZrYuffaa3voBQPdcnGbLnp2f6WIt6O4BlUsTBYkl27SKxEvmlA0oOqQXm1AToIQnFtpYDvWQCOLW4mAwbaF4LVMEW5+EoA7T76l72O2GzBRgNmEXOjdwq7YpGfTmJPRAKAZGqmZFI2LDZjc+4FBE4KJvGTJryerdaVOODI3/Hk1VRJcX412Fov5siqwa5sIAau5LLNbLXKuoxjEwq0b4IaCoSGbjuo3slywZUeBPTkxi+vBMzfVcFlKe5yecrH9iC7KKWxPI2OqTYbJokYxJ3n1muTmOghtuM2KcXF4VnBjXW2M9Nv8qzclW3U4Og9nj4iRnO8XpgVJLihCCApZSa3Re3s1E914yGpQaWm0HMjs0Ywj/CfyNlpooxTYFUv1NBxgT/Dkk09y5coVvu3bvg2AWq2Grutcu3aNn/qpn+q476B5M5VK7VkxnQwN1xZDF2t7gSDXFYBSSr32TCRjkcutge9Huur9em0QCd18sg2yJSCvoznQqHjYjpbYFuSsO+imofw8HNC03V8D1oqFV5eYs2aHF0OjLXnpPKxuCVKGinIUQrVv6hpkczrSMnFfa8BEFiTItmR1M2K1Z8qLHd/BMDi6cJZnX/kTAK5cP0+zWiNrqO+7nY3OrYIpe57z/Sct/uNT6r5/9FqKD91VDv+2Xav03L/VbgA6cvJbAGV4dd+sO/L5NVmIerC/8OTvAnAueyeP8Cig4rqubWXHOm91Ae0WNJuCUqb/4x1X0mgIDEHf10npsLkN9Ua0MVuvS/B2d00tr0VM12z5SM9zyarN+i/7RbgA/duPjvR6N2OkznzOQ9ogpYbUdPp2yJoGXttGu4VjxUDkovWSrHWeYw8v2qrABih/C83VX2F5dYl5v59dSg1pCaQtSPq8sinxbIEmNWQSGawZeBUHsSCQlgCpwYDvpdGMPJcyZnHoYyU31GakB6wZ0ebfa6sGc9loozIwOZvLe2hSJL/nGEoxxnurqSOEtidj37B40640zscK7EPdEvE1ZaZQzE+S93eYN6swP7lzT6rb8kjNmKRm0tj7EInxekKpIJAS8tkiOd/QIHABDVhsUXc4a/p9zhsOP/fxj92eN9sFWbORa6pAOpcpYWs6VP4YQzc5deTe5Meg+lYPzxD2oe7Z+5ESt+2RPZbtWYimplPIQVEtu0QxJ3BdJR+uNuD4/PBu5RD1YTtu0IetWIPt+iZSSrZizcfNG69DozNDKFMTy1NmZ55kczuSkE0Upnl1XaduqeHyLYccRNMJHT3FTJqWrTYmgvNiekLwljOCo/Mq9mQ/+q8DZFKCk4cEzXZ0DEAdz2ZbslKRNNpw9wkl897LWLlCVrFT3WjHxtRFS13/K3vZh+1Drg/fiy1dD1mxEAf913uGD33oQ/zmb/4mv/Irv8Kv/Mqv8J73vIfv//7v52Mf+xhf/OIX2dxUrOTLL7/Mr//6r/P444/f5nccYbu22ZHBu9eIG/eIsirwxEw6NAoaKqpLEyQGwgLS8hCuh9A1TEPgbDsdiQ4BPMvD3nbQs76D+ZimiB3P6Xg0LjUx8p3XUtuWvHRJsl5VEZZzk4KZCcF0STBZFJTyvt/DhIms2XgXq2pj05GsVqKIrtlY29mwiBudXbnxKkY9+pyNmAtsMd37+Y9MeNw1o1jS8xsGV7ZT5LNqsRfEdMXRajeg9A6koWQ9Dx+2SfKJ2gmTpdme+X4lE23unmlts9Ka7H7YUAjipnaKb2u1lYJtkFmZqavEiKq/byql2lhN7XKvPIjoApibPtzzd+f3lvAavifBY7NoC6NNpD0RXa5U19Sg9VtWHxyNd4sRxnRBZy418MiRmIv5lN+HfT3mJK6BcH11XgJkwx2cpmFqyJar1kXBdzcAzY4c7NFdxDeMdNjKAZ1O4lt1LVyDddds/TARMznbPjA5u3W4sBRdQPEebMexwyy5hZmjgFqoSqlkwTvKW6XELJnkjmdxW16P2dnXE/Jp0H2To4DFXt1YUjmXMZn4A64/QZmzfOHZL45kErBf8C51ycPtVag/y6mj95IykxmxZkvJ4md3GbOWBKfqYhR00nO9r20WDdDEYCfIIeE2XGqv1jqeK+u/ZKUK5SIszoz2+cI87CDipFAGwHYsWlaD5kQsC3vp9ZeFjS4QjqdcfS0PhKCyrSTOpcIUum7wVLz/etFGxhzRxXQGy+6NM8umBfeeUDF9e2lwmIT5KZidhPUt2K5Lbm4o9rxlw0xJxQOePKT1jWwbF/2K9XQ5T9VTktQgqmupug8Fdt1R6oNhUHdVr/0+q4reTMhkMszMzIT/0uk0uVyOYrHIl770JT7ykY/w+OOP85M/+ZN89KMf5Zu/+Ztv91sGYKu2wUd/4mF+8G8+yD/7P/47thKKqJ3wqS//Jv/o3/w5Pve1/5JsQrkZK7An/QJb1xDTasCVq60d1wdCE9DuM1/aXkgcG1kNp5LsJO7UHLyWi+5vLHl9CvZRYK1aWBs2ZjkaF21H8soVyfKGIiMGtasIIRBTaeRSA+9mE+HB2lZUYM9MjVFgH4qiul48/xUmRDn8vRZTR8RdxON4/+noeH3yfIpSQRXPgfFaHK12HaaiptR3HB2PTNF1oyOq657Tj/Djf/1nw9/PNrepysHZ0INg6LBVH3yODesGbuiwUVXP5bjqcbtxEAe1XgwwN9XpIu7dbOI+4bcapTWMbx39nOgpsD2pqP0B86CSQL+O1u0dLuKdc909sw4503+vk98CiA4ncSGEKqD7rB3lttU/Exwg5TuJNxyEZMdYtKDANo3U0EpVaXtQU59r1cxwdCIan16LFdhXV6PvYRgHcVCRfAG2rYMC+5Yh3oMdL7BXNq7jSfX7woySh1u2MvTK77B5FkyyelYVSkbRwKntf07e7UI+C9mU2gENjM4su8V2baOjD/tYNZo4m+IQS6sXb/l77Ubc4OzFoP8aOTD/ersB026brLb3g6+9ZZNdzGAUemcso2Rg5PWOPOxx4dQdhEZHFmourSbKZltFMKXM0Yow0xBMFKHhL+5K+ahZt1qv4MaysNs3X39Z2EIINZ1anprANEGlqib2sP86ln/91kUnVD+AchCXkkSTMU0T5IcwH9stDF1wckFFZwkNji/A2+4UPHaP4KE7BHP7sCkEqm9fiM68bIBycZYlTy2eZu0WhudxbR9i+kTT6Vl09IOs2whHHkR07SN++qd/mh/5kR8B4K//9b/OH/7hH/K5z32OT3ziE3z/93//7X1zMTx/7glqjS0A/uALv8af+3vv5FNf+sTQaQ2OY/NzH/9rfPar/y//8Bd+hL/2T7+dF177csd9QgZbFx1tMWLeHw8d2VGEJ0IXyH4MdtsNOzdEWkc0HBq13oWnW3fxbImW0hC6wG3sfoO7eaMFnkTzryXPk7x2XXJtRW306UP4k4iMrjaONy0kMozoApidGr2ojDPYz736BJMiZrhpDmawAb7hpIUm1N8+eSFNwVdi1eqVDlJASknLasD0dwCqH/TRI+OrFT/8gb9MPlviO7/xR/nnf/u3mDyyqJISUE7ibe3o2Bm+mZRq++oen+No+6fgTh4huTRsVdVGSstSRfleZWCnzAwTxemOv3lfXQvrXOObFlTr4YhY9uPTTE0ymZXg+v4bgzaa91iduFvEGezuuc7U4S2H/HPPnIXCQ1xeerXjPhISC2xpe9BwVRHdD4ZAOFIx3UMgiOnKjJCB3eEgbmZ4YN4h7buGX+hXYA/JYJdiBXb1zcJgb25u8rGPfYx3vetdfOhDH+LLX/7yzg/aY1zwa7684VGIDbhJDuItSznm7pQ1LS2JlhLoOQ2jYJA9kvm6lokbuqBUUN9PTxb24Wg3Yq4Sc2zMnuG1y8/dyreZCO9SJGV5KVeG7ScAuPNEcoHtuBIsl+mUi725t8dUuhKkJHM42XhGz+oYJQNnDwpsr+2h542OLNRMWm0gzU3SY2Q1LCYLSmYOXVFdtU20uehzvZ6zsLE9ZNWm5TUVQ4HKwG458MKKGtwXCi6LRa+jwPYmU5iGUjfcTkxPwFvvFLzjXsHdxzXmpwS59P5G+KVTapFld9W45dJMGNWlAYfsBte29r7AllK1ewx136qDfH2tnQ5wm7C51ekiXKmu8T/+4o/zUz//gyzHZKv9UGtshWMEwAuvfZmP/cy38Q9/4Ue5tnweiBXY5VQH8yNi46G3skOygu4bMCYV/k038hNI6wjbo77Zu9lkxzb5hanteqPWbbi0rrZC9lpKycUbkks3lIGiOYpKZiodfk8Bm6nrRpjcMArmZ46FrNmVG692ZGBvxlRp/RjsyazkYT9beLWuoZXfC4AnPerNKG7UslvI9EnI3QPA3bMuE5nxN92/91v/Er/1r8/zsR/+n0P1nHZEERQFz+GQ43J5Y7wKO2WqAjqpdSBAoy0HqoQDBGkhtaZ6TtsBYxcFtpQylIjPTvXmnnvXIh8P/dHRTTKljBjsubyn1M2ekjmLQT4cpoZgvGjUfUFWV5btEDK9cTxyODb/TX4rl5Ze7ryDlMmS95arNu8GFNhCCPU92B5yCFa/2VJj4mjy8M4M7LmCx8lJNUYtVXXq/p+vdTDYw41h5TejRPxnf/ZnmZ2d5ZOf/CR/9a/+VX7iJ36C7e3tnR+4R7BsyVXftG4+03nCJjmIW7YyD9pph89te2gp5foMkF1UE6k37vZjDHshD94PTBYEtpNgdDaTUUH1wHwtNrpnz/DaldtbYEvHQ15TA8H1VJYtIwVVtcnTj8HebkBZOMwcT+O29jbex952MEsG6dn+Zk3p+RRea2/OIz2rdfR0G7pgYRpOLoqxTfPiO9lBDzaoqK7crIntXzvmxus0qksTqlBre2xZkZttuTjLC8sGtqfe/0OLaryQ61GBbU1kyKQ6nbRvB4QQlHLjH8NxkDHBNMHqmvcnS7MseZFM6JDV3JcUAZHWkRs7tx1IKZGb7YP+6wMAsLkdudYeX7wz/PlLz/4hf/6n3sWnv/xbAx/faCXHz3zua7/Dn/upd/Ef/59/Fnk0THQyb/ECe8c+bF2oNLkkBqrpRG74hsBwPSrrvXOTvWGj+YtozRC+k/n4aC23caoORtFASsnVFcm5azCRh/SI/g5CE4iZNGIqzdqmYj2mywvo2ujXqa7pHJ4/Ff4+qUW7xev6zgw2wDedjsb17dwHw5+r9WhOaLUbHfLwtx/defzZCd3FpTgSFSgn21VeuDFsXFknTEONzc0Bp1m1PpzUW9cErt+HHbSDiQTzy2FRa2yFkuJuebiUEnldFdj6tO6nRoyGqiVoOur9zQeMpysHM7aoTShpaH1l1bcaQhPoE+p6SFJrBZtCAEx+K1eWXuncHBCA27t2lC0XYctwnd7/DYihW10DBjvwZBoG8QJ7xcwynVMmsgEubqrPfnUtOkmH7cHOGmD6bPibQiLeaDT4zGc+w1/8i3+RTCbDN3zDN3D69Gk++9nP9tzXsixqtVrHv1arteuQcMuW/LO/CB96sM1js82OYPKb65GD+KH5owhdIjVJIQ9SyIH/XNtBy2sIEzzPw5g2MKcNrG17x8fu9K/h73R7eLt+rr38l8tKDFMyE5N0rVauo5kg/CiQWSdL1vUHgcxZzl99dugA+p5AegYH3Q/1HEv1cEfvpVwZpAu1r5FJ5zh+9Gzv/XUP25XMF13Mso7UJZ7cu+PgtGxS8ykw6HvO6kUdqXt4fijI2K+nS0gJXK/z/Z85Kpguj/+8qbRENyVS8ygVy+G5UG1uMlOSLKXUjny+2gLh7f4Y7sF5EP+nZYRqKpMOW+0oYmpyYpqnbsbk4YdtNSbEojOsskmxKNGNXRyXMf7t6jzYo39Ch0JO4sjO73OyPMOSG7WGLLYbXNvW9vSYAYiCpuiZto3A6/+vZYNlI/IiOuamRDPkrueT4N8B3jiIM9h/68f+Ff/gL/8y0xPK0bnZrvOLv/73Bz6+3owK7A++58/w1z76c0z6vbSu6/DHv/9r4d+7437EXMxJfHWHAlsTSNfrYaCkK1Weu784FkJgGJLqutOxuPYcD3vTCtNMhCGQtsSzxztfpZQ0rzRUwS7gyrKKCMxnIDfAqXoQRErH1uywLWccg7MARxeiPuy4RHxFRMegmO7/2d95zCZrqO9vVX8n+I/brnUX2N8R/v72MfuvB0HMRO933mry6sp4rxGQQv0YbNeV1FvDS71TJmxsS5qWTAqWGAmdBmedBTYVK9ygytw53s51R/913j/m3hAtQqamGOPXSYENYJT9DaeEAvtQ0Yv6lkvvoGFrHeMTok+bSctFisHpDqA2HHC8HY+367mqdYLRJOKBwRnAairDTM7jVKzAPr+hTs5xerCFgAl/Q+12SMRveUzXlStXKBQKzMxEko+zZ89y4cKFnvt+/OMf55d+6Zc6bvvwhz/MRz7ykV2/jw89pv51o/aJ6H08/IEZTp6pctL/fcfI9EWwaHP5ciQd4w71n9U3xH1I+HNOfXG8ncz9QmoR3n432FNT8HF1m52/xMnHq9z4rEnlCmhC40S7porZ7BkuXHuWE+/eHlu6euKdu/sO1i9uEPAXL2bLUH8evAb3P/AIZ97bSHxMsC9eowqL/v97hUXYYouty1uD7/cY1FGfvXZozNdfhCZqkN71ORmDAbzdJ4JO3cjC/61+Th+6yUPfUOUP/k2e4+06uic5cnqD1JHdR/Ls9jzohVqFXPpkxLyevL/EH61HA/N3fWiTmZLHq/+4hQsYszoPf7fa/NrDM2JojH0e7CFOJ6yH7xI5PvG/Rz2Vh6wGq3Wd+Udr5AYwSKPi5PuDc3gHN+gy8J3Jf7p8+XLyH0Z9LydP7nynA7wusBFjsCcn5rjr1Ft56O7H+Ys//T5url1mc3sVKWXfOSrOYJfyk3zHN/xZ3v/27+Ef/29/ni8/+0fM6ZHEOXAQD38flcH2pFrgEmN1bWXKGFdkmGmN9oZD229pA9V/7ba8UM4tDNWD7Vle2D89CuxNm/aKhVE2uHxT8spVyGXYMWd5J6zFI7omxzf1ivdhxyXiy36hrAlJdsCqN2PAu49b/OH5NA45xVSvf4LtGIO9WW/DxHsAyMoVTpRHZ1d3gpiKFdh2i89UxpdH6RpUG5KkCsnfd6QwZDx8NgWVGtiuiu7aDVZjDv5zMQUkgHc9Wodl7sxQZ3RcrkRvMOjZlR6DTb0ADM2PRZHw+ojCRg8KbNtDWm5PFvXDizZXt3QQBpTfT725TSGnXPCFLqArOUDWbLxrDcQw/eYpDVoeO1XYKrpOYSQGu9IpEZ/OeeEmF8B5vw87kIindb+ffkhMZDzWGhrbtoaUt3Yj/JYX2M1mk3y+c3cjn89Tq/Uuln/0R3+UH/qhH+q4zTCMPcvL/NJvV7j2ZI3pM9Ho8toL0aLQvnQnL13K0nLg0Tt3dgJuXG1QfusEhTPRyWVtWqx9eg1zIjVWJrb0JI2rTYp3F9gqV0i/kiFVfH3kSIMyz/jSS5Lq0unwtnPPrHHxc0UcvQWoovFU9bJfYN/J+vo6X/nt+shGJkHY/KUvFnaVvWh9KlpcvZQrw+bvAXBs6m1c/FxvkPDypuRw1ubMomD2fTNsPFHB2bITHb/jcOoORn7wJebZHu3VNjPvnSY90//5pCdZ/eQqruNh3dOmcKOIGLGh1Kk7uC2P9GyK5rUm2cW9y46yHXUeGBpYS9Fxvfh0k7cuZLmezoUV6JXfNdDv7hPYPAT26jyIQzYccCWybvPKq9F03lo7zQuX1fV2asqh+kye7ZaLu6F2WN1ilif+3wIPnhXMlW+dNFsKSe1QdazzYK+xtCZ54aJkfip6H60rx1hy4wW22oT44u9NcHp69y0W8XPAvd5Ev2sC7Wj/Sd27WsN9aQvtUDTWby21yU7qfMtfmOv7uAN8fSLOYE+W1GZ/ITfB3NQiN9cu47g2ttMmZSYbKzRiDFEuo8aybKbAXSffypef/SNmteicChzEw98zOkyYsGUjV8aUiFs+q21ExYKR02hsWjRaMlyrODUXr+2hpQOJuIbj2GPHPraW2zgtl+teilevQSnLnpg4dhic7YbBjjmJBwW2FHDTU8egmNq53/ibTqsCG4DF/xbWf5NqzGX+qZsZ0NTzLejPI0R/Y9RxES+wF6wmN+qj9yAHSJmwVSdxw6jVVhLyYd3As2moVpSj+G4jupbjBXYXgy07Cuz0WAX288vRh7pr1md+h5CIYwpVeCbIqm8X9MlY7VBzYKqzlnjkiM1vvuSPVZPf2uEZgCaQVsykr+ngvryF3LI6Nvv6wtSQVXuwMRyRPBwgOwqDXYlLxDPM5OroMYb6/IaOlHBtTX3m+YI3lGdAgMAfwZWC7QaMaTM0Fm55gZ3NZqnXOy+Xer1ONtu72E+lUntWTCdBegLXFh2L9Jt+BvZkaY60kadSk2RTkDHFjgtZ4QrMnNkRZJ6eSpOZztBetTAyo3/d7RWLzFSa4tkCW6sVvLqHKLx+nHp0IcinPPKZaAdyZf060hWIhWgxe6qxrH4wJ8Gc47WLzzEzMd5EKl0xdmElpcS74LPAmsHVdD7qvz7+UM/zOq7EcwSTQpKeyWLmTLILabZutAeeD/a2Q/tGG3FYJDqDB/DqHkbaIDWR7jhveqBBeiZD7bx670LufD72vFZDYmR10uUUzQvNPS3MAlVVuw2FXMQcbFU3MYVgPRdd395yG+2O3b/2bs6DnudCQ7ZscAQblUgivsG9SH/n9q2HHKQr8FaiCUFOptEQ5IYYH/YD45wHe420Aa4Dnhv15E0W5tiWW9S9Onktz2FfOnZ1U+dUee8WLtIVIHTcVRtxNPn6kVLirtqg6R3ni2cLPEcMvu4O8HWJis9g57OljiI677M+APXGNqmJIQrsbLRZGPhPxAvsL2zl+bXfKVK3BH//G+ucnnIRcxnklg0NB1mzEYU+1YrmL/S7JeKWi3C8DsdjPavjVhzqmy5TE+qcdusOUkYyUGEIPFtlY48Kz/aonW9wvaZzoQETufFl4d1YjRXY40R0BUhisGVOCw2OCkOoZ95yyGE257Ha0KD8Pjj6d9iORXU9s1oOfz6WegXY+wKbooGnSzRXMG832XInsdztsVjjtKl6puPKhgBtX3m+k79QAE0TeFJiOVG857jokIh3MdhyKfJqydyZhkujP/8LK+rL0oTk7qDAFiCMweO9EEJJGbb66OpvA0IGG9WHHd+AAXhgwUHDxsOEyW+lVn8h9mABvkRcWh7uK9vIlRZiPrtj7BagNiSaLiI3+OTrKLBHYLCDJIWGpuOYOgV/E+xw0eV6Vefips5aQ9D2r+FhHcQDxA0I17fhxEiP3h1u+cri2LFj1Go11taiRey5c+c4derUgEfdGlh2i/WKkirFHcQnCjv3KXi2hzAEetdJKIQgezw3Via221Yuf8W7C+Hzjts71Q/Slbt2S5woCAyjQD6rFieBWYk9TRh5dsaO9RDl7rptRmdyrR32sbyUKyOFGGhwtt1Q+cbFlEdmXg1q5oTa9Bl0PJ1tm/RiGqc62FDGbbikplLo6Z0vxdSkqfrxxoTX9jAnzdDwZi8hhCCfVvmYcZOzaq0CQD2Whb0ja3M7YAjV82VoVLYjdut6O5L9vnVRncPxDGynnCb9OjA4u53ImIoBiTuJlwpTCCG4EUZ1NfctqousgazaKrYoCVu2MqUbI+blAF+f2NhSBfbURKd6IWCjAep9jMy6/5bvKLAnQMswk304vO2XL0zw6prB9W2d335JDRQdfdgDxkMhVAqA7DZK9TOw4+sSLa0jLI/GVnQdWBUbLVaEC12AlHjW6HN+a9XiwqsWF7YNJvJ7V1zD3jHYR/wCWyAoBz3YJZO6b3BU7OMgHoeuwd94dx0RuCYf/0e8UlG8l+vBi5u+/N+pcix3o8+z7A5CCGRZbczPWU2k1Li2Nd68nR7gJN5sj95LnTag3ty7iC4YIBFPa5iHRx+3a23BJd8c69SkSy54Cil3ZGJBqUxeT8bCRpzBTujDzhgwZ/itTpljLG3H7qMJpc6zPLzXtpFLdcRcJjJI3AFCE2AKSO9QYMdSFYZ1EZeeDBnsFTPDdD5SmAR92JYr+Oq16Bw4NKSDeIByzHNh7dZ5aQO3ocDO5XK85z3v4Rd/8RdptVp85jOf4fz587znPe+51W+lB8s+ew2wMH0UAM+DYm7nE9FreWhpPVEGnp5NjZWJ3b5pkT2WI3s0xu7v4TUvPUnjSpPm5eauBpNgJzNwEl/dWEJKyctLz4QL7OOOiRb0P2RvY4Edy79+KTcBbg0aL1LMl1mc6+yhlEhabWWoYOZ0UpPqIjcnDPRc/1xq6UmkIzFLJt4OjuNuW0m2h4FRMnfcfR0E6XiYpf0psAFyWdWbVYoX2H7vmhPLwrZXXodZ2H7PlUhpodkOwGvbagGuC8n980kO4mlKedBvoXP36w1hVFdsD03XDUr5Ka67SgaoA3N2k6tjLhIHIqMjWm5ihAmAt9ICx0PssEA4wJsDrXYjXAxOdsVBBZvEoBjsfmg0o3kkXpRvyDPw6BXmco+Gt63GGPLL/vkfjy7cacNRSpksEe+C0ARIwqgu6UnsdStxTSLH2Ki/cdXh2oqkXNbI7dAuNypWN6JCdTcFdiFXYmpijqIoYghVAcpiLKIrgcGWnkSutTo2zB857PDB474fj9D5bPX7WKkJXlnTaTj+sav8IfluSngPoc+qdV9Gekw6Fpcq441fmiaQUkVsdWO7MXovdakA+exwWeeDsLIeScTjKTSy7iiTM0As5oZjWbvw4qoeKs/une+aF4aZq7Pa60si3sVgJ2Exsxz+fGEzprzRBdKVeOe3kZdqiOkMbbfFUy99Fssebi2mHcrtmEMeNwIcuge77oTqnFUzy0wu+s7jTuKfvxStkXfLYN9K3BZt3E/8xE+wvLzM+9//fn7+53+ef/pP/ymlUmnnB+4zbq7HCuzZ47ieRNeUicdOcNseRk5Dy/R+pUbBIHs4jb01fIFtV2z0nEbx7kJnhqYhdpR3tVfaNK82d2SmrVWL9IxJej5N89rO9++HbFr15MyUVe+t7bTZqq7z3Ct/wgVHTVKmFBwOTBByd962AtuLFdgv5spQ/QrgcceJt/SoFJotlW08oTuYZROjpCZsPa9jlEzcenLx7NRcdD8HXZhaX9WBdCVCI3zenWAUjbH6+KMXBD2nqxgK9j7nMZNSC7yOHGy/wM5O6NQ0f8Gzk3PubYI4koOSSWXbL7DTR1luqIv/njmHrD+/xDOwrYkM5fybt7gGMA1BJt0b1VUuzXDDixbOh63GvjDYQlcxIkl52LLp4N1o9JfgHuBNh82YQqVc6mKwY2x0vygu6C8R/+r6PWBOM2urMa6uG/zph+wwj/WqXySJEQpsoFci3nYVM9UF3YDtVXUhunUXt+mhJcwZ40jEb15o42ka2RGjuIbB2h5JxEH1YccNzuxcLKIricG2PNVj2rUZ/r33bMLG76q7UOQffarA52ILfTb+PzLpId3BxoA+HREr83YzZGTHgRBQa3Z+ds+TiokecWg0dcFUcffnwOqmKrAnCtMd36NcivqvtSPj+cS8sBKtqe6bi+XAQ4dvQT8oE7H+n1HW1bxyq9BZYCc7yh8pRNXj1VrM48ZvM5GX6zCZQqR1/tG//TH+1v/8If75x//qnr3H3/nUx8Ofu8mqfog7iK+YGaZz0TkaL7C/thSdpMM6iAeYiGVhr2/f2rXabSmwJycn+Zf/8l/yhS98gU984hM89liCnfdtwM3VyE12YeYYbUuxM8MU2F7bwyibfaXk6dn00CyxdCXWhkXhrgKpqU52U8/qO+YwOw0XPadjb/SPdvAsD7flUry7yOQjZVLTKVrXW2MVXdmUkiFNlmNZ2JvXee7cE1xwz4e3nWr7i5Ls3dxcu9Kx43WrEDDYLoJXsxN+gQ1njz/Yc9+tBsyVIe16ZA6lw40OIQSZQ6m+x8HZtkkvpMksZjAKel+ZuNtUx2nYAltPa6Eb7KjwnKiFQUsJNEOMbXTTD8FEnU5lSafUxBi4r07nJNd84wtj20qOjbjNELqGECIssPWpbwn/9tCh6BjGJeKynB5qfPh6RzHXKREHxQ7eiBmdLVoNrm1p7PG+DqCiRLyN3t14ue63hOxgNniANw82tyKTy26JeCeDPZxEPJeN2JqlZhkhJTN+gZ2fM/lzb2txclKNd1ttja2WQMxHg4a3HPWbJkMgna7xsu4kqpmMrEZ9xUJKieM7iCe1H7kjFtj1msvyFZvcxP6oQIIebE1oTHVteoyKowtnmBSRlVErG62hCkkRXY6n+ky7Wr7KhSl45aPQugjAy2sGv/GCz1hLDzZ+d18LbDEdve95q8mlzfGX6ykTtrp8hAMH8WENzvYSruuErYRz0/0dxMXh8b7fF2IGZ/fORYoOKcRw0mhDQwyYp2TdAcmuWvZGgdFtcpaAU+Xoe1tqxkzxTAF1FwoGwrfQf/blLwLw/Lkv7cn7e/nik3zhKbUZNT0xzze948NDPS6egb1qZroY7Ohz2jHvlN0w2Bu3OHTlwN0lhmdf+WL488LMcVq2yndMmztfkIH8th+MkoFm7sw+g2KgM4cy5E/19jEYBQOv2f85PNtDMwTZIxmcmoPXTr5va7lN7liW7NEsZtmk/HAZI6/TvjG6fNc0BPksTJaigfLG6hVeeO0rXHCj2LM7Lf/szqk8p/NXk1nsG6uX+cJTv8tWdX3k9zIIsuGEsSjnM0Xamh72X99xorPAtl0lMJorAQJS050bHf36sAN5ePZQGs3USB/K4PRhut26i1kye/r2ByE1M57pX+Akq2c1NFNTLPZeF9iG2iz1PBmy2FV/E2Um73E9FdulXnv9ycQDVKqK4TJmPhDeFvRfQ0winjcwC/qbuv86QD4j6G4TLZdmuO5FMsDFdoOapbHd3odd5KyB3O7sw5auxLveQKT1sWSGB/j6RJzB7paIj8Ng532JeNOG5XqGsmNh+r1cmh/RFebUgmqTKJrgR2wN5SQem8ellMim22FwFsDI6VjbDs2qqwzOPNlTUAhD69ve1A83rjq0thxy5f0psNc2VIE9OTGHYexObXJ0oZPBbqSj50tksF2pdNJdBEg+V0K4FXjxwwipxvxAdkz1y2CvkEkN75Y8KjqcxO0mFzYG3HkHpE1otMGyo8/YtpTqaLdu4ONgfWsZz1Pn4GyPwVmcwR69wHY8tRkCMJv3mCv4n9nz+6+H6cE2NSQD/IlcD7J6YqvGfmAYifihkgG2GtvW7IVwI1voGtrRfKjish0rzKuOR2vtBh//xM+EP//Qn/rvQ4JlJ3Q7iE/HCuzZvKSY6v1+D43IYL9t0eZ//+A6v/yem/yV77q1ffUHBbaPC1df4NNf+S1AGfTcc/pttG0oj5AmZOT7Tz5G0cDI9+/bDSClxLM8CncWEneeU9PmQAbbrbsYeZ3iPUVyJ3O0bvSy0k7NQTMEhTsL4eSbnklRfriMSAnaY/TITuRhohjFMz3xzO/Tate54EQM9l22L2HJnAAty2uXewvsWmOLj/3MB/kH/+qjfORv3Mvf/1c/zOe+9l+G7hUZBO9ylzwcoKp28LoZ7HoTSnkoChW1ZU52zkL9+rDduote0MOCPD2bVgYTCQO12/JIL6RGygNPz6nntbf6qxOS4LU89IyGntURKQ1NF3j23jPYhh70YSsGYbteQUrJdFaqqC4ft0smLl0P9+kNvKvJwR+e51HxN3Zk7gEATE1y16zvwml74H/33mSaTHr3bqpfD0in6PGHKBdnWXJjBbY/qY9r1jMQGV1JPGOLD7nZVk6wEwfy8ANE2OzIwO4ssAuxAntQD3Y8Bicoyi9VVN9nIA8HwC+wj01Ei8IrW7oyL5sNenmtXhOzGIQuIG7gZ0s1DvVhsO2GR73iYm/biRtLmiHwRiywr1200T0PfbfhxwlwHDvMJd9N/3WAowtnOgrsWiyJppjkIu740U1dBbau6RRyE1B/iomb/6DzMRv/BWB/Gex4FrbVZLmeoj2ajU+IVGB0FltGNS3l+TWsg/heotNBvE9El96p9BgW5zd0Wo76THF5OJ5UFc9QDLZQ11eC6lR6aptFpLRbV2DvYHIGUMgVofokAG1ZYKWePM/Gx7Vma5wAtE48/fLn+doLnwYUMfnBx//M8A/uYrDjBbYQnTJxgELKGyoJII58ShXlOWPniL69xkGB7ePjv/kzYRH0g9/+18hmCkg5XMaj53gIXST2OgXQTA1zMrVjgR30TPWTAhsFY6DRmdtwMadU5nbp3iJGycBai8UKSYm12iZ/Nt+T45w5lGHybWWkJ7HWR4soyGUFUxPRTuTnv6YmoA25QTulBoSj9Rrhtlr2jsQ+7D/+0n8OHV5d1+GLT/0e//AXfoTv+xv38fP/4W9z8eLFkd5XHJ0GZ2WEfQOsJYr5MgszxzruaztQyIFsuKTmUuiZzmPbrw/b9vOxg2gus2yiJRTi6lyTmCMu/lP+gs3atEYypvMsD2PCRGgCLSUQZoIz7S6RMpTczHGgWCgDqh+/ZTWYznlcj+32364C2/vSGs7/dQH7F15GJsRwVBsVf2ddxzaPA3C45IVr2bjBmVNWBmfaATtKNgWGoZQfAcqlGbb8qC6IFdj71IeNJ5Ex+Zy82UR6O8eyHODNhY24RHxAD/YgF/GkHuzzG+q8jhfYQQb20XKMwQ76sANVlCQ0dUqE3plji+Uqmi6BwTYzGq4lqW+4WGs2erb33BeGwG26Q7eDVRuS1esOuSHMXsfB+tZy+F52238NcNeptzFnLoS/b5kxiXgCgy1dTxVLCakggWGne+OX+OAdauwXOLD2n4F9LrDjEnG7hURwZWu8sdPUlcIoXmC32rfPJbujwI5JxKXlhooOMZ8Za+xOkocDqljWhmOwSWnqfkkqP8tDpnXlqr3HqT790MFg95GI53MlqH01/P3VteRzpdbcCn+2nTauO+auDWodG2evP/pdfxvTGF5l2cFgp7LM5Dq/71NdBfao8vDbjYOVB/DCa1/mT57+fUDtoP6p9/0YtisxNMgPwU55LQ8toyVOZnGkZ1M7xmy5dQezaGAUky8OPa8ro7M+xZFneWHhbE6YlO4r4jZcXH8H3Fq3McsmhTPJ0qbs0SwTb5nAqTojxYplU51Sn0YsE48FdcHlLJtJx7+g+kR1/f7n/1P4czkm36vWN/ntT36cD3/4w7StnXrWkuFd7HQQl1tPAIq97maRHU8de2lH8VxxJPVhS+nLww9Hu65GUcecMHFqnQOF11TnjDFmdFBmPjOS0sCzPEw/9kMIgZ7R91wibhqCtKkY7I6ornqFmZzXxWDfHol4eA44Eu9arzyqsuXLR7OnkUIdm2OxxbGMqSDccpqJN7nBWYDQSTw2Vwfy2yVfJj5rt/yorv2ZdoSpIf0+bFmz8VZbiAFtOwd4c6LD5KyLwe7owW72Z7CDAlsTGhm/9eVCUoEdMtjRGHLFV3CIcjSvyI0BBbYm1KI+mI9tPxc7ofjQhHKMrq+0cepuoimmMJV6SQ6pYLq5Jmktt8n0WZPsFnsV0RWgVJjkWx783vD3jZiLeyKD7SoGO2m9E8xjtcYWf+WxKj/53hpvFz8LzVeBfS6wcwZuWp03C/6a5/KYTuKgLLsasaK62rg9/dcQGZxBJ4MtbzRDAmnc/uvnYwZnHQ7iHupaGqZoNzRV3Cf1WLddREZHTKbGcuMfB1pKg0DR2ofBzmdLUHsy/P3cep8Cu7HV8XtzFzLxLz/3R7zwmmqzPHboDt7/ju/d4RGdCHqwXQQbRorpfOf3eaarwD50UGC/sSCl5P/4z/8k/P3P/Km/ScrMYMUMzqSUNC41sLeTZbleWxmJ7OTwbBQNEAxkHt2GS3oh3Vc2bOQMtIyO1+o90QIm3ZyIBpjciRy503laS20828OtORTuLoYMaxLSMym0tBh6AgYlk12YOdRzezE/SfZEZLhwKmAFsndx9ca5jh6Qi9de4pWLTwFw9vgD/Pq/eJ7/6W/8P7zv7d8T9nRsbGzw4vmvDf2+AkjXQ15Vr7VsZlg3M33l4eoBYHgeWkbvkYcH6O7Ddmud8nDwC/HDadxm50DhNFyMgoFRGG/CLNyZx3Nkz/MOghEzetJze9+DDX5Ul9PlJF7bZDIruZnOEpy18hY6cMYRd62UCaZYm37/Nbm7w9uO+wW29CTuZ6IoDOtU6aD/2kfKUOOlFRsiyyV13S/5Rmc6qpfw2pgszI7I6nhbykDPW2spyfhuXPcP8HWJzh7sTgbb0qbh0F+C9LEOlrobAbudyxbDufr8ht/3GZeI+wqlmZwka6jx9qp//ouYgWl8XOqBH7MTyFWl5SESeqtDGILGqoPXchNTTYShxv5h/GCklFy66JB2HERmf6qx1Y2Yg/hk7xpiHGTs6Ltd1wYz2AgUW5nEYBdUq5OUkmZri/edsslZz0avs48FNgCz6j3N2i006e3K6Mw0YMtXBHtSUtuDLOtxEY/ompuOFdhLEXmijVFgSxk5iOdMyanJ2PrI9a+ZoSXiyQy2bLuIcio0DLtVEP6avZ+LeD5bgmrEYL+ylvz+avXOArvVHk8m7nke/2eMvf7RD/0kujbafBsU2OtmGk9oTGc7x6ReBvv1Z447CG/6AvvZi58Nzc0Oz5/iA+/+QUA5LBayipVz6y5aVsPus8vstSP57SAYJRWz1K8oCmRSqan+rIuW1VQvd8JzuHVXSZdjsmOhCUr3FElNmtQvNMgsZsgdH2xAoGU0tJQ+UpRH2oTJYp5C0Nvs476zj6EdidjysMDO3YUnPS5cezH82+9//lfDn7/13T+Iruk8fN838pM//ov8tY/+XPi3wAFxFMjrzVDOE/VfKwfxboOzAEbbxZww+sq4u/uwu+XhAdKTKYTWqTpwmy6Z+fTY5kvKBC9He6W9o9RPuhKE6NgA0nMG3n4U2GnF/gc92KDUB7oGuZzGpbRy3JU3msgd3PD3Ax1M0Wbv9RxGdMUK7IB98l6shPI1eaKAcaJA9hY4iFsb1o7Kl9sNIQSFbBeDXexksMF3Et8nBjvow5abFnKpicgaI/kbHODNgbiLeNzkTEr4d8/dD2f+FdzzWzsw2ErJEjDenowY7HmrEt7PyqmxQ4hIJn6zpqlIu8kYg50wFoUIir9g/rA95IDTWsvq1LZcpCPRklhuQ7UHDbPBulmF1SWHgvCdtvcBe81gAxCQIabGhhfNx0kMtpAC0SeSKSlyMk4KZFL7W2CnDqvNAR3JjN0eOwsb1AZorQGuK7F8gzPzNgl8VjbiPdiR8rHDQXxx9O92uaax3lDn6d2zDnr8lPUkmNpQay4hhNqcTbpGXIkomYisDpoYqVVvVwiiJhtu4mumzDSGtwqWGt/OreuJiR09DHZcbToCPvvV3+a8r0K94/iDvPut3z7S42XbhYZaMKyYGYppj3TXnsCxsoses3M/kIi/gSCl5Nc/87Ph7z/y3X8XXVdH2LKh7KdvWJs26dk0WlbHSZBneLbXl+WMQ8/pGEWjbx+221CSrkFu5EIIUjMmboKTuFt3SU2neszRzJJB6b4imfkUxbsKaObgw66lNbTUcI7n8fc1UYDJic4J8oE73tExUEZRXcpJ/LUrajfYcWz+6InfUO/XSPG+x76n83nufGf48zNjFNjeK9Gg8lK2rGI2/H6Vbgbb86Rq1bFdMouZvgNyvA87lIcv9lZc5qSJWdRx4zJxTw51zvSD0ATFuwroeQO7MriHxm0HLQyxAjutsR95SWlTZWGX/B5sgK2asj+dznm8FGxuSJB9jMb2C9LxoBpzA09gjSpVv8DOdjLYUkrcT90Mb7PeuUAmtf8GZ27bxam5tK41+yYCvF5QzAriaUIBg309HtXVbnB9W08ii3YNoas+SrncVAvsMdsvDvD1jYDBLuQmSJnRBfzUDYMLW/5mcOFBNtqFpIcDkcN4PqMK7JtVjaZvrDTvqHHNlS7berR4DTfqpODathb2Z0OymiaELhR77QQM9uCNSTOr0dxy+8b4qhaz4bKwb65L7C0bMyX2zYl/NV5g70EPNoAMojGLBjUrWu8UulyJpZRI4btLJ4xJAYMNhLGigQMzQCa9fy7iAIWT0fMv7DILO21C21Z92E0LLOv2M9i6bjAZi8qTuyyw4/nXHf3XoArsETaJREbvKWSlp4yyRNZQPdimdsv6sEU8arLRz+gskolvtzWWa72ft7vAjp/Pw8J1Hf79b/1P4e8/+j1/b+TN7Hj/9aqZYTqbsGmgRwpCOJCIv6Hw6Sd+m4vLzwNw+tj9vPfh7+r4ez7js45Skj+dI3M4i9UnW9oYImpJCEF6rlcuHMCtu4rl3kE2bJbMRDmTZ7mkZ5MNBrLHs0y9c4r0oZ0rAiEEesEYmTUrZAVTXQX2/Xe8Q7ml+oYsd4YF9h2AFjqJf+m5P6TiL3ze8ZYPUipMdjzP/PSR0IjsxfNfxbKHN8mStof7Rd84DfhqcQat9Qq4NYr5Modmj3fc33bBEBLTkD055HHE+7AD9UB3nBeo/pn0fBrHN6fw2h5aSgydf90P5oRJ8e48dsXu25MfvJ6e1jriwERKG2iWNy6CyI+49DIwFVIF9kT0vi6Ot3M6NipWx2dO6nsMzsGAwdaE5MiEh7xYQ15WC2exkKV1okS5uP8OrG5dqSjydxRoLrVGagm41Uh3nfphD3aXk7jlClb7OJzuGoaGrNpIbci80wO86RAw2N0RXb/xfOfm6Kp3V+LjHcembTX5K7mP8c+bP4PzxzdCgzOAGV/GseFtUGtFi9mjMSfxq1t6Z4E9iMHWggLbf3zDpZOa64SZ1WhXbLw+G+lCEyAlnu1hO5K1isRNYMRcV3LpJuRaFmKHTfndYHXjRvjzzB4w2NLxwgJEFE1qVjQO9DDYrgRdUz21CWP5Tgx2dp8l4pmj0Tk5bzW5WdNpjhYgEsL0PTKalnIU9yTot8mgM2CwZycXQ1mxdGXYOiZm0ojM6JsJz69Ej+nov/aff5TzWGT03h7stqsMznLK5OxWOomLmDKyX1RXPlvsNDpL6MOuN7sZ7NGJjk8+8RtcvfkaoEi0h+/9xpGfg66Irpl88vd450y05onHHb4R8KYtsB3H4d/9atQ/8Oc+9PfQNPV12I7E0P1+0opDatIkPZcmd1RJq+OFp3QlQhM79l8H6OcODr5seED/dQA9b/RIUzzHA03rK2cWQpCaGj4SyiyZeNZoFVg2DdPlSO6TSec5c+x+hC4Qh9R3N99qkHUd0LOQPhYancXNzT7w7h9IfP4H71Istm23efnCk4n3SYL3tXXwd7S/UJpnOZXF2/oTAM4ce6DX4MwB03bJTPTGc3Uj6MO2N23S82nVZ5+A9Fwaz1FxXU7DRc8Zfe87CvIn82QW07SX+y/QvJbauIkXHFpK9GU4doO0qdZ+E8V4ga36lqdzMmKw6YxNuxXoLqj7M9gCcmpxfajgqYjUGHutf+MCjico7pOrbhxuwyU1k6L81gmKd+Vp32zhjBixc6uQSSkprOdv/mXSedKpbIdE/PB+RnUBIqcj19qIg2iuAySg2a7T9HsO54tHwiSByxWNL1/vPGe2jIcSn6PRqjEtZvhA5oOkSeP+7nVyn74GUmJ6LiVXjQtr3mpYlEG30ZmOSOvgs1KDCmyhC4Qnw/le1p2BhYKZEljlDLKQfA14UrLdgBfPufzuE5L/+iXJEy9K6s3O+X5tC9ZWXYquHWZ27wfiEvHp8sKAew6JmMuyKJpU2+p4aELS0zbr+Ox1Rk9UdHWadXYW2KaRChWP+wXzcHQM53dpdBbI4BstaI0WErOnaLZqVOsVoFMeLldboUpjHPYaIgdxTUjunt0dg42p9a6R2p7yIsjo6rrMG7eMwSbOYO/C6KzWFT84ThZ2YAoN8Ge/+yfGasWKj3krZrYjoiuOH3ywxbuOW/zE922yWDpgsN8Q+A//4T9wZekcAPff8XYeuf/94d9atlos5tLgVm2yJ3NopkZ6PkV6JtXBYrttD62LHRwEo6ijpUTo6h0gMMoaRjZsFHT0jNbhYO02VP61MbE3A76eS55wBiGbgdmpyKTkntMPYxjq84hYH/aZln+B5+7m4rWXWNu8wRPP/AGgJti33Ze8G/bAXZFMPOib3wnSk7ifjoqj/zzjs9VV5XyY1H9tu5DyXHJT5o4bJ0Efttd2E+Xh4f0mTfSMhtfycOsO6dlUYn/cqNBSGsW7iiD7G555Vm8Lg5bSQOx9/1DKVHFNE8X58LaNiiqwZ3IeN80sm36Mg7xcH8mpfrfoKagbbk8feGV7DdJHQVfn67Gyi3ejifeSv+tbTsGDkwiNW2JwJh2lotBMjYmHJijeX8JabSe2qtxuBE7ilv/WhBCUizNUZZWaVJsp+xnVBSDyJuJQVhUvBzhAFzb9lICSmODvbH4M6588i3duu4e9BmhmHklsZWi0qtxj3tNx233PX+WjK+c7DM5WvBWqMTlmPI0giFsKWeytwVnYoAyXpOupBf0AdYahg20aLFUEl25Krq5IltYkyxuSK8uSr7woef6C5PlXPdUKV4SXL8Nnnlb3CXBjXeJVHXTb29cCO5CIl0uzHZL9ceHF4jiZSIUMdimdkIPrRgW2TOinjSvpQom4v0Gz7wZnQGoxmrcX7N07ies6bDck1aYikW4HVjbiLQGxAnspJg8fw+CsZsFFX0J/atIl172U9kZjsDG1nt58ZXBmRgVl0UTat2bDOy4Rl7XhjM5eTTA663URH53BbsQiDM8ee2Dkx0Nngb1qZpjpU2AfKnr8o2+u8ePf1t8T4/WKN2WB3Wq1+Omf/unw9x/70E917MC0LZWBTFtlUmcX1OSrGRr5UznchhsWBl7LHbHA9o3OGp0nk9vcuf86gJ7T0bNah5N42H+9RxOhnuA+uhMyKVicjfKk77/j7eHP2pFowDwTmMfk7sR22vyfn/gf/exh+JZ3fX9fJ8IHYwX2M698Yaj35L1QQa6pwurydJnXsr5EeYCDuONCWveG2qwI+rCNCTNRHh7AKBp+XJejiqYB9x0VmcU02SNZrH5RL7LTQRxUga2Z7LmTeMoAU4diISqw10MG2wMhVA88KEOq5VuXh50kCe8uuje31yAXLZ6Plb2ODRr9vfPYniBtsO8GZ9LP7QyUDpqhMXF/idIDJSx/crplBitDIGMq05y40VnUh60kgTN2C9Nz943BBhCpg+L6AMkIWkDennoHOS8LEppfWuePzvtRkqYk3VDqJmlMh8ZlcTSaVe417u25/fvWLvJXbr4c/r7axWAfKnpovmHP1Yof1TXlF5QS2Oqv/ZX4EnHLU9FAAwoFTQjSKbiwBC9dUsX0M69JnnxV8vxFSb0FpTwcKUtmy4JCVnDikGKsP/WU5NWrklZbcnkZijiqMNmndgvXc1mvqPF1do8cxIN2MAD9vjJVv8BOdBB3PISpqQ25BCfxJAa7GRbY+9t/DWAu9jLYuzI6M2G7fnsjujoMzuIO4rvsv35p1UD6BXG3PDzECKSGMDUkspME8CQi5u2hnMRvkcy+MASDnSuBdR0steZ6NcHorOarBwKMIxGPs95Bws+o6OnB7lNgv5Hxpiywn3vuOba3VZH3ltPv6ygEQS0QywWwNywyC5mOQiu9kMYsGTjbUT+tWd7ZQTyAZmikZtM9Rmdu3cWY2Ln/GlQPlTmd6mAsvbZLem7vijYto9wWR1nAa0Lwze/4IGeOP8zpY/fzHd/wI9F7PhpnsKOoLoA/+MKvhX/71nd9f9/nX5g5xuKi6tF68fxXsZ3BOicpJe4f97LXmmxB/QWgD4PtQNboLUqTEPRhp+f6y8NBHbPM4TTOloMwdt9/3f0eciezSFf29M1LT4Kgh4nXTJXzOKh3exzoulrcZdNTGLqaiAIGOxhAX4z1YctLt04mniQJ7y66K9sroTwc4A6tgfeUMmkjZ6A/OoNlK6Y+s3eXWyLcpoue0zBi+bNCF5TuLTLxFmWu1LzRpHG5SXvNuu0maJqmnMTjUV1RH7ZiLTTgkNXcNwb7AAcYhMAP4j7jvvC25mt1bE/N399+Z5uJ9ufDvz25lNTDWOVuv8CWSNxviYqEB3xDR4BVbyWUwoIy7AlMeq75Rn+dfdgDjM6E34dtBRnYg9cbU0XBoenef4vTgqmSwEhpEFPR6Zrg2LzA1OELzynJ+MY2FGx7pKJkVGxurYSb63vRf+3daCAvqDlFzGXwThWp+yZnhX4Z2GkdTBGZycWQzGCr4mK/+69BrcNaKTVHzQcM9m6Nziw1Rqdvl4P4+s4O4trhHEvbGn/hEyX+m5+fZRiSOJCHA9zXbXAG6hoaZaPI0FS/W9Ca4ak0FpGLXkdkdER3Eb5P6GCwB0nEAWoqyrba1rjZZXTWIxEfw+Ss5W/27KZNIj7eKQb79UMW7BXelAX2I488woULF/gzf/pjfN97/lbH36TvgpQ1FTuUO57tYLeNvEHuRA67olaRnuVhlkc7wVJTvQH1btNTsU1D9jKkymbUk+VK0DSMIdjvYaGldcQQTuL2lk17ObpQ5qeL/IP/7vf4xZ/+VIeJjJiPjM7OxhjsOO498xhHFs70fS0hBI899hgAbasZZmb3g7xQC52qvYUsn9TV+9HqTwMuhdwEh2ZP9D5OQsocvq8+f7pA+aGJHe+XmkwhTKHc5PfwWAGk59OkZ9M9Jnxe4CDepbAQKeHHtez9oJbPgOOK0B006MEOBtCOPuxbWWAnMfzdDHa1k8G++5XrIauhv2sWkdaxHChmb4HBWcNVipfuY6cJimeLAMw8Pk3pgSJ6RqO91qZxuXFbWe1CFuImx2U/qut6l9HZvkV1HeAAA7C5rQrse2MFdrHWYspuoQvJd9/dYlq8EP7tq9d7z9PWdpWT+kkAKvkarz1whH99qNcQTTHYlY7bgj7slqOM/kQ8qqufAin4u89eC2ewRHwYCF0kxiROTwgWpuC1a6C7HnrV2td2i7XNyOBsLyK63C9GGef6O2ep29HxKyYw2NKVEXut9TLYpRiDvV3fREoZFtj7HdEVwCqoNdi0Y5HyXC7ugsFOmdB2VIF92xjshAxsKWUkES+aiJLJ//18hgsbBn/4ZI7PXtx5N3uggzg+zzzKdWP6WdjBfNp2Ia2p+K4AaQ15i5zExTAMdlatC4ICG3r7sGt7YHLWDq6BXWwyBRLxqm7Q1I0DBvvrCVNTU/y3P/wPODHfKfUKBp50y8Ysm6TmenuCskcyaGmhWGgp0XOjjVRmqdOkTO1+jRbbpAfmKFLi1FX/tblH/degJOKaqe3oJG5v2bixyIBsqHjrnKiEriEOqYvxsNUg59odWcPQ39wsjkcffTT8+ZmXB8vE48ZUlx88TNCA5VQUQ3H2eK/BGYCQEtNUcWXDoNuhux/MSROjYJCa6o1S2y2S2hcg7iCu9dxfpLQ9K7Bby21aN5TcO58RuB5MTyiZeKW6huPY4QD6WqaE43/v8hYane3EYFt2i0azGiorio5F6Vlfbmhq6O9WGwa2A8VdqAOlK2kNYVbmNl3Sc4M33TILGSbuLzH3zbPMfuMMRtEI3epvB4KYtgCBRPyGF4vqshos1zR2SBs6wAH2HJvbq8xqsyzonWZa9zS2eO9Ji7mCZCq1CW11vr6wku5hz/TrNrpQ4/3WVJPzGzq/N3WUf3Wocz5b9VaoNSodtx2LOYlf2dJgakgGWxfQ9iXiQuw+390QyhE5wWclmxacPgxHig6y6XYWFHuMeETXzC4jumTTUYamACkN7W3THQ7ifRnsnGIqRQKDHZeIb9c2sZ02nlTH8Fb0YAMwFa0L5+wWq3WN+pgmZZoQSKnMsY3blLKwuhkrsKd89UfFUu74gFhUkuOvLUXr2U/vUGC7npKIA8zmPeYKCcdayhELbKXyC937256ShMfbMDO+WeGtcBIfhcGuRkZnr3T1Ydf3oAc7YL3Hlod7MmyJWTHVc/TrwX4j401bYPdDIJ0xLIfc8WxiIWROmWQOZWmvW4o5HrL/OkDASgUy8VH6r6Pn0NHSkWmWObmzIdco0FIqN3lH2amH2vn1kUtHcRDdEEdjfditKpizYEwDajf4vY98V++DuvD2t0dy/mdf7W905t1o4L3sDySTKb46HblaByYQSf3XnicRrkcqK9D22NhFz+hkDqX3VMofR2YxQ6pshOoKUCZ8RsFINFTTszreHhXYXssN1Q5BVNdUOerD3txepZSWHJtwcTSNV/38WLnWRlb79x7uFaTjqWxk6Ohlii9qK1V/ceZv/HykdhXhbzDpj80g8tH1mU2Ptzhx2y7NKw30nI69NmBBDSDpmwrQDaGrCMDUdAq3fvsq125WJNhkiUd1HbYaeFJwo3ow/Rzg1mJja6WDvQ5wd6PCh+9V12MhW4LKJwFouxovr3ae1Jlo35b6nBP2af/XqSOsfPAUXkbwNeurXHQvsl2rdDz2aMzo7GpF72SwBzmJa0KZKe0VU6b7m6t28vgvhIC6G/Yo7xfW4oZXu2Swva+th4WO9rZpRNYIHcQBiqnk706YyhEaXethsPPZEppQn79a36QZ6z29FT3YAOZs9Dq7dRKHfVX8D4W4RDwwOeuRh1c1blSjz/iVqya1AZsK5zd0Wn4OfZI8XLpy5OhGYWjqywqIsJaLmDQ7NreEoal+wlvCYEdrgb4mZ7lAIh4ZnfUw2N052GMU2G3/PBy3wKZqh9faqplBE5Jy5kAi/nUP24U0LmZWI3Mo2cVICEHuRBbpSbS0QBuxsNVzOmbJiArsEfqv48+hnMQ93LaSl+81jKKO7DMBQ9TfG3ejzqSjPp9uaHEn8S6Z+OMPfye5QN4yAMeOHWPGN0N54dyXcZzkgcb99HL4s/6eea5WY4ukRtB//Zaex9kumJ5H2jeS22uUHpwgd2p/dr71rE7uVA4nZpbjtT3MyeSCXs/rPa0Ke4GU/1VPTcSNzm4iBPzQg2pgfvFWx3XFMrC1k4Vw5Isz2JXtVTDnwZwC4NGqLzcU6hwCtQGjifH6r+0tm9aNNrmzBQp3FJD0Nynz2h5aWnT0Xw+D9Fwad4jddLfl0rzW7Ekz2C2CAjtQsARtAktxBrsdRHUd9GEf4Naisr3Kfcb9Pbc/bG9w1s9bzWeKUPnj8G9P3ugssEtr0VxrLephBrZAMvOeKdyfOMPfr/0UEpnAYHdFdcV7sDd2ZrBlw9mbVVvA1g7w4JA1p2PzfD8QZ7B3Y3ImpeyUh79LjTsdDHaSyZmM9bOntB4GW9M0Cn4WdrVe6TB3ulUMdm5xKvw5cBLfjdHZTBnmJ3e8275hZUNttuayRQp+QdhhcHY4x5NLndec7Qn+5Er/SXcneTieMgwdlB+fBJHRwugwpEQUet+DKJrIPWKwZdNB9pN2ZbSIgd+JwbaWyOmqcD631ml0Vq3vAYPdVufhuJtM3Q7iU1k56qF5Q+Dr8CPtDo4L2bZNei6NOdWfPUrPp0nPpBLlt8MgPZ8KY7bcpjdU/nUcmqFhTqZw6w5CFxj7kPtqFI2BEnGvpfp7427Uhi4o5KCdUPeKJCdxX477be/54aHekxAidBNvWQ1evfR0z31kxYoZU+noj85wNTBVkh40zwPJBmeOC4aUZItKIr/X0NPansRz9UP2SBY9H8mEpScx+mzcGDl9T/p1PdtDGJE0OGWqOJByqTeq6xtO2hybcDv6sG+F0Vm8kBbTGfDzyzsY7O21kL0WUjJf9yeeqXTo9tt2IJWC7AgFtpSS1o0WbsOh/LYJph4pkz2SwSgYONXkiTJQtYyalW5OGGi62LG1w1q3MSdNrFWL5rXmjvcfFsGxd/w1wrSvYqjJGi1DfddRVNfB9HOAW4vN7VXuMxWD7QrBdZ+BOVyrhT3J+VwxZLABnlyKMUeuR3lLLSpX3BXEVD7siT1c8siakM+X0PwkjLiLOMDRLom4yOjgK+AGMdjoAhxPZWDvxfwR9Jb2UTBJTyI32vsed7dXEnH5WhW5olqUxKkC2oI6rh0MdpdEXErfc9qf50VaS5wPgz7s7drGbSmwjbmoiJkLnMR3YXSmCYG2zxsn/eB5HkbF4x3mO/lg6Ttxv7qG+8RqFIOJYrDj11yAT1/sv8b9SizDPtFB3JOgs6M5YA+yOtL1wkQPkaBWFWNE2vaD3GgjK8mkkRAilInvKBEHpg21kVG1NG74RmeW3cJ2OjfyRs3Bdj03fI7MuBLxjgzsr08HcTgosHvgOpKMkOSO5wYWvJqpkT+VJzU9Xp5xIAcP+6/Lo1NiqekUTtXx5eV771ihZ3UYMG54lurvFbqGF5uYJvJ9JOIxo7MgC/veBz7K3/0L/7bHyX0QHrzrXeHPzyTkYbufXY6Mqd45Byk9ZMs06yrIdl+DM9uBlPBIj9AP/3qCOWGSPZrBWrfUAkLQtz98r6R/im3Vw7SKlKlY7HI8C9s3OtM1+OG3NHk55iTuXRp9B3VUxAtpMZWKmKNYFnaluhY6iM/bTUzXlxseiiYRy4a0oYrsoV7XlTQvN9HzOlPvnKZ0dxGhC9UusJjB7ldgN1zMMcYWY8LEKOg7ysSl7ZE/nWf68WnS82laSy1ay+1db7ikdJXD6/ovHzDYABtGBYAZp03acw8Y7APcctiVJkd1FSX5aqbE03nVoiQkyCtqHMpliirqpqEit15e1Wn4a1651MT01Fz7kvMiNTmP7aqB79SU30MqBAV/fOtmi4ppyWRWjStXwyxsnxHfsvpff7qvEmu7oxcJSdCEalztx2A3XcWW72P+NcBavMAuj89gu1+IRXO9Kxpz4gx2d4GNK5GGFs2DqV6JOEDRdxKvN7eVR4ePW2VyFka5sTdZ2LcT2y9d41/m/zU/Vfz7/Jj9UZxfu4TzG5eR1/wiL63hltM85TPYhZTHwqSaI7+2ZHZsmAS4XNH48jW1XpvNeZyaTJj7XKkWHyP2nYuM4bv3u8ptPul6yOgIIRL9DEZGgtFex/sJ+rBrTuLrxQvsCXkp/Pncmnrf3fJwGF0i3t6DiC7v2Sht4WYq+3XZfw0HBXYPRNMhXTZIDyG5zp/KMTGEe3QSjJKBltKwN21VII9hUGYUVB92qtzrNLwXiBdNSXBbLnpORxhC9bj6yKVFYl0udC3MNzxsNcm5NoWZx3j/Oz480vt6YIc8bPdZnzUwBPq75thsChq2+iBeXS2a+hmcOS5khCS1D4qAW4XcsRxCFzhVR/XS9zk3tNReFtjRd5kyVZFVimdhVyLJ/ntO2EzMGCF75F6td5w/+4EOh97JdMeiJSi+N7dXQwfxE62IVRcLnQV2MT+8g7hdsUlNm0y/e4rs4c6Wk8xCGjyZuKj2LJf0GFnpelrDnEnhDCiw3aaLltFIz6TIHs4w/fgU0++awijoNK40d2WSZvo56IEx1HSsTeAm0Tlw6MBJ/AC3AYuNqPh6ITfJC/FWlYuqeAr7GH0W25WCZ2+q+TmeevCC8wLrVpSUcXoquuaKoay4k8EGOOrLxDebGtW2iDb7PGCrD4utKcZZOnJPmmiFJhCIvi1Csu4g2p4qOvcRq34PdjFfHpsRlpttvBcq6peSiXZfOfxb1RrgIu4GrKbPYJvJBXbcSTzOuN8qBltMpvBQx2m+rc6/K2/AzUnpSbT/soIp+q+ttHvLvLZphMftoUWHDz6iCjrHE3zhSu9j/+/nonn1e+5tJUuNPamidEfdnAo2X9oeIptcYIu0jjTEnvRh76hiDQpsVyrTw+4/56I2y5x7Lvz5Vd/orDuiC0Z3EQ/6r2G8a8C7WMV7rgLAhpHiyfz0QYH9ZoFouWTnUkMZhgVM1DgwCgZGQae9Zqn+6/zoz6PndfSCQWph7/uvAfSsctbsJx/12h6p2TSaKTp6tbNpNWfZCYVDh0y8VQ138UfBkflTTPnM2AvnvoTrRgWBtL1wkSIWc4ii2Zm523wFSDY4A1UYZNLKRf2NitRsisyhNK0bbbS01vdc1kzfyXuXO69e20NPaaoX35NoQpBNdxbYAYMNaiP5o29p8lK2rN6HK/Gujp7FOAr6MthEcqXK9mrIYB9vJxfYjgvF3PCTtFNzyBzOJhoYpqZSSibeVdAGcrRR5eEB0rPpgZJvp+pgTphhFrtmaORO5Jj5hhkmHihirVlj92bruiBlRAx2NlMg6/dpXbOvhPdTUV1vvEXiAd64aFl17uBs+Pvz+TLOsWhBGhTPuYx/W7wP25esyovRuPCi8zw3W1Hx1VFg+4V7vbmN63VeS3En8atbWtdmX58CO94zvRcMNr5PQj+JeM1GClWI7xc8zwtjumYnD+9w7/5wn1gNlXb622cRsQqrFmM8e1zEA1bTnwcxtDBpJI64k/jKRmTQdcsKbF1QN1VRM2+reXK1rtHcf2/QPYX71TXSfpv8VfcKz5w+j/HdxzA+fBzjB05i/NgZjA+f6JCHv+2wzbc/FhWAn+lyE1+tCz55Qd1WSHl82519fAw8qaqdUc9nQyDwDc7KZnIBnNYRKX1vjM52WIvtFNVViDHY6fbz4c+vrg9isEdbezVHZLBdD5aqGp70U49+O7qG/uPcaVq6wfTXYQY2HBTYHXA9ie5JcvtUsMYhdEFqOoV0JJlDo/VfBzDyBqkpc9/YVi2tKafyfgYOUiqH6kxnL28mrVhMO2EC6DY6u1nTsEYkzIQQPHCnYrGb7TrnLj8bvaXNyMwqWLhc3Yqd5s1XATib0H8NgCdJp4aP6Ho9QmiC/Kk8Wkqo49OHhdBSagNlt1Fdnq168YVGGBGWy0Axn1xgAzx+wmZ1JlrcXnl2nwvseA/2ZKpjUYv/t83tKAP7rBXt9IqYRFwCmSEvt+CaSM/0MZnLKVf57j7scfuvA5gTBprRf2PMbbhkjmR6Fs96WqN4b5HCHXla11t4Y6oKMpmoBxsIN8MuNF8Lb1tsN9hsagOdYQ9wgL3EVn2V+1Iq5tEDzhUm+LH3u+C3Z8nLdaTrRQz21qcRPnP41A0DKSWeX2DXvTqX3ctcrUbz2emp6DqOF2Xdi9puozM6Nvv6FAi6Lx2194bBVhCJEnHpSeRqC7HP7HWluorjqkXC7Jj919LxcJ9YU79oAv3tMx1/r8Yl4t0MtiOVq3TwffaRD3cw2BtRGsIti+kCmnn1PZU8yPqEwhuJxXabNtufeCn8/X9r/ltmvvN+9HfNoT82i/62afR7yghT64jnetthm4dOW8wV1DXz5JLBVis6Tv/5hQyOp37/U3e1yfWbm12pYrdGXGeLlIYU6tpLMjgL7kNG23VUl/SU0/lAxJJMkpzE4xJxp3mZKb8d5dy6Mjqr1Ss9jxnV5KyDwR6iwP43X8ry0d+Y4B/+cR736U3kVfV61ckcf1RWG2sHDPabAI4l0XXIT+19P3MSUtMpzLKBOTFebJOW0ii/dWIoOfs40DN6DzsdQLFsKqJMz3bmKacM9a87PxR6jc48Kbg+RlzPg3fG+7A/H72v9RhT6UtsOxlsVWDf0YfBxpGYmf6s7xsF6YW0Muqb7H8uC1NDmLsvsJFqs0foQMBcpgX53Ew4ocUl4qA2ku99JJJ2rb3U3CufkOS3GCxcCwYi1eXe6/9trdaElOoDPGX5TJUuEDPqfTquxNDUBtIwcGoORtEYbJa4kFERIjFpott0MQrjqVpA9eEb+eQ+bM/xQBOkp5LHHM3QKD1QInc8S+t6q+N9DYtcuvPaD+LaLsYLbN/o7PoBi32AW4TtyjonNVXIXcwU+dNvdTle9tBOFNQdLA+51FQu4gBOhbJQqouLmwZbS5aKlwFedl5CCsnlLTUYFNMeMzEWppCPWse6F7W9UV1xJ/HkHSehCYSnesX3klWWSTGcdUct3vP7uw5aiRWr4xbY3rObIZOn3V9GlDrHtXjPbqE7psvxVP9s8H3qApEwCZUKMQZ7/fYU2N5ENE4GfdjjqP9uBzzP40v/8lfIO+r7+hPri3z7j/0lTh25p+e+TTtyBF8ouCyWPISA955U14UrI5l4tS34/15R119Kl3z3PQNc+D3G2zAyNKUY0ZMNzgLsiZO473Q+6OoWO2Rhh5uDQL2xzR0z6j41S+NGVUtksHdVYO/gIt6w4XdfVcfoS5cM6r8TXT9feeAEnr8+PDA5exPAbrgYOZ381K0ZuIyiQXo2NVb/dQCzZO6bjEvoigFNYrC9tmIt9ZyOnjU68pSFEGQz4CQanWVDidtZ3+hsnInigTv7GJ1txKXA6sK+1sVg57MlFudO9n4mKdFcj3ROQ3sDS8RBmfCV7iuRXey/w6ilBJqh9S2wpZQ7FlgdcmZNhPdPm6DrBpMl1aPYzWADvPUhk6aujv2Ryhb/P3vvHSZJcl8HvohIW7672s/0eLs7s94vFgDhsXAECIAEQVACCYrSERBOd6QA3YmiJFIURZGgeBQkUiQBUBJoRA+IAAiPhV2Y9W5mx5ue7mnfXT4zI+6PSFuVWabdzG7X+779tqYqqyq70kS8+L3few9f3JzrLpyB7RkKRWSZ7qR2tioHJ4VzDFflIEJGDT87s2FLZUa3EV32ig1jTG/bRqIVVdf1PZh0O1UH+sjaVC2AXHhTh/XYXmp71YGaY1DbmPgxgyF/awHakIbq5VrP36+rgaM8AAy4bvKXnVBUl+ckvvzCvs76eOHgzIUhf8JzKq3hR4/Lc5vuzfjb8LOlSBWowAN11MXHg4nlM/YzMDJ7sFCVn7h/wImoi8NVz9Umgr2r2Uk8xg8iDgICYgOHeqIQoBaTGbxiyZ7TTXYQn1u44j9eq0ScPxKYJbH7RlpeL7VzEXeEdHF3QRQKQVpbprJJFWxta3KwAYAVg8VoLwv7wtL1f+/knOPjH/s3OH71EADAEhb0t+zBD9311tjtn5xR/Ir07RPBufnyfcHCkycT/9RzOqpu9vVrD9YxYLaJlHWEdODsFaprjGYwmXedAJJW2xoCdwVPxt4GYYIdJxHXVAOqIn+fcnUVB4vBvOLEHEOpun6JeNgUrZNE/JEpFZZ7PN+4cBHGiry/kYNZPJkv+tsNpfsE+0UPp+xALSjQN8GROw7akIb8zXkoma35vrWAZeMJtlPnbkSZNFprLj+mDWm82AzCCMgOuZI50agi7Vi4sAZHzF3jB1FwydtToT7scJYoKboE26uSORWgfinR4MyyJbnS0/QFLRH3YO4w2qobqEZBFBJZHAmjMW+hcqb9zZc33LzmjCLl5i7Bbs7CXli+Cs6j5xFjBI0dcnI7aDfwd98mm1PFXgq3DbjsOK8FWdjupHaZywnaZKMM6m3fZHCma3LxoBOEkOZlndQlSlqBPqLBXgnkXoIDamF99wRjWItdOLFLNvRxo6PBnZpTULi9ACXFUJtpUxmIe2/TrntRXVVUYLuToCCq64VRhenjhY2zVwnYUpAnbO48D9U99UiIYIuzJaTMoHUlXf+e/7hxJtp/reXv8v+9bzA62GVC5mmrTVnYw2kOQ5HXQUsWdruoro2+NzLiJyhEvmauFpg7bSJm11nBFjUH/Hm3lSevguzLtGzjScQZETCab6mOkM7QHhQC0Fajs0gF+xr0YAOAPhYoIsZ8gn193zuFEPidT34Iux/PQyPyHJ85XMG9r3xz4nt+0NR/7eHwkIMxVyb+6BUFMyWCv35Gjq2UCLzjWIcxiou1GfapRCr9DAa0mxMaDESI9fnZcMgiBUFyYaNDBRsIZOLl6krEUf3yCtsQk7NaDxLxhy/K45mxLbxr9ozcbwDKGycxVw3O32KbxZEXMl74LGID4dQ4Uj3mUa8HhMo+7OsZSlqJdzmuOVDzKggjoBppGfxNvfU5Dx7BBoD91VVcWEMVixCCmw7JPuxKdRWnLjwJoEkiPqjD5sCU51ZcfR6ASOy/dtwM7FRB2bJz4FqCUAJq0EQHb6cs3abbZqF7Cy0ZN6rCvZ9rqiRaXvWScwfLq3Mt7x88ElQBjKkSzm/Cqny0/9qtYDMSZGEvyEizMmQVJeIg3hTRlTW7cPqE7HOmKQZ1oPP1bU4YELYcnHmDg2lrNzjzoORVuXgSOnZCCOkxMNydxl0f0lC4PQ9wgcZi94463uKKcG8AgyEnca+XsGg3YDh2n2D3sengXOBf/pmKG8vB5HLgYHA+kzHTdwfm51aRNgKixkrfhcrkeTwwI13GHeHghH0CJHebv93+JoKdzRT8x6ulqJM4JcDOnNz+yiqFpSn+97cj2CSvgmyk3wqTfaPhybyoOeBLDZDU5i/6hx2510Kw+YllSZIh3afj7steTFdWFzH+ZSJapWdEuoo3zXfCFeyF5SAOzDS2roKd2xlU50et7pzEP//NP8Un/vrfR6LFthJ//cX/hjNf/x4e0F8KAGjoDva952Vt3/OI239NIHDLeEAgpUxcXrNcEPzyVzJYqsm5wkv3WJjIdq6AriWWlDAqe7cH2vMColMIhSaaBnYFVyLeLqorYnKWkPaRdhcIy9WVSGV4sUpQjpGIW3Y9YhTcCd26iHMBPOzGp/34/BlkuPyOLw+MYzafxnxFHg9DEUg3+yO8SNAn2C6EELAtgezw9VtNvhZgZvwpwhvc7++lKm2J89La/Ix0MhiYDtZW1txLdPPhIK7re0/KSBW/gk0JUNAwvUrheLq6Dv3XlgMo4DC3qAf/eoCSYrGVTi+fnaUYnEqyozSvc7CUAmYw2YPtVbDdqK5CLhTVFSMT9/sfARytLOH5+Y3/7ZsdxP3Hfha2jfLSEoQpHcSjEV3BAOLw7h3E7VUb+qAKJdv53NaKGpjbM+1UZPTdegm2mlda8rCdsvxsrYeMd3OnidzNOdglu8WMLfG73WPvGZ0NhrKwl/Xgt51oVHFlDf4LffTRC37/08ATzwscrLotSc4lZEcDMyxCCchud0xataGXA7fgWm0ex0ZsZGwLO6qy0nOKLqFuTICbN/qf0UKwIxXs1kntZEFOfLkguLJKg/vSYiOxekXSKkgbmWrPUNxs7dACq1ixQCoOsAUeJNEKdu8ScT+aCwALRXOFsVqX95dM3AReIOrIzogfhxZGuIIdRqccbLFqgU9XIJz1y1+10aBtYawmZfGXV2hijPm3Hv0sfv0P34//+enfxN9++WPr/v614KHvfhr/KPWP/X+n3rSv7fm7UCE4uyhfPzTkINck6X/5nmDx6bm54HO8Vo/2ED1nYHsgeQ0kJgUkAoPJCvl6nMS9KDGK5CzssMlZOX7RO6hgr2LACPZnoRrtwR7IBeNytQeZeK1LF/Hn5xkWqhRjjQreOH9RvpdQ/NHwAfy376UwV3H7r00eZ97/okB/duOhwSE0hlTxhZt/vBmg7gpvy6DvGlsBcmVQINq7pKly1ZHH3Ciajc4uLrPE+0k73HXTq/yJ0Ke+8jHUG7Wggj2ggVDSYnBm6mncefyVsZ9n24CpCP/v2g5gKQU8xsTOqXFQk0ni14ZgO3W50EKYNALx1A6aIivY+WzISXyplWCTXWm/r/BodQmnFjZ+Ytecge1/d6j3cfXSVT+ia089GIToeHQA6dbgzKlxGBNGV9Vu6cWgw1q24VQdqAOaXLRaB6hKoTX1YdurNrSi1jN5zxxMI388i8ZCA3abc8GDxgBFCRHsQnAOzLF5//FEo4LpPsHuYxOxWhH48O8JHK4sQ3EVFU9bT0RUFUC0Dxvnyn5UV7mygtsnLBytLvkvPztwK3DnKaykXg9Ayo93FZoItpuDDcRnYUecxJeYr6wBF75fxKaDEblqGLr/i6UGBBGbGs/lYXYx6MEeKoz39F7hcPBn3fu0wUD2ZVu2cThQsYIKdjMISFQKr1C3ehjdLlzBDqOTRFyULJBBHWKmlqgS6xpZFRbkeTHq9sA6ggTqvBAaVh2/+2f/yv/38+cfX993rxE3lY/igHIAAEAmTNC75KLWo1MKvnNRbWkHe+RKSB4+0XoNHCg6mMhGr7PbJ6xIn3EiBNZMsOnBHMio0X4jjUo1xHqMzsJRYgkf06kHGwiMzjh3kKKBemGhSrFaDuY2wwPBNVfrwegsLBHX2ywyefLwn7h6Gsw92J8d3YV51cDXzmkou1nnxRdp/zXQJ9gBag64wZBaZ+/jiw3MoKBa1EncM7ZirqsiVQloU9yTpgIqS3ASHzH9ge1gdQU1m2Cu3PvNb3x4N+6/7Q0ApHTrGw/9DeC6ovr9100GZ6974N3IpPLNHwXAy8AmL3iDs17AjNb+eQBwyjbUrAJjXE+OaQPcqDZ5I6Uq9RdiCCFIGdEs7LgKNjEYxKi8Se+ulXBpZuOlQh0r2ABWppYBfTcAYG/NHZQMBriSTMuRCQNmFx0dvM5B1d7aP4wdBniDw6nzxFivXqEPaTIX3oVT5zDGO0wUYkAIQfZoFtkbMqjP1DtmZKuKnKv6BDu0Un6FR43OlmrXJs/19ALDI7MapksUTkwLTB8vDmRTBP/7PxA8QAIzrKfsp1DIReOc6N5oHrbXh12preKNhxt4dWhh6OkQeQaAXQWnxT8pTLDjonGao7q6cRLfcDAiUx9c8iccLuO5NrJK3gZeBTuXGey5n1mcKQFV+RvSo3mQmOiyUpuILuEICNokG2ZELhS3kYiHYbbZZ2FxQKGguzMgEylJstdR3SSUYEWR49KoA3/MjpOJ//UX/xumrp71/31p+vSav3c9eGkjUBgqb54EoQRPzTD8wt9n8S+/mMGvPpSORLT+4HJw3t020UoeCQFevjd6bXRXvXYFlmxt8zrCSMeFckIISGadTuJuD3Y7iThCySJJPdje4iAANBqryOpyn+YrBOWQydlQqC2jF4JdbwQV7HbX7XcuqYAQuNNrDTQZ8q8dbdnuxZqBDfQJtg9etYGCBtN8kWoV1ghqUFCNRUiWU+dgroM44MY9KSTSq+1VMGOdxBkBcd2tx60qMo6F82uUib/ztT/nP/7ml/82+A63Onl+KbRx9Xm89VU/k/hZwubQTdrW9fnFBqLR2F55XnWgj+lQXYLZzryDpeRthKo0svKaNoBspn0FGwCUPfImzQDUr9Q23OisOQPbfxyqYC9POwChSDsWiu5JS8ZNf2C1LHlOd+Mgbq3aUAsq1EL3ahjpJs4AgnXLwz0oeRVEkzn2vC57u7U2kWHtQBhB7lgO2cNp1KdqbfvyGSPQFOlpAEQr2Bca5/3HntHZtZCJf/akhl99bBA//XdFfPPJLf/6PrYQ9x8neGsuINhn1fO+064HMpnyK1wi5CRerq4iowu8BEEV+tm53wMWvwgm6iCIjwfKtnERB4DJEMG+uEyBwTDB7s1UcM1gBMTmQd/oiiUn7Vug4HK4g7klWcEeHlhD/3VIHk5vLMRuEybYGT0mokshEYk4oW5Fu4ncpM0sKG2dE7SNKCrbIBkVZMgAuyEPOpmGmK1BdFicbIeyIc8LAwx5Nz+8mWAvLM/gk5/+zchzl6+eaTEY3WyI5QYmMQkAOIdzoAfk9fTF08GY+5UzGn7h77NYqklz00dcgzNDEbhhJJ48en3YAHCoaOPW8c5tS0JI932yxgp2tyBZRcom1gouM+4JSybYhNGgfaNDBRuQCpxB10BssUr9dhVCSKR1q5eorrBEPMnkbKFCcHJOwYhV83uv6Z4MXnOjg/2D0f1+sWZgA32C7cO2AFbQunII3k6guqxghwk2rzlgJo1UsElT3JOqEGhqfAUbAMjOYHDaX13BucW1kdobDtyJGw9IN9eog7icsDx9ecl/7u4Du2Ljufz3WAJ6antVsKlGWvrnhRAQAtAKKpSMAqpT8FpMVJvFQRTiZ4YTlURaCQyNoBCWiMdUsAGAhCJI8uUaZkob+/v7Fey0zMD2vzdEtu1F+Z27I/3XIYMzW1avmx2y4+CUHSkP72FAV7IK9CENirn+/msPal6Bkmawyw6sVRtKrjfS3wyqUuRuziO1N43aparM1E6AYQQV7Hym6E9QT5dP+tsEBHvrF7TCvg9H92z51/exheANjsZzsvo348yA51rPN6Ixv3VJXK1hRJf3rXqjCqtWh7goJ6CNnMDi5X8DPPVavMn4eXz6PUt48FBrxTmskmp2EQeAnTkOgrCTeDiqa2sq2HLxkPjyZbFiAQ6PrQb3irnFK22Nk5ZWZv3XezU4E0LAeWpJ/oMR0CPxirRwBnZzBRuOJDPNbulEoy0VbEJIJHbNQ7vqnajaIGNyDCAaAz2aB92Vhpivxzq3dwMrG+zXWEJU18f+8ldRCY1hgDyHw4ZyWwH+XFApfZo9K58TwLcvRMefp68q+MD/zuLr51XMu5F3N43aiYla+wcd/NTtVdw6buFDLy1317vLhXSHVza5eGaw9ZnjcgGiu35GbXomPZm4SDQ5CxHs6goGTXl91x2CVffcS5u5SKW7l6iusMmZrscTbM/cbF8tkKiTHSkwCrz/7mpk2xdrBjbQJ9gAZOXSgXTu7TbjdruAEAKWUSIVK17nUEL521SjoApazLLSpoy+igMN9WEfrK7g7BoJNgC883XvBwCM0aCnhAzqEELg8op7Q29cxY++5j2Jn8GFABwObZtVsKVBXVR9wKsy41zJK1AykqQ51dZJAa9zUJ35BJtqtEXF0MnkDADIUDC5HLOqOL2BfdiRDOzBpqpVaFKrleR37qkHkxPaFNGVy3R2EBeOAIiA3mM6ACEE5g4D2qAKltmYv5+qFPqIDqdsS9K/ozfSHwemUxRuy8PYaaJ2KbmSndKDxTVKqZ+HPr1yEcjKa3LCHdSvbPCCSjfwKj9ZjWMofn7ex4sEy48t+9LNp+wnMZAfjt0ubLh4mB4GABRJEfUvXvKrvKXhoIKWTaVao5+81zr0YGsKMOY6H59bZFjUQwR7qyTiAAQRgMVlgsFsLbIAuVZ87ut/jB/7v4/j//jlV8Ph8WRydiEgfEM9VrDFVFVGLwIgB7KRLOswViMV7FaCTRiRJDsMlcWazMUZnSWZnPny8EJILaVS0CN50H0ZYLG+Jrl4ePwateS9M1zBPnnuMfz9N/8YgCRQr77vR/3XLk2f6vn71oMwwT6pS4n6yTnmk+iDRdsnVldWGf7tV4Jr77Yd7XuGfvymGv7j60rYXejyN3SElMdtcgUbGsXsMlCPmSt1A8GFXPBpUgK2wHMSrzmxvf3pUMxgqboSIbAlS56zmVQ+skDUS1RXNKYr/hrwCPb+MMGekNseH7MjUv+xTJ9gv7hRc2CpDHpegd4n2C1Q8yp4I0TAQg7igJTeUJ215CmndCS6XIYr2Adqq2uuYAPAPbe8FjtG92GMjgWfX9Tx/We/B0eRkymDX8LxQ/cmfobtAKrgMHPKpkuJridQjYKqiBBju+JIYu1mW6tFLdbojNc5mBFU/KlGIULHW9eAfKj/NkkiHpZqjzeqG2t0Fs7ADhFqAEBB9av32ZpLsBMiumwOpI3O54W9akPJKFDXIMU2d5nI3xYfN7NWaEOaqz7pnfQngaUYCrcXYOwwUJuqoTZTb4nyM5qi+4quqdTiyizg9pgPOA2Yjr3lRmdVC5gty+/cmXW2RSTfdsbCtwOC+5T9lL/Y04xwHvYDlXvxkdxv478PfBLqV4P3LxaCiWi4AtQMXTOhqVKZEzYWCuOunZJINByC/+9EQOC2TCLuwRZA2YZYaWyIPPxL3/lzAMDpC0/i/NSJ2G3CFdWRHh3E+VPB8WAJ8nAAKHWqYGu0dazXWyvYQGsftsJUKErCPd6VhyPXtKCrUNCDObnAuAYSpo4G59ukJT0BLi4xCCGr+h/94//Xb+V6z1t+AccO3u1vv5V92MLm4CelY/8yX8JVU+7rt0LV6zcdqeM/v3GlRS4MxBucrQteb/Mmz+sajMHRKFZX1kgYOQKC3cYXhIScxFFp/f2aK9gDoYzpshMQbDPU4rB2iXgrwW44wA8uy3081AiiEelEMJ/6ubsruGuHhQd2N3BXhwWVFzL6BBsAag7slIpMjvYnWzFgJosYYYmQg7iHuDxlXW2ThT1i+PKsA9UVnF9ia25fYZTh7a/5JxhjIYI9qOPPvvo5/9+HRlNtj61tAwrnMIvbp3oNSFk3UWhkccSp2DBGdV+hoA1osVFevpLB/V2pGu0d0hQgpev+5CRZIh4m2BWcmt/ACnZIbtlSwWbUz8IedO/xu2vBgOBJxAUECLrrv7ZXbRhj+ppUEFSlUHMb2/+o5lVQna6Z9Cd+bk5B8YFBFO8fhJJhqFyooj4XRAypDJHWgwG334sLDjtUMd7RqGx5D3ZYHr4z133+Zx8vTEQItvVkJJ4mjHAFe0dtDIeVw5HXyYSJiyNBDnLKTCbYQFDFjqtgA8B7b61h2K0ufWvWhO1WU7dKIg5AqpfqtpSH17gkmOtEmFQnVU7DEV29VrC76b8GOlSwbR5b+ZaeJJ0r2G3l4RUbZDReLUQYlYsYa6hgZyaK/uNiSfavV22CuQrBV7/3N3j61MMAgJ2j+/GWV/w0do7t97e/NLOFBPtcyTeb/YH1A+jub/WtC3IAJRC4d9LCcFrgPz24irt3Buf7oMmxp9vKdLdwTXnXanLWLeqEIjWowF5ZY5+9ECAKlcZ77YxoQnPvOJl4cw920QypTxV578uk8pEc994k4qGYrhiJ+JMzCqq2PPcPNdwKtk6BUCFlwBT41deU8EuvKLeN9H2ho0+wISU9jbSGbG9GltsGLNSTzG0OygIHcX8bszVPWVPR0t/rgTACsiMwOlPr9rom2q++70cxociV8BIv4fEL38Fj54PJ0B3726+SW45Ui6V6yAh+MUDK+0lUssYBNURGlawCUNJSpeQWh1qIKhnCx1tVZB7ygCsTn1+aiTVLIwbzB42xRhWnFjbujhvpy2+uYCMg3TnHgenY2FN3B4S8CpKS+2Hb8u/oFNElhIBwBPTRLrO8tgCezF9fI+lvB6pQpPakMPTyIQzeMwCqEFTOVWCXbdmrLuTiBBA1OiulAufXiUZly3uwwwR7Mrd206E+XhjQihock2ORL2CKX/YXe5pBMmpEtQIAp+1TmLvNgfrPboD6z27Aqh1Uo8OVojh4BLsUk4MNSNL38w+4lSNCcFlxF/QWkrOwNxqEEaDG5X1S6eyW3AkrpUUsLAfj7sUrnQn2SA892GK+LiXikMZ0JJ+86lmqB/OJFhdxWyBW3980hvnvT3dHsH15+EDyfpG0uiaJ+MDenf7jXSFJ7z//L/8Sv/unv+j/+5+861egKhomxw74z13cQom4H58G4PvW96DrJqZWKM4tyfvu0WHHr6qaKvBvX1nGj99UxY6sg5+9s7Lxmchc+DGim4maRaDtSkFxHFhrcRMn7j42edm0bJYJnbcxRmctPdjhHmdVjsMtEvGeXMTbS8S9eK6MbSFXlfMvMpHakui/6w19gi3keW0bCjJ9B/FYUIOCuASL12V/bivBpi0ETFfl/cJOkLvQiEx8xb8BrwW6YmCIyOiVaT6NX/qdnwTMQ/7ruwvtj63tAIaKbdV/DQBEIdKczF0ccWoOqB6tpCpZBpairX3YAlBSTQQ7BKWJYFt2PXGy6VWxh+w6llcFlmsbcy1GqkGDrZOeWjYgw0erS8h4MWNN/dea2jmiyyk7YCkGtc3kaqtBFYrUbhPmzt7juboF0ykyB9MYfsUQskcyaMxbUFV57IOoroBgL2mBSmCiXsF0iW64c3w7XAhF9/UJ9osfN3/0OH7w7hP44PIHACBRIg4Ayo/uAb1rCI/uP4X3Lv0D/NOV9+PCDYugO6QCqlwNegq7rWDXG1U0rPg4odsnbPzwUfnatEuw4QjY81t0XioUompDLDT8BcX1oFkSnkTswhLx4R4k4s4zS/5jeiw+PstDuIIdm4MdV61PIGHZpmi2pN5TlG2QbKs8PPK9KYZEaV8b6PkM6gX5vkOOCdM1ibu4zDC/NA0AuPPYK3H3Ta8GAAzkRpAypCpjKyXiXv+1Ixw8Yv0AhpaKyMPv2xVVaDAK/NTtNfzR21fwyv2bIBfmAmAx7QAbjLoF5Hcb0IY11ObX8HcI4RJsKuPzkhC6TuOiuqIEe9V3EQcAaNKnKJ3Kw9QDxU5PPdj15Aq2EMB3XIK9vx6Sh+/YntXLbU+wSd2B0BlESu0bnCWA6gzEdRLnNTeiy4wSURpjjqKpkmTZCTcLMhkQ7EPrNDrDkgXqns7T/ArK1ZUIwd6Zbz9hsRsChhGt1m8HEELATMWXiDtlB0om6mTNUgxKWokQbD8LPXQeECXaEkAJcfuwO0d1hWXioxtodNaugv3olIJPzwSD0V3LQVWFjjc5iOvSGb8d7FUb2qAKJXt9LdLkjuVg7oh3+9xIsBSDkpPZlxqLXvvhCvZVzPqPdzbKaDgEC9WtW9yMSMSzfYn4dsDc4lXMC9kL2o5g051pqO/cgysHV3GVy3tVJUSqKyHTnnQHgp1JFfzHcVFdHt53RxWTeQdXQ5E31pUt6ktkRPZgVyxgA/Kvz089F/l3skQ8bHI2HrtNHLjnHo728nAg2oOd0WIqimrMWK9QkBjum0sPRv6dWMFuIw/3obHY7+gG5g1SfcFAcazith6YRwDIvvB//GO/7G9LCMHOUSkTn5m/gIa1+b39YqEOMSMXjE7Yz2FVrMLQmwn2Fvfcuv32mw3LAYaHGIpH0qgv2z2rUAhkBjZhNFH5CTRVsOMk4gku4gB8gp1J5SLncC8S8bDJma5G5xWXViimXEXa/WpQTPEMzrYbthebiAFxBEiaARrtG5wlgJkUVKXglszTVQpqi9yDxvRbe1nYSU7iZDLsJL68LoIt5oPBY9qRq7kewaZEYDzbXrLDLQ4jTUG3WQUbkMTIk6zZFQfaqB6ZIBBCoA9rEYLNGxxUJ6Bhgh0jrzM1IB/Kwk50Eg8R7LFGdcP6sCM92G5lWQjgr5/R8aHPZ3CRBgPE3QvB5JCMB+dmwwJyXYwPvM5hjBvb2seBavJvVxXZcuET7JAs9zK/5FeKPJfRrezDvuAqZRQiMJp+8TqY9hFgfiGQLQ8mSMTDiDrxhgh2uILdxuQMQCTaqR3BNhTgQw+UMasFKpMzj2+RpIPJ9iABsiEVvvNTJyP/vjh9KrYtyKtg5zNF6AlZus0QFRvirPz9yZAOMtpeldOugk2EaHUQhxzDBGmV6GYzhci/4zKwhd1ZHg7IyrlQWj1rugE9FJCnW0oy2/3QjT+Of/xjv4yPfOhT2D1xKLL9znEpExdCYOrq2Z6/r1eE3cO/b30PAEDUITx1VZLCnTkHuza6x7rjTgnZW7/ZEEDKAMYOm7AMFSitYSHBl7J32YNdbv2OpBxsAIAmfYpaTc6i0W7tUK9Lgq1rJiiN/q6ePBwAbnJCfjYTm7/Afz1i2xNsEMDO6VBV0q9gJ4CqsmLN6xzc4tBiBhCitq66MSZ/08Qs7CEDcAntoXVkYQPRSuUMjxLssQxPzFX098Xm0Ey27SrYAMBSgbxfOAJ6jJRaLaiRez6vczCdgpnB7xXXY2PqQC4bchJfno7dh6jR2cY5ifvnRVoB0RksB/jNb6bw0YdT4IJEqkYjNKhShCXiXADpbtpHCFpaJ7YbqDuRYYxAUwDHvfY9F3EAmFud8Xtdd9bLMB17U/uwHz/xTfzR3/waFpZn4HDg8orcx/GUvdm+N31cJ5idCxb2kkzOwghXgcKkulwNJqKdJOKZdCgLuw3BBoAjww4OHQyugc/8nYrGVogrGAFKdmLUVa9oloiXqytYWpmNPOdwB3OL0qRrqIf+a/7ssh9fRG/snLYQrWCHTFq5gKCyNaoFHsFpIthdVbBLtqwu5jr4uOhMVs/X0IdN92f9edbtFanImK1l8fbX/BPccODOlu29CjawNTLxcP/191yCPUduAxdyp7e8eg1XbadtsoO4LaCpQNoAiiMMbDIFa9mKXVyK3UchIIjbK05lPn0Swi7i/PlViHp0gh1eHCxXV5DWBDTm7odPsAsw1mhyVnNNzuIWxr4TIthjJfdeSUlkPrWdsO2nF0JjsE0VqtqdS/B2hZJlEJYARDyJoCppyVMG5A3HTqpgUwLi5mEP2XVU5htorNWAMUSw999ym5TCKPJGszPfoXotBIgtYGSoTxC2Ezx5P69zMI1AiXGyVrIyssvLPeZ1DpZWZI62C6K450DYSVwlKGRDFewuJOJjjQpOb4DRWVwG9h8/YeBzzwffddexmIGMui73cE26SOf+a25zGVdnbm+CTTwnZCFbLuIk4gvLM357CIX0X9isCnatXsEv/c5P4n986jfw87/+wzg7V4XF5THfke73X28XhCvYhdxQx+1TZtCfWK4GlZheJOLZSAU73kk8jJfeEtyL2HwDXzu7BRMSjYKYDMiu/34LAOcvP9fyXHMf9uLyVXA3H7sXg7NwPFcneTgQVLAVKqJ+Zk6o17UZCpU3paZ5TLPJmRlXwfbl4cn3MocLnJohqHKyJoJNTMWPOJ2slTFg1bFYpVitxxOyrTQ6ExYHPyWvj4bp4IwjCf2Uc5O/zf27ttAh398xEX+sQyhVBM5eEThxQaARk5jSCfWG9PBJGUA+DaR2magxJTZGKxZcAJT6cWLtlgPIqAG4c3BxrgTrv5yQEXsumiXihCCQifsS8XzER6Ank7N6PMEuNaSDOABMphtQ52r+/pIYtch2wPb8q0PgOkNDVaAp0pSrj3goOdmDS5RWB3HAc6NGC8FO6aRt/BYN9WEfqKxG+iN7QVgi/qa3/iP88oe+5/97ZwcjI8cBFMFhbmCM0QsJnqzXLttgaSWWYLOMApZifh62U486iAOuMzxFlGArQCEXJVdxaK5gX1ymqK23gtOUgb1cI/jLpyVxVqjA//OyEn70AQ7R1BBHhgypyIBsb1BZ58U3XuegOt2WCogwqCalpsIWSOuBeiUsy11Yvhq57g9WN49gX5k97xvrXbjyPH7rz3/Pf21Hut9/vV0w5xLsbHoAqtKZuCZVsMOPTSODdgiTsiRzxzCUUE79qFXD8/Obn19DCJH3uw2QcqyWl2JbgJojosL913b+9fi5T2fx+VPtj4mwOfgJd6EjrYDsaf/bA0DJJdgZTUSdqV0pd5xEXFawaWsFu0UiHq1g+/LwwfYJErUGkEkTrHAF9fLapNL0YLCwc1NZysQvLscfv62M6hJnVv1Fg4VRtyJKDVy25D4UDI4jw9dgUVMARGmdVwohsFQSOD0lsFoBDk8CE0PAcvdqaR+1BmAacp6gKAQTkwrKAymI5S4r9hySjXkKijaVb6IzqD+531d/issVNP6/58CvBNJtxuS9wzNl9GXiahEgGjKpXFNMVw8mZ24Pttl0DTx0ToPjKhVek13xr6Ht2n8N9Ak2hMHQ0BSkDSlr7CMezJAxXNSgUGIINlFa85QBQOswlyG7NsbozCfYRGZgz9eDCdJkB4MzywEUIZAuvogD+drAq0I7ZQf6sAYaM/FgOoVaUH2CDc6hZKILEoQREIaIA6aqIFLBTjI5Q1YFXBOxMasKLsj6TO/QmoH9l0/rqFjyO153sIFX7LNAGEXdiBKtZgdxXUVHfwbeEKBaq7v+doPM8ZQEW9cCXwZNNZBJScnswvKMr1wBJMGeLm3OUDQzfzHy7xPTgRSuT7C3B4QQmHMl4u0MzsJINcksPXgVbENPg9H213o2FUjEV7qoYCOtQLj34pFGFWc3qE1mqxCWh+8Y2es/bq6czi4GZpInyLtwYk7Bf33YbJskIC5VADf6iB7OdRX5s+rGdLU4iNtCqq3iJOKK24veq0S8S3l4vSHjHvcdVrC8zNdULaUHQ33YLsE+n5DAsmNkn/94syXiYXn41eKSfFB4FWwhB897J61r15LTNLcvVQTOTAGWBdxyAHjt3QT3HafYNQqsdq+W9lFrAAMZ+G0LQ3kCa9AAdOnS3xFcBNVrRiBo+6gueiAH9f1HAK9dc6kB66PPgZ9cASHEXyAsV+S9KxLVpY229GCvVyLu+dp4eEBd8h+TLTBYvV7RJ9h5DQ2HINeq+OkjBM9JnBkU1Gw9bahG/cpVGF6IvEgwbYhWstZudOZLxPMaiEJxaSXkFJxrv1Ls5xynt+flQHXqy7+1oWQmqQ1r4A0u+4oIAUtFfy+vfyg8MKgKMDTQhckZJSDu6v9YowoiBE6v0+gs3DZQyxr4m2eD6vW7bgqcMEt6dHBpJtjdOIjzugMlp2zLrMcwZAVb9vSrTYfPq2IvLM0AI4Yv2ztUXdm0HuyZ+UvRJ1JH/Yd9gr09UCqVUHONeQby3RHsSAU7JAv3JqzpDtVrAMhmQhXsDj3YgJycewZZI1YNZxdeWONRmGC/5PY3+o+bncT9CjbLYMWRcv3VBsVKgswZAPjp4BjQ/e2l+QDgcPiLqZmmDGw40uAstmrPSIJEvBD5d5hgC5tDlDvLwwE5nmRTwI1HFIwPCswuAVZCjGkSyJ6Mvxh9S3kBECJR+ZcysygWZN9tkqP7RsE3OKMEU7k5+bj4Zv/1a9F/Dbju3E3j9+wScHwf8Lp7CG4/TDGYk6+PFAgoBaweFz4sGxjIBd8xkAX0ogZrwIRY7kIW7xHs8H8dXMjpmAntA0eDxeqaA+sPnofz6HxAsN3FwWLYSVwdQzqVh66Z/oJAtzFdtm3BcePh9JDE/IkZBWcX5WT/6LCN0dXg82i/gr09QQc08KIJx0E/A7sDmCn7k9WCGmsuQlQvTzlKZrWmPNwW5FVw1xXxUHUF5xZ6Pw6iagNuZdWTGoclUx0r2LaAriG2Mr8dQFQKohB5fPPJK/BeNrawZAWgOaqNeKuvYYLNgEw646+WJlawERw7TXAM2nWcWmcfdriC/c2VdKR6PZoJ9nGRReWbJBTRZdlAposFWN7g0ghum4OqbquILaC6h4+7palB1+is1qigZpVB3GzMMauK+oq9KaZOV0MV7PtvfRAwD/v/biw/sfFf2Md1h5mZ4J4z2IXBGdBkFFQJKthll2x3MjgDgGyXMV1heF4RuuAQJRtLtRfOvCRMsG+/8Yf8CtfFK80E261gp45Fnm+nYuFnAoJN9nX+7UthB/EYgk0SWnkI8XKIo+8xjQwUFtzfDS0le45na8BcHWRIBx3pPFDULNmjq6UV7B6j2FEUmF2UvdndgqgUZK9c4BmxahhvVHEhQSIOBDLx5dI8VkpdKCnWAD5bg5iTC9pkbwZlUQJAgUG50GIoArdNXBuCDaClgi0AFLIE2VT0+aGCJMfL3SumfaRC3QG5NFDIAKWCCTDaYkTWAi7k4rwnEafoSLABgORUqP/kcOBJwAXsvziPgiEX98rVFQghMNCUhZ1NSZNArw+72x7scERXeJEpXL1+6w01iKmgaNGXiG9TsDETfECHQN/grBNkfymDWoj/oQghUkbeNDDpaoeoLkLAdkvyleE2KtO9m2CIhZAU2CVpXgXbUASKqfY3KrsmkEq3ZntvF1BNyvuVDIvtv/agZBRQncJatkB11vp7MQJCCESTRFyhQMElV0k92ICMXvGwEVFd4Qr237p517J6XYtsNyeiLrfhDGwuAFPvPMkVfPsu0IRBGAHVGbgtoLqLa54HQ7PRGQ3H9NU2RyY+PXfBf/y+d/wSlNzN8h/1i/hPf/aTWGxyOO7jxYfp6SC5oBsHcUC2NHi92uWabMrknKPqPu6KYIeqnquVpe52diC4B442autK1thqhAn23h1HfAfrK3PnYdsBufIiupC+OfL+6QQfBuEIiHNuY2xWjYwTSQibfmX16KK/sDnQZqwnOvPdyv3nCIn01OuWBizWQQY10FsHwe4ogmQ7L7ByDuTSUv2lmwSHJoCRAeDqYrAQ2Q3CMvGbywt+9GAcwkZnl2fOdP0dvSAcz0WP5KXkOHs3oMl7/u0TFvRr0IEnHeMRG0GnxeyPqhBMDgMrPRBs2xFgVBqceaCUYGIIKOsayJDRuYrd3INNScs5mASiMyj/YD/oUbclpc5xQJMJOpw7qDUqKEYk4uPIuFFeXtxcrV6BmK+j8R+fgvUHJyESjJPCvdqGu4A2UyJ+zvmgyfGSyUZAsAc0kNT2bL0EtjnBDqNPsNuDGQxKlkFJJ9/ImUlbJOKqIquYSU7iQFQmPjhfQrlHjh0mUmRQg+UEubo7cw46xRIL283A1rfn5UA1CqoSaMN6xBW8GUpGgZJmsJZsMIOANlUBqOL2YIdWXr24pgG3D7tSKyWvlg6Gjc4qOLPI2hrkdUK4gn2eSDL32gMNjGaiH3rFvhK8RyWR/QCkCqPt9whporNdF2iaQQ2Z8aoxQFFCTuIhcrOwfNV3Egc2rw87LBE30pOwiSvtrTyH+ZUr+NU/+GnU6/WEd/fxYkC4gl3oUiIOBDnXXgW7Vi/7sTudMrABIBMm2KWlrr6ThCIwx6zKun0othIewc6mB1DIDfuVU8excWX2nL+dLxFPH4+8P+n6F1MVoO72X+/LdIznAqIV7ExzDzYXIO3YnkZbCgUAkAtJ/s1iHvTWItgtRdBRsyeTOFOX8ymiMWgQOLqHYDALzHX2wfNBDwQE+9byPKZLNFEBFI7q2iwn8XD/NT3qEuzrQB4Oi0t5eGhe413DSeP66CABIZI4d4Oa21efalr3KeZkpjqGtBZFRAu4ABh1q9i0K4l4GISSiLP+fgTHvFxZwUBYIq6P+8TaMzqr1stwHp6FmKmBP7cSGAo2oR5Twf7Uc4Yfw/amI3Woy/Xget3G1WugT7BhO7LK0snEaLuDMILs0Sy0keTVY2YycCt6U6CEwNSTs7ABgDYZnfW6ah92ECeDOqZL1L/gO0V0AQAsDi1FWwjjdgGhBEpWgVZsfxEQRqAWNfCaAyXf2ipA3NXXZnMOwwDyYSfxrqK6qmg4BJdW1n5MvIWXZUVFnTIwIvDjN9datrtQO+8/pqOm30ftVRTiVroj39MQoFq8u/52BEsxXyKu0PiorvlQVBfgOYlv/O/nScSL+VFMl4PB3uDy+WfOfBcf/ehHN/x7+7h+sBaJOACk3SqP14NdqQX2wp0iugD4pn5A9xXssP/DS5ZnXjAEu1RZ9rOt9+w4DEJIYkSUV8Fmudsin5FEsCP91648vNwAvnRawy9+MY03/88CPvz5TGSOsdpOIg609ORGoLVKxIGoK3zqwBDosBFbGU2C7QgoTBJsalAwnYDXOdIGwc4RktxGFwOyM+VX4W8qL0JwJI6VkSzsTXAS58+vQHjHqKCBjBrSCKvwCrmvELhn8hoR7KoDklIBMxjEHS7n/GrCuD6UlzL+bqvY9YYs0IUr2ICUmqdNoGZTtA/egjzfPNM9t9WuIylvQng83WXv9B9XaiUUQxJxNbXLn7uZ4Qr21WBuJKYDIh1GmGDrmom6DXzmpJw3KlTgDYfq4JfD8vDta3AG9Ak2LFtOoPsV7M4wxg2wNlVearDYeIG0mSwRB+DnOgLAoeoyzraRO8UhQrCLesTwo1P/tYDMwDYHlK5Wxl+syN2YhbnT6LidNqC5vdrxoxNVW1f/UzqQy/QY1WXJG/laZeJi1QLciIwp1a1eH2ytXgPAidLTcFxdO9kdmBc5jhyEO1WwnToH1di2XaBpBjPkOcAYgabK3xFoiupamgEp6nDcDPbNiOpqWDUsLMt4ppGhSZwP9Sm++Z77oCkG3vSyn8YHPvCBDf3ePq4vRCTiPVWw5b3A62MshyK6upGIM8p8s6FucrAB6ZAtXKnx3auzWLhyDftWe8CFqZP+490T0ucgHBHlEWyHO5hfmgZAwFM3Rj5jJmGBTZwNFja+pw3gl76Uxtv/tIB//1Aa376ooWIRfP+yiq+dCyZxpXpyBdvvs04AUSji+FBY8m+mOpvcNaNuybHE1OQ+KDkV3HVGN3W3aNll1ZJQ4pu95RwL+2qruJBgdLZzPFjo2EgncdFwYP/NBVi/d9Ing+yY7O2tNOq+QmE8U0Pe6N0tfUP2sWaDFPXIQojlmtomLZzrGsHkSPd92LUGUEhLWXgYaRMYzAIlmwAJJr8+uABRKap1AUug5wo24C7Ouef1eD2Yb5UrKxEXcWoE5NurQjesGvhcZ4IddhvXNRNfPqP5bv0v39vAYEpATAXv9XxWtiu2/YywYcubXp9grx9UJbH3EVMnbSM4SFpBIy/J1b7aKs7N90Z0oxJxHZdCE+mODuJ+Bvb27RMBAK2ogRmdyaySVaAMqFAS+mqoSlt6h3SVRKK65pMq2IO6P7EZc1dK12p0xp8PJE5Ppgdk9fqm1uq149i4WD6L3yj/Oh7SvgnlVeP+a5arbulEsHmDSxPAbdpi0AyqMf84poxQBTs/5m+zsHwVhBLwHXJxbciuY3V2Y8nEVc9MCcBocWdk4e3OfTvwW+//Mv7xO/4dVLVvTvdiRriC3W1MFxBUsB3HRsOqRTKwu5GIA0HVs1Ru1f/W6hU8/MQXIgZohFEo90pnbQbg8NnptmPn9YJzU8/5j3dPHAEA7AxVsL3K6cLSDDh3AH03BI2S1LgKtuDCNzgrqwp+8clhfPOCBstpnSP87bPBAm1SBVtwmWdC2hBsKDS2UJDLBFFdhtl77Ey9IT1pTHc31YLiE+yULlWU9R5ugd32YY8Vd/m5yBvlJM7Pl2D91jNwvnHVf47sz4K9dgIAsGgNAdSd0w307quzERBCgAiANBm3Oo5sW2w3ro8NyvOnG/O5hiWr1c0gRPZhVx0qY7faVKSFEFioElxdAi7OAA5DR07e8n2M+I7iuUYaOSIVNOXqCnKaI41iAEAN5mKeVJyA+CZ1ACBmWudKQNTkTNfSEXOzHz4q3x82OOtLxLc5OJfkulMMTx+dQbX4ld9OElsAYK5M3BActUvxF3ciPIKtUiCj4GI4oqtDBdu25XhqZl8YUrxrDSXLoOWVxH5jorZKxFUFKOS6qGCr1M8RHXezFtdaweYnA4L9aKaI1x5sYCzbutiytDoHIQQeanwND419N2JUY9uuh0CH85fXOZQEd/3tCKoGBi2mFqhXIhVs9xzQdgcDsD69BuvWNpiZC/qvR4uTuBiagE4WHIwO7t7Q7+vj+kREIp4fbbNlFGESXa6uROK6wjFe7ZBNy0nuamXJ7/308J8/+S/w//6nd+Gf/8bbIs8r9w6Bu7eSV85fxkwPvbnXCmGDM6+CPTl20H/OI3aBwdlNLZ8xXaItvFZMV4GqHMMfNwZkTyukmdJbjtbwW69fxf5BeYN5dlbBiTl5jZfqwdQ2EtPlCGkipbSZ+jISK+kthsawwkD3CzUe6m5EF3OrqcxkPonSNTkP7YVgk3AedmkhMapLUVRMDO8BAFy+egacr93YRHAB+7OXYP3n5yBm3XmXQsDeMgn1Zw+BuFLsJb7Lf8+h4jqMVNaDOofQGUgmyqQtB2AMLTGSYQwXgFyqO5m4AJBJxY/9g1kCqspc6yRDGYcLzC4IUJXivhsJdo0Cs6ss0WisHcLtlocVeR2WqytoWGXAkoshXAnGYdOtYBdpESTknyRmqrE53PVGQJ6XyRGccaO5jgzbODIsr1PuEWyTBTnd2xTbnmADQGZ7L7JsGIi7SNE8kdBUgJD2LpnanlB/5HS561V7wYXvIk6KOgQIziyEM7A7EGy3Smn0CXZXUNIKsjdkoRbjl39pjEGMqqCrCjYQyMTzjgXTsXF6gfVcwRFCwHFNOmqE4kQqH1u9BhBxkS40VbcsWxJE2oE4C5tDzfWroB6IGiy06Vrw24XJjSfdZqEJQXGhtKHVupn5wEF8pDjpR9mkVBHpSevjxY3BwUGMj+6EynQUskNdvy+ShV1dbZKIdycR9irYnDuRHm6HO3joB58CADx//gnfnRwASEHDzEH5vqLdwNIj8YZD1xPORyTi0sE4bWb9RbWLrjTZj+jKBASbEXktNhyCxWr0XstPBb/LU+5v+ZoDdfzJO5fxgXuqOD5m481Hgsrbp9wqdtRFvIlgKyTod42DQmILBQ/e/S4c338PHnzTT+HQ0duT35+AelOlkxlS6SNNMgkKGVkN7RZkWAfc6uyNlUVMtelC8OT69UY1WORYA5xvXoXzpWl/YYBMpqH+XzdCeWDU9y4BgFWy1398ZPQa0YyKDZJWgCZvFNuRCxpKm6KaoRPs6MJN3OHS4LTZ4MzDQBZIZyhqDmJ7qusNgel5YDAtcNdNFAcnCe48QpDNEywu9z5GhfuwwwS7VFkGGtIjwaYDvvrcq2BP0B3RD7JFULgKISwRf65+v//4rV71uhS05pGJ1LYvOvQJNuRKVR/rB9WozEGOi+pi7fuww07ikyurLQNtIlYs/8YlBnX8+tdTODEnV9VGMw7SHRbQrAaHZhBobdzR+4jCGDdAEyoAVKO+EsmDpgDFQucKNtDUh92oYqVOMVvusWVgugayKm/yT6YH8PJDdmz1GogS7OYIH8vpbvFNCOmg34cE1QhA5H0gXCXIpgt+9JF3DtCdwQ+8t7yClfrGDcjhCnZxcA9mXAnqrnznZIE+Xjz42Mc+hq995gQ+/s9OQlG6XwgLG5mVqisRiXg3JmcAkIlkYQcM6OylZyKf5xmEeXBeHciR048k3y+vF5y/LCXi2XQhspDmycSXVmZRqizHVrBvGgsmBs0y8XD+9ZMpSbAPDzkIm3a/Yl8DGU3e3798VsNyjUQk4t5rAACbyx7rdj3YjEAQtFTwRtM78JEPfQq/8G/+YE3EgXMgYwbvYykGqhGIhvyejNmj0RkhvkzcEBypK6XE1I2I0dk6+rD54wv+Y/a6CajvPwI60urdUmaBeuFQ8Rr1Xzc4yLDecqwsO5kQhzFeJHB4+774egMw1FaDMw+GTjA0SFCqU1TKAuWaQKUmUKkLLJUEFkrAvh3AoUmCgYI8JwtZghsOMhAusFLu7beLGAYzl2BXVlCuLAMNeR8RRPUXoDwX8Qk20fJZPEYm7kvE9UmcrcmFtEGT46V7ZJErKg/f3gZnQJ9gQ2FAyujPtjYCRCUgCmmJ6tLUaFxP7Ht3pHxZ3KFa90ZnYYOzb5cy+OJpeeekROB9t8cbNYRhVwXMTGvkVB9rg5QHR4+/ogBDYQfppenmt/mIOIlbrky8xz5s+0SgqXw0U8Q7jyW3HCwuBz1kzf2ZQgCG1v7eIBwBQkk/oisEqlJQFb6TOCDVK4QQDLgVLd9JfkBDVZek52B1BVdWNpBguw7iACCMAxBuWaqT8WEfL070SoqiFexSRCLebQ92LlPwH4d7rZ88+Z3IdrNNBHvnK3Rc1uTi08j0MvhM57HsWqFcXfWJ867xw5HfOeIkfuVUUMFOSQMsnQncNhGUbcMEWwgBflpWsOsqwzn3N2++fk0VeN1BOcG3HILPntQiJme5mAo2aSsRd2OSmgoFouGAFNYneTVDxI4aFFRjEaOzTkq/ZoT7sG9cWcBcJcFJPKYfvleIugNxQY7JZNiA8qqJWBd1hwMNTRJsUj/bGpO2BRBc3u1JtvV42U53BHu4ICX9q5XkbZIiusLYOUGRShNwR8B2pO9Tw5Kn2fG9BId3EagKifyWoyMUe0aBch2oNXr4/QY0ICMH3UMJFWwAmK/I7/JMzloq2Ig3OvNdxCfeD+HSxzccrvsL6fxyyOBsm/dfA32CDU2VFdY+1g+q0liC7RlFtXUS1xkqA/KC3F0r48Js8rZhhA3OHm/I1TiVCfzSD5XxQ/s66614g8PMsD5B2iAQ1iqvUxmQzxagKnIU6raC7RmdPd9jH/b844GskB/IYXchuZdpcSUg2OEeYQ+d/AN4ncvIlf7544OoBIRRcEdAVeX171VWvOrWcmketm2BEILlISm3zTkWFqY2zujsaohgV0kwgZhscz700YeHsFN4uamC3Y2LONBcwV7yHzcT7OYK9v4dNj47GJyz/NtdDojXAOH+6z07Dkdea47qml2YAmgKMOXzewYcTITURdOl4D7aOG8BJTlpOF/Ig7vEfVfMAtmbjtRBXN3yp0/oWE5yEbcF0MnMU5Fxky0uzgIgCeaenRCO6PJAdRkNGibYugpYvRidHQjOw1vKC5hLUHuFHd3XanQmzpb834QcSD7/L61QCCrncmrt6TV917pRcyAMBpJpPV4Ojx6HJKQMgvFiezfxuiUVsO3k5gd2Utx9C8XtBwTuO0Zw3zGCe48R3HOjjGejRM6ZSOgzqEIxOkiwbxxYWk386BYQQvwqdpZmMUEnUK6uypjAEMFerErq58V0xVWwRcyiXq1eAfQ9wMT7AQAqFXjj4ZA5WqiCvd0dxIE+we47iG8giEpAYwg2ISTiJpwE4ToKMwhUznW3Yl+6EjhUTmsm0hrHf3hNCffv7m6UIjaHkVci/UN9rB1xK9oKA1SVoOBKsLvpwQYCo7NHprpfAeMNjsxl2bM4p+h4xd3tJ1OLy2GJeFDB5kIApEsHcY2A9iXiPoKFNg6NRdUr4UUMT55vTwSyNutCm3JBj5iZlxLxbHoA05VQRmi/gt1HFwjLwCvVVZRrvUvEw9FOJTcLWwiBp57/dmS7uaUowdYU4MTuUdSJvK8435+HqF+f522cwZmHSOV0+pSsdKePAe7ftW/AibTvTIei+io/CO4FT5hSHm4qAsVUa0VvR47jzh2SjM+UGJ6+KomVSgX00BAgHAGid0mwQxVsYXOA0TUT7HBElwdCCJSsAl4PEWwNqPXSh53XsJKXUtxD1RUsLcUvHk5GjsPaKtj8VCiPfH/y+X9qPviNTOtE4nbdIM5oqytUHZCs6puuRT5TRL1B2mHHEIFlt/oKeag1gMEu/A61tAIqpJmyphLoKmkxVg4TbKIQEALsm5AkH5CRst2ARIzOjqBcXUG5sgJYgXJwvplgexVsRnxWGOckXm9UgL3/AaBSE/+2G+qR69En2IyAxLQObAVqDYFy9frwWNn2s0K1n4G9YaAKBYnJQQaAtC57WtshvT9Y8VKmOts3zlcIHnkqGFBqWR2/9fpSpKerHQQEYHOYA30Jw0aBsNaoNkIITD0wOlstL6JhtRpoAFGCvYfLm/WzswzLte4GxBM/qEJzXVLPDA3g2Fj7ky7agx0QbNuL8lCSB1fAdRDPKIk96dsR4VYRza1gBwS7tRc/7CSudXHddwPHsX3ZanNEV59g99ENwhJxf5LqovuYroL/eKUke7Cnrp71Tf48zDdVsAEpE/2aF21Xc8AfW2jZ5nrAhTYEe7JJmjy7cDnSf71v0MFYJhjDZ0IS8cojwSL7txXZkz7Zxj/hLUcDQsCF3Ciji+j2jgA6tYMxV64bnsc0OKBT6Yy8BjRHdHkIR3VRQpBP9+YkDgCruwpytyFAQ/GUYQzkRvxc97VKxPnp4LPbEeyw4izlrDMWrCLncsLuTXUkGg5IMXli302yDSBl4pkUUEqo93AR7atPAjNpS+HJgxBudByNEmy4hHzfDvl8qcu150gftnIY5YonEQ8I9kJIIk5AMM5kPCkp6iBFSYzjnMQvVieA4bcDAHZgFT9enAM/tQLn6SU4P5iHuCqvQTJmtm/D2EQslrrPMN9sbPtZoab0JeIbCWYw8Jgbia7FZ2RHtgk5iQ/Ol1oUWmFwAfz619MYqAZ3vg+9xca+we4nz44jF+zMQl/eu1EgCQ6spgbkQ07ii00TTB8pxZfw7bTlseWC4PuXu7tIL30/kIcP3pTtaGYVIdih6qptS2KIpToqZ5JHNqfOoRb6N5AwCCFgBoOwBSgl0FX5ewLxUV0DB4LrvjBfwkZgbvGKzNsFMDa0y3cQZ0RgIteXiPfRGammCnakB7vrCvaA/7hUkd4QzfJwoFUiDgB7Bx18ZnCn/2/nW7NtF/s2E5xzfPPRz+CZU99ree3c5WSCPTa0CwqT98fzUyek90ITwc7pAqYi/y6vgi2EQOVR9/6vUjxvyMWOdv4Jd+60MZ6Nvh7OwJYQIEr78Z4w2ioRrzkgJutc/U6AJyVmTQov1lRhzaV7MzoDAPtwwX9cOBu/CEMI8Y3OZuYuJC5wJ0FUbYhLbv/1mBmJs2zGybmAVuTJhcTtuoJ3DNpkSDfD80WhMf3XHjpFb3rIpAjGB4H5mKg8IWQXcpLBWRjMYMk52ByglLRUsL15VNr1iCpVu+vPb3YSD3qwQwTbq2AbaQzRYWhE/lZk2AAZdf+gJidxhwOP1H4YAPCqxcv4vae/A+W/PAvrd0/C/vgp2H9yNnCXv4YGZ4LjujEx3fYEW1elLKePjQFLsdiVum4WMci4CdtdxdtfWW5xFA3jb5/V8YMpFaOWOwhnVYwN9nZV2Y40mjAy2/4y2DAkSe0NnUSysOeTsrAJARmUF2S2UgNzLcm/c7HzCfT8HMPEzJL/78P3dO4B8ipJqqJFKlaWIxffqM1BdQqnmjDrEQIsps9ru4OZgZLF1OMr2F6rQGZIwZwqSzvjy6trlwWGEDY4Gx6cxCW3gj2R420jcPvow0NzBbtSDRZ/uibYqbz/eGVxHsLheOr5h1u2i4tO2jvg4Hkzj5MuuRSXKxAXrk1p5luPfha/9Ds/iX/6q6/Hl7/zl5HXzl+RBDtt5lAsjEVeY0zBxMgeud3UCXDBgfRx//V9A7IiPeYS45kyBReAmG/AvipX5VbHsnBcSflkPnlxjBLgLUeixDHTTLAJkRLwTlBZVCJucZBCF427CahbQCHmlGGGjDT07nmmLnlVt3JgADAOplGicgyamFpMJHI7x6WagAuOK1fP9bT//GzJJ0+0Tf81FyFT0vpFpJXeiHwLvL+ll4Wlmg1hMN/sK/JxjgCjnVu/wjiym0BT0eLoXbcATQPSXRDscHRlMwQXAG2SiMfMo3Lp7nK5iakAw/Jc3cf2oVYpt5iceQTb0NKYoEH/NRnSQcYCchx2Ev/8KQ0r2A0AeNPcyaQ/BwBAbyx03tFNgMNFJGHgWuM62pVrg2yqd3fRPpLBUjRWzqOpksw6bSbPhFEsDUgZ045GFRem4gfTc4sUv/99Ezp3MGjLHmzWRg6UBKvOoagEqX4G9oZBrrySFpKkKYgQ7IW2fdhyxCIC2AW5gPK9y0piBImH//0DigNulWmlmIbSRTb1klvBHsiPRO4Dtg2YBgBBoA5qsJaTdXv9iK5WMJOBW/IcSIUIdjiuLWwwdzknJ20md2DH9H71Cq//GgBShRtRd/oO4n30huaYrkgOttFbDjYArC4tACUbT7r91wpTkctI6XOcRHyvq8aKVLGvkdnZyfOP+48/8ol/hnNuLFeluoqr7rW2Z8eR2LlUuA8bgF/BHk5zP6Pak4nbnGC+QsBPB7/1xcFgkaLT9fvagw3oLBh7mh2siRDoZoWNaE0VbC5iDbO6RXNElwcZ1UXBLbcPW5NjZS952MUs8IOMbNQ1LBviXLwKKBLV1aNMXIT6r0kbefj0KkXFcn/f0qMw9XUaXXnHoIdFV1FxQPNarNrAcqQnSLcScQAYGSA4vAu4uhiN7Kp1iOgKg7bJXReOAGFRF3GiEBAajbydHCGo1NrHhvnft0ven1SiYbCaT5SIm0Y6YnBGhgyQ0YBge07i5QbwsUfk81m7gX1eH0NeBfuhMbDXTYC9ZRLKO/dA/cCRa0aw65YsmFLS3e+02dj2M8NMP6ptQ0ET8iX9XswO7dFWyPBo+XRr40vDBv79VzNoOASjjeB1Mtj76rJdE9BSBFqmT7A3CoQRENpqTqIqQQ82kFzBBqJ92C/NyoG91KC+cU0cplcpKs8Gk4Dcsc4VJsexsVyaB9Aa0dVw3JVpIaCkGJxqK7vnFgdR+hFdcaAG8yseWmhyEZbhh83uloaC4xV33feKcAUbqUC22q4C1kcfYURjugKJuKYafp57J2TCJmfOChYWZnB55gwA4PDeWzE2tAuAbFVxnOjgOJrhMBSBh/JjqFNXOp1AnjYb9UbQJlNrVPCv//M/QKmyggtXnvef3zVxKPa94T5s6LsApQAA2Ddgg59YRuO/PIc3nTmNIUsurE2XqB/PBQDPZIJFik4EO6sLvGJ/YHyaDWVgCy4gSFSKmwid+mOYcDhACcg67/NxztXUcAl2Pahga1pvBDutAY8WQgadTy/Fbtfs6N4L/AUP0n3/NUqP+jFQa4XwDl8PEnHYPDKHiLzkeav02NV1ZBfBUAGYXQqeqzUkf9DakGcP7fqREwk2i86jRgeAgRyw1MUtINyHvaM+Lgk2rwC27KNfCJmchSO65lMmrpjBMfOcxP/4CdN3Hr9p+nPS+RwAu2UQyht2QnnVBJQHRsHuGgLdnblmRcuGJdWyLJRcAkDK3RkB1baW8m5rgq2rQD7Tr15vJKhGY3utNUWSrEaHApK5L7i4LzxVw+98x0QpGC/xn/6q4LtU3kWDxpikG2o72HWOVD+ia0MhBwoATcdZYcBA1xXs4FjeqgeaqIfbyMT/8mkdN5eC/jP1SGdrz+XSvN/T2EywIQBTl31QakEBM1pl4rzOQfX++RMHqhJf1qeGfnM+4RkAANdaSURBVJ5iPpCQhvvwG2PBhKBxbv1O4mGCXVd2+4/7Bmd9dItoTNeqH9PVrTwcAHIhgr1aW8GTZwJ5+LGD92BoQJoLccFbjM8okTFWdcowo8pKgFi2rkkfdr0RXfS6NHMav/GxD/iVbKC1/9pDpILd1H9tf+oixJkSbj55CR87+Q3884tPoHS6AuEROoXge7QAACAQ2NGFf8Jbj9ZBifyNIgtqXE6yEZN00QyisaBqWufSFyTGkbobxEV0eaAaATODqC7GCHKp3o3Ozo8OwHFFu87TS7HnSDSqq/sKtqjYvjs0GTfbOqmfWogSbF1bZwXLI9ZdEmzf7T1BbWA7bqpJj4cybRIc20tQrgENtwWy3qWDOOCOh4TEy/e5lISHSThxs9jD26sKwe5RgrrVXgkKRJ3Ed/NdKHkRga5M3JeI6ynsYAHB/qcPD+N93xz1z6XVCzWcnGP4q6flyUtEAzfPBT4M5ECXP8A60W3bWL0hr7NWgs0BjYF0sRiykdjWBPuGPQT7W+Pf+lgHiBpvcqUwAl3rXMEeOhwQ7JvKi/jbZw389F/l8bWzKp64ouD3PiMvaIUK/CgNZHV0DRc6r3OkBlhstFQfawNhRA4MMRLxoYGwg/R081uDzwgR7L284uebfudSPMFeqRN89qSGW91qtFApyJ7OEs7whLaFYENGvIAQ6MO6lImvRE9eXudgOgHt5Eq7DUE16juNeJMZLgQKuSF/m7CKge0Krns2tf4q3cxcQLBXnODY7ir0CXYf3SHJ5CzdpTwcAHQtBeb2x67WlvDUme/6rx0/dA+GCuP+v2P7sN3zdU5x74kWB5L8IDYRtXpAsD3Tsm888nf4o7/9D/7zeyaOxL43UsEO91/nbYjZoEeXQeBlKzO47a+ehFiQq+pkdxrnVuX3jWY49C6I0b5BB//mFWX81G1VvPWGULuJIwAGIEFlFwELFQrqDojBpIv4GlBrtEZ0eSCEQMmrflQXIIs+VndBKD7MHMNT3mLOfN13cw5jx8g+/3EvFWx+ejXUf91+nvV8KKILpUfWXcH255LdVrCrDkiKAZn4uYJly/GoOSKrG+wZA3aPAlfm3F3i0pSuG1CNgiqIJdiygg1ZmPC2V2RFu3n7kQGgmAcWO2Rjk3ETFuRJdIgd9Oc6xJJjbsUiqFqAoQcS8QYB5hUdNqWYchdGlPka3v+pLCwu/86B1T/BLdRdqKEA3df9vXBdWG503gZyTayQITJlr6mCLQy25ZX1bT0zVBTS4urYx/pAVRrbgwvIXsxOUV10WAdcuffx8gIKdh3zVYpf/moG//xzWQg3fuOnj5eQOuNWsNMKyN41XOj9iK4Nhyd1ipOIh/tvu5WIa8t13DAiT5rzSwxXVltvWX/2pIGRcgVDtpys0X0ZaSrSAVEH8WDfuJDRLio4qCoJdGqXCafSVMFucCh5te/hEAMpwxQQQkZ1qYp07VcVDXm3X3AhdA4MD1Fcdgf1zHxFyjJdCJmm1xO8Crapp3GlHEzyJvsO4n10CUYZDDcnthzqwe6lgk1WbWRTBQDSRfyp85JgE0Jw7ODdGBoMVvhjncQHXIKtBo2eYqm7yeZGIlzBfv+7f82/580uXPafT6pgTyZUsA/Sil8ltgs6llnrWFzflUXF8vwTur92791l4cdvriEdJrWOkMS5G3LleokAgKhzkMLa7/MNS0bBxlWwAUDNqxHfGlOX97xejM6KKY6HsyGZ+DNLLdukzKxvQndx+vmulRAi1A/frv9aCOCUJxFvXAUal6Fr6yTY7m/QbQVTVG2QgpY4/tuOnIeuBYpCcONeAoUBpYqAEN1/FlEIoMRHdQlHBNFwHpjXg920D0xWsS0HsNosOhCFYkaT85sdbCcqC3KurPBA5bdYpTBVE2NUnhNXNBOCEKhM4LIh73u64H4r5oDJMTn7P/2KN9mdWbOrfq8QrsJDtDHi4UIARMaqMSrnGz5sDrFGBcp6sK0Jdh8bD6ISuVIXcyNJGU0nfdz7CQG7RfZcMQA/wYJVfcs1Kjo+ZuGHlVm5mg+AHiskule3BQfMQt8BekPBCAiJGRgUoJgf8qs584vJFWwUNP/OJOZruHtnoJdrlonPlCj+6hkdt5bn/efooe7UDIvL8RnYli1lzSqEPJ9VCm1IbZGJ8waH2j9/YkE16q/A667/gleVGXQXWhaXr/qTvPEsx0lTmhkpDoeYqmJqleL3vmvirX+cxzv+NI9nrnY3mHPOcXVeTvxHhyb9DOxBk7eYHvXRRzt4RmcLy1f92Ldwb3Y7CC4gyjayeTmeLSzO4MyVZwAAe3fcgEwqH6lgxxmd7XEJ9rwazORFl9WcjUSYYL/0jjfjJ97085HXU2bWl7s3I58tBmZvLsFWqcBoNWgFITcP4h8eegC/PXEUV1MuKSPApcmiv826DQrdXteubIYZCYR4QoBk1h41U7eArNka0eV/lRFtqzN1WfF2eqhiF1MiSrCfjsmVArB35w0AgJXSAqbnuovQ4p7BGWlfsZyrECzVAoMzAOuvYHu/S7eGVY4AGUhmvbbTnSlZEkYHgYM7gak52WLa7WcRlYIyEhthK7iQ42VoAYe6Pdhxf/dwARgtdK5iz6YCMr3Hdf/WseQ/N18lMOoaVDei67Imj+1Ldlu4545gXnOnsoKiyfELLynjQD0oRNCDWycP93+ZNosKDQvQFXlMVLWpgi0AbNFiQBh9gt3HhoKqNHGlTutSlkNvHvQfP1ibxr9+RQlDKXm15FIOPvyyMhAy8qDHBpo/oiMcLkApYOT6l8BGImlgoIQgZVIM5uUk7Gqo8tEMwgjgDpJivo57dgYTyoebZOIff8SA5RBfHg4A9FAe3SDsYh0m2LbrNKpAgCoEVKdQC2qrTFwASpt+tO0MolIQhUDYAqrr2uqpV7wsbMtuYNXtDRtJczwXijT69N838A/+Ioc/f9pAqUGxWqf4d19LR/wYkrC0OgvLVTMMDB31J319B/E+eoVHsFfLi/5zXVewlxsgBQ3ZAUkSLasuY6og5eEAIqR0bqlNBVsJzeTbJBpsFmohkzNDN/GeN/8C7jr+Kv+53ROH21Z4J8cOANQEzIMA5MIBmQ/k4fqYDs0g+PzATvyLY3dD++Bh7P2T3ThtBJP4dfsnOAJQaXctYUx6SAhHrNvgLCmiywM1WCSqK6VL8lbrgWAPpTimtRTOu4oLcb4EUWo9T248cKf/+JlT3215vRmiZPlO0mRnSkZAJaBZHg4A5jor2MEiR+dthcUBJbn/GpAtiush2IQQHN0jDc/0LiO6ANmDTZT4HmzBAdpkgkZY8vaUEuwaJYAI+sHjsJAPGPghJtUlJg2eW6xSqEvBtTDlHqs7d1hQxoPe+f9j7wL+7MeWcddOG4edQI1CD3av5FkX6g6E157RZqGl7ipFDE0S7eZit+imNWSD0WcXfWwo2q3UqV2qscmECeLm+ImzJdxfKONjb1vGv3nVKj77765g1LQDCZTB1nSh23UBVSUw+xFdGwsKIEYiDsiV+cGClESulhdRqyebWfky8TrHHr2OYXeB5bFpBVV33nByjuGLp3UonOMmbwKcU0HGuhv1liIS8WgFW1MBygWoLnv0CSERmbjgUo5Ejf75Ewc5oZALbYQQpI1QBTskx/eMzlQGzBSDybQ5VYJoMnOYKTF89DudJ2wzc0FEl1G423/sVQP76KNbpGKq1Smj83gjHAHUHNBdaWQLgy2vH4sj2DEV7AFToGBwPyceuLYScUIIVEUHpRQf/pn/ij07ZN/1K+95e7B/dQf216bBQ47nk2MHgNQNfqPpvkEHYjboEybDhh/VdbXCIHZlYBzQcWEpuL/uXG8CgCNAunQRJgqFYFSyXI0C6yDYSRFdHliKguqB0ZnCCNIm0OjhMBfd8dGvYguAP9taxb5hf4hgn/5+530PycPp/k7916HfqCwr2Lq+dpMzIQSE97N1I8+v2CBpJTb/2v9MAPo6ja6yKYJj+wiKOUmyuwGh0sE6LsIWjgDVW/eJajRRGj+YlwZrq21ysUsDwQLLYUUS7LQSzLnmKxRkPjjJPIJ9x4QVmUN5TuJCCNwAqYCooQ4yGRipbSqqTrCw06aCXbdkVjglBJomrzsgyBnvynthg9En2H1sKNqt1GmKvE/yDr0/hJCgii0A54lFpFTgJXssjA864KdKvtELPZpvG4GQBKsmDapS/Qr2hoIQAqrQ2ONvaMBAPtxz2Grq439O2BV+vo67J+VgYTkEj06pEAL43YflgHBzeQG6WxmiB3Nd98qFTc4Gc0F8lN+n5QiwdDBpCMvEeYOD6hQs1T9/4uCburgLbWmztYINRHvx+YiJGpG/59HqMobTHD99ewUffdMKUqr8nC+c1vHQufYrddPzgfRRhEyV9g8GBFusWlC/chlYrKOPPpKQjqlWxz3XgqUGMKiDjJrI5VoJ9vGDLsEuBK76cSZngKxiR3qwr6FEXNdS/v01lxnAf/2lL+OTv/4ofviV7/O3tf/8HJxPX4L1305CVOWq2s6xA0D6Zn+bfQMOxFyYYOs+weaCYLYs7wMXl4P763or2MIR3ctEFQJQmalMTEW6iK8DSf3XAMC8qK5GQL4KGfRkdNZCsBEf13Vk3+3+8Xvm9PdaXm8GD+Vf0wPtz/tTTRFdAGCsp4LNBeDG03U1olscJKNIB+4EENJ7RFccDu4E7jtGeurLp2b8vEhwARpjoEe0+O0BSSKH8jK2NglikGGFy1guj2Dn1OCaW6iSyDU4paewf9DGYEqADBtBm56rYODTVQxQqRY9o5xd07x7LRB1J4jhbUOwHScwnTM0EmxqSWd5scURXUCfYPexwSBUmkLFrdRpiqxUdTNw0FuCSQl/bCHyGn8ykOvR473LwwEZ0aWaDHq6X4HcaFCVAjELtZpCMJgPIiGuLrQh2KFcc7FQxz2TwWrsdy6o+PLjJh6/okLhHP949mTw3Ue7k4cDzSZnAemzbCn94paAkg5Ww8MycekgTvsRXQkgbuakp2TRNeLL/KIV7IBgv+14A2cy8viNWDX8j1fN4l031XF4yMH77w5W3n/rWynMlZMnNldDEV1VFjjn7gtVsJ2vzUB5fAH47Wcx9VetlcM++gDi+63DEnGx1ACfroLP1iDm6xCLdUmALQ66Kw2iUmRyhcj7x4d2+5XrlJn1Py+uBxtwCbYSJtjXQCLuuogbTbFLqqJhdGjS/ze/UAZ/zB2fGxzisrxuJ8cORB3EB5zAQdxkQErBWDYYNKZdM8uLbgU7rXEMmOv0T3BE907gXpxX1QZZh5GlZSdHdHmgmhxHwk7iKZ30YHEme7AB4KSZR9llkPzkipRNh5A2s9jtur2fvvg0qvU2JVCEDM4o6Wgk68WnaqQK1GTW+3oq2OAISJ5rmNl2Xx0BGO1btoSIxkauFYQQGDFV53ZgJks0OYszZaMabfGyCSOTkt+fVLBKp3I4aZ8AAORpAaN0FAUjmHwvVCnEXLDAPKWlcOcOeW8hCgUpynuOuFqD4AL2iWDefVbvrn9/vRBCKuBItn0F2zME9K4zhSFoK7AFoJKNOfA9ok+w+9hwJN1IVMXNp+tiIZqOmSCj7gV+vgzhVpqEI+A8uSQ3Ugjo4bUZLTh1DnOAtfS+9LF+EC1eIq4qwGAhLIlsQ7CHQgR7qopbxi1ozI3ruqjh1/5ULqz8yPw5TFTlJIHsTIHe1P2Ci0ewVUVrmUhLQiikAY23TyGZOK9z0BSTiwl9xIIazF+B10NVg6QK9t2TNo7fFRAJcjGQmL76QAMv3SMrd6t1iv/4UMaXgDUjLBFftCWZJxC+RFxUbDjfdtULhGDw3rUt0vXx4kecHDzyXNUGnUyDjqdABjUpT1UpMG6CjMhzubmCfWzf3ZF/e0Znc0vTsSRiz4CDElN8dQeuoUS8Xa6xEAL2Zy5FnuNX5PtuOfoAlPzt/vP7spb/d5BhA4QQjGZCBLtEUa0TzJRc/4Qc70ol3BZEgHQ7yXZziCEAkl17ybNuSRlxJ7dppRCN6jJ1lyR0iaLpVv8JwTNF1xiuwSMVaA837L9DbssdnDz3WOJnipWGH/dFJlNtHaMXqwSzFXmsCjTwVzG0dciI3f53ALKS3cnojLdvAfB8dzaigr0WMKNNRTpmHsq09n9zxpTnSS3hdpA2czjhnPD/fUQ5imLo8l2oUL+CXSMUC4qOO3YEBNyXidsCYr4O5/mg5eBieosWpescQqMgaXnQkn6/hiXnl14UHmMIZA82l+R6DdFs60V/dtjHhoOZ8SZnilvBtrtUeoWr2M7jcvWs+mQNWJU3AXo4v+aYALvOkSn2Dao2AzRB2iSjusIV7GSjMxoy2XAemoF2fhW3jMvjPl+hOH1FxUS9jHfNnXXfACjv2NOTm7xHsAu54ZYKhaYCEGiRbnkycWvZhlroR7y1AzOZX0HRVDc6gwvfRRwAFpaicW1kTzAhE6EeTkKAD95b8SeS37+s4n98KV6yOONXsBmuVOQ2O3LcL244X58BvMnsbYMwxtfhetPHixrpVAzBdivOwuYQCgXdmQI7VgC7tQjlzmEo942A3TTgS1UzuegCzvE9d0X+7VWz640qSpXWvtm9Aw5ACOZdmfi1kYjLSnRbgn1yBaKJ0Hny0rSZgzF4LwApZ86WQvJwdzF1PFLBZjg3o/g+DBtjUEi6n2S7OcTQaVtjr05oWHJx0ejQq6sVVAiL+wssKaM3IqgrQFaLkYnHxHVF+rBPJfdh9yQPXwjmYTmc8x+b63ER5zK+CoCMlOkmC7vN8bXddJBrRbATF+MJcWMtm7bXk3uwASmDzqaAamvkOQB5zT1jPe3/+6XayzCYVqBQ+ZlLFQHh9mBf0VIQTglHhoKKNhkNrnVxpQp6Tl7LS3wJy+n2yocNQ9Xtq/eUgm0Ith6KwousV1hcvv8axKn2CXYfGw5mKrE3BkoIDH1tBNuTia9+JZh00+OFte+kA6T6GdibAmnO0fq8qgAjgwHBnm3nJD5kgL3ErXQ6AtZ/P40fKqwEGwiB9195FqpbxmQPjILu6H4wdxwby6tzAKIO4pwLUCLbGUDQIt3yZOLc5lCz/QWadmApGqlge1FdxVDfaXNUDN0dyBD5ueggnjcEfuGB4Llf+7MCzi22DmEz87KKpmSOwuLy9X1u/7WoOXC+IavXggJ4yUjL+/vow0NcBTttuudonScaYIUX7Foq2LvvjPy7k9HZ7oKXhR0YP4ra5hn2iYoN54lFv39aCIFaI14i7r+HC9h/d6n1+Sn5vrkKQanhXost/ddy4WAsE/xN06sUZ64E43MvGdhJICJE2DptS2VuMXQGpDov4p+7IjC/3Drn6RTR5cEY18GyKmw3pUJVSM95zZ5M/BvakE80+TNLLaqIG8JO4qe/B1FzYP3302j89jOw/vtp2P/7EpxvXQV/NGjN62xwFoyFGX7af9xuQaYjuAgWzCnpSLAJIW2NrGwuK5vaNRq2iRqNY/PBZVpJy/ZdnKvFHFBPaLlMp3J4wn4cc1wWEu5U78IQG8SAIXeCLFt+hXxKSwFLX4Zjh6LzQgSb/2AepC63fdx6bH3S/x4g6g5IUQ/upwly+ObrzFN/cCFksS99bQ56n2D3seGgbVwazV4I9rAB4pImcakCPlfH6lddgk0J6A2Fde2nkemf/psBqpJYaZOqACPFYDKZZOrjgb1pEsTLtC7buP8rz8J0w0FfuXwFN3vO4QMa2GsmEj4lHsuleX/iEZYsW468OatUDu7NFWxPJq6kFbAuJl7bGeEVe02Rx99ygPHhPb4k/8mT3wEPab1JSvGlteJypaWH8I4dNn74qJyc1y2K3/lWVIIohPB7sLOjL/Of9/qvnW9d9Q0SnSMDfhxcH33EIZ1q4yLecEBMBqK1vw9kQxXsQm4YOwb3Rl4PZ2HH3RNTKnDPZCPShz19qQcHrB5h/Y/TsP/7adh/LNVBtmP5GeBJE2v++IJPpsmOFDAoS7ZipgrBBU6HKpyy/7qVYDdLxE9HCPY6Dc64dKSO63VNhEZBDNbRGK1al1GEpRpQqkTHvU4RXR6UjILUbgPWYtBfX2jf8twCz+hsVSjgHiFetvw+eA87R/cjmy4AAJ459T3YX7oC/sQixMUK+BOLcL46DfuvLgQu5IxElEVxCBucGY1AlryuHGzP/RmQapA21VwhBAREW+Mtr4KtXiOCTTUS79ZG4sk0UUg8IQ8hkyKJxsFpMwcOji/UvwAAYIRh98wYBt3zJLsSZNtP6Slg6fOo1kKqsZCTeFgJ8bj92PoWTrqEEAKkuUUjoQpt2UA+dL0ozFPMuU9cgwxsoE+w+9gEtBvEUjppyadrB3pzMDmx/+4yrMuuCcOBLMgaM4gdm4MwwMj2T//NAGHxA4mmAIP5YShM3jBn25iceZ+jvmefH9nGrlbxS1efQMGu433TgbGZ8rbdPbcKLC6HDM7CGdi2HIAVwUFUIgfF5r9jSIU+ovUjujqAhvrhGCMwNDkQMspw0+H7AMiFjnOXn428j+xxR0ouIC62StF+5o6qX+16YlpBOaSYXS0voeJOErRCIMXdN+hA1B04X3Ml6QSw7wyOex99xCEd14PtScTrHCTfWQWVyxf9x8dvuBekaS48NBgQ7CSjsw8/UAHPBd/1h19mmFrZ+PFLOALitLx++JlVCCFQbwRkWI9xhRY2h/254F6uvGEH6IS7XYMDC3XfAAsADhTtWIJtqkDBkJOD6dUowd5VWGfFngs54+6ygg1IF2eS1zq2Ha1W5OT+2F5gZhFoWMEB7hTRFYY5mQLVCRx3AdA0epO0DqWCidXKvmDexB+JmsRSSnHU7cOul8qwvxVt02kGOZDtuIjkRXQZigBrnPGfXxcRc0Sg9e0kEXfc49tGIm45cmy/ZgRboQCJ96eJJdgJ86gwMqbsO67FhGF4i9hfqP+9/9zYuRwGDXl+jYdiUqe0FLD496iFTO/CTuJhov+49dj6pP/dos4hdCol4t4+JVSwhZDcwgNj8lLn3P0Jr4GDONAn2H1sArwKdpxhS683N3ZzIK/z3UkBsGOFNe0bANg1DkWn/QzsTUKStIlSAlOnfhZ2O5Mz/7NMBcpPHfRlmMcX5vG757+DnCMXWugtA2A9OId7iDiI56IVbF0FFMgKLI25MasFFbkbstD6LQZtQZqULGlTLmAAwC1HXuI//9hz34hsR3cH1RJ+voRm6Apw9y55/LkgePpqcFOZCTmI89Qx//H+QQfOw3NA2fVvuGUQol+97qMD4irYfkyXEL75TjscuuF27N57FExR8OY3/EzL6+EK9txSPMHO6AIvvyW4ntRSAz//uYxvArZhWGoElcI6ByqO338NxEvE+XfmgHk5wycHs6CH8iBjIXnplWqkgr1/0Im4F4cjGb0q9lyZ4sQl+dtSIiL92WuCIyRJ68XUNK9G0iySUKoCO4eBm/YTHNgBXLwqW408tHMQD0MrqjDGTTQW5IqhZ9jEO5l7uSiGCPaVyUGfbDrfnoVYjTrPe33Yr9ZfA+pKf+ntRWgfPgb1Hx2E8vbdYK8YA3v5KNQf2d32e0t1giurbr75gINaPbhnG/o6TM54qFij0C4INtoeX9uRve1rdYRfL4hKQFjUqEtwkdiDHfdcM/w+7FiCLe9TM3wGj1qPAAD0VYpj5SUAwETour7M54DaWVRDpDvsJO5h2rmCaT69JRVs1ByQlAqECmkiZoHCcgQUJXqdKcw1VLbdLPVrZEbbJ9h9bDiISkFYfBZ2rwSbFPXWQHsC0HUSbGbQfgb2JoGwZGmToQODeTmhXC0vdYwJAWSrgPqeff7dKuvZZpoMypt3rWkfowQ7VMF2ANOUEV1EIbEEmxACY8LoqkdqO4Oq7oq94xn3BOqVW48+4G/XTLD9CjYAcS7+/Dg+Gkhkn5wJbipX54M+0ArdA0BG/AxrNpyvTvuvsVcEpKaPjcETTzyBO++8E5/4xCf85z7xiU/gVa96FV7xilfgt3/7tztG7VxvSHIRF9y13+pCxaKqGv7wzx7Hp74yj9vueAWIiN43OvVgezCHAjI/ZNVwtczwf382g9k2kXW9QsxHHZPEQt13EAdaK5Ki5sD+Qqh6/eBOAAAJmVSKEME2FIEdOR5UsHOqlGG78LKwBQhOXpIMczzD0aGA2hlehbNN+1oz2GQGdKw9kXC4ACHAUJ5AVQhuO0wwOghcmgsiurrtpSaEILXXhHAEuMV9wlDv0tPO68EGgBligN3jjmsWj9z7AEmwKSh+2Hir/xx7+RjIkAF6KA92zzCUB3dCeeNkx0WGsMHZgaKNWr39gky3EDzI1CI6666C3eb42nZns7nNBFEoiEIiBsDCESA0qYIt5x6d7plJfdimkQF1kwc+H6pi33JJ3mPCBHuq8k0AiFSwgahMHAAesx4DEK9k2WiImg0yqEcVJKy1/bDRkEWRMMFWPYl4g8uFpn4Fu48XC6hG2hJsSrpflQVklTIMsjsNklv7ndKucagZBsPsn/6bAaIkS5tSGjCQDxudda5iAwA9lG8h08qbdoDk1lZFXgjFQw009WCndUBYHMxkPbmS9xEFUQmoEqzYh91b9+w4ilxGqlOeOPEtODyQgJJhw1cs8HOl2AnG8bGgIvPEdPDBfgVbKaDMCwDcns/vzwErrurhWCHiUt/H+sE5x0c+8hHccMMN/nPf+MY38Bd/8Rf4xCc+gf/1v/4XvvGNb+BTn/rUNdzL3pGYg2258TFdtokwRUEqnQVRaEumb7cEmxSCMW83lQR1usTwob/Pwl6/BxgARCrLgCTYtTYE23loJlCF3DwA6i6Gk/FgAm5drmLKrXDuHXBA6zZQku8JxzECAcEOY3K98nAAcIQkMax1zK83BJ45J1Br9L74U6oCGQMYdE+TbIrgziMEugpMzUWdjbuBPqJDH9JgLVjQXbJY6zL2PCwRn69QsFeMBVXsb81CrAQfdGTvrbhPux9jTJ5754YH8Funi7DW8FOfjhDsQPGgMBWKsg6VlyOCymOCcaoP2z2+bSrYlgOkr2FghJwX05YKNmHJFWxCicwDb4OkPmxCiN/O8u3Gt7DCpUns5MV5ZBzLJ9hVyrC4/Bn5uB7t1w8bnQGy/xpYZ299F/D7r5tbcBiRudYh1C15XNXQb0gpgaIATt1tM1j3Ct3a0GcYfWw4PGmtiBmwNMV1E+7hRh6WiQMA6yHrOA5OXSA9qFwzqdCLHe1IqaYSFAuBIVm3BBsA6P3DYC+TEU+Zl6XB7h5a8z4uhSvY+VAvrgB0Va4ys1T/9rgeUJVKQuEOiLrrzM6FAKUUNx++HwBQqizj9IUn/fcRSgI38bLty0/DGEoL7B6VE8aTc8xfwfcJdvomf9v9eQv2V0LV61f2q9cbjb/6q7/CsWPHsHdvYOD1mc98Bm9/+9uxc+dODA0N4Sd+4ifw2c9+Nvb9jUYDpVIp8l+tVgPnfEP+AziYKkBYb/+lM61OU5l0BoQ7oGkKkiIg4N3/pwoQw32P+x0DhSEwJlUYc0tTIMx1+W3aFzoYKDXuzZewIycH0QvLDM/MsZ7/trj/xELTtbZcRyPkLKzrhr8tuAPna+51RQHlDRPBvo5qfjXRvhIQ9ANFG1gIquR0xIh8/3iMmdlkwVn/30Y4iE5AmWg5JssljuE8x2q5h+Po/lepcowMcBia8M+14YLA7Qfld5oah6b0cJ4ywNhnwqrb4C6jdER3f+NQyIV9vkZAB1Sw+0JV7K9diZzXP5Z7t7/976f24rPP6/jcKa3n3/b0YkBeDg7bqLnEzdBT6zxuHNQlxMQg8hgmbUs5iElAaevx9f6jhMNQxYbdU3q+BzGAuOeJIEL+JwSECgjSul9gAnD3F0Dwnqb/0in5X8OOuX+5LS4WLHy58SUAAHM4Xrk0hVHXW+GKZgLLXwMA1KxS9J7TFGH5uFvBNgxjnce2w3+OA6QIaIb6xw8AiA55rEPb2hAYyLf+LoYuQIQDmiKgqgAjG3gsu0Q/Z6aPDQczGZScgsaCBaUpykhTZR624wDocnGTFDSQvRmIs7K3Z13xXAAcS/QzsDcR0pxD9so0k21VAQbzYYKdHNXV8rmEQHnTJJTXjmHnqyo4900CscbiRlIPNiDPUV7lYNco2uHFAqrJVhFuCzDI31Vl8tqnCnDL0Qfw9R98GoCUiR/ac4v/XrInDTwnXWz5uRLYUGvp4a7DdZyfUWFxgufmFNw8ZmNmziPYx/3t7l2YARalzpIczvlVtj42BsvLy/iTP/kTfPzjH8dHPvIR//mzZ8/iwQcf9P996NAhfPSjH439jI9//OP4/d///chz73jHO/DOd75zQ/ZRGQDueh8ArHbaNILUTHSRTdM0HH6lBcCrBrZGU7VFAcAuhN4vMTo6gqmpKSyWrmDPfXKc8/7vQQiBE/+WQFgCaV7De9+4jF/5Y3fxeUcDe+9ffzbtxb8tIfytWb2EgcPzwX7uZ9j7gPwNa6fqOOvmyWdfkcHOt4V/F+DsAQ21Z+tQF2vQRx3UKcM995QxVF+Ct6xavAsoPhAck5vzFvDN6PV52x0V7H2g1YthbbjQ8syuwto/zXvv+fPR5xmABw7Lx5d6PEXAANwLlN0jcecbujuuxgIDPiX9SKoGx94HVmEfzeDUw7MQdQH+nVns/BcZqEMKKo9XUeN7AABnaBmPpeV59L0lig8+0Ns1cuHv5SIUowIvf8MS/u1vSIKdyZn+ubJ2SN+dPTctATcBna/f1uPrIelYbSmOyv/VUI08fXn+MjAfs/3tkhwDQGk8+W+/ZU/88wNDaczINFJ8TXwVPwzZEvCOuXNQ3D6+5YwAuHvMds1HjlltnOPs/5CPy8UylhfkmDx5E9mAY9sNooqefa9t7ZfwlnSb92Z/JFjmEjAKLMwCC1g/wgvJ7dCfQfaxKdBHNdSmai3PK0xOsnuVIilvmYT96YsYfoOBlSF9zcQKkC0cZq5/6m8WpLQJbQh2SCK+2D3B9j/fVNYt3Y7rwXa4AKOBlJnp/Qr2ekBUAqISCFe/Gs7CVpVWo7N3vu79/r/p7gy8S5yfK4Pd0apWuPNQDX/+kJzcPTntEmy/gn2L3AchcOjJYIarvKpfvd5ofPSjH8W73vUu5HJROXWlUkEmVAFOp9OoVCrNbwcAvPe978W73/3uyHOKokDTNqZp8vRjFTzylwsYPtybtLFai95nTD2Ls1/Pgs9UQA/kwPZ0kcEUgrA47O/OSp8SMxiDCqkdmMIUFhYWcPJrKg69zMK5b2UgnKb7XE4F5huoTzlgM8EK9dOPpHAzX//9qn4iOrAuPw2cC/1ktasFnP26/JudJ4LGz6qS9Z/3YGUzAOogApisl3DKzKOwoGDmkeBvWizlsRJ6H1lq/RvMWbXls3sFn6uBTqTADkcNMVcrAtUGcGwPwfdOCOwcBliXY0vDEphdBl59B0Ex3/oexxGwbMDQex+rVp5awdJzKxB3Onjkc2lkdQKlg+mVzQEiw6pw4aLm/2b03hKcr16FqAuc/XclqG+bROPjV/33/Y1Z8eOPvvOsgce+kEPe6E4u33CA510zul15B1MPZ1Fy45+YSK3ruPGZKpSbcth9aAHnTw7CfnwZdCz++uVXq6C702AHkg1Pz00LvPxWgsmRa6dcnP/GAurzDRgjsm/AWpFZ1MOvGo7EWgKAU3Fw9cuzoCmK2v4qMleyLf4NHs5Pc5y4CIwNNs233DYpAJjXl0F2pSAuVDBgB0S1ngoeX3yS4+xocMwEz4BMXIWYquL54hXgefn86tniuq/JduAzVdA9WbAD8jsIOCYLl3D2qyZEiYPk5bjAucD8MnD7EYJCJvq3n57iOP9EFUM352BNZrC8Crz2HoJsauuOf59l9LEpUN3eiWaSRQiBoQlUe1yQpjvT0N9/GMUHVrHy9bXvl3CzFc1+BvamgTDplgkHLXcYTQGGBtcmEd9IeDFdqqIhk5KDsm1LAugR7OYM7D56AyEEzKCwluVEXFXk8fcW13aNH8RgfgQLy1fx5Ilvw7Ytv2eP7ErLPn4BiBgncUBWsD084RqdzbgmZ0r+NtgA9tdWoLmSVLIvA7p38yYF2xHPPfccnn76aXzoQx9qeS2VSqFUCo5duVxGKhU/QdY0bcPIdDwoHIuA2725COtKBpQyPwc6ZWQhHAJhEUBXIXrsshOMAIJC1ACEIgAjTuLzMziEQfk9zQQ7rwHzDaDiYJgFBPdqibZu2yOEEBBz0QqRmK+jVgvFdCmm/z38amjbotH6/SGDsL21Es6kctiT5xBXQzL0wej7RsxWYrczy9f/t9UAobCW4zW/IrB/B7B7nOCpswKrVSCf7u67lsoCaRMYyBLQGFJOKaCusQU5tTOF0qkyLDhQKUGlRpDtEPfFABRMgcUqwXw5OB/Yy8bhfHNOysS/PQt6fAD8ySUAwDyfx9dCi2BcEHzrnIbXHezOWe3cHIPjkr79gw6EQ3yTM0NPr++42QSCSPm5IAxwks9x0QCgJF+PnAtwQaCr8cdqq8AMBjQQEGVb9lkzjbXelzSAggK2fJ4IEiHY3OZyrkUIMgYFdwQcG6Chzwl7SGRSebC7hmFfiJbwzaFg0bNarTT9xgTqPz0KLFt45mtfCHZNSa37mkyCEEL+zRmt9XgqCkStDrhkulqXLdamSloWHxRCYTcIoCnggsIRsjd7K49/fwbZx6ZAyaqgJoNTa+1XMA1XIn4NwBsOoFCYuX5E12aBMALQ+LxHVQFGi9eeYC+syBX8Qm7YH9j8nEy3BzLOQbyP3kAN5vdgE0KQNmQF2/v3zW4Vu1ov4+T5x/33EZ2BuFm6YroKUW21SZ0ctn1jn2euKlitlrFSWgBA4RhHAACvagSVGnZrseUz+lgfHnnkEVy4cAEPPvggXvva1+ILX/gCPvaxj+FXfuVXsHfvXpw6dcrf9uTJk9i3b9812U+WVcAzKsTVWux9KQmEkCCWC9LgTDgcoKRrgzNAThpPXRYo1wHoFL6dvosIwW5ndJYPFiGGnYCozpUpytVVfOvRz+J3/ueH8Gu//0+CdolusWIBVnS/xEID9XrI5EwPuYOHHMeb43wAgIaMzvbUSpjMc+gKAgdx0mpypilA0Qz2Iatz5PWNcJ4XIE0GWI4jwAWwe5QgZRAMDwCleIFFLLx4rk6V5bVAHVBhTMjfOmt27yTu3Q/nq8Q3WybZUC+2LWD94fN+yscX+Bdha6ORz/j6ue5XBSIO4oMOHMeG5VZH1+MgDkCGG3tkiBJAiGRHbYK2Gdi2I5WT2jo81zYCzGRRkzNHgKokdtHPUwI2u2YD8n5SOVWGtSTHxaQ87GaCTW8ZbHHUTo8EbR3VWms7gozr0lFrBK8Z+iaahDY4hEoi+dc+dBq5fzcs+XfrMcdVoZDn+TWcx/VnkH1sCpQsg5pV4JRbJ8amRprnF1sGu8ahGBRmtn/qbxZkBTuZYBfzQ1AUOVGc7SILe6PhcAcrq7LhqTmiS1Oktwhh8RFdffQGlmKRWJKUGW0PaZeHTbw8bAGIizEDPwFuGpeTg5pN8P2zsl8P5gEIIif8d6zM+dvTG3rPS++jPd72trfhr//6r/HJT34Sn/zkJ/HSl74UP/ZjP4YPfvCDePDBB/GXf/mXuHz5Mubm5vDJT34Sr3/966/JfrKsCutQASSrQsz2RrLDUV1pIwM0OKCzriK6PJSqcoK/UgaIobREDhUHxvzHswvdEexctQZK5ED66JlzeNs/PYh/9Tvvwd9++Q/xxW//Of7n//7NrvcPkNXqFlgcTil43gjF84jZ4PkZo3XCHc7C3lMvYf+g7VbJ3fcNaC2kFwiysAFgMu9gQ7xICWnJwl0sAQNZYNRtYx8vkq4duzkXEAIYLmxONYwQAnOnvIflzGBRshO8LGwuCJZD7Q3s5WPB3+/2zUOjuLhrHtDGIp/xyJSKcpeEvjnfPOw4n+Q0LWwOfnYVopFcZRFcQFA5jwAkyROMxpJNwK0Id8jAVljvMbEbDaZRuXDgwRGJ8wxCCYhKY9N4eJ2DGAy8IY9lUh52mGCnUzkQg4HeHDUJZiPB4liYRDcjHNdnbGZMV82R7TOp1oNFtGgeer0B5DLxqiRGBAhx33ON0J9B9rEpIIRAH9HhVFtvotdyFdGpCTCTIpXun/qbBle2FNcnrzACVSUoukZnvZicbRRWVud9h9YwwbZsIG0CwhYyYqpPsNcNZrAImTG0aEZ6hGA/G+39oKE8bN5FHvYjl9yJo+sgPmjVML4iJcpkRypCTvrYGBiGgaGhIf8/XdeRSqWQzWbxkpe8BG9729vwkz/5k3jHO96B+++/H29+85uv2b6KrAZ2o0uyr1a7JtnhSWrKzAJ1LnN5eyDYK2VgZACoNQDo0UUnABgeCFQ97aO6gsHzD//wX4JXZZW6hkE4TpSFnTz3OHpBhGCHZJTKcrCv4Zgu7hLlZabio0+0tl6QrIqGKfd3b20VBwbceK6aHBhIjHEhAIxlg4FjV2FjVuKJEDLiJ4TlMrB3XCZbADJqS2VAw+58XlRqcqwY3MSOEyUjCYapeNngnferGJLYz1WC8YtkVbD7hyPbsruGsPfg8RaCbXGChy91N0kLV7D3F51IjnIiCbO4jEtrtDm23K1ee7FqCpEa+BiyKavaom0F23Kkua52jQk2UaPjn+ACRE2eZ9AEgu1UOZRM9D5SzBM0mhZiPBdxAH4rHLs7dB7oFFohOE5xFWwPtQQly0Zj4aqNkqEhLhscKkV4xY0LJLZOMMEhFNqysLaV6M8g+9g0qAMqwNEi67mWq4hOnUPJq9D7c+1NA1XcHuyECWxKAwbdqK5ydQWV6la4UQZIchC3HSBlANwSoAq9piufLxZQNTr4NS+uTYzsxfCgNL17+tR30bCCSX6UYMf3Yd80HswonltwK94uwb5rtV+93mr863/9r/EP/+E/9P/93ve+F1/60pfwla98BR/84AeveTQiyWtgxwZA8nrXJDvVLBFvcJCc2tPfUmsAacOtxsV4O3TKwq43qvjs1z+Jj3/5N/znWEkAdVcGrg5hx/iNeMsr3+dfTxemTsC2uyzJIpqB7atHAKil4O/0CLawOMiyLHNe0VL4wWUVlZivms3Kz8k7Fg6bNYi5kKx8OIFgN1Ww1wshBARBpFpeawhoCjAxFPxthQyQzwCrXZh2r1SAYk6S7M0CdQmjyeS+NrqoKhebsrDDYC8fC+SyBGAPjGLfnnsAKmX6CgJ9/DfOd54gcQGcWZCTuZG0g5wuIlXORBLmCLdNos2150ivHH9RxG07i32PIyAU2pao2vb1IRGnKpVydheiTQUbkD4wsRXsmgMlo0Rey5jwYzA9hBcHs6kCAHltEzdJg+7PwjCCa92LWItD+LXNrGDbNrBCEw4UI74CgAsBkOScecZlocRhLxKCbds2fuEXfgGvf/3rcccdd2Bubi7yeq1Wwy/+4i/ipS99Kd7whjfgc5/73EZ+fR/XGdScAqoTX8biP6/IhUmnB5neRsFuCKQG+hnYmwp3YEyavGZSzU7iyRWbzcDCctCXO5iPRnTprus11Qio1j9H1ovmSY+uRq99Qohfxa43qjhx9pFg4wFNuiYDEBfKsefTroKDnC7vL5drEwBIQLBLwUIKvaGwUX9SHy9wkJwKdqwAMqB31ZMd6cE2soDDQbLdz9SrdQFDA8aLrskfSFQmiijBnm+6Hwoh8OGPvAO/+fEP4gcXvxm8hw2jYASk+N/986/jA+/+Ndx44E4AgGU3cGnmdNf7Ga5g04PBxFwrB1VKr682vO0VzYTFCb4XU/U8YwSLZPvqpYisnA7Hz4xvHAkWzbwWkHXBEfKmE6pwLqwAY4OSJHtQFYLxQSnn74RqHdg5HN87u1Eg7uKkpggYOrqSr4cJ9lwlum8ko0J5+25gUAN7cCdIUUdx9Fb/db30VeTde+l3L6modZClT69SVKzA4AyAb3AGtCFhjpBEv51SgLvHzCPYCgVhFIgrejtCVrc7SMRNvTeDw80AUSkEgqKT4O3NVKlGIWL+Zt7g0jBNRAl2cx92+N6VdivYhBCoP30Aynv2QfnxfTD1gGC3q2CHvRiS5P/rhe1wOT/QEtRBCg08cyxAY4CRQLCpzUF1CvsamtptOLW/7bbb8Ou//uuxr/3e7/0elpeX8ZnPfAa/+qu/il/7tV/D+WsaStfHZkLJKmBpBU45ugrtEWz7Ghid2Y5AttA3ONtMEEJAlfiVVwAwDYKBfDCh3GqZeFxElye/01RAWALMjHH17KNneBVsb0KhuVFddmjyltSHTQgB9SppNQdipnXmS0kgE2+IFJC6EUgfh8Yd3FJyEy+zKsiOTewZ6+MFB5JVpVw8owCl9swl1USwCdCTPHy5LHt9J0fkJL/KKZrvLMVCuAc76ktx9vKzePLkdwAAczwoWrz6xrfh1bff7//bkwTv23mj/9yZi093vZ9+dZnIypYHsxJUM3WXNIUr0Zfd5755IUqwhQCeQOhz5iqBwRmSK9h37bTxr165ij/8v2Zww8gGTBKaCJgQAtU6sGes1VF4ZIDAdlpVd2E0bCHjJnOJm2wIiLsgQBx5/nRjdNaugg0A7LYi9P/nJig/JM+3ihMsgJSXnsWdOyRBrtkEP7jcfhEpYnBWdAl2N326jgDRkucHAAAvfSZcwU6QiPsLKGryeG07yURsK0FVAspI8LeLDhVsjbYsAPrnppuy4SGuDzufDYw985lB/zHJqGA3D4IYLFrBrreRiIf6s/X1GtglwK4JMEOqB+MKcIQRCCIr/w0b0DW5qBAHygVoWvFd7q8FNlSsqygK3vWudyW+/pnPfAa/+Zu/iUwmg5tvvhkvfelL8fnPfx4/8zM/E7t9o9FAo0kXs5HZmC8kcM4j/39BgADaiIby2TJUEtysVVVAMwQ4ANID1yWuu7P3/14huABVgXSBvLB+xxBeKOcB0WQipyCtx8o0BEbCTuJLl3o6pus9D5ZWgwr2wMAQCBOwbQHdAHRD9jfRDLuuf+MXynkgFACa3E+qUGiqgG4I2CTgKLfeGJCEx577On7yrT/v/5vuzfiRMuJ8CWSnHNjD58DxcRvfvOCOCcU3AsYe3Lw6C91d+mc35iEVZ9HzhSgCqiY27DektN9S8EICyaggRR38fBmkDVmK9GDrGQiVgpjdD1yVGnBsr8xDLmQEZucI0oQEJAJywppND2C1vIi5penI+7/63b/xH7/trT8HPASAA1qFYiQdnLtXyx7BvsF/7sylZ/AK/EhX++lXpfMaSMj4KFULmIkn+w3Lya+4ROrhS6pMYnB/mukSxQkl+O3EdNXvvwaSe7AJAV6218Lem2s4+/UN0PQ2VbBXKkA2BYzFhAoMZIGUDlTqQDp+91By3z+wyYl/3gKv4ALZFOlK8TeUCraJI9jNWKyGyEfjCiaVJwDcBwD4+nkV9+9OXnw6NR91EAeaKthJJmeOkB4Gq20WthzI8p97fRDPpM6KWXBxhOzXbSMFtpzk47mVICoBUYjsnXbZF2lzmKjeauzGG1Jhp+YUNK/UFfMEVxeD7e88/koc3nsrqrUSXnbnW2K/Q1cDslytJ0vEvQo2pQwK2xytvVXjUHQCI01Rb8iWvQhU9zrmAnWLYDiPxNgt4nCwtALbvnatAVvWDbuysoL5+XkcOHDAf+7QoUN4+unkFdaPf/zj+P3f//3Ic+94xzvwzne+c9P283rHxYs9Rm9caxTlf6uI3kxv3rX2j9xzX48h2iHsexkAzOCFLpy47s+DXfK/BlqdaRmAe19bxMf+Qv7bzp7D3gd678Ne63nAvxFUzG94SQZ774l+tw1gGQ0sn19a0+dvJa778wAA7gDs0PV/fDL68l4UsOu3d+HChQt49sz3MX7nLAxDjqzVQYpzn5LbGbPzmHwgOuLuua+E14038LsPu5O5sZ8FANy1GqgUxt+uIdvm/NooFdXevXs35HP62DqQvAaI9veRiMxSSYNo3RucWbYAo8BQXk4ChwvARceVvjqhGCJIo7PV8iLmF6f9RR8hBL763b8GAFBC8doHfgx4bAZYakAsW34sEwDMugR772Sogn2puwq2qNhA1TMf04GM4hIajmwjIEqeRNy+Wvfn9lMuwS43KJ6YVnD7DqkoOTXPcFE34UDe88WValCBZES2gGwFPALmVrAXV4FDO4FsqnVinksDAzlgqZRMyFYrwNHdUlK+FRC2zNsGke7l7XJ8oxXszvu3UA2xu8YMsvajSKn3omIRfPtidMGkGc0O4kC0ApooI3Y8w7k2+8cFoDF/AQqQbtBiNUa37gjAZPGmWN7HccDUr70ijSo0INgAIAKlQhwIRcvPxKtSHq4OqL7c3FuMyZpygco7T0w9jY/+4hci27TsE6Uw9DRq9XKHCrYk2Iae2jR1n13jyOQokKGoxRFshcp7ps1h2Qy5TOzHyE2JAEsxmQ7zYifYlUoFjDF/4gQA6XQalUryisl73/tevPvd7448t50r2BcvXsTk5OQLqlJSn29g7qtz0Id1afDg4vHTHIsrwGCu+wuVMIE995Vw7luZNYXc83ID8wvAff9wGDvGX5gy8RfKebD06DLKZ8owJ1qlREIIVM4HebgnH53D2a93Xw5Y73lw7ull/3H9/B6ctbJYWBEoZIBbDlJULlVRuD2PzL50m0+5tnihnAdOxcHVL8+CGQyKm2v53AWOqVlgKBRxc+OeB3DhwifRaDTwmT96Drfe8AAAQPAMkJkCSjZK367izJfTICqNnAMpi8BUBaoWAYxdgBCBwZlCMGuPYO7rrdf77Pk69u5nuOPHRlpe62N7gGRVQKMQdUdW1WIQqWAraSDF2hoqhbFSlsZZRddjL5cm4AqRVRhHAKGJ39DAOM5cehq2Y2FhYQFAHs+ffxxTV88CAG4+8hIM5kfRKCxALDWAso0RPSAcHsEeGdyBtJlDubqCsxef6Wo/IwZnRR2EEJABDeJqDTkrmMV60tDqTB0efarmDXjrZ9+8oPoE+/QCQ4MyTGlpTDbKkRYPUtQj5GlT4QjAkATMdmS81uRIQtWLEOwYEpiai30ZQgjYjpSSbxUEF0jpUgpbt5JNnQAgbwgwIuAIEnERT0Kkgm1No15dxL2TDXzpjI5yg+KxaQV37ohvxj7lGpxlNO5Hq0VMztrIiAkhbWX4kmA37b8mM6RbfnmbgxidOcG1dhAHZAU7IhFvMt9r2V4hzcIrOFUH+pgOZjL/szySnk0FCoxM6OfvRIgNPeUS7M4mZ+vON28DuyaQ2aPAzBJcirsGFSJ/L0c29ZntfHIIgZamYdHMlqOnU+7nfu7n8Oijj8a+9lM/9VN43/vel/jeVCoFx3FQq9V8kl0ul5FKJffGaZq2Lcl0O1BKr+sJdTP0vAbVUMBLHCzU+2wwgkYdayJIwiFrep9VBsAY0lml7SrwCwHX+3nAFAZYROZTNoGAYPdYyORs4cqWngdhk7NCZgTCIajVgNywzNMkNqBoynX9+3q43s8DGACjFLDgnwumQtFoiMixu+XwS/DZhz4JAHjk6W/glsMvdV8hoEfy4N+fBxoc/PkS6OHAEVw4BFQQ3Dhi4/tuz+C+2iqGbEkY6IEsoCixkXFOg0Ah1/nv18fmIq2ApFRZvU0g2Af33Ow/PjB2Y09xbysV4Pi+oNqZMQHVoHBAoDgcsrYrEc7CnpmZQQp78RW3eg0AL7/rhwHIqruArDSNOEFP82w5kNPum7wBT578DmYXp7BSWkQuM9B2P8OmZWRIMjgyKAm2KlQUSAFLYsnvwSYuIV9lCl57k4M/elTA4gTfuqDhA/dUQUjQo3vOyGCyUY6YWiX1X28KPNdqyOr1YC7Ivo5DMU9AiIDjCLCmqmipKivbm91/HYZwhN9rWqm3J9iUAIMpgdky6VIiHq1gl6sreMkRC186I7/k6+e0WIK9WA0+f/9gkFXejUQcbmQaAZIrq3HxVQnO44ILEKPz33qtM7ABSZiJQsAboWuhTa2HKLS1gt3g0IpqrNxcUwkKWYHphSjB7gRTT2MJs12ZnOmb6CAuLI7MkAqWA05PxWzg9uXbdQcKTe6rF1wARErNF65hF11Pp9xHP/rRNX9RLpdDsVjEqVOncOzYMQDAyZMnsW/fvg7v7OOFDKpRqIMaapdrUEMZnoZOInECWwGnxsGKBrpY7OxjnaAaSYzpAoCdI0WoigHLrm29ydmylA+riuZnQwJAyghW1fsZ2BsD6san8FowysWtmd4cMjp7PGR0BgD0qEuwATjPLEcItofjowHBjsZzFdruX5L8sY/tAUKJ7MM+swKC+IHhjht/CL/6f/4pDD2FvbkjIKnupk1ez+xoqNqZTQFmiqAhCJQmF+WhQmD8OD09jT0K9/uvGVPwktvfKPc5RPCztQYUKmBz4lewAWl05hmjnb38DG4+HPgcxEHMh8zHii75HQhmr6N0FEvOEgzNhLA4jLIk2FNaCjeN2bh1wsZ3L6mYq1CcnGc4POTg9Lz8nS6l0sBK9Ps8Er8VkN4r8kKv1oFdo0H2dRwGsvI4lapSfeChWhe4uggc2ydf30oQQjCQE1iMIx1NKKY4ZssUSzUKm7c1126SiE+jXF3FnTst6Eyg7hB864KKD97b2t58JkYeDjSbnMUzPAKAGAycURDemk8OuKS5qTopK70xcwouZNtGAoSQVe/rooJNCJjJ4FQtf65B2vSOJ8nelYzaKjd3MZgluDTb29zacxKvtpGI10MS8c2CAGDmGDSTxOa+E0IAncFasaFlkhebuMVBVQIzS+EsbNrudsSGzyIbjQbqdXnztSzLfwwADz74IP7gD/4A5XIZTz75JB566CG8+tWv3uhd6OM6gz6sgTeiJaRrcbOz6wJKVoF+jbMQtwMII21brFIGwaA7obxWLuKF7BAIkeYxjAKGJvvdiEJAr4N+rRcLmMHAQ5MA79oPD6BDA+OYHJP+HM+dfSQiNaSHcn6vKn92KVZaeMNQsH0knuto+/xr5TqYdPVxbUHyKohIdo4mhOCum16F4wfvBQjp2uCsVJFVpKFC8JyuERSyBDXCWqpx4aiu6elpPHv6+/698fYbXh64ABcCgk1WGn4f9myoYrk3bHTWhUw8IhEPVbA9jLBRMKZAUVSI+aD/+oqWwt4BB/fvCsxov3lexXKN+PtjDbdOyLe8gu1WOB0HHRfYTZ1guCDVBx6qdSkbP7YPuO3Q5sZztcA9TTIpgm78GMN9+Qsd+rAXPIk4twB7AeXqCgwFuHOn1Pwv1Sieutp6k4xzEAeaK9itLVaCy0xymEyW95KiuhwhPQDCaLdS0C4D25H3+Wudge2BGlSSYi7nSe16sGnTa7zBQRQCJcNa5eYusimZ1GG1i0FrgkeaG1YNDm+Ve3HOfYn4ZjmIcyFAAaRyFGlTHm47RrFAdAqrLmBqyTxCNKQ7ezrL4FzDCvaGE+wf+ZEfwf33y9XSN73pTf5jAPjZn/1ZZDIZvO51r8OHP/xhfPjDH8aePXs2ehf6uM6g5GT4bfhGcC3kOlwAWpq2yL762Hi0MxwBpLSnWJAy8UqthHK1d5OztcDhDpbdCueAm4Fdt+Tga+oAtwSoSiN+AX2sDzTFIqvsuiqvf7tJeXh4720AAMexcdntOwUAYiog+9xS0kID4moNzRgzrgK8hgGrjsNVWS4jEybIQPwStzSB6RPsPqSbuNAZUO8wE2tw2RfapcHZcllmXzebKw3lgTplLRPjMMGemZnBVx4Oy8PfGuxvPmAKYqmBYddJfLVO/ezisJP42UtdEOywRHzQJdhNFWxvYu2EsqzLWQOmCtw7aYG4TPBbF7QIAdMnWyfkW1nBhgjkxgKA1oU52USRoOH+lpVaQK5vP0S2zNzMh/t1Kd0lTu3irdBkdFZtP475EnFrBoBAqSL9SR4IuYc/dK6VmXr910DgIA50IRH38q0NJv/f5m9pqewq8QsbRJC25Nt25MvXg0QcCBachSNAaIckHUYicymn5oCZDCytSLm52lrBzpiyjaHS6i+bCDMS1dXah92wgjF3s3qwrbqAogJmliJtyPlYLe5v0BmsukAuk9xb7jutp2is6GGrsOGn3Kc//enE1wzDwK/8yq9s9Ff2cZ1DzSlSFlNxoGTlKaf5WdgCyhYQXsEFbA6k8n1N6FaAsFZzjjBMTbrmephduIz0jiObvl8rq/PgbnyTl4HdsGRVQ1eli6WsYPcJ9kaBmRTCDknEVW+iGJ307BwN2oUuz5yJkAR6NA/nlFyE4c8sg01EK2C16gKwOoM7+YHQewqJ+2RzNzq1f5j7SDE3D9tuT54bDojBEnu1wxBCwLKBiaHWsS2fJuAaBSrRG2T4fjg1NYWvfVe2SqiKjvtufb3/GglVsMWyhaHB4HNmyxSTeY49oXvpmV4IdkaRfyMCog0AI3QUhhvns3ipAV8X4laiB1MCR4cdPDOr4NwSw9fPBfs4ulOR/bOhBYwtrWADEQKmdDEFGMjKOcriqsDCiuyjv+0QgbLV5NqFEAJpQ45TjQagtuE4xVBU11yZAsPxLk8OB5Zq7t/TkNFwZXdx8u7JBlSagsUJ/v55He86XsNQOvjc025El0oFdhWCz683AnIWW+l0M8mJazqXWMEGWqXjjABCRPq2pepE+BFscbBst4J9nRBsajD5d7hu6u0k4lQhkRgvp8qhF1Uwd37CDAanHE3oYYygmBM4Nw3ku/RpDWeWV2ulSHICEDWv2yyJuFXjUAyKVI7BNKSDeLUOZJq+jmgUtgNkzDau8RaHOqhDU+Ol5luF/vSij00HSzGoeQV2JbgRq+4k29kqhz+bwyEU2Xz/lN8KEKW9RFxVCMaGgwnl1S2SiXvycAAYyLkV7IbstSOEQFgCVGsv2+qjN7CmfnbNnexYTRXsHSGCfWn6dOS1cC81f3ap5TtWygvA0tdwZyiei96QLA+3HTca9zqZdPVx7UAIARnSIRqdK9gko3RU5wBBjnIxxgwrmwIUg7XkGhdDFewvfvGLvhnjXcdfiUwq+KCIydpyAyMxUV0pM4vx4T0AgHOXnm2b9S7qDrAiJ+nhynJYIj5Gx3xzo9KVoKyUGQ+2uX93IBP/3PPB8/uLHGQsRLY0CuS2Tq9LCIkQsG4IdiEjI7tml649uSauDFhVCNImUGu0337IDEd1Jc93VuoE3DMhteV9s1yRBDujAW84LI9zzSb4wx8Ex69mA5dW5OfuGXAixeNao0MF28sk19z/2ul3m6rSRKEQjALht3ABwWhbV3/bXci9biTibv+/cOPjmmXgYTTne/OaA7UYXFvUoC1KGAAoZGQ7QbfkMlLBbrRWsMNV7c2SiNt1Ds2kMDIMhBAMZuPPdcEIKJFFmiTwhoCaVa65x0qfbfSxJdBHNfCQX77K5EBnbxXBtgQcRmBm+xXsrUA3ESy7Qk7ic924t2wAIgQ7LyvYXASrodwWYClla3vsXuQgalSmRQiBabRKxHeO7fcfX545E3mNDhv+5F+cK0FUo29eLS1Bnfpd3FZyHeIzCshk8vK94wCUdTfZ7uPFD5LVpKtxG2NGYQuQXHcOmcslGc2VizkFMyZgpAIJsodcegCqIs/xlZXAFezld781umFW9RcvxVIDQ+lWgg0EMvFao4Irs+cS91UshCO6QpXltOJLPEZYIBFHqF97ZHfAWu7fFVTSbC53UKECuwsOyHgwKSfDxpbdX4UQEBB+FBIh3UmFFYVg9yhw68FrS64BOZZ6JGogi5bzphlRiXjyfocdxFUunaDCrVrvuaWGrCY/6wundZyYkzfLs4vMJ+ZhgzOgC4m4l0nOqFRKJEjECdBawVaIZCzha9SWFfE4ozR/E0eq066X5Bi/XYG7i3vtCHZTBVsIqQj10Oxv4iGbkmqHeofFGA/hfvk4J/Goed1mVbAF0vmgPW8gS1oW4QGgAQKFdfBSEDIDW1XcXPBrVMTuE+w+tgSq2zfmTWAUJqtH1pYRbA5oDHq6f8pvBaTJGWk7YZ0ci0rE14OZuYuYmbvYcbvFlSCiayA37DvZe6uhwuJg6T7r2khQrVXNkDGBJt9D7BgJScSvRivYQMiwjAP8uagt8Up5AbeQ3TDciR89mm+7yOPI28F1M+nq49qCZBQIg6FdaCoBpDlTF6jWZdZyHJE0dIJMlqLRNPklhET6sAE5mb3n5tdEt2PErwCLZQsjSQR7MmR01kYmHum/LoYq2IT4VewROuJLxM0V2Y9Zogr2TgR/3848x6589PfbXXCgMoCOBZPyLe2/9iqmCgEPzT26wc0HCO48Sq8puQYQcYpOmwRCtK9Mhhdc2lWwF0LkWxOy99qTiAMyU/s9twS9t//1uyaECOThQAzB7kTEXPMywghgKC39w4C7KEJIq1KEyYimCCl3hNtgnfx3Wo7sX79e4FesuQBh7f1qJMF2F/8tDqoQsHRAsKXcvPV9KUNKq7vtwzZDiyFxPdj1TsqEDQCvc2SGAtacTiiU1xwKVQF0rT1rpoYk2FtayGveh2vztX1sNyhZFdRkcNy4HkIITH3rJOLCdiBMBUa7YPo+Ngzeyms7gt2chb1WnLv8HN7z4TvwD/7FXXj+/ONtt/UiugBpcmbZUq7sxT0IR0BJ93XDGwmq0JbFFkNr7dFPmVlftn9pOlrBBqI91c4zy5HXSstLeK/508G2HeK5vKpGH30ArpFezs3DjoGwOQQjfn9yO9QbApoqzcySMDREYXHEGJ2NRf59zy2v8SN0IvvrycRLFoaNoMwTJth7d97oPz5z8enEfYlzEPdfK8h7oU50FNUhOBZHoSZJ11XTRL5pEnzfruiqgecwTXYHfwPZsYUZV46Qs1yFwvF8F7q8vV8vKiYScopO6VLqHFfZ81A0g3OqPcEOXjOpJNbl6krETf/N/397fx4myVXdeePfe2+suddeXV29t1pba28tgLolJLFoAcQiZAzDZizZ1giziN8rD6+MbANjwHhg7HlsELZ4GWMjDMMiIwQjNgkZjCUEEpJAaGmpu9XqrbqquqpyieX+/riRkRGZkUtV15JVdT7Po0fZGZlRkZkRce+555zv9+QyRnPqN/zVAR337tbjAmd98QPpKIMd9A+zZjonVeuuhgCbKzeJugCbiTYiZ64KOLsFpqug2XeU3kvLADsicuaVfAhbQMvU7kFcV33pDe9jTIkpziWDnWDVtRgl4vAkUr21cyttqWu14sQ/X1ky2CkG0WRqWfXAFiZXei98EVtR66AAm1gUtKyAntXgTdduyGlr8VaWvLIEJ4uuRUMNDABa/L4b10YC7KNzz2D/7JF74PseXM/BN39we8vXvnD4ufBxT24AFUf5Mod+irLWI0XMD8xg4Fo8mGjWDzc6rLLYRycPNijLs80ZJZYEwH98Ira/zU8MYIO2AQBQ6vNb9l8DasDtlp48ojvgfSZkfVlFlUlH+V/b7aOzyRnVw9uTbf6aXJ7D5409qP0RoTMAeOl5r0t8fxhgS2DQrwXIzTLYrZTEm2WwAcDN1fY3yIdwaI8TThpnco0T7ZdsiAsuVRWm+bo0tKvXQ+wagnjxYNNjmXeqGU6NwfODyrllVqAUzWCnTMBsU/qbNiTMIPpoFWAfjWSw00IFUJ7nxgStNA78wXm1f9/2gI3HD9W+wM098eulnciZ9PyaSKDOE4PDcFEkoUScJWWwqxnxJni+sgXtFrjBwTSVseVG6xCMcRbOR/ySB5HRICKLfEznTbVucilVOeY3sR+MElcRb10ivhABti8lGAOsTO37qCqJF+vO9ZLPkc02qqeH+wo8sLnFF78VtQ4KsIlFgTEGc8CAV6xNKEydLVpvhO8Dmi1oUr1IMMEA3rpEfLivACMoOzyeEvH9h54NH//4wW/BcZNnH57v4ccP/hsAQBM6tqzbjrID5OxIqTADKYjPM1zngMYhIyvRhqaSEX7d+bF2sNaH/fzBeBabaRz8hEDsadpD8VGVSfN3T2H7fvU+R1YwcXmqpTIroJIkZmfttMQqgWV0VWlRl1WWJQ9wffAtWbA2E2JAlYcP9qClHWQ2zyEMBrdSH2DXSsTTdhbnnnZJ8rEWagNZpliGztUxH4r4Hq8Z2BiW6XZcIl6XwXayte9ikA3gwLO1ALo+GAeAE/s99EVEtqIlxOLCQWivXtdRFcC8EWY4mRI2XIYBNjdqQlZCMORSylqyGYzV+rAPt/DBjvZgZ/SI9VqkTBwAzh91cPaI+oMvTAk8FWSwR7Ie0nX30GqmUwgNupZwg/Vl7ffXeHJs6EMNDnXXD+NMBeV+XQa7g2uyWyy6gKC6T+PwK7KlOFuVak+yV/Zg9se/01YCadm0an0rdlAmbrUtEV9YFXHHlRBCeWDX/g5Dxm606vI5QyrFmwbYVQ9sbqpSckEBNrEaEBkttmKpL1KwK6Wy6NJSnDLYiwQTqgyqVYAtBMdgr8rYHBx7PlaaNhueP7g7fHxs+ih+/tiPEl/3y1/fjyMTBwAA5552KbLpAhxXDURArbSIPLDnF6ZzcMFiYiymoSY9s1ESB+Kl31M/noYse3C/9AxYMFX7p+L/RmpDX0fH1SYGJ1YbWU31WJdqJ6X0JeRYGWx9GmyoszpTx1UCPS3/VI5BNxmcUl2JeKEWYL/47Mth6E3+ZkRJnE06Yd9tNIMtuAjtup4/+AyKpanEXcnDQZ+tJYBUPBKppGsz0z7Zi6nna7Pd1JrGAJsz4LKtaoEzb/o4oa+NItdCE/guMzH7EvFuQVhxz/SM3V67phpgT1V49HSOEe3Bzpu1iL2hcogBf3DuDDiLn6vV8v8o1eCsuRBWrZyb6QwySafFl0GA3XiDZkbcO1t6fke+9N1i0QWogJkJpryaO1jMD4NwX0LLxT8IM3ishSCKqTMUMsBMqWFTA7aZCR8nipxFS/8XQOTMK0loJkMqE/8t+3JxJXHPV8GzZSd/ZqDmgc1NDiEYTIMCbGIVIGweqwgygmtpwX3qXAmPMWgpymAvGtUAu82NrWrVVSpPN6ycd0q9Qu4Pf/b18LE8UoIcV3fo7/30K+Hzl17whvBxygxsM1wJrlMGe77hulJKjZWIa0GAXXd+tFISBwB+Uq30e+rH03C/tS/sIX3cfRz/p/RV5DI9HR3XcptoEwsLMwR4wYCM2EnKwyWwPhN8U7ajnlzPl+BcBUGtSKcF7DRHuRwf+846eScYY+Cc41WXvL35sUYCbDlewUA1oCozFL/3ApwvPAV/3ww2RcvE9/26YT/S9YGj6v7I+syGz1hM1QKvgleAH+nXHlifPJi+7awi/t+Lp/DpK4/BXurx1pWAFWQAveVZIs7NeLbO1Bv1K+rpj3hhjzUpE49msHusWtVB1aoryuZeH5efEK8Mqxc4A2qlxFazMmIZ8azWeKNoGRBRGk+43sz4YgM82bIiQkoJhu5qB2LV8dBpXyIO1OYjTHBodQKsXFdl876bbHfWl2cdCQlHs9JJPdgLLXJWKfnQLQ47F/8+8hkW66IpVQDbZkhlOHwn+TP7jg+RqTnBWDoF2MQqgJsCXGPhhaFrapFywQUIHB8e50jleNcIl6x0uBb0YLfpAVg7EBU6m71Vl+e5OHAkrh5+/0N3oeKoZVvpSMgZ1Vd234N3AgBSVgYvOvMVcDxVllTtv1aiIxyMerDnFcZVP5SMTAK0YGW5ZQY7IcBmOR1sVA3w5SfK8O5TonUVVPDXU38Fw7CaZ/0Cqgt6lMEm6mG9JhCcp/KYA2gM4oQcmNlZVFaqqLLMbAdz0J5+gUpdBnvzulPxjx+9H3fffTdO3Xpu8+OMlIhjooKBIIP9toNPgn97L/yHj8L521/jAuNF4cuS+rDl0UoYrCWVfM9YtYC64OZgT9TSYT2jyT0WhgAu3uRgNN/GV3wRkL4EC8xwPV/NOZabcwA344uTZth+33xsjVl1NQmwqyJnppDIR0yFmy10v/3sIlJ67W9u6W1MjYcZ7CZBGItksKEF/uT1wWGQwU7sqzbrSsQZa6sgLkR3ZbAZYxCW6p3uKMAO5iPc4tAydRlsjcV69OvJptTX7TTJ9laJCikuRQ+2V5ZIZ3msvxxQfdgAwurG6v3VziX7fwOArPjQI/dH26QAm1gFCIuDGxx+0Itp6Go1eTECbIdzZHJ0ui8agUhJUol4aX8JzqTKjIzGlMRn34d9cGwfPC8+0M8Uj+E/f/V9AACTErAF/uM/v4OZoPTtwnOugmnYSuAsqiDuSCWOQRnseUfYomESkDTwjQxsDB/vO9gYYAMRu64IX/LuwPP+PmQ7yF5XezEpg03UwzJq1VeWPGDKAd+cVUF3h8yUlGJxuoNq8mxPsg/w+pETsHXr1tbHGc1gTzjoT0u86shzeOPh3bUXOT7O+flmvNp8DYAmfdgt+q8BYIYVUZRqcp2uZDFQVI+LmlDfVbfjyVAY0fNUNmu5Ud+yZOrt+0qjAXazPuyqyFmP7SOTrinyNQuwe2yJ63aoAHog7eP04cYAu9qrayaUEUtPQnLUfJ91rvzJ668BXwJNAk9WrxYuZUsP7OmiuhY7WfBaTLglAM7AWxx7lWqPuZbSwO3456+WmzcLNjM2YFtAsU2ZeFTkrJ2KeNPqhOPALfvI9IoGa820FYj6BYU0pQrQmwO0dHOLN98HDAqwidWGsAW4wSArtQx2UpnovOP48AwNmdTyWrlezjDGwLXGVUa/7MOv+HAn1eC8brjWc3hwDgF2VOCs2m8IqDJx6UtIzsCyemJ5eNlRk2GjqtLpyqDKgm6L841IJQTYCb1RlpnCQK9adEnqwQbidl0AwLZk8NWpLwMAcpnetsfie0F14jKID4hFJquDpQTkgSKwJgW+rtEiqxXFMjBQ6CxLmu0V4L4Pby5Kn7naBFKOV3D6gYO47oXfhM+x4LgZGK5P/yGuT/0hdj+XkME+3FxBHADKzgwOeEq3IlO2MOCoAGo6ay+barBqgOJ6y1PYkNWVhBu6Whh2W1l1tclgOx4wWVbP99gSaTsXbmvVqnXVSRXc/roJfPY1k0jVLVZ4vhdWjiVmsKv2W9XxNRCfSywRb5aV1uLK4wxomcE+NqMEB80us2cVNgfjrLbY0IJqJt/o0xuuOaYz1cveJIOtCWXX1U7oLNpXvRQiZ3B92D2NF2faVvOEah+24wJ9OdXumbSo4Bd9CJtDy9cGd9NgiWL1iwHNJIlFgwkGLaPBL6ubvyYYdG3hV5ekK+GntK67ya50uM6VImiEytEKjAEzvDmuj2SwDx+dfYn48wefCR9fueutyKYLAICf/OI7KBWnAcEwrc3gZ79WGe3e/CDOPHmnOhYHyEfmz9LxIVLLrEFvmSAs0VDN0Ox6HA3KxI9NH8Xk1NGG7Ww0BeSD2Z3J4bxmEK6nlrhz6Q4y2H6QwabRj6iDaRysxwTrNSG2Ztuq0dfjuEBvrrNxJpPlMHTWUhG61XEiqyaR8oUiTv/RE+Fk7rHt66DfeBLEZbXFy1dbr8HrD14Jv07xSh6ppbZYf2PavVwp4qCvAmxNMlTvjjIhGO9KpAwDOs/HshQ55VrcisnQAV209sKO9mC/MNV4Do+Xajvstf14gJ3Qgx1lXd5H1myMWMrtPLBdvxZUI/AZt4Tqk48gfTS/OWssFLSUng8peGNWO4LjAcO93TfvE5YAE2hpL1alGoTXC5wBQbm52bh4HaWQYfBk65aCdhnscjlaIj6/AbaEBHzALjTOvXSNIZ+u2dJJqYLuZr+5O+1Cz+mxUnpDU50ESwFNMYhFRctr8CPWJElZrPlHQppiWQ6uyxlmxEvEpZTwir4S6gieHh0aDbfPpQc7msFet+YEXHj2lQBUH9HPfvF/AcFw32N3wfHUHfri814LwUVwPEA64o8pXQmRpgB7IUjyFtebfNXRPuwkoTPGGYz/sgm5V2ZhXHcCJvWa6m0nAmdeNYNNPzWRAF+bAj85r2y7ZoHvS3DWXuCsipXmsNp4GrciLBOv+ODBffa7hRF8f+tGMM6gvXIttDduhAc1wJ4jzkHp07+Cv78WCLXywAZU7+WBIMCOYg8vjwCbsVpA50vANrsv2GpHNcCq9qFyxmBbrQPsDYXapOrpo403urGowJktkU51lsFuRbldn64v1YJVJHhm9aJlweualYircvDg9Z4EBGqiaXVUHAlDa+1Hv1QwjYOboqMMdrWMXEsnl1xxq3k/MgBkbcDUVEKhGTGRswQV8WKl9pxpzm+JeLVlK5VN/s378kApOHZTV/dXbiQL/flFD+aQGSs1r1p1LQUUYBOLipbWYkGXbS1CBtsHQAH2osP1+I3fPeZCy2owh0yAqQnDyOBIuH1uJeK7w8drBjbg4vNeF/77hw9+A0zj+N4P7gifq5aH+1ICrNZ/DShBnHqRDWJ+SCr5q/ZA16+sjw7VlMT3HmhSJr4li7UfXgO+OYPJqbHw+U5KxF0fMAwsmxJXYnFhBQM8IZvbjlJF3U867fcUBkc2DZQqc6tfZIV4SeXPMv34m5GTcWimdg8T5/Xjeyc9gClfWXSJQy6cTz8O994DqoWmWiKusVjZeZVypYgD/gsNz+dGFrbWWpbUpEBW5j45kFJCQobZLimXn4I4oO6dTLBYNVjGBlp9NXlLhmXiT4+JhhLZqIJ4Qwa7zqarU4ptM9iBgng0a2txwK8rc5PNS8SZYJA86Dn2ZOC7lvzaYzNALg0UMomblxRuMHCjiZBbw4vVa5pV1wm7uSc0oO5Jhg5UWizIxEXO2pSIz3MG2y1LaFrcAztKNlUr8TYN1ZfN6qo6gEj/dU/8PqZrS3fdU4BNLCrCjp/ppr6w/RHS9eFzBs3iXWXVsBrgBleLGwHOUQf2egtGr64GSlcin8kjFZQnzaVEvBpgc8Yx1LcOZ570EhSy/QCAnz16D5478hR++fN7AQCj/ZtxwujpANRqrqmpBZ4QSRZdC0U1gx31OtcDkcP6BbZ4Bjs5wI5ybHo8fJztoETc8wBrGfZiEt3NTFndTzrNYHODI5tRqshuG5XfJKIBNlufxic3ngafcRyejt/DUtuHcNPke/GMG7TTuBLeN/fAue0JyDEVYLM+s0FgCFD2PNUe7ChiYIEz2FVvnjl8L7V9BAGYFs9mLTeUFRNiQZRttrfqqtpoTVU4Dk7Hf9ujEQ/s+gB7amZiTsdZqrQRwvIkYIjYwiYzBBoiJdbEoguoWXv5EnClygA3yQJPFYE1vYDWQZZ4sWGaEvztJMDWAm/oZtV1wtYSxWTD7YLB0FqLCUfLvtuViFtzzGA3K1F3AouuVDb586WtWol31latZdyo2sDW9pnUfw0EWk8UYBOrAW7x2IWx4EGv48NlDFqaMtiLDTdYaKnhOz4YZ7BHbHCjpibPGMOawAv74NjzsQCsHVJKPH9wNwBgsG8UmqZDCA07d7wKAFB2Svj4/74x3Ocl570ObNoLtqnV0Gqg5Zd9MNGZbQYxe6qTiZgXtgC0BA2GtZEMdlKJeD3xDHZnPdgUYBPzTbEM9Oc6t4FiOkdvD9CXlhibQ9KQnz8A9BhgW7PQf28rchn1dw/WBdibR0/FHn8P3jv5bjxQ+GX4vPztsbD/tb7/uuICB6YY9k734WCmUdE8qV97XqneJ5r4+3a8j8DNAlBh3LLMYHMGJjj86L2zg7lM1Ebr6bF40NFQIm63VxFvRzwIaxQHlJ4Es+rG1zrRspBm11A1A17NYGs8USdBSgnXBwYK3RdcAwjdSjopEdeDypJmFVed7MO2W1eKcs7DzHSyTVdt8WQuPdgHxyUOjCVvc8oSdppDs5sE2DZgB+d7b2AgwnUOpsUXnZL6rwEVXFOJOLEqEJYAM3kodNasTHTecCRcLqBbnALsRYYJFi5OO2MOjH4D5oABbvGYmvzaoEy8XJmZ1er55PTRcDKwJmLvdPF5V4ePf/PMQ+HjSy//XciimnRUHFXKyZnqEy/uL8HekII5RJHXQsD0Rr9OXVPzq/qBf83ABnCmhqZmJeJRJqdrQmi5dPsScUjA6MKsBtG9eL7EdKn1GFVxgb585+cVNxh0U2Bdr6qSrbQo80x8/xobxn87DcYfnAiW1kMv7BmHYTrS171ueCs0ocOBg38s/SP067fVRAIDqv3X4yWGv7w3hav+qYA3/2sB3z72X3HgpL+PvdbVBbDQFl1hgH0c8wI/XkIssUwD7KoVU+S7MHX10Vop0G/uqd1YnxqLf/CxSAa7x/bnpQe7FOnTTSwRDzLYMTQlWRZdWGetrLcEV8F3EGCzJhVnVb/kQhf2XwNqPORGZwF2O5L0TepJGe3deqygkjCpRLwUXTyZpU2XhITrApwDZafxfHXLPlJ53jS5kbYAKyiYydnBYpnOwLT4olNS/zVAJeLEKoLbHMJgodCZqQdWXS36Q44Lx4dnCpg268pSoZVMtfxJSglvxkVqYwpMKPsubgr4jjoHNoxsCN/zxO5fdLz//QdrAmcjgxvDx9tPuAB9+aHYa0/afh7WnXoKoHHIigfXA3JpdXzlA2WY/Qbyp+XIomuB4IHnaXSS2Kx0TdcMDPWvB6Ay2O2qGmabwVZ/o8MDJ1Y1rifxwpjE7v3AwTFgqph8Ls5W4AxAOMHuTUsM9wJjc4hrolmtaoANAIcj1kyapmPDyIkAgD0vPAlvkwXj/aeCn167VtjGDH7wtI7f+z853POUCV/W9ntM6JjhtRkq6zcXXL+gWunSSrypLZESYs+X4Hx5Xve8ujjpxQNsrc28aWtf8wA73oMtYRkpiMC3sJ2KeDPiStPJF0J9QMx0Dil4WOkW3uublogHfcu+VN9HE82Uav91fnYue4uGSGnQMhq4efyRXysV9SpmE1GwKNU+7CSRs3KQwdY1IzxPOqVUURVjPVlgYirhBY6PdG/z7BfnDPmgjz4dnFah/3dQ4dKs/1odc80ZbrGh2SSxqHCNQ6RqSuK2qQaLuViVdIJ0fDimhswCV7QRjTChburelAeRCcTNArSsgAxWMy8+9+Lw+ft/flfH+6+WhwPxDLbgArvOfU3stZdd/rtATgcrGJDHHEipzj1nQp14+dNz0LLLcPa1TOAGB68r6QIAq4nIYbUPe6Y0hfHJQy33HbXy6kTkDFiemSxi8ai4EvsOSzx3QAXNu85g2DzSPAguO4Cldy5wBqjSX25xwJNYP8Qg+NwFz4B4gF1fJj4cLFj5voeJY0fAUhq0/7IZ+vXbUHzTVtx6YC0+8qMMJgJv5KzhY+eGCtbJe4Dn/gwHZW0RSx9cBAXxajDpHUeJeOC7zAQPnQOW43XPuMp2yki5vKG1T0yMZH2YQn2PT7fJYDPGwj7sOYucVdqInEE2RjoaBzTUKhV8QPLm4l+MM1WR4ElV9tEkgz1dBNb2d96usdgIk6Pn3ALEPGi+JPUj12N0MLWp/mbRcvAq1ax2s4WTVsyU1GLHugFlF9ZQdeFJ2L2tD7A3KLBIBfP40P87mEM2678GKINNrDK0XC3A1gRD2gIqc7QqaYuUcHQNmfkVPiQ6gGmqRLxytAJ7rQU94uMoMhr8YMJwyfmXwNDVpO3ff/Ft+PWqok2IKohHM9hAvEycC4GXvvxaNVEZtuFO+9CFhMl8OEcdZLdnYY3QCsxCwoSaJPp1AXbKTC5d60RJvMrkdOcZbF9KMLY8M1nEwuP7EvsOSew7pPqpX3oWw8vPZThhHcP6IQbXU6+pZ6Y0O4GzKsJWHrY9WWBNH3B0brENgLoMdl2Anc/2hY/Hjx0GoLLf3+f9eNuvN+Ane2tB884NFfzDayfxoUumsaXyd8Bzf4ED5cfD7ax/eVh0wZNAkCH0/EDvbBkG2EBgxRQZFoVgsI3WAbbgwKagTHzfMYGZSBKjmsFOGz7M4F5YC7DnWCIeVRFP6NNlSBAk01lQ614NsKUqAW+RcmRG9fUMLEG9yvdVw+Fs2jWWM0n9yPXoGgAWuKc0oZrBLleKcN34iVVVEU9eOGlNuaJ64fsLqqJgMpIg93wJwdBU4KxK1U41XQ2wq/7fwXnTrP+6+tql0lyhAJtYdLSMFltty2daWwgcD4wxeBpflv6Xy52wF4Yx2KPxmaewal7Y2VQWLzlrFwDg8NH9eOLZX3S0/3gGe0Ns20mbzsHGIVUWufOS16G3T5WMsx4DZcFheh744RJSm1PInNCldWQrDG43ep6aenLpWlRJfG8bobNjU+Ph43Yq4p6nJtlLpSpKdC/FssQz+9V4dOk5DJftYNg0wmAEPY7DfSoTM9FYQYliGejLqcBnNmgpEYo9rh9iMHWg2KbXuxkDqdr76jPY0QB74phakPrtEYGP35fCdEW9tsf28acvncKHLplGb7Cv6sQ66oW94AJnQCh8xeTcx23pyUClOnLdL9OFNW6JhgAq3Ua4CgA299Ze8Ewki10NsHus2j6rQmfTxclZiY1WiVk51SlN11umhWiBkrYbCbAFmpeIA4AhlGq2lIkK4jNllensRv/rhYBpjSJ49RiBknar8yUaPJem4rXcpeC3nW0G2/UkNKHum5pgGB1gKJZrmkuOIyG05h7YVYaDwrTo/VWkai1nzfqvq9hLtCZIATax6Ai7zkbEWpjgV3oSkgEwSEF8KVAiZwxGrw5jML6EKCweC6xedfEV4eNOy8SjPdhrBjbFtnHJ8LHf/xJuvfVf8P/708+FzzumwKRpYrBSQmrYpL7rRURYAtKJVyc0m/DGrbpaB9jVDDZjDJlUvuVrXV8pimrLdKJNLAyHxiVeGANO3qCy1uuHWEOwbJsMG4aA8YQsc8UF+ueQMeOWCIPJXJphdDA5gO+EaAb7UH2AHWmdmJw6AgD46R497LXetVFlrXdtjPdqVcWNHnEeDg6YgW9aeGPhao+3ZLKlBVFLPBmWEIfX/TJdWBMmb1icTJmsbQX9lkiA/dRR9eGLjhLCA5RFV5Wq0JnnubFguVPiGey6ResEyzQgWIQ3eK0VoCpM1yrANlUGmzGW6IE9NQP0ZGZfTbJcSRLBq6eZJWaUmBf2dF2AHfy2s/XALgbWhdXWmYGCWvyYCk4vpyyh6Qx2mwDbNBrPB2Fr8F3Zsv+6CgXYxKpBWAJgtZ6RlKnuqc7xCJok4fiAziF1UhBfCpimegxTG+2GIJYbSg20eg688iWvDCdVnQfYuwGorGUmooIKAHAlegqD2HXZ65FKq6VsKSX2HWIYOdnGhu0W9V0vMiLVOEls5iIwqxLxoAc7kypA8NYz6GovJmWwCQBwXIln9qtzb+fpDBecypC2m0/u1w4wcKHeV6Wa7ZvLhJ6b8YXGtQMM9hwTxC0D7Gx/+Hj8mAqwf3Wgdu/7/R1F5MzG8bcaaP27cz/4u7ZA/+OTFzyDLaWsWTdFy4fnAAuUiT1vmZeIG412Vp3MaaJWXU8dUb/30VLcoqtK1At7LmXiUXsns94r2Qsy0wmL2cwSsRJxxlv4YEMFlAiSJ0kCXzNlYO1Ac1urlQav9iO3uE6qXtBui0pR26oF2MXp2iqi53tw3DKA2ZeIT5eA/rzKXgNqkXKkXy2CAIBT9mGlOcw5uBKoe6ds2X9dxTYZ2BJEuxRgE4sOt5VNU1VF2jaVr2NlvoXOHB9SqCBvwf22iQaYrrLX1nDjhKxq1VU9BwZ7B7Hj1PMBAM/tfwJ79v+25b7L5TIOHX0eQGP/NYBgQI/3ch0aB7Jp4KwXWxh4cQ/1XS8yvN6iBap0TSSsrA/1jUIT6qJtm8EOVMQ78sD2VPZ6tqW8xMrD8yWePQCsHwQuOZth6yhrK4o0WAB6s/Fe6apK7mwEzqoIWwAMYZY2bTGsH1TbWvVLJpEzJYxA1KpdBtvzgccPqQlpn+1jOJOcCq0G2LpmQj+pB3ztIoiZ+FIpSwMq4zlnL+yaqJbnA6axfIMuntBKoz5P6/Nkc0IG++hM7TuIZbBjAfbsxQBiJeL1mc5qBjvJUsrSatnXOu/yRARTP6jW2NPt+Upjoze3PH/nucC48tSWLa4TzhgscxYl4sVaNUKl0l4dPgkJCSmBnkz8txjqYdA1oFyR8EoS6QxXYo+zhAfK6K36r6vomjr9FhsKsIlFR1hCCR4FQmeGroTO5l1J3PHhGgK6SRnspUDLaug5pwA93/jlc4OD6zxUgQSAq3ZdHj6+/6Fvt9z3vn37wszRSERBPMTzlchaMKAXyxLTJeCsExj6egXMgWUi1LOCSJokVhU+6626hNDCvvrnDz7TVPjO89ww29KJgrjnd5b5IVY+MyUglwLOP4V1LIikaUpN/FhEaLdYVovEc8lgixQHNzn8cu38HuwJ7ANnKfzJWC2LfWiaxxKeuWzt2pg4Nobd4yIsEz51yEWzuLOqKFzfU7ugVLOdqGUr50JUVMv1lvd1z3QO1P1Ghq6ykq2EzlI6MJJVN9fdRwU8vy6DnWqSwZ6DVVex3EJF3JOqZSyIcmK+11ElbR+qL7vVQogWeGEL3pARnyoCGQsoLHwXQ1chEnr060m1C7AjZf3FmdoCS7T0fzYBdqmsFoFydb9FLg0M5FUrjF/xke7VmvZOt4IH10S7/mtg6ZTEKcAmFh1ucAhbxCYV+cz8Z7Cl68O1NOja8h5clyuMsaYl2NwMMtiV2jlwxa4rw8ftysSffTbaf72x8QWuBExNidz5Es8fVv2Vm9bM7jMQ80fSJFFvIb4yOqzKxMuVIo6Mv5C4z8npiEVXG4EzQAXy9hIpihLdxVRRCSFlUrOb3A33qmxQsawmtMWyspHREgSX2iFsAVEXYFcVb+ci/DmQUvspugzTkfE0n4mInE0diZWHnzrY/A+V5yhudFxUs52ACqDaBA5JhGXmQSbU87FkSsLzAU84tzqx6gJqWeySy7D/GI9bdFnNMtizD7DjGeyEEvGgV7hUkfjVM7XrB3qk/N2TYVl/UzRVQh5dQK8yNQP05RdO16db4VZj+1U9dpue/bxdGz9fGN8bPi7FxOs6r2CpLmDWj7eMMazpV5ZdcHzYPXOLfFnQf9+u/xpQc4ylaAujAJtYErS8Bj/i+ZmxGTp0Z+ocT8IzVYBNJeLdBWNM+aFHJk+b1m7CSZtOAQA8/vQDOHx0f9P379mzJ3y8JqFEXHoSLCg7ev6wssA5fUv7ElBi4eAGi2kvAKo3S9eaeGEPRpXEn0zc52wUxIFA92gZT7SJ+aNYrqnTzobeHDDUU/PELjvKhmYucJ0ry8JIgF3N3jlzWHBu1oddiKmIH8GjB2uzzW4MsKs+yMwScysR9ySkxsNJ+HIPsJne6HWsa0p1vp2SeFTo7MkxESqIA/UiZzXZ7bn1YEcz2I0iZ9XA+cgEMNhTE7qCxsN1V+nLROGyKEyw0MqL1dX9lirASP/qG+O1VKNDRz3t5sDb1p4ePn78uZ+HbSstF05aUL0vJlUj9OWA3oxab7cTKhw7gevKL71d/zUQlIhTgE2sFvScHusZsU2A82SP0eOhwgVSJiiw6kK0nICsxCdPV+6qqYn/5Bd3N31vPIO9ofEFrgQsgfEpCcFVafhqW9XuNrjOwfVGv07LaBJgd6AkXu2/BjrrwQbUxJRY3VTHmUJm9ucCYwyb1jCUKrX9ZI8j/tR7dHjlxiCynUJ0Es0CbMtMQ9dUW8zE1FiYwbY0ia19zSO0qor4bNWDjwsvYr8U7c+dDW6wDyOS5Urq/10mcJ2DCTQEUWm7faXD5p7a7/v0mMDYTDTAnk+Rs+alxNJT47HvS5QdpWNQVLpZSqCLMRXQ+RJI0OqIUS0RN+Phi+MqS6jVYs8VhWmN1WH1tLOoO3HkjDAYfnzPz8PWjPjv2tl9wInYcyUhBMPaAYaUhbYK4s1gOgfTWdv+a0AtLlCJOLFqqLdpsg010Z6vPmzpS4AxOJyvGruG5YaW0hosWK7ssEw8msEeGdyU8Aq1En54AjhtM7BmFa5qdxtMZ2Bao1+n3aQ3rFoiDrQKsCMl4h30YAOkIE7UvHILc5yMD/Wo8sfDE6oiInMc8aeW0dCsfKteXb8dzQJsxhjyQR/20ZKBg9PqIjip300SdgYQVw9e9BLx4CJlJmtQz+4I11dBR5ANZWz5emADQdZW4w2LDRmbNehX1BNdQHlqTMRLxFNNSsTn0INdrrTowfZ9wOQYnwLyaWVpF97ztcC+y1Nl/azdQki1RNyM38inikpocDUG2Fxnqn+9BVWhL69JEisl0tg4ejIA4OkXHkdxSvVhl1r9rk0oltT9tZXw40BOYqiXIVuYWxjKdQaucZiDrfuvAdVOoQm1LrOYUIBNLAncEgCvqaea8xxgK4suBpdzpCnA7krqLWoA4LQTTsPo0DoAwC9+/WNMNRnon3vuOQCArhnoKwwnvuaYw5BPA5vWUHDdDfDQrzM+E7CM5PaQtR1Ydc0mgy0hlbDwMp5oE/PDdFEFyHNdfM2klGf1gaNqcfh4MthKSZzFhJ8AdZ6266+tpxOrrkl+cvjcqUPN/8Bc1YOPF+nJmvCVztFUga0VbtDzq1VFtZavRRegFie5aLRiMjooex9M+8gY6rx4akyLiZwVrEgGOzU/GWzOBXSt7sAkwHSB8Slg4xpVIs5Y0CsfBMxwfTUfaCf3XPXJrlOenimp/uvlXKkwV5jO2mawq1ncplZdEjjlFOXk4vsennj6IQBzKxGfKavfQmuhBq9BYt1aDj09twuTGxxaToPR277EPJNiOOuE1haMCwEF2MSSIGwOrtdsmhhj8yt05vpguoBvCFgJJvXE0sNNVdYUUxRlLCwTdz0HP3v4/za8T0oZBtjD/esTvY8ZGMZLHJtHZi9iRCwMTGfgOospxwOA3mR87C+sgaErK7WOMtjp1hls3w+cYpbxRJuYH2bKSpfheGybRgeU+8VcBc6qiBRPvC5MffYLzoPp2j6eHY+f6FWrLj9zfvhcq/7ruLjRImewq2XCOgebS9eY64PZ8c+/nAPsZiXipgalpNwiy89YrUz88AzHngk17c+bfqx6oRObrvHJw/jbL/4Jvn3vPzVsq54vlmEnXldlX/0GowMMGVud36UKagsh1c/WzkJRMDCDg9XdyCsO0LPK1MOr8GAhqr4iMIouggC7ScUD8yVOPfWC8N+PPvWfAGavIi4h4ftAb7b17+hXfCV4bM1R5Eww5E7NwhzuzBGm0OZ4FgIKsIklQalIC/jl2g0hY7O2gh0d40jVo6ORRVe3wk0OprGGsrfLd9b6sO978FsN7xubOIBSqQQgWUFcehIVX8KwOdYPUXDdLTDGwK1GMRZDBNmMunIGznnYh/38wd3w/MabQzyD3TrAdr3A2YUy2KsaKZU/6/F65Q71AgMFoD9/fMcjbAFuxl01AGWrM9sF53V5D1lT7eene3RMlGqfMfTCzr0YAMAgcUoHAmfAIpeIA2DBojjTOKRgkLNsSJeuBGx1oUspwbC8F9aYYMratG6srFp1zUbobLqipv09dnxf0QB7amYicT//557P4uvfuw2f/Px7sPeFuPBkzdKtsS6YMYajJY6hHnXNZGzVGlQsQwXUQYl41FqtGUwwwBQNr/MlFj1D2S0wnYFrjQswUXSNwdABJ+Fcka4PqXOceuaLw+ce2/0ggLoMdgcl4qUyYFtAtkn/dRW/7EOklWXvXDEHTbW40KV075ERKxpuKnP5qE2TbaqJdqvV2E6Rjg+kNTCQgni3ohZZ4ucAAFxw2gXozavJ4H/+6nuoOKXY9v0HIwJnCQri8HxMljnWDLHjnvwS84uwG/sIw96wFkJnrufgwOE9Ddsnp8fDx9l0oeXf9jylJLqcJ9rE8VOqqHakfJsJYDsMneHMrUqs53jgJoeweYPQWS49e6suXQAv36oMtB2f4f8+VSvVzWf7AZEBMmcCADb2eMi0KDEul6MB9iKKnEXstaBzQMPsrbpkrczc89V1v9wX1rgpGjzBzXZlvwGbextvrr2p+PmWtturiD+3/4nw8W92/yK2rZrprD9XpC/hQ6LsMWxZq5w8hGDozakAmzEGWKL2G7fLYAPga1Ng+drJ6/sSnKlFqdUI11Qyqb4Kph67iaCoaqnkGN1yInIF5Tjw6+d+DillrAe7k/tAM3uuevyyD32OCuLLBQqwiSWh6pEsnXiAbepzsydpwPXh2Ro08sDuWriZXBqpaRpe8eJXAABK5Wk89Ph9se3PH9wdPh5JyGB7jg+fMWxaL46rBJSYf+qt2QBVIt40wI5Yde072FgmPpsMtheUKC73iTZxfEwVVQatmcLtbFg3xNBznKWHjDFoBb0hg22bDHIOSuJXbiuHj+/6jRlqhOWzvUD2fICpFaZTB1unPcvO3Ox5jhcGVrNq0nlwc5jDonvVostbGa0hSV7Huqb0a9otxGxJCrDtugC7gx7sI+MvhI+f2ft4bFs109mQ5fQkih5HJsexpuYWh/48C1sgmClUFpUhtGhrBR+ywVK1G3nZUd9Dymr71hVJsx79elJ2cgYbjq/K7k2BU7arMvGJmTHsO/h0nf1a+/tAK3uuKNKV0LMrezCmAJtYMvS8Fs9gG+omebxCZ1JKMMbgGsoDmwLs7oRrHNwWYR9+lGiZ+Fe/+5nYtmiAnWTRNTkpkctzjAzT7a3bECZvUAXWg6C3nZL43hcahc7iKuKtRc5cT1WzcFp0WdVMl1T/dTdZN9bbVgIqyz4X68r1BR+nD6lB9LkJEVpy5TJ9YXk4AGxvIXAGLE2JuNLjkDW5X42BaWxWXtjVkvCqRVeYwV7mAbYwG0vEGVNWR+1KxDcWPPC6ZvYeK/5vy0hBCHWuNFMRjwbYu/fVAmzf91sG2NNlYP2auMhUVWFaSqkEyxxfZa/ncF2WHXW92Ks1g20E7XZtAmxTZw3CsgCAig+W1sA4w6mn1/qwH3viZ3UiZ60z2FWrtFbq4SEMEKllflG2gWagxJIhbBG72DlnyKWB0vFmsCs+pM7gGgK6oBLxbkbLaIllTZeefynWDSs18Z8/9kP87JHvhdv2H6qViNdbdElIVIoSI2s4DJNub90GSxjgtaBsO2llfcOabeHjZ/Y+1rC9GmDrmtl28Pd8tYBHrG48H+jLd09wDSRPNC1DjV3lWZaJA8CVJ1bCx996Qp30hWwfkHtJ+Pz2Fv3XQFzkbNF6sH0JKWrq36p8WJtdibgnITUOFmSwQ+2FZT6X55ZItCzLWE2ykhEMDVifjy9S9NRlsBljYR92ksiZ7/sYGz8Q/nv3vl+Hj2MWXXXnilNRlmmjI/EfIGOr46o4SmEcPlRE0kEGu55SRWWvV6OCOAAwntyjX4/RJGEsXR8IvKRPOf1F4fOP/vY/UYq2irTJYB+bUa037dpvfNdXugL2Mr8o20AzUGLJEJZoUJHOpdr7Oral7IFZGiqapkRAVnYVyrJGyyRnsE3DxC3X/2n478/c8afwPDUhjGawh/vXx943VQRsTWJoeGXfuJcr3OANdiKMMVhmcon4ptGTw1Kzp/b8qmF7tUQ8l+lpW5Lmeu37woiVTbkiYWrH33893wibg/F4Bso0VPXVXJw1dm6oIBtYM/1ot4HJMkM2HZSIA7DZOIYyrbPC0R7sRVMR9yQgEBOwYrZo0G1oiRv0cOuRDDZf/vMA1kT8yzKaZCXr2NwbX1DpTTW+qRZgN2awJ6fG4Hq1k/GFw89hplj1Sm4uhDV1TCKfYxgajB9/KHQWKImDQWWv5xBgVxygdxX6X0fhFm+ogqmneg006BxJgFlq48nbzwPn6tp5/OkH6nqwW98HSmWJAVTatnT4ZT/UnljJrOxPR3Q13G7swbVNqKC7kxGjCbLsg+V1OFLZQVAfbvciLNF0cvDaS1+L07ftAAA8+/xvcNe9/xsAsP/QbgBAX2GocTCfAQZzPtI9FGB3IzVf2viPbpvJZY62lQn7sJ/Z+3i4yFLdx+S0ymC3679Wr1+9GQ5CMV0C0nY3BtgC3IwLnXGmKrrmEmAbGvCyqtiZx3DPkwaOsfWApgKovP+btvbS5VmKG80LngzSzZGpqSWUx17H+1AZU0Qy2LoGiDkEbt0Eb3LvqlbotZsz1fdh12ewgZrQ2XRxsuEeHS0Pr7L7+d8AiFs5RSuJJCQqJR8jIwKaFg83DF1ZsxbLUAsqWlAers0+LHE9IJde3r/v8SKs9gtReiCKFxXlD1sqgoo/O5XBpq2nAQB27/81jk4cCl9rG81vnMWKhMklMq4Dd7J1dUwtwF7Z8zQKsIklQ1gCzBANSuK6AJw5lMWFuD5Y3oDrAelVKnqxXKh6YSfBGMP/e/1fhP/+/77+MRw+uj+84df3X5crEroG9GYAYS/zdMUKhRss0ZrNNhmatZpuWb8dAFBxSrE+7FKpBMdRgk7tFMSrLHehI+L4mCoCw73H51u9EFQD7Hqhs2xq7taVV55YEzv71hMm9hWHw39b5V+0ff+SlIh7UolcRTPYs7XxcWWgPq724fkrQ4eFNQk8TR0QXMKpzC7Arhc5A2pCZ57nxnpvgeQAu9q2E+/XrwXYMyVVUdY3mHzj7c+r8m4WiNkxMbcMtpSrt/+6ikg1iuDVY2hqsSmmOu8oiy5m1n6jU89QZeK+9PHwE/8ePt+qRPzYNNCXlsj2afBKrRfE/IoPLat6vlcyFGATSwa3OITJYpOKqpL4XIXOpC/VyrwtVIC9Sn0RlwvcbCyNjPLiM8/Fi8++GgAwfuww/vr/e2+4rd6ia2IGGMir0jNu0O/ejXA92fvc0JpXOW5Zf1r4+Mk9j4SPjx6NCpy1z2ADpCC+2nE8pV7cbTDBoOU0+OV4EHQ8LQ0bCj62B2Jnz44LfOfp/trfO/aTtu+PixstZol4ndCVzpWyeKe4EsziYeWa5wPWCgi+uM4AxiDrViINHTBmHHjPzTR5p6Ixg928RBxoLBNPzGAHfdhxpelagD1dBHpSErkmFWX5dLCwqgV2bILPOuhyPbWwvloVxKtwvXmyooqhKcG/2KKdEyxIRQPs02p92OOTtQx2s4U2X0p4PtCfldDSyW1/sddXfOiFFbDq1QYKsIklgzEGLafHMtiaYMikgHKlxRtbUfYgTQGWVjPplbByvZLhJgfTWdMbsqkD73rdLdA1NUP62cP3hNuiFl2er27wa/qVPQSfbdaDWBSYzsC1ZC/sZhH21nXbw8dPPVfrwx4fHw8f59KtFcR9KQFGGezVjOer3z+fWeojSUYvxMdCQC04CwE4c7GpAnDlttpAuu9YsLrkTaN89D/avnepMtgw4/aKTOeQQENg2Qzp+kBENM7zAGsFzAOYzsAEGhajDR3QKx5c0TqD2WPLsCycM4mc2S7Ajgudtcpgl8rT4XPRc8X1gKzNlEBbAplUULHIoFoD6sbto8fUMbotfvtSJbDoWgGLKMcD07kSimsB5wyWUSeK5/hglohVipwaETqL0qAQHzBdUgsceVMq5X/W2AYWwwe09MofjGkWSiwpWk5rCK7y6eMoES/7YLam+rZACuLdDjcFuM7hNylvY4zhpM3r8Yqd1zVsi2awZ0pKTbWQlgBjajWX6DqqdiINXthaYHebMJGqlogDcaGz2WSwPT9IklAGe9XiS1XdUujSAFtLi4YJsmXUlJbnwq6NFWSMup0e+w8cmzrY9r1RkbPF6sGWngSrd3/Qucpqd7rIEBFsAoIAewWIGzKRXP3DfMC2AIfztnZml5+g2gYu2VxJdMOKBdh1Vl2HW2WwI4sxdhCE+VKCccDSZdP+8YytqjRKnioPZ3WvGw/i9plS889UrqgFlNVeIq4qHNq/zjbiGWzp+GDp+ER5ZN0W5PP9qMfUkxfaporAYI+6VLnGlaJ5OflclMFit2iy6LKSoFkosaRoqcZJRcqcewmfLHlgBR2+VB6ilMHubrjBwA0G2aKkKGMzXHXxe1DIxm/4I0Mbw8fFMtCTVVVmXAMYlYh3JVU7kXq1U11T4itJ/aa9+SEUcgMAVAa7ujIey2C38cD2PJUJpAz26qYv371Cd8JudNUwdOVzPNcA29SAl22pKweb/Hccmx6PCQYmEbNeWkwVcaPuIq0KYM3CCxvRBVYG6F3Wcz8XuM7AErLU7rSLVI+AwwIv6Ra885wS7rh2HP/Pzng5uZQScrISipwBrUvE1wf2iePHDuPo5KHEEvGKo+ZfptG8oswygGwaKDpMZa8jv1uxrBT/AaDYIsAuOUAu3V2+9kuBKhFnrTPHUJnmmGOHJ8Gy8ZVnxhhO2X5+7DlDt0J18Siup0TSBgpqHqdlNQibw2/Sh+1XfHCDrXgPbIACbGKJ4VajqvBxlcVJCZY14Lhq0k4BdnfDGIPINFYxRLFNIJvO4b+85v+JPR8VOXM9oCerMqNM45TB7mJEqlHttNoblmTVxRjDlqBMfPzY4XCiF8tgp9tksL0gg73yx3SiCYYAhnq6dxIuUkJlfurKxHOpuWuSAMAVEbEzAMDE/QBqFnfNWJIScaAxg20EntYdWnUxiVipsZQr47pX7TVouHd6Ux5SQyY8rbPvqC8lGxXkix7kkTLSevMAe2xCeWBzxnHWKbvC55/Z+3idyJk6V0oVwDYkTEM2tRhjjKE/r6y6mCVCJWsAODIBDAW39WKLlsGKoxbXVzthC0FbL+y630LKhtJ8oLFMvFl5+FRRLXAUMqoCRcsK6AUDXjFZndEvS3BDrHgPbIACbGKJ0bI69LyG8gu1SUDKCvw/O+jDdj2JPQclDo1LeK4PcAaWEnBdla2iEvHuR89qTUvEgeB8MIBLzn8LNq49GQAwPDyMniCr6XgSmqbKzaTrg2lMqZMTXYmwG7MwmgjUTZsoJm+NlIk/+ZwSOpuYmAify2YKLf+m66u/UT/RJge/1UO6i8vDgYiSeF2AnbYZ2iSlWrKpx8epgypbzWUFOPZTAMBEmwB7SUTOpGxQkWYiyGx2sOAuPR9SMBWQR1juHtiAKr1lWqMgqF/xkVlrQtpay0qwlrg+YGtIG7ULpFkGuyc3ENPF2L3v8boMtrJyqjhA3pZhyXAzChmmbKOyOlhQveD5EhUX2DRcOxeaZWalVFVuqx2mJbcQ1GPoCEvJpSfVnDmhXPvUs14c+3ezRbaZErCmT+knAQA3BPQ+vemczi97ECkBsQrmaCv/ExJdjZ7TkD+7ACYYyodUkK1ryr+61apllaki0JtTdlwH93twNQ6kNFQog71sELZAqxmkESiEOr6Gj7znX/CmK9+Nv/u7vwuFcIol9ftnbEA6qt+r2Yo5sfQIuzGDzZgSX2kWYG9JEDqbbQbbNBATT5KubCq+Q6w80nb3CpwBSp9ApEVD72K1t9Q/jij7AxdO47ItZZxv/RPgqcBpYupIy/dEA2xjkQJshmQfZGaLzkrEXan6hCIBNmMrI4MNBF7HkQDbL/tgOkN6QG9bCdYSRwK2iAfYkR5sz/cwNqH69vsKw9g0ekq47Zm9j6FUaRQ583wgbQBMa+ytjpKxlWi8XJcGW6uypOPH1GJYNYNt6SojXk/Vw3m1K4gDzVsI6tE1Ffj5vlQtBXUK4lVOPPVccF57PmmRrexIGDrQl6v9vtxg0DPNVUv98upQEAcowCa6AHuthcKOAqQrUTmi7qKDPQwVB5BNzXsUxTIw1AOcuY1hTcbDYUfDhMPhuNVScwq0up1qm0AS1clmIaNWxIf6RvGuN96CM844I3xNsawWWYRQq7cipcUCKaK7YE3sRFJmiwA7YtVVFTqL92C3DrDdBC9c35HQ0isgtUW0xdCU5659HPoei0GiknggdDZn4U8Ao3kfN++awfaePeFzE8daB9ilSA/2YpSIqwyljHlgh1ha28wcABVgVzPeCIIIrJwAm1vxAMqdcqHnNGT7NegpDrfDMvp6pOeD2QKpJiXiE8cOw/fVzbmvZxgbRraF257Z92uUIoJ4lpkKXRts0b5lK2OrALnksHDcHp8GNo8AVnC9pm2lVF1P2VEZ2dUucAY0byGox9DV9eB4UAriBo+V5lex7TS2bKwtbCeViB+bUXOzbKpWYcB1tVDINNZwLwOqZeSrY9ylAJvoClLrbRTOzsMrenDGHfRklABG0qplFdeT4AzozTGkTIYtAz5OPcvATAk4NEGrmsuFavlYfQmYN+Nh5rkZOGMOMi3KJD0fyGfUQOw7/qoQz1jONCsXtM2gVDCB0eEt4ST/qaBEPK4i3l7krGESJiVEi8UdYuWwpp/hvJO7O7gGVLtMfQbKMgDDmLvQWZRcpi983C7AXvQScV9CCg6WlME2ecsqpxDXVwt4Ws0Du9p+shLgZtzi0J12YQ6bSKU59JSA483xHPcBGBxpvZbBnopksKMCZ32FYdhWBmsCm8zd+34ds+myzRTKjjpvbU0q0dEWGeyUpSrQikGXYLEsYenA6EDtPYM9ylO7nrJDFl1VqqX47TLYhqbcNNwgwIatqTaMBE45uSZ0Vu8kICFRcYA1fWphRHpSKcEbHCKtQVgCXilhxVxi1czRaHZBdA2pzSnkz8rBmXRgui56csDUTPPXTxWVj2JOtfyAM4aTTjZw8VkMG4aUOAzR/XCLg+sM0qkNDNKXKB8oIbUxBXfKU9UICTZOFVeVKGWC+Z/0JESKbmvdDG9Svt96EszDssR9B5/BTHFqVj7Yav/14i6gXv1VxHKoakmaeAqhWqaOR+isSiEbCbDb9WBHspKGvgir1Z4EBJIz2J2KVroSzK75aLueGjdWSgY7WiIupQQkYPabEIIhleHwwBocGjpCSjAwpK3kDPaRo/EAGwA2rj0JgPLA3r3vN+F207BRrgSVF0yCGxw8YdGkCucMfblagH14AhjpV4r/VXqzLLFDoFxRwbVJriEAlO1pvQVmPVrgpuF6gKz4YJn4wFssS5QqEo4rY0ripmHB9dS2qaLEkSCJ1RM4u0lXqiy6wSFMDi2rwS/Gf7RqEC7s1THuro5PSSwLGGPIbMsgf3oOzlEHA5YPx21eJl4tD9cEg+/44DqDltEw0s9w2Q6Gk9bTTXc5IEwBpvNY/1j5UAV6nwF7nQ0wCVtXgXS5rqJhpqQyk5nI/I/X27wQXQUzlOepn2DVlcRMWWLvIWDDSK1c7ek9j4YZ7LSdgxDtU1QN+2doEEMiiKVE2AIsoa0plzq+EvEq+VlksKsq4paRWpzFiUBwKakHGwbv6Bik5wMRdWLPV+4EKyXAZlqtvcab8SBsEfazFno5HLCO1darVPuYYfKmAfbh8cYAO9qH/etnfh4+tsw0yhUgl5bwy35HOhe9OQbHVQvojgtsWsNiv3c2rYJCp+6zlSqqPYxQcJu3LRFnjMG2ADe4n7BUbWA8NC5xaBw4MgnsPwL0jr4k3GYYfRibBGbKqpgkawPrh2q2utKpCtqpfxv9BrxyPIPtlX1wkyvdnVXACimcIVYKjDFkT8nCnfZQfmwaKctCsdRY7u16ymqiJxuUggWDTbW3o9t77Yga3IxnsL2iB7/io+fcAswhE1OPHwNKHlKWwFQRSEfeW6oAw71xD0zKSnY3SowlUMONjEC6pgSJfF+Gv6cvJcaPAWv7gTWDUSXxX4Uq4tk22WvfV60klhF5zvXBBKnNE91FVUm8npTF2uqRdEIuW9Mq6FTkbNEsujzVr5uUwWYah+QM8Pym5azhPuzaTcXzVby+YkrEdRZqR7lTHoweHSKjgpVsQcATgRf2bMQbXQmpcfCMjlS6ED4dy2AnBdhBBhsAjk3X2nVM3YKccmBrLvgGDdaa9vXbGVvd+8cmleXWmr749mzQpz1TigsVOi6QS9Ncr0q9CF4z7EBQlEkZCpx5nsTkNHDBqcDaftWuVTl9C575/k348SM/wPv+yx/g7JMZDF1dT1rdQqCySK15nmtZTbUeRF9DATZBLC2MM6TW2Zh+ega90scL47whwJ4qKmGF6s3WK3owB82WdhBEd8IEg0hpcCYcSClReqGE7EkZ2KMWGGcw11iY+u00erICRyLOIRISvmQoBP3XNZENGnC7Ga5zsOqCSmTuZWgq0+T6NVvOo5NAIQusG2TYPFoLsH/77MNhgN2u/7rsqh5WOxJgR8vZCKJb4DZPtK+xDOVe5fkSgs/9/lbI9oePJ461s+lS/VmmuXgBNnQe2HTVBQk6V7NVNygjb0WkKsXzVlgGW2dhBtsveTBHMmGmN5XmkAZvrhTZDNcHBHDEE8jbNgTX4PluTEU8GmD35ocAILTMrEcfY3Atid5zchg4PQ091z7MyNjq/nx4Anjx9saSb8tkKGSAg0fjATZj1H8dRXSoVWCbDL7jQWo89J0/cFQtbGxdy8LvX+YE/vT3b4JfeT+MPqPVLiFdHyKngQX3Jy0twkq1aouAX/ZgDpiJVTorEZpdEF2JMWDA6NHRyzx4fqNFSbQ8HFArY8ZA6xsA0b2IjIBfkagcqsDoNZA9KRveqK0hE/AlUiYgIyuijgOYWrz/mgkKmrodZjBw0ejnqlcD7GB+WHYkXB/YMsIw2AOcceLJ4WTyl4//O3xfnQztFMTLFaUgbkYD7LpyNoLoBhhj0HKNFja2oc7fqtCZLyWmSxIHj0rsH5MdZ7fTdi603plsk8GulYgvYoBtiORScJ2rZup25a/V11Z36auFO34cixLdBNc4wFRLHBiD2VO7qVkGIG199lZdrkRJChwsa6hIgbStysSni8fCl0QD7P4ggz06vAWaaDxXxYnD4Dv6MXROrqPgGggCbEvp6UTFzaIM98ZFbz1PQnASs43CDA4pm3uGV9F1gLk1i66KI1F2gJM3sNjiRvV+lKQGXo90ZSwzrWU0cJvDL9Xe61ck9J7VYdEFUIBNdClc57A32sjADUuDqnieBOe18vDqzURfJdL/KxEtI+DNuPBKHnLbszEbB71Xh0hrsDwPmlC/P6B80lO2+g9QQRPTGfXVdjlcCzLYdZNlLQiwPU9VJxyZUKXhAz1qoN+yNoPh/i0AgP2Hdofva5fBrjiqhzU6cfcdnzLYRFei5RvTrWYQYB+bAQ6MSRwYU+Wx/QVVAt1p0pIxFvZhj3eoIj6XEnHpy1mLbUlPgjVT9a/e11vsU3oSksfv/57XaM+3nGE6A+OAM+FCywhoET9h2wT0nAa3PMtWAseHq3NkCwJlzpG2VFNzUok45wL5bD+klNDKDKP9m+PHxxicdf3I9mqzCnyFYOjJAiN9zXuq8+n4fK8UKIiTRVcNs9+AlhFwj7UWbDA0BBZdDDA4XhgD1g+qnup6tKwG32l/TvmOhBYRaeQ2h5YS8IqRm5MvoaVXSDlJB9Dsguha7GELVk5gwPJwLGLRMF1WK57VUiG/7IMbfNV4661EhCnAGJDZmlbCZhG0tAZzwIBedpXQWZDFKVWAvpxSjwfUCiplJZcHwtYa1E45Y7AM5c85MaWu8U0jLPx9+/LAlvXbG/aVS7fOYHs+kE3Fz4nqajtbIZktYuWg2Y3jGGOqRNbQgbUDwFknMFxwCsMpGxl0rSZY1An5oA97soWKuOs68Dy103p7no6YdCD3zUD6swj2ggx2Eowx1Vfcqr/U9VX/diTAdr145cpyh2kMTGNwJxyYQ2asncA2ASPFZ10hLl0Jz9CUUr2mIW1WM9iTYTB7ZPwAAKAvPwTmSMj9RUhXYtPm+P3YstMoVhgGCrNX7T9pPcNpm1nT9+XSqpKjqjZerUyiEvEaWlaDvd6Gc7R9gK35Eq6loRTMp07eyCASSrdFSnRmkSdlTNCOMQa9zwgz2DLwRl8t/dcABdhEF6PlNVjDFnKeugP4wWBdLMXLw72iD2Erc3tiecItAWudjUykNDyKNWJB+BIpS4YBtvRrq9pAo8gG0b3wlEhUO7VNoFRWk6jNIwxpq/b76hrDGScmBNgtMtjV0tn6LIfvSLpfEF1JdQJa30KxZYThglMZtm/mGO5jsMxAcEjMTmE8H1h1lStFlMrJPpiliAf2nDLYFR/IaEBxFtGelGAt7t3MSr5nhHgyUDSLl4hbKyjA5hoH0xikL2EOxm9qhs5gpVWA3a5EOIbvwzFUxtk1agG257koV4pwXQfjxw4BCATOpl2wQQvauf3YfPZZsV1ZVgqeX6sunA1DvQz9hebvy6aAtA1MB9WM5aAyKSkoXM2kRm0wgQYF7yiGBmieD9fS8cIRYPNIo7BclY4ttSQakht6Xq/ZylUkuMHAV4lFF0ABNtHFMMaQWm8jZwMZQ2ImWLmMlocDgF/0oPcZLb0Wie7GGjbRe15P054to1eHSHEUNB+VYDJpGsoHvYp0fXCLU1ZyGSBsnlhCapuqMmFNn/JCrefcU05reK6Virjrqt5uqy7Alq6/qkrViOVDNQtU3/do6AxW3QSWMwbbVFUfndKJVVdV4AyYYw+254PlDcjpWXqLJXlgBzBbqIi5Ga6vysMjIpcqwF454wHTlX6FlhHQC41jZbYQWHV1oCQdIgGXc+gaIHWOVJ1V19HJQ2HA3lcYVt7JOQMspWHz1vj92LTSEFwFw/MN5wzDvbV2wVJFKY4TcYx+A9awCeeI0/Q1rORC2BxHdROWoaoHmlUOcDMQK2vX288aHVy0tAC4ahnxyj64ISiDTRDdgjFowu7VMKC7mA4W1dNWXEnSq/gw2ygcEt0NE6xlib+W02D0GrBdLxSYTZvx8jDpxnuAiO5FNMlUGZoqL9w8whKFic7d3hhgt8pglx21Wm8n3B7IL53oRqoZo07FqlLW7ErEo6KAzay6ytEM9lxUxJnqhWae7DibytDEA7tKO20NVwJWo0jaSlEQB1SJODQlPKXnG5vLcz0CHmPKqqvTfYLB0zhMnUGzOVJmNMA+1mjRJSVYMM5u2hqvKDKtNFLmwgTYgPLLrpbASwlkUitn8WS+YJwhtSkFr+InWnZJKeGOVWBsSGFCGNi2Hi0rB4TFwQ3esg9behJgDLzuGhVpDdwS8Es+/IqqNF1N1pir55MSyxJhctgbUshJFzw4Wwei6uGuD8aUYiGxcmGMwV5rwfA9VG1Q+/L1wlUSIkXnwXKA6bzBiQcAenLAietZU2/Tob4h9BcGY8+1UhGvOKqsUE/IjK2mgZ5YPlQnqZ0o9wLKI3s2rc6FbCSD3aQP+3hKxKWUYFKC9ZiQFp9FmbhsmcGGzlv29UpXqix3BIaV44ENqPFOWALWiJVYqZXOCUhNtFVbryJdHzLoWy9kACMtYBuRAHtmssGiiwGhz/bQmg2wU7Vsh2aklCL4AvVF5zPq96wEn4/6r5Mxhy0YPTqc8cYstnPUgZ7TkT0hjeE+YNu61osUwhbgBlNtH02QrgTX0dCep6UFNJvDK3nwyz60gj7r3vzlDM0wiK7HWmMh18ORFmqg7gl8j33HR3FPEdZaC3rvCpIKJRIx+gzYGQ6DqRt9w+q1lBDNVGiJroIbNT/XKGmLYbCn9QB82gnxrEmuRYl42VXiOFFCv3Tq1Se6mE4DbGOWAWS0RHyyWYl4uRZgW7MVOfOk8tfN6+C9Ztsy8WMzEuMTPqTgYC0y2EznkEBz4TTfB6sTiJNYWRlsAEhtsGGPJEt0p1IM0hKQnfYMuGpRQ+oc+TSQznKYVj7cPF2cxOFoBjs7BGlwsCDA5pxj4+ZTw+26kcZQ7+wFzjoll1IVjBNT6rwni65khMmR2pyCU6cmLj0JZ8JF5qQ0hkY1nLa5UQC0HiYYtIwGv9z8fuS7PljgDlL/Xr1Hh1/yIV0feoIF4UqGZhhE12P06kgNmegX6maRSyvl8OKeItKbUug9rwfCWmGjKNGAXtCRHtCRCtRtM/WJFYmWIjlE98B15eeaVMLWjtO21QXYrXywJWJCaUCQ6dIYqc0TXU2n14ahA2DKG7sTctna9dLMqivagz1rkTMnUPM2ONiABbh+yzLxqSJQLEpAoG0GG1qL/mKJxDLylZTBBoD05jSMJi1xtgloWQG31OF91fWVtZnBYehAXz+HadZ8sqaLkxgLFMQBoC89CGaKMIMNAJsjC56GmUIhs3D3VdNQdl5HJpQGC2Wwm2OPWBApAXeqFmSXD1dgDhpIbUhh2zqOE9d3Nl/SCjq8FgG2cnBJFpg1egz4FR9SzkIwbYWwuj4tsSxhnCG1MYU+Ww0arOKj+HwJ6W0ZFM7tUTYCxIqHCQZr1EKGqdX5BnVY1qhiSXQnTGfgWudBRJTtdcI6zQJsX0ow1nie+I4E1zllsInupsNLw9SVu1WnSuKFbE09sFmJeNkphY9nLXLmStUCYgiwvKGCsVJyRrWq8s88ZeGDVorQOg9Mv5Mn+qz6mgDPlxB85WWwW2EZytbS7cC3GADgSngah26qALvQI2Cl4hnsaIl4f2oQsLVYpcHGLbUA27JSC9Z/XWWwR53rKWtlWbDNN3peR2rUQmWsAkBVfPolD9mTMrNOSGkZraVVl3Sl8mhPWCATGfW3GGerSuAMoACbWCaYgwbSvWopunywhOzJGfSck4/5QBIrH6PXRF9QQhwtQ2smskF0J1xX5aD1XtidEC0RF1xDysokvq7iqOxefT+gdH2VwaZ7B9HNsBbl0BEMHdA0dOx/HF2QmuxE5GwuGWxLKQ8jJcAKBtCkTLwSiBDqXMIBby1kpiuLqqT+YulJlYmNKoh7WJUBtpHu3AtbOj48U4OuqYWatAXY2UK4vaEHOzUIVlfmG1UST6XTCx5gFzIMtgXk0wtXir5SsNfZAGPwKz7KB8qwRy3Yo7MXLQytA5sE2b4rIWwt8ffQ0hq4ycAtTgE2QXQjWlqDtVY13GRPySF/Zo6CqVWI0acjN6AGeOlLeEUPzriD8sGyEtmgoGlZwA0OJlhrX9smbB7dgpSlZnGZdE/ThfWyA1h6Y5ZDOsqPM2m1nSC6Ba7zjpTENaGC7E4z2PmIyFmzEvFSee4q4tKVYIHYJGMMfMCCrCSXiVccdX0azFf2Ui0y2EwoMa7EEnEvKEuv88AWfOWViLeCMYZsnsPp1Avb8+GamjqHNCUIme0thJunIgG2rhnIWvnwt61yymkXYGjNBgDAiy58xYL7jufSSqV8Ll7bqw1z0IQ5aKD0fAlgQObErLqOZolIcXCdQTapjJCO37SSVKSVNZdYZR7YAAXYxDIivUlNqnOnZsnzepXCdQ5rWKUki/uKcCYcQEoYfQYy27LULrBMYLrKNnlTLtwZD77Tuk8zihACb3vN2wAAl77oWkyXkl9XdoBsWnkFR/EdHyKdvNpOEN0CNzj8cvtrgjGmrLo6zFrmoxnsjnywZyty5seCMFYwAIsDCT2cpYq6Rk1NosJaq4QDAEtrkOWED+pKVT4eafvwPLX4sJoy2ACQr1p1dbJ4KQFX4zANQNOYskCNBNjREvHe/BA4Z6HAWRXLTuHzX3kUH//HJ/H6N7xxwe+rGRvoy1H/dScwwZDelIL0JdKbUjCH5rb6IWwBboqmQmfSkxCp5Dk51zm0nA4to626efsqWtsjljt6XgfGMacVOGLlkNqUwvjRcfRf1A89rambP1UzLCsYYzAHTZS9ErwpF47jh9lsbnBYa1rLw/75jX+B6//kekw9PoLd+5J9Vz0vWSFVupIWYoiuh1sccqYzJfGMBTzfYYBtGjYsM41Sebp5D/bxlIgzFgt0kdbACiYwVo6JYwFqUSCfZpjWJcbQ/ppkgzbYvhlIx1d93uGOpJoXRCbwrg+IVRhgp/ICnuCqVL/NuMgAOIyjLwhWDZ2hb6AQbp84djj0Su/LD0HqHEioErPsFPoGNy2owFkVzhl2nEgK4p1irbGQPiGNzLbMnBc/uMlDwTQtmxw2crP5hWYMGE2z3ysZCrAJglhW6DkdOApYQyY4p8B6udKzowDf9eGXffgVH37JR2XMwcQvJjp6fy6Xg55leAZK0Kw+Uy1lsh+r9CS0NA19RHejZTSUx8sdvdbUWUsRonrymd6WAfZcfbCrHtjRAJsxBj5owXuhGHPmk1DCZikT8DXA6yTA7jeBQRvyUBFsMHJcrg/kjJg3tOep3vRVF2BnWovBVan2rTtMxBw5RkYL4ePnXngyfNyXHVIK4gl9tBVXQhONlogLRYHKwztG2AK9F/QcV2UBYwxaXkPlSKXpa1qJhma2pjsWbVxJ0OyUIAiCWBK4xqGlNRg9Bqw1Fsx+Q9l3dSDuBChfVNsAinVl4o4noWtqWwOS1OaJ7kfLic69sGdpL1stE5+cGoPvN/6NaAZ7ViriVQ/suswpyxuAySEjauIVB9CFCrANIQGdt20TYZyBr0sBYLFScelJMLsxO27qq08IK2Uz8JSA28JWCYAKwHUGT+NIRawM14zUWgj2RgPszJCqRhCNYcPUjCrdLiTrTRJLzHxcA3pOT3T9qF6zXG/+N1ara8fq+8QEQRBEV8KMwL6rQ/Ezy2Doy6OhD7tSSVYQV3+k9Wo7QXQDwhIdJ6UNXQl6eR0uTOUDqy7f9zA101gxUo6KnM2mBzvigR0jo4Hl4mriVYEz21SBsGayjoTaWJ8JPmxBjkeyaZ7fkFn1fLXf1YZtAnpO6yjAZpqA1DmMSEHPwJosBA8cWyILLb2ZQbBs8hc6VQSGegCdhCNXLFo6uRREBu0ZNKY2Qt8IQRAE0RXMxb6rP8/g+TVPXQAoBz6p9RO+0M6NJgNEl8NNAcY6U4M2A6uuzpXEW1t1lSIiZ7NSEY94YEdhjIEP2ZCVWta57KgKFCEYDJ3BsDlKzStQ4/talwYEi2XEWd017flNFthWOJYB6BkB12nzQldVDTDBYk4L2RxHyso1vLwvOwRmJ7fWOC4w1EvB9UqG28p6z69rPQg9sEkHpwH6RgiCIIiugBvK61a26R+Mks8AlgkUI+2qZUf5pNYjXUl2bsSyQNjVa6EDL2xNlVs7c/DCTrLqmnOJeNQDuw6W11UZeFDa7bhAPhDF0oREKsU6CrABAAUDfNgOs9gMrEHQq1oivtoQgiGdE3DbnTeOD2lxgLNYBjtjM6RSCQF2brBBQRwAKo6EoVN5+EpH2Bzc5A1K4tKV4BqntqsEaJZBEARBdAVMZy39NpNImQw9GWC6GHlSAmmrccD3A/VhUp0nuh1hisQJbeJrgyyk22EGuxCUiAMIVaKjzFVFPOqB3UBWBx+0IMfK8KX6TLapqkq44Mj3dJbBBiJZbINBTruQaMxgSwmYq3TSnytwuH5rLQvpSniWBl3Ee/g1jSGbSQiwe9c0qMADqjw8Y6uFTmLlImwBYTXej3xXgmlUFZYEfSMEQRBEV8AYg0hpHfdgVxkoqP5NCQk/KKm1EgTO1Go7owz2PPKRj3wEr3jFK3DRRRfh2muvxX333QcAuPPOO3H++edj586d4X8vvPDCEh/t8oFbaiGoU6GzjN15iXgu5oXdqCQeVxGfRQ92nQd2FMYZ+OYsWFaHc6gCXQsUxF0fTGPI53nHXt6AEk7jIynIsbLq+64XVmOrT0G8SqYg4Iv2SuKeLqBpiGWwASCfzze8tr9/RPmZ1zFVBIZ7qf96pcM4g5bTEzLYPrjFYwr+hIK8SgiCIIiuQaQEfKfzEnFAlYObOlCuKG9XUwfsBJ9U3/GhZbXEElZibrz5zW/GBz7wARiGgUcffRQ33HADvvnNbwIAzjvvPPzN3/zNEh/h8oRxpqy6DneW1k2ZbBYiZ33h4+QS8VoP9qxKxOs9sOs3Z3TwE3Ko/HQMpnCRMnXIksqApdOzvyb5aBr+/qL6u3pjBnu1Bth2hkMKpvqsk5wUEHhgcyVwZta9plAXYJu6hXR/b6KCuOOqBU5i5aMXNMzsbiwR11Kr9EJrAwXYBEEQRNcgUjzRDqQV6aBEcWIK0IMJo5XQfyldCUGTgXll48aN4WPGGCqVCg4fPjyrfVQqFVQq8UBS0zQYRpPoYAVTtc3yfR9aXmDmBQ+SddCHbUkITYJ1cHoX8pEM9vQRMBHff7VEXAgNuqmhExNbKSW48MFMgKH5AhkfNOCsTaNnbBKAUOXiOmBnAFP34fmAztXfa7UfAGAZAbEuBXm0BKbXXu/5EoIDGmfw/eUZ/EXPg9liZwAtxQDfBRONJ4T0JaBJ+EJ955zFv6dCT7xEvC83BFHQG34Px5WwTSCfXpjv+Xi+g5VCN30HLMUhuYzdjzzfB0/zBT2+bvoOAIDzzirgKMAmCIIgugZuzD4AZoxhqBc4eFTCl8BgFuAJJWu+I6FlaNibb/7yL/8Sd955J8rlMi666CJs3rwZjz76KH75y1/i0ksvRW9vL6699lq84Q1vSHz/7bffjttuuy323DXXXIM3vvGNi3H4XcmePXuAPIDzgGNoJwkNZEaAC7Z3tm9vjQV8VD320wewaeex2HZfmwYA2LbVsK09B9u+YsNl6v/TmKo9Ob0XLz4h/rp1hb3t/9yO6oM9sac39QJeEXj22fa76Gb27NnT/kUJnHdt9VGrCgj1Wz33XPzZTCG+Orl28yA2nX0UwNGGPWzpB6bG1X8LxVy/g5VE13wHFwDHMFn79whwFEdx9NnGc2O+6ZbvYNOmTR29jmYaBEEQRNcwVzXSfFqJ9UyXgHyqyT6khKD+63nn5ptvxgc+8AE88MADePLJJwEAZ599Nr70pS9heHgYjz32GG666Sb09fXhpS99acP73/GOd+DNb35z7LnVnMHes2cP1q1bh/LzZRz59zGk1rXvgz5WlHjgcYl8BtDatEAcm1wXPt775CSeuS8b3z6uJPkNkWrY1gxZciFLHrRz+8Gs5lNLKSV2vwDs2uzAfOIonKMOUutT6N3Zi7v/Q6LiAv05iXWFvdgzPgrZRipouihxYBzI2kBPTvUD92QY8hnANpdn9hqInwedZsyqOK7E3f8yCb7nGNLrG88dWXQhHR8HNvbhhE0CO06O73/N0Ejs36nyEJ59ZgisJ+57tveQxJYR4LxTFuaeejzfwUqhm74DZ9LFoR8cgp7VIQLf+ZnnZtBzQQ/SG2ah1TBLuuk7mA0UYBMEQRBdQ1XhW0oJxjqfIGdSapJdqrTwv5Vk0bVQCCFw/vnn41/+5V+wefNmvOhFLwq3bd++Hb/zO7+DH/zgB4kBtmEYqzKYbgXnHJqtgUsOuGirG2AKpVpbLgOiTWCZsXvBGIOUEhOTRyC9+OvLZVUibuh2w7ZmyBIAJiB1HarDN5mSI6FrQGHEgqnnceQnRyFMAU0TyGV87DlQ87SX4G0D7MOTEtvWAWduZUjbyzegbgbnfNZBhWkARkbDTJEhlfD7yaIEdIEyNKRs3lDt09vfE/93fhjS0FGvi1yqSPQXWGK10Hwyl+9gpdEN34Ge0aDpQukmBC4dzGfQDLEox9YN38FsWD5HShAEQax4uMnBBJt1HzYPysRtI1lBHADAQHYiC4zv+9i7t7G0dzaLJYRCWAKsQ6suPfDC7sSqS3CBbFoFURNTzVXELXN+PLCjFMtqASybAlKbUshuS0PLqlxPTwaotK+Gj/9ZFxjuXZnB9fGQzfHmvuiuBLMFwFjMoqtKoVCI/bs/waKrXFH+1z2dFTgQKwCucWgZLbwfSU8CjJHtZRPoWyEIgiC6BqZzMJ3N2qoLAApZhp4ckEpSEHd9MMEa/HKJuTMzM4Nvf/vbmJmZgeu6+N73vocHH3wQZ511Fv793/8dR4+qvrxf//rXuOOOO7Bz584lPuLlBbc4hME6surijME20TyoqiMfWHXV+2BLKUMV8XnzwI4wU1ZBma4xMM6QPzuP7InKRDltM3QohA5AZVBNHSiQB3MDuR4BH0j0wpauDwRij/UWXUCjTVf/4EjDwslUUS2S5NPzdsjEMkAv6PCqAbYrwXVatG4GlYgTBEEQXQM3GLjGIR0JJATKrShkGLZvSvZklY4E0xlNBuYRxhi+8Y1v4GMf+xiklFi3bh0+/OEPY+vWrbjzzjvxoQ99CKVSCQMDA3jrW9+Kl73sZUt9yMsKrnNwW8Cd7MzgOpMCDo4D0vEBwVp60+YyfQCexEzxGCpOGYau+ioctwwZeMnPJsBu5YEdpVwB+iPxG9dq12PKBIRAx3ZjU0Ugm6YAOwk7ywHBVWWBWScc6UvAFKGlYT31AXbf2rUNr5kqAidtADTyv15ViIyG6iqY8rBXC+JEIxRgEwRBEF0DNziYxuDPIYMNAEaTwV66Elzj1IM9j9i2jb//+79P3Pbe974X733vexf5iFYeek5H5VBnXtiWwSB9H/JgCWASGLDBmpRvFiJe2JNTY+jvWQMAKAX912p/sxAuauOBHSXXxPM6bSt7vU7LxKeKwKkbAUG+9g2ksgIwOPySB1EfYANwNQFNQ2KJeEMGe3i08f0e0J+n7321IWwBMFXposZUWrRuBn0rBEEQRNfAOAO3uCpjnEd8xw8y2DQpJJYPWlbrWI/A0AC4EjA52JoU5MESZDE5+53LRrywI33YVQ9soPMMtpQSTMq2AXa5ImFoqrQ4iZSpBLpKHawnSCnh+8BAga7nJFJZdQ64k0rdvYr0JRgDPM6hiw4D7JF4gF2m0vxVi0hxcINBVlSAzQxOPdhNmNdvZffu3XjPe96DSy+9FJdddhluueUWTE7W/NJKpRJuueUW7Nq1C1deeSXuvvvu+fzzBEEQxApA2GJOPditkI6ElhIktkUsK4TV+TTNNADueJA6hzi5AH5CDpioQE42poTzmVoGO9qHXe2/VvvrsETck5Aab5otrzJTVvoImSa7FYIhl+osg10sKzFDCvKSsQ1A25yBuz4LHC1DloMg25OQgsMRXGWw2/RgW0YaSMUD7mppPvVfrz5ESgM3BLyyD9+VEKnG6ghCMa8B9tTUFC677DJ84xvfwJ133gnHcfCpT30q3P6Zz3wGExMTuOuuu/DRj34Uf/mXf4lnn312Pg+BIAiCWOZoaQ2+M78Btu9KcJoMEMsMHqg3J4lV1WNogO75cE0NzBLgW7Pgp/ZAOh7k4VLYWw3ES8THj9UC7FIkg92xirjjA1r7EvFiWQXEzdo4AKA3B5Q6CLCnimpfOQryEjENIJtlmBnJgG3MQB4pq9581wd0Dodx6B2UiA8UhnGoJHBovHbuTBWV3zj1X68+hMkhUgJ+2YN0fAqwWzCvAfb27dtx1VVXIZPJwLZtXH311Xj00UfD7XfddReuu+46ZDIZnHHGGdi1axe++93vzuchEARBEMscYXFAznMG2/WhpWkyQCwvhM3BDQ7fad8yYeiALn04KRU1Mc7A16UhTu8FLAF5uBS+NhfJYI9PHg4fz6VEHK5U2Wuj9fVVqgADhda7ytiso0t/ugiM9GPBPZiXK4wxDPcCRYeDn5ADX5eGPFQCih6YxuAyjrSVbJ+XSqVwwgknAAAuOPNsXHgGBySw+wUJz5PUf73K0Qs6/LIP6aqqMCKZBRU5e/jhh7F582YAwOTkJI4cOYKtW7eG27dt2xYLwOupVCqoVOLNOJqmwTCamZyuXHzfj/1/NULfAX0HAH0HwMr/DqQBSC4hWfJMu/p8s+2J79EAmGzBvjPOqQ+NmH+4JVSAXZYQZuvX6hqDLoBiXd0vH7AACfgPHlY9uJxhzcCGcPuvfvtTvPay3wcQFzkzOxA5K1YktLIHrWC09cAGgGyq9WvSNtBuL74vAQb05SjIa0VPlkFCAoKBn5gHfAl/9xTYaBqOZEg1OZ8YY7jrrrvw9b//Ot7w2jdg4yhDPgP8/DcSTz2veuWpNH/1oucCXQiGtm0hq5kFC7B/85vf4I477sBnP/tZAMovUwgBy6r5rqTTaczMzDTbBW6//XbcdtttseeuueYavPGNb1yYg14G7NmzZ6kPYcmh74C+A4C+A2CFfwcXAMcw2fIlU2uOdb6/EeAIDuPIs4fbv3YObNq0aUH2S6xuuKFE/7xi+4Uh6UlYFjAhGrNKLKtB2hpYyQNSGk7ZsgO5TC8mp8bwHw/fg3KlCNOwYz3YVpsMtudLjE0C4ojE4HDrTNaRCYmsrTywW5Eyk8uWo8yUANsECm32tdrJp1WfeqkC2CYHPykP6UmwlIDrNe+FB4CtW7fihj++AdxWv+tAgWHXmcAvn5SYmKb+69WMSAlAAmDkgd2KWQXYN9xwAx566KHEbe985zvxrne9CwCwb98+vO9978Mtt9yCLVu2AFAlJ57noVQqhUH29PQ0UqnmK6TveMc78OY3vzl+wKs4g71nzx6sW7du1WZK6Dug7wCg7wBY+d9B+VAZh354BPYaKzErJpnE1JpjyOzPgsn2WSwpJYp7i+i/qB/WUJs0IEF0EYwxaFkN7mSp7Wu9kodUlqOiJQTYtgaW0YAJB0hpEELDi8+8HHf/+Isolafx4KM/xIvPunxWJeLHZoJM5rTEmKthqMnryhUVlL3kNIZ8pvX1mrKSvZmjTBVVr3arAJFQau1pG5gOFiSYKSC2FwAfkGOA2cZRwV4X/4Jtk+G8k5UIHfVfr164LZSVpifByQO7KbMKsP/X//pfbV9z+PBh3HDDDfi93/s9XHzxxeHzuVwOfX19ePLJJ7F9+3YAwBNPPBGWkCdhGMaqDKZbwTlfkRPq2UDfAX0HAH0HwMr9DjRTg+AMcFQfaTOYZJ0F2I4EZxyaJVbk90WsbPS8hpln2mew/ZIPK6vB15OzyazXhH+4HJZg79xxFe7+8RcBAPc9+G9BgF0L5NsF2DMl4JSNAJcMj3KO6ZJE2opfj1JK7D0EbF2r/muHoTOk2wTOM2Vge39y/zBRQwiG4V6JXz8L9Ae6ZSzsk5eJCuLt4JzBojXKVY2wObjFgZJPGewWzLuK+I033ogrr7wSr3vd6xq2X3HFFfjc5z6H6elpPPLII7j33nvxspe9bD4PgSAIgljmMJ2BaRz+PHlh+44E18mvk1ieCDsoyWyDV/Jh9+tAk0UpltXBUFMkP+vkXUhZqpn2J7+4G67rxDLYURVx6UnIo+XwvcWyhGUAfTmgLyexZSPH/sOqbDzKwaOqLPzMExhEBz3aANDbovTbC3yce6n/uiP6cgyuF3+uqibfrhSfIJIQtoAwOZjOKMBuwbx+Mz/84Q/x29/+Fl/4whewc+fO8L8q119/PTKZDF75ylfi5ptvxs0334yNGzfO5yEQBEEQyxxucnCNzZsXtnR8cJ2BmzQZIJYf3BQAQ8xmKwnp+kgP6NAE4CRcOyyjQZocCDyRDd3E+We8HAAwNTOBX/7mfpRiPtiRFr5pF9KRkEfKAIDJaWCgB0gbANc5Tt0mMNIPPB+ROCiWJWbKKrhuVxoepZUQ2lQRyFgkstUp+Qyga0Alcj64HqCJ9qX4BJEE4wxaXgfXOBgF2E2ZV5Gzq666CldddVXT7ZZl4cMf/vB8/kmCIAhihcE1Dm52JuzUCdKV4BZlsInlibA5WLDgxJr0PEopISWQygsYE0DFVYFVDEuApTVgygVstXHnOVfhB//xfwAA9z14J3rztU7qWIl4xQPrNSCPOXDGyvBhYLiXwa944AZHKidw5gkMP/i5xOS0RMYG9h0GTtkAbBye3ee1TcArBgsKdR93qgis6QVSFmWwOyGfVr3q00XACCoDXA/QBWWwibmjFzQ4Ew71YLeAZhsEQRBE18Ft0ZH3byf4jq+UTwliGSIsAW5y+OXm14N0JITBkC5oMHWgXGl8DWMMrM+ELNdqhs897VIYuhKevf/n30axNBVui6qIS9cH6zUhtuUxPe6hIFz0ZgN9A51BWAIj/QynbgIOjavgeqAAnL6FzdqrOhWYzYxPNW4rlYGRfprUd4qhM/TlVYBdxXEBTcOcerAJAgC0tAa9oLfUSFntUIBNEARBdB0iJeavRNyV0DIUYBPLE25x5YVdaR5geyUP3BQwchqyKWXNlATLGqoPOyg3t800zt1+CQDg6ORB/Pyxe8PXxjLYEmC2ANZYODaYxSBzwDwJv+JDpLRQ7f/kDQzrhwApgbNOYMi08b1Oolr+7TjA7hckXE8dq+tJaKK91RcRZ6iHoeLW/u16qrqBMtjEXLFGLOS355b6MLoaCrAJgiCIrkObzwDbkxA2pWuI5QnjDFpaaxlg+yUfWlaDMDmGe1sE2GkN0hRAJBt+4Tm11r6n9vwqfGwFPdjS8wHOwCyBqSKDfWIGa05LobivCC/4u1VMg+GcExkuOJVh3eDcPm81473rLIa1/cCzLwATUxLHZlS5M/Vfz458GmCsJkBXcZXf+GwrCwiiCtd57LonGqEAmyAIgug6mM4b+i/njAR4G89XguhmjD69ZYm4V/Jh9KqUZCEQFPP9hAWqVNCHXaylNF905isgRONk2ayqiFd8wOCAJXBkElg/wrHm/DysYQvulNsw0e7NMWxbx47bRmugwHDRmQznnqQswZ4/DAz2tPdvJuLk0kDaUt8hALhurQyfIIiFgQJsgiAIouuYL/sP6UmAM4gUrbYTyxdzwATjrLkugS+h5dQ5ns+oDGWxWR92b7wPO5PK46yTdzX+TaMWYDNLoKJxcA5sGFYZ9cLZedjrrAVV5zd0htO3clxyDsO2dcDaAQquZ0vKUlnsah+246mAmyCIhYMCbIIgCKLr4AaHRHtrona40y60tIBeoACbWL7ofTr0Xh3OuNOwTS0iIVxEytgqaxkVtorCcjqYjF9bF559ZcPrqiJnsuKDZXUcnWQYyAODBbXd6DPQe0EPrJGFj9aGehkuPYdh05oF/1MrDsYY1vQBM8phDb4EbJMWKghiIaEAmyAIgug6uMHmxQvbm/Jg9BsQFomcEcsXrnHY6214027DNr/sg1sCWlqd44wxDPUC06Xkfak+bB7rw37JWZc3lHQb1Qy26wMZDdMlYMtaBk2rvc7oMSAWyV+e8+MvO1+tFLLqe5NSgoEEzghioaEAmyAIgug6uM7BdA7pHGeAXfFhDpnzdFQEsXRYgya4weGVvNjzXsmDMHnMiq43y5DUgg0ASGlgtg5E9tOTH8RpJ1wQ/lvXTAgeBOwAxioC+Qww0j9vH4dYRPJpwDaAYpDFJosuglhYKMAmCIIgug5mcHDB4B9HBtt3fHCNQc/TbJJY/ug9OvQ+E85EPIvtl33oPXpolQWoPmxLB0qVxuuH8cAPuy5Qj6qJW4HAmXR8TDsMJS5w1gkM2TnYbhFLTzYFZNPA5AwgOGWwCWKhoQCbIAiC6Dq4wcB0Buk2V05uhzftQcsI6AWaTRLLH8YZUgll4n7Fh9FrxJ7LpYC0XVOObthXQh/2SyJ92Iau+qpLUx6mfY6zThPYPDJPH4RYdDhnGCwAE1PKA9ukWyJBLCgUYBMEQRBdB2MMwjo+L2x3yoU5aILrNNQRKwNz0IBIC7gz8exztf86/LfGMNQDTDUTOktrkAZTFlwBQ32jeNGZrwAAnH7ii1F2JCbGfGzaJHDKNo36n5c5fXkGKQFdUAabIBYaqpsjCIIguhKRFqgcTvAa6hDpShgD1H9NrBy0nAZr0ERpfxlaSsB3fDDBYv3XVfrzDI8922SBKqWB2ZrqwzZr7/3g9bfhqT2/wuZ1Z+LwOLChx8O2U21wTsH1ciefVlUNmkY92ASx0NCyPkEQBNGViJSYcw+2V/bATeq/JlYWjDFYoza8sg8pJfySD2ELiHRjgJ3PABoHXC+hD1swsF6joQ/bMlM4cdO5GJvUMToArB8AzILR8H5i+ZHPKP9rUweEoAUTglhIaOZBEARBdCXK/meOAfaUBy2jQc9TLSSxsjD7DWhZAW/Kg1dS5zlPsMqq9mFPF1VwVY+X1nH4iA9fq7vGGDDUC5y4AfD3s4byc2J5omsMAwU5xzsqQRCzgQJsgiAIoivhBgfmqHHmznjIrk/HlJUJYiWgZTWYwxaKz8wAAIyNemJ/tGUy9GYl9o8lB9iHXR09vQLrNvrQLAEGgDGAc5XpFL4Px+CJ2XFiebJ2gKGcoCxPEMT8QgE2QRAE0ZUwnSsT3lkipQQ8CaOP+q+JlUlqrYWZp6YhfUDLNq/SGO5jeOaFxoCq4kqUDQ2jm3T0cg9moXE66Ez4EBZP7O8mliebRxjmdFMlCGJWUA82QRAE0ZVwg4FxBpnQQ9oKv+iD2xx6QtBAECsBo9+AltEA3qggHiWfVhM9349fQwfHgLWDDOvPSMGd9hLf65V8aFmNVPgJgiBmCd01CYIgiK6EGxxMY/Bn6YXtTrvQc7oKQAhiBSJsAWud1VTgrEo+DaRsYKZce67iSjgecOJ6htSIqWy/ptyG9/plD3ovCZwRBEHMFgqwCYIgiK6EGxxMZ5DO7DLY3owHc9gEI2shYgVjD1sw+4yWJdxpW4mdTUf8sA+MAaMDwNp+QM/rsIZNOONO45t9QMtQeThBEMRsoQCbIAiC6Eq4wcE1BjkLqy4ZlMIavaQeTqxszDUmes4rgGvNp3KMMazpq2WwK46EG2SvNU0tQKXW2ZCejLViSE8CnEGkqAqEIAhitlCATRAEQXQlTDBwU8B3Oi8R92Y8iJQgey5ixcMYg7DbZ5h7sgy+r8T/DhytZa+rGIMm9LwOZ6KWxfbLPjgJnBEEQcwJCrAJgiCIrkWkxKwy2O60B72gk7UQQQTk0oBlApMzCLPXImJfJ0wOe4MNd7LWh+2VfQiTkwc2QRDEHKAAmyAIguhaRIrPKsD2i0H/dYIvMEGsRnIpIGMDew42Zq+rWGssMJ3BKytFcb+kFqrIR54gCGL2UIBNEARBdC3C1sK+6naovlHAKFB5OEFUEYJhuBdIW8BJddnrKkavDnPQhDOmysT9ig+9h/qvCYIg5gIF2ARBEETXwnUGdBBfS1+i9EIJel6HTgE2QcQYKDBsHgFGErLXAMA4Q2qDDa/sQ0oJKQEtTQE2QRDEXKC7J0EQBNG1cJMDbapU/YqP4vMlmAMGCmfmOxJ+IojVxMZhYN1gcva6ijloQstocMZdcMFI4IwgCGKOUAabIAiC6Fq4zgHGmpaJu1MuivtKSG9Koe8lvTCHzEU+QoLofjhn0LXWK1VaRoM9aqFyqAxuk4I4QRDEXKEAmyAIguhamMHANSQKnZUPl+GMO8ifmUPPeQVoGSrKIojjwR6xwC0BQRZdBEEQc4ZmIwRBEETXwnUOpnGUD5QBpoTMpJDAiOob7XlRAfZ6m1TDCWIeMAYNGL069F6drimCIIg5QgE2QRAE0bUIW8AeteA7EtziEBYHdOAIjqDvwl6YPVQSThDzBdc4MiemwTUqcCQIgpgrFGATBEEQXQsTDD3n9cSe830fR549Aj1PauEEMd+kN6WX+hAIgiCWNbRESRAEQRAEQRAEQRDzAAXYBEEQBEEQBEEQBDEPUIBNEARBEARBEARBEPMABdgEQRAEQRAEQRAEMQ9QgE0QBEEQBEEQBEEQ8wAF2ARBEARBEARBEAQxD1CATRAEQRAEQRAEQRDzAAXYBEEQBEEQBEEQBDEPUIBNEARBEARBEARBEPMABdgEQRAEQRAEQRAEMQ9QgE0QBEEQBEEQBEEQ8wAF2ARBEARBEARBEAQxD1CATRAEQRAEQRAEQRDzAAXYBEEQBEEQBEEQBDEPUIBNEARBEARBEARBEPMABdgEQRAEQRAEQRAEMQ9QgE0QBEEQBEEQBEEQ8wAF2ARBEARBEARBEAQxD1CATRAEQRAEQRAEQRDzAJNSyqU+CIIgCIIgCIIgCIJY7lAGmyAIgiAIgiAIgiDmAQqwCYIgCIIgCIIgCGIeoACbIAiCIAiCIAiCIOYBCrAJgiAIgiAIgiAIYh6gAJsgCIIgCIIgCIIg5gEKsAmCIAiCIAiCIAhiHqAAmyAIgiAIgiAIgiDmAQqwCYIgCIIgCIIgCGIeoACbIAiCIAiCIAiCIOYBCrAJgiAIgiAIgiAIYh6gAHuReNWrXoVHHnlkXvd555134nd/93exa9cuvOY1r8FXvvKVxNd9/vOfx44dO+b978+Fz3zmM7jmmmtw7rnn4jvf+U74fKefpcqjjz6KN73pTXjJS16C6667Dvv37w+3lUol3HLLLdi1axeuvPJK3H333Qv2eWbDUpwDO3bswIUXXoidO3di586d+Md//Md5/ftzhc6DxT0Ppqam8Od//ue45JJLcPHFF+ODH/zgvP79ubKazwNiZUJjvWK1X9s03ivoPKDxHlil54EkFoWrrrpKPvzww/O6z6985Svy4Ycflo7jyCeffFK+7GUvkw8++GDsNQcOHJDXXnutfPnLXz7vf38ufOtb35I/+clP5Nve9jZ59913h8938lmqlMtlecUVV8ivf/3rslQqyU9/+tPyXe96V7j9U5/6lLzxxhvlsWPH5C9+8Qt50UUXyd27dy/4Z2vHUpwD55xzjjx06NC8/s35gM6DxT0PbrrpJvmJT3xCHjt2TDqOIx9//PF5/ftzZTWfB8TKhMZ6xWq/tmm8V9B5QOO9lKvzPKAM9iJz66234vOf/3z47zvvvBM33ngjAOCBBx7A61//enz2s5/FJZdcgle/+tX46U9/2nRfr3/963HaaadB0zRs2bIF5513Hh577LHYa/7H//gfuP7662EYxoJ8ntlyxRVX4IILLmg4nk4+S5UHH3wQtm3jNa95DUzTxO///u/jscceC1ey7rrrLlx33XXIZDI444wzsGvXLnz3u99d8M/WKYt9DnQjdB4s3nnw1FNP4de//jXe+973IpPJQNM0nHTSSQv62TqFzgNipUJjPV3bAI33dB4oVvt4vxrPAwqwu4y9e/cilUrhu9/9Lt7+9rfjv//3/97R+zzPw6OPPorNmzeHzz3wwAOYmJjAS1/60oU63AUh6bP8zu/8Tlju8fTTT2Pr1q3hNtu2MTo6iqeffhqTk5M4cuRIbPu2bdvw9NNPL94HOE7m8xwAgLe85S24/PLLceutt2J8fHwBjnhhoPNgfs6Dxx9/HOvXr8ctt9yCSy+9FG9961vx0EMPLeShzyur/TwgViY01tO1DdB4D9B5ANB4D6y884AC7C4jk8ngzW9+MzRNwxVXXIF9+/ZhZmam7fv+7u/+DgMDA3jRi14EAHBdF3/913+N973vfQt9yPNO/WcBgC996Ut45StfCQAoFotIp9Ox96TTaRSLRczMzEAIAcuyYts6+Q67hfk6BwDgtttuw7/927/hn//5n1EqlfDnf/7nC3no8wqdB/NzHhw8eBD/8R//gfPOOw/f+c538Pa3vx033XQTJiYmFvojzAur/TwgViY01tO1DdB4D9B5ANB4D6y884AC7C6jUCiAMQYA4YkyMzODhx56KBSuePe73x17z1e+8hV8//vfx8c//vHwvf/6r/+KM888M7aasxxI+iz12LaN6enp2HPT09OwbRupVAqe56FUKsW2pVKpBT3u+WS+zgEAOOuss6BpGnp6enDTTTfh/vvvh+M4i/dh5gidB/N3HpimibVr1+Lqq6+Gpmm45JJLsHbt2q4QQmoHnQfESoXGerq2ARrv6TxQrPbxfiWeB9qS/eVVim3bsRPgyJEjHb3vrLPOwn333dfw/He/+13cfvvtuO2221AoFMLnH3jgATz00EP43ve+BwA4evQo3vOe9+CP//iP8epXv/r4PsQC0eyz1LN582Z87WtfC/9dLBaxd+9ebN68GblcDn19fXjyySexfft2AMATTzzRUEa1lCzWOVAP52o9TUo5uwNeZOg8aM1sz4MtW7Yc97EuBavlPCBWJjTWN2c1Xds03jeHzoP2rIbxfqWeB5TBXmS2bduGe++9F1NTU9i7dy+++c1vznlfP/3pT/GJT3wCn/rUpzAyMhLbduutt+LLX/4yvvjFL+KLX/wiBgYG8Gd/9md4+ctffrwf4bhwXRflchlSyvCx7/stP0s955xzDorFIu68805UKhX8wz/8A0455RSsWbMGgBJT+NznPofp6Wk88sgjuPfee/Gyl71sMT5eRyzWOfDUU0/hiSeegOd5mJycxCc/+Umcf/75XSGCQ+fB4p0HO3bsgJQS//Zv/wbP8/CjH/0I+/btw2mnnXa8H+G4ofOAWKnQWE/XNkDjPZ0HitU+3q/G84AC7EWEMYYrrrgC69atw5VXXokPfvCDeMUrXjHn/d1+++2YnJzEO9/5zrCE5KMf/SgAIJvNor+/P/yPc458Ph/rT1gKPvzhD+MlL3kJHnroIXzoQx/CS17yEvz85z9v+VkA4I1vfCO+/e1vAwAMw8DHP/5xfPGLX8RLX/pS/PKXv4z1Gl1//fXIZDJ45StfiZtvvhk333wzNm7cuNgfNZHFPAfGxsZw880346KLLsI111wDzjluvfXWefokxwedB4t3Hmiahk9+8pP48pe/jIsvvhif+cxn8IlPfAL5fH6+Ps6cWe3nAbEyobGerm2AxnuAzgOAxntgdZ4HTHZz/cgK4tJLL8Xtt9+O9evXL/WhEEsEnQMEQOcBQaxk6PomADoPCAWdB6sXymAvAg888AAAhGUMxOqDzgECoPOAIFYydH0TAJ0HhILOg9UNiZwtMB/5yEfw05/+FB/84Aeh6/pSHw6xBNA5QAB0HhDESoaubwKg84BQ0HlAUIk4QRAEQRAEQRAEQcwDVCJOEARBEARBEARBEPMABdgEQRAEQRAEQRAEMQ9QgE0QBEEQBEEQBEEQ8wAF2ARBEARBEARBEAQxD1CATRAEQXREpVLBn/3Zn+GKK67ARRddhOuuuw5PPvlkuP3zn/88LrvsMlxyySX49Kc/jaqGpuu6+MAHPoDLL78cO3bswOHDh2P73bdvH2644QZcfPHFuPzyy3H77be3PI7PfOYz+OhHPzrvn2/37t14z3veg0svvRSXXXYZbrnlFkxOTsZe881vfhOvfe1rceGFF+INb3gDnn322Xk/DoIgCIJYSmi8P77xngJsglhBXHfdddixYweuu+66pT4UYgXieR7Wrl2L22+/Hd///vexa9cuvP/97wcA/PjHP8ZXvvIVfP7zn8eXv/xl/PjHP8Y3v/nN8L1nn302Pv7xjyfu9xOf+ATWrl2Le+65B5/73Odwxx134Gc/+9mifKYoU1NTuOyyy/CNb3wDd955JxzHwac+9alw+7333ot/+qd/wl/91V/hvvvuw6c+9SkUCoVFP06CIAga74mFhMb74xvvKcAmiFXOAw88gB07dmDHjh14/vnnl/pwiC7Gtm28613vwtDQEIQQuPbaa/H8889jfHwcd911F97whjdgdHQU/f39eMtb3oJvf/vbAABN0/CmN70Jp512WuJ+9+/fj5e//OXQNA1r167FmWeeiaeffrqjY3rggQfw+te/PvZcdNX8Va96Ff75n/8Zb3jDG/DSl74Un/jEJ5rua/v27bjqqquQyWRg2zauvvpqPProo+H2z33uc3jf+96HLVu2gDGG0dFR5PP5jo6TIAhiqaHxnugUGu+Pb7ynAJsgCIKYEw8//DB6e3tRKBTwzDPPYOvWreG2bdu2dTxoXnPNNfjOd76DSqWC5557Do888gh27Ngxb8d577334nOf+xy+9KUv4bvf/S4eeuihjt738MMPY/PmzQDUav5vfvMbPPnkk7jiiivw6le/GrfddltYFkcQBEEQKxUa72c33mtzOnqCIJacyclJfPSjH8V9992HQqGAd7zjHQ2v+fSnP437778fBw8eRLFYRE9PD84//3zceOON6O/vx2c+8xncdttt4etf/epXAwCuuuoq3HrrrfB9H3fccQe+9rWvYe/evTBNE+eddx7e/e53Y+3atYv2WYnuY2pqCh/96EfxR3/0RwCAmZkZZDKZcHs6ncbMzExH+zrjjDPwla98BTt37oTnebjuuutig/fx8qY3vSks7TrnnHPwxBNP4Kyzzmr5nt/85je444478NnPfhYAMDY2Bs/z8J//+Z+44447MD09jXe/+90YGhoKrxuCIIiFgMZ7Yimh8X724z1lsAlimfIXf/EXuOeee1Aul2FZFj796U/j8ccfj72mOtgODQ1h3bp1OHLkCL71rW/hfe97HwBgaGgImzZtCl+/bds2bN++HaOjowCAj3/84/jkJz+Jp59+GqOjo+Cc43vf+x7e+c53YmxsbPE+LNFVlMtlvP/978eFF16I17zmNQCAVCqFqamp8DXT09NIpVJt9+V5Hv74j/8YV199Ne6//35885vfxD333IN77rkHAPDGN74RO3fuxM6dO/HCCy/M6Xh7e3vDx5ZloVgsttz3vn378L73vQ+33HILtmzZAgAwTRMA8La3vQ3ZbBbDw8O45pprcP/998/pmAiCIDqFxntiqaDxfm7jPWWwCWIZsnfvXvzgBz8AoG4AN954I3bv3o1rr7029rqPfOQj2LJlCzhXa2lf//rX8eEPfxiPPfYY9u7di6uvvhqjo6P4gz/4AwDAX/3VX2FkZASAuul89atfBQDceuutuOqqqzAzM4NrrrkGBw4cwB133IE//MM/XKyPTHQJruviv/23/4aBgQG85z3vCZ/ftGkTnnzySVx44YUAgCeeeCIst2rF5OQkDh06hDe84Q3QNA0jIyO4+OKL8eCDD+Kyyy7Dl7/85Zbvt20bpVIp/He9YmkrkvZ9+PBh3HDDDfi93/s9XHzxxeHzuVwOAwMDsddSeThBEAsNjffEUkHjfY3ZjveUwSaIZchTTz0VPr7kkksAABs3bsQJJ5wQe90TTzyBt771rdi5cyd27NiBD3/4w+G2Q4cOtfwbjz/+eHhDufXWW7Fjxw7s2rULBw4cAAA88sgj8/JZiOXFRz7yEZTLZdx6661gjIXPX3HFFfjqV7+Kffv24fDhw/jiF7+Iyy+/PNxeqVRQLpcBAI7jhI97enowNDSEr3/96/B9HwcOHMCPfvSjcCW5HRs2bMDExAQefPBBVCoV/MM//MOcP9vU1BRuvPFGXHnllXjd617XsP2qq67CF77wBUxPT+PQoUP46le/Gk4wCIIgFgIa74mlgsb7uY/3lMEmiGVIdCUtetOLPv+LX/wCt956K6SUyOfz2LRpE4rFIp555hkAqlSn07+xbds2GIYR275mzZrj+gzE8mP//v248847YZomXvrSl4bP/8//+T9x4YUX4re//S3e+ta3wvd9XH311bFepde//vXYv38/AKX0CShFUAD42Mc+hk9+8pP4m7/5G1iWhZe//OV47Wtf2/JYqud9JpPBTTfdhD/5kz8B5xz/9b/+V/zrv/7rnD7fD3/4Q/z2t7/F3r178YUvfCF8/r777gOgbHE+9rGP4YorrkAqlcLVV1+Nq666ak5/iyAIohNovCeWAhrvj2+8Z5Jq3Ahi2bFnz57whvSOd7wDN9xwA5599lm88Y1vhOd5OPvss7Fr167Q0+/uu+9Gf38/Pv/5z+Nv//ZvAQB///d/jx07duBXv/oV3v72twMA7rjjjnAlce/evXjta18LKSXe//73401vehMANRD/8pe/RDqdblhBJ4jF4FOf+hR0XccNN9yw1IdCEASxoNB4T6xmlut4TxlsgliGrFu3DhdffDF++MMf4vbbb8cPfvADHDhwAEKIcKU6qsp47bXXoqenB0ePHm3Y1+joKDRNg+u6+KM/+iOsWbMGb3nLW3DZZZfh6quvxte+9jV88pOfxJe+9CXYto39+/djenoaH/rQh2jAJRadqakp/OQnP8F111231IdCEASx4NB4T6xWlvN4Tz3YBLFMueWWW3DJJZfANE1MTU3h+uuvx/bt28PtF1xwAW688UYMDAygXC5j48aNuPnmmxv2UygUcNNNN2FoaAhjY2P41a9+hSNHjgAA/uRP/gTve9/7sHXrVhw6dAj79+/HyMgI3vzmN+Occ85ZtM9KEADw0EMP4dWvfjVOPfVUXHTRRUt9OARBEIsCjffEamO5j/dUIk4QBEEQBEEQBEEQ8wBlsAmCIAiCIAiCIAhiHqAAmyAIgiAIgiAIgiDmAQqwCYIgCIIgCIIgCGIeoACbIAiCIAiCIAiCIOYBCrAJgiAIgiAIgiAIYh6gAJsgCIIgCIIgCIIg5gEKsAmCIAiCIAiCIAhiHqAAmyAIgiAIgiAIgiDmAQqwCYIgCIIgCIIgCGIeoACbIAiCIAiCIAiCIOYBCrAJgiAIgiAIgiAIYh74/wM9qCv6HOgbMQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAAIgCAYAAABtS4FFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZwcVbn3f6eq99kymckK2YTEQCKyBAzksqNccAMUUBAJKIrwCoL4Klc2hauyyiJevOwK4o4XXhFZLqjIHhKWEBJC9slMZuu9u7ZzzvvH6b2rl5nMPs/388kn3dWnqs5UV9c5z3me5/cwKaUEQRAEQRAEQRAEQRBV0Ua7AwRBEARBEARBEAQxHiADmiAIgiAIgiAIgiDqgAxogiAIgiAIgiAIgqgDMqAJgiAIgiAIgiAIog7IgCYIgiAIgiAIgiCIOiADmiAIgiAIgiAIgiDqgAxogiAIgiAIgiAIgqgDMqAJgiAIgiAIgiAIog7IgCYIgiAIgiAIgiCIOiADmiAyPPDAA2CMVfz3/PPP45prrqnaJvvvqKOOqrsdABx11FFYunRpXf289dZbccopp2DBggVFx9gdsn+XpmnYtGlT2efJZBLNzc1gjGHlypW57c8//zwYY/jDH/7getz/83/+DxhjRdvmz5+PT33qU1X7s3LlSjQ2Ng78DyEIgiCIKoyHsX7Dhg247LLLcNBBB2HKlCmYOnUqVqxYUXGsrRca6wliaPCMdgcIYqxx//33Y/HixWXb9913X+y9997493//99y2zs5OnHLKKfjmN7+JM844I7fdsiz4fL6a7Zqbmwfcv7vuugsNDQ045phj8Pjjjw94/2o0Njbi/vvvx7XXXlu0/fe//z1s24bX6x3S8xEEQRDEaDCWx/qnnnoKf/nLX3DWWWfh4IMPhuM4+O1vf4tTTz0VP/jBD3DVVVcN6Hil0FhPELsHGdAEUcLSpUuxbNky18+am5ux55575t5v2bIFADB37lwsX7684jHrbVcP7777LjRNy/V1KDn99NPx4IMP4gc/+EHuHABw77334uSTT8Zjjz02pOcjCIIgiNFgLI/1X/jCF3DhhRcWeXVPOOEE9Pb24vrrr8d3v/td+P3+QR+fxnqC2D0ohJsgxhCvvfYaDj/8cIRCIXzoQx/CT37yEwghitoUDnZDzbnnnovt27fj6aefzm3bsGEDXnjhBZx77rnDdl6CIAiCmCzUGuvb29vLQqIB4JBDDkEqlUJ/f/9unZ/GeoLYPciAJogSOOdwHKfoH+d82M/b1dWFM888E1/60pfw2GOP4YQTTsDll1+Ohx56aFDH27JlS1keUy0WLlyIww8/HPfdd19u23333Yf58+fj2GOPHVQ/CIIgCGKsMR7H+ueeew7Tpk3D9OnTc9torCeIkYdCuAmiBLewK13X4TjOsJ63r68PTzzxBA455BAAwHHHHYfnn38ev/71r/HlL395wMdjjEHXdei6PqD9zj33XJx//vno7+9HS0sLfvnLX+LrX/+662o4QRAEQYxHxttYf8899+D555/HbbfdVjSu01hPECMPGdAEUcIvf/lL7LPPPkXbRmJAmTlzZm5AzbLffvthzZo1gzrevHnzBjUROPXUU3HRRRfh4Ycfxvz589HV1TWglW2CIAiCGOuMp7H+r3/9Ky688EJ8/vOfxze/+c2iz2isJ4iRhwxogihhn332qSgsMpy0tbWVbfP7/Uin0yPaj4aGBpx++um47777MG/ePBx33HGYN2+ea1uPRz1CKoW9OY6Ta0MQBEEQY4XxMtb/7W9/wymnnIKPf/zjePjhh4fMyKexniAGD+VAEwRRxrnnnos1a9bg8ccfryooMmPGDABAR0eH6+cdHR25NgRBEARB1M/f/vY3nHTSSTjyyCPxxz/+sahk1lBAYz1BDA4yoAmCKOPQQw/Fueeei5NPPhknn3xyxXYLFy7EvHnz8Pvf/x5SyqLPenp68Nxzz+G4444b7u4SBEEQxITiqaeewkknnYR/+7d/w5///OfdKltVCRrrCWJwULwFQZTwzjvvuOYT7bXXXpg2bdoo9KiY119/PVdrMhaLQUqJP/zhDwCAgw8+OBeCtXXrVuy11144++yzce+99w74PPXuc9NNN+G0007Dsccei/POOw8zZ87E+++/j5/85Cfw+Xy48sory/bp6urK9bmQ+fPn50LqOOeubRoaGnDCCScM8K8hCIIgiDxjeax/4YUXcNJJJ2HmzJn4j//4j7L86H333RfNzc0AaKwniNGADGiCKOGcc85x3X733Xfjq1/96gj3ppyf/exnePDBB4u2nXrqqQCA+++/PycCIqUE53zYy3J8/vOfx9NPP40bbrgBF1xwARKJBKZNm4Zjjz0WV199Nfbaa6+yfVatWpXrcyFnn302HnjgAQCAYRiubebNm5dbQCAIgiCIwTCWx/pnnnkG6XQaW7ZswTHHHFP2+XPPPYejjjoKAI31BDEaMFkai0EQBEEQBEEQBEEQRBmUA00QBEEQBEEQBEEQdUAGNEEQBEEQBEEQBEHUARnQBEEQBEEQBEEQBFEHZEATBEEQBEEQBEEQRB2QAU0QBEEQBEEQBEEQdUAGNEEQBEEQBEEQBEHUARnQBEEQBEEQBEEQBFEHZECPEYQQ2Lx5M4QQo92VUYOuAV0DgK4BQNcAoGtATFzo3qZrANA1mOx/P0DXABi/14AMaIIgCIIgCIIgCIKoAzKgCYIgCIIgCIIgCKIOyIAmCIIgCIIgCIIgiDogA5ogCIIgCIIgCIIg6oAMaIIgCIIgCIIgCIKoAzKgCYIgCIIgCIIgCKIOyIAmCIIgCIIgCIIgiDogA5ogCIIgCIIgCIIg6oAMaIIgCIIgCIIgCIKoAzKgCYIgCIIgCIIgCKIOyIAmCIIgCIIgCIIgiDogA5ogCIIgCIIgCIIg6oAMaIIgiHHOAw88gClTpox2N7By5UqcdNJJo90NgiAIgphw0Fg/diADmiAIYoKzZcsWMMawZs2aMXk8giAIgiB2DxrrRw4yoAmCIHYTy7JGuwtDwkT5OwiCIAhiqJkoY+RE+TtGEzKgCYIgCojH4zjzzDPR0NCAWbNm4ac//SmOOuoofOtb38q1mT9/Pq677jqsXLkSLS0tOO+88wAAf/zjH7FkyRL4/X7Mnz8fN998c9GxGWP485//XLRtypQpeOCBBwDkV3v/9Kc/4YwzzkBjYyM++tGP4qWXXira54EHHsDcuXMRCoVw8skno6+vr+rftGDBAgDAAQccAMYYjjrqKAD5MKwf//jHmD17NhYtWlRXPysdL8tNN92EWbNmoa2tDRdeeCFs267aP4IgCIIYSWisp7F+d/CMdgcIgpg8LFu2DF1dXTXbcc6h6/qQnXfmzJl4/fXX62p76aWX4l//+hcee+wxzJgxA1dddRXeeOMN7L///kXtbrzxRlx55ZW44oorAACrVq3CaaedhmuuuQann346XnzxRVxwwQVoa2vDypUrB9TfK6+8EpdddhlWrFiBK6+8El/84hexceNGeDwevPLKKzj33HPxox/9CKeccgqefPJJXH311VWP9+qrr+KQQw7BM888gyVLlsDn8+U+e/bZZ9Hc3Iynn34aUsq6+lfteM899xxmzZqF5557Dhs3bsTpp5+O/fffPzfxIAiCICY2NNbXB4314xcyoAmCGDG6urrQ0dEx2t2oSDwex4MPPohf//rXOPbYYwEA999/P2bPnl3W9phjjsFll12We3/mmWfi2GOPxZVXXgkAWLRoEd59913ceOONAx5UL730UhxzzDGYN28efvCDH2DJkiXYuHEjFi9ejNtuuw3HH388vve97+XO8+KLL+LJJ5+seLxp06YBANra2jBz5syizxoaGnDPPfcUDYy1qHa81tZW/OxnP4Ou61i8eDE++clP4tlnn500gypBEMRkh8b6+qCxfvxCBjRBECNG6QO4EsOxKl0PmzZtgm3bOOSQQ3LbWlpa8OEPf7is7bJly4rer1u3Dp/97GeLtq1YsQK33nrrgP+e/fbbL/d61qxZAIDu7m4sXrwY69atw8knn1zU/tBDD606qFbjIx/5yIAG1FosWbKk6G+dNWsW3n777SE7PkEQBDG2obG+PmisH7+QAU0QxIhRT2iVEAJbt27FvHnzoGkjK9OQDWtijLluL6ShoaGsTa39GGNl29xyhrxeb9E+gLouTtKBcEStP2NAlP4dA+mnG4V9zx5LiKHtM0EQxHjHSTqj3YVhg8b63RvrK/Vld6CxfmghETGCIIgMe+21F7xeL1599dXctlgshvfff7/mvvvuuy9eeOGFom0vvvgiFi1alFulnTZtGjo7O3Ofv//++0ilUnX3L7Ulhb3a98JL/yoWGnn55Zer7pdddeac13WeWv0c6PEIgiCIYtIdxmh3YdIy1sf67HlKx/bJNNbzNEdq68Cu2UhCHmiCIIgMTU1NOPvss/Gd73wHU6dOxfTp03H11VdD07SyFedSvv3tb+Pggw/Gtddei9NPPx0vvfQSfvazn+HnP/95rs0xxxyDn/3sZ1i+fDmEEPjud79btopbCSkljC4LZy0/C5+7/nO4/ifX4+RTTsZTTz1VM6Rr+vTpCAaDePLJJ7HnnnsiEAigpaWlYvta/Rzo8QiCIIhipCEA/2j3YnIylsf6LBdddBEOO+ww3HDDDTjppJMm3Vhv9VpIfpBEcM8gmF79OxkNhs0D/bWvfQ2HHXYYDj/8cBx++OG46KKLhutUBEEQQ8Ytt9yCQw89FJ/61Kdw3HHHYcWKFdhnn30QCASq7nfggQfid7/7HX7zm99g6dKluOqqq/DDH/6wSFTk5ptvxpw5c3DEEUfgjDPOwGWXXYZQKFRXv4Qh4MRtLF9+KG746g2447Y7sP/+++Opp57KqYNWwuPx4Pbbb8cvfvELzJ49uyx/q5Ra/Rzo8QiCIIhiuD15wl3HImN1rM+yfPly3HPPPbjjjsk51jtJDp7kENbY/J0wOdRB9hm+9rWv4XOf+xyOP/744Tj8hGM0c0HGCnQN6BoAY+8aJJNJ7LHHHrj55pvxla98ZUTO6XYNjE4DPc/1IrhHEE7cATc52v+tDf4ZE9OFMdbuA4IYKujepmsAAD3/7EViz/ikvQZj7R4YK2P9ZKPSNeh/uR/pDgPTPz4d3uaxFzA96j2yLAuWZRVt83g8Q6oUNx7IJt5PpgT8Uuga0DUARv8arF69Gu+99x4OOeQQRKNRXHvttQCAT3/60yPWJ7drYMUsCCYBD+Bp9cDeaSPydhRTG1qhh4ZOxXSsMNr3gRuTdYJDEMTQI8yx82ybjJSO9T/84Q8BgCKqxgBSSNhhG9KWkGM0UmNYDegbb7wRN954IxYtWoRLLrkECxcuLGtz//334+677y7aduqpp+K0004bzq6NWbZv3z7aXRh16BrQNQBG7xp0dnbiJz/5CTZt2gSv14ulS5fikUceQTKZRDKZHNG+FF0DH4DlQBwx9X424MBGqmdk+zTSjKXfwoIFC0a7CwRBTACklENeUYEYODfddBPWr18Pn8+Hgw46CP/85z/R3t4+2t2a9PA0BzcEJJcQ9rAESu82w2ZAX3TRRfjQhz4ETdPw29/+FhdffDH+8Ic/lOUAnHPOOTjzzDOLOzVJPdDbt2/HnDlzJq2Xg64BXQNg9K/BvHnzcOKJJ474eQspvQbcFOh5tgdMZ/A25wU+uMFh9piYsmwKGj9UXqJiPDPa9wFBEMRwIR0JcGUYDFMmJVGDAw44AKtWrRrtbhAu8BSHMAQkx+TzQC9dujT3+uyzz8Zjjz2GtWvX4uCDDy5q5/P5Jp2xXA1N0yb9ZJGuAV0DgK4BkL8GdsKGSAj4Z/jBZF6N0uP3QAQFkmuTCM0MwtM46lk5Qw7dBwRBTDSkIyEyBjQEgImXhUMQg4anOKSQYBogxqgBPWKzEpoAEQRBDA4n5kA6Epq3/DnqbfXCSTiwI/Yo9IwgCIIYKMKWkFkPNCcPNEEU4iQd9YIBwhqbv49hsWrj8ThefvllWJYF27bx8MMPIxaLYZ999hmO0xEEQUxorD4LzONeB5FparvVTwY0QRDEeEBykQ/hJgOaIIqwww40nwYwNmbF9oYl3s9xHNx5553YsmULvF4vFi1ahNtuuw2NjY3DcTqCIIgJi3AEzF6rqtK2HtJhdhmQS5tyBjVBEAQxNpGOhMzYBWRAE0QeySXsiA0toAOSg6ed0e6SK8NiQLe2tuJXv/rVcByaIAhiUuHEHfCkA+/UyloRngYP7JgNJ+7A2+Kt2I4gCIIYfQpzoOXYdLARxKjAUxzcFPA2eiBtAZ4emz8QSkwmCIIYwzhxDmFK6P7KHmgtqEGYAnZ0bK7UEgRBEHkKVbhBKtwEkSOrwK35NTCdQRh8TCrVkwFNEAQxhrHDds0nNWMM0BisPnNkOkUQBEEMGuHkDQIK4SaIPE6KA0KC6QzMy5TgnjP2fiNkQBMEQWRgjFX9t3LlSgDAc889h6OPPhpTp05FKBTCwoULcfbZZ8NxlAf4+eefB2MMra2tMAyj6Byvvvpq7ni1kFLC7DahB2vXOHlt0ys48rQjEQgE8KEPfQh33XVXzX22bduGT3/602hoaEB7ezsuuugiWJaV+3zLli2u1+HJJ5+seex6+PnPf44FCxYgEAjgoIMOwj//+c+a+9x5553YZ599EAwG8eEPfxi//OUviz5/4IEHXPtc+j0QBEGMFtKRuRk4GdAjz1gb6wfC3//+dxx00EETdqx3Eg6gAff+6R4ccf7h+NCpC7DPkn3G3Fg/8YqGEgRBDJLOzs7c69/+9re46qqrsH79+ty2YDCItWvX4oQTTsBFF12EO+64A8FgEO+//z7+8Ic/QIjiXJ2mpiY8+uij+OIXv5jbdt9992Hu3LnYtm1bzf7wBIcdd2rWd966cyu+dN1ZOOOYL+KXv/olXnvnNVxwwQWYNm0aPve5z7kfm3N88pOfxLRp0/DCCy+gr68PZ599NqSUuOOOO4raPvPMM1iyZEnu/dSpU2v2vRa//e1v8a1vfQs///nPsWLFCvziF7/ACSecgHfffRdz58513ee//uu/cPnll+Puu+/GwQcfjFdffRXnnXceWltb8elPfzrXrrm5ueh7A4BAILDbfSYIghgKpCNyhhXlQI88Y22sr5fNmzfjxBNPxHnnnYeHHnoI//rXvybcWG/323jo+Yfwo4f/E7dccguWzFyCTaFN+MaF3xhbY70kxgScc7lp0ybJOR/trowadA3oGkg5dq7B/fffL1taWsq2//SnP5Xz58+vuu9zzz0nAcgrrrhCHnfccbntqVRKtrS0yCuvvFJWe/xmr0Fie1Jue2i7vP17d8g9pu8hg/6gPPHwE+UPLvyhbG5slr3/7JO9/+yT3zzjm3LhvIVy26+2y8SmpJRSyq9//ety+fLlFc/xxBNPSE3TZEdHR27bI488Iv1+v4xGo1JKKTdv3iwByNWrV1f9e0txHEdecsklsqWlRU6dOlV+5zvfkV/+8pflZz/72VybQw45RJ5//vlF+y1evFh+73vfK7oGhffBoYceKi+77LKifS6++GK5YsWK3PtK3xtBjBXGyjNuNJns1yCyOiK3/mZ77jk/GRkr98BYGOuz1+D++++Xc+bMkcFgUJ500knypptuKurb//2//1cuXry46BgTaaznFpedj3fKZYuXyQu/8H9kz/O9cvuvd0ij2xhzYz15oAmCGDGWnSfQ1V+jkQQ43wO6DoANzdL8zKnA63cPTcbKzJkz0dnZiX/84x844ogjqrY966yzcOONN2Lbtm2YO3cu/vjHP2L+/Pk48MAD6zqXHbexeuNqXHz9Rbjia1fgk0d8Cv/76rO4/t7ri9q9tvZ1HH3w0WA6g9VjomFBCMcffzzuvfde2LYNr7dcmfull17C0qVLMXv27Ny2448/HqZpYtWqVTj66KNz2z/zmc/AMAwsXLgQl1xyCT7/+c9X7ffNN9+M++67D/feey/23Xdf3HzzzXj00UdxzDHHAAAsy8KqVavwve99r2i/T3ziE3jxxRcrHtc0zbLV5WAwiFdffbXo70wkEpg3bx4459h///1x7bXX4oADDqjaZ4IgiJGCWwKazsABQEy8EG4a6wc21gPAK6+8gnPPPRc/+tGPcMopp+DJJ5/E1VdfXdTmpZdewic+8YmibRNprOdpDm4IWNxCwO8H0xmkkJC2HHNjPRnQBEGMGF39QEdPPS3H7qPp1FNPxd/+9jcceeSRmDlzJpYvX45jjz0WX/7yl9Hc3FzUdvr06TjhhBPwwAMP4KqrrsJ9992Hc889t+5z2d0W7nvmPhxzyDG4+EvfAgDsPXdvvPr2a/jfV5/Ntevu68a0Q6ZBb/TA7DYhbIEZM2bAcRz09vZi1qxZZcfu6urCjBkzira1trbC5/Ohq6sLANDY2IhbbrkFK1asgKZpeOyxx3D66afjwQcfxJe+9KWK/b711ltx+eWX50LK7rrrLvztb3/Lfd7b2wvOedn5Z8yYkTu3G8cffzzuuecenHTSSTjwwAOxatUq3HfffbBtO/d3Ll68GA888AA+8pGPIBaL4bbbbsOKFSvw5ptvYuHChRWPTRAEMVIIQwB6JoR7AuZA01g/sLEeAG677TYcf/zxOWNz0aJFePHFF4vykN3G7Yk01vMkhzAFjj7kGPzq8YdwwuEnYqF/IV5f9fqYG+vH7p1LEMSEY2Y96TQS4NyBrnuAIdLeqOu8daLrOu6//35cd911+N///V+8/PLL+M///E9cf/31ePXVV8sGsHPPPRcXX3wxvvSlL+Gll17C73//+7rEsgDAjjn4YOdGfPKoTxVtP3jpwUUGNKBEUTyNOsxdJuyokyv7UE3AxO0zKWVue3t7Oy655JLcZ8uWLUM4HMYNN9yAL33pS9i2bRv23Xff3Of/8R//gQsvvBCdnZ049NBDc9s9Hg+WLVtWVoqi9PyF53bjyiuvRFdXF5YvXw4pJWbMmIGVK1fihhtugK4robXly5dj+fLluX1WrFiBAw88EHfccQduv/32iscmCIIYKYQpwLIiYmOwRM/uQmP9wMZ6AFi3bh1OPvnkom2HHnpomZCX27jptr3aPtn9xtpYz1MckMBl51yGnnA3/v3rx0NKienTpo+5sZ4MaIIgRox6QquEENi6tQPz5s2Dpo3dQgF77LEHzjrrLJx11lm47rrrsGjRItx11134wQ9+UNTuxBNPxNe//nV85Stfwac//Wm0tbXVfQ4nxSHrmFhMb5uO7v5uaF4NwpawIza6u7vh8Xgqnm/mzJl45ZVXiraFw2HYtl22WlzI8uXLcc899wAAZs+ejTVr1uQ+q1dwpL29Hbqul61Ad3d3Vz13MBjEfffdh1/84hfYtWsXZs2ahf/+7/9GU1MT2tvbXffRNA0HH3ww3n///br6RhAEMZxIKSFsAZbzQI9yh4YBGusHNtYD9S2kzJw503XcnChjvRN3AI0h6A/i9svvwM3fuQXb3tqGRccsxCP/fGRMjfVj944lCIIYJ7S2tmLWrFlIJpNln+m6jrPOOgvPP//8gEO6ICU+vODDWPXu60WbX19b/P7gJcvw/GvPAwA0nwazx8RTTz2FZcuWueZEAWpl+5133ilSI33qqafg9/tx0EEHVezS6tWrcyvvHo8He++9d+7f1KlT0dLSglmzZuHll1/O7eM4DlatWpV77/P5cNBBB+Hpp58uOvbTTz+Nww47rMoFUXi9Xuy5557QdR2/+c1v8KlPfariBExKiTVr1riGthEEQYw00pEAl2CeiRvCPVEZtrEewL777ls0bgIoe3/ooYeWjZsTaay3+m3ogfxY7vV4MXv6bMDCmBvryQNNEAQxAH7xi19gzZo1OPnkk7HXXnvBMAz88pe/xNq1a8tKQmS59tpr8Z3vfGfAK9JM1/C1z5+HE75xAm5/+HacePiJeP615/C/rxSHb6/87Dm490/34oo7rsAXj/4iXv/X67j33nvxyCOP5No8+uijuPzyy/Hee+8BUCIe++67b078pL+/H5dddhnOO++8XH7Xgw8+CK/XiwMOOACapuHxxx/H7bffjuuvLxYxK+Xiiy/GT37yEyxcuBD77LMPbrnlFkQikaI2l156Kc466ywsW7YMhx56KP77v/8b27Ztw/nnn59rc8MNNyCRSOBXv/oVAGDDhg149dVX8bGPfQzhcBi33HIL3nnnHTz44IO5fX7wgx9g+fLlWLhwIWKxGG6//XasWbMGd95554CuPUEQxHAgHQnBJTS/MgTkBBQRmwiM5FgPABdddBEOO+ww3HDDDTjppJPw1FNPlYVvn3/++fjZz36GSy+9FOeddx5eeumlCTPWx2Nx3Hj6TdACGjZu24g31r2Bg/Y9CN1bunHvPfdWHevDvRHcccfIjvVkQBMEQQyAQw45BC+88ALOP/987Ny5E42NjViyZAn+/Oc/48gjj3Tdx+fzVQw7ckPYSpHU06Bj2ayDcet3b8P19/0EN95/A45YdiQuPfvbuPnBm3Lt582eh0du+A2uuOMK3PfovZgxZQZuue6WorqQ0Wi0qF6iruv4y1/+ggsuuAArVqxAMBjEGWecgZtuyh8XAK677jps3boVuq5j0aJFuO+++6qKigDAt7/9bXR2dmLlypXQNA3nnnsuTj75ZESj0Vyb008/HX19ffjhD3+Izs5OLF26FE888QTmzZuXa9PT04Pe3t7ce845br75Zqxfvx5erxdHH300XnzxRcyfPz/XJhKJ4Gtf+xq6urrQ0tKCAw44AP/4xz9wyCGH1Hn1CYIghg9hS0guwbRMfo5NBvRYZCTG+kKyIdNXX301rrnmGhx33HG44oorcO211+baLFiwAE888QQuueQS3HnnnZg9ezZuv/32CTHWd3d1Q5gcvgY/hOD4r9/+HBu3bYRH92DF/iuqjvXNjc3Yb9F+IzrWMzkR1QvGISoXZOuYzwUZTuga0DUA6BoAgNFroDPeiYYtjdC9etnnjzzxa3z/ju9j0183u+6f2pJE6yGtaFzUONxdrZuVK1ciEongz3/+c13t6T4gJip0b0/ua2CFLfQ83QPvNB+S8xNo6Z+CqQe1jna3RpzJfA9kqXUNHnjgAXzrW98q8+qOZQY71k/3zkD/3/sRnBssEhizwjaYBsw4YXp+0amE6Fsx8JSDqcuHUEWuBpPzjiUIghjD2HEHgMpnHgyaX4fRZQ5llwiCIIghQDoSwkFeRMwZmhrIBDGe4Wmlpleqzq15mPrNVInUsKM2MMLuYDKgCWIckO5II7I6WrshMe444YQT0NjYWPRv1pKZWLp0KX76y58O6ph6gwd22FYlIQiCIIgxg3QkIGXOgK5mGBATB7exvrm5GUuXLsWPf/zj0e7eqOPEnNxvohCmMwguIS33hSYpJXjCGe7ulUE50AQxDjA6DJi7TIglTYP2ShJjk3vuuQfpdDr3XgqJ3n/1wphvYE9jjus+XzzxDHzxxDMqHtPToCPdYcGO2tBD5SHgo8EDDzww2l0gCIIYdaRTbDBLMqAnBaVjPaDClzs6OvCRj3zEdZ+VK1di5cqVI9C7oWOwY70dtnPCeoUwL4O0BUSFSA1hCHBTwl2DfPggA5ogxjg8zWF0muBpDjvmwN/uG+0uEUPIHnvsUfTejtoItoRgz7fQtLN5UGFJTGeAVCu6oOpNBEEQYwbhyKLnOpWxmhyUjvWAMqC9Xm/ddZUnMjzNoQfKF/yZziA5IC3334kwBaQ18tF25MoiiDGO1W/BSTiQtoATs0e7O8Qw48QccHP3c+KYzmCPQlgTQRAEURnpSKAgUlVwAdLzJSY73ODQAi4eaI0BUuY80IYpIQpKv/E0Bx+FKA4yoAlijGN2mwADmFeD1U8G9ETHithg7kKTA0LzaXCiZEATBEGMJaQjiiOLuARIR4yY5EguoXkrmKUSEJaElBKvrJPY1Z//SJgCcgicDgOFDGiCGMMIS8DoMOBp8kIP6bB6TAr3msBIKWF2m65hTANF82vgSSdXU5ogCIIYfYQpgIJyPFJQGDdBVIUB0hYwLCCWBNJW/iNuiFGZ55ABTRBjGKvPgh3n8DTp0Bt0OAkHTpy8ihMVnuJw4s6QCH9pPg3cEuBpMqAJgiDGCtwS0DwFYUZSiUcSxGTGTYG7EG4JpE0gmQasgmBMO2aPSgQHGdAEMYYxey1ASGgeDbpfhzAl7BgZ0BMVJ+aAp9yFNAaK5tMgTAlhDL+4huSSPCgEQRB1IAwB6IUeaHp+DjV2xIaoUPaIGJtUM6CZRwNPZwxoEzAKBMVGy6lEBjRBjFGEI2DsSMPTWCCWrympf2L0uOaaa7D//vsPy7GdmAMpaq/E1oNS4pbg6eE3oOPvxZHclBr28xAEQYx3hCnACmbfyoAevf5MNLjB0fdSP3qe60VyU3LQhvRwjvVEOdXmPZqHQaQ40iZgWkAiUw1M2AIixcEq5U4PI2RAE8QYxe63YUcdeJrzBrQe1GF2m6TYOUwwxqr+W7lyJS677DI8++yzuX2uueaa3Ocejwft7e044ogjcOutt8I0zaLjH3XUUa7HPf/88wEAZo8F3aUO4kDYsWsHzvjuGZj78Tn46Pn74dIrvg3LsqruY5omvvnNb6K9vR0NDQ34zGc+gx07dhS1mT9/flm/v/e97wEArF4bPDn4VeC///3vOOiggxAIBPChD30Id911V819nn32WRx22GFoamrCrFmz8N3vfheOk+/Dli1bXK/1k08+Oeh+EgRB7A5SSghbFBsLQqp/xJDgRB3YYZXu1v9i2NWQHu2xfijYtm0bPv3pT6OhoQHt7e246KKLhn2s312qjfVMczeg//H63/GZ738G80+Yh0MPnI0/PvA9xDMVRoQhsKVjGxacNw9th7WN6FhPdaAJYoxi9lkQTrEqod7ggR13wBMcnib6+Q41nZ2dude//e1vcdVVV2H9+vW5bcFgEI2NjWhsbCzab8mSJXjmmWcghEBfXx+ef/55XHfddfjVr36F559/Hk1NTbm25513Hn74wx8W7R8KhcBNAavf2q38Z845vvh/v4C2KW34f3f+BV0fdOHSuy+F99se3HHHHRX3+9a3voXHH38cv/nNb9DW1oZvf/vb+NSnPoVVq1ZB1/P9+eEPf4jzzjsv976xsRGSSzhx27X8RD1s3rwZJ554Is477zw89NBD+Ne//oULLrgAbW1tWLZsmes+b731Fk488UR8//vfxy9/+Ut0dHTg/PPPB+ccN910U1HbZ555BkuWLMm9p3qbBEGMFtKRAJdgnhIRMTKghww75gBCIjAzCMklrF4L/S+G4ZuWRMt+zQjMCozqWD8UcM7xyU9+EtOmTcMLL7yAvr4+nH322ZBSDttYv7tUHOtb27DskGWuHui1G9fiC//3C7j4tItxx6W34xWZxk+uvRC/uJ3j+OU3gRscMrMw8qfb/4RDTz00t+9wj/XkgSaIMYgUEsYOA54SY0oPaBBprkQTiCFn5syZuX8tLS1gjJVtcwvr8ng8mDlzJmbPno2PfOQj+OY3v4m///3veOedd3D99dcXtQ2FQkXHnDlzJpqbm+HEbJX/XMWAfuPdVTj63KOwx7GzcexXj8Ff/vH/0H54G95+/20AwHOvPYf1W9bjv668C/st2g9HLjsS13z1Gtx9992IxWKux4xGo7j33ntx880347jjjsMBBxyAhx56CG+//TaeeeaZorZNTU1F/W5sbARPcXBLqrw+Fx544AHMnTsXoVAIJ598Mm6++WZMmTIl9/ldd92FuXPn4tZbb8U+++yDr371qzj33HNxyy23VLwOv/nNb7Dffvvhqquuwt57740jjzwSP/7xj3HnnXciHo8XtW1rayvqs8/nq3hcgiCI4UQ6EoLLYm+bJBXuocTsNXMhvUxn8M/wIzgnCKvXQmJjEsDojvX18Oqrr+KAAw5AIBDAsmXL8Oijj4IxhjVr1gAAnnrqKbz77rt46KGHcMABB+C4447DzTffPKxjfS0GO9bffMvNANxDuB999k/Yd6998e0vXYa50+bjQ3sfjlNX/ieeePTn6OuPqxJWmcWnqc1TR3SsJxcWQYxB7KgNO2LBO7X4AZAddO2ojeAewdHo2m7xwjEvweo2q7aRUKurm/StGIJyyAAA33Q//u1/D63dcAhZvHgxTjjhBPzpT3/CddddV7O9E3MgMxEHEuWTqWQ6iTO+ewb+7cDD8V9X3oWtO7fi+7f/R1Gb1955Dfss2Aez2mcBUKWsjlh6BEzTxKpVq3D00UeXHXfVqlWwbRuf+MQncttmz56NpUuX4sUXX8Txxx+f23799dfj2muvxZw5c3DqqafiO9/5DmRaGc/CLE/ie+WVV3DuuefiRz/6EU455RQ8+eSTuPrqq4vavPTSS0XnBoDjjz8e9957L2zbfaHINE0EAoGibcFgEIZhYNWqVTjqqKNy2z/zmc/AMAwsXLgQl1xyCT7/+c+7HpMgCGK4EbYSDGNlImKj2KlhYNTG+mk+7H3ph+BpKF6IZjqDd4oXdliJi2m+gfsPpZRwGZoHPNbXIplM4lOf+hSOOeYYPPTQQ9i8eTMuvvjiojYvvfQSli5ditmzZ+e2HX/88cM61lczSIdirA+6GNCmbSHgC4B5GayIgJkSaGoKwrYMvPraKhy59yG5tmd+90xY37FGbKwnA5ogxiBWvw1uSgT85d5ILaDD3GUB+45Cx3YTq9uE0Vl9UM3iYPyrjS9evBhPPfVU0baf//znuOeee4q23XnnnfjMPp8pCusr5Q9P/wFccNx++e0IBUJYvGAxdvbsxHduvizXpru/G9OmTsu91/wamr3N8Pl86Orqcj1uV1cXfD4fWltbi7bPmDGjaJ+LL74YBx54IFpbW/Hqq6/i8ssvx+bNm3H7lbdDmBzC0iFFsWfltttuw/HHH5/Ln1q0aBFefPHFotykrq4uzJgxo+zcjuMgHA679vn444/HrbfeikceeQSnnXYaurq6chOXbGheY2MjbrnlFqxYsQKapuGxxx7D6aefjgcffBBf+tKXKl5ngiCI4UJyoUK4S4yFieaBHq2xXgrASXL4Z/jLPtNDOsxdJpy4A1/bwL2TPMXB0xxSSjBW/P0NZKw/++yzq57n4YcfBucc9913H0KhEJYsWYIdO3bgG9/4Rq6N27jZ2to6rGN96d9SyFCM9S3alLLjHnPIMfjF7+/Co88/isPn/zu6ojvw2CM/AgB0dHSCz+ZoCDbi6i9fjRVHrEDrR1tHbKwnA5ogxiBGhwG9Qk6pJ6TDjjo1w33HIr7p5YNaKdlVaV3Xh9QDPRq4DbRnnnkmvv/97xdtm9Y2DemXjKrf54YtG7Bk7yUIBfI5VAcvPbisHSu4appXg7CFaz8G2vdLLrkk93q//fZDa2srPv/5z+OKr1wBWMCRFxyJjv4OAMDhhx+Ov/71r1i3bh1OPvnkouMeeuihZeIepX3LiuRV6vMnPvEJ3HjjjTj//PNx1llnwe/348orr8QLL7yQy+Nqb28v6vOyZcsQDodxww03kAFNEMSoIB0J4biEq04wYdDRGus9U7yQjijSjsmieTVIRw7agJZc5kqOlS521zvWT58+veZ51q1bh49+9KNF+dKHHloeQec2Pg7nWH/99dejra0NS5YswdatWwEM7VjvJiJ29CFH45pv/ADf+ellSKUvgO7148vnXYG1b74AAR12zEZ7WxvO+9TXENwzgKnLpo7YWE8G9BjHjjkwOw00fnj3E/iJ8YMVtuBtdn/A6yEdVsSGHXOGxYC2ozbMXSYaFw39PVdPGLUQAlu3bsW8efOgaeNbpmHdunVYsGBB0baWlhbsvffeRdvsiI1EMlEWsl9M7QnW9KnT8ca7q3LvmcYQiUdg23bZym+WmTNnwrIshMPhopXp7u5uHHbYYRXPtXz5cgDAhnc3YLF/H/zqPx5C86FN8DR4EAyq9IJ61OJnzpxZtmLe3d0Nj8dTlD9VyqWXXopLLrkEnZ2daG1txZYtW3D55ZeXXe/SPldbRScIghhOpCMBqTzQhak6E80DPVpjffjVcPWSijqDHRmkhoyAyle3ZZn1VO9YXw/1jpuvvPJK0bZwODysY/3GjRvR1taGJ554IpdeNZRjPTPcDf8LvnABvnH6N/Da3zdj+/T58Ld1456f/QdmzpwPnnCg+TQIs1iDZSTG+vE9O50E2GELqW1pCIcKwk8mhCGgB91/nkxnABdwhklIzOq3kdqannAD+kjz3nvv4cknn8TnPve5mm3tmANhSuguIftZFs3/MNZuXIu0mc5te33t60VtDl56MNZtXoeu3vwg9Y93/gG/z4+DDjrI9bgHHXQQvF4vnn766dy2zs5OvPPOO1UH1dWrVwMA2rxt0Bt07NE2G3vN3wt777039thjDwDAvvvui5dffrlov9L3hx56aNG5ASWQsmzZMni93ornB9Sq9ezZsxEMBvHII49gzpw5OPDAA6v2edasWVWPSRAEMVxIx2VcJRGxIUE4AmZv9UoWekAbdClQKaRSTC/5Dgcy1tfDvvvuizfffBPpdH6sdxs333nnnSI18aeeegp+//CN9dmxc968edh7772HbKw/cL8D4fV6q9aBZoyhuWEGAh4/nv3bI5g6bQ723mt/cFO65rOPxFhPBvQYh6cFnKQDkSYDejKhebWqYTiaT4fZU73eXyFSyrqVu3nagZN0wNMTTNVkGHEcB11dXdi5cyfefvtt3HHHHTjyyCOx//774zvf+U5R21Qqha6urqJ/PVu7az6NP3fc56AxDRf/5GKs3/wenn7padz5mzuL2hx98NH48PwP44LrvoG3NryFf7z+d/znI9fhrM+clVP/7OjowOLFi/Hqq68CUKvkX/nKV/Dtb38bzz77LFavXo0vfelL+MhHPoLjjjsOgBL/+OlPf4o1a9Zg8+bN+N3vfoevf/3r+PQnP41ZzXtAD+mQXAnkFHLRRRfhySefxA033IANGzbgZz/7WVlI1/nnn4+tW7fi0ksvxbp163Dffffh3nvvxaWXXppr8+ijj2Lx4sVF+9144414++23sXbtWlx77bX4yU9+gttvvz0Xwv3ggw/i17/+NdatW4f169fjpptuwu23345vfvOb1S80QRDEMCEcFyEqhgknIjYaOHEHPOlAb6hiQId0OAkOnhj4BZcC4NzBzo6dgx7rK+l6FHLGGWdA0zR85StfwbvvvosnnniirDzjJz7xCey7774466yzsHr1ajz77LO47LLLcN555w3LWP+Zz3wGc+fOrdjn3RnrLzrvolybv/zj/2H5mR8r2u+OX9+Bdz94F+u2rMfjj1+PR+6/Hmd87VbYKUBaHL977nd49IVHsX7L+hEd68mAHuPYMRvCEOAmGdCTgawcf62aunpIh91vQVj13RdWn43IG1Fwo/ag4SS4uucqlCUiylm7di1mzZqFuXPn4qijjsLvfvc7XH755fjnP/9ZVv7h7rvvxqxZs4r+nXPpOdCD1cPxG0ONePj6h7Fhy3oc/ZWj8aO7/xNXn39VURtd1/HIDb+B3xfAJy84EV+5+iv494+dgCu/fFVuxd22baxfvx6pVD7M7ac//SlOOukknHbaaVixYgVCoRAef/zxnDHq9/vx29/+FkcddRT23XdfXHXVVTjvvPPwy7t+CWHyjAEtIW33MKo77rgD+++/P5566ilcccUVRW0WLFiAJ554As8//zz2339/XHvttbj99tuLVvOj0WhRjU4A+Otf/4rDDz8cy5Ytw1/+8hf8z//8D0466aSiNtdddx2WLVuGgw8+GL/5zW9w3333FeV3EQRBjCTSkXBN+KU60LuNE3XAa0Ry6UEdPM3hxAcuXCaFxPrt6zFvn3mDHuu/+MUv1jxPY2MjHn/8cbz77rs44IAD8P3vf7+sRJau6/jLX/6CQCCAFStW4LTTTsNJJ51UZGgP5Vj/yCOPVO3z7oz1nz3+s7k2sUQMG7dtLNrv2Veewaf+zydx4c8/hTffehLX/fTPOOTwk5CMcQhbpUPc/sfbcNy5x43oWM/kYOIYiCHHLRdESomep3tgdJmYdkw7gnuOv7JFA2Ei5b4OFjtlY8euHQhuCMHbUDl8VdgC5i4T046bBn97bTGMxPtJxN6Jof2oNvhaq7fvfroHxk5D3XNzRv6em2z3gRN30P10D/RGT67ut2QS8dkxNO1sBpOVIxG2dW7DgacdgOfuex4fWfiRiscXlsD046dBDwxtznx6Rxq9f+9DaF4Iqa0ptB/RVvOeeeCBB/Ctb30LkUikarvJdh8Qkwe6tyfvNYiviyOyKorQ/FDuOa+/4kHrR6egaZ+m0e7eiDLU90BkdQTx95II1RiDkltSmHrwlAFrC4VXRRBfl8D0Y9oRmB2ovUMd1HsNtmzZggULFmD16tVltanHKvWO9bGNcfTpvVXnO6Yt8fLf0/DOCqLpkKno6peYmkhhn3gEofkhGJ2GEhE7dOow/CXuTJ6n1jhEWBI8LSAs8gZOFrIe5WrljICsmmT9edBmtwknyWumAghbQBgc3BIUwj1COHEVLl9JdX130XwahKWiCoYanuJ58ViZCU8kCIIgXBGmAErVhhkrS38hBoYUEma3VTOSCwB0nwazt/4UuCzCFIAjaJwbYlx1AUowbcCGBq9Q81KvDqQTokiIb6QhA3oMI9IcwuJgugaeImNmMpA1oN1KMJTCdA1WX20DmhscVq8FaYqaIdw8LcAtAc3D4CTHfx3m8YDIhD3f+tBPMe8Tc9W/j8/D0qVLMe/j8zDvE3Nx+mWnDfr4zMfUYtwwPEPsuAMtK/zBUBbCTRAEQeTJjq+FMC0/DhCDw0k4cOIOPFXyn7PoIR122BrwNZeWgHAAuZuivj/60Y/Q2NiIxsZGNDc3Y+nSpWhubkZjYyNOOOGE3Tr2eKSeeYNpAQ5j0B1VltPjAXjcgRjF6BUqYzWG4WkOYUl4GnXY0eFRXCbGFjkPtM5qVi3SG3SYPaaqSVhFvdCJOnCSHMzLanqVhckhLQlPowd2mAzokSDreVh50jn47DEnAVAh3MnpCTR0N4JJhqDfPVxs7qy56P1nX9XjM6bupXry3weKHbGh+fMDWD0TkpUrV2LlypVD3heCIIixjjAEUDJeM8bq8sIRlXGiDoQpaurHAJlSoL2mqgddtXRkMcLO1IHezWiB888/H6edphbFhRDo6OjAHnvsAU3TcmWhSpk/f/6glMNHk3rHemHV4YG2ADAGcAk4Ej4PQzxuw5kyVBXEBw4Z0GMYbghAqhBMnnAGVSCdGF8IS7gLjLigNyghMTtmV81rtiM2pJDQgzrsaHWjWBgCUkh4gh7wlAPhCGgeClQZTrITp9bmVrQ2q9qMuRxoX/Uc6LphgDPEHmhhCfAkzxnQTGdltRgJgiCIPMIUYKVDqlZfGCtRGStT27meObLm08AtOSADWkqp5mdcDrqsrLAFYu/G0bx3M6burXJ1hRDwer2TTgugkHrmDYYlIT0MECqMXmdMpbiO4jWbnN/WOIGnHIABml8DN+Ww5DASY4t6VuKy6H4d3JCwapSzMjoN6H4Nmk+DE7OrrmJmc+01nwZuCvAU3XPDjVo0Gd6FMc2nwamxeDJQeJqrFf8CA5q0GgiCINyRUkLYoixijDFG6S+7gZQSZpdZtf5zKUwD7Ej9Y6J0JCDkbo1zTsJBalMKiQ2JcedNHk7qufeTacDrY4CjPNAeLiAtAU4GNOGGHXWg+TQlGGVx8u5MAnhyYF5CT0hHans6V/6q7HgpDiviwNPoUUaxUX0hhicdgDFofg3ClBDDEPZLFMMNXpYTN9TkFk+GsFQKT3EIS0DzFXigyYAmCIJwRToS4LJcJFQDiYjtBjyhylINxIDWgzrMbrNuQ1Y6EoJnRDkHOc7xlABPOkhsSMLsMgd1jIlIrdQvKSWSRsaAFhJwBJilPNEOGdBEKVJKOFEbmk9TIkC2JFXkSQBPDNCAnuKB3WfBDrvnyNsRGzypBhbNrxZiquXC2nEHmo9lcrAleRRHAJEuz4kbCIYp8fYmgbRZeSKgoljEkBq4PM0BCbCMoqwK4aZnFEEQhBvKCJO5Z2YWprFBhwUTgB3LVLKoQ4E7ix7U4SScusU1paPyn5lPG/Q4p+bw6ruPvZvIad5MZqSQNRePLEf98/oYmJDqu7AEIABeb87jMEAG9BhFGALclND8WoEIEP3YJjJSSnBjYGG2ul+HsASMbvfVTCsjPsd0BuZVCzGVSllJIcETTs6jCIDU30cAYfKqInC16IkC27uB7d3VDWhRhwr7QHCSvGgEYR4GuRv5YQRBEBMZYUtX0U+mM0BgSCOEJhN2ppxn6cJENfSgDp7mcOJ1GtBcAlxA8ymtj8GEYPMkBzQG/ww/jA4DiU3JAR9joiEd9ZuohmkBtgN4PRltXVsAlgBjgDWKkRtkQI9RVH4hzxszrL5Ee2L8Iiw5oBzoLHqDB+lt6bKHkJQSxk4TekCtytZSYxZmZtGmICTXiZMS93AihRImcQvh5rz2wC6ExM5eCSGAHT1ALOV+/zCPUnkdyigWO2IXLbYwnakSHxSKSBAEUYbkSoSqbMGUARC1DQnCHbPLhBao3/sMZBctZN1zHOFISK5KjNZj9LmRrVqheTT4pnqRWJeAFR54PeqJRNazXw3TBhwOeLJfMZeQaQ5NB9KjGAlPBvQYhacFpCPBvJnwSI+WW2UjJibCFIOqBelt8cIO27D6ih/EPMHhRG3ohXURGSoaUdzgkFZ+0Ubz0z033CiPBIomVI7j4NMXfgrLly/Hm++tqbp/fxyIJIAZU9Uq7Y5u6boynlUm5RWiDwaK5BJOzIHmz99bTGeQXFAuH0EQhAvSkRAOyj3QGoMUIAN6EPAUhx114BlA/nMW5tVh9tZngWWNZs2vQfCBLxRLLuHEbegZ0U3vFC94iiOxfnJ7oSWvzwMNAAwMYIC0OZC0ofs0mKM4RSUDeowijEx+YWbiq/nIGzjREZYYVCkLzadBcgmzJIzbjtkqL6hgYNF8WsVSVsJQxk920Ubza+BJTnk6w4i0RVlI3+vvvo6X33wZfX19eOSvv6m6f3dYQkrAqzO0NgEdPUA4XqExY0MWkl+qwA3kvdyS0/1CEARRirQlIF080JqKRiIDeuDk8p8HYUDrIR12n1VX2lF2XBvsQjFPcXBLFkVtBWYGkNqWGlinJxgqNL76tTQsmS/vqmlAWkCmOXS/BsPCqCmakwE9RnEyuRJZNJ8GkeKD8lAS4wNhikHnQHkaPUhvTxfdH1Z/eV6Q5tPgxB3XB0627nh+0UZTtX5JiXvYyBqchROqXX27cq+7ejor7ps0JHaFgeaQeh/wMXABbNslIVy+X83HKorNDZSsAa0XGtAag6xjZd4wJThNFMcNv/jFL3Dqqafi4IMPxt/+9reyzx3Hwemnn47Pfe5zo9A7ghg/VDKQGWNq7Kfp3YARJs+VlxooekjL5EHXdk7JzDRosAvFPM0hSxadNb+WEz5zEpPTQSYcCVnjUibTgDezPsJ0Bpm0IW0B3c/gcBXePRqQAT1GsaM2NF+x4cMtMWQhmMTYQ1gio5AwcDzNHlgRB1avinWRwr0uYrYEg1s+vTAFCgUNlQFdWXSM2H2ELSAdFJU16Q335F53FRjTpfRFgbQBBAP5bW3NQFc/0BMpb6/5leroUHg5eFot9hROWrLK7dVW5oWQeGWdxI6eik2IMcacOXPw7W9/G0uWLHH9/He/+x0aGxtHuFfEZIenOJIfjK/wV+FI1zGeaSQiNlgGE7WXRffrEKasS0hMOiJXdaKeheJSuFE+ZgKAr80HADC6jAEdb6IgHQlR5b7PlbDyZDboTHmsLQGPTwPngE0GNJFFikx+YUGoh+bTIC1JZWImMKUG7EDQvBogJMxdKozbSTiwYzY8DZ7idj4NwuKu5YzsmA3mKfYoQlD5tOFE2rJsUO0J9+Zed+zqct3P4RIdvRJBfyYvKIPXw6BrwLYuCafEUNZ8bMgiCqqFglcz0PtjKsw8OTnnCuOSE088EcuXL4fP5yv7rK+vD48++ijOOeecUegZMZmx+iwkN6fGVYqRdKT7GE8h3INmtzU3mHJY1SL73WUXigdquFcaM7MRf+PpPh5KJBdVp72mnSlhVWJAM0dAy3qgR8l576ndhBhpeFrlnRZ6D5muQnyGso4rMbbgKWe3yhl5mr1I70ijcZ8m2BEHIi2gTS9eI2M+BmEpo9g7xVv0mZOpAV28A5VPG07cJkw9BR7onvAu7OoXmDG1+HsMZ8TDprWUH3NqM9AdBnb1A3tMy2/X/BrssA2eFvA07F6/SxdbCpFV0kx2hSX6Y0AkLjHo1SJizHDHHXfgnHPOQSAQqNnWsixYVrHQocfjcTXMJzpCiKL/JyO7ew3MhAU7acNOOfB6xsdUljsOpCYhmXruZ/+Hrl5zh0+qe2IofgfccSD1/DUdKFqDBqPHRCPnOWPW9Tyc584jdQnHHth3ZcUtwMfK+pl9z00xqb77LNzmkFrJ76EAi0twSPj9ANMB+DNzDC/g9QNISlgC8GZ+V0N1DTWttn95fDx1Jhk8rUJsSw0cgIyZiYyT4BWNknrwNnuQ7kjD6jVh91uAhrIBoVJNcWELiBQvinoAMurvkcldZmE4cdM0KAzh5tzGa+/24YgD2tHckP8uu/olNAAelwUXXWMI+CS2dEm0TwH8WVE4jxKbE7vpgZZSwsmU43D/m9wnMpxLbO0CGAPCCXWcahMWYmzz1ltvYdu2bbj66quxatWqmu3vv/9+3H333UXbTj31VJx22mnD1cUxz/bt20e7C6POoK9BAMB+wM5wBxAe0i4NHwEAy4E4YkWbk3smgD2BrmQXML6i0oeE3fodNAD4WPk1rZvZgAUT27YlqrcLFJxnNtAjuoGtAzhPu/oXh/t8KjY1itjW6AAOOIE4WP2XmOWugHrw3pV2TOBDmVc2ABsWYlsHeR+UsGDBgpptyIAegwiDK7l8b8kElTHwpIOHH34Y77zzDr73ve+hpSXvgnKSDqQj4W0pN7yJsY2UEjzp4OnX/4aX/voSvvXpSzCjdcaAjpH1XhsdBqw+qyx8O98Q4OnimBdhCHBbwttYkjPt1+DEHDJ2hgm3PKreghBuAOjs3YV1W9vw0b2AgJ8hnpLo7geaq3iRWxqBrj5V1mqvPYq/t8JQMikkrB4LRpeB4NwgfK21vYHCVFoMupsBzVhFocO+GNAbBaa3qtqNlg34J5/zcUIghMBNN92E7373u3U/F8455xyceeaZRdsmswd6+/btmDNnTl2ejonI7lwD4Qj0PNMDK2yj/cg2BGcHh6mX1TF7TXhCnroVoMOrIkhvTSMwS0VsSCaRmBVHY2cT0tvSaD+8LffZZGAofgf9L4dhdBoIzBzcdeMmhx22Me3YdnibK8+dw6siSG1JIzg7gNT2FKYc0ILGhfVpP3CDo+fZXjCvBm9T8bwsew8EN4Uw/ehpFY4wcUm8n0D4rQjEMo7GziYwWTyedPRIvLtFYsZUtV06ArLXADwatPYAdvVL7DOfoZ2bCO4RQOshrSPWdzKgxyCVhMI0v4YP3tuEs846C1JKeL1e/PCHP8x9ntyUgh220X5E20h1lRgihCWxq7sb599wPizHAsIMP774xwM+jrfFC6PThLAEvK3ug4HmVUZxIdzIKES2FQ9imk9TERGWhO4nA3qo4S7GZne4WGFLil3oi+6L9dsklnwI6I1KmDbQ1lL5+9AYQ0ujxOZOYEqjzLVlGoOTdCBsAXOXieSmFIydBpwUh7AlfMtqGzNKgZvD01Q+fDCdVUwz2dUv4XClGt4bBVImGdDjlWQyiffeew+XXnopAMC2bSSTSRx//PH4n//5H9eQbp/PNymN5WpomjZpDegsg7kG3OAQKQmYAMz6wi2HGiklkuuSCO4ZRMNe9eXEyLQEY1qZkcAkA+MMTLJJeT/szu9AGhKayzUdyLlhA4xXv/bqPCz3XUm7/vuOWxzSEPCGvBX7KS0JBlZUNWVS4ADMycxPJCu7PoYhwTmD5BkDGhpkUoBN8UJyBs4By1Rzm5H+/ZABPQZxEraKcyxB8zK8t/a9XAmil19+OfeZFBJmp5oIO0mnsveRGJMIU2DVulXKeAawYcv6QR3H06TKWUkJBALuq+LMV+5VzpbQKs3B1v0arKQNkam5RwwtIi3KrnlviQEdju7CAfsCO3oAv0+iLwaE6lhsbwgwJA2JjTskGkMqlFvzabD6bPQ+3wezxwTTGHztPnhtifS2NBoXNtSMYOGp4nrhhTAdriJljiOxpQtoCgE+rxIGSRlAa1Ptv6OUrj5liO85fZJNNEYJx3FU/p+UcBwHpmkiFArhiSeeyLV56623cMcdd+Duu++G3+8fxd4SkwEnnqlD79NGrcyiMAXsiANvS/0KRsIUYFWGURIRyyN5faWphMl3SzuG6QyCy5oiXsLKj9XVFord4CkOYUmwUo2ZAqSjKlhMNkdF4XV1o7CEFZBJQ2wPAJnyXzpT8wmMwrBDM+IxiBN1XI0Vzaehu7c7937t2rW513bUhh214SQ47MjkrCc3nhGWwFvvv5l73xMeXJ0fpjFoAT1XW9CNQq9ylkpRD4WiY8TQw01eVMLKMA3Ek8V5QH3RXfDqDFNbgM1dQCyZr/1ci/YW5e3d0ikhpYTeoCuPc8xBYFYAwT2D0AM6PE0e8KSD9PZ07T5n7gW30N1KE4veqFLgbmnM75c26/sbStm6S2JjB000R4rrrrsOK1aswOrVq3H11VfnXre3t+f+NTc3Q9M0tLe3U6oHMezwpJrjaD6trhq+w9KHNIewOKz+2grOgPJYC7uKsSBRsx7uZMGO2eh/uR/CqWHUOqJuQ7sSjKk6FrVUtaUlct5h5mGupUArwdNclcCq8myUXKpSWZMMYQrc99d7ceKJJ+LZl58t/qy0hFUG1ugF05WN5NEHP5fYXchNOcYQjoCTcFwFejSfhp6+vAG9c+dORCIRTJkyBXbYVqubjMEOWwjuMXnyaCYCwhR4a9Pbufc9/YMvlBuYUX0pTvMz2EkBYeS9yjzFXaMeKomOEUODMIonVH2RvrI2/RFVCzroYxAhCSEArc4wL40xTG1R4l1TmoAZrR54Gt0f+54pPiQ3pRBaEKoaweIkHNd7BVCic8ISZTnzXf0SQgK+zGIBY0AiPXAlbikleiIqf9p2JLweMtaGm2uuuQbXXHNN1TbLli3DH//4x5HpEDHpsSI2mM7AvAxOYpQ80GkBbko4CQfCEmUCnKVIR6ryO5WeWRojD3QGnhIQhhLT1aoIq0pHQnKUVw8ZKNJd0DP3MZdFhjrT2YAiH5wkV67Sal3gAy+NNRGw0w5+/OufwLQM3Pqrn+K4jx2X+8zKlLDyVQmK03XAtJCLzB1JyAM9xhBpAW5J14cx87Iyz+S7774LADC6TDCvDj2kw+g0B3UzpTvSiK6JQlYpak4MD8ISeGdL3oDui/aB84FPDF5c8yIuueESvPFuZVVczatB2KLI62zH7MqDEFMltoihRUoVNlaovN4d7i5r1xfJ14JuCDA0hQY2WQj6GDQN+GCHRNqs/Nv2tnjgRG0YO6sv59r9dsVwfqZnJgIF4mi2I7F1F9BYoPPj86pSXAMlmVY1pFOG8sQTBDG5kELC7rOgB3U1lhm8pqdyOOBpDmlLCFOlzdVCOhKCy8o5rlIZ2IQqU8QNUdsrnL2mu+GBBgAwd0HPLCJjqBeFcJui7nm2HbahuaQ8FSKF3P2a1uOQ3t5emJYBAOjuK57/WKU1oF3waFC1oEdhHY0M6DEGNzNiTi4TVMYYeiLFBvTatWvB0xxWjwVPkw5Pgwd2zB5QWJNwBGLr4uj/Vz8SHySVh4kYUXZu34nuSP7hIYRAb6S3yh7l/OHpP+CUb52MXz3+S3zr+m9VbMc0Boh8WLaUEjzhlKu+Z9B8Guwo3RNDjbTVijMriLYvVeAGgP7ort0+19RmVTf6gw4JUWHQZxqD3uhB8oNkxXwwbgrwlHuEDJCpV89l0Wp+T0QZy1MKBEsDXmUAiwEu1iXSKlzLtIF4akC7EgQxAeApDp4W0AIamE+DsOSA8lGHCifJoWVTnFK1Z+/CltXDjSXIeZFB2ELVRa5hUCqvfvUc2rpgDLxKDrTMhIqjwIBGnR5jyWUmqrS6UrtaeJ5ckX5SSvT25m2aWKKkvJsBOI4K066ER88Y0KNw6ciAHmPwtLuYU5aeWPEEe+3atbDDNpyEEg7TghpEWtSdB81THOHXo4i+EYXe4BnQvsTQsWr162XbBpIHfe+f7sE3rj0fDlff3YatG6p7sBnLlbIShgpFq2QUaT4NTswelRCZiYywy/O3SgXEgGIP9GDRGENbC7C9B+jqr9zON9UHq8+C0WmU99cRiL0VhdVvQ2+oIFDnYZmwuvy90tknIQWKwq39XsCwB567lEgDXAAaA6JJuh8JYrLBkxzcENADOjQvg7DEgPJRhwo7bEPLCHXyZG0DWnKhQrgrGXsag5iEIbxuZBdFahmUOc+wS1h8LFV5sbgUprOqOi+Sy8y8PN9e1GlAq6oV7k6xsvNMsu9fcom+cD5tLZqIFs0ze6MSHh1gVVK9NF0Zz3wUzBYyoMcYokZeRa+LAW32WQCYygliDNAZrL7aM1Oz10Lfv/qRej8B/0y/Ut/VALvfvdA7MXysfnN12bbCPOhYUmJnr4Rd8oCVUuLmB2/Cd3/63aIHj8OdqgZ4YSkrYQpIi1f2QPs1cGN0VvknMtmcp8LB3+0764vsGpLFC7+XIeBVXmijQig305VSd/KDVJERLLlE9K0Y4u8lEZgdqHivZD3Q2XA4y1b516U1q/0+lbeUGqABHY5L6BoQ9APd4YHtSxDE+MdJOkDGycA86nkz0hodkks4cRuaTwPTGexIbSEx6UgIBxUNaKZhUopIuSEMDmnXH8JdasnYjsT72yWiifrOxzwMooKQavY8siD8Pnvf1RNynTWga1YxqZGHPRGRjkRPgQFtOzbSphIyNUyJvijQUKPEu0cHOAfsiRbC/dZbb+Hggw/GAw88MJynmVA48eqS/L3R8hBus9OAHsp/lZ6QDrPLrCpIkd6eRt8LfTB7LQTnhqBnwkv0kAfGLpNCiUYQKSXeXPdm2faefhXS3RuReHOjxOoNEqvWS+zsk+BcQgiBK+64Aj++J18vevrUGbnXO3t2VjxntpQVkHnA25VLLGg+DdLio1YuZKIiXUL6egpCuINBNXLYjolEKjok52xpBGIJoKO38u/b1+aDscuEuUtZt1JIxNbGEX83gcAMP/QK5dGAwhBudfyeCBBNFodvA8ob7fCBeaCzAmJBHxAMqJD0SgsBBEFMTJyYo0JQkBe5rFWCaKjhKa60avwatIAOO1I7QkvaEpBVPNCMTcocWDecFM+Udar+vUpHgKFc3dqwlE6GUacvSOU0V/FAZz3dWj6EWzr1qWbXiirNd6J6HvZERDoSvSVpqdGEmutEEmp+EKxRnirrnXYmkgdaCIFbbrkF++6773CdYkJix+yKoR6O46A/Xhx/2dnZiZ6OHnia8ln2nkYPnLgDO+q+KspNgdg7MUhbIjQnWPTD9jTocOLOqJWGmIxIW+Kt998q276rfxd29kq89YGEaQOz2lROyJvvS6zaIPCN676FX/z+rlz7H1z4Q3z1c1/Jve+sYkBnS1lxMxP+VqKaXAjzqoGdpybX6uhw45YTVxjCvXjx4tzroQjjBlQod3MjsL0bSKbdB+usgGFycwpSSMTfiyP2dgz+dh/0UPU8ruw9JLm6V3ZmDHXdZfIgoSY59WJYSkQs6AdCfjW4xigPmiAmFWafBT1YMEdiGPEQbp5WWjW6X4Me0OCkeFUPJlC7xjPTJp8BVQme5nWFSFf63LSAhJGpD1wHmkelAlT6jqRTvPihForrC7nmKVXCqh74ZPNAc1lWeSQaVwZ0T1RFm2l1lkWcUDnQf/rTn7B06VIsWLBguE4xIeEpXrEcQm+k13WV870P3ivyCml+VUqmUliRsdOA1WfDP718aUcLaBCmINGoEaRzeyc6+zoBAEF/Pl7lg+09eGeThKYB7S0MmsbQ1swwbQrw2jur8MenHwYAaJqG2753Oy78woWYPW12bv+d3VUMaH8md8xQ+WSVyhIBBav85IEeUrKr14ULF4Uh3Pvss0/udV9k94XEsjQGleG6vbvyqO5v88HIqPJH34zD2+qrWP4KyIZbSfRGJMJxYGenwJZOie3dQEuD+z4eDYin6p8wxlNA2gJCAeXBth0SEiOIyQQ3OHiCF813mM5GfMGfp3nOq6gFNAhDwKkhJCYcWdWQYhojAxoZNWpD5YvX8kBXyhlPW5kUIaPOHGgPg3Aqh1CXGtZMY4CsL4TbidmVS5cVHlNnky5NTjoSfdFyA7re8O0cDHBGIX98WOpAR6NRPPLII7j//vtxyy23VG1rWRYsqzjOwuPxwOfzDUfXxixCqB8Odzj0Jh2Sld8MhSrNHo8HTiZmYUP3RhzJjipu7Gcwek0E5xffgcIWSHyQAGvQAA8gS5/oDJAeCbPPQGDPGrETQ0z2GmT/nyy8/lpeQOzwZYfjqX89BQDY0tWNxkaJhgBD4cjr1YFofF3u/bmf+x6+cOIXIZnErOkFBnTPTtf7CACYj4FzDjNhw4pbgA8V2wKA9ErYKXtEvpvJch84NofUZNF1z4Zw67oXe+21V257ON4Fpg/NAMEATG2R6AwDs6YJNDeUD+5agwbeLxHfmICnxQNPi17+rMggpcT7nRKdmehzvVfA8jvgPRxSAnNnuIuAhPwqR63S11x6HyRSEkJIeHX1e/B7JcIxQMwaOSkPTSPZEIIYLXiSg6c5PM35qavm00bBgM4/tDSPpvKwkw7QXnneKh1Zvey9Bgg+sce8ehB2XhukVm57JQ9w2pRwuIpYqgflURYQloQecOlThcWPeup229HKVSsKSdsMwUnmpJCORF+sxIBORHPh26XaKZXQWf3RBkPJsBjQd955J774xS+iubm5Ztv7778fd999d9G2U089FaeddtpwdG3M43zUhgP3O2Hbxq251/vvvz9ef10ZXuutdYjPLpZ/x2wghihiW11yJzPzchsVEhBnAxFEENkaGWj3h4Tt27ePynlHi3+89o/c6387/t9yBjQCXVj6cXcVDGfVltzr5cd/CMk9VVHdlqX539zWxNby+6KQPYEeaxfQDqAdiFe47wAAs4EwwghvHTnlpklxHywH4sh/Rz0xtUg2bVobZszI57OLKVux4PBBFE6ug4pHzazFOLBhoPpMZN4ewLyiLf2Zf5WZO0X9v3Vr1Wa5+4ABODLvlK97/6GEIqoIYvRwkhySS2heDfGUxLZdEnu3MPCUU71E1BBjx2wwT7FRVKsWtG1UD+VVHmgyoKUlILiEFtBremSF5R49F08BPo9K+3G4hKfGfZGrHlEhDrjS4ket70uVfeQ1S1gBQF8CmDIKavJDgZQSyfeTCOwRgKehfrNSOBL9LgZ0b1RCY/WHb+s6YA4gHWyoGHID+r333sPatWvx3e9+t67255xzDs4888ziTk1SD/T27dux7TENS5Y1uraJv583po792LE5A3rT25vQtLN4sULYAma3ifYj2+CfpjzJkkv0/asfVq+FwCyXZbYM3OCwIzamHdOulLlHiOw1mDNnzqTy9Gx4Z0Pu9TF7HYfrfNfBsix0bOnH5n82ue7z/pr8Qyex5UNY9ZdGfHRvhr30vXPbe7f1lt0XWYSQWPdaCtsamuHpTmFqK7Bwkc/VGwkAVtiC5mWYduy0nJDGcDFZ7oP4+jiib8YQmhMCoP7uvj71vQY80zB9+vRc241rIhXvhcFiWRKxNHDAQobWpsF/p1u7BNZvA2a2qWOI7jS0eY3Q966+gGpYEtE48ImPMdf7rvQ++N83BMJRYPpU1TaZlkiawL8fwtAQHJmJM0EQo4eTyC/yxpJKpHBWiKFBV1oetTQahgIpJZxIsVaN5tNghysb0LYjseodgdkGEKrUSMvk1Qo57GPsWEbYqnyVHtBqCpdys7wGtMMlUgbQEABsB7Bq1BEGCnKaK4RkV/I0Vwvh7o1IxLsd+CwOX5X0J5ER7E2aTFVEqaJHM1YRaYHEhgSELdC8pLbjNIvkEn3xYgO6LxJFb1SlmtWLR1ce6JGutDrkBvQbb7yBbdu24cQTTwQAJBIJ6LqOHTt24Iorrihr7/P5Jp2x7EY2t7m3nyGeBJpD5T+gnr4CgaG5i9E+tR29/b1Yv2U9mCxur3t0wJLgUQ5thnrQG10GzE4LgRn+svaFePweWGkLPMbhb60cxj1cP3RN0ya04VTKmrfXAAAaQ43YY/peaGtrQ2dnJ8KxHkheoR54f2fu9Zzpe8K0GTZsBfbfuxHNjc2IJWLo7Oms+D1v75Lo6NHQFrLhCUj0xDxIrAcWzVFiZaXfq+7RVZ1EC9BCI/PdTPT7QKYlNGi57ygai+Zqd09pKjage/t3VbwXBotXZ3AsiW2dwJSG+ld7C7EdiY5uBr8Huf5JoUEaErKGxIbHI5G0AMNimFLFgNc0DbbDEElo8PkAmXEF+P0S3VEgkWZoqrDwQxDExMHqzRuusZTSW4hZGkK6A27yETGghSnA08VliXJK3BW84JEE0NsnEBLAjLJPFUwDIIrLJU1GhKVCuPVGvaZBKQyeq82cxbQAywZCQVVxwrSU6GQ1cjnNFTzQwnbxdDNWNUe7OwJs3+hgX6tyhRMAMDJrQilbjceySkWUsYqTdODEOVKbUmhY0FD371Dy8hzo7v4o5plA89T6z+/RAIerfyPJkM9OTznlFDz66KN4+OGH8fDDD+OII47AF77wBVx88cVDfaoJRfaLT9oMXX3uyyiFAkNTfVOxaM9FAIDu/m70R8vDJTW/DqMrU4pGSiQ3pcAYKoqUFaEzWFXqQae2pBB5LTIk9WknMz09PdjRuQMA8JGF+8HhGtrb2wEAsXgfuHB/IvSGlUCY1+NHc0Mr2luA/hiwsUPmhMR29ux0/X52hSXe3wE0NGvwCQHGJWZMV/fE25skNmwvrzet+TWItEBySwpmr1VX7g9RHW6IigrcLc3tRQZ0f3ToRMQKmdoMdPUDvZHB7d8fU0rYzQVuFaYzyDpC0XSNQYj6akHHU5mSFgWBM7rGwDkQrzPPjSCI8YuwBZyYDT2gQ0ilf8AYsCsOcEuMmACTquvLizzQul8DNwWcpPt4HU0AyRhHT5yVja1ZmMYgBSDHZxTvkJENi2beTFh1FS+vsMo90GlLeZ39XkBIZUzXd+LKHmhhCrXAUQDTUPWeS6Qk4hEO267uaDIz02xTMBgpMS5rQfMkh3Ak7IiNdEf1WGrHUXNM05LgFkc4UZwWuKs/MiD1bUCFcHOpIg5GkiE3oAOBANrb23P//H4/QqEQmpqGNvxwopGtZ9rQpGFnL5B0UQ/M1gUGgLZQOxbOWph7/97m98raexo9sPpt8BSH1WMh3ZGGr4rIRdG+VWpJc1Mg/l4CyU0pmLvqLLTnAhnfKmIjy36L9oNpAdOmTQMACCkQKwlvydLTrwzoaVNngzEGjTG0TwG29wCtLbMAAKZlli2sxJIS67cqZe+GJg2wJZiQYLqGKY0MzQ3Axg5g7WYJUfD9aF4NWkBD9I0oep7tQfczPYi9E4PRZVZctSWqI0oM6O4CA7q1eRoCgQAaQy0Ahs+A9noYNA3YukvVFh8IUkp09knoDNAKPSY6A+qsy8pYfbWgE2k1KfKVqJl6PUBflJ4jxPAgHIHE+gQtGI4BlICYgBbUkDbUc6OtGYinGFLGyJWy4ikBYUswb/5ZpJS4uSpZ5EJPRCIgBZIWQ7iS6ATLzIkm+b0mLAHIbFh1ZSVuKaUybEsM6KxBmjXA6haXYpVDst0MdeZh4FVqR8dSgBnjMJ3qhmB2/HMkQ9qoXbprLGLHHTAN0Bs9SG5MgFf5LcbTwJsbJV5fL7FrVx9EyYpRbziKhsoZpq7oOsD5yJeyGvb4yGuuuQYrV64c7tOMe6xMjd3GFg3JNNAddlHhLjKg27BwRrEBnTQkoon8fnpIB085sMI2UltSAJe58g9bOgW2domKRqzeqMNJOLBj5U+f9PY0zB4L0pFIbkoOyhDe2Svx9zUS1iQv27Bq1arc649++KMwbOQ80ADQH+0u2yeVjiOZVsJT7a2zctt9HobGABAM5JW4d3R15F4blsR72yRSpvI8wqNB2rxI1yToU2WyusPKu1iIf5ofofkh+Nv94CmO6Jsx9DzXi9jbVYTKCFfU4M9LPNC9udetzeoemDpFBfz1RbqGbcFpapPyQHe6r9VUJJ4CeqMuZao0BvDKNTUL8XmAcLx2u3hKugrYhgIqVC6bR0YQQwlPcKR3GjUFoojhx0k6EJaA5tOQNNSCWmNIeRjjqdqKzUMFTysxsEKvItMYIACeKr9PHEeiq0+iwSsBjaEnUsMDPdkNaFsJduWEvarVZnYJmU+becEvjdVfygoAhOVuEEtLlIXVM51VXLQRQiKRVgrcpqxuZqUyzjPJGEyjel71WMXus6AFdPim+mD12TB2VvZC2w6QNIB3NwMvryl3DMSS0aJIs3rQNWVA2yOsxD1xEwzHGemo+uHqAQ2NIWBHN2CW/JCyIdx+rx9BGcKi+Ytzn23Ysh6bd0qs3y5zk0mmq/q96R1ppLal4W1T3mfLVvVZ390KbO2SrhNz3a+DmxJOST1onuZIbEjA06jDP8OP9PY0rO6BeaGjCYnX3pPY3An0uYiETyZWvZ43oPf/8EeRMmSRAR2O9ZTt0xvpyr2e1jq76LOmEENrS37bs6/vxOr3BTbtFNiwXaI3Akyfkikr5NWUp7AkVMbnYZAS6Oh2vzc0v6aM6XkheJs8MHYYVVcciXIkz5fqyFIYwj21Rd0D7VNmAgBMK41kenhUuD06Q9APfLBTIpmuf/DuiUgVKlear5XxHKCOkix+n8oPrLU40BMBAi7BMw0BIJWmetDE8CAsAW7wEfNuEpXhCTVHYowhkXlOMTD4vUBfXMJJjczsmSccZZmVojM48XIDLJoEkhEOPxNobGToiWSMvLL9AXAJOckXA4XBAcZyHuiKwl6OhOAoM6BjScCXScH1epSxVg9Mr7wIIyyhIqtK2mdztEsxLMAyJXjcgVFFbwgA4kn1v+4BUkk+7jzQwhJw4g70gJari578IFkxMtGyVenKPacD6zaUz29TRmzAeizZ9vZ4z4EmBoeZGRw0j46mkJoQdpdUDOrpVzfbtKnToGkMS5YuyX229oP30B0GInE1Ic2iB3VY/RaEKXLy8uE4kDCAxgCwfntlI5ppDGZfsXGc2p6G1WfDN9UHPagDQiKxKVW3d8yyJVatV4ackEDvJA+/zIZwhwIh7DVnbyRT+RBuwN2AzoZvA0B7iQENAPNm5bf1RXaiLwqs3wZ09ADTpuTDbZnG1Aqut/wxMKVJefYi7lW0cniaPLDjDuy+wYfyT0akLSFKVs8LNQ7apqh7IOuBBoYvjBsAWhqBlAFs6iwO3a+EZUvs7FXPkDIy91U9oYh+rwphM6vcPrYjEUkAQRchmIBP5byRAU0MB8IWEGlVH5YYXaywlSsdFY6r6BVAqfXGLQ2R7pGZPVeq66v7NFfdmGgScLpNeCyOYKuOlAHXMG7lgSYD2klxaF5WEMJdWQFb8uLQas5VZQZfpniM16M0NuqJUGI6c81plkL1wS2EW5W+qmBAJzlCGkfMrmxm2Y7MaYB4fQwJg1UspTVW4SkObvBcdKuvzQez24TZ5Z6bZTvKZxP0MzCnfH5rmIP3qo37HGhicGQNaECtpgT8wI6evJiT4zg5tbrpU6cjNC+EGbOmY1qrmmi/t2U9DEs5fQqNUk+jB0aHCW9r3n3T1a/yFptCDKEAsGE7sN3F2+hp0GF153NceYojuSEJT5Mn9zDxtflhbE/B6qltQAkh8eZG5XmeO0NNvrd3T97wy76+PmzZugUAsHTvpRBSg+GgxANdHsKdFRADVA50KYVGdTzZifYWhllt6p+3JIeUzQwCreWuPb+XweFAR0/170ZFOTCYvWRADwQ1+Bd7oHsKQ7gzBnRbxgMNAH2RvPL6UMPA0NYC7OhRomK16IupvORGt5osOlOrY3WspAd8yniuJiSWTCsj201JNRtGGSMDmhgGhCXB05zq844yUkjYYRt6QINlq/DYQOZ54PcxmNAQ6XaG3fgUjoATt4sUuLNoAQ1OXIWZF9LTy+HrSYEFdGhMg88LdPWVz7eUEjQgR9iLNtbgaQ7mYblne8XazFyUhXAbNmBZ+cUVr0cZVfXkQTMPcy2blQ0jL1X7zi14uBj4hgU4KYGgJpHiGpwKi8lZwTNA9dm0gXRyfD1rVGpFXjlc82pgGkPyg6Tr79Fy8uWmEoness9TaTKgiQFiRoq/+ZYG5U3uzdxLvZHe3AN32tS8Ou+HF3wYABCO9kDwPjQGga6+fPi3HtLR8KEQvM3qiZJMS/TF8hPfpqAK33xvq5o8F+Jp9MCJO3Biqm/JbSnYYQu+qfna0HpIh3Tq80J/0AG8sxmY2abEi5ob1EpsLS/nRKVQQOyjH94fhqUeAEUGtEsOdE+hAe3igS7cVmhsu8E8WsWSGVMagV39SnisGp5GHUZHmsTEBoB0hArhrqDC3dqUNaALlLgjw+eBBlTofsALfNAhc3lZbggp0dkr4dErKGVmPdB13A9ejwq7SlUJs4un1YTEV6Ekvd+LinmFBLE7SEuVLBrqEO7UdpKOHwg8yeGkBbSgjqQBGKb63WfxBhh6ekTNusG7i0gLcEu6VjLRAzqEWSwkxrlE10YTwbQFtKgONwWB/rhL9QCWUeCexDnQUkglrpmJNICsnBOsDNviEG7TAiwOeAs80E7dBrQGYYgyo0860rU2d9YDLVwWik0LgMXh0yVMwSoKZRqm6h+gxjfbBlI15ltjDZ4o1wTwTfPB6DRh7ir/w7MeaACIRMo90InU4AxoXQPMEY4UIgN6DCClRKqv+Beuawxej/JCCyGLwjuzXmcAWFyQB90bfg8NQeUZ6ivQdSp82PfH1Y+2MByyKcQQ8AHrtsoij6Pm1yAsCTvqwEk6SL2fhKfZW/Yg8bX7YWxLwarihezqk1i1QaIpBDQE1P5BP4NhTd486EIDev/FH4Vpq4dpzRzocGEI96yyzwu90oXh3gMl6GcwHSX4Vg1Pswd21IHdP8IKDuMYaZcP/oW/8SnNbQCKQ7gLc9+HiylNKidrU0flUO5YUj1fmkvFwzIwnYGJyuIvRW2ZyrevpsSdTOfbuhH0q2dIpfIwBDFYuCkgbTHkGg9Wdx3S80QOJ8khDA49oCFlKBvTU/DsbGjSEItJRMP1f09SSqS2pga08MvTHMIQriHczMcgLFlUyiqalEhvS8MfYGC62sfvY7BsoD/q5oGu77k5URGWWljWspFZDBWjP6SdMWxLPNCQ+YVdXWPgor5SVkzPGMQlBrvk0rW+dy5H2+X+MSxAszg8ujIYKxrQBVNmj66i/pKJ8RWCYIWtsjRA3a9DSiC5JV3mWEuZErqmrmu0oMqMpqljJFPRQQmmMk0tnowkZECPAYQpYLqIT7Q0qolhXyyf/wwA06fmDehF8z6ce7115wZoTBnebiFCIlN2xu/LiEgV0NzA4NVVDmRhuAnTGaw+C6ltaVhhG97WcjeQHtIhbFVn2u3Gj6eUZL3tAO0txef1e4GOGgbaRKVQgXu/RR/N5YEOJAfaLYS7IdiMgF9ZN7sb9tvSAHT2o6q4lObVIBxZli9fyrotAju6J+d3XYpwBCCLV7WzKtwNwSnwelRYfWEI93DmQGfJhnJ39ALdFUK5u8MSDldh/tWOVK8nhTHkRIHc6I1KVwGxLA0BNUGhPGhiqMmqKvMhVOEWtoDZo2bUVMqxHDtiq38xtXDPDQ4n7gBCGZmxlCzVc4I/yGAZAr299RvDTtxB4v0k7HD9C79KgbvcmALyC3yF90rfVgu824CvrfgBFvSrcdWtdOBkviekLSEcUZTaVLGMlcu1S1dQ3K43hFuJlhWfT3J3tW9lQLvXjo6nJTxJG8yjQaKyAR1PKWMydy6dIRUdP5F8hakVpfjbfDB2pGCVOAfThio7BS4RiedDuPfYYw8Aqnxr2hgfYalkQI8BnBSHmSr/0Xh1Bo0pL3Rnbz6Ud3pBCPesGXkP9NYOVQu6OaRKEJVOKKMJFRbe7Ja3CFUSxrKUhzqL3qDD3GUiuSEJb6uvYrivb5of6W3lPxYA2LBdoqsP2KO9fL/mBqAnXN1Am6hkDeiAL4CFcxfmyi80NTXlDKhw1M0DrYxiXfdgStO0ss8ZYzn15u7+nbs1IIcC6oHX1V/DCx3SYewwKuagCSGxqVMJ1hGZEhwllyLrgW5uyv9Q2gpFxIY5hDuL38vg0TOq3IZS5u4OS2zplFj9vsC2XUq4pxoS9eVAq/NVT+MIx90FxHL7+1QkCxnQxFDD0wLQGJwK9X0HgxNzcl7KSgrDkxWrz0LvP/rQ/VS3+ve3HnT/rQfxdXEl8iQlwjGl3l+IpmnQNWDnzvq/JyfOYYftirWb3eDp6sYN0xnsgsolve+noHEJ5i9OoG0MAbGEEhgrZTLnQAtbFFWnqKqM7TK+JFIqbLsIVkH1vARNZ5BclImCiYJQcduRubKL2YgBt37E4hLetA3m1+DVVSRCKVJKxFL5cHMA8HgYYpHxcwPka7PrZZ/pIR3CkjA6ivOzUibg1QFwUeSBXrBgQe51Ij0+SqOSAT0GMOMcToXY/dZmYGcPsG5zfvKczYGWUqIxlPdAb9mpDOhsiFBfrPiYfVEJLlAmJJXF61EJ/kaBDexpUHnQdsyBd0rpk6mgXebHkiqpC825UuttacyrPxfSGFSK4H3j4/cyZITDYWzatAkAsGT+Eng8HiTSgEdXBnBrszKM+11ExLI50O1TZuXCXkrJeqYNM7lb5Y8YGJpCKj++2iDkafbAjliwo+5LvYm0Cg3u6h/5PJWxSLbWZZa0mUYipazIwkWRwhDuvhEI4c7S2qQW3FZvkHh5rUq/WLdVoi8KBH0q7aMmdYZGBnxqIunmjQHKU07c0Jgqj0cQQ4WUSkBMD7rnRg4WO5I32koFpyY7qe1pODEHvnY/vFO80Bs90PwamIfBP9OPtKG8eW7Pg5Af6O0ViKfq+554woEdtQdU49uO2vn8XBe0gA47bEFKCStqo+99Az6XqD2vziAk0B8v6auc3HWghSXLDGg3ZWygPLRbSIl4Oi8glsWn11fKSuU0l3u8sznQ0NRi7sYOWTRWlYZwCyGRjHB4OQd8OvxetbhbKpZrWuqfv6C/Xh9DPMLHTRSCUuAWrqJ6gNIFsAoiE4WQMG01z4UAogllQHu9fsycmY+2G2we9EhDBvQYIB3jEBUWnbw6Q/sUYMvO8hzoWBIweStam5VBvbVjfa5NKADs7EUuHNt2JDr7VbhjJbJ5I4UlZTS/BimVNH2lHMQsvnZfbgDMEk0qhdxKHqusUb2rhodzorF69erc64/stR+ElEgWPPxbWzLfcbwPvODmMK00YgkVW+tWwipL+wCExGrRGFIru9W+Iz2ggxvSNQIBUPdqylTCKf2TbLHEjdJV7t4CBe4pBR7ooL8BoWATAKBvBEK4s2iMYdoUVa+xMQTMnArMamNob2FoCNZTo1Gt5pcSDffirTf+CSHyn/m8KhesUpib6bjXgC4k4Fdl1whiqJC2mszrQZWiNFTGrtmbzxmczMZSKU7cQWpLGt5WLzSfBj2gwxPS4Wn0wNvshebVkDTUIr+boGDAD6SiHD2R+s5n9lmQtoQdrs+AllLCidqu+c9Z9IAGJ6VKn/VuSiMdcRBsLffOAWpOVFqqFGxy3xNZozg712QeVlHAT/LiKC7Tcr83vB4glUbN8oxMd1fVzo5jjDGlkm0UO5lKx3LTBuw4hy4E4NPg96q+pUsy3NIZA7qwvz4/g5mUSFUIRR9rOEkHEO4pDYBSpudJJ7coYTvqnycTwh1NqrnslKY2tLS05PZLJCPD3fUhgQzoMYARseFUmZP6vQyGmTeg21vVBHtXWOUVz99DhXFHE325nNmmkDJcs/UG++PKCKoVeukW7hKaE8ypeFdDD+kQhgAvENGIJNTkOOiv/Ac2h4CdfZNLBKhIgXvRfrCy6pE5A1otiggpECsIc8mGbwPAtKnlAmK5zwoM6J7dNKAZGBqCwPaevLq7G3pAg7GjXDQCACIZ7yAX5ZERkxFh8LwUJUoFxIpzHdpalBd6pEK4syilfAa/l5VpJtREZ0DJxMeyTHzjyx/DxV89Er++78e57QGfEnkpnWBkESUKn26E/OpZQ9ENxFCREzQK6JCOGBIDWtgCVo+ZG0/JA50nvTMNHrfhqTLXSGYMC7fnEfPq8FpOzdKLgNKgsPst6A0e2BG7LqNVmEqRvZK3DcgIrxocdsRG37o0LK8HPp/7s6shmBdILD7R5H2GCUsUGcVMZ+Cmu0eWm8U1oA1LqViXeqCzlR7qERIDykPDCw1ky1Z1pvNpjqxMdMywADvhwAMV5u31ZspTlSwQG5b6qgsjM70BBsuUiJdGJoxRnJijwr8qoPk1cFPkIm4sB+BcGdDCdnIGdEtTG5qbm3P7kQeaqBuj14GoEIqbJZbIT7DT1nQkDRUa3RTKG9BAPg9a1xg05L2G3WElVuAWRl2ITx98TVXGVB3DwlISPRGJKhFPAICmhkx+9vjQDRgSOjo6cq/3mrc3DFs9/L2ZxepsCDcA9BeUsuotEAVzK2GVpb3AuO7dDSXuLM0NKgS7Wqi9p9kDs9+G4yKIt6tfGUoNfhUOPl5ClIYLbvC80iiKRQKntkwvapsN406bSaR2Ixx/JGEagBLjYOP6Nejs2AwAeO2lp3Lbs+qjlUpZlU6IXNt41QTJqGCEE8RAUfmYAnpAU+q8Q7A4Y0cdOAkOT6Mndw5CGUOpTSnojZ6qi2X9sSrPAw9DIzi6emVNTZVs7qa31Vs0wa+6T5pDmLyqB1rzqnsltS2NWJcF2eStuPioMeZqe8hJfEuUpjYxDwMcWeblBdQidKkBzWX5HNeTSU2s24C2ykO4s0Z9wlA6QTlRMlbe3jBVfr2e8SxrFSpNuHmZdQ+D4BLJcWJAm32Wq4BYFs2nqYWnzO/LdgCHq+8kHg2DCxX9MaWpDU1NTbn9EqnxEaZIBvQoIywBI84hvdW/iqwR5fX40dHXhI07JFKGWsWcN7swDzofxt0UAnqiQG9Eojear/1cDZ9X5YuU5mvUDcsoVQJwHGXk1/J6+zwMtqNytCcLqVR+laKxqRGmrbyzemZAyIZwA8VK3IXGcLUQ7qH0QANqEPB4gJ7+cnX3LHpIB09y2P3FVoxhSoQTKn2gqQEIx1RI92TjF7/4BT7+8Y9j1apVEEZJDehIPoS7tdQDPcJK3EOCziBLakq8/14+6mLnjg+KPpPIG9BCKKGWLZ3qPqsVvg2oSbXD1USJIIYCaUkIJ5PGxOWQ1IK2IzaEI6FlxvtKNW4nG2aXAbPPhm9q5R+7ZUsk0lWeBx4NQY0jkZA104SchANhCXibPSpqrh4DOiUgbAlWtfoAAAbYMRvRNEOgSuQdAAQzc6PC6LuBlNWaaHCDFwnVMk0ZlG5ie8IsKWFlSdelCo+uvJ71KHED5SHZ0lFGvZQSaUN5s7PGr/KQlxjQFsDiJjRfPnRf18orTcRSLotBGgPjEolxUMqKGxw8waEF3FMUgKzQWt4msGx1/TwaEC2Iumtpai8K4U6SB5qoB57mcNIc0lP5JgSASMaIam2ZhpYQw7ZdKs+ZgRV5oLdkPNAAEMwoKHf0qv9rCfEA6gdt28U5HgNB82mwI2oWG0ko8aimOgz3UADoKBecnrAUGtChUKgo7xwo9kAXGtA9RSHc9eVAD4UBDajvsS9WIewMKgJB8zKkdxa7EmMpZRyFAirUNmVNvjxowzBw8cUX45lnnsF3vvMdcJMXleroLRhMpk5xD+EGRjYPerfQGWCJosWWDevyZdt6e3bCNPI3kldX5arWvC/w11cknnhZ4h9vqX2nNNZxuowXu14vA0HUQtgFpeZk5Xq0A8HsMXPGMzA0xxwMUkqkd6THhAdcClUCU/drFXMpAbWwb1rlCtw5Mt5KWByJCmNUlmyUFNMZIGRdKutZI6BWOonm0xDdZiDp99Wcc4Uyf0u2v0xjo3ZPjAV4qnhcVMJe0nVRQVgChfXMYqlMbm0J2QiA0jmWK4yp9KrC82TC+7Pji8+TdwAwHWXtU3EOZnCgQHnd71NRltnxkHO1GFSWy68zeJhEODz2F9Z4koMbSmSxKhrgJPIeaJmJEoj0F6etFYVwp8mAJuqAJznMpACqrGpy7uTU6lqbp6EhyDCrDZjSqPYpNKC3FXigGRj8PiAcl/B73fOGSvF6M0rcFQR9aqH5NDgxG1JKhONZUYfa523OeCZLkVJi806J198TE6rUVaEB3RAMIWkU1wMsDOMNFyhxFxrD9Xqge/t3rxZ0loBPra6Gq4Tae5q9MLutohX9aEKtOno9DIwxeDSgOzJxvst6iEQiME31o3rllVdgG1bRZLG7MIS7uSSEu9CADo+cEvduoTFAoKgW9IZ1bxQ12dmxKfe6IQCs3was3qAWaKY2AfMzf7ZeI+0kC2P1exkIohZF+Zja7ucrc1PA7rXgadDRnZkgj1YOtBNzEF+XgN0/+j8Ys9uE2WVW9T4DahHWESrlwxWvBjgSHiFymhuVsPosaL7MgKspj3QteMIp0q2ohHeqF6bfBxOaq9hZIdlw41i2zJHGICZxFA1PlxjQujKgy4S9hBL1y46hUkokU+7icupA1fVbsmheVpSCCADCVF5xy1YGYEMASJrKCGZ6uchZIuxAdwRQEOrvzwhlZo14w1Kh4G4GtE+TiERlxaoUYwUnyZVGRI3oWc2n5Wqt2wWXNhopMKBLcqDjJCJG1ANPc1i2zIXuuhFN9OVWrrKGVeEg0hhqyYV5bu5YV6Rw29yglI+bG+rrj8YYhNgND7RfAzclhCHQ1S9zOb21CPmBVMk5LVvijQ0S/3xL4o0NwHOrZV0CIeOBQgM6GAghkVJ5IVmKQrgLc6ALQrir5UC3NLXlakkX5k3vDtkFmc4+WVHR0tOogycdWAVh3P3x4vugKaSiDaxJFL4Yj+dzl1OpFNZteq9iCHeZiNh4DeHm+VrQlmVi8wfvFDUpDONua2HYe0+GBbMZprcyBP2spqenFCnJAz2ZSaTkkD5ThFWYj1m5Hm29OFEbToJDb9BzC4hOcnQMaKvXgtVrlYWfjgap7QaklFVziwEglpKoMk0C0xiYBIJMoC9WWWdDOAJ22IKeqV2r+fW6FhLsSHUF7iy6X4eRqU2k1fkM64uq/jJt9KISRhsp1LyxsEwY86hxpDTVQToSkudDuE0746ypkB/v1ZWIbi2YzspqfQtLncdylAEYCijj17AB5tGU2GDBvRbv4/BIWfR3lCpxp03V39Ka1Ywx+HTATAukBunEGilU+bfa97ce0OHEbQhHFI3PkYI5T6mIWJJyoIl6cBIcpsOKvI+lFIpITSkI7S1k8YIDAaiVm7fW/yu33aszzJnGKtZ+doMxlbc6GDSfBmlxpGOqnEQ94dvqnKzIyArHJf75psTqDcobtfceQCQOPL9a4s2NYtwbX4UGtNcTgGEVP/xbmws90IUh3MqA1phWJjZVCGMs56He3TJWhTSFVGh+pRxmpjFAYzB2qac/5xJd/WrQKTxGvEAhvl4275RYu3l8Ti4SiWK3/ar3VhUb0IUq3E3Fv/HRqgW9W2hMJfVnVtE3b3wb3Cl2rezc/oHbnjWRXLqq5mpa9VrlxMTmnc0S27trt6sXYYqcx1HzMPDU7rkG7agDySVssNyzLxEb+VxHKSXSHQbshFMWfjoaGDvTNb3PQkqEY1XCtzNISPghkDIql8XjCQ6e5tAyoae6X8tN8Cue3xFwEk5VBe5cH6REX1QZTfUST6syj9CYa77vZCCnel/ogc78/kpLIuYNaPXesNTiaalBmsWjK69xLfFSVXe6WPVbmCpU3LLVIq3fpyqmGKYK4S70kEspkYzyslByTWPgIn9Ppq1MKLPLAovuAcy0rJgqN1aw+21oFRTmC9F8GrglwVNq3p7dIxKuEsJNOdCEG+FwGJ/5zGdw5plnwrZtWP0WTGiuuRu5fQoMqNZmd6Pp6I+dknv99Eu/360+ej3qgT4YmFfJ+od7OeKp+g1oIN/2gx0Sz70hsW0XMG8m0Bhi0DSGPaczNIaA198D/vmmRP84LoeUTCoLVNM0SOkre/gXh3AXiIhljOGpU2ZA16vLE09rVUrc8WQEaXNoVLt8HpVrWu3ae5s8MHca4KZAPKVCcgvrj3tzx6j/vB09Eq+8K7F+2/gsVVRqQL+xflVRqFpWhdvr8aMh2FTUdtzmQAuomEsA699dVdakVEisXmRHCmJbeR6BV1cqqcTkxLTdlW0HC0850DLpR8zLwFO7t3hndpvQfBpiybxafCriXqJnOHHiHFavBaaxjBdpdOHpvCp5JdIZgzhYS1BQMvglh2GpnGk3nIQDbspcCLcW0MBrCInxlAC38vtUw7DUc6gezZkspqWqXDBt8oqICUvlOrNSZ49E2aKCcESxB9pS67WVwvt9HuRCsKuRzbkuFBITlgDT8gKVWqbajGlnQsx5vr1pAU6/DT3gUmZNy5dhS6ZlRaeZlqkFXiuPfzTJRnFUExDLokq7CYg0R8oE9Mwu1UK4KQeacOV3v/sdHn/8cfz617/Go396FOmoA0fXqnqgw9FCA9rdA33o/scjlJl4//P1x2CYg6xFBWXIJVO1C8+7wTKS/ZF+ruTqq8VclZBV6371PQnLBubPQpnnvKWBYe4MYNsu5Y2O1sh1Gqukkur7CfqDMG1WFs7TEGrOhWBnv3/bsXLGdLX85yztBSJjfeGhCeMGVLh9Zx/gVMjR0Rt12HEOO2wjllITn1Ll1KAf2NFTWdG7kL6oxKvrJCwHiCaB3vHxbC2iMIQbAN7Y8IZrCHdzY3tZ6HJRCPcI14IeNBpT3ufMPVKowJ0lW9JqoMiYDSTLJ7sevbLAHTHxkVJFtgwVPJ2fzDOPBp7mkIOsTsFNAavPgt6gIxzPl8VJp91L9AwnVp8FJ8XhbfHAqcMDLqWEHRt6QztrsPqm1JbZTxrK6+er0ZR5GXRDzT0qPQvsuAPG8t7NXKkdl2dKrq8JByJdvYRVllhKeSdrecsL0TUgnJCTWkRMOgLSluUGtFauVl8awp22UBVvpkpDLY0MpherfkspIWyVa502ZT4FnqnFuqwBnV30SKcleNSG7mJY+j0qek9KiWiyer424xLx1Nid2/IUBzdE1RJWWbJCfTzNkTLy89xwSQh3IBDIzXmpjBXhSnd3PsbsnTffgZXk4HotD3R+n0phu35fEEcc9BkAQMpI4KU1Tw66jz4PYDoqz2MwMA3o2unUVX6mkKxYUGsjMLOtcg6k18Mwf1b1UOKxTtaADgVCMAtXNjMwxnLh+v2Z778/sitncLa3zkIt2qfk2wyVEjegFjriqcp1uzWPBikkrIiFSFwWTVayNGcUvWutsiZSyniOJoA509UkOVvbfDxR6oH+oPMDRDJCGUKInAHd0tReuitCwSYE/ErEYLyEcKt8xHyodVZAjDEGn1+FIwzGAy2lhEzaZSWyADUwpzPiLsTkJDZEBrQUUpXU0fMh3KoW9OCMGyei8p8R0NATAQIZ72QizkdcSMzoMKB5NSX4mXRqLgrYERuR18JFuhZD0o9u5SL2NNUu9J401KJDTSFUjwaZMcwrGSBWr1XkSc6V2qnigc7+7dVUwgFVjmpbl4Su15//DKiKKb1Rtd4oRe1Q44mIsDJGsZsH2nEL4c5/H4mUzHk23fB4lPe5pgFdovotM4vATGNIGsilGfp09azJiZxlFsFSUQ7H4PC4KFP7fUoIL5teUNGA1hj84OgbwzYkT3AIU9S1oAQAYCpnOm3lldKj0QLdlyblOGgIqVJWVMaKcCUbugsA769/H3ZawNFqeaDzBnQlDzQAHHfYqbnXz+xGGLfPu3ulrBzGEOtx6qo77UZDsPbAkzXIaq08jlWyOdChQKhivnn2u47F+8AFLzKCqwmIubXpGSIlbkBFFUip6otXQg/qMDpMdPVLhFxC2RqCykNQLYzbsiVeX69qic+Zob7z5gZge09x3czxQKkHGgDeyBiV/dH+nPBfpd93WyYPetyEcAOQDIAjYNsWNm98GwAwZ96HseechQCUB5rzAeZg2hLS4IDpbkA7DtWCnsykDMAZgmeDsGXGG6YGZuZlEI5QwmKDwI7agBBIWFpRSks8DvARNKCdhAOz14S32aM8r5aAqCGOxlMCRpeJ5AfJITXseMb7zWqo7GdzimspWgNQ1UxsAT8TrmOLsAWciJ0TEMuhMThx9weHFBJGpwk9VDtctaNHoicCtDXXbFpE0KfC1BMGAOGu8TDRyXreSxfbmeaijG3LXIk5KTMloaqsw2QXXmqJTOZCuLMe6IyhDk19P1mhV59XRUUIZBY8Mu1TEQewBDR/+b3i8yoDvj9XnaZCHzQGvxCIJcfuPMdJ8nyJvzrQfBrMPhuWnTegI3FlQHt0LxpC6gfTmPmfVLgJVwoN6I0fbITDGbhk0OrOga5sQO+36DBMm7oHAOC1d/63aL+BoGcED+qqm+dCimswwg4afMP742dsaHPeRpJUOhPCHQginnYXv8hGGwgpEIv3lZSwqsMDXRDCPZRCYoDyQneHK5eG8DTqSPZYiHbzIgGxLIwxaBpy5VzceOsDiQ86lPGcjU5oaVBicn3jY4EyR6kHGgBeX/s6gGIF7tbmcg80kM+DTqXjQ5bPPiJwic0b34Ftq4fJon0Owuw5ewEAHMdGz64dAzuexVVeNZdlwjJej/qYlLgnL5aTzy/eHaQlIHhe0Ih5lLjTYL3FZrcFza8jlkRRapNlCsRjI2dAW30WeIJDb9Qzgp8C3GUxqhCe5hCWRGpLClbv0K1Y1xsWblhKk8VtIbYMXYO0BQJMIJwoj0ZxEg54mpcZ0HpAg1VBiduJObAjds087XhKYkuX0nKpt/Re7vyZOvZJk0FyKKNtklFUNq4A5ilXxi5cYMj+5qsZ0FmMGgtg2RBuUWRASzgyk2aX9UB7VISmyRkg8x5rI8bBKhiWXp2BcxW55zjqvSsagw8caWvspiTZUbtIZbwWml9DOuzAsSQ8eiaMPa5K87Y0teUWTRozHuiUES+qJjRWIQN6hCnyQG96H1Z21a1KaFKRAV1FeVnTNBy7/PMAACE4nn/l0d3q62C9u0lH5fHow7yK6vOqGsPjDSll3oD2B5FMwzWEv3CxJBzrqbuElVuboQzhBjIeZEMZs27oIR3JKEe63y4SECukKQTs7Cv3GGUV1tdtBWa3K+GyLF6PWtzZVcXwHou4GdBvZIS1eorUKN0XyAqVuMdNHrQEwGVR/vOifQ7E7D0/lHs/0DBuaXAgo9aKkvvGq6uJCdWCnrxY9tAY0MIWkLYA82ZDuDUlFjQIA5obXNUdDmnoicii3FjbAuIjKIaZ7jTBPCo9Kiv4WdMDnVS5v9KWSGxMDYkXWnIJJ1HfDzU+kJxiLwMciQATMEyUlQLiCbUYUBp6qgU0OAnHdYHECtsq37PUa12AkBKbOyXSJtAUGpjxnMXvBXrjEkLktSMmE8IuLBuXRyljl4Zw541t08qUhKoRoeDRKwvL5c7F1Ew86w3PVnywRGbhK2Oke715JW4VYq46k+i1lf5HFRwuq5cT1xl8QsCyZM3+jgZSStj99QmIZdH8Gqw0h5NWCuXSEYgmlAE9pSBtLeuBllIiZQywTMsoQAb0CFNoQEfjUYTN2okOWQPa6/GhIVg9Nujjh56We/30S78bZC+VUl5iECIGUkr0GxoCEK5hlkOJz6PyUMZbvpBpmrk+B/xBWLZ7OE+h4np/tLs4hHtqbQO60Es91B5ojTFoDLl6pqUwxmDYDDJiVqxx3hxSCyDhjG3pOBKbd0o8vzpT87wZCPrL920MAtu7x1euq1sI96p3V0EIkVPgBoCpLZVCuMdhLWjGIC2BDevyCtwL9zkQs/YYvAGtZjJSSa6WiO3oulpcIQ/05GWoPNDCUnmNRfmYUhnWlbCjNvpfCSO1JQWezo99dsSBk+KwdA9iSZQtKCbiI+Np4SkOa5cJT7OyAlhGTbhWfets/WPfND/SW1Mwd+3+BeYpXncN6lhSPefrySlmugbYAj7DdvXg2XHb1UjT/TqEyV3zoM1uM6fGXonufqCjF2hrqdnFioQCQNxgMA05aLG68QxPO66eW6YzCLNYrV4WGNspA+C8ikc3g9dTp0e34Hee9UDbgsF28o6OQiVusLzIWbLbgqfKQovXo/pbTfMIOgO4OvdYNKBFWsBJ8boExLJofg1OSsBJCbWQEYvC4Wqgbmlqy7VrbJiSez0eSlmRAT3CFBrQALC5u7YSbTYHurVlekVhrSzz9vgw9p77EQDAhi1rsK3z/UH10+dRAk8DNU4NC0hYDAFtcKv1A8HvVecbbKj5aJGI572RPl+oTIE7S5kHukBJux4V7taW6dAyuQG9Q6jCnaUppIRPUhVyuONShy9mlYXaZvF5GWxLonungx3dEs+tlnh+jcxFFTRXWMlvaVC50/1jf4EyR6EHeuY0tbARiUfwwY4P0BspNKDdQ7inFpSy6i0RElu/eTU2bFkzhL0dInQGmCInIAYACz98AGbvuVfu/cA90I6aOAlU9NKQB3ryMlQeaNd8TJapCVsBO2wj8V4CfS/0o+eZHkTfjMHstWBHbEguETMZDLvYk6rpQLh/ZAxoq8+Ck3CKQ5Fr/E2SSzhxG5pPgx7UISWQfD+x2wYeT3N0ddVeYBeZ/OeBCJKyBg/Y9iSQdspEKq1e21X4iPkYhCVVbmdhP00Bc5dZNXzbsCQ27ZTweYqjpQaK35eZP6UmqwHtUsIKBXnJBc/7wlJffTFZy+kLQM2xTLuOvGKWz2mWXEIKwBKZSJSS50E2hVA6Ek7aQTrCobsIiGXxe5XTp2o+f0bZW5cSkXh994HVbyG5aWRSu5ykA5EW0AZiQHs0OBYgMh7oSG/eCVBkQIfyK1BkQBNllBrQm7q3VFUP5NzJhTpUy38u5LjD8l7owYqJ+TyZ4vQV0pT6ohLrtgr0RWVRuat4CjAsBp9XDrsH2u9VE6bxJiSWCOeNKb83mKlfWN6utagWdLEHutAjWQld03PteobBgA4GlLCGWz4y5xJRoSPIHaCCOAsAhGIGPng2jGdfF+jqB/aYphTYq+H3qdXgavnTY41CD/QRBx6Re71q7evoDReqUVYXEQPyIdxSStz3x//Ehdd+HBf88Dg88OiPx1Q0BtMY7LSBD95/CwAwZ94iNDQ2Y48iA3rTwA6acAC/rvKgK0yEyAM9ebEcIF1hQW8gCNs9H7Oa4JeTdMB0huCcICQYYu/E0PNsD5IbE9D9GvqjEh6tOF3L7wXCYTEi0TRGpwForMjLxzwa7FjlH0w2/zlrdPqn+5DaYcDoNCvuU1df4hy7+tVrq4KOBpAR1qo3/zlLixcybsPTlSpS4haWgBN1ERBDfqGEl9TFtsM2nKTKGa/Etl0SkQTQ2jSAPrqgMQboDNH45BQR42nubkCXlJYC1KIP0xkMS4m2ZUugVsObVeKuNV9kLPc7l44SK7N5eb+yStxgDMISSIU57JSAt4oBHfCre7rqgpDGAC4Q0CX6YvWJIhpdBpIfDGENvyoIQ0AKCa0gB1pKiR3dsqImDqCGbGZyMMYQKYi6cwvhBoDEOBASIwN6hCnNhdzavaVqOEc00ZebFNdrQB99yMnQmPpqn33p94NKxvd61WSk0sNmR4/Ehm3A6+9JvLFeorNPwnZkLtyKMQ0yPbwGtNeTCdnbvbF8xImH88aUzxeqWJ6jtcU9B3pK8zT4vPXNKLJ50JFYDyx7aC8UA0PQD2zskNjZV1zTOWkCptTgYwIy7j5Bk1xiSjwJo8fG9ICDOdNZ3Sv4DUFVC1yMk5X6wt/9ER89PPf69bWvo7u/tkhgaQg35w5uefAS/PovP81tf+jxm3Hbry4DF2NEgUZn2LrtPdiWuu8W7nMQAGDGrHnQMquGAzGgVQkrB8ynqXrzTvlzTdMqR0QQExv+QQyefmNIShsKS6I0UVHzalVrBVt9NrSABqYz+Fq9CM0LwdfmgzAl0OxFXwxlgoo+L4MR58MeqsnTHEaXCW9JySjNV1l9OrufMAU0n7oWul8HY0BiQ2K3jLyuTp4Lp40WfF8vrH4B/1r9r9z7eEp5DWvVfy6EMQbW4kOgJ4nebfkJTCUBsdx+OoMdLb4WVtgCeLGxUEh/TGLbLmBK48DKVlUiFGAIxwBnkj3DpFC5+G7CVMyTqbVcYJxxQxnQkbgqCRWsoLNSiEcH7Aq1oAvnLkxnubSG7D2eNsu93FklbsmUzkEqwsFtCU8Vz6xXZ1gwG/BXSwnQGSCAJr/Azl7gn2/JqhVPAMDcZWUWu4Y/msVN7C1lAtt7ZNVnL2cMSKqLHy2Y81T2QI/hOl4ZyIAeYUo90Nu6PkA1MbtwtD4F7kLapszEgUuOAgDs6tuOtRtfGXA/s4qBbuFwybQKq5reqvJUIwlgzfuqXm9PJtyK+TSgTpGQwaJpqpzSuPNAFxRQ9urBioIShTnQveHOXAmjaXUocGcpDPUejhrCrU3K9H/nAyWikjVoU+lMqYagDtHrbrjLsAlvzMLUgITfxRiqRjaMOzxOwrgLDehD9z0s5/FY9e6qohDuKRVUuKe25A3ozp5tuPa/voK//uMhAMVhpv/v+Qfxn3edV7ZYEk9G8NDjN+Oc/1iOH/783JFRuNQY3t+0Jvd20eIDAAAerxczZs4FoEK46/aaW0KlhXg1tY/LynzdeW7ExCPhwNOXHpJa0MLgYCXjMvOwiga0cAScmA29RFhHD+jwz/AjYWtIGeWeVI+fwU4KxIfZeWT1W3DiTlnNZc2rQaR5UUhsIW7eJv8MP4xOA8bOwVn9Qkhs/cDO5RX3Z8JUX3nrFZx00Wfx2Ys+g3+8/ncAQCQhoWnuC8zVYCEPfFIgsT4BK2NUOAkOYcuiGtCFaH5NhdtnnkdSShg7jariYdt3SXCuDN+hIBgEDEMimphcBrTICENqFTzQqtZy/h6VljKge6LKsK1n8SKbt2w56rtNpNTC/zubBF5fL3OREMzDIDK58MJR9ceTRnmaXVaJ25JK5Cwdc+BUiCYs+ntq3csaA7hEUAfmTAe2dALPrJJYu1m4RmvwFIcdtSEsUVbuazhQYm/Ff0M8qfRsqnn3hUeDlnQgpazigaYQbqIKpQb0zu5NVX9w/bGCGtAFeZC1+Pih+ZrQT784eDExt9W6vpha9Qv4lSpyewvDjFYVHtMfzYTTeBlkyhmRXJ6hyHkbSRKR/D3AtGDF8guFCyabd7wLkfEs1pP/nGXa1OETEssypZGhIQCs3was364iEeLpjNJkyAMZsyDTxSv7UkrInSlICUhIIDWw4r1BP4NhqRzs8UBhCPf0pulYPG8xAGDtB2uxbee23GctjW1l+wLFIdz/eP1/8MIbfwGgaij+x9d+gcu/dhd03ZP5/DF8/9YvIJWOo7u/A//1myvwxcs+igce/TG2d23EP15/DB9sf3vI/8Yy/Bo2fLAm93bv1n0g+01IW+TyoJOJKGLR/vqOZwolIubV1ADuMun36ijLeyQmCRIIJEyko3y366c6qfJwUuZR9WjdxjSe4uCGcM2vBZQhCKhF3+JjapAWH3YD2thlAkwZI4VoPu3/s/feYbJk5Xn4eyp1nhzu3Jw23A2wedmFJQcJhJAFC5awApJlhZ+NkSVZwrIQtoQC2JIcZAVkIQwSEgIhWAQiLSwsm8Pd3ZvjzL2TU+eurnTO749T4VR3VYeZnrnD3nmfZ56np7u6u7rCOef7vvd7XzgmA9WjA+goUS1JlSCpEspnKi1F1eKwsMqwMmch28eP1XKB2yE+cewJf5tPfPGToJRTWLvpfxahjidgzepYPc8DfTuGCeVBTsqwq46v+GyXuX2VnIueoC2boVTjbKheQVMl2A6QL0ZfY2s53t8LoCa3goqjcDMHIQq3Y1CYDm8fy6a7+66VIsOTpxgeP8Fw9CzD7DL/HO8e9ETLAFdEjPH1bmMA7SlxGzYBNSj0JQtMIutmIhCJgICLGGoqwYGdBAkVeOw48K1nGeZXwteGVbT4tWG2V9TvBWjdaRLiy1e4F7fewibMkgkk2wEMikI+JoDOCAG0vvUXd9sB9CajMYCeW7oASYq/6NZSgQaAe297M5KJDADgoSc/D9PqPlssEaCih/eNUoa5ZYZUMpxJkySCgSzBrlECVSG8SmRtfB+0Igcqnd8rqAoVaFlORQqIATwbpyp89XBp9oz/fCcWVlHbLq1uTAANAJkUwVAfcGEWOHaRYbUEJFUASRlEd8AqDQFy0QJdrIP0a4AigZW6z4KkErz/bCv1/cbBq0CnUilIkHD7kTsAAJRSnLhwAgCQywxBUaLVRTKpPiS08Eotmcjgt//93+A1d/8wXveyd+C33vvXSGp8NfHsye/gZz7wSvzYr96Oz371T1Fv8I7Ol5ax0SAJGeeWT/j/H7IPwH5yGc7jS5gY2ec/36mQGDMdEIcB7iIrSqTQE4r5XlJo30bvoJo2rFVz3UnVqH5MyZ3TaFQVqOpSnSMCaEoZFgt8vGqCTKAyiqXVjZsnHYPCmK1DyTWPLUQjrhd09MLbKttNQTcAaKMajHkDxnz3bUGTlymY7kB1K7s1g7PY5paC+emrj3wFS/kadKOZ9t4ptJQEm0hYPVbhAddSa+sdKSmB1gMlbitvgeo0VhSqbrr08jb2Sd1ClYD55fA1xhhD/ukCKuc3RyiqGzgGXfcczGwKZrHoAFoKey0zh4FZFEWdoFaPua9ikEpwB49KjRd6JoaBsUHOZPTaKCSF9zR7FlaWw1zv9vBneRVti/Ht9RULTOvc2qkVGEMoQTyYI9i3A5jPA994huHcdHC87ZINRvmbWgkC9gpO3QkxBWyHM1KVNslrExIUm7vzFArtKdzV7Qr0NhrRGEDXjSrK1cWYrbl4lIduAuhUIoNX3PYW/p16CU8ee7DLPeUZtsbMeL7MJ7tcu6yfyu0ksAlK3IVK++22EkorQTVSkeMr0IQQ3xeYsuA4jnRgYeVvu4Fe0I1IqARjg8DcMlfITmp88mOMgRXDK1o6XwNsBpKUQRIyWNGKVeuOQ3+WVy++F7zAvQp0LpsDcyjuuOH2pm36c9H0bYBfC6ISd192CB/55X/AHTe9xn/urptfhw//8meRc60gFlYuw3F44kJTkzi4+0Z/282YnBzHxoXp4wCAXWMHkDuwA2QkAVa2MNG/19+uYyXuOrcyIa7YDiIWC6rsCsVsC4ldlVAtB86ysa4AOq4fkygE1KaRi1S76nAtiwg54FKNLywb7asAAApBkjCsrrINS/pYKyaskg21r3mi8fytaUyi2ypGq1Z7lO5G1ep2KJQZpi45yKmMrxHAF6ErRYZZIYCu6lV8+btf5xaPa1S2JiCgfRoqswYqZyqwSnZLhWRJlcBs5gfQxpIJyCTW+UQ3+FgTlwBfKxIasJpnvsIzwIMkY9GAPqlvuSp0/okCKmfXF9hTiwerUQE0AO617CauqM3AHGC5woO2biq+A1mCiWGCoT6ChEb8IpCq8H52IKh4U4uCmhSW41pYRZ1nAugWD+r1sgMWw0DpGoQ0uUwoMsHeMQJNAZ45w3wRVWPJhOx+r7PBukMA4NTCTIFyjVtz9WV4+xSNSaaYTIIEBlZ3UCyIwqnbPdDb6ACO46Beb64Ezy3FC+kUSkIFOsYjNg733vp9/uMLl4939V4ASChcoEukwy0VGChr77lHFAnEpmAbnBHTVH7zdqJUuBXAKAv1QCtKfAUaiE6adFOBDntB916JuxGqTLBjGOhLBR7OJKWALRk+9ZFVLNA5HcSriCQkMMMBuhz80wlevfheoHF7FehMJgPmALffdEfTNgMtAmgAuP3GVwHg5/8Pf+2LOHKoOQi/4fCd+MNf+6J/3nOZAbz7B34Jf/2RZ/H2N/5csD+bEEBPzZ2BYfKU9OF9LwHAfVpJWsFEape/XccV6Lrj914RmYBZzdeLqnChmG0l7qsTkiaBLddRK659IRnXj0kUAmYx3+JKhF22EOelU6oCts3bnZpACDSJoVahG9Z6sDRrYmGFRVaSPTgRFG5qUjhVJ7ZnmMgEdrW71pvpJQa96CAlUZ9Jkk4BSwVgZiGc4P3iQ//Ytp+0HSSZoK4pqF2otRQQ80F4UoCaFMZ8vaV9lW54b+lN/7OHhMqFEEVBJnPZhFN1YK6aMJe2Ts8atSjsgony8TKM5bXvV6RtnAjBa5lZFDWdIl8lHalvd4Kkxu9Ty/V+p25FnBoUFiWRFWiAK3FXTC5yVi9TqF1YO7UEY5EtSgAwOsDb1546xVAu8GtCTstcPTyi5aKXYIzBMZzQWFKuAbbDq/uWw/vCo2BYXOQT9cYKdHQPdHlbhXsbIhqrzx5m5uMD6LwQQA8JolKdYNfYQf/x7OJkV+8FAiVuL5tfNxkW8p33nDAC3iSygfhes7JydAe1SnAdqGq6qS9ORHQA3bmI2OgmVqA9SIQgkxJ+U0oGq1rcgggAXajzYDntzkiaBGIysC4Hf0J4b9Dlxa2fPPEq0Nl0FsxhuPbAtchlwr4nQ20SZP/2R38P//1XP4+//J1HsW/ntbHb7d91Pf7it76L3/sPf4+//vCzeM8Pvx+DfaPhyWkTAuhzU8/7j6/d/9LghbSCiewe/9/Zyx0qcVftIPMtEyBCMEVRtivQVzOY2zJSXVj7hBDXj+mrAUewqsxVC3LE4tmyeaUoluarEChgMHS2YX3Q8+dNzBSleLsoEl25cuo8kIzr65ZUCU4LBe9G1A2Gs9NAn+KAIQiWUgmeBJ9ZDM9Pjzz7NQDroxdpKlAhCqySzSn2auslL1EkWAXu3W1XHCgt7KvKNdbSgnStkGReZfXE8Bhj0Kd1P/jXZ7aOyAOtUzgWg1W0UHqhFNsK0PZzYmzjfLBAEZs5DKUyg26TjtS3O0HS8+DWA99prwLt1WaiEiWaClRNAtuk0E0GZR0+4CFIBKzF2nnXKDC3Ajxz1IJVdiCnZS6CV+wuodUtmM3txIigIr5U4OObpgCWBdQj5l7H4WJ7skLAqjYKbmuqJMmhdUlGsLGqbvdAb0OEGECnhH7G6YX4BeRqURQR6y6AnhgN+gznlqa6ei/Q7Ju3WuYUjUgqWiRI10FRt9BUvlj+XhESo3WKWi1YKSW01tmIoYhz3g2Fe2hg3F+oLG9gD3QrkITMFZTLFljdAZutgWQVf78IIVxITG89+DPW7I85kAUWCwj5fW41WJYFw+Dlimw6CwCQZRm3N9C4B2MUuD0oioqXXvdypFxtAw82bc5TZdN9uOOm1yCdCoJ0UaBjMyjcZyaf8x9fs+8W/zFRJUz0CQF0BxVoRrmFFbxqmKtU2kj7l11l/u0K9FUKiYBIQHWNCtEAr3BF9WN641VjAO0YFE7FaeqvpZTh3AzDwipvN4nbX4nxqvZGBNBO3cHqrIkKlUN2UaFdUKVIKyunRl0Lq5gKtCbBrkaLqkVhZpk7J+TkgEkC8IQrpRaW8guh7U1Lx/Onv9bRZ8choQK6RSCPJZAYa98sKyclWHkL5qoFZscH3JTxCnFc+9W6wACVBJRiu2zDWDah9KtQBzToM3XYjZoiVwiOwZ0RUntS0C/rqJyurKkfmis7x7/OraUCYa+VPIOiktjqP3MYZ7V1CEUmsKkbQAuiZdTkFeg4aArvVKyUGWxGekbnJzIBWghyyRLB7lHg4jkL0ws82SepnBGykcK9Xm+4V4HWDZ7oSSf5Pjk0OnltOYBDATkhgZUtFIucwt2fHYYkBffYtgr3NmIhBtBH9h3xH88stq9Aq4qGTKovdrsopFM5v4d2bvFiV+8Fgoxb3eTBy/wKg6p03nNCVIlXHrtElL9rHBSZ37R691omVwSO7qCmBxlkTW3NQRqMYB2MDHRegVYVza9iLxfWTuE+ce5JPPjYZ9duf6RIYHkDbLnOfaGzavPrxdZZEDang54N98Wkk7x6sdEqtuuBeN9n0hk/0377DWEadzcaBwBQs4CPP5vEv/jrAfzI3/Vjvtx6OM+mNpcedXZKDKBfEnotne3zKeuzMx1UoAULKwCAWw2MsrJibLsCfTVDyigoXzbWbOnSsh+TuB7RApyqDWo4oQo0Y9zWb3IOGOmPb3niQTmBRhhWSr1f+JaXLVTzDuqShHw5+vMljQfQjYEPrcf3dQOApBJepeug6ug4DGenGVIJQK7aIA2BqWUt+t8/OhiMgw8/9fm2n90KHovOhNSSju1BSkhw6hT6tN5ScMwweaUtoTU+r+ObT3wO0wsd6jrEIKlwth+lDOaSCVpzIKckKDkZdtmBsbA1FjzUcMAcBjkhIzGWQPlkGfXZ7veN6k7sdQa4+gPu/VwqUhSLDLlM9LbMojA/fAzmB58DneqcwaBIQLHCQqJl1KTQbUCOmVpVFTAoQXnVhi3J62458CGRtu2PCY1giFm4vEqwmOf3MTU3VkjMsxPzNBBKNd7m6SnlM0RbWTkOp3lLSQlUt1EorQAIC4gBgKYmfLHU7R7obYQgLqSv3XcdFJkHETMtKtBeAD3QNxrfH9ICO0f3AwBWiguoG91HGYTwfpxyjWeP+7qxDFAloGo3VQ3j4PsvLnZPUfreCaAp6mbw+xqVlRvRGFTlMoNIJrrzbfCExFYLC76oVDdYWp3F+37vB/A7f/6z+NzX/7zr9wMASclgqybo5RpISm6aLElCBiu1FhKjC3UegAvbeF7gW9m6SLSwyqayfqb9jhvDAfRAhwG0TYEvnNLw45/pxyeOpqDbBEVDwpfPtvZ72UyBDoc6OH/pGABgx8g+X9jMA8komBjiDJnlxRkY9TYn0HB4ql8VKtA2jQygCfiieRtXJ5ScgnrBhrmytixKy35MBjgNlS1uLxT2F55ZAs7NcL/6hNZ63maEISVRLBd7rx6fn7dhGMBAv4TFPFfMbQRRJdA6bUoM2DW7ZVVQUiUws7MAen6V/w33uUwSNfzBlWrAjnrrq9/qj4WPP/911PQy1gpVJnCcztcHXImbcs/sNv3PpsUr3CL+5ot/hA/96c/gF3/3rb7+Q/cgSKkMNZ07jOgzdUhJGYRwQTM5JaF2Sd8Ui9B2oPWAeq1kFRCJoPRCqeveeEePtrDyQGTiWzQtrTIYJpCM8d5mkxVgxQAsCvp8vuN9SCWAfMW9RxhADcr7rS0SLSAGXkxijEDPpWCm1d4JysmEl21bgDkU6boJOSXjzGWGis1p3xvpBc31IeCfq2KFMwe8oppMEBK/82A5AKWc4aFXyrBsfkNGse6ybqFwuwK9jRDEALq/vx87XIr17OLFyMqeQx2UyjxTE0Xl7QQ7x/b7j9dK4y7XgJUS4xNGm8VA+M2EL0Y67YN2+7CaLI8iwBwG52QBrGqDEKCqX/nJpBM4VRu6GdALk+0C6Ibz3o2AWON7KKOhloBOcf7yMd+D+oFvfmxtlhVpmVO0CwbQF9EQ2EZIjNVssILBt2loC5Alru66VeEJiAFAJiVWoBsp3K0DaMaA70yq+Nef68P/fDSDQj08fD92ubWfSlYIYje6v2h67hzqJk/YhfqfPSRlTAwENO652dYMGWZQEFtQRpYJQBEptCJJ3zvjwTZ6D0UjMC2gOre2ACaqx9kDUaQmoR7HVeD2sJhnOH2JIaUB6ZhFfggMSEoMtXrvE4HFOe5Nm01xm54oxwIpwW14aMPC2yrYLXuGiUpALQanA+/ZC7MMBIDm8KAEDZ+7IrCjdo7uwcte+gN8H2wDjx7957af3w6daqRIigRGuRK3nI4vJ+oGH48b2XgvnHkEAHdPWYvuDN8JQCMMugkUFlz6tqCgrg6qMBYNmKtXnmbjNHgCJ8YTMJcMlI+XuwrwnXqzbZwIj8LNGMPsAoWixIu3idRt1oUwaTLBz2tVByABTp3CthgMuzU1m0iAnZTByPo9oH3I0S1KIVRsMN1B/6iMig5MLnL2zEZ6QTOLgVFO4aaUYbkApIS8vapEj2G2S+GWNIJSMVDgbqxAA0DGTfRXtkXEtiEiROXMZLBjhIt8GaYeqZBcLC/79kXd0js9TLgVaACYXeqexq0pnCI7u7wGP0ZV4hWiDiklHt2bFa32g69ugxVMMN1GQkVsf9dWg1W0odvBCJNKtAugw+d9ZKhz+nbwnvUJiRXdJA4ATC+cx+mLz3b9GUSW+BpTk0Gi+FCaBGLFC4mxkgVSd0BMClYLJ1jSSWCpiC3rBy1WoNNa2l8oDPUPYf+uQOhvoEUPNGPAH3w3jf/yzSymS8HC7pX7Tewf4Mfs/KqChUr8BJ5KZCARfuw3ksK9UpjHp//5f/v/X7OvOYAmEvEr0AAwe7kN5dF0uCihB5nwGTmiAq26Y9Y2rk6oMmAnFJSnjDWJGkX5PHuQVALaMEaZBcunJOfLDCeneFWmL9PhYlom0JiDutnbVhTmMCxfMqCkJd7q5ACFSvNvk1SpaeHNGINdiraw8uCxiOIssDyYFsNi3u0DNyhgsUDLwIU4L2UzO3H7TW/z///Wk+ujcctydxoZRCJuL338+avWo3t2F1dn/MdLwuOuQAj3uweQn3Hp20IwLydkMJuhPnflBzm7HE6yEIkgsSOJyrkqalOdZ4Oo0WwbJ4LIXNirWKRYWaGt16LiPd9GV0WEKhPYtusHzTit3DS5z7PagpqtyRuguSHFtyh5YFUbsCkkVUZfGijWCKwOE1prhWihVq7xYyVqIqkqT0I0Mmls9zRIREK+Fqwno6w7PaacblTXxJjcTGwH0JsIsRKV0NJ+AA1E07jzRcHCao0B9M6xA/7juTVkRDVX5bpU68D7uQFEkUAs2rGYA3OFTJhut7U0YlWbV6pNioTK92+rBlAemMNgV2zUrWBiSadaH9TGHui1VKCHB3b4j1cK812/v1BeCv3/tUc/3fVnAIA0ngIZjhZyIYT7RcdNeGzVAJMIGNyJQ0BK41njrRo0ifd9WsuEMu23Xn8PAD6x7BjZ2/ReD3/zfBJfPhscu5eMW/hfP1DCB15TxasPBOWVx6fjq9CSJPnZ3Y0QEZueP4c/+KtfxL/6j7fhK9/9lP/8kYO3RW6/c0cwNrUTEuOJleC4EcIFZKL0ElQFqGzRa2EbGw9FAayEAj1vwVrpXl3S0e3I4MlxGKoWMDdr4/hFimfPUDxz2sHpYyamVoEzlylOTnJ66XBf55UoIhEQd9HfTQDdbr6rrlqorDhI5PjqP52E31fb+P1gLJRsoHUKp85aBtDitq1QNwO6MzMcEIc2JVFFgctEYgLX7n8Zhl3f+6eOPbguOqemAOVqtD9t1HPJXUmkdrWuFhSr3OZThEOdUCJgcY0BNJEA2BQJlWHlfB2SJjW1Eyg5BfpUbc2q172CXXZCiswAIKdkSAkZ1XPVjqvQUbZxIri1FLCwxKDrLVTtAd7u431ulyK2kgQUq7zCaldsWAaFTaMtrDx4a+Seupm1SBB7YGXTt85LJngvsm5gQ3ugxeRiqcap2aI9nya7wsMNyzhbmL4LlSCAHoioQIdazfTmVjPGtk6L1nYAvYkIBdCJNHaMHPL/j1LiFi2sosSkOoFI4V6TlZXC6U8EXGWvWzCJAC0ocf52jIGt8r4IYlIeRLfavmIBVRuwKB/AzK2vxO3oDqhBodvB6r5tBbohcbKWALo/O+Q/Llc77wnyUBAq0ADwrcc/B9vuPX2MqBJYofkkMpOCrRggaQVEk8Hy4W1SLvVqq/ZBi/d9SkqFeiX/5Vv+I15xxzvx3h/7cCjRIeKbF1R87JngOvmVV1Tx37+/giOjfHFw957gXDx2qbM+6F7aWM0sXMAH//gn8Z5fvwdf+vYnYNn8/KiKhh9+w8/iJde9PPJ9O4Xqe9sAumo1CQ8xFp2hV2QuZPK94g2/jd5ClggcEFgWYCx2L47h1IJ+TMdhmJpneO4sxSPHGJ45T/D8aYrHn6N47jzw/AmKySkbU6sSLsxyX/qRgS6/UJHA6g40BVgudnbNWkULq4/mW9LN8ws26lWKZJbfN5kUUKnFs7WokLR26g6YGe8B7YFIhPdKt4Bu8AWvpgCoO4iK+8XAM5PaiaQm4747fhAAYNkmHnl27TTuhMYX9KI/LWUMsysMT59mvJrc8JtaVZ8tm0GvN/c/N2qMLK3V9YJw+m6GOajMGkCmOXpT+1VYRRvmGq7vXoFanPYfdY2ofQqsohWp7h75WRG2cSKITKDXHJy/RJGQaEs9oFDBpst+4FSCa/0wwoN60wQcQqC08FDXFF6JbVWl7hoyARzEekEzysBWLe5wAj7mUQboTrSifq/ABLux1SJr+s2eaF+jkJjtwH9fyQjWoFEU7lZuIQ4F3velHH74UwN4ZnYjJPC7w3YAvYkorwZUzoSaxtiwUIGO8IIOBdBr7YEOUbgnu36/RAgySWAw137bOHTUh1JzfGouY4wHx3GfxxgPomwKZvAKtGFtfSExp85VHUURsXSydQU6m+6HqgRB0XAXHtAe+oQAulRZQwBdWg79X6ys4Mlj3+j6c9oiIXOrqwY9AFYygaoFpBUgKYNVrJBHoiwT2M7WDaBDFG417au7WjaDqu7EL73nj/EDr/7JyPeeWJTx4YcDudF/fXsNb7rGFF1gcHjIwWiaH7Nn5xXoLXIbOa+/qFbsGWPjv/zxe/Dw01/0Py+dyuFd3/9efPLDz+AXfuRDIZsKETt3igF0vJAio+54ENWPGVOBtpxtJe6rHU5CgT5TD9EOO3pfLejHrOjA6csMiwX+Wq6PYKyP4cAow/4dBPv6HYykGcbGZewYIhjpX0MfpEwAiyKtMqyUOhMSs4o2jHkD5nJ81jg/Z4ECUNxqr+qOk8UIGndjIOzUKGiD32sUiCbBLrWe3+uma2EjEz7HRwRKYgsbJTuQTgKvvuuH/Oe+9eTnWn5HKyQUHjx7fdB1k+HUFMPz57jFWLftX7rBxxatIVe5uDod+n8pv0YKt8TZaqm6CaPioC41R2ZEJiAyQe3ylZv0PA/oqD55T4zNync2CDM7RvXehUGBs1MM88sMQ0nqV15jN/Y+t01ypxFJjZ/fukNAHQbTYCHLtSioKk+c9UyBG/BtGhE3FtRssJoFpARqvwyULAKrtHETn6PzsdGwGPKV5rZOLqrWHECbNvMPY0Ff9Z8fiKJwC24hjcyTU0syji8qqNsEXz7T3pZuo7EdQG8ixAA6qWUwKgTQ0/PNFZjVYuCLuFYK90DfKJKub+xarKwAYDBHkGiYSB3aWWaPqBKvFrcBq1ggXuawnaWRQTmNN8GFqTy/6q1egaZ1bvkgioilk60r0ISQkDrzWirQogJyqbIav2EMig0VaAD42iN/3/XntIUWLSTGCiYY+IIBCYlPkA0JFkmKXhhuBYQo3HIaskuLLNf4ZJ2OmQeml2T8xldzsBx+733fNQbedXNzloiQoAptOQTPzMbz2zwKN6UO9HrnFh9xcBwbkzMnAfDA+Wfu/wD+5iPP4Wfu/0BsRd3DUP84EiqfgVtWoE3HFR5qWMgQ4ismi1Bl3nO1VWhe27gCIICVVGCVulPjZg4DNRw/KKgZvHoyOkCQSxNoCYlXhtzrjukOQFm0rkOnkHm/Y0qlKFaAU5cYrDbsCbtiwVg2ocf0wTLGsDJZh5QM71dSc2ncDckzLxB2HAbTYnB018KqTfDQifesOC+zcjOTBAgq0AO5EewaSyCVILjh0J3+fPf08W91pNvwua9/FB/6058JVX8l159WN4HlAsOzZ7m92GCWjxX5Lu3DdJNfE43WZAvLl8O/aT0VaJtBXjFgSxJqZvQ5UAdU1OcNWMUrkyn0PKCjkiyE8PnaaJHgEUEF27hSpYT3/f778Lt/8TtgjF+Pp6aB1TzDniEKWfAhjsQ6KtAeHVu3JV6BNmjbKEkiBDuHgb4YW621gEgEhLFYBxtWtXnbh1D9T2lAqU5gVhzQLqxgu4GjUxCZoFzla5dUzNqlbjX/7yUYikawBo2sQLdwC5ksBAmDmdKVD1+v/B5cRSjngwWrqqUx1L8TmruAjOqBLoQq0GsLoAkhfhV6fuVyT5ryH3zss3jrz+/D7330F9pvrEo8W9Ymq85Kli8SRJJtLI2qvEeaZBQw3eH9s/geqEC7/Th6PWh0SybbK7MNrjOA7lsvhdu9DiUi+RnDR4/+c+9tBjTJpe8LPUwOBVusg7hVW6JIgEObeptSCWCp0Nvd6RWaRMTkoLrl0OjWiIpJ8K//cMxX2r5lh4V/f08tNhl+z55gofJoCzXudv1F3WK5MO8LHd525JV41/e/F9l0Z371hBBMjHAhsfnZSThOzGInRngIMgEi+i9VxfV+3a5AX7VQJEC3CUAZjKXOJwZqUlDBpqWqs/A9JxMQm/qJG1ZvbfXUEdx+xyThOiOPHQe+9SzDYj5+zjSXLUgKQX263qQKDgBGyUZxyUEyFy6LZVI8cdfI1pE0CUbRwmPHKL74CMPTz1lYyPOkZKuKeCfes7U6P4bMovx+bQigHer42hwjgxNIuU4fkiThlXdyGrfj2Hj4mX+K/Q6AB7B//Dfvxzef+Bw++pn/EnqNEGBhleHoOYZKDdgxzB1F0klO2Y2y94pD3Dqjsed5zSJiEvgcVzCAjIJKjACaklXgVK+cJzQ1KO9djlFql7MKjPnOGCAExE/WfOrLn8Inv/gJ/PeP/3d868lv4+QUw9wKwXA/IDNw9lmLyIWJbQ11pys1cAICIgFlgytO62Zr+raHpNZDBW4XDIincJctMCmc4EomAJ1JqFZoz5S4G1lqnlp6scqfj/rNstRsZWWYvMgBAMWKWIFujmsywvqhUiuEXpsSAujpkhzZDrKZ2A6gNxGllWDBqilpSJLki3zNLU2FFpCMMTx1/Fv+/2NDu9f8vV4ftOPYaxa2EPfr45//fZhWHV9/9NPtgyhNamtlxfs5DJCkEryn7gDVeEsjMHdBbVEwh4Ig2n9uK8GucnEa3eCrF01NdzQ479lxGACQ1NIYG+n+OujLDPqP10ThdkUf+rJDeM3dPwyA24t8+6kvdP1ZreAlQkJCYmWbsw0yirghWKW5D7qsA3Vj610DYgU6mwrS1MvFaDEUxoAPPZjBmRnOEdzd5+ADr6227LG6dcJGUuG//fFpFXFrBrG/qBcJkMWVgLY4OrSr6/dPjPPxz7JMLC9Gj03MjBYeIhIBi/DK9LzBtyncVy9UBajpgJxRUJ/u3DOXWgxM6MfMV8JiUf4Y5VWIi1ZL9eCOIPQ7DvUR7B0HZpaBbzzF8Nw5CqPBn5laFHbJgjaagF2xIxMEqwsOjIqDRF940Eio3OKr0c6KKMClWYpT5ygoA2YuWjg9T/D4SYbHTjCcuUybxMcA1wvacloG0IWK2y9sOPx+bQi4CqUlP7E/OhROEL/6zn/hP/7O0w/EfgcAXJw+4T9+7Lmv+loMAK+8zyzxeWJ0IAh2POuibsTbSlUWSdddWGmoQOdn19YmQwiPnuoOElkZ+VK8YJySkVGbujKe0O3U15WsDLviwCp0MBALv+/85XP+42888Ryml4CxITcAs91kaksKt7BfrOH/DpDSgEKNgNoUdQO983buFm4vfCM8vSCihS9CVSawIaFa6p0S9xMnGR58muLMZYblPOXMFJlgqRBffVZd0T5xf02TJzWBMKOxrYhYwxpFrEDXLIJCvbdJi26xHUBvEhyDolwIKlGykgYIsHuc07gt28TsbED5ee7Uw/6EcOTQHZgY3Ye1YmKdQmIiLs2dDVXL2wZkKuEDXisqTc3mFlauIALRZK7eHafIXHTvRkXiKrwm9wXspQXIRsAu2pA0CTWd72hCS3WUtfyJH/o1vOVVP45f+5k/QSrRPU+oLxsE0N1WoBljfg/0QN8IXn/P/f5rX39kbWrcrUBUCUygpLGiCVg0RPsjSRls1QotKraykFgogM5xMYG6yVCqRk9C51ZkPDHNg+dcguJDb6igL9F6gaQpwK0T/LjldQlnlqOj7dDk1AMrK7HK0rj47QQhkcM4GrdBEfnrlegKtIftCvTVC0V2EyhJCXbV6VhYh1nU78c0LYaqzkWoQiDET9z6rUTrQYPirqoQ7N/Bq6NPngS++SzDUiG4A5yqA0enkNMSF1eabqZxFxZtOBagRVQHNZV7VYvj52JFwtQ0xWiaYjgLjCUcjI/JGMzy9qjJOa662wiiElAzfsHOGEO5xr8TBgWJ8IBeWg36n0caGFbXH7zNZ1Cdv3Qs8js8zAgtajW9jOdOfdf/fzBHsHuUINPgy+31hXe6dqCU/55GATEgnEwEuD1paQ2ML0iEtzIpEpIJAt1s7in1oPQrsApmZ0Fqj+G0oUdLKqdBW4UO7j3htMwvB04hL5w7idEBgS5vUoAyfs/EoTGZ04UXNMCTLTWLoFJhMJ0ei4N1hRgbq7rDx51U845JKkGlStsmNzqBbjBcWgCm5oHvPM/wlUconjlJcXGBr7PiAmhN4WOv14bieUB7+e9Cma8nJSIhJxR3PIgth00BdD78m680jXs7gN4k2GU75ANNpDRUGdg1HvRBT05O+o8/+7U/8x//8Ov/zbq+WxQSm1uDF7SIR579cuj/qt66ikVkCcShYVpNA/x+DsEyg5HAFzq0rUPBCiZXH5R5rxAshoTKM91bFdSmsCs2pIQkVKBb9z972Dm2H7/4E3+AV9z+ljV9t6YmkdS4WFm3E3rdqMK0+AKtPzeMa/ffgr0T1wAAnj/zKOaXL61pn2KRkP2eecYY6FLdV5r0kZQ5dVKYGDWFwLS3ZgAtUrhz/ZyeVKnF9xBNC5PCO2+uY1dfZ9nke/YG90scjTuXHvAf96ICLQrlrIUls3M0sLKaESoPIljdjq44SDzwiGv12K5AX73wdDFsRQI1KOxSh2rAJgVzeyxrRmC/FAbjlVSdK1U3tRZ0iThLtv4swYEJYG4FeOoU89k1dtUGNSkkTYI6oMJYMJqEg1YvG5C06CAjk+IVaM/2b7XEcGYO0MCQVWigOaBJUBWCgSwPMksRYlvtvKAN0xXcUrg6MkOzwrVoYdXYokQIwZ4dfL5ZKcy31G1obIP77rNfit1WhKZ2rn7uBbNRAfRCQwANhH9bx5AAlG2QrIKExr+zGmPLJydkUIPBXN38wc6uOJH97CKkhNTSr9pr7ZOEOV4MoBeWTkPzxMUYeDLVaV2BbrRN7UjEVkBCAwxGUCgx2Da3xbsyIJHrZla1QepOZOIuqfF1sN2lfVcUVop8PbV3B3BoJ8FQhqKuM1xcIrBsNOkieVAaWqgchxfSZXd3vQC6LzsUKTCaCYmIBazdkkGwqoe3nyldsewGgO0AetNglyzUdCGAJmnIUjiAvniRB7ezixfx2HNfAcB7gu67/a3r+m7RC3q9FejGSamTRTgDWlagWZH3P4v9HESVwVYj0q5Vhw+IKZlXoBzqW1npBtqKr1wpUJ3CMRmIJqFWDyrQmwUvq9etiFghRLcZASEEr7/nnf5zX3+0x2JiCSmYAGs2V+DONMxgmgRSd5oUNgmAcky/2JWEWIHu68sCAMp6fA/RYjUYlidynVOx7t4t2FnFBNCZFvSotWBxRQyg10DhFivQF2IC6LIdvVBzxZfirKwa7Wm2cfVAlXnlw7T4/WV2WKHzfE4J4QG0Q9HcZiNLgE7B6g6I2VxRXQsYY74wWeirZIK9Y8DsMhcXAwCnEgh8yRkZTtWGsRjMlVbdweq0CS0XvbhMalzYq1jlPd4npxgshyCXcS0n6w5njQkLZE0Flgoslkoc13Opm66FleomwiLeL1pYNVaggaCFCYi2+/Qwsxh+7dGj/wxK24+f6QRPDtTN9uNF3eCWWGpUBXq1OYBeUx90UgYZTYKkFK5qTLmYXRykhIT67NqN79dq92eX7dgkjQclq8BctSL79AH47QfaYHBAF1YC8dzp+bPBOSQEVLd5NNahCjeAcEtYByAgACEol5krFtfV23sHmUS2PrKKBcYQabWWSvCEVXFl/QH0cpEBLNBoSRKgLwnsGJEwMRx//BtFfS2HB9FyA4U7SkAMQEhDRbSxmso3n4jtCvRVAjNvQRfsi2QpAyWmAv2PX/8Lf6L6wdf+NBSllWt8e4j077mlqTV/znJ+DqcuPB16rlxtvwgnmgw6q0dn0xr7nz0kZbCqHbIrAlw/WJuBqBLP3DOuxJvw1BO3qJCYU3fADApJC3qgE1prC6tewqPBlauFrvqyRAsrT0DsdS97h//c1x/5dM/skAAAKhcSA7hQBuphZgLg9r4CTUrcSW1rComJFehsfw6MMSwXoqsYAKdTehjLdh5AD6cZrhvhx+T8qoKFSvMklw0JdPQggBYWiGPDa6hAiwH0VHQADaO5bxJAE/VVhCID1S3IRtjG5kByfVFNG5BTMoxFo6NxSvRVruosUiCMyIRrdLiexq08g7tCjJCVLBOMDAAnJrkQlpk3/YQSIQRSKtwHu7pgo15ykOyLXvkTECgKp3GfnOKtJKMDAMB4n7JJQRqUxTNJTuHWI3Larbyg6wa3kNIU8KpqlAK3QOEeHWq2ady945D/eHo+ZoxAcwV6OT+HM1NHY7f3kEzw39UJjVs3ALDmxGelVkJNLzdtv7gGKytCCIiQNFbk1g4TSk6BuWLCrnQXKNbqvMf+a08yfq13AWpTUN2JFRDzIKdlODUbpmtn1ahRUp/hgb/3OZTSUABdN2sBy821e2tL4W5cM3ZZgQb43GwYDFQikHp1f3cJIhMwNxnAGAMrW6DTVbD5CFaeC00FLEZQWl6fWLDjMEwvAVlxiepQt5TcfDwYY76OgXdvGO4u2F4ALQO6UYXhxkHxAXSQ5C8LImKTheZrbbsCfRWAOQzmogHdClZ0ipKGLAO7x4PJ4eLFi6jqZfzzw38NgFNv3/KqH1/3948N7YbkegmuxQvag1cVF9FodB6JQQ2sYIDORcxQnp9dsuFGiLErYmXbV+sGONUbFuV9F/bWDaBpnYJRBpvZvljcZlagvT5oyzZRNzo3viyWhQC6jwfQ4yN78JLr7gUATC+cx+mLz/ZsPwkhYO4AzFYMQJGirVQirM5SCU5f2mosBLECncvl+GJNB1IxAuxiBXos293kf8+eoNL2+HRzhN5rCrcXQMuysiav+vHhPZAI/72z0+ebaKyAq6oaG0Aj1gs6jva4jasHpsUX8XbJjq2CiWAWhddwXyjHJLlkwgPNqt3WI7ZjkGCxHIX+DKdRP3eWorZkQRbsqdQBFdaK4XvuFuZt2AZFIqJH0kM2CSwXgcU8MDboVt1kCazqRCoXJzRAr4fFgfxd1yTY5ehjWzf54STg1NOo+3g5H0/hBsJrpOmFaJ0E0zKaepAB4JFn/zlyexGSK9pVqrafN6p1FnnKFwUBMdG+b81WVgKSGmcLRIm4AV6Q6nTsuWzZDGcvM3z1SYYnTwLz+e71Y2idgrqMulYgMgEYgZU3UakxfPNZhql5/juskgV9JjxIL+WXYTc4xUzNngo+y/NGbknhXl8PNMCTKnUbkZ7lmwa3Ak0vVeE8vQL7iSU4z+eBigUMNAozcBAQMFVCacleV2GjUOFtHjkhgGYWA2GsKWFo2Sb+3W+/Ce943xGcmTzqP++3nHCnP0iENAiINXtAA/EiYqKAmIftCvRVALtiw646fgAtSRIkkoAscS9UTxhqcnIS//ydv0HN7fN5/T33o1+wIForFEXF+PAeANwLeq031nef+XLTc+UGmfkoEImApBWwqWqTMBirNPc/A4JdkWhpxBhY3gBp2JaZDmSZgNKt6wUdWFgFSZTNpXALStxdiEflhQBazBi+QaBxP/Ctv+qIKtcpPAVcWjBDmfjQNhFWZ1tVSMwLoCUiIZVIoVyL76MDggBalRmG093dq3cLAfRjl5on2XSqH15ZrdIBe6QdPIri8MAOyFL32WBV0Xz17tmFSThni809zRHCQwBaVqBVhQdPWy2Zso1NBAFMi0FO8QCjkz5ou8ZtWgyLoVoHklH3qMKdJVjBbBtAdLyrCnFX7PHYOQJMX3IwM21DFoJjOSmDmhT1RZ49Xp01W/vkgifvCICRgYCiSRQCVrN4a0xD4CARAkkCVstRStwETjV6we7Px6argxJxvMQ2kOHB5gp0iMI9Hx1Azy1N+XZ6tx65z0+6PtJhH3RSA5YLzf7YjShW2wuI3Xj4bv/xmq2sBCQ0XsmvxSQEiUQAiaDexs6KUobpRYYHn2b4zvMMhgkc3MlZ9a0o4h4chyHvnn9qUN6HH9MHK0JOS6jPGVhYZbi0CNdKjEGfrTf16p6anG96/+TMafeDeABNKGsduTT2QMewI1ohqQG1gRToQIxS1mZAkcDyJpzjea72n1Uh7UyDjCRb3t9aSsLqqgMnJiG3fE7H8rnWi6TVEr93kyJF36Z+cUPEsbOP4dTFZ1Cu5vGFBz/Gd10OEti2cDoK5WZGYyMyKZHCHfRAixTuvgT/bTNX2MpqO4DeBNhlG9SgqNZ5+jaVSMOiBKri+jS7NO7p6Wl87qsf9d/3w2/42Z7tg0eVrNUroSxQp6jqZTx78ttNzzcanceiTwWrWqCXw6lO7v9MoquMhICVhYjY63sVq9UyCWUYt2oF2qpwC6uaEfz+KAq3/bU5TP38ZdD53kaBohJ3N33Q4Yxh4Nl33x0/6HuYf+Xhv8F7fv1leOCbH0Pd6DKVHQVPjd3rdY9CUm6yOkuovP+nssXU2D0KdyaZASHEr3TEKbAvuBTuHUN2KNHutTvE+qMDODzkYDTNX392XoFu8R6k706p+OCDGfzyd18P3PIoQFRU2ggAtkPdqPnXUi9s9qr1EkonZkDPV0K+8YQicsEQJ74EbHtBb4P3LlbqwbXTSQDtuAG07gqIRdnMeQt5VneaEr9rhkcLbwFFJhhUbVyeoSjb4ftBzijQp3TYdQcrUya0TOtkFgHBcD8JBJoAnqQyKFjJiqRapxO8at3omSypEhwj2gu6XHMtnwwnNhG2nOcU7lxmINJlYmJsv78+uBxD4Z4RKtM3XXM3jhy8AwAwOXOqidodhXSCJ15rLaZd02Ko1aOvCVFA7KZr7vIfi/3da4Wm8rGs2mJto+Zcz+UWYq2T81zRfbEA7BkDxocCenInFqCLeeDJkwy6wVXXmRPvAS1CySqwihYuX7SQchMVz51yUD1fg5INEuSUMZy8MNf0fq8CDYnwUmbcehGulkDjMWhzX0VBItz/OX0F42eSUUDGkpAm0iDDiVjadiNSaQl6haGSb/7dlkXxzNfLeP5xvWUhbXaFNSeKbBatYSC0YJydeg4An38rOj8fYgAtrifjKNyKovrjQFQFejBFcd2IW5CyCfL6lWMJbAfQmwDLteXxxKNSyXSoj2bXGA+gHcfxe5Rvu+FV2L/r+p7tw4SgxL0WGveTL3wDtsN/x5FDd/jPd2qFQwgB6dN4D4dLvWWUga0YII30be89SRksH9gVRakPEoX4VW1JAipd9vJsFuwiV+D2LKwAIJkIV6BZ0YT9pVnUntRh//P6J14RuTV6QRdKS/5j0bMvm+7Du77/3/r/zyxcwP/4xK/gR3/lFnz8H38PeeF9XcOtUjDE9xcSVQKxWSi77Hm0btUKdCaVAWUMK8V4C4iqCVRM/vt3DocnQOdLMzB/5wVYf3ku1veTkKAKbTkEv/WtLP7l3/XjNx/M4uEpDTaTgNydQN8rUF6njdV6Law8jLnsGABYZstg50ugF8v+b2TRJlb8NcYie0dVGbDtbSXuqxmKzGnHACBpkl+hbQWqOyCKhJrBKydNAmKAK17pLtS1HvXgyRK3xmrj59svU1gWw4U5XhH0oA6oMPMWlk7r0As2UjECYi3hVtYR0zKRSvIAs5HuSzSuQxIVQJdqrgJ33QGxaZNnNqXUD6CjBMQAQFMTGB/eC4BTuKMW/mKQvGv8IO699fv9/xudQyK/Q+MtYOUWc0erpIooILZ/1xG/itYLCjdxGUOt+pTlrAyr7LRU4y5WeDCzZ4xAFRInmtKZg0lFB+ZXuc4INRy0GJZDkJISqkWKhWkbgznOpDh3zMDcpAVtIDiYq0Vgci6qAu0G0K5oZMuvNWnTfq2lAg0AY4ME/ZkrSOEG1uQxr6UJzBpFId98P148a2P5soXFWQvLMfnzWp1hcRXINeSymO0gShRipRCcs4szJ2GYOm+pNF0nBLECHaGpEwWPxu0F0IU6QaHOj8X+AQe7+oIPvZJ90NsB9CbAWDAhJ2U/gE5q4StTFMnw0MvqMxAW65kT/BI7hai+/aaX/4j/uJsqFskogElBL1f5JOj1P8dVGRMSD469DGLVbg6qFDdrTnnGrLgFrayoReHUuAe0JyAGRATQ+aDaTi9WeyrO1ScE0N14QYdUuPtGQ6/9+Nt+Fb/zvr/FrUfu858rVVbxiS/8N7znP71s7YrvnkBOrrV/BAPzLa88JJTOLUk2C34FOp1BTefiVnEB9JLQ/7xrOJj4Wc2G8zAXV2GnS6DPxrMI7tkTXEdPTKsoGhHDfOaGzvQLWmBRWByuRYHbg9gzuFJbBPo1sHNl0MvuzdyGjhqlXqzIfPLerkBfvVDlgMYvZ2RYq1ZL71rmME5LVQgqNQYStzqSCQ8Gbdq7HkmZgNkxvq/iPpYtDPQRzK8ClxeZ36IgqRJAGVYv1mHVKNTsGpZ2KreFZGa0aJ8qEzi02c5KUiVQizUpcTsOQ0V3A04zmv65uroKy+bjVVT/swePxl3Ty8iXFpteFxW4d40dwsvFAPpo+wCagEAmQKGFWJfuqrKrEePRgtADPTa8y29LWVqd7ck8rim8Jz8OksLPv7kanyQqVKLp5wnHRqGCtvtZrjGsloG5Fcbvow4vfUIIygZQXzSQTXF6dLqg49IyUHOnKsoYLi8xFEoLTe+/NHcWDnVc28I2xzKKtryGCvT3MmRZAmVAsRA+FrU6w8nnDSRMC06V4uLl6OOyWuLMnWxjh2GdRs7Fy4WgAk2pgwuXT0BVXSVui6vbe3qEF6aP+9uOj+xp/CgfnluIR+EW/Z/3DTgha8/pK9gHvR1AbzCcmgOrZENOy4J9URqCwCV2C0rcAM+g3nXz63u6H6LfarcVaMs28fjzXwPAM0P33PIm/7VuhYjIgAY6p4OtGLz/2WLxPpoJGcQTawF4z1njxO5Z2bhK3GU9XmzjSsHRKRyDcg9ooQc61dADzUQvz5IFFHu3+u8TeulL1c4p3IWYHmiAT4x3veT1+MivfA5/8psP4nUve4cvVlepFfHkC99Y07569CySbq0+TzQZrNAsJLZaDldnriQYY34FOpvOoqzzSkckNRQBfRsAdgoBNH1mNbS4tr803aRQ7+HWCRtZLZhgNJnhNQdM/PTtQukofSPK6wygxQr0eijcI4NCAF2YB0krQE4BO89XjK29RqMp3JKr1L5dgb56obh2Kp4St6M7sMvx1ShqUlCbgSgkNtgAvPGJX19xVNKu4QkkRVzLHhhjYCULalpBLg2cugQ8eozhyVMUZy5TLFsKVmctECDSX7UdiCyBuLaQcdZcCQ1YbLCzIhIBGGvquaybbsVWAU+URxyq+fmgejUS0f/sIazE3dwH3ViB3jNxjR90Hz/7RKjyFYdUggcPcXNHzYifUxrt/LxkgGUboTl0rUhqvALcStNBTsuozxiRLAZKudp64zXNdBvJi0Xoy1Zb/ZjVMtcEmF4EaqtOx9VRxhhWLRnJssmv8ZKFAcNAWVFx0RUUy5eBpTxQ1YPrwXN1MK065pYmg3ukVQ06ak5cg4jY9zo0BVhaCI91py9RFC/qyA3IyKkUk1M0UjhvqRC2r/JhOJGtVGIFGgDOTB6FIvOhzDT5nzccnTj/lL+dyGRthFeBrps1WLaJKUFArLkCvR1Av2hhl131zwRgmK7nnZaGKhTXdjUE0P/i9f9mTRNgK4TsYrqsDD5/+hHfouFlL30j+rNBINWtEBFJygBjoJeqYAWz5SKESIS3XOgOF20pWc3m8Qrhd6qrxG1aW09IjNYdUIPxCnQ9CGJSyYYe6FJ4tU+neldO93ygAaBcKXT8Pk+FW5LkkIJzI67Z9xK8/9/8KX7rvZ/0n5tbh+J7R/CszgTRkFSC0wy3igKzYRi+6nomnUWxwiCRgJbXCFGBW6RwO082LMKKFpxvN2frAT55fvC1VfzAdQb+w8ur+PS/LODXX13FW68Tboz0kXWrcIu0xfVQuMUKtJfNJhkVSLmDZCuarEJ4ZjwG2xXoqxeBFzSvkjKbteyDphYFsxkscMGmSAExFwysTWKnS3i08FYVaMMV1dQk5NIEw/2c+V2uAudngeOLMi6fM5HIrH2/GAH3mI5pnckk+fdFiU7Rhkpf3eQJLE2L93IXA+hWY0g7JW7PHzqXGfT1Pu699c18vxjFY899NfazPaSSnB0UR+MuVxFat4nwKtCDfWPQ1GTotyz3oA864Xp3t5rXlJwCq2DCivA81w1eDWxKCtUdqHULZsGKFSkDeODu2Z0Vq8DqvNXWA9pDrQ4UbBkZZgNlC3SpDlgUo2My5txpbXaJgTGEKtC33/Aq//HUzGkeQNsUrUrfUUr2jcK1VwMSCe4F7SlhrxQZTp+0MeBYkAY1pCSKatHB5cXweBNpX+WCGTEV6Hy4b/3M5FGuTcL4/W/YnBFmWnWcneQ90nt2HG4pkNxotylaWO0bdLBbqEBvU7hfxLBKNkAZdCsInDQ1Ew6gx4IAOpPK4Y33vqvn+yF6QXcbQH/3mYC+fe+t3x/b5N8pyGACWKy7/s9tLn7Prqhmc5GVRrq3IvFFh0V5H9MW9IJ2dAdgDEQmqLWicJfDkT+71LndVDusuQLtZu77s8MdJXX27zriP16PZVpHSEicniX0OCXdhcZW6YMOeUCnsyjV4itbQGMAzX8XnamBzbjjx3DCH7Wdb86HWQsCbpmw8b57a3jztSayrhh3NsEw7AqMIX3jugPopXV6QHsYGQgqT2I2m2T5gSLpeCo/kUhsJR7YrkBfzRC9oAGul2GuxGdXqcnAbAbdIlwlP9ophn/WWAoY6qHCkNS+Ag3d5mJcCU+lnyCTIhjqI5gYIpgYlTBybRJ9u9axX66icxwSGg/EGmncIKTJJqzu9kAqjssiixBcm5sLFt9xPdAAsFtQ4m4UEjNM3R+LxGKESOP+bgdq3KpMYNNoSyfHYSjp0WO3ZZtYLfLAb9wdB8WWlsUeKHErMrcxWy21qEAnZVCDRfZB6wYir2lmUsi6DWfVbBlAV3V+PtNJgFCKlaX2HtAe8mWgTiVoEuXMwzkdJKNCVQiS7qW6VAAGcsH4LxEJt1z/Cv8zJmdO8aROjA+xD2O7Ag0AibSEet727c9OTDKYSyZShIKkFBBGkFMozs0AhhlcU559VV9DAM28sSmqAt0YQLtCYoRw2zfT4om+s1PP+zpKNxy6s+X+Z4ViTbVWDClw7x+gGM9SyITv93YF+kUMR+e9GxU9mHE0NVyBHugbwb238cH+x3/oPyKdyvV8P1LJLAb7uE/r3FLnPdCMMb+HSFUSuOPG1wAQm/wLXe8LUSVAlcDyRnz/s7dtQuKV6rIFWM0iJEQiIJSBmRSq2/e41SrQjh4sikQKdzIRHqUagyE61bsAei0iYowxvwfa84Buh5HBCagKn6XX3APdIYjM+76Y4BXuUXe3SgAtekCnk2kYJqeWxmFRoHB7PdDOE0H1WXn1Dkh3u73oBoX9le4WZ/sH3MWEOgzdScNx1p6dXwyJiK29B1qkbjZms9tCJtF9b3CtNLaoqOA2Ng8eC0HOKDCWTNCYIJWZXFm47khwaASFUQCRSWyVdi0gEgFhjIt4xYDp3FCVyPHLNjmhtLWwarkfI0mQ0RiDegS9wvkGOytJI7Aa6PH+PFy2QWo2kGwe+EIV6JYBdDyFW5xnxHa46w/e7q95njnxUEcOEaoMrDZoaDDGe39NM7r1Zjk/51PavUSiOB72QkgM4KJO52eA+ZX4MU1KSDDmmiNh3RXFUxt79k0KWAxSwUC1En/t1YzAerFfpVhZobA7aF9gjGEhz6CpgKTJoKsmULEBV327z5UDIgRIqMQPoAf7x3Bgz43+50x6StxuISL2+yICaHYVBtCyJoPVHBTKvKJ8YZZhxNR9JW8Ghn7NwXIBmBHIbSslXjFONLILbD42NgbQlFKsFMNMuKmZU6gbNagyZyvwsRQ4fu4Jf5sbDrcLoAMv6HK1hIsuhXs4TZFL8J7qHTl+vc6Wr5yV1XYAvcFwajYkhYTUl9WGABoA/ut7P46jR4/iHd/3cxu2Lx6Ne7W4CN3oLDg7M3nUX9TedsMr/eA+61KCO7axasSgBjKgtZfmT8hghgO6XI/NjDOAB9fugL7VKtB22fYHfZHCnWzVAw2ATVcj+zvXAtHGqlMRMb1egWXzgzkQYznQCFmSsWOEK6bOL031VAgtEhLhyRUBity8wAO4CMrUPNv4fRJQzAdV3mQiA8tuzUheECrQE8O8dYE+4wq5qRKkWwahvHGnb+VGn1gGnes8W7BvQFhMpG9ERV/j/YugAp3QUiGRum4x0Dfq98439lO1hUvrY1FK3MrWSaRs4wqBBBUWJS3DqdmxfdDUDV4rOkOPO6g6AgNaUrhZ1eaRxgaCSO0TA+kksFIM9+NKqgSnEvaC9uZhv1UrIvDpNIAeHdyJhDtfzjRQuBv7n/19kiRfr8UwdTx9/FstfxfA7azyFcCwGChjWC4wPH+O4dmzXME62sIqEBDzKtBiNb0XXtAAkEsRKDJw6hKLrUQrOQXGsgm7Er7G9ZiiAqs7gEIgmw6KC/F0narOr09JIuhTKfQaQ8lsfy1WdC5+lk0BSCu8aKIG15jXyjTcT+BQB/kiF4gbHtiB3eOH/HlhyvWCJjvSwEALakhUMvUqDKChEqigmJt1cPwig6rbUGsWkHEDD5lA0h0kE8DZy8zv+59dZkhEJfht5kbC4XNeKC+B0vDxpYzi/OVjvKXSBByHB9Bi/3P7CnRA4Z4v1VE2AgVuD56QWN0mWLlCVlbbAfQGw6lREIX4AmIAkFDTTR6whBD09fU1vr2nEK2sPLusdviuYAEhWkN4F7hp1WFa3TecEonwPsd20CQQkwI1J57uTeAr8RLSmafhZsIqWJBc+lroOmj0gW4IBGEzsC6Co1boW0MFuhPT+yh411ndrPnUto0CtzozQ8IpKdevVFzMTS8yPPgMw5On2KYGVaWVIEBNJbPcGqeDCnRfgiKdYKAvFPwFgPSSQU6/yqmQX+v2DTPA/uLlmE9rRiiAztzQsQ1dIxhjvgr32NCudYkpyZKMoX5eKVrOdx9Asxjqq6rwnsHNTJhsY2tBlQP/XCkhgRrxfdB21QajDPly6zaLDQMhrUXEiiZInODmJiKd5PeVSOOWNAnUDHtBl6oMqsTAFuuxbRghEbEWPdCSJPmtbrOLkyHmzMxiEFCL7XAA8PLb3uw/7sTOKpXgwebMEnD0DMMzZxjmV4H+DPdNjtKuCAuIeRTu4Lf0gsLtYTBHYNrAySmGSq15XJPTMheuzYfXEuUai869VCyQlAINFMX5+AC6JLxfcnv1VzqowRQqnImQ1AhP+kokNgAulJZAGb9+hgd2QFMTPqPg8vxZOA7vo2+Z4InywbZozwoR3zNQJSRAsbriYHYZGCUmYFB/DU0UCaxqY7QfmM9ze7JanWEpH7ACQrAp4KApgBYT3qoStI6cmXwOqgJYDo+7icRwwq1Ap1M57Nt5XcvdFyvQF/NC/7Owftm9Baysrvxo/CIGY1zunzRUoJsCp01C2MpqsqP3POL2DhFCQurbYo/CenspW4EQAkYIWN32q25NkCSeSQXPEK+2sHvYbFCTwtEdIYAOordEQwWaRqhu96oPWpYVnz1QqnTWA10Imd53EUCvQ7CuayRkfu6FLHPKVSyt1XmV5PlzFA8dZShX+aKvlR1Ir1FcDgLopJZpSQ11KLBc49fJeJZP+M7jQRJDvjNgAcj3jQODfCHCTpdAT3V2D+4PVaBvWPO9W64WUHdZLOuhb3vwhMQK5SXYdheNyzLhBy6icue1dFhXn4bMNlxoClCpAbbHUJDQFFwAgLlionKmCppWoBut+583EiwqAPCerzmRfcSbDdntLS8JARzRCFcxFwPoGpCoW7xyHhNAez3Q6WQWmTatax6N23YszC9f8p+fjqlAA8CtR+5D0tVrefS5r4DS1oGU5I7Npy8zLBeBwRwPnBNqfNC2GLKwaqZw90JETMToAJ/HTl5iqJvhcY+4Pez1hTANrxCRFGKMcXqzQiCnJFTnjFiV73yZz6sAAJMilQRWiqSlKjhjDPOrDEkt2DdpNBmr3i0GY9584GmqWLaJ2Q7sV6Mo3ACuviq0TJCUGZYWKAYyDGS5HmZ7qlw/RiVccfvCLMNKkQvoNdlXAbEVaLHl6rYbXuk/PjN5FKor6mtTYDl/Gasuu+DIwTva6ulkhAB6phy0lOwfbK5AA1euD/rKj8YvYlCTgVkMRJFClcdUMirFs/EIK3G3H4yW83O+if2Rg3dgqH/cf03MEK2Zxt0hiCrxvpmY7DtRiB9ApzQ+2Ntt/DQ3C07d4d6i7r6HfKCFAJo5DHB7eeuCAenpZ+qwejT292W4kFi5w6pjobTkP+60BxoAdoaYDpMdv29NcL1LRS/gVILTB+dWgEdeYHjyFJ8Udo/x+sFqBL17o1ASKNwJLdty25UaAWV8ghrLUlhzFuhZN9ofToAcChaYRJWgvDkQ7rIfuBxJY27EvgFhAZm+Yc337lKP+p89eEJijDGsRvi8xkImPDMeU4G2nG0l7qsVx889gZ/7zVvxkf/7/yHv3kZySoaxGLb6oSZF8fkSqO7ATmt+r+emQybRIkgAoLtuA636PzYRSQ1YzAfsjkYvaMtmqNUBTecr6CgFbsaYX4FuJSDmIU6JO47CDQCamsRLr7sXAE8cL3UQzI4NAKP9wNggae4ZjsCC4EbgBdDJRNrXHelVD7QHAoLxQW77dHqKBckhF0pWgTFfB3WTMZQylHX4gawPk/Kee1WCllVgr5qoFJuvP0+B2xP8gkWRTrj07BZGIWWdC1JFKTpHIRxA87WmWKmcnD3d/kOE+6csB0mbraDEXdXL+Le/9Ub87G++GkWhOLERIIRAloD9IxRDssOFeDNCEkuVuPimSTEyAFxaBC7MMdcCr/maZzYFAWlimonn7K6bXw9F5gMnt7LivvFgwMnzT/rb3dDCvsqD6PiyoAfM3DCFW6hAF19kFegPfehDeNOb3oRXvepVeNe73oXvfOc7G/VVWxbMpKAO4z3Q9aCS2GRftEkQvaA7oXCLN8ehvTeFXgsF0GukgXaMARVkLBVP3ZEJt7pizA+etoqNkVPjWXk/gI4TEatYPjnshcwgTDeITs6V8e+/lOtJhq3P7VsvV/NtM/EAQoN8pz3QQPeJmvWAe5eGxXdkmYBS4NhFhnOzwJ4xoD/Lj24qCcwubx6ttyTQIVQ108qBI9T/PJalKDxQ8i0v5TuHmyYv6ZZBkL08GccW6qDH2lPzswmGtOQGzekbO06mNCLsAd2DAHqtQmItKtCeD/C2EvfVib/90v/E4uo0Hn7603jhHJ/v5IwCq+LArggL7dMV6NN1JCaSqNUBGuWBugkgMgGLsWRjdQckJhC9EsgkeGW/6k5nnhe0F7TVTcA0GbSCDhIT9JerBdTrfKLuxAYvTonbC6D7s8OhdUnwviDwnutgPpIlAqULIbbFleYAGgh6upfzc5Hz7eTMKfyfv/kNvPDCCx1/lwdJIhgd5AJQ56YbAuicDKsU0Lh1w7UTa0wKmYHnt5KTYVcclCNo3FWd09q9pBKr2ryKTLg9UhwKZZ68bFW9FxFdgb7ef27KLea0hMCAWFIEMbwtUIF++Okv4tTFZ3D+8jF847HPbPwXEkCxKVghTN8GwCvQFgMMB5kkQd3kHuixyQ47WjtGnKt3jO71z9flubPQ60F2Rex/vvHwXW13XeyBXjaD9sN9ET3QwIuwAv3ud78bDzzwAB566CF84AMfwG/8xm+gVNrYSuVWA7V4ho+oBNVaEEBnrlAAHaLWdlAZLAliU42ebeEK9MZRuAE3SGpld6VIPICyOF3IsLaOeBCtOyFfTd0QqfxCBVoQEFtUU1js59XKXaaOuXmKn/t8H/7+WAL5dYgl5NxzSBlFrd6ex5wXeqC7oXCLiZoNt7KC613aoF6bSwN1Azg4AWjCBJ5NcWXIzbo+iksF/7EsZ6C2uIxFBe6xtIPiA+59RQD5jubjTwiB/IYg8KRnOhtfRxLuPqnDWGzsu+8QCz0OoEUv6G6ExAghIAyRPW6qDNj2dgX6agRjDCcvPO3/f2FmFXWDQU5JvNLsXvf12Toqp8pIjGiQFAnVekyv6GZAJoDpRC5UWc0Gu2I71gzPMrLUIGzt1IMA2io7kKsWkI4e9MTKbEcV6Aglbt2o+uNFY/XZw06hL3pmAxK6XgCdTGRCWiNeUsB2LOQjWDW//xe/gM9+5U/xS7/0S2v6XlUmyGU4EyAk6KZIAKWwXVsxXVDQFsEMB8SinMItS2AMqCxFBNB1LgblVbBZzQJRCLJJbj8VReOmDfTtThAZQO8MAuiLMyfbfoZI4V5Rt1YALbYdbMR12ARZAmo26ILeJNZLZAJCg5aRkT6ejOmPI8faNFLAUDxnIwMTuHb/LQD4GvPcpWO+7q/X/0wIwfUHb2+76yKFu+hwNsJohiIjXE9jGQpF4tfe9IutB3r//v3QNP5rCSEwTRPLy8tt3vXigucrSRSCqkDhzqSuTAA9kBvx+4E6ycSKvbJ9LQLo8hqsrHoKxa1CuUrclG6dANqp01DVsaqLFO7gOhAD6LyiYej6ILi+Ti9Ctwn+7Mk03vV3/fjVr2TxlbMaKl3adYlK3J30QRfXKCK2Y3Sv/7hTsbp1oyGAHh0g2DHcTDlKuwyF/Cb0QVOLoiw0XEtyFkqrAFqoQF9TzMOa47Qz6bo+kBjhFelQzu9Louc6+1ET6SAzPF1eW7NnrzygPazHyooR1x+0AYRwS7PtCvTVh8WV6VALymqxiNUy/PHAKlpwag6KL5QARqDkFDDGkC9dIfo2wOcxm0UrcZd40LJVQECgKMBSXthXwQu6bgC0ZEG2WKx2idgbPCrc/3EQKdyeEvfsQrCOiQugd40JCd0eBy5cTJGPhY1iiiErqwbq+GpxAWenngcATE2t3a0i6fpyN3k4E+IrcddaWFgxBPcEEhIq03rTvtTq8LdjDuNVXlVCOglU6pym3YhCuTv6NgCsFALBUS+A3jV+0KcFT3VE4RYq0GogarUVKNyimNz8JqyLiCqBla1m+rYLxph/vPqzBNfvDRcbQtvGaDOIop/DAzv8ABrgNO7hfiCbquL85eMAgH07rw9Vl+PgxxfaTljgMUtIvwU8PzDhW1lJoGu7hdaFFnqw68fv/d7v4YEHHoBhGHjVq16FgwebBzjTNGGa4UhAURQ/+P5ehmPaYDIDJIQo3NlMGkQOn+06ZXj6bAIDhEHaoGQKAafXXrh8HPMrl0FhQZbjL4FSNaDw9uUGQ/ucywUBdLVebPo9a9o/9zO6/qwEgCoDsW0QSEhqDIUyQOmVp7uZRQPQCJhr+i4mUpKpZPBbhWi4oCWQvZaBPsb/f3NqFU+Be/9SRvD0rIqnZ1X80aNp3L3bwj37TNy9x8JgqvVx68sO+I/LtVUQeX/L7UUV7sGB4Y7PSzKVxMjgBJbzc5hbnOz6fHZ7HRCFAZYDgva0dFkCZMKwWgJ2j27s9WFVLZQqQVCraWkkEgwk5v4WA+g9Z4LFhHz3SOyxICkJZH8G7HwFWDGAYh1kKBG5rf/ZAyYed2/tBT23pnt3KS/QFkd2rvv+Hx4K9BVWi3MgMuv4OiAyBXHsyPMvSwy2TUBpb4KPduIn29gaEKvPAGCaJcyvMEwMA1JShrFgwqlRGIsG0nv5Kt+wXKrqlVp6yBKYaXNqrUDVZg7lVn3tLB83GbkUsFIGqnWGTJK4XtAubdgESMEAk9DkOOJhaTVIlHVSge7LDqI/O4xiZcWncM8sxvc/e9gZCqAn235PNyiWV2CYPCk+Prwn9NpYgxf09Qdu8/9/7tR3/ceWZcEwdSSU7rVxVJnAcRhqBtAvSGxICQlWIaBwR8bnDUGRlFFQXrJhlx2ofcG6sFQTbN1Mbq1IkjJvc2AMq2WGkQF+jktVXnmeXeY1Da2LpE9UBVpRVOzecQiTM6cwPX8etm1BUVpkuMwgyFreYhVoMeksVqM3DF5CzqAgwxFjh0zAakF2uWXbguE0CYgBwTlTZBX9uWFcu/+l/mtnp56DIhOcv3TUt7rqpP8ZEALodOAF3hhAA7wP+nJRhukQrBoSxpu22FhsaAD9a7/2a/iVX/kVPPXUUzh37lzkNh/72Mfw0Y9+NPTc/fffj3e+850buWubh7uBMkrIqwEdev/tBAfuCxbWjAFv/cAETlzS8JNvKOED/6ozm6G14PCRXbhw+Tgcx0bi0Bns2bMndlvpqWBAu/ZlydA+H6prgHva1NHF0Gvrxf57WyhTtATf370D/L+pTSp+tsQY/yuDB8hVEtBsr3mlg5ERftyWTlbhhatkUMbB+4Fz/4///9qBZdz7/hy+8FgGX3g0g+llfttaDsHDUxoentJACMNLD5p4zUt1vPaWGo7ssZq8TPc+lQG+wR+nD8ziwH3XtNx18y+CIO6lb0qiv7/zc3zg8G4sPzmHQnkZo7fOIZttLaAVhe6ug7z71x6beX1U+oJj9pJXy7jxlvjfVH6ST/gZx0L2PP8tcr+Egz8rQdLij/3SqQSWz/PPHSJLGLivuQ9QxB3VGj7javAU5f413bul/x0sAO58ax/S6fXd//aOPuAj/HFduxzap86ug1X3L4y9AwDs3p3rAwcOtN9oG1ccpy8+E/qfUl6BLutAOi3DKtqozxtIjid9f2Ld4NTjvitDEONB86oD51ge0r4syKi7b7rD6bbZK1Uaj0bS9UwuVoBMMuwFXSvZUIoGyGD8ElOsynbSAw1wGnfx3AqW83PQ65WWCtwexod3Q5YVOI7d8wr0YkhALNzK0soL+uiph0P/V2olJCL9gzoAAao6g0h1kxIy7KIF5rBYX3NWs3lG2YWallBdpbAKZiiAXikCSe/SM129CTfBk0kCC3lgKMcD54VVwLD5PTQeJi22hReMybKC/mygubJv53WYnDkF27Ews3AB+3bFWyDRuliBDgJotgUCaLFXfn75Ehhj67J/bAtVAls1Yq3viCqBVTo7LsygkT7uywWeBBse2AFCCPbvOgJV0WDZJs5MHgXQff8zAN8xBukb/Of2DUYF0MH5ntcVHOno03uHDQ2gAUCWZdx999341Kc+hYMHD+Kee+4Jvf6e97wH7373u8M79SKpQJfPVFA8WkR6TxrOYnDyS+dHcFENFHWXqgQnLvHf+8lv5PD9Iw5GMhvDRxiQrwHwVQDA4/+0BPvGG2K3vXQiqJrrk7tw8TvBPtcmg57FyyfqodfWCiIz7L+3gslHsmBOdwMLXdAh3zQAaUcaVZ2hagDfdxdBJnXlaG+OQbH09SUQVYKa47eavir0Oj87inKSB5aVo3n/ZkxPKJi+MADkFKBso/qcgcT5BN4+7uCH31bCySUZD55L4JsXNBTqfHBkjODo+QSmTgHnPlrCseERjO1RcdO4jZvGbVw3asNZDfJzZx6rY6/U+pzNTblBnKxg5bldWO1isB9KHALAlRcf/cdlHN7XnqLnodvrgBVNICFDubMzmnnNYKhUgTfcRdCX2bjro3qxitpkQNk/9/gIcqVsbEVmyh0DrjdKXOADAG4ewtTjrQNiqhEAvKS88E8W8oOtz+tAIVioLZV3rOnevXyRJ1dymUEsPL3+vG+9FggETZ5exsXv5Dq+DuhyHdLONOTrmo/T5DzDy28iOLhr69Bft7HxOHkhHECbZhmmBawWGXJjMupzdaiDKmShP7eicwGxKBXazQCRCTCeBPIm6NFVYCwJaW8GoACxWKwLxZUCAYEiMyzlGXaOEBBVAjUoqMlQmLOgGDaQjvLE4VheFSncHQbQ44dw3O2nnF64EFLg3h0TQMuygh3DezCzeBEzixfXFLhMzZ5BOpltCvQXhKCouQIdH0CLFWiA68gM93U+R4pIKDyRIUJOSLAqNpyag0JZiuxFZhULRKDsahr3mC7NmT4rw7QYKnqgwM0sCmIHdkaZFPcQfuYMg8OAgQwwnFjb/eNRuIf6x0NMn/27rsdDT34eADA5e6plAO3UHXh39LIgImZWnI0PdlqAMRZKGBmmjnxpMeRs03N4LJa+mMSbKgF1G8yhIHL82MIY45X9hgDatAy/FdBrwdLUBA7svgFnJo/i8vw51PSy3/8MdF6BliUZmVQfqpn2FWgP87oCX3V1k7Bp1xSlFNPT003Pa5r2ogiWo8B0ColJIIyEbKwSSia0IJzOB6fBpgSfP57ET92+MTLSEyP7/cez85O47fpXx25bKgcVvVx6OLTPmeSA/7hcLXYd8LYCc0jXn8dsAmYADBISGsNiEagZBLkNDJDawTEcsDqFklZAXHuimtADrcnBdVBfteDVaAf3SAAlkPZlQY8VgLoDOm9AGueLkSPDFEeGdfzcnTpOLcl4bFrFY5dVLC0z/MHFJzBm1XGi2I9fwV14/DK/txSJYTzxHmAfA4oPYaVYaXuMPR/ogewwQKWuhqYJQUhsZn4Kh3a/pIt3c3R6HTBIQJ2B2oj1mBSR1BjmVoBSjWAgt3HXBy1TVPUgCaXKWZAWx3Ghwqf+QyQYK8h4qv0x2JXhi2uTgp4t8+PQYoE4nusDjBkgsQtV7Aa1aVfCSQ51/MXA2NCuntz7aa0PSS2NulnDSn4+9JltrwMqgdUovw6a9pUBhFyxoGgbmw/HsXF26rnQc1W9hHQSmFvlqvyZQ5lQRaVUZTg/w5Bu3f2w4SCyBIwkwSwKtlyHs2yADGlgiKdCX0mINO6kRmDVKJy6jeq8CUVGZNXKQ7cUbiCsxD29cD5sYTUWHUADXEhsZvEi6ka168DlyWMP4v1/8E6kUzn86W9+M+QyEVbgDlegxR5osf91OT8XsuECgOo6hFgTGlfKNi3m97BKCQl0mcIs2yjrWrOAmEN5NVmYL1UFqKoyypcNjN/BQGSCWp3T8Ye9tlWTghHiX4uyRDCYY5ClztW2o2DbFgplrlkgCkoCgRc0wJXLX3Xn22I/h9YpZHAr0JJA9a6VHFwpYgnANWc8qr+HuaWpDQ2giURAJlr8alXiLASTAqkW6ybH1WVouJejKPcAcO3+l+LM5FEwxnD20vN+BTqXGQzdv+2QTfejKlagIwPocAUa2FzBkw1JadZqNXz5y19GrVaDbdv4xje+gaeffhq33nrrRnzdloVTo77wh6jC7Ql5eZhukGB/4FQC+gZdB930AxVbiIhlQjZWG6vC3SmYK4jg2RhdaSExR3dATeZbWAGBD7SmJkNZVlrkIhcUwPh+/pxnUQQAbCq4fjzIEnDjuIOfvr2OP39bCZ+QnsOYxRMvN+hFpJ3gIrIpwYy+A9j7n4Cbv4K/mHkv3velLD5xNIlqhBgZY8y3sepGgdtD2At6gxUnFYmrMDcIicWBENcPurSx2UqrYEE3hZ73RDyNvWIQ1Cw+VuxlwYXbrp8Z4EkDcsD97JIFtmS03D6dygE1rmhqS/0o1Ltb+OSLi3Acfr02LhrXCkIIhgf5JNytiBhk4t/729jGxZmTTYvVSq2EbAooVXm1TgzsDIvh9CWGugkMZLdGkEpUCdJYCqRf5TTM1Nbqf/aQTHDae7HiekGbDPWiA2PegJJpvc9eEi6hpZBzLRbbQVTinpk/j1m3B3qwbyygfUZg5/ja+6BfOP0oAKCml/GFB/9v6LWFlcv+48YKtFitFse05xro28D6nEwSKncaqAnDPpEJQClqRSfawsqgXBhK6LVXZQJbU6DnbVhFvnao1hsUvE3a1FCdTpB1Bc8AkC8t+eJlww1B5X7BC7qdkJg3D+iSAkMJClNGh1TljYJI9fewGUJiLaESvmaqtzk2NuPicS0C6JGBgD0hCol98/F/8KvUNxy6oyvmRybd7/dA78g6SEUU0ncLAfRcbfPHyA0JoAkh+PznP483v/nNeN3rXoePfexj+O3f/m0cPtx59uHFAKfmBAG0Li6kw1mhRhPwsinhq+e6S4XTyQrMj56B80xrg/YJIbBpZzHkXfiyrCDTMDnlNtHGqhMQhQCC0iIhvKpwJeHUKbewEgYN3WUiiBZWACC7UWxR0bBvJx/QJCGAppda94HSJ1egnQj3AH/0znn88iuq+P5rDOzuCw+SFAqOLaj4+LMp/Mev5GA0iFRW9TIsm+/TQN8aAugNFG5pguyKZVidn++06wdNN0i6kVoUdtlGxRD83xPxPW6igNgOSwigBztj50iHA2VLdra1nZUsyVDMs/7/U4XuJh6xmjI62JsAGgiy2LV6BTW9i55qmQA25ZP8Nq56nGqgbwO8Aq24idXlQnCdUMYrz0sFYGxg8/axU5CE7AbSW5Olx2ncXI2byFxUqjxjwilaUHKtCY4ehXtkcKLjhbWoxH1m6jmsFrk9VFz/swcxodttH7QhjMdf+e7fhpIziyE7v7AbgaYmffcKcbvG/meAJ3jWCkUmsJ1wAA0AIASVoh1pYRX0Mjccd1WCoVNfgKxa9z6Kb9fYN90rrOSjq5kAX0uoCr/+J9t4QRNXRKwuyRgfDX6bU93cAPqFeQX/4ctZfOkM3+/FBgo/AMxthpBYCxBZAqEsVmHbh025IlxDAC0mhbzkNxAOoL/+yN/7j284dGdX+6dlDwMKX9fs6YuuKI5mKFRXZJRXoDcXG/KNqVQKf/qnf7oRH/09A+YwUMOB5Gb4Ki0C6MYKNAD8w/EEfuA6o2msMmzgd7+dweklBRM5B7v7Kfb02Xjj5yeRLNRhX6xAeulgbE+DKKjRLgPm+UDnMoNNE1wqmYUkyaDUQeVK21gBvAopCEWkNGD5Csf1Ts0OWVgBQN2tQCdFD2jKkHQpB6tKAkfGLKCsgOzJ8PczgF1qrkB7oEt12P/YPBgPr5bxfS/N4vuu4YHw8alL+Pf/58NA/6uR2vED0AnPGp5eVvD738ngP7+66vv2FUMe0MNNn90OIc/xjQ6gBRuzTpFL86pJuRZWL+0VHN2BY1DU3ABaVTSkWphiigH0sBm0b5ChDgPoa3Lwrn56rgz55WMtt085l+CFqJN5GbdMdG7zIfbzjQ7twsNTKh44lcD9N9Vxx66124WIVlYrhXlksh0mXGXCfeAdCshbs1K3jc1DVADtJXmzaS56dGAnQ0IlmF5kmFoAhvuvXO/z9zqyAo2bANALNmyTQm1BC63qZdTqPCncqYAYAOwaP8DtlBjDMye+LTzfOoAWraxmFroMoIXxuFzN49tPPYA33MtFbj0Kt0SkpsAP4GNaobyMlcI8HOpAlmQcbeh/BoDqOgJoAJAkoFJjwLAoJCahvGjBkpotrJhJQSJ6XyUC6DaBsWQiczCDci0sQMZq9obYqS3H0IEBXsDZs+MaXJg+jpnFCzAtA5oaXWCSLNf7WpZxcAeDA/Ce6E0WEfurZ5N4fl7FqSUFbzhkYnElIoC+0hVouB3D7dhbNgM/kK0q0ME527/zeqhKApZtoC4w8G483F0ATTI3+Y8nMhUAzXO7RICdOYqpgowFXdl0K6utpUrxIgI1qduTyS+6Sk2sRDVUoF0T8IRKccsED6RmyjIeuxxOGzIG/OEjaTw8pWGpJuH5BRVfOpPAww+ZSBbcQd6koC0onLKs+FnRvOCTGYVShQfQ/Q30bYBnJD2p+fVkT3sGhdNRmM0Hg1SC0/XMLqqSvYZVtEP0bQDQjYgKdM2G7NKX8oqG3aM8CCEJGWSCb8fmdDCjeRJgNoX91xd8SwpyMIgG2eVaaNs9wzlg6W+Bcz+HGws/jj9+awkphX/vtyc1/L9nA9GNkIVVbrS7Hw6gLzOITIpnDzd6oiCEgDA3iOoQqQTP2BfWKvjeBp4HfNW1r0smMlBbxHYLleA66XNNPeV+CaRD6xqyMw24NE96vgTWZibJkUDQZLLQ3TQgBtB9Awfw+9/O4OlZFf/j0fV1mYk0ME/dsyPIXgJluwK9DeDURW5hJZHguq7qfI7KJLmv7WqJt3CcmwayyfX1b17tSAk0bhACveiAKXLLnu21CIgBvKrrUaXrArunbQVaeH22y5Yi0wrr0XzxWx/3H3sB9PDgRKS9ktcHTamD1cICFlamMecy/8Trc70svoTK5zLRw1lKyNBXbZAoDyvTAYs4PaoKVCUZ5qIBx6BcgdvN4TKHcbqv2vuwYTXCA1qEJxzmOHZT/7gH5lDILgtJlxRcP+ag6npIy+bm+kDPlfkxMh2CparUJCIHAPPLVz6ABiFgbfpFmc2TLWhIMIpz9LCQ/FYUFYf23BjaViISrjvQXQuvk7gOKnUgMYrRRCF2u505vi62GMFiZXND2u0AeoNALcoVC1VPPIoHM5IkQ1WC7JlDuQk4AOwft/HOlwSD9WePh7Ns/3Aiga+f588RQYrojYXwzfnYU60Hi8E+HhAVysugNDroMK26P0H1ZQcjtwkC6CtP4W7sg01q3JbkSvVBM8Zgl6ymANqrQCeEJAotBgOYngoLfpC9bkDMAHa5uQrtfHUWbJpfW2QkAfU9h/0JjjZsn033+5N2uZrHdSMOfv3VVf9a+uRzKXzjPJ8tC+usQBNCMDG6DwDv/7HtjRV3YARdVaAJIZCkjeuDZhZ1LUT4OUhoGSgt+D7ewC8zioRL51d3dm5bQyQC6ZDbZlFzwOZaX/iDapA8m8x3FzyI2fRzxl3Qbf7+ubKMperaAxFx4SRmt9tCJjxDbm/3QV/t0I2K3yd5aO9NUNwFtJfklQiBLAHzqwynLzPYFMilt4Pn9UCkcUsqgb5kgrXp2RYViUeGulOf3iXQuD3EKXB72DGy12fRdUvh9uZsD8fPPY4L0ydgmLo/TzbStz2EvKDzsyH17ZuufZn/eL1FiITGE0OGMM3KCQl6xYFsRSTe6w6a6HHgQmKGpKBeslFbNFCuskDB2/WAxgZUoEOCVIPNAfT+ndf7j6fiaNxCJVWXZIxnKHR30k1sYgDNGJDXg3XfXEWK7IHeChXojqysbG6R1shCjatAA2EaNwAc3HMjUsnuqH57zX349Klv4X+cfxy5Svw9K/ZBzxS3A+gXBbwKlOSqHFbd3tdkIh26EBeqEmzK/9+/w8Kduy3s7ecX9PMLKk4v84nomVkFf/ZkULX8jddU8Y/vzuOP37CK11SC7B0AnD1h4WI+/tQOuAG049ixwa9XfQaAvky0oV/WrTBWa8XYQHzT4JnGu5VYTQVM+8oF0LRO4dQZpERwHizbgu0Ke4kU7tpqMLg7DV6f4T7ocEBMz5XgfNMdxCQC5d0HQVIKyG43OM+bYJVgRpUkCVlXrMU7vy/bY+Fn7woO0n97OI1jCzIKpSCAXksPNBD0QVPqhMRWNgrM7I6mlUkCsysb0wfNbP6ZNd2rQGdbVqA9CvewZYC4u6NOdOf7KvZB0zZ90ANJGTD4InaqIDfqwrTEYt4NoImC7y6EF7PHFtbeFSRSuJfzXQTQkluB3u6BvupxfvY5vwp3/cHbfRaMSJHNZYClPJAvASOtHeK20SE8GrcpS1ywKdl5AN0NhRsA9kQo+bZS4Aa4vY5XDe42gDat5kXEP33r4yEF7vGR6ABaVOJeWp0JCYi94ra3+I/XW4RIqpwFoAvkQykhoVqkSNCIebEaTcXWFMCkBKbOsPBIAc6jS9COrcA5VuDrD8EDupdoReEGuJWVh8mZGCExoZe3LsnoTzJYGr8O044N3dyc+aFkEFhUWONXJCwJjAvvtyyvzvo6M1cMqgTodmv9EJuCkebXQz3QbQLobvufAeDufAIaozhoVHDTo4VYVp1oZRXVDruR2A6gNwjMpGCU+Wqf3kI6pTX0PwsZkwPjNiQCvP3GoAr9meNJzJUl/Pa3MqAu5+ZHX6LjlfstZDXg8PQy5IbKy+56Fb/7UAZx8cSAoKosVhpFlEIK3DEVaDcYo4xCN5qro5sKmXB/Qjdw8ZIUVyqAduoOmOmEFbjrwc6IffCFxSCAVvrDQRPZJwTQZ0pwjq7C/tI0rP97FtZfnfdt7+Tv3wlpD99W2h18tled9pDzA+jg/L79BgNvuZbPvBYl+OCDWUwXgotnYA0q3EB3gnXrhkwAvbskTjYFlCrA6mUTTjslyi5BLQrqBDZWbSvQbgA9LizWug2gyeFA6I+day3Clc0MALUTAICyqXSlxO3T0UbegdV6uEf7+OLaA+i1VqCJREAYuqLwb+PFiXOzR/3H1x+4Ddm0G0DrQYCS0gg0FRgd3JrWUN+LSCWAugFUJBXGjkxTz20jlvNro3ADYSVuD6LKdhy8PuhytRAqELSD2APtiVl97dFP49JcIMQYV4EeFZKCS6szvoCYpiZx502v9V9bj40VwPv3KeNVaA+MuAraTnhuY4yBVe3IQFhVeOGBjSZhMgmWxaDWTNC5GuiFCi+vtrAmWytaiYgBCHk/X5w5EfkZTJjDa5KCviQDTfL5SAYw31pft2dYqYWPz3xZ8pMtA32j2DvBfwtlNJSEuSJQ3da3VsUHm0XaK3tzdDqVa6ouX7v/paH/u+1/pgwYEs7nxOoAnG8vRG67K1SB3lwNlO0AeoNALRq66GpCBVqE1/8M8Ao0ALz+kImBJL8oHrqo4te/lkXJ4Kfqrt0WfuLWYJR0nmgOgPcaFVzIK/j4M6mm1wBgsD/oac2XFiO3CQfQ0RTebMjKqhC5zWaBEE5EFhfRmgIsF69MVYrqFNRiPoUfACo1wQtcqEBXhQp0cigcgJDRpJ/NZ+fKsD95Ac6D86Ani779ADmcg/yqYNIhe4Sgu4HG7dmRVfWSb0VECPDv7qnhVrf/vlCX8NX8O+END2uvQO/3H2+0kBiRCVi9O5pWKgHoBsPCM2UY862tn7oFsxlqVtjCikRQ5jx4FO79EAPo7oJRMp4EcjzophfL3OszBtl0H1A77v/fjRK3R+GW9/5K02vrCaDDFejurKwYIdsV6G3g3Myz/uPGCrTYHzqQJVA3IBC4WkFAoCjAYp6hVueBWCuIFbluKdy7GyjcwwM7WjoceAg5Q3TRBy32QL/m7h8GwC2t/u7L/8t/fny4fQX6hTOP+UysGw/ficH+QOixF21wEgHKteAaNyweF6l2Q3DkthdGBdBeQslkEkxNAU2rkIaSkEaTkCZSXBF+A5JOK24PtKpo6Ms0F2x2jh7w7+UT554M3cs+hCDQkGRkNRayf1tc3pz5YVUPH9e5MvGDzbHBnZgY3eu/Nn+FlbihSlw7pIWQGDOdpv5nxpif9BC1Szzs23kdNDXQ1DnSZQV6sSJh3AhrDzhfmol0owlVoLcp3C8OUJP5LSaUMl+NrpUH9IEdPABIKMBbr+cLesoILrlZlV19Dv7TK6u+Mjed1311ZrIzBbKDB2W7jBpkRvHpYwk8N988k4Uq0KXoCnSxkwr0FrOyAiGhPthUAsiXAecKo5uPNQABAABJREFULKwd3WmysCpXg+BIDKA9ywgAyI00BNASgXQgpnckKUN6ySDUdx8EEQY4MYBurECLk1NZSHooEvCB11R9u6si2w3k7gawth5oIBxAz8XQ5iZnTnVVDYiFIgF1p614lghCCIhFkZ83+fnqIahFfQExAEhq8Qs8mwIrutvGwYLz1XUFmhBIXhXaoE0iciJy6QHfCxrgStydwLQMnnTruw9O+hYAwDXDNg4M8rHr/KqM2hrb3YcE/8+ueqABAMxnn2zj6sW5maMAeFVkz47D3EsULkuqvkGKgS3gnCjA/vpsqDr2YkU2xT22LRst2TZAOEG2Xgp3OwExD6GEbhdK3J5tlSwr+MHX/pT//InzT/qPxzoIoB9//mv+45de/wqkk7mAKdcDIdakFhYSMyzAIRLUesOAbLpaMS2o2HWToaqHFbg3Et54P9Q/HhmgS5KEG6+5CwBnTV6eP9f8IUIQSFUJEgHUbDCvra5uDkNptRY+aNMFB5Tx7x4b3u1rwwBXvg+aKBKIQyMFan3UHZ9J66Gql/yYJooxIMsKbj1yHwB+v4q/uRNcWgQGHU5vd7xKJGWwPnkBTA8XSkYyDJprZTVb2q5AvyhATccPoKt1G7bb69BkYSVQDvaPBwPdD15v+P5mAJBWGf7r6yrIJgQPS6H6LN05ArKDZ3wUMOw0amAg+P1vp1FpaLPwRMSA+AA6XIGO6YEWAujyVrCyYggNBKkEoNcDL8PNhF1zmu6uii5QuEUbq1Jw3ofGmwcA+Qd2Q7p5ANJLByF/304o7zkM7T/dDO23boH644dAcg207+GEX7VurEDnhADasynzX0swvOtm4WANcIrZwBpUuAGeNfYQReH+6nf/Dv/6N16Bn/r1e9a/uFUI7+PpksabJQ4KyxRGvrciZ06doiZYOKSS8QH0clXy2zN22kIFugsRMQ+SQOOm5+IXZZl0f7gC3WHm1qde7vpF/7l33GjgpnE+qVFGcHJpbVVoTU2g32W7dKXCDQCMgEWI5Wxj/fizP/sz3H///bjzzjvxla98xX/+gQcewI/+6I/ila98Jd72trfhM5/5zBXcSx6UrZb5Qvy6/bdCkiRk0oEuQLUbb/EewHlmBfZfnoPzz7NwHuzyev4ehDff2g5a6j0AgS+upmn+Pd8pRod2hapbnQfQghJ3F33QXgU6oSZx3f5bcc2+lzRt4ymDN0Jk1Xj6JwDw0uteDkmSkE7x8boXBYiEBugm74UGeABtyxLkWkOPq0F51jaGgaEqQFnnFo9a91NQ1zAMA8Uy51dHBWMeXnLtvf7jF8482vS6uPZjrntFUgigS4XNCaCXGyrQC5VgH0aHdmHHyNYJoAGXvdXCC5oZTrOFlUC5F69xEb/8nv+Bf/vu38OH3veprlkLK5cDRuBD5AJOWi5tf9WE/ZmpsNq8a2UFAHMlaVMLZtsB9AbBrgUee4VyvAf0jFuBzqgUIwKXfzDF8KbDQeT7q/dVsW8geJ3ZFM7TblOHTCDfNgwyHgRl96X4gLxYlfHHj4W/U6xAx1O4BRGxNj3QwPp9DHsChfi0ZsBV4javTB+0XbR9D3APpapI4Q7OiVYNJtaxiQivu/EU1J84DPXHDkF5/U7INw6ADCViByUiEZA97ueXLLBicB2J57Jcba783ir6AQ+8BoqsIpPKNW3XCUaGdvoquFEU7r//yh8D4BnlM1PPrek7fCiELwq6DKAzxEG9QlFasqNpYWsEbQig0y0UKEUP6BGBLtgthRtoFBKLDxiy6X6/BxoApjqsQC+uzgDJw8DwWwEAI2mKV+43cdNYcN8d74GQ2EphvjthQpm097PcxpqwZ88e/NIv/RJuvDFsTWKaJt7//vfjwQcfxB/8wR/gz//8z/HMM80ezJsF0f/5+oO3AQCyqSDJ61lZbQbopQrsT08G/1/c/Or3ZsOjcetG6wo0YwwLLnV1YmICUpdlTkmSQkFzOwVuD7vGWid04+D1QGsapy+/5VU/0bSNWGkWoSoaBvvGQs8ltXRwffbQCjThCol5fdCmBTBVAjMpIAaXpsuOi/E9VxWgUuPnMbH2obxjLC8HRZxWAfTNgmr5C2cea3rdFjRQiCvemu0XrMKKm1WBDh/XkpUECHfPGRvaFarGbgkrKwAshoHHmCvM2xBAhyysYs7ZYP8Yfuh1/zrUOtEpavPBmnXaOosPV38ftsrPH30uD/r4MphDQRd1OMfyePvyRfz7meN436VjuBTdKr0h2A6gNwi06kByhTQKZdEDOqhEmU6weN7dTyHGQ8xh+Hn1Mj62+iT+KnEM906Ey6j0ZBGo8mBHunkAJKP4FG4AePtwAWmVBwRfO5/Af3kwg2XXYkbsgY4VEasGFei4DHFWyO5vBQo3UQhYLQgAJYmAMaC6yQE0owx22QopcANAVY/ugU67KeOqrCCR6s0tKe2O7oMWKdwiy8DDjhzFhOurh7570d+/e809T7IkY3yEZ+bnl8JZw/OXjuHidBDAib6ga/wyTuHtMoBOOA7MOkWl4ID2MABz6g6qVnDc06n4CrToAd3vrX5SMuRs93QkMpwAhrjQDZuqxApr5dL9gF0IKXGL0C3g0UsqFirhc7+0Ogvsei/g2qH90JE6VBm4cSy473ohJOY4NoqVzlVfiExCi8Rt9A5vfvOb8bKXvQyaFhaMe/vb346bb74ZiqLg0KFDuOuuu3DiRLTAz2bg5IWn/cdegJJJB8m/zZqjWNHkAo9CSwGb13uaoNuqGMwBA1m01HsoVwu+6OiuXdGBZzuIfdC7xppFxaIwIVC4Z7qhcAsVaAB47d0/HEqIZtP9LZPMjRT1G6+5yxcj80XuasV1Xx8SIWAUqLnFu1qdgWgSD4DEFgKTAi3mdE3hNHzT5r7QG42FhdYe0B6u3X+Lzzw4drY5gK7XgrlOchl4yVwwr9XLmzM/rNQi1nBJHjSPDe/G2HCwptoKFWiiSmDVGAaezbhFpBz+TSELq5gK9HrAloMK9Fz9GBbpAh45EBRZ7H+Ygvn+Z2B9+DjsvzqP156+iDcWZvGq8gJ2D21eIn07gN4AMMbg6IFNQLESXYGeKwfUzV2udRWzKZzHl2B++BjwdxcxNlfA6DNzsP7HSdCFIBKkjweBr3wnryiLFeh0Xsd77wm+9ztTGn7qc/343IkE+rKdULjFCnScjdUWo3ArfLIQ6UqSBBQqm7twoXUKx6BNHtBVkcKd4OeqVAf6LT5YVJPhBep6ENcHnRPOZTlG+O0WV8wOUgLayOvWtR8ejbtu1kJsh68/+unQdktdikY1gsgEhDIwq8tzXbZAEjL0KgWt92bgZYyBmuEKdCbVvgItMYZUjSdTyNDarwW/Cm0zsMnoypfXG+pVoYuGhLxOYNrAPxxP4Mc+04/f+EYWP/6Zfvz376Yx53rVX15aAcZ/EgCgShbech3f3/EsxUiaH78Tiwpa6Je1hOgB2pWQmEzAtivQVwyO4+D48eM4eDC+GmiaJiqVSuivXq+DUtqTv9OTgYDYkcO3gsgM2UwwR9WMIojMNvQPjgPrr84BpYYFqe6AVMzwtsCG789m/2ka0Jdr/bsWC4Fw0u7du9f0PS+5nlcjVUXD9e65bveXTqcx5Ap3zS5d6Pi7TLcHOqElQWSGTDaL1997v/8bxkda/4ax4XCS4JYjL/df8yrQlm3Covq6j38iwVAxuO1QzWRIpAEiU8C0QEBBQAHDAtHiz1EiweAwBkoYtMTGXzOLi8G6YGRoPP7aSqg4cognxuaXL2G5OBN63RACaCVF+POZIICmugMLvd13SBR/8PH34ef+y2swNX8KRGZY1SOSE4n9AICxkZ3QEqrPWJhfvsQ/50qOBSkCYlgAdfxrxP9zbIA4TdfLclEUAYw/Z10dS/cYMIkhWQoKhrMOTzJ8u/4tyC93Yxfq/jWAUIb6tN6T+aQTbAJB4+oDs1hIgTlfDhaxYgAt9j/vS1tY/ds8jL+4CBSas0FsoQ7rj05Cecc+SIdzoKfdbPqABnINXzCT4QSnWjgMbEHH6w+ZkAnDHz+eRqEuoWYR/PHjaXxl6FogextQeQb50lLkbxCrP1GqiEAjhfvKV6ChuItoiwIyP7YpDVgq8KBmI9Qjo+DoDmidQm2wpAoF0C6Fe26ZYb8rMGGmexdAi1ZWoQp0tnUFGgBuGCnjy2d5ppf1vXpd+9GoxD3UPw6HOnjwsc+GthN9QdcKBnRVgWaUgVVsSFkZ5ZIDR3egDqw/5c5sLmhVM4PjnmlRgfYUuIdsA5IrgkYG1xNA53x9BHquDOmavqZtPDsz1E4Ag68HAHziaBKPXtKwJGTQHUbw5TMJfPWshjdeY+JU/k5A5r/l3ol55BI8MUAIr0I/NKlBtwku5GVcM9x9xn9EtLLKzwPokP4lcwo/cxgaBU+2sfH4kz/5E4yOjuKee+6J3eZjH/sYPvrRj4aeu//++/HOd75z3d/vOA7OXuIB9MTEBO54awZAGXvPacDn+DapPQs4cN/G9UEzxjD7n+dhuOJ96oSC9O1pFL/I6bljI6vI3hMeB/bf++KndjfiTO2M/3jXrl1rOgb/7u63Y/8tGvbt24c77sgC6Oy8HrxmL1afWkS+uISx2+aRybRX7zZtvpjPDWn+9fOzI+/AFx78GADgmhv2tLyuDn9zFA8H5Ai8+Uduw4Fb+fZjn8wAp/jzQzfPYmxsLOITOoc3WpYBHAoVvoVCyV3uH3qr+7FWfPv/BQH09XcPtDyW9z15G5479QgAYJ58E3fd94P+a/mHgqrlwD6KA/eVUZFNXP4Efy7r2FCu1XFgZ3duHa1w6tQpfOmhTwIAvvT0H+Ij//IjKH0+go2Q3A8AuOPNAxgfL+PA4V1YXJlGqbKK4ZvnAOS2wFhwOfrptwJAWEjJ+nqw7Ute048Dt/RmXN1/bwVTCwrGBcvXUrIIVIHLy8dx+FP9mPnVGmpHdag7VST2adD2q9D2afxvr4ZleQm9YMYfONB+7bEdQG8AqEnBbObTSPJFoQIt9L76CtyM4Q0PHcPCXPgiJNfkIN81Cucbc2DzOmBR2J+6yK2NPP/fO4f9XhYiE5CxJNicDrZkgNkUrzlo4fZdJfzFUyl86Qzvwzi3qgK3PAas/jNmzW+iYgLZhvW6WIHOCYGyiJCIWHUrBNASp7XbFNz5jwubVHXeG5RKbM5uOHUHzGFNPdA1IYBOuBXolXkH+93nWK6HfKlBDcgoQNUGu1zzEwhhCne0+vXe1DQAnumrJe5Y125MNATQN11zN5498W2sFMONKivrrED76IbCbThghgM1LaNWdmBVHSTbv6stmMVAHRZS4W4ZQHse0GZwfZChtV+soT7ocyUAzTTJbEMFGgC+cCr862/faeHkkoKaRfxAGngDf5FRvOPG8ALspnEeQAO8DzougKasyRXDx/CAaGXVhRK37PpZCsmzbWwOPvOZz+DBBx/EX/7lX7ZMUr7nPe/Bu9/97tBziqI0UcPXgmPHjqFa5ffb4V234+J3+CK2PhewrSaftXBxaG16Dp3A/voc7K+4c7gmgfyra1Cb1gHwAHrua4Bi8+8nMsP+eyuYfCQL5lxdCZ8XvhMEc7t27VrzMbht7CcBHbj4nc7fM5w8DOApAMCj/7iMQ3vjKcMAbyWxbTfgMtL+dZXEXfjpd/w6njr2Tbztnl/2n4+Cpgc9r6lkBtnCPbj4HT7XS/WAEXbimw6qO9d3fRomQ80Abj5I8MJFhrQGaGUDZCgB+SVDYJRy61MGkGz8emN+hUGRgZGBjb02icxCFG66uL/lsdyTfCWA/w0AePALz+HmwWA8KUyW4XEwnWoCF7+jgU4G+59xLDz+zTFIe3uXOHjmaLCGeurRY7jw7RzmVyPCquR+yLKC8qkDqJ2RMaAeAPA4AOCJL67gdT+Su2JjAbMpWMGEcvswSF94LGYFA/bTKyAjyVDP/IXjQYHNmDyIi+X1XbfiePjdCxp2Wxf4Z2sKhgf3YvH8Iqanp3HyIRnpt18P7e38fab798KZx3Dma2fwuje8CT/0s0fWtS/d4EUfQNtlG0puc38mtSiYTSEpBJSxWAq35wGddWz0C8GzdEM/5NdNQNrHqzvSjf2w//GyX1ViSy69gQT0bQ9kPAU2pwOUgS0bIDtS6Esw/IeX1/DGwwb+6JEMJgsyQGRg+C3I4y24/1MMd+yy8Mr9Fl6+z0RaBcpudTKXGYAsRx+/3FazsZJJUx9sKsGtHSr6JgbQenQQV641J1JKS0E2VO3v3XVKCIG0Jw16qgTUbGDVBIYT4Qp0hIgYADBzAai+AGRuRkk6hIpRCqm/d4Odo/v9x3Ou92YjfRvoTQUaEgEzusgu1x3ApEj0qdALQLVooxfLa2rzBFq1QxExrwd6pyME0OuoQJM+lSfSFus8eWI6IFo4qPTViQUlbg/37DHxE7fWcXjYQdkg+IcTCXz2eBI1S7BKW30A1028IvQ+sQ/62KKCH7oh7K3tUOCDD2bw7JyK97+yipfva17IrNkLOimDFE2wvAEykW6//TZ6gq9+9at+ZXlgYKDltpqm9SRYjsJTTz3lP77+wO3+QjSbDPapXC1t2ALVeXwJ9peCMUz50QMg4xkw4RKns/Wm72cOueoC6Pmlaf/x7t27wYzNOwY7R4MWg+m5SRzcdXPL7et6QCXV1FRoP3/kzb+IH3kzdyNgLcg2owO7AHUUUAZx8+G9kInmb58R2uAq5fVfn4oE6DqQLxKYdSCXAJikgJUcEIcAJkB1BpJSgBbfNZzjSc7NOC8ihXs4N9HyO48cuBMSkUAZxfOnHwttK4qIJdISv7cSQZIg69iYLchgu3pXgV5eCZK8l+fOYqlQg+XwpMiOrIN5T4E7uR+jgzshMQXMASZG9vvvm124DGD/lRsLiAzUGWgdkPrCRR9qEcAkAJNC17inwk0IwWB2vGf7zRyCqSUJt7i6A+ZAEgfGjuDkeT6+X7x0CjccbvaUfuAbH8c3HvsM/s/nfgmP3/447rrrrp7sTzu8qHugHYOicLQIq7i5VBVmMlCbi1qZJlCtiwF0UInyKtCjdjBIS3cMQf2pa/zgGQCIJkN9534oP3Ig5N1HDueaKlWelRUAsIWwetZN4w7+5AdL+Jk7alCcYNCyKMGjlzX8/ncy+OnP9aNmBcFVHH0baPSBLsRut1kgEgFhjKtOulAVAsvhqpKbBadiR4p0iDZWnoiYng8G8/RwbxM9Yh80nebVmVwHFehCaRkofNP9T8Lz61BVFhUYZxcnodcrePjpf3L3ZSCwLVqviBi4pyFqndOGme4AlEFLEliMoLzUm4mV2YwH0PVo8cDQtiyoQB9AcJGupwcaAMhBd/ygDGyq2vR6UktzhfTyU1At3pN4204L//MtJfzW66s47FaPcwmGn7i1jr++v4gfu0UH7CJgLmKk9KdN6rmHhhwkFZ5oiVLi/tZFFY9e1lC3Cb5wKjqbJYrIdOMFTSQCpkigc3pXXuDbaA/btmEYBhhj/mNKKR577DF85CMfwR/90R9h587uvHx7jccff9x/fOTg7f5jUdxpI5wimENhfe4S7L+fClhh37cT8k18nCXjKd/Oks1fATuILYiF5YD+uVYRsbUi3FLUXkjMEFhBnm5JtxifuBO44wxwx0lMXPfzodeyPS5CSJ6vtM4TlrJEAE1Q4jYpYDFAbR3wKDKBFEcT6jHECvTQwHjLbdOpHA7v5UmPyZmToTWMqIGRzvK5iaSCxHGWWpgp9zbkEecoyiiOXgiuqetHHRBvUEjsw5ig1L5jdK//+NtTWbzrQ+N4cnoTFNtiwAi4qnEjLAqG5vnUU+Ee7BuFovR2vwszph+YyiMJHNh9g//aBUF41oNDHTx1jK9X08ksbr311p7uTyu8qANoalNcnqGol3uXceroey0KMAYiERgWUBUqj+JC2qtA7yOdUTfl24ehvu8IyN4MkFagvKl58hGFxKImbFUG3nWzgZcZPws8dx8w8z8xmAwSDEtVCc/OSL7AVC5GQAwQhIjQGxuGXiCqD1YCUK5t3qLaKtpNCtxAtAq3IyR3+kZ6HEALStzM7YMWEyJRNlaAq8xeeND//9nZte/XjpFgophdmsTDz3wJdbcy+6o73+ZPJKulRdj2OhNdCgGrOx2rmbK6DRC+6KCKhNpKb6ysmMW4GqoYQMeIiJVNgrrtCgnSIJG2Hgo3AEgHBT/oC839SYQQvnhjJobOvxF/fX8RH35TBTeMRScgcgmGd1y/BDw6BDy+CzuzzUG5LAFHRvlYu1STQgreDgU+cTQYmzz7vkasuQINXnlnKwZQNNtvvI2O8du//dt4+ctfjmeffRa/+Zu/iZe//OV45pln8LGPfQylUgk/9VM/hfvuuw/33Xcffud3fueK7OMTTzwBACBECvn0inNUVe8tS4pVLVh/fhb0u0EyWr5vDPLrgmuYqBLXJoGrxL2d3MHCCg+gJUnG+HjrgKnXCCd0OwigLbECvbYGn0vGIUDhjJ9S+vtDr2VDPuW9WUPJMmCJXriaxNdEdQfMoCBOYLG6FeBVoDU1GUooxOEmwc7q+LkgcSa6MKSz7twjBNAZx8ZsqbftPY1J3hOXAnbFeJZiIOGuaZIHQlZnEz4zT8JDq2/Ck2eS+KOH07hyQv0k2srKYU3FIIc6WC3yc9ZKNX2tsBYD5lp6QsOB3QEl++LMyabtz1w86ms23X7Tq6FuhnS8ixc1hduwgIUlB0NLFLndm/e91KR+NtqwAN1opnDrViB3f1DqnLopjaegvfdIrChWKIBeqDe97mGwbxgofQEoPYL/+qM34VjtZfizJ/m+nV4UgroYD2gA0NQEEloKhqlvDQq3h4YAOqEBy5u0e8xhsCt2kwI3ZQw1XaRw8/NEysGx7oWAlQhpjygkxr87lcxCkVXYjhVL4S6Ul4HiQ5yXRmQ8O6cCWFv1JJlIY7h/HCvFBcwtTobo26+/550olJZx+uKzYIxhpbiA8eF13KgK4dl1u32GHQBQtEBUd0JVJdTKXPxNTq1vkqU2T6BV9EAUJK4CvShYWI2ZjePA2itW4QA6Wpwkm+5HobyManUR49n2veNLqzPeJ2J0MLpydNO47V4v3M5qPMuv72+c1zAtLF4WKhJMm1umiOjPDvvXZzcVaAAgCRnMNkCXDMiDm9SvcRXggx/8ID74wQ82PX/HHevTR+gVarUaXnjhBQDA3rHrkBLaJTIpIUDpYZKXztS42nbeTdbIBMrb90G+a6RpWzKR4rYsNgNbMbiGyVUML4AeHdoJpZVh9Aag6wDaDNZQovVkNzi1FPzGYwsqmBCTZDagDS6pAno9+A4iES6YWeeMK0bQwmRs8+FVoIcHdnQk9HrztffgH772ZwB47+s9t3wff0GooGa9CrQicdamRTmFewMr0ABwfmHFj6pG0hR9agV5YwTQxjGUC649v7CQuha227k9X5FxMS/h4CbaMHkgqgRUIgoYNgUaKtCF0hIo5ce61xZWDgXkfBBAKw0V6IsRFegnXvia//jul76+p/vTDlsnDbVBsHSGanlzL0hqMn+EMiygbgTVGi+AFheTe4SFMunvLIiKG2h8JW60powN5IKJvlRZxu07g5vn/Grw2XEe0B6y7gJlK1C4AU53p4t1MMFHx+uDtuyNT+85dQfUpJC0hqydA9RNkcKdRtkgyBhCtayvt/2BpE8D3OuJzdTAKE+6eDTuOBXuYnkFcEpAmfedTBZk5KOsGTrEhLtoKZSX8cyJh/hzo/tx4+G7MDIYUD+X19sHLUtgNu1ISIw5DKxq+y0RakpCqUDhRGVhuwSzGMCAcrU9hVv0gB6su4u1hASk1xfEkwGNC8nB9YO2m4+Jl+2v6qWObBsW/QCa+1lGIdQH7dK4bQp84rlw0MBAIhczkiT5NL6uRMRckKwKOlfji8VtXBU4fvy4f/0e2nlL6LXsBrCknBMFWP/7VBA851SoP39dZPAMAGRHa1bY1YSaXvbZbetKlq4RucyAb8s500EAbVrB+VprBfrMcjCWc2ZOMO5lhQRPr67PhAaU9YbkJOGMKz4ubp3w2TB1FIs8cdBpNfOma+72H78g+EHLbgDtgKBfJHy5CfGMY2G+LK3ZYjEKjQH0bCG4XoZSFClB/VzLXRe81j/Or6fsbaH3P3Z5YzQi2kLlFWi2aoAVTbCyBVazeVW6gcov/uZeV6BnyxLGDCEeGkmgPzuE4X6+Jrg4fbKJJfj481/3H9/10vXZrnaLF38AbTGUVza3B5rWHT/9V9EZTKu5Ai1SGMecIONCBtbZ++gqcQPcjDxq4QwAg/2BOmm+uIQ9/RQy4RfmpWKwD60q0EBgZbVVKNzoV4G8CbYUHNNMkvcE5TfOwcQHrVPQCA9o2wHqwsCQTKQxW5YwZAvnvq/31BPJ64OuO745vXdO43ygC561mUjjnltPH/R+/7E3+L3+nvtBCMHoUJDBXFpvH7TCLdw6UuKuO2Cmw+ltALQkgV5lMCrrD7yoxRNo5ZoQQMeIiHn9z4QxZKr8/JDBRE8s1/wqtM1CXuAevHuXMYZavf3NcWkusJ+ZGN0Xuc2RURuSO44cX+TXzFfPaZgr80UMEbLZ0zF0uhFXibtYXoFhGJHbxMJTnl/p8n3b+J7FnXfeiXw+jw//8mfxfXf+ZOi1UA90DyiyzKaw//aiP8aQPRlo7zsCaX+8SGAogJ67ugPohRWB4jqy54rsgydsuZyfhWnFs/SAxgp09wG0aQPnV8Pj3AuCPkQm0/sKtKZybQ1RNJUoElCygaoNomydANqjAgPAcJv+Zw+DfaPYs+MwAODM5FHUXYan4q51dUlGRvztbgCdpTYcRrBQ7V3Ys9rgJlIwgrXzUJpCtYOks5Q6FOwTIbwKnQ336z52+Qr1QSdksLwJ+4ll2I8vw358CfZjS6BzNX7tCBBbq0YGeluBnsrLmBDEV8kwv+f2u1XocjUfCuDzxUWcmTzKtxm/secV8XZ40QfQYEBhYXOrEXbNgaQSMMZQqACO0xxAix7Qg4bQ+7jOABoQJmxXiTsKA7kggC6Ul6HKwJ5+PgAt1DIA4TdyXya+BxoIMvx1o7r+HtYegCgSoBDQy1W/Cq2pXEhsYXUzKtA00sKqMYBOaCnMliQMWbyKYSsSrzz2GETwg/b6oL0KdN2owrSar49C2bUoKH7Tf86j5a4FohK3h9ffcz8A9LgCTUBsyu2M2sFV4PYDaJXAchgqhR5UoN3+s3JVoHC3CaAHe+QBLUI6GHxnVB+02H/XyeLtwuVAsfugQKsSkdGAA4P8GF7MyyjWCT55NFh4vu1IcL1NF6OvdzGrvbQU9qn/9qSKn/t8Dl89G32MiERAEjLobG273/QqQn9/P2674ZXYv+PG0POyrPjsj14EKGy65gsVkkM5qL9wHUh/6/uVTGxXoD0sLF/yH29EAD1blvDEtNKyyrhznDOiGGOYW7oUvyEaAmi1ewr3+bwMh4UDVlGUM9wD3ZsAmoBg9yhBKiF8ryaDVXhVEerWWfav5NdWzfT6oB3HxqkL3GRbc+3GTFkOF03dADpFHciMYq5Bf4OtGmCF7nUzHMdGvhSen6AFAdxwmoHWLgTbq+G2px2jzQH0yaX1sf3WCpKQIe1Kg4wlQYY1kH4NJKOApBWgISbZyAr0pBBAO4oEuA5KB2P6oJ88FhR5bjn86p7uSyfYOnfSBqJWdFCPsRbaCDi6A6IQ6CagG4BtCxRurbkCna7xm1dKEyC5/lNCxgUl7pgJe7AvoJt5FccDQ3xhQCEBKU43aVuB3mpWVgC/4VeMUPIglwIm5wF7g2nc1HAaW0YA8AC6UdFzpiRj0K1A2xm1J1XHRkiCEjdzlbjFcxolJFYoc9qRUnsKqsR/zHqExEQvaAC44dCd2DXO7URGhQB6vVZWhJBIEbkosDo/T563oaYCtkNQyfegAl13QCSCqt7cutGI5+f5cR0TKyHrFBDzQIQ+aBYZQIs+7oW2n3feDaAlImH/rutjt7vJpXFTRvCH301jscoXMHftsvDGw8FCJbYCLWSR5+dFlVPgfz2WxrlVBf/niVS84EqfCpY3gTUsirbx4oNn2daLCjS9GNxH8q1DvHewDchwkrNjsB1AhyrQPaZwV03g3z6Qw3/6Wg6fOxE/hu4K9UFfiN0OaKBwr6ECLfY/ezgWCqA3af3kKnEzk26tAHqNwdjN19zjP/Zo3JrD525DCc8rJCVU/B07pMRNp6swf/cFmL/zAuhSazZCI/KlJZ9R56/dtOA3DKcojHIQ7NVYuMVjx8iBJgo3A7miatxEIiCyxMUPEzJISgn5PwPh1qrhHld8p1YkjLtJKzoUMPHi+qAffz7of7718Gt7ui+dYOvcSRsIS3dQLm1OAM0oA61TEEVCrQ4YJkIUbq8S5S8eGYNS5gs9Zbw3QVRYSCwugBYo3F4APSgEDxluFdCfa9MDLU4APVY5XSuIIoHJBHS66lcDB7Kcwr2ywUzzuB7axgA6oaUxn2fIUh5skNzGDJqiEjf1lbgDVkGUlVXRDaAHMxm/p3W+ImNujQIcO0cPhP5//b33+4/FCvTSaneqywCncB07+3j4Sat9koTVwlZjBNwGqdqDdg+n7oDIBJUar0AntTRkqTlYnMxLOL3MJ/eXaEGw3asKNBlJ+BlcerHSVJHNpgf8x9U2izfbtnBp9jQAYPeOQy0FdW4cD/qgH74U/JYfv1XHrr7g/ohT4hYXUqJH6PlVGXmdv6dihnsJRRBVAigFXby6g5VtcAS9/uvv4WGCIJ+YoGqFcFtVPbat6mqAJyAGhB0aeoHTywpKBh8TWrUc7RwLvKDb9UGHK9DdB9Cnhf7nrMbP++ViUGXciB79SHhK3Db1kzlbActCAD3STQAtKHG/cOYxGBZD0hW2shsCaFGJO+tYISVu+nyeFzwoAz3V3frVs3ICeFEAABR1AhNGDffUl6G8sAJp5ay/zUo9PGdmBm8GFH7++5LBuPLolaJxd4iVNZ6zTlBasKC4FSh1LEiChZS4p3lSwnFsPH38WwD4fXTN7nAyYjNwVQTQZp2h3ANqZiegJgWzGSSFQDd4L0q48uiJiPFDvz9hgrgVM3WsN4qUoZ6rGCXugb4whRsADoYC6JsAtPaBBoI+SgCoVLdGAA24VPhlw++F3Cwat11uVuAGAMsBDDMIkhJqEtWV4HhrgxsUQGcUwLNRmdHBHIZcdsB/vVQNC4lRSlF0xcUG+kZwy0QQDB1dYx+02AOtyCpedecP+f+PDAYDcLcU7smZU/iF//p6vO9334KjJ7/DnySE9za3AStZTdUjokkoL9nrpv7SOgWRgwp0MhktIPbVc8EE8bLsBgTQhEA64C7yDQo2G+6DDlWg2wTQl+fPwbJ5ou/gnhtbbnuTICTm4Z49Jq4fdZDRuLgK0KoCHVwTYgX6yZnwPXIhHy+0RnIq6EIdpL65Fobb2HrwlLjX22bEKAO96C50swrIaOdMkaCtCmCLdVRMcgUta64c5gUP6PGR3lagJ4XxwNNciII4H80tTrb8TLFHWluDCreXIFUlFmLfeFXotNCjv5EVaCIRTuGxKKBsnWX/Sr5zD2gRO0b2+kylE+efQr7kwDvjjtoYQAsVf8cOJW7pjDAnttHNWK4S/N630/jscX7fe4HkWxJvxS/bv4iPD3wSn7s4ib8491385/PPwv7ri3h/9UeQdlmGjb3XTiqw2zsy+Cj6EnxefGpGjbRk3ioQEwe9rEBbNkKsUXkkSFjtnbgWEuHHz6tAnzj/lH/P3HHTayBLm28qtXXupA2EbVBUipuT9aUmA7UpiEJQrDAoCqDXwxTuYp2g7GZKj2jBDayM9yiAHkq0pYxlUn1QFb5QL5R4AB2qQKd5BbqvhQ80AGRTW5DCDV6FYsStQrsBUV8amFrYWBq3XXZAIiyUHCeggymyCkVRYeSDxZzSofr6WiB5fdAWBVvQQxXocqUQ2rZSK8JxeNDRnxvBbYI6+1qFxPqyQzi0hydkXveyd6BfuKY0NekrwndL4T5x/kn/8RMvfIM/kAnvb24BZlOgZvv9zx7UlIRy0Vm3Erdj8Pvf84FOR/Q/OxT4+nl+/ykSwyFJEM7ooQVTKzurbuiDF6aF/mf3XMZhLMswmgmPtz9+a7AQ3e1WofO6hEoEy1oUJhEr0E/NhK+/C6vxi2SkuZiYlG+9KNrGix8Zsc+0A7G8OLA53R9bpIO5rthiYlL7yacsvO3/DeLn/9doi3e8OLHoVqC5gGS0Fd5acbEQjAfzFQlxeVDRyqp9BVpgjXVZga4YBJddrZtDQw5uFZLRnpCYLMnIZvn80I4FtG4QABRNlNzNwkNPfh5/9+X/iRfOPOprr4Qp3J0HY4QQ3HwNr0LXjSpOnz/nv8Ya5nUiekFT20+uMMbAhACaLbemcH/meBJfP5/AnzyRxuWihJXCPK6Vr8UvZP4/jJUGMSKNNAVUY9IofmruOQDAfAODr4T9AACFUuydP4N7dvFjotsEL8xvXYdh75ypSqJtga0bTC0qGG9Q4PaQ0FJ+29/U7Bk4jo0nXhDUt29+Q8/2oxtcFQG0TBnyy5uT0mEWBbMYmAQUq9yTr26GeyHFDNgBwQNa7VUALRPfazJOiZsQ4gcu+RJfpI5lKNKqO+t4Feh2AbSwOClHWFl98Vt/hX/1H2/Hl7/z113/jvWCDGrAch1slQ9M/VlgtbRxntDUoqB1J7ICbVoMhhtAJ7QUKiagVoVqyAYocHsICYnN6cgJrIHGCrRH3wa41dm1Iw5SCr8mjs6pTVWTTuiIhBB85Fc+hw+971N47499uOl1L5O8UpjH/8/ee4dJctVXw+dWVefumZ6cN+eoLKEsQAFJgDDJvNgGTDTG2NgYA/brAMbmBYNtsD8MMmCDjYmSyUkgoYy0Wkmb0+xOzqFzqHS/P25V3VudpnumZ3a1M+d59tnuns5dde/93XN+5xhm9eepKD8fGDvBXkshTJ5dCQUO3Da8AYJcmiITX/xYQQ3KTMwkIJNjBWupCKsDowrmLDnyNb0aPAnBjb25flEWRDASK+yDdhXQC/RAV2MgJkJkoa9fr2JrC/9Oexr5MTNagoUWJdw2A51WgaOTBQV0JQaaEBC/DHkys6ols2sozIJe/OAvGvGJBn3VQDQSGzvNzvWfPRPEXObCkdOuBOweaBbjU9+sdpGBVg2CuTJmTNFIq7OpuVAWdF5goGt14T41y9/P9lbd1doiOnE3NNhRoMvbX0ZCHhDf0uIRF4ufPfYNfPRzb8W93/oI3vfxl+Oe92zG+z9xDw6dfMK5T62GVHu28T7o/nOD/A+Fn7FAwj2akKDqAJIakOK/STnDXRtDwgbN6VkZs/OTuN33Mue2rKzhZKABjzR04NHeZpjWku5liTj2peeQyEvICEu+iXwrwrqGfz77JN58ZBt+8yxPubiQZdy2C3e1ud2FGIlLGCvRvnVq1IsuYcOKtLjHB7sPWtPzGJ06h6eE+Kor9658/zOwSgpoL6GIxUyYK+DKaqrMhTmrE+TyLJPPttmXJBkexetaNPZRfsAoHfU7aVxO3NOlB4aoZSQWS87CNE0QIrDQ/vWA3FB1jBVQvDihlOJL9/0dJmYG8dXvfXJxH2QJIB6JtbeMMEder0JgmMDk/PIcB0bWhKEWR1jl8hQzMUCzCmi/L4jxhOyOsFqmHmigoCd+KufaFCk0EYu5CugWKBKwr5ON+nNZCUOCc7L+0ATUDx+Edn9lJ1OAGZddve/Wkr2zbc2sD9o0DcwLsRYLQcyxHhxl/blQJMA6B8uB5gwQwYHbhjcgQcvTJalVTM0ENYCMqkG3JM+lHLh/Ksi3b9uq8kxZj8SimOoE0hlwFhDm2ZQrQ7GW/ruzw9y4Y/MCDDQAvHQzO7aDHoo3X+pWwfQKfdClnLhL9UA/N+4pcrM9V6GABgA0eCAlVRhza2ZiqxmuAnoJRmKL6X+2IQkMdGuSs16DsfNT0JwP5NWss1nf0VJfB25K3QU0UMz42SCEOCz05OxwRVm/6oqxqk3CfWKGj+Pb2ww0+Cg2NrGCrX9ORtoalngBvbwMNIl4ioqSlcD03Bj+9Wsfct2majk8d+JRTFkbKn5fsKRSqxLEPuixcb5uIL5CBtptIqaZBKdnZbd8GwCdU53kllKYEiTYA/MyEnMzuNF3EwDA9AL336TijzddjY/37cMPu3MY3s833N47egw+03COSUqB4VkP/nz4eWzIM4KtbXjeiZJ9criYrLgQkFezzppxMQ7cJ2dk/O79DXjr/Q1FLYGnRzwFEVaFBTTvg3768C/QP3wEALBtwyUuT6eVxKoooD1egnxcR7o2k71FwbQMjLIqgaozd1+7gPb7giCEOP3PANAmZEDXqwcaKHDiLmMkZkdZmabhsMeijNsbvYKFvVeA28nXPQHMxiacImdmfrwmdrFeIFEv6FTOKVAiweVz4zbzBqhKXQW0YVCcGqGYTXAJt98bwEhCchy4geXJgLYhtQvHwlTOtSlSaCLmRFiB98mL0rMDQh+q8fAkYALm41PM1XqRcEdZVW8kFhcK6MnZYWRzKUAhoPoCWdA5AxQo2j31yAQGxZKirKhGYRoU8xnBOLCAgU7kCZ4YYt9j1G/iyh6VuUaDqSbq6cZOJAJpo7UwyeguT4SwmEG6gAHgWWuyioSiVWUtXt2n4wuvTODzr0xgQ5P7t+ht4NdL9UEHAxFnMWUz0GL/s50zPZqQUKnFmSgSCGU96WtYvaiH0zGllDPQAdklya4KUS/gZ8f6hjwvxAuLvosZU8uYAT2ZkpDV3eNm5T5oVkAbho6puZGy98svoYA+Nc1ff0crG6j2dvCEgmOWQ7ddQGt6fsFc6gsN//7tj+IPPnYH9yApAKUUn/6P9zkbV1fseTFuv+4NRQZyG3p21Dzvbeje4ajpYnNc5Sn7KzPQAHBkSnHJtwGwHvH50putlMJlWnluXkbXRBRBwtR95p4I/G1cmZWOncTR5tM4orF5s0vL4rem+jGZYu9lOgW86dwJ7Mvw9RdJariknb3+RErGYOzCK89mY7xnXfQqqRaHJhSYlEAzCT79WBB5Yf4+PepxGGgqk6L4rI09/Pv9zs//zbl89b6X1vw+6oUL7xdaBih+Ai2hI5VZ+L5LhamaACFI5yhAmLuvXUDbC2kxAzqaFwroOkm4gUIjsTIFtBhlFS924vY1Xbng60QqLE4GLddeoHZ2sV4gXhmgFOZoGpRSNIaBWHJ5ZNxm3gQ1KYhs9Z9TioEJipEpoC3K+6l83iDGkjKadWGwXsYCGk0+1hsMgE5lXX0rIosL8EgzgDuwX9HDd+h/eNIHkwI0rgIJ63YK0EF3f20tWGyUVeF7Hxw7xT6nYbmNlgFNay4HbhcIkF5CAW3q7LXH5/mEHigwEXvwrBeayV7/JZtVKBndKfjrKd+2US7OqloJdywxg9k4mzg39e2ueqGzqdlAV6T4d+htXNiJ2y7SJycnYZrU6X/2SBTXr2fHnUnJqmLw1rA4uCXci+uBptM5IM1We9KGcM19pIQQkE62kdmu5RCwfCYWVFFcRHBHWNW3gB4oMQ5USo2otg86LzBiC5EJhbAZ6KCHotdqW9kryrgn3AU0cGH5yCyEmflxfP1H/4zj/Qfw4X96Aw4cebDoPj9+5L/w9BHmT9IS7cSfv/ML+NO3fhb/9YmD+K9PHMQH3v5ZvPvd78YH3/GvNb++JEnYs/VqAIBs8vWuEnCfm2IPtJ16cmxKAR0tXheXk3GnVOLaoBmIydib4Iyo/7oeEB9fx8xOPYep+RF8Jv1PUMHmu1fODiJ7jq0L0j+ewEviBWQBBW5u5uuGC1HGPSsYiFWzkV6IWJafk2NJGV95jv9up0cUdFrnG2n2FY2xIgMtbsadr/5nYJUU0MQjATkTydRKSLgNgFLEUoBtBphTOQMN8EWjRCgCaX7C1stEDCiQ7U6U3tV0RVklWeG0IcoHeCm8f8HXCQmL8HQBizUwesJ1XTSMWEmQBg/MmTyQMRwZ98QyuHEbBUzXVAzoH2O917JEnd1lny+A6bTklnAvZw+0TBxDBjqTR0NQzIGOue4bFxjoJqtHfkOTiX0drGgZiss4MKo4kVg2Cg2qaoGLgZ6rpYB2s+cDoyeYhHsBBprGNZASfeoAIHklxMcXL/mlOoWapxicKo6us/GzM7xIvn2LCioaXdXRQMyG2K/puAgDiAgxVpUWbmeF3MXNvQvLtxdCV8SEldhd1onbNpTJZrM4PZXFhLVzv6dDxy6hv7qikdga1gC3T8eiGeglyLed52jnc/J6i4UeWEXH78QMb/Wpdwb0ufni8bxSAe3Ogh4oe7/F9kDPZAhmMuz1t7fqsGsBsYC2nbjdBfQy52zWEeIGtqrl8H8/81uuInpyZhj/9vX/61z/4zf/o8t/pbN1HW6//jfx/ve/H31dWxb1Hq679C4AQEDiz+sNlnfhjlK2jjk6pcAcK2bUyhmJTRU4aCvTWWwyNwAAhjECaV0IsRx/ndjMIfQPH8WoOYKvmQ8DAGQAOx8+A+PX0+h+ihWAJoCz4Guuy0P8PT05XP/N9KViZpG53TZiOXdR/K0jPpyelaEZQHyUwk/Zuk1qLV4HdbVtgN8bdN3WGG7Bto2X1Pw+6oVVUUBDIZAMA/H55ZcQGxkTBghSGdb/DHAXbr8vBEr5orEzbIIkrMW6T4IUqt/PQVoEJ+5qGOjEDGhMRSf4oGj4d5Z6mAvigFhYjNnGTjZE+/sVhU8GVBPIs98/Yrlxa3WWcRsZw2E2kxmKU0MUsgSE/MS1k+33BjCbIWiynCipTJhr8DLC2VAxKCJ5PggVsrjzQg90Y4QfH6/ezYu8bx/1gxYW0OcW724r7mTWcowk04UM9AkQiYCYFFQtXUBT1QTNGoCv9LnmDUpIzhowKknAK4BqFIkUMJMQGGhBwi1mP29p1rGp2QAVenTrFWElgvQEnX5v82zS6YMWmbnKBTQ3ENvYt7CB2ELwykBH2Iqyissle73EyfmRfq6AuKJHc8XtrSYGbw2LQz16oJdiIGZjMswft8EyGByYL338X4xwS7jrmwFdSgo/XiYnHnCvfSqpb1w90J7qJdwnp/l8vq2Vj1etIYrOMLt+fEaBarxwGWhR3g4wCfr//cxv4ekjv4RpmviHL/+hY6R5x/VvxNX76s8U3nDFy+HzBuCX+XfoC5Z34e5S2Fyrpg0eWyXkYpdjoCcLjqXbYqPO5YOB50EIwWxGuI86hudPPgYAuC/7TZzxs0235ngG+re44dkXO7bhFyrfdGjRclhnKbSOT8uI52pTuiw3ZoUWu9YaXNNtzOfc36NJmZR7KCajLVveQAxgioP1Pdtdt12598WQpfO3BlgdBbRHghcUMyvgxG1kDORNgpwK+L2ArmvQrb4LvzeIuSxBzpKC9EYM0Bj7G4nWv/eRtNtO3LmSTrR2DzQAeM7koX7sECJf6EdTmkmacsqmBSf3sB7Czd5b8Ieh9+GtA6+H+s/HQJPsMznGThbOGwMtEYBSp083Ggbmk8BMrL6voyd1SB4CVaM4OUSRygLN1rieE+MwvAHMZiQ0WRJuEvHU9bcvBSL0QSvzvJ8rIZiIUUpx/AyPhhJzGa/p09ATYd/fwTEP0v0FBhxD6UW7HbcJBXQtEu540l1AD1jHGwXKM9A5g22meEsPut6ABDVnLLoP2tBMTMcoNMF5XzRHEbOfb9/Kfn86LxbQ9WegiSyBbLDeQ1wDrIJdUTxOcV+xgBYcuDcvkAFdLWxJY0YjRbvSgHtT5dlxvnC9sodtOjjvbRUxeGtYHJbaA00phdlvFdAeyZVqUAsOgY8DG1VWWKQ1CTOrxIl7YlZkoJdHwi3BRLtVJE1U6IEWNzVzavnePjs5AwC8NTDQJ2eK+59t7Otk1zWD4OS0gkiEKxqWYnK30hC/G3s9oel5/OVnfhuf+o8/wrPHGfPa1tyDd/3mR5flPYQCEVx32Z0IEP4d+guJKKGAbpXY2nRjjitKpO18fCjLQAsFtGKaeIm10a9RFefa2OVZ0fVdHXfiQCO+HP6lZycMuM/zHzT14iftnZjOc6KJzqt4UR9vUXpq5MKScbtixxbRA21vCBBQbIiyefz0rILPPB50G4iVYKABdx80AFy19/z1PwOrpYCWCTwSRTpuIpdf3u1eI2sgZxBoBjMlEgdnvy/okixuCuR57+My5AA7rKOJkk7cTY28gN5wqgWggJw08eppZqevk3DJyZ1mdejfHYL6iSPw/MM5/Gn4z3Cb73a0GM2gwxkYj06BUurqgQaAmfnzU0ADAAhALcchj0Jg1tmNm1IKPamBeAj6xyim5oH2JtYDDxTkSXoDmE8DjQYvoJcbpNBIzOqDTgoy6KNnnsKpQZZZuGXdXrQLOZ2yBPyGzUJTChQacOgUdGRxJgMuBrpKCbdpmkUO4oPj1vFGULaApjkDRDddu84ivAEJWsZEcpEFdDxuIpakAOETtN/qgS7Mfn7xJruAXp4IKxEuGXeJPuhKhUW/VUArRMH6Aw3QvnbW2SRbLNxO3BWirIgPZ+KsF78lYGJjk4Gon6I5wH7fs6uIwVvD4uDKgV5MgTKvso0nAGRDCERe3LLpVzm+UN9P+PtYLSqKyRmxB7p+Em7DZBFDimniXwaewr2HHsbViSnMZKy4ohLwCwW0rRAsBbeJWC0FtODAXVBAF/ZBv3AZaL6mefVtv4cbLn85AFZE//TRrzl/e/9b/tnVRlFv3Hrt6xGQ+Carv4CBhk+GXbs2WhLuzUIevLSj0VFolWOgRQn31clpNFqk2OPq4wi2RAEAczYDrScAk6+FOlo6kWwN49ut653bng634vNd27EhqmLG5L4zNKbimj4+t15ofdBHBYKlran2HHd7s7zRT/HH16WdVq4jkx50C8cTWkqfa2IftEQkXL7nlprfQz2xOgpoAF4FyKVMpEqrmWtCMkMxOFG8ajN1E1Q1kRE8imwDMQAI+IKu2JZNEh+cl0W6KRqJlej3sHOge6RetKaizu0vS1M0WOxo4eROKYX25TMwHpli7tYlYA6lMBubKFqsnC8GGmCOvEjyiashVF8Zt6lSmHmKnClhbBpoigCyYIKQFwLifb4waEpzTr7l7H+24Sqgp3OIWAV0Ij3vSHrv+/nnnfu8+rbfK2LFb9uSR8RrolvNwK9Z36XwGRcr4w74w04hN12lC3c6m4BJC3rOZ0eQySYBiZR3BS/jwG1D9kgwDCC9yCirySkTeZ3ANIol3IXZz41+69hbZgYaAKSNfIdeLKBDCxTQuq5hyNoIu6ftdcCTczAPzkH74mnQ/OIVPW4n7uJpyNlUabwBOmXnxxU9mjOu2maHibzk3vlfwxoKEA4IPh2L6DF1ybeF86gWxHMEz8UDmFPYPN+RSsPe+VktTtxTs8MA2LrD9oOpB0YSEjST4IrUDNank1AoxS1xttaYKCPjFl9fXKMVQnTF9lYp4aaUM9DNARNtIfcao1IBvZSc8pWGuLkQCkTw5+/8Am684hWu+9x985tx+e6bl/V9XLbzRscNGwAyptuPhUjEccD3azokQrFJKKBJT5B7xMypJSMwRQn37YJ8+2f5nzqbvbaEm2judW5bcw86wya+1rYZ32jdgLH9Xfh4716YRMKuDgkzlLfNIaZiV7uOiI/NjwdGPdBWPrymJI71H8CxflZAb+jZga629Qs8wg1KuYlY1E+xq93APTv5hkVnNQx0L2egd2y6HI1CJOv5wKopoGUZMHNGXQro8Vng2dMU8QJTMqpSmDpFLCfBZ21A5vJ8Ie33BV3GFl1CBjQa619AS+v4Lqvx1EzR320TsZf43DIIP2TcY8mtCgto89A8N1SRALI+hB/gh/hQ4gOYo0xSS4fSGBh29z8DtUUU1R1eCTSlgVpZ4I0hIJaqn4zbzBkwVRN5SqAagL/g/BeVCMTTgai2Qg7c9mu2iQx01omy0nQVOTWDyZlhPPrMDwAAzY3tuOnKVxY9R8AD3LU9j63Cxoi0nxuS0XOposdUC9tIbGZ+zJVVXA6Fvds2BsdOgchS2QKapjTHkbwcJLK4KCtVoxgaNxHwuVkNW8JdlP1sv6c5oRcrvDy98GRdyPncouFbxIqyyqtZqFrx7vvwxBlo1mbaNf5r+XseyUD/6tmKeduVIDpxlzISa25sZxeabnNuE93g12Tca6gWS2WgxfNlsf3PB8cUUBAM+tjjvTkdUUuBtBqc5DVddfwt2utsIGZvQFyX4CkfbVbhW85ITJRwZ/Pl563FMNCjCQkplRuIFe7V9jSYiPpZgXR0UkE4LLYYvHAk3GqBhFtRPPjwOz6Pm6+6BwCwrmsr3vHav1r29yHLCgKEz60HTj9cfCergCY5A1uaDWzOse+ZSgDpCoDYjKdJgfniedBmoNvULC5NMdOvCcWD5/Xn0BrtREaD49IdlN3HU3tzDzojJnRJwlc6tuKrvduQk9k8v70NQESBZjHjNKZCloCre9n1jMbjzs43vv3T/8+5/Jrb3l1z22FOB/IGe4x9/L/l8izaQuxyt71GJuUJxV2br3A21++++U01vf5yYNUU0JAlkJyBVHbpjGM8xaKJ+kfdz2VqJvJZExmNcAOxvCjhDrmyCduEBeuyMNCbI3xnrT8Jc9y9e9AYaYEECS/2voTdIAEmYQfzy+eGEDY0VwFNNRP6D7kMS3nTFnj/YCd+Hn4Ih/RDOK4fZ3/Im5g9zY0SbJxPBhpemRlLWayZRyEwDGA2UScGOmfC1ChyVAI1uXTbhih3MpR2V4TViki4fTJgtQnQyRwighN3IjWP//3lvzuM7itu+V14PaV3AO/ZmceOHN8lNy5pAUJsgDfPpZwNilphR1lpuupyAi8HMQPao/BzZ2DsBCtEs0ZRIU4pBU1oLNqsAhQPwdxk7RLliTkgMW8iHCKOeQrAYqxUA67s56usCZJS6s6ArjEep1oQj8SKaACYzYPG2GuK/aGl2A/bQEyChM05946zeSIO/b7BqjY8CtEjMNCj8eJpyFbHoOl29v5BcVk3Z27WjMTWUC2WWkA70W8yAVm/uAL6mTF27g8Ifgh2HvS5VVBAT8/xjdHCDOClYsCSb1+V5FLYVqeALv3dVs1AW/O2RCQocuV5mhomjGdmIX31NO6y2PbtrcUbsYRwFjqtSZjXeD94LRLuZ44+hPd9/G584Zt/XfVj6omcqKqzIr4UxYM/f+e9+MLf/Ar/8hc/QzCwOMVGTe9DB/zCuuORwz8sug+xTVqzBva0qFhnbXDnmgJsbmzj651SMm67gH5FetQpmn7etA5UiaIl2snl24DTXmSj3WKgbYh9zVtadDREmjFrMoLLnpcv6eJz3bGp8z8+jE8PugiWF1/z6pqfQzQQs9V3QQ/why9iahw7AxpRL1OMloDfF8QX//ZxfOljT+DWa19f83uoN1ZNAU0UAo+mYbYOCpnZBOD1AGdG4WKhTdVENkORNwj81ppeZKADvqDjDElAEckJBfRy9EBLBNJ17c5147FJ1989ihfXhK9Dm8yYaGlHI862sx7UoGng7tlh1+LUeGTSMSAiWyOQdrHFt70IP6HxuBtzUJDIWDtVs+fLhRsAPBIzjxKYSZ8XmI7V5+mNvAlQinQeUEqMd6KJmC63o1ncPFkBBhoQZNxZA+0BbgAxNTuMH/3qqwCAfb5L8OpDL4X29XMli+HWEMUVJj+JfqVFIW0MO89bTta/EFqbazMSExno7Rsvcy4PWlFWVDMBreD9qyaTHZeJsLLhCRCkZ3ToNcj7KaUYGKeQdROSIrnPe38YcxnJyX7e26HDmR8ylqkZsCwRViKkLXwxYzzPvr/wAlFWtoHYdmUHvDo7TklXgLPZv56B8UDt53V7yIRHKh9l1RhpBbw9QIjFZm1vM7jkHWsM9Bqqh98bhGQ5tdbaY0oTqrOgJn0hFolZIygFnhll585ogDOfl3jYexmcl7HIfccXDGz5NrAcEVYyLknPOhm/ANCs56GYZlkJd8BfrYkYm8+83kBZxo3mDOi/moD690eg/885tAzM410TJ9Cq5bCjrXQTtijjHpyvrYA2DB1fuu/v8MFPvxaHTz2Jb/7kX3Bm6PCCj6s3VFfEF5e3E0KwqW/3ihTPAJDIEfhNPh8cHX4GQ+On3XeyGGiYFFfRGBSr93YiwtYuoutzYQGtGcBchkCiFDfPsrWJAeCBpm4guBst0U7MCvnGXQVq0vaWXnRGeAFtmwj7FYreBhONkRZM2X3QWQM0Z2B3u1hAn38G+r6ff94hWF754reVJVgqQXQUjwqbDNf06Xj3voRz/paTb9sIBSJY17V12Y13q8GqKaChSPCbJuZiZk0L40Lk8hTJDNDRDCQzbhbaVE1kcxQGiNP/6maguYS7LWRCSggsZHR5zIPkK1udyB7zmTnQjHtAf6mfRwtIV7Ti103PwaBW8PvcEKZmKXQToEkNxi+shTIBlJf3OQdw2IqyOqlz2XZwhheFm/rYIjiZjrmY2JUEkQlgUpe0N+QH5hJMertUmDmW/x1Psc2VQoi73LrcgiYhA3olJNwAQIQc0h6JL2K+87N/c5iZd3b8AaSYDvPALOhAsbSNGhSdSXb7hCeAr5+NABs4q0KFfsFa0CZkQU/PLVyQiRnQ+7a9yLk8MHaSMdCGCQiu4NSkoNM5ILtwAe0NSFCTBpLJ6vugYylgdBpoUAxALmCgfSHMCX26zUHhfc0vrwpFhHRpi3PZfIax/CIDnSxZQLNNsSs9Vzq3yTd2QPlNnqNq/HQMxtPFLSKVIEtAt8VCjyYlGAVfdSgQgdx6p3P9yh63IqCv0YBM2Hl7do2BXkMFEEKcKKt0trbxqR7y7aG4hGmLofL28DF4J2XvJW8QTFTILL4YMDHDC+j2ejtwz8su+TbAFrYter6shNuj+CAR9rdqTMRshlUETWrQfzgC9W8Pwfj+CBDj6zkJwP70nCvCSsTeTr4OOzXJSY6FeqBn5sfxp598Fb72g0+7lD9HTz9V8XHLAbe8vfqIr3ojnpcQMPj3nEMWDzz+Tdd9iJANvTXG1w7HPWxcIK1Ci1uBE/d0RgIFwf70HJrzbL4+GG7BjMcPhPZYDDSf3ze2R12Pb2/uRUe4+DjY3GxAloDGcDOmTX780piK3gbT6YM+NqWcV6PMZDqGHz/y3wDY73z3LW9e1PPEhE2GJr/7A72qkyuDSBkDsQsRF/eoLcIjwUtM5FIm0osjyQAA6RyQU4GAD2htBE4LLLSpUqSzgCR8q2LhJHmakMyzP3ZGTEeuASxfAU38MqQrLDmkZrp6oWnOwKXmpQCApJmEvsWLUW0YD1m5dA2GhltnRzGakKD/ZBTIWyHnV7dC6uYSKNuk5Yx+BtQaR7pzbFLobF2H3o5Nzn3Pq4ybEOczAEDQB2TyQKL8/Fk19LQO1Yov85Woh8WNgzya0aqvPAMtCUZiHQZ3YH/0IJM8SZCwTuXOisZzxX3GdDILySpMTwYaMByXcVzIAjdLFN3VQCygq3HiTqS4zHtDzw6nEBwcPcHYUQOOEzdVDZin4jCPxkD8cll5kA0lIEHPmUjVYCQ2Ok2RyVL4CQUk4lqUBXwhV0ZkS4BPHu4Iq2UuoNv9IOsZ80LHsjDHMi531NIM9BEAwFU+vkkh7WiEfGkz5Lv5Joz+rUGYp2pj92wnbs0gmE67fxNCCOTWu53rhQW0Vwb6rCisoZh8wRitrOHCRDVu86Xgzn9eHKNms88A0LuFn+O9GT5GDFzkMu5JgYHubK1fAZ3XgckEcI0g37bRquXKFtCEEEfGXdlEjM3bPp+7QKQmhfrZ4zAenHCp2iD4zlyTn0WDr3Tls6nJQNDD/nbwbBMg28dn+RaDp4/8Eu/8q5tx6NQTRX872n8+Cmj+vdUS8VVvJPIEAUF9kKVZ/PyJb8I0hfk7wFncwDA/p39tNMIw3axnIQNtR1jdGOdr159ZDtRSeC/CwUbX/L6prcnFvrc1d6MrXLyW2NLC3nNjpMXlxI2YCkKAnW3suIrnJYydxw22Hzz0n46i7vbr3rBo4y4xrtLugbYhfucLMdAXElZPAa0QKCZFPr00J+5UFtB0wKsQNISAlMBCm6qBZAaOfBtwD855ictUuyImELcWzz7JFfZeb8iijPvxKUeaaz4/By/Y5P6Q+iBimTkkUvP4VvYbMC2Jy2/MDmL6eAamXXj7JCi3u+3r7UV4HnnkW9jjekkvAghiffd2d0zR+TQSkwlokhcsXg+BqgOJxaUvuaAnDKhUQl4tzUCLk00OjWgRJdzLYCBXCqITd4vWVPT3O7a8GpLgbWYeni+ScdNhvug7bbE6/z3dzCTycDM2taC1WWCgq5Jw813kxkgL1nfvcB6bzidBdBNUM0HjKoxD8zD7U0Cjt6qNKskrA3r1UVaqRtE/BjT4KWACkAmyrh7osOO+DRQw0HPCcdC8/BOHfLnAQh+YdUm4C9mPWGIGs/FJNJNmbJQ2sPfYG3R69uWbOiBfb40tJoX+w1HUAtGJe7TAidswAT1yI7uiz2NbS7EUclMzu82gBMMlorDWsDowPkPx1o+b+NOfRPCtc6VZ4pC1oE1nEzX17DvGiAQ8S71GHBjjE8IlG0zAkos2zGRBVokT99SsGGFVvwJ6KCZjdyqGBitWSFzRtms5jCfLx9zZRmLZ/CIY6HnVaWeDTCBd1QrPn+7G0Ot3IW8x23uEhItCyBJw/Xr2+GRWAfo+CABIZUtv8Nz/wL340Kdfh7i1cdzW3INP/dl3Heb32JkDZT/DciEvSLj955GBTuQIApaEWyUmTJiYnhvF8ycfde4jrq/pIJ+bT3gaWAtQg8dZw9BZN8Nm9z/vs2IzqULwdJiRUkrDJSCEuCTcLSFg//brALB+4aaGdjQHKRTJfSxssdqQXBJu8D7oXW3nX8at6Sr+9xf3AmCbTq++7V2Lfi6xBzoaKFhXCqy/KKe/0LFqCmiiSJBMCqounYF2npMQh4WOJSlScRM5HY6BGADkVD44Z0mHc7krZIDGrGzJZS6gpHY/yDaLaZpTYR5ng7RxgLN4v8g/gPnkNBLpeQybw3icnAUANOkqtn/vOKx6GvJLu4pMr8ICA5lsZl+QRCRsU7ZhQ88OtEZ5AX1eo6y8EmhSd01qEmG/3VJATQo9rSMPAsN0x1fZEHugs2YELdbkQ2XimHAtN8QCuiFbHCPyyo2/6b4hqYP2uyWP5hA/nudb2ILymUkf9F5r5z2mumTJ1cIt4a6igE5zdrwh3IQNPdud60Pjp0DB8q715+ZAZ/MgnQEQf3WLVCKxfqfEbHUF9MQcawVoClJQwwQk96Is4A9hVpB4uUxGVpCBBgDpkmanf9k4OIuIX5Rwx1z3PTvC5NuXe67gj9/B708IgfyKPsfhnY5n2eevEpWcuJ8bV2BK1pg1/wCyueKFpWgktibjXr2QJOBLPwKeHffgTKK0msdmoA1Dr9jzKoJmdFDLeJP0BKseP0SoBnBogo3vLQETG6Kms0CUVBMhizm72I3EJqxUD6C+Eu5zMRnXJ7i3i7Sfs2OtWg5ZnSCeL90rWQ0DbSvHvAUFIk3z4ka6uhWe122A1BHAyXkPjlubkg3ZPC+yS+BNl+bgka21R897Ad+6khLuvJrFvd/6G+f6Nftvw7/99YPYv/06bNuwHwAwMTOIufhk0WOXE6og4faWkLivFOI5ySmgDUFd9nNRxi0SVFYL56THj5TiwdEpBYQQbrg7646ymkpJaFOz6LTUCGRdEJrGvmvDvwOUwiXhbgmaeM8bP4433v0n+Jv3fBWSJEEiQEfIPTdubbEL6GIJNwBXH/TR81RAP/jr+501+3WX3okeQU1aK2JCG1tjAQNtrjHQFz4oAMUwl1QwzSUovMKx7LDQYxSpeQN5k7gkvOLgnKatzuU+b96RmGKZ5NsiHKYIgPHYFOhMztldHzIGcdo4hVh8GgnLAfkH5CfO/b22PrLFB/kGvglgQ+yjnIlwCdIOZQfWd+9wcvKACyDKSjWLZNwTc1iUk7ANM2/CVCmyBgEpc0aJOdBpI4wWS8JNGjzL5rxchAaP0w8fSLqPuZ72jejL9xQ9pFDG7TDQBNiwm0+aA9Goc9lcRJxVqyjhruIYERnohlAzNlgMNGA5cRMCOpQCoYDUEWA98DXA6yGYmjSQVysfF6ZJ0T9KIcuATCmLwZCJu4D2hTAvMtBlJdzLP3GQoAJpV5RdSenoTnApf6F80JZvX+Hl/c/SzkbXfYhEQLqtxaVJQWfLLxgL4cqCLnDi/tohYUE2cx9iiWKJ5pqR2BoAoL2Jq76mcqWPA7sHGqg+C1ocxxYr3z42pTimQZdbOeZEiKprMtg8MDh/cS/FJmcYAx0ONrraRqpFubi8wVkJL7L6n01FgnwNH88WirLyWwx0uQLaMA3oFrNdyEDTNG8pIcIG+IkZBYdCXN1lnil/rHWETbxql1WESn5g/UdLthhMTA85hl1X77sVH33vfzsy2l2br3Lut9IstEgKnN8eaAK/bUAV8Drn+sMHvu/MwyRQXID2+9k5fdSKiXIKN5O6+tkn0xL2p/l6I9NNgQwz1zSkKOazxN2iFTTR0dKLt/zGh7Bz8+XO7aKRmEeiWB+1CuiwW8Jtrwl2tLHMagA4Pr3y8xul1B1ddfu7l/R8ooS7sAfaJeFeASVevXBxj9qFIEAABmbiiyuYTJNiNuHO+LVZ6DOjwNSkAUoIJMEdTuyFTBpR53IPFSQLK1BASzsaHekYPZWA/mMut3wg/3MAwHxyBglroEj4+nGgodX1HMpdvSX7RyNCAT0Z4D3W25UdWN+9zSXhPq890B6JbVoUGImlskBmCaoEI2eAqgYSquTaXBEh9kDnVB8arYl5JX57G4QQh4X2JAm84K/9qpe+k8sV/TKXZB+ed1hFqpmgE9YubEcA12zhE8KjRFg0LKKADgUijqSuGgY6LvRAN0Sasb5HKKBHT4A0e4Fm36K/33CIYH5Kx0hx3ebC5BwwPAW0R8F2tg2wAjrLvgOJSPB5A26JVykTMYmsmJmcdAWXcXcM8cIglY657nd25BhkyLjMY7mcBxWQvhAKISob6FT1/TE9DaUZ6MOTMp6fsL6L7Glg5juIlYg2W2Og1wCwcW29tUc7kyst2XXHtVVXQItST7JxkfLtUT4hXN5tjflCwbUlwM7/4bgseh5eVDBMA9PzbL1Rq3zbHM9A/dxJqB8+CP3nxfOCeS6JqDWXGlsbXWNRu1V0ljNoswtoTc/DMIpbRFRXgVjAsAoMNAnxcfvIpIJDIc6Cm/2VTeveeEkO0ZA1jnX8FhLYWHSfselzzuVtG/a73Id3beHqoJXug1YvkAJalHATn4KbrnwlAJaA88gBFr2EEi2SQ0GrgJ60MqLLGIlNpSTszXAiYbYpCaSPONfPxWSnRcuvUATLTOMdQh/0xiYDHustNUSaMWUUS7gDHnY/gDnNZ2pP1lwSDh572Imx3LHpcuzectUCj6iMuCjhFgpoSikvoBs8LHL1BYLVVUDLEny6jnQWyNauMkUmxx4XKNggaQwTpNIUiTkDckHMhSgXi2t857VNNJFahgirQhCJQL6O786az1v9HITiwfwvAbCoCbvQawxH8dhmntdIN4Yh7Y2WfO6QsDiZIlNIE/aZdyg7sK5rq5uBPo9RVkSRQAzKoowsBPxMlr8UIzEzZ0LLmcjqpKSBGCDschMFfqHGWInfXoTtxE0AdMuMcQ4FGnD7tlc5iwJpYxjSbus3zRigp9kigI5mWI8vANIXxOZmA52Wu+SPs82g1qFPSxTQ//28H2/6TgOeHC79eQkhaLP6oGfmxhfc4LIZaI/ig98bdEm4B8dOgnjlBfOeK0HyywjkNZwcNKGVce2nlOL0CIVJAb+XAAZlzbsSZ6D9/hAIIY7ESyLUFcfkMNCNK6dEkHY0OG0DkUEZYcKKg8ef/bFr86J/+Ch2KbsRJGyhKW1vKPkebQk3AOZ0XiWaAtQx0hkReqD/6zlhMTb09wAMxJLFLt8tQeo4lZ5bY6BXNdZ3AJ1qBj5VR6KEZNfFQFeZBW0O8klBWle8cVQNnhH6n50cc6GA3uxl54tmkiIfgIsFs7EJp0DtqNJAjOYM6N8fhvaPx1gbkUGZ2/+v3TuavUN8Y81/aZR9twr7/WvJgs6WYKHzFSTKNCUU3JaiYD5LMJKQcSrQgLwVm2aeSVacy8I+ive8krPOet9HXK8LAGNTA87lrrYNrr/t2szVQSvNQOddMVbnT8KdzBL4rIglyS/htut4K9r//uJe9v2XaL/QOtjvP5WWMZ0mZY3EplLE6X+GQjDmm3AYaID5F8xa8uSWQPldMJGB3tLC16DRSAuyyCBtsvFGNBe2jcRMSnByemVl3N/66b86l197+7uXHBtlM9CKRBHyCmugsynAOp+kjheOAzewygpo4pHg1XRkVSyqDzplFd7+EqRWq0fH7LQBb6iggBYG5rk8W6j6FYpQRiigV4iFlK9sdZhFG5keYI6y3bXBMZ6d1xBuhrw+jH/s3oWfRHswdGf53LWI2AOdjuGEdhwA0ChF4U8prgL6vDLQsJQHAgMtSwSmCSSXYCxn5k3kNSCvk5IGYoCwkeLpOC8GYs7rCTv0L+q+GQDwf+5+H7yjfHAnmyKuXjJbxm0KBmJSXwiEANevZ9uiKcmDVIvl8DyRdcWlDcclfPlgAKMJGZ99MlDW1MWWcefUDBKJyotcOwe6IdwEQgiaGtoRsaRzA6MnKj20OvgkNMo6JscNjEyVvsvUPDA0abHPAKhuMpaf8BiroJ+d8/YOdVOAwq5Bac5gsVpYmf5nG0SWIF/Gfl9iAC9veRUAYGSyH3/493diePw0dF3D0NhJXCH2PxfIt53nczHQ1Q+shHAn7smUBM0ATkzLTtHRoMSBaRafES9RQBPCWejZrOSSiK1h9SB+KIE3/uJpfPH0Y7h9fhSTJbJ/Qwu4zReCmhR0xBrvGj2LGqdjOYLTs2zRu6VZR5PVukHCgiu3hy+WL1YjsUkhwmohBppSCuP5OaifPALjV5POhq0N/b4hh9VN5SgunWODsyYRyLuibIPP+q0WknC7sqBLGInly+QcAyhgoNlvfHiS/W8QCTPt1vGW0IpcnQvxWy9JwmdaxELTS/HYObf3xvj0oHO5sIBuamhDdztjrU8NPAdNr76FZqkQVXVez/ljoHMZYT3nl7B7y1XYsm4vAPadHD71BEiwuPgMb+Dv+eiUUpKBphTAvOqoGciGMGaSEy4G+sSMgrTKjjFRXVYIUTG1R+hvbowwRZjTBx1THfPW89UHnc2n8cxRlsbT0dKH6y+7a8nPacdYRf0UYilhPMRrAvma1sKHXdBYVQU0FAJZp9DyJlKLcF5O59gJVcokKqJpCBED4Wi5AlrCXI6doJ1hE4gLPTQr5cIcUFzyTQAwLuHStKHxk87lhlATNjYZeKCpB5/t2YUzWvkB0o6xAoCzI0dxTOW7c+ZQGn5f0JHQzcyf3wIaMjMSE+FRgJnY4nugjZyJXJ5A09lzlYIz2Xi7XQU0VpyB5pPEb7/ovfivTxzE6+54T0FcS5hJ/u388CMxUN10OXDbUt7r1vMJu1yc1feO853dyZSMM7OlF4qikdj4eHmlAqXUYaAbrF4wQojDQs/GJmqOqymCT4asmfDpOk4O06LseEpZ77OmA0G/NR4Y1PbacxjogC8Ew+S7r+IOtSvGbgX6n0U40XYAXt/1JmdhNjU7gj/6+7vxiye/DU1XcYWd/0wYA10KLga6hgIaAHqsKCqTEownJfzX8/y5bu4+AVB2rsYSpXOmxUXJGgu9OuFpVNA6HAMA3Bobw0SyBAMdrI2BppNZHtu4bnHybTG+6vJuYc4RGOguwueCizXKalIwEOto6S17P5o3oH/xDPSvnuXrI4Xg55s24AdN1uMMCu0r/aCzeUwczaLFKhhHOpodkzebkAibOgKGXr4H2ssZ6FIFtOoqEAt7oIt/zyOTwuS/mbfG0DOVZdxeBdgGbnj1n4eaIXoxihLurrb1RY+3WWhNz+PM4OGKr1VPiEz5+XThzmf4lyX7ZRBC8FqhX/fbP/tcMQMdVLBpIz8ujk0pJRnoRJ5gR4L3P0tbIowEyhxzbnt2jP/uzcHy68irejW86dIs/s++LF6ymc/9dj/7tN0HbVBng2aXUEAfW0EGOptLOcqJzev2QJaX9tom5Wsg0UDMnMo6psZKhwJpf3E6zIWMVVZAS6CaCUU3MTRZvCheCIm0e+fEBjUpzPEsIlEFslymgPZ2Q7c0rl0Rw7V4XgkTMRtipBX8MgKX8v7kkYl+53JDuNnpvwCAbx724+BY6ZNIXJycOHsQJ/TjznVbBmf3Qc/MLyzPXU4QrwSa0lzvIeQHpuOAUcaoZCHoSR15kx0YBKVZMKeA9nW7M6BXmoEWih0yq6Gzlcn0nQLaI7GoIo8EaXeU3ZYzYJ5M8AJaJiBdbMLc1WagySoKH6SctbZl3BkN+OkZd3H4yGDpTQPRSGxysryjaC6fhmZ9h2Im4XrRSGyJLDSRCCgFWj0GxmeB0YL6bTYODEwAbeJ4r1OAUlBKkcvxAjqeIzCtgPQmsYBeYQduEaQ7ANLJfkPPqI5/fuf92Ny3BwDrL//kl/4AbVIbNiiM3SDrQq5eP9dz+WRnI4hO5Wo6v3uFPuiHznnx5LDFHgVN3LyBFzqleqCBAiOxi5TBW0NlBNcHoe1iJ2KPmoF2rrgYEjd5qyqghbQBOzu9Vjwt9D9f0VPadKqFrgYGWoiwal1X9n7moXmYJ/jGp7SjEan37ME/Bbbi813b8UzI2vxP69C+dBrSM3xQTm7l84Co6GvTchgvoUgAqpBwV5Ioiwx02M1AE1C07+XHjNm/8PG2OXAMSPwaADCaCuJnZ/hnmLAYaK/H71Lz2ThffdD2BoMkyVCUlSUCRGgZPt8Qa9P/pivvcdacTzz3E0ykR1yPIT0B7Gznc/GRKcUdZWUx0JMpCXsFAzFps1VAm2kgy5JqYkJvb3MFCbdEgN++JIffvTwHsUzwev0IhUK8gAZfG3RHTDRabUrHp8tHstUb7vaFpW/up1QCw1oDif3PxsN8ndf8hmjNZq/nG6urgPYQQKfojJg4MwocG6jtaJxNlJZvI6mxgjhcXGA6BXSA2793RVg+rY2V7IOVOgOQb+wAPBKUO3sQamiER2EfynacBFhhsrVVh1+xexRlfOCnEfz1L0NFphyihDunZnDKOAnT6kmxjVjsgV/T80gWmBWtKLwS64HW+EAX9APpLJBcZB60ntSR1gG5wvrHcaz0djm9WcB5KKBbfc5ZTyet9zSnOjv+ZEMIxBrdpUsEM5Qnp0GnLefw7qBjJidLwLV97LGH/KKRGCvIH+j3IqO5B8VHB0t/5rZmvpkzMVFeqeBy4BYK6A099SugAQCKBDmtwSMDp4apa4Pl7BhFNg+EA6IWyQQI2yyxj/9AIOwyEHPtUM+vfBuH83qEuNQoDackfOrPvou9265xbrvcw/vrpO2l5dvO89nKhqzhWlwuBLGA/h/Befv1e3Noa+S/bSxZ2s1t45qR2BoARF7BEwRajxcfK24J98IFjRjXt5j+Z0p5/7NfodjdUdwzCwBBTYPXijK6eBloUcJdgYEe54yv8qp1UN66BScMxv6bRML/69uLEYs1ppM59Jyy5NuEwL9PiNdrchfQ02mppEHbQhJuMabJVyBRpinB0SmkIK0C/ZYCZkOTgdDGIFdw9VfugwaAcKgROPcB5/p/HAwgqwGmaWJ8mjH4XW3rS7bR7T5PTtz2mqYoI3uFoQstebAMqBTFg1e99O0AmFrsvke/6HqM1B1ExMedsM/MysjpQpTVHIuyYv3PrF1MlyWQvhBvQxT6oG1UknBXQlNTU8koK0I4C53MSy6vkOWEKqgkC4/9xSAuOnBbmww0qcG0o3T9EqL3VF5jXIhYVQU0kSUQw4SHUrQ2Aof6geHJ6opoVaNIpIsNxADAnM0DulnSPc6Js/Fxd8WuiAnYBbRPKmmxv5xQXtEH399fBvnadhBCEG1oK7pPQ7gZYS/w6Zclsb2VT/6PDnrxlvsb8OWDfmStOcTr8TtFOABkaAbDBps06VgWVDNdWdDn00gMHglQTaf3FGCbIjl1cQU0NSi0tI6UJpU1EAOAvN0D7e0q6IFeYQm3Ijk5pHQ6z9QTLvk2l55J2xoc90pbZgMwAzERtow7pvgwH2KDLR3OwFRNfO+44IpquY0OxWUMxoqHHvEYqSThLsyAtrG+e5tzeWjsVNnHVwvik0BjKtoaKEZngDGL8JhPUpwdA9qi7vtT1XAZiAGMgXZlRJaVcK9sAQ2A9UHb6vNnZhHyN+Djf/wtvOiSOwAAV4oFdJn+Zxu2OR1Qm4y7t5F/H5ql4mgOmHjZtrxrXIqXYaA3NBkglnB+TcK9erH5Ne3IWMZNG4em2bkooFYTMYeBlgDSG6x85xI4Oy870XX7OzWIfoYiA03SOtZZeeijCQlq9XtPLxi4C+jyPdDiuCHtiYIQgpMz/ItLyx78zbpLkCqQkz4Xasa6Tj7GFjLQJiWYKsFCixLu0gy0IOEux0D7ZRBZwtEpxVEZ7evQQWTC59KkDjpZeUwMBxuBxKPAzHcBME+Hp0c9mI1NOGqr7vYNJR+7oXenk2BxvP/piq9TT9jRWj5f7edHvZDTAUUgQ2wGGgDuuulNjtP6j5/4b1CB3SQ97D3bPcYmJTg5I8i4DRZllRpXHcPfZGcERJGcAlrO85ZHGy0VJNyVwAroYiduANjZzseyYyvUB60Kx76nDgx0TCARbAbaeHzKyeSWr2mDHH7hzd+rqoAGWBY0VAONYZbZe/A0RTy18EGfzpU2EKM6i/YpVwTbO5skuNm5rSusg8Ysxm+FGchSaIoUN+7bhcm2VgOfvTuJP70+7ewcaQbBfz8fwPt+FIGqMzYrHIy6Hn/SsBhAy4yl5QKJsiIeCUQ3QYUsaHtXN56uffAzsgZyaRM5KpU1EAOEHGhfD1p1y6ACWLHoIhFOsaOZQEwtm3dKFAnSnmjR46WCKKNLu3THTflZn3V/g+L08zmHVdndruPVu/nGwWMlWOjWZi7hrp6B5ixqURb0UuGTQfMGvLoBiTAW2jQpzo1RpPNAQ6iADcibIBJBNse/z4A/7BiIAUBzsLSEG+ehgCYNXpBtVmExr8J8fBpe04u//v3/wMtveDP2ey5hfwsrzoKjHKRFOnGLUVY2XrcnB5/CGCKvl30v5STcfgXosfKkB2Kyq3dwDasHvesUPNbQAQDwGQbMwzHX38M1mIjRvMHj+joDi3LzP+CSbxdUxQHF2biiaR0bmrjT7nDihbeIXAi2iZjfF3Iphgph2uOGT3LmxRMz/Hvc1KRjzBfCx3r3wxSG3uda213JBoUFNFDaSEyUcJfKgq7U42v3QNvybbH/eY+lNiBiH/QCcVbO8Tn1Vee2oZjs7n9u3VDysbIkY8cmljc8PT+GqbnRkverN+zv53wy0PEcQcAUzi+BxAoHG/GyG94IgKnC8pJAXFjzmWjmdWhCAWlxG4l5Bvnvpm9kv9GMtX5tIMWxapVcuCuhubnZVUCLOdTnw0jMxUDXwWF9XmCgo34TVDNhPG59XolAubG9zCMvbKy6AhoEzu50dwvrZXz2NC0bVWMjnQXyGopYRhpTgaRWUr4N8IFZCm51buv2aFxCvMLSzVIox0DbkAhw+1YV//EbcbxuTw6KxL6rM3MKvvwsm1jEBQoATAT4YPDAgxrmPTc412fmzyMDDYAS4nLiBtjGyNR8mQdUgJk3kU1R5FE+wgrgLtySr5cz0GGPI5deSRTGDlGbgZYJSIFcUb6keMFTeB+PDFzTxwb8o3YBDeDkET4J3LMz5zh2A6X7oEUTsUoFtMhGigx0tKHNOW4H6yHh9kogqgma1tHRxPqgTw2zzPeWEn5aVLUirHJuBno2I2RAB4T4BpGBPk/jgCyYien/OwT1r56D8e/9eHfjHyBA2Lkt7WhcMGJrsU7cYS+bUG00+kzctd1qFSAELS1sg6SciRjA+6BV4+KNAlpDZcgywYFu3h9qHHAfL7Uw0HQ4DdsNkCzSQOyAYCB2pdD/DDB/BdiuwCnd1YZwsfVBU0qdgq6jpbdskgfVTGDOOu/b/CCEwKRwGOiWgImP3ZpCg8/EoXAzPtu1ExohmPAEMLnBbYyKKgvoBSXcQquVyEBTQ1CwFThwA8DeTiuSZwsvoM0FjMScnPIsT0IZSUgYnxIcuMsw0EBhnNXKsNC2qu58RlglcpKTAQ0A8Lp/59+49Z2QCLttUrXWnT7JWQPt7+LF6XMTCkib20gsOsY323zbwsjm08hk2W/Z6uVKOBvNi5RwswK6WMINANtadEiEDUgrxUBXinBbDMSEjGiAMum2HZu6v+m8KPDqgVW32iCKBKSt6BhC0NsO9I8CR8/Rin0qKYtALJwA6CwzzbF7QgthF07Ez3ug28Ue2AuggG4qUUA3ltgpDnmBd1yZxWfvTsJjFdHfPuLD0UkZYaEPGgCy7fy7lEdS+PHMK4AdXweUlvMeZQUC0LR7URP0A/NJIK/WxkIbORO5LAWVJEgVcvLsfiHZ24UmSxIkRc+P8YZY7Jhnko7jJFkXAimIOSNbInyxB7gmHxF2cTwp7NQnJtkA2RQwcf16DR1hE9ta2G2nZ5WiXvqGcDM8CpvAKjLQgqlHQ0gwjyEEG7otJ+745JJ77QkhoISAZnT4vOy3PTdOkcwAjQVtkZRS1hogF0i4/SHMZ/lxUZKBDilLyqxeCqQ9URAxe9GgoKeTMB/nG2DSjoV7kxZbQANAbyNfAL1mTw4B4bSwC+h4ahamWXpxsmmtD3oNYBLLUWv8Mc8kQec4i+IUKFiYgV5q/3NW44xkZ9hwFBIibOaSpnWnDxMAzs1fXEuy+cSUU4hWyoCm0zm+adHBfsPRhOTEA21v09EWovjADWw99bOmXrxp241455Zr0d3unndLM9DF44Lfy3/bhXKgXX2gaf57kZACVedMeVfEQKsl4yXdQd4C1Z9woolKwTk+c2ec20YSMsamB5zr5STcALB7y3kooG0J93l04I7nCfxCAV3YRtnVth7XX343AOArqf9AqiEP5RV9zoZwR9hEV4Q9/viUAj0qFtA59M3EAABZSUZ0awBzMW561R3JO4WtDXGDvBY0NTVh1pzl3kGCOi3gATZbm8SDMQmpFUgqEx3o66EwcEm4fSaMh4Xoqps6lvz85wsX12hdDRTJlVHrVQjam1g/9FB541/EUhRKwRhM8wboZL6sOy3AGWjTx+IHWgImPMIZsNI9sKUQbSiWcEcqSK22thh482XsBKMg+MSjIQQCbgmGtG4LslZP2nZ7wdL2WuDywzgyd37lGsQrgSaLC+h0rvY+aDNvIKvybN9ysCXcjaQF9mF0vuT7YrFjPM2ZGmlTMdtCZAnSvii/3hsqyUZe2cPMcKaFwdY2S7t7ex4e60OLLPSjQ+5jnxCCNkvGXbEHOlW6BxoA1tfZSIx4JGc3uC0KnBsDmiLFG2kwKeubknkGNMByoF0mYtYESw3q+CCcz91X4pHged8ueN6+FdJ17cVScoWwXviF0OBxdv9rkXADwFWWxLU9ZOAVO9yZqXYBbZoGkplYyceLDN65tQJ61aIjQvGLKBs/CAWMA1yp4mKgM5XZQJcD9yIK6OcnFKef/4oevWRyhxNllTexMczXI4MXmZHY9ByXubY3VzAQEzbd7PnphBDbs6OVnePX9Gl4zW5237jihS5J2BB1q8mIX3YKV6eALtEDvWAOtMoXAy4GWtx8D3twckaBZrAfea9gFkckoQ86w9sCSsExuTNzCIAdtyNxyVVAF2ZAi9i5mTtxH1uBPmhd12AY7LOezwzoeI4g6JJwF//Or7nt9wAAT2pP4IP6hyBd5V7vXmIpBjST4CT4Gsg8kUCjyubo0+FGeDySi/xpj7aiV9gc88kUIe/iCujm5mbo0DFPGTngSukBsKuNvUcKgpMrEGelCkkx9eiBFk3EukfmuCHt5gik3sWlHFwIWH0FtIcAeabBtxEJEngVJuVOZ4tPAEopZhPFBmJ0XgXSmivXsRC5fAaQAjAVxvJ2RkxXf8OFwEBHC3qgWU9zZdbpNbvz2Gmd1KMJGVORd/I/Sn48afweTlrRIW16HuuoVVR4O3DAfC8+8UgQqfx5sqz3SqBZg0lu7ZsUluOcqLGANrIGkhlasf8ZsGKsiActVOglPU+bJ2IBjRSffKSNkRL3BuRLW4T7lJY0BjwsqkUsoNu0HGRCHUkuAFwv5EY/WkLGbUdPJJNJZLKpor8DQFwooBvDbvme2Ac9WJc+aImZwGgmAj6CrX1Ac0OJ41anjGGQiWsx5veFMCdIuJ0Yq7jKGZfzPAYQRYK0vRGeV62D98N74Xn/bsh39kC6pBnKGzeBBBeesIlEHGUCnc2DlrK9LYM37Mvhn+9M4F9fnkSo4KtobuYbeeWMxNYK6DUAjE36RbQb9pFnHJhxWD9F8TimUelseQaaUsoZaL/sHiurhCjfvqJAvm2DCC1fbVARsNIuLrbjNy8wWUF/eTl8qQJaNBDb3sbnqbdennUZm25vLfZRsMfUVj0HQmmR2gko7IEuVUCLDLRwHIgRVkHFLd8W3dZhKbgsVJJxh4UNHr/JJO8pVcLIDCuoCCHorMDgR0JRrOtiJpqnhw65vvflQMWIrxVEIi9VZKABYNeWKx2J+7mRY3jm6EOuv1/Sxc/RA8kAj7ISNoJHWqMA3P49zY0djn8BwNRlFUSIFWHPc46MO6m55tBdK9wH7Tr266AwmBejvp7h5MgLmX0GVmMBrUigusHklgLam+xs1+ICOptnPdBFBmJTWVCZlO0P1HSVRUP5RQduAzQuZEJeCCZijW4JdzgYhSxVnshlCfjADWkngmNEuRtovJH9cesXMZFrw0lhUviH3RPA3A+c6z8748N7fhBxnLxXFF6Z9aDn3ROvLDOH5VqQmdORMyX4KoxplFIm5fd2okU/fxFWzusGleKefQKQDaUXONLmCORX9EF6URuLQCuD69dpyEsyEjJbQLZqOVy3XnMkbQCwLmo6ksWjk4rLoRpw90GX65WvzEBvdy4PjBa7ZNYMPzMSg6Va8ShlZkidshgribgK/6A/jDlLwh3xmY4b7/nMgK4EQgikzgCUF3fB81ubIO9tWvhB9mPtYoPCaQuo7jWB3R0GmkrI38QCOpYoHWXVGTHhV9h4fmaGYmxqwPk3GRvE1PT59VxYw8qgI2xgxuPHc3Zbx5zq5NEDQCjAipl0pRiruAYkLIPPvuCCvf+lYBfQEqGuxbkI0YkbGW4kNpGSz8+cuEzQdD7OKUr5ca4kAy0YiG1v4XO1RwY+8pIU7tiax7uuzLiy4J3nsApoD6WI6mppEzHvAiZiWukiggqbzghXLqClKo3EQiFOWHg03vc8nrQ2AqJdC/ai2kWiYeg4NfB8xfsuFS6J73mUcCfyxN0DXYKBBoDX3P5u5/J3fvZvrr9dIvRBPz/p5U7cAua62O8jFtAt0U7X5m3zIuXbAJNwA8C0IcxxQp2wS3TiXgkGWiuzebRI2D3QN8fGHWM20u6vqj3sQsaqLKChUaAg5kKSCBrDwMkhFLHQ6RyLORIZaJrWYc7mQcILy7ch9D93RUy3POOCYKDdBXSp/udS6Gs08buXCzudW78IrP8I0P6bAICzYX5yNExn0Dz6TuDUW0EMtoAZSch4bOg8fH6FgOiUFUYCAl5gcg4LZjaKSM3pyFMJ3gofwxmMvN3nNcJKRCGzQnqCTPpWBsqNHfC8en1FNvKadRokQjFjSX5atTzu2V4s57VZaAqCxwtk3K1CAT09X+xyCZTPgQbqz0ATRQJ009X2URK6CRgo6oH2+0KOhLucgdj5cOBeDhSa09UDtoQbKO/EPT51FmrsIABgKuPD73z4JvzOB6/A73zwCrzvCzfgA3/zlrq8lzVc2OgIsU2UB4QxRGxRCVmqqko90OagkEiwCPn2RFLCiOWkvatdR7jcqS1uYKY1lwz5YpJxa8J8561YQFvrCAkgLT5oBtA/y76H3gYDYV9Br2mQ4v3XZ/CaPWU26gr6oJOqhGSB4k2UcGdL5kCXibESGGgaVBxGsClgFvW7k86A4yFi9ifL9kGLDDQR+qDTYBvWlQzEbLj6oPufWvD+S8GFwkDHKrhwi7jusjudzfnnTjzqWuO1BCn6LB+OE9MyzGZ3AZ2RZNButtniKqCbOl3n7WIzoAGhgBajrOb5sd0ZNh312vFpGRXa6esC1WUiVgcJd4bgTZOn8aejR5zb5Js6FrVBeSFh1RXQRCYgJnXJd200R5iRVCELncoAmgEoQo4cnc8zJ8ZA+cmOF9ACAx02QeMXdg90paiJQvzGrjz2dlg7ZYFNwLo/d/72spfwRYI5mEZbUxcw+R/AiTc6tx+fXvnFAiGEDaAFTtwhP5DMApkq1/6mZiITN6ETAo9cfiCwDcTg7Uarq4A+j72v7e5dYzG+arFo8FHs79QdGbcCij3BYimZ243b/R20CVFWYv+ciKTFQEtEcvU2AuxYtlsSBsfqwEADACGgyQUKaLsHWiKYF5hSxdfm9Me5DcSE46Bp6RPUhYClGImVg4uBTpZmoB986n6Yyef4DaHddXntNbyw0BFm59cTkXbkLMMS89C8s1Fq95lm82mnf7MQ7v7n2h24XfFV3eXHDJGBpindJQU9ObP8DNNKQRUYaI+n9HxHTeqMF6TFD6JIODsvO33kO9oWGHtLQFT12H3QhTLuBWOsyrBwVCigJ6gXGY33PxdKeIlEOAudM0DHSveIybLiZDmbaWHjN8DSWyr1P9twO3EfWPD+S4ETy4kCg7UVxJPDHvz8jM8t4faWLmlkSXb8UTQ971KxAcB+qw/aoATTfvfnORqMos1aZswUMNA723THUHdLS7ESolrYG8UuJ25RqUp4H3RalTAct2TmFJjNEJydk1BD19SCUAWlpHeJCgOa1fH2o4fwupkB5zbpqlZIVxZ7L73QsOoKaACgBDxGSkA5FjqVpa4vipoU5kQWxCeXjWUAhL6aAgba6YH2SWXzo1cShS7chbLYSpAI8P7rM1CIW3f2lsuyuHonAVpYcUAH0+iJMCM1Gn/Mud+JFZCjlAQhoJkCBtrPiudE8WZ0SRhZE7mMyVQNFeBMzt4ul4Qb57WALmCgSxiILQY3b1QxrQjPHVeL7rOl2UBnmH33z40rSAjMgEvCXaaAtnugG8LNkKTi776vawsAYC4+hVQluWaVIF4JNJavqEygOgWhFEQiGB7nUSSh6DbncrOQEXkhRFjVG8tRQIsMdLke6PHpQSBz2Lm+Y8+b8OJrXo0XX/NqXLvzHlxzxS11eS9ruLDRFjJBQKFKMg62Wa0mqgnzeaZYCQe4IiqdLS2nXaoDdzX9z4C7B5qmdZf0975jvosmz1wTzYishAVKgQfPevDhn4bxg18H2VhoxYiWMhAr1eO8EEo6cRcYidkFK1C6gHaxcKKJWIr/rqey/PZC+bYNMc5K+0o/jMPzJecS23dGS3CWzi6gu6sooPu6tjrPcbT/6ZqUdLUir51fCff3T3jxl78IIacXmoiVJ2RaojzmrjAJ5lKh1aKfuM/7w6FmZ3POxUA3dqA1RPGxW1P4/aszeNXOxc95CzHQgLsP+mMPhfC79zXgrq9G8fpvRPGO7zbifT+K1I2ZztfAQBsm8BcPhPCm7zRgMOY+x8ypHNTPnMClCTZ3GyBQ7umD8tr1L3j2GVilBTRQXDzZKMVCzybglugmNTbol8l+tmFHWLkZaN3ZWboQ+p+BYiOmWhhoAOhpMHFr17PO9XWe5/B/9rETUN5lLVpMikukS9hlI46OAFuo9M/JUGvfYF4yiFcCTbiLO1kioLR6IzEzbyARN+AJVD6N8gIDfaFIuKWCArqcOViteNk2Fes38Ems0E0SYLupNgttUIInh/n3YJuIAcDU7GjJ10g4BXTpjZ6+Tp65PjJxpuR9aoJfZuNFvsKqVjfZxhyA4QlWQCuyB7KPO8+KPVIXag/0UkBafYD1HSxHAV0uC3pyZghI80Xnjr1vxoff8Xl8+B2fx3te/hm8681/Vpf3soYLGx4ZaPKxc/SnDYKM+7EpmENpl0y2VBY0NSjoiDX4N3lBIrWNz7oJHBxnj2nwmdhaiZESkzvSOra1GtjfycbE0YSMhwfOvzKtHtA0gYFWvJhMEfz5A2F87Fdh/HrYi/ff24r0sDAnljAQWxQDXUUWtN9XWcJdNsZKaOc5nKqigN4TBYLW55lTof9nP7R/OwWzgI22WwwyiaOQ7Xgkh4FeX/K5Xa8jSdi5iblxxxLTbGNxmeA2mVo5CbdJgX8/4Mc/PxGCaU24nd7KLtw2WqN8bVHoryLmQR/U3GuhQ6EmtIfcBXQwEEHAMsW7rFvHq3blXfGLtaKxsRGEEHcBXejELRTQZ+cVDMVlqAYvQo9PF0eDLhaqsE5dqAf66VEFTw57MZqQ8b3jvNg2zyahfeY4YLVzJWQPvnblXsjXd1QkHl9IWJUFNPFKLhm1CEkiiAostGFQzCdZf6wNmtYBnZZ0/BNRKOH2yBRNROfs9wXCPCmKB5EQL0aq7YEW8a4bOhGd/Ev4xv4W//fF3I1Q2sOfd3tms3O5088GIt0kODN3Hnq+PBKQNYrcghUZmIlVt42nZQxkMoDXW3kwcOIwfN1otRho0ycvePwsJ0S2kHT4K0ax1QKJAJfu5MNKqQIaKO/G3SksFMQIDxuarjqLnUio9HG6rosX0EMCG7xo+GRmOFepD9pgx4xhGhidPAsA6OnYhFiefzZRwg27gPZIFV38X0ggXtkZ0+h0ri4MiLsHunQBPTEzBKQ5A32xORmvoXq0+VjRekCOArYr/GgG2meO4z0Db8aHwn+OO3x3IjdV3AdNJ7LO3Cytr519Pj4tO3Ley7t1yBVWV4USbgB4435elHztkH/Z+xxXApyBlnA4dQXeen8jnhrhY6KqEZw8JkhVCxhoRaLY3FQnBrogC3phCbfIsooMNJ8HDsRYYR30UJehlOu9NHrhefcOlyM37U9C+8dj0L41CCPOHmezx2o+iU4rm5gV0ATd7RsLn7YkxD7o48sYZyW6fK9UjJVqAB9/OIivH+av9/o9OWwIWHMpgeOgXQotTdwAtZCBjvqp08/8dI4X0BlJRr8/gvawwdJ4rBzoVoHNrgdkWUZDuNkl4UbB2mlHq+HKjPfJFOsaDSfHGoAj7V4q3D3QlQvow5P8fD5n+TdQSqF/a8BpkzznC+N9m65CrCdal/d3oeDiWLnVCp8MmtFBVYMt+grQFAHOjTMWuq+dIJcHokKLKDMUWnh2yxaYiHWFTZD4hSndbGpoQzLNpG6VMqDLIRSM4BsfeC9AKWSZH1ZkQ5gVCGkdXfMt8MADDRqiOAeAFdQnphWXy+CKwCsxKVbOAMJ80AkHgPE5IJmhiAQrF8apuAlVBYIL1J45u1/I08UZ6POtPmjygmyOgPYnIb+ovrncruO6TAG9q91Ac8DEXFbCgVEP4jmCRj9FY7gZkVAUyXQMoxNnix5XyYHbRp9QQNts8FJAZML69DI6SHMZOZNOAcrYUNt5tq9rK2YFl/EWS8JNKXUYaBL1XjS7sQBbANN5lZ1XSZ3lQy8B7h7o4gLaMHRMzY0CpgHZmIYht+HcvAxKsehIkTW8cNHqN3AyAYAQxF/Ujcbvn3Wmar/hw/XeG3C99wbQ/8zDeO0MZKEPb6n5z9XKtwG3hNs2pbq0S8eONh0nphWcm1fw5LAH165bOUtualLQyRxIuw+kUvVfAzRdBYK7gK1fwC9nXuTcbo/9ADA3IKyJ2v1Iq7wQ2NRswLuYVWqjhxVUFM6mdSEDLUsyvB4/VC2HbK6UiViZIsL6vahMMKGy19nTXnnDROoMwPPObTCPxqB/fwSYzQMUMB6fwdB7U6C/24hwkCskOoJ5jCYUQA4B3u6qGGgA2Cn0QR8/exAvedFrq3pcrXBtLvjqW0DT+Ty0e0+DJjQ2P0a9MKNe/HwmjGxegxJuhSkT/P7VWbxyZx7qg9bG9AItlS4GOlaczHBJl4aBmIwZ2Y9cow/+eB5PRNrh9xKEvUA6m3LaMlvqXEADjLgaSp6GSlV4idelUgOYwuZzL09gOCGjOWAi6qcgBPjZaS8+8Sgbr4YTMq7G0iWd7h7oygX0EcGFftDavKbDaSfrOdsRwvubrkROVhD1L2+82kpjVTLQ8EksxipbumizWegTg8yVOacCPnEdmNSYO+8CyOXTgKcDkNlOZ2fY7cB9IRiI2RCNxBpCpQuThSBLsqt4BljxIVkybtmQcInnUgCAX+WM0YmZ8owRpcwZMZar82rYI4GoJmiBkVhTBIingBODC2+QJKc1qBTwVJMBDSCidMBH2WAvR8/vb08Igeed2+D9q/2Qr1++ArocAy0R4AaLhVYNgo/9KuT0/fV2so2VqbnRojzLShnQNkQJ93A9GGgAkAlosvxilqomQIiL8V7XuRXzWSH/0I7zyhhchXKRyLdtSK4+6KVPlsFg0OmxK9UDPTU3CtMykYmASf4TecmJDlvD6kKbX3Cz3twO7wf3QvmNdZD2RqEqAtNpEujfGoBxLObc5nbgXoyBGB/TL1+ggBZVJzRttXQR4I37BBb6eT+WsY21CPo3BqB96ij0rxZvXC4WSVUC9j8GNPDi+e7teXzpN+K4rJt97uYUZ39Jux+nZxVQqxdkR+viigEiS87mXUcZEzGAs9BOu50A0URMZKttE7G83+Ps0u3pXPh9EkIg72mC9/27Id/ZA1iGV7mjOZjPzzsMNAC0+XmPvi+6v+q2uk19u5zLw/VoXyoDtVxGdh1gPDbNWoByBuhEFuaJOPDkNG49cw5/Mfw8fnf6NP7qljReuZMVaE6aShkDMRuVeqABtoEFAJQQfPe6ffjn3l34t67tRfLtwueqFxoidhY0k3GLJmI2vAqwuZlFPtp7Bb2NfMwbiddHfZWvkoFWdeCUsH6P5yXMZwnMg3ydNrKrEzmrLoj6LwJZjYBlKaBVVcXf/M3f4M4778RNN92Ed7zjHThzZvlO5lpBFAlELy6eRDRFgFgKGJmmoGBFNWDt0qb1BU9WwJIFuQzEDBcjdyEx0GKUVa090AtBlHFf42ETqZF81smQrmQk9u2jPrznBw34ve81IC4U0T955Gv48n1/j2wuVfaxlUAkAgq3IQjAJrn2JuDUCDA1X8E0ilJMDamgigxpAarLLgJbJP69Xgi/PZFIzX1+VcHe/QeKdlFFvGF/DlE/m5wOjnnwpYOsUOrp4OfM6NQ512OqYaA7Wvscw5q6SLgBEJ8MOq+WjSGBagKy20Csr2srZoVCzjYRcztwn//joJ5wR1lVnwVd9vkIQWOEbZSU6oGemOF9fu0+fmysybhXJ8QCejIlgbT4IF/bDs+btuCXtx7H++LvxQP5n7M7mID+1bMwB9gc4jDQEgHpCRY+dUXEc8RZSG5s0tEarLxQJF4JJGCNDYKr8zV9GjY1sesnZhQcHF8ZkSDN6DCfZeePeSQGOrf0cxcAJrJtgMKY1RZfEv/4siT+6NoMwl7gFZbpUq/df9zgAQkoOCEkcyzGQMyGPcdGdRWKaWIiVexU7BTQC8VYWUUEpdT5vRIynzudJJJq3pdHgvLiLnh+h7e06T8dd5ncNSh8szDSelXVKqVopNVJphid7K/6PdWK5eyBNoeF36JEusndqVFc2yMcn5Y3yUItcaK/SmEPNADs69RBLLnKj6Yb8LPGHmRkD9otA7G5ZS6g7fQQR8adM0CzC2/M9DXyg7peEu58lRskJ2e5W76NwTkJxnPWXKwQnOvh5Fx0CVnZFyKWpYA2DAM9PT348pe/jF/+8pe48cYb8Sd/8ifL8VKLBiWkYrarzULPxACX0W/eANVMoIT0uxDZfMZtIBYxQWeExXM5Oeh5QFMjL6CjkdLM3mIhbWtwelOu8b4IEiTMzY84JitjSdlVHNugFPjeCfYdTaclfO0QO5EHR0/iH778Xvz3Dz6FHz781UW/LxJUQIcyRcdBJEigacCxAdYDXwoDQwaGhww0NFexkaJmAOJDKxX6jpcobb2QIe7+l/MaAIDWIMVf3pJ2DFO+cdiPhwc87gJ60s2GVMqAtiFLssNij02dKxtZUxN8MttwK6NaoZoBIhEMTYgF9BbMZQQG2i6gxU20i62ArjMDDQBNljomkZqDYbq//4npIefyugY+tq4V0KsThQW0iHAwglPGKfxT+tMY67QWeJoJ7UunYQ6mnOxy0h0AqdBLWQoHRjlrekVPdeONErXkjkJPLSHA/xF6of/7+ZUxaDKPxyE2XTsL4CUioXMm/4bOfuwVmNpr12vYFMoiarDiU2+2+p+FGK/FGIjZEDepW/UcDEpwetY9LthO3KUk3DYDTQiBx86wzhmO38U02G0emS7OKXx7A8hG9vp0Mofd6e3O38zUceeyr2Ff9c9JiDP3Tc4OFym46gXxeX3e2jabKoGaFHTE+i0aPTjy3qvw2ztuwB9tugpPh9k8IOcMxkrD2tCwGegKBmIAEG1ogySx378UAx3xUWxuZs81I8zbHVZiyHIz0Lb30IzJN4rLKfhERHzUISLqxUBrVUq4xf5nG6mjScAa06SdUUwb/D72+7xYsCwFdCAQwNve9jZ0dHRAlmW8/vWvx9jYGGKxWNF9VVVFKpVy/cvlcjBNc+n/qAlJoZAUCiK7/0l+gKRVEJhl/zVHTCQyJhqDwu15DcQ0QPwoes7Cf3kt7S6gGw3QGX5gSp0+1/2BhZ9zuf699NpXI+gPY1Pfbuzadnldn1vyE0g72K5oVIpih7ITs7EJ7BBcBU/OyUXfwWBCchl/fPe4D+NpguGpU85tQ+MnF//emhQgp4KOJYt++55WE8NTJoYmi4+r+biB54+q8EkGgo1SFcdBhkVYiQ7cTZ6y9z+fx0Hd/tmLl6QOUKPs/fb3aHjX1Vw+94lHQvA1XeZcH53ud90/mREk3A1NZZ+3r4stInRDw8TcwNI/T4BAMg0gV2bM0A0Qn7vnel3PFqfPz69QhPzW7xvjx4HU7L2ojgOpU2Sgc0t+PvY7sw09k5pIZedcf5+c4wX09k4+VpyLsfFE9lCA1GEusf6t4cJGa4UC2nY5pqB4fMshkK2WsUnGgPZvp5xe6Vr7n4diEj73FC8iFup/tiE3WcdrRncpW25Yr6HPkmUemvDgyOTybwaZR2Lu68/Wp4BO6tw8pjXg/l5kCfitHbxYOOthxfZJS5EW9FD0Niz+nBML6HarGH6ugNEXJdyFpod2kejzBDgDLKgFpgnb3N/RqlfDpxS/P0KgvKzHub5vZCska0k+N/G4c7vp31z02Ero62QxjpRSjE0N1P7GqkA5g7Wlgs7kHEY53xnGRx8KY07243SgEfHLuAmYc3xa3iPsjVT+EWRJRnMja1ebmS8uoAEu4xZhS7jFDOjmxo6i+y0VXMItZEFXUUADLAkHAGazEtLVPaQiqpVwi/3PNhpO8HNauqwZsRwfhy82CfeK6IMOHTqE5uZmRKPRor99+ctfxr333uu67bWvfS1e97rX1eW197/evlQqVkUDUDoP0saGQpIrCmADgCoa9f3PzAP+/c71K25KQrk/AxUA8RNsvCsHIrmlUhuuXZwkeanYeMN2vOQNT8Hr9UKS8gDqI+GyEU/4MWa1Pb/I8yJ8M/kN3HhDEt85wk7Ocb/hfHb7/x9+t9H1HLpJ8I1BD67p4PFGWWkUG2+o/BtW8e6sf25saQOQBwZLpEHs3wlgJ1DNcRA6M285cPPvtPM6HZHry7/v83Uc1AsjPyRIWt9b79Z5eHvLM61/fH0SoxLF/z4eRk4n+MHMHYDcABgJTJsjOEhM/PyZIJ4/60Wv/1LncVuvCpT97fc9vR4PWyakavNhbLyhXn3eU6VvvpX9N/bXrIDu6OjAntuA+fvZwqujWcemG9l7nTyQhr087bpJR+jyi+c4oJTi1CclmGkTcjJbh3MT6NsSxVPPs8vhbUPYuJUrd5L3cZniHa/w4HPHKUxKMKYCG29IYuMNADCDwcHSDt61YuPG6txw13B+0Obn4/Fkyr2gDgkxVslcHJ43bYH2uZOgoxnuSQBAWl99//N4UsIHfhpxFom723VcUkU/LADIFgMNCqZssfqiZQn4zb05fNIyBvra8wH83W3LNw5QzYR50j3/0fEszIkspM6lGUSlDP6dtwSLv5dbWmKwt09/nYugPUUwbbF/21oqG3MtCJGBtgro5yc8eMM+Pg/bDDSlFKqWc2Ua20WEt4wDd9yScG9ahEu4DXlrBJ4rAsgcyCKc9eMl3pfi5+rPMDL0K6AnA8hB5KTuhZ9IQG8HL7hHJvuxsXfnot9fOdTi0lwL6DDfTP9xtgkpy2vomj4Vt9/kg/EMM6Q1j8aYIkw4b0kVbZWt0S7MzI8jlpyGrmtQFDeDur9Lw7eOuj/PSvVA2xLuKSHKChVa4ET0NRo4OsXGj5GEvKTWB6C6GCuTAken2BgW9FBkNAKfaWDDqNV+EJAh7WxE7FdcXRoNXFyb0MteQKdSKfzd3/0d3v3ud5f8+1ve8ha88Y1vdL8pRYHXu3RpYyqu45efn4YnJCFQYNhF8wZoRoNyeWtNET7mcArGyQSkjoUnlonTBhDgCy7zuBfqiLUL2+LHwGN8ciEyxYZrUxh4PAxqVNfvUn9EFr7LIkHlACBNACZwjfdafDH+7wiN8x3pJ58JYqDTcH0HP3yYL2TCXhMpVcIPfh0CaYo6t4+em8O5R5b2vs2pLEh7APLuqCvc3TAphiaBq3YCO9ZLoJTi+TMUh/qB3nwKOJWA1LWwfGnsuAl4u51JHACmRhox80jxYy+M42Dp0PQQALboG/q5F/KWyr/R27epOHJSx5lZBWPzYWD39wCq4rsTN+G79/JhahI3AU13APM/QXaou+xvH9F2O5effmAEm7xLP7bNmRykNj/kPe7ea6qZ0J+aRiI/j7k5Vhp3t2zDiQcjSFqLwQiB817Vw7wInxiOQsoUt3K8kI8D2uIH0hloYxrO/iLkLGwopTAemYZ5OgHl5b1FWeSFsL8DOct3+488mIUywX/LM0fHnMvy2DZ0N5gYics4NeLFmV9FMH8mgz13NWHH1bW7Kq/hhQefzGSCsZyEqSIJN9+QTWUSIH4Znrduhfovx4E5oa2iSgZ6Ok3wpz8JO3LPzc06PvbSVNVFny3hBpgxlRht9ZLNKr7ynB+TKRlPjXpwekbG1iUuisvBPJ1gHg4A4Jed6Bnz2TlIAkO6GGTMqHO5PVT8/v3TeaeAPiGFMXOQr6u2ty3t84rtMRvAGNMjkwp0E7A9YEVzsGwu7SqgVYeBFgpogYFOyOz5u5bAkgNA27taMfi2YQDAGwJvxIPqLzEwegxoPg2E9yOuR2GY8aqPq55OXkAvl5FYTpBw+71L22QRQYX+56dJFACwIWrgQzemoXgk0P1NMB+fBnQK82gM0gZhs8u/sAzALnwppZhLTKG92X187+3QIRHqZEwDQIfVAy22j9W7zREAGiO2hLt8FnQ59BUYiS25gLZ+X4lIRcbANKEBQRkDCQ/SKjsoL+vScHxGwe7xafgM9trSviYQRUJMMFJt9F1cDPSyunDn83n8yZ/8Ca6//nq88pWvLHkfr9eLcDjs+uf3+yFJ0tL/EQmmTmDqBNQo+CfJQJrCzFJQSFX/M+MmKJWKn6/Ev0w27ZiIhT0qfHEVsMZa0uYvuj+Aqp73hfgPfg/IJrbw7Za7sV5eDzk/5vREnJhSYOr8O5hOSDhp9UJtbtbx5kt58flE7KXO5bn41NLfW4MfdDQHc0p1/daSJCMSlHB0QEIyQzA8JeHIOQktjRJIioJCrur5c7kc4O1Ei8BAI+It/34uguNAjOmis+qC9/cRgr+6JY2I1zpBGm8Aoi8BSIk9vk2fAoiChkBL2efr6xCyoEfP1OczKQrMmA5Th3tc0AGqAkPj3PCsr2MrZgUGrDlA+XPZu8rk4jwOSJu1oKKAOZl3bjeemIV+/zDMI3HoPxqr7jsH0BjmJiSx+Kzr73YPdHNjO7xy0GGDVINgNCbD0AhA6zCXWP/WcOHDNv2ZyRBowjoyJMQEpbMJAMyLwvP2bdwVO+oFaV3Ym2Q+S/CnP4lgwjrH10cN/L/bUwjXsECUm8QoK7e8WZGA1+/lc97/HF48y7dQnrQo31Ze3usYQBrPzS05yz1Drc1GPYlGf/FYrgoRVsO+EB7o59/9Yh24bYgS7q0yK9NzOsFJwaTMlQVd4MRt90C7ekCFAjpusZfdkaUV0MFLAk6LW4fcgVt9t7H4rxwrfk0qYSJV/dhjS7gBYHRieYzEXAx0HQto0UDsjL8BDT4TH3lpCiHrp5Qv5ZJQ4+Asd+AGqjL2XchILOQFtrW4i0+bgc7kuJpKHEvqBdvTZdqoXcIttjqMJJY+T6nWWtXrDbgM7IxnZqF+5HlonzqGkwP8Nfd06tgQNXCzEA9m/1Z2gk7Ya8JzkVmTLNuKQNd1fPjDH0ZbWxv+6I/+aLleZtGwXZhRwYm7EJRS0JRWtcFIJq8CXrbD1R5UmTW//fpt9ZO9vFAg74k6l6/xXIvZ2LhjEpJUJdeJ//gwVwVcu07D3Tvy6GmwDB7oVqD55QCA+cT0knsTiUcCPBLMcylQ1X08NDcAiQxw+CzFwVMUXoVlRdOkVpVkCADyagbwdqPFmpBNmQDBizuCvZooq0J0RUz8+c1pxwkTAJDtxz3bE/jHOxPYbffMB3cAXe92eoZKQVxE1CMLGgDgl0GzBuhcwefRKWBQDE/x3f6+rq2YEzKgmwXpklNAN3hQr7zVCwkuIzHLmMkczUC/n/cr09Hi2JhyECP2YkKUVV7NYjY+CQDobGU5qRsFOeWakdjqRKdVQFNwOTAAhAUJdyrDJctSmx/eP9gB+SWd8Lx584KOx/EcwZ/9NIyRBDu+uiMG/t/tyZr7+2SRgU4VF4t3bFGdDeZfD3ugLqKe/NkZL+757yj+9qFQyUgsajImDwDgkSBd1gJiq4Vm8y5GsFZQCuRgMXX5oZKqwvw5NhbmJBmzinvjYikGYoB7DuqhfO31/ARfW9gSbqDYSMyWcPs8vEAUUzvilrFYd2TpygDlDi7T/s3AG+CBB8hwr5fRGoqinnauehxZJiduVw90nSTc1KDOvDDmDSClePAXN6ddGxRkfdiJfqSnE6Czgq/MAj3QANAiFNCljMQAlgdtQyIULZajfibLC+igv/5qTXuem14iAz1cByMxp33B4z4njV+x74xO57DtxyehWGvvPe06tgVyuDzF5mct7HUIM7u95WLrfwaWsYD+2Mc+hnw+j7/+67+u2oJ/xSGRitmuRdBMtuNVZeEU18IAYfftCBuuWJfVWEBLu6PO5Wu91zIjMUFqcmKKF5WPD/HJ77p1GhQJeNvlgqPkxr8HIMMwdFe00aLR5AWdz8Mccy/sCSHoaAJOD7N86I5mAHnrOFjA9dFGTs1aEm72+5sR74V7TtQJiymgAeZg++m7ktgf+Q/gmUuAA9twe8+z2Nth4PevzgBWjjbW/xVMuXwBHfCH0dbEFiVD46eWzKQAbKOFEMA4HoMpmAFCN1kBPSkU0J1bMFsiA5pqpuNQebE5cNtwRVlN5UCzOrSv9LONBvv22Tz7LqqAKJeLJfjiYnJ2xLnc0doHYK2AXgPQEeLHlSjjDvjDkKz52GagbZBWP5SX9ULqdcu3dRM4PSPjBye9+NRjQbzzuxG89uuNODvP5qq2kIlP3pFaMLaqFBwTMcDFbNrwKsBVvWx9kjcIjlWIeyyFo5MyPvVoEBmN4KFzXgzEiucrOpByXlva0QDikSBfys+3pZiJJfIEJrHGuPyIEy3ovLZmQhtjny/X5HcylQGgJWAu6jt1IaQAiqViyfG113MT/Hv0CwV0Ls/nftM0oTksXGkG2o6x6loiAw0A0voQ1M3s+VqlNtzhuxPI8o3fWtyVA/6ww7Qul4Tb5cLtqw8DTSezzhxx2t+ArS06Lut2nxdEIpyFNgHzKcHboor1WKvQu1yKgQaASwQjsbaQ6Ujn7QJakmSX1L9esF24c8ghK7H1RS3kg2SlmdQjykrV7M0jYS6PqaBj/HfvnU/gnRMn4FcotrQYuGJuCopFfgxvaAWRCFQdyGjsHLzY+p+BZSqgx8fH8f3vfx/PPvssbrnlFtxwww244YYb8Oyzzy7Hyy0axCeDJrTqF9c5k/UKVclAJ/Soc7m7gTpsDLA6C2jS5EOqiQ0IW5StSI/PYqewy2znQadV7pbZETacaIHr12sCC7kT6HwrAGAuUcbYqZb3JhGQsAfmYLooGzocIGiNAus6WEGNnMGOg6oZ6Cx8SifCprVQiV68EVY2XDnXNRTQALCvS8etu44DGeY6Z0dZbWs1EEx8h91JieIrz1XeBe7rYjLuZDqGuMBcLgWk1Q+imTCO8iKaGhTEpBgpYqD58dFSKsIqeuHE2NUT7iirHPRvDAACU8D+YC2YqkC0gUfsib/jxDR39+sqwUCfnVsroFcjbAk34HbiJoQ40su0wECXw0RSwhu/1Yjf+34D/unxEH58yof+OcXpj2wOmPjk7UmnR7JWFPZAl8Jl3TrCOpuPnhmrvoCeyxB85MEwDKGX89BE8bwjyrcly9tB2ht18neN5+ZdDuG1wNWDnh/mUVAW6HTecVCO9PnhlfnrbGvVsdQ9ZkKIMw8piTzagmxsODqpwBaauSXcnIFWBb8S0WVa/J3ishetQRO+OonJ6Ev5OPf6wOvhy/IIx1plubYCK5GaQ7weBEMB3DnBdSqgBbXD6UADbttSet0giRs8J4TzuBoGOrowA727XYdfYcfiOiFjOW1JuEOByLIQII2Coi4mWZ8rrlV1/nlkvpEzmpAXbNtYCPbxLzLQjlJFwJ3zo/id/BAUCVh/jq/Dn25jGxUxIZ52jYGuEl1dXThw4AAee+wxPPLII86/Sy+9dOEHryS8EnPyy1c3AdK8AaJTZ1dzIaRMfqL3NZJVX0ADQG4zH+QahhSX2cFxq4B+esQL3Qpnf1Gf5kykhADvuEJgiNf/FSCHMR9fegENAIhYDo8lZGuRIIFsLSpozgAxaNXy21w+gxaFu0Ar0YuTeXRB2P2nVTpJitiwYYNzWcyCJoN/BeiMPfrRKS/OzJafNO0CGqijjBslimiDAoRgaJy9ht8bRFtTN+aygoQ7aI0xwndx0TLQrT6nj9I8NM8X6QEZ0rV8kUgnSyUjFMPFQCc54zAxyyXhnW3rALBFhL34WWOgVyfEgrawd9R24k4Lcsxy+O5xH2Yz7sdLhGJjk467tuXxT3cl0du4eFZFlHCXYqAB4JqnT+MbJx/C70yewcGx6jZedRP46EMhlwIGAJ6fKDADohSGvSiWAGknM1kjAcW5jKQG2r84J/2ptFhAD8FTIAcVN9C8nT7cvJGPjTuWaCDmwB5j8yaubmXjTd4gODnDvvtyEu68VqZAFBloxVsX+baN4MY2PKo+wt621IzbjXXO3+x2gWrRIzhxi/NnvSBKuCvlBNuglMJ4bAr6A2OgRulCyhjia7v+YANu2VSmgO4KgHRxnw0b1blwL8xABzzAB29M45ZNKt5+Bf+cmSwzRV0O+TbA1BC2SmOGWvOcQYEqVbK2jDunE8ykl1bgcwd6fuwbx2LO5ZH9vOXg7lOnYRycRWCUfT+DvhCeoWycvZgjrIBlNhG74OGTWPGcrbLXJm+AElr17lMWfLHYG5V4D3SDB6QKx8CLEZ59vJ+xa7oFYR/FOuvE75+VkVeBxwfd/c8idrXrILP3syveTqDrXZiNTdblvRFCQBq9MKdybGOlDGhWB61hfMqrWbSCOzeT1cBAS9xIjMZraJOwIMYF2X1chmkgkzgFDP0te14Q/OuvAyV7+wBgXadgJDZevwIacBfRdC6PvJ7DuMWI9nZuhiRJTgY0ALQELAn3vNDGcZFupBBFApqtxbKwWFLesJEvzAHQieoYaDsHGigooKeFAtpioCXCDJ0AFjGUMy7uVok1FKMzXFrCDYgFdKKi8sykwIPnLPZSonjXVRn8450JfPeNMdx7TxLvuy6zZPModw908RhJDQrPs+x4f9n8CE5NS0jkFz6ev/B0AIcnLTlw0ETQwz7noQnFNVbSiayjDCGbIiCCL4d0iWDWtEgZt7uAHilmoEVPmI4AXr83h4BCEVCoq5heCsQx9ooQL5CfH2ffj4uBFiTcokmWKNe1e9VNAEnZg+4lOnCLUBQPvqPf51z/Dc8dCFL2nmvpgQbYHGRjZBlk3PkaXbjpQAr6/UMwfjIG49HS67X0Ofb9mwCat/grFlySYCbG30h9eqABpnb885vS2NTM14F220cwsDwFNCHE2Sye1HhxT+eqi5TtE47F4Ro3XETYkW4Al3DTnAF6xtpIi3rx/U2bcX8L2+CRTQr9a9xA9aHGLgzGZVBayECvSbgvKhBZAgyzYrEkgmYMONRKFchJPH6lS1ad3cvVyj4DQOOWbowZLHqmL9cFmlAdsxDdJHj+nA9PWgZiYa+JfQWZmrl8GvTch/kN7W/EfKI+BTQAICCDZPSSCxoHSQ2kShUCAGRUAy1U2P1vvDgLp0I4i5ecAVrtJpWF9evXO5ftHfRUOsYWvWOfgc9g/a+HJz341UDpDQkXA13nAhrgRbQ5lcP47CBM03C9rijhbioh4cZFykADKIqokl/SCXlX1BX/V20BHfCF4PeyhW4sIRTQM2IBzdkaW8ZNQTCSubjN+tZQjPYwn88nCwtoS8Kt6apLpluIw5OKE091ZY+G1+zOY2+HgUAd9z6VpgUk3PN5ZwOqwdDQoqtOa1M5/PKsB/cdY+eeIlH85S0p7O1gc1ksJ2FI6I8U5duF0XzSrkanp9Q8PA+q1774nS5koAsKaHPSrchbHzXxzd+M4X9eH0NPnQpTsYDe6eEFsv09igy06MLtMslySbjZd5mUPTAJWfImSiHmAjH8Wn0SANAmt+GuDIu3mkpJyNcwhYommiPL4MSdrzEH2hzimxfmgeJ2KqqZ8E2z73/YF8LNOyp/r/IlJQroKhjoUCDizCWzsdIMdCmI44WYJ19vNFgF9MncCec2s0oFSG9BlNVioQlpMbaE2zwZd8YiaXcUR6Y8+FLHVjwbKv4dHmrsREqVMJclawz0RQ+Cqhf3tTgvG6aBnGTtdlENLRk+OJO2i7P3sRr4vAEcxEEAgAwZ2r2nsSfEB+N7f9TgZMtd1as5eY02YslZIHsKSDzBbgjtq6tUk0gElBDQeOkdcGpStgtd5XEAAGkj5BiIAQBZbQU0ABqrjYUOBoOOEYpdQDtmcVTDDnzNue8Xng4gV+IUXueScC+PmQpp9YMYFMOJgaLXnbUk3DKhaPTbDLQo4b54xwGxD5psjkC+zcrbbPLyhXmVPdAAdygt1QMtEcmV5yn2QQ9nLn61xxrcCHuBkBWHV07CDRQbiYn4ZT8fu15cRkq6VEgRia/AShTQ5pS7wN+cTVSUcZ+dk/Dpx3hB+PtXZ7Cr3XBtQh8SZNzu/ucoAMCwYza9Mjf9zBowT5b/rspBZKAVY6JIuecw0BKc6LCAh/1+9YI4B0XzeXRamyvHphWoenEOtA21XIFo/U7cQKy+2dzhYCO+mfuGc/3uqUlIlIKCYCxZ/ZqjV5Bw2wouV+TTEqE6Ls3+qhSZYvsiHc8WmbWmh7KQLXnEYCiCq3srrxdIsw9EzIBGdS7chBC0NDEZdzkJdylkcinncjAQrnDPpcE2EjugPu3cVu25J7aTLMVITBXWqraE2zzGe81z26IYiMkwiYRv79sFNPNzbLK1AVPWYwZiMmJCG9uaidhFCOKRq5KYUt0EMnrVBmJTs2OAny2k/XQSZMa927qa8UToGcyYjEmi41nc8LPDiFq7Xr94jk9ohfJtAIhbNvmY/rpz2+nMrrq+P+KTQGfypc0b8oblxF590Z6lDa4MaNK4Ohb1Yo9vLU7cNno6WIZ6PDWLZDqGRHre+dumwACu6GHHx1Raxi/PFq+6WqKdDsMwNDmMbxz24bvHfVXJIGsBafZhJC5kQFvScVvC3RSgkKyXpKugBxoApGvagEYPSF8QnjduArH8AwghIDYLPadWvahrtHbmE+k5GBbTP24x0G3NPVAUfk6tFdBrsJ24p9OSUxQCrECxkcqUXphqBvCwpWrxKxTX9NXeglINiMTjDEsx0LSggN6US+JgGSMxzQA+8mAYOZ2dZ7dvyePu7Wys2e8qoNnnonN5JzKI9AZBol587Xk/7v5qFB95MIRYjrhksotx4xYZaEV3+5RQkzqfj7T4WNvHMqAwDWK/5bCsGgTHZ5SyEu58CQk31U3HL8eJsKqjhBsAQoFGnNCP45D2PACgNaPiRZZJai2sYmfrOihWkT88cQb6w5NQ/+JZaP9zboFHVoe8xdZX60ZdeCybz7hZ6DPP8fWRvC5UVV6wfFkB+1llKoq9MZ/JpVzRVJUg3i+0TD3QAJ/npsxJGE3s89DBVFUkX19DfaKsRHm+1+MDNSjM4zF2g0/CsRBXq2zqJfC8ZQsQZK83eRmXyA/Oy2sM9EUPrwSk9IUlSjmDZQRXyTweHZkEZDY4NyszawZiAjzNQXwo8QHMWHl33pksPj7wDJqEnS9Foriyp0QBbTNQ098CqLWQxtVl+2AXhYDCpFqZEoOW7cBd5UYKAGTNKFoFueBqZKBrdeIGgF6rgAYYCy2yj40NzXjjPv6dHpksXlgSQhwp24RyJ+49EMRnnwzi9d9oxMcfDuLwpFy340bssV7XtRWGCWf31TEQg7CREJAvah8Eqc0P71/sg+e9O0Ea3EUs6RRk3FPlZbQiohHGQFNKkUjNIZ1NImltqNgRVjbcBfSahHs1wjYSMyhxmfm5GOgyBfSBUQ+Slgrq2nVqXWXbhSAh6/gskQMtrhkAVkCPJWWMl2AifzXgdYymtjTreO+LMo755tYWAwHF3QdtCI660p4oUirwX8/7oZkEDw948bb7G/B0oMUp8M2jMegPjsM8FXdkzAvB6T9Xp+BVCgbamApo7DbSsYzrIXETd151NhOieh6ZX05i3aFG3OF7GfYp+0EShrNpnhfk3A4DLfxGCdnOgK5vAR22Wgy+meUs9OtmzgGU1tQHLcsKuts3AGBzp/HoJEBZ4VqxPa1K2CZrvioMxIDiY9l4ds5FUKTO8KJt097qlFnS/iY4O9NA1aRGi2AkVqkPWoQrA3qZeqABoDHM/T5SvdaxZVYn424KUMfvoFbXdhEiA+3z+FnUXYbNqdKORhya4efUng4dUlcQ3j/bC++H9iJ8adT520BMdvVAN60x0BchfBIrjLMLMCF5E9CqL5yOjfMBoTucA53iB2Vhf+BqQ0u0E2PmGP4s8QHolhqmL5/G39tFNKW4OZqE//AstG8PQP3scebeSCkvorRJIPYgAECVe3Bipo7FiE8CydOSGeE0awAmdRi1apAnTWixBiVKAERWCSvWuEQGulMsoPuRSHEGuiHchO2tOhSJTRgnymSk2v3INPpi5zbNIHig34f3/agBb/vfBtx/zIdFtPi5YLt8E0LQ07EJsRwBtfwSnAgrkzobCRergZgIQkhJeZ+4YK62D9ouoAHWBz0p9D/bEVY2mgLUMSxZY6BXJzrKRFmFgw1Ayz1Azx8hli69KP3lOVG+vTzsM39D1rilmWwdIqBwc2mzFaNTyEJTCnz7CC86fv/qrCtaSZbYQhcAZrMSRhOSW769uwmPDnqhCoZ7sZyEv3iwAUfa25z3Z/xwFNoXTkP9q+eR/+jz0P6zv0hmbsMweQtLqf5nl4HYMq6HSMEcdHl2Fn82fAj/ceoRXHbwHFoPefAHoT/E3zf8P7z62Vugfvgg1E8dhe8cL5btIpG6HLg9iPhMRHz1ZdVshcSz+kEMS6MAgC25JC5Lzy7aiduv+4A5Pv+ag8UpI7XCZuh9VfQ/06wOJAs2iBKaY0o1MKmgdZ5dNgjBup3VHQ8k5IG03doQIwCpcl3VWkWUVSHEdo9lLaCFKKuZVj4+VSPjJoQ7cdfaMy+isH3BFNy3pd1RF1mxx4qVJSEFpMXnGHgCwGBMRkwwUm1cY6AvQngkEJWywqgCmNSQMNlVFRiY5/fb3CqB2hJumQAXce9jNWi1elAmzHGcvjXh7BL3qWn809lf4z9OPYL3PfJr6P9zDuaTM6CDaRg/GQMdSLnzfKf/x7ko9qwtFYQQUKl00Udzei0+cqCUQiPNaNXZ76+HPDUV3y9kLFXC7XISnTyLRJrLCBtCzfAqcFwyh+IyUiWk2ayAJkDkGgBMkhnx8cX1YEzGv/46iK88u/hFHKXUMSnraFkHnzdQYCBmTRxJzTHiuJjl2wtB6qzdSMzugQaAeHIG4zM8A9qOsBJhs9AJXcbM4lJ41vAChruA5oXHgHkzsOs7wKZP4Vv9e4oel9WAJ4bYQjziM3F59/IW0CQsVLoFMu5C1q5DyyGsa0V90M9PKDgzx55nW6vuFMsi9nXyz3FsgIKes06KFh9Ipx8PnBHMttr44z+jbETcU2KsimswD8/D+P5wyc81myFOXjZz4Havecwpft4vJwNNfLIjL6XnUgj/50ncmJiEp5z0SKeg41l0/5qPUQ7LKjDvcdlbd/YZcLcYPNt+zLn82umBmllFe/7crmx33U4HU6XuXhNsma/PG1zgngUbQYIayTjI1nLfe9CPvjwr6pNNQUg1+Mso96yDtDcK5Z51XM2xAEQGeqZKIzGXhHsZTcQahcjGsdCkk8dunoxXTA2wYRfQFKRm53Ybql5QQAtRd/qWRicCridioDnofk9BD9AeYu9hICY5DLREKCLetQL6ogMhBBSUSXMrgOZ0uELnFsBEhhsN7OkKOZMhafGtmgKqHKINPN5rCtPw/t525CJsgm3V82gT+oVFGA9OMBMxC2T2u4DJ7vvQOY+r122pIAEFdDZfLO2PayDVNOhYSKTmALkdUd0qIBtWT+FU2H9WK3pECffUWRcDbe/Uiou9UiqEdV1bgeAOwMP6dq7o1vCN18XxwRvT2NPBF0THBQbbNE08d/wR92ZNBczGJhyTkUIDMQBosSTcrjzsVcBAlwMRnbirNBITFxbzyZmSEVYixPiR0xOrfppbdSjFQD8x5MFjiTuc2w/FtjrFso3HhzxOH/FNG7SqejGXAnHRLzKcNKOXlHVvyiXx7LgC0Z7jO0d5cfqa3TmU8nQS+6AzRxIsKwiAvCeK6bTkZET3NBj4zF1J/PF1afgVilFfCL+99Qa8d8vVGLljM+Qb2kE2R/jCfjBdcmFfmAHt9ZRnoJdbkVdK7ROTPfhm6wYcvb0T/5L+DO7Lfhung+eAAPvB/WkFEcKYRq+VA+1ioOscYWUjJPbob6ROu9++zDwCY7UVvnb70nZlh+t2c2BpBbQYc1RVBrSwESRf1+7ETZmH52HkTTz7cwr7NAttXLggF0FafPC8aQt73irRWmWUlYh0boV6oAUJ91xuhhulzalO5Fwl9ArHZK2KBRti/3+b0QI6Y0XdbYzgVMYP3WTnfqmNOgDYEGXvIa1KGIyx99Dgo5Avwmn4IvxIi4AsgSYW2GlO6jUZXcQNK8KKGtgXaQR0i3la5f3PgHsxHE/OgDT7kH/rDoxau5l5SQLZGoF8Wzc879jmFBvmsTikGX7S9ra2AHM/AgDM52Q8N1HHfsegzFQJgoybGiabRGvYIR2fGUSz3OGcaErT6pGUEr/sTJaLKaC729Y7EuDRybPcQA6MgQaAnW28UCol4+7r3ApErnWu72zX4VWAl25W8U93phy3XjEv9t5v/TXe/8lX4fc/eit0fWEGSszZ7OtiixYxA7q5RITVxezAvSAaPXwRNVFbDzTAfBDKRVjZEPugT02s7g3L1YjCAvrEtIyP/SoEWrDk+fTjQcSFPr0HBfn2Lcvkvu1CWJgPxAJaZJ8Fc6RNuSQSeQn9s+z8GYlLeGKYvee2oIkbN5Qer7a1GvBbfcjRwZhzu7Qril+c9TrtJrduVkEIcOc2FV94ZQK723UYREK/rwHvn9yAqVs2wPt72yFttYqIjA7MF39P7gir4SIGmooRVsvZAw1A2sQLHrI5ghO3bsObtt2I/+zYiqciPfhx/kf4Yvbf8T/N90G+nK9NNstsLHck3MKGRlzxorvODtwA0BCKOpe72jdAvoWzpS8bHUCqhkPSduIuYqCH0qBLYBvE+LdqeqBdcv3uAOtdBoC8iYFHE2ia4JLyQI0F9GLgYqDnL7QeaC7hjifnuEQd1cm4+4Qoq8UaiYkF9KYk9xeRdjfiiWE+XpUroNcLc2/eagu5GA3EgLUCGoDlupxQS7suw3KMrKFwMkyKvMJYEVkbRiDBD7S1Atq9yxa3oonaez342d2X4C+vvAqn33s5vO/cDuW2bkjbGiDfyHcX90xwVnJj7y6XG/eDJZyYFwuiSIBuuiZN5MyajOQAYGJ6CC0SX/wrq0y66+z+x8qfX+Xg9frR3twLgGVZJl090Gyi2dHKf5/j08UTRk/HRqDhRc713e3uQb/dcuudykgwKcuL/s7PPw+A5QwPTSycHy3ex971FyXczQE7wkpwYl9lx4EI5sRtjYMxFXQB9Q9Q2AM9jQlBwt3VVsxAiwX0GgO9+iAW0MemZfzFA9yhGlNfB2Z/AACYz0r47JNs0R7PETw9whaIrUETe8ssEOsJFwMtzDUuhlbIaLb7oJ+x+qDvO8YL03t25YpiH20oErCrXYdETeyJWxuRfhlYH8ID/fw5XrKZV2jdDSY+/bIkruljtyVVCX/5izAyGkB6eFyWOeqOJAIKGegRVw80VQ1QKxfY062ABJbX6E9+eS+Ut2yB5wN74P297ei5vhG6xN7f8RmuFMzm0yA9vIDbrLAC1OnzTYsFtGdZJNzXX343WqKd6GrbgOsuuxPSZc1IBth3d3VyBlNnFmYhbfR2bgYBwTZ5m/sPOgUdrT5CsBA5waW5GhducTNIavNDvoyv/9Sn57A1xwtD0hfCcmMxDHQmt0IFdMFGsbSdKxLMk/FSD3Ghb4EoqwfPevCu70bwy7PliRxN2CDpi/HNhu8YHfjmEV6/iPF4IsQ+aBsXo4EYsFZAM3gl1uNcLlLFji6q0kCsfzoJyGwgCGPEZbSxnIYZLxRECxhoG793Qx7f+lwMV6x3n2zyVW2OtGpPegeaCSueNvTsAOZ+AOhscHtk0AO1jpvCxCOBCrIZmtVBanTgHpyeRqvEPy8aVg8DDQgFtEFLZp0uBLuPK51NuJyuG8JsUdnTYDo9zSemlSJXba/HD6XpBnbFVLG1uXQBrRkEsSzBF+/7GExTMMIYPbHgexweFxloO8KqsoR7NRfQQIETdxUyblG1EkvOYtyScHsUL5obO4ruvz5qgFgtN6fWCuhVh0YfhU9mv/+5ecWJU9nSOA+cegtw+p3wgElZHzrnxYNnPXhkwAPD6tu9ZZOKKu1OlgSxB5qWYaClvVHHbXiTVWwcHPcgkSf46WlW/PoViru2VaYn93fq2JGJI2Kw15G2NaA/5nFklns6NHQVFIWyBHzwxjTWNdp9jTI+8XAIEApNOrJQAT0EjyDhpmdTjhdE6OrlL5iILEHeHXWk4q0hih4r8ufkrAfEWqvl8hmQXqGAthhoOwvXLeH2oruh/gx0Z+s6fO2Tz+ErH38akVAURJFwbg/PuFceq67gA4CmhnZsDm5DWLIKPuEnMZfQBy2aTPk8VRTQ9vpXJkCzD2Rj2FEVrpuMYZ/tbaIQkM7lXx+L80W1WdDprJADvawxVgIDnZoF6Qo4RoNmf3LBtKAe4Zh8/EQ/3voX12FyhvkUzGcJ/uHREM7MKfinx0NljVNth/UG0oiWBGPAZ8JB3DvA39vr9uTQU6aFYUOJAvpiNBAD1gpoBp/MoonKGYnlTRa5UCXzeGiIM2VtvlhBhNUqlm5aKFwMLwTilyFfy/qmFSh4pf8ehIONaGvuAcwcMPu/AFjPhc0g1AVBBWZcYMhyBihF1UZyAPDU9Ga0GPy4Wg3uyy6IfdAlpH4LoaedKw6Gxk8BAPzeoLPzTQiws5V9v/G8VBTxEs8R6D62EELqIBJJ94TZLjBVT548gUef+YHr7wOjJxd8j64IKzsD2mUiZr2GWECvtuOgAO4CemEZt+ibEEvOOBLu9pZeSFLxuOxXmLx/V0Me12yp/0J3DRc2CHGz0ADbVPmjK84CVAW0Cewwv+T87TNPBvH9k3xufvHGFZBvA4BofCSYVLkY6K6gU1j05TPwmgYOTyq476jPkUjesTWP8AKO0Ps6NVyR4hvW0s5G/Fww33zp5tKfOewFPvIS3u7y6JAX301wVtwcKXZ1FltiCiXc5mnOOIauXn7JbilcYrFnukngbWEJDbl8BqQ9ACjsO92iWBLuEjFWcXl5GGiARVCJ6QX65W3ISmyTIzy8sIzXBiEEV0Wv4zfs5mwmXUIfdF4TGejKBS81KO+hbfWBSMyI19jP1oAyKJotfxjSHQRZgUZZr8fnqCAX48IdWkYG2m5NA5h/DpEIpG2WjDtvgi7goO5TuIlXhnRjcOwkHnzqfgDMK8EeLzIawdGp0soPO8bqKs9VIFZrx4N+pgKVCMV7rs7gHVeW3/QuxUDbqRgXG9YKaFgFEUVZJ26aN0BMWvXJfUqIrOptUNcyoAvQEHYPEtVAvq7Dmdhe5rsLnaFuNDda0m7RjbuOMm74ZZCs4eQm0oyBkg4tZaAawFnjZrQKuXqFmbgXO0iUf14aX5qRmI1IuMl1fUdbeRm363riCVexC3AGGgC++eD3il5rcKwKBtqScIeDjU6hN+vqgbYk3HYPtExWT5RZGUgdtTlxi6qVobFTyFmuraUMxGx85u4k/mL3DP74ZcsvxV3DhQexgG4OmPi7W1Noa+AFW0Pm57hpgyVPzkvot5ys+xoNbGlZmU2Xsgy0XUArBGjygnSz9y2DYn0+Bc0g+J9DbC1BQPEbO3PQ7h+C+vHDMM9xuamI7a0GrhIKaLqt0en59kgUN5XpnwaA3kYTf35T2lF1fO5UFJqfvXc6kikyEnN6oKkOqOMuCbd5yipGCBC84jwV0F3CZ219NQBLwi0TkC72nnrkXgQQhM9nM9D8MXm/xxnXlxtdLUC/xXqGMvmS8ZrlsNu327k8uzXv9NMvxUgsn69Bwj2f58kT7db3SIGvoKforish37Zhy7hnYxMwzYWLO7cL9/IV0IricVy+bRPTRcu4lSjgaUcqE0cyT/C9E+7a46nh0msQ22H9qsDtzm2/jrQh6KH425emcM+uym0EAQ/QEXaPn2s90Bc7iHsCcyFnVGUhb2Mwzg/MrW1e0GnrgAvI7h3nVQqP4nUGiZgg4a4E0uABuYwVTiEphFu9t/MCOvYLeMEGuCeGPcjUKXmESGy5YBd+NKGC1ND//NA5LzSpBS1CT8lqYx5Fs6xFMdAlCmhxAwZgxmA2Co3Ejom7rMknXIZfgLuAHrF6lNd1bYPXYh0GFpBwZ/NpTM2OAGDybZs5sCXcDT7TcfJ1Pn/UW5OK4WKEKNUzqyigfd4AAj62wBoWes67SkRYrWENAHBFD5sIgh6Kj92aQkfYdPUvZnJJvPdFmaL+vBdvUmvZJ10SXNE7FsNJDeq0DpFWP2PtxN5cazFvy82vW6ehM5aE+dgU6Ewe+rcHS65XPEkVG620gJOBBvx4PIR5a6Pv6j5twUzjq3p1vPVy61wlBMcUixlL60DcPek6Eu78KADTKaBpUgMdZ89BeoNQostsc14GV/dpCFimamrTqwA5jFw+47wvG5uUTY5M2V4f5oiE5gayYsdId8TEaSE6qRTjXw7rDGYCZVITA9IQyDqrSI1rizL2BLjEF1hYwu1uX2RrgZ/3e/HtmSacKZBCS70rt5liG4nphuYyJy2HlTIRA/hmsf2+HAYawuaTAPNcEurnTkL79iDMiSx6BSMxBLYjl8/gu8d9yGjuA/bXZdSampZHi9yDy5W9AJhjfawtjH++K4GreqvbjF4fdY+p0bUe6IsbxMOMxEqBpnXU4sE+nbN2jKiJfR2NgDVQkXa/S5qzmuEMElVGBQFA6nIPTMpOxBvV69EcsgpoqqNJ/RUAQDUIHh+qo5mYTwKdyYOqJpCp3kCMUh4v0iLGcjWusgK6URikF5MFXaqADhUw0K18wjheqYBOPFFkCuaSefpYMfa21/xfJ45qbOqcy3W0ECMT/c5lW75NKZdwO+xzznCi8lbbJkpJRDyOr0H1UVbMYEUsDiox0GtY3bhnZx7/cEcS//nqOLZajLLfG4RE2LmZzibR6Kd437XuHt5bLPn2fGIab//LG/Huv3kJkunY8rzJUjFWImtnKdakbqGoy7kZ5lfvzsM4yJVcdDIHeqaYhTZPcPbq6XArvvgML35uLSPfLsTr9+ad7+ekX1jYC0ZiOR1I5O0CmnsVAG75tugwvNIIerhhGpXCQNtvOgW0JGxWbJG3OFFNZpL9PnHF6+o1XW54FSDWys3O1IHinvNSoJqJaJoVe8PGMAZnT0Naz59nsSy0KpiILRRjVai+HEtI+OwT7Pt9sLHLdd+VZKBbmrg5VjUy7pUyEQOABmttnEzHYBg6SMQD0m1t4oxmHEUkwHrZtXtPg/YnYT45De0fjuJVTxzG5ckZEEqB4Hak8oZjNigR6rjHD8RkJ+JPRF7N4Y8aPwK/Nc8e6WjHZ16ewsam6ovgwj7opjUG+iKHX2ZO3AVZa5RS0KRWNfNIKZCi1sCQO4v1CjcsWJNvc9iDRCoTryoqCABiviSe0B5njzfCaDgjORsS3tj9zv1+KfR1ZbJJ/OVnfxu/88Eri/79/kdvxaGTj1d+0YACmtJA5/I1OXA/P6E4ksDWvLVwCcogNRiQXQxwMdCLKKA7W9dDktwshWi0AQARH0WvtaDpn5MdIznDBE7MWAvU3CCgjmG4goQbvnXYu+0avOiSO5hBHdjOvWgSVgjx+WwDsZRKoFlZiY6BWGyt/1kEIYT3Qcc10OzCO9vRhtai20pFWK1hDQDb876kS0eTILUlhDgLYJtVunadhtfsZgv9Wzaq6LUkkI8d/BHOjRzDqcHn8dNHv7Ys75F4JB5TZRXQpUxH7QU0AOzWeRG6rVXH7lYV5nPuVijjkcmi1zKP8wL6QKQVKZW9bsRn4qre6uZgQoB3XTYOqJPoFwpoKrCi0wUO3ADg8bB5QGTQRGbtfOCubcJar/Pt0PQ8K1hEIzFlC3weP6hJQawxKrGM/c/lIK/jxWXmXJUF9GgGkqVSOGmcwMhkP6QNvIBebB+07cLdLnXg2sH9UD9/sqyKSOzlN1v9+LtfhZC13PDJpc2AzSd5pRU12G11RVktbCSWtsYKiUjwe5eXKRejrBJp5qfkyLgpP4fMiSy0L55m/k0C2kZj+MjQs/jcmSdwh3w1BvXrnA2tF29ScdsWvhZ5aqRYEbtuqAWXWRL7GcWH1nu6XGNoNSgsoNd6oC9ykKACGIBxPObu1dQoY4+qLHym0hJMiZ1gitoPnxBmvlZAc4g9jYn0XIV7csSTM/hO9lvOdfrwNKIR1nOanX4AbVYx9Oy4AtVaj//s8W/g8Wd/jLGpc0X/Tp57Fl+67+8qv6hPAlEp6EwORKNVHwc2+yxREy2W6ylZZewzAJb5a2ExBbSieNBVUCSJRhs2dlp90JpJ0D/Hzrmzc7ITXaNkngGAogI6QBKsTw8AfH14x2v/BoQQrO/e4dxnoEIftCgn5hnQXGViZ0CjTgU0jaugs9VlJ1/oqNlITBgzbHSuSbjXUCOcAlpgld51VRbffkMMH7qJF4KiP8dzJx5dvjdksdB2jBUtVUAHFKCFzSm9mRQkix169a4ccCZZlHBgHo+DzvDnobrpLLznFS/OCMXvzRtVp82kGszHBoH4r3BGYOJEJ+5CB26AMdCUUl5AeyRIG1eOcSyFra0GtrVY31vkCiB8GbL5DEhnAAZYAbBZ3sL6fLMGiFVDxBUvulaQgQaA7vUKkjI7TpSxdFUtheYQP5ZP6ScxMtEPsl6IH1tkAU0TKt4d/H18ofHfsXm8G/R0EsZPx0rfV2Cgvz4edTa0eyIGfvcmHfJ1bP0mX9e2om1NLdHaoqzszbZgILLsKtLCKCugWMZN5/LQ7j3FVJFg+ebyK/qAZr626FPT+INsH/5wcAu2Z9jm2Rv25VybZU8VyLjN6Rz2n9viXP/Cui3Ys6H2zyBmQQNrLtyrAqTVB5rWYZyIg2asgTVvAJpZNfN4ZppPZI3SxJqBWBk0hoVc1ypl3LHkLE4aJ3FYOwSALTRuDN3M/hafxGWWMYhmEpycZSuC/qHDzuMjoSgawy1oDLc4rObZ4SMVJyNCCKjEjOQoaFWD50hcwhPDbCBrT5+DB+y1SOvqc2AnigRErAXiInuuejo2u643FJiIAcCONkHGbcm2jwly7lZ5AAAwPT+G+x+4F9/95Zfw3V9+Cf/y339q9ekBnvBW7Nx8OQBgQ89257GDFZy4Szlwz5bKgK5XAZ3RWSLARYDajcTaim7rbFkroNdQG+wYmkzWXUBE/dQVXZUW+h4PnXoChrE8ZnQkZC1iszqoScumdtgybsUwcU9bDK/fk8MtmzQYB/n8SWyGkQLG49PO7bQ/ydYxAPpbm0GFeaxa+baNydlhIP4wJjwBpCQrYkeQcBc6cAOAR/GxTbIEm6PJpjCbG84z7toustBvQy6fBlEkTCnMm6VP7oOXel0GYnHZi54VZqC3t5k4bW16+HNaUc95KVChgD6pn8TIxBmQgALSwdahdCzD4lmrBE1p0L83jP3fb8dd/pfDQ3jxZZ5OgBrF34m9GWSEPPjKCXZsyoTiQzelEfAAnlevw7aHNsPzit6q30c9IGZB18JAhwLLr5oQGWi7D5psDDvkjXkiDu0Lp5xjgPQG4XnLFig3dsD7wb2Q37QZh4PceGxjPot/OPcUPpo8inU+FVtaDMf34dlxj0M2UYNC//o5KCZbr/6gqRe+rWot3asO1jUWMNBrPdAXPwghIG1+0Nk8Y6Kt/GeiU8cBeiEcGeOTckcguVZAl4Eow01UWUDbu3HfyX3bue0u82UAmBnEliiXhx2ZZBP7wBgvfr72yefwnc+cxHc+cxJX7mHRFZlcCtPzpXdPbZCAwtiBKndIv3OML3q6xjljTlpW5+/vFIxJbcEcw1IoNBIrNBEDOAMNAMetXe6jU5xW2djA5Yv/+rUP4bP/9QF89r8+gF88+W2HJdFII3LW01TNQFvybllW0NW2AQAwJzpwl5BwI7o4B26qm4BEQGUCqr3wJyTRSKzaLOg7fHfiP6NfxT2+V8HvC7ki8dawhmpgu+jm1EzFoliMrslkkzgjbMbWE46RGAWQ0d0MtLBmID18w+mdPbN4+5VZENWAeSTGbgzI8Pz2JmetYjw14xRIYv9zbkvUudwTMbCzrTY2dXJmGIg/AhCCM3ZBkdAcDxm3hNsqoD1ed//z1vMr37ZxyyYVMrXGnrb/g/k0uzyisDWBTGT45uBi+BOKB11lMnCXCxuaDJwNCSzk8MJGYuYQW4uq0DBgnEM8NYtEap5vspilM7xLPtdgCurfH4bx8CRkk/2+GZpBJmTNazmjKGKJZnTHGG86GAC19Nq/dUnOteEth1feSK5FkHDX0gO93P3PQEEWdJKpYIgiQdpivXZK59FgbT543rYVxG+RNBKBsrcJH13fhj/ZeKXj3i4BuGxoDOonjoA+N4uretjvltMJDllrZeOhCec3HPUG8KXObbi2uzp1aCECHqDL6rX2yRShxS15LnisFdAFIBIB6fCDTuZgnkywg5VWxzwCQP8MHxg2NJl8MiSrk4Esh1qzoAFeQD+tPYVMMxuYe7QuXOW5GgDQ5Rtx7ntkUgGlFINWAd3R0oeAn/f/2D2uwMJOywjKQLy6PvhEnuBnp9nvLNMcuuPPOX9brRngTgFN4TAQAGCeSUD9x2PQvn4O1CzPqvYWMNCNJQroTc0GvDJ7jhNWdJVtIOaTKV68d0vRYxxYizyAL/46W9c5vU6DZY6PdDaJgdHjAJhzt6KwWUKMzqprD3TWAAkpbLLMrayEcDlABAa6GifuDn8n3h58B1qlNrwx+Fvoalm/Zsq4hpoRFNx/M7nyMlaxgAaWUcZdEGXlbLpHPEy6bYEIRmJ0jBU+5rG40wMp7WsCafRCusyaW3MGzANsznT6nyWC7su4jPe2rbU7jk/ODgOZo4A25yzQAcC0irGpUgW04gO9gPqfbQQ9QI/0a3ZFieDRIbZGGAafE+RJ3ZHXA0BS8aAjtLIFtCIB6Xa+fskt0AdNUxowx+ac2eA8TLD3Ozp51mUkNnUs7cyXlWA8NQPk2XMYkonvZL+Nt8bejNFdXKVhnnSfLyJ5dIqw15QIxct3VI5B+v/Z++8wR7LzOhg/762AHDv3TM/0xJ2wYTZnchmXmZTIJSVSok35+ygrUaKC9bOkn0jZkinZVqIkWxRlJYu0JUo2KTOaUcsll9xIbt6dnHs6J+Squt8ft8ItoAqpw6BncJ5nnkGjAXQBVai673vOe85mwMdALzZnoA2j5kY7xaObUEAnZQm3lNteb7qX0aC9fz8o2Vid6rXTeCGexc/tvg0fH9mPikMjrxgwPnES7//aI/jJC8/jtpUZPH6SwTpfdGX4JoDf23YtKqUXsDvXverm3deXkYpY+KHry5vmWL/Z6GcqBYAUBgxFYZ0riBmkDvb+uRWvSNo/HAf/nn2yyOlXnYFUM2QD5jxaQX7cyh0a4p8XBdN7Yj+CR2rfhVY7g2z0BiyWGZ6dVjE9f9GdXdkpSXIBP8N4+vwLuO26V4X+XVIZkNNFId0Cn33RC6vPlT6LcfLkxjRwlRfQEFFOlI/AfGIOxt+dAkwunCVvzIOkvEMZ9Qx0KqCAVhmwb8DEs9MqLq4oODGvYGpV7K9rBg3cd8sbMfwrn8eF6VMNz3148QgetD13plcZJjIWGGPYMbYPL53+Pi7MnEKlWmrIvHz22COuK/z1++8EAMwXCV94SezniMJxZMyea1xaewHNSwbYtgRQNYXZ4RbPkqaUJuY/Cwb4VOsZ6AOXdiFKgpGLUwLX5A9t9Cb2cQUiHvMKiGJpBalENvBx9QX091/4Ft71+p9Z9+2Ro6z4TNll7eobrrI7tCOZtiT5tnKjOC8q9wzDekQsvM2HpkH70h5jtSuJgzsIH7yrgNkiwwPXdu6ncGn2LAAOLD+EY7HbvG0/VwQOZQMZ6AiLwDpuF1spFTTWIj94E7E/8ijOlO8DADx4fgTvA8dJftL9PT9f8qWw8ITWlax1rdAn48Az4nbpVBHNJsjl+efikAnY3MLZqWO4Zp+XDX308TJ+YzaNP3rTclMlgstUE/Cl2x/DX3zuzwEAhQkOPGr/zReXgNd7+c6ykuJFu4C+bsToiUzgTHIAqqLBMGuYW2w03JMhN9k2MgPagY+BlnwYxPrIbuzEVVE854LXlEr1BBC5DxYxfHpwJ1751gT2feskrGcXAQDRlQreiHN448I51M4SajEG2CTGPwzuwgvxLHDqPyES+aGu38fr91fxui4adFsJ/YouBKQxUD4CfrHUkQP3fM0++EsnsCez3Yuu6cu3fZBluO1mQctMtXbtgOuWuVfdhzu0O7C4fAmH7Uzg1SrDI8c9afakVDAD/hlXWeYdBkpporHSBDUT+Iwt3yZw8PMfxTjzLihX7TEgF9CLVRjfmILxyZNuVAsAmE8vhj69UcLdOAMN+GXcsoz+0LABIsLhvbfhNXe9s+Hfkd1eFJLMnuy0VQqcc9+ss4OnX3rYvX2dXUB/6pkoqnYD5c0HKt5iwWGgIwyIdilZMzgopwNZHdy4/IuQ9YAzj4eVmuc7EQBeMbHtpL/Bsi92sOlr1/72OGIPXsDy51rPuPVx9UCWYRbqIqFkFIr+3z390sNtJ0Z0BLmAloydaLiuyExrLlvNz5fACzWP9ctooN22XHM8DtotChY+U4b5T2fcl2AHxHfojddU8S9uLEPv4lR0ac5exC896Mvy5XZR7xTQGtUAQxQAI8W8x5TvS/eUcmQsNgesPAYAOLuaxdFZBSeN4zC5WLvx80WUFr1zk56+PNnVOyYY5u04sMjUalPvFnn+me3wGkbnLh0HDUXA7QjBA6UlgHM8fj68GcsNy/WoKOViWIA3DqCkI17E0rki+Ir3/ZAZ6HMRsVa7d+cGfH+6AGMM+axIyJlrMQPtj7BKNnnk+iCTlAx2V7wCmg1Fobx1AuxwFtq/3u/zEGlA6SX3plL4Lg7uU8Sc9Pv2gvalAMX7/mmcu2ZkZxNJfHLIXm9N/w/o2tpInx76mm8I+gV0E1BUEZ3SNhmjmQLBgH1QF5/HGHlzFmydiydeNpvKXnsdMgMtu502w7IUeJ9ND0J57bj787tjP4L5xWlcO+Jd6J48552sZck2ICS3zkU8TKLbKR49r2HOnn+9c6KKhenvYEyxt1FjW54x7BYy42p86TzMz55reIz17ELo8Tw8sN3NEQWCXbgBfwEtR5kdHm4ud5bleL4CetxrspwJaLI89aJcQN+BhRLhn14QFxxd4S67wzkHX7QNPzJ6V4tHJ0KNkhooroI4b8uJtdfhc+JuIuM2H5mFWvFfrnYo4QZi3LBgPbUI/aVFrHyxX0D34SEhS7hL4QV0sa64LlUKOHr6qXXfHpmBtk7KBbR/8UpEnoy7aMB88JLLGik35n0uxsq9Xnym9YIknT4YrPLpBJfm7PP30jdxUY+jaBtyWucK4Nw7h6Y0r4gbXfSKgl6Zf3YQjcSBqT93f/7cSxGsGCs4a4pGAZ8qoTjrrSVimctTQB8YsnDUnjnXq6arKgiCzECnD3pN/HNTxwEQjibFcZA2a9hWLeJiQB6wA36p7Da7v2Nm8FDhAYAJ/juix9ymDODP+ZYZ6HMR8fh7dnZnJLoRcOagF1dmUa2Ff5aFoveeNkXCLY83rvrJJfXeEWjv2+vLhQ8CLXwRqF4ErDKU07/qFrLK4Sz0H78G+r87gu+84gA+l9uOS5qoTcyogo+MXguDMWDpIaByGhHtKiV92kS/gG4BUlnb9vqnFr0Tq1I9imTBWxyuJ/vITUuY7iz3RjevG/hnoDtjoHUtimgkAXYwg9KgKH72qHuRPE2+AvrYondil4shQFw0RwcF83j6wovrUoycmPf2/01DFwGLY5SJkzQNRjY1pqGX4JMsz3sXUOX+cbDDWfHDigF+OngeUWGKa9AFINQ46oBUQDs5zABwcLj5HM9wUiqgpYXE5Hi4SqFSLeHFk08AEAz5QHYU//BM1JXvv3F/BQNx+5gqmq4DbrvNuAaUTBG1l1BBcRVcY95rbmGwNgpobnKY/9wosxsyGnOh3edcKrvFhT55eeNy+ugtyAx0swK6XsINbNActDTDKJs6Ba0ZZBm3+eC0d/+N/nMiO5RtPNfkdE/x0SVK5VWv4b36JLhV8CKxlmpYmTfc6MCU6n22Q/PetbhX5p8dxKIJYOZ/AIbY3q8e11E2FBw3hUEkTA7ttPde0vnLU0CPpSycTrY2EuMWB3d+l1IxtGsSih2BdW7qGL54VMe3yWtCHywu4uJKkwJaclg/Hk3hjHkrcON3gPhBRPSoP2JJMqtzCugqMUxrMRwaMjCY6J2m76AUZbWwNB36OLmRlohvggu3tL5ZWunOxKtcOAs8ug94eBi1+W80rG8pomDnXWn8l/GD+LF99+D37rkdf/e6W3HaaRBMi9x7vV9AN0W/gF5HnFrwFu05dQaY8bpa6xoSXzKFjLO0MbEamwGfVX+HM9CZZF5044lQvddbDF17dg/2ZA3XTGrG3OX+bsf4/obXc2TcpUoB03ONrGinOLvkfZ104wSG2JAb9XC1zj8DATO/DFDfOQn1NeNg12Xdu60mMu47j9wPANg/eQTxaLCMajjBvdxlG9vSZsuZq+EwBrqJ0dzzJx6HYYoG1vX778RSmfAZm33WGMe7rpMyWNfBQIyXTNBgFKQQEFeEkVhl6xfQPiOxkCxo68l5VwL/VM1jANPF8C68Y7IEAPplzpvto7fQvoRbFNCy98FGFNAyAy2PtbB6CTcAkgpop4FGI1FXRus+TiE3Y9d9vYOZNUunL/mukyaw/DCOS5/n8nGvCZZkophKUAKZxbi3rZnuY/w2AlE9AZiroogGUDII5fSbcdw45j4mseC9r/zQ5SmgiYDKmHcuK5wINhLjsxWxRoSQb2uajjGbLDi3WMN/fSSO56WYo4PFJVxcCX9P1jmvUD/uuK7HDwFHvovHZyaEq3fEjlh6aVkU8CYXPh0ALugxWES4d7J32GegfSMxOc4usQkMdCKWdmNWZdVlu+Cci7ltqwRYIjO8Wmu8tu7MWhhOmAARHlxK4Yvn7GOL14DZT4ExxTVG7SMY/QJ6HfHStHeCGE+UwKe9k+66MtA2G0UKBWbvbQXEokloqig4ltqQcHPO3Uw8uUOXuHEbXjREcTNcGYDywqLLRNbUcUAfx+jgTsQijYvodqOK2sXZZTtKABzmygv++efBq7iT55hFAYDGoL5vH5TbBHvIDmXdeDDz6YVQJcCPvf3X8NFf+QJ+95c/E7oIJPKz0ADcmfhmSOhAQhffo0sSAz0yMOE5cdcx0P7557vwj89GXOblDfsrvk77WgtozjmIc1DGbsYoTBhwdZDh2atoJeHmnMP4msc+/4P5KVwyxc/6AoUeL/0Cuo8wtCPhtizLZZ52jl/jyj2fPfrd9Z+DTgR4uaokjCvrQAHSTXbTQOA5Ubl9yM2OBdZLvn3Wf8fSgx4DDaB61vvexdkiAOB69QaQHWHUa+wzYDPQADD1cfc+Y/wXcIwa1yUmCCODl09JFp/09n/1dEgBLTHTtEO8t4HcKABCddcfo1gjHI1l4Ii0DpQWMVsgVEMuJzIDPZtJIGGdEj8oCfy3Z/bi97+bBHbb+3XVEOfehYrbDPLk272lmGw3yko+R2xGjBURuXPQ7ayN61EzKg3xfOVK47FCBNy23V4rW+SOH8aK3wSM+T773Ab6BfQ64oR9rDPO8UOla7zZowgTBiDrBcMCG4gAcRUobM1FNBEhaxfCS21IuFeLS7As8V4z0vx0PJbC39e8rGXz/17AtUPSiTp9t88wTIbPSGyNc9CcA+eWRAE9krQwM38S44o3o301R5gRI2g/uhvsriFoP3MAirSQo7gK2mMzygtV8AvBMl6FKTi099bARoiMg3UF9KGh9lQaDgs9U2CO8lc4cdvKhYszp3wXIXn+efeue/Dp58XFRq1jnwF4BmLokoGuWOARxRdXQVn9ysiCTqhAyjZGmiqBm/6CuPCtAvhFcUzQzgTmsqs4Y54WP1es0DEWSzqO+hLuPmS0I+EuVQpucyYRS+PIgXsAiOzoF089ua7bQwEFNA0Ej/zQYASoMzVVjgR7QlBchXL3sPhhIAK2d+3F69RsfQH9TR8DrVz0zpExiAXRjdqN3jb12PwzYM9AA8DqExhSbPft6C6cuOY/Nzx2WdEwlr58MuRd2xmm7MImNl0I9A2xpFEoZhfQqXgWGPsJICvSRtIpAuxmzGSlgLhp+MaXHHCLu+fSKS2G0WGGw4UPAlP/zX3M51+K4GuatyazXlyGJc0/n9cT2DdgYCzVW9erwZxXQM82MRLzmYhtAgMNeCRRu+pMGYWAc1pQAQ0At29vvH5GFj8t/u8X0C3RL6DXCZwDU4UEkmYNHz75bdww5TkHKy8fXbf5V25YACNQTgcNRra2jDvlddlazSDLRbZs809EOJ04jxcMkcfLL5Zw94o0z5K+u2H+2YF8fz3D2CnmSoRiTezjiYyFS7Nn+gW0BLY3De0HdwaaXyjXea7a1tMLa/o79VEch9pgoAGvgK5ZhMWS912dlJy4z04JJ+6aUcVzx0V2x1B+G745tcfd96/bV8Vw0n8s+yOsumikFQ1QUvXHqMVUkL1dWx2ujLtgoPbR530GOHN/4x0PyitG8f53fRjljLePw1hrbi/krZgCJYDJ6+Pqha+ADpFwy4V1Iu4V0ADwvefXWcYdU1wVjoMGB27nfkY+uTZNJpqOBylv2Abtx/dD/8lr1iVGc7qegV55BJeiMZRsyWlixiveohCL/yPaTfbGENiezSlAOoGjMgKA27S/wFBcXDNK6ZtxUfNLmwu6hshlDH+9ZtDA0ZhoQGumJbwe6uA6cBPcpBLE9wO7fsd9zC/eU4C2yxuFOlBcwoWAOWg+UwbZjdpjsRTGUxaM6hJw9P3Ai++DrojffaIkmda9uOQzEDsbifeM+7aMdhnowiYz0IC3xq1USyhXiqgZVTxz9Lv45Gd/Hx//1L/D4nI46VQKyLYvV4OJiSNjNWiKt4aIqRxs/nMAAF3vF9Ct0C+g1wlzRcJoqYbfP/Fd3Fyyuz0MUN46AeU1Y82fLIGH6WgclE1QTAUSGigXAVl8y7pxOwW0aRqBhi0yZClLNuk3D8pnh/HJ0t+6P+988jwA+zPJ3O2TasuYGN3nSt/WykA77DMATGRMTM2ewRiTC+j+ySgM7NosbIXfmgvo/YMG7l2awn849RjuKM1iZ7a9rrfPSCzEifvUedFkOXr6KVTsC9LB/a/C/35O7FuFOH6onn2GX8LdjYkYr1pi/lmSaVJcAdeZGw2zlaHcNujuf36+iNofPY/a/z4D84VlFJ+w2efhKNihLG677lV4xZt/2H1u4Nz0Us2N5TDz/e9dH37IEu4gtkbc712PErE0bjhwt/vzes9BE1GDjLvegdv3O6kJqdSZhzU8lpGIjVqnueMGCTevYGemgBP2Z5oqVJAyxPkuYs3ibu0ebFPEKBPtTIAil2d+uBlcCTcAqp3Hv73zFFCbAQC8FPOvNaqXs3oGkI9zXMh4ha95xm8kxmuWp9gZioq1IoBT6rsBRRw394yews3jhphdtnGkMB84B+03EEtjW9pEpWqfc6f/Bh+4XRRrU3ocFyN2nNWpgk9Gfl5P9Nz8M+A3EWvGQPtmoGObo6CQo6x++Xffgbf99B783EfeiL/4X7+Fv/vCR/G3/+d3Q59bDCqgK8GGczENuGHUIxnunayiWhVrsLVGWF0N6BfQ64T5x5bwuycfwbi9sLZiBO39+6HeO9KWcYcjx+QL4Xb6gD3/nNVAOgOlNfC46hpGbDV04sS96GOg/YuGXGYYj9cex2nDlnZeLCJjidtI3ICRkUOBrxmNxF135zMXXoJldV+MyAZiExkTUzOnMW4vHKCts4T/CgOldXdWi18q++RfnSJGFj449RxuKCzgp+ZeRIvobhdhUVaTAUZiT7/0bfe+6tD7Xfb5tXurGA2QqflmoDtcyHLLnn+uP35iiliMXgFGYspNA9B++oCIDAQADljfmkbtY172tnKfp+KRnYT5pcbOuiXNP1v9ArqPOvgl3MHO/74COprC2NAkhvLifP7c8Uebxt50g3oZdzPPFOX2IWEkOBYDu7l5Ab3eaJBwA9iTmfflQe+xWf1D0wp+Oflv3fuV63MNz+0FuBJuCKnrQGQJeOZNgLnqmWbZMOOX/zpujnsF/8pxvzTX/OYld/bYuaYCwBKfFDeMFbxi+BEAIk6M20vTm1dnMRXEQNc5cI+nLFRr4pyrKCru32+60VSPJuxmg8VhPrPoPo8NRzGR6b3rVDcz0IlNY6C97/Wzxx5xG/YOLs6cCn1uMAMdLOEGgJdJzY3791Xdc1tEa5Iz3QeAfgG9LuDzFWz/3FHE7RndY7QA9QMHOpo5cgpnApobgxkWKC86QxRTwbI6eHFryrhlJrnVrIf8e1nCDQD5tJjzOmfZF3cODC0/Jm6TgoIaXEADHsNYrhYbu+sd4KzEQI/ES1hYmvEirELm2frwwHwy7sWuX4efWEXEEN/D/GqpbXVGeJSVV0CfvuAU0N8Rd7AEni7cKm4Sxw9fH1z4uwW0U/R2gooJHld988+AbSSW1sCvACMxAGA7k9B+7iCUN273GR8BADIa2E3S2Ibk3B0oYbzoLTbMgX4B3Ycf7Ui45ezXRDwFInJl3HKE3bqhgYEOP27Ztjj0D90A7ecPCTf+TUSDhBvAZHLGV2juLS3jgaXTeNnJ66CQ7SZ8DcDuHN607ewEsq9GqVxApVYGVh8Dnns7jkf9I0cseXkZaABI747BuVqZkmmbdb4I80sXxA8EKHcIF3aLAwXL9h0pn0ClLNR8lFBhbhPvfWelgNXpRpbYkmLVjsdSGE+bbjEX0aIgAj54VxG5mIXHJdaU7CJ+XtVx697eK54BcR5wEj3anoHepAJ6cttB389DuXG86o53uD+vFsMVm53MQAPA/Xur+Nk7C/j1V6zi+pGa69jdZ6Bbo19ArwOsYytQ7IX6w6khfCT6KWhD7RvX8JIhXDcBkQm5GlwQc8MCFObrVtNgFKhZW3IWMi0Vwq0LaE/CLZuIAUA+K+ZvZixv9jkx/ah7++hC+L6QGcbTa5BxywV01Dzrj7C6yuef24Fybda9bT7VvYzben7R+8HkwEp7s1dhUVbDA9vdBdap8y/CtEy3gI5O/hwKNfFdfOXuKsbTAeyzxYWkGF0aiBUNUFoLXChTRgeM3lycdANSGNRXjEL/pcM+x2D1FSMg1dsnFFUA25GcXyo1nPtkB24z3//u9eFHvAsJNwDccM0Gyrg7YKABu4G2xkiqTlGtlTEfkJc7Hr3kMxJ729wZ/MtzL7k/f6b8aSy+RhMRfD2IqFRAl6tFVB2J8uJXkEr8k++xevryS9D3jBPO62KbE3MFcMMCr1kwPnHCZZ+VV4yC2RLthRLBgr3dlbNYLS66r6VL59nBs/7rLufcPZfOqhEsqhGMpSxXwh2xZ8czUY5fvLuApxN51OqOyXN6oifnnx04UVZtu3CHRGiuN9708vfiF9/3Ufzi+z6Kv/ntx/DJ//x9/Nv3/6k7r99s5DGIga5nsGUoDHjzgSpeNllDzfCUNf0Z6NboF9DrANnI5rP5CYxkwrs9Dc/lHHyh6por0VAMPEySXTJBMUUU2TYoowmX7y0o5cz6AuNbFdCehDtbJ+HOZ0Rne8aSHrNy0r39zKXwrvGkPOO6BiMxR8Id1zhKy8fq5p/7i/hWoEEvy5SfKaI21d1F13phyfczX2hv9kouoOUoKyJyVQpTs6fxwonHxcWLNFhjH3Af1+C87WDV8CR1Xcwh8qoFFsaixlUQwqOctiooH4H6Y3uh/cQ+jP/WKJSXNTJXLgtdMoEVf8PRZaAVgpXtf/f68EOeeQ1loAPmHo8c9IzEvv/Ct9Z3o2RmM6W6s6u9hGlfBrQHZq0iNh5BmcR5M2d659xPlv4Wf1b8056OxKmXcFdq3npuLPk0SknvHDI6cvkL6P2DBo7aDQvF4uAXSzA/f8417qJtcSiv9dYf8vUMldNYLXrXSDkRY9fMAnyXkvmqOx54PJrCQNxCVIVg6AFEpALr9gkDrzlo4Jm4X6a/kIxhV653VVKOjLtUKTRppm2+hFtRVLzu3nfjdfe+G+PDk26zLBEX56JCcSn0ucEz0O3VJO58O9DT39leQb+AXgdYkmTwNJYwMTzS5NF1WKkBCRXMltKwvA6QzTbXgZft+WdZ4phQQWkdKGw9GbfMJC+2KKDl36eTdQW0LeGeMb3u+LClAOUzAIDnZ9RQom5nwIxrp6gY3kVqe8bEpfkzrnEK0DcQaxfsWu/iu/KN4NnEZuCzZfAZ/2win29vVnEgzsFIrB5kBhrwHyOf/cZfixtD70aVieP3zokqduWCD7C1GohBIVAqeDFNMQVcpyvCSKweRARlfxqZ+9OBTBsLmYPmNQt8xl5IjsYa3I376ENhiqsqCYux8jHQ9qJ1dHAHRgd3AACePfaoK3VcD/hUZS3Y58uFS1IBraneuaxqVHDtqIWTdRE/3xj6Dj5hm3tqWu864StMcYuFUrngKyIiehSJSW9kJJa9/I2NuAbM5r3Puva1KZjftNc+KkH94V0+xY7velY5g9WCV3zR9jhWNUHIXLc6j6WCV0Fb0vzziVgK21KiEK7abGZ9gfXjtxZxbMA/XhffJmTevYqBNozEnCYbI+ZTK1wOJOOi4bHapIAOYqBLbRbQ8jmtH2PVGv0Ceh1g2gX0kqJhoXLUNaZqBW5x8FUDbGcCFLdPzBkNlAqRcRsWKOdnVIgIbDja2r27B5FJeifb5dXmBfSy7MJdz0AHSLiH2BCwLFiCskE4NhfcOd4xtg/M7pw7M66d4vwyA7dthHdkTEzNnMFYP8KqY7Drsu7tbgpo8/nGi0q7BbTCgMG4KETr8zBllcI3Hvk0AAImftG9L5R9xtojrCiu+hQnPsRUUFQFrpA56E7gn4OWCuiLJdeA3zUl66OPOjizjOEFdHD2qyPjrhkVPHf8sXXbHkpIqrIm88+XE1OzZ9zb20b2uLcr1TKuGzXwhN3YtgA8eecefCf5uPsYVe3dAhrwWGifhBuArsVAUtwTDfXItXy7VMhJyRXKG7eDjfrPe77rWeUsViQJNzHC+VHRuI5bJhZe8Nya+Xnv9rFo2h1RciKRorr/78Q04I5X+e+b2HP5TddkcJP7PIbaMRJz/BDisdSmj03UwymgS5UCTDOYNAuegQ524a6Hn4HukWO9h3HVFdB/94U/wg/8zD783Rf+aF1ejxdqYKtCbno6kgRKz2F8eFd7T16ognIRXzYuMQYajTXkOwfNP7vPSWuAylwn762CzhhoIc9mxJBMZH2/y2ecAnrGvW+IDQPL3pzas9PBnWNdi2JseBIAcObi0a6cuM8te8X59rSFqdkzGO9HWHUMGo25zYbiEyXwEC+AMNTLt4H2JdyAZyS2VGEoS39aZqBrRgXIvxmIC2O6a0dquHYkvID1OXB3wUBTVg/NbyWFQBkNfAuOb6wVJC0S5SgrJ/8Z8Mf99NGHDEeKWQiVcDfOQAPADQdkGfc6zkFLWeVsrDePW5mB3jG2z71drZVx7YiBfxicxB+MH8LP774NxRuHffOU2lYpoCsFn4Q7qseg3DUM5RWjUN82Abb98jKQDrK7ozDgL+ZoXwrK3Y3jLj4GunzGNwMNACuTnozbesE77n0GYtEUxtMWDKMGyzbL1fXGBuWeQzpKcW9fT+ztrf3O58o+40lnBhpozUB3YyC23uNVjhoGAFZD5qADXbjbZKBrNXkGut+AboWrqoA2jBr+5jP/ESuFBXz8U7+B7z715TW/puz4eiqaBFYexngbDDSvWUDNAptMgHQ/O8pyemNBXDJBcSWYjUprorDeYm7cnc1Ai9+nEjkozP95ZVODICIs8kUYEJ/BEBsGrXzHfUzzOWhRIFWqJUzNnu7sTQA4s1iXAT1zGuMOA61SP8KqTRCRyIQGAAu+KIxW4BUT/Li9GI57+6NdBhrwR1nNhERZAQAm/o1784eua/H6ay2gc82fQ2ndnbG+miCzdDIDbV3wbrPx/gJgPfCxj30MDzzwAG699VZ86Utf8v3ur/7qr/DqV78ar3zlK/GHf/iHW2Ye32GVS+XVwKap34VbLqA9IzHXjX8dwA5kwG4fBLsxD3bL5kZTtQvZgXtiVC6gK0hHOLYNcHw5tw1HYxkMJyzUDO/cp6m9zWY5kv5SueBnoPUoSGNQ37gdyj0djOZtMPaPcZyWDa1iCrR37QpM+2iQcNfJf9n+jOvqnTy1CMD25rEl3MuKhhktivGU6c4/A/4ZaAdEhOTd4vil0Rgo31sFNEwOKOSOSA5kvX26sHwp8ClO1F082lkBzecrvvpgPeAw0ED4HHTQDHQzEzHf46TmUV/C3RpXVQF98vxzvgPpP/23n2nqvtcO+JR3QjkdSQCLX8fY0M7Wz5uvAMNR0HDAIi+tC1ZZchAW+c/BbBQpDDQU3XJxVslE1pXEtMqBXrIl3PUZ0ACgqhoyyQFwcMxBPG6IDWEsvoK4JhZ0z0yrCFvbrXUO+txyXQb07Fkvwmow2o+w6gC+OKsn5ps80g/r2ApgiB3Mrs8LYz0AfL5zBhrwy96GcuNe9zl9L5C+EwAwmTVx2/bmZmfdMtDcMR5rFVMTV0Cctx3XdaWA4qrbmJIZBdmBu89Arw8mJibwC7/wCzh8+LDv/oceegj/8A//gL/6q7/C3//93+Ohhx7CP/3TP4W8Sm/B+T5zzgPljbK5mGwcNDKwHamEOEcFZSJ3C1II2gOT0N6zu/Oou02C/H63j3oSbicX+M4JcS6Mqhw7s5afzerhGWjAL+EuS2vEoCKxF7A7Z+I5SYmnvn1n6PXFvZZxA6hexErBX3gNDSs4aqsssotFcc1arrljhMejKYAI21IWKlKecCSEoVReMw7t5w5C+8CBnlr7cNMCGNlkk2DRc2mPsZ9bbCygTdNwM5Q7NRDjVROIMPDy+o1YJWNeAR02Bx1kjNidiVhvN716AZffEWET8dzxx30/L67M4nf+/Kfw2z//KTDWXS+hfK7kfoin+AVk40pLqQevmgAjKDuTgdEOpBBoJArr+SVPpGNaTRfglNPtDGnes3ER9VCYgnQij6XVOd+Mcz0q1ZK7yKmff3aQywxjcWUWU7ULGNGGkWRJ7B+7FoVhA4+e17BQYriwwrAtIGqo3on7rhtf39H7cCKsCBxZbRnRkgYtIvZVf/65M9COBGgwAj5bgXV0BXy+4uaeN4Ms32YHM+CnV0X3d7EKbvG2LuRhUVaOE/fzxx8DJn7Zvf+Hri+39KjymYh14sLtzGmFyLfdbYup4BEFVLWATc6EvdygkSj4cg0oGOCrwozR7fhnNNtXov0GSh/BeMMb3gAA+Iu/+Avf/Z///Ofxjne8A9u3bwcA/MiP/Ai+8IUv4K1vfWvg61SrVVSr/v2hqip0fX2KK1I4mMZBSutmUiLusXfF6goSSX88jSzhTiZTvtccyo9jpbCAucWL4GR2tXZwXq+dbe0VOAx0JjWATDrr3l81KiCF4z03lTCYtLB3wEQ6bqEmuXFrugZi/vfaS5+B48zOOcdqadG9PxKJbuj2dfsZ6Arw3QM7YT0PHI+l8YFrY0iGvIZzLWO1i7BgYbW46Pt7Y1kTf5ccxDX2MW8dXfIZVx6PiuJ6PGdiZcnfXAjablIA7HSal83f16YeA1UTSDBQTgWfKoEUFYN5r4BeWJ5u2I6SLwM62dF2ksJBWQ18qQpKhDdiOvkMkklPDVMoLwU+p1QJkHDXCm29fs2SFAYbfOzLWI/jwDn3dzOGGfh6bZzXr6oC+nnJ9COqx1GuFvHEc/+MT33pT/Cu1/9MV69ZOleCUy6fLn4Lu9oxEKtxQGdAKlzay3IRWBoDr5iAQoDKQGFmQrDnoBOakHE3ed1eQyY1gKXVuaYz0D4H7pACOp8Zxslzz/nmoA/mr0N5RBTQAPDEBRXb0o0L6rVkQXPuFdAjSQuLi6fr5p/7BXQnICIotw3A+PwFAID56CzU+7c1fQ7nHJZjIKYQ2N4UrHxEFFMmF930NtjfsCgrQDRZnr9YAfKvtx9r4r5drYszt4BOqKGzzIFwGGW1xXNiimCpK+ZVV0CzkRjMo2KBwy+Vhdzd7vazPvu84Th58qRbXAPA/v378Sd/8iehj//Lv/xLfPzjH/fd98ADD+Cd73znumzPrnsB4T7SOgJv+J+igL0cyB+ewq69/gLa+I+LAABFUXDgVQaIvIX0jj1DOHEWqBlVZA6fxuDgIMLwjW98A88++yze+973IpVqbKxP3tW5WeLlQK1Ww+yimBHdMTmOnTd7C9346DJ23Ss+n4Ov8D4niohiS9M07Hl5uIlRL3wG+b/WgefFbZ7yZmF33Mjd97aR6OYzOHRCw58tirXLj++YwnX7G8eJihXC8p8Ls1YdUygDKFaWGt7Tv/+bHGAvnWLTc4hkI3A0gcdjKeRTJq571TKOHvXWYgMTyrp9Npt7DDif0wpGinHAnsgq4kLD+zl3zjsWRnbGu3i/znHf+pzUzmew4/ko8H/E7fjOqcDtsf64kZlWUsttbfuJqmdIN7KPNuXYl7GW42DXvQCwgtOn12ebd+1q7WV1dRXQJ8QVU1N1/PpP/SV+9Q9+CJxz/MX/+i3ccOBuHNh1U0evxzlHZFZcJC5pUZSWvoLxA5Otn2jZLHEzpjilidzY5RqgMzv/OXx3ka6ABiKwzhWEi/cWQSaVBy7a5h0hcxqyQ3coA+1EWUkF9K7kPqS21fCXTwip0TdP63jzgcaiZ/voXjCmwLLMjrOg50uEYk3sx4mMhYuz0vwz+gZi3UC5dQDGFy+IOehH56C8Zrwpg8ynyu6sMe1JgSKKb3aYz1fakk/7JNxBUVbTr3N/fuDaSsvaljvFO7qYf3bmmtXmFDcxAmV0WOeL2Bq6k/VDvRO3bLxI/fnnDUexWERSYm4TiQSKxXCp4Pve9z685z3v8d23ngz0N/52DgtnKsjtaH3OtZa9BIiXHrKgXPQXt/PTYuEbj6Zx6qG073cJ7HBvP/6FZeyf9BZanHN3LGl+8RLe//M/DsOs4eJLJv7VO37VfRwpHJN3reLUt5PgZu9/cy/OnHaZnWxkJ+Ze8EZtpo9bOPnNxubA6qL4PqqKHvj7XvoMrIK3j8+86KkPFo7mcVLduOzftXwG2aJ3AXrkwSQGLjV+j84seo+JmHOigC4WcfTrUaiqt05cHUxhSdGQMWtYebiIwiWvGXssmsJIjOPkN1M4ftJ7vdpCOnC/doLNPAasSyWwyQTYtgSMx2ZBUQUUTSEeTaJYXsX507MN7+f4GW9NwFdybb9fblrg81Uo1+dgHV0GOELX5Z18BtVLHmN+4vEqTiYbt2fhUuM6eu58ta1tP/s97+8XLmTWvH/bxXocB/OnSxjcG8PL3pVv/eB1wlVTQC+tzuP8pRMAgL07r8dt170K73r9B/A/P/+HME0D/+FjP44//dDXOnPaW6hCNwTjcSoSB2a+ifHhn279PEsw0M2k1sQIbDQGc6YMmBbYeNyX7Rf4nLwOOlPwXcR7HbIT99LKPIB0w2NkBjqTDO72DwREWY3r2zAyYGI0aWJqVcH3LqpYKhMyUb9MRNci2Da8C2enjuHsxaMwLbPBqCwMDvsMOAZiZzDuy4DuM9CdgrI6EnfEUfh2UUiwj62A9jceFw6sFxbd2+ygPSMkyb7bdeL2SbjrGOjB0buAIeHAG6UCXr+/jddcqXmRSl0W0KSwFiI4W31y9ip04payoK1LZZDk2k496mR8JSEej2N11WMMCoUC4vHwz13X9XUrloPATYJVo7YWYPGIJIUsrDY8x5FwJ2Lpht8NZb0G6czsReybOCL+fsEAny2DJhIgRjh59iUYpmigPfPSI4Hbxc32tvdyY2rac+AeyU9AY953r1KtBL6HWk2cIzU10vQ99sJnENM9d+2lZW+cTFdim7Jt3XwG26VxtLMLKrjZyHJekhJCErQIh5tcXllCLj3k/m40xfFEcgCvWJoCypar6CoyBRf1OA6lquAmoVL2R3yt12ezGccArwGIRcCjGpCICB8iTUM+M4JieRXzS9ON54GCd36LR1NtbyMvAxwMiOvAQBzW8WWwePNzXzufgXzeWl1dDnx8wTY9i0USKNmjj+VKqa1tL5cl3wIluunfy7UcB865v9tx3G5w1ZiIvXDCm38+uPtmAMC/fNv/z2WdL0yfxEf/9pc7chGdPyUZiNESYBVxza4bWz/R4i2ZJcB24I0yoGK2tQCnlAYeIWALxdrIjHKYkdiSdH+zGWjAz0DneA5EwMsmxYXF4oRvnwnuAjpGYtVaGRdnTrW9/WeX6g3E+hFW64HsWzyzDPPR5gZzlpT/rNgFtOz+yefac+JO6EBCt7Og6xjox5bvAEj0G3/wWgPRNlqPvvnnbhnoOpQqHMuFut/FFOF/cLUZickM9FSpH2G1ydi1axeOHTvm/vzSSy9h9+7dl3GL2kc85jHn9bmpnHM3H1p24HYwmJMKaDn6xjYNcsYILkmu1afOv7BlHMqDcEkyEBsZ3OEzkJLNwmQ4MVa9HmEFANGIVEBLDftediKekApo2chUhjyKlNa847zewXksZeLxpLS2sg/VE9EUOBHGU+JvySZTvfzZ1IObXBiIxRWR9jEUdVNu8vbasVhaaTDbKvpmoDsg1wxLjGxFGNhQRKTqVNduJia7cK9KSQEynBirTGoAjMT+b9dErCq5rOs9aqDXS7hqCmh5/vngnlsACPfmX/nxP0PcjgP4ysN/j//yP3617SH06WPeheNU9TkAwAG7OG8KCy3ZZABibjIbAaJqe7LshApy5qC3CNLSSTssykow0/bjU8HyjLwj4TY9BpotixPWyya9QubBU8EXc9lI7PT59mXcfgbawpQk4eYq+hFWXSL5sgSQEJ+t9fRCqMM8Lxngp8QFgwYjbsOCfAx051FWMwXmjiFfWGH4v8fE6yV0C++8rr2FsN+Bu7PjgIcU0FNzwMwiUDO831NcGImhunUaZ+sBSqjuWAufLnkRVhrrKz/WEYZhoFKpgHPu3rYsC294wxvwj//4jzh//jxmZ2fxiU98Aq9/fWcGjJcLsqNusa6ArtbKLnOciPpnowFhIuZgduGC9wuTC5+SkrjuTEu5ycur81hc9pq7Ww1yM2BkYLvPoVeOvpEhM9C9DseFGwCWpJGxXnXhBoChhAXNNl2S1yEy5EZwLuIVR/VO3GMpC08EqPuO29FN42mngJZNxLZQk7JqAhHF9QmhlOZGxealKKv5Jb8Tt3xu6CjGqmYBEQZSGJDRBRm23HoOuhV8BXSpeYxVPJpyG11dFdB9F+6WuHoK6BNPuLcP7b7FvT0+PImfe+/vuj//76/8GX7nz38ShtH6YK+clxjowjewbWQ3MsnW+ntucUBrLREmIrCRGCijAYnWlBcRiTiryvrZ5m80/FnQwU7ccmGdTQVLuPOuhNtbpDgFzDWDJobswuiJCypWKo3s/065gO5gDvqcdOHanjExNS1FWA30I6y6BdMZlJvsY8PgsJ4MPjasF5fhhFi68m2gbga68yirmkVYLIl994nvR2FxcfvthypIRropoNfOQJsmBwgYHQAuyR9HVAHpTCwSrjK4LPSKAdhKAxqN9b9364jf/M3fxN13340nn3wSH/rQh3D33XfjiSeewD333IMf/MEfxHvf+1488MADuPvuu/GWt7zlcm9uW5AXw/WxL7IDd0sGet4roLnBgbjiMltyAQ0Apy50HpHYK7gkvZeRgQnf4roaxkCbTgHd+03kmMRAy4kgekhUUy9AYcA2mxm+sMLc4AYZ8ijSQMy7Hq0UF32PG0taWFJ1vBT1H+/H7Xir8ZS4tlS2QMRXICqW8BFyjDZTqh1nZSCfkQvoad/TZHVKJww0NzgoLo57YgQ2FgevWWtWiSWl81FQDrRh1NwiOBZNusqKcrXdAtr7Lke03j32ewVXRQFtWZYr4c5nhjE8sN33+1fe8Xb84vs+CmbPvX71O/+AX/+jH3XnB4LAOZCYFwelAcK5lS+60vDWG2S7cLcBGolCuSbTHmMNMQ9JFM5g9RoyvgI6WKorS7uDcqABuCfBMspYtsQCyJl9FTJucdvkhIcDZNy+LOgOFjpnbAl3XOPIRy2Y80VoJIolNrSFLjA9COV2b1+Hybjr46scUEwFYuL7zOfDGWi+UoN1etWVV9ZHWV1YZvjyMbE/k7qFHzzUPpuNtRTQAXLPlRKQigP7thNqJlCp2nPSjATzdZUx0IB/Dtq9r28gtq748Ic/jMcee8z375ZbRBP6fe97H7761a/i61//On72Z392y3hvxJsw0AVJGpmINRbQQ7kx97aPgeZcXKdJmAhNz9cV0B0om3oNl2bPuLdHBiegS4vr0AJ6izLQNcM7b/e6THkiIwpbwyJMrTauEWUGejjpXVNWC4u+x43ZhfjjdeurY3ajyYn/rPgYyt7+bGTwsgnKau75iRQGGoyCl+oLaD8D7WumxdLgRQPW+ULrcQzTAuIeuUJ5HYira1aHJnwS7sYC2mGfASAeTXr55m3nQHsNkr6EuzWuigL6/Mwx94twcPctgRf51937bnz4p/7KPSk88vRX8Mv/+R1YXl1oeCwAnJkHxsqiwD6vWjB4CQclZrspOAdp7S00SGXCjbtNUEoDj6lAeWvIuDOShDssykruCMuPl+HMsQCSkdhSze34vWynJOM+3VhAbx/Z4zZQ2pVwVw1vxmh7xsRKYR55w3MnpYHeXzj0Mti2OGibuADwc0VYF/wXAW5xr4DWGWi3v0PsyriXqoENJV6zUP3jF1D7oxdg/h+x2K0voH3s8+H22WegjoHuJAMaEF2fOiwXgLE8sGcc2DkCXJJPTSnNZb6uJrCRxmK5H2HVRyvIEu5CAwO9Ij2usYCOx1JuAT4jF9AQ11+KqUDJbGCgT18BDHQilkYynvEz0AHpGZxzbwZa6/0ZaJmBlhHpYQYaEOsOB+eWwgvopG5hIOmdF+vlv0MJCwpxPCbJuGvEcC6SQFzjSNvXPbnAikZ6+7PxgXMx3iiBsjoI5I7/AcDcYr2E2ytIE7GU8DfgAIwW6wAOUEQqoGMq2EgUfHVtMm75fBQ0A12SC+iYV0CHJdzUQ26G9SXcrXFVFNAvnvbk2878cxDuuvH1+O2f/3v34vjc8Ufxwd9+E+YWpxoee/QFE5rdhTrFp+zXbpOB5gA2SGJIEQUsq4MXt4acM9OGhNvnwh3CQCdiabf54cq4LS6ckAEcHDYxELe7rOc1rNapenUtgu0jwgDnzMWjbXXszq8wcDs8aCJtNkZY9RnoNUO5zbugWxILzQ0L5pcuALbzMtuXblBpuDJuC8BSo4ybny24sl/zwUuwji37oqyevKjiy8c99vkHDpUbXqMZ3AKaAGQ6kzFSXYebc46aCYwOEBSFcGCnOO5KFZuFjl1dGdAO+gx0H93AJ+GuZ6BbFNAAMGTLuGcXLrpsFIGAuArKaTBXa5ieP+97zlZloE3LdNn00UER4aWpuktEBDHQhuQIvdUYaBm9zrLKRmJnl/3XAIsLLw9ANIZ987N1M9AKA0aTFl6KZTBvF07PxTMwiWFb2nT7uT6GcotIfLnFASJQ3D8GSWkNPKYgH/PcyBfqJNw+E7FoSjTiY4qYcW4CAjWoTGlQjPRxo/tGt65F3KZOJwx0pVpqy9tJnoHuS7hb4+oooE9JDtwtitzrr7kLv//L/8fNFT594UV8/FO/0fC42ZPS/HPlKehaFLu3H25/o5plQK8RNBAB1vAlrYd1sRRq4rRWZH0xVmEmYqJwikeToV0xInJZ6FkuFVp2EcMIuNdmoWsW4btnG7viO8eFjLtmVPCeX7oRf/3p38FCE+OXegOxMxeOYkx24O4z0GsGuzHvOtabj8+DGxas4yuo/e5zML/qOeCyG3INz6UWUVbWGf+IRu1TpzGieQu/z70YcdnndxyuINmpCtsp2lOaMBNp93kWB69joEsVOxHDXs+PDQC7xoApu+dEUQVgBC4NwhXKHEsFjmKFo7ZFRjo6BQUw0DTav/D30RxNJdySbDNs7tGZg65US1gpLIJzDg4OKATKRbC4PO2TAgOCgd6KTtzzi5dgmuL674y/EZFbXAYV0LIz99Zw4W4soDU1sqmRON3Az0D7C+iFEsGwxHVkOGkhmfAK6PoZaAAYTVmwiPAbE4K2+/4AAOdASURBVEewcMc4Pjp+CABcB26grsDaKhLfiu2OX9dkpqggm3Ka51s018xELJYSRoExtem4FDcscJWEL4n893I6kFm7mVjSbuoFzUDLBX8smkRUUlBU2piD9jdI+uvXVujts8Ma8O2nOd7/+4T/9L0sHqz+v8D1XwOOPII/eOZ+/D//O40HT4UzQnt2XIs//JXPux27bz/5Bd9FwrREUengdOk72LfzBl8wfVMQNraAlhwG1wrOOWBZ4CtrdxAMQkZy1Q6NsbIl3OkQ+baDV97+dvGa20bd++TCyYmzAhC4/++77W3S35zDf/+n/4T3/NKN+P2//nmcvXi04fH1GdDfePR/Y5ucAd1noNcMiqtg19rFcdFA7WMvofZfXwSfsS/kjKC8akwU2vXPlaOsAuageV0BjbkKJr7jzfo5xXOqG/bZsISxFbqYf7Z4w/lhuQDk00DGNgUmIlyzg6BrwGqJC3MUnQFVCxbnmF7kKFeEV2G1BiysABfnOC7Mcsws2ov9KwFJVcyWOcjpYoHTRx9NEG8q4ZbnHoML6CHJSGx24YIw/VMZSGOglIZLKxcanrNSWGyYsdwK8DtwT7i3nQV2kAu33DzYqhLurVAgbs9IDHSdhNs3/5ywkIpn3Z+D2EtnDvpYLI3/u2c3pmyX7fG0V6SXK7KJ2BZpVFYscU2INqq0aCCCfNxjoOfrJNzyucE9F0QYeDO/EcOOqa0voBUmzMRK5poaac4ctHyechDGQAPtzUH7TMS2wPF/uXHFFtBnp4FPfZXjhQuEUuIeIPNyIHUzzi5rOLWo4A++HUeticp5fHgSdx55HQBxUH7vhYfc3x2dUzBe9Bbfp8xTONSufBsAcQjNzEYh6TkMrhm2YzhZ2JDuua5F3YtXEANtWiZWCmLYMywD2sGPvf1X8Xe/9wzuu/+d7n3yHOrhYQO5mDjxPXJeQ7GuJ/DyW9+K//qhr+KVd7zdnYeu1sr43D//Df6fX78Xjzz1Fd/j5QtWRpnFY898HWOKbTCjUj/Cap2g3Obtd37Su0DQzgS0Dx6E+vptweZFOYmBDiigXQZaY+IfgMgj07i26Pc9eMe1FSQ6XQMueQdXxwW00VhAFyrA9mH43udQVsxDTy8AiCigiIJaycTUnDAbO7KPcOe1hDsOE+44RLj5GsJ1ewjRiCiorwQQEWjUu9D355/7aAdxKZ5KnnMEGo2DgjCU94zEZpwCmgFQGZBUMVPyxr5UxbsObEUZt2wgNjooFdC2NDuQgZYKaH1LSLgDCugel28DQDrCkYmINc25Ogm37MA9nLCQTGTdn+sl3IDIgnbw+AXvmA1loLeIxJdXTFBGC1wjUFpHKpN3v6Pzy3US7pK/gCYuCuFAy3MHNTsDOsAomPK6aPqugYV2iL1iedVVhjjwz0CnEJWixsptzEHL+1fbAsf/5cYVW0DHYeBDZ57ER049jrR7MregMlEELlcYHjvfvMC5+8Y3uLe//eTn3dtPXlSxsyIO1DIMXLKm2st/BmypF0AbyUC7DoPrMAdtAVAArtOGufxmbBl30Az08uq8W7iHzT/LGMiOgkmFk+yErDDgHkfGbRK+e7Zx/+/beQN+5f0fw3//ncfxjtf+hLvQMk0Df/apD/uaCA4DTeB46YV/ACyOMSYWVjQQ6UfprBNobxqQi9CoAvUHd0D7qQNgY+EFk4+BrpNw8+Wae2zQRBzK62xGiQMfvPgcdEt8d1IRC2872Bn7DKxDhJV0fqgZHCoDBtL+44mIsH+CEI8CyyWgqKqYn7WwbQg4spcwkCEQEaI6IZ0gDOcIE8OEvdsI1Zrn4r3VIcu4+/PPfbQDTdVdCXJTF+6AGCsgIMrKZqChEkhhmK544yXX7b/Tvd3LRmKzCxfxma/9BWYXLvrulyOshmUG2mYgawEFdPUKkHC3E2HFq+aaEk94ee1rNIeFnisyHyngd+C2XOkvAKwGSLjHpEL5+RmvGN8mzVlvyRgriwtVZhCSKpR0BDnbPK2BgbabaURk516LBJ2maQOGJaIlA0gySmpQ9qSAitn1WKQ8y15o4t/QHQMtN0i2yP69jLhiC+jRTz6Hmwrz2FEp4Dee+wvEHsrjF/f+KT78Sq9D85XjzU/sN197n3uRffjJL7pD+M+cYxi1TySnzXPg4E3NyXywIAZyN/iTp4wG4nztrLHJAUaus+hGwGGWVwoLME3/31iWiup2CmjAX7DUF04v2+ldYb55Onz/jwxsx7/+oX+PT/7np3DNrhsBAKfOv4Ann/+meF3uFdAjSQvfePiTGGCDboTVesq3ucXBS8a6XGy3IogR1LdOAFkd7KY89H9zGMpdwy0bFNSEgbbOeOcBtiMB5d4R0E7BQoyWi/iR6eMAgAcOd8E+Q5p/BoBsh0oEk/sabCtFIJ0ABjKND82nCfu2AxdngYKqYfcQx7W7CLFI+Gczkgd2jABzy4C1BWcy68EmPPaITSabPLKPPjw4Mu76HOiiT7bZ3EQM8CTcpJAoogHMrHgM9O3Xv9q9ffL882vf8A3C7/31B/FHf/tv8BO/8SpfvrVfwu1FgLoS7gBmyy/h7n0GulsJN58qBRpUtgu+1EEsYggmQuagL0kM9EjCQiyadJV1zSTcgDe+BPgl3P4CuvebldziIuYxZKyHGIGGIsinhH/O4sqMj9V1mmvxaEqoMFUxosGbmIHxGm8wLPP9zW1xkRiyVAWvdr6mk5t69ftRZqBj0aRd9Au0U0BXqnJMWe9/by83rtgC+vD/fx/0YbHy3a/swa8nfxWHdt6MW7YZruTl4bMaCk3OfbFIAjcffjkAYS7w4sknUTWA1TNl94M7bbyIgeyo74LaFFwUpBsq4YYdZxVVhO3+WuAU0DkdfIOisdL2HDTnHAsLfvns4mrrDOjGF9TcI1tmAgHg+lFv/z9yTkOphZImGU/jna/7affn//XlPwUgDDqKNXGRGYys4KXT38c2Js0/r9FAjJcN8PkKrKkSMF0WxfNCBbxydRbRynU5RH7temjv3g1Kt1fRUlRx52P5fB0DfdYbwaAdSVGkv2vSNSx729xp3MHn8bYOZ5/d119LhJVpuZJyAFguAtsGAU0NLor3TxCu2QHcdqOK7cPCpbsZGBF2jxGyKWC+cYxqy4HdnIfy6jEob9oO2h9c8PTRRz0StrqogcUp1hkHBWAwLzHQCxfFdVJjbuNLLjpvvfZV7u12IxIvB06cfRYAsLA8jQ//yb9w2aipWe+9OC7cgMdQVY0gCfcVwEC3w8ARrYmBhp3iwZtJgltgu1TgymNl9Qw0Eblz0CstJNwOIgrHQMx7fxWfiVjvF9ComOA682Uy14PSultAc859XjxuAR1LuaNVlFSFPDvMY8i0mhfQRGC7kqCJBPhspeN972eg/ftRnoFORFN+Brpa5/kSAP8M9BbYv5cZV2wBHZ+M49q/OoIVLr4A12vXY/TLgMIt3LdbLG6rJuGhJiwkANwlybi/9eTn8dyM6pt/Pm2cwsHdNzeXdMgwOaBgQ03EAAAxRchW1hpnZYnOOuUiIA43V3k9ITtx1xfQ8lx0qxloB8RIuB2isYBWGHC3zUKXDcKjLWT8AHDPTW/EUF4Ux9996ss4d+k4zkid3uryUwCAvepebxuGu2OgHcUAL5tAWgPbnwa7eQDq7UOgnUnwucqG7IMrFa6Me6nqu1DJDtxsh2Af2HAMymvFwlgB8KszzyJG3S1s1irhdjIkLYvDNIGRfPj5IhUnvOImhu07VJBKsNowD4xGCHu2ESwLKG1xKTcpDOrrtkG9b7T983AfVz1kBlpWarU1Ax3EQEszj9OzQvbMmILtY3td9+pTPezELbOLL558Er//178Azjmm7WZAVI8jnfTMGp0ZSdM0GmYxDcPrTKtboICORTtnoLnJAY3Emq4LcIuDHDPHNTTGJyQjMXkO2pmBZsSRt4vgpM1eBkm4k7oYWZIxlrIgn1KrPoZyC0h8qxYoqgKRJgV0QkUu42VBy0Z/BbsgTcRSojBWGZDQxHc9bKSRGg3EGh6iMLD9adBIFHy2MxWCL46sGQMd60bCLc4BiqJCUfpmnK1wxRbQADAXm8OvL/8qilwcOPz5ZRj/8xRevds7YFvJuO+84X4wEh/Tt5/8Av75lIZJ6SA9ZZ5qP/8ZEKZcRBteQBMRaDDSlUTEB8ddNG0z2hvAgMrM8vy8fw5aLqBbuXDLcIuWgtHwGbxs0ituvnmq9cVdUVS87VX/CoAocD/9lT/HOanTe+H0FwEAR7Qbvb+/O5i5aAn781VvyEO5eQDK7hTYUFS4Ue9KivcVYIjVRzDcKCsOYFEs6rjFwc/aF5O05stoVl4+CtouLjpspgzzIb+pSNtYQwHNTQ5ExfFVrADJuBdf1QxqXAGLMliV9or+4ayQci9cIVLuPvroBE4BbZqGb/avnQI6Gc+4Bj0z8xdEc05y+Z2eEsZbQ+kxKEzBpB2RWCytNMwY9wpkh2UA+PK3/w7/+OU/dWeghwe2+xpUssRT/vwAPwOtb4ECWlMj7jrPQcucY8uee+/23GlY4I7SaA3jcWFRVg4DPZSwXMGjYyRWKC0H5gLLMm4A2Jb2b1dZikKKRnqfoeQVE5TVmo976QwDWS+5Zc6egzYtE+WKaLTHozYDrRGgCRY6yImbcw7ivGUBDQCkK1CuyYA6NJtN+iTcfglZ0xnotkzExPd2Kxj/9QKu6AL60Ue/i5fMl/DvVz4Mk8SJwHpyHnu/eRLjSdEx/d5FFbOF8C9XNj2IQ3tvAwCc0d+D//NC1DUQA4BT5kkc3N3m/DMgzUBvPFPC0npDNmzHsLiboUcpbUPmoDNSYTw353fi7oaBBurmoBf9Ou0jYwYSuvhMnrigoh1C9/X3/qgrafnSQ5/EiTnvc1idfQQqNFyrXyfuyGigwe5OQHzVjj5K6w1sGsVUsL1pcA7w0sbI6a80UK4xyorPlN3RBrYj4fucSSGo79jpKOtgfvmCf565TbgMNCMgzMAkDBYH6WIhtFIEhjJAMt76fMFiDEpMabuAJiLsGicMpIHZRkVf2zBMjlKFw7hCs6b7uDIRjwZnQcvGQbJbtwwiwmBOGEa6DLRdQJeKq1heEo3g4ew2cItj57Zr3Oee6kEjMdMy3aJXlq1/7O9+3S2OZfk24Gdo6524qzVpBnoLLMaJqEHG3XIGus7ssWPULHdmfi2Ro+MpC4zEudeRcJdqwigXEA7cDpK2hJtz3jD7DwBjSf92jNcV1A4DTURbYr/CbGIgZoMUhlx+xP3ZYaD9DtxpUUBHFbFeSGnCLCzg73E7zq4dUFKDYo8dtbvOSMTaZKCjSb8Ldwcz0H35dnu4sgvox74LAHjKeApn7iu779Z6eAY/XT4BAOAgfO1ECxn3kdcDu38P2PFrAIBJu4BeshaxTCvYN3lD+xtlS6I3XMINAElNzGKsQcbNTS6yLYlAA5ENmcGVGeiGGWipgM5IUu9WkAsnLPov7ioDrh8RBehSheH0YuuvQTqZw2vuehcAoFQp42EpTgmlF3BQPQiNixM125fuSkrKOQ8+KUugoQjYziT4QnWNs1dXB1wGGp6hnJz/TDsapXtsewLsDjsbsmLB+Ny5hse0gtu0ybTofgeB4M5il2vAtqH2nk9E0HIazHL7i7GIJqTcjIBipfXxxMGxUhQ50xdmOS7OccwvA5UaMLOGIryPPjYbiZAsaGfhLEyXwq8NQ/YcdLG8ikJl1S2GLk15sU/DA9uBsuky0ABw+nzvFdAVaXF9YNdN+OE3/hwAf3TlsGQgBvglvJUmDPRWyIEGGo3EWroQ2/4w6HZspOaN6hC6H4/TFGA06UVZcQ7M1GVAO5DZy5XCYsNr1c9Bj9cx0M5+1rVoz4/LcIuLXROQ/1yPgSFvJGN+SajO5AI6HkuCm5bbJKOw16xZgRnQzUBZe41SNttSjMomYoW6ArpxBtorhDuRcG8F479ewJVdQD/+iHt7/OXXQ33XLvfn654/C82OqvlqkwLatIAX1H8NbPtZAEDaqCJnO0yeMk9h1/ZDgQ6OobBsI4JNKKBJZ8L8ay1spckBmw2jlAYirHvhlm0i4b405y1GMtL8VSs0c+IGgBtGvc/k+xfbYwh/4NXvFzd2/Q5mauKES+VTQPUibond5j6O7evSyKhstjzZExHYZEI0M+a6M7i6qpBvZKB9888Twd9d9XXbXOMR64l5WCfaD07mVdPNYO94/hkAcc/NV1fbk2870DNaqDtoGAazhIlhYHFFFMjNsFoEqjVgfAA4tItw037CbYdEEd5XgfexldCKgU5Em4/hyFFWs0sX3KbXpYun3ftHRncARcPPQPegkVi9u/K//IF/i9sk93CgkYFuLuHeWgw00GgkJjsYB8J2Xu92JcerFigh1h48pq7J8NWJsiobhLkiNRiIOUjJWdABc9Djaavpz85xsiUYyqoFHlGaGno5GBiVCmhbwi031eKxlCC/bDdviiq2urPuomdwOwO6ddFeDxqPC1OxFhfSZjPQsqpAMNDe+qa9AlqskfoRVu3hii2gK5UKvv/9JwEA24b3IJ3MQbl5AOxmUayxqoW3MtFpOj6v4uRC40dhWMBHHkzgwXM288lNTB7/sPv70+ZpHGwz/9mFxd0L7WaA8hEhPekanjkKpbQ1n+iDIEu45QJ6pbCIx575OgAglx7G6NDO9l/UJ+EOKKDHvAL6e1PtmSXsHN+PyZs+Amz/IACAuAH+4r8AANydfpn7OLa3u/lnvmr4M6xDQLoCZV8aUAi80MJG/CpHUJSVy0ATQCEFNCVUUUTbMD59pm2GgC95+6Tj+WfOAXjSwEwCyHVwOCmJzi/cALB9SORJrzYZk7I4x0oR2L0NuHY3w+QoYSRPyCYJmQSgKkCtr4roY4tAlir7C2hxOywD2oHPSGx5ynXOv3TRa/qO7JgEr1nYObbfva8XJdzyfGRUj0FhCn7l/X+G7SN73PvHhyd9z5EZ6HoJd22L5UADQLSegW4l4bbJEHQbF2pxUNImJ+JrW1fJUVZnlxR/AR0g4QZCoqzqJNzbUiEF9FYosCqmYPjbYKDzw2Pu7UAJdzQlfFSctXtUCXbirjkZ0J2v8dnOBCipAUvN13RJn4TbPwNdKgkGmhFDRI91bCLmSLi3hEFcD2BDCuiPfexjeOCBB3DrrbfiS1/60kb8iZb43ve+h2pVFE7X7PSKXOUmj8W8v+iZeXy1zkxspUL49a8k8Y2Tdq4vTOCF92DnknfxO2WexKF2858dWBBOfpsESmlAhK1Beu3JzSmigGV0YJ3nb8NMxP750c+4nexX3P4DUFj7xYFv9jWAgd6dM5G056CfmmpvDvr5GQVnk7/gve6xnwGWH0IMcYyWheSXhqOdxxbBk2+3OztN+QjYZAp8qdYx43g1gfL+44DXLPCLYhFAw9FwKRYAdscQaJu4APELJVgPz7T3R9cSYWVxcIW554jxQbSMpZKhxJS2nbhlJGKChV5eDWehlwsij3psoHF7YhEgpgPl7iNR++hjUxEPkHAbRs0tEsIMxBwM5r1F98zyRS/CSmKgR3fuAhghqsVdBvf0+d5z4vYz0OKcl4yn8Zs/+wkc3nsbbrv+1bjjhvt9z/EV0NUmDPQWkXDXF9B6mzPQnJHwtukUktkU5fVAU6p24YuyWmauAzfgL6BTCa/4Co6y8h6rMo6hhH+bHKVBy8+mB8ArFiijtzVC5S+ggyTcKSFZd2abdUUwzXX7jBsWKNGdezUlNLA9qZZS7mSTHGhHwu1sr1xAV6rNC2jOuTt6sRX2by9gQyq5iYkJ/MIv/AIOHz68ES/fFr7zne+4t6/ZeZN7m/amAPsAHzu3gLgluj1fPRFxi6ijcwp+4p9SeMSOONIUjh+/7mlg9lPYpXgy8NPmaRzokIHmFhdDK5uFhAqKr8H8i/uNMmggsibDiyDIs81yAf3lb/+9e9uZP24XPgl3gDmDwkQmNCDMNk4tNN8ns0XCh7+ahMntx134r8DUnwEA7snfJ2S3sI+vbmDLt9vNOAbsjuVQ1Few9eEH6QqQdLKgK+DnCnC+6EHzz77nMoL6A55s0fji+bYY/zVFWBki5s60D7PBTGedbCWuQIkqsDqYg3YwPkhIxUWhXA/T4iiWgclRQlRv3CZNJSTjQKV/KPaxRZDwSbjFwrMdB24HPgZ6xWOgp6e83OThnbtcH5Kd40LGXaoUMD3Xua/CRsLvruwtureP7sUf/srn8R9+7n/6JNtA+y7cW1bC3YKF446JmEJoqwMvP9cS89PuDHRCBXXLZKMuyqqOgR6RWGW/AdViw+sMJSwQF9e4OGZc924HjlN7tJW8vRdgWW07XOuJKNLxHACPgZYl3IloChxwzcFIIVEo1xe6FtqSjIeBRmNCyj0XLuVulgPtmIjFbPNDvwt38wJa/g7Xf9f7CMaGFNBveMMbcMcdd0DXWy8eq9UqVldXff/K5TIsy1rTv1e+8pX48Id+C7cfuh+H994GUjhI4WA6QbkhCwCgmoUf0sSXZabA8MyMgi8c0/CBz6UwtSpObKmIhY/cv4K337odw7ltuE2/HQBQ41XM6HOYGN/tvnZb/5gFihIIVsM/AIH3r+UfYxxsWAeMWmfb6XxeKgfp3naxFANFCOBm26+B5TKwUg79fTKZhKqIE938/DxI4bg4dxLPHhMmcJPbDmDfrms72+6k4kYBYbEa+Jgj414x9P1LSuhr1TjHh7+WxFzJZgWjZ4ETP+c+9/6xN7u3lWtSXX3OKNegDOpgcdb2ccBUQNkZA3Gro/2xFf4BWL/Xc1jo5Rr4Kc9kg00mWj5X2ZMAu8VWrZRMmF883/I51rOeER4N6Z1tK7NAEULJPjSzyc7Oe9ABlmAwqgY48Y7+RaPAjjGOco2DM8u3XUsljqEcx/BA+PNzaQ4LvXUcKBoHaG3XEt/n28cVgyAJd8HnvNv+DPTM8pRnIibPQO+YBGIqULMwuc0zEjvVY0Zi9TPQ7aCZC3dNcuHeCjFWQGMWtN7qczC5yBdmXWRB1ywRieT4yyQ08AgD2kxQqEd9lNUliYEe8jHQWfd2kITbsqrgZ/4DUJsFnf/Pdb+ztgxDyS0O4gBibZJVOkMuJbKg5xYvgXOOgiSPjkdSQr4tu2unA/xGOPc/pkOQQmC7k0BcDZVyJ5ow0E5utZMeENXbNxGTv8ORVhFufQAALntS9l/+5V/i4x//uO++Bx54AO985zvX9LrJZBLv/Rc/jPf+ix+275FmnOJRnPm2uH0/P4+/gHCX/MhDccwseR/J9bsq+JOfnsG2QXFyeu9t70buUdGleqT2CA7fcgB7Xh5A17TEgv2vERPZDehM32z/kz6DziBl4WYBTAJAN7O34fRUfiCH6elpzM/PY/KuVfzTRz/h/u6d73kLdr9sNfS5YTgxrqJyogosVTF5z3KDa+QbdpTxX74jLppHa4Rd9wZ/Pr/4ZwN4YUYcF9sGDXzyl4p403diWFkRjz+o2aoEBuz6UYKS7vZzrsHZR20fB1kA+wHgyou1mryr830ehPOfV7B8BgAH1BOz7ic18TYgek3rfWUczOL42xdhFSyY35nFxE/EETsUvIAoH6vg5DPioqaOqNjzYwTSujkepgAAs9PnMNvpU+2xxSo6zwvPjwN33tR4v6O7Kdv/wp57R8Bz14q1HAe77gWAWZw+3fGnGPx6u3a1flAfWwLxmBdR5bBNMgMdb1FA+xjopYvufKSTAZ3ODiAWS8CM1mAtcOwclwvoFwHc0dV2W5aFrz/yvzCYG8MN19zd1WvUoyJlQLeb76v5XLj95glVnwv31mCz6lnVlnO+BLCIArMLBhpVS6ijInaxFVWEUrANI9EgDMQ4YipHySCcXfYKuKRuISH1L3wz0AES7tmFi8CZfwec+XdYVVSY1r9xR+dkhrLnZ6CtzuKkoDMMZEZw+tKLqBkVFErLPkOuuJYQSgPJv0gYink/c87FTx04cAeBkhqUvWlYTy2AJ6yG96BrUehaFNVa2TcDbVmWm1vtMdDtm4j5m2g9vn97BJe9gH7f+96H97znPb77VFVti71uhdUlA1/72Ay0BEMs40k5uJUEMpeApRoSz61g4EAVc9B9xfNbDpbxE3cUUX0+jpP2fTfO3+v+/uuVr2Fv7i6c/GZnkl1rqgjlQAZswp8vSbAwkT2Hs4vbwddZGMDLBoxHZ0FRBRRtf5dz0wJfqEK9ecAnLTZfWIJ1oQA21N6Flk+JLy6Nhst+kpEhTGMaCwsLOPmtBD71Pz4jnkOEm8be0/HnDAC1SBRAFbzKcfILsYY8wAgXCoOVCsPDz0Rx/MFUQzz3M1Mq/te37JORyvGhewswjg7hX7/rt/DRv/llvOW29wLPicfStjjOfD/b8XbysgFeNqHePAgWZx0fB9alIqynFoChKKhec7UFQQrH5F2rOPXtJLi5dsO9mrkEpzFRft5e2GmECxcHQdPtvT57dRXWZ84BHDj963PQP3BNYIxH9W+lQu3OUZz6TmeO7Hy5CmgMFybzuGf/eUxMTDSN0gnC6rFVLDy+hMSO7mR252Y4njvFMZwFGCPMLnLk08D1ewisyTzZaonjsRc4kjFA19a+39bjOJh9qYhr35jDgds7SEro46pAIsCFuxMJdyY1AE3VUTOqmF26CFIZTMPAzMx5ALYDNwDEGWBamPQ5cXfPQH/un/8af/jffwmMGP7qI9/F+PDamzrlLhhov4Tb36wzDK/BvnVMxDrMgYZgoEnpkoFOa+71mhiB8hFYJ1a6cvUmEiz00TkVl1aZu44Zrpth9sVYBUi4p+e9xr1pGphbnMJwXphpdqNSuGzgELVtm/4hpDLkc14W9NziJf8MtJ603bW9azFFFBC4YLsZAYZdtHfhwN2wPaMx0FwZ1rkikNbEcSYV0sl4GvNLZR8DXap4ZJ6jnpGP6VIHDPRWaXpdblz2AlrX9XUploPAiMEyCJZBdQswgnJDHuaDl0Amx49oF/GHNeHwHFU5PnhXAa/aUwNA4LYyhldMZM9GAVhYtVbwaO1RvHnXBzpe2HGTwEkJLY442PoX0BENiOnCHbiDhS2vAtwicKbAp/ZPR8BPFNp679y0wO25Yary0ALPiaiqVqt47KkHcf6SaFscOXAPBjPb3P3QETLeScCaq4HF/ccZQeRBf+uMjpUKw4lZFXvy/j/06We9i+hP3FbE7qwFbhLuv+vduP+ud8P83jyM50SmONuT7mqhby2aYENRIK6D21L+jo6DgTh4ugTMGcDA5p74+EpNxHl0EdfU8rXN+u9td6Bc40KIticAsLaPK3bXMOjhWfDpMvipAszHFqDcNOB7DJ+rwHrCnuGPq2C3DnV+figDZaYgal8sGWMdF9BaQgOzhLFNN1mdo1ngXAyYXwKSMcA0CBNDBIUI4IBVs0AqNbx2QheKxFIJ0DrNvm6CtRwHZo0A3vln2MeVj2AJd/sFNBFhMDeOizOnMLsoDElnZy7AMsVJZWRMrCmcBfWOsf0gInDOcXoNUVZfefhTAACLW3jp1PfXpYAOMhFrBZmFrNVLuCUGWt0iBXSDhLuFjJVAgkFm1OjG3AK8ZoGl/MtvSqlCdtwltmcsHJ0DLE4uIT5c56rtk3AH5EBfmvUr36ZmTnsFtMxA93oBbXGxZO3gOpTPewX0/NKU64sAAHEtCWjMv36NMHCdgWqWkPIblpBvr5GBBhwpt3D+5ss14aticnBwkKYgEctgfmnalwMtF/wuA63LJmJNIjZQrzDo7f3LV2tCtbGJhsxBuGpXFexIzr193/IURpMmDgwa+OM3LdvFsx/Ws4uu495D1W9Cjeg42KkDt4NNyICWQURgQ9G2Qtp9MIXRRf32UlIDdNbe69Xs2C6NxO0QyE7c//DF/+refvWd3Uv5fU7cIUZbR+Q4q4v+C9pckfDgKcFaZ6MWXrOn8TWso96Ci+3rnCV33beHu5fMkMpEnnHVBDc3d06TrxpryxnfBMhO3A5YCwOxhtdQGNS3TLg/G5871+Bsb3xjCo6BtXLvsGsQ0wm4ybHKFQxkWj82DEpcAdMIvMn3rRk0lbBzlFCtAbNLwNigl0VtVS2UzpZQOl1C8WwJtcUaLHsOjDERZ1XuJ6v1sQXgK6AdCXdRmoFuEWMFAEM54d67UlxEqVRw5dsAMDxqny80BoJwxB0bmgQAnD7/Ulcz9fNLl/Dc8Ufdn2fmz3f8GkGQHXqjbTPQkoS7bnHuz4HeGgV0g4S7FQPtGKzqrHMG2uKgmF8RRwkNXKPO12k2JtKNz2tkoLPu7foIJMDPQAPA1KxniFeV9nHPxxxZXNDynRTQdU7cPhMxLdmY2BFTRHPMceKucZBK61JAA7aU+4Y8lDuGoN42CHYkD7Y/DUQVJCPi3FUsr8K0TPe2A2cGWlU111+oXGk+blrx7d/eZaA55yKStAfMczekgDYMA5WKcJFzbveaAQtNJAB7Ya2fXMZ/f90c/vjNK5jMBW+n9cScezty+zh+82c/4evmtf13OdBgbbgJoJRmB793sB8sUTigvsuTUIXTYDvO3jULpNuzKE26tLIT96NPfw2A6HLee/Ob2t/eOvicuAOirADghlGv+Pt+XR7051+KwLTdtV+/vwI9QK9hHbNPsgqBdiUbH9AKjvt2F9FXMmgoCuQjwGJw9VIzOS7OcVhtuHxycJhtz3TxriRnm4qAbO2w/OdmYAcyYAftynapBvNrU+7v+HIV1qO2fDvCoNw93NWmwuSokILtQ91/qkpcFbN5XThxOxjOAoMZIKoBO4Y9ttksW9AyGvJ35ZDclwA4R/liBcXTRRgrBjJJgtHb/ZQ++gBQJ+G2F5/y3GMrBhoABvPSHPT0eUzJBmIOA60xcFvq6Thxl6tFnD/fefH78Pe+5HPnnZm/0PFrBGG9Jdx+E7HeXYzL6MSFm5scnBHImbPtcAaaAG/+2YGzruoyD1o2EnNQX0AnWki4L82d9f08Nesdz76s8Dbn5C8bOETx3EEBPTDkfZfn6yXcWqLBkIwU5hoEAhAMdExtKzarE5DGQBkdbDQGZXcalNORiHj70dnOkq+A9s5tzve5IxOxXp6BtjgQVcGr1mWPA9yQSu43f/M3cffdd+PJJ5/Ehz70Idx999144oknNuJPdQ0ignLEdtflEDOkIeArNVgv2d26rI773/OvcOTAPd3/8cvB+yc1YXrQSZyVactg6hlohUCDUfA2C2hEFP+JJgCOhFvGXTe+vqWRSzP4ZMUh3arJnIl0RGzX01IetGEBn31RXPgZcbzpmkZDJj5fAebE/bQz0dXsC181QNlI19mBDkiTWejGk8pqUVxT2okZWloFzk23fpz4wyIHk3dqorKJkJUIDjploB0ob5lwvw/mP0+B2/vffPCSiKACoNw53HWURc3g0GMM+c5Gp/3bGGFQkgqsrrPfAVUh7NlG2LsdyCS9779VMaHEFSR2J5C7JYuh1w5j6BWDSF6TQHW+ilhENP7badT00cflRKCEW3bejbVuiMpGYjOXzvkYaHcGWmWiaW5ynxP3Sy+91PE2f/vJL/h+nl5YJwZaNhFrt4Bu4sLtNxHbGgx0Ry7cFvdMpXTW0fWPmxa4whoUSqQQKKe3t64KwES6cX1VL+FWmOIe90ES7uk5//F0ycdAyzFHPVxgAYLhVwjoYEmWHxp1b88vXfIbCkZSgYoySmlufjevWaD4xkfUUlxFMtroxB3EQANeY6iTGCutl/evBVGXxJTu43nXCRtSyn34wx/GY4895vt3yy1dyp03EOyIV7SZ35sPfZz5vXnYo6lQbsp33WHilt213GQJNwDBAuc08GIHB5wlLPmD3m+78zrc4CLjMKk0zY+WGWgHr1mDfBtoT8LNyMuDXqkyHJ8XJ8BvndYwVxRfjzsnahhJNr5Zv3y784qHcw7ULLCR9TlZ0VAUyEaAgNzrchXIJIBKG/LachWIRQRr3fJvOjK2TiVsmwjSmDDicJBSgYCiuh2woSiUe2122eAwPnsWvGjAfHhG3KcSlJeNhL9AC5SqQCZLyHYhZpCh5bSusqBl5NOEnaP+S4RVsaBlvOaAEmGIjkagD0QADsSjQERv7zjro4/LCV2LQlHEsdzNDDRQF2U1fc4fYWUz0NDsQsuwMDnuGYkdPXq0o+0tllbwxHMP+u5bPwm3xEC3yS7KRVS11kzCvcm+HBWzq4ZuVE/U/dzkc5AzoCMM6GQdX7UjrOoZaECYtXbZjG6HgQaAlC3jXpWOdQfT9Qz0nNcQkp3We38GGoLm74SBHpEY6KVp95xARIhq8cB4KoorQsoPiKJ9DRnQbUNjwQV0wAw04BXQnc1A93ABbX/3KK2Br15eudtVOwMNADQWc2dP+cnV0CLLNQYCwOqMgzqC5cwUh3/shdLGFSKUiwCdSLhNDgqZ56CoAs4QyHb6YNkFdExremHIpvyfay49jJsP39f+tgYho7kpA2ESbiBYxv2ZF7yL/lsOBscBufJtdFdAo2yKOZo1yrcdkMYEs1rxs9AOGxjT22OgLUsUQdUWRZDTEILKBGXfw5CbKWxHsitzLQfKq8dFEQ7AenoRxidPuPmd7NZBUFpr9vSmqFSBsRHW1O26HWgpbUPm4bnBoQa8PyXKAAKiGkcs0t5x1kcflxNE5Eodg2Ks2imgGxlorwAZdhhoZ4TJ4NgpMdCdFtCPPft1nzkXAMyum4TbY6faNRFrKuGWGehNnoHmU6Wu5iMbGegmRYTpreWEsVQH67Yatx2dAxjNhAqorDFfuA3ENGAw7n9eUAGdtEcPVwuLPgks5xzTdQ2ZqRmpgK5soQKac7FvOrjO+2egL7njHLFoUhhoBhlWRRUQ4H2O6zT/3BQ6QzLmmaQUWjLQ4rhuHWMlKwx6eOzCrqPYYBRkWpdV/Xh1F9BEYDc2Z6GtmTL4WTF8T+MxsNE1nDhCJNGA9wWcbWwKrhsopYmTc5uOkdzigBYiSYkq4mTRyvDCCZaPND+Z1Uu4X3H7D7jsQLcghQF2dJXcHOGLVdQ+dQrV33sW5pNzODLmVYrfv6jixDzDU1PieRMZEzeNNXa5OOewjtk7K8JAE11EBlUtIQtaR9kPDUWBjO5joSs1URAn49SSKDYtDoUButYGi2gvIkglV77cq6C8d0Hoal/JrxVVoL5+u/uz9YJ9HDBAvW805FmtUatZYAwYHFj7aVmJK0Jev95SarJfuw4sysA0AgwgmxQqhj766HU4cS+O4259Ac05B1+uhn6PBrPeontm+pw7A63pEWRzQwDs65AmJNw7xvaBkfh+dyrh/tYTn3dvO0Xp/PK0j+3tFjI71a6EW3bqbTYDvZmRONziQFRpMHhsB53MQMO0JcJqo8lqS9QsMe8c9LyEKsyqupSmbpeMxBhxDMQbj1snysowa77GyfLqfANLObNwAaYp1j+VrcJQAmJtona2XxK5nPu+5hYvoWAzuoloSihHAxJsKKKAa0yoCgjrEmHVCqQxX3PPMYPzzUBL4ynO97lmVN19GQT5O9x0fOFyw/7u0WAUvF0vpg3CVV1AA34ZtxVUQEvmYWtinwGPgQ741Gv2cb2ho4NJTXQ4i23KHkweKDMC4OXSNSnGucXFSSWigHQGTuGMdb2E+zV3vau9bWwBl3lcqYGv1GB89hyqv/00rO/Ogl8owfjESWz/3gVk7Dnopy6p+PTz3sXhLQcqCKr7+VQZWBGfI9ud6i5/2eCgmLImNrQepItZaF423UVfqSLiiAbSredTK1VRbCeirRlo9yKlUO8z0JJMnu3qfq7efY1bBkDb/QsudiQPWkOMWKnAEUsQBtahgFYTCphOsKrefrEMC5WZCsoXyk2eGQ5uirxLJda4fUpUOJJaVQvpOHWrQuyjj02Fw0A7bJMcXZOIp4GiKdRLIcZOgxmpgJ7yZqBHRnf4otMoJmJudC2KseFJAMCxY8eaLmhlGEYN333qy2KbYynccu0rAIhG7tziVLOntoVuMn5llqrRhfsyMdASM9wpi1vvwt1yBtoZb1M7Yzp5zRJJJgEgjYGyGnjXRmLeex5KWIFix5TsxF3wYpDqDcQAwLJMzCwIlYOPoezlAgsAODoelSSdIZ8R41cLy56EOxFL2UkyIQy0bjc81PWJsGoJnfnM4BwJt+waHjQDDTTPgpbHMHq6QWLZ6oKECjYQEZFWlwn9AnooCtomDjB+rgjjM2fA7QKTcw7TkW8ToNyYD3uZ9uA4Awac1Up2w1ZXgUp1Y1afpBBooAOTCt5Ews1IXASqTS5SJvdOKhFFnIBCCu58xnMtntx2AHt3XNfeNraAbCRW/cjTML8x1cCWWp87h59dfBHEOQpVhi8eFc+JqRyv3Rsm3/aYCuoivgqAuMBvgOkE5SM+g4VKVTgqx6NAtMV8arkmHpdLUetmjmmJxkFU6ekZaABQ7hwCuzEP5VVjoN1rHDCGOP7Vt+3w/41XjoU8uj0UShz5LEGPrg8DzSIKrIoFs2iidK6E8vkyWJQJ9USz720IzIoFFmFQ6uM8AHF/RBTs8ag9Ft+vovvocThMTaVagmHU/Ax0NCUK53T4dS4bH4DChFLq5PFnUCqKAtyVbzuIquD2dWf/5BHxNysVvHCiPXPVp1562F0o3379azA2OOn+bj3moLty4W5iInbZZqCd+ci40j5RYKNewt2SgXbWRgp1pOAGROM8DJSNdN2QnpDmoIPk20B9lJVXQMsGYox52zc1I1QV3USdXS5wu8HRCYgI+awooFcKiyjZsU/xSEqsY4NmoDUGRJmoGdaYAT2zyDG/zLFc4ChVOGoGD1a+aAzJZNb9cbUk9qHMQPtmoKXGULMoKx8D3csSbpO7nzMNRUEcl03GfdUX0ACg3Oaxn+Y3p1H97adhfPMS+MlVz2V5b2rts6qO7CegM1a2j91YBCh0RxC1BcpEQDzki9nwYDSXJ6XV5l3emuXKtxFh4oITUkBnUgN466t+DCMjI3j/uz60bqysz4nbWQQpBOXlI1Be4xU8t584h587/ywUbsGyo6tevbeCRMgu5y95Cy22t0vLZA5QdP1NJ0RnLgq+WhNsMwGpOCGq2wV0E8VfpSYkuDH7/NnUTdnkgCLyCnmvS7gTGrT37Ib6+m3rdmyxySSUVwjJtnLv8JrGOyzOQSZHNsPA1qGLzXQGNamiMlVBbamG2PYYBl8+gMF7BqBEu4u4sioWmE6BEm5iBCWpugV0pM15+z76uJyQnbaL5VW3gI7oMaiqBl41fU679VA4YcBmraYunHLvHxnzF9AUYa687KZDL3fvf/yZf25rO7/1pCffvvvGN2BIis9ajygrnwt3pN0Z6CYFtG8xvokMtOOOnenQMBUBEu4mM9Dc5IIUAEAqCXVdG4t4zjmIk/vcIFBCtSNHO7+myhLu8AJaZi8X3dsyA71/5w3ubScLWpZwN50P7wXwziXcAJDPN45gxSNJW64fQialNKBkilG2Dot2saliPydiAGNiDba4AlycA46eC2hEq+QroANnoGPBDHQzIzFZYdDTM+6W17yinA7EVaBweczENsEyrvfB7hqCUjBgfn1KFHhFE+ZnzsKUikflxjXKtwFP9hNUQNus4GAGODmFNcXYNAOlNPCIAqpYgjlshSYFtCj+mpykapbo0Gm2xCmqAsvhq+oPvPd38Pv3/hpOfGH9Ts40JL0WCRm+ev+4OxNLGR3GP54GOPDqpYvImDV8ZOJ6VJiCtx4IZp95xfQcuFMqaC1z8V2ccNsBjURBF4oolzmiOiEZEx3WbJLj7KXw53FLzErHdKGGqBlAJMwTy+BAXBVz3FdpbJH6xu1Q7h/vfA6uDqUyEFU4Mhkxa7Ues8uxHVHoQzpi41Foec1tHChJBcaSAaQ7O/1bVQuRQT1UGqdlNJTOlhHXCIkox0pJqBn66KNX4c+CXnFjrBKxlCh2AFAz3xCTYzA73hAnNVLPQEvnedkc8/Fnv4Effcu/abqNnHN8255/1lQdt173Kjzy9Ffc38+sQ5RVxWci1iYDrcomYnUSbtOTOanK5kq4SREGQ9a5IrjF205NiUU6iLGSx9uYTYo4I3otto+rFKrsExsi+cvEOjtHHx42kdItrFQZbh4PLiocEzFAMK0OpufPubevv+YuvHBSqCMu2U7ccoxVT0t8AeHCHVLwNsPAYKOKLB5JCiPAkOseJTWx/+PdZUCvlgDkgLuuJaTihGoNqBpAsQx88ymO1ZJIUHH/HhGS+Zz3/KAZaOm8JhfQzYzE/DFWvctAc5ODdPE5k66AhiOwTq2iaS2yQegz0BAHpPracei/fC3YzVKh7HQAVQK7Lrv2P2SFd8Wc9fJghlrPnq4FcQWUbG8OmjiaOoaLXDwe3nmtWcKB2164t4qycjquvLR+3SR2JA92Yx7spjy0Dx6C9sO7fIZSyh1DUN+7x90vt67O4jdOP4EbhyuYzAVvq/XCkisDZ9fmuo41I46NK6BzOpBUUVowkIwJ5hkAkjGCEdKYN0wOVQHiEfF4vYUTNze5MDwJMNe4mkAdzsAFoVAGcgmOWGr9ZuKTe5PIXJeGPqD7XlPPa10z0Fo23GFciXmNlFyqH2XVR++jPgvaYaATsTRQs8B1BkprIEJwU8vgGBoYb7jbjbByoDPXrXc4vw0TY3sBAM8df9w1KwrD0dPfd+dQjxy4F4lYCsP5be7vp9eBgXYW1owpUJX2UgQizSTc9s+KovpmwTccNgNNWR08pobOrgchKhXQqqJBYU0IBhLnffFgJlbS7TDGVUsUx83IC9dfpvMmajLC8fEfWMYfv2kZr9kbTFb4ZqCl3PNLc/4C2sFF24nbL/NfmxHnhoNzb/90gPxgAAOtJ5vHU0XEGqjbDOhFu+5NxQmMEaIRQjpBGB0gDGaA1YCaN5nzxkmDYqzkGWi5IdYsC9oXY9XLCgPOfWZtNBAVjc7LMEbYL6AlUFaH9sO7oP3sQdAu7wBk1+dAHXYCA2HZMxN1qBmicAGAdAJQlI2bHySy3etauFRyi4OT7bAchghrOtfMDQ4kvM+N4s2jrFxH73X8IlBUgfae3dDevRtsPPikr1yXg/b/7kfF3gnXFRfxo/FwmtZ6elF6brar7eKmBa5Q4PGwHhCduRhqSwYGM3ALqHgEIBYsza7WhPt2LAIoimCtmzZzTC6iODTmj3LooyNwcBgmkI1xUYRuMLR0i+9hGCwOJRG+fbK5WCLWxgx9H31cZsgF9GpxyZVBxmMpoCxSEiing6ssMGmAmxxDg9sa7q+fgSaNidewr203HxYybssy8f0XHmq6jd9+8gvu7btvej0AYEgqoNdzBjqqx9pu4DWVcNsz0Os1/8yXqq43TVPY1ySKqWBZHbwDaafM1LWWKHOP4VRsX5t2zqmOKq8JA02MhIy7zbSUegzGOQ4MmYHmpwCQTHgRSLKEe9ouoBkxHN57m3u/x0DLBXQPF1hAxxnQDgaGGhnoRCTVXHIfYSKOtItxPNPkTQ+b8UEKTLRI5QMK6LAZaKkx1IyB9pnEqT28f+uIPcrqwiD5Mrhx9wvoALCJBLSfvAbqj+2F8vptUN+6o/WT2kBYLFSpAkTtpm8qLoqc4kbOQTsd9WbfXGeWqJk0NaoIFjrUkMhmKB20iLJyusXr6UrdLtieFJbestv9+cDp4AKa1yxYzy+KH2IKaE+Xjs4GFwMUG1RAAwDP6yBGSCjefo5FhSQ7qDAu14T7dsRmlNNxISVqBoqwhsVhH52hXBWMf1LbnAJaRFx1ZrzB7Vn6ZtvHIsKVlpsc8QigKkCtf0z0cRnBDQu8EN4FlCXcswsXvftjafCKKRZnCS08stHkGBwKYKCDJNwKpAL6PvdXjz/XfA76W1IBfeeR1wEABjIjbhzWemRBO7ORnTCLgl0W54Nqgwu3U0Cvj3ybFwzw5TYkLRYXBQ0AGox0VIQqTHGbAnJEVxAI5KkJVRIqtHYLaEmVF4qk1nbcaKdIxr0C2i/hFo2YgewoUoksMkmhxgyage75AhroqrrJjwRIuPWkrbYMQUw0bJoV2WFYXBWeM2HIpQBNBap1zbtkNuveDpqBlscRupFw9/z+lYg90hhoOIYOnfzWBf0COgREBOVQFuqrxkQ3cD1gcUBvPHGWKkDSPsbjUcFCb6iRWEoT8qZmHZsmmdXu66hMzOiEnOiJQzCUzs8toqy4vUARj9n8WKTtt6eF4yoA/txSoD2+dXQZqIhtY4ez3cVXAaKAdvJBJTjKg9mltZ8MiroOfVBDVKqWo7po1gR1NSs1ICv1A2LRVo0M7rlTKr2fBd2rWFoVngdRjYO140uwRigJFSzKYFXa/47xGgfTCEo8/HhXogooIl43HhXHWd9IrI/LCb5QFf9CihuZgZZniROxtEgZyOggXUSmIOT7MjSyvfG+0Qn/HSoT53v7HHnDwbuhKOK7/sSz3wjd/gvTJ3Hy3HMAgAO7b8ZA1jYtVFT39vTCehbQnfl5OLOwVSNYwq2vUwFNQkPf8nFcduhNicYHD2p8hMAx2JJNmIL/EPfWRgr5miNNn2ZYQKr1epKkcZj1hizhdmb+K9USFpdnAADDA+J4Hh0STaDZhQuoGVX/DHSvS7hBXTHQgQV0NNV8TE1joJzeXOYdgqUCsGMk/PfZpIggrZdx64m4q+5wZPiOhDsWSfjGJmKyC3ebEu5eduEmaiT22EAE1nqohDtEv4DeTITMZZSqIqMXEAfHaF6YCm0UKKKAZXSg2ayxnbXWyoghzKFUSJSZ3yyjRZQV2e7X0Lub/1krSCEoTta3xWE+GZAL/vSCe5tdl2v4fdswHIM1/4lgzk6VWC4A1hpl/KtVQnp3HIr0eTMiZJIh0mwupLcOYrq4BoVth9uFdwroPtvYMQolDl0FJscIBALbhHlyNaFAiXRWQFsVCyyiNGegYwyKnT2tqYRkPLhR00cfmwHOuYgDSmqhs7Cy2Y48S5yIpcRcnb0oprQe7MTNOYaG/QV0fnAUul63ANXscR07tSIRS+HIkSMAgLNTx3zzpzJ88u0b3+D73aDtxL24PNMgoe4UroQ70lkB7TC2svwTkBjodViIO+NObcHi3lhUShMGTx24cb/zdT+NbGoQD9z/k022h4MzctdyRLZDczunUw5QpI2FflR4YWzEWJTPRMyWcMtjAE4BPTIgCmjOOWbmz/uKr143ESOgK2PPgdHGcYxEJNlUKUhEUA5kQen2vAMcVKpidHNsIHw7dY0wNgCs1NW9pCtIRkXRUB9jJc8/A50w0JJzfi+7cMvNKwdZDTzR2ee/HugX0JsJjsAvtWUBmYR3fzZJsPgGz5SmteYRVI57ZYsoAGGcELCdNS6Kw4hcQIdHWfGaBW7/LWpSZG802C2eiZz16Kzvd9y0YD27KH7QGdj+NVilG1xIfyQpl2lyV3mQSXrmEt2iXAVG90WgxBkMaRYsnWg0EjNMDoWJ8QEHMdtILMgMinMODrshpPoXh320B4tzLBWAnaPiOw/CukRYtQIpBC2rw+xgZsisWFBiDCwSvn1MZWAxBZb93c2lhIt7H31cFpRNUYjElPACWmagpSIioafAIwpgGwNRPJgRJCIM1jHQI6M7Ax+HmOJT6dxzzz3u7TAW+qEnpPiqm/wF9FDOW+zProGF5py7LtzRDplFh6mS2SvAY6TXRcJdE+NO1I7LrlPMwp4lHoqAd2Ak9o77fxKf+oPn8ab7/mX4g5zxNllGqrceYXJc3dHkHOq9niKaBhug6gqKsZIbOMN5m4Ee9FQUF2fO+BnKXpf4cnTFQGfzw+5ohIN4LL0hXjULK8BQFsi3mAIczlHj0kojoZJB4wy0fE4D6kzEms5ASzPuPdogcZtXdXUUKQzWcGzNaSidol9AbyYCcpVNi4PIk3ADoniKRjbWxVZEDzV5gJ3x2/KAjCggHtApDTDLIMV2nwwqjsumWOgAIu4qdK56Y8FGY6AJMT/CL5RgnfdOOPzEqtvNZgczazqpctPyz4cDmFkEhm1Se/e4OMF2C9PkYAwYGFURHYmituAdTLGIWGfIRmIV20BMLqAjupiXDjwOTaFQKBjAchENi8M+WmN+WShPJoa9709T0751hJYXmc3twqpYUNOtZ/e0tOYy23F7BIBfhtmkPvrgqwZYPgIajISaZiakxaY8SxxXE4J9ts/RFFMbfEOcJuLg8LjvezFclwHtgKKKbzRJLqAff+4bDY9/7vhjeObodwAAE6N7sWNsn+/3w3IW9BoK6JpRcc8/kU4ZaLuQanThXkcTMdMCqXbiRzukgrRmoYwu9lsH6qiW88lmgD+MprT2lKhZ4BprPk/rIGqvnTaASEhKEu6Vgii+pqUCemTQL+EGhJFYZYvEWHHOwan9+DIZiqIgmxny3RdPJLuKxGoGzgVZsnucoLRYY+dSYvSuVJGOL525s+zF0gpM03AZ6Nh6MNC9KuF2ouIC9oc1Gocy2WL0Yp3RL6A3EwEMdKkiCpqEdD5KxcTPhfDM80AYJke1Xemzzpp3dC14+c1NQBFFMMf1xVNN5EzXzwhTQg1mviumkFtB5OptlIFGO1BulVjoxzwW2lwv+TYg8iqlmRnD5ChWgGsmxOe9Y5iQiAIrxe6Kj9WyOIZyaUJsIio6d/YFPhYRhXFNKowrVSARE5IhB0QUbiRmN1imVxlmFxsXh300R6XKYVnArnGCrhG4YeeXbgIDDQBqQu1oxI4bHFq2NZukplRwu1ZJxkQjcCPHUfroIwicc9HEHYqCkhooRNHlk3AvyAV0EpSLeNe/qAKuM39j124iqlEd+QEv/ma03kDMBsVUn9HUDTfc4BbwTz73TViW//z5N5/5j+7tt7/2Jxpeb72cuMsV2V25Owm3zE5yzlFzGGhtHRhoQ8R/8jacrolz3+Ka0rrwaWnHwbtdmPYiXl7btMFAC1Uea89sSmMiqmcD1kG6FnH3s8NeXpo76/7eZaAHvON4avasn6HsZYmvBcEQdMlG5vP+KKtEPLPuZq+FklifjeZbPzabFDnQq1I9QArzuakvLM/A4k7jur6Ally4256B7tEGSVDzyoGurJ9fVZvoF9CbCAIaZCWlimD94tLxqqqEkVxnRmJLBY7TU8DZ6bpOVdi26AxcpXAZt8nbY1idTmkdm8UNK9BUgeJq4IWGVy1Qxi6gY2zDDDTaATuSd+VZ5hPzwsnV4rCeWRQPUAnsQCb8BdqF9PlOL4iT6Ta7+ZlNEXaOArNL3b30akmwm7EIITIcgZpSYSyLRUQsItjlslxAG0AuoHmXiofkRpscBidoERLFuKJ0F410GVGpccwscpyb4VgubN62c3DMrQDbh4WEC7AztdWNizWrhxJXwFSC1bbsnvtiqkJfN+p9dxNRcR5bDr9m99HHxqBkihGZrC6atpHGaxTglzs6JkqAiK6hpHT9iiqioGkooAFozGckVs9Azy9zTM1xzBaAlQLH4irHcpFDVVXccFCw0Eurczh+9mn3Oc8dexSPPfM1AMDIwATuv+eHG7Z9aJ2yoOXCaC0SbqdBYZjehWVdGOiaZZuwoWmRKphH+OSdpDPQQKS9CKx2YYpmZ4OEu9WapSZi0ZoaUjmvRwRKqcFz9+sAh710JNzTQTPQg3IBfdo9TlRFg6JsvmFT2+B2g6MLBhoA8nm/q1ci0cJErAvMrwBjA0Am2fp1GSOMD/gLaABIprLubXn/NWOgK5VwVs4poBVF7d39GzA+cTnRL6A3GwEM9FBWfElkDGRCCpc6WBbH+RmOlQJwywHg4E7g/IzIlm6GhTKhYiJUdstN3lanlHRFSJHrO6UWgrtBEaWB+ebOvLVTcEeUdqadNgwUV8GuzYofCgasF5bAzxQAO0aD7U83yK87/huAW0DXDI5KDTi4k3wM8K4xgsKAcrXz4q5cERmCgIgeik1EUVuyt58ImYRfms3rDMQcRCMI3hcmR7HGkM8xpBJAwaTLkSLQMSzOsVLkuDjHsVwQTYado0BxbR48HWFpFUhGgZ2j5DJc3BDz5JthIgYIBppFGaxy6wUaNzlABKWNY55FFYB5UtfhHIGoH2fVx+aCF2z5dlwF4qpgfwNmYROx4AHERCLtu36RQsLVWXZ0Nh2jTfIZickZ0NWa8DkYyACZLEM0QojpXprl9ftf5j728We9OKu//szvuLff8+afD5wlHspJEu41MNAV2RyqSxduzrlbOBuG5xyoqWs39uEGF1J61sKoUtofMiivg6x19JSxBJPskwirhNDgZRu8Zgk1RLsxnXEV6ELVxTmHda4A3sQk1i2ggyTcA2L2WZ6BvjR71i2wen7+2bITZLqsbmQ1CQDEM7l1jVY1LY6aIa7/7WIwS+Dcb+iaTGfd2z7/hrpzWlT6TpeqhdC/4Uj0e1me7zavNnnWOQz9AnqTwK3g4XfDBHKpxoMhHQcYE7OsYShXOU5eFLFX991IuGEvw037CbvHgTPTXiSSDMviODvNYSgMi5UmMzYW980vN0OgEzcPfj5FGDirm0mqWuA6E4scOOw4a25ytsFQbhl0b1uPzsF6av3k264Rgl1ATy8A4wPAxLD/ccM5YNugmI0OQqHMcewcx5lL3Kc6MEwORfHnC0ZHoyCFYKyKi2o6QTDttWDN5FDrDMQcxPSQPF+To2gRJreJ7mjBZJe16dEOqgbHxVlxaO7ZBtx6kHDjfsJAhmBt0qFWMzmKZSHdTkgxYdzgYOrmmIgBtmN2TIHZRgEtHLgJrI2MaiUqmgDcHiXJp8RxuBx+3e6jj3WFLN8GbDOpvA4eYJpXL3d0kExnvYaug1TdaJHhMJEMk3sOuXfv2n3Yvb1kN+lecSPhvttUXLeH4bYDhNsOiu/+vt33uY993DYSe+bod93bo4M78dq7fijwPQ4mvYX+miTca5DmatJi21mAV30F9Dow0JyDJVVhWNlM5RQSvUlpXSgQOjATawqT+9NFAFHctyrQTe5XNbQARVv41DT5O7AQGrsGeHPQ5WoRNaPqmoglYmm3AIvoMeTSYlEyNXvGc2rvZfk2sGYJ90Bdrnsi56kNV0scJy60OYsfgiU7+3mkDfm2g1xKqFSLkipVLqDlBkj3M9B2g6SXC2h7Brrr+Nh1Ro/y9FcgnOF3acdzLgzEUgGqqUzSnoMuiwK5HvPLHIurwDU7gCN7Ccm4OFlEI4RbD4ri+uw0sHOEu90z0+Q4fQkYzAAHdip44nsM1ZKJSIgLYLtyUkr4O6Xc4gAJdroBjoSpZgF2DiYqprhY2AyXqTEv7qqJeYP4/DambKP9dib0cg3W80uAc+FjBHY4u7YXNyw3/qlqcFQN4MBOgqqSr8PIGGHvduDMNIdhcqjSBWG5wDG3DFy3R5xUz8+IAjFn78tkzF9AR0YiSB1OYfkpkRkYjyiAbSRWrQpJdyyogI4Ic7FqFdCk62a1YkGNaxjOEVaLgKmIjG/Xvb0HUSwDuTRw8zWEiMT0xiPcbRJoG9jZrBkc04vAWF40TGRYBocaZw0Nto0CEUHP6ygcb13ZWlULSoQ1zYB2wKIMTFdgVS2wCANjhG2DwFPHbdf2nm+z9LHlIcm3HVBaB6zGWINoJBEYF5TI5xqufxSrU09ZghklRnj7D/8sVlcWsWvvddi2Y6/7kJUisG+/GMviEdFcsgwLzL6u3X3Dbgxkt2Nu8RyeOfpdVKol/PWn/eyzGsTiLteQLSahKCpM08DMwsWOPiIZfgl3pzPQ3kWjVisDSLsZ0MA6uXADYm2gUPOZ4LDozbgiIoaWamIeeo3gJm80AlPaOLNx3pYDtwOyr9G802uqYf+dJgRESpqfXSksuA0Yh312MDI4gYXlacwtTrnjDrrW4wU0F+vP4xeB0VHuro3bRX7Ya0wREWJZz7V8qSAUeaWKf+yyEyyuAtftFuN17SIZE4242SXPcDiR8vbhjGyAuNYCupcVBiYHEr1RPAN9Bnrz4HRHpU+8XBVmTsmA81EsQsgmg+egF1YEi3XnYeDOw9RwgkjFRYc7HQcuzIn7KlWOU1OC5Xz5EcK+7cDgqIbVlbCTbEDWWhiidZJrw7LNMgIOrwgDaX7JNy+bIojevkjMFcPjrtznmBz89GpTmdJaQIygOJFWFnfl27Q3FTjb3RFM2+hEY7g0D2wfEkxzEMYHhcRfnoVeWOGYXwFu2g/ceoBw342E+28n3LBXKBouzYvnRKUTNDFC+nAK6evTqM5VodUM6IqIGarURLNGD5APayohFhEz0jKKRY5MXsFA2naJjDHU0IaRymWEYQKJCHzFMyDee1QXRmobAVE4i302lgf2TjQ6b3LDaovhXU9oGRVWG87pVsWCmlTdRX8zsAgDs7OgHQxmxGKjU1PEPvroBj75tg1KqIDGGswpGWMNjA0AJEcHGu6jmAqukGeWaFhuIZXJDeIDv/xHePPb3+8+3lECjeTEd53pDKQxV50BALvGGO684eUAhBv2Jz/7B3jy+QcBAGNDk3jNne8Mfo9FA0omgsHMGID1NBHrbAY6Ii22HRffmsxAr9FEzI1+0llroy6n0KxnoInAhmPgFbOjSKtQmI2FMKmigRzGTApSgdpz4HYQkYiEjrbPAnTW1BXckXADwJmLR135/fCAPwd5TJqDLpZELEiklwssALAAEwRNJ0zNdy7dHxjxGOiYnoQS9RpY1SowmO3e12NpVcSFbh/qrKgnIowPisLdQTLjKSGnF7zvv2yMCPh9DeRmWT0cBYm+HqqRjYLVpjfTJqF3tuRKh8tAe1+cIAduGaN5Mcsqo1QRzPNN+4GDkyzUAn8wK4poBuD8DMe5GcFW33M9IZMUs5fbdmowKtwXZ+SCo23rfuHELUmuDbtADJJwK0xEHskXBYuDUpo7t102SERaNTPQqJiCzd7AuCs5E9qB4sxGrwV2xFcVoqi7Zodgn4OgqYT9E4RCScjvZxY5VorA7QeB6/cQGBP7cihLuPkahjfcQXjVzYT92xtfzymiMzekoazWEDUNVKqiOM4GKxkBCAfIal2UVbVsYWxcAWOEdAJIZxlKJvV0FnTNBOIBzSpNJSTj619Ay4XzYBq4aT/hyH5COqAjzg0OZZMLaCWhiIiXFgsMs2JBzbY3y0hEUNOar4CORgijecHG9dHHhoIDZHBXvu0ioYbmQSeijRKsxEDAmE5UEdc0WxrLTS5MNEOwtCrOnQN2rcJ0BqbaM702GCO8+eX3uT9/4rO/697+kTf/QiD7zCsmoAqX5sGMYMuWV+ebskvN4JuB7jTGSpZw2wxWbT0l3CYHt98rRVsYVTqmbgHXUhqNge1OAstV8PnK2uahSRTMPigkZu7Ctq9mCeVdJyM6EUWQDZ1eUw3eMpdajrI6cfZZ93YjA93oKN/TDtwAYHFYdgGdT3duxDow7BXQiag/wsqCILyKAcRWM5gmx5lpEV11477O5NsO8inyjXXKBfTFGbmA9i/mIh3GWPXy/uUdjJZuBnpnS650cDRIuEsVIJ9GaPGUSRI4ILlbcpyfEUZh1+xo3cHaPky45QBBV4Ej+4DbD5FPNjI8zBCLBrPchA5mSKKKv1Nas8QJPKRTJEdZcdMSMw0J1TVy4hxi3qwZO1Y2QQltQ7OH2XAMtFPSzxPArl3b/DMAsc0xBQsrhLGBcPbZwfYhwfKeuCAY47uvIxzYSYHy9USMsG+CMDYYvO+IEVKHUsjdmEbSqKGybAAhBmLua0bJN95VNThURhgcFPuXMcLYKEPZZL2dBc2BqB78PnOpkLiuLlGucswu+QvnoSyBhYwccLM9l+v1hJpQwXQCb2VSZ1lQO4iHUNMqrDrWZCRPUBRx7KwVNZO3NEns4+oEVQzwKPPJtwFR8FBaC2Qg4wFGYsmhxuYpIkwUcU5ziHNQJPx7sVwUii9H2UOK8BGo/27cd+vLG87l24Z34dV3PhD8wqsGKKcL9++Mt9if7TILem0SbpmBtgvo9ZRw15xxJwJ0pfmawOSh0ZukM7BrMsK/RGPgl8pr8FjhjeSCSmI1HfaSLqnQfpOUNCYaNJ2SBIYdl9VkvE2WcB+XCuh6Blo2EnPQ8ww057AAqBph9zhhuSDWzu1CNhGLR5Iu41kzODRFeBYRNfcnkrFaFF5FQxnhhXD9XtZgGtwOcilRvDtu3MmstxadXQifgVaY4jaywgpoy7Lc6LnelnCjozGIjUbvbMmVjgD3uEoNGMyEf5HScSEtLVdFEX32knAMPrK3dfi6g73bgVfdQrhxH0GrK9QTaQUDGWC1LsKHW3YcRLtW8botua5KBXRcDZ1P9kVZVUReNOKq29VjDLBaxELwigkkNj57WLnVq25pMilmqdYIblqgqIJCGdg50npfxqOEvduAbEooCPZsCy6e24VTROdvzKC2UINSNQINxBxE7d85SoXVIpCMc+Sy3jYM5hm41kks0uWBHrLejduGXryFa0u7BeDSqoipalU4y2AdLK7WA0pcAYsoMFvJGonamn92XzfWaH6TSQpDsfUwE5tZDDfW6+PqBlWsBvm2+7tsJJDNqy+gVUWDnmk0HiEiUYTLBU3INdJZXDvybffhCcUn4QaAgewArtt3ve++H3nLLwVGyXDOwSsm2GgMlNAwZEu4AWCmywJ6LSZi8gx0sIR7jQy0YUs2nTVGM+bYQlOJNBGBjcWh3JgHjcSA6TJ4oRb6+NDXATXud2dtF1ZUdRBh5ftbSa3heGkFblpiW5p8VglJwn3i7DPubScD2sHo4M6G5/b8DLQFWCQSTPZtFwTExbn2nz4wOOaur5LxrLuvy1VhqrpjRPgW1cdKNWyGxXF+VijQjuwTxXMYsdEOohHCUNaTjyeyWfd3SyteBF881igndOagw3KgneIZ8H+new+8ZwzEgH4BvXlw3eP8X6Cg+WcHqbj4faEsZplzaTHzGu3AfICIkE9TYMeLRRnyWQbGud9l2claa7NLRoyEu6TdWecGByTGqlj2u0T7oqzKJiihgiKKG6sU1YAqUwLNXQB7LorbcvANnrllR/JAXnTRlXuGWzy6TZgcVVVBRPNygFvhwE4hzd4xsj4mTMQIA9cnYe5MIVasIhYJ/xxjuig8azZDW66Kxo8qLVZyKUBPq6i24ep8OWDZhn16SP8jERHvsV6qLqNmu3gvtciMNkzRAR/Nt1c4AwA4Ni3CygHTGbS02jTKyqpZIJU6kpcHMemMCONDhGoNwSMjbaJc5dDVEGf4Pq568IjSKN+2QQkVIPInQKBxZjAeS4GFLNIoqbmGmcQpdMxpuSga4PXndyXZqM4ABAvtYHRwD15x+w8Evi5KpojlykeAuIKhlFRAd5kFvW4MtP06vsX4WhloU0g2yYmnanKK5GZ78k5KalCuy4IOZMBXjc7nonmAP4zCxHopTMJtWKC40nHju96gtS2Yosho9rdSkoT71PkX3Nv1Eu4gBrr3Xbg5TIVBUcSI5OFdQkHnW4M2QSQaww++5SeRiKTxlrv/pXtMlSpAIibWOnIhG4bzs0AqJgrnm6/pbN0ehrEBQtUQxflKJVgNWX8+A6QCuhLcwXbmnwEg0usNkjZHSzcDvbMlVzos7utaVuyFYJADtwNFIYzkRcwRIIrnbEDkVbdgEYZMlpCJcKzKJwN3lqiDwyOpeZIozn05yRfnPDMzQIqysjh41QRldV+hHI0AJSjgCgVLgquWiKWIKk0vqOsBiirQf+la6L9+PZQbuhhcCcFyjSGfFhL+dqBrFBh3thakEgR9ZxyxAQ1YCdcvR3VA10VxWalx6ApHOs18UR7JGJDKKSi3KC4vF2qGyF4NZ6DFcddsDrpQFhfO1WJzpnq5CORtxrVtUPuu9+sJLa/DbCIRFBFWSlsZ0A5YRAEpjWqEwbTduV/DLPRyQUjhkrG+KVkfjbDiSoN820VCFf4bFX/BVJ+bmkhmEIqoaP6K6xUPZaCXCkKBEqkbGVFCGNIffPXboakiI/g9b/k1VGvBJyq+UgMbFAw7RRSfhHu6SyMxfw702k3EqrX1m4HmtpoNgJj75k2ugW0W0ICQ9LOdSVGgdmDS5UZQBsxAUxMGup5UaBuROuf3dqHZpmYh25OUJNyyYmB4wM9A1/8M9LjEFxAz0AqDrorxsm1DwO7xzljon/yp/4R//LWn8Mpbf9AdRRTEgW3oZReyYXCynq/fQ5gYWZtiUEYuJdYwJy4A28ezgY8JiuaLuQx08EXTGb8AepuB7mi0dBNwRRfQLMLAZWnx5YTlXyCXqqI71oyBBoCBtHDTvmkfsK1D575WUKIKtCjDUNLymyJYXOio25Vww84stD9m4ZopFgqOEymTZ0Z0L8qKQKCk5jqSA8LQqgzbhCzo4lY2QTEVlNE2JRaHNCZiUNbr9QAUDYado+hqFma9kIoDiayKgcNxGEu1UNdORSEkY2LkYLUEpCMcyYSfMSUijIwqG+ZkvVYYJqCq4Qw0Y4RMQlwkw1CqCBVIskkRyMFRrgDjQ+2PWXBTOLSykPnsjYSaVJqqOKyKBSVCYB3MZytRBqYzWHWz1bomZv5XOzRgcWCYHCYHxgYJQzm/I2kffYAAnguWbwPiGkUJVbC4EuoZm2YFNMUUcI2AigWusMZCCoIdsizBFtWDhczvXbv3Wnzl41/Fl/70S3jzy98UyG5x01ZeDduLBp1hKC0z0N0V0D4X7o5NxIIk3NIM9BpduGEKvxAA9nqkWYOWB+6PMJBim3p1MnbkqPPq1kZiPK+JiRgPiL5qZxsdsqEDtQ1BHKdQKZS9lhloB6qiIZ8Z8d2na1EMZEd99/U6Q8k5YBK560kiwqFJQjwKLK629zmSxsB0VaxT7eu4YQpfIkAUshFVEGFBWFwR69jR9eNcxN9NitedGAZee2cwAx2UKuA4cZcrxUBVp6+A7vUGSQd1yUbjii6giRGQ0Rs6zpcD3OI+U61SRcwFBkUHyRjJA7ccoLZMwzoFKQQlriIb5YjqQMk5GQTMa7d8LTunkdcs4ZppLxRWS6JJkIxJC2cnyqpogCsEiqu+XL18mlCl8CgrN/ZKV8CxtlD7zQY3OaoWoMUYhnOX90SgKIQdI8DIwQS0AR3VufDqMR33Iq+G01w4ytYxptkcs1Vsvbc/agag2dLfMGSSBCPkVGGYQgI+kiNsHxKO0kEsdKEkjuPBJiRWPbjBwTQ0fJ6bATWhAqxR1urAqlpQM1pHHXQlptjmZI3f3eGcMDUsljs/RlaKYvGQTwO5pJBzWs1cefu4uhBTYA02X9xTPtIQZVU/M5hMt2CgdXHtCnN8XimK5mTQOcBpOgZdsw7vPYybDt2M0bwwD20wPlqtAUlVGIhBGGMNSaZP3c5Ar0nCrcou3I6E27uOqMoaC2ip8CSVgTc5V4HQsbyT4mpzY7J6mNybd65HE+drmVToCBGloygrbgmGHDGHtQhhoOONB+dgbhyMNX5+o3VO3J02WTYdFhcFtHTo5dOEgzuB2cU2rxm6IJAo6o0SEnmEVy4FpBLhMu7FgmC910O2LUNVCbcfItxzPWFkMAZdb/x+6XpjAe3sM8syfd9PB7KEW/5O9xLEsY2GMdjLiSu6gAYAntR6I5vW4j4DCUcO0gqpuHBc3iimUk2piCkcgxlgxRmPsLg4Mjo5UB0n7qIhFhW2lGq1KGSvA2nPdIFUkRHNVwzRKY0LQ60BW84cj0BkJobJqywuGGHV7vr2wv5tF4aFksmQz5P7fi8nbtzPMDGhInVNEuaqEbo4iUdJxEuqQDrGwRQC1TGmuRxDRAfKXRRHGw0nA7pZIRiPAMSCGwDFsrh4phPA6ACF5hqvFEXXOdbBhdNyZtY2eQYasI3EogxmJXiBZlUtaNnOpIdOY84KKKBTcfH5FCvAhVmOuSUe2sWXwcFRrIj8TFUR0WmJCFDos9B92GD70uBDLQropAbi/gK2QcKdzoY/X2NAQgUvmeLaE9D0WioA4wOeMaFvGyMMpFLToi2XEo2i+tg3XjBAYzFPyaYzZDKDrtN1tzPQsjNvxyZiARJuYx1zoInI+4xVasqqipn0Ds+hseYKnAaYwssmqFAnLXgGmpu2WqGb+J2IEkokBMIQruUUU8U6K1TCnW24b2SwUa4NBBTQWm8WWC4swGTMZaAd7J8QyqXpxTZew85shz265CgknQJaUUQjPchIrFThiKjrrxh1MJwjJGJCFp4NOFcpShAD7ZkiBjlxywx0z7qsu1HAvVO29s6WbBB4rDnDsmmoY6A5B9KJy99JUVPCEXskLwoki3PPuKOTuQ37RM8Lhu2aKU48FUNI2cYHyZdpTUkNqJqglAZSGWqGkKsDwqhBVQAjpjZETXDDAhQGiitul7Cno5PqYXKUTMKO7d1FGWwUYhMxREajqMwEVyRRXcwQZ5JAQuUgjcDqFhGJtIJkklAs9d7+CMuAlpGICsO0IBl6oSIaQapCSEQJ44ONjtJVg0NhIrKpE3BDGHVdDgZaSShQYwxWmJEOB5RY57N7aia4gCYiHNolMuqv20PIJMUi5MIsx/xK+HFTLIn942Tq6hphICPu76MPoHlzzH1MQgWPkJvlDASYiCWadzYprQEVU6RU1BVsnIvZx/EQt11HuWM1uWYpCmF8QKjUHJULr5qAxsAGpMWtzqBEVAzaTtzdSrgrPhfuzmag/TFWAS7ca5iB5pZ4927DwDE2DV3LBZh7tQB1ygo3U+dFWPAYVI13ngHtbJ9CQKyDOW0nLstWBIZ9VqkABrregdtBfRZ0zxZYLjgsRg1N7FiEcHiSUCi3ZqFJEZ8h2de+UkWsgRLSWx/KCnOy+teaXwbGBjpToXWLTKbxjxCFu3ADwU7cW2IG2vFm6jPQm4iYKk4ml1vGTeTar9cMDlVpbiC2WWARBnAhi3SNeUze8YWFFBImGSVTnHgUQtXOzcvacxuK4snSKKGKzMasDsviIAhJDCCYwJgunLgbXMIqpsiBS2jCVERhnbtUXkbUyhYUnWF4ZHMji1qB6QzJ/QlYFSvQJTami8bGaJ7AzeCiiukM2SyhFsBAc4gCqdimE+a6g4dnQDuI6OJ91s9BO4y0bOI2NkCIRvxS5OWC+B5lGq9fzTetxsE0uiwMNDGCmtFgBTDQ3O74duLA7UBNqKFNS0aEdIIwMSzcSW87JIppRsD8cvBzlotinCUuLYoG0qLp1yp6rI8+XMQUUEwDpIZRnPkvxMlkiwI6rtpsKGuIVFktCY+EsHQFFmFgGjXIyOsxmBHnF3fOf8UQ5mhSjCIpwidkKCuMxFaLSyiVV5u+bhDkBXXnLtzSDLRdiFelHOg1uXDbbKpbeGr25x3I8trmXp0urjUG6uT0YRMhFND8Jk0JnoGuWaIJ0GV+LaW0wHGYQDgFvs6E/DvkHByNJMCY/7weVkDXO3F32mTZdBCBEwWOa40PApkEsNjG14QyurvPylWhDFGlhlkuJdZEsn+QZXGUq8Cu8fUzDmuGrBRlBQh1gMUb12ZyAV0JZKDlGKseleh34c200bjyC2idCZlOp1EF6w6vO+rkySV6oJGnRBhAYj50JC8WANxCd93SpAaAi+IYdl5wTBTPuZSw9HclLzoDUiqQUIWhWtSTx8Qigi2sEAOB+7u6JROU1oSsyWEAthADXSxYSOUUl23vJUS3RREdj6Iy3UjBRnTBqgxm7JndeOPViXSGZIqBWRymtM8szjE1Lxjspc7Xd+uGMAduB0SEXBoo10VZFcuiqSMXxqm4MMRaslloi3NUa8I8rO3oKhtWzYKSCM9N32joeT2QLbaqFpjeWQa0g6AoqyAQEVJxUUwfnCRYHFiuc3KvGcKIcLSO2U8nxXmjbybWR7sgRqC8Bm431PlqDXHyFwRNXbhhGzTpiuvzIWNxFRjNAcl4CAOtMbAIg9Ui2zcRIwxnRVPOzX4eizUUbhTXMJj2TJ5mFi42fd0gVNaQAx1pxUCvRcJt2Ko9mYFWEHy9d829OpyB1hg48VADzQaYPFyKrbJgjzPD8qK4ugB10sB0/hYjYUAWNpNN1GAkFi7h3un7uecl3BCN36ACOh4l7Bprr4Bme1KgUfF9qFTRMHKXjImkDXkOenFVrHfHBtaw+R0gm8/6tyku1DT1TWX5ex3EQPvPAT26f7vwZtpoXPkFNBGQjbTfwdsocLi5yuWqiMyJ9YBSgkW9mayhLEFRBEvaVQHtLCxsF9TVEjCSE3LLiE4YzHruxRRVQEkdFFfd+VKnoUAk5oNLUMA1v0smr1meiQpR0y5rL6Jc4hibUNp2aN5MMFWw0NziMOsUG0SE3eNCFsUNKzjrVyek0wwxxXKLGtPimJoT7pHOTNBmm4y1yoCWkYxTwyKoaM/nR+oY4m2DwhCrVBUxcKm4iGrqePuqFrRcGxu3QVATwQs04cDNumKglagimIAOTL5GcsIssVQFCnXM/kAAsx+PELJJPwPQRx+tQCkdsDj4ag0oGEjs8TsPtyqgEVU8hk8Ct5to24ebn9tZTGkYTQrCiGMmtmoI5jwXsGBoyILuXMbtWzx3aBClBRbQkgv3WmKsDHvBbBfQTa/37mxy5wx0Jz4q3OQN+91FyDWd1zgooaFY7tLwNKKA2nweN7jnQt9ibSRHWQHtM9A979IMAIyghTTMJ4bF78otvDeIeSyyBdE09/2eCNuHyNfAXVwFJsc680BZC3I5vxN3MpGErorIURkxWcLdkoHugcIkCN14M20wrvwCGhBy38vsDEyAu+OrNbEYvFyMkwwWcSJnLGSTwvxkqYCO4iBcRBUgobjFd83wz4OODRAqTnZeSgObiAMxBcUyMJz1Rzplk4Saooiuri134xYHEYESkowtplz++fY2UTM5FM4xOHL5iqVWiI5FEZ8IZqFlKAENFiJCNK0iFRGGTzVTFM/DOeC6PYTRAcFkV2oBL7iBaJUBLSMREaMGNfuY4uAwTGAg0/hdTSfEe1pcEc2i8cHWrvqBsMKL2M2AErdzm53vmclhrBioLdTA4mpXs9ksKqSqQeMAzbB9CNi7TRTNVXuB48yUBjH7gxlqWCz00UczUEIV15WCAbomjeSuYd/vWxbQEUWkTkT934tCWTSBW80+qkmlLednx0ysMFsDG4y6yq6qwXF2muPYeQ6usTVnQcvZsJ1GFPljrGwXbl8O9Bol3DHVx7pTJEQm7TDQHUu4HRVb+xLpUCm2SsGxmqYFI6Lg9BRwab6zzQPsKCuVtdV0gcFd4yvSWdN1bwMDHZD5DABD+W2+tWqnMv/NBnEALDxxYzAjjCznltp7PcMUo4jJAOV6Pi3+Ts0QZpiqIowuNwv1Eu5UPIlopHEMTZZwl1qYiPVsg8S0xyd6oG5ycHUU0HFRiLV1AtpISAV0rsM5yY2CElXEQrcqitMdIwRN5VitdX6Qkm26QBEF1RqHrokFgINsUhQyVUPkNbKxOIgIhuWfLwVsNlpjoCgTJhwAULXAdeYuJACIRcwWmYEulIBkjCOX792vHTFCfFdCMDRhjQku5p2DoMQVZGPiGJ9ZEAXRtbuF8VZMF0qDzZbctsqAlhGPAlHNMxIrV4RMOGyueXxQSMUiGjDURSwZt7uqSkh27WZAiStQYgrKFysoniqidL4Es2Ihtj2K5L5E6xcIwP/X3n9HyXaVZ/74s8NJlbs63u6+OegqoXRRQDmYASFAGEkMxss2jEeeMQO2BbOWbC8G2WPjH2BmwOOZMQaP+HoNXsQxRg7AIhhhxowtECYjhOK9uvneDtUVz9n798euXKdSd3V1dff7WUtLfSueqtrn7P3u932fh7vCbMz12fPOGMPeHQx7dgDnls1t8Wj7oMRYAQKFLiWxBFGlbAXFLkiA7461BMzRbj3QgoElLdPzWsfSCjCRMkr9nRCe7KkyQwqGmTGNfA7AhIMg0HjhjMbRU2ZTMhkBsopjqi6AXlUGuuwD7dheqI1RJ5wQFe5GH+j22Syd99veB5Szqc3VL06bzYdqeWefc2tFbbnnNrAOXtOCIbSGmzFkFcfMOJArAsV+r1V9WVnV+U13SYJEm4TEJtNzoY+zpI2JsdoYs0c8gA60OUfbBdCcm2q6fLE3S6tcoX3L5VjcVJ4tZ4GzS6bisp3+wXrQLCIWj8aRirUKobpdM9Cjb2MFhdUp2a8jG7dqGybloA75AIgN/weoePNVBC40wi0uNgImGGRMonjWpHESUYbpcYafZhjiWve32+MJI3QSkVjOmoVEcwAd80wZd7q8RvEDo1zcvOiIeiZjWHIsyKWc2dfNB6Y8ya1dGc0iZjS+y25kC8BsgsFaRU/pMLGSEiIiEOQD4xPcDENbwSsZE4hYCvGIWeQdmGOwymV1pjRf97zzOyhKvsl8d/KArmBJhlhE49xSWVQvb8ZqpE1JVipmtAO0Nj3+/WL6jPmq+owHBXc57AkbMqHg7HBgJy1YSQsipM+959e0GbjLofL9b25xznBwHvDL2ZPZcVTHUDMxz3zvK3m02JYQRBhMcIjL0iZjyFiL6nbXDDQAvi/eEqzlCqY8tNucWRHu7IVxR8GJc7yQt1A8YXorL9zNsHMK+MrjGmcXmrygV1XCbRbU/fY/A80q3GYR3qjC3T4DrRe7lI4o1RJAt82qKlNa3a+IGKtYkeV61MhhaBuYMsGMB7PS1ay51hpMa6wEHHvHjIDV86eA3TOhLxGOzWtWVr38RJVrpQzNh1eJ15Vwp+ITDUFWMzMTO6tja5R7oLXS0Brgsn0ADZhqsVTMlFynu7Rd5QpmPRrWcmlbDDvGNX78vMnj7JtdP8vZMJoz0LFIDIkow3MnG8+Rehur+paN2m2jb2OlVyFuvN6M9kp+UFhlwao2XqfrTsW/jDOjOM3KXscjgojLhlLLmTRDLM5wfrn9cxYzGifPNZ6kTHCIC1NgrkAmZ8pk6lULbYtheqzROy+bN2WzzYrkUdf0iRcdWe3j0YXAZA7qL1CSbXh5fi+UAg0JjUSMtc3ejgoiKiBjEkG2dVGhAw2w9pZL3OaIucDFexku2MlaAp9KH9Ew+6D9AIjYvbdMjMVN0A2YTPpUqv3zGGM4NM9waOfqVDdVXkG4q+szHhSMMaRfMobJWyeQOByHu8NdU/BceU0ZD7ey6gUpGA7Om++zU2afM4apdGvJGkF0gtWVAjZnnHsJoJknG7IhhaKpuGoWGgqD27znPV/bV5ict5CYFLjpMoY7jjDsnWWQ0ogY5jTHRLouA70KEbFKCffqAujaQqZQCaDrSrjtNj3QOtBg9RZdoQ9C1Q6zimTh312n0uouME/0XMLN0KHPWvBWmy1fQ0uOIheYHmO4aI8J7DLZ3uc/xpmpuutyLdXauJlUe8YtDs3QttohVlfCPdUm+1xherxmZdVvn/xQ0RoKDEK274EGTI9yr2Ji+SIwmWy/fphOMxSKQCIyPPGwCmEBdNQFwBqz6w0iYoUm/00090CPZgANpVelzbSejNbRrCMsZXe1jlg3glrze9E3JYejICBWod5yRgcarsNwaC/H+eXwEpdzSxqLKyYwWW4zEfjK+OQ1M51m1eAEMFnZeLT1+3BshpgH5JmoBchKg8Wb0kwWBwNWJ84xRFZyQMzSiCeYyUCMMIwxOJM2gpDsoQ40uGyfgeaOUQCdSIbvxMYiw++D7sUDup6oaxZplUVxN1sq12n1nOwVVVCQsdX1GQ+S9egrstp4QfdKRbStXfa/QirGIFitb50g+iESafSB7iWAbmZxxWy8jcW7P7ZyjewFlfNx6dUe/tXVHAd3sgaNhVTM2BUlEunqonctImKr6W0N84EuNpRwt8lA533oihViG4vR+mCwiuRguvW704Gu+UX3iyd76kk3b6Tb91lXVMLr10y+QsBN1VmlWungPHDyfJ9rlpjs3oIYmGC9wTe7je0XAMTqSrin2vQ/V7jiwhsBGFG43Tsu6P24h40CFAOE1TkDDQA7p8sioF3ajEo+kIy1P1/TcVNZsHu6vfr+ehEWQFdsYOvdRLqXcNeyWoPsgdZLRajjWejF4kBaaFd9jq8T26OEG8a7kWmjgjj0JvSKArcwO1WuZXotRwXh1krKKgHSnjmOp3PA6QVz0a9wbkkjkwOuvtBkkr/9EyDq6oZgKVfQcJv6nyukyj2LpkfaKBhesNMs4JsnlPEEcArcqPkWAjN5NpUUM8sIbLBAj5Q/XDO5AjA3rmCVe0NHHZm0QhU8VaV/vV0G2uJV9eWwRWKlDzqTM38PBd3dA7qeqGsSH+cyZgxG13HDPSgoWKmtWXssXNFzqepaiEfMxkw2bxYyBNEPQkq4bgT5vFlYRqM9pJGbyOSAC3ahJ3cFbjOwHuYqVVJgkiM6ZcMJ2URKxgAvwlEUApPJHTh25uk1BdBrLuEul4H6fm3lLkX4RV5nA4hZB0ABOhegyUms5uvcvFEr2/QZB7o1W90jzBE9VbFVj6ldb7EMCVhLCnnFEUuYAJoxhsO7gedOaZxdMpnNno7Rld2vpX45uK/zzYaA+W5CVvr1JdzdAug7XnIfxpJTmE7PI5WY6O2gNwKlobTJQHcLoMcTJmN8/CwwPxX+GK01OK9ZrIaRiJrn79kx/PVni4hYNA7HNvFFJlerdG0IoENtrOp6oAeowq1XArAdHpANoM8WzLrQk0aHom+h4g6bVxvE6K/kBwSLSmibdy2DWRcqJdyCo1Ay2dZVqfWuE7zsBa11WThKMESiHBfvYcjkTJ8yAJxZ1FjJA9debOxmDu9iGE8CZ5p6WjM5s6gNW8ymYuaCs1w+h5Uu76SHkIwx+FIANgMyvim1au7JlXWTxIhS8eSLSg1mjX4JNwDIuASTrSrK2tdgsv1n4A4Ht4x1RxgVi7JmkYv1phcF7gqeY9oH8oWyOvx6brgpDRnfmvuY3BVDkSeQgmEyZapZCGI1ROrKuPvNQAeBWWSHVVyFwe32G5D1+Ms+ZEy0tbiLeaZsNCesqhJ3Np9BJrvUx7H71Z5lx46YILEPUc5GEbFKD3QPGeg6O8rQudtXRiG7KSiu9Bm3Clx28GfuRq9rsarXdPsMNGsu4S5pZLnAzASrtrMlogwX7wEWM8bmsSecHirtArPhUu3RrgT0bdZGiWgtM9ItgBZc4OpLb8fuuRHOPgOANpZTvWSgOTftEIVS+98hXzTaGmECYvWvc8OLOKZWISK6VsIy0IwxjMUbq/y6Z6Br52y/SvwdYQAfcyCumYB88QT4oYTZ4DmZ778iWIMC6A2jIiS2EX3QVYVIc0J2Ey0YNhXLGV0yATQTxht69wwwN2msF04vaOQLwLUX1fo9YxGGS/YyLGeNjH+FTM48L2w3XkqGmbR5TNHXsGVr/3OFqFsWDREcerkEFrdad62szpPEKFAsmQDO4xoyInou39tIZLwsJNYkrqJ9BSZDMgNleFnVtJN90TD7oPvxgK7AufEXjrqdS7fWitYaYNjQ/uf1RMYFZFwi+3xu3a3mKir+VMZNrIZK1pkxBi/Sn0XG4ooJZHvpfwYq18ju1xV/JYAz67YNthljmJ0AclxgIlFTpTpz/oXeDgSNgkKu40GfyUOf7t1Yvd7nuabCXWy5vz5A0cXAtF7Fyhdli7cupn1t5vXmz25xExi2BPkdAtuuH6LHNrCgi1WWYGZFXf9ZfYWSLVs2V/bPmR72U+d7O0TmCOhuauG+rtlyAaZiT7C2a6NrL3spxpPTSMUncPORV/d2IKOO0lCMwbbRk5jXjnHTdrHYphc6VwBcu3MGeiNpCaC9WPn/rKGoojEDHSIi1qaEWxeCvjbUWii3PDDBwdIOxP4ExBVp6Kjs3TquDAO6KssPm9E6mnWECWb6oNv026wryiyUwRn8wOxAjhLCEWBlL2jt13pcLWlEL4o+UPSB6y5hOLiz8dj37AB2TQPHy/6GWmsoBYwn2n/GyZSxrsrmTYlJO9uPqAs4EY5SeReajYWUlkgT7PduQzF88kWT0bS5hghTtR5BhMNhJa0WITHtawhXtG2D4A4Hl6xjT9kw+6D78YCuJxE1QXSivTDpmqkpcG/NANpKWEi/JA1nykH22Sz8EFG6QZGKATvSZkFKllZEvxy+5BoAwEWXXtu3ldNy1mwYOz22iTDOILtsmmmtAaXhTHQupxyLMyhL9O0FrbTGmUWNTL6WjXIsD0xp9FM2wjmvKm0XQjLQtrShtMazJ4FMrnxeZgPTilUOoJknWlWwfWX6HZs3GgRrFeoCzEJ9lRvTlTawrpvwQfk92qlwM2YC/LrXCUoaVky0tLPZFsMl+xhKvV4SnfJmQqcKSl8bK9Hy3Mx46/HUM5acwv9+7+P42Pu+i8k6IbqNoK2QXN8vpBGAwe5Rk8RzGPbNAufbBND5ogmw5Yi2B4aVcANmXS1FbUPZtTtnoEsNImK1a44+lQfOr75c0IjutW6CsbJafa9opaEZ61tlf73ZHKv5AcESNnC0dfCsOxp1BuB6pBS4gUoGmkOVzKTNbQZeHvRzE8BFe4wS8d7Z1sFrSYZL9gInzmlkchq8rDDeSUwlFTN94OeXTPDdrpw96pndv6ItYbnc+Hk3wTgzPolLQ1Sl6pNCEZicAligIaKbZ8/KnrKRO9q4W6kDDeG1/wxMMHBHwM+09/gcZh90Px7Q9UyNmUx5Lz2Nq0UVFLizdQNoAHAmbIxfP4alH0hkfryCYMVYZg1ah8KSDBfvBWxL45njQCqmR8YqkBh9fuO3/gdefP2rMbf/xhYLGMGNo0TYtUApjUAB032Wb3bbSA1WAghPwG5Tvl0hFQPcKMd4bEf1tl76oDPZymNr13dHutCOACuovrRibMtFyS+iVA6gi3Uq3JblIAgAR5p5MOYZ/2c+m6hWYrGUA/VcFixR91l9DZYI2aiV3FhPNS2+15SdsstZbT+8V7hKtZKw/ffCbA5d516SLwFeojWABoD5SWDPdPmllWkDaIvFa1asbdC+AmuaS5groDvMxZ1sxoaJPl8EmxhAOKIApRmcPq7985MMP3hGYyGjW9oJC8XeK0s2grASbsD0QHu22QCwvOYS7lYV7gYbq3IJt1baVIf4eg2dWCHaRBWxvX6qxSrtEyMWQG+e1fwgiAgjJNbHzsdAKCtEBmXP41FS4AbKO+JRAV1URkTMqV2EhWC45iIeGjxXmBkHDu00pd7LWSARa1+WDZje6HgEWM6ZQKUdlmRIRoGClGARq0VArHr8ruhaIrqRpZ2+AhLlsmXhbJ5gySr35taXtqmS7lpyLKKiYwZ6mH3QpbLqfS8e0PU4Fmvbmz8oVF5BRDeHqNxaEK5A6ookxq8bA+MMuedyUANQ5GzGkkaX4YJdZnNmcYUy0URveF4UBy57DS7YP4FDO4HDu4DDu4ELdxuxrhPnwp+3kjcbvRN9Cndzr/O1xc/4sNMWRKzzhSseAWJJjkS8dy9oDY3lLMq6AXUBNHfBPAEt25f9hlEREquVcNf1QEsbfgB4LlAMzKKcaVMNWIGFCFZqX4VumJu+XjRUnFWzU2sp4Za8e0lpOaDo2IJl19YiWmkUSsDUJA/NYHLO8KID5vbnTple+nYwxsBiFnSnDLTSYE7TGsnmayvBHRJsUJdqpREwBq+PAHo8CVx+ADi/3GovplBrORtFPM+DZdU2nioBtCUZ4pHaGqtbBrqiXwDUZaBLCoFgq46XtCqL7jUFvWGVGl2pczLSWuO5UxpLIzC/b+2VWxMsIqFd0dY2Yb2o7OQUSkaQYJQUuCtUvKB1oMHd/oYFYwwX7mZIxoBTCyZr3an/RAjTuxXpocd0PAnkhQRSFuC2WUw4ouPJmCtqHD8DLGSGf8IFymTlox6MoMKIW1jVI+MS3OFQ9XZWWhtxqE7Pi0lTzdCB1fRBl3yNXLG/37BfD+hhogoKdnprKnA3wxhDZE8E4zeZku7i2fWpGOGcYd8sw8V7GXwfDZZ5BNEJrYFdUwzXXsxx9UUcV1/I8eILOS7bzxCocLubpRWjpNyvfY0oX0PbLU5VPoA763a9bnHOMD3DkYjXeUGf69wDncmaNpp9swy2qAughWuywH22RFUW3JUsVnMPtB8AlgS0ApAPoD0BViecyKISkE190Eob5ekmGGOt8/0as1NMlsuju33moAehMqsuO15S8DnHxFT7+bIyD85PAs+cqAm2hh5n0gJUl2C4qWecuZ3XRhtNxdpICzYQmyMoDS36c90wyugMl+039mKV89wPNCyxvi4ca4Ux1pCFjtXpN6TiNcvY+gx0IaQHuiGALvdAq2KAUxmOhfwqf5tKy4NoPWdYlzV7CxUhZslxegGIucYhKN/nenDQbJ7V/BqoXnM8YS7KwxYSU0bcIV80vZ9Ds+/pg4oXtA60sbXqk4qyZDoBpDv0P1eYSDJMJDtnqgEzwQQpB+LCVNvFBHMEOnk85ArA5Jjp417ODfeEKxRNGbpnaYBtDgXuCjImIaNNQmLa2LB0Qji8qy3IavqgzywC5xbDvcnbUQpGdwLUSkPGtkcAXcEes+HMOFDruInJGMPcpMnupBPoXBpJEHWEVYfNTwEH5oAXzrYKTeWLwPxU/4GbM1kOOs+0luFU7KvaqW83Mz4ukEzVAuiziyfbPlZDY2nFBGzxCEMiWiciZnlg467pPe5DIbeixF1V4S5nooWQ4JyjFJgKIMYAnfXBkpaxsqkQlaYPurk8uS4YXMjoag81s5tKuOuyU6uFeaJrBloH2gTvnV6nbn4vFRSEwzCW7l7+dPVhhl3TJogutQnkWUQasbM28x8DwkXXRnDzuEplnDkDcshRgOa874ozzhletN+0Ab1wxtisjrqAWIX6ADpq1QSFKq2iGrrBbq6bCnflsUsLCqk0R5Gt8repiO6FVYbY3Gyo9Yoy4sZFbarLLt5r7OCOdqncWG+29NLCtYFdM2bhnS+anh42ZkF36CNZFxQAi6NYMgHjKAoSVLygTQn36obF/jkTRE+muj92MgXsmuou0hR1TV+t6jQ5StbRI7FQMlmCQ/Pm5AvLJKwX+aIJ4CymwS22qTLQTDBY43ajkBhDVwsW7vCOvwdQ64PO9Wg9VPI1hB9gTPhYaG3haY/uXdxnmFQW4iKyecbDoJBRYa6J68xkypRzz6S7P5bY3hR9DSnMmqEZxoyYZsIDztU5ROUKGq7df/k2YDYnARMsNws1+ss+ZEL27A+fSnEkx9OQwjz+/NLpto/NZM18tGPCXBMdWZeB9iImy2n1UM5ch9VSwm02BSoK3H45gBYCCPIB+HhjCR4T3Ai8ljdqtS73XNYFo2cXTcYJAODKxpYtVVbsXotCr9e9DQyBNoFeJ4TRuQGAQlbBjQqMpbvPP7EIw0suYdg7AzzbLoiOCGgnvIKyrW+2YD15XG8Y5c/CbDGYAFprKNl/AA2YdfmVhxgOzAHPnTRrxag3ei2XzdQH0E6xdrBR14innl4AVgoMTrmMO9wH2lwHpLAguIBSGoWsxuQuG3ZMoJhZRczUyfbN7reEGwAHTi4y7J4G9s8CVxxkmJ8Cnj/Vg4L+OrGlV2+MmRPiwt3A0dNmV4nF7eFfUJiZJPKlzuJaG0nVC1p1D5DaYVsMlx/k8HpQQIx6DFdewLuKNEW9mhhCWyxu1P5C0NDQysj675ph2D9rel2GpdRbKAHpuPFFZhbfVBloALDTdrWfuXKRYt0CaLvmK96OfvugF1eAlCphihWRz+u+Sr/7FRAbBrpkNlS2soBYO4QnAN4+kzJIXIvB2lZSmcRqKJbK1WFtFsupuMlOLWRqZbZLK2Y+DxOI6pXY/igKJ/MN54K/EsDd4fQ8DyejQHTMRjIyDgBYWDwV+rhK7/POKSBSnqN9vy4DHY8CrgCLyo4aFs1USrhLfgFKqboA2uxGBMpsltpQKIE3lG9XYCm7Zk0VaGjJG+YZVhcHhmWgWSd/5h5gjui66QvoVhvNZurWM4UVhfSMhNXj7xj1GK67hGF/OYBryay5AizSpoIyUObzh2Sg262NRoFKTzdLWANR4tYKgFz9Nd+2GF58obFwPbNgNsdGsf2rnnS6tkMc5bHqtcRzgf1z5YSWRjWAzmSzWG7q9a5Uj1TO5fMZYMzTuOCQRHzGwsryKn6bDqJ75jzqr4Q7r4yo68V7jad6xGV48WGGWMSU3m8Em2s1vwosyXDVBQyH5s1Fybc5wNmQhRXMTowqB3KjSNULuuzzOypEHGMBle+QqWSSQXOE7iBXRKSiHsAZw/5Zhj07zI72eguLaWhobX5zVdp8GWignCnhzOxw++aC2K2EmzvGf7J4toTC6QLyx/PIHc0h+2wWpTq19F77oJXWKPrAZFxjaodAwlZY6iELrVTZA3oEA6ggr8AdsWU9oDtREU5Tg8g4EMQAKJb1STplmw7MM8xPAsfPmn9n8iYY7cVvth2xQ1HYkw4Kp8wEp5Vpo+pmX1WPEAzpGYFEZAIAcH75DFRIr2wmZ3RHZsZrx5urK+fksbgJFiIixGe5PU5deWjJL9QF0OWdy/IcaJcClBwJxFt3NFnMMn3QviqrYbNqBrpFoVqyRqcttfYS7pbAMwyG7lluwauCWEFJIz3d3+QTcRmuvdhoxFTGWfXtGQNLWeFWrL42x9bcAy3ar41GgsqmfFQOpipJmU2O1WSgK0RchmsuYji409jEjTpvfOMb4TgO7vnZezA1Nwl/yTQ+c8awZwfHFQc5rruEIRE1AXQQZJErANl8bUxUqkds24MfaBRL5jrhJiTm9tgorabXuJyBZiE90P1Wi+hA4XyB4+A8MF1XUTaeZDhyAUOxZK5vw2ZzreZXiWMzXH2h2dl7PiOhbD7cPmiNqkfhqFlYVRCuALMFGGerzkCvB0IwjMW6Z6AhWeikny/3sVS+dyEYDs4zzE0Ap8/310/bL5XgPeICuqQgPNFZwXMEkXEBEeEIcoEJoC3WdRdeeAJ22ga3GWRCwp11ETsURXR/FP5CLYDutQ96JWdEI8ZigJeS2BEJkM2bDYpOlIKyB3R5vaYKCvkT+eGr8IegCgFERGy6DZVBIDwB0SxORxAbSKEExL3OwbBtmeyH1kbhXXDTJrAWZFQicUkc2tfwswGCbAAZFT2Xb1dIj0skIpMAAKUCLK80pmQ0NJbLvc/ROoXibL626izZJpXO7F6ysTXq+yuLpUJLCTdgNjE95aMYs8Pnj6g0gle5wHhA1wWDvm+u41KUS5tlU4tQoAGbry1TaPOuStDG07bzezDJoBlQ9BUkA1Lj/UdynsNw6T4GpRuDHACmgjJs/ipvbof2QAvWl+fusNBa175zT4DptZfiam3Gx1oCaMBo+txyOcO+Hd0fu9G87nWvw8LCAj756U8isttDabF1QSUFQyxiAuhCKYd9s8DCSi2JVBEAdCwXCxkgHdNIj5nWzokpASkYiv1ueAcasNv8EJL1VRmxvKwRSwpcuIe1nOe7Z4yK+kYUCmyb1ZvrmCB6106BU0UJlRuePCtjDD7MBDCq/RTc4SazKNZgB7FOpBNdgiyr3P8UUnaWL5oSu/pScUsyXLCbYWrMqIavF4WyaFzEKds/hZSujToiIiDj0gTQgQaXvLuIWERg8vYJTL98ClO3T2L8+jRSV6bg7nAauid67YPO5IxVmm2bkue0rRD1al6m7ah6QEuT2cm9kINwOHLH8p2fOARUQcFKWSNfHrYecItDxiXUsMUcCaINhRKQ6qG9am7SWDYePWVKp9MD8Ih151xED0VROFmAv+TDHutuX9VMaowjFZuo/ru5D3qlnH3eMd54vcnVBdBOMm5UbW3RV9Fv1fYGppeyIiJmSdtUFzFACo2IDRSi4QsgZnGTXc0HZh63eTXQLvlGxdu2yusA2bT0DrQJ+tcAs7hRgu6Uede6e5ZbGNXhQlbDcYBUDwJiYVTG2fFzjUEl8wQgeKsqsq9MiXfzBlClhHYdbAPXTFFBl6sMmCOgLdZVvE4vFcMz8GWUAoTs37YyDNdhI6lXFIbrmk0sd84FkwxByHfkuUYNLZfPYvcMMDdu+qOV1tUSbstyUAqAnSkNyzMVculpgWiCY2W5zzGkOqjW12kFdMMPNPJ5jf17RailWEWj4qI9ZqNtmGybABowPSbXXswwscvGubPDzEBrFANmMqEjaGEFVLygJfgIBtCVk6bYrm9ZmpLhMFECPwi3ynJtk4m2rfVT5s7VBe/aV5DRzXe6McbgTDi1DLTorUeeidadQhmTRhCuPEn20gddKBlxn8m42WG34hZsaTIpy10C6HoP6MLJApwJG4nLkpARUS2Z3Ch0oGElNt+GyqCwUhYCCqCJEaHX9qrKYm0mbewa7WbRplXAGEPicBzOlI3Skt+TfVUzyTRHOjFZ/ff5pcY+6KUVYHbCrIHqqS/hnt0Rw+kFgFkMuo82t4rtDdCUgbYcBOUqIFlScOMCQbR9Zp2NOSbQ85UJFCuvWQ6gHcuU2puyZNbgt4y1aotYHJBoa2VVFenqpQeaA7kVjVSCwYqubkVfGWfJqBHBrRKVRsis6dqpA20y+M1UPK5HMAONoio7qMAE/05nITGtNPRiCVhun01RGuBi++pe2OM2nCkHpXOt31HENQrdWmuU/DwO7WIYi5vxVQmghXAxmQTSnoKwGbjHYcclJiY58iv9zdc60ECbZEvzOdyJc8tGR2jnbPtzT0qTIL1k73Bjl823ol8j8QjDnv0W1JB6Qipm4nnF4NjhKp+jgkwIMLl6EbH1YnbCqO49fyrcJ7FautR0nyr3TkXbbFokYwx7dwDLK6bPatD4PpCMlk9oDYguFhijipWS0MooxnJHmO97FYiYhPAabbHiEdPP1k7UbWkFGE8AcdvsZjpTNoTDMBVV8FxgJd/+d/MDk/33lwNAayRelERkl4fUlUloX4WWOg0TscrF1VZAxuVoLuqIbUuv1WGJqOmRPDA/uMWaiAgkLknA2+nCSve/SHCiAjMTdQH0Yi0DvZDR8Fxgdrz1eOsz0Pt2RlHyAV9wwOrdC9qW9QF0HiW/loGuWlgVfEQmLDBXtC3TZVFpsqsFBdTZXPmBWTfFIyaAbilLDtBdHbsbFjdK3u0+cydF4XoEAziDygVIJLmxdFwliagp5V5aqalyM1uYfvFmJxlfA2F6GtUM9Ahea4sKiJjfmUlu/u5UJpwPgC4Cd0oBwmIDyUBvRhhniO6NQBVUS6taxK1Z3iydW4bnMFywk4GjXvjPxc5pBhZoiIg0FYeSY2yHBVlSHXWDcgXduD5XHSpDpNGi6rYGqPg8z00wWF3sdW2LIRaSoV5PRitSGhLJcQEhV1HTvxrKBuBFxZCKrk1wZL2REQlmiZHLQNsWw9UXGWXEZ0+GB7thPo75sgdzp6z//CTD5JgRFRskSmswXu5/LpexbVbBKBmT4BZDkFNrUo0WDodMSAS52u80ngB2TxvFy+aLs9IaJd9YruiShrAY7AkbMibhBAo70ugoJlYKgIhQKJ4tIn5RHN6cGQjeTg/xFyVQWii1WMgMA1VSYIJt2vEwCIQnuiq1E8Qw8APdd3vV/BRDOjHYedKddTB2JAV7vH/bAO5yzE1PVf99fuk0CiWN42eNUsTeGYQuLrO5WgZ6144opsaAs3kOJrv7IleoL+HO5Veq57QlTQZaCkAUA8R2ObBtI/gTStQE2CiphmxqyTcioMlouYS7pSxZm+NdC5IZ1e92n7niadu1hJsj0IBUCrE4B/fWtsTeNwvsmm4UFGNjFnSpad5iCA1WGGPGu3oERcR0KQCrE5QzStwdxlwuMJssHTAl3Ns3gAYAZ9qBTEiUFhvbVCNeLYBefGEBAJBOMOyaqVXjRT2TgVYFBZmsfdcTOy1EpEK2TffbSt74y59eBE4t6JoNW0jFhtYaJQ1zLnUZl0srxoYyGdPgIxaXANs0gB6blHBiAoXVeJv1S1khsqhYTz1WGwl3OUSEj1wADRhhjWsuYtiRNmrqLQtvt3VnMl80PbZuh55dSxplbsE7ZzP7pVAO3qMuoIsa3N68lkUyLiEjAkHGB++yC9gNe8KGqts9r4i67ZwGTp1rrDDI5IB41FhJqJIGdwWEK2BPOgiyAWYnGGwJ5NopRGoNuVBEZLeH2AWNXjPxQzHEDsdQOJmvlpQPC1VQ5rNs0vEwCEiJmxgVCiXT6uFtcHUYYwz2uL0qXQQuOebnagH0C6dPYSEDzE8BL5osYaqYDy2XXKkTkkgkojgwx7BS4qYkukerR6euhDuTq+1E25bJQNu+D25zJKZtODaQbxNAM5sbH+omO6aibwTe4hFmdEIlN8q+9Rvpa1HgRjnQ9ET7TG2gzHt2K+GWDDmfw9UBYmMme7cWLGmy0IIDmWxFsdpqETxjGm2VxJnDR1OFW6GhVJ9FOgfHuhh0rTRQGuDbPIAWnkBkdwR+U4Wdy2rnaa6Yq2aoxxO1ADoZdcE5g1YaVp1mj5uwkI7p0ABaKY2FjLHMuvIQw0QCOLcEnFkC8r65P5PTOHFO4+kXNJ4+Djx3hqEYoGMGWimNQAHTadMO2OJxPgJsywDaTQjE0wLFzDAy0DA2QJw3qF+OIsI1ogGjVsJdIR4xPezpBPB8o0YKWMiFtdCj73Y6YbLbi5n2qtzdFJ+byReBSLlkXxUVuC3WHHxuFNzmsMZsaKUh1xj0WQnZYsNuSYbDuxhmJ4FTdcro2RwwO27u1yVVLXm2x23oQCMeMZYGC5k2x71YgpOSSL4o0TKmGWdIXppAZE8EuaPDVeZWBQXh8U07HgaB8IwCOQmJERtNoWj6a0e5vaoXdu+tSQZnc6dx+UGGwzMKngpgTzrIH8u1bDxnV2oBdCQSwUTSbCaUrN4z0FadCvdKdql2u3TgFxTclSLih+OIzdrwHLTPQANgaQdwRIMHtNZmA736+0gGCFSzV4ytzQO6+t6uaN/3nQuAuNVwXOEvAmRKDGlPwelTSb0d02nggl3G61YpDeZJaItDlzd+tdbQTLc/tg4ZaK009EJx6M4UupzRr680qATTYceilTZBlC3AOlQtKaVh26Nd6TkM3DkX3GYIysmK4tki3DpV/DwKVReMYrEWFcfr+h3rK+REVCCZMJtWzWvkM0smybFrmmF6jOHyQwxXHWaYSgELeYZnTphkSDIKXHEIuP0qhgO7OZbynTPQmZxp2xiLlc/zMDusDWb0jmgIMMaQnrPh5wabgdaZUusFuOJRyEZXgbuCPWkjeVli1T2uwyCdYLj2IoaIA7xwpu7kkxz1kVnVg7nHnohd0wzjSXMxqCdX1Dh1XuPYabSYz3ciXwLGEmasBZWAaRNbFtkTtvF3XuPmioxJcMlasr62xXDhLqOMfnqhchswOVb2ii4q0zcLwEpKcNuUdc9NMkjeavcRZH3wIEDqsnhbSxhucyQvT8KesFE828knbbAE+e2rwF2B2xwiKgdmZaUDjcLpApWEE31TLJlKpc2iuNuOXXUBtApOYyoJFE8WEDsQxdhVSci4ROFU43Uum28MoMfiZqGbZaJjr2k99SXcK7n6ANoGTucR3RtB/KIYOOdIRjtbUrKoNGW9TaJgdtmjm3NTpgunLlvcizp2DzBPtg80Swq8B2/uM4tALMkxmQKsxGACaMYYLtxt1ienzgOICBN4Viq5Am36t9uM37ZKyACQD6CXSsAQXWkAAMXA/Mb1wmeuMLeFVSUVAmiHg6VsIz7VJshWYLC38cZ0BXvcgjNtxMQKpwtQRYX07pqBckHnqlo0uUItgHYd1wjScdawwS8iAskxgRgPsFKXhc4VNBiA/bOsKqjIy+KwB3cCtxwR+FdXM7ziOoaXXcNw+UGO3TMMB3ZxKMHhd6j+y+RN+bZkRueIUwZ6dEjOWGBKG5uFAaCLAfRyCfpkU6lUoOErBttlI6vAXYFxNrCL/noynTZBNGAEUgAYtcm686tYMlmFNq4ZLdiWKeVmMKXciysaL5zRyObMDvD+ue6qz/XUB++6qCATclMHTDIuq73Qa0FERYuQWAXXYbhwj/H9BsriYV7dc8uTrUxIiIiAvxIgFTN9YotZYKVOTd0/UwDbGUVin4dOyLiEO2M39GWvN9pXsJKjf56tN3Z6cFZWpSUf/mIJwcrwe9qJzU3RN0HjZmdyZhKCm2vkmYXTKJwuwh63Eb8oDnvcRvKKJKAUSgsmBaxKCvliTUQsEolACIadU8CK7r3SyKnLQGeytRJuGUgEceN8UKkAGoszlDrFagkLfMYDypVOlQ0xpxxAO9L8Xsw22TAdaGjBu6tj90KbzWHtK1M2Hu98zQ4C0we6e57Di4qBbphHPYbLDzAUfSBTZOZYKlZFvjZRRrtAuSm50EAuABuzTYZ9mFQUuO3GAJq5wgTXzeRMvzSLW+17Z5WG0gz2iCeqhgFjDJE9EQT5AFppjF2dQmouVb2/5JSqa7BCsVbC7dougoICc3h1vQWYANpJCKQ9VQ2gldY4v2x8mMeTje+vAw0uOCbGOeYmGeKRRleWmTQwNsaRyYSPy6JvdCnGk0apm42gOxCwjQPo1ISAYzMUBtX3mgvAkjbYpAt9uq4kVGuUNIPjmqwpMRjmp4zv29lFM8kyi0Gz2s5kvgi4Tn+2YeNJI9ixlDUbuod3Ay++iOFF+xnmJxkcq0O/bR2lsihNJXhXJQUrtbnrA2VcQCblmsv7hSsgExKqTcAadRku2GMulDPjjRddUd4R5ZLDmXIQrPhgjGHvLMPhXcByzliS6awP3xKQu6LwnO4XXRm32i8w1gONbd3/XEHGrIGVDgYZH/a0Az8z5EwKsenxA4T6i242pGchHR8HAJw+exq6pJC8NAEZM5U73ryHxIsSKC2axXOwEiAf1NJJkYgRGZpMMWibt21nasauL+HOLVf/tqQFf28CkXStl9JzOl9qmeTge2LVcs1AGRGyagBtl4XEXGESFZUKv0FUzVk83P8665v+3HjnHt1TC8DMODA/L8DstSlwh7F7BnjRfpOF9uNWtYQbvjIbCO3mZtlqKVlBlxQQk7XXWgW61Kr43PU5RQWWsBp8qxlnYLFwJW5dVKa8v6LAHtZeoIEADO6It0oOC2faQWRPBOmrxxDZHUE0WtslLPACVLmCI1eobaJ5jgtdNBZW9WsUxhisMQtJy1R2Kq1xbslUWe6eaR1f3YJeKRlm5wUKhfAk5vIKMBYDkjFAB6AAetSIjUu4cY5cn95m7dB5s5MnLkyaMpPTebN7qoASY/Bc4zlMDI69OxjiEWBxBWaXtW5nslA0/c/99MIwxrBvluGqQ0awbN8sR6K8cxbzgKk0sNSm37aefNEI0lSDd10L/jYrMibhTNgQsbUbLNoTdrU3J4x42at0MlXO4AcaYKxhR98et6slhpwx7JkxQXQuD2ROFlEa9+CmrZ58WmVTtmM9Ub4Ck5tXUG6QiAF+78rXsOIWggGVhBPbi1Fvr+oF4XJMpiYAAGcWziByMAJ3vnEHOXYwhtgFMRSO51FaKCEfmOyTlBKWZRYo40kgEuco+OH9qM3U+0A3lHCno8C4C6du3ROplmH3ds6XfOMjbVtGCyPimrmd2cIEzxV17EH0QFvh3rQ6F4CN2x17MIu+Rr4IXLSbwYsJCIetWYG75fgYw8V7GfbPAS9kJTTKv4+va37PYc+TvNzS1vS5tEahqPHsOQ4/6O23DkO/kAWW+rSE9FVoRp8l7JbWAa1MmTCLW4BVUUsPz0BrBribfK01KIQrMH5jGt5OU4VX2SADgIIugJXHen0G2rFdo8Adky2tnHbKQsxW8Bzg/LJppdg/y+CErLG0r8Fk56B3ZoojYumGknDAtF/mi8COcQbOmHkt0YMH+wYwekc0JKyoxNi4QHFAATSUNhnomAVxUQosZkGfzgOBRlFzjMWwqUt4R5FkjOHAXDkL3WRt4SsgsYqsgiUZpsYYrKYTnzGGmTSDQrgXdT2FohE/sGQ5I843v2UR4wypK1OwEmsPoMOExDqhfAVuNQbQMmmB1fVSM8awe4bh0HSAvOI4E4kgHmn3io0MUxFaFRS4wyEGvLjajIgIB7cYdA9VHZ0ICgGEayzOWMgCmCDaESgNzrdGAM0djsmU8YIu+kWomaBlzcE4Q+LSBLzdHrSvkPdN9ql+ce05DNNTHNmAAz1kJht6oFdqAbRIxGBJNATQnmP+Xegx3ir6gGXVXiMVKz9XMoChahOKQQgMWeU+4rrsptYaTGmwVOcBcuIcsGvKVLAxacpfhTP4Od+SDFceYkhPSywUyv3CgQ4VUa0iy99P03UxyAdYKHKM7XWRZ216j7uglSkf12Fl1x1gQGP/cwVXtFYBVPqfY7KmhN6mhFszQI5gr+xGUX/+12eg8yoPEeEIcgHyTT3QqthoYVVBRAVsi2EsbloVdk4Dk6nw99WBudZ0qliMJgUmEhqZptbIbN7Y1qUrZeFKgwlQD/QowQQzfdDFoG+F5WZ0qdwjU/aoYwkL4qIkmCuhl4rwGUcyNno//lZg/5zJQi+VyjuTgUagNAQzJ+EgSceBdMyUeHei6AOpeE38ituD343ezIhouJBYO3TRKIzWB9BWQkLGREPPK2MMU6yEC4+4iE1ZSPQaQHsCwuUDE7TqhMorCJdv+g2VQSAiEtwRCNbYBx1kAsiYRGSXBxkV8FeojJvojWLJ9NVuiQDa5ZhMT1b/fWb5TOjjhMORvCKJ6IFodfFcH0ADwI4dAj5Ye1XqOhpKuJcXau9jObCFKbuuEHGN2nmvAXTJB2yJavVeIsrgByj39cIEjwPKQMMOCc4KCtoRprS4DbmCBjRw4R4GUS415d76uW4kogxXXSahXYHMom96tDtVNEneoFpe4eypAJMzApP7bOSlrImS9YPSpo+5j01LXVLQkjcocFdgnoAWzHymCrkALGZVA27mtAmgNQDOIDvYlm5n6gPobDELGZcmgK5T4XZtByrQkCF+2yIiwG2GiSgwNwHsDSndrqCD7hloJjnGExyWBIp1m+jLWaPqHSm33ylfg9u8odx/VFi3Vf358+fxa7/2a7j++uvxsz/7s/inf/qn9XqrVZOctSGhO9oqdKPkayye9XEqx/HUgsCJc2XJ9TEH/KIkMOZAW5z6n9eJahY6U+mNMeUfTtmDeZAIwTA7yZAvtLe1UlqDsdp7q4KCcChgqkfGKkJivQVOqlTehKgLoLnNYY3b8OsCaFVUAGO44Ooobr6CY+dUbxfcQStCd8Ls7lojORkMG+FwiIiAKqxNwMZf8eHucCEiwrQHZEhIjOiNQsnMFVsigJYc09PT1X+fPHmy7WOthIX09emqCndzAD0xwWF7HKVs92tiOxExIZ2G7DHQWIbdC75vgu7KQr3eyooBJpCSA1pcW9ws+OuDt6xvgueQgKLCibNGyHLHePnQIsL4ea/jNX5+muPgJTZWFhRKJQ3mdqgMs1oz0AsZDVcFOHSJg5kJgVLMgV7NdTjQgOizurKozGaFF3LMIUrcuqjAxp3ae7SzGytXI9ibW25m3WgIoLNZOBNOSAbaA2PhGi0yaja8J9wAL9rP4HbQl9G+6hr0csu0Rk4ma0kppczKejpd97xAg9ujuX5etwD63e9+NyYnJ/GlL30Jb33rW/Hggw9iaWmp+xOHSHJcwLU08oXed8+U1sgWNM4sarxw1hiIOyrAwYts3HClAGPAsbK9Ep9wwS5OQo+7W2KCHlX2zTLEIkAWZic0XzAl1L30v/bLRNJM6Cu58PsXlo14WKyc/VYF4188qt7aG4FwBWRcQvWo/KlKZke0eZJ2Jp2GLHbxTBHujANn2sH8FMN4svff305ba86E9oIqKliptZfBbxWstLUmJW6tTfbHSptVkzPtIBhCKT6xNSgUzfW8uWVns7Lrkl3VvzsF0IAJerLZ8AA6FWeIjUtkV3roga4v4c7XRMSYcBB1W3VIxmL9lXDH6irJPNuU/2pW7lcuKWBAYl2MMcCVDf21uhCATbptA8SlFQ3XBi7cXcvGOdMOUlckQx8/SA4ctrEjpbCwhPYCYgAguMnSV/VhTJJh1yTD1G4biajpL1Y9+n43oDTAOTRDT9UK5gACME+E22vZ5cx0+RqulQbTaOiXbms3pkAZ6A40B9BWUgIaKNRloG1pG8uokOoAbnNjJVrUHYNnANAKXSswmGRgDJiZYNWfczkHJCKmVaP6WoEGH1FhuHVZyWWzWXz1q1/FI488Atd1ccstt+CjH/0oHn30Udx1110Njy0WiygWG7cjpZSwh7CNJOMcqXGGE0XV1vtYQ6NUArKF8q4pM7ug4ylgIsWQiAD8tEL6ChuxeY2oq/FPP9R44QwwOw4ESRseB1xbQan2g0Ap1fD/7chqv4NEFDgwp/DDH3JEWIAAGukkoNngeyFdF9gxqfHsCSAea7wvkzO7sRfsYXBdM3aCIICbdHv+TNtlHFiTErlTOdis9Tyv/G6V/ysVQMR5y3ciEhzMAQI/ABgQqADePg+a6b4FUXicQzO1LmOmgtYammvwSOtnaWa7jAMR51AI/96bx0EYfj4AizCIhPlORVJUxwS3OLTQUFAD+x45p42wUWU1S6xCqXGxttnZsavmBd0tgNZatw2gGWOYnpP48VNtdorrqC/hztYF0Fw4oToUpgy7t+usHzRWknkOYNtAEQxSMGOHZHXPTp08p5EtGOHRTjBPQJ01olU6MNVkneyrTi8Alx9EX5u1g8JJWNgxyXFmQaOoGdoV3DHBTICdC6C0xplFYO+0wpTNIOMSiSjgjgkUnucQJWVa4XqlXEKvbQ6UzPqnG7qowNvYODLGwBIW1GLRnM+FANqttUcCaFuurwIFJsSW2QwbNPXn+MrKCmTcCIVls7Vz3BGuqchrE/zaaRv5E4XQ++rRvg4NwuupiIKl47pqI5jLAwfnGjc0TQA9mhnodQmgn3vuOcRiMUxMTFRvO3jwIJ566qmWxz788MP40Ic+1HDbvffei/vuu289Dq2Fna8EdmJtPXP6IHAWZ3D2WdNzdMWupgdMAefPmP+68fzzz6/pWLYCq/kO0jZw/Z3m7/0wUtnLHR6/FnbMAju6PKb63rPAIhaw+OxCX++x5cdBDMA1wDLaV6VkdpS/xVlgAQtYCPsOjwA+yumMXcBpdQp4dhXHwwFc2/l4BsIccFqf7vkYt/w4sND7OOjAC+dfAM6X/1E/JmaBMziDM8/2cPHtgb179w7kdYjBk4oDTx7r7zl+YAK6rUJ9CfeJEyc6PrZQKFSVmZsDaABITwhwGNFM2cEmql6FO5Ovnce8nIFuxnPQl+qMU5dRrIiQFX1eDaC7ZaALRRM8C25a7joFWMwTxjsLAHI+tCfBEuHBXrGkYUlg1/TGjB8Zl4ilBBzXRzbgbQNowPQN64yP0+eBiRSwO6VgQUAmLAiHITUlscAEIvmgcza7maCsAF4RIesl0NEaLNp+U4LFrFqGOReYEvr6FjiLh1YEBIEGlwxyNGOtDac+A72ysgIRkxARgZXMSvV2m9ngdnvRWxnvrd9dB7qrjRu3GJhgEDCK24ARDBxPtFpiDdoSblCsSwCdy+UafizA/HiZTKsH0Bvf+Ea84Q1vaDyoIWWgAeCnf3cW3/5WAal5B6Jpklhc0RACuHQvQ9QzdjnNlJZL0CWNydsnGozHzy6aTPRzJ4GD88BtV3UeAEopPP/889i5c+e2zXKs9Tt47CvL+MkXF+DMRfDiwwxRb30mNqU1/uUnpnx/PMlQLBlPvP3zwL4djcIK2eezGH9JGt58b4pm22UcFM4Wcebvz8CZdFrK2zXTyOxYRux4HEwzZJ/LIn2t8TJs5tw3ziN3LAdV0hi7OoXYvmjLY3qhtFTC6S+fgZW0Gs7jQVI4U4CMSkzcMt61P267jIPi+SJOf7m3cRBG9vkcEpfEkLgoUb1t4fFFrPx0Bd6ch+xzWYxdk0J0z+rGBbF52DnF8IOnNTJZjViPDgxam7LgrUKvPdAAqtlnoE0APc7h2Rq5cktUO9ploKXlwA0pp424Za2uHquE6nuo7bIfdLbIEBUcWnXPmB4/C+zdASxkjEBROtHhwXWvpXMB+IxrLLNCWM4an9qxDapg4B6Hk5JIJBSOKYZ0pwc7ApmMgpUGDu1kEBkFa9qpBiYzkxwnXBs6n++YcW8h0EC0rD9zrntje8WSqmOg7QowxkzFVlGBTzgNa6qKLReUbphHdWDKhi3qkAqlJYB2OH567qf475/84+rtY5EUZNxqW5EroxIoO120ewwAQBvhr06wcgCtA43xJEMAcy4lmqdqhpG0sALWKYD2PA8rKysNt62srMDzWoMI27aHFiyHMbbDhizlkcs1BlyB0shkGC7dz5Co3B7WdrGs4O5wYUUaLzqTY8BLLtVgTCMZ6730j3O+pRfMvbDa72DXrIXnOIcjGCIOa7voXisCDDvSGifPahQLwOkFhl3TwN4pBg5WHSfKV+DgkBGr78+z1ceBHbcgbQmV1RCJ8N+JaQYogCkG6cjQ78OdcJD5QQbujIPoXGTV35kVtSBtAZ3TYF36e1aLyii4+1yIPrbIt/o4sCJmHOicbqvYyXT4uayVBgsAZ8xt+I7ccQeZH66Y5wUMHFv7OyQM6QTDzmmNJ48BsR4U+JXS4KxOmGoL0E8AXb9GCwugnZhEKs5wNKcR77AhUd8DrXStVcKy7AYF7grVLHKXPmilTAl1fQDNGEMyqnF+kZlyYcE7KnAvZzVsC7hoD8MzxzV+8Gz3ALr6aiUFNtZevCaTAy7cDcgNKhlmjMGZcJBI+nhKdwlWXIFsTuPANDAWZ8ieU3Cmap8tGWNQSRv6VBeLkWaUNr3MroQ6me/eRlFSxpKqQwDNPAFtMbCiMv3PsaZBZHHzu1cszCqH4mtwmzLQ7WgOoL/73e/i7gdejbOLZwEAlx++HNcevM70RrdBRIy6fFBQkJ2U39HddoqVFeu1rxGJcSwDmJ0MUfbW6KjmvZGsy6pi165dyGQyOHOmVjb3k5/8BPv27VuPt1sTkbSFqAPkmjbPzi2ZUpeKsmI7goKCMxk+A4/FGW69kuHivaP54281xtIC02lgLKZDqwUGyXjC7Mq/cAbYMQFcsIu1VDCoou7YT7Kd6VVITPsmsGonSGElLVhJC5H90TUpnXOLQ8bkugmJVXqy7XQfu/vbAO4aT+zVfO9BNoCIipYJ30pZEA5HsBpbFqJvfvSjH+FNb3oTbr75Zrz61a/GZz/72Q07ln2zRpimWOqe3Sz6pp92Kwl8TkxMVBega81AC5cjmeJQRQ2l23+f9Src9Vi20xD8VvBso3ye75Kw9APAEjULqwrJKFAMGOCIsgd0G/0arXHyHHBoJzA1xjA1xqAUqmXrYTCboxgAhYxvguk22VitNXwFTKY2dm1nJSVi4xLC4R37ygNuVMuTUVadi2S8dt1MRAA7KeEHpmS2V7TSgMPBIgI9FeYXlcnod5qrXWEes1wy/c/NFmJW2bbMb3w/FZTncQqgQ6kPoH/0ox/h1ltvxdnzJni+4vAV+NR/+TQEM44k7RBRAelxqB7m1m5BL7d4NQNdYSrsfGKj6QENrFMAHYlEcNNNN+GDH/wg8vk8vvrVr+KnP/0pbrrppvV4uzUhogLJBEOxTom76GsoDeyZYR17f3SgwTggE+0HnOcwREZUQW6rwWyGXXMc+2bW/71si2F2wgTPh3ex0L4qVVDgZGHVFnvC7hrkqJIGt3jbciCZsuDt8hDpsUS+E1ba7mippAONzJMZBD2qh9dTDfZSFEDXwxiDlbJ6mpCb8TM+7JQFEW08v2RCQiYkfLKzGgr/6T/9J1x//fX4yle+gne/+934wz/8Qzz77GqECNbO9BgwMwacWez+2ELJZDe3UgAtpaxqz6w1gOYORzLJ4UnVMdi12gTQjmOHBtBSMsQjQKlLBrroo8UGCzBrKg0T7EIwUw8ewplFk20+vMvMzeNdHDQAQEuG8zmO8y+UjHBVLPx6nSsAEbtLNnsIODMOpi+PIRphWMm3f1wu4HAsU5kR5BW4J2DVrVvjESCSligIAfRjZ6W0CXYdAaZZx80JAEaBOyrBRPvQg0kORCX0Uvk3aF4/SW6e36T6rZWGsBmVcLfBtu1qJdYzzzyDs2fLwfPBK/CJ/98nkYqnoDUgvA6/DWeQSasny89uZde1Eu72j9Ha2Fp1LBffQNZtqD344IN45zvfidtvvx3T09P4gz/4AyQSG3y1CUFGJaJJAb4UQGkGzhjOLgGzaZOB7kSQCyAiAlYbRUFiuHCLw7I5xPoJKTewe5phfrK9XZYqKjgT9sie/BuN1WHjqYIulj2g22SghcORvmZsIMcjY8JYYbTBX/bBbWGC4T43RfyMD2fCNj1ERANW0uor61EhyCs4M60WM4wzuNMOlr6/XjKCRD0nTpzAy172MnDOcfjwYezZswfPPvssdu/e3fC4YThuMAYcmNM4flZDKUB00BrwfY2oC0jBOjpkrAfrqbI/PT2N06dP4+TJkwiCoK0FU70mjed5rcdiAW6cIRVROO9rRNuUxTttauAjrg1bhruPjMUUTp0378faXHSDQMORgNX0+7i2huQa8BiYDXCpW17DVxorOeAllxjfaaU0Io7GZErjzHm0LUnPB4CXAPT5Evx0FJbQCMusruQ0xuJAzFvb2FnrOGA2Q2KXg/RZhTPngVQbQbyc0hiPazgOUFguQSYEWIRV35cxYHqa4TlXgPk+mOhtfmNCg9kAcwDlAkyrjoGTRgA2Jqu/V/P/K/CUhLI1+KQNzpp+A6nBXJgS+7rFnuYKbqQcdHUL5EeIYTpuRKNRLC/X5sVrr70W/9/b/j9EZBSBH4A5ABzW8VhkWiJ4LmjrjqGVhpYApO76mZjDEKz40MyMt+bX1EqDWYCWw3ck6aXta91Wc2NjY/ijP/qj9Xr5gcE9bpQMn/NRKJkfzBbA7h2saxmwvxLATluhpuPE8OE2L/dUKPTkp7BGhGDoNM+ogqKMYwdEzNgoqJJq65OtSgoyLsGHICIhIhLg5Yt2yMLbz/iwJyz4C/2r9qt8AHdHJ53U7YuIiP5keYGqiEm788set6H16qyNiP6477778Ld/+7d44xvfiB/96Ec4efIkLrnkkpbHDctxgwO4+cLuj9uVMv9/7rmBvn1frIfKfiVRUSgU8L3vfa9t4uLpp5+u/l0qlcKrBg4D+w8DQHvrGq11VfSpngvnl3DyRPiXm3aA6w6Yv3emjoY+pvL7HAtRVr/pcPmPFwNAeKZ9XxpAANR/rH3p8u3tSAHYU/nHQvm/9sc2qLGz1nHQ7XPtOgLgSNntYBYowrjl1DMdBaZfU/lXd0GwGmfLbwIAvRh8n0fNMsHQMgauLP8X8lgAwEsrf9SNyxvN4599NuTxm4BhOG54nlcNoI8cOYI//dM/hRWzUEDOfJO7gROZ40Cr3nMNB12dMzAPnMie6O42st/8r1j+HUMdN3b2cEzrQC+OG9s+HcIYQ3LWQuRfisgWTGnO/jkgFeu+9FL5AM40qbuOCsxi4DaDKozI7qPWLeWlRA0ZExCeQJBrH0DrkjaZ4SEgIgLc4VAF1ZJh1lpD+RrCEyie7mdxYcTkwDltprRBRASY7LyR0oy/4kNGBKxU+BQmk2Zj0z/fy4KOWAvXXXcd3vnOd+LDH/4wAOC3fuu3kE63ruaH6bjxvacUvvVEZ9/fZ09oXHEIuHjv8DUq1lNlf/fu3fi///f/AgAcx2mpBKjw7W9/u/r37Oxs6OMWHl/Eqe9n8OOsi2y5RFgK08Nsy1r1lS0dFEqNNcRnC/Nt3/v5UxqPfjvADRccw/ML89Ah3YTHz2rMjgM3XNZ4X66g8blvaLhnV+CcWIG8YhwsUrsO5IvG6/imyxjmJht//9MLGl98TGM6bTLb9QRK4/lTwFX5cyicK+F7Y+PYs7f1mh0ojaOngNuuYpidWNsW3aDGwbHTGl/+lsauKYA3bf6WAo2Tz5VwReYsJuYd5E/lkb6m1dXi1HmNL38+i8nnz4PPeG0rF+rRJ7Lgl6fBJlwEj50xPc6J8PNZBwr6bAHyqnGwlOmbYFDYmTraMgb0+QKCpzIQFyXBvNZrfPDjRahjWfDJ2qb0uSezmHpJEje8NN71uEeJYTpu3HPPPfgf/+N/4Pbbb8f/+T//B7FYDJknM1j41qJR3+bA1B2THasmC2cKOPP3Z+HOuKGPC3IBSsslTN462bXKcOFbi1h5Ogt3zgl13AhyAUoZH1O3TUA298KPAKN3RBuAlbKR8DI4lgEmEsDOsq+f1hqFEwWIqGwZCBUhBirfHh0YYxCeRLDSX4CzHlR246n/uT3CFRAxCX+hBLS50CpfNYidrOvxRDhEmwBa5RSEx2ElLOR0hya6EIJMACsuICmADkV4RtlTFXoPoINMAHfObWs5JuNGXIwC6PVlYWEBDzzwAB566CHcdNNNePrpp/HWt74V+/fvb8lCD9NxY9c0ww+e0VjKti/X9ZVGxGUtAccwWQ+V/ZmZmgjI6dOncfjw4dDH5fO1gDcajYYehxW1EBUMl+/jWCknGBZXNJZXgMWc0fBKJ1hoAB2Pum0/W9TV4NzMkRo8NIDOl0zZePNrRFwNy9LIBxIOF9BCoF7O59gZjQt2AfNTrYq+6YRGLKKxWLagrGchoxGPABNxC1mbwbIsrORbNWwyOQ3PMZ97UGNnreMgGdNwLI1sEYg2He/SioYXlYgFHCqrwBmHnbBb3i8Z07ASNvK+gJfTXf21tdbQAQPnEmACcCyohTx4mzJyvaKhpYT2bDTLLzWPAZ1wwXYzaNdCWB2RtgR00bx/Bb/I4Fhi0zouDMNx44//+I/x4IMPYn5+vnpu2DEbLGDQWQV7yoGwOq9ZLc8ClwI6r8EjIcfrA5wJSKf7byEcAZRQDZpbHDdKMMJm9mj+rqN3RBuAjApEPCDmaOyeASJlG5vC8QKEx1FaKMLPNJZtBjnTB2klaFE8SoiIgCoNt1cijIp6dCdBBgJwJm0EnURLNMCd4WxCcMkhE1aosJmf8WGlLDhTNsBqG2i94Gd8MzF1WZBsV7hnlOpVH0rcQbHRhqUZxhjcHQ7NcOvMsWPHEIvFcOutt0IIgQMHDuCqq67Ct771rQ09rlTcWAu2ExPT2vjRbiUBsQq9Wll1ExEDjBI3NBCLMEyPMeyZYbhsP8dLLmE4tJNVxcVs2dqekoy3b1nxnFZ17WaUMoJhzRgrK6AABtiNNlbLWQ3PNsJhYRlUSzLMjgPLIXugCxlgzwwQm7EwdWEEU2mG8yFlo8tZo48zSuKw8QgQj4YLpGVywPQUg+VwlJZ8yKgIFb71HIbkpEReCNMM3g2lG23EYlaLsFcDOR8sYYH1MJ8zwcAnWvUtqvdbAs2BtdaAQ44nHWGMYefOnQ3fq4xLcE+gtOR3tLCqwD0OYTGoYvhvrQMNLkxFaNfXsrj54dpgWrXQ88b6sBnNoxoyIiqRSHHMJlW1JKd4tggmGVJXppC4NIHCmSKCbO2iEmQDyLiEGFJ5KdEbIsKhiqqnAEcV1KrEi3rBKHALykB3wUrIjsJdAIZqA2aNWaGBXJAN4M66ENFymXebySMM7be3uiPqlLh7DKBVSYFL1rZ8u4KdsodW/r9d2b17N1ZWVvDoo49Ca41nnnkG//zP/4wDBw5s9KFh7w4GzoBCsfUaXyyZAI4CaEO7AJrb3GwYNi1yOWdIx41Cdr6gGrygK8Si7b/cihd0N9o9JhkDCpYFPuk1KDqfXgD2zbVml+uZGmMIAiMsVqFQ1JACmJtkiB2IIbYvit3TDPlC62fPF7Hm0u1BwxjDTBqhStwlH5ie5OAWg7/swxqz2wYkM+MMuYgN3UsAHWgTQZTLeJnbWctCFxV4ekAnXEjgpTUgR9TuaJQRUQEZNb+d6KFMmksO3iFRVUke9SKeyy3WccyokllHj6oQLwXQMBnoWEri0LTZoSwt+QhyAZJXJOHOukhcFEf8ohjyJwvVbJnKBXCmnZ76RIjh4Uy7cKYcZJ/Lwc+GTwLKV8i/kEf+VAHZ53J9ZRN7RRUUhNNePZowyIQEt1loFloHGmAMfIiZWxmTLRd008PM4KRtCFeA270H0EEhALep/7kbVsruuXIkWAkgY90twayU1dOCgFg9sVgMf/AHf4A/+ZM/wc0334w3v/nNuO+++/CSl7xkow8NU2PA7ER4FrpQCaC34L7WQANotyLM2TpHRj0gFQcyyxq21WojGO8QQHPOkGij6l1PuwA64jIoW4DvqmnQZHIajg3sn+28JksnjJ1Tti7YPLdsxstEsnbb1Jj5jPVZ3aKvYUlgbATbbNNxhualTL6o4drlcnNXmErrDpu5qTiDjtkmOO5GoE0Nf1ngkzmibXWWVhqMARiUC4U0vtaVzQ0jZEcB9GpgnMGesMHt3ismrUT7DW8daBP09hAbMYt3VPpURQ3ZQ1Z8oxjdIxsiTDBYYxbyx/IIchyl80UkL08gsser3p+8NAH4GpkfZeDOe9AasMdoUTxqOBM2xm9MY/nHGaw8sQJ/kZmNDm5UQkvnSigt+XB3OIgdiGL5h8sonCwMXCFZFRXsyfYlSITBSlmwxmz4iz7EVFPfcalsYTXMADoiAM6qKs9ArYfZGrPAbQ4RFfCXelPiDjKmUoW0Ejojy2J7vQiJlZZKiB2Idn2ciAjYabKRW2+uu+46XHfddRt9GC0IwbB/zvTELmR0gzBoxQPaoQAaQIcA2uHVDcPm840xhqkx4NRRBdsOyUDHOmcbUx2C0CDQELz97+PZxnqpntPngQt2Gb/nTsQ8YDwBnDxvAmmtNbJ54KoLGETdtSIZY9iR1njulHkcAGSyplx6FAPoZAxwLZNNd2zzOZbLx5uMAoseh/BER02RRASwkhKlFxhsv7MlFZQ22f/Kd+ZwkxkuKaC5TDsfQHvS+DoPAGZxaMnBAm1KyBWgGWCFlPwT3bFTlqmobaMp0oyMy7bVmyaA7m3N1m1u1r4a6TZZSo+VsdM2gmyAwok8YhfEED8cbwh+uMWRuCyJyL4ocs9lwR0e2kdCbDwyKpG6IonxG9KQcYnsczkUz5eQfcYsGMauSWHipnFE9kSQvMzMtqXFwYoNqaLqqZ9ku8M4g7vThb/SGpBqX4NbfGg90ADA6wStKvjLPpwdrilnROfd12b8FfNcCuI648w4cGddFE62t8sByl7cFm9RkG1H8rIE3DmyD9uu7JkBXnzYBD4nztYWfEXfBBVbcYNzsD3QAtxi0KXwxfJYDHB0AMtqPcc6ZaABINahh7joA5Y0St9heI5RAy+VM+PZvMkMH5gP732uhzGG+UlTng2YHuGoB8yE2EDtnGYolmrl3stZU9VgydEbN4kIEHEby7gzOWBusmy56UlTrtth3RqPANG0RKGXPuhAG7fQynfhCNObHFZJlA9M8NxjgNYVyc17V4I4barVKAO9OmRcwkpZPVdMVrQRwtCB7jmTzS0GMNa+lVIPt4WvX0b3yIaMjBkrlcjeCBKXJkIXvMLhSF2VhLc7ApmQQ1MHJvqHMQZv3sP4jWnEL4pBBwrxC+OYuHUC8UOxajDkzrqIXxJH6XypLxGjruiyrzDRFWfCAbdaRaRUsZyBtoc3KcqogHA4gvKxGKVR3VD2ZiXa777Wo7UGNOCMb8E014DhFkfiojiYYC2CjRV0oFE8U0Dsghic6d566YQrhuIhTowmnDNcvJfjxssYpDTWVYHSKJZMxm4rMjU1Vf17rQE0EwwiItu2rEQ9IGEpcLv1+bFI5+teJQNdCAnOS+UAul0Jt+eY7HShvO998jywewaYTHV8yyrphHn9oq9xfhmYnwQSIerR02MmMF3Omeu5r4DJ1GgGaVIyTKVM0AyU5y4NTJT7wbnDYZXt/dohBMPUJEfOsboH0AqAxasbFszigMtDA2hdVGDj9uA2rCxmBMzK87AqV4xZNNWuCnvCRuKiOGSPFQLc7VCu308G2mLgsn3ZP1j5vUYUWlmUkQkL0f1RJC9PdlTLFZ5A+poxpK5MgW2g/QXRG5Vs9ORtk0hdlQz1pYsdjCKyL4Lc8fxA+qErJ/4o75yNEvaYBWvMQmmpsQpAlRRETA41S8QEg5W0oMqLhyCnwCOmfLuCiHQWS6kQ5BS4JyCpfLsnnGkHsYNRFE4XQ8/DwqkCnBkXsUPRkGcTRHt2zzDcfDnDZAp45gQQBK12P1sFy7KqPtxrDaABQMQEVJsMNGMM4wlA2K0Z6ES88yZXsnwaL2db7/ODcga6zaXTtU1wXSwZX2jBgYM9ZJ8rpONmA2Vh2QhH75oOf17UY5ibBBYzRjzMs81zR5XJMYZSOe7NFoCIUys3tydsxA5Gu35H40mGkmeF9r03EOgWRW0Wt6CbAuiK4j2LDTC6laY3H+VjDMrKz9YQN9u3EoyznjelAUB45daONrolvapmc2laAMLGmkmg8JF2shndIxsyVkIife1YT2bdIiLgTNBW12aBMQYr0T4Q45Ij+aIEnAkbhROdS0h7wfTu8o47vUQNJhi8nS6ClcYdb+3rDVFRtsZqGRd/2a/2B1XgLgcTzIiLdSBYNrYQMk7joFdih2JwJm0UTjd6ufvZADrQiF8U67lPiyDqmUwx3HQZw/5ZE4BtRQXuCpUy7kEE0FZcQre51ulAIx4FXK9VRMx1O7dOVPqNw5Sji74J/tr5LAvBEPdMBvr0ArB7GpgOKcFuhyzbWZ08bwLM6bH2j52bZAiUCaJTMSAxwvt3yaipbvYD49WdipuybMDow3jzrb9TM4mIUV/vVmWlAw3YHOeWNIrlDRYWka0CZAUFbfOB9T8DJuCDI4DyuNS+BucMkgLoocArYqqFkDGiy9UIPWDUunnohnklgKYMNEGMODImkbwsAXCgtLC2fmhVGP0Tf9RwJhwwyRp2NLXSkBtQBi+jNSXuIBfAmW1U2xdexcqq8wIjyAdwd5BSfz+IiED8ojhUIagqs2ulUTyZR/RAFO4s9TMTqycWYXjJJQxXX8QaFJe3GpUAOpvNIpMJMTNG7wE0d9r3O6qCQiwpEGuS1BZCQIje5j+tGy2lAFPCHesS6yWitex1L73PzUyNMcRc0yfvdAi8pspl3KcXTf9zu6B+FEhGy8rheZOBnpvov88/GQO8KEe+2zIo0Dhf4MgVgWOny7e5IerLlf7nAScUmCuqQb4KTD+tRT3QQ4HbxmGmudoAgCm77lEjoFrCHZaBLiiIiOhYEbzRjO6REcSQcXdU+qGLa/KH3gwn/qhhpS1YSdmobq2xITZgoqzEHRQCcGHsqxru9wS4zaA7WFkZCy7AHqNKlX7x5l1E9kargmLFs0VYaRvxwzHajCDWjG0xHNrJ4G5hxd5ehMR6D6BFW6uZIB9AuALp8cZoN0yVux0Rt9FSCjAl3N0C6HjECHzNTwI7xnt+uyrjCSOwNTfZeRx4DsPOKSDm1vqJRxXXYUjFgOUV85N18sNuh+cwJFIcBb/VA7uefFEjrxgu3MVgW8ZGjDkCmjPooG4jPO+Dja3DRrIjaj3QvgYXjEq4hwRjDDLeqo1QGS+sxwCaS1PNF7beHnULK4ACaIJoILo3CmvcXlMWWhUUJPn+9gWXHO681yggxVAVexsmwhMQLkfxTAky3tj/DJiScxm3qkJjYfgrAWRUkv/zKmCcIXFhDKJc8hcUAiQujvfUXkMQRP8BdKdya+6UW1ZCNgxVQcFKWRhLNj6/nwB6LA4sNfVBa905KwyYEvypMdP7vJqscCzCcP2lrCdRsLlJhpnx0bSvamYmDSysGOut1R7vrjmGAAyLi+FzXCnQWM4BF+zhuOIQsG/W2IgZKysGlOr8mTXA1sGKyPRf10TEuADsLbwpNmpYyRBxQWXm715LuAGzQRcWQI+6hRVAATRBNCAcjsjeCErLvfn8hqEDDYsU2vvGmXQAXivjZoJtTAY6aqysSgslY18VMhlYSdlRtT1Y8WGNWRAelfGvBitlIXaByYpFdkfh7ereu0cQhKGfANrzPHDe/jprJSXcWRf5F/ItGUlV1LDSFpKJpgy003sAPTfOkCu23t5OgbtCKgbsnzNl1asl6vUWcO0YB66+kPX8+I0kFWPwHKNI7q0yoNy/R+DwPg7la5xZ1NB1NfxKa5w+b/rGL9hnVLgPzjM4NrDicxM8VQKr4uD7n6tIVm0tUIEREKMKpeEh3FYxVe1rMFm2p+oR7rbptx9xCyuAAmiCaMGbdSEioq2dTi+QgFj/2OPlMu7y5gW3+YZkoBk3StzC5SaoD0HEpEmTtCEoKLh9qFoSrUT3GLWe+OEoOR4QRB/0E0B3Kt8GjKJu8vIErLTVKrKpNWRUwmsSEXP7CKBTceNI5Ad1WUt0D6CTMYarLuBVMbL1hHO2qnLojSAZM/7cO8ZXf7zCFZiZ4rh4XsOxgZPnTOAMAKfOA+NJI9xmlwOciRTD/jng1DIDorJmZZUPwDwJrIeWicXByr0FQaAhRzzY2mpUrazq1kHGToyH2gC3Q3itImKbwcIKoACaIFqwkha8ORfF8/2XcZveVzbyO2ejCLc4vFkX/ko5gLbYhikuW2MSMilhj4Wv4oRnhHXCesR02ZOS7KvWRiXzP+plXAQxavQSQK+srADoHkAD5hxMXZ4EWE1kU5UUmGQQEdFSAu70E0DHyl7L5TLuUgDIDhZWRGdiHrBr2pS3rxZucXCHI+UBl+1nGIsBJ84CZxY1PAe4YA5wXd5QqntwniHiAFkhq+JSOheApe2+AqpeYZJBczPfKh+wR9juaCsiPGMlVi8Apn2z9umnhFu4rSXcVSebEf9NR/voCGKDiOw0O+rtfO7aoYoK3GEjv3M2qjhTTlWwRnhiXSbeXrDiFpxpB6KNjZbwBJgV7l/orwSQEQFrxAUwCILYmgwyA13BnXWReFECpcUSglwAlVfgroCMitYMtNt7AO3YDNNjdQG0bzygu2WgiXAYYzhymGMsvra5k3sC2ldIRBledMD0gHMGHN7FkHDRUqqbTjDsmwXOlUStOktpsIQR0lRKYyGjOwqT9YXFTRl3oKADDXuL+rqPKsItu5HUt7IpDSb6K+EOW+Opgt4UTjYUQBNECPaUDWfCRulcf1loVVLg1ujvnI0q1rhd7R8XGyga5c65GDuSattTZaysRGgfdLDiw0pT/zNBEBvDegTQABA7EEXsUBT5EwX42QCyrBfRmoHuz31gZpyhVO6Y8n3AEkCfL0EMGBkT0GUxMM9huHQfw2UHGKbG2pfqHtzJ4CUEcgWYLLRl+p8zWY2njwNLK8D55QEdoMXLptcaSmk4tOYaKtzl4BaHKtWVcPsm8O2n5SosW60KAYTHR97JZrSPjiA2CC6NmJifDUJN3tuhCsoEV32UsBA1hMPh7jCLMRHduO+QcdbxN+Quh3BYaACtCgH1PxMEsWFMTU1V/w4LoEulEkolszncTwDNOEPi0gS8eRfFMwVYaQuMsTWVcANGLdq1gVxBo+ib8m1J+48bivBkw9rHkqYPnDHWtlR3LM6wb6/AcpFBLxehHIGjWYGFDPCi/cZzO5Mb0AGWLZAQGKVvSQrcQ4VxBhlrVOLWgTa2d30Qlq1WRQ2ZGP0KPlrlE0Qb3B0OrESTN3EXdElDxmnmXwv2pEk9iD4vxMOEMdPj3GzjoHwFcA6L+p8JgtggXNdFMpkEEB5A53K1KKafABowpZvJyxPwdnlVfYLmEu5+A+hUzIhfZXKmhDvmgRSVNxju8BaV5SpKg0kWGvwc2CvgRjkWXijhZGBjapzjtqsYjhxm2DHOUAoGc3xMMJOFDjS0BqwRz1ZuRVrcSALdt3NKWAm39hWs1OiXoNCII4g2yKhEZLeH0mLvZdyqpCDJwmpN2Glz4eQjPiGGWVkF5bJGSf3PBEFsIJUy7rAAut4DOhqN9v3a9piN9LVj8OZN5nmtGWjOGeYmgEwW8AMgSq51Gw63WVWPpJlOpbqpcYG5OQEhGS690sItVzDMTpjMdSpuyvOLIdohq4G5AvAVwADZR98tMRhERDS4kShf9112zawQ1e5NYGEFUABNEB1x51xwiyHI97htqrFhytFbhcr350yMdhm0CLHmCFYC2OM2jQGCIDaUSgC9vLzckHEGGgPofjPQFewxu6rzsNYMNABMJBk0gGIJiJIg1IZTCZDDPHpNqW54+MAYw96DFi4+LHHRxTYcu/ZbJqOmuiCTDX1q/3iyenwUQA+fFp0XrfsW/uIWa9iI0UoDfPQtrAAKoAmiI/aEDWfaQfFsj1lohr5LWIhwNsIDuh+Ey40PYl2fmCoEcKZGv/SIIIitTSchsUEE0PWsNQMNAOmECa6KPilwjwLc4WAWC3Ui0X7nUl0vLZGcFJBNFoS2ZRTXB9UHzRxugnloSBozQ4e7rZssTPa3kcEka8hAbyYh3tE/QoLYQBhjiOyNQvsqdCe2HuUrMMH6FlEgNiciIsBtXl1gUP8zQRCjwmYLoKMeQzpRVuCmS+iGw22jsqxL4RnoTlVWVsKCO+uGlvNOjQ2uDxqSQ2kjaGXZlIEeNsIVYPVWVro/CysAYLKxhHuzWFgBFEATRFecaQdW0kKpi5iYLmowe/Sl94nBYKysapMH9T8TBDEqDDOAHkQJNwDMTzJEXKPCTWws3OZgkkGF9SvrzhVi7pyL5OXJ0PsG2gctGZQCBAMkBdBDh7scor5KgfWfgeYWa3iOKioIj5se/BGHVvoE0QXhcFhjFlSXPmhVUhAWoxLubQK3OYRX84IOVgLYE9T/TBDExrPZMtCAsbNKxykDPQowziA8YfycW9AdM42MsbZewIPsg2a2yUBzAcpAbwDc4uARAVVUppWNMXDZp4hYk2WoLirIhNwUKvy00ieIHrBSssWyqBlVVOAueUBvJ6yUVQ2gVUHBmRpt4TOCILYHmzGAnkgCB3cyxNd+SMQAEDEBFVLCDaDFA7pXBtoHLTmU4OCckYjYBmElzBpIBxqMA2wVv0N9NYMqqU3TBkcrfYLoARGR7T0Ry5AH9PZDxiW0r6v97xaVbxMEMQJsZAm3ba9OSFEIhgPzDCLEG5YYPjIqoP3wxAHvs1S3noH1QUsGxQAmAduhMbMRyLiEDkxfPJOs7xJuAOD1gmGrUPLeKCiAJogeEJ4AeKPicjOqZEpPiO2DiAiAmfJtERWQm2TnlCCIrc1mzEATowW3WwMZHZhS3dUEShUqfdClLsKsXbE4fMZhSQYmKJzZCITLAa2hfRNA91vCDaCqG2QsrFirPdaIQiOOIHpARLhRXO5Uxk0e0NsOY2XF4C/5xv+ZBOQIghgBKIAm1kqY17MONLhcXaluhUH1QRcVQ05xTKQBRkuvDYG75eSSr8EFW9W4YOUS7s1kYQVQAE0QPSE8AVEv1x8GA1lYbTOEJ8BdjiAXUP8zQRAjQyQSQSwWA7D+AbSUElLWqq8ogN4aVHpTta5linWgAclXlWmsUOmDXsmv/tiU0jh6GpifF5ibbLRCIoaH8IzdWZAPALG6yoTKc1Rx81hYARRAE0RPcItDRGXbAFqVTA+sIAXubQX3OIRtSo6o/5kgiFGikoVe7wAaaMxCUwC9NeAOA7dYgxe0DlafaaxnrX3Qx84A02nggoMCwmIUQG8Q3DHVmUFWgTt8VerZvBpAbx4LK4ACaILoGWusUwBd3jmjEt5tBZccMiap/5kgiJGjEkAvLCygUChUb6cAmugFbnEwyRu8oLWvwQTW7DZS6YNeDeeXNQQHrjzEEE9Lk/mkAHpD4A4HdxiCXLDqFkZWrmbYTBZWAAXQBNEzMma1FRHTRQVukwf0dsRKWbAnqf+ZIIjRYteuXdW/v/nNb1b/Xo8Aul6JmwLorQF3eDkDXUsc6ECDWWsvmU5Ggajb/XHNFIoa55aAyw4AsxOsmrho5ztNrC+MMciEBSi96gRSNQO9yYR4acVHED0iIu1PF1VS4J5YU18QsTnxdnmIHYxt9GEQBEE08NKXvrT691/91V9V/6YMNNEL3DLBab0XtPb1QDaLbYthKtXfcyp9z4d2AhfsNEEXdzhkdPMEXVsRmZBGA2iVCaRKO4D2FYS3eX5LWu0TRI8IT4BJBlVqLeNWRQ0Z3zwnPjE47LQNZ2J1vqcEQRDrxV133QXOzTLvM5/5TPX2lZWV6t8UQBOdEFHZkoEeVKXdZKq/rPELZ4CpMeCKgwyynLV0d7hIXBofyPEQq0N6AtzhEKss669akFl8U+kIbZ4jJYgNRngC3BGhfdDaV5CxzaEcSBAEQWx9Jicncf311wMAnnjiCfzoRz8CQCXcRO+ICIf2G0XEBmXXmSzHvb34QWey5jFXHmKIRWqBNxOMMtAbDHeFSTCtUliOl58nLA4R2TzraAqgCaJHuGv86UKFxMgDmiAIghgx7r777urflSw0lXATvSI82aD9opUemM1Qojz0uvlBK6Vx4hxweDcwOzGQtyYGiPBM4LtaYbmKjdVmsrACKIAmiJ5hjMFKtlHiJg9ogiAIYsR49atfXf270gddCaCllLCswbgH1GegbZtaWrYK3OFAU4J4NV6/YdjlzONSlwD6xDljWXXRHrZpFJq3E9zhJgO9SmG5ynjaTBZWAAXQBNEXVspu6YEmD2iCIAhiFNm/fz8uueQSAMA3vvENHD9+vBpADyr7DFAGeqvCbQ7UxzS6VnI7KKIOcPxseBl3Nq9RCoAX7WeIuJsnuNpOCE9AJoyd52qobIrI+OaxsAIogCaIvhBe6ylDHtAEQRDEqFJfxv3Zz362GkBHo9GBvQcF0FsTbjMwzqArfcpscBnoCi++kIEx4MS5xiBaa43jZ4ELdgK7pgf6lsQAYZwhfc0YrOTaqllEfHNVcdKKnyD6QHgCYHWTCcgDmiAIghhdmsu41yMDvXv3bgCmLHxmZmZgr0tsLNzhYJZxH9FKA4wN3K5zforhuosZlAJOL9TWVqfOA+kEcPFeKt3eDjgTm2vjjaTrCKIPhCfAXSMkVlELVEUFKyXJA5ogCIIYOa666irMzc3h2LFj+NKXvgStTZAyyAD6N37jN5DP53HNNddgcnJyYK9LbCzc5uAWhy5paKHBBFatttyJ3TMMgQL+8XsaZxY14h6QLQBHDjPEIxQ8bwc2WwBNK36C6AMRERA2gyrW+qBVUUHGByPEQhAEQRCDhDFWzUIXi0WUSiUAgw2gZ2Zm8IEPfAA/93M/N7DXJDYebtdloAMNJhjYOiUL9s0yXH0hQzYPPHMC2LcD2EPFDMSIQgE0QfQBEwwybiGoU+LWgYaMUzEHQRAEMZrU90FXGGQATWxNGGcQroD2NbSvwSQbuIhYPQfmgasvBOYmgRcdYBCrVHYmiPWGAmiC6BNrzGq0stIgATGCIAhiZLn55puRTCYbbqMAmugFERNQJQ0daHDBBi4iVg9jDBfsYrjjKoaxOAXPxOhCq36C6BMZFYAyPWRaa4ABggJogiAIYkSxbRt33nlnw20UQBO9IKMC2lfVDPR6BtCACaJdh4JnYrShVT9B9IlR4jbBc7WkiRS4CYIgiBGmuYybAmiiF7hjBFO10uCOIEVsggAF0ATRNyIiwG0GXdRQRUUe0ARBEMTI87KXvQyWVRO8pACa6AVum/WN9jUlCwiiDJ0JBNEn3BPgtkBQUNAlDW4ZkQ2CIAiCGFUSiQRuv/326r8pgCZ6oT6AFhRAEwQACqAJom+EwyEiAqoQQBUVRESCkVIkQRAEMeJU7KwAIBaLbeCREJsF7hjl7aAQUAaaIMrQmUAQq8BKGSVu4wFNFlYEQRDE6PNzP/dzuPTSSzE5OYl77rlnow+H2AQYL2huSrjXyQOaIDYbtPIniFVgJSR0YJS4KYAmCIIgNgOJRALf+c534Ps+pKS5i+gOtzm4ZGCcgVkUQBMEQBloglgVIlLuedagniCCIAhiU0HBM9Er3DJCqUyaUm6CICiAJohVwT0BJhg0QArcBEEQBEFsWUTUaL0wKuEmCABUwk0Qq0J4ZesqpkhUgyAIgiCILYuMmqQBZaAJwkABNEGsAuEJU7rNAOGQhRVBEARBEFsT7oqymBgF0AQBUAk3QawKxhlkwjK9QZSBJgiCIAhii8Ids9Yhy06CMFAGmiBWiZWS0CUFxmlCIQiCIAhia8JtDuFycFLhJggAFEATxKqxxx1wKt8mCIIgCGILYyUknEmHSrgJosxAA2jf9/Gbv/mb+N73vofTp0/jc5/7HCYmJgb5FgQxMrgzDgBnow+DIAiCIAhi3ZBxicSliY0+DIIYGQZei3HllVfiPe95z6BfliAIgiAIgiAIgiA2lIFmoKWUeP3rX9/Xc4rFIorFYsvr2LY9yEMbeZRSDf/fjtB3QN8BQN8BQN8BMJrfAefU/0cQBEEQ250N74F++OGH8aEPfajhtnvvvRf33XffBh3RxvL8889v9CFsOPQd0HcA0HcA0HcAjNZ3sHfv3o0+BIIgCIIgNpgND6Df+MY34g1veEPDbds1A/38889j586d2zbLQd8BfQcAfQcAfQcAfQcEQRAEQYwmfQXQb37zm/H444+H3vemN70Jv/zLv9z3Adi2ve2C5U5wzrf9YpG+A/oOAPoOAPoOAPoOCIIgCIIYLfoKoP/7f//v63UcBEEQBEEQBEEQBDHSDHxbv1gsolAoAABKpVL1b4IgCIIgCIIgCILYzAy8B/q1r30tjh8/DgB45StfCQB47LHHBv02BEEQBEEQBEEQBDFUBh5AP/LII4N+SYIgCIIgCIIgCILYcEiZhSAIgiAIgiAIgiB6gAJogiAIgiAIgiAIgugBCqAJgiAIgiAIgiAIogcogCYIgiAIgiAIgiCIHqAAmiAIgiAIgiAIgiB6gAJogiAIgiAIgiAIgugBCqAJgiAIgiAIgiAIogcogCYIgiAIgiAIgiCIHqAAmiAIgiAIgiAIgiB6gAJogiAIgiAIgiAIgugBprXWG30QBEEQBEEQBEEQBDHqUAaaIAiCIAiCIAiCIHqAAmiCIAiCIAiCIAiC6AEKoAmCIAiCIAiCIAiiByiAJgiCIAiCIAiCIIgeoACaIAiCIAiCIAiCIHqAAmiCIAiCIAiCIAiC6AEKoAmCIAiCIAiCIAiiByiAJgiCIAiCIAiCIIgeoACaIAiCIAiCIAiCIHqAAmiCIAiCIAiCIAiC6AEKoAfEK1/5Snz3u98d6Gs+8sgj+Lmf+zncdNNNePWrX41PfepToY/7yEc+giNHjgz8/VfLBz/4Qdx777148YtfjM9//vPV23v9PBW+//3v4/Wvfz2uv/563H///Th+/Hj1vnw+j3e84x246aab8IpXvAKf+9zn1u3z9MNGjIMjR47ghhtuwI033ogbb7wR/+t//a+Bvv9qoXEw3HGQyWTwu7/7u7jttttwyy234Ld/+7cH+v6rZTuPA2LrQXN9je18btNcX4PGAc31wDYcB5oYCHfddZf+zne+M9DX/NSnPqW/853v6FKppJ988kn9Mz/zM/qb3/xmw2NOnjypX/e61+mXvvSlA3//1fI3f/M3+h//8R/1L/7iL+rPfe5z1dt7+TwVCoWCvvPOO/VnPvMZnc/n9Qc+8AH9y7/8y9X73//+9+u3vOUtenl5WX/729/WN998s37mmWfW/bN1YyPGwVVXXaVPnz490PccBDQOhjsO3v72t+v3vve9enl5WZdKJf3DH/5woO+/WrbzOCC2HjTX19jO5zbN9TVoHNBcr/X2GweUgR4wDz30ED7ykY9U//3II4/gLW95CwDgsccew2tf+1r86Z/+KW677Ta86lWvwje+8Y22r/Xa174Wl156KaSU2L9/P66++mr84Ac/aHjMf/2v/xW/8iu/Atu21+XzrIY777wT1157bcsx9fJ5Knzzm9+E53l49atfDcdx8G//7b/FD37wg+pO1N/+7d/i/vvvRywWw2WXXYabbroJX/jCF9b9s/XKsMfBKELjYHjj4Kc//Sl+9KMf4Td+4zcQi8UgpcThw4fX9bP1Co0DYitCcz2d2wDN9QCNA4DmemD7jQMKoIfM0aNHEYlE8IUvfAG/9Eu/hD/4gz/o6XlBEOD73/8+9u3bV73tsccew+LiIm699db1Otx1I+zz/Ot//a+r5RhPPfUUDhw4UL3P8zzMz8/jqaeewtLSEs6ePdtw/6FDh/DUU08N7wOskUGOAwD4+Z//ebz85S/HQw89hIWFhXU44vWBxsFgxsEPf/hD7Nq1C+94xztw++234xd+4Rfw+OOPr+ehD5TtPg6IrQfN9Ybtfm7TXG+gcUBzPbC1xgEF0EMmFovhDW94A6SUuPPOO3Hs2DFks9muz/uf//N/YnJyEtdddx0AwPd9/Jf/8l/wwAMPrPchrwvNnwcAPvaxj+FlL3sZACCXyyEajTY8JxqNIpfLIZvNQggB13Ub7uvlexwVBjUOAOBDH/oQ/vqv/xp/8Rd/gXw+j9/93d9dz0MfKDQOBjMOTp06hf/3//4frr76anz+85/HL/3SL+Htb387FhcX1/sjDITtPg6IrQfN9Ybtfm7TXG+gcUBzPbC1xgEF0EMmlUqBMQYA1UGQzWbx+OOPV4Uh3vrWtzY851Of+hS+/OUv4z3veU/1uZ/85Cdx+eWXN+zEbBbCPk8znudhZWWl4baVlRV4nodIJIIgCJDP5xvui0Qi63rcg2RQ4wAArrjiCkgpMTY2hre//e34+te/jlKpNLwPs0poHAxuHDiOg7m5Odx9992QUuK2227D3NzcyIgNdYLGAbEVobmezm2A5nqAxgFAcz2w9caB3JB33cJ4ntfw4549e7an511xxRX42te+1nL7F77wBTz88MP40Ic+hFQqVb39sccew+OPP44vfelLAIDz58/j13/91/Frv/ZreNWrXrW2D7GOtPs8zezbtw9/+Zd/Wf13LpfD0aNHsW/fPiQSCYyPj+PJJ5/EJZdcAgB44oknWkqdNpJhjYNmODd7Ylrr/g54yNA46Ey/42D//v1rPtaNYLuMA2LrQXN9Z7bLuU1zfWdoHHSG5vpGNtM4oAz0gDl06BAeffRRZDIZHD16FJ/97GdX/Vrf+MY38N73vhfvf//7MTs723DfQw89hE984hP46Ec/io9+9KOYnJzE7/zO7+ClL33pWj/CmvF9H4VCAVrr6t9KqY6fp5mrrroKuVwOjzzyCIrFIv7sz/4MF110EXbs2AHAiBV8+MMfxsrKCr773e/i0Ucfxc/8zM8M4+P1xLDGwU9/+lM88cQTCIIAS0tLeN/73odrrrlmJIRmaBwMbxwcOXIEWmv89V//NYIgwFe/+lUcO3YMl1566Vo/wpqhcUBsRWiup3MboLkeoHEA0FwPbL9xQAH0AGGM4c4778TOnTvxile8Ar/927+Nf/Wv/tWqX+/hhx/G0tIS3vSmN1VLPN71rncBAOLxOCYmJqr/cc6RTCYbegM2it/7vd/D9ddfj8cffxzvfOc7cf311+Nb3/pWx88DAPfddx/+7u/+DgBg2zbe85734KMf/ShuvfVW/Mu//EtDv8+v/MqvIBaL4WUvexkefPBBPPjgg9izZ8+wP2oowxwH586dw4MPPoibb74Z9957LzjneOihhwb0SdYGjYPhjQMpJd73vvfhE5/4BG655RZ88IMfxHvf+14kk8lBfZxVs93HAbH1oLnesN3PbZrrDTQOaK4Htt84YHrU6z82Cbfffjsefvhh7Nq1a6MPhdhAaBwQAI0Dgtiq0LlNADQOCAONg+0LZaAHwGOPPQYA1RIDYntC44AAaBwQxFaFzm0CoHFAGGgcbG9IRGyN/P7v/z6+8Y1v4Ld/+7dhWdZGHw6xQdA4IAAaBwSxVaFzmwBoHBAGGgcElXATBEEQBEEQBEEQRA9QCTdBEARBEARBEARB9AAF0ARBEARBEARBEATRAxRAEwRBEARBEARBEEQPUABNEARBEARBEARBED1AATRBEARRpVgs4nd+53dw55134uabb8b999+PJ598snr/Rz7yEdxxxx247bbb8IEPfAAVHUrf9/Ef/+N/xMtf/nIcOXIEZ86caXjdY8eO4c1vfjNuueUWvPzlL8fDDz/c8Tg++MEP4l3vetfAP98zzzyDX//1X8ftt9+OO+64A+94xzuwtLTU8JjPfvazeM1rXoMbbrgB99xzD5599tmBHwdBEARBbBQ0169trqcAmiA2Gffffz+OHDmC+++/f6MPhdiCBEGAubk5PPzww/jyl7+Mm266CW9729sAAP/wD/+AT33qU/jIRz6CT3ziE/iHf/gHfPazn60+98orr8R73vOe0Nd973vfi7m5OXzxi1/Ehz/8YXz84x/HP/3TPw3lM9WTyWRwxx134K/+6q/wyCOPoFQq4f3vf3/1/kcffRT/+3//b/zhH/4hvva1r+H9738/UqnU0I+TIIjtDc31xHpCc/3a5noKoAliG/DYY4/hyJEjOHLkCF544YWNPhxihPE8D7/8y7+M6elpCCHwute9Di+88AIWFhbwt3/7t7jnnnswPz+PiYkJ/PzP/zz+7u/+DgAgpcTrX/96XHrppaGve/z4cbz0pS+FlBJzc3O4/PLL8dRTT/V0TI899hhe+9rXNtxWv/P9yle+En/xF3+Be+65B7feeive+973tn2tSy65BHfddRdisRg8z8Pdd9+N73//+9X7P/zhD+OBBx7A/v37wRjD/Pw8kslkT8dJEASxkdBcT/QKzfVrm+spgCYIgiDa8p3vfAfpdBqpVApPP/00Dhw4UL3v0KFDPU+M9957Lz7/+c+jWCziueeew3e/+10cOXJkYMf56KOP4sMf/jA+9rGP4Qtf+AIef/zxnp73ne98B/v27QNgduR//OMf48knn8Sdd96JV73qVfjQhz5ULV0jCIIgiK0IzfX9zfVyVUdPEMRQWFpawrve9S587WtfQyqVwhvf+MaWx3zgAx/A17/+dZw6dQq5XA5jY2O45ppr8Ja3vAUTExP44Ac/iA996EPVx7/qVa8CANx111146KGHoJTCxz/+cfzlX/4ljh49CsdxcPXVV+Otb30r5ubmhvZZidEjk8ngXe96F371V38VAJDNZhGLxar3R6NRZLPZnl7rsssuw6c+9SnceOONCIIA999/f8MEvVZe//rXV8uvrrrqKjzxxBO44oorOj7nxz/+MT7+8Y/jT//0TwEA586dQxAE+Od//md8/OMfx8rKCt761rdienq6et4QBEEMGprriY2E5vr+53rKQBPECPOf//N/xhe/+EUUCgW4rosPfOAD+OEPf9jwmMqEOj09jZ07d+Ls2bP4m7/5GzzwwAMAgOnpaezdu7f6+EOHDuGSSy7B/Pw8AOA973kP3ve+9+Gpp57C/Pw8OOf40pe+hDe96U04d+7c8D4sMVIUCgW87W1vww033IBXv/rVAIBIJIJMJlN9zMrKCiKRSNfXCoIAv/Zrv4a7774bX//61/HZz34WX/ziF/HFL34RAHDffffhxhtvxI033ogTJ06s6njT6XT1b9d1kcvlOr72sWPH8MADD+Ad73gH9u/fDwBwHAcA8Iu/+IuIx+OYmZnBvffei69//eurOiaCIIheoLme2Chorl/dXE8ZaIIYUY4ePYqvfOUrAMxJ/pa3vAXPPPMMXve61zU87vd///exf/9+cG72wz7zmc/g937v9/CDH/wAR48exd133435+Xn8u3/37wAAf/iHf4jZ2VkA5sLy6U9/GgDw0EMP4a677kI2m8W9996LkydP4uMf/zj+/b//98P6yMSI4Ps+fuu3fguTk5P49V//9erte/fuxZNPPokbbrgBAPDEE09US6I6sbS0hNOnT+Oee+6BlBKzs7O45ZZb8M1vfhN33HEHPvGJT3R8vud5yOfz1X83q352Iuy1z5w5gze/+c34N//m3+CWW26p3p5IJDA5OdnwWCrfJghiPaG5ntgoaK6v0e9cTxloghhRfvrTn1b/vu222wAAe/bswcGDBxse98QTT+AXfuEXcOONN+LIkSP4vd/7vep9p0+f7vgeP/zhD6sXjYceeghHjhzBTTfdhJMnTwIAvvvd7w7ksxCbi9///d9HoVDAQw89BMZY9fY777wTn/70p3Hs2DGcOXMGH/3oR/Hyl7+8en+xWEShUAAAlEql6t9jY2OYnp7GZz7zGSilcPLkSXz1q1+t7gZ3Y/fu3VhcXMQ3v/lNFItF/Nmf/dmqP1smk8Fb3vIWvOIVr8DP/uzPttx/11134c///M+xsrKC06dP49Of/nR1EUEQBDFoaK4nNgqa61c/11MGmiBGlPrdsPoLW/3t3/72t/HQQw9Ba41kMom9e/cil8vh6aefBmDKaXp9j0OHDsG27Yb7d+zYsabPQGw+jh8/jkceeQSO4+DWW2+t3v5Hf/RHuOGGG/CTn/wEv/ALvwClFO6+++6GfqHXvva1OH78OACjlgkYVU0AePe73433ve99+G//7b/BdV289KUvxWte85qOx1IZ97FYDG9/+9vxm7/5m+Cc4z/8h/+AT37yk6v6fH//93+Pn/zkJzh69Cj+/M//vHr71772NQDGOubd73437rzzTkQiEdx999246667VvVeBEEQ3aC5ntgIaK5f21zPNNWnEcRI8vzzz1cvOm984xvx5je/Gc8++yzuu+8+BEGAK6+8EjfddFPV1+5zn/scJiYm8JGPfAR//Md/DAD4kz/5Exw5cgTf+9738Eu/9EsAgI9//OPV3cCjR4/iNa95DbTWeNvb3obXv/71AMxk+y//8i+IRqMtu+AEMQze//73w7IsvPnNb97oQyEIglg3aK4ntjObda6nDDRBjCg7d+7ELbfcgr//+7/Hww8/jK985Ss4efIkhBDV3eZ6ZcPXve51GBsbw/nz51tea35+HlJK+L6PX/3VX8WOHTvw8z//87jjjjtw99134y//8i/xvve9Dx/72MfgeR6OHz+OlZUVvPOd76RJlRg6mUwG//iP/4j7779/ow+FIAhiXaG5ntiubOa5nnqgCWKEecc73oHbbrsNjuMgk8ngV37lV3DJJZdU77/22mvxlre8BZOTkygUCtizZw8efPDBltdJpVJ4+9vfjunpaZw7dw7f+973cPbsWQDAb/7mb+KBBx7AgQMHcPr0aRw/fhyzs7N4wxvegKuuumpon5UgAODxxx/Hq171Klx88cW4+eabN/pwCIIg1h2a64ntxmaf66mEmyAIgiAIgiAIgiB6gDLQBEEQBEEQBEEQBNEDFEATBEEQBEEQBEEQRA9QAE0QBEEQBEEQBEEQPUABNEEQBEEQBEEQBEH0AAXQBEEQBEEQBEEQBNEDFEATBEEQBEEQBEEQRA9QAE0QBEEQBEEQBEEQPUABNEEQBEEQBEEQBEH0AAXQBEEQBEEQBEEQBNEDFEATBEEQBEEQBEEQRA9QAE0QBEEQBEEQBEEQPfD/B/euvU7kjuaQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8cAAAIgCAYAAACoORvUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hkVZn/P+feCp0n9ISewUkkhwEUZGCBMQxI+IFhAQkuYQmKsrAgsLjKKkEwESWqSEZUDKirKxlBJQuSGXCAydM9nSvXTef8/rhd1V1dVd1V3dXd1d3n8zz9zPSte2+dvuGc8573fb+vUEopNBqNRqPRaDQajUajmcYYE90AjUaj0Wg0Go1Go9FoJhptHGs0Go1Go9FoNBqNZtqjjWONRqPRaDQajUaj0Ux7tHGs0Wg0Go1Go9FoNJppjzaONRqNRqPRaDQajUYz7dHGsUaj0Wg0Go1Go9Fopj3aONZoNBqNRqPRaDQazbRHG8cajUaj0Wg0Go1Go5n2aONYo9FoNBqNRqPRaDTTHm0ca6YVd911F0KIoj9PPvkkl1566ZD7ZH5Wr15d8n4Aq1evZrfddiupnddddx1HHXUUy5YtyznHaMj8XZ2dnQU/f/LJJxFC8Jvf/Kbg5//5n/+JECJn29KlS4v+3fF4HOi/5i+++OKo/waNRqPRaEphMoz3//znP7ngggvYa6+9mDlzJrNnz2bVqlVFx+FS0eO9RjNyAhPdAI1mIrjzzjtZvnx53vYVK1aw44478v/+3//LbmttbeWoo47i7LPP5vjjj89ut22bUCg07H5NTU1lt+/HP/4x9fX1HHjggfzxj38s+/jxZNWqVVx99dV52+vq6iagNRqNRqPR9FPN4/0jjzzCn/70J0466ST23ntvXNfll7/8Jccccwzf+ta3uPjii8s631ijx3vNdEAbx5ppyW677cbKlSsLftbU1MQHPvCB7O/r168HYPHixey7775Fz1nqfqXw1ltvYRhGtq3VzMyZM0f992o0Go1GMxZU83j/+c9/nrPOOivHS3vYYYfR2dnJFVdcwde+9jXC4fCIz19p9HivmQ7osGqNZpz5+9//zsc+9jHq6urYfvvt+f73v4+UMmefjGGs0Wg0Go1mcjLceD9nzpy88GWAffbZh2QySXd393g2V6PRoI1jzTTF8zxc18358TxvzL+3ra2NE044gRNPPJE//OEPHHbYYVx44YXce++9Izrf+vXrEUJwyimnVLahZaCUyruWg419jUaj0Wgmgsk43j/xxBPMnTuXefPmZbfp8V6jGR+0cayZluy7774Eg8Gcn/EIXerq6uLee+/ly1/+MgcddBA333wzK1as4Oc///mIzieEwDRNTNOscEtL54EHHsi7ltWWJ6XRaDSa6clkG+9vu+02nnzySb75zW/mjO16vNdoxgedc6yZltxzzz3ssssuOdsKhTZVmpaWFvbZZ5+cbR/60Id45ZVXRnS+JUuW4LpuBVo2cj760Y/ygx/8IGfbwoULJ6g1Go1Go9H0M5nG+wcffJCzzjqLo48+mrPPPjvnMz3eazTjgzaONdOSXXbZpahAx1jS3Nycty0cDpNKpca9LYMJBPzuoFi4meu62X0GMmPGjAm5lhqNRqPRDMdkGe8ffvhhjjrqKA4++GB+9rOfjakBr8d7jaY4Oqxao9EAMH/+fAC2bNlS8PMtW7Zk99FoNBqNRlMZHn74YY444gg+8YlPcP/99+eUjRoL9Hiv0RRHG8cajQaAnXbaiSVLlvDrX/8apVTOZx0dHTzxxBMcdNBBE9Q6jUaj0WimHo888ghHHHEEH/3oR/n9738/LvnQerzXaIqjw6o105I33nijYO7ODjvswNy5cyegRbm8+OKL2TqK0WgUpRS/+c1vANh7771ZsmQJABs2bGCHHXbg5JNP5vbbby/p3H/84x9pbGzM23700Udz9dVXc+yxx/LJT36S008/nZaWFtauXcv3v/99QqEQF1100Yj/pj//+c/Zv2kghx9+OHV1dSM+r0aj0Wg0xajm8f6pp57iiCOOoKWlhf/5n//Jy0desWIFTU1NgB7vNZrxQhvHmmnJqaeeWnD7rbfeyhe/+MVxbk0+N910E3fffXfOtmOOOQaAO++8M1vKQSmF53lllaU47bTTCm5XSnH00Ufz6KOPcuWVV3LmmWcSj8eZO3cun/zkJ7nkkkvYYYcdRvYHAV/72tcKbl+3bh1Lly4d8Xk1Go1GoylGNY/3jz32GKlUivXr13PggQfmff7EE0+wevVqQI/3Gs14IdTgeAqNRqPRaDQajUaj0WimGTrnWKPRaDQajUaj0Wg00x5tHGs0Go1Go9FoNBqNZtqjjWONRqPRaDQajUaj0Ux7tHGs0Wg0Go1Go9FoNJppjzaONRqNRqPRaDQajUYz7dHGsUaj0Wg0Go1Go9Fopj3aONZoNBqNRqPRaDQazbRHG8fjgJSSdevWIaWc6KZMGPoa6Gsw3f9+0NcA9DXQTF30s62vAehrAPoagL4GMHmvgTaONRqNRqPRaDQajUYz7dHGsUaj0Wg0Go1Go9Fopj3aONZoNBqNRqPRaDQazbRHG8cajUaj0Wg0Go1Go5n2aONYo9FoNBqNRqPRaDTTHm0cazQajUaj0Wg0Go1m2qONY41Go9FoNBqNRqPRTHu0cazRaDQajUaj0Wg0mmmPNo41Go1Go9FoNBqNRjPt0caxRqPRaDQajUaj0WimPdo41mg0Go1Go9FoNBrNtEcbxxqNRqPRaDQajUajmfZo41ij0WiqlLvuuouZM2dOdDM45ZRTOOKIIya6GRqNpgx0/6HRaDTlo41jjUajmaSsX78eIQSvvPJKVZ5Po9FUL2PRf5imyVtvvVWR82k0Gs1EoI1jjUajKYJt2xPdhIowVf4OjWYyMVXeu6nyd2g0Gk0paONYo9FMC2KxGCeccAL19fUsWLCAH/zgB6xevZpzzz03u8/SpUv59re/zSmnnMKMGTM4/fTTAbj//vvZddddCYfDLF26lGuuuSbn3EIIfv/73+dsmzlzJnfddRfQ76H57W9/y/HHH09DQwMf/vCHefbZZ3OOueuuu1i8eDF1dXUceeSRdHV1Dfk3LVu2DIA999wTIQSrV68G+sMYv/e977Fw4UJ23nnnktpZ7HwZrr76ahYsWEBzczNnnXUWjuMM2T7N5CQej3PZZZdx4IEHsnr1ar7xjW9MdJMmnFL6j+23356bbrqJU089dcz6jwMOOIC6urqq7j8+/elPY5qm7j80Gs2kJDDRDdBoNJOflStX0tbWNux+nudhmmbFvrelpYUXX3yxpH3PP/98nn76af7whz8wf/58Lr74Yv7xj3+wxx575Ox31VVXcdFFF/HNb34TgJdeeoljjz2WSy+9lOOOO45nnnmGM888k+bmZk455ZSy2nvRRRdxwQUXsGrVKi666CL+7d/+jXfffZdAIMDzzz/Paaedxne/+12OOuooHnroIS655JIhz/fCCy+wzz778Nhjj7HrrrsSCoWynz3++OM0NTXx6KOPopQqqX1Dne+JJ55gwYIFPPHEE7z77rscd9xx7LHHHlkDQDN1+Na3vsX8+fP5wx/+QE1NDe++++6Yfl+p/UelGYv+4yc/+QkXX3wxF110EVDZ/uMb3/gGV199NTvttBPf+MY3qrb/+OlPf8qBBx5ITU1N9jPdf2g0msmCNo41Gs2oaWtrY8uWLRPdjKLEYjHuvvtufv7zn/PJT34SgDvvvJOFCxfm7XvggQdywQUXZH8/4YQT+OQnP5md7O6888689dZbXHXVVWVPbs8//3wOPPBAlixZwre+9S123XVX3n33XZYvX87111/PoYceyte//vXs9zzzzDM89NBDRc83d+5cAJqbm2lpacn5rL6+nttuuy1nwjscQ51v1qxZ3HTTTZimyfLly/nUpz7F448/rie3U4z33nuPt99+m+9///vZhazly5cX3d+27byw20AgUNZzN5H9h5Ry2H0y/ce9997LAQccAMDtt9/OBz7wAZRSOefYf//9Oe+88zAMPzDvxBNP5MADD8x633fccUfefPNNrrrqKv793/89px2D25LZltl+/vnnc9hhhwFwySWXsPvuu/PPf/6T5cuXc91113HIIYfw3//93wD853/+J08//TQPP/xw0b+xubkZ8N/tefPmZb9TKUV9fT0/+clPsvcxc46h2jn4fIZhZM83a9YsbrjhBkzTZOedd+bwww/nscce4wtf+MKw13+yMfBaTVf0NdDXAKrvGmT65eHQxrFGoxk1gw2pYoyF57gU3n//fRzHYZ999slumzFjBh/84Afz9l25cmXO72vWrOFf//Vfc7atWrWK6667ruy/50Mf+lD2/wsWLACgvb2d5cuXs2bNGo488sic/ffbb78hjeOh2H333csyUIZj1113zflbFyxYwOuvv16x82uqgzVr1rB48WIuuuginn/+ebbbbjvOO+889txzz4L733nnndx6660524455hiOPfbYkr9z1qxZeJ43qnaPhFmzZrFhw4Zh91uzZg2O47Bw4cKc/ZctW0Y0Gs1uc12X3XffnU2bNmX3ee211zjooINyjttpp51Yu3Yt77//fvad6ujoyNlHSklXVxcbNmzILhzMnTs357sAXn/9dWpra3nttdc45JBDcs7xwQ9+kAcffLDo35g5b2trK7NmzcpuTyQS7LjjjrS2tuYdU0o7gZxrkEgkWLZsGZs3b85ua2ho4J133inp+k9WBl6D6Yq+BvoaQPVcg0zqx3Bo41ij0YyaUkITpZRs2LCBJUuWlLx6VykyYYFCiILbB1JfX5+3z3DHCSHythXKpwsGgznHQP+Kaqmhi8WwOixCzSGE4Z938N9RTjsLMbDtmXNVy2qwpnK0t7fz/PPP881vfpPLLruMv/71r1xwwQX89re/ZcaMGXn7n3rqqZxwwgk528r1HL/66qujbvdY0tPTA8CiRYtYtGhRdnswGKSpqYklS5YA/t9dW1vLokWLsn1cMBhk1qxZ2X0A5syZA8CSJUswTRMhBHPmzMnZx/M8mpubWbJkSfadXbx4cXaf3t5ewDeYlyxZQjAYZObMmTnnmD17NoZh5GwbSOa8CxYsyNmnvr4++90DKbWdmWuVuQb19fU4jpNzXFNTE6FQqGjbJjNSSjZt2pRzDaYbU+EauDEXBAQaRmYqTYVrMFom6zXQxvE0IGUpemMwfzYYhhj+AI1mirHDDjsQDAZ54YUXspPbaDTK2rVr+cQnPjHksStWrOCpp57K2fbMM8+w8847Z70+c+fOzfGyrF27lmQyWVYbV6xYwXPPPZezbfDvg8kYIFbMIvpmjBm7NxFqLm6UDNfOzPkmwounGR/OOussXn755YKfnXbaadTW1rLddttl69IeeOCB3HXXXbz++ut89KMfzTsmFApVNEKhGtlpp50IBoO8+OKLWWNuYP8xeNJnGEZ224oVK3j66adz9nnuuefYeeedswtOc+fOZdu2bdl9Mu9l5jyZ7YP/P3DbihUreP7553O+5/nnn8/ZdzCZnGClVM4+QgiEEHnHDdfOzPk8z8tpa6HzZRYHJ9OEuVwGXoPpymS+Bom1SZCKWfvMGn7nIZjM16BSTLZroI3jKUraUnT0wtYuxaZ2kBJW7ymYN7p3XKOZlDQ2NnLyySfz1a9+ldmzZzNv3jwuueQSDMPI8woP5r/+67/Ye++9ufzyyznuuON49tlnuemmm/jhD3+Y3efAAw/kpptuYt9990VKyde+9rU8T+twnHPOOey///5ceeWVHHHEETzyyCPDhlTPmzeP2tpaHnrgIY7c5Si8+R4tzfOL7j9cO7Pne+ghPvCBD1BTU1PQW6iZvNx8881Dfj7cgsx0ZMr3HyW+76X2H3/961/Ze++9qaur0/2HZtLiRByciEvDzg7BmeW9j5rJzeQx4zUlkUgpXnhL8sBzisdeUqzZAAETYilIpCa6dRrNxHHttdey33778elPf5qDDjqIVatWscsuu+QoqhbiIx/5CL/61a+477772G233bj44ou57LLLcsS4rrnmGhYtWsTHP/5xjj/+eC644ALq6urKat++++7Lbbfdxo033sgee+zBI488klXMLkYgEOCGG27gtrtvY89T9uCYU48Zcv/h2pk53y233MLChQvzcq01U5+VK1eilOL//u//8DyPv/zlL2zZsoXdd999ops2oUzl/qPU972U/uO6667j5z//OR/4wAd0/6GZtEhHIpMeTrdNaquePE83hBptoptmWMYz1/KfmxRP/kMxZybMaACzL4z6/a2KvZfD7jtMzHrIROabVgvT/RpU29+fSCTYbrvtuOaaa8ZNMXWsrkHk1Sjdz/Uw5xPNNC5vqNh5x4Jqew40+axdu5bLL7+cdevWsWjRIi644AI+8pGPTHSzqopC/Yd+tvU1AH0NYPJfAyfq0P5oB3hg1pnMPWgOZk15YqKT/RpUgsl6DXRY9RQjEleEQjC7KTfUKxyE7ugENUozIRQSkprOvPzyy7z99tvss88+RCIRLrvsMoAp4d2wu2yQyhcQ0WhGyU477cQ999wz0c2oKqZy/6HRaHKRKYm0FDULw6Q3p0m3WtQvKy+aQzN50cbxFKMnBjUFtFFqQtATB89TmKY2mKY6725WvLdFsWwhtMyGpnp9zwGuvvpq3nnnHUKhEHvttRd/+9vfssqxkxXPkrhxF7PW1MaxRjOGTMX+Q6PR5OOlPVAKI2BghA0S7yepW1yL0PPnaYE2jqcQtqOIp4oYx2GIJSBpQaNe/JrybO5QrG/z/62vhQ/MVSyeL5g/C8Kh6dm577nnnrz00ksT3YyK4yVdZNoj0BjAS7ooT+kBXKOpMFO1/9BoNPl4qf4yhaHmEFa7hdVuUbNgaI0BzdRg8gSAa4YlmYaU7YdQD6Ym5H+mRbmmPmlL0RnxPcbbL4T6Gnh/Kzz+kuKJlxWWrWUGphJewsOzFWa9iXSUv+Kt0Wg0Go1mRDhRJ7vIbIQMUIrUJj2Bni5o43gKkbTALmIcm4ZASkikx79dmvGlJwbxFDTU+rUkG+sEi+cLFjRDZ69+BqYaXsJDCDDCBtKWSEsOf5BGo9FoNJqCuBEXI9xvIgVnhUhuTuNEnAlslWa80MbxFCKRAgkYRuGQSsOAWFJ7Dac6vXHwJHm55eEgOC5Y9gQ1TDMm2D02ImAgAgLlKmRaG8cajUaj0YwEaUu8lJdjHAcaAsiES2qL9h5PB7RxPIWIpxTmEHc0HISuyPi1RzMxbOlU1BbIOxdCoABLL3xOGZRUOD0OZo3hK5Mrf2DXaDQajUZTPl7aQ9rSD6ceQKApSPL9lE5dmgZo43gK0R0tHFKdoSYEkQS4rvYeT1USKUV31A+pLoY2jqcOXtLDS0mM2r76iwI87TnWaDQajWZEeEk/PWmwcRycGcTpdUi3WhPUMs14oY3jKYLrKiKJoY3j2jCkbZ1zOpXpjfvh9fVFjGMBpCy9ODJV8BIeXlpi9oV/CVPgJnQ5J41Go9FoRoJMe6BADEpRFKbIlnWSrl6EnsqUVcrpYx/7WM7vqVSKK664gk9+8pMVbZSmfJKWn0s6s7H4PuGgv08iDTMaxq9tmvGjO6pQ+AJshQgGfLEuzdTATbgg+0s3GUEDT9c61mg0Go1mRHhp6XsSChCaEyK9NU1qQ4r6HerHt2GacaMsz/Hf/va37M8dd9xBOBxm3333Hau2acogkYK0M7Tn2DAEEl3OaaqilGJrJ9SFi+8zXY1jIcSQP6eccgoATzzxBAcccACzZ8+mrq6OnXbaiZNPPhnX9Q3OJ598EiEEs2bNIp3ODcF44YUXsuerJH/5y1/Ya6+9qKmpYfvtt+fHP/5x9jM35sEA4TURMnATHhvWb+Azn/kM9fX1zJkzh3POOQfb7ldiW79+fcHr8NBDD1WkzT/84Q9ZtmwZNTU17LXXXvztb38b9pibb76ZXXbZhdraWj74wQ9yzz335Hx+1113FWzz4Pug0VSacvqP448/njlz5kyK/qMYGzdu1P2HZtriRB1EoLB5ZAQNzDqT2Jo4rl6InrKU5TkeyIMPPsgnPvEJ6usLr5zYtp3TmQIEAgFCoQJKQVMcKWXOv2NBMq0whOrzGBYPmw2aimgSpBzfiPrxuAbVzlhfg1hSEU0omupBFFn2DAcVlg2Oo/LUrMeaiXwGtmzZkv3/r371Ky655BLWrFmT3VZbW8vrr7/OYYcdxtlnn831119PbW0ta9eu5f7778d1XQzDyLa9sbGR+++/n3/7t3/LnuP2229n8eLFbNy4sejfWO41WLduHYcffjhf/OIXueeee3j66af5z//8T5qbm/nc5z6H1W1h1AiU8N95EQY7YfOpT32KefPn8de//pWuri5OPfVUpJTccMMNOd//yCOPsOuuu2a/b/bs2aO+P7/85S8599xzuemmm1i1ahU/+clPOOyww3jjjTdYvHhxwWvwox/9iAsvvJBbbrmFvffemxdeeIEvf/nLzJgxg8985jPZ/ZuamnLuG0AoFBp1mw1DZxhpitPa2pr9/y9/+Usuvvhi3nnnney22tpa3nzzTT71qU9x8sknc8stt1BfX8/atWv5zW9+k/d8NjY28rvf/S6n/7jjjjuy/UelyPQfp59+Ovfeey9PP/00Z555JnPnzuVzn/tcwWM8z+NTn/oUc+fO5amnnqKrq4uTTz4ZpRQ33nhjzr6PPfZYXv8xWjL9xw9/+ENWrVrFLbfcwmGHHcZbb73F4sWLCx6T6T9uvfXWbP9x+umnM2vWrGz/AdDU1JRz3wBqampG3WbN1MKNuBih4vOj0JwQqfVJYmvjzNxzRsUXtDQTz4iMY6UUDz/8MF//+teL7nPnnXdy66235mw75phjOPbYY0fylVOCTZs2jdm5DeDjy4ffb/FM/98NG8asKUMyltdgsjCW12DlsqE/z9z/zZvHrAnDMtHPgOM4KKWwrH5RDcuy+NWvfsXcuXM588wzs9t32WUXvvnNb2Ynx9u2bQPgX//1X/nRj37E/vvvD0A6neYXv/gFp5xyCjfeeCMbhnnBMtfgN7/5DT/4wQ/o6enh4x//OCtXruTGG2/k1VdfBeDKK69kwYIFnHvuuQAcfPDBHH300Xzve99j5cqVsNQ/n03/3/Lkk0+y5u013Hb7bcyePZvZs2fzta99ja9+9at86UtforGxMbtYYNt2znUYaAQUwvM8vve97/HrX/8a0zQ59thj6ezsJBaLccsttwBwxRVXcMwxx3DwwQcDcO655/KnP/2JK664gv/+7//OuwbgGwaf//zns5FI++23H0cffTSXX345H/rQhwDo6urKu2/AsNe6FJYtG+bF0UxrWlpasv+fMcOfDA/cBv6cZ8GCBXz9619nyZIlGIbBDjvswP/7f/8v73wnn3wyd9xxR9Y4TqVS3HfffZxzzjlcfvnlJbfrrrvu4uKLL6azs5NDDz2Uj370o1x++eX09vYC8OMf/5jFixdz3XXXAX5/9uKLL3L11VcXNY4feeQR3nrrLTZt2sTChQsBuOaaazjllFP4zne+Q1NTU3bf5ubmvOsw1EKV53l89atf5Y477sA0Tb7whS+wbds2IpEIv//97wG49tpr+cIXvsAXv/hFAK677joefvhhfvSjH/G9732v4Hl/+tOf8uUvf5njjjsOgO23357nnnuOK664Isc4LnTfNJqBeJbES3oYYbPoPkIIQvPCJNYmqF1QQ80CvcAy1RiRcfyPf/yDdDrNfvvtV3SfU089lRNOOCH3y6ax53jTpk0sWrRozDwUf31F0tYNC5qHXsGKJBSeB4ftKwgFx2+1azyuQbUz1tfgtfckr70LS1qK31fbUXRF4ZC9BTMbK3f/9/kStHUPt5fC8zxM06RoQk+ZtMyGF35S3jHNzc0YhsGSJUtytu+yyy50dHSwYcMGPv7xjxc8dt26dQCcddZZ7LHHHgghWLx4Mffeey/bb789q1ev5sYbb8w7d4bMMzAzNZO3I2/zta99je985zsceeSRPPzww1x66aU5bVuzZg2HH354zvk+97nP8fnPf545dXOI/C1CqDmcVdVUSvHK/73KiuW7ss8++2SPOeGEE/jKV75CR0cHu+22G0r5nub/+I//IJ1Os9NOO/GVr3yFo48+eshrd9VVV3H//fdz++23s2LFCq699loeffRRDjjgAJYsWYJt27zxxhtcdNFFOW0+/PDDefXVV1myZEnR92DevHk5x8yfP5+f/exnLFy4kGAwSHNzM8lkktWrV+N5Hh/+8Ie57LLL2HPPPYdss6b6WXm6LKH/qDwts+HFWyvTF7e0tNDa2soLL7xQ9P3PcNJJJ3HVVVexceNGFi9ezP3338/SpUv5yEc+UvL3Pf/885x22ml897vf5aijjuKhhx7ikksuydnn2Wef5ZBDDsnZduihh3L77bfjOA7BYH4e1rPPPstuu+2WNYwzx1iWxUsvvcQBBxyQ3f7Zz34223+cd955w/Yf11xzDXfccUe2/7jmmmv43e9+x4EHHgj4i3UvvfRSnuPlkEMO4Zlnnil6Xsuy8jzAtbW1vPDCCzl/ZzweZ8mSJXiexx577MHll1+u+w9NDrKvjFOwobhxDBCoD+D0OsTWxAnNCWEEp+e8dqoyIuP4oYce4uCDDyYQKH54KBSalobwUBiGMSZGkecpehMGoSCoYYyOUFDRlYSULagJj38oyFhdg8nEWFwDKRVbOw3CoaGfAdNUpGywXYFRRLRrJLT1SLZ0DreXYBSZHEVPWe61zOw/+Ljjjjsua+i1tLSw77778slPfpJ///d/z3pLMse0tLRw2GGHcc8993DxxRdz1113cdpppxU992DsNocbb7uRQw89lAsvvBCA5cuX8+yzz/LQQw9lj29ra6OlpSXnfAsWLMB1XTo2dxBIhzCDZjaTQiDo6OlgXvPcnGOam5sJhUK0t7djGAZNTU1ce+21rFq1CsMw+MMf/sC//du/Yds2J554YtF2X3/99Vx44YUcc8wxANxyyy088sgjCCEwDIPu7m48z2PBggU539/S0sLDDz+cs23ge5CZsB955JF85CMf4aWXXuLOO+/EcRy6u7tZsGABK1as4K677mL33XcnGo1y/fXX87GPfYxXX32VnXbaacjrralu2rphS8dEt2J0HHPMMTz00EN8/vOf59xzzy3Yf2SYN28ehx12WNbze8cdd3DaaaeV9X3XX389hx56aNaQ3HnnnXnmmWdy8n7b2tqYP39+znHz58/HdV06OztZsGBB3nkLHTNr1ixCoRBtbW0ANDQ05PUfxx13HHfffTfHH3980TZfd911XHjhhVmv9Y9//GMefvjh7OednZ14nlewzZnvLsShhx7KbbfdxhFHHJHtP+644w4cx8n+ncuXL8/rP1atWqX7D00OXtJDOrIkYzc8P0x6U4rEuiSNO2uV26lE2TNVx3F4/PHHufbaa8eiPZoCOK6ivQe2m1vYmElafommxrrhzxUO+nVuEymYNYSytWZyEUtCJD68CrlhCD80tcK1jltKSTVT4HkuphmolOO4tO8tEdM0ufPOO/n2t7/Nn//8Z5577jm+853vcMUVV/DCCy/kTSRPO+00vvKVr3DiiSfy7LPP8utf/7ok4RgAN+ry1htvcdTRR+Vs32+//fJEbQbnM2W8vjKpKJbqJGT+B0qp7LnmzJnDeeedl/1s5cqV9PT0cOWVV3LiiSeyceNGVqxYkf38f/7nfzjrrLNobW3NiRgKBAKsXLky26ah2jxUXtZFF11EW1sb++67L0op5s+fzymnnMKVV17ZF2kA++67b44A5KpVq/jIRz7CjTfemM2l1kxOKvkeT9T3mqbJHXfcwZe//GX++c9/8sILL4xZ/wF+VMmRRx6Zs62c/mOo97HQZ6X2H8cffzxbtmxh9913z36u+w/NZMFLS78CRAnOAyNgEGgKEl8Tp6YlTLBpCEVczaSibOP46aefpqGhgQ9/+MNj0R5NAbZ1w2vv+UJLjXX5L2wy7RvHc2cMfy4hfONI1zqeWvTE/EWSlubS9q+0cVxKaKKUkg0btmTz8aqV7bbbjpNOOomTTjqJb3/72+y88878+Mc/5lvf+lbOfocffjhf/vKX+cIXvsBnPvMZmptLvPj4JZikN7yIVEtLS57HpL29nUAgQKNowA16ecfMmzmX1954NWdbT08PjuPkeWQGsu+++3LbbbcBsHDhQl555ZXsZ6UK7cyZMwfTNAu2eajvrq2t5Y477uCWW25h27ZtLFiwgJ/85Cc0NjYyZ86cgscYhsHee+/N2rVrS2qbpnqpVGhzNdDS0sK//Mu/cPLJJ49Z/wHkGZTF2lKs/yj2fS0tLTz//PM528rtP+bPn88//vGPbD+v+w/NZMFLuRRddS5AcHaQ1IYU8bfjzNx7phbnmiKUPSI9+OCDHHroofoBGEdiSWjthvaewp8n0yAlJasPB0yIxIcfWDWTh66owjCG9gZkEALSlr7/pTBr1iwWLFhAIpHI+8w0TU466SSefPLJskMiZcrjg4s/yHPPPZezffDv++23H48++mjOtkceecQX44qBEc7vwvfaZW/WvLcmR1zrkUceIRwOs9deexVt08svv5z1bgUCAXbcccfsz+zZs5kxYwYLFizIaaPrurz00kvZ30OhEHvttVdemx999NGseNlQBINBPvCBD2CaJvfddx+f/vSniy6kKKV45ZVXCoaGajTVwFj1HwArVqwYVf9RKN84c8wbb7yh+w/NtMSNumXlDwshCM8LE38vSeztOJ41fSuyTCXK9hxfccUVY9EOzRB0RRWxBGxuV+ywXb7xE0+VZ+jUhKAzUqnWaSYaz/PrGzfUlrZ/wJyetY6H45ZbbuGVV17hyCOPZIcddiCdTnPPPffw5ptv5pUwyXD55Zfz1a9+tWSvj/L8d9UIm5x66Kl8+vxPc+WVV3LEEUfwyCOP5IVEnnHGGdx0002cf/75nH766Tz77LPcfvvt3HvHvXgpidkQ4E9//T8uv+VynvuZ7+05YOVqdl60c1b0p7u7mwsuuIDTTz89m/t49913EwwG2XPPPTEMgz/+8Y/ccMMNw/bvX/nKV/j+97/PTjvtxC677MK1116bVcbNcP7553PSSSexcuVK9ttvP37yk5+wceNGzjjjjOw+V155JfF4nJ/+9KcA2TDUf/mXf6Gnp4drr72WN954g7vvvjt7zLe+9S323XdfdtppJ6LRKDfccAOvvPIKN998c0nXXqMZS2655RZefvll9t9/f1zXxbbtivcfAznnnHPYf//9R9R//OIXv8ju87vf/Y4LL7yQt99+G/DFr1asWFHV/ceFF17Ili1bsrWMdf+hqQRKKdyoiwiV5zc060yCdoDeFyOkN6dpXN5AzXZawXoyU2F1HE2l8TxfXXhmI7T1+LVsB4dW98T9XOJSqQlDIu17DydClEtTWaJJ/2d2iTnkwYA2jguxzz778NRTT3HGGWewdetWGhoa2HXXXfn973/PJz7xiYLHhEKhomF7hcgYx4HGAB+u3YNbbriFy664jEsvvZSDDjqIb37zmzmlXJYtW8YDDzzAeeedx80338zChQu54YYb+NeD/5X2xzsJNRtE41He3fhu9phgbZB7vvFTLv3tJaxatYra2lqOP/54rr766py2fPvb32bDhg2YpsnOO+/MHXfcMaQYF8B//dd/0drayimnnIJhGJx22mkceeSRRCL9q23HHXccXV1dXHbZZbS2trLbbrvxwAMP5Cj4dnR00NnZr+DmeR7XXHMN77zzDsFgkAMOOIBnnnmGpUuXZvfp7e3lS1/6Em1tbcyYMYM999yTv/71rzmq3BrNRLHPPvvwt7/9jW9+85u0t7ePSf8xkEwY8yWXXFJ2/zGwjFMkEsmp/WuaJn/6058488wzR9R/DFXKqVL9R2tra049aN1/aCqBtCReSmarP5RDcGaQQGMAq92i829d1C2uo+6DJQgBaaoSoUpJXNGMCj/XcsOIci0jccWfnlXMbPBDqw/YU7D9wn6DVkrF/z2jsF2YM6M0Q9d2FNt64PB9Bc0lHjNaRnMNpgpjdQ3e36p44mXFDgtLu5fdfSHYn11VWcXq4dDPADgJh83tm6ldW4fT7tD8sdnULekfQO+66y7OPffcPG/KYBLvJ+h+poe6pfmDr7QkdrfFvIPnEZw59gIhp5xyCr29vdk6pcOhnwPNVGWin+1S+4+xpNxrUG7/MRmY6OegGpiM18DpdWh/tJ3Q7HDBlKVSkZbE2paGGoGzpz2prkGlmYzPAYwg51gzvsSSvnhSbRiCph9aPZCUBSkbasqYA4eCAttBi3JNATxP0dGrMMt4k4MBcJzKi3JphifjORaGAFNgddkjOo8bdaGIxoAICqTjD9AajUaj0WiGx0t5SFshQqNzGhhhg9rFdVkNGO2DnHxo47jKiSVBKT/pf1aj7z2OJftftKQFlu2HSpeDEH45J83kIZlWrFmv+Mc7kr++KnnwOckfnlas3QRNZUTvBANge/5zoxk7DjvsMBoaGnJ+Zi+czW677cb1v7iOQJ2J1WYh3fKNWLvbwSyysi0MAUppYRCNZhJTqP/I/Hz3u9+d6OZpNFMOL+WBKk3YtBSMWr+MmLS1cTzZ0DnHVU5XVBHsu0sNtdDeCx29/TWNEylwPQiUqFSdIWBCb1xRsYKzmjFnUzs89br/PARN38gNmDCzAepLFOOCPs+xqz3HY81tt91GKpW7AmX1WLTH21kY245AfQC7y8KNuoRmhwA/xPCUU04Z8ryeJXFjLkbN0GubMp1f5mksuOuuu8blezSa6USh/iNDsdJIpfQf1YbuPzTVgpeq7Jhp9HmgpeVBrTa3JhP6blUxnqfojEBdn1dYCEHQVGxuV9m846Q1snPXhqE75od76LJc1Y9Sik3tiroa2G7O8PdLxRxwJWJWfkiBaQikVNo4HmO22267vG2p9hR1iToaNjViGAbSlji9TtY4LgUv4SItj1DjEOEiQuAlx8c41mg0ladQ/6HRaMYOJ+KOKtd4MJmSUDKto7gmGzqsuoqJp/waxnUDFOFnNkBbN8T7Qqt7Y/2e5XKoCUEy5ecsa6qfWNIvvzWjvrT9ZWsKuTG/tuZAdFj1+KMy9mpfzysCBlZHeTfCS3pIRw2pqGmEBE7MHWErNRqNRqOZPvhlnJwRKVUXQ/QJnuoUp8mHNo6rmIwYV80Ap1JjHcRSfni1UoruWO7npVIT8oW8tCjX5KAz4t+r+hJK5ylPoTrTqJiTFYAqhPYcjz9ZQa6+aI1AQwC7w0LapQ+epXiEjaCBF3e1EIhGo9FoNMMg0xJpDb3oPPJz6yiukaI8Rbpt/L142jiuYgaKcWXwQ6t91eq0Dan0yIzjYEDgelqUa7LQ2qkImiUKRSRdVMpF2RKKdMoBE+IpbTiNN4MXK8x6Ezfu4URKX6nwkp6vqDcERshA2korVms0Go1GMwxe2kNaXkXDqrPn1ilOI8Zqt4i9HUM64zuX0cZxFTNQjGsgmdDq9h5IOxAegXGcQXuOq5+UpWjtLj2kWsUcsCTC9ooax6GAH7avGV+UzDWOjaCBchVOb+kh0E7MzQp9FEMEBdKW2jjWaDQajWYYZEoiHYUIVl6Dx43qFKeR4kbdigullYI2jquUwWJcA2ms8w2bTe2+6nAoMLKXORyEzl7tPax2Onv9KIKGEss1qYgNhkApUKnCnXIw4EcNSKnv/3hSKMzdCBlY20oLG1JK4cXdrNBHMYyggXS051ij0Wg0muHw0pUt4zQQN+kNmeKmKY7VaaOc8b922jiuUgqJcWUQQhAw/bq3oyGjWO26+qWtZrb1+PfHNEpQqfYkqttG1Jq+gVwknCcYANsFW+cdZ7n00kvZY489xvZLCgyQZoOJ3WX7g/MwSEsi7eHzooTp1zrWxrFGMz5ceumlfOQjH5noZmg0mhHgJr0xq2wqbVnS+K7JRToSp2dilGO1cVylFBLjGsjMBl+kKWCO/DvqavxSUDEdXlu1OK5iSyc0leg1Ju6iki7UBRBBAxUt3LFMt1rHQoghf0455RQuuOACHn/88ewxl156afbzQCDAnDlz+PjHP851112HZeV6elevXl3wvGeccUbOfoPDqgEC9QHcpDdsaPXGjRv57BGfZYfjtmfF53fhwuu+ju0MPXAkoynOPvts5syZQ319PZ/97GfZvHlzzj5Lly7Na/fXv/71Ic9bKn/5y1/Ya6+9qKmpYfvtt+fHP/7xsMc8/vjj7L///jQ2NrJgwQK+9rWv4br912b9+vUFr/VDDz1UkTZrNIMptf949NFHs8eMRf8xGjZu3MhnPvMZ6uvrmTNnDueccw62PXT/YVlW2f2HaZpcccUVFWmz7j8044UbccdEjAvQKU4jxI25E5avrescVymFxLgG0lgHWzph7syRf0c46JfziSVhVuPIz6MZO7oi0BuDhXNK218lXHCkbxiHDUh6qL7fBxKaZsZxa2tr9v+//OUvufjii3nnnXey22pra2loaKChoSHnuF133ZXHHnsMKSVdXV08+eSTfPvb3+anP/0pTz75JI2N/S/O6aefzmWXXZZzfF1d7qqGshQMigYRpgCpcHodaloK1y72PI9PfepTNM9o5v6LfkuyNsl/fu8slFJ8/7wiE1Eh+O9vfZWHn3mY++67j+bmZv7rv/6LT3/607z00kuYZv/K2mWXXcbpp5+e/X3wdRgJ69at4/DDD+f000/n3nvv5emnn+bMM8+kubmZlStXFjzmtdde4/DDD+cb3/gG99xzD1u2bOGMM87A8zyuvvrqnH0fe+wxdt111+zvs2fPHnWbNZpClNp/1NXVEY/Hs9sr3X+MlEz/MXfuXJ566im6uro4+eSTUUpx4403Fj3u3HPP5Y9//GNZ/YeUku7u7lG3uVj/MXfuXD73uc8VPEb3H5qRMBZlnHLO7ym8lDaOy8WNurgJj1DNKLyAI0R7jquUzsjQ9YuFEOy8CJqbRv4dGcNbCzNVLx29Clf66uKloHpsyOwbMlG2BwXEDExT4MnpU+u4paUl+zNjxgyEEHnbCoVVBwIBWlpaWLhwIbvvvjtnn302f/nLX3jjjTfyvCN1dXU552xpaaGpKfcFlUVSGF7d+Cr7f2Y/ampqWLlyJb/73e8QQvDKK68A8Mgjj/DWW29x+7W3s9vS3Vi9z2ouO+tyfvp/PyWWiBY8Z9yJ8dPf/ZRrrrmGgw46iD333JN7772X119/ncceeyxn38bGxpx2l2Ic33XXXSxevJi6ujqOPPJIrrnmGmbOnJn9/Mc//jGLFy/muuuuY5ddduGLX/wip512Gtdee23Rc95333186EMf4uKLL2bHHXfkE5/4BN/73ve4+eabicViOfs2NzfntDkUGoUyoUYzBKX2H4PDqivdfxTjhRdeYM899xy2/7j33nvZc889Oeigg7jmmmu49dZbiUYL9x+RSITbb799RP1Hff3w6pEj7T8GG7kD0f2Hply8tEd8bQI37o6JUjUACqSlw6rLxel1kPbEpH1qz3EV4nmKrmhhMa6BlJKDOhzhIHT0KFg6RskWmhEjpWJTOzSUUNsYQLkS1WMhavpe64BAuAqV9hBNwYLHVMpz/NSBz2K3Dy0qpfA9GO+bGyqW2hOaF+ajf96vQmcrjeXLl3PYYYfx29/+lm9/+9tlHVuoHEEileCUK05m1e4f5We/+jkbt2zgK1/5Ss4+zz77LLvtthvzZ8ynh14ADvyXA7Fsi1feeZWPfeRjeed9Y+MbOK7DwQcfnN22cOFCdtttN5555hkOPfTQ7PYrrriCyy+/nEWLFnHMMcfw1a9+dcjJ4vPPP89pp53Gd7/7XY466igeeughLrnkkrw2H3LIITnbDj30UG6//XYcp/CDZ1kWNTW5D3xtbS3pdJqXXnqJ1atXZ7d/9rOfJZ1Os9NOO3Heeedx9NFHF22vproppf8YCyZb/1GIRCLBpz/9aQ488EDuvfde1q1bV7T/WLhwYXbboYceimVZvPTSSxxwwAF5533ppZdwHCfnHS6l/zj66KM55phjhmxzJfqPYDB/TNP9x9Qn/l6CQK1JzcISJ0ZFkLYktSlF/J9xrE6HYFOAQMMYmUSCCVFcnswopbA6bMzaifHhauO4CsmIcY1HqPNAUa7ACFWvNWNDT8z/aZ5R4gFxF5XyEDN9o0YIgVSqaDknqJxxbLdbpFtLm9y6TP6yBsuXL+eRRx7J2fbDH/6Q2267LWfbzTffzMknn5z9XRVYBf3No79BSsk1X76aJcuW8KE9d2fz5s38x3/8R3aftrY25s+fj5t0EX2LYjMbZxIKhmjvbi/Yxo5YB6FAiBn1M3O2z58/n7a2tuzvX/nKV/jIRz7CrFmzeOGFF7jwwgtZt25d3t8ykOuvv55DDz00m5u8884788wzz+Tk7WXaPPi7Xdelp6en4HkPPfRQrrvuOn7xi19w7LHH0tbWljUgMqGtDQ0NXHvttaxatQrDMPjDH/7Acccdx913382JJ55YtM2a6qWc/mMqMNL+oxA/+9nP8DyPO+64g7q6Onbdddei/cdAZs2aRSgUyukLBtLW1kYoFGLWrFk520vpP15//XV+8YtfFG3zaPuPzs5OFixYkHde3X9MfaxtFpZkxMax8hSpzSni/0xgbbMw603qFtf66U1jhBEwcGOTf94znngJDzfuYtaOf0g1aON4XCi3XE4sCWm7uBhXJamrga6oL8ql846ri85I5jkoMaQ67oA7KL/YNPztBQiYkEgpKiHRGJo3TJgD/Z5j0zQr6jmeCJRSeXoAJ5xwAt/4xjdyts2bNy/n90Ke43+u/ye77rgrYVGDl/QIzgyy33753iwhBG7UQwzIi1JKIYpczcxgLy2JGR50zIC2n3feedn/f+hDH2LWrFkcffTRXHHFFTQ3N7PrrruyYcMGAD72sY/x4IMPsmbNGo488sic79tvv/3yRG0GXyOlVMHtGQ455BCuuuoqzjjjDE466STC4TAXXXQRTz31VDbHcc6cOTltXrlyJT09PVx55ZV6cjtJmaj3eLL1H4VYs2YNH/7wh3Pyk4v1H6W0YziG6z9mzJjBsccey0033cTcuXN1/6GpKMpW2N02bswl0Fi+CZPcmKLnuW5E0KB20dgaxRlEyNC1jsvEjfpiXMEZwYJCpmONNo7HgfWtYOJ7Z0tJa4kl/X/Hot7aYLQoV3WilGJTu6KmjLmb6rHAzA1BESEDFXUKToKCgf5nbbSUEpoopWTDhg0sWbIEw5jccgdr1qxh2bJlOdtmzJjBjjvuOORx0iskyqH89QnVV06iAC0tLTz//PN+XlTQv4+9sV4c12Hu7LmFj5k3H9u16drWSUtTS3Z7e3s7+++/f9E27rvvvgC8++67NDc388ADD2TDoGtra/0Wq+EHq5aWljyvVHt7O4FAICe3cDDnn38+5513Hq2trcyaNYv169dz4YUX5l3vwW0eytOtqW7GO7R5ohlp/1GIUt/F559/PmdbT08PjuPkeWcHHmPbNj09PTne43L6j7lz545J/9Hc3Fz0ON1/TG2kI3EiDlanPSLj2I25KCWobRldWHY5GCGBl5ZIW46Z6NdUw79P+MpYE6Blpu/SONDeV6f2vS2lrX4MJ8ZVKZQrs3VXtShXdRFL+p7jGcPrmgCgHInqdfz6xgMJGSjLgwJlBIIBSKRLm6ho+nn77bd56KGHiiqmFkN5qmCd452XfpA3332TtJvGi/ury88991zOPvvttx9vvPEGrdtas4PrEy88QTgUZo8Pfrjg9+2xy54EzWCOeE5raytvvPHGkJPbl19+GSAbtrhkyRJ23HFHdtxxR7bbbjsAVqxYkdfGQm0eWNoGfGGglStXFswXHIgQgoULF1JbW8svfvELFi1aNGQN2ZdffrlgmKVGU22MtP8oxooVK3j11VdJpfoH8aL9xwDV7UceeYRwOMxee+1V8Lx77bUXwWAw5x3W/YdmIlFKIR2JchTpzakRzV2ciINRYjRepTCChq51XCZWp405gQsJ2jgeY1xX0RHx///GeujsHfplLlWMqxLIdXHkpkS/KJemauiM+IZrfamLm3EHlfKggHGMJQvmHQcDYLtgT5NyTiPBdV3a2trYunUrr7/+OjfeeCOf+MQn2GOPPfjqV7+as28ymaStrS3nZ2BurfIUqsAK6OcO+hyGMPjq7V/ljVfe4IEHHshTZD3kkEPY5YO7cM4PzubNDW/w1xf/wiU/vJiTPn0SjfW+om1rx1b2PeFf+MdbLwHQ1NDEUR89jv++9Os8+KsHef7Pz3P8ccez24rdOGB/X4Dn2Wef5Qc/+AGvvPIK69at41e/+hVf/vKX+exnP8vixYuLXpdzzjmHhx56iCuvvJJ//vOf3HTTTXkhkWeccQYbNmzg/PPPZ82aNdxxxx3cfvvtnH/++dl9fve737F8+fKc46666ipef/113nzzTS6//HK+//3vc8MNN2TDIu+++25+/vOfs2bNGt555x2uvvpqbrjhBs4+++yi7dVoJoJK9h/FOP744zEMgy984Qu89dZbRfuPFStWcNJJJ/Hyyy/z+OOPc8EFF3D66adnFbG3bNnC8uXLeeGFFwDfk/2FL3yB//qv/+Lxxx/n5Zdf5sQTT2T33XfnoIMOAgr3H//xH//BQQcdNGb9xwUXXJDdR/cf0wwJSEVwZpB0h112Hq+SCjfqYoTHN4/VN44VMq3LOZWCtCVOj41ZNzH5xqCN4zEnloJUn85I2oKX1ypsp7ghmhHjqhvjiA+lFKrbgpSXI8qlqQ62diqCZumh9SrugicRgUFh1QED4SlUKn8QCQXAcaZPreOR8Oabb7JgwQIWL17M6tWr+dWvfsWFF17I3/72t7xyR7feeisLFizI+fm3f/u37Oe+cZz/jjXUNfCzK37Gu1vWcuDpB/KN//lGXpkX0zT57d2/JRQI8+mvfJovXPIFDv/o4XzrrP66qI7r8u7Gd0la/R6kf/9/l7LX0oM5/rTjWX3YagKJALedeRs9z/biJT3C4TC//OUvWb16NStWrODiiy/m9NNPH1JMB/rDEG+88Ub22GMPHnnkEb75zW/m7LNs2TIeeOABnnzySfbYYw8uv/xybrjhhhyPWSQSyakXC/Dggw/ysY99jJUrV/KnP/2J//3f/+WII47I2efb3/42K1euZO+99+a+++7jjjvuyMkj1GiqgUr2H8VoaGjgj3/8I2+99RZ77rkn3/hG4f7jT3/6EzU1NaxatYpjjz2WI444IseIdhyHd955h2SyP9fmBz/4AUcccQTHHnssq1atoq6ujj/+8Y9ZQ7NQ//HFL36R66+/fsg26/5DMxKkq1AemA0BZMLF7iivFqWX8vpCm8fXcyxMAUrhaeO4JNyYX994Io1joXRM5ZiyvlXxl1c8Pr58E+91LWJDm8Hey+FDOxZel9jcrnjk74plC8Y251glXNznOzBmhXB2nU1XFA7fVzCrcWy+cyrlm46UUq9BJK548HlFfQ001pV2P7xXu5HtaYy5+asqsjWJ8cEZmNvnJpW7nmJrJxy2r2DuzLEfLKb7M+DGXNoeb8f5sEXj1iaEyr3mXtLDiTnMO3geW7o3s2zZMl5++eVs7eXk+iRdT3VTt7SuwNnzsRzFc28qIglYvlix00IDJX0D3Wq1mL1qNvXLSjtXKdx1112ce+659Pb2DrnfdH8ONFOXanm2169fn9d/jBcjvQal9h+TgWp5DiaSsbgGXtJj28PtmHUmbtQlNCfEnNXNJc+VrU6bjsc6CLeEMQJjf1+UUMQWRmnc2kRqfYpZe8+kYeeG4Q+cQozkOUiuT9L5VDf1S+twog7KVcw/bB5GcPzepen51o4jvXFF5r0NmoI5M+CNddDWlb8m4XmK7r469WMtxqUSLqQ9lC1zRLk0E8+WDkUiBQ21pe2vbA/Za+fnG/chggbE8t3DAVPgev6914w9ShbOOc5ghA2kpZBF6iF6aVmWsHgsCUnLF9rbuE3Qk/DDu8ywiRE2SK5PTogKpEaj0Wg05ZKJvhKGIDgjiN1l40ZKD62WaQ/lqXExjAcjDFFUcFOTi9PrICbYOtXG8RiilKKtG2oHKFTPaBC40g+vTlv+xDSRUqzdpHj0RcXL/1Q0Vs6ZU7xtcQcsDxzp19hBi3JVA46reG8rNNaVsUAS9xc68vKNM4QMVMzxBaEKoMOqx5bvfve7NDQ0MGu7WXzwhJ3ZbbfdWHLwEpYcspjjLjg2u58wBUiFV8Q4dmNuWWUnYkkFChprBVLC+1sVbt8zEJwdxGq3sLv0yohGU81k+o9CP4cddthEN29a4UT1YDmRKE9Bn3Fs1pl4KYlVRmi1l/QYTaysUornX3uedVvWlX2sCBllGfLTFaUUVoc9YfWNM+hSTmNIMg2RBDQOinTdrhnWtcFr7ylMU7Gu1d+vNgQLmiEUHGOvcSbfOGj4nY0rCQcNX5Rr6fjmYmhyaevyxbgWDV/eMouKu/6AYRZZ6wqZqGSfAV2f/8pr43hsOeOMMzj22GOxu2y6nu/C3d2lvr0BoQS14UGdgwA36bJ0xdI8JU435pZcBkIpRUevX6oNYHYTtPf6aRtLFwjMsIlyFektacJzK6P+d8opp3DKKadU5FwajcYn038UIlMaaTBLl+b3H9VOtfcfTsSh9x8RZuzRRGhWCTU5NRVHeX7OMX12k1lnktyYon6HOoQx/NzVTbgYo6hr/Ke//h+nfPMUakI1/OPXLzNvdukTNSNk4MbdrOdbUxgv4eHGXMx6bRxPWSIJ30CeOyN3u2kK5s9SvPIuBEw/7HFZCxjj9cKkPVTcRdQH+oxjlSPKFQjoF3ei2LBNYQg/5LlUZFfaD50uRsiAXlnQODYNP3KhrHhdTVnMnj2b2bNnk65PU7+uEbnUpTGUn3MM/gDq9OavLitP4SVLN46TFsST/cJ+AVPQWKtY3wazZyia6vywtOTGFA07N0yo8IVGoylOpv/QTCxeSmJ3WKTbLG0cTxCZig8Z4zI4I4DTbeH0OoRmD39PnJ7Sx9BCvPDG3wFI22lefedVDt7v4JKPNYICL+0h01KPt0PgRl28lEdozsS+YzqsegyJJkApMAsYvY11gh23g+0X+iJY42YY4+cbi7QLdQE/B9JV1NX4E+qYDq2eMHpjis3t0NxU+jHKlhBzi4dU0zeQKIUqUs5Jh9OPD0qqYZcgjJCBG3HycoG9tId0FKLEqJJYAtI2hAeML411gpQF67YopFQEmgK4UZf0NqvMv0Sj0WimF9LycBMeqfVJpKNVhycC5SpQ/Z5Xs8ZEWgqrY/gxTLrSX2AOj9zsSaQS2f9HE9GyjjXCBsqWeJbOOx4KN+aiFBPuXdfG8RiyrUcRGsI3P54GcQ4J/+EjaIBU4GlRrmpgS6cikYaGEhWqAT8KwPIgNMxKpCF8EbZBBAN+PeXJFoI3GVEljIlG2MCzZF49RGnJvhIUpXXZvXGFYYAYZI7PmQFbu6C1yx98tDCXRqPRDI9MS4QhsHscrHa9oDgRFBqnzDqT1MZ0UU2VDF5S4lmlj6GFSCTj2f9H4+UZxyIgkI5CpvTCylBYnTbmKBYwKsXEt2CK4riKrgjUl6g4PJ7IbgsRNBCGQCh/NS4j/qS9iBOD7Sje3QJN9eUdp9IewpUwTCi8CBqoaL5wRSjgL4o4WidizBlu8IY+xeq0zBPlkmnpv6clpDx4nqIrCrUFUomDAUFNCNa3KRxXaWEujUajKQE35fmGlRAkN6UnujnTEuWprIBshuCMIHa3jd0ztHiKTHtIS43Kc5xM93uPYolYWccKIUCBZ2njuBjSljjdEy/GBdo4HjMicd8jV59fdnZCUbaHijrZMFyllK9YjS/e09GjPUgTQVs3dEf9/POySHsoSlC2DhmQ8lCDwsGCAd8w1qJcY09JxnGfSJ43qOSDl/ZAlaZgHk/5fU9dkb6noc7XQkhZ5AhzaTQajaYwbsxFhAxCs4Kkt6a1cvUEoNz8MdQIG0hn+NBqL+X5qU2jEOQaGFYdKzOsGgABXkp7IorhxlzcpFcVOdnaOB4joknf6Bhr5emy6atvTE3fwydEtvbqQFEuzfihlGJ9q8I0yhPigr6SXKUcEzL88OtBecfBANgu2HqcH3MKDezFGGwcS6v0GsfRJLiuX1e9EMG++tapvrlERphr8HdqNBqNxh+jvbiLERCY9SZewiPdqhcUxxvlqYLjYKDeJL0pNWR6kJeSlFodsxijyTkGEAEDN67H2WK4MRfpqFGFvleKiW/BFKUn5uf8VRt5ZX+UX8oJ0KJcE0RvHLZ0+OV2ykEphYo6iOHyjQGCBsLJF+UKmOB62nM8HiiZHxJWCGEKnGju6rITcxGB0jqU7qgiWEIdgmRfnXUtzKXRaDTF8TUf/Em7EIJAg0lyfQrp6hDZ8aRQWDVAoCGAE3VxY8W9sm7MHZXXGCCZ6g+rLjfnGMAIiWlX67iUiLkMTsRFVIndVCXNmFoopWjrhrrKlA+tKKrXgoGTbFOgbN9gyohyxbUo17iypUORtKChtsyO25Z9YlzDv8ZCCJQABuWyZsJ0rUEpp06vQ89LvVqoq4IoW5Y0OBthA6c3d7XCr3E8/LGWo+iJDd/3BAMQ7dMW0cJcGo1GU5yMIKLo64ODM4PY3Q52u9ZqGE+ko6CAkK1RYyAtiRstbng6vc6o8o1hsOe4vJxj8KtRyLQ3rdTOU1tK97Y5PTZGeOJDqkEbx2NCPOWXUqk2MS7lSlTEQdT0P3zCENCnjJsxlLTneGzo6PUNj7c3KNasV7y9QfHORsV7W8sX4gL8EGlblmQcA2D0hWEPQgho7VI5hrDVaWN32ChHG0uVQjqKUuK6jLCJl/Sywh3SlciUh9FXy9r1VNbrO5hYElJ2YTGugYSDEE354l2AFubSaDSaIsi09MM9+/pgI2iAUqQ268nSeCJtWdCzKIRACIqKcknbF7msqHE8Is+xgWdLvGmkWC1t/28dbuFduhI37laFUjVo43hMiMT7JqjVVic+4aJSXm5NXFP43sc+tCjX2LFuq39d//624rm3FM+8oXj6dV/VfHa5Qlz0KVV7quRwWxEyUVEnzxs8bxa8vxXae/q3WR0WXmp6rXCONcUG9sGYYQNpe8g+L79M+yF9om8RZHO74pV/Knrj+e9pNOGHnQ1XJi4UBNvuzzs2wybKUVid2jjWaDSagXiWzKmvCxCcGSK1NT1kKK+mssghoq+MWhNrm1Uw2s1LeUhLjto4zlWrHplxrGyFnEa1jlXfFHI4TZNsqS1tHE9dokk/lXfC6hgXQcVdcGWuMWUKcGS2Q9GiXGOD6yrae/3/L20RLFsg2H5h/485klyYPqXqksmIcg0qJVBf4ws0vb1BIaXy5fQ7bT/SQHuOK4ZyZEmF7UVIIO1+xWovnalxLPA8RWs3dPTCm+uUbwxnzq8UnREIl7AoFwr6QmypAbawWWeS3prWofQajUYzANmn1WE7/RFWgUYTL+aSbtNaDeOFKhJWDWDWB3BiLl4BwSsvJZGOzHr+R4LneTnG8YgEuUyBkgqZnj5OB9U33xxcnnIwXtJDprVxPKVp61IlTVDHGxW18zsWU4AH9BnDNSE//zSlHUgVJZr0y+dUEhUrUak6Q9hEpNyCodUtzbBhG2ztBCfi4CY8pNMfEqMZPX6+1PD7ZeshZjzHlofyFEbAoDcO0QQsnOuHUL+xThFN+u9u0vL1AkrROhB9kp8Dn8lAYwCnxxkyb0uj0WimG17SI+XAS+8o/vFPxaZ2RTzleyuT65NliQ5pRo50ikdfmTUGMuUVLLHlpTyQlLQ4XYyklSvGM5Kw6mx7ppFxLPscLMMax6m+cpVV4lTUxnGFsWxFdwwaqq2+sadQPXZOvjEApoHyZFaxOhz0lYtTejG0okTikK6gIrSSGaXq0l9hYQoUAhXJX/mo6RMaWbNBYfU6foemVLZj04wOpRTSLU2QCwBDZEs+yLTMKnR29Cqk9MsxzZsFkYTvQY4lFbEEpO3SPMcApgmxZP/9NWtNZFpid2vpco1Go8ngxFws6S9O9sTg9fcUz7+leK09wPq3LaJb9IRpPBgq+iqz3YkUMo7dkkshFiORTOT8HkvGRhZlJQReYvosQGccLG5y6L/ZS47+HlUSbRxXmEjC98bUVZlxTMJFJd3cfGPo8xyrrOfYNAWe1MZxpemJqWLRQCPD8kpWqh6IqDFRHVZBcYSWZtjcAZvW2hhB33updM5xZZCAp0peFR2oWO2lPRC+EnV7DzT0Cf0ZQjB/FvTG4K11io6IXz5OlDjChIN+fyUHDPAiIEi36fqdGo1GA/01ji3l96tzZggWzhE01kHMMXhnE6x9Pq69x2OM8hTKU0MuMJs1JlabnWe0Or3uqGvnDgypBj/MeqBAV6kYIYEzjfLUZV9Ytds7tOfY7naqor5xhuppyRQhmvDrxgYDVbQEAqiEg3BUfk1cI2Mc5xpB2jiuHGNS2iurVF2m7H2tiUo4EM/vnEMBQUhINqyxUDUmCB1WXSmkq1AeRfOlBmOGDdyY4ys4xlyMoEFPFBLpXBV8Qwjmz/Z1ArZ1D69SPZBM6bb0gECCQFMAu90eNgRKo9FopgOZGsdxW2AOmDGHg4LmJkF4Xoiud1IkN2rl6rHEN44Zcgw1602cqJMj/qSUwo2O3vAqZAiPVJTLi7vTRttDOv69cGNOUcVq5SncqIsxOLJ1AtHGcYXpjqqcDrRaUDEXVaBPEaZASJWz6mkYueGWmtERT/k5x5WMJlApz/dElinkJcImWNLPVy7AvKBLT4dHl+V3Up42jiuD5wu5lFrg3ggZeJbES0rcmIcICrb1+H2LMagcVMZADpjQWFd6k0JBsNxBecf1Ady4q0OrNRqNBt849iyPmG0QCuZ/XltvkFAmna9GcadRuOx4o9zhx1Cz1sRLeLiR/vsg0xIvrSpaxinDiMs5WdNDlEtJhXIzOceyqGJ1pdTEK0n1tGQK4Li+kmzV1TeWCtVt5ecbZxAiG1YNfTVQy48W0RQhEvc98ZUs7aXSo8jPCBqorsKhs2bao8ZUbOwWOAjkNKrHN5YoT6HKEAQxwgbSUrgxBy/lkZaCrmhx49cQgpkNIs9wHvI7+oS/BkaJZBZbbF3SSaPRaJBpSTqhSCMK6jnUhCFZGyTa6hBfqydOY0V2DB3CISBMf0yzB4hyeWkPZXujD6tOJfO2RROxss/jl3Py/HSpKY7KRMzRV2u6mHGc9PDSsmpqHIM2jitKWxd0R2Fmw0S3ZBBJF5V0oIhxrMgNqw4HIZYCOUzRbk1p9MZV5Ut7RZz8EPkSEXUmssfOqW+dQfXaNDYKemPQGR2+Np2mNJRUZeUcC1OAVDg9DtKR9FoGacufiFUSQ0A8lfueBxoCpLemkK5eGNFoNNMbz5KkbbBdQbiA59gQvtBlujZIYm0Ca5vOSRsL/DF0+HKIRo2Bva1/cddLSqSjEMHRzb8SqXjetpGUczJCBtL2x/apTsbbD/79K5au5StVlx8JOZZo47iCbNjmiy4FqugGA6iEi0hLKLYqo8jxHIe0YnVF2dbtl8iqFMpTqIRbthhXltoAIunmhVYrV6J6LIzaAPW10BYVONo4rggZMZGyelwBdq+DZ0m2RX2vRaliW6USDvmRDQPznwKNAZyoi9OrQwQ1Gs30RqY9LLtvgbtIZE44AD1eAOkqomtiemFxDMh6IYcZQ826AE6v018KMd1XIqiMqKpCVCqsGkAEjWlRH9vXWumfWxRLO3CrcJ6pjeMK0RtTbG6H5qaJbkk+KuqgjCE6ByFQdq7n2LK1cVwJ0paiJ17hUPu+MKGRGsfCECghUL2DQmcTrp/LXGsSDoKjBFZK6oG+Aii3vLBq6Au/siTxhKI3JcrKJy6VcNAX5LIGPApGyEA5Cqdbh1ZrNJrpTabG8VC2VW3YrzvP7BCpzWktzjUGlBJWDRCoN3ETHm7UN8TchOdXZRklg9WqYWSeY/AXoO0Oe8pH5ilP+oK/gBE0ii64Oz0ORrC6zNHqas0kZmunIpGGhroq8xqrvnzjcPEQXBEQYPe/pMGAX84prefGoyaSgEQK6itZ2ivtIWwJo+hMCpV0UnEXXIkIGgQCvnFspxXK1uH1o0V5quywISNk4NmSnrivgB8aAwX8jHGcGvSuGzUG6a3paaOoqdFoNIVw4m5RMa4MNWG/D026BoGGAIl38kNwNaMjO4YOs8DspyTJbL1jJ+L4pSlHSTyZ7znuiURGdK5AvekLX/ZM7Ul2xikAvo6KG8lXrFZK4UacqhLjAm0cVwTHVby3tTyl2HEj6fkhuLWB4vsYAjVIHEAp7TmuBJGEn85dyVB7lfZQqjwvZB51+SWdVMTOlkkImOAKA9uSSF3reNQUK2EwFEbYwI57dEUqXAZs4HcYAlmgrnmgIYDd7eDFp/bKtkYzHMpTxN6O41m6H5xuKKVIdbukZOF84wwZccN4CkLNQezI1M8nHW/KqSNthEysDhsl+0oEDeEcKpVCYdXtveULckFflRgBdsfwxvFkXqBWXr92kRE2CipWy5TEqzKlatDGcUVo64LOCMyuxpDquIOwvOL5xuCHnNgy5yUUAhLpyftSVgsdPYpghUu3qYQ7dIxXCYiQCY5ERf3OWXkS1WMjav3GCgQYAietdK3jCqBGYGMaYYOebS5xxxjThTfDyBflMutNvKSHPQ1EQzSaoXDjLon3E1hthRX+NVMXaSuScYmthvYcA4QC0BVRCCEIzvBFRkayKKopTDnGsVlvYnfZOBEHaUuM0OidE4WM486ekXmOAcz6AOnW9JBpa06vQ9fT3ZNW2Vp5MquSYoZNvyzaIFEuN+kh09o4npJUqxAXgIo5KDGMGIEp/LwAL1eUK6Ijg0aF6yrae6GhwqW9VMxBjLIsAQABA9XV5zKMu6jkoAgDQ+A4oBw9wI8WPySsvGOMoEFPVEHYwKyk0vkgCr3rQggwBVa7Dh/RTG+8pIfT45DamJrUXhxN+UjLI5WUuEIQHGZ+l8k7TtsqG8YrdbRBxShnDDXr/MVda5tdsfq5sUS+cdzVG8Ma4fwo0BTAibhDqlYnN6ZIb07jdE/ORWrl9t8zYQpfsTrPc+yhPKVzjqcaVS3EpRSqyxq+5I8p/I5noGJ1AKLJyR3SMdFEk5BMVzbfWDkSkqNQqh6AqAsge20/TDvhguPnG2cwBKRtHVZdCZSryq5L7biK3hn11M0ZxmUxSsJBSKTBHjTIBxsDWK1pHU6qmdZ4KQ9pS9LbLNyIVnCfTsi0JBWXEBh+vM3kHcdT/aJReuysHOWMoUbQQLoKu8v2Da8S7t9wROL5xnEsGaV3hE4kI2igXFnU8HUTLsl1SdyYi9U5OXOTC92zwYrV1SpKpo3jUbK1UxFPVZ8QFwApr88bOLxxjCfzah0PVrHV5LO1U/HcmxLHzV9EiMQh7UC4L6RHeRUYKNOeX5+4Ep7jWhOR8vzogoidp+gYMCFtC6QW5Bo1fkhYeX1EPOUvroxVvnGGcBDsAqXbzAYTJ+5Ni3qMGk0x3ITn58ulJeltOrR6OiEtSSIFwRLCcjN5x4lUn8gpIHXUVcVQZU6fjICoaEpYbwHjOJWK0tk78nts1AZIbSksfJneauFGHUJzQqS3pCZl1RA1aF5shPIVq+2IU1X1jTNo43gUZIS4muonuiWFUfFMfeNSjGNyPMfZCbM2joekO6p4/T14432V18F1xxQDo2HllvzOtVxU2kM4alRK1RmEIfzogh7LzzeuyX1OAgF/gcSzq3NlbzLhL4yUN4jGkv6a1ViGVIOfDuJJSA4yjo2AAVJhd+vQas30xelxMEIGgTqT1IbJOUnVjAw74ZFIM6QY10AyeccZT6XSeh0VQzqyLK2VQEMAN+qOTri0D89TROP5pZzSdpTOiB9KPxICjQHsHhs3lmswSkeSeD+B2RAgOCPoh18XKYNUzUhX5kx7jFCuYrVSCrfXwaipsDBPBdDG8SjY1l29QlwAKm77+cbDdQ6GQHgSNWDQDxXxJmly6YwAAl57H97f2r9dKUVb96CQ6mSFPMeoURe0zyBqA6hOq2CEQdAEVwrSUW0cjxbpDF+CYjCdETWsCEwlSRYQ4DPrTJIb0lUb+qTRjCXKU7hRB7PGJDgriN3lYHfqSIrpQqzXw3EouR+uDfvpVJk8VC1mWTmkLRFlWCxmnYnTY2NUIMouloLkAEGupobZAKTSMZLpkevzmLW+gvPg0GqrzcLutAnOCmKE+sKvuybGU5VcnyTdNjJDQDq55SuNGj8CJzOf8AW6JGaViXGBNo5Hxfq2KhbiUgrVaZUk3CSE8FfkBghyCSGQupzTkLiuoifm55vXheGldxTbuv1rGE9BLAH1A8S4VGr0K38q7lSkoH2WOrM/3ziU7zl2hSAV04bRaJG2hDKMY8tRRBP+ZGs8CAUKD/Ch5hB2l0307ZjWH9BMO7ykh2crjJDh5whKtGr1NCLR5WIbwytVZ6gJ+dFWiZT/u845rhzKkWWF3xohA7MhQGDGEGVMSySagJTlG8c1oToa6mYAkEhFMYS/kD0ShBAYAUF6W/9EW0lF4v0EImBkIxCGCr8ea5IbUqQ2p0Z0rLRkjlPArDGR6X7Fai/pIS2v6pSqYYTG8V133cWnPvUpPv7xj3P88ccTi42s1tdkppqFuADfw5goId+4D6UUDOrIhfA7ek1h4ik/FLU2DHNnCtIO/P1tRSypiMT9kPRav6KDH0Zi+R3CaDo4FXWGF1grg0xJp0KGW8AEF4EV0wP8aFGOKmvVO5bse37GyTgOh3xRrsG588IQhOeGSPwzQXqrXinTTC+8QWVGgjMCJDem8sqRaKYeSikS3S7KFH5pwxIwDN+pEM8Yx1rMsGJIW5W1wAxQ01KDOcqQXaUU7T0K2/HDqmtq6qmvbQR847i+RtHRO7rQaqvNyvYpdqdNutUiNECIMxt+HR3f0GolFW7cxWpLj2ihR1oyx5kjTIH0+hWrvZSHdFRFvPuVpuwllfvuu49nnnmG2267jZaWFt577z1CodBYtK2q6Y5BwoKW5urzGkNfvrElYUaJ92aQ5xggGIBIvHwhoelCPOULltX0XeIPzIF1rb4HeUY9KOUPloBfUzhzfV0FIwiXVbbn5xxXuCMRc8IFBx1DCJQhsFN+26tRNGGyUO6qdyzpl0AwKhQ+PxzhIEQSvkEeHDQqBOr93K3Ym1FCs4OYJS64aTSTHS/lgezv+wKNAZKbUlgdNnWLK1yjT1NVSFsRi3qYZep7hAK+3sgswEtp47hSSKe8sOpKkbT6QuVt33NcG66nvtb3iknpIYwkyWQ9kTjUzC7//IGGAKnNKexuh9rtTJIbkihPYQ7QCjJrDax2id3tEJwxfrlWGaV+aUmciEt4Tnm2XqF7JoRf2xjAq0Sq4RhRlnHseR533nknt956KwsWLABgxx13LLivbdvYdq7bMRAITBlDujsiCQcoaUVRIHP+HRcSFgQURhBKEQISAQWul9PG2pAf2ikr0GzZdxJZiZNVCbGEwjRUnwGjMA1Y0qJY3wrzZkF9eMDz4boI/A5BeO7IBLXSDkJ6iFoTYVYuvEbUZtpSIOc0DLYjcdPuqI2iqfgMlIrnSlQAlOgTohDF759Siu64oqYWxDjZoUFTIROQcqCxQJcWmh8iuSlJ7J0Yjbs3jirnvRqfA8OovpVrzcTjJt2ctWFh+mGQqY0pahfVVEz7QVN9eGmXWFQRrC3vHmfqHQN4CR1hUCmUIysirlUu0QSkLUhnwqrDdVnjGCCVihEw6+noVcyfXX77MgtvdpdNoMEktSlNaHaunZQNv25LU7+sbhR/TXlISyJtiZeWOL1OWcaxUqovTzz3mhghI1sBw4k5E3JPS6Es47i9vR3Lsnjssce47777aGho4Pjjj+foo4/O2zdjRA/kmGOO4dhjjx1di6uE5hpYtXN5xyyauXlsGlOIPfp+KCfkvafvx2fxTP/fDRsq1CZg06ZNlTvZBFMDfHx5/vYdmgvsPBPYzv/v4pa2kX3hTGAxwPgJwizr+3dze+We3an0DJTMDv4/Nn6+YnzB0O/lTtuNdYPy2b7v36ItWwQ99NCzsafYHmVRTc/BsmXLht9JM+1wety8kL/grCDpdgs36o6rF0dTeZRSrN0M282B+kFGcCIisZKS8MzyFs5qQ9DVp9/gWR5KVU5Ac7qipEK5Yxu91htX1NdAMJD7Hd1RhcDDdvyxuzZcT31dv3GcSMWYM6vFV622FDXh8tsYaAiQ3uLH4nsJl/C8/HyqQFMAu93GS3qYdeOzau6lJMpVmLUm1jaLhh1LL82jPAUFIg4HKlY7PQ5GTXUuTJdtHMfjcTZv3swf/vAHtmzZwplnnsnSpUtZuXJlzr6nnnoqJ5xwQu6XTRHPcSSmeOTvipmNUFNC/TuBZNHMzWzq/QBqHDTQVNrF/XsnosZE1JR2i1WPBTNDBD7UHxeSthWRGBzyL4Km+tF1SlJKNm3axKJFi6aEl0ZKxYPPKxwXmpvyr83gAVF2pFBvdLHsSMnGdXNhVukhecrykGujyK0JxOwaxHCluSpIV4+k2bPY/9/n5q1mlstUewZKRbqSjsc6AEFgZsA3jN9voLHIoNDRq3hlrWLurPELqwZ/EjCzAfbYqfi9SW1NEZodYvZ+s0acyzVdnwPN5EJJX6l6sHEcqA9gtdtY2yxtHE9y0rZfhrG9B/bbFcwBE/lYROLY0FTCHG8gft6xHxnkOZJoryThGcRTvlZNTQga6wQNdX41i9ow2ngeBuUqlAQxem2tgqQsxRvvKwwDFs3zI//CQYHjKrqjYIj+Mk61NfU5nuNEKsqiBdDbCS+/q2huUjTVCRpqobautAi/QEMAq9NCeUkCRfqUQH1f+HWPTW3d+KR0yLQHCgINJnaXjZf2Sh73latQHojgIOO4xsBLerhRFy9RnWJcUKZxHA77qxlf+tKXqKmpYYcdduDwww/n6aefzjOOQ6HQlDCECxFNKRKWYt5sUGXk4yqMcTGOZVxCQqHqA+CV1j6lDEjInPYFAoqkA5Yj+nNnR4lhGFNiQhxPKRIpRVN9kWdA5AYpKwuk6+8nXRAlPgcq7uC9HUG1pxHz6iBgoMYxUssQglQccCoXejpVnoFSUQpwBCJoIJT/DLy/BT60rLDxG40pPFcgpCizMvLoCBkQjYPr5K+eZ6idV0tqQ5Lkeylm7D46NcLp9hxoJhdeysNLy4JemkCdSXJDivod6rUWwyQmmfaFCN/ZBHNmKJYv6b+XiYhEwojmPhndhtfelkSFR8oQKAWm4aepSRRB0/cy19fCTh9Q7LRI94XFUJ5vHFdqHjqYjMJ4MACvv6dorIMPzFOEAoJEGgzRX8bJzzluzP7uK1YL5s1WJFLw3lZAKUIBaGhQ7LJdn7NkCFvBCBsoR+H0utQW0TIQpkAIsDtsarcbH+PYTXlggFlvkt5q4Ubc0o1jT/Vp1eQ+10bYwOl2sDptpCUJ1lfnAmNZxvGSJUsIBqvzDxlPemK+OVStq30q5qCUKq8jMXxBLuXJ7MNsGgIplS7nVIB4yhcvmjertP3VwHqHJar+qYiN91YEFbER82snZBIWDAhsB6ykpGb43TWF8JT/Ppr9SuUdPdA9G+bMzN1VKkVXpF/kbTwJhyAR9SeLMxsK7yNMQXBOmPjaBHWLagnO1OOBZmripXwhmuCs/Gc8OCuI1W5hd9kFQyA1k4OUBV5HmpnzQ7z6nkHzDMXcmf44G+l2GekUr6kvLdS2FI0Bydy5/nxqII6rSNvQ3uuLFO34AR1+XQzfOFZjlp9qOyAVzG7yvf7xJLy1DuprFUqB7fQbx4NzjhPJKABBUzCzwc9+Uyhsp7/aS3sPtAwzVww1h1CKIf9GsyFAamuaxl0bMUaiW1MmbtTFCPolpZRUft7x/NL6u6xxPKiZRsBAegq7y0basiqVqqHMUk61tbV88pOf5Pbbb8e2bdavX8+DDz7IqlWrxqp9VYdSirZuqC3DUlDpcZZf77LKL/djCj9HwM33VWnjOJ94yl8BFkkX2Zoc/oCUB30160oxjlW3hfd6DypqI+bVTJh3IhAAz4N0FasKVjv9g4TA7fP6WzZs3Kay4XcZUmn/2aqbgPl2wPTblxymjGugwa9VqMuUaKYyXtJDeSpba3QgRshAeYrUlpHV/9RUB4m4JLA+yszOGOmU4h/vKNKW3yf3trsERxjymYm8aQwpak2VZxhn9mmsEzQ3QTyp51lDkclfZYwyyqwBMi6G8NMIF871PcmzmyBl9c/xavJyjqN55xMIwkHBzAb/vr/X6kcaDkWgMUCwaWh/ZaAxgBtxs4JWY4lSuWklZo1BurX0Gu9+KHzhBQ0hQNoSVPU6Gct+87/2ta/R29vLQQcdxNlnn80Xv/jFvJDqqUwi5Zc8aSjHOO4o/YEaLSrlouKl1zfOYgrwZJ5xbBp9ZWU0OfTGFAHTrzsstyaHrV2sUl7WwFUlGBXehrhfjmtezYSq+QVMcCVYw3TsmuIoT/nlYAzfCw/QPMP3GHRFcveNJf2BeqIyUgzDTxkYCmEIUKq/NJlGMwXJ1OIsRnBWkOSGFM441x7VVI54xMNIe8h1cRY6STa1w+vvK1JpSbLXI1SmUnU+oqDDYSC1Yb9cUKyENfbpylh7jpNplVfNUiCor/GN3IxSNRTOOR6OeALWblZ4oxwzjaDvdbW67OF3HiXSkkirvwZxoD6A3evgJkrr77I5x4XKhAYNZFqWXbd6PCk7vb2xsZGrrrpqLNoyKYgkfM/K3BmlH6Oi46curOIuIuVCU5k5CaYAD98SGkA46Nd40/SjlKIjAnU1QEz5XmFHQRHhDiUVpN1+z3F66EmXkgqSLqLOnPBVNdPwi3ul9ARwxPieY8AA2/I73ZowxOKwaZuiuak/l6o37ouClFIibiyoCUFP1H/G27vb+cE917Lvh/fjiAOPyNtXG8eaqYwTdRAFvMYZAo0BkutTpLakCDY1Ft1PU71EeiVBFKLGRL0XpWVnk7c21GBKhZ30qJ0xupBPJUC4Qy+G+xE7ingK5o/q26YumTF0rIzjWKo/T7wQqfSAsOrQ4LDq4SvCzJkJWzthRoNi2YLR/Q2BOpP0ljSNH2wYU8eJTEuk7RFo8C+MWWdid9s4vS6B+uFNR+UqUIUVxo2wgRNzMatUjAtG4Dme7vTG/RyEUvN5ladQMd84VnJsJ5PKlsgNcZQpyn9piniOQ0F/RXO0K15TiWTajyCoDeHnk1oe2EMYvI70DYlAiZ5jx5fPZ4iJ2bhiGqRjOoR2pGTERITZ7zk2hGBWE2zrhc4+77GUvjLmROQbZwgHIWn76p1f+taXuO23t3Hmt/+DWCJ/dVwbx5qpilIKt9fxhXKUor1HIQeN30IIgk0Bku8l8FK6nu1kQ0pFNCIJCoWYFQYPajbGCDsu6zd6eJYacVh1Pwo11NygD9P055aawijX1+0Yi/Qyz1OkLRhKTiltD61WPRwBU9BUD+9tgc5I4fucthS2M/wzEGgM4PQ4uGPssPBSHtJWWbXpzLV3ekvzWg81PzBq/HJO1apUDdo4Lpu2rjInr2mvv3MsUYhpJCilkOtiqPYUorn8hEUhBEKBGuw5Dvlhnjofpp94yg+Dqg37hemxJQxl8DrS98hnOnZXorwS9i+iGDzuBATpmPYcjxTl9a2gGgJ7wGUMmgLT6Ms9lop42n+u6iZQ+Swc8kVEHnzqUZ5++SkAbMems7crb185TLigRjNZkWmJm5SYNQaJFKxvUwUjqIKzgtg9Lumt45c6pakMKQvspCTQ5wQTzWFUxGZOe5RYp4vhydEvUBsGpIef99WGfNGm4dKzpitKllMXpjwsFxwXhpLpGeg5zq9zPLxxDNBQK5AK3t3cn9fuuP7C25vrJM+9pVizIV+HZDBmrYm0JPYY5x1Lqy8neICjzaw1SbdaJT2n/ryn8GdmrYlZF8BsGL+ypOUyRlXDpiYpS9Ed86X3S0Wl3H7DyZUwRkI7qi2F2hBHzArnSaeXfA7hK1YPJBTwlfxSNjTUVaKlk594yhepMk2B50hwfO9x0c7b6fPI9w20yu0zqGuL3CfbP2e1eI6NgCAVH9ucn6nMwIiRlKWYOeCzWY3QEfF/PM9/10ITuChiCIHnOlxx+7dytqetApN/7TnWTFG8lIe0PIIzAiRiEE34InqDEYYgUGeSeC/hl2Cp3rmeZhBJC5ykJNB3z4QhYG4Nqi3Fdi0K2cioPZXCFH5k2TDU1fSLck3k4mi1MpblKy3bN46HDKu2BqpV55dyKpU5M3wH27tbFOGQL+4bT4HAF+Fs64aWZpg/XBUUU+BGxtY49tKSwZNasyGAE3VxY96w4mHSVXnHZxCGoHa76n7Qq2P2PUmIxP0yJ/Xl3NO0B5mFwzHyHKuYg1wbg4CBqB3FeodSeW0MBnwF27T2HGfpjSvMzCTI9sD1hhwAlS0RAw3LIqrg2f0d6ZcKqxJDNBASJJPSVxfUlI0acK8HK0EHTUGgz3vcHVWMcF2rIC+v+SuX/+gLvPbOM2Ud9/RLv+D9ze/kbEtZ+aq8Y50motFMFF7SQ7kKI2gQTfpe41SRaMJgcxCrw8Zq04PkZCJl+Ysg5oDFSBEwELPD0J7OK0EzIgICUt6wnraMKFdci58XRLmyqBdytGTKOA2VKpnnOS4zrDqDIQTNM2BdG7y7GZSE+TOhZbavkG0asL5V4QwTlWXWGFhd9phGGhTSXDBrDWTKK8kw9+c91TGHHQnaOC6DSML37gTKWE1UMac/13QMjGPlSLx3o6ikC7NGm6wo8sKqMxSbGExHOnv7Q+uVI/3Fj6EU/ByZ2697Kk/4LAdbjtU4MCICIYGdVjgpbRyPhEx4kVSq4Hs0s9HPO+6JV9ZrcO1d5/OXv/8vl958CvFkZPgD8FfIf/PwFXnb8zzHQuhSTlOYhx56iKOOOopPfOITnHTSSbz++usT3aRxxUt6KOWHuXZH/LJ98SJVG4yAgQgYxN9N6AWjSUTKAiPt5RkAosaExiCivgI13AN9atXDGDuZMnpasbowGUHLscAqwQGbtnJzjsOhWkzTd0Rl6hyXSjgoWDRXsKDZN4gHGuWzGv0KFm3dQ5/DrDFxY56v+DxGuBEXY5DIbEYg1i5BLVu6kjFb0RgHtHFcBu09ilAZ/aVSChV1EOE+N2OFc/SUUr4AV2sKMSc8emVjUxTMnRWCYWu0TRfSlu9FqM2ExzsKggZqCONYDfK4CqlQQwgvqGHUrMebYEjg2YqUrnU8IrJK1Q7ZOscDCZqCoAm9cV/FuhKkrSStHesBiMa7+cWfri/puPsf+TE90W1Abv3BwcaxMAWyBPEQzeSjs7OTyy67jP/5n//hySef5Mgjj+TrX//6RDdrXHFiLkZAkLT8aLGGWt+rV8xTE54TwmqzsDr0KvJkIRKXGI5XUNtD1AcRjRUwjg3D1xcZRrEatCjXUAyVvzpaEgXKOA0mZcWz/68N1yOEyHqPE6nh1apLxTQEdTW+9zhlDSFolfHgxsdGC0Y6Epn2smWcctpYHyDdZg0ryCktOSYCauOFzjkuEcdVdPSWGVJtSVTaQ2RySyvgOVZK+QaZK1G9NnJdHDEzNGTJiVIRpoAC4cHhoD9x1/gTpJQFMxv669cSNlFpzw+HDha4D2mPgfGySoihyzukXES1iHEBRkjgOYq0rnc9IvyB3VeqdouMZbOb/NSFYIUGk22dm3J+/+2jt/DZA09jfvMHih7TE2nnlw/cAIBhmHxm9TH875/vAyA9KKxaGOgw+ylKR0cHs2fPZuXKlQAcfvjhfPe73yWRSFBfX5+3v23b2HauURgIBAhNVLHuCmBHbEStIGEpXBQzGv0MGsvzx8PBiBqBNBWJTUmYC1JO33cj87dX+zWIRj1qDA9RIxBmZce2zPlECAQS4XqIYXxR9WFFV8RXT57oEo6VoJLPgee6KFOhROXnIElbEa4FMYReQNoekHNcW4swFfW1TUTj3SRS0aLPT/Y5KOP5mjlD0dYJm7sUO25X+JkRQYFEYscdgs0VWMQZhJNwcV2PYGMw75qbjQZOr4MVsQjNLN7He7YHQbLHj/TeKUOhDOU/RxXoUgyjNFtJG8clksk3HjZRfiAZMa4Z/sOr7CFEm4ZApVzkurgfOm35uVB4fn6wCBiIugrdRlPkeTnBL+cUTfqlD0otYTVViSV9718w4F8r5fXVSHSlP3MqYByrlJdv7A6xUKKSXtWIccGAvPNEdU92qhVfmVwV9RyDn4tUyZDq1s4NOb87rsXdv/8+//2Fm4oe89M/XJ0VHjngX/6d7T+wffazlD3Ic2yIMUkT0Uw8O++8MwsXLuT5559n5cqV/PGPf2T33XcvaBgD3Hnnndx6660524455hiOPfbY8Wju2LDM/6cGi31X9G+2+34KshDi+DGamzZtKrbXtKHar8EO84HjMr+Njdr4sk9kwnFbh9138Uz/340bx6QpE0ZFnoN64F8gRnkhzKWw08Lh9zF/05+WtPPHYPHiGLPn1dPaAcl0lKUfjQ65oLF0//K8S5mRd0if9ELopINBQ33l2AOc4r0drZFWGCpbq8X/yZwjvmB0HvZNWyvTnyxbtqyk/bRxXCKRRJ/ce7CMfOOUB57sV49OjixcVralfA9xrQkB4XuJw6L//5XCFNmavAPDIcJB36tlOQPCiacpseSAkgKe9D3HNSZE+hZCGnL3V1L5iySD7lOxWsfKlb7hXMZzNtYIBKBI69D6ESFtmVfGaaxp7cgfMR995pd87uAz2GHxbnmfbWpdy//95W7AV+M89rALeHPtg9nP83KOdVj1lMU0TQ4++GDOP/98XNeloaGBm2++uej+p556KieccELOtsnsOXYiDh1/7iA4M8SrGwSxFMxqFGzrVuyxk2DuzOJ9c2JrArnSY9GiRSV7KKYaUko2bdpU1dcgllQ88phF49tdBOeFKzuPwvcULt0/zvpnGpBb0xgfnoUxd+gyJ65UtHbCwXsP/YxNFir5HPS82EtqY4qaBZVVOE5air+vUdSHIRQqfs07N/UbiZ2vz8Pb0EjAmwmA67q8/XiAmnBuOZdovIeHn/45hx7zYWYkVqG88u7ptm5Fy2zYdXuBUcDwtjosAk0B5q6eU9Z5SyG5KUX3s93ULSpcoia1JUX9DvXM3HNG0XN0/LkTN+kRmhMkviBGQ2sjQpX/XDsxB+Uq5h08F6NQZOYYoY3jEumKlK8kq1JujlhbMYNoyHPYErUliWgIIGaM8WTD7PMGeZJ+OWbfOI7E/XDi6W4cd/T6tWAB33svlb+ooChczsntW2wY8FKLgIB0EUvJln54dqWiASqGIK1zjkeEdPzFplKEPypF24Dl5P32OJRnX3kYpRS3/uYyvn/+r3L2dVybH/3yIqT0F++OO+w/aWmexxv/7J+IFAyrdiRKTY0QwOnEWWedxcsvv1zws9NOO41dd92V22+/nXvuuYelS5fy5JNPct5553H//fdTV5c/WQqFQpPWEC6ESilUGmxlEE1ATRCUJ/BcSKfFkBO8UH2INClwwaipTsNwvDAMo2qN47StSCWgyQWFAWUaLqWiPIF0QFh93zMEpgG2q4inBPNnT50+tRLPgbIUgqHfvZFgW2CloamGIY3XgWrV4UA9yhM5itXxeIxwIDey5s7ffJ8/PHEH9z0wk19c9TpBs4wasMDMemjthPmzBPNn5bctEA4gYxJlKcza4jHhbtzFrDfLG6cthXCLX+9ATQB7m+3fkwLRpEoplK0whJE9h1Aju39CCpDj359U2wy8KvE8RWt3efWNAV+MKzjgoXUlypVlrVKqzjTEHJhf5pePBEP0lxkaMNcJBsB2feN4OmM7ikhigKKwp/wcCEP4qmWFcjDtPjGOgZ2XKYqLbtl9NZGryHMM/lpJMlJdQmGTBeUoMCCRVAPXnMaUgZ7jLx93Ges2r6GtcyMvvvFnXnrzSfbadTUAW9vX8Z1bvsQ763xjafaMeRx96JkEAiCMfuM4NViQyxAglb/wU0X58ZrhGcoLDHDPPfew9957s8MOOwDwyU9+kmuuuYZ169ax6667jkcTJxQ36YGCZFqQthQz+ua8hvDFe4YqT2KE/bHdS3sEavT0qlpJWb7jwTAYn8W9EsVYDSMjyqX71IEoR42JuJNlD1/GCfrVqoUQhIP+XDy3nFOM5pktOce8ve4fAPT29tLRs5WFc3Yoq22hgMAQivWtijlNYA76+40aAyfi4Ca8osaxtCU9L/bS+MGGsrzubsId8nobIQMvLZGWLPjdmdTPySzIVZ3LelVGNOkLMZUjxqUcCXEXwgOEmDIhs6Wew1PIrUkIGuNT8zYgCtbgzQweg2u0TjcyYly1mYUD2Zf7bQjf4C2kHOj0GbsDF0RMw/cQFyj7oRyJ8FR/KH6VYIYEcW0cj4hMWHUi5S80jQdtHX7iWsAMsmDuUk496n+yn/3k199CSsnjz/6aMy49IGsYB8wgXznpamrD9QRNgWn0L8gVUqtWXp8St2ZKsWLFCl588UXWr1+PUoonn3ySWCzGokWLJrpp44IXd8EQxPvSSDIhjaHg8KV2MmF/usxZdZOyqIhAakmYAmWVllNTE/Kj08ayfu1kRNremMyBLac0EeyMFkdNqC7rvcwxjguUcxooitkb6xpR+2Y0+H1OsoBjyggaKE/5/VUR7G4Ha5uF3Vte2Jpfxqn4HFQE/SjTYqKcylVIj/GxW8YIvbRZApG4n3Nb01zGQWnPD7NtGqAk5/YpTZfqBO61UV2WX5R+PMh6jvMfeMOAaHJ6r2jGU5C2yZbzUp5CqL4OIGigEvkdkLIlQqq+TqKvGw4IVKrvOocGrbrZEoWquqscCBmkY54WZQOsTpvgzABGiREgypF4yo++CFReWDL/+5TKlnGa3/wBTMPkgH2O4jcP/5C1G17jvY2v85XvHc6a917MHrPdvGV844xb2XnpHtlt4XD/aqA1SJALw8+nV67MWQDUTH5WrlzJCSecwNlnn00kEmHBggV85zvfoampafiDpwBOr4MZNujqhdCAGVIo4M8DHFcRLBItkfGUaOO4uokkFAFP+hFfY4wwjZL1ZurCEEv484zpnsKWQUnVVw6x8vcqaamStE+zxnG4P3Q613Mczds/Eu83iCOxYQoXFyEYAMfzF3MaC6f/4sSGMI57bJyIi9VqoZY3lBQloTyFG3ezUTCFMAIG0lFF+znlKlR23js50cZxCfTEVNnhNyrlIRyZq17slec5lq19oRzjlIQuDAFKodx846y2b0VzOhPvS7vMPgcD67wF/RrReeWcHEnekoIhwPP8hZLBqXqOrMr1BzMosJOSlKWor63CBo4TylNEX4tQv0M9dUuKjFYD91cK6Soc5Qv6VaqO8VBE493Zwbxl7hLAz9f50rGX8tWrjgLIMYwPWfV5/vP471FX25hznobaocOqs5MWzZTjxBNP5MQTT5zoZow70pG4cRfHFMSSuQZKMAipPsNluAgQTxvHVU1vHELOOJVMNEXJejN1NX7bBj9705lMycyxCNGNpyBQghWUyTmurRlgHNf1j5eDjeP2zs05v0dinSNqn8CfkxdLaTRrTOwitdWVVKQ3pwnUmTgRBy/hEWgY/o/1Uh7SVpj1Q3iOTb9dRT3HUvWJEU/euaJe8h8G11VsbIeGclN+Uy5K5RrUAuF7WkpAxRxke7oyhejLQEFBz3FN2O+w00MUJp/qdPQoagYas55CZb3BBsrx8utEF1oMCQhwKXidVdL13fRVRiAk8GxJOjF97z/4IdJO1CO1tbQcg8zAbnsCxy1tIB4tA/ONF/QZxwB77vJx9vnQQdnfa8P1XHj6j/jvL9yUZxgD1A+YneUJcpmiX5BOo5kieCkPLy1JeQZpm5z+PuPFsYpXN8kiU3rVqFqxHUUiBSFvnEommqJPmHP4uV/A9MsmDhe+P50YqxBdz1OkrdJSnTI5x7Uleo7bunLrcY00rBp8vRc/ajMfo9bEjbl4BTRs3KiLE3EIzQvjJT2cSGmh1dLyw6WHCqsGQBWPkFFu38L5OGmsjAXaczwMnRHojcGCMtXSVczJq3mrUL43uQRkexrS3viFVGcQItcj2kdt2A8vj6fGx/tVbXT0KjZ3khVnAQZ5jg3fEzxoJU2lPPJkzg2B8Pq8zIO+RyXHaTW7TMyQwLUVqYSEOZO4xxsl0vFF9axtFm7cHXYlNpOX60hRkvBHJRhY47hlzpKcz84+4Qouj36BpobZnHPiFSycV7zmX2Nd8ZxjP6waZIlCMxrNZMBL+hPDZNBADXpfs16cIYxj2Zcr6sa1cVytpCywUpJaKWGI8j0VI9DnOXZUScZCuaJciZTi7Y2KcFAQDPjh/8GAn/7VXEDIabKRWWCudFi15frRXMNpCbmug+P6rtuiYdWDco7bOnNr8kZHGFYNfrWYaMLvWwaXdDJrDayo7xU2a3IfLrvbRqYlgRbTr8/e7VC73fBePi/toTxVUtkkb7AzqA/fOJ7cglzaOB6Gtm6FJ33luFJRUvlK1QVWXlSRMIScfSwP1eqXbxp/VEFvZyggcDxFPAVzZo5/qyYSpRRvb1DYNjTMGfAcDPD8CkP48vWDyjmplJdn7AohkJB3nZWnIO3lLapUA0bAAKlIF1nBnC4ox0878JISu8sePkzJ83NvnDEqFVKIYp7jzO8/vPixks5TE+4fSFN2obBqCi6kaTSTFS/pgoSeeBGPkoCUVdxw6Yn5mTKJHpdmXeasKkmmwU5JgsjxEYEIGJBw/fG+ZnjruKbMFLaOXnjln2CYioE6XuEg7L+bYNnCsltcVSjZl79a4TV5y/aN4+E8x2m7340/sJZxfV1xz/G2zsGe45GFVYN/H5NpP52jbpBjyggaSNfPEQ415+bopbdZ2bmnWWditVmo3Ybvk7xUaQ48ERB4icL7ZhbNhRD90ZWTjOqbhVcRjqvYsA2a6offN4e055fqCQ96mw3DN36GQXVZEHOhYXxDqrt62zj/J5/jm9/9PI6TvzwugNgwxpFSinVbFZY9OV+IQmzthHWt0DJIkE05KlfQY1A5JyWVX8+40MKKEPnlHRzpS+BXoeeYvjDaVJHOcLogbb9utRESJYVWyz5hCstl3HLJ24YwjsshHBxY57hAKSflrw5rNFMFN+riSN9TU1ugdHM4MHTIazTuvw+JqJ+3p6k+Unafk8JjfMbaTApKiSl1GVGuVIkpbD0xhWHCsgWC7Rf2/zie79yZ7GS9kJX2HJdZxgkG5RwPKuU0kG1duZ7jyCjCqkNB38udKjLdEAKcaK4ol5fysNttAk2+5R+oD+BEHdwhxLuyx5YoHmcEDbxE4fNNhXmBNo6HoLPXF0eYUa5xnPIQtgeDPMciMER92z6Up5CbExAap/JNA/jpH67ijfV/59l/PMirL/0l7/NwCLryFetzSKbhzXWKrSNfKKsqXFfx1noFAmrDg+6HLf2BL4MhUAM7Czdj7BZ6zZSfozz4fI4cnzyoMhGGwABSiekdLigdv9MPzghmQ6uHPsAPCYvbIk+YfKwY6DkeHFZdDqHQAM/xoJzjDFNhENRoMlhdNpYwSFmF04eCfV4ct8BzL6WiM+L/PxGTyCIhh5qJJWWBcCXCHTR+jxHCEAip/MX0Eqir8Q34UvKOlVK0duV7FAGa6qC1y8+xnsz4YdWVzzm2SqxulErHs/8vNed4W+dg43jkYdWGEChFUVEuo8bE6cp1ZtndDm7CJVDvG8dGrYFMS9zI8MaxE3WGzzfGL+fkJr3CJUldWVqNrCqm+mbhVURrly8EUKxsQzFURoxr8MtsCt+rPEQNO9VjQa8NTePrNU5ZCf783P3Z3+Ox3rx9akN+2Jg7RJ5hbxzae2Fr5yR/M/rY1A6bO6BldoEPndzaeyIoUPEBPa4t/dXiQs+PaUB60EqyI31F82r0HANmAGKxqXFfR0pGndFsMPHiHnbX0Oo8yvP7kLQtxkWMC6CtL6SrvraJxvqZIz7PQM9xssiytTaONVMFL+3hxT1SysRTYBaYjIcCYDuFRbniKYj3vSaRiEQO7t81FSeZVrz0jixLKLQnpggpP9hzvMLelRAle47LEeWKpyCahPoCqaRN9f5n3cM4NKod5fVF4VXYWklaKk8OphCZyg8wKKx6gIhlXs5xBT3H4JsOmbrreZ/VGjgRN0ch3+62QfWXlhNCgGD4+YpSeLGhaxxnMIIGyimsWK1cVZVVV8pBG8dFsB1fpbrskGrw690W6nQDBsqR+eG0A4/tTKPk+JVvyvCXF/6X5IAVMiud7ymqDfurV4khokl744qkBa3dpYcFVSu2o1izQREOFs45V47MfYOChl/OKTMIZu51AU+wMPOjCJTt+R1aleapBQzfIzLU4s5URzkye49EQJDaMnRotfIUjq2wPQiOg+fY89xsSFfL3CWjepYCgSCG4Tc6VaA/AG0ca6YOXsLDS3n0OoJAkXc1GADb8/P/BhNJ+DmMAIkUJGPaczzWROLw9gZ45V2FV0JfpJQikoCQmICFizLKeAoBkfjwf0804c/JCnmOA6bAk9AVndx9dEblu9LzolLLOOWEVed4jguXcrLsFL3RjpxzjCbnGPyozUicgnMvs9bsW9jzOx/lKdJb0pj1uX9coD5Aus0acsyWaYlnqSFrHGcQQYF0ZGHjWKI9x1OVjl7fSzqjobzjlFKoXgdR6OEy+nJPinSSSilUxEGUINpQaR74609zfnfS+TEcNSE/FCVeeJ4M+GE8M+v9Vc/O3go3cpxZ3+b/PfNn5X+mlPIN34HehWCmnJN/f5UtEcUKoReKInCqe7XNNMFJypJKmUxV3GS/wFpwRhCrfejQauUqbFvhKl9J9Me/uITly5fzm4d+PCbta+/egpT+pHw0+cYZMt7jwXWOMyitVq2ZIrhxF8dSRNNGwXxj8EMcUYWN486Iyi6AWTZEurXneKxJ25C0YM0GeHvj8H2RZfth8UHPK+zAGENKrXUMviOivXf4/SKJofNm68Owub2wUTVZUGOwxlROGaeBnuOBOcc14frs4vFA43hbV26NY/DrJNtOaeUfCxEK+qH2hULBMx5cty/lzel1cKMOwcbcP86s98s+DZV37KU9lO2V5zku8FxLS1ZcXXy80cZxEdq6FSh/9a0sbFlYjAv8cNkhjOPssSU8mJVk/Za3eeu9v+c2JZkf0yOEQMrixnHKUvTEoLGv/2jvnbwdcjLt5xo31hUphSALlBfIlnPq680dWXzxLNAnyDXAuPA9ydXboQRCfo5Jqbk6UxFvgHGcDa3uLL5aoKTC6SsZYZrwv4/fgW3b3HLfJbz57gsVb1/bgDJOC+YsHvX5wn15x0WNY13nWDNFcOMuKVsVzTfOIvKjotKWIhLv9+ApBZEe7Tkea9I2BEyY2QCvrIVN24buj1K2HxYfcvKrSIwlIiB8cc4SqQv7Dobhou/aulROLe7BNNb7Tp5oovg+1c5YRCelnb7noAQ/VCo9IKw61B9WLYTIeo8HCnK1DVKqzjCavONw0G9vsbxjBLgxf2Jm9zgFvb9mjYlnSZze4hM4mZZIRyGCw78bwhQoWTisWtpyUpdxAm0cF8SyFRvayvcaA74atS0LG7imQLh+fduyjx1DBnuNAexEYQs4GPBzdgrRG/MN54YaXwxic4ev+D0ZeXezoisCc2YU2cHrU+od0AH4whsDVogdWdzWNQ0/XGhgHlLCGfdw+nIIhARuShb0mkwXZFoi+sLks6HVQ6hWK09l18Kk52ZXj6WSXHHbWTliH5UgR4xr7tJRny8U8j3HeXWOAYQouGqs0UxG7E6HtDJxPQgOMbELmRAbNDxGkv7ENdxnHBthg86t03gVcZxIWgohYFajQAh48R1VdH4CfWWcHAi67vgKXwaMYcVYB1JfA/EkdEWK75O2FN0xf75VjLowJKzJnXc8FtFJtgOONzrPMfSLcg3MOR5YxikY6F+5GE1otWn4IfLFaqwbYQO70+9v0lvTmDWFn21hCKwh8o69tCwvtU9R2HNsS0T1TmVLYpI3f+Rs61a0FhGN6uj14/vLVqmmr66tq7IT6IH4Nb8oHlad9hBe4WNHg+s62E7hJSfbSfPoM7/K354qbBzXhqEzUjhMJ5IAKX1Pa1O9bywP1blXA2lL0d6j2LRN8d4WxZr1vsDHmo0wq3EImf8ihekVCvpUSlXK88t3FcLs8xz3KUkqpfzBs0rFuMCvdSwtj2hici54jBblKaTlYQy4R8GZQ6tWK0/h9M2R03buO7W1fR0/+fW3KtrGto7+gbkinuO+sGrLSectdAmjX71bo5nMSEfiRh2ibvF84wyhoJ9TLAdETfRE/ZQYo29SGa4TRDs9rAJeFU3liCZ8kTSABc3+nOPFt1VRj2vK6sthddS4KFVnMf0yj6V6QU3TF1Bq7Sq+fyThP4eFxLgyCCEwjeGj+KpZH2YsPMeW7Ud3DFfGCYrnHMMA4zgVzc6JB4ZVb79oRfb/0fjIPccACEgWFeUycSIOdo+N3W0TaCxs9QcaTKxtFrKIOJyXcssLXhQULFknLe05nnR4nuKtdZI/v6R48mXFu5tVnqHX2uUPdAXDaYdBJV2UGOJlLlTfNkPKq3gO+8bWtfz7hXtzzLm78OIbT+R9/tRLfyKW6AFgzqwF2e2FwqrBV6xOpv2fwWzr7g/xCQYEroSOKg+tfvU9xYPPKR59UfGXVxTPvql4/X1A+cZxUTLG8eBnxBSoZJ8wQmqI0K3BtQ8d5dderMIyTlkCgoBUbGufnhM+aUukS849NetNvETx0GrlgWX54uSWnf9O/fGJO/n7G3+uWBtbO9Zn/1+JnONMOSfbTueFdAlTFAyp0mgmG27cxU54RBxzyDBV6BPlcvzQTPDLOnVF/fzODDW1BlbCo2ec68y2trbywAMP4HlTP6RbKUUs6S9WgG8ILp4PG9rglbWFBbqSaYVwlR+9N54L0abwjbxhFKuVJ1G9NnJjgplbetn0no1VpF52NNFXDKPAPLVt6waee+oBXMehqQ62dBQv6RSJK/72qqIrUp1ztYwgVyUpJzUsV616sHHsTxJdz8lGhQ30HH9w2Z7Z/49WlCsU8BdECmHWmsi0R2pTGi/hYdYVXuELNAT8vOMiJZ3cqItRRvSiMAVugVrH0va0cTyZiCd94+e5t/ycokAAnnnDzy3NrAJbtmJT+8i8xgBE7KE9v6pPlbjQR1G7oquZHd1b+do1R9PetZlEKsqlN5/C2+//I2efgSHVn1l9avb/dpHE4oxi9eCPLduv8ThwFbOhxi+FJKs0L9F2FFs6oLEOtl8osj9LWwTzZ4uhQ0v6au8NfoNEwEAlXD8XM+0WHYCFIRDQH2LvDFH2qUpQhiBAivZONelrJ44E6fhK5AON4+FUq5Xnq7cHAr6KZYb6uv4aiVffcQ6xRG9F2tg6YGCeP2fRqM8XCvozfteziSdz+y1hiOIpIhrNJMJLeCRikpQnqB0q3xjfGLPd/nJOsaTvwasdEN5qhgw8W9HbPX5GqpSSQw45hE996lN8/vOfH7fvnSisPoGi0AAnmWkKtpsLb62Hl95ReYZlTwzCFK8iMWaYfaWcCvSXypXI9jTeP6N4z3fi/r0T780e6rclSL/Uw9Z3Co8tAwXgBmKlU5x58r5ceM6n+fXPrqWxzn9Ge2L5+wK8s1GxcZtfhrMa8UN0KzsvKrWME0A6PYRxPGAcz4hyDSzjtNPSD2X/P9pyTuG+iJVCqYpGyEDaCrvHBlG8JrQR8ivmOJHCqwNuzCsp3ziDCBp48UFVV6RCuUobx5OFrZ2KJ19RvLMRFs7xc1TmzvTDf19YAy+vVbiuor3HX50ZUUi1p1AJt7AYV4aAgFT+gKmkQsXdwirXIyAa7+Hr1x5DR/eW7La0leB/rvs8G1vXArBl2/u88vZTAGw3f3v22m11dl87nfY9mYMw+8oDDC7nFEn42+oHTBBmNPgdcrFOeaLpivh1AEdSrgtP+T+DDeig4eeOW56fKzPEAJxVvAZfxGu8B+wysB2Lc6/5NCd9Z1eeferhqr2nY4m0+zr9QQsYwZl9qtUFVCBdy8Ny/TJOA8OqP77yM+y162oAunrbuPFnX6tIG9v6co7nzFpAKDhEMlqJDKx1HBn80ptCh1VrpgRu3CNlgyMFwWEWKA0hUKo//y8SV7hyUJ5y0CAgJR3t42ccb968mTfeeAOA3/zmN/zv//7vuH33RJC2faHDjOc4Q21Y0NIMr70Pf3utPwc5p4yTN84L0QEDPApGDcr1ceQ/upDvR8GRiJkhjAV1GAtrwZZs/nM38XcTORGOrqvY1pM738qweeNaerq2AfDaP57KRvF1FvAMd/Qq3t3i5992V2nJJ+nkp6+NllLLOMGgsOoiOcfQn3fc3ukbx7NnzGPu7IXZz0cjyAW+cWw5xfOOEeDFXAINQ/9hImBgdeSfxLMkXsorqYxTBiMg8JJuzrOpXOUrjGu16upGKT+M+smXfSXlZQugJtR/02Y2CObO9JUOX3xHsbnDv8kjCanG9nxPyhBhCYXq2wJ+WR/LK00+bxjSVpJvXn88G7a+A8DCecv40M77AX7ew9euOZqO7q08+LefZY85/OMn5kymbSvlG3mF/gZBXt5pbzwjcNB/3WpCgrTt5yhXI11R5Y+RIwmf9xRCFSjTFDRQtkTFXX+leLhzO4PKPlXpatvfXvojb73/IpaT5tm//HJaGseqL2ds8D3KhlYXELpIJyVOXxkny+o3jmvCdVxw6g001PmKb39+7n6efOH3o2pfKh3Phm61zBl9SDX0C3IBdPTmhov4OcfTu+61Zmpgd9vEbFFW4Fba8lOyOnr9ietAhCEIB6CzU46bKOW7776b8/s555xDIjGJZYqHwXJ8D34hUaX6GsHSFti0DZ58WbFxm69CnrYhrCRCDRMZVmGEKRCeyou0UUkXuSUJ9QGMljrEjFBWlFMIQd3CMF0pg85ne4i+FsvmikaTxfONe7q3Zf/f29MO+MJcWzpytWKUUryzUWHZ0Nzkl46qxr5cOQpRweqmbhllnABSVr9LvVjOMfiK1baTpiviX//5cxYzo7E5+3kkPrqw6kDAXwwqpljti3IVzzfOnqchgN1hZVOilFKk2yx6nu/BibiYtaVf7IzHemDesXL9frGS92wimPLGcW8cXnvPr9G7aJ4omIDfUCtYOAfeWAfrWv2yACPC6hN6GCosIeB7FvNKoKT76uOOUqnadR0u+9Fp2dJMs5rm8f3zf83lX/k5OyzeHYCO7i18/dpjePipXwBgmgEO2f/z2RBKAMe2fWO9ALWhfIO3o6dwiE9NGDa15+d1TzRS+uHzhVZeS8JThfPDg4Zv8Mad4T3BhkBZfd5GR6Kq0y4G4MG/3pv9v52MsLWImN1URvZNcgdPqoQQGCGD+HtJvEHKjelkn5PCzM05rgnVMnf2Qs4+8Yrstut/+tVRhV4NDKmuRL4xQDjYP/vqjqRzUiSEIUCqMRFM0WjGC+UprC6bqGPy/9k77zBJrurs/25VdZwcdmZzVk5ISAKERDQ5GyMbk4wNtsEG4wj2ZwwGRww4ggMYbJOMAZskEEIIgQJCOW7OOzM7uXOoeL8/bofqme6eThN2Ne/z7LM93dXd1RXuveec97xvaIl+4yIChlKszuZV72e1eSQchGzKI7FCdNXDhw9X/H3q1Ck+9KEPrcyXrwLyVkEAtEaFytAFOzep7X70sOTRo1LRsFmduVay2MbTO5OFrAM1qn3RMKQDAbLBAMnHksTuT+DmXBJp1fPuL/QUUawaA8TmVXDcE1WK1Smf7MWZOTg2ARuHVJCdyta26VxNeGZnadVm0cap4eDYT6uOVrxWGRwnmfaJcW0c2kZ/z3Dp73ibtGqBUmSvFRzb0QCzXmDJgozepeOkXSXgNWcRuzfO7O2z5CfyRLaEm+s5Dgg826tQrPYctSboNBV+pXHOB8dnZiWZPAz21j9RkZASc9BE6/3G0nQRroeo18xgVBdmKFaT27mgPM/jo5/9Le599FYAopEe/vJ3vszmkZ10RXr4y9/+bzYV7F1OThwkllQD53VPeQkDfSOVlWMnX7NyHA4pNe9i36ldoPh0V8li9nXBbLxyUF4LSGQU3bvl3vIaAYHQBUKiKPKyfiVY6ALyxcrx2hVQ8dPvAax0grmYJJt/cgVFnuUtptEXEDcCHHwwS+KJVEUiKJ91caXA0EUFrTpUmGSf97TX8qyrXwVAKhPj89/6WMv7N+m3ceqAUjVAyFc5TmfzJREiKLBgXCU6to51nK1wMg7ppEsWbcl+4yICBmSyKvlu2lQNqnVD4GTcmiI6ncbC4Bjg4x//eIlqfa6hEUtBIQSbhlT73BPH1Xt0x6XjyqeNwscikDkHbyyL6ArUrGLrmgAJCU8nvClM5mCa7Mkc8ylZk7W6sHIspaQrrNreipZOrqucOUCtfSNBFXStRT9k6Xgdpeg2Y+MES6hVR8uqrZlcskKpemRoG309g6W/k20Gx6CS7IkqbiFSSk7OCp6YD3DwtMSpk7DWAhrSkaQOppm5fZbMkSzBwSCRrRG0JotzWkBD2pVex9L1oArD7mzDOR0cO47k2JnqQVs1BA3BxqHq1eWGYHnIpag6RWGGBf28soriW7P4xg8+za0/UbZMASPEh9/9efYWqsUAg32j/PXvfoWB3pGK97302W8CIGiUVwaWayIz1Zv2iwNpMcuYSKuBt9px7gqvTZ+9+aT6DZFQi+e6zuAjpaxdWfbD732YdWlYIWKF8R1f1RjAzKbITltPOmq1tD2lUL7weSkZmxccywZ57PYUmVPl3lwzK0ujrF+QK1RQgRZC8M7X/xnhoAqWv/nDzzA+dayl/fN7HG/qgMcxUJEwS+dz5Pxtx1pRfGNdlGsdZy/ctEsm4WEJbVH/ai0EDTAdmIpJDF1VdRZCGALDcqr2ei4H/LTqt75ViWs6jsM73vEOPO/cu0ezeVkrV7kIfV2CbSPK7kmYqyR8KURFEtybzEHGgSVosF1hmJoHVxdoYR0rYTM1X5v1Nj87WXps5nPksmmEUBZl0zF1LZ6ehlPTsLEQu2ma6qNfqUROo5BS4tmdDbTyRRunBi+eRnyOQfUcT/rYWxuHtxEKRohG1dzebuUYVPtGKrNY5HYuCROzSgT32DjsP1lfNFXv0smdyGFEDaI7IjXVrQFm45JUtnYxSHqyonJc7DleD47XMKbj6qIZ6F1y045AVhHaWgRDVBVmkEm71GvSKu586KbS4z/6tX/ligueuWibzSO7+Mvf+TLRggT9pg07ueriZwMQCPiDYwuZrB4cF9U6S8FxpkBTqUInF0IQ0Ov79a0GzszJhjOHVeF6tf3gNNGY/YAuFJ3alcisU9v2aRXhODa33PXfFc/lzAzM5tesgMdywclWt+ZKFSpIfcMGY7OCh25OkC+oQZo5D1mYJPzBcThYziQND2zi5170DgBc1+Ez//vnLe3fZAWtulOV4/J+2gvsnISmJsb1yvE6zmY4GZd0tugg0NgYHAyAbUM6q6ivVRHQiHguk3PVbYU6jWLlOBQK8U//9E/s3bsXgDvvvJP//M//XPbvX2kkM4vFuOohGBB0R8TqzbW6KLHxZM5Bns4iuo0le5+7IpDOqyKEFtJITdkkM7LmdTdfoFIX4adWj89CJqccWoKByjVbKFAOntcKpKMsM0WHIhXPk5yZa1ypGiBXUKsWQiwSuVxIq56aLStVjxbYW4ODKgPRrlo1KIaKaVWKcrmu5MQZZT/b2yUYGYBTk7DvhCRfwwYstCFEdGd0yf7kWEry+HFZ/7qQLKgcF4L3szy6PMt3vz7GpiWepyrCK4LM0gGu0LVFwgzS8VTfSZtK1bGEGgTDoS5ueOrLa263d/tl/P0ffoeff8m7+fC7P4+uqaxRRc+xZyFzblXF6uJgXgyOZxMqe14LfV0wWUWoL29KEumVH4xzpmRyvg1KNYUqYo1JTRQVq7Ulzqch1OBvuopJsAaVqu955JYS/b6IrJ2mK5ljbMxdc73kywm3RnA8n5RYNvREBQPbgpw+bPPg95I4lkcmK0sidXlfz3EoVEmzuPHFv0l/7wYAfnTfN9h/9IGm96/S43hn0++vBv9iwHbyZE1fz3HRq3uNWrWtYx2NwIpZJHKKWtoodK3g2mAqsaOqMDTCwiWdlIsqclJKjo5LHjrUmYqu53kcPXoUgD179hCNRvnEJz5Rev33f//3mZtrf3G+ViClJJ1vvG+09D5Xrtpc6xdj9aZyyLQN3UtH90Vq9XxKooc00nGXXNqred35e44B4r7gOJlR2jpn5mB0oPJ90bBi1K0lm0bpSqTXXruhH9MxmIo1VzDLFyrHkVDXokTGwuB4cs5fOVbB8cCAOtCpTAzXay+THDBUYcrP4JqKwUwcBnqK2whGBlUl+fFjkkyL7W95S3LolGQ+RX3dBCEqK8euh2CxNsvZhrW3Gu8QMjnJyanyBbPckJ6q/tUV4ypuK6gUZsi5im7TphhXLDkDKAn5pbBr60W8/XV/ws4tF5aeM/Ry74vtWGofa/QdBw2YS6iM+OR8fep6d7QcSI/PSB4/5vGD+z2+/RPJDx+Si5SvlxvzSUVN6Y4uvW1NWHX6YAKKLr1kdloX4HrIrLOkyvlqwe+DXbw28maWiOOQOpVfc73kywkv5y7yMHddyZn5cvUoFNbo2xHixP1ZHvhhmlxOohcWcBVq1cHKGyYa6eHNr/r90t//9pUPNJ14KFaOA0aIwb7Rpt5bC/6eY8/LVXphaiC9slDZOtZxtkFKSfyMTU5qTQXH5Q+gdhuWIQhIiZl1KxaXnqcqd3c9pmx0cmb798/Y2BimqWgdxYrxC1/4Qm688UYA5ubmeN/73tf296wV2A7kzeaDY2yvYLG4Cgt3QyiLx5yDHMsiuoyGg76usArsXF2QTirx1lrXnb/nGCBWUKwOGALHVbam3ZHFLh1dEdUet5b6jqVbEHzsAEXXdiQnJiVBfYHt2hLIFXqOF/YbwwKf42yKqVlfz/HgFqBcOfakRzoTb2XXSyhSwYuVY9OWHD8jCQUrf1NAF2wcVNfMY0clB095HB7zODahqswnJlU1uNYaw/MkR8Ykc0kY7lXXRa0+ZqGDmy23hcpzZD2w9lbjHcLkvLrJe9sJgJqB5SFt2ViAIytVC2XeRVgNvrfW19smqcKNN1CoQDULP23EckyELavbTgGREMwXPIzT2eqWAkXomigVWW97UHLvfpXtCuiK9j63wlZPM3FZ2q+WYddRUAxoyst6yeBYU/T6bNHjeG1l2qbmxrjv8R8AMDq0jd1bLwEga6YJdGmYp7LMx8+NgXApeI6HZ3loC85RPA3JdOX1H+7W6R3WOXJXGjMnCQQW06pDwcU3zEtveBNbR/cA8Nihe/jJwzc3vH9SSiZnVHC8cXgb2lKshQbhD46RJjmzXFlQtGrq9t+vYx1rGW7GJT3vYAqdYJPB8XC/+lcTATW+667HXKEFxXEkDx9Wc2B3RM2dndDj8Pcb9we2c+IRtaD/27/9W3p6VIXg05/+NOPj4+1/2RpA3iq2cjX5RttTmi+rwdIylBCSN55VLWs9je98V0QVGJKWIBGXhOv0siwMjuM+mnVXRLUbbuhf/L6gIbBsZRO1VqAqx52hVU/MSuaTzRfMipXjhUrVUIVWXagc9/duKG0/NFS2c+pE37GuQTqnxpOJWUk8Xd1hR9OU33cmByfOwJFxOHhKsv+kEmN7+LDk8JisajV3akpyakqNb+FQwV+5hkq2CGg46fL1KB25eoJ3HcQ5GRx7nuTYhCQcrJPV7TRMVw28jQS4QiD9li95FynaoyEU/U0BBhqoHNdCwFArBMvOqwp3LTunkKJ2TMypG6eapYAfWwrx+vYR2L1ZsHlY0NctMDSYXsEAy3UlYzP1g/lGIO06HsZBTVFNQ/WN3oQuEJ7yOhSNeCKvML535xdLmcWX3PAGugp96q7r4EQletpi+kSNEfMcg7QlniMXsQHmkhJPLs5ERzaE6NNdcimXYLBIq16sVu2HYQR428/9SenvT3/1Q7huY0J98eRMibbdKY9jgKDPysn18ph2WSVWaALkupXTOs5euBmXVMKFkNZwv3ERAV3UrUAJTTkXdGkek/Oqjej+g5KHDsOGPuWgIaEjgl1+peouYwdPPJAnb0o2b97M29/+9tJrjz76aNvftRaQtxS9tJXKMU5nKpFNo8gUm8whoo1XjUEl8qVUwlxZE6Ki+rrMdd2KYBgqg+XRAThvS+11sa6zprREpFvsOW7vfGVNyclJte5rNiYo9hyHw4sjUH9wHE/NMhdXYmgbh7aVni/SqgGS6faD42BA0ZxTWfWbeqO1xcU0IRjqE4wOCjYNKuX24r+eKBwZg0eOVLI3Z+KK0dLbpRImgaX8lQ2Bm3FKa0XpyNp6PGcRzsngeD6pBpHBFRLiApCWh2hw0BWGgLyPhpC22z4T84nyANhq5RjKfce2Y4Eo7FsVhIOK2jETk0u21gIYhQFp4cDUE1W9EdWyV8uBeBriKXXjtwpZrPzX+N1CE2jbuxFLBMdQ8D7Mu0jWVo+G67l8944vAKAJjRdd/4tEfJNDzskSDsDUgdyKiM2sNrwCHU/42iYsWzJVp6UgvDnMyJCGUVCCrCXI5cczr3opl+x9GgCnzhzmu3d8vup2C1GpVN254NhfOXbdPE6VSXI9OF7H2Qo77ZBIQDi8PGOvBKKaRzIDdz0ueeI4bB6G7qj6vq4wjM+U1WfdnMv8PTHsGmKYteCvHA917WD2hMXB4yqAuvTSS0uvHTp0qM1ftDaQt5Qmpt5kkCvtQj/kaniw6kqMVSZt6G225K2ulVjBOiziVg+Ok4m5RcrkMV+wLER9N5ZoSLH61oqWSNEqcCnlY8uWzMblIhXnIsamJelc8+s+27FwXHUvVqVVR8pl6BPjB0rHbcQXHBdp1dA5xeq8BcfPSLL51tsDIyHB6CDMJODBQ5LxGUk6Kzl0Wv2G7og65sWkYb3KsWdJxZwFvHNkPXBOBsfjsxLTacOmpxWYLhLZWIDjs/CRUiITNiK4dCBVD/HETOlxIz3HtVCiVdsmIqghU9UnaU0TeFL1ItSyFGgEPVGl9rtSVk9zSWXBsVSluy48CR4d9d5r2JNihfDA4z9kZl5R8K657PlsGNxM1BccZ/NpwoMBcmM55ibbtyFb6/AsqYJj3yQdSyuqWy0WgjA0tA3h0kIs77OEqEarBrV4+bUbP1j6+z+//hFy+XpqGAp+Ma6NHVKqhkqRPtPKI8R6cLyOcwfJGYesraiDy4Wg65aojdtGKtclvV1qHElk1FoguT9F+nAaa7YBE18f/JXj4e6d9OsOB/Y7zCUkF1xwQem1gwcPtv+D1gBMq8Up0/ZowGRxeaALyDpNV42L6IooiqxraGjZ6nPuQjEugPj8TJUtqyMaVuuxdG7pbVcC0lG06nqRiu0oqvCDhySPHVMBnh+JtOT0lKIeN8sOqedxDBAJd6MVON9Tc2Wl6o3D1YPjhI/h2SqKwfHUvBIWa/Y3+aFrqqIM8OgxyWPHJYk0DPVVbmfokKxh56QFhGo7K7BhPatOy+FZhHMuOLZsyYnJ9pSIW4HMu42P1rpQPcoF5URpti/GNe9TFO5E5diy8xDUaypWg+p9SGQa95GuhoAhsB1WzDN3YlYSasfCCZSHsSc7ExyLgu3TGrsT/UJcRR/sispxPk2w18BJe8weP/ep1bJwv2q+XrXpmEQTjfsl5huoHANcvPcabnjqKwCIJaf5ly//yZKZ/DMVNk47G9qfRuCnVVt2joABiQUCeuvB8TrOVsTHTCyhEWq+kNcQhCEQOZfto7Bz02K7w0hIkDdVcjh3Kkf6YAYk5KeaG1OLwXEwGGKoeyNRXMx5myeOS/buPa+03bkSHLcqYub3GV5pCCEQ27oQ/a0ov6lARhMQjGqQc6raRS7sNwYW0azrIVpol1srolzFuaVW0clxJQdPqVa57qhiYdx/UHJqysN1JZ6UnJySWA5EW2CH+D2Oq/UcCyFKtqh+FG2cYGFwXMW2pUlomsB1wfMg0k6Rx4f+bsFgjxKq3TCwOOAOBdQ14VVZh4iAUG1nhTjBM72z3uMY1tySvH1MzquJZqBKg/qyItOEd17Rwsf2lHCT5bWvVO2rHLfXc1wMjk21T1ZtxequQpYx3NpYX0IkBGMztZXzOoVMTjIda49SDaieJbdDwXHB+1A0Y7y3zJhPTPGTR74HwFDfKE+//IUARMLlA5czM4qiFdWY2ZfBczpjSbJW4dmVvy9rSuYSivnQKCpo1VUmWj9+5ef+GENXK/abfvRf/Nc3PlJ3+5WgVZtWnqCh7nk/fe1cUadcx5MLbs4lOecgg3rDCa6mEdCQWZdgoLYAZMCAMyctko+l0EMawaEg1oyFW2PeXQi/jdPGTbuJaAICOsOazdEJyLrDpQX6uUKrTmaVoGfTyHo0ZXLbYbRbURsZEAwM6irIzy+ec+erVI7nqwTMtaBpqg9+rQTH9WwCPU8JSp2aUgJj0ZBg07CqUT1xHB45qirGk3Ott1hWVI7D1ReO/r7jImpXjjtjpzY6qILYTiIUEIwMVNdRCAUUWyNfhdCiGRrSlRWV47Wmn9MK1s6KvEM4NaUMvpvtRWkHUkpkxmlcbbogzIDjKaVqRy6yiGkWlZXjNoLjUs+xidRRnsw1JunhPrhgW/u9sr1RRXfOLDOVZy6paODtVLqBsrdrB66xkvdhAxZgK4Xv/OhzJSGoF13/i+gFL6KFtGqA8GCA2JhFZuLcrh57VuUkHUsqYZRIEy0F5hKCXH5sHd3D777170t/f+6bf8P/3fqpmttPzpaD404KcoUClcFxKKBUYnO+SVKu+xyv4yyEnXaIz3sEu5ZxGWRoKpCp4x3bE/KYeThFbs4iuCGI0W3gZFzseGPtKn4bp5ENuwnqEtFtEExZhITHY8ck551/QWnbTGatRD6tI5lpQakakHnn7K9qBTSwZFWx1Njc5KLnmqkcgwqEpmNrY0z3aigfe1JydEJyfAKGepVwFKiKZ1+XYLhf2RgdPK3EoUItrq/8LU3VaNVQPTgerdVznG6fVg3KhmvZEnpVEAiodkS/v3IFJOXKseV1RF18tXEO/IQyEmlFr1gpb+MSLK85n1qjYOFje8rzrgPXeEXluAO0agDHtdW4VCM4FkJ0JAkRDavAeL4Otdq0JBOz7Q3YRQunthXM3WLPcXsfAxS8DztrLWHZJg8fuLMi69ko4slZ/ufmfwKUENeLb3hD6bWFtGqAcJdG3oGZo7VGzXMDnu2zKpCSqXlJ0Giu3yfv8zn2B5218ILrbuQdv/Bnpb8/8cU/5Af3fLXqtsXKcU/XAN3RFtPkVRAM+mnV+fIkWcyFCFHKGK9jHauNVFY2TLlNzztkMx7h6HIGx0JZB9Wh83bFspgns5i9YUW91QW4EivWWN+xX4xreHgPwYCEiGqJGgk4TMdgZFOZWn22V49tR5K3mg+OpafEL1fFxqmDKLkEVFmXVascJxNzuE7juiDRsCokWHUSOisF6S5WPpZScnJSKSoP9ECoCrVY+fwqRebhvkUvN4ylaNUAXdEqtOqhraXHnaZVrwY0IUCqgkBVCHDzHlLK9Z7jtYgzcyrIarsy2CxMT9GPGwyOlcVDQd0taTdOx66DWLIzatVFWjUUqNUayExzypnNQiv4IM/UsXQ6PCZ58KBsacCWUikZjs00R4OtCVeqho9ODACGpjLAbXhcL8Qnv/RH/N5HXs3b/+RZzMbONPXez33ro6Wq8Eue9UY2j+wsvVatchzQBa7QSMysXi/XSsDNlftoUoVETk+T44xZsFoKBAIYRmMru9e+8Nf5xZf/Tunvj/z7b3Lvo7dWbGM7FrPzEwBs8vU6dQKVleMcmlCWIvnCJCk08NbAImod6wB47KjqQWwEsRkH0xZttwXVRaCcCK8GGbcQJ9K4kQAZpzyf6BGd/ITZUKuRX4xrZGgXmqYpJprroeUchvsgOlAW5Trbg+N2bJykK1XC4myHoGpw7Fem3rx1D6DWP4lE43TerrBi2K0JanUVPYvxGcmh09AbWVp0NxJsr8Kaz5cPQqOV477uoYpCQm9vb4l91wlBrtWCJsr+ygshNIGbc9T95cqzn53BORQc247kyLikO7LyljjScpVPbRODrpSA5So16Db7jaFcOY6Gu5fsZ6wHf+XYtvOIgKasB5YZPVEYmwGnSv9iOis5eEoFJIkmBmzXVfL0dz4q+d59qke0mll6s5CuRMgOXWcRHTEaQXQwOL7nkVsApWD8vo/fSCoTb+h9Y5NH+Pbt/wFAONTFW1793spdrVI5BgiEBNPT7jlt6eRm3VISaz4hsezqGet6KNKqw+Hm5N3f+po/5OXPeYvaD9fhTz/5Vr5y8yf45g8/wzd/+Bm+cvMn8KRafG/soBgXVPYcW7ZiB/gnSaGLEp1qHetYTXieZPa0xcljdtV5xA8pJYkxCy+gLSs9seh1XE3UUloe7pEkWB7BgQAz8bKFjt6tYydsnNTSSUd/5Xjrhl1lGqqhIedM+roFQ6PnjiiXaanWjkBLHsfNrdPWKoShQRWbTb9a9Z7zLi89boZaHQwokdRk88SzjsNzK2nVnpSMz6h+867I8p/HnFU+COEGe45Hff3GoNaJfd2qetypnuPVQCgIyXR1my8RENgph3secYklzo3guF3d3jWDyTmYiSurhBWH5SFpXLUWUCrFSVv5I0fbPw3FnuN2xLigMji2HAvCOjLvqgRAm3ZT9dATgem48iEe7q987diEJF6IxZIZJb5QD44jOTUNR8YkZ+YBqT6zq1Nelq463534NCEEdOD8F5EzMxXV4hPj+/njv/9F/up3v1Iz81nEp7/64VKv8Y0v/g0G+0YrXve/P+fLqPb0CGbnJGNTkh2bz/5BsRq8nIswtAKlujXrl6JadSTSXMlZCMG73vgRkuk4P77/G5hWjn/9nw9U3XZTB22coJJWbVoqOA4FygsnoQnVUrKOdawyciaYR9NYNsw8dZBNw7XHInPGZO6kRaBn+ZdAEhSzzP+clHgn0sjpPGI0TNRVQndZU1Xu9KiONWNhx20CvfX30V853jGys6SFISI6MqHWGJdfem5Vjh1XOV00BdtTvd9nOa0aUEJvaQcpK+1Di2rVhhFg287zFzx/WcMfr2kQS3VqldM6pFWpfJzJKeZWRxiADcBfOQ4Ha9CqFwbHQ9sWbdPXM8R8YppEen7ROTtbEAworRHTXizCqwU0knMeJxMSL+YxuOHsDy3PgVFCTTTHJpQQl7EKGYtaglV1IZQ4RCeUqi07TzanGnbbEeOCss8xqMpxWbF6eRfAoaDAshf3HaeykoOnVW+JocNcYunq5NEJ+NHDkpk4bBqEHRtF5wJjqEr1WSuYmDq+6LknjtzLhz/5KzhObQbAY4fu4c4HbwKUT/brXvTORdtUo1UDBIIaBh4Hj3tLVmzORniOh2d5aIbALIhRRVqgYpotBscAuqbzvrd/kqde8py62111cf3Xm0UFrdrOFZ6DbL7Qk6aLdVr1OtYE0lmJnXCQ03nOHKktECilZOqJLKmkR7R/+RK+Fd+5YI0gp/LIEynEQBCha4SCKuhLFdbiQgjQBdbc0kKHxcpxIBBia9/GcjAR0ZE5B9I2u3afV1qQ799/dleOqynmNgKZdsCT50Q/JEFNsREW6D3MFwS5+gdHGBgsJ7djTYpyRUPK+WW5HUSWgmtXuoIkM4o10KrAVrPw9xzXVKteoPGxcbh6cAxqrZ431wJfvXkUFatzVYYkERDE5j0SMY+5OLgtXje2I7HXyBry7A/vUdZN47OLjatXDFmn6WykKIpyyfYHa78Y12CbleOAUV71W7YJhkAUVbV7l8kMsoBQQPkQn7+tfDyOjkuSGdi9WQl8T84r+lw9Ua2JWSWWtGXDMg2gazg4Hp8+Vnr8nGtfzb2P/YBsLsW9j93KRz7zm7zvbf+MplVeq1JK/u0rHyz9/Uuv+cMKCnURtWjVaIK+qGRiymNsRmfnps79nrUAaUk8R6KHtRKlrxVdg1Zp1UUEAyH+7Le+yD2P3FJRuS9i++bzuHDXVS19ds3vDPqTZWpWDAQgnVOTZERTNldnazZ8HecOMnEXabpEcRl/OMNlV4UIVEk8W3M2k/tz5CNBBjrkE1oPwhBqjVCATNt4h5NgaIiIWoIJBJomiaUlG4fUPhlRnfwZE+8yr8Jf3Q+/jdOGjXsIeuWeWqFrSE8i0w7BwS5GN+1gcuIEBw8ePKvv17zVfD1TZhy84+mOsPTWBAIapB2lVxJWCR7P84jH1FpwYHCU/sHyWrBZxepowaYzvYJV2mqQC5SP55ISY2XyWcACK6cGe45Hq+h+9BeCY4B4aq7q+mqtQ9cErifJWbDIRcoQzMw59Gx2yeYkyZxgQwuWqUfG1dr6oh2rPzadEyPF2IwkZ8LmOjSq5YKUavJpumdUF4rm04Es5nzCb+PUuhgXVFaOLdtECIEnRE3F6k6ipwtmYpDNS6JhQSItOXxaedQJIeiOSGIpNWj31RhbcqZkNqEM4ZcL0l27NNKxqXJwfP1VL+eVz/1l3vfxG7HsPLfd8zWi4R7e/roP0OUzrv/x/d9k/9H7Adi55UJedP0vVv3sWpVjdIEOBDXJgVOSLRvqU95cV6KdRZwVz/aQtkT0CPJZlaRplqHieV5bleMiAkaQG5768pbf3yxCgcW06oCuJsmsCVFdgCdVH/450Mu3jrMX6YSHZksiW0IkT+eZOmay9cLKe01KSfJQmulpj8jQCq2yC17HUkpwJO7hJDLjIEYrk2TREMwlwHElhi4wegzMGRM77hAark5VGRsbI59X9+XIpj3IBbaQIqAh503Y3sW2HRcwOXGCTCbFY/snufziszOLmcxIjCZWrtKTeMdTyLSN2LTSaq3LA1VcKRQtCkWhZGIOz1XrtMHhjfR3D5e2b6VyPBNTldpGguPpmNL7iXaSoQdIu0yrtmy1/utqLbfcEirVqmsFx5Vq1Rur0Kp7e3yK1ek5Nm3onN3iSkJokM0tpttnbUEqKRnY6ZJwJfMZ2DBc/TNqwbIlMzGwHdgyLOntWt31xFm0RK2OvCk5Ot4ZoaWWYEtkK2rDhkBm3Y4IMcX8Hscd7Dm2nQJ/YgUUq0FV49J5xQSAQtU4Wz634QL1rJ4oVyylsp3LqljeoaTGcmDcFxxvGd3N5Rdcx/vf8Wk0TS0Ev337f/C691zEh//5V7j7oe+Sy6f59Fc/XHrP21/3AXSt+qKxXuUYD4a7JBOzcLrGPJzNq6zgvpNrt/JeDZ4tkY5EM1TluJW9L4pZQXvB8UpD07QSm8T0/QYEZHJKeEO6IM9tsfJ1nAWYn3HQkQS7A7ie5MyjmUUe3NaczeSBHMlAcOVcLXxex97JNHIihxgOLarcRsKqXSFVKFZpQQ3Pltjx2nNvhRjXlj2K1eRP3EUMvISFNN2KHtTv33FgzdAXm0U615wYl5zJIyeyiKHFx/xshoQKWrVfjGtgYITeWDmKLPYiNwpNE0hgPrn0NZLMSH7yhKw577cDz0erTmZUT36kBb2PVpFrQa16pECrlkkb+xtjpO/O0N9TjhTPZlGuoFF9/R3PCRxTEnI9wgGYToimx5dERqmk521V8FxtnPXB8cScCoj6V9rbuAjLVQqIzfZA6AJyTkeUqjtbOV5g5QSIoL4iitW6przUZhOSeEpyeFx51BUnNCGUq2wiXfvGmU9KpCx81nLBXrtqfBXB8cguAJ7xlBfze2/9h9JxtOw8P7rvG/zJP76J1/7WhZyZOQHAlRfdwLWX/UzNz65ZOdYA18NAEgnBgZOLLbdypuS+/eq5U1OcVQszaXlIT53zTF7SyqkvVo2hdVr1aqHIJrF8vyFkKPE8tIJ/6BpuNVjHuQ/PkyTnXQIBdR0Gh0NMH8qRnSgndKSUZI9lmJ31kGF95fRJCl7HcjyjqL0DwYrqbhEBXeC45eAYQA9qmJO1+44rxLi27lb3oZ/BEdYReRfSDlu3l4PjRx8/xPHmXP7WBFxXksk3buMk8y7e0RToGiK0gnzclYAuKooWfo/jge5h+r1yn2F8foZm0dcF+0/W13mRUrLvhOTUVH0rzlYgpcSzy7TqREYpV9drqes0KmjVDfYcjw5tQzoe9qcP4d4+xfj7JhgMl9flZ6vXMajWx0yucv3mSclUrOA7brpEQyqBlUjX/pxqUAJwMNgDZ2brr/NXAmd1cOx5kqPjknBwmYOhejA9VUlsVgExpEPEUP/aRDzZyZ5jf3BcWFgEtJJi9XKjK6L6xw+PSdI56OuuPK/hglBENciCzH90mTOL8iyoHA/2jRD10X1e+Myf558/cBuvev7b6Osu978Uz7EQgl+98U/rZtb9tCI/3UgIod7nSkb6ld/4KV+iOmdK7nlCckJphRBPw3SsnV+5svB8asyprOq5bRZ5X2B5NlWOoRwc+yvHoYDK8jpegbZ4FiU71nHuIWeCGXdKPcbdvRrpvKioHltzNnOHs8yLIL0r2UdZ8Dr2xrPK2qlO32swALO+IEPvNrDmLNxc9bnXXzneuWW3spT0Bf1CF4W+Y5vtO8uK1fNTh3jsqCSZObvu25LHcYNjsHcqg4xbMLCcZtarAxHQlBVoAUUxLoD+0CC9bndpPo/Fmi/rDvUJMjl49KisKbQ5PgOHTsNAN8wmqltxtgrpSiWgpgs8qQRWV7JqDJAzyxFeI5Xjnq4BuiI9uLeeQU6oOd/LSjZ65XX52ex1HApQEiUtIpVRgXA0jEpe6KrINZ9q/FpwXMl0TFHmIyGB5cD4rFxVQbizOjiejqmF+KoJcYGiVEuaFtUSmkDbEO5IBbKyctxBK6dC5bikWF1jgu4keqIqeDo6oarGC9EVhnhKBVwLkc5BLL28/caAOhZrMDjO5FIliv2W0d2LXt+7/TLe9Ya/4ssff5w/f8+XeN7TX0uoYNXz6ue/nfN2XL7oPX5omlYKkCto1RQoXq5E1wVdEdh/UmJakpwp+ek+ybEJ2FYQz5SeEk1bbni21xEPXs9S+2o7EtNqvGrhh3kWB8dFr2PLKgfHwWBBudJWSRG8s2uRvY5zC5k8yvYoopY0AUNgRYPMHs2RP2OWqsbxeUkWXS3kVghCK1SOUzYM1g/SomFlk1YMWo0uHSftYMeqM7f8leMto3sAsSjBKYI63pzJth3l4Hh28iDxNOw7sboL0GaRLwgiNhIcyzkT71Qa0R88NxSqFyKoQd4rWen5qdP9DKAbAXq7VK9rs4JcRWwZgWMTqlixEKYlefSoRBNqDZ7JK5ulTqHYriM0QTqn1ncrHxz7e46XtnLaOLwN73QG97ZKWsaQWZawip/FtGrDUDZqfsXqWEpiOxAIiFIisjsCU/ONMwQTaXV+i+Nyfw9MzNZvoVxunNWCXKemJI4L4RVQnKwJy4NV7mOJ+SrH7fcc+9Rpiz3HRcVq01t217tISJCblQgBGwcXf1tXWNk9JdKLB8pYSvVsjfQv3/5JKddsz/H41NHS462je2puZxgBnnb5C3ja5S8gl08zGzvD1o17G/qOaLiLvJmppFUDyDK1dkM/nDgDh8cURf7IGGzfqGiDAL1dqi/5st2ScGj5jmP2WBYrbjNwbX9bvWZegTFh2QWl6haSL6ZVpmedrbRqf4Af0AWOJ8nZEPZYrxyvY1WRSnh4eRe9p5zvD3drzCcEqcNpNEOQOZFlhgChoFKHXkmIoTAEFgeuCxEOqrntwUOSHRtlSWTUilmENy8eN/w2ThsGNiPPJBf/soiOTNkM9W4kFI5g5nOMnzrMxiE4MqacIEYWyc+uTeQtJdgTWIIhLW0P93hKVR7PFYXqhQhoyLytFKsDWkXP8WBgENEfpL97iER6ruXgOGgIBnokjx2DkQHJUF/56jp4SmmM7NqkfJFNS/UFD3SoxVE6qp0JTVUnV9LCqQi/z3EtWnV/7zBCCKSUbB/Zi/Pfx2FBTr43W35vMn32Bsdq3JSl4NiTkql5xegUCOXAg1qnT8XVWDbUwNgST6t2yGKrSyQoiKckY9OS84dWZ23RdOX4V3/1V7nuuuu44YYbuOGGG3j3u9+9HPu1JFJZRdMc6l162+WETDu01ITYQVRWjpuUiFuAqj3HQiAlqkd6BbB5CLbVaJ3WdYHrVs8ozSUkgmXuSXGlGvjWYPtSpRhX7eDYj0i4m22bzms4eCyKci2sHAOKY4tqceiJqqpEMTAO+vrgervU+ZuJN/SVLcPJueROZbFmlzbGdDJOBX3aDzerFDPzlpIYaEYMpoi8efZXjisEuVA5wYypmADrPcfrWE1k4g6aIyuEMbsjkAwFmTuSJ7U/RSIuidv6ylKqCxBhHaEvvdzShGDjEOga7D8B9x+QzOQ00qfzi8TF/DZOo5t3IxxJVbnAsI7IOoisW+o7nhg/Rkh3MO2CdsBZAtNW485S85U3nkFO5xFDK1xqXEkYGsLySh7afkXq/ugwhHX6u1QLVT6fJZdt7UQP9goyeXjkSNmDdi4h2XdSVYx1vZz06WSfqHQLLgi6WHELpyKKPceaple0HPox0LuBt7zqvVyy92m8rf8dyKlCq9pweftworzzZ3PlGNT6J1FgtqQyiunSHUG1ljpeRV/4bJ1+9SJcV/UsLyx29feoFsrkKlWPW6JVf+ADH+COO+7gjjvu4B/+4R86vU8NYWJWnZTeFry0OgmZsVfdwiReoNJ2R/sqKr+tIBBY4HNcekFDJpcOMjqBaFgQrJMhXNiXBar/fHxW9SwvK1xZyGauxcpxpVL1cqAoypXNpyvpeJoo0btAUeI9b3FgDCp4FkL1lCwnvJyLNW+TOZatSx10TY/YT2Nkj2erv55TqvKmjRr4W6hCn8206mDBzsnzXBynTO8MGRDPCpBqEbOOdawW5mddAp5XERwHDYGNRsoUZMfzJIwArlffZm4tQCDoiaog2bRh35TOo4/YnDpmV4xj4+PjJRunbTv2Qt6jmkeeKCgPy5Rdola7jsPE+DGCAZiJtX7vHjzlcXpq5e79vKVISvUg0zbeyQyiO9BQQuJsRfG8FhWrKyrHI6MQ0FSQXECzdk5+bNkAx8/A4dMS15U8fkySy8NAT/leioRgqoNaIl7ew7MkNmLFLZyKKNKqw6Fo3YTMG1/5e/ztG75M74OF1kNdYLxlD0RUUGzMltdGK6lWncunmZo93dHPDAVUUOx5skSpDhpCOfBYXqlw1B1WBZClqNXJLKSzi9fukaDAdpQ412p0fiwb38SyLCyrMpgyDINgsDPCCGdmPbrDxYXq6izMpOshXBciAqHX3ofia/W2aQfzheB4oG9D298RDPmtnPKlz9O6NMhY4Lkt9e+IAs9ELOSbtICeiPIytiyJUVjoxFOSTFbS37PMlDnPRWgqWGr2WC/3dTA+XQ6Ot27atSzfU6QWeZ6L4+UJFqqKIgjCdUvnV9dgU0n3q/C7fdfAYI9gfAbSWdlxb8QiHNNF79XJjmWI7AoTGq6e+U0dT5EZy+IBkT2RRZOgazmIIOTzHnoARAsZbNP20bMikWW7BpYDoZDP+9zLEdDVtBGJSPIO2J7EdVw8r7F7u7hdo9uvBLSzyXh7HRXwPEli3sUw5KJ7NxyEWT3IaLfHdFxfOfumDkATgsEesCMaiaMed9xtsTtncMkuJVTp7zfetuM8pOnW1DARIR05Z7J1+3ml58ZOHuLCK89nOq6ElIpzqZNWLJrgEiJWUiotiS3Dkm2jK5NwSGfrVxCllHgn0pB1EJtWgSKw0hACWWD0FQW5dM2ge3gYoQn6feKb8flpNm9tLWleolcfV4Jox87A5gUkxWhYsRDyZmfapdy8B1KSzguypmR0Faj/xeC4lhhXEdJyFZ26MK3rL9yMtimKGA0jT2QgbjMcHWU2O0VihWjV6WyCX/5/zyCWnOHD7/o8T3/KizryucGACmYzeUqUakBVjrN2KT7oCqtkSSID9fgbibRUhj9Vxq6BHpieg40DsLEje984WgqO/+Zv/oa/+Zu/4fzzz+e3f/u3Oe+88xZt89nPfpZPfepTFc+97nWv48Ybb2xtTxdgx4D6t+p4afFBvt5WAOy8rvP8pWw2W/Ji27RtkF03pNr6vGM+AaPurakqn9deFmpb/1hb7wfY3q/+Hx+vfP7axpjE7aEfeCVA69ZWy3EdAMz+XXmxdN1rholE2rsWqmFocxgOqsfDT5lkaGjI96oNJJf8jG39Y2zrV49nmrNfbA471D8XmMxMQi16Tgi4AbKkOXWqyrkpXFfDhX+t4JG5ssR6JBJZtmtgOTDwXwY8oR6PXjnDhiotD9PuNJxs7nNPn+5sRrsd7Nq1a7V3YR0tIpsHK+kSqVIR7opAKiuYyBqkc5LRwVXYwTYRMDQG+wQ2NvtPKcbNJTsl+w8cKm2zeeseJZhZqyoeNZBJm22bytoSp08e5KnPeDkzcVW9GSy0qGWOZnGSNkM3DFX/rAIyOfW+vg6KMC2FZLa+IKKcM/EmcoiBc5hO7YMIaFBQrC5Wjvu7h9ALvT/9Xb7KcQuK1X4M9gpOnJEcOKksG0MLtH6KYqnJrC9gagNeQQC2ZOG0Cto+RVr1UsGxe/MEcqbQhritC/05KpTTRsO4J9TC4/yui1RwvEKV4weeuL3UcnnPo7d0LDgOGCpBMh2DRFYplQNq7LFcKPT4a5oAIZlPSjbV+KxSz3KNPFw4KIi7SsD1vBUuHzcdHL/73e9m9+7daJrGl7/8ZX7rt36Lr371q0SjlVm6t771rbzhDW+o/LIOVo5vf8hjNg6jVUSbVgoybuI8MIcYDtetpgpdsvO6NCfu7ka6nd3fienyjRZlE8fvaE8NIXa4nHGYOixLnyelhOk82pWDaEPN81sEHtv6xzgd34rsgEj68UnJsy8X7NikjucDBzwOnoZtI8t7PciEhXP/LGKoeaXx5bwOAI4eVtHJhsHNTN7fnjBbTWT7Sw8P3A6bRwrXR8KCkI5xTe3wceE1MDYj2T4Cz7y881U7z/GY+f4MaAIR0HASFkM3DFVUj6UniT2QIHssQ2RbhNzpLAPXDtC1qzwRulmX6dtmECGNB0/quB70RJs/d2OPlR+Hw+FluwaWA26q7G999M4A6eHyGDM1L7kgnOO8F1Qet3rwPI/Tp0+zbdu29YrtOtpG1gQrbtMXWXwthQKCOVsST0t0fXUW2J2ACGoE8w67N8F8En7yBPzw7rKN09Yte5UYTq3gOKRBzGXrQDkJdPrkIUJBgelIEmkVHHuOR248h7Qlbs5Fj9Qu0yYyKkBOr1Bw7HnK3rGWUrV0PLzjaRCqx/tJgYCGzDi4tlsKfgd9jiV+DRo/7bpVbB1R1181JxFDF7ieJJnpjMCbnXaQGqti4QRqzeunVdeCuy+O++PCsTUExut3ltaGYmOZqrIndB53czvpbALHsTGMFjwhm8CB4w+WHneyz7nI1k1mJY7ja1PRC4JcvnVxd1hZfNUKjtNZpXBerz22OwzJtFLJXsm7uung+NJLLy09fstb3sI3v/lNnnjiCa655pqK7YLBYMcC4WooiuPKFVad9MPLA5YAqSEbcDmSruj4gjgWK3um9feMtP35Aa08CpmW6fs8gWeDyEjkUOsLWonWkeBYSkksDbs0DceRTMxrRELLfz1IRyAtQApo8Vgvx3WQTMdIplV1csvI7mULvCKhcqCUzWRK3yOlBqbE88SStPviNdATlUzMQyYvWgo4636HK5E26GENI2xgT1nkT+QJbwiXqJe5iRy5YznCG8JoaOiGgTlu0b277A/pui6Y4BoaeVMQDtLSsc3nK3uOl+MaWC4Ue44B8nmzYr9dF3IZgXBE04GupmnrwfE62kY6LZEZF62/+tIpFFAL7OFVFu9sC0FNVYYdyVCfRl+35PixMlNo86bdyBMeokZZVQiB1DW2RHeUnjt9UlWeNaHsWHYhsOdtnISDlOAknbrBcTKjqJU5UwWuyyqEieq/tu3agZI8k4PZPGLk7HIDaAtBDZlzSM/O4LlqEdrf7wuOfY9bVaz2w9BF3cBX02A+KaED6zAn4ZDzNNI5ZfG50rAdC9dVlPVaStVyzsT50vHS3/pLt6CNlOdLMVq+Frfr5XsvmZlnsG+007tcgQPHHig9jic7662sa4uttYQQMBqGYHnM6ArDbB2SXKKgQr5Ql8YPwSLx7xVB2yuTJ/XixnSRq9TvXIRfqXqwTRsnUJYQRVQIcgEYKyfKtRSiIaVkJ6UknlYT9UoMoNJV4Xc71kDLgZUQ44KyIBdQaeekCyXK1ISlT09UDbDTHRTxKMKzJdKRJbG84IYQ2ZNZrDlFQXPzLql9KTRDoBeqDEaPgTVr4aTKmS7P8pCOxJQatt2axzFA/qwW5CpP8H5hMSiIc2RZpKS7jnWsFFIxB812VQBZBX3dSk11IQ30rEJQQ9qusu1BBSnz00qpOhAMMTKwtX7lGBBdOtF8iIFBtSg/fVL1x3SFy3OpOWepe9nzsBP1W4emY6r/13LUAne5kbfUd1VzC5BZR1WNo8Y5LcK1CAEBlsf8ZNlX178O9AfK7dKqG0FXGKbjKlnSDjzHw806ZG1tVSycoEyphsqiQBHS9rD/66hKWgHaZf3oN1QGvJqvcrxJlrtml1ux2nUdDp94tPx9PrvXTiAYgPkEizQcRMSoYFT6E2Z5q/KakFIyNS8JLW8BvWU0NYqkUinuueceLMvCtm2+8IUvkEwmueiii5Zr/9Y0ZHb1bZxiSb+NUw3/oyZQ4XO8IDgWQQ2ZtNeEMm1XpKByl1P+xpZDXYXrjsH1VjkdUh3j02WP4+UMjiO+4LhIOQJU+cGT4C6d4ysGUkIIQobyK6+nJt0KpKOC2uJAbUR1PEsyvz/Nfftd4gczmFMmoZFyMkjv0nGzLvZ8OQHkWUqd3HIFrqeUtluB6bNyOtt8jotWTgDWAjunUACyFuQza0dcax1PLsTmXAxZqVTth6EL+rrO4sAYIFBp2+N5HhNjaszfvGU3mosae+uNTxEDkXPZuln1HcfmpkinEkTDai5NZST5sTx6VEcL6ZjTtRPhli2ZS0J/t/IdNlciODZVEL4wOJZS4p1KI9M29K7RlfYyQegawoP5sbIAS79vHdg/WH4cn+9sgFQN0bCiyrZLtS8qVc/nBcYq2VT71zfhKj3HzjdOIcdVAC2GQxg37lxcNOkPoBVYccN2ueSeSHW2krsQJ8YPkLfKwX28w9/XG4Xh/saU/4s9yY8ckUzFymu9TE75IK9VkcSmgmPHcfjEJz7B85//fF70ohdxxx138Pd///d0dy/OqjwZIDMOwljdLGWFx3EHKsfVfI5LCOnIvAP5Bjjky4xoCHJ5VTGenJctV/Sahis7wRjqOPyV460Nehy3Aj+9KLegcowrG/K7lWfKg3Z/D0zOqUGyk5B2wSPRN3gHh4NM7Mtx5KdZxh5MExgIVmQ5hRAIQ5CbLF/3suDbl7fa08Q3fRPV2VY5Dvlo1aa1ODi2PUEqtR4cr2PloZSqPQJCNq0B0Q7OzJzk/77/b8zGziy9cQcgRMG2pzD3zk6PY5nqXtyy/Tyk4yGo39KirH8kW0fK88PYqUNqLjUhNmFjxy2MXgM9qmPNWbhm9fu6SKle0eC4MAYvom/HLbyxLGIguOYYXSsBKWB+fKL090CfLzj2V47r0Kq9mTzeRFb9G8uof6czyHhzTMFIEHJW+960bt4jn/FImBpdq6Stls/7HCYW9By7983i3VMIOAMaxpv3ICKLF6FCCII7VXtptxklVNBtTqTmF23bSfj7jUEpV9tO51ifmiboatBlpFi0yprwyGHJgVOSvKkYn6a9dhk9TYUUAwMDfO5zn1uufTmrIF1PTVQ1stUrhZiPLtGJyrHf6HxRcBzUEDEPmXMQXauUzitA0wQekpm4ouWuWPbJ7Uw/TacxVkGrXr7guCatWkM1hjRAq5YZp3QEu8LKDmA6rgLlTsFzCrZRvsWSFtWZmTFJW1mmQi6b9y6edY1eA2vKxM266IVqMwIyeUk7ebBFtOoVVHhtFxUJswW0akMXOFKQWQ+O17EKyObBTLlEV5h2+aFPvpXDJx/lnkdv4a9/96sr86WaQGZVcDx2qtxvvGXbHrA9pFxacUNEDbb17iz9ffrEQS685Bo8KYlP2AyYknBIR+gC84yJk7DRRxaPk8VewUhIiTCtFK16IaQrcY+nwZVVg5MnBXRBbN7ncewT5IpGugkaISzHrNjGD5l1cPfFIeOUlzZCgOMhNkbQrxxqOPGkaQIpJans0tvWg5d3yWU9co5gZJVqbxWVY19RwJvI4nytbM1gvHY72ubaPX2h3SHy+0wEgi36Vo65R5ddsdrfb1xEIjXH8EAtaazlx1CvIJeDY+OqLz0UqN4isVbwJGrO6DBMTxler3ZwXNFz3H6Dv38hbDuVVaKS6Xxu9SvHoOTfz8xJUh0WbJBpG+exmEqALHytUElcayhWjjWhsWnDjiW2bh0VtOqK4FgoWl8jlWMf80AIQSQEJydl231KFd9hy0XnKZWBRCDIiJtnLhCqWq02ug2ctINVoFZ7llt6bzsDuXk29xz7aNXmAlo1KN/ndHI9OF7H8iA3niN1sLotXdYEO24T7ICvaqNIpOc5fFL18x05+dgSW3cOwtAUdRgYP+1Tqt5+nkpKNnIIogZbenyiXKeUKFc4IJk5nEUPq/WMZmhIV2InnaofM59U6t9FrETleD652ONYxkyYySMGnxzWTdUgAhqx6cnS3/7KsRCCgW71dy1BLpl2EFkXsTGCtimq/m2MIEYjMG+qY9wEQgHVj94O3JxHzhJIWYUpsELIm/7KsQqOZc7B+a+jpSKA9vQN6FfXN3gM7SoLE2/XtwOdpzkvxIHjDy16LtbhvuNWEA4KNg2rFomJudURWmsU68FxqzBdsNdAcOy74Pt769+kjcDfc2zZVVK1uuo7XgvoCqvKgeuqClanIJM2ct6EVJWFgeWtrJ58A5BSloLjkaGtFQmOTqNW5VgIgaCQPKi1n8XgN+9W9BgP9sKZOZjo4HzhWd6ixeJcUmLpOt17u3E1jan5xRO40ARognyBWu1mPVwEZhtiXFAZHJ91Pcd1aNUAwZAgHl8PjtexPHCzHplj2aoU33RWItMOWmjlBmV/QJzMzON6K5QsDmqQdZCux+x0ucd0ZON2ZM6p329cgDA0tg6VNSlOn1DBcbfnkJqySx6loIIuc2ZxYOR5kqmYmn+LWO7g2LLVdy5kiMm5vKqYr/I6bFUR1YllypPnQG9le11/j1oXJuKzyn1hAWTaQgoWUfJFQENKkBPZpjRBomGYS4LdhDjnQrgZh4wpG7mklw2VPccqinN/PIWcLfgZb41ivGrbkp8T3L04OC46iywHcvk0J8cPLHp+uQPyRqEJwVCfYNuICpbXKp7EI0p78OZNReVZZUGuYs9xT9cAAaN966yKynG1KlFIQyasNaFO2xWG2WRnDOf9kCkL4hYyVWXGt70lrYpWGonUHJlcElheMS6oUzkGpBD1K8eF16TtgV3erjhA7j8pcdqYUP3w7MqFtONKzsypXnVQghKT85A1F39foMfAPJPHNT0l0CWFUkltQ+slfxb3HAcrBLkW88FDQUE2I8nm1wPkdSwPnLiDVSVQS8VdhFVbqXo5cPjkI6XHUsplXehWIKghLRdyLvNz5Urh0PAmyLsNqzRv3rQLTVPJhLFC5Thi2lhpl6xvSWh06dizlko0+pDOKdGlaGFY0DXI5Fobt6Ura/Y1+xFPs8jSR1ouctpEdD25RLgWQgR1Ymb5GlzYXlcMjqWUJBOVdF4pJXLOQtS4f0RfEG86D00URIpFi3ao1WbcJmVrhJbPDXZJ5PKVlWMpJd7DBWsNAYE37m4oKeOvHG9bgcrxoZOP4El1T/ljglhi9SvHfog12J7ox3pw3AJkxlECED2rOyhLKUsS7Z3oNwYw9PJvWtRzDEqUy3TXhChXwBAM9sCGKob0rUJ6EjlvgyfxZhcnB6QtG8rQryTGpnxK1SPLHByH/IJcVVQ36gXHxYDV8cCqvH42DsHpaTjVIbcJN+9VJK5iKaXIWlxcRSNqAp+NL36v0WNgpxzsOQs372JJgV3DQqRRnM206lCFlVO1yjFYliSVWv2E2TrOTTgZh/zE4msvNusSqKNUvRzwB8fAsvcPlhDQFHPJ9Jif8/WYDm1Eml5dGyc/jN4ImwbVIn3s5CE8z0OPmzhCI2eWP0Pv0nEy7iJqdTKj6OyRwrrbMNRY2gqyJ7LE7o0t6YARS1EYg8v7J2MWpB1YZf2TtYCia4mm6fR0VRoR9/eVGYWLqNV5V1H1a/hZi7AOtoc32XikGwwITEe1IrUC6Uky8w55qRFexeC4IqEd7kJO5pAz6kI/NdCHN9gYAyywKaAstyh7HS/nmHHgWFmM64oLry89jqfWVnC81rEeHLcAbzILWQe6V3dQzuXTpRu4Ex7HUFDXKyyGqwbHQQ1husrGag1gQ7/orIVTzlWCY31BZMJWdDU/7CXsMlYBK+VxDHUEuQDkEmrVRcq1I8uBcgFBQ/Ue7zshMa32gyxvQXA8E1efWbRiEqjvG5uROAv2WehCKVRPmkjLw5Ll97QKv5VTKHR29ceFgj5adRU2iW5oeI4k2WHF8Xo4Mys5NrEejD+ZkJswcdLl8bikVC3r+/t2GkdOPlrxd6c9RGtBMZYE0ixXjoUQ9PUMqfG0QRabCOklanU+n2Xm1Em8mIXWZZDMlu8pLaAhHYmzwO84ni70WxbG0qAB6RaCYyklufE8uVM58pP1P+DMnFwUKMlZE6ktpgM/GRHzFUk0rXJZP+BTrPYnVaDQb2x6UKctQfQG8CZypX73RqAJiGdaG5/dnEs27WF6guAq1p/8yf9wMIr3SKz0903Bjdx9qrGdE7pAjKg19SZtEwYBEsvINvEHx0+/4oWlx/Hk2qBVny1YD46bRKlq3B1YdduATitVF1GkVtvO4uBYaEokYS1UjpcDMluYLPqDiJxT0V8tPakCvDU2Ga9kcFyPVo0mlEhdDchCQCw8qSrwCzDSr5SrT0wueqlpuHm3ZOOUMyXTMehdULDt7VKqq3PJxe83ug3yZ/J4riTvirYFyotq1eFgdNXHjWZRQau2qshsC9CkJLlColyeJ3n8uGRybj04frJAC+u4aQdrtqyDkc2DmXYJGKzYPZXOJhmfPl7xXHylKscASGTOITarBsn+gQ3oUlNaD020eG0b3Vt6fPrAfkTWIdSrM5+kQhhRGAJrrlJ7ZDpGRaAaMMC0mu8xdVIu1qyFZ0kyRzI1W7VypnKl6PZTqnMO3mwescoFirUAz/NKNN1q68B+n0BXPFZZOZYpG8kSCYaoAXkXb6bxDEgkBDPxhjevgJf3yKQl0tDQVnGuzC0Q5PIeVcGxB9zVO8p9441H7mKjWnzoQmeLvmVZfY6LNk6RUBeXX3Bd6fm10nN8tmA9OG4Sa6VqDJ33OC6iGBxXrRwD6KJ6P+45AJm2kUiVBBAg/VlzV6qRcY0Jco1VeByvYuVYE4vo0hUo9hzDosoxgK4LertU9bjVHjZQFQnPLFeOYym1kI4uCI51TaALVYVcKDhi9Bo4SQdpS9KWINjmOS/SqkOhs4tSDZW06qpjgiYI6DBdReBsOTAdUwJu63jyQAjQghq507nSvZrJg5V0CK4g9fLIqUcXPbeSi04R0JEJq1Q5HhjaqJg4rqQZr7mtm8vB8alD+5GaIBwW5MxKirTeZWBOmyVrvLwpmU9VinEFDLBdmrZzsuct3KxLZHuY3ISJOVl9vRFLqX7jbt93yriFyDrwZLVv8iGVjeO6ilGxUIwLYKCnTKv2ex1LKZHz5pJ9s0IIRNRAjmVVS10D6Aq37nXs5j3SSQ89tLrhSd4s06r7s93IaXVj7Iv2EwuEuH/coFGdMm20fPFu17eTSM83JXLWKObik8zMK7G+83c9hSGfg8165bg5rAfHTUBm107VGBZWjjsXHBe9jmsFxyKoI+P2stzcqw0ZtxCFSEhEDORsvmzp5EqV3V5rlePpgo2TprNxePlsnADCFT3HlcGx0EWpOlwVfiXrGtsN9cJ8Eo6MtxEc2xLpSIShPBfPzEmCgeq06L5umE2oCrIfWkBZmbiWR9Zqn95lFtofiqqXZxOWsnJCE4R0STolyVUROOs0TkxKYtWdfdZxDsPoD5CfNnEKPbDZPLDiStVVguOVtEgJaKRm57ALThKDQxvVuOrIpirHW7edV3o8ceIwImoQDKi+3ozvFjeiOm7WLR3zZLaQaPQHxzrYdvOK1blJE2EI9JCOEJA5Vr16HEtJPKmSp0XI6TxS19Yp1VTaefptnIro91WTK3qO8y4y7dTsN65AT0BVmRusHkdDqi+9FdhZh3ROlnraVwv+yvHA6fIFf2evCjinMzqnEo2FUMXKMajg2HWdkohqJ1GsGgNcuOup9HQNoAm1jys6Tp0DWA+OfZA5B/eJWE1fN+/M2qkaw4JBcRlo1Va1hTBASEPmnXOOWi0tV9GoC16PRA1kxilbOrkSvLVFq/bbOG0a3o5hLG+TjqZpJVEu/+ShXhRQR3m0RLnWtZo965omGOyFg6cg3qLAk2d7yIKSfCqrKg+1/PRCASW2Vc2XUe82yCeVIFe7ZvVFWrW/f/dsgd/KqSqtWoOgDrmcbEuhtBEk0pITk+2Jo63j7IQK1DzMaRUYplIuWt5ZUTGuQwvEuGCFadVBrVKMa3gj0vIQUjYVKPb2DJYeZ9NJiBql5GHax9rRQhqeJbETheA4o6rEfmGsgKGCarOK82MtuFkXa8rE6FU3cnA4SG4sXzq3RUgpmZgtuwxAobVt3kT0rA8CUBbjghq06orKcfnakRkHkXMgvHRwLDSBCOt4p7N17RqL0HXRcFV1IZJzLqazuv3GAHlfz3HPMTXGKEp1uRB1f4PUalFROVYFjOVgnPj7jS/cfRWaptFXOP+xdVp1U1gPjn3wpnJ4R1M4j8TwxiqzmGutagyVg2KnBLmg7HVsOzVmu5CugqDsuRUck3HU7ypUIkRAA8crU8hdCS5rKjiei0+WzOq3jO5Zke+MhFVwvIhWrQt1vGrZfBWCY2EIZK72tdPfDakcHDrdoj2IU64czyUllq2C4FrojiqP5fyCqmdwKIDYGsW22w/GzFLP8VkYHC9VORYCDXDt5Q+OT09LMrnayY51nNswojrZU1mkJ5mf8TA8b0VtnKpWjldy0RnUmI/5lapHwZE0O1L6x6G8nS+1oIQCirnjZ4UJXWDNq7XAXFIuYm8LIZA0Vzm25i2ctINRUJrWwzpSFqrHvu/O5GA+BT2+YVPGTMi5DQV1Twb4LXqqtdf5q8mxWR+tOt1Av7EffQFlcTnXWEnYKJyeZhmGyRkHG23Vg+Ni8n+7vgNjXq1d9kX7mfe1GTXadyyGQiVmxzZNKcUvh2K1Pzi+aPdTgXLCJJ6cPSfZnsuF9eC4AGl5yPEcojeIEOA9HsM7lChVu9Za1RgW9hx3rnIc8FWOq91MQhMg5WIl57McMuOA6yF8s78IaGVLJ9dD8bvWTnBcpFTD8otxFVEU5aoqyOVKRfGrAllkGhgC8k7NIFoIwUg/HBmHx48pVeKJWclcQvUie0t4bHu2RLoSDzgzW0kBrIbugq3TqWmJ518UCoHlaeqUt5EQsR2r1BO2HJXjvAN/fGsX7/52DyfjnR/Sg/6e4ypWTkITCAkBXfLoUck9T3gcHZfMJyXuEhYtzcC0JEfGlZDaOp6cMPoNrFkLc9YiMe8SXEEbp1w+zenJIwDs3HJh6fnlFNdZCKGJyqR4kVbdZMLePw5ZXvmeDocUrdpfBdajOta0iWN5TM5DV5UhTAiwmlgO5KdNEFQ4CoSGg+RO57Bmyl8eS6kAuTiGSynxpvOIoLZmihSrjaWEWfu6h0qP/bRqOV9uIWsEQteQhlhUOKqFvsI4ve9E4/OAlJL0rI00xKr74BZ7jq8P3lB67s7eUS7e4DAcVXHBo5MGZgPXvdAFYoO6iLfoW9DROx4ce57HwRMPATDUv5HhgU0A9PeqyrHtmIsLGuuoibUT6a0y5GwekhaMRFTvZEjHO5ZCZhy0bd1rrmoMy9dzHPQZh9uOVaJZV0ATTUn7nw2QKXtx4Bs1SpZO0pUIrzn62nJjJZWqiyiKcmXzaaSU5XtCF2BJlUSolncrinkYGjJXUP6uMTn3RAWZvOS+AxIplVh0wIBAADYPwQ1X1D4HskCrjmcFySwML+GDLRAM9EiOTkDQkOzYWFa/zdu0TA8rwu9xHF4GQa7vHgpxz2l1z/7B93r425em2NzTOeXo4BI+xwAI2NgnSUpFiX/ihCQcUIHs1g2Si3cKQsH27pvxWVXV2rFRVfrX8eSDHtLxbElszCSf0ujWV87K58ipx0vJ4ov3XMP03BjZfHrFhW7m0+V5f3B4o2pxavIQhIJl6kXeK1cCw0Glv5DJq0AZQO/Wsect4tMOmZzBQE/1z1TMm6V3xLM8zIk8Rk9l1U2P6OBKMsezBDcEEUIxf6BsG0XaQcZMRPcqlxXXEJZaB+q6QW/3IMn0fCk4lnkXmbIRjfQb+yB6Aqr1zHSXFEPriapz9uAhyJqSK89jSdtNL++RiHsY4dWv2+VMFUheHygHx3f3jvCiTTbzOY2bD4ewXMFjUwZXb1k6QhajYeRkDkMYbNY28907vsDB4w8v+b6dWy7gWde8Cl2rfa5cD256bJasHAZSpaoxlINjUH3HXZEaN/A6KrAeHIOqMo1nIaCVMpkirMNoBDmTx8u4qmq8cW1RIv09x/6+knYRWKBOWy04FqGyKNdaShi0CulKZMxCLBR3CeuIpF22dFpjv3U1guNi5djzXCw7X65CaKjKepUssSyKxkCBfu0qmnWdzPXGQZ8Ai5TYDqSyMDEH6aykO1r9XMjC98wllTK20UClPxISuJ7k0GkVhG8pJODTWVmih7UKv+qlf1HaKdxypJzMmstq/MHN3fzdS1MMd3WmaltJq67Sc4w6zrqEwV7VMw7KgiWdgwcOqcfXXFTZq9gMXFdydFwSChSr+Ov0sCcrjG6Dmf05zHiQgRWMkfyU6vN2XM7DB+5UwfGKWjlBLOsLjoc2wgJP90bgp1X7k3eaEEhP3bdDhaSiHtIxTUl8yiZvGYv8hkFRaNPVh4ZFsOYs7JRLeNPidUVgOETuVJauPV0EBgNMzFYqY8uYBaaHGFqnVBfRiPZMf88wyfQ8sbi6dmTaVv3GPU2uaQMaJDylN9OgUvjGQXj8mJoDrr6AmvM2QD7lkkl6hPtXPzTJ5TNs07azw1A9wk9E+5kLhLliY4q0Jbj5sLp+7xsPNBgcRwBlB7VN387dD9/MTx6+uaF9+e/v/APveP2f8ZQLr6/6+pcfD/OZBy+Ap9wD953HBbuuKr3mjw3iqdkVWyee7Vj99MwagIyZMG9CX+WoL3RNXdBSIgZCay4ILGYM+7qHOirE5A+Gq3kdAwVRLvfcEeXKOYomvqCPSWgCiVSWTm7zvV3LjYrgeGRlK8ewoO9YF6onuxqFyvbKQh6GpgLlesrWCyCEIBgQDPQoml01b+IiPNvDdSWzCeiqQnqohe6IEgE5cFIyHVP2TpkcHVCqLq8aO02rPh7TODxXuZCYTOv8wfd6iOU6M14tRatWkCox4kMkJNjQL9i6AfadgAcPtU6zno6pavFSLIB1nPsI9BnEJi2MtI22gmJch302TuftvIK+HkVXTWViOM7Ksahi6XKlenBoo5qHm7BxAjCMALquxo2ikn4R4SAcHZfsP+kRSxVs7nRBbFzRnautgwLG0sFxNq/uf2vOAk+iVdlnI6rjWZA9niGVhUS6rC8gPYk3mVWFi3WUsBStGsrVw3w+Qy6XgYyjGFlNsi6ELhAeyDrCmwsRDgq2jcLRcbjjUdUeVQvJmIuZlwTrBNArhbyZXUSpNjTJJaMOV2120IT6He2IcjWKo6cf5/c+8mr+9BNv5czMyUWv33a0ELsEhqHv2Vy02xcc+9XK1+2cGsbqp2dWAN5MHtEXqNpfIaVETmSRUHWiFUIsCprXAqSUpZ7jTvYbQ2VwXNPrOKhD0m4qg1gN0vIQKyioUnM/Mg7C9GCwyjVQsHQSa9CGp+hxbOgBRoe2rsh3RirsnDLlCVkTSs27Ws+xU64oC00gPKnOfZPfrWkCTZNMzUt2bKxRObZV5SOdaz6Y6u9WVL59JyQX7RDkrM6JcUHnBbluPVK+V3/hshw/PhFkIqVzKqHzvlu6+diL03SH2kvpqMREGMvOVxfkAlXIrRH4hoOCzcOSx4+pvuTL9zS/P8fPKHp9u9TsdZz9cIUgloBol7uyStUnlFK1puns3npxRUUmmZln0OcpupyYz/iCoYFRmKjSDtQAQsEI2VyqYnwCxf7I5iUnzigBvA39MKppzM9ZRM6vTp0O6JAzqakHIaXkzkcl/VHJttM59K7ag2pwKEDmSJbYKQdrMkBoZwDZZah2mYSN6FunVPtR7EHXNJ3e7sGq2wwssHPaMN+7pL9xLUhkuUWqQQQNwc5NktOTkjt+ZHLD9UGGBhevx5MxD8+FYJPJnk7AtHIcH9vPkVOPceTUY0zPj3N9pBwc39U7woUbHMIGhA3JhcMu+2YMTsZ1ptOCke7685qqHCu84pJf5MrnvHbJfcrkknzppr/lcIG1cscD3+KeR27hdS96Jze+5F10R3uZzQpOxH3Hsu9ZnLfzKaU/K3yu1+2cGsY5HxxL08U7mED0BtAu7F8ciCVtJfCwBgPgesjkUqWqbif7jaHscwxg11gMC13Rr2TWRQy09j3eRBZvLIN+2QCijQC7E5AZGykUrWwRogYybilq9Sqq/bmeWxJ2ApDSY2L6OACbR3aWKgHLjYivcuwX5RJCgFQU9UVH0akMmiU0VTn2ozcKYzPwFFtW7WFybY9UVp2qRijVCzHUK5iOSw6PSRy3ktbXCvL+ynEHe45dD249psYtXUh+7lKTl19g8dvf6WEmq3F03uAPv9/NR16UItLmejIUVMFxVSsnUOvlOiIt0bBgdEDyyFEwdElPE8WfWEpyaqpM81zHkxvJDGR1g8GcBT1t3pwNIm9mOTVxEICdmy8kGAjT3+MTOkrOrlhwHEupYCgQCNEd7sV1ZhGh5oOJcCE4zle5p6NhQTQMpi2ZicGkqWFkHbp220AVOrSh1KotuzrTJpuHWBrGjti4czZ7Lq5N6TEKoqfxQxahiTwyIXAMoVqebK8pEaknA4oBz0DPMJpW/TrwVw9jZ84wnIm0vubSNSVe2vTbBNvcDJP3p9gX7uP6F0QXsRASseb752vhn77wh9xx/zcrRDarwdN6Se/5Cq7U4YlfBfMEoFSldxo7AdgX6WMuEOYlG8v3ytVbbPbNqGN4/0SAl55f38tMDIcKrWcwYPYwesnTG/odz7zqpdxy13/z71/7M+LJGWzH5Is3/S3fuO3fedXz38bgeb9bsX1w+AUVfcUVPcfrdk4N45wPjsm7yJyLTFigCbQL+yrUiL3JrBpwzzKqTixRtnNYlcoxgGhdlMubyuEeiIMt264+dwJyvkq/cQEioKmsdQuqoJ3Cg/t+zIf/+ZdJZeJVX1/JPpKatGpACmXntBBFL86Fz7WCnmhZnGnj0OLX3axLLCMI97b08QBs6IfJeXCc9oMyP22xk7Tqh84YzGXVWHbtVpv+sISw5CMvTvHb3+khntfYP2PwB9/r4U+fl2Yw2npip0itrlk5RiDt+p/fHRW4UgXI15+v+ogzeUk2rwSAMjlJzlS0zmBAUdyDBkzFJJk8bBxarxqvAxIZiRc1MIKsmJ3P8bH9eFKNV+ftvAJYQFdcwb7j+UIwNDgwinALAoh688ehqH9gmrX50KGAYGQAHFcnd9IkmjOpFRyncypArhYcp3OqsjzgWZwal0S3aGytk9PXojqxgEZwK4guoRKppqsCjFVALp/mY//xHkKBCL/9lo93tI2tHXieV6LK9tex8/RXD+dPT0BkB2xo7TeIoFa2t2wC3kQW70CSAekw9niOM1dG2Lyhckyfn3QIhNof50+dOczXf/CpxjYeeQlEL1eP9/wD7HslsEClupD4umJjOSlwzVab/3pYzef3jTUQHBsaYjiMnM6rfw2Ku+qazktueAPPuvqVfOFbH+N/v/+vOK5NJpfki9/+ONpFV8Pwz5e2t0MXk7WTRAunt79nnVbdCs754FjmXYTjwYYw3skMGALtvF4lS5918M7kEb2dGeiKSpYr0Zvsp0cMdrhyXNFjWKvnGBAhTSUdmoQ3m8fdn0AgkK6HzLVefe4EZN5VtOo6Cy0R1FQQv0pK1f/1jY/UDIwBdm29ZMX2pVbluIRq9NqFXpyG1nK/esBQ4lmzCVk1YIrPu6QsQW8bcahAVTpdl7YtJfyLz07Sqv1CXC/cW74Pt/V5/PWL0vzud7tJWypA/o1v9/Lh56fZO9TaMS8G9TWTZVr1pMhC9HWJkpbWd38qyZqSvAVu4dbSdbXW91vIeRIG1wU21wF4UlUywyGB6Fk5ttehk4+UHp+3Qy2k+yoqxytDV3Rdp2QdNdg/ooJGRzbdcwzle3ohrboaDF3QPRiAyTxye3dFgQFUEst2VHBc7VZN55QPek8mT6pL4+ApSTAAIwPVx9Z0TlWb+wpTjQhoVSn0k7OniIZ76O1e3gXE7fd+ndvv/ToAT7vihTzr6lc0/RmzsTPMzE+wbdN5dEfbyNz6kMrGcVwVqNbqN4bK6mFsfAL2yKZF3EoICLVmaqIlzpvO4x5IIAIawc0RmDA5sM9m9PogemE/snmPzJxDKKphWjn+/nO/j67p/NabPtp0MmJ6bqz0uDvaR3e0doY7NXQNmeIfQy/jFa/5Es89v4vzv9EN02pevbN3lIAmuXikHByfP+TSE/JImRoPnjFUjmqJwyFGVXCMI5XO0XB95otVmBcNDboiPfzqjR/k5c95C1+66e/4/t3/g+M6eL3PrXiPFDr7pssK2pWV43VadaM454Nj8q7qJw7qMBxCHk/jaRra3h686ZxSod7U/oLV8zz+6O9+gaOnHudD7/ocF+156tJvagMVIgwdrhwHAj4rp3qV44AGpqqoLpwsa0HGTbx9SYTjqSzaZFZZUawmso4K1OrZQ0QNZNpBrEJ79PT8OI8fvgeAnq4Bdm29qOL1TcM7eO0Lfm3F9qde5Riqq1Uv9OIUukBmWz/vXWE4NQUX75Rlm48C4vMeDoJgi8rIRWhCoHVghKykVXembz1jwV0n1X3aE/R42rbKTP6eQZePvjjN+2/tZiarMZPReM93enjvDRlu2Nl81r+YMKslyCU0GqbJ93er8+J5igWwoY/SAqkaPG/xOV7HkxPpHKRyZZGmlcIRX3B8/g5VOfZX4zrtWVoL8dRsKXE00L0BabduL1hM1OWtbGOuEz0GzOSRcQuxYFGv6yphadUYWhJpiW46yJRNz4YA8ybsPykJGDDQs/h7U1kVbNcbwx879BN+569fSTgY5b/++v66wWG7ODN7qvTYL4K5FEwrxx33fYfv3fklHtr/49K52zi8g707LmPvtkvZs/1SnnLh9RVJ50YRTywtxqVeKxdQYnPTiAu10v79x9f/imRqnnf+4l80ZvMT0JTHoelCA8GxnDdVMUSC6Fdz1kAgz9jBPGMXBNmxUW2XjEusjEv3gMZt932dW+76bwCuuez5POvqVy69Xz74g8A3v+oP+Nk666MP/qCLO8unl0ed1/IbvVO4008AsL9Aqb58xCbkWw/oGjx1s8Ptx4NkLI39MzqXjtZPPovRCDwWB8CbyqPXCI5NB778WJj/eTxMd1DyiVckGSowvzaP7OJ33/r3vOlVf8Cnv/NNbrML59ZNg66uoUcnawTH65XjhnHOB8cy5ZSyqiKkI/uDyKMpPAFyKofoMjpS6T0xvp/7H78NUFW+v/ydL7f9mfUwXyHf39lep6BRaeVUEwENmbHB9BrOXLsHEqqaXzBEF4YGydUNjmXGAW+JTGpYh5k8dIhl0Ax+VMhYA7z2Bb/GG1/5eyu+D35UVI7NzIJXRVW69CJ1y0LluFFq0UL0dUEspTw5/b6bnusxM+MRWEPCTcshyPXjE0FMV/3G5+62qjpi7R1y+cQrknzgtm72zxjkHcGf/rCbX7oyxxuuyDfVIVC0czLtXPWFtCZKFlqNYqBHUKU7fRHWA+N1FJFMq77W0BJ+qZ1GURBHExq7tl0MQJ9f6GaFevkq5v3oBuUCIFrjtvj1D2zHrGCMVYPQNTyEqnzVWtTXCI5nExA1yzZMQyGYjkn2n5BcvAsioQJzRFP3ezy9tIXe/Y/fjpSSnJnh0YN38+xrXlX/DW2gKHoFMD0/VmdLhQPHHuLTN3+Wb37922RyqUWvT86eZHL2JHc+8G0Aerr6efXz38arf+ZX6ashqrXUfg3WoVVXBEixaYjo2I7Fn37yrdz76K0AnL/rSl71vF9e+ksDGsLykKaL6Fl6PeQeTIDlldZ8oPrKQ/N5njjaxeZhnYAhSMy7SEuihzTOzJwobVtNnXkpxBpMGgCMJSsvtJNxnQM/THFe4e87exdTqou4eovN7cdVwH//eKCB4Lh8DORkDi7pr3hdSrj7VIB/vjfCZFrtV94RfGN/iF9+amViemRwC3uueA+33a/+js7/B9kNvwnA41Pl0C4S6iIcjJK3sus9x01g9WWClxFSSmV07qPjiIgBfQHk0SSkbGjg5m4E/gHwgX23L3smeTkrx5U9x7V6DFEBji0V92MJyIxd+N9BbAiXF9dBHZm2kS1avHQCMmEtGdwLTSA2RqB35YXbfnjv/5UeP+faV6/49y9EJOxXq15QOdZF9esh7yD8VQBDqHPeoihXJCTImTCXqHw+mZCkUh7RrrUTUOWXwcrp+0fL1+EL9tZubRiMSj724hQ/s6ec5PqPhyL85Y+juE0c+lBh4az8pqt8X4O06nWsox3MJWTb6vHNwrJNTowfAGDbpvNKav3+gCOxQovOCk/brmHFempRJDIUKI9F+Tp9x36IngDeTF7ZHlaBPzh28y7WnEX8aJbUvhTh2WwFDXe4XyU3Hzgg+cnjkrsfl9z1uOSuxzym5lXAXA95q5yYXW4VXn/FzU/ZrYbb7vkav/GnL+RLX/pSxbpw88guXnz9G7h4zzWEF/jdpzJxPvfNj/KG37+Sf/nv9zMbO9PQfjVi4wQLvG7jM7hB+KtPvaMUGAPMNfidQgjVGbOEnVNpzZdzFveK9wTo9yymjlmcKHxtbM5FuKrQ4g/6/dd8o/AHgfWOi+vBeEpdk13B8u8J7ZsvPS72Gz9lU/XguIj7alg6eR4cmdP58mMh/vZY+Tzc/1OLj94Z5TuHghyPaZyMa7zvlm4+cFt3KTAu4nuHQ1WnV7+N1D//+pvY1KPWXvtnDSzf7hbHqvXKceM4tyvHpoe03EV9ESJqlPofW6laVf0q3wLY81zueOBbvPw5v1Rze8/z8Dy3ZWEHvyBX53uO/T7HtRfeQi+oEzdgyePN5GELio4lfVsHVe83pgvRlb8cpespmlgNMS4/Gtmm0xifOsahEw8Dqtdt68a9K74PC1GPVi00gawS8Mq8W0m9NwTkPBUct3hcgwGYmJXs3Vq+nmbnPUxT0reGxJsqBLk6oFY9mdJ4dFKNG1t7XS4crp+cChrw3huy7Ox3+fcHIkgEtx0LceGwy89eooJm6alERa1rPOgL6i07XzFGACrN6niN0TPXsY4WkDclsXT76vHN4sT4/lJf53kFSjUsCDhWaNHprxwPRjfgpe2WRSL9iTq1fmmgbzeqwxlLCVhuqZyvdQ1ypsSKqzXDzA9m8TIeqZTEOSaJ9mswVE7qaUKwcUhiKdvj0j/HVdoDXUsMlXmzPK76K4XLAX8QOjM/UXfbux/+bulxOBTl2Ve/ihdd/3ouO/8ZpbHR9VzOTB/n8KnHuPfRW7ntp1/DdR3yZoav3vLPfOO2f+dlz34Lv3rjBxePtTX2q37PsU+tOjPL33/h9/nRfd+o2GYxC6wOBEu2w8mEVV7zeZXXqDA0NAHd2Tz7TobZsgHmZl1CAbWG8J/PVhIf/vf01zku0xkNu8DAespGh5AhObjfYXthXXOku5fZQJigLrlow+LfOxyV7BpwOB4zODSrk8gLgrrkyLzOoVmDA7M6j365j7mUmlc1GeFXNJ2o57I1meTmwyFuPlz9/F65ycaV8OhkgLmcxk9PB3jmjnIwnnfKFeKN3S6bezwuH3U4k9KxXcHBWYPLCtXu/p5hJmdPkUjP4XouunZ2CRCvBs7x4NgFy4Mqnnqiw4HYQlGL2376vzWD46m5Md7zly/DcWz+8Y9vZuPw9qa/b3l7jhusHFPQ1mlEdTinFvBCE0j/Wj6oQdxTPb+rEByTcVXgtkatvG73Uaqfc+1rVm9HfKgryKWLRdeDdKV6zk9bL7IOWqwcA/R2wVQMsnlJNKw++8yUhy4VBXCtoJJW3X6z5K1HK4W4GlkbCwG/cLnJ1j6PD96mzt9/PBThWbsshkIe9qcOIY+mMF67A/3pi8eTkI9yaVq5xQInBRsvPNmS5+o61rEUElnIWeq+X0kUKdVQFuOCBYJcK9RzPO+n0UaHwZGVjJwmUBkcZ+tsWYYQAoIa3pksYlOkorhgGJBKeqSmUrBNiWiFRgMkowI7IQlWSVgKBKEWp96K4DjZfHWxGVRUjpegVU/Oni49/vLfPkpXuH/RNrqms3XjXrZu3Mtzr30Nv/Tq9/E/N/8T3/nx57EdE9ux+PoPPsVFu6/i+c94Xc3v8idL+usUSaLhbgJGCNsxeeTY3Tx89K5F2+SbCI6FoUFqieA4rV4vVZoXfkZ3gP5snlNTLk8c18kkvNIS0H+dz7dQOW6UVj2WLK8TtvZ5vOrCPDfdW76Xf9ilGqIvGXGqti4BXLNFBccSwa99o5f5nMCT1e9JTwhOdfVwYSrOBsdkwDaJLUh+jHS5/Pq1OW7YYXP/hFFKhH/7YKgiOH500sAuJB2u3uIgBFy20eF7R9TnPTrlC44LlWMpJcnUHAN1KPjrUFg7K8hlgMy7CFc2LBbVDvILJpfHDv2kJjXmi9/+ODPz48SS09x69/+09H3FAUMIQV93FT+bNtCwlVMBMle/ciWlLA2UCyE0AVIiW1Qubhcy6yBsWUG9X0uooFRf8+rV2xEf6gpyacp2Q/o9bx1PBci+oEloqk+uVTsngO6IEugpUqtzpmRyRhINeGsqQPNTFsNtVo6lhO8XVKoFkufvWfr+9OP6HTYvPV+9J2sL/uXeKN7jMeSRFEhwvn4KObs4IRYM+oPjKgkzvUCTX53beB1PAsRTakyp6kW/jPAHx+fvLFeOA0aQrkhvYd9WRgV2Pu6zcOzeoFoZWhzr/GNRNa/jmugNIGMWJCsbjIMGZA5nyI6p8SHQY6AFNLLm8rRMrWxwXD6/6WyCbJU+4iKmCsHx6Ogo3V2N+QCODm/jXW/8a77wNw/y4uvfUHp+qX5bf9Ber0gihCi9XhQF04TG21/3J6VtmqocB5XejKzhbS89iYwv4WQSNRA5j0HH5MQkmHGHYMHGqd3KcfF+1DSdnq7ajIixRDni3drrMtIteYk5WXrurkLCoVq/cRF+avVsVlsUGHeHPa7bbvGbT8vy2Z9NcPFV5fX1Ry6d5FevznLDDosLNzi86Sk5PvOzSZ6100YIJfg12q0m1fvHDSZT5XXqAxNl1ulVm9U+XD5a3s9HJ8vFJr+d00rpI5ztWJsRQaeQdyssQZYTC1VcpZSLaCsA84kpbrmrLNZ18MRDLX1fccDo6xlG1ztbcW0mOBYBDTJLqN/ait5e+0NoS7l4IbypHM5Dc3iz+brnX8ZMvDNZaiT5Vh3Hx/ZzYnw/AJfsvZbR4W2rvEcK0SUqxypI8h1321OLuAUtDJL2Ksd64fOm4+q7ZuOQTXuEjM61S3QCZkXPcXuV433TOuMFitZTNjmMdjc/vv3KU3P0hdRxv/1YgOQt5QU3jsT+31OL7psKe7dqbBJBmRe5jnV0GK4rmU1A1yrY3B72KVXv2XZpxWvFisxKqVVXCHL1jarkYovJ/8W06sYggjrYHt6CJFogZWIfTaP3Va5HkmmWpU/cX5BYTlp1Lp9eVPyoRa02rVwpUN+6dWvT3zXYN8rLnv3m0t9LBTL+pIxfPb0a+he8/ttv+XhFIJ7LNxEcBzR17Zk11nU5d8mCh9AE0hD0pPIk0xKyNlpQQ0pZkYxoxSatuD7u7xlC02rfH2MJf+XYxZvJMxBX5/pApI+Zwj1yxabaa9zLRh32DKr1qy4kewcdXnq+yXuuy/DPr07wwCdO8+EXpnn1xSbb+jy0bWXqy7ZUihsvM/nA8zL808tTvOXKPGHfvaIJSv7JEsF3D5dpFg8U+o01Ibmy0A+9qcdjKKrm9n3TRklXZF2xunmc08GxTNktTxzNolrm9Yc//d9Fz3391k9j+7yDDxx7qOkA3j94LId9gX8hXNfKCZTnXdapmUEElHBDnSBIBPSWTOVrIu8iT2ZwH5rHeyK+6LNlxsE9GMd5cA45nUcMrcKKqwF0klLtevAfD4b5z4fCTQkxVUM45BfkWjChahQax3xf4hQqilXof3WTJg2gJwpjM+A4ksl5FZSvobgYqKQstqtW/f2j5Wv1BXua9xgH6AtL3n6NGq8uycaJTlWeQ3koiffwfMVzC2nVi1BggFS18VrHOtpEJg+ZHERWuN/YcWyOnd4HwNbRPUQXWN0UA450NlFXn6NTiCV9WiODI5BzWq4c+xN1jQpyFSG6DeRkrsT8kZZL4GQS15YQKVe0XFeSzEFoGUweKivHyxccx6oEE1M1qNVTPrGuVoJjWOBJvETQX/zdQgh6e+ozCLeM7i49/vVf+DAvedYbCfusBZuqHAc0Na/XEOWSOQfRACtM9AaQcZOtAdXeQ0BblIxIpOdw3caLJ2p9rM7ZwBJ6PH6l6q29Ht4jPiGuwntDuqyr6xHQ4R9fluKzP5vgW2+M8y+vSvE7z8zy8gsszh92FyWG/MGxPL30MX/xeSaaUPPqzYeUMNdsRnAirvb9gmGXnpB6XYhy9TjnCI7Mq20qg+N1r+NGcM4Gx0qp2mnYpLxdVFswHjj+IBPTJ0p/Z3NpvvnDz1RsE0tOL6l+uBDTc2OlibiefH+rCBjl7NSStGpDUxYudYJfabqIehXCoAYZB9lu1Ob7PiK6UtY8ncG5fxb3aBKZtnFPpHDun8U7mkZEDLTRyJqkVEspuf1elVzRhMazr2nO528h/m9fiM8/EuFzD0f45oH2kgF1adW6UMGxL0iSjqe8OBf2AesaZNs7571RSKRV7/H4LPQEPFryNVlGVPoctx4cOx786IRaZYYNyQ07W1+Mv3CvxaWjNq+dO1F6TruybCHifON0BZsjFFyicqwJlQBZrxyvYxmQyqoEX2CF2yVOThwsJbPP81Gqi+hfYa/jYuW4K9JLqLtLaXm02HMcbqHnuISuAKQcZMxESol3IoMes7D7QhVLgbwFlqXEEzuNhcHxcrEEqwUTtdZskz4adCeC46Xo+sUgsK97aEmRpbe8+r284Lqf531v/yQ/98J3AKoQogk1L/uP51IQhoZwlJ1TVWSchs6HCOlgeRizOQKo4HhhokNK2ZQFUTqbKAno+Y9lNRR7XF2n/AABAABJREFUjruDHv1hifdorPRa8nyVbHjxeSaBJfSrggZs6/MINsKQGAyW9HW809klj9NQVHLdNvV7isJcfkq1n9YNcNnG8t+PFajVflbBup1TY1h7UUGnYBZu3BULjssDy1MuvL70+Pb7vl56/J0ffZ50VjVIBoxygHLg+IMNf086m+BP/vFNpb+3bzq/ld2ti0oK5VKVY02JLdWT9Te9qoIM5S/UVAUx3yErmJyL0AUirKNtiiIMDe9gEueBObx9CYRAiYmsoACYlJLpufGGJ/DDJx9hfPo4AFdc+EwG+1r3snY9+N995evt6/tCbcUwlZXjasExi2jV1X63MAQy1x5jIBgQ2A6cmFRBcndQUv9iaxyzsTMdqQaZHbJyenDCIGWq8expW21/gaZpaAJ+Z+8cTytMlLOBENMv3Y12ab/aIO3gfKe8AAwG/AvpasExZUGudayjg5BSEksuT/VxKXzle58oPb5g51MWvV4pyrX8i86irc1g34hKAI9GFM25BbRKqwblVCF1kFM55IyJdzKNPhzAkQLbN6TnTOXstzzBcbnqZtn5xYnaDiFWJUCtRauenDtVetxqcBwJdZXm2HpVPnVfFOjDDTAIt47u4b1v+wQ/84wbS88JIQgXrBmbEeQC6to5NWKPWdqHiKH6k20JAa2qAFczolyNKnibDkyn1T5u7fWQs3nkhLoPxLYu/uAVDv/+mgTveFpz98ZSEEIgthUq9hkHYkuvMV52YXkd/u2DIe73BcdP3Vy5hipWjnXpseUHx7A+eYANWrmItk6rbgznbnCcLyhVr1BV0F8detH1v1h6XKRW27bN1773L6Xnf+k17y09bjQ4Nq0c7/+HN3D09OMAbBjcws+/5F1t7Xc1VFo5LVU5FiqDWIceK02nfjWvYCpPh0S5ZN6tGJhFTwCxMaKynRsjiN7gitvN/PN//zGv/52n8Na3vrWhhUilt3F7lOo7TwaYzpQXUOMpnXvHWl+taJpW8vqsKsjleopyVYRTI2AyNJU4aZOKGwlBPC2VNo0rW7Y28eP2e7/O63/vct7+/huWVGxfCv6MfDtq1T86XmZ0PHd3+0H7pkfKgoFfH9zOP97Xjf6q7RBS9453zyzecSU8468cm3aV61csZgysYx2dQDqraNUrbeH08P47uPUnXwGgO9pXVTXYH5Qsd+U4Z2ZK4+1A34haZLeR4PUHx00JchUgegJ4cybekSRCgFbI1tk+BmzWBKRSpe40FlY6l0uUqxq1uZZi9ZRPqXrLli0tf2eRkVCN0l1ELp8uzU0DS1RI66E4lzfVcwygiZKXsR/S9ZBJGxFuMGnTY0DKRngFG6cqCYFmaPP+hMLCPms/xpMasnBdbu1zK6rG2hUD6Brs6PeWpTPTT632GqBW+4W5IvtmefodB9hqZogGJBduqFw3b+/36A15vCA2wVWnzyCPpdn6eG/p9WrJnnUsxjkbHK+kUjVUCnLt2Hw+F++5BoDjY/s4MXaAm266ien5cQCefsULeeEzX1/a/uCxpYNjx7H5s395G48dugdQNJqP/O5XGR7Y1MmfASy0clpCkEsIpFhs31OBlFP3PAhNIBEdUayWboHivYB+JzSB6DJWTajpjvu/BcCPf/xj/uyTv1q3h8bzvFK/sa4bXP/Ul7f13V97YvGq0l9JbgVFavXCyrEQAiGpCHhV4qTKcTfEkpT8RtDbBWdmoTuMKlN0gHp514M3IaVkbOpo6Z5rFZWV49ZW+JYLd55Si89oQHLtlvYq7jJp492vFvNZXefmga3cPx7gzkQX+ovLizrna6eQrlehVl1tTBBa4bw3UTn25tpLOqzjyYF4RlV5givotmc7Fv/w+T8o/f22n3t/1SpUv79yvMy9fP4grRPtVH616mYrx+oDdCW8FLdg0JdQ903jqaxkuVz1cguo4LEWLH8aQVVadY3geHK2/coxlJWnU5kYjlN9rPczFeoFgUuhFBw3WTkWAa26C0m2IMbVIGtT6BpSiJIwarXz2My91ajNab1+Y/3yBjy/24Bosu+4KMwVcR3eM76P6+NTfODUQ1w9Yi4K3jUBVw6bvH7mWOm56ElZSlCtV44bwzkbHJN3V1SFuKKvMBDhub5q3w9/+n/867/+a+nvn3/Juxjo3VDyNz504pElg6WP/cd7+MnD3wPUYPaXv/Nltm06r9M/A4Cg4Q+OG1jASlkzOJZSIjNOQxX8jihWV7ENWgvwXx93P3QzH/uP9+B51Y/ZvqP3MVNIpDz1kufQ1z1YdbtGsH9GZ9+Mqi7s7HfZ3KNWLg9OBDgRa/32L3odV5tQJVQKcuW86n1xhqa2azM47gorYa6hPmUNJTpw7pOZchb58cM/beuziuc+YARbVpa/fzxAxlLn67rtVmO9TXXg3j1dqvImLh8lV9iv/3ksjP7MEcRWVeGWkzncH01VCHItVOYvQdBQ5bhIsfcOJhX9bh3rqAPHVZfWclQfa+ErN3+CU2cOA3Dh7qfy0me9uep2/RW9fMtbOfZXRgd7W2+zKcIvyNV0zzGFROhIGDEaLiedBdh24f6WkmR2eSjVUsoqlePlSU5UU4yuRasuVo6FEGza1Hrhor+BHtFK+nBlsiRnw0Sysfm9KMrVTM8xoILfvIt0KudvZY/ZHGtTbAgjNqg5phoDoBladYW9VR1BLr+N016ZLlOqt0YRg+0VD5aCtq1873mnGzvuLz7PZI+ZIiTV8d5s5Xj1/Kmq274sNsawj/Upsh7n6xcA6z3HjeKcDY5l2l7RAMk/uYRCEZ597atKQgdfvflfOHjwIAAX7bmaS897OgAX7LoSUJYEJycOVv1cKSX/+j9/wvfvVvZPASPIh979Oc6v0v/UKTTrc4xRI4MIijZreUtmEVUWsgOK1UXboBZFSpYLC5MMt9z133zqKx+s2ovrp1Q/99qfrfu5Pz1t8L9PhMjXOPz/66sav/aSPK++qHw+/29f6zzFSLhMq170G4oU2wKk6VYPWHWhKNdtBsdCCEYHBYYuVA9UJ4LjdDmL/MSRe9v6LLOw6Gin3/j24+UV5nN2tVk1Nl0VHANogu0vHS5ZURyYNTiT1jF+bkep2O9+/wwRzbeQrkarppAUaYRWXRBxkUkT91By1TzO17GOajgzc5LPf+tjgBJDfM+bP1rTDqZvBYVuKm2c2q8cV/Yct8biEIZWIbSoa5Czip+pBLlCy1Dxtx0Lz6scN5bLzsn/uUW18pn58arJ7ck5FRwP9W8kFKoMsO44EeA/HwoTzy89P/lZCrWuK38Q6BeeMh1457d6efPX+rjp4NIHvziXO67dnMZGoKgVU3keZMZBQlOta0ITpTVCdVp1Mz3H5W3rVdTHfMmDXePlxJZ2xfJWjQFEbxD61JwuxzINMa6GopLnReIVz53/yOlFCWaZd7nw8cXMhhu6nwOsV44bxTkZHEtPqp6HFRLjgsWiO4N9o1xx4TOBSj++n3/xu0qDxoW7rio9X6vv+Ic//V++dovqVdaExh/92r9x5UXP6vj++xHwWzkt1XNMQVgpW2PBbroq+FmK3t4pxeqibdBycblagJSydH309PSUkiZf+d4n+fJ3/xFQWdvb7vka/+/vXs+3fvhZQIm2XXflS2p+7tF5nff/oJtP3hvlg7d1syCBy3RalNSN+0Iez99t8aLzTKIBNRDfejRI0mwtkCxWjj3PXcwukLLUZyylVNdAlYC1RMVtMzgufa0rVb9zB6jzyXS5crz/6P24XusBXPHctxocmw785JRa5HQHvUUCHM3Cu28Osur3aFcOog0EeZ6vh/m2Y0G0rV1l9Wrboz9btrCpWTmmQZ/jwneL0ShyNo93JNkxpfp1rKMdSCn5xy+8tzSmvfpn3s7e7ZfV3H5gBS1S/MFxJ2jVFToCrdCqq8DQwSoMT3lLBcih5fA4rlLlXK6eY79i9Hk7LgdUcL5QSTpvZkvXwMYN2ytem0prfPj2Lj73cITf/FYPpxP11yf+XvZaFXH/7/UH03efCnC6UBX98YkGguNQ2X2iWa9j7MVirDJmtSwSB9WrxC0LctWjVfsqx32HysGxfnnrTL1mUOo7NpUYWCO4WktW/C1sD+emykDY/fEUek4lux/oKrd9XGOoVs91K6fGsHYiiE7CdFdUqRoqfQKLFgkLhZS2btzDM658cenvC3f7guMafcff/tF/lh7/1ps/yg0t9J8+MGHww2OBhoVkm64cBwrCSgujMwo010ZozkFNnbNce1Uk6ajv6wS1tlPwB4+XXHIJ7/mlj5b+/vRXP8Qf/d0v8Lr3XMRf/Nuv8dNHv1/KiF9/1UvpWuCr6cfNh4J4hd6B+8cD/N3dUfxF3G/sD5def8WFJkEDuoLwor3qnJqu4LuHWkvr17VzEqLkf4kjVfBbIzkiBfX71ZuB2zlKvb9ynDMzHB/b1/JnFWnVrXoc/3QsQM5Rv+n6HfaSthL1ID2J8+PJ0t/6sxU987m7ysHxD44FkRLElnK1uCfXQJVJ0hitujBxC0NDDIWQpzN4JzLLZsWyjnU0ijsfvIl7H70VUNW/X3r1++puX6lWvcy06kTZ47jTleNWBLmqwdBUUAxKqVpK0JZB5yNfhQa+XLTqYjARDnWxbWO5la2oIVOE3+O42DJXxJE5vTQXT6Z13v3tHh6drJ01qLDeqVHpq1U5/v6R8vptvAFqdYX7RBN9x0ITIKmwc5KWpxiA4dbX3tXOYzMBXcO06sKxuVjLICbU9SS2RhFDy0upLqKy77gxavVwwqfQXuit8h6cLwlnyoyD+yM1v7tC8M+bLuRgRIlxbZVb2KCNkDMzzVPon4Q4N4PjvKtk4VcwOPYHQMHCpHPDU19R0WN440t+o8KLbu+Oy9EKfx88/tCiz5yNneGxQz8BYNvGvbz0WW9atM1SODqv877vdfPnP+quoGbWQ8BoPjiWtltd1t90kcilKTYFxeq2KZaWh+yUl0+H4A8mQqEQL3vOm/iV176/9Ny9j95aMSltGNjML7z0t3jXGz9S8zMdT1X4/Lj5cIjPP6KqATkbbioEvgFN8kqfFcCrLzYRhWP09f1hWinaRcL+bHMVO6dScOypgKlOwFpP6bwpOIXKcZvBse1YixYJTxxunVpdrhy3plR9u0+l+jm7mu/RlXkX97EY9ldOYP3FYzCvPkOc34u2We3TSLfk8lFV8jmd0Dkyp5d6wAC60uUxwaylQyBoqHIsk+UeABHUoTeIdyyFnFoX6FrH6iGXT/PJL/5R6e93vv7PSzTaWujrXjkrp05Xjv3K+abZucpxUZAra8pOGAdURbXFfTPVxWZQDNYGejcwMlQW2VLWjGV5jSmfGNfG4W0VnzG2IEhNWRrv/V43PzhafU3W3+evHFf/XbEKQS61/XxWcP9Eec05ldYwl5ByiYTK10HTQZOgcs2WddQ6MNR6BrcoyNXbPVhK4DST+PBv609e+ZHIC5IFW8Tr7fL22jILcfmhbS0f90ZEuaQnkZPqPnUHQkRfvrn0mvP100hP4v5wsrQOP7l3lDOhKPd2l6+lawPXAtWV9WXCQqY60Np4juCcDI6lWawermDl2C+6Uwh4e7sHSsJc27dv5wXXVVpBREJd7NpyEaBUrRcuyH903zdK1ZTnXPualuyHHhg3SnL19483FhxXWDk1IshlaCoZUSXIkbkaSsULoBSrad/OqZZt0CrCT1kLh1XA8QsvfTeve9E7S893RXp5ybPeyMfe+w2+8DcP87afez+93bUH6nvHAiQKg/u2vvIx+8+HInzvcJBbjoRIFwScnrvbYjBaPi5bej2eVjCVn8lo3HWqecWUepVjoYnyCskqBMe1esB10TZboIQSpb69FZm/alzE40daE+XyPK+UOAuFmq8c52z46ekyNf7KTY2L1nnHU1j/chDrAw/j/OdRvJ/OQrwcXBvP3Vix/fP2LKBWj5SD40iqfI1YtapMYmnFeelKZKoywBddBkIXuAcT6wJd61gVSCn55Jf+HzMxJbR0zaXP51lXv3LJ9xlGgJ6ufmD5rZwqBLk63nPcmUqSroNbGAKS6eUR44LqnrzLUTm2HYtUJg6o4Hh0sKzkPzU3xl/+OMorPtfP9w4HOeMLjkcXBsc+Cu+uATWG257gL3/czRcfCbOQNNNI5djfC12kD992vMwmA5AIJlL118FFn2OAnNmcV7QwNPBpxcisA67XskuM37t5sG+kRBdvSpCrkDTo6eonYFRnxvkr6hdky1RlbXf9ZFgnIZq0c5JzZkmfJbAlgvb0DYjN6h6W41ncW8/g3lU4ToZA+xk1v9/b4w+OnwYstnPyTqax/vpxrL94DG96PUkN52hwvNJK1VBbdOc9b/4Yf/Kb/86Xv/zlCjuUIoqiXJ70OHLy0YrXOuF1e2iunEU8PNdYNs8/oFgNCDQIvdA7WoUeK9M2olHVQiGQ2TZp1XZjwfhKwi9gFImo60MIwa/e+Kf82W99kQ+/+/N85e/28bu/9HdcccEza4q/+PH9I+Vz9OvXZPm1a8qLm4/fFS1VkAF+9uLF1f/X+J5rxdYpGq7Tp6RX0qrrVXNVv3oHVMpBfY8r2+459vcbF7HvyH0tfZb/3LdCq/7J6QCmq37PDTvthlvppZTYXzyOPJKqpDobAnFBL8Yv7kI7r7fiPTfssDE0te1tx4O4/aHSeQsmyse0VuVYhHVkzKrvW51zSrTqivcOhiDv4h5OrtOr17Hi+PRXP8x37/gCoJhT73rjXzWcjC6K/qxUz7EmtAohsFYRXgZadUCHok5V1oLQsgXHi4P55Tj+/oRHf+8wG3zB8b0zu7jtWAjbE3ztidCCynElrfq0Lxj7+EvSvPT88vz7mQcj/L9bu7l3zCgRb/x04JqCXL4Ap3gN+tcFRfgD82qI+GjV+Wa9jgt2TsUxW6adtubfbIV380ipfSCZnq9pabUQxcpzXTEu3zHZkigEx7qoaCVaboioAQUKtxzPLqm7ISfK17zYHEVoAuNV5evMvWWiFDzr141w/m6DF59ncizczUyBDXpF8GrCoqci4SKlxPnWmCpk2B7ew4uLA09GnJPBsUxaK27lU0t0JxyK8uxrXsnoaHXrhVp9x2dmTnLg2AMA7Nl2KTs2n9/Sfh2eLQ8CJ+P6khQbUIFbsCDKZTdCq6agVLsgOJaehAZtnABEUGuf1lHLNmgV4RcwKlaOQR3np1/xQp7xlBeXjncjSJqCewrVxIGIx9VbHH7uEpNXX6S+x5WCWE4d8ys22uwdWpxwuGqTw45+9fzjU4GK66QRVPQpLaRVawJsT9GAHA+BqL3QNDRFhW9E5XgJSEcipGzbyzqZWTw5TM2dZjZ2punP8tMVWxHkaplSPWdCrLB9l4F23QaMX95L8ENPIfj289GvWkw36wtLrin4J89lNR6fCSCG1aQaSIBWmC5qCnJFDWXbVkd1XmZdhFX9XIu+IDJplwS71rGOlcAXb/o7vvzdfwDUmPx7b/07No/savj9xUA1m0/XEatrH8XguK9nuKI9q1VUVo47Exxrmii16Vj2claOq/ccdzqxVmmX5KNVBzfzqFVmFpxO6pyZLfcgL6JVF4KxoYhHT0jy29dl+ZWnln/DvWMB/uj7Pbzpq7184ZEwXqC8Xqylwl1MBkRCXYRDUY7NaxydV8UQTZSPw0JK90JEWuw5BgotdUqUS0qJjJmItijV/r76DQ2pdvuRN7Ol31DNl7yIYrIi6tp0JwoWTpsijRdyOoSSKJcjkZP1x46i1RRQqhhre3rQnrJAQCykoT9vI0LA7z4zyy9dlS9VjwMInrL3/5iIldds3oEk8oTv75PNsQfOVZxzwbH0JDLtrKhSNZSrKc1Wh2opVt9+79dLj1utGqdMwXiqPFB5UnAs1lz1uCGf4wLkQnqs6aqBM9BgsBLUIOtUFfZqeB9q2QatIvJVaNXt4PbjAWxP/cbn77bQNeWe9I5rc1y/vTKAeu0l1ZMbQsBrLiqf26/vb656XFeQSxfgoSqWtld/wWIIdY10ou/Y8TrSbe6vHPv78lrxO66g1Ieay0qnLbhvTK0uByMel402Qak+Vj4n+g0jBH52B/rF/UuqiPpVq39wLIgoUKuFCyOaWrDVsnISAeVbXdPWDVTluNZZCmoI01MB9jqWDY7j8Pu///u85CUv4eqrr2Z2tnLRmc/nef/738+znvUsXvayl3HzzTev0p4uP77xg3/nM1/7s9Lf737jR3j+M15X5x2L4RdDWi5RLillqSLWCUo1LE9w7IfrQmCZ5uJqglymlVucqG0TC4Pj4f5NKtG75+9xRTmotF3BWKKgwi8EG4bKFea0KYjn1Xp0S19xG3j95SZ//Jw0g5HyemcqrfPZByP82nd2woVfAqN/kSp2ed/UfVtUtr71aHkOf+He8ji+VOU43E7PcVAltzGVpZPMOhDqjBjXYO9IRYDbiBq5P4Dub8Dj+PxcssQzFNu7am6/XBDbGu879leOtU3l9xkv31pRgNJvGEV0q3WDEPDGp+TZfV15vXatO8LnTr2GU3ENKSXuzZXCcvJUY9ZS5zrOueB4NZSqoTy5BJsMjndsvqC0APdXjm+voFS/uqV9qkajPjTbmK9CsZLZkCAXhYVxZkHFyPSaE0ar4ZvXKKSUkHfWYOW4s8GxX43yBb5JUNfgD5+d4ZIRFVzsHXR4+rbaVbyf2WsRMdQg+MBEcyn+uoJcGooi5HiKVl3vdBhaweu4A4OxI+mEAoyfSnf1pc8tPW7F7zhfYfHWXHB896lgKQnyrJ1WU+5k3rFU6XEzfVTP2G4TLlwTd5wI4A2Xr9etuqqa1PVE1TXkfO3XZcyqmZ0XmkAKOuN3vo66uOqqq/jIR6oL/v3rv/4riUSC73znO/zFX/wFf/VXf8XJkydXeA+XH7fc9WX+8QvvLf39tp/7E17x3Lc2/Tn9PcsvypXKxHFcdV90QqkaQNeNUhK8U7TqlUKtIG6+w3ZOfqp2f+8GDCNA97Y3w/DPLtp2OqvaVDYN7ED8aJ70XSrY8Vdut/ZWJv6fs8vmizcm+ODz0lyzxS4JZXpSwIYb4dLvMpdePJ46jk0qEyvs1zCup5KZALqQvPGK8nvGkkvQqsOtV46FoSEcD2l6kHURVntiXJVe3hsqEkH1fKyn0ho5e0Efdm8dWnXhnFyYT5Se03Z019p82aA10XfsnSnco2EdBsuMMtEfxHiZmpvFcKjkQOHHFddHcQun5dr0LGlngA/e1o33WBw5vuBeyrnI2cbW/ecylsGBbpWRd1Umq3cZnOdrwPO8lr1Mdd3gvJ2X89ihe5iaO00sMU0yE+fo6ccBuHD3U9m0YUdL+1UtOD7SYN9xUZSrEZ9jAAICmXORXpnWKk0X4XoFYbQGgp9gWbG6mPlqCo5U1NoWxSCWC52sHJ9OaOyfUbftnkGHPYOViYSQAR99cYpHJg3OH3brtv+EDbhg2OHhyQCzWY25rGAo2liQunTlWIIrkfklepAMoXqFO+F17HgsUjZpAclMuXL8tCteyJ0P3gS0Fhz7hW6aZZXcfqxFSjW+4NgQTWXEwwZcv8Pi1qNK0O243k2RYLpV38b99n112SQioiNjtrJwW5AUk46HTNkF2l31AFgENOS8CSsojPJkg2EYvP71r6/5+ne+8x0+9rGP0d3dzRVXXMGznvUsbrnlFt7+9rdX3d6yLCyr8vo0DINgsENzsPDQAxKh17+3//umf+TbP/wvfu0XPsANV9e3PLzz/pv46GfeVfr79S//LV7/infR0Dy1AP195UV4Ij0L7F5yX5tFLF2mmw72b+jY54eCEWzHwrSyHftMI6A+Jxhe+py1irxdDiR6ugZKgWI8Pc22zbs79j3xtK+S2T9M1pXktv5V6blnbMvzk9NqTs9oKkB5Z+idON8eZ+x7guD/G2A8Xb4PtvW7i45JQIcbdlvcsNtiMqXx3YMhvrE/RMrUoOda5rd+hqzj0RUqz6MJv11R3wYentKZy6rx9mnbbDb1uwxHPWazGmNJre55iER8PcdWuulzJg2JsG1wAM1DCwCUz30znxdP+YLj/g0VSZBYaqrqZ/3oeIAP/aCHDV0uv3ZerOL91bb3JIwXEgaXW77geGe049frUsdA2x5RxQMJcixTczuZcUpimmJTBM0A/1hlPHsD2iW9iG4DEdZZOI4JXeDsMtCPOAw4FnvzSY7Ge8l/d6IUBIo93cijhbXc6TRiU2csrVq5DvzQDIlE4nkentd+8aMRTR84B4NjmXfBW1mfW/9isRXRnQt3P5XHDt0DKEungyceLr323BYp1QAHq1SJDzUZHDdaOcYo9J7Yvsyh5SGFaFgeSwiBB60rVtsFQabQGqsc+66PoiBXq/ALbrxgT/WAKaDD1Vsao6ZeMOzy8KRKRByaNXjG9saqdhWCXAuzzZqPVp1z66rGCyFAKmp1u2dNWm7bYlwAKZ9a9eaRnezcciEnxg9w5NRj5MxMRY/WUjCt1nqOTyc0HihYcmzo8rh4pPF7Qsatsl3T9q6mk0XP222VKHp3ZHvKwXFh8Ve31SKqq6xz2obBBZNrxlGJr6E6ia+Ijsw4KrHWRgViHa0hmUwyNzfH3r17S8+df/75PPHEEzXf89nPfpZPfepTFc+97nWv48Ybb+zIPnVvhWvfBpCquY3nefzn2/8Ky7L42u0f582//eya26bTaf7mN34TT6qE3Jve9CY++MF3I0Ttz6+HPce64RvqcWCjoijuvK6z9N4zd58oPd51ST+7bmhtXxeiqydMOpvAFdmOfWZxvLjqRU32rzaB6P5yELRz91Yee0z9Hdh8il03XNKx7/HuKFNOL7q+i/85GMDRCz2e89/lV945wk8++dTCTl3M+fr5XGleDoC0JUP6LOm+8rj/1Gek2XVV7Sr9LuAZL4U3jAV4xR9FcUQ/9D6DD96d5r/eO080pAKM3L4yk2P7+X38xFedfsMrE+y6Jst5d0WZ3R8mkdcYuDJDf3f1BPROqzxnhjfGWrwOCmyri2HhfdrMveDdW/aKvviZPWSzOvxX4YnBMXY+M4k96RDcXJ5D/vx+Rb2eyeic8q019l7VXfW3jM/qWO4gSMnenAqOtR6N3a+xENrysJbqHYNjnwpiHrWQkzl2XJNAq+IRnbk/S1Hurf9qnY01z1HtJPqZ01HiH1fiY09LzbDFzGLMqGsxcnmYDe/s59Svq/3sMmNsuqGzBcZ2x8TJ6bGlN2oAu3Y1pidx7gXHnbKFaQKtLoCL8Pcd7z/2ID++X820Qgiefc2rWt6vQwWRpbAh2dDlcTqhcyKmY7mwROthyeu44eA4oCnxLZ/HnczazQtH11CslparAq2+OjdsMTheY7TqhT7HrcKTcOtR9fs1ISv6Q1vF+cPlIPrgrN5wcFxh/1CtclxQjpbm0r7DEtmZyrHpdSQp5u857u0a5JK913Ji/ACe53Lw2IM85aIbGv6sfAtjg+nAh37YhVuQ3H/BHrOpmL9VSnURV2126A97xPMa30v08ubC843QqoWuKd2HlK0UqH2QOVdZ7NUTPQnpkLTVWLIeHK84stksuq5XMFy6urrIZmv3Ir71rW/lDW94Q8VznawcP3FXmn03x9lwQe22hHhytlS9njg9w/E7al/3B44dIZ1WY9Y1lz2PNz/vo5y4s3W2kTtT7i89/EAKXgMn7u5Gup2bh/b9xKchkNpa9/c1AwN1TDMps2Ofmcp7XP6CDId/1IXRYJWmWUwcKK8RhiK7gccAOPjTNBd2d451cnJf2ebnsYcu4Qs/KSSF3QwceSdzD/0TmpCKBh25kF+JVrIrpm51eby3PO4HxoMczyy97A4CV7l/wb3yfRAY5MGj3bzpgyH+/IUpQgY8/lg58SAzO7n5XjUfdwc9dmd0jt/Rw5CvUHfX93prJlgTR8vMhzMHnaavAxkzoSeg5nDbQxRYm0KX7Lwu3dS9cPzxciXXPLUd21c5PvpIgkO/NI23L4F2eT+BN+4CQ+P+/eWx6tH9ZXEqd3pb1d9y/1gh6Wzn6coX1jubuzlxV++ibdtFI8fAGeqBo3PgwvGv6Gg7F9O7nR+Vj0NK9JFr4V71ekMU75OnJ2cIysny51+/jal4F4gxkJC4xyLfofGglevAj+ycjetIXvjODYQiK7cmOOeCY1JNWAd1CH5rk2b7CqEyOP7+T77M9JzKkFx2/jMYHtjU0j4lTcFkWl1IewZdNvW4nE7ouFJwPKZzwXD9JEK5cpxHSrm0rYUhVO+J5SJQWT2Zdps+FyKoKbVxH2TSxj2cAMtDv3ZD7QBoCdug1YKfWttO5fjRSYPpjDqnV29xKryLW4X/OqjGNKiFuj7HQiiakOkqqvNS56MBf9xGIC2vI5Vjv1p1b/cAl+y9lpt+pNLXjx+5t6ng2K9WHW7Q5/iTP41yPKbOxY5+l9df3pwCrl+Mq5Xg2NDg2TstvnEgTJwgViRAMGezVVcKrEuJ9Imgjjdrqqq1b9yQGbu2GFfxvbpQqqcZZ1FwvY7G8Bu/8Rs89NBDVV/75V/+Zd72trfVfG80GsV1XfL5fClAzmQyRKO157VgMNg5CnU1SA3XFnUXVvOxMs00nprFc6g5Z8Xi5W0v2n01QurINoafvi6fIFdCVdCkW39/m8V8zEc37Rnt2GeHAuq8mlauc59ZGO91rbPHwI9cvjynbhzeWXoci8909rgXe1hFgM89cR6ymO0/8X4wTzE3d5rNPR5jSZ2nu6NcGris4v3eySxj29WcrQnJxqhseP+292S59+4XwWXfB6OfhyYC/Mn3e/jQ89LE4mVdjFntOvKO+szn7LIJIJAubO0pJ5xPxwwuGqqegA4HyonubD7b9PGTQodMYe3XFYAF72/mXqjoGe4ZJRcoJwESsTm8oyp49h6NY/3bEWZ+9nySZnmNOZEr9ygPdI9U/d6xuJpbL8iVA3GxrWvZrlWofwzE1i64V51P90QWsW3xnO2N+5SqN0Zb2lfRHeKYPM5usYtdPj9rsacHbXeferwpgpzIIc/k8LJeR9lbrY6JniPwHEWHbpQS3QmcU8Gx9NSiasXFuHzZrVAVL+OlMDK0lf7eDcSTM6XAGNqjVPutec4fctjU43Hr0cJrc40HxwCOa9c0Uy9CCIEnRMnOSboe5Bq3cSp/sQZZpXItAhreVA7vcFJRRbsMpWocqX7ZLmkbtEowa1g5NYtbKijVnRFMGMlk+IV4jO91beLQbADZoKZVtJ4gF4WOF9NTPeBLqFcKQ6hrpQ1IKdW11+nKcbeqHBfRrN+xPzHSSOLsh8cC3HRI3XshXfL+56SJNNl+L4uVY00gdrSmwPn8PSo4BpgIRdmZSzCgDRAV0fqCXKCo0UlLtUf47lUZs5ZUywZUi0bMhG2t7fuTHZ/4xCdafm9vby9DQ0McOXKESy+9FIBDhw6xe3fn+jiXA36VW9d1SGcT9HT1L7ltfx3Rnkbh9xz2+4d2EpVCRZ0R5AIIFtYrppXD87yOLD6DBXcKUZKX6jz8vaibR3aWHvuPUydQFOQS5/8bp5Nq/t0cmWNi4h8BmJ4fY2e/y2Rc8MszPtE6XSjm1HiWiV51PDZ2ewSaiDX6ezdA+kF4/CUEr/oRlhfk/vEAP/8/fWzWngYDL4L4bRw1ryy9x78u2NpXXuONJWqf10ioPJc37XMMSkg1ayNMCQPtXT/F8yeEoK97qNJmKpGs2FYeSRH8j4N0D1xN2lCT5Pz/Z++7w+O4ruvPm5ntu9hFJQGikQQ7KZKiGlWoYsmSZUvuXW6KSxK3xL/EJXEc11THSVxkx71IlqusZkuyJatQlWLvHQBRCKLuYvtOeb8/3pQ327ALLBqJ8338uGV2MLsz89679557jmb5/ha6t3v032JV0trfbChVm3+bm+cKKVabNk4EIIsnX2A55jqBZRk7rfjs1hYYqkak1c/+FmXHQjoqX02fL5hbykVThaFUPcOV48lQJ3kQQrB66Wbba4Ig4pott036mI6NWIvSlXUqVnBetydKqBA6ON/dkqnVRoACsMAoo00qOKayCiQUqJ1RqPvHGF220cMUjYtVGGVtwsrUbCBdAUGupAw808UmZ59Tw5Ul0p+LgVIK+Ucn8a6+E/h4/2FE0gLOxUo7X55iglwAQPT+f1VjpchikISpt0OoTACsMsExqxx7XD44JCeaGpaadhmHT70MTSudAl7O2NAbEfC156yJ8qNbE2ivLo9uTqMy6CALXkmzd9KZ3zX1Khb72Tk5Sqxz3Sw029TX88ItgqQ00KiV8KAZlSUuSzge4hZBIzLTMFjAtCCTySCdZuO6LMvmYwC49dZb8f3vfx/xeBwHDhzAM888g5tuumm2DrUkZNu88CrD2eAD2Ooidi+lopoPjqfJyokP+mqCuWq0kwWvkVKObeNsgw+OecHSsSLnfTIIjw8BbV8AbWDNJQ6R4j3rToOJagBDo31oDal41VgvluiJULlZgnBRiO1ApmiIs9ezlaonQsi4rqI7cFv9faaLQDQt4FhyE7D+D8DlZ9EdZ+zCpoBqo07zf6+YYvVU1KoB6HZOTDRpqoUJ4/wF/bUQRQket990c0mN564zqgZj+LeunajW16gKCQBuppdQyOfY+C1WcpVjYTaD40aPuW7RuuM51pdUpaDndC/mOldpCeYC6K46a3v+sr8OL4rV5nOBS6ZrZ6ZPM2A+4PwKjg2l6ilcPJOBLfiZRHAMMFEuHpvXbJtSVttWOa5TsLxWMfO4J0Yn/n2cDqtKWfKkKQmWx2laZT0o5QbHDgFEplBPRUGPREC8IkitC0QUQFQ94C4EZe4FxkBlKsfPdjtN6tS17TJcRfIbWlcM8o9OQj0wVngjgN0vI2xSuTg2goCSKVmwbaLKMSjYNaCUELCKhCU21CkEQwoFrVhwzH63Kj/rXyKEYL1ePY4lIujuP1byvvhFXLGxIaMAX3rKh6R+jm9cnsbNHeX3lGtdPKV68tYUhDDVUwDocVoTZrPYYmsjyftZgYASam+PMPQI8oiN5MAjssRKYsHveLrwxje+EVdddRUA4LbbbjMfA8CHPvQh+P1+3HLLLfj0pz+NT3/602hvb5+lIy0N2UFRMUsl3jc2FJh65dgYJ4DpqxzzwX+lfI6B6fc6ni4k03HA1Q5cvB8/OnEDQBjbppLBsaZpGPW9Hmj9LACAgOIz2+LY0hYytxkc6cMyTxpvHzptvuZ63VKbRc8KPQjjK7mloDpoBXfezB78z61RXLc0YwbJAABHtUn1vnF5xsb6WhzQIBK2bbHKsZtjNJXtcww23kNn+k0FvJc3z44wHsucpRVZ5gcCbBG0NB3Df3S9jAbj+g1cBpfTA3cB4czeiACRalhhVI5rnJNzR6kQiCSAGH3GI2nQ0/b1FB1KmWtb0lh+2yaPZI2KYc0ao37WsBx7zlrfnWea0e6F4Pi8AY0rM65UDWQLck3u4uX7joGpUaoBS5XaLVE0V2nwOoDmIAs+OkdFyBOM0w6p/MoxkQgT4QJA0xqIhrLPBSF6z+FAEqhzsR4WHQZVtxBocgLboFlCRp5a5VijwK8P8t7Gxc+H8odeaIfCUH7dnZOF5EGjVvVZBMUlsREcGyqt08Ll9JpZ4mQ+KhYhzNaLs/YqCImpVaNY4mMiKBqrUk/x/GuaZtqCVPmtjCpPrT508qWS91eqWN93Xvbg1Cj77VuDKj6+NTEpy2bKiXGRKdohdeg2YX0ua0xrFpsnplUDIG4JdCgNqrHrjyYZi6CYcrn5WUkAFI2N5wuYFjz00EPYuXOn7Z8Bt9uNL3/5y9i+fTt+//vf45ZbbpnFIy0N2R6oY0WCVHvleOrBsShKZoAcmebKsUNyweepHNWRX6/MJ6/jVDoBNLwd8K3D4ZEA3M3vAVDcC7dcPHEiA7rs6+bzv748iW3tMoKBWjh1Zt3gaC/WHepFUPegftqTgaM9CKHV+l1X6kHYkslWjsGu545aFZ+9Lo7fvj2MjtjngcF7AIXtO+DUcPMK+7pAEoBGve+4b1yEVmApYK8cT05RmCz25LoTlIl4chyywhKqfNXXeExT1nwgtPogf3A1zunnoSmTxH917sCm2AgQuBTVVfV5q9gZlXkit6VicOlq9ULrzPsbZ0O8wjrX6gv2a5ietRIWpGlqbifVwTp8N/4dnFX78YvGNpzyVOHgOcmMB0idG9BFr7QzsaLrx/Md51dwPJqemMI5DbAvgCdXGVzZvsl8LIkOXL3l1ZM+nkiK4JwuxrWiVoGxHl1RywYXWSPoChevEPI9x6V7HQt6n6nGKO6TpDiTRR6QRk8ufUQgoMkidOJUcdug2QK/6JiMINeTpx04rQs0raxTsH4CWx86plfsEgpQjK4csf+Wl0eHcGy4tMqxIAhmxjkvrdrouSolwpMERomeSuVfpYzpNsXEWDw5blq88BWhdSsuNx8fKqPvOFVC4uypTgce1Pt7nSLFZyfRZ2zAFOMiyKt6WQ4MD+0el71yLCvpianlHpElyvQAl0Yz5SUuBAIamboa+wIuDGTTqPnqcDbsPcf5qZflIhSozdl3JWFU1GqCDRXV1OBFAudT5TiVTgAOq7oo1twIoDidvhwcHhTxtRcXAYTNh+30Ibx+LVsHEUJQX9MEgK05AzuZ6m+GCLh3Met5Jc1ec3VtVCjLrxxb349nQrgkgIw+ABx7N8iOJfjaLRF857VRLPLnzp8t+t9MqwTD8fzXjUNyQhLZhJM30V0CiEOYOAk+AeytA1zlWL9HvYSbP90ijml+fHLppejR59UaJYOvdO/GnepFqA0szvs3+scFUBAzYQHMbr+xAWFDNdPUAaAdGLMVLsx+YwCkaWqV41BVHZ6Tn8X7I3di3zJ2bacUgqN6UYQIxPo9ogowduHOwXMvkpgkaFqFNpYB8c68/cdUrZwAVqW6bAMb4G+55h3we4OTPh6eGruSE95ayfUdn5yAPssHx2V7HWf0qs8kAxUi5BfVIg4BNFZ4ginFNmg2kJkCrVrRgJ/ssa6pv9iSnLiiyAXEdLxwMoEfgAFgS2wYp4eEghnmbBjU6ny0aiIQVvIuJfMoEhYYK1OjVVdCqXyc8zjmg+OO1g2mvdmhkztK3h8vyJVPrbprTMBXn7Um549ckcCymsn9DjSpgPazv0caPSDeqekttodUCIRi0OGBol90S0rxOgZYr3NGYz3QlIKG5bL6n4lbBB3LMKr8AhYwAXJo1SVUjh2Ss2JVWKPKl0onkExWNshUFBmRGKtIV1KMC8imVZdPqZ0tpNJxQLKYPRnflez1TCJ/m08ZOD0q4B8f90PW9OXx4D241PeEbZuGGjYOvlV8K4g+Rt1f24p+zwpolI1/rnbWmtaeisGhqWiuKi84NhIuQG5F3LiGq/1+XNSoYVEBD+Ny+44n1XNcIfCtA7bKsX7N+4g1TxK3iMNDEoYdbnxy6aUYa7bWy2+MyvjbxEegDebeh8ZvsGqO9BsbIJIA8TK9eqxSqDus8Uvrt+5LYarBccD6XRvEE+bj3WettQL/e2gXMLX6/AmOx2WQZGEl4+nEVAW5DHzpY3fju198Bh+94z+mdDzHOcEtPiDu4B5P1FvqsAXHJfYcOwTWZ5xWQWPTYKnlEICkkrc3lapaabZBs4AUHyCVGRw/ctyJ/ig7V5sbZWxpKk41pVqWaFmR6hvNqhx7NRXLI2H0jZcnylWwcqyUJn1NBAJCafF+8glAFQ2EFrZvKRXZStUGnA4XVumief2DnWYlZyIUS5zFMsDn/+w3e8lvWp7Gq1ZMPlOrdcVgkDUmY+GUDacEtAY1aISgX8/OLxGbIECYsO+YHQRhKvMpFTShABOoltvgFlmbxBRVzBdwYSBXkGvinuNQoK5iVVhesXp0dLTIluUjHB026Y2V7DcG7DoIqfQ8qxxzwbEsNrIeZExesXo0QfC/L3jwlw9WIWrYA409Dhz/C9QE7fT7hpolCJIgtjmvBQBECMWv69qhEjeG4uyz7nVsrpdAsSoTRb2vvESf0+GG18PGcZ4JQSk1K8kTCcot4arVPZHCaz5T9GoSPceVgs3GaaLKsUvEoUG2zh2XnNDuXIk/rmiErN/PjXID5P8+AvXFIRs1uNdUqtaDY4GALJlawFkpiFfUw3AKU18cslqSzur3pUcEglPrjeaTDlWKZfe3lw+O2yzGGT0ztUTTfMb5ExxHMqDAlKkdk4FNkKtEL9N8EEUJy5rXQhSmVv0+niXGZaCj1np8YqR4EsFGqy6151gkIBoFTaisN3gagmOa0fL3HcsUVKGANPeCYz65UE5wnFKAu/faq8YTf8ienS5WOUY0973Lo0O25Eox8JXjnN4UgbBzVWKyggJTplWXROGeADaPY1+17T2+7/hgidVjfsHJL0Q1CvzHdp+ZyV5eo+Bvrpxcn7EBXsiDLK1MH9XyGjZmGKJcDuJEg7DIxoYoBOKRQEfTLHGZ0UpSqjbhFEAyC33HCygNpQpyaZpmKkpXwsbJAL+vkZHK9h2XI8aVlBkluFRtw/kqyJXKJAApZH8xdAOA8qntCRn48W433v3bIB466oZG2SBc5xgAjrwJoLJNHAsAGmqX4FLHZRAIW+M85jiHhE5N7g6z15xrrLn+EhqelByGEczw34nvzZ3oGuYrx8WS3nOicszblXFBv3HNe7nKMXWJODLE5pNqj4bGAMXpDgWfWHqZJSApa1B+0w31CUuhuWdchEdV0KJ/T9LkqXwRZ5IgtS4Iq3Qmy1gG2tEIaEwG9DUcafJOOZnHXy9y/BSWBNh68ciQBKNjkSxUjgGcJ8ExVSnoUBrEPfOUaqAyglyVhBHceB3UJgLhd8K8GU6PFp9AnTZBrtKrWZQQRqXMTIOlloOYlekcKHrleBZ6zifCZNWq7z/swkiSfZ+rWzNYXV8CLStZenBsUxPWcXl0CMeGSqwce1gAplEtl10gAshozMO4FBAydVp1BcQjClWOAWD9Cis4PnD8hZL2V2hsuHefG8+fYbS7gFPD52+IF1UgLwUaJ8ZVicoxYPUd92aJcpXEJvGKoAkVdJgJc5WTuCSEgJJc6v8CFpANSmlOpbhQ72k0PgZNY9c0TzGcKngKbKWD49ECQUM2KAX+9g8BfOz3Vfjh7tKS9PyYNK+C46zKMQAgdD2A8oLjJ0458e7fBHH3Po/J4PFIFO/ZnMQN7q8DKhtTs6+V+poluMK51Xz+orrXfNyt67mMN1lBxpq03aO3VBh/N5GMmmOuPYgsfg232LyOi1SOdV2JVCrXSmimwJ83uyCXERxb1+qg6kA8w9Ypa+sVEAKE0InTnip8fPnleL7euv7VP/ZD64qBUuDIoISVyYgZ+MyFfmMewlbr/tZeGLL1GwtTFOMC7BoL4fFhbNaZiIpGcFCvxBOvBFLP1qm0L8E0hC5AzL1IYjKIyaBxGZiFfmMgawHsmJwgV6UwliQYSrDT2lGr5GQrV+g9yBmVmBnOfHBwVk5ymf6HNKEwT+IKB8dEFEAo8tNvZa1iPreVxmR8jmNpgl8eYNsKhOJ9pVSNoSt288+L0aq5wFnTqTQNcgrjXfnPNx1NQzsxbk6eHk6oKYdaLRBAVoFSBdII0w2YLKiimpSkqcDec2xffK1fcYVZKdh9+OmS9mdnlbDJffsBN360k010BBSfuTZuqopOFjSjgvbo/cYNbpBAZawprOCYE+USmkuiVRNJAFSNqYxOQiiPOEVWeb6AFTMXMDGi8TAU1Z5EKVQ5tilVBysZHFv7qjStupBQUTaGEwQndcX7Z7pKu/9ttOp51XNcLDgujVZ9alTEv2/3IpxiY5MkULxuTQo/fVME79qUQjTWZ26bHYQuqmrGZgdzGBnTRnE8ud18zwiOuz0+k+bbMj654Ji/Rg0Fdv7ansiKrMZD4dGtn3pLqBznTXTPEAoKcgVzadWnEtb6dG0DW/M4M0cBLYO0IOL/WtZBvIn5P0MD5HtO43gfxZmIaBPjmgv9xjyENUEgxL6bdjQC7XDYfG+qNk6APYkXjg5hU6M1bu7pz2PppFLQvvkzLlQS50VwTKMy81mbYX9jA7bgeAq06kqAp1Svqs0NNlaUSK22CXKVqlYNJpoFRWOWWtNAcaeU5qVVU7lE26BZgHF9SKIDklRaefBXB12I6pnRG5dn0BYqMXhKZJ3zYrRq4z23COcWq0q6uGc0h1VAR9LIfO0w5P87DvUpps7pKeZ1LBJmzVRi5ZiIpLiy9kRIT93GCSheOQ74Qli1jC2IuvqOYnjsLCYCv+B0OT0YiAr4+LfrTG/K92xO4bLmqVOHaXcchpIamYK/cTaWGXZOWV7HpdCqAV1Eb1wGKaff2IBHZLTq1BSuiwWc98hXKSxk5TRWYY9jA8FprByP2YKGRQW34yuDZ6MioumJx0N+vVLqPT3bUBSZJUOyg2NnI+BZXbKd0/NnHCaFemtLBj98/Tg+ckUS1R42jvLsg+xEypLYIrgJS16/lHkJNHHEfM8IjjuHXTjtZgyeYDSZk7guBfw1ahwPf21PpLZOiKWSPRATkCkwlE7V67gSKCjIVZUryHUsmhscR6MDQHwvAGAkHUJqW5PlHzyWQea3PQDsYlxzrXJMBGLZOlFAfd76TaZq4wRk9bGPD2NTo3VNFuo7vlCp1ZMOjvfv349LL70UP/7xjyt4OJMDHZkdCycDlRLkqgSOcwEv329sYAUXMJ8oIsrldPC06jImTUmnPk9XjFrIzknRKtJzOh0wguNSbb5GEwT3HWbbOgSKd28q/ffPrRznD44ppWblmFQ5IKwNme9dGhkyJ3hjW/m33WaQoj51DlTRzJ5jILdyTJyizTNvQkgC6FSCoIxWkcRIsZ5jALhk3XXm412Hnppwf8a5F4gAh+TEfz7jQzjOfpOtLRm8Y2NlFqTTQakGgGoPRa1Xs9Gql4jNSMslUjC9ErMMm0zLi0sESakLfccLKIp8lcJofAyKkjv2hW2BxfT0HE9n5biYWnV2ZbDY/G7AZasczw9adSqTAIgLEPOstULXlVw53tlnVco+ckUCTVk+xEYQSghB0F9rey/UY332RfkFQEtAyLDgqzssglKgc8CBE25LDZ32lh908j7cRsW4EP24EIy+Y40SnI3mXyfbvY5nJxgyvpdABFRxyaZ8leMDYbY+Egk1RWfHxoeAKLNZpCA4PuaA4x1LzblnZc8grgufxWojOHbra5Q5BvGyeivRb1ySArM4rQSq9YTL2PgQQm6KZdVsfj0xImJcT6iZlWMAtHvmRbmS6Tj6zp3GgeMvYPveB/DQc9/D8HBhkcXpwKS63DRNw9e+9jWsXbu20sdTNmhKhRbOTNm2ZCpI20R3ZrfnmK8cr8hTOe6wBcelVY7lMnqO4RBYgDZNyQriEECjeRbLslaRntPpgEFBLTVxcs8+t9n/9JpVaSwuh3Kb03Nc4NylmeUWACDgAAk5Ea7xITQaR0cqiue6FCyrYceg7RkFPc7RwuIKtP1jtuA4r51TOdRekSVVqEpZFblM0LRaEUp9ISsnA5esvwE/e/CrAICdB/+Mm69+e9H9WYkRD2SNYO9Z9pvU+1R86ppEJYrdADh/Y1Q2OAaA5dUqdiQcGJOcqFYyaBab0VNq5dgrAY2esmyczM8KhBXD4wpQuThmAecZCvWYRmIjqA0tLrhtZXuOp0+Qq1RadbZVz/FhERdP4G7gcsw/Qa5sSnW9TzMVohG6AWORH0+4j1iamIJOrUE1r0ewUamt8tVAFK21EtUoyDEWQKZoCvvkvQAAH+1FFC1IyATDCYLOAQleTxAY6wUAaD1xCCvKsw4LcT3mRkU8bPPpnnhgbM7qO87HQuNbpCbrdTxVGAyJYKDOJkrrcfnYPy44PhF3AgJb4xpaHeHxYTM4BoCjwxIuvsgF6Y2tUO7pBAB8tP8w3JR9f9Lqm5NMQ1LlgLA+BG2/xWIj9e6KCYeFqurRN9iJWCKCjJzG5iYPTo9JoCDYPyDh6jaZBeJOAchoFa8cq6qC//nZ3+HwyZdz3lNUGWORwbwOKO8+eT2WtBRmzlQak4oo77vvPqxfvx6xWOGMQiaTQSZjX5hLkgSn01ngE+WBEI2theNpCLIChNwgwuwERxmFC449bhDRfhzG8+zXpwNG5djn1LCkWs1Rvw16KRoDKs5GRZwaFaERmrcdkD9PGTVV+rG7CRBRQAIO22cq9ht4CKAogKaACNyBKyqIY2Z+43Jh0NWMynGxYxxNEPz+OEtMuCWKd16cLO87pbIWQ1EZILlVVRq37k0SYudKXh0CnmcDoXo4DHJpCDSuQHmwJ+fPqC8MwtvCBceZ6ITHWfQacDOfaqIoIGJ5gRSlFISqgGvq5z8atyakYLA6Z39rOjbD5wkgnoxi1+GnQYkKQSg8aZnBscuLkZR1DtYtUhDwVkbogiqaablAapwQah0wPZ0qgOV1Cnb0OdDr9KJayaBGqEF34lzJvzXxCrbjKWcsELwENJICgT3pKAqMmK5VSCuk2DlcwNxGmKPRup1es5UhPD6cExxPW+WYC44rXeEYHus3HxerFGZb9bC1QPGWKJ5WPV98jlPpOOCwguONi2W82ONALCMAweswOvTVCfexd0AyKdWXLMllGFBKzURK9nVCz8SBGJtnd8u7kAGbS2ucIzD4O91jIjoHHHBwPtqGJkQ5qEzlmAuOC/Qde1zcXD4LlWP+9873naqDDfCl2BxABYKMrv1hUKoBnUES7TWfH9OTH+LmWrz8RAKbB86ZgTEw9/qNeYhX1tuD4yn6G/Pgf99wdBibG/347SH2fE+/HhyLBKTFB3oqCoQzoJEMSLAysduOA4/jkWfuLvtzAwMDFfn7paLs4DgSieDee+/Fj370I3zta18ruN2PfvQjfO9737O99uY3vxlvectbyj/KPFhaw/4BAJYDwOz5cYl3W5TGFdeoqK+P5t2u/crpPcbBsIiRBPtRLupIY/m2/Mexca8LZ3f6kFIIaEcKS/NMDs1Ra+EaaBnH0mvy76sw0sg3MVfuN+i1P92i/0O5xzn9yKhsUgxUs+C42G/w8ANBKBqbtN/9ynFc/MryhDwG9ydhq1toQOu6MKQ6+60e35nAGf1xaC3FomuiqKqSMPg8e21R3yiWXiOi/4sDSOsLgcANfmS6M0ifyoB2xrFiS9DcX2DpSMnXSPFroK/Ie0Vws/Gg9P74fEj9O1uASJKEdTdREJL7na66Ziv++Mc/Yjw2inj1C7jooosK7k+mbKHhr3JBWGZVWztWpiZxT+VHYl8S3TK7X6u2utFUof0a2OpUce8+D/pcPmxIhAEAtYFEzvFrKQ2Cu/Qgs/SxQEb2+N4aYv93d5f854pi6dKlldnRAmYcfLDQtmQVjnXuyXndAO8XW0pgUSoC/mqmsE5pxWjV6UwS37j70zh8ilVYAr5QUfZRX8R+7/EsskJwz0NadTKrclzloti4WMFzZ5yAoxZD6doin2bgKdVbmnLXP6l03ExsZl8n2qGw+filzIvm4yZfEt16/HtsWMLZUQmCy4e0IMKlqdB6yg86+b9t0MVtglylBMdBKyAspFjt5mjVs9FzzIvq5WsdqK6qhzfNAsS0JMKo+vDBcTg6DCQHQNQIqBjEUd21pT8q4CuhtfjGyDgauXYg0jJ3g2OyPABS7wYdYmsG0li5dk3+mhmLDGLDkiUQCIVGCfacdQDQW8HafFBPsTleOxOHuKEywfHA0BnzsdPhhsSxMggRUF1Vj5rQItQGF6E2tBh+Rz2CvgZccsmlFfn7paLs4Phb3/oW3v72t6Oqqjg95H3vex/e+c532v9YBSvHT+3RMDxGUXt6FEirFctqTAaj/dbgem5PPWIeO62RiBTtV8bQ9bwfVJ0+GscLZ6wBv1UCOrfnp1cu4RqCn3ysCtKKXOrt2MmQ+XjgGC24r1JRqd+AqhR0JAVpSy1IyKJ+K7uHgbhie20ugFKKVFIf4GQ2uBf6DRQN+Omj7L4SCMV1gfJ/d/lY7sKs+49OCFkTgbrLumbHx31IbA+AUj9GnQOoyaSxbDiMo9+qAX1QD87dAjLblkI9GAFOscGt/mUroOjao6CzqvixFrsGqEZBh3PPaynQeuOs0r3YM2UfwOEB1o8U8FWj69n8Y9zaplfij/gjAODBu3cgcNtVBfeXiLFzL2o+7H/Bys67x6Up31MGlCetRVfcF6rYfg1U6ar2PZwoV2yv0/w7lFIoD/RCfWYQ4tUNcLyhpej+yhkLqKqBDqVAat0gDgJIIuAQMBQDmpc5sPWa2dV4WMDsg+8xXbpkrRkc84GwAZtadQWDY1EQEfTXIhwdrgituvfcKXzprr/AqZ6D5muve8UHCm4vq8DZmD04HoixHsIqV2GGhs3nOD0/guNUOgGIIfN5wEXRGNCDYwBhcUPRz1MK7OxjS1+HQHHR4lzqebHqrBEca6DYIVt+98tqCV7Q48oXunXFYUIwVO1H80iEVeCiclntRnZBrmHb/+z9iRMBpVSO3ZymRDI984Wmiarh1cEGeIfZMcY5yvXaenbuLDs3CnfmMJKerRhJCBiKE/zxhBNJUcJ/Nq/HV7tehkEwncuVY0IIxKsboPyOrbWE5RXUEbElXIawaimwqk7FkSEJZyIihhMEdV5qEyuj3XFgQ64Gy2TAn+svfPSnuHT9DUW3jw/LUBWKlubiHu+VRlnB8dGjR3Ho0CF86lOfmnBbp9NZsUA4HygFtGgGWkQBqXIA0xh0ToQUN6k4BU/BBR9VybQGx8cGrdO5okYt+Lc6aqzB8viQhBuX5WZOnSInyJXJVOy4p/4bEEAm0NKAoOvJUY2CJihAxVm9DvIhI2eg6VQeQ+Ss0G/wbKcDI7oN19YWGQ1eWvZvRbPVqgFoYwpIk30/Wpg7536n/ncIzjTVoKbrLByUQv3ZaVOxT7q1GfC7IGyqBR7qBdIaGntD8BEf4jSORCJe8rHm//4EyABahpjntaR9KRrUnhTgkABNmDKZ2FCrrvLVFPw+W9Zcbz7eeeApvOPWT+Q/NkrNaozL6cE5riew3qtV7J7SOq3gmLQGKj7GNPoo3BJFH7eAckZE8++ozw1BfXrQfCy+upnZOE2A0sYCEfA6QSMKqAZQLcOU8IcVKO4qCMLcXeAsYGbAL7aWNq8xH2d7HwP2qluwhMCiHAQDLDgeHR3V7ccmdx9u3/Uw/vOHH0Uiyao2bqcXf/ue/8Irtr654GcGYoJJE+ZxYljEliWF+47no89xKmOvHPudFJs5SxrFdxWSqZjNTYFHf1TAQIyNxesXKfDkiVXDBRShtaEU6CBLeI4GoxgftZSP1yz2AXoH0pEhay2WWOQHRth2Wk8cIid+ORH4KuqYqVbNxlqfp8omnFoIPidQ49EwmhRy+tIN8D3HqVnoOR6LnDMf5+urrw7Uw6urVUfATlidV0OD3ivOV56DOI0kmAf14UEJj51gyfYTviAyt7XB/cdeiJfUVszucLogbK2HJBLAJdrUo6eKmjzX1OZG2bxmd/U5cPOKDIRW62+qu0YgXFYHoWHqAmaFVMnnGsoKjnfv3o0zZ87g1ltvBQDEYjGIooje3l589rOfnZYDLAYSk5lK7SxZOBkwenWYVc/s3XD7Bzil6jxiXAZKUax2SFzPsTw1qmqlkWPnpOhCThX2Va4EeKVv9wQ2X/cfsSqmr10zud+c5rNDymfnxL1GqqxrNrOyGuhiFkWCoveGtvkgXMEGMeIWIWyphfb8EERVwA3OG/FQ+oG8glxlHzshrHxezmdG0kAkA9RPnTGQziTNfsVsj2MejfVtWNKwFH2DnTh0cgcSyahpj8BDUWVoGjsfbqfHEo0B0OCvUL8xpZZghlsEqcDklQ1RANqrVfQkrAWUZ5xdM1pXDMoDXE+6RkEHUxXtkSI+B6D/aWP5T2PzYyG/gOmHscAjhKCtaRX3em5wbGzr9wZtc1wlEKyqA2J1SMkjSKXjcDsKV3vODffg7oe+injS3pqQTMXx8sEnzOetjSvwz3/9Y7QtWZW9Cxv4fuPFftUM/o6PFA+O56PPcSqdABwh83nARdEW0uCgYcgkBAS3YTh8Ei2L8wcUE1GqgcKVTJ5SHWtVgU7rM0sXL7GLg+kgzV7gMHtMe+JAGcGxz1MFSXRAUeWcynE5PfPNVSpGkwLGkgJiGcCfdenbBLlmoed4ospxbWARHISdt7jA1rk5lGodDc5+GN2pvzjgxpBecLisWUZwWz3oNXVTZpjNBJitU+WDx+qq3OD48mYZP9/PxoKnO524eUUGpMoB0hEAPRkFojLkbx+D40MrISyeGlur3J752UJZ0cQb3vAG/O53v8M999yDe+65B9u2bcPb3vY2fPzjH5+u4ysKMpYG5kBAZARAzhKteqYDZ6MC9g2wwWNJlYrGIgrHITfFIj9btB8dlpDPGclu5TS3gmMIBDTOHbRMAVWriFpxpcFn452OwoPKqVERB86x89caVLG5sfCCpijyVI5pJJc2T/mAmQuOa9f7kOBoSxAIpDe12wS9xCutwfXV7tewP1uB4BgAUx0vEZRS0IEkqACQfKpyZcLmcezLVarmcYlOBVJVBfuOPZd3G5v/udOLQT449lVISWosYyY6plN9s6NGxaDDA1lfVPjiLtDxDOSfnjL9lQ3QgYXAdQEzB2OxFfTX2gS4+AWz+VoR0Z+pQg7eDmx8BthyAN/b4czxijcQT0bxmf9+Cx7Zfg+e2fmg7R8fGF9/2evxrX/6E3yh1bhnnxvd4cJjXC/Xb3zDMmu8L+ZIAWTRqudL5TidXTnWQAjQIJ5kL0hV2N9f2GHDoFQDwCUFEgeFqlt8cIy1VtuNIIioq25EWyh3/vUvtxKFpYpyqfvHoO4ZBSHEDILD0SFk5BTiyXH9uEqnmS6ZoO/YM8s9x3zAlK9y3OC1VIoTeYJj/ny1+sPmY/76v0VvH5wPgfF0gvfsNhTC1zSoaPCxa3dXv4SILh7qeNcyy19ZD5C1s1MbJ/hkZiW95iuNslaUbrcbdXV15j+XywWv14tAoLI9bqWAplSQ8dm1cDJgUCfds+hx/MeTVirwlhXpHJXqbFyqTwqySvByX261m7dyKsvneAZAHILd+1TRABVzPjguVjl+IKtqPOnxO5k72dM8lWPe4omvHC9voNjNeTqK1y+CkCUGISz2gCxjWfkWsQUbpU0VyzbTdBlB47gMbTgFUlWZCpDdxql4f80Wzu9458En827DLzJcLo8ZHLscGoLuyqhJa2es311omz6K8bIaBRoh6NdpmIGkF/JPT1sMBI6iRvvnxyJ7AfMflFLT4iZUVW+rpoWzBLnSmaSZxKukUrWBYRdj1IEIeOD4YnzikQDOxbLaWTQN//79v8aZsycK7sfj8uGjd/wH/uFD34Xo8OMTjwTwo90efOnJwtRKni57RYsMt8TGl4lEuexq1fPjvk2l47bgOOBk37XNa4k57j+Xn0mkaDDt9EJuDctq8jPs8qma07gM2qW7AtS7EVq2xNymoWYJRFHKGxwvapGY3zsYrZpOYDmpvjQE5aenoNxzGureUTM4D0dHzGudP65SwPcd9+WhVtt7jme+cszblYXyBP01Luu1hC7gZPQbA/bz1Rh0oT4r+Rxya7i8OT9L4EJDPpE3gQDXLWW/j0oJtneze4T4HHD85SrGfgCAuAL5O8eg9U8+gWKcq2yLtLmGKZVbPv/5z+O9731vhQ6lTERlkKQKeGaXUg1YQhauWfI4VjXgUb2vQiAUN3VM7Et8VZu1zfNnigfHslKGz/FMwCEAKRVUT81TWQNR5mrl2EosFOoPiqYJnjjFAjyvg+KmjslX6k1atYu7tfN5HRtBjUuwedC6JOCZjnb0Or14MVAP+dqmvH9HvMpePa4ErZpIJNeKqgi0cykgrYG4KzMGjMeLexzz2Lj6anNg33moQHDM0RRdTg8GdcGcxppci7XJgnZz/sYV7EvKhqFT0KuLcolUMBeKCDrg+IsOc1vt7PygZy5g/iOejEJW2HhZXVWPKn8NBN3mJbtyHI5aQlmV9DgGgEiKYJiutr12aFDChx6owrPd1vx6z8P/hef3PAKAqU/f9bnHce9X99v+/fbrx/DaG+4EIQQPHnGhP8rGt66wiOF4/oGDF1pqDWroqGXj6EBMNKtA+cD7HM8XteqcyrEuOLa6xur/PR7OP34fHpSQVNjvsaVJLugzb6d+srlOOxwxHemEdSHUhRab88SylnUAkBMc1/tUeJwEpMUKLjBWeD1FozKUhy0nDnXHsHmtapqKMwNWUqWcqlsLXznOI8o12z7Htt87mHtvhtxWwj4hSHCIFB1ce2A2VXd1nX0dcePyDByzHyrMCWQLchm4fql1XT552io4EK8Ex4dWWureRoDcW/51YrPsynOe5xJmn5M8SWg6VXQumHinOdGd2cCes5LZ53LpEhl13omrUpsWK/A62HYv9ThyWj0d0tytHMMhgGY0q+9YoQAhc5IuY6fW5g+OHzvhRFoXJnplRxreSbatU0oBPTgmtS4zWUAjeSrHUZ2Km6fqGmpz40MrrsKXWjfhm7v8yJfoFtaHoPnZNXeFYyvESrCqJQE0VbhXngdNqaADyYqKatho1RNUjn2eANYtZ9YCfedO4+xQrqcQr/4qOmrMRVljbWkJAPXFIci/7DTPVT5oXbwY1/RVjpdWqyCg6HVlJQBFAsd7loMs8ZqJygVa9QJmCmGe/hqshyiIqNKFtrIFuXjqZaUrxy/0OECN5dTIQ0CKNaPGMgLufVjB0z8ZwfMv/Qk/uf/fATBK4T986LtY2b4J9TVNtn9GEjWSIrh7n33OODacv9JiUGVDbg1+F7VpjhTSFQGYv7fx9+aNWnUeQS4AWFrrAlJM3bc/1YhMnqmkFEo1YO9XN64VnlItrA9BFCX80199H6+/8YP40Fu+AABoC9r/qGGjxLtFFLN0Uh7sMedwAKAnx9Hks9T/O3sPm4/LaQ2wKVZPQKuelZ5jrnJck6dyHJQs28iEKGFZtQpeasheUa/H6nr7ub15xRxrDZxFeNx+uPVkCP+7ddSq5nWyf0DCcMJaTxOPBMcHV4AY7LSECvl7J0DzMBWLIZGKmfHEXO43BuZxcIyoDDoH+o2ZIi2rlMwWrdqoGgPAq1aWVuV1iMDVi1NYlQjjqoF+DP28B5m7jiL9+b3I/N8xOMGJNM21nmOHwHpT0/qAr2hTVimeLqRle99pNjQKPHDUOn+3r57Cb53RrP5Pr2T2EmfTqmlKtRILVbnB5WvXpOAU2X4eO+nCrw7mUtSIKIBcyhYoIhGxIbxy8sdtQCRAhomrTQQ6nAKNyYCvcrQcG616gp5jANiyzlKt3pWneswnRlSHVYFvKkDl46GdHIfym25oL4+wBVMeUFkD1elNpME9rS0mHgfQ4E2jz2UPwKU3tEJo9YMQYnkxRmR728MCFjBNyCfuYlTUwtFhG4V1umycANiqw6v99wO7twBDv8ay5Dj+vWsnrjjQCe1+6/688w2fndDC5J59bsQy9jXOkaHcwCaeAUaTbLsWPTjjRTePl9h3zM9Vcxmschwynxu06ppgPRBh47AKJ44O5X7vnf3Webq4gBgXAGAsjWXiMnSIK1Ad8UHrjEI7ptsa+iQzEbl5zTZ8+B3/giWLlgEAWkP2KoMRbPCeuuoLQ6B5hCe1YxFoe7KsGDXgosw682ln7xHzcSkexwYaAxoEwn6nnkjxyvHs9Bzr9F5BzMvaCohW62ZckFDtsf9+2f7lq+qs6391nYKl1RXS+DhPYIx//PhJCHC9rldAQfBMp71wQjwSHB9YCdJuVZC1U3ZBwYlgT1AuBMfnNQxKFzA7glyRFMFz3VYPTal9Fcqfz+Jjjz2Lr3W+jI+ePYKavedAT8eAmAJ6IgrnMWs/cy04JiIBoWDVYwA0owJzNDzmadX5Ksc7eiWc1WlzW5rknMm1LHAZZ+IRrV7iuGKbjPlKJMkTHC+r0fDJa6zs8fd3evJT769qgkrZ39yS2AiqTfEciIQFxhMoVlOVQutLgLjEijJH7JXjEoLj9deZj3ceeirnfZ6mqIiN5uOmCSrHlFIoj1r9c9rhMGgeoTLaGwdUS1F8utEeSuGQNwRF14wWLq+DeLk1wZFGTnhmgVq9gBlAPvprtV7pS2eSrD9VR74+0kognmH2JwBQ69Xwq+//HTavugiuo+/BJ0//CQ49QL9UDuASxxXYdsnteNutHyu6z96IYOpQOERrXM1XOeZ7SJur2DixkqOVTtR3bCT150/PsVU5dggqnPpPUh1sAMJWkvKlHvucFUkRnNB/i2XVCmoLMOyUR/vwqbG/wTeCd+F/g98Avt0J+VvHTLFIYV2o4LwTcFHUcoFbs56sEJb5LWbNySiUn56yz8kZFfJvLfaRuM0SoFoRbjMfT7Zy7BCBxbpDQu+4mMMGc8+yWrXRc1wdqIMg5IYlDpWzxhIkMyFiIDtJtn6RgjX1ChwixXsvnh/X9UzCuHai8TFb2+R1HLX6z525rELiFiFeZ4ke0jPlXSt8pXqhcnyeg/c4ds9Cz/GfTzsha2ygLrWvgqoa1MfPghSJZaROKyDmEwBzBVSjgEHBTWlAngF1LsBOq85lFjxwxAqYJ2vfZMBGcfFIIEFucOOrxwVsnHhct1TGezazY6cg+JenfTg9ar+4hJALh7SDAIAqWgXEplgtlHQrpwkUq+mYbt8UrKxtmr3neGLD+xVtG80ges/hZ6Cq9u+f5nqOM4I1EUxUOdaORkA5ujTSGrTj47nbdVvbTGe/sYFl1QoGnF78Q/sW/LT+NKQ3ttne54XbpqpouYAFlIJ8iy2+F5Onx/I9yJXsOX6p12HOwVe3Z+D3e/GVv70Hn2n5AlpQZdv2L4P/D3//7v+dsAXo+zs9UHXf4rdtSKHOy8bEY8NSjgo230NqBGPNVZopylWMVg1YSf35GBx7HdZYGgrUAeE/m89/ddCFh45ac+DufglUT+wVo1SrL+eqnPMQNxWfG1q5vmODVk08Ehzv6zDdVbTDESg/7zRZUurjZ4FRvVVwmR/ibc0gi9h5qY1UoV6fP7r7j5v7ri4zwWMcV0ohOJqVMHHPYs+xpmnmvRnKo1QNwFrrAUiIIgIu++KVT3wFA7WQBODrr47igXeGi57rCxV8YMr/dm0hDctr2O91dEjC2Wjuulrg2rf4NUgpyJfMnKuYmxHFPMJEwc90glLg0RN2leqSPteTYBRcAGcDfnxn8Sp8qn0Lej92MeDUL4lTVhPpXKscAwAkAppgNzFNqyBzUIwLADJFeo57I4KpFL7Ir05dTTFRoHIMO7WaV6pGkZ7dOzamTJGGlELw2cd9GEvaf+chwRK5oeEpXieiwPrHJwqOzyZBKUCkyg5f5Vg5AYAoiLh47TYAQDw5jqOdu23v85XjFLEWMsV6jqlGoT7Sl/O6dmAsd1tuYpqJyvGKWrYgOeSrxpP+QE71hHDB8ULf8QJmAvksd3i6Hh8Q27fNDSyiaYLfHXahc6y8ceXZbmsOvqadjZfSiTQujW8CAKQg47SLJa8atQAcO4svKPcPSHj2DNtnjUfDW9anzB7KhExyBJV4j2OjciwKwAp9nDk3gSiXkdRPzZOe4yQXHPsd1lzhdLjgl2JA738DYEnd/33Bh5/vd4NSO6V6y5L8cy2VNTN5PKwN4znXSxCvboC4bRHEaxdBumMZhJXBvJ81sGER+92dEsUKroIvLAvAcWcHSwID0PaPQflFJ7T+BNSnzrGNRALpTW0ghEDYbM1B25zXArAXKsq1wbmq1frOj52wt0p5OC2J1AxXjqOJsJlYLlRN5LVIEoIEr2Q/f0bQFfCFTP9yQmDrS16ABZudEzcuAvbq8VOduetDUuUEQuw3pr3xshiD88XjGFgIjqeMdJYi7Uzi5IiIU6OMbrK6XkF7iX0V2kmrCjW6aREeqm3FQV8Nnh3xQlim93ZEFSxzMgVaeQ4Gx0Ridk6U6hVkaW4Gxymbz7E9ON7O9andtiqNqVr12ivHoq2fmPc65gNlUqT6Sgjwd1fHsUqf4AfjIv75CT8y3J+JckpcNDy14J6IBEQDqFJ4sKVRGdpQqmDFeyoox8rJAN93nG3pxAvcJKm1v2K0au3AmGmFRJo8puq4djhsqrMDjHqtGUrVLgFk0fSPPasarJVGQliW8z5ZzAXHC3ZOC5gB5FO55YMG3s5pop7jrz3nxbde8uKvH6rCC3naSPIhpQA7etm2VS4NFy1WoAwrkH9hUWRfbjmC/21aCuPuVf90tqDInkaB77xs3UfvuzgJjwM29d3sXlrexqmZE4Sy9x0XjhKMdYuspKFqpQkiziYSmTQgsmRgdgWxJtgAdP4dpP6vma/9cJcH393pManvLpFiQ0P+MZiOZcwOrYPyATzTuAPS61oh3d4C6bYWiJsmTpq+eX0Kf3V5HN//xGAOdVtYUQXHeztMsUxtzyjkbx41tULEGxZDaGDng/9b1zqvy/k71YWqrAVw7dKMySZ4stOBNPcTiKJkrk9muufYJsZVsHJszX0JUYKo2ZlUY9PoX34+opBiNWBZOgHAU3mo1QBXPU5roOdKn+uzBRTnMhaC4ymC7ykt5mM7HeCrxq8qQ41PO2E10bddYlWcnut2gKy0hA8udm4BMAfVqgHTzgkZjVUb52hwnLFdH3bafeeYtWC5rLkC1B9bz7GdVk0L0aonUHt2ScAXXxFDvU7rOzwk4RcHrCA/5rQmUjo29SQKJShaOabjMpBWQTyVF58aj1vV2YCvtOD4Ej44zhLl4lklcc2qNjQWoFVTjUJ9rN98Lt3aDGFNiD1JqKAcmwPhjHkeSatvRlT7G/wEkFmAkZSW57xPXCJQyyoSdCA59R70BSxgAuSj6dm8jqMFaNVZi+jBGMFzekAsqwSf/7MPT56eOEDe2edASlehv6pVhkAo+r84YLaYCGuDeMXH3oflG6vxx2rdFzetQsnDDgGYhcpxva94abWCV+q2jKvrrTHjSFZw3KcLLAmEojFgjZ28KNGJAirXgD2pn5kH1Op4xpo3q9z2cc84r8qpv8d7NlnWTr8+6MZwgv1OFy1WzD7lbNARaw4b0AYm1ZvucQBv2pDG1evyr5uE1UFI714O00dKZ/GRehfEGyxtClLnNoW8lksdaBEs1WqH5ITPY6fsTwSvA9imMxviGcEmIgdY65OZ7jnOx/7IBl85jgsSoFhzdTIdN6vdc13kaa6AT6zwrSkAE28zmCqnRiV0h3PDRN4Zo5y+44XK8QWEdJHK4LT+XQV4Qvcic4nURoUoBiprljdqtRO1S5zmjXB6TMJIU8jcdqO0CcAc9DkGLDunmC42NdWy6zQhzSUWXFnXR3eYTfICobaM/2RBueAYXjutGhGeVs0FysH8mUEetV6KL94YA9FT6k93WZ9Je7lJa2A057NlgxanVdO4goLmlFOEUTn2egKQpNIqR/U1TWhrWgUAOHZ6t83vmfc5jipsIRNwafC58weN2q4R0EF2vZClfpBVVRA2hMz3VY5aPdP9xgBjEghJ1mOuSvU5FHuA6zuWNWB07jFOFnB+gV9sGRVjW3DM9xzrjyXRkRNYPHrCBY1a17NKmc7CI8eLj498gHFNewbqs0OIP6/f9wEJ0lvaQQjBDUsz+ElDB2ICi8q0l4dzLH3SCvCDXdYc8aFLk+a0trJOAQEFoRTxzgSUJ84i873jkH/Tjf4IO+5Ffs1GI13BMVSKiXLxSf354HWcVKzfPDs45hfcr1hyGn97ZdyctwwUolQDsI1ZA+rZaVvAi+tCkN65FOAOX3pjG0iWAwtPrb7WdZ35OBSom5R15c0rrLXcoznUahbwzHTP8WiEryYWqByn+Z5jCVomPyOk0v7l5yv4ft/syjEA3GCjVueOgba+43KC40huMnOuYm5GFPMI/GQyk4Jcz51xmDYP29oz8E0c4wAAaFeMVVrBKD4AcFWrdSNsT1UBfjaBrxHWQIQ4dyvHssaCJYWaNKW5BhvtnluEqBpwRu8VW1KlVaY3hqdVuyWbYBXfZ0zLqBwbWFGrYm0Dm6C6w6Ip1LC4o8PcJnymP+9nywIhpgp5PtDxTM4ColIweo5L6TfmsWHlVgCARjUcOW31HVuJMwFRhY0NDb78340qGpQ/clXjW5awvrPVQatH7WDYrMaaCS7MTL+xAUfqqPn41GjuRUsWRLkWMIMwFlsBX7WZ0KrmFsj8wtmoUIWq7IGFqgGP6IGCQKxEMwXBfz3nw32Hcq3sAEBWgRfPSFiaiuJ1kR5sfPo4lAd7zfcdb10K4mfHtKlRgeCX8PMGvR2BAsr9Z2xWU7866MZgnN1Tly6RTSEhKmtw7R/B5wYP4O5jT+Pv9uyE+kgf6LFxaC8O4bJh1q9q9BsbaA5q8Og02lJo1cD8EOVKqtZiJ1u1mF9wh8eH8OpVGfzjdXFIgrXdpUWC45zK8TQGW+LGGkjvXg7S7IX46mYIHbmVYHFjtRlAb+Oo1ZNVW79okYLGAJvH956VcC5mzaWG1/HMV45LqCYm7T3HSuqc+dzWLjHHqbpzBTZadWQw5/1tSzNmUunJ084cdXPS7DWjx8lWjivtNV9pLATHU8R09xxTCmzvcuDXB124Z58bP9zlxv/t8ODuvdbfKtXbGAC0kxalWuhgFGpeqOH5M04zaPbAjZXSyjkpyGX2p8ZlZmczZ4Pj/JXjs1EBssqOuT1UoT4vnlbtFZlwgo68tGqXAOIuPSrnBcMMm4xNl10LjbJFmTI69V4lIhFblpgHlTUmOuaq/LClaipiiTAAIBgoLzhe13GZ+fjQyZfMx+ZC07kIKmXHXF8gONZeGgbGdLXSlVUQlrN7k7hECKt0SnZUNoNiW+W4dWYqxwDgko+Zj3khIgM2O6f+BTunBUwvwnl6DflF15juf8oUcZl4YLaQ0c4+CUNxdn9e1izjH6+N400cJfauHV7cvddtWyBqp6II33UCP9z/DL556kV8oPcosGfUTDyL1zSwxJYOUWBJ7IdrWnBGr9DR7ji03YytMhAVcO9+Nj+IhOIvL7PuHeXu01Du7cRlQ+cQUnMDu8t0unhLFvtIIFb1eDAuIlxAlMvFJfXT80CUK6VZyQq/Kzs4zu2lvG6pjK/cGMPqegXvuCiJtiJ2iZSvHGtnpz3YEjdUw/k3ayFdvzjv+yToBNF1YJaIS9AhrgAw+QopIcDNHVby548nrTHcUKxOZxLQtJnzBS6l55im7cFxOmG1Jdho2WWKlF2osN8nucFxnZfiosVs7OgdF3EyK7lGnKKpMUIHkrbzUwz5hNPmKhaC4ymCrxy7pqHn+DeHXPjCk37838te/Gi3Bz/f78GvD7mtqmNANdURSwEvxmUEx60hzZxYDw5KSLdbGcxN0uY5GRwDAAUF0hoIpTPSczkZ8LRqJ5c86Qpbg017dWWCYxut2iOxwNcIJG20aj0IK7FqbOCKFi441kVolratwzhh15Q37UYskWs5VBZES4U8B0mVeVpPgwRlLBExqzjlVo7twfHL5mNzbHBZvWIN/jx+xRkVyhNnzefSLUts7/PUau0A8zymfWzxTOpdIL7K918Xgj+zG9DY9fPwMRf+dNI+wdkUqxcqxwuYRiRTMbN1gQ9i7IJcLHCMJsLQdLGpbDrf749bwdarV2ZACKM0v2uTdf3+eI8HX3zSh0iKgMZlyD8+iaruCHxa1ljlIAjeXgXpNfZ7GACuX5aBSgR8d/Eq8zXl972gsobvvOxBRk+Wvm5t2gzgtHNJaIfC5vYJQcQLgXoc2LoM8LJxcHNsBCLVsKQqd2xZwfUdF6JWu508rXruJ7QympVkzqkcF1Dh3bJEwTdfE8WdW4qz4IzKsUxljGgjc6IvUuSp1Xr1eCpB+ys70mZV8LETTkMLzFSsppQiLZc3dk9ljViSvY/ec5whAhRBQDLWk/fzCz3HpaGYIJeB6zlq9ZP5PI+Ndi4K0J7SqsfzSThtITieIjIFKoOVQCwD/Hxf8X2+Y2MKpbae0JRqXsSkwW2rLF6pV481SrDTU2u+vsmxGbKSttG/5gxEAqpqmINHZiJt88HmgmNOjKutUpVjLqgkHrZ/o+/YCIhpWgXS+iKqTMXnpdWqKcy1d0BCUgYIIcjor9UINdi574kpfQWIApDR8oo50ZQKImslia/t6ZfwD3/yY3tXad8xOgmlagON9W3mpH741Mum4qt57l2t5rb5gmNtx7BZzRfWh2z9PAAgrA2ZfdbqgTEWGOv+mGSG+o0NeIUIcOrj5vP/ft5rW3STWpfp5blg57SA6UQhOqbH7Tf1PwwRLltfIldZHo4TvKizYGq9Gi7T2TGEAO/ZnMIHL7GCxe3dTnzg/ir0/3bAZOmMiU68EGwAfXUzHB9bDde/bkbT5xaDOHOXVusa2Pi5x1+Ll4wAflxG5xNjJguj2qPZgnL1ees7Rq5agrevug5fbt2Ex+paTEaJX1OwJhHOq1uxkus7PjGSP4k232jVGWodb3bluIYLrkbz0EWLgVJqVo4HtXPQoJVtlzQdEC6qhgp2bre5toGATOm4GvwUFzex62IgJmL/ALsueK/jVBl9x1/+zvvx2g8vw5Mv3Tfhtk+//AD+68d/g//60cfNf3uPPmu+P5EgV0IQAaphz8Hfm5//wzM/sz6/QKsuCR6332wDLRQcX9POBAYBqxjCo5S+Y603jsxdxzH2m/C8E06buZLDeQpb5bjCPcf3HXIjqvcVb23J4NaVGThFCqdE4RTZZF7nLT001E5HYfhJkI6A7b2rWjP4pa5C/OcxP66sc4EOp7FaWgMXdUFR5TlHgyCSAMgUJWcHZgF8BtbJ+RzbKscVCo7tlWN9/1VOYCjNJPdTqs1ChE+OlAJCgMtbZDx8zAVZJdhz1oErW2W4GqqALrbNoV3P4bqtr5/8l5AIo08rWm6FOKWCAhAmON+UAl99zotzMRE7+yR86RUxXN5SnF1h8zj2l1c5JoRg3YrL8Oyuh5FIRtHddxTLWtZZLReuZnPbfD3H6oGw+Vh8ZVPu/r0SSEcA9Pg4MJaB+ry16JspMS4DLqcHOPNdwL8ZaPwgMirBP//Zj7tuG0e1hzE4yGI3aE8CdCTNPMhdC2aTC6g8ClWcCCEIVdVhcKTXDIrD0fy9brwQ1+1tceDlIdDlAZA6Nla/ZUMajQEN//28F+NpAVVjcVSfYv2OCUHER5dfgfUdBNddryedxcLzsUCA65Zl8OuDbvy8fjku1wN36dkBCMuWQyMEH9iShF8flmlKhbZTD+odAqpvqodwHwFU4OiQCGFNENoeltS7NDqC5jwLzpUlVI5dzvkjyKVqKlRijXnZleMQFxy9sPfRsmyJXLIDb0vfDAAY0Ng5LtcuaTpAvBJ6q86hbbwJdUI91knrp1x5u3lFGrt03+fHTjixqVExe44B1ndcSoo4PD6Mp3bcDwD4wzM/w/WXv6Hgtn3nTuPL33l/wUKLKEqFXSL04DguSoASxsDQaTwydDpns+oFQa6SwMbIegwMdxcMjoNuio5aFceHJXSHRcTSxJaMmkixmlIK5eedoIMpDPxbFJG/sirR86FyvBAcTxF8z3ElrZzG0wS/OcQmaIFQ/NVlSTTloU2VA8r3G6+wiz+srldR49EwmhSwq88BraMKZHgIEpGw3rEBGTk954JjOARWCZ27sbEtE5+vciwSmpcONykYglwOgSUOwHyMjeGMjsuALTgu3yv4Cj04BoAXe1hwHGpuBO1iA2zvsaNQFLlktecciARIaizpkXW50XG5JFXyrrCAczH2+2qU4MtP+fG/r45iWQELJWByHsc81new4BgADp58Ccta1nG06sKVY5pUQDtZHzGpc0Foyp9gEzdUQznOKOtGnyIws2JcAKfIf+rjWLPhPTgy7MJQXMCXnvThP26JQRJY3zHtSTC61UByxqvbC7gwYFc+tS+2QgEWHEeiw9A0zbatUXXTKPCIbodIQHHb6VNQdg8BTgGOv14FoZndW9e0y1jbMI6vbvfi9c8fgxFi/qpuKcYcLlzdFkOpuH4pC45PeqpwqjqE5WNhLEolcUV0EGPLa3Fjh7WA1HaNmCwfYUsNHH4JK2pVHBqUcDYqItYWhBOM/ndZbAj1vtxq4pIqDV4HRUImOF6gcsyvW3gm3FxEOp0AJGt89hcR5DrRvR8nuveXvO+V4kq8LagHx+rZvKrms4WzTWG0jbPE6Y2um+CaYnBxVasMn1NDPCNge7cTH5UTplo1ULrX8WjkHPe4eKW+q+9oUQbiTVvfCkHInd8ppaYOSTLLxolHW9MqrGzfVMJRLwBgVfaB4W6Mx0YLrtnW1iumtdzRYdEUCQQAUu8G3CKQUqGdiYNSahM6pF0x030DALSXrfM215WqgQVa9ZSRtlWOKxcc/+agCwmZXWg3r8hMOTAGuH5jAgjL7JVjgQBb9Z7StEqww2VVzzZKm+auYnVKBZmjYlyAXZDL6DlWNKB3nN16LUENjgoV1szKsZejufIB8HjGLsw1ieB4U6MMp2hRbSgFhBqrIu6XfTh44sWy92tCYpWRbDsnSiloVAYpQYxrRxYFKKkQ/OPjfowmCl8nvMdxuT3HALCW6zs+rPcdp/P1HGdVjrUTURhNX7yATzaE9aHcJJBLMEUxZgoug/1AM/jEZX2o1Sn1+8858O0d7FgW+o4XMBMo5o9qVIc1qmE8NmrzODYWZrv6JTOJdukSBe4z+vyY0SD/4KRNnKnWS/Hlxl5s1MeJsw4P7q9thUOgNi2GibCiVsUSXS34J4F28/U3Dnfho5fHTZc6SinU56zvJ17JjtmwXQSAw3EPjnnYmNGajoPk8ZkXCNChU6uH4kJe+zWbINcc7zlOZbKCY5d9PG2oWTLpAGmxaHkMD2gDuHrLqydllzQdSLQDKcrWEje5XollA43FPzABXBJw/VJ23aYUgqc7nabPMVC6YjVfdSxUgbTet67n977u0/j+l541//3033bi7+783/wfzGgm4zEhSFi6eLHts9//0rP4wZeew3e/+Mzkk/IXIPgxkx8feazhx5tBe3KNCASkRb9mxmWbrg0AqC/Z9+k7rEHQQ86FyvEFgFS68sFxJEXwu8NsESoJFHdsnHpgSuMKaD87VtLkzSvi8+pVaTxywgmNEnxjcDEuxVEIIHrfca4iNh1OAUGnzVpnLEkQThEsrZ4BtUOnwHq/QvYSY0YBnHPkys7I/PXhBpBGX0SAorFJt2L9xoDZB2dToM5SrKaxqVWO3RKzJdnR68BIQsDJURHLqq2/US/U4fk9j2LTmmsm8QUAIgqARkEVzR4LplTQlFKSuvbOPu57JY4B3lUYigv43BN+fPVVUbjzXBtTrRyvaLsITocbGTmFgyd2AMgNjgVCUZsdHB+NmI+LBcck4ABp95tVZgAgLb4ZF6JzOqwxzivF8fkbYvjEHwKQNYIHjrjhEIBbvT4s0rdZ6DtewHShmAWMzc4pOmyqWgNW4Pz7Y5wQV0cS9HEuuIzKkH9wAo6PrAbxSKCyBuVhSwTo0ZXLIUPEa1emSrZRBFhryvXLMrh7nwe7/HXodPmxNB3D6uQ4HNEIUM+S1vRU1OZ5bjBKVtdZi9WnOh2oC9RhTZKNIdrRiBlE81hRq2L/ABsTO8dEVHvsLSa8Vspcp1WnsirH2bRqQgi+/g+P4HjXXqjZYmkToGaPAOh6ire/4YNoumHTVA+3YqiqqcNPEz/GB31/CQBY8oIH6soxiOvLn6sM3LIibbLAHj3hwmauclyq1zEf8BarQAL2ynJH6wa0L1ld2oFySshxUUKNz1n6ZxdQENmK1XXVuQmXNQ3Wb39kKHfhJLT6oZ5gjFStOwYxxAoLNKlA22ev8LsSIjZKm7BH2T0vesMXKsdTBF9RdTkqExz/8oAbSYUtem9dmcaiPCI+5UI7lWvhlI2VdSretI4tEMYEJzrdbOBcJi2DHLYyypRSKA+cQebfDkL+2iFQhR1fJEXw3vuq8IH7g3i2e/ozeEQgICEnwAX6vz/mxG13h/Bvz8yc53QxGKJMgiBCEtlvMi1K1YpmVVu91u9BeK/jSMaW3ZtMcAzkWjqRIB8cN+D5vY9OScCNUppTOUZKZRnkCZSqEzJw4Jz+/ZOngf03wA1m4XJ0WMJ/bPchj9bXlHqOAcAhObFq6SYAwMBwN0bCAxY1TadV13goJG7EpZRawbFDAFme/740IFxkXwjNdL8xwFWOAWQySaypV/HxK62x4TeH3Pib3YvM5+HOFFLlrVEXsICSYFOpDeavHAPM7sleOa7DaILghTNs/KvxaLjMEzOrUwbouRTkH58CVTSoz5wDRnWV/44APvgeF37x1jA+ckX5weT1y/REMyH4bV27+br61ID1mK8aX2UFvKvrrfniuTNO7PRb31M7YiXaePCaFrwQpIH5JMjFguOQ+TxbkAsAJMmBtR2XYsPKrWX9ayDWuNW0ZnVeiu9sIVRVhwfS9+N3KSZ6RSiz+NI6oxN8sjBW1anmtXFoUEJastp/Sq4cR+zV4kIVSMAeHGffr8VAU9aNmRAkVOU55wsoH3av4/xV/0a/hpCb/f5HhsSctVOhvmNtz6i5hiP1VhLyJtcrc/62+XlFg9YVM+OJ2cbcufvnKXjrg0pYOY0lCR44wi4mh0jxjosqQ2fmLZxIHrN5A+/dnESrrnq5y2+JAwmnOQXNR/qgbmcDHR1Km9TJvWclxHUBMWPhMd0gIXvl+sGjLqiU4PFTroK+jjMJw8rJ5XCbFK2uUSt4rVjlmPc49hSiVcs2QS6UKchlINvSidgqx6yPpavv6KT2bUK2j8I0qQIanZBCv/esw6zKY+xRQB6Asu9VcEtswH2my4kf7c5VgB+PT61yDABrl9stnVKZBEBcgJMturIp1bQ/aalUdwRs13E+iOtDtucz3W8M2INj49q+ZUUG79xojQ/jkhPDkj4hDiTw/vsCGIguTDULqCyKWcDwar5j0eGsnuN6PHbSCVUX4rplRRrCiDXPChfXmAlXeioK5e7TUA2rNQJIr22BIBDUeemktCDbQhqWVbOM0TPBRUjqpWftcATaQBI0nIF2MMw2rnLYrNwW+zUEdSpxSiE45Q5gRNcC0U5GmZhhzt/jguNwnuDYNX8EufjKsQAZldT6M2ycAIDUzC19FSOY+EHie3gy/Wf2okIh//AktEm2rhDChLkM9Cobzcel9hxnU6n5HuRs8OyNmuCigtvlgMuuJkQJAdfcCJ7mO6q5c1CIEk+IRa2OZQT0RuzzeCHFap5S7bhjKcQQu1GvdF6JAAnkjNdUpZD/7zjkbx6Fcneu0NpsYGHFMkUUElyaLO7d70Za9zu8bVUadb7KZMlMMS6BQFhauOLklIC/vyYOgVDs5XovHd0s2608cRbqnwdsn6FDbGHBT7zdkZlXqKUU6Bu3/u6p0dlXyTWuD1chj+OKKVVz5TkPVznmadURGbQCleNFfs087qNDIiKigwlpgQXHAPD8nkcmtW/9yJifMQeaUkoSXrP1G489BgBQxnfhcuePTFuCe/d7cHTIfm3YKseT6DkGgPUr+OD4JXbuOaXq+klSqg2QapfV40MAYRaCY6eDrxxbAcX7Lk7h528O4+Nb47i8OYMzHjbGBFQFcljBd3bMbG/0As5/2AW57GJUvFVIeHzYVtGqCtThD5y38atWZmzCMcLqIBx3dpiWcdrBMGOtABCuqIfQOHVW0vsvScLv1LC1XYHvemuhqD49APWFIRgqiuIV9azVRAchwCquegxCsMuoHssa6OncSiIfHHfnCY7dfM9xem4Hx0kuOHaSZEWNKswec68I4pkjfVk6jGQPBcX38UOQlXqBI6lC/v5x0Dz95qXg0iXWemBUsWi1yXRpInPZQVWxvmNb5bgcK6qsynFgoXJcEfDV22JiamsbuL7jLGo1CTgAvThCexOgKoXWG2d2kwBIixdCqw/BWxkrzkGcuM55fU7lWH32nNkyph0MQzsxjtnGQnA8RaQr2HM8HCd4SO8BcYkUb9tQmaoxjViTP2n1Tti3uaZexZvXpXHYG0KasEvE3UOhbD8H9ZG+3P3r++Yn3jNhETNtjTySIEgp1mx5ek4Ex3rlOI9StUOopFJ1/soxeFr1eMZSq3YKQAniVoVwRYvumwyCHf1Os++7Tg+OX9j76KT3DYmY1g0GaEQGmUC5jFJgZ58+eGtpIPyk+d7uZz+JOy6ygtHns5gNU+05BoC1yy81Hx86sUMPjjkxrqz2CJ4GWUpwDADS61pBlvoh3t4C4pt58REbBZPrp6eUQk124dYVCXzlpjg2b7Ym0fZUDM+ecWLv2bm14FzA/EZY73f0eapsSRsgm1Zt9Rz7vUH0RT04G2VjyZYmGY0BzRYckwY3hDY/pHcusyfkPCKkW3Kt1iaDy5oV3P/OCD5/QxzSFfVM9RVMiV59QQ8wBALxitwgghfJAYCXA8Wp1T4n0OBj42nnWO68bKdVz3VBrrgZHLuEyQWE+UBVDQjrtPka1wRbzzw8bj+8HhZgVFc3wPHu5SDNelIjIkP+3omchHIpYIKg7IIYlq2ApfSe4+zKceEgy9g24AvB6Sj9N6bcWiAhiDl95guYHLJ7jgthDZeMOzKYp+/YSNLLGuhA0lY1Fi9nfyP0Wmt980rXzbbxmY6moT7ab9un8oe+KbXmVQILwfEUkeZ7jqfoc/zz/W7IetX4tWvSqCnDw7gY7P3GpVkTvGdzEh5pGEe8IQCAI0agPmAJkgjcpG0sLPh+poRMMJpHGXM60TtuD57mROVYNirHbPGWUYC+iKFUrZbiTFQSaCKPxzF0L2i9B5lGZFOtmlQ5pqTEeTlHrX6xx8F6vwH4BT888OJo526MhAcKfbwoiEhsEyJVNSCusIC+CHoiAgZ09VlEtgNa3BSZiMbDEAZ/Zm67+2x2cMwqxw7JCbercEU2KQPDBVSvg4FatCzuAACcOLMfiVTMbuPEVY5pXAHt1i2cGtwgtaUtFoQ2P5wfXg3pmjJoaRUEv6gxEj+qquBL3/4LvOtTW/BP37gDmqbBscQaC5em2Pjz7R0eqAuMuAVUCMZiO1//Gl+ZCkeHMKZXjkOBOpwYscbHi5vYOGawnwDdogTMPk283UpuSTc3TUtCirhFiFfq30GlQIIFv8JF1Xm96FfV2YPjUzXVMGSu1SORvIvK9hC78RIyyRm/5pPPcTyVBCQWJLrFygXHGMuY1fpSx+KZBCEEf/GGz6K1cQXedfvfgbhFOP5iBUgdO1Y6mIK2a3SCveRCFCz22mi6ChDYtZCahFp1vucGKKUY0wPnsm18uLVAXFyoHFcKvChWsYr/qjrFZN0dHspdU5NWi4mqnRyHtptpvMApQNjEWHiu5S6cJp0AgGXScjgG2XhEKYX8225LY8ZQ6++JW60ls4SF4HiK4DOtfD9euYilCR49wQY6t0TxlgpVjQHWi2SgkBhXNpwScE3gPuz1hXLeE29shPT6VnNCpkMpZFTLnsjAmTwUrulEdj/EnAiOs2jVnQMOs9etrZKK3gVo1QAnyhXJWBPNJCnVBtbWq2bvz84+h00xvF5kg+6L+/44uZ1LBEiroIb6Q1JlftYTBMcvcyrVwuijWCYux99t+wouc1yObc5rEX38Rbwn2YU1iTCODzNTewORGBvQq3zVBZMGsTTBB+6vwjt+FcTTnfl/v3UdlwNgAaOqKjZaNR8ca8fGzcWYsKa0qvFcgI1WLadAKcXXfvIJPLPzQQDAjv2P474/fcdm57SBsvHn1KiEx07OrV6+BcxPpDNJlnwC8iqf8gHz4EgfEkl2DYaq6nGSC447atl4aAbHQQcI18gqXbMIjvevgPTu5RCuKnNRXwbEqxvM1hTztavyixatqrNXCGurBRCjVWokDTqcGzTywo/ZfcfueSTIFUlaY6hXKt1CayLwtl1zsXIMAK99xV/gh195AdsuuR0Ao7RKdywz31efPTepatuyGv0eAAG86wGU3nMczqoUhwsIOyVTMVOfp1ylYprmK8cLwXGlwCcpwkWCY48DWKqPH11jIhJZtx3fd6w+MWB5s2+qsbFU/5S21oPqDpas1PaOgh7TKdRBB6S3L7W2eaTPWgPOAhaC4ykinxrxZPDnTgcyqiUQEnJX7qIw+fsSASlD4XaJdxh74n+wvSZe0wDx5iYQUTAzrHQohd4wgUbtk/uZGe477suqHJ8Ji5gE06hiUBSZBUiwLHBOcAFcpfqNARSmVQNWIMzF4pPtNzYgCla/UkImGJKsoGnKfceSAKpQQGH3AE2pIBltwuCY7zf+RLwO3wh+Cxu2N+GfA1/Ap/yfwZ14L95y+gT+o/NlLEtEsW9Ar6hTalaOA0WUqp/ucmAgJkKjBN/e4UUmjwrzOq7vGEDByrE6CUr1XABfZcrIKXz/N1/CY8/+3LbND377FZxRus3kmREcA8APd3kQz3WFW8ACykIxMS6AsTgMdPUd4batx0kuadpRo4LGZUBn3hhVYx7C6iDEiwonzSoBUuWEcIl1zKTJA9Kef64OuqnplQwAzUHVlmDTjoRzPlNMsdrF+dvO9eB4PGmti7xS5eZPOmINSnOxclwIQrMPpJ0FJ/RcCpRjCZaK5bxjhp+JcpWiVq1pmsnIMDA6nl+Qi79fa8qtHHNrmwVBrsrB6/ab8/lEHtVG3zEFwdHsvuMlXiuxl7AWReLlFnsnnU7jT7HHTK9ubc8oaCQD5X6LjSq9vhXC5hrreh5MQds1MslvN3UsBMdThEFDcjs9U5o8HzthFwipFOhImlGGAJB2/4SKuDwckgunez+DY252sf65fgnE21rM70ka9IWEQjHQkxspnInM7OWVXblWKckrQDJTsFPu2W91vHd6gmObIJc3u3KcW63LR9crF7xq9XHFCprafcsBALsPP1OyJYQNIgFUzpoqpYISFL2/UgqwX7dwuiR8HNeLWwpuKwC4JnIOu/Ue2FQmAVlhlYNi/cbPdFm/2XBCMPUBeKzryA6OLVpmvd5zTDUK7aiesHJxVZ95AN4T9f7Hv49fPvJ1AOzcbFp9NQBAVtL49x99GNAtHFyjSVzXyu6FcErAPXsXxLkWMDXYxbhyK1EOyQm/lwWMQ2NWP1swUI9TultAvU9D0E3t/cZ5guOZgnjdYrMlRrypqeh4t4rrO24OarYEW76+47YilWM7rXpu9xxHuaK431nJ4HjuV44Lgbf64i3ASoVROQYA+C4CUFrPcTQ+Bk2zn4NCQRbfi1wdLDM4zqocL1g5VQaEEHPsLNYrDmT1HWcHxw7BxhQDALLYY7N5Gh4eRhIJPJvZzl5IqsjcdYy1ywEQNlRDXM8SkNKrLLad8lg/MEvWTgvB8RRh0WYn3298elTAsWF2wXXUKFheU7lBX91pZfaEFaX1GxtwOlzQaBKfrEnizhVX478a1mIkxSlncguJSE9uQN8zw5Xj7J5jYPqp1cVYTJlMrljb8T4rwKqUxzEAe+U4S3Atb5U4MPXeuUuWWL0oO+PWQLhxMROmkpU0dh18qvwdiwRQYQ6KNCpjIlnSfWclyCqBpGn4wMBJ83Xh0lqItzThftfDuCv+LWiU7XNzfAR7+tlvUIrHcSRFsCdLUOre/W4ksyhGLYs7EPBxAbYeHDtFiqA+qaeOpIGYPimsqGJ94fMETq515GjnbvPxR+/4d/zL3/4CbU2rAAAnuvejS2M9RtAoPtg2BofAvv99B93oPrcgzrWAyYMXkMkXHAP5FXEl3wokZDaWdNTo1ZAsMa7ZglDvhvMTa+H4f+sgbiguCnjRYis47qhRQBa5LdXY0zEbFRUAWoMqiN7H0T02f2nVUdmaB/wVjGFttOp5VDkGWGBhzOfawXDZytXL8wXHJSS18wXCYwWCrImYHsVgE+QSpQVBrgrCUPUfj41CUQq3KazlknGHB/P1Hdt1WoTL62zJveFhFof8Mf2YtZGRkHKLkF5nFRGE5QGQVXqsEs6A7J2d6vH8WZXNUZg+tlPoN37spDUY37KiglVjReOULwFxS23xD2TB6C9UYrtwzgjuhjmbIG4hofJWGHrANJM9x6oG9OuVY2MRAEyvYvVLPRLecG8QX3rSl5e+na9ybNCqnSLFYn/lMmKUC47hnTg4JsGpB8dVLop1Ot3miMwJMPlXmo8npVotEhBFA5U1UEpBx2VbH2A+7NB/19eOnkGzyh6fcfZCeks7pBubsPh1m/H79EM4pbLAeXkqivERBcNxYleq9uVflD5/xmG2DRhBXjgl4HdH7Pc9IQTrOizVaoNWXe/TzPg+9py18JhPlGoAcDlyq77vfu0ncfv1d8LpcONT7/8WRJGNEU+dsc59bSSON65j94OsEfzbr0KTPoZzI7345VP/gXhi9u0eFjA74BfboULBcZ7X087V5uOcfmMAwiwGxwCzaxMaJ2ZW3NyRwVs3pPC+i5O4dIkCQohFrVZpjhWKxwEsDrD5pissgm/l43UE0pw921xEPG0tWasqGRwbC3UBQGjmXQCmAiIJELfq1zqFteYrEd4jI3hbrBuEUjM4LqXnOJ/CcaHKMR8015RbOU7ZK8f+hcpxxcAnFsNZFHkeS6o0VOl09iNDUk5RSODbNSWSE2sYwfEh5SCibvu1Jb26OYfdKN1qVY+F5wcxG/2RC8HxFJHWB5HJ2jjJKvDEKXZhOASKG5ZXLjjW9oxaFaoN1aaicKkwlWljO83Xjg9zSsjcQsIxyiZVp0ixWhcMGU4IOc3704WBmGAKXW3gsuonpzE4vv+IG9G0gKe7nPjmi96cAcNu88V6VI2KWWsFlaoB2AS5cjwa89GqK1A5BoCb9WTOELfAqkG1qfj84r4/QtXKG9gI0dMbsgZkNJY5nqDfeGevAzVyCm8bYgbyGtXwUttBM3t59ZbXoLG+HbvlXeZnNsdGsfuso6TKMU+p/turEmYC6FcHXDZhL8AS5YIYNJVV+X7j+RwcO7OSgLdffyfedfvfm89Xtm/CHbf9PwDAaeWU+To9m8Q7NqZQ7WG/w2M7ffiHx/z41GN+fOzhAN7/uyq86zdV+J/nvRMqWv/ovn/B7577Bt75iUvx/PPPV+ibLWA+wVaJKiDwE6rKrRxHSbv5uMMQIhriqoazSKsuBw4R+MAlSbxzY8pMutmo1btHc8SZjDaelEIwGOO9k4npdTzXK8cJxZq3gp7KTaBm5TjktPlKzxeIV9RZiuUvDYPKpSXe1X2jUO4+jXd1H8dN4T5ACgKuttIqx3nEt6LxMDJybuXaRqsukMwqBL5yrDpFOGdfZ/W8gd3OqXBShRDLQm48LaAvq4VRaPebStPCRdUgWa19RnAMAAPtVuKOLPVDuDx3nBaWeCFsYoUKklAg7iocuE8X5t8oMIdAKc1RIy4XL/U6ENapyle2yhXrp6CUQn3WGpDESVi/OCQ9IIhawfExvnLMLSSqYyxJ0BZSbf1NM1U95m/WdQ0K6rxscjg9On1+y4Nx62/+4bgLDx2zB6G8D6zL4UZPRDSrjxWlVKOwlRNQgFZdgcoxAFy/NIMql4akKCEm6NdGRMEl669nD2MjOHJqZ5E9FAAhTJArpQITiHH1jQvoi4q489wJePVA/JH07yE2W8rsoiDiTTf/NXbLFhX44tgIdvdLGI8X9ziOpgl291t9ijctz+AmPYkVywj4zSF7CWO9IcqVR4yLxmSkDuue442eshNWs422plUQBHZ9bbvkdnz4nf+a0xv59lv/BquWbkaX0mW+pp1NwOsA7rzYuide6nFiV78Dh4ckdIVFnI2KePiYCw/n6eU2cKJ7Hx5/4VcAmCL4mjVrKvjtFjBfUApNMx+tekRZbD42K8cG60kiNtX9+QahI2B612v7x2zzP5CtWG0fT42k11wPjpOqtf4IuiuztqAJxWxLmm+UagOkyglhoz53xRVoeye2daKKBuX3vebzLbpjA3wbS+o55u9Bfg7IV4G0tUFMoedYci+ELJUEX8WfSJSraN9xrQvSW9shXFkP6bUt2R+1Bcex9SLIMj9IkweOt7aDCPlb5sSbl5gRqvjyEOSxmVXyXLjSpgBZyZg9jO5JBsePnbAm41tWVtDU/nQMtI8FrKTFC9Lmm+ATuTDpVuluuAizzTg2bAWbxCcBPnaTNOuZxraQitYgFxzPUN9xL/d3mqs0U2QilhEwGJ8eldGhuP32+daLXuwfsAaNtK3n2G1TCW2rpFI1YFWOBZITSOalVVeocuySgFv163bYuF7CGVy58VXmNpNVraayCppUQVRatC/35V4H1sXHcH2E+SqPa+P4WfKnaKhdYtvuVde8E2PBOBKU3RebYyPY2y8hEuUqx77cyvELZyz7rW3tGRAC3LEpBUmnV//2kBvhlHWNrWzfxJTrOTGuBp1Crx2dnxZOBhbVNuM///4+fPoDd+EfPvh/EIXc+1uSHPjU++9CVIohqjH1VKWX/f/Kjgw2N+XSSdySlcH6wS4PhvLcs5RSfPdXnzefv/v1f4fq6uK9mQs4PzGRIBd7PTc47k+EAAABp4YGnwaqaialltS7Cy7U5gOIU4T0hjbzufpgD9TDYfO54XUMAN1hEdqZONR9o6AqNZP76RItfGYLKdUKXqu9ldEtmA82TqUgW5hrIlsn9flBYNQKOFYnIkxExX9RST7HfDDV1GBZ8OTrO+aD47Jp1XriIkUEeBe0HCuKUu2cAGBNg8VOPJLH71i8pA6ON7Tl9YLng+Oqujo4/3o1nJ9YB1JXmKkj1LshXMbGcJLR0H1Xd9HjqzQWguMpwB78lC/INZIgeElXL673ari4MY83zCShPmtJ6ovXLJqUkrZJqwZQLZwBwCgV53hKlk6trlUy8KgK2rOC454ZUqzmlaqbq1RTbAWAqU5aScQzMIVdDIqtSgm++KQP52Lsdb5/y+X0oJMLjpdW0uMYXM+xR8w91wGHSXkBADgEoEJZdwC4bXUGAqEWtVqluHz59RAIOyeT7TtGQgNNKpio8P9yj4i/PHvUfP7T5I8RpVEsqrVnMJ0OF9735n/AAXk/AKBazaBqNGFLrOSrHD/dZQ3229rYYqIxoOFVelIgqRD88oA1yLucHnS0XQS4cyvH89XCicfGVVfhxq1vgSQVTrC0Nq7A2279GDpVJsolxiloXIYoAP/xqiie/moffvH2MTzwzjE89p4xPPyusJlkScgE33wxdzzdceBx7DnC1C4bQq147U13TsO3W8B8QDiPIBelQIwrLoQCWUGzYxEiaZaM7qhVQQhARzMwGnDnC6W6GMQttRBf0cieUEC5+zS0fovVBQAeVcHyp05B/voRKD87DfW5c2ZyPzXHK8dpjWvfqZAi13xWquZB2nzMVgcA7U2AdhcOcGlCgfqns7bX6pQ06uUU4NtYYs+xFUwtb1lvvZ4vONaTWYSQvIyOYqApNncyG6eFfuNKgm9JmUixenWdYur5HB4sb03NB8eFNCLyQbqpCdQlQNlci5YPtk78gQpiITieArIrg+Xi8VNOk2Z7U0e6Yj2odDQN7WCYPalyQLhoctUVXqgjSDvNx8f4vmNuQdGciaO9WkULl6GeKVo1r1S9JKjZ7AmmQ5RrOGGdrOuWZrBFr4aFUwL++Qk/UoqdVu10emwqoZWvHOu0MG8eJUGB2NWpqxwV9exc5NdwZYuMIS6ZEpB9pudvz8BJ9Jw9UdY+iUiY4uq4DCIVPtaMAiw+dA7L0ozZcNY5iMfSLBjPDo4B4NpLX4u+oDUJXBwbRme8yXye3XMcywC7dFXrOq+GNQ3WeXvnRSk4RTZZPHDEheGEdZzrOy4DnJaoRL1Ps1s4ucWyPMfnI1oWd6BLtcYNelb3hCdAS72Ceh+Fzwlz3PvAJUmzJ/m5M048221ds6qq4Hu//oL5/O3Xf9qWvFvAhQVjYe5x+eDWfXr/fbsXr7unGj/fz+ak7J5joeoS87HZbzxHbJwqCfHmJotim9Eg/+AE6HgGrUEVm+IjuOvUC9jQPWBur+0bsyrHczw4zlAraVbjqwwFfj4rVfMghEC8ujRbJ/WJs5bDBWfvuToZAXwXlahWbe1/WfNa7vXcCuSovm3QX2sKNpYKQ3k9ISwEx5WGvee4eHDscwJt+tr+9JiY49RRDHxwXEgjIh9I0An1r9dCfcUSuOpn9t5cCI6ngHQeq55SQand2/jmCqpUq88NmtRN8cr6SVvFmD3HAALUCm4KKVY3pxNoD2lY5NPMoGGm7JyMnmO/U0PQRc3FDzA9olw8pXqxX8M/XhdHU0DV/56E/3rOh1TKuj7cTo/pL+mWKBZVUqlao5aiozv/xMNTq/P2IE8Rr1ubxhCnZEwjGVy5iaNWl1s9FgmQUpiNU5F+4/1dwNvPWcJPvxB/BQ0aRFFCTSi3z54Qgs2332o+3xwfRU/KykhmB8cvnHFC0VjQe01bBjzrss5HcftqtrDKqAR3c/69V25+VU7lmPYnAL03XFgZABHnL4WzFPi8QbNyDADa2eIL74CL4sOXWxWLb7zoNSuBjz13L7r6GDtg9bItuGLNayp/wAuYNzAW4Eb/YkIGHj/F5tNfHXBBVnODY3ftlebjnH5jzK6NUyVBBALpbUste5WIDPmHJ0Ee6MZXunajgXNRAADaE0dQYsG0ospFLV1mGwqx2sOCFTpddMRae83nyjEACJtqAJ1uru0fAx3PPZd0JG31o0vE1iO6OhEBPB1Iq+KEQpphvRosEAGtuoUfkBscU0rNanI5VUPAvraJz5HKMU2r0M4m2LHNc5QqyGVgrU6t1ijB8ZHSkxxGcOx2+eBxldniOYFTyXRhITieAqYSHB8ZEs1+3IsWyVhSVZlgiaZVqC/pWRqJQLyivMGIB1+Z8SrHzceFKsftcgwNfg2iwKjNAAtap9vDO63AVN9srmKWOY0BzexjnI7KMR8c1/k0VLkovviKGDz633zytBMP928FCBtAiOjHWT2AbwupqGhrG6fmmG3jZICXyp+O4HjjYsUm8jXUK2Pr5lvM5y/sfSzfxwpDEkAVCprRUEye8syeBAIqG7CHV9bhpfCzAID66qa8/bAAsOqSyzEmMXrzusQY4tpKAGzbbCunZ3hKdXvuQuOtG1LmdfbwMRd+c5DdMxetuhJLl99sblfv02z2KsLK8jzH5yMC3hC6lNPmczpBcAwA17bLuLyZLVZHEgJ+uMuDZDqOn/zu38xtPvSWL1SU+bCA+YWMnEYswe5fY3HXzTGUYhkBewekHFq14L/YfLzc8DgeOv8qxwBAHAIc7+uwvI97E9A4i5/93mqk1+qJQA1YTazgJp0VPM8lKERn21C5UB4Y8n3dSH9xH7RjkfwbZOF8qRwD7LyLV+hJIZVCvvd0ju+x8mgfoLI5S9y2yMYsXJMMswfeDRNSq41gKhioQ13IErrLpufGE+OQFTaml91vnNHMjrCkMEc8juN6y15mmhe2M4AQ13OcT308G2s4v+MjefyOC8EIjstVKp9NLATHUwDfn+Mu0HP8yHEnbv9pCDd/phFff96LZ7ociKQIHuGqxpX0NtZ2jpjBknBxLYh/8oEQT6sm8oCpAH18RDJ9EjM11jYdWtwM+lp1+oVKiek/PF3ojwqg+hDarPc7iwKwVFfn7I+KiFdY6I6nVdd72Y/RXq3h09ssOtKB8XXAut8DUggxNJrH2FZhpWpwHsc5Nk4GprlyTAiwdqX1m3R1qWhetBytjSsAAIdP7kB4vAw5fpEAKgXJFLZxUjUg3Gud2MB6J6LxMACgobY572fYsRK41rFB2kEpNqRVIMAolwFfyNwungF26pTqWo+GdYtyNQGqPRQfWT6KD5w9hrXxMXznZa8ZICcpW3QEXBo8DkA7ETU/J6wI5OzrfIPfW4VutdsULaRnJ+5jIwT42NakmXB46KgLdz38MEYiTEPhqs23YsPKK6bvoBcw58Gr4RqLLV7sEAC2dzlzKseyex0AZjfYEtSvyaHzr3JsgAQccNy5wlSwBgBFFHDX4tX4h/YtOLPMWhivkleYj9OZuSvKpQps3BTUCPLlx+h4BtrzQ8C4DOXxs7kb5IHZc+wWCyaX5xPErfVMeR0APRFF5j8PQdl+jrX1nIkzi08A8EkQr18M4pXMa395MgqnpgL+jUVFuSil5n1YXVVvU6DOpueOVtDjOOCa/YCUZjQmaJqu8DpuFuDzBMx1fjmVYwA4PFRa5VhWMohE7MnM+YCF4HgK4CcRlyu3ctw1JuDrL3gRzwg40e/EA4fd+OKTfrzx3pCpUu2RKK5pr0zkRjUKdTsnxHV1mQNRFvjKcUZOY2UduzESMjFpzGdEL2R9lmrOWINpywwqVmcrVRtYzlGrO8cqewzZlWMDV7XJ+My2GBy6kjGqbwQ2Pouu5HJzm4rbOHEex9k2TgYIb900DcExAGxZa/0myWEZkRTBVp1arVENL+77U+k7k1hwTCkKKsjuG5BQG7cSVFGXpTrdUFM4OAaAqk0Wlezi2AgQugEBX8jWD/VijwOyqvskZ1Gqedzw8jG8bvQM/qlnHxyaiu+87MWvDrjMa6TBp4EqGmgn64uWFkkgM9w/Mxvw+0JII42zGluk0oFUSVS0RX4N79UtnygIHh3YBhAHRFHCB978uWk95gXMffCCPwZNM3t8f67bAa87ZNqOQQwgLTL1+mXVlse8SasOOEAqKFI4VyA0euB4bwdIgxvC2iD2vW0jfl/bAkoIDvtDpjfusrSlcp1Kz92+YyowEUNBi+Z/nxPXomfiE/r9UpUCukUMqXGeF4wUUu2C470d1jyf0aA+0AP5G0eg/M5S/JVuajKT6aSdVeQlUHQkxyfsO44lImY1uDpYb6fnZlWOx/KI55UK3uN4LtCqKaUglAJuETQ9+4H6VEEIMc9JPiG1bLQENfid7HsfGZJKsknliyILwfEFApsascOedVY14KvP+iBr+QdbQ4jruqUZeCoUq2jHIqDDui3F8gCEpvIVtHk4uOBYVjJYVWcNVIbfcXdEwlm9al4dS5qL35m0c+KVqpdUWX932TQqVg9zwXG9zz5IvmK5jP+8JQoX0ScX7xo8PbjJfL/SwTESfOW4QHDcaF0LQuPUrotCcNc6TGXpmkwaj55w4kqeWr2nDGq1SEBkDXnLAzqe6XJiCZeQ6af95uN8Ylw8hI4A9FtQD45fkUOp3t5lUdG3Lc3fh6f1JUB72DFUqTI26Z7J393pNe2fGnwaUw7VF2q+S73nxSJsIvg8jDpuinLJmm3xWgyvX5PGylqd+updCzR9DK+59j1oXtwxLce6gPkDu8dx/uA4khZwaMiJakMZ17fRfM/sN04oJkXyfE5WCSuq4PzkejjuXIHGdmuxcSLuMi0eq+UgGgSm0TBXRblkRQMkFhxLNJZ3G9v4olLQ3gmEpSKcWvk8p1TzEFYH4fz7dRC2WsEI7UmA9uj2nnUuCFstZoXAWX2aolxFvI6z70G3y2v2kmZXIPnK8VQ8jhOCiKrZ7jlOa6AukTEyz4OeY8AaQ8fjo1DV4o45AgFW637HY0kBDx+bWBTPZrtXhhjXbGMhOJ4CivUc//aQC0f1ALIlqGLHN3rwlVdG8eZ1KayoZZLofqeGt2yoXH+PtsPK0IjXTK1qDGRXjlNYVWfdOMf1vuPOsIhePTgWNSsL22pTrJ7ey6xvPH/lmBflOlXhvuMhXZnYIVAE8wzY6xepuNHz30DicM5701s5zp8EENYEIb62BdLrWkFWTU+/K5EEUJ3GXy8n8eBRF1a0bzGtG3YeeBLpdGnBESEEVNUKVnNUDXjujANNOnuD+iUMRHvN9xfVFa8cE48EQc+Wt2QSqPdcDF+g0Xw/KQM7+th3Cbk1rG/IP2loL9up4u+R+nO2acjqN/ZdOj3JibkGp8PFLMyUXMXqiSAKwB2rjwNUv1daPoU33frJ6TjMBcwz8Itvo3LclccV4ZkuhyUA5N9kvm7Y/J2PYlwToblKg6hbD3aPCTbtg82OzQDmbnA8mrDmDgfJT/2mo3YWntaVP4g2tz9PbJzygXgkON7YBseHV+Vc3+Krm0E4exTeOWFNIgL4NiBRNDjOrQYblOmiwXHVFGjV4hzoOU6pjIZe6wKh9PwQ5QoaVnjU1rJSCFe1WvfY/77gw10veaAWKaJPhTkwm1gIjqcAW3DM0ap7IwJ+vIc9J6D4+21x1FVpuKJVxocuS+Lbt0fx4B1h/ObtEbP3aaqglEI7pU8EXhHC2tCU9+mQ7LTqFbV5KsdjIno59TlNX3A0V6mmJ9qMVo65ivXSausYKh0cG5XjOp9WsLjpVPuAvVcDY4+br/ndmul5WzEkS6gcCwTSNYsgXt0wrVVLUReAqVYyGBkn+HOnB1dsZMJUqUwCzz33XMn7Ikt8NpEvHocGJaRiGmp1apdQ78a5ESs4nohWDdhFsS6ORxFs/xBe7HHglwdc+JenfciYlGo5r80alTWou0Zsry09O4L3bbQvKrLFuLyXXRjBMQD4vcEsO6fS+xlffulrwNAv2BNHLZ7ubSr+gQVcEMim6YVTBGNJdoOuqlPg0J0Snu12Imgsxnybzc+YlePzuN+4EBwi0KyvOXoiItDBBccSEyzjLQjnEkZiViDrLBQcZzFTjFaWQjifxLgKQVgagOMTayG+sgmodUG8ugHC+pBtG9LgZj3XAFYnw4DgQ/944XUCXw00ElCGuFMsEUGGE3Xjty2355jm9BzPMq06pYLUuEC8EqhLOE9EucpTrL51ZQZvXGed3/sOu/GPj/ttHvM87NfK1It2M4WF4HgKSHE9x4Ygl6oB//mstbB+/dp0XiEfjwOYpMNSXtChFJBgf0do8xfs0ywHhBAzQJblNIJuikbDrmhEhKoBXWEBfU4rODYWHC4Jpl1RT1gsqTdhsjB6jms9GrxcLOVxAE16JblzTCya3SoHSRmIZtjJq/cW3mkqkwDUCHDo1XhFSx/8Tg0fvj2/kMhUUErP8UyBhFhwLACoVdL4xgteLFv9VvP9J554ovR9CaRgIP9MlwON3P1H6t04N9JjPl9URJDLgLCKD45H8HLmDnz2cT++t9OLF3osutC1BTQBtINhW2ICAJBU8Xb/EN672VpgbqpJmdRr0uCGo76yFP+5jNzguLSF99j4EB579l7gzFfM6vGvDrrL8lZcwPmJcJSndNbZxLjW1iu4RPecH00KIFW6fZNeORYINYUaz1el6onQFmLfX9YI+oMBMyja6NgEAQLSc7TneIxT1XQJ+Rl3fLALsMpxseqeLTg+zyrHPIgkQHplE1yf2cDYY1nzKhGIaf1Vo2SwSE7hzHjhe8JOq2YBT41NlMtKYI1NhVY9x4JjQgESkACPCOKWzgtRrpoqy/KylOBYFIC/uiyJ/3dV3GSh7Oxz4GMPV+UV383XBjMfsBAcTwEZrufYUHx78KgLhwbZ4rcpoOLOLTMz0fAZUrLUX2TL8uBwsCBBVtgkslLPuqdVgiNDIgbjInpcViWMp6oZ1OqkQjCcmJ5qZSxNEE6xy5ivGhswRLkyKrFVmKcCm1J1kSqweX1QBe/eMID73xXGh149XnD7SYOvHHtnN/Ai1VZQWSenkFYJftf3SjjcbFJ84oknoGnWb7azT8J7fluFv3/Uj0yJ84xGge3dTizhg+M6FwZH+sznxdSqzc80+0D1ZMKm2CgEaj+XBBTb2jPY2JifUq3usAZ94Upr0Ff3h3HHphS+8ZpxfOM141gxHgH0XQsrz3+Vah5+bxAD2gBSlN0LE3kdG3jwzz9g1YfkMbRIuwAA42kB9x85fxewCygNkajF1ggF7MFxe7Vqs1xL+m8GiBPwMqXqlqAGlz5E8nOVcAEFx0u5tp6ucQlCBxuTqoQqLBOX21w45hLGEtY47BbyJyxzNA0Squ08527P7ec8rRyXCqPNCABWJ8LojRVeR9oCHp2WW0iUayrBUa4g1+xVamlGBXUQEJ+DJROqHMxqcp6D7wMuRZTLwKtWZvAft8RQpZ+TMxERH344YLN6ZftcCI7nHKhGoTzYA/lHJ/OaoU8VdisnD/rHBfxgl0Wv/n9XJwp68VUaGhccCxUMjo2gPyOzSYfvO/7jSTaZ9LlyK8dAlihXnp6wSsAuxpU7UPGK1dl+x4rGKuBymck/u1J14Uwm7xfpcnoqXjE2QPnq5SxXjhGySvcbXKxaejbmgH/TfQAIBgcHcbxzLwDg4WNO/MOf/OgbF7HnrAMv9ZSmTHd0SMRIQsCStL1yPKhXjkOBupJ8x4lAIOrUar+m4E1VI3jHRUl8Zlsc3759HA+9K4zPXR/Pq1JNR9OghjVTrQvSrc2mfYZ2cAxUo1hTr2JNvQrK+xtfABZOPPzeICioVT0eSdsWPPmQSifwwJ9/CAAQRQkf2xaCoGeof33QjcRC9fiCBl+VClXV28S4llar2NoiQ9LdAgaFy3HTTV8CBDa2dHAijeZcJRLgPK4aZsOoHAPMH9red3zxnO05Dies+d0j5Q4CVNaAPOs8WqTv2AymiT2xeyGCF+Vak4xgIBkquG2xnuPs90fD7LEgiKjy15R3UNxckRLFQpIqM4OUytS9fWy8IVVO0y96PsOW1BgvPTgGgI2LFXzztqg5pkTTAr70pM9Gsc6XSJkPOK+DY+1IBOoz56AdCtssjioFfhJxOj342nNepBS2QH7t6hQ2Li6u/FZJmBOASECafcU3LgOGKJfRQ7Kq3hqsnupkk0lMdCDtZosPe+V4+oPjPi44bq4qXDkGgJOcYnVvRMCHHqjCXz5Yhff8tgoPHHEhU+LpsilVF6FV8/S0UoK1YqCKBvXgGLShPFlwjlZd0Od4hkBC1iLzTUuiZqZ3zLEVaP57AMBzux/D/73swf887zNV2wHkZBwL4RldRbqJqxxr1SJGwgMASqsaGxBWBc3Hd/rP4c4tKbxieQYratWiiS2VE+ISL6sDcYsQVuv7iim2BZl2Ug+iCcwqzYUCv5f9Jl28KNdA8cX3Y8/ei/EYU/2+/rLXY3N7Pa5fymbb8bSABxaqxxc0DNEYUZQYbZ+bW9pCKvwuiot1tsdwQoKr9aPm+2a/sUotZ4c6V0XakOYL2rl5uXMsOzjePGd9jsc56xyfI3eypmNc1bjGCnS1In3HJq066ASpZJ/bPARp9YHqGi2rE2EMpQsHMuE81eBCvauGIFcoUAtRKHMdyJ1z4hanrcBQCmhKBQk5LSEzrwgCzHtRLnvFf2JadTaaAhr+99XjWFPP7smBmIj/ed5ntlLmo+DPB5zXo4G2d9R6PIFq4WTABz+9ySbsHWAB4iK/ivdfMnPZVxqVrYm+xQfiqNxpdUpGcMz2byhtA8zv2IBSq9PSorLZA9syI5Xj/ErVBpZzlQKjcvxij4QPPxxAt35Mg3ER33jRi3f9Noj7DrmQmiBIHiqRVs0Lm7icU6PtqU+fg/LjU5C/ccTeYwyAJuZO5ZhwlWNfMo3PbIub1wvavwzUvAa/67sJvz6Y+3sYIm/FQCmwvZv9Dd5Xe0Qcg6bToieyceLBLwzVPw9A3TmxWiPVKNSXdWonAcRLatm+NlhWUNoB5rlMo7LZZ0uWeGed9j7T8PtCAIBOru9Y6y88Nqqqgl8/dpf5/M03fxgAcMemlK16nFQunGBmAXYYC3Omgk/MyvEivwqfHhNdw+kEPHLcCpRMB4OxtFn1uZD6jQHGsHLolfXusAjUupDysTllrbQWcrI0R4GZxjiXF/Y5cuddnlItXlRtMXkKrP1oSrWsvGou7KoxwBLr6RC7LpamYpCVAGLp/OOsEUQRQkw3Cr4qaATEmqaZyazq4CKUC55lJMy2D7lKQTiBUOKRQJ1kzoty0Qmq29VlCnLlg98JfPa6OHy6B/JTnU48dpLdU8a14nJ64HVXjtU63Thvg2OaVplgjvG8NwFaKUUmHbwg174Rq1r13s2pinkXlwJ+8Of7RioBw+vYMHz3OpBXYdu52FpgGHS1Vm67GQmO8/Qc13mpWb08OSrinn1u/NPjfsR1Qa0g18MykhBw1w4v7vh1EA8eLTxZ2mnVRYJjnVnAC5tNFtrRCHuQUKGditrf5GnVszyB8JVjhDO4rFnBuzbpqxoiAuseQNL/SgBMHOdjW+Oo8bDf8PiIOKF14PEREedi7Du2yPr9F3Li3DinVF27pIzjdUK4TPd71CiUX3RB+fNZ0CIKcvTEOBDWVbJXBUGCugjZ2iCjaAJQD4SZgvxJ61wJK6bHQmsuw+9hlePOEkW5tu96GAPD3QCALeuux/LW9QDYmHPDMqt6/Fh/5dgxC5g/4O1GQoE6DMWJmaTlK6JXtspmMkXl2CnL9cqxdgHaOBkQBStx3RsRoGgEMb3S7iBOBAbnZqAYy1jn0Z9PmImzcSINHlNgCiNp0EhujzId5q6BC7zf2EBmMfuNJVB0JMdxeiz/esIIoqp8NRBFlvDNJ+wUDodN79yaSVQNNW5tI3pnb21DFQ0QBRAfl9x266JcpYqlzAKoRkF7YqDxwr1I1TY6/OSCY4AJ8H7iSism+uaLXvREBHOf1VX10+qUUmmct8GxdiQCyFzgImugA5XzFAYsqjGIhN1DbIHtEimubiugaT5NmC4xLsBOqzYChpV19splwKnB3WhNLnSIZXCDbmoGnz3TZOfUF2GXsEAoGgO5gSohVrVgLCngR7s9oGA36DVtGfzszRHcddu4zbstnBLw9Rd8ODGS/5h5cbGitGpdkMvl8ExpUKCU2gKKHHsKo5LsFmefHuiXzACR6gHkHZtSuKzZPjiLNIkv3xjD7aszZh97PCPkVTvkYVCqA0oGXkXP+tfbxbjKqRwDgPSmNrug1h/6oNzfU5AupXJ+4sLldeZj4pGsnuJwBrQnDu3khdtvDAB+L0sIdKtd5muFKseUUvzqkW+Yz9/6qo/a3n/nRqt6/HCvH4mZHWYXMAcQS0TMxXaoqs5Gqb5EDUN54Ay0oRSCbprT1rTIr6JKD6ouVKVqA23VbN5SKROqTLZY80bd8Nwcp4yENgAE8sTvds9ip017JV/1WNttMQtJ49Tans4XqC3WOm5tImxaYKoacGpEwHPPpHDsYNoKeLhqcT5hp+Hh4bzvl3w8HCtO9MxiuJJSQdwi4OMqx6IuypWew5VjlQIOAUgVPkafp8os3oyWIciVD9culXHrSnYfphSCrzzlRSTO7r351G8MnEfB8aFzIt7/uyrc9ZIHlALavtGcbWh3ZanVpiBX6BWIZthNc3mLPKNVYyBLjKvClWMjOKaUQlFZgLOqzp4pa6tWbdl3Omgtfo2+45GEgPEKK1ZTalWOG3wanAXi72U19uMloLjz4iQ+d30cXgewsk7FF14Rx3dfO44tTVYQd2wo/w6NyrFIKEKewhVGI3ninCKlGuGMTZhCO22vHJuCXLMtxgUmcgXdzskIjgUCfHpbHIv9+mI1dQbigeuwrpZRj/nrqVjfMaXA9i6dUi1blGpSl23jVF5wTAQC6fWtEF9lVZy15wah3H2aibzwxxBXLEaKT4KwJmh730at3h+2/I1FAlLhe3M+wKBVx2gMKTe7t2h/Mm9lft/RZ3G8ex8AoKN1Azavucb2Pl89jikCfndwodpzoYHvdQwF6kxKdX0miZufOgB1+yCU3zLmwbYsC7YObh64ED2OefBV9q4xEUqb02pLCVcX+tisIqFYVbuQJ3ctkW3LRNqtID87oUzTqpXklAjEi2srfLTzE2a1HcDqZASPnXDiU4/58YZ7gtjzf2dxyYMHseQnB1Hv3ArATsnNJ+w0NDS1flONW/e4fJUJV2hSAR1LF2WH5SClggQdIE77MZAqJ1N2natQNMAj5qxjeBBCzMA1PIXKsYG/uixhivGeHHUAbV8GML+UqoHzJDiWVeBfn/GhKyzivsNunOqnrHIM2L6hdiaefweThNlzXG/5uBqLt5kCzaigfYzKQBrcdtpHBWCoVQP5FasBoD2kQbAFx9YkxVOwT/VXNmsQTlmUuuY8VG8Dhv0UAPicGr58Ywzv2JjKEXdYVqPiHRutRVNnAUqRIchV59PyKhkbSOtqylMV48qutNG+BKjur0cpNWnVZA4ExwCsvpykavYMVbkovvuGcWyr/zqwexMykZ148qX7ANiZCMX6jk+NiuiPsu+41c2xJbI8jsuhVZv7IATSKxohvbXdHDO0/WOQ/+sQ5Pu6oe4bBY3KUHePmL2K4iW1OSIuwvoQdGICW3zpVD/S7gcplL05j2EIcgFA2Kefs5QK5VxuY/+vHv2W+fgtt3wkL9viDq56/Mu9LkQT81sMZQHlwaBUA6xybIzR7z93HKK+SKWdMVBFw1WtsqV3ALs4Iy8ceSFWjm3BcViEo8qDE+oJAEBNMjgt7h5TRUKx1g/BPHOdWTnWE7RCu88ci7NFubSdI2bCWbi4FsQ/wxWNOQpXUxWiGku+r06EcXJExN4+EX/VdQi3jbI51kEprvS/CYBdhMvl9MDrYQkJo8/UFhxPonJorB8SgohAhW5TGpVBBQI6mCpZTIsqFKQ6TzLWK4IQMndFuRRa0rrDCFwjsRGTmTNZeBzAP14XN3UN0PwJoO0LGAm8Fz/a7cZ3dnjwP897cfdeN4bjc5dmfV4Exw8fc2EgZl0AfS9FAYWdGOGSOovmWengOJMAiAuofR0AwOuguGzJzE4q9EwcRqNmpSnVAOCQLP6SrAfHy2tU0/wb0Cfaapf1O+epHAPAqbOVnYB6Oap2PqVqA9e0Z3D90gy2tmTwrddEcXlL4Zuf94DszNMnnVGASFoPjr3FB0TDysnlmNqoTs9mqYdqAO3Wr+WMZp7/2fU5sMBPIkb1GAB8TuDv39cBqCxx9YdnfgYgu3Jc+DsYQlwAsMnJBcc5HsflVY55iJfWwXHnCkDPENPhNLTnh6D87DQyX9gH9WGrt9nsVeZAfA6QZXrFgvPlvBAp1YBFqwaAYZfF5kmdtIv+dPYewY4DjwNglf9rL31t3v01c9VjADhwqpJHu4C5jrDN47geXWMiNsVGcDVvQaJS0L4EarwUGxZZ92BHLV851q8/n3TBieQBQEet9bscOifB5fJgr7zbfE3j7OfmClKqPq9QBUGPnVdNKTUrx6TGyXxoPRLIYpaYpv0JM9CiGrW5l4hXzx8F3emG2+3DUeUIACCkymhLx/HZM/twfWTAtt0G0g4gtxpoPB8dz6VVT6bnGGZwLCGQr898MtAAocENEnCADiYnDGypRkFA8xaeiFtkolwFKrPFKrYzApUy1toE39E4b5RSRGIjRbctBctrVHzwUq6o0/pZHKNvxj37PPjNITcePubCj/d4cMdvgvjP7V50jc29UHTuHVGZiGeAu/fag4/AUevkipfWmv0kdDCVo/Q7FaQySaDmVYDEqiNXt2XgnOF5djrFuICsyrHCJh+XBLRzQWR7tcr6L+p0CvZI2hxweK/jk5OsHFMK7D0roT9qv1x7bTZOhQchp8gyWV+6MV60wgywCmet3kfcOSYim3lTqlI1wPUcT9XGKY+AkdapU6s5wQoyi4IVPHjFaoTtTIp169ZhRdtFAIDjXXtx8swBBN0Ui/06DWdERCHdvOfPsP0SULTxtGrO49jt8qHKNzVaoLA6CMdfrWI06OzEpqFw2+aDsCj/eRUvyv37QseFJ8YFAH5vyHx8VrQWpOkT9uvisWd/bj5+0yv/yhR5yYc7Nqbw1vZx3HvHOK7cMHczzwuoPHjaX1WgHn1jBH959ljOdgZL7PVr2ZxV49GwcbFO608qQJQ9vhAp1QCwyG+NuYeGJAiiD3vkPeb72vG5FxynqX6ulDA8bq/9zYRi2f5wntVmKwsF6Bm2VtKORSx3j+UBCE1Z+7qA4XJ6cEw9aj7/n/6duCxm0c8TuhXTWtkBEWIOVdrwOk4ko0hnkvbgOFh+cCzoYlcJUULAWbnqLAk6IW6oBql2gZ5LFld0TqmgHgnIx8r0SEyUK52/OENH2BqQJmaJiaELiVGHwETFCmCqdk758Lo1aXT4Ootuo2gEj5104f33B/GPf/Jh/4CUs+aeLcz7lOmvD7rNSh4A+BUZq0b1CkXQAdLmZ/5tvaz6RnviICuD+XZVNjJyykapvm7pzCvE2PqNp6FybPQcA5wAGYB1tWGcGq2Dk6SxrFoGQEDq3aDnUqxqP5YBal02xeodx9yQRhX0hkX0RET0RwU0BTT80/VxUyglH3572IXv7PBCJBR3bknizevTEEhW5TiPUvVksbRaxUhCQDQtYCRJbBXioRI9jlVNhWwkEyoVHBPAYAlqp9l5tyV75krlmFOs1gaTlv+vjldf9y78z0+Y5/Ej2+/BR9/5b1hZp2IgJiKtEnSHBSyrsf+252IEnWPs+zV5R+DoS7GfQgBQ7cTgKKscN9QsqYgiotDig/Mjq0FTKrTOKOipGLRTUdA+tuiWbm4q/Nn1IeB3Z6wXXAJIy4WprszTqntgUd/TJ9JAh7XdAEeLv3Lzq4ruszmo4fWtSficC4vaCw08rZo62/GqoR60GJZuIaeZjDNYYte0y7jnzRFUuTRTC8RYCwAAWXRhBscAsLFRwcAJEbJK0B0N4YhyBCmagpu4oR2PgKqa5ek6B5Ch+jyqjMGdde/bxbis+UdY6of2Alvsa50xCCuDULdbLAPxmoWqMQ9CCE4TK6BxJvWgziXA8b4OnLo/jA0Dg/BQDR3ea/NUjjnl48iQXZCrzMox1SgkvfLKKseVqcISCsAhgAQcENdXQz0SBj2XBBrc+b2uUypIlYMJcmXvSxfl0s4mc/LoNKEALgGACozLoCGpojarpYAqlB13XK9uF/Dy5m22vv2LzyJUlcuKKwU+TxWu2XIbNq/dBlEQsc3/c5zcuQ8gDrz15jtx8arL4JIoJIEVOx486kJMF9p7qdeJl3qdePtFSfzFlsqKJ08Gc2M1PUmE0wJ+c4hNbpJAcf3SDMjOYUh6BCFuqgERCIQ2P7Tn9QHyTBxChYLjRIYANa8BwCyBLm6qXFW6FFCNWvTagARMgx2BwxYcWxPQ+OFPAF0+ZGK78KUhHz79gbsQ5LLw2mASYq0LDX4NLpEirRLsPeXC3lP2YzwXE/GL/W47BYNDSgHu3cf2q1KC7+30Yne/A5+8Jm6rHC8pUjkuF0tDKnb2sZVU55iIOq91Xoe5ynExGyc+kTAVj2Mqa6Z4DGnygsYVpoR8Js4ygZya45zpOW6xFi7qU+cgXl4P4rKO7for3oBv3/s5pDNJPPHCr/HBN/8zVtW5TCXqY8MSltXYE007eq1qdN/hb0BNXw0BbCE0nhg1bbPKFeOa8Lu4RYhrQsCaEACYvd7898n5TNAJ0u4D7WL3prAsACJemBXOgC7IBQA9Sg9rvVApUifTNtpSJKuXdAELyIfwuHWdKKkmvH3oNACWM3S+exnkbx8HZA0aJ765yG8fp3krPGHZhdnuAACbFit47ASbj4+MBKBAxm55F650XgVEFWi7RiHmaR2ZDWgUUKiHJYiVMbhdWcExb+NUa1GusxWrtXNJUKMqXuOEsDY0nYc9L9Hr6IdGNQhEH6G9EhwfWAGhxYdUqwYMsOTCRZ4bc/qIs22B7D3HZSYiuGpsvEK0aqpqoCIxg1TikyCuC0EVx1n7Wq0rZ26nGQ1CTeG1NalyAj25LZt0XIa4zAsgAtLkhdadBBZ7ZtxRRAhI0MYFQKZAgToNX9Xfe/TZKf293z/9U9RXN+GmK9+Ks8PdwDDTlrmi5e3YsMRaS6+uV/H2i1J45LgLvznkwmCc/e6/PODGLSsyFV3TTwZzJy04Cfy6y4+Uwi6016xK4w3r0tjG9UYIG2sA2BX4zGCyAoh7tgEiG6SvaZcLJWWmDXQgaYlKtAemxUPMyfnzGj3HspLBjn0PAgPfBWK7sOfIM/jg567F6bTVAKgdioBqFAIBVtcXTxo8eNSFSCr/sT92wmVjBgDArn4HPvRAFQ4NstyOQ6BomIDiXA5sfcej9oFyiBMQKEarNsXaMLXKMR1ImtVi0uiBsEyf7GWNCXPZKsdzIzgWmn2segoA4zLUP5+1ve/3Vpk9pbFEBNt3PTRh3/ELZ6zXake3Q9C/drYY16K65uyPVhTEJRYNjA0IHLWarLwwKdUA4HVb49J4YtSs1GW6MzaalxH0eFy+KTMtFnD+YowLjlfsleHV2LgxuH4RhFY/SLMeNI1mQKP5qYw27/HlF25wbNDMAeDAoAuEEPw29RvzNeWJs8XppjOIeIYARrCmhHOD4wKVY1LtstwTuuNQn7b3Gs+69eFchFvEPmUvexx0wPHhVRB05lPVWmstvUFcVbDnGGC2QEZwLIkOW6K0JHBK1UlRrEzPsUIBiZiaIgCzYBTXBSG0+oCxDGg4YypZU8qMP4sKtnl0US6OD0yTCuAgEPSed2FpACToBEbThfYyfXCJjBJepP/56otfbRNXmyqGxvrx89//tym6CuRPjngcwBvWpfHTN43jjetYEUijBPfun31Gz7ytHPeOC3iinw2QXgfFHZtSqJIzaI4zSvWA04OGxV54wAR74BWBhArtTJxd8BUIJJPB28zH18+wSjWQ7W88PbRNZ57K8f5jzyORtNsJRWIj+Nff/w2+HfouCAi0F4egRDKQ3r4Uf3NlAg8ec6GhPY2qqIglfg0tQQ0/2ePGg0fdSCkEvzvswnsvtlMpVA34NWfX8uHLE/jFfjdGkgLCKWtwa6rSUEn2ly04zlKsHo6X1nOc5irHTscUgmOu35g0eUAcounPqJ2OgfitW5jMEVo1AEivaUbmSARQKdSnz0G8rB6kwcrov+qaO/DH534BAPjDM3fjy5e8BQQUFATHs+yc0gqw56z+3dL9aEqPAfplQepcODdi9Ug11ExvcFwqxCvqQTvjAKVzpvoyGxAEAV53APHkOGKJCEiHF7Q/CagAPZcCWczGLUNoKRi4cH+rBUyMcJQtttdJ69HRy4T9IqID4i1MoV5o9UHV50XtTBziupDt8zStgupVHlLnYgvWCxQNfoqmgIr+qIijQxKcrhocTR3BUeEYVmurgJE0tL2jELfMvs1RNMOt15QxuF2rbe/bbJyyGHRCux/a3lEgo0F7WU+uuASIly6MNfngdvnw74P/ii2uS/CPX7zXJli3bIWEEcmJWiWDtaoPss8eUPEVSJ5WXV1VX/aam3LevAmhQj3Hisao01n0ZuIUIawNgVa7oJ4cB86lgDoXoFBQp1DUBYZ4mCgXyWgsEAVAIzKENh+rKgMgXgnCiiqo+0aBuFJxV5mCx0aZzzHxOaCdS+VQvw3UVTfi3q/uw2j4XIEtJgYFxYnu/fjjc/fipf2PQ9PsrY7FrJwkAXjXpiQePeFEPCPgTyeduGNjCosDs1c9nreV4x/v8UKj7FS/ZX0KITcF3T9mfqGnqxZhZ79+YRJi9fzFFdNeZSoYTxNoVa8AAIjKoE0Vc6ZgF+Oangy4I4+V0/N7HzVf+/i7/hNbN90MAOjRevDjxA+hgV3Q2pEIMv99GEvGo/jI1gQ+9ZYwblmZwfpFKoJuirduSJmq1/cfcSGWdVqe7nKYKuSXLJHx+rVpfPd149jaYt+wmFL1ZNAaUk27mK4sxWqbIFeRnuNMhq8cT4FWzSlVC41emyI5PR21PI6BOVM5Bpj3sHiN3seiUCi/77W9v37F5WhtXAGAJVtGR06atl+nx0RkuK+196wEWdO/2+gfsES0rJporRODo9a+F9XOjeCYOEU43rMcjvd2lFRpPp9hVAxiiYgpjggwv2MAUFUF0TjzvF6gVC+gGMLjwxAg4MO+j5iv3bN4ORY36DTJNm58PBPL+Tztilmieh0XbtXYwMZGtm6RNQKpehsA4AH6kPm++vjZOWFTE0tnB8fZtOr8lWMgS4tF/yripXVzKpk8l+Bx+RClUTyVehJqVkDqdxEc0pv3PRTwhO3ngQ+ARsIDGNX1f8qmVAOsp05HXKyQWrVCAQdh1eMsEIFAWOKFdHEtyCIPMJgCHUuz5ECW2KnNIzlLlMusGmcJvQkNbgjL/KCRTFFxrEqBqhRUICAS0cVai/9+DsmJRXUtk/63uK4V12x5Db70sXvwi//ajw++5fNoa1oFANi2bRv8vuLtrH4n8Po17D5WKcEvDsxu9bjs4PgrX/kKbr75Zlx77bV461vfiu3bt0/HcRXFS4cptp9hA2C1RzPL8eo+yyrkmeBivNBjUSEEjlqt5Zk0y8UzpwVAYMF3KP3non630wVTjMshgCyZHioiXzmW5RQopXhBD44dkhOvuOJN+OJH78aH3/GvcEhO/Cb1a3xu/LNISzplaywD+ZtHoTw3lGO6vshPcVMHC3RjGQEPHuW8kinrPTDwtg3sHAfdFF98RRwfvSIBh8j2d2mznT5HFa08g/csuCSrh7k7bFdPNirHAqGo9hT+G6lMZWjVvMcxafQwWqqeddS6Yja7oLkiyGVAvLGR9cKDeQbzdEZCCF51zR3m80e2/9z0O1Y0gtMcnf1Frt8YY3/A6qr15tOd557D4LAVHE/FxmkB0wOfLsoVS0RMaxXAurZ564hQYParVAuYuwhHh3GNcxvaxHYAwAl3AMeXLjaZQ0IbP8/ntlDZ+o2XX7jtDgY2LebmjyALjg/I+0H09h06lIK2b2w2Ds0GvnIsqFGIQlawYtCqPWKONVeOxSUBhKsWhLgKweOy7qFUJpHz/mHREjQLH7YXKnjRrc7eI9A0TX99Mh7H9sqxvyKVYyZQVayKTQIOiBtCIGuDTEyzxmXbfjxOcbgLUI0kmy7KRXW1dBqRWSEjDytFaPMz7Zih1JTWqCVB0VgSwCEAThFkBnNcNcFFeMstH8H3v/Qsfv2/B/GDH/ygpM+9YV0aHokd6GMnnLPqg1x2cPzOd74TDz30EJ5++ml87nOfwz/90z9hfHzmZP8ppfjkt62z/K5NSXgczE/VoBn3urzocvnxUo/DDGwELqM8cjSJf3nai139kw8m/txpLdjrlZlPENBwxlTmJK2+aVOV5H2OM0oGp3oOYnCEBSMbV18Nr4f1FL7+xg/g3/7frwEAe5Td+OGSe0GMhYpKofzmDIa+k+uf9rYNKbNK+9uDLhjiiDv7JZwaZednVZ2CjdwkTgjw2jVp3P2mCL7xmnG8eqU1QKsvDSHzD7uh/PT0lDLeBrU6oxKbhZRROa710KJU7koIclFKrcpxlQPE7wAhxMqEJ1WbWvlcsXIyQNwipFusKq98f4+th+2mK98KSWT30R+f+wVWcCJcRt8xpcALZ/TvpaXR6unB1ubrze1+9uz/oJuzcmmYI5XjBVgwvI4VVYZcZ0122sEwaFrN8a41QBUN8q+7kPnmEWhDs69euYDZhcEw2Oq40nztx4tWoI1TtidBJxBkYwo9E8+ZAxb6je3Y2GgllhX/VQCAdCYB6SZLjV99vH/Wq8d85dgBe9KDqpq1FsojnEQWewBOaVhYHYRQP/s9jXMVHrcVHCdTuQmmfcnnzcd8sgmwV4hP9xwyH0/GxonvOVadYkVa56ii5bdkygKRBIjtAUhb6iA02yvAo1GgJgDEuSmJBByAollV4yX5nRSIJEDsCABeibFYpxMqZXxlhwDiEkCl4nZO0wFCCGpCiyCKpa1Nq1wUt+vVY1kj+NXB2btPy77c2tvb4XRadOVMJmOTa59uPPIi8Mw+9rjRo+BWPTBS94+arIHO1nqAEETSAo4MsZPCi3INHkngz6dd+NKTPqQncX2OJggOnNNPWvIkasQzxT8wDZhuCycDvM+xLKfMqjEAbN10i23bNcsuMTNsJ8NH4firVTarhJGfjObcnM1BzbTAiqQF/OE4m9x+yTXkv3VDCvkSfbVeijX1qu099elzgAZoB8Zs4hvloj2U23csq8BYkt0yxZSqASBlE+SapOXMuGyqUfN0VBu1upObnOYQrdqAcGkdiD5R0L4kwg9ZibRQVR2u3HwrAGBsfBCZUUsl0eg77goLGE7oiajI07js/7P33mGOXNeZ9+/eSshA5zTdPT05kjNMw0zKiqQkK2fLsmxZ67CyvbLslS3vZ3kdVtY621rLK9t0UrDlVc7BFhVIkSJFMUkMwzB5uqdzQKyq+/1xEQrdADqhe7rJfp8HT6OBAlAoVN17zznved8Dx4hn9PvlVI7Hpx7h3oe/oT9LGrSnutf6K21hmYgHvI5n5Ww5aaZGc7ifOMlUQGQpWawcK6VwP3ES/65R1NNzeJ85xRae3ZieHcdQBpfbl+v/DYsHoi1VGhEAcqA4PuZ8bS1YhMp6qNPFfuPOECLRQGTnWYL2iCq3JeVCl4CMaNbTzljlOh3O4j88eRH3srpybMl5zhaTBYqdXLWDYykqiXq27JsWQ5CynslVB8eZ3Bwnp77AWLFo0jI8rZMTRbQE2mLOjjwdeHwFxzygVu03qzXJV8tqcxJJu4qJ4PkKpSAZg3QwXxsxtSjXZL5u1bj8njEL2WpXt8StBVylXTIsqXuhLdlQlGuj4NUHszhFVujnHnWYzF2c6vGKcjHve9/7uO666/jJn/xJrrnmGnbs2LFgm3w+z+zsbNUtm83i+/6qbpfsVLztJZrW+sY901iWQhgK/8HJ8mc7l1eUYu88bSEMhYwbusEe2J6ZwfR9ZvOS757Rzy/n9o0TFqrU2n7hXwmHwou+Blj25zS6qRPBDHi0qe8dvDlOQJDLqw6Or73sBdXbhmzaisHJ+bFTSEdgvbIfebT4e7jASGbBZ7zxSGWU+beHQjx4weAH5/XCpS/hcf1Qfkn7iuuWbY8AvC+fQV1Ir+h772irZE2emjQQhmIscJF2xPyGr897lQk85DgrOg/UcKDfuK9yjhm7AsmQwFgnY8aanQcrvUkLrFdUqrkXPjAKebf8/ItvflP5ufu//1flHvRHx/R3uetMYAE7/nmuOHRzmUJ3zj+HCvTRdLT2Ytob7xgsOE+XcQ6s500Nz8JsrunvG4tW6KtzuSnsNw8iI/pa8u8dw36wcq2kkm0IQ+F/Zxj/7krQ7D8yhRqvjB2yNO6vcj4p3baw8TExM8oh8zARoQOde2Lt+EJWJTJhnjtFoIXKf2q2EkRt9RuXcaSnJP1vQeI6fN/D893q6vFXz649DbQBgpXjkKhmkVSLcdUOSszn9SDaHeTV7YjdW3T6RgjSqjPZ6hbEiakLkH6EB8N6DWJ7Pv6pyjrFtkJlb/vg+bKSnmM/GDw2U7djFV7DU7OQjEJHCjIB4emSKBe2rFs1DkK0OJr2vJbwfE0Ll3q/hL05guOWsOIl+/TBzXuCTz2xwuLSKrEiXvG73/1ufu3Xfo177rmH48eP19zmtttu40Mf+lDVY695zWt47Wtfu5KPrMJvvgbeeKPJYKeLEOBOejxe9DW0t9u85O1ZfveXFL4S3DtqMHSDDiT/szdK92gOSyl2ZGd4LJLkO+OSt75lptHHVSGTE/y/fw8Mrhf+lbZjB8uf0Qjbr119r3MJT/71NB6AgKE3KIzY0r/DctB7IdD34TzGY0/rsv2hQ4c49vIEUP25gzt6Gb33HJPTF+i+YoRwOMzYCZOR+/Tzrc4EqRuqL9Ah4AUnLL5yb4SxtOR3b68Mzv/1VZPsumlpxy39gwwngvO3q5CffYLtfz+AqCHA0BC7Tfi6XkANS8XQDTNceLSSKNi5O9vwN//hdKVPq3uvqNp2qefB6BOTlFwCu54jSBbfQ7mKRz8oUJnqxcr256WR9gbU2LsBTj8SY+Zrs3gTHsmHTtL1y5o+O3jdZfzFR/s4c+YM9z74ZXa9do7Hz8Y4OWnQeeUsP/hmZWC0Zr7KLbe8ndP/cBYAo1fCVOVjBoa6l3QdbgQ0cyxoLnLFW/PQ980IFDtPYrvOsuPKPqbCXZx9j7bdG7ovxYAxyEnvBHuujNEhz3PqM2eq30RB7KkzdL1SL7KGbgCY5sSJ5rT0DA0NNeV9trB2mJwe5Zh9dfn/u4oU/AWV48EopUf8k3MYx/R26onKubJFqa7g0u4CnyvNbcmbYPKr5PIZonsTiG0R1Ok06mwG/4dTC9S/1wszweBYVo9P9WycgpBDcex3H16bnXuGIdSg53hy+gKgeFCOcXOxQDT9o1latlcS9i2JDmbTU1WvWwmtupD2KIXEogmsuJItE6tYI03PwYHt0NUqePBJVXG+KYpyiZS9JAV8EbOgSHMWa+QBq1yFLOrQCCl0AD+2/sLBK8FrD2X5zCMOBU/wxafDvGx78yx4l4oVN90ahsGxY8f46Ec/yo4dO7jmmmuqnn/rW9/Km970pqrHTNMsU7JXiyf+c5T7vi5o6Q/hfW+snBH2hlqYvj/KgU6Xh4Ytjp+1+dbnkszmBV+6IPg5tGjXJYVJHiPJ7feHue8rCUw1xf/+21/CscO866f/FLtOn+iHfxBieLJ42EY/DemHKUxcw1Pfqj/ZCkOx/dpZnr4jhvJWTxFQWY/c43pCED1hTt6XWvV71sPUkxWFuc98olI1vnzXrTW/c8oeAu4F4K7PTDLY24mXB4ph3sjtPhNtC1/3iv4CX9EvY3xGD4RtEZ8jiIbHNgj39sBALgAF2R/mOP4/5zCf37Ok9yjB88ExFDlP8PDjDk99K86DT1TOXXvSbLhfJ++vBK7pMy089a34ss+D/B0XyvdHp1sZ/1aAWt0fQz0WCAQtwYm7GqsBXkz412yHbzwMrmL841PMHdquM5nA84+9mX/4xPt0pnnsYeAYvhJ84uMt3Fuk2ZP+EZcM9DD89Uqw3L37EJGnYqSL2e2ktX3J58rFQrPHgkZQKIaL7bzdbY0/S2VcVMGHvK+pZKvIrs+HN1HpI378uy4dhRjbXwjDX3DxvjOK4Rr8Ruw3+ZWpX0L8sJ9Tf3yuPJ4b13fg3TUKBcX4J6eZu3Q7wjEYeypD1/4I17+6pc6nbuGZhsmpCxyzdHDsCsG9sTYilqIjWp0kFNsimhPna2/bErb6jWsjqOdB6mY4AdlcmlgkifH8XtzbdAHE+9pZ5IFkU2wwl4vpgDhTyKwWgWpk47SF5aNRz/HEtF6TPFC4D7gMgNxjM3BLpZ2pJdHBqfPVRbOVCHIV5vxycGw0o2XMUyhTrnhu8zxNqe5tF8TCELIhm4ewo0W55I54lbVmQ8RMHfBnPIivUUHDVVW99sQtbZ+4Np/WVLRFFLfuzvHpR0JkPcnnno7w+nXeh1X/Kr7vc/r06QWP27ZNLBaruoVCIaSUTbn5nsAvCJQn8B6qZKnkvhTKE1zTXxGa+I/jDn/wnzF+FK4EDzdJXdnzlOA/jjt89LN/wbfv/Txfv/Pf+dx//DPKEwtuE3OSj92vAxSBgqd/U39XM1Jz++ANWHSbpd78J+fK/dVie6xp71vrZhmVJMGZ4afK96++9EU1t+9qGyhvc374FMoTiO5KQOOfStd83e4Wnyv7qlWnX3kgi8UyjsupCj3TfPkApVHA/fI5vFOZZX1vqQSDxYrE2WlJJicYCQhztYf9hq/P5QI+x2Z4ZefBmeL3MQS0h6qeE0PzFndhc03Pg9XeRDKEcVmr3tesj/fQVPm5F177RqTQx/bcUxXT+A//IFxpXxj/ApcfvBl/uLIQCve28vpbf7n8f0/79ov+PZdya+ZY0OiWTgssQyAR5HKLfOacD6YJIRs17TV1P6Khyrg7OztVPgbmj/eXe+kHjEF+JfpOdvxHAooLYXkohfHjA8ijbZXz5q5xlFcZ+5s1n2xh48M7N0eXoe3hHoi0kDFMhlq8BXoUwjYQPUWdg+GM7jXOuKgzOnkqusO6crMFAFojioFksdYevxKMWFlQUh5IInr1NapOpVHHLw4zxxhL84aRJ+jKZ4ha1dWvYHBMncrxFpaORj3HE9Naqfrs3O3lvuPY2Rmq+o5rVIlXUjl2A7RqK9KEkM5VWr15hZXjqTnda9yRgngEYuFqUS65jHFFmBKRWuu+Y4WwK8GxCBla4XST4LWHs5hS7+8XTkSYXGey3bLOknQ6zRe/+EXS6TSu6/L1r3+de++9l6NHj67V/i0K5fr4jxaD47CBKNI7gsHxP90X4sy0wdNOnEJxET4wU6FYffW4xZe//dHy/9/43qdqftaHfxAiXdAX6RXtT0LmEQBCztrYKNWD/2RQjGttM+BBQa4SOlr72DVQm6LU3V6x0jk/poXKRMREtOqBVJ3N1FW+fNOlleA2YilevHd59M6S2IqLy8fHPoK8uZjN9BTux55atlJfia6nEJyYNMo2TgAdiwhy5XKrs3JSrl/unxZdIearkc8XYWsG7WitIS9vLd/3v1+xXeto7eWqS54HwOz5r5Yff2w0kIUd/zxXHPox1GigStDh8KoX/BzPueoVHNp9NS+6oZqp8mzHbBrak5CI6vuNoPI+osVBdDpacbOJiAf8DWfmKolMYUvMN+8kJ3Ql6EbnJqzi06I3jPmGIYQUGNdXFlbed0Yuau/jFi4eEgFrxhKlen6/cQnlvmMF6tScnjOLp43c6jdegLJqtTAhcV3ZilAIgfGcSlXQf2Sq1svXFEopXnXvI/zEhSf53RPfJ2ZWz71lWrUA0dIcZuKzGVVWTnUqx8zcxYNRPZ9bno86XZlgaolvtSS7lr0fXlVw3IT1TYnCXKNy7PmKp88r8oX6c8vULAx2g2MLDEPQ1QpzmbqbLwrR4lDlE7oMqHSR6bUYrEBSwTEQiE0zfwatXtOu5AOfWt/PX1ZwLITg05/+NLfeeivPfe5zue222/i93/s9du3atVb7tyjUk7NQ9BeT+5MIQ58M/UmfvkQluAEwbQHFZnlzIsclcX1BPzZmMVFIld/z4eN3MzxarY56dlry2WJfTshUXN9+b/m5WgHkWsIPKBSvpVI1gGUtnGyuPfKiutSqYOU4eAxFSQ4/76NGa9uyHOryeHv7MD878hjv2jtGbBnznMp5qBH9vk+7T/O3n/o9Ppb7cNlXVZ3N4H393NLfEBiap1hdsnECFlD55iMXtHJawfmhhrMV8ZiehYIEYjCmK8olbDCP41qQu+KYHXqS8380hQpYGdxyY9HzOP0wUs1LiriTtHKcob79VYJroj2EY4d5z899iD/7jc/RtWXjVIbvKzxf90Z1twqy+cVeoBAxE9nigBRNtXyIBRg7c/N60WRniP8X/cy8F5hYb91VVhWVvZGK7+pIFvX45ugr30Jz0T1aodCXg+OW2sGxDIhy+SfnUAHLGbFFqV6Aar/jm6uSu3JPRWMlmJg/NyP53KM2U9k1bg85naYzo8f9vnyag4XqcV6NFQe3pL1m/ZvPJlQFx7nqrOrEVDE4dic5kaqsSwqBMXl+ldi2QkRCy1+nBn2OQ7Em/K6u0rZGNc6RmTTYJpy5UON1gOsphISeQHtSW0KsNLYF0BRsUy4tyJ0HNZ7Tdq71ni/1VwcSAcKWKFPo47BJ8IZLsthS8dxtGV7/nMW3byaWdcaFw2E++MEP8o1vfIPbb7+df/mXf+E5z1nnPZ4H/0eT5fvyQKp8Xwi4tr+apvuLx9KEdlQu/JfHKtUrOqurTvOrx3///TCury+MVx/MYquK4FJopVY9K4ByfdTJYjavxUak1jZTapsLA7v5Fk5BVFWORysWV0GvuGCWMQjl+rzsez/k5RdOcOwzD+CfWDqPQp1NlysDx93HAfjHz/1vvjX0/fJZ7n39PP65RUpoAQSFXp6aqFSOBYrWcOMBLZ8P0KpXUjk+W9nPoI1T+TFLVhIObI7KsZCCxAuLCy1f4d9fuf6uvuQFtCW7QLn4M9+vfuHEV7ji0A3aKqGUWAkZsNT+nmchZjKa+tUah5Y42Bbk6mTFledDUbCj5KdNunnV41g0Vb4/X6gF4Jv5b/CF7Of1P6bA+qldOqsegHFdoHr87ZVbtG1hc0KkXboz2ibmSZnhQnFMHaxXOR4M2N2dnMM/XmSKia1+41q4ZF7fcS4gxCSiFqJLrwPUmTlUziPvwru+FOPP7ojyJ99Z2/VP/v6Jqv8vmzxYvq+yXnmsKrHTtrA6VPUcL6BVV6LH/EBlXTL3SGWtNr+/uDXZuaI+dVG0cvKBcLQZwbFfd500PQddrRAJw/j0wnlyclbPo+0BWZdEFEwDCisNNoN9x8uAcn2t3u01+Nxa/dUhQ1PKN4FidQm9cZ/bnj/KLx6eZmff+n725k6zKYX3w+JiSwrk3mqJ/hu2VzIrNwzmedHufJXNw9HClO4dBuh8E7Fohfb5jbs/Wb7/yAWDbzylB95UyOe1h7NVk8dKaLMrhTqdLmd+1rpqDGBb1YvUSCjGJXuvrbt9R2tfeSCsqhwH5O1LvV/zoU7MVRblGY/C3zyG//jS1Gj9QMB93Hu8fP9/ff6/cXJvcXL11bK8j+cHx6XKcUtYYS0SiwZVHkMrCY7PBTL3vbVfX0Wpj2yOQDF5S2WfvQC12jBMXnj9G/U/M9+rflGx31i5Pkzoa1q0OxdFGGazYC4L3a1gmYJYRNtPzNajgOV8PXGGTd0L1RFCNTM4jgRo1TWC48mZMf5P+q/4K/nXWP/tAHL7wnFNHmqBpKbV+j+aQkwvVgrfwjMJ1qlKZeruSGVOqhsctztl33f/yZnyeCp6wlW+pVvQaAkrUkZxboxdzuS81gqxozhu+6BOzPLFxx2GZ/XxfXB47Y7nbBZG76oeM/pnu/FH9O+5JcbVfDTqOR6fGinfH9gVLvcdO6crfcfze45bkssX4wKQxeA4LU3iTfhplavqrpMKLgx2CQ4NwcSMrhQHMT0HA51gB2jKyShEQ/P8jpcBYUhE6wramHK+tmZqtI2rNLMwGBzbxWB5EwXHADH74lS6N3VwLCZyUOw3ETtiiHnU0gOdHr92/RxvPpLh12+YQ4hqupVzdoYeqxhIhYa49sbfZc/2IwA8fuIBTp8/jlLwoXsqwcmbj2SJWJR7cgCcdew59p8K9BvvWPsM+Pzg+MrDz13w2Pztg17HJQS93/w6wXE5u19C3qfwt4/jPTRRc/uqTZ+ubHPOHuF1t/xS+f93fvdtuLYeEPwfjC954d8SViQd/bonxgwmMno4al+k3xgoC5oAdZXPGyFY4a5FqwbKVFMAEd0cCz5nj4PoLlYhnp6tsuEo9wzP3FN5gfJh4otcduAm3W9cEqLrWN9Whs2EvKswDWhP6fNVCkFXqyBXqPOCnKfFOpwiM6LF1r1JjTLTy0AwOJ5Pq3bdAjNzEygUTyVOI7tqj6XCEBjXFhddCuyHxmtut4VnJqyTgeA4pW23orZPa7j2OSqkqCTCM16g33jL47Ye+pwi00sYHJ+sPk4yMNcUjs/ysQcr4+90TjK5BtTqiYzgf39C0pHRay03EA5439ZB2lJsnLawPISdym89X616sijIFQnHOdwry33HplvpO55fOV6JxzGAkdfrtLRhknCaMBcpVW7VCSKbVziWrgzv3ibY1gFnxyrPF1yFlNDdWn2OO7agJa4TOCuFSNmNK8C1kPM0RVqKKiG0KngLg2MhhF4nbrLg+GJhUwfHZrD3NkCpDuKFu/O85WiWcEnLo8WGuA4k1OMzvP6H38LydYaq0PoannPVK8qv/cbdn+Lu0yb3n9cv7kt4ZZGoYE/OSiqDK4UKfGdRo8LSbFjzAuFrG1CqSyj1HU9OXyj3rIikhdGmByZ1Jl1TFMAP9K2IkmiKp3D/6Qm8e8cWbB/E3HFN93GVy95jx3jbq/8HL7n5pwDIeHN8abZI23QV3j2ji34H0NT8UvV4KifxlR4cOyOLDy7ZoCDXMnuOlVKos8XXx0xEvLYCotybQOxNQMpGXtG2rM+4WBBCYFxe2Vfvvsrv2tu5naP7b4TZQOV45i529/bSkuio6lUX7VsLoXqYntN06kQlD0gqrnuqalGrVc7X/ozFSrxIWhA1m0atrq4cT87b10qQ25Job/g+xtXtWm0UsH40gcqtpdLnFjYK/JyHeUYv0sf9CR5L7AZgMOkvUKoOIpgIL2Gr37g+BqNny/efmK6+FoMspYkfznFhrnrpeGqyuW09w7OC//aFOP2nKvPDx9yvkFV6DvDvHdMq5GNbleNmo2HPcZFW3ZLoYDDl82g8VX6uZJU2PxheiVI1gFUoVY4N4k6TAjpr4YAxk9ZzZSqmK8OX7BQYAmbSeq4sU6pTC9+uu02QWwWJSURNsJbXd6zyPkQt/V3ydV7n+rpKbM77vjGzqXoiz2Rs6uDYCASKxoFqj9fzoyf5l8/8ET/9nmv4iV+/jAcf+y6wUH3xufkB/ujJu+jOp7n7fAvXXF4Jjj//4AX+9I7KQPEzl2co9fLnApVj21qf4Fj5Cv/pYuU4Ypb7gNYSwSqxlAZXHn7eoq8J9h0Pj1VsvkJ7i++V8cr02BJUziv3UosOB+tndyNL1j8+uB99Cu87I9SCn3OJzen3PuE9zQtufhNCCN7xE3/ITVe+DIDPpj9d2f7OC0tW7BuqIfiy3Mqx4yyzJ2vGhaJYleit/1phSOyf3YP9nsPIBtttNBhB1ep7x6t+i1tvejNkHoPhf4bCKJz8PS4/qHUN1IWgUvVW5bgWFIp8QWe5ZSByiIeL1Oo6LfdBCwphG4h2p2nUascOYxr6/WfT1eyQyZnK4jcZaxwci6iFPKLPHZH3cb/XOGG2hWcGcg9MIYrVlbvVcVTxvB6oQ6kuQQ7OSx6L6groFqqxM1G5np6a7a1yfREpG4rBZ2x4FtOvngNPTDVvKXl6SvIrX0hwetrg2pnKnP+12X/iP3Jf1//kfLzvjVbTqrcqx01BqKrnuMJUzOUzpLP6/5ZEJ1JAZqDCMMg+oddvqXj1OL4Sj2Pl+VjFqqimVa+uclxLoKqE2Qz0dYBRFDjtaRfsG4ThcS1sOZOG7d26RWk+EhFdRPHrOLAsipipA+TlzLVKIVttXQWvF1QXPY7nt56JkFlm0WyhMTZtcKzmXOT5YlWyM4RoDzGXmeGL3/ow73zfS/mJX7+Mf/jU+zh57nHOj57kt/78jTx56mEAzBu7MV+/nYLQPMNduTn+/Im7ODQ6ypNzg+zd+2LY91Eu9P5fRot9pvs7XG4YrPASc4VA5XidaNVqJAtpvSCQQ7F16bmMhhNYpp50Lt17LYlYyyKvgK72oGJ1RZQrtLcS0MynVvtPzkBxgBG7EghDYr5+CHltZWB1P3Wy3GsUxFPfuw9ZPJXHolMM9u4BwJAG7/7Zv+bygzdz2j/NA4X7AR1kLdWvsZYa6mI2TlCdPFl25ThAqZY1xLjmY7P13ooWu6I+fCFb1YN+3dFbScRa4bGfgu92wcSXuOLgzShfVSvOtm8Fx7WQzkIkBG3VuUKEEDrLPY9arTylLVDmWWWIVgfhq7q2a8uBEKJcPZ5Pq56crrA4kvHF2Q9BW6fC7Vu2Ts8GZO6usAvusiqL9bI3bx2IeZVj0RdZ0Hq1hQpSYQmz9wEwWujkYw9WB5sljRNL+ezJTJEKVebBU1PNqRxP5wTv/GKcC3OS7nyanVk95k8m01zwL/C5XEXZ3r9jZKtyvAao13McFOMqBbxdgxaF4vojX1QNty2HeECEcUWV41zl3EobJvHV9p2WBKrs6vNUKYXvQ3uyeg21f1BbNZ0a0aJb8ynVJSRjEHYgs8Lqse47trWw3BKgfAVCIMLFoLpO5Vh5SrdKzYeje5W35s3FsXmD40emEKU+ogMp7n7w67zunYf449t+mQceu3PB9nOZad79J6/h3IUTAMzsgV+d/m+c8XRlM+a7/H+n7mfik2d5qvPfoOO15dce6S7w28+ZraJwVQU/60SrVoF+Y7EOYlygv9uv/OQfcf1lL+a/vvF9S3pNLa9jgNC+yuQ1X5QraM8id+tspJAC8xUDlQWxAr9Gtej4dys03NS+/qrnLNPm3W/7Pwgh+Hzuc+XHvTtra/afGX6Sn37Ptfzmn76eXD5Tu3K8BFr1as4P/2zltbWUqp8JMC6rBEJ+gDJvWw7Pv7Zy7YWcKPt3XIn7iRMVj01HrgtrYjNiJg0dKQg7CyfzVAwcC3L5wMSY87Ty5bygQSRtVMRctpJmPZSC45m5yarHp2YqwfFitGoAuS1abidR5zKMf2dxPYItbF4oX5G5VwfHOZXj/gBFv54YVwkiYiI6AsynLUp1Qzh2GE68t/z/398b5o6TgZaeALX6UHqS/3p1ZQ4/2SRa9e1PWYxn9LL0JYXz5cfPtOn5+oR3gulOHRCrC7nKusGSW+4FTUI9n+OyjROV4PhAl8dEsXhizOQDz1cC4hUJcgXmnaxhYq/2py34mmI8j1Y9l4VoGFrnSRFEQppe7Sv9XFsdqYJYWFeP6/kdp3N6rn36vOKpc4qnziqePKv/luZhkbDLhaFFkfe1NkjYgHgDirRXW5lb2AbKlJvKzuliYVMHxyXIg0k+8rk/JRvIcvV37+KnX/Vb/P3v38n+nVcAWmnv3X/8aiamL/C1O/+NJwrH+eWpX+Kplor/7YvOnODodJH6V7hA8uyv8v4XztA+z9c2exF6jtfT3ziIF17/Bt77X/+Rwb69S9q+ntdxmVbNwuC4ympjV2USFkJgPLcHpB7UvO+PVVWz5jIzqFOVpMHua65asD8tyU4O7LyS7+bvZMLXCy3/oUlUDcXbf/r0+zl57jHufvBrfPWOf61TOV58YAn6HC/XB1stQYxrs0Ne0lL2afZ+MF4l/nTrjT9Zvn903/XIz57H/24xiBJgvmZ7TWGNZzs8X6GAzpbaWe5YWGe6q1Sr88VJ1KmeCkTIQLY6VV7Uq0EpOE5nZ/ADlMwqWnV88eAYdPXY7YvivH0XrdcszmTZQjVc1+XXfu3XuOWWW7jiiisYHa3WYPiTP/kTXvayl3HjjTfy5je/me9///t13mntMXXfFP6Epjv8oHAfuei+8nMDqcWTlGIgIFq4ays4boSQHYbxz8HT/wMAheB/3R7lyXE9NtxtpcrbXuOOcdP2AhFLj9unmkSrvu9cJRi/JV9xlngqVWnPGj8YmJNLbLNWe10YVCrrPeOrbpZpYxg6Gg32HE9MVyjupYB3X4fHaDE4DuXdcu9sMCBeSeU4qCfh2k2Y612le3Dt6vN0Ng0tMT03zkd/J+zth6EeMGtQqkGvT7tadZA9H56nGC6SXi7bI7hyn+CqA4KrDwp62rUqNqA1ZWy5NA2NnKfXPiGjMUVaoHuZleLEeUWmGKQTkpvOzuliYVMGx37eRz1WDKYiBtMtWX54/G4AutsH+Kvf+gp///t38sYX/woDPbv5vV/+CAM9mmp7ZuQpfvNPX8fnb/8nADKkib51L/ce3l5+/+dOnqMt+wW45wBTT/wZj524b8E+VFcG1yeAKStVW7LKGmmjoZ7XsdVnacsYqmnVarZQFqASvZEFVhsibiH3FVN3UwVUQNX6P7777wwJrV7q4+MMtlIL1x59ES4uX859WT/gK7y7qheF2Vya79z3xfL/X7j9n4lY0B2rHrSW0nNcEmyzTAcpl3eZlW2cpHjGVkhFxESWdAJm3KrfdLB3D+/4ifdz3ZFbeWfLf68OjN+4A+NI7d/42Y6ZtM5it9SJAUQN1WqV9RApq+bCUrQ5CE81ZTFY8jpWSjGXqfzWy6VVAxhHWsn8+HbMS1oQxuZqKdgouOyyy3j/+99f87lYLMZf/dVf8Y1vfIO3vOUtvOtd72Jubq7mtmuNkS9XqlV3Fb4LER0cO4aiK7b4OGzc0Km9u3fHkXu2lKobobyOOfUHbJOajZVxBf/f12NMZAR/91RL2bpn58wU+KpMbR+elWSXmUdTSqGm8+Vkt1LwwHk9928TGUJn9XpHdIW4ICvjRH6nDalqT+P1oFSrjIsay6JGc8/oAFkIUa4eP3H6Yd70a0d5068d5Y9u++XyNqXKccJR5GOV32L8vJ5cutoqa8CO1hUY1AZoxl4zgmNP6XWzUb0Wm8vpfuNa85+UgmMHBPsHG88xrXFRs/B7bkzbKQIcHBIc2iE4OCQ4sF0w2CUqAXXE1O0eS6BWq7yPSFhajT9kgBA1W58EWqk6nQPXh6lS/cgqUsu3guNFsSmD47HvjJd7EuS+JHc99DV8pf+/6cqXs2/HZVUnezLWyvt+9eN0tPQC2qbp1PnjABzeczX9vXvY98p2pi19kV+TvsDP7HkSXJ32uf3uTy3Yh2DP8UqsepYLNZmveLwORBHmxv3p6nodC4HcVkzRTRdQM3og9Y8HKdW1V/byikpVybunUm366u0fo9/QlWq3zag2PQ/gmiO3APCl3Bfxi+k277sXqiqWdz3w1Sr2wWMn7ufxEw8soFa3h5cQHBfPj+X2o6u5gu4tp9hLv4F/59VCBqjV89XIf/zmt/Jbfb9L5IFidV+A+cYhjKNbgXE9pLPQ2w5mg4CxRK3OlqjVSiFids1tRdJGheSSJu3FEItUApPZQN/x1OzyaNVbWD1M0+QNb3gDhw8frvn829/+dvr7+5FS8rznPQ/HcTh58mTNbQHy+Tyzs7NVt2w2i+/7q74Nf6lSrbq7cB+EdwHQn/IwTIUwGt+MwQjOew/j/MIepC0W3b4ZN2BdPqfZt1C4so45pD7EnnYd7Z6fNfiFz8Y5OW3yUEQzNYyCD8Nz9BfnRoXgzKxc1jHwvz1M/n8+QOHPfgjpPCemJZNZPd+93K9QquWlLWQLlWR6OBbGvK6aqivanLU/Rp6H7LSRUQmTWZD+M/I8EIYqJyo9z2V47BTDY6eYnq30/ne295W3DbdVqv2PPq2PyWtu+XkO7znGO97xDro6e5f9+YWA96/vGNXHdSoL6fzy3hMPGZMI/PLN9z1s06c1ruqOP0IooP7zvu8Tj/hEbJ9CwSu/dzrrIYTPge36PJj/mrakT9jRr5GGQnba4LpL+x5JQ39OSCAiAuF51cdH+GAqpA3pjE9Xyifv6v2SQiETEqG85R2/Vd5Wcy1IU9+aMZ8EWWuLYVM2aQSzyfJAiju//aXy/9cdvaXmazpb+3jfOz/Or7zvJczMVfrUbrnhzYC2PnGPpfC+PYL0FNfa12MYJp7n8o27P8XPvua9VRXAYOV4PWjVF4tSvRKUvI5HJ85VeR2DFkXhuE5jqTNpxL5klb9xqd94PuSBpO6zyHj4D06ish7Hhx/COzOHkdSZxdCO+oFTf/cu+rp2cGb4Se4p3M1V1jGYKuD/aBLjkJ7w//OuT2BhcYV1JRf8Cxz3HueL3/wXhg5cxZ3Fr5EK+Uvqf8nns8VjsbzEife1c2XfO/kMpwHK/YHf9AcT5E48iJAU5R+V9jWGQGC8OeyqLgYmZhThELQlG2e5Y2Ft6zQxo6tvSFGzNwmAiIFIOTCWXdCTvFwE7Zx0cKyv1ZXQqrewfjh79izT09P09/fX3ea2227jQx/6UNVjr3nNa3jta19b5xVLg5/xKXg6gTreMs5Eth2EPlcP7MkxdMPSRBUvBrZfO7v4RhsM8kRl4ei0jPIP7znPy3+nm5FJkwtz+rg/HGnhpmlNd06pMY4cifHVx3XVNtOVZ+iaShDb6Bj4OZ/j79XWUepsBvUPj3D2dfsAPU5ck6tQqgd+ysb8YCWhtutaxcBLQhz/qkAVk3ztVyla1/18qGccX8FmPA8Afv03f5k//dM/rckYOXbsGK/+ucsxTX28Z+7x4RH93IWJAkM3FBiin+e+8aPFVyz/GJwcyVD6ZLtN1LnWl2swXACq32eoFXKzcGKVP9PVu2o82A1eMUw4derUgqevCb7miuKNpZzD4/qWAn4coJ4a2DCDtR6+rnRn8fO3mVjttXB+5PTiGy0BQ0NDS9pu0wXHSqlycKwkuDsd7vngfwKQSnSwd8dldV872LeX3//lj/Drf/Qqsvk0sUiSG694afl5ebS1bC5v/zDLFQefw10PfJULE2d5+PjdHN5zdXnboM/xcgOglcAPiHFt9OAYdN/x6MS5stdxOKITCHJbhFIdyj+TRu5LVpSjDVHXu1mYEnmkFf/OC1Dw8R+Y4AuP/gu7zN3lbeS2hb6W5dcLwbVHb+HjX/oAn89+TgfHaGEu41ALsxOT9DwS5+9S/0CbbMNVLj839bN8/bv/zi8e+0NA7/9SxLgAssXkyXISJ2osh3dHMfFjySrLsWcihCmRl7Zo2rSvYCy3sIVGgPmGrcC4ESZmtOLmgSFBItI4OBZC0NUCw+MKlXeLYly1g2MhBLLDwTufZrXk5VgkVb4/O1dZ6AZp1akl0qq3sD5wXZf3vve9vPnNbyYWqz/nvPWtb+VNb3pT1WOmaWLbtRkJy8HQt4a4/9Nj/MNv/BZE9pcfb88LnvrWxkseCkOx/dpZnr4jhvI2F+V/bLKSnBo77ZJ5OMJv3zjHr3w+QaH4Xea2xaFY1B39WoHYj1WWkPfeFeOwayzpGHjfH8ebqsyl+SfzDPzlcZJ9LfhA8km9JhBtNmfPtzF6qrKQH32wE9GaQh5pxbtbJ9fGp5NMrfH54A9nMPYmkP0x1HgO90eTkPeRNZwTNvN5AHAo9Ub+7nfeWPf5UwHN2xCF8pruwnGfx29PYsrVHYORuzOUyiQFz6q61tVwce3dEULIpb2vP5zB2J9E9lXWiGdGFQOdcO3h1bPz7njQ5+QI9LULRsYVoRDcfEQQdhSnTp0qM3GCePBJnx88Dtu7BWqugHvPKCJq1dVTUQUfNZ3HvLxd9ykD7gPjMJGvsjFTWReV9ZCXt3N6xuCSnYIfPq3oTGk7Kv98Gu+hSWTX+mglrfZaSI8V8FzFC36hA6deIn8NsOmC49lHZsmc1BeH3xvlgSe/Qzavs5VXX/ICDNn44B3YdSXvf9f/47Pf+AdecN3rqmTrxUBUe/mNaaufF9zyau564KuArioGg+NK8BNZHyGIUnAsQMz3b9yA6G7v5+HjdwHa63h7RAexwV5pdSaNmsiVK4RiMNpQaMm4ok0Hx0D+7mG+/qN/52fNt5WfF9sa92Ffe+RFfPxLH+D7hXuZNKdJuQnUY9O4nz4J3z3HT4V+qrytKUyO2dfwqcwnGD39FeD1wNJsnKDic2wvIzh2v3SmXDU2buxCJFe/uNzoMJ/XS+FcBjWe1wFy+QYkLMxb+zAu3aJS10MpMD44pK2aloIStTo/4+MkzbIOQC1kbZNMXpLMewtsMJaDhZVjjZJadSQUW5ck47MBv/iLv8h99y3UyQD46Z/+ad72trfVfC4IpRTvfe97aWlp4e1vf3vDbW3bbkogXA9mW5hH849B5IbyY/0Jf0MGHeX+WU9syP1rBNuozJ/ZXAblCfa2+bzrujTv+2YEIeCW6yU8XGT7PDHLwMsqLRcnJoyq79zoGLh3BPQ+iuyhjtk0f/D0vdzR1l1xIjnUAr4kk61UpENWFOUJjBf24Y/mdECxK7H2x7sgUJaFQkJrGGOfxH1oAu98DtlRe+zajOfBciETdjk4jmfzPHTO4tLuCi16JcfAfHSyfH+2sxJUKaVQBcAxEBmlBaaWgoJAGab+7YrI5BVdrQK5xAC7ETpaBI+dVqRzMJsTXLFfEI+KMo1XSrkgOO5MCRSKvAtm2AbbRs16YNYOy1TaB8NEhSzKHbFhG/9cDhm87nIABnOeQciWDHQJnjijmM1CKiZQpgkF8N31tQFd6bXguwLfrX0M1xKbLjgWpmTbm/o4/elh3KE4d/6gQqm+9uiLlvQeB3ZdyYFdVy58byEwjrZqaquCq7gSy3QouDm++8BXeIf6w/LJVKJVr0u/ccZFnQ8IVjVYzG4UBL2Oz4+eYHt/MTjuDGlJfVfhn0njBy2cdjUWTBEDUUSHg7qQQz6dIZaLsCtWrBxLfWwa4cDOK0nEWpmeHedz6c/wE/ZPgALvWyNYLDymR82jfIpPcNddf8n1V72S75+zeMneXI13roZSqnx+LNXj2D89h39fsacnYmLc3LWk1212iJSN/Y79i2+4hQVYSWAM2roiEYWZUY/QYLjhBDniWhiGQTztYqwqOK5c20E7pxKteotS3Tx84AMfWPV7vP/97+fChQv85V/+5bouSOphOj0KLZVxYmARG6eLhqKOhsp7YGyu5VXQcjCXrwSjz92ZZ6jFRSHY2epR2BHHf3gS0i7dmTSGSOIpwakpifIV/mNTZHsKQO1Krn8hW/asFx0hrJ/ZRfoDj2HO5Nmem2X72ePlbeVh3fIUVE0OFYXDRNLG/oV9rAeU56MkiICqv2hzMA6m8B6eRI3nqqp3zyaIgDham5vj7tPVwfFyoeYKhM/o8+O0HcHrCAPFdZcPGFK3AmW9hond8vv5CiVUlR5NLq+wzfrilctFIgJSwtlR2DsAg0sg/bWndKJ6ek63Q4k2B//JaQSV45krKMamtT2jmfMhZVd9DxE2FtpAuQpCBjM5SWeL/o4tcTg/rj9POAbKkghXLbC22kIFF3/WWyZiu6Nc8heHMH7zMPlDKb77A60+bFshLjtw06rfXwYEf4wH58rV4pGx05w+Xxm086XgZz36jZ+eLUu2bwZKNcxXrA6IchmiEsSO5fAfqvR/1xPjKr9WiCphrhc5L2LQ0F0VoitcV4yrBMMwufrSFwDwhbnP4svKoOIql6/mvsJv8j8goSkrl9iXYmLx8OPf5a377+OTb5zkWP/ig34+YOPkLFGQy/18pZ/CeH6PVi/cwhbqYKWBMejrqLNFUMiDiFp1t/N9hY8g3B0iP726YKSKVp3WGgOuWyjrPyxVqXoLzUE+nyeX0wvOQqFQvg/wN3/zN9x///388R//8ZpWhJeD6fRYmVZtCEVfYmOqraqSkNAmVIM1DQtZZN4F28YAdrT67GzVY4AIrEHkUzPl3+LslKTwsacp/N/jPP2TJ8uOFBPTF/j3r/w17/vQL/C+D/08d/7fj5Rffzvf5J++/Wd8+JIIF8x5wWXC0mw+KLMDTcPCNOuPWWuGvK8tcOYFY7I9hLEnAXlPJ0SejUhUfo+2QpbvnV7d2sX/4VSZOfDdeCcJJxD8+UpHLWETtVShSE+BUW3jNJPRCeJUk5bTyRhEHP330NDSqtGWKehrh+li3qdkRxb0Lh6f0fs4NgWq4CGS8879kIGAavV0V9szZvPQ06bn+44U5EqtyY7UvuD5zTdGrSc2XXBcgpCCJ4cfZGxKCzdcfvCmKor0SiG7woheHdCoU3PctKNSjb7nof8s319JT+lKoQL9xmKTBMfVXsfVSqdBarX/oyLF0pHlibARZnb7ZWXyl4VegVEUaFmqtdU1R/TvOaWmuL33e4htEU5sH+Vnpn6KP5v7E/Ydu7ps+WFjs9/UC7IvfvOfMZZ4teTygeDYWvz88B+bQpUq6K02xjUdjV+whWc1pudWHhiXEA8pDAMKVv3M+0wG4mEId1rk8qzKviRIq54r0qqD6qdbStXri1e96lVcd51WZnnpS19avg/woQ99iKeffppbbrmFG264gRtuuIEvfvGL9d5qzaGUYio9AWFtx9iX8NmIIv6q4FPesU248BRClNcz2Xym7nZyR2UN4j81y0DSQyjFz536Eer7mgmi8oqJf3yA9/7lW3j9rx7mgx/7H3ztzn/jG3d+kl1jem1QUAX++rE/5p8/80f825MX+I3tV5Q9cwEedh7h/3zsPXzgI7/JSFHYsxlrvBWh4OuWrxptX6IrjOiN6tagZyGEJaFov9nm5nhywmR0buUVSf+hyfL9OxMdtIQD846nmMnBnGWVA+hF4fo6GAwUT2Yz0NtW3794uQg70NUKl+wUpOJLf8/uVr2t5ytdgY9bMKsTbJm8wjJ0H7NtQibLQpvTkIGa51usPIVnS6TUNlMAiahAUZzDLanP5RoJvFq2UM9WbOry1D2PfrV8vxT0NAPyaCve2TMAXKUq9Ot7Hv5PXvF83X+VW2XlWLm+7h9eQsS12cS4AHo6grTqaqU+2RehfFmWK+LxRY+FUoo/+dSv8xL3Zo5YRwmJCmW5kRhXEFccvLlMlf+HU3/NC//o5/ng+9/NqK97oG6+6hXI0QR+0S7qcucKHnQf4Ct3/Cs//arfwrYWp05Ve2A3Pj+Ur3A/f6b8v/mivme0fdNaQa2yJ3azwFeK2czqAmOAqPQIJyTTyqReKmZqFoZ6IJyyeOweqe3zVtjSEYtWguMSrbpKqTq2FRyvJz772c/Wfe6ee+5Zxz1ZHHPpGTyrD6Qe7wfXkFKtJvOotKvpigmbZflozxQQCQsoaD/SNdvLtYNjR0hnZ6vmsPkQfRFdhcv7+E/OMLDX5ejZ47xg8mzVdtELFpFZF8+rsK2utq4hJVMA3Jm/g2k1BcKExA2cMyP8Rt8Av/HEl4iIKH/y+O9y/tHzVe950YLjvI9I2jUFoIQUyKEY/kQONV06B55dEEkLlXZpdXMIpfjeGYtbE4u3oM2Hynv4j2lm0YRp82g4ybZkxc0EX5HJC/JYOIbAXMq87yqEKcrBsVI6udzZ0rwrVAjBtYfAXOb02J6CeARm0pCKSUR3GP/RKUTKZnJG07MHuqCQVxw/CxHHqK5oOgbCKga6peOgIINBLFyhjSeiWmckV4CQLRAxE3+mAHkPsh4q4+mqvKe00FkD7Z9nCzZ5cPwVQJ+Y11z6wqa9r3GkFa8YsCSeMGlNdjI+NcL9j3yHfCGHFBK3aDHh2MsfrNVUnvyf/Qg8H+sd++uKOUBRoe5kUdS+zUEkmkdzU0rpDLfrQ0GB66NcBUqBAKTUiwOzeAuZS14slLyOlVIMj9WvHJcfW4RSDfClb3+EO3/wZcK2yxHraPXrFxHjKiEcinH0wA3c/cDXGJ04x3fv/zIPPqalF7d17WTXwGFoqUzm1ydu5h/m/p7p2XHuuO+L3HzVyxf9jKAHtrNIT7r/g3FUkX4m+iLII1viU8uF8nzU2TS0Nvf62IiYntMTXfdqWch5RXuXyaOerBkcK6UoeNDXIUCZeGET0u7Kg+MqQS692KlSqt6qHG+hDsYnLkDkQPn/tew3VmkXMRiFqQJcyOIbApG0lpR4U1kPuSsCpBfddqOilMxNZ2d58tTDjE6eZ3xymPGp4aq+3x8LX05Pvh2mChz49Gc5mtHzlofPJzP/j1eHXwPAWyM/wyPhx7nm2pdw81Uvp/szPpzQ8+ulb34Jf9f3Er59fIzbntTz/0j++7xj+hfr7t8Nl7+07nNrCeX6iHj95bKIW8jBKOpH06iosbykyjMAImmhzmWwlCLp5bn7tMWt+5cfHPuPTZcrmt+Nd4CAnligwlmkSHcNWIw/ZdCZ9SpBYT24PkQra9d0TlOgm9VvXIK1gip02BH0tSseO6Xp07LNwTcl6RkX2zTY1iEQQtCX9BlrMzg3Z9AfmPuFJbWg3UwBSvUhpZhzJX0pCDl6n+JhiIQgnYWQja705z3UNIiwiewPIZI2/rk0TOZrMiSebdi0wfH50ROcHNHmavt2XE5LsrNp7y1aHMRQTNOZR7K8aOer+Mj3/5psPs0Pj9/N7u1HytsuFvzUgnfvWFm4w7t9GPnqmm5kAKjTcxXf2yZXjdVIFiyBMLWdi4g4iKiBMA2U60HWR+WKmaWcj8jkoIZtQS1Ypk17qocLE2cZnlc5Ft1hTegPjHn1/I1LOHfhBP/nI78JwB357/Ar5rsw3OJgJChT4ZeCa4+8iLsf+BoAf/HPv16miz7n2Cu1OFHCQvSEUecydOc6iIkYs2qWL3zzn5cWHC/R5ku5Pu4XA1XjF/ct2ZpgCwG4CuIWas59RgfHvlKks3BgOzirFNLwMx7tAxEezQk8T2HMW8zNZSAa0kIg+YLA6Ajhnp/GWmHuJhZeqFYdrBxv2ThtoR7GJy9ApCK8NJBcm+BYeQphCIzuCOyxUGM5/LNp1FgO5eUQHaG67CaV98CSyFTAUsVXm248DxU1MmbmJnj7b9fXcPFCb+AnI28BCATG8P7YON8e/zvajXZutp9DQib44OpJDWcAAKgYSURBVJUfw37NDtRYjvyJB/UbtDl0XLEHIQXfGavMke94yQu54i33MTF9YcFnhkMxBnp2L3h8XaBAhBovl2VfFG80hxrLQc+zTHk/4KzRVshx79k47go6C4KU6u/GO+iI+tjBw+4rlCHp7jKYbrXJjKWJNF46olyFDNCRZ9KQiuuK7UZAT5u2WlJKr2NEi83003kGDxgkonr8kAXF9iGTMUcym1HEwpVxRcRN/PFcmakigJySZco2aPp4a0JxWjvVIjtDiHCb1hyJGpVxTSm8kSwota5K1hsRmzY4vvP+L5fvN5NSXYJxtBW3SGe+yb6Jj/DXANzz8DcY7N1b3m4ltGr1ZIUm7f9gHPXj2+pmpqvUnJsYHKusB6bAuKQVkbIbUnmVUqgTc3g/mlwWVayrfYALE2eZnBklk6uYyQtLIrp08AnorF63Po65fIbjJx8sV+ZL+MdPvq/8Hjdd/0qsSHuZ+iy6wsui1F596QuBdwFwYaJCBbv5qleU78vdCbxzGQSCm9tewOdGP8H3f3g7Z0eeprdze8P3zwUEuUINmAX+vWMwofuUxJ4Eck+y7rZbaABP6V4/BSrnPWMpQTNpPaGvhk5dgu8p2vss4sO6t3i+MMnkLPR1QDwiyBcUoTaL3GkwV7jgr6ocF2nVJRsn2FKr3kJ9zK8cD6bWqJ8366JCBsRMPUd1h7W7wmQe74kZ1HgeUY/lNetqsZxYkVLrFAVvNoGzRBBtqW6ePvPIots95D5Y9b8H/HHfIR5py/Hel93GC2/dx/jPzOgE+/fG8Y914v9osry9cVV7eRy5/1xlGXqkx6Ur0U9XQNDzYkP5CoRY1CVEWBJjKI47mUdlV67WvBkRtJ1sc3M8UUjww2GT5aQylKfwf6gTp2lpcH+0lUPzhPeU54Nl0tMG7l6Lx7/kE1IK2SiQ83yIVH67bB66WtbXxqgR2pMQi+g+6HhEMBcPESJDX2BK9LMe3Tsd9kYFDzwBO3pVWfRLRK1ye6LyFC5ghuSCynhHSnD8jN5QxCxEbCH9X6RsXYnOevAsF4XdtN/+u4Hg+LojtzT9/eWlLfCpU+Ares+3IdCeZPc+/J+8+KafLG+3XEEu5SutPl1C1sN/aBLjsoWVE+UpvLuLC0ixeHV1WfsxmUNuiyLanEUHCSEEKmKWVfGWOqh0t/fz0OPfBWB49DQH6K28Z1+kHBzLXXGEFHiey6/+4ct45Knv133PrrZ+fuENv49xWlWC4yUIeQXR3tLD3qGjPPpUxQt0Z/8hBnv3VPZvdwK+qcXeXtj9Uj43+gkAvvStD/PTr3pPw/fPB/q1Gll9eQ9UlLrNF/TW3W4Li8DVFR/iDmosh+jYXAvSpcBXirmMrhqH7NVN6srTAW6kxaKnAMfPLAyOcwXY1qE/x7YELT0WFx40iGa9svjKcmCaFiEnSjY3t0Wr3sKyoIPjq4r/KfrXqHJMxkO2V/fbCSmg1UEWfPzxHKrg13RFUDkPY1eiHPAJx9B9fJssOH7rK38T23LwPI+2VBetyW5aU120JbuIhOOUpn7hgv8vCulpoZ+/GzrA7ZEe4obP9Ze/hK69M0zfksD9pGaNuZ84gZopBoxSYFypr/e8Bw8N6/GkI+rTG9+AQmZ5H2xRl2qaLygMiWbftNrI/ijq5HTNbZ+pCKootxWLA3eftnjZMt5DPT2rW3eAe2PtFKRBX6I6yaBchXQkpgl791uM3CmYmFC0tS6yhg0UT3yfqsrrxUYsIuhuUZwagVhYMWY47O0xiCifkmaycn3slM3BbYJz44qRiUBrlWMgVLHy7PlkPUk0LhYEx4kIi67hRcxCtjr4w9lnvWPKpvz2ExMTPPDYHQD0dg4xEAhqmgURtZB7E/g/mkJOe7yg76V8+cxnePzEA1Xqy8vtOVZn0zorE4D3vdGawbH/8KTm/wNyX7JpPnoq54EhkX2RJQe6IqJV8UTeX3I/wkLF6koAKPuj5eC2FPR/6dsfaRgYCyH4tZ/+C6LhOGqXwripC/90GuPmJZjKzcM1R15UFRw/59grq56XO2JgCPAU29PbkNLA9z2+/O2P8JaX/3eMBh6WQaXPeskTlXFRx4usgJSt+9y2sDJ4PoRMZE8Y/3xmU9IZF8NsGmJhqqhSK4WX8TDCEjNm0OsLHjmlqibMdFYRdjSluoSuHpMzEbvYsLWyaSMWSRSD40lgi1a9haVhbGIUwto1oMWexVmjVYsq+Mi22nOs6AhBZxg1kkF0VY/pKqcp1cEAQcQt/KnsphPl2jd0Gb/7Sx9e0rbeq0bx7rqAeWMXp853wlmYyUsms/pbG9d14N09hjqTRp2tzInyQLIsWvXoBZOcp7c/0l1ggxTzqlHwdXAVWpgUcT3F0+d1D+u2zqLd5EAUfzIL1Bc1e8YhUU2rBrj71PKEyYK2nnfGtRJGX2LeWtlVyITENCDWZjEwaPLQCY9cXNRtNRJUi3GB7r/dSOjr0FXdiRmIt5kMtIUojGQxY6beZyEwowahsOCSHXD7/YpsXmlxLUeizKJvsavIeoKBLrmgBzoegbCtK+fhBqGE6Awhzqafkeuo5WBTyuJ+8YtfxPf1RXPNkReuGT0i6Hn8wvhLyvfv+MGXyveX6mNbgv/EzILH1PEZ1PhC8QLv28Pl+8YNzeupVpN5ZFcIUsvozwwbOqOeW3pmt57XMYC8og15uAV5tBV5RRuZ7Cz/+Kn3lZ9/2XPfxutu+aXy7fW3/jLve+fHObL/BkBPQuZL+7F/fi+yc/kj3bXzqPjze4mFYyC263KanPS45YAWGBmbGuauB75KIwR9jutVjv1Hpsq95Mah1Iah+GxKeIrxvMEwNtPSJD1aIJtXFDyFKvGNNjEUWqG6v6sisLEauDMudquFETVoS+re4rnKKcvUnKZ6JQPV5EQE/BYHfxnX/3yUvI5LleMtWvUWloLTYwUwdRmkN5ZdZOuVQbk+GBIRqx15CykwBqIgxUJ/1VlX00rjgeA4ZrKipstNBOOqdux37Me4tLWqD/zkZNFe0RCYrxxgfoZAHqtIAN43j1K9IZEvCTotXC6fHYNtHZAL7LoIm8hisnu+Nc5cVuF6m39Omo9gYmiHqZMCT4ybDE8srZCilMIr9hv7QnBPcT6YzyRQvl6bmQYYIYPuAYueqMfYNDXneuXrR0tsj1xBqzZvtOC4PakTLCMTsGcA2nZFUJ7SVPOcj3QkRkwfy8Fu2NUHp0d0coawodXjCz54CldIOjsXHvdYGCJhLcrVCCJloyImZDbo9bhO2JSV409/+tPl+9cebT6lugR5MKUzTgWfnTOVQO+O+yqej04DwaVaCPYbyyOt+D8YBwXePWNV1Fr/TLq8regMaZpvE6Dynu6f6V161Ri05ZRIWvjnswiWlhHsaq9v5yQcA+stO8v//9vnPsD4lFYLuP7yl/CON72PtcTQtgMMbTvAU6d/yNH9N9Id2NcS5O44XjGZ8ZL+1/D5hz4GwBe++c8Nz7ul+BwHhSfkodQKvsEWSijkfQoxg84Og+y2MN5j0+TCFq6nJ9OuTS4APpuGaJOqxkopvKxPeEBf//GIoj0JwxN68gQ9eR7dLarGh0QUnJSJex6k66/IbqzUd5zLZ8jlckwEadVbleMt1MGZqcoYOrBW/cYZT9s31ejDK6PV1uyU0+myRgYUKdXdJUp1cYEeMjZd1Xg16E9WfpdScAwgB2PIYx343y0KbKVs5N7KWuYH5zd+cKwKPrLGeTGbVkigq1UwPFHNvimz/LIuOLoI4fmKyWJtpLtNYTyDqnLBnuMBKuuf2x8MceUSvqY6lynrr5xsSzJn6OO9bV4Lhe+BtASlPEW4O0RvIsN4Rjs5JOcT8DwFltDBI5DLa7XmSHNImE1DMqZtnWwLdvYKHGFjxk3cYiuCEZIYxb5pKQWX7YFMTnHiPGzvFrpwlfXIuwozbNCSWHjQDUPQnlA8cRbaGsjbiLCJbA/hn57T/czPUmy6ynE+n+eLX9TBaTSU5NCuY2v2WcIxkLt0xtrMCPaHDgJwvopWvfTKsfIV/lPF0TFiYL64r5xV9e4ZrcoyVlWNr+9sWmVRTWpRkZVQtEXCXlY2PFg5Hr5wsu52Y5Pn+fiXPgCAYZi87dX/Y9n7tlwIIfiDX/kYv/pTf8Z7/sv/rbmN3FOZxAfTfXS06OTF3Q98jQvjZ2u+BiCXr1he1Do/VMHXlWOAiIEYarKnwLMMygMrLLn6oOD5Lwpz9KDBsZ0+R3YJDAMy+c2bqVcoZtK6OhFuStXYw4wbOB16MSOEoL9TkNXrErJ5hWPpTHYQsTBE2i2yhgmZlfV8xgNex9PT00wVadWRUKyhqvsWnt0YSbeU7+9uX5t8vsp4iBa7Zj9xCUIIZH8UbIEq9kaqrAeO1EI2wW0dA2VKVGH9q8eq4C+oWK41gpXjU1PVVSvz1j5Eu15vmM/vKVM1cy78aET/nj1xj67YBq20K6UTJwH4vmJ4AvYOwM5eXY0sjaFQ6XFV6cpxyeV1krOrFYbHtY7EMwYRQ9t9UqFVA9z+wNLWx8Fiwb0pzZIUqGobJ7TBiWGJsp+wlTCJhAXbuxSz6RrV44KvxTqL13W2+Bs4q9TtaDaEEOzeJrhkp+5BNsIG4f4QhakCXsbDStnIQEI6EhJctV/Q1QqnLwiImaiCTy7tE0mZCzRESmhPCQpLyEGJdgfhL2Q+PJuw6YLj22+/nZkZHWBetue5DXs/mwG5r7Kgu7X75QueDwVo1Wo0i398utzXMB/qfAaKg6XcEdeWUaWK8Hge9aT+Xmq2gH/fePEDDOTlzamqqIKPUCC3RVbWSxAxtTjXEi+YktcxLKwcB/GPn/pDssWA8iU3/xTbunbW3baZ6Gjt5ZYbf6KuGJDYFtWUFUA9McMt178RAF/5fPk7H637vlWV4xq0av/xmTI9XR5IPes8EZsN11dIW2IZ4LTbRHscjDmXjhT0tlPO1m9GzGY0BaynvTnnSGGqQLg3hBmgj7YlwDF1YDw1C60JfQtCSkFXpyQTdrTQ0AoQDdg5zczMMDmtg+MtSvUWGmGyUGkp2rlGwTGej2hZPGEskjayL4qazOt5fragA+P5dOwS1TG/9gGfUkprWIxm8c+l9b6Nrg39vB6C3tMnJ6uXlSJiYv3KAezfOIwRoFQ/PGJS8Ev9xiurGrueYnRKrVmgqZTS9Yt5wmojE7rSd2C70L2cDmRq2foGignZgh7LDwwJ2pLPrABZCFG2c7Ln8sQd/b2//XB4SfUU/+HJ8v2vO/ocWWDjhK4ci0BwbCZMjIhBi+UTsiFfbXJSEesM0KpbN2gtYnuPYHd/5doJdYdACry0h9W6cNxLxgTHDghiYbjg6jaObEbR3m0ssGYsIR4BKXRypxFES3FMm9uYbI71wKYLjm+44Qa+8IUv8OKb3sL1h16+5p8XDI6PyKMLni8JcqmpPPm/+BGFDz6G9+2Rmu/lH69QqsUOndopqTYCeN/Ti0XvrlHt3UrR8qBJ1jRqMg/tzoqFvUTERNliyRN+yesYWOB1XMLTZx7hS9/SAiCRcJw3v/RdK9q3tYCQoswcIO1x667XloP9L33rw/h+7eOQCwhy1aoc+w9Olu9vUapXD98TGI7AMvUkHRmM4Od9UNDXLrBNTUHabPB8Haz2d0KkCVVj5SnwFaHe6oRNS1z7Pk7P6d7jgS7KNhFBtCYEhWWyR4II2jmNjY0xM6cFWLaUqrfQCGlRYSANtjQ/2FTF6lK9fuP5kNuiEDVhxkXlfWRXeAGzS1iGrjbm1khZm6L1zUgGzmd1BbvVwTjUgrE/qVVp17Fq3RpWRCw9xgZp1SV86WSY3/5BK7/+5Ri//Pk4P/fpOO/7ZoUDe6RnflSzNGRyuhqYWatcQMHXQqSB4DibV2TycHiHIBoWGIagNVEnOLakFmxDB2YtcT2WH9wuSMZ0kP1M0MWAQN9x1uOaLn0wZtKSB883vq7UeA51RhdH/L4oJ9Br6r75Nk5K4QOmJcrzkxE1MGMmludh1wyOtZ1aqRjkepS9gzc67A4bu8UCpTDrtHt0pHSALByD2YxOHrS11T/e8QiEQ5DJ190E0MwH0emg5lZ2XT4TsOmC41AoxC233MIvvel/c3T3j63554k2R3sdAi1TMeKiOu1U6jn27h0rV4W9b5zXC9F58J8MeBbv0O8jD6XK1Un/gQlU2sW7oxhcCzCua44Ql3J9hKe0fdNKK5UhAxEylzXhl/qOJ2dGSafTC57/vx9/L77Sg+Drb/3lDbdQDtpnpUbCXHFQn3PnR0/y/R/ergUf5mXhqivH85RNvYrwBJasom5vYflQvp4w7ZAsZ0udLgczYeJOuyRjgp527du7meD5iuFx6G7VAX4zUJh2sZImdkd1cswwBP2dMDEDpqEn3FqIR0DGTHxTaO2CZSJIqz5x4kT5/la/8RbqwfM8XHsXAIY7QmwZGpJLRtpFRMyF1d86EFFT2/VM5SG0kFJd3i5podaycjyV19YrR1owr+rAONqK7I8ieiPQHtLJ8HWCEJXq8fCsQTpXGUO+9bTFH38nyh0nbb5/1uLhEZPj4ybjmcry89IV9hvnXR1wzq6VMHTeR1hGlUPHuVHY0QODXZXNOlKiilZdgohalTYUBdGihVAsogPkaBguTK7Rvq8zgn3HN7RUJtzvPN34ovUCVePJnZUWivnBMTrfjR1QDRdC4HQ7iLxPPKwTEEEoTy2wJNpoYlz1IE1JeDCMETcxo/ULZNs6BUcOmeR9gWMoUi311wvRkG6RWkyUC0C0hTRT9BkuLFgPmy44vhiQ+/WiTih4Tsvzq55z7LDOaN1bsSVhqlBleA/FrNcTxQEjZOgJDK2iV1bFLvgUPvwkTOkrXB5IIepYSywbk3loc8q9PyuBMAQiYaNWqFh95syZqufu+9E3ufuBrwHQ0dLLq57/X1a8b2uFYPDqPz7NLTf+BADb5Dasjw+Tf/e9uLcdrwqQ84WAz/G8XsrMg1mY1QsBuTdR5b+3hRXAV/hC4AR8C42wQWQwQqF4HW226rHrVQLjQ0OiKQrVAO50gXB/BMNZOOx3pAS2pYVB2urkaxJRCLda5MyV9R1HA5Xjp59+unw/tUWr3kIdPPbUBFj6/IhyZpGtVwaV9RBtdk014nqQvRHdo5xydBW5BkRUV33WAspXqKyHHIgieyKIqFkRg5JC2zR6al0XtsG+46eK1cLhWcEff2eh3aUpFVHbpz3i89bLMrRHVnacXFfb0/isEUU572unjiItd3xaEQnD4Z2iirpaEjOc31In2hxU1sP1tBdyUAgqGRMcGNRz01pSw9cLJXsugEvDaUypv893TlgNLwP/wYqF09M9lblgvo2Tnusldqh6PrSSFsqHRFQt7Kd1/XLxqeAqTGPjiXE1QqjbwemwMRZJ3O3cIdk+IEjEIJ6sP45JKehMLTE4ThUV+J+l1Oqt4HgJKAXHADcn5wXHThh1NoMarj7bvDsvVP2ffzpfCYqGYlU9v0FqtXq0Yh5vXN+kqrGvoODrXuNlLABqQSQt7aK+RAS9jk+fPl2+7/s+f/Ovv13+/62vfM+yxM3WDW0OtOjMp3pqlqv7buLXUr/B/0n+DfvmdoEP/o+m8O8fL7+kyud4ntXXzDcCauWHW9jCKuEqPCEIR6vP61CvgzAFXtYjGRP0dmyO6nGhGBj3tOvetGYFxn7BR0hBqLv2yqAtoSswg11gmrU/M+wIUklBNrayvuNYoOf4qaeeKt/f6jneQj3c9WCFbZUyarcrrQZKKYRfXfVaCkTIQO5OIAei9cUyQwZCrJGozZyLiFl1k+ei3YFWWyfF1wnB4Pj4WQvPh//1zSizeT0237g9z2d+YoIvv2WCL71lkk+/aYqPvW6KN126ck60rzRNNupU29E1C6rgIxI6MPE8xfg0HBrSLSZBxMLU7HkVSQuhFLmswqmhktyWFBwcEoQdOD+2eRK4NRG4hpx0gaO9+mCMzBk8Pla7CKDGcxVXlg6Hx4wK1X6+jROewhdgz5sTrYSJdCRhoWoG4WK+UvUmqRwD2C02rde01kxoB2FGTAYHTPbtMDBDjQsuLXGxpM4oYUpEVwi1FRxvoR7E9hgUT84dmQFk4LCF7Eh11bgI9dg0aqzShJK+txIwiR3V1GyxLVJlDQEgukKIXU1SDsh6qLC5JMGRRRHWFhVLnfCDleNScDw1O857P/AWjp98EICdA4d53jWvWf2+rQGEEJXqsadQf/IYN8ubMET1AOR99Vz5mOQDtGo7YOWklGLmP4sRmqxOumxhhfBqB8d2m43T6ZAf1YvDUvU4vYEXHwVPMTKulakPbBeEmqioWZgsYLdZ2O21gwDHFhzeIRjsbvyZXS2QcWyEUnWFB+shHk2V7weD4y1a9Rbq4f7HK3NouzPV/A/I+yhbIOLLtyyRXWFke/2VtgibqDUS5VIzBURveAFltPzZhtS90QW/ZovXWiBo5/TkOYt/uS/MQ8P6uHbFPN55bZqIBavMzy9APAIdLWtErVYgIvo7TM1pocJdfQvHyLIo17xchIhbqIhJdsYjFgbbWvjajpTg8j2CHb06wB+Z2JxeyEGvYzWV5/rtlUzBd07Wvr68wNpZXtHO2ZnKumq+jVMtlhiAGTcxYwa252Gaeh5VvtLXCFSUqgs6OA5vosoxgGygoF+CkAIraWE4Amk33j4e0degt4RzTLY6um/+IqjuX2xsBcdLgDArvaFW3mCvubf8nGOG8e4rXuCGwLip2IiiwLurUj1O31cZueXOap11IQTyyuoFonFDV9Psm8h6iIhRDvBXAxExUY6x5Ak/6HV85swZ7n/kO/yX376p7BUthODnX/c/kXLjnopVfcHF8WTWn+Uf07fxhHhCPzySxX9A04OyASunUKAars5lKZzRE4bYGdd9bltYHTwfX0qcecGxkIL43hgyZJA5nSEeht4OmNpg1WOFIldQTM0pRiagvwv2bxc4NRZRq4E35xEaCDfUG9jZJ2iJN/7cZEzgRYqL/mW0VwBEI5XrqIpWvcF0BrawcfDIicr52Btbg+gn42n681qMxSFDt800OThWGRdCEtnZmGklOkKQcmBqfarHgwHF6s/fHeVffqATB1IofvPGOWJOcwM+31dIob1h25P6PPGaWKVXSiGUKvcbz2agp622DZBlCpLRhXRVYRvIVht32q1rrwMQcgR7BwRHd2txr5EJmJrbXAFykH2hpgpcO5BHiBK1emFSVimFd09x7SzAuLyNM9NG8d+FNk66cixx5tlqCUNgdzhYrocjfPLDOdT5DMpXiJ2JclEol9fCk01bV28wWCkTw5blSnk9xCOawVBTQG4+Eramy888+4S5Nm5EssEQVK1+QcdLy/eTwzYUjbrl/iTGzd1aKx3w7h5FuT5KKdLfLwZMtkT0LezBMS5rK7+OsFHpQ24CVF7bVDRlUCiJcmWXRqsMVo4/+clP8q73vZLRiXMAJGNt/O4vfZgj+29Y/X6tIeTuRCWxYEmM53Tzp51/zb9l/5W/n/rb8nbe13T1OF8IVI4DVk7B3hrjYHMo1b6vOH1BbWov31XBVWBL7BpU4FBviLbrWrBaLDInM/Sm1IapHk/OKs6NK86NwkxaC2Ht6oP9g6JmdWE18NIe0pGEulafMk9EwUmaFOzlCfMBxCOp8v1stnKNbNGqt1APT41Uxs/BVPOvW5V1tejmSqwNF4EwihXpOuJ1Sq2sJ1hNFZCd4aoez5qfb0lkfwSV9dbFr7Qn7pf7TJ88Z+ErfUzfcjTLwa7mq3YXXD1u2hakYhAPw1wz8yeuQpkSUZz7C259sUKAjpQOwOZDtIbA9YmGGp9jQgjakoIjuwWHduh+6ulNFCAHK8dM5WmNKI7u1BHY05MGp6eqww311CwU2ZVidwKRsjkzo7epZeOEr1BSYNVITtitFtJVRNM5craJcUkL5lXtGHsSFVp1AVoaJCg2O8yIiREzkYswziJFUa6ltCEIQyBanbUVFtyg2AqOl4hgcHy1cw2gaYIdJyo9EvLyNkTcqtjzzLr4D02iRnO4F/TkILbHavb9iriF+bJ+RHcY87Xbm2bfBGgT+yUqcS4GIQUiZZXtCRZD0Ov4woULZWXqI/uu529+5xtcfekLmrJfQYzPKEbGmzepiIiJ9fY9GD++DfvdhzBfvI3n3PRqAH7g3sfZ0DCgfaz9hyar1aoDglzeGlg4jU1DMqoDrPVAKdmzUaA8hW8b2HXWiU6HQ9u1rYQHwlhjWXri3oaoHkdsHQxftkdbMVxzULB3QGLV6fddDQpTBZwOGyu1fOrofMTDEAkLcs7ylXiDVk5BbNGqt1APZyeK50xhjN4mr2yVrxCKRYPMVSFu1aUkqlFd4VoOVMEHwYI2rHoQnSFd0Zte+8qPIRcqDF/aXeD1h9fGZ6ng6cDYsXTltrOlyX3HBV97VYcNsnmFY2ldhnpIRAW1fulC2MQMG4SovWbKj+XJnq/suGkIBroku7bpavWmoVgnLChOX6oohvmCyyvn9x3zqNXlqjFgXNHGdE4wk9Nr4wVK1QCeToTXouXb7Q6pownabmpjdn+7dmWZ13KgAmrhz0TYHTax3Q00EIoQQtDVuridU3n7sLFmwoIbGVvB8RIhkna54puYDvOXv/R5/va3von4YXGlHTbKPaTGNRWje+/OCxWVakDurD+6Gtd1Yr/rIEYThZqUW/RwbCJtTMQtrYSxBAS9jgGkNPjpV76HP3zX/6O9pafBK1eGgqfIFcCjueqVcjCGeWN3mTp0wxUvLfdQ/u34B8vbeV89Sz630MpJe/npiUL0R+rafywHuYIWoGiJC9x10ExQeQ91Nr0uC60lw9O0N6vB6W3GTVqOtRA7GKfdL2DnCuQKF2ewzxYr/Pu2C3Zvk3S3CeIRUdNXuBlQSuFlfcIDC71YVwLTFHSkIGOZy/Y7jtYNjjtqPr6FZzeUUlzT+VF4+j1w9i9oTTaZYZDzUCFjRf3GS4WImAgWXncq72nKbshYni3aVF5XupeoHyJsA7Etgkq761I97g/0icYdn9+4ca7pPcYlFFxwbB1MArQlBEI0MZjM+7pIYUlmMxCP0pAaHQuDZUDerf78jGliJU2s/MJJ2p1z8TIeqqDw5yUb+zp0wD+2Bq32awFhyLIdmprWkdfzL6tk7b9zMkC7znkVEdOQgTyU4sx05USpGRz7CmVLzBp1Iythkrw0Scv2MKrGPOf5Cik3l1L1cmFGTcLblpY060gJlILcUhiHtlFjBHvmYys4XgaC1eM9+Z2kTtk6uwjII60IUx9OsSuOKHqJqidm8O4arbzHjnXmdWQ9PcA3MziOmCDEkoU+rj7yQgD6+vr4s/d8lje+5L9hyLWxMJqYhvaktnfILqWnYoWwrRDPu+a1ANyVvZPJ5BwA6lyGXZkhAEzDwjCKSpcBLz/jcKop+zA+Db3t0N+pM+jzJ+VmQvkKNZZDdIWXZeW11lCeQjqyYXAMYDiS1NEkPdcmCBVccnMX5zvMFtcK0TVQzPQLPn5RgKdU3fdmPcy4gdPRvFVBe1KQM5Y/YUZCMaRYOOUktyrHW6gBIQTR7Ffh1Pvg5O81P4mS8RAxq2z1shYQIQNlLPQKVRN56AojQgZklzYWKU9B3tc2TQ20A+ZDdob095xd+6Tmpd2VAPDXb5yjPbp2c1LBrVgogQ5cE5HmCXOpvI+IWwghmM1AbxtV9k3zEQtryur8Xs65vCDWH0LMC36Vp8iP5IjtjWG32xQmq38f0xDs7BMYBqSzm6NyJxLFAHi6gPIUQ90ugyl9TvxwxGA8rY+f/9BkWbNCXtqCsA3OTleuw974woSR8jTNvVZwXEIsrBkM8xMkubxeE0Y3oCHKxcC2Du3VfW6hlvACCEeiTPms8zveCo6XgaC6sP/IVJXSnnF5ZYEnhEAeq0zk6mkdOGEJRH+Fhr0uyHqIuFn26WsKwkVxryVmvN/xpj/kr3/na3zta1/j4K4rm7cf81CqBg71COKR6klKeQr/XLqpF3jJ8xjgY9mPlu+/MPdcoOKB7d0/jvef58vPyyYExzNpRdiB7d36u0aXaOy+YkzkEQkb2eKAt3EGSU/pwNdawvpWSEFib4xEp0Vupvk9cIvBV6p86JotCuLlPDKnMuRGcmTPZkmfzJA+kSZ3IYfTHcKMNy85lojqRb9niGWpWEopq0S5QAfMtvUMTudvYVUYGanYNzU7iaJynq7CrqVAT3murFwnKuNq8c6BKCJlL7lFiZkCpGxEW+PM2plRxcRMJTgQYVNXj+fcNW+Jeem+HO+8fo4Pv/s81w6ubTDu+RAJ2PoYhqaLppuVFPd8RMxEKYXvN+43Bi2qFQ8vDI5zeegY0JTjYEEhczaL0xsmvj9GZDCMO+ct+H1a4oKBLpiYWSMf5yaj3HesKIs4lVSrFYI7Tunnve9VCkbGFfq6Pr1Y5VgpsA2MBnN9WTV83m+QzWuWQXj1hL1nBKQU7N8usC29lmwIW4IpyoXAZwueUcGxQuHPow4ppfBHMsujLtWBGIhCRF+Z/iNTqONFD8Y2BzFYHfQaV7bpEyoAuT1Wri6vF5SroAkU3iqEDF09XmIFUUrJnu2X4jhruwgen9b+sG0JfcsFWUw5DwpqyUJiS8GObQfYt+NyAD577t/JFfMhA6qfK62r2G3vofDXj+L+85NlKnJov4PoWl3Z0PcVM2nY3g2xIiW3I7k09cHCCihnKuOCr5C74npxBhum79j3QdqLV45LkKYk1WvhrcCnd7WYy0J4jTwWCxMFQn1hOp/fQcfz2ul8bgftN7fT8Zx2Egeay1ZJRCCcNCiI5dvURANexwCpxBalegv1UQqOI06iqUkUpRRCrMzCqYSxKcX49OILSxGqVqxWE3lkX0SPpUl7Se0JSinUnKvtmxqo0SqlyOZ0MBWE7AxByIA1HvdMCS/el+Oa/WtI2ypCKbDnLW1aEwJTQqEJLCohBIQMMjkdVDWiVJfQkZqXlC/Ok6leGzNq4s7qRUl+ooDhSJKXxDFCBk63gxE18OYW/j6D3YLWpF7frBVUdmFgviLMU6wGuG6w0tx6xwlbt5gV186i3dFWqcDZquC4RuXYB2mKhpXjsKMLBQsSFAU9b5lroOmxWdHZItjTr5XRG/72jqGLaxepFe1i4RkVHI9NwZnReQ9mPU0Bnly9nYGQArm3uLjL+2VbH+Oy1gXZZxG1kJdU9w6vN6W6ZEUgos3tqRKiKMrVxEBztUhntRLxQKdACEEsovuPytnWgg9Ro+nZrxff+Oby/a+Fv1G+/9+i7+R3jf9ZNrgHkHvibHt/76orFeMzOvjv66i8TzImQDTOLqdzirMXYG4ZFC3lKdR4HjEQ0eIuIQNlSa0SfZGhfIUHmI5YcnAMkOxxkL5a90z8bBo6U81/X6UUfsYjMhjGbrVxOhxC3Q7hvhDh/jBWkwWHomHo6jKY8Y0ls0dKiEerg+MtSvUWGuEP//AP+e/veD8vv+aXmvvGeR9lCS02swJMzSrSOc3WaRQgCyEQCaucnFezBa1P0q+Fc5bSouR6ivHzLrPSWNS+KZvXAYKg2tZIxCxkZxj1DLFk8ZVCCHDmjfvJaFGgcpXUauX6KCkQjsFMGpIxzZhZDMmYqNIuyrtaMCzZYmB32rgzLl7Ow50uED8UL7e7WAmLULezgFoN4FiCHT0Cz2dNtDKU66POpSHdhALSPK9jgD3tHh0Rve6675xJ5u6gt3FbeT0UtHHqjS9cp/kKhNU4OBaidqEgm28spvZsxd4BQSoGow362oUUEDW3KsebFQVXUfA0daKqOjbnIpIWQtEUSm2QWl1CkFJd9fg11VURsWudr868j7Kl9jhuMkTM3jAKdgrF5Cxs6ywGiUAsVOw7LuVECr72aG5yUHfzVS8n7OhZ87Yf/SWqW092SZlCFi8v0e5gvnUX1s/txupZXaCSK2hq7vZeUaVsHI/o79uoejw9V/H6VSztOKixLKLdQQ7Fy5l07d25ARIjnsJHYC6h5ziIZKeBY0NuHfu4XE8LgrQlm5+59uY8jKiJ07k+9GQhBDt7BW7Uwl1mJWq+YnVqy8ZpCw3wile8gje9+ud58ZVvb+4b5309joWWPzdm84rRKTiyC67YpwOxRp60ImaBp7Ruw3QBORDVj4FedIaMmrZorqcYnVJcmISIW2A6FlpUWDOT08FxrEbvregKIQTLaoXYqHA9sEwdeAYhpaZWr1pvpKRU7UjSWa3tsRTRxHLPazExkc7qPuR4GEJdDspVZM/liOyIEttZHW1HBsI6GV0jUdLRAn3tMD7s4mebrL5Z8LWXcxPOi/lexwBCwLXF6nHBg3wpOBbVa+eSjVN7VC20caLIEjPFogJvqbhY0PmlFMQjW1Xj+YhHBAe267Wh1yBBJ6L1VfefqXjGBMfj07oq41iQDxSJVcHX2dYWG6ZWnzWVexMElWjEYBTRXpsrKbbHED060yvCAjmwzv3GOU97Eoeb129YgogYIAVq3iikMq7u7V2mB+pqMJvWE9C2zsoPE3IEsQC9Rrm+XoQ0WVQgHIrxY1e/CoBMbo4H+o+Xn8uSxXjxNqx3HcQ4mGpKb1tJhKsjVf14yNYZwHp9xyWBio6UIBJamh+kmi3o3rjdCb2QBE3pixhLptSvKTyFJwV2RC7r2MbbTUIxSXZ2Hc/RjE5gpNZgCChMFnC6HaxE86/zeuhpg7Zui7llWojFAl7HsGXjtIWLhLwPEXPZbU6epzg9AvsG4cB2wd4BwdFdmrU2m6mzuAwbFDzwp/KIhIXsjVSecyQiala1+5SD4ik9Zly6Ewa6BLI1tKgScyYHrQktSjk779oULY5usdpIbgMrRMEtBsc1OsZaE7qXclVV1ryPsCW+JVFoJeyloNTzWgrOs3n9e5imwG61kY7EabNIHoovEFWzOxyslEWhxjpVCsFgi080X2DmzOpZkFXwFIRkU9ZG1ZXjyve4bkDfP5CeJDxd9DbeFS+rrgdtnLbVoFSDDnANu3HlGHSCQgjKLZYlynBkjVqaNjt29gl62uD8eP1tVsqw2cx4RgTHubxCSC1OFAnp/gIoZkhNiUjZyG1RyHuL2hks9ryIWrr3uIh6VWPQFRbzDUPIoy30/W5Pw16htYDK+rpqvgxlyyUjUsp46wFVKYUaz8FMQftGrlNPp68q/bfRUPX3bEtCvjw+a7o1SwiifF/VX+jUwK0BavXf/egv+KPZ9/MP6dv449a/wnxOd9P6zGcyipCje5Bkje/RlhQU6hz26bTumerv0EqF03ONq8fK9WHGRe6II1qrK5IiYW8MU3jPxxOS8DK9C82YSarTJD+7ft8hndUBZSO105WgVGmI9K+vDKdpCoaGTG2b5i/9OMbmCXIltyrHW7gIUAV/2f7GSilOjmiG0tHdAsPQc8qhHYJLd8HweMWqrYTpOcWJCclMQTJxroAYqPZfFUIgWuwy7brgKYbHdZB1ZJfg8r2CDscn2WYQarcW9fHNFXQCtLddVFhTpc8yBLI3oi351sHWaS1RcLVDQ61AKRbRc93Y9Mp7j1Vei3Fl8oJoeOmU3LBDVVI+W6gIeZkJk/BgmOSlyZoCiYYjCQ+EcacXVoaVUsipPAMHw2QLLMkp5OyoYroBo6EMTyEcozmsukSgchxoZbyk2yVu+zxv8mz5MePKytgf7DeuRalWnsIHxCJq1aCPf5A1mC/ootlWcFwbtqXHsIK3cPyqbCS19dyzCM+I4Hh8Rsvstyb0oFgWYkq7OisbNxHtDsStsoJeLajZAupMWgsQNYBxVfGiTljII60Nt5W9Eeyf3EH85nW2cALw/SqaSzMhHENnk7Ke7lkZzoIlkYdbdI/VOlEwJmd1P1BP+8KgI14Mmjzf1xd22EAo1VB8QKEYntDU46VOrHu2H2Fn/yEAnjj5IP+Z/w8+nv1X8qHmHQNfKaZnYaATEnXoQYmI9lmcv98KLdLS264XdL0desKfX1mowlQB2mxkDXV1EdkgpvCuwhOCcHR5AacQguS2UE0q41ogV1DY1tKrD8uBO+NiJUzsjvWX4ewbMIjEJXNTSz8XFtCqE1vB8RYuApRalKI8H8MTOmi9Yq8gEkjESim4dKfg4FDFGmViRvHEGd2XfGCfwZ6dBrSHSCcXJrFErNj2pTRdu68DLt8r6GkTmIbAnXGJ9TokWw0yDYLj0rwWLwZzlrnQ3k+0h3Rie67J1Nx1huvpYKcWY0gKrcTb1w6j040p7/U/wEekHGYy0BpfugWQEIL2ZCUwE+h5GXTvZutVLYR660dpoZ4QwhJ48+am/Egeu8Wi58o4MmpQWKR3PJtXOJYWgVxUhNNVYElYYqtVIwQrx0Gmpinhup4sN0wPA+DZ2tu4hDMBG6daYlz4Ck9KjEV6jkHbJIZD1QkKx35mexyvFts6YKi7vrWTcAyUIRcwRZ/J2PTB8VxWDwID3TqLGw2J8jWuMi6iPYQwJMI2GtoZqIKvq579EdR4vmFmTl7VjvXOA9i/enDZE+x6QfkKAWu6f6LFQc0VUCNZRFcY42grsicCUWtd7H5KQd9gl8CxFk6SsbDO5ObmtHm8iFsos7GY1PiUzjwnYizIvNeDEKKqelyCYzUvVTk9p/epr0YSoIR4RE8M86sLmaJKclsxLok42h5ieq6+gJfKecieSO2qd8jQvWsXu/rgKTzLIOwsP+hMdpkYUi26cGiGaNdMWi9W45HFt10uClMu4f4wxgp6J1eLWItJd7dkbhm2WFu06i1cbChfgdB2ZEvF9JwiX9CBcXsNSx/TFFy2R7CzV//vK7h8L7zoKsGxS0y2Hwyx/ViM4Rm5wFFDRE2ULZmb9nFMbUVoBhgmquAT6nboam2sKZErBgGxiB5vYjUSoCJkIHsiumVmE6PgaV2ReoiGBId3CA4NaYGsc2NqUUp6CSrn6UpZyiad04yf5bTttMRFmaEcspY37tutFk6nQ2G88vu4aQ8v75M4nKBru0281yE90XjMnc3oc6C7rbHYEqADHkMgmjGdh4rWZVQEuUp4aeYcEV/v933tHQT9F88sZuPkKZTQtGq5SNRiGIK2RCA4zunA2LG3eo7rQUrBgSHNvB2ZqHEiOBIs8axSrN7cwbGCyRlNcypV08IOSAGu6yMQiICNkewI66xpujprqpRCjWahJ4KxN4lodzRFuA6E0PQkEd2YgTEAOQ/lGGXrqbWAiJqQsJF7ExiHU2WREb3oWPuBKF/Q1Kp6FguOXaQ4zRXp9QlLi2zUqWrPZhS+gr39gpYYZJbR2vPca16NY1enlx2nOVRX31eks7ptINQgEJRS0J5auN/Taehqqaad97QKElEdIM+HynoQkoiW2tVIEdaLuYutXqg8hW8b2DUSI4sh1WnihCS5ufrfYWpOcWp4dQGyQpF3obtVNN1P1S/4CAlO98Xhi0lL0t1nEcInnVvaMZpfOd6iVW9h3ZEvii0tITh2PcXwuK7oXroLBrvrb2tbgsv26mv8eZcLjuyWpOL6/9TlSQ5eFaEtCRcm570wYqBsg5kJj8HuiqgkgJfxkCGJ3WqTjIqGtb10VtNJ42GwTN1HOFODHSQ7Q2DKddUFaTqU1tloBCkF/Z06adHVAiOTDfrCg5h1EUkbL2Ighe5hXg5i4crCOhLW/y8VQgoig2G8rK/XpZ4iN5IjtidKuD+kmV97HHLZ+vOWQidyOlu0yrVj6ZasuvAUwpQo2Vg1fUn7LwSiSK1WU4VyIUr5iu0PVSjV/xwa5I6TlSrzmUVsnPC1+KYdWto82pYQZQZprqBZpVtojI6U4Kp9ml59YXLeeWCX7Jy2KsebAumszsoFhZjCTlGxesZDhY2qviIRNZE9IdTMPErRRB4RtzB2xRFhE2NXAiSozUw9yml15pWocS4VojOEeaQVY2eiusJY7E9Yay/cUi9JuA5dRghBWxLcjK8D9oipL/AawhO5gu5d3r1NTyrJmMBdxs8fiyS58Yofr3qsWZXjiVloSUB3YwY/AKmYZk6UArqCpy0vOluqJ5SQI+jv1NfQ/OBPzRQQLSGtpFoLJcXqiy3K5SpYhsdxEJFWi2jKINdAlGsuA63J2gmE+RidUpwZVYzPqCoLlXRWZ63XYnIuTBaw2yzs9uZaNS0HLdts2iM+U7OLbwsQm2fltKVWvYV1xxKUqrN5xakRxakRTd+97rDg4PbFF+YlFktsXutLyV7w8A7BXLaa7iwMybiwabU8+jurX+fOuFgpCzNhkojq+S5Xpy8wk9MWfyUv165WUVtjKWnpAsAmFeYqaWXYDYY9L+3hF798Iiq4ZJdg/6BmgzWy3lJKadZUd5i5nBb1XK4FUCxSWZO0xZevM+F0OphxE3fGJTecw+mwSeyPl8+9zn4b6Rjk07UXKNk8hGy938mYYKgHZuaqrb2qIHTCG0s0R7C0RK3O+/jF5LP/6DRc0JS2ByMpjocTfPB74bLpRZBW3VOj5xhP4QuB7SwtZImFdXlGKYXrQXKZrVfPVgz1Cq4+IMjl9ZqmBGEILey7FRxvEggY6NI00RIcSw8M+SkXmbIXUKdkVwRMUfboVVkPXB+5M16pfLY5yO0x1FR+03HsC54WYXDTLiJlNb1aFYQwZc2eZmEbi9KXm4FcQSdHGk0+sbAe8FXERMiir+U8aojvK0Ynob9Tq4KCpidLyQIK3IJ9yCvGprVn7q03/kTVc469eh6t6+nK42B3tXVTPSTmqWXOzGmF5JYa1fWedkEyVh38KaX09dAVqnvuCEPoa+Wi2zkplGWsKDiWtqSlz8Kdq/0dcgWFZerjls42Fi8reHoC3r1NEHZgZAJGJhV5VzGb1sqxK6F+LwZ3ziM8GEY2SfBtJTBjBu0JbV8yv7+xFrasnLZw0ZH3NJVZQL6gSGf1nDk+rbgwqXjqrGJkQuuYPOeo4IVXaVVqcwnj72LY3g2DXXButPJYOqtwYxa9rWoBC8bLeIT6QggpykrI9US5coVK6wzo4ChkQ2Yeq0MIoVtmXH/VlcKLAdcDw1ho41SC8hXZMxly5yvsP9MQDPVIDu/QtNyRyTo+9yXWVMpmNq1dIZY7dkdDleB4uVVn0IKR4T6H3HAOpRSJQwmMAAOws88k0maSGa89d81lNJuuJEC1rUPQ0aIFympBICBiIMzmuHkE14TuiA7gvW8Nlx+7f1cfAOdmDD7xsD5QJRunjqi/wLsa0JVjIXFCSzuesUgxkVTQ8ihbYlxLx84+wdUHBZkcjAUD5JixqJaQKvgXv92uSdjUwXFrQosMBSGEXvDnswrRVqOkmLSQnSHUtO4rVmM5rSDZXc19kQMxRGcINbpaw7z1xcS0FmSemoFTaYuRCUV+vfsEHNmQvtwsFFxILGKNEwuDIxW5UgQ1z69NoRiehM5W2N0vyl6G0XBxYbEItXpiVg/C50Zh1+AxBnp2l59z7NWPyOMzOrjqSi1t+5Cj6dLpXLEnOw+9HaJmAsGxBANdgnQukATIeBA2q9oRaiJhNsU3fLUQpgi2Li0LyV4HXFUz8J1NQyqu+/8iIUg3sL6amtUVm529cOU+TeNrT+iWD8XCqn0z4KU9jJBcN2/jejAiJomYoC2uvcYXw0Ja9VbP8RbWF8r1KUQsnjyrKc7Taci7OhkaDcGBIXjBlYLnXCbY3iNW1LZRD6aplWFNE2bSml11bgy2D5m0pqpprX7BByFwWvVYbJmaCVXLrk8phVK6SlpCMqpvtajVotXRysKbsPfYdcE261eOvTkPs0XP8/PZa12tgkt36Yrw8PjC5LeadcusqWxet8MsF1LqnlfQQdpKEO4LY8ZN4vvihHqrx3jLlnTvCZGtofVQolR3Bdp4LFPTq6XQiZiq7ZWe/0TY1Ou2JqwVg6JchREX/2wG9VgxMm9zeM6tUWSxwfnD94d5ekIuauOEp/BNWTchMh8lvZmZtBami24Fx8vCrm2CYwc0y6XEtBBhS4sp1IHyFeps+hlhFQebODiOhqC/s/bEFZE+vinLvQ9BCCEQPRGtDnkhg2h3kEPxBVUyYUmMnXGwJGoRZcCNBNeDwQ7F4V2SI5eYRELav+yJM4ozFxQTM6ouLatpsOS69SdEFsnqhmyIOoo5VfTpnefXNj6thT32DlSLejmWztQ3EuVSKHxfV3V39MF0WnDTVZXqcTi0OoXyvKsXPINdtYPbeuhICfKFIqU3VF1NmI/uVl1hGJnUtCs1W0C2OYsKuYmw2Qxxy1XB93UFeCWVY4Bkp4ltQn5eZUWhyBX0wigaFnS16gV0LXi+ouDqscgwtJBOV6vgyB7BFfsE+wbFmlGqnQ4bK3XxKNUARsTACBv0JhSe34C6V0RQkCsajmNbWxKiW1hfKF9xPmOwexvccrXgJdcIXnqt4MevE9x6jeTYAUl3WyVR2mx0tQr29muGyeiUdls4cNDCjJh46YDf8ayHlTCwWirXeGdKkK/Bps0V9FwXFH+SUis21/K0F7ZE9IY3ZetYwdVaTvWC48K0i52yMOImXo22mZa44JIdWp/j3FhFzVkpBQUf2RnC9bRN1HIp1cHPgJWLMNqdNqmjSWL7YjUZXN2DNtKAwjxLxRKler4OS1tSi3BOzMxro/KUpv2YQs/5zagcJ6orx943K1Vj4/pOdrT73LpHL6wyruB/fbNS4ahl4wSAr3CNpQfHlilIxfT3DdlbleOVYPc2uGq/FnebmlPak70REzXnQdwqs3I3OzZtcLynX9BRpyJj511U1MSvI0YlWm3chIVrSIw9CYRTZ7sWB7kjBjOFDVElWwwFT2GaEBM+LR0Ghw9Z3HJM8KJjgmsPCbZ1aIrJhUl44qziqXOKsanm9waX6ctrSKsueArDWMKg50MyLsiUTvWAX9tMRge3ewZETXuklnjQJ3khsjkIOTr43DcguGSn4EU3vJkd/ZfR0drHTfN6kJeL8WnoboH21PJeF4/oiX1iBrpaGycQLFOwb0BnuofHFHNzCjoWD1hEyAApLlrbgfIUHtobslHvWSOkOk2cmCQ7z++49Lu2FhdG3a3aPiJXI6s+OaO3m/8bSSFoTQi2d1crzzYDylf4eZ/wQGRN2yaWAjNqYDiSlOOTisHUIv3ZQZ/jrarxFtYbylNMpgUtHQZH9+hrNBYROPbaBcO1sH9QV4EnZuCSnYLWDhMrMT84dnF6Q0i7skxLRDUzbH7FM5OreOwG0ZYUUGN7ANkegpCxqHXlRkPB1UJXss7Yp/Ie4YEwTneIwlTtCbzU/72tEy5MaAGiqVGXjJRkIxbTc3oeXWlwXGK0rbRiKU1JdGcUo06PbeegRThlkpms/u1m01qfpNa6aLBb0JrU64oyXAWm0Ey/aJO8jgMJ2+yjObx7x/U/IaPsbfxTl2WI2XrefWK8kt2uKcZFsSppyWW1NrQn9XURsvVtC8uDELqd5MB2fc4IW6JEA4/trIco2aVuwnaN+di0wXGjRaHt+ljdIXJuvZ5JyflEnOH2JIVY46tGbotCZwgmlyFdfJGQyeoJMqQ8rKSJETIwDEFni/b9u+mo5KXXCW65WvDcywRHdunXPXl2hV6AjRBbW6/jfL6xGFcJft4nlpTgGPi+0he4FOQyPrNFAa6uOkmWWNEnuV6/6VxW09bCtj4fe9oE11+S4EO/82X+6Nfvo6tj14q/XzavMCT0d4m6i4B6iIc1LdwydKVhMbTEBUd2C/a1ufiOwYmsvaBPbQFChp5Q8xcpaeT5+EJiOGLFlWMrZpLsMMnPqy7MpDVNOlr8/VMx3Xs2X3TK93U/eH9X8wPgRnBnXYyYidN58Wd8YQislIUo+GzrEOVe93qIR1NIIYv3O9dhD7ewhQrS0x5YkiMHzSoK8nojGtbJ1L0DMNSjH3O6bLySFoqvwFeE5iUq4xE938xv90nnSt7G1d+pNa4DpVpUbBG3kO3OpmLGgZa6qBd0emkPGTawW23CPQ7KVXV7IEO24OCQXvx3t0E47+ImHaY8k5mMdnhYKaW+qyieuVYJl1DMpHPIJjNZmbsUmsXUmaotHOdYml7tegHvY89HGFK7edgGTfE6DlSOJz85VS6SGMfayxpAqZDiJ48sPClr2jgBFNdui3kcB5GICkKObo9az8TXMwlCCFIxbYeGY2g/7DrrepXzEAkbFTEh25yEm8q4MJuHdVxflbBpg+N6UJ4iFAKnzarrCeh6CtEeou9QhFMXaFg5FaZEtDprGug1CyW1Sgo+dkfthbPuW9K9VEf3SF5wleDIbt1T+eRZtXhQtERo+vLaZY9yBT1BLiZS5ed8YgmDcFzqBYJj4EnB2LjP9h7tj10P0XBJHbT28/mCpjAHJ6JoWPeUdbSKBR6TS4XnK8amtL/iSjLXJZ+/lsTSX2+Zgu6wx5U3htm7y2BkEk6PKOaydZgFIUNPdBctOFZ4EkxHrrjnWEhByzYbP0AD8ovqlsGEiRCC3naBp6jyypyc05TIjtRKv8TK4M16OF025gaxkrNaTPy8T0tMXy+ZQNuG8hRqPFdeoNpWiB9/7s+SSCR4/vVva4qP9Ba2sBQUPMX0pMfAgMHA4MW/dnb0Cm64pCK0aBWdNZRSWlMgUk2pBl0ZjkUWBrv5vK6UzUc0rAPkmTqaCaIrjPDqB5AbEqq+SJY742K12JhJE7vdxoiZuA0cCUxDsL1Hcmi74PB2eO4Lwrz4WsEtx3Rv8kqxHoyerp0hhO+XWQElxlOqwZzfkdLnycRM8YFS5dgU2q6nCdN5sOdYleYCqSnVQfz4/hwDyerfpl7lGAW+sbzgOBaGqFNbjHQLS0csrNkqniUQdbSElFIIVRQzTtmo9Mqp1cpTqMk8/rm0Do57o/g7E0hrfcPVZ1xw7M64WHGT1j5t4F4LU7O64nfZXkF7UvedNEI92vVGg+fr7wWViXYxxCOCy/dKnn+lYE+/plyfHG4C1dqSzTGVr4OcqwOTxeDnfaItBsmkZDYLvikYTUu6kz67+hpXZcMOhEO1+44LnsI0aguCGYY+rxr1K9dDrqAYHteZ56HelXvj9ncK9vQvnSqoPAUK2neEueag4DlHi722s/DkOTg1opiaU+WJWAiBiNuoixkcIzEdgbGKyzPRbSNUhXY4l9WTQcu8PuG2BLQGlL19pcjmYKBzaSrizYRf8LEvcq9xEGbURKniQjw5TwBoMq/HkgDz5g0v/V3uu+8+fuyal9dNYG5hC82ErxQXJqA75rNjt4XYIJWk4Phsxk2kLfFzPu6Mi91mY8bMBdt3phYGx/48Ma4SdGKPumsh0WJDzILZzUWtrivGlXEJb3MQQmBGTUI9Dm4danUQ7qyHETOJ9jgkolo3Yr4d10ZDZ79FOGYwN6UDkdmMToREGyg6Syno7xJ4frF67Cmd6BY68FFGE1ql4taCyEIebkG0VLMgTAk/f6y6glDTxqkEQ2AsI2KJhTXrq8QA28LKEA1rtkreK3rD1yoU5n2ULRFRUwshL6ENVeU91GxBuwKN5fBHMvjn0tryy5bI/UnMKztQB1qgbf2bxp+RwXGo26G93aBQZ7yfntO2PW1JwWW79UAx3YhWXGxEX2vf3tWg4GrrmajhI22BEVtexNCeElx3WPDcy7UQ1fD46vZHOAbKkGvXk6oaTwIl+Dkfu8Wit03Tzs9MSFJtkh2datGgRgpBS6x2kJvO6kEjHl74HEAiInRv2DLOmbmsrhgPdOk+tKV8v3qIhjUdZqkoTBWwUhZOh42UWsX6eVdoCv7NRwSDXbo68dRZmM0UA+R4cwQ8VgRP4RmScGQRkYhFkOw0cRxBNq2/x2wGOlqoEmcDnfDo6xBkC/o3nS5WjTtbVvUtVgYFcg39y5cLI2IgDa2029WqaXsKpa/9nIfsCkPWQ3k+vtLCXUJoobJaYkFb2EKzMT6tr9fBdggvQVPhYsCMmxhRAy/t4WV9Qr21F4Qt8Wr/4lxe4Vj1xZ9a4zqocGv0AQrbQHSFUXU8czcaPF+3G9USZvLzPsKU2K0V1lyoJ4S/hMq4O10g3OtsGDbOUhBtt2jrNUlPeppS7S3NGaEjqW+TM6BcVbE7tWWRNru6da6QQgfIARg3dtXc9so+l5u26wXW0Z5CbRsn9HyhDLGsynHIEQx0i7J2yBZWhoijGQnZPNoCr9aaL+tpkdaIiYhbYMqGbFuV9WAsp8mltkS02sj+KMa+JPJoK8aV7Rjb4/q9LhKeUcGxKjaCO51OWZhifkDreQpERaJ/Wycc3qErpvV8OoVtoAyhs2wbFOmc7i0KKR8jbGDGlz/IC6EDgKO7dRAwX/Z/WXCkNpVfAxspz1dIsXi/MejeLTNq0hLXtNiwDfv32yx1eZSIiZrq9emcpijVU5GOzfMbXgwTM4q5DOwdgAPbm2sfshS4My7hbeEq8RchBKm4YGef4MYjkluvEezapidVQGec13UvA3AVniUJrXKdG2szCScl2Tlft1ugqfK10J7SyuYzaR3UbetYeU/aSqF8pSlq4Q0WHIckflZTqyNOsbI1VYBWB7krAe0OTOSZy2o2BkBbQgfSW9TqLawVfKVFJwWwt18QsqnyjN1IEIbAabcpTBYwHIHdUnthmIjqqlsp2M3k9dw/X4yrhNaETuLO1klEyXYHBJtDdNQF06wdHLszLlbSrKKiO+02VtzEbVAZV55eN4Z6NpeksZCCrj068ZjOatGppbDppBT0d+oEi1fwIRQQK7Vk0xWrxfYocrD+jv3GTXP8+a3T/P7z6nsB+r5CWssLjkEXGVLxrcrxamAYukiUyaMVzWvEQSrrIVpshCEgZiGiJjRIuKnpAvREMK7pwLi6A+NoG8b+FHIojuwK6/PwIuPi70ET4WV8ZFhitVraBNzWvalBTM1p6nGpP0cILcqwoxdOj9TpPy5n1Dbu5JHJ6UmQnI/VZiPNlf+0A12wb0DTzWupXC4J9trZOeUK+rcN2YrZx2YpTDamTRkRg5Y49LXBFfsEndusJS8EYiEtbFUIDAi+0hTkZIPKbMiu+A03gkIxMqEQAg7vFOzoXV/VVNA0XSEFoe7GkWY0rMXdcsUxT4QMVIMM4VoyLZSn8EyDyCqDYzNk0NJjUZj1mM3o6st8G4wSQragr0P3ayWi2pJlveEXfKQlMcIbZ+jWdk6aDhp2dEvB7KzSVeP+KCJk6MWR6zM77Zd7tJNRvahvRK1WSuGfmds0la0tXFyo6QIqqytpM2nFuVGtbHxoh6A1qhCm2LDBMYDVauPnFWbSqmvTlogGElDov8lo/USdYws6W2r7HQOQtLWv/SbwJy3bONXI/buzHqG+cNXax4gYhHocClP1xw93xsWM6R7lzYbOAYtwCEbHFW2LUKqDaE9Ce0JbFIqiaIcwpV7rNkGxWqQqx9K8qXbVuPy8hINdXs3fFIruDEIL6S43ON5Cc9Ca0MxBHANRqyTiq3JCRBgC0R6qq4KvPIXwFbInrDWdLrLjRj0sa4WVz+f5nd/5HW699VZuuukm3v72t3P8+PG12rdlw50sYLfamHFTm4DbCxdeU3O64uPYlR/EMnW1NBWrQye2JcISSwr0ZtKqJn1preEXgzW/4OO0ry5ikFLbHLSntEfySiCMBv0Jq0S+oH9bG4URMXDrTOq+6yMMgQwZxCKCmy8TDPUKpCOXrBUWCemMbLACnM3rqnByEQ/DtoRoaAUF2nrBseHSXVrt+mIMFIXJAlarhdW2OIUlEQVZsgYJm3UVq1XWQ51Oo0azayP24vv4pkHIXv3xSm1zUHmfdE6LoDVSnu5s0WJn/Z005bOXCz+nkLbcULRqIQRWi42X1edBR4uA6Tx+0kJ06GqMaA/htYeRUznaE/q4hZ0lUKuLPpxqeuO7BWzh4kG5Pv75NEopciNZzo1pDY4DQ3D5Ht1D6ud8ZEhibuTgOG5ixgxCvSFdhamBsCNIxirBcTa/eHtHd6uei2olLIUhEF0hVG7j+5MWPE3xnM/YUp4CoXBqBLihnhD49e1lCtMFQn2hDcXGWSriXTatXSZGwa1rbVoLhqGrx54HbmDNIaJmU8RnjavbISSJXhdFHk6t7s08hS8Ehr28nuMtNA+xsEABwpEoSdWaTrm+VjsPtCSIpIVQ1F77zRYgZi7oQd9oWNap5nkefX193HbbbfzHf/wHN954I7/6q7+6Vvu2LPgFH9/1ie2K6sVa0QQ8GBx7xR+qp23hIJKKCy7box9/8qziybOKk8O6qjeTAT9kLEoRnpxVzGbq05fWCnlXYZsQtRUIgZVYfd9MNKwTBq6ne2FXgrr9CatELg+JmFZClCEDpWp7r/k5H+lUqmwlhUsjJDWNbAmVTdPQC5GgdUY6q4PEUAP/YNBVSENWzrtamM2UVKnXP9BSSpEfz+PNaV/IpbANSlYi2bz2vRNhQ3trzHtfNZFDDEYhYqLOZ9bAGF6gbLliG6cgEh0WlgRLKloTi/2mWuist/3iZDv9vI8RlsiLEJg3gp2qsDFSYUUEn7nWqFa3RC/AZ9qixMKCmFk5FzpSi1CrXaWTk3DRPLW3sLGh0i5qJIvoCDHWmWDWMxhMuFyxVzDUI8sVVS+rW47kBmJdzIeZMHE6bJy2xlXMzpbqOSm+iHhUV6ues8oqxfMg20JgyzUYp5sL161NHy9Vf63WhQleu10Lm9WiVruzrmZN9WzshXo9GCGD9iGHNtNrqFJdC+1JRSoGo+nAuRMxdFZplZB7kzi/f4SBP++rm+RZMjy9rl0JrXoLzUE0rNeyrlFqlwycI1lP960Hg+OEhQoZUCPhpuZcRG+kvDbYqFjW0jIcDvO2t72t/P/rXvc6/vzP/5zJyUlSqVTVtvl8nny+Ottvmia23RzqihIKJRWqKImcHc3h9DrY3Ta+X6xgpHxOj1CmAcymFamoruj5/sILtr9TEQ3pgCWTg6lZxeScDoamXZNuP4Mwau9/NqdwFXS3Fw2zAxexMFTV32Yjm1XEIhDCQ8UkMibLx2A16GtX7B9QPPQUDHaDsUy6r4xJlPARhmrqMRCGIhYVeK6HjAgwDArpwgKFbs/1ESGBcETV8dCPFSmqzuIXaEsSzo2r8m/qoehoFeVzrx5iUUU0qsh6WhB0/jFwPYVpQVtq8fdqNtyMR+5CDitmkrgqQWQwvKRzJuIoYmFFNq8pXLLVxJ/OVf+uU3lE0sTYFQMJ/ok51Ok5KF5zzTkHfKQNlvRrXsvLQaJTEEoJnIhHPCZQi7xdZ5v+W8//uhFKv/NKf2+v4OEkLZ2A2EC9uiIiUIYej9Vcns4hk+MRm1Yq59RsyOTgoRDulOZ3KqFIxiEW037R4Votf8JDhAVETMgWytQtaekxpRnjHICUG3ui3sJCKF/BeA6lQO5JkO2KUshILjuWIz6VJhqpnqv9rEeo19mwND7QWgLJo8m6lOoSUjGBrxT5ghbirCfGVUIiKjiwXXHnQ5CMqYVzecxEtIZQo9mKQNMGhOdDpEZSujDjEtsZwaix70bYINTrMHs8jRWwGcqP53HnPBKH4oS6N1e/cRDb9jh4J+ZqHpdGkAq6OyTDyKKgq9Bex02aVpqmCO8rPCEwzK3g+GIhGtKMjZyQhKwiI7Tk4pP1EB2h6j7hkIFI2jCRh4A4sMp64Ehk+8a/3lZVd3nggQdobW1dEBgD3HbbbXzoQx+qeuw1r3kNr33ta1fzkRX061uBYmm4F1zyzJ2uNPXHJNywr/KSgeJuDp9f/O3DQDgG3aX+w8HSM3VSrwHsrPP49mvrCw40A6Ui+emR0017z/Yw3HxghS9OAYcheMyacQyGin/ntypmmVey79V/Tp46ufBNLocCS+uxSvbCNZcu/PzFzwS4ZGDhY7WOwVLeq+nYCTlccmQZP7uIn1kAB3sD/1xRvNX8Bmf1n27gWOXRZl0HOxmFPJw4sfr3Ovw6gAJzq3+rJWG2Z4W/eC9Mk2f6xHRzd6gZOAYzTEMv9AA9pd+/iNL4WwpnS8fgyBDLgL7qh24AmOZEk47D0NCydmILFxnKU6iRDCJpY+xKIDoczp+Dg9thR0uY0dsz5f788mtchZ3cOBZo9RBUW66HRBQcEyZndf/xYsExwM5ewZNnFSMTmq0UhBAC2RXS1HRfbRirq/lQLLRxUkpbEjkNAtxQT4jZx+Y0w0xCbliPIy1XpojujGzohMliiHTYtHWZuHPustS2latoa4XOdsmFSehtR3sdr9merhBBWvVWcHxREHaKbaoFSciREPAxVq5CzqNICyGQbQ7ecPWaXE3nkd1hWIFg8HpjxXs4OzvLH/zBH/ALv/ALNZ9/61vfypve9KbqD2ti5Xjs2+PkxvKEOh0yZzOEuhxar2mtonCMTSm+8j1FVysYAk6OwE1HtE3NcjF6PM19nxhnzAnT2UrZH9dXerLpboX9g4LJWfjB44rO1krFWhiK7dfO8vQdMZS3sqHH9VTNXkiF9sW9ZKcgMZchcWmCxN7matefuaD41gO66r4czzg1kcO9dwzREUJarPoYgLatSOfgyv0CRjIkLoljRkzG75wg3B+umuTSpzMk9sdIHKo2rVVKceFrF/DzakkLkWxe8b1HFHaRQWwb+vOXIpx15oLi4acV3a1iwXlwfkyxdwAGu1dXtfLzPsJavF+5MF2gMFkg1BMitieK07WyKsrx04o7HlIM9Qj8sSz+98egM4yQAn8kg2gPYRxOIeZX4zJ5BnrO8+SnDETbElZzdaA8H380x/D2Np73Y86S7CsWw9h9k6QfnSU6WMO4uolQQjHbM0PsXByxWIm6BtIn07Re3UJkcOXHby3gZT0ufH0Ud9bl/2/vzoNlLes7gX+f5V177z77cncuy+XKdhEULpvIyBURw+IwWkYdB2fCYAyQKhOL8iajpAIhA5OZmiGYgcqElBgsDSRGLY0GpXQymGtEIUFE4N7L3Zez9fq+7zN/PN19Tp/Tp093n+7Tfbp/nyoKOL2ct/s83e/7e57f8/sZcQOxdybxnZ9x5AvAQIzh6EmFSAh410UM0y9OYToxhdBbYXBwHD6p8NNXFYZTWFLsQ53Igg3Y4BMuvH0nwWImmMFx4lcZDJ/t4vJbOtFLi3TcXAEsYkCclwQLSZyaUYg4wJkbGGzXhjVkIn+yAHt4/qJNARCh3ri6jri6Hsbhk8D2yfqq5tsWw7mbge/9RK84L34MS1pQrgRLezrVqcsESheuXFyp2p/zIUJi2ereAHTP6IhEYdrT31FhgdiFcTjj3b+CtRIZlfo6+GC2oeA4KCgYlsD2LQLP/VxfYwqTQ+m9YLpuTDcIFALOIAwqyNUpnDMkowq/OgSwkIFgqqC3OgUKDKpiv3EJixoAZ+XtVroQF8CGnXUxGdVUcJzL5XDPPffg8ssvx/vf//6q9zFNs2WBcDVMMbCAQWUV4DGEt0YgjMpPTsRVMA2FuSwApU8mQ4nmqgHHEga2jHD4GeDwMYbhYoB87LRuk7BtjMEUDLahwBRQyAPGkqIRrKnAcHpO4fSsrgLrLqpGmCsAAkDIAJjPYEWtlqcITgwpbB1XePl1YFMjwbEhoRgHsgqqeEzNvgclmayuVukYDFmPwXRNGEkT0pII5oKKkwMrAEbIqPp+SNdAbiZXV4DiGAyuEWBqThcDGxkHBKuvqFfEBpjSlf7M4j5R5TNkswAHQyLEmgqSSoJCgMybWTAO2MN21UqsSinkDuuZ8vgFcYS3hipWVBoVcXXxEy8AuGUg4AIsq6C8AAocYkME4HLJ28Mc/X2gCgDqGANqpqDTcxYdq8oBfsDBpIBp8JZU945tDiP/qyz8GR8y3P5ZTaYa/7urQIEpBulUH9OdxF0OaUsUjhUQvigMN2Zi00iAf/wX3U9+OqOwcxuDYTCEt4QwfWoK/pQPERWIu3oVLD239PstyOoxpiI24JpQpz0gaSEo6O+RbnsfyNpQaQ98SxQsJBEECiengYvPmq/dENrs4sTzp8qroEE+ADe6u1J1IwzJkIop7D8KDMXrf9yGYWDDEHDwuP7vhZgtwIdsBG/MgnVhcFzw9MT04uDYm/Zgj1o121fq1GobUz+ZgrvRRfzCGMwV9nWvF4wxOJM20q83tuqvPD2pPjnGkNwPTM0CSZMDstiCs1s+Kr5CIAQsiXURVPWqZJThlf3FQLhU4yfrQ9myYr9xWamlU6a4yjxbAKIGWHJ97O9v+MrC8zz87u/+LgYHB/HpT3+6DYfUmNyxHNwJu2pBBdtiiLrF/cNzwFhq6cVXvYQt4EYFzh5XSEZ0VeupOQXBdP/EUgl929BpPytVKW7EbFb3Yz49W9lSCNCvLeQADgvAHdGSYlyLMcawcZiBc71yWzdTFBsytm5vZK6g21YwBYAB3BaQEQEzacCbni+4oZQq316NETMQNPBaklFdhAqsseJZYUfv18hkK38+m9YtgyKrXKj0Zn1YKQORM8PIncgjeyRXUSFQB88ZCFcg+c4komdFVhUYA8WiXFbxNTkCzNKFF9RUHnxjeOUqhJwtWzm0RCkFNZWHOlmlz08pzcpqTUEuQKcyuhsd5E90bzuTbmzjtJCRNGANmXAndMWc4SSDKYGT0wqOpYsCASjXBvDm9OfVsRgSkWUKGSoFZol1VVGXtJcq9iNnxayfo6d1D/JtE/Pfy/aIDSMmyy18/GwAYYueCY4BYCjOEHJWLsa1kBAM52xiYKx6oU02aIMx1pU9jz0PMOTStOog58MeW3kF2J10EN0ZRfIdiZ4JjEusQT054M3U3/JOeQrCEbBMjtFU8fu3hb2OWybQbRsX/93J2grZgFLQHUrUfHDMwhKoUruHGRwsZZVbOqmMBzbaHT2M69HwUX7hC19ALpfD3r17Oz6LE+T0Bzi0NbTsbNlAXAeQBQ+rqjDLbQ5hMDhC4ZzNDPGILtR1xqReGSkxDQa7hcFxrqBgCGDjMMP4AHDsdGVl10weSEWBIO3DiEiIcHtO/oNxYDgBnKhji18mp4sFMZPrwKmF7Zx8X18MBPliJWpX90mzJ5xyKxkAUAVVXCmoPsSFI+Y/4HUIOwxQet9FPfu7yr9H6HY1C/sdKyjkCsBIipXT85vlzeg2FPGL4xi4PAnpcqTfSMNL+/DmPGQPZOBM2EjtTrYshSzk6KA/nSu27ApJqBM5sIQFPllHtG/yJRWul8gHOvAGll6o+Qo+4xAmh9HC4R7aEgI3WTlo6zbd2MZpIWfURmRHpByADMT0PweO6T2Oi/tHL5wgGUww+MEyRc6K6Z88WayoSwFyf5vTab8saqLgKaSzwI5NrGLiW7gC7mYXhSl9Ig5yvu7H3aWfnWZEXP35auR8BAAjKeCMieptGlncBCIGUKWyc6cVfL1qbMj5v7OX9sFtUbVK9WLWsIXkJYk1yQxaa8IVsMftZdtaVhMUVHmbwUBMdw1oZa/jVlGBQiAYBccdFrL15FRBFLu9BAoq54MlzWVjQRYzwUqXb+ukEFdJQ8HxoUOH8Oyzz2Lfvn24+uqrsXv3buzevRv79u1r1/HV5E0X4EzYsEaWX6mKhxlyeX0CGYw3/7u4wcFdgSAfIOIynLuZ4dwtDBNDSwdFNNy64HgmDSQiQCIKbJtkiIWAE1P6NgUFFQBRl8HP+LAGlx+kqyUEw5YxhkyudgukTE7hjcM6iAcAFm5N3zxg/sLZtfXEiLB4uTehmTQgbAa/eOEc5AIwc/mLoUZX30LFfseJSOP9bWNhhoXdnHI5/VzJVW4NV4EClJ411qlVDlJXpBA5J4LCyTzyJwuI7Iwi+Y7kkkreq8EYw1B8PuBnUQNwJfiWsJ4MWenxlqjaG7lCLtD3i5rAzKIPk6/gSQZpspatHAN65dPd6CB/vDt76gY5vyvbOJXYYzZCm+cnRzhn2DzKEHGADcO198QnwguyEYqU0iuEKM00R6S+eF88HkhfUekC2KAFZnIcPql7jm8aWXo/Z9yGsDm8tI8gF9QVQK0nyaiudRILr3zfhRhjOGuD/lyemqk8lzPJwUYcqHT3Bcd5D3AXtHEKCgFyh7NwNzoVVaj7lTNmQykgqHPVV3lBeSIzHtbXJNm8almv45bxAV/qtGrSOSFHLw7lwPU5uRDoDJ7Q8p89FjWgilXUecoG1tHEVENHOjo6ihdeeKFdx9IwI27UXDUG9AqXbemTSLiB9KOqvy9qIH9MXzhHXLbsjG3YYcv37WyAgm5xMlpcYQzZwJmTwE9eVZjJ6N7GllHs+zcDGDUKUrTC2ICukjk1t3QVqOTwCWDLGLD/KDAYV7pvXotSdPIFPXPlmND7i6OynCJsxA0YcRPetAcxqCcxhM3A7epBMLc4WDG9t54+fI6tJz1SK/TBrSbiAKYE8sU+2bMZYCCqg/zV8GZ9iJCs+LvLkET8whjsEQvKU3A2tKf4QSLC4BdX/ljE1OnUg/W9IBYxEUxlalfFzOv2AIgZCF6aAltYd8lXCCwBx9CTNq3CGIO72S2vvMsuS8EM8gpyzOh4xk4jRpLAhhH972pKe+R0arUuLlj+XHgKSnLdXgSliroO/CNZoPtqqpI1oFOqGVjSLmYoAedsYpBy6XgwEgbsMRuZNzNQvmrpBGE3cG2GS3c09zmIRxjO2qDwj/8CxEKqom4DT1kIihka9Ux2rhXfn+9xrAKF7MEs3E0uom+Ldm117bVkDpow4ga8Ka/utHFR7DUbDwNhV1+bJGr0OlY5H+p4DmzEWX3/4rop+JzD6q1M+HXHNnWAPFsQcCQH5jwoi1ctxlUWkmCuAaCwbgpxlayP5O9qGOBMOjVXjQH9ZZqKouoKb6NkRK64VxKYLxjRTB/UhdIZ3aYhuaDY8kCcYdu43rM6NacHq8V9cItBtmG/8UIhh2HjMHBqmdTq2bSCaeq9X1EXmJ4DWAun+/IF/d46ll4ZXtgLknEGe9yCPze/ciyjywcSwhZgFi+n5q+EF2fbh5e5yK8l5Oh/MsUFSc8HhpIrV5deiTfjwRoyl1SoZIzBGXfgbmxfi4poCJBCV7jkQzbEWbG6L1BYeOUJE+UpsJip03AcUd63Auhq1Z4hYLfhZGkOmLAnXRSOV9nr3GHKC9bdCkk8wnDleaxqlXtucAQLVihKqdXlugpeoIvDLKiqyxKWTrfPUmp1X0p7gCvBYgYOnQC2jhdb0FTBGIO70SnXYOil/catcMakLvK5ZKtUxABLdFeGRmmxIWQzKKWQOZiFNWQifkGsp1LlV4MbHO4Gp/59x0ovEgB6knk0CcxlULvX8UwBsHVgtJYUZxXp9GTtMcaQigFZpbdLqpkCmKOzBkuCQC15DBvQMRpLrK/ZjXUbHLsbHETOCa948e/awFkbGMZSNe9WF2HXV6HYtoqBwyq/P6YzuoiNs6i5+4ZhhskhnYKYjAIqHUCEZM1qja2yYVj3mqtWmOvoaWDbOLB5FNg0WjzpWnpPcK1U7HrlCnp2Uwi94mssStGwUhaYYAgKAYJCACO+/PvBHb2HPFgpvXeBiNvcFzRnDKlSQS/oVehEg6lwiymloAoB7BUmh9ql1EoknV35vks4Uu8lrjEmmFI6CAob4AM21MK9VIGCbwg4bXjpjDGEt7hgksFPd1kAporfQetMtVU9AOAmh1rwPTIY04HO0ZN60gWe0sU7zPnXzEISPGW1tI4BWT9U2gMbtDCV5+Vze61rAGvYgjVogZsMskfaOLWKY+mJ9ulFzd0ZZ+AjLlQ+aMl5uxVyBcAy9fk/dyQHGRKIXxRfk2ue9cQatsCM+e1lNTFUFOcciDM9Z71Mr2OlFFQ+AEtYUOm1mzhhYIBg1MapC8RCxb3pYQl4AVjSKC+K+IHCLw4Cv3pLobBgzzof0ekeXdMarE7r62gXcDe5MOuYiWCM4YxJBtta/awTt0V5I3otjlmsWL2K4NgrVuQcjFVZceEM28YZJob0nmo/7cMaMMFl+/+cg3FgqEphrqk5BdcGzpjQFysbR3Sl2iw4lGAtKfBQ8HSl6pLFKwFG0oCMFis2KgXh1AiOZXEP+RpdZMfCrDyxMpTAqsdjkAnAbd6xqptOsRJ8uokFVmYJKGP5oh+qEOh02uLfjw07YEqvGJd4jLUlOAZ0epo96SJ/ontWj1WgAL589fX1iFuVk1OGZDhrI8NoSk+0BYVAV09ddFJlQw7QQ+8DqY8KdJ9MFTdx/DRwzsbKYpjVcMnhbnYhYwatHFcxmmKwTV0rZCGWMPWKUKY7JggzOV33Q8zpoCx+Ue+0YmolM2XCHDBROF374jPwAt0BYMHEo66nAmTBoASvON8C0GPBEeApS09uL5N63XoKilNw3A1CxS1PyhG6zWZk/jN4cloX7d0wDLx5BJhJF7fd2etzAmvdBsedIGxdDEcVagd6htQX7rWKchV8hQPHFNK56s81m9Gpq/FlijbZFsPbtjIMxnUK6lqdKIRg2LqoMJdSCsdP6wqYyeKe3ME4MD4IHE8XN++36IvUtVj5i507ld+W3OCwxywdHDNWLta1HBk16k6rXq2wA5Tafjezb3mxwowHI2G2PZW+luGkvmhpmCN06tZys9s5H8wWQPHvx5ImEDWAYroYUwyKc1hGe9KsSqvHYLrQXTfo9jZOzZBhY0nmhmUwnL2JYTAGHD8RQFUJglnCRFBrnxPpTWkPyhU47JsYGwDO3FDf59+ZdBA7Nwpu9s5np1VKRb1OLprsZq4EH7B0r/kGlarJt3LVOZcHkoYHf85H7PwYnHFn5Qf1IcYZ3A0ugrRX8/1XngKTrOIzEXV1fZQ5f0Gv44WPmfXAkxbYmAuEjTVJrVaBDowhOdbZwmNPCrt6a6MnxXwf46LpOZ05uvs8hgvOAE7NAIdOqK7JPmkUDbcGcJuDm6KuVNyIWzs4Tmf1KujpGd2uqdrtoylA1ih6YEhW/pJbyyBpYWEuQH8Ioq5eNS5hjGHrOIMvOALBVp0GWfAVhJivVM1NXjXF1BqyoJRO2VwpkDDq3EPeCq4FhIuzbrE6uh2tJMh4cCfsjhY4iIUqq3DXi0nd/mnZitW5QBdyKKZ8McnBxhyoTOmEr6BkaytVL2YOmXAmHeS6pHJ1t7dxaoaMCARVvvsci+HsjQxRS+FwRiw5uTJLIEiun5YQpDXUnIdC1EJgCOzcwmDVWbVdWLyuPrj9iDGGTaMM2UKV/YJDpYydBr/kZ4sXPi1quaaggJwPO11AdEcEoa0N9q7qM9aQCR6SNbcF6VaXlZ0PhNBZO3P+0l7HKlBgfgA2ZOv+tUNrVNHcVwCntOpuUerakmMCLGLo6zjoVeKQDUwMMpgGwwXbGa66QC8SvnGkwwfdJAqOG8At/WVST3AcdljNxdJMTvdg3jymWzMtzNHP5RVMY+WUMQDw07p/o1zDSpwLC3MppXBqBti+AYiGKo93NAUMJhmmlVwyC9mofH5BMa680j2Oq6wMmwkTRkQue/tC9e4hbwXGdPETAKsuLBHkAzDJO96aJOIWq3BXSY9WSmFqbvlZQxY1oJb5HKmCDxavfG08ZetG83MelORQkrc1OGaMIbTFBWOob/9WnbziBUXuWGNL7uU+rVbvfGXzGr3Gw65uHReJCRw4tvT2YCwEMUarR31DAfAVjnIL2yeBiaFOH1DvGEnqye3pdOXPWcLUrVdmG1s9LrcBalHNhtxsAHsuh8Hzw4juiKyriredIKMS9pCFwqnl/25BlZVjQPc79jkHzEVb4TI+lFtspQedzbUmqdXF7USgtOquYBq6S0/GNSHOjumFDgDHp3Q6dTyiP5uMMWwYZrj6AobNxTZ7620FuXeutNYAY0yn4tYRHNsmwFj1itUKugVFMsJwxoTeO3zsdLEIDfRJKhXTKS4r8dM+zKS55hfNpcJch07ovSrbxqu00pD69aWFhCqs7kQ5m9EpYIZkCHI+ZFRWbSUgXAFz2IJwxYppdNwqNjNfow/thuHWnNS9GQ9GTLa9dddKIq5eEa9WlOvoKT3pszhdr6Rm+X+F8n7jsrDUhblO5QGuV5PbGRwDuriJM263pO+x8nWF1cJpfcHiN1htOcgryFhvpRKv9J0VcYELztFVyd88quAvWNlSIQM82ZlidGTtsbyPGQhERk2cs2n1lf7JvPJk90zlz5nReM9j5St94QNA5VcfHKtCgOyhLNytYYxcHF3D9kHrF2MMzqQN5atl6+MoT9csWdxhIhHRNXPyZmWvYzVb0HuNS3VAYubapFb7CgFj4Ka+3iSdl4oBWY+Vx0K+oMA5sGl06WczFmY4/wz986m5JTd3NQqOGySjsq4iTpape/JWq1idLa6Chl2dNn3WBoaRYhEaP1AoeMBwna1+/FwAa3DtC1OUCnNNzQJnbUDVVi0AMDEIhBOiub2pRQVfAQwYTerfERRUzZY27qQDe2LlNDrhCL2HvErl7XZo1QWdN+vBHnPWpABbLZbJEA8vDY7TWYVMXlctX+4LkRXTg1Wgg57Ts0pPGnkBsKAYV/n+jIENO4BkUFyfLNsdHDPO4G4JQQVoqKr5YoXpAjJvpmEmDaTeOd8LrJFJGeUFPdenldtCV5ev0tZLBfoie2RE4IrzGAaiwK/eWlo4iPQHXwGzro2d58glGUpk9SaGGBirzGADdM9jSF4RKNWU9cq1IsCZ/j5vkvICqONZZJIuRi+NQpgUHdXLGrQgw3LZtk7KU1Wrt0dD+p80l+U6MSpQYApgg/PXVGuWWl3ccywMWjnuFlGXIVjwsT4+pQtxDSeq3z/s6u/rU7PN/b5OnfEpOG6QcGr0gFvAKQbH1fYdZ7Lzq26ATlU4e6MuQnPgmO6Jm1ymENdCyldgHB0pylQqzLVpFNg8tvzFSshh2DDBMZdp/ndNz+r3o9zv2a/+xV7ijNuInrXyG8gtDmasXcXqVijt/+rEhEg1QwldLKXEDxTeOg6cvVG3WRFczywu4QidJp0PcHpWTxjNpqH3IZt8/gJrAZa0wKImPM4hLA5jDU6W9ogFe8RC7ljjq8fKV0jvz8DP+IieH0NqdxL2qL7A4A22EVuvbZxqESYHW9TOqUTvidOf0eGk3r+0YzNw+CRwfIoC5H7jS4GxMyxsGe30kfSmoTgwEFu6eoyYCRYzgOk6U6szPni0mHobar7atfIV1LEs2JCD/NYYUgMUGTVCuAL2qAVvunrwGhQUhLv0upFzve84rRZc584Ve4vHK685WNLUbTrbmVpdWjmWnILjLhFyAAZdoyAIFDI5nTkqVsjqcA1gNl3/uTsIFI6cVDgxpVer17ogW29dba2BeqvFlipW56qtHBf0fuOFK4mlIjRDiWKrnzqKjfiZ0n7jzqRbbh4FLn8bW9KHebGJCQlZZ/GUxQKlkCsA44MMnBf7JbPWtLThNoew2JpVrG4Fb9aDjMiO7zcuiYYYFOZXQd86rgu27dyix/JAvMoFFwBYQhdWynrI5XXl6+k5IMh6YI6+bTFmcLBRB4EhII32rxwDABMM4TNCUH7Q0CSK8hUy+zOwhkwM7E4htjMKsWDMCkcgyNT3fHoVtbfaOAHFXuPL1HAICgGYIfTWBwCuzXDJOQyX7dS1HE43OQtN1qfwoMSOC8xle2aT1ZGSYfMoMLN43zFn4KMuVM6vK9NFFQLdXQB6MlM1kXarVDEwHrCR2xKFExYtKWLZb6whC4G/TN0PpZbd1pKKMgQLstJU2gMbspack1nM1AWZ2plaHSgEkkMIUHDcJUK2zozNFfR5OB7W13wr2TCit4/W4/Sswmtv6d9z5fn6vM/52n73U3DcIFFKBazjQjnqAoVFE65BoMCZTk1YLOwynLdNF6Kphz/nQ0Y6179RSoZIldex2MAgRzLR3MCeSQOREMrFrPSKEoNwVz90GWMQEbmqlNm15k17sEesikCrk6IhvUUgVwCmZvXekwvOYHBtPZO4eUTvF1+McQYWNZCeCRBygM2jDNEwMDsVgMWX30vKx134GyOQHGsSHAOANWLBGq5/73E5MB61kXx7AtbQ0tcjI0bd+46DQlBX9fX1hksO7lTP3AiKn3O+4AKOc4btk7rIx7bxtfv7k84Ku8CWHRZGx7tjQrBXjab0hP5ctkrPY0cAK3xfKS8AOCvXk2AxQ1e7brSmx+k8WFhCnB3DHCSiYZ1pRxpjJAwImyPIVrm+Uaj4bl0oEQFsl6MQMKi8DxYosNTSbWrl1Op2Bse+QiAFBF/7lUNSXalidTavU6W3juvJ65VsGmWQsvbWqExO4bW3FLJ54OKzgesuZtg2wVZdxLYZNNwapCtW86otSBYLOUtb3aRzuuLycl/2rsXq7t/qZ33YI2bXFycRrsBgMS0qaGSfJRTmMnrfsll8T4JcAG6JFStR18uI1VdgrRsopQtsWMPdU4go4ujxPD2n957s3AyMDsyPx5EUg23pfciLsYiB9KzCaAqIhxk2jTBkM6ja27b8GEvAC5uQYu2CIy45wttcBPmg6v7YhZSvkH4zA3vMRvLtcchI9YM0krLujIVS67JeWzkGABmRCKqmVQcQjlhSMAYAhhIM11zIcO6W7v7eI62x8XwX570n3unD6HmJiO4wsaTncdgAT9XR8zjjg7kSCBnlxymL6dZ8dVKFAMgF4FsiYGEDc1lgLIU1XzXqBTIiYcQMeLNVgleGcqvExSIuEE1wZBSDmioAEUOvElfBkiYYb19qtQoUfMFo5biLSMkQCwEnpnWQPDlU32dzMA5MDgHHpqrfnsnpLXlnbtBB8XnbeF1Bd7tQcNyg+SJO9VWsBiorVqdz+iRk1hkAL8eb8cAEgxHvjr2ntXDJER/U32zZBgpzZbKAbQFD8fn3ys/pKovLzXo2yiymJy9X1bGb+HM+hCNgJLrnby4lQyoGHD6h0+zP3rS0+uVwonpqdZZzSK4wVMwqGI4pRCPA8ULts6Dn63SbtZwUssdsWEMW8idqtccIkN6fgTNhI1EjMAYAWata9+LnzQU918apxIgaVYv2BAUFUeP9s8yVt3OQ3sAlX7HzAFk9xvQEZcFbpudxjerHAKCyugVfOehyJVjEBBqpdn0iCzbqgA07ejJYAckofc6bwTiDPWYt6Xesa9Wwih7HC3HOMDLCkQt060Q25IAt8/lre2q1r+sNSEETJN0kFYNeuBpYUAtoBYzpOkW+v7T9Z95TOFisVXPJ2awrPvN0xmkQEwwyXN+qj12lYrXn6T0dq+HNecifzCN6bgT2aPesItYSKgahjRTmmprTM9kLK2GrfAAjJlsWGBlxAyIk4M+1rpdtu/gZ3cJKRrprCnUwzjA5DFywfWn6S+mCK1tYml53siCRSHJEDP1Z4oUAExMCGS6XVE1dyAt0wbu1xA2O0LYQgqxfLoq2UOAFyOzPwBm3kbg4DhmuHfyKkKx7e0YvtnEq4Vb1XuOqEECG6PREyFoaSQGx0NIuAyxpAhEDqLV67AVgifnrEcYY2IAFVWefeDVTACwBvikMJhgyOf09Hw8380oIAJgJU7erXHDOCrxA9ziuMdk6kBIITA7YXFcsX8Z81ep2XT8pBJzB7M3T37oVcRkG48CWscba6o2m9D/HT8//zPcV9h8BzhgHLjqTdU1dCbr6aIKI1NfOyTYBUwKFYnBc8BQMubr9M37aR/5YHtEdEUTOiVRNO+xGolhd2g/qS63OFRQEB0aSla8vKAQtXS2XIQkrZVZPPeoyylMQrui6NPoNQ8A7z2VIRKof13BSp18v3Hvs+wp5ITA0LMoTTX42wPCoxNg4x+GTy/8+39ep3GvNGbdhpkzkT+i9x0opeDMeMgcyyB7Mwpl09IrxCoExAEhXbw2ouh9skV5s41Qi7OV7jYsqRdkIIe3jWAwbR6r0PDYF2IQLNedV/ayWW/CFK7+neMzULZ1WSLtVvoKaKejAuJjCO5sB7TdeJSNhQIYkvAUru6qgwAwOvkxaNaAnJMyogbxtADXaZgKlqtVoW2p1wDms3jz9rVuxEDA+qCfTGiGlrhuSzetrwCBQeOOITre++GwGq8nCve1AwXETjLCsunq05H6LKlanc3oze9hp7vf6OR/ZIzmEzwkjujO6bgJjQAcDAODY9aVWT83pIlyxxbPGbWhpY43Y8NdBxWrlqfL72E3CLsNwcvmxGHEZxgcqKwyfnAFSAxxDY7IcIAZZH/agiXM2cfgBkFum/7QfzG9ZWEvc1KvH3pyP7OEsMq+n4Wd9OJtcDFyZQuqdybrTpbnNdcZCPUW5erCNUwm3ObjBoBbXcGDLF4whhLTP5lEG19YVYxfiQ87yKbRpH8wRwOKJwYih9yGvsLKoTubAUhb4+HxZ6rksMJKkdNrVEI6AOWDCm5l//5WnwCVqblWIuLpCfDrugMna38MsbgJhA2jDAgMDg88YTAqOu8pAnGH325orlDU+oNOyT0wDbx7V3XkuOYd1dH9xNXT10QTeQDGoyIKK1dm8bm3TzJd9kA+QeyuLyJkhxHZGwVboKdZtShW1Y3ZQtXrxQn6g4PvF9k0LVkmVrwDOWlaMq8RMGo33ne0AFah1W5Rpcli34CmZngO2jQPuoAm/GBwrT8GIGxgfBDaNYNnVY6XQsRlGZ8KGPWLBSJhIvjOJoWsHkbo0AWfCaWhfJGMMZsqAv0I7p15t41QibAFm8orPXnlPHAXHhKy5VIzh7I26wKK/YI8xc6Vu61QltVplPbCEtSSQYgbXLZ1q7DtWxQlCvjVS3tuqlEIQrH4LGgHsEQsqPx8cBwVd1LTWNSRjDJMXhTEzGMZbxxW8GotBTHKwAROqyZ7WK6HguDs1O2llmQzbJ3Thv6gLXHoOQyzcfZ9zuvpogrA4wFhdq8chh6GchaTQ1CAIvACZg1m428KInR+rmQ7TrUoBbcpR8PzKImWLzbyZRayQQypW+fMgH4BbrKHJiXrImIQRlfBmujy1WgF8lYXcOmU4gXKvytmMQsgGxgeY7tEdqHIQKEMCnDOctYGB86VtRUo61cZH2AKpK1IYvDqF0NZQzaJbKzGiBpaUs1+kV9s4lZSr/y8IjnWPYwqOCemU7ZMMwwng6KnKn/MRB7A4VGbRudJXegWxCpYwgWX67SqloE7mwCddsAV7W7N5vXWG9huvnhE3wC1e3r5U2p61krM3Mlx9IUc8DLxxGDh0QsFf5pqXRcwVz2WNUoGC4oDi9XdwIevDhmGGMyaBS3cwDMS7829LVx9N4A4HN+srpuOYAIp/e6tGC6davCkP1oCB+AXRdVu1kxfTQsMigG0tn1rt+wFyaYWRGIBFM5FBPoBoQ6DAJYc9anf/vmPG1u3f3zJ10S5Ap1RvGAbiEQbhSoAz+Gkf3BEQxbTk4SRwxgRw6Hjl6kWJ0cGFVGHxlmxpECFZ3I+3/EVFL7dxAnRFVRmSFa3xdC9zqlBMSKc4FsPOLQy5QuX2FhY1wEdcqKn5nu+qUNpvXH2ikEUNwOZLWjoppaCO5/RzbgxX1NKYzQDRkP6HrI4RNyAjsnx9ExQUZGjl84mUDJvHGN59McNVFzBEXOD1w8DRU1XaMoYkYPCqnQeaFuhMwYBzauPUY0KObsc4NtCdgTFAwXFThC2WrHYAuljW3C/nKoIsy5zvzxaxm6uy62d8GCkTYh1fIJdOfAYCJCJYNrX61CmFeIJjw04HuaO5yiqLuQAiJNuycm4O6D9Mt7Z00rPuCqxLKvk1Yyylj50xYOOI/m8ZEuA2R+F0AdLhkGFRvI++OBsbAN46Pv8cSikwdG7luJVkSEDYvOZ+915u41RixCqr/wf5ANyklWNCOmnDMLB5pPL7FwD4qAMIPl+FOuPpfcXLFSIMSV2oa0FqtfICqMMZnap9VgzMqXzsbEZXtaX9xqvHBIM9asMv7RVXjW3PMiTD1nGG6y5m2H2ebvU1m1l0neRKMFssWdBYlawPCACCUXDcg7qtsOxidPXRBG5yCJsjWDCj6s16yB3LwRq2KtoClSpWA3ovTzMDQvkKZrxHNl34CkNx/QW7OLU67yn4GR+TGwRS50dhj9nIHs6Wbw9yAWS8PVGRETcgXLGkJ2C3UJ4CE+t35RgAUsV+eANRXWgF0FXMpcPhTXswEkbFimzIYbhwO4PkwMlpPVY8HxCiN4JjERIQDkdQ44Kil9s4lQhXAAtSLgNPQbita9dGCGkc5ww7NuuiolMLi3PFTfAhu7x6rNK+rlgslumFyxjYoF0OplXagzqaBRt1Ic5Pgg/YFfdXSiFQQHKZ7gekceaACaWKk/+quWKHpsFwxoTO6pqarbyNGVxnCNTZtqsW5QcIjmagMj74uAtlCSwztAhpGxpyTZJRCVVcOS6cLiB/qoDYeVGYSaMi3bpUsRpoLqW6tE9H1FkFdz2IugqWAeTylT8/MQUMhQIMT0jIiET0XF14rDCtC4CoQMGoo01OM2RYwkwaXbvvWHkKzGBg63C/eUmpf93ZmxhEsRgI4wwyZkCxYk/GRUZSDOdt05Wus3m9X132SHDMOIORnC9IVk0vt3EqWVxgTxUCiDAtFRDSaQNxhrMWFedijIGNuWCqmFKtVLn90nJ41ATjDOpEDpjzwLdFIc6N63TcRU7N6NZ/yWhbXlJfqpj8ZwBvsqAlYwwbh3UrniW3JSw9HpqklIKazgNHsmBJC/LCFPj2GBitHJMOWL9X2h0mo1JXkD6Wg5/2EL8ohsiOCGTUWLKHsLRvppkWTkEuALfm003XOy4ZXKkQX5RaPZfRAfN4LIA9qE+09oiFyNlh5E8UyhMO9RSSaJY9alekdzYr8PS4qKdgW72Ur8AEX7cFuRaaHKp8DWbS1H1/lxnjZ25g2D4JHDyme4YbPRIcA4AZN2rv0+rhNk4lfFGBQ+WrultiEULa68wNDEOLinOxpAWkLKhjWcDkYJEVJvAiBhCSUJKBnxsHPyNStUVQ3lM4NQPs2Nxc8VJSnQgJmAkD3rSna5esYpJ9MA64VpVima7Q/Y5X2JqmvAAq60NlPJ1FMFuAmi5AHc5AKYDtiEOclywXaFMKFByTNdfbV11tJGxR3nOcuCSByHZdUIKbDIsLMYeK/bua6QkWZAOIYk/UXsAtgSCnMJRgyBcXaQOlcHpW73EK2wxywYk2fEYYzoSN7MGsTitu475rI2GAyfoKrS3Hm/GQ3Z+B8lRLV6Hr6U24XsmQgJEwIJfJChCC4fxt+gLt4PFiWnVvfBzKEwLVKrl6c56eGIv2dqDIbVFZ4LDJtD9CSOs5FsO5m/VqYboYEDHBwMddvWrsSMCt/R3FTA5+RhTyghT4qLvslomDx3Qbv+2TFBi3EmMM9pguOsqN1X2/xsK6JenpxanVIQlliZqp1coLgCNZHRjngmLmAQAO8MkQ5EUpiI3hcoZcEACC63M+IWupt6+62ki4Es6Eg+jOCOzR+T0z3BLl6tQlI0lg0fdI3fyMD3vUBl+hEft6IUIC/pSPWFjAlECuoDCXBeIRYCyhwE6xikqK3OSIvS2KwmmdWt3OljZGwoAstnQyk41VTlO+Qu5IDoBC9LwY8ifyKJxc2g+yWUEhgAzLddffuh4yJmEmjJoTQGGX4cLtwHRawZDzKdrrnQzJcnE/YVW+/sKJPELbQjASPZ5Wbc+3cxK2KKb99cb3HSG9YMMwsGMT8OJrwNiAgmMxsAEbLGUX9xuv/H3Mh2unzp2Y0i3+zj+DNbWQQGorpVYzyVe1cswYw8YR4M0jiyZ0baHT5Oc8wFkmtJjzgLgJeX4SkExX5xQAGKvaAcJXOjimlWOy1ugKpEnWsInUFcmKwBjQF3pMVK4+rqawTJBXMFK9c3FsJgwE2QBhR/e9nZrVe483jzIYvoJwxJIgyUyZiOyI6C/3Fvc4Xki3dLIabunkpX2k38zAiEukLk8h9rYojLhcUs18NZSvyu2weo0RNZB8R3LFCaDxQYbztgKJyBod2BqYL8q1qPJ9xgcEg7tx+VWWXrGwwGHgBXpVilaOCekaQujiiDs26+rV2bwCMzjEmVHw0SaKqSySL+jssZ1bdOFS0no6O0uAGwysyT3HJYNx3Yc6vSC1mjEGlrTmq5hXoTI+2JANFpJglgAzOZhYvjWi7wOcgmPSAbRy3CTGWNXWStzkYCaHKiigJTFt+4pQdYKISKhAgTOG4STw1nGFySFgOAF4J3zImFH1fQ1vC8EZs1vSX7YWa8DCdDCrWwbVEZQUpgsoTHmI7AgjelakvCdahmRL20IpT7V1v/V6sWOzrnTeK7jBIaMGckdzMBZ8YeSO5+FOOjCHmuj9tg7JqEThdBYqr8BM3tOtqwhZj6RkuOhMIAgUXn4DmBhUsBLWqp9XKYWDx4Ct48AZExQYtws3OKwRG4VT+VVnIsbDOkA+dhpwF6wPsbABBlZuubiQ8gIwDvBk/WPGD3RKNVWrJmuNhlyLcZtDGKvbt1oSFAIwyXpmvzEASGd+j2U8rFPON43q6sV+1oc1UD0YYJwtuye1lYy4AemKinZctXjTHsJbXcQviFUEr61e4VaegqTgGIwxmD1QlGwhM2VU9vkt/ndoS++vGpfIiERQCBB4AbiklWNCupEhGXadpQsk7j+qV3xX6/gUEHaB87axntku063sUQvmwOonNBhj2DDMkMkt+nmx6BqqXf/OeUDIAGL1rxqV9hzTyjFZa3QF0mLc4OAWR9CCk4af8SFs0VNtnERIlPcXRkO6j2IyWjwhBqrjxYdEWBeHqje1WvkKRsxYEsRwW6cKtaxiNUPV6p5k/ZNhWVHEL3c8D2fMgjWy+ouY9UI4AlCAKihwi4P12AQIIb3CNBjefrbuefvmkdUFyOmswmwGOH8bQ4L6GredM+4gfkGsJc81GAdsC8jkFvz9XaELtGWXLi6ojA82aDd0HeMHAGcUHJO11ztRVxcRYYnCVHbVzxNkAhgJo6dSDIUj9P7CrC5AFHb1CbHUqkh2eJWcMQZnzEb2YGblOxdVS3cWtgCzOIJc0LJ06GZ7E5LuJkKyokq68gOEtobavoWgm5QKGQb5AEZq6WQTIaR7WCbDJecACgpvHgEKnoJtAVEXCNu1g+W8p3B6BpjJAKYEzpgAtoyt0YGTlklEgIEocHJG7z8GoPcPx00EB9MV91V+AMYA1mChUz/QY0T0YCFS0t0oOG4DGWlNMSY/5yM0EGrBEXUPbnDIiET+RAFYMIHpZ3xwpztaVhkJA0zwYorn8hMT5eJBVVKoucMhTKYr8LYqOF5FhUnSvWRIQDgCQTaAN+vBGu6vVWNAV6FngsHPBD1VY4GQXmVbDJfvBE5sBE7NAAeOKZycBk5OA5uSwBtHFAAFwXVRJcaAdFanyaZiwDmbgOEkQyoK8D6aCOwVparVB45VToawmAG8uej6d9YDwgZYvMHg2AfM2kXOCWkLugppg2oFpZoSKMhI7/2JjISJzKHKzSp+xtdBQhfsqxUhAV5c3ebhGsFxLihX2l2MSw7hynILqtVQvgLjDIza2/QkbnOIsEDhZAFBPkB4a6hnWrfVi1t6O4o3m29rRXpCSOtIqQtrDieBszYyzKYVTk4z+BngbVuBfAHIeUA+DxR84MxJYDTFMBDrnXZ8/WwwDtimTq12LP33ZCEJcAblzwfIKuODb3Eb3hoWKL1yTMhao2HXBtWCpUYpXwG882nG7SAjQjewWyDIBjA2OF2RTincYup3LgDCy98vyAXgFl82oJcxidzRXNXbGhF4ujAbp32YPYkxBitlYu4Xc3A3u7DH7JUf1GOEXWwxIljPtiwjpNeFXQbXZnjjDeBtWzk4p89yL0tEgIFYZWo1XAnYAl5a7ztuNqUa0CvHVu90MiXrCH1ztQE3dQ7Raoox+RkfokvSjFtNuBLgqGh1VCps1Q0YYzASBvxs7dT4IB9ARuWye0ONsGxJQS5VUGAGo7TqHiajEjJqILwtpL8/+gwTuho9M3lfvn5CCFlvOGfYOMKQXlBiZy7gOFqQmD6pg+PCdKGplGqguOe4Oy4LSZ+hq5A24DYHNxgCr/l9x35W71XthjTjVhOu0BW9iy1rVKAAjq5aJTfiJtQKf78gH8CIL//NXW0vcjOUr8AFA6OCXD1LRiSccRv2eP+tGpeIiKQ2ToQQso6UUquPnFT45VsK03PA+BkmzhzRCwPTxxqvUl0SBLRyTDqD0qrbgFt69UPlFdBkXZ0g68MZt7sizbjVhMshSpWcHQE/G4DbYk36GNdLhkRFe52qgtoBvbDnMwjYKqotKk+BW6zv9qH2E3PARPIdib5eNTXCUqdX9/F7QAgh60kiogPkmTRw0XZgwzCDPW3i+A8AH4A0gFnbQDMNpBR0b21C1lr3RCM9hJu6T2dQrRF6nZSvaq5KrmdccsiYgdyRHAwYCDI+ZJelkAtXlNvrVEtnVkoBDDWLB3FbgFvFitWrWEUOvN4dC0RjjDIDuM3LxfAIIYR0P84Z3nGurkLu2vocVoAEtzh8AGMbDPxcmYgEqqmq5KJ7LgtJH6GrkDZgnEGGJIJCc/tNS3txuynNuNXMpFFOq/azAYyk2VV9XYUrwG3dXqeaIF+sVF0j6BUOhzD5qtt6KU/1ZHo9IQsZcQP2iEUZEoQQso5EioXYSmRYljMBN+10MDDAcex048/LGCDp0od0AF2FtIkIC6gmV46DXFBu79KrZEiW05aVF8DsspVRbnNIl8PP+lVvL7VxqrWvmBsc3BUtCI4DcIc+qqS3GTED0XOjnT6Mnud5Hn77t38b119/PXbt2oXjx49Xvd9bb72Fyy67DPfff/8aHyEhZD1jnMEa0AW4omMmdmximMsCea+xBSOlKDgmnUFX3G0iQ81XKvazAYQtdADZo4QrAD5ftEx00X5joFSx2iyvbi8W5IoF01YoHmREjWWfoxGC9mESQlrkwgsvxAMPPFDzPn/8x3+MM888c42OiBDSS2RxwcNMmtg0AmwcBg6faPx5BF36kA6gYdcmwuYrF3RaRpD1YcSNVRVx6nalXsLetAducsguXCU3YhLBMjOdQa52peoSGWlNOycqUkQIaQUpJW6//Xbs3Llz2fv88Ic/hFIKl1xyyRoeGSGkV9gjuvMCNzmkZDhnEwNnwGymvushP1DgnFaOSWd013JdD9G9jucLNzUiyAcwU433hFtPhCsgHI7csQLMpOyqYlwlIiTAin/DxVXDla9gRFf++IgWpUMzo3cnSggh3aNQKOCRRx7Bgw8+iK9//esr3j+fzyOfz1f8TEoJ0+ztc1g1QRBU/Lsf0XtA7wEAsOLaQek9GEoobJ9UeOkNIGxjxU4sSikYAhCcIQjW5/UPjYPuew84r++anILjNuE2B5MMylNNVaHtxpXUVmKcQcYMpF/PwNjidmURHuEKcINB5RWYtfRvWE+RLGEL3c4pUEATf1LlK4CxqhWzCSGk1Z588klcdtllmJycrOv+jz/+OB577LGKn91666247bbb2nF468L+/fs7fQgdR+8BvQdA5Xsw6ABXnlX/Y7emgJlT+p/1jMZB97wHmzdvrut+FBy3CTc5uMERFBREA8FxkA/ADdaVK6mtZiQMQDIYqe4qxlUiXAluCfi5AHzB3uLAC8AEq1mMq4Q7HNzU7ZyaKaqlPAVuUFo1IaQ+d955J/bt21f1to9//OP4xCc+sexjjx49imeeeQb/5//8n7p/38c+9jF86EMfqvhZP68c79+/H5OTk3WvUPQaeg/oPQCWfw++uy/AidPAcLL2dXE6pzCbBt5zCUPIWb8rxzQO1ud7QMFxm3BbB0UqHwCh+geEn/XBe7wYV4kMSZgxCaPLinGVCEtXDPemPSz8qATFYFnU0Y9V2AK82M6pmeA48BWY0FkIhBCykv/xP/5H04996aWXcOTIEfzar/0aACCdTiMIAhw6dAh/8id/UvUxpmn2ZSBcC+d8XV0ItgO9B/QeAEvfg2QEePMIoFbYb5jOKhiG7p3cTH/kbkLjYP29B90ZlfQALnWbHx1Y1S/IBDBTRl+sFApXwIibXb1KbiYN5I9W7qcrtXGqJ6261AvZm21sHJQoLwCTrC/GAyFkbeTzeV0PA3qPcS6Xg2VZeOc734m//uu/Lt/vL/7iL3Dq1Cn81m/9VqcOlRDSQyIuQ6BWLsqVzQMTg4Do4cK0pHtRcNxGMiRQOFGo677KV/BmPHgzBYS2h9p8ZN3BiEm4Gx3IOgpbdYqMGHq/8AJBPoA1bIHVOZspYxL5k/WNg8VUQe9Zp4JchJBWufnmm3Ho0CEAwPve9z4AwAsvvADTNDEwMFC+n+M4SKfTiMfjnThMQkiPCdm6TU4QqJorwvkCkIqt3XERslD3RiU9QEYkgsLyFdpKAXFhugAoff/Izijcjc4aHmXncIMjfGa404dRkyyuDi+sWB3k62vjVGJEDShvruptXtpHdn8a7tZQ1aJkyleQllyxsiMhhNTr2Wefret+n/zkJ9t8JISQfhJyANvUK8Ouvfz9AgDhdbrXmKx/FBy3EbeWT7sN8gEyBzIw4gbCZ4Zhj1gwU6aubky6hgjN7xkWpb9noLMC6n6OGj2vCyfzkHEDftoHj1YJjj0F4VJKNSGEEELWt5AN2Fbt4Ljg6TZOof5YJyJdiILjNqpVsKkwVYA9YiG1OwVRR9Vj0hnCFRA2R5DVwXGpb3UjfzNuC4BjSXq28hWUr2AmTRRmPBjRpY8NPAXh0seUEEIIIeubEAzxsMJbJ5a/TzYPOCYQpuCYdAgtSbURtzgYZ7pX7SLenA970qHAuMtxg+v0+GyxkXm+/mJcJcIptfWqTLEvnC7ASBgwB00EWb/6g5WCsOhjSgghhJD1LxXVe4qXk8kBbjH9mpBOoKvuNuIWBzPYkqAoyAfgksEaoE/+emAkTPj5YnBcbOPEG0h/5+V2TpWTJIXpAtyNDsyUuWzaNRSoGBchhBBCekLYZahVsDqbBwZioForpGMoOG4jboniiuHioMiDETdgJOov6kQ6R0YEUFz9D3IBhCMaWs3lJoNw9L7lEj/tQ9gC9qgNGRZ6EiVfpXgbA7VxIoQQQkhPCNkA54BfJasSADwfiIUoMCadQ1fdbcRNBm4yqEUrx/6cB2fCrlqdmHQf4crynuEg11ilakDPfsqohFoQ/BZOF2ANmTASBmRYQjgCfqYytbq0R5kbNE4IIYQQsv6F7GLF6iqp1aX+67TfmHRSQ1fdjz76KG699VZcfPHF+OY3v9muY+oZjDGIcGU7p6AQgHEGa9Dq4JGRRghXgFscQS6A8hWMJvoyy6hE4OlxoAKFIB/A3eiCMQZuchgxY2lw7CswST2OCSGEENIbXBtwLCCbW3pbrgBYBlWqJp3VUHA8OTmJe+65Bzt27GjX8fQcIyKhvPnUEW/agxGXMFKUUr1eCJdDFINj/f+NF1ETjizvK/ZmPMiohDU8P0FiDhrl5y9RBQVmcFo5JoQQQkhP4JwhEdF7ixfL5nXgHKrRA5mQdmvoqnvPnj249NJLYZpUSKpewhEVLXy8WQ/2hEMp1esIlxwyZsCb9cAEA2+iwriwOVBcAC5MF+BuqKxUbkSMJUW5lK/ABQOjPceEEEII6RHJiF4lXiybA6IhwKSMOdJBbWugms/nkc9XTgtJKfsvsLYAJXTU43s+lAEYAwaCoErxpR5Wer3r9XXLpEDhFwWYKRPMbPx1MJuBlRaKDcAcNSueg4UYmAP4eR+8WOzLDwIwE4BQ6/Z9W2i9j4FWoPegO98DzmkCihBC1krYYajWpiOT162eCOmktgXHjz/+OB577LGKn91666247bbb2vUru9cu/a/0hjlgA3Akexh4o7OH1Cn79+/v9CE0xwVwNZBHDgdPHARqNLBf1vn6X/6FHg6nq4yBC4ECFkyljul/vbn/zSZ+Wfdat2Ogheg96K73YPPmzZ0+BEII6RshB5AC8HwFKeZXiZUCIi6tGpPOaltw/LGPfQwf+tCHKn9ZH64c50/ncex7x+Bd4IG/IBDbHkV0Z/9NiwVBgP3792NycnJdrtLkjuVw7Hsn4IzbSL0z2fDjlVI4+t2jyG7NIhkkEdkcWXKfkz88hezhLOwRvdkmezgLe9RG8tLEqo+/G6z3MdAK9B7Qe0AIIf2uXLE6B4Rd/TM/UGCMKlWTzmtbcGyaZt8FwtUYtgEuBQAPLGCwh+y+viDknK/L12+EDEhTwIyZTR+/ETKRRRbOgFP1OcykiczrGTBVnDXNA9IR6/L9qmW9joFWoveA3gNCCOlXjqWrVmcWBMfZPOCYVKmadF5DVyae5yGXy0EpVf7vbto31o24xcGlDnaMiISZogmD9Ui4AjIqIUONF+MqkTH9WBmpPidlFH9e6vOnAqWrXBNCCCGE9AjGGJKLKlZnc4BjU6Vq0nkNBcef//zncdlll2Hfvn343Oc+h8suuwz/9E//1K5j6wlMsHKAY4/a4FR5eF1inCG8LQRzoPn+1OEt4Zq3y7AENzmCfHHCSQGcKjYSQgghpMfEIwwFb/7/s3kgEdGtngjppIaWpfbu3Yu9e/e26VB6lwjrFUNzsPnAinSeu9Fd1eNXmhgRYQHhcASZAMISAAMY9TgmhBBCSI8J2boAV0muAKSiFBiTzqMr7zUgS8ExpVSTGrjkMBIm/IxfTq2mlWNCCCGE9JqQDRgSyHuq4meEdBoFx2ugtMdUWPR2k9rMlIkgH0B5CkwwSsMnhBBCSM8JOboAVzYHFDwFKahSNekOdOW9Bpwx+rST+siIzjJQngKTDIxWjgkhhBDSY+xiZepsXletpkrVpFtQcExIF5ERCW5xeHM+mOTgtOeYEEIIIT2GMYZkVAfH2bwOjG3afUi6AF15E9JFZEhCOALejAcuVy7iRQghhBCyHsXDDAVfB8cDMR0wE9JpdOVNSBdhgsFMGfDnPHCTgwk6URBCCCGk94RsgAEoeEAsTNc7pDtQcExIlzGTJiAYuCM6fSiEEEIIIW0RcgBTAmBUqZp0j4b6HBNC2k+GdWq1cCk4JoQQQkhvCtmAbQGMU6Vq0j0oOCaky4iwhHAFhEOJHYQQQgjpTZbJEHYUOKNK1aR7UHBMSJeRYQEZluAGrRwTQgghpHelooAUgCFpzzHpDhQcE9JlGGcIbXJgxOjjSQghhJDeNZpiSERUpw+DkDK6+iakC4W3hzt9CIQQQgghbTUxxKBrVhPSHWhTIyGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvseUUqrTB0EIIYQQQgghhHQSrRwTQgghhBBCCOl7FBwTQgghhBBCCOl7FBwTQgghhBBCCOl7FBwTQgghhBBCCOl7FBwTQgghhBBCCOl7FBwTQgghhBBCCOl7FBwTQgghhBBCCOl7FBwTQgghhBBCCOl7FBwTQgghhBBCCOl7FBwTQgghhBBCCOl7FByv4H3vex9efPHFlj7ns88+i3/37/4drrjiCrz//e/H008/XfV+TzzxBHbt2tXy39+sRx99FLfeeisuvvhifPOb3yz/vN7XU/Lzn/8ct99+Oy677DLccccdOHToUPm2bDaL++67D1dccQXe+9734hvf+EbbXk8jOjEOdu3ahcsvvxy7d+/G7t278b//9/9u6e9vFo2DtR0Hs7Oz+P3f/31cc801uOqqq/DZz362pb+/Wf08DkhvovO91u+fbTrfazQO6HwP9Ok4UKSmG264Qf30pz9t6XM+/fTT6qc//akqFArq1VdfVe9+97vVj3/844r7HDlyRH3wgx9U1113Xct/f7P+9m//Vv3whz9Uv/7rv66+8Y1vlH9ez+spyeVyas+ePeprX/uaymaz6pFHHlGf+MQnyrc//PDD6q677lIzMzPqJz/5ibryyivV66+/3vbXtpJOjIOLLrpIHTt2rKW/sxVoHKztOLj33nvVgw8+qGZmZlShUFAvv/xyS39/s/p5HJDeROd7rd8/23S+12gc0Pleqf4cB7RyXKe9e/fiiSeeKP//s88+i7vuugsA8MILL+Dmm2/Gn/7pn+Kaa67BjTfeiB/96EfLPtfNN9+MnTt3QkqJrVu34u1vfzteeumlivv81//6X/HJT34Spmm25fU0Y8+ePbj00kuXHFM9r6fkxz/+MRzHwfvf/35YloX/8B/+A1566aXyDNLXv/513HHHHQiHwzjvvPNwxRVX4Fvf+lbbX1u91nocdCMaB2s3Dn75y1/iX/7lX/Bbv/VbCIfDkFLirLPOautrqxeNA9Kr+v18T59trd/P9zQOtH4/3/fjOKDguEUOHDgA13XxrW99Cx/96EfxB3/wB3U9zvd9/PznP8eWLVvKP3vhhRcwNTWFq6++ul2H2zbVXs+//bf/tpwi8dprr2Hbtm3l2xzHwcTEBF577TVMT0/jxIkTFbdv374dr7322tq9gFVq5TgAgA9/+MO4/vrrsXfvXpw+fboNR9weNA5aMw5efvllbNiwAffddx/e9a534SMf+Qj27dvXzkNvqX4fB6Q30fmePtsAne8BGgcAne+B3hsHFBy3SDgcxoc+9CFIKbFnzx4cPHgQ6XR6xcf9z//5PzE4OIh3vOMdAADP8/DHf/zHuPvuu9t9yG2x+PUAwJe+9CW85z3vAQBkMhmEQqGKx4RCIWQyGaTTaQghYNt2xW31vI/dolXjAAAee+wx/M3f/A3+8i//EtlsFr//+7/fzkNvKRoHrRkHR48exf/9v/8Xb3/72/HNb34TH/3oR3Hvvfdiamqq3S+hJfp9HJDeROd7+mwDdL4HaBwAdL4Hem8cUHDcIvF4HIwxACj/gdPpNPbt21cusPCpT32q4jFPP/00/v7v/x4PPPBA+bF/9Vd/hfPPP79iBmW9qPZ6FnMcB3NzcxU/m5ubg+M4cF0Xvu8jm81W3Oa6bluPu5VaNQ4A4IILLoCUEolEAvfeey+ef/55FAqFtXsxTaJx0LpxYFkWxsfHcdNNN0FKiWuuuQbj4+NdUbRnJTQOSK/q9/M9fba1fj/f0zjQ+v1834vjQHbsN68zjuNU/OFOnDhR1+MuuOACfP/731/y829961t4/PHH8dhjjyEej5d//sILL2Dfvn34zne+AwA4deoUPv3pT+M3f/M3ceONN67uRbTRcq9nsS1btuCrX/1q+f8zmQwOHDiALVu2IBqNIpVK4dVXX8W5554LAHjllVeWpB510lqNg8U41/NYSqnGDniN0TiordFxsHXr1lUfayf0yzggvYnO98vrp882ne+XR+NgZf1wvu/VcUArx3Xavn07nnvuOczOzuLAgQN45plnmn6uH/3oR3jwwQfx8MMPY2xsrOK2vXv34stf/jKefPJJPPnkkxgcHMTv/d7v4brrrlvtS1g1z/OQy+WglCr/dxAENV/PYhdddBEymQyeffZZ5PN5/Nmf/RnOOeccjI6OAtAb/7/4xS9ibm4OL774Ip577jm8+93vXouXV5e1Gge//OUv8corr8D3fUxPT+Ohhx7CJZdc0hUFW2gcrN042LVrF5RS+Ju/+Rv4vo9/+Id/wMGDB7Fz587VvoRVo3FAelW/n+/ps631+/mexoHW7+f7fhwHFBzXgTGGPXv2YHJyEu9973vx2c9+Fv/m3/ybpp/v8ccfx/T0ND7+8Y+XUy7uv/9+AEAkEsHAwED5H845YrFYRS5+p3z+85/HZZddhn379uFzn/scLrvsMvzTP/1TzdcDALfddhv+7u/+DgBgmiYeeOABPPnkk7j66qvxz//8zxV7az75yU8iHA7jPe95Dz7zmc/gM5/5DDZt2rTWL7WqtRwHJ0+exGc+8xlceeWVuPXWW8E5x969e1v0SlaHxsHajQMpJR566CF8+ctfxlVXXYVHH30UDz74IGKxWKteTtP6fRyQ3kTne/psA3S+B2gcAHS+B/pzHDDVzXkbXeBd73oXHn/8cWzYsKHTh0I6iMYBAWgcENLL6PNNABoHRKNx0L9o5biGF154AQDKy/6kP9E4IACNA0J6GX2+CUDjgGg0DvobFeRaxhe+8AX86Ec/wmc/+1kYhtHpwyEdQuOAADQOCOll9PkmAI0DotE4IJRWTQghhBBCCCGk71FaNSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGEEEIIIYSQvkfBMSGE9IF8Po/f+73fw549e3DllVfijjvuwKuvvlq+/YknnsC1116La665Bo888ghKtRo9z8Nv//Zv4/rrr8euXbtw/Pjxiuc9ePAg7rzzTlx11VW4/vrr8fjjj9c8jkcffRT3339/y1/f66+/jk9/+tN417vehWuvvRb33XcfpqenK+7zzDPP4AMf+AAuv/xy3HLLLXjjjTdafhyEEEJIp9C5fvXnegqOCekSd9xxB3bt2oU77rij04dCepDv+xgfH8fjjz+Ov//7v8cVV1yBe+65BwDwgx/8AE8//TSeeOIJfPnLX8YPfvADPPPMM+XHXnjhhXjggQeqPu+DDz6I8fFxfPvb38YXv/hFPPXUU/jHf/zHNXlNC83OzuLaa6/FX//1X+PZZ59FoVDAww8/XL79ueeew1/8xV/gj/7oj/D9738fDz/8MOLx+JofJyGE0PmetAud61d/rqfgmJB17IUXXsCuXbuwa9cuvPXWW50+HNLFHMfBJz7xCQwPD0MIgQ9+8IN46623cPr0aXz961/HLbfcgomJCQwMDODDH/4w/u7v/g4AIKXE7bffjp07d1Z93kOHDuG6666DlBLj4+M4//zz8dprr9V1TC+88AJuvvnmip8tnLF+3/veh7/8y7/ELbfcgquvvhoPPvjgss917rnn4oYbbkA4HIbjOLjpppvw85//vHz7F7/4Rdx9993YunUrGGOYmJhALBar6zgJIaTT6HxP6kHn+tWf6yk4JoSQPvTTn/4UyWQS8Xgcv/rVr7Bt27bybdu3b6/7pHfrrbfim9/8JvL5PN588028+OKL2LVrV8uO87nnnsMXv/hFfOlLX8K3vvUt7Nu3r67H/fSnP8WWLVsA6Jn0f/3Xf8Wrr76KPXv24MYbb8Rjjz1WTicjhBBCehGd6xs/18uGj54QsmrT09O4//778f3vfx/xeBwf+9jHltznkUcewfPPP4+jR48ik8kgkUjgkksuwV133YWBgQE8+uijeOyxx8r3v/HGGwEAN9xwA/bu3YsgCPDUU0/hq1/9Kg4cOADLsvD2t78dn/rUpzA+Pr5mr5V0n9nZWdx///34jd/4DQBAOp1GOBwu3x4KhZBOp+t6rvPOOw9PP/00du/eDd/3cccdd1ScfFfr9ttvL6dEXXTRRXjllVdwwQUX1HzMv/7rv+Kpp57Cn/7pnwIATp48Cd/38f/+3//DU089hbm5OXzqU5/C8PBw+XNDCCHtQOd70il0rm/uXE8rx4R0wH/5L/8F3/72t5HL5WDbNh555BG8/PLLFfcpnSiHh4cxOTmJEydO4G//9m9x9913AwCGh4exefPm8v23b9+Oc889FxMTEwCABx54AA899BBee+01TExMgHOO73znO/j4xz+OkydPrt2LJV0ll8vhnnvuweWXX473v//9AADXdTE7O1u+z9zcHFzXXfG5fN/Hb/7mb+Kmm27C888/j2eeeQbf/va38e1vfxsAcNttt2H37t3YvXs3Dh8+3NTxJpPJ8n/bto1MJlPzuQ8ePIi7774b9913H7Zu3QoAsCwLAPDrv/7riEQiGBkZwa233ornn3++qWMihJB60fmedAKd65s/19PKMSFr7MCBA/jud78LQH+A77rrLrz++uv44Ac/WHG/L3zhC9i6dSs413NYX/va1/D5z38eL730Eg4cOICbbroJExMT+I//8T8CAP7oj/4IY2NjAPSXxle+8hUAwN69e3HDDTcgnU7j1ltvxZEjR/DUU0/hP/2n/7RWL5l0Cc/z8Lu/+7sYHBzEpz/96fLPN2/ejFdffRWXX345AOCVV14ppynVMj09jWPHjuGWW26BlBJjY2O46qqr8OMf/xjXXnstvvzlL9d8vOM4yGaz5f9fXB2zlmrPffz4cdx555349//+3+Oqq64q/zwajWJwcLDivpRSTQhpNzrfk06gc/28Zs71tHJMyBr75S9/Wf7va665BgCwadMmnHHGGRX3e+WVV/CRj3wEu3fvxq5du/D5z3++fNuxY8dq/o6XX365/IWwd+9e7Nq1C1dccQWOHDkCAHjxxRdb8lrI+vKFL3wBuVwOe/fuBWOs/PM9e/bgK1/5Cg4ePIjjx4/jySefxPXXX1++PZ/PI5fLAQAKhUL5vxOJBIaHh/G1r30NQRDgyJEj+Id/+IfyLO5KNm7ciKmpKfz4xz9GPp/Hn/3ZnzX92mZnZ3HXXXfhve99L37t135tye033HAD/vzP/xxzc3M4duwYvvKVr5QvEAghpB3ofE86gc71qzvX08oxIWts4SzWwi+thT//yU9+gr1790IphVgshs2bNyOTyeBXv/oVAJ3iUu/v2L59O0zTrLh9dHR0Va+BrD+HDh3Cs88+C8uycPXVV5d//t/+23/D5Zdfjl/84hf4yEc+giAIcNNNN1Xsz7n55ptx6NAhALqqJKCrTwLAH/7hH+Khhx7Cn/zJn8C2bVx33XX4wAc+UPNYSuM+HA7j3nvvxe/8zu+Ac47//J//M/7qr/6qqdf3ve99D7/4xS9w4MAB/Pmf/3n559///vcB6NYpf/iHf4g9e/bAdV3cdNNNuOGGG5r6XYQQUg8635O1Ruf61Z/rmaLcMkLW1P79+8tfKB/72Mdw55134o033sBtt90G3/dx4YUX4oorrij3bfvGN76BgYEBPPHEE/jv//2/AwD+1//6X9i1axd+9rOf4aMf/SgA4KmnnirP4h04cAAf+MAHoJTCPffcg9tvvx2APon+8z//M0Kh0JKZa0LWwsMPPwzDMHDnnXd2+lAIIaSt6HxP+tV6PtfTyjEha2xychJXXXUVvve97+Hxxx/Hd7/7XRw5cgRCiPIM8cIKgB/84AeRSCRw6tSpJc81MTEBKSU8z8Nv/MZvYHR0FB/+8Idx7bXX4qabbsJXv/pVPPTQQ/jSl74Ex3Fw6NAhzM3N4XOf+xydLMmam52dxQ9/+EPccccdnT4UQghpOzrfk3603s/1tOeYkA647777cM0118CyLMzOzuKTn/wkzj333PLtl156Ke666y4MDg4il8th06ZN+MxnPrPkeeLxOO69914MDw/j5MmT+NnPfoYTJ04AAH7nd34Hd999N7Zt24Zjx47h0KFDGBsbw4c+9CFcdNFFa/ZaCQGAffv24cYbb8SOHTtw5ZVXdvpwCCFkTdD5nvSTXjjXU1o1IYQQQgghhJC+RyvHhBBCCCGEEEL6HgXHhBBCCCGEEEL6HgXHhBBCCCGEEEL6HgXHhBBCCCGEEEL6HgXHhBBCCCGEEEL6HgXHhBBCCCGEEEL6HgXHhBBCCCGEEEL6HgXHhBBCCCGEEEL6HgXHhBBCCCGEEEL6HgXHhBBCCCGEEEL6HgXHhBBCCCGEEEL63v8H7HA+4b5VETwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9kAAAIgCAYAAACRXqqPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d3ykVdn//zn3PT09m2yv9CpVpEgVxKUooICCCKI8IhaqCvqlKaJUAdEHpC2KXR9UfiIiCChSVpalL2XZls2mJ5Opdz3X748zNVMyk2Q3k+R6v1772sldz5y5y/mcqwkiIjAMwzAMwzAMwzAMM260yW4AwzAMwzAMwzAMw0wXWGQzDMMwDMMwDMMwzATBIpthGIZhGIZhGIZhJggW2QzDMAzDMAzDMAwzQbDIZhiGYRiGYRiGYZgJgkU2wzAMwzAMwzAMw0wQLLIZhmEYhmEYhmEYZoJgkc0wDMMwDMMwDMMwEwSLbIZhGIZhGIZhGIaZIFhkM8wYWbFiBYQQJf89/fTTuOaaa8puk/53xBFHVLwdABxxxBHYY489KmrnbbfdhlNOOQXLli3LO8Z4SH+v/v7+ouuffvppCCHwhz/8oej6r371qxBC5C1bunQpTjjhhLLnPeecc1BfXz+2RjMMwzBMlUyFd/27776Lyy67DPvttx+am5vR2tqKQw45pOQ7uFL4Xc8wY8cz2Q1gmKnOAw88gF122aVg+W677YYddtgBH/vYxzLLurq6cMopp+BrX/sazjjjjMxyy7Lg8/lG3a6xsbHq9t11112oq6vDUUcdhUceeaTq/RmGYRhmplPL7/rHH38cf/3rX3HWWWfhgx/8IBzHwW9/+1uceuqpuPbaa3HVVVdVdTyGYcYPi2yGGSd77LEH9t9//6LrGhsbsXDhwszfGzZsAAAsXrwYBx54YMljVrpdJbz11lvQNC3TVoZhGIZhqqOW3/Wf/vSn8ZWvfCXParx8+XL09/fjhhtuwLe+9S34/f4xH59hmOphd3GGmcL897//xaGHHopQKITtttsOP/zhDyGlzNsmLbAZhmEYhpl6jPaub2trK3DLBoADDjgAiUQCg4OD27K5DMOARTbDjBvXdeE4Tt4/13W3+nm7u7tx5pln4rOf/Sz+8pe/YPny5bjiiivw0EMPjel4GzZsgBAC55xzzsQ2lGEYhmGmOFPxXf/UU0+hvb0ds2fPzizjdz3DbBvYXZxhxkkxFy9d1+E4zlY978DAAB599FEccMABAICjjz4aTz/9NH71q1/hc5/7XNXHE0JA13Xouj7RTWUYhmGYKc1Ue9ffe++9ePrpp3H77bfnvdf5Xc8w2wYW2QwzTn7+859j1113zVtWzG1ropk7d27mpZvmAx/4AF555ZUxHW/JkiVbfbDAMAzDMFORqfSu/9vf/oavfOUr+NSnPoWvfe1reev4Xc8w2wYW2QwzTnbdddeSyVC2JrNmzSpY5vf7kUwmt3lbRuLxqEdLKVc6x3Ey2zAMwzBMrTNV3vV///vfccopp+CYY47BL3/5y606EcDveoYpDcdkMwwz4cyZMwcA0NnZWXR9Z2dnZhuGYRiGYcbP3//+d5x00kk4/PDD8cc//jGvXNjWgN/1DFMaFtkMw0w4O+64I5YsWYLf//73IKK8dX19fXjqqadw9NFHT1LrGIZhGGZ68fjjj+Okk07Chz/8YfzpT3/aJiW7+F3PMKVhHw6GGSdvvPFG0fim7bffHu3t7ZPQonxeeumlTC3OSCQCIsIf/vAHAMAHP/hBLFmyBACwceNGbL/99jj77LNx3333VXTsRx55BA0NDQXLP/WpT+Hmm2/Gaaedho985CM477zzMHfuXLz33nv44Q9/CJ/PhyuvvLJgv+7u7kzbclm6dGnGTc913aLb1NXVYfny5RW1m2EYhmGqoZbf9c8++yxOOukkzJ07F9/+9rcL4rV32203NDY2AuB3PcNsK1hkM8w4+fznP190+T333IMvfvGL27g1hdx555148MEH85adeuqpAIAHHnggU8aDiOC6blUlSc4999yiy4kIn/rUp/CPf/wDN954Iy644ALEYjG0t7fjIx/5CK6++mpsv/32BfutWrUq07Zczj77bKxYsQIAYBhG0W2WLFmSmUxgGIZhmImklt/1TzzxBJLJJDZs2ICjjjqqYP1TTz2FI444AgC/6xlmWyFopH8HwzAMwzAMwzAMwzBjgmOyGYZhGIZhGIZhGGaCYJHNMAzDMAzDMAzDMBMEi2yGYRiGYRiGYRiGmSBYZDMMwzAMwzAMwzDMBMEim2EYhmEYhmEYhmEmCBbZDMMwDMMwDMMwDDNBsMhmGIZhGIZhGIZhmAmCRfYUQkqJ9evXQ0o52U2ZNLgPuA8A7gOA+wDgPmCmJ3xdcx8A3AcA9wHAfQBM3T5gkc0wDMMwDMMwDMMwEwSLbIZhGIZhGIZhGIaZIFhkMwzDMAzDMAzDMMwEwSKbYRiGYRiGYRiGYSYIFtkMwzAMwzAMwzAMM0GwyGYYhmEYhmEYhmGYCYJFNsMwDMMwDMMwDMNMECyyGYZhGIZhGIZhGGaCYJHNMAzDMAzDMAzDMBMEi2yGYRiGYRiGYRiGmSBYZDMMwzAMwzAMwzDMBMEim2EYhmEYhmEYhmEmCBbZzJhZsWIFmpubJ7sZOOecc3DSSSdNdjMYhmEYhmEYZtLgsXntwCKb2Wps2LABQgi88sorE3Y8Xdfx1ltvTcjxGIZhGIZhGGamsDXG5hN5vOkEi+wpjGVZk92ECWG6fA+GYRiGYRhm5jJdxrTT5XtMJiyya4RoNIozzzwTdXV1mDdvHn70ox/hiCOOwEUXXZTZZrvttsOdd96Jz3/+82hqasJ5550HAPjjH/+I3XffHX6/H0uXLsUtt9ySd2whBP70pz/lLWtubsaKFSsAZGeh/u///g9HHnkkQqEQ9tprLzz//PN5+6xYsQKLFy9GKBTCySefjIGBgbLfadmyZQCAffbZB0IIHHHEEQCyLiQ/+MEPMH/+fOy0004VtTN9vBNOOAG6rmeOl+bmm2/GvHnzMGvWLHzlK1+Bbdtl28cwDMMwDMMwxahkbL506VJcd911OOecc7ba2PyMM85AfX19TY/NRx4vzUwem3smuwHbgv333x/d3d3b/Lxz587FSy+9VNG2l1xyCf7zn//gL3/5C+bMmYOrrroKL7/8Mvbee++87X72s5/hqquuwpVXXgkAWLVqFU477TRcc801OP300/Hcc8/hggsuwKxZs3DOOedU1d7vfOc7uPnmm7HjjjviO9/5Dj7zmc9g7dq18Hg8ePHFF3Huuefi+uuvxymnnILHHnsMV199ddnjrVy5EgcccACeeOIJ7L777vD5fJl1Tz75JBobG/GPf/wDRFRR+9LH+8UvfoGjjjoKgUAgs+6pp57CvHnz8NRTT2Ht2rU4/fTTsffee2cedgzDMAzDMExtUOnY3HVd6Lo+YefdGmPzm266CVdeeSX+3//7fwAmdmx+5ZVX4rLLLsMhhxyCK6+8smbH5sWON9PH5jNCZHd3d6Ozs3Oym1GSaDSKBx98EL/61a/wkY98BADwwAMPYP78+QXbHnzwwbj00kuhacoJ4cwzz8RHPvKRjOjeaaed8NZbb+Gmm26q+ka+7LLLcPzxxwMArr32Wuy+++5Yu3YtdtllF9x+++049thjcfnll2fO89xzz+Gxxx4rebz29nYAwKxZszB37ty8dXV1dbj33nvzbsbRSB+vpaUFc+fOzfRBetmdd94JXdexyy674Pjjj8eTTz45Y25khmEYhmGYqcJ0GpsfddRRuOyyyzJ/T+TY/JJLLsFRRx2FJUuW1PTYvNjxZvrYfEaI7JE/eq2dd926dbBtGwcccEBmWVNTE3beeeeCbffcc8+8v9esWYNPfOITecsOOeQQ3HbbbVXP/n3gAx/IfJ43bx4AoLe3F7vssgvWrFmDk08+OW/7gw46qOyNXI4999yzqpt4NHbfffe87zpv3jy8/vrrE3Z8hmHGzm9/+1u89NJL+Na3voW2trbJbg7DMAwzyVQ6Rt4aluxKqGZsvv/+++f9zWNzxUwfm88IkV2pW8hkkXbJEEIUXZ5LMBgs2Ga0/YQQBcuKxUR4vd68fQBASlmyLeOhrq6uYFml7SxGbtvTx0q3nWGYyWPjxo0488wz4boufD4fvv/97092kxiGYZhJppKxuZQSGzduxJIlS/K8F7cF1YzNR45pxzM2d2JO3jIem09dOPFZDbD99tvD6/Vi5cqVmWWRSATvvffeqPvutttuePbZZ/OWPffcc9hpp50ys0ft7e3o6urKrH/vvfeQSCSqauNuu+2GF154IW/ZyL9Hkp4Nc123onOM1s5qj8cwzOSzcuXKzD27bt26SW4NwzAMw4zOZI3Nk53JisUzj81rmxlhya51GhoacPbZZ+Mb3/gGWltbMXv2bFx99dXQNK1gJmwkl156KT74wQ/ie9/7Hk4//XQ8//zzuPPOO/HTn/40s81RRx2FO++8EwceeCCklPjWt75VMLs0Gl//+tdx8MEH48Ybb8RJJ52Exx9/fFR3lNmzZyMYDOKxxx7DwoULEQgE0NTUVHL70dqZPt6//vUvfPCDH0QoFCp7PIZhJp9c17BYLDaJLWEYhmGYypissbm0CGRXJrJraWxe6fFmEmzJrhFuvfVWHHTQQTjhhBNw9NFH45BDDsGuu+6al0G7GPvuuy9+97vf4Te/+Q322GMPXHXVVfjud7+bl1jhlltuwaJFi3DYYYfhjDPOwGWXXYZQKFRV+w488EDce++9+PGPf4y9994bjz/+eCaLYik8Hg/uuOMO3H333Zg/f35BfMpIRmunx+PBbbfdhl/96ldYuHDhqMdjGGbyyRXZ0Wh0ElvCMAzDMJWzzcfmgRCkLSHtylyqa2VsXs3xZhKCJtqhn5kQ4vE4FixYgFtuuQVf+MIXAExubEqtwH3AfQBwHwBTpw922GEHvP/++wDUwGPVqlUTduyp0gcMUw18XXMfANwHQO31QbGx+UQy+MIgkh1JzD5mNrzNylpca30wGUzVPmB38Rph9erVePvtt3HAAQdgeHgY3/3udwGAZ4QYhpmyxOPxvDhstmQzDMMwU4VtPTZ3oi6kjYot2UxtU5XItiwLP/jBD/Diiy8iHo9j5513xje/+U3ssMMOBdveeuuteOaZZzA0NIQlS5bg4osvxr777gtAZRT88pe/nOducccdd2CfffYZ59eZ2tx8881455134PP5sN9+++Hf//43l7thGGbK8tZbb+UlcGGRzTAMw0wlttXYXNoS0nRBroS02Ml4OlCVyHZdFwsWLMADDzyAtrY2/PrXv8all16KP//5zwXb1tfX484778SCBQvwz3/+E5dddhkeeeSRTHr4xYsX449//OPEfItpwD777DOhbpQMwzCTzch6mJz4jGEYhpkqbMuxuTSVuCaHQGzJnhZUJbKDwSC++MUvZv4+/fTTcfvttyMcDqO5uTlv2//5n//JfD766KNxyy23YNOmTdh1112rbqRlWbAsK7/hHs+EFkyfCqRry82kGnMj4T7gPgC4D4Cp0QevvfZa3t+xWAyO40xYTFWt9cFUihVjGIZhagclsiWEJiArzC7O1Dbjisl+7bXX0NraWiCwR7JlyxZEIhEsWrQos6yrqwvHHHMM6uvrcdxxx+Hcc8/N1I4byQMPPIB77rknb9mpp56K0047bTzNn7J0dHRMdhMmHe4D7gOA+wCo7T7473//W7BszZo1qK+vn9Dz1EofLFu2bLKbwDAMw0xBXEOCXILwCEiLa05PB8YssmOxGK6//npccMEFZbdzHAfXXHMNzjrrrMzAaunSpfjVr36FxYsXY8OGDbj88ssRCoVw5plnFj3G5z//+YJ1M9WS3dHRgUWLFs1Yiwn3AfcBwH0ATI0+WLt2bcGylpYWzJ8/f0KOPxX6gGEYhmFGQ5ouQIDwCLjJ2vDOYsbHmES2aZq49NJL8eEPf7hshj0iwjXXXIOWlpY89/G2trZM0oDtttsOX/jCF/CHP/yhpMj2+XwzTlCXQ9O0GT+g5D7gPgC4D4Da7YPe3l709vYWLE8kEhPe3lrtA4ZhGIapBGlKQKRFNluypwNVi2zHcfDtb38b7e3tuOiii8pue+ONN6Kvrw8//vGPyw6AeHDEMAwzvRiZ9CwNZxhnGIZhmHycmAuhCwiPBmmwJXs6ULW6/f73vw/TNHHNNddACFFyu7vvvhuvvvoqbrnllgIr9EsvvYTu7m4AwKZNm3Dffffhwx/+cLVNYRiGYWqUXJE9a9aszGcW2QzDMAyTjxN1oPk0aB6RKuXFyc+mOlVZsru6uvDII4/A7/fjyCOPzCy/44470N3djQceeAC/+93vAAD33HMPfD4fli9fntnu29/+NpYvX463334bV155JaLRKFpbW3HccceVdBVnGIZhph65Ivvggw/GI488AoBFNsMwDMPkQi7BTSiRLTwCrkGQloQeLJ4QmpkaVGXJnjdvHl566SX85z//wb///e/Mv3322QfLly/PCGxAWaufe+65vO3Sgvuzn/0s/va3v+HZZ5/FX/7yF5x//vnweMaV6HxKI4Qo+++cc84BADz11FM444wz0NbWhlAohB133BFnn302HMcBADz99NMQQqClpQWGYeSdY+XKlZnjTSTPPPMM9ttvPwQCAWy33Xa46667Rt1n06ZNOPHEE1FXV4e2tjZ8/etfzyvRtmHDhqL98Nhjj01Im3/6059i2bJlCAQC2G+//fDvf/971H1+8pOfYNddd0UwGMTOO++Mn//853nrV6xYUbTNI38HhpkppEW2EAIf+tCHMsu5VjbDMAxT61QzNj/yyCPR2to65rG55tEgbYLwCgiPALlyXGW8eGyumOyx+cxVtjVEV1dX5vNvf/tbXHXVVXjnnXcyy4LBIN58800cf/zxOPvss3H33Xejrq4O7733Hv7whz8U1IhtaGjAww8/jM985jOZZffffz8WL16MTZs2TVi7169fj+OOOw7nnXceHnroIfznP//BBRdcgPb2dnzyk58suo/rujj++OPR3t6OZ599FgMDAzj77LNBRPjxj3+ct+0TTzyB3XffPfN3a2vruNv829/+FhdddBF++tOf4pBDDsHdd9+N5cuX46233sLixYuL7vO///u/uOKKK3DPPffggx/8IFauXInzzjsPLS0tOPHEEzPbNTY25v1uABAIBMbdZoaZakgp8eabbwJQyS3nzp2bWceW7JnF3XffjSeeeAIbNmzAddddh2OPPXaym8QwDDMqlY7Nly9fjq9//ev48Y9/jGAwOOaxubQkvM1eAADZBLLHFpfNY/MaGpsTU1M88MAD1NTUVLD8Rz/6ES1dupTWrVtHrusW3fepp54iAPT//t//o6OPPjqzPJFIUFNTE1155ZVUzU/+wAMP0KJFiygYDNJJJ51EN998c17bvvnNb9Iuu+ySt8+XvvQlOvDAA0se89FHHyVN06izszOz7Ne//jX5/X4aHh4mIqL169cTAFq9enXB/q7rluwDx3Ho4osvpqamJmptbaVvfOMb9LnPfY4+8YlPZLY54IAD6Pzzz8/bb5dddqHLL7+8ZJsPOugguuyyy/KWXXjhhXTIIYdk/i71u20NyvXBTIH7oLb7YO3atQSAANBJJ51Ev/3tbzN/33zzzRN2nlruA0bx17/+lZ5//nk6++yz6bHHHpvs5kwJ+LrmPiDiPiCqnT4YbWxejkrH5pse6qC+f/VT37/6aeNDHZTsMoiosA9qcWxejokYmxe7DmptbF6MGWHJ3v88ie7BbX/eua3AS/dMTOb0uXPnoqurCytXrsSSJUvKbnvWWWfhpptuwqZNm7B48WL88Y9/xNKlS7HvvvtWfL4XX3wR5557Lq6//nqccsopeOyxx3D11VfnbfP888/jox/9aN6yY489Fvfddx9s24bX6y047vPPP4899tgjr07uscceC9M0sWrVqrxY/49//OMwDAM77rgjLr74YnzqU58q2+ZbbrkF999/P+677z7stttuuOWWW/Dwww/jqKOOAgBYloVVq1bh8ssvz9vvox/9KJ577rmSxzVNs2DWKxgMYuXKlXnfMxaLYcmSJXBdF3vvvTe+973vYZ999inbZoaZjuTGY++5556or6/P/M2W7JnFcccdB0BZbEbDsqw890QA8Hg8M66EZ9oCNtISNpPgPpj+fXDA/6CCsTnBdRdA1wnAxPTD3FZg5c+q26fUbzF79mx0dXXh6aefxmGHHVZ23zPPPBM33XQTNmzYgMWLF+P3v/89li5dir333hsAQBplg3h1gms5kNKbd+702Pz73/8+Tj75ZPz973/HNddck3ee559/Hsccc0xeW4855hjcd999ME2z6Nj8ueeewx577IG5c+dm9jvmmGNgmib++9//4sgjj8wszx2bX3jhhaOOzW+++Wbcf//9uOeee7Dbbrvh1ltvxcMPP5w5Znps/s1vfrOgzc899xyklEX73zRN+P3+vGWBQAArV67MfE8pZd7YfK+99sJ3v/vdCRmbV1IZa0aI7O5BoLNvslsxPk499VQ89thj+PSnP42LLroIBx54ID7ykY/gc5/7HBobG/O2nT17NpYvX44VK1bgqquuwv33349zzz23qvPdfvvtOPbYYzOCdKeddsJzzz2XF3vR3d2NOXPm5O03Z84cOI6D/v5+zJs3r+C4xfZpaWmBz+fLZJyvr6/HrbfeikMOOQSapuEvf/kLTj/9dDz44IM444wzSrb5tttuwxVXXJFxh7nrrrvw97//PbO+v78frusWbXP63MU49thjce+99+Kkk07Cvvvui1WrVuH++++HbduZ77nLLrtgxYoV2HPPPRGJRHD77bfjkEMOwauvvoodd9yx5LEZZjoyUmQ3NDRk/uaYbKYUDzzwAO655568ZaeeeipOO+20SWrR5NLR0THZTZh0uA+mbx909i1A99BoMkRgoqWK6zrYuLGzqn0GBgYgpcTGjRvzlh9wwAE44YQTcOSRR6K9vR377LMPDj74YJx88smZ915PTw8AJQoPP/xw3H777fj617+Ou+66C5/4xCfQ16cEinuggygi6sDzgV63F8g5XUdHB37wgx/gsMMOw6c//WkASvA+8cQTeOaZZzJt6+jowAEHHJDXViKC4zh45ZVXMHv27ILvt3btWjQ2NhZ8P5/PhzfeeAPbbbcdhoaG8J3vfAf7778/hBB48skn8ZnPfAadnZ046aSTSvbdrbfeii996UvYf//9AQCXX345/va3vyGZTGLjxo3o6emB67ogorzz+3w+dHR05C3LvRc+9KEP4Wc/+xkOOOAA7LHHHnj99ddx7733wrbtzPdsbm7GTTfdhJ133hnRaBQrVqzAhz/8Yfz1r3/FsmXLSra5EirZf0aI7LnjDxeY9PPquo77778fX/rSl/Duu+9i5cqV+P73v48bbrgBK1euLBC05557Li688EJ89rOfxfPPP4/f//73FSURSLNmzRqcfPLJecsOOuigggQHIxOpEVHR5eX2Se+XXt7W1oaLL744s27//ffH0NAQbrzxRpxxxhno7OzEnnvumVn/7W9/G1/5ylfQ1dWFgw46KLPc4/Fg//33z7SpXJvLtffKK69Ed3c3DjzwQBAR5syZg3POOQc33ngjdF1lfjzwwANx4IEHZvY55JBDsO++++LHP/4x7rjjjpLHZpjpyEiRnZtkhC3ZTCk+//nPF1QamamW7I6ODixatKgia8l0hPtg+vfBgnZAHzV5NsF13dRYa2IS985t9YzqETqSWbNmQdO0ovv97ne/Q2dnJ/75z3/ixRdfxF133YV7770XL7zwAubNm4f169cDABYtWoQLLrgAF198Mb7yla9g9erV+POf/5wZm3te8iI4PwgASHQk0LR3Exp2qs+7Djo6OnDSSSflteMjH/kI/v3vf2eWeb1etLa25m2zefPmTBtyc6Skqa+vRzAYLPh+RIT29nYsWbIES5YsybMAn3jiiZBS4oEHHsCFF16ITZs2YY899sisv+KKK3DBBRegt7cXy5cvzzv2AQccACLCkiVLMpb1efPm5W3T3NwMn8+HJUuWFL0XbrrpJiSTSXzyk5/MjM3PPfdc3HTTTViyZAlmz55d8H0++clPYv/998fDDz+M22+/vaAfJpoZIbInymW7Fpg7dy4+9KEP4eyzz8Z1112HnXbaCXfddReuvfbavO2OO+44fOlLX8IXvvAFnHjiiXl1aithpDAt1ZaRFuDe3l54PJ6S55s7dy5efPHFvGVDQ0OwbbvAwpzLgQceiHvvvReAsjy//PLLmRut0qQLbW1t0HW9aJvLnTsYDOL+++/H3XffjZ6eHsybNw8/+9nP0NDQgLa2tqL7aJqGD37wg3jvvfcqahvDTCfSItvv92OHHXbIm4lmkc2UwufzzThBXQ5N06aluKoG7oPp2wcv3Tv6Nsp63IklS5ZMah+kz12qDYsWLcLZZ5+Ns88+G9///vex00474Wc/+xmuvfbavH1POOEEfPnLX8Z5552HE088Ee3t7Zn1uqZDkJpIEFIDDMo7n6ZpGaNQ7vK0kSi9bO7cuejp6cnbpr+/Hx6PJ+98ucybNw8rV67MW5cem8+bN6/k9z7ooINw3333QdM0LFy4EK+88kpmXWtra953L9Xm2bNnQ9d19Pb25m3T19eHOXPmFPRB+u+6ujo88MAD+NnPflYwNp89e3bRNqfH5mvXrt0m19P0u2tnEC0tLZg3bx7i8XjBOl3XcdZZZ+Hpp5+u2lUcAHbbbTe88MILectG/n3QQQfhH//4R96yxx9/HPvvv3/RmI/0Pm+88UZe1sbHH38cfr8f++23X8n2rF69OmOt93g82GGHHTL/Wltb0dTUhHnz5uW10XEcrFq1KvO3z+fDfvvtV9Dmf/zjHzj44INLnjuN1+vFwoULoes6fvOb3+CEE04oeZMSEV555ZWiLvMMM50xDCMzubTbbrvB4/HkuYuzyGYYhmGmK9WOzUmmPEB9OWLSK+AabsH+PDYvpJbH5jPCkj0duPvuu7F69WocfPDBcBwHlmXh5z//Od58882C9Pppvve97+Eb3/hG1VZsAPj617+Ogw8+GDfeeCNOOukkPP744wWu4ueffz7uvPNOXHLJJTjvvPPw/PPP47777sOvf/3rzDYPP/wwrrjiCrz99tsAVJKx3XbbLZOcbXBwEJdddhnOO++8TGz5gw8+CK/Xi3322QeapuGRRx7BHXfcgRtuuKFsmy+88EL88Ic/xI477ohdd90Vt956K8LhcN42l1xyCc466yzsv//+OOigg/Czn/0MmzZtwvnnn5/Z5oorrkBnZ2em3l7aPf9DH/oQhoaGcOutt+KNN97Agw8+mNnn2muvxYEHHogdd9wRkUgEd9xxB1555RX85Cc/qbrvGWYqs2bNGriuGhykwzpyE59xTPbMwnGcTLyd4ziZhDTT0TLHMMzM4u6778Yrr7yCk08+Gdtvvz0Mw6h6bE6petiaN+sOL3QBN1GY6G0mj81vvPFGxGIx/OIXvwAwRcbmk5DRnClDqXTzL7/8Mp155pm0aNEi8vv9NGvWLDrssMPoL3/5S2abdJmAoaGhosd++OGHqyrhdd9999HChQspGAzSiSeeWFAmgIjo6aefpn322Yd8Ph8tXbqU/vd//7fg+4w858aNG+n444+nYDBIra2t9NWvfpUMw8isX7FiBe26664UCoWooaGB9ttvP/rFL35BROXLOdi2TRdeeCE1NjZSc3MzXXLJJQVlAoiIfvKTn9CSJUvI5/PRvvvuS88880ze+rPPPpsOP/zwzN9vvfUW7b333hQMBqmxsZE+8YlP0Ntvv523z0UXXUSLFy8mn89H7e3t9NGPfpSee+65sv07VmqlpMVkwn1Qu33w4IMPZsp13XTTTUREJKUkTdMIAO23334Tdq5a7QMmy9VXX0377bdf3r///ve/k92smoava+4DIu4Dotrpg3Jj889+9rO0bNmyMY/Nf//Q7wkA9T7RR/3/HqD+fw/Qlj93Udej3SSlLOiDWhybl2Mixuau69InP/nJmh6bF0MQVRB8y9QE6cyGkxWbsmLFClx00UUFM1Dbkmr74JxzzkE4HMaf/vSnrd+4bcRkXwcAEEsQhADqghOTiKRaaqEPJpta7YNvfOMbuPnmmwEAf/vb3/Cxj30MgEpiMjw8jJ122gnvvPPOhJyrVvuAYcYDX9fcBwD3ATAz+sDoNtH3ZB+Ci4IQmhpT2REb5BDmfGw24EHZPqiFsXm1VDs2n6rXwdRpKcMwNYGUhJfeIby5nufnmEJGZhZPk47L5phshmEYhlFIU4VXpQU2AAiPBnII0p6eNdJnCiyyZyjLly9HfX190X/XX3/9ZDePqWF6h4BNPUBnP2A7LLSZfNIiu6WlBfPnz88sT8dls8hmGIZhGIU0skL69MtOw5KPLsZ2n1iKHc/YAc1zmtHY2Ig99tgDP/jBDyaxlcxY4MRnM5R7770XyWSy6LpSJbHOOeccnHPOOVuxVRPPihUrJrsJ0woiwtpOgmUD0QQwFAVmt0x2q5haYXBwEFu2bAGgrNi59efTlux4PA4p5ZRy+WIYhmGYrYGTcDJW7Nu+dRuSpgFyCWaPiVmHtMLT4kFnZ2eeZ1guPDavXVhkz1AWLFhQ1fZSEgYiwJZ+Ql0A2GEhD5BnIv3DwMZuYF4b0D0ADEZYZDNZSrmKA1mRTURIJBJ5GccZhmEYZibiRFyIVGbxee1Z768EEmhb2Ab/PB+8Xm9JAxhTu7BSYsoSSxDWbiY8uYrw9xcJz70BrNsy2a1iJot1W5QVuy4gEPQDm/sI1eZOXLNmDT72sY/hpptu2kqtZCaLN954I/O5lMgG2GWcYRiGYYgIbsKB5i0ixwggjsme0rDIZopCRHj5HYm/vUB45lVCbxiY1QTMbwMiCcAwORZ3pjEYIazrBNqa1d+NIWAgAsSLRx2U5MYbb8Tf//53XH755ejv75/wdjKTR7rmJgDsscceeetyLdcsshmGYZiZjjQlpEXQfEXkmAZIm8faUxkW2UxRLBtY1wVIArabByxoEwj6lfUyYQCxKoUVM/VZ30VIWEBDSLk1hQJKYA9WqZfWr18PQJVkmEolJ5jRyZ00mTdvXt66XEt2LBbbZm1iGIZhmFpEiWwJ4StSDpUAabnbvlHMhMEimymKaSuh3ViHvORFPo+A7bLInmkMxwjvdwJtjdllmiYgBNA7VN1Ma29vb+azaZoT1USmBhgcHMx8Hhk/xu7iDMMwDJNFGhLSpqLu4kIXcJPsLj6VYZHNFMWwAMsBfEVS42kAInF2YZlJbOgmRBNq0iWXhpAq5eVUUcqLRfb0JS2yNU1DY2Nj3joW2QzDMAyTxTUlQJRXIzuN8Ai4yW1vyY68EYE1aG3z805HWGRPEa655hrsu+++2+x8hgVICeh64Y3v96ks08zMIJYgvLcZaGnI92oAVFx2JA4MVej96zgOBgYGMn9bFj/IpxNpkd3S0lJQootjshmGYZjpxDXXXIO99957zPtLU6JU7ljh0fJqaG8L0qXDnIizTc87XWGRXQMIIcr+O+ecc3DZZZfhH//4R2afa665JrPe4/Ggra0Nhx12GG677bYC6+ARRxxR9Ljnn39+yTYZZbRP0A+EY4CdY73ctGkTTjzxRNTV1aGtrQ1f//rXRxVQpmnia1/7Gtra2lBXV4ePf/zj2Lx5c942S5cuzWuzruu44YYbyh63Up555hnst99+CAQC2G677XDXXXeNus+TTz6Jgw8+GA0NDZg3bx6+9a1vwXGyD6MNGzYU7evHHntsQto8GWzsIYSjSmSPxOcVsBxVyqsS+vr68v5mS/b0YmhoCEChqzjAMdkMwzDM1KHSsfmTTz6Z2afasXnDTvVYctYitB06K/Pv0psvBQBoHgFpuiB37J6j1Y7NpSmRGE7gkisvqWpsLoTA5ZdfPuZ25jKdxuZcJ7sG6Orqynz+7W9/i6uuugrvvPNOZlkwGER9fT1CoVDe4HT33XfHE088ASklBgYG8PTTT+O6667DL37xCzz99NN5g9rzzjsP3/3ud/POGwqFSrYpYRCKpGFQ7fEDA8MqLrulAXBdF8cffzza29vx7LPPYmBgAGeffTaICD/+8Y9LnuOiiy7CI488gt/85jeYNWsWLr30UpxwwglYtWoVdF3PbPfd734X5513HgCVLCs37nOsrF+/HscddxzOO+88PPTQQ/jPf/6DCy64AO3t7fjkJz9ZdJ/XXnsNxx13HL7zne/g5z//OTo7O3H++efDdV3cfPPNeds+8cQT2H333TN/T9X6hvEk4d0OoKm+0IqdJuBV9dN3XlzqismS6yoOsCV7OuG6biaRXUtLYfF0dhdnGIZhpgqVjs1zvbSA6sbmZ534OVx84sXwz/ZnloUCQQApd3GDIK2xWbPHMjaXlsSVd12JJ199sqqxOYCCfhgLpcbms2bNwv777190n1oem7MluwaYO3du5l9TUxOEEAXLirmLezwezJ07F/Pnz8eee+6Jr33ta3jmmWfwxhtvFFh7Q6FQ3jHnzp1bEDOZSyQB+Lzq85o3VuK8z+yLjx4YxJfO/CBW/vthfPZYHS+sfAUA8Pjjj+Ott97CQw89hH322QdHH300brnlFtxzzz2IRIqbOIeHh3HffffhlltuwdFHH4199tkHDz30EF5//XU88cQTeds2NDTktbuurq7oMXNZsWIFFi9ejFAohJNPPhm33HILmpubM+vvuusuLF68GLfddht23XVXfPGLX8S5555bcEPm8pvf/AYf+MAHcNVVV2GHHXbA4Ycfjh/84Af4yU9+UiAaZs2alddmn883aptrkbWdhMEIMKv0pYKGENAfVoJ8NEaKbLZkTx+Gh4czNdNHs2SzyGYYhmFqmUrH5iPdxasZmwc0P+bOnos5s+Zk/jXUqQGX8AiQK0uW8Vq5ciX22WcfBAIB7L///nj44YchhMArr7wCYGxj88HeIfzmn7/Bd7/+3arH5pWI7LGOzW+99daSx6zlsfmMsGQ/e9TzsHq3/WDeN9uPD//zoG16zl122QXLly/H//3f/+G6664b83GiKZGdTMbx7QtPxD4fPArfvu4X6O5cjztvvggAkEh16fPPP4899tgD8+fPz+x/7LHHwjRNrFq1CkceeWTB8VetWgXbtvHRj340s2z+/PnYY4898Nxzz+HYY4/NLL/hhhvwve99D4sWLcKnPvUpnHrqqWXb/uKLL+Lcc8/F9ddfj1NOOQWPPfYYrr766rxtnn/++bxzp9t83333wbZteL3eguOapolAIJC3LBgMwjAMrFq1CkcccURm+cc//nEYhoEdd9wRF198MT71qU+VbXMtMhQlvL1J1UfXiiTlSFMfVPWyByNAXbD8MXt6evL+ZpE9fSiXWRzgmGyGYRgmSyVjc4KyyK7TN5b0rqyWWhmbk1Qx0KJIZnFAZRcnm0BOoSU7Ho/jhBNOwFFHHYWHHnoI69evx4UXXpi3zdjG5i/Bdm0c/oHDM8sqGZufeuqp+MY3vlFWtE7E2LwYtTw2nxEi2+o1YXTNnMH8Lrvsgscffzxv2U9/+lPce++9ect+8pOf4Oyzzy7Y37IJhqkyiz/x6C8hpYtvXn0fAsEQlm2/O/p6N+NH11+AcFTNrnV3d2POnDl5x2hpaYHP50N3d3fRNnZ3d8Pn8xW4lc6ZMydvnwsvvBD77rsvWlpasHLlSlxxxRV4/fXX8etf/7rk97/99ttx7LHHZuJDdtppJzz33HN5sRfF2jxnzhw4joP+/v6CGr+AutFvu+02/PrXv8Zpp52G7u7uzMMy7VZUX1+PW2+9FYcccgg0TcNf/vIXnH766XjwwQfx2c9+tmSbaw0iwjubCLEkMKel/KtN0wRAhL4wYdGc8tuyu/j0ZTSRzTHZDMMwTJpqxuYOpn4iroKxOREe/NuD+NUTv8oLx7vh4hvw6eWfgfAISJeKWrJ/+ctfwnVd3H///QiFQth9992xefNmfPnLX85sM6ax+ZZu+Dw+NHgaQESZdlUyNl+/fj3uvfdeGFsMQACBefnCd7xj83TOl5HU8th8RohsX06sw0w4b+6NkebMM8/Ed77znbxls2fPLrq/Yaka2aEAsGn9Gmy/414IBLPx27t9QM0ARuKAm0rIUCxet1g7qm37xRdfnPn8gQ98AE1NTTjttNNw5513or29Hbvvvjs2btwIADj00EPxt7/9DWvWrMHJJ5+cd9yDDjqoIMHByLalXV1LtfmjH/0obrrpJpx//vk466yz4Pf7ceWVV+LZZ5/NxKm0tbXltXn//ffH0NAQbrzxxiklsnsGgbWbgbkVhqvUp0p57bUDFc1In4bdxacv1YhstmQzDMPMbCoZI6ct2bquT6glezIYOb4lSTjpkJNx2f9cBpEzbmpvaQOQSrwGgOxCS/aaNWuw11575eVWOuigQut8tWPzdPy3tAlkE4RPFN1n5Ni8paUFn/rUp3DDDTdA69Rx8GcOQkd3B4CZPTafESJ7W7uFTDZr1qzBsmXL8pY1NTVhhx12QM8gIRQAGkKlH1emna2RTaVqC0CJ8VhSxa28+OKLeeuGhoZg23bBjFSauXPnwrIsDA0N5Vmze3t7cfDBB5c854EHHggAWLt2Ldrb2/Hoo49mXEiCQeWrXK7NuecfOZPX29sLj8eDWbNmldzvkksuwcUXX4yuri60tLRgw4YNuOKKKwr6e2SbR3oR1DKuS1izkeBKoC5Q2WstHZcdjin38lKwJXv6kjvLzCKbYRiGKUclY3MpJTZu3IglS5YUlIWcahSMzSXQEGzA9ku2L70TAdKRGDnDUOk4t9qx+ay6NliOhaHwENqtNmg+1efVjM2XRbbDb2//LUI7qwmAiRqb58Zuj6RWx+ZT+4plCnj77bfx2GOPFc2QbTuEVe8QOvuK7JiDYQKOq2pkL9luN7z/3qswjWRm/VuvvQBAifFYUs1EvfHGG3mZGB9//HH4/X7st99+Rc+x3377wev15pUl6+rqwhtvvFH2Rl69ejUAZNy5lyxZgh122AE77LADFixYAADYbbfd8MILL+TtN/Lvgw46KO/c6Tbvv//+ReOxcxFCYP78+QgGg/j1r3+NRYsWla1hvnr16qLu57VKRy+woRuYV3quoYCAT8C0Ry/lxTHZ05dcSzZnF2cYhmEYRbGxOckKSnMJQFqF2+2222549dVXkUxmx+bFxrnVjM2JCHss3ANe3Yt/rX4GMmVBr2ZsPmfWHLgJFwvbFvHYHCyypzSO46C7uxtbtmzB66+/jh//+Mc4/PDDsffee+Mb3/hG3raJRAJvvN2Nd9/vxvoNXeju7i4Z32BYQNor4+jlZ0AIDTd+94vYsO4tvPDso/jdL24BABApkf3Rj34Uu+22G8466yysXr0aTz75JC677DKcd955mQzmnZ2d2GWXXbBy5UoAyrL+hS98AZdeeimefPJJrF69Gp/97Gex55574uijjwagEiD86Ec/wiuvvIL169fjd7/7Hb785S/j6KOPxuLFi0v2y9e//nU89thjuPHGG/Huu+/izjvvLHBHOf/887Fx40ZccsklWLNmDe6//37cd999uOyyyzLbPPzww9hll13y9rvpppvw+uuv480338T3vvc9/PCHP8Qdd9yRcUl58MEH8atf/Qpr1qzBO++8g5tvvhl33HEHvva1r5X9LWsFyya8tYHg86oa2NXg8wJbBsq/NNhdfPoymrt4MBjMWCJYZDMMwzDTkUrH5iSBpJVEz0BP3r9wNJw9mBAgo9Bd/IwzzoCmafjCF76At956C48++mhBdZxqx+ZkE+o99fjMRz+D7/78u1WNzb/0pS/h4x//OBa0L4C0ZEag5zKesfkll1yS2WZKjc2JqSkeeOABampqKlh+9dVX01577UXr1q0j13Xp6quvJqhwFdJ1nVpbW+nDH/4w/ehHPyLDMPL2PfzwwzPb5v479thji7bh1fdcuv+vLj31sqSnXpb0kxXP0fY77UVer4922HlvuvamPxAA+u6dq+i5110iItq4cSMdf/zxFAwGqbW1lb761a/mtWP9+vUEgJ566qnMsmQySV/96leptbWVgsEgnXDCCbRp06bM+lWrVtGHPvQhampqokAgQDvvvDNdddVV9Oabb5LrumX78b777qOFCxdSMBikE088kW6++eaCfn366adpn332IZ/PR0uXLqX//d//LfgtRt4iRx55ZKY9H/rQh+jRRx/NW79ixQraddddKRQKUUNDA+233370i1/8omxbq8V13cx1MNG8vVHSvf+fS0/8N/v7V/rvT/9y6fdPuZQ0ZMnjL168OO8a/P73vz+mdm7NPpgq1FofXHTRRZnf9T//+U/RbRobGwkA7bzzzhNyzlrrA4aZCPi65j4g4j4gqp0+GG1snvt3JWNz6Ug6eK+Di47NjzrgKOr/9wD1/3uANv+uk/pf6C/aB88//zzttdde5PP5aO+996Y//vGPBIBWr16d2aaasbk1bNPmP3TSxv9vE51zzDnU2lz52Pzqq6+meDxOyS6DNj7UQb1P9hXtx7GOzXOvg1odmxdDEFXgJM/UBOOJTUkYhL8+T0iaQNAPnHiwQMBf3FL57GsSG7qAhbOLr+/esgGfOWE73PizVdh5171xwsGibImniWSsfbBixQpcdNFFCIfDW69x24itFaMUTxL+vlLFYrc3V/97Wg6hZxBY/iGBtiL7ExGCwWCe9fqqq67CtddeW/W5plOc1liptT44++yz8fOf/xyAij0bOdMMAAsXLkRnZyfmz5+Pzs7OcZ+z1vqAYSYCvq65DwDuA2D69kFiYwIDzw4iMC+QiXsuhtlrwtPiQXxpbNQ+2LBhA5YtW4bVq1cX1O6uBLPfQt8/+hCYH0CyI4nWg1tQt11dVceIr0+g/6l+BBcGMPujxZMr51Lp2HyqXgdTp6XMuOgeVNnAZ7cAppWtcV2MSFy5/o6G36uOkzAmrp3M5LGpBxiKAm1lEpeVw+cRsBwVQlCMaDRa4B7Oic+mD6O5iwPZuGx2F2cYhmFmIq4pEX07Bs2vlRXYACA8Aq7lFl1HRBUlE6sUabogSSrTeYlY8NFwk45yF3cmtm1TlRmRXXymQ0TY2E3we5UwthwgngRaG4Hrr78e119/fd72rgtAAB/Y51DccOejJY/r9wFJE4gmVAknZuriuoT1XYS6YOkyCZUgAEQThIJUmCiMxwY4Jns6kZvjoVjiM0DVqgRUnWwaQ4k/hmEYhpnKJDbEYfZaCC0OltzmRz+/Fbc9dFtWqGrZsVm6JFZifQJO1EXTXo0T0i5pSOWwDgBCQBrFxX057LAD4dEASSCXIDwz+x3PInsGMBQFugaAlsb0TUoZS/b555+P0047LbNtLEl4+mVCfQhoaiyunOfOX4qnXlZJDdZtoZKWy1rinHPOwTnnnDPZzahZ+ofVvznFtVHF+H3qOMUoJrINg90gpgtpS3Z9fX3JLKBpSzYRIZFIoK6uOlc0hmEYhpmq2BEHsbfj8DZ58mpjj+Sckz6PTxx1EtykC8dwYO9iYcGCBdA0DcFgECQJ8fVJSNNFw+710Dwali5dOi7rsWtmRbXmFXAS1YlsIoIzbEMPaCAXIBejqszpPjZnkT0D6BpQsdjz29QN7dGB4ZiyNra2tua5dvaFCa2dhPltgKfMAyCNpgHhWHHLJTN16BogODZBeS6N/bcM+tSkjuMQPCNmMEeW7wIAy2R38elCWmSXchUHCst4schmGIZhZgrx92NwojaCS8q7f7Y0tqClsQXSlDDDBuyldl48stlvweo3IQTgRBz4Wn3jbpsTcyG86vjCI+AmqxPZ0pBwTYIe1FV5MpfdxTkme5rjOIT1XUB9jleK3wsMlKhnbFqqRnYlAhtQoqovXFmReaY2sWzCxh6gKWFAvjtKoetRCPqBpFU8LruoJTvJluzpABGNSWQzDMMwzEzA7DMRfz8BX5u/4lAp4RGQTpFj9RiQNkFaBHu4yAZjwI250FKlW4VHgzRkZbW80/sbLqTpQgtqoJS7+EyHRfY0py8MDEaUq3iagB+IG4BZJKmBUaVhMRRQ8d1JDq2dsvQOqWukgWzQoDmuB2PApyZqKhXZpsEXznQgHo/Dtm0A5UV2OiYbYJHNMAzDzAxIEmLvxkGWhKe+cidioQtghBFL2hLJTUl4G5TLuTUwfo9AcgluwskkYtM8AuQQpFVY77oUbkKCHILu11VMdhUCfbrCInuas7mP4Loq83OagBcwTCW0R5I0q7spSlkuBwcH8de//pVjbqcAnf3qN9eiNsiSgDm6i5DsNyC3JAoEuRAChOIiu6i7eLWzOkxNUklmcSDfkh2LxbZqmxiGYRimFjC2GEhsSsI3x1/9ziOG5VafBWvIhqfJA71Oh9lrQjqVi+FiSFNlBE8nKlMWdFlVhnFpuKqtmorHJodFNovsaUzSJGzqAZrq85f7UhnGi5XeiiYAb2qSjSL2qFZNjy5gFynbdNxxx+GEE07AV7/61XF8A2ZrkzAIHb1AS0CC4g5gSaCCjJLUnYT76iDkmjAome+q5NWBwUjhdcOJz6YvuZnF2V2cYRiGYRSZkl0eoay81TJCqSW7DAgAmkeDp84DN+bAiYzPZdw1XZAlM5Zs4REgm0B25eLdibuAJiA0AZJgd3GwyJ7W9AwC4VihyE7HghSzZEcSgM8DkCvhvjcMGhzdnVfT0onUFLZt48UXXwQA/Pe//83b1o7YCL86zDHcNULvkKqL3iBSAtuRoFFENkkCRWwIrwa5KQ539SBkX/ZiCvpVhnE5wlWomMjmxGfTg1xLdqnyXQCLbIZhGGbmIB2JyGvDMLcY8LWPMTlZzlDKTbgwNhvwNKkKHppfg7TkuOOypUmQNkF4s5ZscqtzF7fDNjSfyLi415rItoYsOPGJiV+vFBbZ05R0bWyvB9C1wgQL+ghhDKgkaQlDWbphSVDMARKjX5DBEWWbcq1ayWS+idvssWB0JOFWWRqA2Tps6iF4dECYEsKRgEeARvvNTRdkukCdB2JuEEg4cF8ZhPt+BGRLBP1Awiz0lEiL7IAvkD0U18meFlTqLs4x2QzDMMxMgIgQfSuG2Dtx+OcHoHnGJrlyS32ZfSacqANPQzauW3g0WP3jM1jIVJhg2giX/l/alQllkgQn6kDLsdTXWkx2/P0EzO5tO+ZkkT1NicRVbezWEjXqAz5gcMQY17CUG7nPC8CUgClBQ6PfuEE/MBwHjFQ8d+6Ae6TINroM2BEXbpxF9mQTiRO2DACtDQAlHJAQEF4diNrld0y66vrw6xCagGgLQIQ8kG9H4L4ZRsAjkTQLQwjSMdmzm2dnHuCc+Gx6wDHZDMMwDJMl9l4ckTci8LX5oAfG4CaeIi2yiQjJDgPCo1yy0+h1HpVtfBxx2dIovm+llmw36UKaEpov2y6qsWH+ZBj3WGRPU4aiyh28LlB8fcCnRFBuhnHDAiw75S5uScB2QVF71JiMuqCK5e4Lq79zB9y5MbdOzIE1aEEarordYCaVnkGVGb4uCCBiq4QXPg0Ud0Bu6d887U6e+5AXdR6I2QFQrwE95kBSvsi2bTtzXbQ1tsHnVW5TlsXu4tOBsYhstmQzDMMw05HEpiQirwzD2+itKpt4MUTKAu5EHRi9Jrwt3rz1njodTtyFMw6XcTfpAkXKilUak+0mJaQloflTspJqKyabJJWcSNiasMiepvSFCbqOkrX40qWWEjmGRCNTIxuApbIEkuGO6jLu0QV0DVi3hfLq5QL5lmw7bMONu9D8Gpzoto2LYPKRkrChmxD0Q5VaiNqATwe8GshygTIPIyoR0yK8GuBKyGFLhSPEsw/Y/v7+zOe2pqzIZnfx6QEnPmMYhmEYwOg2EX45DOHR4G32jr7DKGipjN9Gtwk35sBTly/aNZ8GsiXs4VG8EMtgR508KzSgLOhOhdZfabggh7Iu8aK2RLa0CbKM8WhrwSJ7GuK6hK6B0lZsQLmEm7ayZKYxU/enEEKJa4+mEmFVkChgVhPQ2a8s6KUs2emYET2gjzt+hKmMeJLw6lqJDV2ESJwyCeeGoirpWUsDgGQqxtqvAT5t1AzjNGxB+Io/OoRfB/UYCHoo49kA5Jfvamtuh9+rylhYlsVJ8KYBnPiMYRiGmenYYRvhVWFIk+CfPYZyXUVIl9VKbk4WCOzsNmOPyyYiuHEHmjd/XCe8WsUu1m7CBUbY9GqphBfZEpiE9ozPh4GpSYbjyn17VlPpbZSFmwos2RkSjsou6EAlQBuFuoBA9wChozffku26Lmzbhi50GF0GPPUeCK+AE3XgmhK6n+d5tiYDEeC/bwOaIIT8SlQvaCeYtvq9g34BGXUhbAK8miq9ADXJUswHgmwJJFKCvBh1HlDMRtBxEE14YZiEgF/kZRZvn9UOr1fN7lq2BbIJwlfc44KZGowl8RnHZDMMwzDTieSWJKwBC6FloQk7Zjom2x6yEWgtbj3T6zyqXrYtC8TyaEiLIE1S3og5aB4BmaxMZDsxJy+EEFRbic/IIchJsKyzwpmGDEWVgAqMIlxGZhiPJlSmaSICxV0luvwaaMisyNrYXA+83wn09g7kLTcMA3bYgT2sMiLqAR2u4cLdxqn0ZyKxJKAJYNk8oD6kro2Va4DV7wGNdamNki6IKO8BObL2dYa01dtXPImH8OuAKREwrLzkZ7kie3Z71pJt2mZVJSKY2oRjshmGYZiZjhtXtaZLhWqOhUziM4eyMc8jyMRlj6FetjQlpCOheUe4i3sEpCUrSqhmh538tmlC5XaqEaQlQRVmSp9I2JI9DekfVmJ5NPw+ZelME4mnMovbBLJclWxBU5mnYbhAsPzl0twAbOgCNncN5i1PJpMQYaEeECk3Y7JJZRgvPR5nJoChiCrjJoRAfRCoD6rlUhK0lKimqK1mXFIIr6aWFYGSTqbUVymET4MYMuH46hBLAm3N+e7is9vnZCzZtm1DVphYg6ld0iLb5/MhFCo9g88im2EYhpmuFHO7Hi9pd3FPY+n47ty4bN+s6upxS9MFWdnxee553aQEWVRWLUpbqu+ds7/QRcXlv7YF0p6cut1syZ5mOA5hSz/QUIGnStCnYrItm+C6hLihMovDcgFHAl6hyjSZrnIRHgVdEwj4gM1dQ3nLDcOAscXIn+USgF2BGzozdqQkDERUkruRZAQ2EWjYhsj9bXwaUCrDuOGCqHRCPQBAyAMKW9CSDiKp5Ge5luy2lrZsTLZjqQc4M6VJi+zW1tay10YoFMqsZ5HNMAzDTBdIEpyEC+Gd2PC39DvTN0oStbHGZUtLgiTl1eMGAM2jgWwa1RDiJiXc3MziAISGmjKgkC0hJyEmm0X2NCMcUy66aYtlOfw+5VYeN0bUyLYkYBPgScXoUsqaXQGzmoD+gXxLdrQ/CmvIhqchOxWm+TTYg2PPhMiMTsIAkpaqY14SwwUZjhLWaXypDONFYnEoagOjzdIGdQjDRcC00T+sFuXFZLe0Z0t4ORZci8u5TXXS2cXLuYoDKY+KVFw2i2yGYRhmupB2SZ5oS3al5MZlV4M0JFBEfwqPskaPFtInDRfSzLeEC01Mint2KaRNyni4jWGRPc0YiqbF8ugzaX6v2jZh5NTI9qoa2YJy6iB7NNBwZbNjAZ9ALJJvyY71xeAmXOihrA+7HtRhD1kVxXowYyNuAIapPBZKYrhqUiU3xtqrQVgSMPN/G5IEitglM4unEUKANIFAzEQ4BtgOoac76y6eK7KJCFaCM81PZSzLyiQxK5dZPE3aZZwTnzEMwzDTBWlJSFtOuCW7UsYal+2ahZnBgVQsOBHkKN6GbtIFaIQlvMYs2dJyISfBeZZF9jSjd4jgrSAeG0iJIcpasm0Hal/TBeVMawm/Dgpbxd2Hi2DE8y3Zke4IIJCXWEsLaHANWXF5AKZ64oaqe67rpR/4lFT10HMfjhnvhZFlvMx00rPRHxuizgNfzEAy5iKWBHq6lMjWNA0tjS0ZkQ0AyZhR6jDMFKDSGtlp0iKbLdkMwzDMdEGak2vJ1nwayKq+XrYTS+VgKgalqsqUwU0WrleW7NoR2cXauC1gkT2NsGxCz1Bl8dhptFSG8XT5LlUj21EpqdMENCW4KhTE8dgId/GuKDz1+VkTNL8GaUq4MRbZW4togqCNcodTzCk6gwkhCkMEkimrt7+CWZyQB17ThTNkI5YAevuUu3hbcxs0TcsT2SaL7ClNpZnF0+RasrlGOsMwDDMdkBYVjW3elgivBrPKuGwn6kArVY1IYFR3cTtiF4h0oQuQOznJxorhVliKbKJhkT2NGIqq+tiVxGOnCfiyJb/StxjF3Px6eV4NwpYVxWVLKREd4S4eD8fz4rGBbCIHJ84ie2sxMKxCAspBEaugNiJQPMM4GSmrtzb6C0RoQnkvhC1EE4S+/j4ASmQDyBPZ8eHEqMdjapdqRXY6JltKiUSCf3tm5kCSaqp2LMMwE4e0isc2b0s89R5YVcRlk0uQSbe09V0IuGb5YznDRUS6BpBEzYhsaUwBS7ZlWbj22mtx3HHH4fDDD8f//M//YO3atUW3NQwDV155JQ477DAcf/zxeOyxx/LWP/LII5njXHvttbBtToI1XsIx5R7sLVNeaSQBnxLmQ1GCrqeKxycdIGdWSggBEgDFR/+N4rHhAuuUkTSK3sBCF7DD/LtvDRyHEI4VzyyehiwJijvFLdM+DUjkZxinKuuai6AHvmEDmzYNwbRMAEB7a7s6vDebjc1IF9NmpiRjtWQDHJfNzCyib8cw+MLQqJYhhmGmHtKUxT0DtyF6UIebdFWJ3ApwDRfSppJx5JpHlA3rdE0V9qmNGEcKTdSMyCaXIM0pYMl2XRcLFizAAw88gH/+85847LDDcOmllxbd9u6778bw8DAeffRRXH/99fjhD3+IjRs3AgDWrl2LH/3oR7j55pvx17/+FVu2bMF99903/m8zw+kaoLKiqhgBH2DYqRrZHgCWBDmkynflILw6aHB0F5TI8GDBMgPF99ODOqxBi11GtwLpOPuymcWTTsr9u8hjwKep+OscFxsatkZNepZHnQd+y8aG1zdnFrW1pEV21sRuxEy27kxhxhqTDQADmweQ7ORwAWb64yZdJNbFEXsnhuE3IvzMY5hphpt0KvL025oIn8oI7lZouVUZ0WVJS7YYRWRLw4W0XGj+EZpBE4CsDXdxaUvQJDnNlikvXkgwGMQXv/jFzN+nn346br/9doTDYTQ3N+dt++ijj+KWW25BfX099tprLxx22GF4/PHHcd555+Gxxx7DMcccg9122w0A8MUvfhHXXXcdzj///KLntSwLlpUv1DweD3y+KhXlFEdKmfd/LoZJGIwQGkOAqGIqLeAlOI6ygAd8gLBsCHIhAjqEnnNz1Gsg0wYsG8JXOiY3FukvWDZsWyBReKOJkICTcGDHbHjqKrsUy/XBTKGSPogmCI5DCHhLXw9k2dCEhPALFPg4BQRExAVMG6JeBzkSwnKAkMi/LsogdIGAX2JgQ67IngUSlHfvGqYBx3ShFxP7JeDroHb6YGBgIPO5qalp1Pak3cUBoPftPswKt8E311u+9noJaqUP0mijJUFgZixGlwE77CAwL4DYmhj0oI6GXerHdN0zDFN7OLGJr5FdLUIIQCrxWwnSkGUt2cIj4CZdEFHRZ5WbcCGt/PJdAAC9dsJjyKZJq2RUlcgeyWuvvYbW1tYCgR2JRDAwMIAddtghs2ynnXbCm2++CQBYt24dDjrooMy6HXfcEZ2dnTAMA4FAoOA8DzzwAO655568ZaeeeipOO+208TR/ytLR0VF0+T6Lx3a8JSOr7iwGgFJu3J1lj7VRvluwzJ0TQXR+pOQ+nf2dQKE2L0upPphJjNYHh+4yygGaAewIAOWyPGfrW+O49IfqLI8b/55tZ8PiBnUtNGXXx5fEsLl7bL8nXweT3wfr16/PfHYcJ+OxVIpcQdzj6caS7RZj06b4uNow2X2QZtmyZZPdBKYGIZcQX5+AFtDgqfeAJCHyagSeoI7Q0ioylTIMU5MQEdy4M2mZxfMQqMqSDULJyT7h0UC2ypouiiRHc43i+9ecJdshiCpCaSeKMYvsWCyG66+/HhdccEHBukQiAV3X8wRzXV1dJslNMplEXV1dZl3aspFMJouK7M9//vM488wz8xs+Qy3ZHR0dmDdvIXwjrMlvbySsfJuwbG71F9GmXoImgDktgN6XhPvGELS5hS9+2Z2AvnsztPl1RY6iWLul8JJauxqwDmjArMbCtiU2JdByYAvqllQ20Ej3waJFi2as1aiSPnj5HYm3NwGLZpe+HtzXh0ADBsSswnsOAGRPEtrSBug7NED2JSFfGQTmBKuyvJDp4r+PZEMIFnoWoWFLI+rtrDXTfU1i3iHz4Gup/H7m66B0H/T/awCBeX7U71hfZu+Jw3WzM+a77LILlixZUnb7BQsWZD4nXzagw4O2Q2chMLf4dVgOvg6YqYDZY8LstRCYq+J3vI1eSIsQfnkYWkDPLGcYZmpCtqonPdmWbEB5EToV5tCRRvk4cs0jYBsEaclCazUAN1G8Qo3QBMjFpLlp50I2TS2RbZomLr30Unz4wx/GJz7xiYL1oVAIruvmWabj8ThCISWkgsEg4vGs5SKd/CYYLJ4W2+fzzThBXQwzVRD+2TcEdl8qMHdWdvZoy4CEzyNAY8i64NUJAxFgfhsgkwRyBcgtPA5JDXLYhZhfejAbGR4qWGaYBjZ3A631gDZytgsaZERWPUDWNG3GD6rL9UHfMOD1oOT1QK6EHHYA3QMU+a3VCXTIYQcaNFCCIG0BTWrVJc/0eJCMZ92J25vbIUjA78kOKq2kBdhiTL8nXwf5fUCSIOMSzrC7zfolNya7ra1t1PM2NjZmPieMBIQjIGPVPwNy4euAqVWICPGNKrljrpXL3+aDscVAeFUYrQe3VDXJyDBMbSFNCekQvIEKSpxuZTSfBme4MpHtJN2yceTCq+pdl8pWboedouJbZRcnoEYs2QAwGZE5VY9KHMfBt7/9bbS3t+Oiiy4quk1jYyNmzZqVl3n83XffxXbbbQcA2G677fLWvffee1iwYEFRKzaTxUyFpXf2AU+uIvx3DSGaIMSThMFIdfWxc5nVBCxsTwn2hAvoJRIgBHTQkFU2xiIaKUx8pgsTvUPAYBGPcd2vwRqorqYfUx7DJMSSQKBs0jNXJTYrl8jMm8ow7khVzmuMblBxPZz53N6iSnh5c0p42Y4FqrDcBFMeaar4Kidsb7OEguPJLm4gCc2rweRnADNNsYdsGJ1J+FoL6yn65/nhDNsIrxquuOQOwzC1h7QlyJKAB5OezFfzaXATTkWu2k7UKWt9F7oAOQSyCo9FRHAidlGRnTYASqcWRDZNWmm1qkfN3//+92GaJq655pqybqPHHXcc7r33XsTjcbz++uv417/+hWOOOQYA8LGPfQxPPPEE3n77bcRiMdx///1Yvnz52L/FDMFIhUkvmg001wOvrwP+8V/Cmo1APAmExjhH4fUINNWr35LidtG6yQAAvw4ynLyM0yMpll3cdQ0QAZ29BDni4aMFdDhRZ9Q6fEzlZDKLlyvflXQhbCovsn0ayFIZxiliV5dZPIdwTjK8xnqVXdyfI7JN2+KSNhOEij2ScBJym9WFTFuyhRBoamoaZev8xGcJmYAe0mEPWCwymGlJssOAa8iiyT2FEPC1+2EP23CTfP0zzFRFmhLkErYMCWzonlxhKbwC0iK4oyQ/IyK4sfJx5Gkrd7H3sxN14SYltECZsWEtJD6zJq+0WlWj5q6uLjzyyCNYvXo1jjzySBx66KE49NBDsXr1avztb3/LS0T2pS99CfX19fjYxz6Gyy+/HJdffjmWLl0KANhhhx1w0UUX4eKLL8Zxxx2HOXPm4Nxzz53QLzYdMVLGHl0TqA8JbDcfcCXw6lrKLB8P5EhV0qlU3IJfgzAJlCjthhKNFLqLW7aJ5gagp4g1Ww9qcA0XbpU1mJnSxJKA7QC+crFBSReE0skuAABeDcKSoGFrdKt3GcKRvsxnRypLZ54l27XVTCMzbqRFKjbMdOGWmQybSNKW7Obm5opctnNFdjyZUHU9Ey6cKD8DmOmFE3eQ2JCAr7nQip1GeATgEshlkT2TcV1C9wC/B6cqaUOBYQOR2OS2RfNpkNboE+3SSseRj/LeJhQ1hFh9Jty4Az1UwkWeaqNOtmvJyfEVR5Ux2fPmzcNLL71Ucn2uNToQCOC6664rue2JJ56IE088sZrTz3gME8j1ABZCoL0ZaG2YoIvYlCDbhagrPiAQQkCCgLgDtBc/RLSIJdu0Dfi9AkSEzl5Ca2M2NlvzaiCH4MZdYHRPU6YC4hUk/6aoDYwyKSM0AQmAwpaafGkaW8xgOKos2QF/HfoiISy1KM+SbTvWqDOuTGVIU6qyGa4qrbEt7qm0yK7EVRwAQno2riWWiEHza5AWwYk68LVyXCozfTC6TNgRB6ElxfPNAKnnrKOS8zAzl94h4LV1hIYQUBec/ORZTHXIlDem7QAJCyVLXuXSFyYEfEBDaGJ/b82rgdzRa2VL04W0Jbx1o8SRC2UZz4UkIbEpCS2ol/6eokZEdtLNuL1vazhTzBQibha/QHRdQNcn4Ca1XMAmwFPGdSSgQ26Og0pYniNDAwXLLFupvrQ1e6hIbLYdLVUyjKmWwQjBW2b6jJIOaMiEKOfik0YI5WpDKJscoxxDKXfxlsZ2RONqMOHz5SQ+k7aaZGHGDdnpchopkT1BuC5h7WZVez0XKWXGXbxSke23s3EtsUSqfJwG2BUmamGYqYB0JBLrE/CE9PKJhXQBEE3KAJCpHWJJoH8YGB5fNUNmknANZS01bcC2AaeC129HL2FgeOu0h2j0WtnSkKrG9SiWbKGhwBBiD9mw+k14y3jp1IrIlkkJbRIyiwMssqcU0a388CVLQkhSL/1SNPtAERvy/WjRm6eoyLaUyPZ7BSQBm3spLzGE5tNgD/IAeyKQUiXBC5ZJeiY7EqCIDdSXeTimED4NMMcu1hzHRjSuRFhLYztCAfVi0UT23DbZ28y1ebojU7FHQhcTKlqHosBr7xPWd+UvHx4eztzLlYhskgRvJDsDFEsovzo9qMPsNSc9YQzDTBRmjwmzz4S3SMKzYtTCYJSZPMIxwlAEiLDInpI4MQeaV8CylDXbGuX1K4mQMIDhxNa574UoFMYjcZMuQKOM+aFCWkYaQoxeE9KU0MtlUyeAaiAKxjXcSSnfBbDInjIQqYzRWxVLgkZxbxFCQLQHQJ1xyM35bwOyJGKpmOxQIBt3adlm5nNTPTAQBRLZRdCDOuywBenUwN04xUkYQNICAiW8bmnYgtwch2jyVmaZ9mmgmDP2pGfRbNKz5sY2NNapmXrDynEXl3bGzZkZH+nZdM2vwQ6P7h2S7EhWlHQwmlBl4d5YT4jlDAqqzSxuh214k1nREUtmRbYTdSbU+s4wkwURIbE+CaGJUa1EaWohCy8zeQxEVI6dniG+DqYibtwF6QK2q6zY1iivXytl7Y7GlXFkotG82qh5TpxYZRPxwiPyDCHSkUhuTEIvkswxf0cx6QlNpSNBthx1ImFrwSJ7imBagLmVPaqpwrhY4dWAOi/kuqiK100hBwxE42EAwKzmuZnlpp2dHQj4VGx5rlVeC2hwDckuwxNA3ACSZvHM4kQE2REHLFky7r4AnwbEbMA/ASK7oQ2aEAj4gEgyP/EZOcQZxicAN+FA8whofpVMrNxMtptwEX07BqvfLLlNmmiC4NVV4sI1G7OeKLk1sltaWkY9jtlnIqTVZf6OJ9SDQA/qcJMunCg/A5ipjzQlrAELnsYKn7MAlzGcwRgmIZoAWhqAgWHA4vj8KYV0JKSpRLaUSjzbo+hXy0lZvG1lGJlohE8b9X1qD5WocT0CzatBGm7G28bqt2EN2eVdxaHczCf7uUY2QTrElmymPIY1+k07bmJlyneNQDR6AUvCXRsBWVLN3G/oh+2qp0Vr85zMtrmWbAEBTQOGYjnu4n4N0pRwYjzAHi+xJCAlisbo04AJuSUJ0VJ5cinh0yHmBIFQVTkSMwzlZBZvblTZ8prrADPHkm25yothZGINpnrchAvhFdAD2qgZxu2IA2vAglvBfdc/rCbI5rQA73YAPSkDdjWWbHIJyU0GGloaMolS0pZsoQtAqpqbDDPVkaaEtCQ0f4UDuxrJwstMDrGkmhxva1KfOS57akEWQdoE0gRcqtCSbantTEcZniYazaesz6WMF+QS7LAFrZy7dwrhUckZ08cyuw1AVhLLLSbdeKLKmrLIZkbBsEaP8RgPRARKuqXLdxVBtAVAvUnIDTEgbCGyuTezrrGuFT6vSnCUjslOUxdQg3YnNahID7i5jNf4iSaoaKUCciXkxhgAgvCP/lDNRYQ8o2bJLEVujeyWlMjWNIGgP9eSbYFsmvQZz6kOSYKblBAeTdXJtKms+7UTdeDEHJgD5afRbYcQjqk4//qQgCuB19epJGjViGxr0II1YMHX7ENdUFmz0zHZACC8+qhtYZipgDQkpE3QyiQRzUXoIpOdmJl5xJKA7QKhgIDtAMOTXAKKqQ5pSZAj4QoNrgtAAOYo3giZ8TypCZaJRvNqkLYsmWHcibtwTQm9Ai9F4REgR6aO5yLZkazMS0fDpJdnJZtYZDOjY1gqW+BWw1JxC6jQkg2ogYFo8UNujMHdGEc0mh1wN9Q1w+9LiWw7X2QH/UDSUHGeuceqJIaUKc/AMOAv8uyjHgPoNSBay2RE2wqE8yzZbZnPjTlJ12zXBrnsLj5e1IueoHlEduIqUbpPzX4T8QTBGrTKWtHSVpaAT7mJz50FbOoB1ndVZ8k2e03VPr9WVGR76nTYA5ybgZn6uKasKKFQGqGLinIjMNOTaIKQvlI8OjAQmbjBXmJDArG1rNq3JtKUkDYgNeUu7vPm5x0qRtrSLQSQKFE5aDxoPg3SpJIZxt2EC2lKaBVUmVEiW9XUtvot2BEH3sbRvRuFJia9NKG0JMit/Fk80YzNB5TZ5hhb28BjScCWVbsFi6AHSLig7gRiyD7IG+qa4fMoQWeOENkeXcBxCZG4ikECVEymNWSDJI25VNRMx3YIw/HCzOJkusrbwK9DVGhZmShy3cVbGrIiO+jPlnEybXVxT/aM51RHWgRpS+ipmpdCEyVL40lbYsv7FtZHvJC9LtriDrwlZqajCcCMufCuH4RrETQBNCUE3nwPWPfypsx2pUQ2ESHZYSD2XhyeBvV8qQ/Vo2egB/Fk1i9SD+qwBk1VL7uKkAaGqTVGK51TgC4gR6lpy0xfBiJA2rmrLgh0D6qyiWN0IMvD6DYgDYn6HepH3dZNTbZOSEnYGYS01KSaSwKuJPh9o1unEyZB1wCPBwhvhTmQdGnAUh4ybsIBZGWlWYUuQC6BLInEZkMZ2Cq4RlRt6kmOyXbyPWa3NSyypwhxg6BtTX1kSQhHAmN5uLb6IBIuom62AHZDXQt8viAAwLYLnzZ+L9AXJiyeoy5+LaCpRE0JF556vizHQjypJmPSExdp5JYEKGxBzA1u8zblJj5raZyd+ez1ZEVULPU2Ynfx8ZG2ZKfdojS/BnuouMju7rDx3vsOhoQPsyMmnKhbUmTHkoAWt4FBOzUJR2jySfQOAB2bs4nPGgONhW1yJGLvxBB5PQrNp8Hbrs5RH1IDvlgiBiJSzwC/mnl3oi58o+dQY5iaxU2qLP+VIjSwJ88MxXEIQ9FsstK6gCqZGE0AjXXl9x0NkgR7yFahQxW4Br/wFqF3CGgMEZobgIaQQMivqsI0hFh4lyLthZLWk16PSlbsulRywiJuKIHt9ypBbjsE71ZwaS7pLh5xgAoNWmmBaoVtmN0GvE0VJnTUBKRDmXf8ZKAmQCbl1ADYXXzKEIkDvipCaYkINFy5+ZtMF0SVzWqNRAgBUedBNBHOLGuoa4bPm7JkW4W1x0JBIJLIutToAR1uMj/D+OZewup3JdfOrZC4oUR2bvkuSjiQm+IQDRWW7JpgcmOyc93Fc0V2NM6W7ImAUm5R6ThQLaDBjRcmPhmOEVatdmAnJRqaNISj5fMhDAwT/KatXpSNXohGH7QmP5oW+NCTyE6siXUCyc6s14qbcBFeNYzh1RF4Gr3wz/ZnXrT1ITUTJKVE0sx5PgjAHuawEWZqY0dtaL4qRLZHxU/yu27mkakIkvJAC/jUe3wikp+5CVeNq5Iu3FHKNQ3HCB09Shz2hoHX3gf+/Srh8f8S/vM6bZUyU9MFaapxqysBCMCrqxj7UnmUpCQYlhLjPq+qHLQ14rIhRMl3uzVkVxSPnYs9aMOJutDrKxMjQgPg0qQmdZQ2VTXhOdGwyJ4CEKnyDt7Kq4EAMUdl/q40mZhd3cx7MdLluwBlyfanE585hU+PgE89zNOlvDLZhVPtdRzCm+sJr70PdPQW7M4UIZ7SN7kzhpRwIBIOMEneAemYbE1oaKjLmidzRfZw3IJNKfclZsyMnLFVlmE3L/lZ0iSsXEMY6rLR0igQ9AMJRyDSXXxCznUJAxEgELcgRszyBf0CsdyJNa0Rg/8ZQOSNCMxeEwPPDyH2bgz+ef6C+K10TDaQH5etB3UVu81ig5miEBHcqFNxfWwAELpya5zs+EVm2xNLeaClc6kIISAADEXHfy2oMo4yVb2l/Pu1e1CNIea0AvNmCSybJ7D9AoG5rcBQRLWTKY4TdyE8qaRnpOLqHad0RSDTVuu8OuDVBVx3KyU/8wnYRWplS0vCiToVxWPn4iZd6AGtYqu00ARIAjSJhYOk4QKT6ITBInsKkK6R7atGJzkSFHNAscqsQhSv3HWkFLkiu7GuGd6UyHZdB66bf6MLCAiRX8oLulAuLAA6+4EtA2rxa+8TklshMcR0gojQM0jwjJxgtCVITF48Sjomu6mhDVpOvIMnR2QbpoXhpKZcLJkxIy2Z9zLRfBqklc0wbjuEl94mbOomzBEmtKAHAR+Q1HQMb7GLzjbHDSAZceE3baBIqQ/TzLqL1y+YDb3ei/DqCAb+Mwir10BocQh6kWz2aXdxAPlx2SEdTtQpmxWdYWoZaakEQZWWwwTSg1HKxA8yM4e0eNVyxl/BgBK9451sdOIuIKVKLBspLbJdl7BuC6EuUDhWCPpVHWfOeF4aN+ZC8wo4qdeWrgMulS7jZdlKhOeO17ZGrWzNq8GNOQXXkUp65lYlsoUuYPVblbuKA4CmQhYwiZZs11C/zWTBIrsG6ezsxKWXXoq//vWvALLlu3xVXNtkExB3QOHKpsco4Yw7xX00nh1wN9S1ZLKLA4UZxgEg5M8v5aX7NViDNlyX8G4HwasDC2cD3QPAmg08+ChHZ5/K9tzePGKFTZMWj0JEmZjsdPmuNL4cke1KC91hwB5lpp0pj2vme6MIIQACnIQLKQmvriW82wEsqHehmS7g16AJAfJoiA67akA2gmgCsMIOPK5bVGSnJ9b8vhDWbfHBDegILgxA82oILAyWTI6SK7JHWrLdpIQTZZHNTE2k6ULaskp3cZVYSLLInnYMRamsWB6OFU6O1weUu3h8nNZjJ6aMJ3pAh9VXWsX1DwN94cJ8LkBWdA/H+doshiqd6UJ4NdiOSgwqoN69pdzFLUe5lntS70ePvnX6V/NrcE0qSKroxF1Ii6D5KpeAekiHdAh6qPK41fTk4WQ+19yknLTM4gCL7Jrkuuuuw6233orTTz8d8XhciWxbuZZUjCMBh0AD5cvzAKqGMgy3qvJdxchzF69vycRkA4BpFYrsYCC/lJcWUFaszVskNvcBs1sAXROY3QKs2QT0DPJDvhiWrVzrhVAuvLmQnSraOAnEEsOwHfVib2qYlbfOm3NtgEwMJwUGB+Wkxu5Mddy4A23kRJkm4MYcdPQCb6wH5s4CfI4LYUogZWH2hTSEB4rH7MWSAJIOBKHoiyo9sdZY34LeIeCdjQRXCHibvWW9J0qJbKELwFWubAwzFZGGVAPYKsthkkPqXcxMG6IJFZ7TO1R8PRGhbzg/jwqgxkaJpMpbMx7sAQuaX4cWTHkIlch63zVAcFzAX2JiKOADegaLrprx5JbONG3kJSguZ8nOxe8FYglATnCYlObVQLZbkGE87SlWjYejr9WHumWhqs4vNBUGikmK5ydSJcxYZDN5bNqkyuLE43EMDAxkamRr1bhzuwQIUm7go7mMj6FGdjHyLdnN8Hmz2ayLxWV7deVeE0l5i+pBDU7SxXvv2dA1wJdy8WisE3Ac5TZu80x/Aeu2EDb3AfNmFVmZdIGtkLGyErr7N2Y+z21blLfOo2fdMlzXhtQEevtkxRl200lYOHY3i5uQBd4oul+DOWhhQ5eaYa8LCOXhklMqLxAQiCWA+FChsA3HCN6YBRQp/UZEiMaHAQCNdS1ob1FhHu9soox3SilKxWQDgPDqsAa2RhYYhtn6yCprZAMpi48LjsmeZkTiyhOva6D475o0lbV6ZNlNXRMgZHPWjIV03K0e0KAHNbhJF06sUGSbFmF9F9BUJpN5XQAYigEGh+0VIC0JaUsIr4BlA3rqValrKBnmaI64z31eFRY60aV6hU+ozPIjLNn2sL1thKem4rGrNZ6QSxMSMkYOQdoEwe7iTC6Wlb3TDMOAYVWfk4zslGXakaAStXKzJ1RW7/GKsbQl2+vxIeAL5VmyrSIZxoFsKS8iNfM/FCZ0dbqYM6KEz/w2YFMPsK6TH/K5RBOEN9erUh+eIg9NmsRZvM6e9ZnP82Yvy1uXa8m2HQsNjQL9g4ShwcoerAOppNadfeW3mymQJLiGWxAHqgU0RPpdbOmWaE1V2KJBEyLHTSzoAwwpMLgl/zlBROjrl/AnLYhi8dhWEnZq8qy+rgleXaCtWd2nazdT2Vn5UjHZgHJLs/otyEmur8kwY6FUyZxypGvackz29CKaUNbojT3K42wksWR+ZvHcmsJ+H9AbHvv1oJKeqbhbzauBHCrqIdQzpOo0N5cpox0KAAlj/Jb1qYrZb2H4teGi66QpQbYav9pO1pLt0bPVc0aSMPLjsX1ewHSUZ+dEIoQAZCr5VwoiVdZNqzKz+JjOr6cTn1V3HSc7DYRfDo/7/DJVcYUt2UweuSI7mUwilqTqc5KZUiUy0zXQUHmrECUcCEdCFLFWVUMkZcmuDzVDCDEiJrt4G0KBbCkvSYSeIYJmOAVuS16PQHM98NaGcTVxWkFEWLOBEI4BbU1F1ksCzMmzZG/pzYrsBSNEtq7p0IS63mzHQjCkwTQInd2VDVDDUfX/mo0E0+KBqbRSL/oRv7Xm1zDY7yIx7KI+KFSZr6iTF1+taSouO9JlqWsmRcIAEoMO/K4LBEvHYwPIZI73eQRaG4H13cCWMhMgpdzFAaSsLvnl/BhmquAm3TFW6hAcLjPN6AsTGkLAYETFPI8klszG5tKwBfeNcCZkoC6g9hsrTtyFYxA6w0BHrwRpgFOkPOKmHjW+LFXPGVDjLzvH63Cm4URsJDcliyaPk5ZUSQuFKtuVtmR7PWoCpdhkczyp1qfRhADRxFuyAQAif+JPGhJO3IVeZOJ8wk+tpSYPq3yuWQOmys9kjm+inRwCOTJT1nQyYJFdg4y0ZEfi1SU9UweREJqACOmgIRtUwg2XiCB7DNAEXITpQXdDXTMAwOfNiuxiMdkAEPBnS3kNRYDBhIYWKm55n9UkEEsdht3G1Uv7vc3AnJYSsTWOihUq5uq7LdjSuyHzef4IkQ1krdm2YwGaQNBDWN8hKxLNW/rVNl0DwPvs3aAyGjuF7uKkKzf8Bj0lWBMOyChMYuap0zHY7+QJ21gSMMMOvKCiE3Ajw0PSBHwCIT/w7mYqWYamnMhOW10qDR1gmFrCiTpjy2ZLBGmPcOvk99yUxXEI/cNAYyqMtbOv8LeMJigzHyOHTNCwBRhZkV3KEloJiSEH67sIb64XWLMRGDQ0mANWXohVNEHo7C+e8GwkHg0YiMzM61FaBGvAhjVQqIJVeAjguICbI7I9ulo2Mv7acQnWiMzigJqXixsT379CF5nSuEAqs7hRXWbx8UJVxGSTSzC7TZVAMjm+iXYVL49xJ3UeDyyyaxDbzt6ViUQC0WSV5bug3ITh0YCgDko6QCmX8agDGjAgGqpV8flYtgnDVNOcGatWjsi2nOIiO7eU1+Y+guvR4DOdkglg0nHHT72sSk7M5EHImg0E2wXqQyUeIDapafJJcpXZ0rsu87moyE5lGLdtE0II1AUJw8OEnhJJYtLEk5RxF2+uB95cD4QnoKboVIZsZckeGXsUTgjEEoQmr3pZUdwBZKFoDtZpiIVlXlx2NAFQxCpMppYikiOyG3NqoANAUyqPwrubqGgcX32wtMhWLmZcM3g6MTQ0hAsvvBCHHHIITjnlFKxcuXKym7RVICI4UbuqrL0ZBArcxTd2T1DDmG1ONKm8gUIB9Z7q6C2M0e0Pq5A5IgL1mSoBraWe1Wnr8VgYihJeWmWhc0B5Fnl14P1+Df1bHMicUpndAyrhVkMF+axCAZX8TE5SEqvJRBou3IQLY3OyIA+MtEhZiyUgZaHIHlkr23KyNbJz8XtVRvmJRvNpcIbzRTa51SVmHC/V1Ml2og6cmAvXpKIVT6o6r00q/8wkuotXKd2YbUGuJTsaM2DVKYtvpZAkwFbu4kLXVAr9qAV9VuFB5IChrN6zxuc6EkuEM58b65sBYNTs4mnSpbySJtA8SwMZjkrYVV/4EPCnRMRwDHh6NWHeLGCXxcCi2YBnlNkqxyEMRoGhqBLrjXWTWKF+AujoA+YXS3aWxpGAi0lzF+9MuYs3N7ajLlg4VZ6ule24agJI0zRorkTXAGHxnNJtHoxkZ/ib64H3u4C3NhAO2mPy6oFPNtIsHnvUFyaQEPCk3K4oYhVNNh8ICgxahHCfg6bFalk4IuGJWBD1xZ8NxdzFc2lrVoO49zoJuy/NT9xYF8pm2Yknixdg5XJG04cbbrgB7e3tePLJJ/HCCy/g8ssvx5/+9Cc0NjZOdtMmFGkRpFldjewMlI1dTE8el/IEmUiICG+++SYSicoCbufOnYvFixdv5VZlsYdt+FuqGADVCJE4YNpKPHk9asKkdwhYPIewefNmzJ23EMPxVDx23AFFLeV9ZsnMI7qqijIpOnoIL70tkeiwMWu2wFB0C9pb5qPP1rF2nYG2bhuzt9MhJWFDNyHoL//e7OvtRH9vJ0yLEE0A9Y4oObEfCASw55575h3PNVxE3oigcc8m6NsgDnhr4MRd6CEdRp8FJ+rA2+jNWecoa7Grkmhrqd9M15WYtmwgHA1jXcf7ANTky9vrCU11KsFdmqRJcCVAtiiwcpMAEn1xhPrqIHIeCT6fH7tvv3vZ30/zaXATTmZ8MFbh2tW3BXNmzYWmVfkbUnUx2fawDWmqe8AdryXbnnxvOBbZNUiuyI5EkxB+ldiqYhwVA5G2VgmfDuo3QUvq825GsiVoSxIiNP7LIJ1lGMgOuP2+nOziZUR2MKBcn4UAfCEdiNoqYVd9aev63FkClgP0hoGnVhPmtwFL5qhkIX5v6p9P6YmhqEogsrlPiXPTAo7YR1TXpzVELKEeWEFvNgN7MciWEE4qNn8bkzTjGAgrM8z89qVFt8m1ZCsIDR6Jzb3AXtsTAv7i7R6IZGt/CyEwrxVY2wksnqPqqs9E0i+T3PvbMAk9g0CoQQNFbZBLoKHiScx0TcCFhnC3jSWpZX1bHPgcFwgUvw9jOSK7PlSYFEATAm3NhI4eoCFIWDpP5Gxf2pKd+iLsLj5NSCQSeOaZZ/DII48gEAjgiCOOwC9/+Uv861//wgknnJC3rWVZee8/APB4PPD5RtQ4qlGcpA3XdeGt10CiSoHsAxzThZQSkbi69oeiEq7rbtXJw8997nP45S9/WdU+Dz74ID772c9upRYpXFcNsI0hA96m8XnaTQbDMQldU89BTQB+L2FzL3DNFedhxYoV+OrXLsEhH79BJaQcMCEcF/ABwnYgoH7/+oD637ZdeEfpAiLC25sIr60FNMvFnEYH//uXa/F/T96D5YediUu/8CMMDBJefcPCQXO9SJhAf5gwqzFV17kITz/xR1z7rU9XVcXjlFNOwe9///vM30afAaPPRDBuQXirv4+llHn/TwZO0oHerMON2zD6DOg5E89OwgH8Ag6pij4eDyA0QAegewhvb3wXp1/8ERhlxsDj4bhDj8ODP/h56Q38qvKIHbfhqffAGjYh/KKq59P9/3c/vnXrN3Hw3gfjTz/+c1XPI/IQXMet+PczhyyQlwAIODG74Pev5jpwbBfkQea7kk6QkBN2LVUy4cAiuwbJE9kxA8Gm/CQJo+JIVcIrLVJCusownnSBHEFNg6ZyI28PlDhQ5RSLz8zLLm6XfsB4dYGQn1AXUCJBAqqto+D1CCxoU7P+veFsnC6gXHV8qYddPKkEfENI1Qnu7Eu7bU09q6ftEF5dS1jYpCyF5TeWIKiX/Lamqy9bvquYqziQI7JTlmxoGkK6i86EmnRZNKdwHynVZElddv4GoYCAiKha4bNbyk88TFfSLmu5DEaVxX9OgwYkVSk/SjolJ688QQ2DHSpmz7SA+IADH0mghOtrnrt4faElG1CJ0BrrCGs7gbogob1ZNbKcu7j6QpxpebqwadMm1NfXo62tLbNsxx13xLp16wq2feCBB3DPPffkLTv11FNx2mmnbfV2Thj7ADbGkMFoPhDGEMIbs/fVznM6karoudX44x//WPU+v/zlL3HooYduhdYUMigGMbhx6hVpbtCBw3bJ/r24Wf3/hz/8AQDw5z/9Hpdc/FW1sB1AZtuB1L/sPlu2bK7onCEAB+6Q+mM34Pkf/n8AgP+88gh+cuj3sN2h6vh9Per4mW1LsPo/v6q6TObDDz+M9evX5wuQXYCu4SRQPEF3RXR0dIx95/GyffZjP/rRv7E/u2Ch+qfDxAE75e+2DMC99/51qwlsAHj0349iaPYgPJ7yIqFzoFNdVrPVv2qeUX9+4U8AgOdeeQ4doU1oaSn+vi/KfGAA/RjI7bNyNAE4QH0cwhCGcp6HQJXXga6OFYWdaUvB7zcOli0rPrbNhUV2DZIbkx2NJRFA2tWywoedQ0pkp11H/TpE2AJF7TyrNfUYIA3QJiBeIV9kF8Zkm2VENgA01+e0QROjlx3LIS220xBRJhZGSqC9Kd9V1echhKdglkwiJSTf3wIsTH2nslfEJIqUrpykZwvmjCKyU5ZsoQtoKbfmrgHCoiIu4+GY8kYYmU193izljvd+J2HXpTNPZLumm/d4ICJ0DRB8HkDz6aCYDRowIazSotnfoGN4wEFy2EECHpiDNuq9pV0J893Fm0u2rT4oYFiEdzsIdUEg5BejWrKFLuAmCzO5MlOPZDKJurp8t6G6ujrEYoW/++c//3mceeaZecumkiU7uTmJgecGEVpUQZDrCIxeE/5ZPsz6cCteXeug2duJ595bgKP21TGndes802zbhmGod/P8+fPxyU9+suy2d911l/oct7FkyZKS204Eyd4kepO9aDFa0Ljz1AorMEzCYysJXg/QmHKtJiKs2yIz130iYeJfby/CkhYJ56V+lZzJkECLD54PtAIABCQWNW+GrS3EDotK+44TEVa+RXhvM7BkroDsTsB9fQiRVJBvLBrDun/VAxEbrkfDlsWz0Nwg4Eqgran0tdU/nH2pHH/yFyARRMAPLGwv3OfPf/4zNm3aBCJCW1sbGhoa4JoS/f/sgzlgoe3wNoQWBQv2Gw0pJTo6OrBo0aLqXZUnADfpovfJfugBDdAEnKiN9iPa4G3yQloSvU/0QXgEhhwPXl1Lefdq7xCh993sWHb5ocvRWL8Q4bgKkxxJwlBJ6Bry3PEJw3FCaI6D/k0ezGoU8HkEHnv2b+joVoJTe19HQ0P2HjEsQiCnQk+iI4FZH54Fb6MHff/sh16nw1OFB6sZzmbgE+s1NCQrvx8TmxJo3KsRjbuMnl3Pjtjo+2c/vI3elCcbof3odmgebUzXwfCrw4i9F0dwgbruEh0JtHywGXXLtp0bK4vsGiTXkh2PG2iv9gCuVMEhKfEsNAEpABq2gTnqYqOYDdk//oRnaYqW88lNfFaihFcxhF8DDdsgojG5yQkh4PWUtv77vCpeaqzHnyzWdwGvvQ+0N1e2PVkuJsta3zlK0jMgR2Q7qetdFyBToqkO2NwH7GVRQSm3wYgqc+E31ItLdiUg5tXDows01RPeWA/MbyM01U+d33UicBNuXjKzSFyFSTSEAOgahC0hI1ZZz4ZAvYbhPomhXhdmnQ4aNOEJlR7YFZtYK8WsJqCrX1UQCLXnx2QXFdkeATfB7uLTgWAwiHg8f1YzHo8jGCwccPt8vikjqItBJiBcAUHVP380oYFM9U7qC2tobgdsV0Pc0PImiSeS3N/lAx/4AO64446S20opMyI7Fo9vdcEjkymBZ1bmlllLxE1CLKlyxlD6HSwA1872dyIRhxAa5LANRCVodkAVS464kFKo8kcp3u4QWDhHIBQofh30hwnruwmtjep8MiEhHSCZynchScJIGvDrPoiki/YgoTemY9HsnPYVwUhm4/QvuORW2KiHZQMnHCwQHBHOtXnzZmxKuV3E43E0NTXBCltwhl1o0ACTxvU7apo2OSLbcVXb6zTofh12lwl7wIG/xQ9pS5AFeHw6HFvAdQBys/2iERCJJTN/n3/ql1HfeBD6hopPbvSFCXNnAXtul/2e/WHCq+slPnhCDCv/Uo+GoMBeOwh093VlRHY8HkdzfTOICJ19wKZeYLelOcYrRwAmgQyCTBD8LZ6qnlFJI/sd4vF4Vftq0CCsyu5hNyJBCYLerkOQgB2xQQagNWb3reY6kAmCJrRMe4UroGHbXkdT68k1QxgZk61X+SuRQxCS8h7SIuABDZiZBASy3wAMFyI4MfMs+ZmGmwEgv062lRy5S2l8qeRnxtapk+vzKqE2srRCLdMXJqx6mxDwKctgRSRlTdTInt9eXGTnJj4jSk0KORKNAYnhePG6ot2DyjpAw+oecd8ZhuxSA4FZjUpcbuieeW7GMuHmlQ3qH1ZlQvxeNVgjAmBICH9p0ez1anAlEO51EOl3oBlOQamvXEZLfJaLgErmEo6p36YukJv4rNCtRHgE3K10/zPblsWLFyMWi6G/P+ui995772G77babxFZtHcZeI1t5b0hLIp6gTD1iTQDD8a33PItGo5nPoyWhExAIBZSFPhaLlt12InBTGZHdGkheVC2RuMos7R3x/vXp2cLXhpFAwEegsAVCarzmFSpMxsx/9g1GgLWbS18H728hJM1spREatmHCgqRs3yWMKODXAVMiJCWWzRPwjOLFmMyZAPUHQqqsmFG8XnZDQ9ZSGYmo72n2WwAJCI+WV6u5FpC2RGJTYbbwgu0sVQo1XWtZC+pIdqj9pJVKVOdVic9G4vEA0ZyJrLpQHZJGYfmuNGkDULq2tmVTXonSWc3AwLC6FuryQq6iICJs7Ca8tYHQNwRs7qXMdxNCJaBzEyo7W7XZthNGdrKlVKLSkmgCssJKIfagBWjKUKb5NEiTxlXGyzXcSS3fBbDIrklGxmRXXSM7FYubR1AHxW2VxdKVoC4DIjhxxeijsXDmc33RmOwqCj76dMCSW09ke1TWT2MMYXOTQTxJ+O8aQsIEZrdUkXDCcCatdEFnT47ILuEu7vNkLVa2YwEeNcDQU+/iroH8q9i0VCKvxiBB9qVczD0a3DVhyJ4khFDJ7DZ0z6z6skQEJ5F9mdgOoXtwhDuaEKqUXxnRDKjyI/1bbPRvceB1pRqUlSBaZGKtHEG/ihN3XWXRqAsqoV3ckq1BGrKq+ppMbRIKhXDYYYfh7rvvhmEYeOaZZ/D+++/jsMMOm+ymTThjrpENQOgqC28kQpnqCUFf/mSja0okNyerytZbjrQYAkYX2VafhfqAGthHt4HINgdT3kpmbYmzShiMEIoZy4STfdYRETQ3DuozssYOr6Yqw4xI+thcD7yzCRiOFf7ugxHC+i1ZDzdyJRB3kHDzlXDCiCkhT6TeBRVgpCZA/YEgdF2HRxdwZHGRnXv9RKNRSEfC2JyEp16H5hVwYrUV/mMP2Yivi0OOIv6llV8GytvkhdVvwQ7b2aoeHgGnyD3p1YGEme0snzcEyy6dNd7vzR+bbuoh9EeA1tT8hUomCmzqAQjZiepIIoZ1WwhrNqlSa7Nbge7BbEkwzaup0lhxZ0zOjbkiu2gOlTIIDRUlMSVJMHpM6Ck3dqELQNKYM4yTJEhDFpQr3dawyK5BcmOyY7Fk1TWy4VLBbLrwK+FKMRs0ZAERC5ggV3GgVOKzrDvgaDHZeW1N3Vw0zvT9pfB7lRU7WYXunywch/Dyu4QtA9VlziZKzYZP0ixeV98GACrr9Mgaymm8OZMwtmMpS7YrAUe5jHf0KmGdZjCiyl/Uu6lyJwBEkw8CAu5bYcheAy0NarveUWptExFeXSuLDlqmGtJSNaXTL5OhKBBJAI05YaHCqwFRp6xoBlRc9mCnhWifnUocWPr6SVuydd2DgH/0GKeAT91z8dSjIB2XHSsyMy50NeFS6Qw4U9tcfvnl6OnpwUc+8hHcfvvt+MEPfjDtyneNq0Y21L1GkhCJEtLJb4N+Va8+XWve6jcxuDKM8MvhcZe3AaoT2YnOJEL+lCU7XqU1q0pcw4UbV6JsqlUZICL0hYvH3MbjkfwF4TAo7gB1qUGeLiAcAhUR2ZEk8M6mwufhui2EuJFTkjTpgky3UGQno5lzUKQyN760u3kgx/PIq6cqfIwg9/qJRCKwB23Yww48jR7lmTTOmscTjbQl3IQ76iQO2TIv34ke1OGaElafpa5NUpZXy0GB16muK4+FNF5PCLajLNzF8KVFtqnK923sVr99fk4hZUyw3KznwDsbI3i3A2gKKU/HoE/AdlQyYCKC8GlwIg6sARvaGMqojU9kC1AF73En6sCJOvDU5YxRhCqRNhakrZKnTmaNbIBjsmsOIsoT2UljDJZsRyUMKMAjVEbxlPuoNoEzPPlWrXRMdo6IqkJkA1CWt60086lpAkQ0JUT2xh7gvc3Aovb8moqjkn7AjKVe6zixbBO9Ayob6vzZy0rGvXv0nFqTjgX46lW7DRdNLR5s6lX10xekkhIMRFQdSS1u570YRasfGDDhrglD370ZgB+dfYQFRZKzpOkLA+u2qBnipvqSm00JBgdc9A9KWD4NySGJcEzNnubFcTZ6ITxi1BeOv0FDZNAFbAONofLXTlpkN9S1VJTbwOsRcBxCLKlKEip3t56iL23NI2AbpAY4U7S2KpOlpaWlbLzvdGBcNbKhQiTIIQwMSnhT7+ZAyvsjllSfpUVwow6ib8fhRF007dMIX8vYY9hzRXauu+9InJgDo8NAfX0D0KNCPLZmThM37mbCRaQtp1T+lHhSTQbXFSnakojnewCYg8OA25wttyoEJArdxYUQmNMMvNcJLJ1HGY+2cFQlQs1NBEqGC2FTUUs2oAwuFLaUdXaUMUXakh3MSVQZCgA9Q8ojSc95n+ReP9FoFOaABekQNK8GzatBmi6kIyd03DkepKWspKOJbGnJAuuvHtSR6DAQXBDIrLMsFHgveD1A0swKVI8nBNstbcnWhPI0iCZUiKDjAnWBwqTH9UGBoD/7m7y/OYbtlwDBnBw2zfUqD8qCNiDkE3ANCWlJ6KN4s42EiEa4i1eZNVgDpDP6RJk97EAaEtqcnPhrnwY7PDYdQLaEdAneSsMrtxK1cbUzGXIFNgAYRvWWbDLcorWRRdADGrIgeycu4VmaSJH4zNyYbLPKEgbCp4EiW9efeyq4i8eSBCFQkABsVGyprMKTMIvX078pEwu2oETSM6DQkq0EIIH6DPXyJhWDDSCT0KPOR+r6HWEtErP8ELaE+2YYzdLCpt50mbbibOhS1ga7tibXqyKSssL/80UXr78r8dZmoKNHzYKPLO8mvBpE0+iDcW/QAzfhwom58DSUfxmnJ9YqcRVPo2vZGNO0JTs9YM9rr0fF58spGI/JzEyk6ULaElq1z+oUQhdwHUL/oMxYQb26ivWMJtLnkBAegdDiIMxuAwP/HszEh46FSmOyzR4TdsRBQ726Z23HhhHfemWJnLibLeHn0oS5x28LIgkVtxwslj16hCU7uWWoME+GSCctzac+JGDZwNsbCTIVRrO+ixBLqEnL7EHdlBEhf/IyY8n262qMWEE4XjomOxDMnqAukJpISORvm3v9DIeHYWw2MokzhVfF5daS6z9ZypLtjtIm15AFnqHeJg/sQRNWv5lZZ7mFlmxNCJhWjsjWQ8rAVWZyQwhgYJjQO1S+TOus5qzI9uixPIENAEG/sq539quJDmlLuIas2pJtWmZeXemxWbIrENlDNiDyq5loPg1OxB5T2Ji0lVckx2QzeeTGYwOAYRjV1cgGAEsWn6EM6qCEAyQcoEzW4LEQS4QBqBukLqgetmPNLg4A8GuguFPgNjVReHQgmqj9F/dwHNWHCwCpWumYFJHdmZP0bF45kZ1jyU5nGBeNPsjuJChmozHlMm7ZamZ3KAo0wAGFTaCucJJItAWAuIN6y8JwDOgpUVo1EqdU3DaKJiuZKqTL0LXVS7Q3EOa1a5jdItDSIKrzeshB6AIeAWiWC+EvfeHFEsMZy0hTw6yKjx/0K3d+1yU01ivLh+u6BS7jwiMgHVTkZsYwtYA0JKSlBrRjQWgCySQhHieEcqygAtl3lZt0IDTlkRJYFATZhIHnBhF9KzomIVqJuzi5hPj6BPSQjvpQ1lo5PDBc9fkqxYnaGQshucgK7ilANKFKhxZ7BicS+ZZsIxwFRpRSEh4NKOHFN7dV5RzZ0q/eY2s3A62N+cKEYjagCyRGPFOTqec1fBqE6aqxYBmklBlX52BOkq102E9khMjOtWSHe8OwwxY8jeq7aV5NWRZryPXfNSVk6l/Z7RIOtBFCTQ/o6n43JTSv8oy07EJLNoCMyNZ1HYTRJ7p9HuUp0FBX3nsxFMj2t20Xty6nrdlRS6gkYmb1Ijtp5ictrtaSLXQBGmWijCTB7DGgj9AlWkAlzBtLaAzZBOlg0t3FWWTXGCMt2baVrLp8B5kuUMQlR3g0gAgi5Jlw16u062h9qDmTHj+/TnYV2cWBbPKzrVQr1+cpfEnUIrF+B75E9SZ3siWEMzmW7Lwa2VVYsgEAQR0wXMh+A031qi52/7ASZnEDCBi2qiVa6kXh0aDFXXg9KmlIMTp6lWgP+pXQnqqkB97pIdpE3dMtTcCs+vIvp/Wb12Q+L5m/S8XHDvqVlSduAG3N2eKEA+GBvO3SCXrYks1MFaQp1ft1jM9coQsYBmAmCf6cOUR/TvIzJ+5CpBKrCSHgn+OHp8GLyGsRGFuqtyxXIrLNPgtWnwVfizeTrBAAIuFI0e0nAmsgG9tOLk0pkd0fppIhfolYfp8ZsTjESPddrwaKu0W9E4J+ASGANRtV1ulIQgmpNEQEitgQPh3xZL6gjxvqb6EJ5Xw8inAxc1yEA1p2LCeEakM4mt++3OtnqCcM16CMa3LWkl07v6Mbd0D26Im13ERxa6he54E17Kh4c5meWCnc37CUKK0L1sG0MWrisYY69Z5sGMXNORTI/vDpCe+RpK3ZXWEARCp+vEo9kUjmD5SrtWRDA0iirMh2Yg7sqANPXf6Ek+bXIE0JN1n9OEDa43seTxQssmuMkZZsu0o3a5KkxGmJG0mbG4Jonvg6pMVcR/NjsquzZAuvBuFI5da0FfB51YyzW8NuaLZDMLtN+LqrjIEBMhnmJyOOLdeSXapGNpCtkw1krw8hBETIA9qcgO4SSALdA4TeIYKuEajPBLxaye8lfBoobqOlAdgyoGb7czEtwtpO5V6naYBh1e7vn4sdsWEP50/A9YbTKwvd2caDaAtAm10koDCHDZ1Zkb1swa4VH9vrUQlZYkmgvaUts7xvsK9wY2JLNjN1mIgSRQmDoI2IPw76lUeT7RBkwi3Ilutt9IAgYPRUn2Skkpjs5OYkQATNp2VCPAAgMrh1RLa0JZxhOyPQRrOC1RKuS+gbLp70DChiyZZFxnceTbmLl5hgnNuqPLze3wK0NIx4x1upMZNPUyW7ckjmCjFdy5TBLEUyx2IZoECeV2HQr6ytueRZsruHoAey12m6jTVlyU66KrFWmdw/lMpuXSzPgrfJC2vAguZXpS/dEiLbSlmyQ4EQEsnS8diZ4+oiW9+6DMEckZ0sIbIBlXNmSx8QS4xNcCaM/PFn1ZZsTYwustPx2MH8DtQ8GsgdWxmvWhk7sMiuMQpFdpUWYCf1QtqGszeudBFLKNex3Hq5fl9OdvEqJwsAgIQY1aVprPi8tV/Gy7AA25TwJuzqBxlOYYb5bUVujewFJcp3Adk62QBguzk/RIMXiNigAQMNdUBHH9A1CDTABYVNiPoy/vNeDWS4qNMl4slCl/Et/arOZGuDcvYwpkDyOwBIbEoi8mZ20GRahOHUe1XFO03cC0V4tFGTN+VaspctrFxkA9m47LZckT1URGSL2hqUMUw5xlMjO00kAQT0/Hs56E+550ay7qkj8TZ4YGwxqq4tP5ol24k6SG5OwpOamM8V2dHhrVPGK530TEuJNJJTR2RHE8pLJ1RijnJkTLYpioyLvCofxcgyXpnVHoGGkPLyahk5L5J0AVOmRHa+8Mqtbyz8GihSflxh5IpsPZDnVVgXAMLR/LwnuddPeHAYnqZCc36txGQr8Syh+XW4ZUR2tkZ24T2n+TXULQvB0+CB4wKuW95dPBQIIV6mRna1VGLJBoBQyprd7/XDP7fE7E8Z4sb4LNlCS1ULKnOtWUM2hChtFHIT1YvsWqlMwiK7xhgpsl2nShXgSkBuW5EdT0Qyrk25IjuvTrZTvcgWHgFUWGqiWqZCGS/DAuykhC5dlVWjCshyJ1J3VUVn7zoAQMBfh5bG0nXH8upk29nrXmgC8GmQnQk0BgnhGDAcA+odSw0iymXH9ArAlhC2RMAPbOimzLUpJWFtJ8HnAXRdqPIaNTzJkotMSpi9JpyoGhBEEjnXrlFiCn0rkmvJXlqFJRvIxmXPynEX7x/qz3y2HcI7myRMG+wuzkwZKqmR7bgEu4Trs2WrUkwBT/76dO3caFhC2sWzl3saPHBiqkRPNYyW+MzoNuFGnUwSxDxL9lZyF3fijoptT7uLy6kTkx1JAKal4paLER/hLp6k4pZs2FKJ5RK0NwvssEAUiBIyXAhXlXNMJMtYstP5eWKlr5dkjpgK6CFVaixFXQCIGUpopxmZXVwfYZWEEFVPAm0t0uJZDyp35FLvGWkRZJnkWXpAhxACrqsq55YT2UF/HSxnjDl2ilCpJRtQ1uyusIaYVb0uSBr5hr6q3cX1lDdKieRlKh7bhBYsPq4TuoAdqd7YJqscM28tWGTXGOO2ZNukrJjbUGTn1ciub858zovJHoMlG34dFLVB7sQPtL0elbW1pkW2qZLpaA5VlAk0j6SclBrZruugp78DADC/fWlZd/VcS7bjjlC7TT7QoAVv1Ibrqthpz5AJeEq7igNQruS2cplrbVD1stNejb1DQNcA0N6cOr+uBq9TAdd04YRtWAOqn6KJbDw5Ge42jTsiIqxPiexZzXPRWF+8DnopAinLXENd1pLdH85asnsGgY3dQMQQcBMsspnah4jgxJxRa2Rv7Ca8uT6bHTqXuKEmfoMjRHb6eReLqhwFxaxqQhcQAMy+6l5o5SzZ0pFIbEhAz8nhkheTvbUs2TH1rss852nqxGSnw5NKvaMSIwRKsVw1Kh9FKrdOlVDCAaVm10eK7Ny/hU9XIWXDpV+AeZbsQCivpKquqzKwPUPFLdlxK17QB5pXlLUab0vS4lkP6XBtgiwR6kG2BNk0aobqUu7ijmPDcVUf+30hOG7pGtnVUqklG1DWbMNS5QCrJTHCkj02d/HSlmwn5sCO2AXx2Gk0vwY7bFddQcFNykmPxwZYZNccIxOfOdXWl54ES3Y0t3xXqDnzWQiREdrVxmQDAHyaetGMIR6jUmrZkmlYUMnLrOpj07e18ErTO9iZeanML+MqDoyMyc7/IYRXA6SE7E5iQRswr86BHLTKu4pDXXMEAKZEMPViSZcB29Ct6myny6HpGmA5KDrgrTWkqcpvJFPJjYaiBD098Wu523RCZSDcnbnnly3crer9fR7lvhYKZi3Z6Zhs2yFs6iXETaAvCjhbKfEhw0wk0lID9XJhFlISesMqV0R3kcoHCQOQAPQiJQ98HmBgQJW1EiWs5Xq9B8bmZFUhFsVisqUjkdycxOB/BmF0m/C2Zt1+8y3ZWye7uDloFWRonyru4r1Dpa3YQKG7uGGWyL4qRMmY7LJE7cw1ODImOz7ib+HTIXtKl39L5riXh0INoCEzb9uGELCxBxnPjFxLdtwqFH3CI+DEa8O6mBbPekgHWaWznktLgtzRRXb6ltVGTCwYOeW7vF5VI3ui3MWrsWSr84+tok5ihKgem7u4qhJQDCdSPB47jebX4SZGr2c+EjfpTnr5LoBFds0x0pJtVWnJJocgZPUZBMdDJNeSPaJmbtpl3KzWIg+oUhMWgcYQj1EJQgCJGsp2OZKkSRC2BGy3KpFNRIDpTIolOy8eu0zSMwDweopkF89BNPoge5PwWQ4ChgORdMq7imd2BMhU4qw+CKzvUnUnN3QDbU3ZzXRdvRxrPcM4kSq94Wn0wuw1YUdt9AwCgdTYl+xt6y6+Pi/pWeWZxXPRBODz5cZkK3fx3iHlgji3BRhOCgwPsiWbqX0qqZE9HAeicTXIXreF8uJZASCSIGi6UN5oIwj6gfCQhJSlraSeRg/sqAtrsHL3nFyRHfKGEF8XR/9TA+h/ZgBGl4nAfH+e4M2LyQ5PvCWbXIITtjPx2GnkFLBkmxZhKKpcqUuRiI9IfGaWsApqIs89uxLIJVDUVpVZgILs4gVCrM4Dilgly4UlYznu4qE65V6eMw5pTlf/CKcOV1eXuTbjRb6X5tUgDRfSmfxnelo8a36VWKtU0sK0+B4tgazjomh4Xu4kis8bAqhQiI+VYCDrVTKaJRtQE3XRBKq2CI90F6/Wkq2yi5f2RrGG1POqVB/rfg3SdKsONZCGLEgSORlMfguYPMabXVxlld62L6Q8d/GcmGwA8Kcs2Va1seVIWSWJtmoZr+ExJO7eVgxHCR6kEphV88K1Uw+0bRynC2TjsYHymcUBwOsprJOdiwh5VDmvPgPUb4A0UdHkkfBoQCp2uaVRJTpbs5EQSwANoez+npTIrvVa2eSo39Pb6IEbczHcaSGWzBnMbeNEh+s3v5X5PBZLNqBEAyHfXTxtxQ74UqVHpMDggJwyVixm5lJJjexwjOBINdE3HBuRL4JU7gmfX6QSGeYT9ANmXJYNb9E8GiCpKpfxdEx2MBBE+F/DGHxuCHbEQWB+AMGFQej+/EnNPEt2ZOJFthN34STcTGZxAGrSdAqI7HTSs2BZkV2ZJVt4hap3XQ2Wq66dVMjCSFE9UnSLgA6YsmSW8eRg1lMhUFevamvnjEO8HgHpAl0DWRf59PURTRReG9kyXjUgsu0ct34qnWBTVlh9xC0xhsj9Dfy+uuIbjRFd0xHw1xWcpxTpPETVhsiNO/FZSjyXeo+bvRb0EfHYsQShozf1G/nUdVNN6Bi5BGm6RUNrtjUssmuMAku2WaUF2N32WaVj8ezDeKTI9qZF9lhisgGVLTqydXy6fV4gEq9+Zm9bEY1IeCCBQCo2vdJ22qkAocmwZPfklu9aWnbb0SzZgBLa1JmAHBglq3jegTX8/+z9Z7Rt2VkdivYx40o7nHxOhVOncpWqJEqhlIUEJkgyGGMh2VxwkODZbg9jfA3y5V4/XyQbX/Og2ff58sDG2E8YuBgTDQIkIaGEQkkqVZUqnqqT085h5RnH+N6PMcOYa8250l5773VUu7dWrfZZe6U94+hf/77eqROCBMGKMixXt4DFHidWQ5ObaeaV7ECahjCDgRkM25ddaZAUbz5Oe7qvL984m/x8ZkIlW5LsKkq2TCBY31rHeh3Ybqa5r+UKw+qGgLeL4yIHOMA0MCwjWxBhbUu2EmuM4fA8cH0t9YtwPMBxgVKJ5bpKlyzA6wp4Qxxz9aoB94Y7sloYK9lzlTkE9QDl28sonbALiwUZJbvZKjQzmhS8E7WOqko23Rzt4jJmTY7DFKFPyfYL2sUNTY6JiTEIqS9kF0Q0TjDQ+CwCszSINTd3beEoM/dluwoCA3q6CuP0jyCUfgFzZXmTzSNimqmBguLW7L1E5juwYtfzUc2zik43df+WrMrUl+aVSM3uLaDkwTQkyR53RHKnM9kJcq4VwhfgnRCanb3eNLvA0gZBKHGG4yjZIhAQIQ7axQ/Qj96Z7LHJaShv9nsJVcme72kXt62IZI87Wx6B2RqoMUGEFQDqhBBXO4ULAcuUixt/Bs2vgpDgOgRDI7CSDvIGu41mEAqAY0/VzRhL65eTn285ftfA5xqKkh0WkGzMmXLOrBsC5RFJtqXJTM/oRnp4Htho9Med6LqsQAczzuFEpGQzg8FcMNG87gNOCD1S9Vko9kXJ1piGO265f6L3sAyGgDMcXpBz2evbG7i2SrAtQIv+rmqVod0mrG/M/gL7AC9vDMvIbnXkwrEWpVqWbekdcXGZEHJC140mfCw5i9t7z9I0BnI4PD54yWYuGAjqAYLt0W5qMcmulWvQK/pQHw/V+KzdbU+dMIUdmYqR6VhibCaI2TDcWCeYQ25R3XZ2jr1wJtuM7mFjqL7kCTAuwKIOtt4Z7F7SDQComaC619cpR0Toxn3giFqTdQZqZLskFmvAdgtYrwPBdoBqpKy2OjlKthEr2ft/PReKqRzTGcKCTkHeHa3lOAgJyDl11P1rGJWhx8e4iOeyR1GyDV0KDt6YJHvH7uIR8tbw3JGz1r0k2w+jtXn8XRmDaI9Bsn0C8QPjswPkoFfJ9sZUssnje06uMjPZPU7DyUz2hCQbti7jqMZsGScnBH++Dn6xVWicZpvpyTxrcH3A9wgmIOeQAwGM6DZKgdhz4hUjnsk2DRvHDt0y8Lmqku0XKdkaAyoGYOuj+wyYWmZ7LdYY7j/NElIaQ9eidvFZV7LDyHxFZ9BrOlqbIcyOuojuj3LZLXDBcWXpJQByHMC2yhO/l86AhTnZMr7d3MJ6PUxUbAAwLA3ghBvLM14FOcDLHtwdnJGdp3IemZfk5Ma6jO4CQbY3CuSqPoYf9gqJfdBMDSIkeBvDV9JElJDsaqk6sNU9xpyiZLc7rZHbaUdFUA/61CemsZloMR6EVpewvJWTW92DbidLUNwir5qee9hI8DlI2XRdJ/tZuXO7tga4OS7jDoerjAOU7AqYrUeCR7ovDJ1BCNkyHmwHqEWkr+N0IHpU+Pj+PQsFE95NCZhmauCtApLdCUdqOfb8/Ok8RyHZul6BOSXTsxixw3jXbY/c6eiMrWR3ev7dBS/qjx+AXJLd5RC+6EtlcDzKtLbrtoZggBN+7vt6/e+7H9j/b3CADPpzskPwcViAJ/bU9AzocRev9pJsuQjnPATnE7AZMzI/G8f4y+PgZxugdRfMCUEFBN0yZKVsFkm25wOBR9AZSQO4cAyH8UCAMNysY9oQQmBp7TIA4NSxO6DlhUYqME3FXXzAzD5bsMAO24W/73u+EW2vIQszxmTszawr2RQQiMuKOwFoeQyVdro4oz3czctrl5KulDO3jZeP3YuSDdTKkmQTEVx/K1sI0RmqJuH6MqHr7r/6cYADFCFsFmdkCyKsbskuDRW6xlArSWPGjXqkgkZxN+hZkJIg2BBoudrQxbRR1eFed4e2cruumyyWa+W5kVor1XbxjtPJnR+fFESEYMuH1mNuybTZIGaDsLYNtJVOhTzwkPcpjoUz2ToDEzTW9pXrg3Qf9n6Wk0PEGGOA2d8yTq0AbjfbLo6SJj+jxyF8oQpcWyW0rjmYqyoO406+4jkLBRPe5YkLOzMZwi7vO1+IaGSH6oDnk2y3h2RPK74rRqxkC8FH6hbVdTnvPA66Tv8x2ku8R0GRkt3XuQKZtBCEKcnWbK2w2yAPfjPAZp1AM8BwZ+ArHEBFL8mWj42uAu+Hkt0awV0cmKxlnGlRJNOIDuMUCIgXG6BlB+x4SRKQAiVbi957FmO8XB/gAUEjkgsvYPSs7HDv5/IBGe0U7+Nbh8R3AYCpKznZ4XR79mWM1/DtRZj9mWwRkpz31Jic3TQNlNo+yI2/+N4R0IvXVWfxHZJsC6gqWdmCr2d+zxhDyQJaLZEbeTQutpqE89cPyPoBpothGdltRyrZeQRsriqLvM1uFP2kMWkU0TvkGQrYTMAVbKhxkTFvINj2h7aMZ+K7SrWRlGyVZE+7XZx3Y9Oz7Pdg+uwr2dfXCJY5uLDtrG33PVbYLg6AWP58fiE6YUIIOQ/75r0FidwZcFYzZMu4ssaibQ+OkuFdsitglg4WCOkyrmChBtTXOTavBZkYr6K2Yj5B/vc0IclzqlBrliYj+HqOMQoIIiiOzFPhFyjZGZJtVGBNmWSPk5UNRA7jzng+RE5ON+3YLeMEUM6hHHZ4HwsVRHA9WbhQSTYf4xqwtRzgxqZMKtlvHJDsGUPvTDYA+N5o5JQEyYvyHrtKF+VkA+lMNgD4k2RlA5JkNoeTMOKSYIvrXbBjJTlLozEZazEA47bP7AVcH0AowBDduHVt5EgPCvhe8q4ES+up6dmpY2eGPn9UJXsiMDnDOApm3108vbl0XcA3dRg+T11hh3QMTBOX1fiuHSrZtskwV02zslvtzb7nMAbYIFxRnJgnxdVVwotX6abIRT/AzQMK4ozs/MV4oy19P+yc3zNIE7SuK80AoUft4r2qjy9ggeAJNrTzSrd1cJ/gbw6+sakku2rXRlLsKkpsUMftJC7N0wDvcPCu6HMaZjob2YBqP9DsRK3itcHP66z2VwoLI7wikDMasSAiuT5IMrLzSVDuXHZJB5z0fkKhAG14cHlKrsrRrDUx9LmeGzoDawXY3uKYm59PHs+by9ZMDbwgMmw3sdkgbLfksUohgYI0+5qZLNeQTfgCFJJ07R8AQVSsZPvp/r3tWBXGlAWwcbOyLVN2SQ4r1Lk+oetJv4hOjpLdHjvGi0HkdGUE9aCvOBmGkmALIb8HIEn2qIU2IkJnJUA90LHR2P97/QHJnjHkKdkjz2WHJFsy9knJLtvVjJkVAFhmSrInnctmtnQYH9T+RpwgzjchrnbAjthpK1A8R1TwWmOC9pm9gOORbBeLKuPM0oYWCxJ0999Z/NYhpmcAYChKdhBMt9IxzvaaeSVbWch2XQBgcmGwKVfbe+mgeWmKSjYALNRSJbveWu9/AmNYKAssb0qDnUnBOeH6OtB2Z3M85AA3L7grZEZ2jhJMRFjblipnEWyT4bZjkWeExuQ8du/9KpT3A6FrIx2/elmHcz3fNTqGSrJrpWqfSZAg6rs36rqOSqkCAGi701Wyw45cWfd+D6YzSYxm1GF8bRvoOEB1QKs4EaF9faPv8UFKNjM1UHfEe34gZGt5TLIL3KZzHcYZAwwNtBGtz1oBqMszJDuOimKWDqr336vnAw+bLaBaynY69P9NTO7nAhAn+FvTVz2ev0y4vBzF5fkCIkxJtmZq0pDN7SfZIigunsXgESHMq3U7Slu1mms9LUyiZPvBYPMzQYRnLhIee5bw5WcJS+v9hHptqyXN3kZEPPIRKq8hTnLMpicm0A+k8FG2ZReQfD0b2dCZdzmcRgiXaVjZxNBEht3GAcmeMeyoXZwLeXPec+OzOoB+0zMgS7IndRiHrctZoAHt0uJ6B3SxDXbYBlNPWkuTbbUFLUqWCdQnM0vcVbS6kBnZMUw5D0UjLGrI4/viqnhjTYnvGqFd3FKVbD7lG6upAU6YMWnJg67JgsYsQ82IrbcJhg6wmgkRL0b2cF/HSrZp2LjlxPBCyjCcOpYq2dvNHJINoASC4wErm5Pvp3pbto65nsyyPcABpgXhcZmRndMu3nXlcTdoVlcF0xiY6J9fpECACQA6Q2cEfwJzzoC/5SNsFFcQ44xsQM5k9+LqCuHZS9S3mI5bxrtud6oKc9gI8uVAjYH4bMZ4ERGurhLsIa3i6ITobOQo2UURXoCM4hrV8NUT0ihtiJJdFPXEagbElg9yQtk1yAUcNX7KrkQ/6DIeU1lPUSBQ7XjoMAOGmR5HeVnZmqlBOLxwX7orHhpPN6e6rz2fsLadrvMoIFCYFsViAtevZKepHoPAuWw8ySPZahGlZFV29ofkoDKmkm3oDCEfPCLpeDINwTRkJ1lvhBcAPH62gy8/S/jqCwIvXhVDCTfTGOrbAn/5jfR6UuQsHkSJL2Ub6DqS9Ms3GW2dw9scnSaHXdPRcdOYxP3CAcmeMeQq2e7oSjb2WMkmokTJ7jU9A3pmsifNyrY0MJ/3zQIl34EL0JIDlA2wHtMU2Lq8ARXMdFuGrJaFY1Tl9gLNLmAxSqt3VuQ2OmQum4gAN9wfJVsh2bceH2EmW83JnrKSPWoEiqED7gxGuKkQvgAYA+eUzm6WdLB4AbZH+9rzHdxYvQgAuOOW+6BrO7dKPXboePJzvdmv9EBngMdRKwMXlyc/TzebMiKJC6k6HeAA0wJ3ijOy623Zmtlrejb8TXuO80CAGGAbsv182OiEXtEhXD6wZTwzk13O9jqv1wnnb8jPavecL9WIZLfdNnhnekq2txlAt/uXpEyXo3A0Y/doAGh2pJK9OMRVnBoBnFY/6RykZMPUQKOqcH40xx8dg113dCUbQHI/oboPse6CWXqWIMYk29blGkRdi7UCMJeDygYYy0a89YKZDCLsn3+OETQD8FaY21o8KbZbcg652QWEoEih7u8A643hi03nhhnIhlwS7fx28ZxtOEWUx1SyAclVB5HstiOvWbUKUCszhLz/hqmhDV2T99ILN2RKwkBowNqGwFojvf/GJLv3nPcDACTTfwKeRuyO4hkBAGEnRKcL2DaDrgMrWzsfNdsJDkj2jCF3JntUchqKPSfZrtdJXMN7M7IBZCJ+Jp3JZhqTXLOIYDYCUNMHav2uEnGVsshh3LZkjNcsmZ+FocxNNYVIq3cGAwsoU0HORRAtRvZ4Lh9ISbam6Th++Lahz8/kZO+Gkj1CBIqujZ8budfgruxM6Hryu9pWdE7E5/kezWRfXX4JInIvufO2V0zlPRfnlXbxHJLNdAbyBA7NS6I89GZegBvrBNuQ3rttZ/YW6we4eTEoWmYtcg1neSG6BSD0u4sjWvBXS8BWazR1hpk63LXie26GZFfTWdp2V3oXAPJr9BalalFWdsftgI9oSDoM3OXg7bDPWRyIrnWcpAHkjGFtW3bGVEuDn0cbLrq8v+12GMnGiGSTvKxLs6pYm0Za4enNzo7BNAbSGMSyI8esKjqcaF7c0M3kPZguxxlUfxjR9AFBqFUZCIqSXTCTTX7//HMMf9UD98XoxYURUG/LY9iPZpGFLxIjURW8Z3056igEF7JdfJjx2W6Q7HHbxQH5PVsDRiTjEZH4mpV3jPpBG9Uyw6E5BsuUEW6DiCwnYHVdoOuk41rcESDRX5z0Y+3AkD8nJDsi48NSE7qbPvxQFiTnK8BWQxZZ9gsHJHvG4Hn9N8V4Jjs+iKnXeTQChQQm+u3wdxPNAfFdQFbJ9oIdHOl6sfmZ2PLkDabIoEJjfWYdMWxTnsSzZH7m+vLiYlLqFM8YAzEa7pgdCnnV32Mlm4gSkn3y6Om+2fw87KaSLSNQMDTGS9dnf0ZXuALMYEmshRnVkthctI1HcD+dBi5dP5v8fObWB6bynofmhsxkR0q2qQOCA9fWxl98dRzCeh2YrwKWtf/tYwf45gERwVvz+sy6AKDrEertwbO6uWDoj/CKrmO2xUACuLo23MBPL2kIm2Hh4jdDsiNX6CAkvHSN0OoCRxYAQwManezrYyU7CAN0G+NH+eRBqlr9zuJAVGjjNHT0Z69BRLiySijZg9VOckKILQ9d6icrIQ+KkzV0BjZq23QgMu206kz2kcWTyc+DWopZzQBFqjRKemLK1jdLrKzFiAi07oHZOqolgGkp6csj2cxgcv45577MHY6gEYJCgihY406CpQ1CpSQJtuPFJDv7HM3SEPZkZY9KskMul1xD28Xt6c9kj2t8BsgRyXaBwzgRYauZ7bzJI9nqrPlcRXYLNAdcChoOQ6tJ4CIVtIoKdH5AAANMnYGLrMM4EMV+FYCI0F4O4Os6TBMoWTKNYWsfDdAOSPaModPNmcmO3cWjgytxFe5FKCQR20MMiu8CemeyJ2czzIoMzHouDBQI0IoDlrPISV5r66B6/2sBZUZlhoiW60vib/DezHMGGqYcBALg2PO5/HprI6mk3jJCqziQrbD703YXR5QfPaQoYehxu9fsqSQxhCfANCSzmHGFmZUk22Z71LVw6cbzyc/TUrLn544kC9TcmWydScLBCYfngcsrg6vwedhsykVFrQyULWC7Pdv7+wA3D3iXI2yF0Cv99596Wy7qy3bOC4ehl2Q4aTzT4XlgZWt4VwczNQhXQPj5x7o6kz1Xm4MgwoUbhJUt4NiivM6ULLmAVs+XmtJa3m61p9LaSz5BhPkmjkyTjuuz1i5ebwPr28DiEFdxqvtgLocj8lXrorlsxtjIba7UCaVpXgSVcB09dEvyc1F2NQCgbADtAKQxMMbgRkSqd5ZYrqd8OTfdCUEtH6gY0DSGcmlwhFe8nskjsGEzRNjhcv5+Skp21yVsNuQ544cxySb0NpYwg4H3GLKF3dG8beJTNa9bZdeVbMVLYVQl2zJTIacXni/NQcuW+li/OKYeX7bJ4IcY6OS90QSYIGiMEkEraAa5wljXk8U9AAClpDz2vBjUPSMcgW6DI9C0RIyolIClTSDcp3v+AcmeMXRzJFU/VrLjlueiSk5I6Lt67DKyJHuI8dmkM9kAYOcbmFHDB9pBbqt49rWDjdNmTckOOaBzkSHLzJIu64NAgQALxZ6T7HHnsYEsyZ52TjYA2cEwJPZM1+S2nlWHcYpmyJihYbuFgS7Fu43LipJ915RItq7pWKgdAVA8k02cgJAwX5WGgNfHVLNXtwiMAZrGYFuyoNadoaLaAW5ehC0O3uW5Svb6NsHQxmsVByDjB3tINjk8WXmaBoOpA1dWaeDCUbOZnD8tuO+pSvb83ByW1oFLK5KQxFFDJVvejzrK+aJmZbfa03EYF0F+Cy8QKdkzOJO9XpfXkWpp8P6lTQ+kMXQVgmvo6YV8YMv4iIcOdYJMgUJtCz96aEQlW2Ngh2ywQ/K+HBuf9SnZJV2uRSOTNOYREKmMJw6nx8ZWszgOIi/zOGiG0riXaGoz2dstSRpj40HXhzwfejoPNEuDcHnmc3mXj5TcMajBwlEi2sq7oGRn2sULTO16YUYO43nCUtuRj2eV7H6J2ul5rGLLwl+eAZrjEbbaQM0mGIzQ7MjW8rAe9JmeAdIsMibIYEqMV3T987aL18BhJ4Tb4iBLT667tTLQ6OxfZvYByZ4xODkuTAk5jcwmCqOJQjGyzf20kMnIzp3JnoK7OJAamPUUGGjDBWGImmfpkpwXLDakg+Ls3MC9APJmE1KmOi0ds/ngtrlAyO0xohPjtHBDie+aRMmeek42RovxMnRpWjKrWdlxdA2HvAGW9pFkx0p2rbKQaUHcKeK57Hpro1+50ZlcxYQCjDHUysD5G/k38zwEIWFpU7a0AdI0zg0OzM9ershb3O8EYTMA8uYKg6hVfMisbi40BihKHvHIOVr5jENzwGYDyIleTt/G1CB8IY3ZcqCSbBhzOHeDULFli2UMy5AqlXq+ZEl2cyqqowior4W3F7PkLk5EuLJCQ7sUyOcQmx5Y1cgojYfm01SFgVnZI3QpEY8MPhVjKJVwHVOU7GFEjFUM2TVIVKhkSyNaAepy0LYP0tL1xnw1VVavrrTQaOfsM9Y//wwA/pYvSS1NT8nebhGIAF2TlKvrEsIuh9YzYsXiGC/l+iAcXjyCqIAPWDvs5Uz2qO3icRt2nuFr25WnoRbtTyLK7bTo/az5ijSW28o5vLaagOMzlC2CrcnronDldanX9Ixzgh/IMT5ALt17jRe9Ja+wwyNsc7guZcYl44LhWv1AyT4AACfHgSt2F6d6NAfTDHJvOOTzLCnbZRAR/uzzv5n8+/DCib7nZGayd6Bk5xmYkcdBax5YdTDzYHp04S5yGDeli+qswPVla01f5rmlyX08yGE8pJGjDqaJlY0ryc+njt0x0muMDMneBSXbZDL2bEBV3NAlhwtmlGSLQIA4oRukpmf7gVanjo3tZQDAnbc9ONUizmI0l+35Tv9CQWdy/CEi1UcWgI0GsLw52ntvt+S5PR+JCLrGIMRBjNfLESIQ2P7aNoICb49J4G340Kx+FbvjSkWoNEGrONNZNqrRF1LZVhaOetSVcXmFCnNgk9bcgpEZlWR3w3m4PrBQzVGSWXZEo1pOFblWqzMVJZt8MVS1nSUle7sllexhreLwhHT+tvWM4/fhxXSt5Oa048ZgEXEe2DbuCbn9Ckj2kUOnkp+LjM96EYReYnJZ6lGypT8MA9U90JYHVkm7CFXSV2+18fQF6msj1gwNvN0z/xwI+Ose9Kp0pxRTINlEhBvrUmUFpJFWoyNnensVas2Muj4iki1C+XMvGc/DoAJ9XEDRdSMjKkwLk7iLA5JI5ynZW01pEBojCFNCW6ssJI/3KtmaxqAzYG07u98EEZY3CaYlRz5sQyrVbiuE8Hh/fFco12JmdEk1o+cL5fgP6gHCZn7rYdgM0XElOVcxX5EmhV7B6MxuYiyS/Su/8it473vfi0cffRSf+MQnCp/3vve9D29729uS/x599FH85m9KMvb444/j0Ucfzfz+ySef3Nlf8U2E3Jls35Wzx5F5F7lhfn6iK/Y0H/lPPvtrePzZTwMAjiycwJse+e6+51im4i4e7nBly1gmxovqvlT3qwNaxRUUtQ5b0cV3P23+VbS6BJ1IqtnqGWpqYMHgWCraJ7a4WV9Jfj52+JYBz0yRycneBSUbpia7OwbMZc98uziXbZJOKL0DjD0eA4gR52MDwJlbH5zqe6uqTr3V0zKuMTAukvZZQ2fQNeDS0mixHJsNuW8tZVHVSxoO8PIARXO9okDZHRciEAi2/Nx57I4TBX1MUvTWmCRmMYKoq6lHVVusyQLS8sbgY3kUJTsUc4VZ3uXILDBdbKcL+47TmkprL/fE4OIwYzPlLr5el/O9lWGt4h6X41sGyxQQDy+k0YVDHcaBpMiYC1/I3yuEMNMuvpiS7FHVTtXYKk+BZaaWrr+U41+dESZqwwuApy8QljZJeS1D2Dv/3ArBuxxG9F5F5r7joO1I/41anD5mAs0WQbiiLw6KGZGDfUyyPQExQkY2ILtWik7zeN/uRkY2MJm7OCAvJb0pG15AaHayhUFHOTbV+3TeZ9Uq8rzoKO/b6siC1FwVABEsneD5QLchIAIC6yli+GE0KqmQ7EBxGAfkvimKJnTXPTjQ+sbqKiVJ1uv7IKaNxk4i3H777fjJn/xJ/Mf/+B8HPu93fud3kp/r9Tre9a534e1vf3vy2OnTp/H7v//7Y37V3UEYEloOcGhufxavvejkDAd7ngN0QzlXDID5BHI4WC17JJHH92wW98bqRfzKf/+Z5N8/+f5/n6l0xZhKTnYEVtITNR8AaN0FabKKNvS1tiYrr0R9KpxtyhZtz59MeZg2mh3A0oUk2epMtsYgwAbHeHX3fh4bALYaq8nPeR0NeTB0lWTvwlC8EbW1uf3nSgxdZ+CCZrddPJAdDS1vz5K6cnHxekqy77xtuiR7USXZzY3MuAFjDASWWWQeXQCuryMxtCkCEeH6unSWVWGbBw7jL1dQOL15z9ioyT7Wf9NodKiXE48OjWUHPePEiJ7rusYYamXClVXg+GFCxZa/55yw3ZL5sPoWUGvlVxBV4zOm1TJmRypKllygOr5UBTMk2+0WGquNA+5waIMIDc3GTDbnhBsbwEvX+q8rufAFiDFojGVitdR75ECSHW8TnyuDqlmQx8G4yIzMZY3PUpI96tyu+p1yZ4lLmvQJEARN+dyKYnzWdVo4usBQbxPOXiHUSsB8lckxBoeDeDpmETZDcJ+g2RqYznLbycdFvSULIccX5b9tE3A6Ar4rYFezhTHGZLdjPE5CAYFCAW2ElBQ/TElhL+JW691oFQcmcxcHZPdmq4vMerjjyC7KeeWruj0k+9rK+cLPKttym2+10kSFzSYh4IBV1UAuYGkEzwO6DQ4tZy3uh7L93oi2p2HI+C0/AOzoMssMDe6yh+pd2eOSuxydrRA+01HpOVUYGGyTsNHA0FSGaWOs28C73/1uvPGNb4Rljd728KlPfQoPPPAAbr/99rG/3F5gowE88RIhnIELeBgSnFzjM1eqsNHigIiS+ewYRNQ3t7Vb4ILj5//LjycXkO95x9/F61/1HbnPzc5k71CttLSk0EBuGM06jTikauvyppDT2jZLMV6ck2x3AQECOe3/ssBSBPJGc8ScNja3pZKtMS1DmgZB0zTourwahrtAspkm29ry9nnmeZhdJVsEhNAX2OqwyVyKpwRVyb5zykr2ohLjtZ0T40WMMm7LlRKDGwBXVwdfs5sdScTnetY3JUt2rsTX/LBVHHN0gG8uSJI9nX0dtkJQQInrbQwh5NxhadLuUF22VsagQICB5ZqCzVXl4vj6GsHxCNfWCI+fJTz+IuHSCrDRYXC28q+tsZLNGINuVAu7ZKyoCB3PZWdJdjvb2j4hhDP8vjXNWKdxQURY2iB89knCX3yd0GgDx/t9Xvvhpz45EynZcaVm0DYOhEzSUKCarGVmskdVsj1Vyc4h2bYONAIwO8subasMjWmZz1qsMbgesB7NxDJDdiWo889BPUD0Mkmyuzvf15tNOecfizCWCXiOJNm5CjVDqmT7AiLId7vvhR8UT2kmSvYukexJlWzL6HcY77jyUFVFK9VZ/JByzKqdDjHiNIKldRkvGHLC8mbUrq8BIECHzBTvbge5qkH8fWLTstgzx1OUbGPOgLfuI+zpTA3bHG5LwNc1WDn1qLkq0GzL7oa9xFhK9iT42Mc+hne+852Zx5aXl/Gd3/mdqNVqePe7340PfOAD0ItKQQB834fvZ28UhmGMRfaLIATBDwitDsPCPqvZHZcQBDnGZ14X6HpgcSWnzICWBwblxOUCgACzNTB9dxeMv/fxX8Jz578CADh17Az+4Q9+qPAzLVtRskNnZ9+togGNiKg3XWh+CBwqgY0SW1ZhwBYHc3wwO8tWLEPm9zkuy51J20t0XXlxqhocjHEwC5m/TytrYFE1gCF7IyIisDAAStj1Y6AXm5GSfWjhGAwzuqKOANOwwHmIIPTH+s7xc4e9hhkC8IO+baVC0whBwCDEbHSzqOBhiG5IcENgcY7AlMvkqNtgGsjEd51+YKqfeWgxm5Xd+95MJzDBM/vwyBzh8gpwz63yuUL079+tBsENCCdLWYfnaonQaAFth6FqEOrfqGP+oTmYCzt3ldP2s93gAENBoZgKKQQAf9vPLWp3XKmg9RZ3RobW0y4bCJDs5+gDA8NCjXBtVeYBd11J7o8syOLh1pKGxpbAyVAk7rwxYpJdsedgDiAT0gSJ0HYIxxZZZia77XZ2bCZHRLlzspm/U2e52cp7gdUtwotX5fUGAG49ClgjzOoCALXDhCjHKrLGNCwohUXXLzY+iwsr5PLCkXVZdM/+NqOaK/Pf01KymaEBhy0Z+6U+zhgq5Tm0u43MZ1XL0kfj9AmCbmoIWwGEL6BXdJDIZs0zgxX6CIwKIQhLG9mMessEApfgOwVRcTpLiFvidj+CYOHl80UAKsmevrM4INN7NE2HEHwsJds0pcmZ50uRCZDz2EYPDVNN+eZrh6ExDYJEIaGfqwJbDdmWzYU0Q5OdBEzOz0QqcncjxEKOs3gv/ZH3bdliHsOo6nA3XQTbAQxlVJR3QriOAGlabnerZTCEQraw7yV2lWQvLS3hueeewy/8wi8kj505cwa/9Vu/hdOnT+Py5cv46Z/+aVQqFfzQD/1Q4ft85CMfwa/+6q9mHnvve9+L973vfVP5ng+cAOpb8r/9xpxV73usxNZx5+sawOvkv+/63hBAK/pPwV/d7W8HnD17Fv/1f/wcAHlB/f/8f//feMWj1P9dImyU0htj+UQLd75tOj76d9y3BdwHAOOWpVZzHz1zGPDawJUZMEB73ZnohweA/L9PXnFuX7ze/6tkLH7vMoo456hHCuSp246NtY/tkikNOEx3omPjzJtH2WHb0X/5OL0IIASuXCl8yr6i/G3AowOO89G2weQgIlxdkUr2qVOn8Kp36ig63yfBA14N+Ij8mR2+UXAcbEX/SZxelP/fjITva9eu5b732x8o+NDjwPZGdFTcCrTrLaA+9lfvw513juasf4D9AXGAT8OoSxC8NT83uqvrRj4Ak9ZsNJYsRoHI0HQAqiWGIJQL5FNHswWlUNfQaoQQjoA2l0+yS1Z1aJeMFY1Y3Hkqq2R3/Q74kJjEYaBQtoL3zmeq2C+SvbpF+OxTBMcFThwGyvZ4hVjqptFaMTGplOcyM7oDlez4fRoB2KmCX3aCxCAtRmyyZpklmIaFSqmGrtseWe10M0p2frWoaASrXKqh3W1kSN9cRTrhbzaAE4cYRJCqxmGbI2hzGFEMq2wXF7mjfaOi2ZF+BQuKMZ2uSUNBz8v3LmKmBt6W55rwxEg6gRBSoMnTCIPQR8gla9yN+C4gKmpE23scJdvUmeyc9aUpaBD2z2MD/e7opVIVXadV6Ihv6gyCCGvblFzCEl8KkqNvBgl0t0Nod/STbMfLmW9PYrzkL5jG5GNrHsq3pVWUoBliyKVyX7CrJPvjH/84Xv/61+Pw4cPJY0ePHsXRo7KKd9ddd+FHfuRH8Hu/93sDSfb73//+vt9PS8le2ZQX0dfex3Dv7furZF1ZIaxs9++S9U0dFz5qQatquPPbXVz6bBmiEcJ47dHkQkftAOHjG2DzVt8Fd1oIQh8//uEPJl0F733Xj+Go++249JfFr9m8lO77tYscl/5yrvjJI4C2urjr+zgu/pkJmAZYafRDWKw60O6cg353/3e4vEJ49AGGB+7Y32NgaUO2o90OB+KZbWgnszc4cjkQBrjrXQGu1W8DKRMf5IQIv7YBVjbASsWdIdPGVn0VPMqxqBm3jLWPdcirercVjvU6phPOvLmNy1+qgXjxPqOmD5ga9EePFt6wL68QXn0v8PBds6dCti908NU/3MZ2pYwj8z2xIyNuA0AqvZOqrOtbS8mC/LajD+74HO6Fdy0dJbr0TLPv/WnTBTtWgv5Qtj9zdYuwWBO49/gN3H777Zm/z/MJn/iqzMderPVvm8srhLc8zHCL5qHxdBOHHl2EdXifrNsPsKfgA8ZtRkXY5gg7KTFQEZvqjZ2PHaOnXRyuGGrIkHeMA4Bd1rC1JRA6IYy57HeNZ7JL9lzhPHaMkiVnOL2Asu3ifnfg9vQ2fFiHzdxW9xjClyZTulX8NzKNgfbBGXi7BbS7wN23jr8vKcxGa8XEt1yqZYjrSCS77oFC0RcpRUQyNaVHmXUUQh9/piTZoxVHd5LvXC3PYR1ylCCGxhh0nbC8RThxWCbFxK70YSuAcDj0o/IgZAaThZeAwKzJzqF6W47/newtHnE5I5y3FtBMqWQTkfQZGOGjQy7bmfPak4fFd4nzTYjnG9Dfehzs8OSzYHlFjVHAWOowHnffHOrxOMn8DVZFFmuc1kBCX6sAq9uy9Xy+10xRABZxdFoCmt2/0RwffWq6qfdHbhpzJrwlF+JhkYzr+Bs+ukLre/1+Y9dJ9vvf//6Bzxll4WdZ1lQIdR4YI3g+od7Z/1Y/xyeEQY7xWdcB2gI0L7cBaTrQDSA6AlotingIAPIAQAOGLLgnxW/98b/HhavPAQDO3PoA/t73/fTQxb2lK+7ivjf0+UPBdAAc1BbAMWO8v1XTIbYDaDlWBIwRmt39Pwa8gMAFAYKBOOvbXnLfy2OEoGVJth8dA5XdOwbysLG1lvx8eP7EWPvYNOTNJQj8iY6NvG2U+T3TQV0BzQeQ054EyH3v+vu/7/PgdYFmk8GeK/47h22Drz/3Ofyr//ABvOr+N+NDP/Zfx/47L15R57FfsfNzuAeLtXTWa6u+3n/Mkyb3Yc95uzhPWNsG7j0u9536d223CfUO4bZjyG20JUjDSzII5BI0ps3k/j/A9CGmMO8ZtsIMMYhBJE3HdhS1p0WtlfF7DmmlHoRKlaG9CTTrAqX0NAPnHO22XCiX7bmhqQXliGR3nJ6ZbK8D7giQoD4iHbZDNJ9pYuFV87COFG8QqWQPMZnS2dQM68bBWp2Sdtqx4QlQwBPfmG40x1otz41Psh0OtENgsWc7+kLO7PcIK3G7eDWa2a2W57BZXxlDyZ483zk243K9Drjg0DXJehYqUsludgATqclYEMUxxcdP3LUgAtHndzAq1usETesn0wYXudFVQJorLzwB4fKRolBDIWeM8+LMB21DCgSCX7sAuBy05sL80XuH/1EFiOeyuzlz0oOga3JEFWDoOPJvMXuuA2q8XMmuJAWXvJnsGNUSsBJFbJ48kj5OAMAFbA64HQHSe+/zsmPE6GGlpiGLAGqMl1HT4S57CLYD2CdscE8gaIboCB3mjNXKxzqCwzCE50mH5vjnvFk4AHjxxRexvLyMd7zjHZnHH3/8caysyOGWq1ev4r/8l/+Ct771rZN9+ylio7H/EU7NDkGI/tYrv9sFQbkIxTmFapxVSGACAyvGO0EYBvgff/GfAcjMv//lR38ZljncXjOTkx1MIZw2UmiZpY3fSmTroE6Y235nmftj798L148KqJxy25WYnm0lVEGBkHEhe2x8psZ3HVk8OdZrjWhhFfJdcp2zNGkIOMCtVNfldp9FbG8JuCF2ZHr2u5/4JbS7DXzpyY/hpStPjf36J1/4fPLzXbe/YvIvUoDFeXUme6P/Cbo0r+u9PlsGiz2FcHWVcG1VmhOtbMr/hCiOPLNNYLMJhF0+lZzfA9w84O7Oje7irO3e+63nywXhxKZn0XvGNhxEBLhhn1I5KkqWnBnd3sge4zHBBoByeXhniqbky9eUmeyO15FmcjnnUFAPEGwH4O7g80v4AhQONpliuswx3ss1WhASNuoYzUU8Dz6X8WuGBi540mJbLtVQslLxwRmBZCNMI1yznyHk/U0h2USUKNaxkh27fjtue6RtmFGyS+Mp2arDuErGbIvBDyMDNJbmt/urXiYvOVGyJzQj5pywtCnJXi8sCDg5mxEAmJVmZYcdPlJGNudy9ljLUU8zLfc9EV50qZ2sScT5JmgHBaR4H7tep5CP5cEy5XwyEaHezk9D6FWy4wLKoONIph4AtXLs56BAALbgCDng93jghFxmZPcp2YY0RFNjvDRTA4jgbcqKCe+E8NocvtYf37XfGItk/+zP/ize8pa34Mknn8TP/MzP4C1veQueeOIJfOxjH+ubj/74xz+Ot7/97SiXs/0CZ8+exfvf/3689a1vxT/6R/8I73jHOwa2iu8Vuo5sl9hPbDUBkUM2vI7TV6lkBgPqynNDaY6yW3ji+c+h2ZYzkW99zV/FvXe8aqTXqUR8x+7iQJoyPzfBmWRr8qaU095mm3KWbr9d5ttdgq5DmvOMW0QI5REw6RzTpFDju44oJiujQFWydwPM0MBCARowz6drM0yyN0NAY/03qxHBBcfzF76W/Pu5c18d6/VCCHz2q/8DgCyuPfrK/BSBnaBsV5NFSL2ZR7I1ueDKOTePRqmBn3+K8MnHCR//CuFjXyE8dX6w8VTJkoqKuxmM6tF3gG8SyHiene10f83PEIMYHVdeS0rTWujFZGPCPDAGBk0DNlayxXs1I7tWHW38wzCA7Rb1uYuLUOTGePmbAYJGMLSIJXySSviA4jDTAeJ7G+PV7MRFhcleT74AI1kgUFt5K6W5jBFWnNIyEIYG2uxfP5HHwQKRKcL4gQvO5f6OSVH8fyIqnKdV0UuuxkHW8Trbnl4rSQO0EDIrmzscQSOErmQuaYYmM6snTAFodGSLf9713+QcTshyY5w0Q4MIpOs5747WPRLySMnOeaq6X3uVbHFeyZAMSZLuCaFub2eEfRvDMmR7tuvLsYi8wqBqyleyK0nBRZDIOI/3Yr7KMN9rIsykQGSEkmR7PWsuPwDCsJhk9ybA6BUd7g0PJEg6i3cJPrSipLt9w1hf50Mf+hA+9KEP5f7uXe96V+bfP/ETP5H7vB/+4R/GD//wD4/zsXsCJ6pAT1y13CH8gND1AJETZeR1uzIyQYWtg9phOqfDaXxSNgY+/ZU01/zb3/iekV+XIdk7zMkGkNyImaWDxhytY4YmL2jdEGwhe0WxTXlTdXxgbh9P0mY3MszxByjShgYg548PJiDmU8BWffyM7BhmpGT74e5VuIgBgxwxjEjJ3onRym5ACMLGukCpNPl3unz9hYzL67PnvoL3fNc/HPn1z557DOvbSwCA1z30bVioHR7yismwOH8MKxtXCkg2A/woxqun2BhnA99xkiVt4UTSdEUf0NVTsqT7eLsTYh+T0Q6wDxDRvCcmJMLc5QjqAfRKv3zVceWiO8/ddhwkBfMgysjegcdGqaJhfTlEEFLiIq5mZM9Va0UvzaBsSTOp246qJLsjixY9ShxxgrviSgI9hGRTONxkimmSGFFYvN9EIKOZpnUNb3Tk4n5UJ/E+eJF5F7LxSpO0i7OyDmoEkrirLdS+ACGrGPZ+lvp/QLaSq/nKeVAV6LGVbOWzHCdLHmuRAVqjzFBr8yRrvnSLsujSooLKhOrudisqdOXMc5sBhwcGP+g3+WK6nBXnDofwuFRLh4DLqPDc8z3r0N5Dss+1ev7dhHZfz0D0iFD3ZddpZfb1IMQO45sNKTAu5hwSnpdtF+8l9GNHkwmC3g0hdC2jTAPyXAu5nMFWocZ4qbvMmDMQbPsI6gHCdgA/JHDe3/K+3zgYQosQcFn92i90XXkQ8Rwl2/fd/ptsSZcmWN2IPAQCuyXJuF4XX3zizwAAtcoCHn34r4z8WjUn2wuKK197BWIEcvpb8i1TnuT7qWgmGdkGAJ8Xtv7HN1kiAnEB6oagug/qBNgPWW5jB+3isZItBAcXu2UNyaQ5TAEMPTUwmSU0OkC7KVAqT37TePbcV/r+PU7L5ae/8gfJz9/+hr8x8fcYhrhlvNnZSlSYBDqTKvaIKhZjbCDBBqI22o6A0z5oFX+5QWZlT77fw1YI3uW5JLvepr6Zwh0hEECIidvFAaBU0+Bsh9hqpOdPRskuj7a4L9myCM2Y0i7udKTq2EOkg2aAsBlAszSEQ4zmRjGZYjoDiWIlmzhh6wtb2PjMJtovteFv+iC+s3vhdotyZ21HBSlzvWqhs9f4zBtFyS7pct3S2zKeU8BQPytu3VaJ2CgGWYNU2GFQiVinR8nWGIOhA2tNhrAbIqgHgKBMvFxcJJm0a2Ftm3LVTCKCKTgCYpnc5V6ErRBiyPhCDD7gMuIUzGSTE4KuZxVnca6JSTFpVrapM3Auc6MDjtwYv97jYNzjKAOSI43UCUGm1rcP/DC/YBEbSPYq33pJh/AI/lYAfz2Az/SZbEqbMWF9/8AQu4LuTxWk6wG+D/DI8r9UqsB15QHu+27ULp4eQszUZIu4E4LNm3LOeJdUuK88/cmkDeWtr/mezJz1MMQkCphSu/gOwUwdVO+/who6Q8hpX0cGvEC2zFRseTEqVLIjks2/vglyoopvSGChAKvs/SmdbRcfk2QrLhVh6EO3JuzNGwBmalEBIh+6JvMZA95vurGf2KwTApdgHZp8pffsuccy/95urmFp7RJuPXHX0NeGYYDPP/7HAADbKuPNr37XkFdMjkMRySYiNNqb2Y6I2IcgnB4hZoyB+RxuWwC7I84fYEYhSfbky7GwGYI49eVOh5zQaGOoU/dIiFNvQgHGCWwHbM+0NfBtjs11gRNH5PuoJLtSHk3JTmJ/Ah2VUgVdt4t2pFT2bs+gHkJ4BKOmg3eGkezh1U2mM4CLQuIsPAG/EYB3BdwlF8xkMBdNlG8voXxLGebieG0LRISVLXkvnhSkRGtl1OXS+BFeTNcAQaBWkHGiVnO4Y6gt2slMtqpkj+AwnlGy7dGOj+QzMzPZ/URsvgpsbzE0GgRz1csns4SJCmFBKPdbbot/SNAFwJkGvyh1jgFBK5T+NnPDu0fC/ojyBNkYtLQwJS60+rQQutEFdUKw6vgLkB0RXwBBkBObFUE9Nm2rnHGaH2R+lgsNUhDypFzddbN8qzcjOwMmTYH73tLW4FxzwNshHLBJp2p2FTP4lfYHtiWNcPYLjifPu9hd3LJLCQEpaqUlABRnVBZk/00Dn1HUrG8bU83SNC0h2tNoF98xbA1oh7mtSET7q2S7viTZpkFSwSg6O+O59EiRZxUD7IgFdksFrNd9dA8QG58xxnBo/thYrzX09PsG4aCr7A5gaUAnBBWUnWMlO5wxJXtlVcCAQOEdcAT0KtkA8Nz50eayVR+GN37Ldw1tMdwJFucU87OelnGmMbABKtak0EOBbnvGdvoBdh2CD29hHgR/K8glBt14HnsqJDt6/2AKXiumBpsJ3FjiSRfL5lYj+XVlxPZSQBYkm21CNTI/a3cjkt2zPb01SZ6YqQ3N0ebO8LUL0xmIy1b/3PfwOMgXKJ20UTlTgX3UBu9ybH+1gfZL4xOPtiNNoaqTzmMLArohYA5Xskch2YAsFout7FpQzeGO0clRsivjKtk7cBevqMZ4Tj+ht00GnzRsbgqEzQB6HrFkyJ3zH4ZGW+67fJItZOefzvpU0RiaoUE4HBT2F9HyEHIUNg9mt2G6Teh8uk3Y8ajTk3rmtMfApEo2EDuMF1+zet3Fd/JZ0Fhk1Ecwyxo6PXTAD4s7WvJivICoZbwegDscbaHP3Dw2cECyE5QtOcuxX8ZXHUd+bkyyDdOCZcsrhc/zySmzdFAjinNy+a64Sre7TXzl6U8BAA7NH8cjD47vBB8r3/403MV3CluXlbRu/41f09L9sB9wfWnuYDKSI9cF+zNxmV+0weZMsJK+I6Vjp4hnshfnjkHXx7vKWaZKsnepjcDW5D4vaFvUddn21WussZ/wfMLahkDJoInP69XN68k8da2ykDz+TI+6XYRJfRgmwaH5NF9ou7ne93sCopGY6aFEHN19HBE6wP6AAjFxuzhxgr/hQS/nz2MXtV2Oi4R0TuOYNxjKGmF7k6MdLVRX11UiNnrxzLZke2k1Mj9rd9tJG2gM4Qv4ax6MmgHNTOOYisBHiSiL53QL1mfCFRABgUWkVrM12MdsmAsGgtb4F/ZGlLM8cVeCL6K5/34lu1KuwbbKSVv0qCQbFQPUDORaD/053DGyJmu16P9pIaXrDCdHjqe4z4+Zkz1MyQaAuRrD+oaA0+AwcsYuwNhEqQ/1thQqcufog2jkyGBwCwg8MxlEMNyIL0Y4YCTBKZjJTlrDGaB/5y3K46NlmPdiJ0q2ZcqxtKL0ksxcuVXNFAsmyeWGAJggWDaTHlSKAV3XzY9CA6T5WTeHPuhV2SnjuwKe0HLzyvcbByQ7QtmWJKe3urJXqHek+VYQGZ+ZhgUrmmcuNIWyNaAVRVINai/eAb74xJ8m5Oftj35fknk4DuK57KlEeO0QzIzcpgscxvczxsv1JZlgPKqE71Ic2zQhhMBWU+Zkj+ssDvQq2bvURmBqYD7l7nNAXtjDGSPZ2y2g1SaUDUx8Xqut4u/+1r8NQ5ctk8/lqNu92IkPwyTIxHjlkGwAmezgacAOOdxg9joYDrC72IlzcdgOEbY59Gr/fbDVpelNbEXXfvJ2bmjKGJNOwi2BrWh9v7ahtIuXRleyy5ZMYonJW8fpgBkMoeJ5EWwHchvVdKm+Ro7NRRAOl6akQ/4GAIXdSPH795qeaZYG0eVjF1XqbQIVGFqNBI9norWyc9I1MMZgRy3jI7mLA0BJB3PCNMorysjuaxd3ctrFx1Qgd6Rk9xhx5aFaZei4wNaWyHXpZzoDHxC7WYSNRv48NgB5k+cE02KF63zN1OQ2HfHy4IfFxDDbLi63IbUC0Kr8cHZbFdorFpL7O+2Dkl0tSaJdFHul/g22XZ7YyRyAvKYRgUj6VoQ8G8vleP2mZzFMI9+7ljEGZspoOD+UZm6zhgOSHcE25Uxsex+8uYgI9ZasEodRy6xhWrDNmJwWkWypylIzGKh87gTTULNih/FZmMkGpNt03oyuZQKt7v7lpSet6pyi8MXZJ9mN9mZiVHV4ApLdO5O9G2CMyZbLnO4FQLpQCzFbZGuzKYmABkx8lVZbxV/70Lfhnih27+ryuXwXbwU78WGYBGq7+HZeVjYDKJjuDrK8AL7Wb8BygG9ujOJczF2OxtNNdC514W+lJlphM4Tw+4kBEWG7OaV5bCC99nvhSAZMw8A0gAUca9vy71hZmaxd3Ipyt21LKlp+4COgAFwl2fUAFJlZaSaDCEShKhmbpmkj/o2FSnYBiddMDTwgiCFZ3b1Y3Rrc9i+uddJRvbzvGchZ+nhNllGXo+0dE6+R28U1BiJJ1AD0EfkY6sx1NWcmu4j4qnByCOKoyHxWAenTGEPJBK5vAF2vf58yg0E44+2zMCSsbufnYwPRPgFgGJJk563zmKXJNvUR77m+Lzsg85AXg6a2hGv3zoHZOtgd8lyiDQ+0Nf4aeSck2zQYji+yxFysF2pMl8zJTpXsidrFAwHoGkxdzmDH914hCG7QH9+Vfk8Z75WH0i0l0PGy7AI9ULJnF0wWWfaFZLu+dM6zTaVd3DBhxbPMYUG7uKmBhQS0AlnhnXLL8HZjDU8+/3kAwMmjd+DBu1470fskJHtArt5eglk6aLuf0Nmm3A/7NZfd7pK8yIQCENiVosm0ocZ3HRkzvgvIGuPtVlY2AJkz2ipmU4zNjpJNRLixDpR1saNiS0yyNabhwbteg1fe+4bkd89dGDyXvRMfhklwaCGd5c8tAGhMtkZOCcQJhs8RsgOS/XID0xj4EMfrsBGi+WwLW1/cwvpfrGPtz9dQf7IOdyVSoXoUU8cHOp4slE8FsZLt8IkzsjMwNNREiKVNORK1uZGS7FEjfwDp9FsrAwRlsR12IaLtSURwl92kCMEMJo3mCtpzhS9GdnIGFZPssBvmpnEwi4F8AT7GtcP1SLbEF5E1X0Bc74C2BxCiOL4rOk5U4huToph4jdwujmjtsunJZBFfgOW0Navt4Hkz2aMYn8XfSWNaJoZ1FGRJdvFnzd9uoVm2cfEGQfQQXs1gEN54RdVGR87RF+aah1JFtQypoObd7zUzblMf7Z47UMnOcWhXW8K1e6Srv3Zv6u4/icv4To3PBqG3o0H9LHdc4zMmx1qZpcHQGbhISXYc31VkPGvoxb6njDH4QTRCuU/G1YNwQLIVGDrQaO+9itl1ATeQN+hAncnWJQEJBijAxAiiGUj1c8qk7HOP/zEEySP7297w/RPnT6Yz2bOhZKOkyxiBnot43M2wXyS72Y3iuwTJ/XkTKNmbO4jvAtKcbAAIcuLrpgVmaXKeTeSf30SzQ7JbXWCrBdQsuUib5Lxrdxu4fOMFAMDdpx9GpTyHh+99Y/L7584Vk+xp+DCMi8W5lGTnzWQzXZPKzbQQjdiQcUCyX25ghgY+RCUTvgCIUDlTgXnYgvAJrRfaaL3QgVHrXwl2nbRQPhXE9/JwOmNgzNRQCUM02sClZaDZSBfz4xoazlcZSorjdDfoRGRZyPnI7SDZRoxJ9bVIyRYBSQf1UUg2Q6G7eNjk2fzoCJqhSbV8jNbjZleaLFWKuKUTgtphbkpJjN61xTSUbPliXRaLXS7bxXPuDarCGO9b1UF+NOOzTvIdx73/jKqsaraBI4c1XFuXnQMqmC7J7jgxbI0O4IWAnZOPDSDxN8hrVU4+15AFuFE6K4hoIMlW3bcTkh0r2QYDu1NupyzJHn8ue0dmZEOgHpuWWdq58ZnHM50XGZIdFivZDGxgC3/XGx4DuF84INkKShaw0dj7dmHHiwyv9B4lW4tIdugXZggzS5eGTrtAyqalZtlRLFPIg13MQh4DtiZvUj3tw6Yh98N+xHi5HqHZkS3rFBIYoTAne5awqcR3TdQuvldKth3lyg9YbM1Ku/hWUxbeysbkvsLPn/9ach2LyfVD97w++X2e63iMafgwjIuhM9k6A01RyYYrSTaztChK5AAvFzCDZdqb88CV9mLd1mEdsVA5XUH1rgqsI/1ydduVa0BtWkPZ0cpMztxO4T1NBkMQAldgowE4nclmsmMszqWL7YbTkWTZJwSNoC9DnLHidm4KhLzfjdounkO6iAi8Gw4kRnyMdvFGW9Y2igzsyOWAz0F1r3BGHN1stFbHyVOy5brI9bsQYsTvZ+tgrgC1wkKPEbUdPO5SKI8wJ60iNu0a1/QM6DVZG/xZtslgm8CFG5RpG2cGgwjHi/HaqNPApg/yQkCTOd1BiNziKmMMmq3nei70wouMavWCp2ZMw+wqaNMDtuQah91RS+Ld2O1VuSaFVLKLhIAijGI0NyliNb5kVaBpWjbCa9yZbD1yF4+LYQyJAV0QyHOuiGTHzy9Cq5uG7swaDki2grItK5h7rWR2I1InhEgWxqZmJko2MEDNjuaymcBUI7xWN64lUT9nbn0Ad932ionfS53nnAWH8SRzsmemSs7u7g/Jvr4uza4WagA47Ty2ZY+wcyV7D9zFAcDSwPxih3GGKEJiBrBelwZKTEBK7BNAJdEPR23ii/NHcduJuwEAL11+KjNvpeLTSnHt2/egVRwA5muHoTF5O6rnzWTrcp5rHGVjEGSrJWDZQOfAYfxlhbgVddBilrt8LMOx7RZN19k2/mxOU2sXp4CjBI5Gm+A5Kckep108hqpovXSjgzByEPc3JXPpLRAXmVglaqUGNDuDz22msdy2b+EJCJ+g5SjZ8oUYOh6gYrNJhQZMQBSbKqJW/nZ++xN1woREAb2O31klGwC8YLRROqZJfxFq+YCSw60iLye7qhLfMZXscTGu2nloDmh2kGkbl5FtkUP7COCcsLw1JHLNlVFxcSHMK+hcq5wuw1wY3pKyskXouAOcuTPt4tW+eewYTGdJ6zg6IWhlvLHK3VWy5XeJj4MdtaaXdbBTleSYtfR0PNcPAdDgdu8iAi6E3A9F5m37jQOSraBkydmqvZ7LbkeupKGi5OnMyJDsQmduW5PzP1MmZZ/56h8mP3/7G3YW36PO9MxEVjYglbFmfrvXXhdZwpBw7jqhbEsTrsLhkxlEdiZ7fJJtZEj27vXtJqYxToH5mb4/xZVehCFhaROYq0AeBxPWzVRncVXBjlXtkAd48dKTfa/bbq7jyRdiH4bTePDu1032BcaErumYnzuSfIf+JzC5GC9SjsaFy0GQxMgNZCfJAV4eYEaUuTwgIihshdDyYoByEISEVmdK+dgxknbxKY2BmRoQEOZ0geVNwFeI2Ljt4gBQVtrFr6x3sLQmwB0Bd9ntyz3WBmRlxzPWjQ7Di9co1wQrBtNZriIuSbYAK2gT1kwN4YgxXpxL86zCVnEAaPhgZTkkmmd+RkEcrZV+nzziO0lWNgCwki5Nshye+Yzks3JU83GNz+LvU5rg2Bh1JjsGA8ORBWTaxpNZ/hGV7GZXrtuL5uiBqANBKVjltYuPCj8gXF+Xn1fUvdI7zyyUfOyEVEdg96TbbNy57HJ5vC6FcZAo2Tkke1xCzxgDK6VM2TTkmI0gGmlULzY16+00dgOphM9ifBdwQLIzMA2GgAPtPVY2tlryBq22yxowkggvoFjJZoa2o8V4ET79WOoq/o7Xf/+O3itDsmdkLpvZOqju9yljprH3c/krW8DqNnB0MXqA7zy2Za+gKtmTtItbe6VkA4DGCs3PDH3/ZvFVNLvy+lMrQ0bzTXAcBKGPsxGBPnn0Dhw9dCr53cOK+dmz5/vnsj//tT+GiEY63vH6yX0YJkHsMF5vbvSP7OhMEuwpdRtQNwR0BtOUs2DODOz7A+wNZCvqYJWMt8NclTAPHVdeO6ZmegYko18M0xkbYhoDI6CqCxw/BLiuXMibhj1RckClrLYRd3BtGbj6koewGcKoZSUnZjKEnWIlG5AdhNtN2fZZiCKSHWVkawWKv2ZJkj3KGGBrCFmjmFjbenQ/yblweFwmIQxrF5+QZKNsgDpBbnxX72dVJ4jwCsMgidOMzdnGgWWWoEUjRqOSPttksI20bZzpDNwnNBsCq1tyvzkDCjD1ljwHy3ZBiz+nTMytrmFHY0Kr21J9nx/QTa/uU9sqp0q2rckWcQXqXDaNSbL3YiY7HvncUYRXD0wDCKLZeNcfHn8Yd5f4PYTc86P4rgOSPZsgTmCKuqUBaDt7R7LaXcJWUy6q1QgjkwzYdnqlL2rtBCBntqa4GF5au4SL158DADxw12txy/EzO3o/WykWjNoWteso6VLV7FE2bVMaaOwViAgXbhA0BljRDBiFo+c07jcyM9nzx8d+vapkh7uoZANRYaUZ5C62dG02SHajLSuzJYsBfr9z7Cg4d+XpZCxDJdUA8PB9CslW1G5AXmP+6NP/Ofn3pJF9k+JQNJftB25/K5rOZEzhmHm3RaCWbLVkkKfaqCORB7j5wQxtoEomAgHhiZGV7M0GIeSAOcVxrZhYT9MfhkBgvsDheQanK8+vygRKJdCjfpNciJ876yN0OPRSlmRrpgbh8NxRjzivvNkltLqDC9xMy5/RjU3qiq6VzNQkES9wOFfR6MhFe2FXgsOlqZmtyfvJVo6ZZhAVA3PaxXXdSESHkpUSrYHru17YGpgn5HxrTiEo/izGGErRDG3JriYF02HqstrmrEY2jQrGWELuxyF9h+YlcT17hfDEOcKT5wifekzgk4/L7XtpuXj/bbVosCVRGI0lRMeIaUzesRqEhGtrhJI92IMhbrnXdQPGhgCibgrtrrm+Y5WdKAHzst9ZXGjLNeCIyMxJT5FkExG8HiW7NMXPMgxJjv0AcNwh89hISfTSOnBtjbC0SVjdJmy3sLNM+13Gy55kh9s+jEvN5AZgReZne4XNZlo57VOyy2kVcZACzI6WwI6NF7MwCGub15Ofv+X+N+/4/czMTPZsKNlyRleAegxwLDM2otsblrvRkPPYRxeUB/3pOMruBbYikr04dxSGMf5QzJ7NZAOApckWuxw1xNDl4mq/MtJjqIsF8ieL71LJcy/JvvX4XYli/Ny5r2YMd/7z7/0rXF0+BwB44M7X7MiHYRIszisxXr1z2VqkZE9hJptCAbj5C9QDfPOD6UNipVwBHhC0EY6Prke4thaNd8w6dAbqSkW3G81kj5ORraJXPZurAM0GoRPkxGgZDCKk3PZ87nIQpB+Jacj7oSiYlU8cp3uu0cNMzTQryuoeIZ2g3ibZPVBAnsjhYDG5LekgJ+gzUCVP+j2oHQixolsp1ZL3nrhdnDEQY/J75JizxSS6rHwWYywpjAwjR3mu2OMi/iw1TmwY4rbx9W1ZbGYA5ksCt0W3hQs38tVsIQjLmwOiu4Co8JFuL8OQ93s+wf1kvSGV88Uh9Yek5d6qZOax2b395xxjLFWzAwG6MrrSo+tGojRPU8n2Azc519J2cZVk70yNMnSAc2lA1/WHk+zYYO78DcKzFwnfOEd44kXCi1dpppfLB6sMAbCAJ/EwZQuot+Vs5F5gdYugabIKwxUlT2cGLHs0BZhpbKpO1Jl2o8rCgGeOBttMr36zMpMd36iok1VP46zsvZrPvbxMcH2gUlL2ny/AboIzk4iSmexJTM8AwDRVkr3LUrIdxUDlzGUbetSNvI8O40SE1S2lVdHnExVbVNOzVyqxXYA87mPi3XGauLx0FgDw1Wf+An/4qf8EQLb7/dQH/q8J/oKd4dCAGK+43ZWmoWS7UTvnAcl+WSLmT0VqEfeENMYrigJSsLJJ6LpAbbdIdlE+0ARghiaLyiEl5GdSkt07m6kbDKIToin6V8rMZKCggGR3OVzO4HjA4XmZqtAuWCIwnUlT0B5ixJ3BYzWaqUH4BDEkto2IsLJZbGQFQMZ3ISLhkaLcN5ft8T6PnG5ESFQn6CzJHo+wsDkTZGq5xYB4/VbtcY2P/90Z0sKtfpdJ3MWB9O8cV+20TYYThxkOzzNUygwlPfKpgSzEXF/rf02rOyQfG5CdBSEl55MVO4yPGdvJOeHaKsE2hyuncTt1uVQFDZjHTh5XyPfYc9kjFlDGQW+7OyC9U6ZF6GOTs44jZ6oHmQ2qzz9xmOHUkfS/k0eA44dnl2UfrDIAsEAk0T5lWxKszh5wQT8g3NgA5qNrrapkm4YF2xw+k70b6GScR/MvCONg1tzFYzBTA21niZ0VtbDsRetwq0u4tNyjYiOaxZ3l0lyEZnsLIZdFisML489jA4Cp7x3JTlzlc5xmdU0S7P3Mym47cia7UopmyCaI5SOihGTPVQ/h9lP39j1HVbefO/cV1Jsb+IX/8uPJY3//fR/CmVsfmPCvmBzZGK9+h3ECgJCk66zPQU4Iasvjb6wOBF9IZeOAZL98MSi72ZOtpUUzvjFcj3B9TS7uB7ni7gRscYqD3qYGOCH8VhcBl9fa6qTt4orxmeO2AZ2h4gdYc3WEPSRYMzSIgHLnqbnD4YQMfiCdof2g2BNHOk6nZmkxhpnUMZ0BRLnO5CocT7aLD3KopoafzEHHaSTxNSh5jhv2XbdVdTnGxDPZAFjVgHY8v3sxUc17CigjK9nezpXsuNPB9bvgfNKbKmVMYKs2cO469XUZ1tvSU2OQ8SAFIpPAE8e1emMuOTYa0kNpYYTTJt6nFbMGcSEi2VUD7GT+AZbNy55sLnuaSrarjDCoow3xcTRuYSgXTI6KBKHsLpjsLWZ7rXywygBk23CkZNumJFh74TC+1ZQzKHGrmeoubthZQxJvDxXgTjc9wWsTVrpVZGeyZ4dko6SBWoFsy42g6wxc7I2SfXVVzqGp5hlEJEnAjM6XqNip6Rmwx0o2ADCW6wir6/tPshttedxVbAA8O0M2Kq6tnEezLS1aH7rnUWha/yX+YUXdfubcY/i3v/ZPsN2UEsHrX/kd+L5v/5HJ/4gd4NB8sZINAGAM4nIL/MvrCOP/HpdkXLzUlAvgEUAul3EhN8E5doBdAkOh8Znw+EieGCtbhLYDzE0m9o2EUc3XRoKpgQKB7vp28tAkzuJAf7s4qxgoz2lo+RrqPev8mOT2FjVIEIQr0A0YmCYXy4Yu49ByocmEAZVkExF4ZzSTOlEQIxaj0ZZxqkXO4sQJ1AzA7PSz5Fy2nynyUZtnvg/nYTJzrcalqQTW8ccj2UUQQigKanbfVpQ56UG53L35zpNAJfgTG2RpLFmXA8DhRWk4ttRTf91uRZGXg3yJgmwCj6YxCOo30RoEIeQstqEBxgj35Xi2/R7z3kTE0+6ZK7zvsAULLCqc0LWOvE+NiN1WssvKsTpNQm9GhrN8WEb2TYwDkg1IU4RI3YpbQPZCyd5oELiQruZAj5JtW7Aspc16D8nptJVsM+MuPkMk29blfG63/0q720q25xPO35AEO3NzEAQI3BRKtmp6dmTxJLa6DJ0xt5uhq8Znu0+ymaXlkrFZaBdvdCg18AgnU7Kfy+RjvzH3OfecfmXS8vW5r/0RvvzUxwEAC7Uj+KkP/Ps9dRRXkVWy+0k2W7TkdiFJPljFAJuXx4+41kH4+Ab4C/WhZJtGmM08wDc5WH7mMgA5qz3kFHB9OYtd3UUVe+ow5HWls5mS7Gm0i7tuB6xqwDxZBhGwUc8hyYQ+JVsEBBEKbHcZSpGdR9mW4kOeJwrTI6KrKOUUELgroA1r7WcMvFt83gtBWH2+A9pwk/bkPjih7DKzFTZQ0mXRNiJExEmOIyldECoZySjZ1uRKdhFUQtubf64WRgapkL3RU5NA/axh7elFYBrL+KcYmizCnL9Oydw+EWFpIypMD0LB+Oc4MV6bTfnf4ginTBD6iYL/AEu7wopaxWOwO6PtJgBaG32tXIlmpUMeTM33SD1GbIWLxIWXaRD6uKOACxSfdzc5Dkh2jIYyD60B9aJq6pQgBOHqarZqqrorG6aVVbL3i2RXdk6y7VnMyUYUf8aFjPNRoGmDHebPXyc8c2Fns6E3NoDNhpxDyyAk6VZ6E1xw1Ixsv/Rq/K3fWcAP/e4Ctp3Rv7uqZPt7oWTbGqgTZroXgNloF1/dUmKA4nbxMYstz2ZI9htyn2MYJh646zXyY5RWvp/6wL+fuO1/GlhUZ7J7jc8g82HZggU2Z0qCXdITxUg7UQarGBCX2wi/vgF+tl6sBHTC3OibA7x8oBkMPKe4Csj242Gu/iubsgvppjA8i8AMDSwUGZLdS8RGRVFsUK0MrNflKFz2w/vb88kXcLuELmdJq288rpfXSchylGzuCohAFJrUERH8gEAGg1/PMqquS7i+Rnj6vMDHHxN48bEOatvFZJdcLl291c8q6WBOmHZH+Vz6RmQystPto85kl3fQLl6EbEZ2D8nO5FcXEyRnijPZwA7ImM76CqLHF+XaKc7TbnVlN+gwTwT5Pj2O3mxwLJgKQYQb69IUb5QUAXV/3iFOp595ZvD2ZAvpeqh3DGEQ1OLNtNRs1fFeLbbEnxWE/o67D2OS/c2MGU0W23tQN5RxXjpD2ZazF0S0a6pOowNst4HDynUw0y5umPs2k91WSHbvhXoSWLPoLh6DMVDTB25JLyK2Kd0j80BEuLRMqLeBO08RapXxjw/OCeeuEWwrp3rHSZb1SrPfO6O2i18OXgdBDG2f4Ws3THzXPaNdfE0jPTb25Bi3dGll6YQySiCCpjEQ0b4p2a5H2GoBtfiUD4XsaigotjTaW/i3v/YTuPG/P4/Q1ZL21vXtZQByu9535pHCz3v4njfiG2e/mPz7e97xd/GmR945jT9lYhxaUNzF89rFh4CVDbCyAeqGEBfagKZBvy9bxSIiUGv0DOQDfHOCGQyiwJU6bIXQrOLjwwsI19dlgXxQhM8sghjQ7RYTsVGhugyrhK1algRouw2cOJQ+n+n9WdkiFOh0CG7IEHMLQ2cIuSxgLPYUoJnOQCI7ky08DvIJrGAm+9KyFDP0DgO7GsIwOaxI9a63JJknAFUmMAcOMwxB3RCskrM0djiIsYzhFdMYBCALd0chR7164ru6ORnZQDYOaVdI9gAlexDJnoqSXVY+a0IlGzqTbd5KK75tMXBBuLBEOHkkGrHygROHB78VtQOwnnPa1EfvWG20gbXt0Waxgew2vDU8FX2gBnZ8kDubNLRL0BqdZKsmd123jYW5IyO/tghFx0E2MqwDsza5b4RpSOOzb2YckOwYfuQwXjFQtuWOl+H2u/Nxmw3A9YDy0fSCHTjpGW/qVpKnCIyZo7hDdJSb8FSUbKXVZGZysiOwkg7allmX8ayMFWUoCkF9DpJtR7YM1dtypvoVd46/yFqvAytbwKm862BIMg/4JlCy1XbxFT91F79SH1wgeHFDx7/7YgWvuSXE62vpTSU2UdtNMFOT4yEuB+sxnGNs/6qqza685twa8UziBCaKs18//eXfw5ee+Fjh+91/56szxa1evPK+tJX89pP34B/8zX852RefItSFQV+E1xhgFUPOgN7oQLulDKYcYwikaVrvgusALy8wnYE7vK+QTpzAHT6wCLO2LdWzkztfx+4DWA/JntT4LD8vV2MMGiNs1AknDilk1NTA21mSTT7B6cpuHbVYYZlylO72kz3KoyZnu9V2ceELkMg3qWt2CJdX5K2UmQzkCXRbAi1TB5FMcTi8IAvdtMURCgF0CVT3c0k2NYPc+zIzNdCWB9xRk670IckuuZzto5JPdV00NZKdUc1rIAKW2xpO1USmoDKI+GaU7AlysuPPzvtOY0Fnci3UY6R3bBG4ugo8eIecxyYaPI9NXMgiSC/JNoCuI1XqYcWyVlfWve0BBnsq4lbrGqvhUCgXGuzW8tAOGcylxx2NQbJ3Q8lW89Iz7eLqZ3kdzNcOYVIYuozwsr6Jmeg38Z82JnyRkOySJeMC2s7ukewbGwSrJ1Y4aKYE1DBMWJY6y7x3CnDshAlMayZ7hpXski7bxR0OVOXpYJvSAEVGa2WfvtmQMSOH54BzN4C7byXYI0S9qGg78oJt5V2weaRg3gwz2bGSrZWw3Elv4FfrgwnMf3u6hAtbBi5sGbjnNWkJeq+6NYixvhEBACACgn1SshvtKMYz3u+cBsbSqMZg1fIcdD29mCzUDuPvff9PD/y817zi7fjut/wgrq2cxz/9e//nxG2B00TZrqJkV+F6HWw3xleyVbCqCWp2IW50od+vVFM8Ia/1eUrVAV42YCaDCGTrsaqCCk+2H+sFnUR+QLi6Sjelig1IBb/TbCT/nnQmO87m9Xynz9gqbhl3PULJlttIMxi4E2aKGiIUaLYJZk83WMWWRQy3IMc8Q7JdkWtSJ4hweYXg+cCpIwwU6CDOYZQJbL5/v1E3lPddSwOtu5nONkCatFHDz5ieJSjrEM0AWiTUECjTmNxxi5RspV3cn4JTM7Jrt0ppDv/XY2V89GwJ9x0J8aB1e/qdBpDsjIJp7dz4TP1OY0Fjcga+J2qvVmZY3ZYdhRuNYqO6BG5UWK1mF9yWus4bss6vt2ksY674nLhHT9M9tNuGb0tVyabW6BV/9bjSv9EBX1qH9ujRHZl7ZpVs1V08v8A2CRgYdJ12jWfNAg5WGjGiaB92SBqRBaGsxh5bHO8gFYLgePLknSsjucmo6LqEta2sqzQAhEpApGHMxkz2pDdhFbM6kw0AsDSwupzLZhHJtizZ7ubkOI2ubctc8yMLwOVl4Po6cPet431k16VCoTpRMG8CJTuZya4+Ak7p9706RMm+sJX+/monlYP2xF0ccqGpejCo2K928Y0GZXMiQ5IL0oLnqwvbn/up38GDdz461udpmoYP/sgvjv9FdxmLc0ex4nV2pGTHYPMWxFIX2i2VZPFCHgfjJE2gDvCyBdOZJNR+dp6XexzkC2jzZu7rVrdlQezmVLEBmBo6remMg5VLNUmyexba5RLQ2JT30FPREoaZGoQvIHyCHq2J3I5AywVKi9n3LdlAI+rs6WtEJUBkZrJ5rkndRh1Y3lQ8TwwGFkZkC/37llpSpWY1A2LLg9ZJ1wPyy3J57SjnLJlLOrDhAZ3IGK3n+2SV7KKc7Oko2Sp5Lpdq+MMLcge8tGngCvufgcXPAvVPDyRHjjtlJduZkIgZGiDCPiUbAI7MAxeXZH2lNpRkczBfAIvZAollSjGt6wwm2UIQmh2gPEZXdLw/7zXuSx5jt49AsmuTtYvH6vKrjG/Byc9qCHEF+roL43tuH/LKYqhKdp67OJA9VibFqRnOuJ4GDnrmIhBjGaOcWhm4sASEBa6EyeuIcGVFmmd87kmBj36J8CdfJnzsMcIXnyG4OcYKmw2g5UgSrsLfTg9YQzdgm+kTgr0k2VGEV9muQtd2Phtszaq7OCIzFUEZh3EzinPqdRgPQplrPleWLWZlG3jpGg09Rnqx3UJfF0MCThhqbTsjiJVs++g7Mo8vtzV4BUVYJwCWW+kxdaWlKNl7RLJh66B2INvIFDAmXd/3GpwT1uqyfTF9cPD3mMZCaBYRz2U321s7yFeVYFUDcDjEkrIQ8MSuem0c4OaAZmigUPTFeAmPIAKShbge+AHh2qpUXW5GFRsAYGrotnauZANpy3hvO7DGpAv02pYSmWQyiFBkHMabDQE/J99YYwwg2e7dB5adyQ5bYaY1G5D36UvLspAdt/fGmdbIyUYnQaB6AGbrkjC7vD+hwOFgHu9rOQYApmtSpOmEQLv/+3QKzMhUkj2tcUC1DZybt6EbpMepRxXg4Y8Dt/7kYCVbUdUndxefjpKNkHKdwReqsoW74wxXssnlILA+4UKLjonukAa6rivztAvXbDlISXaqZLPbR9iWE7aLx8T3fiN1MuefXQV/drvoJUNROJM9jVGAlxEOSHYEZrJM5ejwvDQ/Wx1yjK5uAV94mvD1l4DrG0AYysXy8UPApWXgqfME3rNgXqvLXD913pecEEErvdDKmex9ysmOlOxpzGMDM5yTHYFZGmg7vakyxkDUn5W93ZIX9jgX9diinK1e2hz9s4Qg1DuyJT0XIWXyHGcVRIStaCbbWHxL5neCGK4384szvfPal5rpMbZnJNvSpNuok5WtDX1v8tF70ezKEYKqUnSjIZK64ymxMDPQ6j0tLM4pMV7TULMXLYgbjpynhLzODmrDP8DLA8xgoBAQQU+sVORmnNdJtLotvThGNT+aSVgausq1Y1J3cSBd2OeponMVYLMFdFx5L2MmAwXZrOxWQ4BTfuawbUkxIg9qu3jY4X3xXUsbhM2GVDszYNJIqw8uB7khYGuy+GZoEKtuNvvaCeXsb1GHma6B6j6ow7Pu4+hRsnc7wkv5rCalKmbNiv5upgN3/Tz+8Ma3wSngcJkC7sTu4jsnYkxnYIJAYf8+Y4zh6KJUoHt9c3qRNxoWw9SB7fbg9VbXk3naY5HsSAW+V4+UbFsDOzpMcgeYpaemtxMo2Se0bDpI+NuXQRuTrbnVYzIvwguYbi73NysOSHYMM4r2ifL3TEMSrWtrxScgEeHiEiEIgTtPMdx6lOHIAkOtzFCyGG49Bjx/GXjhCiUX7CCUzqS90R/UDhG66Qp/P2ey4yrnNOaxgRmfyQakstkKZPSGgt54h82GNMayIpXDNBh0LZvbOAyuL6uipYFK9uyj1aknpDgsf0vf74vmsi9tZ0n2UrsM6PI424ucbAByRMCX4yEqDH3389Hz0GjLYyJTePHEwLl89Qb4zaRkZ7Oyp0CyKwbgKmp2OzhwFj9A5FRNMhNbQW+WcwzvJp/FjsEMDa6VXuTKExqfqa/Ni/Ip2dLYdTvqTNcMDcQps323Nzj0grGNqg2087gBYwlRF6GAcHim3b/jSrOzajmHfGksjdpSQN1QqtRR/jWrGaC6Byi52tTONz1LvlZJlyTb533xgEWO3+qcqzOtdnFFNd7mqRnpP3lzF28/8Uzy7/PdB/BP/mwOfk4tV20TntxdfDSTteFghWuihSrDySPDz0UacM0vWUCzDYQD1l1dN/4mo5/3rtfFIlvEcf24fO2tlZFHAFnNiL73+DPZx/WeCE6XI/ivF+RxOSaKIrwqPcZnBxiMg9VGDEuX6paSy3d4XroYtrr5J+BWE7i8AhxdzH/Lss1wZB548hxwJfKI2m7JRXXvPDa1AoQiPankTLaqAO+NKzfnYeKMOC2Srba9+3vokj4ySrocFVAqnpYhY9ZiEBGur/cbNBw/JOey10bsyum6ksjZBfM9FObPmM0aEtMz4zA8XQ6layw9T4ocxntJNoEBczLPec9mshmT3QI9JFvX9odkb7dkZ0umhdkXA2/K08gy3UsEHGi4ww/sQ/PHk5+noWQDkZq91JWL4C7PZNge4GUMQp9Kxrs8t9NhZZNQb/Xft29GqESsuoOZ7EGzmQwMlgmsbqcCAwhJIZtzwvYGh1XKPxctC/BzhLx4lh6QpmfCpyQpgEgWQjpO/n5iRr7hJRwOgqJSl3T5WN1P3pcaUTt5Ecq6LNqGou/6UmR8tts52et+Gol4z2GO773zEvDc9wOhrHxc2DLwxSv91f5pKNnZluLJSTaB+ozPxnp9gbN4jJIl7/mDWsbrbYI5pnuV43Vxj9Iqro0wj50gNj9zeZ/wU4RKr5JtamDHJX+gZQfhH1zNdGaMgqwBntounh/fd4B8HJDsGJYm53WUuez5imwPXi5oB760THB96XZYhIUag2kAXztLWK/L/0KeqqFAdBHfcBFCIdn6/uRkq7M60yLZM52TDSXWSaly25Z0OI0RR3fN9xR2SxYDF8DFpdEuYF1PquFmkfGSL26K+K64VRxzqeHW629LV0WjkmwAwPybAAB+uIfHhq4lLcQxDF22hY3alTANEBGWN/uNVygYfBy40UJI1/VMp8gsYrXN8KN/OI8f+G8L+NLVwT13h9R28QmysvPAKgbgCfCrbVlIPVCyDwAADH1KdtAK+9qPXZ9wdS1SR29iFTvGoCzlcTDMZXiuLEWFzdhnjaWdAo0OwWlx2AVrJwYGLec0ZTpSJTsxrpPvsd0Crq8Bh+YLVEdTk8SlR7WkRgD1wxhjgKlBrEUt456QBDrPWTx+TbSGQEB9SnaR8ZmuGzANWW1X1eOdQCW0y45MVSgZhFNzQn721h8DL/1I8py8+/E0crKrGXfxHRAxVqxkjwSHSxW3gGSbBkPApflZHuLM9iJRpAiu18G9irM4G8FZPHnuBFnZ5XINDAzHtUg5P2zB+Dt3J3+3eHwT4qvjFa2LSXZNec4ByR6Gg9VGDA3SvEIh2YwxVEqSQPXOVTc7hItLOXM/OTh5mKHrAl99gXBtLcfJsMtlu7imKtlmT0723swyq87i1crOncWB3pzs2ZvJBgAwlmnPsQw5n+tHxjhbTalCV8v9Lz22IDsVNhvDbwaON2QkdIiCOStIlOy51yePvePOAKYmt8Ewkm3qyraKSHYY7n5Odgxma6Cmn4yHAICuA5zvrcN4x5EmiKrpGRHJYsuAdvFYya5UKjNt4tX2GP75J+dwo6WDwPCJc4NXK2q7+PaUSDYg1Wxad6WJzgHJPkAEobRREhF4J8y0HwNSxW52vjlUbKAn5mlHxmeD525ti0EQcPYKodmVkYQ86h5qNgiBSzBz0ldilKJ1krr2ipVsIkK7wdFoEVYawIUbAueuyczkclGkpqnJ4qW6zzmBmv3RXKxmgLalYzicUHY4WkNMYDUG8P77d9b4LNueH5NYd0ptt8ln6XPYcORi5cwhDl1TPrvzVPL8vCQQtUvKtiYj2Rkle0ft4jJPfeLXxs7iA675jAFtJ/8z4oivwvG+ArheJ+Msro1iehYjE+M12pqoUqphkR2CxeT9lR22oZ0sw3jvHclzwj+8CnF99OOsaGxA7W7oOgft4sNwsNrogUqyAUmi17Zl7qOKKyuywjXqjfe249IkazUnuovaAZjHEShKtqlbPTPZe0+ydxLvoSI7kz2bJJuVdNC2l7TUWCbgBakR1uqWjO7KIzS1CkPXBy6vDL8ZNDsEfcBZRz7dFEr2ZhzfpZDsVxwPcduCPH9uNLW+Lq9th6Huyj/+4eMhDpeF8h4MwV4q2XY0HqKc73osRuzM1HosNDpRhIjqiSJIVu9HINnV6uyu/AMOfPgzVVxWFnJqfFse5mtpNlKzPbkzai9Y2ZAqky/63H8P8PIE0xm4m16khE8QHmXmNx2PcHVVqrJ7qWJ3fOBrL9k76ZQthEqIdzJqkm0Xz1e0ji3KIuILlwgeSaMyANjaFtBISGfuoveP6nFrDXn/vbZGuLxKePosx598ifCpxzieuUD4xnngpWuy2+zIwoAvbERu1arDuBNGpmc916XYZbzuSxVbENiA6zEgC3lssb+ImDU+y66pYoVw6sZn1Vcmj919SG7zpKDiXoZG8l57pVGsZJesCrS8doIRMDUlW2e5jvAjwxODDesgvVC2W8htp+46suhe2HlYAFdpF+cWAUdG7zZjEziMl0s1nFDnsQ/Lz9NffQTam6OxgZAQ/uHVkb9HUUdDdib7QMkehoPVhgJman3tGZbJwHnWAK3rEs5dBxZr+aQrD7rGcPq4jAar9MwhUSMAMYDz9LOlkr335DSrZE9rJnuGc7JjlHTZLh6ZncQk2/WlWd3yVn/kmorDc9JNvtcsrRfbrQHO4oBkJkNu5rOAVMmW7eLztsCpmsAdi9HMHTHcaGYvLxeV1rQ7D3G84ljEZo1FoPIggj1UsmFp0uxGmcs2oui2vSTZzY7M+syY9IQkFfZBM9luqmTPIoiAf/fFCp5czh7sK20dnQFz7wtzaaRboz2Gbf8IYEdssMUxJYkDfNOCGUzOYEcQnoAIRKZdfGmD0HbSRIm9ABHwT/90Hn/zX5/Ef3hs+ud3rCyW7erEJArIqpVFBkgMDCcOSafxiysMTj0EEWFlTchO1gEFLyMiNs9dJDzxEuHZi4RLqwyb2wTXIVSYwKE54NQRhlNHpOmsPsiczNDAQgIppI0cDuZTXys4YwzMilrG2+FIhW9m62DV/utLtj2/SMme8kx29VXJY3cdlsd4ur8EbC7J1o2m1md+Fqvqk7aKA4Bp2NB1I/udJgDT2USmXTGoOzxNomQBHVeu93oRu+OPC9YWOKLJgnFwXBur2yzbLj7aYqRamss4i7NDabHH+Gu3p/PZVzqgzdHEDFXJzriLj1BcO0CKA5KtwtRA7TDTQgoAi3PAlVVJrgHg2pokS4fGFHpNQ94IVJAg0KYHVjIQqiRbN3vypfdG5evuykz2/rikjwVbki5qy32ga2mMV2xWN2ihNV+RlfTmgO6ZIJQLtkLTMx4pmDeBkr3VWAXsM4Apq6QPHOVgDLhjMb0h9sV19ZDsB48rN5C5N+1dhBeifHSKIp0iGAXt4kIQVrdobOOQUbC6Tf3HAyeAF7eLE1GmXXwW8etPlfDJC7JIaOmEh5R9nTuXH2FBUbIb7a2pfidmarmL4AO8PMEMDUJVsj0OCihpF+96crxrrjKes/BOcW5Tx/lNSVD+4oIFPmU1O77H76RVXL5+NAMkjUmivdpieOkSx9a2QLtFKGmj+Y8cXUyJ9IkjGg5VCUfngLLg0MZUGAk9SnZXkv5cElQzQXUPtOnuKJEg3jaGbsI0sopmTF6mNZPdiT5Lqz2SPHbXYXntLVkVaEz+HYZ3HoCM2+wthidK9g66HOSopTy+dkTEdqhkU2t4mkTJjMzPXMDf8lF/ogERtZDU2+NFd8VYbKRElN8y5kD3BO3i5VItS7IPp8cZMzRor0vvq/wbo91X4+OAMdZDsg+Mz8bBAclWEefnetlV9kJVtnUub8oZ3ZeuEWp5ERGToBuCugFQ1jNKnmGY0DUdhi5POG+PXLkzSvaUSLamaYnBx6zOZDPGQKz/ouZ4ch5bje7Kg64zCDGYZDteFN9VdM3lQhLtm0LJXgXm35D8+4FIlT69kJ47vfNel3uVbJVkz79xz8z9EugsY36ma5Jk9yrZL14lPPY8oT7l+4nnyzxXdR4bgGxp5ChcgAahByGiFsAZJNmfOGfhN56SN2UGwk9/awd/5e50317YKrZqna8dSn5utqarZB/gACo0g0liHc38Ck+AlLbgpXVC1wVqe3yKPXYtXWS3PG3oiMW4iN2ud5KRDQAle3RFS9cYjh7RsLQs8PQLHE5bwNQxtAUb6GnTj7xzwKUZ2dijHwwgL73AU8MvVtNtDXCFVL4HOYsPQUxEyqVaH5mPiSzn4VSKzHEBhc29OnnsrqhdnDGWqJCaczb5fW8x3JmCkg2kx1dnJ0QsmnOfBBQKmRhTYHqWfIQmvQPabYHn/tkLePHDL2Hpvy8nosi489gAcLSbzi2w28bbjqw2Psm2rTJO6GlkGzucXWTq35J2iImnRiPZMeewrazvyygdLAdIcUCyVeQ4jAPyJCyZ0gDt2pqczz46aPZnDFA7BAsIsDSEPL3IxqQ0nsveKwW4052+kg2kc9nBjJJsQLZ70WY6l61rMr4tL7orD7om45iK0HUBNxhQGb2JlOzN+gpQS53FY5KdUbIb+Uo2A+GORY77jnDocezX/JsynRx7AWZH2aZR54qM9soq2ZeWCF9/EdhopHmZ00KjI9vU+kg2F3IhWbAAVSNWZo1kP7+m4999Mf1O/+BRB996JkgW98CCHQABAABJREFUesBgJdu2ysnCs9mZ3kz2AQ7QC2YwiDDrVo3ocuR4hOvrsntpL1VsIEuyAeDrS2PmBw0AESWEeKeeK5VMTNNwImWWNByuEC5fl/e5iTrVNSavjSFJQ7JxSbauJSNhxAWoWRzNFbeMoxUMdBYfhnjb5BU1SlOO8ZL7lkGUHwQAnKxxVBW+FXcv8Haama2SbC54Qq5UxXISxGRsp0p2rxv8yHC5FM2GkGxAHkaNSw78dbkG3/56XbaQ+zJOblwcd1Ll2LhjvHU0mx/fXZwxhlPGLem/D2UXrOyIDRbFiNGSA7E2XLRLOxqyawzVx+GgXXw4Dki2AqZrYAIgr79ydnhempadvSrbO/UpqY3U8GRGI2MZd+VYwY5brfdnJns6xmdAmpW9Vy7pE6FsZOaybVPGj+RFd+WhUgLW6sURUF1PztsVzo2FNJBczQqISLaLK/Fd9x+V2+zWeZHkZV+tp5cXQenN/NScQNkEbAO490hEvioPwhMDht53A3aUj55JFJBj8QCwvEH42tk0I3PaJLvVzTdVIU5gotisRV2MzZrx2R+ftcFJfu+//qCL9zwki4N3KiR7mDK3UJNV90Zruu3iBziACmYwEBcQUYIEdzliPt1xZedRbY8vSRtdhpc2s6T6iaXpjTi4XicpIpd7nK7HxaCc7FzoDKZGODEncKwmgEmKFzoDhDSopZDGzrxnppZGdXYjElYasAxetMDmzB2ZJSYz8Dnbe9oku+O0gNLdIE3eF+4+nBWM4n0WNJ9KHlNJtlcQ2zQJ4iKO5zvgfEKjE30HSvYIzuIxbAtoXU5v8M5VB50ugQvAHHM9RkQ45cvW7Yaowz4+plhVG9/4DEgzsh1ygEr/PVZ7JO0SE08NL2CnBnjZi6Bl2gk/Gem8f5njgGT3gBj6lGwAKNsMfgisbUnHzKl8FifQpg9WlidE70w2kJqG7QvJnqKSbZk2oFVRP/qT+PMhMT77hp65bCua1en0uj8XoFKSc9mdgl3lDGtGuEmU7Ha3AT8MgdprAACn5jgWSnLhZuqSaAPA1Yae3B+XWxrcUP5dKuFSW8ZdO3VE3RNE5mfUVdoHSbaLbzUJX3mB4AXAicMMGpvcBKUIHYfyPVnCwZ+jtmjNmpL97KpcINg64R886iR/X9WSqgoglexBUeRxy3ijvbkrc/AHOAAQmSoFJGOdAIStNL7L9aSovd8qNgA8u2bAm5Cj9KKT8VzZWRF9XAMkxhgYMZQYwWaEpG1gHMRKtsOBQIyvZJtMOk4HAtQNh8c7GRrYwuTrlTAMkrVbXueASmS9Hc5l+4EnEzpyTM9ixEq213gWhhYXw1NCps6G71TJHrfTIRc6k6NTk8Dl8hweYT1VsgC+nC7cKCA0rzgT1YGw7aNGctud5xcyBsajgBkaEHECNVZ2EEgQjjAZf7lGa7keA70t48PurW7U0ZA3NhAfGwdK9nAckOxe6CwhWb04cRhYqA2ezR0L3VAaL5Uikp2ZyY7axaMTdF9ysqdIsm2rBJz5WXjHfxw//4UqrtRn79CL24VVkh3nWo8yf1+2AMeVCmUetlsEa0DnH4UCTNDMn5Vb9VWg8hCgy4vvA0ezd8E7ornsgDOstuUf02t6FuPBY+lNxC89sltfORdMk/tbdRhnkHP1jz1H2G4Bt0XpF3HMxzSx1SoYHQiFNOgpgFo9niUle6PLsNKW+/n+YyHMnmJ6rKq4IcNyq/ggj2O8hOCZ69EBDjBNMINBcEqU7LDDwSJltOsVFMB2GSrJfsVp2boacIZn16bTMq6SnZ0an2XyckdcbBODJMcen6iYzDQm75EuH2gOWQhDA4Uc8CXJJsbGcn4eF+p2GdgurlXwuy8cw8dempzQJ4SnppDsQ71KdvwdOG6dk+uc60rcpnpv2elMtuqkPrHDuMak8DABqMuHOovHsEyA1rNr7OYFZ3ASTAHE9XQBeJldHv8NoDiMN0dUslsBTMhrxEq4DCH61X+2aIHdKfcJrbmg5eKWcSJKij55HQ3JKMDBTPZQzPhyfu/BLA3UDHKrPNUSw+H50U5afrkFfnXwjYfaAZhPyUxQkJnJjtrFo1aNvZvJ3h2SrVuHgBN/L/n3U8vTa4GbJtS5bNuUpme9reLki9xYCS0ibXnmZ0TSOKvIWRyAvJns8k1/GthsrAJz/aZnMU7nOIwXkWxVyQ4rr5v6dx0KXZPmNxE0DVivE5Y3gdMn0og+25T7tWgUYFwIIY+HXFOV6Dgowqwq2c+tpkTg4eP9FXhVVRnUMp6J8TowP7tpEYYhPvjBD+Jd73oXXve612FjY2O/v1IGjEmdmgIBEQoIhydKdquLgQXR3YAbpq3hh8sC/493N5LfTatlvOsqcVJTnMkeWdEiyHunywdmZA8EYzLbekj+cS4MDQgI8GUGNpuWYFIAdbvkKcPlmMie/BH86eUz+LdfrOKr1yc78BJCX/2W5LGidnEAOFWVJCsUDEvNuINDUbJ34C7e+1mTKtlMY2ATdjNRK5Az9aN8Dhj0zSzpDK47E5me0fX0/nxNvzH+GwCpw3gg5EjDsM/cTtcwq2I1iWHrhf6IomYPcBn3fCfhQLbdPzMT79vuTdQuHvz6BVQ+ex2N3722p597QLJ7YWnSTTJnLnssbPugGw5owDwJNXyQsgcGKdnSUXjKWR45yLSTTSknGwDc+e8FjPT9XlifrmPq1FCO8rIdDtNgOHNKzuOrEBebEJfzLy6mAWw0+m8Kni9V8YGVUT5Iv5wdbNZXMvPYDxzNEqpsjNdgJft4laCHawAAqr1u5PGrlzZ0nM1prRwXzI6KalG13DaB6+uSYKuz87YlTeuGtvyPiK4rRxFKOZ1kFIqBnZSOp6hRs0SyFbXtoTySPaL52W7GeB1gb/Ga17wGP//zP7/fX6MYBIhAyIxsn8BMBs6lq/gk0T07wVPLJnwurzlvPO3jLQ+lytqTUzI/6zrKtWOHM9nl8gQkymCAw+Uaa0LvEQKACZdCTGdgFKmc7XBHruGjoKMWNQYp2dV0VOp3nx1hNi0HvRnZZYNwci67odTvcLycCipxMVwt4O5cyU4/Sy3ujAuaQHRInMVHjF4jTtC3em7uy85gUaQA4lq6DZfMlcLnndvQ8VtPl7DV7f/7slnZw9VsUr776sJr8CuPV9HJMavXXnUoaYHnT20XtoyraUZ5SnZsTup6nT3hJTsFCYJ4tg7rQhOdL+5t4X6Pa7U3AUxNBsC7PGnjHhckSLYitUOgHgBH+lfSxAm05YMpn6HOZJs9M9mAJNq7jUy7+A4r3TGIgHr1PZnHXphS+9vUYetg9UC6vlcM1Mo9plTdEGLFzTpAKqjY0omac8qY43Wj+K6FQcVhTnJjzTi2GivA3N8AADAI3HMkW2k9vZhedHuVbFOnZGYbkIJtNXgWTePbAWMeF7e2cO/RwTfVZ1YM/M8fm4P+x/P4pb/WxD2HdnCRL+mgTiCdamsmTh5hOH6I+sYD4q4GxwOqUzBDio+HY3kpBd7gBag7o+3iakvrK473V99HVrJrabX9IMbr5oVhGPjBH/zBsV7j+z58P7s6NAwD1iQWvz0QQoA0kv9F5oxkEEKfQ3dDcM5h2AackBASoVYC2B7Wgr+sKJhvOuPj6LzAPUdCnN80cG5TRzNA4n0xKRwvvb9XqjUwffL3q1bSa4/rt0d6L60EwA3ASAA2Br4m/l3vc5hBAONg5uDXF4EMAtoeEIZgC9aOtsEwZLZ3uX97l0oRgbFPJ489uWziQl3DPUd44TbIQ9dvAvo8UDoDQOZj60b2dWq2+dHSFoDbAQBXmxqYTvCC9N5SLld3tG0y7eJec/L30uX9nY1TWfECQIRgVXOkz6UtF6ynLV1fdyAbSkf/3kQEuia7ATbFJrxykPv5XAD/26dq2HY0vLih419+Z7ZIxeaV9XEnANPl9a/wb6mn3GDt+F/Fl84fwbl6iH/z3S0sltPXsEUD2j1zEOdawKYHLHXATvevIbxQOQ5Klb7PVfetF3Yy/94tjHMu9KHpIzaCMY5bUysMaCNEJMwo09k/MEMDBIE8PrnliRdVal0OselBzyHZ6ITSeEMha6qSrfe4iwPxXPbu7rKYZNtWGYaRJZKbXYZPnrfwhtsD3DkGsXlxQ4dj3p957EZLR8NlO140TBtMYxAMoLYPHO+vKNOGJ09YQ0ZL9OZ8VkpydrfVBRaVGkXXBfwQiVN1LsLZrwgCwMpWXc5kA7il2oLd8zfdvsDBQCAwXG3o8EPgRtSOdscCR2+XYI2/gCa+HQDwzArDvUcHf/5Xb8gP5ILhU+ct3PPoDvwKTA3MJ5m5GuVT5s3fmwZDyAndKdW5Ok40UphHpn0+MD92FtvFnQA4vykZyZlFjjm7/7w+NSdQMghuyHBxAMmeV9rFD2K8Xl74yEc+gl/91V/NPPbe974X73vf+6bzAQ/3/PsWYAubQBPA64AQ8h782rum83Gjggh4/Pdky5RlEr7/PXUAwLe9voPzH1sAgWFpIcQjr9+ZOdYTa+vJz6cfNnHn24oVxnAjhFbToBW4b4fK/UpYzYHvlYVaRBl+7T7z5jyVPO6UmVQhjVvxdzc28qpIt/et91t92+jWS9G2tW/LPP6xVR3/7q/Xk3/nb4MsLgVrGdOzRx52+z/vazbwSfnz3Q9cBZ6TreUbJuHOt7XwYicd6bjlfn2MfdqP21+0gD+SP8/dubGj9wKA2xevj/7kRQC3AqPu39bn2uh9d63h4/Qjdehzo1faGhcCLEXGyefDc1g8Zuf+3ReXDWw78j73tRsmjj/aRlVZC29cEFj/vPz52G1NzL9Z/q7oOFj+XBv16OfVKMnnpQ0DH/x0Db/+wVXcoggh2xtlrPxr+Z1qG6s48UPH+t4vPJcet0duN/r+hqP/tw08F/38LSs4ceJE7vfaDYxyLvSi+5SDK9HPpTOEK1euDHz+qLjzzjuHPueAZOeAiHIdxkeGL4CQwOZN0JoDOlMFs7InKrUDIBCZx4MwbyY7JXpyLnu3SbY8mXpNOoiAD3+6hufXDfzGU4R/+R1tvPaW0ZwP/+RFpcjgXU9uKC+sG3jj7XubjTwKmKWBNjzQnZSZj6ZQQFzvAKYmHWl9DpSz+6NkyTbgXpIdtxkPmremQMy8szgAXG3XkuzJ+44EALLHdskATs4JLLd0XKnL/0QU63TmUP95tSBewlL08wvrBtIFVD4uK63GX71m4R/ugGQzjUEQydayETC1dnGv2LiUfDFwkGcWc7LPrhvJPs5rFQfkoX3nIY4X1g2stHV0fGQyXGPMVw9msl+ueP/7348f+qEfyjw2LSWbewLrn1qHZmkwopgcd8VF+dYS7BM2th7bRuV0BcubhGcvEk4c3rtr8UsbOlbr8ju9+mSAta9XcebNbdyj3C8+9hdzeNDbmbR+9RvpuencOIZLf5nfrcbPNRH8h4tAzYD9vzwEVs1fd1hmCX7gYmvVKXwvFeSE8j7HBVjFLMyoBqRidebNbVz+Ug3E0+0gVh2wOSNaY41/XNCmC8yZoG0P2ondvX5e/Fq6vb21I33bqHM9utbZt2ce/+iXq/hbdwQ4Pi9yt0EeLn1dZEj2MU/r+zxvLb22Ouca0BhBEMPzL9m49JdzuPpUSvSc5cMj7dMiOEvp2M+lJwJcmpvsvWi7i7v+Gse1+m2gESdcxVIH/Lk6tJOj7d/wM+k9VavpEG25Trn8Bwa0u0ZXaX/3Nzr43ujnc+FLYN587jb84uVUwPJDhj/43UN465l0LRxuegBkwWP1qwa2yrWBx4H//HLyc0yyAeDisom/8S9O4eff1cLtUYchlcuAtgYIYOujbXQeubPP2+DCpXQ7h/UFfOOT8/j4SzYsnXDfsRBhOyXmL36eoXtyenG/RSi6HowC/nWFZ1QWcMcdd0z52xXjgGTnwdBArckzM8gTYIEADpeBNRe07YOdyPaYUsPvI1ShYnzWO5MNAL7vANjd9tBYye41PXti2cDz6/Jw8TjD/+tTNXzo29p4w+2Dt1PbY/jMxehGGNaBy/8CuP8jAIDn1/SZJNnJXLabJdG06QHNAOywDWoGspjS0zosSTSh0SHcrtCodlFckwp/9kj2i5eexNlLT2Yeu9yYA6Jr7KtuyV8k3bHIsdzS4YYMX72R3lDieWxxowt22AIrG1jQrgDCAzQbZzcsDCPZaq7n1YaOpZaGW+Z20AVgZM3PiqBrQLMjg312iu0WwXJ88LMOWNUEyrocHSnr0n33JlOy1Xnsh08U77+7D/OokCJHCB4+kVN0UY3PDmayZxY/9mM/hieffDL3dx/4wAfwoz/6o2O/p2VZUyHUeSANYILJ/6KCkMY0iC6BPCSPd7sEztnYC7md4MuX07/5jbcFyWc/dCyEqRECwfDEDXPH36nTVYy4rOLFKn9iW3bJtkLw55rQX3sk93mVUg1+4MJx2yN9N4IGcjkgGFDRgFFe07MvSDBQh+T1coLtQUwHNTgYM3Z9H3e7yrXanuv7vJJZBYxFQM8SOU4Mf/BMGf/gjbJzoXcb5KHTaWVMz+5a5H2vqdgpGfKcJm6bF7ja0HG1oSMMGBxHyck2qzvaPupndbudyd9LaAC4PHZGJdltAnFt5M8UK2mhnj18CHhMElxx3QG7YzQCSYSkVRwAzomrKFuHcr/Dla0s9XrsioW3qGvpSno9oEaYvEfRcUBbcv3S1XS0dQN31lbgs2O40dKx1tHxEx+dx899Vxv3HuVAyYR23zzE2SZQDyAudaGdSY8/8jlcJSKnZFXxHx6r4M/Pp1yE6R8BXv1PgfbX8YVLZfzNo2zP0hhGORd6ITbT9Z1+rDRSm/e0cECyc8BMDdSSDuMTOT17HKQxaDqD0KRdPhSSTVzIeexylqCEPD3JenOygd13GBdCJG6YvST7t76RbZ0OOMPPfLqGf/GODt5yRzFR/uQFC158Qqz+BlD/i+R38WJ75mDrYI1oLjsi2UQEWnHkQs3SwEIC+SKXbtkWsF7PPrbVlCr3IJAvBrYJ7zUu3ziLH//X74QQPUTowd9JfnzlSQ15LjSnFwQei0wcP3spS7LDP7kG/tlVsKM2zJ96CJauAe0ngPk3Yblto+E6hWMEboi++KevXTfxfQ9Ofm4wW4/Mz8RAx1vbBBpTMNMkkvFgthdAXGgBZmTGY2tglg4KBNgAwxbVAbZarQJ7EzwwEOo89kMDSPZdh0MA8mZ9YcvIJ9kZ47MDJXtW8Uu/9Ev7/RV2DGYwcJcj7ITJtbflANbOBOOxoUZ3qYXnsikTGL6xYmK5tfOCompsOijCi9ZS0iGutAtJdrlUQ721kemuGQhDkwq0oImNz5jGZLdPgbo+FKYGNLxcr5xpI2N8lmM0Z1vlzDz2628L8OSSgUAw/OlLFv72a0YfD+i6LaD25uhflDEYzfsOXbeN04scVxs6As6w0tYyBdyd5mSXM5+1g1bxCY4TavojO4sD2ePdf/AQ9JhkLzsY9VKw7TCc6aR/53lLx6MF5nG9EbZfuW5CUKqxqGOkNMT4jAQl7uKrZhlgDA/NvYC/+/YSfvrPa7iwZaDhafjJj8/h576rhVcc59C+5bAk2QD4E5sAA8S5JsS5FuhyG/dzG28034jHgsdgmRV8+Wp2dJSgA7VHgNoj+M/PAbccb+Nbz8ygYBZBdV83ju/+ea/iwF08D5YmYyb8yW5mpObuzpkQmx5IbUdty3ns3lbjMGoX13UjIfeZmexgd7Oyu247cRtUncWfW9XxjRV5kt06z/H2M/J7hoLhX36mis9dMvvfDLKy99GzygG98p8A/wYWLfl3nF03RnaT3kvE+cmZi1szgFh3weatKE+bZNZnDiq2nMv2o/xVzgktZ7CzOAmaOSX7S099vJ9gMxtY+FYAgE5d3L6QvwNVh/FL2+lxfu/aJvhnVwHI+XZacWCZFtD8cvKcQc7z1+o6qKe08ZWduozbmozJcPL3Z/I0S8Z4heFOzYcip3nigKnJlrYTZaloCwIT6Ls2ZF8/W0o2F8DzEck+XBY4VSs+qVWH8aK57PmM8dmBkn0zw/d9eJ6sAgVBkPw8K2AGA4WEoB6AmRqEIHScvXUW3+gyvLQpz5+7D4c4Vs1eX16jjGXt1GVcJTt5uc0x1MxgulJMoNMon9HmJJOc651EVWpMjmqN6Bzdh7hjqLz7lRRnSC55ya5kWsXvPxriO+6W66uOr+FjL41OCNrdNlCRpgNH7A7KOcdwxvHbafUkgeiZAm6eq/Q4qGbcxSeL8AKQkOwiJ+xeUCjkvXxEkk1ECcmmRQvuibS4QMujFzmu1jXcFZ1fG4aNevWuQof2q43ssbflaImnCQCwmnKet4d01baCJEt8LRovPWWcxaEy4d++s42HT8h1bDdg+MXH5PfRHl5Mtqv40jqCXzwL/vEl0IVW8l7fW/o+AEBHvxMtX27Le4+E+O57PRzSVwBKj50XZ1Uwi6EYwxnHDkj2/sPSJOGZcC47k89X1gEnzFRSqB0CYb9aFUTGZ6aeSp7ZmezdJdkZZ3FFyf6tp9Pv8IOvcvG/vb2D77hbHrScGP7156r4iwv9V/RnVo3kYnJUOw90nwcA3DEnzYyckPVV9GYFzNKSvGwAEKsu4IvUDZ4hNysbAKolaXQWd9w4npzTLoqDIJ9DvNQAtr2JHe13A8+eeyz5+f/5g/8a/8uP/jLe9QN/BpiyV/xNd6DPxCyGevOOcZo5qPyPS5nHaM2FoVtAK/2s5wc4z1+u92+fp1YMuJNPdwCWBuYLGesyALYJ+AHgDO8sH4g4vsvyeZLTyjQGZuuyiHPEHmx8NmMz2VfqOrpBOo89aO2sqisXC2K8VJJ90C5+c+M973kP3vKWtwAAvvd7vzf5eT9ARLi+TgiUIhkzNFBIEJ6AZjK4gTzH9zIjWy0SvilnfOq1t6SP7TQvu6sq2QXpIeSEMmEl/vdytzCrN47yCUIvY9w6CITRCVMubB0wtPEzsiMwjUE7Vpr49eMgu737lexekn2sKvADD6frvN9/toRwxGXoulMGdHk/uG0uvzBS7lGye+M2d03JdqagZPMRjxmXy7XZqEp2M0jW+tqJErqkQyzIxRqtOFIAGQHrSyFqQp43l0o1oPJQLskWBFzNWceo3SyoGclUGjWHKNlKfNeKWQZaXwMCaVxWswk/911tnF6Qf9+5TQPbDgMrG9AeyIs2SXGfcR80aFjj9yaPffc9Pj741i7+1smPAE+8Nnl805kdcSgPMf8inUFb2NtsxtlkOPsMZkiSLTbGJ7XEScYBRQSaMSYr5KtpuDvV/dwWmFjJVl29LaPXXXz3kCXZ8gZ8flPHV67LC86xqsBfucuHrgEffGsX332vPLkFMfybz9fws5+tJi7SQFbFvr/01eTnWyupc+Hzs1oBK+vSnM7lIJdDLHcz2YXM0AorjJbJ4IUpyY7jmko55zY1fPCntyEutIFDdibSbT8hhMDz578GAFicO4rv/46/j+940/vwgvu25Dnve2Uxsz3dQ7I1IvzU9Wf7DMZo3YVpWkDzK8ljsaqTB5Vk3xrlc/uc4RvLkx9HsjMB8rwdgDgru7vD07DrASEHdJ/L9skx4SoLoVmI8Hp2Ld0ng1rFAWl0drImj41L2zry1i+WaScL0uYByb6p8dGPfhSPP/545r/9QhAAGw1CXRHVNIOBQgEKCJqpwfOjFIg9XIcVtYrHuPcIR9WS3SFPLhu558yo6A5RVoFs6ywAQAB0PV/R620/Hgk7XI+zqgHtlv0vLo6CzPbOKWqUrSpgpc7ix6sCdywKvP5WeRystnV8/PHR/tY1L43lOLOQXwmu9mRX39ETt5lRsneak12akpIdz8+OmL5CLgfzxegZ2crxrp0oo1YG2C3ReKcngO3RqurujfR9rthzQPWVud0Aa20tGaG870h6v3zsurK+1DWgEo0qDmsXV77fmlkGtj6GrpNu75IBvPl0+pwnom4Y/btukSMXFR3aqw7B+IE7YP2vr4T2ykUAQIVVcZt+O5b9M8lrHzklv0ulVAO8K3hzcxU/uHYBJy5vgra8nRXPdglEaTu9qJmTd9BMiAOSXQA2b0Jc7QytIvUhju9ST/CadLJEK5Q39G0PrNRPCuKZ7Nj0DADsPnfx3UOn269k/zdFxf6bD7swo/W0rgE/+ZYuvuf+9Dt99pKFD/zBPH7xy2Vc3NLwl1fkRWPBFrinej553il7Jfl5pueyPQFqh6ANV5JDdQbM0EBdXnhR0RhQb8vfdd3+uCYigljqInxqC7Thgp0szwzBBoArSy+i3ZUxJw/d83owxvC1G0ZCch86HuZmIceomMCxSnpTfM/GZdxdr8t/KH8nrbswDQvwrwO+bCN/aUMvjAtXOx8+8N3p8frV6ztbFTNTk8WvAdA1Bi527jDecSAXDL4AjPEv+HvdLs4F8MtfKeNXvlqGn8Ohn1tVTM8KnMVV3B3lZbsh65uvjzEfzWUfkOwDTBOeL00oYzCdQYSA8AWYxeD4gBCAtkcLMS9M1enDZYH7jvZfU3UNePVJeV41PQ0XNie/T3SHzAgD2VbxGOJKPklS1Ur1ujQI7JANdmhvWzb3C6qCWy5SskvpTPaxqrxnvldRs//zx+YL74cqtsKTyc93H8knpCrxddw2bpvn0KLM+Kt1PdMlVbaruFLX8BN/Ood/+Zkqzg4Y48pDtac1fWJMomRjcJKLClpVTM+Ol7BYYzBuTe+rYsSWcW3FSX6+XKoB1XwlW13DvPqWEHcfluf2SxsGNrvpd05EnXYwkLyqSvaqVQa2P54ZUwCQSQKKrzfarRXYH34E1ocfgfl37ob+xmOyi07Jzb5ffxDXnFsAAIslkRRlSqUqHmC34p9fexo/vH4R/9PTz8H/P56B/78/Bf9XXkT4p9eHrqf2DN109FdU91bFBg5IdiHYnAl4AuJye+R2EQByTjfIkmxW0qUyvuXKeWyH584Dxe7ihp4uWvvdxXcPGSW7Mo9rDQ2fj6IGFksC77ovyy40BvzEm7r4x2/qYLEkD2JODH90toS//0cLCIW8YLzzXh9lpf/uiLkMQ5Pb9IUBrcH7iWQuu+FLJ2xLz7aXmdEcb5B/bJQtYC2K+O0lZRQKiHMtiGe3wQhgJ8ozZXgGZFvFH773DQCA338uLbj8wEPD5dxYzb6/W8ffXrsgH2SA+XfuTq48tBaRbABofx2AXEiutPMvTXF8V9kk/MDb2slx9JXr5kgLkULYujQ7HFItZ8COs7IbHYJBQn7WBEr2XreL//l5C3/wfAm/+1wJv9ljgAikpme2TrjnyPDexrsOp8+5UDiXfQiAJNlCzKBxwwFuSggBbDXSdmWmM4AIIiBohgbXGyEFYor4i4upMegbbgsKLTlerS6Sd9C1E5MdXTcyfi8q8kh20Vy2StR7F/ZFYLY+UwXl3YSq4ObNwMt28aySDQCPnErJ19OXbDyzOnyfNyl9n/uP529fdX91nBZsA4mHxtWGDkdZY9pWFT//l1U8t2bg85ct/KM/mcdP/3kNz66Otu/KExwbuYhPimBEJbvLMc5JLNbSv5mdkOcEO6UYFS+Ntu6ubafnyOVSDbBOAebRvuep89h3LPJM90pGLJiL9nk4OFJYdc5eZS7Q+lpf58BDx0NYurzmPbGUXSv1FiO00+l+u7/8FvhCrs8eOZWOglVKNbzefEP/l3E46FwL/DMrCH7zQuF33kuoZF/UDkj2TIEdskAr3dybThHIF2ACfaSJlXTQiiuV8Zx5bADJTJNROJO9y0p2z0z2bz9TSkymfuAhF3bOdZ4x4K894OPXf6CBv/2Ig5LRz3T+6v1exiWdwk6iZl1t6Gh5s0UwYzBTzmWj7gO9cxwmi9TI/ItfuSSdqB1PxnkZyn1JLHWlwcScCbZo7Xn7Sh6keZUOJ7reP3subd9++N434uKWjq9HFdBTcxxvPj28w+OORY4KD/DPrj8LXTZkQ/8rp6DdNw92WBaPaN1LPQhaaSvpSxv9N3InAFbaevLec2XCqyKFZ6Wt42pjtMsZF8CHPl3F//Q783gx/hw7ipYZMpdt6EC9NTmbJyLpNA8hb547ULJtqwxd3/3Fquoc/rvPlrCkjIRsdBhWo31y/7FwpJqBan52qWAuO3YYFySSjordwAGBf/mh4/UUyuSQMJjO0OoA5h7VfZ9aNvCLX06LZG87U6z8TGsuOybZldJc4X0n0y4enc/icjtXTVPndnfUEvxNCrVzoFDJtuRMti5aiVkZY8B7H04P0l/8UiW5Nxeho52RP4QN3HE4v4CijgjExDcuhrshQ8NP9+fz20fw4kb2ZHj8hol/8mfz+MmP1fDUkGKPZdpJAb2zg2MjXkvTiB5JYzuLZ5RsSa7ZqfS8pOXhJNvnwIm2vC9zMFyz5HZsKYWPGGoEaS/JVkdH1PHEQZHC7VWlXbzzRQCi71y0DOCV0SjXelfDtQFrJXZbBSJar91vPJA8/shJJfXAruJVZhoX93tH7gDdv5AWBiALc0VeDnsJ2k7PowOSPWNgtg5oTN5gRnUad7l0nu7FnClV0TWn0C0qiGayzaKZ7D00Pgv0W/Cp8/ICWbMEvveBwQS/YgJ/99UufuMHGvi+B1zoUQvSW077uGVeZKrmfuDiwWPpReNsDqGaCZQjdRPRDLYKQ5MqdsFxUS1JBbvVlU7jsbM4eRx0tSNzkQc4SO8m/vCT/wkf/qX3Y2XjavLYb36jhH/8p/P4e3+wgBtNDc+dlzP0llnCPXe8Er/3XNpR8Tde4RUanqk4vRDix5bP4mQgb1LidBX6d8rWI3YsOh4CgTkRLT7aKsnu3zZqBfhMRNReX1QFHoBvrBj4whULax0d/y1WZk0NLBDS9GcAShYyM53jwvPlAt+GAAsni7GJleyyvTfz2GrBIxAM/+GraZVfJeCjtIoDoynZalZ2c5divFqdOt73U/fj3/z2D+O3f++/7spnHGD24HpAW103R6egIELb3RvTs8vbGn7m01UEUbfXu+7z8OitxefPrfMCx6vyvHlm1cgd2+hFXv23G107BjqLRyQ7YAzPRR0l6ITAZv8aYGpq5Tcp4u1tGlamKzGGYZQSJdsIlzO/e8edvjSsIsLFLQO/8IVqYbdW02MIDdkurjnPwSgovlpmCZomfxcXXFTzs6ZIW85/9/n0Gvw993uJlwYAfGPFxE99fC4Tz5mH+PiYxrHBL7Sk6DEA1A5koXyS+K6qARaNBLKjdlIAH8VhfGkbuC0qfl+3KwijOfI6P9n3XNX07PQCx/1HedIJ+vUlMzm3VZKNAWOrPMrI7mgG2tsfA5C/vV8zYqGO2Tq2S7KwfQfVYEcJM4+cSi86Fa2K+/T75N9jV/GRk/dh82/eD/tnHoH2aBT3R6MVKHYb6sz6AcmeRRyyQRsexNJo80bUDXMXzszQ5EHXCfvysWOEPFKyC2eydznCSzFLeKr9enCSf8f3v8JDdUjGc4xDZcKPv8nBr72niX/+9jb+2dvkdlMVeS9w8QplQT7ITXpU7IrfQtTmzxb6/3imyTbDokqdoTMEIbDZkDPZcUa2WHFkN8P83p/sALC+tYRf/u1/jr/8+kfxH3/7XySPfynKQdzsavjJPytjpSkv+g/c9Ro0fRufvpgWXN5572gdFa+6vIx3NOT8fVc3UPrhu5KqdEKyASx6kZN96+vJYy/lzB1e2c5WgAHgjbenF9BRSfbjN9LnPbFsIuCR+RljoM4Q8zMzNrKb7IDrenKRb0OA2OhzYypi47OdGtOM9FlhtvIOAF++ZuGr1+U5q85jPzQiyT41J5KOl1FivHbLYfz5C19Dx2niGxc/h+dfeGZXPuMAswcvAJqd9PzVTA2aqcHfI9OzjS7D//rJOXSiWJzX3xbgn7ypO7DDlbG0ZdznLPf6qOJPXrTw135zEb/whew1IlZW81RVIMrc3ZDX9yWrgiftQ8nvRE7L+ETGZy8jqJ0Deai7GqDJe6sWLGV+pzPC/9n+Bv7bS5/Da1sb+PxlK+ORE8MPgX//pXQ/m96Lhd+HMZYUWOL9pZqfdSCL4PqRd+LshjwRzixy/OM3dfFr72nig2/t4Nb5dM3ztSH33Pjv3tFMdgxfgD9XzyiTKmjbA3+mDuoEiWnYMEgnfbnujlvFgSjt46QsJtOmN1SRXb8awIwWoWul9NqyGWTbxYmAK5GKfLzKUTZlN/wbbpPfwQ0ZvhHfUzNKdj7JJkGodOT2WDNLQOMTAPLPRXUu++tDogCXS2sAAB0M9zhNHKkI3DqfHifzmzZ0Jq9Bz1TkNWKzK/8u7TYlAu3G6BFou4YDkj3bYDoDmzMgrnRklWwIqBXktoID0hUTdb8wnzEh2ZmZbIVk75W7uHEIT25J2/6SQfjrDw6pHm554N/YAv/SGsJPLiH8H1dx9I/O461fOIvyWkSy1dnywMODx9KLVp75GRfA4zdk3MAw/OrjZbzr1xczUWPTANMYtFsqxfNjjA3MUtd1YGWT4AbSmZo8DrrWAasYexIfkocrSy8mbX9fefqTaHcbEARcV1TiDccCXvnngHkcD9/7RvzRC3YyX/8993u5+Zu9EFfbOP6ZK8m/P/Gq+5IWcUAajMRYdKMFSLCCOUPeHF7a7HeeVp3FYyX7tgWBU3Py56dXDHRG8NpQbzDdgOG5qMjDTA3UGPwGtiUX6ZOan3XdaCEvxMSVobhdfKcRK6PgwqYOERXbYlMeAPjlr1QQcCTbDsBAIzwVGkujvFbaOto5mzxuFwd2z/xMHYl4/evevCufcYDZg23J4qeIzr/SLSWUbinB8QHf310lu+MD//yTNax35BrhviMh/sU72iN1Bj1wNF0knx+QwAAAf/BcCaFg+MQ5O7kmhmEAL5q5LSJ92PISg6nrVhUvVBaTX+WZn2WV7NGEiJcTYnJZVNSIjwMAgHc98ztacVB6ehPzYYAf2LgMAPjIE6VMS3HdZfjgJ+bwuctRFZ84FpyPDfxO5STbvF/JdvTIhO10WoD/4UccaEw27333vT5+6XtSwrxa4J0SIy7CdKZAstkRG+SGkmj33KfFqoPw6W1Qy5ceNyOur/JaxZN/xw72lH1eHpxr6e+bSnrOunco87wthyXFtdNKceMNOS3jo7SLb66EMKLrWKdWgklyO+cp2XcdThXzb6yY4AOac68ZN5Kf73caeORkkCkClpfSfzxdjUl2JKDcppjGzQDJzsQnH5DsGcWcCXRC6TY+yOUvFNLyv4hkz5lgt1T6W48hZwN5jrv4ns5kx+7i1W9BSJLQfMfdPhZKxX+zuNGF/3PPIPyNiwj/4Cr4J5bAv7AG8dQWxNPbCH7tAigQsM30Aub7Dk7WBA6V5Vl+dj1LqIiAf/XZKn76z+fwYx+dy12Ex3hmxcB/f0YuKP7vp0pD55amCi3qXChAxQbabrpw228VGwBurKU51UHo4wtf/1Osd1hivpOgcj/w8Mdx+x3vSKLYDI3w118x/BikTojg1y+CRYu1x++8FW/9nuwiQ1Wy55z0onzClhXUjq9lZn+BfJLNmFSCAGm6N2xecavLcGEru0D9SlyNt2UsGw0wWLEMuT8nNT9LXufyiVrFueDJQrm0B+3i6kzeD77KSdTq600dv/V0CecjJfrMIsecPXrR4G6lZTxvLlttF2+0dotkp+Z+j772TbvyGQeYPZRs6fDv9KybPV9m2Oq7VAANOPDhz9SS68/JGsfPfkd7pKIlIKO8Ypwr6AABgG6AzMzlUitqDx5iwgUAQvGfuW5X8GJ5IRl+yzM/m8T47OWEeJsXbe81hWQL93Lmd3Qx3Z6v8BvQSIDA8H98roqrdTlX+4//ZC4tdPIO8PzfwCF2ceB3StVl+f63L6THlWfcBSx8G3jtjQAkAf/WM9lFVc0m1KJIuSKD0uSzor87CL1kHHJSMMbAjpVAnYhoN6XrNr/aBn92G4wTtOOjE2wg6z+gKtlAj/nZkJZxtpr+vm5dBaJ9udKdy9TSe+exY7z2liA1cb0mjcmYOt9coGSfPZe+h3nU6utSUKEx4NVRy3c3YAPd4i/pl5Of73camVZxADCvpd/nmaq8V8dKNjtVTjO+Z4JkR4sudhO4i//Kr/wK3vve9+LRRx/FJz7xicLnfehDH8Kb3vQmvO1tb8Pb3vY2vO9978v8/qMf/Sje/e534+1vfzs+/OEPIwj2khmND8YY2GEb4kZ38EyIy0E+H5jPV6Ryxyo2AJi6MpOtKMB7lpNtnUoeu21hsDolntgEBo2r133wL671KdmMIZnLbvtZI4Y/fN7GF67IQsNaR8dHnshWGJPPJmTmQz3OMq3Auw1maAPbiyu2JFUEgPlCqtjV/VOxAWBpLXsD/vRXfh/XFBX7HXf66WxY7Vvwy2ffiVZUeX3HnT6OVgYTKRKE4Lcuyo4NAOxMDW/+hydw20L2IFFJdq2b7sNjZjqX9mLPrH4cfVExKaOqxq1WwPCW8a/nkPDkNbYemZ8V71Mtcp2fVMlutAmaJh1Q84ptw+ApOaZ7oWSrban3H+X4R2/sIkoVx288VU5U7oeH5GNT08+YJ911OH3+xa1+VW5eUbIbuzCT7Qcezl58EgBwfPE0Thw/NeQVB/hmgW3IbpRWz/rP3eXEmf/f18tJEXDOFvg339XG4SHXUxV3Hkrjls4PaBe/sGkkhqUAkmLl/5+97wyT7KquXefeW7k65xwm56QZJUZZQgkEAoFABCMDBmOiCPbj2cZgGxsw8GxsMBhkkZMEyggkoYxmNDn0pJ7OOVZ35brhvB/nhnMrdVXnkXp9X39d4Va64Zyz91p77aitR3YGufgIH2T7EBUlTBSyJCgdjKTIZnlfiBW5uB2ykoCssImCZ7LVwxNI/OdpqG0BG5OtRjptr9c6LfZXUjS8pZS1K4nIBJ9/0o+PPVpgJlBKPSpw9Epg4pHMKgUdRmIklohA1Zhk2ai3Vt1rgCaLxb5rWzSt432V7kg+GhayMqLzXU5gBtrTCahtAWhnpkHbAiAO0aaUyxV02KoZFirtQbZgC7Kz1xZ7x63nJ4QzQPgkACCmShgJWzswuR7bgM9pGZMNhUS21uFZ1wxB9mC3NY+W1Ukz1sDb6rIHM6+V+rV+GN3E1kfsQTaNqSB6T/BuOoopnRQ0g2ynaCoV6VB0xo4tCw2TyS50IGP7hgVEXqu8hoYG3HPPPdi0adOM2/7FX/wFnn/+eTz//PP45S9/aT7e3t6Ob3zjG/ja176GRx99FAMDA/j+97+f/zdfZBC3yFp99GbJzCQ0ZoaVJcjOBIXL8tlqsnkGeLGMz5xV5mOlnuwXiHZWfw0BpLc2Qbp7NRwfXQ/HB9eY2Sz1qUG4NS5ZoP8O3vzMkIyfGRPx3QP2oPqhU66UgAsAnmx34mySbO6F7kXMVDkElljJMMt43EweTAigDUUYi12wdCw2AAyMdNnuHzn1PM5wWdjN5UGoR641e1YHE9Z+591OM0F9chD0jH5O+CU43t0Kkk4LWSCZ/bJ9Iet8L+dkSvyxjcowXaybilWbdGlbtQKX3p5i/wytvA70W+/p07Px3QERQ0EBxCGAKJS12MsCQoBwdHZS78kg4BYpEFVm176L60W7GMZnhgGdQ6BoKVGxpkzFLetSo5Fs9dg0riLx9TbI3zoN5be9AOwO4+nqso0WXsDCyMXbu4+ZC+D1DXvm/f1XsHxBABABmI7Yr+Fg1N4FYj5BKWuFB7Br6UvXhtBQlN/i0yUBjfpruibFTI0tUuq1B/Re9OEZnK4Be/uuft0hubOgiD2gAbTPvv5ZMT7LjEiapAbVKJQHukE7Q1Du78ZIyJrIlEiH2e2AUgqtw74/31MyitYSNs4OBkUE4+y4tpQo+NIVHUCYJQ0z9T+3vks6h3H9XBQLgaIrATCG+8rm9MGdEWSrlNh6O6d+1vyfH0QgIJUe0EAC2vkgUOQEmaU60MZkV2ZmsrUsQTalQEWQ/baYIGJM6wUilscHr9Tq5sgknskGYHMZ39fnsMvF0xifySoQHrHm4sp6h3nsMyU0+CA7W112OJHAWQ+77suVOKo1az/RrpBJrB1XT5mPj0W5tsVGn3GVgg4tnfkZlTVm2giAlOSfhJkP5LXKu/nmm3HJJZfA6czRBSsNfve73+H666/Hxo0b4ff78f73vx+PP569hiSRSCAUCtn+YrEYNE2b8x+FBtFBQcSZ/4RiifX/iCVAoKX8QZZBBA2CAzm9H/+ngmOyHQ7zcafL2tcJhZ3o+b53rn9mkO2wHBHLfFrG7RFJmBk+UueFdHk5pC1FEFt9EDcUQjRcBqMqyo5wDsVKDESk2FTNB9kiwirwj8/4zPrfpmL2PAXBN1/yQiP65wKIaRTf5xhuhy61ebnXARkLs39S/twEoCqIrKQ9HySBAlSDX5CBoTCEInFW50bafT/L82BgJClbTjUcOG8Ftmr4OGj0DHD89XDACuh21spYXaFkfW/t3BTUP+jmLQRwvKcFQqkj7baCBJBKNui5IhKcYOd5iWg5np8dF83tezjpeHOJYtsHbhfFdn3yGI8K6JgS0n4mFajJZHscFLdvspIGrwxI7D0dWsbr2/jzODVMhfMfa+IJFZGYBq+oAEQDced/DGOyNXl6PN5Znwe5/EVUaipMWktVuJzs8bt3R0y5oIHNNXLmc3UoAoTYtay9OAL1T8No5epLOybFlNcUF3Fy8fD4vF8LJ85bUvH1TReBYu5zyUo7sAsHHicwxtVlU0oRjCxc+66BoIApPShaXxrA5qrZtbZZU8auG5USdGVof3cuKcg+OxSErCRs5lO+DGynnclm48spfbENpNZl2+Ti8VQ5+WsZ/P429hMdiQFGEndKttf6xnsRT+hJjIlEiqO01BvGP1wbRqHLGmd218n45s1BeMmk9VlZnOP57wLw5mep5+Nd22IZvQKq/dZ3MJLf6cAnYebF/EwHEQhIlRukxjOnLi2acb47BaDYHtcQn8Ms7aODkYylooEpDVW6ynS0wItoImIy2QBs16mNyS62zxd8kP1clxPtMReoIbtOU5N9ckRCWcw6f8Qyl7m/ZSVutgTmUeWnpnHdqREJkQwi4mmyBme8nOlhj3Vta+3WcTwef8W8zSdb+LrspZSM8/XYpGT2cetcsGAWHz/60Y/wox/9CE1NTfirv/or7Ny5EwDQ0dGBSy+16t/WrFmD/v5+xGIxuN3pjavuvfdefO9737M9dscdd6TI0GcFD7D7zwEgnwliIP3DxQDWAUD+g8noqDVIFlYStOzV36PTGvycxWxAbL5sYTLGshAAAAieOlMBvnVvEC216VmqqcenzT1Rep0LlXvtv1teW4jzt0+Axin8RxVUCVUY1obhKA6iZW8QVXEC8fECqBrBubCA7552YlCXP21rjeOnfz2MN3+xGmf7nDg3LuHFBPDeK9lvf3xMNOUp1++MwOfW8NuX/AjLAgZLZFy1LT3rr2lMvp2L0UzuyHA+AGgs1m+sMx6Zv7r6fM8DTdMwOMaCbL/fj1CIvb5rSgH0sV8W/sBuRI7jI1c/ivteeQvCcQH/58/H0LI6s55SHpbR+YVuGAV8FR8uQ/ndBNmuhf7fi5juAQgIasQadKvdqGgaQb2qoG9MwvlJEY2XByEKwIHnLNZ2566I+duN/zcnKPb9kCV1zgoart+b+rlt3Q7m5grgsk1R3PGmKfzoMEvUnIgQfNx8zaT+lx7GMe3uzrhJRmxr0G+05v9aAIictExVKpvYpLFQ48G+0y5TdrprS9QakwB8GhRf+DELhCuKFFx281RGd+TpaBD93H3lt71ovlpDQ0UBekcd6JoSUL0nBA9X0+0fdQGf17d3jtg+Ox3y3QcdP3rRvP3Wj+1EnAzN6ngmo6WlZe5vsoIFh8fF5OLhKFDgZfLxhAw4F0ho9NL5AAAWrB4/8HV8ofso7nrDp7CmaVvW1yVjdZmKP5xnt8+Ni1hbnhoctQ3b7z9/sg23/PL1KCmwnI4zBWLqcBwCgEnJibBetnbYUYx3688n12WvuItnhk2eryc1aFKSoqJ/EnCXAFQD4v2IxSPwuP3QOlLHO60rhJoCDf98fQj3HfZgQ4WCO7eEMTLehVdOPG191oxBtvV8ujZeAOBS+3F1S+buFVVckD0UErAlw3Z8Mme+zw9CCDAH9S+VNWb0B8Zip+v0QWo8jEWOqCzpkabTzFhHHLpdHEKlPsSmIkA4A5OtB9klHg2FSR4mdYUaGopU9E6JODMm4cOPFOFHohOlSgKjQyru+kg9iEogCsx5PqYQfIZTt5JSZ8r1yCvCDOyqldE/LUKlBMeGHLbg3kDIuQtnXVZyjXaHgS3svbTzXJCd2A+oQUAswETEWlQLdT4YZ5TWH0HmNMwCg3Oif1UF2XfeeSc+9alPwePx4Mknn8QnP/lJ/OIXv0B1dTWi0Sh8PmvB7PfrNQTRaMYg+33vex/uuusu+xeXpDkx6gZ6T8ew76djKF3jhkBmjry04QiE5kKIq1MHMvXUFLShCITy/F2uh8enzNuJgAedz7P3Hxm3ahPH+1mw2/WSHzTZqGoeMDnGJlDBZQXZkTYvOs+nz+AlHhwzb097yxF+PnWfCHujUJ8cAhTg3Z734mvhr2CiXzV/X0uJivZxCWf7nDjbx46nz6nhM7ujGNrvx0e2x/Bx/fGv/qIEmwDU7Izgu4+yAUASKN61KoGuSRG/1T/zV48UoWk6dbWkasD//b0fB/od+NtrQriiZe5eAHQoAmF7KYSK9HXjNK5CPTwOqBSkcH4uciJSNF8Wyvs8GBnvRyLBAuUtqy/H0FgvOvvaEFRqAREodGk48MwL5vYXF2/AdW+ZgkoJ/IMudA5mltvIP++COsXOGmFjEaZXNSH4fPbvpiAEIwivE+rRrXZjuB1oLdLQNwZE4gKee6QYzSUqXtln7d/CSQldL/lt+2BV3Lp273+6ADcW05Tym98eta7LjV4KT48LpR4NE1EBL57w4MwfC+CABjoRh7SjLGONVyhKEYsDN15C4HHlvv8HxymeOkBR74hDOzwOUpGfSQsAtJ+xrkUlUAxg4caDZzi3/hqFmNcsAFzmBLbVyDg66MBNrTK6Xsi8sFP2JWWyVaD300O47PIa/AIliCYEfPveMryZUxYoivXZg11Tts/mMZtrgVKK/S8fAgAU+kox+cI6uFZVoLp5aeRkK1h8OB3M5T9kBNkJFmT70w/jc0Lf8Hnc91QbUPYe9kBwH17ofQovHHoUe7Zeh3fdeg82rt6d03vx5mftacosuocHMRBcbw8+3KugaSrGp6zoO52kmEYVCGE2J/Y5rQDrLPGDukWQmGr6KhgBiZvzhViRi9sRTsNkJ7dBaxmdBBoAyMMATSCmm1pqnda+jItxuFQXEEjgm9/6OEJSGG5VxYsvduJn3z5nlr0YyKRSSP4uQGYmu0V7AKLwrozvUWVjsjOvmxeKyZ4P0NGYSQokS8UNCDUeqHr5mzYQhZgmyA5zzuK00oPYaASIngGoAhDJNGydihEzyd+Uwevo6pYEfnjEGoQmJRdKlQSKlQQCQQE0KRFQpZ8v1C2CeCSbT0skFkwbZO+sVfDQaXb70ICUNsiOefbgDBdkaz3sPKExFbSfncODwhCm6BQQHwC860zSCwBILVfPvlyY7OJXUZC9fv168/ZNN92Exx57DPv27cNtt90Gj8eDcNgaaAw2zePJPLs5nc55CajTgUCAKhNQlaScwGnhcEAbiYO0FICvNaWUQptSACLOasErx60TXRKd5ns4Rd6Vmw2mVCULsqg23cWd1fpnU3hFpP0sSim0s/qg6RBAGgvSbideWQ31pTEgouBq1zX4bewBxBMxc9sNFUpKO5J7Lo+g2ktBVYJNFSpuWhPH4+dciMgE//WSDwXtLiT01795Qxx1fooytwK3xLJ7L3U7ocjRFLb6yXYn9usB+48Pe7C3Mbe+vtmgqQQkDtAMlRfqYBjahAxS7QXm+Zjlex70D1pS8drKFmxYtRudgz2Aqx4AUF+o4PRzLPioLKtHeWEd1Mf6IUYUaLfWg2ToPUnH41Bf0etmPSKkO1sAKoDOpIgssya2erEekAE5IWNtqYLnOtlxOjMsoalQQ9ek9dlNhZr5u419UO2l2FihoG1UQtekhJe7nLi00T55HORM0XZVKyAawe56GU+cc7H+lAMOXFSngCoE6mgcYmn6McnhoJgIArEEgc+T+/6PxikUjQIyAWQht32U/B4RzvjMqUsQF2g8OMu11ltXqtk+QwDwrzeEMBoWUOXXsn4+nbSOA6lwgY7GgZiKdx46jscqL0FQcuKXx9y4dW3CLFMXiRM+TyHC0WlMhyZn/H357IOewXazzntD60WgigACAYKw0mzjtQICAoFQBEIUNWUEsQSgqIA0C8f/bOgeOIvPfPVNiLU+xh6gGkpIl6mT2X/sSew/9iQu33EzPv+h79padqbDKs4w8FzSvDk42o3P/Nc/A82/tL/IVY/mhh3oHzwJWUnAIbmwfcPelPemNmdxHyq8GkYjbGGfqPPDdX6K1TdOJIAylpB6NTPZw2O9+Pp9n8ToRGalWjbEEtZYbbDLyUz2umAALk1FPM68KmK6sSXVmWyZyng09Ahu97wFABA43oMX5OfTfl6T2IRSsQy7N1+T9XvxddJG4NtYpEIkGlQqANHzaHQfBDD3IJt3Vf/6fZ+0segFvmLc/ZbPY9u6y7N+34WCrX1XVfq5ntRwsufBCLChKGUbvubY0+BG7FAYoAmQ2HlQzzr0BEQoGtDD1WM3ppHnA8CdW2Oo8GkYCAqYjgkgIxIQAyRQrC+JYlxxQVUJVAqoKkWFzmQLpWy9lMv1uL1agUAoNEr08jl7zXRMAVTvLkwKToxIEioVBbQvAqpRZsanH/oup17al+gHvOsQVQgiMuB1gEn4y1zAeBx0IAqqUpB5HltzAQ1YQfakOAVZWXxPpAXsCGmBl2G0traivb3dvH/u3DnU1dVlZLGXHbwSO3AhxS4dkSloXM3oHj4TFNWaPG0tvHhX7gV0F6eUmgMulSoBMNOzTHkHOhwza4ZIqz+jUzLxSBCvr4H6IJtE7va+H79KPGo+v6FCxcOnre1vWx9LaRnx/ouieLHHgem4gGc6XEAH2ydFLg136bJwt8Tqk57vdmIqLuD4sGRzRFQ14CdHrHPs/ISE8QhBWR7urulBMhplUZWCDsVAPEvrKG5gYLTLvF1b2Yo9W67FD554zHysSBwzFwabVu+BdnwS6jNDAABF0eB4Z3qNs/LHQRg92MS9VRmD8WTw2eM6kQX6shLHOk4CeWZcxA1rgG5dcuVzahmP2Z1bY/i7p9gk89NjblzSYPV2jMrAiWGrdU5dIZspLtaDbICZpl1Up4B4JdDhOGizCuJKZYscIluQ5+swHopS9n0SGqjN/zd38HWP7gV2FzfMBp0iTVuzJwlATcHMdcj8RCe9exWUn3eCDkQhTcbxZRzFJ6p3YSQs4unzTtywxtq2qKAM4eg0pubZ+Ixv3bVp9cXz+t4ruHDgcQET04CmUcQSyDjXzRYdvSfx2a+9BYFwFPBtBQA0Fsn4zr88i8ef/yl+8fi/Y2Sc9UZ+8fBj+M2T38Pbb/po1vf0OYG6AhX9QREdEyJUjZU+9Q934NNffTMm3G8xtzWDJiLgbz/5FOoLEhgc64bX7UdpUVXKe/P12IMuLy5vSuC3p9gYPVVZgMrzTG2ndYcgpgmyX219sn/8yL/h4Mln5uW9ivxloFHFto8BwEk1bA5P4qDeIzsWZwapdIxNLueUsziqHMHtYMd1g2ODGWQLgoj6qlY01a7H5uLtuPnoZRA0AimavRbJ77UCxdFJlkDwOYE3t57Drw+NAp1/Dd/FmQTgDNVJcvGMv5srURibHAQwaHv+f3/zZXzjrx/J+lkLBTpiBZeZmGySg8O4Z9xKppS2uMxEiSNxBgnPOsgaQf+0YKvHbipOP286ReCmtdYcKPcK0PQKsQc+1oeBgXKLYAgkkDiie5Lopl65GBH6XRRry1WcHpXQHRAxFiG2rjEnhkRAYDFIhzOKSsXB1ixDUVBOKt7n05UxCeuYjkcEeHVzRqHOC208Dsga6GgMpHoBZEIzgGeyv/vEP+JPA8/hmhM34dcP3bdoMWdeEaGiKIjH46CUmrfTmb089dRTiEajUBQFv//973H06FHs3s3kUDfeeCOefPJJnD59GqFQCD/4wQ9w0003zc+vWQQQhwAoWqrbX1wFZA1wzG6mtrmLi1aQwme2F9JdPBYPQ6MaQBxQRSYxKfFk6Y9tuIoDENYWZn1v8dIKoIxdtNsc29ESaTCf21qlmG1JVpUq+IvdqQNZkZumffy9O6Pwc3Ute5utffh8ksv40x1O9AftAdMr89Dui0gkc8unkAwakgHfouSyZkT/MM9kN6Omogm1zTeaj00MWRnyzWsugXbKKmHQDk1Aa7eOuQE6GYf2it5iyS1CfF1lzt+HlFsJpHo9yFYU2SaJPDsmIZQARnUpUnNx5sTPJQ0ymvVg8NSohKND1n4/NiRB1g31LqpTzPfYWSub55/ZL9snAWEZdCJ9FE0IAaX598qemAZcDlZCMNsVPb+Q9bgy18zNFcE4MdvDrC5V5+RhQKc4yVaFG473rQb87Ni0TAbw4aHTAKX4+XG3kasBABT62DgUDE9C1WZnFJUOJ87tM29vWrUSZL9W4XGxRFkoxhJg8+nTca77KO75ypsQCI4BBRcBhF1LW6rZnH7bNXfjvi/vxyfe82/max599oczmucNj/Wiys3KtBIqwXNtZ3Dw5DP41L+8AaMT/YB/l7ntRXXWvDQYFCGKEuqrVqUNsAEg3G8NaEKl20xEAsBQqTXHa13W4l0UJXON8mqSi1NKceDEH837Xk/BrP82r7kEV+15E2hv2JQng6sP3RUaA+KMFYwlwrbWXSeUEzitWA7Ot7a8DT/5ymH85KtH8Mi3e/CDf/oT/v4j9+K2wtsh6POb1hbI+tvWt1rnyCvHrVruPeWngWNXAsE/wT3D3OJ3Ungd7MeMZAmyL99xE7avf13KPjEwERjO+NqFRrYe2ebjlW6z7VO6IJtSivJpNidPSk6UV0pmItytWOutzknR1iO7cYbWuObnc228lAn7a/j1CcmDyQZYXbaBQ0ltTQ8NWGuTfoflpkJ7wrZ67JFCPfkdt5QeNsn4MjA/o1xN9ktdTyGaCOJM+/FFJXXzWv3/4z/+Ix55hGWdDh8+jL//+7/Hd77zHYyOjuLee+81W3X99Kc/xRe/+EUQQtDU1ISvfvWrqK2tBQCsXr0an/jEJ/DJT34S4XAY11xzDe6+++55/lkLC+IQoI3FITRYTBKNqyCyNqv2XQAgq+lbeImiBFGUoKrKgvbJNuuHHFaQlK19F80jyCaSAOnmeig/Yj2ab47cAKpREIGgukDDZ14XwalREe/cFoMzwxl5w+oEfnfOiePDbEBoLlFwy1q7EdfF9TIcAoWsEbzY7cRHLmY9HlUN+PHR1Itqf58DN65JpDyeFxysVzZfp2aABmVA1kCcS2b7YAPvLF5XyQyaahtvxIB+6M+0/dx8fsvqPdCen7K9XvlNDxyf2mgrk1D+OASoOov9usqcWWyA9VNEsRMIJFAvWEy238UcMPunRZyfENHJ9VFOx6gaEAjwjq1RfPk5NtH87Jgb22vYRMP3T7+ozppg/E7W4/nYkAP90yL6pgTUF2nQJAHaMMu+pjVEIUAoQpGr84qqUkyFAbcTQERhyZlZgJcguufYwuvksIihkICrW+WU+nW+DdDa8rmVVdApfX/7JJakLHHB8WerIX/nDKBQ3DjZj26XHw+RRrzU48Drmtj2hQXMWI1SilA4gKKCskwfkReMINshubC6cSuiQ/Pytiu4wOCUCBIyRSjCTNDmy/QsFJnC5/7tDgTDTBRe0fQWGHaFG7hWdw7JiVuvei+eO/AQDrU9i4GRThxseyaj3PepP/0KX/7eh4H6zwItXwYA/NOPvw2M/Nh6z5LLIIN127isUcY+vTyqf3rmdUmwLw4j7VnW5ES515r/O/2F2EoA0FTzM4/Lh4Qce1XJxfuHz7OkBYBdm67Cv97z6zm/p/KyFYxIV1dD/k0PCAV2hsYB0ZKLUy6JcVI5gRANQS0XIY6pkIZVVBbV2RSTVKNQj1hqn+Q2a8nYsOoiFPhKEAxP4sDJp6EoMiTJgVge7SEJAar8KjonJQyHBWg0fQtir6cAX/vsb1Mef9dnd2JorAfhJTxnzCBbICBl6f04iCSAVLpBh6LQRqKgsmbb9/KUggLdxXvY70MVqMlk+7QuGKvkrkkRPVM8k51j0rjQWvso4wrAHRaepUVp7kw2wOqyf3KU3T40IOEG3dQ2ItuD7gnXSQDNABixZpxbpNpjkUeJ9EG2UOc1zc9ofwTYNT/zdz4w9lHCoSAGdryvu/K2Rf0OeUWEX/jCF3DgwAHb30UXXYSbbrrJ1gv7+9//Pp599lk888wzuO+++7Bnj70P6Rve8AY8/vjjeO655/CFL3xhweqtFwxeCXQqARrlFp9xDRRIuyDPBbzdvkO0z/YuPVOckOfPmToZyfXYAFDqTR9kU0Wz3C8LHDnJQIStJTinnQMA1GjVtiD9+tUJfOzSqE2ykgxCgE9cFkGRW4PbqeHjl0VSmAef0+oDOBYRcHqUDWpPdzjRP81ub62SUaC3wDg0ICFDi+vc4RCYS2Ui9Y3oWHxWvZAXCkaQLYoSqsqYmsBRyMnCIky37/MUopE0AUltI+hwDOrzI9b9QALaPt38ziVA3JueIckGUsEmB79QgCJSBFlXdBiuuQmV4Jku63ponmFyuqpFRk0B2+bggMM8B4zWXQKh2F5jV6Hs4YJuQ91AChygEzGz9VQy3E7W8zpXROLMXMntoKARddbJOBuTPQe5+GBQwKceL8CXn/Pj58dSE1Bnx/gge/YsMtUoMM2OKW88IjT7Ib2t2bz//qEz2BUcw8+Ouc0+50V+a1KeL8n4xNSweR2sa9lhK8dZwWsPogCMBphcPFOCN18cPvW8WfO/afUetGx4n/ncxorU8eQNV1vPP/T0D9K+ZzwRxXd/+QV2J3TYesK33bzZ2nQxFCdLnraUqGjyJmBcTEav7GwgY2wRKhOC1lUSyn0ck604zLpVOhhhahwdxsL+1cRkHzz5rHl758Yr5uU9+XpsYV0RxssZo9uQiKAyFgDAgmxjbaVRDaeUNpSXl8Oxqhj6g6A99iQHPR8Epqw5jI7GQGOZx2xRELFny7UAWE22UT5jK0XKQSVlSMYVjWAiS6/sdDBqs5fqnKEaNT0ISLnLRhwko5uwthNEAxIH7Mz7eIdFfIVKvJCVBDRddVVALBaYZ7L9Ti2rSpQH3ytbGcvCZJekMtnmmj4NNlYwDyMA+FOvA/c87sfbf16EN/64BO2T+nogcgpB34CZPdGOT5pKDGF1gbX+4OTiY3wbrzrrHNL6Fr+UhGoU0FV0Y9TqynL9cg6yV6DDLYJEVVvvOhpX5tROQFE54zPJnnRwmkH2QjLZaYLsDAMB7Q6bQaWwpiCnxAIhBI9QqxZbPZz/ormpWMMP3zaFl77Rj6016YMfgwUDgBe6nSks9nt2xHCR3pIslBDQNjpHltkhsDKBpCCbRhVogQTIMpGKU2r1yK4ua4ColySMRPWBUJOBGFMabFy1GzjLLQj2lJvntvr7AbPGVn2GY7Evr5zVbyUV9rpsI8heV2Yd36c7rOuhqSR7wCcKwNs3W9fJz4+5MRwiZhZ5Q4UKf1JOb0+9dc4YknHiFoG4Bm08/TXncgDTEcZQ54JwFIjJgFOg7HyZJZPNL4TmEmQfHJCg6k04f3XCldIv8+wYZ3o2FyY7KJtGKaTInjwUd5ZBvK6G3Qbw133HEOuL4fAg++wiP9crOzg+++/A4cS5/ebtzWtWpOKvdXhc7DpOKIBjnpjszr428/bt138YZ8bZGFfg1FBflJqMvWz7jSgrZvPuvqO/x7Bep83j4T/ea7qDt5RYDFZZwy1407UfwIfe/kX8+Z89YDo93B7owep/P4C/6zkCUIrB6ezzHNUoCkNMDjvg9GJjtYoKLsk+GhZAmvTxRrOzpcbC/tXEZB9q44Psq+b8fpRSy1ncJwGlTnRUWOPbToXtWyUUM2XJnWoHwjSM7du3Q2ixgqfkXuUpaykK0BmCmou3Xm/e3neMte00GFhgZiYbACpzND9LB0MyHk9E0/ZzXnBMxAFFr2fOIBU38FjM8q2JPdnLgjcd4R5rfaBWeW37sFCcgktk254elTAa1p3Fs5S8JYOXi6sTSaQH75ytM9lV5Y3mY4dOPZfxfR0iK9UEgHBCwNEhB8ajScdw/CFIHpdVl84tdciqAiugT6rJtn13fc6nA1HbflsUTFtrj55IFwCgqrgZa1dtWtSvsRJkzwJEIKCE2gx9EFIymn/lAn6g4WuyAcDpXPggO2QG2TXmYyUZ5OK2eux1qW6LmXBKPIOQxiYI7cQkY4DzhN9JUezP/LrLGq0a2xe6HTYWe1u1jO01CnZzQdX+vjmurCQCImu2zD4A0GkZJKYC7uUhFQ9Mj5oBWo0uFdco0GdImGLnWcsJsOBDO21JxaVrayBcUsHuJDQoD/WCTiegvqxnBx0CxCvyZ7EBVvtnoF7ggmyOPQ1y7blmYrIBVlpQpp+7L/Q48Zs26zN4qbiBlhLNXFAeHZIQ0+cy4hZBh2KgaeQOLifrrZur+VkkDqgqICoUVFFnrXCIxXKX9GVD24g1xgQTAh4+bWd0Dbm4R6KoL5y93INyDEu6HqPiDbUQtrLaa6+m4u96DuPBA2zfFHLy8Onw/DDZvOnZSpC9Ao+bXcOqCkjzNFR39lk1tAWl2zGlj18bKtS0klpRlHDLlay9l0Y1PPrsD23PR2Mh/OzR/weAJav/5n1fMserqLQGf/nOL+Otr/9L9IWssq3tfYMgFLg4NIa908Pon4HJnhxIwKGz3tOFXrgl5slizKVjEQFCExfocZJmg8mWlfjSBEzzDFVVcPg08ycp8pdhVcPmOb8nHYsDukGq0OwHIQTHi6wgexdl5ZSeYcEMZk4qJwEA27ZtswXZvJycyhq0Y5NIhtabXTJ+0eZrzJa1RpA9WyYbyG5+lg42h/MlSM5ovLN4ZXYl5qHgPpyQTwAA3FOC3auGq9N21blt5Vwel8ckBfgANtd6bAAAz2SPW6+jlIIOWJ9lMNk7NuxFoZ6cfunw41nbpl3THLDdL3Zr2Fwl49LqfqD9I0DPF+F2eUEaU9cZQqvfKlfj5OITSYG6UK9vE1PNnuSLBb4ee1hjCco9a2+atdp4tlgJsmcJ4pFAx2LMQZpS0JAyawkokGR8lsxkS2wBvLA12Xrg7LCCpbIMTLYtyF6TvScjD8Ep4iX5RXYnrs1o0DEbFLkptlWzKGkgKOI7+60B9N3b2f7bXTd/QTYhhM2JyUx2IM7KB5aBqzgA9Kepxx4NC4jrTpUkds58fmvTxaa0jVS4QMpckG6qM2twtGOTkH/UYWaCxcsqbBnXfJDMZBuLtNVlCgjs51+BU8uoruDhlIC3cmz2r09an8EbfpjfgVhstqwSHNGZVBQ4mGlXIPU1LgeTf+dqfhaO6n27ZQ1QMAcmm1/czk+QDbB9FNeTC4EYwXCIRRxrypT5Mz1L06eSCATSnc2ALi2rlmO47UAbTg8SG5M9HZyvIJszPVu9J8uWK3gtwCESKEZSbS5SNA4dfSw4cjk9GNNazMcvlQKQf9IB+YfnIf+8E/L93VAe7oXyRD/eUHcHBIFdc48/92Mz2QgAv3nye5gKMSXHVXvejNb6jVitK30iMsGQHkAbJR6EUvimrcX/nw2fw/g0spZGdZ+zt9kDmCrIGG/HIgJIsxUYqU8PQutlQZnNYTy++LLQ+caZzsNmcLJj4955ae3HB8ZG0HJMLMKUXhq4TVgPESIKx6xk5wn5OHtu2zZ2TLzs+GpdYVA9IaKdmmIBDOzy3JmY7EJ/CTbq41/P4DkMjHTmzWTb23jll6Hie3lHYovfPzsX0zMA0DQNIxMDuD/2K/Mxo+MKALh1Z3ENQGmzy7YP3S4vWtKQAjnXYyNJLs4x2dpprj660s1aZoH5PFy1+00AmErg+YOZndtP7f88cHAzcOQyfPXy5/Drd0zhmzeH8JaWQ8DgdwAtBrfTAyEpyCY1HhCfIwOTbR9D7ZLxxTU/45n+EY2VOe5ee/OifgdgJciePbwSaFgBQjKzt5+D6RkAyJxc3CEl1WQ7WaA415rsqMza8qRTbaSryU7HZNOIYg7gpNoDUph7Pb3T6cEzccuxU5uFZDwX8JJxg0UwWGyAZejX6osUo5XXnMEF2VTRQMcSIJ7lwWIDdtOzWj3I5vs21hey/VHgK8EaeZUpsxHWM6UC8UqQbq03t6ed+qJBIhCvss6ZfMEH2fViPWSFneMeB9CY1OaiqUTNWWZ167o4Cpz21/udmo0h57EnjbqBSAJAKbSxVFdRSSRQtdyZ7IkgM1aiCQ1E1bLWgGVDNA9zmkyYihH0JclHJ6MCHj/LFnjzVY/NPowLsgvTJ2KIU4Tz7tWIedlYsikSQOjnPSjyzW9NdjQWQnsPW7g2161Hga94zu+5ggsfPg/gmyez2Vg8Yo61TTVrcXrMOuf3HjgL7fAEtGOT0A6MQ/vTKNRnh6H+YRDen4/jDr12e3J6BC8cZKVVofAUfvm7bwEABCLgvbd9FgCwmuvAcE5XnRh9s2vUKATFmuSr5RhuHOsz5arpMNnDtc5rsAI9oy57MipALXND2MJUJ4hrkL93Dtpw1Ga29GqQjPNS8V3zIBUHAI2roxZ02f1IRMRh3XfCJ/iwXlqP0klrX55UGHu6detWEEIsJUFEMVt8aYesMhrxxjpzDWokQLLhkm03mLf3Hf1DSoA4E6rmxGRzQXYWtnXBEOSSSmmSvwYCwVHIShyvyPvRqzIHeNoZgtYdAtUoSqbZPht0elFfDpt5nNvlRUua8rZMPbLTwiMCen9pg8mmGoX6mFVSIr6+1vaS6y57m3n7yT/9EukwHZrEEy/8DIicAoL70HbmD+Zz8YS13nG7vFaZiA5hFTt2ZpCtRSGB/W5eLg4kJX4GljDIVodRWVaP1uqti/odgJUge9Ygei0uDcosk5iYW5Btq8kW7Re9QzfnScgxM4OZLzQKfOKxAnzk4ULcdzh1RRFOIxdP5y6unZu2zA9mcBVPhtPhwnHlGCY0tmDWTk3ZzePmCZc3pTqGGyy2AV4yPudWXpLAlAwGgjJLwCyTemzA3r7LYLL7OLfLN1xyOT5wx9/jy5/6BcTz1r4ygmwAEHaV2dgMgLVn47OteaPYaba9qxPrkZCtY7e2zH5uNGfoLZkOHgfwpo32CHhnbWZWdmetDElgJzavbiA+B+uZHU8/MY4G6IzX5NA4Rf8oUOAFGzNy/hWpmA/js1Oj1nm5gzOB+8UJN2TVXo89Z2fxQG6LGVLkhPvPVyGus0Zb+ocx3r4BEPQ+vaG512Sf7jxkmtKsSMVXYKDIR1Domx8Wu3vgjDketNRvNBUjJUoMnpHsi8zX17/RvP3w0/8LAPj1E99BKMLkqddffifqq1cDgK3N4blxEREZ6NWTpjudqYHunWMdGBzNPH5qHLNX12qNf3xd9nhEgPTOFpBWK9iTv3sWVYKlfluSgGmecbDtGfP2zo1Xzst7mqZnBCANPsQUYDou4CBn7niJ4zKUhth826/2I0ADaKxZg8JCts7i517aFQKNKJZ0uUCCsLbQCmomEmwNkgHaYBSXNVxr3n/52O/tcvEc5pbqudRk8wZdS3DO2PaNP/M6bWScmZdRUNwftRzm1WeGQMfjcOot9wZ8PngcqUnw5jRBdqYe2elABGJ+P2WcfWft4LhZt08afGa5lYENrbtQV8V6pR85/QJGJvqRjEef/aFN2n7k9AvmbVuyxekFKXfbyh6JHmTzPdCVcBcAYCSoIRLl/HyWCZM9qo1i765bF10qDqwE2XMCcQrQRuOMnVLorCWgQHJNdjKTzfXKTsyu5VTvlIDzeiukfb2pQZE50DmtCTOdA6J2zpKKkzX5BdkuhxsaNDyX0DPFKoV2PJDXe+SCci/FJq5VCs9iG9gzn5JxiYCGOXfPaRlQtTnV6M83BkY5JlsfgHkme12lG2+/6aNY17zDqsd2CCCtVsaZCATS7Y2Wwd8cWWzjPUk5O79rhBpoinWcklnnfGRWAPCmDXHTQRNIX49twOOwnH+HQiKmYvqPzNIzu7IYaOsCekdSnjIRi1McaadQNKDQRzIG67liPpjsthFrwrx1XRwX17MxZTQs4MnzTpzhmOxMzH+u4OXi6WqyebiafDh1Sat5P9xZAOw+D9R9ChPBuctQean4SpC9goUAX49dX7sVHZPsWrqaWkoM4bIKOD67GY5PbLA57NcItWjQg+ijp1/C/v37cf8T3wHA6rbf9YZ7zG1Xl1rjZPuEhPPjkml6tolYi9yEi835BaoC7/NW7SSPyShBUZBjr2qt9QbfxmssQkAcAhzvW20Fc1My3tx7A4oICw4vdIfxaCyEtvMHAAB1Va2oKm+Y83vSuGoFRTUeEJdoqgoOc2qdm923QKTscUMqvn7VTvN5gQuyta4Qq8U2jEe3l4KIBELDzJJx7dw05K+fRNVPYriklDmnHzvzEianLAdmj3PmuaXQRc35dbbGZ8DSyMXBrdeIL/P6b3i817z9x8QfMa6xZK92IoDI4YD5XLCY7fcUuXhSkO2WKCp8uQfZgCUZVydV0LgK5QmuFdyt9SmBIyEE11/K2GxKKZ76k739nKwk8Nunvmd77GT7ftPzKfk3EIFYngAigaCvCbeuuwxX73kze1yXjCtw4K7/cxV+8vDX2VqlyGGSTbQ/MmuScDbga7JHtGHs3fWGRftsHssnCrgQ4ZVApxPAVAIUqX2S84G9Jtt+0Tsla9KLxWZXl83XYKaT9lg12SxoKnRpcKRRO5v12CKB0OpP3SALDJf0ZznJuHp4flyDk3HDanaBCYTivTtS99n6CtWUE8+5lZdDYCUDisZcREdjy6Y3tgFDwkgIQbXuQMkz2YbrLR2MMldGAMIqv60nJAAItV5Ib24EKXex/zMETrnAkIxLREJhwjqnklnUXEzPeBS5Kd6yiR17r4Pi4vrMQTZgdy7v0xMQRCCges/s5AnC7yVwSMChsxTT4dTJg1KKti6KvlGgzlhLRWZvegZYxmeCIJoKl3zBjwUbKxXctc3uxm4w2T6nhtqCufW4s9VkF82czNpxpbVIbIyHWPlK61fxLL6Onx6z6sZnA3uQfcns32gFK8iAzn7LWVwqvhSa7uB/ccIKssVNxRAq3RDqfRA2F5uP07G4rZ3XBz/4QVN+fdPed6Gmosl8rsJHUaS3omwfF3GG62vfrFrB1fA1zYjrBlcNJwdBx1OThceHJTQk2GuibodZ3wnA1sbLCAyJR4LjA2vMcbso7seXCv4JXuK94OXiR8+8BFVlg8x8SMWPD0k4dThmqv9II5vfRvR9OelwYbSQ7Uc3sdZ5hlR8Q+su8zHS4DXbKdGuEFROKi7sLNO3sYLjTJJx9eVR9n0Uig94PwiABV4HTjxlbpMLk816ZbPzw+iVnSu87qWVi5vKQwImyc6AEc7pX4GMh2K/1d8AEJ+2gl1FN09LDlBLPdRsGQsw07N8bXpMpaAGKE8MArrhsrChyJRuJ+PaS+8wbz/5p1/a1i7PvfIgxgNDtu0TcsxMLvG/weVk87F4Sz2EbSWQ3t5sdpFxOlz4/Ie+h+984Y+oLLD2YVD24N7f/DO+/N0PgRACUq/P6WHF1mpuoaFN6EkDGoNU6GZdc5YAK0H2XOAWQSIqtKCMnItFM0BWrcWoI8n4jGey4/HZ1WXzEtFQQkAwbv++yTXZ6Qym6FgMmNB73jb7QVz5BZKGS/pZ9Sy0EvZa2h5kiYp5xs1rE/jbq0L46o0hbK1OXZmLArCrbp5aeTkEUFkF4hoQVhiT7V2eQXZFaZ3ZG9hoa1Xk0lDk1o1UOFdxXirOQ7ysEs6/3gLx4op5+W58XXaZYkmfVpWqprstgLTSq5nwZzti+LurQ/jGzUGUZenDDsDmot3L1SyTAgfrPTqaeu1VlwLj08DhsxSKYn//gTHGdFeVAKJeV0VjCog4+7HCYLLdLu+sknqqBpzWg+gKn4YKH8XGStWUjfcHRdMJdW1Z7jXwmWC6i3vEnMYLR6nDlKatVUIA1XuxCkX4wUEPvvzs7Nh7RVFwoncMIE6UFVebfeJXsIL5BM9kB8X15u2WSd0BWiA22S/xSoBXZ3rG47jh8jtND5bpaTYnOyQX7rr1U7bPIcSqyw7EBPyph5N4RyxW2r+xAA+WsaSqqFEov0uVjrb1AiV6kl8ts5eS8axbcnsexwfXsHIfAKuk1fg7/xcQDV/YQfYhW3/suUnFDw9I+NTjfjz/nBVYGPXYfH38RH1qoGQE2etbLSabOEWQOr1X+XDM9EUhFS4zkOGDbJrGYZwqmm2Or46U43LH6wDY6+lzqckGrCBbVgkC0dwnC57JXlK5uFfKak7Lt9Mr8BXj8fhjiFA90a1Y14azLn2QTQhsbHZe9djmB3NtvJ7R+3QTQLy5LuNLaiqazERy98AZtPccA8AS//f//jvmdjdf8W7z9pFTzFGfl5Eb54FQ7YHj3asg7rSUFwZWN27BNTuspDVxsu916vxB9lpOMq7k4BUwH6CUmkH2qDaKy3feMi8GhrPBSpA9BxitvBDXUhi/fJFNLs4zVrNlsk8lBZGDSS09IrEgIBYCIrsg0pme2VzF86zHBmAGdwAQW68nEiigHk1tQTFXEAJc2SKbTuPpwEvGX5mLZFwSAJkCCRU0KIPEtWXTugtgJhfBcACAVY8dka1FE9+7NZcge75BuDZe5ao1iLsk1vYGAKr9Kord+UuNCAGuaJaxqnTmya2Ba63Ry7H8xC2CCATqqYBNgsTen6ChAmjvB870Wt8vGqc42s7uF3j1AFulzL9hDmOFMYnPVireMSkiprDvY8jjAeCdW1PHlbmanlFKTeOzXBUPhBDT7bUoFkdp2zXAyE8Byr7LCz1OmzFbrvjen6YR33YU2P4nbFpz6ZLUZq3g1Q8jyC4uKEfnNBs/S+UYfFPs+iKN3pRkEynX58VAAj5HAa65+Hbb82+4+s9QUWo3NwLs5mdHh9j85RAoPAE9yHaLKK8U8EBFs+lirR2esJlwAcBYl5Xk9tba1TEVXGJyNNnUqMQFxwfXIuFk48gWx1bUHJwnB7klwqFTLMgWiIDtG143p/f62XE3KAjWR605lejmZSOcmlBeZV9LTWISQ9oQnA43Whs22p7jJeOmN86OMnM8I2Uuc+2hpZGLa+eCjAzg8D7fn0OCvS451/ml2m+dg/mYn/m4IHtJSgwi7JwlM/jmjExYQfY1l7wVYRrG72KP27aJEwGlDWx+s9czs33IO4wnm7nmAlLAfUfjmO8qg1CTPRFyHcdm/+ElZoB24tzLONt9FACwpmkr3qMbKQLA4VMvpP6GHJMtPIFRVs3UF0YZAG9+9psnVYTmn1NLRUSFqLLzcVQbwd6Lbl2ED02PlSB7jiAeiTGXcw2yeeOzZCbbYbWhmg2THZGBrkn7xJ48IIaj0zZn8TKvfTCgUQXq/jHz/myCbJfDmoBDa6zHF8plfCbMV79sIhIQypyj6UQCVMCyWsSncxbng0ijbyONqaBdunN8ucuslV5oGC1jAKBSs7Pj79lwFuscT2NN9J/x7z/+DP7fj/S/+z6LX/7yl7Ou8dl//Cn84vF/t0nV+GRD31TSgrLMBcRVqKemmNkhB6eDoKwIONoODI4xI7QTHRSD40BNObdhQmVdCObg3WAw2bOvx7ZLxQ1sr1GwocKekFo3R9MzRBSzzRtykIobIFXWeLdRdABn3g1X7+fMx35+PL/zMq4Aj3boho7+7ahovC2v169gBblgcnoUk9PMoKG5foOpHtsT5+qxV6fOm2aQDcZm85Jxt9OLd9z88bSft6Ys9fpcU5Qw5aSkwgVJJCgsFvDTCsvrQHmk1xw3x8IEwpiVYHNU26+tsjRycR5CpRttlw9DpuwzGzpKFqwEbKExNjmIrv7TAIC1LTvg984+ydwxIeLQgAOgFOt04zrVLZrHmt+XBeuLEKWW+uBY3AqCkksHSVNqiZ6402p1SAROnjslp6gEtZMcoaEHmDVCDW5y3WI+LAhiipoyE6pmaX7mXcIWXlTWrETDTEG2zmQLgogbLns7AOC3sd9CBZeQd/nQUMyup1gitdf45irrOt1cmf+cmmIsKxFIN2ZmsQ1cufs2OPT2v0/vewCqquDXT3zbfP4tN3wI5SU1pg/E6c6DiMZCdibbmb2HuAE+XhBcrAtNPBGFqio2Jrt6OjRnD6RcEB+2ElsBYQpb11624J+ZCStB9lzhlVgU65pPJtt+4TvnyGSfGbVMUQwkM9nhyHRS+y4reKETccjfOm325UOx05adyhVOPsj2xUBqdelTT5hJ0RcZJR5qLlTaJyRMzKGVF6UUCCmgE3EmAVxGSBdk2+ux2YShnZuGUVi1WCw2YJeLV9Mq23M/+eUHcebp6/H8M1/Aw3+81/x76Ol78dd//dc43PZ83p83HhjC3/37u/C9X30R9//Bkk5V+TQ4RPb7+SQE/z3pdAJqWwA0Yp8si/2spdehcxTn+oBT3UBVKSDyUjSZsqBzljXZlFIryJ61s7j1u3hzQEJgq80G5sH0jHcWz6N2n3AL/VYXWwDEe/4LJW42kT/f5UhJgmTDM51OxDROsua/POfXrmAFuYKXilfV7kUgxs7RyxSudjZNDSWfzKRjMaxt3o6brrgLDocDH37nl1BSVJn281anUefscoWt+l99XK0t0PB4aT369fpK2hGC/PU2qC+PYn+ngHqOueJVRQBQ7kkvF+eh1bnwnYi1eFd+2Q1tKLXt4XLHobbnzNtzrce+/yRbs1XJMZTopYB9hYWmNHmEC7KrikQcV46b9w2p+LqWHSnvKyR19yCNvpRkuFDP12Vbx5ZqFNrJALvjEOB47yrzuXd67oKPsNflU4o06yB7KeXinLP4TEy2IRevKKnFmqZtKC4oxzgdw/OKte7o8fhRqe+HdCzwlS0yPnpJBJ/dG05bujgj/PagVHxdVdZOHQYKfMW4dPvrAQCB6VE8/Mz/4qUjjIUvK67GlXo/7e0b9gIAVFXB8XP7EI/bW3jlAt4gkbisDkWRWAgocyGqxzSrosG0a6v5Rvuxw+Ztb00pRHHp1uSv6SD7n39Ecdu/SPjLA9UIxGYXYBGHAKG5IO/65GTINuOz+a3J5uuxDQwG7d83HA2mbd+l9YSQ+PdToMP6AtwrwfGu1qx1LJlQUWpl3wZGOiDssDKw6pElYrN5yfhcWnkRAm0qwdi7CyDI5p3FG3UGl5eKk3X5KxVmC+KRMAVWilBDrERPJBq0mVWlw4mz2Z9Ph+6Bs6Zy5HTHIfNxUQDqdKOvgaCQYoZHCAGp9ICOx6GenkpxCq8tBwbHgOPnKUQR8Hvs1whNqCDK7JlsWUmYpjyzZbJP6ky2U6QpEvqL62Uz6VTtV1GZpwtqMvI1PTMgcEx2o9iov1kcN61iwQoFwa9O5MZmUwr89pRdAtsTrc+w9QpWMHt09lmmZ2KxJTVeN6WzhyJJaYEIJDHZev/jT//5N3HmzBncevV7Mn5ebaEGr8Ou5NnAOYtbQbYKlQj4fpUlH6ODUSi/7sblPz6Aq6cGzceFCvt15ZSAYj25NRpOP2553H78Lv44/hD/PXtA1qDc1w4am1uSbrFh64+9afb12OMRgqc62Bpue8Jijl8iJQjpXjgGk+0SKQpdFC/gRQDMpGmf/DIAu+mZAVLsNOvgATuLbW7DO4xzNbC0JwwE2fgurC2E0FoAQX99oVCIt7kZU5vP3FJt65Wd+xrYZzM+W1y5uK19V5YgOxoLIRhmx6+yrA6CIGCHHpD+PPwL01Cwu7LENDOztdjU96NAgNs2xHHD6tnppG1MtleEeE3uHV14yfi3f/5/TQXLbde+31QrGL8JYHXZ9prs3M4F3sNJk+wt/WIKwTn9eJcrcYwNL/y40HfGSnjWrl274J+XDa/pILt7iOJIl4CALNpqZJYCvFzckSQRcnAM8GyY7OR6bCANkx2dBhzWxVHqoVCPTUL+rzOA7sRIKlxwfmx9SjY1VzTXWUYwHX2nIG63Jgjt0MSi2vsb2DNfknGjb7pG52RsNZ8IJYBvvuTFi6MbYPTdqksjF28oUplRhBFkSySja+VCYVRg7UOKSYnZO/1UxyFouvHV1XvejG///dP49t8/jX/82E/M13VwC9tcMTFlOWvyCQjAYvUVjaTNzBOB1QzT4Si0M9OgEQU0yv6EuIq6QhWxiIaa1LUPOz/o7EsJ8u1jmozJKDGTa2vK1JTuAYQA/3BNCH+2I4ovXReas+mZIVsFsvfITgaptoLsGs1aUFxa2WUGFb9vd2I8B+XJqVER58btC6mTIw4kLqz1/wouAPBMdkhitbQViSj8IRY4kyZfWu8WUmaXi+cKgdhbeQFAk2yNEWaQrRs67iusxInXrwdpssYOt6KiUm/dA5EApakdCwwp6HgkvYO00fP4v8LfwpibBSV0NA7lF51LMqfPBpRSHNaDbLfLhw2rLpr1ez14ygVFY2PTDU6LPDjpLsYfzjtBqcVkV/o1EAIcc5zAJ6Y+hr+c+guMaawsb13LztQ3B1eq5xAgbEudaIQMDuPaiYC1je5qL91YZyZ93+h+EyqEypzZS2D2TLbHY60hF72FV45MttEjG4BplLlz01UAgF6nhI+3XozPNe/CyCqrJiydadhcQeq8gI9N1tItdXkpJXdvuRaFfnaOGAl6l9ODW698r7nNtnWWsuvIqeeT3MVzk4uXcky2Ilolf+FYEGfHJbRzSRVhYGHNzxJyHOFBSz3UtHHzgn7eTHhNB9mNVdYibSS8tEZVtppsMbkme/ZMNqUWk13gsjLfQ1yQTSlNqcle3dYP5YfnzZpK0uqH46Mb5lSn21JvmXh09Z8CKXGB6P336EgM6u8HoDw1COXxfigP9UJ5sAda18JmOTdUqPDrrbwOzqWVl4OATssgy8jw7P6TbjxyxoVzwruA6j8HANRUNgNgfdMBQBIoqgs00KGY2V6BrCpY9BZkY6K1GNG6Q1CPT8L1u0l8u+i/8duSh/B28W1Y07QVa5q2YvfW68zSA35hmyv49hVDYz1QNSvispufpR8eiSiAlLuh9YWh7BuF8rL1Jx0cRVXPBIic5kRKaMAcAtdYmix5PshUj82j0k/xru0xtJTMjcUG9H7xOvJq9VZoOYyXy5YRnhwfwa3r2PgnawQPtM08FtlY7ASrl02oJK26ZwUrmAuM9l2EEPRHWcJ6Wzh7PTZgL5fJt2yKNz9zCBTFIUvqycvFDRwvK4fzoxvg+MQGTGysQIJwjuHVnrQKNcNhXKXpHaQN6W8CCTxU8wezJZJ2PAD12eG8fs9SoXvgDMan2Hfduu7SnGuSkxFTgIfPsDFHJBRrjK4tAM56CvHwaReCCWKaTxr71u304Jx6FsMa+w5F/jJbyzYe0i11EF9fC8f716TW6wJAidPqTdzHehNTSqGd0Fl1AggbWTkYKXVBfB0rR3ASJ97jeW9ec0uxm8Ip5t8rm6/JXmy5eK5M9jBnelZZytRPu/QgG+5V6HX7ccJXavNy4QNUz3wF2W4Rrs9tQsvPmiBdll9HF4fktHpZ67jh8jtR6Le6uBQVlGFVAwtEz/Ucw9ikpWzJNVHgFFnbXwCIE+u9I9Eg2kZEnPVY5YflY9Nza5k7Aw6feg4lWrF531E+O9XffOE1HmRbt9OZeiwmsrmL8zXZ+QbZgyHBrA3bUKGabpBDIUsOaxgUGEF2SyyI6me7zfcQdpXB8cG1c641riytMyfkzn4WHIm8ZPwPg1Af74f61CDU54ahPj8C+fvnmFHFAkEUgJ21Viuv7sAszwOnCITkGY00FhOn+UCi5V9RUrYFHpcPqgb06y2qags0SMLSuIrzGHdYsjrlf9qh3Hceawbr0Sg2wUGcqD9bYhqOiYKIplomARoY7kQ8kV/933jAWvjJSgJjE1a/y4YMbbySQRwCSJWbOY+7RRCPZP7R8XjamkQaU5B3k0wOPJPtceWvJuGD7E2zMGDJF5RjspFPTTbnMO5PeOABm+inQ5O4fVMMDoEt6h4+7UIokXl/TkQInuvSP1ceA7r/znzuyODyuU5XcOFD0zR0958BAFRXrkdngM3hl8pckJ1BHUS8khmYGnLxXMEH2S0lKggXpBsy9NpCa5sBPbku1Pvw6w3r8Z61e/GDqjWYWF0K6c2NaT+jPIvDOGAx2QAwoA5AekeLeV99rC+ty/Vyw8GTz5i351KP/Yd2J4Jxto+ua4pCHGRB17DXi7DoQM+UiKfOW2OhGWQnBTPrW3dmVDwRnwPS9bWZzydCIBiS8bACTCZAR2LmuUVa/CA+a40pXlsD1cWO8TWua9Eqrs759xJiScaHQwJyFS7wniKLz2RzyV9/ZvXiyHivebuyjAXZlaV1zCjMaZU+8m3u7DXZ8xfckQIH3GtSVSa54HrdsM3A7dd9MGWbbesZm00pxemOg+bj+SQKDMVLjBabj7EgW0Kb13psfWgKwwsYbx09/SIqBZY4ooTmZbq6EFgJsnWMLHGQba/JTgqynbN3Fz/Fs1cVCmoKrKz0mD5hhqNGj2xWk31NwMpkiVdWQbqzGWSWZk08CCFoqdsAgLk2hqNBJnfK1lM6qtrqihYCvIty+8TsFt/ELTITkkVmgLOhK8B9F6kYauvXAbBzPaGyCdw0PWvn2rOtW/wge8IZyPo8oYB2zArEWxrYeaRRDT2DZ/P6LJ7JBoCBUUsyXs8x2X0zGHQQUbCCayPYdosgXgm0N5xSs42IOqfryFbvNQu5ON8LfmPFIgTZfE12cX4THS8ZbxSZVG8qNI5yL8V1em1bRCZ4+FTmhcdjZy3ZJob+B5iwWq8cXgmyVzCPGBztMqWi5Q23QKMEoBSbQvqY5RBsMu1k8G28qJJ7Upm/jjdVKqCj+vqgyGH6xNT4NRDdDW1ATxxSCrzc50BQcuKhyiYU/XlrxjIw3tRoLM06ycMF2dFYCOLGYojX6v4uGqAdmf8WnfONg23PmLdn2x9bo0w9ZuBtpZOmkSgarWP/k6PWNpVZguy5gNTbJeN2qXiJfVuPBMcNlk/FbdIb8/osw/QrrpKcvY1EQTQZ88hSMtlZiCNeLm4E2YAuGXdZLfX4JFR0Fu2vFhrrWnZg69pLAbCAu6FmTco2fF22UaInEMF0J88FRhsvDRIgMfIspAfZ4w43hnX14droFHoXsAFB2/kDqDCC7AIJRFza2O41HWQ3cUF2PlKXhQDPZCdLlebiLs4vrDdwQTZg1WWbch1HFQRKcaVRsyoSiNfUzGs7qpb6Debtrv5TID4Jzo9vhPT2Zkh3tUJ632o4PrgW4nWWCdtsJePaSMwmWc0E3gCqfXz2QfJSX8w8wolUdca0+xq81OOwyaAbdKkTHdSZV69oa6m1WOj1DmJAZYyyVuVEcIeILwT/Dp+ZvsfcRj1qsUJGsgYAOvtO5/VZE1N2CWP/MB9kc0x2Hg7WNhQ6QKdlG5tNKQWNqvPSvgvIXy6uaMDZMbagqParKPXmSDnMBXr5AZxC3n3jic38jMkmp0Ls+L99c8wMGh444UY8jZ+MolmyTVAVGPxvINGHKh8LQk6PSojOPDSsYAU5gS9b8ZReAgColqMoiOrsYbMva4LNLMOirJtHrqgv0vDxS8O4aW0c71wTsvr/chJ0p2QFAgaT3RUQMKwbVW2tVuDNkgPjmbqxNEy22+mFoMvOI3rPY/ESq06Vji5+55B8QCnFibPMbKy0qNLmHZMP9vU60KcnMbZXy6ibshLX1Ru9poGcoSwEuCDbaR/P16cxPcsHhKvLpr0RW5AtbipO2V66vApU/1rNrtaU57Oheo4O40sZZGeryR7mmGyjJhsAdm68AnBaQTbfvsreJ3t5BNmEEHzp4z/F//s/j+HT7/t/abfZsvYy8xo24HJ68lr729r+6vtnMChgSld2GGy2m2qY7lyYMUFRZHR1taFYYJ8lluZWU76QWD5RwRKgrgIghE0+o8upJjuJyc5Wk32u+yi++cN70Hb+QNr3NWoPCShCI0/idNuvzefMINuoG3JWY1NkEmUK+wxhXeGMLQ7yRbMtONJr2MpcEHeXQ9xRCnFTMXO+5FwzaWd+QTbVKGIPdkD+yglE/umQXbaaBrzkrn1i+TDRc0E3z2LHusyb//4nrxlsAbrpWVgB9GQEqc5vYJ03OAg+NPUBvGXiTQi/vwIvVh/CK/J+tCknEfKxAZl2hsy+nwaTDVi1kLliImAPsnnzs0IXRZFeWzQTk50JRCCpbLZM9R7Zsx9yY7zxWZ5Z8vMTIuK6eiFTPfZ8glJqXnekyJn3OSVwbbyMIHs6yNLf9UUaXtfEzteJqIAHXkxl4F7sdpgth5zBPwDxHvg8hbiojo33ikZMp/UVrGCu6Og7ad5WPcx7ZGsO9dgG0jmM54o3rE/gnssjKAqm1mMbMCTj03EBoTjBvl5rjXFJQ/ZsU7mtV3bqdUwIMdnsqB5ko8gJ6CZvdHh5t/OKJ6JmcqChZs2s579fn7SO4Vs3x0F7rIBLavLhprWpxzWTXHxdc2r7rnwgcA7jWlvAVAOSWo/NaM8AkQSrvjuY3/xQ5bfWT/kE2T4jyI7NjkSZNXI1PuNrssssefi2da8DXNb9cq+GSDSIZ/b/1lxLOCRnyjp+KeHzFGDT6j0ZW1n5vYVY27zd9li+cvcyT2qQ3TVtqSaidZz5WffCHPPzvSdQrFpjLSmZnbfCfOI1HWQ7JIIqXRm79O7inFw8pSY7s7v41+79BB555j587QcfS3nPuAKc15nZhiIV//Y/78OJ4z83nzeCbFYTIwKOCovFBiDsKMN8g2eyO/szM5Ckwm3KyLXuUM4upVTWoPy0A+R5tsCRVBH9zxzN+ppiNzUlcecnxJzripYzbEF2/zeBiScAMCbiJ8e4AKZIBR3k+qTWLE321eFwQoWKGGJQVBkn2q3WXMoGPRvJScb5ZE2XzmRr56YhP9Cd1aGXUmqryQaAgdEu232DzR6PCgjPruuGyWbTEf16TaiMXl0iJttmelaRn7U2DclIfOsUEv952iYBz4qYyozegFnVRPFMdlMSkw0Ab99ijYP//Wghuift4/eDnIw80f1vANg5s73GWmAdHlw+i6AVXNjgmewpjS0wt4UtmfRM3RqSe2XPBjxjnBJkcwq2gaCAl7lOGhfXzxBke7Mz2YBVl22wkkQgZs9tOhHPSwK/2DDL5QD4PbMrlWobEXF0iO3ThiIVe+ply9nbIYBUu3HL2oSpwDGQLsiuq2q1GVPNBqTQaY675hwEQEjDYpuvMYLskAyazkY+A6psbbzyNz+LxIKL6kJvk4v7szHZLMgu9Jfa5lu/txDuAl1yTRV85Ttvx1s+vh7/+J33Y3KamWsW+uZ2/JYC2znJOJB/Ir+MV8fppaeGASQANG2z5vSiIeuaSwadTkD+RSfUV8by+nzALhUHVoLsZYHaUnZiTMYEJBae4MmIrMZnGfpkx+IRdPSeAAD0DZ+HptknsnPjIlTKFvWtRUE2AcY6zOeNAZE5i1dCosDrpvUAxCmYDpTziXRMdjoQQiA06QxVRM1JckYjCuTvnk2pAUu0z9yDe7XeHzicEDC4xAmX+YCtHjvSBrR/GE6BBVeyagV69UUaKCdrFmqWRl7D1/7Ichwn2/cDYJKr0tdZNUTqUXZsy0uqUVTEzs/O/jbQQALy989Be2kU8i/sbbl4RGIhW5sNgJmn8eAdxvuymJ9lg8Fmaz06my1rzKk/TQufXMHXZOfbwisXZ/FMUJ8aBO0Kg3aGIP+sM6cFGJ3izGXycRY3wDmMN+i9sqdCViHX+goVO2rYZ/SMOnD3/cX43BN+vNzrQPu4iGPDbAyt9ISAwNMAgJb69bYge8X8bAXzBWMuczjcGAj7AEqxPaLPO07B1rs4HWxtvPJkss3X2YJsO1tZwxk6nh4TzfGgsUg1W3xlgk0unsG7xmCyeVbSCLKhzf43LQZ4d2ufN7viwEBUBvb1Svj2fg8+8NsCfOxR63Vv2RgDiSiAnuwldV4QUUB1gWZrGQqkr8lO1x97NhDqU+eI5HpsHmaQTWG2bc0FvFw8H7LKkItTSm0qrQWHEWRLhJUypYGqKqbLdmVpXeoGehCJxCAOnHgSsmKd3wW+Yvz5W/92Xr/yYmBHUpCda/suA3wyDi62f4ZlVssuEIr1mx0I60x6Y2AqY2JF+U0vtFfGofyiK+9S0VMdB1AlWl2S8mkdulC48KOJOaKu1DrQS2l+xhuf5VqT3TN41jxRNU1FMBKwvY5vU1Pr0YNnTjps9MwNR6YBRzV2hsdRoPfSEzYXm8Yp84kifynKilh2q6v/dNYMptHeC5hZMk7H45D/47S5XYLISFC2TwvH3DNmSlfPU132ckHXJPcbwieBeDfu2jpl26bYraHQRaENcjLD6qUJsnlp1cBoF0b0LPL61p1w1BeabtO0MwQ6lQAhBOvWrQMAjE0OIvpEl9lujnaGTCfyZCSbnhmfx58fDXmYn2VFoQN0Snd2TWggGk3bIidXxObCZOveDG6JorU0dyabxlWor1jBLW0PQn0mdR+mYA6mZ4DuMK5LxivFSnjgxXTQniz70J4oClzWxH5wwIH/+6QfH33UYg03efebt1vqNqLEQ9FczH7/uXExqzv5ClaQC+KJqCkTrWu4EhFZQH0igmJZL5do8c/o1zEXubj5ulHrdUISk11XYF3zD51yM2M2ABfPIBUHAK8DZuvPdO7igBUwReNhM9lvBtmws6nLDaGINS/6PNmDbEqBf3vRizf9pBiff7IA9590o3PSWmeVejRctzphM2vlpdtvWM8FY04NHn1o5IPsudZjG0hJ7JQ4QWqzzO+F1jidaf5Mh9kz2db6bjHbeJlMtk/KWBowPjUMTW/tyddjA4CsAjGqzzFxZo5WVlyNN159N77y6Qfwq2+cwg2X37kwX34BsWn1HhvBlz+TnSQXF/2YokzV01Kiwusi6C9m11eRImO6P1UVR2MqtFMB877yRH/KNtnQ1n4Aazh3fF4Rt1RYCbKt0t8lDbIV1cocSklBtsuR3l08uUdwYGrUdp8PsstEvSUXjZsDg2V8xnpkX8W5igtca635RrPeL3s6NJFiQsWDdzvVujNnOrW+MBL/ccrK5BdI+G7R/6JNYXVyBYoPmMyjLvtVEGQbcnGiBAB5CIX+Uty5jWBtmXWeGU7aPJO9VEG2k2Oyj5x+wby9afXFAMBc6HWoumR87VrWxqtCqIBwkEsgUHtLMh4TaYLsWDxsyrwAoJ5jdvqmZz8m8Gw2wgroHOM5m1w8DyZ7LEJMk6O15UpeZeHawXEm/eag/m4AWs8MSa+5MtlINj9rxHTYrlBZVarix2+fwv995wRquCDCUGp4HRSeqd+YjxulKgYDrlGCEyMrkvEVzA3dA2dMR96SmusAJNdjZ5eKA2CtH91GG685ysVFApTYmWxeLs6rnGaSihswWKqxcPo2TXzAZIxT9iB7+dZl2+TiMzDZ7eMiHj/rMhWCAPO7WVeu4M4tUXzj5iDcEiypOADCOYvvrlPMJO7acmvMaq3fBAAQRQm7ZulungyhwT5HiJuLs9ab8z23czGMNVDioWZbRWOeyQVGYgZYvLpsSqnJZGc1PRtLbd9lYCJqTaBN5QX498//Dj/72jF87N1fwc6NVyyrWux84HZ5sXHVReb9fPt8pwTZBXtghJgb9BK1qWrrmAdOp67ptVNTJlkCAPRc0Nb5Jhsmp0YwNNaNtRIjX0AAUr/05nOv+SC7dpkw2faabPvFn6lPdrLcejKYFGTrkjCvg8KZsGTihmQ8EBMQldkk43Y04GL99QmXBGFtbrKp2aCFc+/sylaX3eBjCwZkZrKpRqH8uMOUN5FKN5x/tQEno8dxQj5hbqd2ZL9QbUz2LNt4LReE4lZ7Nho+DgCorWyBKACfujwCUTf721atgGrUCrJLnCB5ukDPF/iJ6cip583bm9bsAQAIWy2Zm3aELWANJvvt7neAaPbFg9YWSPs541xSh8/aDox0mbd5Jrt3Lkw2YLLZWq61zFlga+GVB5PdltTGL1dQSqG+aCUfhC36MdAo5J90gsYyM+Kz7ZHNg0/4NIlNmAqm9v3wOynufn0Q990xhS9dG8LOWmtxePvGGPoGjpj3jVIVm2R8+MJcEK1g+YBPdktFrPXSVr4eewbTM0BXbhhs9mR+bbwANg8awTkpc4GI9vGwpjD1WvU5NWyuym08MCTjcZWkVX94k9p4ARcOk20av2JmJvvUmDUf7KmX8fdXh/DAO6fwn28I4v0XxVCnJ2hpD89kW2O1KAD/ckMIH70kgs/ttba55uLb8fkPfQ9f+8xv0rZYmg1Iklw8Wz02ABCOyUYeTLZArDZeQ3n0yjZqsoFFdBiPa4Cqf8FcTc+S5OLjEev8375qFTauugiC8OoIpfi67Hzl4iUeankOOGuAgkvM54wSNdpkHXM1zZpeO5Za2qn8rj+nmv22jgNwwYUmsRmAbuK7AGrcfPHqODPmAJtcfAlrcW012clMdoaa7GTjsMC0ZRQwGiamtGtduYLpkLVYRsyqQR0KCQhHgrhE3AC3no0PrClb0HZULTqTDcxQl+0QQOpYJoqOxkDDqQM/7Q6Z8jpS64Hjr9aDlLkQCI6ZTDYAhE9lZswBJnkqcOrmZxc4k90V4I5dhO3fusoWAIyx/49bg/jEZWHcuSXGGP643hdxieqxAXtNdnsPSwwQQrBx1W4AgFDtMYMu2h0GnUxg7dq1qBSqcL3rBvZCl2CZ5Z2dTrtQ5eXia5q3mbd5h/GaAg2CnoiYdRsvHabT+JTMVlhzwGyZ7OND1mJiU2UeUvH2IOiwvnBv8UN6V4vFyozHoTzQnfm1Nrn47IJsgWOyG8RGhKPTtnGShygAlzbK+MrrQ7j39il87cYg3rM9agZAZcXVppnQtmrFPL5HV4LsFcwR/BwWd6wGoRRbDCbbLZpz2Ewwg2wK0Ik8k3KBhMkAJZueAYDfCbNrgoHddbmrWmZyGE/HSpJyN6BvupyD7Hzk4me4zhzv2hbF3mYZBS57AEAptZhsjwgkuXlX+TXctiFua6MoihKu3vNmbNH7Gc8HiE+yEh0+CaRlBkVFwezk4oBVlx1TCKbjuUm2+HNm0eTiIU5h5cs89humZwBQVW6Xi/Pmf7Y65FcB+LpsD5c4ywWSABS5jSC7Fii0zuVNepDtX+WBog8KvgH7MadxlTHZAAKiE8M+fe3fFc6oTOTR1n4Aq6XVEImu4mzMr6RuofCaD7LLC6zJbDnUZAtEgCjYgzxHBnfxrqQANRC0gmxeKr6hQsEkLyXnguzBoIhwdBpXqdZAomxdOKk4AFsfymTJOw9KqV0y3pUqL1EPW5kv8YoqEK8ERZExHZrAaeUUVKpLomcwUCDE6pc9HhUwGb3wajUTcgzReBjnxrhAKsISDbWVzeZDa8tV3LouAY8Dtl7OZEmDbCsQM7KWLXUbbfI9YbvFZqtHJ7Fu3Trc6X4HJMLOdXFvFYSNxWyDuAZ6PnXi5tt3bVljZVr5INshwuwn3z8tIg+j1fQodABBGcQ1xyB7Fkx2KE7wRDtb5EkCzcv0jGexxcsrQUQBjrtaWTIDgHZoAurBVHYZgL0mexbu4gDMOnzAchifDqdmupPRUKRhe42CiakhBMOpbvR+FzWVK10BCdOJ1/w0uII5oIObh8flCjTGwyjWW3IKrf6cfRhIGe8wnl9ddjZncQM1SQZnuUrFgZkdxvkFuekw7hCAUpf5/RbTQTof8HJxnze72esZfV0lEmquF1IQSFjKukbf0rTE1CG9tQnC1hI47mpJUTckg5eL58NkAxaTDeTexsvn4c6Z2OIE2TZn8WxM9jjPZNvl4uO2IHt5ntOzxcZVu7F17aVwOty49uK35P16UzLOMdlFLs0sV2koB87ryZXiYNRGnPFS8RcLK/E/pVZttfq7gRnHj1PnX7Gk4gCElSB76fFnf/ZnuO02K7jMp8fffEPVa7KTWWwgfZ/sqdCETfoKwBZIn7K5Cau2ANweZAvQQgnsVNgJOeJww7s6vwxWvmiqXWdOPJ396YPsP+57AG/8y2Y82vUr87HkQJmq1GzpBImYzpmGC3EccbSr7QAAz5RkH2DTgK/LPncBsdmUUnzzh/fglg814A0fbsJ//uZH1pNhtgCsrWxN/1q+fVf10tWvJJv9AZZU3IDAJX/UI5NwT7txnft6AECERiDsrbSCbADqyUDKe/JM9pa1VpDdzwXZAFCvyytjCsFYGuYmHxCBgNR7WVuVOcDeJzu3CeQ3p1yIyOz7X786YWWaZwCdiEMz9l+RA8KWYgBMiiq9pcncTnmgO20NqVmTLZKsi5msKHQwJghWr+yp4MxBtgG+FKWVax0I2CXjbVNL70C6ggsXRqK4sKAWgyEn1kUt1mVG9pCDzfwsh24aPHjTs2RncQO8+RkBTXG6zoaKGYJsXi7O19cKBpMa14Cp/AK3xUKucvGIDHTrKrHWUhWuDMOalkEqvhQQWgvgeM8qCGtn7hTDy8XzqckG7A7jvPmZqgGPnXXi8bPOFBn5UsjFaa49snkmO6kmm3fYL3uVMdmiKOHfPvcQHvj3s7hk++vzfr3ZxktwAA62XttYqcDIM5V5Kc76i83teeLMXMsDeKGwCi8VVCJcwa4f2h+BdiyQ8XNVVcGZriNYJ1oEHlnia8/AazrILiwsBNQpQGGD7HJgstOZJqRzF+9KE5wGuJrsNo7JXl+hYHKaD7K5Nl5BAa2Beoi6hOO5wmqULHB2zu3yoraiGQAzjVE1e0aYUorv3/+PiMbD+PHRb5uPJ9v50/ZpM2MsbCg264l52fxJri57pnYANvOzC6gu+6mXf4VHnrnPyvR5LTm+wWS3chJ9HnQZMtkGNq9OCrIr3aY7Ku0OY+jLIxDBjvkD0fsxHh9lXgJ6xl5rS20TwSemNq2+2Ez2DCQF2Q1F1uTZO8s2Xjzmg82wy8VnToSFE8ADJ9nYIRCKd2zNfeGuvjQKo7xKvLTCVj4i7iyDsKuM3YlrUB7sTXm9KRcvcsz6txNCTPOzCrECXuK1tfGaCbyMl2eyAWB7jbWIPBFIH5SsYAUzITA9ZpomVje9HholWMMF2fmwKXNxGNdyYLL5Vl0bK9WcE25Aslw8O5MdTdfGC8tXMp6r8dnZMQlUXyetK8/iR9HLJa6XyUI/J8yDXBywyi5HwwSferwAX3/Rh3970YdnOu1r26UwPkOuQbZek+2QXCgqKLc9N8bVZL/a5OIAm3fzdRY3kC7pwKvnCAHGKqxrTOlgx90uFXfghK8YIATHtjZa2z4+AKqmH7M6+k4inohaTLZTWDIT32S8poPsmhq91128BwALspdK0aTo8rLkHtmA3YDAYLK7+lINw4zgUlYtJra2QEWxmyIwzQJwUZRAElYt5WBIwOaIlf3ZX14J5yLEl0ZddjwRxdCovbbz1PkDGBpjx2SSTkIt0k28esO2OlteKs67oU9OW8mGk4oVZNOO7NnS1aXWYHChOIyPTPTjP3781+b9rWsvhVS0AwAgalPYsWYDPvT2L2JV4+a0r6dG+y6RZGRAFgPpFByb1lyc8hjvMh7exxYzIS2IB+O/QWdfG4hbBFmlT96BhPX7dBhMttdTgEJ/CcpLWIsJ3vgMsJzXgTm28ZpHxOLW4i2XSfCh0y4EdSn0dasSNofhbKCyBnW/fg2JBOLFFSnbSG9uBHQZuHZ6CnTakofThApE2P6brbO4AaONFwA0CI2YDk1m2doOnsluSWKyt1QppgHgyamVIHsFs0Nnv5XI8VewesY1RtBGkHM9NqDXMOtYCLl4Izem5dK6iwcvi03XK9vnTh8wXWhBdrY+2Wc407P1WQwktd7lw2TnA+IQTOVQvkx2pd86t4ZCAvb3SfiLBwtxklNUPnzaPs76lpjJzqSwopSa7uKVZXUppmY2ubjv1RdkzwXpkg4bkq6VRL2VkIufZ2OFdnoKkNlr/1RYCY2wfXy4oBykWWezh2OYfiL9edJ2/iCKSTGqRNYemNR759QudT5x4dB1C4DaWrbARrwX8G2GrBIEYgQlnsWPtA0m25EmyBZFCYIgQtNUk8nmJ3cDRnDZMSkiobexMU5wI8guKaxAaXElzmoxQHAjOhJDq8pMsbpdPgRLfQAWfsBrqd+AFw49CoDJ7eqqLDnzU/vut20brlRQOCUACgXtY4EGlTVoJwJsA5cAYYMlh7Ix+oq1n9SO6awnfEORBqdIkVAJzk8sj8AqGzRNw9d+8DFzkXDdpXfgL9/zHdz+02IAwKZaL7765/dnfD1VNHNxRirdC2p2NxOSmeyy4uqU/pQAIG4rgfq4vXfiA7EHEKERdPafwp6t10HcVAzlLNsnWlsAQq210DVqso1e7XWVLRid6EcwPIlgOIACXzGAJCZ7juZn8wWjJtvpcOu+DZnHqagM/PoEW+AKhOKdebDY2qFxM0gWtpfaa/V0ELcIcXc51CcHAcoSXtKV1QCS2nfN0vTMfD1nftYkNmF6Fkw2IQRNtetsz3kcwPoKFSdHJAxGJQxMyKhJX1GxgtcYVE3FcwceQs/AmRm3Pdd9zLxNfFsgTWpojuvGXxXu/Lo1+CXmdxDXZh9ku0X2PmlweZOMK5oTkFXgtvX5BbwVvvxrsgF7kK2NRLEcZ9Vcjc9407N15emDbKpR0D49yC522h27LwCQAgdoVM27Jptnsp/ucOK3p1ITPceGHeibElCvz62eJajJzoXJDkWmTNVYcj02YJ3/HonCe2Ed3gVHmScpyKYKmgqDAKw1WHm1hH6nB3WJKBwDYbaWP2qXihsYCImQbqyD/J2zAIDR/x6H8MlamI6KOpZrPTbwGg+yk5lsgNVll3hyd+CdLxiuuekYPYAtrGPxMBIJFox3cky20+FGQo6ZddcH+q0rf0OFCk3TENAXp8UF5diyZg/OjncC3g1Y128FpM8WVdscLxcSvHyzq/8UXrfrFgCstuLZVx60bTteHEQhWBCtdYYBeJm0RG8hJGwuYVlYHbxcPO5IoFftQYPYCNofBU2oIM70U70oAK0lKk6PSeifFhGRsawH0YeevheH2p4FAJSX1OCv7voXdE5av625OPt5TEdigD4mLqVUHLCXRAB2KTcPUu4GqfOC9rNki+oGHppg54tRGylsKAL09sjaySngOpZMi0SD5uRZVswCwprKZrMv98BIJ9a1MBVAA9fyZs5tvOYJxnfPxfTskTMuTMXZNXFli2wubGZCctsu8fJUFtuAsKuMBdnQ+2nrQfZ8mJ6Zn1HlgXEkGqWmnGuyVU1F9yCbmGsrW9K2I9lRI5tMy0unCHZdlLLJCl6DeOHgI/in73wg79eFhSa0xINw6HK4fKXCrI2XG7Q/AjoRB1Vy9E+QNWa2BT2wz1Ce4RSBv7s61Tw0FxS6KBwihayStHLxTDXZpNK67i4IJjtLkH16lM0DbomiMcN4SkdiVreOC4jFNlHgAEZiQEIDjak5J4lKPRSSQKFoBNNx6/y4tCGBlhIVPz3GzoPHz7rwgd1MXcbXZC+Wu3guTPbwuFX+lJzop9QKsldY7FSUJccPoSPQZB/4ILuxSEWbtwR1iSgEjYJ2BE2p+JTowDGfZXDbNy1CWF0IsqYA9FwQcr8M6cA4xIvs65K28wdwrXSFeX85lWksD4pmiWAG2TFLrrxUddmmXDxDI3vD/CwWYy6dRk12ZVm9acwQmB5FTAF+08YCFgKK3fUyQpEp01ituLACm1ZfbJqfrYtYg9sLhVUoXaQaE76NVwfnMH7k9Asm625g0G3V0Wp6bz31kJX5EjmpOABb/fnmNZfgpMzqkolm71+ZDnxd9nJmszs7O/HdX/yDef8zd/8H/N4iW/uupuLsx5KXUi91/UpymcTmJNMzHrzLuHRVJeKCXkKhXxOk1GUmDWhv2JS+TXD12KXFBpNt0Zd8XXaJh8LrYBNG3/TyGCbNIHuG9l1xBfilzmITUNy1NZp1ex60MwQ6wLYnDT4IjZlrv4UKt9kmgw5EoQ3oKhPe4Gge5eKNYlNKTbY2GIU8msoqDY52IZ5gv6Mlgx8Bb372wqnlcYxXsPQwWgjmg9rKFgzHirGWC9hmE2QRo92TBsiDdjZR6w0j/uXjkO9tt/Wop2MxU9SyUCU/hFjmZ3xNqgG+vtZWk+2TzGBm2QbZ+hrI6XCnJHsNTEQIRsJsPbC2XMnYjZFyUnHSsHRGorOFzfwsDzZbFOxqB5FQfGh3BF+8NozbN8UhCewEfaLdCaPiz2eryV4CJjuD4sPmLF5m75EdkZkZKvDqrMeeK1JqsoMvp5QCNBSpaONc/JXfDaSVigPM/yGuANLrreOg7rOvAQLTYxgY6cRaaa35mNC0sObN+eA1zWTb5OI6lizINozP0sjFAYvpi8fjGJnoN7OvzXXrEY2F0DvUjkgshIfaBARiFoNVV6ihe8AKWosLylkA88RTAIB6feEeIwIGnF5c6slPpjZb1FW2wCG5ICtxdHHS96f3PZCybR/6AfcGIKZC6wxBDZdDawuwJ30SyBq7gysfpO/cuBcnz72IG3ETABakC6szZ6tZXTbb1+3jErZULb6qYSaoqoLPffrTZhDxxqvvxq5NVwEAugIck10yA5PNB9lLzGQ7UpjszEG2uLcKmIyjsElBZGcd6v/Yip7Bc+geOAtVVVh5xcZiqPrv004FIF5cYTM9M+TifGszvi6bEDYZnBmTMBJiA30mN9nFQkyXi8/kLP7YWRcmo2wM2Nsso7kk98WA+pJ17Yivq5xxe3FXGRQ9caUdHIdQ6wUNzL1HtokCBzQ3gRCjaBIb8VzoCACdcX+sH+ofh9DxnwIcn/UDPuuzeM+KFq5lII+NFQo2VshY7YrhHVcsD5OUFSw9ePnwR9/1FdRVtmTdXhBE1NbtxrseEK16bMwuyOLNzxK9VpBDKYXy625gPA5tPA75f9vheP8aEEmwO4tXpq/Hng+UezUMBEWEEgKiMiu5MMAz2eGkgIlUukE7Q8C0DBpVQDzLa9kZ0o3qcpWKr89iemarx15GktVcYSsNmpaBDPX96XBpg4wH2kRU+DT87VUhbKxk+6nYTXFZo4znupwIxAS83OvA65rkJXcXhzcTk807i2fukf1qcxafD6Tsk+k/IRyz+6HUFWo4rZflAfbElCEVX1eumNfcYFBAU5MPpMoNOhxjRMBEHERvD3iq4wAICNaKuly8wGH6xSwHvKbT96WlpXA6nDa5+MgStfGymOwMcnGnxWR3ccxvS91GlBTqi2HixK9OWotFow6Tr1EuKapAaVEVCqUpSJqGGj1Q63f5QAlBSXJNxQJBFCU01rLMU99wBxJyDAk5hhcOPpKy7eT0KEiTPmGFFEz8ZBKQWWZU2FqSUks8yf3eHRuuQJty0rxvMOGZYHcYX55M9i8e+xYOHz4MgCUrPvC2vzef685HLj5kGWkJNUubdee9CNxOL1Y1pDdqAwAiCXDc0YTqeypBJMEsPZCVuNmKS9hoZUq1NraIGp+02ncZcvFabgGd6jCu91gHQf8Ss9mqpiKWYMcrG5OdUIFfHLcWRndty509opRCO6cHCR4RwraS7C+ArirQDUbUwxOsJnEe5eKEEKCSTablQgViUyEWYD/UC/WP7HhqYQ3a6Wnb63jPikxMtlMC/u36KbyzJYiL1766+p2uYPbgg+zdm6/GRTP87dx4BQbDLGAwg2yBgNTOJsi2rt1Er3UdaScDZokMAND2IJSfdLDrjTc9K1/AIJtjKnnzpxPDIn50dhtQcRcAO5MNJJmf5dmabDFgtPDK5ix+OkfTM1MpRwBSf+EF2XNxGP/Qnii+/cZp3Hf7lBlgG7h5rZUIeuwsG89t7uKLFGTD6MvsFkGk9HO64SwOpDLZ9iB7Zc5IRrGbQiDcfpn+EyJR+3ggCQAtd2MqiVCc1qXi1X4VF3PtBfunRRBCIO7iWrhypsdt5w+gVqiDX2CJPmGJe9Mn4zUdZBNCUFlRbQ+yl4DJppRmNT4DmJQJYEw2L69uqV+PYqPFQNV7MBljQfqlDQm0lrKBjq9RNrZtLfegRo5A1HVmfU62IChdRNO3Fj040jQVPYPnsP/YUyZDv3XtpeZ2geAYhBYrUz5+n3WBJUvFAev3CkTAqsYtmHaFMaaxx2h3KGMbAABoKVHNQWI5OowPjHThvt98BQD7fZ97/3/ZanQNJrvYrc3YokUzmGy3uOSZP57JXt+6M2PZRDrwztGmZLzBBxSwTKh2dhpU1uxycYPJ1lvJAcDAaHKvbGtR2TcPbbzmgjjnLJ6tJvuJc05zIXBpQwKrSvNQYkzJppyONPgyLkJ4EJ/DMh2clllbPd74bI5ycQCQaqxr3xd0QvlND9TnR2zbaH32MpBOboxMbt+1ghVkg61vMidrzIbOSREuTUWDYXpW7bb5hOSKdEw21SjU3w9YG+lJLe14AMr93TYZdiZn8flABRdUGDLO/97vwScfK8C+wXJg3b2Asy6lHdNydhjXNM2UKs/Z9EzRTHVY3qZ3ywSzlYsD7LRcU6am7U6zs1ZBle5AfqBfwkiIwOlwmYan4UVq4WUy2Tn3yLYz2TZn8RUmOwWiAFQZJnjxXiDenTaB0lCs4ZS32PbYnwoqoBIBF9UpqOM8cYxyPYELsrWD42Z71lPnD2AdZ3pGlpmC5DUdZANARUU1kBgAKDuoS8Fka1yf6ExMNl+T3dlrZ7KLC8sBiED9Z83HeQaLb2lVUsgMA7Y0VqGeW7j36gv3xarJBliCwEBX/ymbVPz26z9k3g5Mj9pqLGhcn+yLHCDNqbUXxu8tLCiDKIhoqdtg9cuOa6CDkZTXGHBJME1NugMi5GWmFj965kVT9fDmGz6Ijat3m88FYsQsFZiRxY4oZjBEajxLnvmrKrcms12brs7rtS11FlNpOkoLBMKGYvagrEFrn7bLxUsYk+31FKBYvyYGhpOCbK7lzVKbn9l6ZGcIsl/oduDeQ5aS5V3b81vQ8oGqUJ87C2f2zAagHhi3mGwBNmZktuD9At4evh2aIWnnTlmtz35NG8kWh+Qy5b5UXVkUrWBmBCMB87Y/S+DFo2NSxOrotOmePVvjnXRBtnYyYPkk1HvhuHs1IOqB9r4xaEcm0r5+vsEz2X/qdeDDDxXiVyfdZu9oEBEof0vKono5B9mRWMhcrGdKqFAKnBm1kteVvvTJazoQAfQE/nJb6OcKm1w8zyA7GwQC3LiGzQsaJfh9u85m65LxxWCyqUqBqN5aMkuQzcvFjRafBlbk4jPjw3uiqHd3A+0fAZC+3r6hSENbUpD9gk587K5jZa4G+nWCQyh1wbNd99oZiYEORKGqCk53Hl62zuLASpCNqooagCpAnLUFWgom22CxAUAS01/8vCHHua6jAFgtWEPNGhZkV9wJeFYBAHbVylhfYQUIfI2yEVBcsn6tWY8NAH1GkL1IcnHAHhy1tR/Ay0efAAAU+ctwybYbzDqvQHCMTVpJh0bcUZrSC49SajLZRkKhuW59npJxlu1UNGKrcV4O4KV463UnbANdnFS86QKqxwaA+qpV+Nz7/wvvue2zeMsNf5HXa5u5ZE0n1xs5WTJu9MgGrJpsAGYQNj41bAtml1MbL1uQnSQXn4gQfPGPPnzhab/p7HpxfQLrstQOpgMvR82nv6+wscjsr6odD4CO69LAAse89KoUuCC7CvpxI4B0ZwtIKUtK0v4oqMYWuAk5hr7hDgBAU+1aiKIE9egEEp8/DPl/281F9QpWkA5hXS7udfshcvOxdnoKyoM9aRm+zkl7PfasnaULHIDOgMu9iRQWW3x9LYT1RZDubLGSTCqXdHYt3HzFM3cPtLnRoyceDVMrAEDF21KYbGEZO4zn4iw+EBQQTLBjsr5CQaZ8NO3hyq+WkbtxXuCZ7Dx7Zc+E16+Og+jKycfPOaFRSzKeXGKwIIgqlkFgliB7VA+yy4qqUozwxsPWwV9hstPjskYZ725+AphgLXqTxwMAaCpSbUF2WJRw1FcKkVBsr7EH2QNcqV7RjVaJgXZoHJ39pxCLh60gm7BE5HLCaz7IrqzQ287okvFAjMmgFhMGMwlkq8m2JqreoXYALDBxOlwoLqgEGv/afP6dSXWYRmsvACgpZHLxtfWtaIhZGXAryF68BWgzJ/P93Qs/RUJm3/uK3W+EJDnMhMDk9CiIS0ypcRN2lCEZkVgIssIW+YY0vqV+I04qJ8xtaEf2AZ2X2C43ybjRKxkA3EnBVncgn3psK8gWlthZ3MD1l70N77nts2ZpRK6oqWg2WzQZTDYACGsKAUlnfNoCmJ60XClLuSC7hpOMD45anQZskqUlZrJjnOrEMD6jFLj/BR/uvr8Iz3VZ48YlDQl8dm9mtUYmUI4NFvKoJySSAGGbLuWSNYstmKvpmfH+VUnnpwBId7VC3FVmTagJzVzA9wyeM9VBhlRcfW4YUCi0EwFgMoEVrCATjJpsntmk43HIP2iH+vwIlF902bZXNZbgXBPjTc9myWQTYrLRiX4Z2pFJS4Lc6IOwnn0ncUcppDc12l+7gKZngN092sDacgX/fdu0Nd8UXoqgkhSsljjNcXjZBdl8j2xvQdptjNZdQO6mZ8uphVA+IHOoyZ4JlX6K3XVscT0cEnF4QDKJlMVo4UVDM7fvSshxU/FWUZbaI3tFLp4bZqq3byhWcc5diBF9rff74lqoRMCmSgU+J1Dgoih0sf3bz5XqFVxXYKp41MMTONV+AA440CqyLjGkwr3sjBVXguwKo1e25TCerg/kQoJnsh0ZalH5jJrBxBi1qD2JTYCXscJlwnlsrbJnCSaneHdxFrgSQtCYYMGmBmDA6YUAFQWuxQuyK0pqzeyxEWADwDUX365/VxYkB8MByEoCAicNJ5UukNrU4HBy2qrVLNYTCs1169GtdiOs6S7IXcGsbNZqPsheZuZn2RhNvn1X8wztu7RlxmTPBaIgoqmGmegNjHSaruvEJVpO8lMyPjz6PmyQNsLj8tkmgboqzvyMk4y7JaDSx86F3mkBS0mA8skVj9uHqAz8zRN+fOZ75Qjq7HWRS8PnrwzhS9eGZ6zHTwfNYLI9IlCaX4DMm5IYmI96bABAgYQAYYthmcoQ39UKcTv7PIFzcDaY+E6bZ8UG0IRqSyCYTPsKVpAGIdMIi2sz88wQoCsltDNTNnO/waCAuEqwRnephkRsrefyhWlepgLyb611ifT6WltZj3h5JcQbLDmrULewgV1NgWay1pJA8Wc7ovj3W4JoKtZwVYu1PwKuq2yvIwIxa8XpWHxZlW3wTLY/g1zcVo+dzfTMCLJFknZtckHAK5pBzHzKxQ3clGSA5vWwNZ2sxJGQF3hc5tt3ZQiyxyYt1UhVmiDbkIsTUJSuGJ9lhIfvNpAuyC5SoQgCPt2yG//QuB3/W7kGAHBRvXWMDDZ7NCIgKlP84Nf/jNvf82YcJ3qLxWkZBx5+FK1iKxyExU3LsUzjNR9kV1UaQbZlfja8yHXZRg9rAJDE7DXZPFrqNoBS4I+DVj1CfeKXKXImnsk2Ak9KKeoTbBAdcbgRF0T4pCjmQd2ZMwghKc6/FSW1rI83LLk3AEwFx0FWWYGRuLM0bR0xb/JWoicUWuo2QINmScaDCuhY5gF9Fe8wPr68smLZanO785GLc87iS90jez5gnEeUUnQPnDEfF6+rMRcN1ajCVwq+hg8VfAQ0bu2fbOZnhmQ8nBAQiC1d3Tp/3N1OL354xINX+qyx4trWOH5w+zSubpUzyhmzgU4nWMsWMKl4vjX6pNkPlNmldXN1FjffhxA8UPQo/hh/Gn8b/Dzkddbn8A6+VK8pN+qxAX2M7LVqJYGVIHsFmWF0uQAst2k6nYC235pXQAH1oKWK6ZgU4Vdl1BnJvTpvSseLfGCrqw7qRoTNPpC1qXJm8foaSG9rhnhFFcSrq2f9mbmgyE3x2b1h3LI2jm/dGsS7tsdgeCPyQXa04KaU15osu0aX1fXHO8lnkovbTc/Sz6s0qpgsPan15GQauRxBCDF9NOZbLg4AlzTIKHazOfXFHgccHsu9e6El4zQyM5M9PG4ltSqzBNnFHooL9BAvCmbqge53AmUeDeMON/YXVEAR2M7cXWudc7yScN/Z8/jJw9/AiRMn8Mjkg+bju5WdWCtZ5YLLrR4bWAmyUVlul4sDi1+XnVtNdpogu34jXumX0D2tn1jBgxCm/pCynVGT7fcWmW6OCMrw6Jn5fj1YK3QuvoyyOamH7VUXvxmCfsEZCQGAScaFTcUQ91ag6JZCiFdVIR1sTupFLMguKihDaVGlrS6bZqnLLnRR0wmzY0I0CIxlgVgsPZNNqeUsXurRUJhFkUApBR3SlQPFzmUnr5kN+POIZzKFZj8cn9wI2sCuH4EIuE67Bomvt0FrZyxGbWWruX1yG6/lYn4W44JswVmGR06zhbjTQfFPNwTxN1dGZsVeG9C4emwhj3psA4QQiDuT2Oz5YrIBDBaN4mvhr+C4csx2DfAGbVpaJnsjtE77JL+cFvkrWF7gncUNZlN9dtiWpAEA7YDlbtupm54ZmGvrpnTmZdINdWkTX4QQiHvKIb2xIWud6XzhmlYZn7w8Ymt1CQD1RRpcCeaHofl2YWDa/l1nY34mP9aPjnd0QW1fOCnxTDXZigac00vGagvUjPMqr5S5UKXiBojelQNhJWsnltnAIQI3rGbrTEUjmPLeYj634JLxHJjskfF+83ZlqT3IVjVgIsrO6xWpeHbk0gO9ocg+hhS7NRvBxddlnx225vwDyisIU3b/cufrsN1leROtMNnLECaTHVu6IFvhg+wZ+mTzaKnfYOuJi94vY4oLMg1M6ky22eoL9omu18lOzCLXIhejI7WH7TUXv8W8bUjbAd38TCBw3N6I2n+ozmjwYusJzv3e5Lpssx9wBhiS8ahCbMYLSw0bo+myAoxAjJimV80zsNiYTAAxto1wgUvFDfDnEc9kAqzmfPxtHvxP5LuIUz3AGo9D/s5ZqEcnUFvZbG47MNJle20DN9D3cHL8wdFuPPj0D2zO/QsJXi5+Jn4Zogqb7O/YG8IljXNnHGyLxFkGCeIuu0fCfNVkA3bVBn8NEL8EqZotmGh/BFSjZl2+z1OI8pKaFKPDlSB7BZkQ5JhNv7cYNKJAfVm/xiViltbQkZgpD+6cSDY9m5vxTnKva9LiB1mTvl54OaE08ax5++nzyUF2fuZn6olJqH8YQvxcAupTQzNuP1uEI1YAkE4u3jkpIqGy37KuIrd67AvW9EwHKdTHbQogtLCS8THpSvN2OsZzPkH535IDk50sFw/ECDTKzoUVZ/Hs8M7AZAOsLpvHRXWyTUnLM9kDXF32X939LyjYw/wovMSLSxyXsCe48Xk5YflED0uEZOMzYPHbeMk247OZa7IBJhkVPS04OsS2F+PngfHf2oJMgMnfjExSSZEVtPITXZ8erC3FwNHCMZAN1auxunGLeZ9nsgNpkgfpMGlzUueC7LoNOKucRUjT69CPTWaVQ/GZ+nPLyPzMVpvL98fmpOIzmZ5pQ6+eemwDfK/sDs78zMBEcAS/iT2Av5r6MIb81rmkPNqHAk+JyWIkM9m8Cd5pXTaoaRr+zzfejv/48Wfxb/d+fF5/RyaYgaXgxdHgTnaTUHzgpuzJolxhcxafpTsnKXeDNFnn5HzJxQG7aoO/BgDAvV4fG+Mawn3jGNXr6lrqNwIUoN327VeC7BVkQsgWZBdBfWEEiLN5UdhdDnGvpaBSX2GS8WRn8bkymclMdnIt9nJFNfabt5/tTCodyYPJpnEVCleLvpDXq10unprIOGMzPcuhHhvLk03LCwVWADrf5mcAK8FqLWH7chqNgMjm3gVv45Uvk50UZNtNz5aRvHEZgr+WMikUGovs8YZhimeAZ7JHItY6tchfBnEnl9A3HOPr51ams1BYft9okVFSXAZRkJa4JtsayBwZa7LtwVBT3Tq82GNNZEWxPwCgCATHoWnWyTnJy6c5ZpiO8kE2mxTqS1N7Ti801rXsQEUpq8t5yw0fsi0m+JrsQI6Moa0mu7DSvN1ctwEyZPwu/jh7QKVQXxpJfrmJNVyQfWx4+cipMxmf8a3GmmZyFudNz14F9dgAcws3jvfpjkO2awAAxvT2XQPaAPZd3G4xQxMJ0MMWmz0y3mcr31hbrkAkbBRvG2HnwYlzL5sO/2e7jizUT7LBDCyr70ZUZcfs6tYEGivnR31i9pl2CSBlqXLVXCFeV8PaaFS451U2mYnJBgDPemsBH+2wxonKsjrmoh+zXw90PL7SxmsFacEHXcWuEqgvMKdhCIB0VTWErSVmiy3tyASiUQ0DQcFyFncJpsnXrFHgYI7cAIQ1BZZ54zJHqSsEBF8BAHROudHHtT0kFS6z5Rgdzh5kq78fAALWGEyn5AW7Xm1ycW/qfj7N1WNnDbKNOdUxD8d/iWFzGF+AumwA2FrN9iWFABReDmDhg2wa5muy0yeA7Ux2g+25sRVn8ZzhkFyQRLaPMx3XRk4uTkCxq85+rtUVWPt4QrauzaLCMubPVGg/hstVQfKaD7IFQUCxrxJQp9kflqImm2OyxdyY7Oa6DXiWa9tTSw4BADRNRTA8aT4eyMDsajyTrcvFy32Lfzq4nB78z5dewHe/+BxuufK9tueSa7JzgS2pwDPZOtP5UOxBqGAXr/rSKGgifUC6tVqGS2QT+zOdTsj5tRxeMBi1uQ6Hw6qvR+b2XXQiDm00Zluk0Fchk00IwaY1ewCwhVPXwGnb8xOBYfN2WXEVJM6VV316EHUVrC5boxqGx6yEm0uyjPB6pkQE4wRP73vAfD4wPWYzLlwoRONhgDiAunvMx+7clltt40ygYdlc1JJa75x6W4sbiuH84nY47tk4r+Y/7ixBtnsDt6jtt/aJ1+1P770QU4HIMrmgV7CswLd02jCxyjxPhO2lIGUuELcIYUsx2yCqYvTANIqUBCp1szRSN7frB2Bu3M4PrUHVpyvgeG/rzC9YJvC4/cDor8z7/PqEOEVALx+hSfMRD20gAvX5YfuDCast4HzD5i7uSZWLnx5lQbZAaEodugGqaKATjG0nle45H/+lBh9kL4TDOGAF2QCAoisApO+nPJ/gg2ziz8BkT7Ae2R6XL6V8YCxiHdcVuXh2EEJMyXim49rIrVPXlKkoTvKU8bsoivQ2XkHVYq6L/KUgAoG4w+4BQxoXnyTMBa/5IBsAiv064xnrAsBaeC2m2ZW9JjtDkJ1Uk11RswcndWatqVhFrd9aePJsrk0+naYmOyJKmNSDtaUaOHyeArTWb0yRxJUk1WTnggDfwov7vU2160AIwTgdw2HHUfZgRIF2YDz5LQAAXgdwWRObYIJxAfv75k/6OhcYAYbXa5f08u27mvT2XWpbAIl/Pg75X08g8cWjkO87D+X5YWg9hvSYXPBZdx6bV+8xb58497LtufGAVddXVlwNoaXAdKuno3FcKl5qPp9cl72Ba9tychh47sBD5n2NaotSlx2LhYGKdwBuVot0SUMCraXzs/C098eeWz0pABCPNO/uurz/QEa5OABpyFoUelw+aF3WBE84Qzc6vrz69a5gecBgsiU4sLrbSsSJ19RYty+y5hXx8HhSPfb8sClCpRuld5YsipnZfMHnKQDGuCC70z5nmpLxmJo2eKMahXJ/N2AsQ5zWGEIDC2PKapOLJzHZURno0dn41hIVrgyHgo7Fze+80L3KFwUcQ5hJLk7Dsq3sLF9sqUoXZC+SXJwA08oU/uE/34cP/N0Vtr9Bfe6vKm9IWY/ycvGVIHtmGOZnmYLsCh/FzWvjKHRpePf29POxIRmPkzJAYIRQUQELuIWddg+Y5egsDqwE2QCAMp9hfsakIrJGEIguXjbSxmRnMj5LchefclqGEVc0J2wB5SRXl22TT+s12TShMvMrAOM+D4yeP6We5TVwzKYm2wjGPS6fbWHudnnNVk0/m/qR+bj63DBohozK9ausWrAnz8+fidNcYDgr80G2orG6QIDJmPy6A6q2j9tnQQXa8UmoD/YC41zW/VXUh8Jo/QYAJ8/ttz03MWWxI6XFzIdBus5aOG8fWg+i6xn7k+qyN3JB9tNt/ZgOTWR874VCJB4GGj5j3r9zy/wFiVr/3E3PFhp8aUQsicmWyiRAr/92jRHzOHrcfsv0zCkwqa8OOr74nRRWsPxh9Mi+xnUtXDGdxdxUDIErqyGrC8zzrbR3Eru5BPCF7iw9F3jcflZ2N80SnB2Tks0sUpihLlvbP2b6J5AKF8TXceVtUwtzvfL1osnM5blxyTS6ytS6CwDoMKcMq7rwg+yZ5OI0oiDxrychf+0k1CMTKc/nghIPteTC/l2A4Ftwd3GTyfZKePyFn+D5gw+js6/N9qdRtgauLm9Mef2KXDw/ePVe2dnKAD51eQT3v2MKl2Ywb63lzM/gXgVRFE3/HFLrsfrRFzuB0uWxRk/Gq2eFPQuc/2YHzn/wEP5m8i8hwbFkbbxsNdkZmOzkPtlnw6vN21c2J2z1yzyzZuuRrTPDdNQKHhOl7CR1iNRmNLAcUOArgSCw4HFyOnP9NA9DLl7M7Q8DzXVMMn461oZEo+5IPBaH1hZI+167ahWzp+PLvQ4E40svAzOYbJ/PWswdGZQQTrDzdZNeo0tVCu28PrhJBHCnmrfN1uBquWJ10xYzGXWy3R5kj3Ny8dIiZl5EVheANLP96A+6cKnjMgCp5mcbK62B/kh/qjScZ8kXCn3yJsDLHNTXlYawuWr+5JM2Z/FZtO9aDHhclhQsGo+kPG84OosyQbXAkihltNSSwTf5bIZSK0z2CtIhFJmCAAF3uN9mPiZeY+8/TQQC8SKdTaHAjZOWWdJyrQtcDBiLaoz+0nzMJhmv4hzGk+qyaVCG8mifeV+6vcluADe1MLJlnsn2uO1y09O86VlFlnpsLmHwalCGkcLscnHt3DSg95zWTgRm/TmmZFxwAIWXIhJdWLm4wWQTn4T+kQ7zYafDDbfTa/5VlzfhbTf+VcrLx8I8k73i6TETDLl4Qo7ZfG6Skc3TsZ6PSTxrUFJSYrb4JYRAetcqiFdWwfGeVcvWHPI1HWSHzoYRPRWEkzqwSmxdMvMzWeX7ZGdisq0Jp6B0E86Ms0VlU7GK5hLNFlTa5eJWcFqiM8P8pNC81on37Yzii9eG5tRndyEgCAKKdWlILky2oshmPTrPghvgHai7W6z3U59Nz0SKAnBNKzs2skbwbNfSSsYppWnl4s90WufMlS3s+9L+iNWma6NeJ/vJjZDe1ABhawmErSW2uuRXAxySE+tbmfP20FgPxiYHzeeMQNjt9JrOl4QQSNdZ++BOzzsApAbZ1X4NJbrKY0JrgungY773wjLZlAKdwhvN+2/dMD+O4gZMJtshLFu5I298FounLsb43t6rJJaArApbY4DQ7Le1RlpxGF9BOoQiAVziuBS1IhsXyJoCCE2ptX7CLk4ybtjbesVly6YsBszeuGO/Nh/j5yY+AOWNV6msQXm416y7FnaWQlhTaGsBOBu5OKUUdDK7yWFEl/p73X6Igj0RfWTImu9zDrKrXgUeJwXZ5eJ8UpbOQTK+tZp776IrFlQuTmWN1fYDgF/C2IS1NvjpV4/gke/0mH8//spBbF13Wcp7GHJxh0gz9ktfgQWvxxo3Z1tvz7fxgmc1SkvtddhCpRvSGxqWrVQceI0H2cW7LHnQWmn9kjHZis34LH3hj9NpDd4FTe83b1/RzCafTNJqu9u2zmSPWAOjq9aFu7bFUuzzlwsM9j0QHJvRYZRn7UuyMNkAcEQ7YgYUtDMErSf9IHDdKmtyf2oJJOOUsj8AiCei5j4wmGxZBV7oZpOiR6K4uJ6dS1o7Vye4ugBEIBDqvBBfx7J+jvesAimdvYv0csVmXjLOsdmGpLu0uMqW8STrCk1Gf5W0GnscF6cE2YRwknGpGPBuQEWJFZwvNJN9ZFBCWNRb3YWO4NKm+XtvGlGs8oFaz7I17cnWwgsACNebeI24BgBQPmWN70KL3+aavhJkryAdQpEpXOTYbd4Xr6hOu51Q6Uagwt7yidT7li2bshgwF9WJflQ52FqqOyCia1JnnrgEnnpgHPEvH0f884eQ+JtD0A7psmOPCOkNzNV5rkG2+lg/Ev90HMoPz2fcJqyXB/iSpOIJBTg2xNZiZR4NzcWZVX6mXFxIbb92IYJIAksYAaDB1HUh3xOcjsZA1ewKSBpTQWOpyquttrrsvfPiLq4em4S6P81aMal911iABdkOyWnW+M6Ecd34rNyrZWVfV8Dgc1vj42yPbW0aJvtCw2s7yL6o2Ly9PjnIXkQm2258lqGFFxdkxwpuNm9faQTZXE023yvbJhc3gmwui7xcmSsDRh25rCRsTqDpYJfGp2OyN5q3z3QfgXgl1/M0A5u9pkw1a4eODzswFFy88+KR007ceF8xvv4SCyB4V2WDyT40ICGkS8UvbUyY5ixauzWokTUXRguY+YDhMA5YddnxRNSUBZYVV9m2J4RAvN7OZg+MdqF74Kxtu418q6yCS/Gm6z5g3l3omuxfnbCuUdL3Vbic83fN0oHlLxUHsrfwAuyGbaslFmQXT+hjJmHOo8QtArqR1EqQvYJ0CEWmsdGxCQBARUBYldmx9oXyGtv917JUHLDLrRukQ+bt37frgadfAjw6WxxTWXIvbg/QpJvrzZpgUswxqnnWZFONQt3H1kHa8QBoPH15TUhfUxS4i21dOI6PSIgpLJK6qF7OGFRRjZrld6TM9arxODHrsqft7dOoRm1MNlRqKz9MBh2LIfHFo0j8w1HQMXuJQLmPosqnH9eCizEdm9uYrPWGofzwPJRfdllJG+N72Np3SabKray4OqfEWFwBgvo6a8X0LDd4PXMPsuuSarJXguwLDAUb/SC6g+U6aR0QWxommzc+y1STvXn1HpSX1MDha8YEZXJIQyoOIHNNts5kOySnaRhgypsEMqeeuIsBW/JgBhfnwHRqQoFHffUq8/EDJ/6I6HoHm/gBaMcmzTYcPAgBrlttTfCLZYCWUIHvH/RApQSPn3XhxLBoY/A8HhZA2KTizew8oopmtS4qcrwqsuu5YuMqi4U60b4PQPp6bB7CxiLTQGOdtB5byVZ8+bt/Yasjai60avecZVfh2kveat5fSCZbo1yf9ngf3KHfzStbptmcxZdvkOCeickucpoyx1XiaviID269rR2p9bIAG7DUG9MykxCuYAU8QgoaRMakCnU+1noqDaIy8DOhBgnC9YJuWL5JqsWAlwuyK7WX4BBYcPb4OSfiip7QvLLKWnV6RJAKF0iLH8KWYohvrIdwCZccd4sgHn2sC+RXk01HYrY2fel6cyuKjHiCsdAfVT4M+V9PQP7PM6DjcRzguonsrsvy2YEEoI8jpPJVIBU3YNRly5otEULH42YZmvnYcGbJuHp0ksm0ZQ3qscmU57dU6nOs4MKYXDenr0w5hl07GbA/GbaOoeaGWVZYXpJbydy4zfRsRSqeC2xB9ixLAfxOwO/QzxHPmhS5+IWA13SQLTgEeNaxiaFGrEWhHAYoG0AWsyZbUXm5ePogzuspwI++sh+f+ucXzMcMqTgAm+QlXU12cUE5CCEsE6kH2aTMBSIu71PA3is7e102n1woScNki4KIK3ffBgCQlTheOvE7iJfr7dsoUvtz6ri21e4yPoNqfV7wcq/DzJwCwM+Pu22uyj6fDwkFeLGHnS9eB8VuXSpOe8LmxC+sLnxNSRgLfMVormPS6vae44jGwzamuawoVf5JCIF4rcVK3eV5F873nMD//ubL5mMjXQ8CGtu/rvKrUVJUCUFfYE/MoiZ7LELwPwfcODSQvUXPUEgwGRUED8Lrml/lCbU5iy/fIGEmJhuw2OwCoQBXOa82XcaFFmvxbyacKNIm1Vbw2kZ1hKvjb8nMYh8ZdCAAJ14s1OcPkUBYpn1aFwteTh6qxYZMf5BgXMDTHWyekq6rhfNLO+D8151wfWkHnJ/bAudH1sPx3tWQrrCzioQQOKpYsEenEjOWi/GgHfZFfbraYUMZV0gKsVZhxAXtCiHx9ZMQDo8BlEIgFDtrM5fSacN8PfbyVgXmg0wO43wgaz6WpS6bn1/Sbbejzjqmk9iQ8nw+4NUO2vmgnYHnmOwQsb5TeUn6cpBkrDiL5w9eLj4X5/hSp/5aVx0K0qzfljuWd4S1CPBstKS066Q1kFS2YF7Ummw+yJYyL7qdTjeePGrJJa7kgmyH5ESBrxiAJZvWNA2BIOsDbQargQSgsMFnuUvFAasmG5i5VzbPdBcXpTLZAHDNxbebt5/e9wDEyyoABzvW6v6xtLKyKj/FNt2ko29axJmx9OzGfOL37fZky8u9TpyfsBYgXq8XB/odiMjsscsbEzBIF14qLqy21w2+FrBJ75etaSpOdxy098guSWWyAUDYUmIukjY4NuJW1xvxy999C0dOs6TWCwd+BYSPAACCtAYRWUJJEVtgz4bJ/v4BD35+3IO/f8qPaBaipHuSO9ciJ23B5nzAlP5JZFkvEu3GZ+mDbF7u/gb3bdbjfJC9Upe9gixolOvN2yRLkP1yLwtCvlu9DiM7aiC9u9XuyvwaBM9kR2IhvGmDdX399pTLTE4Tl5hzct9Rqa+HEpppjJYLzNZ9OtKxrUYJUbPYYn8iruE9507hb/qOYWdRLKvJFe9v82pwFjfAB9m8w7hNKm48NpS5UwPfHpIOph6DbdVWwBp0bM33a9q/B692CCumeiGuAAND1udMU0uVVl5sL/nIhLGItfZaTnJxGlEWrL3dXDEfcnEAKJTGzdvU3Tqn77QUeM0H2d5NfJC93pSMT8eFrIvf+YStJjsDkw0Ao2GCg+fYQN5YZEnFDRiS8ckpxl4HIwFoGpuYzPZdIxdOPTaQLIPP3sbLZnyWhskGmJzY6IF4qO1ZTKlTELbpiYu4ZvbpTAZvgPaHBZaMT0YJ9velLtie6Gowb/t8PjzTkeoqDiSZnq16LQbZ9n7ZEza5ePpMKBEIpDdZvTHf570b9aQe//q9v0TP4DkcbnvO7P8KAKdGRZTp0vPJ6VGoWn4ttU6PscVjVCHomMictOnm+swi0mYzAJsraEw16+RIjWdZq1r4nvfp5OKAnYk3JL8AcxY3t1kJsleQAZRSrNasRVw6V3G2HbBPH59jLgcq3l4HcfOFVys43+BrsqOxENZXqFhfzhjE8xMSTgxnV+2kg1RlvSbXYIJSCi2JydayMNktXJDNJxpfNz2Cvz60n7WsyvRZI69OJhsZmGze9Ay6SWYmuTiNWqaaANtXySZp1QUahARr3RZ3b4c8h86UyeZ4VG9h+g9P+/HUMWtum1Cseu3y0tnIxZdRkD0t2+vNlxE8SUm32cJHLRIjIab2L1/uyGtV9d///d+44447sHv3bjzxxBMZt/v617+O2267DVdccQXe/e5349AhywTjwIED2L17N/bu3Wv+HT58ePa/YI7wbLSCkHXSOigRy4lydJHYbHtNduYA7vk0rZp4GPXL0XgYsXgEgSmO2dWZbO0CC7IzuaanAy8XT1eTDTAJ2lV73gyAMZ3PHngIwlor0ZI8ORvY25yAU2QZ7Wc6nFAWcJx9qsMJjbIJ7M0bYih0sQ87OlEPuJoBAA5XIV7SpeJ+p4ZduqSNJlQrUVDmelU6iM+EzZz52Yn2/RjjmezizHIjYU0hxL2MnXYRF+7xfwYTk8O4519vg0Y1IMgH2RLKdKmZRrUZ/QJ4KBowMG2NLR2TmYPsrsDCMdl0IAKj+xCpW7712AAzfjSkpJnl4ml+Q5mL1WvrsF0PK0H2CjjEw2GsEplseFQct7N5HM5PiKZ8dHuNAnf+seOrEnYmm82jb9poXWO/OZX/XOTgg+xc67InEil9tdNJlUO6s3izZAXZ0p0t+M2OjZgW9Y4d0QTke9szBvh20uLVU5PNqzKMNl4207MSJ0i13p1lLAaaZkHES8UBZDRJc8cOshuCB2fnoBJMDrK19iAGpgXs73egkFtjj8WtpHvuTPbyrcleruWAvnmoyQYASe41b4e1C6/tbF5RZENDA+655x5s2rQp63Z+vx/f+ta38Mwzz+C9730vPv3pTyMcthZGjY2NeP75582/HTt2zO7bzwMclS5oHjaQrxXXgUQX3/xMtcnFM0vOnrWZXLEBRTs3Dfn756C2BWyB5VRwHJOcy3jJBegsDuQXZKdrV5YOvGT8j/segNDK1ZJlCLL9TuDSBnacpuICXknDNM8X/sBJxd+wPo7b9YUKhQDU3wMA6I9uRdSQijfJcOhzE+0KAyqbBF6LUnEAqKloRqku5W47/wrGJgfM58rSGJ/xEG+uN6+LNdJavMPzTktBMf0nc7u2EckWsOcjGR+YFqBSa2I8P5F5ld5tBNlUBSJnbAZg6UCDMrQzUzO2VQHsUj5hGddjA2whYSQYMjHZKHIgSOwZc57FBuwtdlaY7IVFV1cXPvGJT+Daa6/Fddddh7/927/F9PT89nifT0TPj8FB2Lje7858PRtScQBmy8QVsLWL08HGToO5uqI5gWI3G4te6HZgNJxfQCBVcmNjjky21plmDp+SGbPKwWCyW0VdvUAAtdKDn9JafGTVJTjpL2aPJzRop6eQDqahWpHDNFd8NcCWYNKZbDocs7xeGnwg1XpSQbMnGwxoyUE20kvGC9UT5u0jQ7Pbh5TSlPND6wjimU6H/hnWdToU6Tdvl5fkGGRzscBykosvZ3jnoYUXAJC4RXxOxtIrVJcz8ooib775ZlxyySVwOrPLZT/4wQ+ioaEBgiDguuuug8vlQk9PT9bXZEMikUAoFLL9xWIxaJo25z8QCk2X+fgFP+rilgPiSEQAEemC/ykaJxd3SGm3GYkQnBhmA0ZTsYKWcpW99ldd0E5NQfllF0r4gDQ8iqkQF2QXlYOIFBi1Bjmh2rUov28uf6XFnPFZcIT9BiDttkbrMoEIKCwszvierU0b0FS7DgBw4tzLGMUwSCk7p2lPGNDUtK+7fq21KH+qw7Egv7cjIJhB1/oKBU1lKm7bFIPHoWdPq94HOCpxZtyqX7p6VcJ8vdZhLWLFtQVLfvwW8i/TeSBIViuvSDSIw6eeM/dJWVll1vcU3ASOdzWbI+Pb3HdincjOlaZyD0o9bII9PSrapOcTweGM7/kfP/ks3vf5S9DWuR9EpOhLMlXsmEw/zlCBoscIsqPnARqH1+3LuA8ADfK3TkH+3jmoD/fOuP9ovxWsCo2eJT+eM/0ZUvlYIpJ2HwgS0EPs84zQat9fpFgCHLrMcSIOQaQQHBQUc59LNG1l8cUjFArhuuuuw4MPPoiHH34Ysizjm9/85lJ/rYxQubFzrDCQcbt9XIL1koaVIJuHwWZH9SDbKQK3rmPzpkYJHj6dH5vtqOSZ7ByD7A4r0cYTCckO4+HINAQIaBSb2LYVbpwOMJ+TCYcbR7Y1W+/Znhok0JAMRJSUz3lVoCANk91nzRekwQtSZTH36STjKUw2ADqU+lgZOWPePjo4S2IrpJheQybCCs6eZOdMoWqdO/0ha47INcgejy7PmmxCAUqYymC5wV6TPXu5uBa2zo/R4IXXjnbBhU4DAwOYnp5GQ4NVIzc4OIjrr78efr8fN998M+6++26IYuYM1r333ovvfe97tsfuuOMOvO1tb5v7F/QANbe6MfotdhKsT1D06U8lSmW07J19BiZXeF+0TsDGnQpaLk5yxqTAP33TYmbfdFUILXuDkAdltE/og0dIwda6ejyob+Os74Zg/hJgzW4/WvYGcfYf2WAololofX1mV8jlgpqYG2DkLWJkGM2XsX1l/OcRjDPGsbSsFKuuzMB26XjLnbfg619nF+/R4Z/jDZfdhqlHmClcdfEovDtTmb16BfjGn7wYD4p4qc+Jsl3DKJxn6dBPfmrV9r3jpim07GW/864xAf/zuyJA9AANf4NTwyz7XuJX8eY7JuDQr+TO7wdglDU1v4tAKlv483cpke48AIArzm7D8wceAQBM6B4FLpcLW14vgJCZ98lopAxj3xmHSETc4/8MPjr1Ebz1zltwXI3h9we9CMsCSjaugnHBkfKutGNFT08PHnzqBwCAJw79J25933/giWn7RNE9LaLp8iCEpPVF97CEuKq3rIi0AQAqmpwpn2Psg+iJKLrGdYXLvjE0/N8CSOWZh/iOb4UQBwARaHmrAsG5vM+VgmIPxgNAQg1l3Af3k/PYhI3m4413ELha7duer3cg0ZkAJuNYfU0YRCCIYwjd3XP/ji0tLTNv9BrB5s2bsXnzZvP+m970JnzjG9/I+ppEIoFEwh5MSZI0Y2I/F2iaBkGiECQrOcND6I0DuiN9oDySdptAlOD0KFurtJQoqC6aQxFpFvDJowsJXo8fgeAYIrGQ+d3fsDGGnx1zQ6UEj5114d07o3DmsPIkIoVUyTOqiZz2BzWYbJFAvLgMysOMuaTDEZBVlhIoHJtCnVAPJ2HnFqn14MCA9XkNm1zAAQGIa8znRNBs0lw6xhEWVe4FOVZLdR4IJdwBCrL9zgfZQpMPiKvmWoOORFO+Y/ogO3W7EtcUEB8AXLVoG3VCI1Hw9iC57AMa5FRJIjHVfCUD00BZsSkXjxMB3SFL0VBeVpXTvjVqsgtcGtxZjPAWCun2AVUp4KQgAgEhGpabp4rPx5WPxKdnfQ6HQz2AOAI4KzEw6QURZ6+GEh0UIPOXEBeSF21psKBBtqIo+MIXvoB3/3/2/jtOsvQs78a/z0mVQ+eenp6cdjavtKvVJkWEskGyhQARDcgmCDC8L8byD5DJxhi9PzAvyBhjZCMsAxIggYQkFHbFaiWttEGbd3KeDtOpcp1znveP59QJVaeqq3p6ZrpHfX12PltddepU1QnP89z3fd3X9b3fSzarDvju3bv50Ic+xM6dOzlx4gQ///M/Tzqd5l3velfX/fzgD/5gx+vrNfGefq7GqVM1Wjm5g06az3iPH/pqhreNX/ms1fyJYOCefabA8UaU5vvpFy0++7gK+kYLDq8uuBx/KIfz1fnIdiPHggXe84+UuTAbLC7tCzs49qkUzrwaFt1iiuMPbQY6cY50MkulVuLCmQVOPJxl970lTjycRTqhCU9K5mbV8cinJlb9bbdPvhP4HQD+6s//jte85QcAdfOe/aiLUY5//yt2NPnoMzqNpuDP/nyYNxxcP2VH24WPfEHdJ6YmudXV/N/xuiGX/46NiwHbf5KGN7vdu73JmS+pbWTVof60J2Q1keT0M9evGI/QZex10MKU/grg1yLPDecnOfHF/jKhcn8WsauGPFlmuz7NL+39TW479HZWgqQqJ0/f4j9+4atLHJ/uvGa+/MR5//GRZ85x/KEcTzwWTeCUaxpf+kSBqXx0rHn4ZGiBWXkaAHux4F8T7cfA/lywCJJNybHfqWK+Mb6HSTZc6sfUtSsmU5z8cqHX4dgQMKT63eVSpesxeK76Am9uTQtpnbOnRxBno9eHnUoBDWRD8uJHTZZLcN/3jTK5+5tPv+Bq4sknn2Tv3t7qsFc0oQ7c5u8mWtWUrqTyXgkIFt1FCrc7sUmzj3wxg/QC8dffW77iSfhuScSNiuJomnMzUK2v+MdmD/DGYxYf/3KGxZrG06bL2+8PxqpyTfDZx1OMFRxefjjawuEsB0vUJFV2rnK87XmbF72+39RNCcbeLDj1MfVaTl9m8oGg4mx+bZY9oX7skXs0njgVLJrf9h3L1J5OUf6nMqzYbJ+eJ7E3GCMWZhZpNRWM3icYvoLXwtW+DqSUPP8fBLIhMd06ex5Y4fh/W/GD6j3f4eAsOhz9Y/V3qrHCjtDvd6suz3utiYmDCZpnGrgVib7Qec9MfiwJTz0EY++kZutUdta5NUZzqNcxWPl8yS8p5V6RYeVzattbywt8bGQnw1Ltb1k3mTHuAj7GyMgIB19dB3q3DUkJ83+q1lLbxuyrUnjrhu7HYOMxapLnQ/NuZmHNx636a3NQfRGscWaXTMZeUiaTXFvAvucBgHlOnpxfbdP+9tdHUv2KBdlSSt73vvcxNDTEu9/9bv/50dFRRkcVBXjv3r380A/9EH/5l3/ZM8i2LGtdAuo4CDQaxRRJJALBISbJa7Msu2M8cd7k9CWd6cKVDbRtO8isGcKKBA2XKoLf/1KwKP+V75snVzWQjsA5Gr3hxi8FRu0Li/MsLAU9yoXMGO75YDARY6nY4GQjopgfo1IrsbA0639n6YjI9y9VVmh6Ku3F3Oiqv21qdB+H9tzB88cf48ipp7iQmadFTHeOltC7vP+1ext89Bk1UX/6hQSv37d+g9tXTxss1tQk//IdTXIm/u8YScIu/cscd+6LvOeVu5v+Ns6RUiBktT+/ac7v5aD9Omhh3/StJKwU9UZQbRguTA5wTATGd+6h+TvPQNPltsXDmKddDo8G9+pMI2DnzC1ciN332Qsngu3nzyIdEVDAQzg6Z7AtE72WToRVx71KdtLqTCq0joF7JDoeOF+cRX/1NoTZmW11vrEUET3bDNdKqye7aTdo1JsRkUjpCFwbnqo+Cd7T2p4cSA3ZVmwMK4y7s01cw0Kg9ZWV3sLa8Pzzz/PhD3+Y//pf/2vP7a5kQr264vDpP5zBTGqkhqKaGu75KlpVnf9n7Kdpzo3FJmo/9o9BJfQGIa5Yonq1JOJGhW6rJGaz2eT5z1pYprrXXjfm8HFvmz/6aJHbXY2FquCvn0nyt88mWKlrCCS//voSL/Mo+EKX7LpnBSwNGi6VE+6qx9t5PGj3a4wWuDg7DF74tfQ1h2ro/Wefq7NHD5I+Z8pDPHVCfd/9Izblb6SxR4YAlRA49b9djAeC9zf/adF/fGmlyNIVuBau5XUgMyY0GtTPuxz7XIb6c2r9KMYSnHqsqCjK1ilouJSftiPnxj1RAm/ZbA9lkfUanCzTPGdz7NPpSP+6uzwMSw/C2DsB+MTfF8jdGtIO6uMY2A8H83x1YgTSVag43FxZQJPSr2QvGRYryTcBv8hQdqqv+3epJmh4+jcFuCbFqbhjIKs2sumCKxFJY900AaSrWslE1kQMrT3xXA4RZWdP19Z83GYvLsDEESiote8jn86zt7i2mGz2+Qo3v6nI4Xu62zOuN67YquK3fuu3mJ2d5Vd+5Vd6Ll42xMLG0mkOqwt3j76HXc5n/Zc+8eKVr240IxZeoV4YCb/7SJqVhjpGr9pb5/V3BleubBPpys1ZWN4Kc2F5pkMILKqEuXmqNi0Rs1JlKXKswlgMibyFxdJ64TV3/3P/8Wee+2vwFDXliVJX4ahDow7b82rV/sQFg5nS+k18nzoSnJNv3d/5O3e5HwMZfK9i0uW2ySDok9/k/thhGIbJoT1RQcWRYm/Rs3ZoY0mMN2/3/3afXODgiIMuVHR6shQktS4tXex4P8D5mRP+44XlGeqNOqeXOse8ozE2XicXO4Psburi0pUd3rBUbNyvdWZsZdPF/ruglUS7pRi7z42GVCKYGGv1Tipio1ljxrnIH1f+iBfNo+hv2N6xDUSDbC5tiZ+tFT/+4z/OvffeG/vvv/23/+Zvd/bsWX7mZ36GX/iFX2Dfvn0992lZFtlsNvIvmUyiadq6/HNtgWsLPzHlJ6iOBpXVZ+ynySSLHds0m4KvnlHzay7hcnjE6dhmPf8BV3T/V+JfxLanXPafv3HUYf+wmquenzP45X/M8t0fLvJnj6dYqavxUCL4g0fSNJvB/oQQiKI3Ly82cO3ex8QNFR7EnhykLMioWpJ7oRrZtlRejth3PeEGbJ47p1TyWuwLOY+8sBL9rFCPtxhNXXfXgS9+VrZxT1V9CrbY4SVlpeb3osv5Om7VDY7NqZB/+FRIJA1wz9ai14yVU0G2hyfPG4Mfg0tBgloUEtSm1XnLO03elJhHeD3Ly7oJ2TsgdYDR4ra+jsPcSjAPj6TkNbu3Oo5BDZVEdjVkcx2vkZpE6gZu/fL2mTSCsaBcXVnTPlwbllYuqUq2h9ML+pq/k9NU1+16zSf9YKAI17Zt6vU6Ukr/cRy3/QMf+ABPPPEE//k//+eODPSjjz7KhQuKZHPq1Cn++I//mPvvv3+Qr3FlsENVi3Whc2D+Sxiauik/deTK2jUB2BF18eB4PXjC5Isn1d+FhMt77gkWlnK52WGHoDmCGw2l/L64MhextCrkRqLK4mObx26iGPK8XlyOp3kshOzKeimLh/HKu77N77H67Fc+grbXGxQabmBV0QYhAs9sieBzx9eHYbFSF3zplJrUikmXu2JUa7XGMZj7K//vV+xpRHqXfH9s8c3pj92Om0N+2QDDqyiLx0F76UirTRP3xRUSBuwfUUmWsysJhKEC7fmFeDXiszPHIn8fuzhDyUuabcsFJdbjMUH2Cc/aS+BCRfHUuwbZF6tQVfsTYwEl0nnwYocoivPQRVjwqOIHcmg3bHyqOEAy9NvjbLxaisYfqf0V/3vyb9C2dRnjQjZecivIXjN+//d/n4cffjj23w//8A8DMDc3x4//+I/zQz/0Q7zqVa+6tl+4B8KK1M80nyGb7mwreeqiQcWraN21vckGa4HcEMiEFIXLIUVhIaJ2Xg+esGh6gYMuJCOeoOSpJZ2Pt4mj+RZ8DRdqvXvg/USjCJwF/ABvxUaWg3m1XF1mtxdky6Tgi4sBY/CuaU/QbFsKUmocdo+uRMZSX0gtpUPu+vNxC9t4uc8G6uoiZJXoH1sZVRgPK4uL6XRkLG63U0unsiqJ3FRruG9cNBhUxytisVa0eCZX9P98Yz2Ym5db6+vR72B0qD87qLnKxhQ9w3bB0hGhHvR1QcOFpH7Z+9Q0LeQIsrZ2h1JlCdd1lPCrh7NLvSv21Sb85oNpfuef0lc8dusHA00Tv/qrv8p9993HY489xi/90i9x33338fWvf51PfOITkZ6pP/qjP+LEiRO88Y1v9L2wP/GJTwDw3HPP8YM/+IPcf//9/MRP/ASvetWrelLFrxYS+4Oq1Ogi3LtTDcYLVc0Pfq4U4irZizXB7z0SDPo/8fIKxVRw0YcXBWFbmtvN29X7l+dYXFGV7FymiGlYkUFQ20RqmBEbr1DFOozWbwUo5voLskeHtnHbIUVBOXvxGLOFRf+1sEJpO167Nzhfnzm6PkH254+bNF01mL9mbwMj5s6s1spw8n3QnCWTtHnbTcH5lOUm8pyavMRUGpG+/ib9QXFTyC8bentkd4NIGQjP3kpeqCKXm9w4FrAHshOvA2C+SyX73MzxyN/PnAvu25dNN0ka6p4+2uaV7bhqwQlQNBdBqgVqNwsvGbpetXtGEV7CSM7UcJ8PFkhyuYHzj16fuADjn+3csD6b7UiFfnucjVf4uXBFrR3h8ZJL66epsIUoSqUS73nPe3jzm9/M29/+9tXfcA3RCs7qss5R5wjZdGfi6csh664tVfF4hO+79oX1q/c0KCSCVW/alLzj5hr/6x1L/IfXBtv+6eNJVurBmCSGQm0hPbyyZdVGnlPBndiWQnjWrOEqqrwQzJlOqc6Y7q0VJlM8es7yv1drjBeaCFhhVcffv6w74Kmdi/HkphlDB0JIYdx9ZtF/rO0I1qWRYxuq7PuiZ8I7F+FKdpuNl++nvPQQAKWGxovzg1GfI8rzeZO/s4M14M7Twdqw5X/O+Hcy0qdH9nzEI3sDRG0epCPVOk8XDJyV6IWGi0itD/W8pTC+VguvpZJXVKu+4D93ZpUg+x+PWXzmaIK/fyERscO9VhhoJf6+972P973vfbGvvfGNb/QfP/roo1338T3f8z18z/d8zyAfe1Wg78rRWjpvq42z52CdB0+oE/SJFxI8sPvKTaqOEyzaW32Gv//ltN+fe//OBq/aE/38cBCov3Yb9odPAHCH9VL+R/VPVJDtVbJblWA/yDYEDF37i69fhINmVbHuFBtYXB6cLg7w6rvfzuPPfRGAL8z9I2/nNYBHxX91fFA2lXe5cczmmVmD4wsGxy7p7B2+PJXZ1ajiALV6GarPwVcP8NlHvkTpmQmfRuRuUcU7cOO+uxBCKA9NBqeLt6AdyOOcVosG98gyN46n+eiz6jVz5FVw9sMsLM3guA66FkwAjutwfjYqWX10LrjXdxUddg85PDdrcH5Fp9KEtKlUkC+UDBreuS3qM7Q6DbtVssNJN21PDjGSxD52RH2PBy+iHy4CYH/yHNQ9r9OXj3Wv9m5AJBPB4q5a70yChRf13Y4TgBhOKHaCZIsufgXx+c9/nhdffJEzZ87wwQ9+0H/+oYceuobfqhNyqeEzO16wn8fGJpspdmz3iGfdpQnJndvtjte3EFh4QcAsaSFhwPteU+YjzyQ4NGrzlkMNsp5S81jG4bV76/zjMdWf/b+eSPJjLeZeIdRCt9iALmOWe6Ls60xoe4M5UJtMtdqDVRXVY3kVy8F3XR7OsuTR1u/Y1sQMreO1/XncbyyqzziygjadibICN1HBYhCEvbJbCXyESuL724RtvLzgWdquX60W40mEpcO24D0dlewW+2HhUzCqknGfO2ZxaLR/9xs/yE7rHC9bfLmZY0k3KThNtJVg7ewmvH2mb4T0TX3tey4SZG8gtX9HQlqDmuaz2NYDsukqHRd5+b81k8oxv3iBcm1tQfbyyiX1IBRkn1olyD4WYgU+ctrkjesoTrwWbBGeWphIUvNUBvfIXdw+WWciqy7cr541uLiOvbftiFSyDZOHT5l87ljQ+/WT91RoT5T6/dgCtJuLiCk12O3V95ITOS7On/YnuaH8mMryzrWEK5IIbfNkXocKQZAd7jMPI0yNH8r1H2Q/8NK3+uyBv3nqfwb9W8dLPb0HX7tv/arZF1Y0np1Vn7t3yPbpyO2oen2omlOm4Bi4l+q4M1XcsxXcpxb97cT+zecleCWQyxTZNXWD//daKtmgguwW3CMr3DgenJ9GRrW6uNJlaSV6bc5eOhtpBQE4E1LL3Vlw2TcU7Ov5GZsf+w+v5V0/dwcPPx8E5zlxzn+ciqlkSymDpFtCQ0yl0Q4X/IqtfHEF91wF90wZ96ved0zqGK/vjy63URAOnGsxlezwoj7dq5JtaNCioG4F2VcMb3nLW3j00Ud56KGHIv82GsJaBs/YSsW/vZK9UBWc9hZ3h8cc8tfAxmczIOKNG7OwvmXS5pdeU+Y7b637AXYLP/TSKgnP5udvnk1wxtOuEMXQ/LrUfcEsw+y+PcH9LyaDINgNBXij9YC9+KIZjPF3bY+O2SKUtJZeS1a4aivGN0+ichCE6eL+c5MpRCIIYrTQsW15ZcsLof7t7Sq4Fhkj0Lw5X/UT3xC6Zub+Es0rdX3uuEUXWZwOSFfCkieWV7T4wnETKQRPpTvdVXQz0CI5Zb+kr/2HK9kbii4OCFNXAfF6VrJlyxbs8mOEVgKlWiutyTbLZ6i6FTKaYuSdWdJ6xv+nQ0H4186ZvhPPtcJWkO1BaIILCeWnO6aNUzp/kTceCHpvP3kFBdBsOxjUbWlFaOI/fneV4bbsmSzbQaZwKo1IGX4goKFxm3E75WrgJVfMj+F8ec6/EcMT0GZAtCc7PsgOP18s9EcXB8hnh7j98AMAzC2cpzHt3aA1x8/MxuFVexq+ANZnj/U/IcThhRA16r5d3RkT9VqFNyfewv8a+nOOvukEjV95iuZvPU3z/c/gPuZl/DSBtsnO75XEHd65Bdg+0ds+qBvE7qxifwDui8uMpR2/n7pk3AjbfgyA+cVoX/a5kOhZC7O1YMG2o+BEGBCf/cYRXjj5BLOXzvJnn/0H//m0GywM4iq0cr4By03/uwpdIDSB/kBQuXe+cBH7b077lR79W7chsle2DWa9kVqlJztSye4RZAOIYW/hXnGgfo1n4S1cU8gTwXXzdCvITrV52YdECA+NblWxu6FXJXs1jGcVfRzAdgUf+IoXoIWCbNkjyA6z+7Q9wTgbqbaGguyJZrBO+JIdEj1rYymI8aRPnXaPKVFUORMS9pq4PivZYbp4C63WKR9FCxIqjGglMGRbP7b/uEUZr9gQqi77dHF7gUldUcTmKxpPXuiTaLvSDILMgsXnPZ2cp7LFjk0d+3Hw7CaeWtzVV7E2vD4bz26cIFtIwNTA1MJ6uJcF6SqDQpEyQMpIMmQtaCVQpJSKiTkglkqX/McjiUUAVuoaS/XuCYBwpbtmC77R73V0hbAVZIcwnwsC0/ILM7z+QB3NC6Q++WLisgKpXrCdYOL4yHPDzJbVaXnpVDPS/9uCe7wUokWpSU07GCwKbjejqsrD2TGcL874f+v3j6/bd78aCNO/wxXrMMI92UN99mS3MDEy7T8uTwQTrHusO8WlkJS8zBMnmxtkQojBiVA/7p6h+AW/e3SFn6v9DD+W+QkKortQldifWzcrh+sB73rLz/DmV34fP/19v83k6M417UOYmgq0ARYaiEt1fuLukDDe3v8EmVuZX4z2ZZ9rEz0DWHLUtZk2JcMpyd7h4Ho7vhhcQyWCKnPCDvYTV8l2j4ap4sEiV7tzJBDt+do80qvYidEE+r2bawyA6G+PUxcPB969KtkAYjRYGGsrW33Z38xoVbJdXJ6zn0UTWkeS5lTIEWBHYSsp0w29erL7wTtvqfkiaA+ftPjSswlfXRzaem9DkE0XeVrd/2I0EanCinSoinpRVVGllExL5T7g4vJgVa2fdhQcJnPRhZ4Qob7shos8Xdm0+jaDQMQE2dqO6PwjhAiC54UGsu5ERM+07cH22mQntRxCdHFgwg2YLv94rD+GYPiaWE4mOOepgdd3dTL65qtHYPFzAMxWk5EAOg4zJcELc2pe3j9sU1yjP/N6QwW/UiX/rXWsZDddpKVB1kAal7/fKLNl8PFgudWTDUykg2smzqEFoNyIMg8Avnzm2hYTtoLsECohQSP35ApjGelTh2bLGl87d2UyIj6lNHWAjz6nLkpTk7zn5Z00cYhmbIXXeyT2ZJUAAoH4WQs312/0RTq0wwW0TUZvGsoHAUG3IHthOUgiDNKTDZDLBLSiS8PBsW23SGtHhDLe54QQhxOL3YNsudig+WfHaP7B8+wk8GVOvyyNdscQ2p0jaC8fQ39gHP31U5jv3L3m73E9opgf5d98/+/wllf9wGXtJ0IZf3GFu3fYvP1Gb6GlJeGGD3HhUpRlcbZN9AwtSUNT1eWdBQchouf7QqUYbJu+EVDK4kYjFGTHVbLDFZxQL6JI6Oj3dCac9LfuUJTpTYbVKtmVSCW7e082RG28tB7VsS1c35C1QMzqHOcoyzKZdKGDKhn2tt+5Ro/WbwZcTiUbIGXCv3xpsJj+1Q8N4+bDlex4ppc8VQ4oyqExsIWgiurASpN6tcJOfRcAc3qJilBru4Mj8SyFsM6Je2Q5oIsbIuJWcD0hli4+3TmuRpgCF6vRSvZU8JrYFi9+Fg7EcrUvkjbVeXzwhEWjD9JIOMh+wQ4q54dvNv32vxbOrpyE2Q/7f3/uud5r+i+dDq69+3uwDK86HIk0NFUAWKf+aUCJniV0Re/XAPvy9tvNbaBfLK0ElezpQnD8T3fpyz6z3Pn8I6fNdTs8a8HmW2ldQbjbg8HSuqAm0jeFmub//vkrM5g2W3Txfb+L7SlMv+PmGtOF+Mk8rnIlLN2vtm3Tp5jUgv7Tm84HNFn9lWsTf7qWiKiLr0IXTyezJKzBkgi5kMjNnLWg7AvwqGE97s57djT9CeGhExb1NbIIW5VsU5dMhbLozjcWaPzHpwIqOHDEfpH3p36PXf/vNNb37cX8zj2Y/2IXxrftxHjdVGB3soV1hXYgtMh6UTFefvjOKpMpT5IsfZh/OB9VMz93MQiyk4kMJA+AUENuqxqWtWDS035YlttRilwapLxe8toRzl54LrqfNvhJN10g2ioN+n3jfvINQBzMo924OSy72pFcVV18ALp4OMhe3gqyv1khTwViWc866j6LUxYPL+p2blWyuyJSuVqjovDr9jd8T+1nT1l8+kxK0WLBLxa0Iyr82Hnva20K45Wz8ySEGgPOJYPz2S2BooV0Ttznlzetvs1AyLYFoLqIBM0tRBTGz1UDkbSRhK/wDtEgO0zbDydmarV57t+lznGlKXyxwV4ItxB8raKCbE1IHthtd1iZnlw+BvMfBane8/lTFk6ze9LsiyeDz7935waaJ2yp5nVLU/9fL3X7hgspQ62B9XWuZK8pyA4q2XtGgjG4W5Ad9/y5FZ0zy9cu1N0KskPITY4y46iKaHYhgXQld+9oMuzRl7502uRSZf0HVNtuwMjbYOhbARjPOHzXrbXYbd1K4OEsJpKRvso4yvgtxq3kl9XgJqbTiE3on5xLF9E81eauQbZHFy/26ZEdRj5UyV6uLASTdNmO0MLakTDggd3BhPCl04PTUhoO/gCws+BEvFedT5+D1gSQ1vm98v+ff7P8U1xIx1fzt3DlIKYzQfLliPJLtXT4V7c+D44K+F6s38XnjwfXQKuSbRoWN+y5A9KBCNuO0GKuVc12tTQk95AbeSno6p6Vpad57tjX/G3bg+zmbEjQcGdGZbXD37tgKa9vAE1gvHXHNbObOX9JUm2sfdIepJK9Kl08VH0SyxuoQrGFq4pwcPZE7TEAcjFBdquSnbPcDUMZ3YhIXyZdHEAT8KN3B0HYJ19M+pRxudSITXy7Xdg8LUQspC5UaZ4JzvuZdPDarmJ8AkWMJHxHFnm8FOjbXKdUcfAEItPRIDmOARUWP3O+seCvWbTt0f5tMZFSOWSidPFwQtQtN3nNnkCM8rP9iMqGbN2OOupcvmTKppCUHUH2bO0C2Avkm2pOnasbPHk+vpq9Uhc84bUBbss57Bnqj8HStCX15hUeIxxXnQtDUzfMOkE2XdUmYAiEIS67kp2KMFvWEGSH6OIHxoM5+0wXuvipxeD52yaD6+LLa1ibrxe2guwQhgsTPG+rbLbpGsgLVQwNXn9A3fSOFHzqCviuNVwD9v6O//ePvqxKqss1UXmySsuPop0WFa623W6oIPttycCfVH/lxKb0c9Q0jWJOBQpxdPGm3WClvAhERdL6RZguvlJejBxXebT3wPAtoZ75f1yDyviZJR1XqnOyOzTBKxsML8AfSdD8qV18sv4JXNyIldEWrg6EJoIJu2L7i4Qbpwpw9Cf97d7/cJoLKxpSSs7PngBgcnQnE6M7IX3I3y5cDdsXtn/L3EpxMhBro/J05Huk2s599bFgsRK3uAQw3rYT/a3TmP/64DWz7Ko3JVJCpXvOalWsl082RL2ytyrZ35yQUkZYYU81vwFApi3IrjRh1uvz21l0161odD0idZl08RZum7R9hs+ReSNwA6i7UGtrqXIk8qT3WXkThjvn4bA4mbxY9VsEAE6mgzVDtyAboi1D/n43QZDddCRNZ23BUqS3PYYqDm2V7BcCXaN2kTRhaoHjxcWq795imQlMI8Fd5sv49wv/F7f82RNMWCpA+vIZk1IPkSuI0sXnTHU+7veqzuGikpsAB3V+d+pf9Z//2xfiz+GXz5j+2uy+nc2+7/u5Zbi0vPp2lwVbgilUu4IuEOvFh5YSkdYRurYulexM6vLGg7Dw2Z6xHElLBT/dbLzClex33Bwka65lX/ZWkB3CSHGS552AmilPqUVbS2Uc4O9eSGCHElrPHPkqX3/mwcv63Ev5H4KkEmW6c3uzZ+9HJbKoji4kxXQGx1I3xW3m7ezUd3G39XL1YtFCu7XT0mCzoNWXvbg815HJDlNKhtZQyc6FVChXyguR4xq2d4nDrZM2o56tw1fOmCzVBluBnQhl3naH+nPlxZo/wGm7MlRFEJ2s1m+6hSuDaF+2mkWL+THEzAdh5n8DUG5o/PoXMswuXKDeUPfq1Pgexoe3BxRwouJJe9uCbKvw0uDvyjP+Q8tMouvRrHvlsZDIzN74wFKYGsYrJ7sG4VcD5RoU0mBfhjBzxMJrNXXxHj7Z4IkheaJwW0H2Nyfcf5r19Qzcgs6s67HY2oLs8MJtS/SsN8IiVmuli7dwcEwd65otKKeDpFh7X7Y8U1bBNyB3Z2MLCe0K49psMBC9kFQik4YWbddqR7gvO26/GxVzSzC7uMY354L5RtvRJbmfM/2xlNDSrL2SDSAmveds6TOwAIqpYX4s/RNYmDBb4zszqpjSdAUPnugdIIXp4nOGCphvHFfnV0wkfZ/1eja4dw8XTjOcUH//0xmLmRiL3n8KUcXv29k/22m9lL57wpaIpK6uda8d7HKVwFvK4i3GHkntsivZlzsetNb2ucwQpmGwZ1Kd1/MrGs2Yobg1Vpua0tNqucA8ecGgfI2m+a0gO4Sh/Bgv2IHpufNPM8imy1Te5SVT6iY7v6LzkafVgP/s0a/xU7/xJn7ut9/Ow499Yk2feWZJozT8Q+oPt8FP3B0vdtZCpHK1JzroC01Q36EusryW56cyP+2/pt8/rrJTmxStvmzbabKyEr1Zw9XtQUXPoL2SvaAysJZnS3FspefgpWvwGq+a7UjBQ6tMCO2IKosHo3NUPCQdocfG9eVu4cpDxPRl65rOcH4MjvwoWuMUAM/MGnzm+eB8bR/fy/jItF/JFriRxdzesNhd5jbcUDD++jtu8x/HBY6Vr3vjgQCxa+Nat9UbkE5dXmJ8PeniEFDGRamJtK/GymgLGwXui8vYf3vK/3vx3mAczqajFcvN2o8tkbhXWfHncoXPwjgYskqb1UPVxra+7PmvBWXDB434+V8k9YDufaFK8pJaZJXdMsd0pTI+nXfptUSKDbI3QSUbqVjFa6lmi6FQW83OLpXssMJ4+PmpmCA73Jd9PljjvDXxzxjXA4Hbu8SS//gfj/TWQmpVspcME1vTSBqSXV47lhAC87v3or10hGdvOue/Z3J4gjfvUnOnKwUfb9Nbqtvw1bNqLVdIuH7Q3g+EAARX9N6TjusHw0IXSE34DNc1w1MWb7nTCFP32QZrxXr1ZBeyytN+3zYVh7lScH4lerM6Lpz1Wi+3e/fy3Z4DkCMFXzt3barZmzfqugLQdYML6TlO2icB1Tdif1RNxD/00irCS9N98PEUs2XB3z/4QT8A+/gX/nRNn/lfvpwGoQb/9NwHuoqdgaIQV58KKMRh/8gWwpTxG4zD6kFSQ3/54BXejYQwDXxuLtqXHbbvKg5o3wXRnuyVyhJCD1k2LTVhvt7lnQqv3BNM+g+dHIwyfjwUZEfo4iE6m7Y93SbqtBVkXwuI8WRgBXOs5Admw8UJcJaRR3/a3/aLp4NrampiD6ND05BSQXZWzGGG2E5TeRdDeNdQ5hbKQqnIa0LyY2/7AW7Y8xIADu2NWvPJsk39qEeL257esNZtjisRAizj8ni24eTS5QqfQSB+JiQ0zl8Gj30LmwsLdZofPOovSvXXTDK3I7ie2ivZ4T6/q60s7qyR5guKsno+XsKkL0gG7y1Npy6/J7uFsB/5KUJ073Y3gGcWAXU6/0d1ksUubDJf/KzukqioCu1xeQHXUxbf2YMqDiDyVjSoFkr4bDMgk4RydfXt2qE/MI7YlUF/5QTatu5tah1BdsGMtQCLEz+TpSZvct8Q2W54ocT2vDofT5w3uHApfm6TjgRPU2PGq2IfHLEjyRJtXw7zu/ZwVAQuHaND23jzrjK6Z9H79y8kIkrmj503qdnqOrpnZ7Nn8iUMV0oQYOnQXCNrS9oucmWVyrkjA1E53evLvlwbr4aLsPSgkp3SfMX+tSKiLj5gT7ZtNylXVQKt4LWL7gn1WbeLnF0oaTQ94egW4+juHaG+7GtEGd8KstswVBzjN0q/Rk2qRZf7lTmcr8xxaNThLTeoYKtmC37/kSQPfe3j/vu+9vTnI/0D/eD8isajXraM2klyCx/oub08VUF6wkFxCpoA6Zu3dTyn3z22YRfg/SJcoW4PsheWgkr2UGHwIDu8qFopK7XoMPW28R+fov7LT9D43WdpfvAo9sfPIOeCRfnBEYfxjLqpHz9vsLJKD1EYLfuulCEZzwYLOLdHJTuV2LgVy+sZEb/Upuu3k4wUlZK/nP878gk1sx4p7wJdXVdTY7sx07tBV0FiwjkZ2a8mICtPqz9S+7jUUAH69rxLJmHxn37uo/zqT32IX/jRP468L9zKcC2p4KuhUod0AkYLXFaGP9KTHUcXH8AnG6J92fUzW0H2NwXqDtpfHIeqGq+1wwX0N2ynVAkqZ+092aeuQSVbegn9mQVw17h4bjTB0MFe40J5qQQX5lWSrF+YRgJDV2uay69kB8f6eTsUnIUq2XK+Tn5RzZXPpwrMaEn+5tn4ymcctfuEHkSevfqx/X2Eq9nDiQ6hyY0G15VoQrGIqr1rBbHQtqWx3nMY4607em/Xdmy1fvq3PV0T5zPnSRF9vzxf9RmCEsHHHulSWFhu+BT1Wa8f+4ax+PM4t3DefzwyNMmw5fLAtDooizWNL5wICiRfXCNV3HbA1MEw1OM1YbmJvFRfvYrcuvYMATqXH2Q3XUgbvridMC7fGuxyKtnL5SCeynuV7L3bwkF29N6La+u5bcImaajf8JUz5rrZiQ+CjT1CXAMMFyc47Z7id8v/j/+c/ZGTuGcr/MuX1CgmVSD0xVNJSlZg2eM4Ng89+rcDfdazs6HA9+L/IKH3Tn1FrLu6iRxNZJiVQdDp4KDfPx677WZC2Ct7fn4+8triSoguvgbhs4SVwjTUxLxSWgRAOxhaaEnUwHeqjPvkAs7nL9D806P+y0IEHoqOFDzSp5JhtanaD0BN8C2RSOnKoJJdtBAZg1o9CLq3KtnXDnF92cMFzxZP2rx07IJ6DRPG3gGoSnZFmw52Unm+Y79GLei9tqUalluLvlQiw8tv+9YOunhYUVd06cfeCKjWYKSgqimmvvbFR9IKKilxlezwor6floqwjVf97BrKPFvYVJCuxPzEaURLjX88ifGuvQhNUKoElONcuhh5X0tZ3NQlE9mrU8mue3HkSAEuLgZB96BIJ9cWXEkk5aokpzsD6SgIIXwWyeUG2dmEZPeEmlefqgX3frgn23lqwX/8ZY/F9jfPJqjFfGcRI/p43Arm6n6C7PD4r20CqnjTUYmW4ZxQCc4rFGWIyeixiLP6Am/M9YJDeaGKO1vDeVit32qyxhnnjNpwvs63TAVrnr/5Uvx4Hid6dsNY/AU7vxgE2WNDU+BKvv1wkFz9ay8547jwpVPqukga0m8V7Qe2d7xN4zIq2XVH9cI3uo81AlRwDaonW7t8kTLZcKPsg3VIIEWC7AEr2YshraWW8PG+bcFBPd3miR3HOLIMuMMLzBeqGsfLV7+avRVkt6FVlfpC4/OUbvEOjy1pfvAoWbfJu+8MLcb2/x6IYKH22S9/ZKDPem42JGK08mUMvTfVOGpT0UXkSAhe0F/0/34m9UKkr2azoiddPGTrtZaebCEEec8r269k78xgfMdutFuKqkc7JAACKtMqK8EN37LyAnjoZH83crhCEhY9Y6HhC7lo3mQVrWRvBdnXCtEgW00arTED4HD22WDj8e9B03QmRnZwsRIsEutLjyMrNs7X5n1GRH0xUDttYfcqi75I0q0Ls+VaQyKxXRjKCyzTq6ytcfFhGKafDOslfJZMZNC01ae2sI1X48xWkH294/h/Pop+zLtnUjrmv9zvM7zClexwT7btwjmv92867/RNG71clL21/6GdgnQCFgZsZ2yxRVKJtSn6l6qQsW3M+SrNAW330usUZAPc4rViXdBCdPFQYFV7Mjhvj3iip8t1jX94sXPNE1YYb+F4OmC+9R1ke4GIdrjT6m2jwXZUVXW0CJkElNeQcOkH7XTxrkrkmvDPg5yv4/zNaT84/KvaX/JE8zF/222lst8y8MwpixMLnTefDNl3tSrZ4TaDMFqVbE3TPatXyY0TDvvzah/Pzxk8N6vzzIzBUl191l3bmyTiHb5i4XhBdia5tmSylEp8TCR05e8at40rkZpAeLpB6AKhrwNd3FMW96ELLq/BKyp8Vh60kh0KsvPZTrr4mTa6eDeByjBl/PGFq58Y2wqy2zDSqkoBx269FNgQzNexP3yCb9lX58Yxb6RKHcDa+wtsn9gLwDde+FKEkrIanp01uGtlln954QWmyqcw9O53s3RkQA/NmzDSPXB+OqeC7Lqs88RkZ9XsWkLWHdwe3tPdEA6e2yvZYeGzoTX0ZAPksoqi27ICA9BfNor5/fuxfvpGEr90O9ZvvgTt7uB7hPumbxxzGPL81B89a1LtI/kZFj0LB9luaL/CU+isReyJtoLsawVRtBBjng3JqTKy7jBSDMaMROPZgFJaeICRyXswDYtTHrUp6di88ZJJ4ze+gf3nx2n8l+eol6uUZjodCnot+mTdQZ5R14mYSCIy186iohcaDeUnn0+p7L5lEKsK2i9a135ckN1a1Kf7vD/EeBIO5mncPEz2pcW1f6ktbHic+6vznPz9EwBIAeb37kOMBguuche6+PkVDdvv87s6VWyJpOnNH7m04NAOgW1Dpdb/Irppq3utkBVraqtcKcNEysbKG9i1wX53q5J9uT3ZALd4nskruonTynB4QbYs2xin1ML9rJVmz8FgDPzLpxM4bV877NMM4EqXk7n9gNK/2J5f/XeKpI71Mzdi/uQNaPdsfJ2bpq3G3XRCBdqVK5RLFFkTMiEl8hhlcX/bVkAuwX1O3Xdlo8pHqn/JUSdgCLrnKrw2ZJH62aOda972SvZwymU8E3/Bz3pr85HCBLqmAyo4/bZdwXX6188m+KdTIap4D6efODRtldjKpjrnub5ExBpKfAxL717JdqSqXptBkI0GXMa82qEsjnIlkaLP790Fmcugi4fbbws5RRfPJKXv5nOqjS5+qluQPR0Kshe3guxrjuHQgnmudBHz+/b59gTuU4u4nznPPZmPgVTZMnvqZ7nrzh8BVBbq81/5aF+f03Bg/oLNvz/9BP98/iS/l/kNXmm/IvaClitN7D8/FlQ398XbVLSwMFLhXy/+CD+69G7c8Y21+JbLTWg6A6v5hq25Ouji4Ur2GnqyAXJeJbvWqNBoxicBhKGhhRQ23XPBjKVrQe9OwxF8pQ+RhYiyeFj0rK0fG7Yq2RsJYr9X6XIl7rGVSCV7Yeki908HFEZz2w8AcH4e/tn8Kf7bi//E92uv8XtCKdksP3IMWXqi43N6Btkny75wk7ZvY1axQVVOchnIpBRjJJNcO40Ogms/rie7FXj3I3oGIAoW2vfvo37/NgoPDM6A2cLmQX2u4QdY8lum0A5GFcRXKov+47BGR4sqDv1VOtcD9QaEWMxMDMPeKVgs968Q3QquRgsq2B5EwKzakCRMGM1CIq/j9KCtxqG1sK43qjjOZdzswK0tUVEhWEl6yU1P+Mx9bglPt4pHcmN8240NXhpygfliG6NMmFqkReS8e55aRonDTuVcrD5la0TORNvZew22UWA7KugTQjCcE7jyyqlea4fUPSUmU75tVhziaPtP7niRGjWO2kGQLc9WeNWehi84/MU455aQCN6smeTQqB3rztO0Gyx6xZiRoUC3SAjBqyYr5BPqGv/8cYvPHVeMUk3ISIDWD1rHO2GKiJ2ZrDvIkyVkc5V7qe4gEjpi2Geh/yIAAOCQSURBVEJ2s8+yXSUX3+qdFkI9vpxKdpuyOKCC98v0yk5F3AbWThcveJVsCAQKV+paxDK31aM9mnZJhy6VsYxk37Aah46VLeYuz1lwYGwF2W0IL5jnFy8ghhMY37XHf8751Dnu/PQKu04pkTIXi+OJd/uv90sZP3ZJ5+7FGUxvwEuKJN9efTPND7yA9NSspZQ4X5mj8VtP4T4eLNz1lwz33PdQfpTT7mkuuhfX1KN8pSClVOIKKWNg/71iryDb68nWNL2jn65fRG28FrtuJ0IKm2ELCoAHdgUD/hf7UBk/Hl7ADcUH2VoryA5VspNblexrivACXb64EvRkA3OLFziYCSjjS+k34jy1yE8+/BX+1YXnGXI6zRrFY8vgLEPtePAZQvZ0GnC+EYwHG1n0rNaAsSL+gjQdk+EfBK1KdntPtpTSr2RvJaG20I49/2oXt/7327FfMoK8s3NODPdkR4LsULXkanlkl6pQDOWJhBDs3ibYPqL8jvsJkpo2JBNQyKoE1yB92UslGMu6ZPMamZzArg82V6fW0cbrpl1BkDVjegFy3UXWHNynFv3tHi2McmjU5jtuCRLkH34q2aHbFKY1n5AXQVfz69VKoFxt2I6iLoO6FlIJNSZfCRhv34Xxrr2YP3KgZwJCawuyxXiSczsWATjpnEB6mRN5tsJwWvr2WScXDd+iqYVIJdtIdBU9u7R40X88NjTlvVl9TsIQvPGg2o/tCuYr6jNum7TJJQa79h0X0glBon3511CiYlR6J51kzVVsuYzpJ5A6YEuEIaI909ZlKoE325TFQe1f57L2a5kJTEMdjEqMjkovLJdCQXYuCLKnQ+NwK7BeqgmWPYp/3DgdTpY89MLVFYHeCrLbMFIIguxnjn4VKSX6jUX010/5z+9sTPN7K/v44XOPkXJsnpgtMnXoxwB44cTjnLl4tGO/7Xh21uD+5Ysdz8ujKzR+52nsz1+g+YcvYP+fE0HVK62z7X2T6DcXe+47TK0OB6fXHHUXkppS5Bywkl0M3WThnuyl0iXOzZzwt+mnFzMOfQfZk8mgInIuyr26bZtNzlK/65HTZsQSIg6tSnbOchlJBQOZTxdP6jCsBqhoJbs7FWuzwJWS5oCJlo0CbV/OvwacpxcjLSaXli5SW34GFj8LQKGeo/nBo4w0glXug/Uv8Njrz/ktH9kLBqPaKJSe9LeZznevrMiqjfuomoBESqDduDF7Ax1P2TafDhZcSSua4R8ULUGzWqOC6wZjSLNZ96tm/SiLb+GbDyOvHsV+1RRxpa5ypCc7uJ+iHtlXhy7eaMJoMfodDV1wcKdgKAdzS13eGELThlwaNCEYLfQfZDdtRRsdTzkYGZ3UsKUS4wNgPb2yM0npV67OhBSo5VwN53l1IJZ0k+aOHEkDXrLN9qtWL8wZPHEh2oIXVhg/rgcB2vUaZEvpjblAKiEoZtdm5dUPRFJHv2MYUehdYBCT0fWL/pZpUmmVKG7SpJJTAZG8WEPaLveGKNsPn4pWs1tBtgPMmwlu6NKPPbsQeGSPhirZLfyzG+pobVHtaqri0pHI+XoHK7PVFqVrIWX/povIm8jqKteZ4wXZSR1piHjGpyPB1FQftgdhapfnad2IKosDnmr55dt4tfqyB6aLr4To4qFK9o5IkK3G53AyNM4B4uWhvuwHn9sKsq8p9kwf9gOurzz5GT798IcBMF43hfnuA5QzarbShc7bFub4wyMPc+/yRZztP+fv43N9VLPPnLK52aOonXQv8t7ln2dR97LpdRfn42eQYWGjlwyT+PmbKL4lH7O3KO6+9XVoQiNhpbjj8AN9/e6rgrKNyFsqQzZggJWwUv7k3apkSyl5/5/+jO+ld+uhe9f81VrCZxCIn8VBWLrfyycvVpVPowdDU56KAFVb8PXz3SlTpbpgzsuY7h5y/HWfLDeVNzdKobOVEb7e6OKXlhWFejNCpI3AymW+TuGM5Z+n+cULnL14HGb+DIBvnz+F8Ca/xzPDvCd/jv9Y/g1O2ifQX6omDoHg1dZroRIE2b0Wfc6X5/yFb/EteURqY9rzVWqqipIPXa7WACIycWhd+1JK6s1gtVgZ0CN7C1sIo9QlyG7RxQUyUkG5Uqh7VO1CzCWcSgj2bxc47uoq0bZXUQMoZNT/+6mAL5WVonlOOCQmkqSGzYEX2WGxo0EX1nE46FUnZ42gn9J9dB7h0di/khvj5gm1jRDwzlA1+/98I9qDqd0QrJ++lgyClKvtf341YYbG3NGCuKx2nXVBzvDFz8TBPNrhQqR3dzHnrXVcibxQ5b4QQ7AjyPbo4gtGAldoHBqNv0fDWkmjQ6qQ1lLoFsBE1uWeHdGg+t6d3Uv+0pFq/SdkR3XaNCBhgmkGrC3ZCoxdqRidXfaJEIi0oQoslhbfl227nXO+eXnCZx3K4gC6F8hfbpCdWmuQHRTTWj3ZEPWzbwXZUdGzzmN2aNSh4LUEPHxEpzFA+8zlYivIbkPCSvHT3/fb/t+/97/+rV8p1Q4W+I/p3+GDlT+lLlWwPWrX+fenn2RiIQOFVwAqyO52I7WQfzHI0jxU/wxP2I/z36Y+FBHWAmDIwvzhA5jfvbfzJuiCg7tv50O//QQf+u0nYrN21wqy7qBNpNQAMWAlG4K+7FaQ/ckvfogvel7lucwQ//qdv7Lm79ZvJRtC9hS2RM5G+7fvD2Vde6mMnwjZDeyOUMWDwCEsHlK7jujirpQ0mpC0BvNg3UjQXxEwXuSDc/61eWnxIudmjsPcX5GvL/MtiyqDXtF0fn3HrRxrqkB65tI59DuD7OxrE98CK4Gy6t7h7sqizj/N+H8PvXModruNgEoNhvNgGsFi1jKVL/harWSSifh7YlCP7C1sIYxWkG3oJglLje9SBmI6E1mX5GUmiMDrzax2j3JKVRVgZ7vo8+RSatysr9IqKlDbgapoJxOBLVg3uK6kacP2MYFwJdaoRSqnDXy/hu+/9RA/a1UnZ82gn9p5NMjQPpIb46aJ4Ji+cneTiawaP79y1uTYpWCu1fbkMH/8EO+tvZcXsoGt4q6r1ApwNdFKqoQTm4WsCgDrAyrGryeEEJj/6hDGd+/B/L59CCEiiZn51KL/WJ6tsKPo+v7IT88Yfh+utF1YUed9zkyyo+CQ7ULvngvZd40WQ2tiM/CC/vbDAd3j4IjNeLZbMOwiZ6qI8aQqGnkBm+NKdE3NcR1OGo6LSBvIlA61Ltda3VHBddqAhOYpjHeuk6UtVctlCMLUL8/Tul1ZHFSAba5DJbsVZA/Ykx0VPgvionAQ3aKLnw61Xu6IKVDoGnzHLTXetWuJD/94Dcu8enoKW0F2DF5517fx+vu+C1CLt9/8ox/FcWzmFs7z9Rce5MO1P+c/GL+KCGVFX7d4juyh3wDg1PkXOXr6qa77X6oJbp0JFspfrH8BANeSmO/YjfnDBxCH8uiv3Yb1f92EdsPgdNDRoW0Usr17t68mZN0BS0PkTUgb3UUdeqBFfV9eXubE2ef5/Q+913/tZ3/g/7mshEI2Exzj1YPsUF/2uWhf9p1TTZKG+m0PnzK75hIiyuKhLHpEWTz0OZFK9iYPsis15d9qXIaX5LWGdkM+sCI5UeIl2ZcBcGl5RrWLOCu8+dznSEh1bj9V3E5ZN32P7Jn5M4jhhO9vvUPfwc3V07xid51bJpq8+WA8v9N9ZlFZvHnfIbF79d7/awGJxJHKuiuM1uJjrX3Z4Ws/fE9UqiGP7E1+f2zh6qPVk51NFwJWSlVQaarH60UVlwsN5EL3aLfehIlh0bWnNWFBapUgu7XYb/WFJi3Ip1e38lquQCEDwykXYWqYeYNkVlP36wDz9Xr2ZAMcHAsCKR9eoFIXGo9lR7hpPJhIdA3+xU3B+PkXT7VlLHZleLL6GKRvABRLIW5hvtnhOB51OZTrz6YUs6g8uMHLukLkTfSXjPhCW2E/5RkrqGC6nj7Nt9yh/u9KwSOnvR8U8kufMxNdrbsA5sOV7OEpZYMlhKJZawLpSm7fZvPGg3VG0y4/cmc8p146LvJiDTGeRL+piMgZPqXbdtS1Zxqgacp6z1/fSPWbRdYM2j/bUXMQGS/AFkLRy+Mq2VIG9l0tGNqa27BatmGRfmwP4nJ7vYGMNx407QaNZv/iEK0g29DNSOJuLOuS0NV3OrPcH10c4J231HnTthK7R69ugmkryO6CH//uX2fb2G5A9Wb/2cd/h89/9a/9CvUtL38F5g/sh4Q6hC8tzVGx7obMHUBvyvjRYzY3VlXmfC6X5LR7CsAXCNBuKGD9yEGMN25X2azrAWVbVeJzpvpNa8i6hUXcful3v99XE37jA+/i/pe++bK+XrSS3Z0uDlF1zPa+bMsIRBZW6hpPXogvf4RFzyKV7Bj7LogKPW12uvhKRYlhmZcRbF1rCCHQXxlUs1/PtwLgODbHTj9NggT/zGsHcBD89chOALT6EQBmLp1V+3lJcN29JfdmfvHVFd7/phLD6fj7w/likJzTXzG+jr9ofVH3rLsKbfIBlqEWIWv1yg5f++F7Ilwx26pkb2FQlLzWrUzII3u16siaIGWs+jEoBXCrC1W8BSEEhazq2+6Gpq0SmAkzeM9oQVDvcc9JJOUabB8DUXcxMjpGwSCd1zESAnsA+7B0KrhH1yPI3jfsoAnJvNFZ3n88M8xoEYZS0e/3hgN1ciHF6JV6cNArtRW1jkvfCKwfS2Gjoel5NoeDbCEEY8UrJ362VoTH7DN60D/dWl9960uDdVGLMh4WPZs1kxzuInoGbT3ZxW1q/akJRcnWFNVaCPjZ+yr873cuccdU580ibS/Ankyh31hEpAxE0vBp2rZ337WYA+mQV7YAsHTEaEIVnGIgGw5iKGg9E1mTDh+6Fsy20E0XrNnUuk1Z3HEkS2WJ40hI6pGWyHa4UnJ2TvZ0PUiv0car5ZNdyA5Hko6aCMTPzi1r2G5AF08aktEua6drha0guwvSqRz/7t1/iKapk/e/Pvaf+cinP+C//uq7/7mydPKUhgtOk0PVJdj58wB87isfjQjzhFF/YtF/PLsrmDgMfWNWpdYDsu4gxpMsVeDIjFgTsyUs6HbmghKX2z6+hx/7rl+77O+XDwXZy6tUsrVQhdltUxgHuD+iMh5PGY9WsmOUxXWhfHw91BrXRyW76SgxrMlhQTKxeSvZoHQS8Fo4DlcPMKkpJkXTbvCaxGvJo87fQ4UJZq0Upi4ZTalrY2b+DABz0xVqUpUV7nRf2tPazj1fQR5Rk5QYS/iWKRsRlZqy7kq3rYtNQ5AwL6OSnYivZG/RxbewVriu6+t6RJXFw6Jn6xRkC4HUNWTM4rlUVZXkXKfDUQTZlPAX73FoeWQnQlOPEkHr3p5Tqir9hPEhgVO2SYwn0AyNREbDTGk06/1X8te7JzthwJ4hJ0IXb+GR/Bg3T3ROIikTvnW/GmubruDBkP1TubIM1nYw1Ph5vfZjO16QbbYlEApZ4bGJNk4wEg7EFpuXYEitheX5iqoy720wlFLn6dGzJjW7XVk82bOSPbdwwX88OrRN2V8K+lbQlraLnKkhtgUBNqCCdA9NjzlgeMNGOqH0E6TjInUNYWmInIkQxAauQnqBdQtJHQEdracCEflcQK0X1xplN1xsoTFX0zh2TnJqRonjzS6hiohd4hhQjBrH6Z20iQTZfVLGpZS+hVc+JHrcwrTnae9IwalFnQulQFl8oznrbQXZPXDjvjv5nrf+LACu6/gL4307b2HX1EEAtMNFf/u7VuZg5O2QOsDM/BmeOfrV2P2OHgn6ieThYGAwjOswnQrKG1DX0IoW80uQzWvYzuAm90NtSumapvPv3v2BdRE6yvUpfAYoD0ivf6W9kg1w944mpkdn+aeTVqwexUmvSjKccikkPcuKpuv3eIuJZETpsVW1M3TTZzxsRqyUlT3NUE4t6tZa0dwIEIaGfr+qJgsE3558GwAaGm9Lvt3f7iMjuwCYzjtMjKhAfKW8QLVe5tzSSb7UeBiAlJvEfaa7dHCkin3fBELbYLNJCPVm1LorjHRq7cmVrnTxLeGzLawRlVrJX8h2s+9aL7q4kFKp9sYI76xGFW9B+R53FzJrNJVtlxYaH3JpSCegEsPWdKVkuQRTo0pcTdou1qiaY/SkTjKj4Qxg47XePdkAB0cdVnSTugjOiYsnejYeP5i8dm+w8v/Ho8GcWaos+VVsuH6VxZu2ula0tuspn1a08SulMr4WRBTpqyuBHk3dRc7V0TS4xxMiqzuCr58zI0H2pUSiq44JBMJnuUxRaS64EjSlyo3Whxf0chMxkkA/XIx4SQtLB+FppYQ8ySHEILAlGCjhs5yJTBlQi16zsuEgTU2JnrX2ndSRbSLBKmAXURVwUJXsAZbTrpSUa5K5JcnFiw5Ljk4qo/GSg/D6lwn2bVeBs+r17r6fZlMl0p0et1D43Jb7TLrV6mWathqsijFBdlhh/JHTJq4UHc9vFGwF2avgXW/5GW7cd1fkudfc/Tb/cbhf+q7SLAgNpv9vAH7hd9/Fu/7vOyL//vAD72Xnksqan0plSY4GldDrtpJdsRFZg5JhkElCMqPRZHDVwnY7su/7tp/jhr0vWZev2C9d/EuPf5L3/NobWMx4i4eVJnIlyt1Lm6o3G2C+qvHsTJTyv1AVLNYCZfEW5PmqWjkQ7ceGIKDYzFVsiaTWgKkxoXqWkqIrG2qzQL9nzM8qvy7xreREjrvNl7NdV6I6tV15jqZUxWT3kMv4cCC2M3vpHGdnjvGZ+qf959xH54iDLNu4X/eEQBIa2p2dE89GgeNR71qqxu1IJ9akewgEFl4AtXowdlZDPdmbvZ1iC1cX3ey7ToXo4jvXIRCTrkRqQvU5ttli1ZsSy4j6Y3dDKqGq1M0ulPGGo4KoMExDMJyHakwv7uwCjBZh54TAbXj92AUVIQhNkB42sAeoZK93TzbAoREbhGAuVM1+PlVg0UjEVrIBDow4PgPhyYsmF0tqPCpXlyF92N/ueg2ybaeTSQSg64LxocG80680MpFqZymqe+Ox+9qtvBrzQZCdHDW7W15KybwnfDbqe2SjqB2mppLVqwTZ0pGIjBEJsAE19xuqb7kZ8iQHj0kiwG26CEOphYuEjlawkJW2a67mqn1nQvtP6SqIb4S2DQXsAA1bUq1LhC6QonfhqulILi1Lzs9LLi6oJMxoAQ5OSu65J8Eb7xbcfkBjalRQzApVwNZ7J/wattKI6MWsiTBb+qxkh0XP8jHaUuFg+p9CivNXy2ZxEGwF2atA1w1+/kf+IJKNedVdQZAt8iZiWg0Ie2slRpo1GP9esLazUl7k4vzpyD/7mWDfx6ZHsZ1goDCN/tTDNxtkVVHF51Y0dm+DXFGjweBe2ePD2/3HNx94Gd/15p9et+/Yr7r4H//Vr/Hcsa/xpQuf95+T5ztTwg+EJoTPHY8mT7pSxbv0Y0OgpJzcxAFEtQ6ppFKchiidcbNCpA30l6k2hqRI8qbEW3h78p/7r+deN8EP3FHljm1NvvvWKmOha3hm/gznLh7nSfsJ5txZANznljuSNgDOl2f9hbn+stHOyX4DoWXdleti554w19YuAm2V7Fp8JXuLLr6FQdDNvqvV55dPBGyjy4Lj9YEanUF2uaoEqbJd7pkwUpYSNesqfiYhZXUujodynTTzxZIkYcHBHYKkJbDLyh/byAcVtfSQOdBcvRZ66Go46FkzhcXPvpwbo5BwfepoO4SA14Sq2Z89pubhzRhk91Kk7wbHjb8OAIo5gejRPnC1kUxk/ApwpbYSWf+4nuPKS0Kiso+cNinNBjfA6LbuLNCllXmatroOfGVxV/pBNhrKaLsXHElsFG9pah9NFynV3Oa/ZCjdGbvuqm08lw0x0plllnVH+WPrQUgmTE0xJsMJLld66mqeqvZFODeHCob13smCuUU1vhzaCXcdEtxzswqqJ4swss1ADwXUfrLA6E1CbzrKuaBnkB0aD8LJ8F5YDNt3ZeMq2cExeX7OCD2/8e7lrSC7D0yN7+YXfuy/s3/nLfzIO36RidEdkde1w6Fq9socaBbp/b/IcGHc/5fxqlkPmIFvde3wMI4TDBTGJqYBd4N0XISAetpE12H3pGBkRKMhB/fKvvvW1/Hqu9/GK1/5Sv79j/5XdG39Ao1MKuf336+U4ivZUkouzCmRuueqQbbEPdfZl/3ynU0MTf2+v30uwTcuBt/1RBfRs/B+tG6V7E0cZK+UYawAGc+ftCUQ0o9/60aG/ooJPLYS35F6JzeaNwHQGBGIQ3m+5/Ya/+kNJfYMuYyPBEH27KWznJs9gYvLZ+ufVU+6EufxS5H9S0fiPKyCcATo921cwTOAUk1VxsLWXWEkrLVrtKQSISpql57sLbr4FgZBqdoZZJcbMOcJF65HFRtQC3VDQELrcNeoNWBiSHRQe+OgaYJ8BmoxQbb0uJ2JmKVELq16RhveZ9caill0YFowlFOf6/djh4SVUgXdZ1j1g/QVqGTvGXIwNckZK5j/vpQf56YJu2cP5mv2hSnjCaT0lORDQfa69dtfAfi9+21ezBLZ17xpmeBUHOxy9P2tlq2F9cmBXDbCNl4RujhBJTthBAzBxZpGdU49thHsnO6+FozYd3ke2UqAUKj70eiDLi4lIhETLpkawhB+0BwWmUtYnshnTdlj+YJmORMMLaq/YruIQudNK/JWVGHcdtXnmYJSRZJKqM9suKhorsvvcFylhXNgWrB3SmO0KLxktwQBRpt9Vzqp1mdNhK++Hn9cQNd6J80zoUp2uc+k2/JK2L6rs5I93eWe3QqyNzHuuvk1/OH7Psc73/iTHa+F+7LvLnsVqYkf4o9+41n+z/uf4f+8/xn+w3s+yLg2wQ0oyvOxZJbp/RbNcJCtX4c92WUHMgZz0mJ6DMaHIJ/TcC0xcCVb1w3+fz/2X/mTP/mTSLCyHhBCkEsXAVgJVTbCqNRKvqL5cee4/3xcJTufkHznLYqb50rBr30+y6Ln77iq6BkhL25UcN8KIsI+wZsJjitxUcI6LSRMbxLaeOPiQBDDCezD6nwlRUjI8BUTHf2VYbr4zKUzylMbeNB50H/e9TxgZcNBztdxvzQDiy3brgJitIuJ7gaA60qQMFrovvK1DJWMt9cgvJOK0MWDBXyELr6JWyq2cPURrmRnvCD7dEj0bMd6URAdF6FraDkzshiuNZSqeD9UcbtsUzlRIZ8WsX2Qtid2FRdkZ1OqQlWpqfF4fhl2TcK2QE800o/dQjLreWX3mQy9Ej3Zpg57hx3+YnQ3nyls4/e2HeZMItO1H7uFqZzr23udWNQ5tqB7QbZKhGaNEpmNXNvwAqz2pMzCMpyN7yxS26OCJ8uA+myd+mxUmcrQBbsnBU1n4wig+X7K1RVP90ath90zFV8zIUwZT1fUb5o3E9wwvno/NoTo4q2gtFXNXi3IFsRSp4UmlCWtx0wJi8y1lN3tuhv1tc4aiJQOHmVceu1V4X5sf//pNiceW0LSQAjB7CLsnvT66xvCU0mP//rVumozaW8jcRsumqWhZ9qC7ITHlnE99fWYa8T1AnR9lVrXWtTFu3lk+/s0YTQd/bEC2ZXVci2xFWSvA8R0GnLqBrmjfAnTdajZgr9+Nugf2j6+l/ut+/2/H8pPcGjUxraDwe967MmWFRtnOIGjaeyfVr24mSSQMnGbG+uGaHlld+vJvrQYKFSeck4ihSdYFlPJBvje22vcNqkmhbmKxm8+mMGV0Up2i6omXRkE68NWoF4J1BtVf5LZrAHESkUJrrSo4hBkejezwngLyddG2S2X5CWSd091bBduebgwd5pzMycAcEY0xA6VQJFnK9T//ddpvPcxGr/xDey/Pu2/R39gg1exq2oi7xUwWKayOllLcqUfuvhWJXsLg6BUDley1QAVVhbftV7VEdurZKcNf+HsupJLy8o6K9fH0G4v2UhHKtqsCCrXLTSbakxNxrTiaJpgtAjVBswswOQw7N8eVM/b+7FbSGU1dAOafYqfhRfV/Qod9YODozazVor3T9/MJ71kZbd+7DBeuy9oPv7MUYv5sgOmqo5NpDZIKbcbap3XXkvbRLk0dKlcOiombAV9QnSqVI8VYaKoAvaNgFZfdrlWUj7R272IsGRjz6vjcPd0E01IEq5D3itQLVgJtvcIrubC9l1DUbq40ATCXL0nG4mqeMdApHXsuouuB+w8aFXnlbhrRCzN0BAjiaAFoO4gk4YvphtBUlfnzvt+0pGIpE65phJz+6cFk8NQagZWZHGo1pU1YDu7zK25aAkNPRX97ISlqtl16VX7Y66zpq0Y9O2BezvW0j6yVArEoQsxPdnQWbWezLmR479RsBVkrwOEJtAOqQDNdFxuragg7X8/meSFOXXxjhQneSDxav89x6bHyFrQtMN08eugSTUE6SqT+0U9wcQQbPNaKzIpsLI6dmNjZFBbaPVllypLOG7n5DYfCrKbNFlKqUW+nKnFWi/pGrz3leWI9cSfP5nkuFfJnsg6fhZdztf9rLW2PZ4qDpuXLl6pKfVaI5QNbmV6r4cg29iV51n5rP/3I+mvdSqAAuMjQSX72aOP0mgqtsPU+B70O0MZ2xihITGVQhzYuLZdAOUaTAx3p4pD4JW9lvMeZnJ0UxcPC61sYQurIVzJbrGZTi2GlMXXky6e0BGJQJF4ZhHGhmDfVH9UcbfhoKd1krqLqXfeQw07SF7GoZBRFfBsSvVhh+9Tp9LZjw0or+yk1rf4WeoKVLIBDo5Ez4OlSw6MrH5uXrm7ie4lxD93zOJcJfh+U9kYJbhrhKaj1J7DjAHZ6Px91ZrSNkmaUO9inWQ7nmezt6TUEhpuLXr+NE2wc1Kd/3qM2v3VRuu6qdXLOK4TaZmrP6fOUyEpuXnCVtpHHhrZRM+WgWgl2wuyJX6PNKa2qtONILR9+2tJA8dLbrUHedmkZ3XdZrklCha4UiU+ao6qbMforIiUgQwLJToupDRmFxQLZayo2IFNKRB6dzHhpgPD+c7v7zZc9IyO1v79hGAoC1WneyW7aavrK5vq7XYQno/LffZkL60EQXY+picbOinj68Y4WmdsBdnrhHBf9jvNi4DyZ/zlz2VYqQvEQpOD+n4AjiZzjOxQo1+4J3szWzPFomIjUxoly+TAdDChpxOQyGo0ugm3XCOEvbJLMZTxcJANcF73/nYkciZ+sh5JS/7dK8oIr+LwJ19PUWmq47Ar5M8ZpYq3Bdm1zR1k1xqShAkjbRRiP9O7yeniLXw8/Q8suos8Zz/LiemLsdtkUnmfTnnm4lH/+anxPWh3jiAO5pWq6FgSsTeLdusQ2n3j6G/ajvlDB1a197mWaKmKx03mYei6IGmtzSs74pMdui9qWz7ZW1gjrhZdXDpSBdgJpUi8tOiStODQDoFlrn5fS0eJHglTI6GpMbVd/Kxptxa98fvLZ9TC/OAOQS4d3cYu2Vht/dig6OJGQsPus5KdtNJontXWevVkAxwajQ4YN4zamH3IshSSkpdNB4yyF2p3+6/tLFz5DG97BbkbKjV1/sLWWsIT+xChfZSqShU6m+oeZDcdRbFvBX16UsOpdV7HI3mYHIFLA1azm45kuSxVe9A6IRyMVWuliPhZ7fmAjXDvziZjoSDbGO5dnIp4ZIeFz1pJcEvrKXwmHc8VoJvStqXhuBJD60xutbTSRNs9JXKm+tyGq0TPhhPx92xSUwrjIdZnHQ1dVywUIQTFLCQSKtCOq2TbjvpucRVnt+5iFuOPXzEnsOkevDdsJXqWslTBpNs6LrMWungoyI6z8ALY0cZe2KjaCltB9jpBO5hXGR/gpktz3DCqBvULJZ3fejBF8zNBNu2h/ATTGXURhSvZun6dVbLLNivJJEMjOtMhlqthCHJFbcN5JK/mlT2/FA2cjjaP+I+7UcYBXjJl8723dwbhe7opi7cF2eEAIrkJ6eLLZRgpQC5mkM8m1xZsbURURmzetfid/Ozyv2Fs23TsNkKISDW7he3jexEJHevdB0n8yh1Y//ZmrB+7AfP79mG+bSfGa7bFCqNsJJSqSlypn97StXqkh9X1I5Xsajl2my1sYTWUK0GE0RI+a9HFLV0ykV2nCoktIamBpVGXgkbN5eBOQb6L1V07nKqDntLQDNClUgpuD7LsGPuuMFIJwe0HBBPDnZ8pbUlitHOM0RM6qXx8kBYHIYQ/T61nJXtX0SGhB4v9m/qgirfw2pAA2gUCS9Y9McdhPSFtF3my3Jc6eNOG4ZxqrQKQTRfpFSZa4lOuK3Gkql4WcyrQiYPjqCqjhmJa6ikdN4Z6LoRg54TANKC6ShLFcSVLZWUBdWlJXWvL3Zc9AyMcjJUryxFdmtoLdaRUld97dzQYawZBd27c9F+L+xcRPhtu9WRLP2gWhtZbidOVinvfjS5u6TiuwNJkRKEbwBQSaWgdlWwyBiJjQtVBSIHIxlNPhK4hMgbU1bkTUjBf1tg5rhhjAIWMajWpufFBdrUR348NKoFgdvnsTBIV01gacV6rzaZa0xmGCrK7eWVHLf36FD6L9GR3CbKL7ZXsjbmQ3IAM9s0JkTIQe7LIoytwqcEv3TzHv/rSBMt1jZEnLiIvKJWKhtD4fGGS75FfAW69bi28pOOCK1lOJnjptJrcwxge0phxPUq5tjGqcxEbr9IiTERfb69kP7XyBG8x3wDEi5+F8a7bajw1Y/D1c8E5jiiLhyrZ7XTxsB/wZqtkNx21KJgcFrGZ2oQpWLOf0wbDSHHSfzw1vqfrdmND2zlx9rnIc9vGd1+pr3XVUKnBgeloS0A3pBNiTfYx4Z7sWhe6+GbVLdjCtUG7urjtwrlltSjeUXBYv+lJIiydphAs1HT2jjlsi283jIVTdjCKSjTNLtkUMjoX5ju3S3SxbfJfj6maKy9fgZGPX4Nkhg1mT/dPPcskc1SqK31XrvqBrsH+EYenZ9SydTXRszDu2dEkbUqfRdbCwfErnLi0JeQM5GIjorMSh6ajaOCJKlTqklTD8Xp5m4qqbLuUmhq5lArGQalDSyTtRktNWyW2pS0RBhg5g9qFeGPsYlawfUxy/JwKxtpRqUuWvKE2l1Jj/HBecG5OKvuodUK4kv2un7sDDY2/GPoISZHk+U+9wI/8RaBp9J17v+g//h+f/Gke+egnV92/aSR8tqKUBO1cugB6zEVOK8juXsm2hUbK7NyHhYtmCpqaIHylCU0gRhO4zy4qIbMY0TMfBRM5r9aATa8Cf2BHsJ4yDMHksOSIq5GLqThXa0rcsFsLlx7XC47qyTZ0cEwd3em8910JmZRQQqZ6dx3jtVSyFyN08aHYbTor2Vt08eseYcr40MlFfv4VZW4vzfPuCy/4z//u1I3M6i6y9CTQ1pN9PQmfLTepJk1SUwl2TnTe3JmCjtQ7/ULXClf2Z2khHYlcbMT2Oq1Wyb60GK1kP1V6Ivj8HpVsUAuEf/eKMsOp4PfuHQ5Xsr0gPW0oZc0Qoj3Zm4sKu7CibLvGivGvx6ngblYc3HUbAJrQOLTnjq7bxSnjb+8RlG8GNB1lEdKyAloN1hrPeze6eKtilrTS62rtt4XrH1Gf7DxnlzUcj6a73gs3acCZWcHktM70kByo/cOpOSQnLPS0jrQl6bbEdUvtN070bNV9lx2MrI5ZiF/sp4fNWN2RbmhVr9aTLg5wzw5VlCgmXW6Z7D/IThjwwK62sn/jIhOFK+zW4Xi05ISGrKzyfSUM5wSTI6igtu4gst7J1DVwJOWaEqwzDUE60V3TxHZVW55ruwijU8yuHTvGBKkklKrBGqraUFXrak2pWN91SHD3jYL90xrDecXAiClwrhljw1GhUBeXE56Ly5Q+RVqoc6WhsWvh6/52c40j9IPpyX3B/eZKaCWbNNEzxvb97fUu4ZKlYWuClN55MAwkRkKjKTrfK/KWav9I6ZDpHmSLpOF/v5W6YPuUxmRbcm6sKLB1DRlzPmwXhrIxiTXbRegCLdUlyPYUxpu6plpVYpAwVW+/1aOSvRZLv2VP+CyVyGCZ8W4q41kXK8Rsaa9sbxRsVbLXEdqNBZyPnwHAfXaJu24ucsP559C9O+QvR3bzueI2WHqQ8zPHgPae7Oujki2lRFYdFidy3DCtUYi5wbN5DQyBa7voictfFM8sKMbPRJfKgHQkLDWUkmPaQCw3YTT6ueGe7Fi6eFsle0FewkmBXlVBspS9F01DKckvv7bE7z2S5sYxm31ekC0XG7CirgOxPdWxj0hP9iaq0tWbys5p16TooFG1ELZz6qcCupHx+vu/G4CJ0Z1sn9jbdbuwjReApulMjOzosvXmQLmq6Kv9UMUh6BWMq8L0QsJS94eUMsLw8H3kt/qxtzAgSuVF/3E2XeCZc+F+7PVbuAlgrqQxtA0Oj5jIY/2LbinqK5gFE2lLpC1J5VQFqelITF34ar+JNSwj7JJNek+6ox+7hVROH+g+bS2sq/UyruuiaetTz3nHzXX2jTjsLLikB/ydr93X4B+OBKVarfYCunbzunyvrvBoyWIsjXuy1LViGfY335YUnJ2VNGouKa9fVhiqvUDXdF/bxLdZanQKbiEVY0HaEs0QmEMmmilw60pNuh3ZtGDHmOSF02Dqkksl1dO9cwJ2jMe3NLSq3oOO4d3wz179g5yfPeE7bgAslFfAy418z/YfZswZ4dbGTWRlMM4P7ZzmRi2+2ul/12SW737LTwdPuASVaX2Vb+941PJulWxTw9U1zJgijyldjKxJ3Ra0r9xEzlD6K3kzViTV3y6l+62oUhPs26WhtdFrillIJDWaKy5hMkKz1Y8dk0ty6559V7LLPZ+ApAUNoZNoY501HYmuq9dB9WavdCFzJhMZf87uvydb0cXj7Lta0AQc8JgtE1mHQmJjMiK3gux1hBhLwkgC5uvI4yWaf3yEhNc085XsKH86oYTPWP4y50yVoWuGLbyuF+Gzkg0ZHWc4yeRI/MCULWhYSY1mVaKvQ9woZbxFYDi4pphAO1RAVpq4R1c6BtZctug/Xg4tvFpo78kGWMnXKFaTULZVoJzvfQ5vGHP4/bdGBxr7E2f9x9rOzoOxWdXFL63A1IiirXVDwgTTVFQ5Y5MXIC0zwVtf/YOrbjc2HK1kT47u3PTOApU6HBqnazKlHZYZiKX0I17UghCCVCJDpVZq68lWGfLNlITawsZAyevJtswklpnkifPBsmi9lMWlK7Gl6pt82X5BsWKwcHT197Xg1lz0pIaRN7DLDtKVpJNq/Gw0wEwFar9rYQd168duIZnVQILjuuh9BMxh255qvRyhjF4OdA3u2r42MZfbJm1GUi7zVfX9Lfs4cIWDbEdCSkfbnsa9UEFW7NhA23ZUwiRhqoBopCBZmIFUi2JuaJRWHIrblBUTqLE2n5HMXFJaGO0wTXVeNUtgFk20pI5Tc2KDbIDtY4Lz84oavn1UBdfFbHcRvWTIgnM9rJOGCuP8/I/8QeQ550uz2H91EoBvq7yp4z1ib5Zf/9G/WIMgqEToAV1cAnQrkrhSWWl16RsRmoCkjiFj2ilsSTKvsxh3ySZ1xJCFKMZw9Nu2a/V0F4saU9s6z18hA6mcRv0MkSC71sUfG8BtyFj7rhY0TVDMSM5JQTtBrXXOW2NNKtFd+EzTNFLJrGof6aMn23Edv8hVyPXup/k395b5u+cTvHpvo6fC/LXEFl18HSGEQG9Rxl2JnFWZanc8yR8fvAm3dRWsfIVzMyrItiN08esj5yFXmthjaays3lWEJZMUmDmdRp9iKr1gOxJdU4v2sG+krDvIi1VI6mi3DqPfOYK2Pa16o2KSXrmIuvhix+vzi51B9owZNCX5lO8B4B5Zxv2a13+S0tHvn+jYplrffP2mlbrE0lUVu5c1jWWqIGujieBdSbTTxbeN7b42X2Sd0MqWr6YqHsbl2Hi1Ek3hILtFF9+qZG9hULR6srPpPEs1wSdeVMvUhC65Y9s6DUyOZLGmsW1CY8c46KnBll6+vVbWQLMUvdU0lDtDS2G8pfY7KCPI78fuQSlO5TT0hOjbdjN9hWy8Lge6Bq/ZGxQ10u7pK/+hjgRLQxQstG1p5FK8HHgraLFM0IRgKi9xDQ2nJZiV0GjUJNtGovNpMSM6hENdV7XuWIYKsvWUsmgy80ZP8bpUQnB4t+ClhwS37BUM5eJ1VILtiVW4X0/4XtlhGALt1iGM79uH+e6Da3fc8IJmoQvPY7rLdo5EtAuXhV92JTJtYLidO5COJD9qxDrpCCHQDxYQk6sYTSd0bC+xNTWpY8ZYfem6YHxYUGu7vKp1GM7Hjwlu3cHIG91V04GhHDSk1rFebjRVgN1Krlim6Cmtk/H67ct9VLJL5UVcj/de6GLf1cLuIZcff3mVG8c3JlUctoLsdUe4LxuAtE7yX+7n519XYyrnkKg8DJc+zrmZ40gpI8Jn10MlW9YcSGjUCklSifgMK6hBITes920L0gsNL4OfsogMMnKpgbY9jX7nqAquW1S4hKK+tVtrtDxSwRM+C6FSXfGFlsLB+An3hP94tb7sdkjbxf6rU/7fxpumlbVDG8J08bBP8EaFRLJYgqkxJarSC5omSCWuD6/sftFOF9/s/djlqlI3zQ9waV5OciVQLlb3Rb1ex/babtKbJAm1hY2DVk92Nl3gb59LULPVmPWGg3UKyT51Puq9F3mNmgsa3LBPwzAEelJH6AK3T00Sp+JgjSdUD6UVqCEXs1D37qFms7eyeNd9r9KPDSrINiyB0+d8nVpDH+bVwFsPrUD1GFSPMO4+fMU/T7oS4VF1tKm06s2OURoPB9kARcOhMKKz0FTnpKYZJHTXEzwLkEl2ehS3WGGWCa4t0TxhK3PEilUYD2O0IBgp9A6uWzB0QSbJFbViFdMZtP1Z0EE7nMf4rj1Y77sd8/v2od861JNmvSpalWnd84LuIsQpPX/7bmjaYGR1DC3m/RIyeb1rlVekjZ4BvLcL5h11YYxPdN92eEjrqB3ZTvc1mNuQq/bqZ9MCqXdeD+1WgasxGVrMln7o4kshZfF8dgBlyA2KrSB7nSH25ZQPJoAG5vfuQ4wmuWHM4YP/Yplb6+8D2aBaL7O4PIvtBAOueR1YeMmlBtpYiqplUsx2VzQEKI4Z2M11CLKbKsDOhSxNpCMRDojJVMcgJixNWWO0iTmEhc+W23qyw/3YNx8IfDafrXzDf7yawng7nM9d8NkOYlcG7e74/pOIhdcmoIuXKqpfbOd4fxnmTPKbK8geHdoWmbSmJjZ3kF2pKzGefqnioKo1qcTleWW37otKJaS+v1XJ3sIAcFzHX/ilMhN89BlVxdaE5B03xasxd2CpgbzQe+xfWHQZG9WYmlRzkZbQ0CwNt8/5Tzou1pBaH6ggW1k6ZZKBaJMrFUNsUNglG2us0x87jFRWx0jq2NX+kgIRsaN1VBi/XKTFIjx6AB69gULiKlS/HOmvB4NqdmdU2rTVPOhXqesu0wcSlBvq75WmYCit1JzDSCWVqFsztEvbUbZKlqHWQS06sJk31t3II5/pbiO2HhCawPyxg9zwyAGsdx9Af+mIp7i+Dmhd7roAna5BdvgcxqFpg5nQMeICTQGpzOWFWRcuQX5S7dzMdY9mCwWBqXtaOHgMM6NH4s2VGJnexzKdAAwNBxkRP7MdyIWuxdVa/VpBdrVexnF733f9eGRvJmwF2esMYWgY/2IXYncG43v2oR3IR14PL6jPzhzHvo56sqXtIgAxlaLeFF0VpVvI5PXeqo59otGEfBaKOREM+KUm5E3EUEy/i6VE19qVzXM9hM/C/dg7JvdTzI8B8Pj8Vz0LiN5e2e1wZ2s4/+j5N2pg/PNdXXt+IsJnGzzIdqVkpQI7xjsXBN2QSoiu81uvzwn/fzPBMhMMedcPbO5KdtOWGPrqjIU4pC/TK7tpN2jaDcrlzvujXJWR1pEtbOHSCpxciS5SwwFgtfAdLNfVkujVexpM5voLKGXDhYTeVX27WpeYSHZs09C9hK+i8Ar13lWg6Nyab6+lWRqaCbIpSSVUEa5lh7fmfuyx3m/UTY1kQcfu4/tCtCd7I1WyA7s2SSad77ntukBGqcbaVBpM0VHNbjqQCQVD0pZs32sy5B1GR9ditU1a4lTVEIOvaatWHENXn+9fcxkDzeifPdEP0qlVlLnXAUL0V1kfdJ9+JdsQoGndg2wkokcU2bTBSGuYumIutNBS705lNQSKxj8oSlWJ7cANB9S41U0JHCCXEyQsRREHZd2VSXbxx/acCLRVEhbpJCRSAofO4xMea0yjk1ER3U+4faQcu00L4SA7vxVkbyEO+h0jWD9xGP3WTsXD8IL63MzxNguvTV7JXmrCkIUYSuBKYhUpw0hnNXVjrmHwCcN2IJsSEeqUrNiIbZ1VbEDRxU0Nmt0r2SttwmfhSvZwccI/jzNL55DeAkXO1pB9TGBSSuyPnFQemoD+wISafLsgIny2wemwy2WV3d4+NoBi9Bou+5VK9P+bDWHK+NR4dyXya4GVqmRhpb97cqUKhbQSXhkUa0muqPeFvbIrlErBIj6dzOK6ql1hbjH6PlmxkfN9Vie3cF3hwrzkDT8P7/vqMKdXgoWlP84Lg4up7/Cff+ct/St/A6rSZcdfzAsrMFmUDI8ZfrAgdIGeNnD7CFqdioOe1jHzaqEtTIEwNFzbVX2xlmKT6NrgY6nbUP3Yq9FGAbIjOk5tcLr4RunJBih7IncA2VQPRc71gsBPwoNXzZ6KqWZLSHr+5tKzjMoMm+zz5DsyOS22HUcTgmIuStm2HcgkvEBS4q+BjIyOltRx10EHp4WU5TGtL3MNd9UhCc6LLlSBo9tvED2UxVHHPpPX0BMaMrSmlA2VYEnnNCxr8Iq/40ouzMMNO2F6p9dyYHX/HoalMZSHqnePtvqx4xhmsinRTIGe7h0CphOQSGk0JL4RtutKhAiUxUG1frWETGP3kwwn3XozW5ZKQZBd2KKLb2FQTLUF2dGe7M0bZEtXQt1Bm87QdD2VzFX6w7IFDTMhqF/GoC+RCE0N9ukWdWrFAUtDG4331xOaUL6EbQGxrht+Br6jkh0KskeKkxGxquqQN3q6rEobBHAfu4R80Rtoihb6t0713H6zqIu7rqRSU2JnyR6TQTsSVu8saDskyrsTVLZ2M1azbzn4cgDGhqaYGt99bb9MCI4rWSkrtf7lcu/jajuSal3Z5rVbivSDQQOClYqkXJWRRFO1Vo5WspNZynXVOmIZUAkFBXKlqSz8NtuCcAuXjX/7h5KnTgiWmxq/+HCRCytq6VNuVTbHvpO6UOySl0032Tvc/5wkpPSStp3vWakqFfDJPOjpaNXIKPQfZFvDlqKJ41WyDWXPlPC0SEoVpSY9qEe2U1H92EZ+ddHVzLCJ2yc7ZC3euFcDYeGlq1PJJhJkQ2c1O2zfBeBUHfSUhpHTmfaS1dPbBKYV71ecSwvCJArbUTRyQFUrvblYS2oYWaUwvl5IWWBZV1b8bL0hpUQKGTAHNaEioW5901J2nMMwGrZaywpTj7AE3KaLbgpSOQ3LGLx3/dwcTI3CLfsEhqdIr/Xo3xaGIJdVfuoSieNCoUuhS1m56V2VxVswDEGuIGi6QSW7XVkc1Nhj9PLKDjNbVmkfCfdkF3tYeG0WXB9y1psI4SD77MxxEmYQiZr6JqaLr3j07NEEFc82oJvoWQuZvIaZFDRqktQa9bwaTZVFS1rqM1NJqJ1rktiTgh79KyJt4F6sddh45TNDVKorHZXsSyFl8ZHCBNtDtP+51AI7URO2/fdnMH/kYFfqt6zY2H8bqJoab9uJWMUnfLP4ZC+WYSiv+nMHgWWoc9i0+wu8KjVIeouIfEZVz/v1Z94o+P5v/3kO7rmDQ7vvwNxAbSKLKzCSh4kRwbMnJQlTkohJmLhSMrOgFgGDsBbCsEzAS670UqBvfV6LtRBONFXrZfRQT3Y6maVShelxNekfPQuppOfj6kpkUkc0XGWLsoVvGvzuTwmeOOLyxFHBfE3n5/4hy/vftOKJngmY/r/9bb9rgCq2tF2koSkBpkq0VOVKyXIJbtgFKUd2VI3MrBEbNLXDqbsROrdmaghLw625CCHIZyVnZr3E0oBDiV2yyezt7o8dRjKj0S83OFy5+sJX/5oLcycH+2IAAoYeq7NwMrFulORT51/0H2dSVz7IFghoE+dqVbPd4yVI6thuYN8FKsg2sgZ6WicvJQtzsGu7TuO0opG3q0H7DD5XomlK5TlpqZ59hEDzPl8IgTVqUZ+JVzhfCxKWWnvVG4Fv9oaHizpgLXVxTYCpQbUzQlQBOT0F1mwHcgUdPSEiSTO3qXqeUxmNpCU7lL97YamsFOJvPyAU48tt9dV3XyAJXSOTAWtRUqqq+TXOHxsUg0VLal3t3MIYKgpmpPCZOg27M6Fn6uoa7lbJzoTGg49+5r8yOrSt6+c9+tTn/cfXg/DZN32QLSxNDYJNCVdhrTs5utM3Zj83c5wdk/v91zZrJVt69GzthgLC0qksSyaGlKx/LxhJnUxOY2557TNowwvMkglFnSqkXM7WpRI867FwVzZeMVnhTJELc6dYLi8gQ76J7ZXscLLkG9nn2Zm/F5abyBdXcD5zHiOmOi1tF/tDx5WPOKDdXES/qbjqb6zVQ8JOG7SSLZHU6nBgWvQUu4uDZaqeHrvPIHu5DHs8tvX0uOAbL0I+s3qgtpGQTKR59cvedq2/RgRNR9JwYOekYGJY0c2On4OJYYkeShpJJBcXVDB+aOfg57uFVnLFdlZXJ63UVM+ibYNpBiuHaq0MIbp4MpHBlTCSF+TScH5eUqpA1nTB0BAJDerOVpD9TYZCVvC3vwL3/ojN2bLBuRWdf/sPOd4xVYPhN0FG+SXfOGZz88QAvM6mqxboKR253Igkbf3WmVGBewE0K3rNacnVF7jSUdTM9kqzntaxV9T3zKYEhi7JpBh4DJS2i9XDHzuMVE55BTuOi66vQjMNVbIfeeJTPPLEpwb6XlcD6+Xd3Q3SlUhNVRjboe3I4M7UYLlJM2lGlMWdmktmj+WvEwGKQzqzpobbdDsCo3RCVZTrzSDQbdl3aQaIUJLUzBs9eo8HhxCCXEqxnzYNpPSq16HzYmpQjrnvHan6MFaZ45IJ1f5hzwWRtGy66Bl1HvNpyXKfrW22I5lbhJcegqnR6Oca2e4TpWYI0imNtCWZWYbRAmTjyZy4dZfEhNVXr3shoyEtHTwHj4YNQ9koe03TBJYuI9oAYaRTwXjwd1/44Kqf6X/2Vk/25oeeM3CTekcW+krBMhN+P6bqyQ7RxTdrT/ZKE9IG2pi6o+sNVhU9A0V9yRd07Pra6eKNhsrktnwAs46Nne4ieBZGQosdYFriZ67rRHrJwsJnqic76KM9ufAi5rv2+rYqzqfP4R4Jer9ATbj2h47jPrfkf77x7Tv7+o1hunjC2pgWXqUqZCxJoV4fWFjFNAQJsz+l6YatPNHHi+pgjxehkIWljcNI3LRYWIGxgjqmmhDsmxKMD8HMQkBpBJhfUpP34d2CdGLtiY2E1b9X9koVxofUudb1aCU7TBc3jCzJhNoukxLsGFfBjluxESkdkbdWtVvawvWJsQL80p2XGE+p839iUed/Hn0V7Hivv8133lpjoDi14SIsDa1gRXx2yzVJpQ47J9QCHAlaW9JZT+q+Sng3ODXVj23kOoNs6VWW0glVwc4NaN/lNlyEqfXVjw2eV7alxdp4SSR2qCp/84G7N7QThq4b3HHjK67sh7heMBeTkBBZE213Fso2zZobCbJxJGYxek6EJfwWgXYkrMC+1PUErUwvyMbQIiwFI2OAJvpiUPSLfEbgrF+b95WHK1XkEzotwuwifOZ4265iFZa0wMjrESFDtyn9+7aQ7Y8u7rqSUxfVuHHj7sHmVmGqa2Qoo5LRw/nubVxu0+2rRQRUG6a0NKR3kpu2suxsRzLZvZL90ptePbB43fbxPZtaFLaFrUq2LnCHk8jlq2czMTW+h4vzp1kpL7KwNOM/vxkr2bLhQNlGu6mIyKrv77K66FkL6aKOcNbe0NNwVLWgBathw0QeRxc9L25haUgBOFH6Vbv4WauXpFXJTqdypBKZtt76E2j7cuivn8L55DmQ0Pyz41g/cyMiZ6oA+y9O4D7p9XkbAvMH9yOK/VUQWlZFyUQGTeufsnc1sVKBvVmbREJQO1vDLJodC4VeSKfoK9O7VFKTRyELZRRbYucEfOOYpODR5S4HiyXVVz6cZ6C+8s2Opi1xXdg5IXyhFMsUHNoJ1Ybk0rKqXC+VJQI4vEv0fY93g6GrxeBqiw/bUZ85VhRkU2AaUeGzZijI1rQsQ1klqgaKyn5uXlK64FA4mEHkTTi7mcouW1hPjCRdfvneRd778BCXqhoX6hOQnwBgNLHAy3cMuMOmq8bxhAZSKdrPLymGxv7toUqU8BbyIWhJDc1Uas96l5Yhp+Jg5k30NqsdIxRkp5Iq6TXoeGWXHYxMf/3YAMmshm4JnLoLbf3ls4vqPp4aUWNwMT/Kn/3W13n++GMDfacINMnkzVUuPJUCd33H4n07b2akOLmu++yAI5U1VJd+Xm17Gme2hnOqTnFvEk0IT0leoLdVLDVDQ0vo2OXOKEYIwVBesnBO9cSaYY9sXUSuOz2jo6c0nJqjAu51QEsAS+K15Wx0tOji4fNiqmRXx7d3e1eybUe5ayQsMNJGNGEmpUqkAelkwEroBiklp2dUgeplh8WqTNB2CEMgdEEuIclnFHun+4fh93mvhnQSzJSOXZZYKCJAKmasSVndg+xbDr6cD/7mo5wOtWv0gqbp3HTgZej65g9RN/8vWAe4WROxqKqN3Xpp1xPbJ/bw2LMPAtEeoc1m4SVdiZyvo23PoG1XC9+GLbF6efO1ITNsoLsujhulpPb/HTwbCdSCJJ3XSGQSlGurKB5buqIINb2GKA/tXtkTo2rV1erJHvUm5nx2iGy6QKmyxLmZ4wDor9mGe6yEfGEZVpo0P3QM80cO4vztadyveoqJusD4/n1o+/vvB2v1ZG9Uqnitoc75SMIlMZnCHDJZebZE83SV5LaE3xPWC5keWdAWXClp2ipwCl8qk8Nwekb1hA9fBgPQlSrA3jYKswvKPmM4PzgFczPi0rISMBstRp/PpQUHd8CTRyRzSyoQv2mPYLR4+cdECEEmoY55L5SqKpFWzKo+sEwqKnxW14Og2TSzjBaC75a0BLsn4ZnjklzOQE/pCHn1xvotbDxMZR1+81tX+NlP5FhpBGPTq6eOool9A+1L2i4iZyANjeUyVBckk6OC3ZOCoVygFi000aEMrCV15ZVdl+hdiFdu3SGxL9tRBRKm5jOnkpbqxx60J9Yp99+PDZDOaRgpHbuNCVJvSpAqMblQUsk4UFTPl936LYN9qRCELtnzwArH9RzS2YT36ipUY2Fo6Hty2CfqpHAAzRM962QugGIvNBfjM5LZlMB1JU1HJS8tE2TNVdXN0HWnp3X0tKcwvk7LiVQiaPcyN0NEEUcXt7R44bNWEabLOWzaKqmRMOPbP3TvuZQV250Ywfl51RL18ptE7wC5C4QQaJZGxrIZynVntkiPYbGa6FkL6QSYGY3meTC9Ak8yJlRJmL0TCdvGdrFtbFdfn3k94ZueLg4gMyakvF69q4CwMvXiypz/2NxsdPGFBiJvoe3P+dXgak3dlKuJnrWQKeoY+uDKi6CoNbqnLA7QuNQgvyNJcZu56sKdhBarCBv1yl4ElBpii7I9XJjwX29Vs2cunaHRrCM0gflde8ATp5AvrtD8vedwvuixFQQY370H/XBxoN9Z9SvZG5MqvlRS2deM6ZIYscgfzjH6wDDJyQTV0zWay6vzgRN9ZG2Xy6qCPdrmvGIagl0Tglr98qxEKjWVtb1hp+D2A6pqen4uqlC9GTC3JClV+//O9abq+9w5LmITChNDwreS2bddiZ2tF9Kp1enilRpsGwFNStKWZLgYDrJLEbp4Np2h0CaCN55zyecF87aJSBnIhA59+v1u4frE3mGX3/jWEjreRFE7yX07lnu/KRaChq5zckHDSGncslNy274gwAbPL9cQHcrAmiXQklpP20fpEkvn1hMarShbE4IbdwuGB9TxGqQfG0DXNZJFHbttPLy0rBKTuycFDZsIbfybGm7vAA2AYYvmRBpzuYGUUjEXiqZ3fqPQ01osXRzUvGXoqlXP9BhC0pHoyWhbnNAE1pCJEyPytVYkLRVkbhqFcRd164SCbKEHSasIHKUsLrpoEDSaKqGRtEDz2CjSlYHonHfPJ71ERKkSf/7mltTzdx8WjF1GAluzNFIm3LhHkEt3oYo3XDX2pPoL/xKWIJUSNG3pe7AnYoaNTZFguQbYCrJBKc7mTKhcnSB7exdf3M1EF5dVG+lKFWCHaCeVugqE4hSJ45DOCixDrmmArtuqFy1lqQlFOpLUzjSTw4LqKna4wtA8b9P2ILvoP27ZeF0K9WOHKWatfhEpJRfmTqn95kzM797jD9jydKhf9B270W8bXC1xI1eym47q1t02AoiA5pYYSzBy3zDFO/I4FZvyiQq18yrgjusHawmeyS5UeImqeE6NEiu0NT4UVFLWipWKqoqnEoLxIcEdBwUHdqhremZRbgqrMNuR2I7Xh9zn9720ApMj9Fyk75oQ3LZfsGebGLi3qheSlsB1u3/XelNimUrIrHa2Tu18nYnhMF082pM9WsySacvgaw2X6V0GVdOgaWqIpH7VEqpb2Li4YczhTvsX4fRvwdNvoZgdLEqVrkRIyaWaxq6dGrce0piM6YOUTakqim0VYyEERq63jZdmab4/duS9pmobalWOLHOw+3LQfuwWsqOGoot7qNQVi2nHuNJvGM3D4pY+hoLnd90tQPM3254lOWrSmGvg1iXWWPw50VNG1/79tOeXXqoFIrDSlmgxAo/mkIW01y/JaBqCdHIzBdle8iN8n+qC2DY8R0IP95eGHQi36kkNzRLIplQCdabwq9vFLOybgqUKHDsnWSoF9+5SWa1t7rpBsGPi8uZWLaH67Xtppbh1Fz2h9V3JBhga1mi6gmZT/da4SvZWkB2PrSAbQAjEaFL1F18FTIXsn8LQN0klWzoucqGBtiuLGI/KF9YanZXGXtCTBpmUoNEcPICpN1RwlrCgudjELJokJhI+1Wa1HhiRNZFtnxutZKsgey6kLD5cDFeyg2TJuYvH/Mfa/nyH97Xx7TvQXzZ4CdC2mzRtlTHYiPZdy2UYykHRUqqnRjYYuDVLI39zntFXjTJ8V5HERALZdKmeq1E+UaEeUuK0LJWJ70YZr3qLh7FC/ORhGoKdE4J6Q3k9D4pmS1BtKNh/whQc3KFxxwFBysK3kNrIKNcUi2Qor4TMVkO1ITF1tUjutUjXdZVhv9ye93aMFqCYg4UuRcSVimoByKYkIMGVjBWjdPFwkD09lu2oxjtlh6ndJtPbNC4uCk/8bKuSvQUQlW/AiX8HlWfIpgaYuABsF2lp1IXO1DaddE6LDZiVyrOIqDy3YK7ila1n4qnDmiUQXYSw+vrqrX7swmAr42zR8EWuJJLFEkyNQTErMHQ1BjcdlXz9pocjFQ25B5q2snIbujmHU3GQUna1adIs0VWOxTIFmaRaE6W9JZnblBjpzkDKyKwuuDcoChkVcG4KeOJwkehHjz+20pHKkaILmrZqjRRCoCUCr2yVWAssskxDcO8tgje8THDLXpWQOHoWLlxSGg6374f905f/07REvJd6GG7dRUsbfbeJAOTyGq4LjaYkacYXOgxd5S0uh014PWIryPYgcqanunjlF19xfQmapqNrm8NWRs7VEeNJtN2dvWKuhMIAgkhaQpDNaTiNwW/Mhg35tBrg7JJNelcKPaGRS6vAezVfQpHutLPIh4LsZY8u3m7f1ULYK/vc7InIfvTXbkO7YxgMgf7WafT7J1gLao0gsttoaq2ulNQbMD0moKGoaXEWE4lRi+yhLKOvGGH8W8cYe/UoxdvyOKVmUIkxgr6uOCx5VeZsFwoUqGr2SH5tSuPLZRXsxfltjxQE0+NQrnavtG8UVGqKur9rUtBorr7YXVxR7IBr5TOeSgj2b1fqtNW2McCVkkYTJkcEsi6VUFRSo5gMWXi1VbInRjub8t2GQ3oyweFdykO2njTYXHK4W7hSKFWC7E4mPSDfuukidQ0trasgM2fGB9mOt+CO0abQk3pPHcvEiNXhiwyeV7apdSSJ+4VTtkmM96eXEUYyp/vNpaWqqqDuHA++31hRqbh3S5p9U8GVyiK2B+pNVSgYOpAivTOFnoqfQ0EFUL10xYZyoGmB6CMyvpKtZ3W0pIa7jonGdFIgN8uQ6qLsHMNrV12LP7SOVPo9XdCwA+FdLan5Xtk+JTt0/oUQjBQEdx3WeMPdgpffpNY9N+9ROifrwRDTEvqqyRO34WIWB0uupbMaCEGzEVUWd+supSNlmsvNwCt7s1wHVwlbBf4WsqYKuioO5K5s7iGVyDBSmIjYQpmbQPRMuhIWGmBp6PvzHRNI01ZVsX77sUFVOxMpAfODLxYcRwkzSUdlJq0RdQzzaSWkVamtIgZjddo2xNLFF0N08VBPdri3/qwnftaC0ATmu/ZGvLbXghZVHK58JduVStjK6KKG2o5SRZ3r0SK4sw7J6WTsgjAMPaWrf0mNledWkA2JSAhFudJVZrj9nDVtiS5Ub3AvGLpgbEhy6VRfX9+HRLUrHBrpXqkdLwpOJKXSHOjiPXmt4brqPhjOCYZyasF7aVklH+JwaVmSTq5exb7SGB+CHRNw7CxsGw38zlvHeigHTsnBSOsIQyNFcAKqtTLlRnCPTA5F7xHpSNAULXb7GByYhue+rjMN61rJ2cLGxoMPPsi/+emfZWmmiRDKUxbg5LnnAUha6cHn4IZLTdPJZDQKWWjmDdyTnStM15aYXaiZWlKPDZxcb6VqjnSpaiY0NEPg2pK1pOYH7cduIZXVQNdwbJflkuCGXcoqz/9emmDXJMwvS7UeWMVf+HrGalVQ8IJsC1IpgXFjDmFqscwFUIkVhFrvxM2zmaQgm1T0ffUFOm3jQNl46Ukdp+YORBnuhVRCBfjuOjh8XHG0FMNDELpQua729ZrsnShxXXxqthACPWNgz9RBCBIFs6u4Zj4juHmv4MC0UifX+1xzrQatj/1IR2J2uca6IZ1RAnq1uksmGby3dqFGekeS2oU62rDA0DUch63IMoStSrYHYWmIIQu5joIQvdBOGd/IHtnSlcilBvJCFZI6+g2FWPupSl0tivtVFgeVyU+lNQzpRgRTbEeJN3UTnWpVFFOJFvXN8C2jdF0wVlDU2V4QCR206GI7QhcvLQJ9VrIvRoNs/zMuM3gJe2Rf6Z7suSW4cKn/7UtVVQVNeDY01nD/izYtpaNZut/fpwlBKhkvgrWwoujPQ30oh6cTYuBac6WqrtuRHmzRTEowOQxLG9j9qVxTVj7KS1qwa1Jde/WYalepKnFcJfLWTSBlvdG41Ij1UBdCsHdKMFpQ12ALy543diohcKoO1ohFcluCJMEAU6pEK9n5bLQkH7YpEkJw0x5BftRgxda2xM++ibC4uMjXH3uUo2ef4MiZJ3jhxOO8cOJx6o0qoJSwB4VsSqoJk2JOVfL0VHxVWja7BzN6UlM2om33RWNW0bBSU/GTqerxFj1F07rB78cewGKxhVRWVesWLrnks7B9tHPsGCnAxJBK8F2v6EvvQkpEjyooqCC7kFFjoDViMfzyoa6Jas3S0Ey6i5+llDq1H2QLOsT2QAWU5pCJW1tf8TPLVDo5Gx4SRHsQ2OrRbr+dBD2F64SI9icbeQO3IdU9n109gZGwxLoF2KDGhX4WQIMmVzJZDdMSaK70f29zuYmW0snfkid7MIMzU0dH9nSJaayxvWUzYyvIDkEMJa4a12GqTfxsIwbZQXBdAV2g3VREv3MEbVt8qbpaU1XkZA/RhXYIXZAuaFhC9XfNLEjOzStfXtdVIipxaqWOrXpAkglwSjbWiBUZOEaLYlVLKBKasvEKnfNwJbtUWQSIMA7CPdlD+XGfwn1uJujJXk/UrlKQ7bgq6Epa8UFZO6p1NdiODwW2DUau/4Fbs4SyEgkJUGVT0Gw7Z/PLkkS5zjS1vjLkqQQY2mAKt8sVZV+VSgjcuovdRQBxclig6/0dn2uBck2xClrVo5GC+l3ti916U7JSUVXdieGrE2BLR1KfaXS1oEmYgn3blctqpSb9vvqW0qq0JeawhTlkkgmp7JcqZUol1R+QtFIYRnT15FRszILhjw35jODmmwzK6DSrm2FFuIX1gBACXdfRtM5/mVSe73rzTw2+U8elphtMelqWehe1XulI9HT8a1pS9W2GaeZO1fHH1Lggyf89Kb1nT7Zru7Eq0nbZwcgafftjh5HKaRhJjVrZZfekiJ3rNSGYHhcIsXHHysuB60pOX4SVLkrRPiRqMuqBRpMON4Ru0CzVIuB2WaOmE2oOTSWUHo2k05u9BWvY6qkFMCgSlrJXrK/SorcRIF3ZeV78ILvtnPY4h1Iq67qw0raRVu0U0pHr5kM+CITRu6XAtV2ELtAGDLLTWYGVEFhCkvCEhhtzDbIHMiTGE+RvyZPZmcJaqOF0WXuVq5Izs9987gMDXQUf+MAH+MxnPsOJEyf41V/9VV7/+tfHbler1fi1X/s1vvCFL5DL5XjPe97DG97wBv/1j33sY/zBH/wB5XKZ17zmNbz3ve/FNK99kClyJlgasuGsmoG8XLSUqVvYaMriUkrkhSoiZ6LdWESbTCtV3h6oNhRFdVCkigYZs0HVgqGsElHJeJPFEy9KlkqdVcaGrXqZUhY0Gi6JySjHOJ9W9KWe/tuWpgbQpgRvoGz3yYa2SnaILi6EYPv4Ho6efooL86dxHBtdX9+BNVLJvoJ08eWy6stVQU6g9t0NS2WYHlN0fafuoFnaQJOKEAKzYNCYD2blVCLqs7iwIhHAvhGXobyGU3HQY4RcwkglVEa90VRJmNXQdCSaUHRwgNpMHdl0MfZ2HuuWfdjcEowX+/qZVw2ulEipqOItaEJRN+cWJZW6Uhy1HcncEuydgp2TV4/W59QcjJyO20N7YbQo2L1N8uJplezJpxV7QXoqvWbOQM/o5EJm6NV6mUpF6RZk0p3nzK27WG1jw77tgpM7LS69UKG4c51+4BY2NN761reyslDnE797ETOpkR5ep/nWUv3YoPohhS5wbbej11nrsp7Qk7pXkQ7ui/rFOumDaZZZin2Pv8+0jnuxe1RTv9gAJG5TYhZMzIKB0AROySZzIDNwPzZAKq2h50xGm1Umhky6rehH8sqx4OwcbBvcUGNDY7GkxqVqfZXWOCFwgBdPSXZOhHqlQ5BS0bz7gbAEmiG69uEbunKAAJS6tS5i6eKAL1B6ue1sLWhCkM9Izs1f9q6uPKTsrE7rQv1rC7IFomslu+y1I2ZC7WN+D7wMPLKvJlZr13PrSqC2W0KwG3RTJ5vTaDQclUyZa5AYT5Ddr+ZcPalTfEmB5LM2pfP1WJPuSl0x7Vpe7t8sGOhI79ixg5/92Z/lpptu6rndBz7wAZaWlvj7v/97fv3Xf53f/M3f5OTJkwAcOXKE97///fz2b/82f/d3f8e5c+f44z/+47X/gvVExgj6sq8wptqC7A3Xk11zIKWj3zaMvju3aoANauxqKXsPAjNncHCb5J6bBDfv1ZgeVz6jSUtZGtSbnYqF9SakkqC7Srm1nfqWz6jMbrUXZdzUVDIlRLlLWCksU42aLZ/sVk92OpkllYymnbeN7wbAcWwuzp9Z9bfOLZznl//ff8mHPv7+VdXPoa0n+wpVsiWSal0JmI0VVxeMawV0Y16PtFt10VNaX/SoMIy8GanEWKEYfamsKuuHdwuGCwJrLEF9bhVfNpTK6iB2IitecmEo52WmHYkw4hU6NSHYPqpEutaiYH4lUa2rCb+9KlLMCqbGlMCZKyUzi4riv397vCf2lYJbczFyxqrWMbsnBWNDKokzOawWjk7VQU+r60vP6BQmgoxbs1nx6eK5dPTHt9pArDa1XsMQHLrJQkdSW/2S2sL1Ah1kXLVqDZCOpOEqIbDWPacsfLTYRJLWxdJS6AIja/giVM3FJnpWJ3tg9bHeyOg9hVql7ZI7nKNwWx6kpHKySu1iHelIX79kUOi6YOS2LDt2m7hz3ScKIQQ7xgWGdn1Vs11XUmuodc5qpEchJRVHkE3D7GLn6yrAXUU3JgTN8K6vPii30la2cd0q2XrGS+6sQXC2G3LpPtiDGwGe8FkEMUG2dCVS6x64Lqwoplg+dKvqCdU3342qf6WhGaKncrzbkGjWYPZdLWSLGgldYkgXt+6QO5yN7McsmGRvzeMgkMudY0PTVmv2buK21ysGugre9KY38fKXvxzL6j1A//3f/z3vfve7yWaz3HbbbbziFa/gU5/6FACf/OQned3rXseNN95INpvlh3/4h/nEJz6x9l+wjhC6Z+VVu/JXwZQXnLWw4ejiFUdV9vsUSGjaSsBhENGzFrSEjmGIWMGtsaJSfW7vhW3aqpfJLtkYeaNDLTGdVN+lV1+2EAKR6ZRDbFWzV9oq2eF+7BbCjIRzbeJncfjAh3+RBx/9W/77R36Nj33+T1bdPlzJTl6hSnbZ60keLQTK8L16zlqCVC1FaqfqYA5ZA1dG9HRU9MdSAv8slpRq+eFdgomcRDMFyW1JVYXpo4+smO0vyJaoBdPUmBI8c2uuUghNal0/Z6Sg9r+8wXqzy1Xlc52MWczvHFeJh7OzKplwaKe46oJELW/O1frFTEOpjU+Nwqhn1+ZUHIycgZ7WEUKQnc6SMNXKtGkHPdnZtiC7xXyIo8VObDfYNgKLG+w8buHKQTM0SEaTqmtG06UmNbJDmq9BorV8cmNouL3scgzPxks6ksZCk+yhbF/+1ZrVXZncd20YsSjckmf8W8YYuXcI05srzQGtu8K4774EB15bBF1EmEjtKGRVonszUIj7xaLnQjFWVFNXN7cJKSVSQM3WKGaVNWU7jbZpK7HPQYQ09YzRVx++EkfTuiZ39KSOsPRYjYy1IpXofUw2DKRKpEegCyVSFg5OPQZVHF1cSknDVi4eYSaAltTQTKEo2deikm0IhEZXGy+37ih9kjWI0+WHDIpJSXOmTnpnmtR0Z7U6N52isSsPFRsZasdSgnieuO1mSMSsI9a9aWB5eZn5+Xn279/vP3fw4EGefvppAI4dO8Y999zjv3bgwAHOnj1LrVYjmYwfbRqNBo1GdKQ2DGPVYL8fSCnRNUVLFQi0IR10CcJd04XYL7ZP7o78bRgmQu89OLVeX2279YB0bbTxNJrw/GlXQb0hySSV8JTrDnbcRAKkLpGi83MME3ZMwjPHJVKTtFzOhC7JpAXNmk12XwY0cN3ohDE57DK76FF+un12XkfOOJFjms8OMb94gZXyItXGih/oDhcnOo799slQkD13DKG/qutnVWslHn78k/7fH/jwL3H7jfexa+pg1/fUGoEfVSqZRuhy3a+DSkOyZwqSSaGOa0ZSt7tP/tWmZNsoWJZAInEcB31Y7zj+q0EkAVOdN6ELrIQkkZQ0bTi0G7aNgV1yECmN5I4E9fkklbNV0ttT/rUSd82kU6DpErFKsrZak2SzMFwEKaBZtdELOrgSp+HEVuZ1A6Yn1PWILnteW1ca/vnXXaQmGB0W8ccjDbu2Sc5dght2KYG5q70QclwHkUwgjfj7PIxiHm4/qJIuEondtEmPptTCVUqMgk46maberFOuLPpzQyadjezbrtkYBQOREh3XpkhrbN8pWDrvUGlIJO7A128cNG1L5mRDI2PAyjpEfQ2XmtTZNan7WhGaoaGnjYjuQKsHspdCsZE2kK6kPlMnOZkgs6e/THW3AAo8Wqil+bRgPa2T2ZchtSuFvWKvSfTM/1xNkNqepHh7noWvLCr7nhhvZ00IUgnJwhosFcNQAcO1V6x2pWK+HJwW5NPKcrLR7NJa5SpXg6or2FNQQfallWg7Xcu+q99KNoCe1vryRlfe7N2TO77dVN2FdbJvTCYUDdi21bHZ0Ghf2+tClRzDAaDj0cpjEtLLFcinOtvGtIRiG0hHXpNKtjBUgN+9ku32lcCLw+SUTuKUg0ha5A5nYyv8lgnORBqRtnFPlhApdSFUG6oFLJXYeAWKK411vxUqlQq6rkcC5kwm4/fNVatVMpmgIpf11GCr1WrXIPtP/uRP+KM/+qPIc+94xzv4ju/4jnX5zg/cEPqjCBwAuMyZYVVoDA8Pc+mSknPOFHX2PLDS1zt333ulv1sLC96/PlBU/5u50HOr7rgbVoiXIy1MwT23RZ972ZvVneoASyyydHKx8yuZ8MChVT73du8fwbEfm8px/AzUG1W0Hc/4z+86ONJxjl5qTIBXkC4Zz/c8h3/913/tq9mC2v9//l/v5q/+6q+6JozSRwK57523aZH9r9d10EoTtPZ8+67BtmcKFrjEwskBpMlbuAtKBIvSl4S6KMK/7szMGZhSn7US2r60rfN456fg5bd1PN0VDt5vmYo+XyeeBhF3PV5L7Lm33HlO2jAyBSOrbHNFMeXd31Pd7/N2+EzuKVhggYWTwViUyqVYWFlgfmnGfy45lGBlKrTvKWhQ59SpLrP6nXCjdy3VuYDX0XRZ2LNnz+obbeGaQaaM9bFua7q4SZORYnQhbeQM6jNBD0LLbqlXQKyldKQjcW1J7oYserK/hGUrgIrrq3VrXgtPJpoo1AwNa2h9WtPSe9I4dZelry95CYbOpGQmBTOLa9u/9EQx5WwVRtPX1GYQYKmkWEwTw4oRnDADbZgOOBJ0cBGMFgWZlORLT8FoIThXLfuu5ACnQ08ZfflRu7bEyOhdqc5CCPSsgX1x/fplUpZ3TJobPMgWdHB4hfAq1uEya6uSrXcGy4srSjg02+bMoYJsgXS4NpVs3Quyu1WLXdVmshboloYwBNkDma7tJgkT0IRiwYZQrSumXSEjODe3wZkO64x1vxXS6TSO40Qq0+VymXRaZWdTqVTEcqWlDJtKdfd9+sEf/EHe9a53Rb/4OlWyL8xLPvOoEqYQQgkvOY9fguUmYniAFOMaMDG01w+y3VqS4w/19igSumT3vSVOPJxFOlduwpEltfDU7xzt2tPTjlMzkht3wx0HBh9YmstNZv9xDnPIRE/EDwAnL7g8dxK2TUj23Fvm8U9luH2HxKzbjL16NDaTvlySfPEbKpPuuEr9MpNSQhUtMTR3vob79UswkfQnP9Me9ffx8MeCPutEY7rjHGnzgT7Bc4+d63kOP/ynQVtEITfC0so8Tz/9NL/0M7/Pu9/5i7HvOftMQLkpnRjl+EO5db0O5pYkYwW4eW9Aezo7K3n6uGRypHPf1bqiSd15SPhq3I2FOqOvHsWKsXXrBelIZj49g5QCy6us1OpKvbL1Xapnq2T2ZSjeUUC6koVHFqier5HcnqS0bYXs+RxCRr9npS756nOStKUsMuLgupLZJXjJAcFIQd331TNVRu4dxq44LD2+RHpH94rSkbMux84Se4yuFlrXwdf/IUMhJbht37X1u+4Gt+lSn60z9LIhlh5bQs8aGH32hLkNl/pcnbFXj0Ys4nKWus/CDKeCViR3Lg8QnM/7hkltj59bFr66QOl4hfkVwf63jJCduLLj/RY2AHpQrAdBo+ZgjqU7NBCMnBGhasqm9Oy2us+Lulf9Su1Kk9zeP3dYWJq3oJaItmqbU3VITCbWJG7W9+cLQe5QFqfqsPJ0idT2ZEf1rl3Msl9IV8IlLwBMG7DUhAHnl/WEK5Vuyf7poNUmm5ZcWgLihhdH4gowEqqdYCQvyKYlpWrQUldvwlhhMJtPzRJK/GYVSNtFS/WuWJoFk+rpVXxOB4BpCFJJyUpZrbM2LkRnJRuUEG451Cra8iNvv7c8J5bp8c59tJIXbq1T/PBqoFXJJoYuLqUEMbh9l79vSyO1M+WLncXBMlVOwkVEWH5NG4bzIqK7882Cdf/J+XyekZERjhw5ws033wzACy+8wN69yrJq7969HDlyxN/+xRdfZPv27V2r2ACWZa1LQB0HIZRdjEfAVf8Np3Au1NEKV3bBun18D88efRRQPdn9BkzSEVc0yHZXHLQpxYfqd3ps2pJiVvRls9QOI2mg6TrUlYJmHCaKGifPS7ycDKYQmDUbK2dhFazYiaqYh2+5U7KwohRBz89L5pdhblHRViZHBBgGLhqigT+Y5tJD/j6On37OfzxSmOw47iP5KUwjQdOuc/bi8a7nZal0iUef+hwAY0NT/PJP/k/e86tvwHaa/J9P/Bfuuvm13H7D/R3vq1Qr/uOklYns/3KvA9uRNBqCySGBhvAXn/mUSvTW62C1TTDLJZgoQtpS/bVuxcWwDKycNThVVgMzY1Gfa/iBcqp1/lsXXhOsvLdvDTJ7slRP15F1746VoiPITplgCdU7bnXJ5FeqkNAhn1LvdyouumVg/X/tvXmUZFd15vud4c4x5jxVVtaoklRCEipJgGaBMBJCiEHCGBa2BC1sywwG+j3ZNA+ZBrwYDW7zurGwxfMyLMDiQYNtZAzYCPMAIyiQGCWhsVSlqsoacojxDuf9cSIiIzLmzMjMyKr9W0tLWTHeiDj3nrPP3vv7UhY498HC+tetZjTJ8eRBhVyucR/0elLIMQyP8JrfsJ9QOQVhSNgDFhYlB/IKrENF3SgbwbDl0hgoEU/Ub2bF3VjlN4uyEYQhYCabj0srbWHxV1mMxBlsU1Cp92mAMrnuWYxUy3YwpRRQjMCabPoWCgpOSiCxbB9O2LW6A7psl7UsHRWugDVmIb7H66pFTVs6MV0+vGwlFxUjmINrr/PCOEPynASigkL20VLyhOnMPTc4ZJEBiqPbcm81WwBPWwCyENtiCB+Yh/Kjjjf9e818RveYjy4tDZD0gGeaqWlHQDHkcByGuKs3G6ZHFH791FKQXfR1f3c3cLO1RVMZFai2wZQo2U31kqSn3Tf6GQbo8vDltxscUaiWvt5IAZaoOyfLFQ3NHEaMuERobEzjMTc4mGjck618rW/Du1QWL2NP2DAHjZbjyjIAKQE/4PqSFGltAjBtL4dS54fCxrbarSddfdtBEKBQKEApVfm7UVnTddddh0996lPIZDJ48MEHcd999+Gaa64BALzoRS/CN77xDfzqV7/C4uIi/vZv/xbXXnttbz5Nj2BxrcDUSrmzF4wPz1T+7ivhs0A1zeLPzik8elDhsYMKjx1SePKwwoEjCoKvTPQMWCqxCQvNv2/HYpgcAhZLMafnAioXwR63Wu4E2xbD+BDDmTMMV1/A8eLnMlxxvt5Meea4vojC4DViOPFYqvL34weXguyBKvuuyrFzjvFhXV998MjjTcv8vnP/VxCGepf0yotfhl1bz8UtL/9TAHpB94G7/rCiZl5NjYWX1aPmqRLzGWAgpu1Wqok5eic6u2yTW0EhCLTVUpkwH0KmjJaZmlYYKaOirLuccgakugzRHrNgj1kotFC21XYircXPsgU9UZoli5MwE8CIS8i40AJbkrX0EY272pO6H/qLDKNzr9WNIMyHkCV1cO50J7YTZkvja1mQEkvUf+Bq4bOg/HvGmu8jC0+2tTwhTjHM+ut9Q7Ih1DM5qAYCiEopFH2GoWEt2FkNt7WYY7kkPQp0b2arcSbjEgPPHei6jJubDFzyxpZOCpCx9VlTcIMj9ewkhq4YRPqiNBJnx2GNWvr4MgF4IWwppLkcteADAhA7dATKxlywCQfqWGFFWfHVEimFbB6YHmWV+QIoZembPSlUKIYMsQSrlIPPjDNwDhRLPdWR0ho23aCD7OY9t2VUqLRncwtWazEVFaK63yMZ06FT3yvKN9rMMuqFzxppKcwtAltG0NAjHgDMIRP2WBdqdj1kqVy8/vvX9l1ixZlsYfGGFaPVmIa+xAac66RVqMVlHVPbd5Uz3ZtChb5HdHWWvfe978Ull1yC/fv3493vfjcuueQS/PjHP8bXvva1mv7oN77xjYjFYnjRi16EO+64A3fccQdmZmYAADt37sRb3/pW/PEf/zGuu+46jI6O4tZbb+3ph1o1MWNdrLwmR5f696ToDwsvVQgBi4M1mKDnFnXJ1L49DBedxXD+LmDPNLB1HNg5pXcxVwJjDO6Mi3AxaBpwAcD4IEO54CFhAWCoKSHtBNdm2D7B8NyzGVQEHM0wMIPVBtne0nb1E09XZbLT9eriwNLv6AcFzJ481PAx3/rB/1v5++qLXwEAuOm3bq9kr4+eOIiP/d3b6yat/BpZeEVqSVlbLFsAcs4wlNR9NDXHUhKvSFXFN1FBrSpjIjzR1FJHFRW4yWp6iJjQPUGqTc9i3GUIW5y+fqjLl8qE2bCyYSM8CWELhPnm78EYw1BS23ltNEkXFYXjfiQqRDDSutpExmVTn9dmzzWH6s/xeIMUkOcsnR9hLoQ1YrXMDMq46NovlNjkmLzUe9nmxC2EYINWQysaBAoBZxgcqd/AEWWF8dIY12W77Re1wup+HPJSj+RyS6fIj8AkW3Hv5UoQFocz5SC2y0Py3ASGLhvEyG+NwBmUMFQEv0PDFuVHwKIPviNe2ehnnIFviwOOAOY79GbsIfMZbdM0kq693bH0UAoaKTlHCnkwjAwstfCMpnV5+LE5vVHDWXfK4oD+zbmBjq6h7bL+3F7yde8WFSlkHsugeKz29xhOAVPDwLH5/lQZV0rpLGrDIJvXWniFSrsRVOEHCowDk8PN5xVnyoE7s8KMUw/glmi4CRMWtE4DX8G1plNMWcpks9J1NoiQK+j1iW0xGLIkjncaBdldlYvfeeeduPPOOxveV52Ntm0b733ve5u+zkte8hK85CUv6eat1xVmcrBBC9FTmboG/l4yMbK98reUfZLJzoVgrgEsywDlCrrU+qIzdf+upndZoNhuD/58gOzDi3Cm3YY7/57DMFaa6MwohHDlilVSt47pAOl7PwPmI4GEvzRZxN0lH96DRx+v/D3YIJMN1HqeP3nwIYwMTNbcP3viEB586HsAgC1jO7Fz+hwAOgv+f7zhE7jt/7oci9k5fPuH/xtXXPhSXL7vhspz18rCK5PT2erhZOP7UzEGQCFSquKnnMlpC6iahYFSMFZxjginlPlpIN4TFkJwS9QtUu1xG/aIjUwLccKyYmujsiQ/VJBVlRflCclI688hLJ11DeYCoIH9UxnXLu/Kqob2c+vFUKo/e7HLqFBVLINkrPNMdrmHzGjwGzQqFy9nssNsCIDBaLMBJz0J4QgEnUYAxOZHciiLt/WRUcUILGWALfpQQVRj+RPkQwiLIzVUv1jVNl4CUTECt7QSdCNBsF7AuLYJCuZrx68WPRN1omfrDeMMdkJAIkAQNhEIq0IpBXU0Dz7lgm+pnetY3IDYEUf04AkoV65b2Xg5i332NsAyaq+xjqUzc0VfBw41hApKioolJqA9xndNAff9VGlxMNGdsjgA7X0tOaIgahsscaP1nCAsDmZy7ZXdZeOoChVkTCJYDGBVbYJyxrBtAjixoHByQa8X+goFrVrX4KtjywXOQgUs+45PLurPVK0S329wizcuFy9GkGONWyt7hRAMtqmwUNAbgAj0WB8oVUuaUo/70ynIpm38JrBBC0yhN0qkTZge3w3b1Cv9saHpNXufblD5AGy4NgMUhApPHwXOmtHexWsBlxzJc+Kwxm3kDjYX4xgvCU2ZfgBzwFjVAmb7BMPFZzHkTQOLC0tnfXUmuzqz3KhcHAC2Ty2Jn/3tF9+LIKjd3f33//xS5XWuuvjlNRe5kYFJvOV1H678uzrjDQD5wlJPdq8y2QoKC1lgfLB5yVPC1QuAfFU2uxgAI+mlgC4qRuAmW9ViTrjaV7LRznyUj3RWedlExwSDu12fN8124R1LK5w2ip/yBcCxl7K/YTaEcERNKZQ5YLTMZAOl3VlTZ/g3gqCUwernUvFKyb+nV3HC6lx4KsrrhaSM168Ay64UNbe5MYT5EIUjBcT2eHDaiEgxwWAO9MnmJrF+eEb7TKBS4IM2kLLqsqeFbATLE0ilGwTZpdancquJCtqX7a4G6Yk6S6cwr+0Hhb2xQTYAOEkBA6qzTPbxIljSBN+RqA94ALBxBxh3oY71ThG7HYtZIO41Frg0pd5obdSWFPkRYPO6FrqJIX29Pnyie/suoDS+yn347R7bLpPtcAizdVtUM1SkxfaEwxFkan9cz2bYMcmQ95dK4/uGqKQY3iiTXbdRrsCW7Z7MZ4FtY6iI3/Uj3Gxs8xYVIhjrIB7oOYCvGGByfR4wXVkI6CDcMrXN2+kCBdlNYGlTq1pm1m40xNwE7vyj/we/c/3b8DsvfuuavU81qhA27TVXkc76scTSiRhFCk88A2wbB87bWV9a3EukJ5E8LwnpChSONp5IyyerzSPY46vve9k5xfCssyUKBWAhpy9M1UF2Gcfy4DqNt2WvvOhGTI9rr+uHnvgpPvOPH625/1vf/2Ll76svfnnd8y/fd0PltX/+8H/WBPa5QrVPdm+C7GNzuvxtcqh1L3vC073LgO6xMmVtQBfmQnBbtOx7bYdwBLglGrYJhPkI5kDj17bH9OpkeRanjGPpRUyjBVA2DwwlUck+h5kQMmnU+GIbCaPtBpsh9Xe0UUH2iZIXV7yPS8WXl/xzuzPhHqDUj+0JSK+zINs1POQPFRA7w0PyWYmO+q3NtFmnzEyc4riyaYsKUFVV40nwSRcqH9ZckwuZCIlRCbtBJpExBpkwlgIX1r5sdzUIVyJatmEQ5iJYTSx21hsZM+BI1TZzpdclCnxnHKzB+Q7oTKPYrsvGG5bxrwGZvC7zXp7FBvRvnXAbzzHFooLt8bo2Hs9h2Dau+3q7te8CdDKCm7zuN69GhbocmrXJZHPJu9bIqLxHoJW3rSET/on6L2BsEJgc0iJofVU2rqCjnkZzQ6PbquaGQlGvgTbSUaQTuMXrbN78+QDc5Q1br3pNzNaFQsyVKOYjWEat2rxrtS0kOqWgILsJzBRgIxZUdm23XPbtvQq3vvxPkU6OrOn7AKVyrNk81OF8YwGRfAhlC7CqzNGBo1rgad8e1jTr2UusIRPJ8xKIChGChebfPTc4jFRvxPG3b+WYGQMWMnpTIVElfFZmMNW4HxsALNPB//mGT4BzHUh85h8/il8/th8AcODwb/DQEz8FAOza+ixMje2se77gAmftuBAAcGL+CA5VlajnSj3ZUhgw5OovkPMZrZ65Z5rBc1r/nsMphmJp/szkdGBevWgI8xGMhGypnNsObnEIhzcWvYsUZJNS9PIu/fJd9DJSMHgOUGywFguVFmip/Dsfwh6vLaMSrqioELciFWcd9xv2klxRoSyGvRJF//WiXPJfrjjhVud9gGEuhDloNgyWGwXZZtZAbLeH5LnJju1TREyuWgCI2GRYbVSV/QjKYGCWABuyAE8Ci0sneVBQGBxvXgEh47WB72quj+0QFq//LJFqWP2xEXCDwe5kUV2MwFwBNtSm+iRhgM/EoBaDNRdBC0IFxrT9VjNiDms4lAo+4MR4w57r6VGGdFxr2KykdJe7AqrF9TMKdE9+J+POSDQXHm2FCnU7gDPlQIWqrjyZM4YdEwwxW28o9A2RKpWLNwqyec3+L2OsJvA+saBFYpcLxfYb3Ky9JqhIoXisiNjOWE1p/1rhWAxRBMARyOcUPFsLn5VxbbTUyznVoNVFC9igDRbVX0A6YSNUMNtSiABHaFGzuUYpvgAsaYA5eoI+elLBNICLz2Q1Qcla40w7iJ8dR3G20HQCkJ5YcT/2coQjMDrEkHQU5rONM9kDqcal4mXO2HY+XnP92wAAURTiA5+6HYViDv9WVf59VYMsdpm9Oy+q/P2zh/+z8ne5J9u2Vi+kkSsoZAvA7mlWoxDejLire838kkLkaJpV+rMBIMqHMIdXd9FmjEEm6yf6cj9uu1JLJpqXuyU9XeJeTTkjX87+ls/t5R7fwpPgFm+7AImVFlHdqOeuFgWFE/PAxPC6veWKiXIRZGxpI6amD7ANKlBN+6obBdmD2weRPC/ZVVCjxc82vqyWWEfaKTQXIzBDALYAcyT4uAu1qOfLSOnAKznYfMyUrZHKa4B2vbGrgZnLLMNCXQ4rmmSD1xtucd2L3e509yP9fXdQfcIHLd0ru4Iy524oe1q3asdxSgKsy6//fqAwkGyslTGU1GXj3dp3lZGeaNnuoIL23uyV11rm694xkQIT2tbJSBvwT9avJz1Hl43nCvr76AtalIszwaBK+jAVgbSqzdpMXrcYrmU1Zy9Yfg4VjxVhDhjwdq6PGJtVmrKZKeD7elOi+jxoVBVyKkNBdgtY0gTixopKxtWRPKKjzXuLN4RMABY3wXfEdda6WLudpPwIfNBGGGlbrqIP7DuDrXt5DGMM8TNjcHfGkDuYR/5gHsGynWtrxF6xbdRyhC1guALjyQjZfOMgu1Umu8xrrn8bdm89FwDw5KGH8Lf/7/sqQTZjDFdd1DzIPnvXUpD980d+UPm7rC6+2n5sP9B+4dsntPpnJ8RLVl7zi1oxsm6xodA009wNRtKo6yHS/d68bb+3mTbhN9owglaSX06uoD9TuXwpzIUQnoBM1i5KpScgLN62L9tzANsCCutYMr6Q0bvBUy0UTvuFsBDV9D1zm0MYrG2JYjlYMJpk5Dyv/nwYe/ZY1yrN0pOwRi0KtE8nTK7tepqNwWIEuKJS5s1HbMDgUIUQhbyCZQKpgRZBdqkyQoW6pHYtM9nLfZPDQgRh83VVFm8FNznkcmukBqhQgdkdbgw4UicCGtir9ZJsARgbQEtRS8fWbUnFZVNQFDEkk41/A8YYLjhDu5ysBOHIlhVWKlDgon25OFDv694pZWs64Qi4Wx34TVTfxweBicE+Khsv+TQ37cnmJYXxUGlV01K5eDav4Fj1CvP9CJOs8ptGfoQwGyJ+Zqxh29VaYJbeRkld5RH3ar9rs4Ml40JO4cBR1dGYUXNFqOPrp9PQLRRkt4CZHGzEgcquwDaifKL2EaoQalGzcQds0oWaXfKdVEEECI6sIfHYQSCdAK44j2HHZJsXXSO45Eidn8DgJWnYEzbCXIjcEznkDuYAYFW2UXXvVRIAGbCV7pFiXqX0u0wzZfFqpDTwf77h/4Yhdb/wF7/+v/DkoYcBAOfseg6GByaaPnfP9gsq7/nzR+oz2avpx44ihaMngakRvRPbaYmaEAyDCa2oGXe1GFrlNf0IzOiNTYy2UVoWZOf1YrGdsJ29xUK42Lwvu6z+XSZX0JmEckY+WAxgpoy6CYgJBiNtImqxkAsWAxhhCHcdxc+iSGExB8yMaYGZfkctK13lBge3RVuxnTAXQpS8tRvRKJOdGkp1fXxMMCT2JtZMAZroQ0yhM9VNSm5VMarRJUHSABuyoeZ85LIRnBiHl24+XirWSHldtttJsLNSuMnA+JIvbpQLIZz2m5PrBbc4LIdBKIWwVaAd6I2NTmCCgaXNhh7mvaLsQDHQolQc0D3V9jLtj3K1gxdv/txkjFX0ZbqFm6xlYNxNJpvbAuigLaqOUFU2j+xxW1teNrC85Zxh26QWu1puCbohRHrjC42GmiipjkfQa/eq3u0TCzrA7ju19AZwg1U23gqHC7AnbDjT6yfcUvbCzoYcpgF4Vu3YMmX9umw5ubzevGq3rlKh0knQFbQ8rBcUZLeBDehezWZiYY1QkS51ZRtUMl4MFI7PKxw6pnBsTiGbVwj9EJAcPGlq64/tcbCEAZzUozjKBDgRCByPJM7dCVx1PsPUyMZaAwlbwNvuYfDSAYxcM4zBywfhlfwHy3ZLvUALgEg4QmEkDSxkGRLLstmdZLIBYOvkGXj9K95Zd3urUnFAZ6rL1l6PP/0rLGROQilVVS6+siBbQeHwSW05sXsL69pqKh1ncG0t/lLd+xvmQghbQKxC9KyMtvFiNWVrUT6CjMu2CwVryAK3OcIGC65qixVgqaQvUbWzGhUiWGON+wCNtGwaDCqlUDhSQHG2iIEkkF8n+9bjpb6wVj6d/YKKtKfo8gBWxluXOwJ6fElPNg1+G6qLN7iNIOowuC43bjYGlQKrGneMMfBxByxSKC6ESA1wyBaVD+WWiDAXgknes4qrRix5ZevrVJiPYKSNlv7w6wk3OCyHQyJqqyjMusj4s4TZNju+Gsqq4sk20y5nDHGvNsguFhRME4i3CLJXw/LqheWoQEE4nc3Lwm7u7tEKFamKhZiRNmCPWSg2EEADgITLkPK04OiGE6FNJpvpADsqZ7I5lNLtcjNj/W2VWaZcLh5kAjAOxM+Md6xR0gssQ1c+nixwOC6DLZYF2aX7W4khhpGunFzMNn8MAGCuCCQNKIPVVeb2CxRkt4ElTSBm1AiftMWPdHmZ4F0F56uhHFgfnFWYW9RlrLu36L6fYgAcPRTicEHgYEHiyAmFwwWBYwMxnDgeYfZogNlnAjjjJq66UGDfHtaw1HYjkTEJd9pB6oIUANTYLfUCI6EDqrEBBsaAmJequb9dT3Y1L7/m9/Gs3c+t/FsIWeN93Yy9Oy+u/P2L3/wQhWKuUmmw0kz27EktVnbGVgbb7P43jXta+C61rCc/ykWQiXp7rZXAbQFu1/Y/h4UIRrp9v7eRMmAOWQ17wkypBTfKC6BCUZd2V/yxyyXJTXr7Zaz5GAsWQsiEASgg7ujMwlqXwxUDrdI7M8H62kKkTFTQFlzL+0O1MFT7TLY1YjVd1DQKqOPxTZBmIPoC5hlQDcagUloYEsvsr9igBZWQEHNFJAZbb/6VK6PCTAgu11b4jBscrCpIUkEEs4Pr5nrBLQ7LYjCg0GoNzAC9+dEhzJM6AOpAQHEl5Eql4p2ISiZcViPklM8pmBaD663N786N1poCUaDAnc7eu9rXvRtUoLRTBPQmlDPtQAVR0/7uoSoR1Q1F6eC54bwiSkJnpSpUJhggGTI5vZ7eDKXigC4XZ5yhcLgAd7sHa3R9rwemAZgCmCtyJJMMWHbeGyWv7GZiiOVkiGsx+GHzdZWKFFQ+BJ/y1qV9ZKVQkN0GZnCwERsq18UPGJSEUwy25uIcADD7mxwWHs/Dc4CztzFcdCbDhWcy7JjkuOAMjueczfCssRBnX2BhfER7Nw7EgYFdDgbOcDEUFrF1GHjepRa2jG6O3bpeUxYAGUgAKQ9wrFTN/Z1msgGAc47/+vq/gmvrQOB5512LZHyw7fOq+7J/9vAPKllsYGU92cfnFQwJnLWVIbHC0jTXYjhjmtWVSYX5sGd2EMJt4NcZKcgmpcLVMMbgbHEQ5cI6sUHGGJKxpSA7W9B95mWlyyATQroCRrLxrr9wS2WfDRbj/sliRd3ec5p7cveSY3O6x204tbbv0yuiQgRhcQi3dpoRdnuvbBWh6e8CUJBNrA4Wk43Lxf0IyuRgy4NsyVEY8mCYDOnx1lnCsjVSmAsravprBbc4uNS+yRVP+g6um+sFEwxGTMDkqmkmW4UKirOuMtlwJZgl1mRhXQz0vJnuMBNd9rouBwPFgkI8xiDXaHNFe2WjqVe2CqKO21+W+7p3iopUzeaRNWrBSEj4TSw1q0VUN5RI1dhy1SB0cLrUk62D7uMLwPhAbQVcP8MkAxNa6ya2O7bu63lT6ky16TAkEqJuM1MKBlM2Vxj3ff0aYwP63GraZrDggyUMsDEHLLW27SOroT8kKPscPmAhenQBKohq1AabUoz0JOBDl6StYTvEiQUFExF2bRMYmolgNBAPsSSQigFD59pwpmqPPzgzgdn7fIT5EImx/tkBX2+EUxIACRUmhxlcJ1Vzfyc92dWMD2/FX73rX3H/z76Fa573qo6ec3aVwvjPH/4Brr3stZV/dxtkn1xUUAo4c4ZhMLm6i+zyAF2Fuh2iV16sXHLImETxmI6GVaT7oTpdKFgjJrgnS77KteM/5rDKzmjB1/3Y5UknzAS6n6xJ6ad0he4fLkQ1matyaaY1aKLwTAGOjOBYDPnCkuhHr8nktSr6zFitwns/E+ZDWKNWXalaO6/syI/ADdbShmh5kG3bNqSk6YzokGYBUDECM4W2+VrGomshMWYi3oEeiJHQYo5r3evPBAO3BIJMWBKLZOsmcNQp0hNweAFzzdbAQaQDn24y2SYHSxhQs3ldadhDFrParjLR4ZTrWEubrKYEQl8hPsLXrBefGQxMcn2dbDSOGSA6DPDLvu75g93XclfPicIWcKZdzP9sHmaDVr6Eqzejs/n2JfhrSlSvvl2h3JMdloJsT0Ap/btuGd0ccy5Q8pP3JLxdHozE+l8LhGBwLAUvxhETvGGSwnWA+Sal4AVfK5QPJHQy8PBx7a1djVIKKhOAn5XUVotJA3iyvzSwylAmuxNSBli885Jx5Sv9eE82VzDtAdmCgp8NsW2rwMg2E8Fs43qcMKMVlBv1Mcu4ROKcBOxxu2+8NTcCa8yGO+MgfyCHQS9CMraynuxqpsd34eXXvBHxZaXnzRhKj2NsaBoA8KvH9mMxe7Jyn91FufhCTivD79nKMJru/eTgzwcwEhJGj4JsQJd9l72yo0JnyuJlZFzCHjbhn6w/Px1Lx3NBqMAZasRmokIIa6T5Z+AOh3R1b2U1/skAZtqAs8XRi5xAb2KtpfjZfAbYMop1tdJbLapYqyxepp1XdliqMOgmyKZ+7P4jm83i9a9/PZ7//Ofjqquuwh/8wR/g8ccf3+jDAgC9MEMDwadiyeayQcCX5RJj53fmNSvjsrRRuPZLLOHqbFGUi7RORp+InpURroTTInOFUAGS6xrTLmBps2HJ/2rJF4Hxwc43Mx1L96EW/JLomVKwnc6Ex1ZCdfVCQyI0HL/NWO7r3hGqpGJdhT1hgUmGsFD/Q5dFVLMbLX6mVNPNHMaYHocRtECaxbGQ0xsEo5ukVBzQm1qx3bGKftFG4Dm6ajCeqs9kAzpobtbpUfB1myLnDMNphiBqYJG6GACeBB/VGUzmaTW1tWofWQ0UZHcAExxs1IbKdVgPGkZgnmza99UL/FDh5AKwNRlibItEbKcHFaqGu0bBQgBryGq6w+1OOxh4Tvq0LBMvIyyO1LNTsKccREcKGB1IVe6zLQ+usz6lqOVsdtHP48GHvl+53ZCdBdnZglaf3r1Fe3GuBeGiD3vS7kk/dhnhST0BolRm3IGyeJlyybjyo7qS8bLFytyiXgyV+7H9kz64I2C22ChgjMEYMOu8soMFH86MCxET4CaDKkZIegxrJb/glzYIhlZZkbDeqAgNrzntvLLDbAhj0GzZy7o8qKZS8f7DNE38t//23/Cv//qv+OY3v4mrrroK7373uzf6sDQWhzJ43UqvTlm8RBjpXu3RvTGYTbzbqxE2L1kcrf3GtXA5VKAQ5rVOxFoKra0EYXMYokUQ50c6KOw28+vJxhslq6DgK5hGdx7WUjB4NlAslkpdmYLr8TVrE+CSg1u8eWDMSgrkHVL2de8KhrqqTnPQhDViwT/eONmTjmvtkrqAaR1RESqK4Q0xORAqXa1nCZxcACaHtef3ZoEJhtgub021INoRs3W5t5lovIFjGc0V8oMQSJZK89MxHZBXl4wrpaAWfPApV/diA4Bn6BafPiwZP31TlyU8R5cuLOaWFuCN4AMWIsGhyhNCCxgYUOnF6v0FJVIKR08yTA4BEzKCM+bBnrArFzhrtLa2IiqEsMasJq9WOuY+USPdSIQrkL4wBRWdxLC5NMsOdiF6tlrO3nURvvn9ewAAP/zZtyq3M9Y+yC4Utejdrilg6xopYapQQUWANdJ6PHVLOeOjlF4sWsP1ZcatMIdMiJhAsBDWlEjZpi49Onwc2DEJmAZDmA/hz/lI7Uu2DLKBkod3VR+ZVlXnsEtl0NwRCOYDeE5JmDRSED0+lzI5IOZucJldl5RF5RptlFR7ZYsGXiqRH8Eabj2+KMjuf6SU2LZtGwAgDENwznHw4MGWzykWiygWa0tCpJQwzdVXzUSRAmd6w4qZDMxhYCoCE0vXGSYi8BgDQ23wncsrJFy9+IuiDs5vExBxDhgKUdT97lv5OZ08lzkcEYuAAJBDYkXvt6aYgGEqiEABQun1UQ0RfFPg0acibBvX12gAld9g+W9Rhsc4ohgHCwMwozdL2WxGYSCpr7eqi8t4KqEwu1DqDrQjOAnWk9+h2ThgLke06EOx2vWlihSUBCA7GzsAwGxACVX3Wq1QQkHx+rFtTVnIHc41fK14TMH1tACe08XygZU2aFirjZpOX4tH+txHVLHDrO615jZDxCMwEUGZCoxFmBjqzW+5Grq5HvQDOyZKv9XTDIpHdePBtBSEVGDLpn8FBSEBx9Hnn20DQwMKh48B8dJjWdEHi3OIMWvpGmECKi2hjuXBRPNrgTAUwKKefY+ct1+jnvZBdsJjGB9QePyZ1kE2EqYuAc8EQKr5hK9FPABmcS3msQabdsfntV/fri0ADusdRG5weNtdHPv/TsCMVCVoDgshuM0blm0S9ciYRPrCJCa2LAmVdduPvRqqFcYf+PX3Kn97jotMXjX1Rg4jhdk5YPtkd17Y3RIsBJBx2TY47RbhCLBSCVxUjGB0OV5lTMIet5F9LFsTZHPGkPAUZk9qz1MVKuSfKSC+20NsZ/sS43KQqJQCYwz+SR/WiFVpvTASBopHi/BSWrk8X9Abd70kVwCmhnXJ3WYhzJf8ehsF2SWv7KBB+43u92dte8kcx9HWiqWsCJWL9y+//du/jcceewxKKbz5zW9u+di7774bd911V81tN910E26++eaeHMuzt1b948XNHnWs9F8VKf2/o4e7eLMLgFnMYvaJ2S6eVMtTTz3V/kEWgNK0cQIncOKJEyt+v7Uifg3wHCy2eEQRZyDT8J4tqQPNn/aS1R3XcraV/t/qSBsxNAEM7Vv6dw4+nnii21dpTt04mNT/+WjQozQFPJN9Bniiize4GFjAfOePnwCO+Ifr30O2fq3ztzW8uSNmnter7/NE6b8GPLf2cTtwAioPPNHNd7mGdHQ96CdMNBwP9gTwnLMaP2V76f8Lpf9PTwDTVfdve0E5rX2o9omXlf9oLmO/7TIAOIYnnjjW9DHdUN5EbsVpH2QDwPQow8MHlN7pbpKFYoKBjdmIfjUH1iLILtt3wRJgPIKSuiStI8G0DhEC2DPNYEYRAkdAJvWC356wYaYl/BN+JQgK5gMYSaOpTRFRj5EwMHXeZOXfA8nu+7FXytbJPfCcBDK5eRT9XOX2sUEPc4uAa6uGmlFHTwKjA8DOSdaR7chK8RcCxHZ5WiG6hwhHgFtaZAyRDpq7xZmwkXkkA1W23yiRcBk8RyHuArmDedhjFhJ7Ex2V88mYADe5FhUytM2YM+1WNjHKqvSmwRB3FY7P9zbIDiMFxoDUGnmurhVRvnXJv4wL+A18VYNMCOkJyDZBNmMMnudhcVEvvCjI7l8+97nPIZ/P42tf+xqGh4dbPvaWW27Ba17zmprbepXJLhQV/vn7CpahtRnCn5+AOpoHG7QBAKoQQmV8yH1DYF7tfPnYMwoX72E4Y2tn52GYC3HiBycQ2xODPWZ3faxRFOGpp57Cli1b2mZLck/nMPud4+AGw9CVQz0TpOwVxeNFPP2vs3hg1oBlc9jWMjvIwzk8MxDHzL4YnjisxSntUrZxS+oAnjo5BdWkszH8zQKix+bBR1fff1ooKmTywL49DLEuy4PnMgo/+pVCMQDOcPLY9dw4Es9KrPqYmo2DhYcWMfeTObhbaj93kAsRLgYYvnqo4zk0WAxw9FuzEDHZ0v+9ckx+hMLRAoavHqqziyscKeDov8/CmXQaVkc+dUThl48rjA12/v0yoTDzvEU8/v/FoMLVzYPR4RzEGQnwLTEcOqbdZA4d064dlsEQPbGA8OF5QAGHx9PYfYGDC/ZsfPtFN9eDfiJ/KI/Z7xyDM+XUJH6yBYUf/lLBswCzqrUhk9eCvRfuWbIpzRcVfvgrBctUOPPqDB79Zwmxd6iurSc6lke0/xgw3HjsAcDRX2ex97oUznzu+q0XKMiG9r9LxrTaXarFd8/iRqUHqGl5tR9pKwqL6/pRg+vAexVBdjFQyOQAP1LYBmDnBEM6zlA4EsCIS8hSHYVwBNztLk7+eB7GgAHGGMJsiNguj8rBu2Rky0jlb1sMYyGrEHPRoNSttwgucNaOC/HDn32z5vaJ4Rhcu6R8uqwydi6jYJvArqm19U9WoQIiBbtN68FK4DaHsJkWGeMMcgWqvOaQCRmX8E/6NZl2x9LntZktQjgcyfOSHfd7C1dA2BxRLkJUiCDjskYsTdi80hFSVsLslDDSvtdWi17Eskdnv5aK+yd9MMnqFnRRIYI1aje97jTzyg6zAawhs6niezWxWKwSZFO5+Ppz++23Y//+/Q3vu/XWW/GGN7yh8m/btnHjjTfiRS96Ef7hH/4BiUTjAMQ0zZ4E1I3gXCFSCpECFBiUYyDK58BLC3eVUwCXUJaBarmaIFQAGNKJzjcwmcvgTrmw0taqFsWc87bPl6YEB4cwBMyY0XeLcGlJWJKDB0CxyGAtm6PCIhAxiZlxAQWFR54Gto0vPUaBNw2y4ZlAwBEFWHX11vyivobHLAbWTa04AMcoWSyHgKkAYcue/g7Lx4E0BFjQ4DiL+rGyi/eXroSQHMgrsCaVcjUEAGd6vC1/D2EJCM4BX7dkLCduA0zp/nWjy8osFbJVB9kqYFBMQIEjW1A4e5DBtRV+/RSwbQwAk1A+QxQBAQTGh8SaJi26pZPrQT8hbX1tgo8atX1LAAJAYdk4yOV0H7YpltZVjsEwGItw6FipbWDQAxJ2fSOuayKSBlhGuzs1IvQZoNb3O6QgG4BrM2wZUfjF422CbEdCWQKsGAHNMnl+BCRNMMGhmNIBtx91beMVRlrYrBBo4/aEC4yWhKzKglZhLkLsDKtmcnGmHCz+OoNgQWeEwNDz0t7TgcsuuwxbtmzBkWeO4JWXXo8wAg7NAqmYgtvJRLQKzt51UV2QPZCIYesY8IvHgFhs6fJSDBSyeWDvdrbmytPBYgAZ632pOFCyEkkaKBzJQMQkeAdB1nKEI+Btc7Hw0CIyj2UhPQEjZWAoyWBHEZCNkLw41ZE6cBlucMiEgcJsEaoQwtsdqxHz4pa2o1JKaXEUphfynSjTHjkBRBEwOqAgmyw4MgVgxwTWdPNkJahIIX8or7P7ixGCjFZqL1+LIj+C0aLip5lXdlSIYI52tolTnb2mIHv9+cQnPtHV45VSyGazmJ2dbRpkryfMkrVjsDx3L9sQX8wBMaf12qDutRlDbPf6ZEuYycClVhXmdv8twLnFISwOWygst1FWSqHgA26cYyCh+7GfPKKwmFWt2/dKME9CGQzMj7pSJ2+krVP0gZH0ylqtTAk4phZtsi22pt7ogBYKZZIhyAQ185G2mWVd2YdxySFcvTndCeVKsUaaKdzk2l4sUOANLv99YeXFl9qMUjFgZpzh2LzCM8eBMcGACMgVgWSKYWQTqYr3I9wsiZz6CqgqDpKCwZCqzpGlGOiEZzVRECEVFvHMUT0++ViTYMoWWmV8wW8aZG8E/XdF3iAmh/RFKQhbNFE7QivYNbAoKKOKke7dhhYTY47QahhdcmJBT+znbGe4+CyGC89i2Dqmfy7GWElRU9UtZI2EAWerA/9EUffPxmRD6y6iNbFYDI888gge/s7DeOF5z8aFZzLsmNT9sYeOKRRW8Jt2yt4qv+wynuthfJAhEQMWSv6CkdJ92FMjwOQaKYlX488HsMetjrKMK8FISi0sZnG9QbQC4nvjGHnBMAYuTkHGJQqHC8g/lYecKyC+x4O7rfuyQmPAQJgJoBiDM1Fb+sltDm4wKF/Bc5asXNqxkFVwLGAoBZxs0moW6ZSbVmXtIyI/Qu7JHIyUgcFLBjB46QCExZF7IleTnW71G3Kb18XYZZVgI9HZ9ao6yKZy8f7joYcewo9//GP4vo9cLodPfOITiMfjmJ6ebv/k9cDiujKttOCunrurWcwCwynUlTn3C9zkYAaHOWT0pUMIMxi4yeCICP5yGYZQIR8ypAc5XJthOAXsnAQOn+zwxV0JZsuuVIXVySLUM7kat5iyqvjyBX6nMMaQjGmRTctQ4GvkkV3GGjXh7fZQOFqsUVdXgYKwRdfjQMYlomJnYlDlIHu5hRegx6KeDxu/1kZbeTEA4KzixRxzdevI+bsYghDIFgEohVzAMDXGKyJ8xMoo2801sut0bL0pVYNCJYkV5kPkDuSQfzqP9JCEeU4KAMCSjTfvGWNgAyZUi/hsI+ifcH+DGUlrMbGTi7onqBGMM7CUiehApmXRMKsOQuIG1OF810XGxQAYG2TYMlJdNlWlcpwteV+n6n9Cd9pF9jcZFGeLiJ8V63n/7OmCaZoYmhjC7CPH4NkMZ0wzjA8qPHFY4cAR3cezFpyx/dngXCCKli4WnuPBNhm2jir88kl924kFvRu8Y437sIFSABQp2OPd9xd2inQluMkhE3LFmQDGmNYgSBrwdngozhaRP5RHkA0RPyuxokWojOm+a2vEgLnMV1vYAswUiIoRHE/As/QuuNMiWR5FCgtZ4KwZ3Xu4/xGFIKzPZmfy3WfQ1pogG6LwTB7eNhfJ85IVL2uZkJj/6Twyj+vgm4nGyuJluCXAS17Z5YxImAshHNFW9KwMZbL7myAI8OEPfxgHDhyAYRg466yz8PGPfxxS9seyg5kCSnKwQGn7KKXAGozZQqB9k/sVbmrtA9lgg6AfYIxBeBK2CFHnthUoBIphbExUHrt7C/DYIYX5jKoIzjV9bVFakz2dAeugOEJlA6AYgk24ULP5igVQJq99fVejpxF3GYJQQYjuMskrgTGGxJ44ikeKKBwuVOZlFaoVebOXtUU6QYVoHmQbHMxgiArNXysdZ3jsUOcVX71Fu15k89oaKl76vbeMAGdvAx74AcNoBEAyjI1QDnK1lDfYGo2HmA0crIqHg1BBcN3elz9cgPIjOJM23BkX1piFQw9HAFr347GYUdk47ZcNx/6Y7foA02CYGVP48UPNg2wAYAkDaHExYkr761X+bXfvQRgpLXbU6oIfLOrexUY+tOagAXvCQeaRTM+tlk43yl7IUSECt7hWox8EDhxZu0nCsTzMTJyDRw/8pHKb5+jaqrEBhoPHS5mXCNi1lcFdhwzLWpaKlymLn/VKCZ8JBmvUqrO06xbpCciYgDPj1JXIcYvr8VGMtDJ9QuH4wdZrw2PzwGASmBxm2v860XhzL5MHto71T6l48XgRwWKAxDlxJM5O1PhwGgkD6eekIVMGFn6xAOGIlkG29srWFQDlWSjMhpBxCRHrbFOQguz+5qyzzsJnP/vZjT6M5lhc++L6EZQoqW0s25AuBgqG6K+NruVwg8NIGTCS/bucE66A0cCKKyyGYAbHwMDStSQdZ9g9pfDAb6BVtNvAkgbwZPs1lvIjYM4H2xUHS5iIZvNQobZwyxeBbeNY1Xw+PggMJ4HgELqyn1wpwhVI7I3j2H8cR5ANIV2ByFcrSqoIhzds32mECkvZ8iYb+8KTCDINVM9LxD3txFEodmfl1RMUAL7k2CFLcytjDGfPAEcfZTj8E4aBUYaRIQqyV0t5gy1YrC9dMEsbm2WKPmAagFgsAhwYvGQA9pRdCZbHBhTCnG6lbdZSzTwJZXGwQouW3nWGRlEVYwMMUgDFFqXAzJFgDDUlOmVUoNXEmVX1tVoCDEs9IJ1QKAJ2GECezDd9TFSIYDVRLWWMwZ1xYY/bXVshEbXImISwhRbkKuHZS5PEWrFzprZkvBxkmwbD9Ki+6EyP6TLGXuHPB8gdyDXc0Q7mAlhjVseCYSuBOxxGQjTcONpIZEzCHLbgNDjfGGc1pXZxl0EpvVHWiEJRq2dun9AidULoahU/rG1ViZR+3ECiPwLsIBMgzIZI7UsheW6yJsAuww2OxN44Bi8ZgLvdbdkfyi2u+7mrygqjXAhrzOp4B5qCbGJVlMqs4Uc60Da53hSvYjGrq0nSfT680hel2nrLbyTSkzBKUVz1tbGQVbA8jnS69lqxawvrqCcb0AtrcAYV1gfxfqhQDJT2jz6aB5t0wGdiYAMmEDeAhUAv2pn2QF8NnDNIVsryrlOZsT1p67LxIwW9JlUKfAXBBbe0fk+jde1yVKgaXv/LCFc0LRcHdJVXwtWbyL1GRQrRoSxUg/JkFSltqyt0ufhwuvY3si2Gc3ZxxGMMI4MchkPhUS+QMaE305dhLgtNCj7gFH3IIEL62Uk4W2oVyctr3XK7ZENcCeYYXbWPrDU0iqoYTukM04mFFg9yBZTVpC+7yr6rDDM5lGRA0HmQnSsCbhDANnX2aDkq1CUvrWy57HELqQuSHfc3Eo3hBodMGTVBtm3qQDu3RkG2Hyrs2d44yAaWLjZbR3vnh61CheKxIowBA9kncwirLlIqUlDh2paKA3pylkkDYgX2XWuJcAUGnjvQ9Hwz4hJRUZ/fyZhWqD10TGfBqlFQOLage+irs9bDqaVsdplsHnDt/smg+Sd8OFMO4rtjLZ0KGGNwphwkz2ldms9NrlXbS9+bUgoqAswurAarg2zP61P5daJvYYzpAM2PgGIEZom67MdiTmco+6WapBn9UhrZDG4yGBIwZG0fZi4bITki6/rd4y7DGaXW/ahd4OdJ/bstW1hHSuHoCW1vqY7kwAYt8F0JMKnFudiEA5ULkM3r+bzToB7QuhSNEicqVFp4bJ3GC2MM8TNisIZMFI4UdDV0A1XvdgiHa6vKFsFxhVCBt6iek17r0nPGGIZTDMXOdNa6w4+0BlK2wfpc6XVzWZA91qBSdGSYY9dWhvFxTo48PUI4suHmjan3xirnd3E+QAwBks9Owp2pPxmt0rhezNXdVYFxBjZg9FVfNgXZVQjBMDPW+keELXQfT6HBxahs31W9y2eLSklapxR8IGkpWOM2gvmg7sIXZANIt3E/dhnGGamK9whzyKwRBWGMYSDemcDVSigUgXN3X1xzW3WQXe7d7eXCrzBbhDViYuDiNOJ7PBQOFypqo2EmhIj1roy7GVxypPelYA7238aQsFrv3JfLnlyL4bydDFtHgWNzWuCszNyiXsxtHavdHGmUzc7mdSDeyt5rvVCRggoUnC293WQRMVnJeJTbMdr5Y1dDmWxi1XgSKlBAMQIcWacs7gdacZpYHdziMCQgBRBUiZ+FRYXh8cbn/MyY/t6Pt0p6QPfWs4QB5GvXSbNzwEACiBWKyEFA7E5UerABgA/ZgCWQPRlgKNX5fBoFEbKPZVE8Vr8AUIEOstejXLyM9CQSe+NQgd6o5Eb3763bnjhUscNMdotsOTdY29LzuKvHgt9hH3jHhApwROP1dgSAAYWQwTIbb6owwTCQ5nAT/VFqfCrArcatCKZRHgOAyofAvI/0uQnEdrXeMK8TT1wGi5uoF3/YOCjIXsbYAINtArkmwg2MMbBUk52SYgTmydodsOqStA5Q0FlD12Zwp13YUzbyz9T2M4SLIcxBkwTN1gmjJO5UvXMdcxhUVCtG1yvyRWBmcgxbx7cCAIQQcO3uVbE7JSpGiPIh4ntiMJIGUs9OIbUviTAfIn8oD3/OhzVi1XkhrwXC6V4ZdaNZrrZuWwxnzTCcNaMnhCMnFPyS1dr2CQavgQVcdTY7UgphBAz2S6n4YqD9wXtcjioTS17ZYSaEjImuxlgyuVQOkEqlenpsxOlBWTNFBZEO1KrIFxUso3+qSTYz3OCQJoPJFfzS0skPFQQDkunG65iyynDLpEcJljKhiktrssWcgoDC9niAISfEybEEWLr2+sViBjBoAYs+BrpwcPBP+LBGLYSZ+tW+ihT4OpaLl7EnbXg7PXCL1VmTdQK3OLjFOlIYV5FquelctrVsRbWVV08JFZjVpFw9Urof22dwzMaZbCYZGGe0tu4h3Gw8HsxyZUs2Qngsj3CLh8Fz4m3Xf5ah2+6awTwJSN6yZWE9oSB7Gem4VhpvVTLOYkbDnRIVKF26VP3Y6pK0Dij6gIkIXpLBSEkkzo6Dmwz+/NKuaeRHqxZzIjpHeKIiblXGc/RO3FqUPPmBFn95y2vfCtu0ceuNt4I3U3roAYUjBThTNpwpPeswwRA/I47B5w1AeCXl7Im1LRXfzOhFBaspkeNcW+6dv5sh6QEHZ/V1pZkifXU2ezGrBWH6ZXHvzwWwJ3rfj1/tlR1mQ5gjVleq8r/927+N0dFR7N27F5deemlPj404TShppiBSta4g0MFd3Ouf83Azwy0OYXDYUlUyUfmCtlFKD7Se2zhvY62Kkqpwydq0uOhj8ak8ppFHygOmnpMExpyGC/N8yoElgJjVYRJEKQSLoa624vXWRCpQQBPl7bWEMYb4mTHYk/aK1MUZY5Bxo2Mbr1bXaW6U5sMW2UQhGAYSWoCsp4RLTgF1RApgDLlAv3ejygVdhaD1YYjewC1der+8hUAKvYYOjuYRjMdg7E4g3sFmV8wFFlptvMWkvpZXtXiqUCE6kgeMet2Ntaa/mh/7AL04Bp48rJrKwC8Jbajai41SjX/AuIQ6FHVk41UoAg4ieCUBKJbQPTcnfzxXUd1lkrUsFSd6i4xJCEcgykUQpX57z9aBUKGod9Z6RaQUwPTrv+6G1+F3rvudNbW8CbIhwIDYGfG6idOesDEYE8g+nqVNnRZwe2kTZnlWOx1nOHcXMHBEYTjF6my6qilns588DOza0h++vCosWbetwSaLqBJGU6GCOdBde8vevXvx5JNP4sCBAzBNao0huqeimRKqhv3YZ8/ogIBYHWUvb8+IcHhRn/e5vMKYB5htNu/iDjCf0aXfzSirCuNgFicKAqO7bZx1uQN3zAKzBR6+X+HYPDAxVPu8ecvEyKgBmQsBr/3iO1jQFTexXTEUZ4sIFkKY6drrmPA2phpLehKDlwys+L1lQiJ6ooMgW6HlJoL2Ri6VzrfoD096rH2/fbeEpU0OxurX7wraIztoYdMrGJipN4SI3qDPfYbIjyBElV4VY7ARIsM5ohEXrsfhdbDMGEsDv3ii1W/IEcRNHP91FoOehCiGUMeLYEMWilNxGKPrmzCikdSA0bQOcjLNdkscqcXNqkrGlVINLUAAgFmyY3uEfBFIyBD2oFkJerxdMdgTNvKHdW2N9ASMZP/1rZ6qaIsUs0b8jHOGVEz/Xr0kX/JYLtu3rbWnbPFIAd42F9Zo4yDFSBhIPitZFzwSSwi7tWiMbTLsmuJIxVovfsrZ7FQMGEr1x8Len/NhJCXMod5vspR3uMNcCGawjv2xq5FSbrr2AqKPsIQWK12W4VCllo2hJI2tXqDdBBgshspaKCgqJFK8ZrOtEZNDwHwrRWEAcAT4Fg8nt6VhPncIz37FABI7PEhPQgiGHZMMuUK9iFo+4hjd6yJYbNPoWcI/UYSzxYE5aMKasBEs1JayqWBlFlq9YjXXQukKNHBZa/Amrfu+maFL1tuJqLl27/uyVVQSNxMNxIYjncBQjCHRREmeMQbpiHUv9z+V4SYDN3hDhXEnCuDbBnLSwFBSr6vbMZRkCCK0dGyaFwYsHuHkE3moxQB8VwLi/AFEqfVPFlGQ3YCEp3c8j803eYDFdTlCdV92oLR9l9ngAmvxikF6O8IIiBmoES0TFkfirCVhH2vYammhQPQeY7C+lCrp6ZO9l+QLOsC2V6AQ2i3+nA/hCcR2xyhQWQXLlbJXw3AK2DbBMNgia7OeBAshnC1uyx68lcItAWYy+Cd97UW+giCbIDqFMUDwZcI5JgczuVYWr9pIzBX0Zme/W3dtFhhn4DaHgQhKAX6gYCBCLMbbrmWG0wxR1FplnDGG4pY4Fgc8nH+eiYFE7WtODGnnh7nM0m35ooIlgZHtNoTDETTosa4mKkRggsHdonfA7RELULW2V1oUbHOuzbjdvpe6TMtycYuDS6ZL51vg2dqppadWqKECc2VjseEI8BWDbbe2h7PG7ZbOPUR3cGspk70cI4gQpi34EevYrjQV09fmVgmuDJdIDwpEjgH/rDT4rnjj2Gwd2JxXgzWGMYbtEwwK9TY85ftZ2oKqDrr8SJ/YDS6wzBRQBm9r41X2a3QtBbmsdMkatxDbpZvDjD5UXz7VMeISStVulHgOIDvoF+uGgo+eBlhhNkTmsSzyh/IIsmHl+FWkLbtiuzyaUHqATMja68EKEUJfe/pBVTzyIzAO2GNrs/srbO2V7c8FMAbNFaniEkSnmAbDjkmtt1IO2BhnesPclWBiafwdPq4zqAlyhusZ0hOQUBBceyS7UiEWY1rTogUDcS1S1UoATSmFg7PAmVuBbeP197s2w7bxWq2dhSyQigNDkxL2uA3/RGuBleLxIqxRC+awToAYaQPCkwgWa3s/22Xm+xVhCzDROBgqo0Ld19yyXFxycIsjapC5rMaQDAmvx9WASmnxYUtox4Bl9xVDBsdhDUXPysR2el23LhHNYYxBuvVe2SpUMIRCGNPfdavfpJq4pzfMmvll5woK5qCB3VenMHH1AA5ze0OTSJvzarAOjA0AIyltw9MIFpO14mfFSO+UNFoo2rocrZ34Wb4A2DyC43GIZUE2YwyxnXrGpwvA+iNjEmKZ+qZna+GWXu3ElpXKY07vLghBJoA1YsIaNhEs+Mg9kUP+YB6FZwowB02429ZOtfx0QsZlZx6jmwj/pA9jwFizTb1yBQAAWGtQjk4Qy9k1xTCU0vZOFeJGjbL4XEbBNoGztrGOyheJzhAxCakUpNDl3yk7ghmXbcUOYy7DaFr3ZTfjxIJeeO9t8ZttGdFe3WXnmMUsMDUMSMnhTjtQoWrq76xChagQwdvmVtxjpCdhjZgIFmoz4Otp39VLyjZerYJjFSkwgbbl1NwVUB2U+aXiDMXOKvU7R3KwmFGvLh0p5CM0FT0j1g7h1a+PgkwAKynBkgasJmrvjeCcYWKweTvv8QVgZJBj8lwXZ+2RsIxaK9X1ZnNeDdYBKRl2TTFk843LlJgjAMGhQj1wlB+BxZv0BxqlMvJ2QXYRiMkIdryxlU1Z3ddIUOZxvRGeqIiflTENXXaU61GQXSxqWwOvw4tNJ6hAQcYlBq8YxMg1wxh4Xhr2uAVuccT3xCA9KtHtBcIRDQVNNzPBYgBn2lnTRaOISQhXrKgfmyC6xbW1vd5CdqkCiU974NN6AzuKFGZPAmdMA8N9ootwqiAsAaNk28MYEDdREXNtx8QQQ6FFovnEArBzUgfkzRhKaneHY3NAWPrty7+xNWLBHDBQnG08mftzPoyUhLWsqscetxEVo6UKN9U+AO1XhKMFPFtVZJV9wKurPhohvfrMZSNith4LUY8mT8YYIJlOgi3fMImAQPGmglnE2iFjoq59IJgP4I2bMF3R1FKtGYNJXWm8PDZTSiFfAGbGtPjdcIph5yRw5ERn7bprAQXZLZga0T1ZJxcb3OlKwOJAoXRBCiN9WwO0jZdoW05aDICkDGEkJPVc9xnc4DDSteJnADCQYLU9fqsgVwRcR6uW94qoGEGWNn+MhAFvu4fBywYx/IIhymL3EG4JnEpt7WE+hLC47jtcQ2Rc6jLSJAXZxPowM6Z7dA8f1/9mpqj0683O6UzXGdOn0MncJ3CTQQrtxuGYgCMjyA6D7KEUYFtLWehq5jMKnq0X1i3fn+tWnIKve7Pj3lJrFjc5vDNiepF+KF+3IA/mfbgzbp2omTlgQLgcYXnzvY0oWD/DBINwJaJC63JxJhh4m0ywcGRLC68yrqPHQy+sUJUqOQJJrtfmankAFkEJjniLjRhibWgUz6hAIT5pwzR0nCW7qC5Ix7VwXnaZBVwmp5NUI+ml2/Zs1W0JrWyZ15LNeTVYJxxrqYdrOcwSWmAhXwq6FFr7r8UMtFLJKls3OYhgDFI5eD9iDpp1E1DMBtCjndh8UU/6vMfRWiNlcOnJStkbsXqEzdv2s20mdJ+0BSO9tlUz0hUwh80NVeQlTi9Mg+HsbdqTvto72Q8UFnO65NjrYcsOoSkvtB1bwXMA10TFErMdSU/3Zs81KBk/Ngdsm9Clx+2YGNQL9KdngfGBWpvE2HYPg88bgPAEck/mKh7YQSYAdwTsyXrrH5mQMNO1JePr7ZHdS9q1PalIaR2DduXiJuvIUccxAdfqUV92pLRIjmR6Lb7MmznwAaON6BmxNnCrVlQvzIXgFoc3YsAxm9txNSPmAOmYbvmo5viCPq+TVU4uCY/hrJmyFsfKP8NKoSC7DVtGGFwLWGxQ089SJlQx1Dt2TAfezWC2QKtUV9EHLKmzmEacsjr9iIwJbQFRFVCXd2JblbJ1SqSwJrusa6EMTdTC7ZLYSxfiZ1Exquvn6xeibAB32lnzjRh7ykHyWX0ipU6cNkwNA9vGgEPHl247dEzfPtNAOItYPdziYJIhZigMJUuK4x3OTZwzbBnRgmnVZPMKhgS2jXd2nbJLiRPHAsaH6p9jT9gYvGQAzpSN/JM5hNkQxeM+7AmnoUAoYwzOpI0oG+gsL9f2VZsVGZdN+9KBqnLxNhsJ3OxMqZwxhnS8R0F2oHREI9iSNV/VhkGhqGDZnILsDUCPh6VNj2AxgJEyYCQNTAzp8u9uYIxhYqg2kx1FCn4ATI/Wv9b2Ca3F0Yt1erds3qvBOjGQYJgeA442EEBjsZL/tR/pE7rVhGFyMKWaltDki4BrKNgOqxM9I/oDGdNl/NWBlGMCnqVF61ZDwVcN+7GDbIjCkUKNMninlJVAO13IECtH2ALcYB31oZUpHCkgf3iVA2cNCDIBeEnUZ60RFm+oP0EQawnnDHu2MhgCWMwpZPP6vD17GyNRpDWCm9pNYCoNzIx0F2QDun9acl1xUOboSWB6VFsfdsrUMMP0SHMXDyNpIP2cAcTOjqNwtAAopTccmyRJjEETzOQIcyGYRNtS6n6mXQZahQrc4G3VmpcHVa2Ie6w3GcZIaY++Urk4W2bj5ReARIrO742AWxzcYJXqkDAbwp60wDjD+bs5JhpseLVjIMHAoF2ZAK02nvBqS8XLOBbD3m2tVeXXClp9d8C2cQbOgeKyBTRzpT6h8yGYIfTuWROYJaBM3rRkPF8EUlYI4QgSo+pTRExAOLxG/IwxhnQCyK9yhyxX0CUwyy8CxaMFCE9UlMFzT+Xgz3X2ZpEfgZts0/p2biaYYFpBs0U/23KUH4GbvKOFyHoSzAWwh03yrSZOaUbSwM4p3Zv9zHEtnDUxtNFHderCTZ3JZkqBRwrM6C7IHkhoy62yynihqCsId0yyrix6BpMMl5zDakpKlyMsjtT5SaQuTMGZdmGNNt9wNNM6I+ef8MEE39Tl4twSLTPQKkJHv5neUEFbr2xAJymkBPzVzoOlfnGUhdlcWWPjFYRAukMvZqK3cJODGRzKVzrQ5gzmwOr0XtIla7+yyviJRV2J1KzVZ+uo3pDj67wcptV3B4ymgbF0g2y2o03v1YIP2Lx1mZAldEDeJNMVKcDjCtKT4A79LP0Il43Fz+IuW7WydK6gd+Or+7EjPwIYQ/JZCYxcM4zBywbg7XRR3moOC2HjFyuhfL3rzDvseyNWh0x0buMVFaKSZUr/9XFHfgRz2NpQb0mCWGsYYzhji+7RjDnAmTPdBWtEdzCDafVqXy3NTV0IvBqSYWpY238BOos9MajtVrulk557xhniu2MYvCTd0mGBCQZ70kawGICJzV0uzq2Stkgz/aBQdbRpXw6qmr5OFa6tKwJXXTIeKkAyXS4O1Nl4KQbEYpv3t9nMVDLZvkK4GMKIiVXrvbg2w2ASWMhptwCldJVKM6RkuPgshunRVb1t19CI6wAhGHZOMeQLS6UJAMBM7ceHfKj/3wqD6Z7tBgtqP1AwBGCrEMagQRN9H2MOmnV9t56jrbeKHezaNqIsepf0an/3YD6AkZIwh0wYCQPuVhfpC9MYukKnW6J86wksKpYy2SaNp/VAeq372aoJFgOIBu0H/YKklhXiNCAVZzhnO/CsHUC6A+EsYuUwxip+uZW5qctWppGU3tAu+grFQPueizY+26ulk/WYNWRCuAJMAHyTWngB5eC4edtTFCiIDjZGmKkVyDtpnzIkQ8IFCr0Isk1R+b2YK1BOSPiBguRAzNu8v81mhnGmbU59rUNjjVo90QoaH9Rx2VxGiyM2KhWvxrXXv12AguwOmRzS5UrLlcZZ2gAkB2tT4s2Y9u5TDYLsfFHbU1hSkQd2nyPjOvio7o/2LMAyVz5J5Ap6Jzfu1d4eLIZwJp06S5CyWni74CzyI4hYE+92oueILipQgmwIa8yCsDmiYv+Ui0dBpC1aGijSE8SpyJkzHHu20lJoPZAxUSoZVRBu93PTYBKIu8DjzwCjA8Dk8BodaJcYA2bFenUzu3YIm4NL3ry6KlKdlYtLXUEXdZh4SMVXb4WqQgVWfWyWAFNM27L5gGkoeBRkbxjCE4h8BRUqWD2yBk3HASGA4/PA1jHA6sOEEs0sHWJbDLumgJMLtQbozDUAT7bsx648tomNV64IJBwFKRllkPqcivhZVe+tEAzpmA6WV0I2ry8WVtUOuO5bQUvxqbZBdlGRUv06Ui7Lb+cPqpQCIgVr0IRosvG2UUT5CNzmXW0YEARBdIL2T9Z6FOUN625wbYaxAW2BvHuqf0SshMVhjdvgm9yKUPfJt8hAM2gf6g4Qruh4bvNK7mirskItZbLLMEtASQYECsUi4FoMpt0f4+V0RMYEgsUA3OEwBnqTTEzHgbije/onBvvzt6WVVBdsn2AYTgOHTyzdxhwBFpO1O2jNaFJmEwRAylLgtiCl3T5HeFr8LMzVTh7JGGtlg16DWvQRHchUgjE/AAYTDUrF4wJmC8/0dsEclGrokU2sDcLurMc6yul+bCNltPUlXW+iQgRhcRo3BEH0HK1erbNZwl3ZWmdiSPdVTo30+OBWiTvtwJmq99LeTFSX9DdEde4DLjzRkfAZULJCNVdpsaSWZ7I5QsEwOxuiGGrl6c1cZbDZ4ZYAlIKRMiF7lPyxTIaRtHYK6MZhYD2hILsLXJvh3B0MBR/IFUoXj5gEH3UAr/3ODLNEydZg6QI2l1FwbSAhQkiHk31Xn1MWP4uWiZ/FHK234XcwqajFACxhAvO+7seXegKoJlgI4Ew5XQnDNDxeUhZfN7jNwU0B1ab8O8gEMJI6wBaOaGmZ0u51ACDI9s5rOypEkEmDFiMEQfQcbpX8k1VnKtWNmB4Fnns2g2P11zXKGrHgbffaP7DPMeKyeQsT69yiTNiifSKgRNkKdVV92QwV0bNcQeGpEwzHCwIpM8L5O3T/Llvj/n2iOdzk4I7Q1l09bGHcNs5w5lYtbNaP0Aq8S6ZHtdXHwWO67JMJDr49rj352pEwwIYsqFldV+yHCpmctqBwmIKRpsXtZqCR+FncBcaHgCMnWwfaKlJgSoGlTahsgExWwVtm3VUWz2rXt8J4cxXQ8uRGyuLrR0UtvE0Zf1jqx2acQaxiE6TcslA4WujaQ73pa/rRqlU/CYIgGlHpWWZYsfCRIRlSJFK3ZuiN3+bzSaeZbG7xjjeQK1aoLYLsdgE7UwwRZ3jiGaX908cYnn2+gbOnFEZSgDAoyN5IuMlhpgxYA82rM1fC1AjDzqn+DWX798j6FM4ZztnOkPSA2eWWXm1gBofYmajYfs2e1L6cE4O6v9ZM93bwEWuDjGsvyerARgqGM7fqMrajJ1sojedDKEeCT3tgCQP5Yz6GknpclQkWAhgJCaNFqTiAkjJ14/dRgQI3VhfEEd3BGINMGC2D7PJCwSz1JLW1TGlBWVTGiBvwj6/SqL0K6dLGDEEQvYdbWr2aie6VxYn1gduNg2MVKjDOOg+yTdbSc3s5MZehURxdCa4X281xCvMFbcl3zT6Gy89lmNxm6l7tCGAcFGRvIDImYI6Yp90mPl3lVkAyxvCsHQzzme5tm1jKBN8Ww8KRIhweYfsk0+boDBAxWtxuBhqJnwF6h33PtA60Z08ChQbiISoTgKdMsKQJNemC5wIk3drH+PM+rEm77U4/NxlUk4AuKkZgZnc+pMTq0T3Wza8JYTaEcAWMpJ5ohC3ATN62xLwRZVEZ7wwP/nzQsX1Y09cLFcAY9WMTBLEmcIODSU5zUx/DTV6XRABKQbboIpNt8lJ7ZGfzUswGpNAVnjUUdWtes7VO+dgUZ5grcGyfAMaHGHhVpZiKFMCZ/o/YEGRMYuDCdJ1bzqnO6fVpe8j2cWBmDDh4tPvnBuMuFpIutogC4s6Sn7FsYwNG9AfNxM+AUqC9lWFmHDg21yDQ9iOwIV0Gnks6MAcMuMWlHVoVKkAB9mh7iwPpSYSFJkG2r8ANTj3Z64xwBBA1XwwEmRBG0qhoL3CbQxjtxdIaUd7h96Zd2OMWCodXKG9fIixEEDaHoEw2QRBrALe4rrAyGM1NfQq3OJhkdaJlKlSAYOAdqotzU//WnVZpubbuza4rGS/r34QtXidS8BWDZTNMDS8F0sIp6SAFpSw8TW3EOkNXuRUiJcOzdjLYJjC32F0G6eBxjsmL45icMVCcLSLKRRC2INGzTQKXHMZAvfhZGSkYdm8pBdrzS4G2KoaAycHiOou5EAokdrsQuaASMAULAWRctlQVL2MkjbpsehlVjCBcQT3+64xw9O59M6J8CGt8SfhDb4SItn3cDSlddrjJET8zhihUCPONx2QnRAWtek6ZbIIg1gLGdaWMDrZp+dmPaG0RXjcn6Uw27yqTzYwWdmDLkIIh4QH5ZXvFlQx2q5cJIszngfFRjsFk1TE4AtxiCHMhwKknm1h/6Cq3CoZTDGfO6B7cZ44rHD2pcHxeYW5RYTGrkCsohMuaTI7PazXx8841kT43gTAfwT/pQyYMmnQ2EVYD8bNqpGA4YwvDtlJG2w8UkA21V3opyM77wNReFzJlwD+ps9n+QgB7wobowG+Te80FSiI/Iju4DUA4AtzkCBbqFb91OTZgpmp7kmRcdLwQqbyWUjX9bva4DXebu6psdpQPIROSFiIEQawZIiYgqGqvbylXGyyfk1SowLssF+cNMuKtSMUY/Kp9YhWpyjTXSpA6ChRCxjEzxWuUq4XLISxddUg92cRGQFe6VbJnmiFXUJjPAH6oPY+DECj6+t/FAIjKSs8cCEPguWcDg0kGFXcQmy1i7ifzMIdOLzGAzY6IyUrfUjM7AiEYdk0BQajw5DPASDGAscUF4wxFX8GUwNCohBV5OPnDk7pPN1Kwx9qXigNoKWqmQtUzL0Kic4wBA7E9Mcz9ZF5belVtnAWZENKTMOqC7O69slWgahYMjDPEz/BQOJiHP+dXer67ISpGFUE2giCItUB6AmoFhTvE+sAlB7cEgsXajWIVKjDZufAZEwzcFg03nJsRcwBLAgePKVgScFQAx9TvpxgDQtUwUF5YVIjHGSbGau/jkkPGJAqHi2AJQUE2se7QKnyVWCbDc85eOnGjSCGMlgLtfFH/lysAmbzeldu1RT+ecYbEWXEE8wGMBC1uNxMyrkveonzUsrxWZ7QBvxjh6MPASCmLPZ/V3tjpGIAtDjIPZZA7kIOMdVYqDuisKRO6n7euCmIVPqTEymGMIX5GDP7xInIH8nCmncomTJgJYI/bdeNlJV7ZWseh9vc10yZiuz3M7Z+DjK0gI60A4dKUQBDE2nEqeEmf6si4gH+iVs1bhQrCE115HAu3/nVaMZAAzt/NsJAFZucUFp8OkfEM7ICPQDHIIAJE/Xorn1XYupXDaiCmJ1Pa8YMJRu1zxLpDK6oew7lWCzck4FhAsube+hNcuAIDz02T0uYmQ3oSwhEIc2HbHlbTYNg1ECIYkXgyZ2ImUljIAnu36d5+xCS8nS6Of+8kYrusjntiucV1oF+sDbLLpcQr9SElVgc3OZLnJuHPBSjOFmEN68qEqBDBGqnfQOGW6MrqBACUry3aluPt8JA7kEfuYB7OhN1xoF1WX6V+bIIg1hK6xvQ/IibrBMtUqLpep0pXtHTbWA5jDAMJHWxvHWM4wRWiXRaALE4UOFJGBNOqHT+5goIlFIbHGocz0pPaNo7aMYkNgEZdH1DOSBKbByYYzEGjocJ4I2QhxN59NkZGOJ48olupRweWfnN3qwt32oE1Znd8DGUBmeXiZ+VSYspkbxxGykCypLkQZENEvt5JX14qDuiy/3JFQqdEfgTeoG9fOAKpC5KwhkzknswiLHQmhKZFzxgpixMEQZzmCFtguWm1CruvjtNVWiuzllSRgmUCkzN6Y3p8jOPYbFSnczSXAQZiEZIDjecu4fJSfzith4j1h0YdQawQM212FBgppaBChcEZC885iyHpAZ4DDMSXHiNjEumLUnAmOw+yGWe6n3eZAFvk6x1nCrI3FmfaQXyPh8IzeQTzAWRMNAyyK2quXez4R0XVVNjOGrYw8Lw03F0x5A8VKqJ6LV+vEEFYHMKlMUMQBHE6I6x6lwwVKgiru01YZvKuW6HKhNkQwhUwEnqe271bYiQe4fAJICoF7kHJU3sohqZiseVkBGtQ+UUQaw2tqAhihYiYBGNLfsXNCLMhuCtgpE0MpRiet5fhrK060K7GSBldVzQYSQNRcdmOczECJx/SDYcxhviZcdiTDvLP5GGOWA3L7bjNwU22ZFXSASqIILzmv6/0JAYuTCG1L4kwFyJ/KN9ynIYFrUZPu/0EQRCnN9zUQbYKq+YMpbreuNev0/i+/DN5FI8tN8VeIsyEMJJGxdrWTUtsGwEG48CRE4CCwnxW69okYwysydylg2yhA36CWGe6HnUnTpzAW97yFlxyySV4+ctfjv/8z/9s+Libb74Zl112WeW/Cy+8EH//938PALj//vtx4YUX1ty/f//+1X0SglhnZFyA2/Xl2ssJFgKYaQMyrieL0QGGc3bwrgREmh6DV1/WVS4lpoBp4xG2QPLcBJwpB9ZwY0E7Ljm4I7pTGFfNd+7LMMGQ2BPH4CUDkDGB3IF808dGxQjGQGeCewRBEMSpi3bGYHV92d0mAbipxcZqgnXoyikVKAQLQd19ZcJ8CGvMrKyTuCNgm8CZMwwxR1vn5gvAxLDWQeJm42PjNoewWUMNE4JYa7oWPvvABz6A4eFhfPOb38T3v/993HHHHfjyl7+MRCJR87gvfOELlb9PnjyJa6+9FldccUXltunpaXzxi19cxaETxMYiPQnpthc/i3IhnEm7J0H1crgt6qzElK8qAT2x8VhDJtIXp1taqhkJA8WjzXf162ClLEEH7ij2hA1ucRz991kE2RCyQd+1CpXesCEIgiBOa7jJwQyuvbLLjqIKXQeq5TLtKIggqlTBC7NFWGMWonyE4vElcdAy5aorI7m08VsWck14DGduBR54tGSDmgRUDk0z2YwxyIRBQTaxIXSV6spms/j2t7+N3//934dt27jyyiuxY8cO3HfffS2f941vfAN79uzBli1bVnWwBNFPMMFgDJgtxc+iYgRm8DXLEgqHg0kGFSztBkd+RB7ZfYY1ZLZUe5dx2XRHfzkqVGC8O2E7Y8CAPWo1tFPRGzSk+ksQBEGUdEIMVqsTwtCxR3bldQwOJkvBeokoiKCCCLEdHmK7PASLYd3cV+nHTi6tY7jFK1nxwSTD2TMMM2OALQGw1plqZ9KGkSSbXGL96Wol/uSTTyIWi2FoaKhy265du/Doo4+2fN7XvvY1vOhFL6q57dChQ7jmmmsQi8Vw3XXX4dZbb63Z6aqmWCyiWKzN8kgpYZqnV3ljFEU1/z8d6bfvQKYFosdCKNY4QPIzPmRaQCR4z465+jtgFgNzOEI/BCuVSymhwGzWN9/RWtBv42DVWIDiquk4qiYMQp1dKC0qOv0OrCkLmQNZPW6qyv7CYghmMzB3842ZfhsHnFOLBkEQmxvGGaQnUDymN2WVUlBYQbm4xcElapIA/jEf1ogFa8yCChXMQaMumx1kQphp3Y+tSiJn3BRgJkNUjCAcgZE0A6D/zSVaCpu5W92ujpsgekVXQXYul4PneTW3eZ6HxcXFps85ePAgfv7zn+NDH/pQ5baZmRl89rOfxfT0NB5//HHccccdcF0Xr3nNaxq+xt1334277rqr5rabbroJN998czeHf8rw1FNPbfQhbDh98x0YAC4GFjDf+P4J/b+nnu798Va+g3Pq33MWs5h9Yrbn79lv9M046AXPaTGOGvDMyUMAuvwOLgYWsVB/+zbg4ImDwInOX6qf6JdxsG3bto0+BIIgiFUjPInomYL+RwRw3r3XNOMM3BEI5nVfkwoVgmyI5HkJcIMDBhDbFcPx75+AOagrtADdYmed6YExVgmyha1tuCJfQVSJxqpAAZIsuoj+pKsg23EcZDKZmtsymQwcx2nyDODee+/FRRddhIGBgcptQ0NDlWz49u3b8frXvx733HNP0yD7lltuqbvvdM1kP/XUU9iyZctpmzHpt+/Anw9w9N+OwogbdeW2YS5E8UQRg5cOwh61mrxC9yz/Do5//wTyh/Kwx2yoUCH/TB5DVw7CGurde/Yb/TYOVkvxRBFHvzULa9jSi49Wjz1eBDcZBq8exIEDB7r6DuYemMfCrxbhblm6ZheOFmAkDQxdMbiqz7ARnGrjgCAIoh+obmFSgQKTAO+yXBwApCvgH9cZcf+kDzNtwJ5Ysip1pmyYaQP+CR/moKnfkwFmqnZ9z0qOKVG+tmpJhQpcMFIPJ/qSroLs6elpLC4uYnZ2thIkP/zww3jpS1/a9Dn33nsvbrnllpav225xZJrmaRdQt4JzftovKPvlOzATBgxbIspEkHbt6VQ8XIS7w4MztkaiZ6XvwEwayD2WA1MMUSEC5xzSNvri+1lr+mUcrBZpSwgpoAqqbd+bKijIlFlpr+nmO3DHHWR+lYEqqIqdmMopmFs393g5VcYBQRBEP8BNVvG4VqECBO+6XBwoZcR9BaUU/PkAqX3JmoSEcAS8XS5O/uAkjLShhWRdAZmsXU8xxiBjEvn5WpeMKNBzJgmbEf1IV6sS13Vx+eWX45Of/CTy+Ty+/e1v4ze/+Q0uv/zyho//9a9/jUOHDuHKK6+suf3+++/HM888A0D3ef/N3/wNLr300pV9AoLYQBhnMAZNhLmw5vZgMQA3OWI73DUJsKsRjqhMhpGvwA3etZ8lsbEIW2ihmWL7nuyoqGCsUNjOHDJhDpo1AmgqjCBjJApDEARBaLi15HGtIl3K3arvuRnC5oBSCOYDyLiAM1lf+epMOZApA/5JH0EmhJEyIBq4YMi4rBVjA6CCSKuhcwqyif6j65X4HXfcgcOHD+P5z38+Pv7xj+PP//zPkUgk8LWvfa2uR/ree+/FFVdcUVdO/qtf/Qq33HILLr30UvzRH/0Rrrzyyqal4gTR75hpE2qZn2TxWBHuNhfm0NpXYIgqGy/lR9rjsolnJNGfMKF36VWxAwEvpVasBM4Eg7vVQZAJ9HhRCmCs4YKGIAiCOD3hlgAT2n5LhUqLi62gXJybHFCAf8KHO+PCSNRvEEtPwtvlwZ8LdD/2mNUwOaETCsuC7FCB25RUIPqTrtMh6XQaf/mXf1l3+7XXXotrr7225ra3vOUtDV/jta99LV772td2+9YE0ZfImAAYq+z2+vOBLoFahyw2AAhXgJsMqqgQFSOYQ+a6vC/RW0S8SmimDatZVFijFkRMIsyE4Ka2ahEuLVIIgiAIjfbKZlC+0j3ZJltRuTg3OVRpY9idbq7f5G5xkHkoA38xgNnEbks0mPdUoGiTmOhbaGVFEKtExiS4IxDlI913dKwAb7sLM70+OgI6cy0QFSNEvoL0aMLZjEivvVd2xc7EWvlvbCQN2GMW/JM+wnwEbgnyyCYIgiAqCJuDG1rNW0Vaw2Mlm/fM1K9jTzkw0s3bkmRMwtvhwkzKun7sMrqEndXMkypUDYNvgugHaGQSxCoRnoB0OMJciGAugEwYcLd77Z/YI7jFtepmMdKlxLSruynRvWutH6N8BW4wcGt1lQruFgcqVIhKIjPCpjFDEARBaJjBdIWcXyoXX6HOCzc5zCET3kz7yj53m4v4mfGma5hyK1zk17ZVtXPkIIiNgkYmQawSxhnMQRNhNkTxeBHezsZ9R2v2/ozBSEpEBT3xcAqYNiVloRmlmkfaUTECMznEKjLZAGCOWDCSEsVjRRgpEj0jCIIglmCMlZTBI12SvcI5R8YFks9KwBptX9knPQlvh9c0GOeW0Nn1aoFQha79uwlivaCRSRA9wEibCDIhzAET7oy77u8vE1JnsgEIUhbflAhHK4yrFgrjKlDgkq1aPV5YHM60C3C2rhtCBEEQxObAiEtERQUVYcVzDmMM1khjIbNu4aau4lLVmWwGsu8i+hZajRNED5AxASMt4e32IL31D1qEo3ec9SREp/VmhFsczBR1pXDVRMUIwpUrEqBZjj1uwR41IaiHnyAIglhGRc1b6Z7sjYYxBhk3KgkFFWl3DCoXJ/oVGpkE0QOMlAFvu9dSPXMtEY4oqYEKCrI3Kdwq9Zu1sPGKfAWxQo/s5ZiDJpwZF0YTJVeCIAji9IVX6YSsxL5rLZCxJa9sFSowgRX5dxPEekB1ggTRA4QjkDo/uYHvz7UdE2WyNy2MM0hPojBbbPoY5UeQXm9+X8YZkuckevJaBEEQxKkFN7VOCBTA+yTIFg6veGWrQIFJBiZpzUP0JzQyCeIUgNs6ky1dAcb7YzIkukcmBFSLTLYCSAmcIAiCWHO4xcEkg4pU32SLq4VddSabU0820bdQkE0QpwDC4tqKqUelxMTGIF2p+8yawNjKBWgIgiAIolN0CxMHEwxM9Me8I8pe2ZEqCYGiL/rFCaIRNDIJ4hTBSMkNEV0jegd3BJo5eEVBBCYY+CrtuwiCIAiiHdzSWWImWN/0ZHNbH1PkR4gCVdkEIIh+hFbkBHGKED8zTpPNJkdYHIyXyvOWlf0rX5fs0a49QRAEsdZwycEtAZYL+6Yku5xdV0UFFSradCb6GlqtEcQpgoxJbblBbFqqd+mXE/kRuMEhbLpsEwRBEGuPjAsw0T/Z4moXDhUocIfmQ6J/odFJEATRJ3BbW7BFufogW/lKC9H0SUaBIAiCOLURMdlX5eKMMYiYRORHUKEiIVCir6EgmyAIok8QFoe71YV/ogi1rDk7KkaQMQnG+mOxQxAEQZzaCFuA27xvgmwAMOISUVEBSmkhNILoU2h0EgRB9BHuNhcibiCYC2puj3wFGSMZDYIgCGJ9EJZuUeJ95EUtXKG9shWosovoa/rnrCEIgiBgJCS8HS6Ky7PZSkFQ/xlBEASxTpjDJuJ74ht9GDVwu+TCwQBu0JxI9C80OgmCIPoMb8aFkajPZnPqPyMIgiDWCWELWKPWRh9GDcLiYAxQQF+VsRPEcijIJgiC6DNkXMLb6aJ4wodSCirSGW2y7yIIgiBOZ7itFca5YGCUySb6GBqdBEEQfYi71YWRkPBPBlpZ3GRk30UQBEGc1nCTgxkCTDJwkzLZRP9CKzaCIIg+RMYkvN0e/BNFRMUIzODgpKRKEARBnMZwi0NY2lasnwTZCGI5NDoJgiD6FHfagZEyUDhaAKcgmyAIgjjNYZxBuLJULk6ZbKJ/oRUbQRBEnyI9nc1WvoJwBRinBQVBEARxeiMTulychM+IfoaCbIIgiD7Gm3ZhjVrkkU0QBEEQAKQrITwJxijIJvoXWrURBEH0McIViJ0Vo94zgiAIggBgpA2AKruIPoeCbIIgiD4ntt3b6EMgCIIgiL7AGrFgjfSXfzdBLIdSIwRBEARBEARBEATRIyjIJgiCIAiCIAiCIIgeQUE2QRAEQRAEQRAEQfQICrIJgiAIglgzPv3pT2Pfvn148MEHN/pQCIIgCGJdoCCbIAiCIIg14ciRI7j33nsxODi40YdCEARBEOsGBdkEQRAEQawJf/EXf4E3vvGNME1zow+FIAiCINYNsvAiCIIgCKLn3H///Zibm8NVV12Fj370o20fXywWUSwWa26TUp52AXoURTX/Px2h74C+A4C+A4C+A6A/vwPO2+epKcgmCIIgCKKnBEGAj370o3jPe97T8XPuvvtu3HXXXTW33XTTTbj55pt7fXibgqeeemqjD2HDoe+AvgOAvgOAvgOgv76Dbdu2tX0MBdkEQRAEQXTF7bffjv379ze879Zbb4XneTjvvPOwc+fOjl/zlltuwWte85qa207XTPZTTz2FLVu2dJQtORWh74C+A4C+A4C+A2DzfgcUZBMEQRAE0RWf+MQnWt7/9re/Hfv378c3v/lNAMCJEyfw1re+FW95y1twww03NHyOaZqnXUDdCs75plpQrgX0HdB3ANB3ANB3AGy+74CCbIIgCIIgesqdd96JQqFQ+ffv/u7v4k/+5E+wb9++DTwqgiAIglgfKMgmCIIgCKKnxONxxOPxyr8550gmk7BtewOPiiAIgiDWBwqyCYIgCIJYU7761a9u9CEQBEEQxLqxeQrbCYIgCIIgCIIgCKLPoSCbIAiCIAiCIAiCIHoEBdkEQRAEQRAEQRAE0SMoyCYIgiAIgiAIgiCIHkFBNkEQBEEQBEEQBEH0CAqyCYIgCIIgCIIgCKJHMKWU2uiDIAiCIAiCIAiCIIhTAcpkEwRBEARBEARBEESPoCCbIAiCIAiCIAiCIHoEBdkEQRAEQRAEQRAE0SMoyCYIgiAIgiAIgiCIHkFBNkEQBEEQBEEQBEH0CAqyCYIgCIIgCIIgCKJHUJBNEARBEARBEARBED2CgmyCIAiCIAiCIAiC6BEUZBMEQRAEQRAEQRBEj6AgmyAIgiAIgiAIgiB6BAXZ68hLXvISPPjggz19za9+9av4nd/5HVx++eV46Utfinvuuafh4z796U9j3759PX//lfLJT34SN910Ey688EL8y7/8S+X2Tj9PmZ///Od49atfjUsuuQS33XYbDh06VLkvn8/jXe96Fy6//HK8+MUvxr333rtmn6cbNmIc7Nu3D5deeikuu+wyXHbZZfjbv/3bnr7/SjidxwCwMeNgcXER73nPe3D11VfjyiuvxDvf+c6evv9KON3HAXHqQXP9Eqfz+U1z/RI0DmiuB07DcaCIdeP6669XDzzwQE9f85577lEPPPCA8n1fPfLII+qaa65RP/rRj2oec/jwYfWqV71KvfCFL+z5+6+Uf/qnf1Lf+9731O/+7u+qe++9t3J7J5+nTKFQUNddd5368pe/rPL5vPr4xz+u3vCGN1Tu/9jHPqbe9KY3qYWFBfWTn/xEXXHFFerxxx9f88/Wjo0YBxdccIE6evRoT99ztZzOY0CpjRkH73jHO9SHPvQhtbCwoHzfV7/85S97+v4r4XQfB8SpB831S5zO5zfN9UvQOKC5XqnTbxxQJnsDuPPOO/HpT3+68u+vfvWreNOb3gQAuP/++/GKV7wCf/3Xf42rr74aN9xwA77//e83fa1XvOIVOOeccyClxI4dO3DRRRfhF7/4Rc1j/uIv/gJvfOMbYZrmmnyelXDdddfhOc95Tt0xdfJ5yvzoRz+C4zh46UtfCsuy8F/+y3/BL37xi8qO1j//8z/jtttuQywWw7nnnovLL78cX//619f8s3XKeo+DfoPGgGa9xsFvfvMb/OpXv8If//EfIxaLQUqJPXv2rOln6wQaB8SpCs31dH4DNNcDNA4AmuuB028cUJDdhxw4cACu6+LrX/86fu/3fg9//ud/3tHzwjDEz3/+c2zfvr1y2/3334+5uTlcddVVa3W4a0ajz/Pbv/3bldKPRx99FDt37qzc5zgOpqam8Oijj2J+fh7Hjh2ruX/37t149NFH1+8DrJJejgMAeO1rX4trr70Wd955J06ePLkGR9x7TvcxAPRuHPzyl7/E9PQ03vWud+H5z38+Xve612H//v1reeg9g8YBcSpCc73mdD+/aa7X0DiguR44tcYBBdl9SCwWw2te8xpIKXHdddfh6aefRjabbfu8//k//yeGh4fx3Oc+FwAQBAE++tGP4m1ve9taH/KasPzzAMDnPvc5vOhFLwIA5HI5eJ5X8xzP85DL5ZDNZiGEgG3bNfd18j32C70aBwBw11134R//8R/x2c9+Fvl8Hu95z3vW8tB7xuk+BoDejYMjR47gBz/4AS666CL8y7/8C37v934P73jHOzA3N7fWH2HV0DggTkVortec7uc3zfUaGgc01wOn1jigILsPSaVSYIwBQGWgZLNZ7N+/vyJm8eY3v7nmOffccw++9a1v4YMf/GDluf/wD/+A8847r2ZHZ7PQ6PMsx3EcZDKZmtsymQwcx4HrugjDEPl8vuY+13XX9Lh7Sa/GAQCcf/75kFIinU7jHe94B7773e/C9/31+zArgMaAplfjwLIsTE5O4sYbb4SUEldffTUmJyf7RiCpGTQOiFMVmuvp/AZorgdoHAA01wOn3jiQG/KupzmO49QMgGPHjnX0vPPPPx/f+c536m7/+te/jrvvvht33XUXUqlU5fb7778f+/fvxze/+U0AwIkTJ/DWt74Vb3nLW3DDDTes7kOsIc0+z3K2b9+OL33pS5V/53I5HDhwANu3b0cikcDg4CAeeeQR7N27FwDw0EMP1ZVVbSTrNQ6Ww7neW1NKdXfA68jpMgaA9RsHO3bsWPWxrjen0zggTj1orm/N6XJ+01zfGhoHrTkd5nrg1BwHlMneAHbv3o377rsPi4uLOHDgAL7yla+s+LW+//3v40Mf+hA+9rGPYWJioua+O++8E1/4whfwmc98Bp/5zGcwPDyMP/uzP8MLX/jC1X6EVRMEAQqFApRSlb+jKGr5eZZzwQUXIJfL4atf/SqKxSL+5m/+BmeddRbGx8cBaIGFT33qU8hkMnjwwQdx33334ZprrlmPj9cR6zUOfvOb3+Chhx5CGIaYn5/HRz7yEVx88cUbLo5DY0CzXuNg3759UErhH//xHxGGIb797W/j6aefxjnnnLPaj7AqaBwQpyo019P5DdBcD9A4AGiuB06/cUBB9jrDGMN1112HLVu24MUvfjHe+c534rd+67dW/Hp333035ufnceutt1bKSd7//vcDAOLxOIaGhir/cc6RTCZrehU2ive+97245JJLsH//frz73e/GJZdcgh//+MctPw8A3Hzzzfja174GADBNEx/84Afxmc98BldddRV++tOf1vQfvfGNb0QsFsOLXvQi3HHHHbjjjjswMzOz3h+1Ies5Do4fP4477rgDV1xxBW666SZwznHnnXf26JOsnNN9DADrOw6klPjIRz6CL3zhC7jyyivxyU9+Eh/60IeQTCZ79XFWBI0D4lSE5nrN6X5+01yvoXFAcz1w+o0Dpvq9juQU4vnPfz7uvvtuTE9Pb/ShEBsIjQMCoHFAEKcqdG4TAI0DQkPj4PSFMtnrxP333w8AlXIG4vSExgEB0DggiFMVOrcJgMYBoaFxcHpDwmfrwPve9z58//vfxzvf+U4YhrHRh0NsEDQOCIDGAUGcqtC5TQA0DggNjQOCysUJgiAIgiAIgiAIokdQuThBEARBEARBEARB9AgKsgmCIAiCIAiCIAiiR1CQTRAEQRAEQRAEQRA9goJsgiAIgiAIgiAIgugRFGQTBEEQXVEsFvFnf/ZnuO6663DFFVfgtttuwyOPPFK5/9Of/jRe8IIX4Oqrr8bHP/5xlPU1gyDAf/2v/xXXXnst9u3bh9nZ2ZrXffrpp3H77bfjyiuvxLXXXou777675XF88pOfxPvf//6ef77HH38cb33rW/H85z8fL3jBC/Cud70L8/PzNY/5yle+gpe97GW49NJL8cpXvhJPPPFEz4+DIAiCIDYKmutXN9dTkE0QpyC33XYb9u3bh9tuu22jD4U4BQnDEJOTk7j77rvxrW99C5dffjne/va3AwD+4z/+A/fccw8+/elP4wtf+AL+4z/+A1/5ylcqz332s5+ND37wgw1f90Mf+hAmJyfxjW98A5/61Kfw+c9/Hv/5n/+5Lp+pmsXFRbzgBS/A//7f/xtf/epX4fs+Pvaxj1Xuv++++/D3f//3+PCHP4zvfOc7+NjHPoZUKrXux0kQxOkNzfXEWkJz/ermegqyCYIAANx///3Yt28f9u3bh4MHD2704RB9jOM4eMMb3oDR0VEIIfCqV70KBw8exMmTJ/HP//zPeOUrX4mpqSkMDQ3hta99Lb72ta8BAKSUePWrX41zzjmn4eseOnQIL3zhCyGlxOTkJM477zw8+uijHR3T/fffj1e84hU1t1XvoL/kJS/BZz/7Wbzyla/EVVddhQ996ENNX2vv3r24/vrrEYvF4DgObrzxRvz85z+v3P+pT30Kb3vb27Bjxw4wxjA1NYVkMtnRcRIEQWwkNNcTnUJz/ermegqyCYIgiFXxwAMPYGBgAKlUCo899hh27txZuW/37t0dT5433XQT/uVf/gXFYhFPPvkkHnzwQezbt69nx3nffffhU5/6FD73uc/h61//Ovbv39/R8x544AFs374dgN7Z//Wvf41HHnkE1113HW644QbcddddlTI5giAIgjgVobm+u7lerujoCYLoG+bn5/H+978f3/nOd5BKpXDLLbfUPebjH/84vvvd7+LIkSPI5XJIp9O4+OKL8aY3vQlDQ0P45Cc/ibvuuqvy+BtuuAEAcP311+POO+9EFEX4/Oc/jy996Us4cOAALMvCRRddhDe/+c2YnJxct89K9B+Li4t4//vfjz/8wz8EAGSzWcRiscr9nuchm8129Frnnnsu7rnnHlx22WUIwxC33XZbzSS+Wl796ldXSr0uuOACPPTQQzj//PNbPufXv/41Pv/5z+Ov//qvAQDHjx9HGIb44Q9/iM9//vPIZDJ485vfjNHR0cp5QxAE0Wtoric2Eprru5/rKZNNEJuc//7f/zu+8Y1voFAowLZtfPzjH8cvf/nLmseUJ93R0VFs2bIFx44dwz/90z/hbW97GwBgdHQU27Ztqzx+9+7d2Lt3L6ampgAAH/zgB/GRj3wEjz76KKampsA5xze/+U3ceuutOH78+Pp9WKKvKBQKePvb345LL70UL33pSwEAruticXGx8phMJgPXddu+VhiGeMtb3oIbb7wR3/3ud/GVr3wF3/jGN/CNb3wDAHDzzTfjsssuw2WXXYZnnnlmRcc7MDBQ+du2beRyuZav/fTTT+Ntb3sb3vWud2HHjh0AAMuyAAC/+7u/i3g8jrGxMdx000347ne/u6JjIgiC6ASa64mNgub6lc31lMkmiE3MgQMH8G//9m8A9IXgTW96Ex5//HG86lWvqnnc+973PuzYsQOc6321L3/5y3jve9+LX/ziFzhw4ABuvPFGTE1N4fd///cBAB/+8IcxMTEBQF98vvjFLwIA7rzzTlx//fXIZrO46aabcPjwYXz+85/HH/zBH6zXRyb6hCAI8Kd/+qcYHh7GW9/61srt27ZtwyOPPIJLL70UAPDQQw9Vyq9aMT8/j6NHj+KVr3wlpJSYmJjAlVdeiR/96Ed4wQtegC984Qstn+84DvL5fOXfy9VMW9HotWdnZ3H77bfj9a9/Pa688srK7YlEAsPDwzWPpVJxgiDWEprriY2C5volup3rKZNNEJuY3/zmN5W/r776agDAzMwMdu3aVfO4hx56CK973etw2WWXYd++fXjve99bue/o0aMt3+OXv/xl5cJy5513Yt++fbj88stx+PBhAMCDDz7Yk89CbC7e9773oVAo4M477wRjrHL7ddddhy9+8Yt4+umnMTs7i8985jO49tprK/cXi0UUCgUAgO/7lb/T6TRGR0fx5S9/GVEU4fDhw/j2t79d2VVux9atWzE3N4cf/ehHKBaL+Ju/+ZsVf7bFxUW86U1vwotf/GK8/OUvr7v/+uuvx9/93d8hk8ng6NGj+OIXv1hZaBAEQfQamuuJjYLm+pXP9ZTJJohNTPWuWvXFr/r2n/zkJ7jzzjuhlEIymcS2bduQy+Xw2GOPAdClO52+x+7du2GaZs394+Pjq/oMxObj0KFD+OpXvwrLsnDVVVdVbv/Lv/xLXHrppXj44Yfxute9DlEU4cYbb6zpX3rFK16BQ4cOAdAqoIBWCwWAD3zgA/jIRz6C//E//gds28YLX/hCvOxlL2t5LOVxH4vF8I53vAN/8id/As45/uiP/gj/8A//sKLP9+///u94+OGHceDAAfzd3/1d5fbvfOc7ALRtzgc+8AFcd911cF0XN954I66//voVvRdBEEQ7aK4nNgKa61c31zNFdW4EsWl56qmnKhemW265BbfffjueeOIJ3HzzzQjDEM9+9rNx+eWXV3z/7r33XgwNDeHTn/40/uqv/goA8L/+1//Cvn378LOf/Qy/93u/BwD4/Oc/X9lVPHDgAF72spdBKYW3v/3tePWrXw1AT8g//elP4Xle3W46QawHH/vYx2AYBm6//faNPhSCIIg1g+Z64nRms871lMkmiE3Mli1bcOWVV+Lf//3fcffdd+Pf/u3fcPjwYQghKrvW1YqNr3rVq5BOp3HixIm615qamoKUEkEQ4A//8A8xPj6O1772tXjBC16AG2+8EV/60pfwkY98BJ/73OfgOA4OHTqETCaDd7/73TTxEuvO4uIivve97+G2227b6EMhCIJYU2iuJ05XNvNcTz3ZBLHJede73oWrr74almVhcXERb3zjG7F3797K/c95znPwpje9CcPDwygUCpiZmcEdd9xR9zqpVArveMc7MDo6iuPHj+NnP/sZjh07BgD4kz/5E7ztbW/Dzp07cfToURw6dAgTExN4zWtegwsuuGDdPitBAMD+/ftxww034Oyzz8YVV1yx0YdDEASx5tBcT5xubPa5nsrFCYIgCIIgCIIgCKJHUCabIAiCIAiCIAiCIHoEBdkEQRAEQRAEQRAE0SMoyCYIgiAIgiAIgiCIHkFBNkEQBEEQBEEQBEH0CAqyCYIgCIIgCIIgCKJHUJBNEARBEARBEARBED2CgmyCIAiCIAiCIAiC6BEUZBMEQRAEQRAEQRBEj6AgmyAIgiAIgiAIgiB6BAXZBEEQBEEQBEEQBNEjKMgmCIIgCIIgCIIgiB7x/wM8s/TLReQ6WgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA84AAAIgCAYAAABULDAeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xU1fn/P/feqdsbCwvSiwiogIAUu0ajRkVjSYxGNDGi+dpL9GssUX8mih01Ghsm1mii0W+MsXcQRVB6311Ytpfpc8s55/fH3bk7s1N2Znt53q8XL2ZvOffMnZl7znOe8pGEEAIEQRAEQRAEQRAEQSRE7usOEARBEARBEARBEER/hgxngiAIgiAIgiAIgkgBGc4EQRAEQRAEQRAEkQIynAmCIAiCIAiCIAgiBWQ4EwRBEARBEARBEEQKyHAmCIIgCIIgCIIgiBSQ4UwQBEEQBEEQBEEQKSDDmSAIgiAIgiAIgiBSQIYzQRAEQRAEQRAEQaSADGeCyIAVK1ZAkqSk/z755BPcfvvtKY+J/DvqqKPSPg4AjjrqKMyYMSOtfj700EM444wzMH78+Jg2uoN3330XJ598MoYNGwan04nRo0fjggsuwKZNm6xjysvL03pvkiShvLy82/pGEARBEF1lIIz127Ztw3XXXYdDDjkEBQUFKCoqwqJFi/D66693yz2gsZ4g4rH1dQcIYiDy3HPPYerUqXHbp02bhkmTJuHHP/6xta26uhpnnHEGLr/8cpx77rnWdk3T4HA4OjwuLy8v4/498cQTyM7OxjHHHIO333474/OTccMNN2DZsmX48Y9/jMcffxzDhw/Htm3b8MADD2D27Nl46aWXcMYZZ6CsrAwrV66MOfeyyy6Dx+PBiy++GLO9rKys2/pHEARBEN1Ffx7r33vvPfz73//G+eefj7lz58IwDLz66qs466yz8Ic//AG33nprRu1FQ2M9QSSGDGeC6AQzZszAnDlzEu7Ly8vDfvvtZ/0dWWUdM2YM5s+fn7TNdI9Lh02bNkGWZauv3cHLL7+MZcuW4dJLL8Xjjz9ubT/iiCPw85//HEceeSTOP/98zJw5ExMmTIh7D3l5edA0rcvvjSAIgiB6g/481v/sZz/Db3/7W0iSZG078cQT0dDQgHvuuQe/+93v4HQ6M26XxnqCSA6FahPEAOObb77B4YcfjqysLEyYMAF/+tOfwDmPOSZiNHcn/+///T8UFhbivvvui9uXnZ2N5cuXIxgM4sEHH+z2axMEQRDEUKKjsb6kpCTGaI4wb948BINBNDU1deq6NNYTRHLIcCaITsAYg2EYMf8YYz1+3ZqaGvziF7/Aeeedh7feegsnnngibrrpJrzwwgudai+Sn7RkyZKUx1VXV2Pjxo04/vjjkZWVlfCYBQsWoLS0FO+//36n+kIQBEEQ/YmBONZ//PHHGDZsGEpLS61tNNYTRPdAodoE0QkShSApigLDMHr0uo2NjXjnnXcwb948AMBxxx2HTz75BC+99BJ++ctfZtyeJElQFAWKoqQ8rrKyEgAwfvz4lMeNHz8eP/zwQ8b9IAiCIIj+xkAb659++ml88sknePjhh2PGdRrrCaJ7IMOZIDrBX//6VxxwwAEx2xKFTHU3I0aMsAbSCAcddBDWrVvXqfbGjh3brRMAIUSv3AeCIAiC6GkG0lj/n//8B7/97W9x5pln4vLLL4/ZR2M9QXQPZDgTRCc44IADkhYM6UmKi4vjtjmdToRCoR697pgxYwAAu3fvTnlcRUUFRo8e3aN9IQiCIIjeYKCM9f/9739xxhln4Ec/+hFefPHFThu1NNYTRGoox5kgiA4pKyvD9OnT8d577yEYDCY8ZuXKlaitrcWPfvSjXu4dQRAEQQxN/vvf/2Lx4sU48sgj8Y9//CNG+ipTaKwniNSQ4UwQRFrcfPPNaG5uxnXXXRe3LxAI4IorrkBWVhauvvrqPugdQRAEQQwt3nvvPSxevBiHHXYY3nzzzU7JT7WHxnqCSA6FahNEJ9iwYUPCfKGJEydi2LBhfdCjWL799ltLK9Lr9UIIgddffx0AMHfuXIwdOxaAGW41ceJEXHDBBXjmmWdStvnzn/8c3333He677z6Ul5fjoosuwvDhw7F161Y8+OCD2LlzJ1566SVMmDChR98bQRAEQfQG/Xms/+KLL7B48WKMGDEC//u//xuX/zxt2jTk5eUBoLGeILoLMpwJohNceOGFCbc/9dRT+PWvf93LvYnn0UcfxfPPPx+z7ayzzgIAPPfcc5YkhRACjLG05TWWLVuGY445Bo8++iiWLl0Kr9eL0tJSHHPMMXjttdcwbdq0bn0fBEEQBNFX9Oex/oMPPkAoFEJ5eTmOOeaYuP0ff/wxjjrqKAA01hNEdyEJIURfd4IgCIIgCIIgCIIg+iuU40wQBEEQBEEQBEEQKSDDmSAIgiAIgiAIgiBSQIYzQRAEQRAEQRAEQaSADGeCIAiCIAiCIAiCSAEZzgRBEARBEARBEASRAjKcCYIgCIIgCIIgCCIFZDgTBEEQBEEQBEEQRArIcO5jOOfYvXs3OOd93ZU+g+4B3QOA7gFA9wCge0AMTuh7TfcAoHsA0D0A6B4AA/cekOFMEARBEARBEARBECkgw5kgCIIgCIIgCIIgUkCGM0EQBEEQBEEQBEGkgAxngiAIgiAIgiAIgkgBGc4EQRAEQRAEQRAEkQIynAmCIAiCIAiCIAgiBWQ4EwRBEARBEARBEEQKyHAmCIIgCIIgCIIgiBSQ4UwQBEEQBEEQBEEQKSDDmSAIgiAIgiAIgiBSQIYzQRAEQRAEQRAEQaSADGeCIAiCIAiCIAiCSAEZzkQMK1asQEFBQV93A0uWLMHixYv7uhsEQRAEQRAE0WfQ3Lz/QIYzkRHl5eWQJAnr1q3rtvYURcGmTZu6pT2CIAiCIAiCGCr0xNy8O9sbTJDh3M/QNK2vu9AtDJb3QRAEQRAEQQxdBsucdrC8j76EDOcexOfz4Re/+AWys7NRVlaGBx98EEcddRSuuuoq65gJEybg0UcfxYUXXoj8/HxcfPHFAIB//OMfmD59OpxOJ8aNG4f7778/pm1JkvDmm2/GbCsoKMCKFSsAtK0W/fOf/8TRRx+NrKwsHHzwwVi5cmXMOStWrMCYMWOQlZWF008/HY2NjSnf0/jx4wEAs2bNgiRJOOqoowC0hW/88Y9/xMiRIzFlypS0+hlp7yc/+QkURbHai3DfffehrKwMxcXF+O1vfwtd11P2jyAIgiAIgiASkc7cfNy4cbjrrruwZMmSHpubn3vuucjJyenXc/P27UUYynNzW193oLPMmTMHNTU1vX7dESNG4Ntvv03r2GuuuQZffvkl3nrrLQwfPhy33norvvvuO8ycOTPmuL/85S+49dZbccsttwAA1qxZg7PPPhu33347zjnnHHz11Ve47LLLUFxcjCVLlmTU35tvvhn33XcfJk+ejJtvvhk///nPsWPHDthsNnz99de46KKLcPfdd+OMM87Au+++i9tuuy1le6tXr8a8efPwwQcfYPr06XA4HNa+Dz/8EHl5eXj//fchhEirf5H2/va3v+GYY46By+Wy9n388ccoKyvDxx9/jB07duCcc87BzJkzrQcYQRAEQRAE0T9Id27OGIOiKN123Z6Ymy9btgy33HILfv/73wPo3rn5Lbfcguuuuw6LFi3CLbfc0m/n5onaG+pz8wFrONfU1KCqqqqvu5EUn8+H559/Hi+99BKOPfZYAMBzzz2HkSNHxh27cOFCXHvttZBlMwDgF7/4BY499ljLkJ4yZQo2bdqEZcuWZfzjvO6663DyyScDAP7whz9g+vTp2LFjB6ZOnYqHH34YJ5xwAm688UbrOl999RXefffdpO0NGzYMAFBcXIwRI0bE7MvOzsbTTz8d8wPriEh7hYWFGDFihHUPItseffRRKIqCqVOn4uSTT8aHH344ZH6cBEEQBEEQA4XBNDc/5phjcN1111l/d+fc/JprrsExxxyDsWPH9uu5eaL2hvrcfMAazu0/yP523V27dkHXdcybN8/alp+fj/333z/u2AMPPDDm782bN+O0006L2bZo0SI89NBDGa/SHXTQQdbrsrIyAEBdXR2mTp2KzZs34/TTT485fsGCBSl/nKk48MADM/phdsT06dNj3mtZWRnWr1/fbe0TBEEQifnNb36DDRs2WM/gWbNm4ZFHHsHbb7+Nu+66K+ZZ/9prr/XZmEwQRP8h3edAT3ic0yGTufmcOXNi/qa5uclQn5sPWMM53ZCMviISDiFJUsLt0bjd7rhjOjpPkqS4bYlyDOx2e8w5AMA5T9qXrpCdnR23Ld1+JiK675G2In0niK4gmIDWqMFZ6uzrrhBEv+W2227DCSecELd93rx5WL58eR/0iCCI/kw6c3POOSoqKjB27NiYKMPeIJO5efs5Lc3NTfpibi6YgN6iw1HcfQsAnYWKg/UQEydOhN1ux+rVq61tXq8X27dv7/DcadOm4YsvvojZ9tVXX2HKlCnWKs+wYcNQXV1t7d++fTuCwWBGfZw2bRpWrVoVs6393+2JrFoxxtK6Rkf9zLQ9gugOQlVheNZ5YQSMvu4KQRAEQRC9AM3NkVY/+9vcPFQVRtOqZoRr1L7uysD1OPd3cnNzccEFF+D6669HUVERSktLcdttt0GW5bgVq/Zce+21mDt3Lu68806cc845WLlyJR599FE8/vjj1jHHHHMMHn30UcyfPx+cc/zud7+LWwXqiCuuuAILFy7Evffei8WLF+O9997rMBSktLQUbrcb7777Lvbbbz+4XC7k5+cnPb6jfkba++yzzzB37lxkZWWlbI8gugo3OPzbA1AbNDA/gy2bHoMEkYhly5Zh2bJlmDJlCq6++mpMnjwZAPD999/j2GOPRVFREc455xyceeaZSdvQNC1OAsVms3Vr6OBAIOKRGcpRU3QP6B4AfXsPsrOz8ctf/hLXX389CgoKUFpaittvv93yfEf3SQgR8/fVV1+NQw89FHfccQfOPvtsa27+6KOPWscdffTRePTRRzFv3jxwznHTTTfBbreDc279i75O+22cc/zP//wPDjvsMNxzzz047bTT8P7771tz82T3rKSkBG63G//5z38wcuRIa24uhIh7H+n0M5P2Ip7rTD/PdL8HQggE9wQRqglB2ihByS2E4u6+MP8I6UY/0IyxB3nggQewdOlS/OQnP0FeXh5uuOEG7NmzJ6ZydCJmz56Nv//977j11ltx5513oqysDHfccUdM8YH7778fF154IY444giMHDkSDz/8MNasWZNR/+bPn4+nn34at912G26//XYcd9xx+P3vf48777wz6Tk2mw2PPPII7rjjDtx66604/PDD8cknnyQ9vqN+2mw2PPTQQ7j99tvx4IMPdtgeQXQVtUaFWhuG0AUMvwHncArXJoj2XHHFFZgwYQJkWcarr76KK6+8Eq+//jpmz56NV155BSNGjMCmTZtw3XXXobi4GEcffXTCdp577jk89dRTMdvOOussnH322b3xNvode/bs6esu9Dl0D+geAH13D6688krU19fjlFNOQU5ODn7zm99g586dUFUVFRUVAADDMNDU1GT9DZiFspYvX46HHnoId911F4YNG4arrroKRx99tHXcVVddhRtuuAFHHnkkSktLceutt+Kbb75BY2MjKioqrMJptbW1KC4uxp49e+D1eq1tFRUVKCsrwx//+Ec8/PDDuP3227Fo0SJcdtllWL58eUx/2nPrrbfikUcewW233Ya5c+fi5ZdfRiAQQCgUijuvo35m0p7X60U4HE7Zt1Sk9T0Yaf4LIoBgXaBT1+mIiARXR0iiu4PpiaQEAgGMGjUK999/P371q18B6Ntcj/4C3QO6B0Dv3APBBBo+a4RapwFcIHtKNgoPKeiRa3UG+h7QPeiv/PSnP8WNN96IuXPnxmxfsWIFdu3ahTvuuCPheeRxNuGcY8+ePRg9evSQ/V7TPaB7APS/exAIBDB69GgsW7bMmpv3NP3tHvQF6d4D33YfWr7zIntMFoygAb1FR9H8QrhHuZOe0xnI49wPWLt2LbZs2YJ58+bB4/FYE4v2VfkIgugdwjUqwjUqXMOd0L0GtAYNggtIcur0CYIY6iSbVHSUeuRwOIackZwKWZaH7EQ5At0DugdA392DZHPz008/vdf7Q9+D1PeAGxxqhQq7ywZJSLC77WAeBt96P5yFTthyet+MHdqfVi9w33334eCDD8Zxxx2HQCCAzz//HCUlJX3dLYIYcgguENwVgCQDskOG4pbBAgws2D+KXxBEf8Hn82HVqlXQNA26ruPFF1+E1+vFAQccgK+++grNzc0AgC1btuDVV1/F4Ycf3sc9JgiCSB+amw8MtAYdWpMOe0FbbSRnqRNaowbfJh8E7/2gafI49yCzZs3KOO+YIIieQa1VEdobhqPU9H4pLgVaowbDZ/TJqiVB9FcMw8Bjjz2G8vJy2O12TJkyBQ8//DBycnLw9ddf47bbbkM4HMawYcPwy1/+Ej/60Y/6ussEQRBpQXPzgUO4OgTBBGR7m59XkiW4ylzw7wjAUeJA9oR4ua2ehGaLBEEMeoQQCOwMQgBQnGY1RkmRAAEYfvI4D1RCe0NgYYacSTl93ZVBRWFhIf72t78l3Hf11Vfj6quv7uUeEQRBEEMJFmQIVYZhz49XDFJcCpQsG7zrfXCUOGDPy0xVqCtQqDZBEIMerU5DaG8IzmGxuZaSIkFv1pKcRfR3gntCCFf3va4jQRAEQRDdh1qvmhGBeYl9vI5iO3SfAcNn9Gq/yONMEMSgRggB/+4gIAQUV6z2n+I2w7WpQNjAg2sceoMGKBJ9fgRBEAQxSBBCIFQZgmSXk47tkiShg9qUPQJ5nAmCGNRoDRrClUE4iuP1mhW3AiPEKVx7AKK36DD8DFzj4GHe190hCIIgCKIb0Ft0hGtV2At7LwQ7XchwJghiUKPWqeAqh5KlxO2TXTJ4iIH5ezfUh+g6uscwjWaVg4Vp4YMgCIIgBgPhWhU8zGFLMG/ra8hwJghiUMNCHJI9iQatLEEIwEhhOOteHYHdwZ7qHtFJ1DoViluBMARYiDzOBEEQBDHQ4QZHqCIEJbv/Gc0AGc4EQQxyuMrNCtpJkO0ytKbkBcKCu0PwbfSSV7MfwcIMWoMGJUcBBMDpsyEIgiCIAY9Wr8VpN/cnyHDuIcyk9eT/lixZAgD4+OOPce6556KkpARZWVmYPHkyLrjgAhiG6QH75JNPIEkSCgsLEQ6HY66xevVqq73u5NNPP8UhhxwCl8uFCRMm4IknnujwnMrKSpxyyinIzs5GSUkJrrjiCmhamzFSXl6e8D68++673dLnxx9/HOPHj4fL5cIhhxyCzz//vMNzHnvsMRxwwAFwu93Yf//98de//jVm/4oVKxL2uf3nQPRvuMoh2ZL/RhS3DK1Jh2Aibh8LMYQqg9A8BvQmvSe7mRLvRh90b99dv79heAwYAWaG38uAESTDmSAIgkhNJnPzo48+GkVFRTQ37wKdmZs/+sijOOa6ozDmx6Nx6Lnz8Oq7r8Tsf/mdl1ByeDFKDi/GmPNGI2u/rF6dm1NV7R6iurraev3qq6/i1ltvxdatW61tbrcbGzduxMknn4wLLrgATz75JLKzs7F9+3a8/vrr4Dw29DA3NxdvvPEGfv7zn1vbnn32WYwZMwaVlZXd1u/du3fjpJNOwsUXX4wXXngBX375JS677DIMGzYMP/3pTxOewxjDySefjGHDhuGLL75AY2MjLrjgAgghsHz58phjP/jgA0yfPt36u6ioqMt9fvXVV3HVVVfh8ccfx6JFi/Dkk0/ixBNPxKZNmzBmzJiE5/z5z3/GTTfdhKeeegpz587F6tWrcfHFF6OwsBCnnHKKdVxeXl7M5wYALpery30megchBLjKUlZcVtwKdI8OI2DEaQGqtSp0jwFJCKgNGlwje/+z5zqHWhOGvcDWq1qF/Rm9RQc4h2yTIdtl6B5aVCAIgiBSk+7c/MQTT8QVV1yB5cuXw+1209y8E3R2bv6HR/6Ae5cuw7xD5+G7Td/h6nuvQn5uAX686MfWcbnZuVj14tcI7Q2haGEh3GXu3pubC6LHee6550R+fn7c9gcffFCMGzdO7Nq1SzDGEp778ccfCwDi97//vTjuuOOs7cFgUOTn54tbbrlFZPIxPvfcc2L06NHC7XaLxYsXi/vuuy+mbzfccIOYOnVqzDmXXHKJmD9/ftI233nnHSHLsqiqqrK2vfzyy8LpdAqPxyOEEGL37t0CgFi7dm3c+YyxpPfAMAxx9dVXi/z8fFFUVCSuv/568ctf/lKcdtpp1jHz5s0TS5cujTlv6tSp4sYbb0za5wULFojrrrsuZtuVV14pFi1aZP2d7HPrCVLdg6FCT9wDpjNR/Xa1qP6/GtHweWPCf/WfNYjKF/aI4N5QzLmcc1H/Sb3Y+2qVqHqjWtS8UyOY3rOfT6J7oPt0Uf1/NSKwO9Cj1+4vpPM9qP+0Qez9e5Vo+LxR7PuX+dlwxnuxlwSRGfSMp3sgBN0DIXruHmjNmvBs8AjO0xsLOpqbp6Krc/P296A/zs1T0R1z80TfgwXzF4hLT79UVL/dNme75KxLxKEHHmr9vfym5SIvJ080fN7YOncLZtT3rjJgPc5zLuaoaer9644oAr59qnsi3EeMGIHq6mqsXr0aY8eOTXns+eefj2XLlqGyshJjxozBP/7xD4wbNw6zZ89O+3pff/01LrroItx9990444wz8O677+K2226LOWblypU4/vjjY7adcMIJeOaZZ6DrOuz2eI/XypUrMWPGDIwcOTLmHFVVsWbNGhx99NHW9lNPPRXhcBiTJ0/G1VdfjTPPPDNln++//348++yzeOaZZzBt2jTcf//9eOONN3DMMccAADRNw5o1a3DjjTfGnHf88cfjq6++Stquqqpxq1NutxurV6+OeZ9+vx9jx44FYwwzZ87EnXfeiVmzZqXsM9F/EIYANwDFldzjHAmnMnyxBcL0Jh1qnQp7oQOSIkGtV6G3GHCWOHq0z+2JVI3menwo+VCEhRj0Zh1Ktjl8yQ7ZvD/hxJXTCYIgiN4hrbm5ABgbBUUBIHVPYccRRcCn/6sjuCsIV5kLjqLOj9ORuflnn32GI444IuWxNDfv3rl5OBSGQ3ZAdrbZWS6HC99t/g66ocNuM99nIBTAzDMPhqEZmDl7Ju5ednevzc0HrOFc0wRU1fd1L7rGWWedhXfffRc/+9nPcNVVV2H+/Pk49thj8ctf/hJ5eXkxx5aWluLEE0/EihUrcOutt+LZZ5/FRRddlNH1Hn74YZxwwgnWF3nKlCn46quvYnIZampqMHz48Jjzhg8fDsMw0NDQgLKysrh2E51TWFgIh8OBmpoaAEBOTg4eeOABLFq0CLIs46233sI555yD559/Hueee27SPj/00EO46aabrFCUJ554Av/973+t/Q0NDWCMJexz5NqJOOGEE/D0009j8eLFmD17NtasWYNnn30Wuq5b73Pq1KlYsWIFDjzwQHi9Xjz88MNYtGgRvv/+e0yePDlp20T/QegCgouUodqAaXxpjbEFwsLVYTBVwOVWrLb0Jq3bDGfDZ0CyS1BcqY0903DmCXOwhyJ6ixlW7x7lBgDITjNUm4UZGc4EQRB9SPpz8+43P1jIQLhWQ3hfuEuG81lnnYX//ve/OPLIIzFixIghOzc/77zzkva5p+bmxx15HFb89XmccsIpOHjqTKzbug4vvfMSdENHY0sjRpSMwOSxk7H8pkcxbeI01O+sx4vfvdCrc/MBaziP6Hr4fZ9fV1EUPPvss7jkkkuwbds2rF69Gv/v//0/3HPPPVi9enXcD+Giiy7ClVdeifPOOw8rV67Ea6+9llaifYTNmzfj9NNPj9m2YMGCuCIA7QsaCCESbk91TuS8yPaSkhJcffXV1r45c+agubkZ9957L84991xUVVXhwAMPtPb/7//+L37729+iuroaCxYssLbbbDbMmTPH6lOqPqfq7y233IKamhrMnz8fQggMHz4cS5Yswb333gtFMSff8+fPx/z5861zFi1ahNmzZ2P58uV45JFHkrZN9B8EE4CRujgY0Jrn3KyBG2beLFM5ghUh2HPbHpGyS0aoKozsydndUvTDu8kHR5EDOZOzUx7HNQ6hcaoc3Yrm0QEBq1K6ZJNIkoogCKIfkNYcWQCMGVAUG9BN9bNGFAGG1wCEQLA8iOxJ2R0uSidDURQ899xzuOuuu/DRRx9h1apVQ3Juft5556GyshLTpk2z9vf03Px3l/4OFesq8ONLfwwBgWGFw/CzE3+G5S8tt+bmc6bPxZzpcwEAQXsQJ/7mx1h0yqJem5sPWMO5u8Kl+wMjRozAoYceigsuuAB33XUXpkyZgieeeAJ/+MMfYo476aSTcMkll+BXv/oVTjnlFBQXF2d0nfZf6GR9ab8aVFdXB5vNlvR6I0aMwNdffx2zrbm5Gbqux602RTN//nw8/fTTAMxVqO+++w6ybH6u6RYmKCkpgaIoCfuc6tputxvPPvssnnzySdTW1qKsrAx/+ctfkJubi5KSkoTnyLKMuXPnYvv27Wn1jeh7uM4hGFLKUQGA7JahN+lgfga5QDaLgrXocO/nto6x5dmhNeswfPFFxDLul8Gh1atpDewszME1QXJYrWg1akwYlyRJJElFEATRD0hnbs45R0VFFcaOHWvN+bqKEAL17xtwFDugewyotSqyxmZ1qc1Ro0bh/PPPx/nnnz9k5+YjR47EunXrrH09PTe3czvu+839ePgPj6C+qQ7Di0fg+beeR05WDorzE7/P3p6bDx7rc5BQWFiIsrIyBAKBuH2KouD888/HJ598knEoCABMmzYNq1atitnW/u8FCxbg/fffj9n23nvvYc6cOQlzKCLnbNiwIaZa4XvvvQen04lDDjkkaX/Wrl1rrdzZbDZMmjTJ+ldUVIT8/HyUlZXF9NEwDKxZs8b62+Fw4JBDDonr8/vvv4+FCxcmvXYEu92O/fbbD4qi4JVXXsFPfvKTpA9yIQTWrVuXMCSG6J8IozVUuyPD2SGDaxyG34AQAqHKECRFijlPccvgQdYtslQsyMDCHLqv47ZYyAC4AA8PjVBtrcUMmU8Umm4EDGgtOmw57dZ8SZKKIAhiyMJVDhbikF0KZLuMYHkwLYM0XWhu3jtzc73FgOyQYbfZMbJ0FBRFwRsfvoHjF57Qb+bmA9bjPBh48sknsXbtWixcuBCGYUDTNPz1r3/Fxo0b40rFR7jzzjtx/fXXZ7yiBQBXXHEFFi5ciHvvvReLFy/Ge++9FxcKsnTpUjz66KO45pprcPHFF2PlypV45pln8PLLL1vHvPHGG7jpppuwZcsWAGay/7Rp06wiCU1NTbjuuutw8cUXW/kgzz//POx2O2bNmgVZlvH222/jkUcewT333JOyz1deeSX+9Kc/YfLkyTjggAPwwAMPoKWlJeaYa665Bueffz7mzJmDBQsW4C9/+QsqKyuxdOlS65ibbroJVVVVllZzJDT+0EMPRXNzMx544AFs2LABzz//vHXOH/7wB8yfPx+TJ0+G1+vFI488gnXr1uGxxx7L+N4TfYMw0hs4I6FDus+A0qIjXBOGvV2OlCRJkGwSwrUqssZ1bSWb+RmYysF8RoehS4afQVIkcG1oGIZ6iw5IgH+XH/n758fsMzwGWIDBURj72ch22QzTIwiCIIYcPMzBNQZ7jgLZYYdaq0Jr1DtVk+TJJ5/EunXrcPrpp2PixIkIh8M0N29Hd83N7733Xvj9fvztb3+DEAJbN27Bd5u+w7x5h8Lja8Hjr/4ZW3ZvxmM3t827733uXsyZNgcTRk9AfUU9XrruxV6dm5Ph3IfMmzcPn3/+OX7/+9+jrq4OOTk5mD59Ot58800ceeSRCc9xOBxJQ4k7IhJ+cdttt+H222/Hcccdh9///ve48847rWPGjx+Pd955B1dffTUee+wxjBw5Eo888kiMTpzH44nRvVMUBf/+979x2WWXYdGiRXC73Tj33HNx3333xVz/rrvuQkVFBRRFwZQpU/Dss8/ivPPOi9PFi+baa69FdXU1lixZAlmWcdFFF+H000+Hx+OxjjnnnHPQ2NiIO+64A9XV1ZgxYwbeeeedmErl1dXVMZp6jDHcf//92Lp1K+x2O44++mh89dVXGDdunHVMS0sLfvOb36Cmpgb5+fmYNWsWPvvsM8ybNy+zG0/0GdwQQJqLzrJDhtZgejt5iME2Il4T0JZrg1qjgoUYFHfnC1EZAQYeMkOwucqThmwLIcD8BmSX6REXrGPv+UCHBRiQA/g2+uHMc8JV1vY5RLzR7e+B7JBhePUOFyEIgiCIwQcLMXBNQHbIkCQJqi4Qrgp3ynCeN28evvjiCyxduhT79u0bsnPzVHTX3Ly+vh4NDQ0AAB7i0MMGnnzrSdzw5xtgs9lw2KzD8M6f/4MxZW26zx6fB9csuxp1TXXIdef2+txcEt0Zy0BkjJnrUdGtuR6ZsGLFClx11VVxK0W9Sab3YMmSJWhpacGbb77Z853rJfr6e9Af6Il74N/mR/M3LWnlOuktOiAEJJsEpoqEA65gAqGqEEqOLIF7VLxhnS7Na1rgW++Dkq2g9PhhsOeboVbt7wFTOererQNXOWSnjNIfl0JxDu7vR/0XDfCP8sH2rQOOXDuKFxXBlmszc9g+aoTRosM53BlzjuE3wMIcw08Y1qUFDYLoKegZT/cAoHsA9Mw9COwOounLJisaTG/RIbhA6XHD+qXaQkf3oD/MzTMl07l5+3ugNWqoe78ezuFOyPb0vhfBiiBKjiq2VDZ6g6H5qyUIYkiQiYST4lbAQgxakw57QeJgHEkxC1FFPNOd6pMQ0Jt02PJs4LoADyePuOAqNyt9u2QIJiD0wV05WjBh6Wm7Rjih1mvw/OAFNzhYgMHw6lCy4ydBskOG0BgVUCMIghiCsGBsqo4tzwbDayBcq/ZRj4hMYSEGwUTaRnNf0b97R2TEiSeeiJycnIT/7r777r7uHkH0OkzlHWo4R5CdMowgh6RIkG3JH422HBvC+0LgRueMWB7iMAKtmsNCgKmpDGcGoQkoLgWC8bRztgcqLMTAW++HJEtwj3IhuCsA/1a/qdUcTKzVLNklcxGCJKkIgiCGHLrHLCoVQZIlyM7WImG8b8fNRHPzvLw8zJgxA3/84x/7tG/9CTZACnxSjvMg4umnn0YoFEq4L1kJ+SVLlmDJkiU92KvuZ8WKFX3dBWKAwMOsQw3naNwjXZAcqY+35dqg1qnQm3U4hzlTHpsII8jAwwz2fJvVx2RwjUNwAdkpQximvNZgxsxTa3uPskOGvdgJ30YfXPu5AUgJF0IiklTkcSYIghhaCGFGKsnt0pgcRQ6zSFiDBmdp5mN1d5Fobs45R1VVFQ488MCE5wzFubnuMwZEDRcynAcRo0aN6usuEES/godF2h5nAGnlQskOGcLg0Js6ZzizgAFutIYjSVLKVVbL+6pIEFwMAY8zjwuvt+fZwIIGwntDUNwpgqQk0/AmCIIghg5c5eBhHuNxBswoMsGA4N5QnxrOiebmnHPY7fa0dZGHAhEpqv5O/+8hQRBEJ+FaZh7ndJHdNoSqwp3SiTT8BiKFn2WHBN2XXEaJtwvjHvSGc5ABCT4u53AnJJsMe2FivUrAXNDQPSRJRRAEMZQwI5VYQqPLXmBDeE8Yhp/Ghv4M1zl4MD5qoD/S/3tIEATRCQQX4BrvkdAfW64NWrPWKe1grUm3BnjZLoP5jaQGeETDGQAgBn+otuHVE35ekiTBWZq60ma0JBVBEAQxNIhIOyZKs7Ll2aD7DPg2+/o815lIDgsxsFb1kP5O/+8hQRBEJ+C6gGAAMgjVThfFLYMHGdQMK3Zyg8Pw6JZkkuyQwVQR51mOwAJRoUvS4PY4CyHiCrxkguyQwVPcS4IgCGLwwcIMEK21LtohSRJcw53wbwvAvyPQB70j0oEFObgWH27fH+n/PSQIgugEwjDzZXsiVFuSJCjZNgTLgxlV12YBBhY25aWA1nxpnSWUpBJcwAgwSBEv6yD3OHNNgAUZZGfnNDdlhwyuJb6XBEEQxOCEhRKn+ERQ3ApsuTZ4N/gyXuwmegcWYgBHRjVp+goynAmCGJQIQ5iGc+fssA6xF9qhNurQ6tPXdGYBU24pEo4k2SXTYExg7HGVg+sCst0cSCSblPC4wQJvzVNTOrniLDla7yUVCCMIghgypFNUylHkgNA5PN97YAQo37m/wYJGysWP/gQZzn3I7bffjtmzZ/d1NwhiUNJmOPfM01i2y4AQCO1JLAGXCCPAACGskLLI6ipX4409rnEInVt5vZIiDWpvKguypHlq6dAmSTV47xFBEATRhhAChldPK8TXNcIFtVaFZ70vTr0hmttvvx0zZ87sxl4SHTFQKmoDZDj3GJIkpfy3ZMkSXHfddXj//fetc26//XZrv81mQ0lJCY444gg89NBDUNXY8JKjjjoqYbtLly7ttvdQWVmJU045BdnZ2SgpKcEVV1wBTUvtXVNVFZdffjlKSkqQnZ2NU089FXv37o05Zty4cTF9VhQF99xzT7f0+dNPP8UhhxwCl8uFCRMm4IknnujwnA8//BALFy5Ebm4uysrK8Lvf/Q6G0bYiWV5envBev/vuu93SZ6JnMHOce85wBgB7gQOhqjCMFJWxo9E9OiRb/GM3kUHMw6bHWYryOA/m/F0WSp6nljYSwELkTSAIghgK8DAHU0VaRaUkRcKYX45ByYIiyDY55dz8ww8/tM4bqnNzSZJw4403dkufU83NBW9d/Gj3GX727ac48dIfY+zxYzDttGn4w59vj5mbV1ZXYsx5o5G1X1avzs1Jx7mHqK6utl6/+uqruPXWW7F161Zrm9vtRk5ODrKysuD3+63t06dPxwcffADOORobG/HJJ5/grrvuwt/+9jd88sknyM3NtY69+OKLcccdd8RcNysrq1v6zxjDySefjGHDhuGLL75AY2MjLrjgAgghsHz58qTnXXXVVXj77bfxyiuvoLi4GNdeey1+8pOfYM2aNVCUtpjZO+64AxdffDEAU8+uqampy33evXs3TjrpJFx88cV44YUX8OWXX+Kyyy7DsGHD8NOf/jThOT/88ANOOukk3HzzzfjrX/+KqqoqLF26FIwx3HfffTHHfvDBB5g+fbr1N+nv9W8E4/hq01d4+ZmXcNHpv8KiWYu6/Rq2XAWhBhXhGhU5uakfp0II6E0aZFds7LgkSzCC8cYe17jpnZbbvNNcZRBRHuvBhBFgQBcXOWS73KlK5wRBEMTAg4UZhMYg56Vnzmx8cxMMrwEWZviw5gPced+dCefmOTk5MecNxbk5gLj70BmSzc2Li4sxZ84cs6J2mEPJauvHxh0b8bMbfoarz78Gj938OKrrq3Hd/deCcY47fht7b//9yr8x+8i26N2enpuTx7mHGDFihPUvPz8fkiTFbUsUqm2z2TBixAiMHDkSBx54IC6//HJ8+umn2LBhQ5xXNisrK6bNESNGIC8vL63+rV69GrNmzYLL5cKcOXPwxhtvQJIkrFu3DgDw3nvvYdOmTXjhhRcwa9YsHHfccbj//vvx1FNPwev1JmzT4/HgmWeewf3334/jjjsOs2bNwgsvvID169fjgw8+iDk2Nzc3pt/Z2dkd9nnFihUYM2YMsrKycPrpp+P+++9HQUGBtf+JJ57AmDFj8NBDD+GAAw7Ar3/9a1x00UVxBnA0r7zyCg466CDceuutmDRpEo488kj88Y9/xGOPPQafzxdzbHFxcUyfHQ5Hh30m+g5hCNz4zO/wr4//hevvv65HrpFJkTAe4jCCDIor9rErOWQY3vhQbaZyIMpAlmySFX4+GNGb0wu3S4XUquVMklQEQRCDHxaMjczqiOHFwzFq/CiUZA+DS3MnnZu3D9UeqnPzdAznzs7NH3jgAQBmehVvJ0X1xof/xLSJ03D9hddjwn4TsGjWItzym1vw7D+fgS8YOzcvKizq1bn5gPU4f3HMSmh1vV8dz1HqxGEfLejVa06dOhUnnngi/vnPf+Kuu+7qcnuBQAA/+clPcMwxx+CFF17A7t27ceWVV8Ycs3LlSsyYMQMjR460tp1wwglQVRVr1qzB0UcfHdfumjVroOs6jj/+eGvbyJEjMWPGDHz11Vc44YQTrO333HMP7rzzTowePRpnnnkmzjrrrJR9/vrrr3HRRRfh7rvvxhlnnIF3330Xt912W1yfo68d6fMzzzwDXddht9vj2lVVFS6XK2ab2+1GOBzGmjVrcNRRR1nbTz31VITDYUyePBlXX301zjzzzJR9JvoWT7MX5bXlAIAde3ZAN3TYbfHfga5iL7IjXKNCq9fgKnMlPc4IGOBhDntBbB9kuwQjYMRpTLIwA9C2TVIkMF1A6GIAP7kTI5iA4eu64Sw7ZDPEXRNQnIPPK08QBNGfSWduLmB6TncpFV2uB8WZKUHoLHFgxgPTOz6hFcUtd7lmyGCfm5911lm4/vrrUxqi3TE35yEGwQTkqDQ2VdfgcsTOp1xON8JaGN9v/R6HzTrM2n7WhWdB1dVem5sP2OmXVqciXD10yspPnToV7733Xsy2xx9/HE8//XTMtsceewwXXHBByrZefPFFMMbw7LPPIisrC9OnT8fevXtx6aWXWsfU1NRg+PDhMecVFhbC4XCgpqYmYbs1NTVwOBwoLCyM2T58+PCYc6688krMnj0bhYWFWL16NW666SasX78eL7/8ctI+P/zwwzjhhBOsfIspU6bgq6++isllSNTn4cOHwzAMNDQ0oKysLK7dE044AQ899BBefvllnH322aipqbEegJFw+5ycHDzwwANYtGgRZFnGW2+9hXPOOQfPP/88zjvvvKR9JvqWbTu2Wa8559hbuxfjR43v9uvIdhmSEAhVhVMaziwYPzgArVrOrSuuUpSxx/xGzLGSIkEwc3VdcXf72+hTWJCBaQK2nK6VQJedEvQAAw8xKGnkvBEEQRDdRyZzcwPdl1aTqeykKV/Y9Zohg31uvnv37rj3Ek1X5+bNzc0YUTAirt1j5h2DJ197Av/44B9YfPRi1DXV4oG/3g8AqG2sBQBku7Nx6y9uxbE/OxZZI7J6bW4+YA1nR6lzSF03UV7jL37xC9x8880x20pLSztsa/PmzTj44INjci4WLIj3oifKo+xMfmX7c66++mrr9UEHHYT8/HycffbZePTRRzFs2DBMnz4dFRUVAIDDDz8c//nPf7B582acfvrpMe0uWLAgrghA+75FQjaT9fn444/HsmXLsHTpUpx//vlwOp245ZZb8MUXX1h5HyUlJTF9njNnDpqbm3HvvfeS4dyP2bpta8zfFfvKe8RwBgBbgQOhvSHk7p8DW5JcZ8OfeJJg5uXq4CqHEqVhbGo4JwrVHnwFwliIQagcSnEXPc522ZKkau/ZJwiCIHqWdObIEY+zoihd9jgzjQNMwJHh8152yN0ylg7muXlhYSHOPPNM3HPPPSguLu6xubnhZ3FFXI+edzRuv/QPuO6+a3HZXZfCaXfi2guuxaofVkGRzXlScUExfn3ixSiZVQz3KHevzc0HrOHc2+HSfc3mzZsxfnzspD8/Px+TJk3KuK108v9GjBiBr7/+OmZbc3MzdF2PWzmKPkfTNDQ3N8esbNXV1WHhwoVJrzV//nwAwI4dOzBs2DC888470HUdgBk2nUmf26+41dXVwWazobi4OOl511xzDa6++mpUV1ejsLAQ5eXluOmmm+Lud/s+p1qFI/qerTtiDefyfRU9di1broJQuYpwbfIiYVpjfNVIoFV/WDe1nJU8c0DgBgcPMUuKCoh4nGGGag8yWIhBcLMCukDn358kS4BIrItNEARB9CzpzM0556ioqMDYsWMhy51fLBVCoO7dOnBNwFGcWV6r7JAhDKALww2AoTM3Ly4u7pG5eUFBAfS9iedGl/3sMlx6zqWoaaxBQW4B9lRX4s4n78SYsjEp+9zTc3OKZRsAbNmyBe+++27SytCZMm3aNHz//fcIhdr0Z1etWhVzzIIFC7Bhw4aY6uDvvfcenE4nDjnkkITtHnLIIbDb7TESW9XV1diwYUPKH+fatWsBwAqlHjt2LCZNmoRJkyZh1KhRVp/b9zFRn6OvHenznDlzEuY3RyNJEkaOHAm3242XX34Zo0ePTqmxvXbt2oSh30T/Yfvu7TF/V1b3nOEsSRLkLBuCu4MJi3dxncPw6lBc8aHIEf1hHm4rEMbV+IInEaOQD0rDuRsNXUkiSSqCIIhBDg9xsHZFpdJFUszxtCvQ3Lx75uYsyJJ+hpIkoaykDG6nG//44J8YVToKB085OGWfe3puToZzP8MwDNTU1GDfvn1Yv349li9fjiOPPBIzZ87E9ddfH3NsMBhETU1NzL/m5uYOr3HuuedClmX86le/wqZNm/DOO+/EVZ4+/vjjMW3aNJx//vlYu3YtPvzwQ1x33XW4+OKLreqAVVVVmDp1KlavXg3AXGX71a9+hWuvvRYffvgh1q5di/POOw8HHnggjjvuOABmkYAHH3wQ69atw+7du/H3v/8dl156KY477jiMGZN8FemKK67Au+++i3vvvRfbtm3Do48+GhcKsnTpUlRUVOCaa67B5s2b8eyzz+KZZ57Bdde1VVR+4403MHXq1Jjzli1bhvXr12Pjxo2488478ac//QmPPPKIFar9/PPP46WXXsLmzZuxdetW3HfffXjkkUdw+eWXd3ivib5je3ms4VzRgx5nAHAU2qE1aFDr4/UUWZCBhThkV5JHroQYLynXOYTOExbLEh1U7+6PsBCD5wcPuJ6477o3sb51ZyBJKoIgiMEPC7O4aswZIZC2x3kozs0vueQSnHrqqT02N7/mmmsAmI6Cd7/5D+b/4tCY85a/tBybdm7Clt1bcN+K+/DIiw/jj1f+0Zqbv/Kfl/HmV29gy/YtvTo3J8O5n7Fx40aUlZVhzJgxOOqoo/D3v/8dN910Ez7//PO4svBPPfUUysrKYv79/Oc/7/AaOTk5ePvtt7Fp0ybMmjULN998c1w5fUVR8O9//xsulwuLFi3C2WefjcWLF8f8iHVdx9atWxEMBq1tDz74IBYvXoyzzz4bixYtQlZWFt5++23ri+50OvHqq6/iqKOOwrRp03Drrbfi17/+NR5++OGUfY6EXyxfvhwzZ87Ee++9h9///vcxx4wfPx7vvPMOPvnkE8ycORN33nknHnnkkZjVQI/HE6PZBwD/+c9/cPjhh2POnDn497//jX/9619YvHhxzDF33XUX5syZg7lz5+KVV17Bs88+G5MPQvQvDMPA7qpdMdsqetDjDJihXxAC/m1+6O0MN8PPwLXkA7ykmJW1I/Bwq8c5QcETYQw8j7NaryGwMwg1QbVVIQSMlsShWp3BlPciw5kgCGIww0Icwkg8TqaFJKUdqT0U5+YXX3xxyqK9QPfMzbnO4VP92FG5I+a8D7/+AD/5n5Nx3K+Pxfsr38Pf/vgCTjri5JhjHnlzOQ476bBenZtLggQv+5TuyvXoKuXl5Rg/fjzWrl0bp1/X03T2HqxYsQJXXXUVWlpaeq5zvUR/+R70Jd15D3Zs3YHJUyfHbCvMK8T2f+9Ickb3wHWOcFUYjhIHCmblwzncLJTi3x5A8+pmZI3NSnieWqvCUWxH0RFFqKiowDBpGJq/bIk7PlgRRMEhBcid2rG2Yn+i+dsWtHzbgryD8lC0oDCmUAgLM9T9tx6yQ4Yt1wYhCfhGepG7Lw+SyHxCpHsNCJ2j9MelVFmb6DfQM57uAUD3AOi+exDYGUDTymZkjUs8rnZEuDoM10gXihcVdboPnSXde9CXc/POku7cPHIPlFU2ZI/O7tS1ghVBlBxlFgfrLYbmr5YgiEHN5o2b47Y1e5vh9Xt79LqyXYZ7jBu6R0fjl00I7ApACAG9RY+rGhmN5JBhBJil5cw1joTlRiWpWyQ0ehOucag1YTiKHAjvC0Nv1mP2sxADV5PnOGWKZJMgmIBIEhZOEARBDHyMAEs8TqaJ7JBh+PS0ClwRPcgAs0QHWHeJdLj77ruRk5OT8N+JJ57Y190jiB5ny5Yt1ussV9tqdE+HawNmES/3KDckRULT1y3w/uCD3qxBTlAYLIJsl8B1Dt6a58yDHIlmBJIigakDyyDUm3XoXgZHqQMsxBDeF47Zz4LxhdDaw5jA1kqOQIgmOARBEASge7qW4iPZZXBVgPfSmBo9N8/Ly8OMGTOQl5c35Ofm0eohA4EBK0dFJGfp0qU4++yzE+6LlJBvz7hx4wbcqtuSJUuwZMmSvu4G0Q+J1nA+/JAj8N8vzWIVFfvKceDkA3ulD45iB2SnAc8PXihOCba85JXdZYep5cw0s7K2EWSQExiSkhJbfXsgoDZpABeQbTLs+XYEdweRPTEbittcSGAh8/2k0qBs8AAVtYDbCWT3XkQWQRAE0Q8RXID5jYQFNNNFdkrQAxxc5QkVL7qb6Lk55xxVVVUYNWoUZFkeknPzSISd7Oz5e9+dkOE8CCkqKkJRUe/nbBBEfyHacD720GPbDOfqyl7thy3HBtkhQ2/WoWQlHxwku6nlHPE4s2DiCYGkSNYxAwHBBcJVYeu92/PtCO0JIVyjInu8GQnA/AaQwmjmXGBPnYA/CNQ1C4wuTW1kEwRBEIMbHjalqLpi8Mp2uW3cze/GziUhem7OOYfdbh/Sue4saC6ad1eaVm8xsHpLEASRBtu2bwMAlBYNj/EwV+wr7/W+yA4ZzuFOU4c5CaaWc1vIGAvzhKHLkk0G17i1UtvfMbwG9BYdthxzjVZSJMhOGcHyoPUe9A4qajd4gHoPUFoIePxAIJT0UIIgCGIIYNbG6IIUFcy0Kggx4NKfBguRaDOlC1EDfUFGvX3yySdx1llnYe7cufjvf/9rbX/77bdx7rnn4ogjjsBpp52G119/vds7ShAEkQ7Nzc2oa6gDAEweOxljR4619vW0lnOXkGRrAOeGGdocd4jSWvhqgEhSac06WIjHeNsdRQ6otSq0eg3c4DD8RtLq15wL7K0TUCQzRFvVAU+gt3pPEARB9EdYmEEYouv5sQLgoYGV/jRYiHicUxVO7Y9k9I0bPXo0rr32WkyfPj1mu6ZpuOmmm/DRRx/hgQcewF/+8hd899133dpRgiCIdIjW6Z40ZhKGFQ6zCoT1RnGwziIpAPObA4nQOSRH4hxnwQT4AKkYHa5V43K1ZacMwQSCe0JgQQ6miaR5ao1e09tcmAtIkGC3AfUtA2PRgCAIgugZWKh7xkBJkWAEjW5pi8iMgXrfM8pxPumkkwAAzz77bMz2iIg1AEycOBHz5s3Dpk2bMHv27G7oIkEQRPpEV9SePGYyJEnCmLIx2LJ7CyqrK8E575c5RaY0hgEUm8ZxQo+zTYIwBATr/8YjCzFotSpseeYwI4SwcpPthQ6E9obgKLSDhznk4vj3yoXA3noz/dluM8/LdgPNfiCkCridA2uVmiAIgkgfr9eLX//61zFjeoRsJRs3nHYjjhh7eJeuITlkGF7yOPcFerMBdE6Cu0/p9uJgjDFs3LjRMrIToWkaNE2L7YjNBofD0d3d6fdwzmP+H4rQPaB7AHTfPdi8uU3DedLYSRCSwNiRY7Fl9xZouobqxmqMLB3ZpWv0BJJLgqGaGsdCFhBSAuPYBnBwMI1B4ekXRWEhBshS0pDonkBtUqGHdLgL3QhoHDurBPYfLcFhl6DkyVArwgjWhCBkDtgAAfP9Rt53c0Cg0QsU5ZuedgDIyhLwNQItQcDlSnxdIQsIWYBz3i2/p/64yEIQBDHYefLJJ/Haa68l3X919ZVYddTXsNuSK1Z0hGyXYAQMCC5S1iEhuhducBheHRjV1z3JnG43nP/85z9j2LBhWLBgQdJjnnvuOTz11FMx284666ykEkpDgT179vR1F/ocugd0D4Cu34N169ZZr8vmjoBvpBdlk8uAL81tm7VNyB2Z06Vr9AhRtjyfy+CDN/FxY4BqXzXg651udYlDAX9rR8eNB1SY/wAAo1r3jUTC9+qY4se8KfFNTmj9v6O3X9VYBTR2st9RjB8/vuuNEARBEBnx+eefW6/dbrcVsaRpGgzDQEVtBV5991Wc95PzOn0N2SGDhRl4mKdUviC6FxZkYANIISSabjWcX3/9dXz00Ud49tlnU8qFXHjhhfjFL34R25Eh7HHes2cPRo8ePWQ9G3QP6B4A3XcPKitNySmnw4n9MRXKPgWT8iZb++vXNyB3v7wu97e74TpHuDEMNtuA8p0NWSMSxzAF9wRRvKgI7lHpCxo3fNYIwQVKjizuFSknwQTqP2kAC3E4ix2oaRJYu11g4khgymjzs+UGR7AyBJtbgauszX0sJAF/mQ9r/pONHKfpoY4mEBZgHJg7VYIzQeVxI8TA/AaGHVNiVfMmCIIgBg5CCHz11VcATBmnhoYGa+z66F8f4djFxwIA7n/+Ppx9wtlw2DtnP8gOGYZXB1MZGc69CAswcG2IG87vvfee5UkuKChIeazD4RiSRnIqZFkesgZTBLoHdA+Art0DXdexY8cOAMCEsomwyTZAAONGjrOOqdxXCUn0v5AsWZEBvfW1rCTto2RIkJiU9j0STID7GbguIEICSk7PTw60Zg2s2YCj2AlJSNBUIBwC6hqBCSPMnGVFUeAucUF2yjHvVQgzVNvQJdjdMkS79DOXDahtBrw+CaWFCQqocQkSl+i3RBAEMUDZvn07GhvNkKGFCxfGLPjOmzoPRx54JD5d/yn21OzBS++8hCWnLenUdSS71KblTPQaLMiA/l+qJSEZzSoMw4CqqhBCWK8551i1ahWWLVuGhx56CCNH9r/cQYIghga7d++GYZiVGiftN8naHm0494WWczqYWs7m6/aVqGMPBLie/ojDwqbRbAQYdE/vVLHUmnUwVVgam0FVwO0E/OFYOSlbri2uonZkf0GSaHq5dQLV5B2goy5BEASRkoi3GUBc6me4TsW1P7vO+vuBv94PVVPRGSLjLict517F8BnAAM0pz8hwvuuuu7Bo0SKsXbsWt912GxYtWoTvvvsOzz33HLxeLy666CIcfvjhOPzww3H33Xf3VJ8JgiASEl19c9J+E63Xo0eMtl73by1n87+U2pQCEEb6gzwPc3NSYAjoHq3jE7qB8L4wFFfbewiGAacdgOjY4K1tNve3D9GOJscF1LcA+gDRsx6I/OY3v8HChQutMf2KK66w9q1YsQLHHXccjjnmGDz88MNWlABBEER3sHLlSuv1woULrdcszKA36Zg7cy5+tOB4AMC+un144f/+1vmLSdKAzbcdqGhNeq8WK+1OMgrVvv3223H77bfHbZ8zZ0539YcgCKLTxEhRjW3La852Z6O0qBR1TXX9XMvZNBYlW3KjUVIksAxWx1mYQzABJdcGtVaDOED0aJ6z4TegNWmw5ZrDCxcCIRWw2wBFMQ3eCSMFbEp8HwIhgZqmmDppCclqNZy9AaA4v9vfAtHKbbfdhhNOOCFm2xdffIHXX38dK1asgMvlwqWXXopx48bhtNNO66NeEgQx2Ih4nBVFwdy5c63thteAEWBwjXTixl/diPdXvgcAePBvD+Lck38BtzP92h8RJKXVA0r0CkzlMPwGZNcQMJwJgiD6M1u3brVeTx4TW5J5TNkY1DXVoaahBiE11KkBtqeJhC2n8jhLigQeTl93kofNXCJbtgLdo4MFGWzZPffo11t0sACDo8isY6HpgMFMj7PdBjR4AI8/scFb1yKgphFxp8gShBBo9gkU5w/McK+ByjvvvIMzzzwT++23HwDgvPPOw3/+85+khjPJT5qQ5CDdA4DuAdDxPWhpacHGjRsBADNnzoTb7baOVT0ahMQh2SUcNPUgnHT4SXjn83dQ01CD5996HpecfUnG/ZFcEnS/3qufyVD+HugBDUwzYM81x4CE0ptpIhQBLnpXepIMZ4IgBg3RHueJ4ybG7Bs7chy+3fgtAGBvzR5MHptA66iPseXaoEE1Pc9JxhLTcM7E48wACVDcCrRGDYbH6FHDObwvDMiSpYmpGYBuANluwKZI4FygxR9v8OqGQFU94E6iz9wetxOoawHGlwkoCbzXRNdZtmwZli1bhilTpuDqq6/G5MmTsXv3bpx00knWMVOmTMFjjz2WtA2Sn4yFJAfpHgB0D4Dk9+Czzz6z0j9mzJiBioqoKDEbgPltEoa/vfG3eOfzdwAAD730IE6/ZDHc7gwXxUcCGlQEKvwZv4euMmS/B4cAems1VH9ZF7Q1RwJ1eh3QDYGE6UpPkuFMEMSgQAiBzZs3AwDKisqQm5Mbs3/cyLHW6/J9Ff3ScFacHVe8lmyZhWrrHgOyQ7aMcc2rwzUyTes0Q7RmDcE9ITgK7W3bWj3Otta3luUyq2KPGxFr8NZ7zNDrstL0rpXtBpq9gDcIFOZ2fDyRGVdccQUmTJgAWZbx6quv4sorr8Trr7+OYDCInJy2ym3Z2dkIBoNJ2yH5SROSHKR7ANA9ADq+Bzt37rReH3/88Rg71hy7ucZR/2E9IEmw55tjzLz8Q3HKUafi7U/eQkNDA15//HVc9vPfZtSfvpAwHMrfA/8OP1q+88A9xg1/mQ851bmdVjoJ7gmi+LAiuEf2XgQhGc4EQQwKGhoa0NzcDACYOHJSXOnDMWVthnN/raydDpIiQehm3rLUgadVCAHmNyC1hn7LLhlajQpM7RlLM1QZBgtxuIa3DS1aa+qY1Fr5LJHBy7nAvnoBh72tanZH2BUJBhPw+AUKc8nj3N3MmDHDen3BBRfgrbfewsaNG5GVlQW/v80zEwgEkJWVWHMcIPnJ9pBMGt0DgO4BkPweRBcGW7RokXWM7jfAfBzO4c4YQ+uGC2/A/336NoQQWP7iclxw6hLkZCWRZUiAosgwwgLQ0w/X7S6G4veAeThktMlQSkLqtOEsMQmy1Lv3cGh9WgRBDFqi85snlk2IK4A1NsrjXFFd2Wv96m4kRYJgANc79jpzTYCFuJU7bcu2QWsxTA3FbsYIGAiWB+EosMds1/TY4+yKBIMDLf62WPRmH9DoAfKzM7um0w40ejvbYyITIhOT8ePHW1rpALBt2zZMmDChr7pFEMQggjGGr7/+GgAwcuRIjBkzxtpneHQIQ8TVADlgwgFYfMzpAICGlgY8+8YzGV1TtssQTFBl7V5ACAG9WYPs6ji6rr9ChjNBEIOCmPzmsklx+weClnM6SIoEzgREGlJMXGXgOofsMBcRlCwFLGhA9+gdnJk54aowDI8OW35sIFNIFVDajTRuB1DbZHqaAaC6UUAAsKeoJp4IlwPwh0iWqrvx+XxYtWoVNE2Drut48cUX4fV6ccABB+Ckk07CP/7xD1RVVaGhoQEvvvgiTjzxxL7uMkEQg4CNGzfC5zNzXhcuXBizAK41akkVJ2648HprcW/5S8vhC2S4oirM8TIRob0hqA29I+U42OEhDiPIY+QqBxoUqk0QxKAgxnAeOTFuf1lJGew2O3RDR+VA9jjbJMDg6RnOIQ6uta3QS4oEwU1JD5R1X5+4xhHYGYCSa4vz9AfDbfnNEXLcQLPfDNdWZIG6ZiAvQ28zADgdQMALBMJAQfqReUQHGIaBxx57DOXl5bDb7ZgyZQoefvhh5OTk4LDDDsP27dvxy1/+EpxzLF68GKeeempfd5kgiEFARIYKiNVv5gaHWqdCSVLYcvLYKfjpcT/Fa++9hmZvM576x1O45pfXpn9hCWCheMOZhRm8671wjXLDWUIpJ13FCDLwMIM9f+CanwO35wRBEFHEhGqPiDecFUXBfiNGY/feXSjfVw4helbPuKfIJFSbqRwQsbnQilNGuFZFzv7dZ2mGq8PQmnS494st0BGt4RyN3SbBMARafAKMA2ENKMrL/LOwteY5B8lw7lYKCwvxt7/9Len+Cy+8EBdeeGEv9oggiKFAMsPZ8JopRo5iZ9Jzr1tyPf754T/BGMNjLz+GX53+a+TnJtA9TIBslxNqOYerVah1GhT3wA0t7k+wILPC7UUS6ZB9DRwGA0aVSP1SMWPg+soJgiCiiHics93ZKCtJ7E4dW2bmS/mDfjR5mnqtb92J6TUWEHo6Huf4FXQl2wa9WU+4ut4ZBBMI7Aq2Ve6OQtMBncV7nAEzzLq2GdjXYHqgO4ssA/4QhWoTBEEMdCKGs9PpxKxZs6zthtcA0wRkZ3KzZeLoiTjnhHMAAB6/B0+89kTa15XsEgxf7JgYGdsEEzB8BrhGOdBdhQVNecxkCGHKUv6wE9iwSyAQ7n9jOxnOBEEMeFRVxa5duwAAk8ZMgmJPvDo8NjrPubobhP/6EME6HlCMoGHpKUewZSswAswM1+4G1DoV4RoVjuL4MLaIhrMtQWxTthvwBQFfCMhJXpS5Q1wOs0p3RPeTIAiCGHjU1dVZUlRz5syJqcavNmkdqkgAwDUXXAubYg44T/z9z2j2Nqd1bdkhg4dZTCSXWqtCrVPhGukCC7MeKao51NCaNKtYaSJU3Uy9ys0CqhqBtdsEaptEvxrfyXAmCGLAs3PnTnBuDngT95uYdIAdGyNJNYANZ5FeqLbRquEcjaRIAOfdUiBMCIFAeQgAEg6Gmg6wJB5np12CqpmGb7oSVIlw2oGgZoZ7EwRBEAOTaBmq6DBtwQS0WhW2rI7DpceNHIefn3QuAMAX8OHPrz6e1rVlhwymcbCQOa6aY5upT69kK+CagBHonsXmoYrgAoZHTxk1EAgBIQ3IdQNlxaYh/f0OgW17BLQ0oux6AzKcCYIY8ETkKwBg0qhJQDLDOUqSqnIge5wldBiqLbiAEWCQEhi0slOBWtd1S1Nv0hHeG0robQbiNZzbM2qYhKIuajA7HabRHAx3qRmCIAiiD0ma3+wzYPgZlOz08oyv+eU1sNtMWcQnX3sSjS2NHZ4jO2QITViVtfUmHeGqMBzFDqsWCvOTx7krsCAz5TFTSFEFVUBwQJYlSJBQnCchNxvYWQWs3yXA0oi062nIcCYIYsAhuIjxuL766qvW6yMOOhJylGTF3jqOPXXmsdGGc/lA9jjDrDKacn+Yg2ttUlTRKFkKtCbNLB7WBUJ7QuAqT+oJ0HrBCyxLEiDMAZcgCIIYmEQbzgsWLLBe614DXOUpPZXRjCoehUuOXYqZtllYxA/HP+//Z4epTZHaIbx1TGw/tkmKBK0HZBwHG0IItKzzQK2PH5BZgIGFOZQUn6PHL+Ii1NwOCcMKgQYP0OLv7h5nDlXVJghiwBHaE0JoXxhF8wvR2NiIDz74AAAwduxYzJo4C4jK622o0BAICBRLMkbnj4YNNhgwBryWMwunNnpZmIFrHPYCe9w+JVuBWq3C8OhQSpNXKe2o/WBlKGH7EYIJNJx7AkU2B9zRpf2vAidBEASRGk3T8M033wAAJk6ciOHDh1v79GYdkJFSBSNcq6LiqUoEdgWgN+k4UZyME/NONnf+AGx5fCsOuHxqh/1gIQ7DbyBYETu2KW4FeqMGwUVc3RCiDaELhPeEoNaqKF5YBFtum5lpBBnAedJUOsYEWvyAO8GUxK5I4FygvkWgOL9v7z8ZzsSQghscwd0hZI13Q7ZRwMVARfcYCFeFobfo+Mc//gHGzBCqs844CxCA1LpiWf5MJdS3amEDsL713H8V/R+YYNhRsR0szKCkCBvqr0iKBN6B4czDptazZIsfZGSbDMEEdI8BZycNZ8NvFktxDk9+fiCcuDBYd+NymCvRnPd9GBdBEASRGWvXroWqml7KaG+z4AJqbbhDOaiaf9Wg5ZuWpPu9H/jgOcKL/IPzkjciSWAhhtC+MAyvDve4tqqVsktuDTVmsCXRkiYArnIwXcCoD8PzvReFhxZAtptzbcNvACkWPwKqmXaVl514f06WqcQxfqSA0953xjNZDsSQQm8xENwdTKjXRwwc9CYNeouOcK0aE6Z91uKzYozFhk8S5zYpkoL9+VTUfVjfK/3tbiSbZOViJYOFmbmIkGSgkh1ywnCqdGF+A4IJa1BsD+cCYQ1IUuC8W6E8Z4IgiIFLssJghs+A7jOgdGCsao1teUFZE7NQtKgQeT/OxXv6f63t2x/akbLAl2yXoDfrCO4MQMmxxYydiksBC3GwAOU5p4JrHELjcO/nRmB3EL5Nfqsitt6kp85vDpkFRe1JPupsl1k8rMnbEz1PHzKciSGF4TOgezSwIOnxdSe1tbV44IEHsHHjxh6/Ftc4dK8B2S6j/LtyfPLJJwCAyZMn4+BpB0OwtlAq3iofIVwKjP0LkH1QHmqyqq22qj+s6fH+9gSSIoGpPKVEAwunHuCVLDP0rLPalHoHi0+aDhisdzzODrspexWgPGeCIIgBR7LCYKGqEFiIQ3GnNlei53TT7pqKyTdMwgGXToV2oorv9XXmMU0MFU/vSdqG7JBhBA1oTTocRbEFL001CrPgJpEcFuYQTEDJUuAc5oB3kw/B8hC4wWH49JT5zf6QgCQlLyYqSxJsNqCmj+WpyHAmhhRaswbdw8A7MCqIzFi6dCmuvfZaHHvssQgGgz16LSNggKsMzhFOvPnem9YD9JxzzgGYKV0h2SRz5dMw98llbnhOn4jsyybju0VrUGGYhcH0nabXeqAhKRJgCOv9JcLwxktRRaO06jl3VpZKa9BShrlbGs694HGODLSBEIVqEwRBDDRWrVoFAMjJycGMGTMAmFWYgzuDsOfZUuY3m8daEg6QXW3j3uW/uBxPGH9GUAQAAA0fNaD568TazpJdtiQcE+bhyq3hxkRSuMaB1mHYlmOD4lbg+d6DUEUILMxjPptohBBo9pnRY6nIywKaPIA/1M0dzwAynIkhg+ACWr0GoXNaNexGNE3Df/9rhkPV1tbi5Zdf7tHrsSAD18wVzbe+esva/rOf/cyqNC1JEliw7TOWXAqyXMC+BmDWtDn4WPvI2tf4acdSFf0NSZHAWQeGs49BSpEHJNtlcMPMc84UFmamYZ4i7yyVhnNP4LABLb7euRZBEATRNURrTYra2lrs2WN6gufMmQNFMQeN0L4wtBYjZQHKCJbH2akgWnCitKgUp51+Kv4SeNLatvvxcuje+AVjxS2DazypvKLsNKO0iORwlSPaYewscYCHOfw7AmZl9CSL+apm1kRxdWA4uxwSVB1o9JDHmSB6HMPPYAQYlBybWaWR6BbWrFmDUKht+W/58uU9GkbD/GbublVdFdZs/xYAMH3adEyfPj3GkIw2nOFSkJcFeIPAnBknYFNOW0h59Yc1fRr20xkkmwRhCPAkWs5c42Ah1qF8h2zvXJ4zC5hFUlKFz3Wk4dzduBzmKrSRYjGBIAiC6FsiaUTBSjM6bc2aNda+OXPmADDHsMCOAGzZSlpVrI3W8Z455DjJov/5+eX4SvkSX2umV1tvMVD+54q4cV+2y8iekJ3UuFNcMgyf0en0pqEACxlxn5erzAW1Tk1ZkTwQBkIa4Op4jQRuJ1DdhD7TdCbDmRgyGD4DPMRgz7fBaC1sRHSdTz/9NObv77//Hl988UXG7SQzXtfv5Gjytu3TWnRIdhlvfvSmte2nJ/4UAGIMSS06pMqlQJYlKBLQ6LHh1MWnYoNu1tlmNQzBXT0bXt7dSIoEwQREEi1nFubgOk9auCuCLVuB3pB5nrPRQWEwwPQ49yaO1gJhASoQRhAE0W+JhDv7Nvmhe3VLhgpoM5zD1WFojVpS7280Qgir6JdwKKhrjp1LFBcU45KzLsHywMPwcrOyVNNXzWj8vCmjfssuGSzMYhfliRgML4PUbuFBUiRkjcmCe5Q76XlBFRAckNNYJMnJAryBvtN0JsOZ6Lf4dwS6VPW3PZHQHNmlmCXzQ517+AV2BagqdxSfffZZ3Lbly5dn3I7WZH4+XG8z4nxBga17gKp6cyAUXEBv0qC4ZLz50RvWcSfP+QmEiIQumw/ekDc2VBswZQ7qPcDpx52Pz1lbv6s/rM24v32JaTibmomJ4GEGroqUOc5A5/OcDZ+RSlUCQO9pOEewKxIMZq5aEwRBEP2TSKqc4TPg3eTHt998a+2bM2cOBBMI7AwmzzVuR30jB1rHQiVLQX0LEFJjx8ZLz7kMRpaBx4Jtc5M9K/ZkFG0mO2RwTaSszD2UEUKABQ3ICSQwJUVKOR/x+EXahURNTWegvoU8zgRhIYRAcHcQWmP3ua20eg2yQ4bsMAtHsQ50cBPBNY7AziA0CvUGADDGLO9yaWkpSktLAQD//Oc/sXfv3szaCrYNphEaWkzpgco6MyzH1FHkqGiqwLot6wAAB006CKMc+5kRBXpbfk3YGxuqDZj5MZoOCJSgcGEBdGF+jrUf1Q6oCARJlgAhwJOEJXOVA0J0OOnobJ6z1qBBcqZOXg6EeqeidjSyDASCA+dzJAiCGGqw1vHGOdyJwE4/vlltepwLCgowYcIEhGtUhGvVtLzNuiGwu7xtrJfdCoLheMmiwrxCLD37UnyhfY7N+iYAgNaoZ+Q9jhQoI0mqxHBNgGsCUgeRbu1hTKDZD7g7/rgtIprOWhLnQU9ChjPRL+EhDiNgdJtnl6kceosOJUuBbJMhmADvhMfZ8JuaglSV22TdunXw+cyKTEcddRQuueQSAKZB/cQTT2TUVkSXOLpoR1WDKU/Q7DXDcliAgYU53v7qbeuYxcctBg8YUGs18DC3jEXVF+9xBoBsN1DdCJz70/PxrW4O2LaQDZ4fPBn1tz+QNFQ7g+92pnnOTDXlwFLlNzPWexrO0TjtZoEwATKeCWIw4t3sg39HoK+7QXQSIQTUBjMsSHEqqA/Vo7bejPiKhGkHdwchSegwYgowo9Ga66PGercChz2xZNHSs5YiPycfVbzK2papc0ZSJGgt5DhJBFc5uMEhpyhKmoigZhYH66iidjQRTWdvHzwKyHAm+iVGwAAP8YSVDzvVns8ACzIoWW0z+c6Eaht+BuYzOuWtHoxEh2kfccQRWLp0KWytbsa//OUvCIfTTziNrOLqrQNZICRQ3QCUFgKqATR4zO8FuIgJ0158zOmQs2wIVgTBQgxS60ecyOMMALlZgC8IjC6bjYrScmv75je3pt3X/kKy4mAsyNBhLHUrmeY5s4BhFgZLIUWlG4DOAHsve5xdjrZBmCCIwYdWpyFYHrQqMhMDCx7iMIJtDpFNdW2FOg855BBoDRrC+0JpeZsDIYHyGiBbihrrnQpys4BmnznOR5Ofm4/LfnYZGnmDtU3LsEq24lagN+sDrqBob8A1DqGLlGoeiQiGzDmDI0GIdzIims4NHqC3PwoynIl+CQsysDADD7KYnNfOYvgMCKOtWJKkSNA74c02fLopxUM5zgBiDecjjzwSI0eOxE9/ahbqqq+vx9///ve02zJaDV21XgXXOepbzCrYuW7TINpTJ6D7DGyv3o5Nu8xQqznT52BM2Rg4CuzQGjSwMEvocY42nGVJgqIA+xoFDj5lIQLcXLI0fjDA1PjFFCHiV677C8nkqHSP0WFF7QiZ5jkbfgahp86f1gzA6CUN52icDiCsA+GBJ81NEEQHcIPD8OnQmzRSxhigGH4DLNQ2p/t+2/fW64PGHYRgeRBcF1BSSB0C5rhcXiMQVIEsxEaXOe1mSlajN358/M2Zv0HI0aYC4q3yxh2TCtklm/NTKhAWB1eZWTTUlplpGQgLdEZ8Iy8L8Ph73+tMhjPRLzH8BiAApvGYh2xn0Zo1MwGyFdkhQ+9EuI1Wr5kawV0oDtGfDbFM4JxbhnNRURGmTZsGALj88sutY9KVphJcWKvQRsDUCK5uFLApZpXF/Gwz39mzT8O/v/k/67zTjz0DACA7zfB7oZmh2rohoPujBtN2RmRhDlDbBBSXnYLVMAuTOLgDq1/fifJqgW17ONbv4vh2C8fKDQI/7BQw+jAHOuE9lKSEXmLBzeIl6YZLRfKcDW9632nDp3c4yKk6wDig9LLhLEsSIMwKnQRBDC5YkIOpHIafQW2gH/lAxPCbUWMRIrVKAGCyYzKCe8JpeZsbPEBVPVCcC0CNGgdbF8mzXGZKVvtxOzc7D1NnTrX+3r5he0b9V1wKeJhTnnMCzNoqmZ/X7DPTrDLF5ZCgGWbIdm9ChjPRL9EaddhybOCq6HI+seACWr0WE6YtO+WMvdmR3E5brs3M5eiEJ1wIAc/3XgR2DCz5o0Rs2rQJTU2mnMPhhx8OuXVhYuHChZg1axYA4Ntvv8XXX3/dYVs8zC0jUBgcvnodVQ1Afo65P9sFBPwczXUMn2/43Drv1KNOsV7bcmzQWgxIigRVaxeK746NGbbbJJQVSxg1zAFjRo61fc+727G5QmDXPtOw9gZN72lVPbC3rm8MZ49fYO12gWZfO81JmwTDo8cVNYvcy3Tyw6y2Mshz1hr0Dr3ZESmq3tJwjkaRzWrsBEEMLnjIVAuw5dkQqgxTuPYARPfoQKvkkBDCMpxLCkpQahsOFmSw5XSc47O3VWnD6ZCAcHx0WY67VbLIF3/uQXMPsl5X76zOqP8RKUjyOMfDtc55joOqGVU4UCDDmeh3cIPD8JqFvCBEl/OJDT+DEWBxhjPLUJIqkttpy7OB6cJcXcsQtVZDYJu/U97u/kb7MO0IkiTFeZ07goWZZThLNhl15Rq8ATMfOdKmw2Cor1OxcbeZEzW2bCzKho202rAX2CHBzEEKa4AIJ/c4R5AlCfNPOwUNrTlPozxFKFICGFEkoSRfQlGuhIIcCblZwK5qoMXfuxO12maB73cIVNQiRssaAOzFdgQrQwjsjl2EYSqDyNBwtmUr0NLIc+Za62+zgzA6tQ8qXUZw2QFfyCxQRhDE4IGFGMAF7IV26M0Urj3QEKLVieEyx6a9tXvR6GkEAMycOhPZ47KRNTq51m+EsCbg8ZuFPs0N8YVAbYoEAaDeEz8OHDJ/jvU6WBfMPAJQQqdS/QY7RsBISz6sPapGhjNBdIlI5WS59eHamerX0Rg+AzzErIc10KbHxzMIA4/kdipZCoTGMzacuc7h2+yD1myY4UoDnE8//dR6fcQRR8Ts+9nPfobi4mIAwGuvvYaampqUbfEwtzynSpYNDeUqJMahyG0P4TzZwLbd5QiGTUNxxuQZMW1IioSscVmQHTJCGiBF5yunMPRKikdid5FZZdMm2bD97Xhd6twsM2dqx97eCdnmQqCihmP9TgGdAQXZQH0LwKM8LIpTgS3XBu8Gb0yBEx7i4BkW6FCyFRh+Br2DcG0zP411aDgHw70fph3BYTc93irNqQliUGEEDEAyn31c5RSuPcBggVgnRnSY9sH7z4QkS2kZXv4QENIAt9P8WyTwOANmfZTaJtPQjiZ3WA5Ya150rpGLH7b9kNH7kF0K9AyLig0FmM+w6ghlAuetaVYDBDKciX4HCzBwlUN2yma+aheNzEhlbinKCJNkCeAiI4+z4TVzOyWbGaqTqeEc2B1EuCoMZ6kDLMgGlG5we4QQlsc5NzcXBx98cMx+t9uNX//61wAAXdfx2muvpWyPhZmVGyOcMhprDeRLsZ97Fhi27t1g/T1j0oFJ2wuEBOToz6cDzeHhx0W1tSVxpYmSfKCu2SxS1tPsrBLYVGHm/RTnSch2m5MFf7tcHkeRAzzE4PnBC9b6fllrnpGUwUAk22UIQ8DooEAYCzBwLXVhMMAMveptKar2DIIyAgRBRKG3GNazR8mmcO2BhuE3nSKKM95wnjl1Ztrt+IMCQkQZWwk8zoCZ5xwMA03twrUlWQLLMc8plkvwwar3M3ofiks2HTLt0vWEEFBr1bQVKgYTZp0alnFFbQCw9bL6Rlchw5nodxitRRckSYLskGF4umY4a/Va4om+hIzCwLUGDbJLMQ0SActQSQfdq8O/2Q9brg2KWwHXM/dY9yd27NhheZEPO+wwS4IqmnPOOcd6He2dBuKLXbEQs3JjfJqMUEAgj8d+7nLAQHnDZuvvA6ckN5y9QUDWWgdTmwSpgyqPE+fNgU+Yo+uwcGHCY2yKhLxsYFcV4vKNuwutNcR59z6zgFlulnlTHDazCIYngU3vLHMhtCcE/xY/hGitCdCJxVvJJln6msnQfXqHMleMCajawBsMCYLovwguYHh1ayy35dsoXHuAYfgNgAnLq/x9Jw3nRi/gjBpfYjzOzlgFDbsNqE2g6ZwzPBsAkC/n45OVn6R9baC1snaYxRQIE0zAt8mHplXNUOuGXiRERIoqE49zJJ1qIIVpA2Q4E/0Q3atbD1bZIYMF4lf20oWpHHqLHpPfHEG2y9Bb0gu3YSqH7jGguFt/MhLSNnyFEPBv8UP3GrAX2SE7ZAiNJ5Q+GiikCtOOcNBBByE/Px+AmQ8dPXB9s1lg9SYOvVVOyfAZloRBi19AKBIkX9uESHAB4dWxp6FN8/HAJB5n3RAIqYAUMZxT6A1HkGUZdU4zz7lAKkDT3qqEx+W4JRgM2FElrL53J5GV8ZICs2JkNA4b0JAgX0u2yXCWOuHb4kN4Xxi6z+hwoSARthwbtPrUq+Vaow7Zmdpw1iIazt3kcRZCwHi3CvoLuyACNEkmiKEIC8WmcClOBVzjCKdZ1JDoe/RmHZItvjDY8OLhKCspS6uNsCrgC7aFaZsbE4dqA2adlCaPWfcimpyyXOt1+ZYKNLY0pv0+Iql+EScPUzlavmtBy1ov9GZ9QHucuWamFGbiGIqcx3Wekcc52Dr97kxF7b6EDGeiXyGEgN7UVrVXdshdkqQyfAZYkCU0nCWHDMNrpFUYgrXL7ZRkCSyUnic8vC+MwK4gXMOdkCQJkl0C1wV4F4ue9SXRhcGSGc6KouCwww4DYGo6b9myxXzdIrC9Cvh+J7B6s4CqmVJIUqsnoa4FcOcpEM0qhNF6j8IMQmWoqDEN58K8IowsHRl3TcDMfdL0thxnKQ3DGQBCRW2fR+365BIVJQVAfTNQWdv9hrM/ZLZpS5DnleUyNQtDavx1bTk2SLIE7w9eGB4dsiNzl3NHec5c5zBadCgd3E9N714NZ76xBeyDavB1TTDe2ts9jRIEMaBgwbYUrghKlg3hPRSuPRAQXEBrUK05VGVlJTx+DwBg5tRZabfjDwEhFXBFG85RRl778d7lkKAawL762O+Io6TNWiuWivHR6o/S7kMkDYoFDBg+Ay2rm+Hf7DfneHbJrC49QDH8BnxbA/Bv82d0Hlcz9zgHWxcz7LaBk98MkOFM9DN4mJvFI1ofrrJT7pIkleEzIAye8MesOGWwUHoh04bfADfaHgqm0d1xn5jK4dvkhyRLlvEeCfUeyKHaEcPZ7XZjzpw5SY+LrrYd8Tpv3yOgacDoUmBzOfDVOoagj1vGXjAEZBUqECEGRPSywwxNDTVo9tUDACaNnZE0hzesAoYh2lah0zSc7aPzrNeBXfVJj1NadaV37TPznXk3Tdq4EGjyJt/vcpgTBm/iFGw4hzuhNmgw/CyjitoROspzNvwGWLjjwmCaYWo4JzL+OwNb2fZZ8O+bILqgoU4QxMCEhTiEIazIJKAtXFtrokiU/g4LMBghDrl1/Fi/fr21b+b+M9Nux9e6uBxdTCq2OFj82JefDexrjJUpdBS1xQeXyCX4YNUHafcBMIuRqvUamlY1I1gRgmu02xwbJanLEqp9CdcEWMCAf4sP4epw+uepHIKLjKpqB8IDc4GBstCIfoURYOBhBnu++dWUFKlLklRaswbISaSInDIMn256kjswrnSvEZPaKdsksKDprU5VhCmwK4BwjYqsMe0kFjII9e5vVFRUoKKiAgCwYMECOBzJE1SivdGfffYZTj/7N9hdDZQWmSvBY0YI7N7NoJYzTD3Q/MyFAGxOBdxQIfwGpHwHRIhhx762MO3RIw4EFyJhJcawBkDnVrGxjgqDRSieOhb4xqzYbatLbZxluyUwLrBhl0CTB5g4CsjJ6pqhGAyZhUySIUsSJEmgyScwvCj+WpIswTXShdCecPz3LU0iec7ZE7Pj9kUKg0kdeLO1bpzDikYVYlvUaoIhwL5pgO2oEd13EYIg+j2JdHMVpwJVM6trO0sGWKLkEMPwt6qbtH5OP/zQVsk63fxmIQQaPaZyQgwRQ1WWgAROkmyXBI9foKpeYOrY1rohUd+XYrkYH339IRhjUNKUg1DcCkKVIQgA7jFuq/isbJcyKjrb3xCtaZGCS/Bu8MFeYO9wsRxonc9mYAcLIdDiA4Z1cJyqhfDvT/+Ktz9+Di2+hvjrMoGf7DwDr/zj2fQv3kXI40z0KyLVptt7iDsjSSV4q2ZggjBtAG0h02mEgZvag23tSPZWOasUITksxBDYHjD1hdutwkmyBCPYfZ4z3mrEBXthBS+dMO0Is2fPRna2aYR9+umn2FLBoRnmQAaYRa9GF3I0NXFs2WNus0KwFAmiNQddBAzsrGkznEcOnxFXYTqCPyRg06OqbKbx0AeA4dOmQBPm9QoDuR0cDeRlSygpMFey12wzB+WueJ8DYUDv4CuR7QIaPEiaX604FeRMyu6UxxmIynNOUFMgoluZaqGIC2FqXXdT5BX7uj5uMOar6ik0kyCGGLpXh5QociwSrj2AVSqGAobPAISwDMxoj/PB+x+c7LQYwpqZqxyT34woj7NLTjo+5efEep0dxdEe52Fo9jZjzaY16b4d2AvssOXb4N7PFavYYpM6nVrYH+CaaQC7RjgRrlHh2+JLL50xw5o9qg4EUpQnCKkBvPbuYzjvhkPw+Ms3Y0/NDvgCLXH/AmEPQqFgRtfuKmQ4E/0Kwx/vruqsJJXhj9UMBMxVrgaPAI94igU6XB1kYWYWr4oywGSH1FoZO/m5LMjAggy2nGT51d23KukJAOXVAi2ZpaV0imjDOToUOxF2ux0LFy4EAFRVVeGbdbsxvF3RasUQKM4FmoPm4JPtMrdLLpuV5yy8GnZWtxnOo4YfCE+C9yqEgDcAOFj6UlQRbHYbam11AIBSUYqgx9PhOXZFwohi00v+wy6BDbsFgglykNPBG+zY4HQ7Tc+0r4fGiUies1YfXzRPb9Q7NMj31glU1gJFHa87dIgwONjq1hVmWYI0Ksvc3qBC7PClOJMgiMGEEAJGix6T3xzBlm+D1qRBo+ra/RqtWYfUWjGSc44NG0xpyVGlo1BaVJpWG/6QaTzHVWGOGM4pxvpsl4SwBlTVRwznqBxnuRgAMpKlkhQJ9jx7nKEuKRJYmKVlbPZHuG7OQyRFgrPUAf/WAMJVHYdsswC3Cr+lQzAMqAlq84bUAF555xGcd/1sPPn329DsrbP2jSodj/2GT4z5V1Y4AcNKejcCjUK1iX6F3mzETc47K0ll+GJDgwDT4Ni5V8A2VkJBDgAZMBKEgMW042dgIQZnXtvPRbbLEHpqLWcWZGZOVoJVctkuwQgYZk6I3HX3XJMXqPeYObA9TaSitt1ux6GHHtrh8UcccQTef98ckDZ9/ykOOXhi7AEahyyZ4duAmRsrGAC3AtGimV7nIMPO6k0AAIfdhTFlE7GvQaAkH3BHVXnWDHNgdbDkVTZT4c9TgWZAlmRU/rAZkw+f3+E5EszvUpYhsKfWnOQdPCmzz1QIM+S7I1kGmyKBCwFPQKAor/sLash2GRBA06pmZI13I3t8NuwFdnCDQ2/RUoZsNXkFduw1Fz6cndBybA9f3wK0LpjJMwogH1wI42+7AABsZR3kKXkpziYIYrDAwxxGkENJYDgrTgVCp3Dt/oxgAnqTZqmS7NyzE4GAWawjExkqX1AAAvEpWq2Gc0fRZQXZwL4GYNQwgexCu7lQLcwcZwB4f+X7+N+Lb067P4mQbDKEzsE1AaUDBYr+CAsza05qy7bB8BnwrveaHvac5Caj4Yufu6ciEDYdDtFwznHzQz/HD1u/srZJkoTDZ5+KX8+4EiMmTYLcuoAeoXZzEIeeW5L2dbsD8jgT/QbBBPRmUys5GtkhgwUNcCOz8Be1LgxAijFM/WGg0QfLWyk7ZOgtqVeqmd+ICx+XFAmCi5SyAyyYXE83ImfQXXnOdc2mp7WnQ7VramqwfbtZcXrevHlwuzvOpY32Sldu/zxuvwjppkex3c2S7DJgcIgGFQGvB1X1ptE0Yb9pGFZgQ6MH2LhbIBwVLh9WzRxbe3SodgaGM0a2vR/vjur0z4MZdl6YZ0pKZep1DqrmQOJKQ5bB6QDqms2w6J7APdoN2aXAu8GP+o8a0PxdC8L7VLAQh+xOPGSEVbPom8HNEPbugH3Vls+kLBgGeUYBkGfeIL6xBcKTnpQcQRADGxZi4CpL6HEGqLp2f8cIGDFFX9dtWWvtiy4M1uIXaEwguQi05Te3ly4SOgciYfodRJdluSSEdWBvvVlkzl5gNjbCYUphrd++HtX1+zJ5a3HINgmcCYgBKknFgizGc+wsNYuO+jb5kv6+BBdgIZYwlSIZHr+A0u7wL9e+YxnNsiTj6EPPwFN3fI6bD/kTit/WoD+4CcZ/q/r8d06GM9FvMAIMTOVQXPEeZ6all4scQffoCO4OwV4Y+5T1+AVCYdPQFEKY3myfkfKHqHuNxAawQEpJKc2jJ9XTNT3WrFsMZ00XqG40a6D1VAhvhIjRDABz585N65xDDpkDu8NMStq47rO4/SLAkusOKxJEQMfuvW1h2hPHzIAsSxheZBqQmysEVN38/MKaWdFZ1lJX2UxG3uQ2iSuxL0kSdQrcTiAUBppTVMdOhD9k5vykqLNmke0C/EEgkHn30saeZ0P2+CwobgX+TX40f9tiaqgmWFHmXGBHlUCjFyjJT/8abFU99Ke3g++OD7tWyzXw1nBsaZgT0qRcSIoMZV7ryjIH2NfxhUIIghh8sFBr9FYSj5Ytxwbdq8PwD9yiTIMZw9cqJdY6Fq/b8r21L1qKqrJWYEulQDjBwnMoSX5ztIZzOovkBdlAdYOZGhUJ187jeZBbzaEPv05flioRkl0yPc4J6oQMBFgo1nCWZAmuES4EdgWThmxzlYPrAnKSSLOq2irc8+w9WL/dzGvnXMATMJ0AVhuc4/k377H+vu1/VuDmS/6CcaOmgv3Q3Na/96thrNgBkaYcbE9AhjPRb2BBAzzM41aVZacMoXKwDEr8B8tDMAIG7FHh1ZwLNHuB3CxT0scfishd8ZR5zmq7wmAxfU6S4yyEgN6cOCcLgKX11x2Gc7PPNJiL8tDjOc51dW35JiNGpJdX0uR3YcL+ZshzddVu1NXssfYJLoCgkbASJmDmOaNdRe2JY2YAMGWhSguBffXAlnIB3RAIRZyQMbqO6WekjDxof+t1nseV9nnWtSDBYQdqm0RGOU7+1oIl7b3uiXDaJah6clmq7sSWa0PWuCzY3AocxfH5XIA52dlTZ+pbJ6pynggRMGD8swJ8iwf6k9vAt8WuNLS80ZZfLh86zLquMn+YtYjFvq6PKwjkD3qwYecq+ILNIAhicMACqcd+2SWb4dw+kqrrjzC/AYi2wpLrtqyz9kVCtTVdoNkHNLQA5TXx46c/aObEOtsvLquZpWVFvM5V9cIqECZBQqFk5oq9v/K9jN5beyRFgjAEhD7woh8EF+BhHufIUNwKhADCtYlzAbnGIXQOKYnhfMODN2DZc/fi5MtOwq69uxAMm2mF0dEDn377L5RXbQYAHDBxDhbOPNHsk8EhdsdObPkmD/RHNoPX9qD3IAVkOBP9BiPIzIdru5xfKyw6TUkq3asjsDsQo9MHmKGwQdWsrhgxPGRHxHBO3DYLMTC/kTC3U7LLMAKJz+Nhs8323nPr3Nb3yLrBcG7yAgYDclzmw0jrwQd2tOFcWtpxQQ/GBLZWCkw98HBr2/ffRXmdWx+4SJYT61YgfDp21m6yNk0ac5D12qZIKC0CqhqALZUCHp+ATelY1zEZrrxc1EnmexzBhkNPVL2iA3Ld5mJGsqrf7RHC9NbGTQhSYLMBDUlC2noCW64N9rz4OPIGj8DOKiDHbYaqpwuv9AORr74hoD+7HXyraSwLjcPzf62Gs02CMrfYOk8qcECeVmD+4dHBN7XEtLt+20rcuHwxLrrnQNz34B/T7g9BEP0X3W+krAUS2UeGc/9EbdSsaAHDMLCh1fM4buQ4FOaZ1ULNVDNzAXZPnTmviSZSDbv94mzsWJ9eWlbE64z8tkF3Yp5Ze+WTbz6Bpnc+DSjyXRyIHmeuRbTS439rthwb1JpwwvdleZwTRA4yxvDFd2aKXjAcxBV/vBzeIDNT6lqnFIwz/O1f91rnLFl8o7XIIvYGTXlRANJ+WUDrXFzUq9Af2Qx7eYbhfd0AGc5Ev4H5DFOHLxFpVL+OEKwIgfkM2PJiPY2BkCn347ADdhtQ32LmLQsmkgrWG34DLMSsEKNoZLtk9jnRewmaetTJPM4Rkl03XYQQqGoQcDvN96XprTrGPUSmhrM/BNQ2A/MObTOcf4g2nFUGGCK5x9kuA7KEnTWm4SxJEsbvd0DMMXZFwrACoLLGrC7usCMmfCuT4mAA0Jxtrm46JSeqt2xNelwyj7LTYXqEm9Ms/BzSzPsUF4KWgmyX2X44hRxaNP6gQLOvLaS9OwirAtv3CjAB5GaoYS0q2rnLDQH9uR3gWzzg3zeDecyBUj6oEFJ2rMGuLGhTfmQr62P2lVe1fV7jxo7PqE8EQfRPUkVvRZAdMrQGqnvQ3+AGh96kWaok2yu3Ixg2c8oOntomQ+UJmGNTtkuCALCrWliyi6YaSpLF5QxDtYE2r3M4qqjIEVNMac1AKIBV369M+/0lRCBl/Zv+itAFuJG4OrYtx1Tc0BMU6jU1nEWc7CoA7NyzA4FQ23i/6odVeOYfT0CS2iLsPl71BiqrzTTAGZPnY/a0tro4fGfbREpZMAyOq6ZBKmutRaNyZH+4Fw3Plfdq3jMZzkS/QWvSraqL7ZEUydKRTYXhMxDcFYS90BEXVhqR+5EgIdtthjWHWnNpWJLK2iyQvDK2ZJfN3KsEP9hketSxDUhJr5sugRDQ2Bp+7rADqtGzlbXr69sMlXQM55BqevcPnr0Ais1cyPjhu7YCYULnkAwBJHjgRuDFNpRXbwEAjB4xCW5ndtwxdpupqewLAVkudGowjcBK2xZcGjdXxO0XGoP22BZod/4Avi9xUrnLAVQ3irQKeAVa85vbFz1JhdtpGtzphGuHNYGNuwVWbxJYuUFgzVaO3dUc9S2Jc8nSgQuBXdVm6kMmec3W+ZVtHZcmtWpXtRrPxrttxVmijWTr+Cl5QLG5yiC2ecHr2/KuIqFeADB1/2mZd4wgiH4F1zhYIPHidTSKW4HerA1Ig2Uww/zMjL5rndt9u/Fba18kTJsLgbqWtsXj4jygvrlNOiqomuNkVoLF5c54nAGzrUDUoDtr5Gzr9Wdr4muxZIQE8DQXtfsTXDc9zokMZ9kugxtmCmJ7UkVORoflR3j8lbtR17gNgBmB8Nc3l1n7liz+Xczcne9o8yjLE3MhFTth/5+pkGcWWdv9XzWmHZHaHZDhTPQbWJBBTlIVUXamJ0kV3BOE7jVgy4/1NnMh0OQF3K0rli6HadR5/GZojRFI3LbuMZIadbI9ouUc/4NNxyCWHektBqSi2WcOKNkuM+eX897zOA8bFm/UtCekmpID2dk52P+AOQCAyvItaGqsNQ9QOQREwtzZCJU126Eb5puaOHpG0uOcdgmjSiTYFSl2ME1TxzlC1oS2BQFjT3wYEP+uycy58epgn9UmbCMny/R+p2PYJpXYSEHk2IgmeTK4ENhdbYaCF+WbkRYtPmBLBfDtVoHvtndOd7q2CaisNSc4mfQbMPOoRMRwzrXDfvFkyAe1inszAdFkftZSmQvSuJy48yVZgjK/TX6Cr2pbzCmvMhdYZFnB5En7x51LEMTAwqyoHV/7pD1KlgIjyGD4KVy7P2H4DXCt7fP7ZsNqa9/cGfMAtBW7zGotK6LIEnKzgPIac3yMFM/sLo8zYM4F1Sj9xzHZY6zXX6z9Iu12EiJJXY4m7Au4JpIazgCgOGWoCfKceZJaPwCwbus66/XsA8zFCd1Q8cTL/wPGDPzrX/9CVa2pmHLw1EWYeUBbdKIwOER561wh324tmEtOBbZfjIfyk/3AXQpG/mEalKzM5nldgQxnot/AwiypxzkdSSojYCCwIwh7QXwRo1DrimXEcJYlCbIENHoFZKcMvTl+sBVCQG1Qk+Ypm5WxExvOmkdPGLbS/nzmNzIqItWe+hYBCYAcFeLekx7njA3nKCP+4EOOsF6vX2t6nYWaXLIrwo6K9dbrSWMPTK+jXfA4jzhwsvXa1RR/bnQ1Z77dm/Dzc9gkGMzUNk6Fld+cgbc5QkEOUFELVCYopBKhptGcfBTnmSHt2S4JxfkSyoolDC80jeiKFOcnIhA2q2g77GZYeqaI+rD1+chjsiEpMmy/mBCzggyY3uZkCyrK3BJrQYutrAevCYExwwr3KiueAKczg9h3giD6JSzATMOrA41Y2SGD64LynPsZkUrnkWf56lbD2W634+D9zVBtb8BMM4uuk5GbJSGkArurBTz+FMUzoz2NGYz1DgegZrUNvPagHVPGTgEArN2yFr5gmrlWCZDtklmzZ4AhIrnEycbdbBu0Ri3OMWSkUEaJ9jg/f/dfMWG/SQCA7RVr8cJbD2D58uXW/gtO+11sf/YErPxmeWJuTL8kSYLtqBHwnjUJjpEdy6J2J2Q4E/2GVKHN6UhSBfeEYHh02Aviqyj7Q4BmxMr9ZLmBRg9gyJJplLcremBW6WRJK2pLdglcR5zhLISA0aLH6VHHn9+q5dzJkB7GBPY1mt7NCIrcVkSjJ4gYztnZ2cjOjg+Zbo83YBbrAoCDZrcZzt+v+dR8ETQQJ+bXjp172gzniaPTM5w7G74FAHkjS+EV5qA5XCsB522fL68OmQ/zCB4doi6xREOWE6hpMj+nZKiauaDj6oSN53ZIyHMD2/YAVfXx+31BMwfZ7Uhs4MqShKI8YE8t0OCJPz8RnAvsrBLwBYHC3Mz7DKDN2wxAGmt+hyRFgu3n4yHPNo1nW6kNypzihOcDgJRjhxyRptI4jOd3onrPLuiGuWo0etiUznWOIIh+BQsxCJF8Mh+NJCNhDibRd2hNmjWva/I0YUflDgDA9OnT4XKaLuZGj4A9gfhFcb5Z+LPRY0YJJkKEoz7vDqISopEggee2Nao1aDhs9mEAzIJWX//wddptxbVtG6geZw6kmD7ashUYfgN6S2y4tuEzICeYYxiGYUlQjR81HmUlZfjD/zwGSTI/p7++uQyVlZUAgNnTjsRB+y+M7U9UfrM8McmEw9F7nuYIZDgTA4KOJKlYkCG4IwBbXmLJnERyP9lOIKACAUMGa1dZW/fo8G/zgwUMyMnyrmUJECIup4qHOYxg8ora1ntyREK9O/eA9QTMUPPcKMPZYe9ZmaKI4ZxOfjNg5pE7Whd1Zxy8CLJs3pPvW/Ochd8wC4ClYEdllOE8JnmodgwZSlREI0kSGlxNAIB8KR91FeXWPr463kJtL6UUIcdtyoSlkgjzh8wIgWSTgo7IdktwOcyK4rVNbSOewUyjORg2q8gnw+WQAAnYta+tEEsq9jWYRnpJfnrSWYngUYXB5DFtiy8R49lx1VSMf2EMpASV7KOxnbKfVSRE1IehvNkWNj+mlMK0CWIwYARYh9FbERSXArVe7VIUF9F9CNYqy+mKz2+ePdsM2w1rAs3+tjDtaBw2CQ6bWcclUX6z2UC09GRmY73DLQOtIb5ao47DZrWFCX++5vNkp3WIZJPBwnzAfQ+5LlJGAEZ+h1pLWyihYAI8xBI6vbZVbENINeVFDt5/JgBg3H6zceoxV8Qdu2TxjfH9Scdw7gPIcCb6DakKaXUkSRXcG4LerMNeGB/zmkzuR5YlQADNqgSumj9+tUFD85oW1H/YAO8PXtgL7QlL7EfD2vUp3YracsTj3MmiBk1eM5/ZFbXS57SbBbJ4D1QYNAwDTU2mQZmO4awbpuEWCUPOyc3HxCkzAQC7d6yHp6EB0FJIUcH87HZWbgAAFBeMQGFex+HhANpCtR1yShmTZKjFbfevboO5Qi4MDrbGfP/Rg4tIYjjbFDPnvDFFuLY/JCCQeZ5wNHnZEmQZ2FwhLImqihqBmkZT2qMjA7ckz1zR31uf+jvjC5oh2m5nZtJT7RGVrSsJEiDtFxu1IEkS5LHZsBV1rL0tORTYL5hoLYwU7XXjDNeZAID9SsnjTBCDAb1Z7zBMO4KSpcDwGV0uukl0D0aAmSl4rc/o6PzmiOHsDZiLx8lUJQpzzX/J0oK6El3mcgI8x5wYao0aFs5s83h+sbYLhrMimRWqB1iBMB5mHc6XFLeC8L62xSmucvAkedHrtqy1Xs+cOhNcmAVFf3bSdZiw33Rr37yDjsW0SXNjzo3Jby5wWPnN/QEynIk+R7SGsnZkaAKJJalYkMG7xQ8l157wRx/WTA1ndwKvntsJNHglMIPDu9mHho/r4d/ih+JWkDU+O6F2bdz123nBWSiNitpoXb0TImGOdDrUNsWHNznsZhGNnshzbmxstB6W6RjOYc3MW4rO3z14trmiK4TA+m8/g9AZkGJhorZxD/xBM4540pg085sRNZhmOJBGcIwtsF6HyxsBAHxjixlaDkA+uBDINd8Y3+GDSJJ7n+M2C2kl8+Y2egFnxzZihxTlStANYHO5QEWNwO5qID/bzGvuCFmWkJtt5kJ7A4n7yZgZoh1SU3uwO0KoDKLaXIGWRrgz9hC0RypxwXZum+zUEveFOMh2MMaUTu1SuwRB9D3c4DB8OpQ0Q3AVtwIWNFOsiL6HBQzwMLc8zqs3fGPtO+SQQwAALX7Ty5ls8ViWzNocSVE7X8/E5QBY6zguDIF8OR/TJphqDOu3r4fHl2YOUztkmwTOBMQAq/BuBFnSwmARlBwbdI9u1RLgGofQecL5bnRhsJlTZyKkmnPTvGwnbrz4cRTkliAvLw8Xn31r3Lmp8pv7GjKciT4nUtG6w5zgJNWvPdv82PiDhhYpsQUSCJlGXKKKjNluc39QKAhXq7DlO5A1Ngu23PSsGdlhFviKhgVYyjyR9rT3WKeDqgnUNMWGaQM9q+XcmYra7WWWDj6kTZ/vh7Wfp9RwBmB5mwFgYgaGc8Tj3FnDrHhamzFmqzM/H7a6rSiYMm8Y5Cl55h86hyhPHI+d7QL84cSazmHNzBXORL85FSUFQDAM7NgrwIUZxp0uuW4JYRXYvU/ERCtwIdDQIrB+l8C+hvQ82KkQe4PWb0Ma03GOfDoo0wqgHFdmvpYU/C7nJpQ5RnVL2wRB9B0syMHUjguDRZAUCeCCKmv3E4zWuZAkS9ANHWs3fwcA2G/4fhg+fDgYE6hvSezUSJsueJwVWQKLznNubMtz5pzjq++/6lSXJLtkFo7VB5bhzEJpGM5uGTzEobeYvzEW5uCagJQgcnBtlMf54CkHIRBVa2jC6Ol44f5vsXLlSkwYHS8d2V/DtAEynIl+QGiP6YHqOCc4XpJKa9ZQtyGAJmFHeU1iz54vlFzux65IMDgQynIga7QbtgxL2ks2yaoaGUH36B0+fNoakBJ60Tui2WeGZEcMZyEE+L4gbIxD7yEt52jDOV0NZ8YBJcrreeDMw6zX69Z+CokjZWjQjsofrNfpepwFF0DEi5+hFFWEYZPHQxPm6kNRMB+iRWsLyS50QJqU22Y4w6yunQhZNs3M+pb472VkQaez+c3tkSBhWKG5eNIZbeWSfGBfE1DTbBrM9S0C3+8Q+G6bQF2zaTSn48FOBa9sW2CQx3bBdd0OdnQxvtPXAAAK5AK4391Heq4EMcDhIQauirSi0SJINglaUw9qMhJpo0epi2zcuRHBcBAAMHeGGZbrD5vRgNkJ8pvTpSuh2gCsyDEgkufcNkf54rvOyVJJNgnCEBD6wAnVjqRCJquOHUGSJECRoDaYk8zIONt+HqfpGjbu2AgAmDRmEnKz8xAIx9Yacjuz4XYnrohNhjMx5BBCILAz0KFRqDVrCOw0H6YdhWLITtnUBGwNixVCwL8tAG8jh+6yo9ELVCXI02zythWoSoTLAdS2GguZIttlcJXF9ElPo6J22/lSp+QzGr0CjJt5tAAAlYNXBoBmc8LQ0x7ndA3n9uQXlmBSa5GI7TvWoclfF39QFDuiPM6TOlMYrIMCU8mQbTJq7WYhsOEoRfCjCstTqswtgSRLkCdHGc5bExvOgLm4sa8B+Hojx/pdHDurOKrqzbx7LmKlxLqKLEnIzZI6lTNtt0lw2oFdVQLrtpkGc30LUJALlBZKXcprjiCiCoN1l8cZAKrqd+Fe/59Qw2oAAEpNCLv/tL3b2icIovdhIQZwkXZxMMDMc9YbNSsFjOgbhBDQG7W2wmBRYdpzDzT1m31BwDDMsafTRAxnm9Sh0ZcIpTC2svbCWYusueiXndRzjpw/kDzOXOMQhoCcxmdhy1Kg1qjgRmI5VgDYvGszNN2ciM5snfM1+5Cwenp74vKbi7rJu9BNkOFM9AiGz4B3gw/ejT7TA5gAIQQC2zs2riNIjthiWmq1isDuIJrtdjjtpoFSXhMrx2SFw6b43WW7zAe4P5T++0vWJ6uidpor5JJdBgtkpuUshBk2G1NlUmUQPh2iWYUkAcFw908aMjWcfUGRUGlq3sITrNdrdqQuwBGpqJ3lysGIkrHpdTRaw7mTHmcACOSbD31ZkiGvamltEFDmmjJJUp69rapzVRAiQRoBAGS7JGS7TE3rmkZTPuqHnQI79opu8zZ3FwU55u+gwQMU5QKlBd1jMAOtURERKSqXAqm0C26GdlRUbYFP+HC3/y4wiUM4ZRQekVzOiiCI/o8RMFJW+U2E4lZgBBiFa/cxPMRhBBmU1sXr6Pzmea0e54YWkdKpkQ6Wx7mTY729JNrjrKEgtwAzJpnRbRt2bECTpwkNLSJp/Y/kHcOAinoSugA3eFrRkrZcGwyfAcNjJFW6ic1vngXdEPAH04uw68/5zQAZzkQPobcY0L0G/NsDCFUmtkjVWg2B3UE4hqWX5Ck7JHCVmzkVOodvix9hDfAaCrLcQG6WhGDYrCgcMUQDIdNgSaWT67RL0HTAm0I2KGmf7K2SUq0PSBZi4CqzVlnTeU8szDMK6fGHzKJSuVERLiLMAI1BNKpwgKOlBySp6uvbpJjSMZw9gcSe/nkLT7Ref7P9k6Tnt3gbUN9UBcCUoYpIWXWEiM4Z76THGQCUqIrPMjcf3NLkPEiFbV8mK1xbJA/XBoAsl4SCHAnDCiSUFZv/RpZIKMrtZwOCJGFEkYTSQqlrXoBEeHTAa+o/SqOzOlXtPBm7q7YAAHayHdhxqBfhn09C0VEl3dY+QRC9j95ipJXfLESbnJ7sksFV3qlILqL7MAIGeKitMFikonaWKwvTJpkVlb2hxDJUGRGpZ9LJsd4W7XFuNMenSJ4zAHy25ktsrxKoa87QcJYwoKpqc930OKdjOMutDiOtWTclWxMVBtuyzno9a+osBMLJaw3F9aUfh2kDZDgTPYTWqEKySVBcMjw/eKF7YgXTBRPwb/NDcMCW5gNPtsmWZlxoTwihfWGo2Q6Eo3Rwi/PNsNj6FvNvfwgQSfKbY9qWgaCa+UMukssSCVdhQWaGu3RQUdu6rl0G13lGBcKavGYRqOzo1JCwWYRDBAw4wzp8QXS7hmAmHmfGBPyh2MJgEaYftADZ2abB+e22T8F44hXLL9e+Y72eNnFuwmMSEl1lM4PcuPbkT9kvbpsyL9YYSyfPmTDhFVH5zWO6L78ZAMqrNluv82aPh8jvZ658giAyQnABw6t3mN+sG6Zm/bodpvEc8U7pZDj3KSzQqi5ik1Fdvw97avYAML2Pdps5MVDVrtX4EEK0jfed9DjLBbHFwQDE5Dl/9PUXaPIC3mCGDUsSeBJvbH+EayJtwxkAFKcMtVaF4WMJC4NFDGdZljFj8gwEQoDB0quTQoYzMeTgBodao8KWpcBR4jDDttd7rTxgAAhVhRHaG4JreIYlhSVAa9bh2+yHLVtBS1iCIrcVG3DaJUgSsLvaHESbfQKONHIqHDYzXDtTJMnUgrYM50BmD0rZIUNoAlxL/7z6FgFJis0JFwEDcMgAF7CHNYRUs7p2d5JJVe2wZlbUTuRxttntOGTucQAAX7AZW3evjT8IwCer37BeHzn3tLT7KUJdLBbSyvAZk8FF1IJGlg3yjIKYY6QJuUDrQMO3ert9sWIwISqj8pvHdl9+M2CGagOAy5GF0qLR3do2QRC9C9c4fFv90FsMSwM4Eb6gwPqdAjv2As3etnQr2SlDq6MCYX2J7msLs/9mw7fW9kiYNoCUMlRpoXEgMkR3dqx3KRCtjo6I4bzg4AVWhNuX676AbpjRiyyDvHnZLsEYQHriojU0Ot2waCVHgdagmRGW7RxFYTWMzbs2AQD2H7c/nI4s7K1PLyxfGBxid+siez/MbwbIcCZ6AMNrwPAZsOXYIEkSXCNdCO4Owr/dnDhzjcO/1Q/ZLqctMxFBks2KmVqTDinfjoaW+FCf4jyg0WOGbHsC6Ukd2O2mFzeTB2Nbp9oMZ91rZFTIRFIks5phmlrOhiFQ1RAvQyV8OiSHAsmpwN6iQtVEt1fWjjacS0pSh8GGVEDVEnucAWDenB9Zr79Z/0Hc/iZPLb7f8iUAYGTpeEwee3D6HVW7x3B2ZLvRIDdaf4uZeXHFRyS7DGl8q/e0RYNo6IFy5oMEHmU4y91YGCysBrGvvhwAMGbklLRD+on0+OGHHzB37lysWLECAPD222/j0EMPxeGHH279q6mp6dtOEoMGtUFD45dNaPnWA1ueDUoCpQshBKobBdZuE6htBkoLAYO3Gc5KlgK9RQdLc1wluh+9UbMWPb7ZGFUYbMY8GK3zrKyuSjF2QcPZOk+SgHxzohIxnPNy8nDw/uaco2LfFihSXcYyn5JtoHmceUYyqrZsmxmOr8dLUW3auREGMyM+Zu4/E/UtZqRkQRqBZqIyYMqUon/mNwNkOBM9gN6ig2vcCrGS7TLsRQ74Nvmg1qoIVoag1qpwlmb+1JQdMsL7VDiK7PCFJATVeMNZliXkuIG99TDDuNO4jMPWqn/cCS+tJJuSUkII6M1aRtIZEdId4Fv8gDcA5EUZzkLjZo6zXQaybLAFdOgeo9sra0cM58LCQjgcqVcjQmprWE6SsJ85s461Xn+z/qO4/Z99+7bl7T1q3umZPTzDXR9MIzTntYUMVY6sT3hMdLi2SFFdeygjGDcLfgBAsRNSThcrwkRRWb3N8vSPH3VAt7VLmFqmDzzwAKZNi9XZnDdvHj7//HPr34gRI/qoh8Rggesc3i0+NP5/9s47Tq6rPP/fc8u07UW9y5Ys23JvuAI2EDC92DRTTE9CSQIJCaEnIckvhASCEwjFpoMDphhMMcY2lrstW83qbVfavtPrbef3x5m6U3Z2tSut5H0+H300O3PvnTu3nfO+7/M+zx/HyQ5mCS4PYHZUPydsR7KnX7J1v3KWWNyj3CVMHcJx9RzQgzpuxp3vcz5B8CwPO+6gBSv7mwEuPvtiUln1OniMgfMxW1HlUaBrFwTNAK6+8Ori53sPPYjlKL2cZiEMTenX1BHHnWvwbDklIT6hi6IA2sSKc7kw2Lnrz+fIiMQ0ylxgGu3HHKdpw3zgPI9ZQG7UqqrMmR0m0pHEtsZJ7kqitxpTqswWYHQa6AENs8MklpJ4njKxn4i2FkgXfISbECEyDbBcVSWdKoQpsBMOXtbDzXgNqWX14OWay0yGE3kD+fIMX85VCoQ+DfwawvYQSXvWKs5NWVFNchwXtC9lzaINAOw+9BTR+FjF5/c99rPi6+dd+qop7edMDaYAYxe4PGht4iup/2Zr7Mmay2jrS6bJ3p5Yc/s4lsV9dBSZfnZM7ORgppRFnsFqM8Cho7uLr1cv2zCj236244477mDjxo2sWbPmRO/KPE5h2HGb8ENhYo9H0XwaoZWhujohBwYk+45Cewt0tYkyT1iIJVVgrZka0pHzgfMJgpNy8LIuekAnm8uyZfcWAE5bcRo9nT3FtrhmAqmGmKGxXpRpYtj5qvPFZ5f6nLfuVuy37BTmVEIXSqn6JPFy9rLulAU79YCOk3CqKs7lwmCrlp3PWJPVZjg5Aucmuj/nMVtwcx6JAwkIKDVmreXkz2O4OQ9rJIfRWn1pBRYHSOcVtkOrapueTwbdr6Mv1PGkZDRSX6FPIFjUJWk22acJRZmeTsVZy1tKuWkXN+titE/tttJMDTfpQmjyZQfGJIEJSXiZcxGOVD6GQiB1gYhaZK0ZpMNmsyQS6oHWTOCcyqg+7HqQWYdLzngeB4d3IaXkyR338oKrXgfAyPhRtu99BIBVS8+YehVxBivOK8/dyPvu+AAAzztY+/4US4LQYkDKwdufQLoeopYPVx7S9bC+sgeiFtr+BOab1h7TPp4MmC3/ZqgUBls1HzjPGGKxGD/4wQ+49dZb+cIXvlDx2ZYtW7juuuvo7u7m9a9/Pa973evqbseyLCyrMpNmGMakrJVTDZ7nVfz/bES9Y5A6kCJ1JE1wRVAFvXU4o64rCScl7W0QCgrKuaUtIclYDBJZ6GoD6QMrmiPozZzt3Uzg2XAd2Ekb1/MQfsHTW5/GdtTE6pJzLkUKSSTl0QEI/RiDyjJtGBHUpr090VWaVOXGcwRWBli94mJ0zcD1HJ7etYk3v0qScSRSNGk16gPH8nCzDqKGefFcuw7sjAM+kKL5Y2guMNHaNNCouGcLFWdDN2ht20DWkZi+yvsVSue/8L90JbIgItrlQywwEZPsj25KwJuR49hsm9d84HwCIKUkO5AjsTNBZjgLV4CTdjFbZo6+eKLgxGzshEtgaTUHR+iC4IoASI7ZiiaVgUSmute3HLommErYJARkc5KpGkcKU1PUpJiNZzevqF1aX+AkXJgkHk1nVbKgdeJvziqaeEFkQwQNzEiOeMSB1TNzTU3ViiqarC0MBuCNZPH6Ulx6zgu4/Y9fAeCxbfcUA+f7H/9FcdnnXfqqqfe4zGDFec2yMwn4QmStNLsObK65jNAE2vp2vKfCkPOQh1NKNKwO5L4ERFUg4e2MIT05o9ZMcxEV/c0zLAx2KC8MBvNU7ZnELbfcwhvf+Eba29sr3r/wwgv54Q9/yOLFi3nmmWf4yEc+Qk9PD89//vNrbufWW2/la1/7WsV7N9xwAzfeeOOs7ftcRn9//4nehROOqmPQAVwBKSb3hDy7gfbfafn/EwBLIUqU6OHo9HZylnHKXweXQYI4m375QPGtc686h8TSOKuXqr9XXzEND9AyxK0kR/Ov5TKPjz8Y4ry1Of76hmjDxP1EhIc8hvNSK3E3jrZUsHwpnH/BeTz55JMcGdrP6sv2s2jRIhKNN1WFo+GjEK7/+Zy5DharfzbH1uOXyWTYdVCNyevPWM/GP3Fhkvu6cB1kdmY5lK/Qt1/mZ9k1k18fa64GGOHw4WPZ6/y2mmRWzQfOxxl23CG5O0FqfxqhCUIrgiRJnFQiAo1gR23wPDSjdvBY7/2pIp5SPcn+GjL404Whl8RFpgLNFNgZDztiT+lhXVzfpzVF1Q7HIZmFlR2V78u0S8UXhwzMkQzRIRuYmcB5KoranidJpGsLg3kjWdwdEYQHG8+7klCglXQ2yRPb7y1mDO99pKSm/bxLXjXlfa2gak/ToqIAXTdYt/pctu15hKGxPiLxUbraq39/MXAGvD1xtAaBs7s1Uvoj4yKHs6pqfQpD9uUHQEMgljZBrZgCDg2oQToUbKO3awm5xKnxLD2R2LVrFzt27OCjH/1o1WfLli0rvt64cSNveMMbuPfee+sGzjfffDNvfvObK957tlac+/v7WbFixbNWwK7WMcgczTD+YJjg0uCk7VtHRyU7DkkWd9debjwu6WqD80/XcNIObsplwbW9NRlwJwrPhusg/GiE7ECWwOIAWx/cWnz/6uXXYO1sY8sBj0temuLQQ61Id/pzOOepEnf63i3tPGwHeHhngFWOxqUrmqcPuqMuoOY49k6d5No2tu+XnLH0Gp58UrVo/fhrT3HVJa/jsjNFXe2WckgpyRzJ0Pvc3pruMXPpOpCeZOTuUaQHvs5jmzPu3LarOJdb1XshT/yylZ6O2sdL6JLVVySL14GzqTQBTwc7OfjA5FTt0d1pLr6hhzXnHr851Nx5mjwLkB3MEnk8ih13CCz0o4f0Ii3CzZwak73sYA7tGIOVZjAWkxgzfPWaRsH3WU6pyilM1ctiJ6amqF2AZmpYTdgWjMUkUlb3bCtF7dKDV+gCQ4PMqI3rSvRj7SNiah7OOVv1ik8UZfNGs7jPRBEeiB4/BnDhWc9l0+ZfEUuOs+fg05hr/EV7qtNWnsOKJeumvrPlVO0mPcIbYcOaC9m2R1HHdx/YzHPO/5OqZSr8nHfH4cXLqpYBRUXytkcr3zuUhFM4cJZpBzmqJjhiWahK/+BYkMokGBk/Aqhq81xU4DwZsXnzZvr6+rj++usBSCaT6LrOkSNH+PjHP16x7GTH3OfzPeuC5EbQNO2ET5RPNMqPgTVoIWT+70lYouGYREhRN9jy6xCLg2WBz2dgj9h4KQ+tfe4d71P1OpCuxAk76D4DPHhih7Kiam9t54xVZ3BwEFxH5Jetfy6b+q50iZ474pQCvh9uCXDJ0in0t7eXnk/pYZvIMGgIzj/jar5/538AsH3Pg1y88QayOYGviTmVQCBcgXAbU4DnwnXgWi5YoPs0hDy2MXRLWX/z4gXn0xac/BwXrgPvYFlL14rmkiquLYDjewxPvbu2DtysS+SJKE7yxIlFZIeyOHGH0KpglcXCVP1/5yKclIMVsWY9u5uzJZEEtByrlcEE+ExVxc5Nsc9ZMzQVEGW9CkVtKSUD47JovVAPwiews15xnVrwPMmRUWidEF9J14OMoxS1y2C26NjDWdKZ6u25rmRgTE7Jc3gqgXMmp45hecXZG83i7ogiXInoKZ24izdeW3z92LY/8Mtf/rL49/MvfXXT+1cOWVa93xHz88/3h9g+PP0AesPai4qvdx2sQ9fu8CEWq5Mj+1N4o9na+3YgAanKZ5B36NjoanMdcpZsqAAOD8wLg80GXvOa1/DTn/6U733ve3zve9/jmmuu4Q1veAMf+tCHeOihh4hEFGti165d/OhHP+Lqq6+eZIvzmEc1nJRDZiCH2TH5nMGyJdFEYwujoE8JUybTJdVfKzoN4ZJ5TBtOysHNuugBjcODhxkJq7nDxWddDEIwFq2vTTNllCXJx73SNbRlyGTnaPNjfrk4WGbUYjwGHS1w9umXYBrqgtv05J3EEtEpCYRB3uZpjkPaEs/xEE1U0idDuTDYaSvPx5xC4aY4VzAEYuncLSY8awLn5N4U6YOpE6ayKKXEGrPRW/SaGXonfvKrP9pRRY2q5bs4k4in1OAYnGHND9NQitXTUdZGKi/nckXtjAV9Q5LxSRyKNEMjElNB7OB47WWiSaUYWtXTnfWQlqsUtcugt+m4cYfkWPV1dWQUNu+WxKYQr001cLYcdTyhrNI8IWgGuPTcFxRfP7b1Hn71q18V/56qmnZpB/KDqYAvPtHKPQf8/OsDLUwhT1CBDWsuLL7eWafPGUC7uKf42nu4tnVVBU27sOwpHjh7R46PMNjqpfOB80whEAjQ29tb/Of3+wmFQrS1tfHoo49y4403cvXVV/Oxj32Mt771rbzwhS+cfKPzmMcEWKMWbtJpKtmeSCunjEaBs6apYDmRzttShXSyA9kpJYnncWxwk26xiPDYtpIN1SUbLyWdUay+0CwEzuUVZ4AfbZ3CBLHFgHyA50YsJMpK0+8L8oLLlfZKKhPnNw98Zco2n5419689z/aQjpzRwNnQfZyzrvkxWaZs5FiembZ8ZplpM425u2cziNxIjuTuJE7SxWvSL3em4aZdnKSDXoc66qQcPGfuZ6Yawc4LHk2HrlwL6ZzMi3VVIpKQICmKYc0UTF3gulOvOAMgFKuhvOJs2SrIH400fnBKKYuB864+ieNULx+OQ9aCoH/Cb865YMnqinPQQGZdUiOVP8ZxJLv7JIPjEEvRNKYiDlawwRJCIDMO3u6YssjqqZ7xLOxeVqwU7tz/BDt3qkBow9qLWNy7svkdLEeh4uzXGUyp+20woTOYnN7jbmHPcrra1W/efXBzXfVG/ZJeyA887uNjKqFRBulJvO35wNkQiGX5LMh4Dpk4dasihcEQQCya2SzyoSMlYbDVy+cD59nCpz/9ad7+9rcD8Jd/+ZfcfffdPPDAA9xxxx284Q1vOLE7N4+TEqoHNIswtabEERNp1aqkTbKsz6CYrDZaDeyoPW9LdRzh5NmTQhMV/s2XnnMJiQzkHDBnKHAuZ5eNuJWB86Y+H4ejTSpgawLa1foyZtNRlt9988s/jK6rxM5vH/gqR0fqVDdqblicFPpFniVnJHBOpBPs7dsLwMqlZ9ESaD554R0uZ6Y16V11gnDKB86e5RHfkVBqxz5lSH4i4CZd5fFbJ3B2LYmXOXkD54JSeL3fNxUk05I9/R6PPSN55BnJlr0eR0clibSiPY9FlWfjbGE6gbPQBV7GRfNVBs62A2MxlQSoh3QWYnlfw6Oj0D9SvcxQWFLD0UAJYcnaqszS0EgeraQMHx1T/wDC8dmhaqezJSsqGbchbkN3/RN2yTnXVb03XZo2gCzc4wGdrFM6LluHptdCIIRgw9oLAEimYwyMHKi9XIuBdn63+iPj4j1dWV2WB5OQn8BpGzoq+6JP4aqzHC8LnGskT44FBWEwgNXzitrzmMdJAyfhkB1pjqYtpbKaqufUUI5gQFWnszmJFtTw8sKd8zg+sGN2sXiy+9Ce4vvnn3EB0aREFxS9t48ZZUFpSlMXh1ZmX3T79uYDtwJdW884BLTSNhb3ruQlVytxw0wuybd/8d9NMxg0U+A0oV9zoiFtNWc6Vo2Qzc88WTw2Z6w5f2r7UG5ZOcPOGzONUz5wTh5IkTmSJbDEj9AFdvzEPECdpKNsZ+pUY6Xl4Z4Emal6cBIOdtxGP4b+5kRGsrvP47Fdkn1HwNRV9ngkClv2SR59RvLkLkkyAy2zZM2oCeVBPFWYnSZGe+WobtkgNBUYRxrQtcMJsDx1XQR9sOOQJFdG78nmJMNhaK/xLJHZ+pl0GTLIDOdw8w9u15Xs6ZeYutrW4Hj9nuqJmIqqdjSlzh2AjOSUr3SDKsGlEwJnIQTPveSVTe1XTeTvI89XmcSZbuAMsGFNqc+5EV1bv6J0bNyHKjMg3rZSIK2d24VYXcqqyoOncOBcqDi3mYgZFg4sULU7Wntqqp3PYx7zmJvIjVh4KQe9ZfJnQsZS9pONaNoFBHyK9ZTMqLFE6ILcSGN+rfQkqYPpk6IfdS5DSok1bqHlW9b6BpVHUGdbJy2hdsZiEJrBuVu5g0ZaU+P7NattWn3qPN6z38doqrlgUHSUzd8mxAlvetlfYRoqsL7zD19jYHSsuW0aJ0vF2ZtUmK8ZbNq8qfj6/A2XT20f+kpzIG3VfMX5hMEKWyR3JvF1mWiGhubXThhlx4raaA0ozNKVuCdxxdmOOngZDz049UuqIJ61eY9k/4ASlVraK2gJCkIBwYJOwdJeQVsIUjnQdZqyA5gOTFNlq6cKo9XAv7ByVM/ZqvLqM1XFuFaQ6knJ4LjEzB+33k4YDsPBwdKy4UTes7oWyzXhIOr4RhstOqmIi5XPth8dU/3NC7uVF3Q83bz9ViFw1jSN7u7uustJmbei8oF0PORYblJl67NPv4yAv5QVOGf9c+jtWtLcjk38fteDfPbUmcnAeW2pz7meQBiAWNFSpGDLI+mif7H0ZKm/WRdoZ3aglQXOp2rFWeZcyNPQRe/MVptjyTDhmLou52na85jHyQMpJZn+DFpAab4Mh1XSvF4iV1WQmxOVKrRwxfN9zkabQW442zAotsI2yb1JZac5j2nDTbu4aSUMZjs2A6MDAKxcsopEGjLZareNY0J54Kyr8X55u8srNqhkreMJfrKjuUi9XCBMRisTLQu7l3H9c9+qvtJK8+UffLm5bRoabsZDenO7z9mzJTNBAtj0VHngfGXT60lPloTB2k3oaIJacgJxygbO0pUknkngpl3MvC+ZZmp4aRfPPr4BqvQk1piF1iiAEOCdxJZU1ngOtOlRPSJ5R3m/AUt7BC2BOlYTpqC7TdDTPnuWMz5D9RJPpoTdDJJZVXltC6nfWCsgj6eU8FdLq/pNWtKmvQWeOVSqfI/HJJ5Hla2U9CQy5VQJgxVg+gTpnDo3rqt6mw0dfIYg6FOV8Gii8W/wbA8rbBUD5wULFjSU/bdsle33mUDCVh7TocYBq8/0c8GZJVXe5132qsY71QhlrRgTA+ehpM5wcnrXzhlrLii+3nXgybrLCSEqq84Pq+Mm+1LFLLa2vh0RNBAtBmKhGtTl0XSRLnUqYTZp2oePztO05zGPkxF21MYayxXnZkPjkr5hNRbWQjylxsJmdU38JozHVICut+g4CbchXTs7mCU3as1XnI8RbqrUknh05GjJz3fJSpIZcFympLI8KfKBs2toeELNS7qCkleflcOnq2vmV7v9xHNNfGeZf7GMVEtnv/H6DxUVtr/zi28wPD486SY1QyAdqQLTOQwv6zalM9AIyXSSp3YqK9GlC9fR07m46XXlcBby+lPaqtY5byt5ygbO6UNp0oczBJaUsk2aT8O1lW3Q8YSbcidVmxa6wD6BVlnHAulKckM5jJbpVfTCCfVQCdUJmI8nTCNvSTUdZe0JyGTB0FXAb9m1e4rHY1INJm3qoe1sCdMZSRIOe+w9oqrUR8fq0Jtyrqro1ak4mzo4QiM9ZherzYu61GcFgZVosvEDPTeSI7o5Wgycp2JFJeM2uF5T6oivuPYdaEJj8eLFPP+y6fc3l2egczWMvrcOTS+T2RrqYMXi0wHY37cdy67vSaGd3w15qpr3VBiZdvC2VtK0CyjStV1ZYdt0qqBCGGyGK84HywPnpWfM6LbnMY95zB6yozm8rAqw0jlJOKkUs/uGJN6EqrOX72+eiq5J0K9YWhkrXzBxJblI7UHdzbpkDqfxMt4JE489VeCkXPA8hC7oG+wrvr9iyUpGo7KpHvWpoEDVtszS3Lo76NEVlLx4nRp7Mo7gFzsnv3i0xSXLEm9XrOrz3q4lvPz5bwcga2X40ve+NOk2hS7wXImc4wkZJ+0eszDYo9sexXFVDHPeGVdNaV3vJOpvhlM0cLbjDvEdCfQWo0KsSfNryNzx7yV2knlfO3/9w62Z2klJE5KeJDdq4SQc9Nap9y/mbCX2NVdgGmC5TNlyYCJsR2LZpV7foB8Gw6rPuADHlQyFVd9WIdsndA2xM8aCoxH2bLc4PKT6o9sn2lCBChJtWb/ibICjayTGHHYd8lS12Sw9HEP+yfucvaxH5GiEXE4NQk1ZUVlg6hJvNIvwNXdNXLLxWm7/0nbuvfde2lu7Jl+hDmRF4Fz93cdG11Z9zo5rs79ve93lhF9HvyRvTeVI3MfHSjRtTaCd3Vlc9lSna8uxkjid6J1ZYYIKK6r5ivM85nHSIHckh55PtMeSioa9uBuGIlTNB1IZ9W8qgbPfp5LfyTzLSw/q5AZyNce63IiFHXPQfWLOVwbnOpyEo4RioCJwXrpgJfFUcz3qU0I+0VGeJO8OqvdetzFXFAr72U4/DeRgABCntRbZcd6OWIVidwFvuP6D+EzVM3fbz29lcGyw8TZNgbS9485ynSrczLEHzps2P1B8feHZzdO0AeSh8v7m+cD5hMCOWDhxB19PZXpL6EJZwhznrKKTdEE2tmnS/CeGRj5VuDmP3HCO1P4UkSeijPxulPGHwni2RJ+G8E80qSjDcwWaUD6Q07KkKkNBUbvwPG8NQTxZSUWLJlSfcbk3s2gzYWGAUDKH/eQ4ezbFSae9mpMGmfOUN7Je+zbWdbCFxvCwx8CAV6w2F9ASnPz4j406PL65NDhMGjhbSmNCy3qq4jwFFkJX+wL8/mMcWcsC54xe/d1bZiBwhsZ9zgDa5aXj5N49CAWrtnVtiDLqeoVA2KkYOI/PXsW5kqo93+M8j3mcLLAiVpGmPRaT6JpiZgkBh4dkRatUIg2Woz5vFsU+5zzF22jVsaI2TmKCRaCUZPoyCF0gfBrOScr6mwtwEg7ZgSx6nm3VP1QKnHu6VpCxZra/WXqyaD2Z0UpjaldInfOlbR7PXaMmctGsxt37GjfIC10rscFsD29nddW5u2MRL7nmHQDkrBxf/M5/Nt5mgao9h72cpadYuMfqm1ze33zBhmlWnDXBvdlO/urXrdy5y4c7R8OhUzJwBkDU77c93iJcdsSa1NtYMzVcy5vTAmHSk0QejTByzxjjD0dI7U3h5TyMVoPgiun5s47HStZFcwYCMg3so5qB5YDtUrSQMnWBJ2G8jK49GpMIQJ/QWyIMDW1RkI4ujfATcfwj6drXcs5FNjh2mhBIQyMR89Btt6LaDIr+nco29nM+cshhz9Fw8e/JFLUzOaUxIeMWIudBA5bFbKA8S5wuG0wLmeeBhM5YkyqbE7GhyT5nAG1hAHF6m/qjLJjXz63MXogF/mJywTuUnPMiIlNFBVV7hnuc+waVX2R3x0LaWjpndNvzmMc8Zg/SVfagWUsyHlNJXIDuNmXfOFLm5BdJKAujqSLgK+tzDul4abeK1efEHLLDWcwuU83BUievzsyJhJtxiTwZxRqz8PWoAPXwwOHi553tK0E236PeFMqUoJNlSfKuQGkOfcPZparAI/2T88T180vjs/d0uOYyN774/fh9qtrx7Tu/zdHho3W3V5i3Sef4zeutiEVyb/NtX56tPJy1Y6g4x5NxtuzeAsCKxWfS2d7b9Lpu0lU9zoC3OMjnH29j65DJFx9u4YO/amPv2Mw6ccwETt3AuR6EKNrzHA9IT8nzT+ZvrPk0vJw8IQJhbtrFbeJ77YhNbjiLf4GPltUhgiuC+Hp8GCF9WsICOVsyGi0NmnMFpl6ieE2ElJIDAx6JdOMAx7JBThgoWoNKMduyJVlLWUy1NvjtwW4fZptOdyqNtKrPj0w4TDqj0AXxhGRhsHp9XRNIWV+QJZ2VDA842L5o8b22jsaBcywp0XWQYQs5TbG4Y0JZkJosC5w3LixVEqZbdV674uyiOMhkgTOAfsWE6rwG2sbOireEECW6dsZFjswh+sUMoEjVbjEQwelX+ycinowQTShLkJVL1s/Yducxj3nMHrx8AGGU0bQzuRIN29AFfhMODUksW2I7knB8ehZGQb9yjUhn8+OQLsiNVmpTZIayuBkPo8VAGAI37TRt0TgPBc/yiD4VU7avywPFIlH/UH9xGZ+5nEATiuhTQtlYn0BdTyFTEiyLj9f1uEXq9rZhc9IKpljbBnm9GW9nDJmpZiAs6O7lRVe9GwDLtvjS97/YeKOS4yo6lzqYJrk3WbzXJoO0PDzHOyaq9sNbHi4KwZ17xtRo2tkd2WICpK+jHdst7cfuMYM//2UbtzwSJDUDukMzhWdd4Kz5jq+Xs5N0cfIqg7YjydXpoRG6AClPiJdzfGeC+I5J5JXJC3rkvEmTAM0imlCD2lR6l44HfIZSxJ4oUgJKcOTIiFLDbgSrBuOrJai2G0mof+ns5BOCjiU+fGkHOWHAl1Iik3ZdK6oCWoPKYsusU8n0+5SiaS0MDHmk4x4Zr5R5jeYWMBqtP7GIp8GPhwznKijJxw01BlOAK1aV7vnpCoSZho/TV50DwNGRg8STkYbLa2d3KGuFPMRpbYiW6u8Wq0s9Pd4p5OcsbQ9i6rjbnX7G0jOXRDkytK/4enletG0ez04U6LjzmPso2IEWAuexmEQTlQnmzjY1NxgYkyQzlYH1VOD3qZarAqPKaNHJDWaL7XCe7ZE5lMHI+0gLU8Oz5jatdq7BczxiW2Kk96cILg2gldF9D+c9nHs7F+B4LTPq3wyVeiax/FjfFawMFoWA8xaray5tC/aMN567Ck2gn5evOrsSb0e0ahlNCF589Z8SDKhx+zt3fofBvO1W7Y1y3K4pJ+WQ7c/ippymrXc920M68pgC5wfK+psvOGtqNO3MtlKx4D6nZHW6rE2dX08KfrozwDvu6OChvrlhU/XsC5xNDTfpHDdKpJt08DIuWkDj6KjkwEDj7z3eVG0plVVW5kim4Y3mOR6Zw5mioMdMoNagORdgmirwtWpkuMZjknACUtnG5zGTq/bF04RAFzASlYyEJYYx+W8XmgCfhnckVUn3sT1FS64jDFZAW0jQ3iaQqdrJotYgjMchO4GaLqXkYJ+LD49Yerz4vm4sYNNWyeBY9e+3HUk6C/6cjUw70EBFfrZQPpjGRekhe9lyGz1P1946PP1r+Mw1zfc5C11Dv6xEWdLPq+1/rVX0OZ86ytrl/c0PJNt5+086GEhMb8g5HNXYPGBQyGUVaNoAK5esO6b9nMfJi0Ra8vhOSWwSd4B5zA3YcTXH0Pwalq3UsicyzjQhaAlC3zCMRpWFkTENrrZA4PfB4WFVuTbaDJxkia5tjVpYEbvMrlTgOfPK2s1CepLEjiTJ3Sn8SwIVQrw5K8fQ2BAASxasIOcw44raVATOauPdwepzd96S0tzn6cHJx37t/NI4XY+u3d7Ww+tepHqdLdviv77/X/U3KATecSqI5YZy2AkHLydxk819p2fJYw6cH8z3NwshuPDMqVWc02WB8yapkhZnL3T4+qvjvPOiNP68rdh4RuMzf2jhcPTEh60nfg+OMzS/hptrLBDmuiowmAnKTkFsQmiCSFJVGuttV+gC5zhWw6FkWG9HbLLD9S127HEbu2yQOVZkLUXTbkRVPlHwGWDbkJ1wKmxHMqDYoTU9mcuRykItQenWoOrhGotVioI1RKcJEasiECHjqh6fSSrOoHqmZap2UqQ13+c8ka49HoORYY9WQxJLlwaP0xd0kczAA1slOw56JMso65mcUjL1ZSxoIFo2qygboKJlFefekMf6XvVZf0wnPM3q5xlrS33OuycJnAH0a5egXdaLduVCtEtq9/2I5S1Fyv0pVXEuU9Qe8AXJOoJ79k+dr3cwovFnv2jnb37bxl171Pr9Q6XAecV84PyshecplstYtY7PPOYg7LFSNjqat6CqVYlsb1E060j82CyMulqVK8VwWBVNpOMV/ZwzRzIgJVp+DFUKyHLey7kJSClJ7EkS3xHH1+srCoIVUE7TXrxgJQKVyJhRlI31ab1Qca6eW5+/uDT3eXpw8otJrGyBTjXOeHsSNedOPgNe/vw/IxTI9zr/4tvFRMFEaKbAOQ7todKTpA5l0AMaCJpm1so8A2O6bXWReITt+5TLyMolZ0/JFUVKSXZ7BoCMz2DQpwKCl6zPYerwxnNzfOPVcS5epn6LKwW/23fiKarPvsDZpyEttyEl+vAwPLlb0YSOFVbYQhgajitJphV1qJ5HsObXsGPHV9XRTSrDeqPVIH0wjXRrB/XZkZwS9GgiUGsGRZr2DNN3ZgK6JnC96vMUzqtgd7epfXfqHCsppfJwrpHcDAaUv3POhqCvuQeV0DWkLlTVOf+dMuchHA+ayRL6NNU/W6PnRdcFrlstEHZ0TGJlPHyaJJocK77fqXWxYqFA0+Dh7fDrRyWbd3tEEjIfOEuMaBYRODGCDuUV54inToAuJAEDzi0bQKdbdT6zTFl7ZxN9zsLUMG9YjfnqlXUFAoWpIVaoAViO5nDCp4aya7kw2GBeTOXhJgRaJuIbTwbJ5fue7ngmgJTQX0bVXjFP1X5WI5NTtN55zG14tlfRYxzOC2XWYl0JBB0tFO0apwtNEwT9qups2RItoJMdyOIkHDIDWczOUiJPMzSke/xdV05G2GGbxPYEZoeJ0Vo9lpYHzj2dK6jhDHnMKB/r05r6golUbYBl7R69IfX+jhEDe5IYtoKu7Um8bdUtWT4TTLOXt7/yZgCyVrZu1VkYx6fibI1ZWKM5fF0+tICONdpcU7BXJrI2HTz09IPFYuA566dG05ZjOdxY/tz4O0EIQqbkuatL+764zeNvr0kVBV7vPWByojVUpxQFffWrX+WGG27gkksu4be//W3FZ7fddhsveMELuPbaa/niF784ZwUWhKm8+rxs7YejZUt2HpYMR5VwxbFAuhIrbKMHNdI55Q2cs5RlTy1ofg034x7XjKeTcsCT+Hp95MYsciPVVWfP8sj0ZWo+IKeLggXFXKNpl6Pcy1lKydC42ueAXwW+2ToFettRVG+zxmAhEHS0Qmdr9WeNIDp9MJ5DRvJfmnORQjSXJTQ1pO1WZGjL4TdhKFy6X3OW5OAgtBsuEojGS4Fze64V6Xj0dghOWwaGDk/thd8+KnnmkESmHETSKfohHneU/cZxTwVpbX6Z73Uq73Nubv+2DRncfEc7X3gwhCdhyYLVtLcqKtfuA0/N2HNOW1W6IDJbS5VaKSXevjjuU2HkXPVmqINyhkQhcN4zZkyp13nbsM4j/aXJ7eGozt5xnf48VdtnBljYvXyG9ngeJyMkKsBKT9I+M48TCzvm4ORVq20nzzhrkDhvCQoWd0MocGxzhI5WNZcbHJcYrQZWxCZ1MI0TdzDaJgzSx1nI6WSFk3Lxch5mR+1EaKG/GaC7Y9XM07ShsuKcFwLtrlFxFgLOz9O1s45gdxMqzdoFJbq2W4Ou7TOUAOw7XvPnBP2qSvqtn9/G8Phw9fcbGm7Gm/X20OxAVhW3/Bp6UBXhmtFM8uzqtsKpYNPmMhuqKfY3l7emPRPsAODatVaFwBtAZ0By8VJVUBhJ6ew4hna7mcCUAucVK1bw4Q9/mLPPPrvi/U2bNvHjH/+Y2267jdtvv51Nmzbxi1/8YkZ3dKYg8j69bp3A+fAQDI2XKGDHAifl4KZd9KBOJqsCKilVhrwWNJ+GZ3nHVSDMjtmgCTRTQ0hJ5mi1qm9u1MKO2RgdM3OxZnOqt6m1WaryCYCuVfYxJzMwFlX0atNQVlPZOgkQy873ZdU5XC0BMeXJgDA1pAQ5kFbCYGm7+YedqYElFbW71v4EFTXbygvXDYVVS0Gb4YGgqF5sGn6Cjr8o+CSEoKtNcNoy1ZN2aBACORtOgA1VEWXVgrF8xbnVp37XxkVOMWvZjEBY1oHP/bGF/pjOXXv8PHDIRAjBhjUXAhBLjjM4eniSrTQHsaYUOKe3ZJCuxH1qHPs/nsH+yh6c7x3AfWBkRr7reGEiVbuAR5usOksJX3+i+iHx270GA6OHAFVt1rRnHXFqHhMQS83Ttec6nJiNdNTzN55SQpktkzDO/E2yshpBE4JQAPpGwDY03LRLdiiHHtKrE8+C+YpzE3DqtH4V0FcWOHd1rpiVwLm84pzSC4Fz7XN33lTp2stCkLdPlPsTyAm0Z9NQxZHW0ELe9sq3A6rqfMsPb6nallbwcq4jDDwTcNMu6b5MMZGhB3XcjIvTRJ+zl3Wn5YpTwKZif7PGRWddPqV1i/7NwK584Hz9+toB0nWnlSbc9xyYaYn2qWFKkdD1118PwDe/+c2K9++66y5e97rXsXy5yvzfdNNN/PrXv+aVr3xlze1YloU1QXnJMAx8vpk5GJ70kLpEijpUWkPi5JyifHoB2ZxkV5+kPQSuB8PjsGHl9CdlVtzGdVx8QR/pmIdhAgLStkQKtd3CPkohEX6B67jYKQe9dfaprlJKcuMWWotAConebZIeSNMSC2G0lS6NzHAGDKl6gI6F05FHJC3JOZKOdpUNFPnm/8L/cwGBoCSVLZ2f8YSHIyEUVA8YXZdkHGr6KOdciYfE9NG0R3Uzx0DrNpHjGUQsCGkbLSiaOmZCB0/3wLIRVA8abSFljRVNCnraoW9I4jPAcBw8vyCaGAWgq70XzQAZy6L1VG6nPaT+ubEcXkCgEsBTO58zcR3IbGmAHHNN0KDVLxG6pEWHdb0uu0cNDkV14jZ0BOp/1+1PBxlNle7/254KcvVaiw2nXcBj234PwF/+y0vxmaWg0Gf6ufH6P+fFV79xSvutr22hsOfxuxO4d21Hjlc+I2V/ak7dI5MiX3FOagYJvXS9PHLE5GVn1ddTKPzGh48Y7BhRz6Fl7S6jKQ3LFdxzwMT11I21YslpVcdEMySaKZHSq3rGTwfzgfnch+Mqd4CVi+Yug+nZjuxIDpFXXY4kJUiBdgwT9qmgvQUGx2E4AguForUGFlVzwIUmcGtYEM2jEnbYrhADm4i+wRJVu6t9Fb7ZKBDmSkFhRqutql3A+Usq7ShvmmTTQgj087tx7xlULIStEfSrSvaSiikpyVjw/je+n9t+ditZK8ttP7uVD7zpAyzoKtl2Cl3guRJpzV5BITucw4nZBFepRLPq55c4CQd/b+O4ykm70xYGG4uMsfPATgDWLD+P1lDHlNYvBM4esCfYwWndDut6agf7V6y0CBghso7g/kMmf35ZbVbn8cCMXM4HDx4sBtUA69ev55ZbqjMvBdx666187Wtfq3jvhhtu4MYbb5yJ3VG4DBLEa3+2FMKMEz48XvXRxqWVfx8+1oLSZZAkQc8y6Cm1RzLR/Cm5JP/OchjODsHMFLImx2nqP4vSRPZo+CiUs1O6gEsaHM8pomUpXL6x+v3VV8w9YaTCeepeCpdfWHp/zYTPy2EuhedsmN73NXcMhmF14fVUzO3G6n5yWg+kourf8g71j3XgeR7xv1EXw8KlXZz2OgeI5P/VQDHhOH2Ru2O5Dg58xVZXsg45oZ6qCxfbrLlanalrjurs/rV6uA912Zx/cW0hg6NjOj/6VmfFe/0xnac1j2tfdTbf/pl6bzxaTc36r+/+DTf/1QsIBKbWwL//6yZWn40zVHvi5pcZVl89uW3cXIBneeyOqmtzwBeqyCA9NWSw5LIkAV/9JIDrwbe3lY7fJ94+zi8fbeGXj7aQtEzoejGE7+Scy1YWz+1ERFIDRGZApHzNmjWTLzSPE4r2EBwZhfNtic+cD57nGtychz1mYbToOCj21kzbEzWCJgRtQUnfMPSuNDFtD61GECNM0VSV7tkM6UrsqF3z+BVQXnHu7FiGPhsJkpoV59pjypI2j0WtLsNJnR0jBpZbW7y1HNr5XSpwBtwt4YrAGdSQlspINqxazFtf8Vb+98f/Szqb5r9/eAuf+tNPl5YzBdL2ijZoMw3pSdKH0mgBvbJyrAuc2OTzMDcz/cD5wacfLL7euG6KNG3LRQ4oWm+fv5WMbnD9+nTdYlPQhMtX2tx7wEcip/HkgMlzVhxfMeUCZiRwTqfTtLaWqIYtLS2k0/V5zjfffDNvfvObK3dkBivO6b404UcihFbU5gLnxnIYLQYLri2p3KazknuelDgudGcz2LtijC/p5LoXBentmN5FFX40QvZoFn2Bn8d2SgqFCynhkg0C01CV3uSSBK2DbQgpSPen6Ti/g7b1zTXBhuOSe5+SnLUazlw1tWxWbizH2H3j+Bf5i/57uZEcRptB73N7ELogcyTD+ENhgkuDdcWNpoJMTvLEbolPh2Cerix0yeorkhx6qBXpzo1Jj+1I4mm4eIMgm4On90kWdFDMkEeTkpAfLt5Qfcz7hiW7+ySLupv/Lc0eA5lxFEVJSkSLifA3l3LzxrJoi4PoZ3bW/PzIqOS0pSoz/9hOWL1Q4j42RiwVxnXVABXSFnHg3hZkOIdxYQ+iqzJj741m8LaEoXd618pMXAdWXiTI8+nFYE1PaRx8oA2AVW7pfN39h3bOyNR+BH7mnlZytlr2wqU2mwdUxfTff9jFN177Yq67/HU8ueN+KOtxzubSZK002WyWn39jK5eee92U9t1d0g59pWSetqEd/drF2N8+AEmHTL9X/B1zHd5IVqWRoaiU6dclOVeQtTTu+L8uLl9Ze9ATuuRxR7J3QI0HZy20OT1lcEWnxy8LCy16K4TvpN3eWHVMcgmHTNzh2ncuoL13bvg+zmN20d6ibPXGY7Cktnj9PE4gnJiNk3TxLVH3dDIDXS2TrDTDaGuBgVEYzuictqz2c0EzFZV7HvXhpl3cnNdQ86YgDragazF+c3YyJLJmj3P94PT8JQ6/3atjuYKdo0YFfbsWxOIgYlEAOZxFHkwio5bSmsnDZ6oWkSMjktdf/wFu+/m3sOwc37jjm/zZ69/Pgm71IBIFqvYseTlbYRtrNIfZXRk/6QGN3KiFlLKuFo70lN6TMKZXCd9U7t88RRsq2Z8uzhF2BTvw65Lr1jYuBF231uLePE37nv2+kztwDoVCJJOlKlEqlSIUqt/A6vP5ZixIrgVNaAhXIGrxaAHd0JEZD1yKKtGHhjzGYoI1S8AbchFhB8t0iKc0FnZNfRLvOR7OuI3uN8hmBekMdLUBEmJpyOYEvrLgQki1v7qm40adpumBAyMuY3tzHPX5OGt1k2JRhX1MSbBA1/Uiq9bX6SM7lMMeswksCZAdsNCkpvZnmve960qyeVG0WFKQSkFbD1XBkXTFnAmcdQG5LFhZwdC4hPz1JPPPakNAKg22RVWFI5OR0/4tk67nM5FjNkKAbNOh2e8QOl7MVddZjWsk6JcMhmEsDkE/yJyLl5FEEqXKckdrLwgdaYEbttG7gkocK2rhDWbwhtIgNTS04nGaDo7lOpB57QKvjBvWYpautY29LqrhQLBlwKj5PU8PGvzxoHo+dQY8Pvn8JJ+7r5XHjpoMJ3V+s6uFv3v3V6rW++MTv+Cz/628HR/fci+XnP2CKe27/vwlyKhN2zrIbFiGWKxmlqLdRCYdiNl4NsfUj3S84JVZ2w3khcFeeLrFL3erZMvDh3w8Z1ntiYvlwH/+okT5etdFWfAEFy126Ap6RDIadL8MjC6WL1pXdQ49R+DZAiG0eZr1swSGDo4DI1HJkt65f38822DHnApXDs+bnjfzsUAgaG+R9I/A4h5JSw2dEWEKvJyqDs6Ug8ipBjft4mU99J7axyeVSTEaUe1dC3tWYM6WjlMNO6rOOhVnULZUv92rxp+nB5sInIVAO68b93cDALgPDKO/eBkif120BCAcL6jDL+aaS97M7x/6Julsig/+y0f49ue+hmmYxflWLVeTWigkbvRQc0WR7GAWz5JVlmB6UMdJKp0lo6X2SfBs5eHciHbfCIX+Zl0zuPDMy6a0rvtYiQG5M9TJNastWv2Ng4yLl9m0+z3iOY2H+kwyJyZunhk7qjVr1rBvX8keZM+ePaxdu3YmNj0r0HwaruXhZtSFnEhLdvWpwFbIvBqsLjAjWcbD04sA3JSyedKDWt66CExdYBhKJKyeIrPwaThxpym13kzc4dAfY3T0RYkcsaZsn+XEnaoroFwkzEk45Aaz0/Ju9qTkwIDHk7s9HtoueWSH5PFdkj39klBgFjz9ZhgCgURVMQqiYOXwmWqCX0sgLFXHimrG9q3LBz59agGUT0PmXKhDF2oJQCqjBHa621FCYo4kmilVQDvb8xnUoIEczuKNZvG2RnCeGMfrSyICBtqCE2fMLaUsDqZ2GQ+rzV/6za1+yWndapmDEZ2BROUN4Hpwy6Ol3/DOizK0+uDmC0s31/e2Bmo+sC8867loeVuMQg/0VCB6A/jet46ln16Mtqx0wYmOfJLRk5A8OfrvKhS1/eq3vPSMHGa+H/mRIyb1HnE/eybAYFjdQJctt4o2YrpGKSOt+WDB61m++LRZ+gXzOBkgpUTELaQnaQtB/4hK1M5jbiE3nFOuIflzc6JsKFtDykry6Gjta0QzNDxn3pKqEZy0C56syyo7UmZF1du1atYC5wpxMM2gw+/RqHBaUNYGFTg3A+38MnXt+4exPv009vcO4O6I4hOSJT2i+O+dr/kL/Hl21d0P38l7Pv1ubCf/nU2qtXu2R+TxCOMPhrEik7fhuVmXzOE0Rnv17ykKhCXqxzDS8vAcb1pU7aGxIfYeVu4Wa1ZcQEuoeTacDOfwnlJzy7husql9IdefUV/3pABDg2tWq2OacwUP9p0YkbApBc6O45DL5ZBSFl97nsf111/PT37yE44ePcrY2Bjf+973eMlLXjJb+3zMUF7OEi8vLrD/qCSWzFeE0w4y4yB6AgRsh+E+B28aMvJO0sGzVB9NKiuLYWIhIGukrO1mvElpHVbE4uDvI6R2J+k2XTIJj/AUW5BzY1ZVlgrA6PSROZIhfSiNk3KnJVSWzsDBAaXOjFAD1qIuWNIj6GiZ20FzAUIoZe2sBUF/5T6busBxqq3FPKn8jGdFDKOwX0ED0TNFc0tTU8FwHTV5v0+QsRTz2DQE0vIQrkcsVRY4t+U5kC0GMmbhPTWON5xBtJtoi0OIE2VBVYAjIT8xs8tUI1on9NKelxcKkQje/dN2vv1UgIKm2C93+zkYUb9jfY/Dn6xTJ3hdr8s1eW/BSEbjZzurj39rqIOzTrsEgCPD+xkYOTQzv6ujNDjI2FR62k8cyj2cB3whNCFZ3elyQf7Yj6c19o5XP1eSOcH3t6hZtUDyzosqs4EvPK20XWPpOwn6jzPfcx5zCm7SxdgTRe6L0+7ziCTyY8485gzcrIs1bqG36CTyt/NkatqzBYFygBiNUnNeJ0w19s1bUtWHk6wuuJTj8GBf8XVv98rZsaKC4lzGA7KaTleDajPAghbJsjY15985apBtIgetLQygnVUmeJXz8J4K49y6D+vTW3DuOlIsci3oXsqn/uxWTEPNDe68/07e+cl3YNkWCNEUVTt1IEWmL0NuJEf44UhNe9hy5IZzWFGnpi2Y0AV44CTq/1DP9pCOnFbgXNnfPDWatnP/cJGmfWf3ChZ2CzYubK5IeV3ZHOAP+0+CwPkf//EfufLKK3nqqaf41Kc+xZVXXsnmzZu56qqreM1rXsNb3/pWbrjhBq688kpe8YpXzNY+HzOELorc/mhCsqcfejoUNUMmbYQlIaQT0CSZkRyJadhSFbI8QgiiSSoeHoauqty1oPkFnuXiZWpfRFJKMv0Zxh8IM7wvi1wYRPdp6I7HSKT5AN/NurhJBy2gYzsSpyxLb7TpuAmH7HAO3adNif5dQCIDOUcd17agwG+KOe3ZXAs+HaLJBiImopo5ULSiOkFqf3VhCIQrkVb9h9PyBeofAFa1h3NXu/pQmJqqgnb50RYGm+6znnWUZaBzZSX/tgn0n9eelaUzoJ7aOVfw7aeD3PyTDu7a4+O2p0on+88vS1Ne1H/bBZmindWPtgVI5qqv50vPKfU1P77tnmP7PXmIMsbHyRM4l6yoBn1BFrZ4mDpcvqK0/w/XsKW69akAiZwall6wzmJtd+UEttschuTTADihC+mPzdMpn9WQEjIu7Etg7Ilix+x5W6o5Bjvq4OTpopG4en4eb5p2OQI+VbhIVTtvqn5Ud77i3Aj2uIXWYMzvHyoFzt3tK/DPMlU7oxlIIegOTX7OCklzxxNFx4bJYLz9dMx3r0O7tBeCZb876+L+YUj16uZx6bkv4DMf/DamoeYRdz1wFzd/4mZyTg5vEptZK2yReCaJ0ekjuDKIk3AIPxypaRHrWR7pQ2kSu5OKJVrnfhKGaFi59iw57cD5j0/8sfj6/A3NC4PJhI33qKLyZ4XGnd0rePEZuaYdaM5e6LKwRR3LJwYMYvbxnwNM6Rs//elP88QTT1T8u/jiiwEl+HXPPfdw77338qEPfWhawdbxhpNx2dMvSaShI1+4kHELqamA12zVsIezxBJTrzhbYxaaT8N2JMkMBMrmiH5T+Rh6NbiKystZ4tYInD3HI7EjwfiDYVJJj/FAgLZWAbqgRToMjIPjNLevTtLFzbikPMHmPZJDg6X1hBDoIYPsQBZjGjRtUOJZupj7lOxGCPjUeZpI0y7A0KoTIJajqPizSdWeDoQQFVTmWgj6lWAdKMVD5eE8Wvy8WHEGRMgo9vrMFZRTt7JlJ2BixXlhq+Sbr4nz6jOzxUB4NK3xhQdbSkHbaTnOXlR5rFZ1erww7yWYtDT+b0d11fmS8sB5+wwFzu1lWdUmVDLnBPJU7bSmE9V9LG1Xk5pyMY9HJgTO9x4w+flONeHwmbKCHl/AkaF9MPKd4t937zuxfo7zmCPo8SGHMrTui9D3TKapVqd5HB84MVsFo8BI9ETvjSpi2I5qTZqIwrx1vuJcG57t4SQd9AaK2uUV557uVbNmOSbzjNF0vj2qkTBYAeV07S1N0rWFJtDO6MC8cTW+T52H8Y7TEevbS/vRV2ndcOnG6/jIu75bpG3/9sHf8N4vvpv4UKKu8Fxhbu+mXXxdqi86uCyIZ3uEH42QPqSCczfrktqfYvTeMcY2hXHiDoHF9dmHelDHHreQddpXZL51b6rxmpSS3z9yNwA+M8j5Z17a9LruphHFDgR+07WchOHjgqXNz2s0Ac9fq5b3pODR8ePfHji3Zr7HE0IwMuiy94iiEAuhMo1y3ELk6cuixURLOkSGpjZZdTMuVthCD+mks5CzoFwLzWdC1lbvV++WAAluDUptcm+K6NNxjHaTZMBPJicIBlQFMOQ5xFOqQtoMnKTN6JjH0wcFQ3l/w/Kqs6/Xh9nlw2hSoKAcrisJ50WmTma0BAUrF1HXSsFnqsp6+STNsuZoxRlAiIrgsiHSLuga0UR1j/OcRZmvY2EwherAGaDdL/nz52T42qviXLqs8v4OGJJ31bGpesv5WQxNbe8nOwJEMpXXxukrz6G7Q9lWPL1zE5Zdo6wxRZxsFWfpesiw2s/BvBXV0jb1PFvQIjm9W2X9944bjKXU8euLqsRFAZ98c5hFbdXPwL7BvTDyA5BqG3fv9zONTpp5nGrQNcTiIC04xB6JMPh0Ejl/YcwJZAez6AGNeBqS02DvzTQEAgTE67D+gPmKcx24aaXdowXqhw79ZYHzgq4Vs7cz+eJSQRhsMqo2UCEI9vTg1ItCwtDQz+rEeHHJt9Y7Uu15eMV5z+Wj7/k+wYCquvzhqT/w8j9/GT/58h1YNZLfqQNpUoczBJZW0hsDiwMITRB+NEL0qRhj944RfjiCm3QJrQiqzxuwN/SQjpNycVK16dqe5U1L9Hf7vu0MjysrzjNPv4rWYH0x6HLIrIv70AgAjhDc0bsKnylZ2z01Lanr1paong+NzQfOxw+6YP8eC8eF1lD+wsv3N1MInP06Pukx0je1yWpuJIeTcDDaDNI5cDzVE1uA31SU3np9zgBuuvJCzw5mSWxP4Osy0Vt1Bsclfl9+ENAFhiexsh7hJvq7XFey8xmb3UeV3tDSBZBIq+pqAUIX+LqmV21OZlQ290QJgMwkGtHL/aZKfuTKnoNW/rTNxUq7MDVINJcEkikHYWoVVO2OtjkeOJexNFJa6dpta+AXvKrT43MvSvK5FyZY3eliaJIPPCdNb6j2OovbPF6aF7HIOqKq11kIwcUbr1WfW2m27Xlk2j+niPbyHmd1/lzXYfMzfySWDNdb68QhYlGIZgtWVMvaS+em3IbqkX6ljPmZe1vJOOqeeeHpOd74vNoZwP7BvWAPQ+R3AIymtKYrB/M4tSGEwL8kQE5oDD0UI9M/RbXMecw43LSLFXUwWgzCcTlnklwBEyJxajMThKhZuJiHEr0taPfUQ6HirAmNRb3LZmU/pCuLQqfNWFEV0BOSrOxQY9HuMX3aqsxiSYhCH5fsrw6cA344feVVfPnvf0BLUCWEtxzYwus/eiOXP+dyfn77z4vXnh2zSTyTxGwzaiq5+3t9GC0G8e1x3KxHcEUQ/yJ/U5afWkDDy3k1+5yllFhRGzGNKPDuh39XfH3VBc27h7gPjxbnaX/oWMK4GWDjqlxDUbdaWNvtsbpTbWdv0k/f2CQrzDCetYHzeEYwOuSyuLv04Cz0N5f3bPqCgnhfjkyuuSe+lJJMXwZhaAhNkMrIKu6+JgRS1lZkBtD8GnasdKE7KYfY1jjSA7PDJJaCaALaC0keU0PaHn4kA2ON9zOTkzz6jGTnVptQq0Z3m8DUBZ4HkWlQ0mshni6piJ/K8OUTIOXn0ZrLTFpTIFPOpJUY6XhKSMwQE6jaPbO9h8cEWVZxTmplVO1JLA4ALl3u8PVXx7nzpmhREKwe3nhuieL9+/2+qslgOV17OuraEyE6KivOjmPzsf98I3/z+dfwF5+7npw1twKEckXtghXV0rLqcTld++F+k/94KMThqHrmru50+YurUnX7nfqH8u4Nw98uvnf3CRIImcfcg0Cgd5hE4lKJGM3jhMKO2rgpB/waQ2EVUMwFBPyQylWLewJoppi/durASZe0e+qh0OPc07WUoH+WlMHK2WV6IXBubv56Xp6u7UrBtuHpJV2FqSGWqKSwHMlWzD1APYd8JqxYcgU//sJPWL9qffGzzbue5FWvfxWXXHgJ99xzD4mdSdyUg9ld/1iZnSYta1rwL2guYC7uR/481VLWzg1bpPenMHumPn7+ZlNpXnP5+S9sah1pe7h/VFVqCfy4dzUA507i3VwP5SJhv3zy+FI8n5WBc9aS9IUFfjx8ZbPeQn9zOfydBtZojshwcw9SO2KTHcoVq7WRJLXFEfKKzbWg+TScuI2UEulKEjsSWCM5AkvUqDMalbgexX5UDAGOpM10GY1Cus52sznJA1skO/d59JgOoY7SxRYKwHB4Zqw8wnE553p8ZwO6JnC9SoGwdE6iz9W7Kp9gITcJLcby1HJGqeIcCrQWe3bmLMoqzokyi/oW3UW6zVUQzCaev70hyUVL1fNgOKmzfcLge9FZz0PLp3Ef3/aHpr63IQI65DP8Mmbxxe/+NU/uuBdQgeRPflftKX0iUa6oPVgInMsqzut6XHry1YFHj/j4wwH1XAuZkk9fmyTQ4NlRCJz9yT/QYqptbDrso8nTO49nAVoCEMsJEsNzOYv57ECBlhrPCpLpE6emPRF+UzHFavY5GwI3NT0b0lMdTsJuaIOZSMWJxCMALJhVRe1KKyqAziYqzqD8nAvYMg26dgFieb5yJUEOVPcgtAaVwv+Zay9m07cf5Buf/SZnrT2r+PlTW5/i3e9+N5/9/GdVBXmWdKE0n4Y1VhmcerZHYmcCKanr8VwPQ2PjPL3rCQBWLT2Dxb0rm1rPe3K8yHg8urKHo3lHjPPWNlYOr4dr15ae7z9/QjuuuhZzdYo/qzgyIonlNNr9+coaVPU3F6C3GHhZj8hAc4NwdiiLm3XRQzqWLUllwF8joeM3IFanH1nzabhZpfqdOpgmuTeFf4nqdcjZkqFxdVOWdlIgHI8WwyOZrm/HsX9A0jcMqzocTNdTstF5tAQVxTp+jD1Ili2VEvUcySwfD2TKbAaSmbknDFaETwNbwmT9W3kPZ0xBNKEC5872BY3XmQsoSwhE84GzQBKKZ5Gj03s418MLyrKdv59Q8Wxv7eLM05RoYt/gHobH+mkW4egwuVzlvgohigJhTjjNr//43YrPv/+r/2Q8OjSl/Z9NlCtqD+STLUvKKs6agMtWVD9PP3JViuUd9a9Ny84yNHoYgFWLlnNhPnmRtgV98+ra88gj6IeM1BgfcuZFwk4gpJRkB3LoAZ1IQtG0T6Sadjk0IZAeJDM1BFpNDS/n4jnz2biJsMJ2w/7mvsHSWNfTOXuK2uVaLVOhakNJWRvg6aHp76C2vKTJ4fVXT5wDPkHOVsUzTdN45fNfyX233s+3/ulbnLPu3OJy//XTL/G52/5p1p5VelDHjlgVgnfpQxmyR7P4F05toi6l5Pa7/4An1bYuPbc5mrb0JM69pTnKb5atKr4+b5oV50WtHlestLh2YYp/eP3xZYg862YbsaQKHjvaBZpTZs+TdpDpUn9zAUIIdBPGD00u8qMk4jOY7SqLlc4p6m4ttorfhHQW7Boq2JpfQ1oumSNZ4tviGG1G0W85HFfBWUtZ4CyE8obWbIkExmLV24wlJc8chO520CwP4coKVWRTFzgzQNdOpFXv9rMlcDaNUrLBdSU5S703FyF0DeF6VbSiiSh4OLvSJZGKApWK2nMV5YNpVKqT0OKTs/KQu2KlTcBQ98r9h8xib3sB06Fr3/fYz7jhQxt5znOew8/v+SauW7bRvECY4eq0CDVgb1hzIQDZXIpv3vG5Kf8GbyiDjM+82NjEinNvyKuqIl8+IXB+3dlZrlndODl5dPhgccBevuR0NiwoHZ9do3P0ppvHcYcmBLpf4+iAS7YGRXEexwduysWJ2xBUNO25JhbqN9V8aiKEKfDs+pZUTsoh8ni0oT/uqQhlYeo2tKI6PHi4+Lq3a/YUtcsrzmm9oKrd3Ny1MyBZ01UQqNSJZae3j2JFSRBL1hAIA9XONxyWxaBY0zRees3L+MM3/sA/fPAfi8t98Xtf5NP//elZCZ71kI6TdovtB3bcIbEzgVGnp7oRhsNwzyOl+cxl51QHztKTeKNZvP0J3KfDOH8cxrn9UNFpQ6xr416rC4A2v8eqhdO/jz57XYp3ro1y6enyuDo5PasCZ09KDg1Jcja0hDSkEKWKc9IG26vpSetvM4j25bDqKNMVkBvNYUdszM5S4KwUlqtPqC9PFcrWmCsWHtypg2ncrIevW1WbpJQMhRUNukq0SgiwPVoCcHQUvHIKupTs6pPE09DVpoSfat2gIb9S1/aOQcEjkZZIyew9MOcYfIZSCvWkVFZUbnN03xMFCU1UnJWHcyx5EilqQ8VgGpbqHmz1SeX1OsMImnD1KhV0piyNR45UZscuyQuEATzWhJ+z53l862f/AkAsFuNL3/4o7/vMtTy9axMAcVGikfRovbz91X/HP/3FD2gJKluM3z34A/Ye3tL0/rvbI9if34H1bzuQ0ZkNngs9zlmhETb8LG2rDl4uWGrTla8QbFxk11UxL0exvxlYuXgdZy4obXfnfOA8jzJ0dWuExz0OHp6vGp4oOHEHN+OS9HRF055jnT4Bv0r05+zK8UHLtzTVs6SyIzbJPUliW2LPKtsqN+0qNmUjRe2hUsV5QfexK2rLSA7ri89gfWW3Eu4tvD+h4qwLSVsTWiYFXLpMbcuTgsePTo+uLRYHIT+3l0dqUzXbgopZmpgwvAkheN+N7+Ozn/1s8b1bfvhlPv5fH5/x4FnzaUhb4iRdpJQk9ySxY3bDnupaSGUku/odtu5W7WehQCsb1z2nYhnpeNhf3In9r9ux/2c3zncP4P6iH++J0lwycflSoll1DW1Y4DTt3zyX8KwKnEcjMDgOPR2Fd2TxBpQxq6iSNxH+DoNs1CF8tHFFJN2fReii2Lyfysi6inWGobwEaylrFyypckNZgmXy9MkMhGNlomAVK4HMOrS3KEuqWFkCbDgMe/thUXd+2zEL4auO7lqCkEhVrjsVSCkZizF7fS1zEMUEiKXYBY4zR62oCtAEMtX4Oi56OFcoas9tYTAAWaaEOu6qQKrVJ0EwK8HzC04vBZwT/YTXrTqvSG9/aucD2E7j4HTzM/dXBIYAB488w0f+36v4zC03c8+unxfff9HG1/Lml/0VHW09vOUVHwHUvfc/P2h+0PV2xtSLjIv72MxJUkpPFgPnIV8IKUTRw7kcAQM+/+IEH74yxb+8KNmUqmb/4N7i6xVL1rGuxymKtO0ancs33TyON3SfRlCX7NzjkGhgOzSP2YObccFTVFXXm3tioUGfGrcn9jkLo1Bxrn3d2FHlS506kCa2PX5S2p65WRcrMrWEqZt2kY5E8zWiapcqzksWNNf72gjOz/uR/WnkvgTuAyOlD7KV4mBdQVlv+l4T5QKVj/RPM3A2ygTCRrM1rT79ebr2xLZM15X0DXvcdNNNfO4vvlB8/6v/9xX+7j//duYrz0Kpd+eGcqT2p/AvCkypQpvKSHb3Sbbu2kwipZw8Ljr7+RhG5bGT+xLIo/X7PbUzO9je2lX8+4wFJycj6FkTOKdzkoODEkMHX0FUS9cg7ar+5nB1f3MBvoDAcSB6pP6Dxo7b5AayxWozqF7jeqKCAoEQ9S2p/Av9BJcFKxT0VHZU9U5Ubc9QvyXoF2SsEgXJdSXPHFJiYq1BgXQ8ZNJR/a4TUKBrR5PTu2mzlsqsPVto2lCmrJ1T58b15k4fVy0IU0NOwpwoeTiXAqqutpOgx7ls4Erk7ahUFlrMij3Y+YsdekIqKHzsiFlB+dI0jYvPfr7arVyK7Xsb21L97J6vFV+///3vZ/3q84p/P/DknQxkSpn811z6juKg98rr3sWyhWsA2LrnYTZt/lVT+y5HS60n7uNjDSd/j2z5Ha/54Hr+5Wt/hudNUmGJWpAXGCz0N9cKnEFZgb1kvdVQDKwc/UNlgfPi0wmasKZLnfND0elbi8zj1IMQgrYQJCIuuw6ffIHNqQAn5eKiWGyhOSIKVg5NU24iqQldeAXxq1rVZCkl2WELo9XAvzhAcmeS5L5pVhpOIDJHsoz/MUxyb6rpwL8ZwbTDMxg4e4eSeNujpe9/eEQ5fkCVONhk/c0yZpXWBc5a6NDmU38/ftRguu3sYkW+z1lSN2D0+2BoXOLlg+FkWrL9gGRX/lC96Kqb+NLffqk4pn/9jq/zj1/9h+ntUB3oAZ3ciEVip4rgjVDzieaxmOTpfZLhCOw9VKJp1+pv9g6VMgTauV3oL1uO8aY1mO9dj/k3GzHecTq7xktBUXm71cmEZ0XgnM1JnjkoCSdUj28BKoiwIZXvbw7WvpgEAhnUiRzM1BWMyA3lcFIueovaRs6WpLPKL7AedL22OAWovoSJXnnxlESrd8YMgcwoKoapw0hEbbdvGA4Pw5JCwTDjqh7XOkmCoA9GwtOjayfSKoCsJYZ2qkITavAtVJznPHyaugYajBQlD+cyK6qTjKpdEAwpUbVnoXdIg2vzwhauFNx3sPLCv7Siz7k+XXtg5BCPbr0bgAXdS/ngBz/ILZ/6HR9++38We8vHvFISQ0uUzp1p+HjP6z9T/PurP/oUlj25EFp5HzIRC7m/tqKglJL/vf1TxJNhfv/w7fzh0R833u54ZX8zwLIaVO3poFCRF0KwbNFaADb0qm17UrBnfJ6uPY8yCOgNuOw5ovoM53F8YUds0o5GIj1BzHQOwTDq67rUCpzdtIuTsNFDOkZIx+wwiW+Jkzk6tywBJ4ObdsmNWUQeixDdHMOtUS2dCCtmqwJNA/TnxcF0zWDxgiXT3j8pJc6vjlS+mXDwnlbVTpmbWHFuMJ9xPWTMhnhpgqZrcMly9XfK0qqcMZqFtrxE//Rq+DmDuvZjKYinYGBMsnmPZGAcejvV58MReP2L38QtH7sFLT/Bv+WHt3Bo4NC09qkW9JCOk3DIHs3gX9RcZcuTqiq+Za+KZRb3wOPb7i5+Xj6/Ka5TFjgbr1iB8bzF6Bf2oK1rR1uoqty7y9hhZ/TOB85zEllLVVxHIrC4a0JvsCEg5ymatu3VpC8X4OswiA455EaqJ6We45E+nMFo0YtZo3QWclbjINJvKmp0M/CkJJKEQL3tFayGbElrUFHS4ynJjkOSgA98Zr4XI+0g8h69tdAahFi6vrq268q6NJJ4Ki+AcDI2LRwDhKYswHJ2nhY8l2FqSNut2+dc7uEcKas4n2ziYOWBc0E8bzaEN154WomFMlFd+6Kzn1d8HjzeIHC+895vFvft5de+HcMw0DSNl1xzE7f986Pc9PIPs+6ci4rLTxT0uuL8l3DBmVcDMDR2mJ/+/qsN91nm3IpJBKiqcy0cPPIMfWUU6W/8+B/J5upTscoD8loeztOFlLJI1V7Us7JojVYpEDZP155HCcLQCDoutoNiXc2A1eI8moN0lY92LCeU5c0cZWEFfYpG60y8NgR4NUQ0nbiDm3bR80UWs9MEAbHNMazwzAstzhachIPZbuBf6CfxTILwQ5GG1G0pJXbEbtjfLKUsVpx7upYTajCfngzezhjyYD4IC5WCWveBETVWThjrGwqD2RJadeSEREg5XfvR6dK1y5S161acTYFlw/6jki37lbr84p7SPVFoj7zxxa/nL9/yVwA4rsMXvvXv09qnWtBDOtZYDqPDRGuiL8p2FDV7xyHFqlzQKRiPDLGvbxsA61adS0/n4op1pCuRffmAptOH6KwOVlyPYoJ7UatLd+jkfCaf0oFzzpbsPCwZCqv+3irBKlNDOi7eeJbJOtQDIY20BUMPRonvTFRk6KxRi9yYhdlVuvkyOXWR6A0aL/wm5JpMuGSykM6oB31N6AIcDyyX9hYV+G47oKyrFnaVLZd1kaK+gb1p5GnpNbKw0aTkyT2SAwMl2kkBXr6/ea4pZx4P+HSVTUznaKpX81hw8MhO/vrfXs27PnFV1b9P/tdbiJRViWvC1MCS9b2ca3g4w8llR+UZAiefuW315yvOmpiNojNru92iQufOUYOj8dIF0NHWwxl55etDR3cxPH6kav1MLsWvH/geAKbh56XPfUvF562hDt7+6r/jbW/7eOnNWGXQK4Tgfa//h+I9/b07v9DQnqqi2pyHtzVSIb5SwH2P/azi79HIAP/321sabLvEexwsWFG1H3vFeTw6RDqrJlIrFp9efH9eWXsedZFvS1nSLTk0pNhX8zg+cDMuVtplNK3N6TlBwA+ZGn3OmqHhJGsHztKjooXOv8iPk3CIPhXDTc/9nk0pJU7cRvNp6EGd0KoQuSFF3U73ZWommL2Mh5txq1iQ5YgmoiTT6hnd27Vy2gKx0pO4dx0t/m28blXRM1keTSMPJCv0TNJa44pzoSgm8tsu4OJlJY2MieKezUIsDhSLULJOxRlUQWokAt1t0Nla2TrmyZITzp+/4c/paFUiTD/67Y/Y379/WvtVtZ+6wFjVUhGj1IPtSLYdkBwcgK5WaAvlk//b/1Bc5tJzXli1nhzKFMWWtdUtVZ8DHI5qZB21vTN65/69Ug+nbODsOJJdhyQDoypwrBnAGnlf25SDqEPTLiBgQrbNT8YWRB+PMnb/uHrIuJLM0SxCygpp92SmAa06j0J/bDNIZsFywNeg4owjwfYwdIHrwcCooqaX/3YZtSpsqGr+Vr8SFCsEx1JKhsYlT++VjMdg7xHoG6qsPKczavCZy4PkbMFnqj6pVGb2rai+9fN/5amdD3Do6K6qfw899Wt+dd+3Gq4vNAGerClkAVR4OI9FBotvnwxU7cJvcstOQpsvf43mf/ds4AUNqs7ldKYv3PYXOE7lDX/Pwz8mmVZCXc+/7NX1j3OLUVLwjFVXBk5buZGXXH0TAOlskk/f8nZyVm36YHlwS+FZ4Ei8LZHK5aTkvsd/BoAmNHRdHdcf3fVfFddGxTrjlRXnzoBH6wy0bhwpE05bsaQUOK/s8AgaBYGw+cB5HmXIs7B8UrGuth+UZOoIPs1jZuFmXBIxj6SjzVmaNihdF9et0edsCtwaWiC5UQt9QvAohCCwLEh2IEeqrz4bZ67Ay3l4VknkS+iCwIog0pVEHo2QHai2XnVSDl7Wa+jhXN7ffCyK2t7mcRWEoXqItXM60a9ZVPzcfWC4ShysccVZFQKkX6soGLT7JRvzVkj9MZ0jsamHQ0LXEEvzQf1YrmbyGaC9RbCkR+A3q+OQUEDNt21H0t7azp+/8c/V73RdPn/bv015n2ohm5NsP6x0lyZDJKH2Z2FXpZ5SoZ0M4LLzagTOB8v6m1e31tz27rHSGH2y0rThFA2cbVtyYFByZBQWdtenCQldICTIjFu3v7kATRN4CFKGQWhVCCfhML5pnPGHwmSOZDHKRMGklA2FwYrbFKJpsd9Uvhe6nsiR0ATCk0U6SntIqXB3tZWWka6HTNiqRNoArUFVsU6kVK/zwUHJ1v3KZmpJj6AtCLv7oW+4FDzHM/nA/lmkqF1AIQFi2bOrqC2lZMfexwA1WAf9LQT9LQR8pT6bI8MHJt+QoJgZrPqOvIez0DUO9O8AQNN0lud7Suc08oOpXXZ9t/g8ZTunMWuB83VrLUS+nH3Pfl/FPX39NW+hvbUbgCd33MeXv19SzJRS8rN7vl5c9lXXvavudwhNQN4fXsZqZ9tufs3H6O1SfWU79z/Bv33zAzXFvMorzvrVC4uvJ6pr7z28hYGRgwCct+FKXv68mwHIWmm+ecc/1dwHOaImXbYQjJuBGaFpA/SVCYOtXLKutP9aaQAeTWuMpecmJXQeJwCmpp5zOY+FXaqXcG//fOB8POBmPLJZ8ISYszTtAjQBsVS1JZWbdisqlG7Owwpb6DWElYQuMFp1Mofr6+DMFajA2UWUBUVCCPwLVdUjsSOhFNHL4KZdPEc2pPn2D/YVXy/unZ4wmLQ9nN8MFP82XroMIQTauV3F8c/bEUUOlBIUKc2gO9Sgx9nxEB0motWECb/rsnJ17elWncv6nOvZUjVCS0AVxgpB7btf9x662hVN9Ce//wl7Du2e1n6VYyis2Kfh+OTPv/G4ajksv29tx2LzjvsAaG/t5ow1F1St5x0uBc6iicB5w0mqqA2naOA8Ei1lTCazQJBSTtrfXEDIr3qHHQmBxQECiwJkj2RwEjZGW+mCiKeUUFYz6tLNslnC8cmDUilQ2TVUT8KapaKSkl0QBmtAtwGlOm47MBZXvWG7Diurqq42ta2WoCDkh919MJCfa8eSEiHqB/bHG4eO7uKL3/nrog/ubMI0VNLAdma34jwyfoRIXFkyXHjW87jzfw5z5/8c5vb/2FFcZjRytN7qJRia8i2vhbyHs2XnODyoHtgrl6zHZ85BWdQylPc9WWXZi1Yz33cuBMzSfKa3RXL+EhW8DSR0nhkpfX9v1xI+8/5vYRqq7PrL+77FT+7+CgBbdj/IoaM7ATjrtEtYv/r8ht8jOvIPgJSj6PQT0NW+gH/44PcI+BVN6r7Hfsa3f/6vVcuVK2pr53UjluYtNfpSeEOlKvW9j/20+Pq5l7yKt7zyr2lr6QTgdw/+kD2Hnq7YrjeaLQbOh/yteEKwdAZo2gD9g+UV53UVn83TtedRE4ZAuBKZc9E1QWcr7B9QlZ15zC7ctEs2dxJofqAYdpF4pSCqMASeo4LMApxEvr+5jiKx2Wlih23s8bmtEupm8hXnGsxD/0I/2WGLxO5kBaPQSU3ut3u4LHBesmDV9Pbt4RHlzABoG9rRTldqvsLQ0K/MJ3klyMHSODWZOBiuRIQMRI9/VvqctRUlWrJ3ZOoK65qmZs0FunZbqI0PvOkDanuex7/d9vlp7VcBli05mp+nD0dq9POXwXYkY1FonTDd2773kWKr1CUbr0XXqu+BojCYWbLpmoiCDokmJOt75ivOcwqFIotZRwCrHCKgI/zNlQnbQqoSW8gMaX6N4IoQLWtaKgLUsZjEcpSH22Qwm7hXs5Yk2ai/uQzSqj9RlRkXYcmaVlQT4fdB/7Ckb1j5XrcEKn9LW0jg98HOw5IjI6q/ea7YUA2MHOTD//pK7rz3Vj75pZtIpuOz+n0FMTTHBXMWK867Dm4uvj5z7YXF16FgGy1BNcCMhgeq1psIYWrIpFOzl6ng4Xx4YBeuqx5sp6/ceKy7PvuwvGIPc84oo2qbnspO6WJWvJwLqBAJO1B5o56z/nI+fPN/Fv/+6o8+yUNP/brpanMBoqNsu/Hak7N1q87l79/71eLz6Lt3/jt3P3R7xTLlFWfR60e7pEQP9/IiYVJK7n9ceUdrms7VF72MjtZubnr5R4rL/s8PK32jvc3jxdd/7FDCITNVcS73uC7vcQY4syxzvXM+cJ5HHkIIdX3m6ZntIdVOEz/53INOOthxm6Ql8J0Et2PApzRp0mUMZWEKpO1VKGs7cVv5GNdpddNMDelJskOTuxqcSBREz0SNqo3QBf4FPpK7k2QHSr/DjjgN/ZsB+odKgfPShVOnasuMg/v7fAuQAP365RWf68/prRK1dRHkhNaQqi0Q4NcRbWZVn/PKDo8ledeHrUMGyWnoux1rxRmgLd8Dnc23krzj1e+kt1ONyz/7w0/ZeWDntLYLMBpVAniLuyGZbvz8iyVV9btlQuD82NaSDdVl59agaccsyIvLiZUtCL36Wsk5cCCiJsgrOzyCJzE79ZQMnKcC0eVHdDcX8emaQAOGI/VvUsuWDIxVZ2zqwW+U1quHVEYJWNRV1C7toPLgrYeMi0Q2ZXze0QKuq0TVavVlqGUEhg57+iWZLATnQFEykYry8S++iVhSTeLT2SS/e/AHs/69QoDt1hCgm0HsOvBk8fWGNRdWfLagexmgAudJ1aN9mmIeZGpcK3kP531924tvnb7ynOnv9PFCWc9TRi/N1lp9quohxOz1OANctdrCr6vt//Ggr+qrXnD5jbzlFSrolFLyua++l4c23wVAd8dCrr745ZN+R3ngLKP1R/jLz38x73t9yQfyC7f9Bdv2PFxat9Dj3G4i/Dr6hd3F/ml38zjS9di5/wlG8mJmF531PDralJ/dK659R9EKatueR3jgyV8Wf5P3VN4qBLg/Hzgvq+PhPFUUFLVbgu10tS+s+GxeWXsedSFEUfvAZwpyjlKwncfsQUpJNmyTkdqk7WpzAT5TMcbK+5w1Q8OzZUXF2QrbiEmKMUabQeZIBreOa8VcgJtpvG9Gq4EQgsSOOG7GRboSO2qj1bEwLeDwQClwXrFo6lRt977h4vxVu6AbbWmo4nPRYqJd1FPxXlrXQYi6Ps7Sk0gNhF9DtBpVfc5CwHPytlSuFDx5dOoXrFgYLGqFeNMMnIMBlbiJ5Iu2raFWPvjmD6nfICX/duv/m9Z2HVcVtvw+VUj0ZH37NYBwQoKsnsc+mg+cNaFx0cbnV61X4d9ch6a9b1zHk2q7J6t/cwHP+sB5qmhrURmcVLb2xTceV73FraGaH1ehEAzXs38CpdYsvcmDMmEI5UddBzJuNS37bOiCng7RUBUc8gqB+WLeZLT42Ybj2Hz2v2+usM8B+Pk9X6/Z6zmTaAvNvjBaecX5jLWVgfPCfOBsOzmiicpe1SoEdEg5eIeSFdlXKHk4F2wHQAlPzXVUWlGVU7U9RRfUmDWqNkDIhAuXqgE4ltPoi1bfZ2995Ud5/mWvAVSfsCfVDr3seW8vUrkbor1MRyHeODX+mhe+l5c/X/Uk247Fp778No4OH1DHKameEaJXXbCixUQ7q1OtmHDwdsUr1LSfd+mriq9Nw8d7bvx08e+v/d9nsOwcsi9VrGQfXdDJeJ7av2QGPJyzuTTD48ofdMWSdVWJv56QZEG+x23PmMG869A8ChCGgDKRJ12D8VjpApFSEnkiSviRMPEdcVL7U2SOZsiNWXg12iHmMTk8S5KOueTQTgrNE4EAAYl0GVU7z1AqVJylK7FGc0UbqnowO0zsmI1Vw7lgtuE5XlOWWE7KqVAFrwX/ohJl20m5uDmvShRtIgoVZ9Pw09O5qOGyteA+kZ+36ALjT5bVXEa/unK7ac0gYMj61UvbA1MoXZ+AqjpPLC6V07UfmQZdW+gCsSxPTR7PNZyD14MmBIYBI+GSbtDbX/V2Fnar3/uL+37B9n3bG22iJsaiEE5CZz6WDfphKExNaz7HlYxGlVhZOQZHD9M3uAeAM0+7mI68Zks55KHy/ubaitq7yvubT2JhMJgPnKeMoB+yOdVzPBFSSgbHJIbevJdxIRgejdaf7UUSEqMZypOhxFCkW0MQyJPIuI1ogqY9VXS1CRZ1n9igWUrJF7/zEZ7a+QCgfIfXrToXgKMjB3miTEp/NtASEPS0z94xcF2HvYe2Akp4o2uCPdTCntJAMxpu3OcsNKH6ffqSRfVKqPRw3l9WcT5txclVcU5qpcGv1fDIN9/PasUZ4JxFpcFg23D1DSuE4K/f8SXOOu2S4nuGbvKy572tqe2X+yLKaOM+OiEE73/TP3PR2So7HE+G+fv/fCPJvpJdmegtjZDapaVMvvvYKPfn1bRNw8eVF15fse0rzn8J52+4CoDB0UP8dtP3i9VmgMcXlCY3M1FxLk8YTaRpF1DIYGccQX98vuo8jzzyllSFyWhLQPX5FfpZ3aRLpi9D6kCG2NNxwg9HGLtvnNHfjxJ5MnYi9/ykhZdxySQ8bE2bdZeJmULAhHCCSraWLPU4OwkHJ+mitzR+tghdgBBkB49/4JwbtohtjU+a8HHiTl26eQHllO30wbRS1G4QOEsp6R9Syc3erhVok1nKTFw/YRdtFsXqVkRP7SqEtjiIWN9e/DulGXWrzYDSLzJ18GsIkZ/3TGhnPGexU3RmeOyISY3p86TQyv2cp9HnDIquPR4vtQyEAiH+4i0fKn7+/75ZrVfSCJ4nOTIqMbSSs05LUNG1a7FuYkmlzTRVmjZMqDivql1xLg+czziJhcFgPnCeMgSCgA8GRmWFmASoi3E8Du21Ey4NMRajplWG40piyeb6mzFUX05NxeSsq6pNTfZzn2y4/TdfrvDD/cwHvl3Rj1neT3oy4tDRXWQtRUvYMKHaDLCgqxQ4j4xPLhAm/Dr4dbz9iZJQWN7D2dNgf77ivLBnOe2tXQ22NDOQjodz7zCJPyYnX3gCvMEM7qaR4t8JUUbVNgoV59mlaoMagAuoFTgD+MwAn/3Ad1i2cA0AL33e2+juaC47XxQHA5ik4gyg6waf+NNvsHrZBgCODO/nJz/4Yml7vaXJiba+o6Ra+kwUJ65G74s3XktrqKNyP4Tg3Td8qvj3vQ//FLcQOBuCe4Lq97T4PNr9x3bMpZR88yclBe9z119ec7ly6tee8ElQ5prH8UHekop8ANQSUBPHZD5faMdt3IxLcHmA0KoQodUhQqtCmB0muYEsdvzkroycCLhpl2xaIjVx3MRCZVZRiqeLgF9RtQ8Pw5ERyeC4JByXDA4pkTM77uDlGgePBZgdBtmjWZwadlazCTflYEedKkXsckhX4qacpn5HgbKdHcyCJxtWqUcjo6Szan6ysGfq/c3lFGdteWO6ZrkThBIGm8SKyqch8kzLWn3OPh0uWlZii+0em/ocWZQLhPVPj64d8EPWUgmcAt768rexuFe1Pd31wF384K7vN729cFzFI51lzjqmXp+uHU0q55yJKviPbivZUF167guq1pOWizyatw9bGECEas99dufbqHy6ZE3XfOD8rENbiwqSoxPm+CMRiePW7wluhEydKnaxv7kZGnDBy7lG4CzTDsJymxIGO9mw6clf8fUff7b491+/40ucffqlPOf8P2FR/iH+2Lbfc2R4ZszkTwR2lvc3r72o6vNCjzNMXnEuotOHTNp4BxJq0pH3cB6MHSaTUynJ49Xf7N43hPOLIxz58ABemWJmPUjXw306jPXfu7D/fUdFxXPIUCnTgCFV61FBHGyWmZfrelwC+cz1tiGzrhZZZ3svX/3M/XzpY7/mz97wj01vv7LHuTnl1tZQO//4oe/TmWcoOMOlVLNYUEotC12g5/vHhBS8O/ReQiJUQdMux/rV57NyyXoAzMNWiQ57ZieHc2o/l7V5kyqxTob7Hvspz+x/HFA2VC+84vU1lysXCNsdPknKXPOYfRQtqdT1EfSr8TSWH7vtSL7KNaElSW/VcVMO1ujcFnqai3AzLumch9GEOOtMwDuYwPr001j/sm1aNFlQ1qGWBTsPSbYdkDy9V7KjX/DQEw6P7ZRYEQuh0ZQ+jNFq4CQcrLFpKE0dA+yYg5NycJP1gxI36+LZEtHkHNW/yE9uJFfUwKiHfX0l8cbpWFfKo2Xj0rLGgbN2Rgf2GhUNbmpf1FBRWzoS0VJKpIoWAxk0KhhqMAN07RkQCBMI/CYMhyVefvIQ8Af465v/prjMB//lg3z3l9+ddFtSSo6Oqn7liS2UQb9i3ZTTtV1XMhypbjfM5tI8vVM50/R0Lua0FdVte7I/XSxKiDW1q82xrGAgoQLndT1usx2jcxYn+e6fGJi6wPVK8vEAOVv5pLXWVmGffJsGDI6XbpgCUjlwnCb7h3WBcLyaVjVkXaSsraR4siKZjvHfP/h7/uEr7yzrC/lbrn3OawHQNZ1XXHtzcflf3PPNE7KfM4FdB0p01YnCYAALu5cWX480Y0mFmgSI3gDyaBrvaKro4bz/SMne6ngEzlJKvCfzga8Eb3u04fLe/gTWP23D+e4B5IGy7JVPQ796IX/oVF7GrT41cAgh1AR6FlW1QXVKnLmg5Ck8nKz/eA34Q5x1+iXo+hSCvCn0OJdjce9K/vGD38NnBlimlxIs5RVnQKlr5x8Pz/dfy1c7vs4VXF5TbE4IwfMve7Va1ndt8f3Ymb1FAZAlx6ionbMyfK0sIfbe138Ww6g9qVnX46AJtZ+7I/MV53nkYQiEI4s2NEppu1BdUQrItfpWhRBoAZ10X2ZyscV5VMBOOqQy4rj1N7ubw6pgELFKfbJThCZUu9mSntK/hb0aPaZL/4hk7GAObZL+5gKEJhCGINOfPW7XjpQSO2LhZTycBgKxXtZTlfMmCyhCFwRXBAksaVy52dtX0pVZs3xdgyVrozzYFMsbUzaFJjjyujN54xnP5c6elY2p2o6HaC2NsSJoqL8n+jkvP8bAeUGgWJSajiVVAa26S2JbnFik9Jve+vK38p7XvQdQ5/kv/vVD3Pbz2xpuJ5pUtrzl1eYCCnTtcl2leFq91zIhftmy+0EsW7HPLj33BTUTR+X+zfVo2uVV/DNO8v5mmA+cp43WIAyNq4AZYDym6F8TL7xm0RZUF3tiwj0XT0qabRcRQihHnloV54TdvGn0HIfrudz1x+/w9r+7jDvu/mrRNukFl9/Am1/+4YplX3z1TUUP4t88+H0yY1Fkam77LNZCoc9T0/Ri73Y5plVxRllT0WLgHUgiwzkkVPY3HwdhMDmcrfAWdnc1tg9zfnWkwo5JLAxgvGoFvk+ci/HKlURsNVC2+qTKhGp5C67joPUzWZ/zVOBJGIhr/PGQyQOHTKSuQX4S0EhVuxY2rL2Qv333/7BULyVY/rj/NxXLaAsDHL08S1aqc9GtdaP9eBD7f3ZX+DsX8LxLXkWAAJf7rlBvhHQOLyrR+pcdo4fzj3/zP0Vl74s3Xsul51TTxAoImhTpX30xnYxzajzr5nFsUGOirFDSLVRcnISLHXfQW2vfp2aniTWWK1al59Ec0mM2WakdNyuqcp0O74nxBktOEYbA77lYcZfBfruuf3MtmJ0m2ZEcTuL4BAnFgFlKnET969XNeki3vqVWLWimhjZJiXDPoT3F16uWrm962wV4R/NRnF+rSujWQjinE88LajayogKqWJa1+py7grIoWHUgYjCcnNr4ITRRqpRHrFL72xQhvn+A0Hf3cvCLB0rvCcE/ffBzvO/GPy2+95HPf5hv3FG//XBwvD771dQFjgfheOm4RZMSx6su0FX0N59Tu79ZHiwXBqsXOJcJg53kitoA85y2aaIlHziH47CoWzIwJvGZzYuCTYTPFFgOjMclHa1qG56URJJN2FBNxISKs5QSGbOb9qs+3khnkmSzWaBGemwCtu99lFu+/3fsPby1+J7PDPCG6z/Im176l1UZsY7Wbq57zmv59QPfY5HVi/v53Vi6ifmBM9EWTzPLcZyRziQ4PLALgLXLz8Lvq97vBWUV52a8nMsh2n3IobSqYgoqFLVPX1kdpM80vK2Rir/loSQy4yCC1Y8nGbOQffnsUpcP88bViNPbiufdciHnqtdt/ry3s0D19s9yjzNUBs5bhw1eeHrzAa7rwQOHfHzncBdPbguyf9wgbZeu53dclOF1HT5k0oGEjfTklBgk11z8chI/fhgcGHVH+ddvvx9/a4hli04rLvOD0W+zI/Yg7w69hyt8VwIgDySxv/AM+rWL0V+0tPidK5as45VLXk8gpxJT2XUmR1KlbP3SYxAGGxkZ4fu/VP3Ymqbzvtd/dlKa5IZel/1hAw/BgcR81XkeeZRZUoHqc44kIDlq4WVc9AW1B1g9qJMb8siO5PB1T3UQfnZCupLkuIMlNELH4RaUUlYKXA5k8AbSVVZG04Kh+uO7PYvRYY+VZ2jUDgsUjoxI2lugvUWgt+hYozlyIxZm++wfCCft4mU9lewJ1w/avKyrxsQZxs4DJar2isVTqzjLlFPyAF4aampMC2dKy9SjaktPKl3QCfNe0WYqJ5gJ4+dzVthFAat79vt503lZpgJtRQtuPoj0dsYQCwNqrE7ayJyLtqEDbWH9Oac3mkXuUUUDa2uMkRGXhQvVvgsh+If3mHwvdgABAABJREFU/wOGbvDlH/wXAB/9j4/iuC7vveG9xW24rmQsDoNjJSXtWgjlk4erF0uEBiPhah0lKSWPblX9zYZucuFZ11RtR0pZqjiHDMSC6qSH68GjZVX8Db0nd38zzAfO04aSj5cMhSUBnyCcaHyhNoOQHwbHYeUiiaELMllIZ6ZI/9YEMjsho5MXBhNNCEIcb+w59DR/+S8vxzA13vyyj/Dq695b05pnPDrE1/7vM/z+4f+reP+ai1/Je2/8NIt66wtSvOq6d/PrB77HG4JvwnR0cDy8x8bQXjF1EYsTgT2HtxQpX7X6m0ElDzrbeokmxhiZQsW5ANEbQA5lEAG9KAzW1tJZtLmaTUwMnPHA25dAP6dalMx7pqR0q1/Ug7auveLzlFUaCBVVW4KmKVua40CbO3Ohgy4krhRsn2LF+QdbA9z2VP2b/WfP+HltuwlHUf3aCRs6mp/Qy7SDz1ED2IB3FNux+MSXbqq57L/bX+Dyd74BcdcIjOfAk7i/H0QOZjDetKY4GfmTlhdDvg30Ee0xBuIlxfBlx0DV/vznP082p6oQL3vu24oCZ42wYYHDr/aogXtfbD5wnofCREuqloAS4IkM2pg07lvVWw0yhzO0nt4yadVtHqq/OZPycDT9+NhTxu0q2q33xDjaK2YgcNYFZDxaLYuhnGQ0Vt9mNByX7DkiWbtU0N6Sp/oHdTJ9GVrWNhcMHgvclIPnSHztBm6yvn2Um3WZDb22AlU7FGilp3PxlNYtV6GeTBisgEim9NvqVpwdD2lqMOE4iFYTGTQQWRfKhKyuXWvx7acDeFJwxzN+Xnt2Fv8UhvDyPmfnR4eqPnf/MITv786pW8DytpR0WoQn2f9Eivbr2gj41QkTQvCpP/0UpmHwH9/5DwD+/ksfw3Ed3vyyPyMclwyFlTK2EBD01z/RLUGIxBVFWxPq/44J8Uvf4F6GxpTF2DnrLycUrC5sydFcyXt7dUvNZ+ltTwWKCYnFre4xt3DNBcyPBMeAjpCiaPcNS1wXfMcohtEWUhdwJK+ql8qC5YBvCsluYWhVPnVkXUVV8829ivN37/x3claGVCrF//7oM7znk9fwxPZ7i5/bjsXtv/kyb/+7yyqC5jXLz+Lzf/MzPvGO/6Xrx2ly/7AFr6+2IvNpKzdy9Wl/wuXmFcX3vGeis/abZhqT9TcXUKg6j0eHcL2pZfWEoSEWB4noMcZjw4Dqb25GDOVY4I1kShWDsgHO21XbCsbbUQqytbM7qz5P5CYGzqgJkH58HnUBA9bnM6r9MZ1Iprnjl7HhJzsqs7ULWjwuX2FxWrea9IczGiN6SdBLxiorC9L1sO84jP3DgzV1Dsrp8FZH4yTC1Re9jMB5i/B95Gz0Fy0tjhTejij2LbuQUQuZsFkYUcmNIXeIn+7+DkcTpWfMkmlStfcc2sJPfvITAFqC7bztVR9tar1yCtje+cB5HgUULKnyjBNdF7iOJNqXm5R+a3aa2GEbe3yert0M3IxLNukdNxFSWaOFxH1q/JgUtoswlNiqTDmE2nSOjJZa88phO5L9A5JIHGKp0udmp4k1fnyo/k7KQQjQ/TpezsWtI5LWjBXVVDEeSxcDrBVL1k15zlCkaQNH2lqZWPephUgTFWdsqc7hRKp2wc95QsJlabvHNavVuYpmNX67b2osE21Va+OkRNLB2xap+7G3pfKzzJ4kBwYrdY+EEHzs3X/PR97+18X3PnXLJ/nELV9iVx9YNvS0w8LOxuegQNeOJCSxFNhOdfzy2NaSmvZl59WhaR9qTNN+8LDJD7aqYoAmJH99dfqYBUPnAuYrzscAv08wHpdEEvUzkVOBrgkEkpGIZEGnIJnJK9VNJUVoCGTGRUpZfIDJjKLnTGZ6f7wxNNbHI0//tuK9/qF9/O0XbuDKC67neZe9mu/8/P/RN1gSnmhr6eTtr/o7Xva8t6HrBvaPDyH3qUyD8+PDmH9xVs3s7lsXvgs9UpokybEc3mgWbUGgatm5hl1litpn1qk4AyzsXs7ew1vxPJdwdLiCvt0MhKGx/2hJGKyWguJMo7zabFy3WFU1LYm3O15xDYOyHPH25rNKHWZFhreAZFnFuc2f73HWhQr8jtPlf84ih52j6tG6fdjg6tWTT5x+vcdPwlID/PWXpHjXGVZRC+yJowZ/+zuV7d2WDXFdfh0Zs4AyG4zHx/EeUj7N7pIgxnMrM/9yrKQQfNE1L+KNsWHGo0NV+9LZ1suNL34/oHrDjRctRVvdgv3tA4q9MpDB+tJOtDM7yOtxcb91L/uObGNR2AVM/LqkZ7LesxqQUvI/3/9EkWHxlld8hI62nknWUljZ4RE0JBlHsC8+T62dRx6mpsTBLA8CagzwOy7RYZtlZze+TjRTQ3pKRMy/qBlri2c33IxHKiUxGlS7ZhIVDgy+vIJ6wsHbHUM/q/OYti10ZWEoMy4tXTrDKRiNwPKFlcsdGZWMRqC7XWnUeJ5E0wR6QCeXy1P9e2b3eWSHHTSfhvAJPFvipl2o4SLpJBzEDCc1ntp1oPi8nipNGyqFwT67exG58SB/e02KcxbVT7yGKyrOdQJnx0P4dCUMOgFajx93OFM1JXj9OVnuO6jO1e3bArx0vdV0zl30+DFevRJ3exQR0qHFVEJknsS9exAA97Ex9It7q9b1hjPICW4iLcMpDg8rJuvSslWEEPzVWz9KJKHzjZ/8CwA/+OVnCfpc3vSyv2xuZynRtQ1N4q9xeT5aHjjX0Rdp5N/cH9P41wdK85P3XJLhvMUnf38zzAfOx4zWvKjXxIfpdNEWgtGo8nQOx5m6MmW+Lwdbgi8fOCed4xY0TAW/+MM38fKKTa997WvZtaWPHfuU9cyDT93Fg0/dVVxWCMFLn/tWbn71x4oTaXdnFO+RkoqmHMjgbQmjX1A50ZY5l6WHO4EJlK4dUbTnTY1WdCJQEAYLBVpZvuT0usuVC4SNhI9MOXAG2He4rL951ewrapcHzvrFPfjDUVKPpCFqIYeziLI+dG93DPKVBO3szpqZ7fKKc0t5xVkTs9LbVQvnLHK4Pa+vtq2JwNnx4Mdl1eYPvCqG72AAme/VvnCpw+JWl6GkztZ0sBg4M6Hi7JZZcnk7olAVOJcqzr4lHbzzBR9v+jdp6zswP7AB+5v7FHU7buM9Wrr37s3dC0YXw2mViFrd5U6aWf6fH36c3zzw/Up2hJRFv/Jli9bwyuve1fQ+6ppS7Hx6yGQ8pzMYdulY0PTq8zhV4dMUVTvnFgPnkGsTj3hIXxP2Qm0Gmf40rRtaa9Jf51GCk3JIZsB3jG1rzaK84qw/d1ExQPGeGD/mwBnyQ0bWRev14/fg6KhkcU/J6zaWlBwcVBalPl0JxGYs1Q4AoIeUp3P7mZPrt0wXnuNhRy30oF4cE91UddDpWR5u1kNr4ppvFq4reWpXSRhs5ZKpB86FinNWaBzxt+AlBR/+dRtvPi/LTedlawau5VTtznoJWttDdPlqV8BbjJp9zut6XC5aavPkgMlQUuePh0yev7Z5xoB+xUL0KyqDASkl3tMR5GgWeSBZs2AzsdoMQH+SoCnZe0TFBW0htZ+JtGR3n+SaSz+M4+p862f/BMA37/gnXM/hLa/46+pt1UCBrq1pavvlSGUSbNv7CABLFqxm+eLa885ixVkTiJWlIDljw6f/0FrUaHneGovXnnXqWPvNjwLHiPYWwcpFYtqiYBMRCkA6BwPj6iE8sWF/UhhCzcTLVANlNKfUk+cQsrk0v35A+dGZho+/+Zu/4Ysf/xUffdd/09Ve+eA567RLuOUTd/MXb/33YtAsUw7O7Yertuv8ZgDpVGYgvSfGi7592+2SYvTe3z1YUc2eixiLDDIWUZOBM9ZcgK7VpxaWB8rT6XMG2NdXEl07bcXsBs5yLIscUBMfsSKE6PLRcnlZBXUCXdvbES2+1mvQtGFCxTnf4yzyPs6zTTsvYOMih7y+fVPK2vcfNBlJqfN62QqLM5ZXDtSagOvPUOIpY2Y5VduqeC0PJEp/H0wq0ZUylFecm1EunQhtURDfBzdUeTW6i0yOyH5oL7VCnL2wcWZ518HN/OR3XyGViZPNpUr/rFL14b1v+ExNvYNGKKdrPzG3b+2TBlu3buWSSy7htttuK75322238YIXvIBrr72WL37xi3PbskmvtKQCCFo2lg2Z3OTPBLPDxI45WGOnzsRvtpAYdbDk8bOiKgbOAvTnLoYW9bz1dkSn7elcAaGqzkLX6GiBcBLG86YPris5MCjJ2dAWFJimaq3LlF0mWkDDTbt4NZxOZgpuWvU0a/mkjtAFdqz6t7tZtR/NWlE1g0ii0sN5xRQDZ5l2VCIWOBhowxMFYVzBd54O8le/bmMwUb2/BXGwNr9XtwNROl7RhWIiCn3OE/2cAd54binB/MNtgWOWRhFCoF1aKuZ4EyzTVGCdT3oLEEvzxYKEQ7tlkc7CvqMSx5UMRyRP75OMRmFxD7zlFX/Ju2/4VHFb3/rZv3LbT/+5qedxga5t2dXq25ufub/oVnPZuS+sOXeSaQc5oo6VWBYqxhhSwr9tauFwVJ2Y1Z0uH74ydUpQtAuYW9HUPBAIfAaMRSQZaxqK2vm+nIKytrRcRdWeY4raf3j0JyRSUQCee+krWbBgAUIIXnjFjdz2z4/yhus/xLnrL+dv3vll/vPvfsX61edXrO/89LASRwLEGe2IdfmM7niuohImPYm7abj49/1LHmPAVarTK3PL+NAn/4Sv/PATJNONLZBOFMr7m89o0N8MVAh5TcWSqhwFKyrT8E8rezwVuGXVZu1cxStrvbIscN5dCpyl6+HtzP8d0BGn1c7gJ63SI63VL9Wgp2uq6nyc5vZtfsnqvDXS/rBOqoGwtpRw+/ZSMPz6c2sreb749By6kIybpYC3PHB2t0Yqf5+sTjwUe5yFopVNB6LFxHzverSLShMB/xVL2LjusorAeeOixpPWn/2+ZKWxZMFqVi87s/hv7Yqz+cAHPsAVF7x4yvt35oLSROjJPafQSH2C4HkeX/jCFzjrrLOK723atIkf//jH3Hbbbdx+++1s2rSJX/ziFydwLxtjoiWVlBIzbmEbOskmhHNFnrGS6s+y/6jEnYn+2VMUyXEbS2hTElWaLqQnkcPqBNqdfsZcA/3CbvWhWxaMHANEq4FoVVkAQxfoQlWdPSkZGFfqxb0dalkt7xFeETibGp6tKr2zBTelFLULgbMW0LEjVlXw5GU9PGtqVlSTYSgsGRgtZShXTpGqXd7fvC/YTsCQvPm8DFq+B2jHiMF7f97O/z4e5AsPhvj7u1t438/bGE6q39DQikqCqHMhFvucayRXzlvsFK2p9ocNHj967BezflFPMdpyHx8v6i0AyKFsKQBd3Yq2scSxl4dS9HYq0eBnDkm27pNYtgqa9Xyl/PUv+QDve8M/FNf57p3/zjd+8o9NBc89bdDVXv3+o1tKNO1Lz22Cpr26NG/78Q4/fzykApeQKfn0tUmCp5jkyDxVew6iLQTxFCBBm6IaY7Evx/IUOzvtqr6flrlzqqWU/PyebwDQJbr4s/F3cvh9/cgbNoCu0xJs412v+0Td9d2nwnhP54OuoI5542pkzMbeuxMA5/cDaBf3IPw63u6YUv4DxGlt/OX7buHw/94He8EQBudp5/Hj3/0Pv3/kx7zztR/nT658I1qzxtnHATub7G+GiV7OU7OkAshkkxwdUf6Ba5afia7P7jVTQdPOK2j7VpnQ5VNeiAeSyJyL8OvIA8mimIe2oV2J4NVAOVW7rUjVVj6LUqCqB8fBz/ycRQ4HIwaeFOwYMbh0ee1AcvOAwf6wOs4beh3OrdMD1B2SXL7S5skDtcXBak0SvR1RNWCTt20pVMw6fXWPXzMQhobxhtV4Z3VAykF7zgKel3sN27aWFLUbVZwjsRHuf/xnALS1dPH1f3igwmJN6JI1Vyc4+ICYcq7j7EUO7z43yRp/lne+oUaT3zymhDvuuIONGzeSTJYmSXfddReve93rWL58OQA33XQTv/71r3nlK19ZcxuWZWFZldkjwzDwTUX1sg6k9NBMiWZIhF7/ahEmYDkIPMg4kLPR23QSGQ8pJr8XjC6d8UMZDmZDdLQYdLdP/RnieV7F/6ca3JxHJumgBQS6CbUylYVz1OhcNQsZyRULBI877fzHTzu47cpeWh4YUfvz5DjG1cfWqyE6CmOg2t/uTmURenQcDo1IWlvB5xPFz30+ScqSxWtK+AWe6+FkbfRW9d5MXwd22kZqEnSQSLSQwM66OCmnQvzOyTpI4YGhljtWpDKS8ZRkZEwFzpqms3TJqqbObWEZWR44B9q47vQc77gkw3NWWXzu3lYGEzppW1Qkl8uxpM2t+X1SSjQTRAB1z9eAvsDEHU9XrS+AN56f4VO/V8n5H20LcNmqRI0tNA/RZaKd2YG3IwZxG7kvhtioItZyNW39gi7EwkCxqVD2JfFd2k1Xu+ToGHS2QShQePaU9vuGl7wPw9D58nc/BsAP7/oiHi7vufGTDZl2geKwWxbIS8lj21Tg7PcFOf+sy2sf4zIxXm1tK0KXjKcFX3+iNJb/3fOSrOiu36s+E88D3ZSANyP3U7Nz/7kTTc2jCL8psB2Jf5pZGikoVZwzjhJJmENWGtv3PsL+flXZfP2St+AfhfRoBnNdBO2iauGEcsiYhXNHiaJtvHYVosOH6PChndulgrGEg/vAMMYLluLmB1EA/ZpFCCFY+fyLsPeqvpznBC5nk/0A0fgo/37rh7jz3lt5/5v+mbNOv6Tqu08Edh0sBc5nrLmg4bILjrHifODIM8Us5ekrZ5mmHc4VRUHEshCiNwAoMTB9Qzvuw2PgSh57IMN9voW8d6ifwuNYO7t+QJScaEflSVVx1gp9zgVj59nFOYscfqGst9k+XD9w/lHZhODGc7IN6UwvPSPHpsNtpDWdkOdCvuIswznkYWXpIRYFkAkb0q5KGhXu/ZRTpKWJGRDEE0Kgn9dd/PvyC17Gfx1YCYBu9dEdbKXecf7V/d/GdtS+X3/NTTV9yaeLzoDklesyZGLOtJ+f81CIxWL84Ac/4NZbb+ULX/hC8f2DBw9y/fXXF/9ev349t9xyS93t3HrrrXzta1+reO+GG27gxhtvnJH9vOgmgGb6ECPqXyfwCii4lzc7JfYBZzBAIgKJ+uK4k6K/v3/6K89xdFwFlwFQu5S/b98+fvrTbVXVMMMwuOKKK+jtbTz+lyNxf5Ij+deH/aqf8pkVAa5a5yO310IeTrF0xTj+1bMjzHXeedXvrSnsW/mbK2AoNQSpymVn7DrQgOdAgkrW3JHRI9XL1ljuWHDeGo+BDyuq9sqVKzjjWgtoQLGagGA6XjxW+4Lt3PLmMGtW2qwBrrk+xqe/3c1PH6psDdI1ycJOl9WLbT72hghrVjW690fqf9QJnAO1ngCrroRv7QhwYNBky5BJdEmOC05v/nfVQsJt4chHFAsssH+I5e/RVIC/c1wtIGDNe0xEwGPP/wIeGKNx1lzd3BPqr65+AwvXO3zyk58E4Pa7vkzLohQf//jHp9SmtmPHDsIxddyuvOpyNlznUOsY9f0oXrykV90gMRcn2PlYCFeq73rztQnefFNzrI/VV9R2xGkGa64GGOFwdefm1Le1Zs3kCzEfOM9ZLOmdopr2BMh8j7PMzD1hsJ+W0TQvWnolqCInXl+qYeAspcS+/VCp8nh+N/r5pcm7/uJleNsj4IF73zDa2raioTw9frQzFadKrG1V1kc5j+e2X8fj63dz/5M/B5Sv9Ac/9xJecPmNvOt1n6C3a8kM/vKpwfVc9hx8GoAFXUsn3ZfezsVoQsOT3rR6nI+nMJhbZstQoGkX/z6zQwXOQP9jKe5e7OOmfTEVOOsCbUMNblEeFYGz31PzN0Oth0D5Hx+HroVzyqjK9fqc947pbB5Q0d3SNpcrVzae/F+01GFRq8u4ESBkpfBiNlJK3LKMtXZhD3I4g7c5DDkPeSCBWN9xzP3Nk2HMXgK6CoDdyP3sPrS0pnWa49jced9tal+Fxiue/44Z35d5zAxuueUW3vjGN9LeXnm/pdNpWltLk9mWlhbS6fTE1Yu4+eabefOb31zx3kxVnMODFvd9c4zWhSa+YP0bWyYsMDT0i3vxDiXxDsSxu4Kkc3DxBkFLYPJB8ulH0/Q7AS6/sYv1K6eeiPY8j/7+flasWDGnWE0zhexgloe+O0Y0FKC7o/L37Tm4he/84t95aPOv666/YsnpfP0f/4hhNJfxcu4pTbYPB9T1ePcf27j8rIWwVwWNh7+SxXxpc6r8zSJnScZisLALzAkWPpmcxHLgkg2CQF6EK92XpuvSTlrWKDrrTF8Ho/eN4SQc/GXP9XRfmu4rugmtKCUl41vjxHcnCS0/9kSl60qe3CPpHzpCJqP6zJd0nsHBB5oTQRO6ZPUVScaesPADOaHRsdJH4HCAg4dLid33n2XxkkUxRlIavSGPnpBHZ1BSJI31BTjYV50IlhkHaXsYF/fW9U2WkRzOk+OIBYGaLLTXnJ7j84PqWvzCt3v47AunH9wBSFqhdQSSDon7Uhz8XYAlq6JYfWrc105rpX+nmguJxUHkQIbc3hwH7g4hAs1NWq5c9af81c2tfOHWvwJU0jLSr/H+m/656eD5jp8/WHx9zvIX1zynUkpy2/KJhFaD/j1diL2CBx8vXVtn6Ex6PRSug0MPtRbFUKeK0d1pLr6hhzXnzlwCfjLMB85zFMcSNKOXvJxl1EaYc6e/eTQ8wKbNvwSgs30BSwMrIJ8B9fpSDdYE78lx5O58INxuYrxmZcXn2sIA2iW9qsc56yoF4Dz0qxYWH47C0NDWt+Nti6JlJH//0i/y8mvfzpe//zEOHVV0798/fDubNv+Kd7/uk7zyunfOxE+fMvoG9pDJqWOyYRKaNoCuG3R3LmIsMjgtqva+/rLAeZaFwbwa/c3Fv9e1qeqwJ7koOcba7DJ6rXwP0No2RLD+Yys5kaqdkwitUHFGVaCPA3pbJEvaXAYTOrtGDeXHPmG3b99RGvBv2FhbPbQcmoDr11uMbfezwkohbA8ybqltAdDP68I76leBM+A9E0Nb31Hh4ayq+zOLHSNlPy7+EPc9qtcMnB/Y/MuiBdYVF7yERb0rZnxf5nHs2LVrFzt27OCjH6320A6FQhXU7VQqRShU34/R5/PNSJBcC0JoeLbAc0TDiZcUOjLtoeUk3qgFhompCzIZSKcFrZPYJ2Vzkpjrg7BFbMxDWz39qZOmaadk4GynPJJJMFq14rnYuf9Jvnvn5yusbeqhf3AfD2++m6suemlT3+cNlp5pfX4VOD89aCBf1gN3HlEJ9CfC6C9aNqPtOT5dsDSfr5cTWKimBrE0ZLOCYF5wSXgCmZVV53wmrgM36+IlPHTTQMjSbxSeQGYqv9OJueiGXrHcdDESgXAMxsfLhMEWr5tS8OMmXfwRldA9FGjlZWfaNddf2+mxtrOMhutN3sIjsxIMHWka1KscScNQlHoLMKuXuXaNzW1PeoylNR487OPQuM6qzmOhAwv0i3pw7x8GV+I8Fia+pzTn1c7tLv5+sapVCadK8A6l0dbVLxZMxPVXvxUNg3+/7UNIKfnZ77+B47h88Kb/19T19uiWe4qvL934wprnREZtxWJDMQbxNCSwb6z0XDy90236epBu4+d3I7i2AI7vM3U+cD4FIQyhFO9sT13cc8hC4877bsPL28+87LlvRRx2ig9BOZApUUtroNxux7hhFSJUffkaL1yK9eS4EkgrKCb6NfRLKivZ2pmdeNuiAHg7o5z/kqv56qfv5Zf3fYvbfvbPJFJRsrkU//W9j7Jk4WouPec6jjcKNlQAG9Y2pmkXsLB7OWORQSLxESw7h89svrq4P19xFkKwZsVZkyw9fcioVaIWLw5WWTOIgI5Y04rcn2CpleHV4yUOzsOtC3hug20nyirOLb48LVs9V4vB+PHCOYscBhM6tifYPWZwTln/8mBC4/6DKpvdGfB4UZM0sD9Zl+OxsnPq7E0U+8TECkV511pNVWF3Je6OKPorV1RYUc1GxXlHeVU9/iC/uv8QL7rqjaxdXnkd/ez3Jcruq6ZgNTWP44vNmzfT19dXpGQnk0l0XefIkSOsWbOGffv2cdVVVwGwZ88e1q5deyJ3d3KYGiQdZMRCpmxEyMwnpyXJjGRhV+NJWyIDGaHRqnnERhwUcfvZCSflYNTQTEmGXWxP0GJCODbMv33jgzy+/Z6KZXq7lvC2d7wJZ3RRUa14NDzAD371n4CaH/x/9s47TI6rSvu/W1UdpqcnaZJylqzoJGdZzgGMI2CbDCYsuwssOSywhF34wIDZBXZZWILJxmCMEzbGOGfJcpCsYMWJ0uTcuaru98ftrq6eDpNHI6nf55lnOlRXV1dX33vPOe9539EGzilFbRNBq1clbkJxjb1xP8tXVihxxL44cv8gYgyBx0SgawLLVsKuqXSw5tEwB6fGv9YKW1hRC1955veheTTiPS7XBVtihky0HAHiWBGNSQ4eUq2Eh9rHr6jduiXNsGoJlnFpQcr1GJGQiDK9cMLEqykx3YSd0+vZq8Ob10b50RZ1bf3xVT+fOjc/s2Y00E6vUYEzYD3fzYCWvC5EZgFBWxzEfrYTUCJcYwmcAV636W3ousG3f/ZhbGlz32O/IBTuZ93Kswu+zrZMdh14AYDF81blTWy7Rd20eer8SAl7u1WRrtxnU1t67IooFgPnYxGGpgTBhhLIqIWonBmTfDwR5f7HfwWo6uiVF7wH+QNXD4olkYfCiIXZJpDSlmnPuHIP2qqKnO8hKr3oG+ucwQlAP6PGoboMxVX8VLI6/Xp7Zz+8fj66bnDNxe/jgjOv46d3/DsPPKHssn70+39jw5rzp1wsazh2u4TBRlNxhqQl1X51u6v3MHPrFo/qdaaZ4GCrasqdX7+MEl/pCK8YPwrRtFMYXFRBcL/qq7mo/7Dz+P+G5pLYb3HJstyBZoqqbWgSv5GUvEjaUU2nlzOowPlv+1SQur09HThbNvzmFT92MvN/7erYqFVoawISf7UH+tT9gYfaSf1atGTbgkiqjss9A0pkrS3iCOTB5PQ4uyElvJqsOBsyhBneSQTJF7/3Nv77iw8yq6IeUG0QO/ZtBmDxvNWctOrcST2OIiYPb3zjG7nsssuc+7fccgsLFizgne98J6+88go333wzl156KT6fj9/+9rdZVOwZh5QlVW8cEbOhSi2UvR5lqTMS+odUEs5rQKgrQcKUWTTd4wGJ/gS9z/cRXBUksDCTGjnUlSCBhseAPzzw3xlBc131fN56xUd53flv5YSL4hx8ssypMNm2zWOb7+JwZwNbdzzKoY6DzK0r3GsoLdtRIm7xBTBd1aYXD3lYeVq14ypgvdQz5sBjIhAahCNpLQ3hEZiD+QWSJgIrZCHNbKVszadh9iccn2I7ZmPHbfRRUn4LobFd0j+klJ2b2lyK2mMMnF94QLI6ebtsaQmTSYyUCdtRQ88Lj4ZI2bfmwRUnxPjFSyVETcGLhya+/tNmlyAWlSIbQ8jDEUeZQSwvyzhebVF6/SUbx0cRv/ScG9A0jZt/8s/Y0ubRzX/m0c1/HvXrz1ifW00bQLakK+UiGTh3RwR9UXUdLq+2jin7qeGYOaXIIiYPhkAmbORAAmHaM8bD+bHNd9M3qHpXN224kuryesdSKgXZnDujJw9HIKYGOG1xsGC/hn7xHEhNEAL0c9XCvaVf4y23V3LD7ytptnyIBaXOvmVvOrCoCM7iYxu+zG+rb+ffy75Oy+F93PfYL8f3oSeA3QdfAlQv6MpFOZRIcsBtSdXRk0McJA+a2vaSMNU5mGphsEI07RSeD2T3uu/1l9Hl8XPL0wFe68o9y6YC56BXqoFbSrV+0YXKPk9zxTmFbe2Krn3vbi/v/lM5D+5VAbXfkFy1amz+sItc/ZXBtvSk6hbr0tdUOrftHX3pirMGYtbkJtIODWrOhHnSXJ2Vi9W12tHdwpe+/05icVUZuuvhtLbBtRe/f9p8tYsYO/x+PzU1Nc6fz+cjEAhQVlbGueeeyxvf+Ebe9a53cf3117Nx40auvvrqI33IBZGypJJxCylwrj2/FwbDEEvkHxdsqXpaS3zgCWgkuuMZlkPHExL9JtHDUfpe7CPWnj4J0pKEuk2kR0MTgv3NO5znPvrOb/PLb2zmqgtvysmA0jSNKy94l3P/L8nkeiHIzhgkbcEafZmJ9q2HDLS1lSpZCumE+zTBa0C/q+tM82rYUQs7Mflq6mYod0CulehYERsr2bJnRS3kJHg49wxImjuUurMmBM2H04Hz/NnLR72fuAU929LJ77WnTnZxRyIKaB6ActogYECB337AA8uSqtAdIZ2hiemDAWSxH4EMrR4Aqn2OB7XdGMqwrxoLLj7rzXz+g/+Hpo0tK6FpOhef9ea8z8scFed93en3WFFASftYQLHifCwiSUuzB+JIMaFu6UnFXx5PB5/XXvwBGDSzKoB2Uwh9Y/Zr5cF0WUAsya5IuyECBsZbFmM90Ip2eo3jWfvwAS9RU52N+/f4eP+aCqxmNcPZu/rRz6kDwNrShfmHBiplBRs8G1htrOYXd32Ti856E2WllWP92OPCULifgy07AVg0bxUl/sKfOYXxWlKl/JsBlk1h4CxtiUz1slf7EPW5q5/3DVRyiuFllpmeqXqWqMklYQm+8nCQH149QNUwH8fBmFoYlPmSjwuRVtTWgGkcz+eV21SV2PRGNLa3Gbzzjgq6I5kLl3edHKHCP7ZJceEiI8tgQywJZjBLtDUVcJe6be/oT4uDVfkQIzVTjxFumvaJcySv+5ff8OH/uIzO3kPsPvgiN//0w3zk7d/g0edVtjsYqODis/NPykXMPHzlK1/JuH/TTTdx0003HZmDGTcEhE2EP329lnhhIKyCZ19uEhOhCAxFlE2kgY7ZnWCo36J8Blk8ThcS/Qk0j6pg9m7to/qcWXgqPVgRi9CA5Qg5NCcrkeXBWVx14cjXyeUb38atd34D00rw1yd/x7uv/VzBNqMUTRvSwmCGJjFtwc4Ogyga+rwAsimE7Igiw2bO1q6pgM8D4SgOK0HzaCSGTOW1PMlFjHhvPOc+dZ9GvEsFzkbQUB7OCYmYAFXbtCQHDklsGwJJTYBU4FxZVkNFcFahl2fgiYNeFg2ohIapCaoWTS4LSkgU13qk7Up0bNMuuEZeUmU5Gh4He3XW109sEaGdPAvubnacb9DI8G4GldjTFgexX+2DiIXsiCJmj0/86oIzrmX1stPY9tozo37NsoXrstqs3HCo2n5dBfnAvm5Xf3P11LQmzBQcfyP/8QBdIEwbIraioswAhCOD7NqveicWzlnB2uVnOH2ubsjm3AJh9kGXZ9wIgTOAvq4KfdhgtL0tfbk/0+ThA2dVwoMquEwFzuYT7Vj3ZNpEzNbmsCO0g9/c+x3+6S1fG/G9JwN/ffK3Ti/4yWOgtI7Xkmpf0zbn9pRWnMOmUynQan05q45tgxp7uj1sDdZwaV86+D/r8lLWvmKyo8OgM6zx9cdK+fbrhhxKkGVDOKHuqP7mJFlOE+p9dA0S0xc5C6Gqzk80eIlZglgk/VlPm5fgbSdG8/o2F4Je6ckKnHtW1DDb/d6zfIg5JYpN4fpNTUV/83aXMNjaOpPqytl87aO/42PfeAORWIgnXribhtadDqPh9ZvePqWtAEUUkQvCqyEHE4jK9G9A0wQCyeFuSXU5OcejwTDEE8omUgodogmGuk2Ye3wtn6SUxDpiaH4db62XSFOE3q39zDqrEitiMdhv4w1qhCODdPWq9poFs0dH360sr2HTaVfx6PN30j/UzVNb7+Ois96U/1jcgXOy4nze4jiPHPBh2oLt7QanLirFSiZpZVMIkae9a7Lh86iKcyQOHgOEVyDjNlbMxhid6PSoIG2J2ZdAy6FhI3TFrkpXnG2Qua/v0eJQl6SjV6mJAwyFB+juVy1xC+aMvtoM8MA2nf+Iq+/GrA1Mql2qNG2koSFGoe0jSowR27eWVKXXDJMROAu/rqxTtyobKm1lOSJHEk4sCsKrfUCSrj3OwBmgvno+l54zOfZ/cjAB/YopKuaWONeUu+K8vPrYrjjPDA5vEZMKRUtD8WHySPFPN17dtxlbquX+yas2qWPsz+a9yM4oMpr5o5NSpgNnn4aYk1/BNR8SFuzqTA9OhwZ1mgOlUK76Suy9A5j3t2QFzQBzPSoYvevhn9LSti/r+cmGZVvc/cjPnftXXvCeUb+2dtZc5/ZYLKkyK87rRv26sUIOuKj55bnpWU8cVI+/EHTZiFR58cwr4SsXDVEbUNfRy20emvrTQ1goMUxRG9JUbQBjeqnaACfPyWxFOHdRnB9eNcA3LxsaV9AMICoyz5sFfLVrPgOxzEWR5qJrO49Ncn8zpCvOupCsqlWfadnCdXzhH3+CJtT305SsTAghuPqiI6NSX8RxDr+uRCOHLagrgtDRowLkXOgZkBipzh9DQ9iqn/d4gxW2MAdN9ICOEIKS+SVED0Xof2mAcFeCWAx8PkGza45cOIaA6irXPHfvY7cW3HZ44FxXanGuS1zqpUOeDK0Ue5x9ouOBYUDCxKHza4aGtCR2bHKDCStsYUVstHyUZAGJpCiZHbMnZEsaikgOHobSEjCSFHj3Wmi0CRJQAlLx5qgTfAQWT7KNUMJWc/1oaOkeDWThNcHSYYHzZEDfWOe0Eugba3Nuoy1OJ5ftHEWmIwV5yEXTnp8+xr096tyUGJJ55ZPfljCTUAycj2HImDW6wWMasH3Ps87tE084BwDZn57otPLkccpM4QEAeuKQDLjEoqDKpo4Re7t1YsPk7p9p9ilKK4ApsR5pSx/PKWna0ZkLlI6zZZn8+A9fHvN7jxVbtv2dw50NAGxYewGL5q4c9WvrxlFxtmyLfU1KUbu6cjZV5bkH8kmBK3AW5bnFO55oUIHhS8Fq7OSiQD+9BiEEVSWSN61NK0RvaU3vw21FFUxRtUnStFFq89MpDgbwuuVxrlkV5epVUX52XT9fuSjEypoJLqBKDWfSBXildBZ7YyV88/HSjLyAtja7wjLZVlQDMUFTv/qOlldbuFiwnHXSZfzTW7+esf1ZJ13OnNpFk3oMRRQxGohSA21+aVbVrcQriJnQ1pM9OCRMSe8glLh+NroH+tqOv8DZHDCxwhZ6ckwWugqewwdD9B6MkEgosbVml2DUWJSW1688m4Vz1Fy3fc9zNCTFKnNBtqvAOSo02r0lLKq0OWm2Scqo6MXDRobA0nQGHqnmuIw+eAl2dHKDCStkYUVt9DyVVc2nkehV12liIDGudROowsXBw5JQBMpdRKEmV3/zWITB7tvtY3k03XrnDr4mBaZUuj6joGrj1ZS2foHgefEUBM7awlK8H13Fop/MR19XmXMbMb/0iPXpF4JbUTslDDYQE7QPqXOzdJbFJLq/zUjMjKiqiMmHJpR66AwJnN39FSeekJTEd1Wcyza5ssPD/JzthrHRtHNhe3s2FeaZZg/a6sqsx/VrFmC8Kb24X1y6nOpKRYR99uUH2brj8XEdw2jx54fHb9lTWVaLoatgcrQ9zs+9/CBDYaVAunqU6t3jhbviLMqyA+fDPTq7ktTfuhqB/6OrMd6zDP3iNBH59PnpfWxpSe/DbUUV9KpFihQybUlh6OMW2RgvvAZ85OwI/3J2ZIIekGkITThMCYAt1Ur8bnOrh1+/nF7hi/mlMOwci1pFU7Vs2NxicKBnYguBncNo2sNx3SUf4BrXNfzmy/9pQu9XRBFTgfIAHOqCcGyYZkIYQlEIuDoc9IBO6HAcu4Aa77EIM6lJ4g7ANI+Gb7afgQMRTCHw6IKmw66K8xgqkUKIjKpzPkFOmbAdzYYWXym2ECyqtKjwS1YkKaL7ewz6/D5n/JNN4xdYGg8MHQZCrvcTSqBrMmGGLbBl3oBY9+uYAwls08YcNHNSukeDzj7126guTycFYHwJklBcac0siww4j6WCr0lDwoYSY1SJAuHVkYammCh5UOaT1Jaq3/rBXn2kAvWooS0IEDgl/2cXHs05N7IjigzNjL5h2ZIdOO/PoGnPjOOcSsyMqKqISYcIGEiPNiOUa6OxMK8lFaLn1y9z7GncFeeyC9MB8XBlbdslDDbewHmbq7+5wqcGwd2dBn3zytMefhoYNy7G2FSv7KsCycx6n8n73/wl5/X/+/svYllTMzg0HdrL1h2PATCndjFnnHjpmF6vaZrT59zZO7qK812uQP2K8945pvcbK+SAi56fo+L84AvpieS8xQlEjR99XVWGoNXCCpu6UrUI2dZuEE1+Fe6Kc5lXqoWSEOlRzsO0U7WnCqIuGSAbgvOvLEUT6nP9+uUSnmtW51VoIs2oSL2uxk8kAV95pJTPP1TGh+4ro31o/NPAq+3pCXNdfe7fxIfe+v/4wj/+hJs/eQcnnZBD+a+IIo4wSkuUoFPHsKrzQEhiS+XPm4I3qJMYtBjqOfYXiG7EOvMIUZXoWLNKsJK9426l5bF6+1668UZ8XkXdfeiZ24nEcuigdEQd5lBDsr95UaWaD06Zm/5OXmrzpKvOUQvZGWW64POopIudnG/G6+Vsx20Gdw85vcpumINmwRW85tOwojbmgIkdtsYtTNY9ILEk+LyZa8mM73mUCZKUQOvyaDJw1kDMmVyqtrKiGmVC2CMUrXuEJFiqzzkU1+gITd+aWlt8ZNoNCsGpOHs0Zx2y162ofYz3N0MxcD5mIco8U9LPOB7sOvACpqWC5PUnpA3Y3T3OpWcEnOq4PUwgTKb6mzXhWEiNBZad9pmt9Nu84YQ0h+rZdj/GjYvRVlXgee+KDKsAUZUsM/THuej0N7Fy8ckANLTu4m9P/37MxzEa3PX3tGXPNRe9F32MNgKQ7nMeDPURiRYebA+27OKlXU8CMK9+Kaetu2jM7zcWyBGo2g9scQfOub0fhIDT56lFSMISvHJYfbdDGRVnmexvFjjqYR6NLFWtoxTGG+ajnTwL4+1LOWkpvG9DuufvG08EeKLBg5TD+px1QZfHx8fuL+PZZkWHT1iCLa3jFznaMULFGVQy58IzrmPD2gvG/T5FFDGVEAgCfmjpTFtTSSnp7FdBkBtGQCMRsRnqyh8IJQZMel/oJbQ/RLw3Pu1Ml8mGnbBJ9MTRA9nzkS0lfTGBkQysUpVIj+Flds3CMb1PMFDBhWe8EYBQZIDHNt+VtU0uRe1U4Hzq3PT88uIhD2Kh2w93+ujaPg/E4kogDMbv5Rxti9H3Yj99W/uwIpmvT/TE0Qto2Gg+DTtmE+9OYCXkuK2oovHcrOcUVdtj+KivWTDifqSEe3f78NkWC5IJETG7ZPLtUm2JKBnBwzkFr67ev0DFGbIFwqYLYhL8nCcTMmJCt1o/i7klDptvn4u5tvwYt6KCYuBcxDRg22vp/uaTkv3N4AqcAzpaQEMsSAZNfXEnwJIhE9muMsViXgAxDrGzhj6dUFxd6uvqTTa6RESeafKinzwLz/tXoA1T3XT8bm3QBswMRe3Httw95uMYCQMDA/zt6dsB8HsDvG7T28e1n0wv58J07bsfcXnrXvR+NG2Kh4TB/IFzd1jwQtLfeGGFVZDafIabrp3sc3ZTtct8UlUlBI4oiqpaH90L2BS0uQE871iKvl5JnN6wLsa5i9TvKRTX+PdHg3zqr0GaaiodRkV8lp8PP1DB/p7MQHlXx/gC54QFr3Wp184OWlQHjo1zW8TxifJSZU3VmbSZD8dU1TAwLP/sNTQsiVLWzoNIa4TBVwfpeaaHzr930vlwFwO7VJXtaAyizQETM2zlDJw7e6GtByqDSgektf0AoBKxuj72seXKC9/t3L7vsV9kPS8PZytqL0wGzuvqTDy6Or9bD3nAlWifzoqdxwMxt0DYOLycpZSED6oAM9QYoW9rv0P3tuNJ+rU//3wtNIGUkOiNI+M2wju+SmkkBvqwr900E7R2qO95wezlo0rw7+rUOdhrcPZAB6mttQWTTNMmqRw+Slq60IUSDRzhe5kKgbDRQFvkqjg3HHmBMHko/dtzU+xTVlSGJp0k1rGMYuBcxJTDLQy2fmVSGEzKtKR9UiVYc2WHU1XnSelvdtG0T6w3WVltUZ1UZn7psEEkj86LmJVubJO9MdatOJOaqjkA7Ni3GdOcXIGYP/3pT0Si6nNfcs4NBAPjs88YrSXVYKiPvz/zRwBKfKVcdu5bx/V+Y0GGqvaw/tunGrxIqSb3TXmqzSmcPCeBnqQnpwJnN1W71OsKnFO9Tpqr+nyMQQj4zKYQZ8xLn99X2jx88IFKHjlpOQP1ZXw7eALdYTXkzw5aGJo6fzs7xxc47+3WiScF9/LRtIso4miBJgR+D7R2SkxLMhRWVUN/DvF/aWiEDsWyn0BVZyMNYYxKL4ElpXiqvJhDJgPbVctRuCmPfPcMhjloInNULeMJJRxl6OA1BG1dTSRMNXaPRWnZjRMWn8KKRScC8NrBl7I0RYZXnGsCNsHkd+QzYG2dGgM7Qxo3/vB6ZHKekE25Aw9pSRJ3NJL4+V5kaHLmdE0oIUoncPZoWAk5JoGwRE+CWHsMX62Xknl+QgdC9L00gB1X/sxW1CoYOIMKnq2ojbQk2jgsn0xLYlk4qvIpHO5scNrVRmtFde9uH/NjIT50eJfzmLZ6ci3CpCWRQlnPjRYiYCBnasW50guV6uKWTSGsHX3YewewG4awW8OZ66lpgN2a/g1pycA5koDmpLvJkioLz8ww8plSFAPnIqYU8USMnUn/5tk1C6mvnq+eCKX9fEWlCnzcgXPKe1a6+pvFePubXcJg6+tNhICzFyTVJi2RoczshkPVBmRPHCEE61cqqnk0FnKUqCcDtm3zq1/9yrk/VlEwN9yWVIUC5wef+h3RuFrEXXbuWyktmUSTyTxwBvpSI8u78cmG9Ar1vMWFJ4RSL6xNBmutAzqHBjQG4+n9lXml6mfWSAfLmhjReuJoRsADX790iK9eNMScsmRlQgpuiSzirTVn8UxAqaWvqTX5wZWDjtdic7+eZWU1Grhp2uvy0LSLKOJoQnkp9AxBdz/0DiorO5HDx0eU6Ax1J7LoswCxjhjx3gSeyqRNm1/HV+sjkKyuhQ9EjjphsXhvPEPJP4XWLkl3P8wqV/cn0t+cghAiw4Lxy//9rgxxUTsZOIc0gy7D51S4LMvkoWf+wMHt33e27Q+czkHzIKAC7uFWlwD2S93Yz3Vi7+zHerJjXMecC5pQNk6Q6eU8WkRao9hxiV6io3k0pWC+d4j+l/tJ9CWw4yPTr3W/6nMeLxKmYhYND5ybXMJgo1HUHogJntuv8YXmVwjY6jsof30Z2omV4z62nEjYqm95NIraSYgSHezC52hBheUk6qczcAZXn3PCxrx1H4kf7yHx37tJ/OdO4v/+CtazndN2LLI1u+J8sFdHJsfI44GmDcXAuYgpxp6Gl4knFNU6FXRCpjBYquIsFqapH07F+aCr4rx47IGzlPBqMnAOeCRLkz/scxamK5rPNuXph5mVDuRkj0odu6nm2/Y8k/WS8WLL9kdobGwE4JTVm1g8b9W491VX5aZq5w6cLdvirod/5ty/dhq8daWUaVuxYTTtvmi6V3leuZVBjcqH0+dl0rVD7h5nh6rtEgcbpx3H0QQhYOOiBD+7doD3bojgNzITBRcuifOd1w1SVSJZU5sOdnd1jH0xsMOVkFpbrDgXcQzA0AW6Bi2dku6BTDVtNzylOqFeK6fgU7g5CkLkrfDFumPE2nNXq2cipC2JdcQdG6oUBsOSxjaVbNCSyUl3QLVonIEzwOUb3+robURjIT7/n2/h5V1PqsC3T83djb5SEIIF5Qn++uTvuOkLZ3PzT/+Z/ubb0zuqvJhdiR3JD5JOyLthPd/l3LYPDGY9P174vNA/pOY9t5dzPNlDH47mT+JaEYtwQxijIj1Pal4N3zw/g6+FCDWEkxIehec0za9h50jujBYJC0wrm6rd7FJOHw2z4G97PfxT8y4Wpnqb5/iZ8/n6yRevNW2ERx81VRtQQfYI+XSPDgsqVHDd1KeTmMb4UFtbWfB586FDSGt6CgKOVawuELOVqNve7vQ6YPlxIAwGxcC5iClGhg3VytzCYCI5OYgqr/KoRU1wMm450vei1pfTvmgktA5o9ETUZb62ziQlznzyHJOARw02z7V4sHIkHDOp2up4U1Tz4Z9tovjzQy4Lqks+MKF9ZVK1c/c4b972EG1dKlDfsPbCcVcHRkJvRNCZUqGMWA7LYDhN+5H9XmwXTXs08+kZ89OL1i2tBoNuH+dc4mCaOFaZ2lnwGvC2E6P84o39XLY8Rm3A5qZTI3z+/BDe5Dy3xlUlLkTXHooJ7njVx23bfDywx8tzzR52d+qO4F7Qa0+a1VYRRRxpVAZVxTkUze5vTsHjE0SjkmhvJjMmMZAgdiiKtyr/XCU0QfhgpKB37EyCOWRhhjL7m6WUNLZJwlEoC7gsiiah4gxgGB7+/SO/4owTLwEgGg/zhe+9jV3PpufclDDYI4/+B9+59V841KEqywy9jG4re0VRdTG7zdec1wzvc7Y7omnxUZK2VZPEBvB6lDhYPDXMSggPWLywW33vLQWK27H2GGZ/Ak9F5ris+3T8c3xEmiLoo6Aj6z6dxKA5bmGwRIKcVO2xfM9SQuixTs4faAfA9ul43rMMrWQKwg9TKrXnsdDSvVpOVslwLEkWXSwpHGrydEA7uQrjfcvRr5qP/rq56BfPRt9U5wSuDCSwd/dP+XHIuKUU7UmKuiXP8b4MRe3jI4FeDJyLmFJsc/U3n+iq1qayxoDTwyGEQEuJeYQt7Fd603TuJeOjEbv9m9fPTv+ovTqclqxYDsY0JwhwQ1RlV5wXzllBRbBa7XvPc1j2xDNsLW372LL9EUDR2c866fIJ7S8jcM5jSXXXw2lRsOsmGKjnw6EBjbf+oYJ33VHBU42eTJaBq+Lc0q/x8xfTlhTnLy3c35zC0iqLWSVqkfPyYQ+9kUw7KqfHOWUlc+xog40aNaWSz2wKc9uN/bz9pGhG4mC1q+K8s4BA2P9uLuFHWwL8bGuAW54u5Yt/D/Lh+8rpi6rpY02thXacJCSKOPbhNQS2VEGDJw9LxWtAQmoMtmcGzrG2GOaQiV6an8HhrfISPRwh3j29/YnjhTloYkcsdFc/rePtO6xFtSmjEjm63td88Hr8fOVDv+Tsk9V8GItHePBPP3eeTwmDDXQ85Tx2yurzuOWzf2bjUjWfSL2C3S7abnhvJq3V3tyVcR9T5qxKjwc+D8QT6T7naEKydbvF3hZ1/8BhiZmjt1baktDBMJpfd1SL3dD9OoFFAXz1eegQLgivQMasLLbAaJFIThHDA0s3s2D+7GUF97Fna4Q3N6SvC+9bFqPVTZHji5TKXmoMEF4NaYgREyZHrM9ZCPTVlRjnz8a4ZC7G6+djXLMQ/Yr0Os9+burp2vJwxFk/ZQiDJRW1BTLjHB3LKAbORUwZLMtkx97nAaiuqGdu3RLnuQxbIhcdyW0fYT3R7tweD00bhgXO9ZkLlY0L3era2RUC4dPTFfBk4CyEcCy1QpEBDrbsHNdxufGbe29xbl998U3jsqByo6y0Er9PncdcPc6Nh/Y4XtFz65ZwxvpLJvR++fB8iwfTFiRswTefKKW1NT2opgLnuAVfe6yUqKkmuzdvGmJlzegGX2VLpb7DqCmcnluBJJCsOAstTdUWukBq4qhUtZ0K1JVKRyRvd6eRk3URt+CJhhzqSC6cPOfoCACKKGK0qKuE+ln5n/cYEPfoDB6OOzRJ27QJN0YwgkZBCqpeomPHJZHmo0MkLJFqr0kGcQlTCYIJAT7PMG/fZEBVWzWXEv/45mw3vB4fX/rnW9l4yhUAzCWt35EKnAnv4vR1F/O9z9/Ptz99JyedsJFTXWNSxakfYMBWiuaJA32YSVEradlYLwwLnAH7wOSob+uawLJV4DwYluw9LGhrNllQr57vHoD23uzXxbvixNpjeGYVYC3oQilCjwAhBKUrgngqM/dl25LECIJYQE5KspTSqTjXVc+nxJffIlQOJqj+816MZMTVespcxwliSmAz9pYsj5b0ci58Po6UsnY+aKsqILl2tnf3I/vyFxysnX1Yz3RMiNItW9PjVUoYLGFBQ/JcLKiwGa0L2NGOYuBcxJRhb9M2IsmelhNPOCdjMeH+kad6nIG0JRWZthPjFQZLBc4eXXLCsIDsjPkJtKTgwzNNnpy6UY4l1UDCyUie5KJrb3dZbY0Huw+8yN+fVcrWlZWVXHH+Oya0P1CTZV1SIKyj51AWJfBuV7X5moveN2UWVJ2h9H6jpuCuzen7qcD551tL2Je0R1pQYfGVd/aM6T1Oc/U5W0mqd9ArVQXUJmlH5RIH04QSDSsCIXD6nCOmoLEvezHw8mGDSDKpsWFugo+eHeLdp0S4ZlWU8xbHeeOaKNesPnr6NYsoYjTQNIFRYAGuCYH0aEQHTKfPOd4ZJ9YVx1OApp2Cp8pDuDFCYmDmUxvjHXE0V89oa6cSBKsuz9yuf7CbgSE1fk9m64/H8PJv//Qzzjvtahbri53HG/1BPHYP//252/nGJ25n7fIznOdOnZs+r3rtFTToqi0pKEt54C5VtbZ39sOQ2k7Md+mrTGKfMwJ6BiTb90v6ohqzA6bDYpASmtqz56JIawRpyYIezWM6hBxV60NdsKd55HkwnpAMZzH3DXQyFFbU4JH6m0P3H6IsptZ6O4OVzL9+ziiPepyQclQJhQx4k9TuESvO6WtqJgTOQhPoZyrBTyRYw9kTSVi7+jB/vg/zziasv7SM+/1sV+Ccqjg39ukk7KQw2HFC04Zi4FzEFMLdA5yq0qaQUXF2ZUO1BTmyl2UGomZkWtJwdIUEhwfVALe6xswSWizzSU5K0rcPD+o09GX/HBxlbYlDL3d/FjcVfayQUvLD277g3P/Yxz5GWWnluPfnRoquHY2FnEkOYCg8wN+eSXpF+0q5/Ny3Tcr75UJnOPN8eodcGdEyD5tbDO7YoShbHk3yxYuGCPjGFtRumGc6yY8USr3J+zI56bvFwY5DunYhZPQ55xAIe6YpndS6alWMq1bFeefJUT5ydoQvXRjin8+M4Bufm1URRRzd8GhEB20ncI60RhFSonlGXlYZZQbmoEXE5Ys6E2FFLRJ9Cae/ORqXNLVDsEQlF9xomqT+5lwwDA9f+OD/sdKvRDP7dA/9hpd188pYtfTUrO3nltuOs8DuLi/1p653ntvxyGM0tO7OoGkbr58HZUl2WcPQpLGSvAYc7oahCNTUCLSERCapPbPKoKkDBkLp9zJDJpGmKJ6KqS3d9Q1JBsOM2GcfS2QXcMeiqB3brZIQcaGx45KVeMfpJT1aSAmMsRAgDA282ogV57pSSalXfXcHemfGpKefUeMkNqzNXVnXrUzYmHc1O/etp9ozAuDhkGGTxG0HSfyxIUuBPqU3hAAxR7VCpGjacPwoakMxcC5iCuH2bz5p5cbMJ1MVZ48Grv4bEfRAVSY1VFtcNi71xXz9zW6ck0HXzqakCreydlIgbMn8NZSWqHT79j3Pjlvk5bHNf2bn/i2AmoDe+tbJ81GudStrd6ssowrUP080yQK49JwbCAbKc75+MuCIggHVAZsqM12ZHPB5+daT6STJP5weGZciY7lPsmoYk6AsFXwnJ1HhrjgLkRYoKyJDWXu4QJgt0y0MXl2yYW6Rkl1EESkYhiAch3hfAnPIJNISxagcXcAjhMAoMwgfCI/Jomi6YQ6aWOG0MFg4CqEYBAPZ2zYd3uPcXjhOD+dC0MKSgKUW7ClhsJQVVS6k2EimLRhcuNp5fLlYzg//9zNYKUGlSi9iRTlaSkclZiMPTQ6NvqJU9TrXVoHm0ZEJG+Lq+w6WwFBYBdYpxNpiJAZNjPKpC8xsW9IfUkGxOcKUG4mNJAyWv49dhkyCg0pMap+/jAtPHPchjx5SwjiKwaLUUN9NoW0ELE6KYHaGNIbGYeE42RCVXkXZBuiLY7+WKRJmPdYG3S5GmA3mnY05E0PSliR+ewB7azf2810kfrIHGUm2NZi2458uav2qjRHY6xIGO14UtaEYOBcxRbBsi+17ngOgIljNwrkrM55PVZxFhScrKHb7OcPk+TfngjtwzmVLlenlrAYgXdNZv/IsAPoGuzIy7aNFLB7hJ3f8u3P/45d9HZmDtjVe5PJyvu0v/8Xfnv49oIRX3nTZP07a++VCiqpd5rP52sVD1FjpAfzfNs9yxKXOnB/n2gnQfU+fnxnQBb2uwNk9ierimPdyHitWVFsYmjofwwXCXuvSHUX6DXMTx03/UhFFjAYeA8JSI9ah7KXMQROjbPQBj7fKQ6InQexwdAqPcmIwB0ykJR1rrUhMDZ9ajkT2eBW1W/o1fvBsCVsPFT537tatgz4V5BYMnF107SftSqcyt8pYxYqeRaSISvrp1QhNoC1NrzPcNpgTgaELygJCiWt5kn20ycBZCEGpH/a3KpEwaUlCDWF0v5aTXj1ZCEXV92iaLsXvHJBSEs0ROB9s2eXcLpQgsZvS53BfsIK5ZdOQILLBsU4ZCwL6qBLqGQJhORiKRwLaWbXObfu5NItCdsewHj6c3AinICUbQ9mieID18GHkawPp1zeGSPyfCp5lezQt1Otqa9h3HFpRQTFwLmKK0NCyy6EIrz/h7Mz+5qgFKRpIRY4q7zC6tjbe/uY2tdLXhMygpLpRH7Sd3pXXunT6osMmLLclVU+aauz2pN4+Dj/nOx78X6cS/LblH2DlveUceEsjdvvkLKLqXMraHb2tPLb5Ln5+59edxz73gR8yv76wGuZEYEvoSgbOdaU2K2osTgykFz77E4qiXV1i8+lN4QnZRLn9nMEVONsycxLVhFo8zdwCz7TDa6QnvJYBnX7X9f90YzpSdieYiiiiCGU3FNd1wj0moQNh9BJtTMwooQs0n8bQ/vC0+bCOFfGeBMKlUhyKyrwK+mOh8Lrxw80B7t7t598fLSVeYO1tH05XgQ86Fef8g/nJc9IaJs91lCCSSs5L9KW8zvc6tU9sQmuTopJL084dcjL7nJMQuoaw7IzK5qwK6OyHjj6IdcaJd8TxziosxjhRhKNK7Tthqf/5YFqq7Xe4h/NrDS87t5cvyl9GthrS6uSd1WXTYwUpybheRwvh1RlND9eRUtYuhAyRsF19jtWreU+zQz/Xz63Hc8Ni5zXmX1qQg+kv394zgPW3pHWpwGGByuYwiR/vwd6bDqhT/c22hP1JqnZ90KJ8jG12RzOKgXMRU4IMG6qVw/ubsz2c3cjoc/ZqiLk5eGEjoD8qaEiKHS2vtggUqJadMS9JR0GwtTVzw0yqdroqeqJLIOyVMfo5d/Ue5rb7vweApulcs+gtav9RifVYe6GXjhpuS6qnX3yAb/3sw879973p3zjvtKsn5X3yoTciHLGu2lK1UCiLq+99UDdIaDoCyWfPC1Hpn9iAu7LGosKXXowEXVRt4R7htKQSaVEcLANuuvauzvRiINW6IJCctaAYOBdRhBseQwXOkX6LeHccb9XYAx5vtdepWM80SEsS74plWBn1h1TCIBeak1ZUJb5Sqitnj+49JOxIaiuE4pqj0JtzW1fFucE/csW51JvWcGgZ0InOVa8xhEGdrqStX4q/yGd+ciP9g93KF9ev3t8+MDQlPtsSwBU4ew2BbUNzhyR6OIK05bg9l0eLwbBSRJeycMU5bqqqtLvibJoJ9je9CsC8+qUEAxV5Xg3xg+nAOTx74grro4KQjMsb0aMhRvF1L501swTCQCXg9DNq1B0brC1dWDv7sHf0qcfKPeiXzUVbUY52atIqIGJhJoXCZF+cxG8POHkD/fK5eP55FQSTPf8t4QxRsZSiduuA5rihrDiO+puhGDgXMUVwC4Nl+DcD9LmFwXJUnOcHVO8zoC0Njl0lERxrIoAT89C0U3BTfTe3ZNLFcnk5A6xYdKJj+TTWPudb//wNp8/4yvPfTbnpsuDa2o0MTTxIcQfOW3c8SjyhKtmXn/s23nLFv0x4/yPBrahdE5Dq/CTp+YmAF58u+eDpkQz10/FCE7DBVXUuc4uDGS4l7xRVuxg4Z8DNxtiV7HNu6ddo6teTz1tUlRTPWRFFuGHoSsk/Hlc0W7fy9GiRCpLCzTNPJMwcMjGHLMeTOmFKIlFyigHGE1HaupRy9YI5K0ZdeW8f0gjF0+dtT9fIgbMNNPlKqfTbVIyQdHXTtfcFs/U8/hZ7kP3Nr/Kpb19H31BXmt0WMpGdU5DMECBjmUHGrHJobLTo3Tf1omBSSnoHVd81jFBxNsGyM0lbDYd2k0hqlaxcfHL+97ElWota43QbXkprp6nPR5KlAj4aCK+mrCpHYH4scTEcDvTMDIEwGCYS9lwX5t1pQTDjqvmIZELIuGpBOjn0Qjf2ngESv94PIfU70VZVoF80B21OCZ5/OgHKkt+b67SkKs77jtP+ZigGzkVMAaSUjjBYaUk5S+avyXy+31VxLs8ROPt0jLcvQTu9Gv3qheM6hu1tI/c3p7Cu3iTgUSPDllZPhp+t8OpptU0XVdswPKxdfjqgKsiHOxtHdVx7G1/hb0/fBqhz8+5rP5vpv5eQWM9O3My+ztXjnMJJqzbysXd9Z1xCa2OFO3CuK7UVNT+Zaa+erfOXd/Xx5nWTtzA5Y376O55Vot5HSrIlQQ1RVNUehgyBsGTC6ekmN007vz9kEUUcrxAIpASryod/rn/c+/GUGcQ7YtjxsfWQWDGbRF+C6KEokZbIpFdIzQETO247CYFIXAlKeXMU1lvaDzjvPxaa9v4enZpElHe27+OEcB97unMHI9KSyHYVOLd6A8Q1vWC1OQW3XeEzZPoH2yWCvaUHATjYspNPfetaYvPSwcBU0LXRNYhkHnd5AMJtcbrbElMqCgbq+wtFwZ/8DmPx/NdMIhU4u3IZe1w07RMKBc4dUfQk7/61kkpml03TpCvE2H2cAbx6sge98G8w6JMOg66hT5sxcimiyod2QjIx1Bd3BMHEsjK0k9OG9KLMg3FFuqiS+NleZGOSGVDlxXjbEqe/XqtPBs/lrqRHtQ9Roq7RFw6lHy8GzkUUMUE0Hd5L32AXGhrrVpyJrmVmkd2BM3lUSPV1VXhuXIJWN/YFScKCp1wL/3UjBM6GBqcmFYMHYhp7ujOP1xEIc3k5Q2af87ZR0LXjiSjf+9WnnQXGO6/+FBVl1VnG9dYznRnvMx6U+IMZ1lbz65fx5X/+BR5javunUsioOJfamfZjOZIlE8UFS+JcuDTOhrkJLl6WPJ+5FDYNrVhxHoa6oKQmoK633Z0Glp2pML+x2N9cRBE5oWkQsbVRWVDlg16qY4asUXk6x9pj9L7QR8dDnXT8tYOOhzrofLSL3s19JHon93caPRxFaDiJ1khMBVOeHIFJhjDYGBS19/XofLx1B2/pOsiXm17mQGfuoEd2RZ1+zdHQtFNYUW1Rlmzj+ftguVNtA/CcXse3PnsntVUqydx46DXuPXi78/xkCYS5ITwaMpz9PQcGI3QMiCnP6YajKgHi96pWg1CB3HXCQlkPuUq47sC5YMW5KU3T3h2ocKzBph6ScTVTezSV1BjBkgrSfc6huEZHaOT3ipqK1jzBJd2IcIuEqQcExnULs8V3z6pFLEi2P6Yq7LrA865liEBm4kar86vgOcmE0Ner5NPTjR4e3KvWxV5dsrp24szBownFwLmIScdru7fyg/If8pvK37Fx7sVZz8v+qQ2i7tntc/ybT5mTGJHOBXBGBl27UJ9zOsg9yUVB3z6Cn7OUkm///F/YffBFQPUHXXPx+1WAPDhs0BlIYG/rHfGYR8LqpacBUFZaxdc/dhvlwaoRXjF5cHs415XaDk0bVNZzsmFo8IXzQ9x8+VCaVmyT5ekojCJVOxdSdO2IKXi5zXA8nRdWWMyvKKqpFVFELngNVcGbCDSPhjQlZv/Ige/QvhCDrw5iDpkIj8A7y0fJwhLMsEX00OSpc8d74oSbInhcrUqRWP6YZLyK2t3NcU4O9QBQYSXQDodzCoRlKGqPQhgsBV2DU+eosW0ooRNy9dpqZ9Qwr34pt3z2HkqSbVe/ffGHyGTsYE9JxVlk9DgDEDIpj8box6B3Am8ppcQagWocioK0lQe3oUOkwCWTMMliZ+05+DKgkinLF67Pek0KdmM66bC7pII506GoDeOmauMRil2YJ7qVtnQsnAoJhB3o0fjdNj/feSrAJx4I8pbbK7jy11W8+08V/OPd5bQPTV3Ipa2uyKgO65vq0GaXZG0nNIHxpkUZ58m4ZkGmtpB7v7V+vJ9Zh+cjq9BfP4/2IY1vP5XWHfrg6ZFRrbGPJRQD5yLGBNMceXKXr/Sw1FhKhVbJqQM5Blc3VXuUvpejxUBM8JuXVZVaIPmH00bXO+ZWZs4OnNPK2rj6nE9YcgoeQz23bYTA+Vd3f4tHn78TAL83wBf/8Seq+utaLHnmpLN91hPtE6beffzd3+Wf3/p1/vfLDzOvfumE9jVWuCvOtaV2hoJjBvVnKiFldn+8oSGLcWAW3HTtW7eWIJOz6sZFRZp2EUXkg8ejqngjBSwjQRiCeHfh35oVtYh3xfHWefHV+vCUe9B8SsnbU24QbohMmid0uDGMHbUxguk5aTAssxSWUxivovb8fR0Z91cO9ecUXZIuRe0G38gezm646dpPrVqMWBJEv2KeE1TMrVvMdZd+EICoFaHV16Y27o1nscEmDI+W5Rcse+PoCRvLq9PZN/brKGFK2nsl2/ZJXtwrMQtci/1D0hH78uhJde08VdZ4QmYEV/FEjAMtOwHFKgiUlOV8HaQrzhaCfSXl1AenZ9IVjI+qLYRABPTspEYS8nAEmaQ/L63KFgizbPjVS37+8Z5yfr61hL/u9bGtzUOXq4DQ0KfzkfvKCvbxTwRC1zAumaNu1/vRL81u10tBm1+KfsU8MAT6efVoZ9fm3RZU+6S2KIglBF9/rJShpC7BpkVxrl4184QNpxrFwLmIUUFKyb99/x1c8+GlPLX1LwW3rW+rdG5XtmdTrZ2KswYEJzeI+t0rfgaTP+pLlsVZUTO6ybW2VDoD4p5htlQZXs6uirPX42f10lM50TiRL8Y+x8Cdu3MGuw8/+0d+fc+31b6E4F8/+CNWLDopub/0oFN2URlinprMZUsY2TAxqljtrLm88dIPMrtmfH3iE0GmOJg9jGUwjYbAOQLnYsU5G26BsN1d6cVy0YaqiCLyw2uo4CM6wZ+JXmoQ64hhF+BzJvpMzLCFUZrdB+up8JDoT0yKOndiIEG4IYLHxbSypWQwlBaVGo5UxVkTGnPrlozqffrDcHZnW8Zja8N9OQMLechdcR49VRsyA+eHorPwfmgVxkVzMrZ582X/5ASCT3Y/4jw+6VVnQ2TQgaUtsQ+FEX6dQImge2D0SZjBsOTgYZvNuyQv7pG09UBXP/TlOWTLkvQNQUlyOWMYqqqcT1k7Es/Q1uRgy05MS53LgjTtqIVsU9/XQX+Q0lKBf7p0tMQ4qdoAJQYyRxJBRi3wa0412l1xPtBr0Dao8YkHyvjVyyXYMvO9K/02a2pN6oPqNT0Rte3zzVNzQvRz6vB+fj2ef1ntCILlg3HhHHzf3IBx9YJR697c+mIJO5MCorODFp/cODEr0aMVxcC5iFHhcGcjz778V2LxCH988Id5t4v2D7LcTFc3RW/CydSl4PQ4l3sdIYLJwKEBjbt2pfsubjp1bEqlp89P21K94LKlyqBq92R+lvUrz+EfAv/EYmMxvmeGsF/syXh++57n+M6tH3Xuf/CGr7LxlCvS+3NXnGcbGOfXO/etJzKz8UcTOpO9PxU+W6mwDh6BwFmQNYkKj6CoDpaN5dUWHi3zvFSX2JwwysRTEUUcj/AYELcgNsHCpBHQscIWZoE+53hvHKwcLBqUY4AwNCKN4QkzlcKNEawhE6MsvfCOxVVyIFfgbNu2Y0U1p3YRXo8ve6McaN8Woi6RyRVeE+7NGTjbSap2RNPp8Pgp99mjtjGsLZVOkP1al85gLPv8lQereNOl/wjAq/Ht6fc9MLl9zsLQEO7grD+u9D/KPAT8EIrA4CiWLQcP22zZJdnVoILf+kqon6U+V0eeqnU4BtE4+JLLGY+uvJrzKWtHYplWVBnCYEtOyXtssiXkTLGvTSdNGwAx7qhG+HVyqX3JgTii3Ov0ei+osNGT3lUvthr8w93ljouLJiTvOCnC/141wF1v7+WOt/bz/SsH+eFVg6xNJqejpuDfHg5y3+7R/U7G/Dlm+RC+ya9qb24xuH27KoTpQvLFC0Jp68/jDMXAuYhRob27ybn92sEXicbCObdre3onHpE5u9r70ubp0rRhSA0guTycJ4Kfbi3BtNXg9ua1UeqCY/tRn5HPlspF1XYrawOcNnsjS4x0ht38c5NTRT7UcZCv/Pe7SZjqNW84/1286bJ/yni9mwpm1Btop1Q5FgD2q71ZgfrRAMvGoSjVJBUoM8XBprHiPHyE04qq2rng1WHZMGXMsxcmxmWJWUQRxws0IZD2xCvOmk/Disu8gbOUktjhGFpJ/gWxt8pDtC02IZEwc8gkfCCMp8qbUYWKxJKK2jmG7q6+w0Tjaj0wlv5m/cUu53bCoz5XpZWgrzlzjpURUykFAwf8ZSAEK6qtMVW6NiTFP20peOlw7mrfmy77J4KBCnaZOzFlMol+cPL7nKVrArK7Y2DaCI+GRxeYNgzmXlo5MC1Ja6fKCc+tEVQGBVpyoC4PQEcvRGLZk1woooJkT/Lja5rAzuPlbEtJPJEZOL+W7G+GworadmNaGOy1QAWzg9OTfJVSIpHjdw3xahlCaKDU3IWl1ixSU/c9ugqeAfpjGuGEes3soMV/XTHIe06NsqLGIuiS76nwS751+SDnLVbXsS0F//lUKTf/obKgl/ZMQVdYcPMT6R7oD5wWYVXt8ZtULwbORYwKbV1pXzjTSrD7wNac28lX+7Mes/emA+cMkaiKyRMG29Gu80SD2l9Vic1bThy7UMrauty2VG6vaTe1GmB5aFHmTqIWL3/9D7ztUyfzj1+5kP6hbgBOXXM+H3n7zVmDupv67ZntQRga+jnJfhMJ1tNHX9W5NyocylKdEzi7FkNTIA6WE5Js2pYuxicechxgzTBlzKINVREzHT093U7QdqQgNOgbnHg2TuiCWE/u35w1ZJHoS2AE8wfOekDHitkTEgkLt0RI9CcwKjKDy2gckCpRMBzjEQaTEYv6RjU3DuoG4TNnO8+VtQ1mBBNuYbBUf7M7yT0auOnabjaZG8FAOddf/iFixNhvqQq6bI8iQ1PTriJNG9kWyVAy9hrQ3V/4WhoIwVAEygLZzwX8que+O3sZxlBEIoapZEPuinPCVNXoXFZUmqazdMHa/J/Lrag97cJgE6g4ezWkwBEBA2AoAWWG6of3ak4P9JJZmUHjxUtj/OiaAdbU5Q8mfQZ88YIQ169N/z5//JcK3nZ7Jb952U9/dOYuTL79ZCn9MXViz1oQ501rj76CzmSiGDgXMSp0dDdn3M8lhiUTNjWdqk+oz+7DTsab9t5BZzDK8HCepIqzlPCjLelZ5N2nRAiMY9eGls5MD8Y0XktSxoRHcwSthlec9Z3pSaLXVkrYa1jNmaENhKOK5rVwzkq+9M8/xzByHJSr4uypVxOoflat6oUCrOe7VI/NUYThwmBAOmHi16eERpQXuSrOxcg5J9x9zgGP5OQ5R0EqvIjjFj09Pbzxxtdx8+/fRSQWGvkFU4SKALT3Qig6seDZCOjE22PIHD2uif4EVsRCDxQeOx2RsHHMGVbEIrwvjKfCk5XgDUVl3mGzyRU4LxylFZX1Si+eZGb6iYrZVKxLq12vDvVxwCUQlktR+8wxBs4nzjbx6Oq8vtBq5PXfve6SD1BWWsWriVedxybdlirZOCz74op959J5CfigbwiiBfyV+4YkUoKRi7KPwOeBw90S2/UhpZT0DKZp2m7k8nI2TbCsdMU5GgvTcGg3AIvnrsLvyxG1J98npag9qBsc8gaYPW2Bs1Tz+3hpUl4ty8tZhkzEnAAEPWodmAycL1yi1m0Bj+Rz54X41/PDGRXmfNAEfPCMCB8+M0zKfKw3ovGLl0p42x8q+N6zJbT0z6ywrLFPY2vSs7k2YPPpc4/PvmY3ZtY3VMSMRXt3S8b9XPZL9mv9eKX6gW2xtqCvqFBPhExn8nP39DJJFefHDnrYlRQsWFRp8foV46+UuTPZW3L1OQ8mHFVM2RtDNqtqR7No4cf8n7P9ewPvY13lKaxdfiZf/9htBAMVOd/PSSToAr0qGaiXedBOrVaPRy3sF7pyvnamItPDOZkwSfY4T4UVVT4IkWMS1Yfn24tIYV296fRunbkggXca8xtFFDEWSCm5/vrreXXnNnY2PseXf/hWwpEpsA8aBUr8ytans3digbNeqmMOWZjD7QmBeHdCVQtHWLE6ImEdY58DIy1R4r0JPFXZY3T/kKqY5cJ4Ks7m8+k5bceCeryLSrGSY/WacB97utODj+1W1PaXMbfMYl752IIxvwHr69V57QjptAzkXvoGSsq48fUfYYfpCpx39iP74qrNbBIgkklx2RVDCjJ61v0+JcqVj65t25L23rTAVy6UlULvkPrOUojFVSXaP2zJlc/LOZ6sOKfEwQ4078C2VTKmkDAYPXGnFe+1kgqkENNXcU69zXijOo+mPnCyB11GLfBpaDU+9R2VGhBXb3LOwgS/vb6P22/s45JlY/+tXbsmxv9cM8DrTw+hJefcmCW4d7efm+4s584dU9P/PB48djB90Vy/LnrcWU/lwnEdOG/f8xxf//E/8PLup470ocx4tA+rOO/c/4LTu5tC9MW0QmZrdUc6cCZN13b39E4GVTtuwc+2pr3qPnh6GH0CV3U+W6pMZW0101iv9jmPLb7sDL783T+in1sHgFd4+dbC7/Ffn72XObXD6NwupKjaoipTKE3fVOfctl6ZuKfzdMIdONeV2moCStmkTGd/MzkUNos9znlRE1DZ8ytPiPHB048s/bWIIgpBCME3v/lNKioqAdix/3k+990bGAwN8PJhgz/v9DGQQwRqSo4FQcAPrV35rX1GA82nYcdsEsP6nKUlibZF0QIjK/GOVyTMitmE9ocwgnqWYGfClISjufubAZrbxhY4xxrj0KAYAg2+UnyLAgiPRny26qGcHw/T0uqq+g2jap8xPzGu2Oi0uSPTtQGuuei9tPrTaxl7cxfxr20j/rkXiX3xJeLf3E7i9oNZtlKjRjIatbuiiGGuIppQ81P/UO7vbjCs/kqzzUoceA2BZWVSvkNRRbf3D/vY+bycTUuZT6R6p19zCYOtXHJS3ve2mzL9m4Fp63FWFWfGH9V4NJXUSCZI5GACMcvvrFlEqSfjO68PSkomsJw5odbifz7cxa9u6Oe61VH8RjJgR/CTF0roCU98/LKlsmht6dfGNR5KmQ6cBZLzlhTbt+A4D5y//fOP8Ojzd/IfP3wfsfjYFJiPN7R3ZVacY/FIhsqitGzYrTL+YRlCX1mFWJH2+XP6nDN6nCceRD3f7KFtSGWnN8xNcPq8idFLa1y2VK91GfRG1GDjVtYmSde2t6cDWm19FQD6FfMQtWpWky1hrIcz7TbckFELkpS64X7W2pwAVKtgXTaHJi3bPR0o5OE8rcJgkqwRTugCKeSElWePVVy4NMHHzglTEyienyJmNk4//XTuvP2vBEsqQQuwM3QqN/7W5FN/LeN/ng/wg+dy00mnAuUBGAhDz8DI2+aDUA2oWeJeiYEE5kDh/mY3lEhYlETP6OnM0UNR5RE9KzuZHYmrCmQ+K6oUVbsiWE1FcNaI79V/X/ok/b1yLsuq1dzmX54WH7KTVozSlk7g3ObxE9GNMfc3p3Caa23wQmv+JESJP8gbXn8TOxI7sp+MWsiuGPaWbqxHDo/rOJwybtiEHNT7Ep+ylbJzzFH9IUWj9hiFg6BSPxzuTidywrFkXDksKZLPyzkxbBnlXusVtKJyCYPtKanA0OT0zSVOj/P4Ak6hCQgYkJBIWyJMG21OicPyEAGdqci6zymz+dBZEX5/Qz+XLFNFmYQt+POusVedG/s0Pv+3IO+9s5w331bB635ZyRt/V8l77qzgzbdV8Erb2GywDvTqNPera3R9vVlcFyRx3AbO7V3NHOo4CED/UDePPv/nI3xEMxeWbdHZ25r1+LbX0nRteWAII+mfvCW+hZXLT0bUpbN18sCQEsOY5Irzoy4ayZvXRSel98I9Macy0xkV554YcjCBTPY+iVo/ol4Fy8KrY7x1ifPLsv5+KINq5ob7XFCZfS60Jcm+L1Mim49cD99YkRE4B+zMZMk0Bc5SSkWDGz6JakJNrkdPHqKIIorIg/LaUzj50pfgzBZY8UPinmXOc9vHuEicCDRNoGtwqHtiSTk9oBNrj2YIFCX6TOyYRB/Bl9W9DysmiR4enUiYtCShfSG0Ej2n1VU0pgIpI8fpHAz10d2nksOjqTZLW9L/FxU4Wwgeq5jDsqTQkmdZOtFe0zGgBMJ64w49tsFfhk+XnDR7fMnxJVUWs0rUvl5p8zBUoHh21YU38WPt//hV+JfcH/0Lr5Xsg8UBRK3P6fW2HmnD7hyHEFsy6BVeLSf1vsSnxL9Cw2o5Ukrae2TOPuXhCAbUPlKJnL4hmSH05RxKHi/n4fdTgbOhe1g6P78wmO0SBnutpIL6UntCDMAxQZK0oBz/LkRATzq/KIuwjIKJV0dIpizpHvRJ3n9aBCNpC3nPbh/hMeSIpISbnyxlc6uHpn6dvqiW4SttS8HdYwzGHzuYXq+dv2RqRPKORhy3gfMrrz2Tcf+uh39SrELlQXdfG5alRtKFc1Y6j29znUPLVX19JvE0q5ZuQAiBtqJcPZiwkQ1DmerKE6w4hxPwXLPaR4XP5tRJEjM6Y356P5tTgfMwSyp7R5+TfNROrMyYALWFpegXz1F3bLDzUa3dSYSqHIHzUlfFfpL9JKcSGT3OATvDimraqNqp7PPwSTQlHmIXf+tFFHE046Pfsznj4zpP9S4Ew6UhYauqTVdYy+nZO1WoKIWuPlUVHC/0UoPEkIU5lKa3xjtjTl/saKFEwsKjEgmL98SJd8fx5uhtBmVFBdlqzAD7m9O9wMsKKC2nYO8ZxOxQ8+sLZdX0enxO4KwtTlecV4f7OdCrZySdD/qCnDwnkbfXeiQIAWcvUHNR1BT8YXt+vrPfF+Af3v//uNO8k/8J/4BPtH6Yr9lfh0+sRL8wqQBuScw7G8e8bhSpinOewoHPI4gnsvucQxGlqB0sQNNOQRMqkdPWIzEtSd8QlOR4u3xezvGEdIoQkegQTYf3ALBk/uq8Pt3StJGtSc0Xb4AhwzN9wmCQ5JZPQBwMEH4DJMghEzG7BOES+hA+DWlokEO8b7JQE5BOz3QornH/ntEHuk81etjTpX4cHk1SH7RYWW1y2ryE4xbzQquHxCiZ826atiakY6VVxHEcOG/fkxk472vazqt7nz9CRzOz0e6yojp1zfnMqlD9tzv2PY9lmUhbYif7feMyzsGSJmqr5gKgrSx3XmvvG0T2JUfoUiM9gYwTzzR5iVtqkDxvSXzSMptrXLZUL7QYbG8zsIdZUlnbsmnabjjiXoBsz90GkFF9z1FxFkvSSqP2gSMjfDMepALnSr+N18i0opo2qnY+hc1UD1QxcC6iiKMaK+YLZLKi4tEkG+d2ULbnUmj7mbPN9pbpGzd9HoFpQccERML0Eg07YmEmk4123CbWEcMIji1aVCJh5qhEwmJdcWxTonlzT6CD4dzVSlCiUSksW7huxPeyNqdFwR6qnMfsoEWZT50vUephqELplSyLDrC3TSAPufqb/WUZSe3x4C0nRp2K3p07/XQX6CPdsPZ8vvbR3+HzqmN69uUH+cp/vxvr/FmQTHTLvYP5E+MjoND6x9ChZyDzOuoPKS9tn3d0gWFZMpHT0afEwXJVqvN5OUeiaUXtfU3bneRAQZp2a9gJKl9LiqFOmzAYpFnUEwic8Wiqx9mrodUOy1D4dfV8fGo/0/Xr0iyGP73qZzRdepYNt76Y1vr58kUhfnv9AD+8epBvXjbkWEuGE4Jt7aMbS/Z06xweVBfBSbNNqkqKa6YUjpvA2W4NY+8dcAaAbcMqzqCqzkVkw21FNbtmAetXng1AODrE/uZXFY04OdG/lHiRRUvXOBVYbbmravragLPdZPQ3P3ogvY+LJpFGkmFLFdf4+ANlvOvvtc64bLeGkfuSC7IqL2Jedi+dqPY5lCzZlpvOJUeoOIsaH5SpQU42hjL9BWcoLBu6k33hWVZUTKOqdj6FTV0UBcKKKOIYwLtfD6sXSN66ZIBfXt3DVy/38L1/+TqldqOzzX/d+Ut6+zum7ZjKAnCoCyKx8Q0wqXkzkXSfSPQlMIcs9NKxSdwLXSB0QaQpUrAiKi1JpCmCkWf/tpQMhJS/cC7sb0pXnPN5+0pbYu3qI/HLfdgvqyCzX/ewJVjjVJud91ukksUeKRncH86yohpvf3MKc8psrjpBldCjpuA3rxQu325Yez5f/9ht+L1qjt+8/e986UfvhivrnW3Me5on3TKyxK9o1u7e484+iWcM+ZMSryCWgI4eSdxUomH5MLziHI2nA+fXRtnfbLv6m1PCYHPKptFKU0rVajCRqMarKeeNWb5sdpxXQ7i8nKcKiyptzl6g1oadYY1HD4zMzf/7fi9NyV7ktXVmll3bWQvS959rGt0a7HFXG+QFRVGwDBxzgXNPTw933PNL/rL5x85jdmuYxPd3kfjxHuztfXT1HqY12d98wpJTqCyvBeDJrffR2XPoiBz3TIbbiqquegEnrjzHub/ttWewt/c595+NP8OqpRuc+6LC6/T/yuaQU+mbaH9zf1Q4/ce1AZu19ZPrOfvGNTFKjPSk1REz6DKStJmumPM59PVVOfuUhCYQ9SoDKLuiORU4R6w4C4G2JJl4iFrIwxF6woIfby7h6cbpVKcePXoiwumrSQXObnGwybIgGxH5FDb1IlW7iCKOBZQFBE98y+LaRSEqklXLhXNW8LE33+Rs05Oo5ZPfupae/vZpOabSEmX709U//n3oJTrRthhSShJ9CaQp0Tz5l2rRmGR3o405jELqqfIQbY9iDuSfG+M9cRK9CTx5mECxOMTM3NVKSFO1NaGxZN7qjOdkdwzzr63Ev74N82f71DoheYgPV87F1LSswLlsZZqu7W0exDqkqL8xoWHU+ialgvm2k6LO3H7/a74RfXNPXnUu3/jE7ZT41LFt3fEoX/zbP8Hq5Nw8kMB6MFsDZiII+JSg10AyFo3EJL1D6voaC0p8iuJdUPtFZHo5W5YKtFMsg1ELg7kUtV8rqQRgdnA6qdrJ/xMQuhFeXdmBzi7JWtcJIRBBY8oDZ4Ab16eLLbdv9+f1HQflLPPLl9IJoPdtiGSdgtPmJRyryWebPQX3B2r59HiDGhN0ITl3UbG/2Y1jKnC2LItVq1bxxa9/iDuf/T7xhLr4rMfbHAqJvbs/w4N4w5oLuPL8d6nnbIt7H/vFtB/3TIfbiqq+ej4nnuAOnJ/FflVlkS1p8XziOVYtOTXj9U6fsxsTDKCeavRgJQO0C5bEJ8TOyYX1s01uu7GPfz0vxMaFcTy6pN2bPWtp6yvz7sOsSW4vQeYQERkpcAbQlqbp2ol9g3z+oSB/3OHnK4+Usr195hntZgmDkendPW0V53wKm5pQgmF5AmcZNo8qBfMiijiekWuNfPqydDWQwDqaDu/hkzdfQ1fvOFWQx3I8CPw+ONQpscbZC6kHdMwBEytkEW2LofkKL9P6Q9Demw6yUjBKDaywTaw9h1FvEg5NO897RONJmm+OSqdpJmg89BoA82cvdyjNANaufuI3v4r198PgGv8pM9h79hx+W7sUgOXVmYGzb3l6vlvS2Qvd6tgbfUFOXzA5yfGqEunQYS0pMiiu+bB+5dl885N/JOBXx/fSrid4tPY5Rd0FrKc6sFsnz8JP1wRSKpo8KE/mSLSwf3MuBAPQNZBtQ+WGR8/0ck5Yiq2cqjjvOfiy2s7wsXjeqrz7SVWcE7pGg18lGaaXqi3T8/t4UaIj6vyK7ZcLQWNa1gfr6i3W1KrrvaFPZ0sBFfi/vOajI6S+rNPnJTgxh3he0IvzeNuQTtMIyaJdnTrtSbeaU+eaRe/mYTimAmdd13nDG94AQDQ+xOZtDyMH4hk9KLI1zDZX4HziCedw5QXvQdfVhXn/479yAu4iFNq63IHzAhbNPYGyUtXX27uvBdmlRt0d5qsMMsgJS07JeL3IETgPt18aK9ym7BcsnRoaSdALFy+L89WLQ/zprX3UzR82eJV5EIuCOV/bMST4XUe691m25ehzTgXOfh1RkjsIFkvSVPcDL4bZ15OkbiP49pOlRGZYInC4FRUAqYqzV0OMUhl2wsinsKklBcPyzH2yN47siBaFAoso4ihF0At1pUmbv+B6AJrb9vHJb01P8FwegJ4h6Blne7Ue0LHCFrH2GPGexIj9zf0hSc+AUk4eDqNUJ9wYQeYI4qUlibZE89K0QQmD2Xa2jRFAU9teEqaaw4YLg9mv9KSTkxpoaysxblqO78sn8ufFy4gm11vLZg1b5Ff7CCV9r9aF+5zhu2ESaNpuvHldlEq/mgQeb/Cyp2vkeWnt8jP4+sd+79z/+aM3w4U16o5ECYVNIpPJ54HOPqXi3D0gMfTcAm2F4NEF9VVQkXuZAmR7OSdMsCzVsjYUHqClfT+gvmOPkTvBL/viSgEdaCkrwxZqHTDtPc45VOHHAuHR0FdWZIiCZTzvN5iQbPcYMLzqnAuRBPzW1W7w3g35bXXddO1nR6BrP1akaRfEMRU4A9x4443O7ce2/Bnrmc4MFTzZFmHHbiUCpmk6a5adRk3VHM7bcBUAfYNdPLb57uk96BmOVI+zz1tCRVk1mqaxfuVZAJxkrne2eyb+DAvnrKS0pCzj9dqysmw/3fLxV5y7w4KXD6uJd16Zxcrqqe+jCXhgzsLMwUasq8yb3Xy22ct+T3q2irZkJmOklE7FuVC/t5hTokQpgKq2Qdwcm0ODOj/dOkbu1hQjM3BWx5pS1Z5WD+c8CptCE6Br5OIqSdMGj6aOs7c4WRRRxNGKJVVqTpB6ObWzlSZHa/sBPnHz1RmtR1MBQxfoAlo6JY1tkobkX2ObGnMGI4WDq9ScEjkcxQqb6Dm8flOwpaR7QA1zHb1gDwvcPJUe4l1x4l3Z41m8N0G8J56Xpg0QjkpEnlXigWZ3f3OmMJjsT7+f9zPr8Ny0HH1tJUIX7Eou2su8NnWlmccrhGBwdnaivSUQZN0ktmMFPPCOk9Jz8mjn0fUrz2JTcq3Y09/Bffb9ynYTpUNiu8TPJooSv1LW7htS1P/AKNS0c8HvFWgF6MvDvZwTpqo66zrsa3zF2a5gf/POPuf2tlLl5V3qtR3ht2mBlBMOnEeEV0NIOS16M2cvTDC/XI1jr7R52N2ZPQ78aYefvqj6gZ6/OM6KAmvhjD7nlvy/eVvCEw1qfe7RJBsXzrDqzAzAMRc4X3zxxVRWqB/u1pcfxXx2mDCIJaFDVUhXLjqJQDLIu/aSDwBQKkqpujdC4g8NR4UY01RDSklHj+rfqa9e4PR9pOjaq410X1MumjaA8OuIBaWZj02g4vxEgxeZzPpdsDQ+Kd7No4Hbkgqgb9msvNs29mk0+dKBc+OeYQuXkAkp4Y88NG1Qi6jEArWfKivOvHiYG9dF8enqtXfv8jtJhJmAznBmxVnGLUgJp0xn4FxIYdOTh6qdsMEj0OYFIG4hY9MobFJEEUVMGlKBM8C73/Fb5tYtAeBQx0E+efPVtHU1Ten7VwShrRt2Nkh2Jf/2NKsxZ/t+OaLytubTsMI2SHJ6K6cQiUI4ArMqVJA13MJI82pIm5yezrGuGDJhF6SC9xcSBnMrag8XButLs4yoTs+bPWFBR1+q2mzlnLuNpaVZj/nm+8lTBBw33nBCzBGvevGQh60F6LBuvOuazzjroNv++j2sq+qc58wHWpGRyQnw/V5FlT/Upfqdxxs4j4ThXs4JC5DK0mq0wmDWjj7n9sN+dT7mTGd/MygW2RQHzsKvI71J5e0phibgBlfV+bZt/gyG4UBM8IdX/cltJe85NX+1GWBeuc3CCnW97+ww6I/mPlc72g26kuu40+YlCE5n8uMowTEXOHs8Hi678BoAzuQMRCg5gboUBZfpywBYf8LZzmNrlp3OykUncaXvKk4012Fv7srIoh2v6BvsIhZXP8j66gXO4ycmlbVrNCWsFpdxOux2Vi3NDpwhR5/zBHqcH3GpDF40RTTtXHArXw/oHvZXVObdtqFPp8PjJ6Kp2T7QHeb55vTEPJKidgqWDQ9ZaWura0u6eP9pEd5/WnqQ/M5TAcIzJCmYRdV2K2pPa+AsVeUmxwgndJGbqh23ET4dsTCImF+K7IkVKdtFFHEUwh0495h1fPez9zC/Xs37bV1NfOLmqznU0TBl7+/zCOZUZ/7Vz1JrkHgCtu2XNLbZ2HnGF6PUIN4VR8/TwpPCUEQFPMESFfzk8pD2VBiEmyJYkfQ5kbYk2hxFD+QPFhOmJBxVlOFccCtqu62opJROxVlUeDNElvb3pN9veH9zCjVrsgPn+SeMsbl3FPDo8J5T0vPoT7eWjEozcsn81Zx/ulpj9g10ck/D7WgnJ9uyQqbq654ECASaBuGkQnuhqvFEMNzLOeFaS2QIgy05OefrZdRyXEasci/7faoYNa0ezpCe86cSXl1x2KdBIAzgkqVxZpWo93q6yctVv6ni+t9X8NG/lPH5h4KEE+rzXr48zoKKkY/pzGTV2ZaCLa25f9iPHUw/fsEkutUcS5jUwHn37t28973v5fzzz+eaa67hnnvumczdjxpXXPpmAK7yX+M8pl8yx7m9zFAT6EkudWghBNde8gHWGq4JoCnHLHScIUMYrGa+c3vZgnUE/EFqNNXj02UritJoA+fxqmofHtTY1akm3yVVJosqp29wFrNLsJMD8zPldTQN5V50SAkNvTpSCJqTSpz1iQg/fMpPKBkvj0YYDJRa4iMyHTi/zuhGCLhmdYwTZ6tBrW1I5/+2ZFtiHQm4A+fqgJ2hqD1twmDg6nHOVXHWcrNJEjYiaCB0pWYuyjzpPvQiiijiqIE7cD7Yq1NTNYdbPns3C+esAKCju4VP3nw1re0Hpv3YZpULfB7Y2Qh7m2WG5VAKekAHW+IZwbaxPyRBqCDL51Ue0sOTfUaZQWLAJNaZHssSvQkSvXGMivyBczSufIO9OQ5BSul4OFeW1TCrwiXIFrXSXrfDjn9fdzoRMFxROwXvwhJiWnoe6Ta8nLI872FOCBcuTTh91nu7jVG7Vbzz6nTV+fYHfkDi4iqnOGM91YHsmhydnIBP0bRLJz9v4GC4l7OZ/Fosy2THvs2AatNbNGdlztfbewacdsj+JVXOnDut/c0ku6/0qa0FipROS6KAxVt3bNLYal4D3rQ281rqjWjs6DDYnVwHe3TJO08uXG1O4ewR+pwtG55o9Dr7PWtBcf2TC5N6lX3pS19i48aNPProo9x888185zvfobGxceQXTjJOP+VczgxuZLmhRlt7rg/9nDSdZqm+HCEEa1ecmfG680+7htWeNc792MHxGdsfS+gYZkWVgq4bnLL0XIKaohF32Z14PX6WzFuTtQ8AsajUUaDElxaJkhJeOWyw7eDoAml3NuzCpdObDRNlHrqvXs4d1Yu4tW4FTX25qwF9UcFATH3WwUoV0GpASW843UvlDpzzJBG2HjK4bZufvf5yYslGM61BZXY1AZ86N4w/aatx32s+Xhgl1WwqkQqcq0psvHqmojYT6GsfM+zkgjJXBtoQ+Xucg+r6EqUG2tIyiNtFynYRRRxlWFBhO/YrB3vUOF1dOZtbPnM3i+aeAEBn7yE+cfPVtLTtm/bjKwsIqoKwvxV2HpRZvs9CFwQWBwrSqG2pRMFKksNq0K/Ul0PD1tBCF2hGpqdztDOGHbfRfYWFwRImOb2De/rb6RtUyfKlC9ZmVJUzXBSGzW37MwLn3JRmoWt0zErrpLQHg45exmRDE3DTqenA5Nnm0QXOi+au5KIz3wTAwFAPd239Jfr5s9WTlsS8b3L66EtL1NohOA1SJqlKcyQu0TV46Jk/OGJ6J52w0RHQHQ7bRdNunJdO8k+rFRUke5yn/m1E0IOM5/5sMm4hoyYMTV4//pvXxvjwmWEuWx5jXX3CqUCn8Jb1UeqCo/t9rK0zKfOq129p9WQxzp9t9tAbUWPOmfMSlE7jku1owqSutNva2njd616HpmmsWrWKxYsX09jYyKJFizK2i8fjxOOZmQzDMPB6J+db0g3B26reA8mC8Z55jZxctg5ZaSD6TJYYS1g2fy3l5RWkmyHB22eDSFfu7OYQaHZOn97Jgkj2qqb+zzS0d6d7webULsg4zjMWb4I2dbvL7mLl4hPx+Azc5zQFoQv0C+qwHmpDP7vW2c/mZg+ff7AM/YEy/vOqAdbWFg5S3Gp/Fy6LTft5qzmnnFv3qt7mpn4z5/s3DqRHb7OuBJLMrUWxEPfuruDCZXHWuMRTRLU36zqIW/CtJ0uRCExNMFgXxNc+oESrBmOISi/zKi0+eEaY7z2jqtq3PB3gp28cOGI9KZatfJxB0bSFLmEo/Tm1SqPg9zWpvwVdKiGPHJxs4RMIIbPeR+gSLSCc12izfdBfosaBHL6OU4GZPh5MByZ6DjRDonkkUtrY9sQXb5p2zHU0HdOQ3TG01jBLyoLsG/DQ3K+RsBQltaqiju985i4+8503cbBlJ919bXzi5qv53ucfYE7topF3PonwewW1VZLWLrCk5OQVY6PjRqIqSE4FVT6voHtA0h9SNkRuuD2djTJjRJo2qMAZcis556NpA+Ce2yqHV5zTVbKFBdhisflljhm2nD21UeOpcxJ4dUncEmxrG/2S+J1Xf4pHn78TW9r88cH/4ep/vwnPZg8MJrBf7cPeN4C2PIcV5xiga4L6/FIqkwcBsYSiaUXjIEnwm3u/4zz9tis/nvNl0pLYu/rUHZ/G7mCl81yqf3zaYDPlFWdAeTnn4/QPmYgqH3IgPmna27oG167JtJSLJBT70rJF3paHfPs6fX6CRw74CCcE29sMTpmrgvx93TrfejLdJnHRsmK1OR8mNXC+4YYbuP/++7npppvYvXs37e3trFu3Lmu7W2+9lZ/85CcZj11//fXccMMNk3IcIpFgWVjRinvsHv4S+RXXbTqPF+cNUNIXICACvO7MC1myKdMvoveOvlQcCIDXNJi/rBfvvKmnmC4+Z2jkjY4AIg+nqWwnXzyLJRvS5+zchtXwnLrdaXdyxqZ1Wec0A5vKsf8tiBbQALXdbbdVAmDZgj/u93LlGzvyvnzfIYP9PWoWOXlZjI1v6B/fh5og5v2lnNYug+YhjcXnDmaxgR//WzpbXnu6BklhyoVR9R1/74USfqGFSem4LLw0jneBei51Hfz9xRK6kwIN56yJcEKZQffP1fbVnk4qNqkJ+V/OHeSFfo2nd5TQGdJ5ZFDw0UsGpuBTj4xD3Tq2VN/P4oVxlmwapOPlEN3J5+dsNCk9Y2SPlsn9LeQQATol+UeuYxmminp28o/p/X3O1PFgOjHRc9AbOkTvJHTbLFmyZOI7KWLKIU0b65E2rIcPgyX59KxOPlR/Oqam0dyvsXSWCtSqymv5zqf/zGe+8yb2N79KT38Hv77n23zmff897cfs0QU1lZKuPugbhFljiLNS/c3ueoPHgM4+ybzazEnJKDWIdcSJtceQpiTRG8dTXbhQ0T0gc1abobAwWEbF2cUyiiSgJekfu6TKwigQ4yw4pxz7ZVVtXXRmAS+lSYDXgNW1Jq+0eWgb0mkf0qgfRbV0/uzlXHLODfzt6d8zGOrjz0/+hLddcRPm7Q0AmPc04/nYmqnvu50EpLycpZREYvDElt87AnqnrbuIdcPYmSnIhiEIq8BNO6GC1nB6rTzdVG0kCGMazrVPz8lYA5AxCzHLC1O8NC3x4IxnY8VZC1TgDEpd+5S5Jm2DWkbP9NkL4kU17QKY1MD57LPP5stf/jI//elPAfj85z/PrFnZ6bKbbrqJt7/97ZkHMokV5+e+uQMh1QVwf/Q+Hn/6CV5+IMHu/mZOQdG0VkTP5uCTmbZJ8YeyrQRe/kUnteedMCnHlQtClyw+Z4iGZ4JIa+YNsHu3tTu3rZYTOBhOn7OSQyuQKMXtbruLU/xXZ53TkbBjZzqb/OSrJTz450pW1uTOoP1sc3rbc2rNMb/XZGGu36YVGIpobHmwPItGtnVrOt2vedPHuC4ZqDW2e2hoh1TzQMveKrRmkXEd3P5oOvP3hvkmA5FqoAeA9vtNekrT+/2ndTGe2eFHIvjTo2VcVW1Pm9K4Gzva08NJaVTj4JNlxHekf1NtTeVosfzVg8n8LcjeGFR6MU7MHn/s1hDWzj602envSUYtZCSBcVotYlglxj4Uwn61DzFn6vvIZ/p4MB2Y6DmIDZpEBkwuel8t5TXT2FdfxJFDwxCJ+5qRHWna7fyeAf7Z3sX3567hYK+esdCsKKvmW5++k3d+dgPhyCBPvfgXPvau7+D1TJF0cQF4DYElJW09klnlo7/e3f3NKZSWQO8QRGKSEt/w4Dnt6WzHZUGadjQuGQhBSZ7e2oJWVG5dCJd+x55uw3HDyEfTTqF8aQDrY2sgYVO9ZGoDZ4ATZ6vAGeCVNoPLlo+u2vaOqz7F35/9I7ZtcceD/8umf72S2noDo91EHorQ+8hrxE7KnPOELjGaQxzuLM0Y37weH9WVsyfvQ40Bhg6RiOpvjkRi3Pngd53n3n3NZ/O+zi2gq62t5PBhlQ0RSOpLpzlwFjK3i8Zkv41PA00gLZmheC8TNhgaWpkXuy2CtKdBrGwcOH2eiSYkthQ81+ThbSdG+deHgvQkKdprak2+cEFoOor3Ry0mLXDu6+vjE5/4BF/5ylc477zzOHjwIP/yL//CsmXLsqrOXq930oLk4TBDJgN/VcGeJSweiN2PJU2e2nI/B3s2O4HzIhZnLcrsg9kVjkNbd1OzcdWUHKsb0hIzcqHc3qV6dQzdw6yy2RnHqPVLUiFup93JqsWnjfkzNA/rE/7dSyV8+aLsMlH7kMafd6hFjS4k5y1KHLHztbDCZkuyhamxx6DGn7kIaHAph86bpysf5qjFCnMIjy5JWAItRWcLGqDpyKS4hrQE0ZjgmaRAQ9Brc+psE2EGVfrdBnv/UMZnnx2QzsTf0q+zt8NgRZ7kw1SiYzA90tYEbHVNu3ucS72j+s4m47cg4yCkhswh4yDRs95DRiVoBtJnkCX9EPBhoyPiEjFNs8lMHQ+mE+M9B7YpsBMCIbQizfoYh9mfwPdoK+zsTTcIaSiBIktyed8hDvrLONhbC2RWUCqCs9h4yhU89MzthCODvPDqo5xzyuun+RMkj6UU2npgYZ0kGBj5mh/e35xCiU9VrvuHsoNeT6VHVZylHJVadyQO5dkC1wDsTwbOHsPLwtkrMp6TA279jnTiym2beOKckXtA9fnTJ3h50myTXydvbxtD4Dy3bjGXn/tWHnjiN4QiA7z/S5tYa6zjW+WK5hy/v5l/+N37iDj8ssI4++TX8fkP/pgSX54TP0Xw6EoILhqHh579HZ29aoFz5omXsnrZhpyvkVKm+5s10FZX0LZHjbfVAZnXxmzKkBIEnWr4dKXXk7CV2XUKIRMR9CBq/ciGQUTCVtvOMJT5JOvqTba1eWgd1PnEA2U096vjXFBh8R+XDOE/8nI5MxqTtqpobW0lGAxy4YUXous6y5cvZ8OGDbz44ouT9RajO44/HMYeUkFDZKVBn+wD4IEnf8uThx92tvMOKy7LgTj0qMHSqkpf7LLl+FbWTqlq186al7UIla5epg1nX8LsmoVj2rdpqz4NN55q9NDUl31Z/nhLCfHkIvq6NTFqAkeuB3RRZTooHS4QJqXycAaoDdgEfQIxOxnw98e5anEITdpUJVTPSi5F7RdaPURM9Vk3Lkrg0VE2SXPVQkK2R5GhzIXHhUvS38UjoxRam2xkWVFB2o7KECqBME1QCpt5ZlGN7Db8uA2lRu7A2Kup4y+gpFlEEUVMLw7f1ca2azbj2ZkW8RQLSvF8bA3GjYudxz7Qtgf25W5fueCMa53bj225a4qOdGQEfIJoDNpH8HdOIdXfPDxwFgh0Dbr6s/eT8nRO9CQKqmkDDIYlUubuuY7FI7S07Qdg0dwTMIxhrI6+3OJg7sD55FEEztOJ1bUmHk2ds1fG0OcM8I4rP4mhp8/BDvNVnoo/CUCVVsWNJTeOel/PvvxXvvCfbyESnd5WnZSXc09/lDv/9p/O4+++Nn+1WXZGkV3JdcziIFGPQV9UzZ/T3t8MKlk2xT7OgBK39WZbUsmwiaj3Q0BH+PS0svwMhFtduzG5hp1VYvONS4eo8BfXOSNh0gLnRYsWEQqFeOKJJ5BS0tDQwJYtW1i+fIp8BHJASknj/6VVvCtft4q5dao/bdf+F+iyOuiz+9S2reEM2wa7IR0ge0+pZUAoWu08cy7Nh/ZMw9HPPAyF+wlF1IJjds2CrOfdlKw3vvnDY95/26CGlaTUe5Pq0BLB7dsz6XIvHzZ4okFNwJV+m3eMUnp/qpAykQdo6s/8CXWHBUNx9diipCWKqE9Ttd5Q0U91IuaIP+YKnB9rSD92/mKXuNbSND3bPpjZn7tpccJRkX3soHdUfpRuSNNW9KIJ+BbnCpwdO6phfp5TjoKBc7bcjUzYiNI8tN48E2URRRRx5ND5cBeJ7uT46NUwrl2I5yOr0OYG0E+tRrtQ0V51JNe9tDOnRdCpa86nrLQSgGdf+iux+JGbW4IlcKgrJdJUGLn6m1MoLYHugdz78VarMU4vkMSUUtLdn9+/+WDrLmypxsJlC7I1bJyKsy6gVAWhURPHRnJRfYK66VZcHgE+A1bVqmD+8KBOZ2j0c1V9zQK++pFfccnZ13PhGddx4RnXsWtFM2aSj3ddyZu55pR3Os9deOZ1XHnllVx45nXpx864jtIS1eC+bc+zfO67NxKOjKwHMllIeTn/7v5f09Ov1EzPOeX1rFx8ct7XuNW0tbWVGUWQaVfUBlST83QIeGpQYmSsB6Rpgy7QKr0II/v5mYazFmSybwIeyf+7dGj6vbePUkxaQT4YDPKNb3yDH/zgB3zxi1+krKyMG264gXPOOWfkF08S7Lhk7pvnsP/HTcQMHd+CUi44/Vp+95d0Bm2/tZ8N2gYImdCfcHpwZEM6wycWB4lUW5R3QZlWxhNPPsiCG3N72B3LaO9Kezi7ragcpAJnIz1BjgUpegjA2y4c5I7HgwzFNf6+38u7TolQH5RYNvzP8+nA830bIgSPsES+Ww10eMW5wXV/SbIyLVyqoPOjIU4JpDl0/X4fNa7XR820v16Z1+bUuenMvFgahCdUG4I8OATrqpznKvySDfNMNrd46Axp7OjQWV8/uqyvlJLEj/YgG4bQz6/HuCrHdz0KZATOAal6fpLCIdPq4QxJa4o8ecFcAbWUiEDuxaTQNVV1Ds2sKkkRRUwlvv71r/PEE08QjUaZPXs2H/7wh9m0aRP33nsvX/va1zLarf74xz8ye/b09meu+upK2v7aQbTcj/GmhehzMntJjdfP4+VtCdZ0dxO0TGI/24fvo6sdK0RQVONzT30DDzz5WyKxEM9v+zvnnXbVtH6OFIIBaOuGzl6YX1d424Fwdn9zCgE/tPcqunZdVeZzRtDACBaeq6NxGIwoD+FcKKioDchUxbnc4/R47mg3MO2k8NCqyfE4nmycNNtke7uap7a1ebh4DKrCZ554KWeeeGnGY+Z9LViPtWGg84/1H8Vzw2JA9Tgv2TTIwSfLMlpRXjv4Ep+95c0MhfvZse95PvfdG/h/H7+dYGBiytyjgaYJovEwt/45vVZ+1zWfKfgae0daAUtbU0nbUPp3Ne3CYDB9VG1ABHXsTjv9diFTrXGSrQmizIPdGZ2uwxkzFlTYLKq0aOzTMTTJVy8aGpM69/GOSW0AO/vss/nd737HE088wV/+8hfe+973TubuR4Tu01j+yWUsuvU0QhfMA+CCM6/L2Ga/mfZstFvTfSfu/mZtUZDKE+Y791tf2jWhStzRihRNG6C+en7W807/6jiriS0D6ctv/ZI4165VtB9LCv74qqo63/eaj4O9aqJfWW1y+YojL5Ff7pNU+tXE0NSfP3BOVZw1V+As2yJcOCvNbtgRy+zj2tzsIZqkaZ+7KJGhPKq5RFLsA9lULjdd+9EDY8guDCacxJH1RDv2odH1Yw1HKnAWSKoDNgy61VWnO3Amr6ej0AVSE8hkWV7KpGRNgSqMCHqQRap2EccR3v72t3Pvvffy+OOP86UvfYl/+7d/Y2BAMZDOOOMMnnzySedvuoNmAO8sL+v/cDrRKxZCRfZ4JzTBM+ecQFOyX1R0RjF/dyBrLj//9Gud249tvmsqD7kgNCHwe6G1U2JZ+ccaO1kRHk7Tdu8HoGcgex+2LLxvUNXsaBx8efZ/wKWovXS4onbChrBKMLpp2i+5aNpnr5mZgfOJs9OJ0ZfHSNfOBf2i2c6cYr/Qhd1Z+HOfsOQUvv3pOykrVdmOnfu38LlkID0dePjZX9LTr1xNNm24iuUL1+fdVg4lkI1qzSDq/Gi1/syK8xEInAXTRNUGRCBzPSMjFqLO77R6iUB+5e2Zgs+dF+L1K2PcfPmQY0lVxOhwTCqnCI+GDKoLe8m81Syck64W95ame51kMnCWCdu5Ler8iFKD0hX1znaVg6UcbN01HYc+o9De3eLcrh9WcZZRC6LJamIOuvFo4K44L52d4I1ro/iTlO0H9vho6tP4xUtp2vaHzgxPh2jiqLAwWU3ujWgMxNIH1dCb/kyLK7Op2nZ7lLW+dOD87GApUdeY9bgr4D1/SWaSQJR6VA8NIFtDyFhmhnDjojjepPftEw1erFHOXW4lWiSYdzePK1HUmbTPqiqReHSQA0cycC6gaKkJ9ZfisydspEdTfUl5IAIGoz6hRRRxDGDx4sVOVVkIQTwep6sr23niSMJb7ytIz5xfJ/j3BSczqKtAyN7Zj2zM1C05ZfUmKoLVADy/7W9EYkdO16S8FHqGFNU6H/L1N7tR6oPOfkiYkmhc0tkn2d9qs2Wn5JX9ErtAL89ASEKe/mYYbkVVwMPZLQzWlr591uqZGTivqTMxkn3OY/FzzgcRMNDPT64jbbD+dmjE16xYdBLf+fSfKQ8qN4jdB1/kM99+IwNDvSO8cmKIxELc9+j3AfVbH7HavKvf0QnR1lYCqvUuhSPT4zw9VG0AfDoilXi3lItJxjrYryNgRhfcVlRbfHJjmJNmF4PmseKYDJzdEEJwoavqXLKk1rntBM5NIWcRLRarqp62IK1quNxYfkQz0UcKHQUqzjLPBDkWtLj6g5fMTlDhl1yxUlWdY5bgEw+UMRhT21y8NMbaUVKPpwMLK9x07fTnyKg4p0TEygxIWhzJtggeVyW2RZQ4/dvhmOC5ZnW73GdzSg4BFZG6Lm2Q3bGM5wKedO9KX1TLyPIXQkbgDMj9g9iv9uXdvrlfY0urkdFHbdrQE1aTltPf7Aqcme7AWYj81hS6UJSu1PEnbIRXL6yA6T3mh8oiisjCN7/5TTZu3Mi73vUuzj77bJYuXQrAK6+8wsUXX8z111/PHXfcUXAf8XicoaGhjL9oNIpt2xP+k9JG80g0QyL07L+l1SaHfQF+Vp9OntvbejK2Mbw6m06/ElDCV89vfzDnvibjDyj4vMcLXo/kcK+NjY0UMutvKCaxkPhK8u+nLCiJmZLtB202v2bz0n6b/YclYVPSMyjpDWXvVwqJjU1vSFISyL1fKSzHiqquej7l5RWZn2/QtS6o8iB0SdiS7OlSY+uiKpPaCnvKzu9E/kp80ulzbh3Q6Y4W/q5G82dcUOe0sdkv9yDbwyNeB8uXrOWWz/2ZyjLVxLWn8RU+853rGIh0T9lnv/XPX2dgqBOAs065hqWLVhXc3m1Dpa9X18DhIVfgXGFN+Lcw5j8DhG4jmPo/zQ+UCJAWIpZAVOholYbreQElAmEXPg/DzwFYyJ4whGJH/PcwXX8TvQ50jwQmPpfY9ugLI8eF6Pjl576NOx78X8LRQU6/4HXQokHMdqjatqu/WUsGzpR7sEs1tJDNcn0FP3r+p9x03b9Or8DREUZGxXm4YrZLGGy8FeeWATWZVvptyksl3cD166Lcs9uHaQtHodFvSD5w2pEVBBuODGXtfp119ZZS1E5WnGcHLUqSsaIQSllbHhiCgQTSRYXu9Pi5f4/O5SfEeOyVEoemvWlRImeLrpiVbjyTPTGYm0n1vmBJ3AnEHz3g5bR5I2cThwfOAOY9zWirKhCezIPoCgs+dG854YTgwqVxPrdJ+f11hzXHo9MJnJtcugGz8jTMTSUKVpxJV5zjNgQMJQCWD17NySAfT2NAEcc3Pve5z/HpT3+aF154gX37VJvTqaeeyu9//3tmz57Nzp07+dSnPkV1dTUXXnhhzn3ceuut/OQnP8l47Prrr+eGG26YlGPc8A4YbjWVwqyQBn8p55nyOj5yeBe6lIjdPSzeWJHBSHmrcRn3PfpLADbvu4P3fuqSSTm2XFh8TmHF5CXJ//m2KpkLZ63N86QLy0Z4Pp/01Mp5+V/T1NREOKn4vP7kE1iyKXMv/aEBUnXV6lMk1ZsGeeTlEuykCOj5G9TcN9I5OFI4r13n1XsrADhcYXL62eNrW3Kju72Sjv/qAgnezY0suFGd4ELnYAkLuP303/L2t7+drq4u9jW9yud/cA2//vWvqa6unvAxufHss89y59/+DwCfz8fXvv0RlizJL0xmx2z2/Kuij+tVOkvfbiP0QXoeUGtnr0dy2mUDjMYJcPKvg45J3l8eVAILIXPcacl8fv7w53Mj9zkwgViOx49NTOQ6WLIJoIPGxpG2HMW+liwZeSOOk8C5btY8fn3zVqLxMHWz5hGfu1uJK/XFkSEzSxgMVLBjLCjD3t1PuVaO2R1mb+MrBVUGjzW0dTUBoAmN2qq5Gc+5/XlFjv6ykRCK4xiuL3AFobWlkkuXxXlgbzrQetuJUWpKZxblZWEOS6qOkObYSLkDa1B0bZnsS071BlkIeg0f3e2Cpj6N+xrSn3k4TdvZT7UrcO7OHljPnJ8g4JGEE4InG7189OzwiH6KtitwFvMDyJYw9MaxnmjHuHhOxrbP7BZ8oGEnc+Nh/jO+lu9qAT55bjhDhbQ2oAJne0+SbyhAW1HG9ELmFwrRBGiaEzjLhI02QkVc+HRF5zYleIqBcxHHD3Rd58wzz+S2225j6dKlnH322c5z69at4y1veQuPPvpo3sD5pptu4u1vf3vGY4ZhZIiLjRc9h+M89vMugnUevHm8iWsCNl1hD6+UzeLUgW7MDpMDv9EyNCNq7Yupqqilt7+TRx99nFf/BqUlkztmCV2y+JwhGp4JjuhP3t4jWTgbTliQGX3YUvLibkkkARWl4xuHwlFJ3IINKwWl/sx9dPRJXtkrqZuVW3jsqRcanNtzSk/i4JOZ58h8Lk1z7+0OMvBkGX99Lt2qtDSZdBzNOTgSWJRIH9PfHytjvTlxC0U5pxQq+qE/wdDjIQ7cJlj6VjniOTA4lW9/8h4+dfN1dPe1s3v3bq6/9p18+7N/YlbFCOpxo0Q4MsQnvvg55/4Nr/8ig3vWc7Al/3FZO/uR0eR6bEUlDc+UIyU0JYXV6gM2jU8X/u2M5bcwGkhbIruiGBuqEZVTn6SXtsR6oUsl3aMW2imz0Koz3WDMrV0QNvMeT+ocHHyyFLszplS5FwYRPg1rRx/a7OnzMT9SmIzroPO1MKddX82SE0tG3niScNzwD8uDVdTNUpk+bV76gpStIexkIEOpgahNX+Rifnq75fqK446u3ZGsOFdXzs7yanRbUTGOinOq2gwwvzwzyLxxfRQtaa00p8zizWtnXk/UoorswLmhN/1zWlyVSftwC4SRfCpW6sVOLiT+9KqfR19R21T67bx9J2JW+lzLnuzg2mfAxoXq8XBCsKV1ZIq0U3Eu0TFuXOIEnNbDhzMo+XbDEGf86RUu6zvEunAf7+jYz4P7fHzvmQAdw6yo5GACeUixBMS8QH6rpylDAaq2lqRqp74iS458fF4NPEVLqiKOX9i2TUtLS9bjIzEwvF4vwWAw48/v96Np2oT/hNCwEwLbFEgr99+SpEjjo2VpATPrpd6MbTRpcN6GqwFIJGI8s/Wvefc3kT9gVNuV+gStbYKGQ5K+AbBNEFIQjQgGhgQ+bfzH4PcIhgYFXT1qn+6/gUGwLAGWlvO1+xrTitpL56/P3qbP3Z7jQ1qClw8llYaRnFhvjvocHIm/NTWWY+v4ymHP5Hznup6RgE7ce2jU52BB/Upu+ew91FSp1ze07uaT37iOru72STm2//3dlxz3lPUrzmHjhn9Ak4VfY23pTv/211QiLUFrn+6w5WYH7dGdl8m8DkyQtoYUOhJtyv/QdPB5sLsTSJ8HynzZ2wS82GE54jmwD0eg1Ie+vgZtSQX4vUhLw07M3N/JZP5N9DqwEgKY+FyijYYikcRxEzi7IVyBs/Vyr2OZoy0OZiwCMgJnYwWPb7l7Upv9ZdgkcW8LHd/vzAxEZwCisTB9g0oIJpcVVUaP83gCZ5cw2ILKzGBkfoXNZzaF2bQozlcvGhqxYnokUB2QBDzqWkh5Obv7mxcPrzjPzs6G+as9eJJiJPft9hNLqP2cm4emDZkVZ3JUnAEuXJr+bh4ZQV1bxiyHdi/q/GhzStDOTuoAxG3MB1qRtsR85DDxH+6mKpZ+z9MHu9ClzV/2+PjpC+nPV1tqY+9Nq9toK6feTiMLUhbscRZ6WhxMAPhGGAq9mqKtFwPnIo4DhMNhHnjgAcLhMKZp8vDDD7N161ZOOeUUnnnmGXp7lVjR7t27uf3229m0adMRPuL8SAXOz5fVYifHBGtbr6Oqn8IFZ1zr3H58y93Tdny5EPCDrsOuRtiyS/LcTsm+Fpv2Xoglcvs3jxYCQcAPh7rBdClsj6TWDcOFwbL54sO1T/qjgv09al5cOsuiwj+zmGPDUeKBlTXqemnu1x3djolCO6MGqtSJtfcMEto6egr4/PplfPez91CbLPw0Hd7DJ2++hq7ewxM6ps3bH+b+J34NgN9Xyqff/31qKjT8BQq2ciCOva1P3Sk10FYpWrt7nXHi7JHpyZOO1LQ8nW1UpUowVNT4lEbKMIigJ62jkgMyuZbQllagnzIr3c7m1RSrzSyuNWYqjqvAOSWK6w6c7Rdd2bNFpRnbDxcIa+9uZteBrenXHhwkfvOrJO5oGHNAbe8dIH7LDqxH2un+VS+xr7+KeXcTcvAIDDo50NHT6tyur8lhRZXR4zz2amKzSxhsfkW26Ncly+J8+aIQS2fNzMFDCFiYPO72IY2oCY0FA+dMGg+AUe1l46Ls7/uCPDRtAMo8yjebZI9zDpw616Tcp87bc80eIgUuKemyyBB16hiNy+dBScpGo5vED1/Dur8VkfwqEsnJKWibrA+rBXRHKP3Za0tt7NeObOAshChA1SYpDiaRpo00tAxv13z7EyU6mDN74VdEEZMBIQR33303V1xxBRdffDG33norX/va11i+fDnPP/88N9xwA5s2beLzn/8873rXu7j00ktH3ukRQipwDukeOuZWqgf703Y6KaxdfqZT2duy/ZFpswHKBYGgMiiYWy2oKoeECXtbYE+zRNNy06jHgvJS6A9lqneHI0m17gKBU8qKqsRXypzaxVnPOxVnAZR72NZmONoXucQuZyJOcgV+29onJ2svDA3jsnS7W+cPu8a0Zpxbt4TvfvYex92kpX0/n7z5ajp7RlbqzoXBUB+33PpR5/4/3vhV5tYupjIo8qqpA1jPdTkJZ/3MGoShISX8fV9SfR/JxUuPQBFISjWvT2NEI0oMKPPm12/x6Qgp83/PSds2bWkwM/D2amBoxbXGDMZxETj3RwXv/3M5N95ewXPNSUuflN+b6+J09zwBSgm4TA2cy/UVADz6/J0AyLhF4rcHkZ1R7Oe6HFrqSJAJG/PuJhI/3gOuPmFMifVkB/FvbMd8oAUZPrKTjNvDeXb1wuwNUoGzIRzFaDfu3e3l51v9xPN8DDdVe0GOwPloQKrPWSJo7tcdKyqBzOiBBmUllbqWnMcqvI6KeApVJTbr6/N/90IIZ6CWPbGcg7KhwXmL1bUVswTPNOVPbLiFwURdSfJYDXTXJJ/SALCB22qW8J9z05WGfw4eQgxLq9YGrHR/s1dzdAOmHXkqzkIIdZJsVI+SRyusqJ1C0ONkiYso4lhGSUkJP/rRj3jsscd4/PHH+c1vfuP0MH/84x/noYce4sknn+TOO+/kLW95yxE+2sJIBc4AL9eme0PtbZkWP5qmcd5piq5tWgmefvH+6TnAEeDRVRA9p1pQVwl1VRPfp64JdA3autIL+6EIxE3w5pkuhsL9ju7J0gVrc1IbnYpz0IPQtQw/5JPnzIyiwEhw+zm/Mgm2VCloG6qd5HTklSj27gKeYzkwp3YR3/3sPU7CorXjIJ+4+eoMEdfR4n9+969097UBsGHthbzh/HeP+Bpp2VjPKeVtBOhJZtquTp3WQTV/njTbpC54BAI+SWEnjamAT0NUevNq/AifhiwQAMukD2mWbaZHU0KlxbXGjMVxETj/5mU/DX06fVGNLz1cyl/3+7Ops7pAzM+sOAsh0Oapx8q1cuq1ev7+7B+IxsJYj7ZlKEu7BcbywW4Nk/ivnVhPppX/tBVlzHpnVVpwKG5jPdxG/BvbsV6dWu++Qkj1vYCynRiOlDiYqPRm9bjt7ND53rOl/G5bCXfuzJ2NS1WcNSGZU3Z0DhBuAbCGXp2mJP18bpmNL8d86/ZzBnXuTp5jZngenrcknpem7bwuleE0JeRhKFzkyvretq2EFw8Z5Ep8ZgbO6aq4fk5txn0ZNPjS4lP4Tf1yWubMchJP85q7+djZaUEYjyaZNRB2jktbVoYwpn+YkbKAOBgkA2eprKh82shUbRixKl1EEUXMPCystBzNjEf9tc7YZb2Si66dtq585Pk/zTgfVk0rXBEcC8oDyut5MMka7huSyo82z8B5wEXTXpqLpm2l56OUReXLh9V/TciCCeGZhHX1pnO9bGubPG0OoQn0y9MJaeuJsStA19cs4JbP3s28OqX+e7izgU/efLWT0BgJ8USU39//ff7+7B8BKC0p51M3fW9UThH2q32QtJjU1lQiqtQ65O/704HjpcuPUMuhRM330xg3iyov+sry/OuCEl1Vj3MEwNKWeX9nQghEwCgGzjMYx3zg3Daocd9r6eDNloJbni5l/zDFTDE/kGW9k3o8heX6CgZDfTz9yN0qcHbBbgoNf2kGrFd7SXx/F7I9GagYAv2aBXj+cQX1H63F94X1aOekJ3UiFuZvD2J3HBkbJnfFub4ms8dZRi2IJoO9HNm27S560/Mt2ROPLZVPIsCcoI3nKI1H3F7Om1s9jjjGoqrcFXRteLKmyosm4JrVquqsCcmly0dhQTCCQBioyT+lbt3Qp/OZB8v4wF3l3L/HS8y1fnGuRzIDZ6FrGG9Zgqj1o62r5MlrTualUuUredpyiVie/P30J3h9sI9PnxtiYYXFTadGEK7+ZnEEaNrSliCSfcx5IAzV4yzjNqLMMzqLKa+GmGEL6eMd0rKRxV6wIgrAq8P8cnWNvBbyp8ekgWy69uqlG5xE8dYdj3Hrn78x44LnyYLfK4ib0NErsW1J9wD4C/Q3723c5tzO1d/MYMLp6RQVXnojwmlfWlljUTpxEfVpQcADK6vVHN7Yp9MbmbxoTFtf5Qh82q8N5G23KoS6WfO45bP3ML9eGY61dTXxiZuv5lDHwbyvicbC3PnQj3nnZzbw0zv+3Xn8Q2/7BrWz5uZ9nRvWM53ObX2jqjYnLHj0oPo8Pl2yafERCpztpKbJNFacha4VdpTxaAifrlhtwxGxkHlcAAAIGMgiVXvG4pgPnH/1sp+ErX5MC12U4L+GMvlO2uIgvRHBw/s9/NczAe541YeU2QJhAMHHIln0i+ET8HCY97ZAUohDzC3B87E1GJvqHZqGqPDgeeMivJ9dh7ZGCS6QsDF/feCI0EMzAudh4mDDBUCGY193OnDe2WEQHlYU7Q4LJ8jM1d98tMBNx37ORYce3t+cwnCWQ0pU7U1rYnz6vCF+8vEOVteNfD5GsqQCNX98fGPICZ5BBdDffbqUt/6hwrm+ZSoxo4usXh1tYSnez67D857l/L0jTbc+b3EcfV3692O/2sflK+L8/I0D3LA+lqZpA9oJR0IYjGT2ucAk6lG9WZi2EvEYBYRXQ2pCVVaKmBGQnVFk1/Hjd1nE+JCiaycswSt1tc7j9iuZrC4hBO+5Nm3P87v7vstP7/iPYzZ4LiuBw93QMwCRmBIly4ed+7c4t1ct3ZD1vHtdQIWHlw+7aNpHQjBqAnDTtbdPUp8zJKvOZ6kENBKs5zsLvyAPaqrmcMtn72bhHLUm7ehu4RM3X82OfZtpPrzX+Ws6vJc//vV/eOdnT+OHt32B7v52Zx/XXPQ+Lj1ndF7qdlsEuV95O4taH2K5mtc3t3gYjKkw4pxFCQLTbZ6RQurnOZ1U7REghECUeZA5AmcZNtEKBN2iRKegslgRRxQzUK948tDQq/FQUrSgzGvz/TcM8sBeLz/eEmC/P7Pi/H8dtdz5+8qMx+aU2ZzjEgg7qWwDJyde5mTrRPVAmaF+GIciyK4YciiRcxEue2KOArJYEMDzoVV56atilg/jHUtJfE9Vp+XhCOa9zXjeuGi8p2FcaO9K982kbLwc9BVW1N7Tnc6kWVKwrc3DWQvSE2ezW1G74uitFs0O2nh0ScISjn8zwOI8FefswDlp0yHgdSvjLDkpysEnR5553AFuoYz1GfNNfn19P081erhzh5+dnernPhDT+NGWALUlFmclgw5R48tboR2MCWcRVB+0VDbeWwF/Us/bO/rgdeoakQkbeUBNsFR6EbUFVmJThZSi9khU7VQAPAqattpOVy0VCVtJ3hZxRCFNW/14iuuLIkbApcvjPN6g5qpvdM7nt/p+NEtibetFv3pBRp/hZRvfQiQa4ge//SwAtz/wfWzb5B9u+OromClHEUpLoK1bKWzHE+A18n++nftU4FziK2XJvNVZz0uXZouo8Do0bZgeYTBpy+x+0XHixNkJ/vCqmrteaTMczZB8GIqrdc0JNdaIsZt+Zg3mg4fAAmtzN/plcxEj9WflQHXlbG75zN186tvX0XjoNbp6D/PR/3fFiK8799Q38ParPsmKRSeO+r2sZ1zthWfXOef5ITdNe9kRTGBKqdYvM6wUKIJGWpXYjYSdYS2aBY+GKM5rI0KaNmggPNM7Ls+wy2xyceuLJY6i443rowR9kuvXxfjX80I0B4K4L+dH7FlZr39ovzdDIGyptoR/CPyj87xxxXy0FemKmt2Ym65tJzN1ANrqyhF7PoVXx3jHMkc92X6mE2v79PY7dyQrzpXltfh9mUbswydIN0LxNA07ha2tmfkZd+A83MP5aIKu5T7+xZW5kwGi3hVEerScomqjwWgqzikYGlywJMH3rxzkv68c4HwXlerpl+00C6Iuv3n8s00eLKmuxXMXJVQfXLkXsVAlleThCLJLUb7lwUGHjaGtLD8yC81UxbnACkZ4hPrsmhh977JXQ3j0ok3ETMFAAlHumc62tiKOUpy1IMGb16oxakB4eCVYrZ7IQdcGuObi9/HRd37buf/HB3/I//7+i8dc5VkTAq8HhsKyoLZGR08rnb1KwXnV0lPR9ey5a7hFZSrZamiStVPc3yzDJrJpaNLYQO4+5y0tnoJDfjgBH763nI/cV87Pt46cKBblHsrOTzK4BhPYO8ev3l5VUcctn7mbJfPXFH5PITjvtGv4v68+zlc+/MsxBc0yamFvTbrPeDT009VvZzAmeL5ZJUeqSmw2zD2CPexHwo5qNPDrWfOTjFsqMC7AdCuy20aJiIUsMdDLp5fqcMxWnPcOenm6SQV11SU2165JBxgXL4tT6bfZc7CCVeF+9vnL6DN8rKg22TA3wV/3+uiLajzf4iGUEPjmlWLv7scT11lkqMrvbnM3c5bOptoXBBT9RTYOwdrKrGPJCJyXlWU9nwvanBKMaxdi3tEIgPmHBrR5gfzS95MI00w4iov1uYTB3J7TwyrO+3qyL6mthzxAule7dcBtRXV0ByELK2wOunIampB56eeixEDU+5HtUcTcknEHlaOtOA/HqlqLL14QYt+dOq0DOkOtroVOff4J/4nG9KB03qL0a7R1lVjJ3n5rRx/G+bOPuA0VoPqdRhIK0ZKV4xLP6BS1UZYi+DQIHR0iN8cypJTIqIVW68fui6uKw0xbNBUxo/CB0yLs79F56bCHh4P1nNLfBSi6trYke16+6sKb0HWD//zlJ5BScudDP8ayLT78tm8cU9daRSkc6oJZBYbrHfs2O7fXLDsj90auwLnP43WUllfXmvineqWZSLojxC0omfibBb0qeN7W5uHQoM5du3y8eW3uufbXL5U4LiF/3unnhvUxyn2FA57KN1Yw+IhK2FjPdqKvH79UemV5Dbd85m7ueeRnHOpsyHq+rLSS1296B4vnrRrX/u2t3RBLeg6fOkvZMAGPH/Q4bZAXjkLUdEohJWjapDEOJgvCpyeVte10wSxsqaC5UIuYT1fXc5HdVhAybGJVBNC803vxHZOBs5Rwe3N6FnjnyZGsgXvDPJOW9y7mxaf6sddWccfqPir9arCLmoK7dvlJWIKnG71cPD8AuzOzgj8K/ZDTH2vkpks+7TyWq+IspcTelwycDZHlFV0I2pk1aHsGlG1GxCLx2wN4/vmEcdF6xoLO3kPYUg2Uw/ubITuz7Mbe7uwfeVO/TmdIUFuqzm8mVfvorTgDWbZT88ttvAXGOePtS7Ff7EY7rWbc7yn8uqpWh8284mB5XyvgDStj/N8LAebH0terWxjMjVActraqAb46YGf0YGvrKrHuV37f9qt9cP7sdH+zUIrxRwQpa4oC4mDoisotvKO0okpCBDzY/YlilfNII2qpbP4sHxyOqGRJoe+7iOMeugZfuCDEP99TxvNWLQkh8MjcdO0UrjjvnWhC55ZffBQpJXc//FPm1y/juks+cAQ+wdTAYwjm1kiMAqvBFE0bYO3y03Nu42ai7YynWWonT4d/sy2VinHchvzkqTHhH06L8JH7lA/1r14q4YIlcWoCmQHxgR6NP7mcQ2KW4IE9Xm5cXzihXXpGAFHtRXbHkXsGkN2xDCbZWFEerOIdV39q3K/PByllBk1b35i2c3tof/p4L112hETBUpDMzPHf7wqAk4GzjJho8wOFg3yvpsSKTRsoBs65IKVUAq+FBNqmCMckVfvpPRq7BlQgMK/M4nUrc/+o5y/2cPY7ath4iu4EzZBp5fPIAW+GQBjAQ/G/sdfaw18e/xWJgO1UXWVzKJta0RN3eoLFkuCYrHmEEBjXL4Kq5P4bQ1h/G9nwXtoSuyWEjIxvwmp3WRuMVHFO9emmsM8VOJ85P73dS4fS27UkK84lhmRWydFNRVk0LHAefn84tLkBjCsXZCtsjxFOf0x/PK+qsLQl9uFw1vOXr4jj0SQLRhE4P9ecziqfuyiewX7W6kqcHmbZMIR9OII8rJgFYl5AeVcfCTg9zgUmptTzpUZB9e3hEEGjSNWeAZCDCbQanxIn1En3qxdRRAFU+iVfvSiE6TV40UXXtnf25X3N6za9jU+/97+d+z+9499pad8/xUc6vfAYIq89DmQKg61edlrObdwJ9ecHpjtwVowuGZu8sXlVrcUVybVjOCH48ZbMdaAt4XvPlmLLzPN2z25fzrZWN5RIWFqkbrwiYVMNuX/Qcd4Qi4Noc9U5ODSosaNDZVoWVVosrz7CBRA5QxOnvqQnc1IgTNqKGVVQjZsku82b3wO6CNQ59WrYR2CdecwFzrYt+c8H0ifyPadGGKuN7Opai9lBNRC8dNhgsDatKIxfZ+8JisbcP9TNY5vvQktVkeM2si3TPsre56KujpKm7YYoMfC8Y6nTr2k90obdGS34GuuvrST+axeJH+0ZsUdi94EX+fbPPsLXfvR+5+/nd/4/5/m6HBVnRxzMEFl9unu60n1Nb3JRm7YeUo/HLWgfUl/IggprxrWkjBULh1XM8wmDTTac7LQkQ6zNDfNPjSRu2Yn5q8xFXoVfcu6iRGbgnEfE68nG9AC/aVG2QIq2rtI5DvPudMLliKhpp+D0OBfYRheggygb46Dr1WZeH9VxBmlJhJX0RdeTFiTFXEYRo8SKGouPnxPmyfJ65zHzF/uJ//durJd6ciYiL9t4I9dc9D4AYvEI3/rph7Hso5stNVpEY2H2NW0HYNHcEygrrcy5nVNxLtF5uk3NJwGPZE3tNAiDWVKNzfbkBhrv3RCh3Keuh0cPeHnpUHq989A+rxM8ziu3OGWO+vztQzrPNY88r+hnVqfXdVu6kCNF20cAuSyoAB52iYJdsix25KdEmxkZOCtlbSOtrJ20oRrNukOUeo6Io85Rg7CJCHqQk9CaMVYcc4Hznx6HHS3qYy2bZXL+krHbIAgBFyarzrYUPNYdRN9UB2UGxo2Luezydzjb3vX3n2TQr4cLjWT0Ny8fXzChLQqiXzw7+QZgv9STd1sZt7CeVtQa2RoumEmXUvK1H72fB5++jcc23+X8ubPLs2tyUbXVORWV3oxer0gCmvvVuV9caXHibJMSQ01kLx72ICUcGtCcDO28o7y/GVSPtuaSP8xnRTXZyOhzziEQJm2J/bK6Tuyd/VnbvGFllPlxFTj3+XzKb3AYIgkljAJQ6bdZn0PgRXP19Mt9rmt9ZcUYPs0kI9XvOlLF2as7/VqjRtLL+VgTCTqqMJRQjgZVPsW/1USx4lzEmHDp8ji1Z1TQ5kkzf2TDEOZvDxD/+nbMB1uRocy1w/uv/xJz65YAqgJ7x4P/M63HfKSwp+FlLMtEILiu+gasV7LXH1JKp8c5Vup1LIpOm5fAMx1M06SPr0gdyyShwi95/2npYsgPnguQsGAgJvi/Lelr51/OCnP9unRB465dI9OuRZknnXgeNFW70wyCTNjp9WPQQEv2YUsJf0+61QgkFy89wjRtUHP+DOtvTkGUeZ35SYZNtErv6ARJA3puRe4iAJAxG1HjOyIWZMdU4Gyaki/+ND1ovm9DZNzn1E3XfvSgF+Oahfi+fDL6+irWLDvdUSXc0/gKjXra89jd55zR3+zVEAsyqT5jgX5WrSN2ZL/ck3dysHf1O0IOgBNE50J7d/P/Z++9wyTJqjPv37lh0ldm+Wrv3Uz3+B4DzAwweIQTSLCAJEZ2l11WIAlW2k9iJa0MTiu3klghA5KQkDDCSRgJaWAAwTDDDMN4076nfZdPGxH3++NGuqrMqsyqLNed7/PUU1WZkZGRkRH33nPOe96X0zW07JnYOLyDa/fdVveYzvumvxBgBt3k6YtWRcV814CPreDqMAs7mlMcHrUqIhoAm9awonYZrgXrktXzvWwV5zqBsNkTlz6Tq78OHqxXZb8qmSflm0D4kJ3gxPjsoeCeEw4F33yfz95caij+IZsTFdX5ClzVVi9/xxFgRra5VLWVmGRBq1ZU5de5ZbGPbqC2UtBZD1kXMxQ4WwzVvhs4d9Em3nJzkZ/fcxP/d91eTsRqxqvJEv6/nKL4O48QnKoGTbFIgnf9xP+tJIs//I/v4cjJx5b7sJcdD4f9zTc4B3nhyWfj/fUhgsdnKEFnvcqYeM6uspdu2dR+4WJB0NqMzY5UaLGdwkt2FdkbVs2PjVt86pEIf3FfjPEwOXD71iLXb/C4YYPHhp4yU9HhyOj8c0sdXftb9XRt7QcET08SnMx26qO0BX14quqQcUXVDebRc1ZF+O2adR5DyZUfe7WGlVUnmwMRFR4gxoaqxV52iVhdq8Um0IFGtJ6X8r5UWKVX2sLg+fCmFwqJiGZPqsDBDQunCG3rDSrVw4fP2pyerJ4qEeHVd1TFQT7+4J9XaCK1FWd9vgATYXV2W3JRol6SdpFthjKuz+YrvaQzMbMarZ+aJDjdeNvHDn238vcPvvBn+Oj77q/7+Yvf/I/ZVlRzeDg/eaEaQO3qN+e+1qLgvmfsSkUaVkYYTAcafbGA7iCl6+qwh2sgHrChZ3kyhNJfPfcNK87H6oXqghmBMzV0/+ORBP/8RP1gfmJc8X+/Xf3ub9vaOKssSuqqzmBaEtrp5e84WqFqKyCqWreiKsNVRuyj2+e8ItAFH2yF6jeLc1Fivo8OUzS7uPThWrBzPXyhbxM/s+0WRn9kr6mqlceNiRKlP36M4Eh1Tt+/6yZe9+K3AlDyirz3z96K5y1TcLhCeORpo6i909pZecyfuc4Yq56Do4G5N5Vobty4TOdGBEnaJtjocOCsBH725iwSRjF/dX+Mf3rczL8xW/NfbsxWtnvV3upc/OlHW7Cm2pmCMJDST04SnM0TPDFB6eNHKP7a9yj9yeOUfu8R/O9e6OhnagV1bYY1Qp9ffqq6VnjBSouClaH1qtXQkqgFSkzRyVWtt4e5ChG5ZNhtWuvOrbtzPjpuz2nptZS4pALnaER491uEf/mlPD+9fXTRfRf1Vef6L+h5N72GdCgu8q/f+QQnnVOACZbLFK866uoC+ptnwrqm6jVdpuHWQuc8ghnq31BvXl+Lxw7dV/n7un23MTywqfIz1LuhseVGraJ2urkw2O5QLOK69dWJ875nHE7UeTivQPBR8NGTpWrVvAP46YNZ3vGsad734sm2++kXivksqYIZgbM+Pl23nT5bDZxPRBJ86UmXYnhKzkwJ7/pSktGc+TBXDHpzCryoK+utNFa0vxkq4mBzWsZELWNbsoDAWZzQyqqL5cdkyQjj1fg2iqu6FecuFoRyXyoi3BPpw/mxHbi/eKAqCJrzKf2/J/Afrc6rd77ml9i8bjcATx59kL/9p99d7sNeNmiteeSpewEYiayvPB48Ml6nn1IrDHZEGwrzFUMe6egy3ZdaG2/chA2Fzifkdw34vCIMigu+VJh1P3ZdjoFE9TO+aFeh0p72r0+7TBbmXoSKEqybqg4bpQ88TOlPnyD49nnIhp9DGzvS4MRs15alRMUhg2qbYcGrroWjtubWJgn1ZUfA6q04Ry1wFXqsaARTWwz2xFXoS4lNdaEAZ3IEp3Po0YJJgi8QOuuh0i1S3pcAq/RKWxz6kjASW7wgxfNqA+dD9dVV14nywy/9r5X/vz36jcrfxadNdS94unbgWXzgXJsN9xvQtYOHxqrUmhv6TSUG48OnGwSKjx2+v/L33u3XV/dzMkvxV79H6XcemaXMXWs5MbPi/EQYOCvRbAspy5vTAf1xE2R8/7TNodGawHklrKg8bQayDgY+SRdevqfI5swyBlMZt0LdbxQ4z6w4Qz1dW5+tshBORBKMFxTfOOowmhPe9aUUZ6fN97St1+M3Xjg155ykdqXqKM+ykv3NYCrO8/RoSMzGPtDbdmVcVCiIV7pEJrM1BB1odDFAjcyw8nCtjjJIurh8UJsQfOCUWdBKXwTnP+9BylW2UoD3l09Vqn6uE+VdP/l/UcqMkR/9/P/hyaPfW94DXyacPHuI8SnzubcktlefyHromko8NeuCC7ZJ6i4bTZtwKrQVpN2mLhOLxZ3X5clEq/ve3uvxmn31c2/ShRftNI/lPeFLT85PJbUODlSFrWrHMVch68I+ak9T+vDTJum/DNBZDx1SxGVdrFIl/fpRh+lilaIeXyHjjFnQIPbq7HEmYhlrqayHDEZad/EIW5EulSS99jRqRw9qdwriNnqqRHDaXGNtz99e2N+8QrgkA+dOYV0qYF/Y23Jo1J7Vs/LDL3kb7/ix/0M62c9j3qOVxz//Vx/k7ns/XxUGiyhkw+J7PiXlIGWBsYtF9PH64KiWPmXdMoi6PqxQFwJjYl8DzytVJvuRgS1keqpZT/9b5wwV4nRu1utqqdq1Pc4FD46OmYXEloxPJGRti8D1YdW54EuFzj0QD4itxKDrayReo3K4RiHhIgFmB8664FfV3RNV+nwtXTuoqTgfd821+alHorzrS0lOhn3oG3p83vuiKXoicw9qYisz+QOyJYEMrtyABoSevks3tHXVLlcIWc/Yh/XNWIx2K85dLBA7+3wSrrmXHzhlV+IWiVo4P7ELdVXIpgk03t8exrv7DAB7t13HG1/+dgB83+Pdf/AjnDxzaLkPf8lR6988aA3VPRc8PFb5u7bifN4xFOWblylw1lqjBcQSJGYhemkCqFRE89abzELfsTQ/e0u24TTzqppg+jMzrKnOTQsf/36UP/psD7ky2SHlVP2RHYW6qhf7R7bj/urVOD+7r6oXMlak9FdPL1lioBbB05OV/traos+XamjaL961SqrNAKLnTJYXSysn6ClKTOIhZrXXk+uGAfclkKQv9yTT52Jt78E6OIB90yBWKDhHvvVCpw49sVeKpg3dwHlezPR0roWI8PLbf5QP//a32XZLtWK7sbSOv/jgu2HSXAxqe6otr9i5UE/XrqkgTpbQT4YV7j4X2ZzAelZ1ovO/cbZu4DjyzGMUiia42rv92rr3qM0k+/fOCJzHG/c4Hxq1KmrZu2d4+tX2OZexcaWEwbzAVEcvgYV2RWQi69cxA/SJbHXSO5CpZK31sWn0qJnUK1TtqEW81wTKj56zOTxqAu3BRMD7XjxJX7y182S9chPO2/eZSs1Ke1NokCVk8EjUqop9zHzriwX0hbnt4rpYGPRUCTUcnaWELm53GutiYbAUXD1ixs6JghGwLENshf3m7ahaAafPHKf0iaNoL+BNr/j5ikjoudFn+Ln3vpITp59a3g+wxHj4qXsqfyf9+uS///BYZU1RHzhHWJ/y2bxcrhmBBqXAEuPlbMuSBZfP317iT145wZ++aoIrhxuvYTZngkqx4NSkxVePOHz5KZd3fjHJG/8hzQe/Hed3PtnLb92VrEwj1g9sxP3F/SZY/tEdWFf3Ia6F2Arnx3ZUWlP04Sm8zx5v+L6dRPBklS0pu0yx5syUqthxrU/5DV02VgxlXZMG8HzNoVNwurkZzdIjZSMJB+lpPdgTS0w72aWgp1IM0BELCe1rRQmSdFAjYUtMvo3PmPXMfmaK0i4juiuOeXD71mLFbujfD7sN18upRIa3vOVX8JNh4Gjv4Rrnmsrz0oH+5jLUgUyF1uM/cLFCcQi+N1oJlqxr+hAR1Pp4vaBYTc91bX9zLU1b5/06L2p9IlsnLlYvDlYdBJ6s6W/eOSNwru1zLmPjCllRaV8b+sslILhQW3mrVdau7W9Wm5PVqgngf3/U9JaMmu1lKMrL9tZnjntjAe9/8STDbahlihLUxoTJkK40tF5aT8eIapgc0F5ghGmKwSUj6LGS0H6AniwRnM0RnMpCzEYNxmZvaAld+dEuFopra+ja95+akZRRgv3azVgvWFd5LPjWOUp/9Bj2pOa33vH3bN2wD4ALY6f5ufe+kqPPPLE8B74MKCtquyqCnZ8x5l0ooM+YJKGuo2pHuXlTafm8fcsuCrZAzPSTdlogrBa7+n02zbN+ec0V1arzb301yfvuTnD/KafSGw3wzaMun3zEJL9FCTIQbWgLKT2uCZ7DOS345jn8b5+btV0nUSnCKEFtN+vXLz/lVo7/xbuKK+/dXAuRpnP+2BSM9EGhBLnCClWdE46haTf4fud8XdxaFobBkqPgm4R3k57kdhh8OucjA+6ixJYXi1Wwyl3d6IvrSh/UqUmLx883v/Cd7RkA4hLn5dFXVB4/EulchlBiNmpv2EM6UTKWAYD/QLUyrK6tVqUrFCDqRcIeO1TT37ztusrf+tj0rDVoUKvoWA6c7bDXM0Stovbu/vpMZG9Ms723/rGVUNQGwmqk8X7Va7zqXGtrUCf8VRM4y6YE6upq4Bx8b9SovZefH4ry4l1FHMuci5Qb8N4XTa5YYqMT0BpTgVgiiKvQ0qAvZ7wEaQe9xAu3Sx06VKkrq8Wr9XGsq/uwr+tvbOVhq27c3MWCcc26atD3wKnZVQwRwX7JBuzXbzXzHqCPZyn+7qOkT7v8zrs+zY5N+wG4OH6Wn3/fqy4Jm6qp7DhHnzGf49oNN1efqIlPKnTtcF2QF8WUZS9rfzN+mCi1xPQFR60lEQhrBwc3lFiXmn0M61I+P7C3ykj60HdiPHpu/mBKbUliv3ZL5X/vU8fq1N47CT1WRJ8zY69sTiBRi0BT6dcWNC/cMVtXZWWhaRbJT07DxkHYuQFOXeisz3erkKEoak/72i8Sty8JdqTO+0jGaeq1Lbo1Kr3WoQ1VZmXbAbuBcwt43rZqRe4rTzfvUZCtVSrTJmsTAFPBJL/0sR/l1LmjHTsedU1NBfGBi4YeesQESzIcRa2r2gipA5kKzSd4eKxSMX7ssKk4K2VV6GZAw8HYv+9CJUgoZ5Yl49ZV3Z48XxUG2943e8KYSddeMaq21kZ501FrXnShTlm7xpIqOBZ+hxFlroehGDJs+s700WmCJ6oKsTIUJRPV/K/nTfPSXQX+z8sm2d63ts8LWsNSsnhcC2Yoa2tfQ9FHbUqYzGoHVdsvO4QCOPZ1/Vg3DWLt7zXsmWY2HpYgzXh6XXQxD7Zmgoro04Onnbqe1FpYBwdw3rYPykyfrEfpQ0+S+HaB9/38J9m5+QAAYxPn+Pn3vopDxx9ejsNfMjx66L7KYvbq9dXAWV2RqfwdPDQGgA5tNy84URIRzYGRZaTxBmF/q2WcFCTjoAsrO4dZCn7mYA4lmpQb8AN7Cvz+yyb4q9dO8I7nZPmZl5s52NfCb9yVYGIe9W0A68YBrOeEhRBf433q6JIEgbU07bIN1YOnbU5PmTXe9RtWh3dzHZpQtT1fIwrWDwj7twmpOFyYmL3dUkNEmgaNc+JSaUMK9Jw2XC0XG/I+OmqtaH8zdAPnlnDrllKlIvflp12yTZKpakty1mMPeQ8xOnmOX/79NzKV7cwdq67IVBWzHxyt8/irrTaDqa5W7A4C8P/jHNncJEefeRyA7RuvIOJW6Y9BjQ91RdFxvIR+etIoc5cDghqRg6IPR0JhsE3pxqJf122oP2nzUZ2WCgKQdExf5KUUOIcVZz1erCicysZEZbBWV1evC/9rZ6r7GKoKufz8c7Js613b5wQIqXtLOLS5CrGt+t6jiSKkXWQohvS66Fw3cF4oyrQt6Y201L8stqDVApQ5u+gCU6gqs8qyJam4QzSC2hDHffsVVdaXBv+LzxD/zBjvf8en2L31GgDGpy7wC+9/DWcvnlzqw18y1AqD7e3bX/lbtiaruhnHpwnO5Svrggt2hIMbvGWzZQSM4KclFUFISTirohXrOVtKfP7NY3ziP43z9mdluXLYrxRFf+4Hx9g/bObpM1MW77873tIhW6/YiGwwhRH9TA59tPMWVfWBs+lv/mKNOviLd662ajMmcdqAqj02Bb0pGEhDJiUc2A7jU1DyVv76aAXiWtCI3baGoP3QHjTRvJohsRZt5LK+CcDjK2va3Q2cW0AyoitG79NFxRefaEwTkA3xWTfvsZiZOI8+8zj/+09+At9ffCZWIhbqinDinvbw/+105bla8bDKYzcPVhQH/W+f48mnH6hkKuv6mwNdHYhTdl1fl3/vhRn9zdWB9MiohReY/e/qb/z5Dgx7OMq8p600w8nlD9B0oNFKkIgyatNrnE5bGzgTBs5BjdK62lJlQNT2OZdF6wBkuEHP6FrHEltTiKOMwFyodqkDjc6F1WZXGeXMNTzRrSS01u3XjsPWi+4572KhqKVr339q7mqGxG3sH9+J9eL1lSpX8L1Roh8/z/t+9uOVOXVi6iK/85dvn7MqqLMe3l2n8b50Eu/fT+N/8yz+fRfwvz9apy2yEnjk6WrgvDmxrfK3pB3UlZnK/0FNC9h5J7q8NG0IXRSkIsAqMRtZJcGGazc2eHBs+OXnT9ETMWuQ/zju8smH56efiqWqVWfq2+86Aa01QVkLx1HI5gRTRbj7iFnvJd2AZ29e5u+3FUhjqvbkNGwaBNcxz+3YIGwZgWfOL/cBLhCuMq1Ia5muXfAhYhmhsyaQlItuQSBMF31kILLiArTdwLlFvPaKal/Kpx6JNKRzia2QjfG6x1745h+nJ2mC2fse/nc++Pfv7sjxqNoAOQwAZXMCGYjOPq60ayjbAFMeE/ccqzy3rzZwPlvNHKstSVPZjpnMTvD9UfS56jmQdGvCYGVEbSrJh+dsKa2MV325F8oxUvZrXnQhZVeYB2VxsJn9zWWokVilulyBJbOtfS4JzG1N0QlIwq4KWkyWkB6ncn7LrQBdy6oFoBgY2lY7sAUs1vbioosVxbV1fs7z93mIEuwXrse+c2el7zl4bBz3o2f47bf+Hf2ZEcDM+f/01Y803Y/3TyfwP38C/19O4f/TCbxPHcP7u8N4H3ma0gcepvTRQ+ip5Q9U/MDn0afvBaA/M0LCq65rJO2i9meq236nyni76Lgc3LjMx+vryjwIQNRCu9aqT4wPJjS/eFt1vv7QvTEeOdtCv/M1fdV12fdG0dOtn29dCvC/e4HSPxzBr7ETqzx/Jg8h7V7tSCK24quHXQq+ucbv2F7EXTkx4zkgs6KZMk17pL+6FnBs4cB2wbFhfHoNzBcRtfbbCvM+ErfMZ2kCSds07ZEJof3AiNX1rPyatRs4t4itvQEHQ7rx6SmLbxxrnJWuo2vHbYav3MWv/beP4Njmy/7MV/6MM+cXLxam9qZnKdTNpGnXwrqlaqmRPlId+eqEwWpp2luSiKOqFN9igH93DcW3puJcLwzWnG7xjmdn+YvXjPM/b+88vagleMb/DVshMWvNV6hEqoGvvlhAB5rgaK2idr19SK1IGBhxsZVUJlxSLHHgTNzYRGit0dMesjFeVcxM2Ob66vY5t49C0LbyKGWaZjdwvvwgElZ9F/fdr08FDCbMwu2hMzbFFm9d64oMzk/triwK9aEpIn99hne98Q8q23zw7/8Xz5w90vD1wWPjDR+vPH//RYrvewj/O+eXVdTo6MnHyObNeuCKHQcrwRSYpLlsiEM5eV4zzrl9Dj2RZb4PA13v5hC1jEBYq1/iCuLGjR5vOGCYBb4WPvD1xDyvMIwn68aw/c7X+PdcmHN7rTXBsSlKnzhK8de+h/e3hwnuOY/34acIDk3Wb/tUjQ3VzjJNe5V6N4fQWqPRs6qQY1OQSRqadi2G+4QrtsL5MfBbXAOOTemVUeR2VOjlvHYDZ10MkMzcVWKJ2iAyN0sk6xuxtBXub4Zu4NwWXndlteL6iYdmV3aBqlk9YcZOCQd238J/evnbAQh0wGf//S8XfSziqLqsLwLWjMCobvvtqYrv2bbpzcSIEY8m2bRuV2WbWmEwFQqdWTf0Vx7Th2qEw9K1gXN1obujrzkVXYnxOFzqmKYpPG0ovI6YyZWVUVjsJCp0bU8blfUTYeCcdgxluAbqqhn978ONr+E1D5mdfe74W5SDuykPEjaqhvIutkLSjtEE6KI9FP32hT/skKbZDZwvOyhXmYpvaXHfvQhcG9K1i77w6LnWy2pqRwrnZ3ZXqoD6+DQHvjrMa5/1UwDkC9N84C//O0FQv/it06PYEMf+0R3Yr9+K/erQ/ircH1kf7++PUPrTJ9Dnl8cjvta/+cqdB+vspkgbYdBakbAyhjcsfzlSB9SJKIklSMpecYGwVnHndfnKuunYuMX56fkXSHXe4t861zTg8O+/YJgLf/AYwbfO1SdzNZT+pp7REDxZDaTV7h6OjqnKvbC912PXHIWRFYOm4Zw/OQ2bh6o07Vrs2SwM98HJc3OvAbXWnDynyeXhzGiHj7sFiIhJwq+RnuyG0BpJzjMuxC1TCJyjz1lnPUPTXgWCaSt/BGsI16332JoxX+wj5+yGtBq1u8eoWAuoG6uD2yue+5ZK1fmfv/bXFIqL71+q7WcOtqWQOSgMogR1wATWrjgcdG9kz7ZrUTUiSpX+ZkuQjSZwli0JaGABU644ewEcGjXnYWOPT2LlWRTNEVK6xFJIxEI7am0PSNRbUgWPjUO4WJhZbQaQkSgyWA2WZ1G3Lxk0t6boGCIKQdBTJdSGuBG3qIFkIvXiYV20BF0K6tpAWoFYylSd1ziDpIv2Ia4YWm4H7rVr2qRr10JtTuK8dU8lOa1P5bjzwn9iQ5/pDX7w8W/yj//6obrX1OlR7O7BuqoX66BRTrZfsgH3XfvrWrL0k5MUf+eROjHQpcLDNcJgV+y80QT5ADGrUt21ahP3IXZtX4Elpa9nqQ9Lj7tmxl9LwY019PZWkjZqMIrsNhVhLhTQT8wWnvW/dxHvo4crXtsAuAp1Qz+yLWRGTpQo/d1ho9Pha4Knw8A5YSMjMb40o9q8qryby9Bha1ZNRaYRTbsWsYhw3W6jsn3oFOSLs+cOP9AcOQ3xqOmNDlbqcko6a7btS4csz7mEwQCIWHOy9HSgTRt738raUJXRDZzbgAi8bn9N1fnhBv3EMRv3lw7g/srVWPuqHJHe9BC3H3wVAJPTo/zbtz656OM5OpjhP1KDXLRdvrBl27zbWzUCUc9xb60XBpv2TI8zJvtdnhxFBOv6fmZCMmZxe3TMouSXhcFWYTayFl5gKFxgxAqcS8Bvt6ZH2b//YuVvaRQ4i9TRtWXkEhQGg6bWFJ2EOAptG+aCanAeJWFfEl7hywmtQ7rdHCIiTeFY3YrzZQgRQcftjlAZrxmpFQhr/xpU6+I4b90LYVJZzhX5lTt+r/L8n3/8Nzl06FDl/zo9ikbjdcrBefN27B/fWdknpQDvn060fWzt4qEnvw2AY0eMR3VI1a5lMcmOFHpG3+LIClScEcPyqUPUQvTaYZTtHaiunR4739o5tJ5VU3X+j3N1zwXn8nj/cKTyv2xNYv/wVtx3X43zhm04P7IDwiqgfnwC/67Thq1W1rjZlUKU8NUjZp1nieaOHauPpg0YFw2oS5aPN6Fp12L9gHDH9cKeTcbf+dxY1Uu46GmOnIKRPrj9GmHDoNn9inhAR9tsXVpNKPgmqTXPnC4iSG+kOUsk66FjVl2L6EqiGzi3iedvL9IbM1/u1486nJqcfQrFUUjP7KrJq1/wU5W/P/2VP1v0TfiJR2P8xuZr+JHdt/HZ/MC828v2FDnbqC/f4Bzkik3VwLnWhqpWjRmYHTjbYno8mSkMtozejQuA9nWF/iauMgPSGs3klVFnSVXTr6Q2z7ZGA7BuG0Z296CuzKD2N6f2r2UIsvQ9zhHLZO/XxRpTixO2oR516dqtoxignZCa1ibE7VacL1fomN0R5tBQUrOhx9yvj561yS1A40oNRrFfs7ny/9biJl59h5n3C8Uc73znO/ED8x51FecGgXMZ1hUZ3F+4st4eMrd0c+2Z88c5ff4oAPt2XI9bqqGK1rBBxFY8s646hwTCCvUf6lluJhKz1xSjbO9g9ft87Fxr45/al6l8H8EjY+jR0JKyFOD91dNV9tm1fTj/dQ/WjQOVIEx6HJw3bq8kmP0vnqxzZ1E7eyh4xioLYPeATya6Ss+l1iaSqVmKT8xB065FT0K45Urh1qsEETh8yoiGHTsDOzbArVcJfT1CPGoU0osrISjuqqWuAywd8gGSclqzlUzaTW3k9LSHGoi2r3+yROgGzm3CteBVe0PrHy384yOtUwf2bruuUuV9+vhDPPTktxZ8HBezwr89HWZfRDgxYXFmau7bS5TwoPN9ACIS4QpvT+W5Wj9A2VofdEl/pErtwdC0y43+T56vXshzCYOtCmjqbjxJOeg1XnGuo66Uxxxhlrp7Zfu4jfvTu3Hu3FkvqHJJYelVtXEVajCK2tB4wSsRy/gNdgPn1lEWBltA4ExEdav7lysi1mK1wSooq2v7Wnjo7MKqp2pbsmpTdWiKn3jdL7NhyDDC7r//fj70979O4Afo41mzUc9sPYqZkKhVp59SZoctBR547OuVv6/Z+5y6/uba49QavuwOV/9PuchKCJhoZnv4xiwzlqwBgTCA/rhmMG7WIk+ct+cTGAZML7dV7nXW4H/LeCx5/3gMfcq0AspQFPt1WxoKM6ndPVh3hJajAQQ1KttqVw9np6vrg5HUKl4nVXqczWecj6Y9E5Yl7Nxoqs871pug+8B2uOVKIRk3+4hHIOJCfgUCZ3EVWliT85su+i1XiSVhgz3bjUQHGvE1MrA6aNrQDZwXhFfsLeBa5iL+whMRptpgsLzmjp+s/D2z56kdfOaxCKWgfmCYz3/SD3y+ePHzlf/jT1VvxDphsC2zq5W1ImG1wmDl91SiVz9VW2ujqh1CEvNL4K92NOr5kJHYqsnMrQiWQxxMCdYVGRMcN9um10WvkYXbaoAu+MbWS7X/5Ym79lXyu1gYtKugQzTKWj/nB55ZWPVU4nalOqyfyRINIrzrJ/8IJea6/vgX/5h/+OsPVGmxc1Sb6/Y7VG0Jqetb7TBmB87VBU4tk+6JCxZfUEOUwqDMHlyZha1A3bwOhvVH3KpUXdcC9oRV55wnHB9vbQy0bhqoBIz+Pefwv3WO4J7QpNhR2D+6Y861gPWi9ciOVP2DfS7SH+H0VE3gnFzF81i5NStcDrdC026E3pTw7APCC64XbtgjRNzq+tp1TPBcWAm2umsZQdsl6NnXpQA9hyDXovattfla5utvLiNuG0bEzOPJ+eiEPW9ycTnRDZwXgHRU86Kd5g7KecIXnmh9wrjt4KvoSxsD+69/9584e+Fk2++f9+Bzj81+z+8+M/cFeuyZJ7g3dw/jwRgAwaPj6IKP9jW6TBvLuA0zROqqXkM/paq4/cyE4ti4GZT3Dfokl9uGok2IMMvvcc1SYEJI1Kp8L5XHWlyIXYpoZE2htV6Z3qSUY3owlyig075es6IhDVEKFj45zuxx7OLygWuZ9qEO0HKvHqlSZu8/vfB+XbU9DEY0BIenuHLnjfz3H3tf5fnD3/pu5e9Wx2tV44Kgzy5eXLQRtNaVwNl1ooYh16Ti/OUnXaYth99bfyXnN2WwX7ZhSY5pvuPVEqrqz4Ck3TXFKNtXQ9duVdVdemo8tSc9vE8crTxnv25LQ/2NutcrwXnjtro1hNplRMfO1LQhDidX8XkM6sXBxlukaTeCbQvrBgRrJvVfhN4U5FckcFaI3RkBxJnQFwpwsbA064hSgHaUsZBqAeKohiw9PV1C9UVWVa93d7WxQPzgFdWM7ycfjjKam/smzZXgm8ccpr0IL7/9xwAIAp/P/fuH237vf3nKZaJgvrrnbisSd8yC4bvPOGgNucI0d93zaU6eOVT3uscO3UdAwH8Uv2keKAUEj42jT+cqIlnloHgmJGbjvm0v9o9sx3rhegC+dbyafb5l0yoVjgihg3CCrRlMJWKhLWWM1dcwpG+G7dRlHDg3sqY4fs78LDckYRvxnCXK6DJaWLIF9HJjUcJgYKiaq1LytYulhnaVSYh2YPHXG9Ns6zUBzJPnLc5nF3ZN1VbxdKhU/Irn/Ri//du/jYiw2662SdGkrWbWPmtcEJaq4nzq3BHOXTTJ/Ct33ojrROoqzuWe2qIP/3bIzDv/0T9C5r/sbMhUW3L4YX9zo8A50bxncia0HxAcn0JnV06nZU+NQNjjLQqEQb1IWBnqpoGGoq6NIGkX503bwjG0yi6srziv4jVS+StWgudrVBs07XaQTsqKEBTFUcYnfoblng40+mIBPb1I/vhgFH0u3/kEfyEU4423HvBKr1sXxK9GmjZ0A+cFY3Mm4KaNZkI5n1W8/Z9SnG4gFAZwZFTxnz/Tw7u/kuSdX0zystt/DMsyA+M/3fXXFAqFlt830CZQL+P1B/JcHaqBjuUVh0ct/vhv/ye/8cGf5Md/+Vn8ycd+mamssSp47LDJct9dvLu6vwdH0TU0bZlj8pOBKNbVfRUFy/+oCZxv3rQSqgltoDzB1lacI8pQYNZQVroRZIZdmGy6nANnXdfvBOD7UFqJ9VDUMtnWJepz1qVl6OVeLhQDtCtIG5NsHSxB1oiCbhcdhq3MT4cqMs/ZYuYyjXDX4YUxINT26jwa1Ig2vv71r+cXfuL32RMGzoEO+NNv/PYsj+eGyLgV26VgiXqcZ9K0AfTE7Irzt447TBbNsdy6tbhyNpRBKAzVKHCOWa07G0x7SNokCVZKiXvPgIcS896tCoSBSdLUJlVkfQz71ZvneMVsqN1p3Hftx3nnlahtJulTFgaD1R44a8M4UKY/eSE07VYQj7SWhyl5nWe4ScKuDyi9AH0mB65C532Cs7m2e6B1oBE0aiRmFK0vtB6HtLT/vG9Yd5YZJ85c1Dx9UnNuTOM3C9JjtrH5LJ+/vI+O2atGTbuMbuC8CPzXm3MMJszFfHLS4mf/OcWR0fpTevcRh7d9voeTk2YQOjxq88TEJm674ZUAjE9e4HOf+1zL7/mt4w4nJsy+rhkpsavf57r11ajgOyeEr977WQB83+OTX/4gb/mlG/nC1/6GR5++D4CH/YfQ4QI1eHSc4MmqB2CrWeOpIjwYUtlGkj5bMqt4YAWzqCovsMqIhAIia5zuWtfn7KpL12aqFVT6nWqp2magazpYLxFEBOmPLFkPkVnaXyKoCIMtrOIsdiig0g2eLz+o0OWh1Jnv/nnbqhXWclW1XUjCQUJqtT6ZRdckz1588+vZ4ewC4ERwnE/d/Wf87kfeMW/wLCLVAGmJ6JV1gfM+EzjToMf5S09Wz0u5bW1FEGC+/waBM1HjfNCKQJjOekYENeXUUdOXEzEHNqfNd3po1CLfYrJXRCosQJI2zo/uWJDwp/RHUDV99LUV56HEKl4j1dhR5YrQm1wYTXs+xKPGc9ufI0DVWvP0STixQIab1pqT50xwWf/mVkWPRxd89Nk8MhzDurYf+9p+05ZwJtee2n6ZSp1xsXb3gFWfJFs0SkFdwDuVg31bTL/40dNw8rymNKO9RuIWOiIVbQI95aH6XGShTLQlQjdwXgTWpwJ+/2UTbE6bgflCVvGOf07xyFkLP4C/uC/Kr/17kpxXfxN/8pEIr3nBT1f+/8hHPtLygu8TD1eDpNftNxmi69ZXL/a7n86RzU3WvWZs8jy/8+G3c+jEwwBs2rAbq2xFVAyqaoqOQja0FnTdd9LB1+Zz3bKptPpZkp5G7PqKsygxdK61XnGuCZxlY3xllE1XCzSzrCkAou7KCHtIyllSP1Gtlq6HejmhCz6Sdhr2KrYEW0CprkDY5YoZFZnFYHMmYFdorfjEeZsTLQo1zUSFrh1Qx+rSJ7OocO58wnsCgC/c/VE+8Jf/vWJV1XSf5cBZgz7X2aqz1prvPWoC52gkwZ6t15rHy4GkJZCwuZAVvnPSBNCDiYBr1q2gDaUfsm6sBt9R1DIL7nkEwrQfmFzrcBS1NQk5b8Xat8q2VIEWnrrQetXZurYP9xf3475rPzIQnf8FLeBMGDj3xwLc1RW31EOba0CUUCxBeok6BlpR1s4XoSdhLsmJ6fbmoiDQHDkNyRhMZuufE9c4B+ipEowWUduSWPt7kYSN9EWwru1D7exBT3no8y3SrothsjpqmaTJjh6Y9jqS6NeBNuvQsL+55GlsC3ZsEF5yo/Dca4XBNJweNdtXihpxG4naUPBN+5avO3Y9dxLdwHmRGEpqfvdlk+wZMAPeZFHxri+l+IUvJvnbB6tB6B3bC2wKA+wHTzs46RvZvfUaAB5++GEefvKeed/rifMWD542E9amtM+NG80dvDkd0B96Sz85lgYx2/z4D/5/3HbDq2btZ8/2a7GurvHwDa9Z2Riv0Crmw5qiaYOZYB01e2GestFLILqwnKilaamtK9BntpoQ6FkVZxGIRlZG2EMStunBXILkTMWveoltKnQpIDibIzjdPh2sZXgB0rMIOpYlYLHk56KL1QkjHNO57/752xdfda4IhFFP1w5qrB93POsgSpkA6cvf+Bjv+7P/iu83D0RleOmUtU+cfooL42cA2L/rJmzbzPGVHuceB1HCV552CcLA/0U7CyvbLRKENN1GVO2wQj9vFW7ah6SxBJORGAxE0RdXpope5+fcRp8zmFa6VoWY5kPBg4s5sxZc1cJgUGdHpjUkoktzQcYi8yfgs3lIxExl9dzY3NXpWvi+CZqHemHXJkEwgXQFoeWezvnI3h7UnnSdN7K4FmpXCuvqPojbrdnVlQJDjQ5ZmGpjAtkUN33Ti01AV1qvzPU4lYNU3NDoI66wfb2x/3ruNea7mgiHRFFi+pwLvlHTjqpVR9OGbuDcEaSjmve/ZJJrQyuLvCd8/0zVpuk/35jlF2/L1guKPRLl1Xf8VOX/f/zXP5v3fT5e09v82ivzlQlLBK4Nq84+EUjdDMBLb3sz737rn/OBd32aLZuuh33/ANd/n4dj7+W3ToyQd+oH2VaDLj+Ae06YzxezNVeNrGDGuVV4QUNVPonasMYJr7ItifWcIdSVGazbhud/waWMGeJgfqBN4OxCbiXWQjHbVD063OesfY0uLxiXKFjUvjZ9TxcKyGAUGYigz+Y6XuE2thXV7PSCYC1PEqGLVYqIhXTwq3/utiISBuL/dsht2ttY8uHomGr4fF3g/HRN4HysWk7afest/Mp/+fOK5slXvvUJ3vOh/9I0eK4TCOuwMGDD/uZSAFkzdknanIcvP1VlOK0oTRtMotRqkBAPoQailT7QZtDZEjIYMaq+tjLrIM0Sttg0x94agbDHWlTWXgrUejgPr2YPZzDRslXti40tkY6UZQnpxNwJ+Ok8DKbhym3CxkE4eX7+/XphpXnDADzngHldbEaiX2KW0Ri6qhdra6ohq1BEUENRrL1pY883z1yoi0GdnaZYgtrZg/RFFs9mKfhmbR0za+7JrEkK1Fp8WZawfsD8P1UzlEnKAV+jpz2jpt2hZFAn0Q2cO4S4A7/5wimes6V6tacjAe990RSvu7KACLxgR5GUawahuw67XLX/B8n0GEXEr33nc5wfPdV0/2enhK8edir7feGO+ru3ts+Z3jvYvfUaesN9X7P3Odz48rtg4LUQv4Jj2RHuOhbla4mhun3IltZEpR49Z1VUvW/YUMJZPSrxTaF9XbmJa2E8DvWapruKCParN+PcuRNJLsx79JLBDHEwPzAsvnh0hajaliB9LjrX2iKs5evQC0yF1ZKO05O11kYk50wOkjbqmj6sq/qw9qaNiMi5fGep5+XsdIP7s2XYyrBl1vB93MUi4Cq0rTrGHhpMVBPCJyYsnmxAm/UD+J//kuQn/jHNe74WnxU8S4+DDIZ9zsezlUBMHwvLK7Yg62Lcev0P8O63/gW2Zcbuf7/nH/nN//czeN5sJpcML52ydqPAua6/Oe3wxAWLI2PmXOwfLrGhZ4WDKl9XBNMaImWjBqLoicaDv/Y1okH6asS1BiKo9TH0xc6KJbWCbb0+Eat9gbBOY814OIPpcbaEkg+OvXSBM0BvCgpzECw9H/rTxgP6ml2CY8HY1Nxz0vEzsGUEnn1ASCeFZAxiUcjWXH6SdLCu70MNt9BKGbNMhXq+3n6tZ4lxStQK+51lUYkj03rlVgL8kg/Dvc0LVF5QbWeTuG3Wb6WgMn6uNnQD5w7CteBXnjvNzxzM8oq9ef74lZNcWxPQxhx4+R5zN3iB8IWnU/zAc38EmN+a6rOPRSr0qFfuKxCZkYSp7XMmcwc3Hrij8u+pScWnH519w329p746OTaYmrVNI/zH8Sp14pa1QNMG0OUgeQYinbMy6WIVYIY4mO8bPbh0YuVYBdLjthTQ6aJvglVa6In2dRgsdr7Kqs/kQAlqfwbr2n6jummJmbz3pQ39/HwHF5UFf1HCYIDpcbaAVb7G62KJ4KqOeTmXMR9d+3OPRbj/lAl2v3Iowj8/MXsb2RGyuAJNcGQab8yv3Duyodoa9exrX8av/tcP49hmH1+79zP8xgd/kpJXH/BJf6RKS+2gsrbWmu89bmwq49Eku7ZcZR6f4eH85RpRsBevdLUZDFV7DiEoEUFGYkjQpAKX9So07drXqC1JiFroyeVd31gKdoVtf6enLMbyKzNvrRkPZzABoBKKRYg4Sxs4J2PSlH1SZrf1hO5yw33CgR1wYZxZIlha60pAvW0dPGu/kIyb71opYaAHcjOm2FbbKIlahl05R29/xf6x0Zo47S7eDcTXSNm6rqRxbZN0aIa4U/N547YR9otadfflakI3cO4wLAU/tL/Az96SazjgvHpfASvklH3+sQgvuu1ObDu0pvrqRyiWZi9I/QD+5WkzGliiecWe2dsMxDXx4Jj5J3UjB/a9pPLcn90boxSYm/L1B/J87s2j/M3rxnnLD9sVuvZxN8FXz7dWcf522N8saA5uXCuBs663oiojahnhhW7gfGmgLEpRpmr7YFmQThjtqFZ7jjoJSdgQUegLhaaiM3qiZCjRI+GsO99x+jW9fR2ssmrPlOit/Rmszcm6Piowi2frioyp8HXIvkIXgsUJg2EWuzjdivNlC9cySsIdHMdv3VrCVuZ6+vfDbp2H6/ms8BffrU9G//G34xwbq79fZtK1849Ug121uX6+vfmaF/Nrb/trHNvM9V//7j/x63/843VrArFUxdNUn8t3THPg6DOPMzZhpIAP7L6lQh2vrdT6KaeSQIhYmtu2rnzgrIN5Ks6E4pkpBxoEwTrrIUOR2eNcykFtTqIni8vORttXR9demarzmvFwJrSIshSFklFsji5hrBWPmrx8o8R2rmCeT9XYsu/ZLGwdqaps+4FRzD70jKlOAxzcK8Rn9GX3p2XBFpoigqSduSvGnkbb0rh9sdxnvMDAWYcJhLIS9mTWCKZl5ugEzfTARLmDJaKQuI30um15QC8nuoHzMmMgobk9tLsYLygeuLCFl7zEBLljk+e5655Pz3rNd0/ZXMiar+qmTSX64rNvWt/3KJ37gvlHbLLRGwB4+IzFV4+YkSQTDXjjVTliDoykAvaNaLKv287Xe4b4g/X7KtvNhVOTqkLV2jfo0xtbGwtVgXorqvLjtjLUljWurN1FiHLFeQZVO500E+pciphLhh4Ha18GkjaczdcF0DrQxoPRC5ArMlg7w4X2fJWzUOyOiNXZinPON5PpHJR/6Ytg7cugRaPHOrB4XqwwWPm4HNXtcb5MIZYYxkIHA+eeiObgBjNgXMgqvn+myoj4k2/HyZbMGJOOmPcs+MJvfjVRx5BUO2oD5ylyD1UDZ9k8O1F944E7+I2f/SiuYyiK//HAF/m1P3oLxVLN68qWQb7uCJ1Yjxd58t7vVP6/dt+tNc9VB8ynvdjq8G6uhc/8gbOjkPUxdLY+EmlE066F2hhHMsbfdjlt7vbUCIQ93qZAWKewZjycIexxNhTqVMxUbJcKsYgJzhvRtbN58/6JmnyaYwtX7xTiUTh8SnPklHn9LVfCC28wxxmNzD7eZMyQ5hZ63UnKmTuJXAyq64dGr0+3xpJriNDmioi5LydzMNIHtt38e1k/YPrDIQz818VQGxImIb4K0Q2cVwA/eEV1svvUwxF+5Ed+tPL/p7/yoVk3y5efrHJPmtGjHnn6Xkrn/7ny/wOnXQINf3JPNf31lmtzsya7ddf38HcH9vNIopeHz9qcnZr7Qv3WWlPTxgQnWklTSpekOmdl0sUKQxtVbakJnO2w4hyLQH7529YM9W99HOv6ftTVfdUA+nwefSaHpF3sa/uwtiQrkw3z2aGEYnfiqs4qXRd805s5jw+oESHJoIvBgjPTUEMZ64QASMRaOtXvLlY9JGl1fByvpWt/Jay23nPCriSZ05GAD75qgi0Zcw88fdHmL+6rrpwl7UJ/WCE+Ok32u1VhMLWpMcPr+iufy2++/W+JuGY/337wX/hff/hjleC5rs95kXTt4Fye4gce5ra793GzY0RFry73N0Ndj/OTpernunXLapn7dUsUVjUQhaiqV9jOepCwK5TSmZCIhdrVg0Qs9Jn8sq0RagXCHl0hgbBTa8XDGcIeZ0XRg0xr3YYLRtmSqpFeSrYAgxlmBXsDGeHqHbCuH26/RnjxQeGKbapCzW6EVNzQzhfsBBK1TODdLPgt+pX1QyNI3IaFakZ4gSlSuSYo9wMYzMwdV/SlBEuBF87f1sYEamh19jdDN3BeEewd9LlyyAzgR0ZtctFns3PLAQCeOPIAjx66r7LtVEH4+jEzsPdEgooF1Ux85/tfgfGvgjb7vf8Zh7sOOxVLg60Zn5fubnwXPndb9fGvHZ07jVwfOK88Vasl+Nr0vzUJBiTudNLJpIuVREjbKsMLBUMsS+hNrYwlVRliq/oAOuWgtiSxru5Des3iurIInKfirH0N0XBy6mCwqEtBy/YPMhIz4iKLYWsUA7SzSGGwMiJdqvblDInNU2VZAG7ZXCJqm33efcRhqiD8wX9Uk9E/c2OOwYTm/7t9GicUdfrEw1G+c7Ia8FSqzr4me28oHxu3KwF1I1y77zZ+6x0fIxoxwfV3HvoKv/IHbyZfyNYra59ZuLK21hrv08cgFC58YeTFpBIZdmzaX92mpuL8eE3gvLN/FTlpNGCSzUIyFAmroWvrac+oabvNxx41GMW6rs/YVJ3PL0vP83AyIBM1Y+rj56ymPbVLiTXj4QxGv8YWgsD0IC8lIq4QjzSuOPs+9PU0fv89m4UXHRR2bpSGFeaZSMYM7Xtmn3OrkLiNdpvPzboUID1zCMnGbaM7spCkeElXgvJcQRN15+5vBvN8T3y2f/Ws49Z6WdkfzdANnFcIr72ymin+yy+lec0La62p/rTy912HHUq+udHu2F5sqmB9z/f/FfxJmPg2AMfGrbpq88/cmKVZYra2V+mrh5svmrMl+N5pM4oOJXy29a7yTGQZYd9m0wk2YiGr5IbsYpEIdN2o5gfVnqe+eRQxlwuVAPrGAawrMg37jJgv06uNlZq4ik6trMq9SSRaWymJEkOTnK86PhcqthWLX51JKwvoLi5duMrYmnUQUZuKU8ZUUfGL/5LkdEhjvXqkVHG32N7n89M3VIPY992dYDQXiv1sn93cpzbH56UhXr3n2fz2Oz5GLAye73v4Ln7lD95Esbe6zWIqzsEj4+jHJyr/H7Cv4updz0ap6n1U2+P8UNYEzgk3YCixOuZKkcYezo22k5F4KBIWmLGO5jTtutcmHawDGWRf2njan1lCP3sMRbfs5zxZVDwzubzjWsGD0bXi4QwgutKatZTCYGX09cxOwJc8jWPX9zfXQkTaopBbltDXQCCsZVQEwpoEvr5GEnO0Y7nKBNYLCJx1Kajseypn2H49Tc5LGRFXGOmbO3Aen9Y8/QwcOQWHn9EcCn+ibkULdtnQXWmsEJ69ucRwKPP/1e/H2Lb7h0gn+wH42r2f5cLYaWCGZ+KuxuWyi+NneOrY9wHo1Q9VHi8Pfgc3lDi4oXmGeHMmYFuvef7RczZnmtC17z3p4IUiY7dsKi37xbpgeBqZq+IcMVYm3f7ISwCaugSJ71cD56XORreLuRbOer4eZ21UtbGlc7NGwUdHLCNm1iIkuriKdyeEwSqwpGNJhC7WHiSi0KoNS7cWUUvXLnvr2krzs7dk6269V+8rcGPYEz2aU7z/6wm0rhcIqxxrE5r2TBzYfQvv+fmPE4+a4Pv+R+/mV//+pwgNNhZsSaVLAd5njtU9llAJblv/wvrtwoqzjts8kzeL4W29/uqZ+zUtBc4A0udCjwOTHkx7pqqWac2+USyFtTWFfW2f8bk9k11Ui8p8WEk/5zM1NO1V7+EMoMHXGttansA5nZCKsFcZ2YJ57/kCxHYwkJa2E/1FTzMxrZkuGDs83aTiLFBtC2sC6XXnbU/wA810bsZ46wVI0lyzUzlDUbdauEdH+o2lWKMCltaa82Nw3S54yU3CS24SXhr+fu61wnDfvLvvKLqB8wrBUvCafdV00h98q4+X3PZjgBH6+vxdH+H4uOKRcNDc3uuxs6/xQH3vQ/9e+fv69fUBshLNzxych/8A3L61eofe3UQkrI6mvXkVlO5aRSik1HRxHrVM5axmkNG+Rk+Vmvo/drFKoUFqRjUvMD1JYEQ7bKvaR7OqMU8AaMTuytWWDn2enG+C5kYV8GaI2fMH+XOhQ8JggLHn6nDFsYs1BNcCRzrukHDdeq8iAFbGGw7k2Zypf0wE3nnrNL0x8/g9Jxz+5WnXqDr31l/jjYTBmuHKnTfy3p//JPGYCcDve+JrjMooAPpsbkFMKf+u03DRzG1Fqc7l+60Dlb91oGHCPFesEUfZ1rs6PN90oNFiaLqtQOyqSJjOzk/TbriP3gjW1X0mGTJaQE8vDWV9b41A2HIra68pD2cAEYqB4DoQWwbBungDkkI2b1SjW6Fht4pU2Bkx1/09ldWcPFetvp65aFh1py+ATtoNmWvaC9C2asx0q0XCNgricyQix6dgbBqm8zO2cVVIqzYJgFbQlzLfX6N2utFJI/C6e5OwbqD6sz78cVocAzqFbuC8gnjF3gIb02ZgeuycjWz8eZQyF/Pn7/oIX3yimml80c5i0yzvPd//18rfL7l6BzG7ehG/bHeRrS1Qqm+v6XO+q0HgnPfMQgAgamuuHl5FPU7zIRRSagpXmQk066FHCwSnsnAuB4Hpg2pmIdTFKkS5Elv+N4Coa26cRDRU1l4BgbBOwiwYxQh42QrpUNysiz7SF2lLyXIxVHGd901Ca65eq3ZgC924+TJGRCFO560FbVU/P65P+bzxqsaV3t6Y5uefPV35/0+/E2OiILOqzjOtqObDvh3X875f+CTJeBqAp/NPmicKQSW4bRX6YgH/306HBwK/n/+9ynOZczVRwbRXYZNMRKqlvNUSOBNokzhsgwJrRMIMS0b6FlaeFFehdqWRvWmzZuiEs8AM7KkVCFtmZe26ivNaoGqjKXqy5B7OZcSjsxPw+QIM987xogUgGQqENas6+77mzChsHISbrhDuuN5UYe+4XuhJQFZsBJkdeBcDUyhqoqhdhiRs9Fx0b8yxres3AXQQ6KoVVcQiWzBianPZUNWibFk1Pl3/eBBoLk7A3s3MKai2nOgGziuIiA3vum0aFa58P/n4MNde/18AGJ04zz8/Zh5XorljR+PB2fc97nv4LgCS8TQHdl3PszabbZNuwI9d25p4yKZ0wI4+Eww/ds7mdE1fjdbwu9+IM5avUr9XvWBEDbSn5+yhFBFDaxEgbqP2pFE3DGBd1WvoLIupqHWxrNCauoWUxkxyYCbVeBRya4BE0MwrEjCLWUtM0GwJWmTR9FStQ2uWVJtBrKMWTBXXYwXUcAyaqNq2C3Mu6NK1L1OIHVqgLIH68av2FYjamoil+blnZ+ec/27e5FV0Q8byij+/N1ZnSyX97pz9hc2wd9t1vP+dnyKVyHDcP155PHv0fFv78T5/onKOTu+c5q7pr3A+MEaz+vB0RUlX1wTk5+xVGDj7oZ5FG20eknRQg1Ek6bQsgthwP5agtiZRV2bQWhOcy3dUIyUV0WzsCZXaL1iUlvGUn15LVlQAGoq+6S9uhRK8WJSVtWsro4GGnkRn3zsZM2uWZn3O49NGVOvmK4UrtwlbRoSBjNDXIwykYUpbaFdmC4SVAlMomoeqTdQy6tpNWhKC0MFkpE/oT8P5CcCrWlGV/Zt7WswRKiVsGjLV+1pcnDR95dvWrY6gGbqB84rjymGPn3ypEegoBcKZ/l8HsSFzB5OeSdXctLHU1C/5scPfZXJ6DIDrrngulmXz327O8babs/zhD0y25bNcS9f+2pHqxP6pRyJ85ZCZOGO25i3XLVzJc6Ug8wwSansS+8ZBrIMDWNtTJjOdsA2nvhs4rx0EoYJ6DcqBs4jQm1xZZe1WMWfPfUUlPqRqW7J4NeFigHaVmSjbga2QBSwYdcEHS6E2zC+S1DIsZZIma4GK38WSQOIOutT5739LJuCvXzfOR147zjXr5mdbvfXGbIX59U9PRHi6N1NhQ8i2FkswDbBry9V84J2f5rxzofLYZ//+T5iYGm3p9cGTEwQPhjTvuOLdj/w8AN8rfc9sUArQx0zJR9dYUZ2kWonellklwVQQikK1KQqoNsaRzXGjGrwIVGwGD/QiMQt9JtfR/voyXbsUCE9fXD669pk6qvYq+a7ngGCo2un2SBwLRiwCUadqSVUoaiJO6wFiq3Bs4wSSbRY4T8GWESOsNRMbBoWcssw1PiNw1sUASdnzzrsiYvr5C42vgUKRimL2zg2CEshNVa2ocnnYMDi3lstM9KcFpUw1HUy1eXzKVJsTq0ijphs4rwK84zVjbMmYQfLEdJr+A78Hw1Vv5xc18W6G0IYqxMEDzwdMtvJV+wpsSrc36NWpa4d07QdO2fy/71RtKN556zRbVsvE2Q7m8aWVmI2knIr/LwC2GCrqQrzsCKXzJ4odF6vpYg7MqDiDsaMqo7dHKK2FLgNLmids/MDYVtnhj8Xig8W8j8Tstv2UxRG0ar/irceKqOHorN7PRcHuUBKhizULSdpL9v33xjQDLapJDyQ0d9YkmH/nkV6s122m56Up7JeuX9Rx7Ni8n9e88W2V/yPjFj/33ldy38N3zVn11H5g7KdCfDH5FU5OHAFgqiYZEDw1af6osaJ62jdrgKGETzKySu6vILTva7PKKL0RrK2dM/xVA1Gsq4yloD6/OF/tWuwbrFb6/uze2KLMC9pBbY/z0BoInBGNr4XUMtF4lRIySciHt8d03jDZmilqLwYDaSg2WP6XPI0oWNff+DP39YATUXhRezbV2tdIskVRvJTTtBUsV4Bk2P7WnxY2D8PEmKk4BxYg0N/EnqsZ+lKmt3syHDovTEB/GratXz1BM3QD51WBiAvvur1K2R7N/AwM/CAA4l3gwMDFpq+9pzZw3v/8RR3HxnTAzpCu/fh5mwdP2/zGXQmCUMLzDQdy3LZ1DYmChZAZfa8tv05Cf9mFVpzzPnq0uDAvvC4WCF0RgdPaWI7YNcn6RHRtMHnFnsPmyQsrzuUfa/H+xbrgIxm3fXVrJ1T2biO5pIs+iCDrO1hthmrg3K04X77ooD3bYvGqfYVK+9PTF20+k9rIhv+9DrXA3tpabNi/r/L3JmszR04+yv/4ndfx33/rpdzz4L+apG2gCU7n8L95ltJHD1H8re9XVLin+or80WPvAyCVyPCCN76lsr/gKcOAq604nxJzzKuGpg0LomovFaTHwdrZAyIdU9t+/vYi/XEzrj5w2uFvvje/dVYnUPFwjge0qZ22QjDaFsvR31xGOgnFcCmcK0B/D0siUNWTkIZT+9iUqfQOZhq/rjdpjnE64swS7xTN/DTt8rZxG+2ImbNnoFAyQW15Dt86IvRGA857NtmCkIi23t9cRjRibKkmpo1i98Q07NsixDooutYJdAPnVYK9gz5vOGAmtUArUGaQ1Gf/jo9/4XcbvubRp+/jiSMPALBj034Getct+jhu21YNjH/xy8lKX/P160vceV3nsqnLBR1otBLEWeCNF3fmleRvipxvKnjdCtgyoioWEwSg1OzA2bGNbcOqhjNXxVmb/iMxgbN0gp7s64WJdNnKBO5tvL8eKyKD0QWL8zSFFSrnd++3yxYSsUA6b0m1EFgK3v6sLBKq3n/4u3FOdYhyK3EbUoYdstXZVnn80afv5X/+3hv45K/8b7K//B1KH3gY71PHCO6/WFdBfs+Z/40Oj+u/v/l99G3dCP3mftRHp9FFv67H+YJj1iOrKnAOTEJc2hAHW1L0uagNcfTFQkf6nVMRzS/XFFT+5oEo331macVlaj2c1wJNW2uNH2gsS5Y1cE7GqgFtvgRDvUtzDSZjRiCsOKP9ZCILW0eaB+u2Lazvh2mx61qptK/RivkVtctIhH7Q+fprodzfXFvldx1hY79G4jZnLprAPhGbucP5MdJvWIHnxkxiYMtw+/tYanQD51WEN1+Tr/gpV3DmI3zqXz7IM2eP1D18+vwxfuUP31z5/7YbXtmRY7i9hq5d9M1NMZL0+f+eO421Fq8WLwj7QRd28BK1FrwQ1wXfVKxXwSLusoHWFbEqPzBBcy1VOxELLQ9WubK2RJozHbSvq/15avFVVu0FJuhsw7+5AkeMHUyLiQhdChAd9hl2eMErVrfi3En85m/+Ji9+8Yu5/fbbef3rX8/dd99dee7DH/4wL3jBC3j+85/P7//+73dUGGlRiCgz1i+wvabT2Dfo8/I9Zk7NlYRf/2gvhy9a/MtTLn9yT4xf+EKSN328h/93T/srTBkyr+khxa/e+eds3WCq0Le7z+UV+ZdhF2fMeY5Cdqb4u8FPc//kdwCzbnjuja8BQO0M6cu+Rh+Zrqs4X7BXYcU50C1XzpYDImLU0hM2THWmH+jAiMdbwoKFRvjtryW4mF26REG9ovYq+q6bQZt53nGF6DJYUZURj5rgyQ8Mq20paNqE+41F6vucC0WNYzWnaZcx1Cv4joW2pVr8KYWK2i0GzmIpJOPOYlGU+5uTM4atTFLYvt3C17B+oL3+5jL6eiAagcmsqTZ30uKrU1g9o04XuBa869YsVphhTKtnYOq7lLwif/aJX69sN5Ud5//7vf/E2IRRwrxqz7P44Zf+t44cw4aegF391UE/Yml+7Y5pelZLX1O78LVJ/S+Aqg2Yyt8C7tuyLL/puVzYW3exAAiVUc3zw6++Zo6IuiZ4XvUCYXGrom47C76GmPmQImImwsUEiwXfLEAXEDhXeq1bfH89VoSBSOerzWW4Vvd+6xDe9KY38bnPfY6vfvWrvPvd7+ZXfuVXmJiY4Otf/zqf+MQn+PCHP8w//MM/8PWvf53PfvazK324Bq5lrsclEAhbKH7i+hyZqLkov3Rvgp/8VJr33p3gkw9HeeC0w5kpi48/HOX7p9vUFxiqUneftfH5/OmvfZXffMtf8d+SP1t5/DvFe/jz7Id4f+T3+NarjvFvV97H3zz+QQAyPYP89ze/r7K4VTt7Kq8LnpqoVKg9JUxYho2yvW/1BFPa18aSbxVBkg5qcwI9WeoY6+ENB/LcsMF8F6M5xW9/LbFk/c6n15gwGFpTCgQ3srxU7XgEXNcIdMXczguDleE6QjpZr6w9OmV6n/t7mr8OTAAay9gUxDKy4wBF39wzbQjjScad1TZW299cRnnNu2enxa4Nrfs3z0Q6Yajm6/qN+NlqxBoyFbo8sKvf59fumOKuwy6v3CX8r/uHGJ04y9fu/SwPPv5NrthxkF//4x/n6DOPA7BxeAe/+l8/gmN3Lt324p1FnrxgLo2fe/Y0O1bRZNk2PG0qYgutOIdNPlrr9rJnOR8ds7vU0eVGjTiYH8wOnEWEvh7N+fGVObxWIREL5rhsxKl+KHHV4hZpOR/pj1Su9XYhMQs91Vz7QKPJFaCQDUj7AWpjov1e6laPJRIG8d2ZbdHYunVr5W8RoVgscv78ef75n/+Z173udWzcuBGAN7/5zXzhC1/gVa96VcP9FItFijMUbmzbxnUXP2fpQGOJRolR18XRqLiCgo9Yq6NBsyeu+c83ZXnPV+du+Pvb70d4z4bWNUTUSLSSI9Ln81jbE1z3yA4CjLjXd+0H+NWL7zYbnIK7/vSLda9/x1s+QG9vP+WBxtqTpJwyD56eRE+Y72zUjYAIttJs7vORRcSqYum634uBqACJgqyyTJm1MQrnsjBZaJD/RN0AAJp1SURBVJggbPccWMAvPneKn/nHNBeyivtPOfzt9yP86IzWubLI+GJwNlsTOPcEHfmeGqFj10GgCSxNIq6xlCZYprVW1NXEXc34tOnzjUeEIGjv5AdBUPe7GYYyAc+cC8c3IF/QXLUdRNScnzce0QwMwFjEIuaVEMuGwEd6oyilmXOBUQOVUAQuQFCZtz2tGegFlFRaPgLP3I+xHsWt6zWWxbzfR7NzsGdTgGMLdgv76CSUam1w6y4vViFu3uRx8yYPiHLnD/4S/+fD7wDgTz72y+zcchXffeSrAPQk+/itd3yMnmRnnddfua9AwtX0xwOuW78WJIjngK8hZi18oe6EFTVPm+pzq8h5SH8UUfV+mF0sMYQKQ8APwLLAmbF+ziQFb7XTeedK9OgZllsREzgvdM2kSwHWYirAUWWqPzMeLnmaiayp7sciIOMlsn0RegaWsDTgdlsjOon3vOc9fO5zn6NQKHD77bezfft2Dh8+zMte9rLKNrt37+aP/uiPmu7jL//yL/nQhz5U99gP/dAP8cM//MMdOcabdsx44IXlP1ZPP8ZPPQcuJny+/lCM7etKXLGlyJWbi+zeWOKHfmOEE+dtvnPCZWpjgQPbWqPDTLsBx/7R/N1jT2Afn+ZsqIhtD9u8/m9/kPXfHeQP//APeeCBB+pe+5rXvIYfefutEAbZZRz6sEvhUBF9fLrC3Dhrmcr2jvUldt1ev/1CsfVZUx3ZD4yHP6sMLyr/0fy7bOccbAP+aHOBN75nmEALf3V/jIcmFJM5xUTW/J7OKzYPlnjFzVleecs0u9pIwpSRO1WdLK++ZYpt+5dW16Zz18Fpjh7t0K5axDWbq38fP958u/lwfJ4Xpyy4dW/1/80Z87uVz7ujH3hF+b/ytVhi5n0/JzKYC5Dqd1VWVZi1l23wzNgzMNb67mH2OVCAX2rtM3YS27Ztm38juoHzqseLn/NGPvOVP+fp4w/x5NEHefLogwA4tsuvv+2vWT/U2hfdDpTAC+ewwFpT8AJkMc0vbk3PXBtVa10KsPoj6KkSoY5CF8sAqREH83zT3zyz8JQIGY5tswiWE45qagMh4fOV/xcRLBp6lbRtQ1V3PJF6Abx8UTM6aar9mRTs3iT0xgOOPRxwKJ0gvYRiCeIuXmG8iyp+8Rd/kXe+853ce++9PPXUUwBks1mSyWr1NJFIkM1mm+7jzjvv5E1velPdY52qOE9Mab54j6avByJhYtM/Mknw1ARqeIkaDxeIN2zy+MXXn+LIN5NoX2DMITvm8NrdBX7/vLn/PvDhfn71Ba0FE3osApwE4Pg/5UlMVoMcee02jj/Yw1b7lXzg7a/gvoe/yl9/+v089OQ9bF6/mx974fs4fPdsSyZvQxoOnatrdzhvmUTXxohu+Jp2IJZm67OmqudgEQhOZ7H2ZVAbl8nAtw3oQOM/NIo+l0cN1TeCLvQcDAJvuS7HX9wXR2vhvqdmq2wfO+fwR59L80efS7Ojz+P5O4oc3Fgi7wkTBWEiL4znFQUfnrW5xI7+ejbh44/W7PNIhMOjCxCMbAGdug50wef8MyWufN0gV+xbmmNthvseC/juE/C864SdG9v/DEEQcPz4cTZt2jRnpfPCuObL39EM98H5MRjIwPOulZbWLmcuav79i9MMnBjFXp8gOJPD2p9BjcTxAs3xM1W69XCvsdpqBO/+CzBRQvoi5AuavAcH99SrXRcuFLFiisHnD7S8rmr1HKw2dAPnVQ5LWfyXN/xvfuH9r6l7/J0//ofs33XTCh3V2oH2tPGnXSgc1Zb4kXnPAJQgKduIKqz26ualBF3lq/m+Ea+YOYgnYuDaUPLAXd65tmWIrdCWVD2bQ2g/QFvK2FWVYatWWVezUfDRkQUKg1Xev/78jk7C5mFYPyCkE2YyLo0HDG1wONYTIZvXxKNLlLCwFqZJ0EVzWJbFTTfdxN/93d+xfft24vE4U1PV4G56epp4vHmQ6rpuR4LkRhCl8bUm0EY8CQDHQZdk0YHZUkH79cf24h1F/vr+GBdziq8fcThywWJLZm765sWs8PePpHmDsogHPomxqme0dfswansaXYmJhOv3PY/r9j6XC2OnSSUyRNxYzfNVyI4euPtc3WMVRe2M37FzOvMcLGgfnqDFQs8h1ZPNayIOWMttWaVAbUzhnSkSTPkN1yALOQdvOFDgqQs2Xzti7qeorUm4mqSrcZTm0KhVsQ99+qLN0xdtPvSdxvv65EMBf/O6cRI1t+bpyWqWeTCml/weWux1oD3B84RYRC174JVKCPGYpichTQPOVqDU3MeeimsirmY6Zzyjrx+Wlq/n/rQmmnLJ5i2SeY32MOMjipPnNev6Ye8W4YGnNIdOwaYh01c9C+kowZkiyhems6FomSOIrtk2r3EHHawFtMjMdw5WGy6rwFkHevVYF7SBa/bdyrOvfRnfuP+fAXjLa36J59/82hU+qrUDWYTyplhiFAjboVvnfGMXknCQsSILj2q6WBBqqNqxBuv1RNSoNuaKqy9wrqgTO8qMzp42TW5llP+vDVYtqSiJB1ozGU5sap6sb8nTjJ316R+yILaIflBHVZIT5X6noV6hN1V9/6AY0DtgsbFfcfQsbF4qS1JLFt/o10VDBEHAiRMn2LZtG0899RTPec5zAHjiiSfYvn37Ch9dDSLmelzVjJIauDa87so8f3pvHI3wsQej/I/bGlfwL2SFv/9+lM8/HqHoC8+OJNiTm6g8L+tiWC/d0PC1IjKvZaXanjLjZ82UtSoVtQnZRXN455Y8zfGzJnm6YXAZD6yMXhe1MU5wZGpxyfsaKIF3P2+abGm6ooNXi9GccNdhl68ccnns3NzvOVlQfOHJCK+7strSsNY8nAM/QJQQiy3/fR6PGsulpVLULiMaEXrimmNnIBmHoTY6M11HGNlocfS7iuS0ZxiUEcVkVmMJXLVDWDcg9PXAdx/XPHUSBtKadLL+fErC2FpprSmUYGt6dkEiKAbY6csjpFw7If4ioX2NPjrVMXP65cbP3fl7/MBz38Jb/9Nv8qYf+LmVPpy1hUUqb0rURrfjU5vzkV7X0EaVdOPmZYLWGi1SSY55PkQaBM4RV0jGVqcl1bkx8zuwxHCdZzIdfONdWndNW4JoI4xy5qKxisi10Jo2lQPyPlORyLwBxvlxzeFTjS9kcRQak5gslkwgEJ/RxhwUNXaPw7b1gu+bRW27aMnyyFYmeO5iUchms3zhC18gm83ieR5f+cpXuO+++7j22mt52ctexic/+UlOnjzJ+fPn+ehHP8pLX/rSlT7kCsQJ2Rqr3au9Bj+wt0DKNVXmrxxyOT1ZP2cF2vj4/sgn0nzqkWjFKvJktEpT9kSw37itno3SJiRuIxvqI4HzzuoMnEHPea+fG4MNA0ZjYSXs0kTE+NXT+fePO42NQnpjmtdcUeD//sAkf/Xace68LscLdxR4zb48b7k2x9tuzvL2W6Yr23/6kUhFMHmteTgDeCWwbVYkcO5LwbZ1QnypksA1GMzAVB7W9TErqJ0PwyMWnmsRTBYR18KPKM5chL1bYN2A2VcqLjz7gHBwr1kXnDyv665ZSdjoiCIomDEg2eR8Wx1KEK12XB6fEkyPqqWMLHur5t+rCOlkH2//0Q+s9GGsOYjWC7eiKiNutecL6gdGwh+61NHlRMAscbBm7e39PXDm4nIdWOuYDgPeIoLtKOO7WAtfGxZEzTUttsLXcPaCZrDXXG8TU4aSPhfyJRhMwinlkJmjOucHmvEpo07u+Rp75mK1HKz6mnxRiEYgNmMxob0Ap8dhXb9ZBFyYgJG+Fk5ICM/XPH0SIq5m4yCzjyGE2NXqexcLh4jwmc98hve+971ordm0aRO/8Ru/wc6dO9m5cydPPvkkP/qjP0oQBLz61a/mla985UofchURyySWSu3pUqwk4g685ooCf/VAjEALf/9QhJ+9xdCvpwrCe+6O863j1cEsYmleubfAs7e78Dnz2EeGd3LnQJz2HaHroXam8E9UK94XnCgJN2AwsXoSETrQaCVNRT/9wCj5X7lNyBYMC2epLIPmgjgKbSvE13NWx5cC63sC3nR14wzqN4+53HPS4fSUxTeOOdy2tbT2PJwBz9M4jhBb7EW/ACTjwpWdlxhqiHRS6EtpNg+3fw319whuv4t3OIu73ubMuGKkH67YWr8v2xau2mlcR779iOb0RWMJBUDcRqI2hUmfSNQiOaPKrkMhHyu6NsbbxeLyCZx9bbxK11AWuovFoTK5tqOG3QDiticKhq2QVMgBVjWRXBcdh9ba3NuehqLpLa9QdXWTfh3MROSvMhGpXEFXAv2SJ9gxC3IzFjC+hni9SrwncH5SGNwGV24XTl/QnB+b//10ISDZo4j12UxkjX9iI1wYN4IkJQ+mc5Ce6arjhJRJX1MoCgODDWjiWmNFFY4t7NoIX39Qt0WlvTgB6wcg4sCRUzDUa3rLZsGSrnd6BxCLxfjgBz/Y9Pk777yTO++8cxmPqA24yozZ7SQ7VwFefUWBjz8UJecJX3wywpuvzjNREH71K0lOhr2nSjQ/eEWB1x/I0xvTaL+fu5+G74zG+GLvRm46O8X1GxbnhKF29uDfdaby/wU7wvZev6P5KMPgWsQOy95LTYQGL06YMWvvZpjMwqFnViZwNklFVp1F3mv357nnpFmjfOKhKLdtLa09D2egVIJYVIgsoh1vLSAVN4nmdmjaZfQkIDVgkzukwLXxfUPRrhX2qsXGISHQcPf3NGNTmkzSsPik3yV/aopk7+wWOF3UKFewFtPytYZwaV9ttfA1uKotym0XawNaa4LTWfT4DCVwLzAL+sVWHVyr9Sk+65n+5mQ4S1rSDZuXAHqqRHAqiz6TQ48W0TkPBKTXNX08GIa83WQcT0RNYXIlKHzNMDZlKuFg6IUStdD+jAWMFyA1jJmSpzl+QRjsE67cpIlHhERM0Lrab9wIJV/j+D4DwxZbt1lcGG+8nR+Yas3ezUJfytDFZsFWRsDMD/B8ZgW0JhstqHBxs3HQTOZjbTiRTGZh+3q4/Rrhhr0wMQ0nzurZyY9y4NzFZQtRgsQsKK2ee7sV9EQ0r9hr+kdKvvCeryV42+d7KkFzKhLw2y+c4j/fmKM3VvbBVfjPXc8X+jahRfje6cVHZ7ItWacTcNGOdIymXfGbn1ika4cfaj00uNe1Nv66uzeatpxNQ4IfsDKJUicM7lfZuvO6dR7bek2C5ZFzNo+ctWZUnNdI4Oxp4nHWpHZROxhIw7P2m7m9XSglrN9kk3dszhQt9mw2ImBzYfOwcM0uI/SZK4RjTV+UUgn6ErMT3kExQLkW6jKpOF8enxIMxTFirboBrIsOoGgoeVpDcDZXnZx9bSatxfY4O4JW0lLSRed9pN+tKiFb3R7npYDO+cj6OPbBQeybBrFvHsS6ZRD7hoE6IZaZHs5lJKKmeplfRa5r2TwVKlbRw3yOGdec9jRE7XAbIxiyZb1i11apiLnEI0b0rDiHnl2xCK4EpHotdmy2iLgwnZ99oZYrN1uGYaRfGp8vW8ARglKAqNn9zTOz0YmYsH29mZRbwVRWk4jChgEh4gpX7xSed52QSZnqc3liN8fS7XHuAkg4hv2zAGgvQI8WZidilwGvvTKPY5nr+f5TDnnPXMs7+zz+5BWTDavJV41UH/ve6cWrHUrEQu0xGbynoik8pTrX3xyOZ4vWmgk0qMb3+ugkZJLVsXS4F3riMN4py+B2YCvDDlplTEcReG2NKNgnH45yeqo6Wa6VirPvQSJx6YcxIkIyvvB5rX/EhrhN74DFlVtbs7Lau1nYtwVOnjOtUjrlEMRsEsHsezcoBqhINTl+qePy+JQQUmVmyEV2cWkgb+we7AO9SNpFn86ZRZOnTc/jYnucXctkjueh/mmtkQAkXeWxiBK01GTau+gMPI0kbaQ/gvQ4SMyeJYoj0rzi3JMwaqtTucbPLzem85pYxPT/ApR8miZ8yirxZy7C1hG4+WpFNFpl08QjRhRtrsA5X4SEpYn1O/SnTWBcFiYrIwg0E9NmAo1GQmup8PG64xGjPF/MGap5YkZ/c1AKEMeqm1S3DAsRx9jFzIeLk7BxCDKhSreIsGFQeP51ZmI/daFmY7urqt2FYWvQJptE5zyCszk4lzd90ll/2cft/rjmJbvqVQtfuKPA7798kpFU4/mnP67ZlDaL2cfOWeTaMIBoBvv1W7nr2l38783XAB0UBgsZNGLJbDZNOyg7pDToGx6dhJ0bqFTnohFh8/DKBM6ixDCgFvNZlwjP316kN2aO6+6jDt+vYSuslYozAUSWytrwEsLAsEXv7jj7r3ZbDsAtS7hmp7BlBI6dgVygcNZFiJRmJ++CYoDd46wJF4NO4LIJnLWvu9W/SxS6EKpY90ewrupFbUzAuTx6yjNWOYutQDmqscLxTBQDtCtIsibrX+65XUWU4EsDGmlWTiakB+vmgbNSwkhfVYxrpTE2afqXyv3DAqHN04wNa8TuSp7xSo4njde4Dq9PyxIySWO31QxFD3qiGjthIyJsX29aCgrF6nV6YQL608aTGUwPdDwG2QZq5BKxKBY0cXe2knlQCLAiUkfj6k8byvb5CeaE52v8wATaMxGPmgC67s7q2lF1AabPucUmmUrbR85DjcRQ1w9gXdtn2m2mF9cvvBC88ao8vbEA19K87eYs77o1S2QeBvbVYdXZ18LDZztA1046/HNmI+dDD+etnQqcy3NozIbsIvbp05CqPTFt2ClbR+of3zAoiFqYmv9iIdHVyXR0LXhl2BoQaOGRGvuqoVUUOGs/QF8ozEpiBVojaNwmvbpdVBGLKm57eZIdW9vrQY5GhIN7hf40HD0DqQ1RIi6z2JdBMcC5TKyo4DIKnAmCsN+0e5NdcvB1RYxLYjbqyjSypwfssNdtsXCkNbGZnI8kHEjUDCBlVe3VMw9dOphDpdQPwLLAmWMsH8gYa6SVhtaafNEs9soZW9sC3xK01LcICIAtld7sZMxUYFWkXr8hnWj+2cq9z7EIWLHQfqTPBLJnx8w25Wrznk1UREQSMUN5nG5UpY8qCgVNJtXE33FGNrocrM9nTXVxwvR9j/Q3fj7qhi2E4aJKRMDtjvGXO8RVLTF9dKBhsoTa2YN9wyDqQC9qKGoYLEMR9HQHyrdtYjCh+egPjfPxN4zxqn2FlkS5rh6pHmcn+py1hsOjZu4cTvokm7gTtI1wDpVeFz1T+LAdBCaBOHOsuTAO29ZX2SllDGaM5247ugodQ9Ratdo6r9hbqLQGlLHqPJzHS+i8Z1ryauD5JoccXQSF+XJCMt4aRXsmMinhhj0meF63zcFJ2XiTMxKKmstGGAwup8BZGyENrWZnS5btEPI+Orv8GexLGdo3SspSE6yKpVDbU1hX9yHrFu9OLyImazxPtlrnPUMdrq14KTGZ8S5Vu6MQmVv0zfNN4Nys4gymgmp6gef5XkOP5KXCdM4EpbWKma4DBV1WqzYLBh2EPtWOqvglly2nZgbOZW/JoAHToeSBYxlquBUKjSkl7NwoeGEge2EC+npgy0h9sLuuv0nF2bUIAuMHORNBSWOnZi/mR/rNZz472vzcTGZhxwZwmiRJoq45D3W09DmYCF1cJnBVS+01lAK0q1DrYqbloza50x968K4Azda1INFGsHp1bZ/zqcX3OZ+ZUmRL5lx00r+5zIqRjLs41XNfz3K7yOY1jm28dWfCsYVtIzCRnfXUkkMi1qqd/zNRzQt31FOTVlN/s9barKvS7ixrxpIHttJELxNBqpXEhkHhOQeEbVtsouujlGoC56oV1eUz715WV5xErbqF6HJDjxXRY6tIjehSQD4wvtyJ+oW5iKCGoqjBDrnTzyM2owONaJCeGYsWK/SVXaUT51qECSBDz94m8EPb9rkC51b7nM+PwxPHl06B++IkrOurV6OOOFDQyqTUywmbcruJrcgXTcU4GQbOVtSqLErBBM4RFwoNCmaFIkREE0uqOvr0hgEjpHN2DMbDanN8Rv9YbypU7J5xLjwEy6oG7HXQGis++4twbOHqHYIIXJyYfW6nc1VRsGaIumHyozYf2YZ9XBeXKNwZ904zeKb/nsjs61PSLqRcmFr9ye6+uGZz2Of8+PnF9zmXq83Q2cC50uOcdIzLSWFh+9aBnpUgOzdm1ILLOhEzMdIvuHZ9O8qyYLEaK0uM115Z36+0qjycs74xOXdVw8DZtSDSoSVeF3Nj45CQTgrRkQgEupKo1yWNcgQVW93XeSdx2XxSAYhZK2sNoHVHvRC7wAiDJR1kiblF84rNFHx01Kr6N5dR6XFe0sO7vFATQDbdxA8F1edgLTq2MJSZv895MguZ1NIIiQWBpuTBphk9vD1xEziLLfWBc6hgnSsYb8eyT7WK1lecY64JrAsN8nT5IqTcACdqoWqyxLYt7N4kTOWgLwVbG1Ru0gkTrM5U184FZlEacxtf6FaTSXXjkHDDXmEia9SzazE6BRsGZ9Mua+E65njqKs7dwPmyh18WjppPWbukIaKQBuwVcRQyHF0cpXgZcfU6cxN0os95yQLnMhK2aWta6LkN7UXLKJZM1WvnxuZ01IG0+WlVzb9jsBdGkV0ubMkEHNxQHUBXVcV5sogajiKZCLoBVTvqalSXYbSscPtd7KSNFyYUg2KAuFa34nypQQcarYzya91CdCWOpUVboy5agy4Fxrt3qeHMM/HlTADPzD4PyyiIrkZxkDULLwgD5+bfieebavNcFWeAwV6pr1bOQNHTWGrp+uMmcyZIHsrUP55JQcEXYz1VpjT6gbE5cxS5ohHYKsOasfAXEXqTje22Sj70OBoVVagZ/cAbB83Pns2zq81ggvVEbHayIecr4nGZdZsEXoBYgmpQ0Stj10a4ajucGauvBvnBbJGfmRARUrEZFWdHdQXCLmNMTGsOnxYuevb87TWloK7NZyZUXwTEWFStdtTStR841bnAeXsHA+eyxowoQQYipnd1IdAaqRlsRidhMG20GppBKWHbOpk1dvm+5vRFzRPHdb21XQcwldWM5QSNXjLGUifwhqvylGUWrxhaHQwL7QXmOhmMNtSqKfkQd0EuH02qVQErZhFdH6E0EQbODcQ/L3VcHp/U16YPNmKZRdUKBTFCuNhfA5PwWoDWGtF6zoVPpyCuZfrdmkx+uhiY/uaZmWUVioOt4klzzcHXxnpqjh5nPzBBszWPono6ETI6m4wJE9MmiN0yLBRLnadrj0/B+gFmWUQkIoYSLbEaYRlPmwSOZZ5L11C7xZnNakjFZdZlZ5RIIaYC7JQ963qNRoRn7xd2bWx83ixLWNc3WyAsHyjSaamjiwMERY1yFdYck6qIcNUOYc8mOHGuKvTVm2ouClaLnsSMirMVquB3cdnh3JhmbMrYERUce34vZz+A+BzzR9pBetYGXfvqDvo5P3XRBCq20mxMd2a9Um6xKUPSLqJlYZZfUs84ms4bdsp84/1wn2HiTOc1fqA5c1Fz5Iyx0Ns4aFpUOoFsXnP4Gc1EFiZLgs/qTp5fPeLxOy+d4jdfMMlNG1fJtT5RgrSL9EaMSn5Qm1TVaG1amqQ71i87ouuiFbr25WZFBZdT4GyboHWlrAG0H6DL9NIVrHhfUigaYZflCJxxFLrJd6cDE4zMomkTiljZqquq3UmU7+c5Fkl+YCi88yGdCCuoTWjYk9NmQbWu3yyuOmlf5Qcazzd05ZmIhX1bOlLjAeppo9Cqzbqx1i9ZOYqZfSDxqMnb+DULjmLJLDYiSmP3NL5vMimpUMAboT9tRMTqPouliCcUwQyhNV0MUO782WjbFq7fI2waghNnzWPb1zcXBatFPDojQWAL+vKY2boIoTWcOKvxfXjWflNZDNxWvJzDNUGzZy2FjETRuVUSTMyB3lhn+pxHc8LxcXNOdvf7nWvR9YI6lpCkbHTMgvwCK9rh+O+H8+9Aev6xIpM0Og4nz8GRUxCNwG1XCS86KKwfgNwix/d8UXPktObihGHtvOAGYbBfMVVcWaZjK7hqxOOmTd6qaCc0omA+an0cscw9qh1VYX6cHzMMg77UrGmvi2WA21elawfFAPsysqKCJQicP/zhD/Pyl7+c2267jTe+8Y1MTi53Q0kDhBVno12vVoZ25WlD2+1WnDuHvI/EbOMJudRwVXO2QD7sb042OQ5HdcXBOgnfBJBzZTh9f7afcCNEI0JfCqYaLJj8wPTNDfcKPQmjAD3eQbr2xDSV/c5EPGICXE9Vh2jtayRiGWEwt6qoDWWhtPprrCwQVkvXzhdNQiFia+wF2kekE6Z3vBguBAtFTSQqJBIya2wNigFW3Ea1sPqORYQb9wm9Peb/dX2trYhikRnxUVlXoIvLBsfPQjIOt11j1OGTMXBiak4d0DJjab6eeNUbAVuhi6u/17nc5xxo4aEF9jl//0z1dQdGOpgw8HRdlVhiNpJ2YAFOIwKVwHkqa777vp4WXifCtvUmSL71auHFB4Vdm4SIK0b4kIWzik5d0JwdhW0jJmC+Zb8w1Cts22yR9+evOI9P64YiiZclsj7EbaQ/Yv4vr79KAVM5jW2ZfnZ7ngR6F0sDK24RXWfo2lqD3UD881JGRyOOj33sY3zzm9/kz/7szxgZGeHpp5/GdZeh/3Q++IFZWNqCROyVCWL8cNJwFSy0r6eLOuiCjxqMmh7ipYYTCsg0yhrnfLMAaFK5EHuBdLQuGkL7GjWPGJwfQLRFtuJIv3Dk9OzvZzJrenr702bBtWkIDp/q3Pc4NgVXbK36JNciFglVsUWRKHvPBwFEjaJ2NFJfcRZbkFA/oXw/RBwhGTN+zOVtC0VDVxSkThisHZTVyKdz4KZMFT4eFxKOhZ6oH9sMjav1aSaTEg7uFXITkE629pqoG/pe+9pQNe1uj/PlBMeCLcNwcJ/Q12O+92QM3ISi5IMd6HqLwDI8jbbV/MKSPY5xS5jyoG91LxCvGfH43GPm7wdOORzcUL0fv33c5u8finLtOo8fuaZ5afX7NT7QVw130Mfa08gMTQXVH8U/naPtu1XrSsA0kTXff6NxtBG2rYNNQzKLzdKTqCYaY5H2DidfNCKPz7lK2Dpi+qnLGBkWIlFFPhcQSzR+faB1U9bT5Qg9WURtSSLlNoqIhbgKLx8w4Vvs22ocHrIXQbrsohVBdF2UqSenkcvMigo6GDj7vs9f/uVf8qEPfYh169YBsHPnzobbFotFisV61RrbtjsXZEuA5WikbOwuAcRslGgCVyN2zXPLhgCJgGQcgvFC5f1n/r4csdBzIBKgMhayDDxosSCIC0x5iFV/2+jAQw3GUaJpJJ8tEUGrua+57nXQ+jkQAiQuc3/vWhN1Taw5H9IJja00QQBWzYJnKqvZsR4ijiIINAM9mmRUky+0vkhrhpJnPEc3DAhBzUGW/7atgGRUmBbA1iABYoOKCMVSwPp+EFFVf2kbcDWBH9RVd/vSmotT5voFwNIkI9r42keoe+9WYVswmAk4cRYkJRRLmvX94BYVubEALdXvLyBAJVVb7zOQ1hyfKPtnz/8619bEHB0KwgnK0agIaB0s6PPNhFLdldlqRSwCV24zwUoiVmPn5kIipchpRawUNLSbohSYRHZk7u9XlKDWxfEfHm0/wFtmXFXX52zmqYIHf/qdGJ95zGTPHjztcOuWIlt7G98bD4YVZ0Fz5XAnK84BzLBrlJQNlmEBSouccO0bsddygrBYgnX9rX8zItLQbaEnHiYE8+0HzmdHTUvPzKAZTDKwb1Bx7qRHbKDx6yemIZUwzg2B1qjLmH9cKwpWhihB4jajpwuMbDOJD7MxjZNiXSw5yuraQcG/rKyooIOB89mzZykUCvzrv/4rH/vYx0gmk7zxjW/kda973axtywF2LX7oh36IH/7hH+7IsbgDcONPAtTSxIvAMcgAV8x8bjmRh4Oz33/rs5ZAsneNYWHn4EL4swx4fvmPRl7co+FPA9xU/mP+7H33Omj1HMxxvoHNGfP76NHW3vPWva3t48Ydre2vFewYgNI0HG0gSHPixAn2DAPDwNUA5XNyga3h9T7rs10HpRnX2MB6GLih+v+28LcHnJo8teBhcGOP+YHqeZoAGIJS7f2xHi5ygYtH279Hjx8/3vK2B2u/lwywA0anpxntgNjPtm3b5t+oixWB6whXNvh6RIT+AYtDhL2ljQKhUmBYRC3Yl0nGNb7DeX/OnuiVRm9MsyXjc3TM4onzFt8/bfO734xzbLz+mL913GFrb2HW66cKwqFQGGxHn0+yg4RB7WnUzPaQlIPELUPX7mnxzYKw9c5S5IuaiNMaTXs+WJYw3Kt54jiQnnfzCkqexg8MdXhm0AzmWhwesTl9uEigNTOvHo2pNm9dZxhBng/u5dUyWo9aUbDah8XGJceODYJdZhkKy8M47GIWrLhFZCRC/lShW3FeKM6ePcvU1BQnTpzgs5/9LCdPnuStb30rW7du5YYbbqjb9s477+RNb3pT/YF0sOL85H3TPPDpiwzuMbyY4GwOtSWJtbMHfbGA993zyGBsWTNVwfk8aiSG9Ln4D46iRuKAqa5tfdYUR76ZRPuX5wCwkHOgcx66FGAfHFhyD+cy/COTBE9OVL67ynEUA+wb+pFo49spODqJ/0T962aiex0ApRLbnp/n8DcSEDRfzAans1gHeuc8n0dOa569X9i+Yf5zqbXm3+4zarxDvWb76ZxmOg8vPCj01KhXP3lc8x8Pa7Y18DhuFX6gOXYGbr3K9NvVIggCjh8/zqZNm3jiuPCdBz02HLuAuArGi6jr+jlWinDb1cKWGqsmvxBw7l/PoVyFXdNrP5nT3PuoJp0w9h1FD65Z5xF1YeiFQwtedJy5qPmXezUbBo2Y1/OvE9Lj04x9d5z4JvO96ECTO5lj4PYBosOtl3Bqz0Gr1d4v3ROQzRuBoGxBM5WFF98os9TKu7h8kO5V+JZqrilSCpBW1WBTNpJ2YazYtCVnteDqkRJHxywCLbzjC6nK446lKYVzy7dOOLzhqtmB80NnLXRYV7+qk/3NAEGAzBAJFFsh/RGCY9NIq8FvoCt2hJNZ09KRabGtYz709wilNsVjL4wbwbF1czgADI5YxG0zp/TMONbpnNGr2DgonB83lO+FBM7aD6CkV3ViZz4YUTAPa3dP3dxULGnGfYt9g5p0cqZzyTIfZBcVRNdFCfLBZWVFBR0MnCMRszD66Z/+aaLRKDt27OBlL3sZ3/jGN2YFzq7rLm3vs1b4JakEILoI2DYahbYstLZM8a8FxdaOHVIetGsjtgOeEHjUTdjal8s3YArRzjnQkwGkHXCdBuToJYJto736Y6wcR9RtehxaZr+uGS7n60CPmoWaLjB3j6qn0Ja5n5sh0BrbblwBaIShvoAT54yvM8DolGakD9JJqbtPB3s1jqPJLoKufWFCk0nBhsHmx6eUIh4VfGUDCp3VaG3hYyGiSMbrXysRMfS+EkiN50vcMdp02ZwJnJMxcD2Nk3GxnIUvsDIpTczVnB8zi7yehGDnbMSTyvsHxQDLsnDi9oLozkqpll+XiMHFCdAIgdZGD1K1/v13cekhFRd0zEaXCg0p1trTSLI1IQQRQY3E8M/mjYfwKqbSXrPO47OP1T+2s8/jl26f5lf/LcnxcYtHztpMFISeSP2s9f0aG6sDnaRpg+liamAhKBkXOTptxNpaOa9+GDhbwlTWWI/NZ0PVKtJJI5FgWmnm32cQmGD4+j2ze6Zrkeix6E/BsdzswHliGnZuDHusnXoxx1ahsx56rIho0COxNVuFPf+MR1C0KRRcOGXYBFHX6IFs3WwxclrNuk5W8714qSO2MYrbd3lZUUEHczVbtmzBcRbnHbhkEKpBsqvMoLvs1gDaVEbnsDXqonXooo/0tZ98CQKjXLkg5czQy3nWcfTPU01TsOqb41YYOtBVn8Y5pHB1oNGqrCI9x/606cVtFTMVVfNF2DQssyaETBL6exaurq21ZnwKdm00it5zIRYByxYCR6ELPthQ0MooakfrtxUlqIhFMGNcsS2jCF4omZ9M0gQM7Qh2NT42o359fhziMROQi6PqrvOgYDycFypC1g564qaa3kUXZSSi4PTYlPLNxhONtKEsL70RJOWgz+TQNRZKkznNZG71zOdXjXhYoc6AoHn9gTx/+AOTbMkE3LSxqrp978nZY8CDS6WoTWgb1IAdJikH7QoUWtQjCMXeAgGkNRuqVtETN0m4bIu2VBcnjd/8xqG5txPHjJeCETEsIxdSzUf6zVyTiEGpjdOutUZfKKCnPdS2JDpuwRpQf28Ez9foKY99B2PcerPDtbtMFV8pGMzA/n02dlTQoeVhZQ3XTY6uGERJHcPtckHHAudYLMYdd9zBn//5n1MsFjly5Ahf+MIXePazn92pt1gwREvVBsFWRoRiJczobTGBuzMHfayLeWFsREAS7Sdqzo+bn4UoWIoj6FC5GOb2b66DkkaaYV3UIuejywqapTlOVrna0KByUUYQaERoKADTDOmEsXjKFSBXMMJiAw363JQStgzLgv2cJ7JGBGZTA+/mmYhHQ0sqJ/Q6tRT5QIjHGovXKFdVrs1aZJJC0TPJhGTcXL92B7zPR/pMjmMoYyo+yq0qewPokqFwKXfpFzazvJy7uOyRiEEkaTUNREQDrkW+2FoiVRI21lW9qA0J9GSJ4EwOXfSZnDa9qWNTq+MCzEQ1P/fsLLduKfL+l0zxUzfkKJNLyoEzwLeP189buRI8cd5suDntk4l27vNoX6NFGic8E7ap/LdqSxVoUDBdFJLRzvQ3l1G2J2xlfC8nQXdvmp99pFxFKmaqyrXWh+NTxuWgJ2wpSURNj3Mr0KUAfSoHUctcl3vShqZdXJtry6nJgGRcs/OaKDs3CtfsUjzvOsUrnmV8tvsHLMS1CMqfLwBEqsKXXXSxTOgoMf1//I//wdjYGC94wQt429vexk/+5E/OomkvN8yEqKsV59CWajkDV63DriHHBM3Gy3l1TLJrEsUAHVFIm4t/z9dMZs1ElVsAHQrXAqfm2smbYG9eup81u3LZRT30dAnVGzII5ro3vaBC02sGPzDV5nYqzqm4CWin8zA+baoIzfrmBjNlSt3se7hQ1A0fL+PiuPH5rO2bboZ42ZLKssALEEvI+Yr+nsb0NBVT6AbjSjwakm4UJCLlbRe/2sgkxVTgw4qPiijEEYKS+f6CYoCdspfl2o+uAtfDLlYXHFtIpRWlBpqM2gvQliKwhCOn4eS51vYpaRe1P4N9fT9qJIZ3oYAzlmfzgMb34eLk6pjXX7yryP96/jTXrKsPRvcPe8Qdc4z3nHTqyD2PnLPx9RL1N3uBWXc1omqLIAPRuir+nPA1OIrJnDCQqVdT7wSGelujS0+E/tGbh+d/f+UoLFsx0qvJhYFzydMogfUD1ddHW0wy6qkSnMujNiawru1DDRvNHkm56FYr96sM+YseI1scEuvqs8KWZXy2VVRhRYUg/Hxaa0R1VbW7WH50tMaeSqV4//vf38ldLh6BRluqYnUgIsaaotVBuhPwQ79IR5nek6hllAO7WBgKPhKzIdbe5Xv6grGMiLpw/OwC3tdRYKmqSmvOR3rd+cU4LKFbDmsOrTXiE1LeJ40dRbONfW3u5Tkqzp4pzrYVOCsljPRpHjpsAu/922bbipTR12N+xqZM1RXMIuj0RfPaIDCWSjOD41zBWFBtbVFYzLKEnrjmvLLMB3IVnhYyM8VRyttHrYYV53jU9CE7Nsa2SQRrHgueVpBOmiRCKmb+V44ZZ8vBe1Bqz8N5MYhFwltzJZhEXaxa9PYrzgUhO6j2fvY0OMJUoBhIG2rudF6TiM5/b4oI9EVQGZd8Jkbk6DQjukB6e4xHjmoujOtKMmm1wbHghg0lvnbEZbKgePScxf5hsxaq9W8+0En/ZjDBrt1cwVxlXAJboctK53MhMG0h+ZLRieg0MklBRBMEek6NhAvjZp5oJQkqrqBs6ItBuaNxfNqwmjJV/Tbc8DmNRprMgtoLYNJD9qVRm5N1/czS48DxtRc45wqaqO+xfn+mzk6xFiKC3eOQPxlmHoLQw/ny0qXqYhXg0r/kPA0WdUJgEmm8wFwy+OExhBOCxO2GlaEuWoPOB0jabUsAI180gkFXbBUGMtJWH1EFjhh147Aiqgut9VmLJWgRdND9zhsi56OjyqjWAnPacvshe2SeirNltUfVBqOo6nlmfTeYab5/pYQtI6Y67fuaUxc0J84ZZdU7rhOu32N630ZnVJ/OjcGGQRNstopMCvJamc8cetEmY02Oy1UNWwJiEfOTjIGlNcqVjvguJmOwf5tUPo9yFcqmOrYFYHegst0Koq5hARS7+cguapDKWASWMp7NtQgDtEnfYigDezabxGrQxhgtSpiOR8nsT+I4wmBSs3+bYFlwbkyjV2l/Th1d+0SVLVXX39xpYTAvDIibeTWnHdPyNDX/DawDTUkpXBv6UvNu3jbSybBtZ46qczZvepNnuiI0QzmpmHQ1GWP2gh+EApE1jJyIY+Ytb47Try8WYCiC2pyYvQaKWgiyMA2XFcTkqE+m32Jwe3TO7Zy0XVdxNlTt1Zmk6uLSxaUfOAfalCJqs5ixZRbn8sJjKFe9Y5YpS3WxMPgBkm6vv/nUBdg6bAKXeGTu2KwZRMRUlz0dVjBoTZVVSbfqPAf0tIfqizS186qDp83iYA76rx+YW62dijOYBVPUNcHqfH1zgxnBseDIadO3dvs1wvOvEzYNC1ftEG7aB1M5s4CGqtfnjg3t0fZTcTFigrZQtC0ijundbATlCI0iZyVGmKa3B4KiRjkKFVl8QCtiPq8dJiXFCgXKykGKsCzCYGC+N9fpCoR1UY9k2kK51faBCkoBRC2KvrCuX7hyq9CfhrNj7e0/X4KhrRHcQZfiaInBjHBguxBx4NwobVsbzQed91unNDfBjQ36nIs+PHrOjL8jSZ+hZIfnqpKGWPNxWyyFjLRI1/Y104GiJ9E5G6paJGNh284cOijnxmDTUGMdjEZQrmnR075muM+cg94E9M94fcQx81azxL4u+ICgtiQRqwHtPWYZobWZ1/sqRhBo9FSJdbuiOJm511NWvGaNEACqq6rdxfLj0g+cPW16imsrzo7Fsqo1lbOtTlnZ2+qKRbUAXQrMQqGmCqB9DUqQeOvlxMmsyQ7v22rsaRIxE1j5C1nUJBx0KTD9zbEW+pvBBM7CwqL1Sxxaa1P9GaxmmkU3F+vRgUbmCfp831Sc2w2ce8I+542DzGtF0t9jlLFvvVp4wfXC9vU1AaQI+7YqnrXfVLBPXdAteX02QjyCCZwdRVEpYpHZitplzKU0vmO9sHFQjEVUTHWEqt0IVtxCe5qgZHqyrWXyd3RsIep2K85d1CPVI9gxi1KufvDVXkApYhJRfT1GNO+qHUKu0Fi7oBGCwPSoZnqExNY4ftZHa0PTPrBDyKRgdAJOXdRM5zpTgdajBfTYbP/ldtAb0+wdMJHZoVGbs1PC4+etisdzx/ubMR7D87U0qb4I2KGDwJw700x7io2DVMbcTkJEGOmDbJPTXCxpkPaSoOIIyhG0pyvU7HUDgj2jWurYcycA9WgRtS7W3MkjZgS0WlYoXwWYmNIkbc36K6Lznk8rapwbdKDROuxvvvSjmC5WGS79Sy6sONdl55bRvxkw9NJITbbVVV13onmgtUafyxl/wnN5gmeyBKez6HN50yPeojCY1pqzo8brcSj06C2LLuUXsMiWiDKV45yPpJz5+5vBVJsV5lrsoh5530z26SrlXc+leu9pmCcY8wPT09uuh69tC/u2GNXs+WBZwi37Fbs3GeGSRtixQXjOVYKtTD/bzo1ze302QjwKTlTh2xaFsMriOk2qNs1okJjXOLagi0vbd2wnLIKSJigGqIhCLVPgDKby3w2cu6hFIiZEeiyK+Rnjia+ZFptUTdVyyzDsWA/PnKclqqvxcg/9d4cj2Ckbb9JEPL0p4YY9wvV7hK0jxkP9zAXzutXQh3/Tpnq69pL6N4PRpphPkyTlIBkXppq/vy74aCUECWfOdprFojclTV0RT56HzUNVfYtWICKoqEkqxkMF7uEGry9bUjVS1tZZD1wxFO1mlXtbmbXRKlLW1l5gig1NkBv1GN5gkVo/N00bTGJWucowSIKQqt0VB+timXHpG3B5GnpmLN5c1VR4YSmgPV2nYiuOQlvKUI67/RmNUTBUOvvqPpNhLFPUpkpGmbxFqunopFnY7N1SPc/xqKF25gvNq3dNEYqb6KKPNZ9/cxlKjBlhN3CeBT3lIQPRUCE9nFztkGrWMBDUyDylZM83lLeFYPemzt6Pm4YFx4YnT2g2zeP12QixCEQSQsmyyGujqN0MyhEQQwdsNq4EJaN0vVRQUQu0Rpc0yhGsZaJqg2EMlNamhWkXSwSlhNSAzblj9bxbQZgOLPYPmiQYmN8HdsCZi5qLE7NptDORzRs1/mQMRGxiG6NMPzGF0+NU3rs/bVTnt4xoLkya110c1wS+DltD2h9vRC9+jLppY4mP3G96Pr59wsELqvtcioozMKegI4Re9CMx/HP5pqszPV6kmI4SG3aXpL+5jHQCIrZxSahNjI5OamIROLBdKtdNq7DiFsVz1cZp22psU5mMwjMzxjGtNXqsiNrZU5dkbgTpcQjO5la0OKP9AKY9dNY3Al6+RvdGZhUaCkVNpOQxsi+JFZ9/rlDRMHAuhD7lQncN3cWy45IPnHWgUW79DSm2QltisqDLcdMFQX2VzA3FfkoalsHjdE1i2jMTRJ9reosXsAs/MAugW/bXK18qJfQmNSfOL2CnTsgWUNIaTRtMxblL1Z6FMk1bDdVnL8RR6Lm8nOep2vq+YRSsFoz0CyP9C7vPoy7E4op8f4wg6pCKN9+POEa5VQdzjGsarCUU7FKuWQwGhQC331nWRU0ssvZEcbpYevQN2JyqCUR0oNGiCSzFwAz1696UsH+75psPQU9Cz8kQyRZgx4Zqj2VsY4zpJ6cN22KGenQ8Irj4ZIH9/SXO+hHOjRn7qkrw3cIsZ7YxrSyL6e3c2e/TFwu4mFPc/4xDuWjXHwtYn+r8RCVIU0Xtuu0yLkQUOu/PCrJ0ybgtTGTiDGWE5Bxj4WLRkzAJ9ul8dS7xfLOeuOkKGFhAtduKWwQtaOtE3QZ6KBMlJOmgNsbnfb3E7RVba+ish54omis56aC2p1D9EYJzOYJDUzAUrWNGTU4E9KZgaGcT4Y4ZsCIKK27hTXmmb9zicuDNdrHKcOlfco2onbYYletl9HKW2uA9VFhsygXqAl30UUOxRS0Ozo8ZOtSOBsqXvamF0TrFtdC2QkctSLaYd1Kh8mO34lyPvG+EvmYKvTmq6b0pyLyVCz+4dHx9RYxXcrYvDlGrqaI2YGw8LGmq2G9USOmIMFjTY3BND1pQDLDTy5uXvVS+8y46i3iPqo9DSgEFFLG0aigCuHOjsHnYCErOhSAwgXYZkUEXd8ClNDp7YtGBJn/G2Oj02D5X7RBu3Cfs3GASfacvtv55tLV49pKSqrp2wRdynvkcB0Y8Oq21pP0Abcn8NlMASRvpjcxS19ZosmcKnMZF90XYOrK0CTnHNm4B0/nqY8+EdpYLZSVZrmpJIDRSY0kFYaJn2kM2x1vSdpGYZeaBZV5fai+A8SJqaxJ1wwDWTYNYu3uQ/ghqRw9qQxx9Nl+vWTPlMbI1QmSw9cHbTtsERY0O6FK1u1gRXPqBMzoUA6tB2RahSa+RzvsER42fbCcgWupop+KEfoZzVdUuY+iQpis9C+TbhsjmTd9aNDJ7YE3EZGHC5o4RmpMep2W6uFQqzt3vuw7TnqkwzOhXl7jTMPjTvkaruUWwoBw4XzqTaW9KmMwai5RmitpgKs5iqaZWezoUSrQ6YEXVDCZwFgIvwG5DwK8TiEWMIFyj/sAuLl8kexS2BcVyn6UXkPMVvX2NE1GOLVyxVQi0UcNvhGLJeLL31BQAxRLi2+L4WW8W86FwpkBkwLT2iG0YNT0JYfcmZWi/Mr8Ct6mUY5L+HeiTru1zLmNJ+ps9bbiNLQTOIoIajqGLAVprAq0Zn9acOhPgFTQ7b0zw4psUOzZ0/jBnYqi3als5mdUo4Kod0lRjYj5IE7vAmXDdGePYaBHpjaDWJ1p7o6hlrAuXu895omT8zXf1oAaidYkScRQqDKL1uXzl/ohpj3VXRpt6NzeC0+OYtXnZ2aQbOHexzLj0A2eR2dROW5lgptnkk/Mg7kBu8SswrQ0tbGa2VWLWsla81xSmPUODTi0ucA40TelciahpO/bbDWZdC4laRgG0HTitTZqtQGc9grP5+Tdc5dBFQ9OeySqQeBM2RhB6OLewAGtXUXs1oxwQxqJz9+SLLfU+yjNQppAuZd+xchXKAQLqdB2WA1HXiMJ1BcK6qEUyrXBiCq+srF3SFESxcb1qymga6jXK+aOTjfc5nTf3Ys+MWCY6HMFK2XiT1bWDN+mB1qSuME25TsahNFENUNNJc4/n5xPLDrRp+7HmEE9sA9etL2Gr+v1cNbIEN0/ZjrOVijMhXTtmkZ/wOHXeVMd395S47qYIN94aYyDTnqXfQtETN8vHkmcERvdthZE2XRFqodwwgT4Pyl7OJS+s4pYC1NaECbxbQdQySf1lVNbWWqPzPmpDvKFNFoDEbKy9aSRu4583F/vgiEV6U2s07TLKiV+t5xbE7KKLpcIlf9WJ1rNEhsQKF9/NKjOFAEm76A4EzvhlD+cZI2bcbrrAvdyh8z4yFFlUf6TvayyreaARj0LUaX+RLZYgQ1FDJ2sHc1xv7UJPe1DyO8aIWAnovA8RZRZJM9HMrs0LzCqqhcnSuYTUG+IRY1HSm5pbKVzZVa/QRgiK2gS2S6h0LY4gtkIctWxWVGV0vZy7aIRYyiIaEwo5c1/4BR8dt+lLNb+XHFvYtg4ms42fz+ZNYD2z+minbGIbonjjRgQq8AIK54sk96WIrjNzRnRdBH+6epHaltDXA7lWAucy46YDa4e4Uy8ElooEbMkswZziBSboa7FSKwmbXMJl4ozHrk1wcA+sT2sG9yfbqkwuFumkEeo6ctokUvZtWVzArhxVEW+cC65tfkoeRmG8x0GGWlcxFREk7aCXs+I87UHCbmiTpbVmKqc5O6o5knU4nu5hfNo8N7Ij2nZLjxW15hXB7KKLpcQlHTgbapM0pHZKdI6Kr9bGdqgTPSJeWCWbkS1sycboMoT2A6OUOI9y5HzIl8xCOt4scA4tqeZdrDSAtaOnbRq5WA0EPxYKL0B63I4wIlYMZfG3RrZizVTvfW0yzC1YOl1KFed41Pz097RgkxVanjRCUAywk/aSUtuUq1C2oFxZVisqMHZi8Wi34txFPayIIpWxKOXNfJ7PaxJ9dsP+5lqsHxCiEcjOtLLCzC9le8OZiG2MoRGCUkDhmTyxjVFSe5KVoMvtj4Ay7Qxl9KZk/haDgNChoXN6GTdvrN4sB4Y9lmRo8DQStVoOOi9OaMZjMbYOanasB5ks4fa7xDa0a4GxOMQiJnh2bEPRjkcXd3LKbJz5CiYiQiIaVpxzHjIcbVrFbbqPpLOsrWF6ykOti8+yHAsCzZFTMJUzAnj7t8FtL4hx8OWGfTG4q30dGxWzUBEhyPvdwLmLFcElHThXqE2NspQxq2HmT3thf23GBVstvqrnB2bQm3kMjkK6BefZmPZN5rJncYFzoRgGzk0Kw7YtpBNQWK5FtqOMmEWnELNM1XaNQpeCpuJvZdX7WeImvklCtULPuqQC54jxmm3FOk1FVJ34Si2Mh/PSnhjlKMRVS04Jb4aeeLfi3EU9RIRkv11R6s/nYWDIauq/XkZvCkZ64eJE/eNBYPpdZ9K0y3AHXSIDLrmjOVTcIn1VT53Kttvr4KSsOjp3Ml5mS8yxKAg0noYSdKTiDHDb1iJxx+zreduK82zdHqbzmhPnNNNTPrRgNQRwdlSTzcP1N7ps3WETTPp4Uz6JnYlZSuVLDRFh/QDs2QSbhzuwv5CNE7RQkEnEoFQ0DCuVaZPdBhCzjP76MrgM6IIPlsxyxwgCzdHTMNgLL7heeOnNwsF9ih0bhE1XG/P0MgujHVgxheUq/Hwwr95JF10sBS4hQmMDeOXAucHiPNKEDpr3kYhl6LjHp01VL7WIAdvTVfup2vd3FVpousi9XKFzHmpzG/08TZArwoYB5vRa7OuB4+cW9Tatw+6Mj7PWGsFcv2uZqi1aGxGTGuRCb8ZjFwV7ErPAcAWN8dWMexrmCfz8QJt2uktoZLNt4YotMJiZf1sVa15x1oHGblTh7zCsuGU8WZd5oQvGV9frBs5dzECy30b8gEAH+D4MDs0fyIkI29bDkdPaBMthOTZbMHoD6SaBs7IV8S0xiheL9Ozvwe2vTwIrVxHdEGXqsSnoNcylZNQkyLJ5cJNNDsjXXJhSBGIz4pfoRFpqIKH50KsnGM0JewY6m4idmIYNgzD2JDwzZTHiadw5hp9nzmuUwLMOCNvXO4xORhl/YILouuiyV5vL2LfFfOed6Kkus3Hmo2qDEbeUaQ8ZdGCm60QLkJiFdgQpBkYobAmhx0vIYLTuOINAc/SMCZqffUDq1OehKui1EOq9chQqbqGLAbJAobYuulgMLqHlZQPMVXG2FQ0j50JgvINjNpJxCZ7JIYsRqfI00tOAplTu+VnDwU+noQONBBppV3irAYol6EvNvU0yJu2Lgy0Q4rRmRTEvPI22FSrjwqkc2gvWnECG9gK0rUw7RA3GpoBheNa1FlNTFojG6hGmsponj0NMB/NaKfl+KClwCVWcATYNt7ZAsCLNVbUB1DJUga24hVqhBU0sIkiXytPFDCTTFpaC3KTGjgr9g63dByN9hq47kTWsDzDBbU98boX72KaYUdne2th3NzIUYfKRqUqfplJCX4/m8GnINNlnsRDgOBZun8XUU5r0UEsfYV4MJwOGmwXrC0TJMwnMrSNCsQQnhhTHzkJ/SrM5Y7bRWjOdN33k2bw5zzdfIWwcMmNHdH2U7OEs8Z3xJfWenwtzJd7bhdimbTAozb/mi7ggeR8G4wub38sCYU0CZ621UaVukwI+az++RnyNWl9lj1WC5gw8a//soLkTcDJmTd6lanexElhbK+524YXiAY3oHLY0pErrUlARLJKMu+g+Z+0HsyprwLyWWIuF9nVLmc1VhVC0ZbE2VGBi1ERs7kE1ETM3wHLQmVCtKWrOi1JgeoB7XSRurVif83ROLzzpUAoa9v3nQ9r89i0W69dZDCU16/uFzUNCKg5T0w082WfAD7jkKs7tQGzV8DrTvgaRZRHsctIOTt/KmCqXBcK66KIWibTCtWBsPCCWVGT6WrsP4lFh8xCM1tC1p/Mw3Dd3FdKKWSR2JJou7N0+Fztp49WIhGWSgg6q/r0zMT2tyfQJO7ba5IomQFmtmMhCJgU9cU0qIdxyrcXNV1Cxdzp2VnM47H3t74Gbr4TnX1cNmgHcgQiJnQnibaour1aICFasNVFYVwIsC/wmWi/zrVnEVkY/pIlAmD5fQJ8vEJzKEpzOoi8U0JMlYwXaDiZLkHYqxY4g0Bw7AwNpEzT3taDLsRA4SdvQw9dY0aCLSwOX9vIyMHTQRmI44ii0SOgFZ57XWiNaV0zmJemYPudSMMtOqp1jmCmYAJgeZ7uzFWftBTDtGUEJberpsq5xxns1Qk97qL5Y4/PVBvxAIzJ/T2g8YjwTC6GQ2JKiCcGhbZSvxXiHGBELQLagmcyZxdFIv24s5DUXSqHKak0m3Pd1nTCNnbIojZpIOhoRNg9rHjsKqXky5L5vqs2XWsW5VShHGl5nQTFARWRZKs7JnS36jS4BypZUXXRRi0jCIhaDC+MB/esVTqL1+2DjkPDoMU3R07i28XeeS5G7FVgxi8hIhOzhLE6YKE7FjRVRsWgqjrXQaIpFGB622LxROJGAi5MmQFlt0GgKRdi9SQyDzBIicYsr+xVDGc3UGOzbDAMZoyaeijdOQlgRRea6zLIf/1JCJSyCc/MvBFTew045lKIujfh3R0+DEs2m4eYJHEk7BGdys2ZnXfQRrVFXZsASdM5Dj5eMgvf5PLo30pJ4rdYanfVQW9OV9fHxs9CfNvTspQqawbCarIhCumN9FyuASztd4wWGrtIItjI07tqqbDFAuwop9wEmbeO3vJiqnqZxj7USiNkdEfnQEyWCZ0zWEFuhtvegrsiAaq2fZtWgFCADi+9lKhQh5s5NpYOqJVW+s5oojdEpSpGnkZhJBnWCEdEuNJqxSdg4aARtaisxjRAEmrEpTVCbIS+Z5FRtQmsqD4maFYKVtOtUZ0f6hWQMxvJzn0cvAOsyDpzFacxsCEoBagUsopYbsUi34tzFbKioItWjiAY+mSG7rZ7VoUzo6TwBxZLp020mDNYOoiMRtKcr1cN41CgPZxs4PeQKELE1AwOKSEyxbgBKPpRW4fyey4cuAGnQJV0RCwToT5vzft0exdZ1Qk9ieTyZVwusmJotetkAKudhj0QoNFiiZ/Maxzbrm9MXm+9DYnbDJKoeLSLDMeT/b+/OoySr7sOOf+99S+3d1fs+Mz0zDNsgsYyEbBg2ISxGGJDFYoKChaOgRAoyBnIiS9HRyBHkWBgFlPgkMnKG4xMcgVGkgK3tyJIsJFuKkbGQtSGEWGYYhll7r+29mz9uVXVXd1V1dXf1Mt2/zzkcZqqrq1+9eV3v/d79Lf1xdF8cZ2sL7jkdOL/WBb1xGG+wY+pkADEH3WUvtI6NGqIReMuZyxs0g/191hG95FRzIRZjXR91JjQQqfEWvWIK98wTTzZARV0b0GLTXVRbBJNZfLcZpYozo6t9Lbb0Bk8mG9jB86e24L6pE+f8TpwdLaiemE0Rz55EnZejGrWIRhizZYp37Gt11C7xPZsCvCKBs17wumxVJh8yqlxeeNVMZ0SsYJ382IQ9YQ/3K3YM2hEqk9ka449Cw2vHoBDAxNT04yYfQrLy33l8CtpmjIdxopXN+6K+orcDxnK6bor4eq1xblQpdW12Kl+YDXFizqo07FpJsuIsqtERh3hCk1IF2noXdo5xXcXWPvsZNT5lM5maETj77T5OwiGYsOdopRSd6erno/FJSMcNqVYH7Wk60oruVjPvjcvVMDppV8LjEVvP63grP5purXIa+Pw1gUEpRao/UnXqx9FR6O+EXacpggBOjFc/H6qoA05loG4yge3UPZSYk4mpXI3uijQ8/9mM5dC9MVTCpRAYjo/ZcVNd6eW/EeJEHXTUYQPdcxFryPr+NAtM3RVn5VTOajbZENXqVdQl2VW9xd3VNaGtVqqV5q3irp3NuARmJIfqjqK3plDtkelGEhFtV8tPopFFKlljru8CZXK2kUsjjT3aUnaFetk1rYmFYSRw0BqCqLP0jIgFCI1hfAo290Aiquhugy19diWmMOt3pBQ0d7fZBjsTmZlvwa6az5TJQV/79D6avTJqAkNXu6K9XXN0pPY2BmGxscoGPaMqV6EcNaeOzuQNbmr9301wHJuZIMRM2le0tDl0tmlSbQv/PejrVMQjcGTErqR6TRiD46ZcIp0+hdHpG/MtCZsxMjNDJzSGIISOlO3MrDyF4yk2dQAKsrm1s+ocFK95eoqf5WHeoCMavdhSt3VG+3rekq3CWAGvxSU94M8JnIPQkMvDcJ9ic6/inB1wfGx6IkWFmGv7iGRnXOOeyKJ7Y9BWvTZNtfgQ0XbEVB0mb5uJ6B77YfvqETuy65TBlTnvOnEHJ6abeF0lROPW96dZndVe3OKK88wLzEKImtWMQSXdcp3zggXFrt61tmGJJxNTCFGhQffH5wQKSim7Wt7g3cO1QHdFmhLwZPM2IG5ES8Kumi435SiMVkseP5bLGSIJTSwCGWPnjZsVCpyPj9pV4f7O6REdw32Kvg44fGK6qc3MoPnMYUVXmx0pFRpTHKel5tQ3O9p2VS3REY2aUWoQFkIiUc0pw5qxSWquOhcCWye4UdlZoYrc4RyZVzNMvjzF5EuTBFMBbsvGWIptxmqgWF+UUrR2uQwOaJwGZwrPlE5CX6ed1tDT1ryL9Wh/lHBGkJKK2TKjmavOExm7yt2asDfFtKdRrqYtbujvsLXO1ZjArEzjyxnGJqE1Pn3+NfkQZwVG4J0slFe9eeNM+dE8kYEoyVZnziCOE2PF+eLt9u+nbVKcvhkOHJ5785qItqvOxWtAM1UAT6MH514vliVdm8k2MU+W5Wge1eZD2md0wuA4cNZWhb9C0xSUo3BbXNT6jmDEGrW+Dztjat6RUkrZVObih40pNpRi9tiDxBLqnAvhdIBeja/tPNvFGslDewTVUePuYdJtzgikZVZKhVctzenQZQyk4o19gCei9v7Ksl9gaGX/W0LgbIKQ8Zymt9chEbV1b/PVOZ94Pc/RA0tfUs8Hhlxgx4vMPDl6ruKUIUU8ak/qs4PmWETRmrAXg1NZiuO0VEUmyHjpwrAicHZQ/vToDpM3KE+xuV/TlYYjJ6pvZxCuQKO3NcyJOkS6I/hdPrFNUVp2pmjblabjog7iQydPo8ClSMUVVfpBig3OTbl2lu4i5toqpdjco+hqa+6NGb/DR8ccgkl7fRGN2PKhqRkZOuOT9vPUc21Gifa1vREbwKZeRcSDiczc84o5NIl5PTPn8eU0mbE3GFxnesXZXUAjtvVO+6pqs9oSE9iurtGeCLEq57GRCdjab48TsBk2Z29XDPfBy4cqr2OUUqhWD5Ozx5Y5kUP3xSFd+wSptEL1ROuuOBtjMNkA3RsjxN40P2Oz7UOyklKnJon2rs58b7GxrevAWVFntRdbA1JOacwGmIgz3Ris9Jyl1DkXjL3DWKOuRXkas8h2+iY0kAvQg4maDRJU3F3xGtiFMIEhPJzBjBf3bRO6Q5c6as9X31wSj9qayPziy9gb4xSbNi0hPg9zIQWt2LzJoaOlGDjXqXM2hZDskRzhRIHcElP2j41ATxp62uZ+LRW3wXOuAK8erQyawdYnd7QW65yL47Rm9h4ojSQpPR/sirN2NWExDdEEBu0oYinN6ZsV41N2pXq2QrCxA2ftazov6qDr0k7a39JO6xtaSJ6aJDEcx01tjJUfGUklqnFijk3xXGS9bV8HbOmF9gazmRrhtrp4bT75sekTUEerIlv8ayGw57POtD1/aFfZrBJPYQohLXHFYDeMjFeOsTLG1snia8xIc2uRTCaoeqM5kzNEvOkGYMUNWdQK/3pVuulRS2G8gJt08dt9YhHbqyNfvEadytr9O9hV+f3RiGLXafYce+Bw5euppAeB7X5NRKMH7GpzITBkaqT461bf1kbXum6cLNgFpY4Irx2F3g44bfPK36n02305tsSqWL+BcwhGzzMgPaohLH44ZEPbhbBKG/5F1zkHZrqWuhpf116Nns9oHlr8+l2o465d2VuDdc5mIo85NIVq8XDeYKOxendiG5XL207Z83XULolHbE3s1HLXOZdWnJfQBXViNCSRdOjrc2hLFVPM63R+N8eymI4oLZtijB+o0qq1QZmcQWnY3KvQNf6N+tpt7XNve2XQXNLRqiiEYPLBnJtJmRz0zbpbrX3bUKZUImEKxe6srmZTj52jevjE3O0whhVLFxNrkzQIE9U4MY2bdHBmZ5U1KBpRnH+GLq/2NYNSivhglHBqOnBOxWwWVBjanhItcZsqDvZ6RimFE3XKZSwDXTbjZ3Lm4nLBYFyN7o/DVDBvzWqjzGQBczQDR+eeT0Ynob3Vbv9MulaD1g1Ie7ZGvZb8aIFofwQn5hArXpuUerAcHbHn144qI8hak4o3naZQGkYnZlxjxByUUna1eSCOavUxxvDSIdj/eo1Z4C2ezVaska5txgvo7iiTyiEI4Q1b557vhVjP1u0nmgqNDUrrrTh7DqWCE5MJUG1e1dqPRdc5F8I5TZAq+HpR86FL8/PUQMzOw61BeRpSbkVziNVmCiHhoSmb6nNqC8457eiO5qXbTGUhGml8xTkaUSSiK9AgzCkGzktICZ8cD+kd0MTienpGtaOq1jmbTEAuD+7WJL1nJ8gHimCR3eGPFcdPtbfUfo5Sih2bFGefUv0k2pqwNzSykyEqOT0OplTfnE7OfT036RIW67PCgrGdtoGIrzhji12VOTY6d396EjRtaLLiLKrxO3ySpyTr30xfBU7CYWZ74FTcnr+msnY0VW8HOADK9i8AO46nlC2XiCo6W21Kd1khtPWsmxKoTQnM0eyS+2sAMBWguqMYR2GOTwfPoTEUCtDbPj1eqrQqvd47+S+E8hW6xvFnQgOhKacfxyK2X0c2X2wKVoCt/bXHd/V3Ks7YbG8ol3qAqKiD8ZQdGzVgawyOjEA6AemUTf2es42ORnVGbU307G0shPaKubjafOomGOxe8G4Q4qS2vj/RtKrfdc+dEcgYg0rVyPFc5DxnExi7ql2DcrSdJ71Q4zZVptTRsB6V9hfX2GyZmNczqK6onRu4rQXlNzfVJpu3d+jdBazkt7eswEgqXaxtCm298JxGHvPI5g2eMfQM2oggGZ8+qVarczbHs2Q64sT7I5x+ToTkcIzxVxf+JsenDLEIDHXPP29TK1WubZstHrE1zFPjBpLTkW2pvjldJf3RTbmE+WKqdj6sSMsa7oO3nKGYysKhY5X7cqOOohJWawIGOhWxBm+eiY3BiTnEhtZey3U1a4Sc7ynSSTgxDp4DHS22qaRyKAfObtwpfzYCdLcpQmasIOaNfW7EsRM3OiKYI0uvdzbZANUVxTmt1TYfG7VtnyembMDfMePmqinYbZAV52na1TUXO8pp2sWeNVorUjF7jh8ZLzao66j/+qdttmMbXztafCDmoOKuHT+V9MjlbRbDG7bZuujjNRrLqXYfZShnNZSN2UzHo9qnvQXO3LKx5nALAes8cFaurt+52tO27LRgW+vXWh1WTrHOucoduLoMdi50vW1cRMdJM5ZH98Vtavk8VNxFmZXvrlmNGc9DzLFzptuW56o2k6ueylRPa0KRX+5sdq1Aw1Qm5PBxe9d3IcYmoSVm6Oi1/+bJmL0jncmBSnkVGRFmLA8xl8nuBF1tilhUM/ymBJOhJpysMhhynp/b1954s7ValFJ0tynyhcrfiWr1zSW2FnG6xtmJT/8uK6U4dZPigrMUSsH+16ePcQmcNzbXVZy+RTU0jk6I1ab9uSPk2ltsKU46CalEcbavM3PFuXLOfVvKpkiPTRUfKIQQc22zp6iDc0oLuMqeGxbJhLZkZ8pxORaPcbS7hSOH8rz2Sp7RCVs+M7NMJsyFaE9L4DyLU6UcEKBwIk+0L1JxgzidsoHz8fHKpmC1xCKKN2xVBKFtGKccjd7egh6yq837D9ubzlv7ba2061C11lm1eJDwbD3zDCYTUOiOMpbVnLVVkVzidYEQJ6P1/Ynm1F9xVq7GOBomA9usqE4Qu6g6Z2PmX1FeYL2VmSo2eeht7M65SrgYX5dHEqwWY4wN+It3PpdLaCAZW9iHeSI274SIJVOOYiwLY+OG/s6FZWyHxqZpdaUVbtweo56raEkUO1XP6PxuQoMZy6GHEuQiHu0t9p1tOTVCbEuCqUO5hm+i5As2jbq7SeNXWhIG14XMjL1drb65ZPbFoa6SnbClT7H7DYpEDF58zT7mSeAshDhJKFcXm31Nf9il4tCStJ2KtVLTgXPxekZ7lWU/nqvobbejq6CYUjsjAFPtEfTWFIzny12WFywTMBI4jGgP34XunXE2/3oL21sLnD0UsKW3mKIdGgoTBfLH87ZXhQTOFarV2OdHC6iIJr61smV7MqbI5iDi2lr2Rgx22xTq147aDATdFUVFHI6NGpIxu9rsOIqutK2ZPjo69zWU79gshRmBc+na87CKsKnHNsoTYiNa359oEad+GomnwQEzUUAlvbppwyrpgrewOmdV+hn1nrPA+h8zmkf3xOwdwUbEHNsgbLXrnMfyEHdts5JlEoYGrZiu/21QfFb3yuVw6JghGyp29NcOFGuZyEDCN6RT4My4COlsLa44z+z8fiKHSkcw/TG0nm7UkoorBs+JM4oLY41lToxO2jves+uPFyvuhCSTmtGC/T2rVd9c4kQ0qOLsa2NXZqrp61Rc9EZFd5ttCuVKjbMQ4iShPYVydEVabCpmM306i9lTJiiOCireiNe+rqiLBtuA0XUgVzAQFqdqzPw5Q0nUgK13XozMaIFsxOMt57j85gWKy85zeMueFk67OEVbIUd4JMvki5NMvTJFMBHgd/jEtyXQi5wcsl7pWTf2TWjIHc2R3J4k0llZLli6NunrmD4W5qOU4swttsv26yfsY/mC4fgY7BymfDNda8XWfkUmW71JmOqIoMLpTC4zliebjKASLjuH1YLK4YRYT9b1Jaaa706np+yK8GgW1TZPIFqucy6AN/+8GxMajFZ1OyjabWj8pGJyAShlZ/E1SDkalfYJD06hWJ2OOSY0thPjGa1zTubNlM3but/4QgPnqG0olMk1v7GUMYYDh8Hz4KwdDukgZMorjnQOTc0u1TONT8KW9pBoQqNj08dLS0KVT2oq7cNL4xCG6NNamcR25UzNOFS2bvd4YXOC3Csj+Em3/jxJDNkc7Biq3Ul7wXLQ2a04aGzgXK++GWwDHO0VZzmr6VrAajpaFbvfAL/Yb+Z0dRVCiLVK+xrtUrHi7DiqcsRPscZZF4MVm7JtpsdOYXtItCXtDc82Y+ZcWyhHoTcnbHPOfLigxqRBaBg5FrD1Up+t/ZR/ptKK1M5UcZU5INIVwWtxcVMuTnKehYsNanbmVO5IDr/DI3nK3AHhsYhNwx+u0xSsmmRc8YZt8Lf/ZMdOHToGm3rglKHK1+jrsHPJRyerNOhs9TBRBzUVYKIOFAxHojFO32TrqIXYqNb3rcDIPDmbbnGmnq9RifpBpXK0TV1ptEFYIZy3qzdQPnnNacJQzXgB1epB28IG1aqWRY7TqiI8OEn42hRmISOuRvOoVn9BAf9iZHI2AF7oinMsYoPnZjcIM8bw8iGbCn7RGxR9vRpCg+8VV7gb2IX54qpsZ8KgfV1RH5WIgqPtym0pI4KeKKonxlTW1kHPHMvV2Qp9Z8YZcX2YZ7bnZMbuk4XWi9cT5kLS7S5eRJErmLr1zVCc5exrwkyI0qrminNJS0Jx3qnNHRcjhBDLSTnKfs7VyXgygW20VU7VLs4Dnhlsa6Xo7VBks8XHqmWzJV3bV2Wy8X4tBsPrxwydrYozzvTnBHDa1aTPTdO5u4PUaUmi/VHclCtBcw16Vh14MBWQOj1VdSZxKm4D3v5FBKqbe2D7ALx40C4IvGGbwpu1SpyIKbb0wvFq6doxF90WwUwUYDzPmOOS7I9w+mZpCCY2tvUbOGs1bxq00jZoJuI0tBKq2oupK42MdQiMjWrmS1MqBda1hs3PYHKBTZ9Z6Apg3LENwpY4jsJkA9tQrS+GGcvbO9fz1EuZwMBkAb05YVPGl1EmZ++eLjSFSClFW7JYL9zk7fFc+LUzFX2dCuXZdDzftY8XGrh2GZ2wK7JJz+DEnIrRHsmYHb01lcVeEHVHcbbYcSuTGehOU3GCU0qxfatLfiBJYSKoe7NmbBK62yDexCA0zIa09bq0phQj4/Xrm6EUOCuCycB2Z5WxJkKsiFwux8c//nH27NnDxRdfzG233cbzzz8PwJNPPsn555/P7t27y/+99tprq7zFJzcdcep+HpvAVKxUKk+jXDXne9pbIOoaMqGqWnq24AUAbEfnmAnYMuyS6JQ5b0ulZyymZA5liQ3FiG+qniYV8RVvOn1xN4MdR7Fzq10dPmML9LRXf42hboXjQLZak7DOCORDwrE8Y6kYZ56iaUlI0Cw2tvV7JeqoiqA1CAy/2G/mdBBUUQcVdaDK3b7ZVKuPibs2XXs+xVEM86ZilzpjZ+cJQI1BmWIH5QVScdem2iy1QdhUgEp4ODvbcM/rsA3KTuQIX8/YzuTVnMhBewTVvfz5s9l85TiMhejrtB2fq9X6LGV7ov70qq32NSa0jVx8r7EV52y+GFzmDW6q8hiNR+2q81TOXhA5b2grdysvhNCWmnuC622Hzi0+Y4GGGvX6+eLFWHe6uSdIUwiJtvsMddmLsXr1zWADfSfuEkwFKE9VXHAIIZZPEAQMDAywb98+vvGNb3DRRRdx1113lb/+5je/maeeeqr8X2+vdApaCh3TFavHs5nAVDTZ0p6td579PYmooiMeMlHQVVecjTGYFq/hG+mZnCGTg63tIe39Hu4ipoCISqUFnfxIHu0qUqct32zxtpTi4rMVZw7Xfv2uNPS01WgS1upDRHMio+naHmXbgATNQqzbT0GjlU2VLjoxblf5JqZsMFMWdVEUZyrPQ0UddHuE8ODkvKndBMau9M7zgVhaPTaZADW3xGVaLsT4elHjq4g6dgRQJoAaoxAaYTIF9GDcvqf2CDrtY/rjhC+Pw9EsYWhsYF8cg2EKIeRD9KbEgpugLUYYLryjdklvu60RG5mwNUXNkM3Z1yylR2lPlzuhxqJ2FFM9oTGoYrMzMxXitlT+2yul6Ggx/GL/9N/B1qNpVVnfXOK6ilO2OHz/W4ogH+JWOR7GJ4v1ck3aD2XGjpjqSSgcberWN5e3t8UhmArx2xVqnlRtIURzxGIx3vve95b/fuONN/Lggw9y4sSJBb9WLpcjl6ssDXFdF99fWMnRyS4Mw4r/z6RjipAQo6oHsyEhKqqmv9cF5RvCcO73dLYYXj+uCD2Dy/TPygeG/a9DOOGwKaFQQQFVp6lHGBpOTMLwALSbAl5vouq2L0S9fbBhuPbfK3MiS/qMVrxOb1n3R2vxurLWooBSsLXPcPCobcJZkYad1AQpB7TizLNcXMc0ZXFBjgPZB7D29oHWjcUp6zZwxlEVzYRGJ6C73f5/Jt0RwZjGT+CqI4LaP1nRlKOqQoiKLuB15ztuMoGd29zA7OY5r60Vqs0jfCm36LFLJjQolK2Xnvm6XVFUewRzPIs5nCF8PQOvTYFv74arzgiqZ4FFx4sQhgZFZU3vQsSjis09hn9+oYmBc75yRVXN+J1MRODVeRIX8gXwHdvwDANOlX/7tpQqrxCXTBXrk6sFzgBD/YoXOjSHjxp6EpUNygyGqSxsG2juHFwTGtAKJ+bQ2WoD83Sydn1ziRt3bWMwT0t3ViFWybPPPkt7ezvpdBqAH/7wh7z1rW+lvb2dG2+8keuuu67m9+7bt4+HHnqo4rHrr7+eG264YTk3ec165ZVX5j6YBN4MY9SYs9wPI5xg5KUT04+dbv+XofIObKofzv81gP1zXmZbRa3s/DOdtxX/HwLHOcbxl47N+z2NqLoPNppfCznBcU68dHy1twQXuPj0Gl+8wv4vzE7y0kvN/blyHMg+gLWzD4aHhxt63roNnGeuOOcKBqUh5sPhE5XPUx2RBQWTKu1johqVCeoGsaZg7Cpvo9vrK8gGNeuATSZAd0cXndKjUj6E44v6XgAytrOiSs19T8pRqM4odEbRWwqY4znCg5MwXrBzmxtYzV+qbB4ii2gMNtNgl+InLxpyeYM/Xzf0BhQCKuqB1IwMiIhvu6LW/f6CzZLwXENB2dXa2ZLFGdQzb+RMZu04k1rdxaMRzek7XMJns7x2DHo7DLr4vZlsMb18kSnvtYS50M70jGk8XzHUbRqqlSp11naWkCkhhFi88fFx7r33Xt7//vcDcO655/K5z32O3t5efvKTn3D33XfT0dHBpZdeWvX7b731Vm6++eaKxzbqivMrr7zC0NDQnJWNiRcnOP79E8Q3Vb/bOfnKJK1nt5LaMX0n9ujfHSP7epborBvTU69O8aoX42eRVjb32GueXAFO3wxnbFH8Yr/hh98ap/fYGLqn+p3mQmDHF71xuyLtBgSZgK5LO5ecql1vH2wUQT5g/6v7aQ/bSQ03O61r8X7ws5CfvgQ97XBkBILQNhTd1q8Y7J7/JvdCyHEg+wBO3n2wfgPnGY25RsZtINDdpnjxtaWlmai4a+fkHsnYFeCaG2DmH4c183Vjrm3YUauBVmhsvckiqbhNtzFBuLhAdrJgbzLMs+KtYq79rzdmO3euUE1UqaP2QkdRzdTdZut9jo3Z1O1miEem/zzzpoffQKl6rlCc4xhC6Cl0lcA5EbM3DEr11GAD5+E+6mZEJNsdtveBmYJDx6Cn3QbPY5PQ12m7bTZTmA0ruoKfu0PNHkNalfZtZ+1qHUeFEMsrm81y1113ceGFF3LNNdcAMDAwUP76zp07+e3f/m2++c1v1gycfd/fcEFyPVrrOReJru+iQoUy1T8UVaBwXKfi+9yoSzaXnfs9OUX3Jp+fH9e8cNA2zPz1nYotxXPCYLfhJ60RMgfGiGZN1TF/x07YzKuOpCJ3OMRv9/FTzfs3rLYPNoziuT+5Obmm9sFgt+LnrxgOn4DBbtjar+jrYE4n7mba0MdBkeyDk28fnDxbulAOdk4zdkbdll67OtcMuitSs7FSmWqgMdjMp7f7NUc8mXxoR2ctJQiNu7a+Obu4WgKTD9GdjUelSitU0luxsQXZYkftpXzIO45ia79ifJLyfOTFCkKD1nbUVcnMFWfftYdIvXqhfAFSCQjzIcp3qq66JmM2k2JmR/CgRmOwmZyYQ9SBncOK9pQNnguBITDQ09b8f7MwF+IkpruCO05j86F11HbWduLr96NKiLWoUCjw4Q9/mK6uLu64446az5PRNEtXCl5rnnfM9AznEiemq3fiNobOTk1POwx2waXnqIo5wG0pxeBWj1HjQpXu2kFoKAQ2A0trRZgJiPRG5jxPLM2Cp6Mss+42OP8MxW+cbxuKbeqZO75KCLGuA2cNjiaTs+N/ejsUsQhobU8MS1HqNFhvlrEyLCxwTnm165wzASrmLGn1VkUc+xoLmb9cZArFwH0RHb1XylSuObXJfR02GJ2Yp3HXfHJ5iLizAmddGTh788xyDkJbex1mQ5xI9RVnz1W0JqZnUAfFuc+16ptLnIgGDImY4oxhRToFBw5DS3wZmoJhV5y9loUfP07EKY7hkhVnIVbSPffcQzabZe/evRXB8d/93d9x/Lity/zZz37Go48+yu7du1drM9cF7ak5c5krqMobr4D9TJwV1xhjQIEXd/j1nTYA6midG/wMb3Iw7RHyY3PrnE+MQ3sKOtPFcZIK/Na1e+4XzeE4ilOGFF1pmdMsRD3rN1XbtSeiEycMHS02VXts0gYsuXxlQLNgSdcGzyP5ql2qzWgeEysGqg1SCa9mnbPJBOieaNWUqoVQbRHCY9mFNwibLNg511Xqm9cKY6AlvvQP+9akor/T8OJrkJwn+Kwnk7Mp1LHZqdrKzt70PXBdWwcdqXNNEvHsaq3fGa15MutohZdft3+ezNr07vkCZ+1rSg1XU3HFmcP2omu5UrNMYPBaFn786KguBs5yIhdipRw8eJAnn3ySSCRSkYL96U9/mu9///t87GMfI5PJ0NXVxS233MLb3va2Vdzak1/FXOYa54PZ/U20p2DWzXZTHIOpo5pUnfNhTxt0DPmMfX+cthn9MUJjyObgtE0K11EUxgs4MQe3de2e+4UQYiWty09DFXEwCVuPM5GBs0+xKUdR3wYsucLSAmelFLo7RnA4MycINYUQJvLoM9Ko5ALu0sZtbTCZKnXOQViez7sUKunO14+qKjMVoDdHV6TJ12KUOmovpb55pi19iucPGLt6u8hmbNm8vWs/MwhVrkJp22HaLc5yzuaqf39YXDmIeBCOh7h1blq0JFQ55XsyY4Pm+Y5v5emK1YqWuOLcU2wwv1z0Am4klSitiA7E8GTFQ4gV09fXx9NPP131a+eccw6///u/v8JbtL7ZuczVV5ztqq+as+I8+zMcSk0YNU6tXilFjqPYeqrPP/yDQ5gNcIqNTEcn7MSD7jb7vGAiwGvzpMeEEEIUrc1IaIm8rgiFzSkmM4ZoZPok4Hs2oMjNP4VhXqrVA1djcpW5tuZIBnrj6MGFLVcqrVAdc+ucbQ2TWlp9c+lnxF27zfPVZ8/8+cagQoNK147EjLFB5moZm7Lp1TNHPy1FTxu0t8DxJTQhz+Xnbo9yiul4ob3DH/ftinM1FaOooO6FSyIKrmNrlKdytivmfKlW2ld21vaMf7doxK4yNFvpwq9aV/BGpE5L4qUlcBZCrE/KU+hagXNoUE61VO3pDKbyc/MG7Sl0A41JB7e4xDtdJo7ak1BoDJMZWxdduuEbZAIivb6k7gohRNG6DJxLjo/bIKhUs6mUIhVvTuBMykO1eDAxPYzXjOYg6uJsTS5qdVa1+HPrnLMBLLG+uSzh2gB8Yp4BwhU/P8REnLr1zQePwi8P1G90tZxGJ+zNkWZ1go74iuE+GJmY/7m1FALmpMopR4GjoBgsx2O1a5zzBXujJ1JsZOrEah9PyZi9IZTJQhBAOtlA0y3fpgaGheUfPB9mw3LKtRBCiEranZGqPYsJTPGma+U5QHsa7VERbIe5ECfuNjS2Mh7TDJ4aZXLUnoQmijege9rt95ri+dxbwjQPIYRYb9Z14JzJwuaeykYHrQmbqr1USitUd7S8QmzyoZ1bPJxc9NgolbR1ziY7I5qaCmx36nlSrxp6fVej+mOYyULjXaMnCzZorrHiGQSGTA7aW5cWaC5FLg8DXc29I97fqYi4MJVd/M2A2enSyimu8hYvSKK+qpk6ny/YoFmH9qKp3hzjeNT+Nz5lV57nq28Ge9GlPIXJL//NjjAX4hRnOAshhJjLibo1U7WVo+Z01VaeQrmaMKgMnOuV9cw2dIpvz3NTIWOTMNBVPC8BwWSAE3fwpL5ZCCHK1u2VbL5gZ9z2zJrHG4soljhpqEynfXA0phBijmahf+Ep2hVm1jkXmXyIam/i/MTOqF3BrjKGohqTDVCdkZqpWodH7GrvUDccG23aZjZsKmvT8Ttam/u6HS322FnMeyp1tq4eOE/fyffrXI/kC/buf6lmrV7qnVKKjhY7f7qRxmAAyq+dGthsYTbESbjoJTa3E0KI9UrHNWHVwLl4o352qrani524wxnPNQsKnLsGfNp7HQ6/FhCP2ukjJYXRAm6Lh5OQTCEhhChZ11eyfe22cdJMsWZmHbV4qKSLeW0KYg7O1tSSGmgpp7LO2YQGZVhYk7H5fkbSQ/fEbFp5UWiMbUY1iwlCe6e7pfpOC0PDxBTsGFIM9yki3tJWaBdjZALakjaToJm0tu8pk4dsbmHvKZu3tcmzm5WVmoOVOqH6XnGWc5V9XxpFZfLGzjGeJ825LaUIQzv3ORZpIFXb1Wi/+oXaTMYYwgXUxFcT5kK8tKxaCCFELU7UqT6XuUaNs/IUenbWkKGh+ubyz4w7DGyLEDcF+jshEVUEmYDJlyZRniKxNSb1zUIIMcO6DZzjUdjUM/cDPxqZbqS0VMrRqO4oOMoGzYuYUzvnNWfWOedCTEQ3pTHYTLonBnq6SdihY3D4eJUnTgYQdaFGffPRUdtEa6gbOlvtDOSjIwvfnkwxMM0vYvVzIgObemyg22xD3XDqEOw/DOOTjW9bNl9sRDfrfkNp1aB0ceS7pWOx+utEPLta6ybnr1lLxiAWhe50w5uJjjkVqxXV5I/nmXh+ovHU/irCwOA2+RgWQoj1xIloqqXDmcDYcVWzznFKKfSMYLs0w9lZQOAM0HdKhP6WkL40ZA5myB7OEd+aoPOSDhLDTb4jLYQQJ7l1Gzi3paa7ac8U9W1Qk21GgzBs6rMeTqH6Y015vYo650xgg+ZmN1Vq823690iOQmCKq55zVz7NVAHV7qP8uYeJMYaRcdgxZFc4tVZs7Vdk8xAssEnYSLF79aFqwXsd+YJNie5sXZ474hFf8ZYzFOecAkdG4ehIY+8rm7eBrFtlHrL29XSqtlcMnGfV3IfG/ptE/WLNWgM1ZomYXXlPpxrfF07cmTdVO8yG6LiDWeCq+0xK1e8KLoQQG53yqve8MIGpGQw7MV3+DJ85w3khoh0+w5sc9OEMXtqjc3c77een8dukKZgQQsy2LpeBUnHY1q+qdlmO+XalL5e3Y3yWSqV9nHQTTzAz6pxNJkD3x5ueKqW0QvfHCQ9nmJg0JGOKQgCZnK2RLSsYVHv1MVQnxu28x80zVvX7Omyt8fExuwLdqMnsjD9nDPFoY+93bNKmaLe3NP6zFsp1FefsgGQcfvAzw4Ejhv6O+uOeqo2iKlGexhQXeV3HHouzO2vnC+ApgxuGhIUQNz7/r2kyZm8WLSRl3Y3XSA2cIcyFeEmXIBssKAWw/P2FYrp/neZmQgix0ekqc5mhuOJc5eY1gBNzy+U2jfTDqMZtdYkOxPA7PRLDiQWvWAshxEayLj8hO9OK07dUD2xcVxGPNmkk1TKYWeesDE1J/676czoikPSYOlagu80GwZOZ6a+bTAARXbO++tgonDIIyRkjl6KR4hinBcw/zuYMfvFHDPfZtPFGjU7CQCf43vLWYCml2DGk2P1GRTwCL75Wf1W92iiqEu0pKAarSiliUbviXEqbDw9NUTgwhT+SQY/n8Vo9nOT8QafnKna/QdGxgNV3XeNibM7zYpowu7g65zAToiO67jgtIYTY6JSrMDCnLMYEpmYwrGekd5dmONebwFD1NVxN54XttJyWkqBZCCHmsSE/JVvizRlJtVxUi48qGIynUA2sNi7qZ0Qcwp4YerJAe4uis1WV94nJBphjWXRXDJJzf/7ohCERgy29c4O0oW5FLAITmcZSe0cnp1dJTxlURH37+vMJQ0MYTs+cXAmD3YqLz7YdrA+fqP/c2Y3BSmamaoPNesgHwLi9k+PsTDN1ZgeRX++i7+3ddF/eRWygsTKAaqnh9TQcOPuLD5yDTIgTdyRVWwgh6tC+RjtzZzmbsHbDLz1jpOFCZjgLIYRYnA0ZOLcmFfm1HDgnPUxU25TtZRwFMZ6IEktpkhRoTdi04exYHo5l0VuS6NNb5zQkATgyAlv7qtfTtqVgsKvxJmGl2ZEAHa2K7YM2KJ2vGdX4lE1P7ljGNO1q2lsUW/srV+dnqjWKqkT5uuLCKOrb8WgmZwNT3Rsn2xKlY8i3q83LGHAqz/7619rXJjAorXAi86d01xJmAvx2XzqzCiFEHXYuc5URgYaao/y0P53evdAZzkIIIRZuQwbO0bXe86JY56zS/pLGW81nRLl0nRIlHC2QjEMyLJB5PY/a1oI+taUcWM00kTFEfNjaXz0QUkqxpU8RhPN3Lg+Kjcm60tOvtWNI0RK3ddL1jE7Y5m/JGinRy6mzVeHo6l3AS6OoagXOsy+AfBc7bmTGY/VSvZtJ+6o4B7T6v1OYC1G+WtIoKVMI8dLLU24ghBDrhXZ19cBZzR1FVf6SO33zc6EznIUQQizchg6clzJiZzkpR6H6YqjOGtFXEwShAaXoOyMOxpA/nKPNyTM+2ILeXnse9eHjsLnHNgGrpa/DNgc7Nlp/G0Ymis29UtOPtSYVp26ygXNYp444m4eBztVZxWxvgZaEXS2fLZODiF97XrhyVEUDGN8DlQsws1LxagXezaQ9jfLqBM75EO1pvDYf5agFz3O241EU7jJmTQghxHqgfFU1VRtj0DUC54qbnwuc4SyEEGLhNuSnbCxS7Ga8htO1neGUnbe8TEYnbK137zafSFcEExj6LmgjGEpSK16dyhq0hu0Dqm7qrecqtvXbwLLezYlSmnbEr3yt7YOKjlabEl5rO6J+/eB9OfmeYqDT1mfPlsvbru616o2VA8yIP30XvFxAIWEj7SC0+3glAmfla7Sr66w4G5yoxmtx0VFnwXXOYbbYGKyB5mZCCLGRabf2jcx6K87l71nEDGchhBALsyE/ZUuznNdqZ+2VMDIBg90QTzi07EzRcUE7/W9I0JJQVQNCsB2vt/RCT/v8rz/QpUjGbYBeTRgaghB6qzT3ikcVZ2xRjE3ZdO7ZRidsLXWtkU8roaddEQRzV8Wz+fojoZSr56w4u2FIocUGzrk8RNyVWnG2NXVhjcDZ5EOcpIuO2a7YCw6cMyFOVEtjMCGEaIATdSoC59KN51oNv7Sv0K4myISLmuEshBBiYTbkp2w5cK6x4pwrGF4+ZOqmCi9GLm+Yyq5+enipI3Vfhz0ZR/uiRPujRHxFf2f1YHcyY3AcW4PcSKOn1qTi1CG7alxtdNNEpn5zry290NduRz8dHTEVrzGRgaFu0FUal62UjhY723liVpOwIKxfn6xmxZAOIa4HuYitTcvmbap3fCVWnLXCiWlMoXpAHOZD3BYXpRReq7vgwDmYCvDSfs3GNkIIIabpaGXzSEL7OV1rxVl7GuVAMBksaoazEEKIhdmQn7JaK1IxG6RUc3zUNmgan2ruzz1wGF490tzXXIyxSZtO3Fkl1bm3XVEI56ZYHzre+GpzyambFD3t1Wczj4zXb+7le4pf36nYdRo4Drz0Grx8yDA6YQP4zgXMK14Oybiiq7X6TYZ6q8VKV87qDCdCYq0uhYhtoJXL2xsKCx0ttVhOzKmZqk0IbsxG+l7aX3CNc5gzeO3SrEYIIRrhxNyKDCATGJRTJ1XbUeiIQzgVLGqGsxBCiIXZkIEz2OZOtVK1xzN2tXOsiYFzGBoM4Drzd5tebifGob/DpkTP1tEKiUjlSupkxuAtYLW5JBZRnLXVzoeevdLeSHOvdErxxu2aK89XXHauYnOPvZmRTqxeffNMA12KzIxjqBAYXGeewNlVdqW8GIMWxgvE+yLkir+KucLKpqA7CZcwX+N4VJRT/5yYZuG99AxuUjpqCyFEI3REM/OD1gQGHFV3uoaOaYJMIDOchRBiBWzY5aBkTFVNIc4XDK6GVELx6tHmBbilucNK2aC0Xh3scirVFg90VT/BpuI2KD18wm4v2BXjU4bsCvFCDXXDKYPw85dhuM+glLLNvSLQmW7sNSK+YksfbO613bbzBbsivdo6Wmw9cjZniPiKbN6WANRLs1aOAg0mNMVuqCGpzRGCcfv1lRpFVeLMulArCQtheTUD7Mp0qeNrIxdnYd5+v3TUFkKIxmhPwYyP49Lnba2u2mA/mzHIKCohhFgBG3bFudYs55EJSKfsyCWniavDY5M2NbotBRNNTgFfiFIAXy1NG+wc5qFuxVTW/n0iY/C9ha82l2itOHOLIhWfHk81MmGDzoXePFBK0d6i6KnSUGw1tKWgNTndXTubqz/DGeyKs9IKExrbddrXxDoqL3hWojFYeXt8XXGhVmJyBuXrcpdWJ+6gI5qgwTrnYCrEiTk4EjgLIURDtF/ZPNKEpm6NM4Abd0ArCZyFEGIFbNjAORaxq7+zG4CNTcJgl11dTcWaV+ecydlV3t52++fVcmIcettr1xaDXXH2XNvM7PVjMNwHXenF/8x0SrFz2P7sfMGsieZezeA4iqFuGC8GzqVRVE6dFVmli3M3A5um7aZcEh1e+VrJ0RCPLv+2l2i/cq50SZgPcTw1I1XbBs6NNggLMwFO0pGaOyGEaFApQC71wDCBzVKqFzgrz049kMZgQgix/DbsJ221ztql1O2eNkXEV3S32UB6qXJ5g+dCewukk6pqwL4SjDHkAxjsrh+wtiXtSurBo+D7cMoiV5tn2j6o2NQDr7wO3hpo7tUsXWn7PoLQzDuKCkqp2gpCQ2EyINIbIRZX+MVS4JUaRVWiPQ1KVXZyBcJciI469uvF7XZbXMJM0NDrBpmQSEeNtA4hhBBzKE8Xb6yWAmdjxwbWucmsPYUTd2SGsxBCrIAN+0kb9cF3KxuElbpNlxpP9barmiOrFmJ00gaipYA0FoHJ7NJfF2wA/quDhuNj8wfirx2z29Cdrv8811UMdtnt3tpXO617ITxXsXNY4bt2H9QaQ3WyaW+BVMIeO/ONooJiczCn2PQlNPgdEaK+vZkA4HkQW8F4U/sa7TGns7bJG9xU5Wqxl/YIcw121g4NboukDgohRKO0pyoCZwJj07frfo+2GUEyw1kIIZbdhv2kjfg2eJ45kmqk2G06FrHBTzplA5pcra7DDRqbtK/ruopkDFriMJmZ//sa8fpxW2s7MgFjk7W388S4IQhg12mqbpp2SXdasaUXThlc+mpzSW8HnL4FNnWv3Lil5RaL2PT70liq+dKsSyvOwUSAjmq8tEvEo7zivJKjqACUp1CuJpw1yznMh3Nq5tykW7UeejYTGFtzl5DAWQghGqU9jfJU+UamCW2viXpUccVZUrWFEGL5bdhPWqUULfHpVG1jDIUA+jqmg5Z00q5AL6XO2RhDGEJ3myr/3J72ynFPi5XNGaZy8IZtijdus0H07LFPYB87OgJnnwKbehoLyvo64LxTFZ3p5gVxSinOOUXxxu3rI2gu6etQ5PLMO4oKKDd6yY8W8Fo83JSL1op4sYP5Sndb175Gu2ruLGfDnPpkJ+aUO4LXE2QCnKiWxmBCCLEAylN2ekFhRqr2PAGx1+oRG4rZz2chhBDLasMGzlA5y3liCpLxyhFJnqvo71xanfPEFCRiNqW3pD2laEaJ86tHbCr15h44a6vijC32sfyMICgIDAcOw+mb4fTNjQesrqvon2fO8mJorU76pmCzdbRAImpXjRtJs9aexgSGaF+kvJrfErdfW8lRVKVtmbnCUaZAzw6c4xrt63nTtcNMiBPTOHG5kBNCiEYp195YXUjgrH1Ncnuibh20EEKI5tjQgXMipsojbEcmoKt1buDSlVYUGizrrGZ00gZWpZnIYGt8ox5kcouPnk+MG2JR2LlV4TgK11Wcu0OxtR9eft02qzLG8PLrsKkHztmh6nZ7FovXmoS2Fpv630hjL+UpnISD1zYdZSej9t8muoKNwUqcmEs4I3AuzWB2ZtXMOTHbgCbM1P+FCKYCvA5fLuSEEGIBlFLoqFPRrFG7G/oyTQgh1pQN/Yk8c5ZzJle923Q6aZ9XLQW6EVNZGOyqrBNuidta2MXWOQehTb0+YzN0zOhOHfEVbzpN0d8BLx+yXbFbE7auuVS3LZrPzr62x0ojNye0r3GTDl56ugY4UjwWV7KjdokTdzD56WA4zNuGNLNXOrSncRLuvCOpTGDw096ybKsQQqxnTkxXZADVG0UlhBBiZW34wNnRMD5piEaqd49uTdhAdzF1zvmCwXUq07TBpkF3pxdfO/3aMVuDvGNo7gk1GVecf4aiLQVhaIPm9hY58S63rf2Ksxus3da+wk97Fc2zSoFzdBUmODlxXbHCYXIh2ldVu7R67R5BncC5NH/UkcZgQgixYE7Umc4AMqAlcBZCiDVjQwfOsQhEPDh8wqZTp5Nzn+M4ts55MUFuabzV7MAZoKtNka8zEvfEuOHwCTOno/dU1jYx27lVEa2xitzeovj1nYpfP0s13AxMLE0sokinGtvXXtonviVe8Vipxjm+CivO2q+sRQ7zITrmVE0RtJ21a2dfhLmwvKIuhBBiYXTUmf6MVbLiLIQQa8mGXhaK+rah0+ERGOqmZtOqzlaFMbZmeCGjmcYm4bTNtsnYbK0JcDUUqnQJy+YMx8egPQWHjkOuYIj6Nrg6fAJO3QSDXfV/dneborut4U0VKygxHJ/7WExxhMZSvZtN+5U/M8yZOaOoSkqdW2v9LoRT0hhMCCEWS3v2c9UYg6E4wlAIIcSasKEDZ89VRH1Da8I2AaulLWVXAieztntyI4wxFEI7D7ma1kTtOueDx2BLL1xwlmJkAo6NwoHDhiMjdlvO3LL+OlOL1aOLc0JLwbAphDVXjJ24RnsKkzOoKhkPQSYg0h1Bexs6mUUIIRZFlT47Q3szX8lnqRBCrBkbOnAGm56dD+zqbi2puB1dNTrZeOA8mYW4Xz1NGyAaUbSlDEdPVD4+PmXwHDhji8L3FF1p6ErDqZsU45OGfEDDKcFCNEL7GuUoTGBsWmCVGc4lTsxBRxyCbFh1TEqYDfE7pDGYEEIsRqmm2QQG5UiNsxBCrCUb/lZmOmlXd906JyelFINdMLWALthjE3ZEUUui9nN62yGTn/67MYZDx2D7IFXTrJNxRZsEzaLJlKcrZoeiQEdqBM5RByfuEGZrF+i7yQ1/P04IIRZF+RqlFWEuBEdJqrYQQqwhG/4K97TNjZ2U2lsUKEMYmobSpCeysHMrdWui00nFzC8fH7N1zKdtUguqpRZiKbSvUK4dgVJrhvNMXtojdzQ35/Hy90pHbSGEWBTtKZSrCLP281SagwkhxNqx4VectW6sXrgtZdO0J+qsOhtjGJkw/OpVQyJav24aoDUJseL4oSA0HBuD07dAa1JOlGLlaE+jXYqBc3GGc73AucWtGF9VEmZCdNTBTUhjMCGEWAzlFgPnXIjSEjgLIcRaIktDDUrEFF1pw68OwpERQzwCybgNfA12tXhk3D52xjAM9ym62+qf8JIxWz8NcHQEutOwbUBOkmJlKUehow6FsQIauwJdq8YZsB2zZ8XNxhgK4wW8tFc36BZCCFFbqedEMBngxB1J1RZCiDVEAucFeMuZiq39cHzM8OoR2yzs0DE7crG9Bc4/A4a6VcMrxkopuoq1zJNZOPdURazGbGYhlpMTc8gfzxOaEC/t1b1Y0zHHrojkQ1CQP56nMB7gJhxim2JSZiCEEIukXIXy7IqzLtY7CyGEWBskcF6AWESxuRc29yreuN0wPgUnxqAQQG8Hiwp625MKcjDQBZt7lmGjhWiAk3AwBYMJas9wLnHjDjqqmXplCuUq/A6f1BlJon1RvBbpqC2EEIullMKJOIQ5I2P9hBBijZHAeZGUUqTi06nWi9WSgNGcbQhWr7O3EMvJiTqYEGD+wFnHNH6HT6Q3SnwoRqTblws8IYRoEh3VEBq0ZKAJIcSasixXu88++yxvetObePjhh5fj5deVdHF+dF/H6m6H2Ni0r2zNgaHqfOaZlFJ0XNBOx1vaiA1EJWgWQogmcuK2x8R8n8VCCCFWVtNXnMMw5FOf+hRnnHFGs196XSrVg0pdqFhN2tdQPASdBi7WpO5OCCGWhxN1QEvgLIQQa03TA+f/83/+Dzt37mR8fLzZLy2EWCba06AUykG6YgshxCpSrrJjAV35LBZCiLWkqYHzyMgI//t//2/27dvHpz71qZrPy+Vy5HK5yg1xXXzfb+bmnBTCMKz4/0Yk+2D194HxDMo3KE+Dtzrbsdr7YC2QfbD29oHWEryIlaV9bTtqS98TIYRYU5oaOP/Jn/wJN910Ey0tLXWft2/fPh566KGKx66//npuuOGGZm7OSeWVV15Z7U1YdbIPVnkfnGf/d+DIATiyepshx4HsA1g7+2B4eHi1N0FsMLq44iyBsxBCrC1NC5x/9rOf8eMf/5j/8B/+w7zPvfXWW7n55psrN2QDrzi/8sorDA0NbdiVDdkHq78PwlzI618/jJt06bxodTrVrfY+WAtkH8g+EEJ5Ch2RwFkIIdaapgXO//iP/8jLL7/Mnj17ABgfH8dxHPbv389//I//seK5vu9vyCC5Hq31hr9IlH2wevtARRSOo/FS3qr/G8hxIPsAZB+IjUt72gbOjhz/QgixljQtcP6t3/otrrjiivLf77//foaGhviX//JfNutHCCGWiVIKJ+HiJmS0uxBCrCblSaq2EEKsRU27So5Go0Sj0fLfI5EI8XicVCrVrB8hhFhG0f4oXkoCZyGEWE1O1MFv93ETzmpvihBCiBmW7Sp57969y/XSQohlkNyeWO1NEEKIDU85itY31m+yKoQQYuVJAY0QQgghynK5HB//+MfZs2cPF198MbfddhvPP/98+esPP/wwl19+OZdddhkPPvggxphV3FohhBBiZUjgLIQQQoiyIAgYGBhg3759fOMb3+Ciiy7irrvuAuA73/kOjz/+OA8//DCPPfYY3/nOd3jiiSdWeYuFEEKI5SeBsxBCCCHKYrEY733ve+np6cFxHG688UZeffVVTpw4wZe+9CWuu+46BgcH6ezs5N3vfjdf/vKXV3uThRBCiGUnnYCEEEIIUdOzzz5Le3s76XSaX/3qV+WxkwA7duzgT/7kT2p+by6XI5fLVTzmuu6GG0kZhmHF/zci2QeyD0D2Acg+gLW3DxodfymBsxBCCCGqGh8f59577+X9738/AJOTkySTyfLXE4kEk5OTNb9/3759PPTQQxWPXX/99dxwww3Ls8Fr3CuvvLLam7DqZB/IPgDZByD7ANbOPhgeHm7oeRI4CyGEEGKObDbLXXfdxYUXXsg111wDQDweZ3x8vPyciYkJ4vF4zde49dZbufnmmyse26grzq+88gpDQ0MNr2ysN7IPZB+A7AOQfQAn7z6QwFkIIYQQFQqFAh/+8Ifp6urijjvuKD8+PDzM888/z4UXXgjAc889x9atW2u+ju/7Gy5IrkdrfVJdJC4H2QeyD0D2Acg+gJNvH5w8WyqEEEKIFXHPPfeQzWbZu3cvSqny43v27OHzn/88Bw4c4MiRIzzyyCNceeWVq7ilQgghxMqQFWchhBBClB08eJAnn3ySSCTCpZdeWn7805/+NBdeeCG/+MUvuOWWWwjDkGuvvZarr756FbdWCCGEWBkSOAshhBCirK+vj6effrrm12+99VZuvfXWFdwiIYQQYvVJqrYQQgghhBBCCFGHBM5CCCGEEEIIIUQdEjgLIYQQQgghhBB1SOAshBBCCCGEEELUIYGzEEIIIYQQQghRhwTOQgghhBBCCCFEHRI4CyGEEEIIIYQQdUjgLIQQQgghhBBC1CGBsxBCCCGEEEIIUYcyxpjV3gghhBBCCCGEEGKtkhVnIYQQQgghhBCiDgmchRBCCCGEEEKIOiRwFkIIIYQQQggh6pDAWQghhBBCCCGEqEMCZyGEEEIIIYQQog4JnIUQQgghhBBCiDokcBZCCCGEEEIIIeqQwFkIIYQQQgghhKhDAmchhBBCCCGEEKIOCZyFEEIIIYQQQog6JHBeot/8zd/kRz/6UVNf88knn+Rf/It/wUUXXcQ111zD448/XvV5Dz/8MLt27Wr6z1+Mz3zmM1x//fW86U1v4qtf/Wr58UbfS8mPf/xjbrrpJi644AJuu+02Dh48WP5aJpPhox/9KBdddBHveMc7+MpXvrJs72ehVuM42LVrFxdeeCG7d+9m9+7d/M//+T+b+vMXQ46DlT8OxsfH+cM//EMuu+wyLrnkEj7ykY809ecvxkY/DsT6I+f6aRv591vO9dPkOJBz/YY8BoxYkquuuso8++yzTX3Nxx9/3Dz77LMmn8+b559/3rztbW8zP/jBDyqec+jQIXPjjTeaK664ouk/fzH++q//2vz93/+9+Z3f+R3zla98pfx4I++lJJvNmj179pgvfvGLJpPJmAcffNC8973vLX/9gQceMLfffrsZGxsz//RP/2Quvvhi8+KLLy77e2vEahwH5513njl8+HBTf+ZSyXGw8sfB3Xffbe677z4zNjZm8vm8+elPf9rUn78YG/04EOuPnOunbeTfbznXT5PjQM71G/EYkBXnJtm7dy8PP/xw+e9PPvkkt99+OwBPP/0073rXu/jTP/1TLrvsMq6++mq+973v1Xytd73rXZx11lm4rsu2bdt485vfzE9+8pOK5/yX//JfeN/73ofv+8vyfhZqz549vOUtb5mzPY28l5If/OAHxGIxrrnmGiKRCP/6X/9rfvKTn5TvPH3pS1/itttuI5lM8sY3vpGLLrqIr33ta8v+3hZipY+DtUaOA2uljoNf/vKX/OxnP+P3f//3SSaTuK7LaaedtqzvrRFyHIj1aqOf60F+v0HO9SDHAci5fiMeAxI4r5D9+/cTj8f52te+xnve8x7+83/+zw19XxAE/PjHP2br1q3lx55++mlGRka49NJLl2tzl0W19/Lbv/3b5bSLF154ge3bt5e/FovFGBwc5IUXXmB0dJSjR49WfH3Hjh288MILK/cGmqCZxwHAu9/9bq688kr27t3LiRMnlmGLm0+Og+YdBz/96U/ZtGkTH/3oR3nrW9/KLbfcwjPPPLOcm940chyI9UjO9dZG//2Wc70lx4Gc69fbMSCB8wpJJpPcfPPNuK7Lnj17OHDgAJOTk/N+33//7/+drq4ufu3Xfg2AQqHApz71Ke68887l3uSmm/1eAD73uc/x9re/HYCpqSkSiUTF9yQSCaamppicnMRxHKLRaMXXGtmHa0mzjgOAhx56iL/6q7/iL/7iL8hkMvzhH/7hcm5608hx0Lzj4PXXX+f73/8+b37zm/nqV7/Ke97zHu6++25GRkaW+y0smRwHYj2Sc7210X+/5VxvyXEg5/r1dgxI4LxC0uk0SimA8gEwOTnJM888U2748MEPfrDiex5//HG+8Y1v8MlPfrL8vX/5l3/J2WefXXH35WRQ7b3MFovFmJiYqHhsYmKCWCxGPB4nCAIymUzF1+Lx+LJud7M16zgAOOecc3Bdl7a2Nu6++26++93vks/nV+7NLIIcB1azjoNIJMLAwADXXnstruty2WWXMTAwsGaaCNUix4FYrzb6uR7k9xvkXA9yHICc69fjMeCu2k9eZ2KxWMU/7NGjRxv6vnPOOYennnpqzuNf+9rX2LdvHw899BDpdLr8+NNPP80zzzzD3/zN3wBw/Phx7rjjDn7v936Pq6++emlvYpnUei+zbd26lS984Qvlv09NTbF//362bt1KS0sLHR0dPP/88+zcuROA5557bk4602pbqeNgNq3tPTBjzMI2eAXJcTC/hR4H27ZtW/K2rrSNdByI9UfO9fVtlN9vOdfXJ8dBfXKun3ayHQOy4twkO3bs4Nvf/jbj4+Ps37+fJ554YtGv9b3vfY/77ruPBx54gP7+/oqv7d27l8cee4xHHnmERx55hK6uLj7+8Y9zxRVXLPUtLEmhUCCbzWKMKf85DMO672W28847j6mpKZ588klyuRx/9md/xhlnnEFfXx9gmxB89rOfZWJigh/96Ed8+9vf5m1ve9tKvL2GrdRx8Mtf/pLnnnuOIAgYHR3l/vvv5/zzz1/1BjJyHFgrdRzs2rULYwx/9Vd/RRAE/O3f/i0HDhzgrLPOWupbWBI5DsR6tdHP9SC/3yDnepDjAORcvxGPAQmcm0ApxZ49exgaGuId73gHH/nIR/iN3/iNRb/evn37GB0d5Xd/93fLqRz33nsvAKlUis7OzvJ/WmtaW1sr8v9Xwyc+8QkuuOACnnnmGT72sY9xwQUX8I//+I913wvADTfcwJe//GUAfN/nk5/8JI888giXXnopP/zhDytqed73vveRTCZ5+9vfzoc+9CE+9KEPsWXLlpV+qzWt5HFw7NgxPvShD3HxxRdz/fXXo7Vm7969TXoniyfHwcoeB67rcv/99/PYY49xySWX8JnPfIb77ruP1tbWZr2dRZHjQKxHcq63Nvrvt5zrLTkO5Fy/EY8BZdZ6vsca99a3vpV9+/axadOm1d4UsYrkOBAgx4EQ65X8bguQ40BYchxsXLLivARPP/00QDmdQGxMchwIkONAiPVKfrcFyHEgLDkONjZpDrZI99xzD9/73vf4yEc+gud5q705YpXIcSBAjgMh1iv53RYgx4Gw5DgQkqothBBCCCGEEELUIanaQgghhBBCCCFEHRI4CyGEEEIIIYQQdUjgLIQQQgghhBBC1CGBsxBCCCGEEEIIUYcEzkIIIcjlcnz84x9nz549XHzxxdx22208//zz5a8//PDDXH755Vx22WU8+OCDlPpKFgoF/v2///dceeWV7Nq1iyNHjlS87oEDB/jABz7AJZdcwpVXXsm+ffvqbsdnPvMZ7r333qa/vxdffJE77riDt771rVx++eV89KMfZXR0tOI5TzzxBO985zu58MILue6663jppZeavh1CCCHEapFz/dLO9RI4C3GSuO2229i1axe33Xbbam+KWIeCIGBgYIB9+/bxjW98g4suuoi77roLgO985zs8/vjjPPzwwzz22GN85zvf4Yknnih/77nnnssnP/nJqq973333MTAwwNe//nU++9nP8uijj/L//t//W5H3NNP4+DiXX345//f//l+efPJJ8vk8DzzwQPnr3/72t/lf/+t/8cd//Mc89dRTPPDAA6TT6RXfTiHExibnerGc5Fy/tHO9BM5CrGNPP/00u3btYteuXbz66qurvTliDYvFYrz3ve+lp6cHx3G48cYbefXVVzlx4gRf+tKXuO666xgcHKSzs5N3v/vdfPnLXwbAdV1uuukmzjrrrKqve/DgQa644gpc12VgYICzzz6bF154oaFtevrpp3nXu95V8djMO92/+Zu/yV/8xV9w3XXXcemll3LffffVfK2dO3dy1VVXkUwmicViXHvttfz4xz8uf/2zn/0sd955J9u2bUMpxeDgIK2trQ1tpxBCrCY514tGybl+aed6CZyFEELM8eyzz9Le3k46neZXv/oV27dvL39tx44dDZ8Qr7/+er761a+Sy+V4+eWX+dGPfsSuXbuatp3f/va3+exnP8vnPvc5vva1r/HMM8809H3PPvssW7duBewd+J///Oc8//zz7Nmzh6uvvpqHHnqonKImhBBCrEdyrl/Yud5d1NYLIZbV6Ogo9957L0899RTpdJpbb711znMefPBBvvvd7/L6668zNTVFW1sb559/PrfffjudnZ185jOf4aGHHio//+qrrwbgqquuYu/evYRhyKOPPsoXvvAF9u/fTyQS4c1vfjMf/OAHGRgYWLH3Ktae8fFx7r33Xt7//vcDMDk5STKZLH89kUgwOTnZ0Gu98Y1v5PHHH2f37t0EQcBtt91WcWJeqptuuqmcZnXeeefx3HPPcc4559T9np///Oc8+uij/Omf/ikAx44dIwgC/uEf/oFHH32UiYkJPvjBD9LT01P+vRFCiGaTc71YTXKuX/i5XlachViD/tN/+k98/etfJ5vNEo1GefDBB/npT39a8ZzSibSnp4ehoSGOHj3KX//1X3PnnXcC0NPTw/DwcPn5O3bsYOfOnQwODgLwyU9+kvvvv58XXniBwcFBtNb8zd/8Db/7u7/LsWPHVu7NijUlm81y1113ceGFF3LNNdcAEI/HGR8fLz9nYmKCeDw+72sFQcDv/d7vce211/Ld736XJ554gq9//et8/etfB+CGG25g9+7d7N69m9dee21R29ve3l7+czQaZWpqqu5rHzhwgDvvvJOPfvSjbNu2DYBIJALA7/zO75BKpejt7eX666/nu9/97qK2SQghGiHnerFa5Fy/uHO9rDgLscbs37+fb37zm4D95b799tt58cUXufHGGyued88997Bt2za0tve/vvjFL/KJT3yCn/zkJ+zfv59rr72WwcFB/s2/+TcA/PEf/zH9/f2A/UD5/Oc/D8DevXu56qqrmJyc5Prrr+fQoUM8+uij/Nt/+29X6i2LNaJQKPDhD3+Yrq4u7rjjjvLjw8PDPP/881x44YUAPPfcc+XUp3pGR0c5fPgw1113Ha7r0t/fzyWXXMIPfvADLr/8ch577LG63x+LxchkMuW/z+7iWU+11z5y5Agf+MAH+Ff/6l9xySWXlB9vaWmhq6ur4rmSpi2EWE5yrherRc710xZ6rpcVZyHWmF/+8pflP1922WUAbNmyhVNOOaXiec899xy33HILu3fvZteuXXziE58of+3w4cN1f8ZPf/rT8ofF3r172bVrFxdddBGHDh0C4Ec/+lFT3os4udxzzz1ks1n27t2LUqr8+J49e/j85z/PgQMHOHLkCI888ghXXnll+eu5XI5sNgtAPp8v/7mtrY2enh6++MUvEoYhhw4d4m//9m/Ld3/ns3nzZkZGRvjBD35ALpfjz/7szxb93sbHx7n99tt5xzvewW/91m/N+fpVV13Fn//5nzMxMcHhw4f5/Oc/X754EEKIZpNzvVgtcq5f/LleVpyFWGNm3v2a+YE28/F/+qd/Yu/evRhjaG1tZXh4mKmpKX71q18BNm2m0Z+xY8cOfN+v+HpfX9+S3oM4+Rw8eJAnn3ySSCTCpZdeWn7805/+NBdeeCG/+MUvuOWWWwjDkGuvvbaiHuhd73oXBw8eBGz3S7BdMgH+6I/+iPvvv5//+l//K9FolCuuuIJ3vvOddbeldNwnk0nuvvtu/uAP/gCtNf/u3/07/vIv/3JR7+9b3/oWv/jFL9i/fz9//ud/Xn78qaeeAuwImD/6oz9iz549xONxrr32Wq666qpF/SwhhJiPnOvFapBz/dLO9cpIPpoQa8orr7xS/rC59dZb+cAHPsBLL73EDTfcQBAEnHvuuVx00UXluXRf+cpX6Ozs5OGHH+a//bf/BsD/+B//g127dvHP//zPvOc97wHg0UcfLd/9279/P+985zsxxnDXXXdx0003AfYk+8Mf/pBEIjHnrrcQK+GBBx7A8zw+8IEPrPamCCHEspFzvdjITtZzvaw4C7HGDA0Ncckll/Ctb32Lffv28c1vfpNDhw7hOE757vLMToU33ngjbW1tHD9+fM5rDQ4O4rouhUKB97///fT19fHud7+byy+/nGuvvZYvfOEL3H///Xzuc58jFotx8OBBJiYm+NjHPiYnU7HixsfH+fu//3tuu+221d4UIYRYVnKuFxvVyXyulxpnIdagj370o1x22WVEIhHGx8d53/vex86dO8tff8tb3sLtt99OV1cX2WyWLVu28KEPfWjO66TTae6++256eno4duwY//zP/8zRo0cB+IM/+APuvPNOtm/fzuHDhzl48CD9/f3cfPPNnHfeeSv2XoUAeOaZZ7j66qs588wzufjii1d7c4QQYtnJuV5sNCf7uV5StYUQQgghhBBCiDpkxVkIIYQQQgghhKhDAmchhBBCCCGEEKIOCZyFEEIIIYQQQog6JHAWQgghhBBCCCHqkMBZCCGEEEIIIYSoQwJnIYQQQgghhBCiDgmchRBCCCGEEEKIOiRwFkIIIYQQQggh6pDAWQghhBBCCCGEqEMCZyGEEEIIIYQQog4JnIUQQgghhBBCiDr+P5/fSY7LP0qPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "generate_plots(n_days=3, hfcs=hfcs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Results\n", + "In this case, `TSMixer` and `TiDEModel` both perform similarly well. Keep in mind that we performed only partial training on the data, and that we used the default model parameters without any hyperparameter tuning. \n", + "\n", + "Here are some ways to further improve the performance:\n", + "- set `full_training=True`\n", + "- perform hyperparmaeter tuning\n", + "- add more covariates (we have only added cyclic encodings of calendar information)\n", + "- ..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From cdff09ab0646df7a25304a6b047b112f5ac78552 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Tue, 9 Apr 2024 11:00:12 +0200 Subject: [PATCH 028/161] use pytest to skip torch tests (#2307) * use pytest to skip torch tests * fix some mistakes in tsmixer notebook --- darts/tests/datasets/test_datasets.py | 2591 ++++++++------- .../explainability/test_tft_explainer.py | 855 +++-- darts/tests/models/components/glu_variants.py | 31 +- .../components/test_layer_norm_variants.py | 57 +- darts/tests/models/forecasting/test_RNN.py | 286 +- darts/tests/models/forecasting/test_TCN.py | 356 +- darts/tests/models/forecasting/test_TFT.py | 754 +++-- .../models/forecasting/test_block_RNN.py | 298 +- .../forecasting/test_dlinear_nlinear.py | 590 ++-- .../test_global_forecasting_models.py | 1431 ++++---- .../models/forecasting/test_nbeats_nhits.py | 326 +- .../models/forecasting/test_ptl_trainer.py | 464 ++- .../models/forecasting/test_tide_model.py | 432 ++- .../test_torch_forecasting_model.py | 2934 ++++++++--------- .../forecasting/test_transformer_model.py | 314 +- .../tests/models/forecasting/test_tsmixer.py | 13 +- darts/tests/utils/test_likelihood_models.py | 37 +- darts/tests/utils/test_losses.py | 103 +- darts/tests/utils/test_utils_torch.py | 212 +- docs/source/examples.rst | 2 +- examples/21-TSMixer-examples.ipynb | 11 +- 21 files changed, 5993 insertions(+), 6104 deletions(-) diff --git a/darts/tests/datasets/test_datasets.py b/darts/tests/datasets/test_datasets.py index 92b37f105b..d4676d6ae7 100644 --- a/darts/tests/datasets/test_datasets.py +++ b/darts/tests/datasets/test_datasets.py @@ -29,1435 +29,1424 @@ SplitCovariatesSequentialDataset, SplitCovariatesShiftedDataset, ) - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not installed - dataset tests will be skipped.") - TORCH_AVAILABLE = False - -if TORCH_AVAILABLE: - - class TestDataset: - target1 = gaussian_timeseries(length=100).with_static_covariates( - pd.Series([0, 1], index=["st1", "st2"]) - ) - target2 = gaussian_timeseries(length=150).with_static_covariates( - pd.Series([2, 3], index=["st1", "st2"]) - ) - cov_st1 = target1.static_covariates.values - cov_st2 = target2.static_covariates.values - cov_st2_df = pd.Series([2, 3], index=["st1", "st2"]) - vals1, vals2 = target1.values(), target2.values() - cov1, cov2 = gaussian_timeseries(length=100), gaussian_timeseries(length=150) - - def _assert_eq(self, lefts: tuple, rights: tuple): - for left, right in zip(lefts, rights): - left = left.values() if isinstance(left, TimeSeries) else left - right = right.values() if isinstance(right, TimeSeries) else right - assert type(left) is type(right) - assert ( - isinstance( - left, (TimeSeries, pd.Series, pd.DataFrame, np.ndarray, list) - ) - or left is None - ) - if isinstance(left, (pd.Series, pd.DataFrame)): - assert left.equals(right) - elif isinstance(left, np.ndarray): - np.testing.assert_array_equal(left, right) - elif isinstance(left, (list, TimeSeries)): - assert left == right - else: - assert right is None - - def test_past_covariates_inference_dataset(self): - # one target series - ds = PastCovariatesInferenceDataset( - target_series=self.target1, input_chunk_length=len(self.target1) - ) - np.testing.assert_almost_equal(ds[0][0], self.vals1) - self._assert_eq(ds[0][1:], (None, None, self.cov_st1, self.target1)) + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) - # two target series - ds = PastCovariatesInferenceDataset( - target_series=[self.target1, self.target2], - input_chunk_length=max(len(self.target1), len(self.target2)), - ) - np.testing.assert_almost_equal(ds[1][0], self.vals2) - self._assert_eq(ds[1][1:], (None, None, self.cov_st2, self.target2)) - # fail if covariates do not have same size - with pytest.raises(ValueError): - ds = PastCovariatesInferenceDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] +class TestDataset: + target1 = gaussian_timeseries(length=100).with_static_covariates( + pd.Series([0, 1], index=["st1", "st2"]) + ) + target2 = gaussian_timeseries(length=150).with_static_covariates( + pd.Series([2, 3], index=["st1", "st2"]) + ) + cov_st1 = target1.static_covariates.values + cov_st2 = target2.static_covariates.values + cov_st2_df = pd.Series([2, 3], index=["st1", "st2"]) + vals1, vals2 = target1.values(), target2.values() + cov1, cov2 = gaussian_timeseries(length=100), gaussian_timeseries(length=150) + + def _assert_eq(self, lefts: tuple, rights: tuple): + for left, right in zip(lefts, rights): + left = left.values() if isinstance(left, TimeSeries) else left + right = right.values() if isinstance(right, TimeSeries) else right + assert type(left) is type(right) + assert ( + isinstance( + left, (TimeSeries, pd.Series, pd.DataFrame, np.ndarray, list) ) + or left is None + ) + if isinstance(left, (pd.Series, pd.DataFrame)): + assert left.equals(right) + elif isinstance(left, np.ndarray): + np.testing.assert_array_equal(left, right) + elif isinstance(left, (list, TimeSeries)): + assert left == right + else: + assert right is None + + def test_past_covariates_inference_dataset(self): + # one target series + ds = PastCovariatesInferenceDataset( + target_series=self.target1, input_chunk_length=len(self.target1) + ) + np.testing.assert_almost_equal(ds[0][0], self.vals1) + self._assert_eq(ds[0][1:], (None, None, self.cov_st1, self.target1)) - # with covariates - ds = PastCovariatesInferenceDataset( - target_series=[self.target1, self.target2], - covariates=[self.cov1, self.cov2], - input_chunk_length=max(len(self.target1), len(self.target2)), - ) - np.testing.assert_almost_equal(ds[1][0], self.vals2) - np.testing.assert_almost_equal(ds[1][1], self.cov2.values()) - self._assert_eq( - ds[1][2:], (None, self.cov_st2, self.target2) - ) # no "future past" covariate here - - # more complex case with future past covariates: - times1 = pd.date_range(start="20100101", end="20100701", freq="D") - times2 = pd.date_range( - start="20100101", end="20100820", freq="D" - ) # 50 days longer than times1 - - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - short_cov = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ) - long_cov = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) + # two target series + ds = PastCovariatesInferenceDataset( + target_series=[self.target1, self.target2], + input_chunk_length=max(len(self.target1), len(self.target2)), + ) + np.testing.assert_almost_equal(ds[1][0], self.vals2) + self._assert_eq(ds[1][1:], (None, None, self.cov_st2, self.target2)) + # fail if covariates do not have same size + with pytest.raises(ValueError): ds = PastCovariatesInferenceDataset( - target_series=target, - covariates=short_cov, - input_chunk_length=10, - output_chunk_length=10, - n=30, + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - # should fail if covariates are too short - with pytest.raises(ValueError): - _ = ds[0] - - # Should return correct values when covariates is long enough - ds = PastCovariatesInferenceDataset( - target_series=target, - covariates=long_cov, - input_chunk_length=10, - output_chunk_length=10, - n=30, - ) + # with covariates + ds = PastCovariatesInferenceDataset( + target_series=[self.target1, self.target2], + covariates=[self.cov1, self.cov2], + input_chunk_length=max(len(self.target1), len(self.target2)), + ) + np.testing.assert_almost_equal(ds[1][0], self.vals2) + np.testing.assert_almost_equal(ds[1][1], self.cov2.values()) + self._assert_eq( + ds[1][2:], (None, self.cov_st2, self.target2) + ) # no "future past" covariate here + + # more complex case with future past covariates: + times1 = pd.date_range(start="20100101", end="20100701", freq="D") + times2 = pd.date_range( + start="20100101", end="20100820", freq="D" + ) # 50 days longer than times1 + + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + short_cov = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ) + long_cov = TimeSeries.from_times_and_values( + times2, np.random.randn(len(times2)) + ) - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], long_cov.values()[-60:-50]) - np.testing.assert_almost_equal(ds[0][2], long_cov.values()[-50:-30]) - np.testing.assert_almost_equal(ds[0][3], self.cov_st2) - assert ds[0][4] == target - - # Should also work for integer-indexed series - target = TimeSeries.from_times_and_values( - pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) - ).with_static_covariates(self.cov_st2_df) - covariate = TimeSeries.from_times_and_values( - pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) - ) + ds = PastCovariatesInferenceDataset( + target_series=target, + covariates=short_cov, + input_chunk_length=10, + output_chunk_length=10, + n=30, + ) - ds = PastCovariatesInferenceDataset( - target_series=target, - covariates=covariate, - input_chunk_length=10, - output_chunk_length=10, - n=20, - ) + # should fail if covariates are too short + with pytest.raises(ValueError): + _ = ds[0] + + # Should return correct values when covariates is long enough + ds = PastCovariatesInferenceDataset( + target_series=target, + covariates=long_cov, + input_chunk_length=10, + output_chunk_length=10, + n=30, + ) - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], covariate.values()[20:30]) - np.testing.assert_almost_equal(ds[0][2], covariate.values()[30:40]) - np.testing.assert_almost_equal(ds[0][3], self.cov_st2) - assert ds[0][4] == target + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], long_cov.values()[-60:-50]) + np.testing.assert_almost_equal(ds[0][2], long_cov.values()[-50:-30]) + np.testing.assert_almost_equal(ds[0][3], self.cov_st2) + assert ds[0][4] == target + + # Should also work for integer-indexed series + target = TimeSeries.from_times_and_values( + pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) + ).with_static_covariates(self.cov_st2_df) + covariate = TimeSeries.from_times_and_values( + pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) + ) - def test_future_covariates_inference_dataset(self): - # one target series - ds = FutureCovariatesInferenceDataset( - target_series=self.target1, input_chunk_length=len(self.target1) - ) - np.testing.assert_almost_equal(ds[0][0], self.vals1) - self._assert_eq(ds[0][1:], (None, self.cov_st1, self.target1)) + ds = PastCovariatesInferenceDataset( + target_series=target, + covariates=covariate, + input_chunk_length=10, + output_chunk_length=10, + n=20, + ) - # two target series - ds = FutureCovariatesInferenceDataset( - target_series=[self.target1, self.target2], - input_chunk_length=max(len(self.target1), len(self.target2)), - ) - np.testing.assert_almost_equal(ds[1][0], self.vals2) - self._assert_eq(ds[1][1:], (None, self.cov_st2, self.target2)) + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], covariate.values()[20:30]) + np.testing.assert_almost_equal(ds[0][2], covariate.values()[30:40]) + np.testing.assert_almost_equal(ds[0][3], self.cov_st2) + assert ds[0][4] == target - # fail if covariates do not have same size - with pytest.raises(ValueError): - ds = FutureCovariatesInferenceDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] - ) + def test_future_covariates_inference_dataset(self): + # one target series + ds = FutureCovariatesInferenceDataset( + target_series=self.target1, input_chunk_length=len(self.target1) + ) + np.testing.assert_almost_equal(ds[0][0], self.vals1) + self._assert_eq(ds[0][1:], (None, self.cov_st1, self.target1)) - # With future past covariates: - times1 = pd.date_range(start="20100101", end="20100701", freq="D") - times2 = pd.date_range( - start="20100101", end="20100820", freq="D" - ) # 50 days longer than times1 - - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - short_cov = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ) - long_cov = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) + # two target series + ds = FutureCovariatesInferenceDataset( + target_series=[self.target1, self.target2], + input_chunk_length=max(len(self.target1), len(self.target2)), + ) + np.testing.assert_almost_equal(ds[1][0], self.vals2) + self._assert_eq(ds[1][1:], (None, self.cov_st2, self.target2)) + # fail if covariates do not have same size + with pytest.raises(ValueError): ds = FutureCovariatesInferenceDataset( - target_series=target, covariates=short_cov, input_chunk_length=10, n=30 + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - # should fail if covariates are too short - with pytest.raises(ValueError): - _ = ds[0] - - # Should return correct values when covariates is long enough - ds = FutureCovariatesInferenceDataset( - target_series=target, covariates=long_cov, input_chunk_length=10, n=30 - ) + # With future past covariates: + times1 = pd.date_range(start="20100101", end="20100701", freq="D") + times2 = pd.date_range( + start="20100101", end="20100820", freq="D" + ) # 50 days longer than times1 - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], long_cov.values()[-50:-20]) - np.testing.assert_almost_equal(ds[0][2], self.cov_st2) - assert ds[0][3] == target - - # Should also work for integer-indexed series - target = TimeSeries.from_times_and_values( - pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) - ).with_static_covariates(self.cov_st2_df) - covariate = TimeSeries.from_times_and_values( - pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) - ) + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + short_cov = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ) + long_cov = TimeSeries.from_times_and_values( + times2, np.random.randn(len(times2)) + ) - ds = FutureCovariatesInferenceDataset( - target_series=target, covariates=covariate, input_chunk_length=10, n=20 - ) + ds = FutureCovariatesInferenceDataset( + target_series=target, covariates=short_cov, input_chunk_length=10, n=30 + ) - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], covariate.values()[30:50]) - np.testing.assert_almost_equal(ds[0][2], self.cov_st2) - assert ds[0][3] == target + # should fail if covariates are too short + with pytest.raises(ValueError): + _ = ds[0] - def test_dual_covariates_inference_dataset(self): - # one target series - ds = DualCovariatesInferenceDataset( - target_series=self.target1, input_chunk_length=len(self.target1) - ) - np.testing.assert_almost_equal(ds[0][0], self.vals1) - self._assert_eq(ds[0][1:], (None, None, self.cov_st1, self.target1)) + # Should return correct values when covariates is long enough + ds = FutureCovariatesInferenceDataset( + target_series=target, covariates=long_cov, input_chunk_length=10, n=30 + ) - # two target series - ds = DualCovariatesInferenceDataset( - target_series=[self.target1, self.target2], - input_chunk_length=max(len(self.target1), len(self.target2)), - ) - np.testing.assert_almost_equal(ds[1][0], self.vals2) - self._assert_eq(ds[1][1:], (None, None, self.cov_st2, self.target2)) + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], long_cov.values()[-50:-20]) + np.testing.assert_almost_equal(ds[0][2], self.cov_st2) + assert ds[0][3] == target + + # Should also work for integer-indexed series + target = TimeSeries.from_times_and_values( + pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) + ).with_static_covariates(self.cov_st2_df) + covariate = TimeSeries.from_times_and_values( + pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) + ) - # fail if covariates do not have same size - with pytest.raises(ValueError): - ds = DualCovariatesInferenceDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] - ) + ds = FutureCovariatesInferenceDataset( + target_series=target, covariates=covariate, input_chunk_length=10, n=20 + ) - # With future past covariates: - times1 = pd.date_range(start="20100101", end="20100701", freq="D") - times2 = pd.date_range( - start="20100101", end="20100820", freq="D" - ) # 50 days longer than times1 - - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - short_cov = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ) - long_cov = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], covariate.values()[30:50]) + np.testing.assert_almost_equal(ds[0][2], self.cov_st2) + assert ds[0][3] == target - ds = DualCovariatesInferenceDataset( - target_series=target, - covariates=short_cov, - input_chunk_length=10, - output_chunk_length=10, - n=30, - ) + def test_dual_covariates_inference_dataset(self): + # one target series + ds = DualCovariatesInferenceDataset( + target_series=self.target1, input_chunk_length=len(self.target1) + ) + np.testing.assert_almost_equal(ds[0][0], self.vals1) + self._assert_eq(ds[0][1:], (None, None, self.cov_st1, self.target1)) - # should fail if covariates are too short - with pytest.raises(ValueError): - _ = ds[0] + # two target series + ds = DualCovariatesInferenceDataset( + target_series=[self.target1, self.target2], + input_chunk_length=max(len(self.target1), len(self.target2)), + ) + np.testing.assert_almost_equal(ds[1][0], self.vals2) + self._assert_eq(ds[1][1:], (None, None, self.cov_st2, self.target2)) - # Should return correct values when covariates is long enough + # fail if covariates do not have same size + with pytest.raises(ValueError): ds = DualCovariatesInferenceDataset( - target_series=target, - covariates=long_cov, - input_chunk_length=10, - output_chunk_length=10, - n=30, + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], long_cov.values()[-60:-50]) - np.testing.assert_almost_equal(ds[0][2], long_cov.values()[-50:-20]) - np.testing.assert_almost_equal(ds[0][3], self.cov_st2) - assert ds[0][4] == target - - # Should also work for integer-indexed series - target = TimeSeries.from_times_and_values( - pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) - ).with_static_covariates(self.cov_st2_df) - covariate = TimeSeries.from_times_and_values( - pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) - ) - - ds = DualCovariatesInferenceDataset( - target_series=target, - covariates=covariate, - input_chunk_length=10, - output_chunk_length=10, - n=20, - ) + # With future past covariates: + times1 = pd.date_range(start="20100101", end="20100701", freq="D") + times2 = pd.date_range( + start="20100101", end="20100820", freq="D" + ) # 50 days longer than times1 - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], covariate.values()[20:30]) - np.testing.assert_almost_equal(ds[0][2], covariate.values()[30:50]) - np.testing.assert_almost_equal(ds[0][3], self.cov_st2) - assert ds[0][4] == target - - def test_mixed_covariates_inference_dataset(self): - # With future past covariates: - times1 = pd.date_range(start="20100101", end="20100701", freq="D") - times2 = pd.date_range( - start="20100201", end="20100820", freq="D" - ) # ends 50 days after times1 - - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - past_cov = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ) - long_past_cov = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) - future_cov = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + short_cov = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ) + long_cov = TimeSeries.from_times_and_values( + times2, np.random.randn(len(times2)) + ) - ds = MixedCovariatesInferenceDataset( - target_series=target, - past_covariates=past_cov, - future_covariates=past_cov, - input_chunk_length=10, - output_chunk_length=10, - n=30, - ) + ds = DualCovariatesInferenceDataset( + target_series=target, + covariates=short_cov, + input_chunk_length=10, + output_chunk_length=10, + n=30, + ) - # should fail if future covariates are too short - with pytest.raises(ValueError): - _ = ds[0] + # should fail if covariates are too short + with pytest.raises(ValueError): + _ = ds[0] + + # Should return correct values when covariates is long enough + ds = DualCovariatesInferenceDataset( + target_series=target, + covariates=long_cov, + input_chunk_length=10, + output_chunk_length=10, + n=30, + ) - # Should return correct values when covariates is long enough - ds = MixedCovariatesInferenceDataset( - target_series=target, - past_covariates=long_past_cov, - future_covariates=future_cov, - input_chunk_length=10, - output_chunk_length=10, - n=30, - ) + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], long_cov.values()[-60:-50]) + np.testing.assert_almost_equal(ds[0][2], long_cov.values()[-50:-20]) + np.testing.assert_almost_equal(ds[0][3], self.cov_st2) + assert ds[0][4] == target + + # Should also work for integer-indexed series + target = TimeSeries.from_times_and_values( + pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) + ).with_static_covariates(self.cov_st2_df) + covariate = TimeSeries.from_times_and_values( + pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) + ) - # It should contain: - # past_target, past_covariates, historic_future_covariates, future_covariates, future_past_covariates - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], long_past_cov.values()[-60:-50]) - np.testing.assert_almost_equal(ds[0][2], future_cov.values()[-60:-50]) - np.testing.assert_almost_equal(ds[0][3], future_cov.values()[-50:-20]) - np.testing.assert_almost_equal(ds[0][4], long_past_cov.values()[-50:-30]) - np.testing.assert_almost_equal(ds[0][5], self.cov_st2) - assert ds[0][6] == target - - # Should also work for integer-indexed series - target = TimeSeries.from_times_and_values( - pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) - ).with_static_covariates(self.cov_st2_df) - past_cov = TimeSeries.from_times_and_values( - pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) - ) - future_cov = TimeSeries.from_times_and_values( - pd.RangeIndex(start=30, stop=100, step=1), np.random.randn(70) - ) + ds = DualCovariatesInferenceDataset( + target_series=target, + covariates=covariate, + input_chunk_length=10, + output_chunk_length=10, + n=20, + ) - ds = MixedCovariatesInferenceDataset( - target_series=target, - past_covariates=past_cov, - future_covariates=future_cov, - input_chunk_length=10, - output_chunk_length=10, - n=20, - ) + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], covariate.values()[20:30]) + np.testing.assert_almost_equal(ds[0][2], covariate.values()[30:50]) + np.testing.assert_almost_equal(ds[0][3], self.cov_st2) + assert ds[0][4] == target + + def test_mixed_covariates_inference_dataset(self): + # With future past covariates: + times1 = pd.date_range(start="20100101", end="20100701", freq="D") + times2 = pd.date_range( + start="20100201", end="20100820", freq="D" + ) # ends 50 days after times1 + + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + past_cov = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ) + long_past_cov = TimeSeries.from_times_and_values( + times2, np.random.randn(len(times2)) + ) + future_cov = TimeSeries.from_times_and_values( + times2, np.random.randn(len(times2)) + ) - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], past_cov.values()[20:30]) - np.testing.assert_almost_equal(ds[0][2], future_cov.values()[10:20]) - np.testing.assert_almost_equal(ds[0][3], future_cov.values()[20:40]) - np.testing.assert_almost_equal(ds[0][4], past_cov.values()[30:40]) - np.testing.assert_almost_equal(ds[0][5], self.cov_st2) - assert ds[0][6] == target - - def test_split_covariates_inference_dataset(self): - # With future past covariates: - times1 = pd.date_range(start="20100101", end="20100701", freq="D") - times2 = pd.date_range( - start="20100201", end="20100820", freq="D" - ) # ends 50 days after times1 - - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - past_cov = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ) - long_past_cov = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) - future_cov = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) + ds = MixedCovariatesInferenceDataset( + target_series=target, + past_covariates=past_cov, + future_covariates=past_cov, + input_chunk_length=10, + output_chunk_length=10, + n=30, + ) - ds = SplitCovariatesInferenceDataset( - target_series=target, - past_covariates=past_cov, - future_covariates=past_cov, - input_chunk_length=10, - output_chunk_length=10, - n=30, - ) + # should fail if future covariates are too short + with pytest.raises(ValueError): + _ = ds[0] + + # Should return correct values when covariates is long enough + ds = MixedCovariatesInferenceDataset( + target_series=target, + past_covariates=long_past_cov, + future_covariates=future_cov, + input_chunk_length=10, + output_chunk_length=10, + n=30, + ) - # should fail if future covariates are too short - with pytest.raises(ValueError): - _ = ds[0] + # It should contain: + # past_target, past_covariates, historic_future_covariates, future_covariates, future_past_covariates + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], long_past_cov.values()[-60:-50]) + np.testing.assert_almost_equal(ds[0][2], future_cov.values()[-60:-50]) + np.testing.assert_almost_equal(ds[0][3], future_cov.values()[-50:-20]) + np.testing.assert_almost_equal(ds[0][4], long_past_cov.values()[-50:-30]) + np.testing.assert_almost_equal(ds[0][5], self.cov_st2) + assert ds[0][6] == target + + # Should also work for integer-indexed series + target = TimeSeries.from_times_and_values( + pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) + ).with_static_covariates(self.cov_st2_df) + past_cov = TimeSeries.from_times_and_values( + pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) + ) + future_cov = TimeSeries.from_times_and_values( + pd.RangeIndex(start=30, stop=100, step=1), np.random.randn(70) + ) - # Should return correct values when covariates is long enough - ds = SplitCovariatesInferenceDataset( - target_series=target, - past_covariates=long_past_cov, - future_covariates=future_cov, - input_chunk_length=10, - output_chunk_length=10, - n=30, - ) + ds = MixedCovariatesInferenceDataset( + target_series=target, + past_covariates=past_cov, + future_covariates=future_cov, + input_chunk_length=10, + output_chunk_length=10, + n=20, + ) - # It should contain: - # past_target, past_covariates, future_covariates, future_past_covariates - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], long_past_cov.values()[-60:-50]) - np.testing.assert_almost_equal(ds[0][2], future_cov.values()[-50:-20]) - np.testing.assert_almost_equal(ds[0][3], long_past_cov.values()[-50:-30]) - np.testing.assert_almost_equal(ds[0][4], self.cov_st2) - assert ds[0][5] == target - - # Should also work for integer-indexed series - target = TimeSeries.from_times_and_values( - pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) - ).with_static_covariates(self.cov_st2_df) - past_cov = TimeSeries.from_times_and_values( - pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) - ) - future_cov = TimeSeries.from_times_and_values( - pd.RangeIndex(start=30, stop=100, step=1), np.random.randn(70) - ) + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], past_cov.values()[20:30]) + np.testing.assert_almost_equal(ds[0][2], future_cov.values()[10:20]) + np.testing.assert_almost_equal(ds[0][3], future_cov.values()[20:40]) + np.testing.assert_almost_equal(ds[0][4], past_cov.values()[30:40]) + np.testing.assert_almost_equal(ds[0][5], self.cov_st2) + assert ds[0][6] == target + + def test_split_covariates_inference_dataset(self): + # With future past covariates: + times1 = pd.date_range(start="20100101", end="20100701", freq="D") + times2 = pd.date_range( + start="20100201", end="20100820", freq="D" + ) # ends 50 days after times1 + + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + past_cov = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ) + long_past_cov = TimeSeries.from_times_and_values( + times2, np.random.randn(len(times2)) + ) + future_cov = TimeSeries.from_times_and_values( + times2, np.random.randn(len(times2)) + ) - ds = SplitCovariatesInferenceDataset( - target_series=target, - past_covariates=past_cov, - future_covariates=future_cov, - input_chunk_length=10, - output_chunk_length=10, - n=20, - ) + ds = SplitCovariatesInferenceDataset( + target_series=target, + past_covariates=past_cov, + future_covariates=past_cov, + input_chunk_length=10, + output_chunk_length=10, + n=30, + ) - np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) - np.testing.assert_almost_equal(ds[0][1], past_cov.values()[20:30]) - np.testing.assert_almost_equal(ds[0][2], future_cov.values()[20:40]) - np.testing.assert_almost_equal(ds[0][3], past_cov.values()[30:40]) - np.testing.assert_almost_equal(ds[0][4], self.cov_st2) - assert ds[0][5] == target + # should fail if future covariates are too short + with pytest.raises(ValueError): + _ = ds[0] + + # Should return correct values when covariates is long enough + ds = SplitCovariatesInferenceDataset( + target_series=target, + past_covariates=long_past_cov, + future_covariates=future_cov, + input_chunk_length=10, + output_chunk_length=10, + n=30, + ) - @pytest.mark.parametrize( - "config", - [ - # (dataset class, whether contains future, future batch index) - (PastCovariatesInferenceDataset, None), - (FutureCovariatesInferenceDataset, 1), - (DualCovariatesInferenceDataset, 2), - (MixedCovariatesInferenceDataset, 3), - (SplitCovariatesInferenceDataset, 2), - ], - ) - def test_inference_dataset_output_chunk_shift(self, config): - ds_cls, future_idx = config - ocl = 1 - ocs = 2 - target = self.target1[: -(ocl + ocs)] - - ds_covs = {} - ds_init_params = set(inspect.signature(ds_cls.__init__).parameters) - for cov_type in ["covariates", "past_covariates", "future_covariates"]: - if cov_type in ds_init_params: - ds_covs[cov_type] = self.cov1 - - with pytest.raises(ValueError) as err: - _ = ds_cls( - target_series=target, - input_chunk_length=1, - output_chunk_length=1, - output_chunk_shift=1, - n=2, - **ds_covs, - ) - assert str(err.value).startswith("Cannot perform auto-regression") + # It should contain: + # past_target, past_covariates, future_covariates, future_past_covariates + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], long_past_cov.values()[-60:-50]) + np.testing.assert_almost_equal(ds[0][2], future_cov.values()[-50:-20]) + np.testing.assert_almost_equal(ds[0][3], long_past_cov.values()[-50:-30]) + np.testing.assert_almost_equal(ds[0][4], self.cov_st2) + assert ds[0][5] == target + + # Should also work for integer-indexed series + target = TimeSeries.from_times_and_values( + pd.RangeIndex(start=10, stop=50, step=1), np.random.randn(40) + ).with_static_covariates(self.cov_st2_df) + past_cov = TimeSeries.from_times_and_values( + pd.RangeIndex(start=20, stop=80, step=1), np.random.randn(60) + ) + future_cov = TimeSeries.from_times_and_values( + pd.RangeIndex(start=30, stop=100, step=1), np.random.randn(70) + ) - # regular dataset with output shift=0 and ocl=3: the 3rd future values should be identical to the 1st future - # values of a dataset with output shift=2 and ocl=1 - ds_reg = ds_cls( - target_series=target, - input_chunk_length=1, - output_chunk_length=3, - output_chunk_shift=0, - n=1, - **ds_covs, - ) + ds = SplitCovariatesInferenceDataset( + target_series=target, + past_covariates=past_cov, + future_covariates=future_cov, + input_chunk_length=10, + output_chunk_length=10, + n=20, + ) - ds_shift = ds_cls( + np.testing.assert_almost_equal(ds[0][0], target.values()[-10:]) + np.testing.assert_almost_equal(ds[0][1], past_cov.values()[20:30]) + np.testing.assert_almost_equal(ds[0][2], future_cov.values()[20:40]) + np.testing.assert_almost_equal(ds[0][3], past_cov.values()[30:40]) + np.testing.assert_almost_equal(ds[0][4], self.cov_st2) + assert ds[0][5] == target + + @pytest.mark.parametrize( + "config", + [ + # (dataset class, whether contains future, future batch index) + (PastCovariatesInferenceDataset, None), + (FutureCovariatesInferenceDataset, 1), + (DualCovariatesInferenceDataset, 2), + (MixedCovariatesInferenceDataset, 3), + (SplitCovariatesInferenceDataset, 2), + ], + ) + def test_inference_dataset_output_chunk_shift(self, config): + ds_cls, future_idx = config + ocl = 1 + ocs = 2 + target = self.target1[: -(ocl + ocs)] + + ds_covs = {} + ds_init_params = set(inspect.signature(ds_cls.__init__).parameters) + for cov_type in ["covariates", "past_covariates", "future_covariates"]: + if cov_type in ds_init_params: + ds_covs[cov_type] = self.cov1 + + with pytest.raises(ValueError) as err: + _ = ds_cls( target_series=target, input_chunk_length=1, output_chunk_length=1, - output_chunk_shift=ocs, - n=1, + output_chunk_shift=1, + n=2, **ds_covs, ) + assert str(err.value).startswith("Cannot perform auto-regression") + + # regular dataset with output shift=0 and ocl=3: the 3rd future values should be identical to the 1st future + # values of a dataset with output shift=2 and ocl=1 + ds_reg = ds_cls( + target_series=target, + input_chunk_length=1, + output_chunk_length=3, + output_chunk_shift=0, + n=1, + **ds_covs, + ) - batch_reg, batch_shift = ds_reg[0], ds_shift[0] - - # shifted prediction starts 2 steps after regular prediction - assert batch_reg[-1] == batch_shift[-1] - ocs * target.freq - - if future_idx is not None: - # 3rd future values of regular ds must be identical to the 1st future values of shifted dataset - np.testing.assert_array_equal( - batch_reg[future_idx][ocs:], batch_shift[future_idx] - ) - batch_reg = batch_reg[:future_idx] + batch_reg[future_idx + 1 :] - batch_shift = batch_shift[:future_idx] + batch_shift[future_idx + 1 :] - - # without future part, the input will be identical between regular, and shifted dataset - assert all( - [ - np.all(el_reg == el_shift) - for el_reg, el_shift in zip(batch_reg[:-1], batch_shift[:-1]) - ] - ) + ds_shift = ds_cls( + target_series=target, + input_chunk_length=1, + output_chunk_length=1, + output_chunk_shift=ocs, + n=1, + **ds_covs, + ) - def test_past_covariates_sequential_dataset(self): - # one target series - ds = PastCovariatesSequentialDataset( - target_series=self.target1, - input_chunk_length=10, - output_chunk_length=10, - ) - assert len(ds) == 81 - self._assert_eq( - ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) - ) + batch_reg, batch_shift = ds_reg[0], ds_shift[0] - # two target series - ds = PastCovariatesSequentialDataset( - target_series=[self.target1, self.target2], - input_chunk_length=10, - output_chunk_length=10, - ) - assert len(ds) == 262 - self._assert_eq( - ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) - ) - self._assert_eq( - ds[136], - (self.target2[125:135], None, self.cov_st2, self.target2[135:145]), - ) + # shifted prediction starts 2 steps after regular prediction + assert batch_reg[-1] == batch_shift[-1] - ocs * target.freq - # two target series with custom max_nr_samples - ds = PastCovariatesSequentialDataset( - target_series=[self.target1, self.target2], - input_chunk_length=10, - output_chunk_length=10, - max_samples_per_ts=50, - ) - assert len(ds) == 100 - self._assert_eq( - ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) - ) - self._assert_eq( - ds[55], - (self.target2[125:135], None, self.cov_st2, self.target2[135:145]), + if future_idx is not None: + # 3rd future values of regular ds must be identical to the 1st future values of shifted dataset + np.testing.assert_array_equal( + batch_reg[future_idx][ocs:], batch_shift[future_idx] ) + batch_reg = batch_reg[:future_idx] + batch_reg[future_idx + 1 :] + batch_shift = batch_shift[:future_idx] + batch_shift[future_idx + 1 :] - # two targets and one covariate - with pytest.raises(ValueError): - ds = PastCovariatesSequentialDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] - ) + # without future part, the input will be identical between regular, and shifted dataset + assert all( + [ + np.all(el_reg == el_shift) + for el_reg, el_shift in zip(batch_reg[:-1], batch_shift[:-1]) + ] + ) - # two targets and two covariates - ds = PastCovariatesSequentialDataset( - target_series=[self.target1, self.target2], - covariates=[self.cov1, self.cov2], - input_chunk_length=10, - output_chunk_length=10, - ) - self._assert_eq( - ds[5], - ( - self.target1[75:85], - self.cov1[75:85], - self.cov_st1, - self.target1[85:95], - ), - ) - self._assert_eq( - ds[136], - ( - self.target2[125:135], - self.cov2[125:135], - self.cov_st2, - self.target2[135:145], - ), - ) + def test_past_covariates_sequential_dataset(self): + # one target series + ds = PastCovariatesSequentialDataset( + target_series=self.target1, + input_chunk_length=10, + output_chunk_length=10, + ) + assert len(ds) == 81 + self._assert_eq( + ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) + ) - # should fail if covariates do not have the required time span, even though covariates are longer - times1 = pd.date_range(start="20100101", end="20110101", freq="D") - times2 = pd.date_range(start="20120101", end="20150101", freq="D") - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) - ds = PastCovariatesSequentialDataset( - target_series=target, - covariates=cov, - input_chunk_length=10, - output_chunk_length=10, - ) - with pytest.raises(ValueError): - _ = ds[5] - - # the same should fail when series are integer-indexed - times1 = pd.RangeIndex(start=0, stop=100, step=1) - times2 = pd.RangeIndex(start=200, stop=400, step=1) - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) - ds = PastCovariatesSequentialDataset( - target_series=target, - covariates=cov, - input_chunk_length=10, - output_chunk_length=10, - ) - with pytest.raises(ValueError): - _ = ds[5] - - # we should get the correct covariate slice even when target and covariates are not aligned - times1 = pd.date_range(start="20100101", end="20110101", freq="D") - times2 = pd.date_range(start="20090101", end="20110106", freq="D") - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) - ds = PastCovariatesSequentialDataset( - target_series=target, - covariates=cov, - input_chunk_length=10, - output_chunk_length=10, - ) + # two target series + ds = PastCovariatesSequentialDataset( + target_series=[self.target1, self.target2], + input_chunk_length=10, + output_chunk_length=10, + ) + assert len(ds) == 262 + self._assert_eq( + ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) + ) + self._assert_eq( + ds[136], + (self.target2[125:135], None, self.cov_st2, self.target2[135:145]), + ) - np.testing.assert_almost_equal(ds[0][1], cov.values()[-25:-15]) - np.testing.assert_almost_equal(ds[5][1], cov.values()[-30:-20]) + # two target series with custom max_nr_samples + ds = PastCovariatesSequentialDataset( + target_series=[self.target1, self.target2], + input_chunk_length=10, + output_chunk_length=10, + max_samples_per_ts=50, + ) + assert len(ds) == 100 + self._assert_eq( + ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) + ) + self._assert_eq( + ds[55], + (self.target2[125:135], None, self.cov_st2, self.target2[135:145]), + ) - # This should also be the case when series are integer indexed - times1 = pd.RangeIndex(start=100, stop=200, step=1) - times2 = pd.RangeIndex(start=50, stop=250, step=1) - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + # two targets and one covariate + with pytest.raises(ValueError): ds = PastCovariatesSequentialDataset( - target_series=target, - covariates=cov, - input_chunk_length=10, - output_chunk_length=10, + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - np.testing.assert_almost_equal(ds[0][1], cov.values()[-70:-60]) - np.testing.assert_almost_equal(ds[5][1], cov.values()[-75:-65]) - - def test_future_covariates_sequential_dataset(self): - # one target series - ds = FutureCovariatesSequentialDataset( - target_series=self.target1, - input_chunk_length=10, - output_chunk_length=10, - ) - assert len(ds) == 81 - self._assert_eq( - ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) - ) + # two targets and two covariates + ds = PastCovariatesSequentialDataset( + target_series=[self.target1, self.target2], + covariates=[self.cov1, self.cov2], + input_chunk_length=10, + output_chunk_length=10, + ) + self._assert_eq( + ds[5], + ( + self.target1[75:85], + self.cov1[75:85], + self.cov_st1, + self.target1[85:95], + ), + ) + self._assert_eq( + ds[136], + ( + self.target2[125:135], + self.cov2[125:135], + self.cov_st2, + self.target2[135:145], + ), + ) - # two target series - ds = FutureCovariatesSequentialDataset( - target_series=[self.target1, self.target2], - input_chunk_length=10, - output_chunk_length=10, - ) - assert len(ds) == 262 - self._assert_eq( - ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) - ) - self._assert_eq( - ds[136], - (self.target2[125:135], None, self.cov_st2, self.target2[135:145]), - ) + # should fail if covariates do not have the required time span, even though covariates are longer + times1 = pd.date_range(start="20100101", end="20110101", freq="D") + times2 = pd.date_range(start="20120101", end="20150101", freq="D") + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + ds = PastCovariatesSequentialDataset( + target_series=target, + covariates=cov, + input_chunk_length=10, + output_chunk_length=10, + ) + with pytest.raises(ValueError): + _ = ds[5] + + # the same should fail when series are integer-indexed + times1 = pd.RangeIndex(start=0, stop=100, step=1) + times2 = pd.RangeIndex(start=200, stop=400, step=1) + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + ds = PastCovariatesSequentialDataset( + target_series=target, + covariates=cov, + input_chunk_length=10, + output_chunk_length=10, + ) + with pytest.raises(ValueError): + _ = ds[5] + + # we should get the correct covariate slice even when target and covariates are not aligned + times1 = pd.date_range(start="20100101", end="20110101", freq="D") + times2 = pd.date_range(start="20090101", end="20110106", freq="D") + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + ds = PastCovariatesSequentialDataset( + target_series=target, + covariates=cov, + input_chunk_length=10, + output_chunk_length=10, + ) - # two target series with custom max_nr_samples - ds = FutureCovariatesSequentialDataset( - target_series=[self.target1, self.target2], - input_chunk_length=10, - output_chunk_length=10, - max_samples_per_ts=50, - ) - assert len(ds) == 100 - self._assert_eq( - ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) - ) - self._assert_eq( - ds[55], - (self.target2[125:135], None, self.cov_st2, self.target2[135:145]), - ) + np.testing.assert_almost_equal(ds[0][1], cov.values()[-25:-15]) + np.testing.assert_almost_equal(ds[5][1], cov.values()[-30:-20]) + + # This should also be the case when series are integer indexed + times1 = pd.RangeIndex(start=100, stop=200, step=1) + times2 = pd.RangeIndex(start=50, stop=250, step=1) + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + ds = PastCovariatesSequentialDataset( + target_series=target, + covariates=cov, + input_chunk_length=10, + output_chunk_length=10, + ) - # two targets and one covariate - with pytest.raises(ValueError): - ds = FutureCovariatesSequentialDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] - ) + np.testing.assert_almost_equal(ds[0][1], cov.values()[-70:-60]) + np.testing.assert_almost_equal(ds[5][1], cov.values()[-75:-65]) - # two targets and two covariates; covariates not aligned, must contain correct values - target1 = TimeSeries.from_values( - np.random.randn(100) - ).with_static_covariates(self.cov_st2_df) - target2 = TimeSeries.from_values( - np.random.randn(50) - ).with_static_covariates(self.cov_st2_df) - cov1 = TimeSeries.from_values(np.random.randn(120)) - cov2 = TimeSeries.from_values(np.random.randn(80)) + def test_future_covariates_sequential_dataset(self): + # one target series + ds = FutureCovariatesSequentialDataset( + target_series=self.target1, + input_chunk_length=10, + output_chunk_length=10, + ) + assert len(ds) == 81 + self._assert_eq( + ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) + ) - ds = FutureCovariatesSequentialDataset( - target_series=[target1, target2], - covariates=[cov1, cov2], - input_chunk_length=10, - output_chunk_length=10, - ) + # two target series + ds = FutureCovariatesSequentialDataset( + target_series=[self.target1, self.target2], + input_chunk_length=10, + output_chunk_length=10, + ) + assert len(ds) == 262 + self._assert_eq( + ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) + ) + self._assert_eq( + ds[136], + (self.target2[125:135], None, self.cov_st2, self.target2[135:145]), + ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-20:-10]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-30:-20]) - np.testing.assert_almost_equal(ds[0][2], self.cov_st2) - np.testing.assert_almost_equal(ds[0][3], target1.values()[-10:]) - - np.testing.assert_almost_equal(ds[101][0], target2.values()[-40:-30]) - np.testing.assert_almost_equal(ds[101][1], cov2.values()[-60:-50]) - np.testing.assert_almost_equal(ds[101][2], self.cov_st2) - np.testing.assert_almost_equal(ds[101][3], target2.values()[-30:-20]) - - # Should also contain correct values when time-indexed with covariates not aligned - times1 = pd.date_range(start="20090201", end="20090220", freq="D") - times2 = pd.date_range(start="20090201", end="20090222", freq="D") - target1 = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov1 = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) + # two target series with custom max_nr_samples + ds = FutureCovariatesSequentialDataset( + target_series=[self.target1, self.target2], + input_chunk_length=10, + output_chunk_length=10, + max_samples_per_ts=50, + ) + assert len(ds) == 100 + self._assert_eq( + ds[5], (self.target1[75:85], None, self.cov_st1, self.target1[85:95]) + ) + self._assert_eq( + ds[55], + (self.target2[125:135], None, self.cov_st2, self.target2[135:145]), + ) + # two targets and one covariate + with pytest.raises(ValueError): ds = FutureCovariatesSequentialDataset( - target_series=[target1], - covariates=[cov1], - input_chunk_length=2, - output_chunk_length=2, + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-4:-2]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-4:-2]) - np.testing.assert_almost_equal(ds[0][2], self.cov_st2) - np.testing.assert_almost_equal(ds[0][3], target1.values()[-2:]) - - # Should fail if covariates are not long enough - target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( - self.cov_st2_df - ) - cov1 = TimeSeries.from_values(np.random.randn(7)) - - ds = FutureCovariatesSequentialDataset( - target_series=[target1], - covariates=[cov1], - input_chunk_length=2, - output_chunk_length=2, - ) + # two targets and two covariates; covariates not aligned, must contain correct values + target1 = TimeSeries.from_values(np.random.randn(100)).with_static_covariates( + self.cov_st2_df + ) + target2 = TimeSeries.from_values(np.random.randn(50)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(120)) + cov2 = TimeSeries.from_values(np.random.randn(80)) + + ds = FutureCovariatesSequentialDataset( + target_series=[target1, target2], + covariates=[cov1, cov2], + input_chunk_length=10, + output_chunk_length=10, + ) - with pytest.raises(ValueError): - _ = ds[0] + np.testing.assert_almost_equal(ds[0][0], target1.values()[-20:-10]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-30:-20]) + np.testing.assert_almost_equal(ds[0][2], self.cov_st2) + np.testing.assert_almost_equal(ds[0][3], target1.values()[-10:]) + + np.testing.assert_almost_equal(ds[101][0], target2.values()[-40:-30]) + np.testing.assert_almost_equal(ds[101][1], cov2.values()[-60:-50]) + np.testing.assert_almost_equal(ds[101][2], self.cov_st2) + np.testing.assert_almost_equal(ds[101][3], target2.values()[-30:-20]) + + # Should also contain correct values when time-indexed with covariates not aligned + times1 = pd.date_range(start="20090201", end="20090220", freq="D") + times2 = pd.date_range(start="20090201", end="20090222", freq="D") + target1 = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov1 = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + + ds = FutureCovariatesSequentialDataset( + target_series=[target1], + covariates=[cov1], + input_chunk_length=2, + output_chunk_length=2, + ) - def test_dual_covariates_sequential_dataset(self): - # Must contain (past_target, historic_future_covariates, future_covariates, future_target) + np.testing.assert_almost_equal(ds[0][0], target1.values()[-4:-2]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-4:-2]) + np.testing.assert_almost_equal(ds[0][2], self.cov_st2) + np.testing.assert_almost_equal(ds[0][3], target1.values()[-2:]) - # one target series - ds = DualCovariatesSequentialDataset( - target_series=self.target1, - input_chunk_length=10, - output_chunk_length=10, - ) - assert len(ds) == 81 - self._assert_eq( - ds[5], - (self.target1[75:85], None, None, self.cov_st1, self.target1[85:95]), - ) + # Should fail if covariates are not long enough + target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(7)) - # two target series - ds = DualCovariatesSequentialDataset( - target_series=[self.target1, self.target2], - input_chunk_length=10, - output_chunk_length=10, - ) - assert len(ds) == 262 - self._assert_eq( - ds[5], - (self.target1[75:85], None, None, self.cov_st1, self.target1[85:95]), - ) - self._assert_eq( - ds[136], - ( - self.target2[125:135], - None, - None, - self.cov_st2, - self.target2[135:145], - ), - ) + ds = FutureCovariatesSequentialDataset( + target_series=[target1], + covariates=[cov1], + input_chunk_length=2, + output_chunk_length=2, + ) - # two target series with custom max_nr_samples - ds = DualCovariatesSequentialDataset( - target_series=[self.target1, self.target2], - input_chunk_length=10, - output_chunk_length=10, - max_samples_per_ts=50, - ) - assert len(ds) == 100 - self._assert_eq( - ds[5], - (self.target1[75:85], None, None, self.cov_st1, self.target1[85:95]), - ) - self._assert_eq( - ds[55], - ( - self.target2[125:135], - None, - None, - self.cov_st2, - self.target2[135:145], - ), - ) + with pytest.raises(ValueError): + _ = ds[0] - # two targets and one covariate - with pytest.raises(ValueError): - ds = DualCovariatesSequentialDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] - ) + def test_dual_covariates_sequential_dataset(self): + # Must contain (past_target, historic_future_covariates, future_covariates, future_target) - # two targets and two covariates; covariates not aligned, must contain correct values - target1 = TimeSeries.from_values( - np.random.randn(100) - ).with_static_covariates(self.cov_st2_df) - target2 = TimeSeries.from_values( - np.random.randn(50) - ).with_static_covariates(self.cov_st2_df) - cov1 = TimeSeries.from_values(np.random.randn(120)) - cov2 = TimeSeries.from_values(np.random.randn(80)) + # one target series + ds = DualCovariatesSequentialDataset( + target_series=self.target1, + input_chunk_length=10, + output_chunk_length=10, + ) + assert len(ds) == 81 + self._assert_eq( + ds[5], + (self.target1[75:85], None, None, self.cov_st1, self.target1[85:95]), + ) - ds = DualCovariatesSequentialDataset( - target_series=[target1, target2], - covariates=[cov1, cov2], - input_chunk_length=10, - output_chunk_length=10, - ) + # two target series + ds = DualCovariatesSequentialDataset( + target_series=[self.target1, self.target2], + input_chunk_length=10, + output_chunk_length=10, + ) + assert len(ds) == 262 + self._assert_eq( + ds[5], + (self.target1[75:85], None, None, self.cov_st1, self.target1[85:95]), + ) + self._assert_eq( + ds[136], + ( + self.target2[125:135], + None, + None, + self.cov_st2, + self.target2[135:145], + ), + ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-20:-10]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-40:-30]) - np.testing.assert_almost_equal(ds[0][2], cov1.values()[-30:-20]) - np.testing.assert_almost_equal(ds[0][3], self.cov_st2) - np.testing.assert_almost_equal(ds[0][4], target1.values()[-10:]) - - np.testing.assert_almost_equal(ds[101][0], target2.values()[-40:-30]) - np.testing.assert_almost_equal(ds[101][1], cov2.values()[-70:-60]) - np.testing.assert_almost_equal(ds[101][2], cov2.values()[-60:-50]) - np.testing.assert_almost_equal(ds[101][3], self.cov_st2) - np.testing.assert_almost_equal(ds[101][4], target2.values()[-30:-20]) - - # Should also contain correct values when time-indexed with covariates not aligned - times1 = pd.date_range(start="20090201", end="20090220", freq="D") - times2 = pd.date_range(start="20090201", end="20090222", freq="D") - target1 = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov1 = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) + # two target series with custom max_nr_samples + ds = DualCovariatesSequentialDataset( + target_series=[self.target1, self.target2], + input_chunk_length=10, + output_chunk_length=10, + max_samples_per_ts=50, + ) + assert len(ds) == 100 + self._assert_eq( + ds[5], + (self.target1[75:85], None, None, self.cov_st1, self.target1[85:95]), + ) + self._assert_eq( + ds[55], + ( + self.target2[125:135], + None, + None, + self.cov_st2, + self.target2[135:145], + ), + ) + # two targets and one covariate + with pytest.raises(ValueError): ds = DualCovariatesSequentialDataset( - target_series=[target1], - covariates=[cov1], - input_chunk_length=2, - output_chunk_length=2, + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-4:-2]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-6:-4]) - np.testing.assert_almost_equal(ds[0][2], cov1.values()[-4:-2]) - np.testing.assert_almost_equal(ds[0][3], self.cov_st2) - np.testing.assert_almost_equal(ds[0][4], target1.values()[-2:]) + # two targets and two covariates; covariates not aligned, must contain correct values + target1 = TimeSeries.from_values(np.random.randn(100)).with_static_covariates( + self.cov_st2_df + ) + target2 = TimeSeries.from_values(np.random.randn(50)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(120)) + cov2 = TimeSeries.from_values(np.random.randn(80)) + + ds = DualCovariatesSequentialDataset( + target_series=[target1, target2], + covariates=[cov1, cov2], + input_chunk_length=10, + output_chunk_length=10, + ) - # Should fail if covariates are not long enough - target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( - self.cov_st2_df - ) - cov1 = TimeSeries.from_values(np.random.randn(7)) + np.testing.assert_almost_equal(ds[0][0], target1.values()[-20:-10]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-40:-30]) + np.testing.assert_almost_equal(ds[0][2], cov1.values()[-30:-20]) + np.testing.assert_almost_equal(ds[0][3], self.cov_st2) + np.testing.assert_almost_equal(ds[0][4], target1.values()[-10:]) + + np.testing.assert_almost_equal(ds[101][0], target2.values()[-40:-30]) + np.testing.assert_almost_equal(ds[101][1], cov2.values()[-70:-60]) + np.testing.assert_almost_equal(ds[101][2], cov2.values()[-60:-50]) + np.testing.assert_almost_equal(ds[101][3], self.cov_st2) + np.testing.assert_almost_equal(ds[101][4], target2.values()[-30:-20]) + + # Should also contain correct values when time-indexed with covariates not aligned + times1 = pd.date_range(start="20090201", end="20090220", freq="D") + times2 = pd.date_range(start="20090201", end="20090222", freq="D") + target1 = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov1 = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + + ds = DualCovariatesSequentialDataset( + target_series=[target1], + covariates=[cov1], + input_chunk_length=2, + output_chunk_length=2, + ) - ds = DualCovariatesSequentialDataset( - target_series=[target1], - covariates=[cov1], - input_chunk_length=2, - output_chunk_length=2, - ) + np.testing.assert_almost_equal(ds[0][0], target1.values()[-4:-2]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-6:-4]) + np.testing.assert_almost_equal(ds[0][2], cov1.values()[-4:-2]) + np.testing.assert_almost_equal(ds[0][3], self.cov_st2) + np.testing.assert_almost_equal(ds[0][4], target1.values()[-2:]) - with pytest.raises(ValueError): - _ = ds[0] + # Should fail if covariates are not long enough + target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(7)) - def test_past_covariates_shifted_dataset(self): - # one target series - ds = PastCovariatesShiftedDataset( - target_series=self.target1, length=10, shift=5 - ) - assert len(ds) == 86 - self._assert_eq( - ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) - ) + ds = DualCovariatesSequentialDataset( + target_series=[target1], + covariates=[cov1], + input_chunk_length=2, + output_chunk_length=2, + ) - # two target series - ds = PastCovariatesShiftedDataset( - target_series=[self.target1, self.target2], length=10, shift=5 - ) - assert len(ds) == 272 - self._assert_eq( - ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) - ) - self._assert_eq( - ds[141], - (self.target2[130:140], None, self.cov_st2, self.target2[135:145]), - ) + with pytest.raises(ValueError): + _ = ds[0] - # two target series with custom max_nr_samples - ds = PastCovariatesShiftedDataset( - target_series=[self.target1, self.target2], - length=10, - shift=5, - max_samples_per_ts=50, - ) - assert len(ds) == 100 - self._assert_eq( - ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) - ) - self._assert_eq( - ds[55], - (self.target2[130:140], None, self.cov_st2, self.target2[135:145]), - ) + def test_past_covariates_shifted_dataset(self): + # one target series + ds = PastCovariatesShiftedDataset( + target_series=self.target1, length=10, shift=5 + ) + assert len(ds) == 86 + self._assert_eq( + ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) + ) - # two targets and one covariate - with pytest.raises(ValueError): - ds = PastCovariatesShiftedDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] - ) + # two target series + ds = PastCovariatesShiftedDataset( + target_series=[self.target1, self.target2], length=10, shift=5 + ) + assert len(ds) == 272 + self._assert_eq( + ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) + ) + self._assert_eq( + ds[141], + (self.target2[130:140], None, self.cov_st2, self.target2[135:145]), + ) - # two targets and two covariates - ds = PastCovariatesShiftedDataset( - target_series=[self.target1, self.target2], - covariates=[self.cov1, self.cov2], - length=10, - shift=5, - ) - self._assert_eq( - ds[5], - ( - self.target1[80:90], - self.cov1[80:90], - self.cov_st1, - self.target1[85:95], - ), - ) - self._assert_eq( - ds[141], - ( - self.target2[130:140], - self.cov2[130:140], - self.cov_st2, - self.target2[135:145], - ), - ) + # two target series with custom max_nr_samples + ds = PastCovariatesShiftedDataset( + target_series=[self.target1, self.target2], + length=10, + shift=5, + max_samples_per_ts=50, + ) + assert len(ds) == 100 + self._assert_eq( + ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) + ) + self._assert_eq( + ds[55], + (self.target2[130:140], None, self.cov_st2, self.target2[135:145]), + ) - # Should contain correct values even when covariates are not aligned - target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( - self.cov_st2_df - ) - cov1 = TimeSeries.from_values(np.random.randn(10)) - ds = PastCovariatesShiftedDataset( - target_series=[target1], covariates=[cov1], length=3, shift=2 - ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-7:-4]) - np.testing.assert_almost_equal(ds[0][2], self.cov_st2) - np.testing.assert_almost_equal(ds[0][3], target1.values()[-3:]) - - # Should also contain correct values when time-indexed with covariates not aligned - times1 = pd.date_range(start="20090201", end="20090220", freq="D") - times2 = pd.date_range(start="20090201", end="20090222", freq="D") - target1 = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov1 = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) - ds = PastCovariatesShiftedDataset( - target_series=[target1], covariates=[cov1], length=3, shift=2 - ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-7:-4]) - np.testing.assert_almost_equal(ds[0][2], self.cov_st2) - np.testing.assert_almost_equal(ds[0][3], target1.values()[-3:]) - - # Should fail if covariates are too short - target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( - self.cov_st2_df - ) - cov1 = TimeSeries.from_values(np.random.randn(5)) + # two targets and one covariate + with pytest.raises(ValueError): ds = PastCovariatesShiftedDataset( - target_series=[target1], covariates=[cov1], length=3, shift=2 + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - with pytest.raises(ValueError): - _ = ds[0] - def test_future_covariates_shifted_dataset(self): - # one target series - ds = FutureCovariatesShiftedDataset( - target_series=self.target1, length=10, shift=5 - ) - assert len(ds) == 86 - self._assert_eq( - ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) - ) + # two targets and two covariates + ds = PastCovariatesShiftedDataset( + target_series=[self.target1, self.target2], + covariates=[self.cov1, self.cov2], + length=10, + shift=5, + ) + self._assert_eq( + ds[5], + ( + self.target1[80:90], + self.cov1[80:90], + self.cov_st1, + self.target1[85:95], + ), + ) + self._assert_eq( + ds[141], + ( + self.target2[130:140], + self.cov2[130:140], + self.cov_st2, + self.target2[135:145], + ), + ) - # two target series - ds = FutureCovariatesShiftedDataset( - target_series=[self.target1, self.target2], length=10, shift=5 - ) - assert len(ds) == 272 - self._assert_eq( - ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) - ) - self._assert_eq( - ds[141], - (self.target2[130:140], None, self.cov_st2, self.target2[135:145]), - ) + # Should contain correct values even when covariates are not aligned + target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(10)) + ds = PastCovariatesShiftedDataset( + target_series=[target1], covariates=[cov1], length=3, shift=2 + ) + np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-7:-4]) + np.testing.assert_almost_equal(ds[0][2], self.cov_st2) + np.testing.assert_almost_equal(ds[0][3], target1.values()[-3:]) + + # Should also contain correct values when time-indexed with covariates not aligned + times1 = pd.date_range(start="20090201", end="20090220", freq="D") + times2 = pd.date_range(start="20090201", end="20090222", freq="D") + target1 = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov1 = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + ds = PastCovariatesShiftedDataset( + target_series=[target1], covariates=[cov1], length=3, shift=2 + ) + np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-7:-4]) + np.testing.assert_almost_equal(ds[0][2], self.cov_st2) + np.testing.assert_almost_equal(ds[0][3], target1.values()[-3:]) + + # Should fail if covariates are too short + target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(5)) + ds = PastCovariatesShiftedDataset( + target_series=[target1], covariates=[cov1], length=3, shift=2 + ) + with pytest.raises(ValueError): + _ = ds[0] - # two target series with custom max_nr_samples - ds = FutureCovariatesShiftedDataset( - target_series=[self.target1, self.target2], - length=10, - shift=5, - max_samples_per_ts=50, - ) - assert len(ds) == 100 - self._assert_eq( - ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) - ) - self._assert_eq( - ds[55], - (self.target2[130:140], None, self.cov_st2, self.target2[135:145]), - ) + def test_future_covariates_shifted_dataset(self): + # one target series + ds = FutureCovariatesShiftedDataset( + target_series=self.target1, length=10, shift=5 + ) + assert len(ds) == 86 + self._assert_eq( + ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) + ) - # two targets and one covariate - with pytest.raises(ValueError): - ds = FutureCovariatesShiftedDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] - ) + # two target series + ds = FutureCovariatesShiftedDataset( + target_series=[self.target1, self.target2], length=10, shift=5 + ) + assert len(ds) == 272 + self._assert_eq( + ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) + ) + self._assert_eq( + ds[141], + (self.target2[130:140], None, self.cov_st2, self.target2[135:145]), + ) - # two targets and two covariates - ds = FutureCovariatesShiftedDataset( - target_series=[self.target1, self.target2], - covariates=[self.cov1, self.cov2], - length=10, - shift=5, - ) - self._assert_eq( - ds[5], - ( - self.target1[80:90], - self.cov1[85:95], - self.cov_st1, - self.target1[85:95], - ), - ) - self._assert_eq( - ds[141], - ( - self.target2[130:140], - self.cov2[135:145], - self.cov_st2, - self.target2[135:145], - ), - ) + # two target series with custom max_nr_samples + ds = FutureCovariatesShiftedDataset( + target_series=[self.target1, self.target2], + length=10, + shift=5, + max_samples_per_ts=50, + ) + assert len(ds) == 100 + self._assert_eq( + ds[5], (self.target1[80:90], None, self.cov_st1, self.target1[85:95]) + ) + self._assert_eq( + ds[55], + (self.target2[130:140], None, self.cov_st2, self.target2[135:145]), + ) - # Should contain correct values even when covariates are not aligned - target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( - self.cov_st2_df - ) - cov1 = TimeSeries.from_values(np.random.randn(10)) - ds = FutureCovariatesShiftedDataset( - target_series=[target1], covariates=[cov1], length=3, shift=2 - ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][2], self.cov_st2) - np.testing.assert_almost_equal(ds[0][3], target1.values()[-3:]) - - # Should also contain correct values when time-indexed with covariates not aligned - times1 = pd.date_range(start="20090201", end="20090220", freq="D") - times2 = pd.date_range(start="20090201", end="20090222", freq="D") - target1 = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov1 = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) - ds = FutureCovariatesShiftedDataset( - target_series=[target1], covariates=[cov1], length=3, shift=2 - ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][2], self.cov_st2) - np.testing.assert_almost_equal(ds[0][3], target1.values()[-3:]) - - # Should fail if covariates are too short - target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( - self.cov_st2_df - ) - cov1 = TimeSeries.from_values(np.random.randn(7)) + # two targets and one covariate + with pytest.raises(ValueError): ds = FutureCovariatesShiftedDataset( - target_series=[target1], covariates=[cov1], length=3, shift=2 + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - with pytest.raises(ValueError): - _ = ds[0] - def test_dual_covariates_shifted_dataset(self): - # one target series - ds = DualCovariatesShiftedDataset( - target_series=self.target1, length=10, shift=5 - ) - assert len(ds) == 86 - self._assert_eq( - ds[5], - (self.target1[80:90], None, None, self.cov_st1, self.target1[85:95]), - ) + # two targets and two covariates + ds = FutureCovariatesShiftedDataset( + target_series=[self.target1, self.target2], + covariates=[self.cov1, self.cov2], + length=10, + shift=5, + ) + self._assert_eq( + ds[5], + ( + self.target1[80:90], + self.cov1[85:95], + self.cov_st1, + self.target1[85:95], + ), + ) + self._assert_eq( + ds[141], + ( + self.target2[130:140], + self.cov2[135:145], + self.cov_st2, + self.target2[135:145], + ), + ) - # two target series - ds = DualCovariatesShiftedDataset( - target_series=[self.target1, self.target2], length=10, shift=5 - ) - assert len(ds) == 272 - self._assert_eq( - ds[5], - (self.target1[80:90], None, None, self.cov_st1, self.target1[85:95]), - ) - self._assert_eq( - ds[141], - ( - self.target2[130:140], - None, - None, - self.cov_st2, - self.target2[135:145], - ), - ) + # Should contain correct values even when covariates are not aligned + target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(10)) + ds = FutureCovariatesShiftedDataset( + target_series=[target1], covariates=[cov1], length=3, shift=2 + ) + np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][2], self.cov_st2) + np.testing.assert_almost_equal(ds[0][3], target1.values()[-3:]) + + # Should also contain correct values when time-indexed with covariates not aligned + times1 = pd.date_range(start="20090201", end="20090220", freq="D") + times2 = pd.date_range(start="20090201", end="20090222", freq="D") + target1 = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov1 = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + ds = FutureCovariatesShiftedDataset( + target_series=[target1], covariates=[cov1], length=3, shift=2 + ) + np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][2], self.cov_st2) + np.testing.assert_almost_equal(ds[0][3], target1.values()[-3:]) + + # Should fail if covariates are too short + target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(7)) + ds = FutureCovariatesShiftedDataset( + target_series=[target1], covariates=[cov1], length=3, shift=2 + ) + with pytest.raises(ValueError): + _ = ds[0] - # two target series with custom max_nr_samples - ds = DualCovariatesShiftedDataset( - target_series=[self.target1, self.target2], - length=10, - shift=5, - max_samples_per_ts=50, - ) - assert len(ds) == 100 - self._assert_eq( - ds[5], - (self.target1[80:90], None, None, self.cov_st1, self.target1[85:95]), - ) - self._assert_eq( - ds[55], - ( - self.target2[130:140], - None, - None, - self.cov_st2, - self.target2[135:145], - ), - ) + def test_dual_covariates_shifted_dataset(self): + # one target series + ds = DualCovariatesShiftedDataset( + target_series=self.target1, length=10, shift=5 + ) + assert len(ds) == 86 + self._assert_eq( + ds[5], + (self.target1[80:90], None, None, self.cov_st1, self.target1[85:95]), + ) - # two targets and one covariate - with pytest.raises(ValueError): - ds = DualCovariatesShiftedDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] - ) + # two target series + ds = DualCovariatesShiftedDataset( + target_series=[self.target1, self.target2], length=10, shift=5 + ) + assert len(ds) == 272 + self._assert_eq( + ds[5], + (self.target1[80:90], None, None, self.cov_st1, self.target1[85:95]), + ) + self._assert_eq( + ds[141], + ( + self.target2[130:140], + None, + None, + self.cov_st2, + self.target2[135:145], + ), + ) - # two targets and two covariates - ds = DualCovariatesShiftedDataset( - target_series=[self.target1, self.target2], - covariates=[self.cov1, self.cov2], - length=10, - shift=5, - ) - self._assert_eq( - ds[5], - ( - self.target1[80:90], - self.cov1[80:90], - self.cov1[85:95], - self.cov_st1, - self.target1[85:95], - ), - ) - self._assert_eq( - ds[141], - ( - self.target2[130:140], - self.cov2[130:140], - self.cov2[135:145], - self.cov_st2, - self.target2[135:145], - ), - ) + # two target series with custom max_nr_samples + ds = DualCovariatesShiftedDataset( + target_series=[self.target1, self.target2], + length=10, + shift=5, + max_samples_per_ts=50, + ) + assert len(ds) == 100 + self._assert_eq( + ds[5], + (self.target1[80:90], None, None, self.cov_st1, self.target1[85:95]), + ) + self._assert_eq( + ds[55], + ( + self.target2[130:140], + None, + None, + self.cov_st2, + self.target2[135:145], + ), + ) - # Should contain correct values even when covariates are not aligned - target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( - self.cov_st2_df - ) - cov1 = TimeSeries.from_values(np.random.randn(10)) - ds = DualCovariatesShiftedDataset( - target_series=[target1], covariates=[cov1], length=3, shift=2 - ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-7:-4]) - np.testing.assert_almost_equal(ds[0][2], cov1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][3], self.cov_st2) - np.testing.assert_almost_equal(ds[0][4], target1.values()[-3:]) - - # Should also contain correct values when time-indexed with covariates not aligned - times1 = pd.date_range(start="20090201", end="20090220", freq="D") - times2 = pd.date_range(start="20090201", end="20090222", freq="D") - target1 = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov1 = TimeSeries.from_times_and_values( - times2, np.random.randn(len(times2)) - ) + # two targets and one covariate + with pytest.raises(ValueError): ds = DualCovariatesShiftedDataset( - target_series=[target1], covariates=[cov1], length=3, shift=2 + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][1], cov1.values()[-7:-4]) - np.testing.assert_almost_equal(ds[0][2], cov1.values()[-5:-2]) - np.testing.assert_almost_equal(ds[0][3], self.cov_st2) - np.testing.assert_almost_equal(ds[0][4], target1.values()[-3:]) - - # Should fail if covariates are too short - target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( - self.cov_st2_df - ) - cov1 = TimeSeries.from_values(np.random.randn(7)) - ds = DualCovariatesShiftedDataset( - target_series=[target1], covariates=[cov1], length=3, shift=2 - ) - with pytest.raises(ValueError): - _ = ds[0] - def test_horizon_based_dataset(self): - # one target series - ds = HorizonBasedDataset( - target_series=self.target1, - output_chunk_length=10, - lh=(1, 3), - lookback=2, - ) - assert len(ds) == 20 - self._assert_eq( - ds[5], (self.target1[65:85], None, self.cov_st1, self.target1[85:95]) - ) + # two targets and two covariates + ds = DualCovariatesShiftedDataset( + target_series=[self.target1, self.target2], + covariates=[self.cov1, self.cov2], + length=10, + shift=5, + ) + self._assert_eq( + ds[5], + ( + self.target1[80:90], + self.cov1[80:90], + self.cov1[85:95], + self.cov_st1, + self.target1[85:95], + ), + ) + self._assert_eq( + ds[141], + ( + self.target2[130:140], + self.cov2[130:140], + self.cov2[135:145], + self.cov_st2, + self.target2[135:145], + ), + ) - # two target series - ds = HorizonBasedDataset( - target_series=[self.target1, self.target2], - output_chunk_length=10, - lh=(1, 3), - lookback=2, - ) - assert len(ds) == 40 - self._assert_eq( - ds[5], (self.target1[65:85], None, self.cov_st1, self.target1[85:95]) - ) - self._assert_eq( - ds[25], - (self.target2[115:135], None, self.cov_st2, self.target2[135:145]), - ) + # Should contain correct values even when covariates are not aligned + target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(10)) + ds = DualCovariatesShiftedDataset( + target_series=[target1], covariates=[cov1], length=3, shift=2 + ) + np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-7:-4]) + np.testing.assert_almost_equal(ds[0][2], cov1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][3], self.cov_st2) + np.testing.assert_almost_equal(ds[0][4], target1.values()[-3:]) + + # Should also contain correct values when time-indexed with covariates not aligned + times1 = pd.date_range(start="20090201", end="20090220", freq="D") + times2 = pd.date_range(start="20090201", end="20090222", freq="D") + target1 = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov1 = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + ds = DualCovariatesShiftedDataset( + target_series=[target1], covariates=[cov1], length=3, shift=2 + ) + np.testing.assert_almost_equal(ds[0][0], target1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][1], cov1.values()[-7:-4]) + np.testing.assert_almost_equal(ds[0][2], cov1.values()[-5:-2]) + np.testing.assert_almost_equal(ds[0][3], self.cov_st2) + np.testing.assert_almost_equal(ds[0][4], target1.values()[-3:]) + + # Should fail if covariates are too short + target1 = TimeSeries.from_values(np.random.randn(8)).with_static_covariates( + self.cov_st2_df + ) + cov1 = TimeSeries.from_values(np.random.randn(7)) + ds = DualCovariatesShiftedDataset( + target_series=[target1], covariates=[cov1], length=3, shift=2 + ) + with pytest.raises(ValueError): + _ = ds[0] + + def test_horizon_based_dataset(self): + # one target series + ds = HorizonBasedDataset( + target_series=self.target1, + output_chunk_length=10, + lh=(1, 3), + lookback=2, + ) + assert len(ds) == 20 + self._assert_eq( + ds[5], (self.target1[65:85], None, self.cov_st1, self.target1[85:95]) + ) - # two targets and one covariate - with pytest.raises(ValueError): - ds = HorizonBasedDataset( - target_series=[self.target1, self.target2], covariates=[self.cov1] - ) + # two target series + ds = HorizonBasedDataset( + target_series=[self.target1, self.target2], + output_chunk_length=10, + lh=(1, 3), + lookback=2, + ) + assert len(ds) == 40 + self._assert_eq( + ds[5], (self.target1[65:85], None, self.cov_st1, self.target1[85:95]) + ) + self._assert_eq( + ds[25], + (self.target2[115:135], None, self.cov_st2, self.target2[135:145]), + ) - # two targets and two covariates + # two targets and one covariate + with pytest.raises(ValueError): ds = HorizonBasedDataset( - target_series=[self.target1, self.target2], - covariates=[self.cov1, self.cov2], - output_chunk_length=10, - lh=(1, 3), - lookback=2, - ) - self._assert_eq( - ds[5], - ( - self.target1[65:85], - self.cov1[65:85], - self.cov_st1, - self.target1[85:95], - ), - ) - self._assert_eq( - ds[25], - ( - self.target2[115:135], - self.cov2[115:135], - self.cov_st2, - self.target2[135:145], - ), + target_series=[self.target1, self.target2], covariates=[self.cov1] ) - @pytest.mark.parametrize( - "config", - [ - # (dataset class, whether contains future, future batch index) - (PastCovariatesSequentialDataset, None), - (FutureCovariatesSequentialDataset, 1), - (DualCovariatesSequentialDataset, 2), - (MixedCovariatesSequentialDataset, 3), - (SplitCovariatesSequentialDataset, 2), - ], - ) - def test_sequential_training_dataset_output_chunk_shift(self, config): - ds_cls, future_idx = config - ocl = 1 - ocs = 2 - target = self.target1[: -(ocl + ocs)] - - ds_covs = {} - ds_init_params = set(inspect.signature(ds_cls.__init__).parameters) - for cov_type in ["covariates", "past_covariates", "future_covariates"]: - if cov_type in ds_init_params: - ds_covs[cov_type] = self.cov1 - - # regular dataset with output shift=0 and ocl=3: the 3rd future values should be identical to the 1st future - # values of a dataset with output shift=2 and ocl=1 - ds_reg = ds_cls( - target_series=target, - input_chunk_length=1, - output_chunk_length=3, - output_chunk_shift=0, - **ds_covs, - ) + # two targets and two covariates + ds = HorizonBasedDataset( + target_series=[self.target1, self.target2], + covariates=[self.cov1, self.cov2], + output_chunk_length=10, + lh=(1, 3), + lookback=2, + ) + self._assert_eq( + ds[5], + ( + self.target1[65:85], + self.cov1[65:85], + self.cov_st1, + self.target1[85:95], + ), + ) + self._assert_eq( + ds[25], + ( + self.target2[115:135], + self.cov2[115:135], + self.cov_st2, + self.target2[135:145], + ), + ) - ds_shift = ds_cls( - target_series=target, - input_chunk_length=1, - output_chunk_length=1, - output_chunk_shift=ocs, - **ds_covs, - ) + @pytest.mark.parametrize( + "config", + [ + # (dataset class, whether contains future, future batch index) + (PastCovariatesSequentialDataset, None), + (FutureCovariatesSequentialDataset, 1), + (DualCovariatesSequentialDataset, 2), + (MixedCovariatesSequentialDataset, 3), + (SplitCovariatesSequentialDataset, 2), + ], + ) + def test_sequential_training_dataset_output_chunk_shift(self, config): + ds_cls, future_idx = config + ocl = 1 + ocs = 2 + target = self.target1[: -(ocl + ocs)] + + ds_covs = {} + ds_init_params = set(inspect.signature(ds_cls.__init__).parameters) + for cov_type in ["covariates", "past_covariates", "future_covariates"]: + if cov_type in ds_init_params: + ds_covs[cov_type] = self.cov1 + + # regular dataset with output shift=0 and ocl=3: the 3rd future values should be identical to the 1st future + # values of a dataset with output shift=2 and ocl=1 + ds_reg = ds_cls( + target_series=target, + input_chunk_length=1, + output_chunk_length=3, + output_chunk_shift=0, + **ds_covs, + ) - batch_reg, batch_shift = ds_reg[0], ds_shift[0] + ds_shift = ds_cls( + target_series=target, + input_chunk_length=1, + output_chunk_length=1, + output_chunk_shift=ocs, + **ds_covs, + ) - if future_idx is not None: - # 3rd future values of regular ds must be identical to the 1st future values of shifted dataset - np.testing.assert_array_equal( - batch_reg[future_idx][-1:], batch_shift[future_idx] - ) - batch_reg = batch_reg[:future_idx] + batch_reg[future_idx + 1 :] - batch_shift = batch_shift[:future_idx] + batch_shift[future_idx + 1 :] + batch_reg, batch_shift = ds_reg[0], ds_shift[0] - # last element is the output chunk of the target series. + if future_idx is not None: # 3rd future values of regular ds must be identical to the 1st future values of shifted dataset - batch_reg = batch_reg[:-1] + (batch_reg[-1][ocs:],) - - # without future part, the input will be identical between regular, and shifted dataset - assert all( - [ - np.all(el_reg == el_shift) - for el_reg, el_shift in zip(batch_reg[:-1], batch_shift[:-1]) - ] + np.testing.assert_array_equal( + batch_reg[future_idx][-1:], batch_shift[future_idx] ) + batch_reg = batch_reg[:future_idx] + batch_reg[future_idx + 1 :] + batch_shift = batch_shift[:future_idx] + batch_shift[future_idx + 1 :] + + # last element is the output chunk of the target series. + # 3rd future values of regular ds must be identical to the 1st future values of shifted dataset + batch_reg = batch_reg[:-1] + (batch_reg[-1][ocs:],) + + # without future part, the input will be identical between regular, and shifted dataset + assert all( + [ + np.all(el_reg == el_shift) + for el_reg, el_shift in zip(batch_reg[:-1], batch_shift[:-1]) + ] + ) - def test_get_matching_index(self): - from darts.utils.data.utils import _get_matching_index - - # Check dividable freq - times1 = pd.date_range(start="20100101", end="20100330", freq="D") - times2 = pd.date_range(start="20100101", end="20100320", freq="D") - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) - assert _get_matching_index(target, cov, idx=15) == 5 - - # check non-dividable freq - times1 = pd.date_range(start="20100101", end="20120101", freq="M") - times2 = pd.date_range(start="20090101", end="20110601", freq="M") - target = TimeSeries.from_times_and_values( - times1, np.random.randn(len(times1)) - ).with_static_covariates(self.cov_st2_df) - cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) - assert _get_matching_index(target, cov, idx=15) == 15 - 7 - - # check integer-indexed series - times2 = pd.RangeIndex(start=10, stop=90) - target = TimeSeries.from_values( - np.random.randn(100) - ).with_static_covariates(self.cov_st2_df) - cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) - assert _get_matching_index(target, cov, idx=15) == 5 + def test_get_matching_index(self): + from darts.utils.data.utils import _get_matching_index + + # Check dividable freq + times1 = pd.date_range(start="20100101", end="20100330", freq="D") + times2 = pd.date_range(start="20100101", end="20100320", freq="D") + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + assert _get_matching_index(target, cov, idx=15) == 5 + + # check non-dividable freq + times1 = pd.date_range(start="20100101", end="20120101", freq="M") + times2 = pd.date_range(start="20090101", end="20110601", freq="M") + target = TimeSeries.from_times_and_values( + times1, np.random.randn(len(times1)) + ).with_static_covariates(self.cov_st2_df) + cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + assert _get_matching_index(target, cov, idx=15) == 15 - 7 + + # check integer-indexed series + times2 = pd.RangeIndex(start=10, stop=90) + target = TimeSeries.from_values(np.random.randn(100)).with_static_covariates( + self.cov_st2_df + ) + cov = TimeSeries.from_times_and_values(times2, np.random.randn(len(times2))) + assert _get_matching_index(target, cov, idx=15) == 5 diff --git a/darts/tests/explainability/test_tft_explainer.py b/darts/tests/explainability/test_tft_explainer.py index 8bea86f6b5..c1cd930977 100644 --- a/darts/tests/explainability/test_tft_explainer.py +++ b/darts/tests/explainability/test_tft_explainer.py @@ -16,462 +16,443 @@ try: from darts.explainability import TFTExplainabilityResult, TFTExplainer from darts.models import TFTModel - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. RNN tests will be skipped.") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: - - def helper_create_test_cases(series_options: list): - covariates_options = [ - {}, - {"past_covariates"}, - {"future_covariates"}, - {"past_covariates", "future_covariates"}, + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) + + +def helper_create_test_cases(series_options: list): + covariates_options = [ + {}, + {"past_covariates"}, + {"future_covariates"}, + {"past_covariates", "future_covariates"}, + ] + relative_index_options = [False, True] + use_encoders_options = [False, True] + return itertools.product( + *[ + series_options, + covariates_options, + relative_index_options, + use_encoders_options, ] - relative_index_options = [False, True] - use_encoders_options = [False, True] - return itertools.product( - *[ - series_options, - covariates_options, - relative_index_options, - use_encoders_options, + ) + + +class TestTFTExplainer: + freq = "MS" + series_lin_pos = tg.linear_timeseries(length=10, freq=freq).with_static_covariates( + pd.Series([0.0, 0.5], index=["cat", "num"]) + ) + series_sine = tg.sine_timeseries(length=10, freq=freq) + series_mv1 = series_lin_pos.stack(series_sine) + + series_lin_neg = tg.linear_timeseries( + start_value=1, end_value=0, length=10, freq=freq + ).with_static_covariates(pd.Series([1.0, 0.5], index=["cat", "num"])) + series_cos = tg.sine_timeseries(length=10, value_phase=90, freq=freq) + series_mv2 = series_lin_neg.stack(series_cos) + + series_multi = [series_mv1, series_mv2] + pc = tg.constant_timeseries(length=10, freq=freq) + pc_multi = [pc] * 2 + fc = tg.constant_timeseries(length=13, freq=freq) + fc_multi = [fc] * 2 + + def helper_get_input(self, series_option: str): + if series_option == "univariate": + return self.series_lin_pos, self.pc, self.fc + elif series_option == "multivariate": + return self.series_mv1, self.pc, self.fc + else: # multiple + return self.series_multi, self.pc_multi, self.fc_multi + + @pytest.mark.parametrize( + "test_case", helper_create_test_cases(["univariate", "multivariate"]) + ) + def test_explainer_single_univariate_multivariate_series(self, test_case): + """Test TFTExplainer with single univariate and multivariate series and a combination of + encoders, covariates, and addition of relative index.""" + series_option, cov_option, add_relative_idx, use_encoders = test_case + series, pc, fc = self.helper_get_input(series_option) + cov_test_case = dict() + use_pc, use_fc = False, False + if "past_covariates" in cov_option: + cov_test_case["past_covariates"] = pc + use_pc = True + if "future_covariates" in cov_option: + cov_test_case["future_covariates"] = fc + use_fc = True + + # expected number of features for past covs, future covs, and static covs, and encoder/decoder + n_target_expected = series.n_components + n_pc_expected = 1 if "past_covariates" in cov_test_case else 0 + n_fc_expected = 1 if "future_covariates" in cov_test_case else 0 + n_sc_expected = 2 + # encoder is number of past and future covs plus 4 optional encodings (future and past) + # plus 1 univariate target plus 1 optional relative index + n_enc_expected = ( + n_pc_expected + + n_fc_expected + + n_target_expected + + (4 if use_encoders else 0) + + (1 if add_relative_idx else 0) + ) + # encoder is number of future covs plus 2 optional encodings (future) + # plus 1 optional relative index + n_dec_expected = ( + n_fc_expected + (2 if use_encoders else 0) + (1 if add_relative_idx else 0) + ) + model = self.helper_create_model( + use_encoders=use_encoders, add_relative_idx=add_relative_idx + ) + # TFTModel requires future covariates + if ( + not add_relative_idx + and "future_covariates" not in cov_test_case + and not use_encoders + ): + with pytest.raises(ValueError): + model.fit(series=series, **cov_test_case) + return + + model.fit(series=series, **cov_test_case) + explainer = TFTExplainer(model) + explainer2 = TFTExplainer( + model, + background_series=series, + background_past_covariates=pc if use_pc else None, + background_future_covariates=fc if use_fc else None, + ) + assert explainer.background_series == explainer2.background_series + assert ( + explainer.background_past_covariates + == explainer2.background_past_covariates + ) + assert ( + explainer.background_future_covariates + == explainer2.background_future_covariates + ) + + assert hasattr(explainer, "model") + assert explainer.background_series[0] == series + if use_pc: + assert explainer.background_past_covariates[0] == pc + assert explainer.background_past_covariates[0].n_components == n_pc_expected + else: + assert explainer.background_past_covariates is None + if use_fc: + assert explainer.background_future_covariates[0] == fc + assert ( + explainer.background_future_covariates[0].n_components == n_fc_expected + ) + else: + assert explainer.background_future_covariates is None + result = explainer.explain() + assert isinstance(result, TFTExplainabilityResult) + + enc_imp = result.get_encoder_importance() + dec_imp = result.get_decoder_importance() + stc_imp = result.get_static_covariates_importance() + imps = [enc_imp, dec_imp, stc_imp] + assert all([isinstance(imp, pd.DataFrame) for imp in imps]) + # importances must sum up to 100 percent + assert all( + [imp.squeeze().sum() == pytest.approx(100.0, rel=0.2) for imp in imps] + ) + # importances must have the expected number of columns + assert all( + [ + len(imp.columns) == n + for imp, n in zip(imps, [n_enc_expected, n_dec_expected, n_sc_expected]) ] ) - class TestTFTExplainer: - freq = "MS" - series_lin_pos = tg.linear_timeseries( - length=10, freq=freq - ).with_static_covariates(pd.Series([0.0, 0.5], index=["cat", "num"])) - series_sine = tg.sine_timeseries(length=10, freq=freq) - series_mv1 = series_lin_pos.stack(series_sine) - - series_lin_neg = tg.linear_timeseries( - start_value=1, end_value=0, length=10, freq=freq - ).with_static_covariates(pd.Series([1.0, 0.5], index=["cat", "num"])) - series_cos = tg.sine_timeseries(length=10, value_phase=90, freq=freq) - series_mv2 = series_lin_neg.stack(series_cos) - - series_multi = [series_mv1, series_mv2] - pc = tg.constant_timeseries(length=10, freq=freq) - pc_multi = [pc] * 2 - fc = tg.constant_timeseries(length=13, freq=freq) - fc_multi = [fc] * 2 - - def helper_get_input(self, series_option: str): - if series_option == "univariate": - return self.series_lin_pos, self.pc, self.fc - elif series_option == "multivariate": - return self.series_mv1, self.pc, self.fc - else: # multiple - return self.series_multi, self.pc_multi, self.fc_multi - - @pytest.mark.parametrize( - "test_case", helper_create_test_cases(["univariate", "multivariate"]) + attention = result.get_attention() + assert isinstance(attention, TimeSeries) + # input chunk length + output chunk length = 5 + 2 = 7 + icl, ocl = 5, 2 + freq = series.freq + assert len(attention) == icl + ocl + assert attention.start_time() == series.end_time() - (icl - 1) * freq + assert attention.end_time() == series.end_time() + ocl * freq + assert attention.n_components == ocl + + @pytest.mark.parametrize("test_case", helper_create_test_cases(["multiple"])) + def test_explainer_multiple_multivariate_series(self, test_case): + """Test TFTExplainer with multiple multivaraites series and a combination of encoders, covariates, + and addition of relative index.""" + series_option, cov_option, add_relative_idx, use_encoders = test_case + series, pc, fc = self.helper_get_input(series_option) + cov_test_case = dict() + use_pc, use_fc = False, False + if "past_covariates" in cov_option: + cov_test_case["past_covariates"] = pc + use_pc = True + if "future_covariates" in cov_option: + cov_test_case["future_covariates"] = fc + use_fc = True + + # expected number of features for past covs, future covs, and static covs, and encoder/decoder + n_target_expected = series[0].n_components + n_pc_expected = 1 if "past_covariates" in cov_test_case else 0 + n_fc_expected = 1 if "future_covariates" in cov_test_case else 0 + n_sc_expected = 2 + # encoder is number of past and future covs plus 4 optional encodings (future and past) + # plus 1 univariate target plus 1 optional relative index + n_enc_expected = ( + n_pc_expected + + n_fc_expected + + n_target_expected + + (4 if use_encoders else 0) + + (1 if add_relative_idx else 0) ) - def test_explainer_single_univariate_multivariate_series(self, test_case): - """Test TFTExplainer with single univariate and multivariate series and a combination of - encoders, covariates, and addition of relative index.""" - series_option, cov_option, add_relative_idx, use_encoders = test_case - series, pc, fc = self.helper_get_input(series_option) - cov_test_case = dict() - use_pc, use_fc = False, False - if "past_covariates" in cov_option: - cov_test_case["past_covariates"] = pc - use_pc = True - if "future_covariates" in cov_option: - cov_test_case["future_covariates"] = fc - use_fc = True - - # expected number of features for past covs, future covs, and static covs, and encoder/decoder - n_target_expected = series.n_components - n_pc_expected = 1 if "past_covariates" in cov_test_case else 0 - n_fc_expected = 1 if "future_covariates" in cov_test_case else 0 - n_sc_expected = 2 - # encoder is number of past and future covs plus 4 optional encodings (future and past) - # plus 1 univariate target plus 1 optional relative index - n_enc_expected = ( - n_pc_expected - + n_fc_expected - + n_target_expected - + (4 if use_encoders else 0) - + (1 if add_relative_idx else 0) - ) - # encoder is number of future covs plus 2 optional encodings (future) - # plus 1 optional relative index - n_dec_expected = ( - n_fc_expected - + (2 if use_encoders else 0) - + (1 if add_relative_idx else 0) - ) - model = self.helper_create_model( - use_encoders=use_encoders, add_relative_idx=add_relative_idx - ) - # TFTModel requires future covariates - if ( - not add_relative_idx - and "future_covariates" not in cov_test_case - and not use_encoders - ): - with pytest.raises(ValueError): - model.fit(series=series, **cov_test_case) - return - - model.fit(series=series, **cov_test_case) + # encoder is number of future covs plus 2 optional encodings (future) + # plus 1 optional relative index + n_dec_expected = ( + n_fc_expected + (2 if use_encoders else 0) + (1 if add_relative_idx else 0) + ) + model = self.helper_create_model( + use_encoders=use_encoders, add_relative_idx=add_relative_idx + ) + # TFTModel requires future covariates + if ( + not add_relative_idx + and "future_covariates" not in cov_test_case + and not use_encoders + ): + with pytest.raises(ValueError): + model.fit(series=series, **cov_test_case) + return + + model.fit(series=series, **cov_test_case) + # explainer requires background if model trained on multiple time series + with pytest.raises(ValueError): explainer = TFTExplainer(model) - explainer2 = TFTExplainer( - model, - background_series=series, - background_past_covariates=pc if use_pc else None, - background_future_covariates=fc if use_fc else None, - ) - assert explainer.background_series == explainer2.background_series - assert ( - explainer.background_past_covariates - == explainer2.background_past_covariates - ) + explainer = TFTExplainer( + model, + background_series=series, + background_past_covariates=pc if use_pc else None, + background_future_covariates=fc if use_fc else None, + ) + assert hasattr(explainer, "model") + assert explainer.background_series, series + if use_pc: + assert explainer.background_past_covariates == pc + assert explainer.background_past_covariates[0].n_components == n_pc_expected + else: + assert explainer.background_past_covariates is None + if use_fc: + assert explainer.background_future_covariates == fc assert ( - explainer.background_future_covariates - == explainer2.background_future_covariates + explainer.background_future_covariates[0].n_components == n_fc_expected ) + else: + assert explainer.background_future_covariates is None + result = explainer.explain() + assert isinstance(result, TFTExplainabilityResult) + + enc_imp = result.get_encoder_importance() + dec_imp = result.get_decoder_importance() + stc_imp = result.get_static_covariates_importance() + imps = [enc_imp, dec_imp, stc_imp] + assert all([isinstance(imp, list) for imp in imps]) + assert all([len(imp) == len(series) for imp in imps]) + assert all([isinstance(imp_, pd.DataFrame) for imp in imps for imp_ in imp]) + # importances must sum up to 100 percent + assert all( + [ + imp_.squeeze().sum() == pytest.approx(100.0, abs=0.21) + for imp in imps + for imp_ in imp + ] + ) + # importances must have the expected number of columns + assert all( + [ + len(imp_.columns) == n + for imp, n in zip(imps, [n_enc_expected, n_dec_expected, n_sc_expected]) + for imp_ in imp + ] + ) - assert hasattr(explainer, "model") - assert explainer.background_series[0] == series - if use_pc: - assert explainer.background_past_covariates[0] == pc - assert ( - explainer.background_past_covariates[0].n_components - == n_pc_expected - ) - else: - assert explainer.background_past_covariates is None - if use_fc: - assert explainer.background_future_covariates[0] == fc - assert ( - explainer.background_future_covariates[0].n_components - == n_fc_expected - ) - else: - assert explainer.background_future_covariates is None - result = explainer.explain() - assert isinstance(result, TFTExplainabilityResult) - - enc_imp = result.get_encoder_importance() - dec_imp = result.get_decoder_importance() - stc_imp = result.get_static_covariates_importance() - imps = [enc_imp, dec_imp, stc_imp] - assert all([isinstance(imp, pd.DataFrame) for imp in imps]) - # importances must sum up to 100 percent - assert all( - [imp.squeeze().sum() == pytest.approx(100.0, rel=0.2) for imp in imps] - ) - # importances must have the expected number of columns - assert all( - [ - len(imp.columns) == n - for imp, n in zip( - imps, [n_enc_expected, n_dec_expected, n_sc_expected] - ) - ] - ) + attention = result.get_attention() + assert isinstance(attention, list) + assert len(attention) == len(series) + assert all([isinstance(att, TimeSeries) for att in attention]) + # input chunk length + output chunk length = 5 + 2 = 7 + icl, ocl = 5, 2 + freq = series[0].freq + assert all([len(att) == icl + ocl for att in attention]) + assert all( + [ + att.start_time() == series_.end_time() - (icl - 1) * freq + for att, series_ in zip(attention, series) + ] + ) + assert all( + [ + att.end_time() == series_.end_time() + ocl * freq + for att, series_ in zip(attention, series) + ] + ) + assert all([att.n_components == ocl for att in attention]) + + def test_variable_selection_explanation(self): + """Test variable selection (feature importance) explanation results and plotting.""" + model = self.helper_create_model(use_encoders=True, add_relative_idx=True) + series, pc, fc = self.helper_get_input(series_option="multivariate") + model.fit(series, past_covariates=pc, future_covariates=fc) + explainer = TFTExplainer(model) + results = explainer.explain() + + imps = results.get_feature_importances() + enc_imp = results.get_encoder_importance() + dec_imp = results.get_decoder_importance() + stc_imp = results.get_static_covariates_importance() + imps_direct = [enc_imp, dec_imp, stc_imp] + + imp_names = [ + "encoder_importance", + "decoder_importance", + "static_covariates_importance", + ] + assert list(imps.keys()) == imp_names + for imp, imp_name in zip(imps_direct, imp_names): + assert imps[imp_name].equals(imp) + + enc_expected = pd.DataFrame( + { + "linear_target": 1.7, + "sine_target": 3.1, + "add_relative_index_futcov": 3.6, + "constant_pastcov": 3.9, + "darts_enc_fc_cyc_month_sin_futcov": 5.0, + "darts_enc_pc_cyc_month_sin_pastcov": 10.1, + "darts_enc_pc_cyc_month_cos_pastcov": 19.9, + "constant_futcov": 21.8, + "darts_enc_fc_cyc_month_cos_futcov": 31.0, + }, + index=[0], + ) + # relaxed comparison because M1 chip gives slightly different results than intel chip + assert ((enc_imp.round(decimals=1) - enc_expected).abs() <= 3).all().all() + + dec_expected = pd.DataFrame( + { + "darts_enc_fc_cyc_month_sin_futcov": 5.3, + "darts_enc_fc_cyc_month_cos_futcov": 7.4, + "constant_futcov": 24.5, + "add_relative_index_futcov": 62.9, + }, + index=[0], + ) + # relaxed comparison because M1 chip gives slightly different results than intel chip + assert ((dec_imp.round(decimals=1) - dec_expected).abs() <= 0.6).all().all() - attention = result.get_attention() - assert isinstance(attention, TimeSeries) - # input chunk length + output chunk length = 5 + 2 = 7 - icl, ocl = 5, 2 - freq = series.freq - assert len(attention) == icl + ocl - assert attention.start_time() == series.end_time() - (icl - 1) * freq - assert attention.end_time() == series.end_time() + ocl * freq - assert attention.n_components == ocl - - @pytest.mark.parametrize("test_case", helper_create_test_cases(["multiple"])) - def test_explainer_multiple_multivariate_series(self, test_case): - """Test TFTExplainer with multiple multivaraites series and a combination of encoders, covariates, - and addition of relative index.""" - series_option, cov_option, add_relative_idx, use_encoders = test_case - series, pc, fc = self.helper_get_input(series_option) - cov_test_case = dict() - use_pc, use_fc = False, False - if "past_covariates" in cov_option: - cov_test_case["past_covariates"] = pc - use_pc = True - if "future_covariates" in cov_option: - cov_test_case["future_covariates"] = fc - use_fc = True - - # expected number of features for past covs, future covs, and static covs, and encoder/decoder - n_target_expected = series[0].n_components - n_pc_expected = 1 if "past_covariates" in cov_test_case else 0 - n_fc_expected = 1 if "future_covariates" in cov_test_case else 0 - n_sc_expected = 2 - # encoder is number of past and future covs plus 4 optional encodings (future and past) - # plus 1 univariate target plus 1 optional relative index - n_enc_expected = ( - n_pc_expected - + n_fc_expected - + n_target_expected - + (4 if use_encoders else 0) - + (1 if add_relative_idx else 0) - ) - # encoder is number of future covs plus 2 optional encodings (future) - # plus 1 optional relative index - n_dec_expected = ( - n_fc_expected - + (2 if use_encoders else 0) - + (1 if add_relative_idx else 0) - ) + stc_expected = pd.DataFrame( + {"num_statcov": 11.9, "cat_statcov": 88.1}, index=[0] + ) + # relaxed comparison because M1 chip gives slightly different results than intel chip + assert ((stc_imp.round(decimals=1) - stc_expected).abs() <= 0.1).all().all() + + with patch("matplotlib.pyplot.show") as _: + _ = explainer.plot_variable_selection(results) + + def test_attention_explanation(self): + """Test attention (feature importance) explanation results and plotting.""" + # past attention (full_attention=False) on attends to values in the past relative to each horizon + # (look at the last 0 values in the array) + att_exp_past_att = np.array( + [ + [1.0, 0.8], + [0.8, 0.7], + [0.6, 0.4], + [0.7, 0.3], + [0.9, 0.4], + [0.0, 1.3], + [0.0, 0.0], + ] + ) + # full attention (full_attention=True) attends to all values in past, present, and future + # see the that all values are non-0 + att_exp_full_att = np.array( + [ + [0.8, 0.8], + [0.7, 0.6], + [0.4, 0.4], + [0.3, 0.3], + [0.3, 0.3], + [0.7, 0.8], + [0.8, 0.8], + ] + ) + for full_attention, att_exp in zip( + [False, True], [att_exp_past_att, att_exp_full_att] + ): model = self.helper_create_model( - use_encoders=use_encoders, add_relative_idx=add_relative_idx - ) - # TFTModel requires future covariates - if ( - not add_relative_idx - and "future_covariates" not in cov_test_case - and not use_encoders - ): - with pytest.raises(ValueError): - model.fit(series=series, **cov_test_case) - return - - model.fit(series=series, **cov_test_case) - # explainer requires background if model trained on multiple time series - with pytest.raises(ValueError): - explainer = TFTExplainer(model) - explainer = TFTExplainer( - model, - background_series=series, - background_past_covariates=pc if use_pc else None, - background_future_covariates=fc if use_fc else None, - ) - assert hasattr(explainer, "model") - assert explainer.background_series, series - if use_pc: - assert explainer.background_past_covariates == pc - assert ( - explainer.background_past_covariates[0].n_components - == n_pc_expected - ) - else: - assert explainer.background_past_covariates is None - if use_fc: - assert explainer.background_future_covariates == fc - assert ( - explainer.background_future_covariates[0].n_components - == n_fc_expected - ) - else: - assert explainer.background_future_covariates is None - result = explainer.explain() - assert isinstance(result, TFTExplainabilityResult) - - enc_imp = result.get_encoder_importance() - dec_imp = result.get_decoder_importance() - stc_imp = result.get_static_covariates_importance() - imps = [enc_imp, dec_imp, stc_imp] - assert all([isinstance(imp, list) for imp in imps]) - assert all([len(imp) == len(series) for imp in imps]) - assert all([isinstance(imp_, pd.DataFrame) for imp in imps for imp_ in imp]) - # importances must sum up to 100 percent - assert all( - [ - imp_.squeeze().sum() == pytest.approx(100.0, abs=0.21) - for imp in imps - for imp_ in imp - ] - ) - # importances must have the expected number of columns - assert all( - [ - len(imp_.columns) == n - for imp, n in zip( - imps, [n_enc_expected, n_dec_expected, n_sc_expected] - ) - for imp_ in imp - ] - ) - - attention = result.get_attention() - assert isinstance(attention, list) - assert len(attention) == len(series) - assert all([isinstance(att, TimeSeries) for att in attention]) - # input chunk length + output chunk length = 5 + 2 = 7 - icl, ocl = 5, 2 - freq = series[0].freq - assert all([len(att) == icl + ocl for att in attention]) - assert all( - [ - att.start_time() == series_.end_time() - (icl - 1) * freq - for att, series_ in zip(attention, series) - ] - ) - assert all( - [ - att.end_time() == series_.end_time() + ocl * freq - for att, series_ in zip(attention, series) - ] + use_encoders=True, + add_relative_idx=True, + full_attention=full_attention, ) - assert all([att.n_components == ocl for att in attention]) - - def test_variable_selection_explanation(self): - """Test variable selection (feature importance) explanation results and plotting.""" - model = self.helper_create_model(use_encoders=True, add_relative_idx=True) series, pc, fc = self.helper_get_input(series_option="multivariate") model.fit(series, past_covariates=pc, future_covariates=fc) explainer = TFTExplainer(model) results = explainer.explain() - imps = results.get_feature_importances() - enc_imp = results.get_encoder_importance() - dec_imp = results.get_decoder_importance() - stc_imp = results.get_static_covariates_importance() - imps_direct = [enc_imp, dec_imp, stc_imp] - - imp_names = [ - "encoder_importance", - "decoder_importance", - "static_covariates_importance", - ] - assert list(imps.keys()) == imp_names - for imp, imp_name in zip(imps_direct, imp_names): - assert imps[imp_name].equals(imp) - - enc_expected = pd.DataFrame( - { - "linear_target": 1.7, - "sine_target": 3.1, - "add_relative_index_futcov": 3.6, - "constant_pastcov": 3.9, - "darts_enc_fc_cyc_month_sin_futcov": 5.0, - "darts_enc_pc_cyc_month_sin_pastcov": 10.1, - "darts_enc_pc_cyc_month_cos_pastcov": 19.9, - "constant_futcov": 21.8, - "darts_enc_fc_cyc_month_cos_futcov": 31.0, - }, - index=[0], - ) - # relaxed comparison because M1 chip gives slightly different results than intel chip - assert ((enc_imp.round(decimals=1) - enc_expected).abs() <= 3).all().all() - - dec_expected = pd.DataFrame( - { - "darts_enc_fc_cyc_month_sin_futcov": 5.3, - "darts_enc_fc_cyc_month_cos_futcov": 7.4, - "constant_futcov": 24.5, - "add_relative_index_futcov": 62.9, - }, - index=[0], - ) - # relaxed comparison because M1 chip gives slightly different results than intel chip - assert ((dec_imp.round(decimals=1) - dec_expected).abs() <= 0.6).all().all() - - stc_expected = pd.DataFrame( - {"num_statcov": 11.9, "cat_statcov": 88.1}, index=[0] - ) + att = results.get_attention() # relaxed comparison because M1 chip gives slightly different results than intel chip - assert ((stc_imp.round(decimals=1) - stc_expected).abs() <= 0.1).all().all() - + assert np.all(np.abs(np.round(att.values(), decimals=1) - att_exp) <= 0.2) + assert att.columns.tolist() == ["horizon 1", "horizon 2"] with patch("matplotlib.pyplot.show") as _: - _ = explainer.plot_variable_selection(results) - - def test_attention_explanation(self): - """Test attention (feature importance) explanation results and plotting.""" - # past attention (full_attention=False) on attends to values in the past relative to each horizon - # (look at the last 0 values in the array) - att_exp_past_att = np.array( - [ - [1.0, 0.8], - [0.8, 0.7], - [0.6, 0.4], - [0.7, 0.3], - [0.9, 0.4], - [0.0, 1.3], - [0.0, 0.0], - ] - ) - # full attention (full_attention=True) attends to all values in past, present, and future - # see the that all values are non-0 - att_exp_full_att = np.array( - [ - [0.8, 0.8], - [0.7, 0.6], - [0.4, 0.4], - [0.3, 0.3], - [0.3, 0.3], - [0.7, 0.8], - [0.8, 0.8], - ] - ) - for full_attention, att_exp in zip( - [False, True], [att_exp_past_att, att_exp_full_att] - ): - model = self.helper_create_model( - use_encoders=True, - add_relative_idx=True, - full_attention=full_attention, + _ = explainer.plot_attention( + results, plot_type="all", show_index_as="relative" ) - series, pc, fc = self.helper_get_input(series_option="multivariate") - model.fit(series, past_covariates=pc, future_covariates=fc) - explainer = TFTExplainer(model) - results = explainer.explain() - - att = results.get_attention() - # relaxed comparison because M1 chip gives slightly different results than intel chip - assert np.all( - np.abs(np.round(att.values(), decimals=1) - att_exp) <= 0.2 + plt.close() + with patch("matplotlib.pyplot.show") as _: + _ = explainer.plot_attention( + results, plot_type="all", show_index_as="time" ) - assert att.columns.tolist() == ["horizon 1", "horizon 2"] - with patch("matplotlib.pyplot.show") as _: - _ = explainer.plot_attention( - results, plot_type="all", show_index_as="relative" - ) - plt.close() - with patch("matplotlib.pyplot.show") as _: - _ = explainer.plot_attention( - results, plot_type="all", show_index_as="time" - ) - plt.close() - with patch("matplotlib.pyplot.show") as _: - _ = explainer.plot_attention( - results, plot_type="time", show_index_as="relative" - ) - plt.close() - with patch("matplotlib.pyplot.show") as _: - _ = explainer.plot_attention( - results, plot_type="time", show_index_as="time" - ) - plt.close() - with patch("matplotlib.pyplot.show") as _: - _ = explainer.plot_attention( - results, plot_type="heatmap", show_index_as="relative" - ) - plt.close() - with patch("matplotlib.pyplot.show") as _: - _ = explainer.plot_attention( - results, plot_type="heatmap", show_index_as="time" - ) - plt.close() - - def helper_create_model( - self, use_encoders=True, add_relative_idx=True, full_attention=False - ): - add_encoders = ( - {"cyclic": {"past": ["month"], "future": ["month"]}} - if use_encoders - else None - ) - return TFTModel( - input_chunk_length=5, - output_chunk_length=2, - n_epochs=1, - add_encoders=add_encoders, - add_relative_index=add_relative_idx, - full_attention=full_attention, - random_state=42, - **tfm_kwargs - ) + plt.close() + with patch("matplotlib.pyplot.show") as _: + _ = explainer.plot_attention( + results, plot_type="time", show_index_as="relative" + ) + plt.close() + with patch("matplotlib.pyplot.show") as _: + _ = explainer.plot_attention( + results, plot_type="time", show_index_as="time" + ) + plt.close() + with patch("matplotlib.pyplot.show") as _: + _ = explainer.plot_attention( + results, plot_type="heatmap", show_index_as="relative" + ) + plt.close() + with patch("matplotlib.pyplot.show") as _: + _ = explainer.plot_attention( + results, plot_type="heatmap", show_index_as="time" + ) + plt.close() + + def helper_create_model( + self, use_encoders=True, add_relative_idx=True, full_attention=False + ): + add_encoders = ( + {"cyclic": {"past": ["month"], "future": ["month"]}} + if use_encoders + else None + ) + return TFTModel( + input_chunk_length=5, + output_chunk_length=2, + n_epochs=1, + add_encoders=add_encoders, + add_relative_index=add_relative_idx, + full_attention=full_attention, + random_state=42, + **tfm_kwargs, + ) diff --git a/darts/tests/models/components/glu_variants.py b/darts/tests/models/components/glu_variants.py index e012c7ebe9..0288af37f6 100644 --- a/darts/tests/models/components/glu_variants.py +++ b/darts/tests/models/components/glu_variants.py @@ -1,3 +1,5 @@ +import pytest + from darts.logging import get_logger logger = get_logger(__name__) @@ -5,22 +7,21 @@ try: import torch - TORCH_AVAILABLE = True -except ImportError: - logger.warning("Torch not available. Loss tests will be skipped.") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: from darts.models.components import glu_variants from darts.models.components.glu_variants import GLU_FFN +except ImportError: + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) + - class TestFFN: - def test_ffn(self): - for FeedForward_network in GLU_FFN: - self.feed_forward_block = getattr(glu_variants, FeedForward_network)( - d_model=4, d_ff=16, dropout=0.1 - ) +class TestFFN: + def test_ffn(self): + for FeedForward_network in GLU_FFN: + self.feed_forward_block = getattr(glu_variants, FeedForward_network)( + d_model=4, d_ff=16, dropout=0.1 + ) - inputs = torch.zeros(1, 4, 4) - self.feed_forward_block(x=inputs) + inputs = torch.zeros(1, 4, 4) + self.feed_forward_block(x=inputs) diff --git a/darts/tests/models/components/test_layer_norm_variants.py b/darts/tests/models/components/test_layer_norm_variants.py index 374fa8deb3..b118746451 100644 --- a/darts/tests/models/components/test_layer_norm_variants.py +++ b/darts/tests/models/components/test_layer_norm_variants.py @@ -8,46 +8,45 @@ try: import torch - TORCH_AVAILABLE = True -except ImportError: - logger.warning("Torch not available. Loss tests will be skipped.") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: from darts.models.components.layer_norm_variants import ( LayerNorm, LayerNormNoBias, RINorm, RMSNorm, ) +except ImportError: + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) + - class TestLayerNormVariants: - def test_lnv(self): - for layer_norm in [RMSNorm, LayerNorm, LayerNormNoBias]: - ln = layer_norm(4) - inputs = torch.zeros(1, 4, 4) - ln(inputs) +class TestLayerNormVariants: + def test_lnv(self): + for layer_norm in [RMSNorm, LayerNorm, LayerNormNoBias]: + ln = layer_norm(4) + inputs = torch.zeros(1, 4, 4) + ln(inputs) - def test_rin(self): + def test_rin(self): - np.random.seed(42) - torch.manual_seed(42) + np.random.seed(42) + torch.manual_seed(42) - x = torch.randn(3, 4, 7) - affine_options = [True, False] + x = torch.randn(3, 4, 7) + affine_options = [True, False] - # test with and without affine and correct input dim - for affine in affine_options: + # test with and without affine and correct input dim + for affine in affine_options: - rin = RINorm(input_dim=7, affine=affine) - x_norm = rin(x) + rin = RINorm(input_dim=7, affine=affine) + x_norm = rin(x) - # expand dims to simulate probablistic forecasting - x_denorm = rin.inverse(x_norm.view(x_norm.shape + (1,))).squeeze(-1) - assert torch.all(torch.isclose(x, x_denorm)).item() + # expand dims to simulate probablistic forecasting + x_denorm = rin.inverse(x_norm.view(x_norm.shape + (1,))).squeeze(-1) + assert torch.all(torch.isclose(x, x_denorm)).item() - # try invalid input_dim - rin = RINorm(input_dim=3, affine=True) - with pytest.raises(RuntimeError): - x_norm = rin(x) + # try invalid input_dim + rin = RINorm(input_dim=3, affine=True) + with pytest.raises(RuntimeError): + x_norm = rin(x) diff --git a/darts/tests/models/forecasting/test_RNN.py b/darts/tests/models/forecasting/test_RNN.py index cdd143422b..8fe711a6d3 100644 --- a/darts/tests/models/forecasting/test_RNN.py +++ b/darts/tests/models/forecasting/test_RNN.py @@ -12,155 +12,149 @@ import torch.nn as nn from darts.models.forecasting.rnn_model import CustomRNNModule, RNNModel, _RNNModule - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. RNN tests will be skipped.") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: - - class ModuleValid1(_RNNModule): - """Wrapper around the _RNNModule""" - - def __init__(self, **kwargs): - super().__init__(name="RNN", **kwargs) - - class ModuleValid2(CustomRNNModule): - """Just a linear layer.""" - - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.linear = nn.Linear(self.input_size, self.target_size) - - def forward(self, x_in, h=None): - x = self.linear(x_in[0]) - return x.view(len(x), -1, self.target_size, self.nr_params) - - class TestRNNModel: - times = pd.date_range("20130101", "20130410") - pd_series = pd.Series(range(100), index=times) - series: TimeSeries = TimeSeries.from_series(pd_series) - module_invalid = _RNNModule( - name="RNN", - input_chunk_length=1, - output_chunk_length=1, - output_chunk_shift=0, - input_size=1, - hidden_dim=25, - num_layers=1, - target_size=1, - nr_params=1, - dropout=0, - ) - - def test_creation(self): - # cannot choose any string - with pytest.raises(ValueError) as msg: - RNNModel(input_chunk_length=1, model="UnknownRNN?") - assert str(msg.value).startswith("`model` is not a valid RNN model.") - - # cannot create from a class instance - with pytest.raises(ValueError) as msg: - _ = RNNModel( - input_chunk_length=1, - model=self.module_invalid, - ) - assert str(msg.value).startswith("`model` is not a valid RNN model.") - - # can create from valid module name - model1 = RNNModel( - input_chunk_length=1, - model="RNN", - n_epochs=1, - random_state=42, - **tfm_kwargs - ) - model1.fit(self.series) - preds1 = model1.predict(n=3) - - # can create from a custom class itself - model2 = RNNModel( + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) + + +class ModuleValid1(_RNNModule): + """Wrapper around the _RNNModule""" + + def __init__(self, **kwargs): + super().__init__(name="RNN", **kwargs) + + +class ModuleValid2(CustomRNNModule): + """Just a linear layer.""" + + def __init__(self, **kwargs): + super().__init__(**kwargs) + self.linear = nn.Linear(self.input_size, self.target_size) + + def forward(self, x_in, h=None): + x = self.linear(x_in[0]) + return x.view(len(x), -1, self.target_size, self.nr_params) + + +class TestRNNModel: + times = pd.date_range("20130101", "20130410") + pd_series = pd.Series(range(100), index=times) + series: TimeSeries = TimeSeries.from_series(pd_series) + module_invalid = _RNNModule( + name="RNN", + input_chunk_length=1, + output_chunk_length=1, + output_chunk_shift=0, + input_size=1, + hidden_dim=25, + num_layers=1, + target_size=1, + nr_params=1, + dropout=0, + ) + + def test_creation(self): + # cannot choose any string + with pytest.raises(ValueError) as msg: + RNNModel(input_chunk_length=1, model="UnknownRNN?") + assert str(msg.value).startswith("`model` is not a valid RNN model.") + + # cannot create from a class instance + with pytest.raises(ValueError) as msg: + _ = RNNModel( input_chunk_length=1, - model=ModuleValid1, - n_epochs=1, - random_state=42, - **tfm_kwargs + model=self.module_invalid, ) - model2.fit(self.series) - preds2 = model2.predict(n=3) - np.testing.assert_array_equal(preds1.all_values(), preds2.all_values()) + assert str(msg.value).startswith("`model` is not a valid RNN model.") - model3 = RNNModel( - input_chunk_length=1, - model=ModuleValid2, - n_epochs=1, - random_state=42, - **tfm_kwargs - ) - model3.fit(self.series) - preds3 = model2.predict(n=3) - assert preds3.all_values().shape == preds2.all_values().shape - assert preds3.time_index.equals(preds2.time_index) - - def test_fit(self, tmpdir_module): - # Test basic fit() - model = RNNModel(input_chunk_length=1, n_epochs=2, **tfm_kwargs) - model.fit(self.series) - - # Test fit-save-load cycle - model2 = RNNModel( - input_chunk_length=1, - model="LSTM", - n_epochs=1, - model_name="unittest-model-lstm", - work_dir=tmpdir_module, - save_checkpoints=True, - force_reset=True, - **tfm_kwargs - ) - model2.fit(self.series) - model_loaded = model2.load_from_checkpoint( - model_name="unittest-model-lstm", - work_dir=tmpdir_module, - best=False, - map_location="cpu", - ) - pred1 = model2.predict(n=6) - pred2 = model_loaded.predict(n=6) + # can create from valid module name + model1 = RNNModel( + input_chunk_length=1, model="RNN", n_epochs=1, random_state=42, **tfm_kwargs + ) + model1.fit(self.series) + preds1 = model1.predict(n=3) - # Two models with the same parameters should deterministically yield the same output - np.testing.assert_array_equal(pred1.values(), pred2.values()) + # can create from a custom class itself + model2 = RNNModel( + input_chunk_length=1, + model=ModuleValid1, + n_epochs=1, + random_state=42, + **tfm_kwargs, + ) + model2.fit(self.series) + preds2 = model2.predict(n=3) + np.testing.assert_array_equal(preds1.all_values(), preds2.all_values()) - # Another random model should not - model3 = RNNModel( - input_chunk_length=1, model="RNN", n_epochs=2, **tfm_kwargs - ) - model3.fit(self.series) - pred3 = model3.predict(n=6) - assert not np.array_equal(pred1.values(), pred3.values()) - - # test short predict - pred4 = model3.predict(n=1) - assert len(pred4) == 1 - - # test validation series input - model3.fit(self.series[:60], val_series=self.series[60:]) - pred4 = model3.predict(n=6) - assert len(pred4) == 6 - - def helper_test_pred_length(self, pytorch_model, series): - model = pytorch_model(input_chunk_length=1, n_epochs=1, **tfm_kwargs) - model.fit(series) - pred = model.predict(7) - assert len(pred) == 7 - pred = model.predict(2) - assert len(pred) == 2 - assert pred.width == 1 - pred = model.predict(4) - assert len(pred) == 4 - assert pred.width == 1 - - def test_pred_length(self): - self.helper_test_pred_length(RNNModel, self.series) + model3 = RNNModel( + input_chunk_length=1, + model=ModuleValid2, + n_epochs=1, + random_state=42, + **tfm_kwargs, + ) + model3.fit(self.series) + preds3 = model2.predict(n=3) + assert preds3.all_values().shape == preds2.all_values().shape + assert preds3.time_index.equals(preds2.time_index) + + def test_fit(self, tmpdir_module): + # Test basic fit() + model = RNNModel(input_chunk_length=1, n_epochs=2, **tfm_kwargs) + model.fit(self.series) + + # Test fit-save-load cycle + model2 = RNNModel( + input_chunk_length=1, + model="LSTM", + n_epochs=1, + model_name="unittest-model-lstm", + work_dir=tmpdir_module, + save_checkpoints=True, + force_reset=True, + **tfm_kwargs, + ) + model2.fit(self.series) + model_loaded = model2.load_from_checkpoint( + model_name="unittest-model-lstm", + work_dir=tmpdir_module, + best=False, + map_location="cpu", + ) + pred1 = model2.predict(n=6) + pred2 = model_loaded.predict(n=6) + + # Two models with the same parameters should deterministically yield the same output + np.testing.assert_array_equal(pred1.values(), pred2.values()) + + # Another random model should not + model3 = RNNModel(input_chunk_length=1, model="RNN", n_epochs=2, **tfm_kwargs) + model3.fit(self.series) + pred3 = model3.predict(n=6) + assert not np.array_equal(pred1.values(), pred3.values()) + + # test short predict + pred4 = model3.predict(n=1) + assert len(pred4) == 1 + + # test validation series input + model3.fit(self.series[:60], val_series=self.series[60:]) + pred4 = model3.predict(n=6) + assert len(pred4) == 6 + + def helper_test_pred_length(self, pytorch_model, series): + model = pytorch_model(input_chunk_length=1, n_epochs=1, **tfm_kwargs) + model.fit(series) + pred = model.predict(7) + assert len(pred) == 7 + pred = model.predict(2) + assert len(pred) == 2 + assert pred.width == 1 + pred = model.predict(4) + assert len(pred) == 4 + assert pred.width == 1 + + def test_pred_length(self): + self.helper_test_pred_length(RNNModel, self.series) diff --git a/darts/tests/models/forecasting/test_TCN.py b/darts/tests/models/forecasting/test_TCN.py index 587929ce07..4c6fb144ad 100644 --- a/darts/tests/models/forecasting/test_TCN.py +++ b/darts/tests/models/forecasting/test_TCN.py @@ -11,199 +11,193 @@ import torch from darts.models.forecasting.tcn_model import TCNModel - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. TCN tests will be skipped.") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: - - class TestTCNModel: - def test_creation(self): - with pytest.raises(ValueError): - # cannot choose a kernel size larger than the input length - TCNModel(input_chunk_length=20, output_chunk_length=1, kernel_size=100) - TCNModel(input_chunk_length=12, output_chunk_length=1) - - def test_fit(self): - large_ts = tg.constant_timeseries(length=100, value=1000) - small_ts = tg.constant_timeseries(length=100, value=10) - - # Test basic fit and predict - model = TCNModel( - input_chunk_length=12, - output_chunk_length=1, - n_epochs=10, - num_layers=1, - **tfm_kwargs, - ) - model.fit(large_ts[:98]) - pred = model.predict(n=2).values()[0] - - # Test whether model trained on one series is better than one trained on another - model2 = TCNModel( - input_chunk_length=12, - output_chunk_length=1, - n_epochs=10, - num_layers=1, - **tfm_kwargs, - ) - model2.fit(small_ts[:98]) - pred2 = model2.predict(n=2).values()[0] - assert abs(pred2 - 10) < abs(pred - 10) - - # test short predict - pred3 = model2.predict(n=1) - assert len(pred3) == 1 - - def test_performance(self): - # test TCN performance on dummy time series - ts = tg.sine_timeseries(length=100) + tg.linear_timeseries( - length=100, end_value=2 - ) - train, test = ts[:90], ts[90:] - model = TCNModel( - input_chunk_length=12, - output_chunk_length=10, - n_epochs=300, - random_state=0, - **tfm_kwargs, - ) - model.fit(train) - pred = model.predict(n=10) - - assert mae(pred, test) < 0.3 - - @pytest.mark.slow - def test_coverage(self): - torch.manual_seed(0) - input_chunk_lengths = range(20, 50) - kernel_sizes = range(2, 5) - dilation_bases = range(2, 5) - - for kernel_size in kernel_sizes: - for dilation_base in dilation_bases: - if dilation_base > kernel_size: - continue - for input_chunk_length in input_chunk_lengths: - - # create model with all weights set to one - model = TCNModel( - input_chunk_length=input_chunk_length, - output_chunk_length=1, - kernel_size=kernel_size, - dilation_base=dilation_base, - weight_norm=False, - n_epochs=1, - **tfm_kwargs, - ) - - # we have to fit the model on a dummy series in order to create the internal nn.Module - model.fit(tg.gaussian_timeseries(length=100)) - - for res_block in model.model.res_blocks: - res_block.conv1.weight = torch.nn.Parameter( - torch.ones( - res_block.conv1.weight.shape, dtype=torch.float64 - ) + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) + + +class TestTCNModel: + def test_creation(self): + with pytest.raises(ValueError): + # cannot choose a kernel size larger than the input length + TCNModel(input_chunk_length=20, output_chunk_length=1, kernel_size=100) + TCNModel(input_chunk_length=12, output_chunk_length=1) + + def test_fit(self): + large_ts = tg.constant_timeseries(length=100, value=1000) + small_ts = tg.constant_timeseries(length=100, value=10) + + # Test basic fit and predict + model = TCNModel( + input_chunk_length=12, + output_chunk_length=1, + n_epochs=10, + num_layers=1, + **tfm_kwargs, + ) + model.fit(large_ts[:98]) + pred = model.predict(n=2).values()[0] + + # Test whether model trained on one series is better than one trained on another + model2 = TCNModel( + input_chunk_length=12, + output_chunk_length=1, + n_epochs=10, + num_layers=1, + **tfm_kwargs, + ) + model2.fit(small_ts[:98]) + pred2 = model2.predict(n=2).values()[0] + assert abs(pred2 - 10) < abs(pred - 10) + + # test short predict + pred3 = model2.predict(n=1) + assert len(pred3) == 1 + + def test_performance(self): + # test TCN performance on dummy time series + ts = tg.sine_timeseries(length=100) + tg.linear_timeseries( + length=100, end_value=2 + ) + train, test = ts[:90], ts[90:] + model = TCNModel( + input_chunk_length=12, + output_chunk_length=10, + n_epochs=300, + random_state=0, + **tfm_kwargs, + ) + model.fit(train) + pred = model.predict(n=10) + + assert mae(pred, test) < 0.3 + + @pytest.mark.slow + def test_coverage(self): + torch.manual_seed(0) + input_chunk_lengths = range(20, 50) + kernel_sizes = range(2, 5) + dilation_bases = range(2, 5) + + for kernel_size in kernel_sizes: + for dilation_base in dilation_bases: + if dilation_base > kernel_size: + continue + for input_chunk_length in input_chunk_lengths: + + # create model with all weights set to one + model = TCNModel( + input_chunk_length=input_chunk_length, + output_chunk_length=1, + kernel_size=kernel_size, + dilation_base=dilation_base, + weight_norm=False, + n_epochs=1, + **tfm_kwargs, + ) + + # we have to fit the model on a dummy series in order to create the internal nn.Module + model.fit(tg.gaussian_timeseries(length=100)) + + for res_block in model.model.res_blocks: + res_block.conv1.weight = torch.nn.Parameter( + torch.ones( + res_block.conv1.weight.shape, dtype=torch.float64 ) - res_block.conv2.weight = torch.nn.Parameter( - torch.ones( - res_block.conv2.weight.shape, dtype=torch.float64 - ) + ) + res_block.conv2.weight = torch.nn.Parameter( + torch.ones( + res_block.conv2.weight.shape, dtype=torch.float64 ) + ) - model.model.eval() + model.model.eval() - # also disable MC Dropout: - model.model.set_mc_dropout(False) + # also disable MC Dropout: + model.model.set_mc_dropout(False) - input_tensor = torch.zeros( - [1, input_chunk_length, 1], dtype=torch.float64 - ) - zero_output = model.model.forward((input_tensor, None))[ + input_tensor = torch.zeros( + [1, input_chunk_length, 1], dtype=torch.float64 + ) + zero_output = model.model.forward((input_tensor, None))[0, -1, 0] + + # test for full coverage + for i in range(input_chunk_length): + input_tensor[0, i, 0] = 1 + curr_output = model.model.forward((input_tensor, None))[ 0, -1, 0 ] - - # test for full coverage - for i in range(input_chunk_length): - input_tensor[0, i, 0] = 1 - curr_output = model.model.forward((input_tensor, None))[ - 0, -1, 0 - ] - assert zero_output != curr_output - input_tensor[0, i, 0] = 0 - - # create model with all weights set to one and one layer less than is automatically detected - model_2 = TCNModel( - input_chunk_length=input_chunk_length, - output_chunk_length=1, - kernel_size=kernel_size, - dilation_base=dilation_base, - weight_norm=False, - num_layers=model.model.num_layers - 1, - n_epochs=1, - **tfm_kwargs, - ) - - # we have to fit the model on a dummy series in order to create the internal nn.Module - model_2.fit(tg.gaussian_timeseries(length=100)) - - for res_block in model_2.model.res_blocks: - res_block.conv1.weight = torch.nn.Parameter( - torch.ones( - res_block.conv1.weight.shape, dtype=torch.float64 - ) + assert zero_output != curr_output + input_tensor[0, i, 0] = 0 + + # create model with all weights set to one and one layer less than is automatically detected + model_2 = TCNModel( + input_chunk_length=input_chunk_length, + output_chunk_length=1, + kernel_size=kernel_size, + dilation_base=dilation_base, + weight_norm=False, + num_layers=model.model.num_layers - 1, + n_epochs=1, + **tfm_kwargs, + ) + + # we have to fit the model on a dummy series in order to create the internal nn.Module + model_2.fit(tg.gaussian_timeseries(length=100)) + + for res_block in model_2.model.res_blocks: + res_block.conv1.weight = torch.nn.Parameter( + torch.ones( + res_block.conv1.weight.shape, dtype=torch.float64 ) - res_block.conv2.weight = torch.nn.Parameter( - torch.ones( - res_block.conv2.weight.shape, dtype=torch.float64 - ) + ) + res_block.conv2.weight = torch.nn.Parameter( + torch.ones( + res_block.conv2.weight.shape, dtype=torch.float64 ) + ) - model_2.model.eval() + model_2.model.eval() - # also disable MC Dropout: - model_2.model.set_mc_dropout(False) + # also disable MC Dropout: + model_2.model.set_mc_dropout(False) - input_tensor = torch.zeros( - [1, input_chunk_length, 1], dtype=torch.float64 - ) - zero_output = model_2.model.forward((input_tensor, None))[ + input_tensor = torch.zeros( + [1, input_chunk_length, 1], dtype=torch.float64 + ) + zero_output = model_2.model.forward((input_tensor, None))[0, -1, 0] + + # test for incomplete coverage + uncovered_input_found = False + if model_2.model.num_layers == 1: + continue + for i in range(input_chunk_length): + input_tensor[0, i, 0] = 1 + curr_output = model_2.model.forward((input_tensor, None))[ 0, -1, 0 ] - - # test for incomplete coverage - uncovered_input_found = False - if model_2.model.num_layers == 1: - continue - for i in range(input_chunk_length): - input_tensor[0, i, 0] = 1 - curr_output = model_2.model.forward((input_tensor, None))[ - 0, -1, 0 - ] - if zero_output == curr_output: - uncovered_input_found = True - break - input_tensor[0, i, 0] = 0 - assert uncovered_input_found - - def helper_test_pred_length(self, pytorch_model, series): - model = pytorch_model( - input_chunk_length=12, output_chunk_length=3, n_epochs=1, **tfm_kwargs - ) - model.fit(series) - pred = model.predict(7) - assert len(pred) == 7 - pred = model.predict(2) - assert len(pred) == 2 - assert pred.width == 1 - pred = model.predict(4) - assert len(pred) == 4 - assert pred.width == 1 - - def test_pred_length(self): - series = tg.linear_timeseries(length=100) - self.helper_test_pred_length(TCNModel, series) + if zero_output == curr_output: + uncovered_input_found = True + break + input_tensor[0, i, 0] = 0 + assert uncovered_input_found + + def helper_test_pred_length(self, pytorch_model, series): + model = pytorch_model( + input_chunk_length=12, output_chunk_length=3, n_epochs=1, **tfm_kwargs + ) + model.fit(series) + pred = model.predict(7) + assert len(pred) == 7 + pred = model.predict(2) + assert len(pred) == 2 + assert pred.width == 1 + pred = model.predict(4) + assert len(pred) == 4 + assert pred.width == 1 + + def test_pred_length(self): + series = tg.linear_timeseries(length=100) + self.helper_test_pred_length(TCNModel, series) diff --git a/darts/tests/models/forecasting/test_TFT.py b/darts/tests/models/forecasting/test_TFT.py index 5758bef8f3..ff629a6211 100644 --- a/darts/tests/models/forecasting/test_TFT.py +++ b/darts/tests/models/forecasting/test_TFT.py @@ -17,412 +17,406 @@ from darts.models.forecasting.tft_model import TFTModel from darts.models.forecasting.tft_submodels import get_embedding_size from darts.utils.likelihood_models import QuantileRegression - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. TFT tests will be skipped.") - TORCH_AVAILABLE = False - TFTModel, QuantileRegression, MSELoss = None, None, None - - -if TORCH_AVAILABLE: + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) - class TestTFTModel: - def test_quantile_regression(self): - q_no_50 = [0.1, 0.4, 0.9] - q_non_symmetric = [0.2, 0.5, 0.9] - # if a QuantileLoss is used, it must have to q=0.5 quantile - with pytest.raises(ValueError): - QuantileRegression(q_no_50) +class TestTFTModel: + def test_quantile_regression(self): + q_no_50 = [0.1, 0.4, 0.9] + q_non_symmetric = [0.2, 0.5, 0.9] - # if a QuantileLoss is used, it must be symmetric around q=0.5 quantile (i.e. [0.1, 0.5, 0.9]) - with pytest.raises(ValueError): - QuantileRegression(q_non_symmetric) + # if a QuantileLoss is used, it must have to q=0.5 quantile + with pytest.raises(ValueError): + QuantileRegression(q_no_50) - def test_future_covariate_handling(self): - ts_time_index = tg.sine_timeseries(length=2, freq="h") - ts_integer_index = TimeSeries.from_values(values=ts_time_index.values()) + # if a QuantileLoss is used, it must be symmetric around q=0.5 quantile (i.e. [0.1, 0.5, 0.9]) + with pytest.raises(ValueError): + QuantileRegression(q_non_symmetric) - # model requires future covariates without cyclic encoding - model = TFTModel(input_chunk_length=1, output_chunk_length=1, **tfm_kwargs) - with pytest.raises(ValueError): - model.fit(ts_time_index, verbose=False) + def test_future_covariate_handling(self): + ts_time_index = tg.sine_timeseries(length=2, freq="h") + ts_integer_index = TimeSeries.from_values(values=ts_time_index.values()) - # should work with cyclic encoding for time index - model = TFTModel( - input_chunk_length=1, - output_chunk_length=1, - add_encoders={"cyclic": {"future": "hour"}}, - **tfm_kwargs, - ) + # model requires future covariates without cyclic encoding + model = TFTModel(input_chunk_length=1, output_chunk_length=1, **tfm_kwargs) + with pytest.raises(ValueError): model.fit(ts_time_index, verbose=False) - # should work with relative index both with time index and integer index - model = TFTModel( - input_chunk_length=1, - output_chunk_length=1, - add_relative_index=True, - **tfm_kwargs, - ) - model.fit(ts_time_index, verbose=False) - model.fit(ts_integer_index, verbose=False) - - def test_prediction_shape(self): - """checks whether prediction has same number of variable as input series and - whether prediction has correct length. - Test cases: - - univariate - - multivariate - - multi-TS - """ - season_length = 1 - n_repeat = 20 - - # data comes as multivariate - ( - ts, - ts_train, - ts_val, - covariates, - ) = self.helper_generate_multivariate_case_data(season_length, n_repeat) - - kwargs_TFT_quick_test = { - "input_chunk_length": 1, - "output_chunk_length": 1, - "n_epochs": 1, - "lstm_layers": 1, - "hidden_size": 8, - "loss_fn": MSELoss(), - "random_state": 42, - } - kwargs_TFT_quick_test = dict(kwargs_TFT_quick_test, **tfm_kwargs) - - # univariate - first_var = ts.columns[0] - self.helper_test_prediction_shape( - season_length, - ts[first_var], - ts_train[first_var], - ts_val[first_var], - future_covariates=covariates, - kwargs_tft=kwargs_TFT_quick_test, + # should work with cyclic encoding for time index + model = TFTModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"future": "hour"}}, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False) + + # should work with relative index both with time index and integer index + model = TFTModel( + input_chunk_length=1, + output_chunk_length=1, + add_relative_index=True, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False) + model.fit(ts_integer_index, verbose=False) + + def test_prediction_shape(self): + """checks whether prediction has same number of variable as input series and + whether prediction has correct length. + Test cases: + - univariate + - multivariate + - multi-TS + """ + season_length = 1 + n_repeat = 20 + + # data comes as multivariate + ( + ts, + ts_train, + ts_val, + covariates, + ) = self.helper_generate_multivariate_case_data(season_length, n_repeat) + + kwargs_TFT_quick_test = { + "input_chunk_length": 1, + "output_chunk_length": 1, + "n_epochs": 1, + "lstm_layers": 1, + "hidden_size": 8, + "loss_fn": MSELoss(), + "random_state": 42, + } + kwargs_TFT_quick_test = dict(kwargs_TFT_quick_test, **tfm_kwargs) + + # univariate + first_var = ts.columns[0] + self.helper_test_prediction_shape( + season_length, + ts[first_var], + ts_train[first_var], + ts_val[first_var], + future_covariates=covariates, + kwargs_tft=kwargs_TFT_quick_test, + ) + # univariate and short prediction length + self.helper_test_prediction_shape( + 2, + ts[first_var], + ts_train[first_var], + ts_val[first_var], + future_covariates=covariates, + kwargs_tft=kwargs_TFT_quick_test, + ) + # multivariate + self.helper_test_prediction_shape( + season_length, + ts, + ts_train, + ts_val, + future_covariates=covariates, + kwargs_tft=kwargs_TFT_quick_test, + ) + # multi-TS + kwargs_TFT_quick_test["add_encoders"] = {"cyclic": {"future": "hour"}} + second_var = ts.columns[-1] + self.helper_test_prediction_shape( + season_length, + [ts[first_var], ts[second_var]], + [ts_train[first_var], ts_train[second_var]], + [ts_val[first_var], ts_val[second_var]], + future_covariates=None, + kwargs_tft=kwargs_TFT_quick_test, + ) + + def test_mixed_covariates_and_accuracy(self): + """Performs tests usingpast and future covariates for a multivariate prediction of a + sine wave together with a repeating linear curve. Both curves have the seasonal length. + """ + season_length = 24 + n_repeat = 30 + ( + ts, + ts_train, + ts_val, + covariates, + ) = self.helper_generate_multivariate_case_data(season_length, n_repeat) + + kwargs_TFT_full_coverage = { + "input_chunk_length": 12, + "output_chunk_length": 12, + "n_epochs": 10, + "lstm_layers": 2, + "hidden_size": 32, + "likelihood": QuantileRegression(quantiles=[0.1, 0.5, 0.9]), + "random_state": 42, + "add_encoders": {"cyclic": {"future": "hour"}}, + } + kwargs_TFT_full_coverage = dict(kwargs_TFT_full_coverage, **tfm_kwargs) + + self.helper_test_prediction_accuracy( + season_length, + ts, + ts_train, + ts_val, + past_covariates=covariates, + future_covariates=covariates, + kwargs_tft=kwargs_TFT_full_coverage, + ) + + def test_static_covariates_support(self): + target_multi = concatenate( + [tg.sine_timeseries(length=10, freq="h")] * 2, axis=1 + ) + + target_multi = target_multi.with_static_covariates( + pd.DataFrame( + [[0.0, 1.0, 0, 2], [2.0, 3.0, 1, 3]], + columns=["st1", "st2", "cat1", "cat2"], ) - # univariate and short prediction length - self.helper_test_prediction_shape( + ) + + # should work with cyclic encoding for time index + # set categorical embedding sizes once with automatic embedding size with an `int` and once by + # manually setting it with `tuple(int, int)` + model = TFTModel( + input_chunk_length=3, + output_chunk_length=4, + add_encoders={"cyclic": {"future": "hour"}}, + categorical_embedding_sizes={"cat1": 2, "cat2": (2, 2)}, + pl_trainer_kwargs={ + "fast_dev_run": True, + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + model.fit(target_multi, verbose=False) + + assert len(model.model.static_variables) == len( + target_multi.static_covariates.columns + ) + + # check model embeddings + target_embedding = { + "static_covariate_2": ( 2, - ts[first_var], - ts_train[first_var], - ts_val[first_var], - future_covariates=covariates, - kwargs_tft=kwargs_TFT_quick_test, + get_embedding_size(2), + ), # automatic embedding size + "static_covariate_3": (2, 2), # manual embedding size + } + assert model.categorical_embedding_sizes == target_embedding + for cat_var, embedding_dims in target_embedding.items(): + assert ( + model.model.input_embeddings.embeddings[cat_var].num_embeddings + == embedding_dims[0] ) - # multivariate - self.helper_test_prediction_shape( - season_length, - ts, - ts_train, - ts_val, - future_covariates=covariates, - kwargs_tft=kwargs_TFT_quick_test, - ) - # multi-TS - kwargs_TFT_quick_test["add_encoders"] = {"cyclic": {"future": "hour"}} - second_var = ts.columns[-1] - self.helper_test_prediction_shape( - season_length, - [ts[first_var], ts[second_var]], - [ts_train[first_var], ts_train[second_var]], - [ts_val[first_var], ts_val[second_var]], - future_covariates=None, - kwargs_tft=kwargs_TFT_quick_test, + assert ( + model.model.input_embeddings.embeddings[cat_var].embedding_dim + == embedding_dims[1] ) - def test_mixed_covariates_and_accuracy(self): - """Performs tests usingpast and future covariates for a multivariate prediction of a - sine wave together with a repeating linear curve. Both curves have the seasonal length. - """ - season_length = 24 - n_repeat = 30 - ( - ts, - ts_train, - ts_val, - covariates, - ) = self.helper_generate_multivariate_case_data(season_length, n_repeat) - - kwargs_TFT_full_coverage = { - "input_chunk_length": 12, - "output_chunk_length": 12, - "n_epochs": 10, - "lstm_layers": 2, - "hidden_size": 32, - "likelihood": QuantileRegression(quantiles=[0.1, 0.5, 0.9]), - "random_state": 42, - "add_encoders": {"cyclic": {"future": "hour"}}, - } - kwargs_TFT_full_coverage = dict(kwargs_TFT_full_coverage, **tfm_kwargs) - - self.helper_test_prediction_accuracy( - season_length, - ts, - ts_train, - ts_val, - past_covariates=covariates, - future_covariates=covariates, - kwargs_tft=kwargs_TFT_full_coverage, - ) + preds = model.predict(n=1, series=target_multi, verbose=False) + assert preds.static_covariates.equals(target_multi.static_covariates) - def test_static_covariates_support(self): - target_multi = concatenate( - [tg.sine_timeseries(length=10, freq="h")] * 2, axis=1 - ) - - target_multi = target_multi.with_static_covariates( - pd.DataFrame( - [[0.0, 1.0, 0, 2], [2.0, 3.0, 1, 3]], - columns=["st1", "st2", "cat1", "cat2"], - ) - ) - - # should work with cyclic encoding for time index - # set categorical embedding sizes once with automatic embedding size with an `int` and once by - # manually setting it with `tuple(int, int)` - model = TFTModel( - input_chunk_length=3, - output_chunk_length=4, - add_encoders={"cyclic": {"future": "hour"}}, - categorical_embedding_sizes={"cat1": 2, "cat2": (2, 2)}, - pl_trainer_kwargs={ - "fast_dev_run": True, - **tfm_kwargs["pl_trainer_kwargs"], - }, - ) - model.fit(target_multi, verbose=False) + # raise an error when trained with static covariates of wrong dimensionality + target_multi = target_multi.with_static_covariates( + pd.concat([target_multi.static_covariates] * 2, axis=1) + ) + with pytest.raises(ValueError): + model.predict(n=1, series=target_multi, verbose=False) - assert len(model.model.static_variables) == len( - target_multi.static_covariates.columns + # raise an error when trained with static covariates and trying to predict without + with pytest.raises(ValueError): + model.predict( + n=1, series=target_multi.with_static_covariates(None), verbose=False ) - # check model embeddings - target_embedding = { - "static_covariate_2": ( - 2, - get_embedding_size(2), - ), # automatic embedding size - "static_covariate_3": (2, 2), # manual embedding size - } - assert model.categorical_embedding_sizes == target_embedding - for cat_var, embedding_dims in target_embedding.items(): - assert ( - model.model.input_embeddings.embeddings[cat_var].num_embeddings - == embedding_dims[0] - ) - assert ( - model.model.input_embeddings.embeddings[cat_var].embedding_dim - == embedding_dims[1] - ) - - preds = model.predict(n=1, series=target_multi, verbose=False) - assert preds.static_covariates.equals(target_multi.static_covariates) - - # raise an error when trained with static covariates of wrong dimensionality - target_multi = target_multi.with_static_covariates( - pd.concat([target_multi.static_covariates] * 2, axis=1) - ) - with pytest.raises(ValueError): - model.predict(n=1, series=target_multi, verbose=False) - - # raise an error when trained with static covariates and trying to predict without - with pytest.raises(ValueError): - model.predict( - n=1, series=target_multi.with_static_covariates(None), verbose=False - ) - - # with `use_static_covariates=False`, we can predict without static covs - model = TFTModel( - input_chunk_length=3, - output_chunk_length=4, - use_static_covariates=False, - add_relative_index=True, - n_epochs=1, - **tfm_kwargs, - ) - model.fit(target_multi) - preds = model.predict(n=2, series=target_multi.with_static_covariates(None)) - assert preds.static_covariates is None - - model = TFTModel( - input_chunk_length=3, - output_chunk_length=4, - use_static_covariates=False, - add_relative_index=True, - n_epochs=1, - **tfm_kwargs, - ) - model.fit(target_multi.with_static_covariates(None)) - preds = model.predict(n=2, series=target_multi) - assert preds.static_covariates.equals(target_multi.static_covariates) - - def helper_generate_multivariate_case_data(self, season_length, n_repeat): - """generates multivariate test case data. Target series is a sine wave stacked with a repeating - linear curve of equal seasonal length. Covariates are datetime attributes for 'hours'. - """ - - # generate sine wave - ts_sine = tg.sine_timeseries( - value_frequency=1 / season_length, - length=n_repeat * season_length, - freq="h", - ) - - # generate repeating linear curve - ts_linear = tg.linear_timeseries( - 0, 1, length=season_length, start=ts_sine.end_time() + ts_sine.freq - ) - for i in range(n_repeat - 1): - start = ts_linear.end_time() + ts_linear.freq - new_ts = tg.linear_timeseries(0, 1, length=season_length, start=start) - ts_linear = ts_linear.append(new_ts) - ts_linear = TimeSeries.from_times_and_values( - times=ts_sine.time_index, values=ts_linear.values() - ) - - # create multivariate TimeSeries by stacking sine and linear curves - ts = ts_sine.stack(ts_linear) - - # create train/test sets - val_length = 10 * season_length - ts_train, ts_val = ts[:-val_length], ts[-val_length:] - - # scale data - scaler_ts = Scaler() - ts_train_scaled = scaler_ts.fit_transform(ts_train) - ts_val_scaled = scaler_ts.transform(ts_val) - ts_scaled = scaler_ts.transform(ts) - - # generate long enough covariates (past and future covariates will be the same for simplicity) - long_enough_ts = tg.sine_timeseries( - value_frequency=1 / season_length, length=1000, freq=ts.freq - ) - covariates = tg.datetime_attribute_timeseries( - long_enough_ts, attribute="hour" - ) - scaler_covs = Scaler() - covariates_scaled = scaler_covs.fit_transform(covariates) - return ts_scaled, ts_train_scaled, ts_val_scaled, covariates_scaled - - def helper_test_prediction_shape( - self, predict_n, ts, ts_train, ts_val, future_covariates, kwargs_tft - ): - """checks whether prediction has same number of variable as input series and - whether prediction has correct length""" - y_hat = self.helper_fit_predict( - predict_n, ts_train, ts_val, None, future_covariates, kwargs_tft - ) - - y_hat_list = [y_hat] if isinstance(y_hat, TimeSeries) else y_hat - ts_list = [ts] if isinstance(ts, TimeSeries) else ts - - for y_hat_i, ts_i in zip(y_hat_list, ts_list): - assert len(y_hat_i) == predict_n - assert y_hat_i.n_components == ts_i.n_components - - def helper_test_prediction_accuracy( - self, + # with `use_static_covariates=False`, we can predict without static covs + model = TFTModel( + input_chunk_length=3, + output_chunk_length=4, + use_static_covariates=False, + add_relative_index=True, + n_epochs=1, + **tfm_kwargs, + ) + model.fit(target_multi) + preds = model.predict(n=2, series=target_multi.with_static_covariates(None)) + assert preds.static_covariates is None + + model = TFTModel( + input_chunk_length=3, + output_chunk_length=4, + use_static_covariates=False, + add_relative_index=True, + n_epochs=1, + **tfm_kwargs, + ) + model.fit(target_multi.with_static_covariates(None)) + preds = model.predict(n=2, series=target_multi) + assert preds.static_covariates.equals(target_multi.static_covariates) + + def helper_generate_multivariate_case_data(self, season_length, n_repeat): + """generates multivariate test case data. Target series is a sine wave stacked with a repeating + linear curve of equal seasonal length. Covariates are datetime attributes for 'hours'. + """ + + # generate sine wave + ts_sine = tg.sine_timeseries( + value_frequency=1 / season_length, + length=n_repeat * season_length, + freq="h", + ) + + # generate repeating linear curve + ts_linear = tg.linear_timeseries( + 0, 1, length=season_length, start=ts_sine.end_time() + ts_sine.freq + ) + for i in range(n_repeat - 1): + start = ts_linear.end_time() + ts_linear.freq + new_ts = tg.linear_timeseries(0, 1, length=season_length, start=start) + ts_linear = ts_linear.append(new_ts) + ts_linear = TimeSeries.from_times_and_values( + times=ts_sine.time_index, values=ts_linear.values() + ) + + # create multivariate TimeSeries by stacking sine and linear curves + ts = ts_sine.stack(ts_linear) + + # create train/test sets + val_length = 10 * season_length + ts_train, ts_val = ts[:-val_length], ts[-val_length:] + + # scale data + scaler_ts = Scaler() + ts_train_scaled = scaler_ts.fit_transform(ts_train) + ts_val_scaled = scaler_ts.transform(ts_val) + ts_scaled = scaler_ts.transform(ts) + + # generate long enough covariates (past and future covariates will be the same for simplicity) + long_enough_ts = tg.sine_timeseries( + value_frequency=1 / season_length, length=1000, freq=ts.freq + ) + covariates = tg.datetime_attribute_timeseries(long_enough_ts, attribute="hour") + scaler_covs = Scaler() + covariates_scaled = scaler_covs.fit_transform(covariates) + return ts_scaled, ts_train_scaled, ts_val_scaled, covariates_scaled + + def helper_test_prediction_shape( + self, predict_n, ts, ts_train, ts_val, future_covariates, kwargs_tft + ): + """checks whether prediction has same number of variable as input series and + whether prediction has correct length""" + y_hat = self.helper_fit_predict( + predict_n, ts_train, ts_val, None, future_covariates, kwargs_tft + ) + + y_hat_list = [y_hat] if isinstance(y_hat, TimeSeries) else y_hat + ts_list = [ts] if isinstance(ts, TimeSeries) else ts + + for y_hat_i, ts_i in zip(y_hat_list, ts_list): + assert len(y_hat_i) == predict_n + assert y_hat_i.n_components == ts_i.n_components + + def helper_test_prediction_accuracy( + self, + predict_n, + ts, + ts_train, + ts_val, + past_covariates, + future_covariates, + kwargs_tft, + ): + """prediction should be almost equal to y_true. Absolute tolarance is set + to 0.2 to give some flexibility""" + + absolute_tolarance = 0.2 + y_hat = self.helper_fit_predict( predict_n, - ts, ts_train, ts_val, past_covariates, future_covariates, kwargs_tft, - ): - """prediction should be almost equal to y_true. Absolute tolarance is set - to 0.2 to give some flexibility""" - - absolute_tolarance = 0.2 - y_hat = self.helper_fit_predict( - predict_n, - ts_train, - ts_val, - past_covariates, - future_covariates, - kwargs_tft, - ) - - y_true = ts[y_hat.start_time() : y_hat.end_time()] - assert np.allclose( - y_true[1:-1].all_values(), - y_hat[1:-1].all_values(), - atol=absolute_tolarance, - ) - - @staticmethod - def helper_fit_predict( - predict_n, ts_train, ts_val, past_covariates, future_covariates, kwargs_tft - ): - """simple helper that returns prediction for the individual test cases""" - model = TFTModel(**kwargs_tft) - - model.fit( - ts_train, - past_covariates=past_covariates, - future_covariates=future_covariates, - val_series=ts_val, - val_past_covariates=past_covariates, - val_future_covariates=future_covariates, - verbose=False, - ) - - series = None if isinstance(ts_train, TimeSeries) else ts_train - y_hat = model.predict( - n=predict_n, - series=series, - past_covariates=past_covariates, - future_covariates=future_covariates, - num_samples=(100 if model.supports_probabilistic_prediction else 1), - ) - - if isinstance(y_hat, TimeSeries): - y_hat = y_hat.quantile_timeseries(0.5) if y_hat.n_samples > 1 else y_hat - else: - y_hat = [ - ts.quantile_timeseries(0.5) if ts.n_samples > 1 else ts - for ts in y_hat - ] - return y_hat - - def test_layer_norm(self): - times = pd.date_range("20130101", "20130410") - pd_series = pd.Series(range(100), index=times) - series: TimeSeries = TimeSeries.from_series(pd_series) - base_model = TFTModel - - model1 = base_model( - input_chunk_length=1, - output_chunk_length=1, - add_relative_index=True, - norm_type="RMSNorm", - **tfm_kwargs, - ) - model1.fit(series, epochs=1) - - model2 = base_model( + ) + + y_true = ts[y_hat.start_time() : y_hat.end_time()] + assert np.allclose( + y_true[1:-1].all_values(), + y_hat[1:-1].all_values(), + atol=absolute_tolarance, + ) + + @staticmethod + def helper_fit_predict( + predict_n, ts_train, ts_val, past_covariates, future_covariates, kwargs_tft + ): + """simple helper that returns prediction for the individual test cases""" + model = TFTModel(**kwargs_tft) + + model.fit( + ts_train, + past_covariates=past_covariates, + future_covariates=future_covariates, + val_series=ts_val, + val_past_covariates=past_covariates, + val_future_covariates=future_covariates, + verbose=False, + ) + + series = None if isinstance(ts_train, TimeSeries) else ts_train + y_hat = model.predict( + n=predict_n, + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + num_samples=(100 if model.supports_probabilistic_prediction else 1), + ) + + if isinstance(y_hat, TimeSeries): + y_hat = y_hat.quantile_timeseries(0.5) if y_hat.n_samples > 1 else y_hat + else: + y_hat = [ + ts.quantile_timeseries(0.5) if ts.n_samples > 1 else ts for ts in y_hat + ] + return y_hat + + def test_layer_norm(self): + times = pd.date_range("20130101", "20130410") + pd_series = pd.Series(range(100), index=times) + series: TimeSeries = TimeSeries.from_series(pd_series) + base_model = TFTModel + + model1 = base_model( + input_chunk_length=1, + output_chunk_length=1, + add_relative_index=True, + norm_type="RMSNorm", + **tfm_kwargs, + ) + model1.fit(series, epochs=1) + + model2 = base_model( + input_chunk_length=1, + output_chunk_length=1, + add_relative_index=True, + norm_type=nn.LayerNorm, + **tfm_kwargs, + ) + model2.fit(series, epochs=1) + + with pytest.raises(AttributeError): + model4 = base_model( input_chunk_length=1, output_chunk_length=1, add_relative_index=True, - norm_type=nn.LayerNorm, + norm_type="invalid", **tfm_kwargs, ) - model2.fit(series, epochs=1) - - with pytest.raises(AttributeError): - model4 = base_model( - input_chunk_length=1, - output_chunk_length=1, - add_relative_index=True, - norm_type="invalid", - **tfm_kwargs, - ) - model4.fit(series, epochs=1) + model4.fit(series, epochs=1) diff --git a/darts/tests/models/forecasting/test_block_RNN.py b/darts/tests/models/forecasting/test_block_RNN.py index 9415ace0f4..3e69836e04 100644 --- a/darts/tests/models/forecasting/test_block_RNN.py +++ b/darts/tests/models/forecasting/test_block_RNN.py @@ -16,171 +16,171 @@ CustomBlockRNNModule, _BlockRNNModule, ) - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. RNN tests will be skipped.") - TORCH_AVAILABLE = False + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) -if TORCH_AVAILABLE: +class ModuleValid1(_BlockRNNModule): + """Wrapper around the _BlockRNNModule""" - class ModuleValid1(_BlockRNNModule): - """Wrapper around the _BlockRNNModule""" + def __init__(self, **kwargs): + super().__init__(name="RNN", **kwargs) - def __init__(self, **kwargs): - super().__init__(name="RNN", **kwargs) - class ModuleValid2(CustomBlockRNNModule): - """Just a linear layer.""" +class ModuleValid2(CustomBlockRNNModule): + """Just a linear layer.""" - def __init__(self, **kwargs): - super().__init__(**kwargs) - self.linear = nn.Linear(self.input_size, self.target_size) + def __init__(self, **kwargs): + super().__init__(**kwargs) + self.linear = nn.Linear(self.input_size, self.target_size) - def forward(self, x_in): - x = self.linear(x_in[0]) - return x.view(len(x), -1, self.target_size, self.nr_params) + def forward(self, x_in): + x = self.linear(x_in[0]) + return x.view(len(x), -1, self.target_size, self.nr_params) - class TestBlockRNNModel: - times = pd.date_range("20130101", "20130410") - pd_series = pd.Series(range(100), index=times) - series: TimeSeries = TimeSeries.from_series(pd_series) - module_invalid = _BlockRNNModule( - "RNN", - input_size=1, - input_chunk_length=1, - output_chunk_length=1, - output_chunk_shift=0, - hidden_dim=25, - target_size=1, - nr_params=1, - num_layers=1, - num_layers_out_fc=[], - dropout=0, - ) - def test_creation(self): - # cannot choose any string - with pytest.raises(ValueError) as msg: - BlockRNNModel( - input_chunk_length=1, output_chunk_length=1, model="UnknownRNN?" - ) - assert str(msg.value).startswith("`model` is not a valid RNN model.") - - # cannot create from a class instance - with pytest.raises(ValueError) as msg: - _ = BlockRNNModel( - input_chunk_length=1, - output_chunk_length=1, - model=self.module_invalid, - ) - assert str(msg.value).startswith("`model` is not a valid RNN model.") - - # can create from valid module name - model1 = BlockRNNModel( - input_chunk_length=1, - output_chunk_length=1, - model="RNN", - n_epochs=1, - random_state=42, - **tfm_kwargs, - ) - model1.fit(self.series) - preds1 = model1.predict(n=3) +class TestBlockRNNModel: + times = pd.date_range("20130101", "20130410") + pd_series = pd.Series(range(100), index=times) + series: TimeSeries = TimeSeries.from_series(pd_series) + module_invalid = _BlockRNNModule( + "RNN", + input_size=1, + input_chunk_length=1, + output_chunk_length=1, + output_chunk_shift=0, + hidden_dim=25, + target_size=1, + nr_params=1, + num_layers=1, + num_layers_out_fc=[], + dropout=0, + ) - # can create from a custom class itself - model2 = BlockRNNModel( - input_chunk_length=1, - output_chunk_length=1, - model=ModuleValid1, - n_epochs=1, - random_state=42, - **tfm_kwargs, + def test_creation(self): + # cannot choose any string + with pytest.raises(ValueError) as msg: + BlockRNNModel( + input_chunk_length=1, output_chunk_length=1, model="UnknownRNN?" ) - model2.fit(self.series) - preds2 = model2.predict(n=3) - np.testing.assert_array_equal(preds1.all_values(), preds2.all_values()) + assert str(msg.value).startswith("`model` is not a valid RNN model.") - model3 = BlockRNNModel( + # cannot create from a class instance + with pytest.raises(ValueError) as msg: + _ = BlockRNNModel( input_chunk_length=1, output_chunk_length=1, - model=ModuleValid2, - n_epochs=1, - random_state=42, - **tfm_kwargs, + model=self.module_invalid, ) - model3.fit(self.series) - preds3 = model2.predict(n=3) - assert preds3.all_values().shape == preds2.all_values().shape - assert preds3.time_index.equals(preds2.time_index) - - def test_fit(self, tmpdir_module): - # Test basic fit() - model = BlockRNNModel( - input_chunk_length=1, output_chunk_length=1, n_epochs=2, **tfm_kwargs - ) - model.fit(self.series) + assert str(msg.value).startswith("`model` is not a valid RNN model.") - # Test fit-save-load cycle - model2 = BlockRNNModel( - input_chunk_length=1, - output_chunk_length=1, - model="LSTM", - n_epochs=1, - model_name="unittest-model-lstm", - work_dir=tmpdir_module, - save_checkpoints=True, - force_reset=True, - **tfm_kwargs, - ) - model2.fit(self.series) - model_loaded = model2.load_from_checkpoint( - model_name="unittest-model-lstm", - work_dir=tmpdir_module, - best=False, - map_location="cpu", - ) - pred1 = model2.predict(n=6) - pred2 = model_loaded.predict(n=6) + # can create from valid module name + model1 = BlockRNNModel( + input_chunk_length=1, + output_chunk_length=1, + model="RNN", + n_epochs=1, + random_state=42, + **tfm_kwargs, + ) + model1.fit(self.series) + preds1 = model1.predict(n=3) - # Two models with the same parameters should deterministically yield the same output - np.testing.assert_array_equal(pred1.values(), pred2.values()) + # can create from a custom class itself + model2 = BlockRNNModel( + input_chunk_length=1, + output_chunk_length=1, + model=ModuleValid1, + n_epochs=1, + random_state=42, + **tfm_kwargs, + ) + model2.fit(self.series) + preds2 = model2.predict(n=3) + np.testing.assert_array_equal(preds1.all_values(), preds2.all_values()) - # Another random model should not - model3 = BlockRNNModel( - input_chunk_length=1, - output_chunk_length=1, - model="RNN", - n_epochs=2, - **tfm_kwargs, - ) - model3.fit(self.series) - pred3 = model3.predict(n=6) - assert not np.array_equal(pred1.values(), pred3.values()) - - # test short predict - pred4 = model3.predict(n=1) - assert len(pred4) == 1 - - # test validation series input - model3.fit(self.series[:60], val_series=self.series[60:]) - pred4 = model3.predict(n=6) - assert len(pred4) == 6 - - def helper_test_pred_length(self, pytorch_model, series): - model = pytorch_model( - input_chunk_length=1, output_chunk_length=3, n_epochs=1, **tfm_kwargs - ) - model.fit(series) - pred = model.predict(7) - assert len(pred) == 7 - pred = model.predict(2) - assert len(pred) == 2 - assert pred.width == 1 - pred = model.predict(4) - assert len(pred) == 4 - assert pred.width == 1 - - def test_pred_length(self): - self.helper_test_pred_length(BlockRNNModel, self.series) + model3 = BlockRNNModel( + input_chunk_length=1, + output_chunk_length=1, + model=ModuleValid2, + n_epochs=1, + random_state=42, + **tfm_kwargs, + ) + model3.fit(self.series) + preds3 = model2.predict(n=3) + assert preds3.all_values().shape == preds2.all_values().shape + assert preds3.time_index.equals(preds2.time_index) + + def test_fit(self, tmpdir_module): + # Test basic fit() + model = BlockRNNModel( + input_chunk_length=1, output_chunk_length=1, n_epochs=2, **tfm_kwargs + ) + model.fit(self.series) + + # Test fit-save-load cycle + model2 = BlockRNNModel( + input_chunk_length=1, + output_chunk_length=1, + model="LSTM", + n_epochs=1, + model_name="unittest-model-lstm", + work_dir=tmpdir_module, + save_checkpoints=True, + force_reset=True, + **tfm_kwargs, + ) + model2.fit(self.series) + model_loaded = model2.load_from_checkpoint( + model_name="unittest-model-lstm", + work_dir=tmpdir_module, + best=False, + map_location="cpu", + ) + pred1 = model2.predict(n=6) + pred2 = model_loaded.predict(n=6) + + # Two models with the same parameters should deterministically yield the same output + np.testing.assert_array_equal(pred1.values(), pred2.values()) + + # Another random model should not + model3 = BlockRNNModel( + input_chunk_length=1, + output_chunk_length=1, + model="RNN", + n_epochs=2, + **tfm_kwargs, + ) + model3.fit(self.series) + pred3 = model3.predict(n=6) + assert not np.array_equal(pred1.values(), pred3.values()) + + # test short predict + pred4 = model3.predict(n=1) + assert len(pred4) == 1 + + # test validation series input + model3.fit(self.series[:60], val_series=self.series[60:]) + pred4 = model3.predict(n=6) + assert len(pred4) == 6 + + def helper_test_pred_length(self, pytorch_model, series): + model = pytorch_model( + input_chunk_length=1, output_chunk_length=3, n_epochs=1, **tfm_kwargs + ) + model.fit(series) + pred = model.predict(7) + assert len(pred) == 7 + pred = model.predict(2) + assert len(pred) == 2 + assert pred.width == 1 + pred = model.predict(4) + assert len(pred) == 4 + assert pred.width == 1 + + def test_pred_length(self): + self.helper_test_pred_length(BlockRNNModel, self.series) diff --git a/darts/tests/models/forecasting/test_dlinear_nlinear.py b/darts/tests/models/forecasting/test_dlinear_nlinear.py index 5aca7c5f2b..61caa193d1 100644 --- a/darts/tests/models/forecasting/test_dlinear_nlinear.py +++ b/darts/tests/models/forecasting/test_dlinear_nlinear.py @@ -18,330 +18,320 @@ from darts.models.forecasting.dlinear import DLinearModel from darts.models.forecasting.nlinear import NLinearModel from darts.utils.likelihood_models import GaussianLikelihood +except ImportError: + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) - TORCH_AVAILABLE = True -except ImportError: - logger.warning("Torch not available. Dlinear and NLinear tests will be skipped.") - TORCH_AVAILABLE = False +class TestDlinearNlinearModels: + np.random.seed(42) + torch.manual_seed(42) + + def test_creation(self): + with pytest.raises(ValueError): + DLinearModel( + input_chunk_length=1, + output_chunk_length=1, + normalize=True, + likelihood=GaussianLikelihood(), + ) -if TORCH_AVAILABLE: + with pytest.raises(ValueError): + NLinearModel( + input_chunk_length=1, + output_chunk_length=1, + normalize=True, + likelihood=GaussianLikelihood(), + ) - class TestDlinearNlinearModels: + def test_fit(self): + large_ts = tg.constant_timeseries(length=100, value=1000) + small_ts = tg.constant_timeseries(length=100, value=10) + + for model_cls, kwargs in [ + (DLinearModel, {"kernel_size": 5}), + (DLinearModel, {"kernel_size": 6}), + (NLinearModel, {}), + ]: + # Test basic fit and predict + model = model_cls( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=10, + random_state=42, + **kwargs, + **tfm_kwargs, + ) + model.fit(large_ts[:98]) + pred = model.predict(n=2).values()[0] + + # Test whether model trained on one series is better than one trained on another + model2 = model_cls( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=10, + random_state=42, + **tfm_kwargs, + ) + model2.fit(small_ts[:98]) + pred2 = model2.predict(n=2).values()[0] + assert abs(pred2 - 10) < abs(pred - 10) + + # test short predict + pred3 = model2.predict(n=1) + assert len(pred3) == 1 + + def test_logtensorboard(self, tmpdir_module): + ts = tg.constant_timeseries(length=50, value=10) + + for model_cls in [DLinearModel, NLinearModel]: + # Test basic fit and predict + model = model_cls( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=1, + log_tensorboard=True, + work_dir=tmpdir_module, + pl_trainer_kwargs={ + "log_every_n_steps": 1, + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + model.fit(ts) + model.predict(n=2) + + def test_shared_weights(self): + ts = tg.constant_timeseries(length=50, value=10).stack( + tg.gaussian_timeseries(length=50) + ) + + for model_cls in [DLinearModel, NLinearModel]: + # Test basic fit and predict + model_shared = model_cls( + input_chunk_length=5, + output_chunk_length=1, + n_epochs=2, + const_init=False, + shared_weights=True, + random_state=42, + **tfm_kwargs, + ) + model_not_shared = model_cls( + input_chunk_length=5, + output_chunk_length=1, + n_epochs=2, + const_init=False, + shared_weights=False, + random_state=42, + **tfm_kwargs, + ) + model_shared.fit(ts) + model_not_shared.fit(ts) + pred_shared = model_shared.predict(n=2) + pred_not_shared = model_not_shared.predict(n=2) + assert np.any(np.not_equal(pred_shared.values(), pred_not_shared.values())) + + def test_multivariate_and_covariates(self): np.random.seed(42) torch.manual_seed(42) + # test on multiple multivariate series with future and static covariates + + def _create_multiv_series(f1, f2, n1, n2, nf1, nf2): + bases = [ + tg.sine_timeseries(length=400, value_frequency=f, value_amplitude=1.0) + for f in (f1, f2) + ] + noises = [tg.gaussian_timeseries(length=400, std=n) for n in (n1, n2)] + noise_modulators = [ + tg.sine_timeseries(length=400, value_frequency=nf) + + tg.constant_timeseries(length=400, value=1) / 2 + for nf in (nf1, nf2) + ] + noises = [noises[i] * noise_modulators[i] for i in range(len(noises))] + + target = concatenate( + [bases[i] + noises[i] for i in range(len(bases))], axis="component" + ) - def test_creation(self): - with pytest.raises(ValueError): - DLinearModel( - input_chunk_length=1, - output_chunk_length=1, - normalize=True, - likelihood=GaussianLikelihood(), - ) + target = target.with_static_covariates( + pd.DataFrame([[f1, n1, nf1], [f2, n2, nf2]]) + ) - with pytest.raises(ValueError): - NLinearModel( - input_chunk_length=1, - output_chunk_length=1, - normalize=True, - likelihood=GaussianLikelihood(), - ) + return target, concatenate(noise_modulators, axis="component") + + def _eval_model( + train1, + train2, + val1, + val2, + fut_cov1, + fut_cov2, + past_cov1=None, + past_cov2=None, + val_past_cov1=None, + val_past_cov2=None, + cls=DLinearModel, + lkl=None, + **kwargs, + ): + model = cls( + input_chunk_length=50, + output_chunk_length=10, + shared_weights=False, + const_init=True, + likelihood=lkl, + random_state=42, + **tfm_kwargs, + ) - def test_fit(self): - large_ts = tg.constant_timeseries(length=100, value=1000) - small_ts = tg.constant_timeseries(length=100, value=10) - - for model_cls, kwargs in [ - (DLinearModel, {"kernel_size": 5}), - (DLinearModel, {"kernel_size": 6}), - (NLinearModel, {}), - ]: - # Test basic fit and predict - model = model_cls( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=10, - random_state=42, - **kwargs, - **tfm_kwargs, - ) - model.fit(large_ts[:98]) - pred = model.predict(n=2).values()[0] - - # Test whether model trained on one series is better than one trained on another - model2 = model_cls( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=10, - random_state=42, - **tfm_kwargs, - ) - model2.fit(small_ts[:98]) - pred2 = model2.predict(n=2).values()[0] - assert abs(pred2 - 10) < abs(pred - 10) - - # test short predict - pred3 = model2.predict(n=1) - assert len(pred3) == 1 - - def test_logtensorboard(self, tmpdir_module): - ts = tg.constant_timeseries(length=50, value=10) - - for model_cls in [DLinearModel, NLinearModel]: - # Test basic fit and predict - model = model_cls( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=1, - log_tensorboard=True, - work_dir=tmpdir_module, - pl_trainer_kwargs={ - "log_every_n_steps": 1, - **tfm_kwargs["pl_trainer_kwargs"], - }, - ) - model.fit(ts) - model.predict(n=2) + model.fit( + [train1, train2], + past_covariates=( + [past_cov1, past_cov2] if past_cov1 is not None else None + ), + val_past_covariates=( + [val_past_cov1, val_past_cov2] + if val_past_cov1 is not None + else None + ), + future_covariates=( + [fut_cov1, fut_cov2] if fut_cov1 is not None else None + ), + epochs=10, + ) - def test_shared_weights(self): - ts = tg.constant_timeseries(length=50, value=10).stack( - tg.gaussian_timeseries(length=50) + pred1, pred2 = model.predict( + series=[train1, train2], + future_covariates=( + [fut_cov1, fut_cov2] if fut_cov1 is not None else None + ), + past_covariates=( + [fut_cov1, fut_cov2] if past_cov1 is not None else None + ), + n=len(val1), + num_samples=500 if lkl is not None else 1, ) - for model_cls in [DLinearModel, NLinearModel]: - # Test basic fit and predict - model_shared = model_cls( - input_chunk_length=5, - output_chunk_length=1, - n_epochs=2, - const_init=False, - shared_weights=True, - random_state=42, - **tfm_kwargs, - ) - model_not_shared = model_cls( - input_chunk_length=5, - output_chunk_length=1, - n_epochs=2, - const_init=False, - shared_weights=False, - random_state=42, - **tfm_kwargs, - ) - model_shared.fit(ts) - model_not_shared.fit(ts) - pred_shared = model_shared.predict(n=2) - pred_not_shared = model_not_shared.predict(n=2) - assert np.any( - np.not_equal(pred_shared.values(), pred_not_shared.values()) - ) + return rmse(val1, pred1), rmse(val2, pred2) - def test_multivariate_and_covariates(self): - np.random.seed(42) - torch.manual_seed(42) - # test on multiple multivariate series with future and static covariates - - def _create_multiv_series(f1, f2, n1, n2, nf1, nf2): - bases = [ - tg.sine_timeseries( - length=400, value_frequency=f, value_amplitude=1.0 - ) - for f in (f1, f2) - ] - noises = [tg.gaussian_timeseries(length=400, std=n) for n in (n1, n2)] - noise_modulators = [ - tg.sine_timeseries(length=400, value_frequency=nf) - + tg.constant_timeseries(length=400, value=1) / 2 - for nf in (nf1, nf2) - ] - noises = [noises[i] * noise_modulators[i] for i in range(len(noises))] - - target = concatenate( - [bases[i] + noises[i] for i in range(len(bases))], axis="component" - ) + series1, fut_cov1 = _create_multiv_series(0.05, 0.07, 0.2, 0.4, 0.02, 0.03) + series2, fut_cov2 = _create_multiv_series(0.04, 0.03, 0.4, 0.1, 0.02, 0.04) - target = target.with_static_covariates( - pd.DataFrame([[f1, n1, nf1], [f2, n2, nf2]]) - ) + train1, val1 = series1.split_after(0.7) + train2, val2 = series2.split_after(0.7) + past_cov1 = train1.copy() + past_cov2 = train2.copy() + val_past_cov1 = val1.copy() + val_past_cov2 = val2.copy() + + for model, lkl in product( + [DLinearModel, NLinearModel], [None, GaussianLikelihood()] + ): - return target, concatenate(noise_modulators, axis="component") + e1, e2 = _eval_model( + train1, train2, val1, val2, fut_cov1, fut_cov2, cls=model, lkl=lkl + ) + assert e1 <= 0.34 + assert e2 <= 0.28 - def _eval_model( - train1, - train2, + e1, e2 = _eval_model( + train1.with_static_covariates(None), + train2.with_static_covariates(None), val1, val2, fut_cov1, fut_cov2, - past_cov1=None, - past_cov2=None, - val_past_cov1=None, - val_past_cov2=None, - cls=DLinearModel, - lkl=None, - **kwargs - ): - model = cls( - input_chunk_length=50, - output_chunk_length=10, - shared_weights=False, - const_init=True, - likelihood=lkl, - random_state=42, - **tfm_kwargs, - ) - - model.fit( - [train1, train2], - past_covariates=( - [past_cov1, past_cov2] if past_cov1 is not None else None - ), - val_past_covariates=( - [val_past_cov1, val_past_cov2] - if val_past_cov1 is not None - else None - ), - future_covariates=( - [fut_cov1, fut_cov2] if fut_cov1 is not None else None - ), - epochs=10, - ) - - pred1, pred2 = model.predict( - series=[train1, train2], - future_covariates=( - [fut_cov1, fut_cov2] if fut_cov1 is not None else None - ), - past_covariates=( - [fut_cov1, fut_cov2] if past_cov1 is not None else None - ), - n=len(val1), - num_samples=500 if lkl is not None else 1, - ) - - return rmse(val1, pred1), rmse(val2, pred2) - - series1, fut_cov1 = _create_multiv_series(0.05, 0.07, 0.2, 0.4, 0.02, 0.03) - series2, fut_cov2 = _create_multiv_series(0.04, 0.03, 0.4, 0.1, 0.02, 0.04) - - train1, val1 = series1.split_after(0.7) - train2, val2 = series2.split_after(0.7) - past_cov1 = train1.copy() - past_cov2 = train2.copy() - val_past_cov1 = val1.copy() - val_past_cov2 = val2.copy() - - for model, lkl in product( - [DLinearModel, NLinearModel], [None, GaussianLikelihood()] - ): - - e1, e2 = _eval_model( - train1, train2, val1, val2, fut_cov1, fut_cov2, cls=model, lkl=lkl - ) - assert e1 <= 0.34 - assert e2 <= 0.28 - - e1, e2 = _eval_model( - train1.with_static_covariates(None), - train2.with_static_covariates(None), - val1, - val2, - fut_cov1, - fut_cov2, - cls=model, - lkl=lkl, - ) - assert e1 <= 0.32 - assert e2 <= 0.28 + cls=model, + lkl=lkl, + ) + assert e1 <= 0.32 + assert e2 <= 0.28 - e1, e2 = _eval_model( - train1, train2, val1, val2, None, None, cls=model, lkl=lkl - ) - assert e1 <= 0.40 - assert e2 <= 0.34 - - e1, e2 = _eval_model( - train1.with_static_covariates(None), - train2.with_static_covariates(None), - val1, - val2, - None, - None, - cls=model, - lkl=lkl, - ) - assert e1 <= 0.40 - assert e2 <= 0.34 + e1, e2 = _eval_model( + train1, train2, val1, val2, None, None, cls=model, lkl=lkl + ) + assert e1 <= 0.40 + assert e2 <= 0.34 e1, e2 = _eval_model( - train1, - train2, + train1.with_static_covariates(None), + train2.with_static_covariates(None), val1, val2, - fut_cov1, - fut_cov2, - past_cov1=past_cov1, - past_cov2=past_cov2, - val_past_cov1=val_past_cov1, - val_past_cov2=val_past_cov2, - cls=NLinearModel, - lkl=None, - normalize=True, + None, + None, + cls=model, + lkl=lkl, ) - # can only fit models with past/future covariates when shared_weights=False - for model in [DLinearModel, NLinearModel]: - for shared_weights in [True, False]: - model_instance = model( - 5, 5, shared_weights=shared_weights, **tfm_kwargs - ) - assert model_instance.supports_past_covariates == ( - not shared_weights - ) - assert model_instance.supports_future_covariates == ( - not shared_weights - ) - if shared_weights: - with pytest.raises(ValueError): - model_instance.fit(series1, future_covariates=fut_cov1) - - def test_optional_static_covariates(self): - series = tg.sine_timeseries(length=20).with_static_covariates( - pd.DataFrame({"a": [1]}) - ) - for model_cls in [NLinearModel, DLinearModel]: - # training model with static covs and predicting without will raise an error - model = model_cls( - input_chunk_length=12, - output_chunk_length=6, - use_static_covariates=True, - n_epochs=1, - **tfm_kwargs, - ) - model.fit(series) - with pytest.raises(ValueError): - model.predict(n=2, series=series.with_static_covariates(None)) - - # with `use_static_covariates=False`, static covariates are ignored and prediction works - model = model_cls( - input_chunk_length=12, - output_chunk_length=6, - use_static_covariates=False, - n_epochs=1, - **tfm_kwargs, + assert e1 <= 0.40 + assert e2 <= 0.34 + + e1, e2 = _eval_model( + train1, + train2, + val1, + val2, + fut_cov1, + fut_cov2, + past_cov1=past_cov1, + past_cov2=past_cov2, + val_past_cov1=val_past_cov1, + val_past_cov2=val_past_cov2, + cls=NLinearModel, + lkl=None, + normalize=True, + ) + # can only fit models with past/future covariates when shared_weights=False + for model in [DLinearModel, NLinearModel]: + for shared_weights in [True, False]: + model_instance = model( + 5, 5, shared_weights=shared_weights, **tfm_kwargs ) - model.fit(series) - preds = model.predict(n=2, series=series.with_static_covariates(None)) - assert preds.static_covariates is None - - # with `use_static_covariates=False`, static covariates are ignored and prediction works - model = model_cls( - input_chunk_length=12, - output_chunk_length=6, - use_static_covariates=False, - n_epochs=1, - **tfm_kwargs, - ) - model.fit(series.with_static_covariates(None)) - preds = model.predict(n=2, series=series) - assert preds.static_covariates.equals(series.static_covariates) + assert model_instance.supports_past_covariates == (not shared_weights) + assert model_instance.supports_future_covariates == (not shared_weights) + if shared_weights: + with pytest.raises(ValueError): + model_instance.fit(series1, future_covariates=fut_cov1) + + def test_optional_static_covariates(self): + series = tg.sine_timeseries(length=20).with_static_covariates( + pd.DataFrame({"a": [1]}) + ) + for model_cls in [NLinearModel, DLinearModel]: + # training model with static covs and predicting without will raise an error + model = model_cls( + input_chunk_length=12, + output_chunk_length=6, + use_static_covariates=True, + n_epochs=1, + **tfm_kwargs, + ) + model.fit(series) + with pytest.raises(ValueError): + model.predict(n=2, series=series.with_static_covariates(None)) + + # with `use_static_covariates=False`, static covariates are ignored and prediction works + model = model_cls( + input_chunk_length=12, + output_chunk_length=6, + use_static_covariates=False, + n_epochs=1, + **tfm_kwargs, + ) + model.fit(series) + preds = model.predict(n=2, series=series.with_static_covariates(None)) + assert preds.static_covariates is None + + # with `use_static_covariates=False`, static covariates are ignored and prediction works + model = model_cls( + input_chunk_length=12, + output_chunk_length=6, + use_static_covariates=False, + n_epochs=1, + **tfm_kwargs, + ) + model.fit(series.with_static_covariates(None)) + preds = model.predict(n=2, series=series) + assert preds.static_covariates.equals(series.static_covariates) diff --git a/darts/tests/models/forecasting/test_global_forecasting_models.py b/darts/tests/models/forecasting/test_global_forecasting_models.py index dd3e6faf8d..59d278f756 100644 --- a/darts/tests/models/forecasting/test_global_forecasting_models.py +++ b/darts/tests/models/forecasting/test_global_forecasting_models.py @@ -41,787 +41,782 @@ PastCovariatesTorchModel, ) from darts.utils.likelihood_models import GaussianLikelihood - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not installed - will be skipping Torch models tests") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: - IN_LEN = 24 - OUT_LEN = 12 - models_cls_kwargs_errs = [ - ( - BlockRNNModel, - { - "model": "RNN", - "hidden_dim": 10, - "n_rnn_layers": 1, - "batch_size": 32, - "n_epochs": 10, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 110.0, - ), - ( - RNNModel, - { - "model": "RNN", - "hidden_dim": 10, - "batch_size": 32, - "n_epochs": 10, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 150.0, - ), - ( - RNNModel, - { - "training_length": 12, - "n_epochs": 10, - "likelihood": GaussianLikelihood(), - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 80.0, - ), - ( - TCNModel, - { - "n_epochs": 10, - "batch_size": 32, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 60.0, - ), - ( - TransformerModel, - { - "d_model": 16, - "nhead": 2, - "num_encoder_layers": 2, - "num_decoder_layers": 2, - "dim_feedforward": 16, - "batch_size": 32, - "n_epochs": 10, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 60.0, - ), - ( - NBEATSModel, - { - "num_stacks": 4, - "num_blocks": 1, - "num_layers": 2, - "layer_widths": 12, - "n_epochs": 10, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 140.0, - ), - ( - TFTModel, - { - "hidden_size": 16, - "lstm_layers": 1, - "num_attention_heads": 4, - "add_relative_index": True, - "n_epochs": 10, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 70.0, - ), - ( - NLinearModel, - { - "n_epochs": 10, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 50.0, - ), - ( - DLinearModel, - { - "n_epochs": 10, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 55.0, - ), - ( - TiDEModel, - { - "n_epochs": 10, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 40.0, - ), - ( - TSMixerModel, - { - "n_epochs": 10, - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 60.0, - ), - ( - GlobalNaiveAggregate, - { - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 22, - ), - ( - GlobalNaiveDrift, - { - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 17, - ), - ( - GlobalNaiveSeasonal, - { - "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], - }, - 39, - ), - ] + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) + - class TestGlobalForecastingModels: - # forecasting horizon used in runnability tests - forecasting_horizon = 12 +IN_LEN = 24 +OUT_LEN = 12 +models_cls_kwargs_errs = [ + ( + BlockRNNModel, + { + "model": "RNN", + "hidden_dim": 10, + "n_rnn_layers": 1, + "batch_size": 32, + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 110.0, + ), + ( + RNNModel, + { + "model": "RNN", + "hidden_dim": 10, + "batch_size": 32, + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 150.0, + ), + ( + RNNModel, + { + "training_length": 12, + "n_epochs": 10, + "likelihood": GaussianLikelihood(), + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 80.0, + ), + ( + TCNModel, + { + "n_epochs": 10, + "batch_size": 32, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 60.0, + ), + ( + TransformerModel, + { + "d_model": 16, + "nhead": 2, + "num_encoder_layers": 2, + "num_decoder_layers": 2, + "dim_feedforward": 16, + "batch_size": 32, + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 60.0, + ), + ( + NBEATSModel, + { + "num_stacks": 4, + "num_blocks": 1, + "num_layers": 2, + "layer_widths": 12, + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 140.0, + ), + ( + TFTModel, + { + "hidden_size": 16, + "lstm_layers": 1, + "num_attention_heads": 4, + "add_relative_index": True, + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 70.0, + ), + ( + NLinearModel, + { + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 50.0, + ), + ( + DLinearModel, + { + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 55.0, + ), + ( + TiDEModel, + { + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 40.0, + ), + ( + TSMixerModel, + { + "n_epochs": 10, + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 60.0, + ), + ( + GlobalNaiveAggregate, + { + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 22, + ), + ( + GlobalNaiveDrift, + { + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 17, + ), + ( + GlobalNaiveSeasonal, + { + "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], + }, + 39, + ), +] - np.random.seed(42) - torch.manual_seed(42) - # some arbitrary static covariates - static_covariates = pd.DataFrame([[0.0, 1.0]], columns=["st1", "st2"]) +class TestGlobalForecastingModels: + # forecasting horizon used in runnability tests + forecasting_horizon = 12 - # real timeseries for functionality tests - ts_passengers = ( - AirPassengersDataset().load().with_static_covariates(static_covariates) - ) - scaler = Scaler() - ts_passengers = scaler.fit_transform(ts_passengers) - ts_pass_train, ts_pass_val = ts_passengers[:-36], ts_passengers[-36:] - - # an additional noisy series - ts_pass_train_1 = ts_pass_train + 0.01 * tg.gaussian_timeseries( - length=len(ts_pass_train), - freq=ts_pass_train.freq_str, - start=ts_pass_train.start_time(), - ) + np.random.seed(42) + torch.manual_seed(42) - # an additional time series serving as covariates - year_series = tg.datetime_attribute_timeseries(ts_passengers, attribute="year") - month_series = tg.datetime_attribute_timeseries( - ts_passengers, attribute="month" - ) - scaler_dt = Scaler() - time_covariates = scaler_dt.fit_transform(year_series.stack(month_series)) - time_covariates_train, time_covariates_val = ( - time_covariates[:-36], - time_covariates[-36:], - ) + # some arbitrary static covariates + static_covariates = pd.DataFrame([[0.0, 1.0]], columns=["st1", "st2"]) - # an artificial time series that is highly dependent on covariates - ts_length = 400 - split_ratio = 0.6 - sine_1_ts = tg.sine_timeseries(length=ts_length) - sine_2_ts = tg.sine_timeseries(length=ts_length, value_frequency=0.05) - sine_3_ts = tg.sine_timeseries( - length=ts_length, value_frequency=0.003, value_amplitude=5 - ) - linear_ts = tg.linear_timeseries(length=ts_length, start_value=3, end_value=8) + # real timeseries for functionality tests + ts_passengers = ( + AirPassengersDataset().load().with_static_covariates(static_covariates) + ) + scaler = Scaler() + ts_passengers = scaler.fit_transform(ts_passengers) + ts_pass_train, ts_pass_val = ts_passengers[:-36], ts_passengers[-36:] + + # an additional noisy series + ts_pass_train_1 = ts_pass_train + 0.01 * tg.gaussian_timeseries( + length=len(ts_pass_train), + freq=ts_pass_train.freq_str, + start=ts_pass_train.start_time(), + ) - covariates = sine_3_ts.stack(sine_2_ts).stack(linear_ts) - covariates_past, _ = covariates.split_after(split_ratio) + # an additional time series serving as covariates + year_series = tg.datetime_attribute_timeseries(ts_passengers, attribute="year") + month_series = tg.datetime_attribute_timeseries(ts_passengers, attribute="month") + scaler_dt = Scaler() + time_covariates = scaler_dt.fit_transform(year_series.stack(month_series)) + time_covariates_train, time_covariates_val = ( + time_covariates[:-36], + time_covariates[-36:], + ) - target = sine_1_ts + sine_2_ts + linear_ts + sine_3_ts - target_past, target_future = target.split_after(split_ratio) + # an artificial time series that is highly dependent on covariates + ts_length = 400 + split_ratio = 0.6 + sine_1_ts = tg.sine_timeseries(length=ts_length) + sine_2_ts = tg.sine_timeseries(length=ts_length, value_frequency=0.05) + sine_3_ts = tg.sine_timeseries( + length=ts_length, value_frequency=0.003, value_amplitude=5 + ) + linear_ts = tg.linear_timeseries(length=ts_length, start_value=3, end_value=8) - # various ts with different static covariates representations - ts_w_static_cov = tg.linear_timeseries(length=80).with_static_covariates( - pd.Series([1, 2]) - ) - ts_shared_static_cov = ts_w_static_cov.stack(tg.sine_timeseries(length=80)) - ts_comps_static_cov = ts_shared_static_cov.with_static_covariates( - pd.DataFrame([[0, 1], [2, 3]], columns=["st1", "st2"]) - ) + covariates = sine_3_ts.stack(sine_2_ts).stack(linear_ts) + covariates_past, _ = covariates.split_after(split_ratio) - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_save_model_parameters(self, config): - # model creation parameters were saved before. check if re-created model has same params as original - model_cls, kwargs, err = config - model = model_cls( - input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs - ) - assert model._model_params, model.untrained_model()._model_params - - @pytest.mark.parametrize( - "model", - [ - RNNModel( - input_chunk_length=4, - hidden_dim=10, - batch_size=32, - n_epochs=10, - **tfm_kwargs, - ), - TCNModel( - input_chunk_length=4, - output_chunk_length=3, - n_epochs=10, - batch_size=32, - **tfm_kwargs, - ), - GlobalNaiveSeasonal( - input_chunk_length=4, - output_chunk_length=3, - **tfm_kwargs, - ), - ], + target = sine_1_ts + sine_2_ts + linear_ts + sine_3_ts + target_past, target_future = target.split_after(split_ratio) + + # various ts with different static covariates representations + ts_w_static_cov = tg.linear_timeseries(length=80).with_static_covariates( + pd.Series([1, 2]) + ) + ts_shared_static_cov = ts_w_static_cov.stack(tg.sine_timeseries(length=80)) + ts_comps_static_cov = ts_shared_static_cov.with_static_covariates( + pd.DataFrame([[0, 1], [2, 3]], columns=["st1", "st2"]) + ) + + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_save_model_parameters(self, config): + # model creation parameters were saved before. check if re-created model has same params as original + model_cls, kwargs, err = config + model = model_cls( + input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs ) - def test_save_load_model(self, tmpdir_module, model): - # check if save and load methods work and if loaded model creates same forecasts as original model - cwd = os.getcwd() - os.chdir(tmpdir_module) - model_path_str = type(model).__name__ - full_model_path_str = os.path.join(tmpdir_module, model_path_str) - - model.fit(self.ts_pass_train) - model_prediction = model.predict(self.forecasting_horizon) - - # test save - model.save() - model.save(model_path_str) - - assert os.path.exists(full_model_path_str) - assert ( - len( - [ - p - for p in os.listdir(tmpdir_module) - if p.startswith(type(model).__name__) - ] - ) - == 4 + assert model._model_params, model.untrained_model()._model_params + + @pytest.mark.parametrize( + "model", + [ + RNNModel( + input_chunk_length=4, + hidden_dim=10, + batch_size=32, + n_epochs=10, + **tfm_kwargs, + ), + TCNModel( + input_chunk_length=4, + output_chunk_length=3, + n_epochs=10, + batch_size=32, + **tfm_kwargs, + ), + GlobalNaiveSeasonal( + input_chunk_length=4, + output_chunk_length=3, + **tfm_kwargs, + ), + ], + ) + def test_save_load_model(self, tmpdir_module, model): + # check if save and load methods work and if loaded model creates same forecasts as original model + cwd = os.getcwd() + os.chdir(tmpdir_module) + model_path_str = type(model).__name__ + full_model_path_str = os.path.join(tmpdir_module, model_path_str) + + model.fit(self.ts_pass_train) + model_prediction = model.predict(self.forecasting_horizon) + + # test save + model.save() + model.save(model_path_str) + + assert os.path.exists(full_model_path_str) + assert ( + len( + [ + p + for p in os.listdir(tmpdir_module) + if p.startswith(type(model).__name__) + ] ) + == 4 + ) - # test load - loaded_model = type(model).load(model_path_str) + # test load + loaded_model = type(model).load(model_path_str) - assert model_prediction == loaded_model.predict(self.forecasting_horizon) + assert model_prediction == loaded_model.predict(self.forecasting_horizon) - os.chdir(cwd) + os.chdir(cwd) - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_single_ts(self, config): - model_cls, kwargs, err = config - model = model_cls( - input_chunk_length=IN_LEN, - output_chunk_length=OUT_LEN, - random_state=0, - **kwargs, - ) - model.fit(self.ts_pass_train) - pred = model.predict(n=36) - mape_err = mape(self.ts_pass_val, pred) - assert mape_err < err, ( - "Model {} produces errors too high (one time " - "series). Error = {}".format(model_cls, mape_err) - ) - assert pred.static_covariates.equals(self.ts_passengers.static_covariates) - - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_multi_ts(self, config): - model_cls, kwargs, err = config - model = model_cls( - input_chunk_length=IN_LEN, - output_chunk_length=OUT_LEN, - random_state=0, - **kwargs, - ) - model.fit([self.ts_pass_train, self.ts_pass_train_1]) - with pytest.raises(ValueError): - # when model is fit from >1 series, one must provide a series in argument - model.predict(n=1) - pred = model.predict(n=36, series=self.ts_pass_train) + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_single_ts(self, config): + model_cls, kwargs, err = config + model = model_cls( + input_chunk_length=IN_LEN, + output_chunk_length=OUT_LEN, + random_state=0, + **kwargs, + ) + model.fit(self.ts_pass_train) + pred = model.predict(n=36) + mape_err = mape(self.ts_pass_val, pred) + assert ( + mape_err < err + ), "Model {} produces errors too high (one time " "series). Error = {}".format( + model_cls, mape_err + ) + assert pred.static_covariates.equals(self.ts_passengers.static_covariates) + + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_multi_ts(self, config): + model_cls, kwargs, err = config + model = model_cls( + input_chunk_length=IN_LEN, + output_chunk_length=OUT_LEN, + random_state=0, + **kwargs, + ) + model.fit([self.ts_pass_train, self.ts_pass_train_1]) + with pytest.raises(ValueError): + # when model is fit from >1 series, one must provide a series in argument + model.predict(n=1) + pred = model.predict(n=36, series=self.ts_pass_train) + mape_err = mape(self.ts_pass_val, pred) + assert mape_err < err, ( + "Model {} produces errors too high (several time " + "series). Error = {}".format(model_cls, mape_err) + ) + + # check prediction for several time series + pred_list = model.predict( + n=36, series=[self.ts_pass_train, self.ts_pass_train_1] + ) + assert ( + len(pred_list) == 2 + ), f"Model {model_cls} did not return a list of prediction" + for pred in pred_list: mape_err = mape(self.ts_pass_val, pred) assert mape_err < err, ( - "Model {} produces errors too high (several time " - "series). Error = {}".format(model_cls, mape_err) + "Model {} produces errors too high (several time series 2). " + "Error = {}".format(model_cls, mape_err) ) - # check prediction for several time series - pred_list = model.predict( - n=36, series=[self.ts_pass_train, self.ts_pass_train_1] - ) - assert ( - len(pred_list) == 2 - ), f"Model {model_cls} did not return a list of prediction" - for pred in pred_list: - mape_err = mape(self.ts_pass_val, pred) - assert mape_err < err, ( - "Model {} produces errors too high (several time series 2). " - "Error = {}".format(model_cls, mape_err) - ) - - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_covariates(self, config): - model_cls, kwargs, err = config - model = model_cls( - input_chunk_length=IN_LEN, - output_chunk_length=OUT_LEN, - random_state=0, - **kwargs, - ) + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_covariates(self, config): + model_cls, kwargs, err = config + model = model_cls( + input_chunk_length=IN_LEN, + output_chunk_length=OUT_LEN, + random_state=0, + **kwargs, + ) - # Here we rely on the fact that all non-Dual models currently are Past models - if model.supports_future_covariates: - cov_name = "future_covariates" - is_past = False - elif model.supports_past_covariates: - cov_name = "past_covariates" - is_past = True - else: - cov_name = None - is_past = None - - covariates = [self.time_covariates_train, self.time_covariates_train] - if cov_name is not None: - cov_kwargs = {cov_name: covariates} - cov_kwargs_train = {cov_name: self.time_covariates_train} - cov_kwargs_notrain = {cov_name: self.time_covariates} - else: - cov_kwargs = {} - cov_kwargs_train = {} - cov_kwargs_notrain = {} - - model.fit(series=[self.ts_pass_train, self.ts_pass_train_1], **cov_kwargs) - - if cov_name is None: - with pytest.raises(ValueError): - model.untrained_model().fit( - series=[self.ts_pass_train, self.ts_pass_train_1], - past_covariates=covariates, - ) - with pytest.raises(ValueError): - model.untrained_model().fit( - series=[self.ts_pass_train, self.ts_pass_train_1], - future_covariates=covariates, - ) + # Here we rely on the fact that all non-Dual models currently are Past models + if model.supports_future_covariates: + cov_name = "future_covariates" + is_past = False + elif model.supports_past_covariates: + cov_name = "past_covariates" + is_past = True + else: + cov_name = None + is_past = None + + covariates = [self.time_covariates_train, self.time_covariates_train] + if cov_name is not None: + cov_kwargs = {cov_name: covariates} + cov_kwargs_train = {cov_name: self.time_covariates_train} + cov_kwargs_notrain = {cov_name: self.time_covariates} + else: + cov_kwargs = {} + cov_kwargs_train = {} + cov_kwargs_notrain = {} + + model.fit(series=[self.ts_pass_train, self.ts_pass_train_1], **cov_kwargs) + + if cov_name is None: with pytest.raises(ValueError): - # when model is fit from >1 series, one must provide a series in argument - model.predict(n=1) - - if cov_name is not None: - with pytest.raises(ValueError): - # when model is fit using multiple covariates, covariates are required at prediction time - model.predict(n=1, series=self.ts_pass_train) - - with pytest.raises(ValueError): - # when model is fit using covariates, n cannot be greater than output_chunk_length... - # (for short covariates) - # past covariates model can predict up until output_chunk_length - # with train future covariates we cannot predict at all after end of series - model.predict( - n=13 if is_past else 1, - series=self.ts_pass_train, - **cov_kwargs_train, - ) - else: - # model does not support covariates - with pytest.raises(ValueError): - model.predict( - n=1, - series=self.ts_pass_train, - past_covariates=self.time_covariates, - ) - with pytest.raises(ValueError): - model.predict( - n=1, - series=self.ts_pass_train, - future_covariates=self.time_covariates, - ) - - # ... unless future covariates are provided - _ = model.predict(n=13, series=self.ts_pass_train, **cov_kwargs_notrain) - - pred = model.predict(n=12, series=self.ts_pass_train, **cov_kwargs_notrain) - mape_err = mape(self.ts_pass_val, pred) - assert mape_err < err, ( - "Model {} produces errors too high (several time " - "series with covariates). Error = {}".format(model_cls, mape_err) - ) - - # when model is fit using 1 training and 1 covariate series, time series args are optional - if model.supports_probabilistic_prediction: - return - model = model_cls( - input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs - ) - model.fit(series=self.ts_pass_train, **cov_kwargs_train) - if is_past: - # with past covariates from train we can predict up until output_chunk_length - pred1 = model.predict(1) - pred2 = model.predict(1, series=self.ts_pass_train) - pred3 = model.predict(1, **cov_kwargs_train) - pred4 = model.predict(1, **cov_kwargs_train, series=self.ts_pass_train) - else: - # with future covariates we need additional time steps to predict - with pytest.raises(ValueError): - _ = model.predict(1) - with pytest.raises(ValueError): - _ = model.predict(1, series=self.ts_pass_train) - with pytest.raises(ValueError): - _ = model.predict(1, **cov_kwargs_train) - with pytest.raises(ValueError): - _ = model.predict(1, **cov_kwargs_train, series=self.ts_pass_train) - - pred1 = model.predict(1, **cov_kwargs_notrain) - pred2 = model.predict( - 1, series=self.ts_pass_train, **cov_kwargs_notrain + model.untrained_model().fit( + series=[self.ts_pass_train, self.ts_pass_train_1], + past_covariates=covariates, ) - pred3 = model.predict(1, **cov_kwargs_notrain) - pred4 = model.predict( - 1, **cov_kwargs_notrain, series=self.ts_pass_train + with pytest.raises(ValueError): + model.untrained_model().fit( + series=[self.ts_pass_train, self.ts_pass_train_1], + future_covariates=covariates, ) + with pytest.raises(ValueError): + # when model is fit from >1 series, one must provide a series in argument + model.predict(n=1) - assert pred1 == pred2 - assert pred1 == pred3 - assert pred1 == pred4 + if cov_name is not None: + with pytest.raises(ValueError): + # when model is fit using multiple covariates, covariates are required at prediction time + model.predict(n=1, series=self.ts_pass_train) - def test_future_covariates(self): - # models with future covariates should produce better predictions over a long forecasting horizon - # than a model trained with no covariates + with pytest.raises(ValueError): + # when model is fit using covariates, n cannot be greater than output_chunk_length... + # (for short covariates) + # past covariates model can predict up until output_chunk_length + # with train future covariates we cannot predict at all after end of series + model.predict( + n=13 if is_past else 1, + series=self.ts_pass_train, + **cov_kwargs_train, + ) + else: + # model does not support covariates + with pytest.raises(ValueError): + model.predict( + n=1, + series=self.ts_pass_train, + past_covariates=self.time_covariates, + ) + with pytest.raises(ValueError): + model.predict( + n=1, + series=self.ts_pass_train, + future_covariates=self.time_covariates, + ) - model = TCNModel( - input_chunk_length=50, - output_chunk_length=5, - n_epochs=20, - random_state=0, - **tfm_kwargs, - ) - model.fit(series=self.target_past) - long_pred_no_cov = model.predict(n=160) - - model = TCNModel( - input_chunk_length=50, - output_chunk_length=5, - n_epochs=20, - random_state=0, - **tfm_kwargs, - ) - model.fit(series=self.target_past, past_covariates=self.covariates_past) - long_pred_with_cov = model.predict(n=160, past_covariates=self.covariates) - assert mape(self.target_future, long_pred_no_cov) > mape( - self.target_future, long_pred_with_cov - ), "Models with future covariates should produce better predictions." + # ... unless future covariates are provided + _ = model.predict(n=13, series=self.ts_pass_train, **cov_kwargs_notrain) - # block models can predict up to self.output_chunk_length points beyond the last future covariate... - model.predict(n=165, past_covariates=self.covariates) + pred = model.predict(n=12, series=self.ts_pass_train, **cov_kwargs_notrain) + mape_err = mape(self.ts_pass_val, pred) + assert mape_err < err, ( + "Model {} produces errors too high (several time " + "series with covariates). Error = {}".format(model_cls, mape_err) + ) - # ... not more + # when model is fit using 1 training and 1 covariate series, time series args are optional + if model.supports_probabilistic_prediction: + return + model = model_cls( + input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs + ) + model.fit(series=self.ts_pass_train, **cov_kwargs_train) + if is_past: + # with past covariates from train we can predict up until output_chunk_length + pred1 = model.predict(1) + pred2 = model.predict(1, series=self.ts_pass_train) + pred3 = model.predict(1, **cov_kwargs_train) + pred4 = model.predict(1, **cov_kwargs_train, series=self.ts_pass_train) + else: + # with future covariates we need additional time steps to predict with pytest.raises(ValueError): - model.predict(n=166, series=self.ts_pass_train) - - # recurrent models can only predict data points for time steps where future covariates are available - model = RNNModel(12, n_epochs=1, **tfm_kwargs) - model.fit(series=self.target_past, future_covariates=self.covariates_past) - model.predict(n=160, future_covariates=self.covariates) + _ = model.predict(1) with pytest.raises(ValueError): - model.predict(n=161, future_covariates=self.covariates) - - @pytest.mark.parametrize( - "model_cls,ts", - product( - [TFTModel, DLinearModel, NLinearModel, TiDEModel, TSMixerModel], - [ts_w_static_cov, ts_shared_static_cov, ts_comps_static_cov], + _ = model.predict(1, series=self.ts_pass_train) + with pytest.raises(ValueError): + _ = model.predict(1, **cov_kwargs_train) + with pytest.raises(ValueError): + _ = model.predict(1, **cov_kwargs_train, series=self.ts_pass_train) + + pred1 = model.predict(1, **cov_kwargs_notrain) + pred2 = model.predict(1, series=self.ts_pass_train, **cov_kwargs_notrain) + pred3 = model.predict(1, **cov_kwargs_notrain) + pred4 = model.predict(1, **cov_kwargs_notrain, series=self.ts_pass_train) + + assert pred1 == pred2 + assert pred1 == pred3 + assert pred1 == pred4 + + def test_future_covariates(self): + # models with future covariates should produce better predictions over a long forecasting horizon + # than a model trained with no covariates + + model = TCNModel( + input_chunk_length=50, + output_chunk_length=5, + n_epochs=20, + random_state=0, + **tfm_kwargs, + ) + model.fit(series=self.target_past) + long_pred_no_cov = model.predict(n=160) + + model = TCNModel( + input_chunk_length=50, + output_chunk_length=5, + n_epochs=20, + random_state=0, + **tfm_kwargs, + ) + model.fit(series=self.target_past, past_covariates=self.covariates_past) + long_pred_with_cov = model.predict(n=160, past_covariates=self.covariates) + assert mape(self.target_future, long_pred_no_cov) > mape( + self.target_future, long_pred_with_cov + ), "Models with future covariates should produce better predictions." + + # block models can predict up to self.output_chunk_length points beyond the last future covariate... + model.predict(n=165, past_covariates=self.covariates) + + # ... not more + with pytest.raises(ValueError): + model.predict(n=166, series=self.ts_pass_train) + + # recurrent models can only predict data points for time steps where future covariates are available + model = RNNModel(12, n_epochs=1, **tfm_kwargs) + model.fit(series=self.target_past, future_covariates=self.covariates_past) + model.predict(n=160, future_covariates=self.covariates) + with pytest.raises(ValueError): + model.predict(n=161, future_covariates=self.covariates) + + @pytest.mark.parametrize( + "model_cls,ts", + product( + [TFTModel, DLinearModel, NLinearModel, TiDEModel, TSMixerModel], + [ts_w_static_cov, ts_shared_static_cov, ts_comps_static_cov], + ), + ) + def test_use_static_covariates(self, model_cls, ts): + """ + Check that both static covariates representations are supported (component-specific and shared) + for both uni- and multivariate series when fitting the model. + Also check that the static covariates are present in the forecasted series + """ + model = model_cls( + input_chunk_length=IN_LEN, + output_chunk_length=OUT_LEN, + random_state=0, + use_static_covariates=True, + n_epochs=1, + **tfm_kwargs, + ) + # must provide mandatory future_covariates to TFTModel + model.fit( + series=ts, + future_covariates=( + self.sine_1_ts if model.supports_future_covariates else None ), ) - def test_use_static_covariates(self, model_cls, ts): - """ - Check that both static covariates representations are supported (component-specific and shared) - for both uni- and multivariate series when fitting the model. - Also check that the static covariates are present in the forecasted series - """ - model = model_cls( - input_chunk_length=IN_LEN, - output_chunk_length=OUT_LEN, - random_state=0, - use_static_covariates=True, - n_epochs=1, - **tfm_kwargs, - ) - # must provide mandatory future_covariates to TFTModel - model.fit( - series=ts, - future_covariates=( - self.sine_1_ts if model.supports_future_covariates else None - ), - ) - pred = model.predict(OUT_LEN) - assert pred.static_covariates.equals(ts.static_covariates) - - def test_batch_predictions(self): - # predicting multiple time series at once needs to work for arbitrary batch sizes - # univariate case - targets_univar = [ - self.target_past, - self.target_past[:60], - self.target_past[:80], - ] - self._batch_prediction_test_helper_function(targets_univar) - - # multivariate case - targets_multivar = [tgt.stack(tgt) for tgt in targets_univar] - self._batch_prediction_test_helper_function(targets_multivar) - - def _batch_prediction_test_helper_function(self, targets): - epsilon = 1e-4 - model = TCNModel( - input_chunk_length=50, - output_chunk_length=10, - n_epochs=10, - random_state=0, - **tfm_kwargs, - ) - model.fit(series=targets[0], past_covariates=self.covariates_past) - preds_default = model.predict( + pred = model.predict(OUT_LEN) + assert pred.static_covariates.equals(ts.static_covariates) + + def test_batch_predictions(self): + # predicting multiple time series at once needs to work for arbitrary batch sizes + # univariate case + targets_univar = [ + self.target_past, + self.target_past[:60], + self.target_past[:80], + ] + self._batch_prediction_test_helper_function(targets_univar) + + # multivariate case + targets_multivar = [tgt.stack(tgt) for tgt in targets_univar] + self._batch_prediction_test_helper_function(targets_multivar) + + def _batch_prediction_test_helper_function(self, targets): + epsilon = 1e-4 + model = TCNModel( + input_chunk_length=50, + output_chunk_length=10, + n_epochs=10, + random_state=0, + **tfm_kwargs, + ) + model.fit(series=targets[0], past_covariates=self.covariates_past) + preds_default = model.predict( + n=160, + series=targets, + past_covariates=[self.covariates] * len(targets), + batch_size=None, + ) + + # make batch size large enough to test stacking samples + for batch_size in range(1, 4 * len(targets)): + preds = model.predict( n=160, series=targets, past_covariates=[self.covariates] * len(targets), - batch_size=None, + batch_size=batch_size, ) + for i in range(len(targets)): + assert sum(sum((preds[i] - preds_default[i]).values())) < epsilon + + def test_predict_from_dataset_unsupported_input(self): + # an exception should be thrown if an unsupported type is passed + unsupported_type = "unsupported_type" + # just need to test this with one model + model_cls, kwargs, err = models_cls_kwargs_errs[0] + model = model_cls( + input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs + ) + model.fit([self.ts_pass_train, self.ts_pass_train_1]) - # make batch size large enough to test stacking samples - for batch_size in range(1, 4 * len(targets)): - preds = model.predict( - n=160, - series=targets, - past_covariates=[self.covariates] * len(targets), - batch_size=batch_size, - ) - for i in range(len(targets)): - assert sum(sum((preds[i] - preds_default[i]).values())) < epsilon - - def test_predict_from_dataset_unsupported_input(self): - # an exception should be thrown if an unsupported type is passed - unsupported_type = "unsupported_type" - # just need to test this with one model - model_cls, kwargs, err = models_cls_kwargs_errs[0] - model = model_cls( - input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs - ) - model.fit([self.ts_pass_train, self.ts_pass_train_1]) - - with pytest.raises(ValueError): - model.predict_from_dataset(n=1, input_series_dataset=unsupported_type) - - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_prediction_with_different_n(self, config): - # test model predictions for n < out_len, n == out_len and n > out_len - model_cls, kwargs, err = config - model = model_cls( - input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs - ) - assert isinstance( - model, - ( - PastCovariatesTorchModel, - DualCovariatesTorchModel, - MixedCovariatesTorchModel, - ), - ), "unit test not yet defined for the given {X}CovariatesTorchModel." - - if model.supports_past_covariates and model.supports_future_covariates: - past_covs, future_covs = None, self.covariates - elif model.supports_past_covariates: - past_covs, future_covs = self.covariates, None - elif model.supports_future_covariates: - past_covs, future_covs = None, self.covariates - else: - past_covs, future_covs = None, None - - model.fit( - self.target_past, - past_covariates=past_covs, - future_covariates=future_covs, - epochs=1, - ) + with pytest.raises(ValueError): + model.predict_from_dataset(n=1, input_series_dataset=unsupported_type) - # test prediction for n < out_len, n == out_len and n > out_len - for n in [OUT_LEN - 1, OUT_LEN, 2 * OUT_LEN - 1]: - pred = model.predict( - n=n, past_covariates=past_covs, future_covariates=future_covs - ) - assert len(pred) == n + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_prediction_with_different_n(self, config): + # test model predictions for n < out_len, n == out_len and n > out_len + model_cls, kwargs, err = config + model = model_cls( + input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs + ) + assert isinstance( + model, + ( + PastCovariatesTorchModel, + DualCovariatesTorchModel, + MixedCovariatesTorchModel, + ), + ), "unit test not yet defined for the given {X}CovariatesTorchModel." + + if model.supports_past_covariates and model.supports_future_covariates: + past_covs, future_covs = None, self.covariates + elif model.supports_past_covariates: + past_covs, future_covs = self.covariates, None + elif model.supports_future_covariates: + past_covs, future_covs = None, self.covariates + else: + past_covs, future_covs = None, None + + model.fit( + self.target_past, + past_covariates=past_covs, + future_covariates=future_covs, + epochs=1, + ) - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_same_result_with_different_n_jobs(self, config): - model_cls, kwargs, err = config - model = model_cls( - input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs + # test prediction for n < out_len, n == out_len and n > out_len + for n in [OUT_LEN - 1, OUT_LEN, 2 * OUT_LEN - 1]: + pred = model.predict( + n=n, past_covariates=past_covs, future_covariates=future_covs ) + assert len(pred) == n + + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_same_result_with_different_n_jobs(self, config): + model_cls, kwargs, err = config + model = model_cls( + input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs + ) - multiple_ts = [self.ts_pass_train] * 10 + multiple_ts = [self.ts_pass_train] * 10 - model.fit(multiple_ts) + model.fit(multiple_ts) - # safe random state for two successive identical predictions - if model.supports_probabilistic_prediction: - random_state = deepcopy(model._random_instance) - else: - random_state = None + # safe random state for two successive identical predictions + if model.supports_probabilistic_prediction: + random_state = deepcopy(model._random_instance) + else: + random_state = None - pred1 = model.predict(n=36, series=multiple_ts, n_jobs=1) + pred1 = model.predict(n=36, series=multiple_ts, n_jobs=1) - if random_state is not None: - model._random_instance = random_state + if random_state is not None: + model._random_instance = random_state - pred2 = model.predict( - n=36, series=multiple_ts, n_jobs=-1 - ) # assuming > 1 core available in the machine - assert ( - pred1 == pred2 - ), "Model {} produces different predictions with different number of jobs" + pred2 = model.predict( + n=36, series=multiple_ts, n_jobs=-1 + ) # assuming > 1 core available in the machine + assert ( + pred1 == pred2 + ), "Model {} produces different predictions with different number of jobs" - @patch( - "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel._init_trainer" + @patch( + "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel._init_trainer" + ) + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_fit_with_constr_epochs(self, init_trainer, config): + model_cls, kwargs, err = config + model = model_cls( + input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs ) - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_fit_with_constr_epochs(self, init_trainer, config): - model_cls, kwargs, err = config - model = model_cls( - input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs - ) - if not model._requires_training: - return - multiple_ts = [self.ts_pass_train] * 10 - model.fit(multiple_ts) + if not model._requires_training: + return + multiple_ts = [self.ts_pass_train] * 10 + model.fit(multiple_ts) - init_trainer.assert_called_with( - max_epochs=kwargs["n_epochs"], trainer_params=ANY - ) + init_trainer.assert_called_with( + max_epochs=kwargs["n_epochs"], trainer_params=ANY + ) - @patch( - "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel._init_trainer" + @patch( + "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel._init_trainer" + ) + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_fit_with_fit_epochs(self, init_trainer, config): + model_cls, kwargs, err = config + model = model_cls( + input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs ) - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_fit_with_fit_epochs(self, init_trainer, config): - model_cls, kwargs, err = config - model = model_cls( - input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs - ) - multiple_ts = [self.ts_pass_train] * 10 - epochs = 3 + multiple_ts = [self.ts_pass_train] * 10 + epochs = 3 - model.fit(multiple_ts, epochs=epochs) - init_trainer.assert_called_with(max_epochs=epochs, trainer_params=ANY) + model.fit(multiple_ts, epochs=epochs) + init_trainer.assert_called_with(max_epochs=epochs, trainer_params=ANY) - model.total_epochs = epochs - # continue training - model.fit(multiple_ts, epochs=epochs) - init_trainer.assert_called_with(max_epochs=epochs, trainer_params=ANY) + model.total_epochs = epochs + # continue training + model.fit(multiple_ts, epochs=epochs) + init_trainer.assert_called_with(max_epochs=epochs, trainer_params=ANY) - @patch( - "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel._init_trainer" + @patch( + "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel._init_trainer" + ) + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_fit_from_dataset_with_epochs(self, init_trainer, config): + model_cls, kwargs, err = config + model = model_cls( + input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs ) - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_fit_from_dataset_with_epochs(self, init_trainer, config): - model_cls, kwargs, err = config - model = model_cls( - input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs - ) - multiple_ts = [self.ts_pass_train] * 10 - train_dataset = model._build_train_dataset( - multiple_ts, - past_covariates=None, - future_covariates=None, - max_samples_per_ts=None, - ) - epochs = 3 + multiple_ts = [self.ts_pass_train] * 10 + train_dataset = model._build_train_dataset( + multiple_ts, + past_covariates=None, + future_covariates=None, + max_samples_per_ts=None, + ) + epochs = 3 - model.fit_from_dataset(train_dataset, epochs=epochs) - init_trainer.assert_called_with(max_epochs=epochs, trainer_params=ANY) + model.fit_from_dataset(train_dataset, epochs=epochs) + init_trainer.assert_called_with(max_epochs=epochs, trainer_params=ANY) - # continue training - model.fit_from_dataset(train_dataset, epochs=epochs) - init_trainer.assert_called_with(max_epochs=epochs, trainer_params=ANY) + # continue training + model.fit_from_dataset(train_dataset, epochs=epochs) + init_trainer.assert_called_with(max_epochs=epochs, trainer_params=ANY) - @pytest.mark.parametrize("config", models_cls_kwargs_errs) - def test_predit_after_fit_from_dataset(self, config): - model_cls, kwargs, _ = config - model = model_cls( - input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs - ) + @pytest.mark.parametrize("config", models_cls_kwargs_errs) + def test_predit_after_fit_from_dataset(self, config): + model_cls, kwargs, _ = config + model = model_cls( + input_chunk_length=IN_LEN, output_chunk_length=OUT_LEN, **kwargs + ) - multiple_ts = [self.ts_pass_train] * 2 - train_dataset = model._build_train_dataset( - multiple_ts, - past_covariates=None, - future_covariates=None, - max_samples_per_ts=None, - ) - model.fit_from_dataset(train_dataset, epochs=1) - - # test predict() works after fit_from_dataset() - model.predict(n=1, series=multiple_ts[0]) - - def test_sample_smaller_than_batch_size(self): - """ - Checking that the TorchForecastingModels do not crash even if the number of available samples for training - is strictly lower than the selected batch_size - """ - # TS with 50 timestamps. TorchForecastingModels will use the SequentialDataset for producing training - # samples, which means we will have 50 - 22 - 2 + 1 = 27 samples, which is < 32 (batch_size). The model - # should still train on those samples and not crash in any way - ts = linear_timeseries(start_value=0, end_value=1, length=50) - - model = RNNModel( - input_chunk_length=20, - output_chunk_length=2, - n_epochs=2, - batch_size=32, - **tfm_kwargs, - ) - model.fit(ts) + multiple_ts = [self.ts_pass_train] * 2 + train_dataset = model._build_train_dataset( + multiple_ts, + past_covariates=None, + future_covariates=None, + max_samples_per_ts=None, + ) + model.fit_from_dataset(train_dataset, epochs=1) + + # test predict() works after fit_from_dataset() + model.predict(n=1, series=multiple_ts[0]) + + def test_sample_smaller_than_batch_size(self): + """ + Checking that the TorchForecastingModels do not crash even if the number of available samples for training + is strictly lower than the selected batch_size + """ + # TS with 50 timestamps. TorchForecastingModels will use the SequentialDataset for producing training + # samples, which means we will have 50 - 22 - 2 + 1 = 27 samples, which is < 32 (batch_size). The model + # should still train on those samples and not crash in any way + ts = linear_timeseries(start_value=0, end_value=1, length=50) + + model = RNNModel( + input_chunk_length=20, + output_chunk_length=2, + n_epochs=2, + batch_size=32, + **tfm_kwargs, + ) + model.fit(ts) - def test_max_samples_per_ts(self): - """ - Checking that we can fit TorchForecastingModels with max_samples_per_ts, without crash - """ + def test_max_samples_per_ts(self): + """ + Checking that we can fit TorchForecastingModels with max_samples_per_ts, without crash + """ - ts = linear_timeseries(start_value=0, end_value=1, length=50) + ts = linear_timeseries(start_value=0, end_value=1, length=50) - model = RNNModel( - input_chunk_length=20, - output_chunk_length=2, - n_epochs=2, - batch_size=32, - **tfm_kwargs, - ) + model = RNNModel( + input_chunk_length=20, + output_chunk_length=2, + n_epochs=2, + batch_size=32, + **tfm_kwargs, + ) - model.fit(ts, max_samples_per_ts=5) - - def test_residuals(self): - """ - Torch models should not fail when computing residuals on a series - long enough to accommodate at least one training sample. - """ - ts = linear_timeseries(start_value=0, end_value=1, length=38) - - model = NBEATSModel( - input_chunk_length=24, - output_chunk_length=12, - num_stacks=2, - num_blocks=1, - num_layers=1, - layer_widths=2, - n_epochs=2, - **tfm_kwargs, - ) + model.fit(ts, max_samples_per_ts=5) + + def test_residuals(self): + """ + Torch models should not fail when computing residuals on a series + long enough to accommodate at least one training sample. + """ + ts = linear_timeseries(start_value=0, end_value=1, length=38) + + model = NBEATSModel( + input_chunk_length=24, + output_chunk_length=12, + num_stacks=2, + num_blocks=1, + num_layers=1, + layer_widths=2, + n_epochs=2, + **tfm_kwargs, + ) - res = model.residuals(ts) - assert len(res) == 38 - (24 + 12) + res = model.residuals(ts) + assert len(res) == 38 - (24 + 12) diff --git a/darts/tests/models/forecasting/test_nbeats_nhits.py b/darts/tests/models/forecasting/test_nbeats_nhits.py index 88acadb254..5085356271 100644 --- a/darts/tests/models/forecasting/test_nbeats_nhits.py +++ b/darts/tests/models/forecasting/test_nbeats_nhits.py @@ -10,184 +10,194 @@ try: from darts.models.forecasting.nbeats import NBEATSModel from darts.models.forecasting.nhits import NHiTSModel - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. Nbeats and NHiTs tests will be skipped.") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) - class TestNbeatsNhitsModel: - def test_creation(self): - with pytest.raises(ValueError): - # if a list is passed to the `layer_widths` argument, it must have a length equal to `num_stacks` - NBEATSModel( - input_chunk_length=1, - output_chunk_length=1, - num_stacks=3, - layer_widths=[1, 2], - ) - with pytest.raises(ValueError): - NHiTSModel( - input_chunk_length=1, - output_chunk_length=1, - num_stacks=3, - layer_widths=[1, 2], - ) +class TestNbeatsNhitsModel: + def test_creation(self): + with pytest.raises(ValueError): + # if a list is passed to the `layer_widths` argument, it must have a length equal to `num_stacks` + NBEATSModel( + input_chunk_length=1, + output_chunk_length=1, + num_stacks=3, + layer_widths=[1, 2], + ) - def test_fit(self): - large_ts = tg.constant_timeseries(length=100, value=1000) - small_ts = tg.constant_timeseries(length=100, value=10) + with pytest.raises(ValueError): + NHiTSModel( + input_chunk_length=1, + output_chunk_length=1, + num_stacks=3, + layer_widths=[1, 2], + ) - for model_cls in [NBEATSModel, NHiTSModel]: - # Test basic fit and predict - model = model_cls( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=10, - num_stacks=1, - num_blocks=1, - layer_widths=20, - random_state=42, - **tfm_kwargs, - ) - model.fit(large_ts[:98]) - pred = model.predict(n=2).values()[0] + def test_fit(self): + large_ts = tg.constant_timeseries(length=100, value=1000) + small_ts = tg.constant_timeseries(length=100, value=10) - # Test whether model trained on one series is better than one trained on another - model2 = model_cls( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=10, - num_stacks=1, - num_blocks=1, - layer_widths=20, - random_state=42, - **tfm_kwargs, - ) - model2.fit(small_ts[:98]) - pred2 = model2.predict(n=2).values()[0] - assert abs(pred2 - 10) < abs(pred - 10) - - # test short predict - pred3 = model2.predict(n=1) - assert len(pred3) == 1 - - def test_multivariate(self): - # testing a 2-variate linear ts, first one from 0 to 1, second one from 0 to 0.5, length 100 - series_multivariate = tg.linear_timeseries(length=100).stack( - tg.linear_timeseries(length=100, start_value=0, end_value=0.5) + for model_cls in [NBEATSModel, NHiTSModel]: + # Test basic fit and predict + model = model_cls( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=10, + num_stacks=1, + num_blocks=1, + layer_widths=20, + random_state=42, + **tfm_kwargs, ) + model.fit(large_ts[:98]) + pred = model.predict(n=2).values()[0] - for model_cls in [NBEATSModel, NHiTSModel]: - model = model_cls( - input_chunk_length=3, - output_chunk_length=1, - n_epochs=20, - random_state=42, - **tfm_kwargs, - ) - - model.fit(series_multivariate) - res = model.predict(n=2).values() + # Test whether model trained on one series is better than one trained on another + model2 = model_cls( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=10, + num_stacks=1, + num_blocks=1, + layer_widths=20, + random_state=42, + **tfm_kwargs, + ) + model2.fit(small_ts[:98]) + pred2 = model2.predict(n=2).values()[0] + assert abs(pred2 - 10) < abs(pred - 10) + + # test short predict + pred3 = model2.predict(n=1) + assert len(pred3) == 1 + + def test_multivariate(self): + # testing a 2-variate linear ts, first one from 0 to 1, second one from 0 to 0.5, length 100 + series_multivariate = tg.linear_timeseries(length=100).stack( + tg.linear_timeseries(length=100, start_value=0, end_value=0.5) + ) + + for model_cls in [NBEATSModel, NHiTSModel]: + model = model_cls( + input_chunk_length=3, + output_chunk_length=1, + n_epochs=20, + random_state=42, + **tfm_kwargs, + ) - # the theoretical result should be [[1.01, 1.02], [0.505, 0.51]]. - # We just test if the given result is not too far on average. - assert abs( - np.average(res - np.array([[1.01, 1.02], [0.505, 0.51]])) < 0.03 - ) + model.fit(series_multivariate) + res = model.predict(n=2).values() - # Test Covariates - series_covariates = tg.linear_timeseries(length=100).stack( - tg.linear_timeseries(length=100, start_value=0, end_value=0.1) - ) - model = model_cls( - input_chunk_length=3, - output_chunk_length=4, - n_epochs=5, - random_state=42, - **tfm_kwargs, - ) - model.fit(series_multivariate, past_covariates=series_covariates) + # the theoretical result should be [[1.01, 1.02], [0.505, 0.51]]. + # We just test if the given result is not too far on average. + assert abs(np.average(res - np.array([[1.01, 1.02], [0.505, 0.51]])) < 0.03) - res = model.predict( - n=3, series=series_multivariate, past_covariates=series_covariates - ).values() + # Test Covariates + series_covariates = tg.linear_timeseries(length=100).stack( + tg.linear_timeseries(length=100, start_value=0, end_value=0.1) + ) + model = model_cls( + input_chunk_length=3, + output_chunk_length=4, + n_epochs=5, + random_state=42, + **tfm_kwargs, + ) + model.fit(series_multivariate, past_covariates=series_covariates) - assert len(res) == 3 - assert abs(np.average(res)) < 5 + res = model.predict( + n=3, series=series_multivariate, past_covariates=series_covariates + ).values() - def test_nhits_sampling_sizes(self): - # providing bad sizes or shapes should fail - with pytest.raises(ValueError): + assert len(res) == 3 + assert abs(np.average(res)) < 5 - # wrong number of coeffs for stacks and blocks - NHiTSModel( - input_chunk_length=1, - output_chunk_length=1, - num_stacks=1, - num_blocks=2, - pooling_kernel_sizes=((1,), (1,)), - n_freq_downsample=((1,), (1,)), - ) - with pytest.raises(ValueError): - NHiTSModel( - input_chunk_length=1, - output_chunk_length=1, - num_stacks=2, - num_blocks=2, - pooling_kernel_sizes=((1, 1), (1, 1)), - n_freq_downsample=((2, 1), (2, 2)), - ) + def test_nhits_sampling_sizes(self): + # providing bad sizes or shapes should fail + with pytest.raises(ValueError): - # it shouldn't fail with the right number of coeffs - _ = NHiTSModel( + # wrong number of coeffs for stacks and blocks + NHiTSModel( input_chunk_length=1, output_chunk_length=1, - num_stacks=2, + num_stacks=1, num_blocks=2, - pooling_kernel_sizes=((2, 1), (2, 1)), - n_freq_downsample=((2, 1), (2, 1)), + pooling_kernel_sizes=((1,), (1,)), + n_freq_downsample=((1,), (1,)), ) - - # default freqs should be such that last one is 1 - model = NHiTSModel( + with pytest.raises(ValueError): + NHiTSModel( input_chunk_length=1, output_chunk_length=1, num_stacks=2, num_blocks=2, + pooling_kernel_sizes=((1, 1), (1, 1)), + n_freq_downsample=((2, 1), (2, 2)), ) - assert model.n_freq_downsample[-1][-1] == 1 - def test_logtensorboard(self, tmpdir_module): - ts = tg.constant_timeseries(length=50, value=10) + # it shouldn't fail with the right number of coeffs + _ = NHiTSModel( + input_chunk_length=1, + output_chunk_length=1, + num_stacks=2, + num_blocks=2, + pooling_kernel_sizes=((2, 1), (2, 1)), + n_freq_downsample=((2, 1), (2, 1)), + ) + + # default freqs should be such that last one is 1 + model = NHiTSModel( + input_chunk_length=1, + output_chunk_length=1, + num_stacks=2, + num_blocks=2, + ) + assert model.n_freq_downsample[-1][-1] == 1 + + def test_logtensorboard(self, tmpdir_module): + ts = tg.constant_timeseries(length=50, value=10) + + # testing if both the modes (generic and interpretable) runs with tensorboard + architectures = [True, False] + for architecture in architectures: + # Test basic fit and predict + model = NBEATSModel( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=1, + log_tensorboard=True, + work_dir=tmpdir_module, + generic_architecture=architecture, + pl_trainer_kwargs={ + "log_every_n_steps": 1, + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + model.fit(ts) + model.predict(n=2) - # testing if both the modes (generic and interpretable) runs with tensorboard - architectures = [True, False] - for architecture in architectures: - # Test basic fit and predict - model = NBEATSModel( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=1, - log_tensorboard=True, - work_dir=tmpdir_module, - generic_architecture=architecture, - pl_trainer_kwargs={ - "log_every_n_steps": 1, - **tfm_kwargs["pl_trainer_kwargs"], - }, - ) - model.fit(ts) - model.predict(n=2) + def test_activation_fns(self): + ts = tg.constant_timeseries(length=50, value=10) - def test_activation_fns(self): - ts = tg.constant_timeseries(length=50, value=10) + for model_cls in [NBEATSModel, NHiTSModel]: + model = model_cls( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=10, + num_stacks=1, + num_blocks=1, + layer_widths=20, + random_state=42, + activation="LeakyReLU", + **tfm_kwargs, + ) + model.fit(ts) - for model_cls in [NBEATSModel, NHiTSModel]: + with pytest.raises(ValueError): model = model_cls( input_chunk_length=1, output_chunk_length=1, @@ -196,21 +206,7 @@ def test_activation_fns(self): num_blocks=1, layer_widths=20, random_state=42, - activation="LeakyReLU", + activation="invalid", **tfm_kwargs, ) model.fit(ts) - - with pytest.raises(ValueError): - model = model_cls( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=10, - num_stacks=1, - num_blocks=1, - layer_widths=20, - random_state=42, - activation="invalid", - **tfm_kwargs, - ) - model.fit(ts) diff --git a/darts/tests/models/forecasting/test_ptl_trainer.py b/darts/tests/models/forecasting/test_ptl_trainer.py index d9449fa58d..bfc4c349d4 100644 --- a/darts/tests/models/forecasting/test_ptl_trainer.py +++ b/darts/tests/models/forecasting/test_ptl_trainer.py @@ -11,273 +11,271 @@ import pytorch_lightning as pl from darts.models.forecasting.rnn_model import RNNModel - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. RNN tests will be skipped.") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: - - class TestTorchForecastingModel: - trainer_params = { - "max_epochs": 1, - "logger": False, - "enable_checkpointing": False, - } - series = linear_timeseries(length=100).astype(np.float32) - pl_200_or_above = int(pl.__version__.split(".")[0]) >= 2 - precisions = { - 32: "32" if not pl_200_or_above else "32-true", - 64: "64" if not pl_200_or_above else "64-true", - } - - def test_prediction_loaded_custom_trainer(self, tmpdir_module): - """validate manual save with automatic save files by comparing output between the two""" - auto_name = "test_save_automatic" - model = RNNModel( - 12, - "RNN", - 10, - 10, - model_name=auto_name, - work_dir=tmpdir_module, - save_checkpoints=True, - random_state=42, - **tfm_kwargs, - ) - - # fit model with custom trainer - trainer = pl.Trainer( - max_epochs=1, - enable_checkpointing=True, - logger=False, - callbacks=model.trainer_params["callbacks"], - **tfm_kwargs["pl_trainer_kwargs"], - ) + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) + + +class TestPTLTrainer: + trainer_params = { + "max_epochs": 1, + "logger": False, + "enable_checkpointing": False, + } + series = linear_timeseries(length=100).astype(np.float32) + pl_200_or_above = int(pl.__version__.split(".")[0]) >= 2 + precisions = { + 32: "32" if not pl_200_or_above else "32-true", + 64: "64" if not pl_200_or_above else "64-true", + } + + def test_prediction_loaded_custom_trainer(self, tmpdir_module): + """validate manual save with automatic save files by comparing output between the two""" + auto_name = "test_save_automatic" + model = RNNModel( + 12, + "RNN", + 10, + 10, + model_name=auto_name, + work_dir=tmpdir_module, + save_checkpoints=True, + random_state=42, + **tfm_kwargs, + ) + + # fit model with custom trainer + trainer = pl.Trainer( + max_epochs=1, + enable_checkpointing=True, + logger=False, + callbacks=model.trainer_params["callbacks"], + **tfm_kwargs["pl_trainer_kwargs"], + ) + model.fit(self.series, trainer=trainer) + + # load automatically saved model with manual load_model() and load_from_checkpoint() + model_loaded = RNNModel.load_from_checkpoint( + model_name=auto_name, + work_dir=tmpdir_module, + best=False, + map_location="cpu", + ) + + # compare prediction of loaded model with original model + assert model.predict(n=4) == model_loaded.predict(n=4) + + def test_prediction_custom_trainer(self): + model = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) + model2 = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) + + # fit model with custom trainer + trainer = pl.Trainer( + **self.trainer_params, + precision=self.precisions[32], + **tfm_kwargs["pl_trainer_kwargs"], + ) + model.fit(self.series, trainer=trainer) + + # fit model with built-in trainer + model2.fit(self.series, epochs=1) + + # both should produce identical prediction + assert model.predict(n=4) == model2.predict(n=4) + + def test_custom_trainer_setup(self): + model = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) + + # trainer with wrong precision should raise ValueError + trainer = pl.Trainer( + **self.trainer_params, + precision=self.precisions[64], + **tfm_kwargs["pl_trainer_kwargs"], + ) + with pytest.raises(ValueError): model.fit(self.series, trainer=trainer) - # load automatically saved model with manual load_model() and load_from_checkpoint() - model_loaded = RNNModel.load_from_checkpoint( - model_name=auto_name, - work_dir=tmpdir_module, - best=False, - map_location="cpu", - ) - - # compare prediction of loaded model with original model - assert model.predict(n=4) == model_loaded.predict(n=4) - - def test_prediction_custom_trainer(self): - model = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) - model2 = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) - - # fit model with custom trainer - trainer = pl.Trainer( - **self.trainer_params, - precision=self.precisions[32], + # no error with correct precision + trainer = pl.Trainer( + **self.trainer_params, + precision=self.precisions[32], + **tfm_kwargs["pl_trainer_kwargs"], + ) + model.fit(self.series, trainer=trainer) + + # check if number of epochs trained is same as trainer.max_epochs + assert trainer.max_epochs == model.epochs_trained + + def test_builtin_extended_trainer(self): + # wrong precision parameter name + with pytest.raises(TypeError): + invalid_trainer_kwarg = { + "precisionn": self.precisions[32], **tfm_kwargs["pl_trainer_kwargs"], - ) - model.fit(self.series, trainer=trainer) - - # fit model with built-in trainer - model2.fit(self.series, epochs=1) - - # both should produce identical prediction - assert model.predict(n=4) == model2.predict(n=4) - - def test_custom_trainer_setup(self): - model = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) - - # trainer with wrong precision should raise ValueError - trainer = pl.Trainer( - **self.trainer_params, - precision=self.precisions[64], - **tfm_kwargs["pl_trainer_kwargs"], - ) - with pytest.raises(ValueError): - model.fit(self.series, trainer=trainer) - - # no error with correct precision - trainer = pl.Trainer( - **self.trainer_params, - precision=self.precisions[32], - **tfm_kwargs["pl_trainer_kwargs"], - ) - model.fit(self.series, trainer=trainer) - - # check if number of epochs trained is same as trainer.max_epochs - assert trainer.max_epochs == model.epochs_trained - - def test_builtin_extended_trainer(self): - # wrong precision parameter name - with pytest.raises(TypeError): - invalid_trainer_kwarg = { - "precisionn": self.precisions[32], - **tfm_kwargs["pl_trainer_kwargs"], - } - model = RNNModel( - 12, - "RNN", - 10, - 10, - random_state=42, - pl_trainer_kwargs=invalid_trainer_kwarg, - ) - model.fit(self.series, epochs=1) - - # flaot 16 not supported - with pytest.raises(ValueError): - invalid_trainer_kwarg = { - "precision": "16-mixed", - **tfm_kwargs["pl_trainer_kwargs"], - } - model = RNNModel( - 12, - "RNN", - 10, - 10, - random_state=42, - pl_trainer_kwargs=invalid_trainer_kwarg, - ) - model.fit(self.series.astype(np.float16), epochs=1) - - # precision value doesn't match `series` dtype - with pytest.raises(ValueError): - invalid_trainer_kwarg = { - "precision": self.precisions[64], - **tfm_kwargs["pl_trainer_kwargs"], - } - model = RNNModel( - 12, - "RNN", - 10, - 10, - random_state=42, - pl_trainer_kwargs=invalid_trainer_kwarg, - ) - model.fit(self.series.astype(np.float32), epochs=1) - - for precision in [64, 32]: - valid_trainer_kwargs = { - "precision": self.precisions[precision], - **tfm_kwargs["pl_trainer_kwargs"], - } - - # valid parameters shouldn't raise error - model = RNNModel( - 12, - "RNN", - 10, - 10, - random_state=42, - pl_trainer_kwargs=valid_trainer_kwargs, - ) - ts_dtype = getattr(np, f"float{precision}") - model.fit(self.series.astype(ts_dtype), epochs=1) - preds = model.predict(n=3) - assert model.trainer.precision == self.precisions[precision] - assert preds.dtype == ts_dtype - - def test_custom_callback(self, tmpdir_module): - class CounterCallback(pl.callbacks.Callback): - # counts the number of trained epochs starting from count_default - def __init__(self, count_default): - self.counter = count_default - - def on_train_epoch_end(self, *args, **kwargs): - self.counter += 1 - - my_counter_0 = CounterCallback(count_default=0) - my_counter_2 = CounterCallback(count_default=2) - + } model = RNNModel( 12, "RNN", 10, 10, random_state=42, - pl_trainer_kwargs={ - "callbacks": [my_counter_0, my_counter_2], - **tfm_kwargs["pl_trainer_kwargs"], - }, + pl_trainer_kwargs=invalid_trainer_kwarg, ) + model.fit(self.series, epochs=1) - # check if callbacks were added - assert len(model.trainer_params["callbacks"]) == 2 - model.fit(self.series, epochs=2, verbose=True) - # check that lightning did not mutate callbacks (verbosity adds a progress bar callback) - assert len(model.trainer_params["callbacks"]) == 2 - - assert my_counter_0.counter == model.epochs_trained - assert my_counter_2.counter == model.epochs_trained + 2 - - # check that callbacks don't overwrite Darts' built-in checkpointer + # flaot 16 not supported + with pytest.raises(ValueError): + invalid_trainer_kwarg = { + "precision": "16-mixed", + **tfm_kwargs["pl_trainer_kwargs"], + } model = RNNModel( 12, "RNN", 10, 10, random_state=42, - work_dir=tmpdir_module, - save_checkpoints=True, - pl_trainer_kwargs={ - "callbacks": [CounterCallback(0), CounterCallback(2)], - **tfm_kwargs["pl_trainer_kwargs"], - }, - ) - # we expect 3 callbacks - assert len(model.trainer_params["callbacks"]) == 3 - - # first one is our Checkpointer - assert isinstance( - model.trainer_params["callbacks"][0], pl.callbacks.ModelCheckpoint + pl_trainer_kwargs=invalid_trainer_kwarg, ) + model.fit(self.series.astype(np.float16), epochs=1) - # second and third are CounterCallbacks - for i in range(1, 3): - assert isinstance(model.trainer_params["callbacks"][i], CounterCallback) - - def test_early_stopping(self): - my_stopper = pl.callbacks.early_stopping.EarlyStopping( - monitor="val_loss", - stopping_threshold=1e9, - ) + # precision value doesn't match `series` dtype + with pytest.raises(ValueError): + invalid_trainer_kwarg = { + "precision": self.precisions[64], + **tfm_kwargs["pl_trainer_kwargs"], + } model = RNNModel( 12, "RNN", 10, 10, - nr_epochs_val_period=1, random_state=42, - pl_trainer_kwargs={ - "callbacks": [my_stopper], - **tfm_kwargs["pl_trainer_kwargs"], - }, + pl_trainer_kwargs=invalid_trainer_kwarg, ) + model.fit(self.series.astype(np.float32), epochs=1) - # training should stop immediately with high stopping_threshold - model.fit(self.series, val_series=self.series, epochs=100, verbose=True) - assert model.epochs_trained == 1 + for precision in [64, 32]: + valid_trainer_kwargs = { + "precision": self.precisions[precision], + **tfm_kwargs["pl_trainer_kwargs"], + } - # check that early stopping only takes valid monitor variables - my_stopper = pl.callbacks.early_stopping.EarlyStopping( - monitor="invalid_variable", - stopping_threshold=1e9, - ) + # valid parameters shouldn't raise error model = RNNModel( 12, "RNN", 10, 10, - nr_epochs_val_period=1, random_state=42, - pl_trainer_kwargs={ - "callbacks": [my_stopper], - **tfm_kwargs["pl_trainer_kwargs"], - }, + pl_trainer_kwargs=valid_trainer_kwargs, ) + ts_dtype = getattr(np, f"float{precision}") + model.fit(self.series.astype(ts_dtype), epochs=1) + preds = model.predict(n=3) + assert model.trainer.precision == self.precisions[precision] + assert preds.dtype == ts_dtype + + def test_custom_callback(self, tmpdir_module): + class CounterCallback(pl.callbacks.Callback): + # counts the number of trained epochs starting from count_default + def __init__(self, count_default): + self.counter = count_default + + def on_train_epoch_end(self, *args, **kwargs): + self.counter += 1 + + my_counter_0 = CounterCallback(count_default=0) + my_counter_2 = CounterCallback(count_default=2) + + model = RNNModel( + 12, + "RNN", + 10, + 10, + random_state=42, + pl_trainer_kwargs={ + "callbacks": [my_counter_0, my_counter_2], + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + + # check if callbacks were added + assert len(model.trainer_params["callbacks"]) == 2 + model.fit(self.series, epochs=2, verbose=True) + # check that lightning did not mutate callbacks (verbosity adds a progress bar callback) + assert len(model.trainer_params["callbacks"]) == 2 + + assert my_counter_0.counter == model.epochs_trained + assert my_counter_2.counter == model.epochs_trained + 2 + + # check that callbacks don't overwrite Darts' built-in checkpointer + model = RNNModel( + 12, + "RNN", + 10, + 10, + random_state=42, + work_dir=tmpdir_module, + save_checkpoints=True, + pl_trainer_kwargs={ + "callbacks": [CounterCallback(0), CounterCallback(2)], + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + # we expect 3 callbacks + assert len(model.trainer_params["callbacks"]) == 3 + + # first one is our Checkpointer + assert isinstance( + model.trainer_params["callbacks"][0], pl.callbacks.ModelCheckpoint + ) + + # second and third are CounterCallbacks + for i in range(1, 3): + assert isinstance(model.trainer_params["callbacks"][i], CounterCallback) + + def test_early_stopping(self): + my_stopper = pl.callbacks.early_stopping.EarlyStopping( + monitor="val_loss", + stopping_threshold=1e9, + ) + model = RNNModel( + 12, + "RNN", + 10, + 10, + nr_epochs_val_period=1, + random_state=42, + pl_trainer_kwargs={ + "callbacks": [my_stopper], + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + + # training should stop immediately with high stopping_threshold + model.fit(self.series, val_series=self.series, epochs=100, verbose=True) + assert model.epochs_trained == 1 + + # check that early stopping only takes valid monitor variables + my_stopper = pl.callbacks.early_stopping.EarlyStopping( + monitor="invalid_variable", + stopping_threshold=1e9, + ) + model = RNNModel( + 12, + "RNN", + 10, + 10, + nr_epochs_val_period=1, + random_state=42, + pl_trainer_kwargs={ + "callbacks": [my_stopper], + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) - with pytest.raises(RuntimeError): - model.fit(self.series, val_series=self.series, epochs=100, verbose=True) + with pytest.raises(RuntimeError): + model.fit(self.series, val_series=self.series, epochs=100, verbose=True) diff --git a/darts/tests/models/forecasting/test_tide_model.py b/darts/tests/models/forecasting/test_tide_model.py index e8571a6c58..c8ebd824a8 100644 --- a/darts/tests/models/forecasting/test_tide_model.py +++ b/darts/tests/models/forecasting/test_tide_model.py @@ -14,265 +14,263 @@ from darts.models.forecasting.tide_model import TiDEModel from darts.utils.likelihood_models import GaussianLikelihood - - TORCH_AVAILABLE = True - except ImportError: - logger.warning("Torch not available. TiDEModel tests will be skipped.") - TORCH_AVAILABLE = False + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) -if TORCH_AVAILABLE: - class TestTiDEModel: - np.random.seed(42) - torch.manual_seed(42) +class TestTiDEModel: + np.random.seed(42) + torch.manual_seed(42) - def test_creation(self): - model = TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - likelihood=GaussianLikelihood(), - ) - - assert model.input_chunk_length == 1 + def test_creation(self): + model = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + likelihood=GaussianLikelihood(), + ) - def test_fit(self): - large_ts = tg.constant_timeseries(length=100, value=1000) - small_ts = tg.constant_timeseries(length=100, value=10) + assert model.input_chunk_length == 1 - model = TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=10, - random_state=42, - **tfm_kwargs, - ) + def test_fit(self): + large_ts = tg.constant_timeseries(length=100, value=1000) + small_ts = tg.constant_timeseries(length=100, value=10) - model.fit(large_ts[:98]) - pred = model.predict(n=2).values()[0] + model = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=10, + random_state=42, + **tfm_kwargs, + ) - # Test whether model trained on one series is better than one trained on another - model2 = TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=10, - random_state=42, - **tfm_kwargs, - ) + model.fit(large_ts[:98]) + pred = model.predict(n=2).values()[0] - model2.fit(small_ts[:98]) - pred2 = model2.predict(n=2).values()[0] - assert abs(pred2 - 10) < abs(pred - 10) + # Test whether model trained on one series is better than one trained on another + model2 = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=10, + random_state=42, + **tfm_kwargs, + ) - # test short predict - pred3 = model2.predict(n=1) - assert len(pred3) == 1 + model2.fit(small_ts[:98]) + pred2 = model2.predict(n=2).values()[0] + assert abs(pred2 - 10) < abs(pred - 10) + + # test short predict + pred3 = model2.predict(n=1) + assert len(pred3) == 1 + + def test_logtensorboard(self, tmpdir_module): + ts = tg.constant_timeseries(length=50, value=10) + + # Test basic fit and predict + model = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + n_epochs=1, + log_tensorboard=True, + work_dir=tmpdir_module, + pl_trainer_kwargs={ + "log_every_n_steps": 1, + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + model.fit(ts) + model.predict(n=2) + + def test_future_covariate_handling(self): + ts_time_index = tg.sine_timeseries(length=2, freq="h") + + model = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"future": "hour"}}, + use_reversible_instance_norm=False, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False, epochs=1) + + model = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"future": "hour"}}, + use_reversible_instance_norm=True, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False, epochs=1) - def test_logtensorboard(self, tmpdir_module): - ts = tg.constant_timeseries(length=50, value=10) + def test_future_and_past_covariate_handling(self): + ts_time_index = tg.sine_timeseries(length=2, freq="h") - # Test basic fit and predict - model = TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - n_epochs=1, - log_tensorboard=True, - work_dir=tmpdir_module, - pl_trainer_kwargs={ - "log_every_n_steps": 1, - **tfm_kwargs["pl_trainer_kwargs"], - }, - ) - model.fit(ts) - model.predict(n=2) + model = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False, epochs=1) - def test_future_covariate_handling(self): - ts_time_index = tg.sine_timeseries(length=2, freq="h") + model = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False, epochs=1) - model = TiDEModel( + @pytest.mark.parametrize("temporal_widths", [(-1, 1), (1, -1)]) + def test_failing_future_and_past_temporal_widths(self, temporal_widths): + # invalid temporal widths + with pytest.raises(ValueError): + TiDEModel( input_chunk_length=1, output_chunk_length=1, - add_encoders={"cyclic": {"future": "hour"}}, - use_reversible_instance_norm=False, + temporal_width_past=temporal_widths[0], + temporal_width_future=temporal_widths[1], **tfm_kwargs, ) - model.fit(ts_time_index, verbose=False, epochs=1) - model = TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - add_encoders={"cyclic": {"future": "hour"}}, - use_reversible_instance_norm=True, - **tfm_kwargs, - ) - model.fit(ts_time_index, verbose=False, epochs=1) + @pytest.mark.parametrize( + "temporal_widths", + [ + (2, 2), # feature projection to same amount of features + (1, 2), # past: feature reduction, future: same amount of features + (2, 1), # past: same amount of features, future: feature reduction + (3, 3), # feature expansion + (0, 2), # bypass past feature projection + (2, 0), # bypass future feature projection + (0, 0), # bypass all feature projection + ], + ) + def test_future_and_past_temporal_widths(self, temporal_widths): + ts_time_index = tg.sine_timeseries(length=2, freq="h") + + # feature projection to 2 features (same amount as input features) + model = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + temporal_width_past=temporal_widths[0], + temporal_width_future=temporal_widths[1], + add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False, epochs=1) + assert model.model.temporal_width_past == temporal_widths[0] + assert model.model.temporal_width_future == temporal_widths[1] + + def test_past_covariate_handling(self): + ts_time_index = tg.sine_timeseries(length=2, freq="h") + + model = TiDEModel( + input_chunk_length=1, + output_chunk_length=1, + add_encoders={"cyclic": {"past": "hour"}}, + **tfm_kwargs, + ) + model.fit(ts_time_index, verbose=False, epochs=1) - def test_future_and_past_covariate_handling(self): - ts_time_index = tg.sine_timeseries(length=2, freq="h") + def test_future_and_past_covariate_as_timeseries_handling(self): + ts_time_index = tg.sine_timeseries(length=2, freq="h") - model = TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, - **tfm_kwargs, - ) - model.fit(ts_time_index, verbose=False, epochs=1) + for enable_rin in [True, False]: + # test with past_covariates timeseries model = TiDEModel( input_chunk_length=1, output_chunk_length=1, add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, + use_reversible_instance_norm=enable_rin, **tfm_kwargs, ) - model.fit(ts_time_index, verbose=False, epochs=1) - - @pytest.mark.parametrize("temporal_widths", [(-1, 1), (1, -1)]) - def test_failing_future_and_past_temporal_widths(self, temporal_widths): - # invalid temporal widths - with pytest.raises(ValueError): - TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - temporal_width_past=temporal_widths[0], - temporal_width_future=temporal_widths[1], - **tfm_kwargs, - ) - - @pytest.mark.parametrize( - "temporal_widths", - [ - (2, 2), # feature projection to same amount of features - (1, 2), # past: feature reduction, future: same amount of features - (2, 1), # past: same amount of features, future: feature reduction - (3, 3), # feature expansion - (0, 2), # bypass past feature projection - (2, 0), # bypass future feature projection - (0, 0), # bypass all feature projection - ], - ) - def test_future_and_past_temporal_widths(self, temporal_widths): - ts_time_index = tg.sine_timeseries(length=2, freq="h") - - # feature projection to 2 features (same amount as input features) - model = TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - temporal_width_past=temporal_widths[0], - temporal_width_future=temporal_widths[1], - add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, - **tfm_kwargs, + model.fit( + ts_time_index, + past_covariates=ts_time_index, + verbose=False, + epochs=1, ) - model.fit(ts_time_index, verbose=False, epochs=1) - assert model.model.temporal_width_past == temporal_widths[0] - assert model.model.temporal_width_future == temporal_widths[1] - - def test_past_covariate_handling(self): - ts_time_index = tg.sine_timeseries(length=2, freq="h") + # test with past_covariates and future_covariates timeseries model = TiDEModel( input_chunk_length=1, output_chunk_length=1, - add_encoders={"cyclic": {"past": "hour"}}, + add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, + use_reversible_instance_norm=enable_rin, **tfm_kwargs, ) - model.fit(ts_time_index, verbose=False, epochs=1) - - def test_future_and_past_covariate_as_timeseries_handling(self): - ts_time_index = tg.sine_timeseries(length=2, freq="h") - - for enable_rin in [True, False]: - - # test with past_covariates timeseries - model = TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, - use_reversible_instance_norm=enable_rin, - **tfm_kwargs, - ) - model.fit( - ts_time_index, - past_covariates=ts_time_index, - verbose=False, - epochs=1, - ) - - # test with past_covariates and future_covariates timeseries - model = TiDEModel( - input_chunk_length=1, - output_chunk_length=1, - add_encoders={"cyclic": {"future": "hour", "past": "hour"}}, - use_reversible_instance_norm=enable_rin, - **tfm_kwargs, - ) - model.fit( - ts_time_index, - past_covariates=ts_time_index, - future_covariates=ts_time_index, - verbose=False, - epochs=1, - ) - - def test_static_covariates_support(self): - target_multi = concatenate( - [tg.sine_timeseries(length=10, freq="h")] * 2, axis=1 + model.fit( + ts_time_index, + past_covariates=ts_time_index, + future_covariates=ts_time_index, + verbose=False, + epochs=1, ) - target_multi = target_multi.with_static_covariates( - pd.DataFrame( - [[0.0, 1.0, 0, 2], [2.0, 3.0, 1, 3]], - columns=["st1", "st2", "cat1", "cat2"], - ) - ) + def test_static_covariates_support(self): + target_multi = concatenate( + [tg.sine_timeseries(length=10, freq="h")] * 2, axis=1 + ) - # test with static covariates in the timeseries - model = TiDEModel( - input_chunk_length=3, - output_chunk_length=4, - add_encoders={"cyclic": {"future": "hour"}}, - pl_trainer_kwargs={ - "fast_dev_run": True, - **tfm_kwargs["pl_trainer_kwargs"], - }, + target_multi = target_multi.with_static_covariates( + pd.DataFrame( + [[0.0, 1.0, 0, 2], [2.0, 3.0, 1, 3]], + columns=["st1", "st2", "cat1", "cat2"], ) - model.fit(target_multi, verbose=False) + ) - assert model.model.static_cov_dim == np.prod( - target_multi.static_covariates.values.shape - ) + # test with static covariates in the timeseries + model = TiDEModel( + input_chunk_length=3, + output_chunk_length=4, + add_encoders={"cyclic": {"future": "hour"}}, + pl_trainer_kwargs={ + "fast_dev_run": True, + **tfm_kwargs["pl_trainer_kwargs"], + }, + ) + model.fit(target_multi, verbose=False) - # raise an error when trained with static covariates of wrong dimensionality - target_multi = target_multi.with_static_covariates( - pd.concat([target_multi.static_covariates] * 2, axis=1) - ) - with pytest.raises(ValueError): - model.predict(n=1, series=target_multi, verbose=False) + assert model.model.static_cov_dim == np.prod( + target_multi.static_covariates.values.shape + ) - # raise an error when trained with static covariates and trying to predict without - with pytest.raises(ValueError): - model.predict( - n=1, series=target_multi.with_static_covariates(None), verbose=False - ) + # raise an error when trained with static covariates of wrong dimensionality + target_multi = target_multi.with_static_covariates( + pd.concat([target_multi.static_covariates] * 2, axis=1) + ) + with pytest.raises(ValueError): + model.predict(n=1, series=target_multi, verbose=False) - # with `use_static_covariates=False`, we can predict without static covs - model = TiDEModel( - input_chunk_length=3, - output_chunk_length=4, - use_static_covariates=False, - n_epochs=1, - **tfm_kwargs, + # raise an error when trained with static covariates and trying to predict without + with pytest.raises(ValueError): + model.predict( + n=1, series=target_multi.with_static_covariates(None), verbose=False ) - model.fit(target_multi) - preds = model.predict(n=2, series=target_multi.with_static_covariates(None)) - assert preds.static_covariates is None - model = TiDEModel( - input_chunk_length=3, - output_chunk_length=4, - use_static_covariates=False, - n_epochs=1, - **tfm_kwargs, - ) - model.fit(target_multi.with_static_covariates(None)) - preds = model.predict(n=2, series=target_multi) - assert preds.static_covariates.equals(target_multi.static_covariates) + # with `use_static_covariates=False`, we can predict without static covs + model = TiDEModel( + input_chunk_length=3, + output_chunk_length=4, + use_static_covariates=False, + n_epochs=1, + **tfm_kwargs, + ) + model.fit(target_multi) + preds = model.predict(n=2, series=target_multi.with_static_covariates(None)) + assert preds.static_covariates is None + + model = TiDEModel( + input_chunk_length=3, + output_chunk_length=4, + use_static_covariates=False, + n_epochs=1, + **tfm_kwargs, + ) + model.fit(target_multi.with_static_covariates(None)) + preds = model.predict(n=2, series=target_multi) + assert preds.static_covariates.equals(target_multi.static_covariates) diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 0e04f821b8..096f867688 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -72,894 +72,903 @@ (GlobalNaiveAggregate, kwargs), (GlobalNaiveDrift, kwargs), ] - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. Tests will be skipped.") - TORCH_AVAILABLE = False + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) -if TORCH_AVAILABLE: - class TestTorchForecastingModel: - times = pd.date_range("20130101", "20130410") - pd_series = pd.Series(range(100), index=times) - series = TimeSeries.from_series(pd_series) +class TestTorchForecastingModel: + times = pd.date_range("20130101", "20130410") + pd_series = pd.Series(range(100), index=times) + series = TimeSeries.from_series(pd_series) - df = pd.DataFrame({"var1": range(100), "var2": range(100)}, index=times) - multivariate_series = TimeSeries.from_dataframe(df) + df = pd.DataFrame({"var1": range(100), "var2": range(100)}, index=times) + multivariate_series = TimeSeries.from_dataframe(df) - def test_save_model_parameters(self): - # check if re-created model has same params as original - model = RNNModel(12, "RNN", 10, 10, **tfm_kwargs) - assert model._model_params, model.untrained_model()._model_params + def test_save_model_parameters(self): + # check if re-created model has same params as original + model = RNNModel(12, "RNN", 10, 10, **tfm_kwargs) + assert model._model_params, model.untrained_model()._model_params - @patch( - "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel.save" + @patch( + "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel.save" + ) + def test_suppress_automatic_save(self, patch_save_model, tmpdir_fn): + model_name = "test_model" + model1 = RNNModel( + 12, + "RNN", + 10, + 10, + model_name=model_name, + work_dir=tmpdir_fn, + save_checkpoints=False, + **tfm_kwargs, + ) + model2 = RNNModel( + 12, + "RNN", + 10, + 10, + model_name=model_name, + work_dir=tmpdir_fn, + force_reset=True, + save_checkpoints=False, + **tfm_kwargs, ) - def test_suppress_automatic_save(self, patch_save_model, tmpdir_fn): - model_name = "test_model" - model1 = RNNModel( - 12, - "RNN", - 10, - 10, - model_name=model_name, - work_dir=tmpdir_fn, - save_checkpoints=False, - **tfm_kwargs, - ) - model2 = RNNModel( - 12, - "RNN", - 10, - 10, - model_name=model_name, - work_dir=tmpdir_fn, - force_reset=True, - save_checkpoints=False, - **tfm_kwargs, - ) - - model1.fit(self.series, epochs=1) - model2.fit(self.series, epochs=1) - - model1.predict(n=1) - model2.predict(n=2) - - patch_save_model.assert_not_called() - - model1.save(path=os.path.join(tmpdir_fn, model_name)) - patch_save_model.assert_called() - - def test_manual_save_and_load(self, tmpdir_fn): - """validate manual save with automatic save files by comparing output between the two""" - model_dir = os.path.join(tmpdir_fn) - manual_name = "test_save_manual" - auto_name = "test_save_automatic" - model_manual_save = RNNModel( - 12, - "RNN", - 10, - 10, - model_name=manual_name, - work_dir=tmpdir_fn, - save_checkpoints=False, - random_state=42, - **tfm_kwargs, - ) - model_auto_save = RNNModel( - 12, - "RNN", - 10, - 10, - model_name=auto_name, - work_dir=tmpdir_fn, - save_checkpoints=True, - random_state=42, - **tfm_kwargs, - ) + model1.fit(self.series, epochs=1) + model2.fit(self.series, epochs=1) + + model1.predict(n=1) + model2.predict(n=2) + + patch_save_model.assert_not_called() + + model1.save(path=os.path.join(tmpdir_fn, model_name)) + patch_save_model.assert_called() + + def test_manual_save_and_load(self, tmpdir_fn): + """validate manual save with automatic save files by comparing output between the two""" + + model_dir = os.path.join(tmpdir_fn) + manual_name = "test_save_manual" + auto_name = "test_save_automatic" + model_manual_save = RNNModel( + 12, + "RNN", + 10, + 10, + model_name=manual_name, + work_dir=tmpdir_fn, + save_checkpoints=False, + random_state=42, + **tfm_kwargs, + ) + model_auto_save = RNNModel( + 12, + "RNN", + 10, + 10, + model_name=auto_name, + work_dir=tmpdir_fn, + save_checkpoints=True, + random_state=42, + **tfm_kwargs, + ) - # save model without training - no_training_ckpt = "no_training.pth.tar" - no_training_ckpt_path = os.path.join(model_dir, no_training_ckpt) - model_manual_save.save(no_training_ckpt_path) - # check that model object file was created - assert os.path.exists(no_training_ckpt_path) - # check that the PyTorch Ligthning ckpt does not exist - assert not os.path.exists(no_training_ckpt_path + ".ckpt") - # informative exception about `fit()` not called - with pytest.raises(ValueError) as err: - no_train_model = RNNModel.load(no_training_ckpt_path) - no_train_model.predict(n=4) - assert str(err.value) == ( - "Input `series` must be provided. This is the result either from " - "fitting on multiple series, or from not having fit the model yet." - ) + # save model without training + no_training_ckpt = "no_training.pth.tar" + no_training_ckpt_path = os.path.join(model_dir, no_training_ckpt) + model_manual_save.save(no_training_ckpt_path) + # check that model object file was created + assert os.path.exists(no_training_ckpt_path) + # check that the PyTorch Ligthning ckpt does not exist + assert not os.path.exists(no_training_ckpt_path + ".ckpt") + # informative exception about `fit()` not called + with pytest.raises(ValueError) as err: + no_train_model = RNNModel.load(no_training_ckpt_path) + no_train_model.predict(n=4) + assert str(err.value) == ( + "Input `series` must be provided. This is the result either from " + "fitting on multiple series, or from not having fit the model yet." + ) - model_manual_save.fit(self.series, epochs=1) - model_auto_save.fit(self.series, epochs=1) + model_manual_save.fit(self.series, epochs=1) + model_auto_save.fit(self.series, epochs=1) - # check that file was not created with manual save - assert not os.path.exists( - os.path.join(model_dir, manual_name, "checkpoints") - ) - # check that file was created with automatic save - assert os.path.exists(os.path.join(model_dir, auto_name, "checkpoints")) + # check that file was not created with manual save + assert not os.path.exists(os.path.join(model_dir, manual_name, "checkpoints")) + # check that file was created with automatic save + assert os.path.exists(os.path.join(model_dir, auto_name, "checkpoints")) - # create manually saved model checkpoints folder - checkpoint_path_manual = os.path.join(model_dir, manual_name) - os.mkdir(checkpoint_path_manual) + # create manually saved model checkpoints folder + checkpoint_path_manual = os.path.join(model_dir, manual_name) + os.mkdir(checkpoint_path_manual) - checkpoint_file_name = "checkpoint_0.pth.tar" - model_path_manual = os.path.join( - checkpoint_path_manual, checkpoint_file_name - ) - checkpoint_file_name_cpkt = "checkpoint_0.pth.tar.ckpt" - model_path_manual_ckpt = os.path.join( - checkpoint_path_manual, checkpoint_file_name_cpkt - ) + checkpoint_file_name = "checkpoint_0.pth.tar" + model_path_manual = os.path.join(checkpoint_path_manual, checkpoint_file_name) + checkpoint_file_name_cpkt = "checkpoint_0.pth.tar.ckpt" + model_path_manual_ckpt = os.path.join( + checkpoint_path_manual, checkpoint_file_name_cpkt + ) - # save manually saved model - model_manual_save.save(model_path_manual) - assert os.path.exists(model_path_manual) + # save manually saved model + model_manual_save.save(model_path_manual) + assert os.path.exists(model_path_manual) - # check that the PTL checkpoint path is also there - assert os.path.exists(model_path_manual_ckpt) + # check that the PTL checkpoint path is also there + assert os.path.exists(model_path_manual_ckpt) - # load manual save model and compare with automatic model results - model_manual_save = RNNModel.load(model_path_manual, map_location="cpu") - model_manual_save.to_cpu() - assert model_manual_save.predict(n=4) == model_auto_save.predict(n=4) + # load manual save model and compare with automatic model results + model_manual_save = RNNModel.load(model_path_manual, map_location="cpu") + model_manual_save.to_cpu() + assert model_manual_save.predict(n=4) == model_auto_save.predict(n=4) - # load automatically saved model with manual load() and load_from_checkpoint() - model_auto_save1 = RNNModel.load_from_checkpoint( - model_name=auto_name, - work_dir=tmpdir_fn, - best=False, - map_location="cpu", - ) - model_auto_save1.to_cpu() - # compare loaded checkpoint with manual save - assert model_manual_save.predict(n=4) == model_auto_save1.predict(n=4) + # load automatically saved model with manual load() and load_from_checkpoint() + model_auto_save1 = RNNModel.load_from_checkpoint( + model_name=auto_name, + work_dir=tmpdir_fn, + best=False, + map_location="cpu", + ) + model_auto_save1.to_cpu() + # compare loaded checkpoint with manual save + assert model_manual_save.predict(n=4) == model_auto_save1.predict(n=4) - # save() model directly after load_from_checkpoint() - checkpoint_file_name_2 = "checkpoint_1.pth.tar" - checkpoint_file_name_cpkt_2 = checkpoint_file_name_2 + ".ckpt" + # save() model directly after load_from_checkpoint() + checkpoint_file_name_2 = "checkpoint_1.pth.tar" + checkpoint_file_name_cpkt_2 = checkpoint_file_name_2 + ".ckpt" - model_path_manual_2 = os.path.join( - checkpoint_path_manual, checkpoint_file_name_2 - ) - model_path_manual_ckpt_2 = os.path.join( - checkpoint_path_manual, checkpoint_file_name_cpkt_2 - ) - model_auto_save2 = RNNModel.load_from_checkpoint( - model_name=auto_name, - work_dir=tmpdir_fn, - best=False, - map_location="cpu", - ) - # save model directly after loading, model has no trainer - model_auto_save2.save(model_path_manual_2) + model_path_manual_2 = os.path.join( + checkpoint_path_manual, checkpoint_file_name_2 + ) + model_path_manual_ckpt_2 = os.path.join( + checkpoint_path_manual, checkpoint_file_name_cpkt_2 + ) + model_auto_save2 = RNNModel.load_from_checkpoint( + model_name=auto_name, + work_dir=tmpdir_fn, + best=False, + map_location="cpu", + ) + # save model directly after loading, model has no trainer + model_auto_save2.save(model_path_manual_2) - # assert original .ckpt checkpoint was correctly copied - assert os.path.exists(model_path_manual_ckpt_2) + # assert original .ckpt checkpoint was correctly copied + assert os.path.exists(model_path_manual_ckpt_2) - model_chained_load_save = RNNModel.load( - model_path_manual_2, map_location="cpu" - ) + model_chained_load_save = RNNModel.load(model_path_manual_2, map_location="cpu") - # compare chained load_from_checkpoint() save() with manual save - assert model_chained_load_save.predict(n=4) == model_manual_save.predict( - n=4 - ) + # compare chained load_from_checkpoint() save() with manual save + assert model_chained_load_save.predict(n=4) == model_manual_save.predict(n=4) - def test_valid_save_and_load_weights_with_different_params(self, tmpdir_fn): - """ - Verify that save/load does not break encoders. - - Note: since load_weights() calls load_weights_from_checkpoint(), it will be used - for all but one test. - Note: Using DLinear since it supports both past and future covariates - """ - - def create_model(**kwargs): - return DLinearModel( - input_chunk_length=4, - output_chunk_length=1, - **kwargs, - **tfm_kwargs, - ) - - model_dir = os.path.join(tmpdir_fn) - manual_name = "save_manual" - # create manually saved model checkpoints folder - checkpoint_path_manual = os.path.join(model_dir, manual_name) - os.mkdir(checkpoint_path_manual) - checkpoint_file_name = "checkpoint_0.pth.tar" - model_path_manual = os.path.join( - checkpoint_path_manual, checkpoint_file_name - ) - model = create_model() - model.fit(self.series, epochs=1) - model.save(model_path_manual) - - kwargs_valid = [ - {"optimizer_cls": torch.optim.SGD}, - {"optimizer_kwargs": {"lr": 0.1}}, - ] - # check that all models can be created with different valid kwargs - for kwargs_ in kwargs_valid: - model_new = create_model(**kwargs_) - model_new.load_weights(model_path_manual) - - def test_save_and_load_weights_w_encoders(self, tmpdir_fn): - """ - Verify that save/load does not break encoders. - - Note: since load_weights() calls load_weights_from_checkpoint(), it will be used - for all but one test. - Note: Using DLinear since it supports both past and future covariates - """ - model_dir = os.path.join(tmpdir_fn) - manual_name = "save_manual" - auto_name = "save_auto" - auto_name_other = "save_auto_other" - # create manually saved model checkpoints folder - checkpoint_path_manual = os.path.join(model_dir, manual_name) - os.mkdir(checkpoint_path_manual) - checkpoint_file_name = "checkpoint_0.pth.tar" - model_path_manual = os.path.join( - checkpoint_path_manual, checkpoint_file_name - ) + def test_valid_save_and_load_weights_with_different_params(self, tmpdir_fn): + """ + Verify that save/load does not break encoders. - # define encoders sets - encoders_past = { - "datetime_attribute": {"past": ["day"]}, - "transformer": Scaler(), - } - encoders_other_past = { - "datetime_attribute": {"past": ["hour"]}, - "transformer": Scaler(), - } - encoders_past_noscaler = { - "datetime_attribute": {"past": ["day"]}, - } - encoders_past_other_transformer = { - "datetime_attribute": {"past": ["day"]}, - "transformer": BoxCox(lmbda=-0.7), - } - encoders_2_past = { - "datetime_attribute": {"past": ["hour", "day"]}, - "transformer": Scaler(), - } - encoders_past_n_future = { - "datetime_attribute": {"past": ["day"], "future": ["dayofweek"]}, - "transformer": Scaler(), - } + Note: since load_weights() calls load_weights_from_checkpoint(), it will be used + for all but one test. + Note: Using DLinear since it supports both past and future covariates + """ - model_auto_save = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name=auto_name, - save_checkpoints=True, - add_encoders=encoders_past, + def create_model(**kwargs): + return DLinearModel( + input_chunk_length=4, + output_chunk_length=1, + **kwargs, + **tfm_kwargs, ) - model_auto_save.fit(self.series, epochs=1) - model_manual_save = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name=manual_name, - save_checkpoints=False, - add_encoders=encoders_past, - ) - model_manual_save.fit(self.series, epochs=1) - model_manual_save.save(model_path_manual) + model_dir = os.path.join(tmpdir_fn) + manual_name = "save_manual" + # create manually saved model checkpoints folder + checkpoint_path_manual = os.path.join(model_dir, manual_name) + os.mkdir(checkpoint_path_manual) + checkpoint_file_name = "checkpoint_0.pth.tar" + model_path_manual = os.path.join(checkpoint_path_manual, checkpoint_file_name) + model = create_model() + model.fit(self.series, epochs=1) + model.save(model_path_manual) + + kwargs_valid = [ + {"optimizer_cls": torch.optim.SGD}, + {"optimizer_kwargs": {"lr": 0.1}}, + ] + # check that all models can be created with different valid kwargs + for kwargs_ in kwargs_valid: + model_new = create_model(**kwargs_) + model_new.load_weights(model_path_manual) + + def test_save_and_load_weights_w_encoders(self, tmpdir_fn): + """ + Verify that save/load does not break encoders. + + Note: since load_weights() calls load_weights_from_checkpoint(), it will be used + for all but one test. + Note: Using DLinear since it supports both past and future covariates + """ + model_dir = os.path.join(tmpdir_fn) + manual_name = "save_manual" + auto_name = "save_auto" + auto_name_other = "save_auto_other" + # create manually saved model checkpoints folder + checkpoint_path_manual = os.path.join(model_dir, manual_name) + os.mkdir(checkpoint_path_manual) + checkpoint_file_name = "checkpoint_0.pth.tar" + model_path_manual = os.path.join(checkpoint_path_manual, checkpoint_file_name) + + # define encoders sets + encoders_past = { + "datetime_attribute": {"past": ["day"]}, + "transformer": Scaler(), + } + encoders_other_past = { + "datetime_attribute": {"past": ["hour"]}, + "transformer": Scaler(), + } + encoders_past_noscaler = { + "datetime_attribute": {"past": ["day"]}, + } + encoders_past_other_transformer = { + "datetime_attribute": {"past": ["day"]}, + "transformer": BoxCox(lmbda=-0.7), + } + encoders_2_past = { + "datetime_attribute": {"past": ["hour", "day"]}, + "transformer": Scaler(), + } + encoders_past_n_future = { + "datetime_attribute": {"past": ["day"], "future": ["dayofweek"]}, + "transformer": Scaler(), + } + + model_auto_save = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name=auto_name, + save_checkpoints=True, + add_encoders=encoders_past, + ) + model_auto_save.fit(self.series, epochs=1) - model_auto_save_other = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name=auto_name_other, - save_checkpoints=True, - add_encoders=encoders_other_past, - ) - model_auto_save_other.fit(self.series, epochs=1) + model_manual_save = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name=manual_name, + save_checkpoints=False, + add_encoders=encoders_past, + ) + model_manual_save.fit(self.series, epochs=1) + model_manual_save.save(model_path_manual) + + model_auto_save_other = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name=auto_name_other, + save_checkpoints=True, + add_encoders=encoders_other_past, + ) + model_auto_save_other.fit(self.series, epochs=1) - # prediction are different when using different encoders - assert model_auto_save.predict(n=4) != model_auto_save_other.predict(n=4) + # prediction are different when using different encoders + assert model_auto_save.predict(n=4) != model_auto_save_other.predict(n=4) - # model with undeclared encoders - model_no_enc = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, model_name="no_encoder", add_encoders=None - ) - # weights were trained with encoders, new model must be instantiated with encoders - with pytest.raises(ValueError): - model_no_enc.load_weights_from_checkpoint( - auto_name, - work_dir=tmpdir_fn, - best=False, - load_encoders=False, - map_location="cpu", - ) - # overwritte undeclared encoders + # model with undeclared encoders + model_no_enc = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, model_name="no_encoder", add_encoders=None + ) + # weights were trained with encoders, new model must be instantiated with encoders + with pytest.raises(ValueError): model_no_enc.load_weights_from_checkpoint( auto_name, work_dir=tmpdir_fn, best=False, - load_encoders=True, - map_location="cpu", - ) - self.helper_equality_encoders( - model_auto_save.add_encoders, model_no_enc.add_encoders - ) - self.helper_equality_encoders_transfo( - model_auto_save.add_encoders, model_no_enc.add_encoders - ) - # cannot directly verify equality between encoders, using predict as proxy - assert model_auto_save.predict(n=4) == model_no_enc.predict( - n=4, series=self.series - ) - - # model with identical encoders (fittable) - model_same_enc_noload = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="same_encoder_noload", - add_encoders=encoders_past, - ) - model_same_enc_noload.load_weights( - model_path_manual, load_encoders=False, map_location="cpu", ) - # cannot predict because of un-fitted encoder - with pytest.raises(ValueError): - model_same_enc_noload.predict(n=4, series=self.series) + # overwritte undeclared encoders + model_no_enc.load_weights_from_checkpoint( + auto_name, + work_dir=tmpdir_fn, + best=False, + load_encoders=True, + map_location="cpu", + ) + self.helper_equality_encoders( + model_auto_save.add_encoders, model_no_enc.add_encoders + ) + self.helper_equality_encoders_transfo( + model_auto_save.add_encoders, model_no_enc.add_encoders + ) + # cannot directly verify equality between encoders, using predict as proxy + assert model_auto_save.predict(n=4) == model_no_enc.predict( + n=4, series=self.series + ) - model_same_enc_load = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="same_encoder_load", - add_encoders=encoders_past, - ) - model_same_enc_load.load_weights( - model_path_manual, - load_encoders=True, - map_location="cpu", - ) - assert model_manual_save.predict(n=4) == model_same_enc_load.predict( - n=4, series=self.series - ) + # model with identical encoders (fittable) + model_same_enc_noload = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="same_encoder_noload", + add_encoders=encoders_past, + ) + model_same_enc_noload.load_weights( + model_path_manual, + load_encoders=False, + map_location="cpu", + ) + # cannot predict because of un-fitted encoder + with pytest.raises(ValueError): + model_same_enc_noload.predict(n=4, series=self.series) + + model_same_enc_load = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="same_encoder_load", + add_encoders=encoders_past, + ) + model_same_enc_load.load_weights( + model_path_manual, + load_encoders=True, + map_location="cpu", + ) + assert model_manual_save.predict(n=4) == model_same_enc_load.predict( + n=4, series=self.series + ) - # model with different encoders (fittable) - model_other_enc_load = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="other_encoder_load", - add_encoders=encoders_other_past, - ) - # cannot overwritte different declared encoders - with pytest.raises(ValueError): - model_other_enc_load.load_weights( - model_path_manual, - load_encoders=True, - map_location="cpu", - ) - - # model with different encoders but same dimensions (fittable) - model_other_enc_noload = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="other_encoder_noload", - add_encoders=encoders_other_past, - ) - model_other_enc_noload.load_weights( + # model with different encoders (fittable) + model_other_enc_load = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="other_encoder_load", + add_encoders=encoders_other_past, + ) + # cannot overwritte different declared encoders + with pytest.raises(ValueError): + model_other_enc_load.load_weights( model_path_manual, - load_encoders=False, + load_encoders=True, map_location="cpu", ) - self.helper_equality_encoders( - model_other_enc_noload.add_encoders, encoders_other_past - ) - self.helper_equality_encoders_transfo( - model_other_enc_noload.add_encoders, encoders_other_past - ) - # new encoders were instantiated - assert isinstance(model_other_enc_noload.encoders, SequentialEncoder) - # since fit() was not called, new fittable encoders were not trained - with pytest.raises(ValueError): - model_other_enc_noload.predict(n=4, series=self.series) - # predict() can be called after fit() - model_other_enc_noload.fit(self.series, epochs=1) + # model with different encoders but same dimensions (fittable) + model_other_enc_noload = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="other_encoder_noload", + add_encoders=encoders_other_past, + ) + model_other_enc_noload.load_weights( + model_path_manual, + load_encoders=False, + map_location="cpu", + ) + self.helper_equality_encoders( + model_other_enc_noload.add_encoders, encoders_other_past + ) + self.helper_equality_encoders_transfo( + model_other_enc_noload.add_encoders, encoders_other_past + ) + # new encoders were instantiated + assert isinstance(model_other_enc_noload.encoders, SequentialEncoder) + # since fit() was not called, new fittable encoders were not trained + with pytest.raises(ValueError): model_other_enc_noload.predict(n=4, series=self.series) - # model with same encoders but no scaler (non-fittable) - model_new_enc_noscaler_noload = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="same_encoder_noscaler", - add_encoders=encoders_past_noscaler, - ) - model_new_enc_noscaler_noload.load_weights( - model_path_manual, - load_encoders=False, - map_location="cpu", - ) - - self.helper_equality_encoders( - model_new_enc_noscaler_noload.add_encoders, encoders_past_noscaler - ) - self.helper_equality_encoders_transfo( - model_new_enc_noscaler_noload.add_encoders, encoders_past_noscaler - ) - # predict() can be called directly since new encoders don't contain scaler - model_new_enc_noscaler_noload.predict(n=4, series=self.series) + # predict() can be called after fit() + model_other_enc_noload.fit(self.series, epochs=1) + model_other_enc_noload.predict(n=4, series=self.series) - # model with same encoders but different transformer (fittable) - model_new_enc_other_transformer = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="same_encoder_other_transform", - add_encoders=encoders_past_other_transformer, - ) - # cannot overwritte different declared encoders - with pytest.raises(ValueError): - model_new_enc_other_transformer.load_weights( - model_path_manual, - load_encoders=True, - map_location="cpu", - ) + # model with same encoders but no scaler (non-fittable) + model_new_enc_noscaler_noload = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="same_encoder_noscaler", + add_encoders=encoders_past_noscaler, + ) + model_new_enc_noscaler_noload.load_weights( + model_path_manual, + load_encoders=False, + map_location="cpu", + ) + self.helper_equality_encoders( + model_new_enc_noscaler_noload.add_encoders, encoders_past_noscaler + ) + self.helper_equality_encoders_transfo( + model_new_enc_noscaler_noload.add_encoders, encoders_past_noscaler + ) + # predict() can be called directly since new encoders don't contain scaler + model_new_enc_noscaler_noload.predict(n=4, series=self.series) + + # model with same encoders but different transformer (fittable) + model_new_enc_other_transformer = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="same_encoder_other_transform", + add_encoders=encoders_past_other_transformer, + ) + # cannot overwritte different declared encoders + with pytest.raises(ValueError): model_new_enc_other_transformer.load_weights( model_path_manual, - load_encoders=False, + load_encoders=True, map_location="cpu", ) - # since fit() was not called, new fittable encoders were not trained - with pytest.raises(ValueError): - model_new_enc_other_transformer.predict(n=4, series=self.series) - # predict() can be called after fit() - model_new_enc_other_transformer.fit(self.series, epochs=1) + model_new_enc_other_transformer.load_weights( + model_path_manual, + load_encoders=False, + map_location="cpu", + ) + # since fit() was not called, new fittable encoders were not trained + with pytest.raises(ValueError): model_new_enc_other_transformer.predict(n=4, series=self.series) - # model with encoders containing more components (fittable) - model_new_enc_2_past = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="encoder_2_components_past", - add_encoders=encoders_2_past, - ) - # cannot overwritte different declared encoders - with pytest.raises(ValueError): - model_new_enc_2_past.load_weights( - model_path_manual, - load_encoders=True, - map_location="cpu", - ) - # new encoders have one additional past component - with pytest.raises(ValueError): - model_new_enc_2_past.load_weights( - model_path_manual, - load_encoders=False, - map_location="cpu", - ) - - # model with encoders containing past and future covs (fittable) - model_new_enc_past_n_future = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="encoder_past_n_future", - add_encoders=encoders_past_n_future, - ) - # cannot overwritte different declared encoders - with pytest.raises(ValueError): - model_new_enc_past_n_future.load_weights( - model_path_manual, - load_encoders=True, - map_location="cpu", - ) - # identical past components, but different future components - with pytest.raises(ValueError): - model_new_enc_past_n_future.load_weights( - model_path_manual, - load_encoders=False, - map_location="cpu", - ) - - def test_save_and_load_weights_w_likelihood(self, tmpdir_fn): - """ - Verify that save/load does not break likelihood. - - Note: since load_weights() calls load_weights_from_checkpoint(), it will be used - for all but one test. - Note: Using DLinear since it supports both past and future covariates - """ - model_dir = os.path.join(tmpdir_fn) - manual_name = "save_manual" - auto_name = "save_auto" - # create manually saved model checkpoints folder - checkpoint_path_manual = os.path.join(model_dir, manual_name) - os.mkdir(checkpoint_path_manual) - checkpoint_file_name = "checkpoint_0.pth.tar" - model_path_manual = os.path.join( - checkpoint_path_manual, checkpoint_file_name - ) - - model_auto_save = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name=auto_name, - save_checkpoints=True, - likelihood=GaussianLikelihood(prior_mu=0.5), - ) - model_auto_save.fit(self.series, epochs=1) - pred_auto = model_auto_save.predict(n=4, series=self.series) - - model_manual_save = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name=manual_name, - save_checkpoints=False, - likelihood=GaussianLikelihood(prior_mu=0.5), - ) - model_manual_save.fit(self.series, epochs=1) - model_manual_save.save(model_path_manual) - pred_manual = model_manual_save.predict(n=4, series=self.series) + # predict() can be called after fit() + model_new_enc_other_transformer.fit(self.series, epochs=1) + model_new_enc_other_transformer.predict(n=4, series=self.series) - # predictions are identical when using the same likelihood - assert np.array_equal(pred_auto.values(), pred_manual.values()) - - # model with identical likelihood - model_same_likelihood = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="same_likelihood", - likelihood=GaussianLikelihood(prior_mu=0.5), - ) - model_same_likelihood.load_weights(model_path_manual, map_location="cpu") - model_same_likelihood.predict(n=4, series=self.series) - # cannot check predictions since this model is not fitted, random state is different - - # loading models weights with respective methods - model_manual_same_likelihood = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="same_likelihood", - likelihood=GaussianLikelihood(prior_mu=0.5), - ) - model_manual_same_likelihood.load_weights( - model_path_manual, map_location="cpu" - ) - preds_manual_from_weights = model_manual_same_likelihood.predict( - n=4, series=self.series - ) - - model_auto_same_likelihood = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="same_likelihood", - likelihood=GaussianLikelihood(prior_mu=0.5), - ) - model_auto_same_likelihood.load_weights_from_checkpoint( - auto_name, work_dir=tmpdir_fn, best=False, map_location="cpu" - ) - preds_auto_from_weights = model_auto_same_likelihood.predict( - n=4, series=self.series - ) - # check that weights from checkpoint give identical predictions as weights from manual save - assert preds_manual_from_weights == preds_auto_from_weights - # model with explicitely no likelihood - model_no_likelihood = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, model_name="no_likelihood", likelihood=None - ) - with pytest.raises(ValueError) as error_msg: - model_no_likelihood.load_weights_from_checkpoint( - auto_name, - work_dir=tmpdir_fn, - best=False, - map_location="cpu", - ) - assert str(error_msg.value).startswith( - "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" - "incorrect" - ) - - # model with missing likelihood (as if user forgot them) - model_no_likelihood_bis = DLinearModel( - input_chunk_length=4, - output_chunk_length=1, - model_name="no_likelihood_bis", - add_encoders=None, - work_dir=tmpdir_fn, - save_checkpoints=False, - random_state=42, - force_reset=True, - n_epochs=1, - # likelihood=likelihood, - **tfm_kwargs, - ) - with pytest.raises(ValueError) as error_msg: - model_no_likelihood_bis.load_weights_from_checkpoint( - auto_name, - work_dir=tmpdir_fn, - best=False, - map_location="cpu", - ) - assert str(error_msg.value).startswith( - "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" - "missing" - ) - - # model with a different likelihood - model_other_likelihood = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="other_likelihood", - likelihood=LaplaceLikelihood(), - ) - with pytest.raises(ValueError) as error_msg: - model_other_likelihood.load_weights( - model_path_manual, map_location="cpu" - ) - assert str(error_msg.value).startswith( - "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" - "incorrect" - ) - - # model with the same likelihood but different parameters - model_same_likelihood_other_prior = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - model_name="same_likelihood_other_prior", - likelihood=GaussianLikelihood(), - ) - with pytest.raises(ValueError) as error_msg: - model_same_likelihood_other_prior.load_weights( - model_path_manual, map_location="cpu" - ) - assert str(error_msg.value).startswith( - "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" - "incorrect" - ) - - def test_load_weights_params_check(self, tmpdir_fn): - """ - Verify that the method comparing the parameters between the saved model and the loading model - behave as expected, used to return meaningful error message instead of the torch.load ones. - """ - model_name = "params_check" - ckpt_path = os.path.join(tmpdir_fn, f"{model_name}.pt") - # barebone model - model = DLinearModel( - input_chunk_length=4, output_chunk_length=1, n_epochs=1, **tfm_kwargs - ) - model.fit(self.series[:10]) - model.save(ckpt_path) - - # identical model - loading_model = DLinearModel( - input_chunk_length=4, output_chunk_length=1, **tfm_kwargs - ) - loading_model.load_weights(ckpt_path) - - # different optimizer - loading_model = DLinearModel( - input_chunk_length=4, - output_chunk_length=1, - optimizer_cls=torch.optim.AdamW, - **tfm_kwargs, - ) - loading_model.load_weights(ckpt_path) - - model_summary_kwargs = { - "pl_trainer_kwargs": dict( - {"enable_model_sumamry": False}, **tfm_kwargs["pl_trainer_kwargs"] - ) - } - # different pl_trainer_kwargs - loading_model = DLinearModel( - input_chunk_length=4, - output_chunk_length=1, - **model_summary_kwargs, - ) - loading_model.load_weights(ckpt_path) - - # different input_chunk_length (tfm parameter) - loading_model = DLinearModel( - input_chunk_length=4 + 1, output_chunk_length=1, **tfm_kwargs + # model with encoders containing more components (fittable) + model_new_enc_2_past = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="encoder_2_components_past", + add_encoders=encoders_2_past, + ) + # cannot overwritte different declared encoders + with pytest.raises(ValueError): + model_new_enc_2_past.load_weights( + model_path_manual, + load_encoders=True, + map_location="cpu", ) - with pytest.raises(ValueError) as error_msg: - loading_model.load_weights(ckpt_path) - assert str(error_msg.value).startswith( - "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" - "incorrect" + # new encoders have one additional past component + with pytest.raises(ValueError): + model_new_enc_2_past.load_weights( + model_path_manual, + load_encoders=False, + map_location="cpu", ) - # different kernel size (cls specific parameter) - loading_model = DLinearModel( - input_chunk_length=4, - output_chunk_length=1, - kernel_size=10, - **tfm_kwargs, - ) - with pytest.raises(ValueError) as error_msg: - loading_model.load_weights(ckpt_path) - assert str(error_msg.value).startswith( - "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" - "incorrect" + # model with encoders containing past and future covs (fittable) + model_new_enc_past_n_future = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="encoder_past_n_future", + add_encoders=encoders_past_n_future, + ) + # cannot overwritte different declared encoders + with pytest.raises(ValueError): + model_new_enc_past_n_future.load_weights( + model_path_manual, + load_encoders=True, + map_location="cpu", ) - - def test_create_instance_new_model_no_name_set(self, tmpdir_fn): - RNNModel(12, "RNN", 10, 10, work_dir=tmpdir_fn, **tfm_kwargs) - # no exception is raised - - def test_create_instance_existing_model_with_name_no_fit(self, tmpdir_fn): - model_name = "test_model" - RNNModel( - 12, - "RNN", - 10, - 10, - work_dir=tmpdir_fn, - model_name=model_name, - **tfm_kwargs, + # identical past components, but different future components + with pytest.raises(ValueError): + model_new_enc_past_n_future.load_weights( + model_path_manual, + load_encoders=False, + map_location="cpu", ) - # no exception is raised - @patch( - "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel.reset_model" + def test_save_and_load_weights_w_likelihood(self, tmpdir_fn): + """ + Verify that save/load does not break likelihood. + + Note: since load_weights() calls load_weights_from_checkpoint(), it will be used + for all but one test. + Note: Using DLinear since it supports both past and future covariates + """ + model_dir = os.path.join(tmpdir_fn) + manual_name = "save_manual" + auto_name = "save_auto" + # create manually saved model checkpoints folder + checkpoint_path_manual = os.path.join(model_dir, manual_name) + os.mkdir(checkpoint_path_manual) + checkpoint_file_name = "checkpoint_0.pth.tar" + model_path_manual = os.path.join(checkpoint_path_manual, checkpoint_file_name) + + model_auto_save = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name=auto_name, + save_checkpoints=True, + likelihood=GaussianLikelihood(prior_mu=0.5), + ) + model_auto_save.fit(self.series, epochs=1) + pred_auto = model_auto_save.predict(n=4, series=self.series) + + model_manual_save = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name=manual_name, + save_checkpoints=False, + likelihood=GaussianLikelihood(prior_mu=0.5), + ) + model_manual_save.fit(self.series, epochs=1) + model_manual_save.save(model_path_manual) + pred_manual = model_manual_save.predict(n=4, series=self.series) + + # predictions are identical when using the same likelihood + assert np.array_equal(pred_auto.values(), pred_manual.values()) + + # model with identical likelihood + model_same_likelihood = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="same_likelihood", + likelihood=GaussianLikelihood(prior_mu=0.5), + ) + model_same_likelihood.load_weights(model_path_manual, map_location="cpu") + model_same_likelihood.predict(n=4, series=self.series) + # cannot check predictions since this model is not fitted, random state is different + + # loading models weights with respective methods + model_manual_same_likelihood = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="same_likelihood", + likelihood=GaussianLikelihood(prior_mu=0.5), + ) + model_manual_same_likelihood.load_weights(model_path_manual, map_location="cpu") + preds_manual_from_weights = model_manual_same_likelihood.predict( + n=4, series=self.series ) - def test_create_instance_existing_model_with_name_force( - self, patch_reset_model, tmpdir_fn - ): - model_name = "test_model" - RNNModel( - 12, - "RNN", - 10, - 10, - work_dir=tmpdir_fn, - model_name=model_name, - **tfm_kwargs, - ) - # no exception is raised - # since no fit, there is no data stored for the model, hence `force_reset` does noting - RNNModel( - 12, - "RNN", - 10, - 10, + model_auto_same_likelihood = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="same_likelihood", + likelihood=GaussianLikelihood(prior_mu=0.5), + ) + model_auto_same_likelihood.load_weights_from_checkpoint( + auto_name, work_dir=tmpdir_fn, best=False, map_location="cpu" + ) + preds_auto_from_weights = model_auto_same_likelihood.predict( + n=4, series=self.series + ) + # check that weights from checkpoint give identical predictions as weights from manual save + assert preds_manual_from_weights == preds_auto_from_weights + # model with explicitely no likelihood + model_no_likelihood = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, model_name="no_likelihood", likelihood=None + ) + with pytest.raises(ValueError) as error_msg: + model_no_likelihood.load_weights_from_checkpoint( + auto_name, work_dir=tmpdir_fn, - model_name=model_name, - force_reset=True, - **tfm_kwargs, + best=False, + map_location="cpu", ) - patch_reset_model.assert_not_called() + assert str(error_msg.value).startswith( + "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" + "incorrect" + ) - @patch( - "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel.reset_model" + # model with missing likelihood (as if user forgot them) + model_no_likelihood_bis = DLinearModel( + input_chunk_length=4, + output_chunk_length=1, + model_name="no_likelihood_bis", + add_encoders=None, + work_dir=tmpdir_fn, + save_checkpoints=False, + random_state=42, + force_reset=True, + n_epochs=1, + # likelihood=likelihood, + **tfm_kwargs, ) - def test_create_instance_existing_model_with_name_force_fit_with_reset( - self, patch_reset_model, tmpdir_fn - ): - model_name = "test_model" - model1 = RNNModel( - 12, - "RNN", - 10, - 10, + with pytest.raises(ValueError) as error_msg: + model_no_likelihood_bis.load_weights_from_checkpoint( + auto_name, work_dir=tmpdir_fn, - model_name=model_name, - save_checkpoints=True, - **tfm_kwargs, + best=False, + map_location="cpu", ) - # no exception is raised + assert str(error_msg.value).startswith( + "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" + "missing" + ) - model1.fit(self.series, epochs=1) + # model with a different likelihood + model_other_likelihood = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="other_likelihood", + likelihood=LaplaceLikelihood(), + ) + with pytest.raises(ValueError) as error_msg: + model_other_likelihood.load_weights(model_path_manual, map_location="cpu") + assert str(error_msg.value).startswith( + "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" + "incorrect" + ) - RNNModel( - 12, - "RNN", - 10, - 10, - work_dir=tmpdir_fn, - model_name=model_name, - save_checkpoints=True, - force_reset=True, - **tfm_kwargs, + # model with the same likelihood but different parameters + model_same_likelihood_other_prior = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + model_name="same_likelihood_other_prior", + likelihood=GaussianLikelihood(), + ) + with pytest.raises(ValueError) as error_msg: + model_same_likelihood_other_prior.load_weights( + model_path_manual, map_location="cpu" ) - patch_reset_model.assert_called_once() + assert str(error_msg.value).startswith( + "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" + "incorrect" + ) - # TODO for PTL: currently we (have to (?)) create a mew PTL trainer object every time fit() is called which - # resets some of the model's attributes such as epoch and step counts. We have check whether there is another - # way of doing this. + def test_load_weights_params_check(self, tmpdir_fn): + """ + Verify that the method comparing the parameters between the saved model and the loading model + behave as expected, used to return meaningful error message instead of the torch.load ones. + """ + model_name = "params_check" + ckpt_path = os.path.join(tmpdir_fn, f"{model_name}.pt") + # barebone model + model = DLinearModel( + input_chunk_length=4, output_chunk_length=1, n_epochs=1, **tfm_kwargs + ) + model.fit(self.series[:10]) + model.save(ckpt_path) - # n_epochs=20, fit|epochs=None, epochs_trained=0 - train for 20 epochs - def test_train_from_0_n_epochs_20_no_fit_epochs(self): - model1 = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=20, - **tfm_kwargs, - ) + # identical model + loading_model = DLinearModel( + input_chunk_length=4, output_chunk_length=1, **tfm_kwargs + ) + loading_model.load_weights(ckpt_path) + + # different optimizer + loading_model = DLinearModel( + input_chunk_length=4, + output_chunk_length=1, + optimizer_cls=torch.optim.AdamW, + **tfm_kwargs, + ) + loading_model.load_weights(ckpt_path) + + model_summary_kwargs = { + "pl_trainer_kwargs": dict( + {"enable_model_sumamry": False}, **tfm_kwargs["pl_trainer_kwargs"] + ) + } + # different pl_trainer_kwargs + loading_model = DLinearModel( + input_chunk_length=4, + output_chunk_length=1, + **model_summary_kwargs, + ) + loading_model.load_weights(ckpt_path) - model1.fit(self.series) + # different input_chunk_length (tfm parameter) + loading_model = DLinearModel( + input_chunk_length=4 + 1, output_chunk_length=1, **tfm_kwargs + ) + with pytest.raises(ValueError) as error_msg: + loading_model.load_weights(ckpt_path) + assert str(error_msg.value).startswith( + "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" + "incorrect" + ) - assert 20 == model1.epochs_trained + # different kernel size (cls specific parameter) + loading_model = DLinearModel( + input_chunk_length=4, + output_chunk_length=1, + kernel_size=10, + **tfm_kwargs, + ) + with pytest.raises(ValueError) as error_msg: + loading_model.load_weights(ckpt_path) + assert str(error_msg.value).startswith( + "The values of the hyper-parameters in the model and loaded checkpoint should be identical.\n" + "incorrect" + ) - # n_epochs = 20, fit|epochs=None, epochs_trained=20 - train for another 20 epochs - def test_train_from_20_n_epochs_40_no_fit_epochs(self): - model1 = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=20, - **tfm_kwargs, - ) + def test_create_instance_new_model_no_name_set(self, tmpdir_fn): + RNNModel(12, "RNN", 10, 10, work_dir=tmpdir_fn, **tfm_kwargs) + # no exception is raised + + def test_create_instance_existing_model_with_name_no_fit(self, tmpdir_fn): + model_name = "test_model" + RNNModel( + 12, + "RNN", + 10, + 10, + work_dir=tmpdir_fn, + model_name=model_name, + **tfm_kwargs, + ) + # no exception is raised - model1.fit(self.series) - assert 20 == model1.epochs_trained + @patch( + "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel.reset_model" + ) + def test_create_instance_existing_model_with_name_force( + self, patch_reset_model, tmpdir_fn + ): + model_name = "test_model" + RNNModel( + 12, + "RNN", + 10, + 10, + work_dir=tmpdir_fn, + model_name=model_name, + **tfm_kwargs, + ) + # no exception is raised + # since no fit, there is no data stored for the model, hence `force_reset` does noting + + RNNModel( + 12, + "RNN", + 10, + 10, + work_dir=tmpdir_fn, + model_name=model_name, + force_reset=True, + **tfm_kwargs, + ) + patch_reset_model.assert_not_called() - model1.fit(self.series) - assert 20 == model1.epochs_trained + @patch( + "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel.reset_model" + ) + def test_create_instance_existing_model_with_name_force_fit_with_reset( + self, patch_reset_model, tmpdir_fn + ): + model_name = "test_model" + model1 = RNNModel( + 12, + "RNN", + 10, + 10, + work_dir=tmpdir_fn, + model_name=model_name, + save_checkpoints=True, + **tfm_kwargs, + ) + # no exception is raised + + model1.fit(self.series, epochs=1) + + RNNModel( + 12, + "RNN", + 10, + 10, + work_dir=tmpdir_fn, + model_name=model_name, + save_checkpoints=True, + force_reset=True, + **tfm_kwargs, + ) + patch_reset_model.assert_called_once() + + # TODO for PTL: currently we (have to (?)) create a mew PTL trainer object every time fit() is called which + # resets some of the model's attributes such as epoch and step counts. We have check whether there is another + # way of doing this. + + # n_epochs=20, fit|epochs=None, epochs_trained=0 - train for 20 epochs + def test_train_from_0_n_epochs_20_no_fit_epochs(self): + model1 = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=20, + **tfm_kwargs, + ) - # n_epochs = 20, fit|epochs=None, epochs_trained=10 - train for another 20 epochs - def test_train_from_10_n_epochs_20_no_fit_epochs(self): - model1 = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=20, - **tfm_kwargs, - ) + model1.fit(self.series) - # simulate the case that user interrupted training with Ctrl-C after 10 epochs - model1.fit(self.series, epochs=10) - assert 10 == model1.epochs_trained + assert 20 == model1.epochs_trained - model1.fit(self.series) - assert 20 == model1.epochs_trained + # n_epochs = 20, fit|epochs=None, epochs_trained=20 - train for another 20 epochs + def test_train_from_20_n_epochs_40_no_fit_epochs(self): + model1 = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=20, + **tfm_kwargs, + ) - # n_epochs = 20, fit|epochs=15, epochs_trained=10 - train for 15 epochs - def test_train_from_10_n_epochs_20_fit_15_epochs(self): - model1 = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=20, - **tfm_kwargs, - ) + model1.fit(self.series) + assert 20 == model1.epochs_trained + + model1.fit(self.series) + assert 20 == model1.epochs_trained + + # n_epochs = 20, fit|epochs=None, epochs_trained=10 - train for another 20 epochs + def test_train_from_10_n_epochs_20_no_fit_epochs(self): + model1 = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=20, + **tfm_kwargs, + ) - # simulate the case that user interrupted training with Ctrl-C after 10 epochs - model1.fit(self.series, epochs=10) - assert 10 == model1.epochs_trained + # simulate the case that user interrupted training with Ctrl-C after 10 epochs + model1.fit(self.series, epochs=10) + assert 10 == model1.epochs_trained + + model1.fit(self.series) + assert 20 == model1.epochs_trained + + # n_epochs = 20, fit|epochs=15, epochs_trained=10 - train for 15 epochs + def test_train_from_10_n_epochs_20_fit_15_epochs(self): + model1 = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=20, + **tfm_kwargs, + ) - model1.fit(self.series, epochs=15) - assert 15 == model1.epochs_trained + # simulate the case that user interrupted training with Ctrl-C after 10 epochs + model1.fit(self.series, epochs=10) + assert 10 == model1.epochs_trained + + model1.fit(self.series, epochs=15) + assert 15 == model1.epochs_trained + + def test_load_weights_from_checkpoint(self, tmpdir_fn): + ts_training, ts_test = self.series.split_before(90) + original_model_name = "original" + retrained_model_name = "retrained" + # original model, checkpoints are saved + model = RNNModel( + 12, + "RNN", + 5, + 1, + n_epochs=5, + work_dir=tmpdir_fn, + save_checkpoints=True, + model_name=original_model_name, + random_state=1, + **tfm_kwargs, + ) + model.fit(ts_training) + original_preds = model.predict(10) + original_mape = mape(original_preds, ts_test) + + # load last checkpoint of original model, train it for 2 additional epochs + model_rt = RNNModel( + 12, + "RNN", + 5, + 1, + n_epochs=5, + work_dir=tmpdir_fn, + model_name=retrained_model_name, + random_state=1, + **tfm_kwargs, + ) + model_rt.load_weights_from_checkpoint( + model_name=original_model_name, + work_dir=tmpdir_fn, + best=False, + map_location="cpu", + ) - def test_load_weights_from_checkpoint(self, tmpdir_fn): - ts_training, ts_test = self.series.split_before(90) - original_model_name = "original" - retrained_model_name = "retrained" - # original model, checkpoints are saved - model = RNNModel( - 12, - "RNN", - 5, - 1, - n_epochs=5, - work_dir=tmpdir_fn, - save_checkpoints=True, - model_name=original_model_name, - random_state=1, - **tfm_kwargs, - ) - model.fit(ts_training) - original_preds = model.predict(10) - original_mape = mape(original_preds, ts_test) + # must indicate series otherwise self.training_series must be saved in checkpoint + loaded_preds = model_rt.predict(10, ts_training) + # save/load checkpoint should produce identical predictions + assert original_preds == loaded_preds + + model_rt.fit(ts_training) + retrained_preds = model_rt.predict(10) + retrained_mape = mape(retrained_preds, ts_test) + assert retrained_mape < original_mape, ( + f"Retrained model has a greater error (mape) than the original model, " + f"respectively {retrained_mape} and {original_mape}" + ) - # load last checkpoint of original model, train it for 2 additional epochs + # raise Exception when trying to load ckpt weights in different architecture + with pytest.raises(ValueError): model_rt = RNNModel( 12, "RNN", + 10, # loaded model has only 5 hidden_layers 5, - 1, - n_epochs=5, - work_dir=tmpdir_fn, - model_name=retrained_model_name, - random_state=1, - **tfm_kwargs, ) model_rt.load_weights_from_checkpoint( model_name=original_model_name, @@ -968,749 +977,710 @@ def test_load_weights_from_checkpoint(self, tmpdir_fn): map_location="cpu", ) - # must indicate series otherwise self.training_series must be saved in checkpoint - loaded_preds = model_rt.predict(10, ts_training) - # save/load checkpoint should produce identical predictions - assert original_preds == loaded_preds - - model_rt.fit(ts_training) - retrained_preds = model_rt.predict(10) - retrained_mape = mape(retrained_preds, ts_test) - assert retrained_mape < original_mape, ( - f"Retrained model has a greater error (mape) than the original model, " - f"respectively {retrained_mape} and {original_mape}" - ) - - # raise Exception when trying to load ckpt weights in different architecture - with pytest.raises(ValueError): - model_rt = RNNModel( - 12, - "RNN", - 10, # loaded model has only 5 hidden_layers - 5, - ) - model_rt.load_weights_from_checkpoint( - model_name=original_model_name, - work_dir=tmpdir_fn, - best=False, - map_location="cpu", - ) - - # raise Exception when trying to pass `weights_only`=True to `torch.load()` - with pytest.raises(ValueError): - model_rt = RNNModel(12, "RNN", 5, 5, **tfm_kwargs) - model_rt.load_weights_from_checkpoint( - model_name=original_model_name, - work_dir=tmpdir_fn, - best=False, - weights_only=True, - map_location="cpu", - ) - - def test_load_weights(self, tmpdir_fn): - ts_training, ts_test = self.series.split_before(90) - original_model_name = "original" - retrained_model_name = "retrained" - # original model, checkpoints are saved - model = RNNModel( - 12, - "RNN", - 5, - 1, - n_epochs=5, - work_dir=tmpdir_fn, - save_checkpoints=False, + # raise Exception when trying to pass `weights_only`=True to `torch.load()` + with pytest.raises(ValueError): + model_rt = RNNModel(12, "RNN", 5, 5, **tfm_kwargs) + model_rt.load_weights_from_checkpoint( model_name=original_model_name, - random_state=1, - **tfm_kwargs, - ) - model.fit(ts_training) - path_manual_save = os.path.join(tmpdir_fn, "RNN_manual_save.pt") - model.save(path_manual_save) - original_preds = model.predict(10) - original_mape = mape(original_preds, ts_test) - - # load last checkpoint of original model, train it for 2 additional epochs - model_rt = RNNModel( - 12, - "RNN", - 5, - 1, - n_epochs=5, work_dir=tmpdir_fn, - model_name=retrained_model_name, - random_state=1, - **tfm_kwargs, - ) - model_rt.load_weights(path=path_manual_save, map_location="cpu") - - # must indicate series otherwise self.training_series must be saved in checkpoint - loaded_preds = model_rt.predict(10, ts_training) - # save/load checkpoint should produce identical predictions - assert original_preds == loaded_preds - - model_rt.fit(ts_training) - retrained_preds = model_rt.predict(10) - retrained_mape = mape(retrained_preds, ts_test) - assert retrained_mape < original_mape, ( - f"Retrained model has a greater mape error than the original model, " - f"respectively {retrained_mape} and {original_mape}" + best=False, + weights_only=True, + map_location="cpu", ) - def test_load_weights_with_float32_dtype(self, tmpdir_fn): - ts_float32 = self.series.astype("float32") - model_name = "test_model" - ckpt_path = os.path.join(tmpdir_fn, f"{model_name}.pt") - # barebone model - model = DLinearModel( - input_chunk_length=4, - output_chunk_length=1, - n_epochs=1, - ) - model.fit(ts_float32) - model.save(ckpt_path) - assert model.model._dtype == torch.float32 # type: ignore + def test_load_weights(self, tmpdir_fn): + ts_training, ts_test = self.series.split_before(90) + original_model_name = "original" + retrained_model_name = "retrained" + # original model, checkpoints are saved + model = RNNModel( + 12, + "RNN", + 5, + 1, + n_epochs=5, + work_dir=tmpdir_fn, + save_checkpoints=False, + model_name=original_model_name, + random_state=1, + **tfm_kwargs, + ) + model.fit(ts_training) + path_manual_save = os.path.join(tmpdir_fn, "RNN_manual_save.pt") + model.save(path_manual_save) + original_preds = model.predict(10) + original_mape = mape(original_preds, ts_test) + + # load last checkpoint of original model, train it for 2 additional epochs + model_rt = RNNModel( + 12, + "RNN", + 5, + 1, + n_epochs=5, + work_dir=tmpdir_fn, + model_name=retrained_model_name, + random_state=1, + **tfm_kwargs, + ) + model_rt.load_weights(path=path_manual_save, map_location="cpu") + + # must indicate series otherwise self.training_series must be saved in checkpoint + loaded_preds = model_rt.predict(10, ts_training) + # save/load checkpoint should produce identical predictions + assert original_preds == loaded_preds + + model_rt.fit(ts_training) + retrained_preds = model_rt.predict(10) + retrained_mape = mape(retrained_preds, ts_test) + assert retrained_mape < original_mape, ( + f"Retrained model has a greater mape error than the original model, " + f"respectively {retrained_mape} and {original_mape}" + ) - # identical model - loading_model = DLinearModel( - input_chunk_length=4, - output_chunk_length=1, - ) - loading_model.load_weights(ckpt_path) - loading_model.fit(ts_float32) - assert loading_model.model._dtype == torch.float32 # type: ignore - - def test_multi_steps_pipeline(self, tmpdir_fn): - ts_training, ts_val = self.series.split_before(75) - pretrain_model_name = "pre-train" - retrained_model_name = "re-train" - - # pretraining - model = self.helper_create_RNNModel(pretrain_model_name, tmpdir_fn) - model.fit( - ts_training, - val_series=ts_val, - ) + def test_load_weights_with_float32_dtype(self, tmpdir_fn): + ts_float32 = self.series.astype("float32") + model_name = "test_model" + ckpt_path = os.path.join(tmpdir_fn, f"{model_name}.pt") + # barebone model + model = DLinearModel( + input_chunk_length=4, + output_chunk_length=1, + n_epochs=1, + ) + model.fit(ts_float32) + model.save(ckpt_path) + assert model.model._dtype == torch.float32 # type: ignore + + # identical model + loading_model = DLinearModel( + input_chunk_length=4, + output_chunk_length=1, + ) + loading_model.load_weights(ckpt_path) + loading_model.fit(ts_float32) + assert loading_model.model._dtype == torch.float32 # type: ignore + + def test_multi_steps_pipeline(self, tmpdir_fn): + ts_training, ts_val = self.series.split_before(75) + pretrain_model_name = "pre-train" + retrained_model_name = "re-train" + + # pretraining + model = self.helper_create_RNNModel(pretrain_model_name, tmpdir_fn) + model.fit( + ts_training, + val_series=ts_val, + ) - # finetuning - model = self.helper_create_RNNModel(retrained_model_name, tmpdir_fn) - model.load_weights_from_checkpoint( - model_name=pretrain_model_name, - work_dir=tmpdir_fn, - best=True, - map_location="cpu", - ) - model.fit( - ts_training, - val_series=ts_val, - ) + # finetuning + model = self.helper_create_RNNModel(retrained_model_name, tmpdir_fn) + model.load_weights_from_checkpoint( + model_name=pretrain_model_name, + work_dir=tmpdir_fn, + best=True, + map_location="cpu", + ) + model.fit( + ts_training, + val_series=ts_val, + ) - # prediction - model = model.load_from_checkpoint( - model_name=retrained_model_name, - work_dir=tmpdir_fn, - best=True, - map_location="cpu", - ) - model.predict(4, series=ts_training) + # prediction + model = model.load_from_checkpoint( + model_name=retrained_model_name, + work_dir=tmpdir_fn, + best=True, + map_location="cpu", + ) + model.predict(4, series=ts_training) + + def test_load_from_checkpoint_w_custom_loss(self, tmpdir_fn): + model_name = "pretraining_custom_loss" + # model with a custom loss + model = RNNModel( + 12, + "RNN", + 5, + 1, + n_epochs=1, + work_dir=tmpdir_fn, + model_name=model_name, + save_checkpoints=True, + force_reset=True, + loss_fn=torch.nn.L1Loss(), + **tfm_kwargs, + ) + model.fit(self.series) - def test_load_from_checkpoint_w_custom_loss(self, tmpdir_fn): - model_name = "pretraining_custom_loss" - # model with a custom loss - model = RNNModel( - 12, - "RNN", - 5, - 1, - n_epochs=1, - work_dir=tmpdir_fn, - model_name=model_name, - save_checkpoints=True, - force_reset=True, - loss_fn=torch.nn.L1Loss(), - **tfm_kwargs, - ) - model.fit(self.series) + loaded_model = RNNModel.load_from_checkpoint( + model_name, tmpdir_fn, best=False, map_location="cpu" + ) + # custom loss function should be properly restored from ckpt + assert isinstance(loaded_model.model.criterion, torch.nn.L1Loss) + + loaded_model.fit(self.series, epochs=2) + # calling fit() should not impact the loss function + assert isinstance(loaded_model.model.criterion, torch.nn.L1Loss) + + def test_load_from_checkpoint_w_metrics(self, tmpdir_fn): + model_name = "pretraining_metrics" + # model with one torch_metrics + pl_trainer_kwargs = dict( + {"logger": DummyLogger(), "log_every_n_steps": 1}, + **tfm_kwargs["pl_trainer_kwargs"], + ) + model = RNNModel( + 12, + "RNN", + 5, + 1, + n_epochs=1, + work_dir=tmpdir_fn, + model_name=model_name, + save_checkpoints=True, + force_reset=True, + torch_metrics=MeanAbsolutePercentageError(), + pl_trainer_kwargs=pl_trainer_kwargs, + ) + model.fit(self.series) + # check train_metrics before loading + assert isinstance(model.model.train_metrics, MetricCollection) + assert len(model.model.train_metrics) == 1 + + loaded_model = RNNModel.load_from_checkpoint( + model_name, + tmpdir_fn, + best=False, + map_location="cpu", + ) + # custom loss function should be properly restored from ckpt torchmetrics.Metric + assert isinstance(loaded_model.model.train_metrics, MetricCollection) + assert len(loaded_model.model.train_metrics) == 1 - loaded_model = RNNModel.load_from_checkpoint( - model_name, tmpdir_fn, best=False, map_location="cpu" - ) - # custom loss function should be properly restored from ckpt - assert isinstance(loaded_model.model.criterion, torch.nn.L1Loss) - - loaded_model.fit(self.series, epochs=2) - # calling fit() should not impact the loss function - assert isinstance(loaded_model.model.criterion, torch.nn.L1Loss) - - def test_load_from_checkpoint_w_metrics(self, tmpdir_fn): - model_name = "pretraining_metrics" - # model with one torch_metrics - pl_trainer_kwargs = dict( - {"logger": DummyLogger(), "log_every_n_steps": 1}, - **tfm_kwargs["pl_trainer_kwargs"], - ) - model = RNNModel( - 12, - "RNN", - 5, - 1, - n_epochs=1, - work_dir=tmpdir_fn, - model_name=model_name, - save_checkpoints=True, - force_reset=True, - torch_metrics=MeanAbsolutePercentageError(), - pl_trainer_kwargs=pl_trainer_kwargs, - ) - model.fit(self.series) - # check train_metrics before loading - assert isinstance(model.model.train_metrics, MetricCollection) - assert len(model.model.train_metrics) == 1 + def test_optimizers(self): - loaded_model = RNNModel.load_from_checkpoint( - model_name, - tmpdir_fn, - best=False, - map_location="cpu", - ) - # custom loss function should be properly restored from ckpt torchmetrics.Metric - assert isinstance(loaded_model.model.train_metrics, MetricCollection) - assert len(loaded_model.model.train_metrics) == 1 - - def test_optimizers(self): - - optimizers = [ - (torch.optim.Adam, {"lr": 0.001}), - (torch.optim.SGD, {"lr": 0.001}), - ] - - for optim_cls, optim_kwargs in optimizers: - model = RNNModel( - 12, - "RNN", - 10, - 10, - optimizer_cls=optim_cls, - optimizer_kwargs=optim_kwargs, - **tfm_kwargs, - ) - # should not raise an error - model.fit(self.series, epochs=1) - - @pytest.mark.parametrize( - "lr_scheduler", - [ - (torch.optim.lr_scheduler.StepLR, {"step_size": 10}), - ( - torch.optim.lr_scheduler.ReduceLROnPlateau, - { - "threshold": 0.001, - "monitor": "train_loss", - "interval": "step", - "frequency": 2, - }, - ), - (torch.optim.lr_scheduler.ExponentialLR, {"gamma": 0.09}), - ], - ) - def test_lr_schedulers(self, lr_scheduler): - lr_scheduler_cls, lr_scheduler_kwargs = lr_scheduler + optimizers = [ + (torch.optim.Adam, {"lr": 0.001}), + (torch.optim.SGD, {"lr": 0.001}), + ] + + for optim_cls, optim_kwargs in optimizers: model = RNNModel( 12, "RNN", 10, 10, - lr_scheduler_cls=lr_scheduler_cls, - lr_scheduler_kwargs=lr_scheduler_kwargs, + optimizer_cls=optim_cls, + optimizer_kwargs=optim_kwargs, **tfm_kwargs, ) # should not raise an error model.fit(self.series, epochs=1) - def test_wrong_model_creation_params(self): - valid_kwarg = {"pl_trainer_kwargs": {}} - invalid_kwarg = {"some_invalid_kwarg": None} - - # valid params should not raise an error - _ = RNNModel(12, "RNN", 10, 10, **valid_kwarg) + @pytest.mark.parametrize( + "lr_scheduler", + [ + (torch.optim.lr_scheduler.StepLR, {"step_size": 10}), + ( + torch.optim.lr_scheduler.ReduceLROnPlateau, + { + "threshold": 0.001, + "monitor": "train_loss", + "interval": "step", + "frequency": 2, + }, + ), + (torch.optim.lr_scheduler.ExponentialLR, {"gamma": 0.09}), + ], + ) + def test_lr_schedulers(self, lr_scheduler): + lr_scheduler_cls, lr_scheduler_kwargs = lr_scheduler + model = RNNModel( + 12, + "RNN", + 10, + 10, + lr_scheduler_cls=lr_scheduler_cls, + lr_scheduler_kwargs=lr_scheduler_kwargs, + **tfm_kwargs, + ) + # should not raise an error + model.fit(self.series, epochs=1) - # invalid params should raise an error - with pytest.raises(ValueError): - _ = RNNModel(12, "RNN", 10, 10, **invalid_kwarg) + def test_wrong_model_creation_params(self): + valid_kwarg = {"pl_trainer_kwargs": {}} + invalid_kwarg = {"some_invalid_kwarg": None} - def test_metrics(self): - metric = MeanAbsolutePercentageError() - metric_collection = MetricCollection( - [MeanAbsolutePercentageError(), MeanAbsoluteError()] - ) + # valid params should not raise an error + _ = RNNModel(12, "RNN", 10, 10, **valid_kwarg) - model_kwargs = { - "logger": DummyLogger(), - "log_every_n_steps": 1, - **tfm_kwargs["pl_trainer_kwargs"], - } - # test single metric - model = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=1, - torch_metrics=metric, - pl_trainer_kwargs=model_kwargs, - ) - model.fit(self.series) + # invalid params should raise an error + with pytest.raises(ValueError): + _ = RNNModel(12, "RNN", 10, 10, **invalid_kwarg) - # test metric collection - model = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=1, - torch_metrics=metric_collection, - pl_trainer_kwargs=model_kwargs, - ) - model.fit(self.series) + def test_metrics(self): + metric = MeanAbsolutePercentageError() + metric_collection = MetricCollection( + [MeanAbsolutePercentageError(), MeanAbsoluteError()] + ) - # test multivariate series - model = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=1, - torch_metrics=metric, - pl_trainer_kwargs=model_kwargs, - ) - model.fit(self.multivariate_series) + model_kwargs = { + "logger": DummyLogger(), + "log_every_n_steps": 1, + **tfm_kwargs["pl_trainer_kwargs"], + } + # test single metric + model = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=1, + torch_metrics=metric, + pl_trainer_kwargs=model_kwargs, + ) + model.fit(self.series) + + # test metric collection + model = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=1, + torch_metrics=metric_collection, + pl_trainer_kwargs=model_kwargs, + ) + model.fit(self.series) + + # test multivariate series + model = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=1, + torch_metrics=metric, + pl_trainer_kwargs=model_kwargs, + ) + model.fit(self.multivariate_series) - def test_metrics_w_likelihood(self): - metric = MeanAbsolutePercentageError() - metric_collection = MetricCollection( - [MeanAbsolutePercentageError(), MeanAbsoluteError()] - ) - model_kwargs = { - "logger": DummyLogger(), - "log_every_n_steps": 1, - **tfm_kwargs["pl_trainer_kwargs"], - } - # test single metric - model = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=1, - likelihood=GaussianLikelihood(), - torch_metrics=metric, - pl_trainer_kwargs=model_kwargs, - ) - model.fit(self.series) + def test_metrics_w_likelihood(self): + metric = MeanAbsolutePercentageError() + metric_collection = MetricCollection( + [MeanAbsolutePercentageError(), MeanAbsoluteError()] + ) + model_kwargs = { + "logger": DummyLogger(), + "log_every_n_steps": 1, + **tfm_kwargs["pl_trainer_kwargs"], + } + # test single metric + model = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=1, + likelihood=GaussianLikelihood(), + torch_metrics=metric, + pl_trainer_kwargs=model_kwargs, + ) + model.fit(self.series) + + # test metric collection + model = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=1, + likelihood=GaussianLikelihood(), + torch_metrics=metric_collection, + pl_trainer_kwargs=model_kwargs, + ) + model.fit(self.series) + + # test multivariate series + model = RNNModel( + 12, + "RNN", + 10, + 10, + n_epochs=1, + likelihood=GaussianLikelihood(), + torch_metrics=metric_collection, + pl_trainer_kwargs=model_kwargs, + ) + model.fit(self.multivariate_series) - # test metric collection + def test_invalid_metrics(self): + torch_metrics = ["invalid"] + with pytest.raises(AttributeError): model = RNNModel( 12, "RNN", 10, 10, n_epochs=1, - likelihood=GaussianLikelihood(), - torch_metrics=metric_collection, - pl_trainer_kwargs=model_kwargs, + torch_metrics=torch_metrics, + **tfm_kwargs, ) model.fit(self.series) - # test multivariate series + @pytest.mark.slow + def test_lr_find(self): + train_series, val_series = self.series[:-40], self.series[-40:] + model = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) + # find the learning rate + res = model.lr_find(series=train_series, val_series=val_series, epochs=50) + assert isinstance(res, _LRFinder) + assert res.suggestion() is not None + # verify that learning rate finder bypasses the `fit` logic + assert model.model is None + assert not model._fit_called + # cannot predict with an untrained model + with pytest.raises(ValueError): + model.predict(n=3, series=self.series) + + # check that results are reproducible + model = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) + res2 = model.lr_find(series=train_series, val_series=val_series, epochs=50) + assert res.suggestion() == res2.suggestion() + + # check that suggested learning rate is better than the worst + lr_worst = res.results["lr"][np.argmax(res.results["loss"])] + lr_suggested = res.suggestion() + scores = {} + for lr, lr_name in zip([lr_worst, lr_suggested], ["worst", "suggested"]): model = RNNModel( 12, "RNN", 10, 10, - n_epochs=1, - likelihood=GaussianLikelihood(), - torch_metrics=metric_collection, - pl_trainer_kwargs=model_kwargs, - ) - model.fit(self.multivariate_series) - - def test_invalid_metrics(self): - torch_metrics = ["invalid"] - with pytest.raises(AttributeError): - model = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=1, - torch_metrics=torch_metrics, - **tfm_kwargs, - ) - model.fit(self.series) - - @pytest.mark.slow - def test_lr_find(self): - train_series, val_series = self.series[:-40], self.series[-40:] - model = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) - # find the learning rate - res = model.lr_find(series=train_series, val_series=val_series, epochs=50) - assert isinstance(res, _LRFinder) - assert res.suggestion() is not None - # verify that learning rate finder bypasses the `fit` logic - assert model.model is None - assert not model._fit_called - # cannot predict with an untrained model - with pytest.raises(ValueError): - model.predict(n=3, series=self.series) - - # check that results are reproducible - model = RNNModel(12, "RNN", 10, 10, random_state=42, **tfm_kwargs) - res2 = model.lr_find(series=train_series, val_series=val_series, epochs=50) - assert res.suggestion() == res2.suggestion() - - # check that suggested learning rate is better than the worst - lr_worst = res.results["lr"][np.argmax(res.results["loss"])] - lr_suggested = res.suggestion() - scores = {} - for lr, lr_name in zip([lr_worst, lr_suggested], ["worst", "suggested"]): - model = RNNModel( - 12, - "RNN", - 10, - 10, - n_epochs=10, - random_state=42, - optimizer_cls=torch.optim.Adam, - optimizer_kwargs={"lr": lr}, - **tfm_kwargs, - ) - model.fit(train_series) - scores[lr_name] = mape( - val_series, model.predict(len(val_series), series=train_series) - ) - assert scores["worst"] > scores["suggested"] - - def test_encoders(self, tmpdir_fn): - series = tg.linear_timeseries(length=10) - pc = tg.linear_timeseries(length=12) - fc = tg.linear_timeseries(length=13) - # 1 == output_chunk_length, 3 > output_chunk_length - ns = [1, 3] - - model = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - add_encoders={ - "datetime_attribute": {"past": ["hour"], "future": ["month"]} - }, + n_epochs=10, + random_state=42, + optimizer_cls=torch.optim.Adam, + optimizer_kwargs={"lr": lr}, + **tfm_kwargs, ) - model.fit(series) - for n in ns: - _ = model.predict(n=n) - with pytest.raises(ValueError): - _ = model.predict(n=n, past_covariates=pc) - with pytest.raises(ValueError): - _ = model.predict(n=n, future_covariates=fc) - with pytest.raises(ValueError): - _ = model.predict(n=n, past_covariates=pc, future_covariates=fc) - - model = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - add_encoders={ - "datetime_attribute": {"past": ["hour"], "future": ["month"]} - }, + model.fit(train_series) + scores[lr_name] = mape( + val_series, model.predict(len(val_series), series=train_series) ) - for n in ns: - model.fit(series, past_covariates=pc) - _ = model.predict(n=n) - _ = model.predict(n=n, past_covariates=pc) - with pytest.raises(ValueError): - _ = model.predict(n=n, future_covariates=fc) - with pytest.raises(ValueError): - _ = model.predict(n=n, past_covariates=pc, future_covariates=fc) + assert scores["worst"] > scores["suggested"] - model = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - add_encoders={ - "datetime_attribute": {"past": ["hour"], "future": ["month"]} - }, - ) - for n in ns: - model.fit(series, future_covariates=fc) - _ = model.predict(n=n) - with pytest.raises(ValueError): - _ = model.predict(n=n, past_covariates=pc) - _ = model.predict(n=n, future_covariates=fc) - with pytest.raises(ValueError): - _ = model.predict(n=n, past_covariates=pc, future_covariates=fc) + def test_encoders(self, tmpdir_fn): + series = tg.linear_timeseries(length=10) + pc = tg.linear_timeseries(length=12) + fc = tg.linear_timeseries(length=13) + # 1 == output_chunk_length, 3 > output_chunk_length + ns = [1, 3] - model = self.helper_create_DLinearModel( - work_dir=tmpdir_fn, - add_encoders={ - "datetime_attribute": {"past": ["hour"], "future": ["month"]} - }, - ) - for n in ns: - model.fit(series, past_covariates=pc, future_covariates=fc) - _ = model.predict(n=n) + model = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + add_encoders={ + "datetime_attribute": {"past": ["hour"], "future": ["month"]} + }, + ) + model.fit(series) + for n in ns: + _ = model.predict(n=n) + with pytest.raises(ValueError): _ = model.predict(n=n, past_covariates=pc) + with pytest.raises(ValueError): _ = model.predict(n=n, future_covariates=fc) + with pytest.raises(ValueError): _ = model.predict(n=n, past_covariates=pc, future_covariates=fc) - @pytest.mark.parametrize("model_config", models) - def test_rin(self, model_config): - model_cls, kwargs = model_config - model_no_rin = model_cls(use_reversible_instance_norm=False, **kwargs) - model_rin = model_cls(use_reversible_instance_norm=True, **kwargs) - - # univariate no RIN - model_no_rin.fit(self.series) - assert not model_no_rin.model.use_reversible_instance_norm - assert model_no_rin.model.rin is None - - # univariate with RIN - model_rin.fit(self.series) - if issubclass(model_cls, RNNModel): - # RNNModel will not use RIN - assert not model_rin.model.use_reversible_instance_norm - assert model_rin.model.rin is None - return - else: - assert model_rin.model.use_reversible_instance_norm - assert isinstance(model_rin.model.rin, RINorm) - assert model_rin.model.rin.input_dim == self.series.n_components - # multivariate with RIN - model_rin_mv = model_rin.untrained_model() - model_rin_mv.fit(self.multivariate_series) - assert model_rin_mv.model.use_reversible_instance_norm - assert isinstance(model_rin_mv.model.rin, RINorm) - assert ( - model_rin_mv.model.rin.input_dim - == self.multivariate_series.n_components - ) - - @pytest.mark.parametrize( - "config", - itertools.product( - [ - ( - TFTModel, - { - "add_relative_index": True, - "likelihood": None, - "loss_fn": torch.nn.MSELoss(), - }, - ), - (TiDEModel, {}), - (NLinearModel, {}), - (DLinearModel, {}), - (NBEATSModel, {}), - (NHiTSModel, {}), - (TransformerModel, {}), - (TCNModel, {}), - (TSMixerModel, {}), - (BlockRNNModel, {}), - (GlobalNaiveSeasonal, {}), - (GlobalNaiveAggregate, {}), - (GlobalNaiveDrift, {}), - ], - [3, 7, 10], - ), + model = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + add_encoders={ + "datetime_attribute": {"past": ["hour"], "future": ["month"]} + }, ) - def test_output_shift(self, config): - """Tests shifted output for shift smaller than, equal to, and larger than output_chunk_length. - RNNModel does not support shift output chunk. - """ - np.random.seed(0) - (model_cls, add_params), shift = config - icl = 8 - ocl = 7 - series = tg.gaussian_timeseries( - length=28, start=pd.Timestamp("2000-01-01"), freq="d" - ) - - model = self.helper_create_torch_model( - model_cls, icl, ocl, shift, **add_params - ) - model.fit(series) + for n in ns: + model.fit(series, past_covariates=pc) + _ = model.predict(n=n) + _ = model.predict(n=n, past_covariates=pc) + with pytest.raises(ValueError): + _ = model.predict(n=n, future_covariates=fc) + with pytest.raises(ValueError): + _ = model.predict(n=n, past_covariates=pc, future_covariates=fc) - # no auto-regression with shifted output - with pytest.raises(ValueError) as err: - _ = model.predict(n=ocl + 1) - assert str(err.value).startswith("Cannot perform auto-regression") - - # pred starts with a shift - for ocl_test in [ocl - 1, ocl]: - pred = model.predict(n=ocl_test) - assert ( - pred.start_time() == series.end_time() + (shift + 1) * series.freq - ) - assert len(pred) == ocl_test - assert pred.freq == series.freq - - # check that shifted output chunk results with encoders are the - # same as using identical covariates - - # model trained on encoders - cov_support = [] - covs = {} - if model.supports_past_covariates: - cov_support.append("past") - covs["past_covariates"] = tg.datetime_attribute_timeseries( - series, - attribute="dayofweek", - add_length=0, - ) - if model.supports_future_covariates: - cov_support.append("future") - covs["future_covariates"] = tg.datetime_attribute_timeseries( - series, - attribute="dayofweek", - add_length=ocl + shift, - ) - - if not cov_support: - return - - add_encoders = { - "datetime_attribute": {cov: ["dayofweek"] for cov in cov_support} - } - model_enc_shift = self.helper_create_torch_model( - model_cls, icl, ocl, shift, add_encoders=add_encoders, **add_params - ) - model_enc_shift.fit(series) + model = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + add_encoders={ + "datetime_attribute": {"past": ["hour"], "future": ["month"]} + }, + ) + for n in ns: + model.fit(series, future_covariates=fc) + _ = model.predict(n=n) + with pytest.raises(ValueError): + _ = model.predict(n=n, past_covariates=pc) + _ = model.predict(n=n, future_covariates=fc) + with pytest.raises(ValueError): + _ = model.predict(n=n, past_covariates=pc, future_covariates=fc) - # model trained with identical covariates - model_fc_shift = self.helper_create_torch_model( - model_cls, icl, ocl, shift, **add_params - ) + model = self.helper_create_DLinearModel( + work_dir=tmpdir_fn, + add_encoders={ + "datetime_attribute": {"past": ["hour"], "future": ["month"]} + }, + ) + for n in ns: + model.fit(series, past_covariates=pc, future_covariates=fc) + _ = model.predict(n=n) + _ = model.predict(n=n, past_covariates=pc) + _ = model.predict(n=n, future_covariates=fc) + _ = model.predict(n=n, past_covariates=pc, future_covariates=fc) + + @pytest.mark.parametrize("model_config", models) + def test_rin(self, model_config): + model_cls, kwargs = model_config + model_no_rin = model_cls(use_reversible_instance_norm=False, **kwargs) + model_rin = model_cls(use_reversible_instance_norm=True, **kwargs) + + # univariate no RIN + model_no_rin.fit(self.series) + assert not model_no_rin.model.use_reversible_instance_norm + assert model_no_rin.model.rin is None + + # univariate with RIN + model_rin.fit(self.series) + if issubclass(model_cls, RNNModel): + # RNNModel will not use RIN + assert not model_rin.model.use_reversible_instance_norm + assert model_rin.model.rin is None + return + else: + assert model_rin.model.use_reversible_instance_norm + assert isinstance(model_rin.model.rin, RINorm) + assert model_rin.model.rin.input_dim == self.series.n_components + # multivariate with RIN + model_rin_mv = model_rin.untrained_model() + model_rin_mv.fit(self.multivariate_series) + assert model_rin_mv.model.use_reversible_instance_norm + assert isinstance(model_rin_mv.model.rin, RINorm) + assert model_rin_mv.model.rin.input_dim == self.multivariate_series.n_components + + @pytest.mark.parametrize( + "config", + itertools.product( + [ + ( + TFTModel, + { + "add_relative_index": True, + "likelihood": None, + "loss_fn": torch.nn.MSELoss(), + }, + ), + (TiDEModel, {}), + (NLinearModel, {}), + (DLinearModel, {}), + (NBEATSModel, {}), + (NHiTSModel, {}), + (TransformerModel, {}), + (TCNModel, {}), + (TSMixerModel, {}), + (BlockRNNModel, {}), + (GlobalNaiveSeasonal, {}), + (GlobalNaiveAggregate, {}), + (GlobalNaiveDrift, {}), + ], + [3, 7, 10], + ), + ) + def test_output_shift(self, config): + """Tests shifted output for shift smaller than, equal to, and larger than output_chunk_length. + RNNModel does not support shift output chunk. + """ + np.random.seed(0) + (model_cls, add_params), shift = config + icl = 8 + ocl = 7 + series = tg.gaussian_timeseries( + length=28, start=pd.Timestamp("2000-01-01"), freq="d" + ) - model_fc_shift.fit(series, **covs) + model = self.helper_create_torch_model(model_cls, icl, ocl, shift, **add_params) + model.fit(series) + + # no auto-regression with shifted output + with pytest.raises(ValueError) as err: + _ = model.predict(n=ocl + 1) + assert str(err.value).startswith("Cannot perform auto-regression") + + # pred starts with a shift + for ocl_test in [ocl - 1, ocl]: + pred = model.predict(n=ocl_test) + assert pred.start_time() == series.end_time() + (shift + 1) * series.freq + assert len(pred) == ocl_test + assert pred.freq == series.freq + + # check that shifted output chunk results with encoders are the + # same as using identical covariates + + # model trained on encoders + cov_support = [] + covs = {} + if model.supports_past_covariates: + cov_support.append("past") + covs["past_covariates"] = tg.datetime_attribute_timeseries( + series, + attribute="dayofweek", + add_length=0, + ) + if model.supports_future_covariates: + cov_support.append("future") + covs["future_covariates"] = tg.datetime_attribute_timeseries( + series, + attribute="dayofweek", + add_length=ocl + shift, + ) + + if not cov_support: + return + + add_encoders = { + "datetime_attribute": {cov: ["dayofweek"] for cov in cov_support} + } + model_enc_shift = self.helper_create_torch_model( + model_cls, icl, ocl, shift, add_encoders=add_encoders, **add_params + ) + model_enc_shift.fit(series) - pred_enc = model_enc_shift.predict(n=ocl) - pred_fc = model_fc_shift.predict(n=ocl) - assert pred_enc == pred_fc + # model trained with identical covariates + model_fc_shift = self.helper_create_torch_model( + model_cls, icl, ocl, shift, **add_params + ) - # check that historical forecasts works properly - hist_fc_start = -(ocl + shift) - pred_last_hist_fc = model_fc_shift.predict( - n=ocl, series=series[:hist_fc_start] - ) - # non-optimized hist fc - hist_fc = model_fc_shift.historical_forecasts( - series=series, - start=hist_fc_start, - start_format="position", - retrain=False, - forecast_horizon=ocl, - last_points_only=False, - enable_optimization=False, - **covs, - ) - assert len(hist_fc) == 1 - assert hist_fc[0] == pred_last_hist_fc - # optimized hist fc, due to batch predictions, slight deviations in values - hist_fc_opt = model_fc_shift.historical_forecasts( - series=series, - start=hist_fc_start, - start_format="position", - retrain=False, - forecast_horizon=ocl, - last_points_only=False, - enable_optimization=True, - **covs, - ) - assert len(hist_fc_opt) == 1 - assert hist_fc_opt[0].time_index.equals(pred_last_hist_fc.time_index) - np.testing.assert_array_almost_equal( - hist_fc_opt[0].values(copy=False), pred_last_hist_fc.values(copy=False) - ) + model_fc_shift.fit(series, **covs) + + pred_enc = model_enc_shift.predict(n=ocl) + pred_fc = model_fc_shift.predict(n=ocl) + assert pred_enc == pred_fc + + # check that historical forecasts works properly + hist_fc_start = -(ocl + shift) + pred_last_hist_fc = model_fc_shift.predict(n=ocl, series=series[:hist_fc_start]) + # non-optimized hist fc + hist_fc = model_fc_shift.historical_forecasts( + series=series, + start=hist_fc_start, + start_format="position", + retrain=False, + forecast_horizon=ocl, + last_points_only=False, + enable_optimization=False, + **covs, + ) + assert len(hist_fc) == 1 + assert hist_fc[0] == pred_last_hist_fc + # optimized hist fc, due to batch predictions, slight deviations in values + hist_fc_opt = model_fc_shift.historical_forecasts( + series=series, + start=hist_fc_start, + start_format="position", + retrain=False, + forecast_horizon=ocl, + last_points_only=False, + enable_optimization=True, + **covs, + ) + assert len(hist_fc_opt) == 1 + assert hist_fc_opt[0].time_index.equals(pred_last_hist_fc.time_index) + np.testing.assert_array_almost_equal( + hist_fc_opt[0].values(copy=False), pred_last_hist_fc.values(copy=False) + ) - # covs too short - for cov_name in cov_support: - with pytest.raises(ValueError) as err: - add_covs = { - cov_name + "_covariates": covs[cov_name + "_covariates"][:-1] - } - _ = model_fc_shift.predict(n=ocl, **add_covs) - assert f"provided {cov_name} covariates at dataset index" in str( - err.value - ) - - def helper_equality_encoders( - self, first_encoders: Dict[str, Any], second_encoders: Dict[str, Any] - ): - if first_encoders is None: - first_encoders = {} - if second_encoders is None: - second_encoders = {} - assert {k: v for k, v in first_encoders.items() if k != "transformer"} == { - k: v for k, v in second_encoders.items() if k != "transformer" - } - - def helper_equality_encoders_transfo( - self, first_encoders: Dict[str, Any], second_encoders: Dict[str, Any] - ): - if first_encoders is None: - first_encoders = {} - if second_encoders is None: - second_encoders = {} - assert ( - first_encoders.get("transformer", None).__class__ - == second_encoders.get("transformer", None).__class__ - ) + # covs too short + for cov_name in cov_support: + with pytest.raises(ValueError) as err: + add_covs = { + cov_name + "_covariates": covs[cov_name + "_covariates"][:-1] + } + _ = model_fc_shift.predict(n=ocl, **add_covs) + assert f"provided {cov_name} covariates at dataset index" in str(err.value) + + def helper_equality_encoders( + self, first_encoders: Dict[str, Any], second_encoders: Dict[str, Any] + ): + if first_encoders is None: + first_encoders = {} + if second_encoders is None: + second_encoders = {} + assert {k: v for k, v in first_encoders.items() if k != "transformer"} == { + k: v for k, v in second_encoders.items() if k != "transformer" + } + + def helper_equality_encoders_transfo( + self, first_encoders: Dict[str, Any], second_encoders: Dict[str, Any] + ): + if first_encoders is None: + first_encoders = {} + if second_encoders is None: + second_encoders = {} + assert ( + first_encoders.get("transformer", None).__class__ + == second_encoders.get("transformer", None).__class__ + ) - def helper_create_RNNModel(self, model_name: str, tmpdir_fn): - return RNNModel( - input_chunk_length=4, - hidden_dim=3, - add_encoders={ - "cyclic": {"past": ["month"]}, - "datetime_attribute": { - "past": ["hour"], - }, - "transformer": Scaler(), + def helper_create_RNNModel(self, model_name: str, tmpdir_fn): + return RNNModel( + input_chunk_length=4, + hidden_dim=3, + add_encoders={ + "cyclic": {"past": ["month"]}, + "datetime_attribute": { + "past": ["hour"], }, - n_epochs=2, - model_name=model_name, - work_dir=tmpdir_fn, - force_reset=True, - save_checkpoints=True, - **tfm_kwargs, - ) + "transformer": Scaler(), + }, + n_epochs=2, + model_name=model_name, + work_dir=tmpdir_fn, + force_reset=True, + save_checkpoints=True, + **tfm_kwargs, + ) - def helper_create_DLinearModel( - self, - work_dir: Optional[str] = None, - model_name: str = "unitest_model", - add_encoders: Optional[Dict] = None, - save_checkpoints: bool = False, - likelihood: Optional[Likelihood] = None, - output_chunk_length: int = 1, + def helper_create_DLinearModel( + self, + work_dir: Optional[str] = None, + model_name: str = "unitest_model", + add_encoders: Optional[Dict] = None, + save_checkpoints: bool = False, + likelihood: Optional[Likelihood] = None, + output_chunk_length: int = 1, + **kwargs, + ): + return DLinearModel( + input_chunk_length=4, + output_chunk_length=output_chunk_length, + model_name=model_name, + add_encoders=add_encoders, + work_dir=work_dir, + save_checkpoints=save_checkpoints, + random_state=42, + force_reset=True, + n_epochs=1, + likelihood=likelihood, + **tfm_kwargs, **kwargs, - ): - return DLinearModel( - input_chunk_length=4, - output_chunk_length=output_chunk_length, - model_name=model_name, - add_encoders=add_encoders, - work_dir=work_dir, - save_checkpoints=save_checkpoints, - random_state=42, - force_reset=True, - n_epochs=1, - likelihood=likelihood, - **tfm_kwargs, - **kwargs, - ) + ) - def helper_create_torch_model(self, model_cls, icl, ocl, shift, **kwargs): - params = { - "input_chunk_length": icl, - "output_chunk_length": ocl, - "output_chunk_shift": shift, - "n_epochs": 1, - "random_state": 42, - } - params.update(tfm_kwargs) - params.update(kwargs) - return model_cls(**params) + def helper_create_torch_model(self, model_cls, icl, ocl, shift, **kwargs): + params = { + "input_chunk_length": icl, + "output_chunk_length": ocl, + "output_chunk_shift": shift, + "n_epochs": 1, + "random_state": 42, + } + params.update(tfm_kwargs) + params.update(kwargs) + return model_cls(**params) diff --git a/darts/tests/models/forecasting/test_transformer_model.py b/darts/tests/models/forecasting/test_transformer_model.py index b04fd05485..a70194667b 100644 --- a/darts/tests/models/forecasting/test_transformer_model.py +++ b/darts/tests/models/forecasting/test_transformer_model.py @@ -20,186 +20,182 @@ TransformerModel, _TransformerModule, ) - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. Transformer tests will be skipped.") - TORCH_AVAILABLE = False + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) -if TORCH_AVAILABLE: +class TestTransformerModel: + times = pd.date_range("20130101", "20130410") + pd_series = pd.Series(range(100), index=times) + series: TimeSeries = TimeSeries.from_series(pd_series) + series_multivariate = series.stack(series * 2) + module = _TransformerModule( + input_size=1, + input_chunk_length=1, + output_chunk_length=1, + output_chunk_shift=0, + train_sample_shape=((1, 1),), + output_size=1, + nr_params=1, + d_model=512, + nhead=8, + num_encoder_layers=6, + num_decoder_layers=6, + dim_feedforward=2048, + dropout=0.1, + activation="relu", + norm_type=None, + custom_encoder=None, + custom_decoder=None, + ) - class TestTransformerModel: - times = pd.date_range("20130101", "20130410") - pd_series = pd.Series(range(100), index=times) - series: TimeSeries = TimeSeries.from_series(pd_series) - series_multivariate = series.stack(series * 2) - module = _TransformerModule( - input_size=1, + def test_fit(self, tmpdir_module): + # Test fit-save-load cycle + model2 = TransformerModel( input_chunk_length=1, output_chunk_length=1, - output_chunk_shift=0, - train_sample_shape=((1, 1),), - output_size=1, - nr_params=1, - d_model=512, - nhead=8, - num_encoder_layers=6, - num_decoder_layers=6, - dim_feedforward=2048, - dropout=0.1, - activation="relu", - norm_type=None, - custom_encoder=None, - custom_decoder=None, + n_epochs=2, + model_name="unittest-model-transformer", + work_dir=tmpdir_module, + save_checkpoints=True, + force_reset=True, + **tfm_kwargs, + ) + model2.fit(self.series) + model_loaded = model2.load_from_checkpoint( + model_name="unittest-model-transformer", + work_dir=tmpdir_module, + best=False, + map_location="cpu", ) + pred1 = model2.predict(n=6) + pred2 = model_loaded.predict(n=6) - def test_fit(self, tmpdir_module): - # Test fit-save-load cycle - model2 = TransformerModel( + # Two models with the same parameters should deterministically yield the same output + np.testing.assert_array_equal(pred1.values(), pred2.values()) + + # Another random model should not + model3 = TransformerModel( + input_chunk_length=1, output_chunk_length=1, n_epochs=1, **tfm_kwargs + ) + model3.fit(self.series) + pred3 = model3.predict(n=6) + assert not np.array_equal(pred1.values(), pred3.values()) + + # test short predict + pred4 = model3.predict(n=1) + assert len(pred4) == 1 + + # test validation series input + model3.fit(self.series[:60], val_series=self.series[60:]) + pred4 = model3.predict(n=6) + assert len(pred4) == 6 + + def helper_test_pred_length(self, pytorch_model, series): + model = pytorch_model( + input_chunk_length=1, output_chunk_length=3, n_epochs=1, **tfm_kwargs + ) + model.fit(series) + pred = model.predict(7) + assert len(pred) == 7 + pred = model.predict(2) + assert len(pred) == 2 + assert pred.width == 1 + pred = model.predict(4) + assert len(pred) == 4 + assert pred.width == 1 + + def test_pred_length(self): + series = tg.linear_timeseries(length=100) + self.helper_test_pred_length(TransformerModel, series) + + def test_activations(self): + with pytest.raises(ValueError): + model1 = TransformerModel( input_chunk_length=1, output_chunk_length=1, - n_epochs=2, - model_name="unittest-model-transformer", - work_dir=tmpdir_module, - save_checkpoints=True, - force_reset=True, + activation="invalid", **tfm_kwargs, ) - model2.fit(self.series) - model_loaded = model2.load_from_checkpoint( - model_name="unittest-model-transformer", - work_dir=tmpdir_module, - best=False, - map_location="cpu", - ) - pred1 = model2.predict(n=6) - pred2 = model_loaded.predict(n=6) + model1.fit(self.series, epochs=1) - # Two models with the same parameters should deterministically yield the same output - np.testing.assert_array_equal(pred1.values(), pred2.values()) + # internal activation function uses PyTorch TransformerEncoderLayer + model2 = TransformerModel( + input_chunk_length=1, + output_chunk_length=1, + activation="gelu", + **tfm_kwargs, + ) + model2.fit(self.series, epochs=1) + assert isinstance( + model2.model.transformer.encoder.layers[0], nn.TransformerEncoderLayer + ) + assert isinstance( + model2.model.transformer.decoder.layers[0], nn.TransformerDecoderLayer + ) - # Another random model should not - model3 = TransformerModel( - input_chunk_length=1, output_chunk_length=1, n_epochs=1, **tfm_kwargs - ) - model3.fit(self.series) - pred3 = model3.predict(n=6) - assert not np.array_equal(pred1.values(), pred3.values()) - - # test short predict - pred4 = model3.predict(n=1) - assert len(pred4) == 1 - - # test validation series input - model3.fit(self.series[:60], val_series=self.series[60:]) - pred4 = model3.predict(n=6) - assert len(pred4) == 6 - - def helper_test_pred_length(self, pytorch_model, series): - model = pytorch_model( - input_chunk_length=1, output_chunk_length=3, n_epochs=1, **tfm_kwargs - ) - model.fit(series) - pred = model.predict(7) - assert len(pred) == 7 - pred = model.predict(2) - assert len(pred) == 2 - assert pred.width == 1 - pred = model.predict(4) - assert len(pred) == 4 - assert pred.width == 1 - - def test_pred_length(self): - series = tg.linear_timeseries(length=100) - self.helper_test_pred_length(TransformerModel, series) - - def test_activations(self): - with pytest.raises(ValueError): - model1 = TransformerModel( - input_chunk_length=1, - output_chunk_length=1, - activation="invalid", - **tfm_kwargs, - ) - model1.fit(self.series, epochs=1) - - # internal activation function uses PyTorch TransformerEncoderLayer - model2 = TransformerModel( - input_chunk_length=1, - output_chunk_length=1, - activation="gelu", - **tfm_kwargs, - ) - model2.fit(self.series, epochs=1) - assert isinstance( - model2.model.transformer.encoder.layers[0], nn.TransformerEncoderLayer - ) - assert isinstance( - model2.model.transformer.decoder.layers[0], nn.TransformerDecoderLayer - ) + # glue variant FFN uses our custom _FeedForwardEncoderLayer + model3 = TransformerModel( + input_chunk_length=1, + output_chunk_length=1, + activation="SwiGLU", + **tfm_kwargs, + ) + model3.fit(self.series, epochs=1) + assert isinstance( + model3.model.transformer.encoder.layers[0], + CustomFeedForwardEncoderLayer, + ) + assert isinstance( + model3.model.transformer.decoder.layers[0], + CustomFeedForwardDecoderLayer, + ) - # glue variant FFN uses our custom _FeedForwardEncoderLayer - model3 = TransformerModel( - input_chunk_length=1, - output_chunk_length=1, - activation="SwiGLU", - **tfm_kwargs, - ) - model3.fit(self.series, epochs=1) - assert isinstance( - model3.model.transformer.encoder.layers[0], - CustomFeedForwardEncoderLayer, - ) - assert isinstance( - model3.model.transformer.decoder.layers[0], - CustomFeedForwardDecoderLayer, - ) + def test_layer_norm(self): + base_model = TransformerModel - def test_layer_norm(self): - base_model = TransformerModel + # default norm_type is None + model0 = base_model(input_chunk_length=1, output_chunk_length=1, **tfm_kwargs) + y0 = model0.fit(self.series, epochs=1) - # default norm_type is None - model0 = base_model( - input_chunk_length=1, output_chunk_length=1, **tfm_kwargs - ) - y0 = model0.fit(self.series, epochs=1) + model1 = base_model( + input_chunk_length=1, + output_chunk_length=1, + norm_type="RMSNorm", + **tfm_kwargs, + ) + y1 = model1.fit(self.series, epochs=1) - model1 = base_model( - input_chunk_length=1, - output_chunk_length=1, - norm_type="RMSNorm", - **tfm_kwargs, - ) - y1 = model1.fit(self.series, epochs=1) + model2 = base_model( + input_chunk_length=1, + output_chunk_length=1, + norm_type=nn.LayerNorm, + **tfm_kwargs, + ) + y2 = model2.fit(self.series, epochs=1) - model2 = base_model( - input_chunk_length=1, - output_chunk_length=1, - norm_type=nn.LayerNorm, - **tfm_kwargs, - ) - y2 = model2.fit(self.series, epochs=1) + model3 = base_model( + input_chunk_length=1, + output_chunk_length=1, + activation="gelu", + norm_type="RMSNorm", + **tfm_kwargs, + ) + y3 = model3.fit(self.series, epochs=1) + + assert y0 != y1 + assert y0 != y2 + assert y0 != y3 + assert y1 != y3 - model3 = base_model( + with pytest.raises(AttributeError): + model4 = base_model( input_chunk_length=1, output_chunk_length=1, - activation="gelu", - norm_type="RMSNorm", + norm_type="invalid", **tfm_kwargs, ) - y3 = model3.fit(self.series, epochs=1) - - assert y0 != y1 - assert y0 != y2 - assert y0 != y3 - assert y1 != y3 - - with pytest.raises(AttributeError): - model4 = base_model( - input_chunk_length=1, - output_chunk_length=1, - norm_type="invalid", - **tfm_kwargs, - ) - model4.fit(self.series, epochs=1) + model4.fit(self.series, epochs=1) diff --git a/darts/tests/models/forecasting/test_tsmixer.py b/darts/tests/models/forecasting/test_tsmixer.py index 6ae3abe39e..3a6813f8e8 100644 --- a/darts/tests/models/forecasting/test_tsmixer.py +++ b/darts/tests/models/forecasting/test_tsmixer.py @@ -14,18 +14,13 @@ from darts.tests.conftest import tfm_kwargs from darts.utils import timeseries_generation as tg from darts.utils.likelihood_models import GaussianLikelihood - - TORCH_AVAILABLE = True - except ImportError: - logger.warning("Torch not available. TSMixerModel tests will be skipped.") - TORCH_AVAILABLE = False + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) -@pytest.mark.skipif( - TORCH_AVAILABLE is False, - reason="Torch not available. TSMixerModel tests will be skipped.", -) class TestTSMixerModel: np.random.seed(42) torch.manual_seed(42) diff --git a/darts/tests/utils/test_likelihood_models.py b/darts/tests/utils/test_likelihood_models.py index a7ccce76f9..6d6c3b36a6 100644 --- a/darts/tests/utils/test_likelihood_models.py +++ b/darts/tests/utils/test_likelihood_models.py @@ -1,5 +1,7 @@ from itertools import combinations +import pytest + from darts.logging import get_logger logger = get_logger(__name__) @@ -42,25 +44,24 @@ BetaLikelihood(prior_alpha=0.2, prior_beta=0.4, prior_strength=0.6), ], } - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. LikelihoodModels tests will be skipped.") - TORCH_AVAILABLE = False + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) -if TORCH_AVAILABLE: - class TestLikelihoodModel: - def test_intra_class_equality(self): - for _, model_pair in likelihood_models.items(): - assert model_pair[0] == model_pair[0] - assert model_pair[1] == model_pair[1] - assert model_pair[0] != model_pair[1] +class TestLikelihoodModel: + def test_intra_class_equality(self): + for _, model_pair in likelihood_models.items(): + assert model_pair[0] == model_pair[0] + assert model_pair[1] == model_pair[1] + assert model_pair[0] != model_pair[1] - def test_inter_class_equality(self): - model_combinations = combinations(likelihood_models.keys(), 2) - for first_model_name, second_model_name in model_combinations: - assert ( - likelihood_models[first_model_name][0] - != likelihood_models[second_model_name][0] - ) + def test_inter_class_equality(self): + model_combinations = combinations(likelihood_models.keys(), 2) + for first_model_name, second_model_name in model_combinations: + assert ( + likelihood_models[first_model_name][0] + != likelihood_models[second_model_name][0] + ) diff --git a/darts/tests/utils/test_losses.py b/darts/tests/utils/test_losses.py index 329ae45dbc..c740fe28d0 100644 --- a/darts/tests/utils/test_losses.py +++ b/darts/tests/utils/test_losses.py @@ -1,3 +1,5 @@ +import pytest + from darts.logging import get_logger logger = get_logger(__name__) @@ -5,55 +7,54 @@ try: import torch - TORCH_AVAILABLE = True -except ImportError: - logger.warning("Torch not available. Loss tests will be skipped.") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: from darts.utils.losses import MAELoss, MapeLoss, SmapeLoss - - class TestLosses: - x = torch.tensor([1.1, 2.2, 0.6345, -1.436]) - y = torch.tensor([1.5, 0.5]) - - def helper_test_loss(self, exp_loss_val, exp_w_grad, loss_fn): - W = torch.tensor([[0.1, -0.2, 0.3, -0.4], [-0.8, 0.7, -0.6, 0.5]]) - W.requires_grad = True - y_hat = W @ self.x - lval = loss_fn(y_hat, self.y) - lval.backward() - - assert torch.allclose(lval, exp_loss_val, atol=1e-3) - assert torch.allclose(W.grad, exp_w_grad, atol=1e-3) - - def test_smape_loss(self): - exp_val = torch.tensor(0.7753) - exp_grad = torch.tensor( - [ - [-0.2843, -0.5685, -0.1640, 0.3711], - [-0.5859, -1.1718, -0.3380, 0.7649], - ] - ) - self.helper_test_loss(exp_val, exp_grad, SmapeLoss()) - - def test_mape_loss(self): - exp_val = torch.tensor(1.2937) - exp_grad = torch.tensor( - [ - [-0.3667, -0.7333, -0.2115, 0.4787], - [-1.1000, -2.2000, -0.6345, 1.4360], - ] - ) - self.helper_test_loss(exp_val, exp_grad, MapeLoss()) - - def test_mae_loss(self): - exp_val = torch.tensor(1.0020) - exp_grad = torch.tensor( - [ - [-0.5500, -1.1000, -0.3173, 0.7180], - [-0.5500, -1.1000, -0.3173, 0.7180], - ] - ) - self.helper_test_loss(exp_val, exp_grad, MAELoss()) +except ImportError: + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) + + +class TestLosses: + x = torch.tensor([1.1, 2.2, 0.6345, -1.436]) + y = torch.tensor([1.5, 0.5]) + + def helper_test_loss(self, exp_loss_val, exp_w_grad, loss_fn): + W = torch.tensor([[0.1, -0.2, 0.3, -0.4], [-0.8, 0.7, -0.6, 0.5]]) + W.requires_grad = True + y_hat = W @ self.x + lval = loss_fn(y_hat, self.y) + lval.backward() + + assert torch.allclose(lval, exp_loss_val, atol=1e-3) + assert torch.allclose(W.grad, exp_w_grad, atol=1e-3) + + def test_smape_loss(self): + exp_val = torch.tensor(0.7753) + exp_grad = torch.tensor( + [ + [-0.2843, -0.5685, -0.1640, 0.3711], + [-0.5859, -1.1718, -0.3380, 0.7649], + ] + ) + self.helper_test_loss(exp_val, exp_grad, SmapeLoss()) + + def test_mape_loss(self): + exp_val = torch.tensor(1.2937) + exp_grad = torch.tensor( + [ + [-0.3667, -0.7333, -0.2115, 0.4787], + [-1.1000, -2.2000, -0.6345, 1.4360], + ] + ) + self.helper_test_loss(exp_val, exp_grad, MapeLoss()) + + def test_mae_loss(self): + exp_val = torch.tensor(1.0020) + exp_grad = torch.tensor( + [ + [-0.5500, -1.1000, -0.3173, 0.7180], + [-0.5500, -1.1000, -0.3173, 0.7180], + ] + ) + self.helper_test_loss(exp_val, exp_grad, MAELoss()) diff --git a/darts/tests/utils/test_utils_torch.py b/darts/tests/utils/test_utils_torch.py index 05cc92dc64..c2556c2e36 100644 --- a/darts/tests/utils/test_utils_torch.py +++ b/darts/tests/utils/test_utils_torch.py @@ -9,110 +9,110 @@ import torch from darts.utils.torch import random_method - - TORCH_AVAILABLE = True except ImportError: - logger.warning("Torch not available. Torch utils will not be tested.") - TORCH_AVAILABLE = False - - -if TORCH_AVAILABLE: - # use a simple torch model mock - class TorchModelMock: - @random_method - def __init__(self, some_params=None, **kwargs): - self.model = torch.randn(5) - # super().__init__() - - @random_method - def fit(self, some_params=None): - self.fit_value = torch.randn(5) - - class TestRandomMethod: - def test_it_raises_error_if_used_on_function(self): - with pytest.raises(ValueError): - - @random_method - def a_random_function(): - pass - - def test_model_is_random_by_default(self): - model1 = TorchModelMock() - model2 = TorchModelMock() - assert not torch.equal(model1.model, model2.model) - - def test_model_is_random_when_None_random_state_specified(self): - model1 = TorchModelMock(random_state=None) - model2 = TorchModelMock(random_state=None) - assert not torch.equal(model1.model, model2.model) - - def helper_test_reproducibility(self, model1, model2): - assert torch.equal(model1.model, model2.model) - - model1.fit() - model2.fit() - assert torch.equal(model1.fit_value, model2.fit_value) - - def test_model_is_reproducible_when_seed_specified(self): - model1 = TorchModelMock(random_state=42) - model2 = TorchModelMock(random_state=42) - self.helper_test_reproducibility(model1, model2) - - def test_model_is_reproducible_when_random_instance_specified(self): - model1 = TorchModelMock(random_state=RandomState(42)) - model2 = TorchModelMock(random_state=RandomState(42)) - self.helper_test_reproducibility(model1, model2) - - def test_model_is_different_for_different_seeds(self): - model1 = TorchModelMock(random_state=42) - model2 = TorchModelMock(random_state=43) - assert not torch.equal(model1.model, model2.model) - - def test_model_is_different_for_different_random_instance(self): - model1 = TorchModelMock(random_state=RandomState(42)) - model2 = TorchModelMock(random_state=RandomState(43)) - assert not torch.equal(model1.model, model2.model) - - def helper_test_successive_call_are_different(self, model): - # different between init and fit - model.fit() - assert not torch.equal(model.model, model.fit_value) - - # different between 2 fit - old_fit_value = model.fit_value.clone() - model.fit() - assert not torch.equal(model.fit_value, old_fit_value) - - def test_successive_call_to_rng_are_different_when_seed_specified(self): - model = TorchModelMock(random_state=42) - self.helper_test_successive_call_are_different(model) - - def test_successive_call_to_rng_are_different_when_random_instance_specified( - self, - ): - model = TorchModelMock(random_state=RandomState(42)) - self.helper_test_successive_call_are_different(model) - - def test_no_side_effect_between_rng_with_seeds(self): - model = TorchModelMock(random_state=42) - model.fit() - fit_value = model.fit_value.clone() - - model = TorchModelMock(random_state=42) - model2 = TorchModelMock(random_state=42) - model2.fit() - model.fit() - - assert torch.equal(model.fit_value, fit_value) - - def test_no_side_effect_between_rng_with_random_instance(self): - model = TorchModelMock(random_state=RandomState(42)) - model.fit() - fit_value = model.fit_value.clone() - - model = TorchModelMock(random_state=RandomState(42)) - model2 = TorchModelMock(random_state=RandomState(42)) - model2.fit() - model.fit() - - assert torch.equal(model.fit_value, fit_value) + pytest.skip( + f"Torch not available. {__name__} tests will be skipped.", + allow_module_level=True, + ) + + +# use a simple torch model mock +class TorchModelMock: + @random_method + def __init__(self, some_params=None, **kwargs): + self.model = torch.randn(5) + # super().__init__() + + @random_method + def fit(self, some_params=None): + self.fit_value = torch.randn(5) + + +class TestRandomMethod: + def test_it_raises_error_if_used_on_function(self): + with pytest.raises(ValueError): + + @random_method + def a_random_function(): + pass + + def test_model_is_random_by_default(self): + model1 = TorchModelMock() + model2 = TorchModelMock() + assert not torch.equal(model1.model, model2.model) + + def test_model_is_random_when_None_random_state_specified(self): + model1 = TorchModelMock(random_state=None) + model2 = TorchModelMock(random_state=None) + assert not torch.equal(model1.model, model2.model) + + def helper_test_reproducibility(self, model1, model2): + assert torch.equal(model1.model, model2.model) + + model1.fit() + model2.fit() + assert torch.equal(model1.fit_value, model2.fit_value) + + def test_model_is_reproducible_when_seed_specified(self): + model1 = TorchModelMock(random_state=42) + model2 = TorchModelMock(random_state=42) + self.helper_test_reproducibility(model1, model2) + + def test_model_is_reproducible_when_random_instance_specified(self): + model1 = TorchModelMock(random_state=RandomState(42)) + model2 = TorchModelMock(random_state=RandomState(42)) + self.helper_test_reproducibility(model1, model2) + + def test_model_is_different_for_different_seeds(self): + model1 = TorchModelMock(random_state=42) + model2 = TorchModelMock(random_state=43) + assert not torch.equal(model1.model, model2.model) + + def test_model_is_different_for_different_random_instance(self): + model1 = TorchModelMock(random_state=RandomState(42)) + model2 = TorchModelMock(random_state=RandomState(43)) + assert not torch.equal(model1.model, model2.model) + + def helper_test_successive_call_are_different(self, model): + # different between init and fit + model.fit() + assert not torch.equal(model.model, model.fit_value) + + # different between 2 fit + old_fit_value = model.fit_value.clone() + model.fit() + assert not torch.equal(model.fit_value, old_fit_value) + + def test_successive_call_to_rng_are_different_when_seed_specified(self): + model = TorchModelMock(random_state=42) + self.helper_test_successive_call_are_different(model) + + def test_successive_call_to_rng_are_different_when_random_instance_specified( + self, + ): + model = TorchModelMock(random_state=RandomState(42)) + self.helper_test_successive_call_are_different(model) + + def test_no_side_effect_between_rng_with_seeds(self): + model = TorchModelMock(random_state=42) + model.fit() + fit_value = model.fit_value.clone() + + model = TorchModelMock(random_state=42) + model2 = TorchModelMock(random_state=42) + model2.fit() + model.fit() + + assert torch.equal(model.fit_value, fit_value) + + def test_no_side_effect_between_rng_with_random_instance(self): + model = TorchModelMock(random_state=RandomState(42)) + model.fit() + fit_value = model.fit_value.clone() + + model = TorchModelMock(random_state=RandomState(42)) + model2 = TorchModelMock(random_state=RandomState(42)) + model2.fit() + model.fit() + + assert torch.equal(model.fit_value, fit_value) diff --git a/docs/source/examples.rst b/docs/source/examples.rst index 9fd96c177a..ea71fbaa8d 100644 --- a/docs/source/examples.rst +++ b/docs/source/examples.rst @@ -185,7 +185,7 @@ TSMixer model example notebook: .. toctree:: :maxdepth: 1 - 21-TSMixer-examples.ipynb + examples/21-TSMixer-examples.ipynb Ensemble Models ============================= diff --git a/examples/21-TSMixer-examples.ipynb b/examples/21-TSMixer-examples.ipynb index 1d1735f909..ff23323f26 100644 --- a/examples/21-TSMixer-examples.ipynb +++ b/examples/21-TSMixer-examples.ipynb @@ -359,15 +359,10 @@ "A few interesting things about these parameters:\n", "\n", "- **Gradient clipping:** Mitigates exploding gradients during backpropagation by setting an upper limit on the gradient for a batch.\n", - "\n", "- **Learning rate:** The majority of the learning done by a model is in the earlier epochs. As training goes on it is often helpful to reduce the learning rate to fine-tune the model. That being said, it can also lead to significant overfitting.\n", - "\n", "- **Early stopping:** To avoid overfitting, we can use early stopping. It monitors a metric on the validation set and stops training once the metric is not improving anymore based on a custom condition.\n", - "\n", "- **Likelihood and Loss Functions:** You can either make the model probabilistic with a `likelihood`, or deterministic with a `loss_fn`. In this notebook we train probabilistic models using QuantileRegression.\n", - "\n", "- **Reversible Instance Normalization:** Use [Reversible Instance Normalization](https://openreview.net/forum?id=cGDAkQo1C0p) which in most of the cases improves model performance.\n", - "\n", "- **Encoders:** We can encode time axis/calendar information and use them as past or future covariates using `add_encoders`. Here, we'll add cyclic encodings of the hour, day of the week, and month as future covariates" ] }, @@ -573,11 +568,12 @@ "# Backtest the probabilistic models\n", "\n", "Let's configure the prediction. For this example, we will:\n", + "\n", "- generate **historical forecasts** on the test set using the **pre-trained models**. Each forecast covers a 24 hour horizon, and the time between two consecutive forecasts is also 24 hours. This will give us **276 multivariate forecasts per transformer** to evaluate the model!\n", "- generate **500 stochastic samples** for each prediction point (since we have trained probabilistic models)\n", "- evaluate/**backtest** the probabilistic historical forecasts for some quantiles **using the Mean Quantile Loss** (`mql()`).\n", "\n", - "And we'll create some helper functions to generating the forecasts, computing the backtest, and to visualize the predictions." + "And we'll create some helper functions to generate the forecasts, compute the backtest, and to visualize the predictions." ] }, { @@ -596,7 +592,7 @@ "\n", "def historical_forecasts(model):\n", " \"\"\"Generates probabilistic historical forecasts for each transformer\n", - " and returns the inverse transforms results.\n", + " and returns the inverse transformed results.\n", "\n", " Each forecast covers 24h (forecast_horizon). The time between two forecasts\n", " (stride) is also 24 hours.\n", @@ -987,6 +983,7 @@ "In this case, `TSMixer` and `TiDEModel` both perform similarly well. Keep in mind that we performed only partial training on the data, and that we used the default model parameters without any hyperparameter tuning. \n", "\n", "Here are some ways to further improve the performance:\n", + "\n", "- set `full_training=True`\n", "- perform hyperparmaeter tuning\n", "- add more covariates (we have only added cyclic encodings of calendar information)\n", From e50854bdc203200cb6920f76869aaf84a73c49a4 Mon Sep 17 00:00:00 2001 From: Bohdan Bilonoh Date: Tue, 9 Apr 2024 12:01:04 +0300 Subject: [PATCH 029/161] add TimesSeries.from_group_dataframe parallel mode (#2292) * add TimesSeries.from_group_dataframe parallel mode * remove code mess * add doc string for new parameters * update CHANGELOG.md * add miss dtype * fix static covariates * make parallel function as local and fix tests * fix parallel utils imports * update changelog * Update CHANGELOG.md --------- Co-authored-by: Bohdan Bilonoh Co-authored-by: dennisbader --- CHANGELOG.md | 9 +-- .../test_timeseries_static_covariates.py | 10 ++++ darts/timeseries.py | 57 +++++++++++-------- 3 files changed, 49 insertions(+), 27 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 258086b94e..dd0f9f2b58 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -78,16 +78,17 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - `TimeSeries`: Residual `TimeSeries` for a single `series` and `historical_forecasts` generated with `last_points_only=True`. - `List[TimeSeries]` A list of residual `TimeSeries` for a sequence (list) of `series` with `last_points_only=True`. The residual list has length `len(series)`. - `List[List[TimeSeries]]` A list of lists of residual `TimeSeries` for a sequence of `series` with `last_points_only=False`. The outer residual list has length `len(series)`. The inner lists consist of the residuals from all possible series-specific historical forecasts. -- Improvements to `TimeSeries`: [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - - Performance boost for methods: `slice_intersect()`, `has_same_time_as()` - - New method `slice_intersect_values()`, which returns the sliced values of a series, where the time index has been intersected with another series. +- Improvements to `TimeSeries`: + - `from_group_dataframe()` now supports parallelized creation from a grouped `pandas.DataFrame`. This can be enabled with parameter `n_jobs`. [#2292](https://github.com/unit8co/darts/pull/2292) by [Bohdan Bilonoha](https://github.com/BohdanBilonoh). + - Performance boost for methods: `slice_intersect()`, `has_same_time_as()`. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). + - New method `slice_intersect_values()`, which returns the sliced values of a series, where the time index has been intersected with another series. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - 🔴 Moved utils functions to clearly separate Darts-specific from non-Darts-specific logic: [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - Moved function `generate_index()` from `darts.utils.timeseries_generation` to `darts.utils.utils` - Moved functions `retain_period_common_to_all()`, `series2seq()`, `seq2series()`, `get_single_series()` from `darts.utils.utils` to `darts.utils.ts_utils`. - Improvements to `ForecastingModel`: [#2269](https://github.com/unit8co/darts/pull/2269) by [Felix Divo](https://github.com/felixdivo). - Renamed the private `_is_probabilistic` property to a public `supports_probabilistic_prediction`. - Improvements to `DataTransformer`: [#2267](https://github.com/unit8co/darts/pull/2267) by [Alicja Krzeminska-Sciga](https://github.com/alicjakrzeminska). - - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. + - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. **Fixed** - Fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). diff --git a/darts/tests/test_timeseries_static_covariates.py b/darts/tests/test_timeseries_static_covariates.py index 463c751305..2f923120d9 100644 --- a/darts/tests/test_timeseries_static_covariates.py +++ b/darts/tests/test_timeseries_static_covariates.py @@ -215,6 +215,16 @@ def test_timeseries_from_longitudinal_df(self): for ts in ts_groups7: assert ts.static_covariates is None + ts_groups7_parallel = TimeSeries.from_group_dataframe( + df=self.df_long_multi, + group_cols=["st1", "st2"], + time_col="times", + value_cols=value_cols, + drop_group_cols=["st1", "st2"], + n_jobs=-1, + ) + assert ts_groups7_parallel == ts_groups7 + def test_from_group_dataframe_invalid_drop_cols(self): # drop col is not part of `group_cols` with pytest.raises(ValueError) as err: diff --git a/darts/timeseries.py b/darts/timeseries.py index 124cc6ffe7..640ff3b7b0 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -53,6 +53,7 @@ from darts.utils.utils import generate_index, n_steps_between from .logging import get_logger, raise_if, raise_if_not, raise_log +from .utils import _build_tqdm_iterator, _parallel_apply try: from typing import Literal @@ -759,6 +760,8 @@ def from_group_dataframe( freq: Optional[Union[str, int]] = None, fillna_value: Optional[float] = None, drop_group_cols: Optional[Union[List[str], str]] = None, + n_jobs: Optional[int] = 1, + verbose: Optional[bool] = False, ) -> List[Self]: """ Build a list of TimeSeries instances grouped by a selection of columns from a DataFrame. @@ -808,6 +811,11 @@ def from_group_dataframe( Optionally, a numeric value to fill missing values (NaNs) with. drop_group_cols Optionally, a string or list of strings with `group_cols` column(s) to exclude from the static covariates. + n_jobs + Optionally, an integer representing the number of parallel jobs to run. Behavior is the same as in the + `joblib.Parallel` class. + verbose + Optionally, a boolean value indicating whether to display a progress bar. Returns ------- @@ -867,12 +875,18 @@ def from_group_dataframe( df = df.drop(columns=time_col) df = df.sort_index() - # split df by groups, and store group values and static values (static covariates) - # single elements group columns must be unpacked for same groupby() behavior across different pandas versions - splits = [] - for static_cov_vals, group in df.groupby( - group_cols[0] if len(group_cols) == 1 else group_cols - ): + groups = df.groupby(group_cols[0] if len(group_cols) == 1 else group_cols) + + iterator = _build_tqdm_iterator( + groups, + verbose=verbose, + total=len(groups), + desc="Creating TimeSeries", + ) + + def from_group(static_cov_vals, group): + split = group[extract_value_cols] + static_cov_vals = ( (static_cov_vals,) if not isinstance(static_cov_vals, tuple) @@ -910,29 +924,26 @@ def from_group_dataframe( ) # add the static covariates to the group values static_cov_vals += tuple(group[static_cols].values[0]) - # store static covariate Series and group DataFrame (without static cov columns) - splits.append( - ( - ( - pd.DataFrame([static_cov_vals], columns=extract_static_cov_cols) - if extract_static_cov_cols - else None - ), - group[extract_value_cols], - ) - ) - # create a list with multiple TimeSeries and add static covariates - return [ - cls.from_dataframe( + return cls.from_dataframe( df=split, fill_missing_dates=fill_missing_dates, freq=freq, fillna_value=fillna_value, - static_covariates=static_covs, + static_covariates=( + pd.DataFrame([static_cov_vals], columns=extract_static_cov_cols) + if extract_static_cov_cols + else None + ), ) - for static_covs, split in splits - ] + + return _parallel_apply( + iterator, + from_group, + n_jobs, + fn_args=dict(), + fn_kwargs=dict(), + ) @classmethod def from_series( From caa7f55bb9d74caeca89ed170325bbe604ccafc1 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Tue, 9 Apr 2024 14:06:48 +0200 Subject: [PATCH 030/161] bump black[jupyter] 24.1.1 to 24.3.0 (#2308) * bump black[jupyter] 24.1.1 to 24.3.0 * update changeloig --- .pre-commit-config.yaml | 2 +- CHANGELOG.md | 3 ++- requirements/dev.txt | 2 +- 3 files changed, 4 insertions(+), 3 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index c2bf756978..c0b83b9489 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,6 +1,6 @@ repos: - repo: https://github.com/psf/black - rev: 24.1.1 + rev: 24.3.0 hooks: - id: black-jupyter language_version: python3 diff --git a/CHANGELOG.md b/CHANGELOG.md index dd0f9f2b58..e835de3702 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -98,7 +98,8 @@ but cannot always guarantee backwards compatibility. Changes that may **break co **Dependencies** ### For developers of the library: -- fixed failing docs build by adding new dependency `lxml_html_clean` for `nbsphinx`. [#2303](https://github.com/unit8co/darts/pull/2303) by [Dennis Bader](https://github.com/dennisbader). +- Fixed failing docs build by adding new dependency `lxml_html_clean` for `nbsphinx`. [#2303](https://github.com/unit8co/darts/pull/2303) by [Dennis Bader](https://github.com/dennisbader). +- Bumped `black` from 24.1.1 to 24.3.0. [#2308](https://github.com/unit8co/darts/pull/2308) by [Dennis Bader](https://github.com/dennisbader). ## [0.28.0](https://github.com/unit8co/darts/tree/0.28.0) (2024-03-05) ### For users of the library: diff --git a/requirements/dev.txt b/requirements/dev.txt index 988ecf746f..950d154554 100644 --- a/requirements/dev.txt +++ b/requirements/dev.txt @@ -1,4 +1,4 @@ -black[jupyter]==24.1.1 +black[jupyter]==24.3.0 flake8==7.0.0 isort==5.13.2 pre-commit From 883e35e5aaae2c6038925014f21c86ad804b0f7a Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Tue, 9 Apr 2024 15:51:59 +0200 Subject: [PATCH 031/161] add codecov token to merge and dev ci pipelines (#2309) * add codecov token to merge and dev ci pipelines * Update CHANGELOG.md --- .github/workflows/develop.yml | 1 + .github/workflows/merge.yml | 1 + CHANGELOG.md | 1 + 3 files changed, 3 insertions(+) diff --git a/.github/workflows/develop.yml b/.github/workflows/develop.yml index 1ba127cf23..3c5d5bb1bf 100644 --- a/.github/workflows/develop.yml +++ b/.github/workflows/develop.yml @@ -89,6 +89,7 @@ jobs: with: fail_ci_if_error: true files: ./coverage.xml + token: ${{ secrets.CODECOV_TOKEN }} docs: runs-on: ubuntu-latest diff --git a/.github/workflows/merge.yml b/.github/workflows/merge.yml index 87bc82f63b..3dd932277f 100644 --- a/.github/workflows/merge.yml +++ b/.github/workflows/merge.yml @@ -82,6 +82,7 @@ jobs: with: fail_ci_if_error: true files: ./coverage.xml + token: ${{ secrets.CODECOV_TOKEN }} check-examples: runs-on: ubuntu-latest diff --git a/CHANGELOG.md b/CHANGELOG.md index e835de3702..8120094867 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -100,6 +100,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For developers of the library: - Fixed failing docs build by adding new dependency `lxml_html_clean` for `nbsphinx`. [#2303](https://github.com/unit8co/darts/pull/2303) by [Dennis Bader](https://github.com/dennisbader). - Bumped `black` from 24.1.1 to 24.3.0. [#2308](https://github.com/unit8co/darts/pull/2308) by [Dennis Bader](https://github.com/dennisbader). +- Added a Codecov token as repository secret for codecov upload authentication in CI pipelines. [#2309](https://github.com/unit8co/darts/pull/2309) by [Dennis Bader](https://github.com/dennisbader). ## [0.28.0](https://github.com/unit8co/darts/tree/0.28.0) (2024-03-05) ### For users of the library: From bd5340f0db059fdc2c9c4dcf4dc1bc6263252797 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Thu, 11 Apr 2024 16:19:42 +0200 Subject: [PATCH 032/161] Fix/mc dropout (#2312) * fix monte carlo dropout * add mc dropout to models that used regular dropout before * update changelog * add unit tests * codecov fix test * codecov fix test 2 * codecov fix test 3 --- .github/codecov.yml | 5 ++ .github/workflows/develop.yml | 3 +- .github/workflows/merge.yml | 3 +- CHANGELOG.md | 1 + .../forecasting/pl_forecasting_module.py | 14 +++- darts/models/forecasting/tcn_model.py | 32 ++++----- darts/models/forecasting/tide_model.py | 3 +- .../forecasting/torch_forecasting_model.py | 4 +- darts/models/forecasting/transformer_model.py | 3 +- .../test_torch_forecasting_model.py | 66 +++++++++++++++++++ darts/utils/torch.py | 25 +++---- 11 files changed, 116 insertions(+), 43 deletions(-) create mode 100644 .github/codecov.yml diff --git a/.github/codecov.yml b/.github/codecov.yml new file mode 100644 index 0000000000..d23dac61ee --- /dev/null +++ b/.github/codecov.yml @@ -0,0 +1,5 @@ +comment: false +coverage: + status: + project: off + patch: off \ No newline at end of file diff --git a/.github/workflows/develop.yml b/.github/workflows/develop.yml index 3c5d5bb1bf..fe640a4eb9 100644 --- a/.github/workflows/develop.yml +++ b/.github/workflows/develop.yml @@ -85,10 +85,9 @@ jobs: - name: "8. Codecov upload" if: ${{ matrix.flavour == 'all' }} - uses: codecov/codecov-action@v2 + uses: codecov/codecov-action@v4 with: fail_ci_if_error: true - files: ./coverage.xml token: ${{ secrets.CODECOV_TOKEN }} docs: diff --git a/.github/workflows/merge.yml b/.github/workflows/merge.yml index 3dd932277f..bbcffae94a 100644 --- a/.github/workflows/merge.yml +++ b/.github/workflows/merge.yml @@ -78,10 +78,9 @@ jobs: - name: "7. Codecov upload" if: ${{ matrix.flavour == 'all' }} - uses: codecov/codecov-action@v2 + uses: codecov/codecov-action@v4 with: fail_ci_if_error: true - files: ./coverage.xml token: ${{ secrets.CODECOV_TOKEN }} check-examples: diff --git a/CHANGELOG.md b/CHANGELOG.md index 8120094867..02a46cc24c 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -94,6 +94,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - Fixed type hint warning "Unexpected argument" when calling `historical_forecasts()` caused by the `_with_sanity_checks` decorator. The type hinting is now properly configured to expect any input arguments and return the output type of the method for which the sanity checks are performed for. [#2286](https://github.com/unit8co/darts/pull/2286) by [Dennis Bader](https://github.com/dennisbader). - Fixed a segmentation fault that some users were facing when importing a `LightGBMModel`. [#2304](https://github.com/unit8co/darts/pull/2304) by [Dennis Bader](https://github.com/dennisbader). +- Fixed a bug when using a dropout with a `TorchForecasting` and pytorch lightning versions >= 2.2.0, where the dropout was not properly activated during training. [#2312](https://github.com/unit8co/darts/pull/2312) by [Dennis Bader](https://github.com/dennisbader). **Dependencies** diff --git a/darts/models/forecasting/pl_forecasting_module.py b/darts/models/forecasting/pl_forecasting_module.py index 7a7524a0bc..e6cabd23a3 100644 --- a/darts/models/forecasting/pl_forecasting_module.py +++ b/darts/models/forecasting/pl_forecasting_module.py @@ -197,6 +197,7 @@ def __init__( self.pred_batch_size: Optional[int] = None self.pred_n_jobs: Optional[int] = None self.predict_likelihood_parameters: Optional[bool] = None + self.pred_mc_dropout: Optional[bool] = None @property def first_prediction_index(self) -> int: @@ -241,6 +242,14 @@ def validation_step(self, val_batch, batch_idx) -> torch.Tensor: self._calculate_metrics(output, target, self.val_metrics) return loss + def on_predict_start(self) -> None: + # optionally, activate monte carlo dropout for prediction + self.set_mc_dropout(active=self.pred_mc_dropout) + + def on_predict_end(self) -> None: + # deactivate, monte carlo dropout for any downstream task + self.set_mc_dropout(active=False) + def predict_step( self, batch: Tuple, batch_idx: int, dataloader_idx: Optional[int] = None ) -> Sequence[TimeSeries]: @@ -339,6 +348,7 @@ def set_predict_parameters( batch_size: int, n_jobs: int, predict_likelihood_parameters: bool, + mc_dropout: bool, ) -> None: """to be set from TorchForecastingModel before calling trainer.predict() and reset at self.on_predict_end()""" self.pred_n = n @@ -347,6 +357,7 @@ def set_predict_parameters( self.pred_batch_size = batch_size self.pred_n_jobs = n_jobs self.predict_likelihood_parameters = predict_likelihood_parameters + self.pred_mc_dropout = mc_dropout def _compute_loss(self, output, target): # output is of shape (batch_size, n_timesteps, n_components, n_params) @@ -464,8 +475,9 @@ def recurse_children(children, acc): return recurse_children(self.children(), set()) def set_mc_dropout(self, active: bool): + # optionally, activate dropout in all MonteCarloDropout modules for module in self._get_mc_dropout_modules(): - module.mc_dropout_enabled = active + module._mc_dropout_enabled = active @property def supports_probabilistic_prediction(self) -> bool: diff --git a/darts/models/forecasting/tcn_model.py b/darts/models/forecasting/tcn_model.py index 981c8ded57..b2783d7ba3 100644 --- a/darts/models/forecasting/tcn_model.py +++ b/darts/models/forecasting/tcn_model.py @@ -29,7 +29,7 @@ def __init__( num_filters: int, kernel_size: int, dilation_base: int, - dropout_fn, + dropout: float, weight_norm: bool, nr_blocks_below: int, num_layers: int, @@ -46,8 +46,8 @@ def __init__( The size of every kernel in a convolutional layer. dilation_base The base of the exponent that will determine the dilation on every level. - dropout_fn - The dropout function to be applied to every convolutional layer. + dropout + The dropout to be applied to every convolutional layer. weight_norm Boolean value indicating whether to use weight normalization. nr_blocks_below @@ -77,7 +77,8 @@ def __init__( self.dilation_base = dilation_base self.kernel_size = kernel_size - self.dropout_fn = dropout_fn + self.dropout1 = MonteCarloDropout(dropout) + self.dropout2 = MonteCarloDropout(dropout) self.num_layers = num_layers self.nr_blocks_below = nr_blocks_below @@ -111,14 +112,14 @@ def forward(self, x): self.kernel_size - 1 ) x = F.pad(x, (left_padding, 0)) - x = self.dropout_fn(F.relu(self.conv1(x))) + x = self.dropout1(F.relu(self.conv1(x))) # second step x = F.pad(x, (left_padding, 0)) x = self.conv2(x) if self.nr_blocks_below < self.num_layers - 1: x = F.relu(x) - x = self.dropout_fn(x) + x = self.dropout2(x) # add residual if self.conv1.in_channels != self.conv2.out_channels: @@ -195,7 +196,6 @@ def __init__( self.target_size = target_size self.nr_params = nr_params self.dilation_base = dilation_base - self.dropout = MonteCarloDropout(p=dropout) # If num_layers is not passed, compute number of layers needed for full history coverage if num_layers is None and dilation_base > 1: @@ -221,15 +221,15 @@ def __init__( self.res_blocks_list = [] for i in range(num_layers): res_block = _ResidualBlock( - num_filters, - kernel_size, - dilation_base, - self.dropout, - weight_norm, - i, - num_layers, - self.input_size, - target_size * nr_params, + num_filters=num_filters, + kernel_size=kernel_size, + dilation_base=dilation_base, + dropout=dropout, + weight_norm=weight_norm, + nr_blocks_below=i, + num_layers=num_layers, + input_size=self.input_size, + target_size=target_size * nr_params, ) self.res_blocks_list.append(res_block) self.res_blocks = nn.ModuleList(self.res_blocks_list) diff --git a/darts/models/forecasting/tide_model.py b/darts/models/forecasting/tide_model.py index 6f655d9716..daaa706b02 100644 --- a/darts/models/forecasting/tide_model.py +++ b/darts/models/forecasting/tide_model.py @@ -14,6 +14,7 @@ io_processor, ) from darts.models.forecasting.torch_forecasting_model import MixedCovariatesTorchModel +from darts.utils.torch import MonteCarloDropout MixedCovariatesTrainTensorType = Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor @@ -40,7 +41,7 @@ def __init__( nn.Linear(input_dim, hidden_size), nn.ReLU(), nn.Linear(hidden_size, output_dim), - nn.Dropout(dropout), + MonteCarloDropout(dropout), ) # linear skip connection from input to output of self.dense diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index 87ab8d7b02..f3c877c24c 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -1522,6 +1522,7 @@ def predict_from_dataset( batch_size=batch_size, n_jobs=n_jobs, predict_likelihood_parameters=predict_likelihood_parameters, + mc_dropout=mc_dropout, ) pred_loader = DataLoader( @@ -1534,9 +1535,6 @@ def predict_from_dataset( collate_fn=self._batch_collate_fn, ) - # set mc_dropout rate - self.model.set_mc_dropout(mc_dropout) - # set up trainer. use user supplied trainer or create a new trainer from scratch self.trainer = self._setup_trainer( trainer=trainer, model=self.model, verbose=verbose, epochs=self.n_epochs diff --git a/darts/models/forecasting/transformer_model.py b/darts/models/forecasting/transformer_model.py index d4d25cd73c..f98fbb327e 100644 --- a/darts/models/forecasting/transformer_model.py +++ b/darts/models/forecasting/transformer_model.py @@ -21,6 +21,7 @@ io_processor, ) from darts.models.forecasting.torch_forecasting_model import PastCovariatesTorchModel +from darts.utils.torch import MonteCarloDropout logger = get_logger(__name__) @@ -99,7 +100,7 @@ def __init__(self, d_model, dropout=0.1, max_len=500): Tensor containing the embedded time series enhanced with positional encoding. """ super().__init__() - self.dropout = nn.Dropout(p=dropout) + self.dropout = MonteCarloDropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 096f867688..5422442922 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -1,3 +1,4 @@ +import copy import itertools import os from typing import Any, Dict, Optional @@ -6,6 +7,7 @@ import numpy as np import pandas as pd import pytest +from pytorch_lightning.callbacks import Callback import darts.utils.timeseries_generation as tg from darts import TimeSeries @@ -1466,6 +1468,70 @@ def test_rin(self, model_config): assert isinstance(model_rin_mv.model.rin, RINorm) assert model_rin_mv.model.rin.input_dim == self.multivariate_series.n_components + @pytest.mark.parametrize("use_mc_dropout", [False, True]) + def test_mc_dropout_active(self, use_mc_dropout): + """Test that model activates dropout .""" + + class CheckMCDropout(Callback): + def __init__(self, activate_mc_dropout): + self.use_mc_dropout = activate_mc_dropout + + @staticmethod + def _check_dropout_activity(pl_module, expected_active: bool): + dropouts = pl_module._get_mc_dropout_modules() + assert all( + [ + dropout.mc_dropout_enabled is expected_active + for dropout in dropouts + ] + ) + + def on_train_batch_start(self, *args, **kwargs) -> None: + self._check_dropout_activity(args[1], expected_active=True) + + def on_validation_batch_start(self, *args, **kwargs) -> None: + self._check_dropout_activity(args[1], expected_active=False) + + def on_predict_batch_start(self, *args, **kwargs) -> None: + self._check_dropout_activity( + args[1], expected_active=self.use_mc_dropout + ) + + series = self.series[:20] + pl_trainer_kwargs = copy.deepcopy(tfm_kwargs) + pl_trainer_kwargs["pl_trainer_kwargs"]["callbacks"] = [ + CheckMCDropout(activate_mc_dropout=use_mc_dropout) + ] + model = TiDEModel(10, 10, dropout=0.1, random_state=42, **pl_trainer_kwargs) + model.fit(series, val_series=series, epochs=1) + + num_samples = 1 if not use_mc_dropout else 10 + preds = model.predict( + n=10, series=series, mc_dropout=use_mc_dropout, num_samples=num_samples + ) + assert preds.n_samples == num_samples + + @pytest.mark.parametrize("use_mc_dropout", [False, True]) + def test_dropout_output(self, use_mc_dropout): + """Test that model without dropout generates different results than one which uses near-full dropout.""" + series = self.series[:20] + num_samples = 1 if not use_mc_dropout else 10 + + # dropouts for overfit and underfit + preds = [] + for dropout in [0.0, 0.99]: + model = TiDEModel(10, 10, dropout=dropout, random_state=42, **tfm_kwargs) + model.fit(series, val_series=series, epochs=1) + preds.append( + model.predict( + n=10, + series=series, + mc_dropout=use_mc_dropout, + num_samples=num_samples, + ).all_values() + ) + assert not np.array_equal(preds[0], preds[1]) + @pytest.mark.parametrize( "config", itertools.product( diff --git a/darts/utils/torch.py b/darts/utils/torch.py index 552f285384..710e0809b8 100644 --- a/darts/utils/torch.py +++ b/darts/utils/torch.py @@ -37,30 +37,21 @@ class MonteCarloDropout(nn.Dropout): often improves its performance. """ - # We need to init it to False as some models may start by - # a validation round, in which case MC dropout is disabled. - mc_dropout_enabled: bool = False - - def train(self, mode: bool = True): - # NOTE: we could use the line below if self.mc_dropout_rate represented - # a rate to be applied at inference time, and self.applied_rate the - # actual rate to be used in self.forward(). However, the original paper - # considers the same rate for training and inference; we also stick to this. - - # self.applied_rate = self.p if mode else self.mc_dropout_rate - - if mode: # in train mode, keep dropout as is - self.mc_dropout_enabled = True - # in eval mode, bank on the mc_dropout_enabled flag - # mc_dropout_enabled is set equal to "mc_dropout" param given to predict() + # mc dropout is deactivated at init; see `MonteCarloDropout.mc_dropout_enabled` for more info + _mc_dropout_enabled = False def forward(self, input: Tensor) -> Tensor: # NOTE: we could use the following line in case a different rate # is used for inference: # return F.dropout(input, self.applied_rate, True, self.inplace) - return F.dropout(input, self.p, self.mc_dropout_enabled, self.inplace) + @property + def mc_dropout_enabled(self) -> bool: + # mc dropout is only activated on `PLForecastingModule.on_predict_start()` + # otherwise, it is activated based on the `model.training` flag. + return self._mc_dropout_enabled or self.training + def _is_method(func: Callable[..., Any]) -> bool: """Check if the specified function is a method. From 8c8c77bb205a40a6af9b9bb66f310243f4601dad Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Thu, 11 Apr 2024 16:49:26 +0200 Subject: [PATCH 033/161] fix failing unit tests for no torch flavors (#2317) --- darts/tests/models/forecasting/test_torch_forecasting_model.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 5422442922..e08b2396d0 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -7,7 +7,6 @@ import numpy as np import pandas as pd import pytest -from pytorch_lightning.callbacks import Callback import darts.utils.timeseries_generation as tg from darts import TimeSeries @@ -21,6 +20,7 @@ try: import torch + from pytorch_lightning.callbacks import Callback from pytorch_lightning.loggers.logger import DummyLogger from pytorch_lightning.tuner.lr_finder import _LRFinder from torchmetrics import ( From e59799809a08402c81ac625ce8505700bf6431a1 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Thu, 11 Apr 2024 17:17:24 +0200 Subject: [PATCH 034/161] bump codecov-action from v3 to v4 (#2316) * bump codecov-action from v3 to v4 * further tests * add back token * add back codecov comment * update changelog --- .github/codecov.yml | 1 - CHANGELOG.md | 2 +- 2 files changed, 1 insertion(+), 2 deletions(-) diff --git a/.github/codecov.yml b/.github/codecov.yml index d23dac61ee..5dd2178631 100644 --- a/.github/codecov.yml +++ b/.github/codecov.yml @@ -1,4 +1,3 @@ -comment: false coverage: status: project: off diff --git a/CHANGELOG.md b/CHANGELOG.md index 02a46cc24c..b8a24b383b 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -101,7 +101,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For developers of the library: - Fixed failing docs build by adding new dependency `lxml_html_clean` for `nbsphinx`. [#2303](https://github.com/unit8co/darts/pull/2303) by [Dennis Bader](https://github.com/dennisbader). - Bumped `black` from 24.1.1 to 24.3.0. [#2308](https://github.com/unit8co/darts/pull/2308) by [Dennis Bader](https://github.com/dennisbader). -- Added a Codecov token as repository secret for codecov upload authentication in CI pipelines. [#2309](https://github.com/unit8co/darts/pull/2309) by [Dennis Bader](https://github.com/dennisbader). +- Bumped `codecov-action` from v2 to v4 and added codecov token as repository secret for codecov upload authentication in CI pipelines. [#2309](https://github.com/unit8co/darts/pull/2309) and [#2312](https://github.com/unit8co/darts/pull/2312) by [Dennis Bader](https://github.com/dennisbader). ## [0.28.0](https://github.com/unit8co/darts/tree/0.28.0) (2024-03-05) ### For users of the library: From 78d39ad2bc9d04866ce661850956ea2fb72830e0 Mon Sep 17 00:00:00 2001 From: madtoinou <32447896+madtoinou@users.noreply.github.com> Date: Fri, 12 Apr 2024 10:03:03 +0200 Subject: [PATCH 035/161] Fix/comp lags feat order (#2272) * fix: reorder lagged features per lags when they are provided component-wise * fix: parametrize lagged_features_names test * feat: added tests for lagged_features_names when lags are component-specific * fix: create_lagged_name is not affected by lags order different than the components * fix: improve comment * feat: tests verify that list and dict lags yield the same result * fix: remove staticmethod for the tests to pass on python 3.9 * feat: properly reorder features during autoregression, added corresponding test * update changelog * fix: adressing review comments * fix: moved autoregression lags extraction to tabularization * fix: refactor tests to reduce code duplication * fix: adress review comment * fix: remove usage of strict argument in zip, not support in python 3.9 * further refactor lagged data extraction for autoregression * allow coverage diffs for codecov upload * use codecov v3 * precompute lagged and ordered feature indices --------- Co-authored-by: Dennis Bader --- CHANGELOG.md | 1 + darts/models/forecasting/regression_model.py | 94 +- .../forecasting/test_regression_models.py | 7 +- .../test_create_lagged_training_data.py | 1764 +++++++++++------ darts/utils/data/tabularization.py | 257 ++- 5 files changed, 1450 insertions(+), 673 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index b8a24b383b..fed91bada1 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -93,6 +93,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co **Fixed** - Fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - Fixed type hint warning "Unexpected argument" when calling `historical_forecasts()` caused by the `_with_sanity_checks` decorator. The type hinting is now properly configured to expect any input arguments and return the output type of the method for which the sanity checks are performed for. [#2286](https://github.com/unit8co/darts/pull/2286) by [Dennis Bader](https://github.com/dennisbader). +- Fixed the order of the features when using component-wise lags so that they are grouped by values, then by components (before, were grouped by components, then by values). [#2272](https://github.com/unit8co/darts/pull/2272) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a segmentation fault that some users were facing when importing a `LightGBMModel`. [#2304](https://github.com/unit8co/darts/pull/2304) by [Dennis Bader](https://github.com/dennisbader). - Fixed a bug when using a dropout with a `TorchForecasting` and pytorch lightning versions >= 2.2.0, where the dropout was not properly activated during training. [#2312](https://github.com/unit8co/darts/pull/2312) by [Dennis Bader](https://github.com/dennisbader). diff --git a/darts/models/forecasting/regression_model.py b/darts/models/forecasting/regression_model.py index dd862db6b6..b54fac8a83 100644 --- a/darts/models/forecasting/regression_model.py +++ b/darts/models/forecasting/regression_model.py @@ -43,7 +43,7 @@ from darts.models.forecasting.forecasting_model import GlobalForecastingModel from darts.timeseries import TimeSeries from darts.utils.data.tabularization import ( - add_static_covariates_to_lagged_data, + _create_lagged_data_autoregression, create_lagged_component_names, create_lagged_training_data, ) @@ -1019,83 +1019,25 @@ def predict( last_step_shift = t_pred - (n - step) t_pred = n - step - np_X = [] - # retrieve target lags - if "target" in self.lags: - if predictions: - series_matrix = np.concatenate( - [series_matrix, predictions[-1]], axis=1 - ) - # component-wise lags - if "target" in self.component_lags: - tmp_X = [ - series_matrix[ - :, - [lag - (shift + last_step_shift) for lag in comp_lags], - comp_i, - ] - for comp_i, (comp, comp_lags) in enumerate( - self.component_lags["target"].items() - ) - ] - # values are grouped by component - np_X.append( - np.concatenate(tmp_X, axis=1).reshape( - len(series) * num_samples, -1 - ) - ) - else: - # values are grouped by lags - np_X.append( - series_matrix[ - :, - [ - lag - (shift + last_step_shift) - for lag in self.lags["target"] - ], - ].reshape(len(series) * num_samples, -1) - ) - # retrieve covariate lags, enforce order (dict only preserves insertion order for python 3.6+) - for cov_type in ["past", "future"]: - if cov_type in covariate_matrices: - # component-wise lags - if cov_type in self.component_lags: - tmp_X = [ - covariate_matrices[cov_type][ - :, - np.array(comp_lags) - self.lags[cov_type][0] + t_pred, - comp_i, - ] - for comp_i, (comp, comp_lags) in enumerate( - self.component_lags[cov_type].items() - ) - ] - np_X.append( - np.concatenate(tmp_X, axis=1).reshape( - len(series) * num_samples, -1 - ) - ) - else: - np_X.append( - covariate_matrices[cov_type][ - :, relative_cov_lags[cov_type] + t_pred - ].reshape(len(series) * num_samples, -1) - ) - - # concatenate retrieved lags - X = np.concatenate(np_X, axis=1) - # Need to split up `X` into three equally-sized sub-blocks - # corresponding to each timeseries in `series`, so that - # static covariates can be added to each block; valid since - # each block contains same number of observations: - X_blocks = np.split(X, len(series), axis=0) - X_blocks, _ = add_static_covariates_to_lagged_data( - X_blocks, - series, + # concatenate previous iteration forecasts + if "target" in self.lags and predictions: + series_matrix = np.concatenate([series_matrix, predictions[-1]], axis=1) + + # extract and concatenate lags from target and covariates series + X = _create_lagged_data_autoregression( + target_series=series, + t_pred=t_pred, + shift=shift, + last_step_shift=last_step_shift, + series_matrix=series_matrix, + covariate_matrices=covariate_matrices, + lags=self.lags, + component_lags=self.component_lags, + relative_cov_lags=relative_cov_lags, + num_samples=num_samples, uses_static_covariates=self.uses_static_covariates, - last_shape=self._static_covariates_shape, + last_static_covariates_shape=self._static_covariates_shape, ) - X = np.concatenate(X_blocks, axis=0) # X has shape (n_series * n_samples, n_regression_features) prediction = self._predict_and_sample( diff --git a/darts/tests/models/forecasting/test_regression_models.py b/darts/tests/models/forecasting/test_regression_models.py index 29f3d740ba..b2d3898ae5 100644 --- a/darts/tests/models/forecasting/test_regression_models.py +++ b/darts/tests/models/forecasting/test_regression_models.py @@ -1991,7 +1991,7 @@ def test_component_specific_lags(self, config): ) # n > output_chunk_length - model.predict( + pred = model.predict( 7, series=series[0] if multiple_series else None, past_covariates=( @@ -2005,6 +2005,11 @@ def test_component_specific_lags(self, config): else None ), ) + # check that lagged features are properly extracted during auto-regression + if multivar_target: + np.testing.assert_array_almost_equal( + tg.sine_timeseries(length=27)[-7:].values(), pred["sine"].values() + ) @pytest.mark.parametrize( "config", diff --git a/darts/tests/utils/tabularization/test_create_lagged_training_data.py b/darts/tests/utils/tabularization/test_create_lagged_training_data.py index d43f0699fd..54a5fc9a2f 100644 --- a/darts/tests/utils/tabularization/test_create_lagged_training_data.py +++ b/darts/tests/utils/tabularization/test_create_lagged_training_data.py @@ -1,7 +1,7 @@ import itertools import warnings from itertools import product -from typing import Optional, Sequence +from typing import Any, Dict, List, Optional, Sequence, Tuple, Union import numpy as np import pandas as pd @@ -15,6 +15,26 @@ create_lagged_training_data, ) from darts.utils.timeseries_generation import linear_timeseries +from darts.utils.utils import generate_index + + +def helper_create_multivariate_linear_timeseries( + n_components: int, components_names: Sequence[str] = None, **kwargs +) -> TimeSeries: + """ + Helper function that creates a `linear_timeseries` with a specified number of + components. To help distinguish each component from one another, `i` is added on + to each value of the `i`th component. Any additional keyword arguments are passed + to `linear_timeseries` (`start_value`, `end_value`, `start`, `end`, `length`, etc). + """ + if components_names is None or len(components_names) < n_components: + components_names = [f"lin_ts_{i}" for i in range(n_components)] + timeseries = [] + for i in range(n_components): + # Values of each component is 1 larger than the last: + timeseries_i = linear_timeseries(column_name=components_names[i], **kwargs) + i + timeseries.append(timeseries_i) + return darts_concatenate(timeseries, axis=1) class TestCreateLaggedTrainingData: @@ -40,27 +60,6 @@ class TestCreateLaggedTrainingData: # Helper Functions for Generated Test Cases # - @staticmethod - def create_multivariate_linear_timeseries( - n_components: int, components_names: Sequence[str] = None, **kwargs - ) -> TimeSeries: - """ - Helper function that creates a `linear_timeseries` with a specified number of - components. To help distinguish each component from one another, `i` is added on - to each value of the `i`th component. Any additional keyword arguments are passed - to `linear_timeseries` (`start_value`, `end_value`, `start`, `end`, `length`, etc). - """ - timeseries = [] - if components_names is None or len(components_names) < n_components: - components_names = [f"lin_ts_{i}" for i in range(n_components)] - for i in range(n_components): - # Values of each component is 1 larger than the last: - timeseries_i = ( - linear_timeseries(column_name=components_names[i], **kwargs) + i - ) - timeseries.append(timeseries_i) - return darts_concatenate(timeseries, axis=1) - @staticmethod def get_feature_times( target: TimeSeries, @@ -384,7 +383,7 @@ def create_y( timesteps_ahead = ( range(output_chunk_shift, output_chunk_length + output_chunk_shift) if multi_models - else (output_chunk_length + output_chunk_shift - 1,) + else [output_chunk_length + output_chunk_shift - 1] ) y_row = [] for i in timesteps_ahead: @@ -399,17 +398,248 @@ def create_y( y = np.stack(y, axis=0) return y + @staticmethod + def convert_lags_to_dict(ts_tg, ts_pc, ts_fc, lags_tg, lags_pc, lags_fc): + """Convert lags to the dictionary format, assuming the lags are shared across the components""" + lags_as_dict = dict() + for ts_, lags_, name_ in zip( + [ts_tg, ts_pc, ts_fc], + [lags_tg, lags_pc, lags_fc], + ["target", "past", "future"], + ): + single_ts = ts_[0] if isinstance(ts_, Sequence) else ts_ + if single_ts is None or lags_ is None: + lags_as_dict[name_] = None + # already in dict format + elif isinstance(lags_, dict): + lags_as_dict[name_] = lags_ + # from list + elif isinstance(lags_, list): + lags_as_dict[name_] = {c_name: lags_ for c_name in single_ts.components} + else: + raise ValueError( + f"Lags should be `None`, a list or a dictionary. Received {type(lags_)}." + ) + return lags_as_dict + + def helper_create_expected_lagged_data( + self, + target: Optional[Union[TimeSeries, List[TimeSeries]]], + past: Optional[Union[TimeSeries, List[TimeSeries]]], + future: Optional[Union[TimeSeries, List[TimeSeries]]], + lags: Optional[Union[List[int], Dict[str, List[int]]]], + lags_past: Optional[Union[List[int], Dict[str, List[int]]]], + lags_future: Optional[Union[List[int], Dict[str, List[int]]]], + output_chunk_length: int, + output_chunk_shift: int, + multi_models: bool, + max_samples_per_ts: Optional[int], + ) -> Tuple[np.ndarray, np.ndarray, Any]: + """Helper function to create the X and y arrays by building them block by block (one per covariates).""" + feats_times = self.get_feature_times( + target, + past, + future, + lags, + lags_past, + lags_future, + output_chunk_length, + max_samples_per_ts, + output_chunk_shift, + ) + # Construct `X` by constructing each block, then concatenate these + # blocks together along component axis: + X_target = self.construct_X_block(target, feats_times, lags) + X_past = self.construct_X_block(past, feats_times, lags_past) + X_future = self.construct_X_block(future, feats_times, lags_future) + all_X = (X_target, X_past, X_future) + to_concat = [X for X in all_X if X is not None] + expected_X = np.concatenate(to_concat, axis=1) + expected_y = self.create_y( + target, + feats_times, + output_chunk_length, + multi_models, + output_chunk_shift, + ) + if len(expected_X.shape) == 2: + expected_X = expected_X[:, :, np.newaxis] + if len(expected_y.shape) == 2: + expected_y = expected_y[:, :, np.newaxis] + return expected_X, expected_y, feats_times + + def helper_check_lagged_data( + self, + convert_lags_to_dict: bool, + expected_X: np.ndarray, + expected_y: np.ndarray, + expected_times_x, + expected_times_y, + target: Optional[Union[TimeSeries, List[TimeSeries]]], + past_cov: Optional[Union[TimeSeries, List[TimeSeries]]], + future_cov: Optional[Union[TimeSeries, List[TimeSeries]]], + lags: Optional[Union[List[int], Dict[str, List[int]]]], + lags_past: Optional[Union[List[int], Dict[str, List[int]]]], + lags_future: Optional[Union[List[int], Dict[str, List[int]]]], + output_chunk_length: int, + output_chunk_shift: int, + use_static_covariates: bool, + multi_models: bool, + max_samples_per_ts: Optional[int], + use_moving_windows: bool, + concatenate: bool, + **kwargs, + ): + """Helper function to call the `create_lagged_training_data()` method with lags argument either in the list + format or the dictionary format (automatically convert them when they are identical across components). + + Assertions are different depending on the value of `concatenate` to account for the output shape. + """ + if convert_lags_to_dict: + lags_as_dict = self.convert_lags_to_dict( + target, + past_cov if lags_past else None, + future_cov if lags_future else None, + lags, + lags_past, + lags_future, + ) + lags_ = lags_as_dict["target"] + lags_past_ = lags_as_dict["past"] + lags_future_ = lags_as_dict["future"] + else: + lags_ = lags + lags_past_ = lags_past + lags_future_ = lags_future + + # convert indexes to list of tuples to simplify processing + expected_times_x = ( + expected_times_x + if isinstance(expected_times_x, Sequence) + else [expected_times_x] + ) + expected_times_y = ( + expected_times_y + if isinstance(expected_times_y, Sequence) + else [expected_times_y] + ) + + X, y, times, _ = create_lagged_training_data( + target_series=target, + output_chunk_length=output_chunk_length, + past_covariates=past_cov if lags_past_ else None, + future_covariates=future_cov if lags_future_ else None, + lags=lags_, + lags_past_covariates=lags_past_, + lags_future_covariates=lags_future_, + uses_static_covariates=use_static_covariates, + multi_models=multi_models, + max_samples_per_ts=max_samples_per_ts, + use_moving_windows=use_moving_windows, + output_chunk_shift=output_chunk_shift, + concatenate=concatenate, + ) + # should have the exact same number of indexes + assert len(times) == len(expected_times_x) == len(expected_times_y) + + # Check that time index(es) match: + for time, exp_time in zip(times, expected_times_x): + assert exp_time.equals(time) + + if concatenate: + # Number of observations should match number of feature times: + data_length = sum(len(time) for time in times) + exp_length_x = sum(len(exp_time) for exp_time in expected_times_x) + exp_length_y = sum(len(exp_time) for exp_time in expected_times_y) + assert exp_length_x == exp_length_y + assert X.shape[0] == exp_length_x == data_length + assert y.shape[0] == exp_length_y == data_length + + # Check that outputs match: + assert X.shape == expected_X.shape + assert np.allclose(expected_X, X) + assert y.shape == expected_y.shape + assert np.allclose(expected_y, y) + else: + # Check the number of observation for each series + for x_, exp_time_x, y_, exp_time_y, time in zip( + X, expected_times_x, y, expected_times_y, times + ): + assert x_.shape[0] == len(time) == len(exp_time_x) + assert y_.shape[0] == len(time) == len(exp_time_y) + + # Check that outputs match: + for x_, y_ in zip(X, y): + assert np.allclose(X, x_) + assert np.allclose(y, y_) + # # Generated Test Cases # + target_with_no_cov = helper_create_multivariate_linear_timeseries( + n_components=1, + components_names=["no_static"], + start_value=0, + end_value=10, + start=2, + length=10, + freq=2, + ) + n_comp = 2 + target_with_static_cov = helper_create_multivariate_linear_timeseries( + n_components=n_comp, + components_names=["static_0", "static_1"], + start_value=0, + end_value=10, + start=2, + length=10, + freq=2, + ) + target_with_static_cov = target_with_static_cov.with_static_covariates( + pd.DataFrame({"dummy": [1]}) # leads to "global" static cov component name + ) + target_with_static_cov2 = target_with_static_cov.with_static_covariates( + pd.DataFrame( + {"dummy": [i for i in range(n_comp)]} + ) # leads to sharing target component names + ) + target_with_static_cov3 = target_with_static_cov.with_static_covariates( + pd.DataFrame( + { + "dummy": [i for i in range(n_comp)], + "dummy1": [i for i in range(n_comp)], + } + ) # leads to sharing target component names + ) + + past = helper_create_multivariate_linear_timeseries( + n_components=3, + components_names=["past_0", "past_1", "past_2"], + start_value=10, + end_value=20, + start=2, + length=10, + freq=2, + ) + future = helper_create_multivariate_linear_timeseries( + n_components=4, + components_names=["future_0", "future_1", "future_2", "future_3"], + start_value=20, + end_value=30, + start=2, + length=10, + freq=2, + ) + # Input parameter combinations used to generate test cases: output_chunk_length_combos = (1, 3) output_chunk_shift_combos = (0, 1) multi_models_combos = (False, True) max_samples_per_ts_combos = (1, 2, None) - target_lag_combos = past_lag_combos = (None, [-1, -3], [-3, -1]) - future_lag_combos = (*target_lag_combos, [0], [2, 1], [-1, 1], [0, 2]) + # lags are sorted ascending as done by the models internally + target_lag_combos = past_lag_combos = (None, [-3, -1], [-2, -1]) + future_lag_combos = (*target_lag_combos, [0], [1, 2], [-1, 1], [0, 2]) # minimum series length min_n_ts = 8 + max(output_chunk_shift_combos) @@ -436,7 +666,7 @@ def test_lagged_training_data_equal_freq(self, series_type: str): # different start times, different lengths, and different values, but # they're all of the same frequency: if series_type == "integer": - target = self.create_multivariate_linear_timeseries( + target = helper_create_multivariate_linear_timeseries( n_components=2, start_value=0, end_value=10, @@ -444,7 +674,7 @@ def test_lagged_training_data_equal_freq(self, series_type: str): length=self.min_n_ts, freq=2, ) - past = self.create_multivariate_linear_timeseries( + past = helper_create_multivariate_linear_timeseries( n_components=3, start_value=10, end_value=20, @@ -452,7 +682,7 @@ def test_lagged_training_data_equal_freq(self, series_type: str): length=self.min_n_ts + 1, freq=2, ) - future = self.create_multivariate_linear_timeseries( + future = helper_create_multivariate_linear_timeseries( n_components=4, start_value=20, end_value=30, @@ -461,7 +691,7 @@ def test_lagged_training_data_equal_freq(self, series_type: str): freq=2, ) else: - target = self.create_multivariate_linear_timeseries( + target = helper_create_multivariate_linear_timeseries( n_components=2, start_value=0, end_value=10, @@ -469,7 +699,7 @@ def test_lagged_training_data_equal_freq(self, series_type: str): length=self.min_n_ts, freq="2d", ) - past = self.create_multivariate_linear_timeseries( + past = helper_create_multivariate_linear_timeseries( n_components=3, start_value=10, end_value=20, @@ -477,7 +707,7 @@ def test_lagged_training_data_equal_freq(self, series_type: str): length=self.min_n_ts + 1, freq="2d", ) - future = self.create_multivariate_linear_timeseries( + future = helper_create_multivariate_linear_timeseries( n_components=4, start_value=20, end_value=30, @@ -509,55 +739,45 @@ def test_lagged_training_data_equal_freq(self, series_type: str): lags_is_none = [x is None for x in all_lags] if all(lags_is_none): continue - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - multi_models=multi_models, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=True, - output_chunk_shift=output_chunk_shift, - ) - feats_times = self.get_feature_times( - target, - past, - future, - lags, - lags_past, - lags_future, - output_chunk_length, - max_samples_per_ts, - output_chunk_shift, - ) - # Construct `X` by constructing each block, then concatenate these - # blocks together along component axis: - X_target = self.construct_X_block(target, feats_times, lags) - X_past = self.construct_X_block(past, feats_times, lags_past) - X_future = self.construct_X_block(future, feats_times, lags_future) - all_X = (X_target, X_past, X_future) - to_concat = [X for X in all_X if X is not None] - expected_X = np.concatenate(to_concat, axis=1) - expected_y = self.create_y( - target, - feats_times, - output_chunk_length, - multi_models, - output_chunk_shift, + + expected_X, expected_y, expected_times = ( + self.helper_create_expected_lagged_data( + target, + past, + future, + lags, + lags_past, + lags_future, + output_chunk_length, + output_chunk_shift, + multi_models, + max_samples_per_ts, + ) ) - # Number of observations should match number of feature times: - assert X.shape[0] == len(feats_times) - assert y.shape[0] == len(feats_times) - assert X.shape[0] == len(times[0]) - assert y.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) - assert feats_times.equals(times[0]) + + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times, + "expected_times_y": expected_times, + "target": target, + "past_cov": past, + "future_cov": future, + "lags": lags, + "lags_past": lags_past, + "lags_future": lags_future, + "output_chunk_length": output_chunk_length, + "output_chunk_shift": output_chunk_shift, + "use_static_covariates": False, + "multi_models": multi_models, + "max_samples_per_ts": max_samples_per_ts, + "use_moving_windows": True, + "concatenate": True, + } + + self.helper_check_lagged_data(convert_lags_to_dict=False, **kwargs) + + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) @pytest.mark.parametrize( "series_type", @@ -581,17 +801,17 @@ def test_lagged_training_data_unequal_freq(self, series_type): # different start times, different lengths, different values, and different # frequencies: if series_type == "integer": - target = self.create_multivariate_linear_timeseries( + target = helper_create_multivariate_linear_timeseries( n_components=2, start_value=0, end_value=10, start=2, length=20, freq=1 ) - past = self.create_multivariate_linear_timeseries( + past = helper_create_multivariate_linear_timeseries( n_components=3, start_value=10, end_value=20, start=4, length=10, freq=2 ) - future = self.create_multivariate_linear_timeseries( + future = helper_create_multivariate_linear_timeseries( n_components=4, start_value=20, end_value=30, start=6, length=7, freq=3 ) else: - target = self.create_multivariate_linear_timeseries( + target = helper_create_multivariate_linear_timeseries( n_components=2, start_value=0, end_value=10, @@ -599,7 +819,7 @@ def test_lagged_training_data_unequal_freq(self, series_type): length=20, freq="d", ) - past = self.create_multivariate_linear_timeseries( + past = helper_create_multivariate_linear_timeseries( n_components=3, start_value=10, end_value=20, @@ -607,7 +827,7 @@ def test_lagged_training_data_unequal_freq(self, series_type): length=10, freq="2d", ) - future = self.create_multivariate_linear_timeseries( + future = helper_create_multivariate_linear_timeseries( n_components=4, start_value=20, end_value=30, @@ -639,55 +859,49 @@ def test_lagged_training_data_unequal_freq(self, series_type): lags_is_none = [x is None for x in all_lags] if all(lags_is_none): continue - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length, - past_covariates=past if lags_past else None, - future_covariates=future if lags_future else None, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - multi_models=multi_models, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=False, - output_chunk_shift=output_chunk_shift, + + expected_X, expected_y, expected_times = ( + self.helper_create_expected_lagged_data( + target, + past, + future, + lags, + lags_past, + lags_future, + output_chunk_length, + output_chunk_shift, + multi_models, + max_samples_per_ts, + ) ) - feats_times = self.get_feature_times( - target, - past, - future, - lags, - lags_past, - lags_future, - output_chunk_length, - max_samples_per_ts, - output_chunk_shift, - ) - # Construct `X` by constructing each block, then concatenate these - # blocks together along component axis: - X_target = self.construct_X_block(target, feats_times, lags) - X_past = self.construct_X_block(past, feats_times, lags_past) - X_future = self.construct_X_block(future, feats_times, lags_future) - all_X = (X_target, X_past, X_future) - to_concat = [x for x in all_X if x is not None] - expected_X = np.concatenate(to_concat, axis=1) - expected_y = self.create_y( - target, - feats_times, - output_chunk_length, - multi_models, - output_chunk_shift, + + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times, + "expected_times_y": expected_times, + "target": target, + "past_cov": past, + "future_cov": future, + "lags": lags, + "lags_past": lags_past, + "lags_future": lags_future, + "output_chunk_length": output_chunk_length, + "output_chunk_shift": output_chunk_shift, + "use_static_covariates": False, + "multi_models": multi_models, + "max_samples_per_ts": max_samples_per_ts, + "use_moving_windows": False, + "concatenate": True, + } + + self.helper_check_lagged_data(convert_lags_to_dict=False, **kwargs) + + with pytest.raises(ValueError) as err: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags" ) - # Number of observations should match number of feature times: - assert X.shape[0] == len(feats_times) - assert y.shape[0] == len(feats_times) - assert X.shape[0] == len(times[0]) - assert y.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) - assert feats_times.equals(times[0]) @pytest.mark.parametrize( "series_type", @@ -708,17 +922,17 @@ def test_lagged_training_data_method_consistency(self, series_type): # different start times, different lengths, different values, and of # different frequencies: if series_type == "integer": - target = self.create_multivariate_linear_timeseries( + target = helper_create_multivariate_linear_timeseries( n_components=2, start_value=0, end_value=10, start=2, length=20, freq=1 ) - past = self.create_multivariate_linear_timeseries( + past = helper_create_multivariate_linear_timeseries( n_components=3, start_value=10, end_value=20, start=4, length=10, freq=2 ) - future = self.create_multivariate_linear_timeseries( + future = helper_create_multivariate_linear_timeseries( n_components=4, start_value=20, end_value=30, start=6, length=7, freq=3 ) else: - target = self.create_multivariate_linear_timeseries( + target = helper_create_multivariate_linear_timeseries( n_components=2, start_value=0, end_value=10, @@ -726,7 +940,7 @@ def test_lagged_training_data_method_consistency(self, series_type): end=pd.Timestamp("1/18/2000"), freq="2d", ) - past = self.create_multivariate_linear_timeseries( + past = helper_create_multivariate_linear_timeseries( n_components=3, start_value=10, end_value=20, @@ -734,7 +948,7 @@ def test_lagged_training_data_method_consistency(self, series_type): end=pd.Timestamp("1/20/2000"), freq="2d", ) - future = self.create_multivariate_linear_timeseries( + future = helper_create_multivariate_linear_timeseries( n_components=4, start_value=20, end_value=30, @@ -841,7 +1055,7 @@ def test_lagged_training_data_single_lag_single_component_same_series(self, conf expected_y = series.all_values(copy=False)[ 3 + output_chunk_shift : 3 + output_chunk_shift + len(expected_times_y), :, - 0, + :, ] # Offset `3:-2` by `-1` lag: expected_X_target = series.all_values(copy=False)[ @@ -855,28 +1069,38 @@ def test_lagged_training_data_single_lag_single_component_same_series(self, conf ] expected_X = np.concatenate( [expected_X_target, expected_X_past, expected_X_future], axis=1 - ) - X, y, times, _ = create_lagged_training_data( - target_series=series, - output_chunk_length=output_chunk_length, - past_covariates=series, - future_covariates=series, - lags=lags, - lags_past_covariates=past_lags, - lags_future_covariates=future_lags, - uses_static_covariates=False, - use_moving_windows=use_moving_windows, - output_chunk_shift=output_chunk_shift, - ) - # Number of observations should match number of feature times: - assert X.shape[0] == len(expected_times_x) - assert X.shape[0] == len(times[0]) - assert y.shape[0] == len(expected_times_y) - assert y.shape[0] == len(times[0]) - # Check that outputs match: - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) - assert expected_times_x.equals(times[0]) + )[:, :, np.newaxis] + + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times_x, + "expected_times_y": expected_times_y, + "target": series, + "past_cov": series, + "future_cov": series, + "lags": lags, + "lags_past": past_lags, + "lags_future": future_lags, + "output_chunk_length": output_chunk_length, + "output_chunk_shift": output_chunk_shift, + "use_static_covariates": False, + "multi_models": True, + "max_samples_per_ts": None, + "use_moving_windows": use_moving_windows, + "concatenate": True, + } + + self.helper_check_lagged_data(convert_lags_to_dict=False, **kwargs) + + if use_moving_windows: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + else: + with pytest.raises(ValueError) as err: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags" + ) @pytest.mark.parametrize( "config", @@ -946,27 +1170,48 @@ def test_lagged_training_data_extend_past_and_future_covariates(self, config): past.all_values(copy=False)[-1 - output_chunk_shift, :, 0], future.all_values(copy=False)[-1 - output_chunk_shift, :, 0], ] - ).reshape(1, -1) + ).reshape(1, -1, 1) # Label is very last value of `target`: - expected_y = target.all_values(copy=False)[-1, :, 0] + expected_y = target.all_values(copy=False)[-1:, :, :] + + expected_times = generate_index( + start=target.end_time() - output_chunk_shift * target.freq, + length=1, + freq=target.freq, + ) + # Check correctness for both 'moving window' method # and 'time intersection' method: - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - past_covariates=past, - future_covariates=future, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - max_samples_per_ts=max_samples_per_ts, - use_moving_windows=use_moving_windows, - output_chunk_shift=output_chunk_shift, - ) - assert times[0][0] == target.end_time() - output_chunk_shift * target.freq - assert np.allclose(expected_X, X[:, :, 0]) - assert np.allclose(expected_y, y[:, :, 0]) + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times, + "expected_times_y": expected_times, + "target": target, + "past_cov": past, + "future_cov": future, + "lags": lags, + "lags_past": lags_past, + "lags_future": lags_future, + "output_chunk_length": 1, + "output_chunk_shift": output_chunk_shift, + "use_static_covariates": False, + "multi_models": True, + "max_samples_per_ts": max_samples_per_ts, + "use_moving_windows": use_moving_windows, + "concatenate": True, + } + + self.helper_check_lagged_data(convert_lags_to_dict=False, **kwargs) + + if use_moving_windows: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + else: + with pytest.raises(ValueError) as err: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags" + ) @pytest.mark.parametrize( "config", @@ -998,22 +1243,43 @@ def test_lagged_training_data_single_point(self, config): lags = [-1] expected_X = np.zeros((1, 1, 1)) expected_y = np.ones((1, 1, 1)) + expected_times = generate_index( + start=target.end_time() - output_chunk_shift * target.freq, + length=1, + freq=target.freq, + ) # Test correctness for 'moving window' and for 'time intersection' methods, as well # as for different `multi_models` values: - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length, - lags=lags, - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, - output_chunk_shift=output_chunk_shift, - ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - # Should only have one sample, generated for `t = target.end_time()`: - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() - output_chunk_shift * target.freq + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times, + "expected_times_y": expected_times, + "target": target, + "past_cov": None, + "future_cov": None, + "lags": lags, + "lags_past": None, + "lags_future": None, + "output_chunk_length": output_chunk_length, + "output_chunk_shift": output_chunk_shift, + "use_static_covariates": False, + "multi_models": multi_models, + "max_samples_per_ts": None, + "use_moving_windows": use_moving_windows, + "concatenate": True, + } + + self.helper_check_lagged_data(convert_lags_to_dict=False, **kwargs) + + if use_moving_windows: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + else: + with pytest.raises(ValueError) as err: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags" + ) @pytest.mark.parametrize( "config", @@ -1060,25 +1326,45 @@ def test_lagged_training_data_zero_lags(self, config): ) # X comprises of first value of `target` (i.e. 0) and only value in `future`: - expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) + expected_X = np.array([[[0.0], [1.0]]]) expected_y = np.ones((1, 1, 1)) + expected_times = generate_index( + start=target.end_time() - output_chunk_shift * target.freq, + length=1, + freq=target.freq, + ) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - future_covariates=future, - lags=[-1], - lags_future_covariates=[0], - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, - output_chunk_shift=output_chunk_shift, - ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() - output_chunk_shift * target.freq + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times, + "expected_times_y": expected_times, + "target": target, + "past_cov": None, + "future_cov": future, + "lags": [-1], + "lags_past": None, + "lags_future": [0], + "output_chunk_length": 1, + "output_chunk_shift": output_chunk_shift, + "use_static_covariates": False, + "multi_models": multi_models, + "max_samples_per_ts": None, + "use_moving_windows": use_moving_windows, + "concatenate": True, + } + + self.helper_check_lagged_data(convert_lags_to_dict=False, **kwargs) + + if use_moving_windows: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + else: + with pytest.raises(ValueError) as err: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags" + ) @pytest.mark.parametrize( "config", @@ -1142,23 +1428,43 @@ def test_lagged_training_data_no_target_lags_future_covariates(self, config): # X comprises of first value of `target` (i.e. 0) and only value in `future`: expected_X = future[-1].all_values(copy=False) expected_y = target[-1].all_values(copy=False) + expected_times = generate_index( + start=target.end_time() - output_chunk_shift * target.freq, + length=1, + freq=target.freq, + ) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - future_covariates=future, - lags=None, - lags_future_covariates=[cov_lag], - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, - output_chunk_shift=output_chunk_shift, - ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() - output_chunk_shift * target.freq + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times, + "expected_times_y": expected_times, + "target": target, + "past_cov": None, + "future_cov": future, + "lags": None, + "lags_past": None, + "lags_future": [cov_lag], + "output_chunk_length": 1, + "output_chunk_shift": output_chunk_shift, + "use_static_covariates": False, + "multi_models": multi_models, + "max_samples_per_ts": None, + "use_moving_windows": use_moving_windows, + "concatenate": True, + } + + self.helper_check_lagged_data(convert_lags_to_dict=False, **kwargs) + + if use_moving_windows: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + else: + with pytest.raises(ValueError) as err: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags" + ) @pytest.mark.parametrize( "config", @@ -1221,23 +1527,43 @@ def test_lagged_training_data_no_target_lags_past_covariates(self, config): # X comprises of first value of `target` (i.e. 0) and only value in `future`: expected_X = past[-1].all_values(copy=False) expected_y = target[-1].all_values(copy=False) + expected_times = generate_index( + start=target.end_time() - output_chunk_shift * target.freq, + length=1, + freq=target.freq, + ) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=1, - past_covariates=past, - lags=None, - lags_past_covariates=[cov_lag], - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, - output_chunk_shift=output_chunk_shift, - ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() - output_chunk_shift * target.freq + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times, + "expected_times_y": expected_times, + "target": target, + "past_cov": past, + "future_cov": None, + "lags": None, + "lags_past": [cov_lag], + "lags_future": None, + "output_chunk_length": 1, + "output_chunk_shift": output_chunk_shift, + "use_static_covariates": False, + "multi_models": multi_models, + "max_samples_per_ts": None, + "use_moving_windows": use_moving_windows, + "concatenate": True, + } + + self.helper_check_lagged_data(convert_lags_to_dict=False, **kwargs) + + if use_moving_windows: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + else: + with pytest.raises(ValueError) as err: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags" + ) @pytest.mark.parametrize( "config", @@ -1284,25 +1610,184 @@ def test_lagged_training_data_positive_lags(self, config): end_value=2, ) # X comprises of first value of `target` (i.e. 0) and only value in `future`: - expected_X = np.array([0.0, 1.0]).reshape(1, 2, 1) + expected_X = np.array([[[0.0], [1.0]]]) expected_y = np.ones((1, 1, 1)) + expected_times = generate_index( + start=target.end_time() - output_chunk_shift * target.freq, + length=1, + freq=target.freq, + ) # Check correctness for 'moving windows' and 'time intersection' methods, as # well as for different `multi_models` values: - X, y, times, _ = create_lagged_training_data( + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times, + "expected_times_y": expected_times, + "target": target, + "past_cov": None, + "future_cov": future, + "lags": [-1], + "lags_past": None, + "lags_future": [1], + "output_chunk_length": 1, + "output_chunk_shift": output_chunk_shift, + "use_static_covariates": False, + "multi_models": multi_models, + "max_samples_per_ts": None, + "use_moving_windows": use_moving_windows, + "concatenate": True, + } + + self.helper_check_lagged_data(convert_lags_to_dict=False, **kwargs) + + if use_moving_windows: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + else: + with pytest.raises(ValueError) as err: + self.helper_check_lagged_data(convert_lags_to_dict=True, **kwargs) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags" + ) + + @pytest.mark.parametrize( + "config", + itertools.product( + [0, 1, 3], + [1, 2], + [True, False], + ["datetime", "integer"], + ), + ) + def test_lagged_training_data_comp_wise_lags(self, config): + """ + Tests that `create_lagged_training_data` generate the expected values when the + lags are component-specific over multivariate series. + + Note that this is supported only when use_moving_window=True. + """ + output_chunk_shift, output_chunk_length, multi_models, series_type = config + + lags_tg = {"target_0": [-4, -1], "target_1": [-4, -1]} + lags_pc = [-3] + lags_fc = {"future_0": [-1, 0], "future_1": [-2, 1]} + + if series_type == "integer": + start_tg = 0 + start_pc = start_tg + 1 + start_fc = start_tg + 2 + else: + start_tg = pd.Timestamp("2000-01-15") + start_pc = pd.Timestamp("2000-01-16") + start_fc = pd.Timestamp("2000-01-17") + + # length = max lag - min lag + 1 = -1 + 4 + 1 = 4 + target = helper_create_multivariate_linear_timeseries( + n_components=2, + components_names=["target_0", "target_1"], + length=4 + output_chunk_shift + output_chunk_length, + start=start_tg, + ) + # length = max lag - min lag + 1 = -3 + 3 + 1 = 1 + past = ( + helper_create_multivariate_linear_timeseries( + n_components=2, + components_names=["past_0", "past_1"], + length=1, + start=start_pc, + ) + + 100 + ) + # length = max lag - min lag + 1 = 1 + 2 + 1 = 4 + future = ( + helper_create_multivariate_linear_timeseries( + n_components=2, + components_names=["future_0", "future_1"], + length=4 + output_chunk_shift + output_chunk_length, + start=start_fc, + ) + + 200 + ) + + # extremes lags are manually computed, similarly to the model.lags attribute + feats_times = self.get_feature_times( target, - output_chunk_length=1, - future_covariates=future, - lags=[-1], - lags_future_covariates=[1], - uses_static_covariates=False, - multi_models=multi_models, - use_moving_windows=use_moving_windows, + past, + future, + [-4, -1], # min, max target lag + [-3], # unique past lag + [-2, 1], # min, max future lag + output_chunk_length, + None, + output_chunk_shift, + ) + + # reorder the features to obtain target_0_lag-4, target_1_lag-4, target_0_lag-1, target_1_lag-1 + X_target = [ + self.construct_X_block( + target["target_0"], feats_times, lags_tg["target_0"][0:1] + ), + self.construct_X_block( + target["target_1"], feats_times, lags_tg["target_1"][0:1] + ), + self.construct_X_block( + target["target_0"], feats_times, lags_tg["target_0"][1:2] + ), + self.construct_X_block( + target["target_1"], feats_times, lags_tg["target_1"][1:2] + ), + ] + # single lag for all the components, can be kept as is + X_past = [ + self.construct_X_block(past[name], feats_times, lags_pc) + for name in ["past_0", "past_1"] + ] + # reorder the features to obtain future_1_lag-2, future_0_lag-1, future_0_lag0, future_1_lag1 + X_future = [ + self.construct_X_block( + future["future_1"], feats_times, lags_fc["future_1"][0:1] + ), + self.construct_X_block( + future["future_0"], feats_times, lags_fc["future_0"][0:1] + ), + self.construct_X_block( + future["future_0"], feats_times, lags_fc["future_0"][1:2] + ), + self.construct_X_block( + future["future_1"], feats_times, lags_fc["future_1"][1:2] + ), + ] + all_X = X_target + X_past + X_future + expected_X = np.concatenate(all_X, axis=1)[:, :, np.newaxis] + expected_y = self.create_y( + target, + feats_times, + output_chunk_length, + multi_models, + output_chunk_shift, + )[:, :, np.newaxis] + + # lags are already in dict format + self.helper_check_lagged_data( + convert_lags_to_dict=True, + expected_X=expected_X, + expected_y=expected_y, + expected_times_x=feats_times, + expected_times_y=feats_times, + target=target, + past_cov=past, + future_cov=future, + lags=lags_tg, + lags_past=lags_pc, + lags_future=lags_fc, + output_chunk_length=output_chunk_length, output_chunk_shift=output_chunk_shift, + use_static_covariates=False, + multi_models=multi_models, + max_samples_per_ts=None, + use_moving_windows=True, + concatenate=True, ) - assert np.allclose(expected_X, X) - assert np.allclose(expected_y, y) - assert len(times[0]) == 1 - assert times[0][0] == target.end_time() - output_chunk_shift * target.freq def test_lagged_training_data_sequence_inputs(self): """ @@ -1313,6 +1798,9 @@ def test_lagged_training_data_sequence_inputs(self): # Define two simple tabularization problems: target_1 = past_1 = future_1 = linear_timeseries(start=0, end=5) target_2 = past_2 = future_2 = linear_timeseries(start=6, end=11) + ts_tg = (target_1, target_2) + ts_pc = (past_1, past_2) + ts_fc = (future_1, future_2) lags = lags_past = lags_future = [-1] output_chunk_length = 1 # Expected solution: @@ -1328,45 +1816,41 @@ def test_lagged_training_data_sequence_inputs(self): expected_y = np.concatenate([expected_y_1, expected_y_2], axis=0) expected_times_1 = target_1.time_index[1:] expected_times_2 = target_2.time_index[1:] - # Check when `concatenate = True`: - X, y, times, _ = create_lagged_training_data( - (target_1, target_2), - output_chunk_length=output_chunk_length, - past_covariates=(past_1, past_2), - future_covariates=(future_1, future_2), - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - output_chunk_shift=0, + + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": [expected_times_1, expected_times_2], + "expected_times_y": [expected_times_1, expected_times_2], + "target": ts_tg, + "past_cov": ts_pc, + "future_cov": ts_fc, + "lags": lags, + "lags_past": lags_past, + "lags_future": lags_future, + "output_chunk_length": output_chunk_length, + "output_chunk_shift": 0, + "use_static_covariates": False, + "multi_models": True, + "max_samples_per_ts": None, + "use_moving_windows": True, + } + + # concatenate=True + self.helper_check_lagged_data( + convert_lags_to_dict=False, concatenate=True, **kwargs ) - assert np.allclose(X, expected_X) - assert np.allclose(y, expected_y) - assert len(times) == 2 - assert times[0].equals(expected_times_1) - assert times[1].equals(expected_times_2) - # Check when `concatenate = False`: - X, y, times, _ = create_lagged_training_data( - (target_1, target_2), - output_chunk_length=output_chunk_length, - past_covariates=(past_1, past_2), - future_covariates=(future_1, future_2), - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - concatenate=False, - output_chunk_shift=0, + self.helper_check_lagged_data( + convert_lags_to_dict=True, concatenate=True, **kwargs + ) + + # concatenate=False + self.helper_check_lagged_data( + convert_lags_to_dict=False, concatenate=False, **kwargs + ) + self.helper_check_lagged_data( + convert_lags_to_dict=True, concatenate=False, **kwargs ) - assert len(X) == 2 - assert len(y) == 2 - assert np.allclose(X[0], expected_X_1) - assert np.allclose(X[1], expected_X_2) - assert np.allclose(y[0], expected_y_1) - assert np.allclose(y[1], expected_y_2) - assert len(times) == 2 - assert times[0].equals(expected_times_1) - assert times[1].equals(expected_times_2) def test_lagged_training_data_stochastic_series(self): """ @@ -1387,20 +1871,32 @@ def test_lagged_training_data_stochastic_series(self): ) expected_y = target.all_values(copy=False)[1:, :, :] expected_times = target.time_index[1:] - X, y, times, _ = create_lagged_training_data( - target, - output_chunk_length=output_chunk_length, - past_covariates=past, - future_covariates=future, - lags=lags, - lags_past_covariates=lags_past, - lags_future_covariates=lags_future, - uses_static_covariates=False, - output_chunk_shift=0, + + kwargs = { + "expected_X": expected_X, + "expected_y": expected_y, + "expected_times_x": expected_times, + "expected_times_y": expected_times, + "target": target, + "past_cov": past, + "future_cov": future, + "lags": lags, + "lags_past": lags_past, + "lags_future": lags_future, + "output_chunk_length": output_chunk_length, + "output_chunk_shift": 0, + "use_static_covariates": False, + "multi_models": True, + "max_samples_per_ts": None, + "use_moving_windows": True, + } + + self.helper_check_lagged_data( + convert_lags_to_dict=False, concatenate=True, **kwargs + ) + self.helper_check_lagged_data( + convert_lags_to_dict=True, concatenate=True, **kwargs ) - assert np.allclose(X, expected_X) - assert np.allclose(y, expected_y) - assert times[0].equals(expected_times) def test_lagged_training_data_no_shared_times_error(self): """ @@ -1622,6 +2118,46 @@ def test_lagged_training_data_invalid_lag_values_error(self): output_chunk_shift=0, ) + def test_lagged_training_data_dict_lags_no_moving_window_error(self): + """ + Tests that `create_lagged_training_data` throws correct error + when `use_moving_window` is set to `False` and lags are provided + as a dict for a multivariate series. + """ + ts = linear_timeseries(start=1, length=20, freq=1, column_name="lin1") + lags = [-1] + lags_dict = {"lin1": [-1]} + # one series, one set of lags are dict + with pytest.raises(ValueError) as err: + create_lagged_training_data( + target_series=ts, + output_chunk_length=1, + lags=lags_dict, + uses_static_covariates=False, + use_moving_windows=False, + output_chunk_shift=0, + ) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags is provided as a dictionary." + ) + # all the series are provided, only one passed as dict + with pytest.raises(ValueError) as err: + create_lagged_training_data( + target_series=ts, + past_covariates=ts, + future_covariates=ts, + output_chunk_length=1, + lags=lags, + lags_past_covariates=lags_dict, + lags_future_covariates=lags, + uses_static_covariates=False, + use_moving_windows=False, + output_chunk_shift=0, + ) + assert str(err.value).startswith( + "`use_moving_windows=False` is not supported when any of the lags is provided as a dictionary." + ) + def test_lagged_training_data_unspecified_lag_or_series_warning(self): """ Tests that `create_lagged_training_data` throws correct @@ -1709,295 +2245,375 @@ def test_lagged_training_data_unspecified_lag_or_series_warning(self): ) assert len(w) == 0 - def test_create_lagged_component_names(self): + @pytest.mark.parametrize( + "config", + [ + # target no static covariate + ( + target_with_no_cov, + None, + None, + [-2, -1], + None, + None, + False, + ["no_static_target_lag-2", "no_static_target_lag-1"], + ), + # target with static covariate (but don't use them in feature names) + ( + target_with_static_cov, + None, + None, + [-4, -1], + None, + None, + False, + [ + "static_0_target_lag-4", + "static_1_target_lag-4", + "static_0_target_lag-1", + "static_1_target_lag-1", + ], + ), + # target with static covariate (acting on global target components) + ( + target_with_static_cov, + None, + None, + [-4, -1], + None, + None, + True, + [ + "static_0_target_lag-4", + "static_1_target_lag-4", + "static_0_target_lag-1", + "static_1_target_lag-1", + "dummy_statcov_target_global_components", + ], + ), + # target with static covariate (component specific) + ( + target_with_static_cov2, + None, + None, + [-4, -1], + None, + None, + True, + [ + "static_0_target_lag-4", + "static_1_target_lag-4", + "static_0_target_lag-1", + "static_1_target_lag-1", + "dummy_statcov_target_static_0", + "dummy_statcov_target_static_1", + ], + ), + # target with static covariate (component specific & multivariate) + ( + target_with_static_cov3, + None, + None, + [-4, -1], + None, + None, + True, + [ + "static_0_target_lag-4", + "static_1_target_lag-4", + "static_0_target_lag-1", + "static_1_target_lag-1", + "dummy_statcov_target_static_0", + "dummy_statcov_target_static_1", + "dummy1_statcov_target_static_0", + "dummy1_statcov_target_static_1", + ], + ), + # target + past + ( + target_with_no_cov, + past, + None, + [-4, -3], + [-1], + None, + False, + [ + "no_static_target_lag-4", + "no_static_target_lag-3", + "past_0_pastcov_lag-1", + "past_1_pastcov_lag-1", + "past_2_pastcov_lag-1", + ], + ), + # target + future + ( + target_with_no_cov, + None, + future, + [-2, -1], + None, + [3], + False, + [ + "no_static_target_lag-2", + "no_static_target_lag-1", + "future_0_futcov_lag3", + "future_1_futcov_lag3", + "future_2_futcov_lag3", + "future_3_futcov_lag3", + ], + ), + # past + future + ( + target_with_no_cov, + past, + future, + None, + [-1], + [2], + False, + [ + "past_0_pastcov_lag-1", + "past_1_pastcov_lag-1", + "past_2_pastcov_lag-1", + "future_0_futcov_lag2", + "future_1_futcov_lag2", + "future_2_futcov_lag2", + "future_3_futcov_lag2", + ], + ), + # target with static (not used) + past + future + ( + target_with_static_cov, + past, + future, + [-2, -1], + [-1], + [2], + False, + [ + "static_0_target_lag-2", + "static_1_target_lag-2", + "static_0_target_lag-1", + "static_1_target_lag-1", + "past_0_pastcov_lag-1", + "past_1_pastcov_lag-1", + "past_2_pastcov_lag-1", + "future_0_futcov_lag2", + "future_1_futcov_lag2", + "future_2_futcov_lag2", + "future_3_futcov_lag2", + ], + ), + # multiple series with same components names, including past/future covariates + ( + [target_with_static_cov, target_with_static_cov], + [past, past], + [future, future], + [-3], + [-1], + [2], + False, + [ + "static_0_target_lag-3", + "static_1_target_lag-3", + "past_0_pastcov_lag-1", + "past_1_pastcov_lag-1", + "past_2_pastcov_lag-1", + "future_0_futcov_lag2", + "future_1_futcov_lag2", + "future_2_futcov_lag2", + "future_3_futcov_lag2", + ], + ), + # multiple series with different components will use the first series as reference + ( + [ + target_with_static_cov, + target_with_no_cov.stack(target_with_no_cov), + ], + [past, past], + [future, past.stack(target_with_no_cov)], + [-2, -1], + [-1], + [2], + False, + [ + "static_0_target_lag-2", + "static_1_target_lag-2", + "static_0_target_lag-1", + "static_1_target_lag-1", + "past_0_pastcov_lag-1", + "past_1_pastcov_lag-1", + "past_2_pastcov_lag-1", + "future_0_futcov_lag2", + "future_1_futcov_lag2", + "future_2_futcov_lag2", + "future_3_futcov_lag2", + ], + ), + ], + ) + def test_create_lagged_component_names(self, config): """ Tests that `create_lagged_component_names` produces the expected features name depending on the lags, output_chunk_length and covariates. - """ - target_with_no_cov = self.create_multivariate_linear_timeseries( - n_components=1, - components_names=["no_static"], - start_value=0, - end_value=10, - start=2, - length=10, - freq=2, - ) - n_comp = 2 - target_with_static_cov = self.create_multivariate_linear_timeseries( - n_components=n_comp, - components_names=["static_0", "static_1"], - start_value=0, - end_value=10, - start=2, - length=10, - freq=2, - ) - target_with_static_cov = target_with_static_cov.with_static_covariates( - pd.DataFrame({"dummy": [1]}) # leads to "global" static cov component name - ) - target_with_static_cov2 = target_with_static_cov.with_static_covariates( - pd.DataFrame( - {"dummy": [i for i in range(n_comp)]} - ) # leads to sharing target component names - ) - target_with_static_cov3 = target_with_static_cov.with_static_covariates( - pd.DataFrame( - { - "dummy": [i for i in range(n_comp)], - "dummy1": [i for i in range(n_comp)], - } - ) # leads to sharing target component names - ) - - past = self.create_multivariate_linear_timeseries( - n_components=3, - components_names=["past_0", "past_1", "past_2"], - start_value=10, - end_value=20, - start=2, - length=10, - freq=2, - ) - future = self.create_multivariate_linear_timeseries( - n_components=4, - components_names=["future_0", "future_1", "future_2", "future_3"], - start_value=20, - end_value=30, - start=2, - length=10, - freq=2, - ) - - # target no static covariate - expected_lagged_features = ["no_static_target_lag-2", "no_static_target_lag-1"] - created_lagged_features, _ = create_lagged_component_names( - target_series=target_with_no_cov, - past_covariates=None, - future_covariates=None, - lags=[-2, -1], - lags_past_covariates=None, - lags_future_covariates=None, - concatenate=False, - use_static_covariates=False, - ) - assert expected_lagged_features == created_lagged_features - - # target with static covariate (but don't use them in feature names) - expected_lagged_features = [ - "static_0_target_lag-4", - "static_1_target_lag-4", - "static_0_target_lag-1", - "static_1_target_lag-1", - ] - created_lagged_features, _ = create_lagged_component_names( - target_series=target_with_static_cov, - past_covariates=None, - future_covariates=None, - lags=[-4, -1], - lags_past_covariates=None, - lags_future_covariates=None, - concatenate=False, - use_static_covariates=False, - ) - assert expected_lagged_features == created_lagged_features - # target with static covariate (acting on global target components) - expected_lagged_features = [ - "static_0_target_lag-4", - "static_1_target_lag-4", - "static_0_target_lag-1", - "static_1_target_lag-1", - "dummy_statcov_target_global_components", - ] - created_lagged_features, _ = create_lagged_component_names( - target_series=target_with_static_cov, - past_covariates=None, - future_covariates=None, - lags=[-4, -1], - lags_past_covariates=None, - lags_future_covariates=None, - concatenate=False, - use_static_covariates=True, - ) - assert expected_lagged_features == created_lagged_features - - # target with static covariate (component specific) - expected_lagged_features = [ - "static_0_target_lag-4", - "static_1_target_lag-4", - "static_0_target_lag-1", - "static_1_target_lag-1", - "dummy_statcov_target_static_0", - "dummy_statcov_target_static_1", - ] - created_lagged_features, _ = create_lagged_component_names( - target_series=target_with_static_cov2, - past_covariates=None, - future_covariates=None, - lags=[-4, -1], - lags_past_covariates=None, - lags_future_covariates=None, - concatenate=False, - use_static_covariates=True, - ) - assert expected_lagged_features == created_lagged_features - - # target with static covariate (component specific & multivariate) - expected_lagged_features = [ - "static_0_target_lag-4", - "static_1_target_lag-4", - "static_0_target_lag-1", - "static_1_target_lag-1", - "dummy_statcov_target_static_0", - "dummy_statcov_target_static_1", - "dummy1_statcov_target_static_0", - "dummy1_statcov_target_static_1", - ] - created_lagged_features, _ = create_lagged_component_names( - target_series=target_with_static_cov3, - past_covariates=None, - future_covariates=None, - lags=[-4, -1], - lags_past_covariates=None, - lags_future_covariates=None, - concatenate=False, - use_static_covariates=True, - ) - assert expected_lagged_features == created_lagged_features - - # target + past - expected_lagged_features = [ - "no_static_target_lag-4", - "no_static_target_lag-3", - "past_0_pastcov_lag-1", - "past_1_pastcov_lag-1", - "past_2_pastcov_lag-1", - ] + When lags are component-specific, they are identical across all the components. + """ + ( + ts_tg, + ts_pc, + ts_fc, + lags_tg, + lags_pc, + lags_fc, + use_static_cov, + expected_lagged_features, + ) = config + # lags as list created_lagged_features, _ = create_lagged_component_names( - target_series=target_with_no_cov, - past_covariates=past, - future_covariates=None, - lags=[-4, -3], - lags_past_covariates=[-1], - lags_future_covariates=None, + target_series=ts_tg, + past_covariates=ts_pc, + future_covariates=ts_fc, + lags=lags_tg, + lags_past_covariates=lags_pc, + lags_future_covariates=lags_fc, concatenate=False, + use_static_covariates=use_static_cov, ) - assert expected_lagged_features == created_lagged_features - # target + future - expected_lagged_features = [ - "no_static_target_lag-2", - "no_static_target_lag-1", - "future_0_futcov_lag3", - "future_1_futcov_lag3", - "future_2_futcov_lag3", - "future_3_futcov_lag3", - ] - created_lagged_features, _ = create_lagged_component_names( - target_series=target_with_no_cov, - past_covariates=None, - future_covariates=future, - lags=[-2, -1], - lags_past_covariates=None, - lags_future_covariates=[3], - concatenate=False, + # converts lags to dictionary format + lags_as_dict = self.convert_lags_to_dict( + ts_tg, + ts_pc, + ts_fc, + lags_tg, + lags_pc, + lags_fc, ) - assert expected_lagged_features == created_lagged_features - # past + future - expected_lagged_features = [ - "past_0_pastcov_lag-1", - "past_1_pastcov_lag-1", - "past_2_pastcov_lag-1", - "future_0_futcov_lag2", - "future_1_futcov_lag2", - "future_2_futcov_lag2", - "future_3_futcov_lag2", - ] - created_lagged_features, _ = create_lagged_component_names( - target_series=target_with_no_cov, - past_covariates=past, - future_covariates=future, - lags=None, - lags_past_covariates=[-1], - lags_future_covariates=[2], + created_lagged_features_dict_lags, _ = create_lagged_component_names( + target_series=ts_tg, + past_covariates=ts_pc, + future_covariates=ts_fc, + lags=lags_as_dict["target"], + lags_past_covariates=lags_as_dict["past"], + lags_future_covariates=lags_as_dict["future"], concatenate=False, + use_static_covariates=use_static_cov, ) assert expected_lagged_features == created_lagged_features + assert expected_lagged_features == created_lagged_features_dict_lags - # target with static + past + future - expected_lagged_features = [ - "static_0_target_lag-2", - "static_1_target_lag-2", - "static_0_target_lag-1", - "static_1_target_lag-1", - "past_0_pastcov_lag-1", - "past_1_pastcov_lag-1", - "past_2_pastcov_lag-1", - "future_0_futcov_lag2", - "future_1_futcov_lag2", - "future_2_futcov_lag2", - "future_3_futcov_lag2", - ] - created_lagged_features, _ = create_lagged_component_names( - target_series=target_with_static_cov, - past_covariates=past, - future_covariates=future, - lags=[-2, -1], - lags_past_covariates=[-1], - lags_future_covariates=[2], - concatenate=False, - ) - assert expected_lagged_features == created_lagged_features + @pytest.mark.parametrize( + "config", + [ + # lags have the same minimum + ( + target_with_static_cov, + None, + None, + {"static_0": [-4, -2], "static_1": [-4, -3]}, + None, + None, + False, + [ + "static_0_target_lag-4", + "static_1_target_lag-4", + "static_1_target_lag-3", + "static_0_target_lag-2", + ], + ), + # lags are not overlapping + ( + target_with_static_cov, + None, + None, + {"static_0": [-4, -1], "static_1": [-3, -2]}, + None, + None, + False, + [ + "static_0_target_lag-4", + "static_1_target_lag-3", + "static_1_target_lag-2", + "static_0_target_lag-1", + ], + ), + # default lags for target, overlapping lags for past covariates + ( + target_with_static_cov, + past, + None, + {"static_0": [-3], "static_1": [-3]}, + {"past_0": [-4, -3], "past_1": [-3, -2], "past_2": [-2]}, + None, + False, + [ + "static_0_target_lag-3", + "static_1_target_lag-3", + "past_0_pastcov_lag-4", + "past_0_pastcov_lag-3", + "past_1_pastcov_lag-3", + "past_1_pastcov_lag-2", + "past_2_pastcov_lag-2", + ], + ), + # no lags for target, future covariates lags are not in the compoments order + ( + target_with_static_cov, + None, + future, + None, + None, + { + "future_3": [-2, 0, 2], + "future_0": [-4, 1], + "future_2": [1], + "future_1": [-2, 2], + }, + False, + [ + "future_0_futcov_lag-4", + "future_1_futcov_lag-2", + "future_3_futcov_lag-2", + "future_3_futcov_lag0", + "future_0_futcov_lag1", + "future_2_futcov_lag1", + "future_1_futcov_lag2", + "future_3_futcov_lag2", + ], + ), + ], + ) + def test_create_lagged_component_names_different_lags(self, config): + """ + Tests that `create_lagged_component_names` when lags are different across components. - # multiple series with same components, including past/future covariates - expected_lagged_features = [ - "static_0_target_lag-3", - "static_1_target_lag-3", - "past_0_pastcov_lag-1", - "past_1_pastcov_lag-1", - "past_2_pastcov_lag-1", - "future_0_futcov_lag2", - "future_1_futcov_lag2", - "future_2_futcov_lag2", - "future_3_futcov_lag2", - ] - created_lagged_features, _ = create_lagged_component_names( - target_series=[target_with_static_cov, target_with_static_cov], - past_covariates=[past, past], - future_covariates=[future, future], - lags=[-3], - lags_past_covariates=[-1], - lags_future_covariates=[2], - concatenate=False, - ) - assert expected_lagged_features == created_lagged_features + The lagged features should be sorted by lags, then by components. + """ + ( + ts_tg, + ts_pc, + ts_fc, + lags_tg, + lags_pc, + lags_fc, + use_static_cov, + expected_lagged_features, + ) = config - # multiple series with different components will use the first series as reference - expected_lagged_features = [ - "static_0_target_lag-2", - "static_1_target_lag-2", - "static_0_target_lag-1", - "static_1_target_lag-1", - "past_0_pastcov_lag-1", - "past_1_pastcov_lag-1", - "past_2_pastcov_lag-1", - "future_0_futcov_lag2", - "future_1_futcov_lag2", - "future_2_futcov_lag2", - "future_3_futcov_lag2", - ] created_lagged_features, _ = create_lagged_component_names( - target_series=[ - target_with_static_cov, - target_with_no_cov.stack(target_with_no_cov), - ], - past_covariates=[past, past], - future_covariates=[future, past.stack(target_with_no_cov)], - lags=[-2, -1], - lags_past_covariates=[-1], - lags_future_covariates=[2], + target_series=ts_tg, + past_covariates=ts_pc, + future_covariates=ts_fc, + lags=lags_tg, + lags_past_covariates=lags_pc, + lags_future_covariates=lags_fc, concatenate=False, + use_static_covariates=use_static_cov, ) assert expected_lagged_features == created_lagged_features diff --git a/darts/utils/data/tabularization.py b/darts/utils/data/tabularization.py index 8a8e0e0dcd..8ff22f236e 100644 --- a/darts/utils/data/tabularization.py +++ b/darts/utils/data/tabularization.py @@ -276,18 +276,52 @@ def create_lagged_data( if seq_ts is not None ] seq_ts_lens = set(seq_ts_lens) - raise_if( - len(seq_ts_lens) > 1, - "Must specify the same number of `TimeSeries` for each series input.", + if len(seq_ts_lens) > 1: + raise_log( + ValueError( + "Must specify the same number of `TimeSeries` for each series input." + ), + logger, + ) + lags_passed_as_dict = any( + isinstance(lags_, dict) + for lags_ in [lags, lags_past_covariates, lags_future_covariates] ) + if (not use_moving_windows) and lags_passed_as_dict: + raise_log( + ValueError( + "`use_moving_windows=False` is not supported when any of the lags is provided as a dictionary. " + f"Received: {[lags, lags_past_covariates, lags_future_covariates]}." + ), + logger, + ) + if max_samples_per_ts is None: max_samples_per_ts = inf + + # lags are identical for multiple series: pre-compute lagged features and reordered lagged features + lags_extract, lags_order = _get_lagged_indices( + lags, + lags_past_covariates, + lags_future_covariates, + ) X, y, times = [], [], [] for i in range(max(seq_ts_lens)): target_i = target_series[i] if target_series else None past_i = past_covariates[i] if past_covariates else None future_i = future_covariates[i] if future_covariates else None - if use_moving_windows and _all_equal_freq(target_i, past_i, future_i): + series_equal_freq = _all_equal_freq(target_i, past_i, future_i) + # component-wise lags extraction is not support with times intersection at the moment + if use_moving_windows and lags_passed_as_dict and (not series_equal_freq): + raise_log( + ValueError( + f"Cannot create tabularized data for the {i}th series because target and covariates don't have " + "the same frequency and some of the lags are provided as a dictionary. Either resample the " + "series or change the lags definition." + ), + logger, + ) + if use_moving_windows and series_equal_freq: X_i, y_i, times_i = _create_lagged_data_by_moving_window( target_i, output_chunk_length, @@ -297,6 +331,8 @@ def create_lagged_data( lags, lags_past_covariates, lags_future_covariates, + lags_extract, + lags_order, max_samples_per_ts, multi_models, check_inputs, @@ -715,9 +751,9 @@ def create_lagged_component_names( For `*_lags=[-2,-1]` and `*_series.n_components = 2` (lags shared across all the components), each `lagged_*` has the following structure (grouped by lags): comp0_*_lag-2 | comp1_*_lag-2 | comp0_*_lag_-1 | comp1_*_lag-1 - For `*_lags={'comp0':[-2, -1], 'comp1':[-5, -3]}` and `*_series.n_components = 2` (component- - specific lags), each `lagged_*` has the following structure (grouped by components): - comp0_*_lag-2 | comp0_*_lag-1 | comp1_*_lag_-5 | comp1_*_lag-3 + For `*_lags={'comp0':[-3, -1], 'comp1':[-5, -3]}` and `*_series.n_components = 2` (component- + specific lags), each `lagged_*` has the following structure (sorted by lags, then by components): + comp1_*_lag-5 | comp0_*_lag-3 | comp1_*_lag_-3 | comp0_*_lag-1 and for static covariates (2 static covariates acting on 2 target components): cov0_*_target_comp0 | cov0_*_target_comp1 | cov1_*_target_comp0 | cov1_*_target_comp1 @@ -776,10 +812,32 @@ def create_lagged_component_names( components = get_single_series(variate).components.tolist() if isinstance(variate_lags, dict): + if "default_lags" in variate_lags: + raise_log( + ValueError( + "All the lags must be explicitly defined, 'default_lags' is not allowed in the " + "lags dictionary." + ), + logger, + ) + + # combine all the lags and sort them in ascending order across all the components + comp_lags_reordered = np.concatenate( + [ + np.array(variate_lags[comp_name], dtype=int) + for comp_name in components + ] + ).argsort() + tmp_lagged_feats_names = [] for name in components: - lagged_feature_names += [ + tmp_lagged_feats_names += [ f"{name}_{variate_type}_lag{lag}" for lag in variate_lags[name] ] + + # adding feats names reordered across components + lagged_feature_names += [ + tmp_lagged_feats_names[idx] for idx in comp_lags_reordered + ] else: lagged_feature_names += [ f"{name}_{variate_type}_lag{lag}" @@ -811,6 +869,44 @@ def create_lagged_component_names( return lagged_feature_names, label_feature_names +def _get_lagged_indices( + lags, + lags_past_covariates, + lags_future_covariates, +): + """Computes and returns: + + - the lagged feature indices for extraction from windows + - the reordered indices to apply after the window extraction (in case of component specific lags) + + Assumes that all input series share identical component order. + """ + lags_extract = [] + lags_order = [] + for lags_i in [lags, lags_past_covariates, lags_future_covariates]: + if lags_i is None: + lags_extract.append(None) + lags_order.append(None) + continue + + # Within each window, the `-1` indexed value (i.e. the value at the very end of + # the window) corresponds to time `t - min_lag_i`. The negative index of the time + # `t + lag_i` within this window is, therefore, `-1 + lag_i + min_lag_i`: + if isinstance(lags_i, list): + lags_extract_i = np.array(lags_i, dtype=int) + # Feats are already grouped by lags and ordered + lags_order_i = slice(None) + else: + # Assume keys are in the same order as the series components + # Lags are grouped by component, extracted from the same window + lags_extract_i = [np.array(c_lags, dtype=int) for c_lags in lags_i.values()] + # Sort the lags across the components in ascending order + lags_order_i = np.concatenate(lags_extract_i).argsort() + lags_extract.append(lags_extract_i) + lags_order.append(lags_order_i) + return lags_extract, lags_order + + def _create_lagged_data_by_moving_window( target_series: Optional[TimeSeries], output_chunk_length: int, @@ -820,6 +916,8 @@ def _create_lagged_data_by_moving_window( lags: Optional[Union[Sequence[int], Dict[str, List[int]]]], lags_past_covariates: Optional[Union[Sequence[int], Dict[str, List[int]]]], lags_future_covariates: Optional[Union[Sequence[int], Dict[str, List[int]]]], + lags_extract: List[Optional[np.ndarray]], + lags_order: List[Optional[np.ndarray]], max_samples_per_ts: Optional[int], multi_models: bool, check_inputs: bool, @@ -837,6 +935,8 @@ def _create_lagged_data_by_moving_window( and `t + output_chunk_length - 1` from the target series. In both cases, the extracted windows can then be reshaped into the correct shape. This approach can only be used if we *can* assume that the specified series are all of the same frequency. + + Assumes that all the lags are sorted in ascending order. """ feature_times, min_lags, max_lags = _get_feature_times( target_series, @@ -880,10 +980,11 @@ def _create_lagged_data_by_moving_window( X = [] start_time_idx = None target_start_time_idx = None - for i, (series_i, lags_i, min_lag_i, max_lag_i) in enumerate( + for i, (series_i, lags_extract_i, lags_order_i, min_lag_i, max_lag_i) in enumerate( zip( [target_series, past_covariates, future_covariates], - [lags, lags_past_covariates, lags_future_covariates], + lags_extract, + lags_order, min_lags, max_lags, ) @@ -936,19 +1037,16 @@ def _create_lagged_data_by_moving_window( windows = strided_moving_window( x=vals, window_len=window_len, stride=1, axis=0, check_inputs=False ) + # Within each window, the `-1` indexed value (i.e. the value at the very end of # the window) corresponds to time `t - min_lag_i`. The negative index of the time # `t + lag_i` within this window is, therefore, `-1 + lag_i + min_lag_i`: - if isinstance(lags_i, list): - lags_to_extract = np.array(lags_i, dtype=int) + min_lag_i - 1 - else: - # Lags are grouped by component, extracted from the same window - lags_to_extract = [ - np.array(comp_lags, dtype=int) + min_lag_i - 1 - for comp_lags in lags_i.values() - ] - lagged_vals = _extract_lagged_vals_from_windows(windows, lags_to_extract) - X.append(lagged_vals) + # extract lagged values + lagged_vals = _extract_lagged_vals_from_windows( + windows, lags_extract_i, lags_shift=min_lag_i - 1 + ) + # extract and append the reordered lagged values + X.append(lagged_vals[:, lags_order_i]) # Cache `start_time_idx` for label creation: if is_target_series: target_start_time_idx = start_time_idx @@ -987,6 +1085,7 @@ def _create_lagged_data_by_moving_window( def _extract_lagged_vals_from_windows( windows: np.ndarray, lags_to_extract: Optional[Union[np.ndarray, List[np.ndarray]]] = None, + lags_shift: int = 0, ) -> np.ndarray: """ Helper function called by `_create_lagged_data_by_moving_window` that @@ -1011,7 +1110,7 @@ def _extract_lagged_vals_from_windows( if isinstance(lags_to_extract, list): # iterate over the components-specific lags comp_windows = [ - windows[:, i, :, comp_lags_to_extract] + windows[:, i, :, comp_lags_to_extract + lags_shift] for i, comp_lags_to_extract in enumerate(lags_to_extract) ] # windows.shape = (sum(lags_len) across components, num_windows, num_samples): @@ -1019,7 +1118,7 @@ def _extract_lagged_vals_from_windows( lagged_vals = np.moveaxis(windows, (1, 0, 2), (0, 1, 2)) else: if lags_to_extract is not None: - windows = windows[:, :, :, lags_to_extract] + windows = windows[:, :, :, lags_to_extract + lags_shift] # windows.shape = (num_windows, window_len, num_components, num_samples): windows = np.moveaxis(windows, (0, 3, 1, 2), (0, 1, 2, 3)) # lagged_vals.shape = (num_windows, num_components*window_len, num_samples): @@ -1148,6 +1247,120 @@ def _create_lagged_data_by_intersecting_times( return X, y, shared_times +def _create_lagged_data_autoregression( + target_series: Union[TimeSeries, Sequence[TimeSeries]], + t_pred: int, + shift: int, + last_step_shift: int, + series_matrix: np.ndarray, + covariate_matrices: Dict[str, np.ndarray], + lags: Dict[str, List[int]], + component_lags: Dict[str, Dict[str, List[int]]], + relative_cov_lags: Dict[str, np.ndarray], + uses_static_covariates: bool, + last_static_covariates_shape: Optional[Tuple[int, int]], + num_samples: int, +) -> np.ndarray: + """Extract lagged data from target, past covariates and future covariates for auto-regression + with RegressionModels. + """ + series_length = len(target_series) + X = [] + for series_type in ["target", "past", "future"]: + if series_type not in lags: + continue + + # extract series specific data + values_matrix = ( + series_matrix + if series_type == "target" + else covariate_matrices[series_type] + ) + + if series_type not in component_lags: + # for global lags over all components, directly extract lagged values from the data + if series_type == "target": + relative_lags = [ + lag - (shift + last_step_shift) for lag in lags[series_type] + ] + else: + relative_lags = relative_cov_lags[series_type] + t_pred + + lagged_data = values_matrix[:, relative_lags].reshape( + series_length * num_samples, -1 + ) + else: + # for component-specific lags, sort by lags and components and then extract + tmp_X = _extract_component_lags_autoregression( + series_type=series_type, + values_matrix=values_matrix, + shift=shift, + last_step_shift=last_step_shift, + t_pred=t_pred, + lags=lags, + component_lags=component_lags, + ) + lagged_data = tmp_X.reshape(series_length * num_samples, -1) + X.append(lagged_data) + # concatenate retrieved lags + X = np.concatenate(X, axis=1) + + if not uses_static_covariates: + return X + + # Need to split up `X` into three equally-sized sub-blocks + # corresponding to each timeseries in `series`, so that + # static covariates can be added to each block; valid since + # each block contains same number of observations: + X = np.split(X, series_length, axis=0) + X, _ = add_static_covariates_to_lagged_data( + features=X, + target_series=target_series, + uses_static_covariates=uses_static_covariates, + last_shape=last_static_covariates_shape, + ) + + # concatenate retrieved lags + return np.concatenate(X, axis=0) + + +def _extract_component_lags_autoregression( + series_type: str, + values_matrix: np.ndarray, + shift: int, + last_step_shift: int, + t_pred: int, + lags: Dict[str, List[int]], + component_lags: Dict[str, Dict[str, List[int]]], +) -> np.ndarray: + """Extract, concatenate and reorder component-wise lags to obtain a feature order + identical to tabularization. + """ + # prepare index to reorder features by lags across components + comp_lags_reordered = np.concatenate( + [comp_lags for comp_lags in component_lags[series_type].values()] + ).argsort() + + # convert relative lags to absolute + if series_type == "target": + lags_shift = -shift - last_step_shift + else: + lags_shift = -lags[series_type][0] + t_pred + + # extract features + tmp_X = [ + values_matrix[ + :, + [lag + lags_shift for lag in comp_lags], + comp_i, + ] + for comp_i, comp_lags in enumerate(component_lags[series_type].values()) + ] + + # concatenate on features dimension and reorder + return np.concatenate(tmp_X, axis=1)[:, comp_lags_reordered] + + # For convenience, define following types for `_get_feature_times`: FeatureTimes = Tuple[ Optional[Union[pd.Index, pd.DatetimeIndex, pd.RangeIndex]], From 261307c78b45fb5f1a783f5ac6f6ac187f59831e Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Fri, 12 Apr 2024 13:14:57 +0200 Subject: [PATCH 036/161] speed up regression model tests (#2321) --- .../forecasting/test_regression_models.py | 170 ++++++++++++------ 1 file changed, 111 insertions(+), 59 deletions(-) diff --git a/darts/tests/models/forecasting/test_regression_models.py b/darts/tests/models/forecasting/test_regression_models.py index b2d3898ae5..307c7eac73 100644 --- a/darts/tests/models/forecasting/test_regression_models.py +++ b/darts/tests/models/forecasting/test_regression_models.py @@ -157,10 +157,31 @@ class NewCls(cls): return NewCls +xgb_test_params = { + "n_estimators": 1, + "max_depth": 1, + "max_leaves": 1, + "verbose": -1, + "random_state": 42, +} +lgbm_test_params = { + "n_estimators": 1, + "max_depth": 1, + "num_leaves": 2, + "verbosity": -1, + "random_state": 42, +} +cb_test_params = { + "iterations": 1, + "depth": 1, + "verbose": -1, + "random_state": 42, +} + + class TestRegressionModels: np.random.seed(42) - # default regression models models = [ RandomForest, @@ -179,10 +200,16 @@ class TestRegressionModels: LinearRegressionModel, likelihood="poisson", random_state=42 ) PoissonXGBModel = partialclass( - XGBModel, likelihood="poisson", random_state=42, tree_method="exact" + XGBModel, + likelihood="poisson", + tree_method="exact", + **xgb_test_params, ) QuantileXGBModel = partialclass( - XGBModel, likelihood="quantile", random_state=42, tree_method="exact" + XGBModel, + likelihood="quantile", + tree_method="exact", + **xgb_test_params, ) # targets for poisson regression must be positive, so we exclude them for some tests models.extend( @@ -200,8 +227,8 @@ class TestRegressionModels: 1e-13, # RegressionModel 0.8, # QuantileLinearRegressionModel 0.4, # PoissonLinearRegressionModel - 1e-01, # PoissonXGBModel - 0.5, # QuantileXGBModel + 0.75, # PoissonXGBModel + 0.75, # QuantileXGBModel ] multivariate_accuracies = [ 0.3, # RandomForest @@ -209,8 +236,8 @@ class TestRegressionModels: 1e-13, # RegressionModel 0.8, # QuantileLinearRegressionModel 0.4, # PoissonLinearRegressionModel - 0.15, # PoissonXGBModel - 0.4, # QuantileXGBModel + 0.75, # PoissonXGBModel + 0.75, # QuantileXGBModel ] multivariate_multiseries_accuracies = [ 0.05, # RandomForest @@ -218,23 +245,26 @@ class TestRegressionModels: 1e-13, # RegressionModel 0.8, # QuantileLinearRegressionModel 0.4, # PoissonLinearRegressionModel - 1e-01, # PoissonXGBModel - 0.4, # QuantileXGBModel + 0.85, # PoissonXGBModel + 0.65, # QuantileXGBModel ] lgbm_w_categorical_covariates = NotImportedModule if lgbm_available: + RegularLightGBMModel = partialclass(LightGBMModel, **lgbm_test_params) QuantileLightGBMModel = partialclass( LightGBMModel, likelihood="quantile", quantiles=[0.05, 0.5, 0.95], - random_state=42, + **lgbm_test_params, ) PoissonLightGBMModel = partialclass( - LightGBMModel, likelihood="poisson", random_state=42 + LightGBMModel, + likelihood="poisson", + **lgbm_test_params, ) models += [ - LightGBMModel, + RegularLightGBMModel, QuantileLightGBMModel, PoissonLightGBMModel, ] @@ -247,62 +277,67 @@ class TestRegressionModels: categorical_future_covariates=["fut_cov_promo_mechanism"], categorical_past_covariates=["past_cov_cat_dummy"], categorical_static_covariates=["product_id"], + **lgbm_test_params, ) univariate_accuracies += [ - 0.3, # LightGBMModel - 0.5, # QuantileLightGBMModel - 0.4, # PoissonLightGBMModel + 0.75, # LightGBMModel + 0.75, # QuantileLightGBMModel + 0.75, # PoissonLightGBMModel ] multivariate_accuracies += [ - 0.4, # LightGBMModel - 0.4, # QuantileLightGBMModel - 0.4, # PoissonLightGBMModel + 0.7, # LightGBMModel + 0.75, # QuantileLightGBMModel + 0.75, # PoissonLightGBMModel ] multivariate_multiseries_accuracies += [ - 0.05, # LightGBMModel - 0.4, # QuantileLightGBMModel - 0.4, # PoissonLightGBMModel + 0.7, # LightGBMModel + 0.7, # QuantileLightGBMModel + 0.75, # PoissonLightGBMModel ] if cb_available: + RegularCatBoostModel = partialclass( + CatBoostModel, + **cb_test_params, + ) QuantileCatBoostModel = partialclass( CatBoostModel, likelihood="quantile", quantiles=[0.05, 0.5, 0.95], - random_state=42, + **cb_test_params, ) PoissonCatBoostModel = partialclass( CatBoostModel, likelihood="poisson", - random_state=42, + **cb_test_params, ) NormalCatBoostModel = partialclass( CatBoostModel, likelihood="gaussian", - random_state=42, + **cb_test_params, ) models += [ - CatBoostModel, + RegularCatBoostModel, QuantileCatBoostModel, PoissonCatBoostModel, NormalCatBoostModel, ] univariate_accuracies += [ 0.75, # CatBoostModel - 1e-03, # QuantileCatBoostModel - 1e-01, # PoissonCatBoostModel - 1e-05, # NormalCatBoostModel + 0.75, # QuantileCatBoostModel + 0.9, # PoissonCatBoostModel + 0.75, # NormalCatBoostModel ] multivariate_accuracies += [ 0.75, # CatBoostModel - 1e-03, # QuantileCatBoostModel - 0.15, # PoissonCatBoostModel - 1e-05, # NormalCatBoostModel + 0.75, # QuantileCatBoostModel + 0.86, # PoissonCatBoostModel + 0.75, # NormalCatBoostModel ] multivariate_multiseries_accuracies += [ 0.75, # CatBoostModel - 1e-03, # QuantileCatBoostModel - 1e-01, # PoissonCatBoostModel - 1e-03, # NormalCatBoostModel + 0.75, # QuantileCatBoostModel + 1.2, # PoissonCatBoostModel + 0.75, # NormalCatBoostModel ] # dummy feature and target TimeSeries instances @@ -1026,7 +1061,6 @@ def test_models_runnability(self, config): prediction = model_instance.predict(n=1) assert len(prediction) == 1 - @pytest.mark.slow @pytest.mark.parametrize( "config", itertools.product( @@ -1036,10 +1070,14 @@ def test_models_runnability(self, config): def test_fit(self, config): # test fitting both on univariate and multivariate timeseries model, mode, series = config + + series = series[:15] + sine_multivariate1 = self.sine_multivariate1[:15] + # auto-regression but past_covariates does not extend enough in the future with pytest.raises(ValueError): model_instance = model(lags=4, lags_past_covariates=4, multi_models=mode) - model_instance.fit(series=series, past_covariates=self.sine_multivariate1) + model_instance.fit(series=series, past_covariates=sine_multivariate1) model_instance.predict(n=10) # inconsistent number of components in series Sequence[TimeSeries] @@ -1072,19 +1110,19 @@ def test_fit(self, config): assert model_instance.lags.get("past") is None model_instance = model(lags=12, lags_past_covariates=12, multi_models=mode) - model_instance.fit(series=series, past_covariates=self.sine_multivariate1) + model_instance.fit(series=series, past_covariates=sine_multivariate1) assert len(model_instance.lags.get("past")) == 12 model_instance = model( lags=12, lags_future_covariates=(0, 1), multi_models=mode ) - model_instance.fit(series=series, future_covariates=self.sine_multivariate1) + model_instance.fit(series=series, future_covariates=sine_multivariate1) assert len(model_instance.lags.get("future")) == 1 model_instance = model( lags=12, lags_past_covariates=[-1, -4, -6], multi_models=mode ) - model_instance.fit(series=series, past_covariates=self.sine_multivariate1) + model_instance.fit(series=series, past_covariates=sine_multivariate1) assert len(model_instance.lags.get("past")) == 3 model_instance = model( @@ -1095,8 +1133,8 @@ def test_fit(self, config): ) model_instance.fit( series=series, - past_covariates=self.sine_multivariate1, - future_covariates=self.sine_multivariate1, + past_covariates=sine_multivariate1, + future_covariates=sine_multivariate1, ) assert len(model_instance.lags.get("past")) == 3 @@ -1289,11 +1327,11 @@ def test_multioutput_wrapper(self, config): horizon=0, target_dim=1 ) - model_configs = [(XGBModel, {"tree_method": "exact"})] + model_configs = [(XGBModel, dict({"tree_method": "exact"}, **xgb_test_params))] if lgbm_available: - model_configs += [(LightGBMModel, {})] + model_configs += [(LightGBMModel, lgbm_test_params)] if cb_available: - model_configs += [(CatBoostModel, {})] + model_configs += [(CatBoostModel, cb_test_params)] @pytest.mark.parametrize( "config", itertools.product(model_configs, [1, 2], [True, False]) @@ -2308,14 +2346,18 @@ def test_output_shift(self, config): @pytest.mark.parametrize( "config", itertools.product( - [RegressionModel, LinearRegressionModel, XGBModel] - + ([LightGBMModel] if lgbm_available else []), + [ + (RegressionModel, {}), + (LinearRegressionModel, {}), + (XGBModel, xgb_test_params), + ] + + ([(LightGBMModel, lgbm_test_params)] if lgbm_available else []), [True, False], [1, 2], ), ) def test_encoders(self, config): - model_cls, mode, ocl = config + (model_cls, model_kwargs), mode, ocl = config max_past_lag = -4 max_future_lag = 4 # target @@ -2358,18 +2400,21 @@ def test_encoders(self, config): add_encoders=encoder_examples["past"], multi_models=mode, output_chunk_length=ocl, + **model_kwargs, ) model_fc_valid0 = model_cls( lags=2, add_encoders=encoder_examples["future"], multi_models=mode, output_chunk_length=ocl, + **model_kwargs, ) model_mixed_valid0 = model_cls( lags=2, add_encoders=encoder_examples["mixed"], multi_models=mode, output_chunk_length=ocl, + **model_kwargs, ) # encoders will not generate covariates without lags @@ -2384,12 +2429,14 @@ def test_encoders(self, config): add_encoders=encoder_examples["past"], multi_models=mode, output_chunk_length=ocl, + **model_kwargs, ) model_fc_valid0 = model_cls( lags_future_covariates=[-1, 0], add_encoders=encoder_examples["future"], multi_models=mode, output_chunk_length=ocl, + **model_kwargs, ) model_mixed_valid0 = model_cls( lags_past_covariates=[-2, -1], @@ -2397,6 +2444,7 @@ def test_encoders(self, config): add_encoders=encoder_examples["mixed"], multi_models=mode, output_chunk_length=ocl, + **model_kwargs, ) # check that fit/predict works with model internal covariate requirement checks for model in [model_pc_valid0, model_fc_valid0, model_mixed_valid0]: @@ -2411,6 +2459,7 @@ def test_encoders(self, config): add_encoders=encoder_examples["past"], multi_models=mode, output_chunk_length=ocl, + **model_kwargs, ) model_fc_valid1 = model_cls( lags=2, @@ -2418,6 +2467,7 @@ def test_encoders(self, config): add_encoders=encoder_examples["future"], multi_models=mode, output_chunk_length=ocl, + **model_kwargs, ) model_mixed_valid1 = model_cls( lags=2, @@ -2426,6 +2476,7 @@ def test_encoders(self, config): add_encoders=encoder_examples["mixed"], multi_models=mode, output_chunk_length=ocl, + **model_kwargs, ) for model, ex in zip( @@ -2733,6 +2784,7 @@ def get_model_params(): return { "lags": int(period / 2), "output_chunk_length": int(period / 2), + "verbose": -1, } # test case without using categorical static covariates @@ -2785,6 +2837,7 @@ def get_model_params(): "past_cov_cat_dummy", ], categorical_static_covariates=["product_id"], + **lgbm_test_params, ), LightGBMModel( lags=1, @@ -2794,12 +2847,14 @@ def get_model_params(): "past_cov_cat_dummy", ], categorical_static_covariates=["does_not_exist"], + **lgbm_test_params, ), LightGBMModel( lags=1, lags_past_covariates=1, output_chunk_length=1, categorical_future_covariates=["does_not_exist"], + **lgbm_test_params, ), ] if lgbm_available @@ -3007,8 +3062,8 @@ class TestProbabilisticRegressionModels: { "lags": 2, "likelihood": "poisson", - "random_state": 42, "multi_models": True, + **xgb_test_params, }, 0.6, ), @@ -3018,8 +3073,8 @@ class TestProbabilisticRegressionModels: "lags": 2, "likelihood": "quantile", "quantiles": [0.1, 0.3, 0.5, 0.7, 0.9], - "random_state": 42, "multi_models": True, + **xgb_test_params, }, 0.4, ), @@ -3031,8 +3086,8 @@ class TestProbabilisticRegressionModels: { "lags": 2, "likelihood": "quantile", - "random_state": 42, "multi_models": True, + **lgbm_test_params, }, 0.4, ), @@ -3042,8 +3097,8 @@ class TestProbabilisticRegressionModels: "lags": 2, "likelihood": "quantile", "quantiles": [0.1, 0.3, 0.5, 0.7, 0.9], - "random_state": 42, "multi_models": True, + **lgbm_test_params, }, 0.4, ), @@ -3052,8 +3107,8 @@ class TestProbabilisticRegressionModels: { "lags": 2, "likelihood": "poisson", - "random_state": 42, "multi_models": True, + **lgbm_test_params, }, 0.6, ), @@ -3065,8 +3120,8 @@ class TestProbabilisticRegressionModels: { "lags": 2, "likelihood": "quantile", - "random_state": 42, "multi_models": True, + **cb_test_params, }, 0.05, ), @@ -3076,8 +3131,8 @@ class TestProbabilisticRegressionModels: "lags": 2, "likelihood": "quantile", "quantiles": [0.1, 0.3, 0.5, 0.7, 0.9], - "random_state": 42, "multi_models": True, + **cb_test_params, }, 0.05, ), @@ -3086,8 +3141,8 @@ class TestProbabilisticRegressionModels: { "lags": 2, "likelihood": "poisson", - "random_state": 42, "multi_models": True, + **cb_test_params, }, 0.6, ), @@ -3096,8 +3151,8 @@ class TestProbabilisticRegressionModels: { "lags": 2, "likelihood": "gaussian", - "random_state": 42, "multi_models": True, + **cb_test_params, }, 0.05, ), @@ -3109,7 +3164,6 @@ class TestProbabilisticRegressionModels: constant_noisy_multivar_ts = constant_noisy_ts.stack(constant_noisy_ts) num_samples = 5 - @pytest.mark.slow @pytest.mark.parametrize( "config", itertools.product(models_cls_kwargs_errs, [True, False]) ) @@ -3131,7 +3185,6 @@ def test_fit_predict_determinism(self, config): pred3 = model.predict(n=10, num_samples=2).values() assert (pred2 != pred3).any() - @pytest.mark.slow @pytest.mark.parametrize( "config", itertools.product(models_cls_kwargs_errs, [True, False]) ) @@ -3146,7 +3199,6 @@ def test_probabilistic_forecast_accuracy_univariate(self, config): self.constant_noisy_ts, ) - @pytest.mark.slow @pytest.mark.parametrize( "config", itertools.product(models_cls_kwargs_errs, [True, False]) ) From c3a611236690f0704ced6078982adf20b0a33886 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Fri, 12 Apr 2024 13:15:38 +0200 Subject: [PATCH 037/161] add progress bar to regression models for hist fc (#2320) * add progress bar to regression models for hist fc * update changelog * remove line --- CHANGELOG.md | 2 ++ darts/models/forecasting/regression_model.py | 2 ++ .../optimized_historical_forecasts_regression.py | 9 +++++++-- 3 files changed, 11 insertions(+), 2 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index fed91bada1..44e6f13281 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -87,6 +87,8 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Moved functions `retain_period_common_to_all()`, `series2seq()`, `seq2series()`, `get_single_series()` from `darts.utils.utils` to `darts.utils.ts_utils`. - Improvements to `ForecastingModel`: [#2269](https://github.com/unit8co/darts/pull/2269) by [Felix Divo](https://github.com/felixdivo). - Renamed the private `_is_probabilistic` property to a public `supports_probabilistic_prediction`. +- Improvements to `RegressionModel`: [#2320](https://github.com/unit8co/darts/pull/2320) by [Felix Divo](https://github.com/felixdivo). + - Added a progress bar when performing optimized historical forecasts (`retrain=False` and no autoregression) to display the series-level progress. - Improvements to `DataTransformer`: [#2267](https://github.com/unit8co/darts/pull/2267) by [Alicja Krzeminska-Sciga](https://github.com/alicjakrzeminska). - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. diff --git a/darts/models/forecasting/regression_model.py b/darts/models/forecasting/regression_model.py index b54fac8a83..3bfd45b439 100644 --- a/darts/models/forecasting/regression_model.py +++ b/darts/models/forecasting/regression_model.py @@ -1199,6 +1199,7 @@ def _optimized_historical_forecasts( stride=stride, overlap_end=overlap_end, show_warnings=show_warnings, + verbose=verbose, predict_likelihood_parameters=predict_likelihood_parameters, **kwargs, ) @@ -1215,6 +1216,7 @@ def _optimized_historical_forecasts( stride=stride, overlap_end=overlap_end, show_warnings=show_warnings, + verbose=verbose, predict_likelihood_parameters=predict_likelihood_parameters, **kwargs, ) diff --git a/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py b/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py index 6d39a305bc..061bece96f 100644 --- a/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py +++ b/darts/utils/historical_forecasts/optimized_historical_forecasts_regression.py @@ -11,6 +11,7 @@ from darts.logging import get_logger from darts.timeseries import TimeSeries +from darts.utils import _build_tqdm_iterator from darts.utils.data.tabularization import create_lagged_prediction_data from darts.utils.historical_forecasts.utils import _get_historical_forecast_boundaries from darts.utils.utils import generate_index @@ -30,6 +31,7 @@ def _optimized_historical_forecasts_last_points_only( stride: int = 1, overlap_end: bool = False, show_warnings: bool = True, + verbose: bool = False, predict_likelihood_parameters: bool = False, **kwargs, ) -> Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: @@ -39,7 +41,8 @@ def _optimized_historical_forecasts_last_points_only( Rely on _check_optimizable_historical_forecasts() to check that the assumptions are verified. """ forecasts_list = [] - for idx, series_ in enumerate(series): + iterator = _build_tqdm_iterator(series, verbose) + for idx, series_ in enumerate(iterator): past_covariates_ = past_covariates[idx] if past_covariates is not None else None future_covariates_ = ( future_covariates[idx] if future_covariates is not None else None @@ -185,6 +188,7 @@ def _optimized_historical_forecasts_all_points( stride: int = 1, overlap_end: bool = False, show_warnings: bool = True, + verbose: bool = False, predict_likelihood_parameters: bool = False, **kwargs, ) -> Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: @@ -194,7 +198,8 @@ def _optimized_historical_forecasts_all_points( Rely on _check_optimizable_historical_forecasts() to check that the assumptions are verified. """ forecasts_list = [] - for idx, series_ in enumerate(series): + iterator = _build_tqdm_iterator(series, verbose) + for idx, series_ in enumerate(iterator): past_covariates_ = past_covariates[idx] if past_covariates is not None else None future_covariates_ = ( future_covariates[idx] if future_covariates is not None else None From 95f121e584e66eb21cd320ab0ca4122083714a25 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Tue, 16 Apr 2024 15:03:57 +0200 Subject: [PATCH 038/161] Fix/historical forecasts torch models (#2329) * simplify hist fc tests part 1 * refactor torch hist fc auto start * future cov hist fcs tests * fix rnn model historical forecasts * fix failing unit tests * update changelog * fix discrepancies in test comments * fix failing unit tests --- CHANGELOG.md | 8 +- darts/models/forecasting/ensemble_model.py | 3 +- darts/models/forecasting/forecasting_model.py | 30 +- .../forecasting/global_baseline_models.py | 3 - .../forecasting/regression_ensemble_model.py | 5 +- darts/models/forecasting/regression_model.py | 2 + darts/models/forecasting/rnn_model.py | 37 +- .../forecasting/torch_forecasting_model.py | 54 +- darts/tests/models/forecasting/test_RNN.py | 19 + .../forecasting/test_ensemble_models.py | 17 +- .../test_global_forecasting_models.py | 3 +- .../forecasting/test_historical_forecasts.py | 693 +++++++++++------- .../test_regression_ensemble_model.py | 34 +- .../test_torch_forecasting_model.py | 2 +- darts/utils/historical_forecasts/utils.py | 17 +- 15 files changed, 577 insertions(+), 350 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 44e6f13281..06e5ed062b 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -90,14 +90,18 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Improvements to `RegressionModel`: [#2320](https://github.com/unit8co/darts/pull/2320) by [Felix Divo](https://github.com/felixdivo). - Added a progress bar when performing optimized historical forecasts (`retrain=False` and no autoregression) to display the series-level progress. - Improvements to `DataTransformer`: [#2267](https://github.com/unit8co/darts/pull/2267) by [Alicja Krzeminska-Sciga](https://github.com/alicjakrzeminska). - - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. + - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. +- Improvements to `RNNModel`: [#2329](https://github.com/unit8co/darts/pull/2329) by [Dennis Bader](https://github.com/dennisbader). + - 🔴 Enforce `training_length>input_chunk_length` since otherwise, during training the model is never run for as many iterations as it will during prediction. + - Historical forecasts now correctly infer all possible prediction start points for untrained and pre-trained `RNNModel`. **Fixed** - Fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - Fixed type hint warning "Unexpected argument" when calling `historical_forecasts()` caused by the `_with_sanity_checks` decorator. The type hinting is now properly configured to expect any input arguments and return the output type of the method for which the sanity checks are performed for. [#2286](https://github.com/unit8co/darts/pull/2286) by [Dennis Bader](https://github.com/dennisbader). - Fixed the order of the features when using component-wise lags so that they are grouped by values, then by components (before, were grouped by components, then by values). [#2272](https://github.com/unit8co/darts/pull/2272) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a segmentation fault that some users were facing when importing a `LightGBMModel`. [#2304](https://github.com/unit8co/darts/pull/2304) by [Dennis Bader](https://github.com/dennisbader). -- Fixed a bug when using a dropout with a `TorchForecasting` and pytorch lightning versions >= 2.2.0, where the dropout was not properly activated during training. [#2312](https://github.com/unit8co/darts/pull/2312) by [Dennis Bader](https://github.com/dennisbader). +- Fixed a bug when using a dropout with a `TorchForecastingModel` and pytorch lightning versions >= 2.2.0, where the dropout was not properly activated during training. [#2312](https://github.com/unit8co/darts/pull/2312) by [Dennis Bader](https://github.com/dennisbader). +- Fixed a bug when performing historical forecasts with an untrained `TorchForecastingModel` and using covariates, where the historical forecastable time index generation did not take the covariates into account. [#2329](https://github.com/unit8co/darts/pull/2329) by [Dennis Bader](https://github.com/dennisbader). **Dependencies** diff --git a/darts/models/forecasting/ensemble_model.py b/darts/models/forecasting/ensemble_model.py index 98ba7293c3..2a1f6627e3 100644 --- a/darts/models/forecasting/ensemble_model.py +++ b/darts/models/forecasting/ensemble_model.py @@ -402,6 +402,7 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: def find_max_lag_or_none(lag_id, aggregator) -> Optional[int]: max_lag = None @@ -413,7 +414,7 @@ def find_max_lag_or_none(lag_id, aggregator) -> Optional[int]: max_lag = aggregator(max_lag, curr_lag) return max_lag - lag_aggregators = (min, max, min, max, min, max, max) + lag_aggregators = (min, max, min, max, min, max, max, max) return tuple( find_max_lag_or_none(i, agg) for i, agg in enumerate(lag_aggregators) ) diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index 7b327cd8fd..6c58b3d44a 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -446,12 +446,13 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: """ - A 7-tuple containing in order: + A 8-tuple containing in order: (min target lag, max target lag, min past covariate lag, max past covariate lag, min future covariate - lag, max future covariate lag, output shift). If 0 is the index of the first prediction, then all lags are - relative to this index. + lag, max future covariate lag, output shift, max target lag train (only for RNNModel)). If 0 is the index of the + first prediction, then all lags are relative to this index. See examples below. @@ -474,27 +475,27 @@ def extreme_lags( >>> model = LinearRegressionModel(lags=3, output_chunk_length=2) >>> model.fit(train_series) >>> model.extreme_lags - (-3, 1, None, None, None, None, 0) + (-3, 1, None, None, None, None, 0, None) >>> model = LinearRegressionModel(lags=3, output_chunk_length=2, output_chunk_shift=2) >>> model.fit(train_series) >>> model.extreme_lags - (-3, 1, None, None, None, None, 2) + (-3, 1, None, None, None, None, 2, None) >>> model = LinearRegressionModel(lags=[-3, -5], lags_past_covariates = 4, output_chunk_length=7) >>> model.fit(train_series, past_covariates=past_covariates) >>> model.extreme_lags - (-5, 6, -4, -1, None, None, 0) + (-5, 6, -4, -1, None, None, 0, None) >>> model = LinearRegressionModel(lags=[3, 5], lags_future_covariates = [4, 6], output_chunk_length=7) >>> model.fit(train_series, future_covariates=future_covariates) >>> model.extreme_lags - (-5, 6, None, None, 4, 6, 0) + (-5, 6, None, None, 4, 6, 0, None) >>> model = NBEATSModel(input_chunk_length=10, output_chunk_length=7) >>> model.fit(train_series) >>> model.extreme_lags - (-10, 6, None, None, None, None, 0) + (-10, 6, None, None, None, None, 0, None) >>> model = NBEATSModel(input_chunk_length=10, output_chunk_length=7, lags_future_covariates=[4, 6]) >>> model.fit(train_series, future_covariates) >>> model.extreme_lags - (-10, 6, None, None, 4, 6, 0) + (-10, 6, None, None, 4, 6, 0, None) """ @property @@ -510,10 +511,13 @@ def _training_sample_time_index_length(self) -> int: min_future_cov_lag, max_future_cov_lag, output_chunk_shift, + max_target_lag_train, ) = self.extreme_lags + # some models can have different output chunks for training and prediction (e.g. `RNNModel`) + output_lag = max_target_lag_train or max_target_lag return max( - max_target_lag + 1, + output_lag + 1, max_future_cov_lag + 1 if max_future_cov_lag else 0, ) - min( min_target_lag if min_target_lag else 0, @@ -2452,12 +2456,13 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: # TODO: LocalForecastingModels do not yet handle extreme lags properly. Especially # TransferableFutureCovariatesLocalForecastingModel, where there is a difference between fit and predict mode) # do not yet. In general, Local models train on the entire series (input=output), different to Global models # that use an input to predict an output. - return -self.min_train_series_length, -1, None, None, None, None, 0 + return -self.min_train_series_length, -1, None, None, None, None, 0, None @property def supports_transferrable_series_prediction(self) -> bool: @@ -2927,12 +2932,13 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: # TODO: LocalForecastingModels do not yet handle extreme lags properly. Especially # TransferableFutureCovariatesLocalForecastingModel, where there is a difference between fit and predict mode) # do not yet. In general, Local models train on the entire series (input=output), different to Global models # that use an input to predict an output. - return -self.min_train_series_length, -1, None, None, 0, 0, 0 + return -self.min_train_series_length, -1, None, None, 0, 0, 0, None class TransferableFutureCovariatesLocalForecastingModel( diff --git a/darts/models/forecasting/global_baseline_models.py b/darts/models/forecasting/global_baseline_models.py index 860e44609c..1da914872a 100644 --- a/darts/models/forecasting/global_baseline_models.py +++ b/darts/models/forecasting/global_baseline_models.py @@ -229,9 +229,6 @@ def _verify_predict_sample(self, predict_sample: Tuple): # have to match the training sample pass - def min_train_series_length(self) -> int: - return self.input_chunk_length - def supports_likelihood_parameter_prediction(self) -> bool: return False diff --git a/darts/models/forecasting/regression_ensemble_model.py b/darts/models/forecasting/regression_ensemble_model.py index 835afbe883..a76bb1a2e9 100644 --- a/darts/models/forecasting/regression_ensemble_model.py +++ b/darts/models/forecasting/regression_ensemble_model.py @@ -316,9 +316,9 @@ def fit( # shift by the forecasting models' largest input length all_shifts = [] # when it's not clearly defined, extreme_lags returns - # min_train_serie_length for the LocalForecastingModels + # `min_train_series_length` for the LocalForecastingModels for model in self.forecasting_models: - min_target_lag, _, _, _, _, _, _ = model.extreme_lags + min_target_lag, _, _, _, _, _, _, _ = model.extreme_lags if min_target_lag is not None: all_shifts.append(-min_target_lag) @@ -459,6 +459,7 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: extreme_lags_ = super().extreme_lags # shift min_target_lag in the past to account for the regression model training set diff --git a/darts/models/forecasting/regression_model.py b/darts/models/forecasting/regression_model.py index 3bfd45b439..ab01088a19 100644 --- a/darts/models/forecasting/regression_model.py +++ b/darts/models/forecasting/regression_model.py @@ -449,6 +449,7 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: min_target_lag = self.lags["target"][0] if "target" in self.lags else None max_target_lag = self.output_chunk_length - 1 + self.output_chunk_shift @@ -464,6 +465,7 @@ def extreme_lags( min_future_cov_lag, max_future_cov_lag, self.output_chunk_shift, + None, ) @property diff --git a/darts/models/forecasting/rnn_model.py b/darts/models/forecasting/rnn_model.py index 01621d9909..8ccda3712a 100644 --- a/darts/models/forecasting/rnn_model.py +++ b/darts/models/forecasting/rnn_model.py @@ -321,9 +321,9 @@ def __init__( Fraction of neurons afected by Dropout. training_length The length of both input (target and covariates) and output (target) time series used during - training. Generally speaking, `training_length` should have a higher value than `input_chunk_length` - because otherwise during training the RNN is never run for as many iterations as it will during - inference. For more information on this parameter, please see `darts.utils.data.ShiftedDataset` + training. Must have a larger value than `input_chunk_length`, because otherwise during training + the RNN is never run for as many iterations as it will during inference. For more information on + this parameter, please see `darts.utils.data.ShiftedDataset`. **kwargs Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and Darts' :class:`TorchForecastingModel`. @@ -485,6 +485,13 @@ def encode_year(idx): `RNN example notebook `_ presents techniques that can be used to improve the forecasts quality compared to this simple usage example. """ + if training_length < input_chunk_length: + raise_log( + ValueError( + f"`training_length` ({training_length}) must be `>=input_chunk_length` ({input_chunk_length})." + ), + logger=logger, + ) # create copy of model parameters model_kwargs = {key: val for key, val in self.model_params.items()} @@ -585,3 +592,27 @@ def supports_multivariate(self) -> bool: @property def min_train_series_length(self) -> int: return self.training_length + 1 + + @property + def extreme_lags( + self, + ) -> Tuple[ + Optional[int], + Optional[int], + Optional[int], + Optional[int], + Optional[int], + Optional[int], + int, + Optional[int], + ]: + return ( + -self.input_chunk_length, + self.output_chunk_length - 1, + None, + None, + -self.input_chunk_length, + self.output_chunk_length - 1, + self.output_chunk_shift, + self.training_length - self.input_chunk_length, + ) diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index f3c877c24c..1bde798b6c 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -2494,15 +2494,17 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: return ( -self.input_chunk_length, self.output_chunk_length - 1 + self.output_chunk_shift, - -self.input_chunk_length if self.uses_past_covariates else None, - -1 if self.uses_past_covariates else None, + -self.input_chunk_length, + -1, None, None, self.output_chunk_shift, + None, ) @@ -2583,19 +2585,17 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: return ( -self.input_chunk_length, self.output_chunk_length - 1 + self.output_chunk_shift, None, None, - self.output_chunk_shift if self.uses_future_covariates else None, - ( - self.output_chunk_length - 1 + self.output_chunk_shift - if self.uses_future_covariates - else None - ), self.output_chunk_shift, + self.output_chunk_length - 1 + self.output_chunk_shift, + self.output_chunk_shift, + None, ) @@ -2677,19 +2677,17 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: return ( -self.input_chunk_length, self.output_chunk_length - 1 + self.output_chunk_shift, None, None, - -self.input_chunk_length if self.uses_future_covariates else None, - ( - self.output_chunk_length - 1 + self.output_chunk_shift - if self.uses_future_covariates - else None - ), + -self.input_chunk_length, + self.output_chunk_length - 1 + self.output_chunk_shift, self.output_chunk_shift, + None, ) @@ -2771,19 +2769,17 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: return ( -self.input_chunk_length, self.output_chunk_length - 1 + self.output_chunk_shift, - -self.input_chunk_length if self.uses_past_covariates else None, - -1 if self.uses_past_covariates else None, - -self.input_chunk_length if self.uses_future_covariates else None, - ( - self.output_chunk_length - 1 + self.output_chunk_shift - if self.uses_future_covariates - else None - ), + -self.input_chunk_length, + -1, + -self.input_chunk_length, + self.output_chunk_length - 1 + self.output_chunk_shift, self.output_chunk_shift, + None, ) def predict( @@ -2922,17 +2918,15 @@ def extreme_lags( Optional[int], Optional[int], int, + Optional[int], ]: return ( -self.input_chunk_length, self.output_chunk_length - 1 + self.output_chunk_shift, - -self.input_chunk_length if self.uses_past_covariates else None, - -1 if self.uses_past_covariates else None, - self.output_chunk_shift if self.uses_future_covariates else None, - ( - self.output_chunk_length - 1 + self.output_chunk_shift - if self.uses_future_covariates - else None - ), + -self.input_chunk_length, + -1, self.output_chunk_shift, + self.output_chunk_length - 1 + self.output_chunk_shift, + self.output_chunk_shift, + None, ) diff --git a/darts/tests/models/forecasting/test_RNN.py b/darts/tests/models/forecasting/test_RNN.py index 8fe711a6d3..30c58cfeec 100644 --- a/darts/tests/models/forecasting/test_RNN.py +++ b/darts/tests/models/forecasting/test_RNN.py @@ -55,6 +55,25 @@ class TestRNNModel: dropout=0, ) + def test_training_length_input(self): + # too small training length + with pytest.raises(ValueError) as msg: + RNNModel(input_chunk_length=2, training_length=1) + assert ( + str(msg.value) + == "`training_length` (1) must be `>=input_chunk_length` (2)." + ) + + # training_length >= input_chunk_length works + model = RNNModel( + input_chunk_length=2, + training_length=2, + n_epochs=1, + random_state=42, + **tfm_kwargs, + ) + model.fit(self.series[:3]) + def test_creation(self): # cannot choose any string with pytest.raises(ValueError) as msg: diff --git a/darts/tests/models/forecasting/test_ensemble_models.py b/darts/tests/models/forecasting/test_ensemble_models.py index 79d3f5d762..42a8534afd 100644 --- a/darts/tests/models/forecasting/test_ensemble_models.py +++ b/darts/tests/models/forecasting/test_ensemble_models.py @@ -111,6 +111,7 @@ def test_extreme_lag_inference(self): None, None, 0, + None, ) # test if default is okay model1 = LinearRegressionModel( @@ -123,7 +124,19 @@ def test_extreme_lag_inference(self): ensemble = NaiveEnsembleModel( [model1, model2] ) # test if infers extreme lags is okay - expected = (-5, 0, -6, -1, 6, 9, 0) + expected = (-5, 0, -6, -1, 6, 9, 0, None) + assert expected == ensemble.extreme_lags + + @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") + def test_extreme_lags_rnn(self): + # RNNModel has the 8th element in `extreme_lags` for the `max_target_lag_train`. + # it is given by `training_length - input_chunk_length`. + # for the ensemble model we want the max lag of all forecasting models. + model1 = RNNModel(input_chunk_length=14, training_length=24) + model2 = RNNModel(input_chunk_length=12, training_length=37) + + ensemble = NaiveEnsembleModel([model1, model2]) + expected = (-14, 0, None, None, -14, 0, 0, 37 - 12) assert expected == ensemble.extreme_lags def test_input_models_local_models(self): @@ -152,7 +165,7 @@ def test_call_predict_local_models(self): def test_call_backtest_naive_ensemble_local_models(self): ensemble = NaiveEnsembleModel([NaiveSeasonal(5), Theta(2, 5)]) ensemble.fit(self.series1) - assert ensemble.extreme_lags == (-10, -1, None, None, None, None, 0) + assert ensemble.extreme_lags == (-10, -1, None, None, None, None, 0, None) ensemble.backtest(self.series1) def test_predict_univariate_ensemble_local_models(self): diff --git a/darts/tests/models/forecasting/test_global_forecasting_models.py b/darts/tests/models/forecasting/test_global_forecasting_models.py index 59d278f756..bdd04ae030 100644 --- a/darts/tests/models/forecasting/test_global_forecasting_models.py +++ b/darts/tests/models/forecasting/test_global_forecasting_models.py @@ -67,6 +67,7 @@ RNNModel, { "model": "RNN", + "training_length": IN_LEN + OUT_LEN, "hidden_dim": 10, "batch_size": 32, "n_epochs": 10, @@ -77,7 +78,7 @@ ( RNNModel, { - "training_length": 12, + "training_length": IN_LEN + OUT_LEN, "n_epochs": 10, "likelihood": GaussianLikelihood(), "pl_trainer_kwargs": tfm_kwargs["pl_trainer_kwargs"], diff --git a/darts/tests/models/forecasting/test_historical_forecasts.py b/darts/tests/models/forecasting/test_historical_forecasts.py index e92eedffdc..738b7ef3f0 100644 --- a/darts/tests/models/forecasting/test_historical_forecasts.py +++ b/darts/tests/models/forecasting/test_historical_forecasts.py @@ -133,6 +133,7 @@ RNNModel, { "input_chunk_length": IN_LEN, + "training_length": IN_LEN + OUT_LEN - 1, "model": "RNN", "hidden_dim": 10, "batch_size": 32, @@ -147,7 +148,7 @@ RNNModel, { "input_chunk_length": IN_LEN, - "training_length": 12, + "training_length": IN_LEN + OUT_LEN - 1, "n_epochs": NB_EPOCH, "likelihood": GaussianLikelihood(), **tfm_kwargs, @@ -1378,137 +1379,6 @@ def f_encoder(idx): hfc.all_values(), ohfc.all_values() ) - @pytest.mark.slow - @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") - @pytest.mark.parametrize("model_config", models_torch_cls_kwargs) - def test_torch_auto_start_multiple_no_cov(self, model_config): - forecast_hrz = 10 - model_cls, kwargs, bounds, _ = model_config - model = model_cls( - random_state=0, - **kwargs, - ) - model.fit(self.ts_pass_train) - - # check historical forecasts for several time series, - # retrain True and overlap_end False - forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], - forecast_horizon=forecast_hrz, - stride=1, - retrain=True, - overlap_end=False, - ) - assert ( - len(forecasts) == 2 - ), f"Model {model_cls} did not return a list of historical forecasts" - # If retrain=True and overlap_end=False, as ts has 72 values, we can only forecast - # (target length)-(training length=input_chunk_length+output_chunk_length) - (horizon - 1) - # indeed we start to predict after the first trainable point (input_chunk_length+output_chunk_length) - # and we stop in this case (overlap_end=False) at the end_time: - # target.end_time() - (horizon - 1) * target.freq - - # explanation: - # (bounds): train sample length - # (horizon - 1): with overlap_end=False, if entire horizon is available (overlap_end=False), - # we can predict 1 - theorical_forecast_length = ( - self.ts_val_length - (bounds[0] + bounds[1]) - (forecast_hrz - 1) - ) - assert len(forecasts[0]) == len(forecasts[1]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in the case of " - f"retrain=True and overlap_end=False. " - f"Expected {theorical_forecast_length}, got {len(forecasts[0])} and {len(forecasts[1])}" - ) - - model = model_cls( - random_state=0, - **kwargs, - ) - - model.fit(self.ts_pass_train) - # check historical forecasts for several time series, - # retrain True and overlap_end True - forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], - forecast_horizon=forecast_hrz, - stride=1, - retrain=True, - overlap_end=True, - ) - - assert ( - len(forecasts) == 2 - ), f"Model {model_cls} did not return a list of historical forecasts" - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - + 1 # with overlap_end=True, we are not restricted by the end of the series or horizon - ) - assert len(forecasts[0]) == len(forecasts[1]) == theorical_forecast_length - - model = model_cls( - random_state=0, - **kwargs, - ) - model.fit(self.ts_pass_train) - # check historical forecasts for several time series, - # retrain False and overlap_end False - forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], - forecast_horizon=forecast_hrz, - stride=1, - retrain=False, - overlap_end=False, - ) - - assert ( - len(forecasts) == 2 - ), f"Model {model_cls} did not return a list of historical forecasts" - theorical_forecast_length = ( - self.ts_val_length - - bounds[0] # prediction input sample length - - ( - forecast_hrz - 1 - ) # overlap_end=False -> if entire horizon is available, we can predict 1 - ) - assert len(forecasts[0]) == len(forecasts[1]) == theorical_forecast_length - assert ( - forecasts[0].end_time() - == forecasts[1].end_time() - == self.ts_pass_val.end_time() - ) - - model = model_cls( - random_state=0, - **kwargs, - ) - model.fit(self.ts_pass_train) - # check historical forecasts for several time series, - # retrain False and overlap_end True - forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], - forecast_horizon=forecast_hrz, - stride=1, - retrain=False, - overlap_end=True, - ) - - assert ( - len(forecasts) == 2 - ), f"Model {model_cls} did not return a list of historical forecasts" - theorical_forecast_length = ( - self.ts_val_length - - bounds[0] # prediction input sample length - + 1 # overlap_end=True -> last possible prediction start is one step after end of target - ) - assert len(forecasts[0]) == len(forecasts[1]) == theorical_forecast_length - assert ( - forecasts[0].end_time() - == forecasts[1].end_time() - == self.ts_pass_val.end_time() + forecast_hrz * self.ts_pass_val.freq - ) - def test_hist_fc_end_exact_with_covs(self): model = LinearRegressionModel( lags=2, @@ -1591,6 +1461,7 @@ def test_regression_auto_start_multiple_with_cov_retrain(self, model_config): min_future_cov_lag, max_future_cov_lag, output_chunk_shift, + _, ) = model.extreme_lags past_lag = min( @@ -1703,6 +1574,7 @@ def test_regression_auto_start_multiple_with_cov_no_retrain(self, model_config): min_future_cov_lag, max_future_cov_lag, output_chunk_shift, + _, ) = model.extreme_lags past_lag = min( @@ -1731,10 +1603,86 @@ def test_regression_auto_start_multiple_with_cov_no_retrain(self, model_config): @pytest.mark.slow @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") - @pytest.mark.parametrize("model_config", models_torch_cls_kwargs) - def test_torch_auto_start_with_past_cov(self, model_config): + @pytest.mark.parametrize( + "model_config,retrain", + itertools.product(models_torch_cls_kwargs, [True, False]), + ) + def test_torch_auto_start_multiple_no_cov(self, model_config, retrain): + n_fcs = 3 forecast_hrz = 10 - # Past covariates only + model_cls, kwargs, bounds, _ = model_config + model = model_cls( + random_state=0, + **kwargs, + ) + + # we expect first predicted point after `min_train_series_length` + # model is expected to generate `n_fcs` historical forecasts with `n=forecast_hrz` and + # `series` of length `length_series_history` + length_series_history = model.min_train_series_length + forecast_hrz + n_fcs - 1 + series = self.ts_pass_train[:length_series_history] + if not retrain: + model.fit(series) + + # check historical forecasts for several time series, + # retrain True and overlap_end False + forecasts = model.historical_forecasts( + series=[series] * 2, + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=False, + ) + assert ( + len(forecasts) == 2 + ), f"Model {model_cls} did not return a list of historical forecasts" + + # with the required time spans we expect to get `n_fcs` forecasts + if not retrain: + # with retrain=False, we can start `output_chunk_length` steps earlier for non-RNNModels + # and `training_length - input_chunk_length` steps for RNNModels + if not isinstance(model, RNNModel): + add_fcs = model.extreme_lags[1] + 1 + else: + add_fcs = model.extreme_lags[7] + 1 + else: + add_fcs = 0 + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + assert forecasts[0].end_time() == forecasts[1].end_time() == series.end_time() + + # check historical forecasts for several time series, + # retrain True and overlap_end True + forecasts = model.historical_forecasts( + series=[series] * 2, + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=True, + ) + + assert ( + len(forecasts) == 2 + ), f"Model {model_cls} did not return a list of historical forecasts" + # with overlap_end=True, we can generate additional `forecast_hrz` + # with retrain=False, we can start `add_fcs` steps earlier + # forecasts after the end of `series` + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + forecast_hrz + add_fcs + assert ( + forecasts[0].end_time() + == forecasts[1].end_time() + == series.end_time() + forecast_hrz * series.freq + ) + + @pytest.mark.slow + @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") + @pytest.mark.parametrize( + "model_config,retrain", + itertools.product(models_torch_cls_kwargs, [True, False]), + ) + def test_torch_auto_start_with_past_cov(self, model_config, retrain): + n_fcs = 3 + forecast_hrz = 10 + # past covariates only model_cls, kwargs, bounds, cov_type = model_config model = model_cls( @@ -1752,231 +1700,410 @@ def test_torch_auto_start_with_past_cov(self, model_config): ) return - model.fit(self.ts_pass_train, self.ts_past_cov_train) + # we expect first predicted point after `min_train_series_length` + # model is expected to generate `n_fcs` historical forecasts with `n=forecast_hrz`, + # `series` of length `length_series_history`, and covariates that cover the required time range + length_series_history = model.min_train_series_length + forecast_hrz + n_fcs - 1 + series = self.ts_pass_train[:length_series_history] + + # for historical forecasts, minimum required past covariates should end + # `forecast_hrz` before the end of `series` + pc = series[:-forecast_hrz] + + if not retrain: + model.fit(series, past_covariates=pc) - # same start + # same start, overlap_end=False forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], - past_covariates=[ - self.ts_past_cov_valid_same_start, - self.ts_past_cov_valid_same_start, - ], + series=[series] * 2, + past_covariates=[pc] * 2, forecast_horizon=forecast_hrz, stride=1, - retrain=True, + retrain=retrain, overlap_end=False, ) - assert ( len(forecasts) == 2 ), f"Model {model_cls} did not return a list of historical forecasts" - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - - (forecast_hrz - 1) # if entire horizon is available, we can predict 1 - - 0 # past covs have same start as target -> no shift - - 0 # we don't have future covs in output chunk -> no shift - ) - assert len(forecasts[0]) == len(forecasts[1]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and past_covariates with same start. " - f"Expected {theorical_forecast_length}, got {len(forecasts[0])} and {len(forecasts[1])}" + # with the required time spans we expect to get `n_fcs` forecasts + if not retrain: + # with retrain=False, we can start `output_chunk_length` steps earlier for non-RNNModels + # and `training_length - input_chunk_length` steps for RNNModels + add_fcs = model.extreme_lags[1] + 1 + else: + add_fcs = 0 + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + assert forecasts[0].end_time() == forecasts[1].end_time() == series.end_time() + + # check the same for `overlap_end=True` + forecasts = model.historical_forecasts( + series=[series] * 2, + past_covariates=[pc] * 2, + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=True, ) + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + assert forecasts[0].end_time() == forecasts[1].end_time() == series.end_time() - model = model_cls( - random_state=0, - **kwargs, + # same time index, `overlap_end=True` + forecasts = model.historical_forecasts( + series=[series] * 2, + past_covariates=[series] * 2, + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=True, ) - model.fit(self.ts_pass_train, past_covariates=self.ts_past_cov_train) + assert ( + len(forecasts) == 2 + ), f"Model {model_cls} did not return a list of historical forecasts" + # with overlap_end=True, we can generate additional `forecast_hrz` + # with retrain=False, we can start `add_fcs` steps earlier + # forecasts after the end of `series` + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + forecast_hrz + add_fcs + assert ( + forecasts[0].end_time() + == forecasts[1].end_time() + == series.end_time() + forecast_hrz * series.freq + ) + + # `pc_longer` has more than required length + pc_longer = pc.prepend_values([0.0]).append_values([0.0]) + # `pc_before` starts before and has required times + pc_longer_start = pc.prepend_values([0.0]) + # `pc_after` has required length but starts one step after `pc` + pc_start_after = pc[1:].append_values([0.0]) + # `pc_end_before` has required length but end one step before `pc` + pc_end_before = pc[:-1].prepend_values([0.0]) - # start before, after + # checks for long enough and shorter covariates forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], + series=[series] * 4, past_covariates=[ - self.ts_past_cov_valid_5_aft_start, - self.ts_past_cov_valid_10_bef_start, + pc_longer, + pc_longer_start, + pc_start_after, + pc_end_before, ], forecast_horizon=forecast_hrz, stride=1, - retrain=True, + retrain=retrain, overlap_end=False, ) - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - - (forecast_hrz - 1) # if entire horizon is available, we can predict 1 - - 5 # past covs start 5 later -> shift - - 0 # we don't have future covs in output chunk -> no shift - ) - assert len(forecasts[0]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and past_covariates starting after. " - f"Expected {theorical_forecast_length}, got {len(forecasts[0])}" - ) - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - - (forecast_hrz - 1) # if entire horizon is available, we can predict 1 - - 0 # past covs have same start as target -> no shift - - 0 # we don't have future covs in output chunk -> no shift - ) - assert len(forecasts[1]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and past_covariates starting before. " - f"Expected {theorical_forecast_length}, got {len(forecasts[1])}" - ) + + # for long enough past covariates (but too short for overlapping after the end), we expect `n_fcs` forecast + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + # `pc_start_after` and `pc_end_before` are one step too short for all `n_fcs` + assert len(forecasts[2]) == len(forecasts[3]) == n_fcs + add_fcs - 1 + assert all([fc.end_time() == series.end_time() for fc in forecasts[:3]]) + assert forecasts[3].end_time() == series.end_time() - series.freq @pytest.mark.slow @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") - @pytest.mark.parametrize("model_config", models_torch_cls_kwargs) - def test_torch_auto_start_with_past_future_cov(self, model_config): + @pytest.mark.parametrize( + "model_config,retrain", + list(itertools.product(models_torch_cls_kwargs, [True, False]))[2:], + ) + def test_torch_auto_start_with_future_cov(self, model_config, retrain): + n_fcs = 3 forecast_hrz = 10 - # Past and future covariates + # future covariates only model_cls, kwargs, bounds, cov_type = model_config model = model_cls( random_state=0, **kwargs, ) - if not (model.supports_past_covariates and model.supports_future_covariates): + if not model.supports_future_covariates: with pytest.raises(ValueError) as err: model.fit( - self.ts_pass_train, - past_covariates=self.ts_past_cov_train, - future_covariates=self.ts_fut_cov_train, + series=self.ts_pass_train, future_covariates=self.ts_fut_cov_train ) - invalid_covs = [] - if not model.supports_past_covariates: - invalid_covs.append("`past_covariates`") - if not model.supports_future_covariates: - invalid_covs.append("`future_covariates`") assert str(err.value).startswith( - f"The model does not support {', '.join(invalid_covs)}" + "The model does not support `future_covariates`." ) return - model.fit( - self.ts_pass_train, - past_covariates=self.ts_past_cov_train, - future_covariates=self.ts_fut_cov_train, - ) + # we expect first predicted point after `min_train_series_length` + # model is expected to generate `n_fcs` historical forecasts with `n=forecast_hrz`, + # `series` of length `length_series_history`, and covariates that cover the required time range + length_series_history = model.min_train_series_length + forecast_hrz + n_fcs - 1 + series = self.ts_pass_train[:length_series_history] + + # to generate `n_fcs` historical forecasts, and since `forecast_horizon > output_chunk_length`, + # we need additional `output_chunk_length - horizon` future covariates steps + add_n = max(model.extreme_lags[1] + 1 - forecast_hrz, 0) + fc = series.append_values([0.0] * add_n) if add_n else series + + if not retrain: + model.fit(series, future_covariates=fc) + # same start, overlap_end=False forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], - past_covariates=[ - self.ts_past_cov_valid_5_aft_start, - self.ts_past_cov_valid_same_start, - ], - future_covariates=[ - self.ts_fut_cov_valid_7_aft_start, - self.ts_fut_cov_valid_16_bef_start, - ], + series=[series] * 2, + future_covariates=[fc] * 2, forecast_horizon=forecast_hrz, stride=1, - retrain=True, + retrain=retrain, overlap_end=False, ) - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - - (forecast_hrz - 1) # if entire horizon is available, we can predict 1 - - 7 # future covs start 7 after target (more than past covs) -> shift - - 2 # future covs in output chunk -> difference between horizon=10 and output_chunk_length=12 + assert ( + len(forecasts) == 2 + ), f"Model {model_cls} did not return a list of historical forecasts" + + # with the required time spans we expect to get `n_fcs` forecasts + if not retrain: + # with retrain=False, we can start `output_chunk_length` steps earlier for non-RNNModels + # and `training_length - input_chunk_length` steps for RNNModels + if not isinstance(model, RNNModel): + add_fcs = model.extreme_lags[1] + 1 + else: + add_fcs = model.extreme_lags[7] + 1 + else: + add_fcs = 0 + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + assert forecasts[0].end_time() == forecasts[1].end_time() == series.end_time() + + # check the same for `overlap_end=True` + forecasts = model.historical_forecasts( + series=[series] * 2, + future_covariates=[fc] * 2, + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=True, ) - assert len(forecasts[0]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and past_covariates and future_covariates with " - f"different start. " - f"Expected {theorical_forecast_length}, got {len(forecasts[0])}" + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + assert forecasts[0].end_time() == forecasts[1].end_time() == series.end_time() + + # `overlap_end=True`, with long enough future covariates + if not isinstance(model, RNNModel): + add_n = model.output_chunk_length + else: + # RNNModel is a special case with always `output_chunk_length=1` + add_n = forecast_hrz + fc_long = fc.append_values([0.0] * add_n) + forecasts = model.historical_forecasts( + series=[series] * 2, + future_covariates=[fc_long] * 2, + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=True, ) - theorical_forecast_length = ( - self.ts_val_length - - (bounds[0] + bounds[1]) # train sample length - - (forecast_hrz - 1) # if entire horizon is available, we can predict 1, - - 0 # all covs start at the same time as target -> no shift, - - 2 # future covs in output chunk -> difference between horizon=10 and output_chunk_length=12 + assert ( + len(forecasts) == 2 + ), f"Model {model_cls} did not return a list of historical forecasts" + # with overlap_end=True, we can generate additional `forecast_hrz` + # with retrain=False, we can start `add_fcs` steps earlier + # forecasts after the end of `series` + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + forecast_hrz + add_fcs + assert ( + forecasts[0].end_time() + == forecasts[1].end_time() + == series.end_time() + forecast_hrz * series.freq ) - assert len(forecasts[1]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and past_covariates with different start. " - f"Expected {theorical_forecast_length}, got {len(forecasts[1])}" + + # `fc_longer` has more than required length + fc_longer = fc.prepend_values([0.0]).append_values([0.0]) + # `fc_before` starts before and has required times + fc_longer_start = fc.prepend_values([0.0]) + # `fc_after` has required length but starts one step after `fc` + fc_start_after = fc[1:].append_values([0.0]) + # `fc_end_before` has required length but end one step before `fc` + fc_end_before = fc[:-1].prepend_values([0.0]) + + # checks for long enough and shorter covariates + forecasts = model.historical_forecasts( + series=[series] * 4, + future_covariates=[ + fc_longer, + fc_longer_start, + fc_start_after, + fc_end_before, + ], + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=False, ) + # for long enough future covariates (but too short for overlapping after the end), we expect `n_fcs` forecast + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + # `fc_start_after` and `fc_end_before` are one step too short for all `n_fcs` + assert len(forecasts[2]) == len(forecasts[3]) == n_fcs + add_fcs - 1 + assert all([fc.end_time() == series.end_time() for fc in forecasts[:3]]) + assert forecasts[3].end_time() == series.end_time() - series.freq + @pytest.mark.slow @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") - @pytest.mark.parametrize("model_config", models_torch_cls_kwargs) - def test_torch_auto_start_with_future_cov(self, model_config): + @pytest.mark.parametrize( + "model_config,retrain", + itertools.product(models_torch_cls_kwargs, [True, False]), + ) + def test_torch_auto_start_with_past_and_future_cov(self, model_config, retrain): + n_fcs = 3 forecast_hrz = 10 - # Future covariates only + # past and future covariates model_cls, kwargs, bounds, cov_type = model_config model = model_cls( random_state=0, **kwargs, ) - - if not model.supports_future_covariates: + if not (model.supports_past_covariates and model.supports_future_covariates): with pytest.raises(ValueError) as err: - model.fit(self.ts_pass_train, future_covariates=self.ts_fut_cov_train) + model.fit( + self.ts_pass_train, + past_covariates=self.ts_past_cov_train, + future_covariates=self.ts_fut_cov_train, + ) + invalid_covs = [] + if not model.supports_past_covariates: + invalid_covs.append("`past_covariates`") + if not model.supports_future_covariates: + invalid_covs.append("`future_covariates`") assert str(err.value).startswith( - "The model does not support `future_covariates`" + f"The model does not support {', '.join(invalid_covs)}" ) return - model.fit(self.ts_pass_train, future_covariates=self.ts_fut_cov_train) + # we expect first predicted point after `min_train_series_length` + # model is expected to generate `n_fcs` historical forecasts with `n=forecast_hrz`, + # `series` of length `length_series_history`, and covariates that cover the required time range + length_series_history = model.min_train_series_length + forecast_hrz + n_fcs - 1 + series = self.ts_pass_train[:length_series_history] + + # for historical forecasts, minimum required past covariates should end + # `forecast_hrz` before the end of `series` + pc = series[:-forecast_hrz] - # Only fut covariate + # to generate `n_fcs` historical forecasts, and since `forecast_horizon > output_chunk_length`, + # we need additional `output_chunk_length - horizon` future covariates steps + add_n = max(model.extreme_lags[1] + 1 - forecast_hrz, 0) + fc = series.append_values([0.0] * add_n) if add_n else series + + if not retrain: + model.fit(series, past_covariates=pc, future_covariates=fc) + + # same start, overlap_end=False forecasts = model.historical_forecasts( - series=[self.ts_pass_val, self.ts_pass_val], - future_covariates=[ - self.ts_fut_cov_valid_7_aft_start, - self.ts_fut_cov_valid_16_bef_start, - ], + series=[series] * 2, + past_covariates=[pc] * 2, + future_covariates=[fc] * 2, forecast_horizon=forecast_hrz, stride=1, - retrain=True, + retrain=retrain, overlap_end=False, ) - assert ( len(forecasts) == 2 ), f"Model {model_cls} did not return a list of historical forecasts" - icl, ocl = bounds - theorical_forecast_length = ( - self.ts_val_length - - (icl + ocl) # train sample length - - ( - forecast_hrz - 1 - ) # (horizon - 1): if entire horizon is available, we can predict 1, - - 7 # future covs start 7 after target (more than past covs) -> shift - - max( - ocl - forecast_hrz, 0 - ) # future covs in output chunk -> difference between hrz=10 and ocl=12 - ) - assert len(forecasts[0]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and no past_covariates and future_covariates " - f"with different start. " - f"Expected {theorical_forecast_length}, got {len(forecasts[0])}" + # with the required time spans we expect to get `n_fcs` forecasts + if not retrain: + # with retrain=False, we can start `output_chunk_length` steps earlier for non-RNNModels + # and `training_length - input_chunk_length` steps for RNNModels + if not isinstance(model, RNNModel): + add_fcs = model.extreme_lags[1] + 1 + else: + add_fcs = model.extreme_lags[7] + 1 + else: + add_fcs = 0 + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + assert forecasts[0].end_time() == forecasts[1].end_time() == series.end_time() + + # check the same for `overlap_end=True` + forecasts = model.historical_forecasts( + series=[series] * 2, + past_covariates=[pc] * 2, + future_covariates=[fc] * 2, + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=True, ) - theorical_forecast_length = ( - self.ts_val_length - - (icl + ocl) # train sample length - - (forecast_hrz - 1) # if entire horizon is available, we can predict 1 - - 0 # all covs start at the same time as target -> no shift - - max( - ocl - forecast_hrz, 0 - ) # future covs in output chunk -> difference between hrz=10 and ocl=12 + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + assert forecasts[0].end_time() == forecasts[1].end_time() == series.end_time() + + # `overlap_end=True`, with long enough past and future covariates + if not isinstance(model, RNNModel): + add_n = model.output_chunk_length + else: + # RNNModel is a special case with always `output_chunk_length=1` + add_n = forecast_hrz + fc_long = fc.append_values([0.0] * add_n) + forecasts = model.historical_forecasts( + series=[series] * 2, + past_covariates=[series] * 2, + future_covariates=[fc_long] * 2, + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=True, ) - assert len(forecasts[1]) == theorical_forecast_length, ( - f"Model {model_cls} does not return the right number of historical forecasts in case " - f"of retrain=True and overlap_end=False and no past_covariates and future_covariates " - f"with different start. " - f"Expected {theorical_forecast_length}, got {len(forecasts[1])}" + assert ( + len(forecasts) == 2 + ), f"Model {model_cls} did not return a list of historical forecasts" + # with overlap_end=True, we can generate additional `forecast_hrz` + # with retrain=False, we can start `add_fcs` steps earlier + # forecasts after the end of `series` + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + forecast_hrz + add_fcs + assert ( + forecasts[0].end_time() + == forecasts[1].end_time() + == series.end_time() + forecast_hrz * series.freq + ) + + # `pc_longer` has more than required length + pc_longer = pc.prepend_values([0.0]).append_values([0.0]) + # `pc_before` starts before and has required times + pc_longer_start = pc.prepend_values([0.0]) + # `pc_after` has required length but starts one step after `pc` + pc_start_after = pc[1:].append_values([0.0]) + # `pc_end_before` has required length but end one step before `pc` + pc_end_before = pc[:-1].prepend_values([0.0]) + + # `fc_longer` has more than required length + fc_longer = fc.prepend_values([0.0]).append_values([0.0]) + # `fc_before` starts before and has required times + fc_longer_start = fc.prepend_values([0.0]) + # `fc_after` has required length but starts one step after `fc` + fc_start_after = fc[1:].append_values([0.0]) + # `fc_end_before` has required length but end one step before `fc` + fc_end_before = fc[:-1].prepend_values([0.0]) + + # checks for long enough and shorter covariates + forecasts = model.historical_forecasts( + series=[series] * 4, + past_covariates=[ + pc_longer, + pc_longer_start, + pc_start_after, + pc_end_before, + ], + future_covariates=[ + fc_longer, + fc_longer_start, + fc_start_after, + fc_end_before, + ], + forecast_horizon=forecast_hrz, + stride=1, + retrain=retrain, + overlap_end=False, ) + # for long enough future covariates (but too short for overlapping after the end), we expect `n_fcs` forecast + assert len(forecasts[0]) == len(forecasts[1]) == n_fcs + add_fcs + # `*_start_after` and `*_end_bore` are one step too short for all `n_fcs` + assert len(forecasts[2]) == len(forecasts[3]) == n_fcs + add_fcs - 1 + assert all([fc.end_time() == series.end_time() for fc in forecasts[:3]]) + assert forecasts[3].end_time() == series.end_time() - series.freq + def test_retrain(self): """test historical_forecasts for an untrained model with different retrain values.""" diff --git a/darts/tests/models/forecasting/test_regression_ensemble_model.py b/darts/tests/models/forecasting/test_regression_ensemble_model.py index 5b4530b52f..96a569277a 100644 --- a/darts/tests/models/forecasting/test_regression_ensemble_model.py +++ b/darts/tests/models/forecasting/test_regression_ensemble_model.py @@ -70,17 +70,19 @@ def get_local_models(self): return [NaiveDrift(), NaiveSeasonal(5), NaiveSeasonal(10)] @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") - def get_global_models(self, output_chunk_length=5): + def get_global_models( + self, output_chunk_length=5, input_chunk_length=20, training_length=24 + ): return [ RNNModel( - input_chunk_length=20, - output_chunk_length=output_chunk_length, + input_chunk_length=input_chunk_length, + training_length=training_length, n_epochs=1, random_state=42, **tfm_kwargs, ), BlockRNNModel( - input_chunk_length=20, + input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, n_epochs=1, random_state=42, @@ -559,6 +561,7 @@ def test_call_backtest_regression_ensemble_local_models(self): None, None, 0, + None, ) ensemble.backtest(self.sine_series) @@ -574,7 +577,7 @@ def test_extreme_lags(self): regression_train_n_points=train_n_points, ) - assert model.extreme_lags == (-train_n_points, 0, -3, -1, 0, 0, 0) + assert model.extreme_lags == (-train_n_points, 0, -3, -1, 0, 0, 0, None) # mix of all the lags model3 = RandomForest( @@ -586,7 +589,26 @@ def test_extreme_lags(self): regression_train_n_points=train_n_points, ) - assert model.extreme_lags == (-7 - train_n_points, 0, -3, -1, -2, 5, 0) + assert model.extreme_lags == (-7 - train_n_points, 0, -3, -1, -2, 5, 0, None) + + # test RNN case which has the 8th extreme lags element (max_target_lag_train) + icl = 20 + ocl = 5 + training_length = 24 + model = RegressionEnsembleModel( + forecasting_models=self.get_global_models(ocl, icl, training_length), + regression_train_n_points=train_n_points, + ) + assert model.extreme_lags == ( + -icl - train_n_points, + ocl - 1, + -icl, # past covs from BlockRNN + -1, # past covs from BlockRNN + -icl, # future covs from RNN + 0, # future covs from RNN + 0, + training_length - icl, # training length from RNN + ) def test_stochastic_regression_ensemble_model(self): quantiles = [0.25, 0.5, 0.75] diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index e08b2396d0..e962d35012 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -64,7 +64,7 @@ (NBEATSModel, kwargs), (NHiTSModel, kwargs), (NLinearModel, kwargs), - (RNNModel, {"training_length": 2, **kwargs}), + (RNNModel, {"training_length": 10, **kwargs}), (TCNModel, kwargs), (TFTModel, {"add_relative_index": 2, **kwargs}), (TiDEModel, kwargs), diff --git a/darts/utils/historical_forecasts/utils.py b/darts/utils/historical_forecasts/utils.py index cab00882a6..d5a3d343a4 100644 --- a/darts/utils/historical_forecasts/utils.py +++ b/darts/utils/historical_forecasts/utils.py @@ -403,6 +403,7 @@ def _get_historical_forecastable_time_index( min_future_cov_lag, max_future_cov_lag, output_chunk_shift, + max_target_lag_train, ) = model.extreme_lags # max_target_lag < 0 are local models which can predict for n (horizon) -> infinity (no auto-regression) @@ -414,11 +415,17 @@ def _get_historical_forecastable_time_index( if min_target_lag is None: min_target_lag = 0 + if is_training and max_target_lag_train is not None: + # the output lag/window can be different for train and predict modes + output_lag = max_target_lag_train + else: + output_lag = max_target_lag + # longest possible time index for target if is_training: start = ( series.start_time() - + (max_target_lag - output_chunk_shift - min_target_lag + 1) * series.freq + + (output_lag - output_chunk_shift - min_target_lag + 1) * series.freq ) else: start = series.start_time() - min_target_lag * series.freq @@ -431,7 +438,7 @@ def _get_historical_forecastable_time_index( if is_training: start_pc = ( past_covariates.start_time() - + (max_target_lag - output_chunk_shift - min_past_cov_lag + 1) + + (output_lag - output_chunk_shift - min_past_cov_lag + 1) * past_covariates.freq ) else: @@ -455,7 +462,7 @@ def _get_historical_forecastable_time_index( if is_training: start_fc = ( future_covariates.start_time() - + (max_target_lag - output_chunk_shift - min_future_cov_lag + 1) + + (output_lag - output_chunk_shift - min_future_cov_lag + 1) * future_covariates.freq ) else: @@ -475,7 +482,7 @@ def _get_historical_forecastable_time_index( min([intersect_[1], end_fc]), ) - # overlap_end = True -> predictions must not go beyond end of target series + # overlap_end = False -> predictions must not go beyond end of target series if ( not overlap_end and intersect_[1] + (forecast_horizon + output_chunk_shift - 1) * series.freq @@ -723,6 +730,7 @@ def _get_historical_forecast_boundaries( ) # re-adjust the slicing indexes to account for the lags + # `max_target_lag_train` is redundant, since optimized hist fc is running in predict mode only ( min_target_lag, _, @@ -731,6 +739,7 @@ def _get_historical_forecast_boundaries( min_future_cov_lag, max_future_cov_lag, output_chunk_shift, + max_target_lag_train, ) = model.extreme_lags # target lags are <= 0 From db570e6bfb86f8d3fff0fdaf08f9516ad99bf578 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Tue, 16 Apr 2024 15:38:51 +0200 Subject: [PATCH 039/161] fix failing unit tests for no torch flavor (#2330) --- .../tests/models/forecasting/test_regression_ensemble_model.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/darts/tests/models/forecasting/test_regression_ensemble_model.py b/darts/tests/models/forecasting/test_regression_ensemble_model.py index 96a569277a..b315b0979c 100644 --- a/darts/tests/models/forecasting/test_regression_ensemble_model.py +++ b/darts/tests/models/forecasting/test_regression_ensemble_model.py @@ -591,7 +591,10 @@ def test_extreme_lags(self): assert model.extreme_lags == (-7 - train_n_points, 0, -3, -1, -2, 5, 0, None) + @pytest.mark.skipif(not TORCH_AVAILABLE, reason="requires torch") + def test_extreme_lags_torch(self): # test RNN case which has the 8th extreme lags element (max_target_lag_train) + train_n_points = 10 icl = 20 ocl = 5 training_length = 24 From 2de4fcc65755717b66a06dae5d1b0f501a8180de Mon Sep 17 00:00:00 2001 From: Jirka Borovec <6035284+Borda@users.noreply.github.com> Date: Wed, 17 Apr 2024 09:07:48 +0200 Subject: [PATCH 040/161] lint: switch `flake8` to Ruff (#2323) * lint: switch `flake8` to Ruff * fixing issues * build gradle * noqa: E721 * revert changes of #2327 * ruff * Apply suggestions from code review * chlog --- .pre-commit-config.yaml | 12 +++--- CHANGELOG.md | 1 + CONTRIBUTING.md | 6 +-- build.gradle | 6 +-- darts/ad/__init__.py | 4 +- darts/ad/anomaly_model/filtering_am.py | 4 +- darts/ad/anomaly_model/forecasting_am.py | 4 +- darts/ad/detectors/quantile_detector.py | 8 ++-- darts/ad/detectors/threshold_detector.py | 8 ++-- darts/ad/scorers/__init__.py | 2 +- darts/ad/scorers/kmeans_scorer.py | 2 +- darts/ad/scorers/norm_scorer.py | 2 +- darts/ad/scorers/pyod_scorer.py | 2 +- darts/ad/scorers/scorers.py | 2 +- darts/ad/scorers/wasserstein_scorer.py | 4 +- .../transformers/reconciliation.py | 6 +-- darts/datasets/__init__.py | 34 +++++++++------ darts/tests/ad/test_aggregators.py | 4 +- darts/tests/ad/test_scorers.py | 2 +- darts/utils/historical_forecasts/utils.py | 5 ++- darts/utils/timeseries_generation.py | 2 +- pyproject.toml | 42 ++++++++++++++++++- requirements/dev.txt | 2 +- setup.cfg | 11 ----- 24 files changed, 106 insertions(+), 69 deletions(-) delete mode 100644 setup.cfg diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index c0b83b9489..eb52467d33 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -5,12 +5,6 @@ repos: - id: black-jupyter language_version: python3 - - repo: https://github.com/PyCQA/flake8 - rev: 7.0.0 - hooks: - - id: flake8 - language_version: python3 - - repo: https://github.com/pycqa/isort rev: 5.13.2 hooks: @@ -21,3 +15,9 @@ repos: hooks: - id: pyupgrade args: ['--py38-plus'] + + - repo: https://github.com/astral-sh/ruff-pre-commit + rev: v0.3.5 + hooks: + - id: ruff + args: ["--fix"] # try to fix what is possible diff --git a/CHANGELOG.md b/CHANGELOG.md index 06e5ed062b..7d0c042d64 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -94,6 +94,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Improvements to `RNNModel`: [#2329](https://github.com/unit8co/darts/pull/2329) by [Dennis Bader](https://github.com/dennisbader). - 🔴 Enforce `training_length>input_chunk_length` since otherwise, during training the model is never run for as many iterations as it will during prediction. - Historical forecasts now correctly infer all possible prediction start points for untrained and pre-trained `RNNModel`. +- Improvements to linting, switch from `flake8` to Ruff: [#2323](https://github.com/unit8co/darts/pull/2323) by [Jirka Borovec](https://github.com/borda). **Fixed** - Fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 25df10c37c..ac2513c308 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -64,13 +64,13 @@ and discuss it with some of the core team. ### Code Formatting and Linting -Darts uses [Black](https://black.readthedocs.io/en/stable/index.html) with default values for automatic code formatting, along with [flake8](https://flake8.pycqa.org/en/latest/) and [isort](https://pycqa.github.io/isort/). +Darts uses [Black](https://black.readthedocs.io/en/stable/index.html) with default values for automatic code formatting, along with [ruff](https://docs.astral.sh/ruff/) and [isort](https://pycqa.github.io/isort/). As part of the checks on pull requests, it is checked whether the code still adheres to the code style. To ensure you don't need to worry about formatting and linting when contributing, it is recommended to set up at least one of the following: - Integration in git (recommended): 1. Install the pre-commit hook using `pre-commit install` - 2. This will install Black, isort and pyupgrade formatting and flake8 linting hooks - 3. The formatters will automatically fix all files and flake8 will highlight any potential problems before committing + 2. This will install Black, `isort` and `pyupgrade` formatting and `ruff` linting hooks + 3. The formatters will automatically fix all files and in case of some non-trivial case `ruff` will highlight any remaining problems before committing - Integration in your editor: - For [Black](https://black.readthedocs.io/en/stable/integrations/editors.html) - For other integrations please look at the documentation for your editor diff --git a/build.gradle b/build.gradle index 5331b46920..9e0460a1cd 100644 --- a/build.gradle +++ b/build.gradle @@ -102,9 +102,9 @@ task lint_black(type: Exec) { commandLine "black", "--check", "." } -task lint_flake8(type: Exec) { +task lint_ruff(type: Exec) { dependsOn pip_dev - commandLine "flake8" + commandLine "ruff", "check" } task lint_isort(type: Exec) { @@ -113,7 +113,7 @@ task lint_isort(type: Exec) { } task lint { - dependsOn lint_black, lint_flake8, lint_isort + dependsOn lint_black, lint_ruff, lint_isort } void createPipRelatedTask(String flavour) { diff --git a/darts/ad/__init__.py b/darts/ad/__init__.py index 3996373070..09de314163 100644 --- a/darts/ad/__init__.py +++ b/darts/ad/__init__.py @@ -11,14 +11,14 @@ or for series accompanied by some predictions (``score_from_prediction()``). Scorers can be trainable (e.g., ``KMeansScorer``) or not (e.g., ``NormScorer``). -* `Anomaly Models `_ +* `Anomaly Models `_ offer a convenient way to produce anomaly scores from any of Darts forecasting models (``ForecastingAnomalyModel``) or filtering models (``FilteringAnomalyModel``), by comparing models' predictions with actual observations. These classes take as parameters one Darts model, and one or multiple scorers, and can be readily used to produce anomaly scores with the ``score()`` method. -* `Anomaly Detectors `_: +* `Anomaly Detectors `_: transform raw time series (such as anaomly scores) into binary anomaly time series. * `Anomaly Aggregators `_: diff --git a/darts/ad/anomaly_model/filtering_am.py b/darts/ad/anomaly_model/filtering_am.py index 9679bc2906..584b8d25fe 100644 --- a/darts/ad/anomaly_model/filtering_am.py +++ b/darts/ad/anomaly_model/filtering_am.py @@ -89,7 +89,7 @@ def fit( # TODO: add support for covariates (see eg. Kalman Filter) raise_if_not( - type(allow_model_training) is bool, + type(allow_model_training) is bool, # noqa: E721 f"`allow_filter_training` must be Boolean, found type: {type(allow_model_training)}.", ) @@ -244,7 +244,7 @@ def score( The outer sequence is over the series, and inner sequence is over the scorers. """ raise_if_not( - type(return_model_prediction) is bool, + type(return_model_prediction) is bool, # noqa: E721 f"`return_model_prediction` must be Boolean, found type: {type(return_model_prediction)}.", ) diff --git a/darts/ad/anomaly_model/forecasting_am.py b/darts/ad/anomaly_model/forecasting_am.py index 0e1f574ca9..6db4b82084 100644 --- a/darts/ad/anomaly_model/forecasting_am.py +++ b/darts/ad/anomaly_model/forecasting_am.py @@ -122,7 +122,7 @@ def fit( """ raise_if_not( - type(allow_model_training) is bool, + type(allow_model_training) is bool, # noqa: E721 f"`allow_model_training` must be Boolean, found type: {type(allow_model_training)}.", ) @@ -414,7 +414,7 @@ def score( and inner sequence is over the scorers. """ raise_if_not( - type(return_model_prediction) is bool, + type(return_model_prediction) is bool, # noqa: E721 f"`return_model_prediction` must be Boolean, found type: {type(return_model_prediction)}.", ) diff --git a/darts/ad/detectors/quantile_detector.py b/darts/ad/detectors/quantile_detector.py index 4496d8f294..a6b8c52338 100644 --- a/darts/ad/detectors/quantile_detector.py +++ b/darts/ad/detectors/quantile_detector.py @@ -105,11 +105,9 @@ def _prep_quantile(q): raise_if_not( all( - [ - l <= h - for (l, h) in zip(self.low_quantile, self.high_quantile) - if ((l is not None) and (h is not None)) - ] + low <= high + for (low, high) in zip(self.low_quantile, self.high_quantile) + if ((low is not None) and (high is not None)) ), "all values in `low_quantile` must be lower than or equal" + "to their corresponding value in `high_quantile`.", diff --git a/darts/ad/detectors/threshold_detector.py b/darts/ad/detectors/threshold_detector.py index 56c01a026a..c8863f8529 100644 --- a/darts/ad/detectors/threshold_detector.py +++ b/darts/ad/detectors/threshold_detector.py @@ -88,11 +88,9 @@ def _prep_thresholds(q): raise_if_not( all( - [ - l <= h - for (l, h) in zip(self.low_threshold, self.high_threshold) - if ((l is not None) and (h is not None)) - ] + low <= high + for (low, high) in zip(self.low_threshold, self.high_threshold) + if ((low is not None) and (high is not None)) ), "all values in `low_threshold` must be lower than or equal" + "to their corresponding value in `high_threshold`.", diff --git a/darts/ad/scorers/__init__.py b/darts/ad/scorers/__init__.py index b0eec1298d..1c663935b2 100644 --- a/darts/ad/scorers/__init__.py +++ b/darts/ad/scorers/__init__.py @@ -30,7 +30,7 @@ between the prediction (coming e.g., from a forecasting model) and the series itself. When scoring, the scorer will attribute a higher score to residuals that are distant from the clusters found during the training phase. - + Note that `Anomaly Models `_ can be used to conveniently combine any of Darts forecasting and filtering models with one or multiple scorers. diff --git a/darts/ad/scorers/kmeans_scorer.py b/darts/ad/scorers/kmeans_scorer.py index 1cbe77b5ab..d3dbfa5062 100644 --- a/darts/ad/scorers/kmeans_scorer.py +++ b/darts/ad/scorers/kmeans_scorer.py @@ -103,7 +103,7 @@ def __init__( """ raise_if_not( - type(component_wise) is bool, + type(component_wise) is bool, # noqa: E721 f"Parameter `component_wise` must be Boolean, found type: {type(component_wise)}.", ) self.component_wise = component_wise diff --git a/darts/ad/scorers/norm_scorer.py b/darts/ad/scorers/norm_scorer.py index 6764960994..081aef4b5b 100644 --- a/darts/ad/scorers/norm_scorer.py +++ b/darts/ad/scorers/norm_scorer.py @@ -49,7 +49,7 @@ def __init__(self, ord=None, component_wise: bool = False) -> None: """ raise_if_not( - type(component_wise) is bool, + type(component_wise) is bool, # noqa: E721 f"`component_wise` must be Boolean, found type: {type(component_wise)}.", ) diff --git a/darts/ad/scorers/pyod_scorer.py b/darts/ad/scorers/pyod_scorer.py index 0a90235bd2..c0864c53bf 100644 --- a/darts/ad/scorers/pyod_scorer.py +++ b/darts/ad/scorers/pyod_scorer.py @@ -103,7 +103,7 @@ def __init__( self.model = model raise_if_not( - type(component_wise) is bool, + type(component_wise) is bool, # noqa: E721 f"Parameter `component_wise` must be Boolean, found type: {type(component_wise)}.", ) self.component_wise = component_wise diff --git a/darts/ad/scorers/scorers.py b/darts/ad/scorers/scorers.py index b9e41cb680..2e6a1e45e9 100644 --- a/darts/ad/scorers/scorers.py +++ b/darts/ad/scorers/scorers.py @@ -33,7 +33,7 @@ class AnomalyScorer(ABC): def __init__(self, univariate_scorer: bool, window: int) -> None: raise_if_not( - type(window) is int, + type(window) is int, # noqa: E721 f"Parameter `window` must be an integer, found type {type(window)}.", ) diff --git a/darts/ad/scorers/wasserstein_scorer.py b/darts/ad/scorers/wasserstein_scorer.py index a332cb4173..79d4c26359 100644 --- a/darts/ad/scorers/wasserstein_scorer.py +++ b/darts/ad/scorers/wasserstein_scorer.py @@ -108,7 +108,7 @@ def __init__( # only one sample # - check if there is an equivalent Wasserstein distance for d-D distributions (currently only accepts 1D) - if type(window) is int: + if type(window) is int: # noqa: E721 if window > 0 and window < 10: logger.warning( f"The `window` parameter WassersteinScorer is smaller than 10 (w={window})." @@ -121,7 +121,7 @@ def __init__( ) raise_if_not( - type(component_wise) is bool, + type(component_wise) is bool, # noqa: E721 f"Parameter `component_wise` must be Boolean, found type: {type(component_wise)}.", ) self.component_wise = component_wise diff --git a/darts/dataprocessing/transformers/reconciliation.py b/darts/dataprocessing/transformers/reconciliation.py index e3fe39f628..18dc6a7695 100644 --- a/darts/dataprocessing/transformers/reconciliation.py +++ b/darts/dataprocessing/transformers/reconciliation.py @@ -48,8 +48,8 @@ def _get_summation_matrix(series: TimeSeries): n = len(components_seq) S = np.zeros((n, m)) - components_indexes = {c: i for i, c in enumerate(components_seq)} - leaves_indexes = {l: i for i, l in enumerate(leaves_seq)} + components_indexes = {comp: i for i, comp in enumerate(components_seq)} + leaves_indexes = {leaf: i for i, leaf in enumerate(leaves_seq)} def increment(cur_node, leaf_idx): """ @@ -87,7 +87,7 @@ class BottomUpReconciliator(BaseDataTransformer): def get_projection_matrix(series): leaves_seq = list(series.bottom_level_components) n, m = series.n_components, len(leaves_seq) - leaves_indexes = {l: i for i, l in enumerate(leaves_seq)} + leaves_indexes = {leaf: i for i, leaf in enumerate(leaves_seq)} G = np.zeros((m, n)) for i, c in enumerate(series.components): if c in leaves_indexes: diff --git a/darts/datasets/__init__.py b/darts/datasets/__init__.py index b1da737a48..73896c17fe 100644 --- a/darts/datasets/__init__.py +++ b/darts/datasets/__init__.py @@ -513,7 +513,8 @@ def __init__(self, multivariate: bool = True): Parameters ---------- multivariate: bool - Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. Default is True. + Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. + Default is True. """ def pre_proces_fn(extracted_dir, dataset_path): @@ -584,7 +585,8 @@ def __init__(self, sample_freq: str = "hourly", multivariate: bool = True): sample_freq: str The sampling frequency of the data. Can be "hourly" or "daily". Default is "hourly". multivariate: bool - Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. Default is True. + Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. + Default is True. """ valid_sample_freq = ["daily", "hourly"] raise_if_not( @@ -665,15 +667,18 @@ class ILINetDataset(DatasetLoaderCSV): Components Descriptions: - * % WEIGHTED ILI: Combined state-specific data of patients visit to healthcare providers for ILI reported each week weighted by state population - * % UNWEIGHTED ILI: Combined state-specific data of patients visit to healthcare providers for ILI reported each week unweighted by state population + * % WEIGHTED ILI: Combined state-specific data of patients visit to healthcare providers for ILI reported each week + weighted by state population + * % UNWEIGHTED ILI: Combined state-specific data of patients visit to healthcare providers for ILI reported each + week unweighted by state population * AGE 0-4: Number of patients between 0 and 4 years of age * AGE 25-49: Number of patients between 25 and 49 years of age * AGE 25-64: Number of patients between 25 and 64 years of age * AGE 5-24: Number of patients between 5 and 24 years of age * AGE 50-64: Number of patients between 50 and 64 years of age * AGE 65: Number of patients above (>=65) 65 years of age - * ILITOTAL: Total number of ILI patients. For this system, ILI is defined as fever (temperature of 100°F [37.8°C] or greater) and a cough and/or a sore throat + * ILITOTAL: Total number of ILI patients. For this system, ILI is defined as fever (temperature of 100°F [37.8°C] + or greater) and a cough and/or a sore throat * NUM. OF PROVIDERS: Number of outpatient healthcare providers * TOTAL PATIENTS: Total number of patients @@ -709,8 +714,9 @@ def _to_multi_series(self, series: pd.DataFrame) -> List[TimeSeries]: class ExchangeRateDataset(DatasetLoaderCSV): """ - The collection of the daily exchange rates of eight foreign countries, including Australia, British, Canada, Switzerland, China, Japan, New Zealand, - and Singapore, ranging from 1990 to 2016. Unfortunately, there were some inconsistencies concerning the dates, so the resulting TimeSeries is integer-indexed. + The collection of the daily exchange rates of eight foreign countries, including Australia, British, Canada, + Switzerland, China, Japan, New Zealand, and Singapore, ranging from 1990 to 2016. Unfortunately, + there were some inconsistencies concerning the dates, so the resulting TimeSeries is integer-indexed. Source: [1]_ References @@ -723,7 +729,8 @@ def __init__(self, multivariate: bool = True): Parameters ---------- multivariate: bool - Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. Default is True. + Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. + Default is True. """ super().__init__( metadata=DatasetLoaderMetadata( @@ -744,8 +751,9 @@ def _to_multi_series(self, series: pd.DataFrame) -> List[TimeSeries]: class TrafficDataset(DatasetLoaderCSV): """ - The data in this repo is a collection of 48 months (2015-2016) hourly data from the California Department of Transportation. The data describes - the road occupancy rates (between 0 and 1) measured by 862 different sensors on San Francisco Bay area freeways. The raw data is in http://pems.dot.ca.gov. + The data in this repo is a collection of 48 months (2015-2016) hourly data from the California Department + of Transportation. The data describes the road occupancy rates (between 0 and 1) measured by 862 different sensors + on San Francisco Bay area freeways. The raw data is in http://pems.dot.ca.gov. Source: [1]_ References @@ -758,7 +766,8 @@ def __init__(self, multivariate: bool = True): Parameters ---------- multivariate: bool - Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. Default is True. + Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. + Default is True. """ super().__init__( metadata=DatasetLoaderMetadata( @@ -797,7 +806,8 @@ def __init__(self, multivariate: bool = True): Parameters ---------- multivariate: bool - Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. Default is True. + Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. + Default is True. """ super().__init__( metadata=DatasetLoaderMetadata( diff --git a/darts/tests/ad/test_aggregators.py b/darts/tests/ad/test_aggregators.py index 52d2e227a7..751fda95d1 100644 --- a/darts/tests/ad/test_aggregators.py +++ b/darts/tests/ad/test_aggregators.py @@ -151,7 +151,7 @@ def test_NonFittableAggregator(self): for aggregator in list_NonFittableAggregator: # name must be of type str - assert type(aggregator.__str__()) == str + assert isinstance(aggregator.__str__(), str) # Check if trainable is False, being a NonFittableAggregator assert not aggregator.trainable @@ -196,7 +196,7 @@ def test_FittableAggregator(self): for aggregator in list_FittableAggregator: # name must be of type str - assert type(aggregator.__str__()) == str + assert isinstance(aggregator.__str__(), str) # Need to call fit() before calling predict() with pytest.raises(ValueError): diff --git a/darts/tests/ad/test_scorers.py b/darts/tests/ad/test_scorers.py index 50afbe83b4..b87d63e0ff 100644 --- a/darts/tests/ad/test_scorers.py +++ b/darts/tests/ad/test_scorers.py @@ -312,7 +312,7 @@ def test_eval_accuracy_from_prediction(self): for scorer in [non_fittable_scorer, fittable_scorer]: # name must be of type str - assert type(scorer.__str__()) == str + assert isinstance(scorer.__str__(), str) # 'metric' must be str and "AUC_ROC" or "AUC_PR" with pytest.raises(ValueError): diff --git a/darts/utils/historical_forecasts/utils.py b/darts/utils/historical_forecasts/utils.py index d5a3d343a4..1964dd341b 100644 --- a/darts/utils/historical_forecasts/utils.py +++ b/darts/utils/historical_forecasts/utils.py @@ -168,8 +168,9 @@ def _historical_forecasts_general_checks(model, series, kwargs): # check that overlap_end and start together form a valid combination overlap_end = n.overlap_end - if not overlap_end and not ( - start + (series_.freq * (n.forecast_horizon - 1)) in series_ + if ( + not overlap_end + and start + (series_.freq * (n.forecast_horizon - 1)) not in series_ ): raise_log( ValueError( diff --git a/darts/utils/timeseries_generation.py b/darts/utils/timeseries_generation.py index 1bc51a0dee..f012e82807 100644 --- a/darts/utils/timeseries_generation.py +++ b/darts/utils/timeseries_generation.py @@ -678,7 +678,7 @@ def datetime_attribute_timeseries( # fill missing columns (in case not all values appear in time_index) attribute_range = range(num_values_dict[attribute]) for i in attribute_range: - if not (i in values_df.columns): + if i not in values_df.columns: values_df[i] = 0 values_df = values_df[attribute_range] diff --git a/pyproject.toml b/pyproject.toml index ffb95ed3a0..e023217621 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -12,4 +12,44 @@ addopts = [ ] markers = [ "slow: marks tests as slow (deselect with `-m 'not slow'`)", -] \ No newline at end of file +] + + +[tool.isort] +profile = "black" + + +[tool.ruff] +target-version = "py38" +line-length = 120 + +[tool.ruff.format] +preview = true + +[tool.ruff.lint] +select = [ + "E", + "W", # see: https://pypi.org/project/pycodestyle + "F", # see: https://pypi.org/project/pyflakes +# "I", #see: https://pypi.org/project/isort/ +# "UP", # see: https://docs.astral.sh/ruff/rules/#pyupgrade-up +# "D", # see: https://pypi.org/project/pydocstyle +] +ignore = [ + "E203", + "F401", # todo: add imports to `__all__` + "E402", # todo: use noqa per line +] +ignore-init-module-imports = true +unfixable = ["F401"] + +[tool.ruff.lint.pydocstyle] +# Use Google-style docstrings. +convention = "google" + +#[tool.ruff.pycodestyle] +#ignore-overlong-task-comments = true + +[tool.ruff.lint.mccabe] +# Unlike Flake8, default to a complexity level of 10. +max-complexity = 10 \ No newline at end of file diff --git a/requirements/dev.txt b/requirements/dev.txt index 950d154554..edf7e90af1 100644 --- a/requirements/dev.txt +++ b/requirements/dev.txt @@ -1,5 +1,5 @@ black[jupyter]==24.3.0 -flake8==7.0.0 +ruff==0.3.5 isort==5.13.2 pre-commit pytest-cov diff --git a/setup.cfg b/setup.cfg deleted file mode 100644 index a0a67764d2..0000000000 --- a/setup.cfg +++ /dev/null @@ -1,11 +0,0 @@ -[flake8] -exclude = - .git, - __pycache__, - .pytest_cache, - __init__.py -max-line-length = 120 -extend-ignore = E203 - -[isort] -profile = black From a00304ae952ca137ef2261c5f5949ed5a88dbd12 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Wed, 17 Apr 2024 09:11:44 +0200 Subject: [PATCH 041/161] Devops/release notes (#2333) * add release notes section to documentation page * add body to gh release linking to the release notes * update changelog --- .github/RELEASE_TEMPLATE/release_body.md | 3 +++ .github/workflows/release.yml | 4 +++- .gitignore | 1 + CHANGELOG.md | 4 +++- docs/Makefile | 9 ++++++++- docs/source/index.rst | 6 +++++- 6 files changed, 23 insertions(+), 4 deletions(-) create mode 100644 .github/RELEASE_TEMPLATE/release_body.md diff --git a/.github/RELEASE_TEMPLATE/release_body.md b/.github/RELEASE_TEMPLATE/release_body.md new file mode 100644 index 0000000000..630c9436c8 --- /dev/null +++ b/.github/RELEASE_TEMPLATE/release_body.md @@ -0,0 +1,3 @@ +We are pleased to announce the release of a new Darts version. + +You can find a list with all changes in the [release notes](https://unit8co.github.io/darts/release_notes/RELEASE_NOTES.html). \ No newline at end of file diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml index f0cfef2590..245fd5b7d3 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/release.yml @@ -73,8 +73,10 @@ jobs: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} with: tag_name: ${{ steps.bump_dry.outputs.new_tag }} - release_name: Release ${{steps.bump_dry.outputs.part}} ${{ steps.bump_dry.outputs.new_tag }} + release_name: Darts ${{steps.bump_dry.outputs.part}} ${{ steps.bump_dry.outputs.new_tag }} draft: false + body_path: .github/RELEASE_TEMPLATE/release_body.md + deploy-docker: needs: [release] diff --git a/.gitignore b/.gitignore index 1e3939db7f..08472e146a 100644 --- a/.gitignore +++ b/.gitignore @@ -6,6 +6,7 @@ docs/source/examples docs/source/userguide/ docs/source/quickstart/ docs/source/README.rst +docs/source/release_notes/ docs/source/generated_api darts.egg-info/ build/ diff --git a/CHANGELOG.md b/CHANGELOG.md index 7d0c042d64..833885ca36 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -91,10 +91,11 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Added a progress bar when performing optimized historical forecasts (`retrain=False` and no autoregression) to display the series-level progress. - Improvements to `DataTransformer`: [#2267](https://github.com/unit8co/darts/pull/2267) by [Alicja Krzeminska-Sciga](https://github.com/alicjakrzeminska). - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. +- Other improvements: + - Added release notes to the Darts Documentation. [#2333](https://github.com/unit8co/darts/pull/2333) by [Dennis Bader](https://github.com/dennisbader). - Improvements to `RNNModel`: [#2329](https://github.com/unit8co/darts/pull/2329) by [Dennis Bader](https://github.com/dennisbader). - 🔴 Enforce `training_length>input_chunk_length` since otherwise, during training the model is never run for as many iterations as it will during prediction. - Historical forecasts now correctly infer all possible prediction start points for untrained and pre-trained `RNNModel`. -- Improvements to linting, switch from `flake8` to Ruff: [#2323](https://github.com/unit8co/darts/pull/2323) by [Jirka Borovec](https://github.com/borda). **Fixed** - Fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). @@ -110,6 +111,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Fixed failing docs build by adding new dependency `lxml_html_clean` for `nbsphinx`. [#2303](https://github.com/unit8co/darts/pull/2303) by [Dennis Bader](https://github.com/dennisbader). - Bumped `black` from 24.1.1 to 24.3.0. [#2308](https://github.com/unit8co/darts/pull/2308) by [Dennis Bader](https://github.com/dennisbader). - Bumped `codecov-action` from v2 to v4 and added codecov token as repository secret for codecov upload authentication in CI pipelines. [#2309](https://github.com/unit8co/darts/pull/2309) and [#2312](https://github.com/unit8co/darts/pull/2312) by [Dennis Bader](https://github.com/dennisbader). +- Improvements to linting, switch from `flake8` to Ruff: [#2323](https://github.com/unit8co/darts/pull/2323) by [Jirka Borovec](https://github.com/borda). ## [0.28.0](https://github.com/unit8co/darts/tree/0.28.0) (2024-03-05) ### For users of the library: diff --git a/docs/Makefile b/docs/Makefile index 64b81920e8..06f603e79a 100644 --- a/docs/Makefile +++ b/docs/Makefile @@ -23,6 +23,7 @@ clean: @rm -rf "./$(SOURCEDIR)/generated_api" @rm -rf "./$(SOURCEDIR)/quickstart" @rm -rf "./$(SOURCEDIR)/userguide" + @rm -rf "./$(SOURCEDIR)/release_notes" @rm -rf "./$(SOURCEDIR)/README.rst" copy-examples: @@ -41,6 +42,12 @@ generate-readme: @m2r2 ../README.md @mv ../README.rst "$(SOURCEDIR)" +generate-release_notes: + @echo "[Makefile] generating RELEASE_NOTES rst file..." + @mkdir -p "$(SOURCEDIR)/release_notes" + @m2r2 ../CHANGELOG.md + @mv ../CHANGELOG.rst "$(SOURCEDIR)/release_notes/RELEASE_NOTES.rst" + generate-userguide: @echo "[Makefile] generating userguide rst files..." @find $(USERGUIDEDIR)/*.md -exec m2r2 {} \; @@ -58,7 +65,7 @@ html: @echo "[Makefile] generating HTML pages using sphinx-build..." @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) -build-all-docs: clean copy-examples copy-quickstart generate-readme generate-userguide generate-api html +build-all-docs: clean copy-examples copy-quickstart generate-readme generate-release_notes generate-userguide generate-api html build-api: clean generate-api html # Catch-all target: route all unknown targets to Sphinx using the new diff --git a/docs/source/index.rst b/docs/source/index.rst index dee0bd55b4..7f74692989 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -20,12 +20,16 @@ API Reference - .. toctree:: :hidden: Examples +.. toctree:: + :hidden: + + Release Notes + Indices and tables ================== From fbbc1868bf465c7d042e9e6c43a8e3fe83a59e30 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Wed, 17 Apr 2024 11:13:12 +0200 Subject: [PATCH 042/161] Release 0.29.0 (#2335) * bump u8darts 0.28.0 to 0.29.0 * update changelog for new version * update changelog --- CHANGELOG.md | 231 +++++++++++++++++++++-------------------------- setup_u8darts.py | 2 +- 2 files changed, 106 insertions(+), 127 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 833885ca36..33db100bc3 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -5,132 +5,111 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ## [Unreleased](https://github.com/unit8co/darts/tree/master) -[Full Changelog](https://github.com/unit8co/darts/compare/0.28.0...master) +[Full Changelog](https://github.com/unit8co/darts/compare/0.29.0...master) ### For users of the library: **Improved** -- 🚀🚀 New forecasting model: `TSMixerModel` as proposed in [this paper](https://arxiv.org/abs/2303.06053). An MLP based model that combines temporal, static and cross-sectional feature information using stacked mixing layers. [#1807](https://https://github.com/unit8co/darts/pull/001), by [Dennis Bader](https://github.com/dennisbader) and [Cristof Rojas](https://github.com/cristof-r). -- 🚀🚀 Improvements to metrics, historical forecasts, backtest, and residuals through major refactor. The refactor includes optimization of multiple process and improvemenets to consistency, reliability, and the documentation. Some of these necessary changes come at the cost of breaking changes. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - - Metrics: - - Optimized all metrics, which now run **> n * 20 times faster** than before for series with `n` components/columns. This boosts direct metric computations as well as backtesting and residuals computation! + +**Fixed** + +**Dependencies** + +### For developers of the library: + +## [0.29.0](https://github.com/unit8co/darts/tree/0.29.0) (2024-04-17) +### For users of the library: +**Improved** +- 🚀🚀 New forecasting model: `TSMixerModel` as proposed in [this paper](https://arxiv.org/abs/2303.06053). An MLP based model that combines temporal, static and cross-sectional feature information using stacked mixing layers. [#2293](https://github.com/unit8co/darts/pull/2293), by [Dennis Bader](https://github.com/dennisbader) and [Cristof Rojas](https://github.com/cristof-r). +- 🚀🚀 Improvements to metrics, historical forecasts, backtest, and residuals through major refactor. The refactor includes optimization of multiple process and improvements to consistency, reliability, and the documentation. Some of these necessary changes come at the cost of breaking changes. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). + - **Metrics**: + - Optimized all metrics, which now run **> n * 20 times faster** than before for series with `n` components/columns. This boosts direct metric computations as well as backtest and residuals computation! - Added new metrics: - Time aggregated metric `merr()` (Mean Error) - - Time aggregated scaled metrics `rmsse()`, and `msse()`: The (Root) Mean Squared Scaled Error. + - Time aggregated scaled metrics `rmsse()`, and `msse()` : The (Root) Mean Squared Scaled Error. - "Per time step" metrics that return a metric score per time step: `err()` (Error), `ae()` (Absolute Error), `se()` (Squared Error), `sle()` (Squared Log Error), `ase()` (Absolute Scaled Error), `sse` (Squared Scaled Error), `ape()` (Absolute Percentage Error), `sape()` (symmetric Absolute Percentage Error), `arre()` (Absolute Ranged Relative Error), `ql` (Quantile Loss) - - All scaled metrics now accept `insample` series that can be overlapping into `pred_series` (before they had to end exactly one step before `pred_series`). Darts will handle the correct time extraction for you. + - All scaled metrics (`mase()`, ...) now accept `insample` series that can be overlapping into `pred_series` (before they had to end exactly one step before `pred_series`). Darts will handle the correct time extraction for you. - Improvements to the documentation: - Added a summary list of all metrics to the [metrics documentation page](https://unit8co.github.io/darts/generated_api/darts.metrics.html) - - Standardized the documentation of each metric (added formula, improved return documentation, ...) - - 🔴 Improved metric output consistency based on the type of input `series`, and the applied reductions: - - `float`: A single metric score for: - - single univariate series - - single multivariate series with `component_reduction` - - sequence (list) of uni/multivariate series with `series_reduction` and `component_reduction` (and `time_reduction` for "per time step metrics") - - `np.ndarray`: A numpy array of metric scores. The array has shape (n time steps, n components) without time and component reductions. The time dimension is only available for "per time step" metrics. For: - - single multivariate series and at least `component_reduction=None` for time aggregated metrics. - - single uni/multivariate series and at least `time_reduction=None` for "per time step metrics" - - sequence of uni/multivariate series including `series_reduction` and at least one of `component_reduction=None` or `time_reduction=None` for "per time step metrics" - - `List[float]`: Same as for type `float` but for a sequence of series - - `List[np.ndarray]` Same as for type `np.ndarray` but for a sequence of series - - 🔴 Other breaking changes: - - `quantile_loss()`: - - renamed to `mql()` (Mean Quantile Loss) - - renamed quantile parameter `tau` to `q` - - the metric is now multiplied by a factor `2` to make the loss more interpretable (e.g. for `q=0.5` it is identical to the `MAE`) - - `rho_risk()`: - - renamed to `qr()` (Quantile Risk) - - renamed quantile parameter `rho` to `q` - - Renamed metric parameter `reduction` to `series_reduction` - - Renamed metric parameter `inter_reduction` to `component_reduction` + - Standardized the documentation of each metric (added formula, improved return documentation, ...) + - 🔴 Breaking changes: + - Improved metric output consistency based on the type of input `series`, and the applied reductions. For some scenarios, the output type changed compared to previous Darts versions. You can find a detailed description in the [metric API documentation](https://unit8co.github.io/darts/generated_api/darts.metrics.metrics.html#darts.metrics.metrics.mae). + - Renamed metric parameter `reduction` to `component_reduction`. + - Renamed metric parameter `inter_reduction` to `series_reduction`. + - `quantile_loss()` : + - Renamed to `mql()` (Mean Quantile Loss). + - Renamed quantile parameter `tau` to `q`. + - The metric is now multiplied by a factor `2` to make the loss more interpretable (e.g. for `q=0.5` it is identical to the `MAE`) + - `rho_risk()` : + - Renamed to `qr()` (Quantile Risk). + - Renamed quantile parameter `rho` to `q`. - Scaled metrics do not allow seasonality inference anymore with `m=None`. - Custom metrics using decorators `multi_ts_support` and `multivariate_support` must now act on multivariate series (possibly containing missing values) instead of univariate series. - - `ForecastingModel.historical_forecasts()`: - - 🔴 Improved historical forecasts output consistency based on the type of input `series`: If `series` is a sequence, historical forecasts will always return a sequence/list of the same length (instead of trying to reduce to a `TimeSeries` object). - - `TimeSeries`: A single historical forecast for a single `series` and `last_points_only=True`: it contains only the predictions at step `forecast_horizon` from all historical forecasts. - - `List[TimeSeries]` A list of historical forecasts for: - - a sequence (list) of `series` and `last_points_only=True`: for each series, it contains only the predictions at step `forecast_horizon` from all historical forecasts. - - a single `series` and `last_points_only=False`: for each historical forecast, it contains the entire horizon `forecast_horizon`. - - `List[List[TimeSeries]]` A list of lists of historical forecasts for a sequence of `series` and `last_points_only=False`. For each series, and historical forecast, it contains the entire horizon `forecast_horizon`. The outer list is over the series provided in the input sequence, and the inner lists contain the historical forecasts for each series. - - `ForecastingModel.backtest()`: - - Metrics are now computed only once between all `series` and `historical_forecasts`, significantly speeding things up when using a large number of `series`. + - **Historical Forecasts**: + - 🔴 Improved historical forecasts output consistency based on the type of input `series` : If `series` is a sequence, historical forecasts will now always return a sequence/list of the same length (instead of trying to reduce to a `TimeSeries` object). You can find a detailed description in the [historical forecasts API documentation](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel.historical_forecasts). + - **Backtest**: + - Metrics are now computed only once on all `series` and `historical_forecasts`, significantly speeding things up when using a large number of `series`. - Added support for scaled metrics as `metric` (such as `ase`, `mase`, ...). No extra code required, backtest extracts the correct `insample` series for you. - - Added support for passing additional metric (-specific) arguments with parameter `metric_kwargs`. This allows for example parallelization of the metric computation with `n_jobs`, customize the metric reduction with `*_reduction`, specify seasonality `m` for scaled metrics, etc.. - - 🔴 Improved backtest output consistency based on the type of input `series`, `historical_forecast`, and the applied backtest reduction: - - `float`: A single backtest score for single uni/multivariate series, a single `metric` function and: - - `historical_forecasts` generated with `last_points_only=True` - - `historical_forecasts` generated with `last_points_only=False` and using a backtest `reduction` - - `np.ndarray`: An numpy array of backtest scores. For single series and one of: - - a single `metric` function, `historical_forecasts` generated with `last_points_only=False` and backtest `reduction=None`. The output has shape (n forecasts,). - - multiple `metric` functions and `historical_forecasts` generated with `last_points_only=False`. The output has shape (n metrics,) when using a backtest `reduction`, and (n metrics, n forecasts) when `reduction=None` - - multiple uni/multivariate series including `series_reduction` and at least one of `component_reduction=None` or `time_reduction=None` for "per time step metrics" - - `List[float]`: Same as for type `float` but for a sequence of series. The returned metric list has length `len(series)` with the `float` metric for each input `series`. - - `List[np.ndarray]` Same as for type `np.ndarray` but for a sequence of series. The returned metric list has length `len(series)` with the `np.ndarray` metrics for each input `series`. - - 🔴 Other breaking changes: + - Added support for passing additional metric (-specific) arguments with parameter `metric_kwargs`. This allows for example to parallelize the metric computation with `n_jobs`, customize the metric reduction with `*_reduction`, specify seasonality `m` for scaled metrics, etc. + - 🔴 Breaking changes: + - Improved backtest output consistency based on the type of input `series`, `historical_forecast`, and the applied backtest reduction. For some scenarios, the output type changed compared to previous Darts versions. You can find a detailed description in the [backtest API documentation](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel.backtest). - `reduction` callable now acts on `axis=1` rather than `axis=0` to aggregate the metrics per series. - - backtest will now raise an error when user supplied `historical_forecasts` don't have the expected format based on input `series` and the `last_points_only` value. - - `ForecastingModel.residuals()`. While the default behavior of `residuals()` remains identical, the method is now very similar to `backtest()` but that it computes a "per time step" `metric` on `historical_forecasts`: + - Backtest will now raise an error when user supplied `historical_forecasts` don't have the expected format based on input `series` and the `last_points_only` value. + - **Residuals**: While the default behavior of `residuals()` remains identical, the method is now very similar to `backtest()` but that it computes any "per time step" `metric` on `historical_forecasts` : - Added support for multivariate `series`. - Added support for all `historical_forecasts()` parameters to generate the historical forecasts for the residuals computation. - Added support for pre-computed historical forecasts with parameter `historical_forecasts`. - - Added support for computing the residuals with any of Darts' "per time step" metric with parameter `metric` (e.g. `err()`, `ae()`, `ape()`, ...). By default uses `err()` (Error). - - Added support for parallelizing the metric computation across historical forecasts with parameter `n_jobs`. - - 🔴 Improved residuals output and consistency based on the type of input `series` and `historical_forecast`: - - `TimeSeries`: Residual `TimeSeries` for a single `series` and `historical_forecasts` generated with `last_points_only=True`. - - `List[TimeSeries]` A list of residual `TimeSeries` for a sequence (list) of `series` with `last_points_only=True`. The residual list has length `len(series)`. - - `List[List[TimeSeries]]` A list of lists of residual `TimeSeries` for a sequence of `series` with `last_points_only=False`. The outer residual list has length `len(series)`. The inner lists consist of the residuals from all possible series-specific historical forecasts. -- Improvements to `TimeSeries`: - - `from_group_dataframe()` now supports parallelized creation from a grouped `pandas.DataFrame`. This can be enabled with parameter `n_jobs`. [#2292](https://github.com/unit8co/darts/pull/2292) by [Bohdan Bilonoha](https://github.com/BohdanBilonoh). - - Performance boost for methods: `slice_intersect()`, `has_same_time_as()`. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). + - Added support for computing the residuals with any of Darts' "per time step" metric with parameter `metric` (e.g. `err()`, `ae()`, `ape()`, ...). By default, uses `err()` (Error). + - Added support for passing additional metric arguments with parameter `metric_kwargs`. This allows for example to parallelize the metric computation with `n_jobs`, specify seasonality `m` for scaled metrics, etc. + - 🔴 Improved residuals output and consistency based on the type of input `series` and `historical_forecast`. For some scenarios, the output type changed compared to previous Darts versions. You can find a detailed description in the [residuals API documentation](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel.residuals). +- Improvements to `TimeSeries` : + - `from_group_dataframe()` now supports parallelized creation over the `pandas.DataFrame` groups. This can be enabled with parameter `n_jobs`. [#2292](https://github.com/unit8co/darts/pull/2292) by [Bohdan Bilonoha](https://github.com/BohdanBilonoh). - New method `slice_intersect_values()`, which returns the sliced values of a series, where the time index has been intersected with another series. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). -- 🔴 Moved utils functions to clearly separate Darts-specific from non-Darts-specific logic: [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). - - Moved function `generate_index()` from `darts.utils.timeseries_generation` to `darts.utils.utils` - - Moved functions `retain_period_common_to_all()`, `series2seq()`, `seq2series()`, `get_single_series()` from `darts.utils.utils` to `darts.utils.ts_utils`. -- Improvements to `ForecastingModel`: [#2269](https://github.com/unit8co/darts/pull/2269) by [Felix Divo](https://github.com/felixdivo). - - Renamed the private `_is_probabilistic` property to a public `supports_probabilistic_prediction`. -- Improvements to `RegressionModel`: [#2320](https://github.com/unit8co/darts/pull/2320) by [Felix Divo](https://github.com/felixdivo). - - Added a progress bar when performing optimized historical forecasts (`retrain=False` and no autoregression) to display the series-level progress. -- Improvements to `DataTransformer`: [#2267](https://github.com/unit8co/darts/pull/2267) by [Alicja Krzeminska-Sciga](https://github.com/alicjakrzeminska). - - `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This `series` type represents for example the output from `historical_forecasts()` when using multiple series. + - Performance boost for methods: `slice_intersect()`, `has_same_time_as()`. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). +- Improvements to forecasting models: + - Improvements to `RNNModel`, [#2329](https://github.com/unit8co/darts/pull/2329) by [Dennis Bader](https://github.com/dennisbader): + - 🔴 Enforce `training_length>input_chunk_length` since otherwise, during training the model is never run for as many iterations as it will during prediction. + - Historical forecasts now correctly infer all possible prediction start points for untrained and pre-trained `RNNModel`. + - Added a progress bar to `RegressionModel` when performing optimized historical forecasts (`retrain=False` and no autoregression) to display the series-level progress. [#2320](https://github.com/unit8co/darts/pull/2320) by [Dennis Bader](https://github.com/dennisbader). + - Renamed private `ForecastingModel._is_probabilistic` property to public `supports_probabilistic_prediction`. [#2269](https://github.com/unit8co/darts/pull/2269) by [Felix Divo](https://github.com/felixdivo). - Other improvements: - - Added release notes to the Darts Documentation. [#2333](https://github.com/unit8co/darts/pull/2333) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `RNNModel`: [#2329](https://github.com/unit8co/darts/pull/2329) by [Dennis Bader](https://github.com/dennisbader). - - 🔴 Enforce `training_length>input_chunk_length` since otherwise, during training the model is never run for as many iterations as it will during prediction. - - Historical forecasts now correctly infer all possible prediction start points for untrained and pre-trained `RNNModel`. + - All `InvertibleDataTransformer` now supports parallelized inverse transformation for `series` being a list of lists of `TimeSeries` (`Sequence[Sequence[TimeSeries]]`). This type represents the output of `historical_forecasts()` when using multiple series with `last_points_only=False`. [#2267](https://github.com/unit8co/darts/pull/2267) by [Alicja Krzeminska-Sciga](https://github.com/alicjakrzeminska). + - Added [release notes](https://unit8co.github.io/darts/release_notes/RELEASE_NOTES.html) to the Darts Documentation. [#2333](https://github.com/unit8co/darts/pull/2333) by [Dennis Bader](https://github.com/dennisbader). + - 🔴 Moved around utils functions to clearly separate Darts-specific from non-Darts-specific logic, [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader): + - Moved function `generate_index()` from `darts.utils.timeseries_generation` to `darts.utils.utils` + - Moved functions `retain_period_common_to_all()`, `series2seq()`, `seq2series()`, `get_single_series()` from `darts.utils.utils` to `darts.utils.ts_utils`. **Fixed** -- Fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). -- Fixed type hint warning "Unexpected argument" when calling `historical_forecasts()` caused by the `_with_sanity_checks` decorator. The type hinting is now properly configured to expect any input arguments and return the output type of the method for which the sanity checks are performed for. [#2286](https://github.com/unit8co/darts/pull/2286) by [Dennis Bader](https://github.com/dennisbader). -- Fixed the order of the features when using component-wise lags so that they are grouped by values, then by components (before, were grouped by components, then by values). [#2272](https://github.com/unit8co/darts/pull/2272) by [Antoine Madrona](https://github.com/madtoinou). -- Fixed a segmentation fault that some users were facing when importing a `LightGBMModel`. [#2304](https://github.com/unit8co/darts/pull/2304) by [Dennis Bader](https://github.com/dennisbader). +- Fixed the order of the features when using component-specific lags so that they are grouped by values, then by components (before, they were grouped by components, then by values). [#2272](https://github.com/unit8co/darts/pull/2272) by [Antoine Madrona](https://github.com/madtoinou). - Fixed a bug when using a dropout with a `TorchForecastingModel` and pytorch lightning versions >= 2.2.0, where the dropout was not properly activated during training. [#2312](https://github.com/unit8co/darts/pull/2312) by [Dennis Bader](https://github.com/dennisbader). - Fixed a bug when performing historical forecasts with an untrained `TorchForecastingModel` and using covariates, where the historical forecastable time index generation did not take the covariates into account. [#2329](https://github.com/unit8co/darts/pull/2329) by [Dennis Bader](https://github.com/dennisbader). - -**Dependencies** +- Fixed a bug in `quantile_loss`, where the loss was computed on all samples rather than only on the predicted quantiles. [#2284](https://github.com/unit8co/darts/pull/2284) by [Dennis Bader](https://github.com/dennisbader). +- Fixed a segmentation fault that some users were facing when importing a `LightGBMModel`. [#2304](https://github.com/unit8co/darts/pull/2304) by [Dennis Bader](https://github.com/dennisbader). +- Fixed type hint warning "Unexpected argument" when calling `historical_forecasts()` caused by the `_with_sanity_checks` decorator. The type hinting is now properly configured to expect any input arguments and return the output type of the method for which the sanity checks are performed for. [#2286](https://github.com/unit8co/darts/pull/2286) by [Dennis Bader](https://github.com/dennisbader). ### For developers of the library: - Fixed failing docs build by adding new dependency `lxml_html_clean` for `nbsphinx`. [#2303](https://github.com/unit8co/darts/pull/2303) by [Dennis Bader](https://github.com/dennisbader). - Bumped `black` from 24.1.1 to 24.3.0. [#2308](https://github.com/unit8co/darts/pull/2308) by [Dennis Bader](https://github.com/dennisbader). - Bumped `codecov-action` from v2 to v4 and added codecov token as repository secret for codecov upload authentication in CI pipelines. [#2309](https://github.com/unit8co/darts/pull/2309) and [#2312](https://github.com/unit8co/darts/pull/2312) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to linting, switch from `flake8` to Ruff: [#2323](https://github.com/unit8co/darts/pull/2323) by [Jirka Borovec](https://github.com/borda). +- Improvements to linting, switch from `flake8` to Ruff. [#2323](https://github.com/unit8co/darts/pull/2323) by [Jirka Borovec](https://github.com/borda). ## [0.28.0](https://github.com/unit8co/darts/tree/0.28.0) (2024-03-05) ### For users of the library: **Improved** -- Improvements to `GlobalForecastingModel`: +- Improvements to `GlobalForecastingModel` : - 🚀🚀🚀 All global models (regression and torch models) now support shifted predictions with model creation parameter `output_chunk_shift`. This will shift the output chunk for training and prediction by `output_chunk_shift` steps into the future. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `TimeSeries`: [#2196](https://github.com/unit8co/darts/pull/2196) by [Dennis Bader](https://github.com/dennisbader). +- Improvements to `TimeSeries`, [#2196](https://github.com/unit8co/darts/pull/2196) by [Dennis Bader](https://github.com/dennisbader): - 🚀🚀🚀 Significant performance boosts for several `TimeSeries` methods resulting increased efficiency across the entire `Darts` library. Up to 2x faster creation times for series indexed with "regular" frequencies (e.g. Daily, hourly, ...), and >100x for series indexed with "special" frequencies (e.g. "W-MON", ...). Affects: - All `TimeSeries` creation methods - Additional boosts for slicing with integers and Timestamps - Additional boosts for `from_group_dataframe()` by performing some of the heavy-duty computations on the entire DataFrame, rather than iteratively on the group level. - Added option to exclude some `group_cols` from being added as static covariates when using `TimeSeries.from_group_dataframe()` with parameter `drop_group_cols`. - 🚀 New global baseline models that use fixed input and output chunks for prediction. This offers support for univariate, multivariate, single and multiple target series prediction, one-shot- or autoregressive/moving forecasts, optimized historical forecasts, batch prediction, prediction from datasets, and more. [#2261](https://github.com/unit8co/darts/pull/2261) by [Dennis Bader](https://github.com/dennisbader). - - `GlobalNaiveAggregate`: Computes an aggregate (using a custom or built-in `torch` function) for each target component over the last `input_chunk_length` points, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveMean` and `NaiveMovingAverage`. - - `GlobalNaiveDrift`: Takes the slope of each target component over the last `input_chunk_length` points and projects the trend over the next `output_chunk_length` points for prediction. Depending on the parameters, this model can be equivalent to `NaiveDrift`. - - `GlobalNaiveSeasonal`: Takes the target component value at the `input_chunk_length`th point before the end of the target `series`, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveSeasonal`. -- Improvements to `TorchForecastingModel`: + - `GlobalNaiveAggregate` : Computes an aggregate (using a custom or built-in `torch` function) for each target component over the last `input_chunk_length` points, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveMean` and `NaiveMovingAverage`. + - `GlobalNaiveDrift` : Takes the slope of each target component over the last `input_chunk_length` points and projects the trend over the next `output_chunk_length` points for prediction. Depending on the parameters, this model can be equivalent to `NaiveDrift`. + - `GlobalNaiveSeasonal` : Takes the target component value at the `input_chunk_length`th point before the end of the target `series`, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveSeasonal`. +- Improvements to `TorchForecastingModel` : - Added support for additional lr scheduler configuration parameters for more control ("interval", "frequency", "monitor", "strict", "name"). [#2218](https://github.com/unit8co/darts/pull/2218) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `RegressionModel`: [#2246](https://github.com/unit8co/darts/pull/2246) by [Antoine Madrona](https://github.com/madtoinou). +- Improvements to `RegressionModel`, [#2246](https://github.com/unit8co/darts/pull/2246) by [Antoine Madrona](https://github.com/madtoinou): - Added a `get_estimator()` method to access the underlying estimator - Added attribute `lagged_label_names` to identify the forecasted step and component of each estimator - Updated the docstring of `get_multioutout_estimator()` @@ -156,7 +135,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For developers of the library: - Updated pre-commit hooks to the latest version using `pre-commit autoupdate`. Change `pyupgrade` pre-commit hook argument to `--py38-plus`. [#2228](https://github.com/unit8co/darts/pull/2228) by [MarcBresson](https://github.com/MarcBresson). -- Bumped dev dependencies to newest versions: [#2248](https://github.com/unit8co/darts/pull/2248) by [Dennis Bader](https://github.com/dennisbader). +- Bumped dev dependencies to newest versions, [#2248](https://github.com/unit8co/darts/pull/2248) by [Dennis Bader](https://github.com/dennisbader): - black[jupyter]: from 22.3.0 to 24.1.1 - flake8: from 4.0.1 to 7.0.0 - isort: from 5.11.5 to 5.13.2 @@ -166,7 +145,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For users of the library: **Improved** - Added `darts.utils.statistics.plot_ccf` that can be used to plot the cross correlation between a time series (e.g. target series) and the lagged values of another time series (e.g. covariates series). [#2122](https://github.com/unit8co/darts/pull/2122) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `TimeSeries`: Improved the time series frequency inference when using slices or pandas DatetimeIndex as keys for `__getitem__`. [#2152](https://github.com/unit8co/darts/pull/2152) by [DavidKleindienst](https://github.com/DavidKleindienst). +- Improvements to `TimeSeries` : Improved the time series frequency inference when using slices or pandas DatetimeIndex as keys for `__getitem__`. [#2152](https://github.com/unit8co/darts/pull/2152) by [DavidKleindienst](https://github.com/DavidKleindienst). **Fixed** - Fixed a bug when using a `TorchForecastingModel` with `use_reversible_instance_norm=True` and predicting with `n > output_chunk_length`. The input normalized multiple times. [#2160](https://github.com/unit8co/darts/pull/2160) by [FourierMourier](https://github.com/FourierMourier). @@ -189,11 +168,11 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ## [0.27.0](https://github.com/unit8co/darts/tree/0.27.0) (2023-11-18) ### For users of the library: **Improved** -- Improvements to `TorchForecastingModel`: +- Improvements to `TorchForecastingModel` : - 🚀🚀 We optimized `historical_forecasts()` for pre-trained `TorchForecastingModel` running up to 20 times faster than before (and even more when tuning the batch size)!. [#2013](https://github.com/unit8co/darts/pull/2013) by [Dennis Bader](https://github.com/dennisbader). - Added callback `darts.utils.callbacks.TFMProgressBar` to customize at which model stages to display the progress bar. [#2020](https://github.com/unit8co/darts/pull/2020) by [Dennis Bader](https://github.com/dennisbader). - All `InferenceDataset`s now support strided forecasts with parameters `stride`, `bounds`. These datasets can be used with `TorchForecastingModel.predict_from_dataset()`. [#2013](https://github.com/unit8co/darts/pull/2013) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `RegressionModel`: +- Improvements to `RegressionModel` : - New example notebook for the `RegressionModels` explaining features such as (component-specific) lags, `output_chunk_length` in relation with `multi_models`, multivariate support, and more. [#2039](https://github.com/unit8co/darts/pull/2039) by [Antoine Madrona](https://github.com/madtoinou). - `XGBModel` now leverages XGBoost's native Quantile Regression support that was released in version 2.0.0 for improved probabilistic forecasts. [#2051](https://github.com/unit8co/darts/pull/2051) by [Dennis Bader](https://github.com/dennisbader). - Improvements to `LocalForecastingModel` @@ -204,7 +183,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Other improvements: - Added support for time index time zone conversion with parameter `tz` before generating/computing holidays and datetime attributes. Support was added to all Time Axis Encoders, standalone encoders and forecasting models' `add_encoders`, time series generation utils functions `holidays_timeseries()` and `datetime_attribute_timeseries()`, and `TimeSeries` methods `add_datetime_attribute()` and `add_holidays()`. [#2054](https://github.com/unit8co/darts/pull/2054) by [Dennis Bader](https://github.com/dennisbader). - Added new data transformer: `MIDAS`, which uses mixed-data sampling to convert `TimeSeries` from high frequency to low frequency (and back). [#1820](https://github.com/unit8co/darts/pull/1820) by [Boyd Biersteker](https://github.com/Beerstabr), [Antoine Madrona](https://github.com/madtoinou) and [Dennis Bader](https://github.com/dennisbader). - - Added new dataset `ElectricityConsumptionZurichDataset`: The dataset contains the electricity consumption of households in Zurich, Switzerland from 2015-2022 on different grid levels. We also added weather measurements for Zurich which can be used as covariates for modelling. [#2039](https://github.com/unit8co/darts/pull/2039) by [Antoine Madrona](https://github.com/madtoinou) and [Dennis Bader](https://github.com/dennisbader). + - Added new dataset `ElectricityConsumptionZurichDataset` : The dataset contains the electricity consumption of households in Zurich, Switzerland from 2015-2022 on different grid levels. We also added weather measurements for Zurich which can be used as covariates for modelling. [#2039](https://github.com/unit8co/darts/pull/2039) by [Antoine Madrona](https://github.com/madtoinou) and [Dennis Bader](https://github.com/dennisbader). - Adapted the example notebooks to properly apply data transformers and avoid look-ahead bias. [#2020](https://github.com/unit8co/darts/pull/2020) by [Samriddhi Singh](https://github.com/SimTheGreat). **Fixed** @@ -223,17 +202,17 @@ No changes. ### For users of the library: **Improved** -- Improvements to `RegressionModel`: [#1962](https://github.com/unit8co/darts/pull/1962) by [Antoine Madrona](https://github.com/madtoinou). +- Improvements to `RegressionModel`, [#1962](https://github.com/unit8co/darts/pull/1962) by [Antoine Madrona](https://github.com/madtoinou): - 🚀🚀 All models now support component/column-specific lags for target, past, and future covariates series. -- Improvements to `TorchForecastingModel`: +- Improvements to `TorchForecastingModel` : - 🚀 Added `RINorm` (Reversible Instance Norm) as an input normalization option for all models except `RNNModel`. Activate it with model creation parameter `use_reversible_instance_norm`. [#1969](https://github.com/unit8co/darts/pull/1969) by [Dennis Bader](https://github.com/dennisbader). - 🔴 Added past covariates feature projection to `TiDEModel` with parameter `temporal_width_past` following the advice of the model architect. Parameter `temporal_width` was renamed to `temporal_width_future`. Additionally, added the option to bypass the feature projection with `temporal_width_past/future=0`. [#1993](https://github.com/unit8co/darts/pull/1993) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `EnsembleModel`: [#1815](https://github.com/unit8co/darts/pull/#1815) by [Antoine Madrona](https://github.com/madtoinou) and [Dennis Bader](https://github.com/dennisbader). +- Improvements to `EnsembleModel`, [#1815](https://github.com/unit8co/darts/pull/#1815) by [Antoine Madrona](https://github.com/madtoinou) and [Dennis Bader](https://github.com/dennisbader): - 🔴 Renamed model constructor argument `models` to `forecasting_models`. - 🚀🚀 Added support for pre-trained `GlobalForecastingModel` as `forecasting_models` to avoid re-training when ensembling. This requires all models to be pre-trained global models. - 🚀 Added support for generating the `forecasting_model` forecasts (used to train the ensemble model) with historical forecasts rather than direct (auto-regressive) predictions. Enable it with `train_using_historical_forecasts=True` at model creation. - Added an example notebook for ensemble models. -- Improvements to historical forecasts, backtest and gridsearch: [#1866](https://github.com/unit8co/darts/pull/1866) by [Antoine Madrona](https://github.com/madtoinou). +- Improvements to historical forecasts, backtest and gridsearch, [#1866](https://github.com/unit8co/darts/pull/1866) by [Antoine Madrona](https://github.com/madtoinou): - Added support for negative `start` values to start historical forecasts relative to the end of the target series. - Added a new argument `start_format` that allows to use an integer `start` either as the index position or index value/label for `series` indexed with a `pd.RangeIndex`. - Added support for `TimeSeries` with a `RangeIndex` starting at a negative integer. @@ -276,7 +255,7 @@ No changes. - Added method `generate_fit_predict_encodings()` to generate the encodings (from `add_encoders` at model creation) required for training and prediction. [#1925](https://github.com/unit8co/darts/pull/1925) by [Dennis Bader](https://github.com/dennisbader). - Added support for `PathLike` to the `save()` and `load()` functions of all non-deep learning based models. [#1754](https://github.com/unit8co/darts/pull/1754) by [Simon Sudrich](https://github.com/sudrich). - Added model property `ForecastingModel.supports_multivariate` to indicate whether the model supports multivariate forecasting. [#1848](https://github.com/unit8co/darts/pull/1848) by [Felix Divo](https://github.com/felixdivo). -- Improvements to `EnsembleModel`: +- Improvements to `EnsembleModel` : - Model creation parameter `forecasting_models` now supports a mix of `LocalForecastingModel` and `GlobalForecastingModel` (single `TimeSeries` training/inference only, due to the local models). [#1745](https://github.com/unit8co/darts/pull/1745) by [Antoine Madrona](https://github.com/madtoinou). - Future and past covariates can now be used even if `forecasting_models` have different covariates support. The covariates passed to `fit()`/`predict()` are used only by models that support it. [#1745](https://github.com/unit8co/darts/pull/1745) by [Antoine Madrona](https://github.com/madtoinou). - `RegressionEnsembleModel` and `NaiveEnsembleModel` can generate probabilistic forecasts, probabilistics `forecasting_models` can be sampled to train the `regression_model`, updated the documentation (stacking technique). [#1692](https://github.com/unit8co/darts/pull/1692) by [Antoine Madrona](https://github.com/madtoinou). @@ -290,7 +269,7 @@ No changes. - Improved static covariates column naming when using `StaticCovariatesTransformer` with a `sklearn.preprocessing.OneHotEncoder`. [#1863](https://github.com/unit8co/darts/pull/1863) by [Anne de Vries](https://github.com/anne-devries). - Added `MSTL` (Season-Trend decomposition using LOESS for multiple seasonalities) as a `method` option for `extract_trend_and_seasonality()`. [#1879](https://github.com/unit8co/darts/pull/1879) by [Alex Colpitts](https://github.com/alexcolpitts96). - Added `RINorm` (Reversible Instance Norm) as a new input normalization option for `TorchForecastingModel`. So far only `TiDEModel` supports it with model creation parameter `use_reversible_instance_norm`. [#1865](https://github.com/unit8co/darts/issues/1856) by [Alex Colpitts](https://github.com/alexcolpitts96). - - Improvements to `TimeSeries.plot()`: custom axes are now properly supported with parameter `ax`. Axis is now returned for downstream tasks. [#1916](https://github.com/unit8co/darts/pull/1916) by [Dennis Bader](https://github.com/dennisbader). + - Improvements to `TimeSeries.plot()` : custom axes are now properly supported with parameter `ax`. Axis is now returned for downstream tasks. [#1916](https://github.com/unit8co/darts/pull/1916) by [Dennis Bader](https://github.com/dennisbader). **Fixed** - Fixed an issue not considering original component names for `TimeSeries.plot()` when providing a label prefix. [#1783](https://github.com/unit8co/darts/pull/1783) by [Simon Sudrich](https://github.com/sudrich). @@ -320,18 +299,18 @@ No changes. - Added support for logistic growth to `Prophet` with parameters `growth`, `cap`, `floor`. [#1419](https://github.com/unit8co/darts/pull/1419) by [David Kleindienst](https://github.com/DavidKleindienst). - Improved the model string / object representation style similar to scikit-learn models. [#1590](https://github.com/unit8co/darts/pull/1590) by [Janek Fidor](https://github.com/JanFidor). - 🔴 Renamed `MovingAverage` to `MovingAverageFilter` to avoid confusion with new `NaiveMovingAverage` model. [#1557](https://github.com/unit8co/darts/pull/1557) by [Janek Fidor](https://github.com/JanFidor). -- Improvements to `RegressionModel`: +- Improvements to `RegressionModel` : - Optimized lagged data creation for fit/predict sets achieving a drastic speed-up. [#1399](https://github.com/unit8co/darts/pull/1399) by [Matt Bilton](https://github.com/mabilton). - Added support for categorical past/future/static covariates to `LightGBMModel` with model creation parameters `categorical_*_covariates`. [#1585](https://github.com/unit8co/darts/pull/1585) by [Rijk van der Meulen](https://github.com/rijkvandermeulen). - Added lagged feature names for better interpretability; accessible with model property `lagged_feature_names`. [#1679](https://github.com/unit8co/darts/pull/1679) by [Antoine Madrona](https://github.com/madtoinou). - 🔴 New `use_static_covariates` option for all models: When True (default), models use static covariates if available at fitting time and enforce identical static covariate shapes across all target `series` used for training or prediction; when False, models ignore static covariates. [#1700](https://github.com/unit8co/darts/pull/1700) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `TorchForecastingModel`: +- Improvements to `TorchForecastingModel` : - New methods `load_weights()` and `load_weights_from_checkpoint()` for loading only the weights from a manually saved model or checkpoint. This allows to fine-tune the pre-trained models with different optimizers or learning rate schedulers. [#1501](https://github.com/unit8co/darts/pull/1501) by [Antoine Madrona](https://github.com/madtoinou). - New method `lr_find()` that helps to find a good initial learning rate for your forecasting problem. [#1609](https://github.com/unit8co/darts/pull/1609) by [Levente Szabados](https://github.com/solalatus) and [Dennis Bader](https://github.com/dennisbader). - Improved the [user guide](https://unit8co.github.io/darts/userguide/torch_forecasting_models.html) and added new sections about saving/loading (checkpoints, manual save/load, loading weights only), and callbacks. [#1661](https://github.com/unit8co/darts/pull/1661) by [Antoine Madrona](https://github.com/madtoinou). - 🔴 Replaced `":"` in save file names with `"_"` to avoid issues on some operating systems. For loading models saved on earlier Darts versions, try to rename the file names by replacing `":"` with `"_"`. [#1501](https://github.com/unit8co/darts/pull/1501) by [Antoine Madrona](https://github.com/madtoinou). - - 🔴 New `use_static_covariates` option for `TFTModel`, `DLinearModel` and `NLinearModel`: When True (default), models use static covariates if available at fitting time and enforce identical static covariate shapes across all target `series` used for training or prediction; when False, models ignore static covariates. [#1700](https://github.com/unit8co/darts/pull/1700) by [Dennis Bader](https://github.com/dennisbader). -- Improvements to `TimeSeries`: + - 🔴 New `use_static_covariates` option for `TFTModel`, `DLinearModel` and `NLinearModel` : When True (default), models use static covariates if available at fitting time and enforce identical static covariate shapes across all target `series` used for training or prediction; when False, models ignore static covariates. [#1700](https://github.com/unit8co/darts/pull/1700) by [Dennis Bader](https://github.com/dennisbader). +- Improvements to `TimeSeries` : - Added support for integer indexed input to `from_*` factory methods, if index can be converted to a pandas.RangeIndex. [#1527](https://github.com/unit8co/darts/pull/1527) by [Dennis Bader](https://github.com/dennisbader). - Added support for integer indexed input with step sizes (freq) other than 1. [#1527](https://github.com/unit8co/darts/pull/1527) by [Dennis Bader](https://github.com/dennisbader). - Optimized time series creation with `fill_missing_dates=True` achieving a drastic speed-up . [#1527](https://github.com/unit8co/darts/pull/1527) by [Dennis Bader](https://github.com/dennisbader). @@ -406,7 +385,7 @@ Patch release - New window transformation capabilities: `TimeSeries.window_transform()` and a new `WindowTransformer` which allow to easily create window features. [#1269](https://github.com/unit8co/darts/pull/1269) by [Eliane Maalouf](https://github.com/eliane-maalouf). -- 🔴 Improvements to `TorchForecastingModels`: Load models directly to CPU that were trained on GPU. Save file size reduced. +- 🔴 Improvements to `TorchForecastingModels` : Load models directly to CPU that were trained on GPU. Save file size reduced. Improved PyTorch Lightning Trainer handling fixing several minor issues. Removed deprecated methods `load_model` and `save_model` [#1371](https://github.com/unit8co/darts/pull/1371) by [Dennis Bader](https://github.com/dennisbader). @@ -522,7 +501,7 @@ Patch release - Added support for Monte Carlo Dropout, as a way to capture model uncertainty with torch models at inference time. [#1013](https://github.com/unit8co/darts/pull/1013) by [Julien Herzen](https://github.com/hrzn). - New datasets: ETT and Electricity. [#617](https://github.com/unit8co/darts/pull/617) by [Greg DeVos](https://github.com/gdevos010) -- New dataset: [Uber TLC](https://github.com/fivethirtyeight/uber-tlc-foil-response). [#1003](https://github.com/unit8co/darts/pull/1003) by [Greg DeVos](https://github.com/gdevos010). +- New dataset, [Uber TLC](https://github.com/fivethirtyeight/uber-tlc-foil-response). [#1003](https://github.com/unit8co/darts/pull/1003) by [Greg DeVos](https://github.com/gdevos010). - Model Improvements: Option for changing activation function for NHiTs and NBEATS. NBEATS support for dropout. NHiTs Support for AvgPooling1d. [#955](https://github.com/unit8co/darts/pull/955) by [Greg DeVos](https://github.com/gdevos010). - Implemented ["GLU Variants Improve Transformer"](https://arxiv.org/abs/2002.05202) for transformer based models (transformer and TFT). [#959](https://github.com/unit8co/darts/issues/959) by [Greg DeVos](https://github.com/gdevos010). - Added support for torch metrics during training and validation. [#996](https://github.com/unit8co/darts/pull/996) by [Greg DeVos](https://github.com/gdevos010). @@ -631,10 +610,10 @@ Patch release - The `RegressionModel`s now accept an `output_chunk_length` parameter; meaning that they can be trained to predict more than one time step in advance (and used auto-regressively to predict on longer horizons). [#761](https://github.com/unit8co/darts/pull/761) by [Dustin Brunner](https://github.com/brunnedu). -- 🔴 `TimeSeries` "simple statistics" methods (such as `mean()`, `max()`, `min()` etc, ...) have been refactored +- 🔴 `TimeSeries` "simple statistics" methods (such as `mean()`, `max()`, `min()` etc, ...) have been refactored to work natively on stochastic `TimeSeries`, and over configurable axes. [#773](https://github.com/unit8co/darts/pull/773) by [Gian Wiher](https://github.com/gnwhr). -- 🔴 `TimeSeries` now support only pandas `RangeIndex` as an integer index, and does not support `Int64Index` anymore, +- 🔴 `TimeSeries` now support only pandas `RangeIndex` as an integer index, and does not support `Int64Index` anymore, as it became deprecated with pandas 1.4.0. This also now brings the guarantee that `TimeSeries` do not have missing "dates" even when indexed with integers. [#777](https://github.com/unit8co/darts/pull/777) by [Julien Herzen](https://github.com/hrzn). @@ -736,7 +715,7 @@ Patch release - `TimeSeries.map()` and mappers data transformers now work on stochastic `TimeSeries`. - Granger causality function: `utils.statistics.granger_causality_tests` can test if one univariate `TimeSeries` "granger causes" another. -- New stationarity tests for univariate `TimeSeries`: `darts.utils.statistics.stationarity_tests`, +- New stationarity tests for univariate `TimeSeries` : `darts.utils.statistics.stationarity_tests`, `darts.utils.statistics.stationarity_test_adf` and `darts.utils.statistics.stationarity_test_kpss`. - New test coverage badge 🦄 @@ -797,7 +776,7 @@ Future covariates don't have to be specified when this is used. ### For users of the library: **Added**: -- New forecasting model: [Temporal Fusion Transformer](https://arxiv.org/abs/1912.09363) (`TFTModel`). +- New forecasting model, [Temporal Fusion Transformer](https://arxiv.org/abs/1912.09363) (`TFTModel`). A new deep learning model supporting both past and future covariates. - Improved support for Facebook Prophet model (`Prophet`): - Added support for fit & predict with future covariates. For instance: @@ -897,14 +876,14 @@ the [README](https://github.com/unit8co/darts/blob/master/README.md) carefully. ### For users of the library: **Added:** -- 🔴 Improvement of the covariates support. Before, some models were accepting a `covariates` (or `exog`) +- 🔴 Improvement of the covariates support. Before, some models were accepting a `covariates` (or `exog`) argument, but it wasn't always clear whether this represented "past-observed" or "future-known" covariates. We have made this clearer. Now all covariate-aware models support `past_covariates` and/or `future_covariates` argument in their `fit()` and `predict()` methods, which makes it clear what series is used as a past or future covariate. We recommend [this article](https://medium.com/unit8-machine-learning-publication/time-series-forecasting-using-past-and-future-external-data-with-darts-1f0539585993) for more information and examples. -- 🔴 Significant improvement of `RegressionModel` (incl. `LinearRegressionModel` and `RandomForest`). +- 🔴 Significant improvement of `RegressionModel` (incl. `LinearRegressionModel` and `RandomForest`). These models now support training on multiple (possibly multivariate) time series. They also support both `past_covariates` and `future_covariates`. It makes it easier than ever to fit arbitrary regression models (e.g. from scikit-learn) on multiple series, to predict the future of a target series based on arbitrary lags of the target and @@ -991,8 +970,8 @@ of the documentation pages for `RNNModel` and `BlockRNNModel` to distinguish the - Other minor bug fixes **Changed:** -- 🔴 The `TimeSeries` class has been refactored to support stochastic time series representation by adding an additional dimension to a time series, namely `samples`. A time series is now based on a 3-dimensional `xarray.DataArray` with shape `(n_timesteps, n_components, n_samples)`. This overhaul also includes a change of the constructor which is incompatible with the old one. However, factory methods have been added to create a `TimeSeries` instance from a variety of data types, including `pd.DataFrame`. Please refer to the documentation of `TimeSeries` for more information. -- 🔴 The old version of `RNNModel` has been renamed to `BlockRNNModel`. +- 🔴 The `TimeSeries` class has been refactored to support stochastic time series representation by adding an additional dimension to a time series, namely `samples`. A time series is now based on a 3-dimensional `xarray.DataArray` with shape `(n_timesteps, n_components, n_samples)`. This overhaul also includes a change of the constructor which is incompatible with the old one. However, factory methods have been added to create a `TimeSeries` instance from a variety of data types, including `pd.DataFrame`. Please refer to the documentation of `TimeSeries` for more information. +- 🔴 The old version of `RNNModel` has been renamed to `BlockRNNModel`. - The `historical_forecast()` and `backtest()` methods of `ForecastingModel` have been reorganized a bit by making use of new wrapper methods to fit and predict models. - Updated `README.md` to reflect the new additions to the library. @@ -1030,7 +1009,7 @@ method. It enables the flexible usage of lagged values of the target variable as variables. Allowed values for the `lags` argument are positive integers or a list of positive integers indicating which lags should be used during training and prediction, e.g. `lags=12` translates to training with the last 12 lagged values of the target variable. `lags=[1, 4, 8, 12]` translates to training with the previous value, the value at lag 4, lag 8 and lag 12. -- 🔴 `StandardRegressionModel` is now called `LinearRegressionModel`. It implements a linear regression model +- 🔴 `StandardRegressionModel` is now called `LinearRegressionModel`. It implements a linear regression model from `sklearn.linear_model.LinearRegression`. Users who still need to use the former `StandardRegressionModel` with another sklearn model should use the `RegressionModel` now. @@ -1099,9 +1078,9 @@ several time series. https://github.com/unit8co/darts/blob/master/examples/02-multi-time-series-and-covariates.ipynb **Changed:** -- 🔴 removed the arguments `training_series` and `target_series` in `ForecastingModel`s. Please consult +- 🔴 removed the arguments `training_series` and `target_series` in `ForecastingModel`s. Please consult the API documentation of forecasting models to see the new signatures. -- 🔴 removed `UnivariateForecastingModel` and `MultivariateForecastingModel` base classes. This distinction does +- 🔴 removed `UnivariateForecastingModel` and `MultivariateForecastingModel` base classes. This distinction does not exist anymore. Instead, now some models are "global" (can be trained on multiple series) or "local" (they cannot). All implementations of `GlobalForecastingModel`s support multivariate time series out of the box, except N-BEATS. - Improved the documentation and README. @@ -1119,14 +1098,14 @@ All implementations of `GlobalForecastingModel`s support multivariate time serie - Ensemble models, a new kind of `ForecastingModel` which allows to ensemble multiple models to make predictions: - `EnsembleModel` is the abstract base class for ensemble models. Classes deriving from `EnsembleModel` must implement the `ensemble()` method, which takes in a `List[TimeSeries]` of predictions from the constituent models, and returns the ensembled prediction (a single `TimeSeries` object) - `RegressionEnsembleModel`, a concrete implementation of `EnsembleModel `which allows to specify any regression model (providing `fit()` and `predict()` methods) to use to ensemble the constituent models' predictions. -- A new method to `TorchForecastingModel`: `untrained_model()` returns the model as it was initially created, allowing to retrain the exact same model from scratch. Works both when specifying a `random_state` or not. +- A new method to `TorchForecastingModel` : `untrained_model()` returns the model as it was initially created, allowing to retrain the exact same model from scratch. Works both when specifying a `random_state` or not. - New `ForecastingModel.backtest()` and `RegressionModel.backtest()` functions which by default compute a single error score from the historical forecasts the model would have produced. - A new `reduction` parameter allows to specify whether to compute the mean/median/… of errors or (when `reduction` is set to `None`) to return a list of historical errors. - The previous `backtest()` functionality still exists but has been renamed `historical_forecasts()` - Added a new `last_points_only` parameter to `historical_forecasts()`, `backtest()` and `gridsearch()` **Changed:** -- 🔴 Renamed `backtest()` into `historical_forecasts()` +- 🔴 Renamed `backtest()` into `historical_forecasts()` - `fill_missing_values()` and `MissingValuesFiller` used to remove the variable names when used with `fill='auto'` – not anymore. - Modified the default plotting style to increase contrast and make plots lighter. @@ -1143,9 +1122,9 @@ All implementations of `GlobalForecastingModel`s support multivariate time serie ### For users of the library: **Added:** -- Data (pre) processing abilities using `DataTransformer`, `Pipeline`: +- Data (pre) processing abilities using `DataTransformer`, `Pipeline` : - `DataTransformer` provide a unified interface to apply transformations on `TimeSeries`, using their `transform()` method - - `Pipeline`: + - `Pipeline` : - allow chaining of `DataTransformers` - provide `fit()`, `transform()`, `fit_transform()` and `inverse_transform()` methods. - Implementing your own data transformers: @@ -1163,7 +1142,7 @@ All implementations of `GlobalForecastingModel`s support multivariate time serie - `NBEATSModel`, an implementation based on the N-BEATS architecture described in [N-BEATS: Neural basis expansion analysis for interpretable time series forecasting](https://openreview.net/forum?id=r1ecqn4YwB) by Boris N. Oreshkin et al. (2019) **Changed:** -- 🔴 Removed `cols` parameter from `map()`. Using indexing on `TimeSeries` is preferred. +- 🔴 Removed `cols` parameter from `map()`. Using indexing on `TimeSeries` is preferred. ```python # Assuming a multivariate TimeSeries named series with 3 columns or variables. # To apply fn to columns with names '0' and '2': @@ -1173,9 +1152,9 @@ All implementations of `GlobalForecastingModel`s support multivariate time serie #new syntax series[['0', '2']].map(fn) # returns a time series with only 2 columns ``` -- 🔴 Renamed `ScalerWrapper` into `Scaler` -- 🔴 Renamed the `preprocessing` module into `dataprocessing` -- 🔴 Unified `auto_fillna()` and `fillna()` into a single `fill_missing_value()` function +- 🔴 Renamed `ScalerWrapper` into `Scaler` +- 🔴 Renamed the `preprocessing` module into `dataprocessing` +- 🔴 Unified `auto_fillna()` and `fillna()` into a single `fill_missing_value()` function ```python #old syntax fillna(series, fill=0) @@ -1215,7 +1194,7 @@ All implementations of `GlobalForecastingModel`s support multivariate time serie **Changed:** -- 🔴 **Refactored backtesting** [\#184](https://github.com/unit8co/darts/pull/184) +- 🔴 **Refactored backtesting** [\#184](https://github.com/unit8co/darts/pull/184) - Moved backtesting functionalities inside `ForecastingModel` and `RegressionModel` ```python # old syntax: @@ -1231,7 +1210,7 @@ All implementations of `GlobalForecastingModel`s support multivariate time serie regression_model.backtest(*args, **kwargs) ``` - Consequently removed the `backtesting` module -- 🔴 `ForecastingModel` `fit()` **method syntax** using TimeSeries indexing instead of additional parameters [\#161](https://github.com/unit8co/darts/pull/161) +- 🔴 `ForecastingModel` `fit()` **method syntax** using TimeSeries indexing instead of additional parameters [\#161](https://github.com/unit8co/darts/pull/161) ```python # old syntax: multivariate_model.fit(multivariate_series, target_indices=[0, 1]) diff --git a/setup_u8darts.py b/setup_u8darts.py index 98eac73ea3..3022f77692 100644 --- a/setup_u8darts.py +++ b/setup_u8darts.py @@ -29,7 +29,7 @@ def read_requirements(path): setup( name="u8darts", - version="0.28.0", + version="0.29.0", description="A python library for easy manipulation and forecasting of time series.", long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", From 1080a080684d45b2b5107847885306998aeee79e Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Wed, 17 Apr 2024 13:14:34 +0200 Subject: [PATCH 043/161] use fine grained PAT for release workflow (#2336) --- .github/workflows/release.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml index 245fd5b7d3..8d2cfbd725 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/release.yml @@ -14,7 +14,7 @@ jobs: - name: "1. Clone repository" uses: actions/checkout@v2 with: - token: ${{ secrets.RELEASE_WORKFLOW_TOKEN_NEW }} + token: ${{ secrets.RELEASE_WORKFLOW_TOKEN_NEW_FINE_GRAINED }} fetch-depth: '1' - name: "2. Set up Python 3.9" From 55ab6c8155de7c505a179fe0fd4b89e800d8a7fe Mon Sep 17 00:00:00 2001 From: dennisbader Date: Wed, 17 Apr 2024 11:16:08 +0000 Subject: [PATCH 044/161] Release 0.29.0 --- .bumpversion.cfg | 2 +- conda_recipe/darts/meta.yaml | 2 +- darts/__init__.py | 2 +- docs/source/conf.py | 2 +- setup.py | 2 +- 5 files changed, 5 insertions(+), 5 deletions(-) diff --git a/.bumpversion.cfg b/.bumpversion.cfg index a3838f06d2..3e51b70ed0 100644 --- a/.bumpversion.cfg +++ b/.bumpversion.cfg @@ -1,6 +1,6 @@ [bumpversion] parse = (?P\d+)\.(?P\d+)\.(?P\d+)|dev -current_version = 0.28.0 +current_version = 0.29.0 [bumpversion:file:setup.py] diff --git a/conda_recipe/darts/meta.yaml b/conda_recipe/darts/meta.yaml index 62120a8cf7..94b1cd533c 100644 --- a/conda_recipe/darts/meta.yaml +++ b/conda_recipe/darts/meta.yaml @@ -2,7 +2,7 @@ package: name: "darts" - version: "0.28.0" + version: "0.29.0" source: # root folder, not the package diff --git a/darts/__init__.py b/darts/__init__.py index f36b3ff9be..cab24838d8 100644 --- a/darts/__init__.py +++ b/darts/__init__.py @@ -10,7 +10,7 @@ from .timeseries import TimeSeries, concatenate -__version__ = "0.28.0" +__version__ = "0.29.0" colors = cycler( color=["black", "003DFD", "b512b8", "11a9ba", "0d780f", "f77f07", "ba0f0f"] diff --git a/docs/source/conf.py b/docs/source/conf.py index a648714c97..d0f819714f 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -22,7 +22,7 @@ project = "darts" copyright = f"2020 - {datetime.now().year}, Unit8 SA (Apache 2.0 License)" author = "Unit8 SA" -version = "0.28.0" +version = "0.29.0" # -- General configuration --------------------------------------------------- diff --git a/setup.py b/setup.py index a5bcd32690..a99af9bbd0 100644 --- a/setup.py +++ b/setup.py @@ -30,7 +30,7 @@ def read_requirements(path): setup( name="darts", - version="0.28.0", + version="0.29.0", description="A python library for easy manipulation and forecasting of time series.", long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", From 58c74141f176b62e0c32cb3721fa8fc0a0b8e5e2 Mon Sep 17 00:00:00 2001 From: Jirka Borovec <6035284+Borda@users.noreply.github.com> Date: Wed, 17 Apr 2024 16:53:30 +0200 Subject: [PATCH 045/161] lint: default pre-commit hooks & fixing (#2324) * lint: default pre-commit hooks & fixing * chlog * fixing * fixing --- .github/RELEASE_TEMPLATE/release_body.md | 2 +- .github/codecov.yml | 2 +- .github/pull_request_template.md | 2 +- .pre-commit-config.yaml | 20 +++++++++++++ CHANGELOG.md | 30 ++++++++++--------- CONTRIBUTING.md | 2 +- Dockerfile | 2 +- INSTALL.md | 8 ++--- README.md | 12 ++++---- datasets/heart_rate.csv | 2 +- datasets/ice_cream_heater.csv | 2 +- datasets/monthly-milk-incomplete.csv | 1 - datasets/monthly-milk.csv | 1 - datasets/monthly-sunspots.csv | 2 +- datasets/temps.csv | 2 +- datasets/us_gasoline.csv | 2 +- docs/source/userguide.rst | 2 +- docs/userguide/covariates.md | 8 ++--- docs/userguide/forecasting_overview.md | 20 ++++++------- docs/userguide/gpu_and_tpu_usage.md | 26 ++++++++-------- docs/userguide/hyperparameter_optimization.md | 18 +++++------ docs/userguide/timeseries.md | 2 +- docs/userguide/torch_forecasting_models.md | 8 ++--- gradlew | 2 +- pyproject.toml | 2 +- 25 files changed, 99 insertions(+), 81 deletions(-) diff --git a/.github/RELEASE_TEMPLATE/release_body.md b/.github/RELEASE_TEMPLATE/release_body.md index 630c9436c8..d4b5f9834a 100644 --- a/.github/RELEASE_TEMPLATE/release_body.md +++ b/.github/RELEASE_TEMPLATE/release_body.md @@ -1,3 +1,3 @@ We are pleased to announce the release of a new Darts version. -You can find a list with all changes in the [release notes](https://unit8co.github.io/darts/release_notes/RELEASE_NOTES.html). \ No newline at end of file +You can find a list with all changes in the [release notes](https://unit8co.github.io/darts/release_notes/RELEASE_NOTES.html). diff --git a/.github/codecov.yml b/.github/codecov.yml index 5dd2178631..35cde5cd5e 100644 --- a/.github/codecov.yml +++ b/.github/codecov.yml @@ -1,4 +1,4 @@ coverage: status: project: off - patch: off \ No newline at end of file + patch: off diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md index 77350a2f56..48047b2301 100644 --- a/.github/pull_request_template.md +++ b/.github/pull_request_template.md @@ -1,7 +1,7 @@ Checklist before merging this PR: - [ ] Mentioned all issues that this PR fixes or addresses. - [ ] Summarized the updates of this PR under **Summary**. -- [ ] Added an entry under **Unreleased** in the [Changelog](../CHANGELOG.md). +- [ ] Added an entry under **Unreleased** in the [Changelog](../CHANGELOG.md). Fixes #. diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index eb52467d33..66a1e1f06c 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -1,4 +1,24 @@ +default_language_version: + python: python3 + +ci: + autofix_prs: true + autoupdate_commit_msg: "[pre-commit.ci] pre-commit suggestions" + autoupdate_schedule: quarterly + # submodules: true + repos: + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.6.0 + hooks: + - id: end-of-file-fixer + - id: trailing-whitespace + - id: check-json + - id: check-yaml + exclude: "conda_recipe/darts/meta.yaml" + - id: check-toml + - id: detect-private-key + - repo: https://github.com/psf/black rev: 24.3.0 hooks: diff --git a/CHANGELOG.md b/CHANGELOG.md index 33db100bc3..579e2b613b 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -13,6 +13,8 @@ but cannot always guarantee backwards compatibility. Changes that may **break co **Fixed** **Dependencies** +- Improvements to linting via updated pre-commit configurations: [#2324](https://github.com/unit8co/darts/pull/2324) by [Jirka Borovec](https://github.com/borda). + ### For developers of the library: @@ -27,7 +29,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - Time aggregated metric `merr()` (Mean Error) - Time aggregated scaled metrics `rmsse()`, and `msse()` : The (Root) Mean Squared Scaled Error. - "Per time step" metrics that return a metric score per time step: `err()` (Error), `ae()` (Absolute Error), `se()` (Squared Error), `sle()` (Squared Log Error), `ase()` (Absolute Scaled Error), `sse` (Squared Scaled Error), `ape()` (Absolute Percentage Error), `sape()` (symmetric Absolute Percentage Error), `arre()` (Absolute Ranged Relative Error), `ql` (Quantile Loss) - - All scaled metrics (`mase()`, ...) now accept `insample` series that can be overlapping into `pred_series` (before they had to end exactly one step before `pred_series`). Darts will handle the correct time extraction for you. + - All scaled metrics (`mase()`, ...) now accept `insample` series that can be overlapping into `pred_series` (before they had to end exactly one step before `pred_series`). Darts will handle the correct time extraction for you. - Improvements to the documentation: - Added a summary list of all metrics to the [metrics documentation page](https://unit8co.github.io/darts/generated_api/darts.metrics.html) - Standardized the documentation of each metric (added formula, improved return documentation, ...) @@ -48,7 +50,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - 🔴 Improved historical forecasts output consistency based on the type of input `series` : If `series` is a sequence, historical forecasts will now always return a sequence/list of the same length (instead of trying to reduce to a `TimeSeries` object). You can find a detailed description in the [historical forecasts API documentation](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel.historical_forecasts). - **Backtest**: - Metrics are now computed only once on all `series` and `historical_forecasts`, significantly speeding things up when using a large number of `series`. - - Added support for scaled metrics as `metric` (such as `ase`, `mase`, ...). No extra code required, backtest extracts the correct `insample` series for you. + - Added support for scaled metrics as `metric` (such as `ase`, `mase`, ...). No extra code required, backtest extracts the correct `insample` series for you. - Added support for passing additional metric (-specific) arguments with parameter `metric_kwargs`. This allows for example to parallelize the metric computation with `n_jobs`, customize the metric reduction with `*_reduction`, specify seasonality `m` for scaled metrics, etc. - 🔴 Breaking changes: - Improved backtest output consistency based on the type of input `series`, `historical_forecast`, and the applied backtest reduction. For some scenarios, the output type changed compared to previous Darts versions. You can find a detailed description in the [backtest API documentation](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.linear_regression_model.html#darts.models.forecasting.linear_regression_model.LinearRegressionModel.backtest). @@ -99,13 +101,13 @@ but cannot always guarantee backwards compatibility. Changes that may **break co - 🚀🚀🚀 All global models (regression and torch models) now support shifted predictions with model creation parameter `output_chunk_shift`. This will shift the output chunk for training and prediction by `output_chunk_shift` steps into the future. [#2176](https://github.com/unit8co/darts/pull/2176) by [Dennis Bader](https://github.com/dennisbader). - Improvements to `TimeSeries`, [#2196](https://github.com/unit8co/darts/pull/2196) by [Dennis Bader](https://github.com/dennisbader): - 🚀🚀🚀 Significant performance boosts for several `TimeSeries` methods resulting increased efficiency across the entire `Darts` library. Up to 2x faster creation times for series indexed with "regular" frequencies (e.g. Daily, hourly, ...), and >100x for series indexed with "special" frequencies (e.g. "W-MON", ...). Affects: - - All `TimeSeries` creation methods + - All `TimeSeries` creation methods - Additional boosts for slicing with integers and Timestamps - Additional boosts for `from_group_dataframe()` by performing some of the heavy-duty computations on the entire DataFrame, rather than iteratively on the group level. - Added option to exclude some `group_cols` from being added as static covariates when using `TimeSeries.from_group_dataframe()` with parameter `drop_group_cols`. - 🚀 New global baseline models that use fixed input and output chunks for prediction. This offers support for univariate, multivariate, single and multiple target series prediction, one-shot- or autoregressive/moving forecasts, optimized historical forecasts, batch prediction, prediction from datasets, and more. [#2261](https://github.com/unit8co/darts/pull/2261) by [Dennis Bader](https://github.com/dennisbader). - - `GlobalNaiveAggregate` : Computes an aggregate (using a custom or built-in `torch` function) for each target component over the last `input_chunk_length` points, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveMean` and `NaiveMovingAverage`. - - `GlobalNaiveDrift` : Takes the slope of each target component over the last `input_chunk_length` points and projects the trend over the next `output_chunk_length` points for prediction. Depending on the parameters, this model can be equivalent to `NaiveDrift`. + - `GlobalNaiveAggregate` : Computes an aggregate (using a custom or built-in `torch` function) for each target component over the last `input_chunk_length` points, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveMean` and `NaiveMovingAverage`. + - `GlobalNaiveDrift` : Takes the slope of each target component over the last `input_chunk_length` points and projects the trend over the next `output_chunk_length` points for prediction. Depending on the parameters, this model can be equivalent to `NaiveDrift`. - `GlobalNaiveSeasonal` : Takes the target component value at the `input_chunk_length`th point before the end of the target `series`, and repeats the values `output_chunk_length` times for prediction. Depending on the parameters, this model can be equivalent to `NaiveSeasonal`. - Improvements to `TorchForecastingModel` : - Added support for additional lr scheduler configuration parameters for more control ("interval", "frequency", "monitor", "strict", "name"). [#2218](https://github.com/unit8co/darts/pull/2218) by [Dennis Bader](https://github.com/dennisbader). @@ -210,10 +212,10 @@ No changes. - Improvements to `EnsembleModel`, [#1815](https://github.com/unit8co/darts/pull/#1815) by [Antoine Madrona](https://github.com/madtoinou) and [Dennis Bader](https://github.com/dennisbader): - 🔴 Renamed model constructor argument `models` to `forecasting_models`. - 🚀🚀 Added support for pre-trained `GlobalForecastingModel` as `forecasting_models` to avoid re-training when ensembling. This requires all models to be pre-trained global models. - - 🚀 Added support for generating the `forecasting_model` forecasts (used to train the ensemble model) with historical forecasts rather than direct (auto-regressive) predictions. Enable it with `train_using_historical_forecasts=True` at model creation. + - 🚀 Added support for generating the `forecasting_model` forecasts (used to train the ensemble model) with historical forecasts rather than direct (auto-regressive) predictions. Enable it with `train_using_historical_forecasts=True` at model creation. - Added an example notebook for ensemble models. - Improvements to historical forecasts, backtest and gridsearch, [#1866](https://github.com/unit8co/darts/pull/1866) by [Antoine Madrona](https://github.com/madtoinou): - - Added support for negative `start` values to start historical forecasts relative to the end of the target series. + - Added support for negative `start` values to start historical forecasts relative to the end of the target series. - Added a new argument `start_format` that allows to use an integer `start` either as the index position or index value/label for `series` indexed with a `pd.RangeIndex`. - Added support for `TimeSeries` with a `RangeIndex` starting at a negative integer. - Other improvements: @@ -241,7 +243,7 @@ No changes. **Installation** - 🔴 Removed Prophet, LightGBM, and CatBoost dependencies from PyPI packages (`darts`, `u8darts`, `u8darts[torch]`), and conda-forge packages (`u8darts`, `u8darts-torch`) to avoid installation issues that some users were facing (installation on Apple M1/M2 devices, ...). [#1589](https://github.com/unit8co/darts/pull/1589) by [Julien Herzen](https://github.com/hrzn) and [Dennis Bader](https://github.com/dennisbader). - The models are still supported by installing the required packages as described in our [installation guide](https://github.com/unit8co/darts/blob/master/INSTALL.md#enabling-optional-dependencies). - - The Darts package including all dependencies can still be installed with PyPI package `u8darts[all]` or conda-forge package `u8darts-all`. + - The Darts package including all dependencies can still be installed with PyPI package `u8darts[all]` or conda-forge package `u8darts-all`. - Added new PyPI flavor `u8darts[notorch]`, and conda-forge flavor `u8darts-notorch` which are equivalent to the old `u8darts` installation (all dependencies except neural networks). - 🔴 Removed support for Python 3.7 [#1864](https://github.com/unit8co/darts/pull/1864) by [Dennis Bader](https://github.com/dennisbader). @@ -296,7 +298,7 @@ No changes. - New baseline forecasting model `NaiveMovingAverage`. [#1557](https://github.com/unit8co/darts/pull/1557) by [Janek Fidor](https://github.com/JanFidor). - New models `StatsForecastAutoCES`, and `StatsForecastAutoTheta` from Nixtla's statsforecasts library as local forecasting models without covariates support. AutoTheta supports probabilistic forecasts. [#1476](https://github.com/unit8co/darts/pull/1476) by [Boyd Biersteker](https://github.com/Beerstabr). - Added support for future covariates, and probabilistic forecasts to `StatsForecastAutoETS`. [#1476](https://github.com/unit8co/darts/pull/1476) by [Boyd Biersteker](https://github.com/Beerstabr). - - Added support for logistic growth to `Prophet` with parameters `growth`, `cap`, `floor`. [#1419](https://github.com/unit8co/darts/pull/1419) by [David Kleindienst](https://github.com/DavidKleindienst). + - Added support for logistic growth to `Prophet` with parameters `growth`, `cap`, `floor`. [#1419](https://github.com/unit8co/darts/pull/1419) by [David Kleindienst](https://github.com/DavidKleindienst). - Improved the model string / object representation style similar to scikit-learn models. [#1590](https://github.com/unit8co/darts/pull/1590) by [Janek Fidor](https://github.com/JanFidor). - 🔴 Renamed `MovingAverage` to `MovingAverageFilter` to avoid confusion with new `NaiveMovingAverage` model. [#1557](https://github.com/unit8co/darts/pull/1557) by [Janek Fidor](https://github.com/JanFidor). - Improvements to `RegressionModel` : @@ -541,7 +543,7 @@ Patch release - Improved user guide with more sections. [#905](https://github.com/unit8co/darts/pull/905) by [Julien Herzen](https://github.com/hrzn). - New notebook showcasing transfer learning and training forecasting models on large time - series datasets. [#885](https://github.com/unit8co/darts/pull/885) + series datasets. [#885](https://github.com/unit8co/darts/pull/885) by [Julien Herzen](https://github.com/hrzn). @@ -554,7 +556,7 @@ Patch release **Improved** - `LinearRegressionModel` and `LightGBMModel` can now be probabilistic, supporting quantile - and poisson regression. [#831](https://github.com/unit8co/darts/pull/831), + and poisson regression. [#831](https://github.com/unit8co/darts/pull/831), [#853](https://github.com/unit8co/darts/pull/853) by [Gian Wiher](https://github.com/gnwhr). - New models: `BATS` and `TBATS`, based on [tbats](https://github.com/intive-DataScience/tbats). [#816](https://github.com/unit8co/darts/pull/816) by [Julien Herzen](https://github.com/hrzn). @@ -564,7 +566,7 @@ Patch release by [@gsamaras](https://github.com/gsamaras). - Added train and validation loss to PyTorch Lightning progress bar. [#825](https://github.com/unit8co/darts/pull/825) by [Dennis Bader](https://github.com/dennisbader). -- More losses available in `darts.utils.losses` for PyTorch-based models: +- More losses available in `darts.utils.losses` for PyTorch-based models: `SmapeLoss`, `MapeLoss` and `MAELoss`. [#845](https://github.com/unit8co/darts/pull/845) by [Julien Herzen](https://github.com/hrzn). - Improvement to the seasonal decomposition [#862](https://github.com/unit8co/darts/pull/862). @@ -595,7 +597,7 @@ Patch release by [Dennis Bader](https://github.com/dennisbader). - Fixed an issue with the periodic basis functions of N-BEATS. [#804](https://github.com/unit8co/darts/pull/804) by [Vladimir Chernykh](https://github.com/vladimir-chernykh). -- Relaxed requirements for `pandas`; from `pandas>=1.1.0` to `pandas>=1.0.5`. +- Relaxed requirements for `pandas`; from `pandas>=1.1.0` to `pandas>=1.0.5`. [#800](https://github.com/unit8co/darts/pull/800) by [@adelnick](https://github.com/adelnick). @@ -629,7 +631,7 @@ Patch release **Fixed** -- Fixed an issue with tensorboard and gridsearch when `model_name` is provided. +- Fixed an issue with tensorboard and gridsearch when `model_name` is provided. [#759](https://github.com/unit8co/darts/issues/759) by [@gdevos010](https://github.com/gdevos010). - Fixed issues with pip-tools. [#762](https://github.com/unit8co/darts/pull/762) by [Tomas Van Pottelbergh](https://github.com/tomasvanpottelbergh). diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index ac2513c308..4e1e504621 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -80,5 +80,5 @@ To ensure you don't need to worry about formatting and linting when contributing Please follow the procedure described in [INSTALL.md](https://github.com/unit8co/darts/blob/master/INSTALL.md#test-environment-appple-m1-processor) to set up a x_64 emulated environment. For the development environment, instead of installing Darts with `pip install darts`, instead go to the darts cloned repo location and install the packages with: `pip install -r requirements/dev-all.txt`. -If necessary, follow the same steps to setup libomp for lightgbm. +If necessary, follow the same steps to setup libomp for lightgbm. Finally, verify your overall environment setup by successfully running all unitTests with gradlew or pytest. diff --git a/Dockerfile b/Dockerfile index 160fbec0a8..98179fbbdc 100644 --- a/Dockerfile +++ b/Dockerfile @@ -21,4 +21,4 @@ RUN pip install -e . # assuming you are working from inside your darts directory: # docker build . -t darts-test:latest -# docker run -it -v $(pwd)/:/app/ darts-test:latest bash \ No newline at end of file +# docker run -it -v $(pwd)/:/app/ darts-test:latest bash diff --git a/INSTALL.md b/INSTALL.md index c69a29ce54..b235d33be2 100644 --- a/INSTALL.md +++ b/INSTALL.md @@ -5,7 +5,7 @@ Below, we detail how to install Darts using either `conda` or `pip`. ## From PyPI Install Darts with all models except the ones from optional dependencies (Prophet, LightGBM, CatBoost, see more on that [here](#enabling-optional-dependencies)): `pip install darts`. -If this fails on your platform, please follow the official installation +If this fails on your platform, please follow the official installation guide for [PyTorch](https://pytorch.org/get-started/locally/), then try installing Darts again. As some dependencies are relatively big or involve non-Python dependencies, @@ -37,8 +37,8 @@ As some models have relatively heavy dependencies, we provide four conda-forge p ## Other Information ### Enabling Optional Dependencies -As of version 0.25.0, the default `darts` package does not install Prophet, CatBoost, and LightGBM dependencies anymore, because their -build processes were too often causing issues. We continue supporting the model wrappers `Prophet`, `CatBoostModel`, and `LightGBMModel` in Darts though. If you want to use any of them, you will need to manually install the corresponding packages (or install a Darts flavor as described above). +As of version 0.25.0, the default `darts` package does not install Prophet, CatBoost, and LightGBM dependencies anymore, because their +build processes were too often causing issues. We continue supporting the model wrappers `Prophet`, `CatBoostModel`, and `LightGBMModel` in Darts though. If you want to use any of them, you will need to manually install the corresponding packages (or install a Darts flavor as described above). #### Prophet Install the `prophet` package (version 1.1.1 or more recent) using the [Prophet install guide](https://facebook.github.io/prophet/docs/installation.html#python) @@ -99,4 +99,4 @@ To build documentation locally just run ```bash ./gradlew buildDocs ``` -After that docs will be available in `./docs/build/html` directory. You can just open `./docs/build/html/index.html` using your favourite browser. \ No newline at end of file +After that docs will be available in `./docs/build/html` directory. You can just open `./docs/build/html/index.html` using your favourite browser. diff --git a/README.md b/README.md index 4d482214cc..aa1b4067c3 100644 --- a/README.md +++ b/README.md @@ -19,8 +19,8 @@ on time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The forecasting models can all be used in the same way, using `fit()` and `predict()` functions, similar to scikit-learn. The library also makes it easy to backtest models, -combine the predictions of several models, and take external data into account. -Darts supports both univariate and multivariate time series and models. +combine the predictions of several models, and take external data into account. +Darts supports both univariate and multivariate time series and models. The ML-based models can be trained on potentially large datasets containing multiple time series, and some of the models offer a rich support for probabilistic forecasting. @@ -59,7 +59,7 @@ Once your environment is set up you can install darts using pip: pip install darts -For more details you can refer to our +For more details you can refer to our [installation instructions](https://github.com/unit8co/darts/blob/master/INSTALL.md). ## Example Usage @@ -166,7 +166,7 @@ series.plot() * **Multivariate Support:** `TimeSeries` can be multivariate - i.e., contain multiple time-varying dimensions instead of a single scalar value. Many models can consume and produce multivariate series. -* **Multiple series training (global models):** All machine learning based models (incl. all neural networks) +* **Multiple series training (global models):** All machine learning based models (incl. all neural networks) support being trained on multiple (potentially multivariate) series. This can scale to large datasets too. * **Probabilistic Support:** `TimeSeries` objects can (optionally) represent stochastic @@ -174,7 +174,7 @@ series.plot() flavours of probabilistic forecasting (such as estimating parametric distributions or quantiles). Some anomaly detection scorers are also able to exploit these predictive distributions. -* **Past and Future Covariates support:** Many models in Darts support past-observed and/or future-known +* **Past and Future Covariates support:** Many models in Darts support past-observed and/or future-known covariate (external data) time series as inputs for producing forecasts. * **Static Covariates support:** In addition to time-dependent data, `TimeSeries` can also contain @@ -262,7 +262,7 @@ on bringing more models and features. ## Community & Contact -Anyone is welcome to join our [Gitter room](https://gitter.im/u8darts/darts) to ask questions, make proposals, +Anyone is welcome to join our [Gitter room](https://gitter.im/u8darts/darts) to ask questions, make proposals, discuss use-cases, and more. If you spot a bug or have suggestions, GitHub issues are also welcome. If what you want to tell us is not suitable for Gitter or Github, diff --git a/datasets/heart_rate.csv b/datasets/heart_rate.csv index 189e262631..8af4d5bbcc 100644 --- a/datasets/heart_rate.csv +++ b/datasets/heart_rate.csv @@ -1798,4 +1798,4 @@ Heart rate 101.623 99.5679 99.1835 -98.8567 \ No newline at end of file +98.8567 diff --git a/datasets/ice_cream_heater.csv b/datasets/ice_cream_heater.csv index 2c87a562e9..d45e28f9df 100644 --- a/datasets/ice_cream_heater.csv +++ b/datasets/ice_cream_heater.csv @@ -196,4 +196,4 @@ Month,heater,ice cream 2020-03,25,44 2020-04,25,53 2020-05,27,70 -2020-06,24,74 \ No newline at end of file +2020-06,24,74 diff --git a/datasets/monthly-milk-incomplete.csv b/datasets/monthly-milk-incomplete.csv index fa498a3773..b5f20519d2 100644 --- a/datasets/monthly-milk-incomplete.csv +++ b/datasets/monthly-milk-incomplete.csv @@ -154,4 +154,3 @@ "1975-08",858 "1975-11",797 "1975-12",843 - diff --git a/datasets/monthly-milk.csv b/datasets/monthly-milk.csv index 8c90e1073a..8040820d67 100644 --- a/datasets/monthly-milk.csv +++ b/datasets/monthly-milk.csv @@ -167,4 +167,3 @@ "1975-10",827 "1975-11",797 "1975-12",843 - diff --git a/datasets/monthly-sunspots.csv b/datasets/monthly-sunspots.csv index bddb7f8c20..4817b1e75f 100644 --- a/datasets/monthly-sunspots.csv +++ b/datasets/monthly-sunspots.csv @@ -2818,4 +2818,4 @@ "1983-09",50.3 "1983-10",55.8 "1983-11",33.3 -"1983-12",33.4 \ No newline at end of file +"1983-12",33.4 diff --git a/datasets/temps.csv b/datasets/temps.csv index e9a18f6710..c2c6969cfa 100644 --- a/datasets/temps.csv +++ b/datasets/temps.csv @@ -3648,4 +3648,4 @@ Date,Daily minimum temperatures 12/28/1990,13.6 12/29/1990,13.5 12/30/1990,15.7 -12/31/1990,13 \ No newline at end of file +12/31/1990,13 diff --git a/datasets/us_gasoline.csv b/datasets/us_gasoline.csv index f79de0fd79..89165db6b8 100644 --- a/datasets/us_gasoline.csv +++ b/datasets/us_gasoline.csv @@ -1576,4 +1576,4 @@ Week,Gasoline 03/1/1991,7224 02/22/1991,6582 02/15/1991,6433 -02/8/1991,6621 \ No newline at end of file +02/8/1991,6621 diff --git a/docs/source/userguide.rst b/docs/source/userguide.rst index a1f81fe61c..e25d17922e 100644 --- a/docs/source/userguide.rst +++ b/docs/source/userguide.rst @@ -25,7 +25,7 @@ You will find here some more detailed information about Darts. .. userguide/probabilistic_forecasting.md .. userguide/ensembling.md - + .. userguide/filtering_models.md .. userguide/preprocessing_and_pipelines.md diff --git a/docs/userguide/covariates.md b/docs/userguide/covariates.md index cc4c564b87..97f82c6d92 100644 --- a/docs/userguide/covariates.md +++ b/docs/userguide/covariates.md @@ -90,13 +90,13 @@ Let's have a look at some examples of past, future, and static covariates: - daily average **forecasted** temperatures (known in the future) - day of week, month, year, ... - `static_covariates`: time independent/constant/static `target` characteristics - - categorical: + - categorical: - location of `target` (country, city, .. name) - `target` identifier: (product ID, store ID, ...) - numerical: - population of `target`'s country/market area (assuming it stays constant over the forecasting horizon) - average temperature of `target`'s region (assuming it stays constant over the forecasting horizon) - + Temporal attributes are powerful because they are known in advance and can help models capture trends and / or seasonal patterns of the `target` series. Static attributes are powerful when working with multiple `targets` (either multiple `TimeSeries`, or multivariate series containing multiple dimensions each). The time independent information can help models identify the nature/environment of the underlying series and improve forecasts across different `targets`. @@ -148,8 +148,8 @@ GFMs are models that can be trained on multiple target (and covariate) time seri | [NHiTSModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nhits.html#darts.models.forecasting.nhits.NHiTSModel) | ✅ | | | | [TCNModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tcn_model.html#darts.models.forecasting.tcn_model.TCNModel) | ✅ | | | | [TransformerModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.transformer_model.html#darts.models.forecasting.transformer_model.TransformerModel) | ✅ | | | -| [TFTModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html#darts.models.forecasting.tft_model.TFTModel) | ✅ | ✅ | ✅ | -| [DLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.dlinear.html#darts.models.forecasting.dlinear.DLinearModel) | ✅ | ✅ | ✅ | +| [TFTModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tft_model.html#darts.models.forecasting.tft_model.TFTModel) | ✅ | ✅ | ✅ | +| [DLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.dlinear.html#darts.models.forecasting.dlinear.DLinearModel) | ✅ | ✅ | ✅ | | [NLinearModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.nlinear.html#darts.models.forecasting.nlinear.NLinearModel) | ✅ | ✅ | ✅ | | [TiDEModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tide_model.html#darts.models.forecasting.tide_model.TiDEModel) | ✅ | ✅ | ✅ | | [TSMixerModel](https://unit8co.github.io/darts/generated_api/darts.models.forecasting.tsmixer_model.html#darts.models.forecasting.tsmixer_model.TSMixerModel) | ✅ | ✅ | ✅ | diff --git a/docs/userguide/forecasting_overview.md b/docs/userguide/forecasting_overview.md index b56ad4b568..64484d6922 100644 --- a/docs/userguide/forecasting_overview.md +++ b/docs/userguide/forecasting_overview.md @@ -15,7 +15,7 @@ by calling the `fit()` function, and finally they are used to obtain one or seve from darts.models import NaiveSeasonal naive_model = NaiveSeasonal(K=1) # init -naive_model.fit(train) # fit +naive_model.fit(train) # fit naive_forecast = naive_model.predict(n=36) # predict ``` @@ -111,7 +111,7 @@ These models are shown with a "✅" under the `Multivariate` column on the [mode ## Handling multiple series Some models support being fit on multiple time series. To do this, it is enough to simply provide a Python `Sequence` of `TimeSeries` (for instance a list of `TimeSeries`) to `fit()`. When a model is fit this way, the `predict()` function will expect the argument `series` to be set, containing -one or several `TimeSeries` (i.e., a single or a `Sequence` of `TimeSeries`) that need to be forecasted. +one or several `TimeSeries` (i.e., a single or a `Sequence` of `TimeSeries`) that need to be forecasted. The advantage of training on multiple series is that a single model can be exposed to more patterns occurring across all series in the training dataset. That can often be beneficial, especially for larger models with more capacity. In turn, the advantage of having `predict()` providing forecasts for potentially several series at once is that the computation can often be batched and vectorized across the multiple series, which is computationally faster than calling `predict()` multiple times on isolated series. @@ -178,9 +178,9 @@ pred.plot(label='forecast') ![Exponential Smoothing](./images/probabilistic/example_ets.png) ### Probabilistic neural networks -All neural networks (torch-based models) in Darts have a rich support to estimate different kinds of probability distributions. -When creating the model, it is possible to provide one of the *likelihood models* available in [darts.utils.likelihood_models](https://unit8co.github.io/darts/generated_api/darts.utils.likelihood_models.html), which determine the distribution that will be estimated by the model. -In such cases, the model will output the parameters of the distribution, and it will be trained by minimising the negative log-likelihood of the training samples. +All neural networks (torch-based models) in Darts have a rich support to estimate different kinds of probability distributions. +When creating the model, it is possible to provide one of the *likelihood models* available in [darts.utils.likelihood_models](https://unit8co.github.io/darts/generated_api/darts.utils.likelihood_models.html), which determine the distribution that will be estimated by the model. +In such cases, the model will output the parameters of the distribution, and it will be trained by minimising the negative log-likelihood of the training samples. Most of the likelihood models also support prior values for the distribution's parameters, in which case the training loss is regularized by a Kullback-Leibler divergence term pushing the resulting distribution in the direction of the distribution specified by the prior parameters. The strength of this regularization term can also be specified when creating the likelihood model object. @@ -201,7 +201,7 @@ train = scaler.fit_transform(train) val = scaler.transform(val) series = scaler.transform(series) -model = TCNModel(input_chunk_length=30, +model = TCNModel(input_chunk_length=30, output_chunk_length=12, likelihood=LaplaceLikelihood(prior_b=0.1)) model.fit(train, epochs=400) @@ -232,7 +232,7 @@ train = scaler.fit_transform(train) val = scaler.transform(val) series = scaler.transform(series) -model = TCNModel(input_chunk_length=30, +model = TCNModel(input_chunk_length=30, output_chunk_length=12, likelihood=QuantileRegression(quantiles=[0.01, 0.05, 0.2, 0.5, 0.8, 0.95, 0.99])) model.fit(train, epochs=400) @@ -291,8 +291,8 @@ from darts.models import LinearRegressionModel series = AirPassengersDataset().load() train, val = series[:-36], series[-36:] -model = LinearRegressionModel(lags=30, - likelihood="quantile", +model = LinearRegressionModel(lags=30, + likelihood="quantile", quantiles=[0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95]) model.fit(train) pred = model.predict(n=36, num_samples=500) @@ -304,4 +304,4 @@ pred.plot(label='forecast') ![quantile linear regression](./images/probabilistic/example_linreg_quantile.png) -[1] Yarin Gal, Zoubin Ghahramani, ["Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning"](https://arxiv.org/abs/1506.02142) \ No newline at end of file +[1] Yarin Gal, Zoubin Ghahramani, ["Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning"](https://arxiv.org/abs/1506.02142) diff --git a/docs/userguide/gpu_and_tpu_usage.md b/docs/userguide/gpu_and_tpu_usage.md index 5585a84534..89e6f2b198 100644 --- a/docs/userguide/gpu_and_tpu_usage.md +++ b/docs/userguide/gpu_and_tpu_usage.md @@ -66,9 +66,9 @@ IPU available: False, using: 0 IPUs | Name | Type | Params -------------------------------------- -0 | criterion | MSELoss | 0 -1 | rnn | RNN | 460 -2 | V | Linear | 21 +0 | criterion | MSELoss | 0 +1 | rnn | RNN | 460 +2 | V | Linear | 21 -------------------------------------- 481 Trainable params 0 Non-trainable params @@ -105,9 +105,9 @@ LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] | Name | Type | Params -------------------------------------- -0 | criterion | MSELoss | 0 -1 | rnn | RNN | 460 -2 | V | Linear | 21 +0 | criterion | MSELoss | 0 +1 | rnn | RNN | 460 +2 | V | Linear | 21 -------------------------------------- 481 Trainable params 0 Non-trainable params @@ -122,11 +122,11 @@ From the output we can see that the GPU is both available and used. The rest of ### Multi GPU support -Darts utilizes [Lightning's multi GPU capabilities](https://pytorch-lightning.readthedocs.io/en/stable/accelerators/gpu_intermediate.html) to be able to capitalize on scalable hardware. +Darts utilizes [Lightning's multi GPU capabilities](https://pytorch-lightning.readthedocs.io/en/stable/accelerators/gpu_intermediate.html) to be able to capitalize on scalable hardware. -Multiple parallelization strategies exist for multiple GPU training, which - because of different strategies for multiprocessing and data handling - interact strongly with the execution environment. +Multiple parallelization strategies exist for multiple GPU training, which - because of different strategies for multiprocessing and data handling - interact strongly with the execution environment. -Currently in Darts the `ddp_spawn` distribution strategy is tested. +Currently in Darts the `ddp_spawn` distribution strategy is tested. As per the description of the [Lightning documentation](https://pytorch-lightning.readthedocs.io/en/stable/accelerators/gpu_intermediate.html#distributed-data-parallel-spawn) has some noteworthy limitations, eg. it __can not run__ in: @@ -156,7 +156,7 @@ The `ddp` family of strategies creates indiviual subprocesses for each GPU, so c "Dataloader(num_workers=N), where N is large, bottlenecks training with DDP… ie: it will be VERY slow or won’t work at all. This is a PyTorch limitation." -Usage of other distribution strategies with Darts currently _might_ very well work, but are yet untested and subject to individual setup / experimentation. +Usage of other distribution strategies with Darts currently _might_ very well work, but are yet untested and subject to individual setup / experimentation. ## Use a TPU @@ -197,9 +197,9 @@ IPU available: False, using: 0 IPUs | Name | Type | Params -------------------------------------- -0 | criterion | MSELoss | 0 -1 | rnn | RNN | 460 -2 | V | Linear | 21 +0 | criterion | MSELoss | 0 +1 | rnn | RNN | 460 +2 | V | Linear | 21 -------------------------------------- 481 Trainable params 0 Non-trainable params diff --git a/docs/userguide/hyperparameter_optimization.md b/docs/userguide/hyperparameter_optimization.md index bfd659000b..c5c995b79c 100644 --- a/docs/userguide/hyperparameter_optimization.md +++ b/docs/userguide/hyperparameter_optimization.md @@ -65,7 +65,7 @@ def objective(trial): num_workers = 4 else: num_workers = 0 - + pl_trainer_kwargs = { "accelerator": "auto", "callbacks": callbacks, @@ -80,7 +80,7 @@ def objective(trial): # reproducibility torch.manual_seed(42) - + # build the TCN model model = TCNModel( input_chunk_length=in_len, @@ -101,8 +101,8 @@ def objective(trial): force_reset=True, save_checkpoints=True, ) - - + + # when validating during training, we can use a slightly longer validation # set which also contains the first input_chunk_length time steps model_val_set = scaler.transform(series[-(VAL_LEN + in_len) :]) @@ -116,7 +116,7 @@ def objective(trial): # reload best model over course of training model = TCNModel.load_from_checkpoint("tcn_model") - + # Evaluate how good it is on the validation set, using sMAPE preds = model.predict(series=train, n=VAL_LEN) smapes = smape(val, preds, n_jobs=-1, verbose=True) @@ -140,7 +140,7 @@ if __name__ == "__main__": ## Hyperparameter optimization with Ray Tune [Ray Tune](https://docs.ray.io/en/latest/tune/examples/tune-pytorch-lightning.html) is another option for hyperparameter optimization with automatic pruning. -Here is an example of how to use Ray Tune to with the `NBEATSModel` model using the [Asynchronous Hyperband scheduler](https://blog.ml.cmu.edu/2018/12/12/massively-parallel-hyperparameter-optimization/). +Here is an example of how to use Ray Tune to with the `NBEATSModel` model using the [Asynchronous Hyperband scheduler](https://blog.ml.cmu.edu/2018/12/12/massively-parallel-hyperparameter-optimization/). ```python import pandas as pd @@ -224,13 +224,13 @@ train_fn_with_parameters = tune.with_parameters( train_model, callbacks=[my_stopper, tune_callback], train=train, val=val, ) -# optimize hyperparameters by minimizing the MAPE on the validation set +# optimize hyperparameters by minimizing the MAPE on the validation set analysis = tune.run( train_fn_with_parameters, resources_per_trial=resources_per_trial, - # Using a metric instead of loss allows for + # Using a metric instead of loss allows for # comparison between different likelihood or loss functions. - metric="MAPE", # any value in TuneReportCallback. + metric="MAPE", # any value in TuneReportCallback. mode="min", config=config, num_samples=num_samples, diff --git a/docs/userguide/timeseries.md b/docs/userguide/timeseries.md index 7faeb66234..0027290b82 100644 --- a/docs/userguide/timeseries.md +++ b/docs/userguide/timeseries.md @@ -19,7 +19,7 @@ We distinguish univariate from multivariate series: Sometimes the dimensions are called *components*. A single `TimeSeries` object can be either univariate (if it has a single component), or multivariate (if it has multiple components). In a multivariate series, all components share the same time axis. I.e., they all share the same time stamps. -Some models in Darts (and all machine learning models) support multivariate series. This means that they can take multivariate series in inputs (either as targets or as covariates), and the forecasts they produce will have a dimensionality matching that of the targets. +Some models in Darts (and all machine learning models) support multivariate series. This means that they can take multivariate series in inputs (either as targets or as covariates), and the forecasts they produce will have a dimensionality matching that of the targets. In addition, some models can work on *multiple time series*, meaning that they can be trained on multiple `TimeSeries` objects, and used to forecasts multiple `TimeSeries` objects in one go. This is sometimes referred to as panel data. In such cases, the different `TimeSeries` need not share the same time index -- for instance, some series might be in 1990 and others in 2000. In fact, the series need not even have the same frequency. The models handling multiple series expect Python `Sequence`s of `TimeSeries` in inputs (for example, a simple list of `TimeSeries`). diff --git a/docs/userguide/torch_forecasting_models.md b/docs/userguide/torch_forecasting_models.md index 662bc4bc66..5edd7a34b3 100644 --- a/docs/userguide/torch_forecasting_models.md +++ b/docs/userguide/torch_forecasting_models.md @@ -327,7 +327,7 @@ loaded_model.to_cpu() To re-train or fine-tune a model using a different optimizer and/or learning rate scheduler, you can load the weights from the automatic checkpoints into a new model: ```python -# model with identical architecture but different optimizer (default: torch.optim.Adam) +# model with identical architecture but different optimizer (default: torch.optim.Adam) model_finetune = SomeTorchForecastingModel(..., # use identical parameters & values as in original model optimizer_cls=torch.optim.SGD, optimizer_kwargs={"lr": 0.001}) @@ -366,8 +366,8 @@ The code is triggered once the process execution reaches the corresponding hooks Some useful predefined PyTorch Lightning callbacks can be found [here](https://lightning.ai/docs/pytorch/stable/extensions/callbacks.html#built-in-callbacks). #### Example with Early Stopping -Early stopping is an efficient way to avoid overfitting and reduce training time. -It will exit the training process once the validation loss has not significantly improved over some epochs. +Early stopping is an efficient way to avoid overfitting and reduce training time. +It will exit the training process once the validation loss has not significantly improved over some epochs. You can use Early Stopping with any `TorchForecastingModel`, leveraging PyTorch Lightning's [EarlyStopping](https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.EarlyStopping.html#lightning.pytorch.callbacks.EarlyStopping) callback: ```python @@ -568,5 +568,3 @@ We train two models; `NBEATSModel` and `TFTModel`, with default parameters and ` | `TFTModel` | Energy | 32 | yes | 1024 | 0 | 41s | | `TFTModel` | Energy | 32 | yes | 1024 | 2 | 31s | | `TFTModel` | Energy | 32 | yes | 1024 | 4 | 31s | - - diff --git a/gradlew b/gradlew index fbd7c51583..4f906e0c81 100755 --- a/gradlew +++ b/gradlew @@ -130,7 +130,7 @@ fi if [ "$cygwin" = "true" -o "$msys" = "true" ] ; then APP_HOME=`cygpath --path --mixed "$APP_HOME"` CLASSPATH=`cygpath --path --mixed "$CLASSPATH"` - + JAVACMD=`cygpath --unix "$JAVACMD"` # We build the pattern for arguments to be converted via cygpath diff --git a/pyproject.toml b/pyproject.toml index e023217621..708780cf2b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -52,4 +52,4 @@ convention = "google" [tool.ruff.lint.mccabe] # Unlike Flake8, default to a complexity level of 10. -max-complexity = 10 \ No newline at end of file +max-complexity = 10 From 8f8b5141a986494ec4c0f06927a5ebf09955c4c8 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Wed, 17 Apr 2024 17:45:31 +0200 Subject: [PATCH 046/161] Fix/csv eof (#2337) * exclude csvs from pre-commit eof fixer * revert eof fixes to csvs --- .pre-commit-config.yaml | 1 + datasets/heart_rate.csv | 2 +- datasets/ice_cream_heater.csv | 2 +- datasets/monthly-milk-incomplete.csv | 1 + datasets/monthly-milk.csv | 1 + datasets/monthly-sunspots.csv | 2 +- datasets/temps.csv | 2 +- datasets/us_gasoline.csv | 2 +- 8 files changed, 8 insertions(+), 5 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 66a1e1f06c..567b08dbb3 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -12,6 +12,7 @@ repos: rev: v4.6.0 hooks: - id: end-of-file-fixer + exclude_types: [csv] - id: trailing-whitespace - id: check-json - id: check-yaml diff --git a/datasets/heart_rate.csv b/datasets/heart_rate.csv index 8af4d5bbcc..189e262631 100644 --- a/datasets/heart_rate.csv +++ b/datasets/heart_rate.csv @@ -1798,4 +1798,4 @@ Heart rate 101.623 99.5679 99.1835 -98.8567 +98.8567 \ No newline at end of file diff --git a/datasets/ice_cream_heater.csv b/datasets/ice_cream_heater.csv index d45e28f9df..2c87a562e9 100644 --- a/datasets/ice_cream_heater.csv +++ b/datasets/ice_cream_heater.csv @@ -196,4 +196,4 @@ Month,heater,ice cream 2020-03,25,44 2020-04,25,53 2020-05,27,70 -2020-06,24,74 +2020-06,24,74 \ No newline at end of file diff --git a/datasets/monthly-milk-incomplete.csv b/datasets/monthly-milk-incomplete.csv index b5f20519d2..fa498a3773 100644 --- a/datasets/monthly-milk-incomplete.csv +++ b/datasets/monthly-milk-incomplete.csv @@ -154,3 +154,4 @@ "1975-08",858 "1975-11",797 "1975-12",843 + diff --git a/datasets/monthly-milk.csv b/datasets/monthly-milk.csv index 8040820d67..8c90e1073a 100644 --- a/datasets/monthly-milk.csv +++ b/datasets/monthly-milk.csv @@ -167,3 +167,4 @@ "1975-10",827 "1975-11",797 "1975-12",843 + diff --git a/datasets/monthly-sunspots.csv b/datasets/monthly-sunspots.csv index 4817b1e75f..bddb7f8c20 100644 --- a/datasets/monthly-sunspots.csv +++ b/datasets/monthly-sunspots.csv @@ -2818,4 +2818,4 @@ "1983-09",50.3 "1983-10",55.8 "1983-11",33.3 -"1983-12",33.4 +"1983-12",33.4 \ No newline at end of file diff --git a/datasets/temps.csv b/datasets/temps.csv index c2c6969cfa..e9a18f6710 100644 --- a/datasets/temps.csv +++ b/datasets/temps.csv @@ -3648,4 +3648,4 @@ Date,Daily minimum temperatures 12/28/1990,13.6 12/29/1990,13.5 12/30/1990,15.7 -12/31/1990,13 +12/31/1990,13 \ No newline at end of file diff --git a/datasets/us_gasoline.csv b/datasets/us_gasoline.csv index 89165db6b8..f79de0fd79 100644 --- a/datasets/us_gasoline.csv +++ b/datasets/us_gasoline.csv @@ -1576,4 +1576,4 @@ Week,Gasoline 03/1/1991,7224 02/22/1991,6582 02/15/1991,6433 -02/8/1991,6621 +02/8/1991,6621 \ No newline at end of file From aa761b0850cdc0e239ff9fe6ea7a7540b19b82aa Mon Sep 17 00:00:00 2001 From: Jirka Borovec <6035284+Borda@users.noreply.github.com> Date: Thu, 18 Apr 2024 09:27:49 +0200 Subject: [PATCH 047/161] ci: use `pre-commit` also locally (#2327) * ci: use `pre-commit` also locally * chlog --- CHANGELOG.md | 1 + build.gradle | 18 ++---------------- pyproject.toml | 1 + requirements/dev.txt | 4 ---- 4 files changed, 4 insertions(+), 20 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 579e2b613b..02c1b48a57 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -14,6 +14,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co **Dependencies** - Improvements to linting via updated pre-commit configurations: [#2324](https://github.com/unit8co/darts/pull/2324) by [Jirka Borovec](https://github.com/borda). +- Improvements to CI, running lint locally via pre-commit instead of particular tools. [#2327](https://github.com/unit8co/darts/pull/2327) by [Jirka Borovec](https://github.com/borda) ### For developers of the library: diff --git a/build.gradle b/build.gradle index 9e0460a1cd..1af0e04dc1 100644 --- a/build.gradle +++ b/build.gradle @@ -97,23 +97,9 @@ task pipInstall() { dependsOn pip_core, pip_dev, pip_notorch, pip_torch, pip_release } -task lint_black(type: Exec) { +task lint(type: Exec) { dependsOn pip_dev - commandLine "black", "--check", "." -} - -task lint_ruff(type: Exec) { - dependsOn pip_dev - commandLine "ruff", "check" -} - -task lint_isort(type: Exec) { - dependsOn pip_dev - commandLine "isort", "--check", "." -} - -task lint { - dependsOn lint_black, lint_ruff, lint_isort + commandLine "pre-commit", "run", "--all-files" } void createPipRelatedTask(String flavour) { diff --git a/pyproject.toml b/pyproject.toml index 708780cf2b..1d3fde62c2 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -9,6 +9,7 @@ build-backend = "setuptools.build_meta" [tool.pytest.ini_options] addopts = [ "--strict-markers", + "--color=yes" ] markers = [ "slow: marks tests as slow (deselect with `-m 'not slow'`)", diff --git a/requirements/dev.txt b/requirements/dev.txt index edf7e90af1..f6b5c64736 100644 --- a/requirements/dev.txt +++ b/requirements/dev.txt @@ -1,7 +1,3 @@ -black[jupyter]==24.3.0 -ruff==0.3.5 -isort==5.13.2 pre-commit pytest-cov -pyupgrade==v3.15.0 testfixtures From 979a4a3b3fc462ea48e2692a4a4798d982526741 Mon Sep 17 00:00:00 2001 From: Jirka Borovec <6035284+Borda@users.noreply.github.com> Date: Thu, 18 Apr 2024 09:34:27 +0200 Subject: [PATCH 048/161] lint: replace `isort` with Ruff's rule I (#2339) * lint: replace `isort` with Ruff's rule I * fixing * lint * chlog --- .pre-commit-config.yaml | 5 ----- CHANGELOG.md | 1 + CONTRIBUTING.md | 4 ++-- darts/tests/ad/test_anomaly_model.py | 14 +++++++------- darts/tests/ad/test_scorers.py | 8 +++++--- pyproject.toml | 6 +----- 6 files changed, 16 insertions(+), 22 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 567b08dbb3..4ecb78add5 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -26,11 +26,6 @@ repos: - id: black-jupyter language_version: python3 - - repo: https://github.com/pycqa/isort - rev: 5.13.2 - hooks: - - id: isort - - repo: https://github.com/asottile/pyupgrade rev: v3.15.0 hooks: diff --git a/CHANGELOG.md b/CHANGELOG.md index 02c1b48a57..e67aea6c83 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -14,6 +14,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co **Dependencies** - Improvements to linting via updated pre-commit configurations: [#2324](https://github.com/unit8co/darts/pull/2324) by [Jirka Borovec](https://github.com/borda). +- Improvements to unified linting by switch `isort` to Ruff's rule I. [#2339](https://github.com/unit8co/darts/pull/2339) by [Jirka Borovec](https://github.com/borda) - Improvements to CI, running lint locally via pre-commit instead of particular tools. [#2327](https://github.com/unit8co/darts/pull/2327) by [Jirka Borovec](https://github.com/borda) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 4e1e504621..cf5be65702 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -64,12 +64,12 @@ and discuss it with some of the core team. ### Code Formatting and Linting -Darts uses [Black](https://black.readthedocs.io/en/stable/index.html) with default values for automatic code formatting, along with [ruff](https://docs.astral.sh/ruff/) and [isort](https://pycqa.github.io/isort/). +Darts uses [Black](https://black.readthedocs.io/en/stable/index.html) with default values for automatic code formatting, along with [ruff](https://docs.astral.sh/ruff/). As part of the checks on pull requests, it is checked whether the code still adheres to the code style. To ensure you don't need to worry about formatting and linting when contributing, it is recommended to set up at least one of the following: - Integration in git (recommended): 1. Install the pre-commit hook using `pre-commit install` - 2. This will install Black, `isort` and `pyupgrade` formatting and `ruff` linting hooks + 2. This will install Black, `pyupgrade` formatting and `ruff` linting hooks 3. The formatters will automatically fix all files and in case of some non-trivial case `ruff` will highlight any remaining problems before committing - Integration in your editor: - For [Black](https://black.readthedocs.io/en/stable/integrations/editors.html) diff --git a/darts/tests/ad/test_anomaly_model.py b/darts/tests/ad/test_anomaly_model.py index 98f0dccb90..30f1098642 100644 --- a/darts/tests/ad/test_anomaly_model.py +++ b/darts/tests/ad/test_anomaly_model.py @@ -9,14 +9,10 @@ # anomaly aggregators # import everything in darts.ad (also for testing imports) -from darts.ad import AndAggregator # noqa: F401 -from darts.ad import EnsembleSklearnAggregator # noqa: F401 -from darts.ad import OrAggregator # noqa: F401 -from darts.ad import QuantileDetector # noqa: F401 -from darts.ad import ThresholdDetector # noqa: F401 -from darts.ad import CauchyNLLScorer -from darts.ad import DifferenceScorer as Difference from darts.ad import ( + AndAggregator, # noqa: F401 + CauchyNLLScorer, + EnsembleSklearnAggregator, # noqa: F401 ExponentialNLLScorer, FilteringAnomalyModel, ForecastingAnomalyModel, @@ -25,10 +21,14 @@ KMeansScorer, LaplaceNLLScorer, NormScorer, + OrAggregator, # noqa: F401 PoissonNLLScorer, PyODScorer, + QuantileDetector, # noqa: F401 + ThresholdDetector, # noqa: F401 WassersteinScorer, ) +from darts.ad import DifferenceScorer as Difference from darts.ad.utils import eval_accuracy_from_scores, show_anomalies_from_scores from darts.models import MovingAverageFilter, NaiveSeasonal, RegressionModel diff --git a/darts/tests/ad/test_scorers.py b/darts/tests/ad/test_scorers.py index b87d63e0ff..404de16a22 100644 --- a/darts/tests/ad/test_scorers.py +++ b/darts/tests/ad/test_scorers.py @@ -7,17 +7,19 @@ from scipy.stats import cauchy, expon, gamma, laplace, norm, poisson from darts import TimeSeries -from darts.ad.scorers import CauchyNLLScorer -from darts.ad.scorers import DifferenceScorer as Difference from darts.ad.scorers import ( + CauchyNLLScorer, ExponentialNLLScorer, GammaNLLScorer, GaussianNLLScorer, KMeansScorer, LaplaceNLLScorer, + PoissonNLLScorer, + PyODScorer, + WassersteinScorer, ) +from darts.ad.scorers import DifferenceScorer as Difference from darts.ad.scorers import NormScorer as Norm -from darts.ad.scorers import PoissonNLLScorer, PyODScorer, WassersteinScorer from darts.models import MovingAverageFilter list_NonFittableAnomalyScorer = [ diff --git a/pyproject.toml b/pyproject.toml index 1d3fde62c2..28fdbf7fae 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -16,10 +16,6 @@ markers = [ ] -[tool.isort] -profile = "black" - - [tool.ruff] target-version = "py38" line-length = 120 @@ -32,7 +28,7 @@ select = [ "E", "W", # see: https://pypi.org/project/pycodestyle "F", # see: https://pypi.org/project/pyflakes -# "I", #see: https://pypi.org/project/isort/ + "I", #see: https://pypi.org/project/isort/ # "UP", # see: https://docs.astral.sh/ruff/rules/#pyupgrade-up # "D", # see: https://pypi.org/project/pydocstyle ] From 6f13a2f1554bd4fef06df44d287bbd51b6d76878 Mon Sep 17 00:00:00 2001 From: Jirka Borovec <6035284+Borda@users.noreply.github.com> Date: Thu, 18 Apr 2024 09:43:41 +0200 Subject: [PATCH 049/161] lint: replace `pyupgrade` with Ruff's rule UP (#2340) * lint: replace `pyupgrade` with Ruff's rule UP * fixing * chlog --- .pre-commit-config.yaml | 6 -- CHANGELOG.md | 1 + CONTRIBUTING.md | 2 +- darts/ad/anomaly_model/anomaly_model.py | 12 ++-- darts/models/forecasting/forecasting_model.py | 5 +- .../forecasting/pl_forecasting_module.py | 6 +- .../forecasting/torch_forecasting_model.py | 11 ++-- .../test_global_forecasting_models.py | 19 +++--- .../test_local_forecasting_models.py | 14 ++-- .../forecasting/test_probabilistic_models.py | 4 +- darts/tests/utils/test_model_selection.py | 50 ++++++-------- darts/timeseries.py | 65 +++++-------------- darts/utils/data/horizon_based_dataset.py | 2 +- darts/utils/data/shifted_dataset.py | 2 +- darts/utils/statistics.py | 4 +- pyproject.toml | 2 +- 16 files changed, 75 insertions(+), 130 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 4ecb78add5..3cc301752e 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -26,12 +26,6 @@ repos: - id: black-jupyter language_version: python3 - - repo: https://github.com/asottile/pyupgrade - rev: v3.15.0 - hooks: - - id: pyupgrade - args: ['--py38-plus'] - - repo: https://github.com/astral-sh/ruff-pre-commit rev: v0.3.5 hooks: diff --git a/CHANGELOG.md b/CHANGELOG.md index e67aea6c83..97c8b2fae4 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -15,6 +15,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co **Dependencies** - Improvements to linting via updated pre-commit configurations: [#2324](https://github.com/unit8co/darts/pull/2324) by [Jirka Borovec](https://github.com/borda). - Improvements to unified linting by switch `isort` to Ruff's rule I. [#2339](https://github.com/unit8co/darts/pull/2339) by [Jirka Borovec](https://github.com/borda) +- Improvements to unified linting by switch `pyupgrade` to Ruff's rule UP. [#2340](https://github.com/unit8co/darts/pull/2340) by [Jirka Borovec](https://github.com/borda) - Improvements to CI, running lint locally via pre-commit instead of particular tools. [#2327](https://github.com/unit8co/darts/pull/2327) by [Jirka Borovec](https://github.com/borda) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index cf5be65702..5e9bac708c 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -69,7 +69,7 @@ As part of the checks on pull requests, it is checked whether the code still adh To ensure you don't need to worry about formatting and linting when contributing, it is recommended to set up at least one of the following: - Integration in git (recommended): 1. Install the pre-commit hook using `pre-commit install` - 2. This will install Black, `pyupgrade` formatting and `ruff` linting hooks + 2. This will install Black formatting and `ruff` linting hooks 3. The formatters will automatically fix all files and in case of some non-trivial case `ruff` will highlight any remaining problems before committing - Integration in your editor: - For [Black](https://black.readthedocs.io/en/stable/integrations/editors.html) diff --git a/darts/ad/anomaly_model/anomaly_model.py b/darts/ad/anomaly_model/anomaly_model.py index a86d122249..cf4c08ce44 100644 --- a/darts/ad/anomaly_model/anomaly_model.py +++ b/darts/ad/anomaly_model/anomaly_model.py @@ -40,13 +40,11 @@ def _check_univariate(self, actual_anomalies): if self.univariate_scoring: raise_if_not( all([s.width == 1 for s in actual_anomalies]), - "Anomaly model contains scorer {} that will return".format( - [s.__str__() for s in self.scorers if s.univariate_scorer] - ) - + " a univariate anomaly score series (width=1). Found a" - + " multivariate `actual_anomalies`. The evaluation of the" - + " accuracy cannot be computed. If applicable, think about" - + " setting the scorer parameter `componenet_wise` to True.", + f"Anomaly model contains scorer {[s.__str__() for s in self.scorers if s.univariate_scorer]}" + f" that will return a univariate anomaly score series (width=1)." + f" Found a multivariate `actual_anomalies`. The evaluation of the" + " accuracy cannot be computed. If applicable, think about" + " setting the scorer parameter `componenet_wise` to True.", ) @abstractmethod diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index 6c58b3d44a..ce027f7b49 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -175,9 +175,8 @@ def fit(self, series: TimeSeries) -> "ForecastingModel": if not len(series) >= self.min_train_series_length: raise_log( ValueError( - "Train series only contains {} elements but {} model requires at least {} entries".format( - len(series), str(self), self.min_train_series_length - ) + f"Train series only contains {len(series)} elements" + f" but {str(self)} model requires at least {self.min_train_series_length} entries" ), logger=logger, ) diff --git a/darts/models/forecasting/pl_forecasting_module.py b/darts/models/forecasting/pl_forecasting_module.py index e6cabd23a3..16c2ebe959 100644 --- a/darts/models/forecasting/pl_forecasting_module.py +++ b/darts/models/forecasting/pl_forecasting_module.py @@ -400,9 +400,9 @@ def _create_from_cls_and_kwargs(cls, kws): ValueError( "Error when building the optimizer or learning rate scheduler;" "please check the provided class and arguments" - "\nclass: {}" - "\narguments (kwargs): {}" - "\nerror:\n{}".format(cls, kws, e) + f"\nclass: {cls}" + f"\narguments (kwargs): {kws}" + f"\nerror:\n{e}" ), logger, ) diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index 1bde798b6c..cc96d51dc5 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -884,9 +884,7 @@ def _setup_for_fit_from_dataset( not length_ok or len(train_dataset) == 0, # mind the order "The train dataset does not contain even one training sample. " + "This is likely due to the provided training series being too short. " - + "This model expect series of length at least {}.".format( - self.min_train_series_length - ), + + f"This model expect series of length at least {self.min_train_series_length}.", ) logger.info(f"Train dataset contains {len(train_dataset)} samples.") @@ -1012,10 +1010,9 @@ def _setup_for_train( # Check existing model has input/output dims matching what's provided in the training set. raise_if_not( len(train_sample) == len(self.train_sample), - "The size of the training set samples (tuples) does not match what the model has been " - "previously trained on. Trained on tuples of length {}, received tuples of length {}.".format( - len(self.train_sample), len(train_sample) - ), + "The size of the training set samples (tuples) does not match what the model has been" + f" previously trained on. Trained on tuples of length {len(self.train_sample)}," + f" received tuples of length {len(train_sample)}.", ) same_dims = tuple( s.shape[1] if s is not None else None for s in train_sample diff --git a/darts/tests/models/forecasting/test_global_forecasting_models.py b/darts/tests/models/forecasting/test_global_forecasting_models.py index bdd04ae030..d97254d089 100644 --- a/darts/tests/models/forecasting/test_global_forecasting_models.py +++ b/darts/tests/models/forecasting/test_global_forecasting_models.py @@ -326,10 +326,9 @@ def test_single_ts(self, config): model.fit(self.ts_pass_train) pred = model.predict(n=36) mape_err = mape(self.ts_pass_val, pred) - assert ( - mape_err < err - ), "Model {} produces errors too high (one time " "series). Error = {}".format( - model_cls, mape_err + assert mape_err < err, ( + f"Model {model_cls} produces errors too high (one time " + f"series). Error = {mape_err}" ) assert pred.static_covariates.equals(self.ts_passengers.static_covariates) @@ -349,8 +348,8 @@ def test_multi_ts(self, config): pred = model.predict(n=36, series=self.ts_pass_train) mape_err = mape(self.ts_pass_val, pred) assert mape_err < err, ( - "Model {} produces errors too high (several time " - "series). Error = {}".format(model_cls, mape_err) + f"Model {model_cls} produces errors too high (several time " + f"series). Error = {mape_err}" ) # check prediction for several time series @@ -363,8 +362,8 @@ def test_multi_ts(self, config): for pred in pred_list: mape_err = mape(self.ts_pass_val, pred) assert mape_err < err, ( - "Model {} produces errors too high (several time series 2). " - "Error = {}".format(model_cls, mape_err) + f"Model {model_cls} produces errors too high (several time series 2). " + f"Error = {mape_err}" ) @pytest.mark.parametrize("config", models_cls_kwargs_errs) @@ -451,8 +450,8 @@ def test_covariates(self, config): pred = model.predict(n=12, series=self.ts_pass_train, **cov_kwargs_notrain) mape_err = mape(self.ts_pass_val, pred) assert mape_err < err, ( - "Model {} produces errors too high (several time " - "series with covariates). Error = {}".format(model_cls, mape_err) + f"Model {model_cls} produces errors too high (several time " + f"series with covariates). Error = {mape_err}" ) # when model is fit using 1 training and 1 covariate series, time series args are optional diff --git a/darts/tests/models/forecasting/test_local_forecasting_models.py b/darts/tests/models/forecasting/test_local_forecasting_models.py index 4bd4f7b587..a7b5ae5fa2 100644 --- a/darts/tests/models/forecasting/test_local_forecasting_models.py +++ b/darts/tests/models/forecasting/test_local_forecasting_models.py @@ -222,10 +222,9 @@ def test_models_performance(self, config): model.fit(self.ts_pass_train) prediction = model.predict(len(self.ts_pass_val)) current_mape = mape(self.ts_pass_val, prediction) - assert ( - current_mape < max_mape - ), "{} model exceeded the maximum MAPE of {}. " "with a MAPE of {}".format( - str(model), max_mape, current_mape + assert current_mape < max_mape, ( + f"{str(model)} model exceeded the maximum MAPE of {max_mape}. " + f"with a MAPE of {current_mape}" ) @pytest.mark.parametrize("config", multivariate_models) @@ -236,10 +235,9 @@ def test_multivariate_models_performance(self, config): model.fit(self.ts_ice_heater_train) prediction = model.predict(len(self.ts_ice_heater_val)) current_mape = mape(self.ts_ice_heater_val, prediction) - assert ( - current_mape < max_mape - ), "{} model exceeded the maximum MAPE of {}. " "with a MAPE of {}".format( - str(model), max_mape, current_mape + assert current_mape < max_mape, ( + f"{str(model)} model exceeded the maximum MAPE of {max_mape}. " + f"with a MAPE of {current_mape}" ) def test_multivariate_input(self): diff --git a/darts/tests/models/forecasting/test_probabilistic_models.py b/darts/tests/models/forecasting/test_probabilistic_models.py index 169f9b6a1e..c413d5443e 100644 --- a/darts/tests/models/forecasting/test_probabilistic_models.py +++ b/darts/tests/models/forecasting/test_probabilistic_models.py @@ -431,11 +431,11 @@ def _get_avgs(series): avgs_orig, avgs_pred = _get_avgs(series), _get_avgs(pred) assert abs(avgs_orig[0] - avgs_pred[0]) < diff1, ( "The difference between the mean forecast and the mean series is larger " - "than expected on component 0 for distribution {}".format(lkl) + f"than expected on component 0 for distribution {lkl}" ) assert abs(avgs_orig[1] - avgs_pred[1]) < diff2, ( "The difference between the mean forecast and the mean series is larger " - "than expected on component 1 for distribution {}".format(lkl) + f"than expected on component 1 for distribution {lkl}" ) @pytest.mark.parametrize( diff --git a/darts/tests/utils/test_model_selection.py b/darts/tests/utils/test_model_selection.py index 7b33836b75..cfca524580 100644 --- a/darts/tests/utils/test_model_selection.py +++ b/darts/tests/utils/test_model_selection.py @@ -59,19 +59,17 @@ def test_horiz_number_of_samples_too_small(self): def test_sunny_day_horiz_split(self): train_set, test_set = train_test_split(make_dataset(8, 10)) - assert verify_shape(train_set, 6, 10) and verify_shape( - test_set, 2, 10 - ), "Wrong shapes: training set shape: ({}, {}); test set shape ({}, {})".format( - len(train_set), len(train_set[0]), len(test_set), len(test_set[0]) + assert verify_shape(train_set, 6, 10) and verify_shape(test_set, 2, 10), ( + f"Wrong shapes: training set shape: ({len(train_set)}, {len(train_set[0])});" + f" test set shape ({len(test_set)}, {len(test_set[0])})" ) def test_sunny_day_horiz_split_absolute(self): train_set, test_set = train_test_split(make_dataset(8, 10), test_size=2) - assert verify_shape(train_set, 6, 10) and verify_shape( - test_set, 2, 10 - ), "Wrong shapes: training set shape: ({}, {}); test set shape ({}, {})".format( - len(train_set), len(train_set[0]), len(test_set), len(test_set[0]) + assert verify_shape(train_set, 6, 10) and verify_shape(test_set, 2, 10), ( + f"Wrong shapes: training set shape: ({len(train_set)}, {len(train_set[0])});" + f" test set shape ({len(test_set)}, {len(test_set[0])})" ) def test_horiz_split_overindexing_train_set(self): @@ -106,10 +104,9 @@ def test_sunny_day_vertical_split(self): vertical_split_type=MODEL_AWARE, ) - assert verify_shape(train_set, 2, 151) and verify_shape( - test_set, 2, 169 - ), "Wrong shapes: training set shape: ({}, {}); test set shape ({}, {})".format( - len(train_set), len(train_set[0]), len(test_set), len(test_set[0]) + assert verify_shape(train_set, 2, 151) and verify_shape(test_set, 2, 169), ( + f"Wrong shapes: training set shape: ({len(train_set)}, {len(train_set[0])});" + f" test set shape ({len(test_set)}, {len(test_set[0])})" ) # test 7 @@ -129,10 +126,9 @@ def test_test_split_absolute_number_vertical(self): vertical_split_type=MODEL_AWARE, ) - assert verify_shape(train_set, 4, 7) and verify_shape( - test_set, 4, 4 - ), "Wrong shapes: training set shape: ({}, {}); test set shape ({}, {})".format( - len(train_set), len(train_set[0]), len(test_set), len(test_set[0]) + assert verify_shape(train_set, 4, 7) and verify_shape(test_set, 4, 4), ( + f"Wrong shapes: training set shape: ({len(train_set)}, {len(train_set[0])});" + f" test set shape ({len(test_set)}, {len(test_set[0])})" ) def test_negative_test_start_index(self): @@ -179,9 +175,7 @@ def test_single_timeseries_sunny_day(self): assert ( len(train_set) == 7 and len(test_set) == 4 - ), "Wrong shapes: training set shape: {}; test set shape {}".format( - len(train_set), len(test_set) - ) + ), f"Wrong shapes: training set shape: {len(train_set)}; test set shape {len(test_set)}" def test_multi_timeseries_variable_ts_length_sunny_day(self): data = [ @@ -204,9 +198,7 @@ def test_multi_timeseries_variable_ts_length_sunny_day(self): 4, 4, 4, - ], "Wrong shapes: training set shape: {}; test set shape {}".format( - train_lengths, test_lengths - ) + ], f"Wrong shapes: training set shape: {train_lengths}; test set shape {test_lengths}" def test_multi_timeseries_variable_ts_length_one_ts_too_small(self): data = [ @@ -230,10 +222,9 @@ def test_simple_vertical_split_sunny_day(self): make_dataset(4, 10), axis=1, vertical_split_type=SIMPLE, test_size=0.2 ) - assert verify_shape(train_set, 4, 8) and verify_shape( - test_set, 4, 2 - ), "Wrong shapes: training set shape: ({}, {}); test set shape ({}, {})".format( - len(train_set), len(train_set[0]), len(test_set), len(test_set[0]) + assert verify_shape(train_set, 4, 8) and verify_shape(test_set, 4, 2), ( + f"Wrong shapes: training set shape: ({len(train_set)}, {len(train_set[0])});" + f" test set shape ({len(test_set)}, {len(test_set[0])})" ) def test_simple_vertical_split_sunny_day_absolute_split(self): @@ -241,10 +232,9 @@ def test_simple_vertical_split_sunny_day_absolute_split(self): make_dataset(4, 10), axis=1, vertical_split_type=SIMPLE, test_size=2 ) - assert verify_shape(train_set, 4, 8) and verify_shape( - test_set, 4, 2 - ), "Wrong shapes: training set shape: ({}, {}); test set shape ({}, {})".format( - len(train_set), len(train_set[0]), len(test_set), len(test_set[0]) + assert verify_shape(train_set, 4, 8) and verify_shape(test_set, 4, 2), ( + f"Wrong shapes: training set shape: ({len(train_set)}, {len(train_set[0])});" + f" test set shape ({len(test_set)}, {len(test_set[0])})" ) def test_simple_vertical_split_exception_on_bad_param(self): diff --git a/darts/timeseries.py b/darts/timeseries.py index 640ff3b7b0..5523b40ee5 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -135,9 +135,7 @@ def __init__(self, xa: xr.DataArray, copy=True): # The first dimension represents the time and may be named differently. raise_log( ValueError( - "The last two dimensions of the DataArray must be named {}".format( - DIMS[-2:] - ) + f"The last two dimensions of the DataArray must be named {DIMS[-2:]}" ), logger, ) @@ -428,9 +426,7 @@ def _clean_component_list(columns) -> List[str]: name_to_occurence[clist[i]] += 1 if name_to_occurence[clist[i]] > 1: - clist[i] = clist[i] + "_{}".format( - name_to_occurence[clist[i]] - 1 - ) + clist[i] = clist[i] + f"_{name_to_occurence[clist[i]] - 1}" has_duplicate = len(set(clist)) != len(clist) @@ -1503,9 +1499,7 @@ def _raise_if_not_within(self, ts: Union[pd.Timestamp, int]): raise_if_not( is_inside, - "Timestamp must be between {} and {}".format( - self.start_time(), self.end_time() - ), + f"Timestamp must be between {self.start_time()} and {self.end_time()}", logger, ) @@ -2680,8 +2674,8 @@ def shift(self, n: int) -> Self: except pd.errors.OutOfBoundsDatetime: raise_log( OverflowError( - "the add operation between {} and {} will " - "overflow".format(n * self.freq, self.time_index[-1]) + f"the add operation between {n * self.freq} and {self.time_index[-1]} will " + "overflow" ), logger, ) @@ -2960,9 +2954,7 @@ def with_values(self, values: np.ndarray) -> Self: raise_if_not( values.shape[:2] == self._xa.values.shape[:2], "The new values must have the same shape (time, components) as the present series. " - "Received: {}, expected: {}".format( - values.shape[:2], self._xa.values.shape[:2] - ), + f"Received: {values.shape[:2]}, expected: {self._xa.values.shape[:2]}", ) new_xa = xr.DataArray( @@ -4799,9 +4791,7 @@ def _get_dim_name(self, axis: Union[int, str]) -> str: known_dims = (self._time_dim,) + DIMS[1:] raise_if_not( axis in known_dims, - "`axis` must be a known dimension of this series: {}".format( - known_dims - ), + f"`axis` must be a known dimension of this series: {known_dims}", ) return axis @@ -4815,9 +4805,7 @@ def _get_dim(self, axis: Union[int, str]) -> int: known_dims = (self._time_dim,) + DIMS[1:] raise_if_not( axis in known_dims, - "`axis` must be a known dimension of this series: {}".format( - known_dims - ), + f"`axis` must be a known dimension of this series: {known_dims}", ) return known_dims.index(axis) @@ -4843,9 +4831,7 @@ def __add__(self, other): else: raise_log( TypeError( - "unsupported operand type(s) for + or add(): '{}' and '{}'.".format( - type(self).__name__, type(other).__name__ - ) + f"unsupported operand type(s) for + or add(): '{type(self).__name__}' and '{type(other).__name__}'." ), logger, ) @@ -4864,9 +4850,7 @@ def __sub__(self, other): else: raise_log( TypeError( - "unsupported operand type(s) for - or sub(): '{}' and '{}'.".format( - type(self).__name__, type(other).__name__ - ) + f"unsupported operand type(s) for - or sub(): '{type(self).__name__}' and '{type(other).__name__}'." ), logger, ) @@ -4885,9 +4869,7 @@ def __mul__(self, other): else: raise_log( TypeError( - "unsupported operand type(s) for * or mul(): '{}' and '{}'.".format( - type(self).__name__, type(other).__name__ - ) + f"unsupported operand type(s) for * or mul(): '{type(self).__name__}' and '{type(other).__name__}'." ), logger, ) @@ -4907,9 +4889,7 @@ def __pow__(self, n): else: raise_log( TypeError( - "unsupported operand type(s) for ** or pow(): '{}' and '{}'.".format( - type(self).__name__, type(n).__name__ - ) + f"unsupported operand type(s) for ** or pow(): '{type(self).__name__}' and '{type(n).__name__}'." ), logger, ) @@ -4932,9 +4912,8 @@ def __truediv__(self, other): else: raise_log( TypeError( - "unsupported operand type(s) for / or truediv(): '{}' and '{}'.".format( - type(self).__name__, type(other).__name__ - ) + "unsupported operand type(s) for / or truediv():" + f" '{type(self).__name__}' and '{type(other).__name__}'." ), logger, ) @@ -4968,9 +4947,7 @@ def __lt__(self, other) -> xr.DataArray: else: raise_log( TypeError( - "unsupported operand type(s) for < : '{}' and '{}'.".format( - type(self).__name__, type(other).__name__ - ) + f"unsupported operand type(s) for < : '{type(self).__name__}' and '{type(other).__name__}'." ), logger, ) @@ -4989,9 +4966,7 @@ def __gt__(self, other) -> xr.DataArray: else: raise_log( TypeError( - "unsupported operand type(s) for < : '{}' and '{}'.".format( - type(self).__name__, type(other).__name__ - ) + f"unsupported operand type(s) for < : '{type(self).__name__}' and '{type(other).__name__}'." ), logger, ) @@ -5010,9 +4985,7 @@ def __le__(self, other) -> xr.DataArray: else: raise_log( TypeError( - "unsupported operand type(s) for < : '{}' and '{}'.".format( - type(self).__name__, type(other).__name__ - ) + f"unsupported operand type(s) for < : '{type(self).__name__}' and '{type(other).__name__}'." ), logger, ) @@ -5031,9 +5004,7 @@ def __ge__(self, other) -> xr.DataArray: else: raise_log( TypeError( - "unsupported operand type(s) for < : '{}' and '{}'.".format( - type(self).__name__, type(other).__name__ - ) + f"unsupported operand type(s) for < : '{type(self).__name__}' and '{type(other).__name__}'." ), logger, ) diff --git a/darts/utils/data/horizon_based_dataset.py b/darts/utils/data/horizon_based_dataset.py index 1e40509d1c..2b44ed4be1 100644 --- a/darts/utils/data/horizon_based_dataset.py +++ b/darts/utils/data/horizon_based_dataset.py @@ -120,7 +120,7 @@ def __getitem__( len(target_vals) >= (self.lookback + self.max_lh) * self.output_chunk_length, "The dataset contains some input/target series that are shorter than " - "`(lookback + max_lh) * H` ({}-th series)".format(target_idx), + f"`(lookback + max_lh) * H` ({target_idx}-th series)", ) # determine the index lh_idx of the forecasting point (the last point of the input series, before the target) diff --git a/darts/utils/data/shifted_dataset.py b/darts/utils/data/shifted_dataset.py index e3f4da033b..cea4e68b20 100644 --- a/darts/utils/data/shifted_dataset.py +++ b/darts/utils/data/shifted_dataset.py @@ -585,7 +585,7 @@ def __getitem__( n_samples_in_ts >= 1, "The dataset contains some time series that are too short to contain " "`max(self.input_chunk_length, self.shift + self.output_chunk_length)` " - "({}-th series)".format(target_idx), + f"({target_idx}-th series)", ) # determine the index at the end of the output chunk diff --git a/darts/utils/statistics.py b/darts/utils/statistics.py index 46383e95d5..fec32bdee2 100644 --- a/darts/utils/statistics.py +++ b/darts/utils/statistics.py @@ -278,9 +278,7 @@ def remove_from_series( else: raise_log( ValueError( - "Invalid parameter; must be either ADDITIVE or MULTIPLICATIVE. Was: {}".format( - model - ) + f"Invalid parameter; must be either ADDITIVE or MULTIPLICATIVE. Was: {model}" ) ) return new_ts diff --git a/pyproject.toml b/pyproject.toml index 28fdbf7fae..1916db2da8 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -29,7 +29,7 @@ select = [ "W", # see: https://pypi.org/project/pycodestyle "F", # see: https://pypi.org/project/pyflakes "I", #see: https://pypi.org/project/isort/ -# "UP", # see: https://docs.astral.sh/ruff/rules/#pyupgrade-up + "UP", # see: https://docs.astral.sh/ruff/rules/#pyupgrade-up # "D", # see: https://pypi.org/project/pydocstyle ] ignore = [ From ca6a630f66a1e35ee06055844b6410b2b2e4321c Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Tue, 30 Apr 2024 11:20:41 +0200 Subject: [PATCH 050/161] bump actions/setup-python from v1 to v5 (#2360) * bump actions/setup-python from v1 to v5 * revert bumping actions/setup-python and use fixed macos version * try macos-13 --- .github/workflows/develop.yml | 2 +- .github/workflows/merge.yml | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/develop.yml b/.github/workflows/develop.yml index fe640a4eb9..d0320e21d8 100644 --- a/.github/workflows/develop.yml +++ b/.github/workflows/develop.yml @@ -38,7 +38,7 @@ jobs: runs-on: ${{ matrix.os }} strategy: matrix: - os: [macos-latest, ubuntu-latest] + os: [macos-13, ubuntu-latest] python-version: ['3.9'] flavour: ['all'] diff --git a/.github/workflows/merge.yml b/.github/workflows/merge.yml index bbcffae94a..d4d4169df1 100644 --- a/.github/workflows/merge.yml +++ b/.github/workflows/merge.yml @@ -38,7 +38,7 @@ jobs: runs-on: ${{ matrix.os }} strategy: matrix: - os: [macos-latest, ubuntu-latest] + os: [macos-13, ubuntu-latest] python-version: ['3.8', '3.10'] flavour: ['core', 'torch', 'all'] From b5824db475cbfff9c60ead7260a1ba4f816f6013 Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Tue, 30 Apr 2024 16:40:51 +0200 Subject: [PATCH 051/161] Lint/e402 (#2361) * fix E402 for __init__ files * make all darts imports absolute * torch imports for unit tests to be skipped in non torch flavor * fix examples import --- darts/__init__.py | 4 +- darts/ad/__init__.py | 29 ++++- darts/ad/aggregators/__init__.py | 12 +- darts/ad/anomaly_model/__init__.py | 9 +- darts/ad/detectors/__init__.py | 9 +- darts/ad/scorers/__init__.py | 40 ++++-- darts/dataprocessing/__init__.py | 4 +- darts/dataprocessing/dtw/__init__.py | 23 +++- darts/dataprocessing/dtw/cost_matrix.py | 2 +- darts/dataprocessing/dtw/dtw.py | 5 +- darts/dataprocessing/encoders/__init__.py | 14 ++- darts/dataprocessing/transformers/__init__.py | 48 +++++-- darts/dataprocessing/transformers/boxcox.py | 9 +- darts/dataprocessing/transformers/diff.py | 9 +- .../transformers/fittable_data_transformer.py | 3 +- .../invertible_data_transformer.py | 3 +- darts/dataprocessing/transformers/mappers.py | 7 +- .../transformers/missing_values_filler.py | 3 +- darts/dataprocessing/transformers/scaler.py | 9 +- .../static_covariates_transformer.py | 9 +- darts/datasets/__init__.py | 6 +- darts/explainability/__init__.py | 16 ++- darts/metrics/__init__.py | 32 ++++- darts/models/__init__.py | 63 ++++++++++ darts/tests/conftest.py | 12 ++ .../dataprocessing/encoders/test_encoders.py | 8 +- darts/tests/datasets/test_datasets.py | 44 ++++--- .../explainability/test_tft_explainer.py | 12 +- darts/tests/models/components/glu_variants.py | 15 +-- .../components/test_layer_norm_variants.py | 23 ++-- darts/tests/models/forecasting/test_RNN.py | 14 +-- darts/tests/models/forecasting/test_TCN.py | 14 +-- darts/tests/models/forecasting/test_TFT.py | 20 ++- .../models/forecasting/test_backtesting.py | 11 +- .../forecasting/test_baseline_models.py | 11 +- .../models/forecasting/test_block_RNN.py | 22 ++-- .../forecasting/test_dlinear_nlinear.py | 18 ++- .../forecasting/test_ensemble_models.py | 9 +- .../test_global_forecasting_models.py | 55 ++++---- .../forecasting/test_historical_forecasts.py | 13 +- .../models/forecasting/test_nbeats_nhits.py | 12 +- .../forecasting/test_probabilistic_models.py | 11 +- .../models/forecasting/test_ptl_trainer.py | 14 +-- .../test_regression_ensemble_model.py | 12 +- .../models/forecasting/test_tide_model.py | 16 +-- .../test_torch_forecasting_model.py | 118 +++++++++--------- .../forecasting/test_transformer_model.py | 28 ++--- .../tests/models/forecasting/test_tsmixer.py | 32 +++-- darts/tests/utils/test_likelihood_models.py | 81 ++++++------ darts/tests/utils/test_losses.py | 14 +-- darts/tests/utils/test_utils_torch.py | 13 +- darts/timeseries.py | 9 +- darts/utils/__init__.py | 9 +- darts/utils/data/__init__.py | 104 +++++++++++++-- darts/utils/data/horizon_based_dataset.py | 5 +- darts/utils/data/inference_dataset.py | 3 +- darts/utils/data/sequential_dataset.py | 7 +- darts/utils/data/shifted_dataset.py | 5 +- darts/utils/data/training_dataset.py | 3 +- darts/utils/historical_forecasts/__init__.py | 14 ++- darts/utils/statistics.py | 5 +- examples/__init__.py | 0 examples/utils/__init__.py | 2 + pyproject.toml | 1 - 64 files changed, 702 insertions(+), 485 deletions(-) create mode 100644 examples/__init__.py diff --git a/darts/__init__.py b/darts/__init__.py index cab24838d8..e14bc8a82d 100644 --- a/darts/__init__.py +++ b/darts/__init__.py @@ -8,7 +8,7 @@ import matplotlib as mpl from matplotlib import cycler -from .timeseries import TimeSeries, concatenate +from darts.timeseries import TimeSeries, concatenate __version__ = "0.29.0" @@ -41,3 +41,5 @@ if os.getenv("DARTS_CONFIGURE_MATPLOTLIB", "1") != "0": mpl.rcParams.update(u8plots_mplstyle) + +__all__ = ["TimeSeries", "concatenate"] diff --git a/darts/ad/__init__.py b/darts/ad/__init__.py index 09de314163..09a9d51437 100644 --- a/darts/ad/__init__.py +++ b/darts/ad/__init__.py @@ -27,16 +27,16 @@ """ # anomaly aggregators -from .aggregators import AndAggregator, EnsembleSklearnAggregator, OrAggregator +from darts.ad.aggregators import AndAggregator, EnsembleSklearnAggregator, OrAggregator # anomaly models -from .anomaly_model import FilteringAnomalyModel, ForecastingAnomalyModel +from darts.ad.anomaly_model import FilteringAnomalyModel, ForecastingAnomalyModel # anomaly detectors -from .detectors import QuantileDetector, ThresholdDetector +from darts.ad.detectors import QuantileDetector, ThresholdDetector # anomaly scorers -from .scorers import ( +from darts.ad.scorers import ( CauchyNLLScorer, DifferenceScorer, ExponentialNLLScorer, @@ -49,3 +49,24 @@ PyODScorer, WassersteinScorer, ) + +__all__ = [ + "AndAggregator", + "EnsembleSklearnAggregator", + "OrAggregator", + "FilteringAnomalyModel", + "ForecastingAnomalyModel", + "QuantileDetector", + "ThresholdDetector", + "CauchyNLLScorer", + "DifferenceScorer", + "ExponentialNLLScorer", + "GammaNLLScorer", + "GaussianNLLScorer", + "KMeansScorer", + "LaplaceNLLScorer", + "NormScorer", + "PoissonNLLScorer", + "PyODScorer", + "WassersteinScorer", +] diff --git a/darts/ad/aggregators/__init__.py b/darts/ad/aggregators/__init__.py index 324b54b24b..dd29a81364 100644 --- a/darts/ad/aggregators/__init__.py +++ b/darts/ad/aggregators/__init__.py @@ -13,6 +13,12 @@ binary TimeSeries representing the final detection. """ -from .and_aggregator import AndAggregator -from .ensemble_sklearn_aggregator import EnsembleSklearnAggregator -from .or_aggregator import OrAggregator +from darts.ad.aggregators.and_aggregator import AndAggregator +from darts.ad.aggregators.ensemble_sklearn_aggregator import EnsembleSklearnAggregator +from darts.ad.aggregators.or_aggregator import OrAggregator + +__all__ = [ + "AndAggregator", + "EnsembleSklearnAggregator", + "OrAggregator", +] diff --git a/darts/ad/anomaly_model/__init__.py b/darts/ad/anomaly_model/__init__.py index 50af79dbc6..810ed0617f 100644 --- a/darts/ad/anomaly_model/__init__.py +++ b/darts/ad/anomaly_model/__init__.py @@ -25,5 +25,10 @@ (in-sample predictions and anomaly scores) of the anomaly model. """ -from .filtering_am import FilteringAnomalyModel -from .forecasting_am import ForecastingAnomalyModel +from darts.ad.anomaly_model.filtering_am import FilteringAnomalyModel +from darts.ad.anomaly_model.forecasting_am import ForecastingAnomalyModel + +__all__ = [ + "FilteringAnomalyModel", + "ForecastingAnomalyModel", +] diff --git a/darts/ad/detectors/__init__.py b/darts/ad/detectors/__init__.py index 820b0f71c6..7f33a87cab 100644 --- a/darts/ad/detectors/__init__.py +++ b/darts/ad/detectors/__init__.py @@ -19,5 +19,10 @@ binary ground truth time series indicating the presence of anomalies. """ -from .quantile_detector import QuantileDetector -from .threshold_detector import ThresholdDetector +from darts.ad.detectors.quantile_detector import QuantileDetector +from darts.ad.detectors.threshold_detector import ThresholdDetector + +__all__ = [ + "QuantileDetector", + "ThresholdDetector", +] diff --git a/darts/ad/scorers/__init__.py b/darts/ad/scorers/__init__.py index 1c663935b2..508dd6d819 100644 --- a/darts/ad/scorers/__init__.py +++ b/darts/ad/scorers/__init__.py @@ -65,15 +65,31 @@ More details can be found in the API documentation of each scorer. """ -from .difference_scorer import DifferenceScorer -from .kmeans_scorer import KMeansScorer -from .nll_cauchy_scorer import CauchyNLLScorer -from .nll_exponential_scorer import ExponentialNLLScorer -from .nll_gamma_scorer import GammaNLLScorer -from .nll_gaussian_scorer import GaussianNLLScorer -from .nll_laplace_scorer import LaplaceNLLScorer -from .nll_poisson_scorer import PoissonNLLScorer -from .norm_scorer import NormScorer -from .pyod_scorer import PyODScorer -from .scorers import FittableAnomalyScorer, NonFittableAnomalyScorer -from .wasserstein_scorer import WassersteinScorer +from darts.ad.scorers.difference_scorer import DifferenceScorer +from darts.ad.scorers.kmeans_scorer import KMeansScorer +from darts.ad.scorers.nll_cauchy_scorer import CauchyNLLScorer +from darts.ad.scorers.nll_exponential_scorer import ExponentialNLLScorer +from darts.ad.scorers.nll_gamma_scorer import GammaNLLScorer +from darts.ad.scorers.nll_gaussian_scorer import GaussianNLLScorer +from darts.ad.scorers.nll_laplace_scorer import LaplaceNLLScorer +from darts.ad.scorers.nll_poisson_scorer import PoissonNLLScorer +from darts.ad.scorers.norm_scorer import NormScorer +from darts.ad.scorers.pyod_scorer import PyODScorer +from darts.ad.scorers.scorers import FittableAnomalyScorer, NonFittableAnomalyScorer +from darts.ad.scorers.wasserstein_scorer import WassersteinScorer + +__all__ = [ + "DifferenceScorer", + "KMeansScorer", + "CauchyNLLScorer", + "ExponentialNLLScorer", + "GammaNLLScorer", + "GaussianNLLScorer", + "LaplaceNLLScorer", + "PoissonNLLScorer", + "NormScorer", + "PyODScorer", + "FittableAnomalyScorer", + "NonFittableAnomalyScorer", + "WassersteinScorer", +] diff --git a/darts/dataprocessing/__init__.py b/darts/dataprocessing/__init__.py index acceace885..06030ccdf7 100644 --- a/darts/dataprocessing/__init__.py +++ b/darts/dataprocessing/__init__.py @@ -3,4 +3,6 @@ --------------- """ -from .pipeline import Pipeline +from darts.dataprocessing.pipeline import Pipeline + +__all__ = ["Pipeline"] diff --git a/darts/dataprocessing/dtw/__init__.py b/darts/dataprocessing/dtw/__init__.py index 163fad72d0..6b90d70e78 100644 --- a/darts/dataprocessing/dtw/__init__.py +++ b/darts/dataprocessing/dtw/__init__.py @@ -3,6 +3,23 @@ -------------------------- """ -from .cost_matrix import CostMatrix -from .dtw import DTWAlignment, dtw -from .window import CRWindow, Itakura, NoWindow, SakoeChiba, Window +from darts.dataprocessing.dtw.cost_matrix import CostMatrix +from darts.dataprocessing.dtw.dtw import DTWAlignment, dtw +from darts.dataprocessing.dtw.window import ( + CRWindow, + Itakura, + NoWindow, + SakoeChiba, + Window, +) + +__all__ = [ + "CostMatrix", + "DTWAlignment", + "dtw", + "CRWindow", + "Itakura", + "NoWindow", + "SakoeChiba", + "Window", +] diff --git a/darts/dataprocessing/dtw/cost_matrix.py b/darts/dataprocessing/dtw/cost_matrix.py index 6b5bbc444c..c9ee72900f 100644 --- a/darts/dataprocessing/dtw/cost_matrix.py +++ b/darts/dataprocessing/dtw/cost_matrix.py @@ -5,7 +5,7 @@ import numpy as np -from .window import CRWindow, Window +from darts.dataprocessing.dtw.window import CRWindow, Window Elem = Tuple[int, int] diff --git a/darts/dataprocessing/dtw/dtw.py b/darts/dataprocessing/dtw/dtw.py index 3b27cd2242..140e64da8d 100644 --- a/darts/dataprocessing/dtw/dtw.py +++ b/darts/dataprocessing/dtw/dtw.py @@ -11,12 +11,11 @@ import xarray as xr from darts import TimeSeries +from darts.dataprocessing.dtw.cost_matrix import CostMatrix +from darts.dataprocessing.dtw.window import CRWindow, NoWindow, Window from darts.logging import get_logger, raise_if, raise_if_not from darts.timeseries import DIMS -from .cost_matrix import CostMatrix -from .window import CRWindow, NoWindow, Window - logger = get_logger(__name__) SeriesValue = Union[np.ndarray, np.floating] diff --git a/darts/dataprocessing/encoders/__init__.py b/darts/dataprocessing/encoders/__init__.py index beaf75e0f4..fe8fda6e7b 100644 --- a/darts/dataprocessing/encoders/__init__.py +++ b/darts/dataprocessing/encoders/__init__.py @@ -3,7 +3,7 @@ ------------------ """ -from .encoders import ( +from darts.dataprocessing.encoders.encoders import ( FutureCallableIndexEncoder, FutureCyclicEncoder, FutureDatetimeAttributeEncoder, @@ -14,3 +14,15 @@ PastIntegerIndexEncoder, SequentialEncoder, ) + +__all__ = [ + "FutureCallableIndexEncoder", + "FutureCyclicEncoder", + "FutureDatetimeAttributeEncoder", + "FutureIntegerIndexEncoder", + "PastCallableIndexEncoder", + "PastCyclicEncoder", + "PastDatetimeAttributeEncoder", + "PastIntegerIndexEncoder", + "SequentialEncoder", +] diff --git a/darts/dataprocessing/transformers/__init__.py b/darts/dataprocessing/transformers/__init__.py index 5080760af3..225e394915 100644 --- a/darts/dataprocessing/transformers/__init__.py +++ b/darts/dataprocessing/transformers/__init__.py @@ -3,19 +3,43 @@ ----------------- """ -from .base_data_transformer import BaseDataTransformer -from .boxcox import BoxCox -from .diff import Diff -from .fittable_data_transformer import FittableDataTransformer -from .invertible_data_transformer import InvertibleDataTransformer -from .mappers import InvertibleMapper, Mapper -from .midas import MIDAS -from .missing_values_filler import MissingValuesFiller -from .reconciliation import ( +from darts.dataprocessing.transformers.base_data_transformer import BaseDataTransformer +from darts.dataprocessing.transformers.boxcox import BoxCox +from darts.dataprocessing.transformers.diff import Diff +from darts.dataprocessing.transformers.fittable_data_transformer import ( + FittableDataTransformer, +) +from darts.dataprocessing.transformers.invertible_data_transformer import ( + InvertibleDataTransformer, +) +from darts.dataprocessing.transformers.mappers import InvertibleMapper, Mapper +from darts.dataprocessing.transformers.midas import MIDAS +from darts.dataprocessing.transformers.missing_values_filler import MissingValuesFiller +from darts.dataprocessing.transformers.reconciliation import ( BottomUpReconciliator, MinTReconciliator, TopDownReconciliator, ) -from .scaler import Scaler -from .static_covariates_transformer import StaticCovariatesTransformer -from .window_transformer import WindowTransformer +from darts.dataprocessing.transformers.scaler import Scaler +from darts.dataprocessing.transformers.static_covariates_transformer import ( + StaticCovariatesTransformer, +) +from darts.dataprocessing.transformers.window_transformer import WindowTransformer + +__all__ = [ + "BaseDataTransformer", + "BoxCox", + "Diff", + "FittableDataTransformer", + "InvertibleDataTransformer", + "InvertibleMapper", + "Mapper", + "MIDAS", + "MissingValuesFiller", + "BottomUpReconciliator", + "MinTReconciliator", + "TopDownReconciliator", + "Scaler", + "StaticCovariatesTransformer", + "WindowTransformer", +] diff --git a/darts/dataprocessing/transformers/boxcox.py b/darts/dataprocessing/transformers/boxcox.py index af840ee5ca..ca26bb8f5e 100644 --- a/darts/dataprocessing/transformers/boxcox.py +++ b/darts/dataprocessing/transformers/boxcox.py @@ -15,12 +15,15 @@ from scipy.special import inv_boxcox from scipy.stats import boxcox, boxcox_normmax +from darts.dataprocessing.transformers.fittable_data_transformer import ( + FittableDataTransformer, +) +from darts.dataprocessing.transformers.invertible_data_transformer import ( + InvertibleDataTransformer, +) from darts.logging import get_logger, raise_if from darts.timeseries import TimeSeries -from .fittable_data_transformer import FittableDataTransformer -from .invertible_data_transformer import InvertibleDataTransformer - logger = get_logger(__name__) diff --git a/darts/dataprocessing/transformers/diff.py b/darts/dataprocessing/transformers/diff.py index fab8f01e7d..bd620344c2 100644 --- a/darts/dataprocessing/transformers/diff.py +++ b/darts/dataprocessing/transformers/diff.py @@ -7,12 +7,15 @@ import numpy as np +from darts.dataprocessing.transformers.fittable_data_transformer import ( + FittableDataTransformer, +) +from darts.dataprocessing.transformers.invertible_data_transformer import ( + InvertibleDataTransformer, +) from darts.logging import get_logger, raise_if, raise_if_not from darts.timeseries import TimeSeries -from .fittable_data_transformer import FittableDataTransformer -from .invertible_data_transformer import InvertibleDataTransformer - logger = get_logger(__name__) diff --git a/darts/dataprocessing/transformers/fittable_data_transformer.py b/darts/dataprocessing/transformers/fittable_data_transformer.py index 654ef24338..39cf2d3521 100644 --- a/darts/dataprocessing/transformers/fittable_data_transformer.py +++ b/darts/dataprocessing/transformers/fittable_data_transformer.py @@ -9,11 +9,10 @@ import numpy as np from darts import TimeSeries +from darts.dataprocessing.transformers.base_data_transformer import BaseDataTransformer from darts.logging import get_logger, raise_log from darts.utils import _build_tqdm_iterator, _parallel_apply -from .base_data_transformer import BaseDataTransformer - logger = get_logger(__name__) diff --git a/darts/dataprocessing/transformers/invertible_data_transformer.py b/darts/dataprocessing/transformers/invertible_data_transformer.py index ecf22b0261..5f97e6a9af 100644 --- a/darts/dataprocessing/transformers/invertible_data_transformer.py +++ b/darts/dataprocessing/transformers/invertible_data_transformer.py @@ -9,11 +9,10 @@ import numpy as np from darts import TimeSeries +from darts.dataprocessing.transformers.base_data_transformer import BaseDataTransformer from darts.logging import get_logger, raise_log from darts.utils import _build_tqdm_iterator, _parallel_apply -from .base_data_transformer import BaseDataTransformer - logger = get_logger(__name__) diff --git a/darts/dataprocessing/transformers/mappers.py b/darts/dataprocessing/transformers/mappers.py index 881f5bc38c..67107a77a8 100644 --- a/darts/dataprocessing/transformers/mappers.py +++ b/darts/dataprocessing/transformers/mappers.py @@ -8,12 +8,13 @@ import numpy as np import pandas as pd +from darts.dataprocessing.transformers.base_data_transformer import BaseDataTransformer +from darts.dataprocessing.transformers.invertible_data_transformer import ( + InvertibleDataTransformer, +) from darts.logging import get_logger from darts.timeseries import TimeSeries -from .base_data_transformer import BaseDataTransformer -from .invertible_data_transformer import InvertibleDataTransformer - logger = get_logger(__name__) MapperFn = Union[ diff --git a/darts/dataprocessing/transformers/missing_values_filler.py b/darts/dataprocessing/transformers/missing_values_filler.py index 9d26ffe2b6..9713b5d72a 100644 --- a/darts/dataprocessing/transformers/missing_values_filler.py +++ b/darts/dataprocessing/transformers/missing_values_filler.py @@ -6,11 +6,10 @@ from typing import Any, Mapping, Union from darts import TimeSeries +from darts.dataprocessing.transformers.base_data_transformer import BaseDataTransformer from darts.logging import get_logger, raise_if, raise_if_not from darts.utils.missing_values import fill_missing_values -from .base_data_transformer import BaseDataTransformer - logger = get_logger(__name__) diff --git a/darts/dataprocessing/transformers/scaler.py b/darts/dataprocessing/transformers/scaler.py index 4262b21853..93411cd312 100644 --- a/darts/dataprocessing/transformers/scaler.py +++ b/darts/dataprocessing/transformers/scaler.py @@ -9,12 +9,15 @@ import numpy as np from sklearn.preprocessing import MinMaxScaler +from darts.dataprocessing.transformers.fittable_data_transformer import ( + FittableDataTransformer, +) +from darts.dataprocessing.transformers.invertible_data_transformer import ( + InvertibleDataTransformer, +) from darts.logging import get_logger, raise_log from darts.timeseries import TimeSeries -from .fittable_data_transformer import FittableDataTransformer -from .invertible_data_transformer import InvertibleDataTransformer - logger = get_logger(__name__) diff --git a/darts/dataprocessing/transformers/static_covariates_transformer.py b/darts/dataprocessing/transformers/static_covariates_transformer.py index 3000794092..445a2bab49 100644 --- a/darts/dataprocessing/transformers/static_covariates_transformer.py +++ b/darts/dataprocessing/transformers/static_covariates_transformer.py @@ -16,12 +16,15 @@ from scipy.sparse import csr_matrix from sklearn.preprocessing import MinMaxScaler, OrdinalEncoder +from darts.dataprocessing.transformers.fittable_data_transformer import ( + FittableDataTransformer, +) +from darts.dataprocessing.transformers.invertible_data_transformer import ( + InvertibleDataTransformer, +) from darts.logging import get_logger, raise_log from darts.timeseries import TimeSeries -from .fittable_data_transformer import FittableDataTransformer -from .invertible_data_transformer import InvertibleDataTransformer - logger = get_logger(__name__) diff --git a/darts/datasets/__init__.py b/darts/datasets/__init__.py index 73896c17fe..07aa3eb3cc 100644 --- a/darts/datasets/__init__.py +++ b/darts/datasets/__init__.py @@ -5,19 +5,17 @@ A few popular time series datasets """ -import os from pathlib import Path -from typing import List, Literal, Optional +from typing import List import numpy as np import pandas as pd from darts import TimeSeries +from darts.datasets.dataset_loaders import DatasetLoaderCSV, DatasetLoaderMetadata from darts.logging import get_logger, raise_if_not from darts.utils.utils import _build_tqdm_iterator -from .dataset_loaders import DatasetLoaderCSV, DatasetLoaderMetadata - """ Overall usage of this package: from darts.datasets import AirPassengersDataset diff --git a/darts/explainability/__init__.py b/darts/explainability/__init__.py index 88c0ef0c5b..a5288a4858 100644 --- a/darts/explainability/__init__.py +++ b/darts/explainability/__init__.py @@ -3,17 +3,16 @@ -------------- """ -from darts.logging import get_logger - -logger = get_logger(__name__) - from darts.explainability.explainability_result import ( ShapExplainabilityResult, TFTExplainabilityResult, _ExplainabilityResult, ) from darts.explainability.shap_explainer import ShapExplainer +from darts.logging import get_logger +from darts.models.utils import NotImportedModule +logger = get_logger(__name__) try: from darts.explainability.tft_explainer import TFTExplainer except ModuleNotFoundError: @@ -22,3 +21,12 @@ 'To enable them, install "darts", "u8darts[torch]" or "u8darts[all]" (with pip); ' 'or "u8darts-torch" or "u8darts-all" (with conda).' ) + TFTExplainer = NotImportedModule(module_name="(Py)Torch", warn=False) + +__all__ = [ + "ShapExplainabilityResult", + "TFTExplainabilityResult", + "_ExplainabilityResult", + "ShapExplainer", + "TFTExplainer", +] diff --git a/darts/metrics/__init__.py b/darts/metrics/__init__.py index 2e0cb5d9ae..d80d9acf9d 100644 --- a/darts/metrics/__init__.py +++ b/darts/metrics/__init__.py @@ -49,7 +49,7 @@ - :func:`DTW `: Dynamic Time Warping Metric """ -from .metrics import ( +from darts.metrics.metrics import ( ae, ape, arre, @@ -78,3 +78,33 @@ smape, sse, ) + +__all__ = [ + "ae", + "ape", + "arre", + "ase", + "coefficient_of_variation", + "dtw_metric", + "err", + "mae", + "mape", + "marre", + "mase", + "merr", + "mql", + "mse", + "msse", + "ope", + "ql", + "qr", + "r2_score", + "rmse", + "rmsle", + "rmsse", + "sape", + "se", + "sle", + "smape", + "sse", +] diff --git a/darts/models/__init__.py b/darts/models/__init__.py index 3409aaa2ab..17640b195d 100644 --- a/darts/models/__init__.py +++ b/darts/models/__init__.py @@ -58,6 +58,20 @@ 'To enable them, install "darts", "u8darts[torch]" or "u8darts[all]" (with pip); ' 'or "u8darts-torch" or "u8darts-all" (with conda).' ) + BlockRNNModel = NotImportedModule(module_name="(Py)Torch", warn=False) + DLinearModel = NotImportedModule(module_name="(Py)Torch", warn=False) + GlobalNaiveAggregate = NotImportedModule(module_name="(Py)Torch", warn=False) + GlobalNaiveDrift = NotImportedModule(module_name="(Py)Torch", warn=False) + GlobalNaiveSeasonal = NotImportedModule(module_name="(Py)Torch", warn=False) + NBEATSModel = NotImportedModule(module_name="(Py)Torch", warn=False) + NHiTSModel = NotImportedModule(module_name="(Py)Torch", warn=False) + NLinearModel = NotImportedModule(module_name="(Py)Torch", warn=False) + RNNModel = NotImportedModule(module_name="(Py)Torch", warn=False) + TCNModel = NotImportedModule(module_name="(Py)Torch", warn=False) + TFTModel = NotImportedModule(module_name="(Py)Torch", warn=False) + TiDEModel = NotImportedModule(module_name="(Py)Torch", warn=False) + TransformerModel = NotImportedModule(module_name="(Py)Torch", warn=False) + TSMixerModel = NotImportedModule(module_name="(Py)Torch", warn=False) try: from darts.models.forecasting.prophet_model import Prophet @@ -103,3 +117,52 @@ # Ensembling from darts.models.forecasting.ensemble_model import EnsembleModel + +__all__ = [ + "LightGBMModel", + "ARIMA", + "AutoARIMA", + "NaiveDrift", + "NaiveMean", + "NaiveMovingAverage", + "NaiveSeasonal", + "ExponentialSmoothing", + "FFT", + "KalmanForecaster", + "LinearRegressionModel", + "RandomForest", + "RegressionEnsembleModel", + "RegressionModel", + "BATS", + "TBATS", + "FourTheta", + "Theta", + "VARIMA", + "BlockRNNModel", + "DLinearModel", + "GlobalNaiveDrift", + "GlobalNaiveDrift", + "GlobalNaiveSeasonal", + "NBEATSModel", + "NHiTSModel", + "NLinearModel", + "RNNModel", + "TCNModel", + "TFTModel", + "TiDEModel", + "TransformerModel", + "TSMixerModel", + "Prophet", + "CatBoostModel", + "Croston", + "StatsForecastAutoARIMA", + "StatsForecastAutoCES", + "StatsForecastAutoETS", + "StatsForecastAutoTheta", + "XGBModel", + "GaussianProcessFilter", + "KalmanFilter", + "MovingAverageFilter", + "NaiveEnsembleModel", + "EnsembleModel", +] diff --git a/darts/tests/conftest.py b/darts/tests/conftest.py index c4304bb392..b0b97a0131 100644 --- a/darts/tests/conftest.py +++ b/darts/tests/conftest.py @@ -4,6 +4,18 @@ import pytest +from darts.logging import get_logger + +logger = get_logger(__name__) + +try: + import torch # noqa: F401 + + TORCH_AVAILABLE = True +except ImportError: + logger.warning("Torch not installed - Some tests will be skipped.") + TORCH_AVAILABLE = False + tfm_kwargs = { "pl_trainer_kwargs": { "accelerator": "cpu", diff --git a/darts/tests/dataprocessing/encoders/test_encoders.py b/darts/tests/dataprocessing/encoders/test_encoders.py index 643bd42ddb..336911d78d 100644 --- a/darts/tests/dataprocessing/encoders/test_encoders.py +++ b/darts/tests/dataprocessing/encoders/test_encoders.py @@ -29,19 +29,15 @@ ) from darts.dataprocessing.transformers import Scaler from darts.logging import get_logger, raise_log +from darts.tests.conftest import TORCH_AVAILABLE from darts.utils import timeseries_generation as tg from darts.utils.utils import generate_index logger = get_logger(__name__) -try: +if TORCH_AVAILABLE: from darts.models import TFTModel - TORCH_AVAILABLE = True -except ImportError: - logger.warning("Torch not installed - will be skipping Torch models tests") - TORCH_AVAILABLE = False - class TestEncoder: encoders_cls = [ diff --git a/darts/tests/datasets/test_datasets.py b/darts/tests/datasets/test_datasets.py index d4676d6ae7..767469c1bd 100644 --- a/darts/tests/datasets/test_datasets.py +++ b/darts/tests/datasets/test_datasets.py @@ -5,36 +5,34 @@ import pytest from darts import TimeSeries -from darts.logging import get_logger +from darts.tests.conftest import TORCH_AVAILABLE from darts.utils.timeseries_generation import gaussian_timeseries -logger = get_logger(__name__) - -try: - from darts.utils.data import ( # noqa: F401 - DualCovariatesInferenceDataset, - DualCovariatesSequentialDataset, - DualCovariatesShiftedDataset, - FutureCovariatesInferenceDataset, - FutureCovariatesSequentialDataset, - FutureCovariatesShiftedDataset, - HorizonBasedDataset, - MixedCovariatesInferenceDataset, - MixedCovariatesSequentialDataset, - MixedCovariatesShiftedDataset, - PastCovariatesInferenceDataset, - PastCovariatesSequentialDataset, - PastCovariatesShiftedDataset, - SplitCovariatesInferenceDataset, - SplitCovariatesSequentialDataset, - SplitCovariatesShiftedDataset, - ) -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +from darts.utils.data import ( # noqa: F401 + DualCovariatesInferenceDataset, + DualCovariatesSequentialDataset, + DualCovariatesShiftedDataset, + FutureCovariatesInferenceDataset, + FutureCovariatesSequentialDataset, + FutureCovariatesShiftedDataset, + HorizonBasedDataset, + MixedCovariatesInferenceDataset, + MixedCovariatesSequentialDataset, + MixedCovariatesShiftedDataset, + PastCovariatesInferenceDataset, + PastCovariatesSequentialDataset, + PastCovariatesShiftedDataset, + SplitCovariatesInferenceDataset, + SplitCovariatesSequentialDataset, + SplitCovariatesShiftedDataset, +) + class TestDataset: target1 = gaussian_timeseries(length=100).with_static_covariates( diff --git a/darts/tests/explainability/test_tft_explainer.py b/darts/tests/explainability/test_tft_explainer.py index c1cd930977..53f3f97270 100644 --- a/darts/tests/explainability/test_tft_explainer.py +++ b/darts/tests/explainability/test_tft_explainer.py @@ -7,20 +7,16 @@ import pytest from darts import TimeSeries -from darts.logging import get_logger -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg -logger = get_logger(__name__) - -try: - from darts.explainability import TFTExplainabilityResult, TFTExplainer - from darts.models import TFTModel -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +from darts.explainability import TFTExplainabilityResult, TFTExplainer +from darts.models import TFTModel def helper_create_test_cases(series_options: list): diff --git a/darts/tests/models/components/glu_variants.py b/darts/tests/models/components/glu_variants.py index 0288af37f6..909c44daea 100644 --- a/darts/tests/models/components/glu_variants.py +++ b/darts/tests/models/components/glu_variants.py @@ -1,19 +1,16 @@ import pytest -from darts.logging import get_logger +from darts.tests.conftest import TORCH_AVAILABLE -logger = get_logger(__name__) - -try: - import torch - - from darts.models.components import glu_variants - from darts.models.components.glu_variants import GLU_FFN -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch + +from darts.models.components import glu_variants +from darts.models.components.glu_variants import GLU_FFN class TestFFN: diff --git a/darts/tests/models/components/test_layer_norm_variants.py b/darts/tests/models/components/test_layer_norm_variants.py index b118746451..4b018f8da5 100644 --- a/darts/tests/models/components/test_layer_norm_variants.py +++ b/darts/tests/models/components/test_layer_norm_variants.py @@ -1,24 +1,21 @@ import numpy as np import pytest -from darts.logging import get_logger +from darts.tests.conftest import TORCH_AVAILABLE -logger = get_logger(__name__) - -try: - import torch - - from darts.models.components.layer_norm_variants import ( - LayerNorm, - LayerNormNoBias, - RINorm, - RMSNorm, - ) -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch + +from darts.models.components.layer_norm_variants import ( + LayerNorm, + LayerNormNoBias, + RINorm, + RMSNorm, +) class TestLayerNormVariants: diff --git a/darts/tests/models/forecasting/test_RNN.py b/darts/tests/models/forecasting/test_RNN.py index 30c58cfeec..61ae91fa1b 100644 --- a/darts/tests/models/forecasting/test_RNN.py +++ b/darts/tests/models/forecasting/test_RNN.py @@ -3,20 +3,16 @@ import pytest from darts import TimeSeries -from darts.logging import get_logger -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs -logger = get_logger(__name__) - -try: - import torch.nn as nn - - from darts.models.forecasting.rnn_model import CustomRNNModule, RNNModel, _RNNModule -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch.nn as nn + +from darts.models.forecasting.rnn_model import CustomRNNModule, RNNModel, _RNNModule class ModuleValid1(_RNNModule): diff --git a/darts/tests/models/forecasting/test_TCN.py b/darts/tests/models/forecasting/test_TCN.py index 4c6fb144ad..de4e942cdf 100644 --- a/darts/tests/models/forecasting/test_TCN.py +++ b/darts/tests/models/forecasting/test_TCN.py @@ -1,21 +1,17 @@ import pytest -from darts.logging import get_logger from darts.metrics import mae -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg -logger = get_logger(__name__) - -try: - import torch - - from darts.models.forecasting.tcn_model import TCNModel -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch + +from darts.models.forecasting.tcn_model import TCNModel class TestTCNModel: diff --git a/darts/tests/models/forecasting/test_TFT.py b/darts/tests/models/forecasting/test_TFT.py index ff629a6211..1eaca05255 100644 --- a/darts/tests/models/forecasting/test_TFT.py +++ b/darts/tests/models/forecasting/test_TFT.py @@ -4,24 +4,20 @@ from darts import TimeSeries, concatenate from darts.dataprocessing.transformers import Scaler -from darts.logging import get_logger -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg -logger = get_logger(__name__) - -try: - import torch.nn as nn - from torch.nn import MSELoss - - from darts.models.forecasting.tft_model import TFTModel - from darts.models.forecasting.tft_submodels import get_embedding_size - from darts.utils.likelihood_models import QuantileRegression -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch.nn as nn +from torch.nn import MSELoss + +from darts.models.forecasting.tft_model import TFTModel +from darts.models.forecasting.tft_submodels import get_embedding_size +from darts.utils.likelihood_models import QuantileRegression class TestTFTModel: diff --git a/darts/tests/models/forecasting/test_backtesting.py b/darts/tests/models/forecasting/test_backtesting.py index b60ac5fd0f..a0da58ea0e 100644 --- a/darts/tests/models/forecasting/test_backtesting.py +++ b/darts/tests/models/forecasting/test_backtesting.py @@ -18,7 +18,7 @@ NaiveSeasonal, Theta, ) -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils.timeseries_generation import constant_timeseries as ct from darts.utils.timeseries_generation import gaussian_timeseries as gt from darts.utils.timeseries_generation import linear_timeseries as lt @@ -28,7 +28,7 @@ logger = get_logger(__name__) -try: +if TORCH_AVAILABLE: from darts.models import ( BlockRNNModel, LinearRegressionModel, @@ -36,13 +36,6 @@ TCNModel, ) - TORCH_AVAILABLE = True -except ImportError: - logger.warning( - "Torch models are not installed - will not be tested for backtesting" - ) - TORCH_AVAILABLE = False - def get_dummy_series( ts_length: int, lt_end_value: int = 10, st_value_offset: int = 10 diff --git a/darts/tests/models/forecasting/test_baseline_models.py b/darts/tests/models/forecasting/test_baseline_models.py index 650b054fa8..945cbae239 100644 --- a/darts/tests/models/forecasting/test_baseline_models.py +++ b/darts/tests/models/forecasting/test_baseline_models.py @@ -10,7 +10,7 @@ GlobalForecastingModel, LocalForecastingModel, ) -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg logger = get_logger(__name__) @@ -26,13 +26,11 @@ global_models = [] -try: +if TORCH_AVAILABLE: import torch from darts.models import GlobalNaiveAggregate, GlobalNaiveDrift, GlobalNaiveSeasonal - TORCH_AVAILABLE = True - global_models += [ ( GlobalNaiveAggregate, @@ -72,10 +70,7 @@ def custom_mean_invalid_signature(x): def custom_mean_invalid_output_type(x, dim): return torch.mean(x, dim=1).detach().numpy() -except ImportError: - logger.warning("Torch not installed - will be skipping Torch models tests") - TORCH_AVAILABLE = False - +else: custom_mean_valid = None custom_mean_invalid_out_shape = None custom_mean_invalid_signature = None diff --git a/darts/tests/models/forecasting/test_block_RNN.py b/darts/tests/models/forecasting/test_block_RNN.py index 3e69836e04..827f19a7e5 100644 --- a/darts/tests/models/forecasting/test_block_RNN.py +++ b/darts/tests/models/forecasting/test_block_RNN.py @@ -3,24 +3,20 @@ import pytest from darts import TimeSeries -from darts.logging import get_logger -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs -logger = get_logger(__name__) - -try: - import torch.nn as nn - - from darts.models.forecasting.block_rnn_model import ( - BlockRNNModel, - CustomBlockRNNModule, - _BlockRNNModule, - ) -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch.nn as nn + +from darts.models.forecasting.block_rnn_model import ( + BlockRNNModel, + CustomBlockRNNModule, + _BlockRNNModule, +) class ModuleValid1(_BlockRNNModule): diff --git a/darts/tests/models/forecasting/test_dlinear_nlinear.py b/darts/tests/models/forecasting/test_dlinear_nlinear.py index 61caa193d1..fc5285f16d 100644 --- a/darts/tests/models/forecasting/test_dlinear_nlinear.py +++ b/darts/tests/models/forecasting/test_dlinear_nlinear.py @@ -5,24 +5,20 @@ import pytest from darts import concatenate -from darts.logging import get_logger from darts.metrics import rmse -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg -logger = get_logger(__name__) - -try: - import torch - - from darts.models.forecasting.dlinear import DLinearModel - from darts.models.forecasting.nlinear import NLinearModel - from darts.utils.likelihood_models import GaussianLikelihood -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch + +from darts.models.forecasting.dlinear import DLinearModel +from darts.models.forecasting.nlinear import NLinearModel +from darts.utils.likelihood_models import GaussianLikelihood class TestDlinearNlinearModels: diff --git a/darts/tests/models/forecasting/test_ensemble_models.py b/darts/tests/models/forecasting/test_ensemble_models.py index 42a8534afd..4947552e3a 100644 --- a/darts/tests/models/forecasting/test_ensemble_models.py +++ b/darts/tests/models/forecasting/test_ensemble_models.py @@ -13,20 +13,15 @@ StatsForecastAutoARIMA, Theta, ) -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg logger = get_logger(__name__) -try: +if TORCH_AVAILABLE: from darts.models import DLinearModel, NBEATSModel, RNNModel, TCNModel from darts.utils.likelihood_models import QuantileRegression - TORCH_AVAILABLE = True -except ImportError: - logger.warning("Torch not installed - Some ensemble models tests will be skipped.") - TORCH_AVAILABLE = False - def _make_ts(start_value=0, n=100): times = pd.date_range(start="1/1/2013", periods=n, freq="D") diff --git a/darts/tests/models/forecasting/test_global_forecasting_models.py b/darts/tests/models/forecasting/test_global_forecasting_models.py index d97254d089..3c0efcba3b 100644 --- a/darts/tests/models/forecasting/test_global_forecasting_models.py +++ b/darts/tests/models/forecasting/test_global_forecasting_models.py @@ -9,44 +9,39 @@ from darts.dataprocessing.transformers import Scaler from darts.datasets import AirPassengersDataset -from darts.logging import get_logger from darts.metrics import mape -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg from darts.utils.timeseries_generation import linear_timeseries -logger = get_logger(__name__) - -try: - import torch - - from darts.models import ( - BlockRNNModel, - DLinearModel, - GlobalNaiveAggregate, - GlobalNaiveDrift, - GlobalNaiveSeasonal, - NBEATSModel, - NLinearModel, - RNNModel, - TCNModel, - TFTModel, - TiDEModel, - TransformerModel, - TSMixerModel, - ) - from darts.models.forecasting.torch_forecasting_model import ( - DualCovariatesTorchModel, - MixedCovariatesTorchModel, - PastCovariatesTorchModel, - ) - from darts.utils.likelihood_models import GaussianLikelihood -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) - +import torch + +from darts.models import ( + BlockRNNModel, + DLinearModel, + GlobalNaiveAggregate, + GlobalNaiveDrift, + GlobalNaiveSeasonal, + NBEATSModel, + NLinearModel, + RNNModel, + TCNModel, + TFTModel, + TiDEModel, + TransformerModel, + TSMixerModel, +) +from darts.models.forecasting.torch_forecasting_model import ( + DualCovariatesTorchModel, + MixedCovariatesTorchModel, + PastCovariatesTorchModel, +) +from darts.utils.likelihood_models import GaussianLikelihood IN_LEN = 24 OUT_LEN = 12 diff --git a/darts/tests/models/forecasting/test_historical_forecasts.py b/darts/tests/models/forecasting/test_historical_forecasts.py index 738b7ef3f0..a51072e312 100644 --- a/darts/tests/models/forecasting/test_historical_forecasts.py +++ b/darts/tests/models/forecasting/test_historical_forecasts.py @@ -9,7 +9,6 @@ from darts import TimeSeries, concatenate from darts.dataprocessing.transformers import Scaler from darts.datasets import AirPassengersDataset -from darts.logging import get_logger from darts.models import ( ARIMA, AutoARIMA, @@ -20,10 +19,10 @@ NaiveSeasonal, NotImportedModule, ) -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg -try: +if TORCH_AVAILABLE: import torch from darts.models import ( @@ -42,14 +41,6 @@ ) from darts.utils.likelihood_models import GaussianLikelihood, QuantileRegression - TORCH_AVAILABLE = True -except ImportError: - logger = get_logger(__name__) - logger.warning( - "Torch not installed - will be skipping historical forecasts tests for torch models" - ) - TORCH_AVAILABLE = False - models_reg_no_cov_cls_kwargs = [(LinearRegressionModel, {"lags": 8}, {}, (8, 1))] if not isinstance(CatBoostModel, NotImportedModule): models_reg_no_cov_cls_kwargs.append( diff --git a/darts/tests/models/forecasting/test_nbeats_nhits.py b/darts/tests/models/forecasting/test_nbeats_nhits.py index 5085356271..ab354c93ff 100644 --- a/darts/tests/models/forecasting/test_nbeats_nhits.py +++ b/darts/tests/models/forecasting/test_nbeats_nhits.py @@ -1,20 +1,16 @@ import numpy as np import pytest -from darts.logging import get_logger -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg -logger = get_logger(__name__) - -try: - from darts.models.forecasting.nbeats import NBEATSModel - from darts.models.forecasting.nhits import NHiTSModel -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +from darts.models.forecasting.nbeats import NBEATSModel +from darts.models.forecasting.nhits import NHiTSModel class TestNbeatsNhitsModel: diff --git a/darts/tests/models/forecasting/test_probabilistic_models.py b/darts/tests/models/forecasting/test_probabilistic_models.py index c413d5443e..7b8dd0daa6 100644 --- a/darts/tests/models/forecasting/test_probabilistic_models.py +++ b/darts/tests/models/forecasting/test_probabilistic_models.py @@ -18,12 +18,12 @@ NotImportedModule, XGBModel, ) -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg logger = get_logger(__name__) -try: +if TORCH_AVAILABLE: import torch from darts.models import ( @@ -58,13 +58,6 @@ WeibullLikelihood, ) - TORCH_AVAILABLE = True -except ImportError: - logger.warning( - "Torch not available. Tests related to torch-based models will be skipped." - ) - TORCH_AVAILABLE = False - lgbm_available = not isinstance(LightGBMModel, NotImportedModule) cb_available = not isinstance(CatBoostModel, NotImportedModule) diff --git a/darts/tests/models/forecasting/test_ptl_trainer.py b/darts/tests/models/forecasting/test_ptl_trainer.py index bfc4c349d4..a6726530c2 100644 --- a/darts/tests/models/forecasting/test_ptl_trainer.py +++ b/darts/tests/models/forecasting/test_ptl_trainer.py @@ -1,21 +1,17 @@ import numpy as np import pytest -from darts.logging import get_logger -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils.timeseries_generation import linear_timeseries -logger = get_logger(__name__) - -try: - import pytorch_lightning as pl - - from darts.models.forecasting.rnn_model import RNNModel -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import pytorch_lightning as pl + +from darts.models.forecasting.rnn_model import RNNModel class TestPTLTrainer: diff --git a/darts/tests/models/forecasting/test_regression_ensemble_model.py b/darts/tests/models/forecasting/test_regression_ensemble_model.py index b315b0979c..56897ffd28 100644 --- a/darts/tests/models/forecasting/test_regression_ensemble_model.py +++ b/darts/tests/models/forecasting/test_regression_ensemble_model.py @@ -7,7 +7,6 @@ from sklearn.linear_model import LinearRegression from darts import TimeSeries -from darts.logging import get_logger from darts.metrics import mape, rmse from darts.models import ( LinearRegressionModel, @@ -18,23 +17,16 @@ RegressionModel, Theta, ) -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.tests.models.forecasting.test_ensemble_models import _make_ts from darts.tests.models.forecasting.test_regression_models import train_test_split from darts.utils import timeseries_generation as tg -logger = get_logger(__name__) - -try: +if TORCH_AVAILABLE: import torch from darts.models import BlockRNNModel, RNNModel - TORCH_AVAILABLE = True -except ImportError: - logger.warning("Torch not available. Some tests will be skipped.") - TORCH_AVAILABLE = False - class TestRegressionEnsembleModels: RANDOM_SEED = 111 diff --git a/darts/tests/models/forecasting/test_tide_model.py b/darts/tests/models/forecasting/test_tide_model.py index c8ebd824a8..479425049c 100644 --- a/darts/tests/models/forecasting/test_tide_model.py +++ b/darts/tests/models/forecasting/test_tide_model.py @@ -3,22 +3,18 @@ import pytest from darts import concatenate -from darts.logging import get_logger -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg -logger = get_logger(__name__) - -try: - import torch - - from darts.models.forecasting.tide_model import TiDEModel - from darts.utils.likelihood_models import GaussianLikelihood -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch + +from darts.models.forecasting.tide_model import TiDEModel +from darts.utils.likelihood_models import GaussianLikelihood class TestTiDEModel: diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index e962d35012..8be684da9f 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -12,73 +12,69 @@ from darts import TimeSeries from darts.dataprocessing.encoders import SequentialEncoder from darts.dataprocessing.transformers import BoxCox, Scaler -from darts.logging import get_logger from darts.metrics import mape -from darts.tests.conftest import tfm_kwargs - -logger = get_logger(__name__) - -try: - import torch - from pytorch_lightning.callbacks import Callback - from pytorch_lightning.loggers.logger import DummyLogger - from pytorch_lightning.tuner.lr_finder import _LRFinder - from torchmetrics import ( - MeanAbsoluteError, - MeanAbsolutePercentageError, - MetricCollection, - ) - - from darts.models import ( - BlockRNNModel, - DLinearModel, - GlobalNaiveAggregate, - GlobalNaiveDrift, - GlobalNaiveSeasonal, - NBEATSModel, - NHiTSModel, - NLinearModel, - RNNModel, - TCNModel, - TFTModel, - TiDEModel, - TransformerModel, - TSMixerModel, - ) - from darts.models.components.layer_norm_variants import RINorm - from darts.utils.likelihood_models import ( - GaussianLikelihood, - LaplaceLikelihood, - Likelihood, - ) +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs - kwargs = { - "input_chunk_length": 10, - "output_chunk_length": 1, - "n_epochs": 1, - "pl_trainer_kwargs": {"fast_dev_run": True, **tfm_kwargs["pl_trainer_kwargs"]}, - } - models = [ - (BlockRNNModel, kwargs), - (DLinearModel, kwargs), - (NBEATSModel, kwargs), - (NHiTSModel, kwargs), - (NLinearModel, kwargs), - (RNNModel, {"training_length": 10, **kwargs}), - (TCNModel, kwargs), - (TFTModel, {"add_relative_index": 2, **kwargs}), - (TiDEModel, kwargs), - (TransformerModel, kwargs), - (TSMixerModel, kwargs), - (GlobalNaiveSeasonal, kwargs), - (GlobalNaiveAggregate, kwargs), - (GlobalNaiveDrift, kwargs), - ] -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch +from pytorch_lightning.callbacks import Callback +from pytorch_lightning.loggers.logger import DummyLogger +from pytorch_lightning.tuner.lr_finder import _LRFinder +from torchmetrics import ( + MeanAbsoluteError, + MeanAbsolutePercentageError, + MetricCollection, +) + +from darts.models import ( + BlockRNNModel, + DLinearModel, + GlobalNaiveAggregate, + GlobalNaiveDrift, + GlobalNaiveSeasonal, + NBEATSModel, + NHiTSModel, + NLinearModel, + RNNModel, + TCNModel, + TFTModel, + TiDEModel, + TransformerModel, + TSMixerModel, +) +from darts.models.components.layer_norm_variants import RINorm +from darts.utils.likelihood_models import ( + GaussianLikelihood, + LaplaceLikelihood, + Likelihood, +) + +kwargs = { + "input_chunk_length": 10, + "output_chunk_length": 1, + "n_epochs": 1, + "pl_trainer_kwargs": {"fast_dev_run": True, **tfm_kwargs["pl_trainer_kwargs"]}, +} +models = [ + (BlockRNNModel, kwargs), + (DLinearModel, kwargs), + (NBEATSModel, kwargs), + (NHiTSModel, kwargs), + (NLinearModel, kwargs), + (RNNModel, {"training_length": 10, **kwargs}), + (TCNModel, kwargs), + (TFTModel, {"add_relative_index": 2, **kwargs}), + (TiDEModel, kwargs), + (TransformerModel, kwargs), + (TSMixerModel, kwargs), + (GlobalNaiveSeasonal, kwargs), + (GlobalNaiveAggregate, kwargs), + (GlobalNaiveDrift, kwargs), +] class TestTorchForecastingModel: diff --git a/darts/tests/models/forecasting/test_transformer_model.py b/darts/tests/models/forecasting/test_transformer_model.py index a70194667b..adc02819fc 100644 --- a/darts/tests/models/forecasting/test_transformer_model.py +++ b/darts/tests/models/forecasting/test_transformer_model.py @@ -3,28 +3,24 @@ import pytest from darts import TimeSeries -from darts.logging import get_logger -from darts.tests.conftest import tfm_kwargs +from darts.tests.conftest import TORCH_AVAILABLE, tfm_kwargs from darts.utils import timeseries_generation as tg -logger = get_logger(__name__) - -try: - import torch.nn as nn - - from darts.models.components.transformer import ( - CustomFeedForwardDecoderLayer, - CustomFeedForwardEncoderLayer, - ) - from darts.models.forecasting.transformer_model import ( - TransformerModel, - _TransformerModule, - ) -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch.nn as nn + +from darts.models.components.transformer import ( + CustomFeedForwardDecoderLayer, + CustomFeedForwardEncoderLayer, +) +from darts.models.forecasting.transformer_model import ( + TransformerModel, + _TransformerModule, +) class TestTransformerModel: diff --git a/darts/tests/models/forecasting/test_tsmixer.py b/darts/tests/models/forecasting/test_tsmixer.py index 3a6813f8e8..5eb7f80d57 100644 --- a/darts/tests/models/forecasting/test_tsmixer.py +++ b/darts/tests/models/forecasting/test_tsmixer.py @@ -1,24 +1,22 @@ -from darts.logging import get_logger - -logger = get_logger(__name__) - -try: - import numpy as np - import pandas as pd - import pytest - import torch - from torch import nn - - from darts import concatenate - from darts.models.forecasting.tsmixer_model import TimeBatchNorm2d, TSMixerModel - from darts.tests.conftest import tfm_kwargs - from darts.utils import timeseries_generation as tg - from darts.utils.likelihood_models import GaussianLikelihood -except ImportError: +import pytest + +from darts.tests.conftest import TORCH_AVAILABLE + +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import numpy as np +import pandas as pd +import torch +from torch import nn + +from darts import concatenate +from darts.models.forecasting.tsmixer_model import TimeBatchNorm2d, TSMixerModel +from darts.tests.conftest import tfm_kwargs +from darts.utils import timeseries_generation as tg +from darts.utils.likelihood_models import GaussianLikelihood class TestTSMixerModel: diff --git a/darts/tests/utils/test_likelihood_models.py b/darts/tests/utils/test_likelihood_models.py index 6d6c3b36a6..cd6e4ee4ec 100644 --- a/darts/tests/utils/test_likelihood_models.py +++ b/darts/tests/utils/test_likelihood_models.py @@ -2,53 +2,50 @@ import pytest -from darts.logging import get_logger +from darts.tests.conftest import TORCH_AVAILABLE -logger = get_logger(__name__) - -try: - from darts.utils.likelihood_models import ( - BetaLikelihood, - CauchyLikelihood, - ExponentialLikelihood, - GaussianLikelihood, - PoissonLikelihood, - QuantileRegression, - WeibullLikelihood, - ) - - likelihood_models = { - "quantile": [QuantileRegression(), QuantileRegression([0.25, 0.5, 0.75])], - "gaussian": [ - GaussianLikelihood(prior_mu=0, prior_sigma=1), - GaussianLikelihood(prior_mu=10, prior_sigma=1), - ], - "exponential": [ - ExponentialLikelihood(prior_lambda=0.1), - ExponentialLikelihood(prior_lambda=0.5), - ], - "poisson": [ - PoissonLikelihood(prior_lambda=2), - PoissonLikelihood(prior_lambda=5), - ], - "cauchy": [ - CauchyLikelihood(prior_xzero=-0.4, prior_gamma=2), - CauchyLikelihood(prior_xzero=3, prior_gamma=2), - ], - "weibull": [ - WeibullLikelihood(prior_strength=1.0), - WeibullLikelihood(prior_strength=0.8), - ], - "beta": [ - BetaLikelihood(prior_alpha=0.2, prior_beta=0.4, prior_strength=0.3), - BetaLikelihood(prior_alpha=0.2, prior_beta=0.4, prior_strength=0.6), - ], - } -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +from darts.utils.likelihood_models import ( + BetaLikelihood, + CauchyLikelihood, + ExponentialLikelihood, + GaussianLikelihood, + PoissonLikelihood, + QuantileRegression, + WeibullLikelihood, +) + +likelihood_models = { + "quantile": [QuantileRegression(), QuantileRegression([0.25, 0.5, 0.75])], + "gaussian": [ + GaussianLikelihood(prior_mu=0, prior_sigma=1), + GaussianLikelihood(prior_mu=10, prior_sigma=1), + ], + "exponential": [ + ExponentialLikelihood(prior_lambda=0.1), + ExponentialLikelihood(prior_lambda=0.5), + ], + "poisson": [ + PoissonLikelihood(prior_lambda=2), + PoissonLikelihood(prior_lambda=5), + ], + "cauchy": [ + CauchyLikelihood(prior_xzero=-0.4, prior_gamma=2), + CauchyLikelihood(prior_xzero=3, prior_gamma=2), + ], + "weibull": [ + WeibullLikelihood(prior_strength=1.0), + WeibullLikelihood(prior_strength=0.8), + ], + "beta": [ + BetaLikelihood(prior_alpha=0.2, prior_beta=0.4, prior_strength=0.3), + BetaLikelihood(prior_alpha=0.2, prior_beta=0.4, prior_strength=0.6), + ], +} class TestLikelihoodModel: diff --git a/darts/tests/utils/test_losses.py b/darts/tests/utils/test_losses.py index c740fe28d0..1b8ba15133 100644 --- a/darts/tests/utils/test_losses.py +++ b/darts/tests/utils/test_losses.py @@ -1,19 +1,17 @@ import pytest -from darts.logging import get_logger +from darts.tests.conftest import TORCH_AVAILABLE -logger = get_logger(__name__) - -try: - import torch - - from darts.utils.losses import MAELoss, MapeLoss, SmapeLoss -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch + +from darts.utils.losses import MAELoss, MapeLoss, SmapeLoss + class TestLosses: x = torch.tensor([1.1, 2.2, 0.6345, -1.436]) diff --git a/darts/tests/utils/test_utils_torch.py b/darts/tests/utils/test_utils_torch.py index c2556c2e36..11c69845ca 100644 --- a/darts/tests/utils/test_utils_torch.py +++ b/darts/tests/utils/test_utils_torch.py @@ -1,19 +1,16 @@ import pytest from numpy.random import RandomState -from darts.logging import get_logger +from darts.tests.conftest import TORCH_AVAILABLE -logger = get_logger(__name__) - -try: - import torch - - from darts.utils.torch import random_method -except ImportError: +if not TORCH_AVAILABLE: pytest.skip( f"Torch not available. {__name__} tests will be skipped.", allow_module_level=True, ) +import torch + +from darts.utils.torch import random_method # use a simple torch model mock diff --git a/darts/timeseries.py b/darts/timeseries.py index 5523b40ee5..d39dc930c3 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -50,11 +50,10 @@ from pandas.tseries.frequencies import to_offset from scipy.stats import kurtosis, skew +from darts.logging import get_logger, raise_if, raise_if_not, raise_log +from darts.utils import _build_tqdm_iterator, _parallel_apply from darts.utils.utils import generate_index, n_steps_between -from .logging import get_logger, raise_if, raise_if_not, raise_log -from .utils import _build_tqdm_iterator, _parallel_apply - try: from typing import Literal except ImportError: @@ -3173,7 +3172,7 @@ def add_datetime_attribute( New TimeSeries instance enhanced by `attribute`. """ self._assert_deterministic() - from .utils import timeseries_generation as tg + from darts.utils import timeseries_generation as tg return self.stack( tg.datetime_attribute_timeseries( @@ -3219,7 +3218,7 @@ def add_holidays( A new TimeSeries instance, enhanced with binary holiday component. """ self._assert_deterministic() - from .utils import timeseries_generation as tg + from darts.utils import timeseries_generation as tg return self.stack( tg.holidays_timeseries( diff --git a/darts/utils/__init__.py b/darts/utils/__init__.py index 1028ae6e60..ec10bf202b 100644 --- a/darts/utils/__init__.py +++ b/darts/utils/__init__.py @@ -3,9 +3,16 @@ ----- """ -from .utils import ( +from darts.utils.utils import ( _build_tqdm_iterator, _parallel_apply, _with_sanity_checks, n_steps_between, ) + +__all__ = [ + "_build_tqdm_iterator", + "_parallel_apply", + "_with_sanity_checks", + "n_steps_between", +] diff --git a/darts/utils/data/__init__.py b/darts/utils/data/__init__.py index 2474189aab..5107f4b9d7 100644 --- a/darts/utils/data/__init__.py +++ b/darts/utils/data/__init__.py @@ -6,10 +6,10 @@ try: # Base classes for training datasets: # Implementation (horizon-based) - from .horizon_based_dataset import HorizonBasedDataset + from darts.utils.data.horizon_based_dataset import HorizonBasedDataset # Base class and implementations for inference datasets: - from .inference_dataset import ( + from darts.utils.data.inference_dataset import ( DualCovariatesInferenceDataset, FutureCovariatesInferenceDataset, InferenceDataset, @@ -19,7 +19,7 @@ ) # Implementations (sequential) - from .sequential_dataset import ( + from darts.utils.data.sequential_dataset import ( DualCovariatesSequentialDataset, FutureCovariatesSequentialDataset, MixedCovariatesSequentialDataset, @@ -28,14 +28,14 @@ ) # Implementations (shifted) - from .shifted_dataset import ( + from darts.utils.data.shifted_dataset import ( DualCovariatesShiftedDataset, FutureCovariatesShiftedDataset, MixedCovariatesShiftedDataset, PastCovariatesShiftedDataset, SplitCovariatesShiftedDataset, ) - from .training_dataset import ( + from darts.utils.data.training_dataset import ( DualCovariatesTrainingDataset, FutureCovariatesTrainingDataset, MixedCovariatesTrainingDataset, @@ -43,7 +43,95 @@ SplitCovariatesTrainingDataset, TrainingDataset, ) +except ImportError: # Torch is not available + from darts.models.utils import NotImportedModule -except ImportError: - # Torch is not available - pass + HorizonBasedDataset = NotImportedModule(module_name="(Py)Torch", warn=False) + DualCovariatesInferenceDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + FutureCovariatesInferenceDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + InferenceDataset = NotImportedModule(module_name="(Py)Torch", warn=False) + MixedCovariatesInferenceDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + PastCovariatesInferenceDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + SplitCovariatesInferenceDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + DualCovariatesSequentialDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + FutureCovariatesSequentialDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + MixedCovariatesSequentialDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + PastCovariatesSequentialDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + SplitCovariatesSequentialDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + DualCovariatesShiftedDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + FutureCovariatesShiftedDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + MixedCovariatesShiftedDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + PastCovariatesShiftedDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + SplitCovariatesShiftedDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + DualCovariatesTrainingDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + FutureCovariatesTrainingDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + MixedCovariatesTrainingDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + PastCovariatesTrainingDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + SplitCovariatesTrainingDataset = NotImportedModule( + module_name="(Py)Torch", warn=False + ) + TrainingDataset = NotImportedModule(module_name="(Py)Torch", warn=False) + +__all__ = [ + "HorizonBasedDataset", + "DualCovariatesInferenceDataset", + "FutureCovariatesInferenceDataset", + "InferenceDataset", + "MixedCovariatesInferenceDataset", + "PastCovariatesInferenceDataset", + "SplitCovariatesInferenceDataset", + "DualCovariatesSequentialDataset", + "FutureCovariatesSequentialDataset", + "MixedCovariatesSequentialDataset", + "PastCovariatesSequentialDataset", + "SplitCovariatesSequentialDataset", + "DualCovariatesShiftedDataset", + "FutureCovariatesShiftedDataset", + "MixedCovariatesShiftedDataset", + "PastCovariatesShiftedDataset", + "SplitCovariatesShiftedDataset", + "DualCovariatesTrainingDataset", + "FutureCovariatesTrainingDataset", + "MixedCovariatesTrainingDataset", + "PastCovariatesTrainingDataset", + "SplitCovariatesTrainingDataset", + "TrainingDataset", +] diff --git a/darts/utils/data/horizon_based_dataset.py b/darts/utils/data/horizon_based_dataset.py index 2b44ed4be1..d4011f3e29 100644 --- a/darts/utils/data/horizon_based_dataset.py +++ b/darts/utils/data/horizon_based_dataset.py @@ -9,9 +9,8 @@ from darts import TimeSeries from darts.logging import get_logger, raise_if_not - -from .training_dataset import PastCovariatesTrainingDataset -from .utils import CovariateType +from darts.utils.data.training_dataset import PastCovariatesTrainingDataset +from darts.utils.data.utils import CovariateType logger = get_logger(__name__) diff --git a/darts/utils/data/inference_dataset.py b/darts/utils/data/inference_dataset.py index 7eeb8c6f36..6d252216d0 100644 --- a/darts/utils/data/inference_dataset.py +++ b/darts/utils/data/inference_dataset.py @@ -13,10 +13,9 @@ from darts import TimeSeries from darts.logging import get_logger, raise_log +from darts.utils.data.utils import CovariateType from darts.utils.historical_forecasts.utils import _process_predict_start_points_bounds -from .utils import CovariateType - logger = get_logger(__name__) diff --git a/darts/utils/data/sequential_dataset.py b/darts/utils/data/sequential_dataset.py index 4b119b2f80..e0e700d67d 100644 --- a/darts/utils/data/sequential_dataset.py +++ b/darts/utils/data/sequential_dataset.py @@ -8,16 +8,15 @@ import numpy as np from darts import TimeSeries - -from .shifted_dataset import GenericShiftedDataset -from .training_dataset import ( +from darts.utils.data.shifted_dataset import GenericShiftedDataset +from darts.utils.data.training_dataset import ( DualCovariatesTrainingDataset, FutureCovariatesTrainingDataset, MixedCovariatesTrainingDataset, PastCovariatesTrainingDataset, SplitCovariatesTrainingDataset, ) -from .utils import CovariateType +from darts.utils.data.utils import CovariateType class PastCovariatesSequentialDataset(PastCovariatesTrainingDataset): diff --git a/darts/utils/data/shifted_dataset.py b/darts/utils/data/shifted_dataset.py index cea4e68b20..6128b056f5 100644 --- a/darts/utils/data/shifted_dataset.py +++ b/darts/utils/data/shifted_dataset.py @@ -9,8 +9,7 @@ from darts import TimeSeries from darts.logging import raise_if_not - -from .training_dataset import ( +from darts.utils.data.training_dataset import ( DualCovariatesTrainingDataset, FutureCovariatesTrainingDataset, MixedCovariatesTrainingDataset, @@ -18,7 +17,7 @@ SplitCovariatesTrainingDataset, TrainingDataset, ) -from .utils import CovariateType +from darts.utils.data.utils import CovariateType class PastCovariatesShiftedDataset(PastCovariatesTrainingDataset): diff --git a/darts/utils/data/training_dataset.py b/darts/utils/data/training_dataset.py index 2735e614f0..43e4e88d7d 100644 --- a/darts/utils/data/training_dataset.py +++ b/darts/utils/data/training_dataset.py @@ -11,8 +11,7 @@ from darts import TimeSeries from darts.logging import get_logger, raise_if_not - -from .utils import CovariateType +from darts.utils.data.utils import CovariateType logger = get_logger(__name__) SampleIndexType = Tuple[int, int, int, int, int, int] diff --git a/darts/utils/historical_forecasts/__init__.py b/darts/utils/historical_forecasts/__init__.py index 2edf85ebd4..fcd2ea765f 100644 --- a/darts/utils/historical_forecasts/__init__.py +++ b/darts/utils/historical_forecasts/__init__.py @@ -1,11 +1,21 @@ -from .optimized_historical_forecasts_regression import ( +from darts.utils.historical_forecasts.optimized_historical_forecasts_regression import ( _optimized_historical_forecasts_all_points, _optimized_historical_forecasts_last_points_only, ) -from .utils import ( +from darts.utils.historical_forecasts.utils import ( _check_optimizable_historical_forecasts_global_models, _get_historical_forecast_boundaries, _historical_forecasts_general_checks, _historical_forecasts_start_warnings, _process_historical_forecast_input, ) + +__all__ = [ + "_optimized_historical_forecasts_all_points", + "_optimized_historical_forecasts_last_points_only", + "_check_optimizable_historical_forecasts_global_models", + "_get_historical_forecast_boundaries", + "_historical_forecasts_general_checks", + "_historical_forecasts_start_warnings", + "_process_historical_forecast_input", +] diff --git a/darts/utils/statistics.py b/darts/utils/statistics.py index fec32bdee2..75d7cb123f 100644 --- a/darts/utils/statistics.py +++ b/darts/utils/statistics.py @@ -23,9 +23,8 @@ from darts import TimeSeries from darts.logging import get_logger, raise_if, raise_if_not, raise_log - -from .missing_values import fill_missing_values -from .utils import ModelMode, SeasonalityMode +from darts.utils.missing_values import fill_missing_values +from darts.utils.utils import ModelMode, SeasonalityMode logger = get_logger(__name__) diff --git a/examples/__init__.py b/examples/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/examples/utils/__init__.py b/examples/utils/__init__.py index e512746e94..203c98e715 100644 --- a/examples/utils/__init__.py +++ b/examples/utils/__init__.py @@ -1 +1,3 @@ from .utils import fix_pythonpath_if_working_locally + +__all__ = ["fix_pythonpath_if_working_locally"] diff --git a/pyproject.toml b/pyproject.toml index 1916db2da8..d4d9dab0ca 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -34,7 +34,6 @@ select = [ ] ignore = [ "E203", - "F401", # todo: add imports to `__all__` "E402", # todo: use noqa per line ] ignore-init-module-imports = true From 62122bea2f597ac1681e14712a095b88095d12bb Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Tue, 30 Apr 2024 16:52:05 +0200 Subject: [PATCH 052/161] fix index generation and n steps between (#2357) * fix index generation and n steps between * update code comments * update changelog --- CHANGELOG.md | 1 + darts/tests/utils/test_utils.py | 445 ++++++++++++++++++++++++++++++++ darts/timeseries.py | 5 +- darts/utils/utils.py | 77 ++++-- 4 files changed, 511 insertions(+), 17 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 97c8b2fae4..13836eecf0 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -11,6 +11,7 @@ but cannot always guarantee backwards compatibility. Changes that may **break co **Improved** **Fixed** +- Fixed a bug where `n_steps_between` did not work properly with custom business frequencies. This affected metrics computation. [#2357](https://github.com/unit8co/darts/pull/2357) by [Dennis Bader](https://github.com/dennisbader). **Dependencies** - Improvements to linting via updated pre-commit configurations: [#2324](https://github.com/unit8co/darts/pull/2324) by [Jirka Borovec](https://github.com/borda). diff --git a/darts/tests/utils/test_utils.py b/darts/tests/utils/test_utils.py index 79c6636591..0a4521cd32 100644 --- a/darts/tests/utils/test_utils.py +++ b/darts/tests/utils/test_utils.py @@ -1,11 +1,13 @@ import numpy as np import pandas as pd import pytest +from pandas.tseries.offsets import CustomBusinessDay from darts import TimeSeries from darts.utils import _with_sanity_checks from darts.utils.missing_values import extract_subseries from darts.utils.ts_utils import retain_period_common_to_all +from darts.utils.utils import generate_index, n_steps_between class TestUtils: @@ -94,3 +96,446 @@ def test_extract_subseries(self): assert subseries_any[0] == series[:2] assert subseries_any[1] == series[3:5] assert subseries_any[2] == series[-1] + + @pytest.mark.parametrize( + "config", + [ + # regular date offset frequencies + # day + ("2000-01-02", "2000-01-01", None, None, "D", 0), # empty time index + ("2000-01-01", "2000-01-01", None, None, "D", 1), # increasing time index + ("2000-01-01", "2000-01-02", None, None, "D", 2), + ("2000-01-01 01:00:00", "2000-01-02 02:00:00", None, None, "D", 2), + # 2 * day + ("2000-01-01", "1999-12-31", None, None, "2D", 0), + ("2000-01-01", "2000-01-02", None, None, "2D", 1), + ("2000-01-01", "2000-01-03", None, None, "2D", 2), + # hour + ("2000-01-01", "2000-01-01", None, None, "h", 1), + ("2000-01-01", "2000-01-02", None, None, "h", 25), + ("2000-01-01 01:00:00", "2000-01-02 02:00:00", None, None, "h", 26), + ("2000-01-01 01:30:00", "2000-01-02 02:00:00", None, None, "h", 25), + # 2 * hour + ("2000-01-01", "2000-01-01", None, None, "2h", 1), + ("2000-01-01", "2000-01-02", None, None, "2h", 13), + ("2000-01-01 01:00:00", "2000-01-02 02:00:00", None, None, "2h", 13), + ("2000-01-01 01:30:00", "2000-01-02 02:00:00", None, None, "2h", 13), + # ambiguous frequencies + # week-monday + ( + "2000-01-01", # saturday + "2000-01-03", # first monday + "2000-01-03", # first monday + None, # first wednesday + "W-MON", + 1, + ), + # week-monday, start and end are not part of freq (two mondays) + ( + "2000-01-01", # saturday + "2000-01-12", # second wednesday + "2000-01-03", # first monday + "2000-01-10", # second monday + "W-MON", + 2, + ), + # week-monday, start is part of freq (two mondays) + ( + "2000-01-03", # saturday + "2000-01-12", # second wednesday + "2000-01-03", # first monday + "2000-01-10", # second monday + "W-MON", + 2, + ), + # week-monday, end is part of freq (one monday, end exclusive) + ( + "2000-01-01", # saturday + "2000-01-10", # second monday + "2000-01-03", # first monday + None, # second wednesday + "W-MON", + 2, + ), + # week-monday, start and end are part of freq (one monday, end exclusive) + ( + "2000-01-03", # saturday + "2000-01-10", # second monday + "2000-01-03", # first monday + None, # second wednesday + "W-MON", + 2, + ), + # month start + ("2000-01-31", "2000-01-31", None, None, "MS", 0), + ("2000-01-01", "2000-01-02", None, "2000-01-01", "MS", 1), + ("2000-01-01", "2000-01-01", None, None, "MS", 1), + ("2000-01-01", "2000-02-01", None, None, "MS", 2), + ("2000-01-01", "2000-03-01", None, None, "MS", 3), + # month end + ("2000-01-01", "2000-01-02", None, None, "ME", 0), + ("2000-01-31", "2000-02-29", None, None, "ME", 2), + # 2 * months + ("2000-01-01", "2000-01-01", None, None, "2MS", 1), + ("2000-01-01", "2000-02-11", None, "2000-01-01", "2MS", 1), + ("2000-01-01", "2000-03-01", None, None, "2MS", 2), + ("2000-01-01", "2000-05-01", None, None, "2MS", 3), + # quarter + ("2000-01-01", "2000-04-01", None, None, "QS", 2), + # year + ("2000-01-01", "2001-04-01", None, "2001-01-01", "YS", 2), + # 2*year + ("2001-01-01", "2010-04-01", None, "2009-01-01", "2YS", 5), + (0, -1, None, None, 1, 0), # empty int index + (0, -1, None, None, -1, 2), # decreasing int index + (0, 0, None, None, 1, 1), # increasing int index + (0, 0, None, None, 2, 1), + (0, 1, None, None, 1, 2), + (0, 1, None, None, 2, 1), + (0, 2, None, None, 1, 3), + (0, 2, None, None, 2, 2), + ], + ) + def test_generate_index_with_start_end(self, config): + """Test that generate index returns the expected length, start, and end points + using `start`, `end`, and `freq` as input. + Also tests the reverse index generation with a negative frequency. + """ + start, end, expected_start, expected_start_rev, freq, expected_n_steps = config + if isinstance(start, str): + start = pd.Timestamp(start) + end = pd.Timestamp(end) + expected_start = ( + pd.Timestamp(expected_start) if expected_start is not None else start + ) + expected_start_rev = ( + pd.Timestamp(expected_start_rev) + if expected_start_rev is not None + else end + ) + freq = pd.tseries.frequencies.to_offset(freq) + else: + expected_start = expected_start if expected_start is not None else start + expected_start_rev = ( + expected_start_rev if expected_start_rev is not None else end + ) + + idx = generate_index(start=start, end=end, freq=freq) + + if isinstance(freq, int): + assert idx.step == freq + else: + assert idx.freq == freq + + # idx has expected length + assert len(idx) == expected_n_steps + + if expected_n_steps == 0: + return + + # start and end are as expected + assert idx[0] == expected_start + assert idx[-1] == expected_start + freq * (expected_n_steps - 1) + + # reversed operations generates expected index + idx_rev = generate_index(start=end, end=start, freq=-freq) + assert idx_rev[0] == expected_start_rev + assert idx_rev[-1] == expected_start_rev - freq * (expected_n_steps - 1) + + @pytest.mark.parametrize( + "config", + [ + # regular date offset frequencies + # day + ("2000-01-02", None, "D", 0), # empty time index + ("2000-01-01", "2000-01-01", "D", 1), # increasing time index + ("2000-01-01", "2000-01-02", "D", 2), + ("2000-01-01 01:00:00", "2000-01-02 01:00:00", "D", 2), + # 2 * day + ("2000-01-01", None, "2D", 0), + ("2000-01-01", "2000-01-01", "2D", 1), + ("2000-01-01", "2000-01-03", "2D", 2), + # hour + ("2000-01-01", "2000-01-01", "h", 1), + ("2000-01-01", "2000-01-02", "h", 25), + ("2000-01-01 01:00:00", "2000-01-02 02:00:00", "h", 26), + ("2000-01-01 01:30:00", "2000-01-02 01:30:00", "h", 25), + # 2 * hour + ("2000-01-01", "2000-01-01", "2h", 1), + ("2000-01-01", "2000-01-02", "2h", 13), + ("2000-01-01 01:00:00", "2000-01-02 01:00:00", "2h", 13), + ("2000-01-01 01:30:00", "2000-01-02 01:30:00", "2h", 13), + # ambiguous frequencies + # week-monday + ( + "2000-01-01", # saturday + "2000-01-03", # first monday + "W-MON", + 1, + ), + # week-monday, start is not part of freq (two mondays) + ( + "2000-01-01", # saturday + "2000-01-10", # second monday + "W-MON", + 2, + ), + # week-monday, start and end are part of freq (two mondays) + ( + "2000-01-03", # saturday + "2000-01-10", # second monday + "W-MON", + 2, + ), + # month start + ("2000-01-31", None, "MS", 0), + ("2000-01-01", "2000-01-01", "MS", 1), + ("2000-01-01", "2000-02-01", "MS", 2), + ("2000-01-01", "2000-03-01", "MS", 3), + # month end + ("2000-01-01", None, "ME", 0), + ("2000-01-31", "2000-02-29", "ME", 2), + # 2 * months + ("2000-01-01", "2000-01-01", "2MS", 1), + ("2000-01-01", "2000-03-01", "2MS", 2), + ("2000-01-01", "2000-05-01", "2MS", 3), + # quarter + ("2000-01-01", "2000-04-01", "QS", 2), + # year + ("2000-01-01", "2001-01-01", "YS", 2), + # 2*year + ("2001-01-01", "2009-01-01", "2YS", 5), + (0, None, 1, 0), # empty int index + (0, -1, -1, 2), # decreasing int index + (0, 0, 1, 1), # increasing int index + (0, 0, 2, 1), + (0, 1, 1, 2), + (0, 2, 1, 3), + (0, 2, 2, 2), + ], + ) + def test_generate_index_with_start_length(self, config): + """Test that generate index returns the expected length, start, and end points + using `start`, `length`, and `freq` as input. + """ + start, expected_end, freq, n_steps = config + if isinstance(start, str): + freq = pd.tseries.frequencies.to_offset(freq) + start = pd.Timestamp(start) + expected_end = ( + pd.Timestamp(expected_end) if expected_end is not None else None + ) + idx = generate_index(start=start, length=n_steps, freq=freq) + assert len(idx) == n_steps + if n_steps == 0: + return + + assert idx[-1] == expected_end + assert idx[0] == expected_end - (n_steps - 1) * freq + + @pytest.mark.parametrize( + "config", + [ + # regular date offset frequencies + # day + (None, "2000-01-02", "D", 0), # empty time index + ("2000-01-01", "2000-01-01", "D", 1), # increasing time index + ("2000-01-01", "2000-01-02", "D", 2), + ("2000-01-01 01:00:00", "2000-01-02 01:00:00", "D", 2), + # 2 * day + (None, "2000-01-01", "2D", 0), + ("2000-01-01", "2000-01-01", "2D", 1), + ("2000-01-01", "2000-01-03", "2D", 2), + # hour + ("2000-01-01", "2000-01-01", "h", 1), + ("2000-01-01", "2000-01-02", "h", 25), + ("2000-01-01 01:00:00", "2000-01-02 02:00:00", "h", 26), + ("2000-01-01 01:30:00", "2000-01-02 01:30:00", "h", 25), + # 2 * hour + ("2000-01-01", "2000-01-01", "2h", 1), + ("2000-01-01", "2000-01-02", "2h", 13), + ("2000-01-01 01:00:00", "2000-01-02 01:00:00", "2h", 13), + ("2000-01-01 01:30:00", "2000-01-02 01:30:00", "2h", 13), + # ambiguous frequencies + # week-monday, end is not part of freq + ( + "1999-12-27", # saturday + "2000-01-02", # first monday + "W-MON", + 1, + ), + # week-monday, end is part of freq + ( + "2000-01-03", # saturday + "2000-01-10", # second monday + "W-MON", + 2, + ), + # month start + (None, "2000-01-31", "MS", 0), + ("2000-01-01", "2000-01-01", "MS", 1), + ("2000-01-01", "2000-02-01", "MS", 2), + ("2000-01-01", "2000-03-01", "MS", 3), + # month end + (None, "2000-01-01", "ME", 0), + ("2000-01-31", "2000-02-29", "ME", 2), + # 2 * months + ("2000-01-01", "2000-01-01", "2MS", 1), + ("2000-01-01", "2000-03-01", "2MS", 2), + ("2000-01-01", "2000-05-01", "2MS", 3), + # quarter + ("2000-01-01", "2000-04-01", "QS", 2), + # year + ("2000-01-01", "2001-01-01", "YS", 2), + # 2*year + ("2001-01-01", "2009-01-01", "2YS", 5), + (None, 0, 1, 0), # empty int index + (0, -1, -1, 2), # decreasing int index + (0, 0, 1, 1), # increasing int index + (0, 0, 2, 1), + (0, 1, 1, 2), + (0, 2, 1, 3), + (0, 2, 2, 2), + ], + ) + def test_generate_index_with_end_length(self, config): + """Test that generate index returns the expected length, start, and end points + using `end`, `length`, and `freq` as input. + """ + expected_start, end, freq, n_steps = config + + if isinstance(end, str): + freq = pd.tseries.frequencies.to_offset(freq) + expected_start = ( + pd.Timestamp(expected_start) if expected_start is not None else None + ) + end = pd.Timestamp(end) + idx = generate_index(end=end, length=n_steps, freq=freq) + assert len(idx) == n_steps + if n_steps == 0: + return + + assert idx[0] == expected_start + assert idx[-1] == expected_start + (n_steps - 1) * freq + + @pytest.mark.parametrize( + "config", + [ + # regular date offset frequencies + # day + ("2000-01-01", "2000-01-01", "D", 0), + ("2000-01-01", "2000-01-02", "D", 1), + ("2000-01-01", "2005-02-05", "D", 1862), + # 2*days + ("2000-01-01", "2000-01-01", "2D", 0), + ("2000-01-01", "2000-01-02", "2D", 0), + ("2000-01-01", "2000-01-03", "2D", 1), + # hour + ("2000-01-01", "2000-01-01", "h", 0), + ("2000-01-01", "2000-01-01 06:00:00", "h", 6), + ("2000-01-01", "2000-01-02", "h", 24), + # ambiguous frequencies + # week-monday, start and end are not part of freq (two mondays) + ( + "2000-01-01", # saturday + "2000-01-12", # second wednesday + "W-MON", + 2, + ), + # week-monday, start is part of freq (two mondays) + ( + "2000-01-03", # monday + "2000-01-12", # second wednesday + "W-MON", + 2, + ), + # week-monday, end is part of freq (one monday, end exclusive) + ( + "2000-01-01", # saturday + "2000-01-10", # second monday + "W-MON", + 1, + ), + # week-monday, start and end are part of freq (one monday, end exclusive) + ( + "2000-01-03", # saturday + "2000-01-10", # second monday + "W-MON", + 1, + ), + # month + ("2000-01-01", "2000-01-02", "ME", 0), + ("2000-01-01", "2000-01-01", "ME", 0), + ("2000-01-01", "2000-02-01", "ME", 1), + ("2000-01-01", "2000-03-01", "ME", 2), + # 2 * months + ("2000-01-01", "2000-01-01", "2ME", 0), + ("2000-01-01", "2000-02-11", "2ME", 0), + ("2000-01-01", "2000-03-01", "2ME", 1), + ("2000-01-01", "2000-05-01", "2ME", 2), + # quarter + ("2000-01-01", "2000-04-01", "QE", 1), + # year + ("2000-01-01", "2001-04-01", "YE", 1), + # 2*year + ("2000-01-01", "2010-04-01", "2YE", 5), + # custom frequencies + # business day + ( + "2000-01-01", # saturday (no business) + "2000-01-01", + CustomBusinessDay(weekmask="Mon Tue Wed Thu Fri"), + 0, + ), + ( + "2000-01-01", # saturday (no business) + "2000-01-02", # sunday (no business) + CustomBusinessDay(weekmask="Mon Tue Wed Thu Fri"), + 0, + ), + ( + "2000-01-01", # saturday (no business) + "2000-01-03", # monday (first business day) + CustomBusinessDay(weekmask="Mon Tue Wed Thu Fri"), + 0, + ), + ( + "2000-01-01", # saturday (no business) + "2000-01-08", # second saturday (first business day) + CustomBusinessDay(weekmask="Mon Tue Wed Thu Fri"), + 4, + ), + ( + "2000-01-03", # monday + "2000-01-07", # friday + CustomBusinessDay(weekmask="Mon Tue Wed Thu Fri"), + 4, + ), + # 2 * business days + ( + "2000-01-01", # saturday (no business) + "2000-01-08", # second saturday (first business day) + 2 * CustomBusinessDay(weekmask="Mon Tue Wed Thu Fri"), + 2, + ), + # integer steps/frequencies + (0, -1, 1, -1), + (0, 0, 1, 0), + (0, 0, 2, 0), + (0, 1, 1, 1), + (0, 1, 2, 0), + (0, 2, 1, 2), + (0, 2, 2, 1), + ], + ) + def test_n_steps_between(self, config): + """Test the number of frequency steps/periods between two time steps.""" + start, end, freq, expected_n_steps = config + if isinstance(start, str): + start = pd.Timestamp(start) + end = pd.Timestamp(end) + freq = pd.tseries.frequencies.to_offset(freq) + n_steps = n_steps_between(end=end, start=start, freq=freq) + assert n_steps == expected_n_steps + n_steps_reversed = n_steps_between(end=start, start=end, freq=freq) + assert n_steps_reversed == -expected_n_steps diff --git a/darts/timeseries.py b/darts/timeseries.py index d39dc930c3..96a428815f 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -2519,10 +2519,13 @@ def slice_intersect_values(self, other: Self, copy: bool = False) -> Self: return vals[self.time_index.isin(other.time_index)] def _slice_intersect_bounds(self, other: Self) -> Tuple[int, int]: + """Find the start (absolute index) and end (index relative to the end) indices that represent the time + intersection from `self` and `other`.""" shift_start = n_steps_between( other.start_time(), self.start_time(), freq=self.freq ) - shift_end = n_steps_between(other.end_time(), self.end_time(), freq=self.freq) + shift_end = len(other) - (len(self) - shift_start) + shift_start = shift_start if shift_start >= 0 else 0 shift_end = shift_end if shift_end < 0 else None return shift_start, shift_end diff --git a/darts/utils/utils.py b/darts/utils/utils.py index 62305fc505..7454659a9a 100644 --- a/darts/utils/utils.py +++ b/darts/utils/utils.py @@ -342,6 +342,12 @@ def n_steps_between( 1 """ freq = pd.tseries.frequencies.to_offset(freq) if isinstance(freq, str) else freq + valid_freq = freq >= 0 if isinstance(freq, int) else freq.n >= 0 + if not valid_freq: + raise_log( + ValueError(f"`freq` must be positive/increasing, received freq={freq}."), + logger=logger, + ) valid_int = ( isinstance(start, int) and isinstance(end, int) and isinstance(freq, int) ) @@ -358,21 +364,39 @@ def n_steps_between( ), logger=logger, ) - # Series frequency represents a non-ambiguous timedelta value (not ‘M’, ‘Y’ or ‘y’) + # Series frequency represents a non-ambiguous timedelta value (not ‘M’, ‘Y’ or ‘y’, 'W') if pd.to_timedelta(freq, errors="coerce") is not pd.NaT: - n_steps = (end - start) // freq + diff = end - start + if abs(diff) != diff: + # (A) when diff is negative, not perfectly divisible by freq, and freq is a multiple of a base frequency + # (e.g., "2D" or step=2), then computing `diff // freq` can be one off + # Example: `end=1, start=2, freq=2` -> then `diff // freq` gives `-1`, but should be `0`. + diff += diff % freq + n_steps = diff // freq else: - period_alias = pd.tseries.frequencies.get_period_alias(freq.freqstr) - if period_alias is None: - raise_log( - ValueError( - f"Cannot infer period alias for `freq={freq}`. " - f"Is it a valid pandas offset/frequency alias?" - ), - logger=logger, - ) - # Create a temporary DatetimeIndex to extract the actual start index. - n_steps = (end.to_period(period_alias) - start.to_period(period_alias)).n + period_alias = pd.tseries.frequencies.get_period_alias(freq.name) + if period_alias is not None: + # get the number of base periods ("2MS" has base freq "MS") between the two time steps + diff = (end.to_period(period_alias) - start.to_period(period_alias)).n + if abs(diff) != diff: + # similar case as with (A) + diff += diff % freq.n + # floor division by the frequency multiplier ("2MS" has multiplier 2) + n_steps = diff // freq.n + else: + # in the worst case for special frequencies (e.g "C*"), we must generate the index + is_reversed = end < start + if is_reversed: + # always generate an increasing index, since pandas (v2.2.1) gives inconsistent result for + # negative/decreasing frequencies. Then reverse the index in case of negative/decreasing + # input frequency + start, end = end, start + n_steps = len(generate_index(start=start, end=end, freq=freq)) + if n_steps: + # index includes end, take away for difference + n_steps -= 1 + if is_reversed: + n_steps *= -1 return n_steps @@ -426,18 +450,39 @@ def generate_index( ) if isinstance(start, pd.Timestamp) or isinstance(end, pd.Timestamp): + freq = "D" if freq is None else freq + freq = pd.tseries.frequencies.to_offset(freq) if isinstance(freq, str) else freq index = pd.date_range( start=start, end=end, periods=length, - freq="D" if freq is None else freq, + freq=freq, name=name, ) + if freq.n < 0: + if start is not None and not freq.is_on_offset(start): + # for anchored negative frequencies, and `start` does not intersect with `freq`: + # pandas (v2.2.1) generates an index that starts one step before `start` -> remove this step + index = index[1:] + elif end is not None and not freq.is_on_offset(end): + # if `start` intersects with `freq`, then the same can happen for `end` -> remove this step + index = index[:-1] else: # int step = 1 if freq is None else freq + if start is None: + start_ = end - step * length + step + else: + start_ = start + + if end is None: + end_ = start + step * length + else: + # make end inclusive + end_ = end + 1 if step >= 0 else end - 1 + index = pd.RangeIndex( - start=start if start is not None else end - step * length + step, - stop=end + step if end is not None else start + step * length, + start=start_, + stop=end_, step=step, name=name, ) From a4e76875f00743ac5934aabbe0925f7ab06b95af Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Thu, 2 May 2024 13:16:57 +0200 Subject: [PATCH 053/161] fix deprecation warnings from frequencies (#2364) * fix deprecation warnings from frequencies * revert some bats and prophet freq checks --- darts/datasets/__init__.py | 6 +- darts/models/forecasting/prophet_model.py | 15 +++- darts/models/forecasting/tbats_model.py | 28 ++++--- .../dataprocessing/encoders/test_encoders.py | 20 +++-- .../dataprocessing/transformers/test_diff.py | 4 +- .../dataprocessing/transformers/test_midas.py | 42 +++++----- .../test_window_transformations.py | 3 +- darts/tests/datasets/test_datasets.py | 5 +- .../forecasting/test_exponential_smoothing.py | 11 +-- darts/tests/models/forecasting/test_fft.py | 5 +- .../tests/models/forecasting/test_prophet.py | 25 +++--- .../forecasting/test_regression_models.py | 1 - darts/tests/test_timeseries.py | 79 +++++++++---------- darts/tests/test_timeseries_multivariate.py | 5 +- .../test_create_lagged_training_data.py | 26 +++--- .../tests/utils/test_timeseries_generation.py | 45 +++++++---- darts/tests/utils/test_utils.py | 36 ++++----- darts/timeseries.py | 4 +- darts/utils/data/utils.py | 2 +- darts/utils/utils.py | 51 +++++++++--- 20 files changed, 236 insertions(+), 177 deletions(-) diff --git a/darts/datasets/__init__.py b/darts/datasets/__init__.py index 07aa3eb3cc..ca5c150cbc 100644 --- a/darts/datasets/__init__.py +++ b/darts/datasets/__init__.py @@ -14,7 +14,7 @@ from darts import TimeSeries from darts.datasets.dataset_loaders import DatasetLoaderCSV, DatasetLoaderMetadata from darts.logging import get_logger, raise_if_not -from darts.utils.utils import _build_tqdm_iterator +from darts.utils.utils import _build_tqdm_iterator, freqs """ Overall usage of this package: @@ -602,7 +602,7 @@ def pre_proces_fn(extracted_dir, dataset_path): ) output_dict = {} - freq_setting = "1H" if "hourly" in str(dataset_path) else "1D" + freq_setting = "1" + freqs["h"] if "hourly" in str(dataset_path) else "1D" time_series_of_locations = list(df.groupby(by="locationID")) for locationID, df in time_series_of_locations: df.sort_index() @@ -774,7 +774,7 @@ def __init__(self, multivariate: bool = True): hash="a2105f364ef70aec06c757304833f72a", header_time="Date", format_time="%Y-%m-%d %H:%M:%S", - freq="1H", + freq="1" + freqs["h"], multivariate=multivariate, ) ) diff --git a/darts/models/forecasting/prophet_model.py b/darts/models/forecasting/prophet_model.py index 78ce395cae..af6b620eca 100644 --- a/darts/models/forecasting/prophet_model.py +++ b/darts/models/forecasting/prophet_model.py @@ -603,11 +603,18 @@ def _freq_to_days(freq: str) -> float: ("Q", "BQ", "REQ") ): # quarter days = 3 * 30.4375 - elif freq in ["M", "BM", "CBM", "SM"] or freq.startswith( - ("M", "BM", "BS", "CBM", "SM") + elif freq in [ + "M", + "BM", + "CBM", + "SM", + "LWOM", + "WOM", + ] or freq.startswith( + ("M", "BME", "BS", "CBM", "SM", "LWOM", "WOM") ): # month days = 30.4375 - elif freq in ["W"]: # week + elif freq == "W" or freq.startswith("W-"): # week days = 7.0 elif freq in ["B", "C"]: # business day days = 1 * 7 / 5 @@ -626,7 +633,7 @@ def _freq_to_days(freq: str) -> float: days = 1 / (seconds_per_day * 10**3) elif freq_lower in ["u", "us"]: # microsecond days = 1 / (seconds_per_day * 10**6) - elif freq_lower in ["n"]: # nanosecond + elif freq_lower in ["n", "ns"]: # nanosecond days = 1 / (seconds_per_day * 10**9) if not days: diff --git a/darts/models/forecasting/tbats_model.py b/darts/models/forecasting/tbats_model.py index debab5060f..fccafab7ab 100644 --- a/darts/models/forecasting/tbats_model.py +++ b/darts/models/forecasting/tbats_model.py @@ -49,21 +49,27 @@ def _seasonality_from_freq(series: TimeSeries): return [5] elif freq == "D": return [7] - elif freq == "W": + elif freq == "W" or freq.startswith("W-"): return [52] - elif freq in ["M", "BM", "CBM", "SM"] or freq.startswith( - ("M", "BM", "BS", "CBM", "SM") - ): + elif freq in [ + "M", + "BM", + "CBM", + "SM", + "LWOM", + "WOM", + ] or freq.startswith(("M", "BM", "BS", "CBM", "SM", "LWOM", "WOM")): return [12] # month elif freq in ["Q", "BQ", "REQ"] or freq.startswith(("Q", "BQ", "REQ")): return [4] # quarter - elif freq in ["H", "BH", "CBH"]: - return [24] # hour - elif freq in ["T", "min"]: - return [60] # minute - elif freq == "S": - return [60] # second - + else: + freq_lower = freq.lower() + if freq_lower in ["h", "bh", "cbh"]: + return [24] # hour + elif freq_lower in ["t", "min"]: + return [60] # minute + elif freq_lower == "s": + return [60] # second return None diff --git a/darts/tests/dataprocessing/encoders/test_encoders.py b/darts/tests/dataprocessing/encoders/test_encoders.py index 336911d78d..eb25821790 100644 --- a/darts/tests/dataprocessing/encoders/test_encoders.py +++ b/darts/tests/dataprocessing/encoders/test_encoders.py @@ -31,7 +31,7 @@ from darts.logging import get_logger, raise_log from darts.tests.conftest import TORCH_AVAILABLE from darts.utils import timeseries_generation as tg -from darts.utils.utils import generate_index +from darts.utils.utils import freqs, generate_index logger = get_logger(__name__) @@ -887,7 +887,7 @@ def test_integer_positional_encoder(self): def test_callable_encoder(self): """Test `CallableIndexEncoder`""" - ts = tg.linear_timeseries(length=24, freq="A") + ts = tg.linear_timeseries(length=24, freq=freqs["YE"]) input_chunk_length = 12 output_chunk_length = 6 @@ -965,7 +965,11 @@ def test_routine_cyclic(past_covs): ) ts1 = tg.linear_timeseries( - start_value=1, end_value=2, length=60, freq="T", column_name="cov_in" + start_value=1, + end_value=2, + length=60, + freq=freqs["min"], + column_name="cov_in", ) encoder_params = { "position": {"future": ["relative"]}, @@ -1017,7 +1021,11 @@ def test_routine_cyclic(past_covs): ) fc_inf = tg.linear_timeseries( - start_value=1, end_value=3, length=80, freq="T", column_name="cov_in" + start_value=1, + end_value=3, + length=80, + freq=freqs["min"], + column_name="cov_in", ) pc3, fc3 = encs.encode_inference(n=60, target=ts1, future_covariates=fc_inf) @@ -1045,7 +1053,7 @@ def test_routine_cyclic(past_covs): def test_transformer_multi_series(self): ts1 = tg.linear_timeseries( - start_value=1, end_value=2, length=21, freq="T", column_name="cov" + start_value=1, end_value=2, length=21, freq=freqs["min"], column_name="cov" ) ts2 = tg.linear_timeseries( start=None, @@ -1053,7 +1061,7 @@ def test_transformer_multi_series(self): start_value=1.5, end_value=2, length=11, - freq="T", + freq=freqs["min"], column_name="cov", ) ts1_inf = ts1.drop_before(ts2.start_time() - ts1.freq) diff --git a/darts/tests/dataprocessing/transformers/test_diff.py b/darts/tests/dataprocessing/transformers/test_diff.py index 3fb9aae609..e341e13572 100644 --- a/darts/tests/dataprocessing/transformers/test_diff.py +++ b/darts/tests/dataprocessing/transformers/test_diff.py @@ -9,6 +9,7 @@ from darts.timeseries import TimeSeries from darts.timeseries import concatenate as darts_concat from darts.utils.timeseries_generation import linear_timeseries, sine_timeseries +from darts.utils.utils import freqs class TestDiff: @@ -246,7 +247,8 @@ def test_diff_incompatible_inverse_transform_freq(self): values=vals, times=pd.date_range(start="1/1/2018", freq="W", periods=10) ) series2 = TimeSeries.from_times_and_values( - values=vals, times=pd.date_range(start="1/1/2018", freq="M", periods=10) + values=vals, + times=pd.date_range(start="1/1/2018", freq=freqs["ME"], periods=10), ) diff = Diff(lags=1, dropna=True) diff.fit(series1) diff --git a/darts/tests/dataprocessing/transformers/test_midas.py b/darts/tests/dataprocessing/transformers/test_midas.py index ffeb2e9868..46ed1a2c98 100644 --- a/darts/tests/dataprocessing/transformers/test_midas.py +++ b/darts/tests/dataprocessing/transformers/test_midas.py @@ -6,13 +6,7 @@ from darts.dataprocessing.transformers import MIDAS from darts.models import LinearRegressionModel from darts.utils.timeseries_generation import linear_timeseries -from darts.utils.utils import generate_index - -# TODO: remove this once bumping min python version from 3.8 to 3.9 (pandas v2.2.0 not available for p38) -pd_above_v22 = pd.__version__ >= "2.2" -freq_quarter_end = "QE" if pd_above_v22 else "Q" -freq_month_end = "ME" if pd_above_v22 else "M" -freq_minute = "min" if pd_above_v22 else "T" +from darts.utils.utils import freqs, generate_index class TestMIDAS: @@ -21,7 +15,7 @@ class TestMIDAS: end_value=9, start=pd.Timestamp("01-2020"), length=9, - freq="M", + freq=freqs["ME"], column_name="values", ) @@ -35,7 +29,7 @@ class TestMIDAS: columns=["values_midas_0", "values_midas_1", "values_midas_2"], ) - quarterly_end_times = pd.date_range(start="01-2020", periods=3, freq="Q") + quarterly_end_times = pd.date_range(start="01-2020", periods=3, freq=freqs["QE"]) quarterly_with_quarter_end_index_ts = TimeSeries.from_times_and_values( times=quarterly_end_times, values=quarterly_values, @@ -64,7 +58,7 @@ def test_complete_monthly_to_quarterly(self): assert self.monthly_ts == inversed_quarterly_ts_midas # to quarter end - midas_2 = MIDAS(low_freq=freq_quarter_end) + midas_2 = MIDAS(low_freq=freqs["QE"]) quarterly_ts_midas = midas_2.fit_transform(self.monthly_ts) assert quarterly_ts_midas == self.quarterly_with_quarter_end_index_ts @@ -323,13 +317,13 @@ def test_from_second_to_minute(self): Test to see if other frequencies transforms like second to minute work as well. """ - second_times = pd.date_range(start="01-2020", periods=120, freq="S") + second_times = pd.date_range(start="01-2020", periods=120, freq=freqs["s"]) second_values = np.arange(1, len(second_times) + 1) second_ts = TimeSeries.from_times_and_values( times=second_times, values=second_values, columns=["values"] ) - minute_times = pd.date_range(start="01-2020", periods=2, freq="T") + minute_times = pd.date_range(start="01-2020", periods=2, freq=freqs["min"]) minute_values = np.array( [[i for i in range(1, 61)], [i for i in range(61, 121)]] ) @@ -339,7 +333,7 @@ def test_from_second_to_minute(self): columns=[f"values_midas_{i}" for i in range(60)], ) - midas = MIDAS(low_freq=freq_minute) + midas = MIDAS(low_freq=freqs["min"]) minute_ts_midas = midas.fit_transform(second_ts) assert minute_ts_midas == minute_ts second_ts_midas = midas.inverse_transform(minute_ts_midas) @@ -355,12 +349,12 @@ def test_error_when_from_low_to_high(self): Tests if the transformer raises an error when the user asks for a transform in the wrong direction. """ # wrong direction : low to high freq - midas_1 = MIDAS(low_freq=freq_month_end) + midas_1 = MIDAS(low_freq=freqs["ME"]) with pytest.raises(ValueError): midas_1.fit_transform(self.quarterly_ts) # transform to same index requested - midas_2 = MIDAS(low_freq=freq_quarter_end) + midas_2 = MIDAS(low_freq=freqs["QE"]) with pytest.raises(ValueError): midas_2.fit_transform(self.quarterly_ts) @@ -377,7 +371,7 @@ def test_error_when_frequency_not_suitable_for_midas(self): times=daily_times, values=daily_values, columns=["values"] ) - midas = MIDAS(low_freq=freq_month_end) + midas = MIDAS(low_freq=freqs["ME"]) with pytest.raises(ValueError) as msg: midas.fit_transform(daily_ts) assert str(msg.value).startswith( @@ -391,7 +385,7 @@ def test_inverse_transform_prediction(self): """ # low frequency : QuarterStart monthly_ts = TimeSeries.from_times_and_values( - times=pd.date_range(start="01-2020", periods=24, freq="M"), + times=pd.date_range(start="01-2020", periods=24, freq=freqs["ME"]), values=np.arange(0, 24), columns=["values"], ) @@ -414,8 +408,8 @@ def test_inverse_transform_prediction(self): assert pred_quarterly.time_index.equals(quarterly_test_ts.time_index) assert pred_monthly.time_index.equals(monthly_test_ts.time_index) - # "Q" = QuarterEnd, the 2 "hidden" months must be retrieved - midas_quarterly = MIDAS(low_freq=freq_quarter_end) + # freqs["QE"] = QuarterEnd, the 2 "hidden" months must be retrieved + midas_quarterly = MIDAS(low_freq=freqs["QE"]) quarterly_train_ts = midas_quarterly.fit_transform(monthly_train_ts) quarterly_test_ts = midas_quarterly.transform(monthly_test_ts) @@ -441,11 +435,11 @@ def test_multiple_ts(self): to yearly). """ quarterly_univariate_ts = TimeSeries.from_times_and_values( - times=pd.date_range(start="2000-01-01", periods=12, freq="Q"), + times=pd.date_range(start="2000-01-01", periods=12, freq=freqs["QE"]), values=np.arange(0, 12), ) quarterly_multivariate_ts = TimeSeries.from_times_and_values( - times=pd.date_range(start="2020-01-01", periods=12, freq="Q"), + times=pd.date_range(start="2020-01-01", periods=12, freq=freqs["QE"]), values=np.arange(0, 24).reshape(-1, 2), ) @@ -468,7 +462,7 @@ def test_multiple_ts(self): inverse_transformed = midas_yearly.inverse_transform(list_yearly_ts) assert len(inverse_transformed) == 2 assert len(inverse_transformed[0]) == 0 - assert inverse_transformed[0].freq == freq_month_end + assert inverse_transformed[0].freq == freqs["ME"] assert inverse_transformed[0].n_components == 1 assert ts_to_transform[1:] == inverse_transformed[1:] @@ -515,7 +509,9 @@ def test_ts_with_static_covariates(self): columns=["static_2", "static_3", "static_4"], ) monthly_multivar_with_static_covs = TimeSeries.from_times_and_values( - times=generate_index(start=pd.Timestamp("2000-01"), length=8, freq="M"), + times=generate_index( + start=pd.Timestamp("2000-01"), length=8, freq=freqs["ME"] + ), values=np.stack([np.arange(2)] * 8), static_covariates=components_static_covs, ) diff --git a/darts/tests/dataprocessing/transformers/test_window_transformations.py b/darts/tests/dataprocessing/transformers/test_window_transformations.py index e345a26734..cf347059f7 100644 --- a/darts/tests/dataprocessing/transformers/test_window_transformations.py +++ b/darts/tests/dataprocessing/transformers/test_window_transformations.py @@ -7,6 +7,7 @@ from darts import TimeSeries from darts.dataprocessing.pipeline import Pipeline from darts.dataprocessing.transformers import Mapper, WindowTransformer +from darts.utils.utils import freqs def helper_generate_ts_hierarchy(length: int): @@ -626,7 +627,7 @@ class TestWindowTransformer: times = pd.date_range("20130101", "20130110") target = TimeSeries.from_times_and_values(times, np.array(range(1, 11))) - times_hourly = pd.date_range(start="20130101", freq="1H", periods=10) + times_hourly = pd.date_range(start="20130101", freq="1" + freqs["h"], periods=10) target_hourly = TimeSeries.from_times_and_values( times_hourly, np.array(range(1, 11)) ) diff --git a/darts/tests/datasets/test_datasets.py b/darts/tests/datasets/test_datasets.py index 767469c1bd..62faf6c8f2 100644 --- a/darts/tests/datasets/test_datasets.py +++ b/darts/tests/datasets/test_datasets.py @@ -7,6 +7,7 @@ from darts import TimeSeries from darts.tests.conftest import TORCH_AVAILABLE from darts.utils.timeseries_generation import gaussian_timeseries +from darts.utils.utils import freqs if not TORCH_AVAILABLE: pytest.skip( @@ -1433,8 +1434,8 @@ def test_get_matching_index(self): assert _get_matching_index(target, cov, idx=15) == 5 # check non-dividable freq - times1 = pd.date_range(start="20100101", end="20120101", freq="M") - times2 = pd.date_range(start="20090101", end="20110601", freq="M") + times1 = pd.date_range(start="20100101", end="20120101", freq=freqs["ME"]) + times2 = pd.date_range(start="20090101", end="20110601", freq=freqs["ME"]) target = TimeSeries.from_times_and_values( times1, np.random.randn(len(times1)) ).with_static_covariates(self.cov_st2_df) diff --git a/darts/tests/models/forecasting/test_exponential_smoothing.py b/darts/tests/models/forecasting/test_exponential_smoothing.py index 63b494ae44..45903fa548 100644 --- a/darts/tests/models/forecasting/test_exponential_smoothing.py +++ b/darts/tests/models/forecasting/test_exponential_smoothing.py @@ -4,19 +4,20 @@ from darts import TimeSeries from darts.models import ExponentialSmoothing from darts.utils import timeseries_generation as tg +from darts.utils.utils import freqs class TestExponentialSmoothing: - series = tg.sine_timeseries(length=100, freq="H") + series = tg.sine_timeseries(length=100, freq=freqs["h"]) @pytest.mark.parametrize( "freq_string,expected_seasonal_periods", [ ("D", 7), - ("H", 24), - ("M", 12), + (freqs["h"], 24), + (freqs["ME"], 12), ("W", 52), - ("Q", 4), + (freqs["QE"], 4), ("B", 5), ], ) @@ -37,7 +38,7 @@ def test_default_parameters(self): def test_multiple_fit(self): """Test whether a model that inferred a seasonality period before will do it again for a new series""" - series1 = tg.sine_timeseries(length=100, freq="M") + series1 = tg.sine_timeseries(length=100, freq=freqs["ME"]) series2 = tg.sine_timeseries(length=100, freq="D") model = ExponentialSmoothing() model.fit(series1) diff --git a/darts/tests/models/forecasting/test_fft.py b/darts/tests/models/forecasting/test_fft.py index 17632b1538..77a424996f 100644 --- a/darts/tests/models/forecasting/test_fft.py +++ b/darts/tests/models/forecasting/test_fft.py @@ -2,6 +2,7 @@ from darts.models.forecasting.fft import _find_relevant_timestamp_attributes from darts.utils import timeseries_generation as tg +from darts.utils.utils import freqs class TestFFT: @@ -35,7 +36,7 @@ def test_find_relevant_timestamp_attributes(self): np.random.seed(0) # monthly frequency - self.helper_relevant_attributes("M", 150, [(12, {"month"})]) + self.helper_relevant_attributes(freqs["ME"], 150, [(12, {"month"})]) # daily frequency self.helper_relevant_attributes( @@ -44,7 +45,7 @@ def test_find_relevant_timestamp_attributes(self): # hourly frequency self.helper_relevant_attributes( - "H", + freqs["h"], 3000, [(730, {"day", "hour"}), (168, {"weekday", "hour"}), (24, {"hour"})], ) diff --git a/darts/tests/models/forecasting/test_prophet.py b/darts/tests/models/forecasting/test_prophet.py index bf1ffc45ec..e661bed24a 100644 --- a/darts/tests/models/forecasting/test_prophet.py +++ b/darts/tests/models/forecasting/test_prophet.py @@ -8,7 +8,7 @@ from darts.logging import get_logger from darts.models import NotImportedModule, Prophet from darts.utils import timeseries_generation as tg -from darts.utils.utils import generate_index +from darts.utils.utils import freqs, generate_index logger = get_logger(__name__) @@ -73,24 +73,24 @@ def test_prophet_model(self): perform_full_test = False test_cases_all = { - "A": 12, + freqs["YE"]: 12, "W": 7, - "BM": 12, + freqs["BME"]: 12, "C": 5, "D": 7, "MS": 12, "B": 5, - "H": 24, - "BH": 8, - "Q": 4, - "min": 60, - "S": 60, - "30S": 60, - "24T": 60, + freqs["h"]: 24, + freqs["bh"]: 8, + freqs["QE"]: 4, + freqs["min"]: 60, + freqs["s"]: 60, + "30" + freqs["s"]: 60, + "24" + freqs["min"]: 60, } test_cases_fast = { - key: test_cases_all[key] for key in ["MS", "D", "H"] + key: test_cases_all[key] for key in ["MS", "D", freqs["h"]] } # monthly, daily, hourly self.helper_test_freq_coversion(test_cases_all) @@ -173,7 +173,8 @@ def helper_test_freq_coversion(self, test_cases): assert ( abs( - Prophet._freq_to_days(freq="30S") - 30 * Prophet._freq_to_days(freq="S") + Prophet._freq_to_days(freq="30" + freqs["s"]) + - 30 * Prophet._freq_to_days(freq=freqs["s"]) ) < 10e-9 ) diff --git a/darts/tests/models/forecasting/test_regression_models.py b/darts/tests/models/forecasting/test_regression_models.py index 307c7eac73..87286a7305 100644 --- a/darts/tests/models/forecasting/test_regression_models.py +++ b/darts/tests/models/forecasting/test_regression_models.py @@ -161,7 +161,6 @@ class NewCls(cls): "n_estimators": 1, "max_depth": 1, "max_leaves": 1, - "verbose": -1, "random_state": 42, } lgbm_test_params = { diff --git a/darts/tests/test_timeseries.py b/darts/tests/test_timeseries.py index 79412b5d8a..5ea22d6065 100644 --- a/darts/tests/test_timeseries.py +++ b/darts/tests/test_timeseries.py @@ -11,7 +11,7 @@ from darts import TimeSeries, concatenate from darts.utils.timeseries_generation import constant_timeseries, linear_timeseries -from darts.utils.utils import generate_index +from darts.utils.utils import freqs, generate_index class TestTimeSeries: @@ -665,7 +665,7 @@ def helper_test_shift(test_case, test_series: TimeSeries): test_series.shift(1e6) seriesM = TimeSeries.from_times_and_values( - pd.date_range("20130101", "20130601", freq="m"), range(5) + pd.date_range("20130101", "20130601", freq=freqs["ME"]), range(5) ) with pytest.raises(OverflowError): seriesM.shift(1e4) @@ -782,7 +782,7 @@ def test_shift(self): def test_append(self): TestTimeSeries.helper_test_append(self, self.series1) # Check `append` deals with `RangeIndex` series correctly: - series_1 = linear_timeseries(start=1, length=5, freq=2, column_name="A") + series_1 = linear_timeseries(start=1, length=5, freq=2, column_name=freqs["YE"]) series_2 = linear_timeseries(start=11, length=2, freq=2, column_name="B") appended = series_1.append(series_2) expected_vals = np.concatenate( @@ -809,7 +809,7 @@ def test_append_values(self): def test_prepend(self): TestTimeSeries.helper_test_prepend(self, self.series1) # Check `prepend` deals with `RangeIndex` series correctly: - series_1 = linear_timeseries(start=1, length=5, freq=2, column_name="A") + series_1 = linear_timeseries(start=1, length=5, freq=2, column_name=freqs["YE"]) series_2 = linear_timeseries(start=11, length=2, freq=2, column_name="B") prepended = series_2.prepend(series_1) expected_vals = np.concatenate( @@ -1101,56 +1101,51 @@ def test_fill_missing_dates(self): "C", "D", "W", - "M", - "SM", - "BM", - "CBM", + freqs["ME"], + freqs["SME"], + freqs["BME"], + freqs["CBME"], "MS", "SMS", "BMS", "CBMS", - "Q", - "BQ", + freqs["QE"], + freqs["BQE"], "QS", "BQS", - "A", - "Y", - "BA", - "BY", - "AS", + freqs["YE"], + freqs["BYE"], + freqs["YS"], "YS", - "BAS", + freqs["BYS"], "BYS", - "BH", - "H", - "T", - "min", - "S", - "L", - "U", - "us", - "N", + freqs["bh"], + freqs["h"], + freqs["min"], + freqs["s"], + freqs["ms"], + freqs["us"], + freqs["ns"], ] # fill_missing_dates will find multiple inferred frequencies (i.e. for 'B' it finds {'B', 'D'}) -> good offset_aliases_raise = [ "B", "C", - "SM", - "BM", - "CBM", + freqs["SME"], + freqs["BME"], + freqs["CBME"], "SMS", "BMS", "CBMS", - "BQ", - "BA", - "BY", - "BAS", + freqs["BQE"], + freqs["BYE"], + freqs["BYS"], "BYS", - "BH", + freqs["bh"], "BQS", ] # frequency cannot be inferred for these types (finds '15D' instead of 'SM') - offset_not_supported = ["SM", "SMS"] + offset_not_supported = [freqs["SME"], "SMS"] ts_length = 25 for offset_alias in offset_aliases: @@ -1230,8 +1225,8 @@ def test_resample_timeseries(self): pd_series = pd.Series(range(10), index=times) timeseries = TimeSeries.from_series(pd_series) - resampled_timeseries = timeseries.resample("h") - assert resampled_timeseries.freq_str.lower() == "h" + resampled_timeseries = timeseries.resample(freqs["h"]) + assert resampled_timeseries.freq_str.lower() == freqs["h"] assert resampled_timeseries.pd_series().at[pd.Timestamp("20130101020000")] == 0 assert resampled_timeseries.pd_series().at[pd.Timestamp("20130102020000")] == 1 assert resampled_timeseries.pd_series().at[pd.Timestamp("20130109090000")] == 8 @@ -1246,12 +1241,12 @@ def test_resample_timeseries(self): # using offset to avoid nan in the first value times = pd.date_range( - start=pd.Timestamp("20200101233000"), periods=10, freq="15T" + start=pd.Timestamp("20200101233000"), periods=10, freq="15" + freqs["min"] ) pd_series = pd.Series(range(10), index=times) timeseries = TimeSeries.from_series(pd_series) resampled_timeseries = timeseries.resample( - freq="1h", offset=pd.Timedelta("30T") + freq="1" + freqs["h"], offset=pd.Timedelta("30" + freqs["min"]) ) assert resampled_timeseries.pd_series().at[pd.Timestamp("20200101233000")] == 0 @@ -1301,7 +1296,7 @@ def test_short_series_creation(self): pd.date_range("20130101", "20130105"), range(5), fill_missing_dates=False, - freq="M", + freq=freqs["ME"], ) assert seriesA.freq == "D" # test successful instantiation of TimeSeries with length 2 @@ -1461,8 +1456,8 @@ def add(x, y, z): def test_gaps(self): times1 = pd.date_range("20130101", "20130110") - times2 = pd.date_range("20120101", "20210301", freq="Q") - times3 = pd.date_range("20120101", "20210301", freq="AS") + times2 = pd.date_range("20120101", "20210301", freq=freqs["QE"]) + times3 = pd.date_range("20120101", "20210301", freq=freqs["YS"]) times4 = pd.date_range("20120101", "20210301", freq="2MS") pd_series1 = pd.Series( @@ -2242,7 +2237,7 @@ def test_time_col_with_tz(self): assert ts.time_index.tz is None time_range_H = pd.date_range( - start="20200518", end="20200521", freq="H", tz="CET" + start="20200518", end="20200521", freq=freqs["h"], tz="CET" ) values = np.random.uniform(low=-10, high=10, size=len(time_range_H)) diff --git a/darts/tests/test_timeseries_multivariate.py b/darts/tests/test_timeseries_multivariate.py index bfe2548d35..b122959dfe 100644 --- a/darts/tests/test_timeseries_multivariate.py +++ b/darts/tests/test_timeseries_multivariate.py @@ -6,6 +6,7 @@ from darts import TimeSeries from darts.tests.test_timeseries import TestTimeSeries +from darts.utils.utils import freqs class TestTimeSeriesMultivariate: @@ -236,7 +237,9 @@ def test_add_holidays(self): assert seriesA.width == 3 # testing hourly time series - times = pd.date_range(start=pd.Timestamp("20201224"), periods=50, freq="H") + times = pd.date_range( + start=pd.Timestamp("20201224"), periods=50, freq=freqs["h"] + ) seriesB = TimeSeries.from_times_and_values(times, range(len(times))) seriesB = seriesB.add_holidays("US") last_column = seriesB.pd_dataframe().iloc[:, seriesB.width - 1] diff --git a/darts/tests/utils/tabularization/test_create_lagged_training_data.py b/darts/tests/utils/tabularization/test_create_lagged_training_data.py index 54a5fc9a2f..774ea4a762 100644 --- a/darts/tests/utils/tabularization/test_create_lagged_training_data.py +++ b/darts/tests/utils/tabularization/test_create_lagged_training_data.py @@ -15,7 +15,7 @@ create_lagged_training_data, ) from darts.utils.timeseries_generation import linear_timeseries -from darts.utils.utils import generate_index +from darts.utils.utils import freqs, generate_index def helper_create_multivariate_linear_timeseries( @@ -697,7 +697,7 @@ def test_lagged_training_data_equal_freq(self, series_type: str): end_value=10, start=pd.Timestamp("1/2/2000"), length=self.min_n_ts, - freq="2d", + freq="2D", ) past = helper_create_multivariate_linear_timeseries( n_components=3, @@ -705,7 +705,7 @@ def test_lagged_training_data_equal_freq(self, series_type: str): end_value=20, start=pd.Timestamp("1/4/2000"), length=self.min_n_ts + 1, - freq="2d", + freq="2D", ) future = helper_create_multivariate_linear_timeseries( n_components=4, @@ -713,7 +713,7 @@ def test_lagged_training_data_equal_freq(self, series_type: str): end_value=30, start=pd.Timestamp("1/6/2000"), length=self.min_n_ts + 1, - freq="2d", + freq="2D", ) # Conduct test for each input parameter combo: for ( @@ -817,7 +817,7 @@ def test_lagged_training_data_unequal_freq(self, series_type): end_value=10, start=pd.Timestamp("1/1/2000"), length=20, - freq="d", + freq="D", ) past = helper_create_multivariate_linear_timeseries( n_components=3, @@ -825,7 +825,7 @@ def test_lagged_training_data_unequal_freq(self, series_type): end_value=20, start=pd.Timestamp("1/2/2000"), length=10, - freq="2d", + freq="2D", ) future = helper_create_multivariate_linear_timeseries( n_components=4, @@ -833,7 +833,7 @@ def test_lagged_training_data_unequal_freq(self, series_type): end_value=30, start=pd.Timestamp("1/3/2000"), length=7, - freq="3d", + freq="3D", ) # Conduct test for each input parameter combo: for ( @@ -938,7 +938,7 @@ def test_lagged_training_data_method_consistency(self, series_type): end_value=10, start=pd.Timestamp("1/2/2000"), end=pd.Timestamp("1/18/2000"), - freq="2d", + freq="2D", ) past = helper_create_multivariate_linear_timeseries( n_components=3, @@ -946,7 +946,7 @@ def test_lagged_training_data_method_consistency(self, series_type): end_value=20, start=pd.Timestamp("1/4/2000"), end=pd.Timestamp("1/20/2000"), - freq="2d", + freq="2D", ) future = helper_create_multivariate_linear_timeseries( n_components=4, @@ -954,7 +954,7 @@ def test_lagged_training_data_method_consistency(self, series_type): end_value=30, start=pd.Timestamp("1/6/2000"), end=pd.Timestamp("1/22/2000"), - freq="2d", + freq="2D", ) # Conduct test for each input parameter combo: for ( @@ -1107,7 +1107,7 @@ def test_lagged_training_data_single_lag_single_component_same_series(self, conf itertools.product( [0, 1, 3], [False, True], - list(itertools.product(["datetime"], ["d", "2d", "ms", "y"])) + list(itertools.product(["datetime"], ["D", "2D", freqs["ms"], freqs["YE"]])) + list(itertools.product(["integer"], [1, 2])), ), ) @@ -1408,7 +1408,7 @@ def test_lagged_training_data_no_target_lags_future_covariates(self, config): start=cov_start, length=cov_length, start_value=2, end_value=3 ) else: - freq = pd.tseries.frequencies.to_offset("d") + freq = pd.tseries.frequencies.to_offset("D") cov_start = pd.Timestamp("1/1/2000") + (cov_start_shift + cov_lag) * freq target = linear_timeseries( start=pd.Timestamp("1/1/2000"), @@ -1507,7 +1507,7 @@ def test_lagged_training_data_no_target_lags_past_covariates(self, config): start=cov_start, length=cov_length, start_value=2, end_value=3 ) else: - freq = pd.tseries.frequencies.to_offset("d") + freq = pd.tseries.frequencies.to_offset("D") cov_start = pd.Timestamp("1/1/2000") + (cov_start_shift + cov_lag) * freq target = linear_timeseries( start=pd.Timestamp("1/1/2000"), diff --git a/darts/tests/utils/test_timeseries_generation.py b/darts/tests/utils/test_timeseries_generation.py index 0f0cd02501..f42847299d 100644 --- a/darts/tests/utils/test_timeseries_generation.py +++ b/darts/tests/utils/test_timeseries_generation.py @@ -17,6 +17,7 @@ random_walk_timeseries, sine_timeseries, ) +from darts.utils.utils import freqs class TestTimeSeriesGeneration: @@ -149,7 +150,7 @@ def test_holidays_timeseries(self): periods=365 * 3, freq="D", start=pd.Timestamp("2014-12-24") ) time_index_3 = pd.date_range( - periods=10, freq="Y", start=pd.Timestamp("1950-01-01") + periods=10, freq=freqs["YE"], start=pd.Timestamp("1950-01-01") ) + pd.Timedelta(days=1) # testing we have at least one holiday flag in each year @@ -162,7 +163,9 @@ def test_routine( ts = holidays_timeseries( time_index, country_code, until=until, add_length=add_length ) - assert all(ts.pd_dataframe().groupby(pd.Grouper(freq="y")).sum().values) + assert all( + ts.pd_dataframe().groupby(pd.Grouper(freq=freqs["YE"])).sum().values + ) for time_index in [time_index_1, time_index_2, time_index_3]: for country_code in ["US", "CH", "AR"]: @@ -193,7 +196,7 @@ def test_routine( # test holiday with and without time zone, 1st of August is national holiday in Switzerland # time zone naive (e.g. in UTC) idx = generate_index( - start=pd.Timestamp("2000-07-31 22:00:00"), length=3, freq="h" + start=pd.Timestamp("2000-07-31 22:00:00"), length=3, freq=freqs["h"] ) ts = holidays_timeseries(idx, country_code="CH") np.testing.assert_array_almost_equal(ts.values()[:, 0], np.array([0, 0, 1])) @@ -357,11 +360,15 @@ def helper_routine(idx, attr, vals_exp, **kwargs): np.testing.assert_array_almost_equal(vals_act, vals_exp) def test_datetime_attribute_timeseries_wrong_args(self): - idx = generate_index(start=pd.Timestamp("2000-01-01"), length=48, freq="h") + idx = generate_index( + start=pd.Timestamp("2000-01-01"), length=48, freq=freqs["h"] + ) # no pd.DatetimeIndex with pytest.raises(ValueError) as err: self.helper_routine( - pd.RangeIndex(start=0, stop=len(idx)), "h", vals_exp=np.arange(len(idx)) + pd.RangeIndex(start=0, stop=len(idx)), + freqs["h"], + vals_exp=np.arange(len(idx)), ) assert str(err.value).startswith( "`time_index` must be a pandas `DatetimeIndex`" @@ -369,7 +376,7 @@ def test_datetime_attribute_timeseries_wrong_args(self): # invalid attribute with pytest.raises(ValueError) as err: - self.helper_routine(idx, "h", vals_exp=np.arange(len(idx))) + self.helper_routine(idx, freqs["h"], vals_exp=np.arange(len(idx))) assert str(err.value).startswith( "attribute `h` needs to be an attribute of pd.DatetimeIndex." ) @@ -377,12 +384,14 @@ def test_datetime_attribute_timeseries_wrong_args(self): # no time zone aware index with pytest.raises(ValueError) as err: self.helper_routine( - idx.tz_localize("UTC"), "h", vals_exp=np.arange(len(idx)) + idx.tz_localize("UTC"), freqs["h"], vals_exp=np.arange(len(idx)) ) assert "`time_index` must be time zone naive." == str(err.value) def test_datetime_attribute_timeseries(self): - idx = generate_index(start=pd.Timestamp("2000-01-01"), length=48, freq="h") + idx = generate_index( + start=pd.Timestamp("2000-01-01"), length=48, freq=freqs["h"] + ) # ===> datetime attribute # hour vals = [i for i in range(24)] * 2 @@ -414,13 +423,13 @@ def test_datetime_attribute_timeseries(self): @pytest.mark.parametrize( "config", [ - ("M", "month", 12), - ("H", "hour", 24), + (freqs["ME"], "month", 12), + (freqs["h"], "hour", 24), ("D", "weekday", 7), - ("s", "second", 60), + (freqs["s"], "second", 60), ("W", "weekofyear", 52), ("D", "dayofyear", 365), - ("Q", "quarter", 4), + (freqs["QE"], "quarter", 4), ], ) def test_datetime_attribute_timeseries_indexing_shift(self, config): @@ -458,12 +467,12 @@ def test_datetime_attribute_timeseries_indexing_shift(self, config): @pytest.mark.parametrize( "config", [ - ("M", "month", 12), - ("H", "hour", 24), + (freqs["ME"], "month", 12), + (freqs["h"], "hour", 24), ("D", "weekday", 7), - ("s", "second", 60), + (freqs["s"], "second", 60), ("W", "weekofyear", 52), - ("Q", "quarter", 4), + (freqs["QE"], "quarter", 4), ("D", "dayofyear", 365), ], ) @@ -519,7 +528,9 @@ def test_datetime_attribute_timeseries_one_hot(self, config): self.helper_routine(idx, attribute_freq, vals_exp=vals, one_hot=True) - @pytest.mark.parametrize("config", [("h", "hour", 24), ("M", "month", 12)]) + @pytest.mark.parametrize( + "config", [(freqs["h"], "hour", 24), (freqs["ME"], "month", 12)] + ) def test_datetime_attribute_timeseries_cyclic(self, config): base_freq, attribute_freq, period = config idx = generate_index( diff --git a/darts/tests/utils/test_utils.py b/darts/tests/utils/test_utils.py index 0a4521cd32..809bf84bf5 100644 --- a/darts/tests/utils/test_utils.py +++ b/darts/tests/utils/test_utils.py @@ -7,7 +7,7 @@ from darts.utils import _with_sanity_checks from darts.utils.missing_values import extract_subseries from darts.utils.ts_utils import retain_period_common_to_all -from darts.utils.utils import generate_index, n_steps_between +from darts.utils.utils import freqs, generate_index, n_steps_between class TestUtils: @@ -173,8 +173,8 @@ def test_extract_subseries(self): ("2000-01-01", "2000-02-01", None, None, "MS", 2), ("2000-01-01", "2000-03-01", None, None, "MS", 3), # month end - ("2000-01-01", "2000-01-02", None, None, "ME", 0), - ("2000-01-31", "2000-02-29", None, None, "ME", 2), + ("2000-01-01", "2000-01-02", None, None, freqs["ME"], 0), + ("2000-01-31", "2000-02-29", None, None, freqs["ME"], 2), # 2 * months ("2000-01-01", "2000-01-01", None, None, "2MS", 1), ("2000-01-01", "2000-02-11", None, "2000-01-01", "2MS", 1), @@ -293,8 +293,8 @@ def test_generate_index_with_start_end(self, config): ("2000-01-01", "2000-02-01", "MS", 2), ("2000-01-01", "2000-03-01", "MS", 3), # month end - ("2000-01-01", None, "ME", 0), - ("2000-01-31", "2000-02-29", "ME", 2), + ("2000-01-01", None, freqs["ME"], 0), + ("2000-01-31", "2000-02-29", freqs["ME"], 2), # 2 * months ("2000-01-01", "2000-01-01", "2MS", 1), ("2000-01-01", "2000-03-01", "2MS", 2), @@ -377,8 +377,8 @@ def test_generate_index_with_start_length(self, config): ("2000-01-01", "2000-02-01", "MS", 2), ("2000-01-01", "2000-03-01", "MS", 3), # month end - (None, "2000-01-01", "ME", 0), - ("2000-01-31", "2000-02-29", "ME", 2), + (None, "2000-01-01", freqs["ME"], 0), + ("2000-01-31", "2000-02-29", freqs["ME"], 2), # 2 * months ("2000-01-01", "2000-01-01", "2MS", 1), ("2000-01-01", "2000-03-01", "2MS", 2), @@ -464,21 +464,21 @@ def test_generate_index_with_end_length(self, config): 1, ), # month - ("2000-01-01", "2000-01-02", "ME", 0), - ("2000-01-01", "2000-01-01", "ME", 0), - ("2000-01-01", "2000-02-01", "ME", 1), - ("2000-01-01", "2000-03-01", "ME", 2), + ("2000-01-01", "2000-01-02", freqs["ME"], 0), + ("2000-01-01", "2000-01-01", freqs["ME"], 0), + ("2000-01-01", "2000-02-01", freqs["ME"], 1), + ("2000-01-01", "2000-03-01", freqs["ME"], 2), # 2 * months - ("2000-01-01", "2000-01-01", "2ME", 0), - ("2000-01-01", "2000-02-11", "2ME", 0), - ("2000-01-01", "2000-03-01", "2ME", 1), - ("2000-01-01", "2000-05-01", "2ME", 2), + ("2000-01-01", "2000-01-01", "2" + freqs["ME"], 0), + ("2000-01-01", "2000-02-11", "2" + freqs["ME"], 0), + ("2000-01-01", "2000-03-01", "2" + freqs["ME"], 1), + ("2000-01-01", "2000-05-01", "2" + freqs["ME"], 2), # quarter - ("2000-01-01", "2000-04-01", "QE", 1), + ("2000-01-01", "2000-04-01", freqs["QE"], 1), # year - ("2000-01-01", "2001-04-01", "YE", 1), + ("2000-01-01", "2001-04-01", freqs["YE"], 1), # 2*year - ("2000-01-01", "2010-04-01", "2YE", 5), + ("2000-01-01", "2010-04-01", "2" + freqs["YE"], 5), # custom frequencies # business day ( diff --git a/darts/timeseries.py b/darts/timeseries.py index 96a428815f..407bee9ed2 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -3257,7 +3257,7 @@ def resample(self, freq: str, method: str = "pad", **kwargs) -> Self: Examples -------- - >>> times = pd.date_range(start=pd.Timestamp("20200101233000"), periods=6, freq="15T") + >>> times = pd.date_range(start=pd.Timestamp("20200101233000"), periods=6, freq="15min") >>> pd_series = pd.Series(range(6), index=times) >>> ts = TimeSeries.from_series(pd_series) >>> print(ts.time_index) @@ -3272,7 +3272,7 @@ def resample(self, freq: str, method: str = "pad", **kwargs) -> Self: >>> print(resampled_nokwargs_ts.values()) [[nan] [ 2.]] - >>> resampled_ts = ts.resample(freq="1h", offset=pd.Timedelta("30T")) + >>> resampled_ts = ts.resample(freq="1h", offset=pd.Timedelta("30min")) >>> print(resampled_ts.time_index) DatetimeIndex(['2020-01-01 23:30:00', '2020-01-02 00:30:00'], dtype='datetime64[ns]', name='time', freq='H') diff --git a/darts/utils/data/utils.py b/darts/utils/data/utils.py index d639cadcac..b3e06bee8e 100644 --- a/darts/utils/data/utils.py +++ b/darts/utils/data/utils.py @@ -7,7 +7,7 @@ from darts.logging import raise_if_not # Those freqs can be used to divide Time deltas (the others can't): -DIVISIBLE_FREQS = {"D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"} +DIVISIBLE_FREQS = {"D", "h", "H", "T", "min", "s", "S", "L", "ms", "U", "us", "N", "ns"} class CovariateType(Enum): diff --git a/darts/utils/utils.py b/darts/utils/utils.py index 7454659a9a..b16f99b63d 100644 --- a/darts/utils/utils.py +++ b/darts/utils/utils.py @@ -10,6 +10,7 @@ import pandas as pd from joblib import Parallel, delayed +from pandas._libs.tslibs.offsets import BusinessMixin from tqdm import tqdm from tqdm.notebook import tqdm as tqdm_notebook @@ -41,6 +42,30 @@ class ModelMode(Enum): NONE = None +# TODO: remove this once bumping min python version from 3.8 to 3.9 (pandas v2.2.0 not available for p38) +pd_above_v22 = pd.__version__ >= "2.2" +freqs = { + "YE": "YE" if pd_above_v22 else "A", + "YS": "YS" if pd_above_v22 else "AS", + "BYS": "BYS" if pd_above_v22 else "BAS", + "BYE": "BYE" if pd_above_v22 else "BA", + "QE": "QE" if pd_above_v22 else "Q", + "BQE": "BQE" if pd_above_v22 else "BQ", + "ME": "ME" if pd_above_v22 else "M", + "SME": "SME" if pd_above_v22 else "SM", + "BME": "BME" if pd_above_v22 else "BM", + "CBME": "CBME" if pd_above_v22 else "CBM", + "h": "h" if pd_above_v22 else "H", + "bh": "bh" if pd_above_v22 else "BH", + "cbh": "cbh" if pd_above_v22 else "CBH", + "min": "min" if pd_above_v22 else "T", + "s": "s" if pd_above_v22 else "S", + "ms": "ms" if pd_above_v22 else "L", + "us": "us" if pd_above_v22 else "U", + "ns": "ns" if pd_above_v22 else "N", +} + + def _build_tqdm_iterator(iterable, verbose, **kwargs): """ Build an iterable, possibly using tqdm (either in notebook or regular mode) @@ -314,7 +339,7 @@ def n_steps_between( Works for both integers and time stamps. * if `end`, `start`, `freq` are all integers, we can simple divide the difference by the frequency. - * if `freq` is a pandas Dateoffset with non-ambiguous timedelate (e.g. "d", "h", ..., and not "M", "Y", ...), + * if `freq` is a pandas Dateoffset with non-ambiguous timedelate (e.g. "d", "h", ..., and not "ME", "YE", ...), we can simply divide by the frequency * otherwise, we take the period difference between the two time stamps. @@ -334,7 +359,7 @@ def n_steps_between( Examples -------- - >>> n_steps_between(start=pd.Timestamp("2000-01-01"), end=pd.Timestamp("2000-03-01"), freq="M") + >>> n_steps_between(start=pd.Timestamp("2000-01-01"), end=pd.Timestamp("2000-03-01"), freq="ME") 2 >>> n_steps_between(start=0, end=2, freq=1) 2 @@ -375,16 +400,10 @@ def n_steps_between( n_steps = diff // freq else: period_alias = pd.tseries.frequencies.get_period_alias(freq.name) - if period_alias is not None: - # get the number of base periods ("2MS" has base freq "MS") between the two time steps - diff = (end.to_period(period_alias) - start.to_period(period_alias)).n - if abs(diff) != diff: - # similar case as with (A) - diff += diff % freq.n - # floor division by the frequency multiplier ("2MS" has multiplier 2) - n_steps = diff // freq.n - else: - # in the worst case for special frequencies (e.g "C*"), we must generate the index + if isinstance(freq, BusinessMixin) or period_alias is None: + # for lower pandas versions ~1.5.0, business frequencies wrongly have a period alias. + # taking the period difference as computed in `else` gives wrong results. + # in this (worst) case for special frequencies (e.g "C*"), we must generate the index is_reversed = end < start if is_reversed: # always generate an increasing index, since pandas (v2.2.1) gives inconsistent result for @@ -397,6 +416,14 @@ def n_steps_between( n_steps -= 1 if is_reversed: n_steps *= -1 + else: + # get the number of base periods ("2MS" has base freq "MS") between the two time steps + diff = (end.to_period(period_alias) - start.to_period(period_alias)).n + if abs(diff) != diff: + # similar case as with (A) + diff += diff % freq.n + # floor division by the frequency multiplier ("2MS" has multiplier 2) + n_steps = diff // freq.n return n_steps From 0a72bf6838ad3805eaea62891b4436bab411278c Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Thu, 2 May 2024 17:55:50 +0200 Subject: [PATCH 054/161] fix failing unit tests (#2366) --- darts/tests/test_timeseries.py | 2 +- darts/tests/utils/test_timeseries_generation.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/darts/tests/test_timeseries.py b/darts/tests/test_timeseries.py index 5ea22d6065..e0e97a1e1b 100644 --- a/darts/tests/test_timeseries.py +++ b/darts/tests/test_timeseries.py @@ -1226,7 +1226,7 @@ def test_resample_timeseries(self): timeseries = TimeSeries.from_series(pd_series) resampled_timeseries = timeseries.resample(freqs["h"]) - assert resampled_timeseries.freq_str.lower() == freqs["h"] + assert resampled_timeseries.freq_str == freqs["h"] assert resampled_timeseries.pd_series().at[pd.Timestamp("20130101020000")] == 0 assert resampled_timeseries.pd_series().at[pd.Timestamp("20130102020000")] == 1 assert resampled_timeseries.pd_series().at[pd.Timestamp("20130109090000")] == 8 diff --git a/darts/tests/utils/test_timeseries_generation.py b/darts/tests/utils/test_timeseries_generation.py index f42847299d..7a5d09fab6 100644 --- a/darts/tests/utils/test_timeseries_generation.py +++ b/darts/tests/utils/test_timeseries_generation.py @@ -378,7 +378,7 @@ def test_datetime_attribute_timeseries_wrong_args(self): with pytest.raises(ValueError) as err: self.helper_routine(idx, freqs["h"], vals_exp=np.arange(len(idx))) assert str(err.value).startswith( - "attribute `h` needs to be an attribute of pd.DatetimeIndex." + f"attribute `{freqs['h']}` needs to be an attribute of pd.DatetimeIndex." ) # no time zone aware index From 2430903194b2fb3e9589b23b2eb5a34f96279ecf Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 6 May 2024 10:01:39 +0200 Subject: [PATCH 055/161] fix tsmixer loss_fn/likelihood param docs (#2373) --- darts/models/forecasting/tsmixer_model.py | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/darts/models/forecasting/tsmixer_model.py b/darts/models/forecasting/tsmixer_model.py index 0e53080739..bb700b1392 100644 --- a/darts/models/forecasting/tsmixer_model.py +++ b/darts/models/forecasting/tsmixer_model.py @@ -600,13 +600,12 @@ def __init__( Darts' :class:`TorchForecastingModel`. loss_fn - PyTorch loss function used for training. By default, the TFT - model is probabilistic and uses a ``likelihood`` instead - (``QuantileRegression``). To make the model deterministic, you - can set the ``likelihood`` to None and give a ``loss_fn`` - argument. + PyTorch loss function used for training. + This parameter will be ignored for probabilistic models if the ``likelihood`` parameter is specified. + Default: ``torch.nn.MSELoss()``. likelihood - The likelihood model to be used for probabilistic forecasts. + One of Darts' :meth:`Likelihood ` models to be used for + probabilistic forecasts. Default: ``None``. torch_metrics A torch metric or a ``MetricCollection`` used for evaluation. A full list of available metrics can be found at https://torchmetrics.readthedocs.io/en/latest/. Default: ``None``. From 26d1e1edaf96a56ea852a5954a40bbdfbdb06fdd Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 6 May 2024 13:55:15 +0200 Subject: [PATCH 056/161] fix MixedCovTorchModels multi TS predictions with n= self.output_chunk_length else self.output_chunk_length + while prediction_length < min_n: + # we want the last prediction to end exactly at `min_n` into the future. # this means we may have to truncate the previous prediction and step # back the roll size for the last chunk - if prediction_length + self.output_chunk_length > n: + if prediction_length + self.output_chunk_length > min_n: spillover_prediction_length = ( - prediction_length + self.output_chunk_length - n + prediction_length + self.output_chunk_length - min_n ) roll_size -= spillover_prediction_length prediction_length -= spillover_prediction_length diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index cc96d51dc5..ee4c2ac238 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -2779,62 +2779,6 @@ def extreme_lags( None, ) - def predict( - self, - n: int, - series: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, - past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, - future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, - trainer: Optional[pl.Trainer] = None, - batch_size: Optional[int] = None, - verbose: Optional[bool] = None, - n_jobs: int = 1, - roll_size: Optional[int] = None, - num_samples: int = 1, - num_loader_workers: int = 0, - mc_dropout: bool = False, - predict_likelihood_parameters: bool = False, - show_warnings: bool = True, - ) -> Union[TimeSeries, Sequence[TimeSeries]]: - # since we have future covariates, the inference dataset for future input must be at least of length - # `output_chunk_length`. If not, we would have to step back which causes past input to be shorter than - # `input_chunk_length`. - - if n >= self.output_chunk_length: - return super().predict( - n=n, - series=series, - past_covariates=past_covariates, - future_covariates=future_covariates, - trainer=trainer, - batch_size=batch_size, - verbose=verbose, - n_jobs=n_jobs, - roll_size=roll_size, - num_samples=num_samples, - num_loader_workers=num_loader_workers, - mc_dropout=mc_dropout, - predict_likelihood_parameters=predict_likelihood_parameters, - show_warnings=show_warnings, - ) - else: - return super().predict( - n=self.output_chunk_length, - series=series, - past_covariates=past_covariates, - future_covariates=future_covariates, - trainer=trainer, - batch_size=batch_size, - verbose=verbose, - n_jobs=n_jobs, - roll_size=roll_size, - num_samples=num_samples, - num_loader_workers=num_loader_workers, - mc_dropout=mc_dropout, - predict_likelihood_parameters=predict_likelihood_parameters, - show_warnings=show_warnings, - )[:n] - class SplitCovariatesTorchModel(TorchForecastingModel, ABC): def _build_train_dataset( diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 8be684da9f..0acc2c9d9e 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -1668,6 +1668,29 @@ def test_output_shift(self, config): _ = model_fc_shift.predict(n=ocl, **add_covs) assert f"provided {cov_name} covariates at dataset index" in str(err.value) + @pytest.mark.parametrize("config", itertools.product(models, [2, 3, 4])) + def test_multi_ts_prediction(self, config): + (model_cls, model_kwargs), n = config + model_kwargs = copy.deepcopy(model_kwargs) + model_kwargs["output_chunk_length"] = 3 + series = tg.linear_timeseries( + length=model_kwargs["input_chunk_length"] + + model_kwargs["output_chunk_length"] + ) + model = model_cls(**model_kwargs) + model.fit(series) + # test with more series that `n` + n_series_more = 5 + pred = model.predict(n=n, series=[series] * n_series_more) + assert len(pred) == n_series_more + assert all(len(p) == n for p in pred) + + # test with less series that `n` + n_series_less = 1 + pred = model.predict(n=n, series=[series] * n_series_less) + assert len(pred) == n_series_less + assert all(len(p) == n for p in pred) + def helper_equality_encoders( self, first_encoders: Dict[str, Any], second_encoders: Dict[str, Any] ): From 912a73493bbdaea1f05cb64c1b15ce58557662ef Mon Sep 17 00:00:00 2001 From: Dennis Bader Date: Mon, 6 May 2024 18:32:53 +0200 Subject: [PATCH 057/161] remove docs __all__ imports (#2376) --- docs/source/conf.py | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/source/conf.py b/docs/source/conf.py index d0f819714f..921f7f4cad 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -48,6 +48,7 @@ autodoc_default_options = { "inherited-members": None, "show-inheritance": None, + "ignore-module-all": True, "exclude-members": "ForecastingModel,LocalForecastingModel,FutureCovariatesLocalForecastingModel," + "TransferableFutureCovariatesLocalForecastingModel,GlobalForecastingModel,TorchForecastingModel," + "PastCovariatesTorchModel,FutureCovariatesTorchModel,DualCovariatesTorchModel,MixedCovariatesTorchModel," From a1626643ab70a74a41ff0b94590885ba3b9f6b95 Mon Sep 17 00:00:00 2001 From: "dependabot[bot]" <49699333+dependabot[bot]@users.noreply.github.com> Date: Tue, 7 May 2024 21:26:02 +0200 Subject: [PATCH 058/161] Bump jinja2 from 3.1.3 to 3.1.4 in /requirements (#2377) --- requirements/release.txt | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/requirements/release.txt b/requirements/release.txt index bd3b3d3cee..b8a99e667f 100644 --- a/requirements/release.txt +++ b/requirements/release.txt @@ -5,7 +5,7 @@ ipykernel==5.3.4 ipywidgets==7.5.1 jupyterlab==4.0.11 ipython_genutils==0.2.0 -jinja2==3.1.3 +jinja2==3.1.4 lxml_html_clean==0.1.1 m2r2==0.3.2 nbsphinx==0.8.7 From 26332713a0f2a777a6d81fdd956dce0dd604d6b4 Mon Sep 17 00:00:00 2001 From: julien12234 <73229139+julien12234@users.noreply.github.com> Date: Fri, 10 May 2024 15:46:29 +0200 Subject: [PATCH 059/161] Refactor/anomaly detection api (#1477) * Small fix in utils.py * Factorize tests * Correct format * Dataset taxiNY * jupyter notebook addition, XX-anomaly-detection.ipynb * relocated XX-anomaly-detection.ipynb * Fix NormScorer proba input, and show_anomaly function * Fix NormScorer proba input, and show_anomaly function * Refactor window of Wasserstein, Kmeans and PyOD Scorers * Refactor test * Added anomaly display cell and comments (#1493) * Added anomaly display cell and comments * Added samuele comments Co-authored-by: julien12234 * Added images, and Julien's recommendation * Added parameter window_transform, git statusChange the default windowing methodgit status * fix: solve error due to merge conflict and apply linting * round of Julien_H's comment * with images * states to values * Committing old local changes * Small fix * fix: reduced code redundancy between the two detectors, renamed the method eval_accuracy to eval_metric * refactor: simplified class hierarchy, added a bit of type hinting, fixed bug in predict * feat: migrated tests from unittest to pytest framework for the aggregators * feat: parametrized tests to reduce code repetition * fix: added docstring, increased test granularity * fix: bug in fittableaggreg predict sanity check * refactor: renamed eval_accuracy to eval_metric, removed NonFittableScorer class * fix: changed tests after eval_accuracy function name change * refactor: changed scorers tests from unittest to pytest framework * fix: all non fittable anomaly scorer are tested * refactor: renamed eval_accuracy eval_metric * refactor: changed framework from unittest to pytest * fix: typo * refactor: changed test framework from unittest to pytest * refactor: reduced code redundancy by using pytest.mark.parametrize * refactor: reduced redundant code in kmeans, pyod and wasserstein scorers * fix: logging * fix: ad module use series2seq instead of its own util method * refactor: single show_anomalies method across anomaly model classes * fix: modularized scorer training, fixed logging * fix: indentation error * feat: parallelize training of scorers * feat: parallelize scorer score method for component-wise multivariate * feat: parallelize and/or aggregators predict_core method * feat: simplified aggregation of anomaly scorer, added corresponding tests * Apply suggestions from code review Co-authored-by: Samuele Giuliano Piazzetta * fix lint * update docs init and utils * refactor ad utils * refactor aggregators * refactor aggregators * refactor aggregators * refactor detectors * refactor module docs * refactor anomaly models * refactor anomaly models * refactor scorers * update diff_fn for scorers * refactor WindowAnomalyScorer * refactor tabularization for scorers * improve scorer docs * refactor score_from_prediction * use slice_intersect_values in ad evaluation * further code clean up * further code clean up * make API consistent * refactor show anomalies api * refactor eval_metric api for anomaly models * refactor eval_metric api for anomaly scorers * refactor eval_metric api for anomaly detectors * refactor eval_metric api for anomaly aggregator * enfore GlobalForecastingModel for AnomalyModel * update changelog * remove prefix in AD API to keep unified and covariates parameter names * apply suggestions from PR review * final updates * improve docs * revert changes * prepare example notebook * update changelog * add taxi dataset test --------- Co-authored-by: Samuele Giuliano Piazzetta Co-authored-by: madtoinou <32447896+madtoinou@users.noreply.github.com> Co-authored-by: Antoine Madrona Co-authored-by: Julien Sven Adda Co-authored-by: madtoinou Co-authored-by: dennisbader --- .github/workflows/merge.yml | 2 +- CHANGELOG.md | 31 + darts/ad/__init__.py | 32 +- darts/ad/aggregators/__init__.py | 17 +- darts/ad/aggregators/aggregators.py | 348 +- darts/ad/aggregators/and_aggregator.py | 47 +- .../ensemble_sklearn_aggregator.py | 37 +- darts/ad/aggregators/or_aggregator.py | 45 +- darts/ad/anomaly_model/__init__.py | 31 +- darts/ad/anomaly_model/anomaly_model.py | 376 +- darts/ad/anomaly_model/filtering_am.py | 406 +- darts/ad/anomaly_model/forecasting_am.py | 879 +- darts/ad/detectors/__init__.py | 21 +- darts/ad/detectors/detectors.py | 318 +- darts/ad/detectors/quantile_detector.py | 149 +- darts/ad/detectors/threshold_detector.py | 119 +- darts/ad/scorers/__init__.py | 98 +- darts/ad/scorers/difference_scorer.py | 22 +- darts/ad/scorers/kmeans_scorer.py | 170 +- darts/ad/scorers/nll_cauchy_scorer.py | 13 +- darts/ad/scorers/nll_exponential_scorer.py | 24 +- darts/ad/scorers/nll_gamma_scorer.py | 23 +- darts/ad/scorers/nll_gaussian_scorer.py | 23 +- darts/ad/scorers/nll_laplace_scorer.py | 27 +- darts/ad/scorers/nll_poisson_scorer.py | 21 +- darts/ad/scorers/norm_scorer.py | 61 +- darts/ad/scorers/pyod_scorer.py | 148 +- darts/ad/scorers/scorers.py | 1196 +- darts/ad/scorers/wasserstein_scorer.py | 144 +- darts/ad/utils.py | 1073 +- darts/dataprocessing/pipeline.py | 2 +- darts/datasets/__init__.py | 26 + darts/metrics/__init__.py | 13 + darts/models/forecasting/forecasting_model.py | 22 +- darts/models/forecasting/regression_model.py | 2 +- .../forecasting/torch_forecasting_model.py | 2 +- darts/tests/ad/test_aggregators.py | 1123 +- darts/tests/ad/test_anomaly_model.py | 1237 +- darts/tests/ad/test_detectors.py | 818 +- darts/tests/ad/test_evaluation.py | 171 + darts/tests/ad/test_scorers.py | 2363 ++-- darts/tests/datasets/test_dataset_loaders.py | 2 + .../test_torch_forecasting_model.py | 6 +- darts/tests/test_timeseries.py | 94 +- darts/tests/test_timeseries_multivariate.py | 4 +- darts/timeseries.py | 127 +- darts/utils/statistics.py | 8 +- darts/utils/timeseries_generation.py | 4 +- darts/utils/ts_utils.py | 28 +- darts/utils/utils.py | 9 + datasets/taxi_new_york_passengers.csv | 10321 ++++++++++++++++ docs/source/examples.rst | 10 + examples/22-anomaly-detection-examples.ipynb | 1793 +++ examples/static/images/ad_4_sub_modules.png | Bin 0 -> 453826 bytes .../static/images/ad_inside_anomaly_model.png | Bin 0 -> 676900 bytes examples/static/images/ad_windowing.png | Bin 0 -> 465966 bytes static/images/ad_4_sub_modules.png | Bin 0 -> 950983 bytes static/images/ad_inside_anomaly_model.png | Bin 0 -> 721246 bytes static/images/ad_windowing.png | Bin 0 -> 373750 bytes 59 files changed, 17578 insertions(+), 6508 deletions(-) create mode 100644 darts/tests/ad/test_evaluation.py create mode 100644 datasets/taxi_new_york_passengers.csv create mode 100644 examples/22-anomaly-detection-examples.ipynb create mode 100644 examples/static/images/ad_4_sub_modules.png create mode 100644 examples/static/images/ad_inside_anomaly_model.png create mode 100644 examples/static/images/ad_windowing.png create mode 100644 static/images/ad_4_sub_modules.png create mode 100644 static/images/ad_inside_anomaly_model.png create mode 100644 static/images/ad_windowing.png diff --git a/.github/workflows/merge.yml b/.github/workflows/merge.yml index d4d4169df1..16e69f5798 100644 --- a/.github/workflows/merge.yml +++ b/.github/workflows/merge.yml @@ -87,7 +87,7 @@ jobs: runs-on: ubuntu-latest strategy: matrix: - example-name: [00-quickstart.ipynb, 01-multi-time-series-and-covariates.ipynb, 02-data-processing.ipynb, 03-FFT-examples.ipynb, 04-RNN-examples.ipynb, 05-TCN-examples.ipynb, 06-Transformer-examples.ipynb, 07-NBEATS-examples.ipynb, 08-DeepAR-examples.ipynb, 09-DeepTCN-examples.ipynb, 10-Kalman-filter-examples.ipynb, 11-GP-filter-examples.ipynb, 12-Dynamic-Time-Warping-example.ipynb, 13-TFT-examples.ipynb, 15-static-covariates.ipynb, 16-hierarchical-reconciliation.ipynb, 18-TiDE-examples.ipynb, 19-EnsembleModel-examples.ipynb, 20-RegressionModel-examples.ipynb, 21-TSMixer-examples.ipynb] + example-name: [00-quickstart.ipynb, 01-multi-time-series-and-covariates.ipynb, 02-data-processing.ipynb, 03-FFT-examples.ipynb, 04-RNN-examples.ipynb, 05-TCN-examples.ipynb, 06-Transformer-examples.ipynb, 07-NBEATS-examples.ipynb, 08-DeepAR-examples.ipynb, 09-DeepTCN-examples.ipynb, 10-Kalman-filter-examples.ipynb, 11-GP-filter-examples.ipynb, 12-Dynamic-Time-Warping-example.ipynb, 13-TFT-examples.ipynb, 15-static-covariates.ipynb, 16-hierarchical-reconciliation.ipynb, 18-TiDE-examples.ipynb, 19-EnsembleModel-examples.ipynb, 20-RegressionModel-examples.ipynb, 21-TSMixer-examples.ipynb, 22-anomaly-detection-examples.ipynb] steps: - name: "1. Clone repository" uses: actions/checkout@v2 diff --git a/CHANGELOG.md b/CHANGELOG.md index f47cef4ccb..610edb9600 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,6 +9,37 @@ but cannot always guarantee backwards compatibility. Changes that may **break co ### For users of the library: **Improved** +- Improvements to the Anomaly Detection Module through major refactor. The refactor includes major performance optimization for the majority of the processes and improvements to the API, consistency, reliability, and the documentation. Some of these necessary changes come at the cost of breaking changes : [#1477](https://github.com/unit8co/darts/pull/1477) by [Dennis Bader](https://github.com/dennisbader), [Samuele Giuliano Piazzetta](https://github.com/piaz97), [Antoine Madrona](https://github.com/madtoinou), [Julien Herzen](https://github.com/hrzn), [Julien Adda](https://github.com/julien12234). + - 🚀 Added an example notebook that showcases how to use Darts for Time Series Anomaly Detection + - Added a new dataset for anomaly detection with the number of taxi passengers in New York from the year 2014 to 2015. + - `FittableWindowScorer` (KMeans, PyOD, and Wasserstein Scorers) now accept any of darts "per-time" step metrics as difference function `diff_fn`. + - `ForecastingAnomalyModel` is now much faster thanks to optimized historical forecasts to generate the prediction input for the scorers. We also added more control over the historical forecasts generation through additional parameters in all model methods. + - 🔴 Breaking changes: + - `FittableWindowScorer` (KMeans, PyOD, and Wasserstein Scorers) now expects `diff_fn` to be one of Darts "per-time" step metrics + - `ForecastingAnomalyModel` : `model` is now enforced to be a `GlobalForecastingModel` + - `*.eval_accuracy()`: (Aggregators, Detectors, Filtering/Forecasting Anomaly Models, Scorers) + - renamed method to `eval_metric()`: + - renamed params `actual_anomalies` to `anomalies`, and `anomaly_score` to `pred_scores` + - `*.show_anomalies()`: (Filtering/Forecasting Anomaly Models, Scorers) + - renamed params `actual_anomalies` to `anomalies` + - `*.fit()` (Filtering/Forecasting Anomaly Models) + - renamed params `actual_anomalies` to `anomalies` + - `Scorer.*_from_prediction()` (Scorers) + - renamed method `eval_accuracy_from_prediction()` to `eval_metric_from_prediction()` + - renamed params `actual_series` to `series`, and `actual_anomalies` to `anomalies` + - `darts.ad.utils.eval_accuracy_from_scores` : + - renamed function to `eval_metric_from_scores` + - renamed params `actual_anoamlies` to `anomalies`, and `anomaly_score` to `pred_scores` + - `darts.ad.utils.eval_accuracy_from_binary_prediction` : + - renamed function to `eval_metric_from_binary_prediction` + - renamed params `actual_anoamlies` to `anomalies`, and `binary_pred_anomalies` to `pred_anomalies` + - `darts.ad.utils.show_anomalies_from_scores`: + - renamed params `series` to `actual_series`, `actual_anomalies` to `anomalies`, `model_output` to `pred_series`, and `anomaly_scores` to `pred_scores` +- Improvements to `TimeSeries` : [#1477](https://github.com/unit8co/darts/pull/1477) by [Dennis Bader](https://github.com/dennisbader). + - New method `with_times_and_values()`, which returns a new series with a new time index and new values but with identical columns and metadata as the series called from (static covariates, hierarchy). + - New method `slice_intersect_times()`, which returns the sliced time index of a series, where the index has been intersected with another series. + - Method `with_values()` now also acts on array-like `values` rather than only on numpy arrays. + **Fixed** - Fixed a bug where `n_steps_between` did not work properly with custom business frequencies. This affected metrics computation. [#2357](https://github.com/unit8co/darts/pull/2357) by [Dennis Bader](https://github.com/dennisbader). diff --git a/darts/ad/__init__.py b/darts/ad/__init__.py index 09a9d51437..939435d630 100644 --- a/darts/ad/__init__.py +++ b/darts/ad/__init__.py @@ -5,25 +5,25 @@ A suite of tools for performing anomaly detection and classification on time series. -* `Anomaly Scorers `_ - are at the core of the anomaly detection module. They - produce anomaly scores time series, either for single series (``score()``), - or for series accompanied by some predictions (``score_from_prediction()``). - Scorers can be trainable (e.g., ``KMeansScorer``) or not (e.g., ``NormScorer``). +- `Anomaly Scorers `_ are at the core of the + anomaly detection module. They produce anomaly scores time series, either for single series (`score()`), + or for series accompanied by some predictions (`score_from_prediction()`). Scorers can be trainable + (e.g., :class:`~darts.ad.scorers.kmeans_scorer.KMeansScorer`) or not + (e.g., :class:`~darts.ad.scorers.norm_scorer.NormScorer`). -* `Anomaly Models `_ - offer a convenient way to produce anomaly scores from any of Darts - forecasting models (``ForecastingAnomalyModel``) or filtering models (``FilteringAnomalyModel``), - by comparing models' predictions with actual observations. - These classes take as parameters one Darts model, and one or multiple scorers, and can be readily - used to produce anomaly scores with the ``score()`` method. +- `Anomaly Models `_ offer a convenient way + to produce anomaly scores from any of Darts forecasting models + (:class:`~darts.ad.anomaly_model.forecasting_am.ForecastingAnomalyModel`) or filtering models + (:class:`~darts.ad.anomaly_model.filtering_am.FilteringAnomalyModel`), by comparing models' predictions with actual + observations. These classes take as parameters one Darts model, and one or multiple scorers, and can be readily used + to produce anomaly scores with the `score()` method. -* `Anomaly Detectors `_: - transform raw time series (such as anaomly scores) into binary anomaly time series. +- `Anomaly Detectors `_: transform raw time + series (such as anomaly scores) into binary anomaly time series. -* `Anomaly Aggregators `_: - combine multiple binary anomaly time series (in the form of multivariate time series) - into a single binary anomaly time series applying boolean logic. +- `Anomaly Aggregators `_: combine multiple + binary anomaly time series (in the form of multivariate time series) into a single binary anomaly time series + applying boolean logic. """ # anomaly aggregators diff --git a/darts/ad/aggregators/__init__.py b/darts/ad/aggregators/__init__.py index dd29a81364..85e564f37b 100644 --- a/darts/ad/aggregators/__init__.py +++ b/darts/ad/aggregators/__init__.py @@ -2,22 +2,23 @@ Anomaly Aggregators ------------------- -An anomaly aggregator can take multiple detected anomalies -(in the form of binary TimeSeries, as coming from an anomaly detector) -and combine them into one. It can typically be used to combine -the detections of multiple models into one final detection. +An anomaly aggregator can take multiple detected anomalies (in the form of binary TimeSeries, as coming from an anomaly +detector) and combine them into one. It can typically be used to combine the detections of multiple models into one +final detection. -The key method is ``predict()``, which takes as input one (or multiple) -multivariate binary TimeSeries where each component represents the -detection of a single model, and returns one (or multiple) univariate -binary TimeSeries representing the final detection. +The key method is `predict()`, which takes as input one (or multiple) multivariate binary TimeSeries where each +component represents the detection of a single model, and returns one (or multiple) univariate binary TimeSeries +representing the final detection. """ +from darts.ad.aggregators.aggregators import Aggregator, FittableAggregator from darts.ad.aggregators.and_aggregator import AndAggregator from darts.ad.aggregators.ensemble_sklearn_aggregator import EnsembleSklearnAggregator from darts.ad.aggregators.or_aggregator import OrAggregator __all__ = [ + "Aggregator", + "FittableAggregator", "AndAggregator", "EnsembleSklearnAggregator", "OrAggregator", diff --git a/darts/ad/aggregators/aggregators.py b/darts/ad/aggregators/aggregators.py index b9980922e2..cb1bdbe797 100644 --- a/darts/ad/aggregators/aggregators.py +++ b/darts/ad/aggregators/aggregators.py @@ -9,20 +9,39 @@ # - decision tree # - create show_all_combined (info about correlation, and from what path did # the anomaly alarm came from) - -from abc import ABC, abstractmethod -from typing import Any, Sequence, Union +import sys import numpy as np +if sys.version_info >= (3, 11): + from typing import Self +else: + from typing_extensions import Self +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal + +from abc import ABC, abstractmethod +from typing import Optional, Sequence, Union + from darts import TimeSeries -from darts.ad.utils import _to_list, eval_accuracy_from_binary_prediction -from darts.logging import raise_if_not +from darts.ad.utils import ( + _assert_fit_called, + _check_input, + eval_metric_from_binary_prediction, + series2seq, +) +from darts.logging import get_logger, raise_log + +logger = get_logger(__name__) class Aggregator(ABC): - def __init__(self, *args: Any, **kwargs: Any) -> None: - pass + """Base class for Aggregators.""" + + def __init__(self): + self.width_trained_on: Optional[int] = None @abstractmethod def __str__(self): @@ -30,13 +49,27 @@ def __str__(self): pass @abstractmethod - def _predict_core(self): - """returns the aggregated results""" + def _predict_core(self, series: Sequence[TimeSeries]) -> Sequence[TimeSeries]: + """Aggregates the sequence of multivariate binary series given as + input into a sequence of univariate binary series. assuming the input is + in the correct shape. + + Parameters + ---------- + series + The sequence of multivariate binary series to aggregate + + Returns + ------- + TimeSeries + Sequence of aggregated results + """ pass - @abstractmethod def predict( - self, series: Union[TimeSeries, Sequence[TimeSeries]] + self, + series: Union[TimeSeries, Sequence[TimeSeries]], + name: str = "series", ) -> Union[TimeSeries, Sequence[TimeSeries]]: """Aggregates the (sequence of) multivariate binary series given as input into a (sequence of) univariate binary series. @@ -44,257 +77,140 @@ def predict( Parameters ---------- series - The (sequence of) multivariate binary series to aggregate + The (sequence of) multivariate binary series to aggregate. + name + The name of `series`. Returns ------- TimeSeries - (Sequence of) aggregated results + (Sequence of) aggregated results. """ - pass - - def _check_input(self, series: Union[TimeSeries, Sequence[TimeSeries]]): - """ - Checks for input if: - - it is a (sequence of) multivariate series (width>1) - - (sequence of) series must be: - * a deterministic TimeSeries - * binary (only values equal to 0 or 1) - """ - - list_series = _to_list(series) - - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_series]), - "all series in `series` must be of type TimeSeries.", - ) - - raise_if_not( - all([s.width > 1 for s in list_series]), - "all series in `series` must be multivariate (width>1).", - ) - - raise_if_not( - all([s.is_deterministic for s in list_series]), - "all series in `series` must be deterministic (number of samples=1).", - ) - - raise_if_not( - all( - [ - np.array_equal( - s.values(copy=False), s.values(copy=False).astype(bool) - ) - for s in list_series - ] - ), - "all series in `series` must be binary (only 0 and 1 values).", - ) - - return list_series - - def eval_accuracy( + called_with_single_series = isinstance(series, TimeSeries) + series = _check_input( + series, + name=name, + width_expected=self.width_trained_on, + check_deterministic=True, + check_binary=True, + check_multivariate=True, + ) + pred = self._predict_core(series) + return pred[0] if called_with_single_series else pred + + def eval_metric( self, - actual_anomalies: Sequence[TimeSeries], - series: Sequence[TimeSeries], + anomalies: Union[TimeSeries, Sequence[TimeSeries]], + series: Union[TimeSeries, Sequence[TimeSeries]], window: int = 1, - metric: str = "recall", + metric: Literal["recall", "precision", "f1", "accuracy"] = "recall", ) -> Union[float, Sequence[float]]: """Aggregates the (sequence of) multivariate series given as input into one (sequence of) - series and evaluates the results against true anomalies. + series and evaluates the results against the ground truth anomaly labels. Parameters ---------- - actual_anomalies - The (sequence of) ground truth of the anomalies (1 if it is an anomaly and 0 if not) + anomalies + The (sequence of) binary ground truth anomaly labels (1 if it is an anomaly and 0 if not). series - The (sequence of) multivariate binary series to aggregate + The (sequence of) predicted multivariate binary series to aggregate. window (Sequence of) integer value indicating the number of past samples each point represents in the (sequence of) series. The parameter will be used by the - function ``_window_adjustment_anomalies()`` in darts.ad.utils to transform - actual_anomalies. + function `_window_adjustment_anomalies()` in darts.ad.utils to transform + anomalies. metric - Metric function to use. Must be one of "recall", "precision", - "f1", and "accuracy". - Default: "recall" + The name of the metric function to use. Must be one of "recall", "precision", "f1", and "accuracy". + Default: "recall". Returns ------- Union[float, Sequence[float]] - (Sequence of) score for the (sequence of) series + (Sequence of) score for the (sequence of) series. """ - - list_actual_anomalies = _to_list(actual_anomalies) - - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_actual_anomalies]), - "all series in `actual_anomalies` must be of type TimeSeries.", + pred_anomalies = self.predict(series) + return eval_metric_from_binary_prediction( + anomalies=anomalies, + pred_anomalies=pred_anomalies, + window=window, + metric=metric, ) - raise_if_not( - all([s.is_deterministic for s in list_actual_anomalies]), - "all series in `actual_anomalies` must be deterministic (number of samples=1).", - ) - raise_if_not( - all([s.width == 1 for s in list_actual_anomalies]), - "all series in `actual_anomalies` must be univariate (width=1).", - ) - - raise_if_not( - len(list_actual_anomalies) == len(_to_list(series)), - "`actual_anomalies` and `series` must contain the same number of series.", - ) - - preds = self.predict(series) - - return eval_accuracy_from_binary_prediction( - list_actual_anomalies, preds, window, metric - ) - - -class NonFittableAggregator(Aggregator): - "Base class of Aggregators that do not need training." +class FittableAggregator(Aggregator): + """Base class for Aggregators that require training.""" - def __init__(self) -> None: + def __init__(self): super().__init__() + self._fit_called = False - # indicates if the Aggregator is trainable or not - self.trainable = False - - def predict( - self, series: Union[TimeSeries, Sequence[TimeSeries]] - ) -> Union[TimeSeries, Sequence[TimeSeries]]: - """Aggregates the (sequence of) multivariate binary series given as - input into a (sequence of) univariate binary series. + @abstractmethod + def _fit_core(self, anomalies: Sequence[np.ndarray], series: Sequence[np.ndarray]): + """Fits the aggregator, assuming the input is in the correct shape. Parameters ---------- + anomalies + The (sequence of) binary ground truth anomaly labels (1 if it is an anomaly and 0 if not). series - The (sequence of) multivariate binary series to aggregate - - Returns - ------- - TimeSeries - (Sequence of) aggregated results + The (sequence of) multivariate binary anomalies (predicted labels) to aggregate. """ - list_series = self._check_input(series) - - if isinstance(series, TimeSeries): - return self._predict_core(list_series)[0] - else: - return self._predict_core(list_series) - - -class FittableAggregator(Aggregator): - "Base class of Aggregators that do need training." - - def __init__(self) -> None: - super().__init__() - - # indicates if the Aggregator is trainable or not - self.trainable = True - - # indicates if the Aggregator has been trained yet - self._fit_called = False - - def _assert_fit_called(self): - """Checks if the Aggregator has been fitted before calling its `score()` function.""" - - raise_if_not( - self._fit_called, - f"The Aggregator {self.__str__()} has not been fitted yet. Call `fit()` first.", - ) + pass def fit( self, - actual_anomalies: Union[TimeSeries, Sequence[TimeSeries]], + anomalies: Union[TimeSeries, Sequence[TimeSeries]], series: Union[TimeSeries, Sequence[TimeSeries]], - ): - """Fit the aggregators on the (sequence of) multivariate binary series. + ) -> Self: + """Fit the aggregators on the (sequence of) multivariate binary anomaly series. If a list of series is given, they must have the same number of components. Parameters ---------- - actual_anomalies - The (sequence of) ground truth of the anomalies (1 if it is an anomaly and 0 if not) + anomalies + The (sequence of) binary ground truth anomaly labels (1 if it is an anomaly and 0 if not). series - The (sequence of) multivariate binary series + The (sequence of) multivariate binary series (predicted labels) to aggregate. """ - list_series = self._check_input(series) - self.width_trained_on = list_series[0].width - - raise_if_not( - all([s.width == self.width_trained_on for s in list_series]), - "all series in `list_series` must have the same number of components.", - ) - - list_actual_anomalies = _to_list(actual_anomalies) - - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_actual_anomalies]), - "all series in `actual_anomalies` must be of type TimeSeries.", - ) - - raise_if_not( - all([s.is_deterministic for s in list_actual_anomalies]), - "all series in `actual_anomalies` must be deterministic (width=1).", - ) - - raise_if_not( - all([s.width == 1 for s in list_actual_anomalies]), - "all series in `actual_anomalies` must be univariate (width=1).", - ) - - raise_if_not( - len(list_actual_anomalies) == len(list_series), - "`actual_anomalies` and `series` must contain the same number of series.", - ) - - same_intersection = list( - zip( - *[ - [anomalies.slice_intersect(series), series.slice_intersect(series)] - for (anomalies, series) in zip(list_actual_anomalies, list_series) - ] + pred_width = series2seq(series)[0].width + series = _check_input( + series, + name="series", + width_expected=pred_width, + check_deterministic=True, + check_binary=True, + check_multivariate=True, + ) + self.width_trained_on = pred_width + + anomalies = _check_input( + anomalies, + name="anomalies", + width_expected=1, + check_deterministic=True, + check_binary=True, + check_multivariate=False, + ) + if len(anomalies) != len(series): + raise_log( + ValueError( + "`anomalies` and `series` must contain the same number of series." + ), + logger=logger, ) - ) - list_actual_anomalies = list(same_intersection[0]) - list_series = list(same_intersection[1]) - - ret = self._fit_core(list_actual_anomalies, list_series) + anomalies_vals, series_vals = [], [] + for anom, pred_anom in zip(anomalies, series): + anomalies_vals.append(anom.slice_intersect_values(pred_anom)[:, :, 0]) + series_vals.append(pred_anom.slice_intersect_values(anom)[:, :, 0]) + self._fit_core(anomalies_vals, series_vals) self._fit_called = True - return ret + return self def predict( - self, series: Union[TimeSeries, Sequence[TimeSeries]] + self, + series: Union[TimeSeries, Sequence[TimeSeries]], + name: str = "series", ) -> Union[TimeSeries, Sequence[TimeSeries]]: - """Aggregates the (sequence of) multivariate binary series given as - input into a (sequence of) univariate binary series. - - Parameters - ---------- - series - The (sequence of) multivariate binary series to aggregate - - Returns - ------- - TimeSeries - (Sequence of) aggregated results - """ - self._assert_fit_called() - list_series = self._check_input(series) - - raise_if_not( - all([s.width == self.width_trained_on for s in list_series]), - "all series in `series` must have the same number of components as the data" - + " used for training the detector model, number of components in training:" - + f" {self.width_trained_on}.", - ) - - if isinstance(series, TimeSeries): - return self._predict_core(list_series)[0] - else: - return self._predict_core(list_series) + _assert_fit_called(self._fit_called, name="Aggregator") + return super().predict(series=series, name=name) diff --git a/darts/ad/aggregators/and_aggregator.py b/darts/ad/aggregators/and_aggregator.py index 1e12bc6efc..b18045aa29 100644 --- a/darts/ad/aggregators/and_aggregator.py +++ b/darts/ad/aggregators/and_aggregator.py @@ -1,25 +1,50 @@ """ AND Aggregator -------------- - -Aggregator that identifies a time step as anomalous if all the components -are flagged as anomalous (logical AND). """ from typing import Sequence from darts import TimeSeries -from darts.ad.aggregators.aggregators import NonFittableAggregator +from darts.ad.aggregators.aggregators import Aggregator +from darts.utils.utils import _parallel_apply + +class AndAggregator(Aggregator): + def __init__(self, n_jobs: int = 1) -> None: + """AND Aggregator -class AndAggregator(NonFittableAggregator): - def __init__(self) -> None: + Aggregator that identifies a time step as anomalous if all the components are flagged as anomalous + (logical AND). + + Parameters + ---------- + n_jobs + The number of jobs to run in parallel. Defaults to `1` (sequential). Setting the parameter to `-1` means + using all the available processors. + """ super().__init__() + self._n_jobs = n_jobs - def __str__(self): + def __str__(self) -> str: return "AndAggregator" - def _predict_core(self, series: Sequence[TimeSeries]) -> Sequence[TimeSeries]: - return [ - s.sum(axis=1).map(lambda x: (x >= s.width).astype(s.dtype)) for s in series - ] + def _predict_core( + self, series: Sequence[TimeSeries], *args, **kwargs + ) -> Sequence[TimeSeries]: + def _compononents_and(s: TimeSeries): + return TimeSeries.from_times_and_values( + times=s.time_index, + values=(s.all_values(copy=False).sum(axis=1) >= s.width).astype( + s.dtype + ), + columns=["components_sum"], + ) + + return _parallel_apply( + [(s,) for s in series], + _compononents_and, + n_jobs=1, + fn_args=args, + fn_kwargs=kwargs, + ) diff --git a/darts/ad/aggregators/ensemble_sklearn_aggregator.py b/darts/ad/aggregators/ensemble_sklearn_aggregator.py index e053819d29..7d0181a099 100644 --- a/darts/ad/aggregators/ensemble_sklearn_aggregator.py +++ b/darts/ad/aggregators/ensemble_sklearn_aggregator.py @@ -1,9 +1,6 @@ """ Ensemble scikit-learn aggregator -------------------------------- - -Aggregator wrapped around the Ensemble model of sklearn. -`sklearn https://scikit-learn.org/stable/modules/ensemble.html`_. """ from typing import Sequence @@ -17,8 +14,17 @@ class EnsembleSklearnAggregator(FittableAggregator): - def __init__(self, model) -> None: + def __init__(self, model: BaseEnsemble) -> None: + """Ensemble scikit-learn aggregator + + Aggregator wrapped around the sklearn ensemble model `sklearn ensemble model + `_. + Parameters + ---------- + model + The sklearn ensemble model. + """ raise_if_not( isinstance(model, BaseEnsemble), f"Scorer is expecting a model of type BaseEnsemble (from sklearn ensemble), \ @@ -28,36 +34,25 @@ def __init__(self, model) -> None: self.model = model super().__init__() - def __str__(self): + def __str__(self) -> str: return "EnsembleSklearnAggregator: {}".format( self.model.__str__().split("(")[0] ) - def _fit_core( - self, - actual_anomalies: Sequence[TimeSeries], - series: Sequence[TimeSeries], - ): - - X = np.concatenate( - [s.all_values(copy=False).reshape(len(s), -1) for s in series], - axis=0, - ) - + def _fit_core(self, anomalies: Sequence[np.ndarray], series: Sequence[np.ndarray]): + X = np.concatenate(series, axis=0) y = np.concatenate( - [s.all_values(copy=False).reshape(len(s)) for s in actual_anomalies], + [s.flatten() for s in anomalies], axis=0, ) - self.model.fit(y=y, X=X) - return self def _predict_core(self, series: Sequence[TimeSeries]) -> Sequence[TimeSeries]: - + # assume that parallelization occurs at sklearn model level return [ TimeSeries.from_times_and_values( s.time_index, - self.model.predict((s).all_values(copy=False).reshape(len(s), -1)), + self.model.predict(s.values(copy=False)), ) for s in series ] diff --git a/darts/ad/aggregators/or_aggregator.py b/darts/ad/aggregators/or_aggregator.py index a5417a294e..99c5372bec 100644 --- a/darts/ad/aggregators/or_aggregator.py +++ b/darts/ad/aggregators/or_aggregator.py @@ -1,23 +1,50 @@ """ OR Aggregator ------------- - -Aggregator that identifies a time step as anomalous if any of the components -is flagged as anomalous (logical OR). """ from typing import Sequence from darts import TimeSeries -from darts.ad.aggregators.aggregators import NonFittableAggregator +from darts.ad.aggregators.aggregators import Aggregator +from darts.utils.utils import _parallel_apply + + +class OrAggregator(Aggregator): + def __init__(self, n_jobs: int = 1) -> None: + """OR Aggregator + Aggregator that identifies a time step as anomalous if any of the components + is flagged as anomalous (logical OR). -class OrAggregator(NonFittableAggregator): - def __init__(self) -> None: + Parameters + ---------- + n_jobs + The number of jobs to run in parallel. Defaults to `1` (sequential). Setting the parameter to `-1` means + using all the available processors. + """ super().__init__() - def __str__(self): + self._n_jobs = n_jobs + + def __str__(self) -> str: return "OrAggregator" - def _predict_core(self, series: Sequence[TimeSeries]) -> Sequence[TimeSeries]: - return [s.sum(axis=1).map(lambda x: (x > 0).astype(s.dtype)) for s in series] + def _predict_core( + self, series: Sequence[TimeSeries], *args, **kwargs + ) -> Sequence[TimeSeries]: + + def _compononents_or(s: TimeSeries): + return TimeSeries.from_times_and_values( + times=s.time_index, + values=(s.all_values(copy=False).sum(axis=1) > 0).astype(s.dtype), + columns=["components_sum"], + ) + + return _parallel_apply( + [(s,) for s in series], + _compononents_or, + n_jobs=1, + fn_args=args, + fn_kwargs=kwargs, + ) diff --git a/darts/ad/anomaly_model/__init__.py b/darts/ad/anomaly_model/__init__.py index 810ed0617f..6900600889 100644 --- a/darts/ad/anomaly_model/__init__.py +++ b/darts/ad/anomaly_model/__init__.py @@ -2,27 +2,24 @@ Anomaly Models -------------- -Anomaly models make it possible to use any of Darts' forecasting -or filtering models to detect anomalies in time series. +Anomaly models make it possible to use any of Darts' forecasting or filtering models to detect anomalies in time series. -The basic idea is to compare the predictions produced by a fitted model (the forecasts -or the filtered series) with the actual observations, and to emit an anomaly score -describing how "different" the observations are from the predictions. +The basic idea is to compare the predictions produced by a fitted model (the forecasts or the filtered series) with the +actual observations, and to emit an anomaly score describing how "different" the observations are from the predictions. -An anomaly model takes as parameters a model and one or multiple scorer objects. -The key method is ``score()``, which takes as input one (or multiple) -time series and produces one or multiple anomaly scores time series, for each provided series. +An anomaly model takes as parameters a model and one or multiple scorer objects. The key method is `score()`, which +takes as input one (or multiple) time series and produces one or multiple anomaly scores time series, for each provided +series. -:class:`ForecastingAnomalyModel` works with Darts forecasting models, and :class:`FilteringAnomalyModel` -works with Darts filtering models. -The anomaly models can also be fitted by calling :func:`fit()`, which trains the scorer(s) -(in case some are trainable), and potentially the model as well. +:class:`~darts.ad.anomaly_model.forecasting_am.ForecastingAnomalyModel` works with Darts forecasting models, and +:class:`~darts.ad.anomaly_model.filtering_am.FilteringAnomalyModel` works with Darts filtering models. The anomaly +models can also be fitted by calling :func:`fit()`, which trains the scorer(s) (in case some are trainable), and +potentially the model as well. -The function :func:`eval_accuracy()` is the same as :func:`score()`, but outputs the score of an agnostic -threshold metric ("AUC-ROC" or "AUC-PR"), between the predicted anomaly score time series, and some known binary -ground-truth time series indicating the presence of actual anomalies. -Finally, the function :func:`show_anomalies()` can also be used to visualize the predictions -(in-sample predictions and anomaly scores) of the anomaly model. +The function :func:`eval_metric()` is the same as :func:`score()`, but outputs the score of an agnostic threshold +metric ("AUC-ROC" or "AUC-PR"), between the predicted anomaly score time series, and some known binary ground-truth +time series indicating the presence of actual anomalies. Finally, the function :func:`show_anomalies()` can also be +used to visualize the predictions (in-sample predictions and anomaly scores) of the anomaly model. """ from darts.ad.anomaly_model.filtering_am import FilteringAnomalyModel diff --git a/darts/ad/anomaly_model/anomaly_model.py b/darts/ad/anomaly_model/anomaly_model.py index cf4c08ce44..be66758a0f 100644 --- a/darts/ad/anomaly_model/anomaly_model.py +++ b/darts/ad/anomaly_model/anomaly_model.py @@ -2,117 +2,207 @@ Anomaly models base classes """ +import sys from abc import ABC, abstractmethod -from typing import Dict, Sequence, Union +from typing import Dict, Optional, Sequence, Union + +if sys.version_info >= (3, 11): + from typing import Self +else: + from typing_extensions import Self +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal from darts.ad.scorers.scorers import AnomalyScorer from darts.ad.utils import ( - _to_list, - eval_accuracy_from_scores, + _assert_same_length, + _check_input, + eval_metric_from_scores, show_anomalies_from_scores, ) -from darts.logging import raise_if_not +from darts.logging import get_logger, raise_log from darts.timeseries import TimeSeries +logger = get_logger(__name__) + class AnomalyModel(ABC): """Base class for all anomaly models.""" def __init__(self, model, scorer): + self.scorers = [scorer] if not isinstance(scorer, Sequence) else scorer + if not all([isinstance(s, AnomalyScorer) for s in self.scorers]): + raise_log( + ValueError( + "all scorers must be of instance `darts.ad.scorers.AnomalyScorer`." + ), + logger=logger, + ) + self.model = model - self.scorers = _to_list(scorer) + def fit( + self, + series: Union[TimeSeries, Sequence[TimeSeries]], + allow_model_training: bool, + **kwargs, + ) -> Self: + """Fit the underlying forecasting/filtering model (if applicable) and the fittable scorers.""" + # interrupt training if nothing to fit + if not allow_model_training and not self.scorers_are_trainable: + return self - raise_if_not( - all([isinstance(s, AnomalyScorer) for s in self.scorers]), - "all scorers must be of instance darts.ad.scorers.AnomalyScorer.", + # check input series and covert to sequences + series, kwargs = self._process_input_series(series, **kwargs) + self._fit_core( + series=series, allow_model_training=allow_model_training, **kwargs ) + return self + + @abstractmethod + def score( + self, + series: Union[TimeSeries, Sequence[TimeSeries]], + return_model_prediction: bool = False, + **kwargs, + ) -> Union[TimeSeries, Sequence[TimeSeries]]: + """Compute anomaly score(s) for the given series. - self.scorers_are_trainable = any(s.trainable for s in self.scorers) - self.univariate_scoring = any(s.univariate_scorer for s in self.scorers) + Predicts the given target time series with the forecasting model, and applies the scorer(s) + on the prediction and the target input time series. - self.model = model + Parameters + ---------- + series + The (sequence of) series to score on. + return_model_prediction + Whether to return the forecasting/filtering model prediction along with the anomaly scores. + **kwargs + Additional parameters passed to `AnomalyModel.predict_series()` + + Returns + ------- + TimeSeries + A single `TimeSeries` for a single `series` with a single anomaly scorers. + Sequence[TimeSeries] + A sequence of `TimeSeries` for: - def _check_univariate(self, actual_anomalies): - """Checks if `actual_anomalies` contains only univariate series, which - is required if any of the scorers returns a univariate score. + - a single `series` with multiple anomaly scorers. + - a sequence of `series` with a single anomaly scorer. + Sequence[Sequence[TimeSeries]] + A sequence of sequences of `TimeSeries` for a sequence of `series` and multiple anomaly scorers. + The outer sequence is over the series, and inner sequence is over the scorers. """ + called_with_single_series = isinstance(series, TimeSeries) + # check input series and covert to sequences + series, kwargs = self._process_input_series(series, **kwargs) + # predict / filter `series` + pred = self.predict_series(series=series, **kwargs) - if self.univariate_scoring: - raise_if_not( - all([s.width == 1 for s in actual_anomalies]), - f"Anomaly model contains scorer {[s.__str__() for s in self.scorers if s.univariate_scorer]}" - f" that will return a univariate anomaly score series (width=1)." - f" Found a multivariate `actual_anomalies`. The evaluation of the" - " accuracy cannot be computed. If applicable, think about" - " setting the scorer parameter `componenet_wise` to True.", - ) + scores = list( + zip(*[sc.score_from_prediction(series, pred) for sc in self.scorers]) + ) - @abstractmethod - def fit( - self, series: Union[TimeSeries, Sequence[TimeSeries]] - ) -> Union[TimeSeries, Sequence[TimeSeries]]: - pass + if called_with_single_series: + scores = scores[0] + if len(scores) == 1: + # there's only one scorer + scores = scores[0] + pred = pred[0] - @abstractmethod - def score( - self, series: Union[TimeSeries, Sequence[TimeSeries]] - ) -> Union[TimeSeries, Sequence[TimeSeries]]: - pass + if return_model_prediction: + return scores, pred - @abstractmethod - def eval_accuracy( - self, - actual_anomalies: Union[TimeSeries, Sequence[TimeSeries]], - series: Union[TimeSeries, Sequence[TimeSeries]], - ) -> Union[TimeSeries, Sequence[TimeSeries]]: - pass + return scores @abstractmethod - def show_anomalies(self, series: TimeSeries): + def predict_series( + self, series: Sequence[TimeSeries], **kwargs + ) -> Sequence[TimeSeries]: + """Abstract method to implement the generation of predictions for the input `series`.""" pass - def _show_anomalies( + def eval_metric( self, - series: TimeSeries, - model_output: TimeSeries = None, - anomaly_scores: Union[TimeSeries, Sequence[TimeSeries]] = None, - names_of_scorers: Union[str, Sequence[str]] = None, - actual_anomalies: TimeSeries = None, - title: str = None, - metric: str = None, - ): - """Internal function that plots the results of the anomaly model. - Called by the function show_anomalies(). - """ + anomalies: Union[TimeSeries, Sequence[TimeSeries]], + series: Union[TimeSeries, Sequence[TimeSeries]], + metric: Literal["AUC_ROC", "AUC_PR"] = "AUC_ROC", + **kwargs, + ) -> Union[ + Dict[str, float], + Dict[str, Sequence[float]], + Sequence[Dict[str, float]], + Sequence[Dict[str, Sequence[float]]], + ]: + """Compute the accuracy of the anomaly scores computed by the model. - if title is None: - title = f"Anomaly results ({self.model.__class__.__name__})" + Predicts the `series` with the underlying forecasting/filtering model, and applies the scorer(s) on the + predicted time series and the given target time series. Returns the score(s) of an agnostic threshold metric, + based on the anomaly score given by the scorer(s). - if names_of_scorers is None: - names_of_scorers = [s.__str__() for s in self.scorers] + Parameters + ---------- + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). + series + The (sequence of) series to predict anomalies on. + metric + The name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". + **kwargs + Additional parameters passed to the `score()` method. - list_window = [s.window for s in self.scorers] + Returns + ------- + Dict[str, float] + A dictionary with the resulting metrics for single univariate `series`, with keys representing the + anomaly scorer(s), and values representing the metric values. + Dict[str, Sequence[float]] + Same as for `Dict[str, float]` but for multivariate `series`, and anomaly scorers that treat series + components/columns independently (by nature of the scorer or if `component_wise=True`). + Sequence[Dict[str, float]] + Same as for `Dict[str, float]` but for a sequence of univariate series. + Sequence[Dict[str, Sequence[float]]] + Same as for `Dict[str, float]` but for a sequence of multivariate series. + """ - return show_anomalies_from_scores( + def _check_univariate(s: TimeSeries): + """Checks if `anomalies` contains only univariate series, which + is required if any of the scorers returns a univariate score. + """ + if self.scorers_are_univariate and not s.width == 1: + raise_log( + ValueError( + f"Anomaly model contains scorer {[s.__str__() for s in self.scorers if s.is_univariate]} " + f"that will return a univariate anomaly score series (width=1). Found a multivariate " + f"`anomalies`. The evaluation of the accuracy cannot be computed. If applicable, " + f"think about setting the scorer parameter `componenet_wise` to True." + ), + logger=logger, + ) + + called_with_single_series = isinstance(series, TimeSeries) + # deterministic `series` + series = _check_input( series, - model_output=model_output, - anomaly_scores=anomaly_scores, - window=list_window, - names_of_scorers=names_of_scorers, - actual_anomalies=actual_anomalies, - title=title, - metric=metric, + name="series", + check_deterministic=True, + ) + # deterministic, binary anomalies, (possibly univariate) + anomalies = _check_input( + anomalies, + name="anomalies", + check_deterministic=True, + check_binary=True, + extra_checks=_check_univariate, ) + _assert_same_length(series, anomalies, "series", "anomalies") - def _eval_accuracy_from_scores( - self, - list_actual_anomalies: Sequence[TimeSeries], - list_anomaly_scores: Sequence[TimeSeries], - metric: str, - ) -> Union[Sequence[Dict[str, float]], Sequence[Dict[str, Sequence[float]]]]: - """Internal function that computes the accuracy of the anomaly scores - computed by the model. Called by the function eval_accuracy(). - """ + pred_scores = self.score(series=series, **kwargs) + + # compute metric for anomaly scores windows = [s.window for s in self.scorers] # create a list of unique names for each scorer that @@ -132,15 +222,137 @@ def _eval_accuracy_from_scores( name_scorers.append(name) - acc = [] - for anomalies, scores in zip(list_actual_anomalies, list_anomaly_scores): - acc.append( - eval_accuracy_from_scores( - actual_anomalies=anomalies, - anomaly_score=scores, + metric_vals = [] + for anomalies, scores in zip(anomalies, pred_scores): + metric_vals.append( + eval_metric_from_scores( + anomalies=anomalies, + pred_scores=scores, window=windows, metric=metric, ) ) + metric_vals_pred_scores = [ + dict(zip(name_scorers, scorer_values)) for scorer_values in metric_vals + ] + + return ( + metric_vals_pred_scores[0] + if called_with_single_series + else metric_vals_pred_scores + ) + + def show_anomalies( + self, + series: TimeSeries, + anomalies: TimeSeries = None, + predict_kwargs: Optional[Dict] = None, + names_of_scorers: Union[str, Sequence[str]] = None, + title: str = None, + metric: Optional[Literal["AUC_ROC", "AUC_PR"]] = None, + **score_kwargs, + ): + """Plot the results of the anomaly model. + + Computes the score on the given series input and shows the different anomaly scores with respect to time. + + The plot will be composed of the following: + + - the series itself with the output of the forecasting model. + - the anomaly score for each scorer. The scorers with different windows will be separated. + - the actual anomalies, if given. + + It is possible to: + + - add a title to the figure with the parameter `title` + - give personalized names for the scorers with `names_of_scorers` + - show the results of a metric for each anomaly score (AUC_ROC or AUC_PR), if the actual anomalies are provided. + + Parameters + ---------- + series + The series to visualize anomalies from. + anomalies + The ground truth of the anomalies (1 if it is an anomaly and 0 if not). + predict_kwargs + Optionally, some additional parameters passed to `AnomalyModel.predict_series()`. + names_of_scorers + Name of the scores. Must be a list of length equal to the number of scorers in the anomaly_model. + title + Title of the figure. + metric + Optionally, the name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". + score_kwargs + parameters for the `score()` method. + """ + series = _check_input(series, name="series", num_series_expected=1)[0] + predict_kwargs = predict_kwargs if predict_kwargs is not None else {} + pred_scores, pred_series = self.score( + series, + return_model_prediction=True, + **predict_kwargs, + **score_kwargs, + ) + + if title is None: + title = f"Anomaly results ({self.model.__class__.__name__})" + + if names_of_scorers is None: + names_of_scorers = [s.__str__() for s in self.scorers] + + list_window = [s.window for s in self.scorers] + + return show_anomalies_from_scores( + series=series, + anomalies=anomalies, + pred_series=pred_series, + pred_scores=pred_scores, + window=list_window, + names_of_scorers=names_of_scorers, + title=title, + metric=metric, + ) + + @property + def scorers_are_univariate(self): + """Whether any of the Scorers is trainable.""" + return any(s.is_univariate for s in self.scorers) + + @property + def scorers_are_trainable(self): + """Whether any of the Scorers is trainable.""" + return any(s.is_trainable for s in self.scorers) + + @abstractmethod + def _fit_core( + self, + series: Sequence[TimeSeries], + allow_model_training: bool, + **kwargs, + ): + """Abstract method to implement the model and scorer training.""" + pass + + def _fit_scorers( + self, list_series: Sequence[TimeSeries], list_pred: Sequence[TimeSeries] + ): + """Train the fittable scorers using model forecasts""" + for scorer in self.scorers: + if scorer.is_trainable: + scorer.fit_from_prediction(list_series, list_pred) - return [dict(zip(name_scorers, scorer_values)) for scorer_values in acc] + @staticmethod + def _process_input_series( + series: Union[TimeSeries, Sequence[TimeSeries]], **kwargs + ): + """Checks input series and coverts series and covariates in `kwargs` to sequences.""" + series = _check_input(series, name="series") + for cov_name in ["past_covariates", "future_covariates"]: + cov = kwargs.pop(cov_name, None) + if cov is not None: + cov = _check_input(cov, name=cov_name) + _assert_same_length(series, cov, "series", cov_name) + kwargs[cov_name] = cov + return series, kwargs diff --git a/darts/ad/anomaly_model/filtering_am.py b/darts/ad/anomaly_model/filtering_am.py index 584b8d25fe..112ba194fa 100644 --- a/darts/ad/anomaly_model/filtering_am.py +++ b/darts/ad/anomaly_model/filtering_am.py @@ -2,17 +2,26 @@ Filtering Anomaly Model ----------------------- -A ``FilteringAnomalyModel`` wraps around a Darts filtering model and one or +A `FilteringAnomalyModel` wraps around a Darts filtering model and one or several anomaly scorer(s) to compute anomaly scores by comparing how actuals deviate from the model's predictions (filtered series). """ -from typing import Dict, Sequence, Union +import sys +from typing import Dict, Optional, Sequence, Union + +if sys.version_info >= (3, 11): + from typing import Self +else: + from typing_extensions import Self +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal from darts.ad.anomaly_model.anomaly_model import AnomalyModel from darts.ad.scorers.scorers import AnomalyScorer -from darts.ad.utils import _assert_same_length, _to_list -from darts.logging import get_logger, raise_if_not +from darts.logging import get_logger, raise_log from darts.models.filtering.filtering_model import FilteringModel from darts.timeseries import TimeSeries @@ -34,26 +43,24 @@ def __init__( function of the model will be sufficient to train it to satisfactory performance on series without anomalies. Calling :func:`fit()` on the anomaly model will fit the underlying filtering model only - if ``allow_model_training`` is set to ``True`` upon calling ``fit()``. + if `allow_model_training` is set to `True` upon calling `fit()`. In addition, calling :func:`fit()` will also fit the fittable scorers, if any. Parameters ---------- - filter - A filtering model from Darts that will be used to filter the actual time series + model + A Darts `FilteringModel` used to filter the actual time series. scorer - One or multiple scorer(s) that will be used to compare the actual and predicted time series in order - to obtain an anomaly score ``TimeSeries``. - If a list of `N` scorer is given, the anomaly model will call each - one of the scorers and output a list of `N` anomaly scores ``TimeSeries``. + One or multiple scorer(s) used to compare the actual and predicted time series in order to obtain an + anomaly score `TimeSeries`. If a list of scorers, + :meth:`~darts.ad.anomaly_model.filtering_am.FilteringAnomalyModel.score` will output anomaly scores for + each scorer. """ - - raise_if_not( - isinstance(model, FilteringModel), - f"`model` must be a darts.models.filtering not a {type(model)}.", - ) - self.filter = model - + if not isinstance(model, FilteringModel): + raise_log( + ValueError("`model` must be a Darts `FilteringModel`."), + logger=logger, + ) super().__init__(model=model, scorer=scorer) def fit( @@ -61,11 +68,11 @@ def fit( series: Union[TimeSeries, Sequence[TimeSeries]], allow_model_training: bool = False, **filter_fit_kwargs, - ): + ) -> Self: """Fit the underlying filtering model (if applicable) and the fittable scorers, if any. - Train the filter (if not already fitted and `allow_filter_training` is set to True) - and the scorer(s) on the given time series. + Train the filter (if not already fitted and `allow_model_training` is `True`) and the fittable scorer(s) on the + given time series. The filter model will be applied to the given series, and the results will be used to train the scorer(s). @@ -73,135 +80,22 @@ def fit( Parameters ---------- series - The (sequence of) series to be trained on. + The (sequence of) series to train on (generally assumed to be anomaly-free). allow_model_training - Boolean value that indicates if the filtering model needs to be fitted on the given series. - If set to False, the model needs to be already fitted. - Default: False - filter_fit_kwargs - Parameters to be passed on to the filtering model ``fit()`` method. + Whether the filtering model should be fitted on the given series. If `False`, the model must already be + fitted. + **filter_fit_kwargs + Additional parameters passed to the filtering model's `fit()` method. Returns ------- self - Fitted model + Fitted model. """ - # TODO: add support for covariates (see eg. Kalman Filter) - - raise_if_not( - type(allow_model_training) is bool, # noqa: E721 - f"`allow_filter_training` must be Boolean, found type: {type(allow_model_training)}.", - ) - - # checks if model does not need training and all scorer(s) are not fittable - if not allow_model_training and not self.scorers_are_trainable: - logger.warning( - f"The filtering model {self.model.__class__.__name__} is not required to be trained" - + " because the parameter `allow_filter_training` is set to False, and no scorer" - + " fittable. The ``.fit()`` function has no effect." - ) - return - - list_series = _to_list(series) - - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_series]), - "all input `series` must be of type Timeseries.", - ) - - if allow_model_training: - # fit filtering model - if hasattr(self.filter, "fit"): - # TODO: check if filter is already fitted (for now fit it regardless -> only Kalman) - raise_if_not( - len(list_series) == 1, - f"Filter model {self.model.__class__.__name__} can only be fitted on a" - + " single time series, but multiple are provided.", - ) - - self.filter.fit(list_series[0], **filter_fit_kwargs) - else: - raise ValueError( - "`allow_filter_training` was set to True, but the filter" - + f" {self.model.__class__.__name__} has no fit() method." - ) - else: - # TODO: check if Kalman is fitted or not - # if not raise error "fit filter before, or set `allow_filter_training` to TRUE" - pass - - if self.scorers_are_trainable: - list_pred = [self.filter.filter(series) for series in list_series] - - # fit the scorers - for scorer in self.scorers: - if hasattr(scorer, "fit"): - scorer.fit_from_prediction(list_series, list_pred) - - return self - - def show_anomalies( - self, - series: TimeSeries, - actual_anomalies: TimeSeries = None, - names_of_scorers: Union[str, Sequence[str]] = None, - title: str = None, - metric: str = None, - **score_kwargs, - ): - """Plot the results of the anomaly model. - - Computes the score on the given series input and shows the different anomaly scores with respect to time. - - The plot will be composed of the following: - - - the series itself with the output of the filtering model - - the anomaly score of each scorer. The scorer with different windows will be separated. - - the actual anomalies, if given. - - It is possible to: - - - add a title to the figure with the parameter `title` - - give personalized names for the scorers with `names_of_scorers` - - show the results of a metric for each anomaly score (AUC_ROC or AUC_PR), if the actual anomalies are given - - Parameters - ---------- - series - The series to visualize anomalies from. - actual_anomalies - The ground truth of the anomalies (1 if it is an anomaly and 0 if not) - names_of_scorers - Name of the scorers. Must be a list of length equal to the number of scorers in the anomaly_model. - title - Title of the figure - metric - Optionally, Scoring function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" - score_kwargs - parameters for the `.score()` function - """ - - if isinstance(series, Sequence): - raise_if_not( - len(series) == 1, - f"`show_anomalies` expects one series, found a sequence of length {len(series)} as input.", - ) - - series = series[0] - - anomaly_scores, model_output = self.score( - series, return_model_prediction=True, **score_kwargs - ) - - return self._show_anomalies( - series, - model_output=model_output, - anomaly_scores=anomaly_scores, - names_of_scorers=names_of_scorers, - actual_anomalies=actual_anomalies, - title=title, - metric=metric, + return super().fit( + series=series, + allow_model_training=allow_model_training, + **filter_fit_kwargs, ) def score( @@ -209,79 +103,59 @@ def score( series: Union[TimeSeries, Sequence[TimeSeries]], return_model_prediction: bool = False, **filter_kwargs, - ): - """Compute the anomaly score(s) for the given series. + ) -> Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: + """Compute the anomaly score(s) for the given (sequence of) series. Predicts the given target time series with the filtering model, and applies the scorer(s) to compare the predicted (filtered) series and the provided series. - Outputs the anomaly score(s) of the provided time series. - Parameters ---------- series - The (sequence of) series to score. + The (sequence of) series to score on. return_model_prediction - Boolean value indicating if the prediction of the model should be returned along the anomaly score - Default: False - filter_kwargs - parameters of the Darts `.filter()` filtering model + Whether to return the filtering model prediction along with the anomaly scores. + **filter_kwargs + Additional parameters passed to the filtering model's `filter()` method. Returns ------- - Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]] - Anomaly scores series generated by the anomaly model scorers - - - ``TimeSeries`` if `series` is a series, and the anomaly model contains one scorer. - - ``Sequence[TimeSeries]`` - - * If `series` is a series, and the anomaly model contains multiple scorers, - returns one series per scorer. - * If `series` is a sequence, and the anomaly model contains one scorer, - returns one series per series in the sequence. - - ``Sequence[Sequence[TimeSeries]]`` if `series` is a sequence, and the anomaly - model contains multiple scorers. - The outer sequence is over the series, and inner sequence is over the scorers. + TimeSeries + A single `TimeSeries` for a single `series` with a single anomaly scorers. + Sequence[TimeSeries] + A sequence of `TimeSeries` for: + + - a single `series` with multiple anomaly scorers. + - a sequence of `series` with a single anomaly scorer. + Sequence[Sequence[TimeSeries]] + A sequence of sequences of `TimeSeries` for a sequence of `series` and multiple anomaly scorers. + The outer sequence is over the series, and inner sequence is over the scorers. """ - raise_if_not( - type(return_model_prediction) is bool, # noqa: E721 - f"`return_model_prediction` must be Boolean, found type: {type(return_model_prediction)}.", + return super().score( + series=series, + return_model_prediction=return_model_prediction, + **filter_kwargs, ) - list_series = _to_list(series) + def predict_series( + self, series: Sequence[TimeSeries], **kwargs + ) -> Sequence[TimeSeries]: + """Filters the given sequence of target time series with the filtering model. - # TODO: vectorize this call later on if we have any filtering models allowing this - list_pred = [self.filter.filter(s, **filter_kwargs) for s in list_series] - - scores = list( - zip( - *[ - sc.score_from_prediction(list_series, list_pred) - for sc in self.scorers - ] - ) - ) - - if len(scores) == 1 and not isinstance(series, Sequence): - # there's only one series - scores = scores[0] - if len(scores) == 1: - # there's only one scorer - scores = scores[0] - - if len(list_pred) == 1: - list_pred = list_pred[0] - - if return_model_prediction: - return scores, list_pred - else: - return scores + Parameters + ---------- + series + The sequence of series to filter. + **kwargs + Additional parameters passed to the filtering model's `filter()` method. + """ + return [self.model.filter(s, **kwargs) for s in series] - def eval_accuracy( + def eval_metric( self, - actual_anomalies: Union[TimeSeries, Sequence[TimeSeries]], + anomalies: Union[TimeSeries, Sequence[TimeSeries]], series: Union[TimeSeries, Sequence[TimeSeries]], - metric: str = "AUC_ROC", + metric: Literal["AUC_ROC", "AUC_PR"] = "AUC_ROC", **filter_kwargs, ) -> Union[ Dict[str, float], @@ -289,60 +163,122 @@ def eval_accuracy( Sequence[Dict[str, float]], Sequence[Dict[str, Sequence[float]]], ]: - """Compute the accuracy of the anomaly scores computed by the model. + """Compute a metric for the anomaly scores computed by the model. - Predicts the `series` with the filtering model, and applies the - scorer(s) on the filtered time series and the given target time series. Returns the - score(s) of an agnostic threshold metric, based on the anomaly score given by the scorer(s). + Predicts the `series` with the filtering model, and applies the scorer(s) on the filtered time series + and the given target time series. Returns the score(s) of an agnostic threshold metric, based on the anomaly + score given by the scorer(s). Parameters ---------- - actual_anomalies - The (sequence of) ground truth of the anomalies (1 if it is an anomaly and 0 if not) + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). series The (sequence of) series to predict anomalies on. metric - Optionally, Scoring function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" - filter_kwargs - parameters of the Darts `.filter()` filtering model + The name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". + **filter_kwargs + Additional parameters passed to the filtering model's `filter()` method. Returns ------- - Union[Dict[str, float], Dict[str, Sequence[float]], Sequence[Dict[str, float]], - Sequence[Dict[str, Sequence[float]]]] - Score for the time series. - A (sequence of) dictionary with the keys being the name of the scorers, and the values being the - metric results on the (sequence of) `series`. If the scorer treats every dimension independently - (by nature of the scorer or if its component_wise is set to True), the values of the dictionary - will be a Sequence containing the score for each dimension. + Dict[str, float] + A dictionary with the resulting metrics for single univariate `series`, with keys representing the + anomaly scorer(s), and values representing the metric values. + Dict[str, Sequence[float]] + Same as for `Dict[str, float]` but for multivariate `series`, and anomaly scorers that treat series + components/columns independently (by nature of the scorer or if `component_wise=True`). + Sequence[Dict[str, float]] + Same as for `Dict[str, float]` but for a sequence of univariate series. + Sequence[Dict[str, Sequence[float]]] + Same as for `Dict[str, float]` but for a sequence of multivariate series. """ - list_series, list_actual_anomalies = _to_list(series), _to_list( - actual_anomalies + return super().eval_metric( + anomalies=anomalies, + series=series, + metric=metric, + **filter_kwargs, ) - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_series]), - "all input `series` must be of type Timeseries.", - ) + def show_anomalies( + self, + series: TimeSeries, + anomalies: TimeSeries = None, + names_of_scorers: Union[str, Sequence[str]] = None, + title: str = None, + metric: Optional[Literal["AUC_ROC", "AUC_PR"]] = None, + **score_kwargs, + ): + """Plot the results of the anomaly model. - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_actual_anomalies]), - "all input `actual_anomalies` must be of type Timeseries.", - ) + Computes the score on the given series input and shows the different anomaly scores with respect to time. + + The plot will be composed of the following: - _assert_same_length(list_series, list_actual_anomalies) - self._check_univariate(list_actual_anomalies) + - the series itself with the output of the forecasting model. + - the anomaly score for each scorer. The scorers with different windows will be separated. + - the actual anomalies, if given. + + It is possible to: - list_anomaly_scores = self.score(series=list_series, **filter_kwargs) + - add a title to the figure with the parameter `title` + - give personalized names for the scorers with `names_of_scorers` + - show the results of a metric for each anomaly score (AUC_ROC or AUC_PR), if the actual anomalies are provided. - acc_anomaly_scores = self._eval_accuracy_from_scores( - list_actual_anomalies=list_actual_anomalies, - list_anomaly_scores=list_anomaly_scores, + Parameters + ---------- + series + The series to visualize anomalies from. + anomalies + The ground truth of the anomalies (1 if it is an anomaly and 0 if not). + names_of_scorers + Name of the scores. Must be a list of length equal to the number of scorers in the anomaly_model. + title + Title of the figure. + metric + Optionally, the name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". + score_kwargs + parameters for the `score()` method. + """ + return super().show_anomalies( + series=series, + anomalies=anomalies, + predict_kwargs=None, + names_of_scorers=names_of_scorers, + title=title, metric=metric, + **score_kwargs, ) - if len(acc_anomaly_scores) == 1 and not isinstance(series, Sequence): - return acc_anomaly_scores[0] + def _fit_core( + self, + series: Sequence[TimeSeries], + allow_model_training: bool, + **model_fit_kwargs, + ): + """Fit the filters (if applicable) and scorers.""" + # TODO: add support for covariates (see eg. Kalman Filter) + if allow_model_training and hasattr(self.model, "fit"): + # TODO: check if filter is already fitted (for now fit it regardless -> only Kalman) + if len(series) > 1: + raise_log( + ValueError( + f"Filter model {self.model.__class__.__name__} can only be fitted " + f"on a single time series, but multiple are provided." + ), + logger=logger, + ) + self.model.fit(series[0], **model_fit_kwargs) else: - return acc_anomaly_scores + # TODO: check if Kalman is fitted or not + # if not raise error "fit filter before, or set `allow_model_training` to TRUE" + pass + + if self.scorers_are_trainable: + pred = self.predict_series(series) + # fit the scorers + self._fit_scorers(series, pred) diff --git a/darts/ad/anomaly_model/forecasting_am.py b/darts/ad/anomaly_model/forecasting_am.py index 6db4b82084..a70c5b21bb 100644 --- a/darts/ad/anomaly_model/forecasting_am.py +++ b/darts/ad/anomaly_model/forecasting_am.py @@ -2,23 +2,30 @@ Forecasting Anomaly Model ------------------------- -A ``ForecastingAnomalyModel`` wraps around a Darts forecasting model and one or several anomaly +A `ForecastingAnomalyModel` wraps around a Darts forecasting model and one or several anomaly scorer(s) to compute anomaly scores by comparing how actuals deviate from the model's forecasts. """ # TODO: # - put start default value to its minimal value (wait for the release of historical_forecast) - -import inspect +import sys from typing import Dict, Optional, Sequence, Union +if sys.version_info >= (3, 11): + from typing import Self +else: + from typing_extensions import Self +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal + import pandas as pd from darts.ad.anomaly_model.anomaly_model import AnomalyModel from darts.ad.scorers.scorers import AnomalyScorer -from darts.ad.utils import _assert_same_length, _assert_timeseries, _to_list -from darts.logging import get_logger, raise_if_not -from darts.models.forecasting.forecasting_model import ForecastingModel +from darts.logging import get_logger, raise_log +from darts.models.forecasting.forecasting_model import GlobalForecastingModel from darts.timeseries import TimeSeries logger = get_logger(__name__) @@ -27,19 +34,20 @@ class ForecastingAnomalyModel(AnomalyModel): def __init__( self, - model: ForecastingModel, + model: GlobalForecastingModel, scorer: Union[AnomalyScorer, Sequence[AnomalyScorer]], ): """Forecasting-based Anomaly Detection Model - The forecasting model may or may not be already fitted. The underlying assumption is that `model` - should be able to accurately forecast the series in the absence of anomalies. For this reason, - it is recommended to either provide a model that has already been fitted and evaluated to work - appropriately on a series without anomalies, or to ensure that a simple call to the :func:`fit()` - method of the model will be sufficient to train it to satisfactory performance on a series without anomalies. + The forecasting model must be a `GlobalForecastingModel` that may or may not be already fitted. The + underlying assumption is that `model` should be able to accurately forecast the series in the absence of + anomalies. For this reason, it is recommended to either provide a model that has already been fitted and + evaluated to work appropriately on a series without anomalies, or to ensure that a simple call to the + :func:`fit()` method of the model will be sufficient to train it to satisfactory performance on a series + without anomalies. The pre-trained model will be used to generate forecasts when calling :func:`score()`. - Calling :func:`fit()` on the anomaly model will fit the underlying forecasting model only - if ``allow_model_training`` is set to ``True`` upon calling ``fit()``. + Calling :func:`fit()` on the anomaly model will fit the underlying forecasting model only if + `allow_model_training` is set to `True` upon calling `fit()`. In addition, calling :func:`fit()` will also fit the fittable scorers, if any. Parameters @@ -48,17 +56,16 @@ def __init__( An instance of a Darts forecasting model. scorer One or multiple scorer(s) that will be used to compare the actual and predicted time series in order - to obtain an anomaly score ``TimeSeries``. + to obtain an anomaly score `TimeSeries`. If a list of `N` scorers is given, the anomaly model will call each - one of the scorers and output a list of `N` anomaly scores ``TimeSeries``. + one of the scorers and output a list of `N` anomaly scores `TimeSeries`. """ - - raise_if_not( - isinstance(model, ForecastingModel), - f"Model must be a darts ForecastingModel not a {type(model)}.", - ) + if not isinstance(model, GlobalForecastingModel): + raise_log( + ValueError("`model` must be a Darts `GlobalForecastingModel`."), + logger=logger, + ) self.model = model - super().__init__(model=model, scorer=scorer) def fit( @@ -68,289 +75,84 @@ def fit( future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, allow_model_training: bool = False, forecast_horizon: int = 1, - start: Union[pd.Timestamp, float, int] = 0.5, + start: Union[pd.Timestamp, float, int] = None, + start_format: Literal["position", "value"] = "value", num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, + enable_optimization: bool = True, **model_fit_kwargs, - ): + ) -> Self: """Fit the underlying forecasting model (if applicable) and the fittable scorers, if any. - Train the model (if not already fitted and ``allow_model_training`` is set to True) and the - scorer(s) (if fittable) on the given time series. + Train the forecasting model (if not already fitted and `allow_model_training` is `True`) and the fittable + scorer(s) on the given time series. - Once the model is fitted, the series historical forecasts are computed, - representing what would have been forecasted by this model on the series. - - The prediction and the series are then used to train the scorer(s). + We use the trained forecasting model to compute historical forecasts for the input `series`. + The scorer(s) are then trained on these forecasts along with the input `series`. Parameters ---------- series - One or multiple (if the model supports it) target series to be - trained on (generally assumed to be anomaly-free). + The (sequence of) series to train on (generally assumed to be anomaly-free). past_covariates - Optional past-observed covariate series or sequence of series. This applies only if the model - supports past covariates. + Optionally, a (sequence of) past-observed covariate series or sequence of series. This applies only to + models that support past covariates. future_covariates - Optional future-known covariate series or sequence of series. This applies only if the model - supports future covariates. + Optionally, a (sequence of) future-known covariate series or sequence of series. This applies only to + models that support future covariates. allow_model_training - Boolean value that indicates if the forecasting model needs to be fitted on the given series. - If set to False, the model needs to be already fitted. - Default: False + Whether the forecasting model should be fitted on the given series. If `False`, the model must already be + fitted. forecast_horizon The forecast horizon for the predictions. start The first point of time at which a prediction is computed for a future time. - This parameter supports 3 different data types: ``float``, ``int`` and ``pandas.Timestamp``. - In the case of ``float``, the parameter will be treated as the proportion of the time series + This parameter supports 3 different data types: `float`, `int` and `pandas.Timestamp`. + In the case of `float`, the parameter will be treated as the proportion of the time series that should lie before the first prediction point. - In the case of ``int``, the parameter will be treated as an integer index to the time index of + In the case of `int`, the parameter will be treated as an integer index to the time index of `series` that will be used as first prediction time. - In case of ``pandas.Timestamp``, this time stamp will be used to determine the first prediction time + In case of `pandas.Timestamp`, this time stamp will be used to determine the first prediction time directly. - Default: 0.5 + start_format + Defines the `start` format. Only effective when `start` is an integer and `series` is indexed with a + `pd.RangeIndex`. + If set to 'position', `start` corresponds to the index position of the first predicted point and can range + from `(-len(series), len(series) - 1)`. + If set to 'value', `start` corresponds to the index value/label of the first predicted point. Will raise + an error if the value is not in `series`' index. Default: `'value'` num_samples Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models. + verbose + Whether to print progress. + show_warnings + Whether to show warnings related to historical forecasts optimization, or parameters `start` and + `train_length`. + enable_optimization + Whether to use the optimized version of historical_forecasts when supported and available. model_fit_kwargs - Parameters to be passed on to the forecast model ``fit()`` method. + Parameters to be passed on to the forecast model `fit()` method. Returns ------- self Fitted model """ - - raise_if_not( - type(allow_model_training) is bool, # noqa: E721 - f"`allow_model_training` must be Boolean, found type: {type(allow_model_training)}.", - ) - - # checks if model does not need training and all scorer(s) are not fittable - if not allow_model_training and not self.scorers_are_trainable: - logger.warning( - f"The forecasting model {self.model.__class__.__name__} won't be trained" - + " because the parameter `allow_model_training` is set to False, and no scorer" - + " is fittable. ``.fit()`` method has no effect." - ) - return - - list_series = _to_list(series) - - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_series]), - "all input `series` must be of type Timeseries.", - ) - - list_past_covariates = self._prepare_covariates( - past_covariates, list_series, "past" - ) - list_future_covariates = self._prepare_covariates( - future_covariates, list_series, "future" - ) - - model_fit_kwargs["past_covariates"] = list_past_covariates - model_fit_kwargs["future_covariates"] = list_future_covariates - - # remove None elements from dictionary - model_fit_kwargs = {k: v for k, v in model_fit_kwargs.items() if v} - - # fit forecasting model - if allow_model_training: - # the model has not been trained yet - - fit_signature_series = ( - inspect.signature(self.model.fit).parameters["series"].annotation - ) - - # checks if model can be trained on multiple time series or only on a time series - # TODO: check if model can accept multivariate timeseries, raise error if given and model cannot - if "Sequence[darts.timeseries.TimeSeries]" in str(fit_signature_series): - self.model.fit(series=list_series, **model_fit_kwargs) - else: - raise_if_not( - len(list_series) == 1, - f"Forecasting model {self.model.__class__.__name__} only accepts a single time series" - + " for the training phase and not a sequence of multiple of time series.", - ) - self.model.fit(series=list_series[0], **model_fit_kwargs) - else: - raise_if_not( - self.model._fit_called, - f"Model {self.model.__class__.__name__} needs to be trained, consider training " - + "it beforehand or setting " - + "`allow_model_training` to True (default: False). " - + "The model will then be trained on the provided series.", - ) - - # generate the historical_forecast() prediction of the model on the train set - if self.scorers_are_trainable: - # check if the window size of the scorers are lower than the max size allowed - self._check_window_size(list_series, start) - - list_pred = [] - for idx, series in enumerate(list_series): - - if list_past_covariates is not None: - past_covariates = list_past_covariates[idx] - - if list_future_covariates is not None: - future_covariates = list_future_covariates[idx] - - list_pred.append( - self._predict_with_forecasting( - series, - past_covariates=past_covariates, - future_covariates=future_covariates, - forecast_horizon=forecast_horizon, - start=start, - num_samples=num_samples, - ) - ) - - # fit the scorers - for scorer in self.scorers: - if hasattr(scorer, "fit"): - scorer.fit_from_prediction(list_series, list_pred) - - return self - - def _prepare_covariates( - self, - covariates: Union[TimeSeries, Sequence[TimeSeries]], - series: Sequence[TimeSeries], - name_covariates: str, - ) -> Sequence[TimeSeries]: - """Convert `covariates` into Sequence, if not already, and checks if their length is equal to the one of - `series`. - - Parameters - ---------- - covariates - Covariate ("future" or "past") of `series`. - series - The series to be trained on. - name_covariates - Internal parameter for error message, a string indicating if it is a "future" or "past" covariates. - - Returns - ------- - Sequence[TimeSeries] - Covariate time series - """ - - if covariates is not None: - list_covariates = _to_list(covariates) - - for covariates in list_covariates: - _assert_timeseries( - covariates, name_covariates + "_covariates input series" - ) - - raise_if_not( - len(list_covariates) == len(series), - f"Number of {name_covariates}_covariates must match the number of given " - + f"series, found length {len(list_covariates)} and expected {len(series)}.", - ) - - return list_covariates if covariates is not None else None - - def show_anomalies( - self, - series: TimeSeries, - past_covariates: Optional[TimeSeries] = None, - future_covariates: Optional[TimeSeries] = None, - forecast_horizon: int = 1, - start: Union[pd.Timestamp, float, int] = 0.5, - num_samples: int = 1, - actual_anomalies: TimeSeries = None, - names_of_scorers: Union[str, Sequence[str]] = None, - title: str = None, - metric: str = None, - ): - """Plot the results of the anomaly model. - - Computes the score on the given series input and shows the different anomaly scores with respect to time. - - The plot will be composed of the following: - - - the series itself with the output of the forecasting model. - - the anomaly score for each scorer. The scorers with different windows will be separated. - - the actual anomalies, if given. - - It is possible to: - - - add a title to the figure with the parameter `title` - - give personalized names for the scorers with `names_of_scorers` - - show the results of a metric for each anomaly score (AUC_ROC or AUC_PR), - if the actual anomalies are provided. - - Parameters - ---------- - series - The series to visualize anomalies from. - past_covariates - An optional past-observed covariate series or sequence of series. This applies only if the model - supports past covariates. - future_covariates - An optional future-known covariate series or sequence of series. This applies only if the model - supports future covariates. - forecast_horizon - The forecast horizon for the predictions. - start - The first point of time at which a prediction is computed for a future time. - This parameter supports 3 different data types: ``float``, ``int`` and ``pandas.Timestamp``. - In the case of ``float``, the parameter will be treated as the proportion of the time series - that should lie before the first prediction point. - In the case of ``int``, the parameter will be treated as an integer index to the time index of - `series` that will be used as first prediction time. - In case of ``pandas.Timestamp``, this time stamp will be used to determine the first prediction time - directly. - num_samples - Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for - deterministic models. - actual_anomalies - The ground truth of the anomalies (1 if it is an anomaly and 0 if not) - names_of_scorers - Name of the scores. Must be a list of length equal to the number of scorers in the anomaly_model. - title - Title of the figure - metric - Optionally, Scoring function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" - """ - - if isinstance(series, Sequence): - raise_if_not( - len(series) == 1, - f"`show_anomalies` expects one series, found a list of length {len(series)} as input.", - ) - - series = series[0] - - raise_if_not( - isinstance(series, TimeSeries), - f"`show_anomalies` expects an input of type TimeSeries, found type: {type(series)}.", - ) - - anomaly_scores, model_output = self.score( - series, + return super().fit( + series=series, past_covariates=past_covariates, future_covariates=future_covariates, + allow_model_training=allow_model_training, forecast_horizon=forecast_horizon, start=start, + start_format=start_format, num_samples=num_samples, - return_model_prediction=True, - ) - - return self._show_anomalies( - series, - model_output=model_output, - anomaly_scores=anomaly_scores, - names_of_scorers=names_of_scorers, - actual_anomalies=actual_anomalies, - title=title, - metric=metric, + verbose=verbose, + show_warnings=show_warnings, + enable_optimization=enable_optimization, + **model_fit_kwargs, ) def score( @@ -359,231 +161,187 @@ def score( past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, forecast_horizon: int = 1, - start: Union[pd.Timestamp, float, int] = 0.5, + start: Union[pd.Timestamp, float, int] = None, + start_format: Literal["position", "value"] = "value", num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, + enable_optimization: bool = True, return_model_prediction: bool = False, - ) -> Union[TimeSeries, Sequence[TimeSeries]]: + ) -> Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]]: """Compute anomaly score(s) for the given series. Predicts the given target time series with the forecasting model, and applies the scorer(s) - on the prediction and the target input time series. Outputs the anomaly score of the given - input time series. + on the prediction and the target input time series. Parameters ---------- series The (sequence of) series to score on. past_covariates - An optional past-observed covariate series or sequence of series. This applies only if the model - supports past covariates. + Optionally, a (sequence of) past-observed covariate series or sequence of series. This applies only to + models that support past covariates. future_covariates - An optional future-known covariate series or sequence of series. This applies only if the model - supports future covariates. + Optionally, a (sequence of) future-known covariate series or sequence of series. This applies only to + models that support future covariates. forecast_horizon The forecast horizon for the predictions. start The first point of time at which a prediction is computed for a future time. - This parameter supports 3 different data types: ``float``, ``int`` and ``pandas.Timestamp``. - In the case of ``float``, the parameter will be treated as the proportion of the time series + This parameter supports 3 different data types: `float`, `int` and `pandas.Timestamp`. + In the case of `float`, the parameter will be treated as the proportion of the time series that should lie before the first prediction point. - In the case of ``int``, the parameter will be treated as an integer index to the time index of + In the case of `int`, the parameter will be treated as an integer index to the time index of `series` that will be used as first prediction time. - In case of ``pandas.Timestamp``, this time stamp will be used to determine the first prediction time - directly. Default: 0.5 + In case of `pandas.Timestamp`, this time stamp will be used to determine the first prediction time + directly. + start_format + Defines the `start` format. Only effective when `start` is an integer and `series` is indexed with a + `pd.RangeIndex`. + If set to 'position', `start` corresponds to the index position of the first predicted point and can range + from `(-len(series), len(series) - 1)`. + If set to 'value', `start` corresponds to the index value/label of the first predicted point. Will raise + an error if the value is not in `series`' index. Default: `'value'` num_samples Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models. + verbose + Whether to print progress. + show_warnings + Whether to show warnings related to historical forecasts optimization, or parameters `start` and + `train_length`. + enable_optimization + Whether to use the optimized version of historical_forecasts when supported and available. return_model_prediction - Boolean value indicating if the prediction of the model should be returned along the anomaly score - Default: False + Whether to return the forecasting model prediction along with the anomaly scores. Returns ------- - Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]] - Anomaly scores series generated by the anomaly model scorers - - - ``TimeSeries`` if `series` is a series, and the anomaly model contains one scorer. - - ``Sequence[TimeSeries]`` - - * if `series` is a series, and the anomaly model contains multiple scorers, - returns one series per scorer. - * if `series` is a sequence, and the anomaly model contains one scorer, - returns one series per series in the sequence. - - ``Sequence[Sequence[TimeSeries]]`` if `series` is a sequence, and the anomaly - model contains multiple scorers. The outer sequence is over the series, - and inner sequence is over the scorers. - """ - raise_if_not( - type(return_model_prediction) is bool, # noqa: E721 - f"`return_model_prediction` must be Boolean, found type: {type(return_model_prediction)}.", - ) - - raise_if_not( - self.model._fit_called, - f"Model {self.model} has not been trained. Please call ``.fit()``.", - ) - - list_series = _to_list(series) - - list_past_covariates = self._prepare_covariates( - past_covariates, list_series, "past" - ) - list_future_covariates = self._prepare_covariates( - future_covariates, list_series, "future" - ) - - # check if the window size of the scorers are lower than the max size allowed - self._check_window_size(list_series, start) - - list_pred = [] - for idx, s in enumerate(list_series): - - if list_past_covariates is not None: - past_covariates = list_past_covariates[idx] - - if list_future_covariates is not None: - future_covariates = list_future_covariates[idx] - - list_pred.append( - self._predict_with_forecasting( - s, - past_covariates=past_covariates, - future_covariates=future_covariates, - forecast_horizon=forecast_horizon, - start=start, - num_samples=num_samples, - ) - ) - - scores = list( - zip( - *[ - sc.score_from_prediction(list_series, list_pred) - for sc in self.scorers - ] - ) - ) - - if len(scores) == 1 and not isinstance(series, Sequence): - # there's only one series - scores = scores[0] - if len(scores) == 1: - # there's only one scorer - scores = scores[0] - - if len(list_pred) == 1: - list_pred = list_pred[0] - - if return_model_prediction: - return scores, list_pred - else: - return scores - - def _check_window_size( - self, series: Sequence[TimeSeries], start: Union[pd.Timestamp, float, int] - ): - """Checks if the parameters `window` of the scorers are smaller than the maximum window size allowed. - The maximum size allowed is equal to the output length of the .historical_forecast() applied on `series`. - It is defined by the parameter `start` and the series’ length. + TimeSeries + A single `TimeSeries` for a single `series` with a single anomaly scorers. + Sequence[TimeSeries] + A sequence of `TimeSeries` for: - Parameters - ---------- - series - The series given to the .historical_forecast() - start - Parameter of the .historical_forecast(): first point of time at which a prediction is computed - for a future time. + - a single `series` with multiple anomaly scorers. + - a sequence of `series` with a single anomaly scorer. + Sequence[Sequence[TimeSeries]] + A sequence of sequences of `TimeSeries` for a sequence of `series` and multiple anomaly scorers. + The outer sequence is over the series, and inner sequence is over the scorers. """ - # biggest window of the anomaly_model scorers - max_window = max(scorer.window for scorer in self.scorers) - - for s in series: - max_possible_window = ( - len(s.drop_before(s.get_timestamp_at_point(start))) + 1 - ) - raise_if_not( - max_window <= max_possible_window, - f"Window size {max_window} is greater than the targeted series length {max_possible_window}," - + f" must be lower or equal. Reduce window size, or reduce start value (start: {start}).", - ) + return super().score( + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + forecast_horizon=forecast_horizon, + start=start, + start_format=start_format, + num_samples=num_samples, + verbose=verbose, + show_warnings=show_warnings, + enable_optimization=enable_optimization, + return_model_prediction=return_model_prediction, + ) - def _predict_with_forecasting( + def predict_series( self, - series: TimeSeries, - past_covariates: Optional[TimeSeries] = None, - future_covariates: Optional[TimeSeries] = None, + series: Sequence[TimeSeries], + past_covariates: Optional[Sequence[TimeSeries]] = None, + future_covariates: Optional[Sequence[TimeSeries]] = None, forecast_horizon: int = 1, start: Union[pd.Timestamp, float, int] = None, + start_format: Literal["position", "value"] = "value", num_samples: int = 1, - ) -> TimeSeries: - """Compute the historical forecasts that would have been obtained by this model on the `series`. + verbose: bool = False, + show_warnings: bool = True, + enable_optimization: bool = True, + ) -> Sequence[TimeSeries]: + """Computes the historical forecasts that would have been obtained by the underlying forecasting model + on `series`. - `retrain` is set to False if possible (this is not supported by all models). If set to True, it will always + `retrain` is set to `False` if possible (this is not supported by all models). If set to `True`, it will always re-train the model on the entire available history, Parameters ---------- series - The target time series to use to successively train and evaluate the historical forecasts. + The sequence of series to score on. past_covariates - An optional past-observed covariate series or sequence of series. This applies only if the model - supports past covariates. + Optionally, a sequence of past-observed covariate series or sequence of series. This applies only to + models that support past covariates. future_covariates - An optional future-known covariate series or sequence of series. This applies only if the model - supports future covariates. + Optionally, a sequence of future-known covariate series or sequence of series. This applies only to + models that support future covariates. forecast_horizon - The forecast horizon for the predictions + The forecast horizon for the predictions. start The first point of time at which a prediction is computed for a future time. - This parameter supports 3 different data types: ``float``, ``int`` and ``pandas.Timestamp``. - In the case of ``float``, the parameter will be treated as the proportion of the time series + This parameter supports 3 different data types: `float`, `int` and `pandas.Timestamp`. + In the case of `float`, the parameter will be treated as the proportion of the time series that should lie before the first prediction point. - In the case of ``int``, the parameter will be treated as an integer index to the time index of + In the case of `int`, the parameter will be treated as an integer index to the time index of `series` that will be used as first prediction time. - In case of ``pandas.Timestamp``, this time stamp will be used to determine the first prediction time + In case of `pandas.Timestamp`, this time stamp will be used to determine the first prediction time directly. + start_format + Defines the `start` format. Only effective when `start` is an integer and `series` is indexed with a + `pd.RangeIndex`. + If set to 'position', `start` corresponds to the index position of the first predicted point and can range + from `(-len(series), len(series) - 1)`. + If set to 'value', `start` corresponds to the index value/label of the first predicted point. Will raise + an error if the value is not in `series`' index. Default: `'value'` num_samples Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models. + verbose + Whether to print progress. + show_warnings + Whether to show warnings related to historical forecasts optimization, or parameters `start` and + `train_length`. + enable_optimization + Whether to use the optimized version of historical_forecasts when supported and available. Returns ------- - TimeSeries - Single ``TimeSeries`` instance created from the last point of each individual forecast. + Sequence[TimeSeries] + A sequence of `TimeSeries` with the historical forecasts for each series (with `last_points_only=True`). """ + if not self.model._fit_called: + raise_log( + ValueError( + f"Forecasting `model` {self.model} has not been trained yet. Call `fit()` before." + ), + logger=logger, + ) + return self.model.historical_forecasts( + series, + past_covariates=past_covariates, + future_covariates=future_covariates, + forecast_horizon=forecast_horizon, + stride=1, + retrain=False, + last_points_only=True, + start=start, + start_format=start_format, + num_samples=num_samples, + verbose=verbose, + show_warnings=show_warnings, + enable_optimization=enable_optimization, + ) - # TODO: raise an exception. We only support models that do not need retrain - # checks if model accepts to not be retrained in the historical_forecasts() - if self.model._supports_non_retrainable_historical_forecasts: - # default: set to False. Allows a faster computation. - retrain = False - else: - retrain = True - - historical_forecasts_param = { - "past_covariates": past_covariates, - "future_covariates": future_covariates, - "forecast_horizon": forecast_horizon, - "start": start, - "retrain": retrain, - "num_samples": num_samples, - "stride": 1, - "last_points_only": True, - "verbose": False, - } - - return self.model.historical_forecasts(series, **historical_forecasts_param) - - def eval_accuracy( + def eval_metric( self, - actual_anomalies: Union[TimeSeries, Sequence[TimeSeries]], + anomalies: Union[TimeSeries, Sequence[TimeSeries]], series: Union[TimeSeries, Sequence[TimeSeries]], past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, forecast_horizon: int = 1, - start: Union[pd.Timestamp, float, int] = 0.5, + start: Union[pd.Timestamp, float, int] = None, + start_format: Literal["position", "value"] = "value", num_samples: int = 1, - metric: str = "AUC_ROC", + verbose: bool = False, + show_warnings: bool = True, + enable_optimization: bool = True, + metric: Literal["AUC_ROC", "AUC_PR"] = "AUC_ROC", ) -> Union[ Dict[str, float], Dict[str, Sequence[float]], @@ -592,83 +350,236 @@ def eval_accuracy( ]: """Compute the accuracy of the anomaly scores computed by the model. - Predicts the `series` with the forecasting model, and applies the - scorer(s) on the predicted time series and the given target time series. Returns the - score(s) of an agnostic threshold metric, based on the anomaly score given by the scorer(s). + Predicts the `series` with the forecasting model, and applies the scorer(s) on the predicted time series + and the given target time series. Returns the score(s) of an agnostic threshold metric, based on the anomaly + score given by the scorer(s). Parameters ---------- - actual_anomalies - The (sequence of) ground truth of the anomalies (1 if it is an anomaly and 0 if not) + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). series The (sequence of) series to predict anomalies on. past_covariates - An optional past-observed covariate series or sequence of series. This applies only - if the model supports past covariates. + Optionally, a (sequence of) past-observed covariate series or sequence of series. This applies only to + models that support past covariates. future_covariates - An optional future-known covariate series or sequence of series. This applies only - if the model supports future covariates. + Optionally, a (sequence of) future-known covariate series or sequence of series. This applies only to + models that support future covariates. forecast_horizon The forecast horizon for the predictions. start The first point of time at which a prediction is computed for a future time. - This parameter supports 3 different data types: ``float``, ``int`` and ``pandas.Timestamp``. - In the case of ``float``, the parameter will be treated as the proportion of the time series + This parameter supports 3 different data types: `float`, `int` and `pandas.Timestamp`. + In the case of `float`, the parameter will be treated as the proportion of the time series that should lie before the first prediction point. - In the case of ``int``, the parameter will be treated as an integer index to the time index of + In the case of `int`, the parameter will be treated as an integer index to the time index of `series` that will be used as first prediction time. - In case of ``pandas.Timestamp``, this time stamp will be used to determine the first prediction time + In case of `pandas.Timestamp`, this time stamp will be used to determine the first prediction time directly. + start_format + Defines the `start` format. Only effective when `start` is an integer and `series` is indexed with a + `pd.RangeIndex`. + If set to 'position', `start` corresponds to the index position of the first predicted point and can range + from `(-len(series), len(series) - 1)`. + If set to 'value', `start` corresponds to the index value/label of the first predicted point. Will raise + an error if the value is not in `series`' index. Default: `'value'` num_samples Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for deterministic models. + verbose + Whether to print progress. + show_warnings + Whether to show warnings related to historical forecasts optimization, or parameters `start` and + `train_length`. + enable_optimization + Whether to use the optimized version of historical_forecasts when supported and available. metric - Optionally, Scoring function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" + The name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". Returns ------- - Union[Dict[str, float], Dict[str, Sequence[float]], Sequence[Dict[str, float]], - Sequence[Dict[str, Sequence[float]]]] - Score for the time series. - A (sequence of) dictionary with the keys being the name of the scorers, and the values being the - metric results on the (sequence of) `series`. If the scorer treats every dimension independently - (by nature of the scorer or if its component_wise is set to True), the values of the dictionary - will be a Sequence containing the score for each dimension. + Dict[str, float] + A dictionary with the resulting metrics for single univariate `series`, with keys representing the + anomaly scorer(s), and values representing the metric values. + Dict[str, Sequence[float]] + Same as for `Dict[str, float]` but for multivariate `series`, and anomaly scorers that treat series + components/columns independently (by nature of the scorer or if `component_wise=True`). + Sequence[Dict[str, float]] + Same as for `Dict[str, float]` but for a sequence of univariate series. + Sequence[Dict[str, Sequence[float]]] + Same as for `Dict[str, float]` but for a sequence of multivariate series. """ - - list_actual_anomalies = _to_list(actual_anomalies) - list_series = _to_list(series) - - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_series]), - "all input `series` must be of type Timeseries.", - ) - - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_actual_anomalies]), - "all input `actual_anomalies` must be of type Timeseries.", - ) - - _assert_same_length(list_actual_anomalies, list_series) - self._check_univariate(list_actual_anomalies) - - list_anomaly_scores = self.score( - series=list_series, + return super().eval_metric( + anomalies=anomalies, + series=series, past_covariates=past_covariates, future_covariates=future_covariates, forecast_horizon=forecast_horizon, start=start, + start_format=start_format, num_samples=num_samples, + verbose=verbose, + show_warnings=show_warnings, + enable_optimization=enable_optimization, + metric=metric, ) - acc_anomaly_scores = self._eval_accuracy_from_scores( - list_actual_anomalies=list_actual_anomalies, - list_anomaly_scores=list_anomaly_scores, + def show_anomalies( + self, + series: TimeSeries, + past_covariates: Optional[TimeSeries] = None, + future_covariates: Optional[TimeSeries] = None, + forecast_horizon: int = 1, + start: Union[pd.Timestamp, float, int] = None, + start_format: Literal["position", "value"] = "value", + num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, + enable_optimization: bool = True, + anomalies: TimeSeries = None, + names_of_scorers: Union[str, Sequence[str]] = None, + title: str = None, + metric: Optional[Literal["AUC_ROC", "AUC_PR"]] = None, + **score_kwargs, + ): + """Plot the results of the anomaly model. + + Computes the score on the given series input and shows the different anomaly scores with respect to time. + + The plot will be composed of the following: + + - the series itself with the output of the forecasting model. + - the anomaly score for each scorer. The scorers with different windows will be separated. + - the actual anomalies, if given. + + It is possible to: + + - add a title to the figure with the parameter `title` + - give personalized names for the scorers with `names_of_scorers` + - show the results of a metric for each anomaly score (AUC_ROC or AUC_PR), if the actual anomalies are provided. + + Parameters + ---------- + series + The series to visualize anomalies from. + past_covariates + Optionally, a past-observed covariate series or sequence of series. This applies only to + models that support past covariates. + future_covariates + Optionally, a future-known covariate series or sequence of series. This applies only to models that support + future covariates. + forecast_horizon + The forecast horizon for the predictions. + start + The first point of time at which a prediction is computed for a future time. + This parameter supports 3 different data types: `float`, `int` and `pandas.Timestamp`. + In the case of `float`, the parameter will be treated as the proportion of the time series + that should lie before the first prediction point. + In the case of `int`, the parameter will be treated as an integer index to the time index of + `series` that will be used as first prediction time. + In case of `pandas.Timestamp`, this time stamp will be used to determine the first prediction time + directly. + start_format + Defines the `start` format. Only effective when `start` is an integer and `series` is indexed with a + `pd.RangeIndex`. + If set to 'position', `start` corresponds to the index position of the first predicted point and can range + from `(-len(series), len(series) - 1)`. + If set to 'value', `start` corresponds to the index value/label of the first predicted point. Will raise + an error if the value is not in `series`' index. Default: `'value'` + num_samples + Number of times a prediction is sampled from a probabilistic model. Should be left set to 1 for + deterministic models. + verbose + Whether to print progress. + show_warnings + Whether to show warnings related to historical forecasts optimization, or parameters `start` and + `train_length`. + enable_optimization + Whether to use the optimized version of historical_forecasts when supported and available. + anomalies + The ground truth of the anomalies (1 if it is an anomaly and 0 if not). + names_of_scorers + Name of the scores. Must be a list of length equal to the number of scorers in the anomaly_model. + title + Title of the figure. + metric + Optionally, the name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". + score_kwargs + parameters for the `score()` method. + """ + predict_kwargs = { + "past_covariates": past_covariates, + "future_covariates": future_covariates, + "forecast_horizon": forecast_horizon, + "start": start, + "start_format": start_format, + "num_samples": num_samples, + "verbose": verbose, + "show_warnings": show_warnings, + "enable_optimization": enable_optimization, + } + return super().show_anomalies( + series=series, + anomalies=anomalies, + predict_kwargs=predict_kwargs, + names_of_scorers=names_of_scorers, + title=title, metric=metric, + **score_kwargs, ) - if len(acc_anomaly_scores) == 1 and not isinstance(series, Sequence): - return acc_anomaly_scores[0] - else: - return acc_anomaly_scores + def _fit_core( + self, + series: Sequence[TimeSeries], + past_covariates: Optional[Sequence[TimeSeries]] = None, + future_covariates: Optional[Sequence[TimeSeries]] = None, + allow_model_training: bool = False, + forecast_horizon: int = 1, + start: Union[pd.Timestamp, float, int] = 0.5, + start_format: Literal["position", "value"] = "value", + num_samples: int = 1, + verbose: bool = False, + show_warnings: bool = True, + enable_optimization: bool = True, + **model_fit_kwargs, + ): + """Fit the forecasting model (if applicable) and scorers.""" + # fit forecasting model + if allow_model_training: + self.model._fit_wrapper( + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + **model_fit_kwargs, + ) + elif not self.model._fit_called: + raise_log( + ValueError( + f"With `allow_model_training=False`, the underlying model `{self.model.__class__.__name__}` " + f"must have already been trained. Either train it before or set `allow_model_training=True` " + f"(model will trained from scratch on the provided series)." + ), + logger=logger, + ) + + # generate the historical_forecast() prediction of the model on the train set + if self.scorers_are_trainable: + historical_forecasts = self.predict_series( + series=series, + past_covariates=past_covariates, + future_covariates=future_covariates, + forecast_horizon=forecast_horizon, + start=start, + start_format=start_format, + num_samples=num_samples, + verbose=verbose, + show_warnings=show_warnings, + enable_optimization=enable_optimization, + ) + # fit the scorers + self._fit_scorers(series, historical_forecasts) diff --git a/darts/ad/detectors/__init__.py b/darts/ad/detectors/__init__.py index 7f33a87cab..41bac61c1a 100644 --- a/darts/ad/detectors/__init__.py +++ b/darts/ad/detectors/__init__.py @@ -2,20 +2,19 @@ Anomaly Detectors ----------------- -Detectors provide binary anomaly classification on time series. -They can typically be used to transform anomaly scores time series into binary anomaly time series. +Detectors provide binary anomaly classification on time series. They can typically be used to transform anomaly scores +time series into binary anomaly time series. -Some detectors are trainable. For instance, ``QuantileDetector`` emits a binary anomaly for -every time step where the observed value(s) are beyond the quantile(s) observed -on the training series. +Some detectors are trainable. For instance, :class:`~darts.ad.detectors.quantile_detector.QuantileDetector` emits a +binary anomaly for every time step where the observed value(s) are beyond the quantile(s) observed on the training +series. -The main functions are ``fit()`` (for the trainable detectors), ``detect()`` and ``eval_accuracy()``. +The main functions are `fit()` (for the trainable detectors), `detect()` and `eval_metric()`. -``fit()`` trains the detector over the history of one or multiple time series. It can -for instance be called on series containing anomaly scores (or even raw values) during normal times. -The function ``detect()`` takes an anomaly score time series as input, and applies the detector -to obtain binary predictions. The function ``eval_accuracy()`` returns the accuracy metric -("accuracy", "precision", "recall" or "f1") between a binary prediction time series and some known +`fit()` trains the detector over the history of one or multiple time series. It can for instance be called on series +containing anomaly scores (or even raw values) during normal times. The function `detect()` takes an anomaly score +time series as input, and applies the detector to obtain binary predictions. The function `eval_metric()` returns +the accuracy metric ("accuracy", "precision", "recall" or "f1") between a binary prediction time series and some known binary ground truth time series indicating the presence of anomalies. """ diff --git a/darts/ad/detectors/detectors.py b/darts/ad/detectors/detectors.py index 88f3b3cc7a..d47af35237 100644 --- a/darts/ad/detectors/detectors.py +++ b/darts/ad/detectors/detectors.py @@ -4,124 +4,114 @@ # TODO: # - check error message and add name of variable in the message error -# - rethink the positionning of fun _check_param() # - add possibility to input a list of param rather than only one number # - add more complex detectors # - create an ensemble fittable detector +import sys from abc import ABC, abstractmethod -from typing import Any, Sequence, Union +from typing import Any, List, Optional, Sequence, Tuple, Union + +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal +if sys.version_info >= (3, 11): + from typing import Self +else: + from typing_extensions import Self + +import numpy as np from darts import TimeSeries -from darts.ad.utils import eval_accuracy_from_binary_prediction -from darts.logging import raise_if_not +from darts.ad.utils import ( + _assert_fit_called, + _check_input, + eval_metric_from_binary_prediction, +) +from darts.logging import get_logger, raise_log +from darts.utils.ts_utils import series2seq + +logger = get_logger(__name__) class Detector(ABC): """Base class for all detectors""" def __init__(self, *args: Any, **kwargs: Any) -> None: - pass + self.width_trained_on: Optional[int] = None def detect( self, series: Union[TimeSeries, Sequence[TimeSeries]], + name: str = "series", ) -> Union[TimeSeries, Sequence[TimeSeries]]: """Detect anomalies on given time series. Parameters ---------- series - series on which to detect anomalies. + The (sequence of) series on which to detect anomalies. + name + The name of `series`. Returns ------- Union[TimeSeries, Sequence[TimeSeries]] - binary prediciton (1 if considered as an anomaly, 0 if not) + binary prediction (1 if considered as an anomaly, 0 if not) """ - - list_series = [series] if not isinstance(series, Sequence) else series - - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_series]), - "all series in `series` must be of type TimeSeries.", + called_with_single_series = isinstance(series, TimeSeries) + series = _check_input( + series, + name=name, + width_expected=self.width_trained_on, + check_deterministic=True, ) - - raise_if_not( - all([s.is_deterministic for s in list_series]), - "all series in `series` must be deterministic (number of samples equal to 1).", - ) - detected_series = [] - for s in list_series: - detected_series.append(self._detect_core(s)) + for s in series: + detected_series.append(self._detect_core(s, name=name)) + return detected_series[0] if called_with_single_series else detected_series - if len(detected_series) == 1 and not isinstance(series, Sequence): - return detected_series[0] - else: - return detected_series - - @abstractmethod - def _detect_core(self, input: Any) -> Any: - pass - - def eval_accuracy( + def eval_metric( self, - actual_anomalies: Union[TimeSeries, Sequence[TimeSeries]], - anomaly_score: Union[TimeSeries, Sequence[TimeSeries]], + anomalies: Union[TimeSeries, Sequence[TimeSeries]], + pred_scores: Union[TimeSeries, Sequence[TimeSeries]], window: int = 1, - metric: str = "recall", + metric: Literal["recall", "precision", "f1", "accuracy"] = "recall", ) -> Union[float, Sequence[float], Sequence[Sequence[float]]]: """Score the results against true anomalies. Parameters ---------- - actual_anomalies - The ground truth of the anomalies (1 if it is an anomaly and 0 if not). - anomaly_score - Series indicating how anomoulous each window of size w is. + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). + pred_scores + The (sequence of) of estimated anomaly score series indicating how anomalous each window of size w is. window - Integer value indicating the number of past samples each point represents - in the anomaly_score. + Integer value indicating the number of past samples each point represents in the `pred_scores`. metric - Metric function to use. Must be one of "recall", "precision", - "f1", and "accuracy". - Default: "recall" + The name of the metric function to use. Must be one of "recall", "precision", "f1", and "accuracy". + Default: "recall". Returns ------- Union[float, Sequence[float], Sequence[Sequence[float]]] Metric results for each anomaly score """ - - if isinstance(anomaly_score, Sequence): - raise_if_not( - all([isinstance(s, TimeSeries) for s in anomaly_score]), - "all series in `anomaly_score` must be of type TimeSeries.", - ) - - raise_if_not( - all([s.is_deterministic for s in anomaly_score]), - "all series in `anomaly_score` must be deterministic (number of samples equal to 1).", - ) - else: - raise_if_not( - isinstance(anomaly_score, TimeSeries), - f"Input `anomaly_score` must be of type TimeSeries, found {type(anomaly_score)}.", - ) - - raise_if_not( - anomaly_score.is_deterministic, - "Input `anomaly_score` must be deterministic (number of samples equal to 1).", - ) - - return eval_accuracy_from_binary_prediction( - actual_anomalies, self.detect(anomaly_score), window, metric + return eval_metric_from_binary_prediction( + anomalies=anomalies, + pred_anomalies=self.detect(pred_scores), + window=window, + metric=metric, ) + @abstractmethod + def _detect_core(self, series: TimeSeries, name: str = "series") -> TimeSeries: + pass + class FittableDetector(Detector): - """Base class of Detectors that need training.""" + """Base class of Detectors that require training.""" def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) @@ -130,75 +120,37 @@ def __init__(self, *args: Any, **kwargs: Any) -> None: def detect( self, series: Union[TimeSeries, Sequence[TimeSeries]], + name: str = "series", ) -> Union[TimeSeries, Sequence[TimeSeries]]: - """Detect anomalies on given time series. - - Parameters - ---------- - series - series on which to detect anomalies. - - Returns - ------- - Union[TimeSeries, Sequence[TimeSeries]] - binary prediciton (1 if considered as an anomaly, 0 if not) - """ - - list_series = [series] if not isinstance(series, Sequence) else series - - raise_if_not( - self._fit_called, - "The Detector has not been fitted yet. Call `fit()` first.", - ) - - raise_if_not( - all([self.width_trained_on == s.width for s in list_series]), - "all series in `series` must have the same number of components as the data " - + "used for training the detector model, number of components in training: " - + f" {self.width_trained_on}.", - ) - - return super().detect(series) - - @abstractmethod - def _fit_core(self, input: Any) -> Any: - pass + _assert_fit_called(self._fit_called, name="Detector") + return super().detect(series, name=name) - def fit(self, series: Union[TimeSeries, Sequence[TimeSeries]]) -> None: + def fit(self, series: Union[TimeSeries, Sequence[TimeSeries]]) -> Self: """Trains the detector on the given time series. Parameters ---------- series - Time series to be used to train the detector. + Time (sequence of) series to be used to train the detector. Returns ------- self Fitted Detector. """ - - list_series = [series] if not isinstance(series, Sequence) else series - - raise_if_not( - all([isinstance(s, TimeSeries) for s in list_series]), - "all series in `series` must be of type TimeSeries.", + width = series2seq(series)[0].width + series = _check_input( + series, + name="series", + width_expected=width, + check_deterministic=True, + check_binary=False, + check_multivariate=False, ) - - raise_if_not( - all([s.is_deterministic for s in list_series]), - "all series in `series` must be deterministic (number of samples equal to 1).", - ) - - self.width_trained_on = list_series[0].width - - raise_if_not( - all([s.width == self.width_trained_on for s in list_series]), - "all series in `series` must have the same number of components.", - ) - + self.width_trained_on = width + self._fit_core(series) self._fit_called = True - return self._fit_core(list_series) + return self def fit_detect( self, series: Union[TimeSeries, Sequence[TimeSeries]] @@ -216,4 +168,124 @@ def fit_detect( Binary prediciton (1 if considered as an anomaly, 0 if not) """ self.fit(series) - return self.detect(series) + return self.detect(series, name="series") + + @abstractmethod + def _fit_core(self, series: Sequence[TimeSeries]) -> None: + pass + + +class _BoundedDetectorMixin(ABC): + """ + A class containing functions supporting bounds-based detection, to be used as a mixin for some + `Detector` subclasses. + """ + + @staticmethod + def _prepare_boundaries( + lower_bound_name: str, + upper_bound_name: str, + lower_bound: Optional[Union[Sequence[float], float]] = None, + upper_bound: Optional[Union[Sequence[float], float]] = None, + ) -> Tuple[List[Optional[float]], List[Optional[float]]]: + """ + Process the boundaries argument and perform some sanity checks + + Parameters + ---------- + lower_bound_name + Name of the lower bound + upper_bound_name + Name of the upper bound + lower_bound + (Sequence of) numerical bound below which a value is regarded as anomaly. + If a sequence, must match the dimensionality of the series + this detector is applied to. + upper_bound + (Sequence of) numerical bound above which a value is regarded as anomaly. + If a sequence, must match the dimensionality of the series + this detector is applied to. + + Returns + ------- + lower_bound + Lower bounds, as a list of values (at least one not None value) + upper_bound + Upper bounds, as a list of values (at least one not None value) + """ + if lower_bound is None and upper_bound is None: + raise_log( + ValueError( + f"`{lower_bound_name} and `{upper_bound_name}` cannot both be `None`." + ), + logger=logger, + ) + + def _prep_boundaries(boundaries) -> List[Optional[float]]: + """Convert boundaries to List""" + return ( + boundaries.tolist() + if isinstance(boundaries, np.ndarray) + else ( + [boundaries] if not isinstance(boundaries, Sequence) else boundaries + ) + ) + + # convert to list + lower_bound = _prep_boundaries(lower_bound) + upper_bound = _prep_boundaries(upper_bound) + + if all([lo is None for lo in lower_bound]) and all( + [hi is None for hi in upper_bound] + ): + raise_log( + ValueError("All provided upper and lower bounds values are None."), + logger=logger, + ) + + # match the lengths of the boundaries + lower_bound = ( + lower_bound * len(upper_bound) if len(lower_bound) == 1 else lower_bound + ) + upper_bound = ( + upper_bound * len(lower_bound) if len(upper_bound) == 1 else upper_bound + ) + + if not len(lower_bound) == len(upper_bound): + raise_log( + ValueError( + f"Parameters `{lower_bound_name}` and `{upper_bound_name}` " + f"must be of the same length `n`, found " + f"`{lower_bound_name}`: n={len(lower_bound)} and " + f"`{upper_bound_name}`: n={len(upper_bound)}." + ), + logger=logger, + ) + if not all( + [ + lb is None or ub is None or lb <= ub + for (lb, ub) in zip(lower_bound, upper_bound) + ] + ): + raise_log( + ValueError( + f"All values in `{lower_bound_name}` must be lower or equal" + f"to their corresponding value in `{upper_bound_name}`." + ), + logger=logger, + ) + return lower_bound, upper_bound + + @staticmethod + def _expand_threshold(series: TimeSeries, threshold: List[float]) -> List[float]: + return threshold * series[0].width if len(threshold) == 1 else threshold + + @property + @abstractmethod + def low_threshold(self): + pass + + @property + @abstractmethod + def high_threshold(self): + pass diff --git a/darts/ad/detectors/quantile_detector.py b/darts/ad/detectors/quantile_detector.py index a6b8c52338..f2ae7fbe5d 100644 --- a/darts/ad/detectors/quantile_detector.py +++ b/darts/ad/detectors/quantile_detector.py @@ -7,33 +7,35 @@ computed as quantiles of historical data when the detector is fitted. """ -from typing import Sequence, Union +from typing import Optional, Sequence, Union import numpy as np -from darts.ad.detectors.detectors import FittableDetector +from darts.ad.detectors.detectors import FittableDetector, _BoundedDetectorMixin from darts.ad.detectors.threshold_detector import ThresholdDetector -from darts.logging import raise_if, raise_if_not +from darts.logging import get_logger, raise_log from darts.timeseries import TimeSeries +logger = get_logger(__name__) -class QuantileDetector(FittableDetector): + +class QuantileDetector(FittableDetector, _BoundedDetectorMixin): def __init__( self, low_quantile: Union[Sequence[float], float, None] = None, high_quantile: Union[Sequence[float], float, None] = None, ) -> None: - """ - Flags values that are either - below or above the `low_quantile` and `high_quantile` - quantiles of historical data, respectively. + """Quantile Detector - If a single value is provided for `low_quantile` or `high_quantile`, this same - value will be used across all components of the series. + Flags values that are either below or above the `low_quantile` and `high_quantile` quantiles + of historical data, respectively. + + If a single value is provided for `low_quantile` or `high_quantile`, this same value will be + used across all components of the series. If sequences of values are given for the parameters `low_quantile` and/or `high_quantile`, they must be of the same length, matching the dimensionality of the series passed - to ``fit()``, or have a length of 1. In the latter case, this single value will be used + to `fit()`, or have a length of 1. In the latter case, this single value will be used across all components of the series. If either `low_quantile` or `high_quantile` is None, the corresponding bound will not be used. @@ -49,96 +51,45 @@ def __init__( (Sequence of) quantile of historical data above which a value is regarded as anomaly. Must be between 0 and 1. If a sequence, must match the dimensionality of the series this detector is applied to. - - Attributes - ---------- - low_threshold - The (sequence of) lower quantile values. - high_threshold - The (sequence of) upper quantile values. """ super().__init__() - - raise_if( - low_quantile is None and high_quantile is None, - "At least one parameter must be not None (`low` and `high` are both None).", + low_quantile, high_quantile = self._prepare_boundaries( + lower_bound=low_quantile, + upper_bound=high_quantile, + lower_bound_name="low_quantile", + upper_bound_name="high_quantile", ) - - def _prep_quantile(q): - return ( - q.tolist() - if isinstance(q, np.ndarray) - else [q] if not isinstance(q, Sequence) else q - ) - - low = _prep_quantile(low_quantile) - high = _prep_quantile(high_quantile) - - for q in (low, high): - raise_if_not( - all([x is None or 0 <= x <= 1 for x in q]), - "Quantiles must be between 0 and 1, or None.", - ) - - self.low_quantile = low * len(high) if len(low) == 1 else low - self.high_quantile = high * len(low) if len(high) == 1 else high - - # the quantiles parameters are now sequences of the same length, - # possibly containing some None values, but at least one non-None value - + for q in (low_quantile, high_quantile): + if not all([x is None or 0 <= x <= 1 for x in q]): + raise_log( + ValueError("All quantiles must be between 0 and 1, or None."), + logger=logger, + ) + self.low_quantile = low_quantile + self.high_quantile = high_quantile # We'll use an inner Threshold detector once the quantiles are fitted - self.detector = None - - # A few more checks: - raise_if_not( - len(self.low_quantile) == len(self.high_quantile), - "Parameters `low_quantile` and `high_quantile` must be of the same length," - + f" found `low`: {len(self.low_quantile)} and `high`: {len(self.high_quantile)}.", - ) - - raise_if( - all([lo is None for lo in self.low_quantile]) - and all([hi is None for hi in self.high_quantile]), - "All provided quantile values are None.", - ) - - raise_if_not( - all( - low <= high - for (low, high) in zip(self.low_quantile, self.high_quantile) - if ((low is not None) and (high is not None)) - ), - "all values in `low_quantile` must be lower than or equal" - + "to their corresponding value in `high_quantile`.", - ) - - def _fit_core(self, list_series: Sequence[TimeSeries]) -> None: + self.detector: Optional[ThresholdDetector] = None + def _fit_core(self, series: Sequence[TimeSeries]) -> None: # if len(low) > 1 and len(high) > 1, then check it matches input width: - raise_if( - len(self.low_quantile) > 1 - and len(self.low_quantile) != list_series[0].width, - "The number of components of input must be equal to the number" - + " of values given for `high_quantile` or/and `low_quantile`. Found number of " - + f"components equal to {list_series[0].width} and expected {len(self.low_quantile)}.", - ) + if len(self.low_quantile) > 1 and len(self.low_quantile) != series[0].width: + raise_log( + ValueError( + "The number of components of input must be equal to the number " + "of values given for `high_quantile` or/and `low_quantile`. Found number of " + f"components equal to {series[0].width} and expected {len(self.low_quantile)}." + ), + logger=logger, + ) # otherwise, make them the right length - self.low_quantile = ( - self.low_quantile * list_series[0].width - if len(self.low_quantile) == 1 - else self.low_quantile - ) - self.high_quantile = ( - self.high_quantile * list_series[0].width - if len(self.high_quantile) == 1 - else self.high_quantile - ) + self.low_quantile = self._expand_threshold(series[0], self.low_quantile) + self.high_quantile = self._expand_threshold(series[0], self.high_quantile) - # concatenate everything along time axis + # concatenate everything along the time axis np_series = np.concatenate( - [series.all_values(copy=False) for series in list_series], axis=0 + [series.all_values(copy=False) for series in series], axis=0 ) # move sample dimension to position 1 @@ -150,20 +101,26 @@ def _fit_core(self, list_series: Sequence[TimeSeries]) -> None: # Compute 2 thresholds (low, high) for each component: # TODO: we could make this more efficient when low_quantile or high_quantile contain a single value - self.low_threshold = [ + low_threshold = [ np.quantile(np_series[:, i], q=lo, axis=0) if lo is not None else None for i, lo in enumerate(self.low_quantile) ] - self.high_threshold = [ + high_threshold = [ np.quantile(np_series[:, i], q=hi, axis=0) if hi is not None else None for i, hi in enumerate(self.high_quantile) ] self.detector = ThresholdDetector( - low_threshold=self.low_threshold, high_threshold=self.high_threshold + low_threshold=low_threshold, high_threshold=high_threshold ) - return self + def _detect_core(self, series: TimeSeries, name: str = "series") -> TimeSeries: + return self.detector.detect(series, name=name) + + @property + def low_threshold(self): + return self.detector.low_threshold if self.detector is not None else None - def _detect_core(self, series: TimeSeries) -> TimeSeries: - return self.detector.detect(series) + @property + def high_threshold(self): + return self.detector.high_threshold if self.detector is not None else None diff --git a/darts/ad/detectors/threshold_detector.py b/darts/ad/detectors/threshold_detector.py index c8863f8529..7e3affd007 100644 --- a/darts/ad/detectors/threshold_detector.py +++ b/darts/ad/detectors/threshold_detector.py @@ -11,18 +11,21 @@ import numpy as np -from darts.ad.detectors.detectors import Detector -from darts.logging import raise_if, raise_if_not +from darts.ad.detectors.detectors import Detector, _BoundedDetectorMixin +from darts.logging import get_logger, raise_log from darts.timeseries import TimeSeries +logger = get_logger(__name__) -class ThresholdDetector(Detector): + +class ThresholdDetector(Detector, _BoundedDetectorMixin): def __init__( self, low_threshold: Union[int, float, Sequence[float], None] = None, high_threshold: Union[int, float, Sequence[float], None] = None, ) -> None: - """ + """Threshold Detector + Flags values that are either below or above the `low_threshold` and `high_threshold`, respectively. @@ -31,7 +34,7 @@ def __init__( If sequences of values are given for the parameters `low_threshold` and/or `high_threshold`, they must be of the same length, matching the dimensionality of the series passed - to ``detect()``, or have a length of 1. In the latter case, this single value will be used + to `detect()`, or have a length of 1. In the latter case, this single value will be used across all components of the series. If either `low_threshold` or `high_threshold` is None, the corresponding bound will not be used. @@ -40,88 +43,39 @@ def __init__( Parameters ---------- low_threshold - (Sequence of) lower bounds. - If a sequence, must match the dimensionality of the series - this detector is applied to. + (Sequence of) lower bounds. If a sequence, must match the dimensionality of the series this + detector is applied to. high_threshold - (Sequence of) upper bounds. - If a sequence, must match the dimensionality of the series - this detector is applied to. + (Sequence of) upper bounds. If a sequence, must match the dimensionality of the series this + detector is applied to. """ - - # TODO: could we refactor some code common between ThresholdDetector and QuantileDetector? - super().__init__() - - raise_if( - low_threshold is None and high_threshold is None, - "At least one parameter must be not None (`low` and `high` are both None).", + low_threshold, high_threshold = self._prepare_boundaries( + lower_bound=low_threshold, + upper_bound=high_threshold, + lower_bound_name="low_threshold", + upper_bound_name="high_threshold", ) - - def _prep_thresholds(q): - return ( - q.tolist() - if isinstance(q, np.ndarray) - else [q] if not isinstance(q, Sequence) else q + self._low_threshold = low_threshold + self._high_threshold = high_threshold + + def _detect_core(self, series: TimeSeries, name: str = "series") -> TimeSeries: + if len(self.low_threshold) > 1 and len(self.low_threshold) != series.width: + raise_log( + ValueError( + f"The number of components for each series in `{name}` must be " + f"equal to the number of threshold values. Found number of " + f"components equal to {series.width} and expected {len(self.low_threshold)}." + ), + logger=logger, ) - low = _prep_thresholds(low_threshold) - high = _prep_thresholds(high_threshold) - - self.low_threshold = low * len(high) if len(low) == 1 else low - self.high_threshold = high * len(low) if len(high) == 1 else high - - # the threshold parameters are now sequences of the same length, - # possibly containing some None values, but at least one non-None value - - raise_if_not( - len(self.low_threshold) == len(self.high_threshold), - "Parameters `low_threshold` and `high_threshold` must be of the same length," - + f" found `low`: {len(self.low_threshold)} and `high`: {len(self.high_threshold)}.", - ) - - raise_if( - all([lo is None for lo in self.low_threshold]) - and all([hi is None for hi in self.high_threshold]), - "All provided threshold values are None.", - ) - - raise_if_not( - all( - low <= high - for (low, high) in zip(self.low_threshold, self.high_threshold) - if ((low is not None) and (high is not None)) - ), - "all values in `low_threshold` must be lower than or equal" - + "to their corresponding value in `high_threshold`.", - ) - - def _detect_core(self, series: TimeSeries) -> TimeSeries: - raise_if_not( - series.is_deterministic, "This detector only works on deterministic series." - ) - - raise_if( - len(self.low_threshold) > 1 and len(self.low_threshold) != series.width, - "The number of components of input must be equal to the number" - + " of threshold values. Found number of " - + f"components equal to {series.width} and expected {len(self.low_threshold)}.", - ) - # if length is 1, tile it to series width: - low_threshold = ( - self.low_threshold * series.width - if len(self.low_threshold) == 1 - else self.low_threshold - ) - high_threshold = ( - self.high_threshold * series.width - if len(self.high_threshold) == 1 - else self.high_threshold - ) + low_threshold = self._expand_threshold(series[0], self.low_threshold) + high_threshold = self._expand_threshold(series[0], self.high_threshold) # (time, components) - np_series = series.all_values(copy=False).squeeze(-1) + np_series = series.values(copy=False) def _detect_fn(x, lo, hi): # x of shape (time,) for 1 component @@ -137,5 +91,12 @@ def _detect_fn(x, lo, hi): low_threshold[component_idx], high_threshold[component_idx], ) + return series.with_values(np.expand_dims(detected, -1).astype(series.dtype)) + + @property + def low_threshold(self): + return self._low_threshold - return TimeSeries.from_times_and_values(series.time_index, detected) + @property + def high_threshold(self): + return self._high_threshold diff --git a/darts/ad/scorers/__init__.py b/darts/ad/scorers/__init__.py index 508dd6d819..429280bf08 100644 --- a/darts/ad/scorers/__init__.py +++ b/darts/ad/scorers/__init__.py @@ -2,34 +2,32 @@ Anomaly Scorers --------------- -Scorers are at the core of the anomaly detection module. They -produce anomaly scores time series, either for series directly (``score()``), -or for series accompanied by some predictions (``score_from_prediction()``). - -The higher an anomaly score is, the more "anomalous" the corresponding -time period is. Scorers can work over time windows, and the length of the window is related -to the time scale over which anomalies are expected to occur. -The interpretability of the anomaly score is dependent on the scorer. - -The function ``score_from_prediction()`` works by taking some "difference" (or "residual") -between the prediction and the actual series (captured by the ``"diff_fn"`` parameter). -Some scorers are trainable (e.g., ``KMeansScorer``, which learns clusters over historical data), -in which case the ``score()`` function can be used to score new series. -Other scorers are not trainable (e.g., ``NormScorer``, which simply takes the Lp-norm between -predicted values and actual values over windows). In this latter case ``score()`` cannot be -used and scoring is only possible using ``score_from_prediction()``. - -Some scorers can handle probabilistic predictions from models (at the moment all the "NLL" scorers), -while others handle deterministic predictions (e.g., ``KMeansScorer``). - -As an example, the ``KMeansScorer``, which is trainable, can be applied using the functions: - -- ``fit()`` and ``score()``: directly on a series to uncover the relationships between the different - dimensions (over timesteps within windows and/or over dimensions of multivariate series). -- ``fit_from_prediction`` and ``score_from_prediction``: which will compute a difference (residuals) - between the prediction (coming e.g., from a forecasting model) and the series itself. - When scoring, the scorer will attribute a higher score to residuals that are distant - from the clusters found during the training phase. +Scorers are at the core of the anomaly detection module. They produce anomaly scores time series, either for series +directly (`score()`), or for series accompanied by some predictions (`score_from_prediction()`). + +The higher an anomaly score is, the more "anomalous" the corresponding time period is. Scorers can work over time +windows, and the length of the window is related to the time scale over which anomalies are expected to occur. The +interpretability of the anomaly score is dependent on the scorer. + +The function `score_from_prediction()` works by taking some "difference" (or "residual") between the prediction and +the actual series (captured by the `"diff_fn"` parameter). Some scorers are trainable +(e.g., :class:`~darts.ad.scorers.kmeans_scorer.KMeansScorer`, which learns clusters over historical data), in which +case the `score()` function can be used to score new series. Other scorers are not trainable +(e.g., :class:`~darts.ad.scorers.norm_scorer.NormScorer`, which simply takes the Lp-norm between predicted values and +actual values over windows). In this latter case `score()` cannot be used and scoring is only possible using +`score_from_prediction()`. + +Some scorers can handle probabilistic predictions from models (at the moment all the "NLL" scorers), while others +handle deterministic predictions (e.g., :class:`~darts.ad.scorers.kmeans_scorer.KMeansScorer`). + +As an example, the :class:`~darts.ad.scorers.kmeans_scorer.KMeansScorer`, which is trainable, can be applied using the +functions: + +- `fit()` and `score()`: directly on a series to uncover the relationships between the different dimensions + (over timesteps within windows and/or over dimensions of multivariate series). +- `fit_from_prediction` and `score_from_prediction`: which will compute a difference (residuals) between the + prediction (coming e.g., from a forecasting model) and the series itself. When scoring, the scorer will attribute a + higher score to residuals that are distant from the clusters found during the training phase. Note that `Anomaly Models `_ can be used to conveniently combine any of Darts forecasting and filtering models with one or multiple scorers. @@ -37,29 +35,33 @@ Most of the scorers have the following main parameters: - `window`: - Integer value indicating the size of the window W used by the scorer to transform the series into - an anomaly score. A scorer will slice the given series into subsequences of size W and returns - a value indicating how anomalous these subset of W values are. The window size should be commensurate - to the expected durations of the anomalies one is looking for. + Integer value indicating the size of the window W used by the scorer to transform the series into an anomaly score. + A scorer will slice the given series into subsequences of size W and returns a value indicating how anomalous these + subset of W values are. A post-processing step will convert this anomaly score into a point-wise anomaly score + (see definition of `window_transform`). The window size should be commensurate to the expected durations of the + anomalies one is looking for. - `component_wise`: - boolean parameter indicating how the scorer should behave with multivariate series. If set to - True, the model will treat each series dimension independently. If set to False, the model will - consider the dimensions jointly in the considered `window` W to compute the score. - + Boolean parameter indicating how the scorer should behave with multivariate series. If set to `True`, the model will + treat each series dimension independently. If set to `False`, the model will consider the dimensions jointly in the + considered `window` W to compute the score. +- `window_transform`: + Boolean value that indicates if the scorer needs to post-process its output when the `window` parameter exceeds 1. + If set to `True`, the scores for each point can be assigned by aggregating the anomaly scores for each window the + point is included in. It returns a point-wise anomaly score. If set to `False`, the score is returned without this + post-processing step and is a window-wise anomaly score. Default: True Other useful functions are: -- ``eval_accuracy_from_prediction()`` - Takes as input two (sequence of) series, computes all the anomaly scores, and - returns the value of an agnostic threshold metric (AUC-ROC or AUC-PR) based on some known ground truth - of anomalies. The returned value is between 0 and 1, with 1 indicating that the scorer could perfectly - separate the anomalous point from the normal ones. +- `eval_metric_from_prediction()` + Takes as input two (sequence of) series, computes all the anomaly scores, and returns the value of an agnostic + threshold metric (AUC-ROC or AUC-PR) based on some known ground truth of anomalies. The returned value is between 0 + and 1, with 1 indicating that the scorer could perfectly separate the anomalous point from the normal ones. -- ``fit_from_prediction()`` - Takes two (sequence of) series as input and fits the scorer. This task is dependent on the scorer, - but as a general case the scorer will calibrate its scoring function based on the training series that is - considered to be anomaly-free. This training phase will allow the scorer to detect anomalies during - the scoring phase, by comparing the series to score with the anomaly-free series seen during training. +- `fit_from_prediction()` + Takes two (sequence of) series as input and fits the scorer. This task is dependent on the scorer, but as a general + case the scorer will calibrate its scoring function based on the training series that is considered to be + anomaly-free. This training phase will allow the scorer to detect anomalies during the scoring phase, by comparing + the series to score with the anomaly-free series seen during training. More details can be found in the API documentation of each scorer. @@ -75,7 +77,7 @@ from darts.ad.scorers.nll_poisson_scorer import PoissonNLLScorer from darts.ad.scorers.norm_scorer import NormScorer from darts.ad.scorers.pyod_scorer import PyODScorer -from darts.ad.scorers.scorers import FittableAnomalyScorer, NonFittableAnomalyScorer +from darts.ad.scorers.scorers import AnomalyScorer, FittableAnomalyScorer from darts.ad.scorers.wasserstein_scorer import WassersteinScorer __all__ = [ @@ -89,7 +91,7 @@ "PoissonNLLScorer", "NormScorer", "PyODScorer", + "AnomalyScorer", "FittableAnomalyScorer", - "NonFittableAnomalyScorer", "WassersteinScorer", ] diff --git a/darts/ad/scorers/difference_scorer.py b/darts/ad/scorers/difference_scorer.py index 191f7254b7..54bbef3e59 100644 --- a/darts/ad/scorers/difference_scorer.py +++ b/darts/ad/scorers/difference_scorer.py @@ -7,22 +7,24 @@ returns a multivariate series. """ -from darts.ad.scorers.scorers import NonFittableAnomalyScorer -from darts.timeseries import TimeSeries +import numpy as np +from darts.ad.scorers.scorers import AnomalyScorer -class DifferenceScorer(NonFittableAnomalyScorer): + +class DifferenceScorer(AnomalyScorer): def __init__(self) -> None: - super().__init__(univariate_scorer=False, window=1) + """Difference Scorer""" + super().__init__(is_univariate=False, window=1) def __str__(self): return "Difference" def _score_core_from_prediction( self, - actual_series: TimeSeries, - pred_series: TimeSeries, - ) -> TimeSeries: - self._assert_deterministic(actual_series, "actual_series") - self._assert_deterministic(pred_series, "pred_series") - return actual_series - pred_series + vals: np.ndarray, + pred_vals: np.ndarray, + ) -> np.ndarray: + vals = self._extract_deterministic_values(vals, "series") + pred_vals = self._extract_deterministic_values(pred_vals, "pred_series") + return vals - pred_vals diff --git a/darts/ad/scorers/kmeans_scorer.py b/darts/ad/scorers/kmeans_scorer.py index d3dbfa5062..1011c44d8e 100644 --- a/darts/ad/scorers/kmeans_scorer.py +++ b/darts/ad/scorers/kmeans_scorer.py @@ -9,49 +9,51 @@ .. [1] https://en.wikipedia.org/wiki/K-means_clustering """ -from typing import Sequence - import numpy as np -from numpy.lib.stride_tricks import sliding_window_view from sklearn.cluster import KMeans -from darts.ad.scorers.scorers import FittableAnomalyScorer -from darts.logging import raise_if_not -from darts.timeseries import TimeSeries +from darts import metrics +from darts.ad.scorers.scorers import WindowedAnomalyScorer +from darts.logging import get_logger +from darts.metrics.metrics import METRIC_TYPE + +logger = get_logger(__name__) -class KMeansScorer(FittableAnomalyScorer): +class KMeansScorer(WindowedAnomalyScorer): def __init__( self, window: int = 1, k: int = 8, component_wise: bool = False, - diff_fn="abs_diff", + window_agg: bool = True, + diff_fn: METRIC_TYPE = metrics.ae, **kwargs, ) -> None: - """ - When calling ``fit(series)``, a moving window is applied, which results in a set of vectors of size `W`, - where `W` is the window size. The `k`-means model is trained on these vectors. The ``score(series)`` function + """k-means Scorer + + When calling `fit(series)`, a moving window is applied, which results in a set of vectors of size `W`, + where `W` is the window size. The `k`-means model is trained on these vectors. The `score(series)` function applies the same moving window and returns the distance to the closest of the `k` centroids for each vector of size `W`. - Alternatively, the scorer has the functions ``fit_from_prediction()`` and ``score_from_prediction()``. + Alternatively, the scorer has the functions `fit_from_prediction()` and `score_from_prediction()`. Both require two series (actual and prediction), and compute a "difference" series by applying the - function ``diff_fn`` (default: absolute difference). The resulting series is then passed to the - functions ``fit()`` and ``score()``, respectively. + function `diff_fn` (default: absolute difference). The resulting series is then passed to the + functions `fit()` and `score()`, respectively. `component_wise` is a boolean parameter indicating how the model should behave with multivariate inputs - series. If set to True, the model will treat each component independently by fitting a different - `k`-means model for each dimension. If set to False, the model concatenates the dimensions in + series. If set to `True`, the model will treat each component independently by fitting a different + `k`-means model for each dimension. If set to `False`, the model concatenates the dimensions in each windows of length `W` and computes the score using only one underlying `k`-means model. - **Training with** ``fit()``: + **Training with** `fit()`: The input can be a series (univariate or multivariate) or multiple series. The series will be sliced into equal size subsequences. The subsequence will be of size `W` * `D`, with: - * `W` being the size of the window given as a parameter `window` - * `D` being the dimension of the series (`D` = 1 if univariate or if `component_wise` is set to True) + - `W` being the size of the window given as a parameter `window` + - `D` being the dimension of the series (`D` = 1 if univariate or if `component_wise` is set to `True`) For a series of length `N`, (`N` - `W` + 1)/W subsequences will be generated. If a list of series is given of length L, each series will be partitioned into subsequences, and the results will be concatenated into @@ -60,19 +62,19 @@ def __init__( The `k`-means model will be fitted on the generated subsequences. The model will find `k` clusters in the vector space of dimension equal to the length of the subsequences (`D` * `W`). - If `component_wise` is set to True, the algorithm will be applied to each dimension independently. For each + If `component_wise` is set to `True`, the algorithm will be applied to each dimension independently. For each dimension, a `k`-means model will be trained. - **Computing score with** ``score()``: + **Computing score with** `score()`: The input can be a series (univariate or multivariate) or a sequence of series. The given series must have the same dimension `D` as the data used to train the `k`-means model. For each series, if the series is multivariate of dimension `D`: - * if `component_wise` is set to False: it returns a univariate series (dimension=1). It represents + - if `component_wise` is set to `False`: it returns a univariate series (dimension=1). It represents the anomaly score of the entire series in the considered window at each timestamp. - * if `component_wise` is set to True: it returns a multivariate series of dimension `D`. Each dimension + - if `component_wise` is set to `True`: it returns a multivariate series of dimension `D`. Each dimension represents the anomaly score of the corresponding component of the input. If the series is univariate, it returns a univariate series regardless of the parameter @@ -88,117 +90,43 @@ def __init__( Size of the window used to create the subsequences of the series. k The number of clusters to form as well as the number of centroids to generate by the KMeans model. - diff_fn - Optionally, reduction function to use if two series are given. It will transform the two series into one. - This allows the KMeansScorer to apply KMeans on the original series or on its residuals (difference - between the prediction and the original series). - Must be one of "abs_diff" and "diff" (defined in ``_diff_series()``). - Default: "abs_diff" component_wise - Boolean value indicating if the score needs to be computed for each component independently (True) - or by concatenating the component in the considered window to compute one score (False). - Default: False + Boolean value indicating if the score needs to be computed for each component independently (`True`) + or by concatenating the component in the considered window to compute one score (`False`). + Default: `False`. + window_agg + Boolean indicating whether the anomaly score for each time step is computed by + averaging the anomaly scores for all windows this point is included in. + If `False`, the anomaly score for each point is the anomaly score of its trailing window. + Default: `True`. + diff_fn + The differencing function to use to transform the predicted and actual series into one series. + The scorer is then applied to this series. Must be one of Darts per-time-step metrics (e.g., + :func:`~darts.metrics.metrics.ae` for the absolute difference, :func:`~darts.metrics.metrics.err` for the + difference, :func:`~darts.metrics.metrics.se` for the squared difference, ...). + By default, uses the absolute difference (:func:`~darts.metrics.metrics.ae`). kwargs Additional keyword arguments passed to the internal scikit-learn KMeans model(s). """ - - raise_if_not( - type(component_wise) is bool, # noqa: E721 - f"Parameter `component_wise` must be Boolean, found type: {type(component_wise)}.", - ) - self.component_wise = component_wise - self.kmeans_kwargs = kwargs self.kmeans_kwargs["n_clusters"] = k # stop warning about default value of "n_init" changing from 10 to "auto" in sklearn 1.4 if "n_init" not in self.kmeans_kwargs: self.kmeans_kwargs["n_init"] = 10 + self.model = KMeans(**self.kmeans_kwargs) + super().__init__( - univariate_scorer=(not component_wise), window=window, diff_fn=diff_fn + is_univariate=(not component_wise), + window=window, + window_agg=window_agg, + diff_fn=diff_fn, ) def __str__(self): return "k-means Scorer" - def _fit_core( - self, - list_series: Sequence[TimeSeries], - ): - - list_np_series = [series.all_values(copy=False) for series in list_series] - - if not self.component_wise: - self.model = KMeans(**self.kmeans_kwargs) - self.model.fit( - np.concatenate( - [ - sliding_window_view(ar, window_shape=self.window, axis=0) - .transpose(0, 3, 1, 2) - .reshape(-1, self.window * len(ar[0])) - for ar in list_np_series - ], - axis=0, - ) - ) - else: - models = [] - for component_idx in range(self.width_trained_on): - model = KMeans(**self.kmeans_kwargs) - model.fit( - np.concatenate( - [ - sliding_window_view( - ar[:, component_idx], window_shape=self.window, axis=0 - ) - .transpose(0, 2, 1) - .reshape(-1, self.window) - for ar in list_np_series - ], - axis=0, - ) - ) - models.append(model) - self.models = models - - def _score_core(self, series: TimeSeries) -> TimeSeries: - raise_if_not( - self.width_trained_on == series.width, - "Input must have the same number of components as the data used for" - + " training the KMeans model, found number of components equal to" - + f" {series.width} and expected {self.width_trained_on}.", - ) - - np_series = series.all_values(copy=False) - np_anomaly_score = [] - - if not self.component_wise: - # return distance to the clostest centroid - np_anomaly_score.append( - self.model.transform( - sliding_window_view(np_series, window_shape=self.window, axis=0) - .transpose(0, 3, 1, 2) - .reshape(-1, self.window * series.width) - ).min(axis=1) - ) # only return the closest distance out of the k ones (k centroids) - else: - for component_idx in range(self.width_trained_on): - score = ( - self.models[component_idx] - .transform( - sliding_window_view( - np_series[:, component_idx], - window_shape=self.window, - axis=0, - ) - .transpose(0, 2, 1) - .reshape(-1, self.window) - ) - .min(axis=1) - ) - - np_anomaly_score.append(score) - - return TimeSeries.from_times_and_values( - series.time_index[self.window - 1 :], list(zip(*np_anomaly_score)) - ) + def _model_score_method(self, model, data: np.ndarray) -> np.ndarray: + """Wrapper around model inference method""" + # only return the closest distance out of the k ones (k centroids) + return model.transform(data).min(axis=1) diff --git a/darts/ad/scorers/nll_cauchy_scorer.py b/darts/ad/scorers/nll_cauchy_scorer.py index 6ef9754fe2..b9a31cfaab 100644 --- a/darts/ad/scorers/nll_cauchy_scorer.py +++ b/darts/ad/scorers/nll_cauchy_scorer.py @@ -15,19 +15,16 @@ class CauchyNLLScorer(NLLScorer): + def __init__(self, window: int = 1) -> None: + """NLL Cauchy Scorer""" super().__init__(window=window) def __str__(self): return "CauchyNLLScorer" def _score_core_nllikelihood( - self, - deterministic_values: np.ndarray, - probabilistic_estimations: np.ndarray, + self, vals: np.ndarray, pred_vals: np.ndarray ) -> np.ndarray: - - params = np.apply_along_axis(cauchy.fit, axis=1, arr=probabilistic_estimations) - return -cauchy.logpdf( - deterministic_values, loc=params[:, 0], scale=params[:, 1] - ) + params = np.apply_along_axis(cauchy.fit, axis=1, arr=pred_vals) + return -cauchy.logpdf(vals, loc=params[:, 0], scale=params[:, 1]) diff --git a/darts/ad/scorers/nll_exponential_scorer.py b/darts/ad/scorers/nll_exponential_scorer.py index 1a16894347..5b252a8e74 100644 --- a/darts/ad/scorers/nll_exponential_scorer.py +++ b/darts/ad/scorers/nll_exponential_scorer.py @@ -16,22 +16,28 @@ class ExponentialNLLScorer(NLLScorer): def __init__(self, window: int = 1) -> None: + """NLL Exponential Scorer + + Parameters + ---------- + window + Integer value indicating the size of the window W used by the scorer to transform the series into an + anomaly score. A scorer will slice the given series into subsequences of size W and returns a value + indicating how anomalous these subset of W values are. A post-processing step will convert this anomaly + score into a point-wise anomaly score (see definition of `window_transform`). The window size should be + commensurate to the expected durations of the anomalies one is looking for. + """ super().__init__(window=window) def __str__(self): return "ExponentialNLLScorer" def _score_core_nllikelihood( - self, - deterministic_values: np.ndarray, - probabilistic_estimations: np.ndarray, + self, vals: np.ndarray, pred_vals: np.ndarray ) -> np.ndarray: - # This is the ML estimate for 1/lambda, which is what scipy expects as scale. - mu = np.mean(probabilistic_estimations, axis=1) - + mu = np.mean(pred_vals, axis=1) # This is ML estimate for the loc - see: # https://github.com/scipy/scipy/blob/de80faf9d3480b9dbb9b888568b64499e0e70c19/scipy/stats/_continuous_distns.py#L1705 - loc = np.min(probabilistic_estimations, axis=1) - - return -expon.logpdf(deterministic_values, scale=mu, loc=loc) + loc = np.min(pred_vals, axis=1) + return -expon.logpdf(vals, scale=mu, loc=loc) diff --git a/darts/ad/scorers/nll_gamma_scorer.py b/darts/ad/scorers/nll_gamma_scorer.py index 40dc113c3c..09f54b675c 100644 --- a/darts/ad/scorers/nll_gamma_scorer.py +++ b/darts/ad/scorers/nll_gamma_scorer.py @@ -15,19 +15,26 @@ class GammaNLLScorer(NLLScorer): + def __init__(self, window: int = 1) -> None: + """NLL Gamma Scorer + + Parameters + ---------- + window + Integer value indicating the size of the window W used by the scorer to transform the series into an + anomaly score. A scorer will slice the given series into subsequences of size W and returns a value + indicating how anomalous these subset of W values are. A post-processing step will convert this anomaly + score into a point-wise anomaly score (see definition of `window_transform`). The window size should be + commensurate to the expected durations of the anomalies one is looking for. + """ super().__init__(window=window) def __str__(self): return "GammaNLLScorer" def _score_core_nllikelihood( - self, - deterministic_values: np.ndarray, - probabilistic_estimations: np.ndarray, + self, vals: np.ndarray, pred_vals: np.ndarray ) -> np.ndarray: - - params = np.apply_along_axis(gamma.fit, axis=1, arr=probabilistic_estimations) - return -gamma.logpdf( - deterministic_values, a=params[:, 0], loc=params[:, 1], scale=params[:, 2] - ) + params = np.apply_along_axis(gamma.fit, axis=1, arr=pred_vals) + return -gamma.logpdf(vals, a=params[:, 0], loc=params[:, 1], scale=params[:, 2]) diff --git a/darts/ad/scorers/nll_gaussian_scorer.py b/darts/ad/scorers/nll_gaussian_scorer.py index 56eb86300b..1fc7e8f12c 100644 --- a/darts/ad/scorers/nll_gaussian_scorer.py +++ b/darts/ad/scorers/nll_gaussian_scorer.py @@ -15,18 +15,27 @@ class GaussianNLLScorer(NLLScorer): + def __init__(self, window: int = 1) -> None: + """NLL Gaussian Scorer + + Parameters + ---------- + window + Integer value indicating the size of the window W used by the scorer to transform the series into an + anomaly score. A scorer will slice the given series into subsequences of size W and returns a value + indicating how anomalous these subset of W values are. A post-processing step will convert this anomaly + score into a point-wise anomaly score (see definition of `window_transform`). The window size should be + commensurate to the expected durations of the anomalies one is looking for. + """ super().__init__(window=window) def __str__(self): return "GaussianNLLScorer" def _score_core_nllikelihood( - self, - deterministic_values: np.ndarray, - probabilistic_estimations: np.ndarray, + self, vals: np.ndarray, pred_vals: np.ndarray ) -> np.ndarray: - - mu = np.mean(probabilistic_estimations, axis=1) - std = np.std(probabilistic_estimations, axis=1) - return -norm.logpdf(deterministic_values, loc=mu, scale=std) + mu = np.mean(pred_vals, axis=1) + std = np.std(pred_vals, axis=1) + return -norm.logpdf(vals, loc=mu, scale=std) diff --git a/darts/ad/scorers/nll_laplace_scorer.py b/darts/ad/scorers/nll_laplace_scorer.py index 342dab53ef..6f267ccb49 100644 --- a/darts/ad/scorers/nll_laplace_scorer.py +++ b/darts/ad/scorers/nll_laplace_scorer.py @@ -16,26 +16,29 @@ class LaplaceNLLScorer(NLLScorer): def __init__(self, window: int = 1) -> None: + """NLL Laplace Scorer + + Parameters + ---------- + window + Integer value indicating the size of the window W used by the scorer to transform the series into an + anomaly score. A scorer will slice the given series into subsequences of size W and returns a value + indicating how anomalous these subset of W values are. A post-processing step will convert this anomaly + score into a point-wise anomaly score (see definition of `window_transform`). The window size should be + commensurate to the expected durations of the anomalies one is looking for. + """ super().__init__(window=window) def __str__(self): return "LaplaceNLLScorer" def _score_core_nllikelihood( - self, - deterministic_values: np.ndarray, - probabilistic_estimations: np.ndarray, + self, vals: np.ndarray, pred_vals: np.ndarray ) -> np.ndarray: - # ML estimate for the Laplace loc - loc = np.median(probabilistic_estimations, axis=1) - + loc = np.median(pred_vals, axis=1) # ML estimate for the Laplace scale # see: https://github.com/scipy/scipy/blob/de80faf9d3480b9dbb9b888568b64499e0e70c19/scipy # /stats/_continuous_distns.py#L4846 - scale = ( - np.sum(np.abs(probabilistic_estimations.T - loc), axis=0).T - / probabilistic_estimations.shape[1] - ) - - return -laplace.logpdf(deterministic_values, loc=loc, scale=scale) + scale = np.sum(np.abs(pred_vals.T - loc), axis=0).T / pred_vals.shape[1] + return -laplace.logpdf(vals, loc=loc, scale=scale) diff --git a/darts/ad/scorers/nll_poisson_scorer.py b/darts/ad/scorers/nll_poisson_scorer.py index df5ee411b8..5bdd7fd906 100644 --- a/darts/ad/scorers/nll_poisson_scorer.py +++ b/darts/ad/scorers/nll_poisson_scorer.py @@ -15,17 +15,26 @@ class PoissonNLLScorer(NLLScorer): + def __init__(self, window: int = 1) -> None: + """NLL Poisson Scorer + + Parameters + ---------- + window + Integer value indicating the size of the window W used by the scorer to transform the series into an + anomaly score. A scorer will slice the given series into subsequences of size W and returns a value + indicating how anomalous these subset of W values are. A post-processing step will convert this anomaly + score into a point-wise anomaly score (see definition of `window_transform`). The window size should be + commensurate to the expected durations of the anomalies one is looking for. + """ super().__init__(window=window) def __str__(self): return "PoissonNLLScorer" def _score_core_nllikelihood( - self, - deterministic_values: np.ndarray, - probabilistic_estimations: np.ndarray, + self, vals: np.ndarray, pred_vals: np.ndarray ) -> np.ndarray: - - mu = np.mean(probabilistic_estimations, axis=1) - return -poisson.logpmf(deterministic_values, mu=mu) + mu = np.mean(pred_vals, axis=1) + return -poisson.logpmf(vals, mu=mu) diff --git a/darts/ad/scorers/norm_scorer.py b/darts/ad/scorers/norm_scorer.py index 081aef4b5b..af2d0057d4 100644 --- a/darts/ad/scorers/norm_scorer.py +++ b/darts/ad/scorers/norm_scorer.py @@ -11,28 +11,27 @@ import numpy as np -from darts.ad.scorers.scorers import NonFittableAnomalyScorer -from darts.logging import raise_if_not -from darts.timeseries import TimeSeries +from darts.ad.scorers.scorers import AnomalyScorer -class NormScorer(NonFittableAnomalyScorer): +class NormScorer(AnomalyScorer): def __init__(self, ord=None, component_wise: bool = False) -> None: - """ - Returns the elementwise norm of a given order between two series' values. + """Norm Scorer + + Returns the element-wise norm of a given order between two series' values. - If `component_wise` is False, the norm is computed between vectors + If `component_wise` is `False`, the norm is computed between vectors made of the series' components (one norm per timestamp). - If `component_wise` is True, for any `ord` this effectively amounts to computing the absolute + If `component_wise` is `True`, for any `ord` this effectively amounts to computing the absolute value of the difference. The scoring function expects two series. If the two series are multivariate of width `w`: - * if `component_wise` is set to False: it returns a univariate series (width=1). - * if `component_wise` is set to True: it returns a multivariate series of width `w`. + - if `component_wise` is set to `False`: it returns a univariate series (width=1). + - if `component_wise` is set to `True`: it returns a multivariate series of width `w`. If the two series are univariate, it returns a univariate series regardless of the parameter `component_wise`. @@ -42,41 +41,27 @@ def __init__(self, ord=None, component_wise: bool = False) -> None: ord Order of the norm. Options are listed under 'Notes' at: . - Default: None + Default: `None` component_wise - Whether to compare components of the two series in isolation (True), or jointly (False). - Default: False + Whether to compare components of the two series in isolation (`True`), or jointly (`False`). + Default: `False` """ - - raise_if_not( - type(component_wise) is bool, # noqa: E721 - f"`component_wise` must be Boolean, found type: {type(component_wise)}.", - ) - self.ord = ord - self.component_wise = component_wise - super().__init__(univariate_scorer=(not component_wise), window=1) + super().__init__(is_univariate=(not component_wise), window=1) def __str__(self): return f"Norm (ord={self.ord})" def _score_core_from_prediction( self, - actual_series: TimeSeries, - pred_series: TimeSeries, - ) -> TimeSeries: - - self._assert_deterministic(actual_series, "actual_series") - self._assert_deterministic(pred_series, "pred_series") - - diff = actual_series - pred_series - - if self.component_wise: - return diff.map(lambda x: np.abs(x)) - + vals: np.ndarray, + pred_vals: np.ndarray, + ) -> np.ndarray: + vals = self._extract_deterministic_values(vals, "series") + pred_vals = self._extract_deterministic_values(pred_vals, "pred_series") + diff = vals - pred_vals + if not self.is_univariate: + diff = np.abs(diff) else: - diff_np = diff.all_values(copy=False) - - return TimeSeries.from_times_and_values( - diff.time_index, np.linalg.norm(diff_np, ord=self.ord, axis=1) - ) + diff = np.linalg.norm(diff, ord=self.ord, axis=1) + return diff diff --git a/darts/ad/scorers/pyod_scorer.py b/darts/ad/scorers/pyod_scorer.py index c0864c53bf..34104b80d1 100644 --- a/darts/ad/scorers/pyod_scorer.py +++ b/darts/ad/scorers/pyod_scorer.py @@ -1,33 +1,33 @@ """ -PyODScorer +PyOD Scorer ----- This scorer can wrap around detection algorithms of PyOD. `PyOD https://pyod.readthedocs.io/en/latest/#`_. """ -from typing import Sequence - import numpy as np -from numpy.lib.stride_tricks import sliding_window_view from pyod.models.base import BaseDetector -from darts.ad.scorers.scorers import FittableAnomalyScorer +from darts import metrics +from darts.ad.scorers.scorers import WindowedAnomalyScorer from darts.logging import get_logger, raise_if_not -from darts.timeseries import TimeSeries +from darts.metrics.metrics import METRIC_TYPE logger = get_logger(__name__) -class PyODScorer(FittableAnomalyScorer): +class PyODScorer(WindowedAnomalyScorer): def __init__( self, model: BaseDetector, window: int = 1, component_wise: bool = False, - diff_fn="abs_diff", + window_agg: bool = True, + diff_fn: METRIC_TYPE = metrics.ae, ) -> None: - """ + """PyOD Scorer + When calling ``fit(series)``, a moving window is applied, which results in a set of vectors of size `W`, where `W` is the window size. The PyODScorer model is trained on these vectors. The ``score(series)`` function will apply the same moving window and return the predicted raw anomaly score of each vector. @@ -38,8 +38,8 @@ def __init__( functions ``fit()`` and ``score()``, respectively. `component_wise` is a boolean parameter indicating how the model should behave with multivariate inputs - series. If set to True, the model will treat each series dimension independently by fitting a different - PyODScorer model for each dimension. If set to False, the model concatenates the dimensions in + series. If set to `True`, the model will treat each series dimension independently by fitting a different + PyODScorer model for each dimension. If set to `False`, the model concatenates the dimensions in each windows of length `W` and compute the score using only one underlying PyODScorer model. **Training with** ``fit()``: @@ -47,8 +47,8 @@ def __init__( The input can be a series (univariate or multivariate) or multiple series. The series will be partitioned into equal size subsequences. The subsequence will be of size `W` * `D`, with: - * `W` being the size of the window given as a parameter `window` - * `D` being the dimension of the series (`D` = 1 if univariate or if `component_wise` is set to True) + - `W` being the size of the window given as a parameter `window` + - `D` being the dimension of the series (`D` = 1 if univariate or if `component_wise` is set to `True`) For a series of length `N`, (`N` - `W` + 1)/W subsequences will be generated. If a list of series is given of length L, each series will be partitioned into subsequences, and the results will be concatenated into @@ -56,7 +56,7 @@ def __init__( The PyOD model will be fitted on the generated subsequences. - If `component_wise` is set to True, the algorithm will be applied to each dimension independently. For each + If `component_wise` is set to `True`, the algorithm will be applied to each dimension independently. For each dimension, a PyOD model will be trained. **Computing score with** ``score()``: @@ -66,9 +66,9 @@ def __init__( For each series, if the series is multivariate of dimension `D`: - * if `component_wise` is set to False: it returns a univariate series (dimension=1). It represents + - if `component_wise` is set to `False`: it returns a univariate series (dimension=1). It represents the anomaly score of the entire series in the considered window at each timestamp. - * if `component_wise` is set to True: it returns a multivariate series of dimension `D`. Each dimension + - if `component_wise` is set to `True`: it returns a multivariate series of dimension `D`. Each dimension represents the anomaly score of the corresponding component of the input. If the series is univariate, it returns a univariate series regardless of the parameter @@ -84,111 +84,39 @@ def __init__( The (fitted) PyOD BaseDetector model. window Size of the window used to create the subsequences of the series. - diff_fn - Optionally, reduced function to use if two series are given. It will transform the two series into one. - This allows the KMeansScorer to apply PyODScorer on the original series or on its residuals (difference - between the prediction and the original series). - Must be one of "abs_diff" and "diff" (defined in ``_diff_series()``). - Default: "abs_diff" component_wise - Boolean value indicating if the score needs to be computed for each component independently (True) - or by concatenating the component in the considered window to compute one score (False). - Default: False + Boolean value indicating if the score needs to be computed for each component independently (`True`) + or by concatenating the component in the considered window to compute one score (`False`). + Default: `False`. + window_agg + Boolean indicating whether the anomaly score for each time step is computed by + averaging the anomaly scores for all windows this point is included in. + If `False`, the anomaly score for each point is the anomaly score of its trailing window. + Default: `True`. + diff_fn + The differencing function to use to transform the predicted and actual series into one series. + The scorer is then applied to this series. Must be one of Darts per-time-step metrics (e.g., + :func:`~darts.metrics.metrics.ae` for the absolute difference, :func:`~darts.metrics.metrics.err` for the + difference, :func:`~darts.metrics.metrics.se` for the squared difference, ...). + By default, uses the absolute difference (:func:`~darts.metrics.metrics.ae`). """ raise_if_not( isinstance(model, BaseDetector), f"model must be a PyOD BaseDetector, found type: {type(model)}", + logger, ) self.model = model - - raise_if_not( - type(component_wise) is bool, # noqa: E721 - f"Parameter `component_wise` must be Boolean, found type: {type(component_wise)}.", - ) - self.component_wise = component_wise - super().__init__( - univariate_scorer=(not component_wise), window=window, diff_fn=diff_fn + is_univariate=(not component_wise), + window=window, + window_agg=window_agg, + diff_fn=diff_fn, ) def __str__(self): return "PyODScorer (model {})".format(self.model.__str__().split("(")[0]) - def _fit_core(self, list_series: Sequence[TimeSeries]): - - list_np_series = [series.all_values(copy=False) for series in list_series] - - # TODO: can we factorize code in common bteween PyODScorer and KMeansScorer? - - if not self.component_wise: - self.model.fit( - np.concatenate( - [ - sliding_window_view(ar, window_shape=self.window, axis=0) - .transpose(0, 3, 1, 2) - .reshape(-1, self.window * len(ar[0])) - for ar in list_np_series - ] - ) - ) - else: - models = [] - for component_idx in range(self.width_trained_on): - - model_width = self.model - model_width.fit( - np.concatenate( - [ - sliding_window_view( - ar[:, component_idx], window_shape=self.window, axis=0 - ) - .transpose(0, 2, 1) - .reshape(-1, self.window) - for ar in list_np_series - ] - ) - ) - models.append(model_width) - self.models = models - - def _score_core(self, series: TimeSeries) -> TimeSeries: - - raise_if_not( - self.width_trained_on == series.width, - "Input must have the same number of components as the data used for training" - + " the PyODScorer model {},".format(self.model.__str__().split("(")[0]) - + f" found number of components equal to {series.width} and expected " - + f"{self.width_trained_on}.", - ) - - np_series = series.all_values(copy=False) - np_anomaly_score = [] - - if not self.component_wise: - - np_anomaly_score.append( - self.model.decision_function( - sliding_window_view(np_series, window_shape=self.window, axis=0) - .transpose(0, 3, 1, 2) - .reshape(-1, self.window * series.width) - ) - ) - else: - - for component_idx in range(self.width_trained_on): - score = self.models[component_idx].decision_function( - sliding_window_view( - np_series[:, component_idx], - window_shape=self.window, - axis=0, - ) - .transpose(0, 2, 1) - .reshape(-1, self.window) - ) - - np_anomaly_score.append(score) - - return TimeSeries.from_times_and_values( - series.time_index[self.window - 1 :], list(zip(*np_anomaly_score)) - ) + def _model_score_method(self, model, data: np.ndarray) -> np.ndarray: + """Wrapper around model inference method""" + return model.decision_function(data) diff --git a/darts/ad/scorers/scorers.py b/darts/ad/scorers/scorers.py index 2e6a1e45e9..1afae77d21 100644 --- a/darts/ad/scorers/scorers.py +++ b/darts/ad/scorers/scorers.py @@ -6,23 +6,35 @@ # - add stride for Scorers like Kmeans and Wasserstein # - add option to normalize the windows for kmeans? capture only the form and not the values. - +import copy +import sys from abc import ABC, abstractmethod -from typing import Any, Sequence, Union +from typing import Optional, Sequence, Union + +if sys.version_info >= (3, 11): + from typing import Self +else: + from typing_extensions import Self +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal import numpy as np -from darts import TimeSeries +from darts import TimeSeries, metrics from darts.ad.utils import ( _assert_same_length, - _assert_timeseries, - _intersect, + _check_input, _sanity_check_two_series, - _to_list, - eval_accuracy_from_scores, + eval_metric_from_scores, show_anomalies_from_scores, ) -from darts.logging import get_logger, raise_if_not +from darts.logging import get_logger, raise_log +from darts.metrics.metrics import METRIC_TYPE +from darts.utils.data.tabularization import create_lagged_data +from darts.utils.ts_utils import series2seq +from darts.utils.utils import _build_tqdm_iterator, _parallel_apply logger = get_logger(__name__) @@ -30,155 +42,146 @@ class AnomalyScorer(ABC): """Base class for all anomaly scorers""" - def __init__(self, univariate_scorer: bool, window: int) -> None: - - raise_if_not( - type(window) is int, # noqa: E721 - f"Parameter `window` must be an integer, found type {type(window)}.", - ) - - raise_if_not( - window > 0, - f"Parameter `window` must be stricly greater than 0, found size {window}.", - ) - - self.window = window - - self.univariate_scorer = univariate_scorer - - def _check_univariate_scorer(self, actual_anomalies: Sequence[TimeSeries]): - """Checks if `actual_anomalies` contains only univariate series when the scorer has the - parameter 'univariate_scorer' set to True. - - 'univariate_scorer' is: - True -> when the function of the scorer ``score(series)`` (or, if applicable, - ``score_from_prediction(actual_series, pred_series)``) returns a univariate - anomaly score regardless of the input `series` (or, if applicable, `actual_series` - and `pred_series`). - False -> when the scorer will return a series that has the - same number of components as the input (can be univariate or multivariate). + def __init__(self, is_univariate: bool, window: int) -> None: """ - - if self.univariate_scorer: - raise_if_not( - all([isinstance(s, TimeSeries) for s in actual_anomalies]), - "all series in `actual_anomalies` must be of type TimeSeries.", - ) - - raise_if_not( - all([s.width == 1 for s in actual_anomalies]), - f"Scorer {self.__str__()} will return a univariate anomaly score series (width=1)." - + " Found a multivariate `actual_anomalies`." - + " The evaluation of the accuracy cannot be computed between the two series.", + Parameters + ---------- + is_univariate + Whether the scorer is a univariate scorer. + window + Integer value indicating the size of the window W used by the scorer to transform the series into an + anomaly score. A scorer will slice the given series into subsequences of size W and returns a value + indicating how anomalous these subset of W values are. A post-processing step will convert this anomaly + score into a point-wise anomaly score (see definition of `window_transform`). The window size should be + commensurate to the expected durations of the anomalies one is looking for. + """ + if window <= 0: + raise_log( + ValueError( + f"Parameter `window` must be strictly greater than 0, found `{window}`." + ), + logger=logger, ) + self.window = window + self._is_univariate = is_univariate - def _check_window_size(self, series: TimeSeries): - """Checks if the parameter window is less or equal than the length of the given series""" - - raise_if_not( - self.window <= len(series), - f"Window size {self.window} is greater than the targeted series length {len(series)}, " - + "must be lower or equal. Decrease the window size or increase the length series input" - + " to score on.", - ) - - @property - def is_probabilistic(self) -> bool: - """Whether the scorer expects a probabilistic prediction for its first input.""" - return False - - def _assert_stochastic(self, series: TimeSeries, name_series: str): - "Checks if the series is stochastic (number of samples is higher than one)." + def score_from_prediction( + self, + series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + ) -> Union[TimeSeries, Sequence[TimeSeries]]: + """Computes the anomaly score on the two (sequence of) series. - raise_if_not( - series.is_stochastic, - f"Scorer {self.__str__()} is expecting `{name_series}` to be a stochastic timeseries" - + f" (number of samples must be higher than 1, found: {series.n_samples}).", - ) + If a pair of sequences is given, they must contain the same number + of series. The scorer will score each pair of series independently + and return an anomaly score for each pair. - def _assert_deterministic(self, series: TimeSeries, name_series: str): - "Checks if the series is deterministic (number of samples is equal to one)." + Parameters + ---------- + series: + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. - if not series.is_deterministic: - logger.warning( - f"Scorer {self.__str__()} is expecting `{name_series}` to be a (sequence of) deterministic" - + f" timeseries (number of samples must be equal to 1, found: {series.n_samples}). The " - + "series will be converted to a deterministic series by taking the median of the samples.", + Returns + ------- + Union[TimeSeries, Sequence[TimeSeries]] + (Sequence of) anomaly score time series + """ + called_with_single_series = isinstance(series, TimeSeries) + series, pred_series = series2seq(series), series2seq(pred_series) + name, pred_name = "series", "pred_series" + _assert_same_length(series, pred_series, name, pred_name) + + pred_scores = [] + for actual, pred in zip(series, pred_series): + _sanity_check_two_series(actual, pred, name, pred_name) + index = actual.slice_intersect_times(pred, copy=False) + self._check_window_size(index) + scores = self._score_core_from_prediction( + vals=actual.slice_intersect_values(pred), + pred_vals=pred.slice_intersect_values(actual), + ) + scores = TimeSeries.from_times_and_values( + values=scores, + times=index, ) - series = series.quantile_timeseries(quantile=0.5) - - return series - @abstractmethod - def __str__(self): - """returns the name of the scorer""" - pass + if self.window > 1: + # apply a moving average with window size `self.window` to the anomaly scores starting at `self.window`; + # series of length `n` will be transformed into a series of length `n-self.window+1`. + scores = scores.window_transform( + transforms={ + "window": self.window, + "function": "mean", + "mode": "rolling", + "min_periods": self.window, + }, + treat_na="dropna", + ) + pred_scores.append(scores) + return pred_scores[0] if called_with_single_series else pred_scores - def eval_accuracy_from_prediction( + def eval_metric_from_prediction( self, - actual_anomalies: Union[TimeSeries, Sequence[TimeSeries]], - actual_series: Union[TimeSeries, Sequence[TimeSeries]], + anomalies: Union[TimeSeries, Sequence[TimeSeries]], + series: Union[TimeSeries, Sequence[TimeSeries]], pred_series: Union[TimeSeries, Sequence[TimeSeries]], - metric: str = "AUC_ROC", + metric: Literal["AUC_ROC", "AUC_PR"] = "AUC_ROC", ) -> Union[float, Sequence[float], Sequence[Sequence[float]]]: - """Computes the anomaly score between `actual_series` and `pred_series`, and returns the score + """Computes the anomaly score between `series` and `pred_series`, and returns the score of an agnostic threshold metric. Parameters ---------- - actual_anomalies - The (sequence of) ground truth of the anomalies (1 if it is an anomaly and 0 if not) - actual_series + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). + series The (sequence of) actual series. pred_series The (sequence of) predicted series. metric - Optionally, metric function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" + The name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". Returns ------- - Union[float, Sequence[float], Sequence[Sequence[float]]] - Score of an agnostic threshold metric for the computed anomaly score - - ``float`` if `actual_series` and `actual_series` are univariate series (dimension=1). - - ``Sequence[float]`` - - * if `actual_series` and `actual_series` are multivariate series (dimension>1), - returns one value per dimension, or - * if `actual_series` and `actual_series` are sequences of univariate series, - returns one value per series - - ``Sequence[Sequence[float]]]`` if `actual_series` and `actual_series` are sequences - of multivariate series. Outer Sequence is over the sequence input and the inner - Sequence is over the dimensions of each element in the sequence input. + float + A single metric value for a single univariate `series`. + Sequence[float] + A sequence of metric values for: + + - a single multivariate `series`. + - a sequence of univariate `series`. + Sequence[Sequence[float]] + A sequence of sequences of metric values for a sequence of multivariate `series`. + The outer sequence is over the series, and inner sequence is over the series' components/columns. """ - actual_anomalies = _to_list(actual_anomalies) - self._check_univariate_scorer(actual_anomalies) - - anomaly_score = self.score_from_prediction(actual_series, pred_series) - - return eval_accuracy_from_scores( - actual_anomalies, anomaly_score, self.window, metric + self._check_univariate_scorer(anomalies) + pred_scores = self.score_from_prediction(series, pred_series) + return eval_metric_from_scores( + anomalies=anomalies, + pred_scores=pred_scores, + window=self.window, + metric=metric, ) - @abstractmethod - def score_from_prediction(self, actual_series: Any, pred_series: Any) -> Any: - pass - def show_anomalies_from_prediction( self, - actual_series: TimeSeries, + series: TimeSeries, pred_series: TimeSeries, scorer_name: str = None, - actual_anomalies: TimeSeries = None, + anomalies: TimeSeries = None, title: str = None, - metric: str = None, + metric: Optional[Literal["AUC_ROC", "AUC_PR"]] = None, ): """Plot the results of the scorer. Computes the anomaly score on the two series. And plots the results. The plot will be composed of the following: - - the actual_series and the pred_series. + - the series and the pred_series. - the anomaly score of the scorer. - the actual anomalies, if given. @@ -190,197 +193,272 @@ def show_anomalies_from_prediction( Parameters ---------- - actual_series + series The actual series to visualize anomalies from. pred_series - The predicted series of `actual_series`. - actual_anomalies + The predicted series of `series`. + anomalies The ground truth of the anomalies (1 if it is an anomaly and 0 if not) scorer_name Name of the scorer. title Title of the figure metric - Optionally, Scoring function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" + Optionally, the name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". """ - if isinstance(actual_series, Sequence): - raise_if_not( - len(actual_series) == 1, - "``show_anomalies_from_prediction`` expects only one series for `actual_series`," - + f" found a list of length {len(actual_series)} as input.", - ) - - actual_series = actual_series[0] - - raise_if_not( - isinstance(actual_series, TimeSeries), - "``show_anomalies_from_prediction`` expects an input of type TimeSeries," - + f" found type {type(actual_series)} for `actual_series`.", - ) - - if isinstance(pred_series, Sequence): - raise_if_not( - len(pred_series) == 1, - "``show_anomalies_from_prediction`` expects one series for `pred_series`," - + f" found a list of length {len(pred_series)} as input.", - ) - - pred_series = pred_series[0] - - raise_if_not( - isinstance(pred_series, TimeSeries), - "``show_anomalies_from_prediction`` expects an input of type TimeSeries," - + f" found type: {type(pred_series)} for `pred_series`.", - ) - - anomaly_score = self.score_from_prediction(actual_series, pred_series) + series = _check_input(series, name="series", num_series_expected=1)[0] + pred_series = _check_input( + pred_series, name="pred_series", num_series_expected=1 + )[0] + pred_scores = self.score_from_prediction(series, pred_series) if title is None: - title = f"Anomaly results by scorer {self.__str__()}" + title = f"Anomaly results by scorer {str(self)}" if scorer_name is None: - scorer_name = [f"anomaly score by {self.__str__()}"] + scorer_name = [f"anomaly score by {str(self)}"] return show_anomalies_from_scores( - actual_series, - model_output=pred_series, - anomaly_scores=anomaly_score, + series=series, + anomalies=anomalies, + pred_series=pred_series, + pred_scores=pred_scores, window=self.window, names_of_scorers=scorer_name, - actual_anomalies=actual_anomalies, title=title, metric=metric, ) + @property + def is_probabilistic(self) -> bool: + """Whether the scorer expects a probabilistic prediction as the first input.""" + return False -class NonFittableAnomalyScorer(AnomalyScorer): - """Base class of anomaly scorers that do not need training.""" - - def __init__(self, univariate_scorer, window) -> None: - super().__init__(univariate_scorer=univariate_scorer, window=window) + @property + def is_univariate(self) -> bool: + """Whether the Scorer is a univariate scorer.""" + return self._is_univariate - # indicates if the scorer is trainable or not - self.trainable = False + @property + def is_trainable(self) -> bool: + """Whether the scorer is trainable.""" + return False @abstractmethod - def _score_core_from_prediction(self, series: Any) -> Any: + def __str__(self): + """returns the name of the scorer""" pass - def score_from_prediction( + @abstractmethod + def _score_core_from_prediction( self, - actual_series: Union[TimeSeries, Sequence[TimeSeries]], - pred_series: Union[TimeSeries, Sequence[TimeSeries]], - ) -> Union[TimeSeries, Sequence[TimeSeries]]: - """Computes the anomaly score on the two (sequence of) series. - - If a pair of sequences is given, they must contain the same number - of series. The scorer will score each pair of series independently - and return an anomaly score for each pair. + vals: np.ndarray, + pred_vals: np.ndarray, + ) -> np.ndarray: + pass - Parameters - ---------- - actual_series: - The (sequence of) actual series. - pred_series - The (sequence of) predicted series. + def _check_univariate_scorer( + self, anomalies: Union[TimeSeries, Sequence[TimeSeries]] + ): + """Checks if `anomalies` contains only univariate series when the scorer has the + parameter 'is_univariate' set to True. - Returns - ------- - Union[TimeSeries, Sequence[TimeSeries]] - (Sequence of) anomaly score time series + 'is_univariate' is: + True -> when the function of the scorer `score(series)` (or, if applicable, + `score_from_prediction(series, pred_series)`) returns a univariate + anomaly score regardless of the input `series` (or, if applicable, `series` + and `pred_series`). + False -> when the scorer will return a series that has the + same number of components as the input (can be univariate or multivariate). """ - list_actual_series, list_pred_series = _to_list(actual_series), _to_list( - pred_series + + def _check_univariate(s: TimeSeries): + """Checks if `anomalies` contains only univariate series, which + is required if any of the scorers returns a univariate score. + """ + if self.is_univariate and not s.width == 1: + raise_log( + ValueError( + f"Scorer {str(self)} will return a univariate anomaly score series (width=1). " + f"Found a multivariate `anomalies`. " + f"The evaluation of the accuracy cannot be computed between the two series." + ), + logger=logger, + ) + + _ = _check_input(anomalies, name="anomalies", extra_checks=_check_univariate) + + def _check_window_size(self, series: Sequence): + """Checks if the parameter window is less or equal than the length of the given series""" + if not self.window <= len(series): + raise_log( + ValueError( + f"Window size {self.window} is greater than the targeted series length {len(series)}, " + f"must be lower or equal. Decrease the window size or increase the length series " + f"input to score on." + ), + logger=logger, + ) + + def _assert_stochastic(self, series: np.ndarray, name_series: str): + """Checks if the series is stochastic (number of samples is larger than one).""" + if not series.shape[2] > 1: + raise_log( + ValueError( + f"Scorer {str(self)} is expecting `{name_series}` to be a stochastic " + f"timeseries (number of samples must be higher than 1, found: {series.shape[2]}).", + ), + logger=logger, + ) + + def _extract_deterministic_series(self, series: TimeSeries, name_series: str): + """Extract a deterministic series from `series` (quantile=0.5 if `series` is probabilistic).""" + if series.is_deterministic: + return series + + logger.warning( + f"Scorer {str(self)} is expecting `{name_series}` to be a (sequence of) deterministic " + f"timeseries (number of samples must be equal to 1, found: {series.n_samples}). The series " + f"will be converted to a deterministic series by taking the median of the samples.", ) - _assert_same_length(list_actual_series, list_pred_series) - - anomaly_scores = [] - - for s1, s2 in zip(list_actual_series, list_pred_series): - _sanity_check_two_series(s1, s2) - s1, s2 = _intersect(s1, s2) - self._check_window_size(s1) - self._check_window_size(s2) - anomaly_scores.append(self._score_core_from_prediction(s1, s2)) - - if ( - len(anomaly_scores) == 1 - and not isinstance(pred_series, Sequence) - and not isinstance(actual_series, Sequence) - ): - return anomaly_scores[0] - else: - return anomaly_scores + return series.quantile_timeseries(quantile=0.5) + def _extract_deterministic_values(self, series: np.ndarray, name_series: str): + """Extract deterministic values from `series` (quantile=0.5 if `series` is probabilistic).""" + if series.shape[2] == 1: + return series -class FittableAnomalyScorer(AnomalyScorer): - """Base class of scorers that do need training.""" + logger.warning( + f"Scorer {str(self)} is expecting `{name_series}` to be a (sequence of) deterministic " + f"timeseries (number of samples must be equal to 1, found: {series.shape[2]}). The series " + f"will be converted to a deterministic series by taking the median of the samples.", + ) + return np.expand_dims(np.quantile(series, q=0.5, axis=2), -1) - def __init__(self, univariate_scorer, window, diff_fn="abs_diff") -> None: - super().__init__(univariate_scorer=univariate_scorer, window=window) - # indicates if the scorer is trainable or not - self.trainable = True +class FittableAnomalyScorer(AnomalyScorer): + """Base class of scorers that require training.""" + + def __init__( + self, + is_univariate: bool, + window: int, + window_agg: bool, + diff_fn: METRIC_TYPE = metrics.ae, + n_jobs: int = 1, + ) -> None: + """ + Parameters + ---------- + is_univariate + Whether the scorer is a univariate scorer. + window + Integer value indicating the size of the window W used by the scorer to transform the series into an + anomaly score. A scorer will slice the given series into subsequences of size W and returns a value + indicating how anomalous these subset of W values are. A post-processing step will convert this anomaly + score into a point-wise anomaly score (see definition of `window_transform`). The window size should be + commensurate to the expected durations of the anomalies one is looking for. + window_agg + Whether to transform/aggregate window-wise anomaly scores into a point-wise anomaly scores. + diff_fn + The differencing function to use to transform the predicted and actual series into one series. + The scorer is then applied to this series. Must be one of Darts per-time-step metrics (e.g., + :func:`~darts.metrics.metrics.ae` for the absolute difference, :func:`~darts.metrics.metrics.err` for the + difference, :func:`~darts.metrics.metrics.se` for the squared difference, ...). + By default, uses the absolute difference (:func:`~darts.metrics.metrics.ae`). + n_jobs + The number of jobs to run in parallel. Parallel jobs are created only when a `Sequence[TimeSeries]` is + passed as input, parallelising operations regarding different `TimeSeries`. Defaults to `1` + (sequential). Setting the parameter to `-1` means using all the available processors. + """ + super().__init__(is_univariate=is_univariate, window=window) + if diff_fn not in metrics.TIME_DEPENDENT_METRICS: + valid_metrics = [m.__name__ for m in metrics.TIME_DEPENDENT_METRICS] + raise_log( + ValueError( + f"`diff_fn` must be one of Darts 'per time step' metrics " + f"{valid_metrics}. Found `{diff_fn}`" + ), + logger=logger, + ) + self.diff_fn = diff_fn + self.window_agg = window_agg + self._n_jobs = n_jobs # indicates if the scorer has been trained yet self._fit_called = False + self.width_trained_on: Optional[int] = None - # function used in ._diff_series() to convert 2 time series into 1 - if diff_fn in {"abs_diff", "diff"}: - self.diff_fn = diff_fn - else: - raise ValueError(f"Metric should be 'diff' or 'abs_diff', found {diff_fn}") + def fit( + self, + series: Union[TimeSeries, Sequence[TimeSeries]], + ) -> Self: + """Fits the scorer on the given time series. - def check_if_fit_called(self): - """Checks if the scorer has been fitted before calling its `score()` function.""" + If a sequence of series, the scorer is fitted on the concatenation of the sequence. - raise_if_not( - self._fit_called, - f"The Scorer {self.__str__()} has not been fitted yet. Call ``fit()`` first.", + The assumption is that `series` is generally anomaly-free. + + Parameters + ---------- + series + The (sequence of) series with no anomalies. + + Returns + ------- + self + Fitted Scorer. + """ + width = series2seq(series)[0].width + series = _check_input( + series, + name="series", + width_expected=width, + extra_checks=self._check_window_size, ) + self.width_trained_on = width + self._fit_core(series) + self._fit_called = True + return self - def eval_accuracy( + def fit_from_prediction( self, - actual_anomalies: Union[TimeSeries, Sequence[TimeSeries]], series: Union[TimeSeries, Sequence[TimeSeries]], - metric: str = "AUC_ROC", - ) -> Union[float, Sequence[float], Sequence[Sequence[float]]]: - """Computes the anomaly score of the given time series, and returns the score - of an agnostic threshold metric. + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + ): + """Fits the scorer on the two (sequences of) series. + + The function `diff_fn` passed as a parameter to the scorer, will transform `pred_series` and `series` + into one series. By default, `diff_fn` will compute the absolute difference (Default: + :func:`~darts.metrics.metrics.ae`). If `pred_series` and `series` are sequences, `diff_fn` will be + applied to all pairwise elements of the sequences. + + The scorer will then be fitted on this (sequence of) series. If a sequence of series is given, + the scorer will be fitted on the concatenation of the sequence. + + The scorer assumes that the (sequence of) series is anomaly-free. + + If any of the series is stochastic (with `n_samples>1`), `diff_fn` is computed on quantile `0.5`. Parameters ---------- - actual_anomalies - The ground truth of the anomalies (1 if it is an anomaly and 0 if not) series - The (sequence of) series to detect anomalies from. - metric - Optionally, metric function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. Returns ------- - Union[float, Sequence[float], Sequence[Sequence[float]]] - Score of an agnostic threshold metric for the computed anomaly score - - ``float`` if `series` is a univariate series (dimension=1). - - ``Sequence[float]`` - - * if `series` is a multivariate series (dimension>1), returns one - value per dimension, or - * if `series` is a sequence of univariate series, returns one value - per series - - ``Sequence[Sequence[float]]]`` if `series` is a sequence of multivariate - series. Outer Sequence is over the sequence input and the inner Sequence - is over the dimensions of each element in the sequence input. + self + Fitted Scorer. """ - actual_anomalies = _to_list(actual_anomalies) - self._check_univariate_scorer(actual_anomalies) - anomaly_score = self.score(series) - - return eval_accuracy_from_scores( - actual_anomalies, anomaly_score, self.window, metric - ) + series = _check_input(series, "series") + pred_series = _check_input(pred_series, "pred_series") + diff_series = self._diff_series(series, pred_series) + self.fit(diff_series) + self._fit_called = True def score( self, @@ -401,31 +479,106 @@ def score( Union[TimeSeries, Sequence[TimeSeries]] (Sequence of) anomaly score time series """ + self._check_fit_called() - self.check_if_fit_called() + called_with_single_series = isinstance(series, TimeSeries) + series = _check_input( + series, name="series", extra_checks=self._check_window_size + ) + series = [self._extract_deterministic_series(s, "series") for s in series] - list_series = _to_list(series) + pred_scores = self._score_core(series) + return pred_scores[0] if called_with_single_series else pred_scores - anomaly_scores = [] - for s in list_series: - _assert_timeseries(s) - self._check_window_size(s) - anomaly_scores.append( - self._score_core(self._assert_deterministic(s, "series")) - ) + def score_from_prediction( + self, + series: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + ) -> Union[TimeSeries, Sequence[TimeSeries]]: + """Computes the anomaly score on the two (sequence of) series. - if len(anomaly_scores) == 1 and not isinstance(series, Sequence): - return anomaly_scores[0] - else: - return anomaly_scores + The function `diff_fn` passed as a parameter to the scorer, will transform `pred_series` and `series` + into one "difference" series. By default, `diff_fn` will compute the absolute difference + (Default: :func:`~darts.metrics.metrics.ae`). + If series and pred_series are sequences, `diff_fn` will be applied to all pairwise elements + of the sequences. + + The scorer will then transform this series into an anomaly score. If a sequence of series is given, + the scorer will score each series independently and return an anomaly score for each series in the sequence. + + Parameters + ---------- + series + The (sequence of) actual series. + pred_series + The (sequence of) predicted series. + + Returns + ------- + Union[TimeSeries, Sequence[TimeSeries]] + (Sequence of) anomaly score time series + """ + self._check_fit_called() + + called_with_single_series = isinstance(series, TimeSeries) + series = _check_input(series, "series") + pred_series = _check_input(pred_series, "pred_series") + + diff = self._diff_series(series, pred_series) + pred_scores = self.score(diff) + return pred_scores[0] if called_with_single_series else pred_scores + + def eval_metric( + self, + anomalies: Union[TimeSeries, Sequence[TimeSeries]], + series: Union[TimeSeries, Sequence[TimeSeries]], + metric: Literal["AUC_ROC", "AUC_PR"] = "AUC_ROC", + ) -> Union[float, Sequence[float], Sequence[Sequence[float]]]: + """Computes the anomaly score of the given time series, and returns the score + of an agnostic threshold metric. + + Parameters + ---------- + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). + series + The (sequence of) series to detect anomalies from. + metric + The name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". + + Returns + ------- + float + A single score/metric for univariate `series` series (with only one component/column). + Sequence[float] + A sequence (list) of scores for: + + - multivariate `series` series (multiple components). Gives a score for each component. + - a sequence (list) of univariate `series` series. Gives a score for each series. + Sequence[Sequence[float]] + A sequence of sequences of scores for a sequence of multivariate `series` series. + Gives a score for each series (outer sequence) and component (inner sequence). + """ + anomalies = series2seq(anomalies) + self._check_univariate_scorer(anomalies) + pred_scores = self.score(series) + window = 1 if self.window_agg else self.window + return eval_metric_from_scores( + anomalies=anomalies, + pred_scores=pred_scores, + window=window, + metric=metric, + ) def show_anomalies( self, series: TimeSeries, - actual_anomalies: TimeSeries = None, + anomalies: TimeSeries = None, scorer_name: str = None, title: str = None, - metric: str = None, + metric: Optional[Literal["AUC_ROC", "AUC_PR"]] = None, ): """Plot the results of the scorer. @@ -446,307 +599,366 @@ def show_anomalies( ---------- series The series to visualize anomalies from. - actual_anomalies - The ground truth of the anomalies (1 if it is an anomaly and 0 if not) + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). scorer_name Name of the scorer. title Title of the figure metric - Optionally, Scoring function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" + Optionally, the name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". """ - - if isinstance(series, Sequence): - raise_if_not( - len(series) == 1, - "``show_anomalies`` expects one series for `series`," - + f" found a list of length {len(series)} as input.", - ) - - series = series[0] - - raise_if_not( - isinstance(series, TimeSeries), - "``show_anomalies`` expects an input of type TimeSeries," - + f" found type {type(series)} for `series`.", - ) - - anomaly_score = self.score(series) + series = _check_input(series, name="series", num_series_expected=1)[0] + pred_scores = self.score(series) if title is None: - title = f"Anomaly results by scorer {self.__str__()}" + title = f"Anomaly results by scorer {str(self)}" if scorer_name is None: - scorer_name = f"anomaly score by {self.__str__()}" + scorer_name = f"anomaly score by {str(self)}" + + if self.window_agg: + window = 1 + else: + window = self.window return show_anomalies_from_scores( - series, - anomaly_scores=anomaly_score, - window=self.window, + series=series, + anomalies=anomalies, + pred_scores=pred_scores, + window=window, names_of_scorers=scorer_name, - actual_anomalies=actual_anomalies, title=title, metric=metric, ) - def score_from_prediction( - self, - actual_series: Union[TimeSeries, Sequence[TimeSeries]], - pred_series: Union[TimeSeries, Sequence[TimeSeries]], - ) -> Union[TimeSeries, Sequence[TimeSeries]]: - """Computes the anomaly score on the two (sequence of) series. - - The function ``diff_fn`` passed as a parameter to the scorer, will transform `pred_series` and `actual_series` - into one "difference" series. By default, ``diff_fn`` will compute the absolute difference - (Default: "abs_diff"). - If actual_series and pred_series are sequences, ``diff_fn`` will be applied to all pairwise elements - of the sequences. - - The scorer will then transform this series into an anomaly score. If a sequence of series is given, - the scorer will score each series independently and return an anomaly score for each series in the sequence. - - Parameters - ---------- - actual_series - The (sequence of) actual series. - pred_series - The (sequence of) predicted series. - - Returns - ------- - Union[TimeSeries, Sequence[TimeSeries]] - (Sequence of) anomaly score time series - """ + @property + def is_trainable(self) -> bool: + """Whether the Scorer is trainable.""" + return True - self.check_if_fit_called() + @abstractmethod + def _fit_core(self, series: Sequence[TimeSeries], *args, **kwargs): + pass - list_actual_series, list_pred_series = _to_list(actual_series), _to_list( - pred_series - ) - _assert_same_length(list_actual_series, list_pred_series) - - anomaly_scores = [] - for s1, s2 in zip(list_actual_series, list_pred_series): - _sanity_check_two_series(s1, s2) - s1 = self._assert_deterministic(s1, "actual_series") - s2 = self._assert_deterministic(s2, "pred_series") - diff = self._diff_series(s1, s2) - self._check_window_size(diff) - anomaly_scores.append(self.score(diff)) - - if ( - len(anomaly_scores) == 1 - and not isinstance(pred_series, Sequence) - and not isinstance(actual_series, Sequence) - ): - return anomaly_scores[0] - else: - return anomaly_scores + @abstractmethod + def _score_core( + self, series: Sequence[TimeSeries], *args, **kwargs + ) -> Sequence[TimeSeries]: + pass - def fit( + def _score_core_from_prediction( self, - series: Union[TimeSeries, Sequence[TimeSeries]], - ): - """Fits the scorer on the given time series input. + vals: np.ndarray, + pred_vals: np.ndarray, + ) -> np.ndarray: + pass - If sequence of series is given, the scorer will be fitted on the concatenation of the sequence. + def _diff_series( + self, + series: Sequence[TimeSeries], + pred_series: Sequence[TimeSeries], + ) -> Sequence[TimeSeries]: + """Applies the `diff_fn` to two sequences of time series. Converts two time series into 1. - The assumption is that the series `series` used for training are generally anomaly-free. + Each series-pair in series and pred_series must: + - have a non-empty time intersection + - be of the same width W Parameters ---------- series - The (sequence of) series with no anomalies. + A sequence of time series + pred_series + A sequence of predicted time series to compute `diff_fn` on. Returns ------- - self - Fitted Scorer. + Sequence[TimeSeries] + A sequence of series of width W from the difference between `series` and `pred_series`. """ - list_series = _to_list(series) - - for idx, s in enumerate(list_series): - _assert_timeseries(s) - - if idx == 0: - self.width_trained_on = s.width - else: - raise_if_not( - s.width == self.width_trained_on, - "series in `series` must have the same number of components," - + f" found number of components equal to {self.width_trained_on}" - + f" at index 0 and {s.width} at index {idx}.", - ) - self._check_window_size(s) - - self._assert_deterministic(s, "series") + residuals = self.diff_fn(series, pred_series, component_reduction=None) + out = [] + for s1, s2, res in zip(series, pred_series, residuals): + time_index = s2.slice_intersect_times(s1, copy=False) + out.append(s2.with_times_and_values(times=time_index, values=res)) + return out + + def _fun_window_agg( + self, scores: Sequence[TimeSeries], window: int + ) -> Sequence[TimeSeries]: + """ + Transforms a window-wise anomaly score into a point-wise anomaly score. - self._fit_core(list_series) - self._fit_called = True + When using a window of size `W`, a scorer will return an anomaly score + with values that represent how anomalous each past `W` is. If the parameter + `window_agg` is set to `True` (default value), the scores for each point + can be assigned by aggregating the anomaly scores for each window the point + is included in. - def fit_from_prediction( - self, - actual_series: Union[TimeSeries, Sequence[TimeSeries]], - pred_series: Union[TimeSeries, Sequence[TimeSeries]], - ): - """Fits the scorer on the two (sequence of) series. + This post-processing step is equivalent to a rolling average of length window + over the anomaly score series. The return anomaly score represents the abnormality + of each timestamp. + """ + # TODO: can we use window_transform here? + scores_point_wise = [] + for score in scores: + score_vals = score.all_values(copy=False) + mean_score = np.empty(score_vals.shape) + for idx_point in range(len(score)): + # "look ahead window" to account for the "look behind window" of the scorer + mean_score[idx_point] = score_vals[idx_point : idx_point + window].mean( + axis=0 + ) + score_point_wise = score.with_times_and_values(score.time_index, mean_score) + scores_point_wise.append(score_point_wise) + return scores_point_wise - The function ``diff_fn`` passed as a parameter to the scorer, will transform `pred_series` and `actual_series` - into one series. By default, ``diff_fn`` will compute the absolute difference (Default: "abs_diff"). - If `pred_series` and `actual_series` are sequences, ``diff_fn`` will be applied to all pairwise elements - of the sequences. + def _check_fit_called(self): + """Checks if the scorer has been fitted before calling its `score()` function.""" + if not self._fit_called: + raise_log( + ValueError( + f"The Scorer {str(self)} has not been fitted yet. Call `fit()` first." + ), + logger=logger, + ) - The scorer will then be fitted on this (sequence of) series. If a sequence of series is given, - the scorer will be fitted on the concatenation of the sequence. - The scorer assumes that the (sequence of) actual_series is anomaly-free. +class WindowedAnomalyScorer(FittableAnomalyScorer): + """Base class for anomaly scorers that rely on windows to detect anomalies""" + def __init__( + self, + is_univariate: bool, + window: int, + window_agg: bool, + diff_fn: METRIC_TYPE, + ) -> None: + """ Parameters ---------- - actual_series - The (sequence of) actual series. - pred_series - The (sequence of) predicted series. - - Returns - ------- - self - Fitted Scorer. + is_univariate + Whether the scorer is a univariate scorer. If `True` and when using multivariate series, the scores are + computed on the concatenated components/columns in the considered window to compute one score. + window + Integer value indicating the size of the window W used by the scorer to transform the series into an + anomaly score. A scorer slices the given series into subsequences of size W and returns a value + indicating how anomalous these subsets of W values are. A post-processing step will convert the anomaly + scores into point-wise anomaly scores (see definition of `window_transform`). The window size should be + commensurate to the expected durations of the anomalies one is looking for. + window_agg + Whether to transform/aggregate window-wise anomaly scores into point-wise anomaly scores. + diff_fn + The differencing function to use to transform the predicted and actual series into one series. + The scorer is then applied to this series. Must be one of Darts per-time-step metrics (e.g., + :func:`~darts.metrics.metrics.ae` for the absolute difference, :func:`~darts.metrics.metrics.err` for the + difference, :func:`~darts.metrics.metrics.se` for the squared difference, ...). + By default, uses the absolute difference (:func:`~darts.metrics.metrics.ae`). """ - list_actual_series, list_pred_series = _to_list(actual_series), _to_list( - pred_series + super().__init__( + is_univariate=is_univariate, + window=window, + window_agg=window_agg, + diff_fn=diff_fn, ) - _assert_same_length(list_actual_series, list_pred_series) - - list_fit_series = [] - for s1, s2 in zip(list_actual_series, list_pred_series): - _sanity_check_two_series(s1, s2) - s1 = self._assert_deterministic(s1, "actual_series") - s2 = self._assert_deterministic(s2, "pred_series") - list_fit_series.append(self._diff_series(s1, s2)) - - self.fit(list_fit_series) - self._fit_called = True @abstractmethod - def _fit_core(self, series: Any) -> Any: + def _model_score_method(self, model, data: np.ndarray) -> np.ndarray: + """Wrapper around model inference method""" pass - @abstractmethod - def _score_core(self, series: Any) -> Any: - pass + def _fit_core(self, series: Sequence[TimeSeries], *args, **kwargs): + """Train one sub-model for each component when self.is_univariate=False and series is multivariate""" + if self.is_univariate or series[0].width == 1: + self.model.fit(self._tabularize_series(series, component_wise=False)) + return + + tabular_data = self._tabularize_series(series, component_wise=True) + # parallelize fitting of the component-wise models + fit_iterator = zip(tabular_data, [None] * len(tabular_data)) + input_iterator = _build_tqdm_iterator( + fit_iterator, verbose=False, desc=None, total=tabular_data.shape[1] + ) + self.model = _parallel_apply( + input_iterator, + copy.deepcopy(self.model).fit, + n_jobs=self._n_jobs, + fn_args=args, + fn_kwargs=kwargs, + ) - def _diff_series(self, series_1: TimeSeries, series_2: TimeSeries) -> TimeSeries: - """Applies the ``diff_fn`` to the two time series. Converts two time series into 1. + def _score_core( + self, series: Sequence[TimeSeries], *args, **kwargs + ) -> Sequence[TimeSeries]: + """Apply the scorer (sub) model scoring method on the series components""" + _ = _check_input(series, "series", width_expected=self.width_trained_on) + if self.is_univariate or series[0].width == 1: + # n series * (time, components, samples) -> (n series * (time - (window - 1)),) + score_vals = self._model_score_method( + model=self.model, + data=self._tabularize_series(series, component_wise=False), + ) + # (n series * (time - (window - 1)),) -> (components=1, n series * (time - (window - 1))) + score_vals = np.expand_dims(score_vals, 0) + else: + # parallelize scoring of components by the corresponding sub-model + score_iterator = zip( + self.model, + self._tabularize_series(series, component_wise=True), + ) + input_iterator = _build_tqdm_iterator( + score_iterator, verbose=False, desc=None, total=len(self.model) + ) + # n series * (time, components, samples) -> (components, n series * (time - (window - 1))) + score_vals = np.array( + _parallel_apply( + input_iterator, + self._model_score_method, + n_jobs=self._n_jobs, + fn_args=args, + fn_kwargs=kwargs, + ) + ) + # (components, n series * (time - (window - 1))) -> n series * (time - (window - 1), components) + score_series = self._convert_tabular_to_series(series, score_vals) + if self.window > 1 and self.window_agg: + return self._fun_window_agg(score_series, self.window) + else: + return score_series - series_1 and series_2 must: - - have a non empty time intersection - - be of the same width W + def _tabularize_series( + self, series: Sequence[TimeSeries], component_wise: bool + ) -> np.ndarray: + """Internal function called by WindowedAnomalyScorer `fit()` and `score()` functions. - Parameters - ---------- - series_1 - 1st time series - series_2: - 2nd time series + Transforms a sequence of series into tabular data of size window `W`. The parameter `component_wise` + indicates how the rolling window must treat the different components if the series is multivariate. + If set to `False`, the rolling window will be done on each component independently. If set to `True`, + the `N` components will be concatenated to create windows of size `W` * `N`. The resulting tabular + data of each series are concatenated. Returns ------- - TimeSeries - series of width W + np.ndarray + For `component_wise=True`, an array of shape (components, time - (window - 1), window). + The component dimension is in first place for easy parallelization over all component-wise models. + For `component_wise=False`, an array of shape (time - (window - 1), window * components). """ - series_1, series_2 = _intersect(series_1, series_2) - - if self.diff_fn == "abs_diff": - return (series_1 - series_2).map(lambda x: np.abs(x)) - elif self.diff_fn == "diff": - return series_1 - series_2 + # n series * (time, components, sample) -> (time - (window - 1), window * components) + data = create_lagged_data( + target_series=series, + lags=[i for i in range(-self.window, 0)], + uses_static_covariates=False, + is_training=False, + concatenate=True, + )[0].squeeze(-1) + + # bring into required model input shape + if component_wise: + # (time - (window - 1), window * components) -> (time - (window - 1), window, components) + data = data.reshape((-1, self.window, series[0].width)) + # (time - (window - 1), window, components) -> (components, time - (window - 1), window) + d_time, d_wind, d_comp = (0, 1, 2) + data = np.moveaxis(data, [d_time, d_comp], [d_wind, d_time]) + return data + + def _convert_tabular_to_series( + self, series: Sequence[TimeSeries], score_vals: np.ndarray + ) -> Sequence[TimeSeries]: + """Converts generated anomaly score from `np.ndarray` into a sequence of series. For efficiency reasons, + the anomaly scores were computed in one go (for each component if `component_wise=True`). If a list of series + is given, each series will be concatenated by its components. The function aims to split the anomaly score at + the proper indexes to create an anomaly score for each series. + """ + if not self.is_univariate or self.is_univariate and series[0].width == 1: + # number of input components matches output components, we can generate a new series + # with the same attrs, and component names + create_fn = "with_times_and_values" else: - # found an non-existent diff_fn - raise ValueError( - f"Metric should be 'diff' or 'abs_diff', found {self.diff_fn}" + # otherwise, create a clean new series + create_fn = "from_times_and_values" + + # (components, n series * (time - (window - 1))) -> (n series * (time - (window - 1)), components) + score_vals = score_vals.T + result = [] + idx = 0 + # (n series * (time - (window - 1)), components) -> n series * (time - (window - 1), components) + for s in series: + result.append( + getattr(s, create_fn)( + times=s._time_index[self.window - 1 :], + values=score_vals[idx : idx + len(s) - self.window + 1, :], + ) ) + idx += len(s) - self.window + 1 + return result -class NLLScorer(NonFittableAnomalyScorer): +class NLLScorer(AnomalyScorer): """Parent class for all LikelihoodScorer""" def __init__(self, window) -> None: - super().__init__(univariate_scorer=False, window=window) + """ + Parameters + ---------- + window + Integer value indicating the size of the window W used by the scorer to transform the series into an + anomaly score. A scorer will slice the given series into subsequences of size W and returns a value + indicating how anomalous these subset of W values are. A post-processing step will convert this anomaly + score into a point-wise anomaly score (see definition of `window_transform`). The window size should be + commensurate to the expected durations of the anomalies one is looking for. + """ + super().__init__(is_univariate=False, window=window) + + @property + def is_probabilistic(self) -> bool: + return True def _score_core_from_prediction( self, - actual_series: TimeSeries, - pred_series: TimeSeries, - ) -> TimeSeries: + vals: np.ndarray, + pred_vals: np.ndarray, + ) -> np.ndarray: """For each timestamp of the inputs: - - the parameters of the considered distribution are fitted on the samples of the probabilistic time series - - the negative log-likelihood of the determinisitc time series values are computed + + - the parameters of the considered distribution are fitted on the samples of the probabilistic time series + - the negative log-likelihood of the deterministic time series values are computed If the series is multivariate, the score will be computed on each component independently. Parameters ---------- - actual_series: - A determinisict time series (number of samples per timestamp must be equal to 1) - pred_series - A probabilistic time series (number of samples per timestamp must be higher than 1) + vals + The values of a deterministic time series (number of samples per timestamp must be equal to 1) + pred_vals + The values of a probabilistic time series (number of samples per timestamp must be higher than 1) + time_index + The time index intersection between `series` and `pred_series`. Returns ------- TimeSeries """ - actual_series = self._assert_deterministic(actual_series, "actual_series") - self._assert_stochastic(pred_series, "pred_series") - - np_actual_series = actual_series.all_values(copy=False) - np_pred_series = pred_series.all_values(copy=False) + vals = self._extract_deterministic_values(vals, "series") + self._assert_stochastic(pred_vals, "pred_series") np_anomaly_scores = [] - for component_idx in range(pred_series.width): + for component_idx in range(pred_vals.shape[1]): np_anomaly_scores.append( self._score_core_nllikelihood( - # shape actual: (time_steps, ) - # shape pred: (time_steps, samples) - np_actual_series[:, component_idx].squeeze(-1), - np_pred_series[:, component_idx], + vals[:, component_idx].squeeze(-1), + pred_vals[:, component_idx], ) ) - - anomaly_scores = TimeSeries.from_times_and_values( - pred_series.time_index, list(zip(*np_anomaly_scores)) - ) - - def _window_adjustment_series(series: TimeSeries) -> TimeSeries: - """Slides a window of size self.window along the input series, and replaces the value of - the input time series by the mean of the values contained in the window (past self.window - points, including itself). - A series of length N will be transformed into a series of length N-self.window+1. - """ - - if self.window == 1: - # the process results in replacing every value by itself -> return directly the series - return series - else: - return series.window_transform( - transforms={ - "window": self.window, - "function": "mean", - "mode": "rolling", - "min_periods": self.window, - }, - treat_na="dropna", - ) - - return _window_adjustment_series(anomaly_scores) - - @property - def is_probabilistic(self) -> bool: - return True + return np.array(np_anomaly_scores).T @abstractmethod - def _score_core_nllikelihood(self, input_1: Any, input_2: Any) -> Any: + def _score_core_nllikelihood( + self, vals: np.ndarray, pred_vals: np.ndarray + ) -> np.ndarray: """For each timestamp, the corresponding distribution is fitted on the probabilistic time-series input_2, and returns the negative log-likelihood of the deterministic time-series input_1 given the distribution. diff --git a/darts/ad/scorers/wasserstein_scorer.py b/darts/ad/scorers/wasserstein_scorer.py index 79d4c26359..7593b118d5 100644 --- a/darts/ad/scorers/wasserstein_scorer.py +++ b/darts/ad/scorers/wasserstein_scorer.py @@ -1,5 +1,5 @@ """ -WassersteinScorer +Wasserstein Scorer ----- Wasserstein Scorer (distance function defined between probability distributions) [1]_. @@ -14,46 +14,50 @@ from typing import Sequence import numpy as np -from numpy.lib.stride_tricks import sliding_window_view from scipy.stats import wasserstein_distance -from darts.ad.scorers.scorers import FittableAnomalyScorer -from darts.logging import get_logger, raise_if_not +from darts import metrics +from darts.ad.scorers.scorers import WindowedAnomalyScorer +from darts.logging import get_logger +from darts.metrics.metrics import METRIC_TYPE from darts.timeseries import TimeSeries logger = get_logger(__name__) -class WassersteinScorer(FittableAnomalyScorer): +class WassersteinScorer(WindowedAnomalyScorer): + def __init__( self, window: int = 10, component_wise: bool = False, - diff_fn="abs_diff", + window_agg: bool = True, + diff_fn: METRIC_TYPE = metrics.ae, ) -> None: - """ - When calling ``fit(series)``, a moving window is applied, which results in a set of vectors of size `W`, + """Wasserstein Scorer + + When calling `fit(series)`, a moving window is applied, which results in a set of vectors of size `W`, where `W` is the window size. These vectors are kept in memory, representing the training - distribution. The ``score(series)`` function will apply the same moving window. + distribution. The `score(series)` function will apply the same moving window. The Wasserstein distance is computed between the training distribution and each vector, resulting in an anomaly score. - Alternatively, the scorer has the functions ``fit_from_prediction()`` and ``score_from_prediction()``. + Alternatively, the scorer has the functions `fit_from_prediction()` and `score_from_prediction()`. Both require two series (actual and prediction), and compute a "difference" series by applying the - function ``diff_fn`` (default: absolute difference). The resulting series is then passed to the - functions ``fit()`` and ``score()``, respectively. + function `diff_fn` (default: absolute difference). The resulting series is then passed to the + functions `fit()` and `score()`, respectively. `component_wise` is a boolean parameter indicating how the model should behave with multivariate inputs - series. If set to True, the model will treat each series dimension independently. If set to False, the model + series. If set to `True`, the model will treat each series dimension independently. If set to `False`, the model concatenates the dimensions in each windows of length `W` and computes a single score for all dimensions. - **Training with** ``fit()``: + **Training with** `fit()`: The input can be a series (univariate or multivariate) or multiple series. The series will be partitioned into equal size subsequences. The subsequence will be of size `W` * `D`, with: - * `W` being the size of the window given as a parameter `window` - * `D` being the dimension of the series (`D` = 1 if univariate or if `component_wise` is set to True) + - `W` being the size of the window given as a parameter `window` + - `D` being the dimension of the series (`D` = 1 if univariate or if `component_wise` is set to `True`) For a series of length `N`, (`N` - `W` + 1)/W subsequences will be generated. If a list of series is given of length L, each series will be partitioned into subsequences, and the results will be concatenated into @@ -63,19 +67,19 @@ def __init__( In practice, the series or list of series can for instance represent residuals than can be considered independent and identically distributed (iid). - If `component_wise` is set to True, the algorithm will be applied to each dimension independently. For each + If `component_wise` is set to `True`, the algorithm will be applied to each dimension independently. For each dimension, a PyOD model will be trained. - **Computing score with** ``score()``: + **Computing score with** `score()`: The input can be a series (univariate or multivariate) or a sequence of series. The given series must have the same dimension `D` as the data used to train the PyOD model. For each series, if the series is multivariate of dimension `D`: - * if `component_wise` is set to False: it returns a univariate series (dimension=1). It represents + - if `component_wise` is set to `False`: it returns a univariate series (dimension=1). It represents the anomaly score of the entire series in the considered window at each timestamp. - * if `component_wise` is set to True: it returns a multivariate series of dimension `D`. Each dimension + - if `component_wise` is set to `True`: it returns a multivariate series of dimension `D`. Each dimension represents the anomaly score of the corresponding component of the input. If the series is univariate, it returns a univariate series regardless of the parameter @@ -90,17 +94,21 @@ def __init__( window Size of the sliding window that represents the number of samples in the testing distribution to compare with the training distribution in the Wasserstein function - diff_fn - Optionally, reduced function to use if two series are given. It will transform the two series into one. - This allows the WassersteinScorer to compute the Wasserstein distance on the original series or on its - residuals (difference between the prediction and the original series). - Must be one of "abs_diff" and "diff" (defined in ``_diff_series()``). - Default: "abs_diff" component_wise - Boolean value indicating if the score needs to be computed for each component independently (True) - or by concatenating the component in the considered window to compute one score (False). - Default: False - + Boolean value indicating if the score needs to be computed for each component independently (`True`) + or by concatenating the component in the considered window to compute one score (`False`). + Default: `False`. + window_agg + Boolean indicating whether the anomaly score for each time step is computed by + averaging the anomaly scores for all windows this point is included in. + If `False`, the anomaly score for each point is the anomaly score of its trailing window. + Default: `True`. + diff_fn + The differencing function to use to transform the predicted and actual series into one series. + The scorer is then applied to this series. Must be one of Darts per-time-step metrics (e.g., + :func:`~darts.metrics.metrics.ae` for the absolute difference, :func:`~darts.metrics.metrics.err` for the + difference, :func:`~darts.metrics.metrics.se` for the squared difference, ...). + By default, uses the absolute difference (:func:`~darts.metrics.metrics.ae`). """ # TODO: @@ -113,79 +121,31 @@ def __init__( logger.warning( f"The `window` parameter WassersteinScorer is smaller than 10 (w={window})." + " The value represents the window length rolled on the series given as" - + " input in the ``score`` function. At each position, the w values will" + + " input in the `score` function. At each position, the w values will" + " constitute a subset, and the Wasserstein distance between the subset" + " and the train distribution will be computed. To better represent the" + " constituted test distribution, the window parameter should be larger" + " than 10." ) - - raise_if_not( - type(component_wise) is bool, # noqa: E721 - f"Parameter `component_wise` must be Boolean, found type: {type(component_wise)}.", - ) - self.component_wise = component_wise - super().__init__( - univariate_scorer=(not component_wise), window=window, diff_fn=diff_fn + is_univariate=(not component_wise), + window=window, + window_agg=window_agg, + diff_fn=diff_fn, ) def __str__(self): return "WassersteinScorer" - def _fit_core( - self, - list_series: Sequence[TimeSeries], - ): - self.training_data = np.concatenate( - [s.all_values(copy=False) for s in list_series] - ).squeeze(-1) - - if not self.component_wise: - self.training_data = self.training_data.flatten() - - def _score_core(self, series: TimeSeries) -> TimeSeries: - raise_if_not( - self.width_trained_on == series.width, - "Input must have the same number of components as the data used for" - + " training the Wasserstein model, found number of components equal" - + f" to {series.width} and expected {self.width_trained_on}.", + def _fit_core(self, series: Sequence[TimeSeries], *args, **kwargs): + """The training values are considered as the scorer model""" + self.model = np.concatenate([s.all_values(copy=False) for s in series]).squeeze( + -1 ) - np_series = series.all_values(copy=False) - np_anomaly_score = [] + if self.is_univariate or series[0].width == 1: + self.model = self.model.flatten() - if not self.component_wise: - np_anomaly_score = [ - wasserstein_distance(self.training_data, window_samples) - for window_samples in sliding_window_view( - np_series, window_shape=self.window, axis=0 - ) - .transpose(0, 3, 1, 2) - .reshape(-1, self.window * series.width) - ] - - return TimeSeries.from_times_and_values( - series.time_index[self.window - 1 :], np_anomaly_score - ) - - else: - for component_idx in range(self.width_trained_on): - score = [ - wasserstein_distance( - self.training_data[component_idx, :], window_samples - ) - for window_samples in sliding_window_view( - np_series[:, component_idx], - window_shape=self.window, - axis=0, - ) - .transpose(0, 2, 1) - .reshape(-1, self.window) - ] - - np_anomaly_score.append(score) - - return TimeSeries.from_times_and_values( - series.time_index[self.window - 1 :], list(zip(*np_anomaly_score)) - ) + def _model_score_method(self, model, data: np.ndarray) -> np.ndarray: + """Wrapper around model inference method""" + return [wasserstein_distance(model, window_samples) for window_samples in data] diff --git a/darts/ad/utils.py b/darts/ad/utils.py index 507178c5fb..efbfe97ecb 100644 --- a/darts/ad/utils.py +++ b/darts/ad/utils.py @@ -2,18 +2,22 @@ Utils for Anomaly Detection --------------------------- -Common functions used by anomaly_model.py, scorers.py, aggregators.py and detectors.py +Common functions used throughout the Anomaly Detection module. """ # TODO: -# - change structure of eval_accuracy_from_scores and eval_accuracy_from_binary_prediction (a lot of repeated code) # - migrate metrics function to darts.metric # - check error message # - create a zoom option on anomalies for a show function -# - add an option visualize: "by window", "unique", "together" +# - add an option to visualize: "by window", "unique", "together" # - create a normalize option in plot function (norm every anomaly score btw 1 and 0) -> to be seen on the same plot -from typing import Sequence, Tuple, Union +from typing import Callable, Optional, Sequence, Union + +try: + from typing import Literal +except ImportError: + from typing_extensions import Literal import matplotlib.pyplot as plt import numpy as np @@ -27,184 +31,175 @@ ) from darts import TimeSeries -from darts.logging import get_logger, raise_if, raise_if_not +from darts.logging import get_logger, raise_log +from darts.utils.ts_utils import series2seq logger = get_logger(__name__) -def _assert_binary(series: TimeSeries, name_series: str): - """Checks if series is a binary timeseries (1 and 0)" - - Parameters - ---------- - series - series to check for. - name_series - name str of the series. - """ - - raise_if_not( - np.array_equal( - series.values(copy=False), - series.values(copy=False).astype(bool), - ), - f"Input series {name_series} must be a binary time series.", - ) - - -def eval_accuracy_from_scores( - actual_anomalies: Union[TimeSeries, Sequence[TimeSeries]], - anomaly_score: Union[TimeSeries, Sequence[TimeSeries]], +def eval_metric_from_scores( + anomalies: Union[TimeSeries, Sequence[TimeSeries]], + pred_scores: Union[TimeSeries, Sequence[TimeSeries]], window: Union[int, Sequence[int]] = 1, - metric: str = "AUC_ROC", + metric: Literal["AUC_ROC", "AUC_PR"] = "AUC_ROC", ) -> Union[float, Sequence[float], Sequence[Sequence[float]]]: - """Scores the results against true anomalies. + """Computes a score/metric between anomaly scores against true anomalies. - `actual_anomalies` and `anomaly_score` must have the same shape. - `actual_anomalies` must be binary and have values belonging to the two classes (0 and 1). + `anomalies` and `pred_scores` must have the same shape. + `anomalies` must be binary and have values belonging to the two classes (0 and 1). - If one series is given for `actual_anomalies` and `anomaly_score` contains more than - one series, the function will consider `actual_anomalies` as the ground truth anomalies for - all scores in `anomaly_score`. + If one series is given for `anomalies` and `pred_scores` contains more than + one series, the function will consider `anomalies` as the ground truth anomalies for + all scores in `pred_scores`. Parameters ---------- - actual_anomalies - The ground truth of the anomalies (1 if it is an anomaly and 0 if not). - anomaly_score - Series indicating how anomoulous each window of size w is. + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). + pred_scores + The (sequence of) of estimated anomaly score series indicating how anomalous each window of size w is. window - Integer value indicating the number of past samples each point represents - in the anomaly_score. The parameter will be used by the function - ``_window_adjustment_anomalies()`` to transform actual_anomalies. - If a list is given. the length must match the number of series in anomaly_score - and actual_anomalies. If only one window is given, the value will be used for every - series in anomaly_score and actual_anomalies. + Integer value indicating the number of past samples each point represents in the `pred_scores`. + The parameter will be used to transform `anomalies`. + If a list of integers, the length must match the number of series in `pred_scores`. + If an integer, the value will be used for every series in `pred_scores` and `anomalies`. metric - Optionally, Scoring function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" + The name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Default: "AUC_ROC". Returns ------- - Union[float, Sequence[float], Sequence[Sequence[float]]] - Score of the anomalies score prediction - * ``float`` if `anomaly_score` is a univariate series (dimension=1). - * ``Sequence[float]`` - - * if `anomaly_score` is a multivariate series (dimension>1), - returns one value per dimension. - * if `anomaly_score` is a sequence of univariate series, returns one - value per series - * ``Sequence[Sequence[float]]`` if `anomaly_score` is a sequence of - multivariate series. Outer Sequence is over the sequence input, and the inner - Sequence is over the dimensions of each element in the sequence input. + float + A single score/metric for univariate `pred_scores` series (with only one component/column). + Sequence[float] + A sequence (list) of scores for: + + - multivariate `pred_scores` series (multiple components). Gives a score for each component. + - a sequence (list) of univariate `pred_scores` series. Gives a score for each series. + Sequence[Sequence[float]] + A sequence of sequences of scores for a sequence of multivariate `pred_scores` series. + Gives a score for each series (outer sequence) and component (inner sequence). """ - - raise_if_not( - metric in {"AUC_ROC", "AUC_PR"}, - "Argument `metric` must be one of 'AUC_ROC', 'AUC_PR'", - ) - metric_fn = roc_auc_score if metric == "AUC_ROC" else average_precision_score - - list_actual_anomalies, list_anomaly_scores, list_window = ( - _to_list(actual_anomalies), - _to_list(anomaly_score), - _to_list(window), + return _eval_metric( + anomalies=anomalies, + pred_series=pred_scores, + window=window, + metric=metric, + pred_is_binary=False, ) - if len(list_actual_anomalies) == 1 and len(list_anomaly_scores) > 1: - list_actual_anomalies = list_actual_anomalies * len(list_anomaly_scores) - - _assert_same_length(list_actual_anomalies, list_anomaly_scores) - - if len(list_window) == 1: - list_window = list_window * len(actual_anomalies) - else: - raise_if_not( - len(list_window) == len(list_actual_anomalies), - "The list of windows must be the same length as the list of `anomaly_score` and" - + " `actual_anomalies`. There must be one window value for each series." - + f" Found length {len(list_window)}, expected {len(list_actual_anomalies)}.", - ) - sol = [] - for idx, (s_anomalies, s_score) in enumerate( - zip(list_actual_anomalies, list_anomaly_scores) - ): +def eval_metric_from_binary_prediction( + anomalies: Union[TimeSeries, Sequence[TimeSeries]], + pred_anomalies: Union[TimeSeries, Sequence[TimeSeries]], + window: Union[int, Sequence[int]] = 1, + metric: Literal["recall", "precision", "f1", "accuracy"] = "recall", +) -> Union[float, Sequence[float], Sequence[Sequence[float]]]: + """Computes a score/metric between predicted anomalies against true anomalies. - _assert_binary(s_anomalies, "actual_anomalies") + `pred_anomalies` and `anomalies` must have: - sol.append( - _eval_accuracy_from_data( - s_anomalies, s_score, list_window[idx], metric_fn, metric - ) - ) + - identical dimensions (number of time steps and number of components/columns), + - binary values belonging to the two classes (`1` if it is an anomaly and `0` if not) - if len(sol) == 1 and not isinstance(anomaly_score, Sequence): - return sol[0] - else: - return sol + If one series is given for `anomalies` and `pred_anomalies` contains more than + one series, the function will consider `anomalies` as the true anomalies for + all scores in `pred_scores`. + Parameters + ---------- + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). + pred_anomalies + The (sequence of) predicted binary anomaly series. + window + Integer value indicating the number of past samples each point represents in the `pred_scores`. + The parameter will be used to transform `anomalies`. + If a list of integers, the length must match the number of series in `pred_scores`. + If an integer, the value will be used for every series in `pred_scores` and `anomalies`. + metric + The name of the metric function to use. Must be one of "recall", "precision", "f1", and "accuracy". + Default: "recall". -def eval_accuracy_from_binary_prediction( - actual_anomalies: Union[TimeSeries, Sequence[TimeSeries]], - binary_pred_anomalies: Union[TimeSeries, Sequence[TimeSeries]], - window: Union[int, Sequence[int]] = 1, - metric: str = "recall", -) -> Union[float, Sequence[float], Sequence[Sequence[float]]]: - """Score the results against true anomalies. + Returns + ------- + float + A single score for univariate `pred_anomalies` series (with only one component/column). + Sequence[float] + A sequence (list) of scores for: + + - multivariate `pred_anomalies` series (multiple components). Gives a score for each component. + - a sequence (list) of univariate `pred_anomalies` series. Gives a score for each series. + Sequence[Sequence[float]] + A sequence of sequences of scores for a sequence of multivariate `pred_anomalies` series. + Gives a score for each series (outer sequence) and component (inner sequence). + """ + return _eval_metric( + anomalies=anomalies, + pred_series=pred_anomalies, + window=window, + metric=metric, + pred_is_binary=True, + ) - checks that `pred_anomalies` and `actual_anomalies` are the same: - - type, - - length, - - number of components - - binary and has values belonging to the two classes (1 and 0) - If one series is given for `actual_anomalies` and `pred_anomalies` contains more than - one series, the function will consider `actual_anomalies` as the true anomalies for - all scores in `anomaly_score`. +def _eval_metric( + anomalies: Union[TimeSeries, Sequence[TimeSeries]], + pred_series: Union[TimeSeries, Sequence[TimeSeries]], + window: Union[int, Sequence[int]], + metric: Literal["AUC_ROC", "AUC_PR", "recall", "precision", "f1", "accuracy"], + pred_is_binary: bool, +): + """Computes a score/metric between anomaly scores or binary predicted anomalies against true + anomalies. Parameters ---------- - actual_anomalies - The (sequence of) ground truth of the anomalies (1 if it is an anomaly and 0 if not) - binary_pred_anomalies - Anomaly predictions. + anomalies + The (sequence of) ground truth binary anomaly series (`1` if it is an anomaly and `0` if not). + pred_series + The (sequence of) anomaly scores or predicted binary anomaly series. window - Integer value indicating the number of past samples each point represents - in the pred_anomalies. The parameter will be used to transform actual_anomalies. - If a list is given. the length must match the number of series in pred_anomalies - and actual_anomalies. If only one window is given, the value will be used for every - series in pred_anomalies and actual_anomalies. + Integer value indicating the number of past samples each point represents in the `pred_scores`. + The parameter will be used to transform `anomalies`. + If a list of integers, the length must match the number of series in `pred_scores`. + If an integer, the value will be used for every series in `pred_scores` and `anomalies`. metric - Optionally, Scoring function to use. Must be one of "recall", "precision", - "f1", and "accuracy". - Default: "recall" + The name of the scoring function to use. Must be one of "recall", "precision", + "f1", and "accuracy" if `pred_is_binary` is `True`. Otherwise, must be one of "AUC_ROC", "AUC_PR". + pred_is_binary + Whether `pred_series` refers predicted binary anomalies or anomaly scores. Returns ------- - Union[float, Sequence[float], Sequence[Sequence[float]]] - Score of the anomalies prediction - - * ``float`` if `binary_pred_anomalies` is a univariate series (dimension=1). - * ``Sequence[float]`` - - * if `binary_pred_anomalies` is a multivariate series (dimension>1), - returns one value per dimension. - * if `binary_pred_anomalies` is a sequence of univariate series, returns one - value per series - * ``Sequence[Sequence[float]]`` if `binary_pred_anomalies` is a sequence of - multivariate series. Outer Sequence is over the sequence input, and the inner - Sequence is over the dimensions of each element in the sequence input. + float + A single score for univariate `pred_series` series (with only one component/column). + Sequence[float] + A sequence (list) of scores for: + + - multivariate `pred_series` series (multiple components). Gives a score for each component. + - a sequence (list) of univariate `pred_series` series. Gives a score for each series. + Sequence[Sequence[float]] + A sequence of sequences of scores for a sequence of multivariate `pred_series` series. + Gives a score for each series (outer sequence) and component (inner sequence). """ - - raise_if_not( - metric in {"recall", "precision", "f1", "accuracy"}, - "Argument `metric` must be one of 'recall', 'precision', " - "'f1' and 'accuracy'.", + metrics_exp = ( + {"recall", "precision", "f1", "accuracy"} + if pred_is_binary + else {"AUC_ROC", "AUC_PR"} ) + if metric not in metrics_exp: + raise_log( + ValueError(f"Argument `metric` must be one of {metrics_exp}"), + logger=logger, + ) - if metric == "recall": + if metric == "AUC_ROC": + metric_fn = roc_auc_score + elif metric == "AUC_PR": + metric_fn = average_precision_score + elif metric == "recall": metric_fn = recall_score elif metric == "precision": metric_fn = precision_score @@ -213,304 +208,117 @@ def eval_accuracy_from_binary_prediction( else: metric_fn = accuracy_score - list_actual_anomalies, list_binary_pred_anomalies, list_window = ( - _to_list(actual_anomalies), - _to_list(binary_pred_anomalies), - _to_list(window), + called_with_single_series = isinstance(pred_series, TimeSeries) + anomalies = series2seq(anomalies) + pred_series = series2seq(pred_series) + window = [window] if not isinstance(window, Sequence) else window + + if len(anomalies) == 1 and len(pred_series) > 1: + anomalies = anomalies * len(pred_series) + + name = "anomalies" + pred_name = "pred_anomalies" if pred_is_binary else "pred_scores" + _assert_same_length( + anomalies, + pred_series, + name, + pred_name, ) - if len(list_actual_anomalies) == 1 and len(list_binary_pred_anomalies) > 1: - list_actual_anomalies = list_actual_anomalies * len(list_binary_pred_anomalies) - - _assert_same_length(list_actual_anomalies, list_binary_pred_anomalies) - - if len(list_window) == 1: - list_window = list_window * len(actual_anomalies) + if len(window) == 1: + window = window * len(anomalies) else: - raise_if_not( - len(list_window) == len(list_actual_anomalies), - "The list of windows must be the same length as the list of `pred_anomalies` and" - + " `actual_anomalies`. There must be one window value for each series." - + f" Found length {len(list_window)}, expected {len(list_actual_anomalies)}.", - ) + if len(window) != len(anomalies): + raise_log( + ValueError( + f"The list of windows must be the same length as the list of `{pred_name}` and " + f"`{name}`. There must be one window value for each series. " + f"Found length {len(window)}, expected {len(anomalies)}." + ), + logger=logger, + ) sol = [] - for idx, (s_anomalies, s_pred) in enumerate( - zip(list_actual_anomalies, list_binary_pred_anomalies) - ): - - _assert_binary(s_pred, "pred_anomalies") - _assert_binary(s_anomalies, "actual_anomalies") - - sol.append( - _eval_accuracy_from_data( - s_anomalies, s_pred, list_window[idx], metric_fn, metric + for s_anomalies, s_pred, s_window in zip(anomalies, pred_series, window): + _assert_timeseries(s_pred, name=pred_name) + _assert_timeseries(s_anomalies, name=name) + _assert_binary(s_anomalies, name) + if pred_is_binary: + _assert_binary(s_pred, pred_name) + + # if s_window > 1, the anomalies will be adjusted so that it can be compared timewise with s_pred + s_anomalies = _max_pooling(s_anomalies, s_window) + + _sanity_check_two_series(s_pred, s_anomalies, pred_name, name) + + s_pred_vals = s_pred.slice_intersect_values(s_anomalies, copy=False) + s_anomalies_vals = s_anomalies.slice_intersect_values(s_pred, copy=False) + + if not len(s_pred_vals) == len(s_anomalies_vals): + raise_log( + ValueError( + f"The two time series `{pred_name}` and `{name}` " + f"must have at least a partially overlapping time index." + ), + logger=logger, ) - ) - - if len(sol) == 1 and not isinstance(binary_pred_anomalies, Sequence): - return sol[0] - else: - return sol - - -def _eval_accuracy_from_data( - s_anomalies: TimeSeries, - s_data: TimeSeries, - window: int, - metric_fn, - metric_name: str, -) -> Union[float, Sequence[float]]: - """Internal function for: - - ``eval_accuracy_from_binary_prediction()`` - - ``eval_accuracy_from_scores()`` - - Score the results against true anomalies. - - Parameters - ---------- - actual_anomalies - The ground truth of the anomalies (1 if it is an anomaly and 0 if not) - s_data - series prediction - window - Integer value indicating the number of past samples each point represents - in the anomaly_score. The parameter will be used by the function - ``_window_adjustment_anomalies()`` to transform s_anomalies. - metric_fn - Function to use. Can be "average_precision_score", "roc_auc_score", "accuracy_score", - "f1_score", "precision_score" and "recall_score". - metric_name - Name str of the function to use. Can be "AUC_PR", "AUC_ROC", "accuracy", - "f1", "precision" and "recall". - - Returns - ------- - Union[float, Sequence[float]] - Score of the anomalies prediction - - float -> if `s_data` is a univariate series (dimension=1). - - Sequence[float] -> if `s_data` is a multivariate series (dimension>1), - returns one value per dimension. - """ - _assert_timeseries(s_data, "Prediction series input") - _assert_timeseries(s_anomalies, "actual_anomalies input") + if not pred_is_binary: # `pred_series` is an anomaly score + nr_anomalies_per_component = s_anomalies_vals.sum(axis=0).flatten() - # if window > 1, the anomalies will be adjusted so that it can be compared timewise with s_data - s_anomalies = _max_pooling(s_anomalies, window) - - _sanity_check_two_series(s_data, s_anomalies) - - s_data, s_anomalies = _intersect(s_data, s_anomalies) - - if metric_name == "AUC_ROC" or metric_name == "AUC_PR": - - nr_anomalies_per_component = ( - s_anomalies.sum(axis=0).values(copy=False).flatten() - ) - - raise_if( - nr_anomalies_per_component.min() == 0, - f"`actual_anomalies` does not contain anomalies. {metric_name} cannot be computed.", - ) - - raise_if( - nr_anomalies_per_component.max() == len(s_anomalies), - f"`actual_anomalies` only contains anomalies. {metric_name} cannot be computed." - + ["", f" Consider decreasing the window size (window={window})"][ - window > 1 - ], - ) + if nr_anomalies_per_component.min() == 0: + raise_log( + ValueError( + f"`{name}` does not contain anomalies. {metric} cannot be computed." + ), + logger=logger, + ) + if nr_anomalies_per_component.max() == len(s_anomalies_vals): + add_txt = ( + "" + if s_window <= 1 + else f" Consider decreasing the window size (window={s_window})" + ) + raise_log( + ValueError( + f"`{name}` only contains anomalies. {metric} cannot be computed." + + add_txt + ), + logger=logger, + ) - # TODO: could we vectorize this? - metrics = [] - for component_idx in range(s_data.width): - metrics.append( - metric_fn( - s_anomalies.all_values(copy=False)[:, component_idx], - s_data.all_values(copy=False)[:, component_idx], + # TODO: could we vectorize this? + metrics = [] + for component_idx in range(s_pred.width): + metrics.append( + metric_fn( + s_anomalies_vals[:, component_idx], + s_pred_vals[:, component_idx], + ) ) - ) - - if len(metrics) == 1: - return metrics[0] - else: - return metrics - + sol.append(metrics if len(metrics) > 1 else metrics[0]) -def _intersect( - series_1: TimeSeries, - series_2: TimeSeries, -) -> Tuple[TimeSeries, TimeSeries]: - """Returns the sub-series of series_1 and of series_2 that share the same time index. - (Intersection in time of the two time series) - - Parameters - ---------- - series_1 - 1st time series - series_2: - 2nd time series - - Returns - ------- - Tuple[TimeSeries, TimeSeries] - """ - - new_series_1 = series_1.slice_intersect(series_2) - raise_if( - len(new_series_1) == 0, - "Time intersection between the two series must be non empty.", - ) - - return new_series_1, series_2.slice_intersect(series_1) - - -def _assert_timeseries(series: TimeSeries, message: str = None): - """Checks if given input is of type Darts TimeSeries""" - - raise_if_not( - isinstance(series, TimeSeries), - "{} must be type darts.timeseries.TimeSeries and not {}.".format( - message if message is not None else "Series input", type(series) - ), - ) - - -def _sanity_check_two_series( - series_1: TimeSeries, - series_2: TimeSeries, -): - """Performs sanity check on the two given inputs - - Checks if the two inputs: - - type is Darts Timeseries - - have the same number of components - - if their intersection in time is not null - - Parameters - ---------- - series_1 - 1st time series - series_2: - 2nd time series - """ - - _assert_timeseries(series_1) - _assert_timeseries(series_2) - - # check if the two inputs time series have the same number of components - raise_if_not( - series_1.width == series_2.width, - "Series must have the same number of components," - + f" found {series_1.width} and {series_2.width}.", - ) - - # check if the time intersection between the two inputs time series is not empty - raise_if_not( - len(series_1.time_index.intersection(series_2.time_index)) > 0, - "Series must have a non-empty intersection timestamps.", - ) - - -def _max_pooling(series: TimeSeries, window: int) -> TimeSeries: - """Slides a window of size `window` along the input series, and replaces the value of the - input time series by the maximum of the values contained in the window. - - The binary time series output represents if there is an anomaly (=1) or not (=0) in the past - window points. The new series will equal the length of the input series - window. Its first - point will start at the first time index of the input time series + window points. - - Parameters - ---------- - series: - Binary time series. - window: - Integer value indicating the number of past samples each point represents. - - Returns - ------- - Binary TimeSeries - """ - - raise_if_not( - isinstance(window, int), - f"Parameter `window` must be of type int, found {type(window)}.", - ) - - raise_if_not( - window > 0, - f"Parameter `window` must be stricly greater than 0, found size {window}.", - ) - - raise_if_not( - window < len(series), - "Parameter `window` must be smaller than the length of the input series, " - + f" found window size {(window)}, and max size {len(series)}.", - ) - - if window == 1: - # the process results in replacing every value by itself -> return directly the series - return series - else: - return series.window_transform( - transforms={ - "window": window, - "function": "max", - "mode": "rolling", - "min_periods": window, - }, - treat_na="dropna", - ) - - -def _to_list(series: Union[TimeSeries, Sequence[TimeSeries]]) -> Sequence[TimeSeries]: - """If not already, it converts the input into a sequence - - Parameters - ---------- - series - single TimeSeries, or a sequence of TimeSeries - - Returns - ------- - Sequence[TimeSeries] - """ - - return [series] if not isinstance(series, Sequence) else series - - -def _assert_same_length( - list_series_1: Sequence[TimeSeries], - list_series_2: Sequence[TimeSeries], -): - """Checks if the two sequences contain the same number of TimeSeries.""" - - raise_if_not( - len(list_series_1) == len(list_series_2), - "Sequences of series must be of the same length, found length:" - + f" {len(list_series_1)} and {len(list_series_2)}.", - ) + return sol[0] if called_with_single_series else sol def show_anomalies_from_scores( series: TimeSeries, - model_output: TimeSeries = None, - anomaly_scores: Union[TimeSeries, Sequence[TimeSeries]] = None, + anomalies: TimeSeries = None, + pred_series: TimeSeries = None, + pred_scores: Union[TimeSeries, Sequence[TimeSeries]] = None, window: Union[int, Sequence[int]] = 1, names_of_scorers: Union[str, Sequence[str]] = None, - actual_anomalies: TimeSeries = None, title: str = None, - metric: str = None, + metric: Optional[Literal["AUC_ROC", "AUC_PR"]] = None, ): """Plot the results generated by an anomaly model. The plot will be composed of the following: - - the series itself with the output of the model (if given) + - the actual series itself with the output of the model (if given) - the anomaly score of each scorer. The scorer with different windows will be separated. - the actual anomalies, if given. - If model_output is stochastic (i.e., if it has multiple samples), the function will plot: + If `pred_series` is stochastic (i.e., if it has multiple samples), the function will plot: - the mean per timestamp - the quantile 0.95 for an upper bound - the quantile 0.05 for a lower bound @@ -523,144 +331,95 @@ def show_anomalies_from_scores( Parameters ---------- series - The series to visualize anomalies from. - model_output - Output of the model given as input the series (can be stochastic). - anomaly_scores - Output of the scorers given the output of the model and the series. + The actual series to visualize anomalies from. + anomalies + The ground truth of the anomalies (1 if it is an anomaly and 0 if not). + pred_series + Output of the model given as input the `series` (can be stochastic). + pred_scores + Output of the scorers given the output of the model and `series`. window Window parameter for each anomaly scores. Default: 1. If a list of anomaly scores is given, the same default window will be used for every score. names_of_scorers Name of the scores. Must be a list of length equal to the number of scorers in the anomaly_model. - actual_anomalies - The ground truth of the anomalies (1 if it is an anomaly and 0 if not) + Only effective when `pred_scores` is not `None`. title Title of the figure metric - Optionally, Scoring function to use. Must be one of "AUC_ROC" and "AUC_PR". - Default: "AUC_ROC" + Optionally, the name of the metric function to use. Must be one of "AUC_ROC" (Area Under the + Receiver Operating Characteristic Curve) and "AUC_PR" (Average Precision from scores). + Only effective when `pred_scores` is not `None`. + Default: "AUC_ROC". """ + series = _check_input( + series, + name="series", + num_series_expected=1, + )[0] - raise_if_not( - isinstance(series, TimeSeries), - f"Input `series` must be of type TimeSeries, found {type(series)}.", - ) - - if title is None: - if anomaly_scores is not None: - title = "Anomaly results" - else: - raise_if_not( - isinstance(title, str), - f"Input `title` must be of type str, found {type(title)}.", - ) + if title is None and pred_scores is not None: + title = "Anomaly results" nbr_plots = 1 - - if model_output is not None: - raise_if_not( - isinstance(model_output, TimeSeries), - f"Input `model_output` must be of type TimeSeries, found {type(model_output)}.", - ) - - if actual_anomalies is not None: - raise_if_not( - isinstance(actual_anomalies, TimeSeries), - f"Input `actual_anomalies` must be of type TimeSeries, found {type(actual_anomalies)}.", - ) - + if anomalies is not None: nbr_plots = nbr_plots + 1 - else: - raise_if_not( - metric is None, - "`actual_anomalies` must be given in order to calculate a metric.", + elif metric is not None: + raise_log( + ValueError("`anomalies` must be given in order to calculate a metric."), + logger=logger, ) - if anomaly_scores is not None: - - if isinstance(anomaly_scores, Sequence): - for idx, s in enumerate(anomaly_scores): - raise_if_not( - isinstance(s, TimeSeries), - f"Elements of anomaly_scores must be of type TimeSeries, found {type(s)} at index {idx}.", - ) - else: - raise_if_not( - isinstance(anomaly_scores, TimeSeries), - f"Input `anomaly_scores` must be of type TimeSeries or Sequence, found {type(actual_anomalies)}.", - ) - anomaly_scores = [anomaly_scores] - + pred_scores = series2seq(pred_scores) + if pred_scores is not None: if names_of_scorers is not None: - - if isinstance(names_of_scorers, str): - names_of_scorers = [names_of_scorers] - elif isinstance(names_of_scorers, Sequence): - for idx, name in enumerate(names_of_scorers): - raise_if_not( - isinstance(name, str), - f"Elements of names_of_scorers must be of type str, found {type(name)} at index {idx}.", - ) - else: - raise ValueError( - f"Input `names_of_scorers` must be of type str or Sequence, found {type(names_of_scorers)}." - ) - - raise_if_not( - len(names_of_scorers) == len(anomaly_scores), - "The number of names in `names_of_scorers` must match the number of anomaly score " - + f"given as input, found {len(names_of_scorers)} and expected {len(anomaly_scores)}.", + names_of_scorers = ( + [names_of_scorers] + if isinstance(names_of_scorers, str) + else names_of_scorers ) - - if isinstance(window, int): - window = [window] - elif isinstance(window, Sequence): - for idx, w in enumerate(window): - raise_if_not( - isinstance(w, int), - f"Every window must be of type int, found {type(w)} at index {idx}.", + if len(names_of_scorers) != len(pred_scores): + raise_log( + ValueError( + f"The number of names in `names_of_scorers` must match the " + f"number of anomaly score given as input, found " + f"{len(names_of_scorers)} and expected {len(pred_scores)}." + ), + logger=logger, ) - else: - raise ValueError( - f"Input `window` must be of type int or Sequence, found {type(window)}." - ) - raise_if_not( - all([w > 0 for w in window]), - "All windows must be positive integer.", - ) - - if len(window) == 1: - window = window * len(anomaly_scores) - else: - raise_if_not( - len(window) == len(anomaly_scores), - "The number of window in `window` must match the number of anomaly score given as input. One " - + f"window value for each series. Found length {len(window)}, and expected {len(anomaly_scores)}.", + window = [window] if isinstance(window, int) else window + if not all([w > 0 for w in window]): + raise_log( + ValueError( + "Parameter `window` must be a positive integer, " + "or a sequence of positive integers." + ), + logger=logger, ) - - raise_if_not( - all([w < len(s) for (w, s) in zip(window, anomaly_scores)]), - "All windows must be smaller than the length of their corresponding score.", - ) - - nbr_plots = nbr_plots + len(set(window)) - else: - if window is not None: - logger.warning( - "The parameter `window` is given, but the input `anomaly_scores` is None." + window = window if len(window) > 1 else window * len(pred_scores) + if len(window) != len(pred_scores): + raise_log( + ValueError( + f"The number of window in `window` must match the " + f"number of anomaly score given as input. One window " + f"value for each series. Found length {len(window)}, " + f"and expected {len(pred_scores)}." + ), + logger=logger, ) - if names_of_scorers is not None: - logger.warning( - "The parameter `names_of_scorers` is given, but the input `anomaly_scores` is None." + if not all([w < len(s) for (w, s) in zip(window, pred_scores)]): + raise_log( + ValueError( + "Parameter `window` must be an integer or sequence of integers " + "with value(s) smaller than the length of the corresponding series " + "in `pred_scores`." + ), + logger=logger, ) - if metric is not None: - logger.warning( - "The parameter `metric` is given, but the input `anomaly_scores` is None." - ) + nbr_plots = nbr_plots + len(set(window)) fig, axs = plt.subplots( nbr_plots, @@ -674,10 +433,9 @@ def show_anomalies_from_scores( _plot_series(series=series, ax_id=axs[index_ax][0], linewidth=0.5, label_name="") - if model_output is not None: - + if pred_series is not None: _plot_series( - series=model_output, + series=pred_series, ax_id=axs[index_ax][0], linewidth=0.5, label_name="model output", @@ -685,23 +443,26 @@ def show_anomalies_from_scores( axs[index_ax][0].set_title("") - if actual_anomalies is not None or anomaly_scores is not None: + if anomalies is not None or pred_scores is not None: axs[index_ax][0].set_xlabel("") axs[index_ax][0].legend(loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=2) - if anomaly_scores is not None: + if pred_scores is not None: dict_input = {} - for idx, (score, w) in enumerate(zip(anomaly_scores, window)): + for idx, (score, w) in enumerate(zip(pred_scores, window)): dict_input[idx] = {"series_score": score, "window": w, "name_id": idx} - current_window = window[0] - index_ax = index_ax + 1 + for index, elem in enumerate( + sorted(dict_input.items(), key=lambda x: x[1]["window"]) + ): - for elem in sorted(dict_input.items(), key=lambda x: x[1]["window"]): + if index == 0: + current_window = elem[1]["window"] + index_ax = index_ax + 1 idx = elem[1]["name_id"] w = elem[1]["window"] @@ -712,9 +473,9 @@ def show_anomalies_from_scores( if metric is not None: value = round( - eval_accuracy_from_scores( - anomaly_score=anomaly_scores[idx], - actual_anomalies=actual_anomalies, + eval_metric_from_scores( + anomalies=anomalies, + pred_scores=pred_scores[idx], window=w, metric=metric, ), @@ -742,10 +503,10 @@ def show_anomalies_from_scores( axs[index_ax][0].set_title("") axs[index_ax][0].set_xlabel("") - if actual_anomalies is not None: + if anomalies is not None: _plot_series( - series=actual_anomalies, + series=anomalies, ax_id=axs[index_ax + 1][0], linewidth=1, label_name="anomalies", @@ -765,8 +526,142 @@ def show_anomalies_from_scores( fig.suptitle(title) +def _assert_binary(series: TimeSeries, name: str): + """Checks if series is a binary timeseries (1 and 0)" + + Parameters + ---------- + series + series to check for. + name + name of the series. + """ + + vals = series.values(copy=False) + if not np.array_equal(vals, vals.astype(bool)): + raise_log( + ValueError(f"Input series `{name}` must have binary values only."), + logger=logger, + ) + + +def _assert_timeseries(series: TimeSeries, name: str = "series"): + """Checks if given input is of type Darts TimeSeries""" + if not isinstance(series, TimeSeries): + raise_log( + ValueError( + f"all series in `{name}` must be `TimeSeries`. Received {type(series)}." + ), + logger=logger, + ) + + +def _sanity_check_two_series( + series_1: TimeSeries, + series_2: TimeSeries, + name_series_1: str, + name_series_2: str, +): + """Performs sanity check on the two given inputs + + Checks if the two inputs: + - type is Darts Timeseries + - have the same number of components + - if their intersection in time is not null + + Parameters + ---------- + series_1 + 1st time series + series_2: + 2nd time series + """ + + _assert_timeseries(series_1, name=name_series_1) + _assert_timeseries(series_2, name=name_series_2) + + # check if the two inputs time series have the same number of components + if series_1.width != series_2.width: + raise_log( + ValueError( + f"The series from `{name_series_1}` and `{name_series_2}` must have the " + f"same number of components, found {series_1.width} and {series_2.width}." + ), + logger=logger, + ) + + +def _max_pooling(series: TimeSeries, window: int) -> TimeSeries: + """Slides a window of size `window` along the input series, and replaces the value of the + input time series by the maximum of the values contained in the window. + + The binary time series output represents if there is an anomaly (=1) or not (=0) in the past + window points. The new series will equal the length of the input series - window. Its first + point will start at the first time index of the input time series + window points. + + Parameters + ---------- + series: + Binary time series. + window: + Integer value indicating the number of past samples each point represents. + + Returns + ------- + Binary TimeSeries + """ + if window <= 0: + raise_log( + ValueError( + f"Parameter `window` must be strictly greater than 0, found size {window}." + ), + logger=logger, + ) + if window >= len(series): + raise_log( + ValueError( + f"Parameter `window` must be smaller than the length of the " + f"input series, found window size {window}, and max size {len(series)}." + ), + logger=logger, + ) + + if window == 1: + # the process results in replacing every value by itself -> return directly the series + return series + + return series.window_transform( + transforms={ + "window": window, + "function": "max", + "mode": "rolling", + "min_periods": window, + }, + treat_na="dropna", + ) + + +def _assert_same_length( + list_series_1: Sequence[TimeSeries], + list_series_2: Sequence[TimeSeries], + name_series_1: str, + name_series_2: str, +): + """Checks if the two sequences contain the same number of TimeSeries.""" + + if len(list_series_1) != len(list_series_2): + raise_log( + ValueError( + f"Number of `{name_series_2}` must match the number of given " + f"`{name_series_1}`, found length {len(list_series_2)} and " + f"expected {len(list_series_1)}." + ), + logger=logger, + ) + + def _plot_series(series, ax_id, linewidth, label_name, **kwargs): - """Internal function called by ``show_anomalies_from_scores()`` + """Internal function called by `show_anomalies_from_scores()` Plot the series on the given axes ax_id. @@ -781,7 +676,6 @@ def _plot_series(series, ax_id, linewidth, label_name, **kwargs): label_name Name that will appear in the legend. """ - for i, c in enumerate(series._xa.component[:10]): comp = series._xa.sel(component=c) @@ -804,3 +698,88 @@ def _plot_series(series, ax_id, linewidth, label_name, **kwargs): ax_id.fill_between( series.time_index, low_series, high_series, alpha=0.25, **kwargs ) + + +def _check_input( + series: Union[TimeSeries, Sequence[TimeSeries]], + name: str, + width_expected: Optional[int] = None, + check_deterministic: bool = False, + check_binary: bool = False, + check_multivariate: bool = False, + num_series_expected: Optional[int] = None, + extra_checks: Optional[Callable] = None, +): + """ + Input `series` checks used for Aggregators, Detectors, ... + + - `series` must be (sequence of) series with length (`num_series_expected`) where each series must: + - have width `width_expected` if it is not `None` + - be deterministic if `check_deterministic=True` + - be binary if `check_binary=True` + - be multivariate if `check_multivariate=True` + + By default, all checks except the `TimeSeries` check are disabled. + + Parameters + ---------- + series + A (sequence of) multivariate series. + name + The name of the series. + width_expected + Optionally, the expected number of components/width of each series. + check_multivariate + Whether to check if all series are multivariate. + """ + series = series2seq(series) + if num_series_expected is not None and len(series) != num_series_expected: + if num_series_expected == 1: + err_txt = f"`{name}` must be single `TimeSeries` or a sequence of `TimeSeries` of length `1`." + else: + err_txt = f"`{name}` must be a sequence of `TimeSeries` of length `{num_series_expected}`." + raise_log( + ValueError(err_txt), + logger=logger, + ) + for s in series: + if not isinstance(s, TimeSeries): + raise_log( + ValueError(f"all series in `{name}` must be of type `TimeSeries`."), + logger=logger, + ) + if check_deterministic and not s.is_deterministic: + raise_log( + ValueError( + f"all series in `{name}` must be deterministic (number of samples=1)." + ), + logger=logger, + ) + if check_binary: + _assert_binary(s, name=name) + if check_multivariate and s.width <= 1: + raise_log( + ValueError(f"all series in `{name}` must be multivariate (width>1)."), + logger=logger, + ) + if width_expected is not None and s.width != width_expected: + raise_log( + ValueError( + f"all series in `{name}` must have `{width_expected}` component(s) (width={width_expected})." + ), + logger=logger, + ) + if extra_checks is not None: + extra_checks(s) + return series + + +def _assert_fit_called(fit_called: bool, name: str): + """Checks that `fit_called` is `True`.""" + if not fit_called: + raise_log( + ValueError( + f"The `{name}` has not been fitted yet. Call `{name}.fit()` first." + ), + logger=logger, + ) diff --git a/darts/dataprocessing/pipeline.py b/darts/dataprocessing/pipeline.py index f4c9849cd1..4d0b1182e6 100644 --- a/darts/dataprocessing/pipeline.py +++ b/darts/dataprocessing/pipeline.py @@ -173,7 +173,7 @@ def inverse_transform( """ For each data transformer in the pipeline, inverse-transform data. Then inverse transformed data is passed to the next transformer. Transformers are traversed in reverse order. Raises value error if not all of the - transformers are invertible and ``partial`` is set to False. Set ``partial`` to True for inverting only the + transformers are invertible and ``partial`` is set to `False`. Set ``partial`` to True for inverting only the InvertibleDataTransformer in the pipeline. Parameters diff --git a/darts/datasets/__init__.py b/darts/datasets/__init__.py index ca5c150cbc..57d6f55957 100644 --- a/darts/datasets/__init__.py +++ b/darts/datasets/__init__.py @@ -489,6 +489,32 @@ def __init__(self): ) +class TaxiNewYorkDataset(DatasetLoaderCSV): + """ + Taxi Passengers in New York, from 2014-07 to 2015-01. + The data consists of aggregated total number of + taxi passengers into 30 minute buckets. + Univariate series. + Source: [1]_ + + References + ---------- + .. [1] https://www.kaggle.com/code/julienjta/nyc-taxi-traffic-analysis + """ + + def __init__(self): + super().__init__( + metadata=DatasetLoaderMetadata( + "taxi_new_york_passengers.csv", + uri=_DEFAULT_PATH + "/taxi_new_york_passengers.csv", + hash="0a81adf1b74354a8ec18c30e9e8fe5f0", + header_time="time", + format_time="%Y-%m-%d %H:%M:%S", + freq="30min", + ), + ) + + class ElectricityDataset(DatasetLoaderCSV): """ Measurements of electric power consumption in one household with 15 minute sampling rate. diff --git a/darts/metrics/__init__.py b/darts/metrics/__init__.py index d80d9acf9d..7a8cb445da 100644 --- a/darts/metrics/__init__.py +++ b/darts/metrics/__init__.py @@ -79,6 +79,19 @@ sse, ) +TIME_DEPENDENT_METRICS = { + ae, + ape, + arre, + ase, + err, + ql, + sape, + se, + sle, + sse, +} + __all__ = [ "ae", "ape", diff --git a/darts/models/forecasting/forecasting_model.py b/darts/models/forecasting/forecasting_model.py index ce027f7b49..dd1aa40091 100644 --- a/darts/models/forecasting/forecasting_model.py +++ b/darts/models/forecasting/forecasting_model.py @@ -364,9 +364,9 @@ def predict( def _fit_wrapper( self, - series: TimeSeries, - past_covariates: Optional[TimeSeries] = None, - future_covariates: Optional[TimeSeries] = None, + series: Union[TimeSeries, Sequence[TimeSeries]], + past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, + future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None, **kwargs, ): add_kwargs = {} @@ -557,9 +557,9 @@ def _build_forecast_series( custom_components New names for the forecast TimeSeries components, used when the number of components changes with_static_covs - If set to False, do not copy the input_series `static_covariates` attribute + If set to `False`, do not copy the input_series `static_covariates` attribute with_hierarchy - If set to False, do not copy the input_series `hierarchy` attribute + If set to `False`, do not copy the input_series `hierarchy` attribute pred_start Optionally, give a custom prediction start point. @@ -654,11 +654,11 @@ def historical_forecasts( By default, this method will return one (or a sequence of) single time series made up of the last point of each historical forecast. This time series will thus have a frequency of ``series.freq * stride``. - If `last_points_only` is set to False, it will instead return one (or a sequence of) list of the + If `last_points_only` is set to `False`, it will instead return one (or a sequence of) list of the historical forecasts series. By default, this method always re-trains the models on the entire available history, corresponding to an - expanding window strategy. If `retrain` is set to False, the model must have been fit before. This is not + expanding window strategy. If `retrain` is set to `False`, the model must have been fit before. This is not supported by all models. Parameters @@ -736,7 +736,7 @@ def historical_forecasts( Whether the returned forecasts can go beyond the series' end or not. last_points_only Whether to retain only the last point of each historical forecast. - If set to True, the method returns a single ``TimeSeries`` containing the successive point forecasts. + If set to `True`, the method returns a single ``TimeSeries`` containing the successive point forecasts. Otherwise, returns a list of historical ``TimeSeries`` forecasts. verbose Whether to print progress. @@ -1184,11 +1184,11 @@ def backtest( Finally, the method returns a `reduction` (the mean by default) of all these metric scores. By default, this method uses each historical forecast (whole) to compute error scores. - If `last_points_only` is set to True, it will use only the last point of each historical + If `last_points_only` is set to `True`, it will use only the last point of each historical forecast. In this case, no reduction is used. By default, this method always re-trains the models on the entire available history, corresponding to an - expanding window strategy. If `retrain` is set to False (useful for models for which training might be + expanding window strategy. If `retrain` is set to `False` (useful for models for which training might be time-consuming, such as deep learning models), the trained model will be used directly to emit the forecasts. Parameters @@ -1277,7 +1277,7 @@ def backtest( identical signature as Darts' metrics, uses decorators :func:`~darts.metrics.metrics.multi_ts_support` and :func:`~darts.metrics.metrics.multi_ts_support`, and returns the metric score. reduction - A function used to combine the individual error scores obtained when `last_points_only` is set to False. + A function used to combine the individual error scores obtained when `last_points_only` is set to `False`. When providing several metric functions, the function will receive the argument `axis = 1` to obtain single value for each metric function. If explicitly set to `None`, the method will return a list of the individual error scores instead. diff --git a/darts/models/forecasting/regression_model.py b/darts/models/forecasting/regression_model.py index ab01088a19..f02429cfe9 100644 --- a/darts/models/forecasting/regression_model.py +++ b/darts/models/forecasting/regression_model.py @@ -879,7 +879,7 @@ def predict( ) series = self.training_series - called_with_single_series = True if isinstance(series, TimeSeries) else False + called_with_single_series = isinstance(series, TimeSeries) # guarantee that all inputs are either list of TimeSeries or None series = series2seq(series) diff --git a/darts/models/forecasting/torch_forecasting_model.py b/darts/models/forecasting/torch_forecasting_model.py index ee4c2ac238..b76c966b24 100644 --- a/darts/models/forecasting/torch_forecasting_model.py +++ b/darts/models/forecasting/torch_forecasting_model.py @@ -1348,7 +1348,7 @@ def predict( ) series = self.training_series - called_with_single_series = True if isinstance(series, TimeSeries) else False + called_with_single_series = isinstance(series, TimeSeries) # guarantee that all inputs are either list of TimeSeries or None series = series2seq(series) diff --git a/darts/tests/ad/test_aggregators.py b/darts/tests/ad/test_aggregators.py index 751fda95d1..0da69b9453 100644 --- a/darts/tests/ad/test_aggregators.py +++ b/darts/tests/ad/test_aggregators.py @@ -1,26 +1,78 @@ -from typing import Sequence +from typing import Dict, List, Sequence import numpy as np import pytest from sklearn.ensemble import GradientBoostingClassifier from darts import TimeSeries -from darts.ad.aggregators.and_aggregator import AndAggregator -from darts.ad.aggregators.ensemble_sklearn_aggregator import EnsembleSklearnAggregator -from darts.ad.aggregators.or_aggregator import OrAggregator +from darts.ad.aggregators import ( + AndAggregator, + EnsembleSklearnAggregator, + FittableAggregator, + OrAggregator, +) from darts.models import MovingAverageFilter +# element shape : (model_cls, model_kwargs, expected metrics) list_NonFittableAggregator = [ - OrAggregator(), - AndAggregator(), + ( + OrAggregator, + {}, + { + "only_ones": {"accuracy": 1, "recall": 1, "f1": 1, "precision": 1}, + "multivariate": {"accuracy": 0, "recall": 0, "f1": 0, "precision": 0}, + "synthetic": { + "accuracy": 0.56, + "recall": 0.72549, + "f1": 0.62711, + "precision": 0.55223, + "total": 67, + }, + "multiple_series": { + "accuracy": [0.56, 0.52], + "recall": [0.72549, 0.764706], + "f1": [0.627119, 0.619048], + "precision": [0.552239, 0.52], + "total": [67, 75], + }, + }, + ), + ( + AndAggregator, + {}, + { + "only_ones": {"accuracy": 1, "recall": 1, "f1": 1, "precision": 1}, + "multivariate": {"accuracy": 1, "recall": 0, "f1": 0, "precision": 0}, + "synthetic": { + "accuracy": 0.44, + "recall": 0.21568, + "f1": 0.28205, + "precision": 0.40740, + "total": 27, + }, + "multiple_series": { + "accuracy": [0.44, 0.53], + "recall": [0.215686, 0.27451], + "f1": [0.282051, 0.373333], + "precision": [0.407407, 0.583333], + "total": [27, 24], + }, + }, + ), ] +# expected metrics values are declared in the test list_FittableAggregator = [ - EnsembleSklearnAggregator(model=GradientBoostingClassifier()) + (EnsembleSklearnAggregator, {"model": GradientBoostingClassifier()}, {}) ] -class TestADAggregators: +list_Aggregator = list_NonFittableAggregator + list_FittableAggregator + +delta = 1e-05 + + +class TestAnomalyDetectionAggregator: np.random.seed(42) @@ -66,6 +118,9 @@ class TestADAggregators: columns=["component 1", "component 2"], ) + # series has 3 components, and real_anomalies_3w is equal to + # - component 1 when component 3 is 1 + # - component 2 when component 3 is 0 np_real_anomalies_3w = [ elem[0] if elem[2] == 1 else elem[1] for elem in np_anomalies_w3 ] @@ -73,705 +128,466 @@ class TestADAggregators: train._time_index, np_real_anomalies_3w ) - def test_DetectNonFittableAggregator(self): - - aggregator = OrAggregator() + @staticmethod + def helper_eval_metric_single_series( + aggregator, + series: TimeSeries, + pred_series: TimeSeries, + expected_vals: Dict[str, float], + ): + """Evaluate model on given series, for all 4 supported metric functions""" + for m_func in ["accuracy", "recall", "f1", "precision"]: + assert ( + np.abs( + expected_vals[m_func] + - aggregator.eval_metric( + series, + pred_series, + metric=m_func, + ) + ) + < delta + ) - # Check return types - assert isinstance(aggregator.predict(self.mts_anomalies1), TimeSeries) - assert isinstance( - aggregator.predict([self.mts_anomalies1]), - Sequence, - ) - assert isinstance( - aggregator.predict([self.mts_anomalies1, self.mts_anomalies2]), - Sequence, - ) + @staticmethod + def helper_eval_metric_multiple_series( + aggregator, + series: Sequence[TimeSeries], + pred_series: Sequence[TimeSeries], + expected_vals: Dict[str, List[float]], + ): + """Evaluate model on multiple series, for all 4 supported metric functions""" + for m_func in ["accuracy", "recall", "f1", "precision"]: + np.testing.assert_array_almost_equal( + np.array( + aggregator.eval_metric( + series, + pred_series, + metric=m_func, + ) + ), + np.array(expected_vals[m_func]), + decimal=1, + ) - def test_DetectFittableAggregator(self): - aggregator = EnsembleSklearnAggregator(model=GradientBoostingClassifier()) + @pytest.mark.parametrize("config", list_Aggregator) + def test_predict_return_type(self, config): + """Check that predict's output are properly unpacked depending on input type""" + aggregator_cls, cls_kwargs, _ = config + aggregator = aggregator_cls(**cls_kwargs) - # Check return types - aggregator.fit(self.real_anomalies, self.mts_anomalies1) + if isinstance(aggregator, FittableAggregator): + aggregator.fit(self.real_anomalies, self.mts_anomalies1) - # Check return types + # single TimeSeries assert isinstance(aggregator.predict(self.mts_anomalies1), TimeSeries) + + # Sequence of one TimeSeries assert isinstance( aggregator.predict([self.mts_anomalies1]), Sequence, ) + + # Sequence of several TimeSeries assert isinstance( aggregator.predict([self.mts_anomalies1, self.mts_anomalies2]), Sequence, ) - def test_eval_accuracy(self): + @pytest.mark.parametrize("config", list_Aggregator) + def test_eval_metric_return_type(self, config): + """Check that eval_metric's output are properly unpacked depending on input type""" + aggregator_cls, cls_kwargs, _ = config + aggregator = aggregator_cls(**cls_kwargs) - aggregator = AndAggregator() + if isinstance(aggregator, FittableAggregator): + aggregator.fit(self.real_anomalies, self.mts_anomalies1) # Check return types assert isinstance( - aggregator.eval_accuracy(self.real_anomalies, self.mts_anomalies1), + aggregator.eval_metric(self.real_anomalies, self.mts_anomalies1), float, ) + assert isinstance( - aggregator.eval_accuracy([self.real_anomalies], [self.mts_anomalies1]), + aggregator.eval_metric([self.real_anomalies], [self.mts_anomalies1]), Sequence, ) + assert isinstance( - aggregator.eval_accuracy(self.real_anomalies, [self.mts_anomalies1]), + aggregator.eval_metric(self.real_anomalies, [self.mts_anomalies1]), Sequence, ) + assert isinstance( - aggregator.eval_accuracy( + aggregator.eval_metric( [self.real_anomalies, self.real_anomalies], [self.mts_anomalies1, self.mts_anomalies2], ), Sequence, ) - # intersection between 'actual_anomalies' and the series in the sequence 'list_series' + # Check if return type is the same number of series in input + assert ( + len( + aggregator.eval_metric( + [self.real_anomalies, self.real_anomalies], + [self.mts_anomalies1, self.mts_anomalies2], + ) + ) + == 2 + ) + + # intersection between 'anomalies' and the series in the sequence 'list_series' # must be non empty with pytest.raises(ValueError): - aggregator.eval_accuracy(self.real_anomalies[:30], self.mts_anomalies1[40:]) + aggregator.eval_metric(self.real_anomalies[:30], self.mts_anomalies1[40:]) with pytest.raises(ValueError): - aggregator.eval_accuracy( + aggregator.eval_metric( [self.real_anomalies, self.real_anomalies[:30]], [self.mts_anomalies1, self.mts_anomalies1[40:]], ) # window parameter must be smaller than the length of the input (len = 100) with pytest.raises(ValueError): - aggregator.eval_accuracy( - self.real_anomalies, self.mts_anomalies1, window=101 - ) - - def test_NonFittableAggregator(self): - - for aggregator in list_NonFittableAggregator: - - # name must be of type str - assert isinstance(aggregator.__str__(), str) - - # Check if trainable is False, being a NonFittableAggregator - assert not aggregator.trainable - - # predict on (sequence of) univariate series - with pytest.raises(ValueError): - aggregator.predict([self.real_anomalies]) - with pytest.raises(ValueError): - aggregator.predict(self.real_anomalies) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, self.real_anomalies]) - - # input a (sequence of) non binary series - with pytest.raises(ValueError): - aggregator.predict(self.mts_train) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, self.mts_train]) - - # input a (sequence of) probabilistic series - with pytest.raises(ValueError): - aggregator.predict(self.mts_probabilistic) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, self.mts_probabilistic]) - - # input an element that is not a series - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, "random"]) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, 1]) - - # Check width return - # Check if return type is the same number of series in input - assert len( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - ) - ), len([self.mts_anomalies1, self.mts_anomalies2]) + aggregator.eval_metric(self.real_anomalies, self.mts_anomalies1, window=101) - def test_FittableAggregator(self): + @pytest.mark.parametrize("config", list_Aggregator) + def test_aggregator_predict_wrong_inputs(self, config): + """Check that exception is raised when predict() arguments are incorrects.""" + aggregator_cls, cls_kwargs, _ = config + aggregator = aggregator_cls(**cls_kwargs) - for aggregator in list_FittableAggregator: - - # name must be of type str - assert isinstance(aggregator.__str__(), str) + # fit aggregator on series with 2 components + if isinstance(aggregator, FittableAggregator): + aggregator.fit(self.real_anomalies, self.mts_anomalies1) - # Need to call fit() before calling predict() - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, self.mts_anomalies1]) + # predict on (sequence of) univariate series + with pytest.raises(ValueError): + aggregator.predict([self.real_anomalies]) + with pytest.raises(ValueError): + aggregator.predict(self.real_anomalies) + with pytest.raises(ValueError): + aggregator.predict([self.mts_anomalies1, self.real_anomalies]) + + # input a (sequence of) non binary series + expected_msg = "Input series `series` must have binary values only." + with pytest.raises(ValueError) as err: + aggregator.predict(self.mts_train) + assert str(err.value) == expected_msg + with pytest.raises(ValueError) as err: + aggregator.predict([self.mts_anomalies1, self.mts_train]) + assert str(err.value) == expected_msg + + # input a (sequence of) probabilistic series + with pytest.raises(ValueError): + aggregator.predict(self.mts_probabilistic) + with pytest.raises(ValueError): + aggregator.predict([self.mts_anomalies1, self.mts_probabilistic]) - # Check if trainable is True, being a FittableAggregator - assert aggregator.trainable + # input an element that is not a series + with pytest.raises(ValueError): + aggregator.predict([self.mts_anomalies1, "random"]) + with pytest.raises(ValueError): + aggregator.predict([self.mts_anomalies1, 1]) - # Check if _fit_called is False - assert not aggregator._fit_called + @pytest.mark.parametrize("config", list_NonFittableAggregator) + def test_NonFittableAggregator_predict(self, config): + """Check that predict() works as intented""" + aggregator_cls, cls_kwargs, _ = config + aggregator = aggregator_cls(**cls_kwargs) - # fit on sequence with series that have different width - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies3], - ) + # name must be of type str + assert isinstance(aggregator.__str__(), str) - # fit on a (sequence of) univariate series - with pytest.raises(ValueError): - aggregator.fit(self.real_anomalies, self.real_anomalies) - with pytest.raises(ValueError): - aggregator.fit(self.real_anomalies, [self.real_anomalies]) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.real_anomalies], - ) + assert not isinstance(aggregator, FittableAggregator) - # fit on a (sequence of) non binary series - with pytest.raises(ValueError): - aggregator.fit(self.real_anomalies, self.mts_train) - with pytest.raises(ValueError): - aggregator.fit(self.real_anomalies, [self.mts_train]) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_train], - ) + # Check that predict can be called when series is appropriate + pred = aggregator.predict(self.mts_anomalies1) - # fit on a (sequence of) probabilistic series - with pytest.raises(ValueError): - aggregator.fit(self.real_anomalies, self.mts_probabilistic) - with pytest.raises(ValueError): - aggregator.fit(self.real_anomalies, [self.mts_probabilistic]) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_probabilistic], - ) + # Check that the aggregated result has only one component + assert pred.width == 1 - # input an element that is not a series - with pytest.raises(ValueError): - aggregator.fit(self.real_anomalies, "random") - with pytest.raises(ValueError): - aggregator.fit(self.real_anomalies, [self.mts_anomalies1, "random"]) - with pytest.raises(ValueError): - aggregator.fit(self.real_anomalies, [self.mts_anomalies1, 1]) - - # fit on a (sequence of) multivariate anomalies - with pytest.raises(ValueError): - aggregator.fit(self.mts_anomalies1, self.mts_anomalies1) - with pytest.raises(ValueError): - aggregator.fit([self.mts_anomalies1], [self.mts_anomalies1]) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, self.mts_anomalies1], - [self.mts_anomalies1, self.mts_anomalies1], - ) + @pytest.mark.parametrize("config", list_FittableAggregator) + def test_FittableAggregator_fit_wrong_inputs(self, config): + """Check that exception is raised when fit() arguments are incorrects""" + aggregator_cls, cls_kwargs, _ = config + aggregator = aggregator_cls(**cls_kwargs) - # fit on a (sequence of) non binary anomalies - with pytest.raises(ValueError): - aggregator.fit(self.train, self.mts_anomalies1) - with pytest.raises(ValueError): - aggregator.fit([self.train], self.mts_anomalies1) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, self.train], - [self.mts_anomalies1, self.mts_anomalies1], - ) + # fit on sequence with series that have different width + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, self.real_anomalies], + [self.mts_anomalies1, self.mts_anomalies3], + ) - # fit on a (sequence of) probabilistic anomalies - with pytest.raises(ValueError): - aggregator.fit(self.mts_probabilistic, self.mts_anomalies1) - with pytest.raises(ValueError): - aggregator.fit([self.mts_probabilistic], self.mts_anomalies1) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, self.mts_probabilistic], - [self.mts_anomalies1, self.mts_anomalies1], - ) + # fit on a (sequence of) univariate series + with pytest.raises(ValueError): + aggregator.fit(self.real_anomalies, self.real_anomalies) + with pytest.raises(ValueError): + aggregator.fit(self.real_anomalies, [self.real_anomalies]) + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, self.real_anomalies], + [self.mts_anomalies1, self.real_anomalies], + ) - # input an element that is not a anomalies - with pytest.raises(ValueError): - aggregator.fit("random", self.mts_anomalies1) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, "random"], - [self.mts_anomalies1, self.mts_anomalies1], - ) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, 1], [self.mts_anomalies1, self.mts_anomalies1] - ) + # fit on a (sequence of) non binary series + with pytest.raises(ValueError): + aggregator.fit(self.real_anomalies, self.mts_train) + with pytest.raises(ValueError): + aggregator.fit(self.real_anomalies, [self.mts_train]) + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, self.real_anomalies], + [self.mts_anomalies1, self.mts_train], + ) - # nbr of anomalies must match nbr of input series - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, self.real_anomalies], self.mts_anomalies1 - ) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies, self.real_anomalies], [self.mts_anomalies1] - ) - with pytest.raises(ValueError): - aggregator.fit( - [self.real_anomalies], [self.mts_anomalies1, self.mts_anomalies1] - ) + # fit on a (sequence of) probabilistic series + with pytest.raises(ValueError): + aggregator.fit(self.real_anomalies, self.mts_probabilistic) + with pytest.raises(ValueError): + aggregator.fit(self.real_anomalies, [self.mts_probabilistic]) + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, self.real_anomalies], + [self.mts_anomalies1, self.mts_probabilistic], + ) - # case1: fit - aggregator.fit(self.real_anomalies, self.mts_anomalies1) + # input an element that is not a series + with pytest.raises(ValueError): + aggregator.fit(self.real_anomalies, "random") + with pytest.raises(ValueError): + aggregator.fit(self.real_anomalies, [self.mts_anomalies1, "random"]) + with pytest.raises(ValueError): + aggregator.fit(self.real_anomalies, [self.mts_anomalies1, 1]) - # Check if _fit_called is True after being fitted - assert aggregator._fit_called - - # series must be same width as series used for training - with pytest.raises(ValueError): - aggregator.predict(self.mts_anomalies3) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies3]) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, self.mts_anomalies3]) - - # predict on (sequence of) univariate series - with pytest.raises(ValueError): - aggregator.predict([self.real_anomalies]) - with pytest.raises(ValueError): - aggregator.predict(self.real_anomalies) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, self.real_anomalies]) - - # input a (sequence of) non binary series - with pytest.raises(ValueError): - aggregator.predict(self.mts_train) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, self.mts_train]) - - # input a (sequence of) probabilistic series - with pytest.raises(ValueError): - aggregator.predict(self.mts_probabilistic) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, self.mts_probabilistic]) - - # input an element that is not a series - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, "random"]) - with pytest.raises(ValueError): - aggregator.predict([self.mts_anomalies1, 1]) - - # Check width return - # Check if return type is the same number of series in input - assert len( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - ) - ), len([self.mts_anomalies1, self.mts_anomalies2]) + # fit on a (sequence of) multivariate anomalies + with pytest.raises(ValueError): + aggregator.fit(self.mts_anomalies1, self.mts_anomalies1) + with pytest.raises(ValueError): + aggregator.fit([self.mts_anomalies1], [self.mts_anomalies1]) + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, self.mts_anomalies1], + [self.mts_anomalies1, self.mts_anomalies1], + ) - def test_OrAggregator(self): + # fit on a (sequence of) non binary anomalies + with pytest.raises(ValueError): + aggregator.fit(self.train, self.mts_anomalies1) + with pytest.raises(ValueError): + aggregator.fit([self.train], self.mts_anomalies1) + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, self.train], + [self.mts_anomalies1, self.mts_anomalies1], + ) - aggregator = OrAggregator() + # fit on a (sequence of) probabilistic anomalies + with pytest.raises(ValueError): + aggregator.fit(self.mts_probabilistic, self.mts_anomalies1) + with pytest.raises(ValueError): + aggregator.fit([self.mts_probabilistic], self.mts_anomalies1) + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, self.mts_probabilistic], + [self.mts_anomalies1, self.mts_anomalies1], + ) - # simple case - # aggregator must have an accuracy of 0 for input with 2 components - # (only 1 and only 0) and ground truth is only 0 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyzero, - self.series_1_and_0, - metric="accuracy", - ) - - 0 + # input an element that is not a anomalies + with pytest.raises(ValueError): + aggregator.fit("random", self.mts_anomalies1) + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, "random"], + [self.mts_anomalies1, self.mts_anomalies1], ) - < 1e-05 - ) - # aggregator must have an accuracy of 1 for input with 2 components - # (only 1 and only 0) and ground truth is only 1 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyones, - self.series_1_and_0, - metric="accuracy", - ) - - 1 + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, 1], [self.mts_anomalies1, self.mts_anomalies1] ) - < 1e-05 - ) - # aggregator must have an accuracy of 1 for the input containing only 1 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyones, - self.mts_onlyones, - metric="accuracy", - ) - - 1 + # nbr of anomalies must match nbr of input series + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, self.real_anomalies], self.mts_anomalies1 ) - < 1e-05 - ) - # aggregator must have an accuracy of 1 for the input containing only 1 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyones, - self.mts_onlyones, - metric="recall", - ) - - 1 + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies, self.real_anomalies], [self.mts_anomalies1] ) - < 1e-05 - ) - # aggregator must have an accuracy of 1 for the input containing only 1 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyones, - self.mts_onlyones, - metric="precision", - ) - - 1 + with pytest.raises(ValueError): + aggregator.fit( + [self.real_anomalies], [self.mts_anomalies1, self.mts_anomalies1] ) - < 1e-05 - ) - # single series case (random example) - # aggregator must found 67 anomalies in the input mts_anomalies1 - assert ( - aggregator.predict(self.mts_anomalies1) - .sum(axis=0) - .all_values() - .flatten()[0] - == 67 - ) + @pytest.mark.parametrize("config", list_FittableAggregator) + def test_FittableAggregator_predict_wrong_inputs(self, config): + """Check that exception specific to FittableAggregator are properly raised""" + aggregator_cls, cls_kwargs, _ = config + aggregator = aggregator_cls(**cls_kwargs) - # aggregator must have an accuracy of 0.56 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, - self.mts_anomalies1, - metric="accuracy", - ) - - 0.56 - ) - < 1e-05 - ) - # aggregator must have an recall of 0.72549 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, self.mts_anomalies1, metric="recall" - ) - - 0.72549 - ) - < 1e-05 - ) - # aggregator must have an f1 of 0.62711 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, self.mts_anomalies1, metric="f1" - ) - - 0.62711 - ) - < 1e-05 + aggregator.fit(self.real_anomalies, self.mts_anomalies1) + + # series must be same width as series used for training + with pytest.raises(ValueError): + aggregator.predict(self.mts_anomalies3) + with pytest.raises(ValueError): + aggregator.predict([self.mts_anomalies3]) + with pytest.raises(ValueError): + aggregator.predict([self.mts_anomalies1, self.mts_anomalies3]) + + @pytest.mark.parametrize("config", list_FittableAggregator) + def test_FittableAggregator_fit_predict(self, config): + """Check that consecutive calls to fit() and predict() work as intended""" + aggregator_cls, cls_kwargs, _ = config + aggregator = aggregator_cls(**cls_kwargs) + + # name must be of type str + assert isinstance( + aggregator.__str__(), + str, ) - # aggregator must have an precision of 0.55223 for the input mts_anomalies1 + + # Need to call fit() before calling predict() + with pytest.raises(ValueError) as err: + aggregator.predict([self.mts_anomalies1, self.mts_anomalies1]) assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, - self.mts_anomalies1, - metric="precision", - ) - - 0.55223 - ) - < 1e-05 + str(err.value) + == "The `Aggregator` has not been fitted yet. Call `Aggregator.fit()` first." ) - # multiple series case (random example) - # aggregator must found [67,75] anomalies in the input [mts_anomalies1, mts_anomalies2] - values = aggregator.predict([self.mts_anomalies1, self.mts_anomalies2]) - np.testing.assert_array_almost_equal( - [v.sum(axis=0).all_values().flatten()[0] for v in values], - [67, 75], - decimal=1, - ) + # Check if _fit_called is False before calling fit + assert not aggregator._fit_called - # aggregator must have an accuracy of [0.56,0.52] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="accuracy", - ) - ), - np.array([0.56, 0.52]), - decimal=1, - ) - # aggregator must have an recall of [0.72549,0.764706] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="recall", - ) - ), - np.array([0.72549, 0.764706]), - decimal=1, - ) - # aggregator must have an f1 of [0.627119,0.619048] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="f1", - ) - ), - np.array([0.627119, 0.619048]), - decimal=1, - ) - # aggregator must have an precision of [0.552239,0.52] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="precision", - ) - ), - np.array([0.552239, 0.52]), - decimal=1, - ) + aggregator.fit(self.real_anomalies, self.mts_anomalies1) - def test_AndAggregator(self): + # Check if _fit_called is True after calling fit + assert aggregator._fit_called - aggregator = AndAggregator() + # Check that predict can be called when series is appropriate + pred = aggregator.predict(self.mts_anomalies1) - # simple case - # aggregator must have an accuracy of 0 for input with 2 components - # (only 1 and only 0) and ground truth is only 1 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyones, - self.series_1_and_0, - metric="accuracy", - ) - - 0 - ) - < 1e-05 - ) - # aggregator must have an accuracy of 0 for input with 2 components - # (only 1 and only 0) and ground truth is only 0 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyzero, - self.series_1_and_0, - metric="accuracy", - ) - - 1 - ) - < 1e-05 - ) + # Check that the aggregated result has only one component + assert pred.width == 1 - # aggregator must have an accuracy of 1 for the input containing only 1 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyones, - self.mts_onlyones, - metric="accuracy", - ) - - 1 - ) - < 1e-05 + @pytest.mark.parametrize("config", list_NonFittableAggregator) + def test_aggregator_performance_single_series(self, config): + aggregator_cls, cls_kwargs, metrics = config + aggregator = aggregator_cls(**cls_kwargs) + + # both actual and pred contain only 1 + self.helper_eval_metric_single_series( + aggregator=aggregator, + series=self.onlyones, + pred_series=self.mts_onlyones, + expected_vals=metrics["only_ones"], ) - # aggregator must have an accuracy of 1 for the input containing only 1 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyones, - self.mts_onlyones, - metric="recall", - ) - - 1 - ) - < 1e-05 + + # input with 2 components (only 1 and only 0) and ground truth is only 0 + self.helper_eval_metric_single_series( + aggregator=aggregator, + series=self.onlyzero, + pred_series=self.series_1_and_0, + expected_vals=metrics["multivariate"], ) - # aggregator must have an accuracy of 1 for the input containing only 1 - assert ( - abs( - aggregator.eval_accuracy( - self.onlyones, - self.mts_onlyones, - metric="precision", - ) - - 1 - ) - < 1e-05 + + # synthetic example + self.helper_eval_metric_single_series( + aggregator=aggregator, + series=self.real_anomalies, + pred_series=self.mts_anomalies1, + expected_vals=metrics["synthetic"], ) - # single series case (random example) - # aggregator must found 27 anomalies in the input mts_anomalies1 + # number of detected anomalies in synthetic example assert ( aggregator.predict(self.mts_anomalies1) .sum(axis=0) .all_values() .flatten()[0] - == 27 + == metrics["synthetic"]["total"] ) - # aggregator must have an accuracy of 0.44 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, - self.mts_anomalies1, - metric="accuracy", - ) - - 0.44 - ) - < 1e-05 - ) - # aggregator must have an recall of 0.21568 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, self.mts_anomalies1, metric="recall" - ) - - 0.21568 - ) - < 1e-05 - ) - # aggregator must have an f1 of 0.28205 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, self.mts_anomalies1, metric="f1" - ) - - 0.28205 - ) - < 1e-05 - ) - # aggregator must have an precision of 0.40740 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, - self.mts_anomalies1, - metric="precision", - ) - - 0.40740 - ) - < 1e-05 + @pytest.mark.parametrize("config", list_NonFittableAggregator) + def test_aggregator_performance_multiple_series(self, config): + aggregator_cls, cls_kwargs, metrics = config + aggregator = aggregator_cls(**cls_kwargs) + + self.helper_eval_metric_multiple_series( + aggregator=aggregator, + series=[self.real_anomalies, self.real_anomalies], + pred_series=[self.mts_anomalies1, self.mts_anomalies2], + expected_vals=metrics["multiple_series"], ) - # multiple series case (random example) - # aggregator must found [27,24] anomalies in the input [mts_anomalies1, mts_anomalies2] + # number of detected anomalies values = aggregator.predict([self.mts_anomalies1, self.mts_anomalies2]) np.testing.assert_array_almost_equal( [v.sum(axis=0).all_values().flatten()[0] for v in values], - [27, 24], - decimal=1, - ) - - # aggregator must have an accuracy of [0.44,0.53] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="accuracy", - ) - ), - np.array([0.44, 0.53]), - decimal=1, - ) - # aggregator must have an recall of [0.215686,0.27451] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="recall", - ) - ), - np.array([0.215686, 0.27451]), - decimal=1, - ) - # aggregator must have an f1 of [0.282051,0.373333] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="f1", - ) - ), - np.array([0.282051, 0.373333]), - decimal=1, - ) - # aggregator must have an precision of [0.407407, 0.583333] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="precision", - ) - ), - np.array([0.407407, 0.583333]), + metrics["multiple_series"]["total"], decimal=1, ) - def test_EnsembleSklearn(self): - + def test_ensemble_aggregator_constructor(self): # Need to input an EnsembleSklearn model with pytest.raises(ValueError): EnsembleSklearnAggregator(model=MovingAverageFilter(window=10)) - # simple case - # series has 3 components, and real_anomalies_3w is equal to - # - component 1 when component 3 is 1 - # - component 2 when component 3 is 0 - # must have a high accuracy (here 0.92) + @pytest.mark.parametrize( + "config", + [ + ( + real_anomalies_3w, + mts_anomalies3, + { + "accuracy": 0.92, + "recall": 0.86666, + "f1": 0.92857, + "precision": 1.0, + "total": 52, + }, + ), + ( + real_anomalies, + mts_anomalies1, + { + "accuracy": 0.51, + "recall": 1.0, + "f1": 0.67549, + "precision": 0.51, + "total": 100, + }, + ), + ], + ) + def test_ensemble_aggregator_single_series(self, config): + """Check performance of ensemble aggregator on single series cases""" + series, pred_series, expected_metrics = config + aggregator = EnsembleSklearnAggregator( model=GradientBoostingClassifier( n_estimators=50, learning_rate=1.0, max_depth=1 ) ) - aggregator.fit(self.real_anomalies_3w, self.mts_anomalies3) - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies_3w, - self.mts_anomalies3, - metric="accuracy", - ) - - 0.92 - ) - < 1e-05 + aggregator.fit(series, pred_series) + + self.helper_eval_metric_single_series( + aggregator=aggregator, + series=series, + pred_series=pred_series, + expected_vals=expected_metrics, ) - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies_3w, self.real_anomalies_3w], - [self.mts_anomalies3, self.mts_anomalies3], - metric="accuracy", - ) - ), - np.array([0.92, 0.92]), - decimal=1, + assert ( + aggregator.predict(pred_series).sum(axis=0).all_values().flatten()[0] + == expected_metrics["total"] ) - # single series case (random example) + def test_ensemble_aggregator_multiple_series(self): + """Ensemble aggregator is fitted on one series, evaluated on two.""" aggregator = EnsembleSklearnAggregator( model=GradientBoostingClassifier( n_estimators=50, learning_rate=1.0, max_depth=1 @@ -779,114 +595,21 @@ def test_EnsembleSklearn(self): ) aggregator.fit(self.real_anomalies, self.mts_anomalies1) - # aggregator must found 100 anomalies in the input mts_anomalies1 - assert ( - aggregator.predict(self.mts_anomalies1) - .sum(axis=0) - .all_values() - .flatten()[0] - == 100 - ) - - # aggregator must have an accuracy of 0.51 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, - self.mts_anomalies1, - metric="accuracy", - ) - - 0.51 - ) - < 1e-05 - ) - # aggregator must have an recall 1.0 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, self.mts_anomalies1, metric="recall" - ) - - 1.0 - ) - < 1e-05 - ) - # aggregator must have an f1 of 0.67549 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, self.mts_anomalies1, metric="f1" - ) - - 0.67549 - ) - < 1e-05 - ) - # aggregator must have an precision of 0.51 for the input mts_anomalies1 - assert ( - abs( - aggregator.eval_accuracy( - self.real_anomalies, - self.mts_anomalies1, - metric="precision", - ) - - 0.51 - ) - < 1e-05 + self.helper_eval_metric_multiple_series( + aggregator=aggregator, + series=[self.real_anomalies, self.real_anomalies], + pred_series=[self.mts_anomalies1, self.mts_anomalies2], + expected_vals={ + "accuracy": [0.51, 0.51], + "recall": [1, 1], + "f1": [0.68, 0.68], + "precision": [0.51, 0.51], + }, ) - # multiple series case (random example) - # aggregator must found [100,100] anomalies in the input [mts_anomalies1, mts_anomalies2] values = aggregator.predict([self.mts_anomalies1, self.mts_anomalies2]) np.testing.assert_array_almost_equal( [v.sum(axis=0).all_values().flatten()[0] for v in values], - [100, 100.0], - decimal=1, - ) - - # aggregator must have an accuracy of [0.51, 0.51] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="accuracy", - ) - ), - np.array([0.51, 0.51]), - decimal=1, - ) - # aggregator must have an recall of [1,1] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="recall", - ) - ), - np.array([1, 1]), - decimal=1, - ) - # aggregator must have an f1 of [0.675497, 0.675497] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="f1", - ) - ), - np.array([0.675497, 0.675497]), - decimal=1, - ) - # aggregator must have an precision of [0.51, 0.51] for the input [mts_anomalies1, mts_anomalies2] - np.testing.assert_array_almost_equal( - np.array( - aggregator.eval_accuracy( - [self.real_anomalies, self.real_anomalies], - [self.mts_anomalies1, self.mts_anomalies2], - metric="precision", - ) - ), - np.array([0.51, 0.51]), + [100, 100], decimal=1, ) diff --git a/darts/tests/ad/test_anomaly_model.py b/darts/tests/ad/test_anomaly_model.py index 30f1098642..cfbd15791a 100644 --- a/darts/tests/ad/test_anomaly_model.py +++ b/darts/tests/ad/test_anomaly_model.py @@ -1,3 +1,4 @@ +from itertools import product from typing import Dict, Sequence, Tuple import numpy as np @@ -6,9 +7,6 @@ from pyod.models.knn import KNN from darts import TimeSeries - -# anomaly aggregators -# import everything in darts.ad (also for testing imports) from darts.ad import ( AndAggregator, # noqa: F401 CauchyNLLScorer, @@ -20,7 +18,6 @@ GaussianNLLScorer, KMeansScorer, LaplaceNLLScorer, - NormScorer, OrAggregator, # noqa: F401 PoissonNLLScorer, PyODScorer, @@ -29,11 +26,39 @@ WassersteinScorer, ) from darts.ad import DifferenceScorer as Difference -from darts.ad.utils import eval_accuracy_from_scores, show_anomalies_from_scores +from darts.ad import NormScorer as Norm +from darts.ad.utils import eval_metric_from_scores, show_anomalies_from_scores from darts.models import MovingAverageFilter, NaiveSeasonal, RegressionModel - -class TestADAnomalyModel: +filtering_am = [ + ( + FilteringAnomalyModel, + {"model": MovingAverageFilter(window=10), "scorer": Norm()}, + ), + ( + FilteringAnomalyModel, + {"model": MovingAverageFilter(window=10), "scorer": [Norm(), KMeansScorer()]}, + ), + ( + FilteringAnomalyModel, + {"model": MovingAverageFilter(window=10), "scorer": KMeansScorer()}, + ), +] + +forecasting_am = [ + (ForecastingAnomalyModel, {"model": RegressionModel(lags=10), "scorer": Norm()}), + ( + ForecastingAnomalyModel, + {"model": RegressionModel(lags=10), "scorer": [Norm(), KMeansScorer()]}, + ), + ( + ForecastingAnomalyModel, + {"model": RegressionModel(lags=10), "scorer": KMeansScorer()}, + ), +] + + +class TestAnomalyDetectionModel: np.random.seed(42) # univariate series @@ -79,178 +104,155 @@ class TestADAnomalyModel: mts_train._time_index, np_mts_anomalies ) - def test_Scorer(self): - - list_NonFittableAnomalyScorer = [ - NormScorer(), - Difference(), - GaussianNLLScorer(), - ExponentialNLLScorer(), - PoissonNLLScorer(), - LaplaceNLLScorer(), - CauchyNLLScorer(), - GammaNLLScorer(), - ] - - for scorers in list_NonFittableAnomalyScorer: - for anomaly_model in [ - ForecastingAnomalyModel(model=RegressionModel(lags=10), scorer=scorers), - FilteringAnomalyModel( - model=MovingAverageFilter(window=20), scorer=scorers - ), - ]: - - # scorer are trainable - assert not anomaly_model.scorers_are_trainable - - list_FittableAnomalyScorer = [ - PyODScorer(model=KNN()), - KMeansScorer(), - WassersteinScorer(), - ] - - for scorers in list_FittableAnomalyScorer: - for anomaly_model in [ - ForecastingAnomalyModel(model=RegressionModel(lags=10), scorer=scorers), + @pytest.mark.parametrize( + "scorer,anomaly_model_config", + product( + [ + Norm(), + Difference(), + GaussianNLLScorer(), + ExponentialNLLScorer(), + PoissonNLLScorer(), + LaplaceNLLScorer(), + CauchyNLLScorer(), + GammaNLLScorer(), + ], + [ + (ForecastingAnomalyModel, {"model": RegressionModel(lags=10)}), + (FilteringAnomalyModel, {"model": MovingAverageFilter(window=20)}), + ], + ), + ) + def test_non_fittable_scorer(self, scorer, anomaly_model_config): + am_cls, am_kwargs = anomaly_model_config + anomaly_model = am_cls(scorer=scorer, **am_kwargs) + assert not anomaly_model.scorers_are_trainable + + @pytest.mark.parametrize( + "scorer,anomaly_model_config", + product( + [ + PyODScorer(model=KNN()), + KMeansScorer(), + WassersteinScorer(window_agg=False), + ], + [ + (ForecastingAnomalyModel, {"model": RegressionModel(lags=10)}), + (FilteringAnomalyModel, {"model": MovingAverageFilter(window=20)}), + ], + ), + ) + def test_fittable_scorer(self, scorer, anomaly_model_config): + am_cls, am_kwargs = anomaly_model_config + anomaly_model = am_cls(scorer=scorer, **am_kwargs) + assert anomaly_model.scorers_are_trainable + + def test_no_local_model(self): + with pytest.raises(ValueError) as err: + _ = ForecastingAnomalyModel(model=NaiveSeasonal(), scorer=KMeansScorer()) + assert str(err.value) == "`model` must be a Darts `GlobalForecastingModel`." + + @pytest.mark.parametrize( + "anomaly_model,fit_model", + [ + ( + ForecastingAnomalyModel(model=RegressionModel(lags=10), scorer=Norm()), + True, + ), + ( FilteringAnomalyModel( - model=MovingAverageFilter(window=20), scorer=scorers + model=MovingAverageFilter(window=20), scorer=Norm() ), - ]: - - # scorer are not trainable - assert anomaly_model.scorers_are_trainable - - def test_Score(self): + False, + ), + ], + ) + def test_score(self, anomaly_model, fit_model): + if fit_model: + anomaly_model.fit(self.train, allow_model_training=True) - am1 = ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=NormScorer() + # if return_model_prediction set to true, output must be tuple + assert isinstance( + anomaly_model.score(self.test, return_model_prediction=True), Tuple ) - am1.fit(self.train, allow_model_training=True) - am2 = FilteringAnomalyModel( - model=MovingAverageFilter(window=20), scorer=NormScorer() + # if return_model_prediction set to false output must be + # Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]] + assert not isinstance( + anomaly_model.score(self.test, return_model_prediction=False), Tuple ) - for am in [am1, am2]: - # Parameter return_model_prediction - # parameter return_model_prediction must be bool - with pytest.raises(ValueError): - am.score(self.test, return_model_prediction=1) - with pytest.raises(ValueError): - am.score(self.test, return_model_prediction="True") - - # if return_model_prediction set to true, output must be tuple - assert isinstance(am.score(self.test, return_model_prediction=True), Tuple) - - # if return_model_prediction set to false output must be - # Union[TimeSeries, Sequence[TimeSeries], Sequence[Sequence[TimeSeries]]] - assert not isinstance( - am.score(self.test, return_model_prediction=False), Tuple - ) - - def test_FitFilteringAnomalyModelInput(self): - - for anomaly_model in [ - FilteringAnomalyModel( - model=MovingAverageFilter(window=20), scorer=NormScorer() - ), - FilteringAnomalyModel( - model=MovingAverageFilter(window=20), - scorer=[NormScorer(), KMeansScorer()], - ), - FilteringAnomalyModel( - model=MovingAverageFilter(window=20), scorer=KMeansScorer() - ), - ]: - - # filter must be fittable if allow_filter_training is set to True - with pytest.raises(ValueError): - anomaly_model.fit(self.train, allow_model_training=True) - - # input 'series' must be a series or Sequence of series - with pytest.raises(ValueError): - anomaly_model.fit([self.train, "str"], allow_model_training=True) - with pytest.raises(ValueError): - anomaly_model.fit([[self.train, self.train]], allow_model_training=True) - with pytest.raises(ValueError): - anomaly_model.fit("str", allow_model_training=True) - with pytest.raises(ValueError): - anomaly_model.fit([1, 2, 3], allow_model_training=True) - - # allow_model_training must be a bool - with pytest.raises(ValueError): - anomaly_model.fit(self.train, allow_model_training=1) - with pytest.raises(ValueError): - anomaly_model.fit(self.train, allow_model_training="True") + @pytest.mark.parametrize("anomaly_model_config", filtering_am) + def test_FitFilteringAnomalyModelInput(self, anomaly_model_config): + am_cls, am_kwargs = anomaly_model_config + anomaly_model = am_cls(**am_kwargs) + # `allow_model_training=True` has no effect if filter model has no `fit()` method + anomaly_model.fit(self.train, allow_model_training=True) - def test_FitForecastingAnomalyModelInput(self): + # input 'series' must be a series or Sequence of series + with pytest.raises(ValueError): + anomaly_model.fit([self.train, "str"], allow_model_training=True) + with pytest.raises(ValueError): + anomaly_model.fit([[self.train, self.train]], allow_model_training=True) + with pytest.raises(ValueError): + anomaly_model.fit("str", allow_model_training=True) + with pytest.raises(ValueError): + anomaly_model.fit([1, 2, 3], allow_model_training=True) - for anomaly_model in [ - ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=NormScorer() - ), - ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=[NormScorer(), KMeansScorer()] - ), - ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=KMeansScorer() - ), - ]: + @pytest.mark.parametrize("anomaly_model_config", forecasting_am) + def test_FitForecastingAnomalyModelInput(self, anomaly_model_config): + am_cls, am_kwargs = anomaly_model_config + anomaly_model = am_cls(**am_kwargs) - # input 'series' must be a series or Sequence of series - with pytest.raises(ValueError): - anomaly_model.fit([self.train, "str"], allow_model_training=True) - with pytest.raises(ValueError): - anomaly_model.fit([[self.train, self.train]], allow_model_training=True) - with pytest.raises(ValueError): - anomaly_model.fit("str", allow_model_training=True) - with pytest.raises(ValueError): - anomaly_model.fit([1, 2, 3], allow_model_training=True) + # input 'series' must be a series or Sequence of series + with pytest.raises(ValueError): + anomaly_model.fit([self.train, "str"], allow_model_training=True) + with pytest.raises(ValueError): + anomaly_model.fit([[self.train, self.train]], allow_model_training=True) + with pytest.raises(ValueError): + anomaly_model.fit("str", allow_model_training=True) + with pytest.raises(ValueError): + anomaly_model.fit([1, 2, 3], allow_model_training=True) - # allow_model_training must be a bool - with pytest.raises(ValueError): - anomaly_model.fit(self.train, allow_model_training=1) + # 'allow_model_training' must be set to True if forecasting model is not fitted + if anomaly_model.scorers_are_trainable: with pytest.raises(ValueError): - anomaly_model.fit(self.train, allow_model_training="True") + anomaly_model.fit(self.train, allow_model_training=False) + anomaly_model.score(self.train) - # 'allow_model_training' must be set to True if forecasting model is not fitted - if anomaly_model.scorers_are_trainable: - with pytest.raises(ValueError): - anomaly_model.fit(self.train, allow_model_training=False) - anomaly_model.score(self.train) - - with pytest.raises(ValueError): - # number of 'past_covariates' must be the same as the number of Timeseries in 'series' - anomaly_model.fit( - series=[self.train, self.train], - past_covariates=self.covariates, - allow_model_training=True, - ) + with pytest.raises(ValueError): + # number of 'past_covariates' must be the same as the number of Timeseries in 'series' + anomaly_model.fit( + series=[self.train, self.train], + past_covariates=self.covariates, + allow_model_training=True, + ) - with pytest.raises(ValueError): - # number of 'past_covariates' must be the same as the number of Timeseries in 'series' - anomaly_model.fit( - series=self.train, - past_covariates=[self.covariates, self.covariates], - allow_model_training=True, - ) + with pytest.raises(ValueError): + # number of 'past_covariates' must be the same as the number of Timeseries in 'series' + anomaly_model.fit( + series=self.train, + past_covariates=[self.covariates, self.covariates], + allow_model_training=True, + ) - with pytest.raises(ValueError): - # number of 'future_covariates' must be the same as the number of Timeseries in 'series' - anomaly_model.fit( - series=[self.train, self.train], - future_covariates=self.covariates, - allow_model_training=True, - ) + with pytest.raises(ValueError): + # number of 'future_covariates' must be the same as the number of Timeseries in 'series' + anomaly_model.fit( + series=[self.train, self.train], + future_covariates=self.covariates, + allow_model_training=True, + ) - with pytest.raises(ValueError): - # number of 'future_covariates' must be the same as the number of Timeseries in 'series' - anomaly_model.fit( - series=self.train, - future_covariates=[self.covariates, self.covariates], - allow_model_training=True, - ) + with pytest.raises(ValueError): + # number of 'future_covariates' must be the same as the number of Timeseries in 'series' + anomaly_model.fit( + series=self.train, + future_covariates=[self.covariates, self.covariates], + allow_model_training=True, + ) + def test_pretrain_forecasting_model(self): fitted_model = RegressionModel(lags=10).fit(self.train) # Fittable scorer must be fitted before calling .score(), even if forecasting model is fitted with pytest.raises(ValueError): @@ -259,267 +261,249 @@ def test_FitForecastingAnomalyModelInput(self): ) with pytest.raises(ValueError): ForecastingAnomalyModel( - model=fitted_model, scorer=[NormScorer(), KMeansScorer()] + model=fitted_model, scorer=[Norm(), KMeansScorer()] ).score(series=self.test) # forecasting model that do not accept past/future covariates - anomaly_model = ForecastingAnomalyModel( - model=NaiveSeasonal(), scorer=NormScorer() - ) - with pytest.raises(TypeError): - anomaly_model.fit( - series=self.train, - past_covariates=self.covariates, - allow_model_training=True, - ) - anomaly_model = ForecastingAnomalyModel( - model=NaiveSeasonal(), scorer=NormScorer() - ) - with pytest.raises(TypeError): - anomaly_model.fit( - series=self.train, - future_covariates=self.covariates, - allow_model_training=True, - ) + # with pytest.raises(ValueError): + # ForecastingAnomalyModel(model=ExponentialSmoothing(), + # scorer=NormScorer()).fit( + # series=self.train, past_covariates=self.covariates, allow_model_training=True + # ) + # with pytest.raises(ValueError): + # ForecastingAnomalyModel(model=ExponentialSmoothing(), + # scorer=NormScorer()).fit( + # series=self.train, future_covariates=self.covariates, allow_model_training=True + # ) # check window size # max window size is len(series.drop_before(series.get_timestamp_at_point(start))) + 1 with pytest.raises(ValueError): ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=KMeansScorer(window=50) + model=RegressionModel(lags=10), + scorer=KMeansScorer(window=50, window_agg=False), ).fit(series=self.train, start=0.9) # forecasting model that cannot be trained on a list of series with pytest.raises(ValueError): - ForecastingAnomalyModel(model=NaiveSeasonal(), scorer=NormScorer()).fit( + ForecastingAnomalyModel(model=NaiveSeasonal(), scorer=Norm()).fit( series=[self.train, self.train], allow_model_training=True ) - def test_ScoreForecastingAnomalyModelInput(self): - - for anomaly_model in [ - ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=NormScorer() - ), - ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=[NormScorer(), KMeansScorer()] - ), - ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=KMeansScorer() - ), - ]: - - anomaly_model.fit(self.train, allow_model_training=True) + @pytest.mark.parametrize("anomaly_model_config", forecasting_am) + def test_ScoreForecastingAnomalyModelInput(self, anomaly_model_config): + am_cls, am_kwargs = anomaly_model_config + anomaly_model = am_cls(**am_kwargs) + anomaly_model.fit(self.train, allow_model_training=True) - # number of 'past_covariates' must be the same as the number of Timeseries in 'series' - with pytest.raises(ValueError): - anomaly_model.score( - series=[self.train, self.train], past_covariates=self.covariates - ) + # number of 'past_covariates' must be the same as the number of Timeseries in 'series' + with pytest.raises(ValueError): + anomaly_model.score( + series=[self.train, self.train], past_covariates=self.covariates + ) - # number of 'past_covariates' must be the same as the number of Timeseries in 'series' - with pytest.raises(ValueError): - anomaly_model.score( - series=self.train, - past_covariates=[self.covariates, self.covariates], - ) + # number of 'past_covariates' must be the same as the number of Timeseries in 'series' + with pytest.raises(ValueError): + anomaly_model.score( + series=self.train, + past_covariates=[self.covariates, self.covariates], + ) - # number of 'future_covariates' must be the same as the number of Timeseries in 'series' - with pytest.raises(ValueError): - anomaly_model.score( - series=[self.train, self.train], future_covariates=self.covariates - ) + # number of 'future_covariates' must be the same as the number of Timeseries in 'series' + with pytest.raises(ValueError): + anomaly_model.score( + series=[self.train, self.train], future_covariates=self.covariates + ) - # number of 'future_covariates' must be the same as the number of Timeseries in 'series' - with pytest.raises(ValueError): - anomaly_model.score( - series=self.train, - future_covariates=[self.covariates, self.covariates], - ) + # number of 'future_covariates' must be the same as the number of Timeseries in 'series' + with pytest.raises(ValueError): + anomaly_model.score( + series=self.train, + future_covariates=[self.covariates, self.covariates], + ) - # check window size + def test_window_size(self): # max window size is len(series.drop_before(series.get_timestamp_at_point(start))) + 1 for score() anomaly_model = ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=KMeansScorer(window=30) + model=RegressionModel(lags=10), + scorer=KMeansScorer(window=30, window_agg=False), ) anomaly_model.fit(self.train, allow_model_training=True) with pytest.raises(ValueError): anomaly_model.score(series=self.train, start=0.9) - def test_ScoreFilteringAnomalyModelInput(self): + @pytest.mark.parametrize("anomaly_model_config", filtering_am) + def test_ScoreFilteringAnomalyModelInput(self, anomaly_model_config): + am_cls, am_kwargs = anomaly_model_config + anomaly_model = am_cls(**am_kwargs) - for anomaly_model in [ - FilteringAnomalyModel( - model=MovingAverageFilter(window=10), scorer=NormScorer() + if anomaly_model.scorers_are_trainable: + anomaly_model.fit(self.train) + + @pytest.mark.parametrize( + "anomaly_model,fit_kwargs", + [ + ( + ForecastingAnomalyModel(model=RegressionModel(lags=10), scorer=Norm()), + {"series": train, "allow_model_training": True}, ), - FilteringAnomalyModel( - model=MovingAverageFilter(window=10), - scorer=[NormScorer(), KMeansScorer()], + ( + FilteringAnomalyModel( + model=MovingAverageFilter(window=20), scorer=Norm() + ), + False, ), - FilteringAnomalyModel( - model=MovingAverageFilter(window=10), scorer=KMeansScorer() + ( + ForecastingAnomalyModel( + model=RegressionModel(lags=10), + scorer=[Norm(), WassersteinScorer(window_agg=False)], + ), + {"series": train, "allow_model_training": True}, ), - ]: - - if anomaly_model.scorers_are_trainable: - anomaly_model.fit(self.train) - - def test_eval_accuracy(self): - - am1 = ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=NormScorer() - ) - am1.fit(self.train, allow_model_training=True) - - am2 = FilteringAnomalyModel( - model=MovingAverageFilter(window=20), scorer=NormScorer() - ) - - am3 = ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=[NormScorer(), WassersteinScorer()] - ) - am3.fit(self.train, allow_model_training=True) - - am4 = FilteringAnomalyModel( - model=MovingAverageFilter(window=20), - scorer=[NormScorer(), WassersteinScorer()], - ) - am4.fit(self.train) - - for am in [am1, am2, am3, am4]: - - # if the anomaly_model have scorers that have the parameter univariate_scorer set to True, - # 'actual_anomalies' must have widths of 1 - if am.univariate_scoring: - with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=self.mts_anomalies, series=self.test - ) - with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=self.mts_anomalies, series=self.mts_test - ) - with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=[self.anomalies, self.mts_anomalies], - series=[self.test, self.mts_test], - ) + ( + FilteringAnomalyModel( + model=MovingAverageFilter(window=20), + scorer=[Norm(), WassersteinScorer(window_agg=False)], + ), + {"series": train}, + ), + ], + ) + def test_eval_metric(self, anomaly_model, fit_kwargs): + if fit_kwargs: + anomaly_model.fit(**fit_kwargs) - # 'metric' must be str and "AUC_ROC" or "AUC_PR" + # if the anomaly_model have scorers that have the parameter is_univariate set to True, + # 'anomalies' must have widths of 1 + if anomaly_model.scorers_are_univariate: with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=self.anomalies, series=self.test, metric=1 + anomaly_model.eval_metric( + anomalies=self.mts_anomalies, series=self.test ) with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=self.anomalies, series=self.test, metric="auc_roc" - ) - with pytest.raises(TypeError): - am.eval_accuracy( - actual_anomalies=self.anomalies, - series=self.test, - metric=["AUC_ROC"], + anomaly_model.eval_metric( + anomalies=self.mts_anomalies, series=self.mts_test ) - - # 'actual_anomalies' must be binary - with pytest.raises(ValueError): - am.eval_accuracy(actual_anomalies=self.test, series=self.test) - - # 'actual_anomalies' must contain anomalies (at least one) with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=self.only_0_anomalies, series=self.test + anomaly_model.eval_metric( + anomalies=[self.anomalies, self.mts_anomalies], + series=[self.test, self.mts_test], ) - # 'actual_anomalies' cannot contain only anomalies - with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=self.only_1_anomalies, series=self.test - ) + # 'metric' must be str and "AUC_ROC" or "AUC_PR" + with pytest.raises(ValueError): + anomaly_model.eval_metric( + anomalies=self.anomalies, series=self.test, metric=1 + ) + with pytest.raises(ValueError): + anomaly_model.eval_metric( + anomalies=self.anomalies, + series=self.test, + metric="auc_roc", + ) + with pytest.raises(TypeError): + anomaly_model.eval_metric( + anomalies=self.anomalies, + series=self.test, + metric=["AUC_ROC"], + ) - # 'actual_anomalies' must match the number of series - with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=self.anomalies, series=[self.test, self.test] - ) - with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=[self.anomalies, self.anomalies], series=self.test - ) + # 'anomalies' must be binary + with pytest.raises(ValueError): + anomaly_model.eval_metric(anomalies=self.test, series=self.test) - # 'actual_anomalies' must have non empty intersection with 'series' - with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=self.anomalies[:20], series=self.test[30:] - ) - with pytest.raises(ValueError): - am.eval_accuracy( - actual_anomalies=[self.anomalies, self.anomalies[:20]], - series=[self.test, self.test[40:]], - ) + # 'anomalies' must contain anomalies (at least one) + with pytest.raises(ValueError): + anomaly_model.eval_metric(anomalies=self.only_0_anomalies, series=self.test) - # Check input type - # 'actual_anomalies' and 'series' must be of same length - with pytest.raises(ValueError): - am.eval_accuracy([self.anomalies], [self.test, self.test]) - with pytest.raises(ValueError): - am.eval_accuracy(self.anomalies, [self.test, self.test]) - with pytest.raises(ValueError): - am.eval_accuracy([self.anomalies, self.anomalies], [self.test]) - with pytest.raises(ValueError): - am.eval_accuracy([self.anomalies, self.anomalies], self.test) + # 'anomalies' cannot contain only anomalies + with pytest.raises(ValueError): + anomaly_model.eval_metric(anomalies=self.only_1_anomalies, series=self.test) - # 'actual_anomalies' and 'series' must be of type Timeseries - with pytest.raises(ValueError): - am.eval_accuracy([self.anomalies], [2, 3, 4]) - with pytest.raises(ValueError): - am.eval_accuracy([self.anomalies], "str") - with pytest.raises(ValueError): - am.eval_accuracy([2, 3, 4], self.test) - with pytest.raises(ValueError): - am.eval_accuracy("str", self.test) - with pytest.raises(ValueError): - am.eval_accuracy( - [self.anomalies, self.anomalies], [self.test, [3, 2, 1]] - ) - with pytest.raises(ValueError): - am.eval_accuracy([self.anomalies, [3, 2, 1]], [self.test, self.test]) + # 'anomalies' must match the number of series + with pytest.raises(ValueError): + anomaly_model.eval_metric( + anomalies=self.anomalies, series=[self.test, self.test] + ) + with pytest.raises(ValueError): + anomaly_model.eval_metric( + anomalies=[self.anomalies, self.anomalies], + series=self.test, + ) - # Check return types - # Check if return type is float when input is a series - assert isinstance( - am.eval_accuracy(self.anomalies, self.test), - Dict, + # 'anomalies' must have non empty intersection with 'series' + with pytest.raises(ValueError): + anomaly_model.eval_metric( + anomalies=self.anomalies[:20], series=self.test[30:] ) + with pytest.raises(ValueError): + anomaly_model.eval_metric( + anomalies=[self.anomalies, self.anomalies[:20]], + series=[self.test, self.test[40:]], + ) + + # Check input type + # 'anomalies' and 'series' must be of same length + with pytest.raises(ValueError): + anomaly_model.eval_metric([self.anomalies], [self.test, self.test]) + with pytest.raises(ValueError): + anomaly_model.eval_metric(self.anomalies, [self.test, self.test]) + with pytest.raises(ValueError): + anomaly_model.eval_metric([self.anomalies, self.anomalies], [self.test]) + with pytest.raises(ValueError): + anomaly_model.eval_metric([self.anomalies, self.anomalies], self.test) - # Check if return type is Sequence when input is a Sequence of series - assert isinstance( - am.eval_accuracy(self.anomalies, [self.test]), - Sequence, + # 'anomalies' and 'series' must be of type Timeseries + with pytest.raises(ValueError): + anomaly_model.eval_metric([self.anomalies], [2, 3, 4]) + with pytest.raises(ValueError): + anomaly_model.eval_metric([self.anomalies], "str") + with pytest.raises(ValueError): + anomaly_model.eval_metric([2, 3, 4], self.test) + with pytest.raises(ValueError): + anomaly_model.eval_metric("str", self.test) + with pytest.raises(ValueError): + anomaly_model.eval_metric( + [self.anomalies, self.anomalies], [self.test, [3, 2, 1]] ) - assert isinstance( - am.eval_accuracy( - [self.anomalies, self.anomalies], [self.test, self.test] - ), - Sequence, + with pytest.raises(ValueError): + anomaly_model.eval_metric( + [self.anomalies, [3, 2, 1]], [self.test, self.test] ) - def test_ForecastingAnomalyModelInput(self): + # Check return types + # Check if return type is float when input is a series + assert isinstance( + anomaly_model.eval_metric(self.anomalies, self.test), + Dict, + ) + # Check if return type is Sequence when input is a Sequence of series + assert isinstance( + anomaly_model.eval_metric(self.anomalies, [self.test]), + Sequence, + ) + + assert isinstance( + anomaly_model.eval_metric( + [self.anomalies, self.anomalies], [self.test, self.test] + ), + Sequence, + ) + + def test_ForecastingAnomalyModelInput(self): # model input # model input must be of type ForecastingModel with pytest.raises(ValueError): - ForecastingAnomalyModel(model="str", scorer=NormScorer()) + ForecastingAnomalyModel(model="str", scorer=Norm()) with pytest.raises(ValueError): - ForecastingAnomalyModel(model=1, scorer=NormScorer()) + ForecastingAnomalyModel(model=1, scorer=Norm()) with pytest.raises(ValueError): - ForecastingAnomalyModel( - model=MovingAverageFilter(window=10), scorer=NormScorer() - ) + ForecastingAnomalyModel(model=MovingAverageFilter(window=10), scorer=Norm()) with pytest.raises(ValueError): ForecastingAnomalyModel( model=[RegressionModel(lags=10), RegressionModel(lags=5)], - scorer=NormScorer(), + scorer=Norm(), ) # scorer input @@ -534,23 +518,22 @@ def test_ForecastingAnomalyModelInput(self): ) with pytest.raises(ValueError): ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=[NormScorer(), "str"] + model=RegressionModel(lags=10), scorer=[Norm(), "str"] ) def test_FilteringAnomalyModelInput(self): - # model input # model input must be of type FilteringModel with pytest.raises(ValueError): - FilteringAnomalyModel(model="str", scorer=NormScorer()) + FilteringAnomalyModel(model="str", scorer=Norm()) with pytest.raises(ValueError): - FilteringAnomalyModel(model=1, scorer=NormScorer()) + FilteringAnomalyModel(model=1, scorer=Norm()) with pytest.raises(ValueError): - FilteringAnomalyModel(model=RegressionModel(lags=10), scorer=NormScorer()) + FilteringAnomalyModel(model=RegressionModel(lags=10), scorer=Norm()) with pytest.raises(ValueError): FilteringAnomalyModel( model=[MovingAverageFilter(window=10), MovingAverageFilter(window=10)], - scorer=NormScorer(), + scorer=Norm(), ) # scorer input @@ -566,11 +549,10 @@ def test_FilteringAnomalyModelInput(self): ) with pytest.raises(ValueError): FilteringAnomalyModel( - model=MovingAverageFilter(window=10), scorer=[NormScorer(), "str"] + model=MovingAverageFilter(window=10), scorer=[Norm(), "str"] ) def test_univariate_ForecastingAnomalyModel(self): - np.random.seed(40) np_train_slope = np.array(range(0, 100, 1)) @@ -594,53 +576,51 @@ def test_univariate_ForecastingAnomalyModel(self): anomaly_model = ForecastingAnomalyModel( model=RegressionModel(lags=5), scorer=[ - NormScorer(), + Norm(), Difference(), - WassersteinScorer(), + WassersteinScorer(window_agg=False), KMeansScorer(k=5), - KMeansScorer(window=10), + KMeansScorer(window=10, window_agg=False), PyODScorer(model=KNN()), - PyODScorer(model=KNN(), window=10), - WassersteinScorer(window=15), + PyODScorer(model=KNN(), window=10, window_agg=False), + WassersteinScorer(window=15, window_agg=False), ], ) anomaly_model.fit(train_series_slope, allow_model_training=True, start=0.1) - score, model_output = anomaly_model.score( + score, pred_series = anomaly_model.score( test_series_slope, return_model_prediction=True, start=0.1 ) - # check that NormScorer is the abs difference of model_output and test_series_slope + # check that NormScorer is the abs difference of pred_series and test_series_slope assert ( - model_output - test_series_slope.slice_intersect(model_output) - ).__abs__() == NormScorer().score_from_prediction( - test_series_slope, model_output - ) + pred_series - test_series_slope.slice_intersect(pred_series) + ).__abs__() == Norm().score_from_prediction(test_series_slope, pred_series) - # check that Difference is the difference of model_output and test_series_slope + # check that Difference is the difference of pred_series and test_series_slope assert test_series_slope.slice_intersect( - model_output - ) - model_output == Difference().score_from_prediction( - test_series_slope, model_output + pred_series + ) - pred_series == Difference().score_from_prediction( + test_series_slope, pred_series ) - dict_auc_roc = anomaly_model.eval_accuracy( + dict_auc_roc = anomaly_model.eval_metric( ts_anomalies, test_series_slope, metric="AUC_ROC", start=0.1 ) - dict_auc_pr = anomaly_model.eval_accuracy( + dict_auc_pr = anomaly_model.eval_metric( ts_anomalies, test_series_slope, metric="AUC_PR", start=0.1 ) - auc_roc_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=score, + auc_roc_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=score, window=[1, 1, 10, 1, 10, 1, 10, 15], metric="AUC_ROC", ) - auc_pr_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=score, + auc_pr_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=score, window=[1, 1, 10, 1, 10, 1, 10, 15], metric="AUC_PR", ) @@ -686,7 +666,6 @@ def test_univariate_ForecastingAnomalyModel(self): np.testing.assert_array_almost_equal(auc_pr_from_scores, true_auc_pr, decimal=1) def test_univariate_FilteringAnomalyModel(self): - np.random.seed(40) np_series_train = np.array(range(0, 100, 1)) + np.random.normal( @@ -720,52 +699,50 @@ def test_univariate_FilteringAnomalyModel(self): anomaly_model = FilteringAnomalyModel( model=MovingAverageFilter(window=5), scorer=[ - NormScorer(), + Norm(), Difference(), - WassersteinScorer(), + WassersteinScorer(window_agg=False), KMeansScorer(), - KMeansScorer(window=10), + KMeansScorer(window=10, window_agg=False), PyODScorer(model=KNN()), - PyODScorer(model=KNN(), window=10), - WassersteinScorer(window=15), + PyODScorer(model=KNN(), window=10, window_agg=False), + WassersteinScorer(window=15, window_agg=False), ], ) anomaly_model.fit(train_series_noise) - score, model_output = anomaly_model.score( + score, pred_series = anomaly_model.score( test_series_noise, return_model_prediction=True ) - # check that Difference is the difference of model_output and test_series_noise + # check that Difference is the difference of pred_series and test_series_noise assert test_series_noise.slice_intersect( - model_output - ) - model_output == Difference().score_from_prediction( - test_series_noise, model_output + pred_series + ) - pred_series == Difference().score_from_prediction( + test_series_noise, pred_series ) - # check that NormScorer is the abs difference of model_output and test_series_noise + # check that NormScorer is the abs difference of pred_series and test_series_noise assert ( - test_series_noise.slice_intersect(model_output) - model_output - ).__abs__() == NormScorer().score_from_prediction( - test_series_noise, model_output - ) + test_series_noise.slice_intersect(pred_series) - pred_series + ).__abs__() == Norm().score_from_prediction(test_series_noise, pred_series) - dict_auc_roc = anomaly_model.eval_accuracy( + dict_auc_roc = anomaly_model.eval_metric( ts_anomalies, test_series_noise, metric="AUC_ROC" ) - dict_auc_pr = anomaly_model.eval_accuracy( + dict_auc_pr = anomaly_model.eval_metric( ts_anomalies, test_series_noise, metric="AUC_PR" ) - auc_roc_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=score, + auc_roc_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=score, window=[1, 1, 10, 1, 10, 1, 10, 15], metric="AUC_ROC", ) - auc_pr_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=score, + auc_pr_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=score, window=[1, 1, 10, 1, 10, 1, 10, 15], metric="AUC_PR", ) @@ -811,7 +788,6 @@ def test_univariate_FilteringAnomalyModel(self): np.testing.assert_array_almost_equal(auc_pr_from_scores, true_auc_pr, decimal=1) def test_univariate_covariate_ForecastingAnomalyModel(self): - np.random.seed(40) day_week = [0, 1, 2, 3, 4, 5, 6] @@ -847,14 +823,14 @@ def test_univariate_covariate_ForecastingAnomalyModel(self): anomaly_model = ForecastingAnomalyModel( model=RegressionModel(lags=2, lags_future_covariates=[0]), scorer=[ - NormScorer(), + Norm(), Difference(), - WassersteinScorer(), + WassersteinScorer(window_agg=False), KMeansScorer(k=4), - KMeansScorer(k=7, window=10), + KMeansScorer(k=7, window=10, window_agg=False), PyODScorer(model=KNN()), - PyODScorer(model=KNN(), window=10), - WassersteinScorer(window=15), + PyODScorer(model=KNN(), window=10, window_agg=False), + WassersteinScorer(window=15, window_agg=False), ], ) @@ -865,42 +841,40 @@ def test_univariate_covariate_ForecastingAnomalyModel(self): start=0.2, ) - score, model_output = anomaly_model.score( + score, pred_series = anomaly_model.score( series_test, return_model_prediction=True, future_covariates=covariates, start=0.2, ) - # check that NormScorer is the abs difference of model_output and series_test + # check that NormScorer is the abs difference of pred_series and series_test assert ( - series_test.slice_intersect(model_output) - model_output - ).__abs__() == NormScorer().score_from_prediction(series_test, model_output) + series_test.slice_intersect(pred_series) - pred_series + ).__abs__() == Norm().score_from_prediction(series_test, pred_series) - # check that Difference is the difference of model_output and series_test + # check that Difference is the difference of pred_series and series_test assert series_test.slice_intersect( - model_output - ) - model_output == Difference().score_from_prediction( - series_test, model_output - ) + pred_series + ) - pred_series == Difference().score_from_prediction(series_test, pred_series) - dict_auc_roc = anomaly_model.eval_accuracy( + dict_auc_roc = anomaly_model.eval_metric( ts_anomalies, series_test, metric="AUC_ROC", start=0.2 ) - dict_auc_pr = anomaly_model.eval_accuracy( + dict_auc_pr = anomaly_model.eval_metric( ts_anomalies, series_test, metric="AUC_PR", start=0.2 ) - auc_roc_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=score, + auc_roc_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=score, window=[1, 1, 10, 1, 10, 1, 10, 15], metric="AUC_ROC", ) - auc_pr_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=score, + auc_pr_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=score, window=[1, 1, 10, 1, 10, 1, 10, 15], metric="AUC_PR", ) @@ -936,8 +910,7 @@ def test_univariate_covariate_ForecastingAnomalyModel(self): ) np.testing.assert_array_almost_equal(auc_pr_from_scores, true_auc_pr, decimal=1) - def test_multivariate__FilteringAnomalyModel(self): - + def test_multivariate_FilteringAnomalyModel(self): np.random.seed(40) data_1 = np.random.normal(0, 0.1, 100) @@ -996,44 +969,44 @@ def test_multivariate__FilteringAnomalyModel(self): anomaly_model = FilteringAnomalyModel( model=MovingAverageFilter(window=10), scorer=[ - NormScorer(component_wise=False), - WassersteinScorer(), - WassersteinScorer(window=12), + Norm(component_wise=False), + WassersteinScorer(window_agg=False), + WassersteinScorer(window=12, window_agg=False), KMeansScorer(), - KMeansScorer(window=5), + KMeansScorer(window=5, window_agg=False), PyODScorer(model=KNN()), - PyODScorer(model=KNN(), window=5), + PyODScorer(model=KNN(), window=5, window_agg=False), ], ) anomaly_model.fit(mts_series_train) - scores, model_output = anomaly_model.score( + scores, pred_series = anomaly_model.score( mts_series_test, return_model_prediction=True ) - # model_output must be multivariate (same width as input) - assert model_output.width == mts_series_test.width + # pred_series must be multivariate (same width as input) + assert pred_series.width == mts_series_test.width # scores must be of the same length as the number of scorers assert len(scores) == len(anomaly_model.scorers) - dict_auc_roc = anomaly_model.eval_accuracy( + dict_auc_roc = anomaly_model.eval_metric( mts_anomalies, mts_series_test, metric="AUC_ROC" ) - dict_auc_pr = anomaly_model.eval_accuracy( + dict_auc_pr = anomaly_model.eval_metric( mts_anomalies, mts_series_test, metric="AUC_PR" ) - auc_roc_from_scores = eval_accuracy_from_scores( - actual_anomalies=[mts_anomalies] * 7, - anomaly_score=scores, + auc_roc_from_scores = eval_metric_from_scores( + anomalies=[mts_anomalies] * 7, + pred_scores=scores, window=[1, 10, 12, 1, 5, 1, 5], metric="AUC_ROC", ) - auc_pr_from_scores = eval_accuracy_from_scores( - actual_anomalies=[mts_anomalies] * 7, - anomaly_score=scores, + auc_pr_from_scores = eval_metric_from_scores( + anomalies=[mts_anomalies] * 7, + pred_scores=scores, window=[1, 10, 12, 1, 5, 1, 5], metric="AUC_PR", ) @@ -1080,45 +1053,47 @@ def test_multivariate__FilteringAnomalyModel(self): anomaly_model = FilteringAnomalyModel( model=MovingAverageFilter(window=10), scorer=[ - NormScorer(component_wise=True), + Norm(component_wise=True), Difference(), - WassersteinScorer(component_wise=True), - WassersteinScorer(window=12, component_wise=True), + WassersteinScorer(component_wise=True, window_agg=False), + WassersteinScorer(window=12, component_wise=True, window_agg=False), KMeansScorer(component_wise=True), - KMeansScorer(window=5, component_wise=True), + KMeansScorer(window=5, component_wise=True, window_agg=False), PyODScorer(model=KNN(), component_wise=True), - PyODScorer(model=KNN(), window=5, component_wise=True), + PyODScorer( + model=KNN(), window=5, component_wise=True, window_agg=False + ), ], ) anomaly_model.fit(mts_series_train) - scores, model_output = anomaly_model.score( + scores, pred_series = anomaly_model.score( mts_series_test, return_model_prediction=True ) - # model_output must be multivariate (same width as input) - assert model_output.width == mts_series_test.width + # pred_series must be multivariate (same width as input) + assert pred_series.width == mts_series_test.width # scores must be of the same length as the number of scorers assert len(scores) == len(anomaly_model.scorers) - dict_auc_roc = anomaly_model.eval_accuracy( + dict_auc_roc = anomaly_model.eval_metric( ts_anomalies, mts_series_test, metric="AUC_ROC" ) - dict_auc_pr = anomaly_model.eval_accuracy( + dict_auc_pr = anomaly_model.eval_metric( ts_anomalies, mts_series_test, metric="AUC_PR" ) - auc_roc_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=scores, + auc_roc_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=scores, window=[1, 1, 10, 12, 1, 5, 1, 5], metric="AUC_ROC", ) - auc_pr_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=scores, + auc_pr_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=scores, window=[1, 1, 10, 12, 1, 5, 1, 5], metric="AUC_PR", ) @@ -1163,8 +1138,7 @@ def test_multivariate__FilteringAnomalyModel(self): ) np.testing.assert_array_almost_equal(auc_pr_from_scores, true_auc_pr, decimal=1) - def test_multivariate__ForecastingAnomalyModel(self): - + def test_multivariate_ForecastingAnomalyModel(self): np.random.seed(40) data_sin = np.array([np.sin(x) for x in np.arange(0, 20 * np.pi, 0.2)]) @@ -1224,44 +1198,44 @@ def test_multivariate__ForecastingAnomalyModel(self): anomaly_model = ForecastingAnomalyModel( model=RegressionModel(lags=10), scorer=[ - NormScorer(component_wise=False), - WassersteinScorer(), - WassersteinScorer(window=20), + Norm(component_wise=False), + WassersteinScorer(window_agg=False), + WassersteinScorer(window=20, window_agg=False), KMeansScorer(), - KMeansScorer(window=20), + KMeansScorer(window=20, window_agg=False), PyODScorer(model=KNN()), - PyODScorer(model=KNN(), window=10), + PyODScorer(model=KNN(), window=10, window_agg=False), ], ) anomaly_model.fit(mts_series_train, allow_model_training=True, start=0.1) - scores, model_output = anomaly_model.score( + scores, pred_series = anomaly_model.score( mts_series_test, return_model_prediction=True, start=0.1 ) - # model_output must be multivariate (same width as input) - assert model_output.width == mts_series_test.width + # pred_series must be multivariate (same width as input) + assert pred_series.width == mts_series_test.width # scores must be of the same length as the number of scorers assert len(scores) == len(anomaly_model.scorers) - dict_auc_roc = anomaly_model.eval_accuracy( + dict_auc_roc = anomaly_model.eval_metric( mts_anomalies, mts_series_test, start=0.1, metric="AUC_ROC" ) - dict_auc_pr = anomaly_model.eval_accuracy( + dict_auc_pr = anomaly_model.eval_metric( mts_anomalies, mts_series_test, start=0.1, metric="AUC_PR" ) - auc_roc_from_scores = eval_accuracy_from_scores( - actual_anomalies=[mts_anomalies] * 7, - anomaly_score=scores, + auc_roc_from_scores = eval_metric_from_scores( + anomalies=[mts_anomalies] * 7, + pred_scores=scores, window=[1, 10, 20, 1, 20, 1, 10], metric="AUC_ROC", ) - auc_pr_from_scores = eval_accuracy_from_scores( - actual_anomalies=[mts_anomalies] * 7, - anomaly_score=scores, + auc_pr_from_scores = eval_metric_from_scores( + anomalies=[mts_anomalies] * 7, + pred_scores=scores, window=[1, 10, 20, 1, 20, 1, 10], metric="AUC_PR", ) @@ -1308,45 +1282,47 @@ def test_multivariate__ForecastingAnomalyModel(self): anomaly_model = ForecastingAnomalyModel( model=RegressionModel(lags=10), scorer=[ - NormScorer(component_wise=True), + Norm(component_wise=True), Difference(), - WassersteinScorer(component_wise=True), - WassersteinScorer(window=20, component_wise=True), + WassersteinScorer(component_wise=True, window_agg=False), + WassersteinScorer(window=20, component_wise=True, window_agg=False), KMeansScorer(component_wise=True), - KMeansScorer(window=20, component_wise=True), + KMeansScorer(window=20, component_wise=True, window_agg=False), PyODScorer(model=KNN(), component_wise=True), - PyODScorer(model=KNN(), window=10, component_wise=True), + PyODScorer( + model=KNN(), window=10, component_wise=True, window_agg=False + ), ], ) anomaly_model.fit(mts_series_train, allow_model_training=True, start=0.1) - scores, model_output = anomaly_model.score( + scores, pred_series = anomaly_model.score( mts_series_test, return_model_prediction=True, start=0.1 ) - # model_output must be multivariate (same width as input) - assert model_output.width == mts_series_test.width + # pred_series must be multivariate (same width as input) + assert pred_series.width == mts_series_test.width # scores must be of the same length as the number of scorers assert len(scores) == len(anomaly_model.scorers) - dict_auc_roc = anomaly_model.eval_accuracy( + dict_auc_roc = anomaly_model.eval_metric( ts_anomalies, mts_series_test, start=0.1, metric="AUC_ROC" ) - dict_auc_pr = anomaly_model.eval_accuracy( + dict_auc_pr = anomaly_model.eval_metric( ts_anomalies, mts_series_test, start=0.1, metric="AUC_PR" ) - auc_roc_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=scores, + auc_roc_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=scores, window=[1, 1, 10, 20, 1, 20, 1, 10], metric="AUC_ROC", ) - auc_pr_from_scores = eval_accuracy_from_scores( - actual_anomalies=[ts_anomalies] * 8, - anomaly_score=scores, + auc_pr_from_scores = eval_metric_from_scores( + anomalies=[ts_anomalies] * 8, + pred_scores=scores, window=[1, 1, 10, 20, 1, 20, 1, 10], metric="AUC_PR", ) @@ -1391,201 +1367,116 @@ def test_multivariate__ForecastingAnomalyModel(self): ) np.testing.assert_array_almost_equal(auc_pr_from_scores, true_auc_pr, decimal=1) - def test_show_anomalies(self): - + def test_visualization(self): + # test function show_anomalies() and show_anomalies_from_scores() forecasting_anomaly_model = ForecastingAnomalyModel( - model=RegressionModel(lags=10), scorer=NormScorer() + model=RegressionModel(lags=10), scorer=Norm() ) forecasting_anomaly_model.fit(self.train, allow_model_training=True) filtering_anomaly_model = FilteringAnomalyModel( - model=MovingAverageFilter(window=10), scorer=NormScorer() + model=MovingAverageFilter(window=10), scorer=Norm() ) - for anomaly_model in [forecasting_anomaly_model, filtering_anomaly_model]: - - # must input only one series - with pytest.raises(ValueError): - anomaly_model.show_anomalies(series=[self.train, self.train]) + self.show_anomalies_function( + visualization_function=forecasting_anomaly_model.show_anomalies + ) + self.show_anomalies_function( + visualization_function=filtering_anomaly_model.show_anomalies + ) + self.show_anomalies_function(visualization_function=show_anomalies_from_scores) - # input must be a series - with pytest.raises(ValueError): - anomaly_model.show_anomalies(series=[1, 2, 4]) + def show_anomalies_function(self, visualization_function): + # must input only one series + with pytest.raises(ValueError) as err: + visualization_function(series=[self.train, self.train]) + assert ( + str(err.value) + == "`series` must be single `TimeSeries` or a sequence of `TimeSeries` of length `1`." + ) + # input must be a series + with pytest.raises(ValueError): + visualization_function(series=[1, 2, 4]) + if visualization_function != show_anomalies_from_scores: # metric must be "AUC_ROC" or "AUC_PR" with pytest.raises(ValueError): - anomaly_model.show_anomalies( - series=self.train, actual_anomalies=self.anomalies, metric="str" + visualization_function( + series=self.train, + anomalies=self.anomalies, + metric="str", ) with pytest.raises(ValueError): - anomaly_model.show_anomalies( - series=self.train, actual_anomalies=self.anomalies, metric="auc_roc" + visualization_function( + series=self.train, + anomalies=self.anomalies, + metric="auc_roc", ) with pytest.raises(ValueError): - anomaly_model.show_anomalies( - series=self.train, actual_anomalies=self.anomalies, metric=1 + visualization_function( + series=self.train, anomalies=self.anomalies, metric=1 ) - # actual_anomalies must be not none if metric is given + # anomalies must be not none if metric is given with pytest.raises(ValueError): - anomaly_model.show_anomalies(series=self.train, metric="AUC_ROC") + visualization_function(series=self.train, metric="AUC_ROC") - # actual_anomalies must be binary + # anomalies must be binary with pytest.raises(ValueError): - anomaly_model.show_anomalies( - series=self.train, actual_anomalies=self.test, metric="AUC_ROC" + visualization_function( + series=self.train, + anomalies=self.test, + metric="AUC_ROC", ) - # actual_anomalies must contain at least 1 anomaly if metric is given + # anomalies must contain at least 1 anomaly if metric is given with pytest.raises(ValueError): - anomaly_model.show_anomalies( + visualization_function( series=self.train, - actual_anomalies=self.only_0_anomalies, + anomalies=self.only_0_anomalies, metric="AUC_ROC", ) - # actual_anomalies must contain at least 1 non-anomoulous timestamp + # anomalies must contain at least 1 non-anomoulous timestamp # if metric is given with pytest.raises(ValueError): - anomaly_model.show_anomalies( + visualization_function( series=self.train, - actual_anomalies=self.only_1_anomalies, + anomalies=self.only_1_anomalies, metric="AUC_ROC", ) - - # names_of_scorers must be str + else: + # window must be a positive int with pytest.raises(ValueError): - anomaly_model.show_anomalies(series=self.train, names_of_scorers=2) - # nbr of names_of_scorers must match the nbr of scores (only 1 here) + show_anomalies_from_scores( + series=self.train, pred_scores=self.test, window=-1 + ) + # window must smaller than the score series with pytest.raises(ValueError): - anomaly_model.show_anomalies( - series=self.train, names_of_scorers=["scorer1", "scorer2"] + show_anomalies_from_scores( + series=self.train, pred_scores=self.test, window=200 ) - - # title must be str + # must have the same nbr of windows than scores with pytest.raises(ValueError): - anomaly_model.show_anomalies(series=self.train, title=1) - - def test_show_anomalies_from_scores(self): - - # must input only one series - with pytest.raises(ValueError): - show_anomalies_from_scores(series=[self.train, self.train]) - - # input must be a series - with pytest.raises(ValueError): - show_anomalies_from_scores(series=[1, 2, 4]) - - # must input only one model_output - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, model_output=[self.test, self.train] - ) - - # metric must be "AUC_ROC" or "AUC_PR" - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, - anomaly_scores=self.test, - actual_anomalies=self.anomalies, - metric="str", - ) - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, - anomaly_scores=self.test, - actual_anomalies=self.anomalies, - metric="auc_roc", - ) - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, - anomaly_scores=self.test, - actual_anomalies=self.anomalies, - metric=1, - ) - - # actual_anomalies must be not none if metric is given - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, anomaly_scores=self.test, metric="AUC_ROC" - ) - - # actual_anomalies must be binary - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, - anomaly_scores=self.test, - actual_anomalies=self.test, - metric="AUC_ROC", - ) - - # actual_anomalies must contain at least 1 anomaly if metric is given - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, - anomaly_scores=self.test, - actual_anomalies=self.only_0_anomalies, - metric="AUC_ROC", - ) - - # actual_anomalies must contain at least 1 non-anomoulous timestamp - # if metric is given - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, - anomaly_scores=self.test, - actual_anomalies=self.only_1_anomalies, - metric="AUC_ROC", - ) - - # window must be int - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, anomaly_scores=self.test, window="1" - ) - # window must be an int positive - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, anomaly_scores=self.test, window=-1 - ) - # window must smaller than the score series - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, anomaly_scores=self.test, window=200 - ) - - # must have the same nbr of windows than scores - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, anomaly_scores=self.test, window=[1, 2] - ) - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, - anomaly_scores=[self.test, self.test], - window=[1, 2, 1], - ) - - # names_of_scorers must be str - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, anomaly_scores=self.test, names_of_scorers=2 - ) - # nbr of names_of_scorers must match the nbr of scores - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, - anomaly_scores=self.test, - names_of_scorers=["scorer1", "scorer2"], - ) - with pytest.raises(ValueError): - show_anomalies_from_scores( - series=self.train, - anomaly_scores=[self.test, self.test], - names_of_scorers=["scorer1", "scorer2", "scorer3"], - ) - - # title must be str - with pytest.raises(ValueError): - show_anomalies_from_scores(series=self.train, title=1) + show_anomalies_from_scores( + series=self.train, pred_scores=self.test, window=[1, 2] + ) + with pytest.raises(ValueError): + show_anomalies_from_scores( + series=self.train, + pred_scores=[self.test, self.test], + window=[1, 2, 1], + ) + # nbr of names_of_scorers must match the nbr of scores + with pytest.raises(ValueError): + show_anomalies_from_scores( + series=self.train, + pred_scores=self.test, + names_of_scorers=["scorer1", "scorer2"], + ) + with pytest.raises(ValueError): + show_anomalies_from_scores( + series=self.train, + pred_scores=[self.test, self.test], + names_of_scorers=["scorer1", "scorer2", "scorer3"], + ) diff --git a/darts/tests/ad/test_detectors.py b/darts/tests/ad/test_detectors.py index 3dc7e5a04f..932235f8e3 100644 --- a/darts/tests/ad/test_detectors.py +++ b/darts/tests/ad/test_detectors.py @@ -1,18 +1,26 @@ +from itertools import product from typing import Sequence import numpy as np import pytest from darts import TimeSeries +from darts.ad.detectors.detectors import FittableDetector from darts.ad.detectors.quantile_detector import QuantileDetector from darts.ad.detectors.threshold_detector import ThresholdDetector -list_NonFittableDetector = [ThresholdDetector(low_threshold=0.2)] +list_Detector = [(ThresholdDetector, {"low_threshold": 0.2})] -list_FittableDetector = [QuantileDetector(low_quantile=0.2)] +list_FittableDetector = [(QuantileDetector, {"low_quantile": 0.2})] +list_detectors = list_Detector + list_FittableDetector -class TestADDetectors: +metric_func = ["accuracy", "recall", "f1", "precision"] + +delta = 1e-05 + + +class TestAnomalyDetectionDetector: np.random.seed(42) @@ -41,117 +49,147 @@ class TestADDetectors: np_probabilistic = np.random.choice(a=[0, 1], p=[0.5, 0.5], size=[100, 1, 5]) probabilistic = TimeSeries.from_values(np_probabilistic) - def test_DetectNonFittableDetector(self): - - detector = ThresholdDetector(low_threshold=0.2) - - # Check return types - # Check if return TimeSeries is float when input is a series - assert isinstance(detector.detect(self.test), TimeSeries) - + @pytest.mark.parametrize( + "detector_config,series", + product(list_detectors, [(train, test), (mts_train, mts_test)]), + ) + def test_detect_return_type(self, detector_config, series): + """Check that detect() behave as expected""" + detector_cls, detector_kwargs = detector_config + ts_train, ts_test = series + detector = detector_cls(**detector_kwargs) + if isinstance(detector, FittableDetector): + detector.fit(ts_train) + + # Check if return type is TimeSeries when input is a single series + assert isinstance(detector.detect(ts_test), TimeSeries) # Check if return type is Sequence when input is a Sequence of series - assert isinstance(detector.detect([self.test]), Sequence) - - # Check if return TimeSeries is Sequence when input is a multivariate series - assert isinstance(detector.detect(self.mts_test), TimeSeries) - - # Check if return type is Sequence when input is a multivariate series - assert isinstance(detector.detect([self.mts_test]), Sequence) - - with pytest.raises(ValueError): - # Input cannot be probabilistic - detector.detect(self.probabilistic) - - def test_DetectFittableDetector(self): - detector = QuantileDetector(low_quantile=0.2) - - # Check return types - - detector.fit(self.train) - # Check if return type is float when input is a series - assert isinstance(detector.detect(self.test), TimeSeries) - - # Check if return type is Sequence when input is a sequence of series - assert isinstance(detector.detect([self.test]), Sequence) - - detector.fit(self.mts_train) - # Check if return type is Sequence when input is a multivariate series - assert isinstance(detector.detect(self.mts_test), TimeSeries) - - # Check if return type is Sequence when input is a sequence of multivariate series - assert isinstance(detector.detect([self.mts_test]), Sequence) + assert isinstance(detector.detect([ts_test]), Sequence) + # Input cannot be probabilistic with pytest.raises(ValueError): - # Input cannot be probabilistic detector.detect(self.probabilistic) - def test_eval_accuracy(self): + @pytest.mark.parametrize("detector_config", list_detectors) + def test_eval_metric_return_type(self, detector_config): + """Check that eval_metric() behave as expected""" + detector_cls, detector_kwargs = detector_config + detector = detector_cls(**detector_kwargs) - detector = ThresholdDetector(low_threshold=0.2) - - # Check return types + # univariate + if isinstance(detector, FittableDetector): + detector.fit(self.train) # Check if return type is float when input is a series - assert isinstance(detector.eval_accuracy(self.anomalies, self.test), float) - + assert isinstance( + detector.eval_metric(anomalies=self.anomalies, pred_scores=self.test), + float, + ) # Check if return type is Sequence when input is a Sequence of series - assert isinstance(detector.eval_accuracy(self.anomalies, [self.test]), Sequence) + assert isinstance( + detector.eval_metric(anomalies=self.anomalies, pred_scores=[self.test]), + Sequence, + ) + # multivariate + if isinstance(detector, FittableDetector): + detector.fit(self.mts_train) # Check if return type is Sequence when input is a multivariate series assert isinstance( - detector.eval_accuracy(self.mts_anomalies, self.mts_test), Sequence + detector.eval_metric( + anomalies=self.mts_anomalies, pred_scores=self.mts_test + ), + Sequence, ) - # Check if return type is Sequence when input is a multivariate series assert isinstance( - detector.eval_accuracy(self.mts_anomalies, [self.mts_test]), Sequence + detector.eval_metric( + anomalies=self.mts_anomalies, pred_scores=[self.mts_test] + ), + Sequence, ) + # Input cannot be probabilistic with pytest.raises(ValueError): - # Input cannot be probabilistic - detector.eval_accuracy(self.anomalies, self.probabilistic) + detector.eval_metric( + anomalies=self.anomalies, pred_scores=self.probabilistic + ) - def test_FittableDetector(self): + @pytest.mark.parametrize( + "config", + [ + ( + ThresholdDetector, + {"low_threshold": 4.8, "high_threshold": 10.5}, + {"low_threshold": [4.8, 4.8], "high_threshold": [10.5, 10.5]}, + ), + ( + QuantileDetector, + {"low_quantile": 0.05, "high_quantile": 0.95}, + {"low_quantile": [0.05, 0.05], "high_quantile": [0.95, 0.95]}, + ), + ], + ) + def test_bounded_detectors_parameters_broadcasting(self, config): + """If two values are given for low and high, and a series of width 2 is given, + then the results must be the same as a detector that was given only one value + for low and high (will duplicate the value for each width)""" + detector_cls, kwargs_1param, kwargs_2params = config + + # detector that should broadcast the parameters to match series' width + detector = detector_cls(**kwargs_1param) + # detector created with a number of parameters matching the series' width + detector_2param = detector_cls(**kwargs_2params) + if isinstance(detector, FittableDetector): + detector.fit(self.mts_train) + detector_2param.fit(self.mts_train) - for detector in list_FittableDetector: + binary_detection = detector.detect(self.mts_test) + binary_detection_2param = detector_2param.detect(self.mts_test) + assert binary_detection == binary_detection_2param - # Need to call fit() before calling detect() - with pytest.raises(ValueError): - detector.detect(self.test) + @pytest.mark.parametrize("detector_config", list_FittableDetector) + def test_fit_detect_series_width(self, detector_config): + detector_cls, detector_kwargs = detector_config + detector = detector_cls(**detector_kwargs) - # Check if _fit_called is False - assert not detector._fit_called + # Need to call fit() before calling detect() + with pytest.raises(ValueError): + detector.detect(self.test) - with pytest.raises(ValueError): - # fit on sequence with series that have different width - detector.fit([self.train, self.mts_train]) + # Check if _fit_called is False + assert not detector._fit_called - with pytest.raises(ValueError): - # Input cannot be probabilistic - detector.fit(self.probabilistic) + with pytest.raises(ValueError): + # fit on sequence with series that have different width + detector.fit([self.train, self.mts_train]) + + with pytest.raises(ValueError): + # Input cannot be probabilistic + detector.fit(self.probabilistic) - # case1: fit on UTS - detector1 = detector - detector1.fit(self.train) + # case1: fit on UTS + detector1 = detector + detector1.fit(self.train) - # Check if _fit_called is True after being fitted - assert detector1._fit_called + # Check if _fit_called is True after being fitted + assert detector1._fit_called - with pytest.raises(ValueError): - # series must be same width as series used for training - detector1.detect(self.mts_test) + with pytest.raises(ValueError): + # series must be same width as series used for training + detector1.detect(self.mts_test) - # case2: fit on MTS - detector2 = detector - detector2.fit(self.mts_test) + # case2: fit on MTS + detector2 = detector + detector2.fit(self.mts_test) - # Check if _fit_called is True after being fitted - assert detector2._fit_called + # Check if _fit_called is True after being fitted + assert detector2._fit_called - with pytest.raises(ValueError): - # series must be same width as series used for training - detector2.detect(self.train) + with pytest.raises(ValueError): + # series must be same width as series used for training + detector2.detect(self.train) - def test_QuantileDetector(self): + def test_QuantileDetector_constructor(self): # Need to have at least one parameter (low, high) not None with pytest.raises(ValueError): @@ -214,312 +252,38 @@ def test_QuantileDetector(self): detector.fit(self.train) assert detector.low_threshold == detector.high_threshold - # widths of series used for fitting must match the number of values given for high or/and low, - # if high and low have a length higher than 1 - - detector = QuantileDetector(low_quantile=0.1, high_quantile=[0.8, 0.7]) - with pytest.raises(ValueError): - detector.fit(self.train) - with pytest.raises(ValueError): - detector.fit([self.train, self.mts_train]) - - detector = QuantileDetector(low_quantile=[0.1, 0.2], high_quantile=[0.8, 0.9]) - with pytest.raises(ValueError): - detector.fit(self.train) - with pytest.raises(ValueError): - detector.fit([self.train, self.mts_train]) - - detector = QuantileDetector(low_quantile=[0.1, 0.2], high_quantile=0.8) - with pytest.raises(ValueError): - detector.fit(self.train) - with pytest.raises(ValueError): - detector.fit([self.train, self.mts_train]) + @pytest.mark.parametrize( + "detector_kwargs", + [ + {"low_quantile": 0.1, "high_quantile": [0.8, 0.7]}, + {"low_quantile": [0.1, 0.2], "high_quantile": [0.8, 0.9]}, + {"low_quantile": [0.1, 0.2], "high_quantile": 0.8}, + {"low_quantile": [0.1, 0.2]}, + {"high_quantile": [0.1, 0.2]}, + ], + ) + def test_quantile_detector_fit_detect_matching_width(self, detector_kwargs): + """Widths of series should match the number of values given for high or/and low, + if more than one value is provided for either of them. - detector = QuantileDetector(low_quantile=[0.1, 0.2]) - with pytest.raises(ValueError): - detector.fit(self.train) - with pytest.raises(ValueError): - detector.fit([self.train, self.mts_train]) + `self.train` series has only one component whereas model is created with 2 values for at + least one of the model""" + detector = QuantileDetector(**detector_kwargs) - detector = QuantileDetector(high_quantile=[0.1, 0.2]) + # during training with pytest.raises(ValueError): detector.fit(self.train) with pytest.raises(ValueError): detector.fit([self.train, self.mts_train]) - # widths of series used for scoring must match the number of values given for high or/and low, - # if high and low have a length higher than 1 - - detector = QuantileDetector(low_quantile=0.1, high_quantile=[0.8, 0.7]) - detector.fit(self.mts_train) - with pytest.raises(ValueError): - detector.detect(self.train) - with pytest.raises(ValueError): - detector.detect([self.train, self.mts_train]) - - detector = QuantileDetector(low_quantile=[0.1, 0.2], high_quantile=[0.8, 0.9]) - detector.fit(self.mts_train) - with pytest.raises(ValueError): - detector.detect(self.train) - with pytest.raises(ValueError): - detector.detect([self.train, self.mts_train]) - - detector = QuantileDetector(low_quantile=[0.1, 0.2], high_quantile=0.8) - detector.fit(self.mts_train) - with pytest.raises(ValueError): - detector.detect(self.train) - with pytest.raises(ValueError): - detector.detect([self.train, self.mts_train]) - - detector = QuantileDetector(low_quantile=[0.1, 0.2]) + # during detection detector.fit(self.mts_train) with pytest.raises(ValueError): detector.detect(self.train) with pytest.raises(ValueError): detector.detect([self.train, self.mts_train]) - detector = QuantileDetector(high_quantile=[0.1, 0.2]) - detector.fit(self.mts_train) - with pytest.raises(ValueError): - detector.detect(self.train) - with pytest.raises(ValueError): - detector.detect([self.train, self.mts_train]) - - detector = QuantileDetector(low_quantile=0.05, high_quantile=0.95) - detector.fit(self.train) - - binary_detection = detector.detect(self.test) - - # Return of .detect() must be binary - np.testing.assert_array_equal( - binary_detection.values(copy=False), - binary_detection.values(copy=False).astype(bool), - ) - - # Return of .detect() must be same len as input - assert len(binary_detection) == len(self.test) - - # univariate test - # detector parameter 'abs_low_' must be equal to 9.13658 when trained on the series 'train' - assert abs(detector.low_threshold[0] - 9.13658) < 1e-05 - - # detector parameter 'abs_high_' must be equal to 10.74007 when trained on the series 'train' - assert abs(detector.high_threshold[0] - 10.74007) < 1e-05 - - # detector must found 10 anomalies in the series 'train' - assert detector.detect(self.train).sum(axis=0).all_values().flatten()[0] == 10 - - # detector must found 42 anomalies in the series 'test' - assert binary_detection.sum(axis=0).all_values().flatten()[0] == 42 - - # detector must have an accuracy of 0.57 for the series 'test' - assert ( - abs( - detector.eval_accuracy(self.anomalies, self.test, metric="accuracy") - - 0.57 - ) - < 1e-05 - ) - # detector must have an recall of 0.4 for the series 'test' - assert ( - abs( - detector.eval_accuracy(self.anomalies, self.test, metric="recall") - 0.4 - ) - < 1e-05 - ) - # detector must have an f1 of 0.08510 for the series 'test' - assert ( - abs( - detector.eval_accuracy(self.anomalies, self.test, metric="f1") - 0.08510 - ) - < 1e-05 - ) - # detector must have an precision of 0.04761 for the series 'test' - assert ( - abs( - detector.eval_accuracy(self.anomalies, self.test, metric="precision") - - 0.04761 - ) - < 1e-05 - ) - - # multivariate test - detector_1param = QuantileDetector(low_quantile=0.05, high_quantile=0.95) - detector_1param.fit(self.mts_train) - binary_detection = detector_1param.detect(self.mts_test) - - # if two values are given for low and high, and a series of width 2 is given, then the results must - # be the same as a detector that was given only one value for low and high. - # (will duplicate the value for each component) - detector_2param = QuantileDetector( - low_quantile=[0.05, 0.05], high_quantile=[0.95, 0.95] - ) - detector_2param.fit(self.mts_train) - binary_detection_2param = detector_2param.detect(self.mts_test) - assert binary_detection == binary_detection_2param - - # width of output must be equal to 2 (same dimension as input) - assert binary_detection.width == 2 - assert ( - len( - detector_1param.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="accuracy" - ) - ) - == 2 - ) - assert ( - len( - detector_1param.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="recall" - ) - ) - == 2 - ) - assert ( - len( - detector_1param.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="f1" - ) - ) - == 2 - ) - assert ( - len( - detector_1param.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="precision" - ) - ) - == 2 - ) - - abs_low_ = detector_1param.low_threshold - abs_high_ = detector_1param.high_threshold - - # detector_1param parameter 'abs_high_' must be equal to 10.83047 when trained - # on the series 'train' for the 1st component - assert abs(abs_high_[0] - 10.83047) < 1e-05 - # detector_1param parameter 'abs_high_' must be equal to 6.47822 when trained - # on the series 'train' for the 2nd component - assert abs(abs_high_[1] - 6.47822) < 1e-05 - - # detector_1param parameter 'abs_low_' must be equal to 9.20248 when trained - # on the series 'train' for the 1st component - assert abs(abs_low_[0] - 9.20248) < 1e-05 - # detector_1param parameter 'abs_low_' must be equal to 3.61853 when trained - # on the series 'train' for the 2nd component - assert abs(abs_low_[1] - 3.61853) < 1e-05 - - # detector_1param must found 37 anomalies on the first component of the series 'test' - assert binary_detection["0"].sum(axis=0).all_values().flatten()[0] == 37 - # detector_1param must found 38 anomalies on the second component of the series 'test' - assert binary_detection["1"].sum(axis=0).all_values().flatten()[0] == 38 - - acc = detector_1param.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="accuracy" - ) - # detector_1param must have an accuracy of 0.58 on the first component of the series 'mts_test' - assert abs(acc[0] - 0.58) < 1e-05 - # detector_1param must have an accuracy of 0.58 on the second component of the series 'mts_test' - assert abs(acc[1] - 0.58) < 1e-05 - - precision = detector_1param.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="precision" - ) - # detector_1param must have an precision of 0.08108 on the first component of the series 'mts_test' - assert abs(precision[0] - 0.08108) < 1e-05 - # detector_1param must have an precision of 0.07894 on the second component of the series 'mts_test' - assert abs(precision[1] - 0.07894) < 1e-05 - - recall = detector_1param.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="recall" - ) - # detector_1param must have an recall of 0.2727 on the first component of the series 'mts_test' - assert abs(recall[0] - 0.27272) < 1e-05 - # detector_1param must have an recall of 0.3 on the second component of the series 'mts_test' - assert abs(recall[1] - 0.3) < 1e-05 - - f1 = detector_1param.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="f1" - ) - # detector_1param must have an f1 of 0.125 on the first component of the series 'mts_test' - assert abs(f1[0] - 0.125) < 1e-05 - # detector_1param must have an f1 of 0.125 on the second component of the series 'mts_test' - assert abs(f1[1] - 0.125) < 1e-05 - - # exemple multivariate with Nones - detector = QuantileDetector( - low_quantile=[0.05, None], high_quantile=[None, 0.95] - ) - detector.fit(self.mts_train) - binary_detection = detector.detect(self.mts_test) - - # width of output must be equal to 2 (same dimension as input) - assert binary_detection.width == 2 - assert ( - len( - detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="accuracy" - ) - ) - == 2 - ) - assert ( - len( - detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="recall" - ) - ) - == 2 - ) - assert ( - len(detector.eval_accuracy(self.mts_anomalies, self.mts_test, metric="f1")) - == 2 - ) - assert ( - len( - detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="precision" - ) - ) - == 2 - ) - - # TODO: we should improve these tests to introduce some correlation - # between actual and detected anomalies... - - # detector must found 20 anomalies on the first component of the series 'test' - # Note: there are 200 values (100 time step x 2 components) so this matches - # well a detection rate of 10% (bottom 5% on first component and top 5% on second component) - assert binary_detection["0"].sum(axis=0).all_values().flatten()[0] == 20 - # detector must found 19 anomalies on the second component of the series 'test' - assert binary_detection["1"].sum(axis=0).all_values().flatten()[0] == 19 - - acc = detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="accuracy" - ) - assert abs(acc[0] - 0.69) < 1e-05 - assert abs(acc[1] - 0.75) < 1e-05 - - precision = detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="precision" - ) - assert abs(precision[0] - 0.0) < 1e-05 - assert abs(precision[1] - 0.10526) < 1e-05 - - recall = detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="recall" - ) - assert abs(recall[0] - 0.0) < 1e-05 - assert abs(recall[1] - 0.2) < 1e-05 - - f1 = detector.eval_accuracy(self.mts_anomalies, self.mts_test, metric="f1") - assert abs(f1[0] - 0.0) < 1e-05 - assert abs(f1[1] - 0.13793) < 1e-05 - - def test_ThresholdDetector(self): - - # Parameters + def test_ThresholdDetector_constructor(self): # Need to have at least one parameter (low, high) not None with pytest.raises(ValueError): ThresholdDetector() @@ -587,7 +351,41 @@ def test_ThresholdDetector(self): with pytest.raises(ValueError): detector.detect([self.train, self.mts_train]) - detector = ThresholdDetector(low_threshold=9.5, high_threshold=10.5) + @pytest.mark.parametrize( + "config", + [ + ( + ThresholdDetector, + {"low_threshold": 9.5, "high_threshold": 10.5}, + { + "anomalies": 58, + "accuracy": 0.41, + "recall": 0.40, + "f1": 0.06349, + "precision": 0.03448, + }, + None, + ), + ( + QuantileDetector, + {"low_quantile": 0.05, "high_quantile": 0.95}, + { + "anomalies": 42, + "accuracy": 0.57, + "recall": 0.40, + "f1": 0.08510, + "precision": 0.04761, + }, + (9.13658, 10.74007), + ), + ], + ) + def test_bounded_detector_eval_metric_univariate(self, config): + """Verifying the performance of the bounded detectors on an univariate example""" + detector_cls, detector_kwargs, expected_values, fitted_params = config + detector = detector_cls(**detector_kwargs) + if isinstance(detector, FittableDetector): + detector.fit(self.train) binary_detection = detector.detect(self.test) # Return of .detect() must be binary @@ -599,191 +397,119 @@ def test_ThresholdDetector(self): # Return of .detect() must be same len as input assert len(binary_detection) == len(self.test) - # univariate test - # detector must found 58 anomalies in the series 'test' - assert binary_detection.sum(axis=0).all_values().flatten()[0] == 58 - # detector must have an accuracy of 0.41 for the series 'test' - assert ( - abs( - detector.eval_accuracy(self.anomalies, self.test, metric="accuracy") - - 0.41 - ) - < 1e-05 - ) - # detector must have an recall of 0.4 for the series 'test' - assert ( - abs( - detector.eval_accuracy(self.anomalies, self.test, metric="recall") - 0.4 - ) - < 1e-05 - ) - # detector must have an f1 of 0.06349 for the series 'test' - assert ( - abs( - detector.eval_accuracy(self.anomalies, self.test, metric="f1") - 0.06349 - ) - < 1e-05 - ) - # detector must have an precision of 0.03448 for the series 'test' assert ( - abs( - detector.eval_accuracy(self.anomalies, self.test, metric="precision") - - 0.03448 - ) - < 1e-05 - ) - - # multivariate test - detector = ThresholdDetector(low_threshold=4.8, high_threshold=10.5) - binary_detection = detector.detect(self.mts_test) - - # if two values are given for low and high, and a series of width 2 is given, - # then the results must be the same as a detector that was given only one value - # for low and high. (will duplicate the value for each width) - detector_2param = ThresholdDetector( - low_threshold=[4.8, 4.8], high_threshold=[10.5, 10.5] + binary_detection.sum(axis=0).all_values().flatten()[0] + == expected_values["anomalies"] ) - binary_detection_2param = detector_2param.detect(self.mts_test) - assert binary_detection == binary_detection_2param - # width of output must be equal to 2 (same dimension as input) - assert binary_detection.width == 2 - assert ( - len( - detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="accuracy" + for m_func in metric_func: + assert ( + np.abs( + expected_values[m_func] + - detector.eval_metric(self.anomalies, self.test, metric=m_func), ) + < delta ) - == 2 - ) - assert ( - len( - detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="recall" - ) - ) - == 2 - ) - assert ( - len(detector.eval_accuracy(self.mts_anomalies, self.mts_test, metric="f1")) - == 2 - ) - assert ( - len( - detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="precision" - ) - ) - == 2 - ) - # detector must found 28 anomalies on the first width of the series 'test' - assert binary_detection["0"].sum(axis=0).all_values().flatten()[0] == 28 - # detector must found 52 anomalies on the second width of the series 'test' - assert binary_detection["1"].sum(axis=0).all_values().flatten()[0] == 52 - - acc = detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="accuracy" - ) - # detector must have an accuracy of 0.71 on the first width of the series 'mts_test' - assert abs(acc[0] - 0.71) < 1e-05 - # detector must have an accuracy of 0.48 on the second width of the series 'mts_test' - assert abs(acc[1] - 0.48) < 1e-05 - - precision = detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="precision" - ) - # detector must have an precision of 0.17857 on the first width of the series 'mts_test' - assert abs(precision[0] - 0.17857) < 1e-05 - # detector must have an precision of 0.09615 on the second width of the series 'mts_test' - assert abs(precision[1] - 0.09615) < 1e-05 - - recall = detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="recall" - ) - # detector must have an recall of 0.45454 on the first width of the series 'mts_test' - assert abs(recall[0] - 0.45454) < 1e-05 - # detector must have an recall of 0.5 on the second width of the series 'mts_test' - assert abs(recall[1] - 0.5) < 1e-05 - - f1 = detector.eval_accuracy(self.mts_anomalies, self.mts_test, metric="f1") - # detector must have an f1 of 0.25641 on the first width of the series 'mts_test' - assert abs(f1[0] - 0.25641) < 1e-05 - # detector must have an f1 of 0.16129 on the second width of the series 'mts_test' - assert abs(f1[1] - 0.16129) < 1e-05 - - # exemple multivariate with Nones - detector = ThresholdDetector(low_threshold=[10, None], high_threshold=[None, 5]) + # check the fitted parameters + if isinstance(detector, QuantileDetector): + assert np.abs(fitted_params[0] - detector.low_threshold[0]) < delta + assert np.abs(fitted_params[1] - detector.high_threshold[0]) < delta + + @pytest.mark.parametrize( + "config", + [ + ( + ThresholdDetector, + {"low_threshold": [4.8, 4.8], "high_threshold": [10.5, 10.5]}, + { + "anomalies": [28, 52], + "accuracy": (0.71, 0.48), + "recall": (0.45454, 0.5), + "f1": (0.25641, 0.16129), + "precision": (0.17857, 0.09615), + }, + ), + ( + ThresholdDetector, + {"low_threshold": [10, None], "high_threshold": [None, 5]}, + { + "anomalies": [48, 43], + "accuracy": (0.51, 0.57), + "recall": (0.45454, 0.5), + "f1": (0.16949, 0.18867), + "precision": (0.10416, 0.11627), + }, + ), + ( + QuantileDetector, + {"low_quantile": [0.05, 0.05], "high_quantile": [0.95, 0.95]}, + { + "anomalies": [37, 38], + "accuracy": (0.58, 0.58), + "recall": (0.27272, 0.3), + "f1": (0.125, 0.125), + "precision": (0.08108, 0.07894), + }, + ), + ( + QuantileDetector, + {"low_quantile": [0.05, None], "high_quantile": [None, 0.95]}, + { + "anomalies": [20, 19], + "accuracy": (0.69, 0.75), + "recall": (0.0, 0.2), + "f1": (0.0, 0.13793), + "precision": (0.0, 0.10526), + }, + ), + ], + ) + def test_bounded_detector_performance_multivariate(self, config): + """ + TODO: improve these tests to introduce some correlation between actual and detected anomalies + """ + detector_cls, detector_kwargs, expected_values = config + detector = detector_cls(**detector_kwargs) + + if isinstance(detector, FittableDetector): + detector.fit(self.mts_train) binary_detection = detector.detect(self.mts_test) - # width of output must be equal to 2 (same dimension as input) - assert binary_detection.width == 2 - assert ( - len( - detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="accuracy" + # output must have the same width as the input + expected_width = self.mts_test.n_components + assert binary_detection.width == expected_width + for m_func in metric_func: + assert ( + len( + detector.eval_metric( + self.mts_anomalies, self.mts_test, metric=m_func + ) ) + == expected_width ) - == 2 - ) - assert ( - len( - detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="recall" - ) - ) - == 2 - ) + + # check number of anomalies detected in the first component assert ( - len(detector.eval_accuracy(self.mts_anomalies, self.mts_test, metric="f1")) - == 2 + binary_detection["0"].sum(axis=0).all_values().flatten()[0] + == expected_values["anomalies"][0] ) + # check number of anomalies detected in the second component assert ( - len( - detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="precision" - ) - ) - == 2 - ) - - # detector must found 48 anomalies on the first width of the series 'test' - assert binary_detection["0"].sum(axis=0).all_values().flatten()[0] == 48 - # detector must found 43 anomalies on the second width of the series 'test' - assert binary_detection["1"].sum(axis=0).all_values().flatten()[0] == 43 - - acc = detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="accuracy" - ) - # detector must have an accuracy of 0.51 on the first width of the series 'mts_test' - assert abs(acc[0] - 0.51) < 1e-05 - # detector must have an accuracy of 0.57 on the second width of the series 'mts_test' - assert abs(acc[1] - 0.57) < 1e-05 - - precision = detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="precision" + binary_detection["1"].sum(axis=0).all_values().flatten()[0] + == expected_values["anomalies"][1] ) - # detector must have an precision of 0.10416 and on the first width of the series 'mts_test' - assert abs(precision[0] - 0.10416) < 1e-05 - # detector must have an precision of 0.11627 on the second width of the series 'mts_test' - assert abs(precision[1] - 0.11627) < 1e-05 - recall = detector.eval_accuracy( - self.mts_anomalies, self.mts_test, metric="recall" - ) - # detector must have an recall of 0.45454 on the first width of the series 'mts_test' - assert abs(recall[0] - 0.45454) < 1e-05 - # detector must have an recall of 0.5 on the second width of the series 'mts_test' - assert abs(recall[1] - 0.5) < 1e-05 - - f1 = detector.eval_accuracy(self.mts_anomalies, self.mts_test, metric="f1") - # detector must have an f1 of 0.16949 on the first width of the series 'mts_test' - assert abs(f1[0] - 0.16949) < 1e-05 - # detector must have an f1 of 0.18867 on the second width of the series 'mts_test' - assert abs(f1[1] - 0.18867) < 1e-05 + # check each metric on each component of the series + for m_func in metric_func: + metric_vals = detector.eval_metric( + self.mts_anomalies, self.mts_test, metric=m_func + ) + assert np.abs(expected_values[m_func][0] - metric_vals[0]) < delta + assert np.abs(expected_values[m_func][1] - metric_vals[1]) < delta def test_fit_detect(self): - + """Calling fit() then detect() and fit_detect() should yield the same results""" detector1 = QuantileDetector(low_quantile=0.05, high_quantile=0.95) detector1.fit(self.train) prediction1 = detector1.detect(self.train) diff --git a/darts/tests/ad/test_evaluation.py b/darts/tests/ad/test_evaluation.py new file mode 100644 index 0000000000..42b62b5a13 --- /dev/null +++ b/darts/tests/ad/test_evaluation.py @@ -0,0 +1,171 @@ +import itertools + +import numpy as np +import pandas as pd +import pytest + +from darts import TimeSeries +from darts.ad.utils import eval_metric_from_binary_prediction, eval_metric_from_scores + + +class TestAnomalyDetectionModel: + np.random.seed(42) + + # univariate series + ts_uv = TimeSeries.from_times_and_values( + values=np.array([0.0, 1.0, 0.0, 0.0, 1.0, 1.0]), + times=pd.date_range("2000-01-01", freq="D", periods=6), + ) + # multivariate series + ts_mv = ts_uv.stack( + TimeSeries.from_times_and_values( + values=np.array([1.0, 0.0, 1.0, 1.0, 0.0, 0.0]), + times=pd.date_range("2000-01-01", freq="D", periods=6), + ) + ) + # series with integer index + ts_uv_idx = TimeSeries.from_values(ts_uv.values(copy=False)) + ts_mv_idx = TimeSeries.from_values(ts_mv.values(copy=False)) + + @pytest.mark.parametrize( + "config", + itertools.product( + [ + ("AUC_ROC", (1.0, 0.0, 0.5)), + ("AUC_PR", (1.0, 0.5, 0.5)), + ], + [ + # ts_uv, + ts_mv, + # ts_uv_idx, + ts_mv_idx, + ], + [False, True], + ), + ) + def test_eval_pred_scores(self, config): + (metric, scores_exp), series, series_as_list = config + is_multivariate = series.width > 1 + + # the inverse of the binary anomalies will have 0. accuracy + inv_series = TimeSeries.from_times_and_values( + values=~series.values().astype(bool), times=series.time_index + ) + + # average (0.5) scores + med_vals = inv_series.values(copy=True) + med_vals[:] = 0.5 + med_series = TimeSeries.from_times_and_values( + values=med_vals, times=series.time_index + ) + + series = [series] if series_as_list else series + inv_series = [inv_series] if series_as_list else inv_series + med_series = [med_series] if series_as_list else med_series + + def check_metric(series, pred_series, metric, sc_exp): + score = eval_metric_from_scores( + anomalies=series, pred_scores=pred_series, metric=metric + ) + score = score if series_as_list else [score] + assert isinstance(score, list) and len(score) == 1 + score = score[0] + if not is_multivariate: + assert isinstance(score, float) + assert score == sc_exp + else: + assert isinstance(score, list) and score == [sc_exp] * 2 + + # perfect predictions + check_metric(series, series, metric, scores_exp[0]) + + # worst predictions + check_metric(series, inv_series, metric, scores_exp[1]) + + # 0.5 predictions + check_metric(series, med_series, metric, scores_exp[2]) + + # actual series must be binary + with pytest.raises(ValueError) as err: + check_metric(med_series, series, metric, scores_exp[2]) + assert str(err.value).startswith( + "Input series `anomalies` must have binary values only." + ) + + # wrong metric + with pytest.raises(ValueError) as err: + check_metric(series, med_series, "recall", scores_exp[2]) + assert str(err.value).startswith("Argument `metric` must be one of ") + + @pytest.mark.parametrize( + "config", + itertools.product( + [ + ("precision", (1.0, 0.0, 0.5)), + ("recall", (1.0, 0.0, 0.5)), + ("f1", (1.0, 0.0, 0.5)), + ("accuracy", (1.0, 0.0, 0.5)), + ], + [ts_uv, ts_mv, ts_uv_idx, ts_mv_idx], + [False, True], + ), + ) + def test_eval_pred_binary(self, config): + (metric, scores_exp), series, series_as_list = config + is_multivariate = series.width > 1 + + # the inverse of the binary anomalies will have 0. accuracy + inv_series = TimeSeries.from_times_and_values( + values=~series.values().astype(bool), times=series.time_index + ) + + # average (0.5) scores + med_vals = inv_series.values(copy=True) + med_vals[:] = 0.5 + med_series = TimeSeries.from_times_and_values( + values=med_vals, times=series.time_index + ) + + series = [series] if series_as_list else series + inv_series = [inv_series] if series_as_list else inv_series + med_series = [med_series] if series_as_list else med_series + + def check_metric(series, pred_series, metric, sc_exp): + score = eval_metric_from_binary_prediction( + anomalies=series, + pred_anomalies=pred_series, + metric=metric, + ) + score = score if series_as_list else [score] + assert isinstance(score, list) and len(score) == 1 + score = score[0] + if not is_multivariate: + assert isinstance(score, float) + assert score == sc_exp + else: + assert isinstance(score, list) and score == [sc_exp] * 2 + + # perfect predictions + check_metric(series, series, metric, scores_exp[0]) + + # worst predictions + check_metric(series, inv_series, metric, scores_exp[1]) + + # actual series must be binary + with pytest.raises(ValueError) as err: + check_metric(med_series, series, metric, scores_exp[2]) + assert str(err.value).startswith( + "Input series `anomalies` must have binary values only." + ) + + # pred must be binary + with pytest.raises(ValueError) as err: + check_metric(series, med_series, metric, scores_exp[2]) + assert str(err.value).startswith( + "Input series `pred_anomalies` must have binary values only." + ) + + # wrong metric + with pytest.raises(ValueError) as err: + check_metric(series, med_series, "AUC_ROC", scores_exp[2]) + assert str(err.value).startswith("Argument `metric` must be one of ") diff --git a/darts/tests/ad/test_scorers.py b/darts/tests/ad/test_scorers.py index 404de16a22..130dccf341 100644 --- a/darts/tests/ad/test_scorers.py +++ b/darts/tests/ad/test_scorers.py @@ -1,3 +1,4 @@ +from itertools import product from typing import Sequence import numpy as np @@ -6,10 +7,11 @@ from pyod.models.knn import KNN from scipy.stats import cauchy, expon, gamma, laplace, norm, poisson -from darts import TimeSeries +from darts import TimeSeries, metrics from darts.ad.scorers import ( CauchyNLLScorer, ExponentialNLLScorer, + FittableAnomalyScorer, GammaNLLScorer, GaussianNLLScorer, KMeansScorer, @@ -20,10 +22,13 @@ ) from darts.ad.scorers import DifferenceScorer as Difference from darts.ad.scorers import NormScorer as Norm +from darts.ad.scorers.scorers import NLLScorer from darts.models import MovingAverageFilter +from darts.utils.timeseries_generation import linear_timeseries list_NonFittableAnomalyScorer = [ - Norm(), + Norm(component_wise=False), + Norm(component_wise=True), Difference(), GaussianNLLScorer(), ExponentialNLLScorer(), @@ -34,23 +39,67 @@ ] list_FittableAnomalyScorer = [ - PyODScorer(model=KNN()), - KMeansScorer(), - WassersteinScorer(), + (PyODScorer, {"model": KNN(), "component_wise": False}), + (KMeansScorer, {"component_wise": False}), + (WassersteinScorer, {"window_agg": False, "component_wise": False}), ] +# (scorer_cls, values, distribution, distribution_kwargs, prob_density_func, prob_density_func) list_NLLScorer = [ - GaussianNLLScorer(), - ExponentialNLLScorer(), - PoissonNLLScorer(), - LaplaceNLLScorer(), - CauchyNLLScorer(), - GammaNLLScorer(), + ( + CauchyNLLScorer, + [3, 2, 0.5, 0.9], + np.random.standard_cauchy, + {}, + cauchy.pdf, + None, + ), + ( + ExponentialNLLScorer, + [3, 0.1, 2, 0.01], + np.random.exponential, + {"scale": 2.0}, + expon.pdf, + None, + ), + ( + GammaNLLScorer, + [3, 0.1, 2, 0.5], + np.random.gamma, + {"shape": 2, "scale": 2}, + gamma.pdf, + {"a": 2, "scale": 2}, + ), + ( + GaussianNLLScorer, + [3, 0.1, -2, 0.01], + np.random.normal, + {"loc": 0, "scale": 2}, + norm.pdf, + None, + ), + ( + LaplaceNLLScorer, + [3, 10, -2, 0.01], + np.random.laplace, + {"loc": 0, "scale": 2}, + laplace.pdf, + None, + ), + ( + PoissonNLLScorer, + [3, 2, 10, 1], + np.random.poisson, + {"lam": 1}, + poisson.pmf, + {"mu": 1}, + ), ] +delta = 1e-05 -class TestADAnomalyScorer: +class TestAnomalyDetectionScorer: np.random.seed(42) # univariate series @@ -103,37 +152,53 @@ class TestADAnomalyScorer: mts_train._time_index, np_mts_probabilistic ) - def test_ScoreNonFittableAnomalyScorer(self): - scorer = Norm() + @pytest.mark.parametrize("scorer", list_NonFittableAnomalyScorer) + def test_score_from_pred_non_fittable_scorer(self, scorer): + # NLLScorer require deterministic `series` + if isinstance(scorer, NLLScorer): + # series and pred_series are both deterministic + with pytest.raises(ValueError): + scorer.score_from_prediction(series=self.test, pred_series=self.test) + # series is probabilistic, pred_series is deterministic + with pytest.raises(ValueError): + scorer.score_from_prediction( + series=self.probabilistic, pred_series=self.train + ) - # Check return types for score_from_prediction() - # Check if return type is float when input is a series - assert isinstance( - scorer.score_from_prediction(self.test, self.modified_test), TimeSeries - ) + score = scorer.score_from_prediction( + series=self.train, pred_series=self.probabilistic + ) + assert isinstance(score, TimeSeries) + assert score.all_values().shape == (len(self.train), 1, 1) + else: + # Check if return type is float when input is a series + assert isinstance( + scorer.score_from_prediction(self.test, self.modified_test), TimeSeries + ) - # Check if return type is Sequence when input is a Sequence of series - assert isinstance( - scorer.score_from_prediction([self.test], [self.modified_test]), - Sequence, - ) + # Check if return type is Sequence when input is a Sequence of series + assert isinstance( + scorer.score_from_prediction([self.test], [self.modified_test]), + Sequence, + ) - # Check if return type is Sequence when input is a multivariate series - assert isinstance( - scorer.score_from_prediction(self.mts_test, self.modified_mts_test), - TimeSeries, - ) + # Check if return type is Sequence when input is a multivariate series + assert isinstance( + scorer.score_from_prediction(self.mts_test, self.modified_mts_test), + TimeSeries, + ) - # Check if return type is Sequence when input is a multivariate series - assert isinstance( - scorer.score_from_prediction([self.mts_test], [self.modified_mts_test]), - Sequence, - ) + # Check if return type is Sequence when input is a multivariate series + assert isinstance( + scorer.score_from_prediction([self.mts_test], [self.modified_mts_test]), + Sequence, + ) - def test_ScoreFittableAnomalyScorer(self): - scorer = KMeansScorer() + @pytest.mark.parametrize("scorer_config", list_FittableAnomalyScorer) + def test_score_return_type(self, scorer_config): + scorer_cls, scorer_kwargs = scorer_config + scorer = scorer_cls(**scorer_kwargs) - # Check return types for score() scorer.fit(self.train) # Check if return type is float when input is a series assert isinstance(scorer.score(self.test), TimeSeries) @@ -174,414 +239,401 @@ def test_ScoreFittableAnomalyScorer(self): Sequence, ) - def test_eval_accuracy_from_prediction(self): - + def test_eval_metric_from_prediction_return_type(self): scorer = Norm(component_wise=False) - # Check return types # Check if return type is float when input is a series assert isinstance( - scorer.eval_accuracy_from_prediction( + scorer.eval_metric_from_prediction( self.anomalies, self.test, self.modified_test ), float, ) - # Check if return type is Sequence when input is a Sequence of series assert isinstance( - scorer.eval_accuracy_from_prediction( + scorer.eval_metric_from_prediction( self.anomalies, [self.test], self.modified_test ), Sequence, ) - - # Check if return type is a float when input is a multivariate series and component_wise is set to False + # Check if return type is a float when input is a multivariate series and component_wise is set to `False` assert isinstance( - scorer.eval_accuracy_from_prediction( + scorer.eval_metric_from_prediction( self.anomalies, self.mts_test, self.modified_mts_test ), float, ) - - # Check if return type is Sequence when input is a multivariate series and component_wise is set to False + # Check if return type is Sequence when input is a multivariate series and component_wise is set to `False` assert isinstance( - scorer.eval_accuracy_from_prediction( + scorer.eval_metric_from_prediction( self.anomalies, [self.mts_test], self.modified_mts_test ), Sequence, ) scorer = Norm(component_wise=True) - # Check return types - # Check if return type is float when input is a series - assert isinstance( - scorer.eval_accuracy_from_prediction( - self.anomalies, self.test, self.modified_test - ), - float, - ) - - # Check if return type is Sequence when input is a Sequence of series + # Check if return type is a float when input is a multivariate series and component_wise is set to `True` assert isinstance( - scorer.eval_accuracy_from_prediction( - self.anomalies, [self.test], self.modified_test - ), - Sequence, - ) - - # Check if return type is a float when input is a multivariate series and component_wise is set to True - assert isinstance( - scorer.eval_accuracy_from_prediction( + scorer.eval_metric_from_prediction( self.mts_anomalies, self.mts_test, self.modified_mts_test ), Sequence, ) - - # Check if return type is Sequence when input is a multivariate series and component_wise is set to True + # Check if return type is Sequence when input is a multivariate series and component_wise is set to `True` assert isinstance( - scorer.eval_accuracy_from_prediction( + scorer.eval_metric_from_prediction( self.mts_anomalies, [self.mts_test], self.modified_mts_test ), Sequence, ) - non_fittable_scorer = Norm(component_wise=False) - fittable_scorer = KMeansScorer(component_wise=False) + @pytest.mark.parametrize("scorer_config", list_FittableAnomalyScorer) + def test_eval_metric_fittable_scorer(self, scorer_config): + scorer_cls, scorer_kwargs = scorer_config + fittable_scorer = scorer_cls(**scorer_kwargs) fittable_scorer.fit(self.train) - # if component_wise set to False, 'actual_anomalies' must have widths of 1 + # if component_wise set to False, 'anomalies' must have widths of 1 with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=self.mts_anomalies, series=self.test - ) + fittable_scorer.eval_metric(anomalies=self.mts_anomalies, series=self.test) with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=[self.anomalies, self.mts_anomalies], + fittable_scorer.eval_metric( + anomalies=[self.anomalies, self.mts_anomalies], series=[self.test, self.test], ) # 'metric' must be str and "AUC_ROC" or "AUC_PR" with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=self.anomalies, series=self.test, metric=1 + fittable_scorer.eval_metric( + anomalies=self.anomalies, series=self.test, metric=1 ) with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=self.anomalies, series=self.test, metric="auc_roc" + fittable_scorer.eval_metric( + anomalies=self.anomalies, + series=self.test, + metric="auc_roc", ) with pytest.raises(TypeError): - fittable_scorer.eval_accuracy( - actual_anomalies=self.anomalies, series=self.test, metric=["AUC_ROC"] + fittable_scorer.eval_metric( + anomalies=self.anomalies, + series=self.test, + metric=["AUC_ROC"], ) - # 'actual_anomalies' must be binary + # 'anomalies' must be binary with pytest.raises(ValueError): - fittable_scorer.eval_accuracy(actual_anomalies=self.test, series=self.test) + fittable_scorer.eval_metric(anomalies=self.test, series=self.test) - # 'actual_anomalies' must contain anomalies (at least one) + # 'anomalies' must contain anomalies (at least one) with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=self.only_0_anomalies, series=self.test + fittable_scorer.eval_metric( + anomalies=self.only_0_anomalies, series=self.test ) - # 'actual_anomalies' cannot contain only anomalies + # 'anomalies' cannot contain only anomalies with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=self.only_1_anomalies, series=self.test + fittable_scorer.eval_metric( + anomalies=self.only_1_anomalies, series=self.test ) - # 'actual_anomalies' must match the number of series if length higher than 1 + # 'anomalies' must match the number of series if length higher than 1 with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=[self.anomalies, self.anomalies], series=self.test + fittable_scorer.eval_metric( + anomalies=[self.anomalies, self.anomalies], + series=self.test, ) with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=[self.anomalies, self.anomalies], + fittable_scorer.eval_metric( + anomalies=[self.anomalies, self.anomalies], series=[self.test, self.test, self.test], ) - # 'actual_anomalies' must have non empty intersection with 'series' + # 'anomalies' must have non empty intersection with 'series' with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=self.anomalies[:20], series=self.test[30:] + fittable_scorer.eval_metric( + anomalies=self.anomalies[:20], series=self.test[30:] ) with pytest.raises(ValueError): - fittable_scorer.eval_accuracy( - actual_anomalies=[self.anomalies, self.anomalies[:20]], + fittable_scorer.eval_metric( + anomalies=[self.anomalies, self.anomalies[:20]], series=[self.test, self.test[40:]], ) - for scorer in [non_fittable_scorer, fittable_scorer]: - - # name must be of type str - assert isinstance(scorer.__str__(), str) - - # 'metric' must be str and "AUC_ROC" or "AUC_PR" - with pytest.raises(ValueError): - fittable_scorer.eval_accuracy_from_prediction( - actual_anomalies=self.anomalies, - actual_series=self.test, - pred_series=self.modified_test, - metric=1, - ) - with pytest.raises(ValueError): - fittable_scorer.eval_accuracy_from_prediction( - actual_anomalies=self.anomalies, - actual_series=self.test, - pred_series=self.modified_test, - metric="auc_roc", - ) - with pytest.raises(TypeError): - fittable_scorer.eval_accuracy_from_prediction( - actual_anomalies=self.anomalies, - actual_series=self.test, - pred_series=self.modified_test, - metric=["AUC_ROC"], - ) - - # 'actual_anomalies' must be binary - with pytest.raises(ValueError): - scorer.eval_accuracy_from_prediction( - actual_anomalies=self.test, - actual_series=self.test, - pred_series=self.modified_test, - ) + @pytest.mark.parametrize( + "scorer", [Norm(component_wise=False), KMeansScorer(component_wise=False)] + ) + def test_eval_metric_from_prediction(self, scorer): + if isinstance(scorer, FittableAnomalyScorer): + scorer.fit(self.train) - # 'actual_anomalies' must contain anomalies (at least one) - with pytest.raises(ValueError): - scorer.eval_accuracy_from_prediction( - actual_anomalies=self.only_0_anomalies, - actual_series=self.test, - pred_series=self.modified_test, - ) + # name must be of type str + assert isinstance(scorer.__str__(), str) - # 'actual_anomalies' cannot contain only anomalies - with pytest.raises(ValueError): - scorer.eval_accuracy_from_prediction( - actual_anomalies=self.only_1_anomalies, - actual_series=self.test, - pred_series=self.modified_test, - ) + # 'metric' must be str and "AUC_ROC" or "AUC_PR" + with pytest.raises(ValueError): + scorer.eval_metric_from_prediction( + anomalies=self.anomalies, + series=self.test, + pred_series=self.modified_test, + metric=1, + ) + with pytest.raises(ValueError): + scorer.eval_metric_from_prediction( + anomalies=self.anomalies, + series=self.test, + pred_series=self.modified_test, + metric="auc_roc", + ) + with pytest.raises(TypeError): + scorer.eval_metric_from_prediction( + anomalies=self.anomalies, + series=self.test, + pred_series=self.modified_test, + metric=["AUC_ROC"], + ) - # 'actual_anomalies' must match the number of series if length higher than 1 - with pytest.raises(ValueError): - scorer.eval_accuracy_from_prediction( - actual_anomalies=[self.anomalies, self.anomalies], - actual_series=[self.test, self.test, self.test], - pred_series=[ - self.modified_test, - self.modified_test, - self.modified_test, - ], - ) - with pytest.raises(ValueError): - scorer.eval_accuracy_from_prediction( - actual_anomalies=[self.anomalies, self.anomalies], - actual_series=self.test, - pred_series=self.modified_test, - ) + # 'anomalies' must be binary + with pytest.raises(ValueError): + scorer.eval_metric_from_prediction( + anomalies=self.test, + series=self.test, + pred_series=self.modified_test, + ) - # 'actual_anomalies' must have non empty intersection with 'actual_series' and 'pred_series' - with pytest.raises(ValueError): - scorer.eval_accuracy_from_prediction( - actual_anomalies=self.anomalies[:20], - actual_series=self.test[30:], - pred_series=self.modified_test[30:], - ) - with pytest.raises(ValueError): - scorer.eval_accuracy_from_prediction( - actual_anomalies=[self.anomalies, self.anomalies[:20]], - actual_series=[self.test, self.test[40:]], - pred_series=[self.modified_test, self.modified_test[40:]], - ) + # 'anomalies' must contain anomalies (at least one) + with pytest.raises(ValueError): + scorer.eval_metric_from_prediction( + anomalies=self.only_0_anomalies, + series=self.test, + pred_series=self.modified_test, + ) - def test_NonFittableAnomalyScorer(self): + # 'anomalies' cannot contain only anomalies + with pytest.raises(ValueError): + scorer.eval_metric_from_prediction( + anomalies=self.only_1_anomalies, + series=self.test, + pred_series=self.modified_test, + ) - for scorer in list_NonFittableAnomalyScorer: - # Check if trainable is False, being a NonFittableAnomalyScorer - assert not scorer.trainable + # 'anomalies' must match the number of series if length higher than 1 + with pytest.raises(ValueError): + scorer.eval_metric_from_prediction( + anomalies=[self.anomalies, self.anomalies], + series=[self.test, self.test, self.test], + pred_series=[ + self.modified_test, + self.modified_test, + self.modified_test, + ], + ) + with pytest.raises(ValueError): + scorer.eval_metric_from_prediction( + anomalies=[self.anomalies, self.anomalies], + series=self.test, + pred_series=self.modified_test, + ) - # checks for score_from_prediction() - # input must be Timeseries or sequence of Timeseries - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train, "str") - with pytest.raises(ValueError): - scorer.score_from_prediction( - [self.train, self.train], [self.modified_train, "str"] - ) - # score on sequence with series that have different width - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train, self.modified_mts_train) - # input sequences have different length - with pytest.raises(ValueError): - scorer.score_from_prediction( - [self.train, self.train], [self.modified_train] - ) - # two inputs must have a non zero intersection - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train[:50], self.train[55:]) - # every pairwise element must have a non zero intersection - with pytest.raises(ValueError): - scorer.score_from_prediction( - [self.train, self.train[:50]], [self.train, self.train[55:]] - ) + # 'anomalies' must have non empty intersection with 'series' and 'pred_series' + with pytest.raises(ValueError): + scorer.eval_metric_from_prediction( + anomalies=self.anomalies[:20], + series=self.test[30:], + pred_series=self.modified_test[30:], + ) + with pytest.raises(ValueError): + scorer.eval_metric_from_prediction( + anomalies=[self.anomalies, self.anomalies[:20]], + series=[self.test, self.test[40:]], + pred_series=[self.modified_test, self.modified_test[40:]], + ) - def test_FittableAnomalyScorer(self): + @pytest.mark.parametrize("scorer", list_NonFittableAnomalyScorer) + def test_NonFittableAnomalyScorer(self, scorer): + # Check if trainable is False, being a NonFittableAnomalyScorer + assert not scorer.is_trainable - for scorer in list_FittableAnomalyScorer: + # checks for score_from_prediction() + # input must be Timeseries or sequence of Timeseries + with pytest.raises(ValueError): + scorer.score_from_prediction(self.train, "str") + with pytest.raises(ValueError): + scorer.score_from_prediction( + [self.train, self.train], [self.modified_train, "str"] + ) + # score on sequence with series that have different width + with pytest.raises(ValueError): + scorer.score_from_prediction(self.train, self.modified_mts_train) + # input sequences have different length + with pytest.raises(ValueError): + scorer.score_from_prediction( + [self.train, self.train], [self.modified_train] + ) + # two inputs must have a non zero intersection + with pytest.raises(ValueError): + scorer.score_from_prediction(self.train[:50], self.train[55:]) + # every pairwise element must have a non zero intersection + with pytest.raises(ValueError): + scorer.score_from_prediction( + [self.train, self.train[:50]], [self.train, self.train[55:]] + ) - # Need to call fit() before calling score() - with pytest.raises(ValueError): - scorer.score(self.test) + @pytest.mark.parametrize("scorer_config", list_FittableAnomalyScorer) + def test_FittableAnomalyScorer(self, scorer_config): + scorer_cls, scorer_kwargs = scorer_config + fittable_scorer = scorer_cls(**scorer_kwargs) - # Need to call fit() before calling score_from_prediction() - with pytest.raises(ValueError): - scorer.score_from_prediction(self.test, self.modified_test) + # Need to call fit() before calling score() + with pytest.raises(ValueError): + fittable_scorer.score(self.test) - # Check if trainable is True, being a FittableAnomalyScorer - assert scorer.trainable + # Need to call fit() before calling score_from_prediction() + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction(self.test, self.modified_test) - # Check if _fit_called is False - assert not scorer._fit_called + # Check if _fit_called is False + assert not fittable_scorer._fit_called - # fit on sequence with series that have different width - with pytest.raises(ValueError): - scorer.fit([self.train, self.mts_train]) + # fit on sequence with series that have different width + with pytest.raises(ValueError): + fittable_scorer.fit([self.train, self.mts_train]) - # fit on sequence with series that have different width - with pytest.raises(ValueError): - scorer.fit_from_prediction( - [self.train, self.mts_train], - [self.modified_train, self.modified_mts_train], - ) + # fit on sequence with series that have different width + with pytest.raises(ValueError): + fittable_scorer.fit_from_prediction( + [self.train, self.mts_train], + [self.modified_train, self.modified_mts_train], + ) - # checks for fit_from_prediction() - # input must be Timeseries or sequence of Timeseries - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train, "str") - with pytest.raises(ValueError): - scorer.score_from_prediction( - [self.train, self.train], [self.modified_train, "str"] - ) - # two inputs must have the same length - with pytest.raises(ValueError): - scorer.fit_from_prediction( - [self.train, self.train], [self.modified_train] - ) - # two inputs must have the same width - with pytest.raises(ValueError): - scorer.fit_from_prediction([self.train], [self.modified_mts_train]) - # every element must have the same width - with pytest.raises(ValueError): - scorer.fit_from_prediction( - [self.train, self.mts_train], - [self.modified_train, self.modified_mts_train], - ) - # two inputs must have a non zero intersection - with pytest.raises(ValueError): - scorer.fit_from_prediction(self.train[:50], self.train[55:]) - # every pairwise element must have a non zero intersection - with pytest.raises(ValueError): - scorer.fit_from_prediction( - [self.train, self.train[:50]], [self.train, self.train[55:]] - ) + # checks for fit_from_prediction() + # input must be Timeseries or sequence of Timeseries + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction(self.train, "str") + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction( + [self.train, self.train], [self.modified_train, "str"] + ) + # two inputs must have the same length + with pytest.raises(ValueError): + fittable_scorer.fit_from_prediction( + [self.train, self.train], [self.modified_train] + ) + # two inputs must have the same width + with pytest.raises(ValueError): + fittable_scorer.fit_from_prediction([self.train], [self.modified_mts_train]) + # every element must have the same width + with pytest.raises(ValueError): + fittable_scorer.fit_from_prediction( + [self.train, self.mts_train], + [self.modified_train, self.modified_mts_train], + ) + # two inputs must have a non zero intersection + with pytest.raises(ValueError): + fittable_scorer.fit_from_prediction(self.train[:50], self.train[55:]) + # every pairwise element must have a non zero intersection + with pytest.raises(ValueError): + fittable_scorer.fit_from_prediction( + [self.train, self.train[:50]], [self.train, self.train[55:]] + ) - # checks for fit() - # input must be Timeseries or sequence of Timeseries - with pytest.raises(ValueError): - scorer.fit("str") - with pytest.raises(ValueError): - scorer.fit([self.modified_train, "str"]) + # checks for fit() + # input must be Timeseries or sequence of Timeseries + with pytest.raises(ValueError): + fittable_scorer.fit("str") + with pytest.raises(ValueError): + fittable_scorer.fit([self.modified_train, "str"]) - # checks for score_from_prediction() - scorer.fit_from_prediction(self.train, self.modified_train) - # input must be Timeseries or sequence of Timeseries - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train, "str") - with pytest.raises(ValueError): - scorer.score_from_prediction( - [self.train, self.train], [self.modified_train, "str"] - ) - # two inputs must have the same length - with pytest.raises(ValueError): - scorer.score_from_prediction( - [self.train, self.train], [self.modified_train] - ) - # two inputs must have the same width - with pytest.raises(ValueError): - scorer.score_from_prediction([self.train], [self.modified_mts_train]) - # every element must have the same width - with pytest.raises(ValueError): - scorer.score_from_prediction( - [self.train, self.mts_train], - [self.modified_train, self.modified_mts_train], - ) - # two inputs must have a non zero intersection - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train[:50], self.train[55:]) - # every pairwise element must have a non zero intersection - with pytest.raises(ValueError): - scorer.score_from_prediction( - [self.train, self.train[:50]], [self.train, self.train[55:]] - ) + # checks for score_from_prediction() + fittable_scorer.fit_from_prediction(self.train, self.modified_train) + # input must be Timeseries or sequence of Timeseries + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction(self.train, "str") + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction( + [self.train, self.train], [self.modified_train, "str"] + ) + # two inputs must have the same length + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction( + [self.train, self.train], [self.modified_train] + ) + # two inputs must have the same width + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction( + [self.train], [self.modified_mts_train] + ) + # every element must have the same width + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction( + [self.train, self.mts_train], + [self.modified_train, self.modified_mts_train], + ) + # two inputs must have a non zero intersection + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction(self.train[:50], self.train[55:]) + # every pairwise element must have a non zero intersection + with pytest.raises(ValueError): + fittable_scorer.score_from_prediction( + [self.train, self.train[:50]], [self.train, self.train[55:]] + ) - # checks for score() - # input must be Timeseries or sequence of Timeseries - with pytest.raises(ValueError): - scorer.score("str") - with pytest.raises(ValueError): - scorer.score([self.modified_train, "str"]) - - # caseA: fit with fit() - # case1: fit on UTS - scorerA1 = scorer - scorerA1.fit(self.train) - # Check if _fit_called is True after being fitted - assert scorerA1._fit_called - with pytest.raises(ValueError): - # series must be same width as series used for training - scorerA1.score(self.mts_test) - # case2: fit on MTS - scorerA2 = scorer - scorerA2.fit(self.mts_train) - # Check if _fit_called is True after being fitted - assert scorerA2._fit_called - with pytest.raises(ValueError): - # series must be same width as series used for training - scorerA2.score(self.test) - - # caseB: fit with fit_from_prediction() - # case1: fit on UTS - scorerB1 = scorer - scorerB1.fit_from_prediction(self.train, self.modified_train) - # Check if _fit_called is True after being fitted - assert scorerB1._fit_called - with pytest.raises(ValueError): - # series must be same width as series used for training - scorerB1.score_from_prediction(self.mts_test, self.modified_mts_test) - # case2: fit on MTS - scorerB2 = scorer - scorerB2.fit_from_prediction(self.mts_train, self.modified_mts_train) - # Check if _fit_called is True after being fitted - assert scorerB2._fit_called - with pytest.raises(ValueError): - # series must be same width as series used for training - scorerB2.score_from_prediction(self.test, self.modified_test) + # checks for score() + # input must be Timeseries or sequence of Timeseries + with pytest.raises(ValueError): + fittable_scorer.score("str") + with pytest.raises(ValueError): + fittable_scorer.score([self.modified_train, "str"]) + + # caseA: fit with fit() + # case1: fit on UTS + fittable_scorerA1 = fittable_scorer + fittable_scorerA1.fit(self.train) + # Check if _fit_called is True after being fitted + assert fittable_scorerA1._fit_called + with pytest.raises(ValueError): + # series must be same width as series used for training + fittable_scorerA1.score(self.mts_test) + # case2: fit on MTS + fittable_scorerA2 = fittable_scorer + fittable_scorerA2.fit(self.mts_train) + # Check if _fit_called is True after being fitted + assert fittable_scorerA2._fit_called + with pytest.raises(ValueError): + # series must be same width as series used for training + fittable_scorerA2.score(self.test) + + # caseB: fit with fit_from_prediction() + # case1: fit on UTS + fittable_scorerB1 = fittable_scorer + fittable_scorerB1.fit_from_prediction(self.train, self.modified_train) + # Check if _fit_called is True after being fitted + assert fittable_scorerB1._fit_called + with pytest.raises(ValueError): + # series must be same width as series used for training + fittable_scorerB1.score_from_prediction( + self.mts_test, self.modified_mts_test + ) + # case2: fit on MTS + fittable_scorerB2 = fittable_scorer + fittable_scorerB2.fit_from_prediction(self.mts_train, self.modified_mts_train) + # Check if _fit_called is True after being fitted + assert fittable_scorerB2._fit_called + with pytest.raises(ValueError): + # series must be same width as series used for training + fittable_scorerB2.score_from_prediction(self.test, self.modified_test) def test_Norm(self): + # Check parameters + self.expects_deterministic_input(Norm) - # component_wise must be bool - with pytest.raises(ValueError): - Norm(component_wise=1) - with pytest.raises(ValueError): - Norm(component_wise="string") # if component_wise=False must always return a univariate anomaly score scorer = Norm(component_wise=False) assert scorer.score_from_prediction(self.test, self.modified_test).width == 1 + assert ( scorer.score_from_prediction(self.mts_test, self.modified_mts_test).width == 1 ) + # if component_wise=True must always return the same width as the input scorer = Norm(component_wise=True) assert scorer.score_from_prediction(self.test, self.modified_test).width == 1 @@ -591,12 +643,6 @@ def test_Norm(self): ) scorer = Norm(component_wise=True) - # always expects a deterministic input - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train, self.probabilistic) - with pytest.raises(ValueError): - scorer.score_from_prediction(self.probabilistic, self.train) - # univariate case (equivalent to abs diff) assert scorer.score_from_prediction(self.test, self.test + 1).sum( axis=0 @@ -615,6 +661,7 @@ def test_Norm(self): scorer.score_from_prediction(self.mts_test, self.mts_test * 2)["1"] == self.mts_test["1"] ) + # abs(2a - a) = a assert ( scorer.score_from_prediction(self.mts_test * 2, self.mts_test)["0"] @@ -627,8 +674,6 @@ def test_Norm(self): scorer = Norm(component_wise=False) - # always expects a deterministic input - # univariate case (equivalent to abs diff) assert scorer.score_from_prediction(self.test, self.test + 1).sum( axis=0 @@ -640,42 +685,42 @@ def test_Norm(self): # multivariate case with component_wise set to False # norm(a - a + sqrt(2)) = 2 * len(a) with a being series of dim=2 assert ( - abs( - scorer.score_from_prediction(self.mts_test, self.mts_test + np.sqrt(2)) + np.abs( + 2 * len(self.mts_test) + - scorer.score_from_prediction( + self.mts_test, self.mts_test + np.sqrt(2) + ) .sum(axis=0) .all_values() .flatten()[0] - - 2 * len(self.mts_test) ) - < 1e-05 + < delta ) assert not scorer.is_probabilistic def test_Difference(self): + self.expects_deterministic_input(Difference) scorer = Difference() - # always expects a deterministic input - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train, self.probabilistic) - with pytest.raises(ValueError): - scorer.score_from_prediction(self.probabilistic, self.train) - # univariate case assert scorer.score_from_prediction(self.test, self.test + 1).sum( axis=0 ).all_values().flatten()[0] == -len(self.test) - assert scorer.score_from_prediction(self.test + 1, self.test).sum( - axis=0 - ).all_values().flatten()[0] == len(self.test) + + assert ( + scorer.score_from_prediction(self.test + 1, self.test) + .sum(axis=0) + .all_values() + .flatten()[0] + ) == len(self.test) # multivariate case # output of score() must be the same width as the width of the input assert ( scorer.score_from_prediction(self.mts_test, self.mts_test).width - == self.mts_test.width - ) + ) == self.mts_test.width # a - 2a = - a assert ( @@ -698,106 +743,125 @@ def test_Difference(self): assert not scorer.is_probabilistic - def test_WassersteinScorer(self): - - # component_wise parameter - # component_wise must be bool + @staticmethod + def helper_check_type_window(scorer, **kwargs): + # window must be non-negative with pytest.raises(ValueError): - WassersteinScorer(component_wise=1) + scorer(window=-1, **kwargs) + # window must be different from 0 with pytest.raises(ValueError): - WassersteinScorer(component_wise="string") + scorer(window=0, **kwargs) + + def helper_window_parameter(self, scorer_to_test, **kwargs): + self.helper_check_type_window(scorer_to_test, **kwargs) + + if scorer_to_test(**kwargs).is_trainable: + # window must be smaller than the input of score() + scorer = scorer_to_test(window=len(self.train) + 1, **kwargs) + with pytest.raises(ValueError): + scorer.fit(self.train) + + scorer = scorer_to_test(window=len(self.train) - 20, **kwargs) + scorer.fit(self.train) + with pytest.raises(ValueError): + scorer.score(self.test[: len(self.train) // 2]) + + else: + # case only NLL scorers for now + + scorer = scorer_to_test(window=101) + # window must be smaller than the input of score_from_prediction() + with pytest.raises(ValueError): + scorer.score_from_prediction( + series=self.test, pred_series=self.probabilistic + ) # len(self.test)=100 + + def diff_fn_parameter(self, scorer, **kwargs): + # must be one of Darts per time step metrics (e.g. ae, err, ...) + with pytest.raises(ValueError): + scorer(diff_fn="abs_diff", **kwargs) + # absolute error / absolute difference + s_tmp = scorer(diff_fn=metrics.ae, **kwargs) + diffs = s_tmp._diff_series([self.train], [self.test]) + assert diffs == [abs(self.train - self.test)] + # error / difference + s_tmp = scorer(diff_fn=metrics.err, **kwargs) + diffs = s_tmp._diff_series([self.train], [self.test]) + assert diffs == [self.train - self.test] + + def component_wise_parameter(self, scorer_to_test, **kwargs): # if component_wise=False must always return a univariate anomaly score - scorer = WassersteinScorer(component_wise=False) + scorer = scorer_to_test(component_wise=False, **kwargs) scorer.fit(self.train) assert scorer.score(self.test).width == 1 scorer.fit(self.mts_train) assert scorer.score(self.mts_test).width == 1 + # if component_wise=True must always return the same width as the input - scorer = WassersteinScorer(component_wise=True) + scorer = scorer_to_test(component_wise=True, **kwargs) scorer.fit(self.train) assert scorer.score(self.test).width == 1 scorer.fit(self.mts_train) assert scorer.score(self.mts_test).width == self.mts_test.width - # window parameter - # window must be int - with pytest.raises(ValueError): - WassersteinScorer(window=True) - with pytest.raises(ValueError): - WassersteinScorer(window="string") - # window must be non negative - with pytest.raises(ValueError): - WassersteinScorer(window=-1) - # window must be different from 0 - with pytest.raises(ValueError): - WassersteinScorer(window=0) - - # diff_fn paramter - # must be None, 'diff' or 'abs_diff' - with pytest.raises(ValueError): - WassersteinScorer(diff_fn="random") - with pytest.raises(ValueError): - WassersteinScorer(diff_fn=1) - - # test _diff_series() directly + def check_diff_series(self, scorer, **kwargs): + # test _diff_series() directly: parameter must by "abs_diff" or "diff" with pytest.raises(ValueError): - s_tmp = WassersteinScorer() + s_tmp = scorer(**kwargs) s_tmp.diff_fn = "random" s_tmp._diff_series(self.train, self.test) - WassersteinScorer(diff_fn="diff")._diff_series(self.train, self.test) - WassersteinScorer()._diff_series(self.train, self.test) - scorer = WassersteinScorer() + def expects_deterministic_input(self, scorer, **kwargs): + scorer = scorer(**kwargs) + if scorer.is_trainable: + scorer.fit(self.train) + np.testing.assert_warns(scorer.score(self.probabilistic)) # always expects a deterministic input - with pytest.raises(ValueError): + np.testing.assert_warns( scorer.score_from_prediction(self.train, self.probabilistic) - with pytest.raises(ValueError): + ) + np.testing.assert_warns( scorer.score_from_prediction(self.probabilistic, self.train) - with pytest.raises(ValueError): - scorer.score(self.probabilistic) - - # window must be smaller than the input of score() - scorer = WassersteinScorer(window=101) - with pytest.raises(ValueError): - scorer.fit(self.train) # len(self.train)=100 + ) - scorer = WassersteinScorer(window=80) - scorer.fit(self.train) - with pytest.raises(ValueError): - scorer.score(self.test[:50]) # len(self.test)=100 + def test_WassersteinScorer(self): + # Check parameters and inputs + self.component_wise_parameter(WassersteinScorer) + self.helper_window_parameter(WassersteinScorer) + self.diff_fn_parameter(WassersteinScorer) + self.expects_deterministic_input(WassersteinScorer) # test plotting (just call the functions) - scorer = WassersteinScorer(window=2) + scorer = WassersteinScorer(window=2, window_agg=False) scorer.fit(self.train) scorer.show_anomalies(self.test, self.anomalies) with pytest.raises(ValueError): # should fail for a sequence of series scorer.show_anomalies([self.test, self.test], self.anomalies) scorer.show_anomalies_from_prediction( - actual_series=self.test, + series=self.test, pred_series=self.test + 1, - actual_anomalies=self.anomalies, + anomalies=self.anomalies, ) with pytest.raises(ValueError): # should fail for a sequence of series scorer.show_anomalies_from_prediction( - actual_series=[self.test, self.test], + series=[self.test, self.test], pred_series=self.test + 1, - actual_anomalies=self.anomalies, + anomalies=self.anomalies, ) with pytest.raises(ValueError): # should fail for a sequence of series scorer.show_anomalies_from_prediction( - actual_series=self.test, + series=self.test, pred_series=[self.test + 1, self.test + 2], - actual_anomalies=self.anomalies, + anomalies=self.anomalies, ) assert not scorer.is_probabilistic def test_univariate_Wasserstein(self): - # univariate example np.random.seed(42) @@ -828,32 +892,31 @@ def test_univariate_Wasserstein(self): ) # test model with window of 10 - scorer_10 = WassersteinScorer(window=10) + scorer_10 = WassersteinScorer(window=10, window_agg=False) scorer_10.fit(train_wasserstein) - auc_roc_w10 = scorer_10.eval_accuracy( + auc_roc_w10 = scorer_10.eval_metric( anomalies_wasserstein, test_wasserstein, metric="AUC_ROC" ) - auc_pr_w10 = scorer_10.eval_accuracy( + auc_pr_w10 = scorer_10.eval_metric( anomalies_wasserstein, test_wasserstein, metric="AUC_PR" ) # test model with window of 20 - scorer_20 = WassersteinScorer(window=20) + scorer_20 = WassersteinScorer(window=20, window_agg=False) scorer_20.fit(train_wasserstein) - auc_roc_w20 = scorer_20.eval_accuracy( + auc_roc_w20 = scorer_20.eval_metric( anomalies_wasserstein, test_wasserstein, metric="AUC_ROC" ) - auc_pr_w20 = scorer_20.eval_accuracy( + auc_pr_w20 = scorer_20.eval_metric( anomalies_wasserstein, test_wasserstein, metric="AUC_PR" ) - assert abs(auc_roc_w10 - 0.80637) < 1e-05 - assert abs(auc_pr_w10 - 0.83390) < 1e-05 - assert abs(auc_roc_w20 - 0.77828) < 1e-05 - assert abs(auc_pr_w20 - 0.93934) < 1e-05 + assert np.abs(0.80637 - auc_roc_w10) < delta + assert np.abs(0.83390 - auc_pr_w10) < delta + assert np.abs(0.77828 - auc_roc_w20) < delta + assert np.abs(0.93934 - auc_pr_w20) < delta def test_multivariate_componentwise_Wasserstein(self): - # example multivariate WassersteinScorer component wise (True and False) np.random.seed(3) np_mts_train_wasserstein = np.abs( @@ -906,90 +969,37 @@ def test_multivariate_componentwise_Wasserstein(self): ) # test scorer with component_wise=False - scorer_w10_cwfalse = WassersteinScorer(window=10, component_wise=False) + scorer_w10_cwfalse = WassersteinScorer( + window=10, component_wise=False, window_agg=False + ) scorer_w10_cwfalse.fit(mts_train_wasserstein) - auc_roc_cwfalse = scorer_w10_cwfalse.eval_accuracy( + auc_roc_cwfalse = scorer_w10_cwfalse.eval_metric( anomalies_common_wasserstein, mts_test_wasserstein, metric="AUC_ROC" ) # test scorer with component_wise=True - scorer_w10_cwtrue = WassersteinScorer(window=10, component_wise=True) + scorer_w10_cwtrue = WassersteinScorer( + window=10, component_wise=True, window_agg=False + ) scorer_w10_cwtrue.fit(mts_train_wasserstein) - auc_roc_cwtrue = scorer_w10_cwtrue.eval_accuracy( + auc_roc_cwtrue = scorer_w10_cwtrue.eval_metric( anomalies_wasserstein_per_width, mts_test_wasserstein, metric="AUC_ROC" ) - assert abs(auc_roc_cwfalse - 0.94637) < 1e-05 - assert abs(auc_roc_cwtrue[0] - 0.98606) < 1e-05 - assert abs(auc_roc_cwtrue[1] - 0.96722) < 1e-05 + assert np.abs(0.94637 - auc_roc_cwfalse) < delta + assert np.abs(0.98606 - auc_roc_cwtrue[0]) < delta + assert np.abs(0.96722 - auc_roc_cwtrue[1]) < delta def test_kmeansScorer(self): - - # component_wise parameter - # component_wise must be bool - with pytest.raises(ValueError): - KMeansScorer(component_wise=1) - with pytest.raises(ValueError): - KMeansScorer(component_wise="string") - # if component_wise=False must always return a univariate anomaly score - scorer = KMeansScorer(component_wise=False) - scorer.fit(self.train) - assert scorer.score(self.test).width == 1 - scorer.fit(self.mts_train) - assert scorer.score(self.mts_test).width == 1 - # if component_wise=True must always return the same width as the input - scorer = KMeansScorer(component_wise=True) - scorer.fit(self.train) - assert scorer.score(self.test).width == 1 - scorer.fit(self.mts_train) - assert scorer.score(self.mts_test).width == self.mts_test.width - - # window parameter - # window must be int - with pytest.raises(ValueError): - KMeansScorer(window=True) - with pytest.raises(ValueError): - KMeansScorer(window="string") - # window must be non negative - with pytest.raises(ValueError): - KMeansScorer(window=-1) - # window must be different from 0 - with pytest.raises(ValueError): - KMeansScorer(window=0) - - # diff_fn paramter - # must be None, 'diff' or 'abs_diff' - with pytest.raises(ValueError): - KMeansScorer(diff_fn="random") - with pytest.raises(ValueError): - KMeansScorer(diff_fn=1) - - scorer = KMeansScorer() - - # always expects a deterministic input - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train, self.probabilistic) - with pytest.raises(ValueError): - scorer.score_from_prediction(self.probabilistic, self.train) - with pytest.raises(ValueError): - scorer.score(self.probabilistic) - - # window must be smaller than the input of score() - scorer = KMeansScorer(window=101) - with pytest.raises(ValueError): - scorer.fit(self.train) # len(self.train)=100 - - scorer = KMeansScorer(window=80) - scorer.fit(self.train) - with pytest.raises(ValueError): - scorer.score(self.test[:50]) # len(self.test)=100 - - assert not scorer.is_probabilistic + # Check parameters and inputs + self.component_wise_parameter(KMeansScorer) + self.helper_window_parameter(KMeansScorer) + self.diff_fn_parameter(KMeansScorer) + self.expects_deterministic_input(KMeansScorer) + assert not KMeansScorer().is_probabilistic def test_univariate_kmeans(self): - # univariate example - np.random.seed(40) # create the train set @@ -1058,10 +1068,10 @@ def test_univariate_kmeans(self): kmeans_scorer = KMeansScorer(k=2, window=1, component_wise=False) kmeans_scorer.fit(KMeans_mts_train) - metric_AUC_ROC = kmeans_scorer.eval_accuracy( + metric_AUC_ROC = kmeans_scorer.eval_metric( KMeans_mts_anomalies, KMeans_mts_test, metric="AUC_ROC" ) - metric_AUC_PR = kmeans_scorer.eval_accuracy( + metric_AUC_PR = kmeans_scorer.eval_metric( KMeans_mts_anomalies, KMeans_mts_test, metric="AUC_PR" ) @@ -1069,9 +1079,7 @@ def test_univariate_kmeans(self): assert metric_AUC_PR == 1.0 def test_multivariate_window_kmeans(self): - # multivariate example with different windows - np.random.seed(1) # create the train set @@ -1122,30 +1130,25 @@ def test_multivariate_window_kmeans(self): kmeans_scorer_w1 = KMeansScorer(k=4, window=1) kmeans_scorer_w1.fit(ts_train) - kmeans_scorer_w2 = KMeansScorer(k=8, window=2) + kmeans_scorer_w2 = KMeansScorer(k=8, window=2, window_agg=False) kmeans_scorer_w2.fit(ts_train) - auc_roc_w1 = kmeans_scorer_w1.eval_accuracy( + auc_roc_w1 = kmeans_scorer_w1.eval_metric( ts_anomalies, ts_test, metric="AUC_ROC" ) - auc_pr_w1 = kmeans_scorer_w1.eval_accuracy( - ts_anomalies, ts_test, metric="AUC_PR" - ) + auc_pr_w1 = kmeans_scorer_w1.eval_metric(ts_anomalies, ts_test, metric="AUC_PR") - auc_roc_w2 = kmeans_scorer_w2.eval_accuracy( + auc_roc_w2 = kmeans_scorer_w2.eval_metric( ts_anomalies, ts_test, metric="AUC_ROC" ) - auc_pr_w2 = kmeans_scorer_w2.eval_accuracy( - ts_anomalies, ts_test, metric="AUC_PR" - ) + auc_pr_w2 = kmeans_scorer_w2.eval_metric(ts_anomalies, ts_test, metric="AUC_PR") - assert abs(auc_roc_w1 - 0.41551) < 1e-05 - assert abs(auc_pr_w1 - 0.064761) < 1e-05 - assert abs(auc_roc_w2 - 0.957513) < 1e-05 - assert abs(auc_pr_w2 - 0.88584) < 1e-05 + assert np.abs(0.41551 - auc_roc_w1) < delta + assert np.abs(0.064761 - auc_pr_w1) < delta + assert np.abs(0.957513 - auc_roc_w2) < delta + assert np.abs(0.88584 - auc_pr_w2) < delta def test_multivariate_componentwise_kmeans(self): - # example multivariate KMeans component wise (True and False) np.random.seed(1) @@ -1199,40 +1202,45 @@ def test_multivariate_componentwise_kmeans(self): ) # test scorer with component_wise=False - scorer_w10_cwfalse = KMeansScorer(window=10, component_wise=False, n_init=10) + scorer_w10_cwfalse = KMeansScorer( + window=10, component_wise=False, n_init=10, window_agg=False + ) scorer_w10_cwfalse.fit(mts_train_kmeans) - auc_roc_cwfalse = scorer_w10_cwfalse.eval_accuracy( + auc_roc_cwfalse = scorer_w10_cwfalse.eval_metric( anomalies_common_kmeans, mts_test_kmeans, metric="AUC_ROC" ) # test scorer with component_wise=True - scorer_w10_cwtrue = KMeansScorer(window=10, component_wise=True, n_init=10) + scorer_w10_cwtrue = KMeansScorer( + window=10, component_wise=True, n_init=10, window_agg=False + ) scorer_w10_cwtrue.fit(mts_train_kmeans) - auc_roc_cwtrue = scorer_w10_cwtrue.eval_accuracy( + auc_roc_cwtrue = scorer_w10_cwtrue.eval_metric( anomalies_kmeans_per_width, mts_test_kmeans, metric="AUC_ROC" ) - assert abs(auc_roc_cwtrue[0] - 1.0) < 1e-05 - assert abs(auc_roc_cwtrue[1] - 0.97666) < 1e-05 + assert np.abs(1.0 - auc_roc_cwtrue[0]) < delta + assert np.abs(0.97666 - auc_roc_cwtrue[1]) < delta # sklearn changed the centroid initialization in version 1.3.0 # so the results are slightly different for older versions if sklearn.__version__ < "1.3.0": - assert abs(auc_roc_cwfalse - 0.9851) < 1e-05 + assert np.abs(0.9851 - auc_roc_cwfalse) < delta else: - assert abs(auc_roc_cwfalse - 0.99007) < 1e-05 + assert np.abs(0.99007 - auc_roc_cwfalse) < delta def test_PyODScorer(self): + # Check parameters and inputs + self.component_wise_parameter(PyODScorer, model=KNN()) + self.helper_window_parameter(PyODScorer, model=KNN()) + self.diff_fn_parameter(PyODScorer, model=KNN()) + self.expects_deterministic_input(PyODScorer, model=KNN()) + assert not PyODScorer(model=KNN()).is_probabilistic - # model parameter must be pyod.models typy BaseDetector + # model parameter must be pyod.models type BaseDetector with pytest.raises(ValueError): PyODScorer(model=MovingAverageFilter(window=10)) # component_wise parameter - # component_wise must be bool - with pytest.raises(ValueError): - PyODScorer(model=KNN(), component_wise=1) - with pytest.raises(ValueError): - PyODScorer(model=KNN(), component_wise="string") # if component_wise=False must always return a univariate anomaly score scorer = PyODScorer(model=KNN(), component_wise=False) scorer.fit(self.train) @@ -1247,12 +1255,7 @@ def test_PyODScorer(self): assert scorer.score(self.mts_test).width == self.mts_test.width # window parameter - # window must be int - with pytest.raises(ValueError): - PyODScorer(model=KNN(), window=True) - with pytest.raises(ValueError): - PyODScorer(model=KNN(), window="string") - # window must be non negative + # window must be non-negative with pytest.raises(ValueError): PyODScorer(model=KNN(), window=-1) # window must be different from 0 @@ -1268,28 +1271,11 @@ def test_PyODScorer(self): scorer = PyODScorer(model=KNN()) - # always expects a deterministic input - with pytest.raises(ValueError): - scorer.score_from_prediction(self.train, self.probabilistic) - with pytest.raises(ValueError): - scorer.score_from_prediction(self.probabilistic, self.train) - with pytest.raises(ValueError): - scorer.score(self.probabilistic) - - # window must be smaller than the input of score() - scorer = PyODScorer(model=KNN(), window=101) - with pytest.raises(ValueError): - scorer.fit(self.train) # len(self.train)=100 - - scorer = PyODScorer(model=KNN(), window=80) - scorer.fit(self.train) + # model parameter must be pyod.models type BaseDetector with pytest.raises(ValueError): - scorer.score(self.test[:50]) # len(self.test)=100 - - assert not scorer.is_probabilistic + PyODScorer(model=MovingAverageFilter(window=10)) def test_univariate_PyODScorer(self): - # univariate test np.random.seed(40) @@ -1361,10 +1347,10 @@ def test_univariate_PyODScorer(self): ) pyod_scorer.fit(pyod_mts_train) - metric_AUC_ROC = pyod_scorer.eval_accuracy( + metric_AUC_ROC = pyod_scorer.eval_metric( pyod_mts_anomalies, pyod_mts_test, metric="AUC_ROC" ) - metric_AUC_PR = pyod_scorer.eval_accuracy( + metric_AUC_PR = pyod_scorer.eval_metric( pyod_mts_anomalies, pyod_mts_test, metric="AUC_PR" ) @@ -1372,9 +1358,7 @@ def test_univariate_PyODScorer(self): assert metric_AUC_PR == 1.0 def test_multivariate_window_PyODScorer(self): - # multivariate example (with different window) - np.random.seed(1) # create the train set @@ -1428,29 +1412,26 @@ def test_multivariate_window_PyODScorer(self): pyod_scorer_w1.fit(ts_train) pyod_scorer_w2 = PyODScorer( - model=KNN(n_neighbors=10), component_wise=False, window=2 + model=KNN(n_neighbors=10), + component_wise=False, + window=2, + window_agg=False, ) pyod_scorer_w2.fit(ts_train) - auc_roc_w1 = pyod_scorer_w1.eval_accuracy( - ts_anomalies, ts_test, metric="AUC_ROC" - ) - auc_pr_w1 = pyod_scorer_w1.eval_accuracy(ts_anomalies, ts_test, metric="AUC_PR") + auc_roc_w1 = pyod_scorer_w1.eval_metric(ts_anomalies, ts_test, metric="AUC_ROC") + auc_pr_w1 = pyod_scorer_w1.eval_metric(ts_anomalies, ts_test, metric="AUC_PR") - auc_roc_w2 = pyod_scorer_w2.eval_accuracy( - ts_anomalies, ts_test, metric="AUC_ROC" - ) - auc_pr_w2 = pyod_scorer_w2.eval_accuracy(ts_anomalies, ts_test, metric="AUC_PR") + auc_roc_w2 = pyod_scorer_w2.eval_metric(ts_anomalies, ts_test, metric="AUC_ROC") + auc_pr_w2 = pyod_scorer_w2.eval_metric(ts_anomalies, ts_test, metric="AUC_PR") - assert abs(auc_roc_w1 - 0.5) < 1e-05 - assert abs(auc_pr_w1 - 0.07) < 1e-05 - assert abs(auc_roc_w2 - 0.957513) < 1e-05 - assert abs(auc_pr_w2 - 0.88584) < 1e-05 + assert np.abs(0.5 - auc_roc_w1) < delta + assert np.abs(0.07 - auc_pr_w1) < delta + assert np.abs(0.957513 - auc_roc_w2) < delta + assert np.abs(0.88584 - auc_pr_w2) < delta def test_multivariate_componentwise_PyODScorer(self): - # multivariate example with component wise (True and False) - np.random.seed(1) np_mts_train_PyOD = np.abs( @@ -1504,1071 +1485,249 @@ def test_multivariate_componentwise_PyODScorer(self): # test scorer with component_wise=False scorer_w10_cwfalse = PyODScorer( - model=KNN(n_neighbors=10), component_wise=False, window=10 + model=KNN(n_neighbors=10), + component_wise=False, + window=10, + window_agg=False, ) scorer_w10_cwfalse.fit(mts_train_PyOD) - auc_roc_cwfalse = scorer_w10_cwfalse.eval_accuracy( + auc_roc_cwfalse = scorer_w10_cwfalse.eval_metric( anomalies_common_PyOD, mts_test_PyOD, metric="AUC_ROC" ) # test scorer with component_wise=True scorer_w10_cwtrue = PyODScorer( - model=KNN(n_neighbors=10), component_wise=True, window=10 + model=KNN(n_neighbors=10), + component_wise=True, + window=10, + window_agg=False, ) scorer_w10_cwtrue.fit(mts_train_PyOD) - auc_roc_cwtrue = scorer_w10_cwtrue.eval_accuracy( + auc_roc_cwtrue = scorer_w10_cwtrue.eval_metric( anomalies_pyod_per_width, mts_test_PyOD, metric="AUC_ROC" ) - assert abs(auc_roc_cwfalse - 0.990566) < 1e-05 - assert abs(auc_roc_cwtrue[0] - 1.0) < 1e-05 - assert abs(auc_roc_cwtrue[1] - 0.98311) < 1e-05 - - def test_NLLScorer(self): - - for s in list_NLLScorer: - # expects for 'actual_series' a deterministic input and for 'pred_series' a probabilistic input - with pytest.raises(ValueError): - s.score_from_prediction(actual_series=self.test, pred_series=self.test) - with pytest.raises(ValueError): - s.score_from_prediction( - actual_series=self.probabilistic, pred_series=self.train - ) - - def test_GaussianNLLScorer(self): - - # window parameter - # window must be int - with pytest.raises(ValueError): - GaussianNLLScorer(window=True) - with pytest.raises(ValueError): - GaussianNLLScorer(window="string") - # window must be non negative - with pytest.raises(ValueError): - GaussianNLLScorer(window=-1) - # window must be different from 0 - with pytest.raises(ValueError): - GaussianNLLScorer(window=0) - - scorer = GaussianNLLScorer(window=101) - # window must be smaller than the input of score_from_prediction() - with pytest.raises(ValueError): - scorer.score_from_prediction( - actual_series=self.test, pred_series=self.probabilistic - ) # len(self.test)=100 - - np.random.seed(4) - scorer = GaussianNLLScorer() - - # test 1 univariate (len=1 and window=1) - gaussian_samples_1 = np.random.normal(loc=0, scale=2, size=10000) - distribution_series = TimeSeries.from_values( - gaussian_samples_1.reshape(1, 1, -1) - ) - actual_series = TimeSeries.from_values(np.array([3])) - value_test1 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - - # check if value_test1 is the - log likelihood - assert abs(value_test1 + np.log(norm.pdf(3, loc=0, scale=2))) < 1e-01 - - # test 2 univariate (len=1 and window=1) - gaussian_samples_2 = np.random.normal(loc=0, scale=2, size=10000) - distribution_series = TimeSeries.from_values( - gaussian_samples_2.reshape(1, 1, -1) - ) - actual_series = TimeSeries.from_values(np.array([-2])) - value_test2 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - - # check if value_test2 is the - log likelihood - assert abs(value_test2 + np.log(norm.pdf(-2, loc=0, scale=2))) < 1e-01 - - # test window univariate (len=2 and window=2) - distribution_series = TimeSeries.from_values( - np.array( - [gaussian_samples_1.reshape(1, -1), gaussian_samples_2.reshape(1, -1)] - ) - ) - actual_series = TimeSeries.from_values(np.array([3, -2])) - value_window = scorer.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(value_window) == 2 - # check width - assert value_window.width == 1 - - # check equal value_test1 and value_test2 - assert value_window.all_values().flatten()[0] == value_test1 - assert value_window.all_values().flatten()[1] == value_test2 - - scorer = GaussianNLLScorer(window=2) - # check avg of two values - assert ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - == (value_test1 + value_test2) / 2 - ) - - # test window multivariate (n_samples=2, len=1, window=1) - scorer = GaussianNLLScorer(window=1) - distribution_series = TimeSeries.from_values( - np.array([gaussian_samples_1, gaussian_samples_2]).reshape(1, 2, -1) - ) - actual_series = TimeSeries.from_values(np.array([3, -2]).reshape(1, -1)) - value_multivariate = scorer.score_from_prediction( - actual_series, distribution_series - ) - - # check length - assert len(value_multivariate) == 1 - # check width - assert value_multivariate.width == 2 - - # check equal value_test1 and value_test2 - assert value_multivariate.all_values().flatten()[0] == value_test1 - assert value_multivariate.all_values().flatten()[1] == value_test2 + assert np.abs(0.990566 - auc_roc_cwfalse) < delta + assert np.abs(1.0 - auc_roc_cwtrue[0]) < delta + assert np.abs(0.98311 - auc_roc_cwtrue[1]) < delta - # test window multivariate (n_samples=2, len=2, window=1 and 2) - scorer_w1 = GaussianNLLScorer(window=1) - scorer_w2 = GaussianNLLScorer(window=2) + @staticmethod + def helper_evaluate_nll_scorer( + NLLscorer_to_test, + distribution_arrays, + deterministic_values, + real_NLL_values, + ): + NLLscorer_w1 = NLLscorer_to_test(window=1) + NLLscorer_w2 = NLLscorer_to_test(window=2) - gaussian_samples_3 = np.random.normal(loc=0, scale=2, size=10000) - gaussian_samples_4 = np.random.normal(loc=0, scale=2, size=10000) + assert NLLscorer_w1.is_probabilistic + # create timeseries distribution_series = TimeSeries.from_values( - np.array( - [ - gaussian_samples_1, - gaussian_samples_2, - gaussian_samples_3, - gaussian_samples_4, - ] - ).reshape(2, 2, -1) - ) - - actual_series = TimeSeries.from_values( - np.array([1.5, 2.1, 0.1, 0.001]).reshape(2, -1) - ) - - score_w1 = scorer_w1.score_from_prediction(actual_series, distribution_series) - score_w2 = scorer_w2.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(score_w1) == 2 - assert len(score_w2) == 1 - # check width - assert score_w1.width == 2 - assert score_w2.width == 2 - - # check values for window=1 - assert ( - abs( - score_w1.all_values().flatten()[0] - + np.log(norm.pdf(1.5, loc=0, scale=2)) - ) - < 1e-01 - ) - assert ( - abs( - score_w1.all_values().flatten()[1] - + np.log(norm.pdf(2.1, loc=0, scale=2)) - ) - < 1e-01 - ) - assert ( - abs( - score_w1.all_values().flatten()[2] - + np.log(norm.pdf(0.1, loc=0, scale=2)) - ) - < 1e-01 + distribution_arrays.reshape(2, 2, -1) ) - assert ( - abs( - score_w1.all_values().flatten()[3] - + np.log(norm.pdf(0.001, loc=0, scale=2)) - ) - < 1e-01 - ) - - # check values for window=2 (must be equal to the mean of the past 2 values) - assert ( - abs( - score_w2.all_values().flatten()[0] - - ( - -np.log(norm.pdf(1.5, loc=0, scale=2)) - - np.log(norm.pdf(0.1, loc=0, scale=2)) - ) - / 2 - ) - < 1e-01 - ) - assert ( - abs( - score_w2.all_values().flatten()[1] - - ( - -np.log(norm.pdf(2.1, loc=0, scale=2)) - - np.log(norm.pdf(0.001, loc=0, scale=2)) - ) - / 2 - ) - < 1e-01 + series = TimeSeries.from_values( + np.array(deterministic_values).reshape(2, 2, -1) ) - assert scorer.is_probabilistic - - def test_LaplaceNLLScorer(self): - - # window parameter - # window must be int - with pytest.raises(ValueError): - LaplaceNLLScorer(window=True) - with pytest.raises(ValueError): - LaplaceNLLScorer(window="string") - # window must be non negative - with pytest.raises(ValueError): - LaplaceNLLScorer(window=-1) - # window must be different from 0 - with pytest.raises(ValueError): - LaplaceNLLScorer(window=0) - - scorer = LaplaceNLLScorer(window=101) - # window must be smaller than the input of score_from_prediction() - with pytest.raises(ValueError): - scorer.score_from_prediction( - actual_series=self.test, pred_series=self.probabilistic - ) # len(self.test)=100 - - np.random.seed(4) - - scorer = LaplaceNLLScorer() - - # test 1 univariate (len=1 and window=1) - laplace_samples_1 = np.random.laplace(loc=0, scale=2, size=1000) - distribution_series = TimeSeries.from_values( - laplace_samples_1.reshape(1, 1, -1) - ) - actual_series = TimeSeries.from_values(np.array([3])) - value_test1 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] + # compute the NLL values witn score_from_prediction for scorer with window=1 and 2 + # t -> timestamp, c -> component and w -> window used in scorer + value_t1_c1_w1 = NLLscorer_w1.score_from_prediction( + series[0]["0"], distribution_series[0]["0"] ) - - # check if value_test1 is the - log likelihood - assert abs(value_test1 + np.log(laplace.pdf(3, loc=0, scale=2))) < 1e-01 - - # test 2 univariate (len=1 and window=1) - laplace_samples_2 = np.random.laplace(loc=0, scale=2, size=1000) - distribution_series = TimeSeries.from_values( - laplace_samples_2.reshape(1, 1, -1) + value_t2_c1_w1 = NLLscorer_w1.score_from_prediction( + series[1]["0"], distribution_series[1]["0"] ) - actual_series = TimeSeries.from_values(np.array([-2])) - value_test2 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] + value_t1_2_c1_w1 = NLLscorer_w1.score_from_prediction( + series["0"], distribution_series["0"] ) - - # check if value_test2 is the - log likelihood - assert abs(value_test2 + np.log(laplace.pdf(-2, loc=0, scale=2))) < 1e-01 - - # test window univariate (len=2 and window=2) - distribution_series = TimeSeries.from_values( - np.array( - [laplace_samples_1.reshape(1, -1), laplace_samples_2.reshape(1, -1)] - ) + value_t1_2_c1_w2 = NLLscorer_w2.score_from_prediction( + series["0"], distribution_series["0"] ) - actual_series = TimeSeries.from_values(np.array([3, -2])) - value_window = scorer.score_from_prediction(actual_series, distribution_series) # check length - assert len(value_window) == 2 + assert len(value_t1_2_c1_w1) == 2 # check width - assert value_window.width == 1 + assert value_t1_2_c1_w1.width == 1 # check equal value_test1 and value_test2 - assert round(abs(value_window.all_values().flatten()[0] - value_test1), 7) == 0 - assert round(abs(value_window.all_values().flatten()[1] - value_test2), 7) == 0 - - scorer = LaplaceNLLScorer(window=2) - # check avg of two values - assert ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - == (value_test1 + value_test2) / 2 - ) + assert value_t1_2_c1_w1[0] == value_t1_c1_w1 + assert value_t1_2_c1_w1[1] == value_t2_c1_w1 - # test window multivariate (n_samples=2, len=1, window=1) - scorer = LaplaceNLLScorer(window=1) - distribution_series = TimeSeries.from_values( - np.array([laplace_samples_1, laplace_samples_2]).reshape(1, 2, -1) - ) - actual_series = TimeSeries.from_values(np.array([3, -2]).reshape(1, -1)) - value_multivariate = scorer.score_from_prediction( - actual_series, distribution_series + # check if value_t1_2_c1_w1 is the - log likelihood + np.testing.assert_array_almost_equal( + # This is approximate because our NLL scorer is fit from samples + value_t1_2_c1_w1.all_values().reshape(-1), + real_NLL_values[::2], + decimal=1, ) - # check length - assert len(value_multivariate) == 1 - # check width - assert value_multivariate.width == 2 - - # check equal value_test1 and value_test2 - assert ( - round(abs(value_multivariate.all_values().flatten()[0] - value_test1), 7) - == 0 - ) + # check if result is equal to avg of two values when window is equal to 2 assert ( - round(abs(value_multivariate.all_values().flatten()[1] - value_test2), 7) - == 0 + value_t1_2_c1_w2.all_values().reshape(-1)[0] + == value_t1_2_c1_w1.mean(axis=0).all_values().reshape(-1)[0] ) - # test window multivariate (n_samples=2, len=2, window=1 and 2) - scorer_w1 = LaplaceNLLScorer(window=1) - scorer_w2 = LaplaceNLLScorer(window=2) - - laplace_samples_3 = np.random.laplace(loc=0, scale=2, size=1000) - laplace_samples_4 = np.random.laplace(loc=0, scale=2, size=1000) - - distribution_series = TimeSeries.from_values( - np.array( - [ - laplace_samples_1, - laplace_samples_2, - laplace_samples_3, - laplace_samples_4, - ] - ).reshape(2, 2, -1) + # multivariate case + # compute the NLL values witn score_from_prediction for scorer with window=1 and window=2 + value_t1_2_c1_2_w1 = NLLscorer_w1.score_from_prediction( + series, distribution_series ) - - actual_series = TimeSeries.from_values( - np.array([1.5, 2, 0.1, 0.001]).reshape(2, -1) + value_t1_2_c1_2_w2 = NLLscorer_w2.score_from_prediction( + series, distribution_series ) - score_w1 = scorer_w1.score_from_prediction(actual_series, distribution_series) - score_w2 = scorer_w2.score_from_prediction(actual_series, distribution_series) - # check length - assert len(score_w1) == 2 - assert len(score_w2) == 1 + assert len(value_t1_2_c1_2_w1) == 2 + assert len(value_t1_2_c1_2_w2) == 1 # check width - assert score_w1.width == 2 - assert score_w2.width == 2 - - # check values for window=1 - assert ( - abs( - score_w1.all_values().flatten()[0] - + np.log(laplace.pdf(1.5, loc=0, scale=2)) - ) - < 1e-01 - ) - assert ( - abs( - score_w1.all_values().flatten()[1] - + np.log(laplace.pdf(2, loc=0, scale=2)) - ) - < 0.5 - ) - assert ( - abs( - score_w1.all_values().flatten()[2] - + np.log(laplace.pdf(0.1, loc=0, scale=2)) - ) - < 1e-01 - ) - assert ( - abs( - score_w1.all_values().flatten()[3] - + np.log(laplace.pdf(0.001, loc=0, scale=2)) - ) - < 1e-01 - ) + assert value_t1_2_c1_2_w1.width == 2 + assert value_t1_2_c1_2_w2.width == 2 - # check values for window=2 (must be equal to the mean of the past 2 values) - assert ( - abs( - score_w2.all_values().flatten()[0] - - ( - -np.log(laplace.pdf(1.5, loc=0, scale=2)) - - np.log(laplace.pdf(0.1, loc=0, scale=2)) - ) - / 2 - ) - < 1e-01 - ) - assert ( - abs( - score_w2.all_values().flatten()[1] - - ( - -np.log(laplace.pdf(2, loc=0, scale=2)) - - np.log(laplace.pdf(0.001, loc=0, scale=2)) - ) - / 2 - ) - < 0.5 + # check if value_t1_2_c1_2_w1 is the - log likelihood + np.testing.assert_array_almost_equal( + # This is approximate because our NLL scorer is fit from samples + value_t1_2_c1_2_w1.all_values().reshape(-1), + real_NLL_values, + decimal=1, ) - assert scorer.is_probabilistic - - def test_ExponentialNLLScorer(self): - - # window parameter - # window must be int - with pytest.raises(ValueError): - ExponentialNLLScorer(window=True) - with pytest.raises(ValueError): - ExponentialNLLScorer(window="string") - # window must be non negative - with pytest.raises(ValueError): - ExponentialNLLScorer(window=-1) - # window must be different from 0 - with pytest.raises(ValueError): - ExponentialNLLScorer(window=0) - - scorer = ExponentialNLLScorer(window=101) - # window must be smaller than the input of score_from_prediction() - with pytest.raises(ValueError): - scorer.score_from_prediction( - actual_series=self.test, pred_series=self.probabilistic - ) # len(self.test)=100 + # check if result is equal to avg of two values when window is equal to 2 + assert value_t1_2_c1_w2.all_values().reshape(-1) == value_t1_2_c1_w1.mean( + axis=0 + ).all_values().reshape(-1) + @pytest.mark.parametrize("config", list_NLLScorer) + def test_nll_scorer(self, config): np.random.seed(4) - scorer = ExponentialNLLScorer() - - # test 1 univariate (len=1 and window=1) - exponential_samples_1 = np.random.exponential(scale=2.0, size=1000) - distribution_series = TimeSeries.from_values( - exponential_samples_1.reshape(1, 1, -1) - ) - actual_series = TimeSeries.from_values(np.array([3])) - value_test1 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - # check if value_test1 is the - log likelihood - assert abs(value_test1 + np.log(expon.pdf(3, scale=2.0))) < 1e-01 - - # test 2 univariate (len=1 and window=1) - exponential_samples_2 = np.random.exponential(scale=2.0, size=1000) - distribution_series = TimeSeries.from_values( - exponential_samples_2.reshape(1, 1, -1) - ) - actual_series = TimeSeries.from_values(np.array([10])) - value_test2 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - - # check if value_test2 is the - log likelihood - assert abs(value_test2 + np.log(expon.pdf(10, scale=2))) < 1e-01 - - # test window univariate (len=2 and window=2) - distribution_series = TimeSeries.from_values( - np.array( - [ - exponential_samples_1.reshape(1, -1), - exponential_samples_2.reshape(1, -1), - ] - ) - ) - actual_series = TimeSeries.from_values(np.array([3, 10])) - value_window = scorer.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(value_window) == 2 - # check width - assert value_window.width == 1 - - # check equal value_test1 and value_test2 - assert value_window.all_values().flatten()[0] == value_test1 - assert value_window.all_values().flatten()[1] == value_test2 - - scorer = ExponentialNLLScorer(window=2) - # check avg of two values - assert ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - == (value_test1 + value_test2) / 2 - ) - - # test window multivariate (n_samples=2, len=1, window=1) - scorer = ExponentialNLLScorer(window=1) - distribution_series = TimeSeries.from_values( - np.array([exponential_samples_1, exponential_samples_2]).reshape(1, 2, -1) - ) - actual_series = TimeSeries.from_values(np.array([3, 10]).reshape(1, -1)) - value_multivariate = scorer.score_from_prediction( - actual_series, distribution_series - ) - - # check length - assert len(value_multivariate) == 1 - # check width - assert value_multivariate.width == 2 - - # check equal value_test1 and value_test2 - assert value_multivariate.all_values().flatten()[0] == value_test1 - assert value_multivariate.all_values().flatten()[1] == value_test2 - - # test window multivariate (n_samples=2, len=2, window=1 and 2) - scorer_w1 = ExponentialNLLScorer(window=1) - scorer_w2 = ExponentialNLLScorer(window=2) - - exponential_samples_3 = np.random.exponential(scale=2, size=1000) - exponential_samples_4 = np.random.exponential(scale=2, size=1000) - - distribution_series = TimeSeries.from_values( - np.array( - [ - exponential_samples_1, - exponential_samples_2, - exponential_samples_3, - exponential_samples_4, - ] - ).reshape(2, 2, -1) - ) - - actual_series = TimeSeries.from_values( - np.array([1.5, 2, 0.1, 0.001]).reshape(2, -1) - ) - - score_w1 = scorer_w1.score_from_prediction(actual_series, distribution_series) - score_w2 = scorer_w2.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(score_w1) == 2 - assert len(score_w2) == 1 - # check width - assert score_w1.width == 2 - assert score_w2.width == 2 - - # check values for window=1 - assert ( - abs(score_w1.all_values().flatten()[0] + np.log(expon.pdf(1.5, scale=2))) - < 1e-01 - ) - assert ( - abs(score_w1.all_values().flatten()[1] + np.log(expon.pdf(2, scale=2))) - < 1e-01 - ) - assert ( - abs(score_w1.all_values().flatten()[2] + np.log(expon.pdf(0.1, scale=2))) - < 1e-01 - ) - assert ( - abs(score_w1.all_values().flatten()[3] + np.log(expon.pdf(0.001, scale=2))) - < 1e-01 - ) - - # check values for window=2 (must be equal to the mean of the past 2 values) - assert ( - abs( - score_w2.all_values().flatten()[0] - - (-np.log(expon.pdf(1.5, scale=2)) - np.log(expon.pdf(0.1, scale=2))) - / 2 - ) - < 1e-01 - ) - assert ( - abs( - score_w2.all_values().flatten()[1] - - (-np.log(expon.pdf(2, scale=2)) - np.log(expon.pdf(0.001, scale=2))) - / 2 - ) - < 1e-01 - ) - - assert scorer.is_probabilistic - - def test_GammaNLLScorer(self): - - # window parameter - # window must be int - with pytest.raises(ValueError): - GammaNLLScorer(window=True) - with pytest.raises(ValueError): - GammaNLLScorer(window="string") - # window must be non negative - with pytest.raises(ValueError): - GammaNLLScorer(window=-1) - # window must be different from 0 - with pytest.raises(ValueError): - GammaNLLScorer(window=0) - - scorer = GammaNLLScorer(window=101) - # window must be smaller than the input of score_from_prediction() - with pytest.raises(ValueError): - scorer.score_from_prediction( - actual_series=self.test, pred_series=self.probabilistic - ) # len(self.test)=100 - - np.random.seed(4) - scorer = GammaNLLScorer() - - # test 1 univariate (len=1 and window=1) - gamma_samples_1 = np.random.gamma(shape=2, scale=2, size=10000) - distribution_series = TimeSeries.from_values(gamma_samples_1.reshape(1, 1, -1)) - actual_series = TimeSeries.from_values(np.array([3])) - value_test1 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - - # check if value_test1 is the - log likelihood - assert abs(value_test1 + np.log(gamma.pdf(3, 2, scale=2))) < 1e-01 - - # test 2 univariate (len=1 and window=1) - gamma_samples_2 = np.random.gamma(2, scale=2, size=10000) - distribution_series = TimeSeries.from_values(gamma_samples_2.reshape(1, 1, -1)) - actual_series = TimeSeries.from_values(np.array([10])) - value_test2 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - - # check if value_test2 is the - log likelihood - assert abs(value_test2 + np.log(gamma.pdf(10, 2, scale=2))) < 1e-01 - - # test window univariate (len=2 and window=2) - distribution_series = TimeSeries.from_values( - np.array([gamma_samples_1.reshape(1, -1), gamma_samples_2.reshape(1, -1)]) - ) - actual_series = TimeSeries.from_values(np.array([3, 10])) - value_window = scorer.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(value_window) == 2 - # check width - assert value_window.width == 1 - - # check equal value_test1 and value_test2 - assert value_window.all_values().flatten()[0] == value_test1 - assert value_window.all_values().flatten()[1] == value_test2 - - scorer = GammaNLLScorer(window=2) - # check avg of two values - assert ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - == (value_test1 + value_test2) / 2 - ) - - # test window multivariate (n_samples=2, len=1, window=1) - scorer = GammaNLLScorer(window=1) - distribution_series = TimeSeries.from_values( - np.array([gamma_samples_1, gamma_samples_2]).reshape(1, 2, -1) - ) - actual_series = TimeSeries.from_values(np.array([3, 10]).reshape(1, -1)) - value_multivariate = scorer.score_from_prediction( - actual_series, distribution_series - ) - - # check length - assert len(value_multivariate) == 1 - # check width - assert value_multivariate.width == 2 - - # check equal value_test1 and value_test2 - assert value_multivariate.all_values().flatten()[0] == value_test1 - assert value_multivariate.all_values().flatten()[1] == value_test2 - - # test window multivariate (n_samples=2, len=2, window=1 and 2) - scorer_w1 = GammaNLLScorer(window=1) - scorer_w2 = GammaNLLScorer(window=2) - - gamma_samples_3 = np.random.gamma(2, scale=2, size=10000) - gamma_samples_4 = np.random.gamma(2, scale=2, size=10000) - - distribution_series = TimeSeries.from_values( - np.array( - [gamma_samples_1, gamma_samples_2, gamma_samples_3, gamma_samples_4] - ).reshape(2, 2, -1) - ) - - actual_series = TimeSeries.from_values( - np.array([1.5, 2, 0.5, 0.9]).reshape(2, -1) - ) - - score_w1 = scorer_w1.score_from_prediction(actual_series, distribution_series) - score_w2 = scorer_w2.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(score_w1) == 2 - assert len(score_w2) == 1 - # check width - assert score_w1.width == 2 - assert score_w2.width == 2 - - # check values for window=1 - assert ( - abs(score_w1.all_values().flatten()[0] + np.log(gamma.pdf(1.5, 2, scale=2))) - < 1e-01 - ) - assert ( - abs(score_w1.all_values().flatten()[1] + np.log(gamma.pdf(2, 2, scale=2))) - < 1e-01 - ) - assert ( - abs(score_w1.all_values().flatten()[2] + np.log(gamma.pdf(0.5, 2, scale=2))) - < 1e-01 - ) - assert ( - abs(score_w1.all_values().flatten()[3] + np.log(gamma.pdf(0.9, 2, scale=2))) - < 1e-01 - ) - - # check values for window=2 (must be equal to the mean of the past 2 values) - assert ( - abs( - score_w2.all_values().flatten()[0] - - ( - -np.log(gamma.pdf(1.5, 2, scale=2)) - - np.log(gamma.pdf(0.5, 2, scale=2)) - ) - / 2 - ) - < 1e-01 - ) - assert ( - abs( - score_w2.all_values().flatten()[1] - - ( - -np.log(gamma.pdf(2, 2, scale=2)) - - np.log(gamma.pdf(0.9, 2, scale=2)) - ) - / 2 - ) - < 1e-01 - ) - - assert scorer.is_probabilistic - - def test_CauchyNLLScorer(self): - - # window parameter - # window must be int - with pytest.raises(ValueError): - CauchyNLLScorer(window=True) - with pytest.raises(ValueError): - CauchyNLLScorer(window="string") - # window must be non negative - with pytest.raises(ValueError): - CauchyNLLScorer(window=-1) - # window must be different from 0 - with pytest.raises(ValueError): - CauchyNLLScorer(window=0) - - scorer = CauchyNLLScorer(window=101) - # window must be smaller than the input of score_from_prediction() - with pytest.raises(ValueError): - scorer.score_from_prediction( - actual_series=self.test, pred_series=self.probabilistic - ) # len(self.test)=100 - - np.random.seed(4) - scorer = CauchyNLLScorer() - - # test 1 univariate (len=1 and window=1) - cauchy_samples_1 = np.random.standard_cauchy(size=10000) - distribution_series = TimeSeries.from_values(cauchy_samples_1.reshape(1, 1, -1)) - actual_series = TimeSeries.from_values(np.array([3])) - value_test1 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - - # check if value_test1 is the - log likelihood - assert abs(value_test1 + np.log(cauchy.pdf(3))) < 1e-01 - - # test 2 univariate (len=1 and window=1) - cauchy_samples_2 = np.random.standard_cauchy(size=10000) - distribution_series = TimeSeries.from_values(cauchy_samples_2.reshape(1, 1, -1)) - actual_series = TimeSeries.from_values(np.array([-2])) - value_test2 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - - # check if value_test2 is the - log likelihood - assert abs(value_test2 + np.log(cauchy.pdf(-2))) < 1e-01 - - # test window univariate (len=2 and window=2) - distribution_series = TimeSeries.from_values( - np.array([cauchy_samples_1.reshape(1, -1), cauchy_samples_2.reshape(1, -1)]) - ) - actual_series = TimeSeries.from_values(np.array([3, -2])) - value_window = scorer.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(value_window) == 2 - # check width - assert value_window.width == 1 - - # check equal value_test1 and value_test2 - assert value_window.all_values().flatten()[0] == value_test1 - assert value_window.all_values().flatten()[1] == value_test2 - - scorer = CauchyNLLScorer(window=2) - # check avg of two values - assert ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - == (value_test1 + value_test2) / 2 - ) - - # test window multivariate (n_samples=2, len=1, window=1) - scorer = CauchyNLLScorer(window=1) - distribution_series = TimeSeries.from_values( - np.array([cauchy_samples_1, cauchy_samples_2]).reshape(1, 2, -1) - ) - actual_series = TimeSeries.from_values(np.array([3, -2]).reshape(1, -1)) - value_multivariate = scorer.score_from_prediction( - actual_series, distribution_series - ) - - # check length - assert len(value_multivariate) == 1 - # check width - assert value_multivariate.width == 2 - - # check equal value_test1 and value_test2 - assert value_multivariate.all_values().flatten()[0] == value_test1 - assert value_multivariate.all_values().flatten()[1] == value_test2 - - # test window multivariate (n_samples=2, len=2, window=1 and 2) - scorer_w1 = CauchyNLLScorer(window=1) - scorer_w2 = CauchyNLLScorer(window=2) - - cauchy_samples_3 = np.random.standard_cauchy(size=10000) - cauchy_samples_4 = np.random.standard_cauchy(size=10000) - - distribution_series = TimeSeries.from_values( - np.array( - [cauchy_samples_1, cauchy_samples_2, cauchy_samples_3, cauchy_samples_4] - ).reshape(2, 2, -1) - ) - - actual_series = TimeSeries.from_values( - np.array([1.5, 2, 0.5, 0.9]).reshape(2, -1) - ) - - score_w1 = scorer_w1.score_from_prediction(actual_series, distribution_series) - score_w2 = scorer_w2.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(score_w1) == 2 - assert len(score_w2) == 1 - # check width - assert score_w1.width == 2 - assert score_w2.width == 2 - - # check values for window=1 - assert abs(score_w1.all_values().flatten()[0] + np.log(cauchy.pdf(1.5))) < 1e-01 - assert abs(score_w1.all_values().flatten()[1] + np.log(cauchy.pdf(2))) < 1e-01 - assert abs(score_w1.all_values().flatten()[2] + np.log(cauchy.pdf(0.5))) < 1e-01 - assert abs(score_w1.all_values().flatten()[3] + np.log(cauchy.pdf(0.9))) < 1e-01 - - # check values for window=2 (must be equal to the mean of the past 2 values) - assert ( - abs( - score_w2.all_values().flatten()[0] - - (-np.log(cauchy.pdf(1.5)) - np.log(cauchy.pdf(0.5))) / 2 - ) - < 1e-01 - ) - assert ( - abs( - score_w2.all_values().flatten()[1] - - (-np.log(cauchy.pdf(2)) - np.log(cauchy.pdf(0.9))) / 2 - ) - < 1e-01 - ) - - assert scorer.is_probabilistic - - def test_PoissonNLLScorer(self): - - # window parameter - # window must be int - with pytest.raises(ValueError): - PoissonNLLScorer(window=True) - with pytest.raises(ValueError): - PoissonNLLScorer(window="string") - # window must be non negative - with pytest.raises(ValueError): - PoissonNLLScorer(window=-1) - # window must be different from 0 - with pytest.raises(ValueError): - PoissonNLLScorer(window=0) - - scorer = PoissonNLLScorer(window=101) - # window must be smaller than the input of score_from_prediction() - with pytest.raises(ValueError): - scorer.score_from_prediction( - actual_series=self.test, pred_series=self.probabilistic - ) # len(self.test)=100 - - np.random.seed(4) - scorer = PoissonNLLScorer() - - # test 1 univariate (len=1 and window=1) - poisson_samples_1 = np.random.poisson(size=10000, lam=1) - distribution_series = TimeSeries.from_values( - poisson_samples_1.reshape(1, 1, -1) - ) - actual_series = TimeSeries.from_values(np.array([3])) - value_test1 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - - # check if value_test1 is the - log likelihood - assert abs(value_test1 + np.log(poisson.pmf(3, mu=1))) < 1e-02 - - # test 2 univariate (len=1 and window=1) - poisson_samples_2 = np.random.poisson(size=10000, lam=1) - distribution_series = TimeSeries.from_values( - poisson_samples_2.reshape(1, 1, -1) - ) - actual_series = TimeSeries.from_values(np.array([10])) - value_test2 = ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - ) - - # check if value_test2 is the - log likelihood - assert abs(value_test2 + np.log(poisson.pmf(10, mu=1))) < 1e-01 - - # test window univariate (len=2 and window=2) - distribution_series = TimeSeries.from_values( - np.array( - [poisson_samples_1.reshape(1, -1), poisson_samples_2.reshape(1, -1)] - ) - ) - actual_series = TimeSeries.from_values(np.array([3, 10])) - value_window = scorer.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(value_window) == 2 - # check width - assert value_window.width == 1 - - # check equal value_test1 and value_test2 - assert value_window.all_values().flatten()[0] == value_test1 - assert value_window.all_values().flatten()[1] == value_test2 - - scorer = PoissonNLLScorer(window=2) - # check avg of two values - assert ( - scorer.score_from_prediction(actual_series, distribution_series) - .all_values() - .flatten()[0] - == (value_test1 + value_test2) / 2 - ) - - # test window multivariate (n_samples=2, len=1, window=1) - scorer = PoissonNLLScorer(window=1) - distribution_series = TimeSeries.from_values( - np.array([poisson_samples_1, poisson_samples_2]).reshape(1, 2, -1) - ) - actual_series = TimeSeries.from_values(np.array([3, 10]).reshape(1, -1)) - value_multivariate = scorer.score_from_prediction( - actual_series, distribution_series - ) - - # check length - assert len(value_multivariate) == 1 - # check width - assert value_multivariate.width == 2 - - # check equal value_test1 and value_test2 - assert value_multivariate.all_values().flatten()[0] == value_test1 - assert value_multivariate.all_values().flatten()[1] == value_test2 - - # test window multivariate (n_samples=2, len=2, window=1 and 2) - scorer_w1 = PoissonNLLScorer(window=1) - scorer_w2 = PoissonNLLScorer(window=2) - - poisson_samples_3 = np.random.poisson(size=10000, lam=1) - poisson_samples_4 = np.random.poisson(size=10000, lam=1) - - distribution_series = TimeSeries.from_values( - np.array( - [ - poisson_samples_1, - poisson_samples_2, - poisson_samples_3, - poisson_samples_4, - ] - ).reshape(2, 2, -1) - ) - - actual_series = TimeSeries.from_values(np.array([1, 2, 3, 4]).reshape(2, -1)) - - score_w1 = scorer_w1.score_from_prediction(actual_series, distribution_series) - score_w2 = scorer_w2.score_from_prediction(actual_series, distribution_series) - - # check length - assert len(score_w1) == 2 - assert len(score_w2) == 1 - # check width - assert score_w1.width == 2 - assert score_w2.width == 2 - - # check values for window=1 - assert ( - abs(score_w1.all_values().flatten()[0] + np.log(poisson.pmf(1, mu=1))) - < 1e-01 - ) - assert ( - abs(score_w1.all_values().flatten()[1] + np.log(poisson.pmf(2, mu=1))) - < 1e-01 - ) - assert ( - abs(score_w1.all_values().flatten()[2] + np.log(poisson.pmf(3, mu=1))) - < 1e-01 - ) - assert ( - abs(score_w1.all_values().flatten()[3] + np.log(poisson.pmf(4, mu=1))) - < 1e-01 - ) - - # check values for window=2 (must be equal to the mean of the past 2 values) - assert ( - abs( - score_w2.all_values().flatten()[0] - - (-np.log(poisson.pmf(1, mu=1)) - np.log(poisson.pmf(3, mu=1))) / 2 - ) - < 1e-01 - ) - assert ( - abs( - score_w2.all_values().flatten()[1] - - (-np.log(poisson.pmf(2, mu=1)) - np.log(poisson.pmf(4, mu=1))) / 2 - ) - < 1e-01 - ) - - assert scorer.is_probabilistic + ( + scorer_cls, + values, + distribution, + dist_kwargs, + prob_dens_func, + pdf_kwargs, + ) = config + # some pdf don't have the same parameters as the corresponding distribution + if pdf_kwargs is None: + pdf_kwargs = dist_kwargs + self.helper_window_parameter(scorer_cls) + + distribution = np.array( + [distribution(size=10000, **dist_kwargs) for _ in range(len(values))] + ) + real_values = [-np.log(prob_dens_func(value, **pdf_kwargs)) for value in values] + + self.helper_evaluate_nll_scorer(scorer_cls, distribution, values, real_values) + + @pytest.mark.parametrize( + "model,series", + product( + [(KMeansScorer, {"random_state": 42}), (PyODScorer, {"model": KNN()})], + [(train, test), (mts_train, mts_test)], + ), + ) + def test_window_equal_one(self, model, series): + """Check that model, created with window=1 generate the same score regardless of window_agg value.""" + ts_train, ts_test = series + model_cls, model_kwargs = model + + scorer_T = model_cls(window=1, window_agg=True, **model_kwargs) + scorer_F = model_cls(window=1, window_agg=False, **model_kwargs) + + scorer_T.fit(ts_train) + scorer_F.fit(ts_train) + + auc_roc_T = scorer_T.eval_metric(anomalies=self.anomalies, series=ts_test) + auc_roc_F = scorer_F.eval_metric(anomalies=self.anomalies, series=ts_test) + + assert auc_roc_T == auc_roc_F + + @pytest.mark.parametrize( + "window,model,series", + product( + [2, 10, 39], + [ + (KMeansScorer, {"random_state": 42}), + (WassersteinScorer, {}), + (PyODScorer, {"model": KNN()}), + ], + [(train, test), (mts_train, mts_test)], + ), + ) + def test_window_greater_than_one(self, window, model, series): + """Check scorer with same window greater than 1 and different values of window_agg produce correct scores""" + ts_train, ts_test = series + model_cls, model_kwargs = model + scorer_T = model_cls(window=window, window_agg=True, **model_kwargs) + scorer_F = model_cls(window=window, window_agg=False, **model_kwargs) + + scorer_T.fit(ts_train) + scorer_F.fit(ts_train) + + score_T = scorer_T.score(ts_test) + score_F = scorer_F.score(ts_test) + + # same length + assert len(score_T) == len(score_F) + + # same width + assert score_T.width == score_F.width + + # same first time index + assert score_T.time_index[0] == score_F.time_index[0] + + # same last time index + assert score_T.time_index[-1] == score_F.time_index[-1] + + # same last value (by definition) + assert score_T[-1] == score_F[-1] + + def test_fun_window_agg(self): + """Verify that the anomaly score aggregation works as intented""" + # window = 2, alternating anomaly scores + window = 2 + scorer = KMeansScorer(window=window) + anomaly_scores = TimeSeries.from_values(np.resize([1, -1], 10)) + aggreg_scores = scorer._fun_window_agg([anomaly_scores], window=window)[0] + # in the last window, the score is not zeroed + np.testing.assert_array_almost_equal( + aggreg_scores.values(), np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, -1]]).T + ) + assert aggreg_scores.time_index.equals(anomaly_scores.time_index) + + # window = 3, increment of 2 anomaly scores + window = 3 + scorer = KMeansScorer(window=window) + anomaly_scores = linear_timeseries(length=10, start_value=2, end_value=20) + aggreg_scores = scorer._fun_window_agg([anomaly_scores], window=window)[0] + # on the last "window" values, difference of only 1 between consecutive aggregated scores + np.testing.assert_array_almost_equal( + aggreg_scores.values(), np.array([[4, 6, 8, 10, 12, 14, 16, 18, 19, 20]]).T + ) + assert aggreg_scores.time_index.equals(anomaly_scores.time_index) + + # window = 6, increment of 2 anomaly scores + window = 6 + scorer = KMeansScorer(window=window) + anomaly_scores = linear_timeseries(length=10, start_value=2, end_value=20) + aggreg_scores = scorer._fun_window_agg([anomaly_scores], window=window)[0] + # on the last "window" values, difference of only 1 between consecutive aggregated scores + np.testing.assert_array_almost_equal( + aggreg_scores.values(), np.array([[7, 9, 11, 13, 15, 16, 17, 18, 19, 20]]).T + ) + assert aggreg_scores.time_index.equals(anomaly_scores.time_index) + + # window = 7, increment of 2 anomaly scores + window = 7 + scorer = KMeansScorer(window=window) + anomaly_scores = linear_timeseries(length=10, start_value=2, end_value=20) + aggreg_scores = scorer._fun_window_agg([anomaly_scores], window=window)[0] + # on the last "window" values, difference of only 1 between consecutive aggregated scores + np.testing.assert_array_almost_equal( + aggreg_scores.values(), + np.array([[8, 10, 12, 14, 15, 16, 17, 18, 19, 20]]).T, + ) + assert aggreg_scores.time_index.equals(anomaly_scores.time_index) diff --git a/darts/tests/datasets/test_dataset_loaders.py b/darts/tests/datasets/test_dataset_loaders.py index 865331923b..eadef3507d 100644 --- a/darts/tests/datasets/test_dataset_loaders.py +++ b/darts/tests/datasets/test_dataset_loaders.py @@ -25,6 +25,7 @@ MonthlyMilkDataset, MonthlyMilkIncompleteDataset, SunspotsDataset, + TaxiNewYorkDataset, TaylorDataset, TemperatureDataset, TrafficDataset, @@ -70,6 +71,7 @@ (TrafficDataset, 862), (WeatherDataset, 21), (ElectricityConsumptionZurichDataset, 10), + (TaxiNewYorkDataset, 1), ] wrong_hash_dataset = DatasetLoaderCSV( diff --git a/darts/tests/models/forecasting/test_torch_forecasting_model.py b/darts/tests/models/forecasting/test_torch_forecasting_model.py index 0acc2c9d9e..c6214b5fef 100644 --- a/darts/tests/models/forecasting/test_torch_forecasting_model.py +++ b/darts/tests/models/forecasting/test_torch_forecasting_model.py @@ -88,7 +88,11 @@ class TestTorchForecastingModel: def test_save_model_parameters(self): # check if re-created model has same params as original model = RNNModel(12, "RNN", 10, 10, **tfm_kwargs) - assert model._model_params, model.untrained_model()._model_params + params_old = model.model_params + params_new = model.untrained_model().model_params + + assert params_old.keys() == params_new.keys() + assert all([params_old[k] == params_new[k] for k in params_old]) @patch( "darts.models.forecasting.torch_forecasting_model.TorchForecastingModel.save" diff --git a/darts/tests/test_timeseries.py b/darts/tests/test_timeseries.py index e0e97a1e1b..3a9b02ab35 100644 --- a/darts/tests/test_timeseries.py +++ b/darts/tests/test_timeseries.py @@ -548,9 +548,7 @@ def test_rescale(self): assert self.series3 * 0.2e20 == seriesD @staticmethod - def helper_test_intersect( - test_case, freq, is_mixed_freq: bool, is_univariate: bool - ): + def helper_test_intersect(freq, is_mixed_freq: bool, is_univariate: bool): start = pd.Timestamp("20130101") if isinstance(freq, str) else 0 freq = pd.tseries.frequencies.to_offset(freq) if isinstance(freq, str) else freq @@ -598,6 +596,9 @@ def check_intersect(other, start_, end_, freq_): np.testing.assert_array_equal( series[end_].all_values(), s_int_vals[-1:, :, :] ) + # check that the time index is the same with `slice_intersect_times` + s_int_idx = series.slice_intersect_times(other, copy=False) + assert s_int.time_index.equals(s_int_idx) # slice with exact range startA = start @@ -774,7 +775,7 @@ def test_intersect(self, config): """Tests slice intersection between two series with datetime or range index with identical and mixed frequencies.""" freq, mixed_freq = config - self.helper_test_intersect(self, freq, mixed_freq, is_univariate=True) + self.helper_test_intersect(freq, mixed_freq, is_univariate=True) def test_shift(self): TestTimeSeries.helper_test_shift(self, self.series1) @@ -833,22 +834,50 @@ def test_prepend_values(self): assert prepended.time_index.equals(expected_idx) assert prepended.components.equals(series.components) - def test_with_values(self): + @pytest.mark.parametrize( + "config", + [ + ("with_values", True), + ("with_times_and_values", True), + ("with_times_and_values", False), + ], + ) + def test_with_x_values(self, config): + """Test `with_values`, and `with_times_and_values`, where the latter can have identical or different times.""" + method, use_entire_index = config + mask = slice(None) if use_entire_index else slice(1, 4) + vals = np.random.rand(5, 10, 3) series = TimeSeries.from_values(vals) - series2 = series.with_values(vals + 1) - series3 = series2.with_values(series2.all_values() - 1) + + vals = vals[mask] + series[::2] + kwargs = ( + {"times": series.time_index[mask]} + if method == "with_times_and_values" + else dict() + ) + series2 = getattr(series, method)(values=vals + 1, **kwargs) + series3 = getattr(series2, method)(values=series2.all_values() - 1, **kwargs) # values should work - np.testing.assert_allclose(series3.all_values(), series.all_values()) + np.testing.assert_allclose(series3.all_values(), series[mask].all_values()) np.testing.assert_allclose(series2.all_values(), vals + 1) # should fail if nr components is not the same: with pytest.raises(ValueError): - series.with_values(np.random.rand(5, 11, 3)) + getattr(series, method)(values=np.random.rand(len(vals), 11, 3), **kwargs) + + # should not fail if nr samples is not the same: + getattr(series, method)(values=np.random.rand(len(vals), 10, 2), **kwargs) # should not fail if nr samples is not the same: - series.with_values(np.random.rand(5, 10, 2)) + getattr(series, method)(values=np.random.rand(len(vals), 10, 2), **kwargs) + + # should not fail for univariate deterministic series if values is a 1D array + getattr(series[series.columns[0]], method)( + values=np.random.rand(len(vals)), **kwargs + ) def test_cumsum(self): cumsum_expected = TimeSeries.from_dataframe( @@ -944,23 +973,34 @@ def test_ops(self): self.series1 / 0 def test_getitem_datetime_index(self): - seriesA: TimeSeries = self.series1.drop_after(pd.Timestamp("20130105")) - assert self.series1[pd.date_range("20130101", " 20130104")] == seriesA - assert self.series1[:4] == seriesA + series_short: TimeSeries = self.series1.drop_after(pd.Timestamp("20130105")) + series_stride_2: TimeSeries = self.series1.with_times_and_values( + times=self.series1.time_index[::2], + values=self.series1.all_values()[::2], + ) + # getitem from slice + assert self.series1[:] == self.series1[::] == self.series1[::1] == self.series1 + assert self.series1[::2] == series_stride_2 + assert self.series1[::2].freq == self.series1.freq * 2 + assert self.series1[:4] == series_short + # getitem from dates + assert self.series1[pd.date_range("20130101", " 20130104")] == series_short assert self.series1[pd.Timestamp("20130101")] == TimeSeries.from_dataframe( self.series1.pd_dataframe()[:1], freq=self.series1.freq ) assert ( - self.series1[pd.Timestamp("20130101") : pd.Timestamp("20130104")] == seriesA + self.series1[pd.Timestamp("20130101") : pd.Timestamp("20130104")] + == series_short ) + # not all dates in index with pytest.raises(KeyError): self.series1[pd.date_range("19990101", "19990201")] - + # date not in index with pytest.raises(KeyError): self.series1["19990101"] - - with pytest.raises(IndexError): + # cannot reverse series + with pytest.raises(ValueError): self.series1[::-1] def test_getitem_integer_index(self): @@ -976,6 +1016,15 @@ def test_getitem_integer_index(self): assert series.end_time() == end assert series[idx_int] == series == series[0 : len(series)] + # getitem from slice + series_stride_2 = self.series1.with_times_and_values( + times=series.time_index[::2], + values=series.all_values()[::2], + ) + assert series[:] == series[::] == series[::1] == series + assert series[::2] == series_stride_2 + assert series[::2].freq == series.freq * 2 + series_single = series.drop_after(start + 2 * freq) assert ( series[pd.RangeIndex(start=start, stop=start + 2 * freq, step=freq)] @@ -1010,10 +1059,8 @@ def test_getitem_integer_index(self): def test_getitem_frequency_inferrence(self): ts = self.series1 assert ts.freq == "D" - ts_got = ts[1::2] - assert ts_got.freq == "2D" - ts_got = ts[pd.Timestamp("20130103") :: 2] - assert ts_got.freq == "2D" + assert ts[::2].freq == ts[1::2].freq == ts[:-1:2].freq == "2D" + assert ts[pd.Timestamp("20130103") :: 2].freq == "2D" idx = pd.DatetimeIndex(["20130102", "20130105", "20130108"]) ts_idx = ts[idx] @@ -1045,9 +1092,8 @@ def test_getitem_frequency_inferrence_integer_index(self): ) assert ts.freq == freq - ts_got = ts[1::2] - assert ts_got.start_time() == start + freq - assert ts_got.freq == 2 * freq + assert ts[::2].freq == ts[1::2].freq == ts[:-1:2].freq == 2 * freq + assert ts[1::2].start_time() == start + freq idx = pd.RangeIndex( start=start + 2 * freq, stop=start + 4 * freq, step=2 * freq diff --git a/darts/tests/test_timeseries_multivariate.py b/darts/tests/test_timeseries_multivariate.py index b122959dfe..23cec3a85a 100644 --- a/darts/tests/test_timeseries_multivariate.py +++ b/darts/tests/test_timeseries_multivariate.py @@ -99,9 +99,7 @@ def test_drop(self): ) def test_intersect(self, config): freq, mixed_freq = config - TestTimeSeries.helper_test_intersect( - self, freq, mixed_freq, is_univariate=False - ) + TestTimeSeries.helper_test_intersect(freq, mixed_freq, is_univariate=False) def test_shift(self): TestTimeSeries.helper_test_shift(self, self.series1) diff --git a/darts/timeseries.py b/darts/timeseries.py index 407bee9ed2..e509f95ed9 100644 --- a/darts/timeseries.py +++ b/darts/timeseries.py @@ -52,7 +52,7 @@ from darts.logging import get_logger, raise_if, raise_if_not, raise_log from darts.utils import _build_tqdm_iterator, _parallel_apply -from darts.utils.utils import generate_index, n_steps_between +from darts.utils.utils import expand_arr, generate_index, n_steps_between try: from typing import Literal @@ -1097,12 +1097,7 @@ def from_times_and_values( # avoid copying if data is already np.ndarray: values = np.array(values) if not isinstance(values, np.ndarray) else values - - if len(values.shape) == 1: - values = np.expand_dims(values, 1) - if len(values.shape) == 2: - values = np.expand_dims(values, 2) - + values = expand_arr(values, ndim=len(DIMS)) coords = {times_name: times} if columns is not None: coords[DIMS[1]] = columns @@ -1113,7 +1108,6 @@ def from_times_and_values( coords=coords, attrs={STATIC_COV_TAG: static_covariates, HIERARCHY_TAG: hierarchy}, ) - return cls.from_xarray( xa=xa, fill_missing_dates=fill_missing_dates, @@ -2164,7 +2158,6 @@ def get_index_at_point( after If the provided pandas Timestamp is not in the time series index, whether to return the index of the next timestamp or the index of the previous one. - """ point_index = -1 if isinstance(point, float): @@ -2489,7 +2482,7 @@ def slice_intersect(self, other: Self) -> Self: time_index = self.time_index.intersection(other.time_index) return self[time_index] - def slice_intersect_values(self, other: Self, copy: bool = False) -> Self: + def slice_intersect_values(self, other: Self, copy: bool = False) -> np.ndarray: """ Return the sliced values of this series, where the time index has been intersected with the one of the `other` series. @@ -2516,7 +2509,39 @@ def slice_intersect_values(self, other: Self, copy: bool = False) -> Self: start, end = self._slice_intersect_bounds(other) return vals[start:end] else: - return vals[self.time_index.isin(other.time_index)] + return vals[self._time_index.isin(other._time_index)] + + def slice_intersect_times( + self, other: Self, copy: bool = True + ) -> Union[pd.DatetimeIndex, pd.RangeIndex]: + """ + Return time index of this series, where the time index has been intersected with the one + of the `other` series. + + This method is in general *not* symmetric. + + Parameters + ---------- + other + The other time series + copy + Whether to return a copy of the time index, otherwise returns a view. Leave it to True unless you know + what you are doing. + + Returns + ------- + Union[pd.DatetimeIndex, pd.RangeIndex] + The time index of this series, over the time-span common to both time series. + """ + + time_index = self.time_index if copy else self._time_index + if other.has_same_time_as(self): + return time_index + if other.freq == self.freq: + start, end = self._slice_intersect_bounds(other) + return time_index[start:end] + else: + return time_index[time_index.isin(other._time_index)] def _slice_intersect_bounds(self, other: Self) -> Tuple[int, int]: """Find the start (absolute index) and end (index relative to the end) indices that represent the time @@ -2709,7 +2734,7 @@ def diff( Optionally, periods to shift for calculating difference. For instance, periods=12 computes the difference between values at time `t` and times `t-12`. dropna - Whether to drop the missing values after each differencing steps. If set to False, the corresponding + Whether to drop the missing values after each differencing steps. If set to `False`, the corresponding first `periods` time steps will be filled with NaNs. Returns @@ -2938,6 +2963,64 @@ def prepend_values(self, values: np.ndarray) -> Self: ) ) + def with_times_and_values( + self, + times: Union[pd.DatetimeIndex, pd.RangeIndex, pd.Index], + values: np.ndarray, + fill_missing_dates: Optional[bool] = False, + freq: Optional[Union[str, int]] = None, + fillna_value: Optional[float] = None, + ) -> Self: + """ + Return a new ``TimeSeries`` similar to this one but with new specified values. + + Parameters + ---------- + times + A pandas DateTimeIndex, RangeIndex (or Index that can be converted to a RangeIndex) representing the new + time axis for the time series. It is better if the index has no holes; alternatively setting + `fill_missing_dates` can in some cases solve these issues (filling holes with NaN, or with the provided + `fillna_value` numeric value, if any). + values + A Numpy array with new values. It must have the dimensions for `times` and components, but may contain a + different number of samples. + fill_missing_dates + Optionally, a boolean value indicating whether to fill missing dates (or indices in case of integer index) + with NaN values. This requires either a provided `freq` or the possibility to infer the frequency from the + provided timestamps. See :meth:`_fill_missing_dates() ` for more info. + freq + Optionally, a string or integer representing the frequency of the underlying index. This is useful in order + to fill in missing values if some dates are missing and `fill_missing_dates` is set to `True`. + If a string, represents the frequency of the pandas DatetimeIndex (see `offset aliases + `_ for more info on + supported frequencies). + If an integer, represents the step size of the pandas Index or pandas RangeIndex. + fillna_value + Optionally, a numeric value to fill missing values (NaNs) with. + + Returns + ------- + TimeSeries + A new TimeSeries with the new values and same index, static covariates and hierarchy + """ + values = np.array(values) if not isinstance(values, np.ndarray) else values + values = expand_arr(values, ndim=len(DIMS)) + raise_if_not( + values.shape[1] == self._xa.values.shape[1], + "The new values must have the same number of components as the present series. " + f"Received: {values.shape[1]}, expected: {self._xa.values.shape[1]}", + ) + return self.from_times_and_values( + times=times, + values=values, + fill_missing_dates=fill_missing_dates, + freq=freq, + columns=self.columns, + fillna_value=fillna_value, + static_covariates=self.static_covariates, + hierarchy=self.hierarchy, + ) + def with_values(self, values: np.ndarray) -> Self: """ Return a new ``TimeSeries`` similar to this one but with new specified values. @@ -2953,6 +3036,8 @@ def with_values(self, values: np.ndarray) -> Self: TimeSeries A new TimeSeries with the new values and same index, static covariates and hierarchy """ + values = np.array(values) if not isinstance(values, np.ndarray) else values + values = expand_arr(values, ndim=len(DIMS)) raise_if_not( values.shape[:2] == self._xa.values.shape[:2], "The new values must have the same shape (time, components) as the present series. " @@ -5135,7 +5220,23 @@ def _get_freq(xa_in: xr.DataArray): # handle slices: elif isinstance(key, slice): - if isinstance(key.start, str) or isinstance(key.stop, str): + if key.start is None and key.stop is None: + if key.step is not None and key.step <= 0: + raise_log( + ValueError( + "Indexing a `TimeSeries` with a `slice` of `step<=0` (reverse) is not " + "possible since `TimeSeries` must have a monotonically increasing time index." + ), + logger=logger, + ) + else: + xa_ = self._xa.isel({self._time_dim: key}) + if _get_freq(xa_) is None: + # indexing discarded the freq; we restore it + freq = key.step * self.freq if key.step else self.freq + _set_freq_in_xa(xa_, freq) + return self.__class__(xa_) + elif isinstance(key.start, str) or isinstance(key.stop, str): xa_ = self._xa.sel({DIMS[1]: key}) # selecting components discards the hierarchy, if any xa_ = _xarray_with_attrs( diff --git a/darts/utils/statistics.py b/darts/utils/statistics.py index 75d7cb123f..8a45614199 100644 --- a/darts/utils/statistics.py +++ b/darts/utils/statistics.py @@ -618,9 +618,9 @@ def plot_acf( The confidence interval to display. bartlett_confint The boolean value indicating whether the confidence interval should be - calculated using Bartlett's formula. If set to True, the confidence interval + calculated using Bartlett's formula. If set to `True`, the confidence interval can be used in the model identification stage for fitting ARIMA models. - If set to False, the confidence interval can be used to test for randomness + If set to `False`, the confidence interval can be used to test for randomness (i.e. there is no time dependence in the data) of the data. fig_size The size of the figure to be displayed. @@ -933,7 +933,7 @@ def plot_hist( Optionally, either an integer value for the number of bins to be displayed or an array-like of floats determining the position of bins. density - bool, if `density` is set to True, the bin counts will be converted to probability density + bool, if `density` is set to `True`, the bin counts will be converted to probability density title The title of the figure to be displayed fig_size @@ -1006,7 +1006,7 @@ def plot_residuals_analysis( This function takes a univariate TimeSeries instance of residuals and plots their values, their distribution and their ACF. Please note that if the residual TimeSeries instance contains NaN values, the plots - might be displayed incorrectly. If `fill_nan` is set to True, the missing values will + might be displayed incorrectly. If `fill_nan` is set to `True`, the missing values will be interpolated. Parameters diff --git a/darts/utils/timeseries_generation.py b/darts/utils/timeseries_generation.py index f012e82807..405724113a 100644 --- a/darts/utils/timeseries_generation.py +++ b/darts/utils/timeseries_generation.py @@ -754,9 +754,9 @@ def _build_forecast_series( custom_columns New names for the forecast TimeSeries, used when the number of components changes with_static_covs - If set to False, do not copy the input_series `static_covariates` attribute + If set to `False`, do not copy the input_series `static_covariates` attribute with_hierarchy - If set to False, do not copy the input_series `hierarchy` attribute + If set to `False`, do not copy the input_series `hierarchy` attribute pred_start Optionally, give a custom prediction start point. diff --git a/darts/utils/ts_utils.py b/darts/utils/ts_utils.py index 02adf9a998..2d8a0c81fd 100644 --- a/darts/utils/ts_utils.py +++ b/darts/utils/ts_utils.py @@ -218,16 +218,26 @@ def get_series_seq_type( return SeriesType.SINGLE elif isinstance(ts[0], TimeSeries): return SeriesType.SEQ - elif isinstance(ts[0][0], TimeSeries): - return SeriesType.SEQ_SEQ else: - raise_log( - ValueError( - "input series must be of type `TimeSeries`, `Sequence[TimeSeries]`, or " - "`Sequence[Sequence[TimeSeries]]`" - ), - logger=logger, - ) + try: + if isinstance(ts[0][0], TimeSeries): + return SeriesType.SEQ_SEQ + else: + raise_log( + ValueError( + "input series must be of type `TimeSeries`, `Sequence[TimeSeries]`, or " + "`Sequence[Sequence[TimeSeries]]`." + ), + logger=logger, + ) + except Exception as err: + raise_log( + ValueError( + "input series must be of type `TimeSeries`, `Sequence[TimeSeries]`, or " + f"`Sequence[Sequence[TimeSeries]]`. Raised: `{type(err).__name__}('{str(err)}')`" + ), + logger=logger, + ) # TODO: we do not check the time index here diff --git a/darts/utils/utils.py b/darts/utils/utils.py index b16f99b63d..643c0655f1 100644 --- a/darts/utils/utils.py +++ b/darts/utils/utils.py @@ -8,6 +8,7 @@ from inspect import Parameter, getcallargs, signature from typing import Callable, Iterator, List, Optional, Tuple, TypeVar, Union +import numpy as np import pandas as pd from joblib import Parallel, delayed from pandas._libs.tslibs.offsets import BusinessMixin @@ -514,3 +515,11 @@ def generate_index( name=name, ) return index + + +def expand_arr(arr: np.ndarray, ndim: int): + """Expands a np.ndarray to `ndim` dimensions (if not already satisfied).""" + shape = arr.shape + if len(shape) != ndim: + arr = arr.reshape(shape + tuple(1 for _ in range(ndim - len(shape)))) + return arr diff --git a/datasets/taxi_new_york_passengers.csv b/datasets/taxi_new_york_passengers.csv new file mode 100644 index 0000000000..68c58f2de5 --- /dev/null +++ b/datasets/taxi_new_york_passengers.csv @@ -0,0 +1,10321 @@ +time,#Passengers +2014-07-01 00:00:00,10844 +2014-07-01 00:30:00,8127 +2014-07-01 01:00:00,6210 +2014-07-01 01:30:00,4656 +2014-07-01 02:00:00,3820 +2014-07-01 02:30:00,2873 +2014-07-01 03:00:00,2369 +2014-07-01 03:30:00,2064 +2014-07-01 04:00:00,2221 +2014-07-01 04:30:00,2158 +2014-07-01 05:00:00,2515 +2014-07-01 05:30:00,4364 +2014-07-01 06:00:00,6526 +2014-07-01 06:30:00,11039 +2014-07-01 07:00:00,13857 +2014-07-01 07:30:00,15865 +2014-07-01 08:00:00,17920 +2014-07-01 08:30:00,20346 +2014-07-01 09:00:00,19539 +2014-07-01 09:30:00,20107 +2014-07-01 10:00:00,18984 +2014-07-01 10:30:00,17720 +2014-07-01 11:00:00,17249 +2014-07-01 11:30:00,18463 +2014-07-01 12:00:00,18908 +2014-07-01 12:30:00,18886 +2014-07-01 13:00:00,18178 +2014-07-01 13:30:00,19459 +2014-07-01 14:00:00,19546 +2014-07-01 14:30:00,20591 +2014-07-01 15:00:00,19380 +2014-07-01 15:30:00,18544 +2014-07-01 16:00:00,16228 +2014-07-01 16:30:00,15013 +2014-07-01 17:00:00,17203 +2014-07-01 17:30:00,19525 +2014-07-01 18:00:00,22966 +2014-07-01 18:30:00,27598 +2014-07-01 19:00:00,26827 +2014-07-01 19:30:00,24904 +2014-07-01 20:00:00,22875 +2014-07-01 20:30:00,20394 +2014-07-01 21:00:00,23401 +2014-07-01 21:30:00,24439 +2014-07-01 22:00:00,23318 +2014-07-01 22:30:00,21733 +2014-07-01 23:00:00,20104 +2014-07-01 23:30:00,16111 +2014-07-02 00:00:00,13370 +2014-07-02 00:30:00,9945 +2014-07-02 01:00:00,7571 +2014-07-02 01:30:00,5917 +2014-07-02 02:00:00,4820 +2014-07-02 02:30:00,3634 +2014-07-02 03:00:00,2993 +2014-07-02 03:30:00,2535 +2014-07-02 04:00:00,2570 +2014-07-02 04:30:00,2485 +2014-07-02 05:00:00,2868 +2014-07-02 05:30:00,4482 +2014-07-02 06:00:00,6788 +2014-07-02 06:30:00,11078 +2014-07-02 07:00:00,13729 +2014-07-02 07:30:00,16700 +2014-07-02 08:00:00,19156 +2014-07-02 08:30:00,19953 +2014-07-02 09:00:00,19502 +2014-07-02 09:30:00,18994 +2014-07-02 10:00:00,17311 +2014-07-02 10:30:00,17904 +2014-07-02 11:00:00,17133 +2014-07-02 11:30:00,18589 +2014-07-02 12:00:00,19134 +2014-07-02 12:30:00,19259 +2014-07-02 13:00:00,18667 +2014-07-02 13:30:00,19078 +2014-07-02 14:00:00,18546 +2014-07-02 14:30:00,18593 +2014-07-02 15:00:00,17967 +2014-07-02 15:30:00,16624 +2014-07-02 16:00:00,14634 +2014-07-02 16:30:00,13888 +2014-07-02 17:00:00,17430 +2014-07-02 17:30:00,21919 +2014-07-02 18:00:00,23633 +2014-07-02 18:30:00,24512 +2014-07-02 19:00:00,24887 +2014-07-02 19:30:00,26872 +2014-07-02 20:00:00,22009 +2014-07-02 20:30:00,18259 +2014-07-02 21:00:00,20844 +2014-07-02 21:30:00,22576 +2014-07-02 22:00:00,22401 +2014-07-02 22:30:00,19056 +2014-07-02 23:00:00,17518 +2014-07-02 23:30:00,15307 +2014-07-03 00:00:00,12646 +2014-07-03 00:30:00,10562 +2014-07-03 01:00:00,8416 +2014-07-03 01:30:00,7098 +2014-07-03 02:00:00,5826 +2014-07-03 02:30:00,4383 +2014-07-03 03:00:00,3270 +2014-07-03 03:30:00,2948 +2014-07-03 04:00:00,3146 +2014-07-03 04:30:00,3077 +2014-07-03 05:00:00,3000 +2014-07-03 05:30:00,4592 +2014-07-03 06:00:00,6486 +2014-07-03 06:30:00,10113 +2014-07-03 07:00:00,12240 +2014-07-03 07:30:00,14574 +2014-07-03 08:00:00,16778 +2014-07-03 08:30:00,18910 +2014-07-03 09:00:00,18350 +2014-07-03 09:30:00,17218 +2014-07-03 10:00:00,16097 +2014-07-03 10:30:00,16409 +2014-07-03 11:00:00,15893 +2014-07-03 11:30:00,16778 +2014-07-03 12:00:00,17604 +2014-07-03 12:30:00,18665 +2014-07-03 13:00:00,19045 +2014-07-03 13:30:00,19261 +2014-07-03 14:00:00,19363 +2014-07-03 14:30:00,19078 +2014-07-03 15:00:00,18193 +2014-07-03 15:30:00,16635 +2014-07-03 16:00:00,14615 +2014-07-03 16:30:00,13759 +2014-07-03 17:00:00,17008 +2014-07-03 17:30:00,19595 +2014-07-03 18:00:00,21328 +2014-07-03 18:30:00,22661 +2014-07-03 19:00:00,29985 +2014-07-03 19:30:00,21501 +2014-07-03 20:00:00,22684 +2014-07-03 20:30:00,22188 +2014-07-03 21:00:00,22663 +2014-07-03 21:30:00,19573 +2014-07-03 22:00:00,17136 +2014-07-03 22:30:00,16606 +2014-07-03 23:00:00,16166 +2014-07-03 23:30:00,16020 +2014-07-04 00:00:00,15591 +2014-07-04 00:30:00,14395 +2014-07-04 01:00:00,12535 +2014-07-04 01:30:00,11341 +2014-07-04 02:00:00,9980 +2014-07-04 02:30:00,8404 +2014-07-04 03:00:00,7200 +2014-07-04 03:30:00,6578 +2014-07-04 04:00:00,5657 +2014-07-04 04:30:00,4474 +2014-07-04 05:00:00,3459 +2014-07-04 05:30:00,3276 +2014-07-04 06:00:00,3595 +2014-07-04 06:30:00,4240 +2014-07-04 07:00:00,4828 +2014-07-04 07:30:00,4926 +2014-07-04 08:00:00,5165 +2014-07-04 08:30:00,5776 +2014-07-04 09:00:00,7338 +2014-07-04 09:30:00,7839 +2014-07-04 10:00:00,8623 +2014-07-04 10:30:00,9731 +2014-07-04 11:00:00,11024 +2014-07-04 11:30:00,13231 +2014-07-04 12:00:00,13613 +2014-07-04 12:30:00,13737 +2014-07-04 13:00:00,15574 +2014-07-04 13:30:00,14226 +2014-07-04 14:00:00,18480 +2014-07-04 14:30:00,18265 +2014-07-04 15:00:00,16575 +2014-07-04 15:30:00,16417 +2014-07-04 16:00:00,14703 +2014-07-04 16:30:00,13469 +2014-07-04 17:00:00,12105 +2014-07-04 17:30:00,11676 +2014-07-04 18:00:00,15487 +2014-07-04 18:30:00,15077 +2014-07-04 19:00:00,14999 +2014-07-04 19:30:00,14487 +2014-07-04 20:00:00,14415 +2014-07-04 20:30:00,13796 +2014-07-04 21:00:00,14036 +2014-07-04 21:30:00,14021 +2014-07-04 22:00:00,15593 +2014-07-04 22:30:00,16589 +2014-07-04 23:00:00,17984 +2014-07-04 23:30:00,18035 +2014-07-05 00:00:00,17576 +2014-07-05 00:30:00,16189 +2014-07-05 01:00:00,14441 +2014-07-05 01:30:00,12535 +2014-07-05 02:00:00,11006 +2014-07-05 02:30:00,9151 +2014-07-05 03:00:00,8010 +2014-07-05 03:30:00,7096 +2014-07-05 04:00:00,6407 +2014-07-05 04:30:00,4421 +2014-07-05 05:00:00,3126 +2014-07-05 05:30:00,2514 +2014-07-05 06:00:00,2550 +2014-07-05 06:30:00,3148 +2014-07-05 07:00:00,3658 +2014-07-05 07:30:00,4345 +2014-07-05 08:00:00,4682 +2014-07-05 08:30:00,6248 +2014-07-05 09:00:00,7454 +2014-07-05 09:30:00,9010 +2014-07-05 10:00:00,10280 +2014-07-05 10:30:00,11488 +2014-07-05 11:00:00,11595 +2014-07-05 11:30:00,13098 +2014-07-05 12:00:00,12623 +2014-07-05 12:30:00,13031 +2014-07-05 13:00:00,13263 +2014-07-05 13:30:00,13349 +2014-07-05 14:00:00,13822 +2014-07-05 14:30:00,13716 +2014-07-05 15:00:00,13919 +2014-07-05 15:30:00,14203 +2014-07-05 16:00:00,13179 +2014-07-05 16:30:00,13708 +2014-07-05 17:00:00,13897 +2014-07-05 17:30:00,14740 +2014-07-05 18:00:00,14575 +2014-07-05 18:30:00,16085 +2014-07-05 19:00:00,18182 +2014-07-05 19:30:00,16861 +2014-07-05 20:00:00,14140 +2014-07-05 20:30:00,14477 +2014-07-05 21:00:00,15293 +2014-07-05 21:30:00,15457 +2014-07-05 22:00:00,16048 +2014-07-05 22:30:00,17477 +2014-07-05 23:00:00,16391 +2014-07-05 23:30:00,17006 +2014-07-06 00:00:00,15427 +2014-07-06 00:30:00,14615 +2014-07-06 01:00:00,13124 +2014-07-06 01:30:00,12222 +2014-07-06 02:00:00,11134 +2014-07-06 02:30:00,9145 +2014-07-06 03:00:00,8624 +2014-07-06 03:30:00,7885 +2014-07-06 04:00:00,7167 +2014-07-06 04:30:00,4805 +2014-07-06 05:00:00,3103 +2014-07-06 05:30:00,2671 +2014-07-06 06:00:00,2510 +2014-07-06 06:30:00,2917 +2014-07-06 07:00:00,3189 +2014-07-06 07:30:00,4107 +2014-07-06 08:00:00,4122 +2014-07-06 08:30:00,5654 +2014-07-06 09:00:00,6360 +2014-07-06 09:30:00,8406 +2014-07-06 10:00:00,9372 +2014-07-06 10:30:00,11067 +2014-07-06 11:00:00,11595 +2014-07-06 11:30:00,12909 +2014-07-06 12:00:00,13715 +2014-07-06 12:30:00,13648 +2014-07-06 13:00:00,14296 +2014-07-06 13:30:00,14798 +2014-07-06 14:00:00,15473 +2014-07-06 14:30:00,16032 +2014-07-06 15:00:00,14661 +2014-07-06 15:30:00,14836 +2014-07-06 16:00:00,13700 +2014-07-06 16:30:00,14565 +2014-07-06 17:00:00,15392 +2014-07-06 17:30:00,16866 +2014-07-06 18:00:00,16893 +2014-07-06 18:30:00,16877 +2014-07-06 19:00:00,17025 +2014-07-06 19:30:00,15884 +2014-07-06 20:00:00,14487 +2014-07-06 20:30:00,14159 +2014-07-06 21:00:00,16135 +2014-07-06 21:30:00,16165 +2014-07-06 22:00:00,14025 +2014-07-06 22:30:00,13970 +2014-07-06 23:00:00,13198 +2014-07-06 23:30:00,11355 +2014-07-07 00:00:00,8675 +2014-07-07 00:30:00,7180 +2014-07-07 01:00:00,5178 +2014-07-07 01:30:00,3658 +2014-07-07 02:00:00,3181 +2014-07-07 02:30:00,2402 +2014-07-07 03:00:00,1944 +2014-07-07 03:30:00,1877 +2014-07-07 04:00:00,2257 +2014-07-07 04:30:00,2280 +2014-07-07 05:00:00,2575 +2014-07-07 05:30:00,4174 +2014-07-07 06:00:00,6346 +2014-07-07 06:30:00,10594 +2014-07-07 07:00:00,12632 +2014-07-07 07:30:00,14893 +2014-07-07 08:00:00,16470 +2014-07-07 08:30:00,18998 +2014-07-07 09:00:00,17792 +2014-07-07 09:30:00,16396 +2014-07-07 10:00:00,14128 +2014-07-07 10:30:00,14161 +2014-07-07 11:00:00,14154 +2014-07-07 11:30:00,15074 +2014-07-07 12:00:00,15188 +2014-07-07 12:30:00,15483 +2014-07-07 13:00:00,15338 +2014-07-07 13:30:00,16242 +2014-07-07 14:00:00,16579 +2014-07-07 14:30:00,16885 +2014-07-07 15:00:00,16824 +2014-07-07 15:30:00,16238 +2014-07-07 16:00:00,15702 +2014-07-07 16:30:00,15132 +2014-07-07 17:00:00,17500 +2014-07-07 17:30:00,19167 +2014-07-07 18:00:00,21398 +2014-07-07 18:30:00,22382 +2014-07-07 19:00:00,22270 +2014-07-07 19:30:00,20575 +2014-07-07 20:00:00,18824 +2014-07-07 20:30:00,17909 +2014-07-07 21:00:00,19707 +2014-07-07 21:30:00,19066 +2014-07-07 22:00:00,17755 +2014-07-07 22:30:00,16583 +2014-07-07 23:00:00,14955 +2014-07-07 23:30:00,11849 +2014-07-08 00:00:00,9292 +2014-07-08 00:30:00,8110 +2014-07-08 01:00:00,7352 +2014-07-08 01:30:00,5049 +2014-07-08 02:00:00,3451 +2014-07-08 02:30:00,2465 +2014-07-08 03:00:00,2125 +2014-07-08 03:30:00,1877 +2014-07-08 04:00:00,2069 +2014-07-08 04:30:00,2080 +2014-07-08 05:00:00,2375 +2014-07-08 05:30:00,4303 +2014-07-08 06:00:00,6537 +2014-07-08 06:30:00,11331 +2014-07-08 07:00:00,13565 +2014-07-08 07:30:00,16455 +2014-07-08 08:00:00,18310 +2014-07-08 08:30:00,20288 +2014-07-08 09:00:00,19564 +2014-07-08 09:30:00,19380 +2014-07-08 10:00:00,16507 +2014-07-08 10:30:00,16939 +2014-07-08 11:00:00,16113 +2014-07-08 11:30:00,17537 +2014-07-08 12:00:00,18120 +2014-07-08 12:30:00,18038 +2014-07-08 13:00:00,17870 +2014-07-08 13:30:00,18427 +2014-07-08 14:00:00,18971 +2014-07-08 14:30:00,19071 +2014-07-08 15:00:00,18646 +2014-07-08 15:30:00,18229 +2014-07-08 16:00:00,15977 +2014-07-08 16:30:00,15026 +2014-07-08 17:00:00,17398 +2014-07-08 17:30:00,20865 +2014-07-08 18:00:00,23875 +2014-07-08 18:30:00,25290 +2014-07-08 19:00:00,25510 +2014-07-08 19:30:00,24535 +2014-07-08 20:00:00,21922 +2014-07-08 20:30:00,20113 +2014-07-08 21:00:00,22079 +2014-07-08 21:30:00,23111 +2014-07-08 22:00:00,25209 +2014-07-08 22:30:00,21978 +2014-07-08 23:00:00,18320 +2014-07-08 23:30:00,14881 +2014-07-09 00:00:00,12053 +2014-07-09 00:30:00,9409 +2014-07-09 01:00:00,7740 +2014-07-09 01:30:00,5528 +2014-07-09 02:00:00,4667 +2014-07-09 02:30:00,3242 +2014-07-09 03:00:00,2678 +2014-07-09 03:30:00,2370 +2014-07-09 04:00:00,2475 +2014-07-09 04:30:00,2304 +2014-07-09 05:00:00,2491 +2014-07-09 05:30:00,4117 +2014-07-09 06:00:00,6435 +2014-07-09 06:30:00,11067 +2014-07-09 07:00:00,13384 +2014-07-09 07:30:00,17194 +2014-07-09 08:00:00,18510 +2014-07-09 08:30:00,20464 +2014-07-09 09:00:00,19777 +2014-07-09 09:30:00,18928 +2014-07-09 10:00:00,17243 +2014-07-09 10:30:00,17490 +2014-07-09 11:00:00,16558 +2014-07-09 11:30:00,17830 +2014-07-09 12:00:00,18203 +2014-07-09 12:30:00,18126 +2014-07-09 13:00:00,18122 +2014-07-09 13:30:00,18488 +2014-07-09 14:00:00,18487 +2014-07-09 14:30:00,18542 +2014-07-09 15:00:00,18240 +2014-07-09 15:30:00,17393 +2014-07-09 16:00:00,15175 +2014-07-09 16:30:00,15360 +2014-07-09 17:00:00,17103 +2014-07-09 17:30:00,19561 +2014-07-09 18:00:00,22262 +2014-07-09 18:30:00,24725 +2014-07-09 19:00:00,25995 +2014-07-09 19:30:00,26319 +2014-07-09 20:00:00,24995 +2014-07-09 20:30:00,20534 +2014-07-09 21:00:00,23458 +2014-07-09 21:30:00,24681 +2014-07-09 22:00:00,23955 +2014-07-09 22:30:00,23655 +2014-07-09 23:00:00,21896 +2014-07-09 23:30:00,19338 +2014-07-10 00:00:00,15185 +2014-07-10 00:30:00,11459 +2014-07-10 01:00:00,8847 +2014-07-10 01:30:00,6580 +2014-07-10 02:00:00,5247 +2014-07-10 02:30:00,4127 +2014-07-10 03:00:00,3440 +2014-07-10 03:30:00,2957 +2014-07-10 04:00:00,2779 +2014-07-10 04:30:00,2532 +2014-07-10 05:00:00,2718 +2014-07-10 05:30:00,4449 +2014-07-10 06:00:00,6601 +2014-07-10 06:30:00,11202 +2014-07-10 07:00:00,13934 +2014-07-10 07:30:00,17176 +2014-07-10 08:00:00,19057 +2014-07-10 08:30:00,21112 +2014-07-10 09:00:00,19882 +2014-07-10 09:30:00,19024 +2014-07-10 10:00:00,16989 +2014-07-10 10:30:00,16979 +2014-07-10 11:00:00,16381 +2014-07-10 11:30:00,17815 +2014-07-10 12:00:00,18029 +2014-07-10 12:30:00,17495 +2014-07-10 13:00:00,17075 +2014-07-10 13:30:00,18234 +2014-07-10 14:00:00,18091 +2014-07-10 14:30:00,18495 +2014-07-10 15:00:00,17523 +2014-07-10 15:30:00,16714 +2014-07-10 16:00:00,14735 +2014-07-10 16:30:00,13610 +2014-07-10 17:00:00,16290 +2014-07-10 17:30:00,19152 +2014-07-10 18:00:00,21865 +2014-07-10 18:30:00,24347 +2014-07-10 19:00:00,26186 +2014-07-10 19:30:00,25852 +2014-07-10 20:00:00,23995 +2014-07-10 20:30:00,21664 +2014-07-10 21:00:00,25027 +2014-07-10 21:30:00,25431 +2014-07-10 22:00:00,25643 +2014-07-10 22:30:00,24654 +2014-07-10 23:00:00,23154 +2014-07-10 23:30:00,21863 +2014-07-11 00:00:00,20051 +2014-07-11 00:30:00,16122 +2014-07-11 01:00:00,13107 +2014-07-11 01:30:00,10506 +2014-07-11 02:00:00,8444 +2014-07-11 02:30:00,6876 +2014-07-11 03:00:00,5375 +2014-07-11 03:30:00,4366 +2014-07-11 04:00:00,4183 +2014-07-11 04:30:00,3249 +2014-07-11 05:00:00,3134 +2014-07-11 05:30:00,4620 +2014-07-11 06:00:00,6725 +2014-07-11 06:30:00,10651 +2014-07-11 07:00:00,12952 +2014-07-11 07:30:00,15808 +2014-07-11 08:00:00,17565 +2014-07-11 08:30:00,19784 +2014-07-11 09:00:00,19699 +2014-07-11 09:30:00,18663 +2014-07-11 10:00:00,16509 +2014-07-11 10:30:00,16600 +2014-07-11 11:00:00,15636 +2014-07-11 11:30:00,17434 +2014-07-11 12:00:00,17668 +2014-07-11 12:30:00,17124 +2014-07-11 13:00:00,17124 +2014-07-11 13:30:00,17489 +2014-07-11 14:00:00,18371 +2014-07-11 14:30:00,18381 +2014-07-11 15:00:00,17898 +2014-07-11 15:30:00,16350 +2014-07-11 16:00:00,14688 +2014-07-11 16:30:00,14227 +2014-07-11 17:00:00,16924 +2014-07-11 17:30:00,19952 +2014-07-11 18:00:00,22665 +2014-07-11 18:30:00,23465 +2014-07-11 19:00:00,25111 +2014-07-11 19:30:00,23984 +2014-07-11 20:00:00,21701 +2014-07-11 20:30:00,20592 +2014-07-11 21:00:00,22630 +2014-07-11 21:30:00,22854 +2014-07-11 22:00:00,23892 +2014-07-11 22:30:00,24959 +2014-07-11 23:00:00,26039 +2014-07-11 23:30:00,26873 +2014-07-12 00:00:00,25871 +2014-07-12 00:30:00,24874 +2014-07-12 01:00:00,23243 +2014-07-12 01:30:00,21674 +2014-07-12 02:00:00,19221 +2014-07-12 02:30:00,16140 +2014-07-12 03:00:00,13371 +2014-07-12 03:30:00,12041 +2014-07-12 04:00:00,10301 +2014-07-12 04:30:00,6472 +2014-07-12 05:00:00,4507 +2014-07-12 05:30:00,3682 +2014-07-12 06:00:00,3422 +2014-07-12 06:30:00,4554 +2014-07-12 07:00:00,5347 +2014-07-12 07:30:00,6853 +2014-07-12 08:00:00,7107 +2014-07-12 08:30:00,9463 +2014-07-12 09:00:00,11022 +2014-07-12 09:30:00,13393 +2014-07-12 10:00:00,13567 +2014-07-12 10:30:00,15452 +2014-07-12 11:00:00,15525 +2014-07-12 11:30:00,17165 +2014-07-12 12:00:00,17263 +2014-07-12 12:30:00,18418 +2014-07-12 13:00:00,18578 +2014-07-12 13:30:00,18762 +2014-07-12 14:00:00,18076 +2014-07-12 14:30:00,18604 +2014-07-12 15:00:00,18580 +2014-07-12 15:30:00,19306 +2014-07-12 16:00:00,18140 +2014-07-12 16:30:00,17455 +2014-07-12 17:00:00,18980 +2014-07-12 17:30:00,21152 +2014-07-12 18:00:00,22483 +2014-07-12 18:30:00,22534 +2014-07-12 19:00:00,22801 +2014-07-12 19:30:00,22117 +2014-07-12 20:00:00,19864 +2014-07-12 20:30:00,19494 +2014-07-12 21:00:00,20607 +2014-07-12 21:30:00,20627 +2014-07-12 22:00:00,21706 +2014-07-12 22:30:00,24243 +2014-07-12 23:00:00,25204 +2014-07-12 23:30:00,25752 +2014-07-13 00:00:00,25792 +2014-07-13 00:30:00,25033 +2014-07-13 01:00:00,23935 +2014-07-13 01:30:00,21440 +2014-07-13 02:00:00,19468 +2014-07-13 02:30:00,16622 +2014-07-13 03:00:00,14485 +2014-07-13 03:30:00,12974 +2014-07-13 04:00:00,11191 +2014-07-13 04:30:00,6911 +2014-07-13 05:00:00,4410 +2014-07-13 05:30:00,3467 +2014-07-13 06:00:00,3429 +2014-07-13 06:30:00,3599 +2014-07-13 07:00:00,3575 +2014-07-13 07:30:00,4557 +2014-07-13 08:00:00,5243 +2014-07-13 08:30:00,6588 +2014-07-13 09:00:00,8009 +2014-07-13 09:30:00,10743 +2014-07-13 10:00:00,13524 +2014-07-13 10:30:00,16179 +2014-07-13 11:00:00,14905 +2014-07-13 11:30:00,16916 +2014-07-13 12:00:00,17082 +2014-07-13 12:30:00,18606 +2014-07-13 13:00:00,18935 +2014-07-13 13:30:00,20175 +2014-07-13 14:00:00,22219 +2014-07-13 14:30:00,22868 +2014-07-13 15:00:00,20375 +2014-07-13 15:30:00,18489 +2014-07-13 16:00:00,16187 +2014-07-13 16:30:00,14015 +2014-07-13 17:00:00,14261 +2014-07-13 17:30:00,20081 +2014-07-13 18:00:00,21503 +2014-07-13 18:30:00,19850 +2014-07-13 19:00:00,18383 +2014-07-13 19:30:00,17640 +2014-07-13 20:00:00,16225 +2014-07-13 20:30:00,15566 +2014-07-13 21:00:00,17088 +2014-07-13 21:30:00,16968 +2014-07-13 22:00:00,15271 +2014-07-13 22:30:00,14141 +2014-07-13 23:00:00,12851 +2014-07-13 23:30:00,13877 +2014-07-14 00:00:00,12484 +2014-07-14 00:30:00,9037 +2014-07-14 01:00:00,7393 +2014-07-14 01:30:00,5176 +2014-07-14 02:00:00,3479 +2014-07-14 02:30:00,2755 +2014-07-14 03:00:00,2027 +2014-07-14 03:30:00,1769 +2014-07-14 04:00:00,2091 +2014-07-14 04:30:00,2553 +2014-07-14 05:00:00,2853 +2014-07-14 05:30:00,4835 +2014-07-14 06:00:00,6603 +2014-07-14 06:30:00,11230 +2014-07-14 07:00:00,13395 +2014-07-14 07:30:00,15650 +2014-07-14 08:00:00,17601 +2014-07-14 08:30:00,18818 +2014-07-14 09:00:00,18515 +2014-07-14 09:30:00,16972 +2014-07-14 10:00:00,15316 +2014-07-14 10:30:00,16003 +2014-07-14 11:00:00,14818 +2014-07-14 11:30:00,15610 +2014-07-14 12:00:00,16536 +2014-07-14 12:30:00,16153 +2014-07-14 13:00:00,15548 +2014-07-14 13:30:00,16500 +2014-07-14 14:00:00,16726 +2014-07-14 14:30:00,16838 +2014-07-14 15:00:00,16550 +2014-07-14 15:30:00,16621 +2014-07-14 16:00:00,15657 +2014-07-14 16:30:00,15334 +2014-07-14 17:00:00,17584 +2014-07-14 17:30:00,20903 +2014-07-14 18:00:00,21968 +2014-07-14 18:30:00,26945 +2014-07-14 19:00:00,24416 +2014-07-14 19:30:00,22401 +2014-07-14 20:00:00,23549 +2014-07-14 20:30:00,21498 +2014-07-14 21:00:00,23114 +2014-07-14 21:30:00,23341 +2014-07-14 22:00:00,22141 +2014-07-14 22:30:00,19110 +2014-07-14 23:00:00,16682 +2014-07-14 23:30:00,12631 +2014-07-15 00:00:00,10089 +2014-07-15 00:30:00,8553 +2014-07-15 01:00:00,6416 +2014-07-15 01:30:00,4694 +2014-07-15 02:00:00,3933 +2014-07-15 02:30:00,2833 +2014-07-15 03:00:00,2089 +2014-07-15 03:30:00,1896 +2014-07-15 04:00:00,2055 +2014-07-15 04:30:00,2031 +2014-07-15 05:00:00,2449 +2014-07-15 05:30:00,4360 +2014-07-15 06:00:00,7036 +2014-07-15 06:30:00,11730 +2014-07-15 07:00:00,14387 +2014-07-15 07:30:00,17505 +2014-07-15 08:00:00,19091 +2014-07-15 08:30:00,21057 +2014-07-15 09:00:00,20050 +2014-07-15 09:30:00,18637 +2014-07-15 10:00:00,17555 +2014-07-15 10:30:00,17595 +2014-07-15 11:00:00,16312 +2014-07-15 11:30:00,18232 +2014-07-15 12:00:00,18446 +2014-07-15 12:30:00,18204 +2014-07-15 13:00:00,17607 +2014-07-15 13:30:00,18945 +2014-07-15 14:00:00,22208 +2014-07-15 14:30:00,21574 +2014-07-15 15:00:00,17299 +2014-07-15 15:30:00,15515 +2014-07-15 16:00:00,13246 +2014-07-15 16:30:00,12328 +2014-07-15 17:00:00,15342 +2014-07-15 17:30:00,18730 +2014-07-15 18:00:00,23412 +2014-07-15 18:30:00,26340 +2014-07-15 19:00:00,27167 +2014-07-15 19:30:00,26279 +2014-07-15 20:00:00,23392 +2014-07-15 20:30:00,21571 +2014-07-15 21:00:00,23477 +2014-07-15 21:30:00,22612 +2014-07-15 22:00:00,21389 +2014-07-15 22:30:00,19575 +2014-07-15 23:00:00,18165 +2014-07-15 23:30:00,14923 +2014-07-16 00:00:00,11815 +2014-07-16 00:30:00,9024 +2014-07-16 01:00:00,7363 +2014-07-16 01:30:00,5812 +2014-07-16 02:00:00,4559 +2014-07-16 02:30:00,3673 +2014-07-16 03:00:00,2830 +2014-07-16 03:30:00,2374 +2014-07-16 04:00:00,2556 +2014-07-16 04:30:00,2456 +2014-07-16 05:00:00,2486 +2014-07-16 05:30:00,4451 +2014-07-16 06:00:00,6723 +2014-07-16 06:30:00,12501 +2014-07-16 07:00:00,14763 +2014-07-16 07:30:00,18127 +2014-07-16 08:00:00,20393 +2014-07-16 08:30:00,20753 +2014-07-16 09:00:00,20124 +2014-07-16 09:30:00,19253 +2014-07-16 10:00:00,17981 +2014-07-16 10:30:00,17720 +2014-07-16 11:00:00,16525 +2014-07-16 11:30:00,18153 +2014-07-16 12:00:00,18558 +2014-07-16 12:30:00,17652 +2014-07-16 13:00:00,17292 +2014-07-16 13:30:00,17551 +2014-07-16 14:00:00,17951 +2014-07-16 14:30:00,17909 +2014-07-16 15:00:00,17442 +2014-07-16 15:30:00,16533 +2014-07-16 16:00:00,14776 +2014-07-16 16:30:00,13462 +2014-07-16 17:00:00,16363 +2014-07-16 17:30:00,19310 +2014-07-16 18:00:00,22346 +2014-07-16 18:30:00,24408 +2014-07-16 19:00:00,26225 +2014-07-16 19:30:00,25423 +2014-07-16 20:00:00,23811 +2014-07-16 20:30:00,22028 +2014-07-16 21:00:00,24290 +2014-07-16 21:30:00,24835 +2014-07-16 22:00:00,24269 +2014-07-16 22:30:00,23526 +2014-07-16 23:00:00,21968 +2014-07-16 23:30:00,20137 +2014-07-17 00:00:00,16928 +2014-07-17 00:30:00,12753 +2014-07-17 01:00:00,10087 +2014-07-17 01:30:00,7881 +2014-07-17 02:00:00,6006 +2014-07-17 02:30:00,4382 +2014-07-17 03:00:00,3676 +2014-07-17 03:30:00,3214 +2014-07-17 04:00:00,3205 +2014-07-17 04:30:00,2849 +2014-07-17 05:00:00,2887 +2014-07-17 05:30:00,5039 +2014-07-17 06:00:00,7132 +2014-07-17 06:30:00,12095 +2014-07-17 07:00:00,14558 +2014-07-17 07:30:00,17298 +2014-07-17 08:00:00,19124 +2014-07-17 08:30:00,20407 +2014-07-17 09:00:00,19379 +2014-07-17 09:30:00,18867 +2014-07-17 10:00:00,17662 +2014-07-17 10:30:00,17447 +2014-07-17 11:00:00,16579 +2014-07-17 11:30:00,18340 +2014-07-17 12:00:00,18760 +2014-07-17 12:30:00,18457 +2014-07-17 13:00:00,17608 +2014-07-17 13:30:00,18913 +2014-07-17 14:00:00,19122 +2014-07-17 14:30:00,19547 +2014-07-17 15:00:00,17267 +2014-07-17 15:30:00,15916 +2014-07-17 16:00:00,13836 +2014-07-17 16:30:00,11985 +2014-07-17 17:00:00,14313 +2014-07-17 17:30:00,17988 +2014-07-17 18:00:00,21181 +2014-07-17 18:30:00,23539 +2014-07-17 19:00:00,24714 +2014-07-17 19:30:00,25079 +2014-07-17 20:00:00,23032 +2014-07-17 20:30:00,21168 +2014-07-17 21:00:00,25514 +2014-07-17 21:30:00,26286 +2014-07-17 22:00:00,25650 +2014-07-17 22:30:00,24850 +2014-07-17 23:00:00,23869 +2014-07-17 23:30:00,22913 +2014-07-18 00:00:00,20850 +2014-07-18 00:30:00,16734 +2014-07-18 01:00:00,14106 +2014-07-18 01:30:00,11587 +2014-07-18 02:00:00,8951 +2014-07-18 02:30:00,7199 +2014-07-18 03:00:00,6051 +2014-07-18 03:30:00,4693 +2014-07-18 04:00:00,4507 +2014-07-18 04:30:00,3791 +2014-07-18 05:00:00,3586 +2014-07-18 05:30:00,4918 +2014-07-18 06:00:00,7039 +2014-07-18 06:30:00,11262 +2014-07-18 07:00:00,13725 +2014-07-18 07:30:00,15899 +2014-07-18 08:00:00,17329 +2014-07-18 08:30:00,19757 +2014-07-18 09:00:00,19341 +2014-07-18 09:30:00,17660 +2014-07-18 10:00:00,16532 +2014-07-18 10:30:00,16354 +2014-07-18 11:00:00,16054 +2014-07-18 11:30:00,17326 +2014-07-18 12:00:00,17463 +2014-07-18 12:30:00,17091 +2014-07-18 13:00:00,16668 +2014-07-18 13:30:00,17096 +2014-07-18 14:00:00,17811 +2014-07-18 14:30:00,17980 +2014-07-18 15:00:00,17080 +2014-07-18 15:30:00,15185 +2014-07-18 16:00:00,13538 +2014-07-18 16:30:00,12704 +2014-07-18 17:00:00,15019 +2014-07-18 17:30:00,18778 +2014-07-18 18:00:00,21583 +2014-07-18 18:30:00,23834 +2014-07-18 19:00:00,25123 +2014-07-18 19:30:00,24762 +2014-07-18 20:00:00,22761 +2014-07-18 20:30:00,22227 +2014-07-18 21:00:00,23985 +2014-07-18 21:30:00,23788 +2014-07-18 22:00:00,23855 +2014-07-18 22:30:00,26040 +2014-07-18 23:00:00,25863 +2014-07-18 23:30:00,25851 +2014-07-19 00:00:00,26100 +2014-07-19 00:30:00,24625 +2014-07-19 01:00:00,22657 +2014-07-19 01:30:00,20289 +2014-07-19 02:00:00,18524 +2014-07-19 02:30:00,15943 +2014-07-19 03:00:00,13179 +2014-07-19 03:30:00,12423 +2014-07-19 04:00:00,10478 +2014-07-19 04:30:00,6556 +2014-07-19 05:00:00,4561 +2014-07-19 05:30:00,3513 +2014-07-19 06:00:00,3607 +2014-07-19 06:30:00,4781 +2014-07-19 07:00:00,5423 +2014-07-19 07:30:00,6669 +2014-07-19 08:00:00,7064 +2014-07-19 08:30:00,9363 +2014-07-19 09:00:00,10874 +2014-07-19 09:30:00,13255 +2014-07-19 10:00:00,13164 +2014-07-19 10:30:00,15159 +2014-07-19 11:00:00,16030 +2014-07-19 11:30:00,18256 +2014-07-19 12:00:00,17751 +2014-07-19 12:30:00,17675 +2014-07-19 13:00:00,18557 +2014-07-19 13:30:00,18389 +2014-07-19 14:00:00,17538 +2014-07-19 14:30:00,17506 +2014-07-19 15:00:00,17580 +2014-07-19 15:30:00,18027 +2014-07-19 16:00:00,16959 +2014-07-19 16:30:00,17066 +2014-07-19 17:00:00,18155 +2014-07-19 17:30:00,20610 +2014-07-19 18:00:00,20793 +2014-07-19 18:30:00,21584 +2014-07-19 19:00:00,23493 +2014-07-19 19:30:00,22555 +2014-07-19 20:00:00,20183 +2014-07-19 20:30:00,20441 +2014-07-19 21:00:00,21555 +2014-07-19 21:30:00,22406 +2014-07-19 22:00:00,22512 +2014-07-19 22:30:00,24667 +2014-07-19 23:00:00,25424 +2014-07-19 23:30:00,25852 +2014-07-20 00:00:00,25137 +2014-07-20 00:30:00,24099 +2014-07-20 01:00:00,23058 +2014-07-20 01:30:00,20786 +2014-07-20 02:00:00,19217 +2014-07-20 02:30:00,16329 +2014-07-20 03:00:00,14293 +2014-07-20 03:30:00,13193 +2014-07-20 04:00:00,11166 +2014-07-20 04:30:00,7518 +2014-07-20 05:00:00,4877 +2014-07-20 05:30:00,3639 +2014-07-20 06:00:00,3412 +2014-07-20 06:30:00,3827 +2014-07-20 07:00:00,3922 +2014-07-20 07:30:00,5241 +2014-07-20 08:00:00,5601 +2014-07-20 08:30:00,7147 +2014-07-20 09:00:00,8425 +2014-07-20 09:30:00,10951 +2014-07-20 10:00:00,11800 +2014-07-20 10:30:00,13936 +2014-07-20 11:00:00,14835 +2014-07-20 11:30:00,16412 +2014-07-20 12:00:00,16763 +2014-07-20 12:30:00,17613 +2014-07-20 13:00:00,17439 +2014-07-20 13:30:00,17921 +2014-07-20 14:00:00,18605 +2014-07-20 14:30:00,18113 +2014-07-20 15:00:00,17579 +2014-07-20 15:30:00,16927 +2014-07-20 16:00:00,16526 +2014-07-20 16:30:00,16956 +2014-07-20 17:00:00,17381 +2014-07-20 17:30:00,19232 +2014-07-20 18:00:00,19127 +2014-07-20 18:30:00,19404 +2014-07-20 19:00:00,18812 +2014-07-20 19:30:00,18253 +2014-07-20 20:00:00,16497 +2014-07-20 20:30:00,16681 +2014-07-20 21:00:00,17334 +2014-07-20 21:30:00,17674 +2014-07-20 22:00:00,16469 +2014-07-20 22:30:00,15128 +2014-07-20 23:00:00,13973 +2014-07-20 23:30:00,12040 +2014-07-21 00:00:00,9494 +2014-07-21 00:30:00,6963 +2014-07-21 01:00:00,5611 +2014-07-21 01:30:00,4140 +2014-07-21 02:00:00,3370 +2014-07-21 02:30:00,2625 +2014-07-21 03:00:00,2093 +2014-07-21 03:30:00,1854 +2014-07-21 04:00:00,2482 +2014-07-21 04:30:00,2529 +2014-07-21 05:00:00,2968 +2014-07-21 05:30:00,4540 +2014-07-21 06:00:00,6868 +2014-07-21 06:30:00,10765 +2014-07-21 07:00:00,13095 +2014-07-21 07:30:00,15651 +2014-07-21 08:00:00,17427 +2014-07-21 08:30:00,18637 +2014-07-21 09:00:00,18614 +2014-07-21 09:30:00,17187 +2014-07-21 10:00:00,15281 +2014-07-21 10:30:00,15505 +2014-07-21 11:00:00,15168 +2014-07-21 11:30:00,15813 +2014-07-21 12:00:00,15979 +2014-07-21 12:30:00,16314 +2014-07-21 13:00:00,16002 +2014-07-21 13:30:00,16845 +2014-07-21 14:00:00,17009 +2014-07-21 14:30:00,17302 +2014-07-21 15:00:00,16649 +2014-07-21 15:30:00,16857 +2014-07-21 16:00:00,15733 +2014-07-21 16:30:00,15537 +2014-07-21 17:00:00,17362 +2014-07-21 17:30:00,19639 +2014-07-21 18:00:00,22891 +2014-07-21 18:30:00,22920 +2014-07-21 19:00:00,22941 +2014-07-21 19:30:00,21849 +2014-07-21 20:00:00,20483 +2014-07-21 20:30:00,18868 +2014-07-21 21:00:00,20235 +2014-07-21 21:30:00,20658 +2014-07-21 22:00:00,20751 +2014-07-21 22:30:00,18642 +2014-07-21 23:00:00,16106 +2014-07-21 23:30:00,13303 +2014-07-22 00:00:00,10611 +2014-07-22 00:30:00,8009 +2014-07-22 01:00:00,6210 +2014-07-22 01:30:00,4830 +2014-07-22 02:00:00,3753 +2014-07-22 02:30:00,2962 +2014-07-22 03:00:00,2379 +2014-07-22 03:30:00,2114 +2014-07-22 04:00:00,2232 +2014-07-22 04:30:00,2090 +2014-07-22 05:00:00,2532 +2014-07-22 05:30:00,4492 +2014-07-22 06:00:00,6830 +2014-07-22 06:30:00,11269 +2014-07-22 07:00:00,13635 +2014-07-22 07:30:00,16356 +2014-07-22 08:00:00,18449 +2014-07-22 08:30:00,20054 +2014-07-22 09:00:00,19462 +2014-07-22 09:30:00,19016 +2014-07-22 10:00:00,17349 +2014-07-22 10:30:00,17684 +2014-07-22 11:00:00,17412 +2014-07-22 11:30:00,17854 +2014-07-22 12:00:00,18649 +2014-07-22 12:30:00,19970 +2014-07-22 13:00:00,19168 +2014-07-22 13:30:00,19270 +2014-07-22 14:00:00,19463 +2014-07-22 14:30:00,18999 +2014-07-22 15:00:00,17998 +2014-07-22 15:30:00,17209 +2014-07-22 16:00:00,15581 +2014-07-22 16:30:00,14846 +2014-07-22 17:00:00,17832 +2014-07-22 17:30:00,21545 +2014-07-22 18:00:00,24769 +2014-07-22 18:30:00,25573 +2014-07-22 19:00:00,26243 +2014-07-22 19:30:00,25057 +2014-07-22 20:00:00,23381 +2014-07-22 20:30:00,22148 +2014-07-22 21:00:00,24590 +2014-07-22 21:30:00,24168 +2014-07-22 22:00:00,23364 +2014-07-22 22:30:00,23272 +2014-07-22 23:00:00,19939 +2014-07-22 23:30:00,17316 +2014-07-23 00:00:00,13369 +2014-07-23 00:30:00,10390 +2014-07-23 01:00:00,7994 +2014-07-23 01:30:00,5889 +2014-07-23 02:00:00,4711 +2014-07-23 02:30:00,3757 +2014-07-23 03:00:00,3066 +2014-07-23 03:30:00,2647 +2014-07-23 04:00:00,2645 +2014-07-23 04:30:00,2411 +2014-07-23 05:00:00,2600 +2014-07-23 05:30:00,4483 +2014-07-23 06:00:00,6956 +2014-07-23 06:30:00,11788 +2014-07-23 07:00:00,14098 +2014-07-23 07:30:00,17141 +2014-07-23 08:00:00,19124 +2014-07-23 08:30:00,20604 +2014-07-23 09:00:00,20114 +2014-07-23 09:30:00,19641 +2014-07-23 10:00:00,18423 +2014-07-23 10:30:00,18480 +2014-07-23 11:00:00,18318 +2014-07-23 11:30:00,19378 +2014-07-23 12:00:00,19585 +2014-07-23 12:30:00,19614 +2014-07-23 13:00:00,19295 +2014-07-23 13:30:00,19850 +2014-07-23 14:00:00,20120 +2014-07-23 14:30:00,19621 +2014-07-23 15:00:00,18809 +2014-07-23 15:30:00,17731 +2014-07-23 16:00:00,15483 +2014-07-23 16:30:00,15112 +2014-07-23 17:00:00,18183 +2014-07-23 17:30:00,21187 +2014-07-23 18:00:00,24034 +2014-07-23 18:30:00,25411 +2014-07-23 19:00:00,26528 +2014-07-23 19:30:00,26022 +2014-07-23 20:00:00,23253 +2014-07-23 20:30:00,25665 +2014-07-23 21:00:00,26600 +2014-07-23 21:30:00,24757 +2014-07-23 22:00:00,24337 +2014-07-23 22:30:00,24294 +2014-07-23 23:00:00,22087 +2014-07-23 23:30:00,19064 +2014-07-24 00:00:00,15542 +2014-07-24 00:30:00,12026 +2014-07-24 01:00:00,8678 +2014-07-24 01:30:00,7042 +2014-07-24 02:00:00,5355 +2014-07-24 02:30:00,4129 +2014-07-24 03:00:00,3109 +2014-07-24 03:30:00,2534 +2014-07-24 04:00:00,2788 +2014-07-24 04:30:00,2507 +2014-07-24 05:00:00,2671 +2014-07-24 05:30:00,4445 +2014-07-24 06:00:00,7163 +2014-07-24 06:30:00,11942 +2014-07-24 07:00:00,14544 +2014-07-24 07:30:00,17435 +2014-07-24 08:00:00,19254 +2014-07-24 08:30:00,20518 +2014-07-24 09:00:00,20003 +2014-07-24 09:30:00,19642 +2014-07-24 10:00:00,17626 +2014-07-24 10:30:00,18194 +2014-07-24 11:00:00,16975 +2014-07-24 11:30:00,18125 +2014-07-24 12:00:00,18555 +2014-07-24 12:30:00,18356 +2014-07-24 13:00:00,17683 +2014-07-24 13:30:00,18298 +2014-07-24 14:00:00,18613 +2014-07-24 14:30:00,18548 +2014-07-24 15:00:00,17742 +2014-07-24 15:30:00,16312 +2014-07-24 16:00:00,14782 +2014-07-24 16:30:00,13614 +2014-07-24 17:00:00,16220 +2014-07-24 17:30:00,18901 +2014-07-24 18:00:00,21794 +2014-07-24 18:30:00,23933 +2014-07-24 19:00:00,25474 +2014-07-24 19:30:00,24985 +2014-07-24 20:00:00,22877 +2014-07-24 20:30:00,22518 +2014-07-24 21:00:00,25246 +2014-07-24 21:30:00,25871 +2014-07-24 22:00:00,25324 +2014-07-24 22:30:00,25738 +2014-07-24 23:00:00,24763 +2014-07-24 23:30:00,23158 +2014-07-25 00:00:00,20525 +2014-07-25 00:30:00,17608 +2014-07-25 01:00:00,14436 +2014-07-25 01:30:00,11145 +2014-07-25 02:00:00,8915 +2014-07-25 02:30:00,7244 +2014-07-25 03:00:00,5856 +2014-07-25 03:30:00,4953 +2014-07-25 04:00:00,4546 +2014-07-25 04:30:00,3589 +2014-07-25 05:00:00,3516 +2014-07-25 05:30:00,5087 +2014-07-25 06:00:00,7102 +2014-07-25 06:30:00,10887 +2014-07-25 07:00:00,12988 +2014-07-25 07:30:00,15831 +2014-07-25 08:00:00,17326 +2014-07-25 08:30:00,19179 +2014-07-25 09:00:00,18805 +2014-07-25 09:30:00,17730 +2014-07-25 10:00:00,16439 +2014-07-25 10:30:00,16401 +2014-07-25 11:00:00,16240 +2014-07-25 11:30:00,17487 +2014-07-25 12:00:00,17622 +2014-07-25 12:30:00,17313 +2014-07-25 13:00:00,16647 +2014-07-25 13:30:00,16627 +2014-07-25 14:00:00,17646 +2014-07-25 14:30:00,17694 +2014-07-25 15:00:00,17661 +2014-07-25 15:30:00,15842 +2014-07-25 16:00:00,14950 +2014-07-25 16:30:00,13473 +2014-07-25 17:00:00,16633 +2014-07-25 17:30:00,19501 +2014-07-25 18:00:00,22009 +2014-07-25 18:30:00,23891 +2014-07-25 19:00:00,25196 +2014-07-25 19:30:00,24427 +2014-07-25 20:00:00,22357 +2014-07-25 20:30:00,22460 +2014-07-25 21:00:00,24066 +2014-07-25 21:30:00,23690 +2014-07-25 22:00:00,24491 +2014-07-25 22:30:00,25737 +2014-07-25 23:00:00,26688 +2014-07-25 23:30:00,26230 +2014-07-26 00:00:00,26300 +2014-07-26 00:30:00,24337 +2014-07-26 01:00:00,23124 +2014-07-26 01:30:00,20675 +2014-07-26 02:00:00,18663 +2014-07-26 02:30:00,15997 +2014-07-26 03:00:00,13405 +2014-07-26 03:30:00,11921 +2014-07-26 04:00:00,10203 +2014-07-26 04:30:00,6543 +2014-07-26 05:00:00,4719 +2014-07-26 05:30:00,3853 +2014-07-26 06:00:00,4116 +2014-07-26 06:30:00,5274 +2014-07-26 07:00:00,5331 +2014-07-26 07:30:00,6830 +2014-07-26 08:00:00,7303 +2014-07-26 08:30:00,9704 +2014-07-26 09:00:00,11209 +2014-07-26 09:30:00,13874 +2014-07-26 10:00:00,14548 +2014-07-26 10:30:00,16204 +2014-07-26 11:00:00,16938 +2014-07-26 11:30:00,18696 +2014-07-26 12:00:00,17585 +2014-07-26 12:30:00,18538 +2014-07-26 13:00:00,18206 +2014-07-26 13:30:00,17532 +2014-07-26 14:00:00,17657 +2014-07-26 14:30:00,17943 +2014-07-26 15:00:00,17698 +2014-07-26 15:30:00,18074 +2014-07-26 16:00:00,16920 +2014-07-26 16:30:00,18262 +2014-07-26 17:00:00,19013 +2014-07-26 17:30:00,19902 +2014-07-26 18:00:00,20449 +2014-07-26 18:30:00,22190 +2014-07-26 19:00:00,23099 +2014-07-26 19:30:00,22128 +2014-07-26 20:00:00,20110 +2014-07-26 20:30:00,20261 +2014-07-26 21:00:00,22299 +2014-07-26 21:30:00,21886 +2014-07-26 22:00:00,22600 +2014-07-26 22:30:00,24667 +2014-07-26 23:00:00,25662 +2014-07-26 23:30:00,25832 +2014-07-27 00:00:00,25659 +2014-07-27 00:30:00,24748 +2014-07-27 01:00:00,22552 +2014-07-27 01:30:00,20712 +2014-07-27 02:00:00,19122 +2014-07-27 02:30:00,16777 +2014-07-27 03:00:00,14475 +2014-07-27 03:30:00,12720 +2014-07-27 04:00:00,11239 +2014-07-27 04:30:00,7087 +2014-07-27 05:00:00,4896 +2014-07-27 05:30:00,3818 +2014-07-27 06:00:00,3449 +2014-07-27 06:30:00,3883 +2014-07-27 07:00:00,3810 +2014-07-27 07:30:00,5059 +2014-07-27 08:00:00,5476 +2014-07-27 08:30:00,7083 +2014-07-27 09:00:00,8153 +2014-07-27 09:30:00,10647 +2014-07-27 10:00:00,11873 +2014-07-27 10:30:00,14193 +2014-07-27 11:00:00,14938 +2014-07-27 11:30:00,16488 +2014-07-27 12:00:00,16996 +2014-07-27 12:30:00,17381 +2014-07-27 13:00:00,18173 +2014-07-27 13:30:00,17651 +2014-07-27 14:00:00,18698 +2014-07-27 14:30:00,18260 +2014-07-27 15:00:00,18181 +2014-07-27 15:30:00,17413 +2014-07-27 16:00:00,17230 +2014-07-27 16:30:00,18275 +2014-07-27 17:00:00,18883 +2014-07-27 17:30:00,19851 +2014-07-27 18:00:00,19673 +2014-07-27 18:30:00,20508 +2014-07-27 19:00:00,19557 +2014-07-27 19:30:00,18268 +2014-07-27 20:00:00,16615 +2014-07-27 20:30:00,16969 +2014-07-27 21:00:00,18252 +2014-07-27 21:30:00,16920 +2014-07-27 22:00:00,16356 +2014-07-27 22:30:00,15567 +2014-07-27 23:00:00,14278 +2014-07-27 23:30:00,12786 +2014-07-28 00:00:00,10323 +2014-07-28 00:30:00,7645 +2014-07-28 01:00:00,6791 +2014-07-28 01:30:00,5394 +2014-07-28 02:00:00,3694 +2014-07-28 02:30:00,2713 +2014-07-28 03:00:00,2376 +2014-07-28 03:30:00,2146 +2014-07-28 04:00:00,2250 +2014-07-28 04:30:00,2370 +2014-07-28 05:00:00,2906 +2014-07-28 05:30:00,4477 +2014-07-28 06:00:00,6446 +2014-07-28 06:30:00,9332 +2014-07-28 07:00:00,10577 +2014-07-28 07:30:00,11765 +2014-07-28 08:00:00,13452 +2014-07-28 08:30:00,14290 +2014-07-28 09:00:00,15239 +2014-07-28 09:30:00,14926 +2014-07-28 10:00:00,14475 +2014-07-28 10:30:00,14435 +2014-07-28 11:00:00,14103 +2014-07-28 11:30:00,15124 +2014-07-28 12:00:00,15376 +2014-07-28 12:30:00,15758 +2014-07-28 13:00:00,14653 +2014-07-28 13:30:00,15786 +2014-07-28 14:00:00,15554 +2014-07-28 14:30:00,16332 +2014-07-28 15:00:00,15602 +2014-07-28 15:30:00,14931 +2014-07-28 16:00:00,13817 +2014-07-28 16:30:00,13611 +2014-07-28 17:00:00,14678 +2014-07-28 17:30:00,16669 +2014-07-28 18:00:00,18171 +2014-07-28 18:30:00,20033 +2014-07-28 19:00:00,20467 +2014-07-28 19:30:00,20263 +2014-07-28 20:00:00,18901 +2014-07-28 20:30:00,18249 +2014-07-28 21:00:00,18421 +2014-07-28 21:30:00,17932 +2014-07-28 22:00:00,17568 +2014-07-28 22:30:00,16656 +2014-07-28 23:00:00,15574 +2014-07-28 23:30:00,13310 +2014-07-29 00:00:00,10468 +2014-07-29 00:30:00,7932 +2014-07-29 01:00:00,6080 +2014-07-29 01:30:00,4735 +2014-07-29 02:00:00,3834 +2014-07-29 02:30:00,2746 +2014-07-29 03:00:00,2244 +2014-07-29 03:30:00,1940 +2014-07-29 04:00:00,2066 +2014-07-29 04:30:00,2046 +2014-07-29 05:00:00,2295 +2014-07-29 05:30:00,4533 +2014-07-29 06:00:00,6655 +2014-07-29 06:30:00,11415 +2014-07-29 07:00:00,13863 +2014-07-29 07:30:00,15517 +2014-07-29 08:00:00,17106 +2014-07-29 08:30:00,18521 +2014-07-29 09:00:00,18016 +2014-07-29 09:30:00,17448 +2014-07-29 10:00:00,16131 +2014-07-29 10:30:00,16534 +2014-07-29 11:00:00,15744 +2014-07-29 11:30:00,17039 +2014-07-29 12:00:00,17357 +2014-07-29 12:30:00,16841 +2014-07-29 13:00:00,16797 +2014-07-29 13:30:00,17226 +2014-07-29 14:00:00,17550 +2014-07-29 14:30:00,17336 +2014-07-29 15:00:00,17343 +2014-07-29 15:30:00,16601 +2014-07-29 16:00:00,15090 +2014-07-29 16:30:00,14130 +2014-07-29 17:00:00,16356 +2014-07-29 17:30:00,19357 +2014-07-29 18:00:00,22313 +2014-07-29 18:30:00,23636 +2014-07-29 19:00:00,24822 +2014-07-29 19:30:00,24550 +2014-07-29 20:00:00,22761 +2014-07-29 20:30:00,23119 +2014-07-29 21:00:00,23658 +2014-07-29 21:30:00,23853 +2014-07-29 22:00:00,22995 +2014-07-29 22:30:00,21708 +2014-07-29 23:00:00,20231 +2014-07-29 23:30:00,17264 +2014-07-30 00:00:00,13549 +2014-07-30 00:30:00,10142 +2014-07-30 01:00:00,7783 +2014-07-30 01:30:00,6011 +2014-07-30 02:00:00,4935 +2014-07-30 02:30:00,3668 +2014-07-30 03:00:00,3092 +2014-07-30 03:30:00,2577 +2014-07-30 04:00:00,2772 +2014-07-30 04:30:00,2637 +2014-07-30 05:00:00,2605 +2014-07-30 05:30:00,4449 +2014-07-30 06:00:00,6912 +2014-07-30 06:30:00,11909 +2014-07-30 07:00:00,14184 +2014-07-30 07:30:00,17246 +2014-07-30 08:00:00,18393 +2014-07-30 08:30:00,19797 +2014-07-30 09:00:00,19101 +2014-07-30 09:30:00,18889 +2014-07-30 10:00:00,16897 +2014-07-30 10:30:00,16922 +2014-07-30 11:00:00,16218 +2014-07-30 11:30:00,17511 +2014-07-30 12:00:00,17941 +2014-07-30 12:30:00,17203 +2014-07-30 13:00:00,16879 +2014-07-30 13:30:00,17733 +2014-07-30 14:00:00,17587 +2014-07-30 14:30:00,17564 +2014-07-30 15:00:00,17003 +2014-07-30 15:30:00,15725 +2014-07-30 16:00:00,13832 +2014-07-30 16:30:00,12826 +2014-07-30 17:00:00,15603 +2014-07-30 17:30:00,18935 +2014-07-30 18:00:00,21175 +2014-07-30 18:30:00,22980 +2014-07-30 19:00:00,24644 +2014-07-30 19:30:00,24938 +2014-07-30 20:00:00,24095 +2014-07-30 20:30:00,23952 +2014-07-30 21:00:00,24913 +2014-07-30 21:30:00,25138 +2014-07-30 22:00:00,24972 +2014-07-30 22:30:00,23605 +2014-07-30 23:00:00,22758 +2014-07-30 23:30:00,19560 +2014-07-31 00:00:00,15486 +2014-07-31 00:30:00,12362 +2014-07-31 01:00:00,9401 +2014-07-31 01:30:00,7131 +2014-07-31 02:00:00,5949 +2014-07-31 02:30:00,4722 +2014-07-31 03:00:00,3792 +2014-07-31 03:30:00,3266 +2014-07-31 04:00:00,3267 +2014-07-31 04:30:00,2605 +2014-07-31 05:00:00,2562 +2014-07-31 05:30:00,4595 +2014-07-31 06:00:00,7263 +2014-07-31 06:30:00,11825 +2014-07-31 07:00:00,13863 +2014-07-31 07:30:00,16898 +2014-07-31 08:00:00,18741 +2014-07-31 08:30:00,20117 +2014-07-31 09:00:00,19185 +2014-07-31 09:30:00,17821 +2014-07-31 10:00:00,16721 +2014-07-31 10:30:00,16869 +2014-07-31 11:00:00,16188 +2014-07-31 11:30:00,17325 +2014-07-31 12:00:00,17849 +2014-07-31 12:30:00,17746 +2014-07-31 13:00:00,17208 +2014-07-31 13:30:00,17848 +2014-07-31 14:00:00,18132 +2014-07-31 14:30:00,18019 +2014-07-31 15:00:00,17120 +2014-07-31 15:30:00,15410 +2014-07-31 16:00:00,13868 +2014-07-31 16:30:00,13146 +2014-07-31 17:00:00,15734 +2014-07-31 17:30:00,18139 +2014-07-31 18:00:00,20969 +2014-07-31 18:30:00,23287 +2014-07-31 19:00:00,24723 +2014-07-31 19:30:00,25186 +2014-07-31 20:00:00,24192 +2014-07-31 20:30:00,24605 +2014-07-31 21:00:00,25805 +2014-07-31 21:30:00,25969 +2014-07-31 22:00:00,25593 +2014-07-31 22:30:00,24695 +2014-07-31 23:00:00,24316 +2014-07-31 23:30:00,23050 +2014-08-01 00:00:00,20138 +2014-08-01 00:30:00,17252 +2014-08-01 01:00:00,14103 +2014-08-01 01:30:00,10859 +2014-08-01 02:00:00,9242 +2014-08-01 02:30:00,7122 +2014-08-01 03:00:00,5763 +2014-08-01 03:30:00,4912 +2014-08-01 04:00:00,4648 +2014-08-01 04:30:00,3673 +2014-08-01 05:00:00,3322 +2014-08-01 05:30:00,4968 +2014-08-01 06:00:00,7209 +2014-08-01 06:30:00,11113 +2014-08-01 07:00:00,13143 +2014-08-01 07:30:00,15932 +2014-08-01 08:00:00,17355 +2014-08-01 08:30:00,19462 +2014-08-01 09:00:00,18581 +2014-08-01 09:30:00,18123 +2014-08-01 10:00:00,16476 +2014-08-01 10:30:00,16964 +2014-08-01 11:00:00,16009 +2014-08-01 11:30:00,16890 +2014-08-01 12:00:00,17069 +2014-08-01 12:30:00,16779 +2014-08-01 13:00:00,16654 +2014-08-01 13:30:00,16580 +2014-08-01 14:00:00,17407 +2014-08-01 14:30:00,17037 +2014-08-01 15:00:00,16651 +2014-08-01 15:30:00,15324 +2014-08-01 16:00:00,12987 +2014-08-01 16:30:00,12845 +2014-08-01 17:00:00,15439 +2014-08-01 17:30:00,18280 +2014-08-01 18:00:00,20439 +2014-08-01 18:30:00,22588 +2014-08-01 19:00:00,24047 +2014-08-01 19:30:00,23745 +2014-08-01 20:00:00,22420 +2014-08-01 20:30:00,23260 +2014-08-01 21:00:00,23454 +2014-08-01 21:30:00,22822 +2014-08-01 22:00:00,23704 +2014-08-01 22:30:00,24940 +2014-08-01 23:00:00,25951 +2014-08-01 23:30:00,25479 +2014-08-02 00:00:00,25234 +2014-08-02 00:30:00,23378 +2014-08-02 01:00:00,22180 +2014-08-02 01:30:00,20497 +2014-08-02 02:00:00,18933 +2014-08-02 02:30:00,17041 +2014-08-02 03:00:00,14983 +2014-08-02 03:30:00,12488 +2014-08-02 04:00:00,10554 +2014-08-02 04:30:00,6425 +2014-08-02 05:00:00,4384 +2014-08-02 05:30:00,3611 +2014-08-02 06:00:00,3904 +2014-08-02 06:30:00,5204 +2014-08-02 07:00:00,5624 +2014-08-02 07:30:00,7264 +2014-08-02 08:00:00,7501 +2014-08-02 08:30:00,9344 +2014-08-02 09:00:00,10021 +2014-08-02 09:30:00,12227 +2014-08-02 10:00:00,12203 +2014-08-02 10:30:00,14669 +2014-08-02 11:00:00,14849 +2014-08-02 11:30:00,16363 +2014-08-02 12:00:00,16489 +2014-08-02 12:30:00,17237 +2014-08-02 13:00:00,17955 +2014-08-02 13:30:00,17713 +2014-08-02 14:00:00,17418 +2014-08-02 14:30:00,17679 +2014-08-02 15:00:00,18014 +2014-08-02 15:30:00,18031 +2014-08-02 16:00:00,17643 +2014-08-02 16:30:00,17167 +2014-08-02 17:00:00,18409 +2014-08-02 17:30:00,20034 +2014-08-02 18:00:00,21113 +2014-08-02 18:30:00,21487 +2014-08-02 19:00:00,22872 +2014-08-02 19:30:00,22995 +2014-08-02 20:00:00,20896 +2014-08-02 20:30:00,21411 +2014-08-02 21:00:00,21273 +2014-08-02 21:30:00,21628 +2014-08-02 22:00:00,21872 +2014-08-02 22:30:00,23457 +2014-08-02 23:00:00,24958 +2014-08-02 23:30:00,24984 +2014-08-03 00:00:00,24613 +2014-08-03 00:30:00,23468 +2014-08-03 01:00:00,22125 +2014-08-03 01:30:00,22220 +2014-08-03 02:00:00,20171 +2014-08-03 02:30:00,17690 +2014-08-03 03:00:00,14908 +2014-08-03 03:30:00,13465 +2014-08-03 04:00:00,11663 +2014-08-03 04:30:00,6997 +2014-08-03 05:00:00,4810 +2014-08-03 05:30:00,3650 +2014-08-03 06:00:00,3561 +2014-08-03 06:30:00,4060 +2014-08-03 07:00:00,4382 +2014-08-03 07:30:00,5741 +2014-08-03 08:00:00,6722 +2014-08-03 08:30:00,7857 +2014-08-03 09:00:00,8424 +2014-08-03 09:30:00,10636 +2014-08-03 10:00:00,11811 +2014-08-03 10:30:00,13776 +2014-08-03 11:00:00,14821 +2014-08-03 11:30:00,16169 +2014-08-03 12:00:00,16715 +2014-08-03 12:30:00,17652 +2014-08-03 13:00:00,17360 +2014-08-03 13:30:00,17167 +2014-08-03 14:00:00,18546 +2014-08-03 14:30:00,17882 +2014-08-03 15:00:00,17268 +2014-08-03 15:30:00,17322 +2014-08-03 16:00:00,16500 +2014-08-03 16:30:00,16446 +2014-08-03 17:00:00,17317 +2014-08-03 17:30:00,18472 +2014-08-03 18:00:00,19503 +2014-08-03 18:30:00,19622 +2014-08-03 19:00:00,18900 +2014-08-03 19:30:00,17188 +2014-08-03 20:00:00,16880 +2014-08-03 20:30:00,17035 +2014-08-03 21:00:00,16790 +2014-08-03 21:30:00,17007 +2014-08-03 22:00:00,15893 +2014-08-03 22:30:00,14672 +2014-08-03 23:00:00,12667 +2014-08-03 23:30:00,10905 +2014-08-04 00:00:00,8882 +2014-08-04 00:30:00,6896 +2014-08-04 01:00:00,5417 +2014-08-04 01:30:00,4245 +2014-08-04 02:00:00,3478 +2014-08-04 02:30:00,2525 +2014-08-04 03:00:00,2288 +2014-08-04 03:30:00,2114 +2014-08-04 04:00:00,2212 +2014-08-04 04:30:00,2303 +2014-08-04 05:00:00,2482 +2014-08-04 05:30:00,4420 +2014-08-04 06:00:00,6426 +2014-08-04 06:30:00,10775 +2014-08-04 07:00:00,12795 +2014-08-04 07:30:00,15762 +2014-08-04 08:00:00,17271 +2014-08-04 08:30:00,18418 +2014-08-04 09:00:00,18214 +2014-08-04 09:30:00,17223 +2014-08-04 10:00:00,15029 +2014-08-04 10:30:00,15614 +2014-08-04 11:00:00,15026 +2014-08-04 11:30:00,16170 +2014-08-04 12:00:00,16111 +2014-08-04 12:30:00,16049 +2014-08-04 13:00:00,16084 +2014-08-04 13:30:00,16640 +2014-08-04 14:00:00,16634 +2014-08-04 14:30:00,17210 +2014-08-04 15:00:00,16546 +2014-08-04 15:30:00,16798 +2014-08-04 16:00:00,15124 +2014-08-04 16:30:00,14870 +2014-08-04 17:00:00,16956 +2014-08-04 17:30:00,18613 +2014-08-04 18:00:00,21126 +2014-08-04 18:30:00,22510 +2014-08-04 19:00:00,22568 +2014-08-04 19:30:00,21668 +2014-08-04 20:00:00,21659 +2014-08-04 20:30:00,21278 +2014-08-04 21:00:00,21346 +2014-08-04 21:30:00,20247 +2014-08-04 22:00:00,19945 +2014-08-04 22:30:00,17601 +2014-08-04 23:00:00,15750 +2014-08-04 23:30:00,12897 +2014-08-05 00:00:00,10385 +2014-08-05 00:30:00,8125 +2014-08-05 01:00:00,6294 +2014-08-05 01:30:00,4485 +2014-08-05 02:00:00,3669 +2014-08-05 02:30:00,3097 +2014-08-05 03:00:00,2484 +2014-08-05 03:30:00,2011 +2014-08-05 04:00:00,2175 +2014-08-05 04:30:00,2108 +2014-08-05 05:00:00,2252 +2014-08-05 05:30:00,4131 +2014-08-05 06:00:00,6599 +2014-08-05 06:30:00,11040 +2014-08-05 07:00:00,13290 +2014-08-05 07:30:00,16754 +2014-08-05 08:00:00,18504 +2014-08-05 08:30:00,19897 +2014-08-05 09:00:00,19208 +2014-08-05 09:30:00,18253 +2014-08-05 10:00:00,16976 +2014-08-05 10:30:00,16888 +2014-08-05 11:00:00,16080 +2014-08-05 11:30:00,17328 +2014-08-05 12:00:00,17901 +2014-08-05 12:30:00,18121 +2014-08-05 13:00:00,17478 +2014-08-05 13:30:00,18616 +2014-08-05 14:00:00,18576 +2014-08-05 14:30:00,18465 +2014-08-05 15:00:00,17373 +2014-08-05 15:30:00,16457 +2014-08-05 16:00:00,14626 +2014-08-05 16:30:00,13466 +2014-08-05 17:00:00,16213 +2014-08-05 17:30:00,18715 +2014-08-05 18:00:00,21356 +2014-08-05 18:30:00,22899 +2014-08-05 19:00:00,23782 +2014-08-05 19:30:00,22778 +2014-08-05 20:00:00,22401 +2014-08-05 20:30:00,22986 +2014-08-05 21:00:00,23340 +2014-08-05 21:30:00,24046 +2014-08-05 22:00:00,22726 +2014-08-05 22:30:00,20819 +2014-08-05 23:00:00,19149 +2014-08-05 23:30:00,16406 +2014-08-06 00:00:00,13399 +2014-08-06 00:30:00,10273 +2014-08-06 01:00:00,7723 +2014-08-06 01:30:00,5860 +2014-08-06 02:00:00,4664 +2014-08-06 02:30:00,3875 +2014-08-06 03:00:00,3057 +2014-08-06 03:30:00,2675 +2014-08-06 04:00:00,2803 +2014-08-06 04:30:00,2364 +2014-08-06 05:00:00,2602 +2014-08-06 05:30:00,4488 +2014-08-06 06:00:00,6944 +2014-08-06 06:30:00,11761 +2014-08-06 07:00:00,14631 +2014-08-06 07:30:00,17455 +2014-08-06 08:00:00,19107 +2014-08-06 08:30:00,19737 +2014-08-06 09:00:00,18707 +2014-08-06 09:30:00,18466 +2014-08-06 10:00:00,16630 +2014-08-06 10:30:00,17291 +2014-08-06 11:00:00,15977 +2014-08-06 11:30:00,17643 +2014-08-06 12:00:00,17959 +2014-08-06 12:30:00,17652 +2014-08-06 13:00:00,17197 +2014-08-06 13:30:00,17949 +2014-08-06 14:00:00,17918 +2014-08-06 14:30:00,17534 +2014-08-06 15:00:00,17350 +2014-08-06 15:30:00,16327 +2014-08-06 16:00:00,14582 +2014-08-06 16:30:00,13374 +2014-08-06 17:00:00,16090 +2014-08-06 17:30:00,18989 +2014-08-06 18:00:00,21429 +2014-08-06 18:30:00,23892 +2014-08-06 19:00:00,24481 +2014-08-06 19:30:00,24197 +2014-08-06 20:00:00,23556 +2014-08-06 20:30:00,23555 +2014-08-06 21:00:00,24355 +2014-08-06 21:30:00,24699 +2014-08-06 22:00:00,23955 +2014-08-06 22:30:00,22754 +2014-08-06 23:00:00,21450 +2014-08-06 23:30:00,18427 +2014-08-07 00:00:00,15411 +2014-08-07 00:30:00,11851 +2014-08-07 01:00:00,9317 +2014-08-07 01:30:00,6973 +2014-08-07 02:00:00,5807 +2014-08-07 02:30:00,4812 +2014-08-07 03:00:00,3738 +2014-08-07 03:30:00,3108 +2014-08-07 04:00:00,3199 +2014-08-07 04:30:00,2642 +2014-08-07 05:00:00,2704 +2014-08-07 05:30:00,4812 +2014-08-07 06:00:00,6873 +2014-08-07 06:30:00,11765 +2014-08-07 07:00:00,13641 +2014-08-07 07:30:00,17052 +2014-08-07 08:00:00,18252 +2014-08-07 08:30:00,19400 +2014-08-07 09:00:00,18455 +2014-08-07 09:30:00,18277 +2014-08-07 10:00:00,16719 +2014-08-07 10:30:00,16764 +2014-08-07 11:00:00,16636 +2014-08-07 11:30:00,18205 +2014-08-07 12:00:00,18034 +2014-08-07 12:30:00,17700 +2014-08-07 13:00:00,16970 +2014-08-07 13:30:00,17983 +2014-08-07 14:00:00,18230 +2014-08-07 14:30:00,18073 +2014-08-07 15:00:00,17471 +2014-08-07 15:30:00,15872 +2014-08-07 16:00:00,13784 +2014-08-07 16:30:00,13341 +2014-08-07 17:00:00,15857 +2014-08-07 17:30:00,18396 +2014-08-07 18:00:00,21500 +2014-08-07 18:30:00,23368 +2014-08-07 19:00:00,24977 +2014-08-07 19:30:00,24747 +2014-08-07 20:00:00,23895 +2014-08-07 20:30:00,24153 +2014-08-07 21:00:00,24778 +2014-08-07 21:30:00,24533 +2014-08-07 22:00:00,24478 +2014-08-07 22:30:00,24253 +2014-08-07 23:00:00,23299 +2014-08-07 23:30:00,22155 +2014-08-08 00:00:00,19329 +2014-08-08 00:30:00,15933 +2014-08-08 01:00:00,13410 +2014-08-08 01:30:00,10614 +2014-08-08 02:00:00,8934 +2014-08-08 02:30:00,7079 +2014-08-08 03:00:00,5803 +2014-08-08 03:30:00,4992 +2014-08-08 04:00:00,4555 +2014-08-08 04:30:00,3601 +2014-08-08 05:00:00,3643 +2014-08-08 05:30:00,4924 +2014-08-08 06:00:00,6649 +2014-08-08 06:30:00,10748 +2014-08-08 07:00:00,12731 +2014-08-08 07:30:00,15178 +2014-08-08 08:00:00,16731 +2014-08-08 08:30:00,18521 +2014-08-08 09:00:00,17924 +2014-08-08 09:30:00,17129 +2014-08-08 10:00:00,15820 +2014-08-08 10:30:00,16405 +2014-08-08 11:00:00,15710 +2014-08-08 11:30:00,16406 +2014-08-08 12:00:00,17040 +2014-08-08 12:30:00,16998 +2014-08-08 13:00:00,16524 +2014-08-08 13:30:00,17157 +2014-08-08 14:00:00,17341 +2014-08-08 14:30:00,17716 +2014-08-08 15:00:00,17135 +2014-08-08 15:30:00,15591 +2014-08-08 16:00:00,13942 +2014-08-08 16:30:00,13215 +2014-08-08 17:00:00,16320 +2014-08-08 17:30:00,19539 +2014-08-08 18:00:00,21553 +2014-08-08 18:30:00,23100 +2014-08-08 19:00:00,24705 +2014-08-08 19:30:00,23913 +2014-08-08 20:00:00,22283 +2014-08-08 20:30:00,22808 +2014-08-08 21:00:00,22239 +2014-08-08 21:30:00,21989 +2014-08-08 22:00:00,22689 +2014-08-08 22:30:00,23756 +2014-08-08 23:00:00,24182 +2014-08-08 23:30:00,24184 +2014-08-09 00:00:00,23849 +2014-08-09 00:30:00,22495 +2014-08-09 01:00:00,20367 +2014-08-09 01:30:00,18368 +2014-08-09 02:00:00,17499 +2014-08-09 02:30:00,15607 +2014-08-09 03:00:00,13502 +2014-08-09 03:30:00,11670 +2014-08-09 04:00:00,9956 +2014-08-09 04:30:00,5950 +2014-08-09 05:00:00,4023 +2014-08-09 05:30:00,3499 +2014-08-09 06:00:00,3663 +2014-08-09 06:30:00,4608 +2014-08-09 07:00:00,5226 +2014-08-09 07:30:00,6154 +2014-08-09 08:00:00,7082 +2014-08-09 08:30:00,8917 +2014-08-09 09:00:00,9965 +2014-08-09 09:30:00,12488 +2014-08-09 10:00:00,12845 +2014-08-09 10:30:00,14960 +2014-08-09 11:00:00,15195 +2014-08-09 11:30:00,16331 +2014-08-09 12:00:00,16385 +2014-08-09 12:30:00,16704 +2014-08-09 13:00:00,17450 +2014-08-09 13:30:00,17458 +2014-08-09 14:00:00,16849 +2014-08-09 14:30:00,16880 +2014-08-09 15:00:00,16951 +2014-08-09 15:30:00,16926 +2014-08-09 16:00:00,16376 +2014-08-09 16:30:00,16454 +2014-08-09 17:00:00,17768 +2014-08-09 17:30:00,19335 +2014-08-09 18:00:00,20035 +2014-08-09 18:30:00,21023 +2014-08-09 19:00:00,21977 +2014-08-09 19:30:00,20987 +2014-08-09 20:00:00,19159 +2014-08-09 20:30:00,19801 +2014-08-09 21:00:00,20361 +2014-08-09 21:30:00,20651 +2014-08-09 22:00:00,20833 +2014-08-09 22:30:00,22467 +2014-08-09 23:00:00,23285 +2014-08-09 23:30:00,23652 +2014-08-10 00:00:00,23701 +2014-08-10 00:30:00,21532 +2014-08-10 01:00:00,20557 +2014-08-10 01:30:00,18415 +2014-08-10 02:00:00,17813 +2014-08-10 02:30:00,16223 +2014-08-10 03:00:00,13777 +2014-08-10 03:30:00,11818 +2014-08-10 04:00:00,10499 +2014-08-10 04:30:00,6180 +2014-08-10 05:00:00,4096 +2014-08-10 05:30:00,3476 +2014-08-10 06:00:00,3259 +2014-08-10 06:30:00,3468 +2014-08-10 07:00:00,3690 +2014-08-10 07:30:00,5047 +2014-08-10 08:00:00,5503 +2014-08-10 08:30:00,6667 +2014-08-10 09:00:00,8014 +2014-08-10 09:30:00,10532 +2014-08-10 10:00:00,11486 +2014-08-10 10:30:00,13733 +2014-08-10 11:00:00,14525 +2014-08-10 11:30:00,15314 +2014-08-10 12:00:00,16013 +2014-08-10 12:30:00,16268 +2014-08-10 13:00:00,16610 +2014-08-10 13:30:00,16496 +2014-08-10 14:00:00,16885 +2014-08-10 14:30:00,16396 +2014-08-10 15:00:00,15796 +2014-08-10 15:30:00,15545 +2014-08-10 16:00:00,15642 +2014-08-10 16:30:00,15531 +2014-08-10 17:00:00,16410 +2014-08-10 17:30:00,17684 +2014-08-10 18:00:00,17992 +2014-08-10 18:30:00,18285 +2014-08-10 19:00:00,17697 +2014-08-10 19:30:00,16452 +2014-08-10 20:00:00,16195 +2014-08-10 20:30:00,16545 +2014-08-10 21:00:00,15989 +2014-08-10 21:30:00,15763 +2014-08-10 22:00:00,14767 +2014-08-10 22:30:00,14157 +2014-08-10 23:00:00,12939 +2014-08-10 23:30:00,11801 +2014-08-11 00:00:00,9595 +2014-08-11 00:30:00,7267 +2014-08-11 01:00:00,5616 +2014-08-11 01:30:00,4253 +2014-08-11 02:00:00,3261 +2014-08-11 02:30:00,2770 +2014-08-11 03:00:00,2240 +2014-08-11 03:30:00,2084 +2014-08-11 04:00:00,2407 +2014-08-11 04:30:00,2262 +2014-08-11 05:00:00,2728 +2014-08-11 05:30:00,4273 +2014-08-11 06:00:00,6194 +2014-08-11 06:30:00,10158 +2014-08-11 07:00:00,12697 +2014-08-11 07:30:00,14281 +2014-08-11 08:00:00,16009 +2014-08-11 08:30:00,17659 +2014-08-11 09:00:00,17250 +2014-08-11 09:30:00,16687 +2014-08-11 10:00:00,14465 +2014-08-11 10:30:00,14373 +2014-08-11 11:00:00,14599 +2014-08-11 11:30:00,15212 +2014-08-11 12:00:00,16026 +2014-08-11 12:30:00,15526 +2014-08-11 13:00:00,15672 +2014-08-11 13:30:00,16419 +2014-08-11 14:00:00,16083 +2014-08-11 14:30:00,16352 +2014-08-11 15:00:00,16535 +2014-08-11 15:30:00,16248 +2014-08-11 16:00:00,14959 +2014-08-11 16:30:00,14201 +2014-08-11 17:00:00,16142 +2014-08-11 17:30:00,18163 +2014-08-11 18:00:00,20715 +2014-08-11 18:30:00,21256 +2014-08-11 19:00:00,21528 +2014-08-11 19:30:00,20720 +2014-08-11 20:00:00,20604 +2014-08-11 20:30:00,19786 +2014-08-11 21:00:00,19471 +2014-08-11 21:30:00,19116 +2014-08-11 22:00:00,18358 +2014-08-11 22:30:00,16440 +2014-08-11 23:00:00,14821 +2014-08-11 23:30:00,12022 +2014-08-12 00:00:00,9701 +2014-08-12 00:30:00,7757 +2014-08-12 01:00:00,6003 +2014-08-12 01:30:00,4648 +2014-08-12 02:00:00,3805 +2014-08-12 02:30:00,3093 +2014-08-12 03:00:00,2487 +2014-08-12 03:30:00,2164 +2014-08-12 04:00:00,2288 +2014-08-12 04:30:00,2083 +2014-08-12 05:00:00,2452 +2014-08-12 05:30:00,4282 +2014-08-12 06:00:00,6142 +2014-08-12 06:30:00,10744 +2014-08-12 07:00:00,13034 +2014-08-12 07:30:00,15724 +2014-08-12 08:00:00,18102 +2014-08-12 08:30:00,19748 +2014-08-12 09:00:00,18510 +2014-08-12 09:30:00,17502 +2014-08-12 10:00:00,15832 +2014-08-12 10:30:00,15940 +2014-08-12 11:00:00,15064 +2014-08-12 11:30:00,16927 +2014-08-12 12:00:00,16871 +2014-08-12 12:30:00,17325 +2014-08-12 13:00:00,16350 +2014-08-12 13:30:00,17244 +2014-08-12 14:00:00,18778 +2014-08-12 14:30:00,19036 +2014-08-12 15:00:00,18549 +2014-08-12 15:30:00,16263 +2014-08-12 16:00:00,13781 +2014-08-12 16:30:00,13197 +2014-08-12 17:00:00,14909 +2014-08-12 17:30:00,18695 +2014-08-12 18:00:00,21494 +2014-08-12 18:30:00,23426 +2014-08-12 19:00:00,25057 +2014-08-12 19:30:00,26062 +2014-08-12 20:00:00,20944 +2014-08-12 20:30:00,20583 +2014-08-12 21:00:00,22343 +2014-08-12 21:30:00,22704 +2014-08-12 22:00:00,20090 +2014-08-12 22:30:00,21338 +2014-08-12 23:00:00,18853 +2014-08-12 23:30:00,14548 +2014-08-13 00:00:00,12933 +2014-08-13 00:30:00,11301 +2014-08-13 01:00:00,8095 +2014-08-13 01:30:00,6266 +2014-08-13 02:00:00,4752 +2014-08-13 02:30:00,3446 +2014-08-13 03:00:00,2793 +2014-08-13 03:30:00,2333 +2014-08-13 04:00:00,2468 +2014-08-13 04:30:00,2059 +2014-08-13 05:00:00,2411 +2014-08-13 05:30:00,4204 +2014-08-13 06:00:00,6516 +2014-08-13 06:30:00,11706 +2014-08-13 07:00:00,14894 +2014-08-13 07:30:00,17894 +2014-08-13 08:00:00,18081 +2014-08-13 08:30:00,19597 +2014-08-13 09:00:00,19047 +2014-08-13 09:30:00,19060 +2014-08-13 10:00:00,17041 +2014-08-13 10:30:00,16354 +2014-08-13 11:00:00,15259 +2014-08-13 11:30:00,16470 +2014-08-13 12:00:00,17146 +2014-08-13 12:30:00,17220 +2014-08-13 13:00:00,16932 +2014-08-13 13:30:00,17515 +2014-08-13 14:00:00,17285 +2014-08-13 14:30:00,17467 +2014-08-13 15:00:00,16869 +2014-08-13 15:30:00,16383 +2014-08-13 16:00:00,14727 +2014-08-13 16:30:00,14059 +2014-08-13 17:00:00,16707 +2014-08-13 17:30:00,20486 +2014-08-13 18:00:00,22207 +2014-08-13 18:30:00,23183 +2014-08-13 19:00:00,24873 +2014-08-13 19:30:00,24028 +2014-08-13 20:00:00,22822 +2014-08-13 20:30:00,22831 +2014-08-13 21:00:00,23148 +2014-08-13 21:30:00,23005 +2014-08-13 22:00:00,23506 +2014-08-13 22:30:00,22493 +2014-08-13 23:00:00,20703 +2014-08-13 23:30:00,18013 +2014-08-14 00:00:00,14505 +2014-08-14 00:30:00,11389 +2014-08-14 01:00:00,8924 +2014-08-14 01:30:00,7135 +2014-08-14 02:00:00,5649 +2014-08-14 02:30:00,4544 +2014-08-14 03:00:00,3542 +2014-08-14 03:30:00,3086 +2014-08-14 04:00:00,3091 +2014-08-14 04:30:00,2590 +2014-08-14 05:00:00,2706 +2014-08-14 05:30:00,4336 +2014-08-14 06:00:00,6237 +2014-08-14 06:30:00,10724 +2014-08-14 07:00:00,13183 +2014-08-14 07:30:00,15723 +2014-08-14 08:00:00,17752 +2014-08-14 08:30:00,19645 +2014-08-14 09:00:00,18448 +2014-08-14 09:30:00,17796 +2014-08-14 10:00:00,16361 +2014-08-14 10:30:00,16636 +2014-08-14 11:00:00,15606 +2014-08-14 11:30:00,17003 +2014-08-14 12:00:00,17538 +2014-08-14 12:30:00,16979 +2014-08-14 13:00:00,16844 +2014-08-14 13:30:00,17372 +2014-08-14 14:00:00,17667 +2014-08-14 14:30:00,17859 +2014-08-14 15:00:00,17357 +2014-08-14 15:30:00,16100 +2014-08-14 16:00:00,14347 +2014-08-14 16:30:00,13630 +2014-08-14 17:00:00,16197 +2014-08-14 17:30:00,18210 +2014-08-14 18:00:00,21282 +2014-08-14 18:30:00,22623 +2014-08-14 19:00:00,24035 +2014-08-14 19:30:00,24056 +2014-08-14 20:00:00,23987 +2014-08-14 20:30:00,24289 +2014-08-14 21:00:00,24134 +2014-08-14 21:30:00,24141 +2014-08-14 22:00:00,24661 +2014-08-14 22:30:00,24114 +2014-08-14 23:00:00,23611 +2014-08-14 23:30:00,21287 +2014-08-15 00:00:00,19491 +2014-08-15 00:30:00,16128 +2014-08-15 01:00:00,13044 +2014-08-15 01:30:00,9984 +2014-08-15 02:00:00,8526 +2014-08-15 02:30:00,7009 +2014-08-15 03:00:00,5525 +2014-08-15 03:30:00,4688 +2014-08-15 04:00:00,4665 +2014-08-15 04:30:00,3542 +2014-08-15 05:00:00,3163 +2014-08-15 05:30:00,4547 +2014-08-15 06:00:00,6346 +2014-08-15 06:30:00,10699 +2014-08-15 07:00:00,12050 +2014-08-15 07:30:00,14555 +2014-08-15 08:00:00,16322 +2014-08-15 08:30:00,18762 +2014-08-15 09:00:00,18321 +2014-08-15 09:30:00,17235 +2014-08-15 10:00:00,15496 +2014-08-15 10:30:00,15859 +2014-08-15 11:00:00,15559 +2014-08-15 11:30:00,16873 +2014-08-15 12:00:00,17350 +2014-08-15 12:30:00,16611 +2014-08-15 13:00:00,16543 +2014-08-15 13:30:00,16753 +2014-08-15 14:00:00,17552 +2014-08-15 14:30:00,17361 +2014-08-15 15:00:00,16508 +2014-08-15 15:30:00,15776 +2014-08-15 16:00:00,14232 +2014-08-15 16:30:00,13784 +2014-08-15 17:00:00,16867 +2014-08-15 17:30:00,19906 +2014-08-15 18:00:00,21668 +2014-08-15 18:30:00,23098 +2014-08-15 19:00:00,24319 +2014-08-15 19:30:00,23800 +2014-08-15 20:00:00,22649 +2014-08-15 20:30:00,23190 +2014-08-15 21:00:00,22209 +2014-08-15 21:30:00,22105 +2014-08-15 22:00:00,23041 +2014-08-15 22:30:00,23974 +2014-08-15 23:00:00,24057 +2014-08-15 23:30:00,23997 +2014-08-16 00:00:00,23174 +2014-08-16 00:30:00,21534 +2014-08-16 01:00:00,20240 +2014-08-16 01:30:00,18434 +2014-08-16 02:00:00,17382 +2014-08-16 02:30:00,14870 +2014-08-16 03:00:00,12921 +2014-08-16 03:30:00,11258 +2014-08-16 04:00:00,9869 +2014-08-16 04:30:00,6061 +2014-08-16 05:00:00,4150 +2014-08-16 05:30:00,3688 +2014-08-16 06:00:00,3811 +2014-08-16 06:30:00,4938 +2014-08-16 07:00:00,5248 +2014-08-16 07:30:00,6972 +2014-08-16 08:00:00,7885 +2014-08-16 08:30:00,9526 +2014-08-16 09:00:00,10750 +2014-08-16 09:30:00,12899 +2014-08-16 10:00:00,12950 +2014-08-16 10:30:00,14145 +2014-08-16 11:00:00,14724 +2014-08-16 11:30:00,15667 +2014-08-16 12:00:00,16016 +2014-08-16 12:30:00,16245 +2014-08-16 13:00:00,17156 +2014-08-16 13:30:00,17194 +2014-08-16 14:00:00,16993 +2014-08-16 14:30:00,17286 +2014-08-16 15:00:00,17109 +2014-08-16 15:30:00,17115 +2014-08-16 16:00:00,16437 +2014-08-16 16:30:00,15986 +2014-08-16 17:00:00,17735 +2014-08-16 17:30:00,19247 +2014-08-16 18:00:00,20555 +2014-08-16 18:30:00,21424 +2014-08-16 19:00:00,22252 +2014-08-16 19:30:00,21379 +2014-08-16 20:00:00,20043 +2014-08-16 20:30:00,19941 +2014-08-16 21:00:00,19947 +2014-08-16 21:30:00,20601 +2014-08-16 22:00:00,21109 +2014-08-16 22:30:00,22185 +2014-08-16 23:00:00,22255 +2014-08-16 23:30:00,23286 +2014-08-17 00:00:00,23263 +2014-08-17 00:30:00,22356 +2014-08-17 01:00:00,20247 +2014-08-17 01:30:00,19261 +2014-08-17 02:00:00,18335 +2014-08-17 02:30:00,15881 +2014-08-17 03:00:00,14076 +2014-08-17 03:30:00,12215 +2014-08-17 04:00:00,10492 +2014-08-17 04:30:00,6297 +2014-08-17 05:00:00,4328 +2014-08-17 05:30:00,3426 +2014-08-17 06:00:00,3367 +2014-08-17 06:30:00,3930 +2014-08-17 07:00:00,3834 +2014-08-17 07:30:00,5166 +2014-08-17 08:00:00,6704 +2014-08-17 08:30:00,8252 +2014-08-17 09:00:00,8872 +2014-08-17 09:30:00,10157 +2014-08-17 10:00:00,11490 +2014-08-17 10:30:00,13701 +2014-08-17 11:00:00,14623 +2014-08-17 11:30:00,15373 +2014-08-17 12:00:00,15798 +2014-08-17 12:30:00,16478 +2014-08-17 13:00:00,16986 +2014-08-17 13:30:00,16375 +2014-08-17 14:00:00,17545 +2014-08-17 14:30:00,17532 +2014-08-17 15:00:00,16751 +2014-08-17 15:30:00,16425 +2014-08-17 16:00:00,16231 +2014-08-17 16:30:00,16257 +2014-08-17 17:00:00,16875 +2014-08-17 17:30:00,18041 +2014-08-17 18:00:00,18055 +2014-08-17 18:30:00,18276 +2014-08-17 19:00:00,18030 +2014-08-17 19:30:00,17081 +2014-08-17 20:00:00,16006 +2014-08-17 20:30:00,16544 +2014-08-17 21:00:00,16394 +2014-08-17 21:30:00,16467 +2014-08-17 22:00:00,15480 +2014-08-17 22:30:00,14150 +2014-08-17 23:00:00,12599 +2014-08-17 23:30:00,11942 +2014-08-18 00:00:00,9875 +2014-08-18 00:30:00,7581 +2014-08-18 01:00:00,5815 +2014-08-18 01:30:00,4164 +2014-08-18 02:00:00,3757 +2014-08-18 02:30:00,2863 +2014-08-18 03:00:00,2372 +2014-08-18 03:30:00,1951 +2014-08-18 04:00:00,2353 +2014-08-18 04:30:00,2332 +2014-08-18 05:00:00,2702 +2014-08-18 05:30:00,4271 +2014-08-18 06:00:00,6107 +2014-08-18 06:30:00,10069 +2014-08-18 07:00:00,11882 +2014-08-18 07:30:00,14095 +2014-08-18 08:00:00,15597 +2014-08-18 08:30:00,18046 +2014-08-18 09:00:00,17168 +2014-08-18 09:30:00,16333 +2014-08-18 10:00:00,14794 +2014-08-18 10:30:00,14653 +2014-08-18 11:00:00,14058 +2014-08-18 11:30:00,15162 +2014-08-18 12:00:00,15013 +2014-08-18 12:30:00,15376 +2014-08-18 13:00:00,14922 +2014-08-18 13:30:00,16122 +2014-08-18 14:00:00,16229 +2014-08-18 14:30:00,16481 +2014-08-18 15:00:00,16424 +2014-08-18 15:30:00,15719 +2014-08-18 16:00:00,15087 +2014-08-18 16:30:00,14465 +2014-08-18 17:00:00,16588 +2014-08-18 17:30:00,17923 +2014-08-18 18:00:00,20054 +2014-08-18 18:30:00,21402 +2014-08-18 19:00:00,21523 +2014-08-18 19:30:00,20447 +2014-08-18 20:00:00,20431 +2014-08-18 20:30:00,19708 +2014-08-18 21:00:00,19821 +2014-08-18 21:30:00,19291 +2014-08-18 22:00:00,18093 +2014-08-18 22:30:00,16177 +2014-08-18 23:00:00,14282 +2014-08-18 23:30:00,11852 +2014-08-19 00:00:00,9601 +2014-08-19 00:30:00,7532 +2014-08-19 01:00:00,5866 +2014-08-19 01:30:00,4515 +2014-08-19 02:00:00,3787 +2014-08-19 02:30:00,2947 +2014-08-19 03:00:00,2237 +2014-08-19 03:30:00,2022 +2014-08-19 04:00:00,2313 +2014-08-19 04:30:00,1932 +2014-08-19 05:00:00,2200 +2014-08-19 05:30:00,4019 +2014-08-19 06:00:00,5928 +2014-08-19 06:30:00,9987 +2014-08-19 07:00:00,12094 +2014-08-19 07:30:00,14716 +2014-08-19 08:00:00,16670 +2014-08-19 08:30:00,18950 +2014-08-19 09:00:00,17964 +2014-08-19 09:30:00,17783 +2014-08-19 10:00:00,15966 +2014-08-19 10:30:00,15946 +2014-08-19 11:00:00,15205 +2014-08-19 11:30:00,16175 +2014-08-19 12:00:00,16790 +2014-08-19 12:30:00,17284 +2014-08-19 13:00:00,16153 +2014-08-19 13:30:00,17673 +2014-08-19 14:00:00,18157 +2014-08-19 14:30:00,17858 +2014-08-19 15:00:00,17087 +2014-08-19 15:30:00,16385 +2014-08-19 16:00:00,15063 +2014-08-19 16:30:00,13909 +2014-08-19 17:00:00,16462 +2014-08-19 17:30:00,18855 +2014-08-19 18:00:00,21606 +2014-08-19 18:30:00,22910 +2014-08-19 19:00:00,23691 +2014-08-19 19:30:00,22752 +2014-08-19 20:00:00,22414 +2014-08-19 20:30:00,21896 +2014-08-19 21:00:00,21887 +2014-08-19 21:30:00,21845 +2014-08-19 22:00:00,21436 +2014-08-19 22:30:00,19787 +2014-08-19 23:00:00,18369 +2014-08-19 23:30:00,15132 +2014-08-20 00:00:00,12168 +2014-08-20 00:30:00,9288 +2014-08-20 01:00:00,7465 +2014-08-20 01:30:00,5656 +2014-08-20 02:00:00,4693 +2014-08-20 02:30:00,3694 +2014-08-20 03:00:00,3027 +2014-08-20 03:30:00,2587 +2014-08-20 04:00:00,2733 +2014-08-20 04:30:00,2216 +2014-08-20 05:00:00,2289 +2014-08-20 05:30:00,3937 +2014-08-20 06:00:00,5718 +2014-08-20 06:30:00,10053 +2014-08-20 07:00:00,12154 +2014-08-20 07:30:00,15289 +2014-08-20 08:00:00,17424 +2014-08-20 08:30:00,19403 +2014-08-20 09:00:00,18488 +2014-08-20 09:30:00,17881 +2014-08-20 10:00:00,16397 +2014-08-20 10:30:00,16319 +2014-08-20 11:00:00,15923 +2014-08-20 11:30:00,17200 +2014-08-20 12:00:00,17140 +2014-08-20 12:30:00,17422 +2014-08-20 13:00:00,17393 +2014-08-20 13:30:00,17612 +2014-08-20 14:00:00,17475 +2014-08-20 14:30:00,17685 +2014-08-20 15:00:00,16765 +2014-08-20 15:30:00,15701 +2014-08-20 16:00:00,14276 +2014-08-20 16:30:00,13715 +2014-08-20 17:00:00,15577 +2014-08-20 17:30:00,18831 +2014-08-20 18:00:00,21971 +2014-08-20 18:30:00,23814 +2014-08-20 19:00:00,24147 +2014-08-20 19:30:00,23300 +2014-08-20 20:00:00,23237 +2014-08-20 20:30:00,23018 +2014-08-20 21:00:00,22814 +2014-08-20 21:30:00,22716 +2014-08-20 22:00:00,22838 +2014-08-20 22:30:00,21546 +2014-08-20 23:00:00,19205 +2014-08-20 23:30:00,17041 +2014-08-21 00:00:00,14569 +2014-08-21 00:30:00,11396 +2014-08-21 01:00:00,8719 +2014-08-21 01:30:00,6717 +2014-08-21 02:00:00,5410 +2014-08-21 02:30:00,4458 +2014-08-21 03:00:00,3703 +2014-08-21 03:30:00,3166 +2014-08-21 04:00:00,3256 +2014-08-21 04:30:00,2805 +2014-08-21 05:00:00,3067 +2014-08-21 05:30:00,4424 +2014-08-21 06:00:00,6076 +2014-08-21 06:30:00,10251 +2014-08-21 07:00:00,12400 +2014-08-21 07:30:00,15229 +2014-08-21 08:00:00,17252 +2014-08-21 08:30:00,19332 +2014-08-21 09:00:00,18249 +2014-08-21 09:30:00,18059 +2014-08-21 10:00:00,15889 +2014-08-21 10:30:00,16234 +2014-08-21 11:00:00,15730 +2014-08-21 11:30:00,16578 +2014-08-21 12:00:00,17363 +2014-08-21 12:30:00,16708 +2014-08-21 13:00:00,16809 +2014-08-21 13:30:00,17193 +2014-08-21 14:00:00,18105 +2014-08-21 14:30:00,19035 +2014-08-21 15:00:00,17230 +2014-08-21 15:30:00,15928 +2014-08-21 16:00:00,14180 +2014-08-21 16:30:00,13252 +2014-08-21 17:00:00,15256 +2014-08-21 17:30:00,17773 +2014-08-21 18:00:00,21104 +2014-08-21 18:30:00,23557 +2014-08-21 19:00:00,24797 +2014-08-21 19:30:00,24794 +2014-08-21 20:00:00,24154 +2014-08-21 20:30:00,24501 +2014-08-21 21:00:00,24042 +2014-08-21 21:30:00,24125 +2014-08-21 22:00:00,23970 +2014-08-21 22:30:00,25949 +2014-08-21 23:00:00,25094 +2014-08-21 23:30:00,23295 +2014-08-22 00:00:00,20552 +2014-08-22 00:30:00,16266 +2014-08-22 01:00:00,13365 +2014-08-22 01:30:00,10287 +2014-08-22 02:00:00,7901 +2014-08-22 02:30:00,6235 +2014-08-22 03:00:00,4869 +2014-08-22 03:30:00,3995 +2014-08-22 04:00:00,3734 +2014-08-22 04:30:00,3190 +2014-08-22 05:00:00,2878 +2014-08-22 05:30:00,4020 +2014-08-22 06:00:00,6062 +2014-08-22 06:30:00,9502 +2014-08-22 07:00:00,11446 +2014-08-22 07:30:00,13665 +2014-08-22 08:00:00,15257 +2014-08-22 08:30:00,17391 +2014-08-22 09:00:00,16922 +2014-08-22 09:30:00,16227 +2014-08-22 10:00:00,15185 +2014-08-22 10:30:00,15390 +2014-08-22 11:00:00,14725 +2014-08-22 11:30:00,15415 +2014-08-22 12:00:00,15729 +2014-08-22 12:30:00,16131 +2014-08-22 13:00:00,16058 +2014-08-22 13:30:00,16015 +2014-08-22 14:00:00,16749 +2014-08-22 14:30:00,16857 +2014-08-22 15:00:00,16588 +2014-08-22 15:30:00,15430 +2014-08-22 16:00:00,14186 +2014-08-22 16:30:00,13756 +2014-08-22 17:00:00,15596 +2014-08-22 17:30:00,17743 +2014-08-22 18:00:00,19439 +2014-08-22 18:30:00,21047 +2014-08-22 19:00:00,22647 +2014-08-22 19:30:00,21734 +2014-08-22 20:00:00,21394 +2014-08-22 20:30:00,20208 +2014-08-22 21:00:00,20329 +2014-08-22 21:30:00,20221 +2014-08-22 22:00:00,20945 +2014-08-22 22:30:00,22327 +2014-08-22 23:00:00,22765 +2014-08-22 23:30:00,22852 +2014-08-23 00:00:00,22726 +2014-08-23 00:30:00,21079 +2014-08-23 01:00:00,19166 +2014-08-23 01:30:00,17719 +2014-08-23 02:00:00,16471 +2014-08-23 02:30:00,14158 +2014-08-23 03:00:00,12730 +2014-08-23 03:30:00,10984 +2014-08-23 04:00:00,9409 +2014-08-23 04:30:00,5667 +2014-08-23 05:00:00,3879 +2014-08-23 05:30:00,3398 +2014-08-23 06:00:00,3683 +2014-08-23 06:30:00,4437 +2014-08-23 07:00:00,4732 +2014-08-23 07:30:00,6130 +2014-08-23 08:00:00,6492 +2014-08-23 08:30:00,8397 +2014-08-23 09:00:00,9673 +2014-08-23 09:30:00,11493 +2014-08-23 10:00:00,11723 +2014-08-23 10:30:00,14060 +2014-08-23 11:00:00,14204 +2014-08-23 11:30:00,15542 +2014-08-23 12:00:00,15446 +2014-08-23 12:30:00,15993 +2014-08-23 13:00:00,16206 +2014-08-23 13:30:00,16531 +2014-08-23 14:00:00,15717 +2014-08-23 14:30:00,15964 +2014-08-23 15:00:00,15868 +2014-08-23 15:30:00,16012 +2014-08-23 16:00:00,16200 +2014-08-23 16:30:00,15778 +2014-08-23 17:00:00,16268 +2014-08-23 17:30:00,18160 +2014-08-23 18:00:00,19155 +2014-08-23 18:30:00,20365 +2014-08-23 19:00:00,21278 +2014-08-23 19:30:00,20466 +2014-08-23 20:00:00,20057 +2014-08-23 20:30:00,23457 +2014-08-23 21:00:00,18798 +2014-08-23 21:30:00,19387 +2014-08-23 22:00:00,19998 +2014-08-23 22:30:00,21426 +2014-08-23 23:00:00,22449 +2014-08-23 23:30:00,22640 +2014-08-24 00:00:00,22666 +2014-08-24 00:30:00,21430 +2014-08-24 01:00:00,20015 +2014-08-24 01:30:00,18791 +2014-08-24 02:00:00,17683 +2014-08-24 02:30:00,15830 +2014-08-24 03:00:00,13862 +2014-08-24 03:30:00,11961 +2014-08-24 04:00:00,10153 +2014-08-24 04:30:00,6051 +2014-08-24 05:00:00,3848 +2014-08-24 05:30:00,2948 +2014-08-24 06:00:00,3143 +2014-08-24 06:30:00,3505 +2014-08-24 07:00:00,3812 +2014-08-24 07:30:00,4939 +2014-08-24 08:00:00,5442 +2014-08-24 08:30:00,6630 +2014-08-24 09:00:00,7744 +2014-08-24 09:30:00,10198 +2014-08-24 10:00:00,11041 +2014-08-24 10:30:00,13200 +2014-08-24 11:00:00,14107 +2014-08-24 11:30:00,15069 +2014-08-24 12:00:00,15638 +2014-08-24 12:30:00,15464 +2014-08-24 13:00:00,15901 +2014-08-24 13:30:00,16001 +2014-08-24 14:00:00,16492 +2014-08-24 14:30:00,16166 +2014-08-24 15:00:00,15531 +2014-08-24 15:30:00,15655 +2014-08-24 16:00:00,15040 +2014-08-24 16:30:00,15083 +2014-08-24 17:00:00,16229 +2014-08-24 17:30:00,17409 +2014-08-24 18:00:00,17288 +2014-08-24 18:30:00,17242 +2014-08-24 19:00:00,17129 +2014-08-24 19:30:00,16103 +2014-08-24 20:00:00,16485 +2014-08-24 20:30:00,16190 +2014-08-24 21:00:00,15500 +2014-08-24 21:30:00,15128 +2014-08-24 22:00:00,14489 +2014-08-24 22:30:00,13947 +2014-08-24 23:00:00,12525 +2014-08-24 23:30:00,11899 +2014-08-25 00:00:00,9192 +2014-08-25 00:30:00,6886 +2014-08-25 01:00:00,4888 +2014-08-25 01:30:00,4138 +2014-08-25 02:00:00,3366 +2014-08-25 02:30:00,2698 +2014-08-25 03:00:00,2290 +2014-08-25 03:30:00,2009 +2014-08-25 04:00:00,2265 +2014-08-25 04:30:00,2213 +2014-08-25 05:00:00,2450 +2014-08-25 05:30:00,3829 +2014-08-25 06:00:00,5933 +2014-08-25 06:30:00,9356 +2014-08-25 07:00:00,11482 +2014-08-25 07:30:00,13178 +2014-08-25 08:00:00,14803 +2014-08-25 08:30:00,16826 +2014-08-25 09:00:00,16649 +2014-08-25 09:30:00,15422 +2014-08-25 10:00:00,13996 +2014-08-25 10:30:00,13682 +2014-08-25 11:00:00,13297 +2014-08-25 11:30:00,14284 +2014-08-25 12:00:00,14435 +2014-08-25 12:30:00,14612 +2014-08-25 13:00:00,14814 +2014-08-25 13:30:00,15398 +2014-08-25 14:00:00,15511 +2014-08-25 14:30:00,15828 +2014-08-25 15:00:00,15396 +2014-08-25 15:30:00,15109 +2014-08-25 16:00:00,14787 +2014-08-25 16:30:00,14532 +2014-08-25 17:00:00,16387 +2014-08-25 17:30:00,18242 +2014-08-25 18:00:00,19715 +2014-08-25 18:30:00,20288 +2014-08-25 19:00:00,20761 +2014-08-25 19:30:00,19466 +2014-08-25 20:00:00,19670 +2014-08-25 20:30:00,18802 +2014-08-25 21:00:00,18709 +2014-08-25 21:30:00,17186 +2014-08-25 22:00:00,16500 +2014-08-25 22:30:00,15616 +2014-08-25 23:00:00,13902 +2014-08-25 23:30:00,11077 +2014-08-26 00:00:00,9618 +2014-08-26 00:30:00,7193 +2014-08-26 01:00:00,5665 +2014-08-26 01:30:00,4149 +2014-08-26 02:00:00,3502 +2014-08-26 02:30:00,2634 +2014-08-26 03:00:00,2100 +2014-08-26 03:30:00,1985 +2014-08-26 04:00:00,2053 +2014-08-26 04:30:00,1841 +2014-08-26 05:00:00,1909 +2014-08-26 05:30:00,3547 +2014-08-26 06:00:00,5829 +2014-08-26 06:30:00,9599 +2014-08-26 07:00:00,11323 +2014-08-26 07:30:00,13923 +2014-08-26 08:00:00,16029 +2014-08-26 08:30:00,18308 +2014-08-26 09:00:00,17153 +2014-08-26 09:30:00,16723 +2014-08-26 10:00:00,15360 +2014-08-26 10:30:00,16066 +2014-08-26 11:00:00,14643 +2014-08-26 11:30:00,15960 +2014-08-26 12:00:00,16351 +2014-08-26 12:30:00,16173 +2014-08-26 13:00:00,15659 +2014-08-26 13:30:00,17346 +2014-08-26 14:00:00,17145 +2014-08-26 14:30:00,16896 +2014-08-26 15:00:00,16746 +2014-08-26 15:30:00,15797 +2014-08-26 16:00:00,14202 +2014-08-26 16:30:00,14083 +2014-08-26 17:00:00,16074 +2014-08-26 17:30:00,18329 +2014-08-26 18:00:00,20961 +2014-08-26 18:30:00,22545 +2014-08-26 19:00:00,22067 +2014-08-26 19:30:00,21416 +2014-08-26 20:00:00,21484 +2014-08-26 20:30:00,20731 +2014-08-26 21:00:00,20969 +2014-08-26 21:30:00,20820 +2014-08-26 22:00:00,19650 +2014-08-26 22:30:00,18240 +2014-08-26 23:00:00,17133 +2014-08-26 23:30:00,14907 +2014-08-27 00:00:00,11703 +2014-08-27 00:30:00,8521 +2014-08-27 01:00:00,6962 +2014-08-27 01:30:00,5451 +2014-08-27 02:00:00,4439 +2014-08-27 02:30:00,3436 +2014-08-27 03:00:00,2741 +2014-08-27 03:30:00,2311 +2014-08-27 04:00:00,2532 +2014-08-27 04:30:00,2066 +2014-08-27 05:00:00,2111 +2014-08-27 05:30:00,3623 +2014-08-27 06:00:00,5719 +2014-08-27 06:30:00,9376 +2014-08-27 07:00:00,11971 +2014-08-27 07:30:00,14673 +2014-08-27 08:00:00,16545 +2014-08-27 08:30:00,18678 +2014-08-27 09:00:00,17655 +2014-08-27 09:30:00,17485 +2014-08-27 10:00:00,15834 +2014-08-27 10:30:00,15703 +2014-08-27 11:00:00,15816 +2014-08-27 11:30:00,16870 +2014-08-27 12:00:00,17123 +2014-08-27 12:30:00,16841 +2014-08-27 13:00:00,16700 +2014-08-27 13:30:00,17722 +2014-08-27 14:00:00,17849 +2014-08-27 14:30:00,18221 +2014-08-27 15:00:00,17208 +2014-08-27 15:30:00,16318 +2014-08-27 16:00:00,14910 +2014-08-27 16:30:00,14145 +2014-08-27 17:00:00,16330 +2014-08-27 17:30:00,19328 +2014-08-27 18:00:00,21226 +2014-08-27 18:30:00,23109 +2014-08-27 19:00:00,24206 +2014-08-27 19:30:00,23297 +2014-08-27 20:00:00,23493 +2014-08-27 20:30:00,22794 +2014-08-27 21:00:00,22502 +2014-08-27 21:30:00,22337 +2014-08-27 22:00:00,24446 +2014-08-27 22:30:00,20929 +2014-08-27 23:00:00,17937 +2014-08-27 23:30:00,16036 +2014-08-28 00:00:00,13547 +2014-08-28 00:30:00,10363 +2014-08-28 01:00:00,8553 +2014-08-28 01:30:00,6457 +2014-08-28 02:00:00,5248 +2014-08-28 02:30:00,3879 +2014-08-28 03:00:00,3173 +2014-08-28 03:30:00,2653 +2014-08-28 04:00:00,2858 +2014-08-28 04:30:00,2244 +2014-08-28 05:00:00,2312 +2014-08-28 05:30:00,3859 +2014-08-28 06:00:00,5772 +2014-08-28 06:30:00,9391 +2014-08-28 07:00:00,11375 +2014-08-28 07:30:00,14319 +2014-08-28 08:00:00,16103 +2014-08-28 08:30:00,18835 +2014-08-28 09:00:00,17891 +2014-08-28 09:30:00,17000 +2014-08-28 10:00:00,15534 +2014-08-28 10:30:00,15916 +2014-08-28 11:00:00,15153 +2014-08-28 11:30:00,16440 +2014-08-28 12:00:00,16424 +2014-08-28 12:30:00,16093 +2014-08-28 13:00:00,16178 +2014-08-28 13:30:00,17050 +2014-08-28 14:00:00,16795 +2014-08-28 14:30:00,17547 +2014-08-28 15:00:00,16769 +2014-08-28 15:30:00,15701 +2014-08-28 16:00:00,14067 +2014-08-28 16:30:00,13534 +2014-08-28 17:00:00,15939 +2014-08-28 17:30:00,18560 +2014-08-28 18:00:00,21029 +2014-08-28 18:30:00,22181 +2014-08-28 19:00:00,22860 +2014-08-28 19:30:00,22742 +2014-08-28 20:00:00,22569 +2014-08-28 20:30:00,22184 +2014-08-28 21:00:00,21926 +2014-08-28 21:30:00,22510 +2014-08-28 22:00:00,22350 +2014-08-28 22:30:00,21756 +2014-08-28 23:00:00,20994 +2014-08-28 23:30:00,19084 +2014-08-29 00:00:00,16702 +2014-08-29 00:30:00,13985 +2014-08-29 01:00:00,11632 +2014-08-29 01:30:00,9900 +2014-08-29 02:00:00,8443 +2014-08-29 02:30:00,6546 +2014-08-29 03:00:00,5270 +2014-08-29 03:30:00,4521 +2014-08-29 04:00:00,4369 +2014-08-29 04:30:00,3409 +2014-08-29 05:00:00,2967 +2014-08-29 05:30:00,4444 +2014-08-29 06:00:00,5712 +2014-08-29 06:30:00,9008 +2014-08-29 07:00:00,10312 +2014-08-29 07:30:00,12809 +2014-08-29 08:00:00,13491 +2014-08-29 08:30:00,16417 +2014-08-29 09:00:00,15906 +2014-08-29 09:30:00,15249 +2014-08-29 10:00:00,14367 +2014-08-29 10:30:00,14667 +2014-08-29 11:00:00,14738 +2014-08-29 11:30:00,16134 +2014-08-29 12:00:00,16343 +2014-08-29 12:30:00,15908 +2014-08-29 13:00:00,16700 +2014-08-29 13:30:00,16712 +2014-08-29 14:00:00,17394 +2014-08-29 14:30:00,17680 +2014-08-29 15:00:00,17495 +2014-08-29 15:30:00,15984 +2014-08-29 16:00:00,14946 +2014-08-29 16:30:00,14572 +2014-08-29 17:00:00,16880 +2014-08-29 17:30:00,19398 +2014-08-29 18:00:00,20797 +2014-08-29 18:30:00,21449 +2014-08-29 19:00:00,22077 +2014-08-29 19:30:00,21483 +2014-08-29 20:00:00,20415 +2014-08-29 20:30:00,20436 +2014-08-29 21:00:00,19315 +2014-08-29 21:30:00,19328 +2014-08-29 22:00:00,19660 +2014-08-29 22:30:00,21469 +2014-08-29 23:00:00,20853 +2014-08-29 23:30:00,21452 +2014-08-30 00:00:00,20564 +2014-08-30 00:30:00,19267 +2014-08-30 01:00:00,17439 +2014-08-30 01:30:00,14848 +2014-08-30 02:00:00,13900 +2014-08-30 02:30:00,12731 +2014-08-30 03:00:00,10776 +2014-08-30 03:30:00,9550 +2014-08-30 04:00:00,8605 +2014-08-30 04:30:00,5547 +2014-08-30 05:00:00,3605 +2014-08-30 05:30:00,3238 +2014-08-30 06:00:00,3520 +2014-08-30 06:30:00,4315 +2014-08-30 07:00:00,5116 +2014-08-30 07:30:00,5918 +2014-08-30 08:00:00,6383 +2014-08-30 08:30:00,8259 +2014-08-30 09:00:00,9430 +2014-08-30 09:30:00,11656 +2014-08-30 10:00:00,11833 +2014-08-30 10:30:00,13393 +2014-08-30 11:00:00,13778 +2014-08-30 11:30:00,15204 +2014-08-30 12:00:00,15367 +2014-08-30 12:30:00,15775 +2014-08-30 13:00:00,16045 +2014-08-30 13:30:00,16499 +2014-08-30 14:00:00,16113 +2014-08-30 14:30:00,16651 +2014-08-30 15:00:00,16507 +2014-08-30 15:30:00,16868 +2014-08-30 16:00:00,15594 +2014-08-30 16:30:00,16037 +2014-08-30 17:00:00,16973 +2014-08-30 17:30:00,18390 +2014-08-30 18:00:00,18681 +2014-08-30 18:30:00,19196 +2014-08-30 19:00:00,19744 +2014-08-30 19:30:00,19564 +2014-08-30 20:00:00,17522 +2014-08-30 20:30:00,17731 +2014-08-30 21:00:00,17364 +2014-08-30 21:30:00,17483 +2014-08-30 22:00:00,18037 +2014-08-30 22:30:00,19559 +2014-08-30 23:00:00,19421 +2014-08-30 23:30:00,19857 +2014-08-31 00:00:00,19205 +2014-08-31 00:30:00,18139 +2014-08-31 01:00:00,16686 +2014-08-31 01:30:00,14841 +2014-08-31 02:00:00,14018 +2014-08-31 02:30:00,12187 +2014-08-31 03:00:00,10536 +2014-08-31 03:30:00,9591 +2014-08-31 04:00:00,8665 +2014-08-31 04:30:00,5317 +2014-08-31 05:00:00,3597 +2014-08-31 05:30:00,2783 +2014-08-31 06:00:00,2587 +2014-08-31 06:30:00,2914 +2014-08-31 07:00:00,3167 +2014-08-31 07:30:00,4212 +2014-08-31 08:00:00,4502 +2014-08-31 08:30:00,5730 +2014-08-31 09:00:00,7102 +2014-08-31 09:30:00,9054 +2014-08-31 10:00:00,10152 +2014-08-31 10:30:00,13059 +2014-08-31 11:00:00,13923 +2014-08-31 11:30:00,14755 +2014-08-31 12:00:00,15186 +2014-08-31 12:30:00,16404 +2014-08-31 13:00:00,16652 +2014-08-31 13:30:00,17446 +2014-08-31 14:00:00,17493 +2014-08-31 14:30:00,17264 +2014-08-31 15:00:00,16546 +2014-08-31 15:30:00,17090 +2014-08-31 16:00:00,17297 +2014-08-31 16:30:00,16546 +2014-08-31 17:00:00,16474 +2014-08-31 17:30:00,16959 +2014-08-31 18:00:00,16567 +2014-08-31 18:30:00,17590 +2014-08-31 19:00:00,17053 +2014-08-31 19:30:00,16561 +2014-08-31 20:00:00,16870 +2014-08-31 20:30:00,16514 +2014-08-31 21:00:00,15871 +2014-08-31 21:30:00,15529 +2014-08-31 22:00:00,15049 +2014-08-31 22:30:00,15675 +2014-08-31 23:00:00,15673 +2014-08-31 23:30:00,15524 +2014-09-01 00:00:00,14618 +2014-09-01 00:30:00,12908 +2014-09-01 01:00:00,10842 +2014-09-01 01:30:00,9248 +2014-09-01 02:00:00,8588 +2014-09-01 02:30:00,7631 +2014-09-01 03:00:00,6519 +2014-09-01 03:30:00,5657 +2014-09-01 04:00:00,5214 +2014-09-01 04:30:00,3827 +2014-09-01 05:00:00,2939 +2014-09-01 05:30:00,2872 +2014-09-01 06:00:00,2994 +2014-09-01 06:30:00,3708 +2014-09-01 07:00:00,3547 +2014-09-01 07:30:00,4761 +2014-09-01 08:00:00,5038 +2014-09-01 08:30:00,5875 +2014-09-01 09:00:00,6910 +2014-09-01 09:30:00,8800 +2014-09-01 10:00:00,9782 +2014-09-01 10:30:00,11506 +2014-09-01 11:00:00,12291 +2014-09-01 11:30:00,13600 +2014-09-01 12:00:00,14040 +2014-09-01 12:30:00,15063 +2014-09-01 13:00:00,15073 +2014-09-01 13:30:00,15834 +2014-09-01 14:00:00,16567 +2014-09-01 14:30:00,16955 +2014-09-01 15:00:00,17408 +2014-09-01 15:30:00,16857 +2014-09-01 16:00:00,16002 +2014-09-01 16:30:00,15826 +2014-09-01 17:00:00,16961 +2014-09-01 17:30:00,17779 +2014-09-01 18:00:00,17578 +2014-09-01 18:30:00,17777 +2014-09-01 19:00:00,17764 +2014-09-01 19:30:00,17130 +2014-09-01 20:00:00,16641 +2014-09-01 20:30:00,16884 +2014-09-01 21:00:00,15068 +2014-09-01 21:30:00,15557 +2014-09-01 22:00:00,13766 +2014-09-01 22:30:00,13377 +2014-09-01 23:00:00,11025 +2014-09-01 23:30:00,9707 +2014-09-02 00:00:00,8043 +2014-09-02 00:30:00,5630 +2014-09-02 01:00:00,4347 +2014-09-02 01:30:00,3606 +2014-09-02 02:00:00,2588 +2014-09-02 02:30:00,1969 +2014-09-02 03:00:00,1876 +2014-09-02 03:30:00,1431 +2014-09-02 04:00:00,1752 +2014-09-02 04:30:00,2044 +2014-09-02 05:00:00,2447 +2014-09-02 05:30:00,4617 +2014-09-02 06:00:00,6988 +2014-09-02 06:30:00,11616 +2014-09-02 07:00:00,14774 +2014-09-02 07:30:00,17823 +2014-09-02 08:00:00,18623 +2014-09-02 08:30:00,18814 +2014-09-02 09:00:00,19221 +2014-09-02 09:30:00,18627 +2014-09-02 10:00:00,16650 +2014-09-02 10:30:00,17378 +2014-09-02 11:00:00,16414 +2014-09-02 11:30:00,17230 +2014-09-02 12:00:00,17557 +2014-09-02 12:30:00,18262 +2014-09-02 13:00:00,17698 +2014-09-02 13:30:00,18863 +2014-09-02 14:00:00,18234 +2014-09-02 14:30:00,18514 +2014-09-02 15:00:00,18364 +2014-09-02 15:30:00,17952 +2014-09-02 16:00:00,15781 +2014-09-02 16:30:00,14487 +2014-09-02 17:00:00,16062 +2014-09-02 17:30:00,18952 +2014-09-02 18:00:00,21395 +2014-09-02 18:30:00,23040 +2014-09-02 19:00:00,22890 +2014-09-02 19:30:00,22306 +2014-09-02 20:00:00,21704 +2014-09-02 20:30:00,20543 +2014-09-02 21:00:00,19896 +2014-09-02 21:30:00,19857 +2014-09-02 22:00:00,17841 +2014-09-02 22:30:00,16192 +2014-09-02 23:00:00,14116 +2014-09-02 23:30:00,12865 +2014-09-03 00:00:00,10465 +2014-09-03 00:30:00,8215 +2014-09-03 01:00:00,6481 +2014-09-03 01:30:00,4265 +2014-09-03 02:00:00,3434 +2014-09-03 02:30:00,2726 +2014-09-03 03:00:00,2358 +2014-09-03 03:30:00,2019 +2014-09-03 04:00:00,2137 +2014-09-03 04:30:00,1903 +2014-09-03 05:00:00,2252 +2014-09-03 05:30:00,4206 +2014-09-03 06:00:00,6545 +2014-09-03 06:30:00,11780 +2014-09-03 07:00:00,14707 +2014-09-03 07:30:00,18624 +2014-09-03 08:00:00,19178 +2014-09-03 08:30:00,20265 +2014-09-03 09:00:00,19277 +2014-09-03 09:30:00,19042 +2014-09-03 10:00:00,18108 +2014-09-03 10:30:00,18275 +2014-09-03 11:00:00,17300 +2014-09-03 11:30:00,18631 +2014-09-03 12:00:00,18582 +2014-09-03 12:30:00,18037 +2014-09-03 13:00:00,17899 +2014-09-03 13:30:00,18984 +2014-09-03 14:00:00,18491 +2014-09-03 14:30:00,19072 +2014-09-03 15:00:00,18693 +2014-09-03 15:30:00,17268 +2014-09-03 16:00:00,15918 +2014-09-03 16:30:00,14478 +2014-09-03 17:00:00,16540 +2014-09-03 17:30:00,19765 +2014-09-03 18:00:00,22526 +2014-09-03 18:30:00,23454 +2014-09-03 19:00:00,24380 +2014-09-03 19:30:00,24477 +2014-09-03 20:00:00,24234 +2014-09-03 20:30:00,23319 +2014-09-03 21:00:00,23387 +2014-09-03 21:30:00,22963 +2014-09-03 22:00:00,22006 +2014-09-03 22:30:00,20301 +2014-09-03 23:00:00,18259 +2014-09-03 23:30:00,15608 +2014-09-04 00:00:00,12990 +2014-09-04 00:30:00,10273 +2014-09-04 01:00:00,8434 +2014-09-04 01:30:00,6378 +2014-09-04 02:00:00,5549 +2014-09-04 02:30:00,4131 +2014-09-04 03:00:00,3241 +2014-09-04 03:30:00,2410 +2014-09-04 04:00:00,2804 +2014-09-04 04:30:00,2320 +2014-09-04 05:00:00,2431 +2014-09-04 05:30:00,4222 +2014-09-04 06:00:00,6633 +2014-09-04 06:30:00,12006 +2014-09-04 07:00:00,15589 +2014-09-04 07:30:00,20359 +2014-09-04 08:00:00,20593 +2014-09-04 08:30:00,19590 +2014-09-04 09:00:00,19637 +2014-09-04 09:30:00,19026 +2014-09-04 10:00:00,18629 +2014-09-04 10:30:00,18568 +2014-09-04 11:00:00,18041 +2014-09-04 11:30:00,18695 +2014-09-04 12:00:00,19692 +2014-09-04 12:30:00,19173 +2014-09-04 13:00:00,17824 +2014-09-04 13:30:00,19684 +2014-09-04 14:00:00,20139 +2014-09-04 14:30:00,20320 +2014-09-04 15:00:00,19468 +2014-09-04 15:30:00,17391 +2014-09-04 16:00:00,15218 +2014-09-04 16:30:00,13649 +2014-09-04 17:00:00,16052 +2014-09-04 17:30:00,18987 +2014-09-04 18:00:00,21967 +2014-09-04 18:30:00,24107 +2014-09-04 19:00:00,25260 +2014-09-04 19:30:00,25638 +2014-09-04 20:00:00,26045 +2014-09-04 20:30:00,25045 +2014-09-04 21:00:00,24846 +2014-09-04 21:30:00,24703 +2014-09-04 22:00:00,24863 +2014-09-04 22:30:00,23610 +2014-09-04 23:00:00,21637 +2014-09-04 23:30:00,21643 +2014-09-05 00:00:00,18962 +2014-09-05 00:30:00,15475 +2014-09-05 01:00:00,11955 +2014-09-05 01:30:00,9339 +2014-09-05 02:00:00,7967 +2014-09-05 02:30:00,6372 +2014-09-05 03:00:00,5132 +2014-09-05 03:30:00,4357 +2014-09-05 04:00:00,4305 +2014-09-05 04:30:00,3195 +2014-09-05 05:00:00,2878 +2014-09-05 05:30:00,4762 +2014-09-05 06:00:00,7294 +2014-09-05 06:30:00,12886 +2014-09-05 07:00:00,15820 +2014-09-05 07:30:00,19874 +2014-09-05 08:00:00,20367 +2014-09-05 08:30:00,20091 +2014-09-05 09:00:00,19600 +2014-09-05 09:30:00,19283 +2014-09-05 10:00:00,18413 +2014-09-05 10:30:00,18745 +2014-09-05 11:00:00,17998 +2014-09-05 11:30:00,19325 +2014-09-05 12:00:00,19004 +2014-09-05 12:30:00,18450 +2014-09-05 13:00:00,18029 +2014-09-05 13:30:00,18057 +2014-09-05 14:00:00,19315 +2014-09-05 14:30:00,20057 +2014-09-05 15:00:00,19211 +2014-09-05 15:30:00,16903 +2014-09-05 16:00:00,15288 +2014-09-05 16:30:00,13729 +2014-09-05 17:00:00,17003 +2014-09-05 17:30:00,20142 +2014-09-05 18:00:00,23177 +2014-09-05 18:30:00,25036 +2014-09-05 19:00:00,27337 +2014-09-05 19:30:00,26812 +2014-09-05 20:00:00,26592 +2014-09-05 20:30:00,26243 +2014-09-05 21:00:00,25919 +2014-09-05 21:30:00,25898 +2014-09-05 22:00:00,26603 +2014-09-05 22:30:00,26899 +2014-09-05 23:00:00,26900 +2014-09-05 23:30:00,26763 +2014-09-06 00:00:00,25721 +2014-09-06 00:30:00,24590 +2014-09-06 01:00:00,22118 +2014-09-06 01:30:00,20378 +2014-09-06 02:00:00,19093 +2014-09-06 02:30:00,16717 +2014-09-06 03:00:00,14043 +2014-09-06 03:30:00,12077 +2014-09-06 04:00:00,10212 +2014-09-06 04:30:00,6328 +2014-09-06 05:00:00,4440 +2014-09-06 05:30:00,3603 +2014-09-06 06:00:00,3781 +2014-09-06 06:30:00,4846 +2014-09-06 07:00:00,5444 +2014-09-06 07:30:00,7701 +2014-09-06 08:00:00,8375 +2014-09-06 08:30:00,11334 +2014-09-06 09:00:00,12747 +2014-09-06 09:30:00,15930 +2014-09-06 10:00:00,16567 +2014-09-06 10:30:00,18716 +2014-09-06 11:00:00,18722 +2014-09-06 11:30:00,20103 +2014-09-06 12:00:00,20287 +2014-09-06 12:30:00,21127 +2014-09-06 13:00:00,21259 +2014-09-06 13:30:00,21946 +2014-09-06 14:00:00,21655 +2014-09-06 14:30:00,21830 +2014-09-06 15:00:00,22886 +2014-09-06 15:30:00,20736 +2014-09-06 16:00:00,18209 +2014-09-06 16:30:00,17090 +2014-09-06 17:00:00,19270 +2014-09-06 17:30:00,22270 +2014-09-06 18:00:00,24264 +2014-09-06 18:30:00,25210 +2014-09-06 19:00:00,25976 +2014-09-06 19:30:00,25765 +2014-09-06 20:00:00,24487 +2014-09-06 20:30:00,23499 +2014-09-06 21:00:00,23210 +2014-09-06 21:30:00,23487 +2014-09-06 22:00:00,24515 +2014-09-06 22:30:00,30313 +2014-09-06 23:00:00,30373 +2014-09-06 23:30:00,28464 +2014-09-07 00:00:00,25818 +2014-09-07 00:30:00,24635 +2014-09-07 01:00:00,23410 +2014-09-07 01:30:00,21481 +2014-09-07 02:00:00,19800 +2014-09-07 02:30:00,17674 +2014-09-07 03:00:00,15215 +2014-09-07 03:30:00,13501 +2014-09-07 04:00:00,10896 +2014-09-07 04:30:00,6766 +2014-09-07 05:00:00,4261 +2014-09-07 05:30:00,3415 +2014-09-07 06:00:00,3220 +2014-09-07 06:30:00,4160 +2014-09-07 07:00:00,4345 +2014-09-07 07:30:00,5963 +2014-09-07 08:00:00,6887 +2014-09-07 08:30:00,8834 +2014-09-07 09:00:00,10042 +2014-09-07 09:30:00,13188 +2014-09-07 10:00:00,14600 +2014-09-07 10:30:00,18209 +2014-09-07 11:00:00,18446 +2014-09-07 11:30:00,20350 +2014-09-07 12:00:00,20838 +2014-09-07 12:30:00,22183 +2014-09-07 13:00:00,20582 +2014-09-07 13:30:00,20506 +2014-09-07 14:00:00,20109 +2014-09-07 14:30:00,20198 +2014-09-07 15:00:00,18873 +2014-09-07 15:30:00,19041 +2014-09-07 16:00:00,19295 +2014-09-07 16:30:00,18868 +2014-09-07 17:00:00,18851 +2014-09-07 17:30:00,20518 +2014-09-07 18:00:00,21710 +2014-09-07 18:30:00,20895 +2014-09-07 19:00:00,20761 +2014-09-07 19:30:00,19916 +2014-09-07 20:00:00,19740 +2014-09-07 20:30:00,18975 +2014-09-07 21:00:00,17866 +2014-09-07 21:30:00,17750 +2014-09-07 22:00:00,16820 +2014-09-07 22:30:00,15292 +2014-09-07 23:00:00,13219 +2014-09-07 23:30:00,12246 +2014-09-08 00:00:00,9733 +2014-09-08 00:30:00,7542 +2014-09-08 01:00:00,5518 +2014-09-08 01:30:00,4348 +2014-09-08 02:00:00,3828 +2014-09-08 02:30:00,3083 +2014-09-08 03:00:00,2583 +2014-09-08 03:30:00,2328 +2014-09-08 04:00:00,2523 +2014-09-08 04:30:00,2579 +2014-09-08 05:00:00,2901 +2014-09-08 05:30:00,4963 +2014-09-08 06:00:00,7013 +2014-09-08 06:30:00,11830 +2014-09-08 07:00:00,14665 +2014-09-08 07:30:00,18099 +2014-09-08 08:00:00,18601 +2014-09-08 08:30:00,18329 +2014-09-08 09:00:00,18506 +2014-09-08 09:30:00,17983 +2014-09-08 10:00:00,16869 +2014-09-08 10:30:00,16771 +2014-09-08 11:00:00,16010 +2014-09-08 11:30:00,17370 +2014-09-08 12:00:00,17526 +2014-09-08 12:30:00,17910 +2014-09-08 13:00:00,16565 +2014-09-08 13:30:00,18380 +2014-09-08 14:00:00,18294 +2014-09-08 14:30:00,19585 +2014-09-08 15:00:00,19323 +2014-09-08 15:30:00,18113 +2014-09-08 16:00:00,16472 +2014-09-08 16:30:00,16007 +2014-09-08 17:00:00,18299 +2014-09-08 17:30:00,20385 +2014-09-08 18:00:00,22906 +2014-09-08 18:30:00,24153 +2014-09-08 19:00:00,24545 +2014-09-08 19:30:00,23635 +2014-09-08 20:00:00,23773 +2014-09-08 20:30:00,23212 +2014-09-08 21:00:00,21918 +2014-09-08 21:30:00,21096 +2014-09-08 22:00:00,21563 +2014-09-08 22:30:00,17989 +2014-09-08 23:00:00,15442 +2014-09-08 23:30:00,12815 +2014-09-09 00:00:00,10436 +2014-09-09 00:30:00,8092 +2014-09-09 01:00:00,6061 +2014-09-09 01:30:00,5058 +2014-09-09 02:00:00,4073 +2014-09-09 02:30:00,3310 +2014-09-09 03:00:00,2623 +2014-09-09 03:30:00,2364 +2014-09-09 04:00:00,2333 +2014-09-09 04:30:00,2287 +2014-09-09 05:00:00,2444 +2014-09-09 05:30:00,4427 +2014-09-09 06:00:00,6661 +2014-09-09 06:30:00,12136 +2014-09-09 07:00:00,15910 +2014-09-09 07:30:00,20003 +2014-09-09 08:00:00,19956 +2014-09-09 08:30:00,19897 +2014-09-09 09:00:00,18719 +2014-09-09 09:30:00,18485 +2014-09-09 10:00:00,17235 +2014-09-09 10:30:00,17705 +2014-09-09 11:00:00,17089 +2014-09-09 11:30:00,18334 +2014-09-09 12:00:00,18564 +2014-09-09 12:30:00,18599 +2014-09-09 13:00:00,17715 +2014-09-09 13:30:00,18692 +2014-09-09 14:00:00,19276 +2014-09-09 14:30:00,20557 +2014-09-09 15:00:00,19505 +2014-09-09 15:30:00,16820 +2014-09-09 16:00:00,14005 +2014-09-09 16:30:00,13683 +2014-09-09 17:00:00,16918 +2014-09-09 17:30:00,20051 +2014-09-09 18:00:00,22624 +2014-09-09 18:30:00,23987 +2014-09-09 19:00:00,24069 +2014-09-09 19:30:00,24933 +2014-09-09 20:00:00,24928 +2014-09-09 20:30:00,24390 +2014-09-09 21:00:00,24199 +2014-09-09 21:30:00,24277 +2014-09-09 22:00:00,23154 +2014-09-09 22:30:00,21090 +2014-09-09 23:00:00,18854 +2014-09-09 23:30:00,16194 +2014-09-10 00:00:00,13226 +2014-09-10 00:30:00,9866 +2014-09-10 01:00:00,8085 +2014-09-10 01:30:00,6177 +2014-09-10 02:00:00,5324 +2014-09-10 02:30:00,4177 +2014-09-10 03:00:00,3464 +2014-09-10 03:30:00,2855 +2014-09-10 04:00:00,2850 +2014-09-10 04:30:00,2361 +2014-09-10 05:00:00,2675 +2014-09-10 05:30:00,4589 +2014-09-10 06:00:00,6868 +2014-09-10 06:30:00,12256 +2014-09-10 07:00:00,16024 +2014-09-10 07:30:00,20193 +2014-09-10 08:00:00,20747 +2014-09-10 08:30:00,20007 +2014-09-10 09:00:00,18782 +2014-09-10 09:30:00,18657 +2014-09-10 10:00:00,17331 +2014-09-10 10:30:00,17989 +2014-09-10 11:00:00,17529 +2014-09-10 11:30:00,18953 +2014-09-10 12:00:00,18567 +2014-09-10 12:30:00,17872 +2014-09-10 13:00:00,17411 +2014-09-10 13:30:00,18792 +2014-09-10 14:00:00,18899 +2014-09-10 14:30:00,19548 +2014-09-10 15:00:00,19093 +2014-09-10 15:30:00,16956 +2014-09-10 16:00:00,14987 +2014-09-10 16:30:00,13895 +2014-09-10 17:00:00,17078 +2014-09-10 17:30:00,20224 +2014-09-10 18:00:00,22805 +2014-09-10 18:30:00,24418 +2014-09-10 19:00:00,25720 +2014-09-10 19:30:00,25891 +2014-09-10 20:00:00,26138 +2014-09-10 20:30:00,25149 +2014-09-10 21:00:00,24908 +2014-09-10 21:30:00,24260 +2014-09-10 22:00:00,24620 +2014-09-10 22:30:00,22813 +2014-09-10 23:00:00,20948 +2014-09-10 23:30:00,18271 +2014-09-11 00:00:00,14939 +2014-09-11 00:30:00,11332 +2014-09-11 01:00:00,8890 +2014-09-11 01:30:00,6980 +2014-09-11 02:00:00,5659 +2014-09-11 02:30:00,4679 +2014-09-11 03:00:00,3550 +2014-09-11 03:30:00,2761 +2014-09-11 04:00:00,3009 +2014-09-11 04:30:00,2596 +2014-09-11 05:00:00,2755 +2014-09-11 05:30:00,4554 +2014-09-11 06:00:00,6964 +2014-09-11 06:30:00,12814 +2014-09-11 07:00:00,16360 +2014-09-11 07:30:00,20658 +2014-09-11 08:00:00,21352 +2014-09-11 08:30:00,20521 +2014-09-11 09:00:00,19759 +2014-09-11 09:30:00,19670 +2014-09-11 10:00:00,18301 +2014-09-11 10:30:00,17768 +2014-09-11 11:00:00,16583 +2014-09-11 11:30:00,18179 +2014-09-11 12:00:00,18896 +2014-09-11 12:30:00,18611 +2014-09-11 13:00:00,17662 +2014-09-11 13:30:00,19057 +2014-09-11 14:00:00,18951 +2014-09-11 14:30:00,19997 +2014-09-11 15:00:00,19260 +2014-09-11 15:30:00,17088 +2014-09-11 16:00:00,15367 +2014-09-11 16:30:00,13915 +2014-09-11 17:00:00,17107 +2014-09-11 17:30:00,20299 +2014-09-11 18:00:00,23029 +2014-09-11 18:30:00,24408 +2014-09-11 19:00:00,25778 +2014-09-11 19:30:00,26274 +2014-09-11 20:00:00,26475 +2014-09-11 20:30:00,25326 +2014-09-11 21:00:00,24557 +2014-09-11 21:30:00,24984 +2014-09-11 22:00:00,25001 +2014-09-11 22:30:00,24112 +2014-09-11 23:00:00,23100 +2014-09-11 23:30:00,20158 +2014-09-12 00:00:00,17954 +2014-09-12 00:30:00,14466 +2014-09-12 01:00:00,11632 +2014-09-12 01:30:00,9400 +2014-09-12 02:00:00,7816 +2014-09-12 02:30:00,6678 +2014-09-12 03:00:00,5499 +2014-09-12 03:30:00,4088 +2014-09-12 04:00:00,4312 +2014-09-12 04:30:00,3433 +2014-09-12 05:00:00,3156 +2014-09-12 05:30:00,4545 +2014-09-12 06:00:00,6802 +2014-09-12 06:30:00,11555 +2014-09-12 07:00:00,15447 +2014-09-12 07:30:00,20385 +2014-09-12 08:00:00,20562 +2014-09-12 08:30:00,20191 +2014-09-12 09:00:00,19405 +2014-09-12 09:30:00,18903 +2014-09-12 10:00:00,17251 +2014-09-12 10:30:00,17874 +2014-09-12 11:00:00,17024 +2014-09-12 11:30:00,18267 +2014-09-12 12:00:00,18351 +2014-09-12 12:30:00,17253 +2014-09-12 13:00:00,17098 +2014-09-12 13:30:00,17885 +2014-09-12 14:00:00,18868 +2014-09-12 14:30:00,19352 +2014-09-12 15:00:00,18035 +2014-09-12 15:30:00,15737 +2014-09-12 16:00:00,14420 +2014-09-12 16:30:00,13148 +2014-09-12 17:00:00,16354 +2014-09-12 17:30:00,20087 +2014-09-12 18:00:00,22814 +2014-09-12 18:30:00,25027 +2014-09-12 19:00:00,25983 +2014-09-12 19:30:00,27090 +2014-09-12 20:00:00,26622 +2014-09-12 20:30:00,25560 +2014-09-12 21:00:00,25141 +2014-09-12 21:30:00,25495 +2014-09-12 22:00:00,26737 +2014-09-12 22:30:00,26657 +2014-09-12 23:00:00,27379 +2014-09-12 23:30:00,27284 +2014-09-13 00:00:00,26227 +2014-09-13 00:30:00,24744 +2014-09-13 01:00:00,23304 +2014-09-13 01:30:00,21293 +2014-09-13 02:00:00,19870 +2014-09-13 02:30:00,17657 +2014-09-13 03:00:00,15100 +2014-09-13 03:30:00,12932 +2014-09-13 04:00:00,10574 +2014-09-13 04:30:00,6546 +2014-09-13 05:00:00,4531 +2014-09-13 05:30:00,3807 +2014-09-13 06:00:00,3672 +2014-09-13 06:30:00,5070 +2014-09-13 07:00:00,5484 +2014-09-13 07:30:00,7528 +2014-09-13 08:00:00,8713 +2014-09-13 08:30:00,11686 +2014-09-13 09:00:00,12432 +2014-09-13 09:30:00,16216 +2014-09-13 10:00:00,16126 +2014-09-13 10:30:00,18527 +2014-09-13 11:00:00,18755 +2014-09-13 11:30:00,20352 +2014-09-13 12:00:00,21020 +2014-09-13 12:30:00,20732 +2014-09-13 13:00:00,21345 +2014-09-13 13:30:00,21500 +2014-09-13 14:00:00,20453 +2014-09-13 14:30:00,23821 +2014-09-13 15:00:00,26150 +2014-09-13 15:30:00,24051 +2014-09-13 16:00:00,19433 +2014-09-13 16:30:00,17521 +2014-09-13 17:00:00,19137 +2014-09-13 17:30:00,22602 +2014-09-13 18:00:00,25039 +2014-09-13 18:30:00,25988 +2014-09-13 19:00:00,26920 +2014-09-13 19:30:00,26845 +2014-09-13 20:00:00,26733 +2014-09-13 20:30:00,24954 +2014-09-13 21:00:00,22317 +2014-09-13 21:30:00,22581 +2014-09-13 22:00:00,23544 +2014-09-13 22:30:00,25662 +2014-09-13 23:00:00,26615 +2014-09-13 23:30:00,27542 +2014-09-14 00:00:00,27320 +2014-09-14 00:30:00,25627 +2014-09-14 01:00:00,23964 +2014-09-14 01:30:00,22332 +2014-09-14 02:00:00,20620 +2014-09-14 02:30:00,18567 +2014-09-14 03:00:00,15772 +2014-09-14 03:30:00,13346 +2014-09-14 04:00:00,11616 +2014-09-14 04:30:00,6999 +2014-09-14 05:00:00,4273 +2014-09-14 05:30:00,3568 +2014-09-14 06:00:00,4209 +2014-09-14 06:30:00,4684 +2014-09-14 07:00:00,4527 +2014-09-14 07:30:00,6231 +2014-09-14 08:00:00,7725 +2014-09-14 08:30:00,10159 +2014-09-14 09:00:00,11013 +2014-09-14 09:30:00,14091 +2014-09-14 10:00:00,15480 +2014-09-14 10:30:00,18669 +2014-09-14 11:00:00,18796 +2014-09-14 11:30:00,20213 +2014-09-14 12:00:00,20410 +2014-09-14 12:30:00,21782 +2014-09-14 13:00:00,20634 +2014-09-14 13:30:00,20061 +2014-09-14 14:00:00,19774 +2014-09-14 14:30:00,20069 +2014-09-14 15:00:00,19417 +2014-09-14 15:30:00,19363 +2014-09-14 16:00:00,19206 +2014-09-14 16:30:00,18284 +2014-09-14 17:00:00,19503 +2014-09-14 17:30:00,20621 +2014-09-14 18:00:00,21554 +2014-09-14 18:30:00,21538 +2014-09-14 19:00:00,20589 +2014-09-14 19:30:00,20391 +2014-09-14 20:00:00,19593 +2014-09-14 20:30:00,18439 +2014-09-14 21:00:00,17587 +2014-09-14 21:30:00,17638 +2014-09-14 22:00:00,15698 +2014-09-14 22:30:00,14343 +2014-09-14 23:00:00,12808 +2014-09-14 23:30:00,10827 +2014-09-15 00:00:00,8077 +2014-09-15 00:30:00,6261 +2014-09-15 01:00:00,4724 +2014-09-15 01:30:00,3852 +2014-09-15 02:00:00,3132 +2014-09-15 02:30:00,2606 +2014-09-15 03:00:00,1975 +2014-09-15 03:30:00,1896 +2014-09-15 04:00:00,2310 +2014-09-15 04:30:00,2388 +2014-09-15 05:00:00,2778 +2014-09-15 05:30:00,4775 +2014-09-15 06:00:00,7022 +2014-09-15 06:30:00,11923 +2014-09-15 07:00:00,14969 +2014-09-15 07:30:00,17943 +2014-09-15 08:00:00,18886 +2014-09-15 08:30:00,18711 +2014-09-15 09:00:00,18012 +2014-09-15 09:30:00,17214 +2014-09-15 10:00:00,16337 +2014-09-15 10:30:00,16157 +2014-09-15 11:00:00,15487 +2014-09-15 11:30:00,16741 +2014-09-15 12:00:00,16793 +2014-09-15 12:30:00,16685 +2014-09-15 13:00:00,15824 +2014-09-15 13:30:00,17040 +2014-09-15 14:00:00,17360 +2014-09-15 14:30:00,18501 +2014-09-15 15:00:00,18143 +2014-09-15 15:30:00,16972 +2014-09-15 16:00:00,16098 +2014-09-15 16:30:00,15878 +2014-09-15 17:00:00,18183 +2014-09-15 17:30:00,20482 +2014-09-15 18:00:00,23314 +2014-09-15 18:30:00,24477 +2014-09-15 19:00:00,24387 +2014-09-15 19:30:00,24193 +2014-09-15 20:00:00,24388 +2014-09-15 20:30:00,22725 +2014-09-15 21:00:00,21907 +2014-09-15 21:30:00,21789 +2014-09-15 22:00:00,20289 +2014-09-15 22:30:00,16585 +2014-09-15 23:00:00,14423 +2014-09-15 23:30:00,12432 +2014-09-16 00:00:00,9359 +2014-09-16 00:30:00,7247 +2014-09-16 01:00:00,5659 +2014-09-16 01:30:00,4155 +2014-09-16 02:00:00,3369 +2014-09-16 02:30:00,2617 +2014-09-16 03:00:00,2214 +2014-09-16 03:30:00,1871 +2014-09-16 04:00:00,2101 +2014-09-16 04:30:00,2016 +2014-09-16 05:00:00,2334 +2014-09-16 05:30:00,4141 +2014-09-16 06:00:00,6465 +2014-09-16 06:30:00,11772 +2014-09-16 07:00:00,16219 +2014-09-16 07:30:00,21253 +2014-09-16 08:00:00,22609 +2014-09-16 08:30:00,21527 +2014-09-16 09:00:00,20975 +2014-09-16 09:30:00,19673 +2014-09-16 10:00:00,18065 +2014-09-16 10:30:00,18948 +2014-09-16 11:00:00,18111 +2014-09-16 11:30:00,17622 +2014-09-16 12:00:00,17320 +2014-09-16 12:30:00,16939 +2014-09-16 13:00:00,16404 +2014-09-16 13:30:00,17247 +2014-09-16 14:00:00,17782 +2014-09-16 14:30:00,18554 +2014-09-16 15:00:00,18680 +2014-09-16 15:30:00,16755 +2014-09-16 16:00:00,14825 +2014-09-16 16:30:00,13975 +2014-09-16 17:00:00,17093 +2014-09-16 17:30:00,19977 +2014-09-16 18:00:00,22922 +2014-09-16 18:30:00,24364 +2014-09-16 19:00:00,24630 +2014-09-16 19:30:00,25234 +2014-09-16 20:00:00,24839 +2014-09-16 20:30:00,24161 +2014-09-16 21:00:00,24550 +2014-09-16 21:30:00,23734 +2014-09-16 22:00:00,22366 +2014-09-16 22:30:00,20411 +2014-09-16 23:00:00,17774 +2014-09-16 23:30:00,14027 +2014-09-17 00:00:00,11590 +2014-09-17 00:30:00,8440 +2014-09-17 01:00:00,6881 +2014-09-17 01:30:00,4920 +2014-09-17 02:00:00,4097 +2014-09-17 02:30:00,3159 +2014-09-17 03:00:00,2653 +2014-09-17 03:30:00,2347 +2014-09-17 04:00:00,2387 +2014-09-17 04:30:00,2194 +2014-09-17 05:00:00,2479 +2014-09-17 05:30:00,4554 +2014-09-17 06:00:00,6775 +2014-09-17 06:30:00,12311 +2014-09-17 07:00:00,15989 +2014-09-17 07:30:00,20058 +2014-09-17 08:00:00,20361 +2014-09-17 08:30:00,20172 +2014-09-17 09:00:00,18974 +2014-09-17 09:30:00,17732 +2014-09-17 10:00:00,17336 +2014-09-17 10:30:00,17321 +2014-09-17 11:00:00,16872 +2014-09-17 11:30:00,18295 +2014-09-17 12:00:00,18273 +2014-09-17 12:30:00,17275 +2014-09-17 13:00:00,17095 +2014-09-17 13:30:00,17715 +2014-09-17 14:00:00,18451 +2014-09-17 14:30:00,18612 +2014-09-17 15:00:00,18148 +2014-09-17 15:30:00,16473 +2014-09-17 16:00:00,14474 +2014-09-17 16:30:00,13434 +2014-09-17 17:00:00,16229 +2014-09-17 17:30:00,19852 +2014-09-17 18:00:00,22394 +2014-09-17 18:30:00,24618 +2014-09-17 19:00:00,25838 +2014-09-17 19:30:00,25496 +2014-09-17 20:00:00,24980 +2014-09-17 20:30:00,23545 +2014-09-17 21:00:00,23847 +2014-09-17 21:30:00,24236 +2014-09-17 22:00:00,23551 +2014-09-17 22:30:00,22454 +2014-09-17 23:00:00,20389 +2014-09-17 23:30:00,17673 +2014-09-18 00:00:00,13651 +2014-09-18 00:30:00,10769 +2014-09-18 01:00:00,8102 +2014-09-18 01:30:00,6196 +2014-09-18 02:00:00,5249 +2014-09-18 02:30:00,3850 +2014-09-18 03:00:00,3150 +2014-09-18 03:30:00,2584 +2014-09-18 04:00:00,2770 +2014-09-18 04:30:00,2477 +2014-09-18 05:00:00,2678 +2014-09-18 05:30:00,4506 +2014-09-18 06:00:00,7292 +2014-09-18 06:30:00,12449 +2014-09-18 07:00:00,16418 +2014-09-18 07:30:00,20080 +2014-09-18 08:00:00,20693 +2014-09-18 08:30:00,19988 +2014-09-18 09:00:00,19313 +2014-09-18 09:30:00,18918 +2014-09-18 10:00:00,17790 +2014-09-18 10:30:00,18028 +2014-09-18 11:00:00,17242 +2014-09-18 11:30:00,18279 +2014-09-18 12:00:00,18118 +2014-09-18 12:30:00,17858 +2014-09-18 13:00:00,17635 +2014-09-18 13:30:00,18265 +2014-09-18 14:00:00,18676 +2014-09-18 14:30:00,18686 +2014-09-18 15:00:00,18134 +2014-09-18 15:30:00,15579 +2014-09-18 16:00:00,13635 +2014-09-18 16:30:00,12689 +2014-09-18 17:00:00,15756 +2014-09-18 17:30:00,19691 +2014-09-18 18:00:00,21487 +2014-09-18 18:30:00,22751 +2014-09-18 19:00:00,24126 +2014-09-18 19:30:00,24956 +2014-09-18 20:00:00,26003 +2014-09-18 20:30:00,25167 +2014-09-18 21:00:00,25659 +2014-09-18 21:30:00,25536 +2014-09-18 22:00:00,25761 +2014-09-18 22:30:00,25212 +2014-09-18 23:00:00,23548 +2014-09-18 23:30:00,22005 +2014-09-19 00:00:00,19518 +2014-09-19 00:30:00,15755 +2014-09-19 01:00:00,12747 +2014-09-19 01:30:00,10116 +2014-09-19 02:00:00,8379 +2014-09-19 02:30:00,6566 +2014-09-19 03:00:00,5478 +2014-09-19 03:30:00,4552 +2014-09-19 04:00:00,4546 +2014-09-19 04:30:00,3489 +2014-09-19 05:00:00,3269 +2014-09-19 05:30:00,4799 +2014-09-19 06:00:00,7384 +2014-09-19 06:30:00,11928 +2014-09-19 07:00:00,15434 +2014-09-19 07:30:00,19509 +2014-09-19 08:00:00,19672 +2014-09-19 08:30:00,19287 +2014-09-19 09:00:00,18369 +2014-09-19 09:30:00,18050 +2014-09-19 10:00:00,17306 +2014-09-19 10:30:00,17661 +2014-09-19 11:00:00,17158 +2014-09-19 11:30:00,18215 +2014-09-19 12:00:00,18175 +2014-09-19 12:30:00,17568 +2014-09-19 13:00:00,17079 +2014-09-19 13:30:00,17287 +2014-09-19 14:00:00,17885 +2014-09-19 14:30:00,18287 +2014-09-19 15:00:00,17782 +2014-09-19 15:30:00,16021 +2014-09-19 16:00:00,14205 +2014-09-19 16:30:00,12834 +2014-09-19 17:00:00,16332 +2014-09-19 17:30:00,19704 +2014-09-19 18:00:00,22931 +2014-09-19 18:30:00,25328 +2014-09-19 19:00:00,26188 +2014-09-19 19:30:00,27541 +2014-09-19 20:00:00,26811 +2014-09-19 20:30:00,26093 +2014-09-19 21:00:00,26091 +2014-09-19 21:30:00,26247 +2014-09-19 22:00:00,27090 +2014-09-19 22:30:00,27681 +2014-09-19 23:00:00,27159 +2014-09-19 23:30:00,26816 +2014-09-20 00:00:00,25251 +2014-09-20 00:30:00,23375 +2014-09-20 01:00:00,21806 +2014-09-20 01:30:00,20635 +2014-09-20 02:00:00,19322 +2014-09-20 02:30:00,16841 +2014-09-20 03:00:00,14744 +2014-09-20 03:30:00,12309 +2014-09-20 04:00:00,10242 +2014-09-20 04:30:00,6470 +2014-09-20 05:00:00,4374 +2014-09-20 05:30:00,3435 +2014-09-20 06:00:00,3789 +2014-09-20 06:30:00,4454 +2014-09-20 07:00:00,5381 +2014-09-20 07:30:00,7585 +2014-09-20 08:00:00,8782 +2014-09-20 08:30:00,11824 +2014-09-20 09:00:00,12587 +2014-09-20 09:30:00,15795 +2014-09-20 10:00:00,16088 +2014-09-20 10:30:00,18430 +2014-09-20 11:00:00,18543 +2014-09-20 11:30:00,20332 +2014-09-20 12:00:00,19797 +2014-09-20 12:30:00,20601 +2014-09-20 13:00:00,20823 +2014-09-20 13:30:00,21182 +2014-09-20 14:00:00,20742 +2014-09-20 14:30:00,20477 +2014-09-20 15:00:00,20654 +2014-09-20 15:30:00,20386 +2014-09-20 16:00:00,18174 +2014-09-20 16:30:00,16690 +2014-09-20 17:00:00,18151 +2014-09-20 17:30:00,21330 +2014-09-20 18:00:00,23268 +2014-09-20 18:30:00,25025 +2014-09-20 19:00:00,25816 +2014-09-20 19:30:00,25694 +2014-09-20 20:00:00,24693 +2014-09-20 20:30:00,24187 +2014-09-20 21:00:00,23820 +2014-09-20 21:30:00,24549 +2014-09-20 22:00:00,25442 +2014-09-20 22:30:00,25914 +2014-09-20 23:00:00,26329 +2014-09-20 23:30:00,26618 +2014-09-21 00:00:00,26477 +2014-09-21 00:30:00,25461 +2014-09-21 01:00:00,25371 +2014-09-21 01:30:00,21726 +2014-09-21 02:00:00,20737 +2014-09-21 02:30:00,18852 +2014-09-21 03:00:00,16474 +2014-09-21 03:30:00,13647 +2014-09-21 04:00:00,11793 +2014-09-21 04:30:00,7142 +2014-09-21 05:00:00,4611 +2014-09-21 05:30:00,3474 +2014-09-21 06:00:00,4131 +2014-09-21 06:30:00,4395 +2014-09-21 07:00:00,4443 +2014-09-21 07:30:00,6155 +2014-09-21 08:00:00,6827 +2014-09-21 08:30:00,9510 +2014-09-21 09:00:00,10785 +2014-09-21 09:30:00,13570 +2014-09-21 10:00:00,14691 +2014-09-21 10:30:00,17071 +2014-09-21 11:00:00,17457 +2014-09-21 11:30:00,17961 +2014-09-21 12:00:00,17900 +2014-09-21 12:30:00,18347 +2014-09-21 13:00:00,17302 +2014-09-21 13:30:00,16009 +2014-09-21 14:00:00,15427 +2014-09-21 14:30:00,14986 +2014-09-21 15:00:00,14381 +2014-09-21 15:30:00,13763 +2014-09-21 16:00:00,13163 +2014-09-21 16:30:00,11940 +2014-09-21 17:00:00,13536 +2014-09-21 17:30:00,15175 +2014-09-21 18:00:00,16406 +2014-09-21 18:30:00,17318 +2014-09-21 19:00:00,17588 +2014-09-21 19:30:00,17895 +2014-09-21 20:00:00,18084 +2014-09-21 20:30:00,16972 +2014-09-21 21:00:00,16389 +2014-09-21 21:30:00,15846 +2014-09-21 22:00:00,15329 +2014-09-21 22:30:00,14446 +2014-09-21 23:00:00,12721 +2014-09-21 23:30:00,10826 +2014-09-22 00:00:00,9067 +2014-09-22 00:30:00,6546 +2014-09-22 01:00:00,4580 +2014-09-22 01:30:00,3654 +2014-09-22 02:00:00,3137 +2014-09-22 02:30:00,2610 +2014-09-22 03:00:00,2061 +2014-09-22 03:30:00,1959 +2014-09-22 04:00:00,2356 +2014-09-22 04:30:00,2400 +2014-09-22 05:00:00,2911 +2014-09-22 05:30:00,4833 +2014-09-22 06:00:00,7398 +2014-09-22 06:30:00,11809 +2014-09-22 07:00:00,14495 +2014-09-22 07:30:00,16812 +2014-09-22 08:00:00,17569 +2014-09-22 08:30:00,16738 +2014-09-22 09:00:00,16612 +2014-09-22 09:30:00,15702 +2014-09-22 10:00:00,14817 +2014-09-22 10:30:00,14668 +2014-09-22 11:00:00,14458 +2014-09-22 11:30:00,15475 +2014-09-22 12:00:00,15539 +2014-09-22 12:30:00,15345 +2014-09-22 13:00:00,15222 +2014-09-22 13:30:00,15213 +2014-09-22 14:00:00,16167 +2014-09-22 14:30:00,16210 +2014-09-22 15:00:00,16393 +2014-09-22 15:30:00,14797 +2014-09-22 16:00:00,13755 +2014-09-22 16:30:00,13960 +2014-09-22 17:00:00,16248 +2014-09-22 17:30:00,18272 +2014-09-22 18:00:00,20440 +2014-09-22 18:30:00,21524 +2014-09-22 19:00:00,21828 +2014-09-22 19:30:00,22825 +2014-09-22 20:00:00,22647 +2014-09-22 20:30:00,22210 +2014-09-22 21:00:00,22426 +2014-09-22 21:30:00,20839 +2014-09-22 22:00:00,20239 +2014-09-22 22:30:00,18144 +2014-09-22 23:00:00,15459 +2014-09-22 23:30:00,13766 +2014-09-23 00:00:00,11187 +2014-09-23 00:30:00,8959 +2014-09-23 01:00:00,7101 +2014-09-23 01:30:00,4710 +2014-09-23 02:00:00,3571 +2014-09-23 02:30:00,2765 +2014-09-23 03:00:00,2101 +2014-09-23 03:30:00,1867 +2014-09-23 04:00:00,2126 +2014-09-23 04:30:00,2082 +2014-09-23 05:00:00,2393 +2014-09-23 05:30:00,4443 +2014-09-23 06:00:00,7297 +2014-09-23 06:30:00,12466 +2014-09-23 07:00:00,15547 +2014-09-23 07:30:00,18160 +2014-09-23 08:00:00,18295 +2014-09-23 08:30:00,17794 +2014-09-23 09:00:00,16541 +2014-09-23 09:30:00,16239 +2014-09-23 10:00:00,15239 +2014-09-23 10:30:00,15153 +2014-09-23 11:00:00,14168 +2014-09-23 11:30:00,14872 +2014-09-23 12:00:00,15293 +2014-09-23 12:30:00,14971 +2014-09-23 13:00:00,14359 +2014-09-23 13:30:00,14486 +2014-09-23 14:00:00,14471 +2014-09-23 14:30:00,14920 +2014-09-23 15:00:00,14411 +2014-09-23 15:30:00,13573 +2014-09-23 16:00:00,11876 +2014-09-23 16:30:00,11040 +2014-09-23 17:00:00,13441 +2014-09-23 17:30:00,16163 +2014-09-23 18:00:00,19059 +2014-09-23 18:30:00,19621 +2014-09-23 19:00:00,21616 +2014-09-23 19:30:00,23427 +2014-09-23 20:00:00,23735 +2014-09-23 20:30:00,23354 +2014-09-23 21:00:00,23391 +2014-09-23 21:30:00,23228 +2014-09-23 22:00:00,21882 +2014-09-23 22:30:00,21221 +2014-09-23 23:00:00,18922 +2014-09-23 23:30:00,15473 +2014-09-24 00:00:00,12457 +2014-09-24 00:30:00,9497 +2014-09-24 01:00:00,7073 +2014-09-24 01:30:00,5496 +2014-09-24 02:00:00,4477 +2014-09-24 02:30:00,3527 +2014-09-24 03:00:00,2971 +2014-09-24 03:30:00,2660 +2014-09-24 04:00:00,2497 +2014-09-24 04:30:00,2250 +2014-09-24 05:00:00,2594 +2014-09-24 05:30:00,4316 +2014-09-24 06:00:00,7112 +2014-09-24 06:30:00,12119 +2014-09-24 07:00:00,15652 +2014-09-24 07:30:00,18565 +2014-09-24 08:00:00,18437 +2014-09-24 08:30:00,17831 +2014-09-24 09:00:00,17103 +2014-09-24 09:30:00,16446 +2014-09-24 10:00:00,15593 +2014-09-24 10:30:00,15353 +2014-09-24 11:00:00,15105 +2014-09-24 11:30:00,16058 +2014-09-24 12:00:00,16475 +2014-09-24 12:30:00,16226 +2014-09-24 13:00:00,15766 +2014-09-24 13:30:00,16242 +2014-09-24 14:00:00,16976 +2014-09-24 14:30:00,17117 +2014-09-24 15:00:00,16910 +2014-09-24 15:30:00,14845 +2014-09-24 16:00:00,12840 +2014-09-24 16:30:00,12913 +2014-09-24 17:00:00,15736 +2014-09-24 17:30:00,18396 +2014-09-24 18:00:00,21170 +2014-09-24 18:30:00,21255 +2014-09-24 19:00:00,22014 +2014-09-24 19:30:00,22334 +2014-09-24 20:00:00,21426 +2014-09-24 20:30:00,21152 +2014-09-24 21:00:00,22304 +2014-09-24 21:30:00,22947 +2014-09-24 22:00:00,22195 +2014-09-24 22:30:00,21592 +2014-09-24 23:00:00,18884 +2014-09-24 23:30:00,15885 +2014-09-25 00:00:00,12556 +2014-09-25 00:30:00,10023 +2014-09-25 01:00:00,7320 +2014-09-25 01:30:00,6007 +2014-09-25 02:00:00,4886 +2014-09-25 02:30:00,4068 +2014-09-25 03:00:00,3170 +2014-09-25 03:30:00,2671 +2014-09-25 04:00:00,2844 +2014-09-25 04:30:00,2430 +2014-09-25 05:00:00,2534 +2014-09-25 05:30:00,4193 +2014-09-25 06:00:00,6274 +2014-09-25 06:30:00,11614 +2014-09-25 07:00:00,14471 +2014-09-25 07:30:00,17184 +2014-09-25 08:00:00,18428 +2014-09-25 08:30:00,18257 +2014-09-25 09:00:00,17375 +2014-09-25 09:30:00,18079 +2014-09-25 10:00:00,17902 +2014-09-25 10:30:00,17934 +2014-09-25 11:00:00,16311 +2014-09-25 11:30:00,16460 +2014-09-25 12:00:00,17383 +2014-09-25 12:30:00,16931 +2014-09-25 13:00:00,17236 +2014-09-25 13:30:00,17120 +2014-09-25 14:00:00,16635 +2014-09-25 14:30:00,16048 +2014-09-25 15:00:00,15553 +2014-09-25 15:30:00,14421 +2014-09-25 16:00:00,13456 +2014-09-25 16:30:00,12820 +2014-09-25 17:00:00,16109 +2014-09-25 17:30:00,19198 +2014-09-25 18:00:00,21302 +2014-09-25 18:30:00,22657 +2014-09-25 19:00:00,23276 +2014-09-25 19:30:00,23723 +2014-09-25 20:00:00,23021 +2014-09-25 20:30:00,21823 +2014-09-25 21:00:00,21666 +2014-09-25 21:30:00,22491 +2014-09-25 22:00:00,22004 +2014-09-25 22:30:00,23595 +2014-09-25 23:00:00,22090 +2014-09-25 23:30:00,20296 +2014-09-26 00:00:00,16288 +2014-09-26 00:30:00,13049 +2014-09-26 01:00:00,10504 +2014-09-26 01:30:00,8423 +2014-09-26 02:00:00,7090 +2014-09-26 02:30:00,5920 +2014-09-26 03:00:00,4849 +2014-09-26 03:30:00,4102 +2014-09-26 04:00:00,4093 +2014-09-26 04:30:00,3162 +2014-09-26 05:00:00,2939 +2014-09-26 05:30:00,4012 +2014-09-26 06:00:00,6627 +2014-09-26 06:30:00,10911 +2014-09-26 07:00:00,13043 +2014-09-26 07:30:00,16141 +2014-09-26 08:00:00,16551 +2014-09-26 08:30:00,17566 +2014-09-26 09:00:00,16839 +2014-09-26 09:30:00,16706 +2014-09-26 10:00:00,15946 +2014-09-26 10:30:00,16319 +2014-09-26 11:00:00,15319 +2014-09-26 11:30:00,16456 +2014-09-26 12:00:00,16719 +2014-09-26 12:30:00,16157 +2014-09-26 13:00:00,15798 +2014-09-26 13:30:00,16747 +2014-09-26 14:00:00,16855 +2014-09-26 14:30:00,17441 +2014-09-26 15:00:00,16769 +2014-09-26 15:30:00,15274 +2014-09-26 16:00:00,14150 +2014-09-26 16:30:00,13382 +2014-09-26 17:00:00,16018 +2014-09-26 17:30:00,19412 +2014-09-26 18:00:00,22047 +2014-09-26 18:30:00,23843 +2014-09-26 19:00:00,24816 +2014-09-26 19:30:00,25433 +2014-09-26 20:00:00,25249 +2014-09-26 20:30:00,24492 +2014-09-26 21:00:00,24332 +2014-09-26 21:30:00,24473 +2014-09-26 22:00:00,25932 +2014-09-26 22:30:00,25931 +2014-09-26 23:00:00,26479 +2014-09-26 23:30:00,25878 +2014-09-27 00:00:00,25100 +2014-09-27 00:30:00,23886 +2014-09-27 01:00:00,22982 +2014-09-27 01:30:00,20541 +2014-09-27 02:00:00,18970 +2014-09-27 02:30:00,17433 +2014-09-27 03:00:00,14547 +2014-09-27 03:30:00,12694 +2014-09-27 04:00:00,10374 +2014-09-27 04:30:00,6339 +2014-09-27 05:00:00,4313 +2014-09-27 05:30:00,3538 +2014-09-27 06:00:00,3709 +2014-09-27 06:30:00,5311 +2014-09-27 07:00:00,5974 +2014-09-27 07:30:00,8183 +2014-09-27 08:00:00,8942 +2014-09-27 08:30:00,11805 +2014-09-27 09:00:00,12261 +2014-09-27 09:30:00,15226 +2014-09-27 10:00:00,15802 +2014-09-27 10:30:00,17334 +2014-09-27 11:00:00,18070 +2014-09-27 11:30:00,20105 +2014-09-27 12:00:00,20138 +2014-09-27 12:30:00,19968 +2014-09-27 13:00:00,20411 +2014-09-27 13:30:00,20317 +2014-09-27 14:00:00,19930 +2014-09-27 14:30:00,20502 +2014-09-27 15:00:00,19916 +2014-09-27 15:30:00,19259 +2014-09-27 16:00:00,17572 +2014-09-27 16:30:00,15629 +2014-09-27 17:00:00,17721 +2014-09-27 17:30:00,21308 +2014-09-27 18:00:00,23297 +2014-09-27 18:30:00,24024 +2014-09-27 19:00:00,24925 +2014-09-27 19:30:00,25418 +2014-09-27 20:00:00,23601 +2014-09-27 20:30:00,23219 +2014-09-27 21:00:00,22544 +2014-09-27 21:30:00,23273 +2014-09-27 22:00:00,25131 +2014-09-27 22:30:00,26895 +2014-09-27 23:00:00,27936 +2014-09-27 23:30:00,28113 +2014-09-28 00:00:00,27269 +2014-09-28 00:30:00,26320 +2014-09-28 01:00:00,24571 +2014-09-28 01:30:00,22698 +2014-09-28 02:00:00,20948 +2014-09-28 02:30:00,18561 +2014-09-28 03:00:00,16218 +2014-09-28 03:30:00,13873 +2014-09-28 04:00:00,11926 +2014-09-28 04:30:00,7361 +2014-09-28 05:00:00,4330 +2014-09-28 05:30:00,3681 +2014-09-28 06:00:00,3886 +2014-09-28 06:30:00,4600 +2014-09-28 07:00:00,4930 +2014-09-28 07:30:00,6204 +2014-09-28 08:00:00,7212 +2014-09-28 08:30:00,9136 +2014-09-28 09:00:00,10287 +2014-09-28 09:30:00,12808 +2014-09-28 10:00:00,13952 +2014-09-28 10:30:00,16763 +2014-09-28 11:00:00,17356 +2014-09-28 11:30:00,19238 +2014-09-28 12:00:00,19607 +2014-09-28 12:30:00,20310 +2014-09-28 13:00:00,20033 +2014-09-28 13:30:00,19595 +2014-09-28 14:00:00,19871 +2014-09-28 14:30:00,19819 +2014-09-28 15:00:00,18620 +2014-09-28 15:30:00,18657 +2014-09-28 16:00:00,17688 +2014-09-28 16:30:00,16927 +2014-09-28 17:00:00,17637 +2014-09-28 17:30:00,19283 +2014-09-28 18:00:00,20448 +2014-09-28 18:30:00,19638 +2014-09-28 19:00:00,19509 +2014-09-28 19:30:00,18936 +2014-09-28 20:00:00,18188 +2014-09-28 20:30:00,16594 +2014-09-28 21:00:00,16330 +2014-09-28 21:30:00,16075 +2014-09-28 22:00:00,14977 +2014-09-28 22:30:00,13503 +2014-09-28 23:00:00,12052 +2014-09-28 23:30:00,10779 +2014-09-29 00:00:00,8332 +2014-09-29 00:30:00,6357 +2014-09-29 01:00:00,4958 +2014-09-29 01:30:00,3461 +2014-09-29 02:00:00,3253 +2014-09-29 02:30:00,2493 +2014-09-29 03:00:00,1993 +2014-09-29 03:30:00,1839 +2014-09-29 04:00:00,2275 +2014-09-29 04:30:00,2280 +2014-09-29 05:00:00,2986 +2014-09-29 05:30:00,4608 +2014-09-29 06:00:00,7253 +2014-09-29 06:30:00,11360 +2014-09-29 07:00:00,14157 +2014-09-29 07:30:00,16864 +2014-09-29 08:00:00,17399 +2014-09-29 08:30:00,16671 +2014-09-29 09:00:00,15478 +2014-09-29 09:30:00,14677 +2014-09-29 10:00:00,14935 +2014-09-29 10:30:00,15392 +2014-09-29 11:00:00,15147 +2014-09-29 11:30:00,16345 +2014-09-29 12:00:00,16382 +2014-09-29 12:30:00,15798 +2014-09-29 13:00:00,15584 +2014-09-29 13:30:00,16544 +2014-09-29 14:00:00,17377 +2014-09-29 14:30:00,18345 +2014-09-29 15:00:00,18004 +2014-09-29 15:30:00,16863 +2014-09-29 16:00:00,15714 +2014-09-29 16:30:00,14743 +2014-09-29 17:00:00,17579 +2014-09-29 17:30:00,21604 +2014-09-29 18:00:00,23120 +2014-09-29 18:30:00,22717 +2014-09-29 19:00:00,22757 +2014-09-29 19:30:00,22311 +2014-09-29 20:00:00,21642 +2014-09-29 20:30:00,20568 +2014-09-29 21:00:00,19969 +2014-09-29 21:30:00,19484 +2014-09-29 22:00:00,17993 +2014-09-29 22:30:00,17446 +2014-09-29 23:00:00,13722 +2014-09-29 23:30:00,11549 +2014-09-30 00:00:00,9459 +2014-09-30 00:30:00,6800 +2014-09-30 01:00:00,5323 +2014-09-30 01:30:00,3976 +2014-09-30 02:00:00,3279 +2014-09-30 02:30:00,2617 +2014-09-30 03:00:00,2010 +2014-09-30 03:30:00,1853 +2014-09-30 04:00:00,2150 +2014-09-30 04:30:00,2019 +2014-09-30 05:00:00,2414 +2014-09-30 05:30:00,4193 +2014-09-30 06:00:00,6473 +2014-09-30 06:30:00,11500 +2014-09-30 07:00:00,14892 +2014-09-30 07:30:00,19148 +2014-09-30 08:00:00,19942 +2014-09-30 08:30:00,19874 +2014-09-30 09:00:00,18453 +2014-09-30 09:30:00,18316 +2014-09-30 10:00:00,16768 +2014-09-30 10:30:00,16430 +2014-09-30 11:00:00,16035 +2014-09-30 11:30:00,17493 +2014-09-30 12:00:00,17298 +2014-09-30 12:30:00,16790 +2014-09-30 13:00:00,15966 +2014-09-30 13:30:00,17428 +2014-09-30 14:00:00,18268 +2014-09-30 14:30:00,18462 +2014-09-30 15:00:00,18361 +2014-09-30 15:30:00,16495 +2014-09-30 16:00:00,14614 +2014-09-30 16:30:00,14124 +2014-09-30 17:00:00,17230 +2014-09-30 17:30:00,20123 +2014-09-30 18:00:00,22947 +2014-09-30 18:30:00,23715 +2014-09-30 19:00:00,24428 +2014-09-30 19:30:00,24482 +2014-09-30 20:00:00,24208 +2014-09-30 20:30:00,23513 +2014-09-30 21:00:00,24049 +2014-09-30 21:30:00,23634 +2014-09-30 22:00:00,22175 +2014-09-30 22:30:00,20697 +2014-09-30 23:00:00,17890 +2014-09-30 23:30:00,15516 +2014-10-01 00:00:00,12751 +2014-10-01 00:30:00,8767 +2014-10-01 01:00:00,7005 +2014-10-01 01:30:00,5257 +2014-10-01 02:00:00,4189 +2014-10-01 02:30:00,3236 +2014-10-01 03:00:00,2817 +2014-10-01 03:30:00,2527 +2014-10-01 04:00:00,2406 +2014-10-01 04:30:00,1961 +2014-10-01 05:00:00,2478 +2014-10-01 05:30:00,4483 +2014-10-01 06:00:00,7002 +2014-10-01 06:30:00,11917 +2014-10-01 07:00:00,15929 +2014-10-01 07:30:00,20327 +2014-10-01 08:00:00,20974 +2014-10-01 08:30:00,20999 +2014-10-01 09:00:00,19639 +2014-10-01 09:30:00,19221 +2014-10-01 10:00:00,17308 +2014-10-01 10:30:00,17140 +2014-10-01 11:00:00,16773 +2014-10-01 11:30:00,19397 +2014-10-01 12:00:00,18697 +2014-10-01 12:30:00,18042 +2014-10-01 13:00:00,17332 +2014-10-01 13:30:00,17585 +2014-10-01 14:00:00,18263 +2014-10-01 14:30:00,18842 +2014-10-01 15:00:00,18583 +2014-10-01 15:30:00,17301 +2014-10-01 16:00:00,15060 +2014-10-01 16:30:00,14201 +2014-10-01 17:00:00,16655 +2014-10-01 17:30:00,19964 +2014-10-01 18:00:00,22960 +2014-10-01 18:30:00,23759 +2014-10-01 19:00:00,25024 +2014-10-01 19:30:00,25414 +2014-10-01 20:00:00,24917 +2014-10-01 20:30:00,24348 +2014-10-01 21:00:00,24248 +2014-10-01 21:30:00,24669 +2014-10-01 22:00:00,23132 +2014-10-01 22:30:00,22753 +2014-10-01 23:00:00,20371 +2014-10-01 23:30:00,17313 +2014-10-02 00:00:00,13534 +2014-10-02 00:30:00,10485 +2014-10-02 01:00:00,7944 +2014-10-02 01:30:00,6030 +2014-10-02 02:00:00,4867 +2014-10-02 02:30:00,3812 +2014-10-02 03:00:00,3251 +2014-10-02 03:30:00,2738 +2014-10-02 04:00:00,2755 +2014-10-02 04:30:00,2221 +2014-10-02 05:00:00,2363 +2014-10-02 05:30:00,4351 +2014-10-02 06:00:00,6835 +2014-10-02 06:30:00,11982 +2014-10-02 07:00:00,15844 +2014-10-02 07:30:00,19853 +2014-10-02 08:00:00,20187 +2014-10-02 08:30:00,20480 +2014-10-02 09:00:00,19531 +2014-10-02 09:30:00,18873 +2014-10-02 10:00:00,17534 +2014-10-02 10:30:00,17803 +2014-10-02 11:00:00,16994 +2014-10-02 11:30:00,18149 +2014-10-02 12:00:00,18251 +2014-10-02 12:30:00,17723 +2014-10-02 13:00:00,17104 +2014-10-02 13:30:00,18124 +2014-10-02 14:00:00,18680 +2014-10-02 14:30:00,19364 +2014-10-02 15:00:00,19044 +2014-10-02 15:30:00,16883 +2014-10-02 16:00:00,14389 +2014-10-02 16:30:00,13866 +2014-10-02 17:00:00,17005 +2014-10-02 17:30:00,20674 +2014-10-02 18:00:00,22678 +2014-10-02 18:30:00,23225 +2014-10-02 19:00:00,25012 +2014-10-02 19:30:00,25574 +2014-10-02 20:00:00,25301 +2014-10-02 20:30:00,25391 +2014-10-02 21:00:00,25520 +2014-10-02 21:30:00,25582 +2014-10-02 22:00:00,24848 +2014-10-02 22:30:00,24100 +2014-10-02 23:00:00,23336 +2014-10-02 23:30:00,21549 +2014-10-03 00:00:00,18003 +2014-10-03 00:30:00,15266 +2014-10-03 01:00:00,12130 +2014-10-03 01:30:00,9847 +2014-10-03 02:00:00,8022 +2014-10-03 02:30:00,6508 +2014-10-03 03:00:00,5309 +2014-10-03 03:30:00,4339 +2014-10-03 04:00:00,4202 +2014-10-03 04:30:00,3358 +2014-10-03 05:00:00,3083 +2014-10-03 05:30:00,4391 +2014-10-03 06:00:00,6769 +2014-10-03 06:30:00,11309 +2014-10-03 07:00:00,14866 +2014-10-03 07:30:00,18942 +2014-10-03 08:00:00,19693 +2014-10-03 08:30:00,19776 +2014-10-03 09:00:00,19309 +2014-10-03 09:30:00,18801 +2014-10-03 10:00:00,17108 +2014-10-03 10:30:00,16952 +2014-10-03 11:00:00,17108 +2014-10-03 11:30:00,17927 +2014-10-03 12:00:00,18426 +2014-10-03 12:30:00,17340 +2014-10-03 13:00:00,17150 +2014-10-03 13:30:00,17581 +2014-10-03 14:00:00,18924 +2014-10-03 14:30:00,19602 +2014-10-03 15:00:00,18893 +2014-10-03 15:30:00,16691 +2014-10-03 16:00:00,15332 +2014-10-03 16:30:00,14661 +2014-10-03 17:00:00,18110 +2014-10-03 17:30:00,22624 +2014-10-03 18:00:00,25209 +2014-10-03 18:30:00,24975 +2014-10-03 19:00:00,26477 +2014-10-03 19:30:00,27165 +2014-10-03 20:00:00,25960 +2014-10-03 20:30:00,25435 +2014-10-03 21:00:00,24847 +2014-10-03 21:30:00,25174 +2014-10-03 22:00:00,25419 +2014-10-03 22:30:00,25904 +2014-10-03 23:00:00,24543 +2014-10-03 23:30:00,24513 +2014-10-04 00:00:00,23316 +2014-10-04 00:30:00,22311 +2014-10-04 01:00:00,20470 +2014-10-04 01:30:00,18629 +2014-10-04 02:00:00,17120 +2014-10-04 02:30:00,15544 +2014-10-04 03:00:00,14012 +2014-10-04 03:30:00,11425 +2014-10-04 04:00:00,9541 +2014-10-04 04:30:00,5912 +2014-10-04 05:00:00,3832 +2014-10-04 05:30:00,3230 +2014-10-04 06:00:00,3425 +2014-10-04 06:30:00,4159 +2014-10-04 07:00:00,4720 +2014-10-04 07:30:00,5848 +2014-10-04 08:00:00,6901 +2014-10-04 08:30:00,9611 +2014-10-04 09:00:00,11626 +2014-10-04 09:30:00,14814 +2014-10-04 10:00:00,16839 +2014-10-04 10:30:00,18245 +2014-10-04 11:00:00,18230 +2014-10-04 11:30:00,18322 +2014-10-04 12:00:00,18541 +2014-10-04 12:30:00,18062 +2014-10-04 13:00:00,18008 +2014-10-04 13:30:00,18784 +2014-10-04 14:00:00,17708 +2014-10-04 14:30:00,17998 +2014-10-04 15:00:00,18033 +2014-10-04 15:30:00,17851 +2014-10-04 16:00:00,17046 +2014-10-04 16:30:00,17241 +2014-10-04 17:00:00,19295 +2014-10-04 17:30:00,21740 +2014-10-04 18:00:00,22729 +2014-10-04 18:30:00,23854 +2014-10-04 19:00:00,25857 +2014-10-04 19:30:00,26490 +2014-10-04 20:00:00,24115 +2014-10-04 20:30:00,23384 +2014-10-04 21:00:00,23515 +2014-10-04 21:30:00,24476 +2014-10-04 22:00:00,24455 +2014-10-04 22:30:00,25474 +2014-10-04 23:00:00,25811 +2014-10-04 23:30:00,25847 +2014-10-05 00:00:00,25224 +2014-10-05 00:30:00,23248 +2014-10-05 01:00:00,22772 +2014-10-05 01:30:00,20671 +2014-10-05 02:00:00,19208 +2014-10-05 02:30:00,17300 +2014-10-05 03:00:00,15260 +2014-10-05 03:30:00,12970 +2014-10-05 04:00:00,11168 +2014-10-05 04:30:00,6678 +2014-10-05 05:00:00,4321 +2014-10-05 05:30:00,3259 +2014-10-05 06:00:00,3277 +2014-10-05 06:30:00,4072 +2014-10-05 07:00:00,4566 +2014-10-05 07:30:00,5973 +2014-10-05 08:00:00,7209 +2014-10-05 08:30:00,8999 +2014-10-05 09:00:00,10669 +2014-10-05 09:30:00,12678 +2014-10-05 10:00:00,14511 +2014-10-05 10:30:00,16953 +2014-10-05 11:00:00,17817 +2014-10-05 11:30:00,18894 +2014-10-05 12:00:00,18505 +2014-10-05 12:30:00,19227 +2014-10-05 13:00:00,18361 +2014-10-05 13:30:00,18014 +2014-10-05 14:00:00,17486 +2014-10-05 14:30:00,17816 +2014-10-05 15:00:00,17364 +2014-10-05 15:30:00,16871 +2014-10-05 16:00:00,15497 +2014-10-05 16:30:00,15185 +2014-10-05 17:00:00,16114 +2014-10-05 17:30:00,18312 +2014-10-05 18:00:00,19793 +2014-10-05 18:30:00,19706 +2014-10-05 19:00:00,20198 +2014-10-05 19:30:00,19790 +2014-10-05 20:00:00,18192 +2014-10-05 20:30:00,17701 +2014-10-05 21:00:00,16484 +2014-10-05 21:30:00,16626 +2014-10-05 22:00:00,14889 +2014-10-05 22:30:00,14114 +2014-10-05 23:00:00,11870 +2014-10-05 23:30:00,10041 +2014-10-06 00:00:00,7997 +2014-10-06 00:30:00,5689 +2014-10-06 01:00:00,4351 +2014-10-06 01:30:00,3348 +2014-10-06 02:00:00,2809 +2014-10-06 02:30:00,2193 +2014-10-06 03:00:00,1752 +2014-10-06 03:30:00,1731 +2014-10-06 04:00:00,1994 +2014-10-06 04:30:00,2178 +2014-10-06 05:00:00,2787 +2014-10-06 05:30:00,4578 +2014-10-06 06:00:00,6816 +2014-10-06 06:30:00,11243 +2014-10-06 07:00:00,14265 +2014-10-06 07:30:00,17395 +2014-10-06 08:00:00,18327 +2014-10-06 08:30:00,17729 +2014-10-06 09:00:00,17870 +2014-10-06 09:30:00,16982 +2014-10-06 10:00:00,15335 +2014-10-06 10:30:00,15998 +2014-10-06 11:00:00,15414 +2014-10-06 11:30:00,16233 +2014-10-06 12:00:00,16499 +2014-10-06 12:30:00,16380 +2014-10-06 13:00:00,15414 +2014-10-06 13:30:00,16720 +2014-10-06 14:00:00,17137 +2014-10-06 14:30:00,18046 +2014-10-06 15:00:00,18110 +2014-10-06 15:30:00,17087 +2014-10-06 16:00:00,15794 +2014-10-06 16:30:00,15965 +2014-10-06 17:00:00,18732 +2014-10-06 17:30:00,21107 +2014-10-06 18:00:00,23450 +2014-10-06 18:30:00,24200 +2014-10-06 19:00:00,24518 +2014-10-06 19:30:00,23704 +2014-10-06 20:00:00,22112 +2014-10-06 20:30:00,20986 +2014-10-06 21:00:00,21032 +2014-10-06 21:30:00,19963 +2014-10-06 22:00:00,18986 +2014-10-06 22:30:00,17125 +2014-10-06 23:00:00,15528 +2014-10-06 23:30:00,11610 +2014-10-07 00:00:00,9469 +2014-10-07 00:30:00,6605 +2014-10-07 01:00:00,5283 +2014-10-07 01:30:00,4152 +2014-10-07 02:00:00,3319 +2014-10-07 02:30:00,2432 +2014-10-07 03:00:00,1968 +2014-10-07 03:30:00,1769 +2014-10-07 04:00:00,2018 +2014-10-07 04:30:00,1933 +2014-10-07 05:00:00,2240 +2014-10-07 05:30:00,4305 +2014-10-07 06:00:00,6719 +2014-10-07 06:30:00,11392 +2014-10-07 07:00:00,14960 +2014-10-07 07:30:00,18975 +2014-10-07 08:00:00,19602 +2014-10-07 08:30:00,19572 +2014-10-07 09:00:00,18772 +2014-10-07 09:30:00,17757 +2014-10-07 10:00:00,16706 +2014-10-07 10:30:00,16601 +2014-10-07 11:00:00,15673 +2014-10-07 11:30:00,16929 +2014-10-07 12:00:00,17435 +2014-10-07 12:30:00,16953 +2014-10-07 13:00:00,16417 +2014-10-07 13:30:00,17022 +2014-10-07 14:00:00,17540 +2014-10-07 14:30:00,18417 +2014-10-07 15:00:00,18698 +2014-10-07 15:30:00,16193 +2014-10-07 16:00:00,14544 +2014-10-07 16:30:00,13864 +2014-10-07 17:00:00,17041 +2014-10-07 17:30:00,20434 +2014-10-07 18:00:00,23029 +2014-10-07 18:30:00,23711 +2014-10-07 19:00:00,24817 +2014-10-07 19:30:00,24933 +2014-10-07 20:00:00,24002 +2014-10-07 20:30:00,23651 +2014-10-07 21:00:00,23764 +2014-10-07 21:30:00,23224 +2014-10-07 22:00:00,22020 +2014-10-07 22:30:00,22214 +2014-10-07 23:00:00,21446 +2014-10-07 23:30:00,15974 +2014-10-08 00:00:00,12484 +2014-10-08 00:30:00,9130 +2014-10-08 01:00:00,6693 +2014-10-08 01:30:00,5333 +2014-10-08 02:00:00,3820 +2014-10-08 02:30:00,3065 +2014-10-08 03:00:00,2511 +2014-10-08 03:30:00,2299 +2014-10-08 04:00:00,2318 +2014-10-08 04:30:00,2125 +2014-10-08 05:00:00,2484 +2014-10-08 05:30:00,4358 +2014-10-08 06:00:00,6790 +2014-10-08 06:30:00,11660 +2014-10-08 07:00:00,15780 +2014-10-08 07:30:00,19516 +2014-10-08 08:00:00,20307 +2014-10-08 08:30:00,19954 +2014-10-08 09:00:00,18254 +2014-10-08 09:30:00,18010 +2014-10-08 10:00:00,17206 +2014-10-08 10:30:00,17213 +2014-10-08 11:00:00,16691 +2014-10-08 11:30:00,18259 +2014-10-08 12:00:00,18151 +2014-10-08 12:30:00,17555 +2014-10-08 13:00:00,16944 +2014-10-08 13:30:00,17728 +2014-10-08 14:00:00,18074 +2014-10-08 14:30:00,18993 +2014-10-08 15:00:00,18695 +2014-10-08 15:30:00,17191 +2014-10-08 16:00:00,15023 +2014-10-08 16:30:00,14164 +2014-10-08 17:00:00,17004 +2014-10-08 17:30:00,20361 +2014-10-08 18:00:00,23633 +2014-10-08 18:30:00,24661 +2014-10-08 19:00:00,25754 +2014-10-08 19:30:00,25671 +2014-10-08 20:00:00,25156 +2014-10-08 20:30:00,24961 +2014-10-08 21:00:00,24938 +2014-10-08 21:30:00,24851 +2014-10-08 22:00:00,24683 +2014-10-08 22:30:00,23411 +2014-10-08 23:00:00,20599 +2014-10-08 23:30:00,17147 +2014-10-09 00:00:00,13602 +2014-10-09 00:30:00,10452 +2014-10-09 01:00:00,7836 +2014-10-09 01:30:00,6040 +2014-10-09 02:00:00,4981 +2014-10-09 02:30:00,3613 +2014-10-09 03:00:00,2923 +2014-10-09 03:30:00,2632 +2014-10-09 04:00:00,2912 +2014-10-09 04:30:00,2577 +2014-10-09 05:00:00,2921 +2014-10-09 05:30:00,4679 +2014-10-09 06:00:00,6693 +2014-10-09 06:30:00,12140 +2014-10-09 07:00:00,15534 +2014-10-09 07:30:00,19974 +2014-10-09 08:00:00,20533 +2014-10-09 08:30:00,19988 +2014-10-09 09:00:00,19239 +2014-10-09 09:30:00,18788 +2014-10-09 10:00:00,17934 +2014-10-09 10:30:00,18048 +2014-10-09 11:00:00,17415 +2014-10-09 11:30:00,18292 +2014-10-09 12:00:00,18506 +2014-10-09 12:30:00,18180 +2014-10-09 13:00:00,17401 +2014-10-09 13:30:00,18973 +2014-10-09 14:00:00,19361 +2014-10-09 14:30:00,19722 +2014-10-09 15:00:00,19572 +2014-10-09 15:30:00,17500 +2014-10-09 16:00:00,15213 +2014-10-09 16:30:00,14457 +2014-10-09 17:00:00,17736 +2014-10-09 17:30:00,21319 +2014-10-09 18:00:00,23270 +2014-10-09 18:30:00,24892 +2014-10-09 19:00:00,26555 +2014-10-09 19:30:00,26743 +2014-10-09 20:00:00,26376 +2014-10-09 20:30:00,26311 +2014-10-09 21:00:00,26179 +2014-10-09 21:30:00,26774 +2014-10-09 22:00:00,26449 +2014-10-09 22:30:00,25459 +2014-10-09 23:00:00,23927 +2014-10-09 23:30:00,21851 +2014-10-10 00:00:00,18756 +2014-10-10 00:30:00,14990 +2014-10-10 01:00:00,13865 +2014-10-10 01:30:00,10263 +2014-10-10 02:00:00,7873 +2014-10-10 02:30:00,6480 +2014-10-10 03:00:00,5094 +2014-10-10 03:30:00,4217 +2014-10-10 04:00:00,4289 +2014-10-10 04:30:00,3640 +2014-10-10 05:00:00,3376 +2014-10-10 05:30:00,5145 +2014-10-10 06:00:00,7144 +2014-10-10 06:30:00,11739 +2014-10-10 07:00:00,15197 +2014-10-10 07:30:00,19716 +2014-10-10 08:00:00,20851 +2014-10-10 08:30:00,20463 +2014-10-10 09:00:00,19658 +2014-10-10 09:30:00,19287 +2014-10-10 10:00:00,17986 +2014-10-10 10:30:00,17776 +2014-10-10 11:00:00,17735 +2014-10-10 11:30:00,18716 +2014-10-10 12:00:00,19032 +2014-10-10 12:30:00,17702 +2014-10-10 13:00:00,17023 +2014-10-10 13:30:00,18352 +2014-10-10 14:00:00,19791 +2014-10-10 14:30:00,20131 +2014-10-10 15:00:00,18645 +2014-10-10 15:30:00,16572 +2014-10-10 16:00:00,14736 +2014-10-10 16:30:00,13731 +2014-10-10 17:00:00,17166 +2014-10-10 17:30:00,20392 +2014-10-10 18:00:00,22838 +2014-10-10 18:30:00,23791 +2014-10-10 19:00:00,25914 +2014-10-10 19:30:00,26355 +2014-10-10 20:00:00,25656 +2014-10-10 20:30:00,25449 +2014-10-10 21:00:00,25448 +2014-10-10 21:30:00,25823 +2014-10-10 22:00:00,25813 +2014-10-10 22:30:00,26407 +2014-10-10 23:00:00,26898 +2014-10-10 23:30:00,26587 +2014-10-11 00:00:00,25257 +2014-10-11 00:30:00,23717 +2014-10-11 01:00:00,22541 +2014-10-11 01:30:00,19773 +2014-10-11 02:00:00,19652 +2014-10-11 02:30:00,16294 +2014-10-11 03:00:00,13968 +2014-10-11 03:30:00,12000 +2014-10-11 04:00:00,10432 +2014-10-11 04:30:00,6402 +2014-10-11 05:00:00,4443 +2014-10-11 05:30:00,3481 +2014-10-11 06:00:00,3971 +2014-10-11 06:30:00,5191 +2014-10-11 07:00:00,6434 +2014-10-11 07:30:00,8435 +2014-10-11 08:00:00,10255 +2014-10-11 08:30:00,13847 +2014-10-11 09:00:00,14970 +2014-10-11 09:30:00,18403 +2014-10-11 10:00:00,19338 +2014-10-11 10:30:00,21107 +2014-10-11 11:00:00,20821 +2014-10-11 11:30:00,21854 +2014-10-11 12:00:00,21813 +2014-10-11 12:30:00,22250 +2014-10-11 13:00:00,21450 +2014-10-11 13:30:00,21271 +2014-10-11 14:00:00,20595 +2014-10-11 14:30:00,20863 +2014-10-11 15:00:00,20262 +2014-10-11 15:30:00,21024 +2014-10-11 16:00:00,19141 +2014-10-11 16:30:00,17903 +2014-10-11 17:00:00,19903 +2014-10-11 17:30:00,22820 +2014-10-11 18:00:00,24243 +2014-10-11 18:30:00,25880 +2014-10-11 19:00:00,26756 +2014-10-11 19:30:00,26593 +2014-10-11 20:00:00,25248 +2014-10-11 20:30:00,23934 +2014-10-11 21:00:00,23401 +2014-10-11 21:30:00,24145 +2014-10-11 22:00:00,25308 +2014-10-11 22:30:00,26284 +2014-10-11 23:00:00,27136 +2014-10-11 23:30:00,27099 +2014-10-12 00:00:00,26610 +2014-10-12 00:30:00,25400 +2014-10-12 01:00:00,23992 +2014-10-12 01:30:00,22359 +2014-10-12 02:00:00,21054 +2014-10-12 02:30:00,18812 +2014-10-12 03:00:00,16584 +2014-10-12 03:30:00,14204 +2014-10-12 04:00:00,11990 +2014-10-12 04:30:00,7092 +2014-10-12 05:00:00,4311 +2014-10-12 05:30:00,3844 +2014-10-12 06:00:00,3796 +2014-10-12 06:30:00,4755 +2014-10-12 07:00:00,4491 +2014-10-12 07:30:00,5559 +2014-10-12 08:00:00,6959 +2014-10-12 08:30:00,9127 +2014-10-12 09:00:00,11015 +2014-10-12 09:30:00,13961 +2014-10-12 10:00:00,15445 +2014-10-12 10:30:00,17923 +2014-10-12 11:00:00,18438 +2014-10-12 11:30:00,19592 +2014-10-12 12:00:00,19733 +2014-10-12 12:30:00,19766 +2014-10-12 13:00:00,19809 +2014-10-12 13:30:00,19242 +2014-10-12 14:00:00,18990 +2014-10-12 14:30:00,18676 +2014-10-12 15:00:00,18037 +2014-10-12 15:30:00,16660 +2014-10-12 16:00:00,15948 +2014-10-12 16:30:00,15261 +2014-10-12 17:00:00,17141 +2014-10-12 17:30:00,19085 +2014-10-12 18:00:00,20188 +2014-10-12 18:30:00,20512 +2014-10-12 19:00:00,20723 +2014-10-12 19:30:00,20415 +2014-10-12 20:00:00,19483 +2014-10-12 20:30:00,19008 +2014-10-12 21:00:00,17958 +2014-10-12 21:30:00,18341 +2014-10-12 22:00:00,18181 +2014-10-12 22:30:00,17069 +2014-10-12 23:00:00,15057 +2014-10-12 23:30:00,13867 +2014-10-13 00:00:00,11544 +2014-10-13 00:30:00,9016 +2014-10-13 01:00:00,6739 +2014-10-13 01:30:00,5420 +2014-10-13 02:00:00,4584 +2014-10-13 02:30:00,3787 +2014-10-13 03:00:00,3018 +2014-10-13 03:30:00,2667 +2014-10-13 04:00:00,2981 +2014-10-13 04:30:00,2756 +2014-10-13 05:00:00,2712 +2014-10-13 05:30:00,3798 +2014-10-13 06:00:00,5117 +2014-10-13 06:30:00,7727 +2014-10-13 07:00:00,9655 +2014-10-13 07:30:00,12109 +2014-10-13 08:00:00,13484 +2014-10-13 08:30:00,15506 +2014-10-13 09:00:00,15325 +2014-10-13 09:30:00,15924 +2014-10-13 10:00:00,14830 +2014-10-13 10:30:00,14907 +2014-10-13 11:00:00,14796 +2014-10-13 11:30:00,15699 +2014-10-13 12:00:00,15705 +2014-10-13 12:30:00,15880 +2014-10-13 13:00:00,15693 +2014-10-13 13:30:00,16643 +2014-10-13 14:00:00,16929 +2014-10-13 14:30:00,17698 +2014-10-13 15:00:00,17429 +2014-10-13 15:30:00,17248 +2014-10-13 16:00:00,16219 +2014-10-13 16:30:00,15918 +2014-10-13 17:00:00,17780 +2014-10-13 17:30:00,19414 +2014-10-13 18:00:00,21594 +2014-10-13 18:30:00,24915 +2014-10-13 19:00:00,24556 +2014-10-13 19:30:00,22341 +2014-10-13 20:00:00,22343 +2014-10-13 20:30:00,21619 +2014-10-13 21:00:00,21315 +2014-10-13 21:30:00,19821 +2014-10-13 22:00:00,17669 +2014-10-13 22:30:00,15504 +2014-10-13 23:00:00,14525 +2014-10-13 23:30:00,10738 +2014-10-14 00:00:00,8908 +2014-10-14 00:30:00,6593 +2014-10-14 01:00:00,5560 +2014-10-14 01:30:00,4014 +2014-10-14 02:00:00,3046 +2014-10-14 02:30:00,2349 +2014-10-14 03:00:00,1876 +2014-10-14 03:30:00,1691 +2014-10-14 04:00:00,1941 +2014-10-14 04:30:00,1850 +2014-10-14 05:00:00,2318 +2014-10-14 05:30:00,4337 +2014-10-14 06:00:00,6669 +2014-10-14 06:30:00,11585 +2014-10-14 07:00:00,15170 +2014-10-14 07:30:00,19136 +2014-10-14 08:00:00,20085 +2014-10-14 08:30:00,19758 +2014-10-14 09:00:00,18842 +2014-10-14 09:30:00,18530 +2014-10-14 10:00:00,16617 +2014-10-14 10:30:00,17458 +2014-10-14 11:00:00,16359 +2014-10-14 11:30:00,17483 +2014-10-14 12:00:00,17600 +2014-10-14 12:30:00,17552 +2014-10-14 13:00:00,17058 +2014-10-14 13:30:00,17658 +2014-10-14 14:00:00,18319 +2014-10-14 14:30:00,18818 +2014-10-14 15:00:00,18735 +2014-10-14 15:30:00,17254 +2014-10-14 16:00:00,15022 +2014-10-14 16:30:00,14365 +2014-10-14 17:00:00,16300 +2014-10-14 17:30:00,19687 +2014-10-14 18:00:00,22620 +2014-10-14 18:30:00,23309 +2014-10-14 19:00:00,23636 +2014-10-14 19:30:00,23752 +2014-10-14 20:00:00,23095 +2014-10-14 20:30:00,23108 +2014-10-14 21:00:00,23221 +2014-10-14 21:30:00,23581 +2014-10-14 22:00:00,22249 +2014-10-14 22:30:00,19533 +2014-10-14 23:00:00,17226 +2014-10-14 23:30:00,13935 +2014-10-15 00:00:00,11429 +2014-10-15 00:30:00,8486 +2014-10-15 01:00:00,6484 +2014-10-15 01:30:00,5093 +2014-10-15 02:00:00,4018 +2014-10-15 02:30:00,3218 +2014-10-15 03:00:00,2536 +2014-10-15 03:30:00,2219 +2014-10-15 04:00:00,2171 +2014-10-15 04:30:00,2268 +2014-10-15 05:00:00,2437 +2014-10-15 05:30:00,4569 +2014-10-15 06:00:00,6862 +2014-10-15 06:30:00,11924 +2014-10-15 07:00:00,15860 +2014-10-15 07:30:00,19821 +2014-10-15 08:00:00,20508 +2014-10-15 08:30:00,20540 +2014-10-15 09:00:00,19590 +2014-10-15 09:30:00,18480 +2014-10-15 10:00:00,17330 +2014-10-15 10:30:00,18508 +2014-10-15 11:00:00,17354 +2014-10-15 11:30:00,18552 +2014-10-15 12:00:00,18241 +2014-10-15 12:30:00,18475 +2014-10-15 13:00:00,17939 +2014-10-15 13:30:00,18398 +2014-10-15 14:00:00,18875 +2014-10-15 14:30:00,19559 +2014-10-15 15:00:00,19133 +2014-10-15 15:30:00,16816 +2014-10-15 16:00:00,14757 +2014-10-15 16:30:00,14470 +2014-10-15 17:00:00,17800 +2014-10-15 17:30:00,21127 +2014-10-15 18:00:00,22269 +2014-10-15 18:30:00,22819 +2014-10-15 19:00:00,23582 +2014-10-15 19:30:00,26273 +2014-10-15 20:00:00,25338 +2014-10-15 20:30:00,24021 +2014-10-15 21:00:00,26163 +2014-10-15 21:30:00,23839 +2014-10-15 22:00:00,22608 +2014-10-15 22:30:00,24886 +2014-10-15 23:00:00,20128 +2014-10-15 23:30:00,16180 +2014-10-16 00:00:00,13302 +2014-10-16 00:30:00,10509 +2014-10-16 01:00:00,8241 +2014-10-16 01:30:00,5536 +2014-10-16 02:00:00,4664 +2014-10-16 02:30:00,3460 +2014-10-16 03:00:00,2799 +2014-10-16 03:30:00,2730 +2014-10-16 04:00:00,2801 +2014-10-16 04:30:00,2511 +2014-10-16 05:00:00,2670 +2014-10-16 05:30:00,4767 +2014-10-16 06:00:00,7096 +2014-10-16 06:30:00,12556 +2014-10-16 07:00:00,16431 +2014-10-16 07:30:00,21581 +2014-10-16 08:00:00,21355 +2014-10-16 08:30:00,21573 +2014-10-16 09:00:00,20390 +2014-10-16 09:30:00,20452 +2014-10-16 10:00:00,19678 +2014-10-16 10:30:00,18801 +2014-10-16 11:00:00,17223 +2014-10-16 11:30:00,18249 +2014-10-16 12:00:00,17691 +2014-10-16 12:30:00,17052 +2014-10-16 13:00:00,16783 +2014-10-16 13:30:00,18392 +2014-10-16 14:00:00,18593 +2014-10-16 14:30:00,19364 +2014-10-16 15:00:00,19176 +2014-10-16 15:30:00,16795 +2014-10-16 16:00:00,15293 +2014-10-16 16:30:00,14922 +2014-10-16 17:00:00,17899 +2014-10-16 17:30:00,21758 +2014-10-16 18:00:00,24169 +2014-10-16 18:30:00,24615 +2014-10-16 19:00:00,26370 +2014-10-16 19:30:00,26990 +2014-10-16 20:00:00,26168 +2014-10-16 20:30:00,25449 +2014-10-16 21:00:00,25994 +2014-10-16 21:30:00,27115 +2014-10-16 22:00:00,26191 +2014-10-16 22:30:00,25146 +2014-10-16 23:00:00,24371 +2014-10-16 23:30:00,23771 +2014-10-17 00:00:00,19268 +2014-10-17 00:30:00,15623 +2014-10-17 01:00:00,12595 +2014-10-17 01:30:00,10224 +2014-10-17 02:00:00,7941 +2014-10-17 02:30:00,6678 +2014-10-17 03:00:00,5182 +2014-10-17 03:30:00,4502 +2014-10-17 04:00:00,4316 +2014-10-17 04:30:00,3512 +2014-10-17 05:00:00,3174 +2014-10-17 05:30:00,4771 +2014-10-17 06:00:00,6557 +2014-10-17 06:30:00,11929 +2014-10-17 07:00:00,14950 +2014-10-17 07:30:00,19835 +2014-10-17 08:00:00,20149 +2014-10-17 08:30:00,19998 +2014-10-17 09:00:00,19310 +2014-10-17 09:30:00,18601 +2014-10-17 10:00:00,17567 +2014-10-17 10:30:00,17890 +2014-10-17 11:00:00,17470 +2014-10-17 11:30:00,18557 +2014-10-17 12:00:00,18944 +2014-10-17 12:30:00,17922 +2014-10-17 13:00:00,17627 +2014-10-17 13:30:00,18361 +2014-10-17 14:00:00,19557 +2014-10-17 14:30:00,19811 +2014-10-17 15:00:00,19277 +2014-10-17 15:30:00,16741 +2014-10-17 16:00:00,14948 +2014-10-17 16:30:00,14244 +2014-10-17 17:00:00,17563 +2014-10-17 17:30:00,21246 +2014-10-17 18:00:00,23115 +2014-10-17 18:30:00,24785 +2014-10-17 19:00:00,26396 +2014-10-17 19:30:00,26837 +2014-10-17 20:00:00,26621 +2014-10-17 20:30:00,26144 +2014-10-17 21:00:00,26019 +2014-10-17 21:30:00,26816 +2014-10-17 22:00:00,26701 +2014-10-17 22:30:00,26519 +2014-10-17 23:00:00,26740 +2014-10-17 23:30:00,26173 +2014-10-18 00:00:00,25059 +2014-10-18 00:30:00,24437 +2014-10-18 01:00:00,22718 +2014-10-18 01:30:00,20700 +2014-10-18 02:00:00,19623 +2014-10-18 02:30:00,16675 +2014-10-18 03:00:00,14447 +2014-10-18 03:30:00,12377 +2014-10-18 04:00:00,10609 +2014-10-18 04:30:00,6436 +2014-10-18 05:00:00,4562 +2014-10-18 05:30:00,3783 +2014-10-18 06:00:00,3923 +2014-10-18 06:30:00,5060 +2014-10-18 07:00:00,5992 +2014-10-18 07:30:00,8639 +2014-10-18 08:00:00,10309 +2014-10-18 08:30:00,13563 +2014-10-18 09:00:00,14136 +2014-10-18 09:30:00,16945 +2014-10-18 10:00:00,17004 +2014-10-18 10:30:00,19045 +2014-10-18 11:00:00,19859 +2014-10-18 11:30:00,21198 +2014-10-18 12:00:00,21550 +2014-10-18 12:30:00,21583 +2014-10-18 13:00:00,21455 +2014-10-18 13:30:00,21869 +2014-10-18 14:00:00,21426 +2014-10-18 14:30:00,21650 +2014-10-18 15:00:00,21611 +2014-10-18 15:30:00,20904 +2014-10-18 16:00:00,18820 +2014-10-18 16:30:00,17255 +2014-10-18 17:00:00,19029 +2014-10-18 17:30:00,22812 +2014-10-18 18:00:00,24455 +2014-10-18 18:30:00,26373 +2014-10-18 19:00:00,27460 +2014-10-18 19:30:00,27222 +2014-10-18 20:00:00,25204 +2014-10-18 20:30:00,24329 +2014-10-18 21:00:00,24526 +2014-10-18 21:30:00,25203 +2014-10-18 22:00:00,25975 +2014-10-18 22:30:00,27073 +2014-10-18 23:00:00,27881 +2014-10-18 23:30:00,28626 +2014-10-19 00:00:00,28093 +2014-10-19 00:30:00,26200 +2014-10-19 01:00:00,25610 +2014-10-19 01:30:00,23483 +2014-10-19 02:00:00,21850 +2014-10-19 02:30:00,19297 +2014-10-19 03:00:00,16574 +2014-10-19 03:30:00,14355 +2014-10-19 04:00:00,12112 +2014-10-19 04:30:00,7284 +2014-10-19 05:00:00,4845 +2014-10-19 05:30:00,3667 +2014-10-19 06:00:00,3718 +2014-10-19 06:30:00,4573 +2014-10-19 07:00:00,5167 +2014-10-19 07:30:00,6844 +2014-10-19 08:00:00,7279 +2014-10-19 08:30:00,9761 +2014-10-19 09:00:00,11712 +2014-10-19 09:30:00,14210 +2014-10-19 10:00:00,15394 +2014-10-19 10:30:00,18387 +2014-10-19 11:00:00,19168 +2014-10-19 11:30:00,20891 +2014-10-19 12:00:00,21806 +2014-10-19 12:30:00,22188 +2014-10-19 13:00:00,22153 +2014-10-19 13:30:00,21713 +2014-10-19 14:00:00,21838 +2014-10-19 14:30:00,21082 +2014-10-19 15:00:00,20448 +2014-10-19 15:30:00,20113 +2014-10-19 16:00:00,18645 +2014-10-19 16:30:00,17210 +2014-10-19 17:00:00,18326 +2014-10-19 17:30:00,20498 +2014-10-19 18:00:00,20924 +2014-10-19 18:30:00,21579 +2014-10-19 19:00:00,22026 +2014-10-19 19:30:00,22197 +2014-10-19 20:00:00,19709 +2014-10-19 20:30:00,18780 +2014-10-19 21:00:00,18060 +2014-10-19 21:30:00,17973 +2014-10-19 22:00:00,16572 +2014-10-19 22:30:00,14957 +2014-10-19 23:00:00,12461 +2014-10-19 23:30:00,10448 +2014-10-20 00:00:00,8295 +2014-10-20 00:30:00,6837 +2014-10-20 01:00:00,4747 +2014-10-20 01:30:00,3283 +2014-10-20 02:00:00,2904 +2014-10-20 02:30:00,2345 +2014-10-20 03:00:00,1917 +2014-10-20 03:30:00,1783 +2014-10-20 04:00:00,2174 +2014-10-20 04:30:00,2157 +2014-10-20 05:00:00,2989 +2014-10-20 05:30:00,4841 +2014-10-20 06:00:00,7228 +2014-10-20 06:30:00,11726 +2014-10-20 07:00:00,14557 +2014-10-20 07:30:00,17848 +2014-10-20 08:00:00,18436 +2014-10-20 08:30:00,18059 +2014-10-20 09:00:00,18028 +2014-10-20 09:30:00,17353 +2014-10-20 10:00:00,16350 +2014-10-20 10:30:00,16376 +2014-10-20 11:00:00,16099 +2014-10-20 11:30:00,16817 +2014-10-20 12:00:00,16898 +2014-10-20 12:30:00,16809 +2014-10-20 13:00:00,16199 +2014-10-20 13:30:00,16758 +2014-10-20 14:00:00,17679 +2014-10-20 14:30:00,18148 +2014-10-20 15:00:00,18644 +2014-10-20 15:30:00,17183 +2014-10-20 16:00:00,16196 +2014-10-20 16:30:00,15534 +2014-10-20 17:00:00,18451 +2014-10-20 17:30:00,20950 +2014-10-20 18:00:00,23192 +2014-10-20 18:30:00,24655 +2014-10-20 19:00:00,24094 +2014-10-20 19:30:00,23285 +2014-10-20 20:00:00,22083 +2014-10-20 20:30:00,21485 +2014-10-20 21:00:00,21579 +2014-10-20 21:30:00,21118 +2014-10-20 22:00:00,20204 +2014-10-20 22:30:00,16909 +2014-10-20 23:00:00,13785 +2014-10-20 23:30:00,11695 +2014-10-21 00:00:00,9214 +2014-10-21 00:30:00,6931 +2014-10-21 01:00:00,5413 +2014-10-21 01:30:00,4130 +2014-10-21 02:00:00,3276 +2014-10-21 02:30:00,2475 +2014-10-21 03:00:00,2080 +2014-10-21 03:30:00,1917 +2014-10-21 04:00:00,2123 +2014-10-21 04:30:00,1984 +2014-10-21 05:00:00,2458 +2014-10-21 05:30:00,4338 +2014-10-21 06:00:00,6470 +2014-10-21 06:30:00,11775 +2014-10-21 07:00:00,15088 +2014-10-21 07:30:00,19429 +2014-10-21 08:00:00,20482 +2014-10-21 08:30:00,19886 +2014-10-21 09:00:00,19170 +2014-10-21 09:30:00,18277 +2014-10-21 10:00:00,17064 +2014-10-21 10:30:00,16386 +2014-10-21 11:00:00,16633 +2014-10-21 11:30:00,17681 +2014-10-21 12:00:00,18233 +2014-10-21 12:30:00,17996 +2014-10-21 13:00:00,16695 +2014-10-21 13:30:00,16912 +2014-10-21 14:00:00,18124 +2014-10-21 14:30:00,18411 +2014-10-21 15:00:00,19013 +2014-10-21 15:30:00,17590 +2014-10-21 16:00:00,15673 +2014-10-21 16:30:00,14923 +2014-10-21 17:00:00,17981 +2014-10-21 17:30:00,21208 +2014-10-21 18:00:00,23458 +2014-10-21 18:30:00,24028 +2014-10-21 19:00:00,24934 +2014-10-21 19:30:00,25135 +2014-10-21 20:00:00,24613 +2014-10-21 20:30:00,24617 +2014-10-21 21:00:00,25841 +2014-10-21 21:30:00,24141 +2014-10-21 22:00:00,23069 +2014-10-21 22:30:00,21243 +2014-10-21 23:00:00,18077 +2014-10-21 23:30:00,15745 +2014-10-22 00:00:00,12115 +2014-10-22 00:30:00,9035 +2014-10-22 01:00:00,7015 +2014-10-22 01:30:00,5113 +2014-10-22 02:00:00,4220 +2014-10-22 02:30:00,3331 +2014-10-22 03:00:00,2870 +2014-10-22 03:30:00,2516 +2014-10-22 04:00:00,2656 +2014-10-22 04:30:00,2336 +2014-10-22 05:00:00,2494 +2014-10-22 05:30:00,5081 +2014-10-22 06:00:00,8091 +2014-10-22 06:30:00,13037 +2014-10-22 07:00:00,16579 +2014-10-22 07:30:00,19657 +2014-10-22 08:00:00,20914 +2014-10-22 08:30:00,20612 +2014-10-22 09:00:00,20015 +2014-10-22 09:30:00,19001 +2014-10-22 10:00:00,17533 +2014-10-22 10:30:00,17877 +2014-10-22 11:00:00,16470 +2014-10-22 11:30:00,18266 +2014-10-22 12:00:00,17992 +2014-10-22 12:30:00,17419 +2014-10-22 13:00:00,16775 +2014-10-22 13:30:00,17378 +2014-10-22 14:00:00,18067 +2014-10-22 14:30:00,19841 +2014-10-22 15:00:00,18552 +2014-10-22 15:30:00,16825 +2014-10-22 16:00:00,14712 +2014-10-22 16:30:00,14439 +2014-10-22 17:00:00,17305 +2014-10-22 17:30:00,20949 +2014-10-22 18:00:00,22182 +2014-10-22 18:30:00,23886 +2014-10-22 19:00:00,25234 +2014-10-22 19:30:00,24731 +2014-10-22 20:00:00,25195 +2014-10-22 20:30:00,25551 +2014-10-22 21:00:00,26110 +2014-10-22 21:30:00,24842 +2014-10-22 22:00:00,23178 +2014-10-22 22:30:00,23408 +2014-10-22 23:00:00,21749 +2014-10-22 23:30:00,17918 +2014-10-23 00:00:00,13496 +2014-10-23 00:30:00,10416 +2014-10-23 01:00:00,8090 +2014-10-23 01:30:00,5946 +2014-10-23 02:00:00,4330 +2014-10-23 02:30:00,3282 +2014-10-23 03:00:00,2732 +2014-10-23 03:30:00,2524 +2014-10-23 04:00:00,2700 +2014-10-23 04:30:00,2290 +2014-10-23 05:00:00,2743 +2014-10-23 05:30:00,4732 +2014-10-23 06:00:00,7570 +2014-10-23 06:30:00,12751 +2014-10-23 07:00:00,16887 +2014-10-23 07:30:00,20268 +2014-10-23 08:00:00,21992 +2014-10-23 08:30:00,21301 +2014-10-23 09:00:00,20526 +2014-10-23 09:30:00,19251 +2014-10-23 10:00:00,18228 +2014-10-23 10:30:00,18603 +2014-10-23 11:00:00,18762 +2014-10-23 11:30:00,19645 +2014-10-23 12:00:00,20453 +2014-10-23 12:30:00,19400 +2014-10-23 13:00:00,18448 +2014-10-23 13:30:00,18199 +2014-10-23 14:00:00,18845 +2014-10-23 14:30:00,18973 +2014-10-23 15:00:00,17968 +2014-10-23 15:30:00,15112 +2014-10-23 16:00:00,13580 +2014-10-23 16:30:00,12751 +2014-10-23 17:00:00,15901 +2014-10-23 17:30:00,19774 +2014-10-23 18:00:00,21960 +2014-10-23 18:30:00,23790 +2014-10-23 19:00:00,24998 +2014-10-23 19:30:00,25414 +2014-10-23 20:00:00,26075 +2014-10-23 20:30:00,25616 +2014-10-23 21:00:00,25916 +2014-10-23 21:30:00,25589 +2014-10-23 22:00:00,25041 +2014-10-23 22:30:00,24891 +2014-10-23 23:00:00,23888 +2014-10-23 23:30:00,22464 +2014-10-24 00:00:00,19061 +2014-10-24 00:30:00,16689 +2014-10-24 01:00:00,13006 +2014-10-24 01:30:00,9512 +2014-10-24 02:00:00,7745 +2014-10-24 02:30:00,6037 +2014-10-24 03:00:00,5194 +2014-10-24 03:30:00,4419 +2014-10-24 04:00:00,4267 +2014-10-24 04:30:00,3366 +2014-10-24 05:00:00,3096 +2014-10-24 05:30:00,4532 +2014-10-24 06:00:00,6877 +2014-10-24 06:30:00,11826 +2014-10-24 07:00:00,15333 +2014-10-24 07:30:00,19013 +2014-10-24 08:00:00,20131 +2014-10-24 08:30:00,19779 +2014-10-24 09:00:00,19227 +2014-10-24 09:30:00,18824 +2014-10-24 10:00:00,17705 +2014-10-24 10:30:00,18111 +2014-10-24 11:00:00,17408 +2014-10-24 11:30:00,18509 +2014-10-24 12:00:00,18510 +2014-10-24 12:30:00,17910 +2014-10-24 13:00:00,17690 +2014-10-24 13:30:00,18149 +2014-10-24 14:00:00,19632 +2014-10-24 14:30:00,19426 +2014-10-24 15:00:00,18760 +2014-10-24 15:30:00,16379 +2014-10-24 16:00:00,15083 +2014-10-24 16:30:00,14553 +2014-10-24 17:00:00,17509 +2014-10-24 17:30:00,20911 +2014-10-24 18:00:00,22958 +2014-10-24 18:30:00,25257 +2014-10-24 19:00:00,26659 +2014-10-24 19:30:00,27104 +2014-10-24 20:00:00,26439 +2014-10-24 20:30:00,25840 +2014-10-24 21:00:00,25694 +2014-10-24 21:30:00,26093 +2014-10-24 22:00:00,26821 +2014-10-24 22:30:00,26870 +2014-10-24 23:00:00,26889 +2014-10-24 23:30:00,27283 +2014-10-25 00:00:00,25739 +2014-10-25 00:30:00,23889 +2014-10-25 01:00:00,22278 +2014-10-25 01:30:00,20337 +2014-10-25 02:00:00,19179 +2014-10-25 02:30:00,16566 +2014-10-25 03:00:00,14146 +2014-10-25 03:30:00,12015 +2014-10-25 04:00:00,10285 +2014-10-25 04:30:00,6316 +2014-10-25 05:00:00,4106 +2014-10-25 05:30:00,3465 +2014-10-25 06:00:00,3657 +2014-10-25 06:30:00,4756 +2014-10-25 07:00:00,6003 +2014-10-25 07:30:00,7853 +2014-10-25 08:00:00,9091 +2014-10-25 08:30:00,12209 +2014-10-25 09:00:00,13433 +2014-10-25 09:30:00,16768 +2014-10-25 10:00:00,16390 +2014-10-25 10:30:00,18666 +2014-10-25 11:00:00,19740 +2014-10-25 11:30:00,21266 +2014-10-25 12:00:00,21452 +2014-10-25 12:30:00,21613 +2014-10-25 13:00:00,21773 +2014-10-25 13:30:00,21440 +2014-10-25 14:00:00,20362 +2014-10-25 14:30:00,20601 +2014-10-25 15:00:00,20989 +2014-10-25 15:30:00,20210 +2014-10-25 16:00:00,18243 +2014-10-25 16:30:00,16875 +2014-10-25 17:00:00,19078 +2014-10-25 17:30:00,22244 +2014-10-25 18:00:00,23703 +2014-10-25 18:30:00,25544 +2014-10-25 19:00:00,27125 +2014-10-25 19:30:00,26539 +2014-10-25 20:00:00,24964 +2014-10-25 20:30:00,23665 +2014-10-25 21:00:00,23200 +2014-10-25 21:30:00,24238 +2014-10-25 22:00:00,25202 +2014-10-25 22:30:00,26140 +2014-10-25 23:00:00,27417 +2014-10-25 23:30:00,27692 +2014-10-26 00:00:00,26866 +2014-10-26 00:30:00,26254 +2014-10-26 01:00:00,24482 +2014-10-26 01:30:00,22425 +2014-10-26 02:00:00,20865 +2014-10-26 02:30:00,18801 +2014-10-26 03:00:00,16066 +2014-10-26 03:30:00,14093 +2014-10-26 04:00:00,11863 +2014-10-26 04:30:00,7194 +2014-10-26 05:00:00,4661 +2014-10-26 05:30:00,3656 +2014-10-26 06:00:00,3780 +2014-10-26 06:30:00,4116 +2014-10-26 07:00:00,4530 +2014-10-26 07:30:00,6287 +2014-10-26 08:00:00,7318 +2014-10-26 08:30:00,9260 +2014-10-26 09:00:00,10911 +2014-10-26 09:30:00,14136 +2014-10-26 10:00:00,15466 +2014-10-26 10:30:00,18611 +2014-10-26 11:00:00,18437 +2014-10-26 11:30:00,20375 +2014-10-26 12:00:00,20658 +2014-10-26 12:30:00,21283 +2014-10-26 13:00:00,20200 +2014-10-26 13:30:00,20135 +2014-10-26 14:00:00,20306 +2014-10-26 14:30:00,20404 +2014-10-26 15:00:00,19931 +2014-10-26 15:30:00,19772 +2014-10-26 16:00:00,18406 +2014-10-26 16:30:00,16957 +2014-10-26 17:00:00,17972 +2014-10-26 17:30:00,19563 +2014-10-26 18:00:00,20106 +2014-10-26 18:30:00,20449 +2014-10-26 19:00:00,19860 +2014-10-26 19:30:00,19343 +2014-10-26 20:00:00,18128 +2014-10-26 20:30:00,17298 +2014-10-26 21:00:00,16004 +2014-10-26 21:30:00,16422 +2014-10-26 22:00:00,14618 +2014-10-26 22:30:00,13017 +2014-10-26 23:00:00,11532 +2014-10-26 23:30:00,10089 +2014-10-27 00:00:00,8326 +2014-10-27 00:30:00,6579 +2014-10-27 01:00:00,4385 +2014-10-27 01:30:00,3470 +2014-10-27 02:00:00,2854 +2014-10-27 02:30:00,2128 +2014-10-27 03:00:00,1785 +2014-10-27 03:30:00,1707 +2014-10-27 04:00:00,2138 +2014-10-27 04:30:00,2406 +2014-10-27 05:00:00,2847 +2014-10-27 05:30:00,4951 +2014-10-27 06:00:00,7094 +2014-10-27 06:30:00,11090 +2014-10-27 07:00:00,14205 +2014-10-27 07:30:00,17506 +2014-10-27 08:00:00,18105 +2014-10-27 08:30:00,17656 +2014-10-27 09:00:00,17751 +2014-10-27 09:30:00,17096 +2014-10-27 10:00:00,15784 +2014-10-27 10:30:00,16086 +2014-10-27 11:00:00,14843 +2014-10-27 11:30:00,16446 +2014-10-27 12:00:00,16614 +2014-10-27 12:30:00,16155 +2014-10-27 13:00:00,15502 +2014-10-27 13:30:00,16293 +2014-10-27 14:00:00,16885 +2014-10-27 14:30:00,17759 +2014-10-27 15:00:00,18533 +2014-10-27 15:30:00,17617 +2014-10-27 16:00:00,16279 +2014-10-27 16:30:00,15551 +2014-10-27 17:00:00,18199 +2014-10-27 17:30:00,20618 +2014-10-27 18:00:00,22703 +2014-10-27 18:30:00,23897 +2014-10-27 19:00:00,24329 +2014-10-27 19:30:00,23182 +2014-10-27 20:00:00,21778 +2014-10-27 20:30:00,21251 +2014-10-27 21:00:00,21189 +2014-10-27 21:30:00,20884 +2014-10-27 22:00:00,19670 +2014-10-27 22:30:00,18163 +2014-10-27 23:00:00,15613 +2014-10-27 23:30:00,13371 +2014-10-28 00:00:00,10910 +2014-10-28 00:30:00,7638 +2014-10-28 01:00:00,5589 +2014-10-28 01:30:00,4215 +2014-10-28 02:00:00,3386 +2014-10-28 02:30:00,2753 +2014-10-28 03:00:00,2181 +2014-10-28 03:30:00,2034 +2014-10-28 04:00:00,2094 +2014-10-28 04:30:00,1896 +2014-10-28 05:00:00,2632 +2014-10-28 05:30:00,4581 +2014-10-28 06:00:00,6612 +2014-10-28 06:30:00,11609 +2014-10-28 07:00:00,15127 +2014-10-28 07:30:00,19097 +2014-10-28 08:00:00,19516 +2014-10-28 08:30:00,19422 +2014-10-28 09:00:00,18088 +2014-10-28 09:30:00,17669 +2014-10-28 10:00:00,16744 +2014-10-28 10:30:00,17075 +2014-10-28 11:00:00,16035 +2014-10-28 11:30:00,17421 +2014-10-28 12:00:00,17756 +2014-10-28 12:30:00,17057 +2014-10-28 13:00:00,16101 +2014-10-28 13:30:00,17443 +2014-10-28 14:00:00,17890 +2014-10-28 14:30:00,18651 +2014-10-28 15:00:00,18762 +2014-10-28 15:30:00,17135 +2014-10-28 16:00:00,15175 +2014-10-28 16:30:00,13958 +2014-10-28 17:00:00,16881 +2014-10-28 17:30:00,19615 +2014-10-28 18:00:00,22196 +2014-10-28 18:30:00,22906 +2014-10-28 19:00:00,23482 +2014-10-28 19:30:00,23088 +2014-10-28 20:00:00,23728 +2014-10-28 20:30:00,23210 +2014-10-28 21:00:00,23685 +2014-10-28 21:30:00,23843 +2014-10-28 22:00:00,22597 +2014-10-28 22:30:00,20923 +2014-10-28 23:00:00,19229 +2014-10-28 23:30:00,15963 +2014-10-29 00:00:00,12292 +2014-10-29 00:30:00,9190 +2014-10-29 01:00:00,6864 +2014-10-29 01:30:00,5693 +2014-10-29 02:00:00,4499 +2014-10-29 02:30:00,3304 +2014-10-29 03:00:00,2560 +2014-10-29 03:30:00,2485 +2014-10-29 04:00:00,2560 +2014-10-29 04:30:00,2248 +2014-10-29 05:00:00,2389 +2014-10-29 05:30:00,4313 +2014-10-29 06:00:00,6649 +2014-10-29 06:30:00,11289 +2014-10-29 07:00:00,15103 +2014-10-29 07:30:00,19437 +2014-10-29 08:00:00,19443 +2014-10-29 08:30:00,19707 +2014-10-29 09:00:00,18912 +2014-10-29 09:30:00,18203 +2014-10-29 10:00:00,16492 +2014-10-29 10:30:00,16837 +2014-10-29 11:00:00,16075 +2014-10-29 11:30:00,17160 +2014-10-29 12:00:00,17606 +2014-10-29 12:30:00,17267 +2014-10-29 13:00:00,16875 +2014-10-29 13:30:00,17940 +2014-10-29 14:00:00,18339 +2014-10-29 14:30:00,18971 +2014-10-29 15:00:00,19298 +2014-10-29 15:30:00,16665 +2014-10-29 16:00:00,15008 +2014-10-29 16:30:00,13873 +2014-10-29 17:00:00,17894 +2014-10-29 17:30:00,21574 +2014-10-29 18:00:00,22116 +2014-10-29 18:30:00,23582 +2014-10-29 19:00:00,25553 +2014-10-29 19:30:00,25299 +2014-10-29 20:00:00,24778 +2014-10-29 20:30:00,24729 +2014-10-29 21:00:00,24907 +2014-10-29 21:30:00,24810 +2014-10-29 22:00:00,24246 +2014-10-29 22:30:00,23250 +2014-10-29 23:00:00,20700 +2014-10-29 23:30:00,18631 +2014-10-30 00:00:00,14048 +2014-10-30 00:30:00,10691 +2014-10-30 01:00:00,8363 +2014-10-30 01:30:00,6405 +2014-10-30 02:00:00,5251 +2014-10-30 02:30:00,3714 +2014-10-30 03:00:00,3232 +2014-10-30 03:30:00,3057 +2014-10-30 04:00:00,3005 +2014-10-30 04:30:00,2506 +2014-10-30 05:00:00,2821 +2014-10-30 05:30:00,5287 +2014-10-30 06:00:00,7427 +2014-10-30 06:30:00,12248 +2014-10-30 07:00:00,15618 +2014-10-30 07:30:00,19528 +2014-10-30 08:00:00,19813 +2014-10-30 08:30:00,19680 +2014-10-30 09:00:00,19351 +2014-10-30 09:30:00,18967 +2014-10-30 10:00:00,17899 +2014-10-30 10:30:00,17994 +2014-10-30 11:00:00,17167 +2014-10-30 11:30:00,18094 +2014-10-30 12:00:00,18575 +2014-10-30 12:30:00,18022 +2014-10-30 13:00:00,17359 +2014-10-30 13:30:00,18035 +2014-10-30 14:00:00,18733 +2014-10-30 14:30:00,19410 +2014-10-30 15:00:00,18991 +2014-10-30 15:30:00,16749 +2014-10-30 16:00:00,14604 +2014-10-30 16:30:00,13367 +2014-10-30 17:00:00,16382 +2014-10-30 17:30:00,19879 +2014-10-30 18:00:00,21735 +2014-10-30 18:30:00,23802 +2014-10-30 19:00:00,24832 +2014-10-30 19:30:00,24964 +2014-10-30 20:00:00,25791 +2014-10-30 20:30:00,25810 +2014-10-30 21:00:00,25816 +2014-10-30 21:30:00,25849 +2014-10-30 22:00:00,24877 +2014-10-30 22:30:00,25072 +2014-10-30 23:00:00,24763 +2014-10-30 23:30:00,22241 +2014-10-31 00:00:00,19957 +2014-10-31 00:30:00,16881 +2014-10-31 01:00:00,13588 +2014-10-31 01:30:00,10958 +2014-10-31 02:00:00,9119 +2014-10-31 02:30:00,7589 +2014-10-31 03:00:00,6221 +2014-10-31 03:30:00,4936 +2014-10-31 04:00:00,4796 +2014-10-31 04:30:00,3555 +2014-10-31 05:00:00,3337 +2014-10-31 05:30:00,4665 +2014-10-31 06:00:00,7084 +2014-10-31 06:30:00,11681 +2014-10-31 07:00:00,14822 +2014-10-31 07:30:00,19004 +2014-10-31 08:00:00,20306 +2014-10-31 08:30:00,20687 +2014-10-31 09:00:00,19585 +2014-10-31 09:30:00,18702 +2014-10-31 10:00:00,18099 +2014-10-31 10:30:00,18335 +2014-10-31 11:00:00,17653 +2014-10-31 11:30:00,18889 +2014-10-31 12:00:00,19146 +2014-10-31 12:30:00,18833 +2014-10-31 13:00:00,18315 +2014-10-31 13:30:00,18917 +2014-10-31 14:00:00,20430 +2014-10-31 14:30:00,20608 +2014-10-31 15:00:00,19915 +2014-10-31 15:30:00,16981 +2014-10-31 16:00:00,15045 +2014-10-31 16:30:00,13978 +2014-10-31 17:00:00,16891 +2014-10-31 17:30:00,20025 +2014-10-31 18:00:00,21438 +2014-10-31 18:30:00,23813 +2014-10-31 19:00:00,25517 +2014-10-31 19:30:00,25493 +2014-10-31 20:00:00,25475 +2014-10-31 20:30:00,26996 +2014-10-31 21:00:00,27015 +2014-10-31 21:30:00,27264 +2014-10-31 22:00:00,26977 +2014-10-31 22:30:00,26343 +2014-10-31 23:00:00,26333 +2014-10-31 23:30:00,26524 +2014-11-01 00:00:00,25425 +2014-11-01 00:30:00,24937 +2014-11-01 01:00:00,24946 +2014-11-01 01:30:00,23736 +2014-11-01 02:00:00,23245 +2014-11-01 02:30:00,21459 +2014-11-01 03:00:00,19849 +2014-11-01 03:30:00,17679 +2014-11-01 04:00:00,15018 +2014-11-01 04:30:00,10600 +2014-11-01 05:00:00,7758 +2014-11-01 05:30:00,5907 +2014-11-01 06:00:00,5743 +2014-11-01 06:30:00,6223 +2014-11-01 07:00:00,6386 +2014-11-01 07:30:00,9098 +2014-11-01 08:00:00,9864 +2014-11-01 08:30:00,12903 +2014-11-01 09:00:00,14185 +2014-11-01 09:30:00,18584 +2014-11-01 10:00:00,19066 +2014-11-01 10:30:00,22683 +2014-11-01 11:00:00,23292 +2014-11-01 11:30:00,24154 +2014-11-01 12:00:00,25310 +2014-11-01 12:30:00,26625 +2014-11-01 13:00:00,25584 +2014-11-01 13:30:00,25115 +2014-11-01 14:00:00,23935 +2014-11-01 14:30:00,23341 +2014-11-01 15:00:00,23337 +2014-11-01 15:30:00,22199 +2014-11-01 16:00:00,20008 +2014-11-01 16:30:00,18443 +2014-11-01 17:00:00,20865 +2014-11-01 17:30:00,23719 +2014-11-01 18:00:00,25241 +2014-11-01 18:30:00,27383 +2014-11-01 19:00:00,28398 +2014-11-01 19:30:00,27426 +2014-11-01 20:00:00,26537 +2014-11-01 20:30:00,25980 +2014-11-01 21:00:00,24601 +2014-11-01 21:30:00,24838 +2014-11-01 22:00:00,26372 +2014-11-01 22:30:00,26567 +2014-11-01 23:00:00,25879 +2014-11-01 23:30:00,26125 +2014-11-02 00:00:00,25110 +2014-11-02 00:30:00,23109 +2014-11-02 01:00:00,39197 +2014-11-02 01:30:00,35212 +2014-11-02 02:00:00,13259 +2014-11-02 02:30:00,12250 +2014-11-02 03:00:00,10013 +2014-11-02 03:30:00,7898 +2014-11-02 04:00:00,6375 +2014-11-02 04:30:00,4532 +2014-11-02 05:00:00,5116 +2014-11-02 05:30:00,5232 +2014-11-02 06:00:00,4542 +2014-11-02 06:30:00,5298 +2014-11-02 07:00:00,5155 +2014-11-02 07:30:00,6029 +2014-11-02 08:00:00,6280 +2014-11-02 08:30:00,8771 +2014-11-02 09:00:00,10151 +2014-11-02 09:30:00,12501 +2014-11-02 10:00:00,13990 +2014-11-02 10:30:00,16534 +2014-11-02 11:00:00,17133 +2014-11-02 11:30:00,18775 +2014-11-02 12:00:00,18985 +2014-11-02 12:30:00,19911 +2014-11-02 13:00:00,19123 +2014-11-02 13:30:00,19524 +2014-11-02 14:00:00,19640 +2014-11-02 14:30:00,18364 +2014-11-02 15:00:00,17940 +2014-11-02 15:30:00,17949 +2014-11-02 16:00:00,17288 +2014-11-02 16:30:00,16326 +2014-11-02 17:00:00,17522 +2014-11-02 17:30:00,19243 +2014-11-02 18:00:00,20291 +2014-11-02 18:30:00,21649 +2014-11-02 19:00:00,22839 +2014-11-02 19:30:00,21772 +2014-11-02 20:00:00,20994 +2014-11-02 20:30:00,19774 +2014-11-02 21:00:00,18398 +2014-11-02 21:30:00,17764 +2014-11-02 22:00:00,17334 +2014-11-02 22:30:00,15431 +2014-11-02 23:00:00,12958 +2014-11-02 23:30:00,10224 +2014-11-03 00:00:00,8771 +2014-11-03 00:30:00,6045 +2014-11-03 01:00:00,4413 +2014-11-03 01:30:00,3235 +2014-11-03 02:00:00,2688 +2014-11-03 02:30:00,1983 +2014-11-03 03:00:00,1756 +2014-11-03 03:30:00,1683 +2014-11-03 04:00:00,2140 +2014-11-03 04:30:00,2288 +2014-11-03 05:00:00,2948 +2014-11-03 05:30:00,4813 +2014-11-03 06:00:00,8044 +2014-11-03 06:30:00,12885 +2014-11-03 07:00:00,14627 +2014-11-03 07:30:00,18111 +2014-11-03 08:00:00,18266 +2014-11-03 08:30:00,18384 +2014-11-03 09:00:00,18104 +2014-11-03 09:30:00,17357 +2014-11-03 10:00:00,16008 +2014-11-03 10:30:00,16379 +2014-11-03 11:00:00,15351 +2014-11-03 11:30:00,16770 +2014-11-03 12:00:00,16711 +2014-11-03 12:30:00,17011 +2014-11-03 13:00:00,16373 +2014-11-03 13:30:00,17097 +2014-11-03 14:00:00,17364 +2014-11-03 14:30:00,18333 +2014-11-03 15:00:00,18428 +2014-11-03 15:30:00,16974 +2014-11-03 16:00:00,16139 +2014-11-03 16:30:00,15205 +2014-11-03 17:00:00,17392 +2014-11-03 17:30:00,20141 +2014-11-03 18:00:00,22581 +2014-11-03 18:30:00,23098 +2014-11-03 19:00:00,23154 +2014-11-03 19:30:00,22688 +2014-11-03 20:00:00,22047 +2014-11-03 20:30:00,21283 +2014-11-03 21:00:00,21070 +2014-11-03 21:30:00,19910 +2014-11-03 22:00:00,20541 +2014-11-03 22:30:00,18105 +2014-11-03 23:00:00,14554 +2014-11-03 23:30:00,12695 +2014-11-04 00:00:00,10667 +2014-11-04 00:30:00,8479 +2014-11-04 01:00:00,6005 +2014-11-04 01:30:00,3899 +2014-11-04 02:00:00,3111 +2014-11-04 02:30:00,2526 +2014-11-04 03:00:00,2112 +2014-11-04 03:30:00,1885 +2014-11-04 04:00:00,1921 +2014-11-04 04:30:00,2267 +2014-11-04 05:00:00,2413 +2014-11-04 05:30:00,4413 +2014-11-04 06:00:00,7168 +2014-11-04 06:30:00,12160 +2014-11-04 07:00:00,14845 +2014-11-04 07:30:00,18403 +2014-11-04 08:00:00,18445 +2014-11-04 08:30:00,19018 +2014-11-04 09:00:00,18105 +2014-11-04 09:30:00,17459 +2014-11-04 10:00:00,16381 +2014-11-04 10:30:00,16623 +2014-11-04 11:00:00,16144 +2014-11-04 11:30:00,17318 +2014-11-04 12:00:00,17658 +2014-11-04 12:30:00,17108 +2014-11-04 13:00:00,16178 +2014-11-04 13:30:00,17973 +2014-11-04 14:00:00,18152 +2014-11-04 14:30:00,18445 +2014-11-04 15:00:00,18556 +2014-11-04 15:30:00,16865 +2014-11-04 16:00:00,14505 +2014-11-04 16:30:00,13471 +2014-11-04 17:00:00,15853 +2014-11-04 17:30:00,18369 +2014-11-04 18:00:00,20968 +2014-11-04 18:30:00,22239 +2014-11-04 19:00:00,22626 +2014-11-04 19:30:00,22924 +2014-11-04 20:00:00,22853 +2014-11-04 20:30:00,22393 +2014-11-04 21:00:00,23088 +2014-11-04 21:30:00,22431 +2014-11-04 22:00:00,22239 +2014-11-04 22:30:00,19918 +2014-11-04 23:00:00,17675 +2014-11-04 23:30:00,14953 +2014-11-05 00:00:00,12025 +2014-11-05 00:30:00,8767 +2014-11-05 01:00:00,6670 +2014-11-05 01:30:00,5197 +2014-11-05 02:00:00,4289 +2014-11-05 02:30:00,3186 +2014-11-05 03:00:00,2747 +2014-11-05 03:30:00,2257 +2014-11-05 04:00:00,2397 +2014-11-05 04:30:00,2205 +2014-11-05 05:00:00,2625 +2014-11-05 05:30:00,4404 +2014-11-05 06:00:00,7007 +2014-11-05 06:30:00,12065 +2014-11-05 07:00:00,15803 +2014-11-05 07:30:00,19844 +2014-11-05 08:00:00,19937 +2014-11-05 08:30:00,20299 +2014-11-05 09:00:00,19584 +2014-11-05 09:30:00,19313 +2014-11-05 10:00:00,16887 +2014-11-05 10:30:00,17118 +2014-11-05 11:00:00,16847 +2014-11-05 11:30:00,18356 +2014-11-05 12:00:00,18124 +2014-11-05 12:30:00,17783 +2014-11-05 13:00:00,17223 +2014-11-05 13:30:00,17852 +2014-11-05 14:00:00,18374 +2014-11-05 14:30:00,18641 +2014-11-05 15:00:00,18913 +2014-11-05 15:30:00,16314 +2014-11-05 16:00:00,13917 +2014-11-05 16:30:00,13151 +2014-11-05 17:00:00,16100 +2014-11-05 17:30:00,19136 +2014-11-05 18:00:00,21762 +2014-11-05 18:30:00,22829 +2014-11-05 19:00:00,23705 +2014-11-05 19:30:00,23740 +2014-11-05 20:00:00,23789 +2014-11-05 20:30:00,23389 +2014-11-05 21:00:00,24122 +2014-11-05 21:30:00,24156 +2014-11-05 22:00:00,23679 +2014-11-05 22:30:00,22803 +2014-11-05 23:00:00,20814 +2014-11-05 23:30:00,17376 +2014-11-06 00:00:00,13846 +2014-11-06 00:30:00,10387 +2014-11-06 01:00:00,8384 +2014-11-06 01:30:00,6455 +2014-11-06 02:00:00,5043 +2014-11-06 02:30:00,3738 +2014-11-06 03:00:00,3155 +2014-11-06 03:30:00,2758 +2014-11-06 04:00:00,3122 +2014-11-06 04:30:00,2625 +2014-11-06 05:00:00,2760 +2014-11-06 05:30:00,4995 +2014-11-06 06:00:00,8021 +2014-11-06 06:30:00,13803 +2014-11-06 07:00:00,17405 +2014-11-06 07:30:00,20841 +2014-11-06 08:00:00,21338 +2014-11-06 08:30:00,21281 +2014-11-06 09:00:00,20108 +2014-11-06 09:30:00,20198 +2014-11-06 10:00:00,19035 +2014-11-06 10:30:00,19155 +2014-11-06 11:00:00,17964 +2014-11-06 11:30:00,18680 +2014-11-06 12:00:00,18600 +2014-11-06 12:30:00,17556 +2014-11-06 13:00:00,17373 +2014-11-06 13:30:00,17832 +2014-11-06 14:00:00,18087 +2014-11-06 14:30:00,18057 +2014-11-06 15:00:00,17634 +2014-11-06 15:30:00,15492 +2014-11-06 16:00:00,13677 +2014-11-06 16:30:00,12574 +2014-11-06 17:00:00,15818 +2014-11-06 17:30:00,19350 +2014-11-06 18:00:00,21754 +2014-11-06 18:30:00,23740 +2014-11-06 19:00:00,24666 +2014-11-06 19:30:00,25142 +2014-11-06 20:00:00,25597 +2014-11-06 20:30:00,25126 +2014-11-06 21:00:00,25312 +2014-11-06 21:30:00,26067 +2014-11-06 22:00:00,25613 +2014-11-06 22:30:00,23971 +2014-11-06 23:00:00,22859 +2014-11-06 23:30:00,21287 +2014-11-07 00:00:00,18308 +2014-11-07 00:30:00,14352 +2014-11-07 01:00:00,11746 +2014-11-07 01:30:00,9042 +2014-11-07 02:00:00,7318 +2014-11-07 02:30:00,6009 +2014-11-07 03:00:00,5364 +2014-11-07 03:30:00,4336 +2014-11-07 04:00:00,4008 +2014-11-07 04:30:00,3263 +2014-11-07 05:00:00,3183 +2014-11-07 05:30:00,4813 +2014-11-07 06:00:00,7519 +2014-11-07 06:30:00,12074 +2014-11-07 07:00:00,15249 +2014-11-07 07:30:00,19300 +2014-11-07 08:00:00,19564 +2014-11-07 08:30:00,19132 +2014-11-07 09:00:00,18454 +2014-11-07 09:30:00,17950 +2014-11-07 10:00:00,17374 +2014-11-07 10:30:00,17674 +2014-11-07 11:00:00,17016 +2014-11-07 11:30:00,18484 +2014-11-07 12:00:00,18460 +2014-11-07 12:30:00,17693 +2014-11-07 13:00:00,18093 +2014-11-07 13:30:00,19918 +2014-11-07 14:00:00,19945 +2014-11-07 14:30:00,19077 +2014-11-07 15:00:00,18186 +2014-11-07 15:30:00,16030 +2014-11-07 16:00:00,14092 +2014-11-07 16:30:00,13270 +2014-11-07 17:00:00,15935 +2014-11-07 17:30:00,19419 +2014-11-07 18:00:00,21778 +2014-11-07 18:30:00,24460 +2014-11-07 19:00:00,26246 +2014-11-07 19:30:00,27224 +2014-11-07 20:00:00,26862 +2014-11-07 20:30:00,27340 +2014-11-07 21:00:00,27335 +2014-11-07 21:30:00,26727 +2014-11-07 22:00:00,27181 +2014-11-07 22:30:00,27761 +2014-11-07 23:00:00,27193 +2014-11-07 23:30:00,26857 +2014-11-08 00:00:00,25692 +2014-11-08 00:30:00,24162 +2014-11-08 01:00:00,22219 +2014-11-08 01:30:00,20748 +2014-11-08 02:00:00,19471 +2014-11-08 02:30:00,16940 +2014-11-08 03:00:00,14431 +2014-11-08 03:30:00,11898 +2014-11-08 04:00:00,10264 +2014-11-08 04:30:00,5942 +2014-11-08 05:00:00,4063 +2014-11-08 05:30:00,3498 +2014-11-08 06:00:00,3726 +2014-11-08 06:30:00,5242 +2014-11-08 07:00:00,5655 +2014-11-08 07:30:00,8191 +2014-11-08 08:00:00,9371 +2014-11-08 08:30:00,13050 +2014-11-08 09:00:00,13820 +2014-11-08 09:30:00,17437 +2014-11-08 10:00:00,17281 +2014-11-08 10:30:00,19718 +2014-11-08 11:00:00,19999 +2014-11-08 11:30:00,22047 +2014-11-08 12:00:00,22352 +2014-11-08 12:30:00,22898 +2014-11-08 13:00:00,22660 +2014-11-08 13:30:00,23047 +2014-11-08 14:00:00,21976 +2014-11-08 14:30:00,22746 +2014-11-08 15:00:00,22382 +2014-11-08 15:30:00,21956 +2014-11-08 16:00:00,18619 +2014-11-08 16:30:00,15861 +2014-11-08 17:00:00,18326 +2014-11-08 17:30:00,22332 +2014-11-08 18:00:00,25097 +2014-11-08 18:30:00,27236 +2014-11-08 19:00:00,27898 +2014-11-08 19:30:00,26790 +2014-11-08 20:00:00,25561 +2014-11-08 20:30:00,24344 +2014-11-08 21:00:00,23890 +2014-11-08 21:30:00,24609 +2014-11-08 22:00:00,26595 +2014-11-08 22:30:00,27260 +2014-11-08 23:00:00,27998 +2014-11-08 23:30:00,27854 +2014-11-09 00:00:00,26931 +2014-11-09 00:30:00,25208 +2014-11-09 01:00:00,23782 +2014-11-09 01:30:00,22472 +2014-11-09 02:00:00,21183 +2014-11-09 02:30:00,18443 +2014-11-09 03:00:00,16105 +2014-11-09 03:30:00,13801 +2014-11-09 04:00:00,11997 +2014-11-09 04:30:00,7112 +2014-11-09 05:00:00,4627 +2014-11-09 05:30:00,3683 +2014-11-09 06:00:00,3587 +2014-11-09 06:30:00,4158 +2014-11-09 07:00:00,4351 +2014-11-09 07:30:00,5823 +2014-11-09 08:00:00,6850 +2014-11-09 08:30:00,9839 +2014-11-09 09:00:00,11422 +2014-11-09 09:30:00,14897 +2014-11-09 10:00:00,15815 +2014-11-09 10:30:00,18787 +2014-11-09 11:00:00,18880 +2014-11-09 11:30:00,19871 +2014-11-09 12:00:00,20722 +2014-11-09 12:30:00,21774 +2014-11-09 13:00:00,21318 +2014-11-09 13:30:00,20699 +2014-11-09 14:00:00,20831 +2014-11-09 14:30:00,20467 +2014-11-09 15:00:00,20249 +2014-11-09 15:30:00,20100 +2014-11-09 16:00:00,18688 +2014-11-09 16:30:00,17249 +2014-11-09 17:00:00,18573 +2014-11-09 17:30:00,19937 +2014-11-09 18:00:00,20564 +2014-11-09 18:30:00,20132 +2014-11-09 19:00:00,19654 +2014-11-09 19:30:00,18449 +2014-11-09 20:00:00,17176 +2014-11-09 20:30:00,17596 +2014-11-09 21:00:00,16431 +2014-11-09 21:30:00,15860 +2014-11-09 22:00:00,15253 +2014-11-09 22:30:00,13845 +2014-11-09 23:00:00,11656 +2014-11-09 23:30:00,9818 +2014-11-10 00:00:00,7870 +2014-11-10 00:30:00,6079 +2014-11-10 01:00:00,4644 +2014-11-10 01:30:00,3501 +2014-11-10 02:00:00,2989 +2014-11-10 02:30:00,2247 +2014-11-10 03:00:00,1853 +2014-11-10 03:30:00,1791 +2014-11-10 04:00:00,2189 +2014-11-10 04:30:00,2328 +2014-11-10 05:00:00,2827 +2014-11-10 05:30:00,4738 +2014-11-10 06:00:00,6803 +2014-11-10 06:30:00,11738 +2014-11-10 07:00:00,14296 +2014-11-10 07:30:00,17240 +2014-11-10 08:00:00,17657 +2014-11-10 08:30:00,17904 +2014-11-10 09:00:00,17705 +2014-11-10 09:30:00,16814 +2014-11-10 10:00:00,15908 +2014-11-10 10:30:00,15545 +2014-11-10 11:00:00,15119 +2014-11-10 11:30:00,16241 +2014-11-10 12:00:00,16354 +2014-11-10 12:30:00,16002 +2014-11-10 13:00:00,15560 +2014-11-10 13:30:00,16855 +2014-11-10 14:00:00,17292 +2014-11-10 14:30:00,17780 +2014-11-10 15:00:00,18467 +2014-11-10 15:30:00,17048 +2014-11-10 16:00:00,15386 +2014-11-10 16:30:00,15329 +2014-11-10 17:00:00,17444 +2014-11-10 17:30:00,19765 +2014-11-10 18:00:00,22418 +2014-11-10 18:30:00,22794 +2014-11-10 19:00:00,23094 +2014-11-10 19:30:00,22197 +2014-11-10 20:00:00,21796 +2014-11-10 20:30:00,20849 +2014-11-10 21:00:00,21169 +2014-11-10 21:30:00,20613 +2014-11-10 22:00:00,20734 +2014-11-10 22:30:00,17540 +2014-11-10 23:00:00,15189 +2014-11-10 23:30:00,12879 +2014-11-11 00:00:00,10511 +2014-11-11 00:30:00,7509 +2014-11-11 01:00:00,6277 +2014-11-11 01:30:00,4622 +2014-11-11 02:00:00,3785 +2014-11-11 02:30:00,2970 +2014-11-11 03:00:00,2332 +2014-11-11 03:30:00,2166 +2014-11-11 04:00:00,2179 +2014-11-11 04:30:00,2040 +2014-11-11 05:00:00,2278 +2014-11-11 05:30:00,3860 +2014-11-11 06:00:00,5517 +2014-11-11 06:30:00,9569 +2014-11-11 07:00:00,12272 +2014-11-11 07:30:00,16460 +2014-11-11 08:00:00,16976 +2014-11-11 08:30:00,17823 +2014-11-11 09:00:00,17655 +2014-11-11 09:30:00,16946 +2014-11-11 10:00:00,15846 +2014-11-11 10:30:00,15835 +2014-11-11 11:00:00,15442 +2014-11-11 11:30:00,16069 +2014-11-11 12:00:00,15966 +2014-11-11 12:30:00,15584 +2014-11-11 13:00:00,15384 +2014-11-11 13:30:00,15909 +2014-11-11 14:00:00,16140 +2014-11-11 14:30:00,16337 +2014-11-11 15:00:00,16381 +2014-11-11 15:30:00,15196 +2014-11-11 16:00:00,13003 +2014-11-11 16:30:00,12213 +2014-11-11 17:00:00,15103 +2014-11-11 17:30:00,18301 +2014-11-11 18:00:00,20626 +2014-11-11 18:30:00,22533 +2014-11-11 19:00:00,22905 +2014-11-11 19:30:00,22181 +2014-11-11 20:00:00,21899 +2014-11-11 20:30:00,21789 +2014-11-11 21:00:00,22253 +2014-11-11 21:30:00,22515 +2014-11-11 22:00:00,21410 +2014-11-11 22:30:00,19812 +2014-11-11 23:00:00,17135 +2014-11-11 23:30:00,13567 +2014-11-12 00:00:00,10829 +2014-11-12 00:30:00,7850 +2014-11-12 01:00:00,6572 +2014-11-12 01:30:00,4748 +2014-11-12 02:00:00,3777 +2014-11-12 02:30:00,3255 +2014-11-12 03:00:00,2415 +2014-11-12 03:30:00,2279 +2014-11-12 04:00:00,2353 +2014-11-12 04:30:00,2142 +2014-11-12 05:00:00,2540 +2014-11-12 05:30:00,4177 +2014-11-12 06:00:00,6843 +2014-11-12 06:30:00,11818 +2014-11-12 07:00:00,15665 +2014-11-12 07:30:00,19785 +2014-11-12 08:00:00,19813 +2014-11-12 08:30:00,19623 +2014-11-12 09:00:00,18444 +2014-11-12 09:30:00,17937 +2014-11-12 10:00:00,16552 +2014-11-12 10:30:00,17394 +2014-11-12 11:00:00,16960 +2014-11-12 11:30:00,18105 +2014-11-12 12:00:00,17724 +2014-11-12 12:30:00,16327 +2014-11-12 13:00:00,16527 +2014-11-12 13:30:00,17290 +2014-11-12 14:00:00,18042 +2014-11-12 14:30:00,18250 +2014-11-12 15:00:00,17656 +2014-11-12 15:30:00,16288 +2014-11-12 16:00:00,13992 +2014-11-12 16:30:00,12912 +2014-11-12 17:00:00,16032 +2014-11-12 17:30:00,18814 +2014-11-12 18:00:00,21296 +2014-11-12 18:30:00,23115 +2014-11-12 19:00:00,23859 +2014-11-12 19:30:00,24749 +2014-11-12 20:00:00,23879 +2014-11-12 20:30:00,23815 +2014-11-12 21:00:00,24595 +2014-11-12 21:30:00,24494 +2014-11-12 22:00:00,24213 +2014-11-12 22:30:00,22931 +2014-11-12 23:00:00,20785 +2014-11-12 23:30:00,17464 +2014-11-13 00:00:00,13303 +2014-11-13 00:30:00,10350 +2014-11-13 01:00:00,7850 +2014-11-13 01:30:00,5961 +2014-11-13 02:00:00,5051 +2014-11-13 02:30:00,3833 +2014-11-13 03:00:00,3006 +2014-11-13 03:30:00,2515 +2014-11-13 04:00:00,2816 +2014-11-13 04:30:00,2248 +2014-11-13 05:00:00,2621 +2014-11-13 05:30:00,4392 +2014-11-13 06:00:00,7062 +2014-11-13 06:30:00,12333 +2014-11-13 07:00:00,15661 +2014-11-13 07:30:00,19597 +2014-11-13 08:00:00,20200 +2014-11-13 08:30:00,19843 +2014-11-13 09:00:00,19031 +2014-11-13 09:30:00,18253 +2014-11-13 10:00:00,17244 +2014-11-13 10:30:00,17402 +2014-11-13 11:00:00,17286 +2014-11-13 11:30:00,18936 +2014-11-13 12:00:00,18516 +2014-11-13 12:30:00,17635 +2014-11-13 13:00:00,17343 +2014-11-13 13:30:00,19090 +2014-11-13 14:00:00,19197 +2014-11-13 14:30:00,19207 +2014-11-13 15:00:00,18412 +2014-11-13 15:30:00,16391 +2014-11-13 16:00:00,13472 +2014-11-13 16:30:00,12807 +2014-11-13 17:00:00,16097 +2014-11-13 17:30:00,19322 +2014-11-13 18:00:00,21645 +2014-11-13 18:30:00,22745 +2014-11-13 19:00:00,24219 +2014-11-13 19:30:00,25443 +2014-11-13 20:00:00,25695 +2014-11-13 20:30:00,25994 +2014-11-13 21:00:00,26424 +2014-11-13 21:30:00,25450 +2014-11-13 22:00:00,24621 +2014-11-13 22:30:00,23727 +2014-11-13 23:00:00,22503 +2014-11-13 23:30:00,20709 +2014-11-14 00:00:00,17932 +2014-11-14 00:30:00,14668 +2014-11-14 01:00:00,11986 +2014-11-14 01:30:00,9213 +2014-11-14 02:00:00,7202 +2014-11-14 02:30:00,5552 +2014-11-14 03:00:00,5023 +2014-11-14 03:30:00,3900 +2014-11-14 04:00:00,4039 +2014-11-14 04:30:00,2987 +2014-11-14 05:00:00,3090 +2014-11-14 05:30:00,4737 +2014-11-14 06:00:00,7102 +2014-11-14 06:30:00,12268 +2014-11-14 07:00:00,15903 +2014-11-14 07:30:00,20015 +2014-11-14 08:00:00,20432 +2014-11-14 08:30:00,20735 +2014-11-14 09:00:00,19149 +2014-11-14 09:30:00,18665 +2014-11-14 10:00:00,17992 +2014-11-14 10:30:00,17773 +2014-11-14 11:00:00,17786 +2014-11-14 11:30:00,18128 +2014-11-14 12:00:00,18355 +2014-11-14 12:30:00,17629 +2014-11-14 13:00:00,17104 +2014-11-14 13:30:00,18151 +2014-11-14 14:00:00,18892 +2014-11-14 14:30:00,19540 +2014-11-14 15:00:00,18557 +2014-11-14 15:30:00,16263 +2014-11-14 16:00:00,14668 +2014-11-14 16:30:00,13473 +2014-11-14 17:00:00,16747 +2014-11-14 17:30:00,20594 +2014-11-14 18:00:00,23151 +2014-11-14 18:30:00,25446 +2014-11-14 19:00:00,27196 +2014-11-14 19:30:00,26881 +2014-11-14 20:00:00,25994 +2014-11-14 20:30:00,25879 +2014-11-14 21:00:00,26301 +2014-11-14 21:30:00,27136 +2014-11-14 22:00:00,26940 +2014-11-14 22:30:00,26834 +2014-11-14 23:00:00,26960 +2014-11-14 23:30:00,26107 +2014-11-15 00:00:00,25034 +2014-11-15 00:30:00,24103 +2014-11-15 01:00:00,22682 +2014-11-15 01:30:00,20630 +2014-11-15 02:00:00,19226 +2014-11-15 02:30:00,16555 +2014-11-15 03:00:00,14088 +2014-11-15 03:30:00,12491 +2014-11-15 04:00:00,10208 +2014-11-15 04:30:00,5853 +2014-11-15 05:00:00,4019 +2014-11-15 05:30:00,3477 +2014-11-15 06:00:00,3582 +2014-11-15 06:30:00,4936 +2014-11-15 07:00:00,5272 +2014-11-15 07:30:00,7427 +2014-11-15 08:00:00,8646 +2014-11-15 08:30:00,12313 +2014-11-15 09:00:00,13426 +2014-11-15 09:30:00,17040 +2014-11-15 10:00:00,16811 +2014-11-15 10:30:00,19069 +2014-11-15 11:00:00,19423 +2014-11-15 11:30:00,21552 +2014-11-15 12:00:00,21685 +2014-11-15 12:30:00,22380 +2014-11-15 13:00:00,21954 +2014-11-15 13:30:00,21926 +2014-11-15 14:00:00,21851 +2014-11-15 14:30:00,22014 +2014-11-15 15:00:00,22075 +2014-11-15 15:30:00,20936 +2014-11-15 16:00:00,18358 +2014-11-15 16:30:00,15289 +2014-11-15 17:00:00,17742 +2014-11-15 17:30:00,21769 +2014-11-15 18:00:00,24058 +2014-11-15 18:30:00,26029 +2014-11-15 19:00:00,27266 +2014-11-15 19:30:00,26817 +2014-11-15 20:00:00,25049 +2014-11-15 20:30:00,23713 +2014-11-15 21:00:00,23324 +2014-11-15 21:30:00,23970 +2014-11-15 22:00:00,26325 +2014-11-15 22:30:00,26139 +2014-11-15 23:00:00,27312 +2014-11-15 23:30:00,28114 +2014-11-16 00:00:00,26651 +2014-11-16 00:30:00,25212 +2014-11-16 01:00:00,24273 +2014-11-16 01:30:00,22665 +2014-11-16 02:00:00,21069 +2014-11-16 02:30:00,18803 +2014-11-16 03:00:00,16590 +2014-11-16 03:30:00,14414 +2014-11-16 04:00:00,12228 +2014-11-16 04:30:00,7230 +2014-11-16 05:00:00,4624 +2014-11-16 05:30:00,3594 +2014-11-16 06:00:00,3332 +2014-11-16 06:30:00,4083 +2014-11-16 07:00:00,4416 +2014-11-16 07:30:00,5214 +2014-11-16 08:00:00,6429 +2014-11-16 08:30:00,8898 +2014-11-16 09:00:00,10911 +2014-11-16 09:30:00,13475 +2014-11-16 10:00:00,15157 +2014-11-16 10:30:00,18595 +2014-11-16 11:00:00,19233 +2014-11-16 11:30:00,20372 +2014-11-16 12:00:00,21847 +2014-11-16 12:30:00,21695 +2014-11-16 13:00:00,21880 +2014-11-16 13:30:00,21047 +2014-11-16 14:00:00,21107 +2014-11-16 14:30:00,20602 +2014-11-16 15:00:00,19817 +2014-11-16 15:30:00,19310 +2014-11-16 16:00:00,18479 +2014-11-16 16:30:00,16296 +2014-11-16 17:00:00,17751 +2014-11-16 17:30:00,19230 +2014-11-16 18:00:00,19883 +2014-11-16 18:30:00,19768 +2014-11-16 19:00:00,18931 +2014-11-16 19:30:00,17936 +2014-11-16 20:00:00,16360 +2014-11-16 20:30:00,16885 +2014-11-16 21:00:00,16000 +2014-11-16 21:30:00,14902 +2014-11-16 22:00:00,13707 +2014-11-16 22:30:00,13406 +2014-11-16 23:00:00,12021 +2014-11-16 23:30:00,11115 +2014-11-17 00:00:00,8317 +2014-11-17 00:30:00,5887 +2014-11-17 01:00:00,4464 +2014-11-17 01:30:00,3425 +2014-11-17 02:00:00,2961 +2014-11-17 02:30:00,2328 +2014-11-17 03:00:00,2020 +2014-11-17 03:30:00,1764 +2014-11-17 04:00:00,2139 +2014-11-17 04:30:00,2296 +2014-11-17 05:00:00,2960 +2014-11-17 05:30:00,5121 +2014-11-17 06:00:00,7871 +2014-11-17 06:30:00,11902 +2014-11-17 07:00:00,14583 +2014-11-17 07:30:00,17190 +2014-11-17 08:00:00,18725 +2014-11-17 08:30:00,18822 +2014-11-17 09:00:00,17992 +2014-11-17 09:30:00,17210 +2014-11-17 10:00:00,15940 +2014-11-17 10:30:00,17094 +2014-11-17 11:00:00,15247 +2014-11-17 11:30:00,16676 +2014-11-17 12:00:00,16895 +2014-11-17 12:30:00,17205 +2014-11-17 13:00:00,17634 +2014-11-17 13:30:00,18189 +2014-11-17 14:00:00,19319 +2014-11-17 14:30:00,18757 +2014-11-17 15:00:00,17239 +2014-11-17 15:30:00,14885 +2014-11-17 16:00:00,13577 +2014-11-17 16:30:00,13513 +2014-11-17 17:00:00,15864 +2014-11-17 17:30:00,18502 +2014-11-17 18:00:00,20313 +2014-11-17 18:30:00,20674 +2014-11-17 19:00:00,21079 +2014-11-17 19:30:00,21433 +2014-11-17 20:00:00,20590 +2014-11-17 20:30:00,19515 +2014-11-17 21:00:00,20194 +2014-11-17 21:30:00,19251 +2014-11-17 22:00:00,18436 +2014-11-17 22:30:00,16099 +2014-11-17 23:00:00,14985 +2014-11-17 23:30:00,11612 +2014-11-18 00:00:00,9828 +2014-11-18 00:30:00,7529 +2014-11-18 01:00:00,6162 +2014-11-18 01:30:00,4296 +2014-11-18 02:00:00,3090 +2014-11-18 02:30:00,2366 +2014-11-18 03:00:00,2094 +2014-11-18 03:30:00,1831 +2014-11-18 04:00:00,1987 +2014-11-18 04:30:00,1936 +2014-11-18 05:00:00,2346 +2014-11-18 05:30:00,4328 +2014-11-18 06:00:00,6935 +2014-11-18 06:30:00,12642 +2014-11-18 07:00:00,16037 +2014-11-18 07:30:00,20032 +2014-11-18 08:00:00,20709 +2014-11-18 08:30:00,20897 +2014-11-18 09:00:00,20127 +2014-11-18 09:30:00,19075 +2014-11-18 10:00:00,17883 +2014-11-18 10:30:00,17581 +2014-11-18 11:00:00,16559 +2014-11-18 11:30:00,17870 +2014-11-18 12:00:00,18097 +2014-11-18 12:30:00,17714 +2014-11-18 13:00:00,17104 +2014-11-18 13:30:00,17999 +2014-11-18 14:00:00,19071 +2014-11-18 14:30:00,19197 +2014-11-18 15:00:00,19000 +2014-11-18 15:30:00,17013 +2014-11-18 16:00:00,14962 +2014-11-18 16:30:00,13727 +2014-11-18 17:00:00,16826 +2014-11-18 17:30:00,20320 +2014-11-18 18:00:00,23167 +2014-11-18 18:30:00,23782 +2014-11-18 19:00:00,24068 +2014-11-18 19:30:00,24831 +2014-11-18 20:00:00,25564 +2014-11-18 20:30:00,25300 +2014-11-18 21:00:00,25503 +2014-11-18 21:30:00,24598 +2014-11-18 22:00:00,24120 +2014-11-18 22:30:00,22641 +2014-11-18 23:00:00,19722 +2014-11-18 23:30:00,15507 +2014-11-19 00:00:00,12079 +2014-11-19 00:30:00,8561 +2014-11-19 01:00:00,6632 +2014-11-19 01:30:00,4846 +2014-11-19 02:00:00,3996 +2014-11-19 02:30:00,3339 +2014-11-19 03:00:00,2594 +2014-11-19 03:30:00,2315 +2014-11-19 04:00:00,2462 +2014-11-19 04:30:00,2077 +2014-11-19 05:00:00,2448 +2014-11-19 05:30:00,4656 +2014-11-19 06:00:00,7055 +2014-11-19 06:30:00,12903 +2014-11-19 07:00:00,16639 +2014-11-19 07:30:00,20585 +2014-11-19 08:00:00,21833 +2014-11-19 08:30:00,21453 +2014-11-19 09:00:00,20023 +2014-11-19 09:30:00,18790 +2014-11-19 10:00:00,18382 +2014-11-19 10:30:00,17956 +2014-11-19 11:00:00,17477 +2014-11-19 11:30:00,18590 +2014-11-19 12:00:00,18409 +2014-11-19 12:30:00,18020 +2014-11-19 13:00:00,16950 +2014-11-19 13:30:00,17826 +2014-11-19 14:00:00,18105 +2014-11-19 14:30:00,18187 +2014-11-19 15:00:00,18565 +2014-11-19 15:30:00,16454 +2014-11-19 16:00:00,14355 +2014-11-19 16:30:00,13109 +2014-11-19 17:00:00,15924 +2014-11-19 17:30:00,19175 +2014-11-19 18:00:00,21521 +2014-11-19 18:30:00,22762 +2014-11-19 19:00:00,23889 +2014-11-19 19:30:00,24408 +2014-11-19 20:00:00,24501 +2014-11-19 20:30:00,24316 +2014-11-19 21:00:00,24362 +2014-11-19 21:30:00,24032 +2014-11-19 22:00:00,23174 +2014-11-19 22:30:00,22453 +2014-11-19 23:00:00,20964 +2014-11-19 23:30:00,18142 +2014-11-20 00:00:00,14466 +2014-11-20 00:30:00,10771 +2014-11-20 01:00:00,8100 +2014-11-20 01:30:00,5976 +2014-11-20 02:00:00,5000 +2014-11-20 02:30:00,3727 +2014-11-20 03:00:00,2984 +2014-11-20 03:30:00,2584 +2014-11-20 04:00:00,2591 +2014-11-20 04:30:00,2253 +2014-11-20 05:00:00,2489 +2014-11-20 05:30:00,4419 +2014-11-20 06:00:00,7014 +2014-11-20 06:30:00,12470 +2014-11-20 07:00:00,16549 +2014-11-20 07:30:00,19879 +2014-11-20 08:00:00,20437 +2014-11-20 08:30:00,19549 +2014-11-20 09:00:00,18639 +2014-11-20 09:30:00,18683 +2014-11-20 10:00:00,18486 +2014-11-20 10:30:00,18014 +2014-11-20 11:00:00,16720 +2014-11-20 11:30:00,18570 +2014-11-20 12:00:00,18309 +2014-11-20 12:30:00,17294 +2014-11-20 13:00:00,16699 +2014-11-20 13:30:00,17819 +2014-11-20 14:00:00,18227 +2014-11-20 14:30:00,18586 +2014-11-20 15:00:00,18078 +2014-11-20 15:30:00,15656 +2014-11-20 16:00:00,12989 +2014-11-20 16:30:00,11740 +2014-11-20 17:00:00,14934 +2014-11-20 17:30:00,18494 +2014-11-20 18:00:00,21215 +2014-11-20 18:30:00,23643 +2014-11-20 19:00:00,24623 +2014-11-20 19:30:00,24564 +2014-11-20 20:00:00,25305 +2014-11-20 20:30:00,25039 +2014-11-20 21:00:00,25351 +2014-11-20 21:30:00,24526 +2014-11-20 22:00:00,24739 +2014-11-20 22:30:00,23638 +2014-11-20 23:00:00,21861 +2014-11-20 23:30:00,21500 +2014-11-21 00:00:00,19838 +2014-11-21 00:30:00,16307 +2014-11-21 01:00:00,12324 +2014-11-21 01:30:00,10006 +2014-11-21 02:00:00,8077 +2014-11-21 02:30:00,6355 +2014-11-21 03:00:00,5091 +2014-11-21 03:30:00,4247 +2014-11-21 04:00:00,4440 +2014-11-21 04:30:00,3089 +2014-11-21 05:00:00,2930 +2014-11-21 05:30:00,4782 +2014-11-21 06:00:00,7250 +2014-11-21 06:30:00,12167 +2014-11-21 07:00:00,15235 +2014-11-21 07:30:00,20053 +2014-11-21 08:00:00,20654 +2014-11-21 08:30:00,21158 +2014-11-21 09:00:00,19863 +2014-11-21 09:30:00,18775 +2014-11-21 10:00:00,18346 +2014-11-21 10:30:00,18645 +2014-11-21 11:00:00,17986 +2014-11-21 11:30:00,19070 +2014-11-21 12:00:00,18901 +2014-11-21 12:30:00,17585 +2014-11-21 13:00:00,17309 +2014-11-21 13:30:00,18226 +2014-11-21 14:00:00,18788 +2014-11-21 14:30:00,19103 +2014-11-21 15:00:00,18261 +2014-11-21 15:30:00,15945 +2014-11-21 16:00:00,14181 +2014-11-21 16:30:00,12992 +2014-11-21 17:00:00,15847 +2014-11-21 17:30:00,19426 +2014-11-21 18:00:00,22514 +2014-11-21 18:30:00,24457 +2014-11-21 19:00:00,26156 +2014-11-21 19:30:00,26677 +2014-11-21 20:00:00,26217 +2014-11-21 20:30:00,26289 +2014-11-21 21:00:00,26370 +2014-11-21 21:30:00,26344 +2014-11-21 22:00:00,26736 +2014-11-21 22:30:00,27093 +2014-11-21 23:00:00,27569 +2014-11-21 23:30:00,27064 +2014-11-22 00:00:00,26220 +2014-11-22 00:30:00,24289 +2014-11-22 01:00:00,22849 +2014-11-22 01:30:00,20731 +2014-11-22 02:00:00,19081 +2014-11-22 02:30:00,16573 +2014-11-22 03:00:00,14188 +2014-11-22 03:30:00,12213 +2014-11-22 04:00:00,10145 +2014-11-22 04:30:00,5902 +2014-11-22 05:00:00,3983 +2014-11-22 05:30:00,3556 +2014-11-22 06:00:00,3651 +2014-11-22 06:30:00,5153 +2014-11-22 07:00:00,5379 +2014-11-22 07:30:00,7174 +2014-11-22 08:00:00,9070 +2014-11-22 08:30:00,12114 +2014-11-22 09:00:00,13665 +2014-11-22 09:30:00,17463 +2014-11-22 10:00:00,17209 +2014-11-22 10:30:00,20299 +2014-11-22 11:00:00,20255 +2014-11-22 11:30:00,22981 +2014-11-22 12:00:00,23368 +2014-11-22 12:30:00,23444 +2014-11-22 13:00:00,22610 +2014-11-22 13:30:00,22258 +2014-11-22 14:00:00,21160 +2014-11-22 14:30:00,22960 +2014-11-22 15:00:00,23007 +2014-11-22 15:30:00,21145 +2014-11-22 16:00:00,18440 +2014-11-22 16:30:00,16028 +2014-11-22 17:00:00,19101 +2014-11-22 17:30:00,22361 +2014-11-22 18:00:00,24256 +2014-11-22 18:30:00,26410 +2014-11-22 19:00:00,27377 +2014-11-22 19:30:00,26255 +2014-11-22 20:00:00,23977 +2014-11-22 20:30:00,23565 +2014-11-22 21:00:00,22703 +2014-11-22 21:30:00,23078 +2014-11-22 22:00:00,25755 +2014-11-22 22:30:00,27028 +2014-11-22 23:00:00,28126 +2014-11-22 23:30:00,28472 +2014-11-23 00:00:00,27424 +2014-11-23 00:30:00,25493 +2014-11-23 01:00:00,24876 +2014-11-23 01:30:00,22639 +2014-11-23 02:00:00,21013 +2014-11-23 02:30:00,19100 +2014-11-23 03:00:00,16662 +2014-11-23 03:30:00,14489 +2014-11-23 04:00:00,12023 +2014-11-23 04:30:00,7069 +2014-11-23 05:00:00,4453 +2014-11-23 05:30:00,3483 +2014-11-23 06:00:00,3479 +2014-11-23 06:30:00,3968 +2014-11-23 07:00:00,4092 +2014-11-23 07:30:00,5877 +2014-11-23 08:00:00,6845 +2014-11-23 08:30:00,8283 +2014-11-23 09:00:00,10231 +2014-11-23 09:30:00,13189 +2014-11-23 10:00:00,14458 +2014-11-23 10:30:00,17284 +2014-11-23 11:00:00,17800 +2014-11-23 11:30:00,19509 +2014-11-23 12:00:00,20547 +2014-11-23 12:30:00,20211 +2014-11-23 13:00:00,20041 +2014-11-23 13:30:00,19619 +2014-11-23 14:00:00,19947 +2014-11-23 14:30:00,19844 +2014-11-23 15:00:00,19088 +2014-11-23 15:30:00,19237 +2014-11-23 16:00:00,18316 +2014-11-23 16:30:00,16996 +2014-11-23 17:00:00,18134 +2014-11-23 17:30:00,19633 +2014-11-23 18:00:00,20204 +2014-11-23 18:30:00,19810 +2014-11-23 19:00:00,17925 +2014-11-23 19:30:00,16938 +2014-11-23 20:00:00,15096 +2014-11-23 20:30:00,15539 +2014-11-23 21:00:00,14806 +2014-11-23 21:30:00,15035 +2014-11-23 22:00:00,13285 +2014-11-23 22:30:00,12090 +2014-11-23 23:00:00,10552 +2014-11-23 23:30:00,9136 +2014-11-24 00:00:00,8106 +2014-11-24 00:30:00,7020 +2014-11-24 01:00:00,5562 +2014-11-24 01:30:00,3917 +2014-11-24 02:00:00,3592 +2014-11-24 02:30:00,2637 +2014-11-24 03:00:00,2031 +2014-11-24 03:30:00,1900 +2014-11-24 04:00:00,2172 +2014-11-24 04:30:00,2008 +2014-11-24 05:00:00,2546 +2014-11-24 05:30:00,4409 +2014-11-24 06:00:00,7269 +2014-11-24 06:30:00,11863 +2014-11-24 07:00:00,14244 +2014-11-24 07:30:00,17238 +2014-11-24 08:00:00,18382 +2014-11-24 08:30:00,17940 +2014-11-24 09:00:00,17447 +2014-11-24 09:30:00,16773 +2014-11-24 10:00:00,15319 +2014-11-24 10:30:00,15867 +2014-11-24 11:00:00,15751 +2014-11-24 11:30:00,17462 +2014-11-24 12:00:00,16292 +2014-11-24 12:30:00,16317 +2014-11-24 13:00:00,16104 +2014-11-24 13:30:00,16967 +2014-11-24 14:00:00,17035 +2014-11-24 14:30:00,17976 +2014-11-24 15:00:00,18230 +2014-11-24 15:30:00,16521 +2014-11-24 16:00:00,14887 +2014-11-24 16:30:00,13707 +2014-11-24 17:00:00,16596 +2014-11-24 17:30:00,18683 +2014-11-24 18:00:00,20289 +2014-11-24 18:30:00,21377 +2014-11-24 19:00:00,21962 +2014-11-24 19:30:00,21126 +2014-11-24 20:00:00,20531 +2014-11-24 20:30:00,19217 +2014-11-24 21:00:00,19353 +2014-11-24 21:30:00,19109 +2014-11-24 22:00:00,18814 +2014-11-24 22:30:00,17036 +2014-11-24 23:00:00,14147 +2014-11-24 23:30:00,11595 +2014-11-25 00:00:00,10091 +2014-11-25 00:30:00,7575 +2014-11-25 01:00:00,5977 +2014-11-25 01:30:00,4705 +2014-11-25 02:00:00,3796 +2014-11-25 02:30:00,2894 +2014-11-25 03:00:00,2471 +2014-11-25 03:30:00,2115 +2014-11-25 04:00:00,2474 +2014-11-25 04:30:00,2285 +2014-11-25 05:00:00,2538 +2014-11-25 05:30:00,4380 +2014-11-25 06:00:00,6537 +2014-11-25 06:30:00,11238 +2014-11-25 07:00:00,14764 +2014-11-25 07:30:00,18187 +2014-11-25 08:00:00,18885 +2014-11-25 08:30:00,19188 +2014-11-25 09:00:00,18398 +2014-11-25 09:30:00,18057 +2014-11-25 10:00:00,16899 +2014-11-25 10:30:00,17137 +2014-11-25 11:00:00,16203 +2014-11-25 11:30:00,17742 +2014-11-25 12:00:00,17843 +2014-11-25 12:30:00,17866 +2014-11-25 13:00:00,17548 +2014-11-25 13:30:00,18306 +2014-11-25 14:00:00,18577 +2014-11-25 14:30:00,18506 +2014-11-25 15:00:00,18691 +2014-11-25 15:30:00,15729 +2014-11-25 16:00:00,13396 +2014-11-25 16:30:00,11923 +2014-11-25 17:00:00,14463 +2014-11-25 17:30:00,17026 +2014-11-25 18:00:00,19078 +2014-11-25 18:30:00,20439 +2014-11-25 19:00:00,20776 +2014-11-25 19:30:00,20941 +2014-11-25 20:00:00,20209 +2014-11-25 20:30:00,19987 +2014-11-25 21:00:00,19952 +2014-11-25 21:30:00,19234 +2014-11-25 22:00:00,18455 +2014-11-25 22:30:00,18097 +2014-11-25 23:00:00,17461 +2014-11-25 23:30:00,16002 +2014-11-26 00:00:00,13400 +2014-11-26 00:30:00,10978 +2014-11-26 01:00:00,8613 +2014-11-26 01:30:00,6446 +2014-11-26 02:00:00,5205 +2014-11-26 02:30:00,4118 +2014-11-26 03:00:00,3510 +2014-11-26 03:30:00,3249 +2014-11-26 04:00:00,3698 +2014-11-26 04:30:00,3584 +2014-11-26 05:00:00,3622 +2014-11-26 05:30:00,4987 +2014-11-26 06:00:00,7213 +2014-11-26 06:30:00,10827 +2014-11-26 07:00:00,14141 +2014-11-26 07:30:00,16965 +2014-11-26 08:00:00,19391 +2014-11-26 08:30:00,19557 +2014-11-26 09:00:00,19067 +2014-11-26 09:30:00,18807 +2014-11-26 10:00:00,18232 +2014-11-26 10:30:00,18999 +2014-11-26 11:00:00,18896 +2014-11-26 11:30:00,19764 +2014-11-26 12:00:00,20227 +2014-11-26 12:30:00,19602 +2014-11-26 13:00:00,20456 +2014-11-26 13:30:00,19580 +2014-11-26 14:00:00,19156 +2014-11-26 14:30:00,19572 +2014-11-26 15:00:00,18925 +2014-11-26 15:30:00,17545 +2014-11-26 16:00:00,15465 +2014-11-26 16:30:00,14104 +2014-11-26 17:00:00,16996 +2014-11-26 17:30:00,20113 +2014-11-26 18:00:00,21015 +2014-11-26 18:30:00,21580 +2014-11-26 19:00:00,22501 +2014-11-26 19:30:00,21159 +2014-11-26 20:00:00,18991 +2014-11-26 20:30:00,18046 +2014-11-26 21:00:00,18300 +2014-11-26 21:30:00,18538 +2014-11-26 22:00:00,17170 +2014-11-26 22:30:00,17081 +2014-11-26 23:00:00,15613 +2014-11-26 23:30:00,13718 +2014-11-27 00:00:00,13522 +2014-11-27 00:30:00,11323 +2014-11-27 01:00:00,10315 +2014-11-27 01:30:00,8870 +2014-11-27 02:00:00,8150 +2014-11-27 02:30:00,7209 +2014-11-27 03:00:00,6018 +2014-11-27 03:30:00,5819 +2014-11-27 04:00:00,5291 +2014-11-27 04:30:00,4127 +2014-11-27 05:00:00,3540 +2014-11-27 05:30:00,3715 +2014-11-27 06:00:00,4613 +2014-11-27 06:30:00,5500 +2014-11-27 07:00:00,5955 +2014-11-27 07:30:00,6512 +2014-11-27 08:00:00,7076 +2014-11-27 08:30:00,7813 +2014-11-27 09:00:00,8365 +2014-11-27 09:30:00,9013 +2014-11-27 10:00:00,9695 +2014-11-27 10:30:00,11389 +2014-11-27 11:00:00,12701 +2014-11-27 11:30:00,13400 +2014-11-27 12:00:00,13282 +2014-11-27 12:30:00,13542 +2014-11-27 13:00:00,13538 +2014-11-27 13:30:00,13663 +2014-11-27 14:00:00,13980 +2014-11-27 14:30:00,14673 +2014-11-27 15:00:00,14614 +2014-11-27 15:30:00,15255 +2014-11-27 16:00:00,13560 +2014-11-27 16:30:00,13120 +2014-11-27 17:00:00,13273 +2014-11-27 17:30:00,13334 +2014-11-27 18:00:00,12930 +2014-11-27 18:30:00,13683 +2014-11-27 19:00:00,13682 +2014-11-27 19:30:00,14106 +2014-11-27 20:00:00,14088 +2014-11-27 20:30:00,14417 +2014-11-27 21:00:00,15187 +2014-11-27 21:30:00,15280 +2014-11-27 22:00:00,15654 +2014-11-27 22:30:00,13989 +2014-11-27 23:00:00,12592 +2014-11-27 23:30:00,11811 +2014-11-28 00:00:00,9653 +2014-11-28 00:30:00,7791 +2014-11-28 01:00:00,6862 +2014-11-28 01:30:00,5644 +2014-11-28 02:00:00,4639 +2014-11-28 02:30:00,3673 +2014-11-28 03:00:00,2945 +2014-11-28 03:30:00,2875 +2014-11-28 04:00:00,2883 +2014-11-28 04:30:00,2165 +2014-11-28 05:00:00,1902 +2014-11-28 05:30:00,2226 +2014-11-28 06:00:00,2870 +2014-11-28 06:30:00,4313 +2014-11-28 07:00:00,4936 +2014-11-28 07:30:00,6240 +2014-11-28 08:00:00,7376 +2014-11-28 08:30:00,8850 +2014-11-28 09:00:00,9864 +2014-11-28 09:30:00,10863 +2014-11-28 10:00:00,11900 +2014-11-28 10:30:00,12969 +2014-11-28 11:00:00,14045 +2014-11-28 11:30:00,15281 +2014-11-28 12:00:00,16153 +2014-11-28 12:30:00,17025 +2014-11-28 13:00:00,17596 +2014-11-28 13:30:00,18437 +2014-11-28 14:00:00,17777 +2014-11-28 14:30:00,18774 +2014-11-28 15:00:00,18868 +2014-11-28 15:30:00,19046 +2014-11-28 16:00:00,17706 +2014-11-28 16:30:00,16591 +2014-11-28 17:00:00,18951 +2014-11-28 17:30:00,20519 +2014-11-28 18:00:00,20626 +2014-11-28 18:30:00,21227 +2014-11-28 19:00:00,22716 +2014-11-28 19:30:00,21044 +2014-11-28 20:00:00,18862 +2014-11-28 20:30:00,18821 +2014-11-28 21:00:00,18485 +2014-11-28 21:30:00,18416 +2014-11-28 22:00:00,19806 +2014-11-28 22:30:00,19671 +2014-11-28 23:00:00,19234 +2014-11-28 23:30:00,17725 +2014-11-29 00:00:00,16089 +2014-11-29 00:30:00,14561 +2014-11-29 01:00:00,13292 +2014-11-29 01:30:00,12000 +2014-11-29 02:00:00,10967 +2014-11-29 02:30:00,9747 +2014-11-29 03:00:00,8556 +2014-11-29 03:30:00,8342 +2014-11-29 04:00:00,7178 +2014-11-29 04:30:00,4441 +2014-11-29 05:00:00,2747 +2014-11-29 05:30:00,2489 +2014-11-29 06:00:00,2283 +2014-11-29 06:30:00,3109 +2014-11-29 07:00:00,3380 +2014-11-29 07:30:00,4628 +2014-11-29 08:00:00,5291 +2014-11-29 08:30:00,7405 +2014-11-29 09:00:00,9044 +2014-11-29 09:30:00,11193 +2014-11-29 10:00:00,12541 +2014-11-29 10:30:00,15281 +2014-11-29 11:00:00,15551 +2014-11-29 11:30:00,17665 +2014-11-29 12:00:00,18499 +2014-11-29 12:30:00,18680 +2014-11-29 13:00:00,19621 +2014-11-29 13:30:00,19830 +2014-11-29 14:00:00,19187 +2014-11-29 14:30:00,19999 +2014-11-29 15:00:00,19722 +2014-11-29 15:30:00,20600 +2014-11-29 16:00:00,19125 +2014-11-29 16:30:00,16658 +2014-11-29 17:00:00,18684 +2014-11-29 17:30:00,20891 +2014-11-29 18:00:00,21554 +2014-11-29 18:30:00,22678 +2014-11-29 19:00:00,24055 +2014-11-29 19:30:00,23418 +2014-11-29 20:00:00,20196 +2014-11-29 20:30:00,19676 +2014-11-29 21:00:00,19566 +2014-11-29 21:30:00,19272 +2014-11-29 22:00:00,20686 +2014-11-29 22:30:00,21659 +2014-11-29 23:00:00,21154 +2014-11-29 23:30:00,21170 +2014-11-30 00:00:00,20149 +2014-11-30 00:30:00,18555 +2014-11-30 01:00:00,17768 +2014-11-30 01:30:00,15608 +2014-11-30 02:00:00,14966 +2014-11-30 02:30:00,13074 +2014-11-30 03:00:00,11332 +2014-11-30 03:30:00,9965 +2014-11-30 04:00:00,9167 +2014-11-30 04:30:00,5520 +2014-11-30 05:00:00,3812 +2014-11-30 05:30:00,3123 +2014-11-30 06:00:00,3103 +2014-11-30 06:30:00,3777 +2014-11-30 07:00:00,3699 +2014-11-30 07:30:00,4968 +2014-11-30 08:00:00,5630 +2014-11-30 08:30:00,7422 +2014-11-30 09:00:00,9123 +2014-11-30 09:30:00,10981 +2014-11-30 10:00:00,12227 +2014-11-30 10:30:00,15247 +2014-11-30 11:00:00,14970 +2014-11-30 11:30:00,16912 +2014-11-30 12:00:00,17420 +2014-11-30 12:30:00,18336 +2014-11-30 13:00:00,18091 +2014-11-30 13:30:00,17841 +2014-11-30 14:00:00,18946 +2014-11-30 14:30:00,19156 +2014-11-30 15:00:00,18159 +2014-11-30 15:30:00,17805 +2014-11-30 16:00:00,16838 +2014-11-30 16:30:00,15906 +2014-11-30 17:00:00,16917 +2014-11-30 17:30:00,17670 +2014-11-30 18:00:00,17941 +2014-11-30 18:30:00,18093 +2014-11-30 19:00:00,17587 +2014-11-30 19:30:00,16867 +2014-11-30 20:00:00,15693 +2014-11-30 20:30:00,15342 +2014-11-30 21:00:00,13821 +2014-11-30 21:30:00,14083 +2014-11-30 22:00:00,13714 +2014-11-30 22:30:00,12119 +2014-11-30 23:00:00,9904 +2014-11-30 23:30:00,8970 +2014-12-01 00:00:00,7706 +2014-12-01 00:30:00,5494 +2014-12-01 01:00:00,4249 +2014-12-01 01:30:00,2891 +2014-12-01 02:00:00,2632 +2014-12-01 02:30:00,2192 +2014-12-01 03:00:00,1648 +2014-12-01 03:30:00,1639 +2014-12-01 04:00:00,1913 +2014-12-01 04:30:00,2142 +2014-12-01 05:00:00,2909 +2014-12-01 05:30:00,4587 +2014-12-01 06:00:00,7235 +2014-12-01 06:30:00,11448 +2014-12-01 07:00:00,14106 +2014-12-01 07:30:00,17184 +2014-12-01 08:00:00,18306 +2014-12-01 08:30:00,18746 +2014-12-01 09:00:00,17914 +2014-12-01 09:30:00,16699 +2014-12-01 10:00:00,15681 +2014-12-01 10:30:00,15210 +2014-12-01 11:00:00,14532 +2014-12-01 11:30:00,15985 +2014-12-01 12:00:00,16226 +2014-12-01 12:30:00,16000 +2014-12-01 13:00:00,15641 +2014-12-01 13:30:00,16373 +2014-12-01 14:00:00,16830 +2014-12-01 14:30:00,17470 +2014-12-01 15:00:00,18131 +2014-12-01 15:30:00,16870 +2014-12-01 16:00:00,15192 +2014-12-01 16:30:00,14453 +2014-12-01 17:00:00,17382 +2014-12-01 17:30:00,19815 +2014-12-01 18:00:00,21750 +2014-12-01 18:30:00,22217 +2014-12-01 19:00:00,21813 +2014-12-01 19:30:00,21536 +2014-12-01 20:00:00,22541 +2014-12-01 20:30:00,21329 +2014-12-01 21:00:00,20165 +2014-12-01 21:30:00,19498 +2014-12-01 22:00:00,19355 +2014-12-01 22:30:00,16691 +2014-12-01 23:00:00,14387 +2014-12-01 23:30:00,12101 +2014-12-02 00:00:00,9805 +2014-12-02 00:30:00,7121 +2014-12-02 01:00:00,5019 +2014-12-02 01:30:00,3822 +2014-12-02 02:00:00,3268 +2014-12-02 02:30:00,2261 +2014-12-02 03:00:00,1853 +2014-12-02 03:30:00,1722 +2014-12-02 04:00:00,2077 +2014-12-02 04:30:00,1988 +2014-12-02 05:00:00,2296 +2014-12-02 05:30:00,4537 +2014-12-02 06:00:00,6661 +2014-12-02 06:30:00,11901 +2014-12-02 07:00:00,15501 +2014-12-02 07:30:00,19573 +2014-12-02 08:00:00,20896 +2014-12-02 08:30:00,21051 +2014-12-02 09:00:00,19670 +2014-12-02 09:30:00,18654 +2014-12-02 10:00:00,17108 +2014-12-02 10:30:00,17553 +2014-12-02 11:00:00,16232 +2014-12-02 11:30:00,17534 +2014-12-02 12:00:00,17697 +2014-12-02 12:30:00,19165 +2014-12-02 13:00:00,18916 +2014-12-02 13:30:00,19543 +2014-12-02 14:00:00,18570 +2014-12-02 14:30:00,19043 +2014-12-02 15:00:00,18343 +2014-12-02 15:30:00,16666 +2014-12-02 16:00:00,14050 +2014-12-02 16:30:00,12845 +2014-12-02 17:00:00,16111 +2014-12-02 17:30:00,19112 +2014-12-02 18:00:00,21205 +2014-12-02 18:30:00,22337 +2014-12-02 19:00:00,23340 +2014-12-02 19:30:00,23082 +2014-12-02 20:00:00,23718 +2014-12-02 20:30:00,22936 +2014-12-02 21:00:00,23466 +2014-12-02 21:30:00,23387 +2014-12-02 22:00:00,22893 +2014-12-02 22:30:00,20923 +2014-12-02 23:00:00,18684 +2014-12-02 23:30:00,14962 +2014-12-03 00:00:00,12558 +2014-12-03 00:30:00,8876 +2014-12-03 01:00:00,6626 +2014-12-03 01:30:00,4926 +2014-12-03 02:00:00,4046 +2014-12-03 02:30:00,3168 +2014-12-03 03:00:00,2692 +2014-12-03 03:30:00,2237 +2014-12-03 04:00:00,2384 +2014-12-03 04:30:00,2109 +2014-12-03 05:00:00,2403 +2014-12-03 05:30:00,4250 +2014-12-03 06:00:00,6529 +2014-12-03 06:30:00,12185 +2014-12-03 07:00:00,16016 +2014-12-03 07:30:00,19504 +2014-12-03 08:00:00,20925 +2014-12-03 08:30:00,20891 +2014-12-03 09:00:00,20047 +2014-12-03 09:30:00,19138 +2014-12-03 10:00:00,18431 +2014-12-03 10:30:00,16960 +2014-12-03 11:00:00,16426 +2014-12-03 11:30:00,18092 +2014-12-03 12:00:00,19190 +2014-12-03 12:30:00,18957 +2014-12-03 13:00:00,18288 +2014-12-03 13:30:00,18843 +2014-12-03 14:00:00,19003 +2014-12-03 14:30:00,18193 +2014-12-03 15:00:00,17260 +2014-12-03 15:30:00,15103 +2014-12-03 16:00:00,12941 +2014-12-03 16:30:00,11797 +2014-12-03 17:00:00,15545 +2014-12-03 17:30:00,17938 +2014-12-03 18:00:00,20693 +2014-12-03 18:30:00,21585 +2014-12-03 19:00:00,21689 +2014-12-03 19:30:00,21995 +2014-12-03 20:00:00,22096 +2014-12-03 20:30:00,22115 +2014-12-03 21:00:00,21860 +2014-12-03 21:30:00,22041 +2014-12-03 22:00:00,21680 +2014-12-03 22:30:00,21378 +2014-12-03 23:00:00,20295 +2014-12-03 23:30:00,18176 +2014-12-04 00:00:00,14846 +2014-12-04 00:30:00,11480 +2014-12-04 01:00:00,8939 +2014-12-04 01:30:00,6679 +2014-12-04 02:00:00,5175 +2014-12-04 02:30:00,3800 +2014-12-04 03:00:00,3135 +2014-12-04 03:30:00,2671 +2014-12-04 04:00:00,2843 +2014-12-04 04:30:00,2476 +2014-12-04 05:00:00,2670 +2014-12-04 05:30:00,4521 +2014-12-04 06:00:00,6841 +2014-12-04 06:30:00,12178 +2014-12-04 07:00:00,15916 +2014-12-04 07:30:00,19872 +2014-12-04 08:00:00,20957 +2014-12-04 08:30:00,20358 +2014-12-04 09:00:00,19717 +2014-12-04 09:30:00,18943 +2014-12-04 10:00:00,18082 +2014-12-04 10:30:00,18560 +2014-12-04 11:00:00,17316 +2014-12-04 11:30:00,18817 +2014-12-04 12:00:00,18439 +2014-12-04 12:30:00,17771 +2014-12-04 13:00:00,17214 +2014-12-04 13:30:00,17836 +2014-12-04 14:00:00,18676 +2014-12-04 14:30:00,19241 +2014-12-04 15:00:00,19068 +2014-12-04 15:30:00,16567 +2014-12-04 16:00:00,14529 +2014-12-04 16:30:00,12862 +2014-12-04 17:00:00,16086 +2014-12-04 17:30:00,19221 +2014-12-04 18:00:00,21408 +2014-12-04 18:30:00,23385 +2014-12-04 19:00:00,23604 +2014-12-04 19:30:00,23384 +2014-12-04 20:00:00,23209 +2014-12-04 20:30:00,22592 +2014-12-04 21:00:00,23164 +2014-12-04 21:30:00,23638 +2014-12-04 22:00:00,23192 +2014-12-04 22:30:00,22417 +2014-12-04 23:00:00,22630 +2014-12-04 23:30:00,21278 +2014-12-05 00:00:00,19300 +2014-12-05 00:30:00,16241 +2014-12-05 01:00:00,12966 +2014-12-05 01:30:00,10322 +2014-12-05 02:00:00,8160 +2014-12-05 02:30:00,6611 +2014-12-05 03:00:00,5410 +2014-12-05 03:30:00,4453 +2014-12-05 04:00:00,4287 +2014-12-05 04:30:00,3250 +2014-12-05 05:00:00,3396 +2014-12-05 05:30:00,4846 +2014-12-05 06:00:00,7090 +2014-12-05 06:30:00,11832 +2014-12-05 07:00:00,15506 +2014-12-05 07:30:00,20211 +2014-12-05 08:00:00,21053 +2014-12-05 08:30:00,20635 +2014-12-05 09:00:00,20128 +2014-12-05 09:30:00,18838 +2014-12-05 10:00:00,17936 +2014-12-05 10:30:00,18210 +2014-12-05 11:00:00,17653 +2014-12-05 11:30:00,18847 +2014-12-05 12:00:00,18814 +2014-12-05 12:30:00,17478 +2014-12-05 13:00:00,18029 +2014-12-05 13:30:00,18953 +2014-12-05 14:00:00,19684 +2014-12-05 14:30:00,19747 +2014-12-05 15:00:00,18464 +2014-12-05 15:30:00,16396 +2014-12-05 16:00:00,14436 +2014-12-05 16:30:00,13461 +2014-12-05 17:00:00,17047 +2014-12-05 17:30:00,20614 +2014-12-05 18:00:00,23322 +2014-12-05 18:30:00,25791 +2014-12-05 19:00:00,26650 +2014-12-05 19:30:00,26971 +2014-12-05 20:00:00,26688 +2014-12-05 20:30:00,25508 +2014-12-05 21:00:00,26284 +2014-12-05 21:30:00,26978 +2014-12-05 22:00:00,26983 +2014-12-05 22:30:00,25438 +2014-12-05 23:00:00,24914 +2014-12-05 23:30:00,24165 +2014-12-06 00:00:00,22925 +2014-12-06 00:30:00,22187 +2014-12-06 01:00:00,21493 +2014-12-06 01:30:00,19021 +2014-12-06 02:00:00,18009 +2014-12-06 02:30:00,15786 +2014-12-06 03:00:00,13114 +2014-12-06 03:30:00,10541 +2014-12-06 04:00:00,9296 +2014-12-06 04:30:00,5388 +2014-12-06 05:00:00,3578 +2014-12-06 05:30:00,3205 +2014-12-06 06:00:00,3427 +2014-12-06 06:30:00,4666 +2014-12-06 07:00:00,5262 +2014-12-06 07:30:00,7841 +2014-12-06 08:00:00,8786 +2014-12-06 08:30:00,11893 +2014-12-06 09:00:00,12849 +2014-12-06 09:30:00,16411 +2014-12-06 10:00:00,16917 +2014-12-06 10:30:00,19706 +2014-12-06 11:00:00,22924 +2014-12-06 11:30:00,26224 +2014-12-06 12:00:00,25548 +2014-12-06 12:30:00,24376 +2014-12-06 13:00:00,24464 +2014-12-06 13:30:00,23825 +2014-12-06 14:00:00,24235 +2014-12-06 14:30:00,24001 +2014-12-06 15:00:00,23877 +2014-12-06 15:30:00,21761 +2014-12-06 16:00:00,18277 +2014-12-06 16:30:00,15670 +2014-12-06 17:00:00,18411 +2014-12-06 17:30:00,21332 +2014-12-06 18:00:00,23306 +2014-12-06 18:30:00,24856 +2014-12-06 19:00:00,25798 +2014-12-06 19:30:00,25274 +2014-12-06 20:00:00,25158 +2014-12-06 20:30:00,24164 +2014-12-06 21:00:00,23771 +2014-12-06 21:30:00,24363 +2014-12-06 22:00:00,25705 +2014-12-06 22:30:00,26429 +2014-12-06 23:00:00,27272 +2014-12-06 23:30:00,27636 +2014-12-07 00:00:00,26695 +2014-12-07 00:30:00,25626 +2014-12-07 01:00:00,24285 +2014-12-07 01:30:00,22249 +2014-12-07 02:00:00,20741 +2014-12-07 02:30:00,18554 +2014-12-07 03:00:00,15770 +2014-12-07 03:30:00,13976 +2014-12-07 04:00:00,11368 +2014-12-07 04:30:00,6531 +2014-12-07 05:00:00,3929 +2014-12-07 05:30:00,3236 +2014-12-07 06:00:00,3177 +2014-12-07 06:30:00,3757 +2014-12-07 07:00:00,4042 +2014-12-07 07:30:00,5401 +2014-12-07 08:00:00,6483 +2014-12-07 08:30:00,9264 +2014-12-07 09:00:00,11497 +2014-12-07 09:30:00,14585 +2014-12-07 10:00:00,16159 +2014-12-07 10:30:00,20205 +2014-12-07 11:00:00,21146 +2014-12-07 11:30:00,22387 +2014-12-07 12:00:00,23081 +2014-12-07 12:30:00,23163 +2014-12-07 13:00:00,22660 +2014-12-07 13:30:00,22127 +2014-12-07 14:00:00,22237 +2014-12-07 14:30:00,22193 +2014-12-07 15:00:00,21252 +2014-12-07 15:30:00,20818 +2014-12-07 16:00:00,19110 +2014-12-07 16:30:00,17255 +2014-12-07 17:00:00,18368 +2014-12-07 17:30:00,20327 +2014-12-07 18:00:00,21411 +2014-12-07 18:30:00,21379 +2014-12-07 19:00:00,21735 +2014-12-07 19:30:00,20031 +2014-12-07 20:00:00,18305 +2014-12-07 20:30:00,17961 +2014-12-07 21:00:00,17334 +2014-12-07 21:30:00,17401 +2014-12-07 22:00:00,17020 +2014-12-07 22:30:00,14661 +2014-12-07 23:00:00,12367 +2014-12-07 23:30:00,10891 +2014-12-08 00:00:00,8141 +2014-12-08 00:30:00,6411 +2014-12-08 01:00:00,4762 +2014-12-08 01:30:00,3616 +2014-12-08 02:00:00,3130 +2014-12-08 02:30:00,2273 +2014-12-08 03:00:00,2031 +2014-12-08 03:30:00,1788 +2014-12-08 04:00:00,2203 +2014-12-08 04:30:00,2270 +2014-12-08 05:00:00,2727 +2014-12-08 05:30:00,4686 +2014-12-08 06:00:00,6827 +2014-12-08 06:30:00,11984 +2014-12-08 07:00:00,14644 +2014-12-08 07:30:00,18338 +2014-12-08 08:00:00,19590 +2014-12-08 08:30:00,19762 +2014-12-08 09:00:00,19372 +2014-12-08 09:30:00,18754 +2014-12-08 10:00:00,17736 +2014-12-08 10:30:00,17624 +2014-12-08 11:00:00,16856 +2014-12-08 11:30:00,18005 +2014-12-08 12:00:00,18028 +2014-12-08 12:30:00,17733 +2014-12-08 13:00:00,17678 +2014-12-08 13:30:00,18275 +2014-12-08 14:00:00,18070 +2014-12-08 14:30:00,19038 +2014-12-08 15:00:00,18998 +2014-12-08 15:30:00,16932 +2014-12-08 16:00:00,15201 +2014-12-08 16:30:00,14426 +2014-12-08 17:00:00,16942 +2014-12-08 17:30:00,19768 +2014-12-08 18:00:00,21911 +2014-12-08 18:30:00,22917 +2014-12-08 19:00:00,23371 +2014-12-08 19:30:00,23343 +2014-12-08 20:00:00,22358 +2014-12-08 20:30:00,22302 +2014-12-08 21:00:00,22712 +2014-12-08 21:30:00,22329 +2014-12-08 22:00:00,21979 +2014-12-08 22:30:00,19387 +2014-12-08 23:00:00,17494 +2014-12-08 23:30:00,13745 +2014-12-09 00:00:00,11339 +2014-12-09 00:30:00,8699 +2014-12-09 01:00:00,6796 +2014-12-09 01:30:00,5236 +2014-12-09 02:00:00,3800 +2014-12-09 02:30:00,3042 +2014-12-09 03:00:00,2532 +2014-12-09 03:30:00,2258 +2014-12-09 04:00:00,2212 +2014-12-09 04:30:00,2135 +2014-12-09 05:00:00,2592 +2014-12-09 05:30:00,4617 +2014-12-09 06:00:00,8006 +2014-12-09 06:30:00,13619 +2014-12-09 07:00:00,16700 +2014-12-09 07:30:00,19651 +2014-12-09 08:00:00,20630 +2014-12-09 08:30:00,21217 +2014-12-09 09:00:00,19857 +2014-12-09 09:30:00,18753 +2014-12-09 10:00:00,17813 +2014-12-09 10:30:00,17833 +2014-12-09 11:00:00,17164 +2014-12-09 11:30:00,18181 +2014-12-09 12:00:00,17482 +2014-12-09 12:30:00,15676 +2014-12-09 13:00:00,16018 +2014-12-09 13:30:00,17066 +2014-12-09 14:00:00,17654 +2014-12-09 14:30:00,17696 +2014-12-09 15:00:00,16781 +2014-12-09 15:30:00,14189 +2014-12-09 16:00:00,12461 +2014-12-09 16:30:00,12252 +2014-12-09 17:00:00,15431 +2014-12-09 17:30:00,18137 +2014-12-09 18:00:00,20649 +2014-12-09 18:30:00,21989 +2014-12-09 19:00:00,22350 +2014-12-09 19:30:00,22177 +2014-12-09 20:00:00,22991 +2014-12-09 20:30:00,22128 +2014-12-09 21:00:00,23207 +2014-12-09 21:30:00,23091 +2014-12-09 22:00:00,22616 +2014-12-09 22:30:00,21118 +2014-12-09 23:00:00,19301 +2014-12-09 23:30:00,16789 +2014-12-10 00:00:00,14252 +2014-12-10 00:30:00,10138 +2014-12-10 01:00:00,7847 +2014-12-10 01:30:00,5782 +2014-12-10 02:00:00,4951 +2014-12-10 02:30:00,3696 +2014-12-10 03:00:00,2833 +2014-12-10 03:30:00,2375 +2014-12-10 04:00:00,2533 +2014-12-10 04:30:00,2423 +2014-12-10 05:00:00,2512 +2014-12-10 05:30:00,4337 +2014-12-10 06:00:00,6721 +2014-12-10 06:30:00,11812 +2014-12-10 07:00:00,16054 +2014-12-10 07:30:00,19337 +2014-12-10 08:00:00,21348 +2014-12-10 08:30:00,21167 +2014-12-10 09:00:00,20051 +2014-12-10 09:30:00,18809 +2014-12-10 10:00:00,17812 +2014-12-10 10:30:00,17889 +2014-12-10 11:00:00,17482 +2014-12-10 11:30:00,18775 +2014-12-10 12:00:00,18351 +2014-12-10 12:30:00,17604 +2014-12-10 13:00:00,17729 +2014-12-10 13:30:00,17499 +2014-12-10 14:00:00,17558 +2014-12-10 14:30:00,18070 +2014-12-10 15:00:00,17422 +2014-12-10 15:30:00,14666 +2014-12-10 16:00:00,12252 +2014-12-10 16:30:00,11174 +2014-12-10 17:00:00,13853 +2014-12-10 17:30:00,16962 +2014-12-10 18:00:00,19708 +2014-12-10 18:30:00,20764 +2014-12-10 19:00:00,21802 +2014-12-10 19:30:00,22239 +2014-12-10 20:00:00,22169 +2014-12-10 20:30:00,23923 +2014-12-10 21:00:00,24403 +2014-12-10 21:30:00,24211 +2014-12-10 22:00:00,23439 +2014-12-10 22:30:00,23394 +2014-12-10 23:00:00,21701 +2014-12-10 23:30:00,19727 +2014-12-11 00:00:00,17270 +2014-12-11 00:30:00,13379 +2014-12-11 01:00:00,10314 +2014-12-11 01:30:00,7470 +2014-12-11 02:00:00,6039 +2014-12-11 02:30:00,4322 +2014-12-11 03:00:00,3461 +2014-12-11 03:30:00,2872 +2014-12-11 04:00:00,2854 +2014-12-11 04:30:00,2422 +2014-12-11 05:00:00,2578 +2014-12-11 05:30:00,4513 +2014-12-11 06:00:00,6672 +2014-12-11 06:30:00,12358 +2014-12-11 07:00:00,15790 +2014-12-11 07:30:00,19441 +2014-12-11 08:00:00,20920 +2014-12-11 08:30:00,20665 +2014-12-11 09:00:00,19708 +2014-12-11 09:30:00,20066 +2014-12-11 10:00:00,18424 +2014-12-11 10:30:00,18403 +2014-12-11 11:00:00,17621 +2014-12-11 11:30:00,18994 +2014-12-11 12:00:00,18845 +2014-12-11 12:30:00,17937 +2014-12-11 13:00:00,17974 +2014-12-11 13:30:00,18671 +2014-12-11 14:00:00,19082 +2014-12-11 14:30:00,20224 +2014-12-11 15:00:00,18966 +2014-12-11 15:30:00,16165 +2014-12-11 16:00:00,14013 +2014-12-11 16:30:00,12246 +2014-12-11 17:00:00,15021 +2014-12-11 17:30:00,18834 +2014-12-11 18:00:00,21115 +2014-12-11 18:30:00,22746 +2014-12-11 19:00:00,23679 +2014-12-11 19:30:00,23992 +2014-12-11 20:00:00,23597 +2014-12-11 20:30:00,23581 +2014-12-11 21:00:00,24093 +2014-12-11 21:30:00,24130 +2014-12-11 22:00:00,24027 +2014-12-11 22:30:00,23575 +2014-12-11 23:00:00,22502 +2014-12-11 23:30:00,22049 +2014-12-12 00:00:00,20667 +2014-12-12 00:30:00,19265 +2014-12-12 01:00:00,16192 +2014-12-12 01:30:00,12814 +2014-12-12 02:00:00,10410 +2014-12-12 02:30:00,8218 +2014-12-12 03:00:00,6335 +2014-12-12 03:30:00,5377 +2014-12-12 04:00:00,4659 +2014-12-12 04:30:00,3597 +2014-12-12 05:00:00,3208 +2014-12-12 05:30:00,4698 +2014-12-12 06:00:00,6900 +2014-12-12 06:30:00,12308 +2014-12-12 07:00:00,15444 +2014-12-12 07:30:00,19511 +2014-12-12 08:00:00,20489 +2014-12-12 08:30:00,20834 +2014-12-12 09:00:00,19854 +2014-12-12 09:30:00,18687 +2014-12-12 10:00:00,18014 +2014-12-12 10:30:00,18564 +2014-12-12 11:00:00,18237 +2014-12-12 11:30:00,18916 +2014-12-12 12:00:00,18244 +2014-12-12 12:30:00,16850 +2014-12-12 13:00:00,17845 +2014-12-12 13:30:00,18162 +2014-12-12 14:00:00,19043 +2014-12-12 14:30:00,19128 +2014-12-12 15:00:00,18287 +2014-12-12 15:30:00,15667 +2014-12-12 16:00:00,13938 +2014-12-12 16:30:00,12626 +2014-12-12 17:00:00,15807 +2014-12-12 17:30:00,19375 +2014-12-12 18:00:00,21905 +2014-12-12 18:30:00,24008 +2014-12-12 19:00:00,25410 +2014-12-12 19:30:00,25568 +2014-12-12 20:00:00,24888 +2014-12-12 20:30:00,25190 +2014-12-12 21:00:00,25350 +2014-12-12 21:30:00,25927 +2014-12-12 22:00:00,26737 +2014-12-12 22:30:00,26771 +2014-12-12 23:00:00,26180 +2014-12-12 23:30:00,25739 +2014-12-13 00:00:00,24743 +2014-12-13 00:30:00,24285 +2014-12-13 01:00:00,22826 +2014-12-13 01:30:00,21266 +2014-12-13 02:00:00,19907 +2014-12-13 02:30:00,17053 +2014-12-13 03:00:00,14423 +2014-12-13 03:30:00,12363 +2014-12-13 04:00:00,10600 +2014-12-13 04:30:00,6501 +2014-12-13 05:00:00,4211 +2014-12-13 05:30:00,3425 +2014-12-13 06:00:00,3475 +2014-12-13 06:30:00,5132 +2014-12-13 07:00:00,4986 +2014-12-13 07:30:00,7716 +2014-12-13 08:00:00,8873 +2014-12-13 08:30:00,12361 +2014-12-13 09:00:00,13217 +2014-12-13 09:30:00,17706 +2014-12-13 10:00:00,19199 +2014-12-13 10:30:00,21605 +2014-12-13 11:00:00,22106 +2014-12-13 11:30:00,23452 +2014-12-13 12:00:00,24095 +2014-12-13 12:30:00,24114 +2014-12-13 13:00:00,24368 +2014-12-13 13:30:00,23648 +2014-12-13 14:00:00,22929 +2014-12-13 14:30:00,22531 +2014-12-13 15:00:00,21489 +2014-12-13 15:30:00,19081 +2014-12-13 16:00:00,15734 +2014-12-13 16:30:00,13140 +2014-12-13 17:00:00,15041 +2014-12-13 17:30:00,17961 +2014-12-13 18:00:00,20757 +2014-12-13 18:30:00,22233 +2014-12-13 19:00:00,23550 +2014-12-13 19:30:00,24311 +2014-12-13 20:00:00,24320 +2014-12-13 20:30:00,23465 +2014-12-13 21:00:00,24125 +2014-12-13 21:30:00,24696 +2014-12-13 22:00:00,24848 +2014-12-13 22:30:00,25952 +2014-12-13 23:00:00,26481 +2014-12-13 23:30:00,26376 +2014-12-14 00:00:00,26065 +2014-12-14 00:30:00,25745 +2014-12-14 01:00:00,24053 +2014-12-14 01:30:00,22288 +2014-12-14 02:00:00,21263 +2014-12-14 02:30:00,18637 +2014-12-14 03:00:00,16106 +2014-12-14 03:30:00,13609 +2014-12-14 04:00:00,11786 +2014-12-14 04:30:00,6978 +2014-12-14 05:00:00,4468 +2014-12-14 05:30:00,3728 +2014-12-14 06:00:00,3611 +2014-12-14 06:30:00,3909 +2014-12-14 07:00:00,4139 +2014-12-14 07:30:00,5583 +2014-12-14 08:00:00,6831 +2014-12-14 08:30:00,8929 +2014-12-14 09:00:00,10358 +2014-12-14 09:30:00,14261 +2014-12-14 10:00:00,16254 +2014-12-14 10:30:00,19993 +2014-12-14 11:00:00,20203 +2014-12-14 11:30:00,21630 +2014-12-14 12:00:00,22210 +2014-12-14 12:30:00,22458 +2014-12-14 13:00:00,21793 +2014-12-14 13:30:00,21177 +2014-12-14 14:00:00,20831 +2014-12-14 14:30:00,20577 +2014-12-14 15:00:00,20293 +2014-12-14 15:30:00,18839 +2014-12-14 16:00:00,17406 +2014-12-14 16:30:00,15292 +2014-12-14 17:00:00,16443 +2014-12-14 17:30:00,17727 +2014-12-14 18:00:00,18988 +2014-12-14 18:30:00,19533 +2014-12-14 19:00:00,19548 +2014-12-14 19:30:00,18055 +2014-12-14 20:00:00,17006 +2014-12-14 20:30:00,16671 +2014-12-14 21:00:00,16007 +2014-12-14 21:30:00,16344 +2014-12-14 22:00:00,15913 +2014-12-14 22:30:00,14327 +2014-12-14 23:00:00,12060 +2014-12-14 23:30:00,10952 +2014-12-15 00:00:00,9228 +2014-12-15 00:30:00,6754 +2014-12-15 01:00:00,5230 +2014-12-15 01:30:00,4058 +2014-12-15 02:00:00,3386 +2014-12-15 02:30:00,2854 +2014-12-15 03:00:00,2088 +2014-12-15 03:30:00,2063 +2014-12-15 04:00:00,2573 +2014-12-15 04:30:00,2606 +2014-12-15 05:00:00,3027 +2014-12-15 05:30:00,4795 +2014-12-15 06:00:00,7029 +2014-12-15 06:30:00,11534 +2014-12-15 07:00:00,14434 +2014-12-15 07:30:00,17808 +2014-12-15 08:00:00,18371 +2014-12-15 08:30:00,18743 +2014-12-15 09:00:00,17992 +2014-12-15 09:30:00,17405 +2014-12-15 10:00:00,16508 +2014-12-15 10:30:00,15778 +2014-12-15 11:00:00,15424 +2014-12-15 11:30:00,16627 +2014-12-15 12:00:00,16484 +2014-12-15 12:30:00,16637 +2014-12-15 13:00:00,16135 +2014-12-15 13:30:00,16513 +2014-12-15 14:00:00,17025 +2014-12-15 14:30:00,18231 +2014-12-15 15:00:00,17722 +2014-12-15 15:30:00,16477 +2014-12-15 16:00:00,14298 +2014-12-15 16:30:00,13229 +2014-12-15 17:00:00,15523 +2014-12-15 17:30:00,17795 +2014-12-15 18:00:00,20424 +2014-12-15 18:30:00,21017 +2014-12-15 19:00:00,21475 +2014-12-15 19:30:00,22549 +2014-12-15 20:00:00,21924 +2014-12-15 20:30:00,21131 +2014-12-15 21:00:00,21393 +2014-12-15 21:30:00,21577 +2014-12-15 22:00:00,21019 +2014-12-15 22:30:00,18908 +2014-12-15 23:00:00,17370 +2014-12-15 23:30:00,13782 +2014-12-16 00:00:00,11608 +2014-12-16 00:30:00,8753 +2014-12-16 01:00:00,6959 +2014-12-16 01:30:00,5332 +2014-12-16 02:00:00,4417 +2014-12-16 02:30:00,3812 +2014-12-16 03:00:00,2785 +2014-12-16 03:30:00,2230 +2014-12-16 04:00:00,2383 +2014-12-16 04:30:00,2206 +2014-12-16 05:00:00,2455 +2014-12-16 05:30:00,4355 +2014-12-16 06:00:00,6534 +2014-12-16 06:30:00,11684 +2014-12-16 07:00:00,14785 +2014-12-16 07:30:00,18872 +2014-12-16 08:00:00,19244 +2014-12-16 08:30:00,20521 +2014-12-16 09:00:00,19197 +2014-12-16 09:30:00,18299 +2014-12-16 10:00:00,17178 +2014-12-16 10:30:00,16812 +2014-12-16 11:00:00,16250 +2014-12-16 11:30:00,17275 +2014-12-16 12:00:00,17818 +2014-12-16 12:30:00,17228 +2014-12-16 13:00:00,16423 +2014-12-16 13:30:00,17067 +2014-12-16 14:00:00,17759 +2014-12-16 14:30:00,18175 +2014-12-16 15:00:00,17997 +2014-12-16 15:30:00,16045 +2014-12-16 16:00:00,14086 +2014-12-16 16:30:00,12498 +2014-12-16 17:00:00,15616 +2014-12-16 17:30:00,17897 +2014-12-16 18:00:00,20215 +2014-12-16 18:30:00,21911 +2014-12-16 19:00:00,22798 +2014-12-16 19:30:00,24359 +2014-12-16 20:00:00,23687 +2014-12-16 20:30:00,23843 +2014-12-16 21:00:00,23849 +2014-12-16 21:30:00,24686 +2014-12-16 22:00:00,23566 +2014-12-16 22:30:00,22591 +2014-12-16 23:00:00,20184 +2014-12-16 23:30:00,17824 +2014-12-17 00:00:00,14522 +2014-12-17 00:30:00,10981 +2014-12-17 01:00:00,8494 +2014-12-17 01:30:00,6739 +2014-12-17 02:00:00,5562 +2014-12-17 02:30:00,4095 +2014-12-17 03:00:00,3228 +2014-12-17 03:30:00,2801 +2014-12-17 04:00:00,2905 +2014-12-17 04:30:00,2604 +2014-12-17 05:00:00,2634 +2014-12-17 05:30:00,4453 +2014-12-17 06:00:00,6610 +2014-12-17 06:30:00,11882 +2014-12-17 07:00:00,15378 +2014-12-17 07:30:00,18958 +2014-12-17 08:00:00,20241 +2014-12-17 08:30:00,20321 +2014-12-17 09:00:00,19626 +2014-12-17 09:30:00,18615 +2014-12-17 10:00:00,17801 +2014-12-17 10:30:00,17622 +2014-12-17 11:00:00,17122 +2014-12-17 11:30:00,18747 +2014-12-17 12:00:00,18708 +2014-12-17 12:30:00,18308 +2014-12-17 13:00:00,17777 +2014-12-17 13:30:00,17824 +2014-12-17 14:00:00,18196 +2014-12-17 14:30:00,18499 +2014-12-17 15:00:00,18003 +2014-12-17 15:30:00,16052 +2014-12-17 16:00:00,13607 +2014-12-17 16:30:00,12212 +2014-12-17 17:00:00,14983 +2014-12-17 17:30:00,18285 +2014-12-17 18:00:00,20665 +2014-12-17 18:30:00,21841 +2014-12-17 19:00:00,23081 +2014-12-17 19:30:00,22785 +2014-12-17 20:00:00,24069 +2014-12-17 20:30:00,24039 +2014-12-17 21:00:00,25073 +2014-12-17 21:30:00,24980 +2014-12-17 22:00:00,24878 +2014-12-17 22:30:00,23338 +2014-12-17 23:00:00,22407 +2014-12-17 23:30:00,20950 +2014-12-18 00:00:00,18285 +2014-12-18 00:30:00,14827 +2014-12-18 01:00:00,10904 +2014-12-18 01:30:00,8901 +2014-12-18 02:00:00,6765 +2014-12-18 02:30:00,5188 +2014-12-18 03:00:00,3823 +2014-12-18 03:30:00,3524 +2014-12-18 04:00:00,3414 +2014-12-18 04:30:00,2681 +2014-12-18 05:00:00,3079 +2014-12-18 05:30:00,4828 +2014-12-18 06:00:00,7029 +2014-12-18 06:30:00,12063 +2014-12-18 07:00:00,15230 +2014-12-18 07:30:00,18835 +2014-12-18 08:00:00,20484 +2014-12-18 08:30:00,20222 +2014-12-18 09:00:00,19752 +2014-12-18 09:30:00,18914 +2014-12-18 10:00:00,18466 +2014-12-18 10:30:00,18364 +2014-12-18 11:00:00,17439 +2014-12-18 11:30:00,19228 +2014-12-18 12:00:00,19485 +2014-12-18 12:30:00,18539 +2014-12-18 13:00:00,18424 +2014-12-18 13:30:00,18594 +2014-12-18 14:00:00,19253 +2014-12-18 14:30:00,19536 +2014-12-18 15:00:00,19129 +2014-12-18 15:30:00,16419 +2014-12-18 16:00:00,14143 +2014-12-18 16:30:00,12440 +2014-12-18 17:00:00,15352 +2014-12-18 17:30:00,19402 +2014-12-18 18:00:00,21772 +2014-12-18 18:30:00,23309 +2014-12-18 19:00:00,24617 +2014-12-18 19:30:00,24906 +2014-12-18 20:00:00,25149 +2014-12-18 20:30:00,25441 +2014-12-18 21:00:00,26065 +2014-12-18 21:30:00,25822 +2014-12-18 22:00:00,25738 +2014-12-18 22:30:00,24879 +2014-12-18 23:00:00,24496 +2014-12-18 23:30:00,23501 +2014-12-19 00:00:00,20698 +2014-12-19 00:30:00,19243 +2014-12-19 01:00:00,16900 +2014-12-19 01:30:00,13421 +2014-12-19 02:00:00,10585 +2014-12-19 02:30:00,8512 +2014-12-19 03:00:00,6744 +2014-12-19 03:30:00,5653 +2014-12-19 04:00:00,5420 +2014-12-19 04:30:00,3982 +2014-12-19 05:00:00,3682 +2014-12-19 05:30:00,4979 +2014-12-19 06:00:00,6847 +2014-12-19 06:30:00,11330 +2014-12-19 07:00:00,14716 +2014-12-19 07:30:00,18996 +2014-12-19 08:00:00,20784 +2014-12-19 08:30:00,20763 +2014-12-19 09:00:00,21030 +2014-12-19 09:30:00,19778 +2014-12-19 10:00:00,18496 +2014-12-19 10:30:00,18800 +2014-12-19 11:00:00,18765 +2014-12-19 11:30:00,20209 +2014-12-19 12:00:00,19684 +2014-12-19 12:30:00,18093 +2014-12-19 13:00:00,17958 +2014-12-19 13:30:00,18794 +2014-12-19 14:00:00,19592 +2014-12-19 14:30:00,20240 +2014-12-19 15:00:00,19125 +2014-12-19 15:30:00,16262 +2014-12-19 16:00:00,14858 +2014-12-19 16:30:00,12685 +2014-12-19 17:00:00,15752 +2014-12-19 17:30:00,19931 +2014-12-19 18:00:00,22925 +2014-12-19 18:30:00,24921 +2014-12-19 19:00:00,26335 +2014-12-19 19:30:00,26896 +2014-12-19 20:00:00,26796 +2014-12-19 20:30:00,25989 +2014-12-19 21:00:00,26280 +2014-12-19 21:30:00,26403 +2014-12-19 22:00:00,26905 +2014-12-19 22:30:00,26723 +2014-12-19 23:00:00,25807 +2014-12-19 23:30:00,26432 +2014-12-20 00:00:00,25976 +2014-12-20 00:30:00,24322 +2014-12-20 01:00:00,22993 +2014-12-20 01:30:00,21186 +2014-12-20 02:00:00,19390 +2014-12-20 02:30:00,16298 +2014-12-20 03:00:00,14308 +2014-12-20 03:30:00,12289 +2014-12-20 04:00:00,10822 +2014-12-20 04:30:00,6612 +2014-12-20 05:00:00,4648 +2014-12-20 05:30:00,3998 +2014-12-20 06:00:00,4080 +2014-12-20 06:30:00,5139 +2014-12-20 07:00:00,4833 +2014-12-20 07:30:00,6360 +2014-12-20 08:00:00,7568 +2014-12-20 08:30:00,10329 +2014-12-20 09:00:00,11646 +2014-12-20 09:30:00,15228 +2014-12-20 10:00:00,16173 +2014-12-20 10:30:00,18920 +2014-12-20 11:00:00,19813 +2014-12-20 11:30:00,21529 +2014-12-20 12:00:00,22544 +2014-12-20 12:30:00,22751 +2014-12-20 13:00:00,22744 +2014-12-20 13:30:00,22263 +2014-12-20 14:00:00,22212 +2014-12-20 14:30:00,21906 +2014-12-20 15:00:00,21744 +2014-12-20 15:30:00,21173 +2014-12-20 16:00:00,18061 +2014-12-20 16:30:00,15360 +2014-12-20 17:00:00,17470 +2014-12-20 17:30:00,20909 +2014-12-20 18:00:00,22562 +2014-12-20 18:30:00,24471 +2014-12-20 19:00:00,25685 +2014-12-20 19:30:00,25252 +2014-12-20 20:00:00,23238 +2014-12-20 20:30:00,22683 +2014-12-20 21:00:00,22523 +2014-12-20 21:30:00,23214 +2014-12-20 22:00:00,23741 +2014-12-20 22:30:00,24614 +2014-12-20 23:00:00,25195 +2014-12-20 23:30:00,25864 +2014-12-21 00:00:00,25530 +2014-12-21 00:30:00,24429 +2014-12-21 01:00:00,22976 +2014-12-21 01:30:00,21027 +2014-12-21 02:00:00,19741 +2014-12-21 02:30:00,17359 +2014-12-21 03:00:00,15156 +2014-12-21 03:30:00,12970 +2014-12-21 04:00:00,11246 +2014-12-21 04:30:00,6712 +2014-12-21 05:00:00,4593 +2014-12-21 05:30:00,3675 +2014-12-21 06:00:00,3974 +2014-12-21 06:30:00,3929 +2014-12-21 07:00:00,3922 +2014-12-21 07:30:00,5061 +2014-12-21 08:00:00,5995 +2014-12-21 08:30:00,7813 +2014-12-21 09:00:00,9237 +2014-12-21 09:30:00,12647 +2014-12-21 10:00:00,13946 +2014-12-21 10:30:00,18143 +2014-12-21 11:00:00,18415 +2014-12-21 11:30:00,19646 +2014-12-21 12:00:00,20124 +2014-12-21 12:30:00,21235 +2014-12-21 13:00:00,20709 +2014-12-21 13:30:00,20382 +2014-12-21 14:00:00,20570 +2014-12-21 14:30:00,20093 +2014-12-21 15:00:00,19670 +2014-12-21 15:30:00,19194 +2014-12-21 16:00:00,17506 +2014-12-21 16:30:00,15650 +2014-12-21 17:00:00,17057 +2014-12-21 17:30:00,19010 +2014-12-21 18:00:00,19688 +2014-12-21 18:30:00,19461 +2014-12-21 19:00:00,19098 +2014-12-21 19:30:00,17989 +2014-12-21 20:00:00,16406 +2014-12-21 20:30:00,16716 +2014-12-21 21:00:00,15983 +2014-12-21 21:30:00,16304 +2014-12-21 22:00:00,15546 +2014-12-21 22:30:00,13653 +2014-12-21 23:00:00,12018 +2014-12-21 23:30:00,10392 +2014-12-22 00:00:00,8488 +2014-12-22 00:30:00,6812 +2014-12-22 01:00:00,5155 +2014-12-22 01:30:00,4081 +2014-12-22 02:00:00,3429 +2014-12-22 02:30:00,2686 +2014-12-22 03:00:00,2341 +2014-12-22 03:30:00,2080 +2014-12-22 04:00:00,2561 +2014-12-22 04:30:00,2438 +2014-12-22 05:00:00,2549 +2014-12-22 05:30:00,4003 +2014-12-22 06:00:00,5410 +2014-12-22 06:30:00,9139 +2014-12-22 07:00:00,10980 +2014-12-22 07:30:00,13351 +2014-12-22 08:00:00,14666 +2014-12-22 08:30:00,16540 +2014-12-22 09:00:00,16439 +2014-12-22 09:30:00,16681 +2014-12-22 10:00:00,15663 +2014-12-22 10:30:00,16128 +2014-12-22 11:00:00,16377 +2014-12-22 11:30:00,17607 +2014-12-22 12:00:00,17770 +2014-12-22 12:30:00,17843 +2014-12-22 13:00:00,17279 +2014-12-22 13:30:00,18264 +2014-12-22 14:00:00,18359 +2014-12-22 14:30:00,18664 +2014-12-22 15:00:00,18428 +2014-12-22 15:30:00,15976 +2014-12-22 16:00:00,13994 +2014-12-22 16:30:00,12958 +2014-12-22 17:00:00,15433 +2014-12-22 17:30:00,17793 +2014-12-22 18:00:00,19903 +2014-12-22 18:30:00,20358 +2014-12-22 19:00:00,20800 +2014-12-22 19:30:00,19898 +2014-12-22 20:00:00,18981 +2014-12-22 20:30:00,19600 +2014-12-22 21:00:00,19672 +2014-12-22 21:30:00,20359 +2014-12-22 22:00:00,19147 +2014-12-22 22:30:00,17490 +2014-12-22 23:00:00,14392 +2014-12-22 23:30:00,12366 +2014-12-23 00:00:00,10077 +2014-12-23 00:30:00,8426 +2014-12-23 01:00:00,7343 +2014-12-23 01:30:00,5818 +2014-12-23 02:00:00,4395 +2014-12-23 02:30:00,3238 +2014-12-23 03:00:00,2837 +2014-12-23 03:30:00,2628 +2014-12-23 04:00:00,2815 +2014-12-23 04:30:00,2524 +2014-12-23 05:00:00,2749 +2014-12-23 05:30:00,4221 +2014-12-23 06:00:00,5790 +2014-12-23 06:30:00,9106 +2014-12-23 07:00:00,10805 +2014-12-23 07:30:00,13627 +2014-12-23 08:00:00,14896 +2014-12-23 08:30:00,16914 +2014-12-23 09:00:00,16813 +2014-12-23 09:30:00,17257 +2014-12-23 10:00:00,16746 +2014-12-23 10:30:00,16668 +2014-12-23 11:00:00,16334 +2014-12-23 11:30:00,17869 +2014-12-23 12:00:00,18559 +2014-12-23 12:30:00,18627 +2014-12-23 13:00:00,18394 +2014-12-23 13:30:00,19529 +2014-12-23 14:00:00,18765 +2014-12-23 14:30:00,19273 +2014-12-23 15:00:00,18364 +2014-12-23 15:30:00,16426 +2014-12-23 16:00:00,13940 +2014-12-23 16:30:00,12171 +2014-12-23 17:00:00,14585 +2014-12-23 17:30:00,16878 +2014-12-23 18:00:00,19444 +2014-12-23 18:30:00,20377 +2014-12-23 19:00:00,20065 +2014-12-23 19:30:00,19194 +2014-12-23 20:00:00,18589 +2014-12-23 20:30:00,17560 +2014-12-23 21:00:00,17394 +2014-12-23 21:30:00,18424 +2014-12-23 22:00:00,16611 +2014-12-23 22:30:00,15547 +2014-12-23 23:00:00,14391 +2014-12-23 23:30:00,12687 +2014-12-24 00:00:00,11488 +2014-12-24 00:30:00,9158 +2014-12-24 01:00:00,7484 +2014-12-24 01:30:00,6303 +2014-12-24 02:00:00,5454 +2014-12-24 02:30:00,4400 +2014-12-24 03:00:00,3409 +2014-12-24 03:30:00,3301 +2014-12-24 04:00:00,3479 +2014-12-24 04:30:00,2809 +2014-12-24 05:00:00,2713 +2014-12-24 05:30:00,3654 +2014-12-24 06:00:00,4943 +2014-12-24 06:30:00,6952 +2014-12-24 07:00:00,7357 +2014-12-24 07:30:00,9019 +2014-12-24 08:00:00,9982 +2014-12-24 08:30:00,12036 +2014-12-24 09:00:00,13416 +2014-12-24 09:30:00,16386 +2014-12-24 10:00:00,18242 +2014-12-24 10:30:00,17436 +2014-12-24 11:00:00,19281 +2014-12-24 11:30:00,18939 +2014-12-24 12:00:00,18558 +2014-12-24 12:30:00,20400 +2014-12-24 13:00:00,21494 +2014-12-24 13:30:00,19961 +2014-12-24 14:00:00,19618 +2014-12-24 14:30:00,17870 +2014-12-24 15:00:00,17549 +2014-12-24 15:30:00,17387 +2014-12-24 16:00:00,15882 +2014-12-24 16:30:00,15280 +2014-12-24 17:00:00,16907 +2014-12-24 17:30:00,16821 +2014-12-24 18:00:00,17096 +2014-12-24 18:30:00,16830 +2014-12-24 19:00:00,15846 +2014-12-24 19:30:00,14421 +2014-12-24 20:00:00,13101 +2014-12-24 20:30:00,13010 +2014-12-24 21:00:00,12453 +2014-12-24 21:30:00,12904 +2014-12-24 22:00:00,12563 +2014-12-24 22:30:00,12915 +2014-12-24 23:00:00,12169 +2014-12-24 23:30:00,11420 +2014-12-25 00:00:00,10665 +2014-12-25 00:30:00,9890 +2014-12-25 01:00:00,8488 +2014-12-25 01:30:00,7209 +2014-12-25 02:00:00,6240 +2014-12-25 02:30:00,5143 +2014-12-25 03:00:00,4003 +2014-12-25 03:30:00,3414 +2014-12-25 04:00:00,3206 +2014-12-25 04:30:00,2193 +2014-12-25 05:00:00,1801 +2014-12-25 05:30:00,1756 +2014-12-25 06:00:00,2144 +2014-12-25 06:30:00,2710 +2014-12-25 07:00:00,2637 +2014-12-25 07:30:00,3029 +2014-12-25 08:00:00,2926 +2014-12-25 08:30:00,3485 +2014-12-25 09:00:00,4195 +2014-12-25 09:30:00,5410 +2014-12-25 10:00:00,6572 +2014-12-25 10:30:00,7857 +2014-12-25 11:00:00,8586 +2014-12-25 11:30:00,9599 +2014-12-25 12:00:00,10158 +2014-12-25 12:30:00,10843 +2014-12-25 13:00:00,10618 +2014-12-25 13:30:00,11206 +2014-12-25 14:00:00,11176 +2014-12-25 14:30:00,12218 +2014-12-25 15:00:00,12039 +2014-12-25 15:30:00,11754 +2014-12-25 16:00:00,11282 +2014-12-25 16:30:00,10380 +2014-12-25 17:00:00,10642 +2014-12-25 17:30:00,10788 +2014-12-25 18:00:00,10786 +2014-12-25 18:30:00,11433 +2014-12-25 19:00:00,11262 +2014-12-25 19:30:00,10510 +2014-12-25 20:00:00,9827 +2014-12-25 20:30:00,10446 +2014-12-25 21:00:00,10164 +2014-12-25 21:30:00,11279 +2014-12-25 22:00:00,10756 +2014-12-25 22:30:00,10622 +2014-12-25 23:00:00,8270 +2014-12-25 23:30:00,7685 +2014-12-26 00:00:00,6540 +2014-12-26 00:30:00,5312 +2014-12-26 01:00:00,4573 +2014-12-26 01:30:00,3322 +2014-12-26 02:00:00,2840 +2014-12-26 02:30:00,2294 +2014-12-26 03:00:00,1888 +2014-12-26 03:30:00,1628 +2014-12-26 04:00:00,1962 +2014-12-26 04:30:00,1541 +2014-12-26 05:00:00,1459 +2014-12-26 05:30:00,1993 +2014-12-26 06:00:00,2763 +2014-12-26 06:30:00,3830 +2014-12-26 07:00:00,4376 +2014-12-26 07:30:00,5533 +2014-12-26 08:00:00,6342 +2014-12-26 08:30:00,7425 +2014-12-26 09:00:00,8473 +2014-12-26 09:30:00,9288 +2014-12-26 10:00:00,10259 +2014-12-26 10:30:00,10994 +2014-12-26 11:00:00,11708 +2014-12-26 11:30:00,13105 +2014-12-26 12:00:00,13577 +2014-12-26 12:30:00,14110 +2014-12-26 13:00:00,14559 +2014-12-26 13:30:00,14063 +2014-12-26 14:00:00,14506 +2014-12-26 14:30:00,15863 +2014-12-26 15:00:00,16608 +2014-12-26 15:30:00,15959 +2014-12-26 16:00:00,15481 +2014-12-26 16:30:00,14491 +2014-12-26 17:00:00,15597 +2014-12-26 17:30:00,16349 +2014-12-26 18:00:00,16711 +2014-12-26 18:30:00,16708 +2014-12-26 19:00:00,18113 +2014-12-26 19:30:00,16700 +2014-12-26 20:00:00,15087 +2014-12-26 20:30:00,15282 +2014-12-26 21:00:00,14797 +2014-12-26 21:30:00,14744 +2014-12-26 22:00:00,15618 +2014-12-26 22:30:00,16172 +2014-12-26 23:00:00,14863 +2014-12-26 23:30:00,13696 +2014-12-27 00:00:00,13396 +2014-12-27 00:30:00,12040 +2014-12-27 01:00:00,11298 +2014-12-27 01:30:00,10005 +2014-12-27 02:00:00,9368 +2014-12-27 02:30:00,8002 +2014-12-27 03:00:00,7493 +2014-12-27 03:30:00,6509 +2014-12-27 04:00:00,5928 +2014-12-27 04:30:00,4158 +2014-12-27 05:00:00,2648 +2014-12-27 05:30:00,2313 +2014-12-27 06:00:00,2391 +2014-12-27 06:30:00,2821 +2014-12-27 07:00:00,2967 +2014-12-27 07:30:00,4013 +2014-12-27 08:00:00,4505 +2014-12-27 08:30:00,6117 +2014-12-27 09:00:00,7591 +2014-12-27 09:30:00,9467 +2014-12-27 10:00:00,10065 +2014-12-27 10:30:00,11788 +2014-12-27 11:00:00,12882 +2014-12-27 11:30:00,14317 +2014-12-27 12:00:00,15130 +2014-12-27 12:30:00,15345 +2014-12-27 13:00:00,17040 +2014-12-27 13:30:00,16684 +2014-12-27 14:00:00,16291 +2014-12-27 14:30:00,17065 +2014-12-27 15:00:00,17860 +2014-12-27 15:30:00,17447 +2014-12-27 16:00:00,16199 +2014-12-27 16:30:00,14999 +2014-12-27 17:00:00,15570 +2014-12-27 17:30:00,17132 +2014-12-27 18:00:00,17710 +2014-12-27 18:30:00,18132 +2014-12-27 19:00:00,18627 +2014-12-27 19:30:00,17430 +2014-12-27 20:00:00,16148 +2014-12-27 20:30:00,15807 +2014-12-27 21:00:00,16121 +2014-12-27 21:30:00,17054 +2014-12-27 22:00:00,18095 +2014-12-27 22:30:00,17628 +2014-12-27 23:00:00,17414 +2014-12-27 23:30:00,17594 +2014-12-28 00:00:00,16514 +2014-12-28 00:30:00,15556 +2014-12-28 01:00:00,14465 +2014-12-28 01:30:00,12810 +2014-12-28 02:00:00,12680 +2014-12-28 02:30:00,11121 +2014-12-28 03:00:00,9850 +2014-12-28 03:30:00,9033 +2014-12-28 04:00:00,8122 +2014-12-28 04:30:00,5228 +2014-12-28 05:00:00,3452 +2014-12-28 05:30:00,2937 +2014-12-28 06:00:00,2764 +2014-12-28 06:30:00,3090 +2014-12-28 07:00:00,3109 +2014-12-28 07:30:00,4300 +2014-12-28 08:00:00,5130 +2014-12-28 08:30:00,6652 +2014-12-28 09:00:00,7486 +2014-12-28 09:30:00,9812 +2014-12-28 10:00:00,10911 +2014-12-28 10:30:00,13280 +2014-12-28 11:00:00,13191 +2014-12-28 11:30:00,14218 +2014-12-28 12:00:00,14878 +2014-12-28 12:30:00,15665 +2014-12-28 13:00:00,15911 +2014-12-28 13:30:00,15002 +2014-12-28 14:00:00,15102 +2014-12-28 14:30:00,15658 +2014-12-28 15:00:00,15756 +2014-12-28 15:30:00,16645 +2014-12-28 16:00:00,16464 +2014-12-28 16:30:00,15288 +2014-12-28 17:00:00,15988 +2014-12-28 17:30:00,16608 +2014-12-28 18:00:00,16556 +2014-12-28 18:30:00,16635 +2014-12-28 19:00:00,16446 +2014-12-28 19:30:00,15796 +2014-12-28 20:00:00,14951 +2014-12-28 20:30:00,14373 +2014-12-28 21:00:00,13695 +2014-12-28 21:30:00,14411 +2014-12-28 22:00:00,14035 +2014-12-28 22:30:00,12954 +2014-12-28 23:00:00,11239 +2014-12-28 23:30:00,10461 +2014-12-29 00:00:00,8548 +2014-12-29 00:30:00,6766 +2014-12-29 01:00:00,5087 +2014-12-29 01:30:00,4353 +2014-12-29 02:00:00,3646 +2014-12-29 02:30:00,2857 +2014-12-29 03:00:00,2484 +2014-12-29 03:30:00,2105 +2014-12-29 04:00:00,2270 +2014-12-29 04:30:00,2033 +2014-12-29 05:00:00,2123 +2014-12-29 05:30:00,2886 +2014-12-29 06:00:00,4249 +2014-12-29 06:30:00,6400 +2014-12-29 07:00:00,6953 +2014-12-29 07:30:00,8715 +2014-12-29 08:00:00,9590 +2014-12-29 08:30:00,12167 +2014-12-29 09:00:00,12436 +2014-12-29 09:30:00,13052 +2014-12-29 10:00:00,13503 +2014-12-29 10:30:00,13798 +2014-12-29 11:00:00,14277 +2014-12-29 11:30:00,15344 +2014-12-29 12:00:00,15677 +2014-12-29 12:30:00,16534 +2014-12-29 13:00:00,16220 +2014-12-29 13:30:00,16650 +2014-12-29 14:00:00,17395 +2014-12-29 14:30:00,17895 +2014-12-29 15:00:00,17701 +2014-12-29 15:30:00,17989 +2014-12-29 16:00:00,16737 +2014-12-29 16:30:00,15371 +2014-12-29 17:00:00,17519 +2014-12-29 17:30:00,18500 +2014-12-29 18:00:00,20064 +2014-12-29 18:30:00,20153 +2014-12-29 19:00:00,20364 +2014-12-29 19:30:00,18808 +2014-12-29 20:00:00,17718 +2014-12-29 20:30:00,16678 +2014-12-29 21:00:00,17523 +2014-12-29 21:30:00,17397 +2014-12-29 22:00:00,16308 +2014-12-29 22:30:00,15954 +2014-12-29 23:00:00,14488 +2014-12-29 23:30:00,12738 +2014-12-30 00:00:00,11042 +2014-12-30 00:30:00,8774 +2014-12-30 01:00:00,7267 +2014-12-30 01:30:00,5704 +2014-12-30 02:00:00,4749 +2014-12-30 02:30:00,3932 +2014-12-30 03:00:00,3336 +2014-12-30 03:30:00,3023 +2014-12-30 04:00:00,3059 +2014-12-30 04:30:00,2399 +2014-12-30 05:00:00,2091 +2014-12-30 05:30:00,3019 +2014-12-30 06:00:00,4208 +2014-12-30 06:30:00,6505 +2014-12-30 07:00:00,7026 +2014-12-30 07:30:00,8953 +2014-12-30 08:00:00,10186 +2014-12-30 08:30:00,13046 +2014-12-30 09:00:00,13519 +2014-12-30 09:30:00,14319 +2014-12-30 10:00:00,14433 +2014-12-30 10:30:00,15570 +2014-12-30 11:00:00,15690 +2014-12-30 11:30:00,17265 +2014-12-30 12:00:00,17830 +2014-12-30 12:30:00,18552 +2014-12-30 13:00:00,19340 +2014-12-30 13:30:00,19070 +2014-12-30 14:00:00,18866 +2014-12-30 14:30:00,18709 +2014-12-30 15:00:00,18906 +2014-12-30 15:30:00,18178 +2014-12-30 16:00:00,16420 +2014-12-30 16:30:00,15066 +2014-12-30 17:00:00,17023 +2014-12-30 17:30:00,19201 +2014-12-30 18:00:00,20950 +2014-12-30 18:30:00,22321 +2014-12-30 19:00:00,22549 +2014-12-30 19:30:00,21405 +2014-12-30 20:00:00,20209 +2014-12-30 20:30:00,19574 +2014-12-30 21:00:00,20294 +2014-12-30 21:30:00,20054 +2014-12-30 22:00:00,19779 +2014-12-30 22:30:00,18396 +2014-12-30 23:00:00,17966 +2014-12-30 23:30:00,15892 +2014-12-31 00:00:00,14294 +2014-12-31 00:30:00,12150 +2014-12-31 01:00:00,10423 +2014-12-31 01:30:00,8229 +2014-12-31 02:00:00,7068 +2014-12-31 02:30:00,5572 +2014-12-31 03:00:00,4669 +2014-12-31 03:30:00,3922 +2014-12-31 04:00:00,4120 +2014-12-31 04:30:00,2786 +2014-12-31 05:00:00,2265 +2014-12-31 05:30:00,2825 +2014-12-31 06:00:00,3705 +2014-12-31 06:30:00,5745 +2014-12-31 07:00:00,6334 +2014-12-31 07:30:00,8324 +2014-12-31 08:00:00,9449 +2014-12-31 08:30:00,11877 +2014-12-31 09:00:00,11917 +2014-12-31 09:30:00,12621 +2014-12-31 10:00:00,13294 +2014-12-31 10:30:00,13850 +2014-12-31 11:00:00,15128 +2014-12-31 11:30:00,16996 +2014-12-31 12:00:00,16815 +2014-12-31 12:30:00,17275 +2014-12-31 13:00:00,18553 +2014-12-31 13:30:00,18607 +2014-12-31 14:00:00,18703 +2014-12-31 14:30:00,18970 +2014-12-31 15:00:00,19316 +2014-12-31 15:30:00,18542 +2014-12-31 16:00:00,17583 +2014-12-31 16:30:00,16607 +2014-12-31 17:00:00,17991 +2014-12-31 17:30:00,18983 +2014-12-31 18:00:00,20014 +2014-12-31 18:30:00,20943 +2014-12-31 19:00:00,22114 +2014-12-31 19:30:00,24368 +2014-12-31 20:00:00,25524 +2014-12-31 20:30:00,26779 +2014-12-31 21:00:00,27804 +2014-12-31 21:30:00,27315 +2014-12-31 22:00:00,25417 +2014-12-31 22:30:00,23177 +2014-12-31 23:00:00,21826 +2014-12-31 23:30:00,14152 +2015-01-01 00:00:00,22153 +2015-01-01 00:30:00,29547 +2015-01-01 01:00:00,30236 +2015-01-01 01:30:00,28348 +2015-01-01 02:00:00,26264 +2015-01-01 02:30:00,25243 +2015-01-01 03:00:00,23117 +2015-01-01 03:30:00,21017 +2015-01-01 04:00:00,18170 +2015-01-01 04:30:00,12629 +2015-01-01 05:00:00,8899 +2015-01-01 05:30:00,6999 +2015-01-01 06:00:00,5750 +2015-01-01 06:30:00,5381 +2015-01-01 07:00:00,5056 +2015-01-01 07:30:00,4930 +2015-01-01 08:00:00,4624 +2015-01-01 08:30:00,4726 +2015-01-01 09:00:00,5505 +2015-01-01 09:30:00,6510 +2015-01-01 10:00:00,7705 +2015-01-01 10:30:00,10007 +2015-01-01 11:00:00,11405 +2015-01-01 11:30:00,13562 +2015-01-01 12:00:00,14537 +2015-01-01 12:30:00,15296 +2015-01-01 13:00:00,15376 +2015-01-01 13:30:00,16302 +2015-01-01 14:00:00,16066 +2015-01-01 14:30:00,16485 +2015-01-01 15:00:00,16887 +2015-01-01 15:30:00,16430 +2015-01-01 16:00:00,16044 +2015-01-01 16:30:00,14655 +2015-01-01 17:00:00,15514 +2015-01-01 17:30:00,16184 +2015-01-01 18:00:00,16280 +2015-01-01 18:30:00,16550 +2015-01-01 19:00:00,15626 +2015-01-01 19:30:00,14304 +2015-01-01 20:00:00,13741 +2015-01-01 20:30:00,13578 +2015-01-01 21:00:00,13326 +2015-01-01 21:30:00,13560 +2015-01-01 22:00:00,12730 +2015-01-01 22:30:00,12533 +2015-01-01 23:00:00,10673 +2015-01-01 23:30:00,9947 +2015-01-02 00:00:00,8258 +2015-01-02 00:30:00,8343 +2015-01-02 01:00:00,6326 +2015-01-02 01:30:00,4485 +2015-01-02 02:00:00,3991 +2015-01-02 02:30:00,3126 +2015-01-02 03:00:00,2794 +2015-01-02 03:30:00,2296 +2015-01-02 04:00:00,2506 +2015-01-02 04:30:00,2012 +2015-01-02 05:00:00,1955 +2015-01-02 05:30:00,2486 +2015-01-02 06:00:00,3774 +2015-01-02 06:30:00,5344 +2015-01-02 07:00:00,5956 +2015-01-02 07:30:00,7314 +2015-01-02 08:00:00,8030 +2015-01-02 08:30:00,10085 +2015-01-02 09:00:00,10867 +2015-01-02 09:30:00,11830 +2015-01-02 10:00:00,12507 +2015-01-02 10:30:00,13943 +2015-01-02 11:00:00,14115 +2015-01-02 11:30:00,15399 +2015-01-02 12:00:00,16521 +2015-01-02 12:30:00,16913 +2015-01-02 13:00:00,16207 +2015-01-02 13:30:00,17068 +2015-01-02 14:00:00,17756 +2015-01-02 14:30:00,17887 +2015-01-02 15:00:00,17936 +2015-01-02 15:30:00,18259 +2015-01-02 16:00:00,16710 +2015-01-02 16:30:00,15525 +2015-01-02 17:00:00,17440 +2015-01-02 17:30:00,19523 +2015-01-02 18:00:00,20137 +2015-01-02 18:30:00,20936 +2015-01-02 19:00:00,21998 +2015-01-02 19:30:00,19934 +2015-01-02 20:00:00,18302 +2015-01-02 20:30:00,17815 +2015-01-02 21:00:00,17366 +2015-01-02 21:30:00,17518 +2015-01-02 22:00:00,19508 +2015-01-02 22:30:00,19720 +2015-01-02 23:00:00,18658 +2015-01-02 23:30:00,19337 +2015-01-03 00:00:00,18085 +2015-01-03 00:30:00,16661 +2015-01-03 01:00:00,15624 +2015-01-03 01:30:00,14177 +2015-01-03 02:00:00,12850 +2015-01-03 02:30:00,11509 +2015-01-03 03:00:00,10329 +2015-01-03 03:30:00,8830 +2015-01-03 04:00:00,7903 +2015-01-03 04:30:00,4497 +2015-01-03 05:00:00,3189 +2015-01-03 05:30:00,2793 +2015-01-03 06:00:00,2810 +2015-01-03 06:30:00,3696 +2015-01-03 07:00:00,3707 +2015-01-03 07:30:00,4758 +2015-01-03 08:00:00,5334 +2015-01-03 08:30:00,7736 +2015-01-03 09:00:00,9130 +2015-01-03 09:30:00,11189 +2015-01-03 10:00:00,11887 +2015-01-03 10:30:00,14095 +2015-01-03 11:00:00,14737 +2015-01-03 11:30:00,16826 +2015-01-03 12:00:00,18143 +2015-01-03 12:30:00,20074 +2015-01-03 13:00:00,21386 +2015-01-03 13:30:00,21466 +2015-01-03 14:00:00,21368 +2015-01-03 14:30:00,21695 +2015-01-03 15:00:00,21529 +2015-01-03 15:30:00,20273 +2015-01-03 16:00:00,19355 +2015-01-03 16:30:00,17061 +2015-01-03 17:00:00,18676 +2015-01-03 17:30:00,21073 +2015-01-03 18:00:00,22091 +2015-01-03 18:30:00,23100 +2015-01-03 19:00:00,23801 +2015-01-03 19:30:00,22393 +2015-01-03 20:00:00,18954 +2015-01-03 20:30:00,18005 +2015-01-03 21:00:00,19333 +2015-01-03 21:30:00,18891 +2015-01-03 22:00:00,20259 +2015-01-03 22:30:00,20055 +2015-01-03 23:00:00,19787 +2015-01-03 23:30:00,20995 +2015-01-04 00:00:00,19613 +2015-01-04 00:30:00,16975 +2015-01-04 01:00:00,16541 +2015-01-04 01:30:00,14379 +2015-01-04 02:00:00,13089 +2015-01-04 02:30:00,10506 +2015-01-04 03:00:00,9216 +2015-01-04 03:30:00,8103 +2015-01-04 04:00:00,6823 +2015-01-04 04:30:00,4263 +2015-01-04 05:00:00,3025 +2015-01-04 05:30:00,2549 +2015-01-04 06:00:00,2605 +2015-01-04 06:30:00,3064 +2015-01-04 07:00:00,3205 +2015-01-04 07:30:00,4254 +2015-01-04 08:00:00,4897 +2015-01-04 08:30:00,6628 +2015-01-04 09:00:00,7726 +2015-01-04 09:30:00,9284 +2015-01-04 10:00:00,10955 +2015-01-04 10:30:00,13348 +2015-01-04 11:00:00,13517 +2015-01-04 11:30:00,14443 +2015-01-04 12:00:00,15285 +2015-01-04 12:30:00,16028 +2015-01-04 13:00:00,16329 +2015-01-04 13:30:00,15891 +2015-01-04 14:00:00,15960 +2015-01-04 14:30:00,16376 +2015-01-04 15:00:00,15303 +2015-01-04 15:30:00,16271 +2015-01-04 16:00:00,15873 +2015-01-04 16:30:00,15588 +2015-01-04 17:00:00,15471 +2015-01-04 17:30:00,16139 +2015-01-04 18:00:00,15862 +2015-01-04 18:30:00,16218 +2015-01-04 19:00:00,14093 +2015-01-04 19:30:00,17786 +2015-01-04 20:00:00,16079 +2015-01-04 20:30:00,14137 +2015-01-04 21:00:00,11407 +2015-01-04 21:30:00,12479 +2015-01-04 22:00:00,11317 +2015-01-04 22:30:00,10005 +2015-01-04 23:00:00,8802 +2015-01-04 23:30:00,8002 +2015-01-05 00:00:00,6669 +2015-01-05 00:30:00,5961 +2015-01-05 01:00:00,4169 +2015-01-05 01:30:00,3365 +2015-01-05 02:00:00,2853 +2015-01-05 02:30:00,2227 +2015-01-05 03:00:00,1609 +2015-01-05 03:30:00,1697 +2015-01-05 04:00:00,1883 +2015-01-05 04:30:00,1837 +2015-01-05 05:00:00,2476 +2015-01-05 05:30:00,4040 +2015-01-05 06:00:00,6431 +2015-01-05 06:30:00,10496 +2015-01-05 07:00:00,13610 +2015-01-05 07:30:00,16277 +2015-01-05 08:00:00,17760 +2015-01-05 08:30:00,18026 +2015-01-05 09:00:00,16706 +2015-01-05 09:30:00,14662 +2015-01-05 10:00:00,13070 +2015-01-05 10:30:00,13459 +2015-01-05 11:00:00,13218 +2015-01-05 11:30:00,13909 +2015-01-05 12:00:00,14379 +2015-01-05 12:30:00,14113 +2015-01-05 13:00:00,13982 +2015-01-05 13:30:00,14514 +2015-01-05 14:00:00,15268 +2015-01-05 14:30:00,16675 +2015-01-05 15:00:00,17423 +2015-01-05 15:30:00,16521 +2015-01-05 16:00:00,15352 +2015-01-05 16:30:00,14644 +2015-01-05 17:00:00,17059 +2015-01-05 17:30:00,19269 +2015-01-05 18:00:00,21361 +2015-01-05 18:30:00,21906 +2015-01-05 19:00:00,21994 +2015-01-05 19:30:00,20678 +2015-01-05 20:00:00,19248 +2015-01-05 20:30:00,17546 +2015-01-05 21:00:00,17201 +2015-01-05 21:30:00,15830 +2015-01-05 22:00:00,14238 +2015-01-05 22:30:00,13120 +2015-01-05 23:00:00,11660 +2015-01-05 23:30:00,9741 +2015-01-06 00:00:00,7969 +2015-01-06 00:30:00,6005 +2015-01-06 01:00:00,4592 +2015-01-06 01:30:00,3487 +2015-01-06 02:00:00,2856 +2015-01-06 02:30:00,2238 +2015-01-06 03:00:00,1689 +2015-01-06 03:30:00,1602 +2015-01-06 04:00:00,1774 +2015-01-06 04:30:00,1721 +2015-01-06 05:00:00,2118 +2015-01-06 05:30:00,4101 +2015-01-06 06:00:00,6266 +2015-01-06 06:30:00,11168 +2015-01-06 07:00:00,13976 +2015-01-06 07:30:00,18081 +2015-01-06 08:00:00,19819 +2015-01-06 08:30:00,20102 +2015-01-06 09:00:00,18237 +2015-01-06 09:30:00,16472 +2015-01-06 10:00:00,14510 +2015-01-06 10:30:00,14365 +2015-01-06 11:00:00,13611 +2015-01-06 11:30:00,14729 +2015-01-06 12:00:00,15072 +2015-01-06 12:30:00,14628 +2015-01-06 13:00:00,14069 +2015-01-06 13:30:00,14987 +2015-01-06 14:00:00,15176 +2015-01-06 14:30:00,16884 +2015-01-06 15:00:00,17055 +2015-01-06 15:30:00,16238 +2015-01-06 16:00:00,14566 +2015-01-06 16:30:00,14604 +2015-01-06 17:00:00,16314 +2015-01-06 17:30:00,18758 +2015-01-06 18:00:00,21579 +2015-01-06 18:30:00,22500 +2015-01-06 19:00:00,21920 +2015-01-06 19:30:00,20788 +2015-01-06 20:00:00,20461 +2015-01-06 20:30:00,19640 +2015-01-06 21:00:00,19580 +2015-01-06 21:30:00,19424 +2015-01-06 22:00:00,17170 +2015-01-06 22:30:00,14955 +2015-01-06 23:00:00,12934 +2015-01-06 23:30:00,11087 +2015-01-07 00:00:00,8357 +2015-01-07 00:30:00,6788 +2015-01-07 01:00:00,5378 +2015-01-07 01:30:00,3889 +2015-01-07 02:00:00,3068 +2015-01-07 02:30:00,2406 +2015-01-07 03:00:00,2025 +2015-01-07 03:30:00,1739 +2015-01-07 04:00:00,1897 +2015-01-07 04:30:00,1820 +2015-01-07 05:00:00,2039 +2015-01-07 05:30:00,3857 +2015-01-07 06:00:00,6280 +2015-01-07 06:30:00,11280 +2015-01-07 07:00:00,14586 +2015-01-07 07:30:00,18374 +2015-01-07 08:00:00,20307 +2015-01-07 08:30:00,21113 +2015-01-07 09:00:00,19287 +2015-01-07 09:30:00,17966 +2015-01-07 10:00:00,15690 +2015-01-07 10:30:00,16091 +2015-01-07 11:00:00,14981 +2015-01-07 11:30:00,16906 +2015-01-07 12:00:00,16648 +2015-01-07 12:30:00,16826 +2015-01-07 13:00:00,16379 +2015-01-07 13:30:00,17457 +2015-01-07 14:00:00,17335 +2015-01-07 14:30:00,18690 +2015-01-07 15:00:00,19029 +2015-01-07 15:30:00,17234 +2015-01-07 16:00:00,16505 +2015-01-07 16:30:00,15509 +2015-01-07 17:00:00,17873 +2015-01-07 17:30:00,21871 +2015-01-07 18:00:00,24019 +2015-01-07 18:30:00,24965 +2015-01-07 19:00:00,25708 +2015-01-07 19:30:00,24871 +2015-01-07 20:00:00,23732 +2015-01-07 20:30:00,22463 +2015-01-07 21:00:00,23142 +2015-01-07 21:30:00,22369 +2015-01-07 22:00:00,21904 +2015-01-07 22:30:00,18610 +2015-01-07 23:00:00,15262 +2015-01-07 23:30:00,12490 +2015-01-08 00:00:00,9843 +2015-01-08 00:30:00,7477 +2015-01-08 01:00:00,5697 +2015-01-08 01:30:00,4327 +2015-01-08 02:00:00,3405 +2015-01-08 02:30:00,2739 +2015-01-08 03:00:00,2066 +2015-01-08 03:30:00,2013 +2015-01-08 04:00:00,1975 +2015-01-08 04:30:00,1760 +2015-01-08 05:00:00,2033 +2015-01-08 05:30:00,4164 +2015-01-08 06:00:00,6627 +2015-01-08 06:30:00,12142 +2015-01-08 07:00:00,15873 +2015-01-08 07:30:00,20194 +2015-01-08 08:00:00,21891 +2015-01-08 08:30:00,22117 +2015-01-08 09:00:00,20435 +2015-01-08 09:30:00,19472 +2015-01-08 10:00:00,17256 +2015-01-08 10:30:00,17401 +2015-01-08 11:00:00,15595 +2015-01-08 11:30:00,17559 +2015-01-08 12:00:00,17823 +2015-01-08 12:30:00,16634 +2015-01-08 13:00:00,16523 +2015-01-08 13:30:00,17209 +2015-01-08 14:00:00,17438 +2015-01-08 14:30:00,19801 +2015-01-08 15:00:00,20241 +2015-01-08 15:30:00,18535 +2015-01-08 16:00:00,16573 +2015-01-08 16:30:00,15095 +2015-01-08 17:00:00,17871 +2015-01-08 17:30:00,21606 +2015-01-08 18:00:00,24071 +2015-01-08 18:30:00,25176 +2015-01-08 19:00:00,25592 +2015-01-08 19:30:00,25125 +2015-01-08 20:00:00,24584 +2015-01-08 20:30:00,23692 +2015-01-08 21:00:00,23593 +2015-01-08 21:30:00,23676 +2015-01-08 22:00:00,23367 +2015-01-08 22:30:00,21952 +2015-01-08 23:00:00,19331 +2015-01-08 23:30:00,15847 +2015-01-09 00:00:00,13156 +2015-01-09 00:30:00,10295 +2015-01-09 01:00:00,8080 +2015-01-09 01:30:00,6041 +2015-01-09 02:00:00,5180 +2015-01-09 02:30:00,3992 +2015-01-09 03:00:00,3359 +2015-01-09 03:30:00,2808 +2015-01-09 04:00:00,2703 +2015-01-09 04:30:00,2176 +2015-01-09 05:00:00,2434 +2015-01-09 05:30:00,4092 +2015-01-09 06:00:00,6053 +2015-01-09 06:30:00,11326 +2015-01-09 07:00:00,13826 +2015-01-09 07:30:00,15011 +2015-01-09 08:00:00,15124 +2015-01-09 08:30:00,15755 +2015-01-09 09:00:00,16110 +2015-01-09 09:30:00,16271 +2015-01-09 10:00:00,15323 +2015-01-09 10:30:00,15421 +2015-01-09 11:00:00,14604 +2015-01-09 11:30:00,15840 +2015-01-09 12:00:00,15962 +2015-01-09 12:30:00,15948 +2015-01-09 13:00:00,16283 +2015-01-09 13:30:00,16502 +2015-01-09 14:00:00,17377 +2015-01-09 14:30:00,18858 +2015-01-09 15:00:00,18338 +2015-01-09 15:30:00,17567 +2015-01-09 16:00:00,15857 +2015-01-09 16:30:00,15069 +2015-01-09 17:00:00,18144 +2015-01-09 17:30:00,21770 +2015-01-09 18:00:00,24651 +2015-01-09 18:30:00,26480 +2015-01-09 19:00:00,27443 +2015-01-09 19:30:00,27676 +2015-01-09 20:00:00,25589 +2015-01-09 20:30:00,23761 +2015-01-09 21:00:00,23882 +2015-01-09 21:30:00,23922 +2015-01-09 22:00:00,24901 +2015-01-09 22:30:00,25440 +2015-01-09 23:00:00,25306 +2015-01-09 23:30:00,25133 +2015-01-10 00:00:00,24251 +2015-01-10 00:30:00,22330 +2015-01-10 01:00:00,19918 +2015-01-10 01:30:00,17922 +2015-01-10 02:00:00,16425 +2015-01-10 02:30:00,13977 +2015-01-10 03:00:00,11797 +2015-01-10 03:30:00,10171 +2015-01-10 04:00:00,8666 +2015-01-10 04:30:00,4721 +2015-01-10 05:00:00,3390 +2015-01-10 05:30:00,2905 +2015-01-10 06:00:00,3265 +2015-01-10 06:30:00,4249 +2015-01-10 07:00:00,5058 +2015-01-10 07:30:00,6976 +2015-01-10 08:00:00,7425 +2015-01-10 08:30:00,11024 +2015-01-10 09:00:00,13013 +2015-01-10 09:30:00,16327 +2015-01-10 10:00:00,16385 +2015-01-10 10:30:00,18820 +2015-01-10 11:00:00,19868 +2015-01-10 11:30:00,22503 +2015-01-10 12:00:00,22724 +2015-01-10 12:30:00,23856 +2015-01-10 13:00:00,23073 +2015-01-10 13:30:00,22492 +2015-01-10 14:00:00,21336 +2015-01-10 14:30:00,22371 +2015-01-10 15:00:00,23119 +2015-01-10 15:30:00,23941 +2015-01-10 16:00:00,22728 +2015-01-10 16:30:00,20126 +2015-01-10 17:00:00,21139 +2015-01-10 17:30:00,24417 +2015-01-10 18:00:00,26639 +2015-01-10 18:30:00,26907 +2015-01-10 19:00:00,28043 +2015-01-10 19:30:00,26853 +2015-01-10 20:00:00,27983 +2015-01-10 20:30:00,24555 +2015-01-10 21:00:00,23596 +2015-01-10 21:30:00,24947 +2015-01-10 22:00:00,26085 +2015-01-10 22:30:00,27646 +2015-01-10 23:00:00,28301 +2015-01-10 23:30:00,28401 +2015-01-11 00:00:00,26653 +2015-01-11 00:30:00,24790 +2015-01-11 01:00:00,23141 +2015-01-11 01:30:00,20654 +2015-01-11 02:00:00,19179 +2015-01-11 02:30:00,16879 +2015-01-11 03:00:00,14597 +2015-01-11 03:30:00,12394 +2015-01-11 04:00:00,9787 +2015-01-11 04:30:00,5859 +2015-01-11 05:00:00,3682 +2015-01-11 05:30:00,3108 +2015-01-11 06:00:00,2883 +2015-01-11 06:30:00,3710 +2015-01-11 07:00:00,3790 +2015-01-11 07:30:00,5294 +2015-01-11 08:00:00,6133 +2015-01-11 08:30:00,8808 +2015-01-11 09:00:00,9884 +2015-01-11 09:30:00,13052 +2015-01-11 10:00:00,13881 +2015-01-11 10:30:00,17481 +2015-01-11 11:00:00,17730 +2015-01-11 11:30:00,20015 +2015-01-11 12:00:00,19794 +2015-01-11 12:30:00,21709 +2015-01-11 13:00:00,21296 +2015-01-11 13:30:00,20381 +2015-01-11 14:00:00,19508 +2015-01-11 14:30:00,19210 +2015-01-11 15:00:00,18255 +2015-01-11 15:30:00,19171 +2015-01-11 16:00:00,18758 +2015-01-11 16:30:00,19444 +2015-01-11 17:00:00,19816 +2015-01-11 17:30:00,19830 +2015-01-11 18:00:00,19842 +2015-01-11 18:30:00,19586 +2015-01-11 19:00:00,18579 +2015-01-11 19:30:00,17586 +2015-01-11 20:00:00,15320 +2015-01-11 20:30:00,13987 +2015-01-11 21:00:00,13611 +2015-01-11 21:30:00,13943 +2015-01-11 22:00:00,12956 +2015-01-11 22:30:00,11585 +2015-01-11 23:00:00,12116 +2015-01-11 23:30:00,9058 +2015-01-12 00:00:00,7147 +2015-01-12 00:30:00,5365 +2015-01-12 01:00:00,3756 +2015-01-12 01:30:00,3077 +2015-01-12 02:00:00,2603 +2015-01-12 02:30:00,2264 +2015-01-12 03:00:00,1973 +2015-01-12 03:30:00,1679 +2015-01-12 04:00:00,1964 +2015-01-12 04:30:00,1891 +2015-01-12 05:00:00,2303 +2015-01-12 05:30:00,4462 +2015-01-12 06:00:00,6496 +2015-01-12 06:30:00,11269 +2015-01-12 07:00:00,14140 +2015-01-12 07:30:00,18040 +2015-01-12 08:00:00,19618 +2015-01-12 08:30:00,19631 +2015-01-12 09:00:00,18598 +2015-01-12 09:30:00,17797 +2015-01-12 10:00:00,16160 +2015-01-12 10:30:00,15872 +2015-01-12 11:00:00,15103 +2015-01-12 11:30:00,16858 +2015-01-12 12:00:00,17532 +2015-01-12 12:30:00,16478 +2015-01-12 13:00:00,16071 +2015-01-12 13:30:00,17036 +2015-01-12 14:00:00,17167 +2015-01-12 14:30:00,18607 +2015-01-12 15:00:00,19387 +2015-01-12 15:30:00,16274 +2015-01-12 16:00:00,15210 +2015-01-12 16:30:00,14695 +2015-01-12 17:00:00,16686 +2015-01-12 17:30:00,19234 +2015-01-12 18:00:00,21350 +2015-01-12 18:30:00,22150 +2015-01-12 19:00:00,21582 +2015-01-12 19:30:00,20321 +2015-01-12 20:00:00,20071 +2015-01-12 20:30:00,18532 +2015-01-12 21:00:00,18801 +2015-01-12 21:30:00,17972 +2015-01-12 22:00:00,17298 +2015-01-12 22:30:00,14655 +2015-01-12 23:00:00,12376 +2015-01-12 23:30:00,10191 +2015-01-13 00:00:00,11139 +2015-01-13 00:30:00,7323 +2015-01-13 01:00:00,5142 +2015-01-13 01:30:00,3987 +2015-01-13 02:00:00,3197 +2015-01-13 02:30:00,2336 +2015-01-13 03:00:00,1800 +2015-01-13 03:30:00,1742 +2015-01-13 04:00:00,1901 +2015-01-13 04:30:00,1681 +2015-01-13 05:00:00,2036 +2015-01-13 05:30:00,4284 +2015-01-13 06:00:00,6390 +2015-01-13 06:30:00,11432 +2015-01-13 07:00:00,14929 +2015-01-13 07:30:00,19814 +2015-01-13 08:00:00,21295 +2015-01-13 08:30:00,21258 +2015-01-13 09:00:00,20209 +2015-01-13 09:30:00,19420 +2015-01-13 10:00:00,18088 +2015-01-13 10:30:00,17942 +2015-01-13 11:00:00,17251 +2015-01-13 11:30:00,18843 +2015-01-13 12:00:00,18906 +2015-01-13 12:30:00,18117 +2015-01-13 13:00:00,17533 +2015-01-13 13:30:00,18593 +2015-01-13 14:00:00,18967 +2015-01-13 14:30:00,20374 +2015-01-13 15:00:00,20245 +2015-01-13 15:30:00,18663 +2015-01-13 16:00:00,16688 +2015-01-13 16:30:00,14860 +2015-01-13 17:00:00,16990 +2015-01-13 17:30:00,20233 +2015-01-13 18:00:00,23012 +2015-01-13 18:30:00,24353 +2015-01-13 19:00:00,24698 +2015-01-13 19:30:00,24188 +2015-01-13 20:00:00,24033 +2015-01-13 20:30:00,23737 +2015-01-13 21:00:00,23774 +2015-01-13 21:30:00,23522 +2015-01-13 22:00:00,21828 +2015-01-13 22:30:00,18996 +2015-01-13 23:00:00,15659 +2015-01-13 23:30:00,12989 +2015-01-14 00:00:00,10584 +2015-01-14 00:30:00,7941 +2015-01-14 01:00:00,6221 +2015-01-14 01:30:00,4792 +2015-01-14 02:00:00,3814 +2015-01-14 02:30:00,3053 +2015-01-14 03:00:00,2725 +2015-01-14 03:30:00,2356 +2015-01-14 04:00:00,2327 +2015-01-14 04:30:00,2058 +2015-01-14 05:00:00,2267 +2015-01-14 05:30:00,4547 +2015-01-14 06:00:00,6582 +2015-01-14 06:30:00,12004 +2015-01-14 07:00:00,15442 +2015-01-14 07:30:00,20021 +2015-01-14 08:00:00,20953 +2015-01-14 08:30:00,21276 +2015-01-14 09:00:00,20444 +2015-01-14 09:30:00,19071 +2015-01-14 10:00:00,17173 +2015-01-14 10:30:00,17446 +2015-01-14 11:00:00,16319 +2015-01-14 11:30:00,18120 +2015-01-14 12:00:00,18258 +2015-01-14 12:30:00,17222 +2015-01-14 13:00:00,16563 +2015-01-14 13:30:00,17953 +2015-01-14 14:00:00,18119 +2015-01-14 14:30:00,18740 +2015-01-14 15:00:00,18803 +2015-01-14 15:30:00,17318 +2015-01-14 16:00:00,15354 +2015-01-14 16:30:00,14243 +2015-01-14 17:00:00,16310 +2015-01-14 17:30:00,20078 +2015-01-14 18:00:00,22844 +2015-01-14 18:30:00,23895 +2015-01-14 19:00:00,24410 +2015-01-14 19:30:00,24216 +2015-01-14 20:00:00,22351 +2015-01-14 20:30:00,22154 +2015-01-14 21:00:00,22757 +2015-01-14 21:30:00,22301 +2015-01-14 22:00:00,22537 +2015-01-14 22:30:00,19647 +2015-01-14 23:00:00,16555 +2015-01-14 23:30:00,13935 +2015-01-15 00:00:00,10852 +2015-01-15 00:30:00,8131 +2015-01-15 01:00:00,6253 +2015-01-15 01:30:00,4881 +2015-01-15 02:00:00,3872 +2015-01-15 02:30:00,2952 +2015-01-15 03:00:00,2530 +2015-01-15 03:30:00,2242 +2015-01-15 04:00:00,2384 +2015-01-15 04:30:00,2102 +2015-01-15 05:00:00,2353 +2015-01-15 05:30:00,4388 +2015-01-15 06:00:00,6600 +2015-01-15 06:30:00,11844 +2015-01-15 07:00:00,15429 +2015-01-15 07:30:00,19536 +2015-01-15 08:00:00,20800 +2015-01-15 08:30:00,21237 +2015-01-15 09:00:00,20044 +2015-01-15 09:30:00,19195 +2015-01-15 10:00:00,16819 +2015-01-15 10:30:00,17002 +2015-01-15 11:00:00,15592 +2015-01-15 11:30:00,17319 +2015-01-15 12:00:00,18062 +2015-01-15 12:30:00,16821 +2015-01-15 13:00:00,16158 +2015-01-15 13:30:00,17614 +2015-01-15 14:00:00,17978 +2015-01-15 14:30:00,18693 +2015-01-15 15:00:00,18743 +2015-01-15 15:30:00,17213 +2015-01-15 16:00:00,15389 +2015-01-15 16:30:00,13926 +2015-01-15 17:00:00,16336 +2015-01-15 17:30:00,19647 +2015-01-15 18:00:00,22732 +2015-01-15 18:30:00,24064 +2015-01-15 19:00:00,24881 +2015-01-15 19:30:00,24507 +2015-01-15 20:00:00,24438 +2015-01-15 20:30:00,23792 +2015-01-15 21:00:00,24517 +2015-01-15 21:30:00,24126 +2015-01-15 22:00:00,23957 +2015-01-15 22:30:00,22825 +2015-01-15 23:00:00,21086 +2015-01-15 23:30:00,17957 +2015-01-16 00:00:00,14729 +2015-01-16 00:30:00,11814 +2015-01-16 01:00:00,9221 +2015-01-16 01:30:00,7049 +2015-01-16 02:00:00,6102 +2015-01-16 02:30:00,4971 +2015-01-16 03:00:00,4205 +2015-01-16 03:30:00,3238 +2015-01-16 04:00:00,3474 +2015-01-16 04:30:00,2952 +2015-01-16 05:00:00,2858 +2015-01-16 05:30:00,4621 +2015-01-16 06:00:00,6570 +2015-01-16 06:30:00,11368 +2015-01-16 07:00:00,14644 +2015-01-16 07:30:00,18846 +2015-01-16 08:00:00,19936 +2015-01-16 08:30:00,20315 +2015-01-16 09:00:00,19285 +2015-01-16 09:30:00,18492 +2015-01-16 10:00:00,16873 +2015-01-16 10:30:00,16492 +2015-01-16 11:00:00,15440 +2015-01-16 11:30:00,17341 +2015-01-16 12:00:00,17377 +2015-01-16 12:30:00,16922 +2015-01-16 13:00:00,16465 +2015-01-16 13:30:00,17797 +2015-01-16 14:00:00,18924 +2015-01-16 14:30:00,19579 +2015-01-16 15:00:00,19159 +2015-01-16 15:30:00,17343 +2015-01-16 16:00:00,15856 +2015-01-16 16:30:00,14769 +2015-01-16 17:00:00,16980 +2015-01-16 17:30:00,21604 +2015-01-16 18:00:00,24026 +2015-01-16 18:30:00,26085 +2015-01-16 19:00:00,27462 +2015-01-16 19:30:00,27681 +2015-01-16 20:00:00,26427 +2015-01-16 20:30:00,25444 +2015-01-16 21:00:00,25168 +2015-01-16 21:30:00,25376 +2015-01-16 22:00:00,26024 +2015-01-16 22:30:00,26428 +2015-01-16 23:00:00,25890 +2015-01-16 23:30:00,25472 +2015-01-17 00:00:00,24841 +2015-01-17 00:30:00,22159 +2015-01-17 01:00:00,20046 +2015-01-17 01:30:00,17945 +2015-01-17 02:00:00,15954 +2015-01-17 02:30:00,14210 +2015-01-17 03:00:00,12146 +2015-01-17 03:30:00,10342 +2015-01-17 04:00:00,8970 +2015-01-17 04:30:00,5302 +2015-01-17 05:00:00,3600 +2015-01-17 05:30:00,3192 +2015-01-17 06:00:00,3473 +2015-01-17 06:30:00,4304 +2015-01-17 07:00:00,4478 +2015-01-17 07:30:00,6310 +2015-01-17 08:00:00,7465 +2015-01-17 08:30:00,11664 +2015-01-17 09:00:00,12000 +2015-01-17 09:30:00,14970 +2015-01-17 10:00:00,15205 +2015-01-17 10:30:00,17118 +2015-01-17 11:00:00,17495 +2015-01-17 11:30:00,19508 +2015-01-17 12:00:00,20017 +2015-01-17 12:30:00,20707 +2015-01-17 13:00:00,20941 +2015-01-17 13:30:00,20725 +2015-01-17 14:00:00,19358 +2015-01-17 14:30:00,20008 +2015-01-17 15:00:00,20758 +2015-01-17 15:30:00,21068 +2015-01-17 16:00:00,20316 +2015-01-17 16:30:00,19248 +2015-01-17 17:00:00,20449 +2015-01-17 17:30:00,23133 +2015-01-17 18:00:00,23733 +2015-01-17 18:30:00,25602 +2015-01-17 19:00:00,27074 +2015-01-17 19:30:00,25487 +2015-01-17 20:00:00,22437 +2015-01-17 20:30:00,21569 +2015-01-17 21:00:00,21542 +2015-01-17 21:30:00,22661 +2015-01-17 22:00:00,23754 +2015-01-17 22:30:00,25114 +2015-01-17 23:00:00,25308 +2015-01-17 23:30:00,25251 +2015-01-18 00:00:00,25423 +2015-01-18 00:30:00,23964 +2015-01-18 01:00:00,22134 +2015-01-18 01:30:00,20253 +2015-01-18 02:00:00,19354 +2015-01-18 02:30:00,17470 +2015-01-18 03:00:00,14916 +2015-01-18 03:30:00,13069 +2015-01-18 04:00:00,10617 +2015-01-18 04:30:00,6053 +2015-01-18 05:00:00,4097 +2015-01-18 05:30:00,3219 +2015-01-18 06:00:00,3050 +2015-01-18 06:30:00,3114 +2015-01-18 07:00:00,3521 +2015-01-18 07:30:00,4745 +2015-01-18 08:00:00,6290 +2015-01-18 08:30:00,8298 +2015-01-18 09:00:00,9919 +2015-01-18 09:30:00,13441 +2015-01-18 10:00:00,15096 +2015-01-18 10:30:00,18880 +2015-01-18 11:00:00,20210 +2015-01-18 11:30:00,22395 +2015-01-18 12:00:00,22791 +2015-01-18 12:30:00,22619 +2015-01-18 13:00:00,22916 +2015-01-18 13:30:00,22472 +2015-01-18 14:00:00,22015 +2015-01-18 14:30:00,23848 +2015-01-18 15:00:00,22149 +2015-01-18 15:30:00,19787 +2015-01-18 16:00:00,18399 +2015-01-18 16:30:00,18309 +2015-01-18 17:00:00,17623 +2015-01-18 17:30:00,18567 +2015-01-18 18:00:00,18557 +2015-01-18 18:30:00,20670 +2015-01-18 19:00:00,16805 +2015-01-18 19:30:00,14576 +2015-01-18 20:00:00,14056 +2015-01-18 20:30:00,14591 +2015-01-18 21:00:00,13904 +2015-01-18 21:30:00,14487 +2015-01-18 22:00:00,15516 +2015-01-18 22:30:00,14292 +2015-01-18 23:00:00,12676 +2015-01-18 23:30:00,11970 +2015-01-19 00:00:00,10938 +2015-01-19 00:30:00,9181 +2015-01-19 01:00:00,7630 +2015-01-19 01:30:00,6241 +2015-01-19 02:00:00,5370 +2015-01-19 02:30:00,4199 +2015-01-19 03:00:00,3815 +2015-01-19 03:30:00,3367 +2015-01-19 04:00:00,3278 +2015-01-19 04:30:00,2542 +2015-01-19 05:00:00,2341 +2015-01-19 05:30:00,2774 +2015-01-19 06:00:00,3479 +2015-01-19 06:30:00,5228 +2015-01-19 07:00:00,5531 +2015-01-19 07:30:00,7133 +2015-01-19 08:00:00,8572 +2015-01-19 08:30:00,11251 +2015-01-19 09:00:00,11815 +2015-01-19 09:30:00,13223 +2015-01-19 10:00:00,12862 +2015-01-19 10:30:00,14360 +2015-01-19 11:00:00,14101 +2015-01-19 11:30:00,16056 +2015-01-19 12:00:00,16454 +2015-01-19 12:30:00,17460 +2015-01-19 13:00:00,17295 +2015-01-19 13:30:00,17872 +2015-01-19 14:00:00,17517 +2015-01-19 14:30:00,18228 +2015-01-19 15:00:00,17900 +2015-01-19 15:30:00,18245 +2015-01-19 16:00:00,17379 +2015-01-19 16:30:00,16921 +2015-01-19 17:00:00,17309 +2015-01-19 17:30:00,18431 +2015-01-19 18:00:00,19142 +2015-01-19 18:30:00,19449 +2015-01-19 19:00:00,18494 +2015-01-19 19:30:00,17217 +2015-01-19 20:00:00,16075 +2015-01-19 20:30:00,15157 +2015-01-19 21:00:00,14245 +2015-01-19 21:30:00,14069 +2015-01-19 22:00:00,13506 +2015-01-19 22:30:00,12936 +2015-01-19 23:00:00,10400 +2015-01-19 23:30:00,8189 +2015-01-20 00:00:00,6941 +2015-01-20 00:30:00,5164 +2015-01-20 01:00:00,3940 +2015-01-20 01:30:00,3073 +2015-01-20 02:00:00,2690 +2015-01-20 02:30:00,2006 +2015-01-20 03:00:00,1584 +2015-01-20 03:30:00,1495 +2015-01-20 04:00:00,1692 +2015-01-20 04:30:00,1663 +2015-01-20 05:00:00,2275 +2015-01-20 05:30:00,4423 +2015-01-20 06:00:00,6390 +2015-01-20 06:30:00,11694 +2015-01-20 07:00:00,14427 +2015-01-20 07:30:00,18672 +2015-01-20 08:00:00,19568 +2015-01-20 08:30:00,20068 +2015-01-20 09:00:00,18961 +2015-01-20 09:30:00,17965 +2015-01-20 10:00:00,15858 +2015-01-20 10:30:00,15942 +2015-01-20 11:00:00,14858 +2015-01-20 11:30:00,16031 +2015-01-20 12:00:00,15767 +2015-01-20 12:30:00,15718 +2015-01-20 13:00:00,14752 +2015-01-20 13:30:00,16556 +2015-01-20 14:00:00,16333 +2015-01-20 14:30:00,17782 +2015-01-20 15:00:00,17590 +2015-01-20 15:30:00,16525 +2015-01-20 16:00:00,15174 +2015-01-20 16:30:00,14241 +2015-01-20 17:00:00,16378 +2015-01-20 17:30:00,19480 +2015-01-20 18:00:00,22419 +2015-01-20 18:30:00,23262 +2015-01-20 19:00:00,22395 +2015-01-20 19:30:00,21663 +2015-01-20 20:00:00,21386 +2015-01-20 20:30:00,20673 +2015-01-20 21:00:00,21258 +2015-01-20 21:30:00,21186 +2015-01-20 22:00:00,20053 +2015-01-20 22:30:00,16936 +2015-01-20 23:00:00,14319 +2015-01-20 23:30:00,11226 +2015-01-21 00:00:00,8987 +2015-01-21 00:30:00,6616 +2015-01-21 01:00:00,5410 +2015-01-21 01:30:00,4152 +2015-01-21 02:00:00,3405 +2015-01-21 02:30:00,2682 +2015-01-21 03:00:00,2180 +2015-01-21 03:30:00,1905 +2015-01-21 04:00:00,2089 +2015-01-21 04:30:00,1981 +2015-01-21 05:00:00,2213 +2015-01-21 05:30:00,4205 +2015-01-21 06:00:00,6482 +2015-01-21 06:30:00,11513 +2015-01-21 07:00:00,15263 +2015-01-21 07:30:00,19134 +2015-01-21 08:00:00,20366 +2015-01-21 08:30:00,21165 +2015-01-21 09:00:00,19723 +2015-01-21 09:30:00,18557 +2015-01-21 10:00:00,17106 +2015-01-21 10:30:00,17373 +2015-01-21 11:00:00,15714 +2015-01-21 11:30:00,16754 +2015-01-21 12:00:00,17156 +2015-01-21 12:30:00,16405 +2015-01-21 13:00:00,15565 +2015-01-21 13:30:00,17267 +2015-01-21 14:00:00,17711 +2015-01-21 14:30:00,18372 +2015-01-21 15:00:00,18579 +2015-01-21 15:30:00,16601 +2015-01-21 16:00:00,15939 +2015-01-21 16:30:00,14513 +2015-01-21 17:00:00,17001 +2015-01-21 17:30:00,20962 +2015-01-21 18:00:00,23400 +2015-01-21 18:30:00,23891 +2015-01-21 19:00:00,24112 +2015-01-21 19:30:00,23195 +2015-01-21 20:00:00,22527 +2015-01-21 20:30:00,21978 +2015-01-21 21:00:00,22624 +2015-01-21 21:30:00,21970 +2015-01-21 22:00:00,21085 +2015-01-21 22:30:00,19624 +2015-01-21 23:00:00,15974 +2015-01-21 23:30:00,12520 +2015-01-22 00:00:00,10173 +2015-01-22 00:30:00,7771 +2015-01-22 01:00:00,6287 +2015-01-22 01:30:00,4720 +2015-01-22 02:00:00,3642 +2015-01-22 02:30:00,2769 +2015-01-22 03:00:00,2406 +2015-01-22 03:30:00,2194 +2015-01-22 04:00:00,2275 +2015-01-22 04:30:00,2021 +2015-01-22 05:00:00,2385 +2015-01-22 05:30:00,4276 +2015-01-22 06:00:00,6311 +2015-01-22 06:30:00,11643 +2015-01-22 07:00:00,14874 +2015-01-22 07:30:00,19720 +2015-01-22 08:00:00,20607 +2015-01-22 08:30:00,20838 +2015-01-22 09:00:00,19347 +2015-01-22 09:30:00,18316 +2015-01-22 10:00:00,16233 +2015-01-22 10:30:00,16420 +2015-01-22 11:00:00,14997 +2015-01-22 11:30:00,17341 +2015-01-22 12:00:00,17606 +2015-01-22 12:30:00,16850 +2015-01-22 13:00:00,15625 +2015-01-22 13:30:00,17210 +2015-01-22 14:00:00,17552 +2015-01-22 14:30:00,18531 +2015-01-22 15:00:00,18806 +2015-01-22 15:30:00,17322 +2015-01-22 16:00:00,15719 +2015-01-22 16:30:00,14717 +2015-01-22 17:00:00,16955 +2015-01-22 17:30:00,20647 +2015-01-22 18:00:00,23122 +2015-01-22 18:30:00,25031 +2015-01-22 19:00:00,25376 +2015-01-22 19:30:00,25849 +2015-01-22 20:00:00,24434 +2015-01-22 20:30:00,23690 +2015-01-22 21:00:00,24704 +2015-01-22 21:30:00,25221 +2015-01-22 22:00:00,24320 +2015-01-22 22:30:00,22823 +2015-01-22 23:00:00,21754 +2015-01-22 23:30:00,17946 +2015-01-23 00:00:00,14722 +2015-01-23 00:30:00,11815 +2015-01-23 01:00:00,9274 +2015-01-23 01:30:00,7241 +2015-01-23 02:00:00,6184 +2015-01-23 02:30:00,4956 +2015-01-23 03:00:00,4158 +2015-01-23 03:30:00,3499 +2015-01-23 04:00:00,3433 +2015-01-23 04:30:00,2736 +2015-01-23 05:00:00,2534 +2015-01-23 05:30:00,4436 +2015-01-23 06:00:00,6559 +2015-01-23 06:30:00,11173 +2015-01-23 07:00:00,14477 +2015-01-23 07:30:00,19424 +2015-01-23 08:00:00,20059 +2015-01-23 08:30:00,20211 +2015-01-23 09:00:00,19220 +2015-01-23 09:30:00,18519 +2015-01-23 10:00:00,16466 +2015-01-23 10:30:00,16651 +2015-01-23 11:00:00,15564 +2015-01-23 11:30:00,17483 +2015-01-23 12:00:00,18057 +2015-01-23 12:30:00,16855 +2015-01-23 13:00:00,16827 +2015-01-23 13:30:00,17900 +2015-01-23 14:00:00,18747 +2015-01-23 14:30:00,19493 +2015-01-23 15:00:00,19020 +2015-01-23 15:30:00,17169 +2015-01-23 16:00:00,15680 +2015-01-23 16:30:00,15126 +2015-01-23 17:00:00,17664 +2015-01-23 17:30:00,21065 +2015-01-23 18:00:00,23573 +2015-01-23 18:30:00,25063 +2015-01-23 19:00:00,26854 +2015-01-23 19:30:00,26037 +2015-01-23 20:00:00,24863 +2015-01-23 20:30:00,23793 +2015-01-23 21:00:00,23560 +2015-01-23 21:30:00,23904 +2015-01-23 22:00:00,25266 +2015-01-23 22:30:00,25284 +2015-01-23 23:00:00,25157 +2015-01-23 23:30:00,24597 +2015-01-24 00:00:00,24223 +2015-01-24 00:30:00,21761 +2015-01-24 01:00:00,20356 +2015-01-24 01:30:00,18221 +2015-01-24 02:00:00,14264 +2015-01-24 02:30:00,11852 +2015-01-24 03:00:00,10245 +2015-01-24 03:30:00,8895 +2015-01-24 04:00:00,7634 +2015-01-24 04:30:00,4822 +2015-01-24 05:00:00,3521 +2015-01-24 05:30:00,2971 +2015-01-24 06:00:00,3225 +2015-01-24 06:30:00,4324 +2015-01-24 07:00:00,4948 +2015-01-24 07:30:00,6401 +2015-01-24 08:00:00,7537 +2015-01-24 08:30:00,10085 +2015-01-24 09:00:00,11421 +2015-01-24 09:30:00,15063 +2015-01-24 10:00:00,14932 +2015-01-24 10:30:00,16512 +2015-01-24 11:00:00,16893 +2015-01-24 11:30:00,19945 +2015-01-24 12:00:00,19851 +2015-01-24 12:30:00,20385 +2015-01-24 13:00:00,20321 +2015-01-24 13:30:00,19563 +2015-01-24 14:00:00,18692 +2015-01-24 14:30:00,19016 +2015-01-24 15:00:00,19252 +2015-01-24 15:30:00,19325 +2015-01-24 16:00:00,19139 +2015-01-24 16:30:00,19092 +2015-01-24 17:00:00,19901 +2015-01-24 17:30:00,21433 +2015-01-24 18:00:00,22997 +2015-01-24 18:30:00,24210 +2015-01-24 19:00:00,26175 +2015-01-24 19:30:00,24935 +2015-01-24 20:00:00,21243 +2015-01-24 20:30:00,20206 +2015-01-24 21:00:00,20188 +2015-01-24 21:30:00,21588 +2015-01-24 22:00:00,24357 +2015-01-24 22:30:00,25009 +2015-01-24 23:00:00,25641 +2015-01-24 23:30:00,25928 +2015-01-25 00:00:00,25026 +2015-01-25 00:30:00,23773 +2015-01-25 01:00:00,22667 +2015-01-25 01:30:00,20864 +2015-01-25 02:00:00,19498 +2015-01-25 02:30:00,17494 +2015-01-25 03:00:00,15262 +2015-01-25 03:30:00,12727 +2015-01-25 04:00:00,10682 +2015-01-25 04:30:00,5804 +2015-01-25 05:00:00,3732 +2015-01-25 05:30:00,3050 +2015-01-25 06:00:00,2793 +2015-01-25 06:30:00,3690 +2015-01-25 07:00:00,4009 +2015-01-25 07:30:00,5014 +2015-01-25 08:00:00,5354 +2015-01-25 08:30:00,7694 +2015-01-25 09:00:00,9298 +2015-01-25 09:30:00,12036 +2015-01-25 10:00:00,13457 +2015-01-25 10:30:00,16776 +2015-01-25 11:00:00,16838 +2015-01-25 11:30:00,18681 +2015-01-25 12:00:00,19382 +2015-01-25 12:30:00,19841 +2015-01-25 13:00:00,19688 +2015-01-25 13:30:00,19900 +2015-01-25 14:00:00,19767 +2015-01-25 14:30:00,19114 +2015-01-25 15:00:00,18144 +2015-01-25 15:30:00,18343 +2015-01-25 16:00:00,17879 +2015-01-25 16:30:00,17910 +2015-01-25 17:00:00,17868 +2015-01-25 17:30:00,19079 +2015-01-25 18:00:00,19687 +2015-01-25 18:30:00,19227 +2015-01-25 19:00:00,17843 +2015-01-25 19:30:00,16231 +2015-01-25 20:00:00,14905 +2015-01-25 20:30:00,14598 +2015-01-25 21:00:00,13551 +2015-01-25 21:30:00,13933 +2015-01-25 22:00:00,12374 +2015-01-25 22:30:00,10625 +2015-01-25 23:00:00,9964 +2015-01-25 23:30:00,8190 +2015-01-26 00:00:00,6663 +2015-01-26 00:30:00,5151 +2015-01-26 01:00:00,4092 +2015-01-26 01:30:00,3207 +2015-01-26 02:00:00,2626 +2015-01-26 02:30:00,1994 +2015-01-26 03:00:00,1987 +2015-01-26 03:30:00,1912 +2015-01-26 04:00:00,2156 +2015-01-26 04:30:00,2175 +2015-01-26 05:00:00,2757 +2015-01-26 05:30:00,4689 +2015-01-26 06:00:00,6715 +2015-01-26 06:30:00,11577 +2015-01-26 07:00:00,13954 +2015-01-26 07:30:00,17717 +2015-01-26 08:00:00,18686 +2015-01-26 08:30:00,18923 +2015-01-26 09:00:00,17326 +2015-01-26 09:30:00,15926 +2015-01-26 10:00:00,13785 +2015-01-26 10:30:00,13905 +2015-01-26 11:00:00,13575 +2015-01-26 11:30:00,14094 +2015-01-26 12:00:00,14488 +2015-01-26 12:30:00,14428 +2015-01-26 13:00:00,14402 +2015-01-26 13:30:00,14747 +2015-01-26 14:00:00,13915 +2015-01-26 14:30:00,11432 +2015-01-26 15:00:00,9659 +2015-01-26 15:30:00,7681 +2015-01-26 16:00:00,6257 +2015-01-26 16:30:00,5520 +2015-01-26 17:00:00,5159 +2015-01-26 17:30:00,5283 +2015-01-26 18:00:00,5821 +2015-01-26 18:30:00,5586 +2015-01-26 19:00:00,4729 +2015-01-26 19:30:00,4402 +2015-01-26 20:00:00,3877 +2015-01-26 20:30:00,3384 +2015-01-26 21:00:00,3203 +2015-01-26 21:30:00,2611 +2015-01-26 22:00:00,1783 +2015-01-26 22:30:00,866 +2015-01-26 23:00:00,297 +2015-01-26 23:30:00,189 +2015-01-27 00:00:00,109 +2015-01-27 00:30:00,80 +2015-01-27 01:00:00,40 +2015-01-27 01:30:00,39 +2015-01-27 02:00:00,26 +2015-01-27 02:30:00,32 +2015-01-27 03:00:00,8 +2015-01-27 03:30:00,11 +2015-01-27 04:00:00,9 +2015-01-27 04:30:00,20 +2015-01-27 05:00:00,21 +2015-01-27 05:30:00,37 +2015-01-27 06:00:00,69 +2015-01-27 06:30:00,107 +2015-01-27 07:00:00,216 +2015-01-27 07:30:00,332 +2015-01-27 08:00:00,570 +2015-01-27 08:30:00,1049 +2015-01-27 09:00:00,1589 +2015-01-27 09:30:00,2285 +2015-01-27 10:00:00,2945 +2015-01-27 10:30:00,3544 +2015-01-27 11:00:00,3876 +2015-01-27 11:30:00,4535 +2015-01-27 12:00:00,4923 +2015-01-27 12:30:00,5157 +2015-01-27 13:00:00,5273 +2015-01-27 13:30:00,5584 +2015-01-27 14:00:00,5773 +2015-01-27 14:30:00,6569 +2015-01-27 15:00:00,7007 +2015-01-27 15:30:00,7400 +2015-01-27 16:00:00,7962 +2015-01-27 16:30:00,8760 +2015-01-27 17:00:00,9776 +2015-01-27 17:30:00,10863 +2015-01-27 18:00:00,12687 +2015-01-27 18:30:00,12541 +2015-01-27 19:00:00,11967 +2015-01-27 19:30:00,10813 +2015-01-27 20:00:00,10419 +2015-01-27 20:30:00,10132 +2015-01-27 21:00:00,10566 +2015-01-27 21:30:00,11073 +2015-01-27 22:00:00,10559 +2015-01-27 22:30:00,9121 +2015-01-27 23:00:00,8700 +2015-01-27 23:30:00,6884 +2015-01-28 00:00:00,5502 +2015-01-28 00:30:00,4001 +2015-01-28 01:00:00,3039 +2015-01-28 01:30:00,2431 +2015-01-28 02:00:00,2005 +2015-01-28 02:30:00,1661 +2015-01-28 03:00:00,1300 +2015-01-28 03:30:00,1279 +2015-01-28 04:00:00,1407 +2015-01-28 04:30:00,1353 +2015-01-28 05:00:00,1887 +2015-01-28 05:30:00,3714 +2015-01-28 06:00:00,6019 +2015-01-28 06:30:00,11208 +2015-01-28 07:00:00,14063 +2015-01-28 07:30:00,17572 +2015-01-28 08:00:00,18746 +2015-01-28 08:30:00,18397 +2015-01-28 09:00:00,17430 +2015-01-28 09:30:00,15997 +2015-01-28 10:00:00,13900 +2015-01-28 10:30:00,14138 +2015-01-28 11:00:00,13361 +2015-01-28 11:30:00,14156 +2015-01-28 12:00:00,14075 +2015-01-28 12:30:00,13887 +2015-01-28 13:00:00,13593 +2015-01-28 13:30:00,14093 +2015-01-28 14:00:00,14699 +2015-01-28 14:30:00,15372 +2015-01-28 15:00:00,16220 +2015-01-28 15:30:00,15107 +2015-01-28 16:00:00,14057 +2015-01-28 16:30:00,13802 +2015-01-28 17:00:00,15961 +2015-01-28 17:30:00,18422 +2015-01-28 18:00:00,21270 +2015-01-28 18:30:00,22262 +2015-01-28 19:00:00,22786 +2015-01-28 19:30:00,22169 +2015-01-28 20:00:00,21155 +2015-01-28 20:30:00,20120 +2015-01-28 21:00:00,20428 +2015-01-28 21:30:00,20309 +2015-01-28 22:00:00,20059 +2015-01-28 22:30:00,19055 +2015-01-28 23:00:00,15481 +2015-01-28 23:30:00,12535 +2015-01-29 00:00:00,10134 +2015-01-29 00:30:00,7568 +2015-01-29 01:00:00,5619 +2015-01-29 01:30:00,4342 +2015-01-29 02:00:00,3604 +2015-01-29 02:30:00,2822 +2015-01-29 03:00:00,2379 +2015-01-29 03:30:00,2121 +2015-01-29 04:00:00,2130 +2015-01-29 04:30:00,1968 +2015-01-29 05:00:00,2339 +2015-01-29 05:30:00,4306 +2015-01-29 06:00:00,6575 +2015-01-29 06:30:00,11896 +2015-01-29 07:00:00,15030 +2015-01-29 07:30:00,18687 +2015-01-29 08:00:00,19710 +2015-01-29 08:30:00,19585 +2015-01-29 09:00:00,18438 +2015-01-29 09:30:00,17398 +2015-01-29 10:00:00,16241 +2015-01-29 10:30:00,15905 +2015-01-29 11:00:00,14690 +2015-01-29 11:30:00,16203 +2015-01-29 12:00:00,16711 +2015-01-29 12:30:00,16013 +2015-01-29 13:00:00,15725 +2015-01-29 13:30:00,16432 +2015-01-29 14:00:00,17190 +2015-01-29 14:30:00,17571 +2015-01-29 15:00:00,18184 +2015-01-29 15:30:00,16484 +2015-01-29 16:00:00,14774 +2015-01-29 16:30:00,13800 +2015-01-29 17:00:00,15971 +2015-01-29 17:30:00,19384 +2015-01-29 18:00:00,21649 +2015-01-29 18:30:00,23102 +2015-01-29 19:00:00,23464 +2015-01-29 19:30:00,23343 +2015-01-29 20:00:00,23197 +2015-01-29 20:30:00,23120 +2015-01-29 21:00:00,23208 +2015-01-29 21:30:00,23188 +2015-01-29 22:00:00,22638 +2015-01-29 22:30:00,21501 +2015-01-29 23:00:00,20719 +2015-01-29 23:30:00,17877 +2015-01-30 00:00:00,14367 +2015-01-30 00:30:00,11118 +2015-01-30 01:00:00,8733 +2015-01-30 01:30:00,6954 +2015-01-30 02:00:00,5898 +2015-01-30 02:30:00,4541 +2015-01-30 03:00:00,3834 +2015-01-30 03:30:00,3143 +2015-01-30 04:00:00,3295 +2015-01-30 04:30:00,2652 +2015-01-30 05:00:00,2541 +2015-01-30 05:30:00,4585 +2015-01-30 06:00:00,6626 +2015-01-30 06:30:00,11854 +2015-01-30 07:00:00,15913 +2015-01-30 07:30:00,19574 +2015-01-30 08:00:00,20898 +2015-01-30 08:30:00,20859 +2015-01-30 09:00:00,19707 +2015-01-30 09:30:00,18495 +2015-01-30 10:00:00,17096 +2015-01-30 10:30:00,16561 +2015-01-30 11:00:00,16496 +2015-01-30 11:30:00,17310 +2015-01-30 12:00:00,17354 +2015-01-30 12:30:00,16305 +2015-01-30 13:00:00,16685 +2015-01-30 13:30:00,18077 +2015-01-30 14:00:00,18375 +2015-01-30 14:30:00,18633 +2015-01-30 15:00:00,18401 +2015-01-30 15:30:00,17079 +2015-01-30 16:00:00,15582 +2015-01-30 16:30:00,14719 +2015-01-30 17:00:00,17569 +2015-01-30 17:30:00,21013 +2015-01-30 18:00:00,23696 +2015-01-30 18:30:00,25758 +2015-01-30 19:00:00,27289 +2015-01-30 19:30:00,28107 +2015-01-30 20:00:00,27308 +2015-01-30 20:30:00,26570 +2015-01-30 21:00:00,25935 +2015-01-30 21:30:00,26432 +2015-01-30 22:00:00,26739 +2015-01-30 22:30:00,26874 +2015-01-30 23:00:00,26928 +2015-01-30 23:30:00,26000 +2015-01-31 00:00:00,25778 +2015-01-31 00:30:00,23304 +2015-01-31 01:00:00,21318 +2015-01-31 01:30:00,19024 +2015-01-31 02:00:00,17022 +2015-01-31 02:30:00,14733 +2015-01-31 03:00:00,12593 +2015-01-31 03:30:00,11048 +2015-01-31 04:00:00,9364 +2015-01-31 04:30:00,5209 +2015-01-31 05:00:00,3683 +2015-01-31 05:30:00,3329 +2015-01-31 06:00:00,3714 +2015-01-31 06:30:00,4531 +2015-01-31 07:00:00,4803 +2015-01-31 07:30:00,7049 +2015-01-31 08:00:00,8363 +2015-01-31 08:30:00,11899 +2015-01-31 09:00:00,13522 +2015-01-31 09:30:00,18164 +2015-01-31 10:00:00,17645 +2015-01-31 10:30:00,20056 +2015-01-31 11:00:00,20270 +2015-01-31 11:30:00,22865 +2015-01-31 12:00:00,22951 +2015-01-31 12:30:00,23387 +2015-01-31 13:00:00,23069 +2015-01-31 13:30:00,23298 +2015-01-31 14:00:00,21817 +2015-01-31 14:30:00,21565 +2015-01-31 15:00:00,21729 +2015-01-31 15:30:00,22838 +2015-01-31 16:00:00,21068 +2015-01-31 16:30:00,19920 +2015-01-31 17:00:00,20715 +2015-01-31 17:30:00,23595 +2015-01-31 18:00:00,26044 +2015-01-31 18:30:00,27286 +2015-01-31 19:00:00,28804 +2015-01-31 19:30:00,27773 +2015-01-31 20:00:00,24985 +2015-01-31 20:30:00,23291 +2015-01-31 21:00:00,23719 +2015-01-31 21:30:00,24670 +2015-01-31 22:00:00,25721 +2015-01-31 22:30:00,27309 +2015-01-31 23:00:00,26591 +2015-01-31 23:30:00,26288 diff --git a/docs/source/examples.rst b/docs/source/examples.rst index ea71fbaa8d..fe68dd1e1a 100644 --- a/docs/source/examples.rst +++ b/docs/source/examples.rst @@ -217,6 +217,16 @@ Gaussian process filter model example notebook: examples/11-GP-filter-examples.ipynb +Anomaly Detection +======================================= + +Anomaly detection example notebook: + +.. toctree:: + :maxdepth: 1 + + examples/22-anomaly-detection-examples.ipynb + Dynamic Time Warping (DTW) ============================= diff --git a/examples/22-anomaly-detection-examples.ipynb b/examples/22-anomaly-detection-examples.ipynb new file mode 100644 index 0000000000..60e083518a --- /dev/null +++ b/examples/22-anomaly-detection-examples.ipynb @@ -0,0 +1,1793 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Anomaly Detection Darts Module" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook showcases some of the functionalities of Darts' Anomaly Detection Module. We'll look at Anomaly Scorers, Detectors, Aggregators and Anomaly Models.\n", + "\n", + "- `Scorers`: compute anomaly scores time series, either only on the target series or between the target series and a forecasted/predicted series. They are the core of the anomaly detection module.\n", + " \n", + "- `Detectors`: transform time series (such as anomaly scores) into binary anomaly time series. The presence of an anomaly is flagged with `1`, and `0` otherwise.\n", + " \n", + "- `Aggregators`: reduce a multivariate binary time series (e.g., where each component represents the anomaly score of a different series component/model) into a univariate binary time series. \n", + "\n", + "- `Anomaly Models`: offer a convenient way to produce anomaly scores from any of Darts' global forecasting models or filtering models by comparing the models’ predictions with actual observations. Each Anomaly Model takes one forecasting/filtering model and one or multiple scorers. The model produces some predictions, which are fed together with the actual series to the scorer(s). It will return anomaly scores for each scorer. \n", + "\n", + "The figure below illustrates the different input/output for each tool:\n", + "\n", + " \n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The notebook is devided into two sections:\n", + "\n", + "- How to use `ForecastingAnomalyModel` to find anomalies in the number of taxi passengers in New York. \n", + "- How to use an `AnomalyScorer` and the importance of its windowing capabilities on two toy datasets. \n", + "\n", + "First, some necessary imports:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# fix python path if working locally\n", + "from utils import fix_pythonpath_if_working_locally\n", + "\n", + "fix_pythonpath_if_working_locally()\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/dennisbader/miniconda3/envs/darts310_test/lib/python3.10/site-packages/statsforecast/utils.py:237: FutureWarning: 'M' is deprecated and will be removed in a future version, please use 'ME' instead.\n", + " \"ds\": pd.date_range(start=\"1949-01-01\", periods=len(AirPassengers), freq=\"M\"),\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", + "from darts import TimeSeries\n", + "from darts.ad.utils import (\n", + " eval_metric_from_binary_prediction,\n", + " eval_metric_from_scores,\n", + " show_anomalies_from_scores,\n", + ")\n", + "from darts.ad import (\n", + " ForecastingAnomalyModel,\n", + " KMeansScorer,\n", + " NormScorer,\n", + " WassersteinScorer,\n", + ")\n", + "from darts.dataprocessing.transformers import Scaler\n", + "from darts.datasets import TaxiNewYorkDataset\n", + "from darts.metrics import mae, rmse\n", + "from darts.models import RegressionModel" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Anomaly Model: Taxi passengers in NY" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load and visualize the data \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Information on the data:\n", + "- Univariate Time Series (represents the number of taxi passengers in New York)\n", + "- During a period of 8 months (2014-07 to 2015-01)\n", + "- Frequency of 30 minutes " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, anomalies are subjective. It can be defined as periods where the demand for taxis is abnormal (different than what should be expected). Based on this definition, the following five dates can be considered anomalies:\n", + "\n", + "- NYC Marathon - 2014-11-02\n", + "- Thanksgiving - 2014-11-27\n", + "- Christmas - 2014-12-24/25\n", + "- New Years - 2015-01-01\n", + "- Snow Blizzard - 2015-01-26/27" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABM0AAAG/CAYAAABL+CCVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZgVxdX/v3cGhtnYQXZHEDEBFJe8UYOCGn1F8lOzuMbEqFE0rrgTExAUCSjGfUUU40tUEjVKWNwBV1RUQBBZHRj2GdbZl9u/P4q6t7puVXV13773znI+z8Nzh+ruqtPVtZw6daoq4jiOA4IgCIIgCIIgCIIgCIIgYmRlWgCCIAiCIAiCIAiCIAiCaGyQ0YwgCIIgCIIgCIIgCIIgJMhoRhAEQRAEQRAEQRAEQRASZDQjCIIgCIIgCIIgCIIgCAkymhEEQRAEQRAEQRAEQRCEBBnNCIIgCIIgCIIgCIIgCEKCjGYEQRAEQRAEQRAEQRAEIUFGM4IgCIIgCIIgCIIgCIKQIKMZQRAEQRAEQRAEQRAEQUiQ0ayJEY1GsWHDBkSj0UyLQjRTqIwRqYTKFxEmVJ6IVELliwgTKk9EKqHyRaSSll6+yGhGEARBEARBEARBEARBEBJkNCMIgiAIgiAIgiAIgiAICTKaEQRBEARBEARBEARBEIQEGc0IgiAIgiAIgiAIgiAIQoKMZgRBEARBEARBEARBEAQhEdhotmzZMvzP//wPZsyYEQubMWMGTjvtNJx66ql4+OGH4ThO7NqKFStw0UUXYejQoRg1ahS2bt0au1ZdXY2xY8di2LBh+MUvfoH58+e70po9ezZGjhyJ4cOHY8KECairqwsqNkEQBEEQBEEQBEEQBEF4EshoFo1G8fe//x0DBw6MhX300Uf497//jRkzZmDWrFn46KOP8OabbwIAamtrcfvtt+PCCy/E+++/j8GDB2PcuHGxZ59++mns3bsXc+fOxaRJkzB58mQUFxcDANauXYsHH3wQU6dOxZw5c7BlyxZMnz49mXcmCIIgCIIgCIIgCIIgCCOBjGavvfYaBg8ejL59+8bC5s6di3PPPRe9e/dGly5d8Lvf/Q7z5s0DACxZsgR5eXk455xz0KZNG1x55ZVYuXJlzNts7ty5GDVqFAoLCzFkyBAMGzYMb7/9NgBg/vz5OP300zFw4EAUFhbiiiuuiMVLEARBEARBEARBEARBEKmgld8H9u7di5deegnPP/88/v73v8fCN2zYgJEjR8b+P2DAADz++OMAgPXr16N///6xa3l5eejduzfWr1+PgoIClJWVua4PGDAAK1asiD17wgknxK4ddthh2Lx5M6qrq5Gbm5sgX21tLWpra90v2aoVcnJy/L5qoyQajbp+CSJsqIwRqYTKFxEmVJ6IVELliwgTKk9EKqHyRaSS5lq+srLsfMh8G80ef/xxXHTRRWjXrp0rvLKyEoWFhbH/FxQUoLKyEgBQVVWFgoIC1/0FBQWoqqpCZWUlsrOzXQYw07M8jaqqKqXR7Pnnn8e0adNcYeeddx7OP/98v6/aqNm0aVOmRSCaOVTGiFRC5YsIEypPRCqh8kWECZUnIpVQ+SJSSXMrX+LKSRO+jGarVq3CihUrcMcddyRcy8/PR3l5eez/FRUVyM/PB8A8yyoqKlz3V1RUIC8vD/n5+WhoaHB5jpme5Wnk5eUpZbzssstw8cUXu1+ymXmabdq0CX369LG2jBKEH6iMEamEyhcRJlSeiFRC5YsIEypPRCqh8kWkkpZevnwZzb766its3LgxtgyzvLwc2dnZKCkpQd++fbF27VqceOKJAIDVq1ejX79+AIB+/frh9ddfj8VTVVWFkpIS9OvXD+3atUPnzp2xdu1aDB48WPns2rVrY8+uWbMGvXr1UnqZAUBOTk6zMZCZyMrKapEFlkgfVMaIVELliwgTKk9EKqHyRYQJlScilTTG8vXDDz+gb9+++Prrr3HUUUdlWhwAzBno0ksvxTfffIMf/ehH+Oabb9KW9owZMzB69Gjs2bMnbWmGRWMsX+nA1xv/+te/xuuvv46ZM2di5syZGDZsGC688ELceOONGDlyJF599VVs3rwZpaWlmDlzJs4880wAwLHHHouqqirMnj0btbW1mD59OgYOHIgePXoAAEaOHIlnn30WFRUVWL58ORYtWoTTTz8dADBixAi8++67WLVqFcrLy/Hcc8/F4iUIgiAIgiAIgiAIQs2ll16KSCSCyZMnu8L/85//IBKJZEiqzHLXXXehoKAA33//Pd577z3lPSeffDJGjx4detoXXHABVq9eHXq8ROrwZTTLzc1Fly5dYv/atGmD/Px8tG3bFieeeCJ+/etf45JLLsF5552HoUOH4uyzzwbAvL/uu+8+zJw5E6eccgqWLl2Ku+++OxbvVVddhcLCQowYMQJjxozBmDFjcMghhwAA+vfvj9GjR+Omm27CyJEj0a1bN1x++eXh5QBBEARBEARBEARBNFNyc3MxZcoU7N69O9OihIZ8+J8f1q1bhxNPPBFFRUXo3LlziFJ5k5eXh4MOOiitaTYXkvnmyZCUb9348eNx6aWXxv5/2WWX4b333sMHH3yAG2+80WW5HjRoEF5++WV8/PHHmDZtWszLDGCVeOLEifjwww8xZ84cjBgxwpXOWWedhXnz5mHRokUYP358i1h+SRAEQRAEQRAEQRDJctppp6F79+7429/+pr1n/PjxCcsnH3rooZgzC8C81n75y19i0qRJ6NatGzp06IAJEyagvr4et912Gzp16oTevXvjueeeS4h/1apV+NnPfobc3FwMGjQICxYscF1fuXIlRo4cicLCQnTr1g2///3vUVpaGrt+8skn47rrrsPNN9+MLl26xFamyUSjUdx9993o3bs32rRpg6OOOgrz58+PXY9EIliyZAnuvvtuRCIRjB8/PiGOSy+9FAsXLsTDDz+MSCSCSCSCH374AQ0NDfjjH/+Ivn37Ii8vD4cffjgefvjh2HPV1dUYNGgQRo0aFQvbsGED2rdvHzuscMaMGejQoYNSdoAtZ41EInj55Ze1+eUlBwAsWLAAP/3pT1FQUIAOHTpg6NChKC4uBgAsXboUp5xyCtq2bYt27drh2GOPxZdffhl79pNPPsGwYcOQl5eHPn364MYbb4wd1AgAhxxyCCZNmoTLL78cbdu2xcEHH4xnnnnGlf4nn3yCo446Crm5ufjJT34S82wUl8IG/ebjx4/HwQcfjDZt2qBnz5644YYbtPkZBi1vQSpBEARBEARBBGDvXuC77zItBUEQhD+ys7MxadIkPProoygpKUkqrvfffx9btmzBokWL8Pe//x3jx4/H//t//w8dO3bE4sWLcfXVV+Pqq69OOGnxtttuwy233IKvv/4aP/vZz3D22WejrKwMALB161YMHz4cRx11FL788kvMnz8f27dvx/nnn++K44UXXkCrVq3w8ccf4+mnn1bK9/DDD+OBBx7A1KlTsWzZMpxxxhk4++yzsWbNmlhagwYNwi233IKtW7fi1ltvVcZxwgkn4Morr8TWrVuxdetW9OnTB9FoFL1798asWbOwcuVKjBs3DnfeeSdmzZoFgDkDzZw5Ey+88AL+85//oKGhAb///e9xyimn4Morr/SVz6b88pKjvr4ev/zlLzF8+HAsW7YMn376KUaNGhVzarr44ovRu3dvfPHFF1iyZAnGjBmD1q1bAwCWL1+OM844A7/+9a+xbNkyvPLKK/j4449x1113ueR74IEH8JOf/ARff/01rrnmGvzpT3/CqlWrAAD79+/HWWedhSOOOAJfffUV7rnnnoTDJIN+83//+9948MEH8fTTT2PNmjX4z3/+gyOOOMJX3vrGIZoUDQ0Nzvr1652GhoZMi0I0U6iMEamEyhcRJlSeiFSiKl9//avjXHFFBoUimizUXjVPqqsd54cf0v+vutoth6l8/eEPf3DOOeccx3Ec5/jjj3cuv/xyx3Ec5/XXX3dEc8Bdd93lDBkyxPXsgw8+6BQVFbniKioqcqVz+OGHOyeddFLs//X19U5BQYHz0ksvOY7jOBs2bHAAOJMnT47dU1dX5/Tu3duZMmWK4ziOM3bsWOd///d/XWlv2rTJAeB8//33juM4zvDhw52jjjrK9Dkcx3Gcnj17Ovfee68r7H/+53+ca665Jvb/IUOGOHfddZcxnuHDhzs33nijZ3rXXHON85vf/MYVdt999zldunRxrr/+eqd79+7Ozp07Y9eef/55p3379tr4bPLLS46ysjIHgLNgwQLlvW3btnVmzJihvPb73//eGTVqlCts4cKFTlZWllNRUeE4juMUFRU5v/vd72LXo9Goc9BBBzlPPvmk4ziO8+STTzqdO3d2qqqqYvdMmzbNAeB8/fXXjuME/+YPPPCAM2DAAKe2tlabF2Hj6/RMgiAIgiAIgmipHJjkJwiCAABs2wZMnJj+dP/6V6CoyP9zU6ZMwamnnopbbrklcNqDBg1ynaDYrVs3DB48OPb/7OxsdO7cGTt27HA9d8IJJ8T+btWqFX7yk5/guwOuu0uWLMEHH3yAwsLChPTWrVuHAQMGAAB+8pOfGGXbt28ftmzZgqFDh7rChw4diqVLl1q+oZmnnnoKzz77LIqLi1FVVYXa2tqEZa233HIL3njjDTz66KOYN28eunTp4jsdU355ydGpUydceumlOOOMM3D66afjtNNOw/nnnx/bIuvmm2/GFVdcgRdffBGnnXYazjvvPBx66KEA2LdYu3YtZs6cGUvLcRxEo1Fs2LABgwYNAgAceeSRseuRSATdu3ePffPvv/8eRx55JHJzc2P3/PSnP3W9X9Bvft555+Ghhx5Cv379MGLECIwcORJnnXUWWrVKnWmLjGYEQRAEQRAEYUELPWiOIAgN3bszA1Ym0g3CsGHDcMYZZ+DOO+907U0OAFlZWXAcxxVWV1eXEAdfxseJRCLKsGg06ikPXy4YjUZx1llnYcqUKQn3iHuhFxQUeMYpxstxHCeUk0JnzZqFm266CQ888ABOOOEEtG3bFvfffz8WL17sum/Hjh34/vvvkZ2djTVr1iTs2R4U/g42cjz//PO44YYbMH/+fLzyyiv461//infeeQfHH388xo8fj9/+9reYM2cO5s2bh7vuugsvv/wyfvWrXyEajeKqq65y7RMWjUaxefPmmGENUJcD/s1V+S2XraDfvE+fPvj+++/xzjvv4N1338U111yD+++/HwsXLkyQKSzIaEYQBEEQBEEQBEEQPmnTJpjHVyaZPHkyjjrqqJgnD6dr167Ytm2by+AhbtqeLJ999hmGDRsGgO25tWTJElx33XUAgGOOOQavvvoqDjnkkKQ8htq1a4eePXvio48+iqUFsE3pZU8nL3JyctDQ0OAK+/DDD/Gzn/0M11xzTSxs3bp1Cc9efvnlGDx4MK688kr88Y9/xM9//nMMHDjQV/qm/LKV4+ijj8bRRx+NP//5zzjhhBPwz3/+E8cffzwAYMCAARgwYABuuukmXHTRRXj++efxq1/9CscccwxWrFiB/v37x+KJRqNo3bq19YGMP/rRjzBz5kzU1NSgTZs2AOA6aABI7pvn5eXh7LPPxtlnn41rr70WP/rRj7B8+XIcc8wxvuKxhQ4CIAiCIAiCIAiCIIgWwBFHHIGLL74Yjz76qCv85JNPxs6dO3Hfffdh3bp1ePzxxzFv3rzQ0n388cfx+uuvY9WqVbj22muxe/duXH755QCAa6+9Frt27cJFF12Ezz//HOvXr8fbb7+Nyy+/PMFw5cVtt92GKVOm4JVXXsH333+PMWPG4JtvvsGNN97oK55DDjkEixcvxg8//IDS0lJEo1H0798fX375Jd566y2sXr0aY8eOxRdffJHwnp9++in+8Y9/4Le//S3OPfdcXHzxxaitrfWVvim/vOTYsGED/vznP+PTTz9FcXEx3n77baxevRo//vGPUVVVheuuuw4LFixAcXExPv74Y3zxxRf48Y9/DAC444478Omnn+Laa6/FN998gzVr1uDNN99UnjKq47e//S2i0ShGjRqF7777Dm+99RamTp0KIO4tF/Sbz5gxA9OnT8e3336L9evX48UXX0ReXh6KUmi9JqMZQRAEQRAEQVhAyzMJgmgO3HPPPQnL5X784x/jiSeewOOPP44hQ4bg888/V54sGZTJkydjypQpGDJkCD788EO88cYbsb2+evbsiY8//hgNDQ0444wzMHjwYNx4441o3769a/80G2644QbccsstuOWWW3DEEUdg/vz5ePPNN3HYYYf5iufWW29FdnY2Bg4ciK5du2Ljxo24+uqr8etf/xoXXHABjjvuOJSVlbm8vVatWoXbbrsNTzzxBPr06QOAGb/27NmDsWPH+krflF9ecuTn52PVqlX4zW9+gwEDBmDUqFG47rrrcNVVVyE7OxtlZWW45JJLMGDAAJx//vk488wzMWHCBABsr7KFCxdizZo1OOmkk3D00UfjrrvuQteuXa1lb9euHWbPno1vvvkGRx11FP7yl79g3LhxABDb5yzoN+/QoQOmTZuGoUOH4sgjj8R7772H2bNno3Pnzr7y1w8RR64tRKMmGo2iuLgYRUVFvhsQgrCByhiRSqh8EWFC5YlIJarydd11QE0NMG1ahoUjmhzUXhGphMpX8+GHH35A37598fXXXyccMJApwihfM2fOxGWXXYa9e/ciLy8vZAlTC+1pRhAEQRAEQRAEQRAEQYTCP/7xD/Tr1w+9evXC0qVLcccdd+D8889vcgYzgIxmBEEQBEEQBEEQBEEQREhs27YN48aNw7Zt29CjRw+cd955uPfeezMtViDIaEYQBEEQBEEQFtCeZgRBEEQqOeSQQxL2m2uK3H777bj99tszLUYo0IJngiAIgiAIgrCAjGYEQRAE0bIgoxlBEARBEARBEARBEARBSJDRjCAIgiAIgiAIgiAIgiAkyGhGEARBEARBEARBEARBEBJkNCMIgiAIgiAIC2hPM4IgCIJoWZDRjCAIgiAIgiAIgiAIgiAkyGhGEARBEARBEARBEAQAYPz48TjqqKMyLUaL59JLL8Uvf/nL2P9PPvlkjB49OmPytFTIaEYQBEEQBEEQBEEQzZDx48cjEom4/nXv3j3TYhEBeO2113DPPfdkWowWR6tMC0AQBEEQBEEQTQHa04wgiKbIoEGD8O6778b+n52dnUFpiKB06tQp0yK0SMjTjCAIgiAIgiAsIKMZQRBNkVatWqF79+6xf127dvX1/IYNG9C/f3/86U9/QjQaxYwZM9ChQwe89dZb+PGPf4zCwkKMGDECW7dujT0TjUZx9913o3fv3mjTpg2OOuoozJ8/P3b9N7/5Da6//vrY/0ePHo1IJIIVK1YAAOrr69G2bVu89dZbANjSxBtuuAG33347OnXqhO7du2P8+PFGub/44gucfvrp6NKlC9q3b4/hw4fjq6++ct0TiUTw7LPP4le/+hXy8/Nx2GGH4c0333Tds3DhQvz0pz9FmzZt0KNHD4wZMwb19fWx6yeffDKuv/56jB49Gh07dkS3bt3wzDPPoKKiApdddhnatm2LQw89FPPmzYs909DQgD/+8Y/o27cv8vLycPjhh+Phhx82vo+8PLO2tha33347evXqhYKCAhx33HFYsGBB7HpxcTHOOussdOzYEQUFBRg0aBDmzp1rTINIhIxmBEEQBEEQBEEQBNFMWbNmDXr27Im+ffviwgsvxPr1662f/fbbbzF06FCcd955ePLJJ5GVxUwIlZWVmDp1Kl588UUsWrQIGzduxK233hp77uGHH8YDDzyAqVOnYtmyZTjjjDNw9tlnY82aNQCYAUg08CxcuBBdunTBwoULATCDV3V1NYYOHRq754UXXkBBQQEWL16M++67D3fffTfeeecdrez79+/HH/7wB3z44Yf47LPPcNhhh2HkyJHYv3+/674JEybg/PPPx7JlyzBy5EhcfPHF2LVrFwBg8+bNGDlyJP7nf/4HS5cuxZNPPonp06dj4sSJrjheeOEFdOnSBZ9//jmuv/56/OlPf8J5552Hn/3sZ/jqq69wxhln4Pe//z0qKysBMKNi7969MWvWLKxcuRLjxo3DnXfeiVmzZll/m8suuwwff/wxXn75ZSxbtgznnXceRowYEcvja6+9FjU1NVi0aBGWL1+OKVOmoLCw0Dp+gkHLMwmCIAiCIAiCIAjCL5WVwKpV6U/3Rz8C8vOtbj3uuOPwj3/8AwMGDMD27dsxceJE/OxnP8OKFSvQuXNn47Offvop/t//+3/485//7DKIAUBdXR2eeuopHHrooQCA6667DnfffXfs+tSpU3HHHXfgwgsvBABMmTIFH3zwAR566CE8/vjjOPnkk3HjjTeitLQU2dnZWLFiBe666y4sWLAA11xzDRYsWIBjjz3WZeQ58sgjcddddwEADjvsMDz22GN47733cPrppyvlP/XUU13/f/rpp9GxY0csXLgQ/+///b9Y+KWXXoqLLroIADBp0iQ8+uij+PzzzzFixAg88cQT6NOnDx577DFEIhH86Ec/wpYtW3DHHXdg3LhxMSPikCFD8Ne//hUA8Oc//xmTJ09Gly5dcOWVVwIAxo0bhyeffBLLli3D8ccfj9atW2PChAkxGfr27YtPPvkEs2bNwvnnn2/8LgCwbt06vPTSSygpKUHPnj0BALfeeivmz5+P559/HpMmTcLGjRvxm9/8BkcccQQAoF+/fp7xEomQ0YwgCIIgCIIgLKDlmQRBuFi1Cjj22PSnu2QJcMwxVreeeeaZsb+POOIInHDCCTj00EPxwgsv4Oabb9Y+t3HjRpx22mmYOHEibrrppoTr+fn5MYMZAPTo0QM7duwAAOzbtw9btmxxeYkBwNChQ7F06VIAwODBg9G5c2csXLgQrVu3xpAhQ3D22WfjkUceAQAsWLAAw4cPdz1/5JFHuv4vpqlix44dGDduHN5//31s374dDQ0NqKysxMaNG7XxFhQUoG3btrF4v/vuO5xwwgmICB3A0KFDUV5ejpKSEhx88MEJcWRnZ6Nz584xYxUAdOvWLSYT56mnnsKzzz6L4uJiVFVVoba21vrU0q+++gqO42DAgAGu8Jqampgx9IYbbsCf/vQnvP322zjttNPwm9/8JiEPCW/IaEYQBEEQBEEQBEEQfvnRj5gBKxPpBqSgoABHHHFEbAmfjq5du6Jnz554+eWX8cc//hHt2rVzXW/durXr/5FIBI7jJISJOI4TC4tEIhg2bBgWLFiAnJwcnHzyyRg8eDAaGhqwfPlyfPLJJ679u3RpRqNR7Ttceuml2LlzJx566CEUFRWhTZs2OOGEE1BbW2sdryiz+B7y+6niEMP4vTzeWbNm4aabbsIDDzyAE044AW3btsX999+PxYsXa99HJBqNIjs7G0uWLEk42IF7511xxRU444wzMGfOHLz99tv429/+hgceeMC1lxzhDRnNCIIgCIIgCIIgCMIv+fnWHl+NhZqaGnz33Xc46aSTjPfl5eXhv//9L0aOHIkzzjgDb7/9Ntq2bWuVRrt27dCzZ0989NFHGDZsWCz8k08+wU9/+tPY/08++WQ888wzyMnJwd13341IJIKTTjoJU6dORVVVVYKnml8+/PBDPPHEExg5ciQAYNOmTSgtLfUVx8CBA/Hqq6+6jGeffPIJ2rZti169eiUl289+9jNcc801sbB169ZZP3/00UejoaEBO3bsMH7LPn364Oqrr8bVV1+NP//5z5g2bRoZzXxCBwEQBEEQBEEQBEEQRDPk1ltvxcKFC7FhwwYsXrwY5557Lvbt24c//OEPns8WFBRgzpw5aNWqFc4880yUl5dbp3vbbbdhypQpeOWVV/D9999jzJgx+Oabb3DjjTfG7jn55JOxYsUKLF++PGb4OfnkkzFz5kwcc8wxCd5tfunfvz9efPFFfPfdd1i8eDEuvvhi5OXl+YrjmmuuwaZNm3D99ddj1apVeOONN3DXXXfh5ptvju1nFlS2L7/8Em+99RZWr16NsWPH4osvvrB+fsCAAbj44otxySWX4LXXXsOGDRvwxRdfYMqUKbETMkePHo233noLGzZswFdffYX3338fP/7xjwPL3FIhoxlBEARBEARBWEB7mhEE0dQoKSnBRRddhMMPPxy//vWvkZOTg88++wxFRUVWzxcWFmLevHlwHAcjR45ERUWF1XM33HADbrnlFtxyyy044ogjMH/+fLz55ps47LDDYvcMHjwYXbp0wZAhQ2IGsuHDh6OhoSFhP7MgPPfcc9i9ezeOPvpo/P73v8cNN9yAgw46yFccvXr1wty5c/H5559jyJAhuPrqq/HHP/4xtul/UK6++mr8+te/xgUXXIDjjjsOZWVlLq8zG55//nlccskluOWWW3D44Yfj7LPPxuLFi9GnTx8AQENDA6699lr8+Mc/xogRI3D44YfjiSeeSErulkjEkRceE42aaDSK4uJiFBUVJWXZJggdVMaIVELliwgTKk9EKlGVr1tvBfbuBaZNy7BwRJOD2isilVD5IlJJSy9fLe+NCYIgCIIgCIIgCIIgCMIDMpoRBEEQBEEQBEEQBEEQhAQZzQiCIAiCIAiCIAiCIAhCgoxmBEEQBEEQBGEBHQRAEARBEC0LMpoRBEEQBEEQBEEQBEEQhAQZzQiCIAiCIAjCB3T2PEEQBEG0DHwbze69916cccYZGD58OC644AJ8+OGHAIDZs2fjuOOOw0knnRT7t23btthzK1aswEUXXYShQ4di1KhR2Lp1a+xadXU1xo4di2HDhuEXv/gF5s+f70pz9uzZGDlyJIYPH44JEyagrq4u6PsSBEEQBEEQRFKQ0YwgCIIgWga+jWYXX3wxZs+ejYULF2LcuHEYO3Ys9u3bBwD46U9/ig8//DD2r3v37gCA2tpa3H777bjwwgvx/vvvY/DgwRg3blwszqeffhp79+7F3LlzMWnSJEyePBnFxcUAgLVr1+LBBx/E1KlTMWfOHGzZsgXTp08P490JgiAIgiAIwhra04wgCIIgWha+jWaHHHIIcnJyAACRSAS1tbUoLS01PrNkyRLk5eXhnHPOQZs2bXDllVdi5cqVMW+zuXPnYtSoUSgsLMSQIUMwbNgwvP322wCA+fPn4/TTT8fAgQNRWFiIK664AvPmzfMrNkEQBEEQBEEkBRnNCIIgCKJl0SrIQ5MnT8bs2bNRU1OD4cOHo1+/flixYgWWLl2Kn//85+jUqRMuuOACnHvuuQCA9evXo3///rHn8/Ly0Lt3b6xfvx4FBQUoKytzXR8wYABWrFgRe/aEE06IXTvssMOwefNmVFdXIzc3N0G22tpa1NbWul+yVauYoa+pE41GXb8EETZUxohUQuWLCBMqT0QqUZUvx4kAiFCZI3xD7RWRSqh8EamkuZavrCw7H7JARrMxY8bgtttuw5dffom1a9cCAI455hi8/PLL6N69O1auXIlbb70VnTt3ximnnIKqqioUFBS44igoKEBVVRUqKyuRnZ3tMoAVFBSgsrISABKeLSwsjIWrjGbPP/88pk2b5go777zzcP755wd51UbLpk2bMi0C0cyhMkakEipfRJhQeSJSiVi+6uv7AGiF4uJiWOraBOGC2isilVD5IlJJcytfffv2tbovkNEMALKzs3HcccfhpZdeQr9+/VzeYIMHD8aFF16IDz74AKeccgry8vJQUVHher6iogJ5eXnIz89HQ0ODy3OsoqIC+fn5AJDwbHl5eSxcxWWXXYaLL77Y/ZLNzNNs06ZN6NOnj7VllCD8QGWMSCVUvogwofJEpBJV+WrViq3PPPjgImRnZ1I6oqlB7RWRSqh8EamkpZevwEYzTjQaRUlJSUJ4RNj0oV+/fnj99ddj/6+qqkJJSQn69euHdu3aoXPnzli7di0GDx4MAFi9ejX69esXe5Z7swHAmjVr0KtXL6WXGQDk5OQ0GwOZiaysrBZZYIn0QWWMSCVUvogwofJEpBKxfHH1loVlUCiiyULtFZFKqHwRqaSlli9fb1xZWYl58+ahsrIS9fX1eO+997BkyRIcffTR+OSTT7B7924AwKpVq/DKK6/gpJNOAgAce+yxqKqqwuzZs1FbW4vp06dj4MCB6NGjBwBg5MiRePbZZ1FRUYHly5dj0aJFOP300wEAI0aMwLvvvotVq1ahvLwczz33HM4888ww84AgCIIgCIIgCIIgCIIgXPjyNItEInjjjTcwZcoUOI6DPn36YOLEiejfvz9mz56Nu+66C9XV1ejatSsuueSSmOErJycH9913H+655x5MnjwZAwcOxN133x2L96qrrsLEiRMxYsQItGvXDmPGjMEhhxwCAOjfvz9Gjx6Nm266CRUVFTj11FNx+eWXh5cDBEEQBEEQBEEQBEEQBCERcRzHybQQhD3RaBTFxcUoKipqka6RROqhMkakEipfRJhQeSJSiap83XEHsGsX8OSTQKukNzkhWhLUXhGphMoXkUpaevlqeW9MEARBEARBEARBEARBEB6Q0YwgCIIgCIIgCIIgCIIgJMhoRhAEQRAEQRAEQRAEQRASZDQjCIIgCIIgCIIgCIIgCAkymhEEQRAEQRAEQRAEQRCEBBnNCIIgCIIgCIIgCIIgCEKCjGYEQRAEQRAEQRAEQRAEIUFGM4IgCIIgCILwgeNkWgKCIAiCINIBGc0IgiAIgiAIgiAIgiAIQoKMZgRBEARBEARBEARBEAQhQUYzgiAIgiAIgiAIgiAIgpAgoxlBEARBEARBEARBEARBSJDRjCAIgiAIgiAIgiAIgiAkyGhGEARBEARBEARBEARBEBJkNCMIgiAIgiAIgiAIgiAICTKaEQRBEARBEIQPHCfTEhAEQRAEkQ7IaEYQBEEQBEEQBEEQBEEQEmQ0IwiCIAiCIAiCIAiCIAgJMpoRBEEQBEEQhA9oeSZBEARBtAzIaEYQBEEQBEEQBEEQBEEQEmQ0IwiCIAiCIAgLIpFMS0AQBEEQRDohoxlBEARBEARBEARBEARBSJDRjCAIgiAIgiAsoL3MCIIgCKJlQUYzgiAIgiAIgiAIgiAIgpAgoxlBEARBEARBWEB7mhEEQRBEy4KMZgRBEARBEARBEARBEAQhQUYzgiAIgiAIgvAB7W1GEARBEC0DMpoRBEEQBEEQBEEQBEEQhAQZzQiCIAiCIAiCIAiCIAhCgoxmBEEQBEEQBEEQBEEQBCFBRjOCIAiCIAiCIAiCIAiCkCCjGUEQBEEQBEEQBEEQBEFIkNGMIAiCIAiCIAiCIAiCICTIaEYQBEEQBEEQBEEQBEEQEmQ0IwiCIJo1dXXArFlATU2mJSEIorngOJmWgCAIgiCIdODbaHbvvffijDPOwPDhw3HBBRfgww8/jF2bMWMGTjvtNJx66ql4+OGH4QgaxYoVK3DRRRdh6NChGDVqFLZu3Rq7Vl1djbFjx2LYsGH4xS9+gfnz57vSnD17NkaOHInhw4djwoQJqKurC/KuBEEQRAtkyRLgnXeAjz/OtCQEQRAEQRDhs3s3UFLSJtNiEESzxLfR7OKLL8bs2bOxcOFCjBs3DmPHjsW+ffvw0Ucf4d///jdmzJiBWbNm4aOPPsKbb74JAKitrcXtt9+OCy+8EO+//z4GDx6McePGxeJ8+umnsXfvXsydOxeTJk3C5MmTUVxcDABYu3YtHnzwQUydOhVz5szBli1bMH369JBenyAIgiAIgiAIgiCaLpMmRfCPf/TMtBgE0Sxp5feBQw45JPZ3JBJBbW0tSktLMXfuXJx77rno3bs3AOB3v/sd5s2bh3POOQdLlixBXl4ezjnnHADAlVdeidNOOw1bt25Fjx49MHfuXDzwwAMoLCzEkCFDMGzYMLz99tu48sorMX/+fJx++ukYOHAgAOCKK67AxIkTcfXVVyvlq62tRW1trfslW7VCTk6O31dtlESjUdevLXV1QG0tUFCQCqmI5kTQMkYQNmSifLGksuA4UVCxbl5Qe0WkEnX5igCIIBql9oTwB7VXRCrZt4/5wlD5IlJBc22/srLsfMh8G80AYPLkyZg9ezZqamowfPhw9OvXDxs2bMDIkSNj9wwYMACPP/44AGD9+vXo379/7FpeXh569+6N9evXo6CgAGVlZa7rAwYMwIoVK2LPnnDCCbFrhx12GDZv3ozq6mrk5uYmyPb8889j2rRprrDzzjsP559/fpBXbbRs2rTJ1/3/93/dsXFjHu68c0OKJCKaG37LGEH4IZ3lq6ysAMBBKCvbjeLifWlLl0gf1F4RqUQsX/X1vQG0xsaNG5GbSxubEf6h9opIDX0BUPkiUktzK199+/a1ui+Q0WzMmDG47bbb8OWXX2Lt2rUAgMrKShQWFsbuKSgoQGVlJQCgqqoKBZKLU0FBAaqqqlBZWYns7GyXAcz0LE+jqqpKaTS77LLLcPHFF7tfspl5mm3atAl9+vSxtowCwMaN7N6ioqJUiUY0E4KWMYKwIRPla9s29tupU0cUFXVMS5pEeqD2ikglqvLVqlUEAHDwwQcjLy+T0hFNDWqviHRA5YtIBS29/QpkNAOA7OxsHHfccXjppZfQr18/5Ofno7y8PHa9oqIC+fn5AJhnWUVFhev5iooK5OXlIT8/Hw0NDS7PMdOzPI08jaaSk5PTbAxkJrKysgIV2JZYyIlgBC1jBGFDOssXTyYSyQIV6eYJtVdEKlGVL2pPiKBQe0WkEipfRCppqeUr6TeORqMoKSlB3759Y15nALB69Wr069cPANCvXz/XtaqqKpSUlKBfv35o164dOnfubP3smjVr0KtXL6WXGUEQBEEQBEEQBEEQBEGEgS+jWWVlJebNm4fKykrU19fjvffew5IlS3D00Udj5MiRePXVV7F582aUlpZi5syZOPPMMwEAxx57LKqqqjB79mzU1tZi+vTpGDhwIHr06AEAGDlyJJ599llUVFRg+fLlWLRoEU4//XQAwIgRI/Duu+9i1apVKC8vx3PPPReLlyAIgiBscWj7IYIgCIIgCIIgfOBreWYkEsEbb7yBKVOmwHEc9OnTBxMnTkT//v3Rv39/rFmzBpdccgmi0Sh++ctf4uyzzwbAlkzed999uOeeezB58mQMHDgQd999dyzeq666ChMnTsSIESPQrl07jBkzJnZKZ//+/TF69GjcdNNNqKiowKmnnorLL788vBwgCIIgmjWRSKYlIAiCIAiCIAiiKeLLaJaXl4ennnpKe/2yyy7DZZddprw2aNAgvPzyy8prubm5mDhxojbes846C2eddZYfUQmCIAiCIAiCIAiCIAgiMC1vFzeCIAiiRUGeZgRBhA0t9yYIgiCIlgEZzQiCIIgWAQ1yCYIgCIIgCILwAxnNCIIgCIIgCIIgCIIgCEKCjGYEQRBEi4A8zQiCSBZa7k0QBEG0JHbvBv7735atR/s6CIAgCIIgmho0yCUIgiAIgiAI//zjH8C332ZhwICWq1CTpxlBEARBEASRwN//DlxzTaalIAiCIAgiU3APs5bsaUZGM4IgCKJZQ55mBBGM774D6uoyLQVB2LF6NfDBB5mWgiCIoLRko0xjJq5Ht1yFmpZnEgRBEC0CUsYIgkiGCROA0tJMS0HouP9+9nvKKZmVgyCIYNx9N9PVxo/PtCSEipasR5PRjCAIgiAIgiA8KCmJ/92SBw8EQTQ+IhEHjtO0PYHENpZoPHBPs5bc79HyTIIgCIIgMsZ33wE7d2ZaCoIggvLNN8C+fZmWgiAIgkgWxwG++gqIRhOvqcJaCmQ0IwiCIJo1tKdZ4+bvfwfuuSfTUhBE02LPHmZwbgw8/jjw1FOZloIgWjZNXdd5881MS0AAwLffAk8+CXz+eeK1pu7JmAy0PJMgCIJoEbRkt/LGTlVVpiUgiKZDdTVw223s72nTMisLZ//+TEtAEERTZvbsTEtAAEBlJfutqIiH0fJM8jQjCIIgCIIgCF+kc/BQWQls3hz//xtvxP9uyctlCIJg7NwJRKMt1wuICA+VgYyHteQyRkYzgiAIokXQUmfIdu0C5s/PtBQEEZyqKuZRVV2daUkyw9//7j5Nrq4u/nemjWY8/aa+NKy5UlFBnrwtgVmzMi2BP3btAhYtyrQUjLffZvIQ3rRUPRogo1mT55NPgHHjMi0FQRBE46UxDeZ27gS2bUtvmnfdBbz6KlBbm950CSIsvviC7a+yZEmmJckMxcXu/4ttWqYHMZkymq1fDyxenN40myKjR8eX8hLNl+zsTEvgjyeeAF58MdNSsPbrX/9qPMvcGwOmtjzT/U0moT3NmjivvBJfe0wQBEE0bu68k/2mU0Hj3jkNDelLk2j6bNiQaQkIHeKgJtOeZnwQlW6j2d/+xn6POy696TZFamoyLQGRarIEN5imYNhoLHsg8vaT9CPCC/I0a+Jk0RckCIKI8fnnzJtLJFOeZjNmsBOIMomoPNfXZ04OoukxaVLm0pYHfU1hEJhOGtMAOdNGO87ChZmWgCAyR2NqE2wQl5hnksbSfjV2eJnat6/l+luRyaWJ05iWHREEQWSaadOA++5TX0u3Ivnxx8BXX6U3TRlRISSjGdEU2LULGDWKHXvPycQgsLISuOaaCLZvz0l/4gJe757OQV9ZmftENQD4y1/Yb6b10X/9K7PpE0QmISeKYJDRTI8qb/75zx7pF6SRQFWsidPU1rCngxkzgCuvzLQUBEFkisbg9t9YlsOQp1kiO3awPkLeJ6qxUFcHPPMMUFqaujSWLHGfxqgiU0aQ995jv6tXs99olO3Jl26ZNm8GGhoi+PbbwvQlqmDTpsSwTO1pNmYM2yNL9BLZuzdRJoIg0ovYDjQFTzNOpmXVGc327EmrGI0KboDN9LdpbJDRrIlDMwuJfPxxpiUgCCKT6PamSKcC8H//l760TDR2T7NMKGXcWPb99+lP24ayMrbx/Ztvpib+hgbgqafcpzE2Jt5+m/22bs1+16/PzKmZ8bLZeEYOXKZML8VqrAbnlkxNDbBgAe1zTDQNYwc3smdaVpW+uHYtOzzju+/SL09jgH8bUX/M9HdqDJDJpYnDFSexYNfVNb2K3tAALF/u/7lnniGvMoIgEtm3L/53Jjwgtm5NDPvoo/TLQUazRBqTR4zjAP/9r3tWW6Wwhgn35JLlkAcPmVaSudEsU98rPqhTC5Cu/GklbCGj2nQ/E99p1qzEsEzXq0yX10zz6KPAzJnA7NmZlqTxsHIlM37IS4qbI+RpFl76O3aw3+3b0ytLRUXjKKvctvDaa5mVo7FBRrMmjspoNmsW8Pe/N63ZpvnzgUceAbZs8ffcF1+kRh6CIJo2ixbF/86EUqZaOv/CC+mXo7Evz8zEfiKZmuHes4cZyMR0y8uBN95gg10OP7UyVXmjUso/+QS4+momXyYR84YbizLlUc9lyfSpaqLRTCVLJtq3XbvSnyZhZs0a9vvDDxkVAwBbsvv115mWAnjwQdbuzp+faUlST1MzmjVmTzNOumUbPZr9yzSqCZBMT4o0Bsho1kwQK3ZZGfvNtKLnB74nRm1tZuVoTHz1FVn5CSIomZ6tayxL50XDi2yEycSSN5lMK8zp5LbbmIGMD26B+PuLBs3p09lvqoxmqrK5YgX7feON1KRpi6i3cE8z0QCdTsWd5380yhIVvVfTifjOXCZVWDr5+c8Tw9L5bTLdvjdGGosRAgAeewx44olMSxGnMU4YpZLGUAZsybSsqja1paP6Jpn+To2BRqLWE0GhSt60cBy2nPTFF73vffJJYN681MtEEM0RcaDNO/t0dvqN0Wgmvv+33wLXX5/+5QcymVyemalTs8RN1MW/ZdIpX05mD4iMIRrNVJ5mmTCa7d/fCjU1wC23pC9tEbGO8PzJtNFM1b6l89vQEsREeDloDBPmjW0T9ZZ2aFpTMnBkWlY6PZOwpZGo9URQTJv1kUGt8cHd1cWlYwRBhE86N8ouLQVuvTXz+6ip0C3Z4Bt5q/ZeSyV/+xvw7rtqmdKF6tusX88mNNIx2JP3IAXSa4RQxcu9ujKNWB4yvacZNz6sXZtvNG6mGi+jWarqUH193ANRJtPLd7w8ITI9EM8EmZgc0qGSYckS4Oab0y8LAOzenZl000lTLf+ZlpW3qevXZ1aOxoTqmzQWnTaTkNGsGdMYCvi339otachUo1lent70GtvsG0E0V9LZ/n3xBVtivnZtZtI3ofM0y5R869cDr7wS/38mjWZi2kuXst90GBHFb/Lqq+xX3LeKk06jmSr9TMO9QzJVVhuLB4JYTrlM6ZgUmD0beOih+JYfIpnOGy8DQaYH4pmkMbx7fGlzPGz+fGD//sxsC/D55+lPk7Aj0+VVNSnR0qE2VQ0ZzZoJjbUwP/ww29tAZMsWvbypUo5Xr2Z7hImsXQvcdBOwbl1q0qyuBqZMcW+YG2TJVkvbi4EgwiCdnmZ8L0ZxiVtjN5o1ln08Mjn4Vg2805EfYtn85hv2myqj1datzINO3Bxc9Y6NZflSY/KWEMtmpusJJ50HAZSW+kuTH2CRDvg+uKIsmV6y2pior2f7E2bKQ1J1iAbvHxvDXprNkcbUdvoh07KKZbQxGs2qq2m/78YCGc2aOKoZ88a2PFP0NNu2DbjrLuCjj9Irw/33sz3CRPhJnfKJnatXAyUlyae5fj0zzH34YTwsiNGspSt/qaK6OnMKJZF6VEaAMJSzykrgjjviR5ID8Tpq2rD8k0+STzsIOkW6sfQPmUD17ioPnlShKpupMlpt3Mh+773XfF863nvHDnd/CDDv6/374/9XlddMlVteJnr0qEnrwK662r3RvZexO1U6Ah9AqspmpvWSQw+N/53OJatNAccBvvySnYT76aeZkUG1vxovR6k0ANBqDkZTKv+ZllVsyxqj0ez664EJE9KbZqa/SWOFjGbNhMY4w8A9pMS9Uior2e/mze57MyEzHySIDWZ1NTOwhdFAqZRbPwo/VzDSmTd1dfG9jkTEQU1z4frr2f5KTYmqqswPVhoTjz0G3Hmn+ppY177/Prw0161j3qOffebvuXfeCU8GE5995l4mqvM0U13PBJnsr1T9ZiqNR506sV/b5ZFhGIhs955Kh6fZ1KnAP/7hDrvtNv0G+5kum+IASiVLqsruXXcBo0er0+EypcOTlutwJiOzyLHHpkYOFbm55uuZLjuZRCwPjcnTjLcxqZLp669ZeyJPhLcUGuM40IZMyyq2FaY2L5OIk7TpwFSWOnVquW5vZDRrJmS60VGhmv3jAwNdp5nOhoornWLecaOezLZt/mfHVIMw3futW5d4ip1qlj0aTe1yzVmzgEmTslyKzubNbPPWZctSl26m2LQp0xL444YbgJkzMy1F42HpUmDnTvU10Qv3gw/ifycLrxteG6enw3OnsjJxZnT6dLYsnOOlSKdz+beq3c/E4JaXjTfeSJQjHRtGq76DymiVKqOZioIC9puXF0760Wjifqa6ZVl+9qdKpa6zbZu7PngZnFOFuKWDnLZqMi5VsvG2RVVHVWGZOghAtbqiMerE6US1CiWdZMLTjK8QUe3BJ7N+ffOcDOY0hfLfWAxTmdrTrKbGrqxy/v3v1Mkio+pzOI3lu2UCMpo1cUyFN9ONpip9bjSTGyaVgai0FHjmmdTNSqmUCt2+MmPHAi+84C9+P8rt5MnAX//qDlPlydNPA3/6kz85/MA3wW5oiAvN9zXhy3yIzMJPYCXMpOokMdUyvkydJHfjjYmeOzKiwsP/LisD/vMf9ne6lUSgcQ5uuRzPPBNOfFu3Jh4qwNNQGRzS6WmmgsskGs2S4b//ZR5kXt5aMl7LM1NlZN24kfXzogepqu5kGlV9TfXyTNtNodNZl72MZo3le2UCx4n3T/PmZU4GwP0duEypMppxo5xo+O7fX33v3/4GPPhgauRoDDSWftWGxlRX06kPPfooMGaM/f1vvZU6WUw0pbKUasho1sQx7WmWaUxH1orLh3TPvPkmO5WOG23ChsuiUozz8xNlUi1bNJHs7KdqwCAfZhA2caUjLrRqGSuRORpL/W6s8DLMy2uq8ssr3nR4mgHAkiXqcJPRUNyzMZ1KIpdFPDAhE+U5HW3ZuHHsn4jpm6RqOb7KaGYyeOjyxq9cfEm031l8L6NZqsoLrxPcsAu45c2kkShTyzNVnmZduyaGZRryNEuEtyc2p9enAl52xDrEv0+qJsK53i6uGOHlQNwD78UX2a+8TUxTp7GMA5csYYfPNJXN68W8SqfnfZjbhoQNeZqpIaNZM6ExKAi7drkbHJNM8lJE1TOpPtBAtTxTRdANosM6nS6d35a/o2g0k40QRGZpDHW9MSMP/tNpNMvEhuU6Q4RqwMvlE5eWZsJolk7lvq6OKfBTp8bDvNqyVMukSl/VH6XK08y03E41yJXl8kMyXmKp8jTbti2+ZFtGXCbLT2h0nMZ9ymuqZDO1oWGl+dJLwQaPXm1IS9ZXRE+zTNDQoDaapbpP5qjavLZt438vWuSWhwiXzz9nv6LxcuFC1g+ryLROa5rYybRsmaKxGGAbG2Q0ayZ4zc6mgzvucC8VCpK+6oj3VL2HytPMtOdPGBslqzrpdeuSjzdsotFET7PGeKpMS4Q6MDMmo1mqDWiqpSicVBnRdDOjKqOZqv1JZ73mS7zF77BtW7hprFnj9hbie4aIA3OvcpDqOmYa5KfDaKaCpx+Wp1lQQ0Y6lmc+8gjwz396y8b3vItGM9vuZnr/LpWOFFaa77/vNmgHgcuSDu+7xgxf4t2pU2a9QcR9Rr28NcNEtZw4U+OhTJCOZew2qMZWpqWFupVHmUDWpz7/PHV52Zg9tkx6c2OWO9X4MprV1tZiwoQJGDlyJIYPH45Ro0Zh7YHSPnv2bBx33HE46aSTYv+2CdrwihUrcNFFF2Ho0KEYNWoUtgqbfVRXV2Ps2LEYNmwYfvGLX2D+/PmudGfPnh1Lc8KECajL1HEwjRDT0otMdBKqgUmQJYkiqWqwVMsOVemrDjSwwfZ+r1P4Mr18iSti6XRbJvS0BOUvDFLVDtruI5npWWzTfkSq+9LBww+zX1GmBx4IL/5oFLjvPuD//i8epjqwwevbpCpPTGUyneW1fXv22717PExlNEvG4Gxa7mlrNEyV0UwVlyreI47g1yIZr8+cTBjNVN8knaeJAmwv1y++iP+/sZ8KnAkGD2a/mTaaicvyVJ5mqd6DL5VG3sZMY3lH09hK9e2ffDL1MpkweZqtWwd8+ml65VHJkUlaYluqw5fRrKGhAb169cLzzz+P999/H8OGDcMtwlnhP/3pT/Hhhx/G/nU/oJHV1tbi9ttvx4UXXoj3338fgwcPxjhhs4+nn34ae/fuxdy5czFp0iRMnjwZxQc2kFq7di0efPBBTJ06FXPmzMGWLVswffr0MN69WdFYCrV46lMQY1k6FTHVcpgwBzO2nnIqDzbxlLF0doR82azjxDUu/h5NZX+C5k5jqeuNlVQvzzS1B+K3kZWeZAcxc+bol5Sp4EbuxriMKVVtGp9PE5f/q/JddXy7eF+qFVYxz7nhKp2DO55GYWFimM4zJEy5VHHxb+dlNAtDDr6nnjj/qhpw8z2SyNPMLFOq4aeaeh3SQQcBMBwns0Yz0ePP70EgycDrs6r9biwGpXSRyfc1Gc10y/8bCyonCdFzPRWUlyeGyZ7Q6cbsadbCKpOAL6NZXl4errjiCnTr1g3Z2dm44IILsGXLFuzZs8f43JIlS5CXl4dzzjkHbdq0wZVXXomVK1fGvM3mzp2LUaNGobCwEEOGDMGwYcPw9ttvAwDmz5+P008/HQMHDkRhYSGuuOIKzMvUcTCEFXzjUdsBWk0N8OGH/p4JA15sxfhffTX89L0UfpXRzGuZaxgd4g8/sD0GxH0HuFu9aga+pSkdjRX6Dnakyghh8uBSeWiGxX/+40+RUtXbxjKQTJUcKm9Y1XfiJ4fqSHU+qb6JqrymanmmapIqbC8QvuTGtk9XLSBIlacZr5sqj5j9+1XpR9LW7nr19yqjWarLq63HSKrwMoJk2qjXWBC/TSYNEroJiLB1ybVr3XHx9t/W06wxGm3CorEZzXheNyYPKo6qDIn06JHadPk2ACLffJOaNG0xta/Nud54kZRav2zZMnTq1AkdOnQAACxduhQ///nP0alTJ1xwwQU499xzAQDr169Hf+Hc37y8PPTu3Rvr169HQUEBysrKXNcHDBiAFStWxJ494YQTYtcOO+wwbN68GdXV1cjNzU2Qqba2FrWSS0yrVq2QIx7X1YSJHii9/DcSiQCIoKEhKnRIiWHcPhpNqabD0uDpssYxC47jIBp1DqSfKMtHHyU+y2DvUV8fNShoqveKxxWv3In3/fOf8TAe/MUX3I4cl1n1HjawRicLjhOVlAW3LPwbimG7d8fDVN+xoSGa9EavH3/M0igpiQrHcmfF5OSy8PcX88RxmNfLSSeplz8ly+7d7GQjvtwgNaSjToSN/3LY2JDbsORwf0OxfjU0sHyKl18gGvWfdw0NbsN2vD1IbHO//dbBkCEs/i5d3PWa38Px//76tk7X/kWjiW2u2DaLYekhsX0R5+6ClAmxPLGu391Wye+qS5Pt46hqc71xHPbP3SYnfhtV38zTVZVX8T2Swy0LT0OsDw0NTA53HYm/UEND1Oe+nqo+XdV/sT9qaqLIz1eXTbEM+/02Klq3Zu9aXR1FQQELY4OlLPz3v8BZZ/H2hN1XXp6N+vooxPwQ5QsTVXlV1WFGauuwqrzGwxLLid++SaUPqmBlxTtPRF0qjHKSCsLt/9zwb8O+gQNVeU0H4rcR9fd4G5P8t9mwAZgyJQuXXhoFHyLW1iaOGXieuMsmky0Sadq6lIyoY2Sy/PN6KH7nrCwWVlsbFU7PThz7JKsPBEFVXkVdEkhVXqraTbf+KoYxWdOTJ25dmr+/6ns1D7IsB9SBjWbl5eWYNGkSrrnmGgDAMcccg5dffhndu3fHypUrceutt6Jz58445ZRTUFVVhQKumRygoKAAVVVVqKysRHZ2tssAVlBQgMoD7i/ys4UH1hNUVVUpjWbPP/88pk2b5go777zzcP755wd91UbJpk2bAAC1tT0BtEFJSQn27WMm/Kqq7gDyUFKyCQUFvGD3BYDYstfUwNIoKdmEPXuiKC/PBnAw6urqUFzMznbesaM1gN4uWXbtagugCwBg27btyMtjaxMrKroAaIstW7YhEtH5x6reKx4WN5qxsB9+SAzbvXsviov3uMIaGqIoLma7VvP3qK2Nv4cNO3fmAejuil98Vy7z/v0dAXRwhdXU9ADAyndJSQn27OHTM/H38DOAiXdc8bAFC/j32o7Wrfl60L4H7o/EytjWrbkAeqC8fD+Ki9mu2hs3tsErr/TEtm27MHToXntBLHnmmV4oLc3BnXduCD3uOIllZ9myQvTrV4XCwkY4HQYA6AvHcVJcj9MDL1/J4a7XrKNnYXv37kNx8S5UV2cBKDoQtkeo696Ul2fjkUcOxi9/uQMDB1YAAHbsKATQ1VWv9+5ldXjRoghOPPGHA2GdALRHJMK+V10da6s5/r+hua2Tw3ifsHVrDoBeB2TfieLiSmzfztomANi1aw+Ki8Ovw2r6HvgVy3Df2NVkyvWmTZuwbx9rq6uqalFcvAUAsGtXKwB9XPH37t0DJSW5rrD9+9n34nHl5dkrhXPmdMHSpW2l9oq918qV8X64vv5gANnYubMUxcWsPNXV9QbQGvv2sfa1piYC4BAAQEVFOYqLS5Vp7trVCk891QfXXrsJ7dvrN5zcsSP+rfm7lpW1A9DZlU979rAyHI1G8MMPPxzoJ8VvsxE5OX4GmOzZjRs3IjfXcYX98IMYFw/bjH376mPfEABKS3ehuHg/tm5tA6DngfdOvrzW1TEd6eOPyzBkCFsbU1bWHkAnAPF8qqjoCqAQdXVZ2LZtC7juwikpKcHeveH2FXV18e/P5diyJf7+W7ey/nrXLvYNWdg2tGoV/hoiroeIOlh9fR8ArWLllcG+YUVFJYqLFWufNTADobduWlbG9MZu3Wpi5XX37vj7b9rE6lg0ymQDgJKSzaioaLwbsYbT/7mprOwGIB/791dgx479ANwuMunSG0Q9f8uWuH5ZVcXK0/btrB9KBl4nli/fj5492b4wu3axNrysbDeKi9mSl5oa1u9WVlahuJiv22dlLhJJX56kg8rKgwCw8fKWLVtRVZWZ8l9ZycZuJSVbUFPDXIgbGnoByEFxcUlMv25oiNfXsPUBE5991h6DBpWjbVsmx7ZtbIwDAFu27EBBQRVKSwsAHHTg+nbk5lZrYksG9q7i2Eo1Bk1HnsiUljI9FwA2bWLfrKqKtS+RSGrar0zSt29f75sQ0GhWU1ODW265BSeeeCLOOeccAECvXr1i1wcPHowLL7wQH3zwAU455RTk5eWhoqLCFUdFRQXy8vKQn5+PhoYGl+dYRUUF8g9sJiE/W35g8W9eXp5StssuuwwXX3yx+yWbmafZpk2b0KdPH2RlZSEnh1mAevXqjU5M34uF9e7dB+3auZ8vKipKuYx9+rB0d+9m/2/dunUsXdHQw8M2COOMrl27gYtYUMDe46CDusNLbNV7HXxwUYI31rZtRTj+eHdYu3YdUFTU3hWWlZUVi5Mv4xTfwwa+TLV9+/ax+H/4IVHmDh0iCWF5efGwnj17o2NHd9y9exfBT5G+9dYI8vKAe+5JHPT06NEtIX+jUcTKGF++2bZtWxQVMaM1X+Pfpk1HFBV1sBfEEjZwBNq1K0p497ARv+mkSVk49FAHt9/e+GYf332X/UYikbTU41Qht2FhUFlZhIED3W7khYXtUFTUFmLXo6rrJrheUFraFUVFzNhdUsLCOnSI1+v27RPrcNu2LMxx2Pfi7bJ8n19Uz6nCeJ8g5kmXLl1RVBRvm9h7dEhJHTajLsNB8kQsT3v2sPKUlZUTi6tN3E4ZCzvmmPh3PPjgIkQiQLt28e/Tu3cf135fXixdmpUgf36+g8rKCAoL++BgZgNCdjZLo1OnLrHyxMMKC1n7WlUVj7dt20IUFbknHDm8L6mo6IUjj9TLJi435PKtXs3+37p1TkJ5BYA+fYoSJmX69DkYinlKT3r3PhjSnKkyru7de6FHD/e+qB07dkJRUSfX0s327ZMvr5EDM2cLFnTB2Wczw8u33/L4HWU/fNBB3SHTq1di35ws4vfncohLmg46iPXX4qnb3bp560he7N7NTpoVFn3E2iwxfl5eCwri+gAnPz/fVx0WF4WYnuPe7FVVOQllGAB69eqD9u2BVq3i36tHj17o1s1alLSRiv6Pw8trXl4BunXLT7ieLr1BfK0uXeL6JfPwBLp27Zp0eeWT3zk5rJ8HgNxcFti+fUcUFXV0pZmbm5fw/llZ6cuTdCC2V92790D37uGWL1t4X9qtW0/0YfNVsW/To0d8rMrbEsBer0mW+nrg/fezsHlzR9x8M9PzxT3LOnc+CEVF7n1ReZubKsSxVZystOWJCq4fAfExqFi+UtF+NQV8G83q6+tx5513omvXrhg9erT2voiw6LVfv354/fXXY/+vqqpCSUkJ+vXrh3bt2qFz585Yu3YtBh9Yi7V69Wr069cv9uxa4TzaNWvWoFevXkovMwDIyclpNgYyE1lZWcjKynItP+Tll6/JjkSyEoxG6SjkTLZ4p7Z9e+SAa657LTSXxb0+Oi6zuHzDS2zVe6nef9OmLPzsZ+4wx4nLJzydEKa+zyRT7K/Y36r3F2VU5YnqPWzyRGT/fvZPJX92dmJc0WgkVsb42vasrPj78z1h2H32eaJj1ChgxAjg179m/+eGupdfzsK117K/p01jxz9LjqRJI5ed6mr3O23ZwgZU//u/4abrl3/9i/1GIuHkeabh5SsMeB1x7/3D8sldl/zlHTcciHWfp7F/v7ley3VY3gci6LurnlPHpW83vNuX1GP/HvbxRSLs+S1bzH2OCH//MPJEjL+wkLVj6nISDxP3zZLLq6of4nA1p6HBLKto/JLfv6EhsVzL8sUkMeTJkiXsxD7VZC3XB6TQwGXTcZIvrwcdxIyO/frF358blw89VJ3n0ai6vKay7qRKH1AxcSLbkFrsX23Kq5vgfZOp7nOj4b596nodZh1OF2H2fzLRaMRlkBDTTAfuQyoSy06Q8nr77cBvfwscdZQ7LrFPj+9ppoo/sWw2F11KBSv/makAqrEP74fEb+PVN/uVf/Ro4PjjgQsv1N8TP9jMvi0Jo301IY6tOLrxZma+qfv9I5HUtl+NGd9vfO+996Kmpgbjx493GcY++eQT7D7gWrRq1Sq88sorOOmkkwAAxx57LKqqqjB79mzU1tZi+vTpGDhwIHoc2F1v5MiRePbZZ1FRUYHly5dj0aJFOP300wEAI0aMwLvvvotVq1ahvLwczz33HM4888ykX7y5oDqhUXVqWiaw3cDea0PboEunbdP3yqdkT8+cPdvfc+KzunTD/Laqds9r42HeAYa1qafjAOL5HtwoJx5S8Pnn4aTlhVzeHnoobrAiGhe8TLZlE83GDda9qK9nG8SL3g/xvVjiYfxvr5MsU3XyoC22JwE3p60pghwk4/ektf37gY0b9dc5qhMaVf216SAAE7yNVG2gL6LatNdr03+/efLUU8CkSeprtn266aTMsOtSF+bkh8MOM8skkq564pX3qcoTfoLbZmEHCpuTgpNJW6c/lJW58/vjjxPvyfSJoo0R8Xs1ls26wzoIYPdu94bpPC7xPf0eBNDcxvyNpczzfBW/PR8zqDbaD4uKCuC99+zuFVcXerWljUV/yxTNSUdMFl9NxtatWzF79mx8/fXXOOWUU3DSSSfhpJNOwtdff43Fixfj/PPPx0knnYQ777wTl1xySczwlZOTg/vuuw8zZ87EKaecgqVLl+Luu++OxXvVVVehsLAQI0aMwJgxYzBmzBgccsghAID+/ftj9OjRuOmmmzBy5Eh069YNl19+eXg50ExYvz7+dyZOJ1Gd+JWMgUokTKNZEKNcqhsvlXLjpfCkWia2OTX/O7VpqYwP/P3EpSqpRqdcNbbTfqRzTlLO8uXq033SzcMPA/fc4w5LnMFOxLaufP01MGcOP5iEoTKamerD4Yerw/3WoauvZoaIZLA1QjRlrrwSePXVeFsVZKLEr4Ho3nsTy6EJr35I/ia2Bk2bsg/Yn56ZztMIbY0wqTLy8vhUxnDdACpd/YDXCbCpMppx1qxJDLMtr35RfcvaWmDMGNYWc0TjpgqV0awlk8qyum8fsHWr+R5dvQlqNFMZyEztum371ZzLSyb7eNXpmekwmqlYvTo+IQDE80WUI53tq4owx71hYXr/SKSZKJAB8LU8s0ePHvjyyy+V144++mjcdNNN2mcHDRqEl19+WXktNzcXEydO1D571lln4ayzzvIjaovj2WeB445jfzcWq3gQOcL0NFORTk+zsPIkE99TzHOVwsIJQ+n44gt9+pkwmsmI+z8BTLY5c4AzzoCvfeWaKo88wn4PbF+ZMfieQyrC8FJRKXO8HIr7opkUcnEPyWSUroYGtuQtbBrLLGqYLFgA/OQn7O+wlE9TnpSV6a+J8LbRawAnD/TSoaybBpe68KCy2H6TMOrw/v3Ms/vCC+28SEQ5ghjNUvF9bD3NUiWHynNRZTQLQy9TvSvfg+/NNwGu9vMBt7idj87gawpr7ojfJlXvP348+0a222Q0NACvveZeSeBXts8+Y7+qVSkqQ5qtpxkZzVKDydMs3ZPQ99/Ptg248072/3Q6biRDpo1mIolGs8zI0RhoZs6pLQ9T4U1no2nrzeDVcTVmT7NU5WcQr7IwZVEPYBK9N1TfKYzGk2/y606f/aqMZlu2JJ+mCV3e8nxauZIp9LZu4E2ZxtRxmzDVEdsBN39XcQ8o8Zv7iUO+L5NKl8lAk274JuN8Y/wwCOIpnA6vKpPHtWpSwq9Xla2MQTzN+N/ipvCpMJrZfgfbtN94g3kuex3sZetBmo46XF/v3og6iD6SKqOZKf9VS3yDehCJmIyGXvGLhlIymqUmDfFgER1y+/bOO+7rfmXjz6vKvEovtTVwN+flmZks//ybNAajGeDe1N5LH/DqG1NBYzHUiWRaf22sNLMmo+VhUojTiW2aXp1eY9zTLMz0VWTaaObVYIuuzWGkX13tVsxV3lqmPXfuuit42ia8FHN5r0CxIw6bxx9nS88yzfLlmZbAjOzN4zXDbCq3XJkTFWnTQFpciumVViYVWC850qkQ8fN7wjC2c7nr683LM5M1qgWRSRdm400VdrkJYuTltG4d3zstzPST8SozfU+V4dskk8qTTJdfqRrsPfEEcN115nSC5FNQvPI8zElEU33hJ+zpZGvsg7qdOzMnV7rTnTsXmDxZL0uyS/JUZa66Wn8feZo1Xk+zdC/PBPzlRaqcJJYv1++N3BgN/Kb+pTnXGy/IaNaMSWdFDOLN4DVYMS1v8SsTJ52eZsnkv5dCnM6ZjxdfZL9heZpdf71bwVINynj8XoOfMFF9Z9EDgHf2XKbPPwd27UqNLN98k5p4/dIYO3MVfgfmKlRlmSvmhx6aeE08wNmrzQszH209o2zzJJ2Emb6tN4Ht8kivePzKpPI0M5VJv8szk1Fc/ZRX273TvNISURm5bfc0M8Hz37bf8NpvSWVUCxt5YiLTRjMVpm+YTNqmJfFiPti+c2M5CGD/frYc7K230puure4dNq+/DqxblyiHjqDyic8tXcp+VXXdq+xwmtvgv7FM1KnGbiqjmZz/YcvM07edCNXJEEZ9euQR4O231dcao57d2CclMgUZzYjQMTUAXhUxVTOaqvRNYeJm66lu0Ly8BcMc1NkbEhOF8vII9IN4+pzJRT6de4apypvoEccVMTEf5P3OUsnAgez3wKHDaaGpKJW2nismVEYOfnprfr5dWl7L3VQy+8Wvl06mDfCqtMJIU7X3UpD3CzNPxO+vGjioyolpeaZtX2rC9H6qwaUsi2mZadD0TYYR1bO2eaLbf3PzZveyMpXRTnXquPh3ujwkMr2nmSr9VOllqkNtgizTVU3iZXIgyt+ruDgz6adyeaaMV3kMQw5Vu9m3L/tV7SNqq582Ff0mCJks/7Z7msnf6dFHw5VDpbOr8BoXOQ77t3x5avK1MRrNRBq7fOmEjGZNnMbS6AfxfrBVdMIYwPgNU+2N4ddQ5Hewnmw8NixbFv9b5eFl8u4LQyFV7Uemev+f/5z9HjhE10g0Gs5MiNcATbV8L517YvC0+vVLX5qNpX3xIhlDPYe/q2jQtR3Iq+JP1UDXtB+UbZrJ7NfhOOZDGTjV1WyJki6OZLE1YqTT08y0ZEiH/E2SGXA6DtvTS5TDxsikS9dxUuNpZmM8lOUwxefF+PHAffclxtEYPM1kvNIJK090iHuM2kwQJNP3qoxmQQa6jc1olqyheefOYM8G1VWTwasdDqN95R7/oleZ33bNS89vDgRtExyHbQfCD1xIFpXRjIeJ5WX3bvdzYW8HEmS/Ul2bt3Qp8xb7+uvw5LOVKROY9OamMi5IBc2syWh5mLyUMlURTZ2U1wA2E55mKkTDRKrzMUgDFFQpEpVUlWIXPyraLFTQ9FXLFVSKCzfo2aQzZQpb8pksXoMR3tmH3WG8+Wbj2L9MRWPvHOUy7GVIMsHvX7gwHmZrjPMarIS52bzJaOZ3T7fWrf3L8dlnwMMPA6tWme977DG2RMl2qYxfvE75k9PUofJOCiqfqFDbLs8MehCAqm6WlAD//CfbY0hOU8SrbIjXkzUAqPBrIPM7GBTz7fvv2e+2bcHijUTYhXR5mtnqTWEbzY49lv0WFNjJFEab5uXVJseri19lNMskcT3K/7M7drB285NPzPfV1QHvvuv2dhf7oXTp/2I77Hfyxhb+Xbt3T4xDVTdsDdyNpbxkGpXukwyq8i9ua8IZNIj9pvo72PRzXmH8BHXVHs/J0qZN+HEmi6kO8z6xJUJGMyIUgihwXp2pnwGW2HHbnlpmK8eePfZyeMUbhDCVH9X+D6olRao0vY77tkF1v2mjaZt3X79ePWMdFN0+ZanyNBCPYjcRxh4yfmkqSqUpb2zbJr4E87DD7OLwM7gPY+BgSsuv0Yz/ivuy2bJ3L/vlS1d1cGPF9OmJ6YfpGepFEE8zv/A2rGfPxHhtJ4L8GohU17iHmVebYjvbDiTvaWYyuIRtNFN5SquW0PM4bPbN4nGmy2hm21Y4TnLGGV0aficzw65LtkazVLWvYRJEBl5eN2823/fss8ArrwBPPpl4TTaa8fYpFXki1iHVYRphfJuTTmK/ffokxuGl55vKdVPRb4Lgp00Iu1yoPM14Gfzqq3gYNxYF0UNMqJbac2zLpu3kVTIcdxz77dw58Vo6t6bxQs6n5uah6YcW/OpEmPhR9OS/dTP8foxma9YkPrdypZ1MXg3iww97p6/CtiMKsqdZ0Ebca4PkuNEsok1bTD8MpYPv0XXUUfGwMAfXtojvyo2wXsvYMrFBple5evvt8E4YbexKpcnI63dQx+vGwQeb77dV1r3C02WEUKUptr1BJwNsjchffKFPPxmS6XO8nvFbrzt21Kdla6AKQ1lXed+Z9sjyMkKIRqMwB1a2ee63vKiMSO+8o4/XxqCqWlakujcIts/rvlOYgxeTwcPv97LFFK9fveiVV4CtW/2lnyrCaOdU5VaEb7UhTl7o2mYbw3dNjT/DsOnbhW0083uoitdeiZzmNvgPWt7CNprx76U6GOd//9cu3WRObeaT6F79XJDDZ8LMK1W55gY0UQ9NNTt3stUuYvsp59O+ffEJ0+zsRjAjkSGaWZPR8jANatM50+bV6Nh2pkH32lmyJDFMtXzISxFTyRFEHj8EMZoFReyIzMszzXIENRaZ3lWcWVGVoTANOGENrmVD28qVwRVCFUEG4f/6l3rvuCA0xlNzTPtG2SrVKpIx1Kqe9WrLklVwVfXRNk3+m5XlXw7eRnz6qb/nVHIkQxADmMkwkMwASjWzblsmbe5XoWo3bDdW90KUJZWnZwaprzbvIz63YYP+uo1npurbhkUQQ5yYd8l+G1W8XtfkvEtGV0lG95Lbv3ff9X4mXSRjNPN7eICuDPnVnW6+2b3vnxembQJkWWzCbNLy2gNRhelbNPZJwWTwk8dhToKr4hURJ3ZsJy+CYmsAs+mH/Ewe1der9VRd+uL7i3tKpotNm9jvN9/Ew+T3v+WW+H6/ZDQjmiWZMpqpwkzeEbpTGf0oHosW2cmkwnZQEYZCqELlaRfEgGOD1/LMeFhi7xmGIc/UKXu51Ic5K2hrNPMqG+L1Tz8FHnzQvZG8DaY8MZ00lA7y8tKfphd+T030azRLxvCRaU8zv3uaBTGaderEfoPMhCYzmPQTvy7M9M1UG6DbYjKs+G1r+P/btg0+uBRJxtMMSO1BACodIUg7zDEdZKNK38YjxeRpZmL/fnVbJRJk03/xmu372qBqQ2Q5xL9Ttbea6iCAIO1GJo1myXyPBQvs7uMToKpDP+T0xTq8ZYtavtraRANzcTHzXFeRjOE7qC5tm5ZtmmQ083+vn/hStZ+pbfp++jldHID/+vzoo3b7LPstw6mCn0Cr289Xfv9jj1XsedBCIKNZMySTyoKYfpDO1BRfUDmC3JeqPOSdtG4NvymfRIUmFUYrMV5bT7Mw9jQzDYxU+62FQTKDa919O3awX5sZJluqqvRypINMLV+ortbvU2cymiXT5iSjmNt6eqnS84uqviSzPDMoyXow+WH/fmDUKPc+P7bttl8jQBD5VMsCg5Yn/hvEoKn6nskuzwzLaOY1CAljwK0yIvGwDh3MaaniF9+/ocFfZbn5ZmDGDHdYcbH7hDrREGdr+I5G2XNlZXbfpqREb/gQMXnu2OxpFqS8+q2vfga/mdSDk2lfbZel8W+vW5Itvj+Xo6yMbd3w/vt2aTz0EPNcV5FOTzPV9+eTk8kY0pqb0SzI+Eq8N6w6Y+pTbb9NqvY99asj6e4zodoaiOPlHJAJoxl3pigrU18XZfnRjxz07RviIKeJQUazJo7tcsNU41Xpg2wQmmzjkUwHHqSjLynx9gwSFUyOrafZQw/Zy6LDdgDp1XE89VSw9FWYOg4xzGs/tiBpel336szD2FxWNdDjS1VV+5Wkk0wNPK6/Hhg7Vn1NHGjKeRdESTJhq1RxdIaXMPMxDE8zcVDnVzadMrthg/eBHKp6bUNJCXtWPHkrSJ6mSklW1WG/RiC5DCdjhBDbIFvvN118yQ4sTUYzvwOYjh3tjGbiPaefzn4HD/aXFv9b5Wl20EF6GUSWL3f/f+JE98EYKqOZiC6f/u//2OmKNkaz++7TGz5UaYn4GdRmZfmv134Hy03NaBaE44+3u8+rzRdl4OWEH2pVWmqXBj8p0NaDNVV7mqni5dsDJGM0a857mgUxmoUth1ffoyuvYaVvGluI4bZlKAy8nANSkaYXftJvboZmvzSzJqPl0Vj2NPNK3zQrpTsIQKzIFRXA66/7U8rCNpqZ8rqyEpgwAXjzTTvZxPhtlyGE0YjbDvRVBwHwv+vr1YOzoNgqOqlWcIJ0nGHWMVHB4Cc5ijM/OsPQd9+ldwPk2lpg/vzUe7z5OcXUVK5feMF8n3x/kDbC1girSs8Gr7aU54lfo5mXYcZx7MpWNApMmgTMnGm+L2h94QZzr+V0tt8pjHodpEzYtO/itwlax3r3jv8dZPsB1b5ZQWWxzXObAYxXeVUZLwsK2K846WLb5+iMZuIpfgDzgFS1V17LL8U4VROLOrgng43RTOWJ9MorwK23qu/3GtTJA1Hx2/jFVA50eqFtPJkkmT2i+FIpL1QGAY5c7mQ5/OaXrbdqqoxmtnqxTRwiLd0AwAlbl1MZzbz6PPl6MnU6mXGUrh/45z+TlwtQO1akykDnF13b4+Uo0JIgoxkRCkEGJiaj1rJl8c39HQd47TVg7lx/G5yH3cGa4B4WonxB0k/nLIdfhYHL4eVNYpu+6ZpKIczEnmZeYSqZ/earalDKl++qjpOX+fvfgXHj/KVpiyqfPvwQePXV+Old6cavRwRf1mz7XVTf3Hbpnq7eJluHgyp6pngAbyPE11+zsqVaGq6qB7bGW7/5wZcseW2SHSSfTYNP27RMe0v5/V78Nzs7+OBSJMjyTJHG5GkWxGjmx0CmSl+1X52cJ+PHA3fckfi8V5kS4/RjmODL9k3tnined9+Nn4TmlZb4q7pP7PfC0FX86gjy36awVLFtm3qD8yDwZ0XPSNN9KsNENOqWQdad/LZ1qv38bE9bDdNo5nelhBzW0OCe2G5unmZBjRtBdVc/8ngZssL0ttK1Ubq/bcJqaoLJImO7PDNVxqmKCnZS5g8/JKapG9uIfP99y7Y0N7Mmg/CipCQ18Xp1jH6V5K+/doepNocNIlM6njXFoWqcgpyeGbRB9at0hN2Ym97Fa4Y7VQpOGIM6XTw2qI7n5t4RPXokxi/mibhcTeaDD/zJoUL1LtyAwZdupBtV3bEZwHl57pjKvFcdTMZY48X69Wpl2La8moyAXu3p7t3sd/t2u3i9CNqGtGnDfsUTkW0HYzZ7ROnCTKgmIPwOIE33p2OPKDlMVZ/CPKFRTt+vgcarvCZjNJOvcVSeZl4nqakMGqb7dDLp6jXfN5O3wan4NjqZdLKlcnmm1/ul00CmYuxYt5dtGLqnV1m31ZvEuILqKCqjmW27Gca3UaV11FGJYV71uqQEmD07HtbcPM2SNTKFBf9efg5VSmYbAR1ez6dqWw8VvKypnA7CTsvEtm3sV9xb06tdyHT72pggo1kz5o03EsPmzk1NWrbKn4jJDV/spB0nfq+ffa2S6cBT1UjYNk5hN6KFhfq4bNOyNfhxiovZjAbfRwPwv1+JeH+q9jSzHXyrZArDqKjyZOBGgp/8xCzTtGn6eLk7uS2Vlcxrbf9+c5r8RM316/3FHxamb2MymtkeguF1zSZ9gJUDvx5IMjt3An/7m3sjb1VaQfaMBLy9Q/iJkl5eFCblU5W+3zaN1xHbfam8CKN9DWKgy4QRwtaDiacpX0/XQQA2HqS2hkTb2XwvOcX39+OlbVvO/fY9fuLhmCabxINmTN9JzjvVdwhi5FVhW2+C9OF+2bzZrb+YEL1gbQ1fjsMOi+ADWcC+znfrpo6PxyG+v6xjmNJQtRcmo5kqzOvbmNLfupUt9Vf1OWJcbdvq09KFyXWhKRsD5s1zGwCB4BN5yUyE19UB69apr/k5TVp1gFbQ7+N3YtHr2TDbtTlzEtPyu3oiGUyHFvnx5G2pkNGsGaPyQglrZmXzZv1Ayo/yJaPr9PhzfryNwjaa8QGkLUEaHb8Kvi22g3c5/70MWSa+/JL9igqhn28uh6V6eaaXN0+QeGww7ddkO+AOg+XL2f5oXput83rw4YepkcMLUSZduU7G08yPEm6SjafplZ4Jrkjyk1kB/15lJsXRy2jGyyY/qUwndzJGM68ThcX7/XjuqMJM1/0OOGw9zUxymoxsQYwQqokonmfi6ZEqGR1H7ZHi5VXlRTL1Sg7zKq9+Pf5syksQo5mKZMqmiF+9xtT3v/JKYhw2cojvv2kT+02mvKqw/Yby3/wQnTD6yfHjgb/+1f9ztmlXVQEffwy89JL/Zw8+WJ9uMkYzlYHMVA5tJwpkHnuMTQjJvPUW2w5g587EtILoW6JM8vNN2Rjw2muJeygHNXQkkw//+hcwebJ7+aJN/yaHiR5YyfY5cvxA3Gveth9IlQFJtULDdgwWBkG84ptyPQkbMpq1MMIyPIwf7z4FykvRCqroyc/7UVbDNprxzdlV+J159mqQuDeP7rrfRsykONsOFv024ioPBT472qlTYrxeMx+pcqU35a+tEQKIn3QZ1Gim2rDZZPDwwm9+8WWXQTZbTyc230s1gPPyVLQp+7ow3XWT8meTj6p6azvD75VOJGJvhFiwwCznV1+Zr8uyiGkWFrJ/QY1MfvBb123jCjopIT7Pw7ih1HZPM68tF/x4Iara7FR6mvlR3LksQQ1EftPiYcl4momoTsq0lSmIcY1jOsjBy9NMV+/4BMTSpfFTvVPpacaxGciGvZzYay8jL73AL8k8q4tD3gLClDcqPcQmDV2YrrwuXar2Vld9P791Q5emqNu0bp15XSZsgvaPyeQDP4lVXh2kC/NjmAmzz+GTvUHSFPPVa+IOMOuath5eqmthYGs0E2lu9SQZyGjWDElXARf3l1Gl76UkqwxhuiWbOk8zvuyQww8PkNMy4bWnGMev10iQMP73IYckhqkUXFtMgwkVpgbbtmNWeVDxZYe9eiXG4dWIp8rTzKbjkv+Ww1auBD75RH+fCT4zLs60eSl/qcD2hEIbpSGV2Liyq+o0N0zs3QssXqyPw8vj0M+3MQ3g/HxHr7Lp9Yz8rLh01MYIoYpXfO7VV+1kkuUwpaMiiEHX1oDiFY8pXi6/aDy0+U5yef3qK+D++9nftssz+f6HurRsvXlEOUTZxW+zaBHwxRfeRlRTGqJMfgfBtkazMAfcqjpsu6eZiGiMsDVM2PRDtoZvVbvNJ0pUaerCuNEMcB8mEOQgAFNaQQd16d7cPZm2nS/p9DpRz5Tu4Ycnhnl5mnFdRYXX5J1JTr96kwlbHU31jC598fnmdggA4J3vOoI4JXBU24vwtL2WZ3p9G9M77N2rN2j71ZH8lGGVJ6aMXycF03cLW9/3a5ROhQxNmWbYbLQs/DZygwaFl7afSuXX60vs0BxH3wjK8T71lDl+v0YjW2wUTZtr4nuGNeC2ldMtR2LBsl1iy7FddijHrwsLc08zEb/Kl8qoojqJxhZuNFO5t6ez4zIpPyKq71RRAbzzTno6V5u2RGVw4APup54Cnn3WOw7dNdW30Slf4uCaX/OzfEhV5mxlkq/JecI9zUxwI/fPfhZcTq/7eFtnk//JekGaynM06s9LRfWuS5fapaUrr2vWxMNsPc2CDCR15cm0p1k0Crz4IvDMM+5Nz70I2paJZYL/2hqIkpkA0RmI/Ay4bfWBZMK80pNlVX1zsU+17fN4nI7j3rIik3uaybKZroeNqW32al/nzWO/+/aZ49uzh+0PK55iLKcl/q36Xrq4ZWyNZiqDiB9PMx0qg7TJuGFb11WGxLC9eDJNJjzNTHtkNTQAs2YBEyaYdRQ53GZC79Zb416uuri89FfbNk+8bjPhodKlTenbTASHhZ+JpbCWyTYnyGjWwhCX/YWJqoOz9djQxaMKk6+bKrOqIfJ6fz5r77eRsB2s2XYcqgFMMqgGE3JYMoq+CtNyvyCDBdWect98o0/fhNe7hlVebfBrNEtVB6YycqpQpT9rFvu3a1f4cpnS15Vh1WCFD+r4Mlqb+G0Vc92zKqXDjyLipcDZPMsJYoTg1/imyzqZ+N9es7A6A06QDd5N8evCvOqVnzbXb5tvukdVJrzyxG8bZfNOqTg9U/Xc7t3AnXe6jQWynKry6mWsCvv0TPH9/Qywk+kr/PY5ySxZlScndemr2jXHSd5oZlM3RGyWZ9q0r+vXs/07w8CvXqTCayDN942bNMl8nxifKk943y625zLcKGBbDm2Xm6meVRHGvoS6tNKx3UcmsS2Dd93l9jY06U0ie/awdls8HMPUPtbVscnUkhLveqL6Nl7fdu1a83W/banu/cX7uL5uwqRL++2bwtb3bbcM0emvLR0ymjVDUl3AgxgKTMszbeLRGXZsl57wTVPFpSymZ7wUNlNaYYQB5g7M7zc2Gc1UcZoac9VgWYWp47BNS6R9+8Swxx/Xp28iSPqm+1QnwNrCO2Gv04NS1YlyVMqP7UDRdrlRGPgZSIonmvEw3SDS1nhsKxNPUxfmxzDjVQ5MXqC6Mmqzp5luubycPq/jtgZXvwN/fs3L08z0rJx+sgYi1T2nnWaXvlzW+Ptv3Rq/19YIEWSwrssTsbwuXswO/OH5ZLMsxZSWWDa/+opt9L18uf5+sWyK+WRqk8LY00wOS4WnmV+Dp1yvxUMzvOqwaVBrm0/yfTqjWTTKDg258kq3QVSHmNb+/ewUPj8GkqCHNPztb+yk6DDwqyuqnlUtzxSxPQHXcZje5bU80zR5bLsHoo2nma5smsqrX08zm3LC5ZDrcHMzBthOrm3Z4j4ExLa8LlnC2m3R4KzyquLx+fEMD9Og6Vd/l/th1X09e7K/O3f2Tl/VD/Xvz36POioxfZPeFnYZta1fQPNcwpwslCUtjDAqoFfj50chBZKblQrDkBUGth4QXgYa2wGc3/ewmV1I5ruq8HsqpNeMJf877GWafpQvGduBiAm+L5/opZWMTBy/ioetRwVPX1Qe0ql82pRhriSL+8TJSrJoUNPF77ct0w24dTJfeSXbI0pHRQX7tfV0k+MXf0WDg+PYzSLyuqvySFHJZGtYUeWTSQ7bvsLPRIxqKaKfmVWVLF7GRZ1s/P1XrnTLF0ae+CknYhvAlzDzsGSNZl7XVAq74wCrVwMvvOCWxQvbJTBecoplws+gLtnv4BWP6CnE27oXXgD++c/E+017molGL1N51Rl5Rfi3uece9vvtt4nxyIhxPPIIO4XPj45g+jbp6pPC0M/ESSfVAJb3Y/36eafB9SOVkZeH7djh3lJChVc5NE2Em8qJLj6OaY/hoDoql6O5G838vI+Yz1zP8IK3IWK7Ybt/F0dXrnSrYDZvtut7vNoL032y3ig/q2trdKgMiXyrC5WOkE6jmZ+88bsXdkuAjGYtjDAqYFiV2bYz1TWsXjIEHWhGIv4GX7prfmcbVXKYrvshmY7NdL+Np5nqBB1bF2Wv9IMSZABj8ubxE7cO25OGUqXomZY2iaRaDi9sZOLKj2hg5WH8PSdNYoMHXRy6MJMc8nXT8kyuUL33nj4OVZlTpW9Th+RZf5s9zfhgzmvvI/4uKuXWa2DO88mmPAXxNBMRn5EHkqLRyCZuv8uSbL7Nsce65bNp62yMLPy3tpYtA9eVJ90BGkDwA0BsjDGq+/igds4ctyymb2PaXydoveZlP8z2zrbPMw3qODzso4+ADz5IjEOVJ0OGsN/eve1kUskBuOs7l4Nvy2A6bVzFzp32cnBMEz3p6p9M3+3rr80Dfp6P4uSO6l24F3qPHonX5LKuMpqp6vC996plsi2bNqtHgniacbxWKPjxDG+JRjOvvkNs6ydPTgyzTcfU5qqeUbVf8vPiM+PHs60//MgUtLyaPM1Mccv43dNMxKQ3hIHp/VT5QbihLGmG+DXuhBG/7cyu34EeD+Ph69a5r5kUedU+PH4aPJUcOrzi1ymfMqrZwTAMMzb3u79DJCHMdkkJx3ZjedM124GOF4sW+Tvt1TYtv8r6zp3xzX9lVMq13846Gfj38jql1WQgUC0xDRsbYzhXfkRjj7w8EwDKyxPjEk9AlK/p0tTliViHt2yJywHE68W6dfoyYWOMsQ1TzXB6GSHEwZwpftVyjAED2K9oCOJ5IuddEK8qL5m8wkyb3vtvL9mvyavWJBtPV+x7vA4C8LvEDwCuvRa47jr9ddUAiLdLNgY8myV5urTlMF42RS8cW+OqbX21CQuyPNNrcsp2UKlr18TwZE7P9NuuieU1GnW3nzyMHxoin2yuQlX2VNd08pqWZ6bLIOJVD01ePNzA6PUdeB0U60KQ8hqm4dsmTNWu2xq+Z8yIh9kayHT6mKrehGE0q6nx3lcrnSQ7oexlNLOdVLHp8/jfpjrM4/TyitTh9X1lOXVl09ZRgGMa+9g6cyQz3rHBT9+Xrra0KUBGsyaO38IcRuG3bYhUYbadrg6xIwWAoiL2Kx67LV/TpaWCD6r9ymbTOejk0D0bpqeZX5lM99vum8Cx9aDyE6/f93/xReCBB8zPq5SvIOXVJNvjjwOvvaaOw0Yh9oo/DD78MDFNFapr48eHLo4xXdOgDnCXPW5A0+0/F6TdamgwD0TEOsxlUc2svvaaWY4gnjOqAYy8PNNrAKPa38a2bqjeRxzAmMJ0cQSpe7pnTEYzG5Lx2lUp69Gou2zyvYm88GpLTffJspiWRtkMuPlhJrYy2XiaiYbbsE7PlK/pwsQ8ScWeO7bfid+nM5qZyomt950qfd39Kk8zLpvJ+2vKFGDZMnVa8kDTRkcIckhD2NjqEiq43vrznyfeL8ZhazQD7L1cdOgMVNGod/tru4zXRocR93eU4xfTsK3DjpNYh5PVpf7xD1amGwu24xUgXodLS5NL09bTTKc3mLzxVZNxOpLRkcR0vcYjNmXG60RRP3KG3bb5mWwTv01zPDgjCGQ0ayHwjfDDGHAnO1iRw7xkkjtrEb45PN+kUX4uiJw6F10TyeSr7aAuGWwaZ9tBsK1xi197+WW7OPx0cMnmifj85s128ZvCxA7F1MlxL64gM1B+y6RfePrduyemqbovzEGkH2z2f+B1WMxn1eAy2aWof/kLcPPN+u+lqsNes/6qAZdtOTCVYbldszGa+R1c+/ECFO/zauts2wPbPFEp634H4V7py9/OS1kXf/nfNt8mrOXUuu8QRHn3akttvIH4+4unCvNndu507/9mSt9WJpOXinzdS/4g6X/1Fdvj0OSZrTOambA1JJrCdMvuVO2aabnV2rVqfUDE1qtIrMOZ9DTzKks29YZ7nOniMy1/17WlyXqaifGuWQNcdRWwfXvidVWbJ6ara+t0mPR2r7Lp1eeEvTyT50cmjbYifie0AffKgiB6nMmrykZvMLWvNkYzxwH++9/EVQNLlyYeUKUz/Mp6Iw876CA2xvQ79uDvpDogy29/nap2zGa8I+oDZDRjkNGsieO3QoVRAYMohLb36TofP4OpZO8TG85ULS20yQfTQNJvJ22rJOueE9P0+61VCqFNg226L0wl5fvv9Wl5LTvmf9uenmm7ZDXo9xIJ2skddJDdfbrlSqkerNjUKz6oE/NZtTzTdrmfrmyUlQGVlfp3DrJHlKqch+Vp5jhM3vnz7QaXpjqvyjubWVR5ry5ZOTPhNftrW/ZUaYphNvgdoJjqueylA3gvz0ymjdC1q7xMiMusTd9bxuQl5NWPyffx9xeNZly+8eOBBx9MjI8/Kz7jZwCnCjPtEaUjSFqffMJ+9+5NvC63a/I3M31vLmtlZeI1v+2KXF7lPsBkLOL/V+2PKOLlabZvH7BpUzxNOa10D+78tFk295g8zWzqlaldt+lzamuBq6+O60UAsGED+1UtkzPpiDpPM5uJRVUaQccZptMzV69mxmq+p54f0m2g9cImf2SdVdTPvbDxChOv2+goXnuaAWaj2e7dwBtvuI3xO3cCjz0GzJ4dD9uyhRl+xeW0cnmV246srMT21U9f/9JLzGOypMQ8plDpSLKMYWGSQ0b83o2ljGcaMpo1cWyVszAbd9sOTKyUa9cmHkNuq8zado4bN3rHYZNfNi66XnHYhHldD1P5s3n/IAMdU4POnx061J8curAwG20/Zdd0n66z1WG714GtnGGi+jYmmXRGs1TPuvqpw2I+q05dtS3LQbx5ROXHy8Ckikv82zZ9k0w8T/7zH2D/fjY4CbLxr+pduSezuCRe96xKCbU1QgSpA7o6JCvr4veySce2vtq0r3wA9+mn8XuSOT3TTz8jhqlmyE3tk0zQiRXxbzlP5G/mOPq99vi9XnpGkEGdn77Zti/zW9eDLM/kefGvf5nTN8mp8zRTycb55hv3dW748TKaeU0U3H03+yd+G9v+2g+2z5tOGBavqxDry/79zICjSte0r6DjAOvXswkcXRvmdQqeeO++fUxm8VAJfpiLlzFa1+eIeE1M5OS409SlpZJdfg9u/DcZV9esYb98z9EgpFo3s8Wm3ZWNZsn2qaJO+9//An/6k7823+QZafI65fD3EI2t/LuLExAlJex3/fp4mKld++wzZnyTJwhs8ovX+VWrgHHjgAkT4s/ZeOSJhuVMLs8U25LGUsYzjQ8bM9FUsDFkhI1XBeSba2/blnifTUPvFe448aPOTc/IA72NG9WNuO1g1eaaLKcYppvF8BrAhfEdTYM6Gd0+bzZlzWtQ53egZXM9CDaDBd19tt5LtsskbAd1YcLjXb7c7j556aN8PVWYyo484FYtz/Qjq9/voBtwyx5vouymOEyKk58BBE/XcfxtrG67VKZXL9aWqpb2yjKJpxHy9JNdnrllSxtMnpyFP/zBfd00S5zsQQDLlsW3BbAtE7r3MZ2K6EWyS91FbPdi0aHbbH7PHvX9pvIllw0xTAe/lsz+kDaDOi+C9F8870wTKkEOAuAGF3H5EsdmaZvqmkmOvDz2f/lQCL9GM1155QNh3bcJagzYvp0Ntrnh3/Z78++l0wFs92N66CHWho4YEQ/bt4/lmxjHt98Cbdq48+lvf2N/9+hhXrLqp88RUT0fjbpPnxavi+XEa8mm2E8C8QO8TjjBLKeXfnnLLUDXrvH4GxrUnpEqT1JbvPI13djIIdcL8ZmVK5mDQ//+6mdNnvOOA7z5pr7e6toVm/Jq0+YnswJEbtcqKhInXkxjAl18qjA/eeIld1ioyoQoRzpkaCqQp1kTx1ZJt7lmS5AlTarKZ2pE/CyhkuNQhflpsIIYzZLxEtLdF+ZBACZF1GZQoZv5sHmvIPLrZApr41/bsmkjkxiH7lkOV9D8bgaqCwsTvwN+3ZKYVCuQqvh1M4YqY5VOVv5eXbsmhqmwbUsAtYHRz+a2QQwj8rVMGWZ0AyTxuq2xSpfnq1YVAHB7C3jJFNRoxgd1PXqoZeHIZVIemP7nP/HZcZVXWVjLM237xmjU3L4G9TTbsQO47Tbg88/jYTZtbpCT9zgqT7RUeIvq8CoPqrR4e2CSM8jyTL99ma5siP9XDXT59+KeQocd5k6TGzKzstjEzJVXMu8qOS1VPugIc0+zv/4VmDgxUR4vvDzNVPuQyfc5TtwAJT57773AHXe4l6w+/DBw3316OZP1NLMtS++8w/b0FL15amqAxYvd6XoZzeR+0KYcet3Hf3fu1LfrPMxUv/fvDz7+yARyH6PCy9OMLxO3RaXP+NFRVN9GNmT66Xt099vot7wtff75xDA/nmZecq5e7V4ZpepzVGU+DLze49VX2TJWoHEctNLYIE+zZkiqG3BV42fbSAUd/Oneyasyv/km0KWLPyUxSIPF71+61O4+U/qiHPJ1VTx+sB9oR1zXVEahnBw7OYIOrlVh3HiXbBn3ylMbI6N4n63RzFbBMBFW/b7nHuDcc4Ef/9hfWqqwVC3PdJzE2U3TN+G/qtMzVYNwPwbg5cvZwMZPu2Ua1IW9p1lZmTse1ay/37bEVDZt23LVoImHy3t56WQxxQ8A9fUsU728WFRy2La5HK9TWGVUshcXsxl9/s1UM/jy9/r8c2DwYCA/3x1f0A2YVeGmsunH00yMkw+q+b5IIjaeZiJBDkcwDRJ05am6Ov6dU+lp5tcwYONpJho/AWDQIOadxJdQ+0lfvLZgQdwQppJDDpPLCzeaZWfHl27u3q1PX/dtxLBUDups+1mVp5m7bfJOQ6XTOA6wa5c7DlvPQDncz8EVpjopXuMHKImGz//8h60m+eUv2f9VnmZyea2rs9/31lZ/lTHtaabz/nccdsjPyJHAr35ljr+xGBVs8kKWNVnZxTqo08dMYToDvBhm817i9/NrNJPbV9EQLLdrQfJYDHMc4P772d99+6plEifMwtL3xfjleEV533svfj3IASLNHfI0a8JEo94bc6qeSTWqSunXm0cOs1VC5bDZs9msgd8OluM1e+GVPqe6mimuXs+I18L0NLMZTJmuqQyJhYV2ZS0ZLxkZP8un/GKrpHFE5c+vp5moSPsdQIVBNMpmul5/3Ry/zQAVSN1BADrlZ/16s5LGZ7hVBwHoDHxeZfORR9ybzdoMwoN4mvkthwAzqIwZwzad1d2XzHI3EVuDsi4+VVkJchCAiMloppMzzIMA5Ph16XN4GRC9bxyHGcXEe/iz1dXAtGnAzJmJ8SfjBSjLnuxyN1XZULV5NptHq5YTe8mhyhPVc15xXH89cOONrD6FZTSzLRu6Nl+3KbNch2UvO26Q+OILu/RVskSjrOw99hj7v8loxp+R2zf+/UVDiqq+6Zb4qgjT08w2TRmV0YzvnyReN6Hqy1Rp2JSrIMszdfGp5OTwPcfE8saXtIl5IscnTwbI5dVvG2YTptuuwXHU7ZP4f/FABB2p0EeDYKMvenma+cU0EaxCpyOZyqvN2EtlNFON5Ux1SKcjRaPx5196ybtOFxay3w4d9GmJf5vGFqkas3uVD7EtaSzluzFARrMmzPvv+1MwwsJGIRVnn3TP2gwqdNdt4giiuPIG068rrldaL73E3OrFjVS3bAHeekuvzNs0WGvXsn0IRKqrE0/KMslno0CrjGZey4dUaSc70AvLaBZGeRHzxLa8JrOnGSeMTpSnrzIy8OU1uvRV3zBVyzNVce3YwfZweecds9IBqI1mIqbvu307O5VJd58qHscBbroJeOAB7wFMUE8z1X3c1V/cO0pXXsVBiu2G5rYzt6rrpjrMN+VN1tOsoSHiioeFMY8u3TdW7ZtiM7i0nQDiRKNsZlmc4JI9IVXL7sR34d+soiIxfp0cX3/t3oDY5hnT+9t6mm3Y4B6A6galcpy68irvwWfC7+Da1A+JBk35Xi/EtPg386ovJkNiNMquqzxmZMPE9derZRH3G+TY6mM8zKu8imFyeVFNQKq+p5/Bt2lSwnHYpuRffqmPw4RsrNXBda02beJh4mSUqd6I39dP3yQ/K2Januk1UFbFp5NJ1Y+pZJHDZL1R1InFNByHrdwQD0fRlc2NG92nWMvl2lRe+Xu88oo7XtWyWx2N0dPM61vr2nqvNlaO27QPph+dPllPM68y7KVDAOoyrao7Xt+b73Uq7ssXJE9UMiaLyQtORPdtWjpkNGuiRKNx92gZL0UjFYjxrl/P3JpXr068T9ewtm7NlDpd5fUzmFLJJHamH3zAZNQ1WF57HqnwGlRyd19REXv4YeDf/9Y3oqaBJE9vyhTgwQfd18aOZbPkKllMDbbpmmhw4L/Z2XYKVpAG12bAnQxez9t406gUQvFZFaplgzaduY3MfpAHhH7SVIWlymimGrjw2ezdu91l7IcfEsuranmmrayikcNmsMIpL2enJvE05XuDzPrL7dDWrf7LCx84FBQkhnmlL2LraaaTXcyTyZPZ32K9rqlh+x2Je2B51RHuaSby+utsjyKVoUlOU5bNhO3+nPy9q6tZX/jaa4lpiwMz1aCOx8EHlirjvM7w9PLLbo8XEfGkMfHZZPc0q6gAJk1i+6KI7wGojWbigFhGZzQT8+jKK93fV1fmxF8duvtMeeKllwDxb6AqG6b6JV+PROyWZ+pkOeKIxDDbPBGXVgKJXmWqMNNeVaayJF579VV2+pyuffMyBtXXA3Pm6NPSUVMDjB5tfy8QPwBBJYMOsbz60cfkv8WwZD3NbIx8ujD5WZvlmSZPs8ceA557zjtP7rmHHaSgk89UXnn9lieaeZmXN4RftiyeTro8cSoqErdfUJFJTzOvtP20r36MZvyaOB5WGeVtZFLthasyuNriVV9MdZhfM/WRQeDxem0lBPhrN1oKvoxmtbW1mDBhAkaOHInhw4dj1KhRWLt2bez6jBkzcNppp+HUU0/Fww8/DEcoEStWrMBFF12EoUOHYtSoUdgqrCOprq7G2LFjMWzYMPziF7/A/PnzXenOnj07luaECRNQZzsF1Ix59tkIPvpIfc00qA2jcZeVv//+162E8xMyVUY9XafHZ1FV99nKYss//8k8VXTPqgxEXml5yeE1IyrHYzuAU6E6qcykJPvpTAB7TzO/yp9NWCqVFL9lLsgeUbazcpwggz+OacbQtHmxTafOf8W8MD0TlPp6ZuAWPVf5IIXvvQAwo8S99wJLlrD/6w4CcBz3/imq2ckgio7OkGSaudQNTlQyiWFr17KBpHjKqU095O8v5pvtgNs2T7zCuByA+pCG8nLgzjvZ3+JyMo5OMedGMzFObqzQea4kcyCBfI/497RpwHffJV4T71F5munkA+IDS9XeP7o2Ql7SJcYte3fw66b9ZWw8zbhqJp6SzeNULc+U0xd/edns0sX9nPxtxP1n5LjEv209IWSSnagRvXk5NTXAjBnMoCpjI6dcToL2w7b9Cy9/PC90y+5E44+N0czLsPPWW4kTBGJ8XB6VYZzHE2S4oDpIQofXgNLGCCV+U796pvxdg3iaieEmeb2M6XI/qNKR5DCTp5kcFo0CTz8NvPhi4n3ixuqiTPX15j3N+DLT3r3dcvB82L49Hvbtt8Cjj7ondGRZU8HYsWz7BRWqCViTTPI39GMQ0e29Kcej+obc+KjTkUxGM5vJebHcqsqwbtXCrbey9kP05JW98aPRYJ7GXrqcfD//m5fN0lJg3jz7dIOiq2tkNEvE17C8oaEBvXr1wvPPP4/3338fw4YNwy233AIA+Oijj/Dvf/8bM2bMwKxZs/DRRx/hzTffBMCMbbfffjsuvPBCvP/++xg8eDDGjRsXi/fpp5/G3r17MXfuXEyaNAmTJ09GcXExAGDt2rV48MEHMXXqVMyZMwdbtmzB9OnTw3r/JsuSJe7Wy+skL5trtogd46ZNbAkTX8YE2O8zIXfqOuVPVhJVBDE46NLijaQuDtv0VYMkUUn22rPM1GAF/Y66Qa1qeYB4j87TzCZPvBQtP++SCk8zv4MKURab++RngOROzwwD1T4sQRDLByfMDra2lhm4p041y8oHzqWlcXl0SnJYstq0STazqCZU7RDfPNu0f5n4jGkAo3tWvpbMgFuOT+V5xMO+/TauXPuJXyWTabCsGlw6TtzAwcNWrmR72anQtcuffw5Mnx6Pg8uhGsRyY7DXMiY+sAxiNPOSfccOdsoclwPwt+2DasCtKi8mjxuOuDE8L6+dO8fDVDqC+H8/y3l0qNp5MW6v++V7Vf38Z58BH3/sNgzz/NHVa1FHksOD6ny6Puf++1nZl8uw7GlmMszojGbr1qm90UyTCV46kphnst60fTs7EMoPa9b4u18nI2BX7lX6VxAdBQjmaaaqw6rrqnf8178Sn+X3ibo0R+6H5Pwx9VGOw5bbLlqUKFNDg15Okz7A8+bww73l4Po71zfSZVTQbXcDuFf0BPE0k2X323aa9jQT41J5Pav6YUDdN/vBtg359FP2LfmqAt6Wqryb/ejiJrlV/RUA3H133Cs2Ge82L2zHk9EoLc9U4ctolpeXhyuuuALdunVDdnY2LrjgAmzZsgV79uzB3Llzce6556J3797o0qULfve732HeARPpkiVLkJeXh3POOQdt2rTBlVdeiZUrV8a8zebOnYtRo0ahsLAQQ4YMwbBhw/D2228DAObPn4/TTz8dAwcORGFhIa644opYvEQc2woddiXkDaY4W2TqSFSNutiIi52tfJ8KP4M1nUxyHEG8ZsT7amvdnboYp6gkcwVUbKBVz3il51c+lbxXXcVklq+rBtw8D3WDcF0c4rO2CqEcFpbRTIQPRP12hEE8EsM2hPJZUtFoboONkUUME8NVsqd6eabouWKCn8pmoyQD6v1YvAzmQcpr0IMAbMNs2kFVfQ17jyibZ3mefPZZohxeBk2vQYHKaKZT5lVLQOSB/wsvuD36RFlNsqhmvVX5xb2xTbPtQKJHmhhHNMoMHI8/7n4/k6eZOFC95x7m3Se+v1fei3gN5HmYl/Hg44+B229PNHyb+i4dQeurKv4gRjPV86p2Vfye3Fis8iDls/5Blmeq5PSqw6tXs31YeZjK00x8D35NbHN1RjPxOT+GHRVcnnbtzPHMnm0fJ2C3+TvHK+9TtTxTlb5OR0qlp5npPtVkgBymq9+2OpJX+8PT1OkDOg8gVVpc35InZDJpVNCNH3TfWm575PtUXsgcsb365BO2PN7kaWZKn6N6vl8/d5jf/FXVOa82T8wP2dNMbnN177dmDdNrTP2grgxv2sROn+V1WOzDOSqv5TBQySROrJPRLE4r71v0LFu2DJ06dUKHDh2wYcMGjBw5MnZtwIABePzxxwEA69evR//+/WPX8vLy0Lt3b6xfvx4FBQUoKytzXR8wYABWrFgRe/YEYTe9ww47DJs3b0Z1dTVyc3MTZKqtrUWt5FvdqlUr5Ii7WzdhoprS6zgO1qxxsGcP4DgRABHX/TwsGo0mXQFYZcoC4CArywGQhYYGJ5YmwP5WhUWj8TAuC1PWI4IbrINoVHwH50Cldr8T+5vdx5YCu0eAYlr8ungfv+44zoE02XtFIs6BztSJveuAAQ527uTPmPIEmDvXwZw5bllYPqnD6uoS8yQajRxoxOPfrH//CIqLgbo68TtmJeSJKox//4YGHn/8vqoqlv5XX4kyutMQ84SHZWez/NHlCb8vGnVQX+8cmAmMfy/+nPgNTWGOEznQwcbfQ7T76+qGKk/E79WrV2KeqPJJDsvKctDQwPJDjC8uWyKRCHuv+vr4Pab3Z/kdf385rKAggj173M/G88TRfhsurztN/qyYpvu94oaXeNiBNwMvO6b3Z+lEXb9qWPw1NdGYnPF0EusSD+Mzwby81tc7sbh4WKdOiD0vfof4ezl46im3N6/YbqjaEr4/ROJ9LK36+qhLDjlMzA+5LPE6FM9f/reqfY1CV14jEV534+/Fw/R1OLHMifXaVDZVdV2swzt2xOXnbWEkIsqfmKbjOKiudvDpp9wDyT2zIPY5vF0Vw+J9TmL7Go3GZeNhvL42NESFAUNiXyq+azwf2L1cDlUZEr9DXDGPf9N4f5iY5zysocHBjBnA7t0RHHxwvL6wgUNEWV7cfTN/ByeWJ7zccTlU5ZXnidhG8nvc5ZWFif2cqr/mngi7d/OywPuceJ7wsCFDgKVLeVyJbam77Ni1pfI3FL8Nu9edV7wMMIO+vn/h8rn7ksRv0r+/g1WrIjjiCAfLl8fLa20t8N57cXniBpZ4nsj1WqcjyXki5pOYJ/yXp1Nby8Li9VT9beLvGUF9vbv/cesrTuweuQ1zh4nv467rYnkVyxv/Xu4y7K0jiWWYHSyizk8ZsW1K7IPjbY4cFwuPfweW/+r+RWxXVPqrqs8R71Xp36IsYnnldViVvthu1NSo+mEciCNeTlR9DtvORa0vqOqh6l3Fciq/p659ZfJnKcPEtkDOE55PrH9gbRmrH269OnXoy2ttbWL7x/52lOVWLq/iewLsu3rr9FG89Rb/Tqy8iP2Dqgxz5HZI7nNuvz2Khgbgww+z8N137PnKSlUdFPPE3TaoynC8nOjKFaTlme52TR6Dqr73ffcxOYYMSSybfuowl2P//nh5HTbMwUcfsWeqqtjBI0G28FGVa7FtFus6924W6w3HrL83PbIsMzOw0ay8vByTJk3CNddcAwCorKxEIT9nFUBBQQEqD+ysWFVVhQJx9+ED16uqqlBZWYns7GyXAcz0LE+jqqpKaTR7/vnnMW3aNFfYeeedh/PPPz/oqzYJ6urqcd99bBqEKTYMvsy1pqYngDYoK9uF4mKDr68Fe/dmAzgY0aiDbds2A+iDqqp6ACz9/fv3AWiPqqpaAOxIoaqqKgD5KC+vBMC+5/btO5CfX41du9rBcdqjtrYe+/bVoLi4DBUVXQC0BQDs2bMHVVW5APJc7wQA1dU9AOSivLw8dn9czr0AOgAA6usbALQ6UK4KYnkGtEZlZRWKi7cfaDj6or6+Dg0NrVBcXIzS0tYAeqO2thr19a1RXLxJmSfbtuUCYO4+paXs/UVqatj7izQ01AHIwZ49cdlLSjajqqoeFRVdUVfXCkAudu4sRXFxBaqqeqB37yg2bMjH9u07UFhYBaBvQp6owqLRIgAR7N69B99+W468vCiAQwDEv1dNTfx7sZmPTdi5k71/NNqAyso6FBdvw/bt+QC6oa6uGpWVDoqLhU0fBHbtag+gEyoqKjF9ej2+/LI9jjtuD4AOqKurR3ExGyWVl7NvXV8fD6uq6gYgH9FoFMXFGw/kYU9Eo1kAWmPTphLs2dMQe9fEPJBx58mePa0A9AHAymFBQRW2bm0DgB17s23bduTlVWPbtjwA7NixnTt3ori4EqWlbQF0QTTagN2796O4eA927WoHoPOB996N4uJ9Silqath7bdiwE7m5vI3rDiAP+/btR3Ex2+21trYXgBxXWH39wQCyUVNTg+LirQfC+gBohdraOhQX800EeZ442jzZu5e9f3V1NYqLmRvXjh3suzpOPJ927iwE0DWWd1lZcL1rcXExsrOB8vKO4HWtpGQzysvZVN/69XlYvTofI0Yk7mK7aZO6LonvsGnTNvBvwscD5eX7AbRz3V1by+pS/P/VqK3Nxq5dFQA6AgCqqipRVZWN/fvrwOvb9u3x9nD37g4AOqK+vgFLlri7RqaEsWm+/ftZfeVtiu6+6urqAzLnobR0FwC2OVNdHatnO3fGw4B4nldWZgEoAgCUle0G0Bm1tfG0eFu3b1+83eBxlpXtjb1vWVkZiovLUVrKvmFdXQ3Ky+PvzvKkCtnZDoqLd0DF3r3su4rlcM8elk+83QSAioqDABSgoqICxcU7D3wD1udUVcXLWH19H9TVNQBog7y8stj7V1ZWAChEWVkZeHmrqIg/x9vXaBR4883deOedzvjpT/dCbmf37Im3vbxPEsM2b96C6uo6lJd3QV1dzoHvwPKpsrLbgb3R8rBjB6vr1dWsfq1fXxzzSK2v7w2gdew5lv8srLycvQc3pgMRVFSwPqe6Ot6+VlZWg/dn7Pka1NW1QlVVXSx83749iEbb4YcfNuLLL3lbGs/f3btZPayurgErc62xezf7/vX1Daivzz7wDVl9EZV1URbOunUOevWqAZCHsrI9ADrFZANysWtXvGwBwA8/sPaAKeGsvvJyLsa/axeLa/v2+OCJ6wMqdu9m36u2tgYVFVHU1UVieVJZWYna2ghat3bA+/EtW7bE9rndt68zgHaorKyMlWnev1RX16K4eMuB9FmbW1NTiyVLdqJNm+iBtrlNQr2uqNgPoP2BcsvCeZ+5bNlO/Pvf3WL38jq8a1e8f9m5cwsikTrs2MH6UgAoKys/IFO8DldXszJRURHPmy1btuKzz3Kxcydrbxsa6rB3bwWi0Xi5b2iox969FeDtryiH+K779u1DcfGuA2kxvWnv3n347LNytG9fj/r6ngBaY+9eJlNtbT2i0WwAEdTUsDJQU8Pa2draajQ0tMHevfti6VZVVaChIe/A8+2xcGEE/ftvQbdubBJ769YcAL0O3MvqBE+LvQfLX7Fd4+zZ4y577LtWoK6uNQAuB8sT3hfs3BlvS+Q8MelNq1Ztwr59HSH2MSbdgutDxcVMf+F6JKe0NN5OiGzatAl79rD2lfcpQLy+ivoYb/PFsKoqVl7E8lpfX4+6uiiANgfyrAMAoLqa5fe+fe6+k79XVVW8z+H1XKyj+/ez58Q42YSW2vWFt7l1dbUH+tv42LC+vhb79sXDtm/fjvz8+L4le/d2AtA+1pYCiOnt/J3F9xfDamtZm8/LKaeurhaOkxNri5j8VYhGc1FaysrJ3r3xPo69Q7wO83wqLWX90O7de1FcvBu1taweiTpPatCX123b2PgAABwnXu527dqlLHe8beL6tqjjAsCePfF+V2b3bqb7lpaWoba2PYCcA+Osji59hn878dtwRJ2ztrbXAaNZTuw7lJdvxv792QB6Yv36eBlYvHgruncXHWLYu5aUsDGoW04mE2+3AMTaiIqKeJxcPla+8lFfX4e9e6tQVxdvX+vqarFvXw0aGgrAy/vGjRuRk6MyLDKZeHndty/eLvG6q2qruI4AMKNxNFqHaDQLr79eHQuvqNgPx2mLdeuKcd99fXHccXvx85/vUshgZvv2+PeOl+u4ns+N9/v2laO2NgdAjqvv/8lP9gLw0t+bHn379vW+CQGNZjU1Nbjllltw4okn4pxzzgEA5OfnH2jYGRUVFcjPZw1uXl7egYIK1/W8vDzk5+ejoaHB5Tlmepankac5quayyy7DxRdf7H7JZuZppiqsrYTNTkRXy6Ii1hG2bs0qQqdOnVBU1CkpGfgpLvX1WejThylBkUg8/fbt2x2QKZ7n/Hvl5sYV5dWru+Ff/4rgF79wkJ0NtGmTg7Ztc1BUVIiCgriC3a5dB4j2Uf5OANCmDbuvoCDeKXPato03fNkH/Frz8uLp8zzLy8vDjBmH4MwznQNxtkYkwtLh7tj5+bnYs8edtoh48g5/f5H8/MTy2qZN6wO/cdl79uyF7t2B/PxI7HCFzp27oKioC1q3joDbpbt2PQiiKCq53GEsnzp06IBHH+2E44+PF5K2bRO/l+MAffr0QatWzPqek5ONNm2yUVRUFNv/pqAgF1lZ+jxZuZL95ubmx5Y7tGvHvkl2divU1hZh0ybEvnVWVqtYXLm5fJYny1WGudt1z569D3gMmfOAvwund+8iPPRQBD//eTyQ56Xo0t2tWzcUFbGNyTldunRFURFQXMxmn1q3zka7du1RVNQeq1YB+fls5rJjx44oKnIr+BxeD9966yCMGOG43rWwsC2Kigpd94lh2dksLCenTexds7JYWKtWrRPePzs7os0T/g3btMmN3SPuJ8TDxH0oDj64CNnZ8ZMhAaBPH1ZH2rWL19cePXrhoIPYxrwvv8zKz1VXxcs4b8P69OnjObvTtWtcmeOzb23btk24Lze3tev/eXm5qKtjbQensDAf9fVAQUEb4bl4e8iXRWVlJQ4ERDl5W+N1X5s2uTHvpPbtOwnhrJ516OAuwDzPxf1LOnXqmJBW27Ys/fz8eJ7yONu27SA82xk9e3aOfcPc3DbIz3cbSvLz84x1uG3bxHLYvn3kQJp5sefy8iIH4itAURFrY3kZzs2Nl7Hs7Ahyc7MPyBd//7ZtmWLYWdjAKicn/pzYvrZr1/FA/PF2ludzQUE8LCurVULYt9/2wscfR3D88U5s8/DOnTujqKgzcnPj3kS8rldUsO/Zs2dR7HS8eF/KngOAVq3i78/kicRk4n3ejh3xvG/Txj3hl5vbBhUVQJs28e/csWN7RCIRrFhRhIULs2Lx8/zle9m0atUm1j/m53cAwPo7rvwWFLQVZGLeEdnZifpQXV0WcnJYRO3bdxBkZXKLZQuItwdiu8nLdOvW8fjFuOJxJvaHWVnMw5x/r7w89l5iE1FYmI/KyvgyKQDo0aMnejE1JFZec3PzY2WH9y+tW+egoKAIlZXxNjcnJwfPPNP7wPuw9jhbWgPTvj3PP7EOtjvwHl1d9/I02wjVrFevnujZ0720JieH1aUOHeJ1OC8vNyFvunfvgV3CuKh161Zo27a9q0/jYSo5WHy8DrdDUVFbV1jbtu3w/PPtceSRTky+3Fze37SKleHWrdkLtWrVOiZrJOLWsdq2LTgQFq9v27f3xE9/yr1K4vIVFnL9Pv7+rVoxAcR2jaMqQ/n5BbFyX1gYT5PrVZ06dXbd760jMXr16uPSP3X3cbg+vHdva3TrVpRwKp3YTgDu/q99+8R35vVVHLPwPkesV3y8JPYNe/a0RseOLL/Fb8PHUzxu8b1uuimCs8+OF6jCwg4A3GMs3ueKcbIJTDXxOpyDvDx3W5Ob6w7r2rWbS5fldZi3pSweJr/YbvL3F8O4Tt+6tVsfyM3NgeNEXOUoPz8PkQjQsSP7Nvv3t8XBBxfGyny+YNPn35/r5EzvaxerRz179kJXd1OQElTlsH17Nj6QHX86dOjkKnccXmf27GmNPn2KEvZL69kzV1ve+d5fnTp1jvWDXMcS9Rn+7eR+DnD3661bR2LtDv8OvXv3iumiRUUFsXHE55/3xPXXJxqqevHGX4DLxNstIN5GiOWKy5efn4+sLCAnpzXatnWXnTZtclBYmOPqh/r0ORgKn50YvM8X2yVed91hrWPpi7Ru3Qo1NcCJJ+bF9lfk/dD27SzvFi9uj0svbevb28ytX7IxmDyWYjIVxrzZ+LjtT3+K4sgjC7Bp0y4r/b054ttoVl9fjzvvvBNdu3bFaOFM5r59+2Lt2rU48cQTAQCrV69GvwMLk/v164fXX389dm9VVRVKSkrQr18/tGvXDp07d8batWsxePBg5bPiCZ1r1qxBr169lF5mAOtomouBzA9cQZb/TizUWYFPZVQRiXCXbtEVmruZJoaJrrpr1rC/d++OuDa55YaAxGcZqooqpiU8qbiuDtuyBXjlFW68icTk4ElnZ0eUsqngxg2vMB4Xm0k/IEkk/n3ir5kV2weCdzDifezexDwRw+JKNgv77rvEfGCu3e7n+fflsorvn53NBplZWWxZ3OzZwK9+5d6smscf3y8gXjamTmV/Dx0ae/uE/GXLucTyrH5/Hqbao0lUJioqsrB6NVBR4c7zb74BBEdZlJVlYfRo4IILXDmCrCzEyip3Kxe/F/cu0dUxvvfKoEHx94p/G/P7q+6L75OQ+GxWVmJY/J3Z7/ffq+5RP6fKc3V7wsJefFGURV0+vTpdXv7cLv7mus7ijgjLhxi8Doph9fVx+blC6B1/Yluiuy++sXz8PXl7Jg86eF64yzB3oxfrQGJ9VYUtXJiFF18Efvtbd7qHHso24xaf8yonqjKnLife5ZXnifj+8fZRXNYUf05sP1R9CUfV54h58vHH7O/PPovg0EN5aFZs2XHcsOEu12LZj+dJFlauBA46KP6ubFkXS1t8f5Oc/P3lfVOys7PgOMCGDe62WpXnHP6uvM1lS00iwrPMM4zLqZNL/Db6/I63h/Hn+RKPSEKYTuZYbFmsP1mwgF1T5Ulct0iUQwzXtZt/+QsLGzBAJUei3sLlktPkcsjtl6oO87IjhvHyLn4HVXmNRrOk/XX0soiIfSG/NxLRl50VKyLo0AEumcQyLOsIvH11v3vi92poSKzD4vuL78rfQ1021XUo/t1Vuqb627hiVegMjpOVsJeQ7eCwoiJLsSeUWudmcSaWOVFHEiS1DBPbcnPZ4jJUVgL//W9iGyKWK1Ub0K0b2y5EhamcuNtGQD8mMfe5Jp1eX4fdfQ4rr+zaunURfPppBAeGsK5ywb9/vD+PuMYHjhPuuEqHuhzG+y8RVt/NQn39dZbLwA8Ahx3mrTeypY/sr3iei2mZdSSVTs+fz8rKiuVz587x+0pL2XMvvwwcfbQok6peq8p7Yrnmsm/fzvoe1fhB1f4z3VXxaoa0bMswT9Nx4pMbAJuYcxygsDAe9u67WRgxwiSHQjIhqenTs/Ddd8Dvf594H186y/QI3ieL41Nv/b054vuN7733XtTU1GD8+PGuAjFy5Ei8+uqr2Lx5M0pLSzFz5kyceeaZAIBjjz0WVVVVmD17NmprazF9+nQMHDgQPQ7sXj1y5Eg8++yzqKiowPLly7Fo0SKcfvrpAIARI0bg3XffxapVq1BeXo7nnnsuFi9hj2kTwmTgA1CvI35Vm06KG0DGjRCJ98mDXxG/7yPezzcc5mF8Q03VQQBebYNbiU28bgrTnfQiDwREo1nQ78ifE70D4vshuO8rLXW/vygH4D7d7d13gbffBg5sRehKy3ES31/+vrow+RnTQQC6PFF9GzFs/XrgySeB996Lh33zDZtVFL2qxPhEIy/gLsOmpf7cnn/IIYnyeb2/6hqXRXW/aZN3lYy2eeoVxuOWlbEgeJUTOU0OzxMxXLWJNr9eVhb3NBPLmSr+Tz/Vy6H6NvLzfjYWd++3ppdJlc5GtqrZtYm36t1MZc2Uvm0d1uWJql6K7ZKfgxJkeb3CgLjh0NRPxQ18ajkefhj4y1/UMpvKa+IAJ/Ee1UDItu6xyQz2t3j4jOl0TPF51bcxbRDO4ffIfYlJZlk28f+JRrPEZ3Xf5ptvgAUL1Pepvo2urJvKgA6vesDf1bRhNQD83/8Bc+fG/6/alNpPnujCxJMHTc9u366XQ3dwgyp9VXvl9yCAhgazPmATj+5deRtvg5h2fb35AATds6IcH36ov8+mPzTp2rr2xL3nWuK9Kh1Rs9gHgHsTcZV8Ytgjj6g3sw/Sv3CvP/m7qvpclY7A+0w5XoB54k+dqr4W9rjKD7oxgU09rKtLzCub8qoqG+JKBdu+T6Uj6caBvEy99577RGtT3Ve1+aqwLVviOrxXeZXTjEb1J3XbjGlUmPRG0V8oPtFrjxgn9zrjewHL99mMaVoavjzNtm7ditmzZ6NNmzY45ZRTYuGPPPIITjzxRKxZswaXXHIJotEofvnLX+Lss88GwLy/7rvvPtxzzz2YPHkyBg4ciLvvvjv2/FVXXYWJEydixIgRaNeuHcaMGYNDDowq+/fvj9GjR+Omm25CRUUFTj31VFx++eUhvHrTpmtXBzt3GkbFAvv3x4/kDqNxV8UhKn8m5ccUJjZOfg0ItoM6E/wdxNN9+K8cNnMm8ItfxN1aVQqKF16KgKz8OE5wo5l8v+nUQADYtas1/vKXLPzv/7L/q76NaDQzpSnO4Hh932+/ZeVV912DnJ6pUtbFMG5U4MeI656VlUk5T2RDmkkWnaH044+ZYc3UwcvP6E4xNZVDGxl1f9uGhYFJSVPdxzGdlqWKK9GzwFtR8HrP0lKgd291/LowOV5VOTANOFVxipMBqgG3jULkJZNtOwzE2zBRVpURQTWQ06XB+fzz+N88T1SGb5V8qvbVti8zGRySKa+m51SDW9UpreKzPE4+uNTJqopHfg9Vv2EKk2WRkeU1GYh07YGYJwfOocLxxyemqSqv4lJ0ES8jtwqveqA6OVtVh2WZVG29l3E1qBFCzGebflhVhnUyqYy3prqmGxibnrEx8ooTkRzVANKEXP+CGCGks8sSnrP9hoC5vNrUYdW9qvbNVB9EnV43oSVSXR1fcu23vNqUF1XdUpVXsf+R4+Anc6vSTLdRoaYmrqPojPq6cmdqK0zPyffI+S8u+/OjA8ptSSSiN3JyVPVFlk9+XiWbqpyowqJR/XOzZjFDnriVetA2l6M7dRZw9xnJljuT3qg6PbMFOpYl4Mto1qNHD3z55Zfa65dddhkuu+wy5bVBgwbh5ZdfVl7Lzc3FxIkTtfGeddZZOOuss/yI2uyRlkAbG6kJE9TH3gdF1Zl6eZrJ98thosHBcYDFi1kF7dLFfoBvumYzqBMbCfma2Fjs3AksWsQa7j/+kYXpGncbOXUDQpW3SxCjkXg/T0ulHIhylJeznpgr7SpPM52xRo6Xf185THX/ww+zvwcOTLxPHPTplOggA02/Rl7+jJwnXjPtYrqq/HccYMYM9jffH8Nx2LHegwfrO12dsdnkacbvE7aQsq6vquuqPA7SoYsDIcC+XdEp5iqjmUrxFwdOYnkVw2wQ79uzB+jTJ1E+L28fXdmWr9vGyRVMlfJna+RNZhAuv4dKIVYZzYL0VaoZ3x3qMw4AJHqLiu2HOAvv1YbIsor57GVAEeVQGSFMz5lk03mvmVDVXZ1ibSqnQYxmKk+z+np1HohxerURqu/Ad/yw+zYOIJ2e6YVX3VB5Vtp6WqnaOtOA2bZuyu2KqQzbeprxv6urgSlT3PcCyRnNdJ5mqokxHT/8ABx2mDssGaOZytPMptyIezaqULU5fF9SVXmQ79XliV/Dt63RrKFB76USVnk1XdMZHLyMZiqPN1FuDo/H1I6kkuuui//N0/73v9336GQSw+fPBw5sS+75HGAuB7Ze1vKzsj4g5rPXJJIuDT/pq54tKEBsz1NVWyei8kpNdlyqagtVk41BdGxVu6DrQxOX+PtPr7kR+PRMIrP4GdSJHjRhN+62xiBVmFhhRaMZ77hsvAtsByZ+Ol0vAxG3G3OlRY7D1hqvUoS+/x5YtkxtaBJnlfx+R/l+L08z+blkPM3Ed7EZcJrCvJZLmeQA4gYEPx2HHA9/H1H542FeHkoqg4dNGf72W/VyCJ4nqnzNlKdZMkazO+5wu5/rPPJk/CjJKlllbJYw2pRB0+DQxmhmO4AxxckH5qbBlA5TfbVtg3QKoR9PM9u2XJWOCdkwJbZTBw4GT5DFJJP4a9s3iXKojBC2aQLuyTGVjuCVJzwum3pnag9UAyhTXIDd8kyVkURVN8Isr0E8zVTxqWRSlXFRr5CJROw9qOR4vWSSUS234qgMDqqJCv6cGBe/F4gviRfx0+Ynu8yzuppNVB15pDteP4iy6Yy8ABtcH3OM+xAL2zZiyZLEMPGACBGTl478bqbl1F71ysS2bfF0dRNaIrb6kF+9SUwTSOyH5fJqMpqZ+qCwx1V+4Gl/8IE6XEZ8361bg72L2C4n2+aqlmeajOE22OrZunLSuzcbixUVqY1mcp3XpR9knAPoVwUAyRvNVM+o6gUfl9usumhJkLNdEyWoxTfZxl12P1cpyX4VGa788Moqz77aNuJBw2RsDUSit1/Qxh1w58lLLwGvvcb+Vu1pFpanmWrQYVJSdIZE1eyQKg65wQ9ijBEHfX7eX7yXK0V8bxZRdnE/C9WzokzyUkwxzMZoZhsmXuMnN8kyqb4N4N9o5pWntt/JNj4Ve/bEFW7AfgClUn5USoccpjJA8Tz1SlOFTglTfRddObGtG7ZxisqP/P4mOfzIZGpX5HhMnmY2EyV+BsVeyHVYV2e8BpWqa0EGdTrZVM+Z2mvdu3hN6JjaV52nmUom3lbp4lKFybKpBrWAO29VcvlJ0/bbRCKO8nvr+j25vMiDU1PeiSc2y+iW7QT13AlqhLA18nLkfDKVQxujIMD2T+VeYSr9y6bNzslhWyI8+aT/9Dnr18f/jkaBbt3i/2/VislRVgY89xzw6qvqOMIur3K4Lk/4u3qtPDCFqdi4Ma4T2Xia+TVu6O7T3W/raWbydDYZKzJpVAg6FuD4eRfbvt+0JYJKfxXj0XmaJWs00+l6IqKOeNxxwF//6r2ixm//Y6M/m/r+VJQ1LwcXcczX0iFPsyaKrafZnj3hpVlfD/zpT8DJJ5vT9TuQ5oM6fl1lNJMbGhvFKOjgXmWEEBuxgw9mv6rN3PnzXmn4kUmURd5/wy9eAz3dNdVSRC+DpuyFBSRnNONyiOGFhUD79sDmzXZGCFUHJ5/2qXoHlUzJepqtWBF3AZfl9FOu5aWFHFMHl6zHn/y3SomS8y6Iod9ro2w5TQ4vr14zy7p8sGlfbZRV06y/zT5nPA3VDLit95qs7PtRRP225TZhpj3NbLzLbAfFNuVNrMOmSQm/7ZXXMlOd4cOr/noNZL08zWyVXlXZkuuiKR/E5WY2HpmA/UEA8vNBBtw210RYOUksUDZlbNs24NlnETuVT0x3yxb/sgQ1QqiwKZuq+1R9v8oIIfaV8r0yfpdnAnEDo+17yKj2RvJrNBM9fOQ+h+cJrzuiMVmUMZn2VcbkpWNjILHt023yNyxPM1OYbXkFvD3PTX+bvGdt624q0H0HG33Y5v+qOFU6tRjG23+bMqzyNFOVV7l/NMlrMpCZvqM43uQyeHmamQiiXwPqtvSggxLl5zIuXQoMGmQey5jS1OnJsiMALc8kT7Mmi23hve029/+Tadx5xfr668QwEV7B/C6tUinnugZr61a2n4BpUBcU0UDEf1XGKpsBngmvTl/lzRRkeaaX0UjVwcjX5DzRGYh0HYNfo5kqPnHQJ+adV554vT+/rjrt0TRwl/MkK8vfPm8PPcQ2D/VrmJCvi98hSGeukk11X1kZ8NZb+m8nfxvdwNYPyXqayQYiuS3RlX0b44IfhdDGwBWNAldfDbzzjl0aKuOXyshYX+9WRGX5bMurKKecvm15Er1OVfLrBmWqAaDfwa0K0bu5okJvNLP1ukjGCKEKtx3QcLlVByGo7tNh+jY2e5olEyb3sTqjma4Oi/EG9aBShXFPMxU2A1O+QbboQcufEw9kMPVDoiyqNHUGTfHvIGGyvKIccriu72toYHvAqp5XYdvm8zRlOWw8UXlZq6lJvJaMJ4dsXJHbV917izqSV/xeYaY6LN9rqw/y53TL53WE7WnmNeCX7+eYvJu9lpLz8MbqaeYXU9/mJw65rfU7Blu2jC1Ft63D4gm/siy6MFX7amPIEuujl8e3qm7Z9jl8ibWuvKrSkfNp2zbgscfcpyybUMmp009tVs+0NMho1kSx9TST8duwqVDNbKuuqyqaacNB3ji99553+uPGsY1lbQZ84t82ja7YYPFrKu8zmwGeCZWCLyLmyerVbJZSlE23p4Usk5fxwvS9dO8ve5rxX7FcivebjGYqvJRkMW4v7zsxLlN59RosrFrFNuWvqEg0aPJ3tPU0S2YAI9+nMvLqnrWJn4eXlrqvT5um32yWy6GLO0yjmY0RQuVpxu/LtKeZbikl//8nnySGqdJVXSsuTgwzLc8MYjRL5j4g+eWZtntM2XqaOQ5bOrV1qz+jmcowYovOMzLot7H1KkuF0cyrzbH1HFIN/nV5omtbVDLxPUiD6kg6g7Octi4Ov++vMuRwsrLUJ/3u26eXy09fosOPEUJOe/Fi4O231c97xcnRGcjlfljE1D5wj4wwPM1E5D6HDzhl+X74IRcTJkSUg2IxLpmgBvggnmaqMvTZZ4n3m1B9G52n2Ucfsf3lbMsh7+ts8kln5FXdyxHLhuO4jdk2k8XpwqTDqfCS3UZ/tfU4NLU5r7zCfuU+l48t5OfFvXtFvE7SlNP97ju9fKIs/G9Vn6MiyCSi7n5TmnL7xPsL07J+gDmZjB1rf5K7PC4HaHkmQEazJksmjWa2CqFNpw0kHgQgKli2LtReyoTfBouH8+VzomFi4cJ4mvv3s9NJxVlkFaZ0xT0xxGuilf/++5nRTPSq+stfzGnaGs1MeajzNLNZninGy/NUdfiurdGIG+vk6372iLJd7qe6Jh4AofIC5J5mqTaayfGpjGY9eviXQ7z//feBP//Zvbxb5UGq+g5ecfshTE8zUb6jjmKnpkWj7B3lE5Bs9jSzDQPsPCH4/2VlXZfGmjWJYaqTIk3LM00yi9d0ZXPfPiavn3JtO4Dx8jQLoy/j9ZV7T9ssz0xFmMlAJKIzhqjKazJLKWyMZvwecYY7zDzR7cEnh6naI9v2xlY2nb5lY0jkspg2GdeFqVAZBGw8zVTXvbz0dNh6izqO2ghoKpsqfejdd9X3cj3EpLuo8OvpZks06v7OOh1p0aKO2LIl4rmcWsamjJi8VOTnTf2rlwdWUE8z1bOOA7zwAttfTnWPql7xMm87iSaHqzzNRP72N3d8olEiLKPZmjXu/fSCYKP36sJzc4PrA3I5sZ0c4IhGKfl5VVjXrvYGn6DtOk9THLOoDN9e9UFVXsV9lL2Q+74TTtDrJvz9vQxac+awcaq4dYKpzd+wgel3kUg8DVqeSXuaNVmCFl5eSbZsYYMdcV8uW2w9zcTKyeXdsEF9v2kgJCvJth2UeJ+fNfa88dm9G3jiiXgYl4Of+NTQwN6npMTOxdsPXImSlQ6x4VQZgOQ4Hn/c+2Qok6cZD9N5VTkOa4jfeCN+n5i++C6ybKr7VNf/9a/4zHAqlmfqvI3Ea2LaPN9l7zsbV2avdzXdp4tP5QXptUzUS+HdtIn9ioqiavBsMprZzkaaCOqlYvIY4rJyg8nDD7M6LMYV9qSEH08zr0GbX+VUnpQQ8epHvIxht9wC9O+vzm/ddzJ5qfhp58VvlizylgAyqrJs+x38eEaKqOTQfYeg5VWHjdGML5cRJ7ls3z/Zga7KKFVRAXzxhV6OZPLEtKxO/r9cz7h8oheoXyMPR1dOVO0c/1V55Jj6F5tv6MeDVoVpTzO/BPE0Mw0WVXpVZaX74CdTvOK+ZfLkjaznmoxmtujaDT8TNaowVRk2patCpQ9lZSXmsZeu4Le86toSm3ZNheMA//2vXsag+s0LL/gzpqjSstF7deEnnxzMaCYakWzuV4XJ5V2sI7olj7btZtDyKvYv8vJMr+eD6qqqMNlodvnl8b5NN3nlZTTjYyiVrqNangmwSdh27YKX7+YIeZo1UZId1N11F3Dvvf7SVDWStsunTKxdywx4KqXBaz25385UhWrmFnAb/XSb3NqmYXs4gHhNpej42dNs1y7gm2+Af/wjHubX04xf03maRaNsE37x/uXL2YER4gyUjdFMRTTKBmVz5+oNM8kazUxLRsUwno64R5SoYPpZnmk7w+81QJKNZvxXddqrKl7dd/DyDFXFky6jmZ980inJ4reSjS/iu+ji9yOHfK8ub1WDtWQUMTle3cDBcVhbt3u3Pl5TfV271v3/G24A/vlP/bNBPM1Usoledbq+wwu5PukM346jPzlavs8GXTkx9XUAsHevOi5V++o1qaLCz/LMaBQYNcosry5MhWrgIM/w83RVE3eit3dQY5DqPpa/7sAuXdTPR6Ns30fRS0XlaRU0n8RZf1MYl0u3P6JNvTbJZqub6HQkWwORl6GK6xYqHU6V7qefsmXYHNs2V17+ypEP2nIct6cZ75t5mPzefj3N/PQ5qv5cvtfkpRNGW2fraeb1Xl46opdsqvdXeZrp8klOgxswbOQzEUQvCtNo5jW+0qWt0qn9GojkPl9lNJP1AS991IRtO8T7HNFoZhOXTi+2eVYlF287efo6/c3WaMbbZ3Elg43h2E8aLQHyNGuiBC28QRt33bPJGM3Exmj/fvNyPzHcqzM3YWvlB+LHmQPqE990cqjePyfHThZOQwNLUzbC6PbvikYTy4RufyPVs+KvOEBQNZaiV5Ws7DkOW0pRXx+fcbVVCMUw3amvcsfhOPE84WFz5wJ9+gBHHJEYr0lJ9FJSRU8z1fJM2Wi2Ywdb9nXGGXZp2cgkexrIRjOetq3RDGCDiHHjgHPOiYepDMccVblXGc286oQNfhUxjmmPqNpaoGNHVj51coXtuWNzEIDt0mG/itiyZfF0ZSMEz5Nx45hBZto0fbx8pt30fR2H5esHHwCdOqlls934V3zun/9Uh5uwGZjL9Um37DwaZYc0HHqofR0Wn5Xlsi2v8nuIXgmq/OOo2lwbTEq0zjATJCyZOhxW/DpMg6u+fVk54PuJymnv35+476OqDU2mPVGVJ91AurTUnKYYxreisMnPZD13VKh0Wtv9SuUyojPWPPcc87jgba1o4OKo5G/dWp2+bMxXta/RKDB9uvp5Ux1WYVOuk/U0szWo2rRrtgZN8Z6dO/Vp+mk35DA5HR6m2hNLtdx56FD38lGRZCcF/bTXyRrN5EnCIF5zur7fD7pJVp2nmR+jma3BWc5zMV1x+ahcr8U6wsuKrZFXhcnIK7eLui0BvGwCpuXIOk8zOY2g3rDNCbIbNhNUlbRzZ7v7RN580+2GrHrWy4PEtsGSMQ0mdPH7tejbKPW8YXjmGbcc0ai7cTGdpmOTrskTgHvDyM/qlkDwfdZEOnSwk0Pu9GQjGA8TjWvi4FI2qOXmsr+50VHlaeYlE1f2VQYiMTwajSu0PD9ffx145JHEd9ClZer0VQM2ruCoPM3EMvz002wA5dWZmja01XWm4vVkPc34cuN16xLvW7o0MW3dHkKyp0EYnmbJKs4qr6rqarapL99Y9thjE+OymZTwMzBX1WF+b9u27DdVRjP5PpXRTOXBJMYbjbIl2HwZtil+Lzltl3bpykyyBkwZ2YtE5bnD01y3Lr5kOaiByLTEzstopkI1YaLLoyADsyBeKrq4TPfZ5olcr/lgyu/JfrZy8HQ53BgMJOaB6kAIW08FG5lVnswmbxGvOpRM+yrHrzsIwLa+qgxkXkYzXvbldsc0ASuWE1Wbm+xBAKo+h3u3yWWB70upMpokU0bk5209WcU0VKe9mp7VLbn1azTjW7iI96xe7S2vKIdOp1eVV9ETlMevav9lr0e/k/eOoz+ww49+lKzR7KWXzPfZ6o1yG+O3LZHLpGr8Ieexn03sbWRRGc14HRY9vHTt2FtvqeUIq30V2wWdB6nf/cZUBjLx1G2ZSETvadsSIaNZE8Wmgz3ooMQw+b4NG4Affoj/f/Zs/cBI1RCE2WDp7pMbrGQGkn4aLHEgqTIYqIxLpjRkI6bptBPRm0vMT90pbaq4VAqnzUCPKR0R1zXRCLNhQ9wzUDaIiY28OANjKq+mDkZ+Ruw4uGx8rb5O2fUympncy3VeVUCih5duH626OrZH2JdfmgczXmUISPRuk+UQw0yKmHi/Xw8BnXKgU4L8xK2TU8SmfVENrsUw06ENKqOZH6OUCtPg8txz2W+qjWY2ew5deaX5dCnxea86rAtTzXj62Q8pTKNZJGK3RMu2T1OhK5sipj3NbAZFYc8A23ip2JbXVBjN5LblySeBqVP9xa/DpKt4tQu2g4ug5UnnQaUrr7o+xbYf0oWZjBBB66dKX7FdUWFrwA76nKk/lp9VlVfORx+5vdPKyuLxB/Vutvk2ujpsE5+tLDqjmUq+oO2rn3ZDJZuqvNp4G6qMJl56pcx777E9QEXPU/7cU095P6+TLeiEpJ/n6+qAb79VG/mCeppxVG2R/L0GDfLnaWZKx4TYv4jGKt23F7emSEZHkDEtHQ66p5l8vw6VIfH779nfXgfetQTIaNZECcsTYtIk+73NVI1bMieXyPDK+j//4w6TOyxbDxZbBV43KyXmMTca2ewTEzRdEXH2QMzjlSv1aXBMRhA/Bgfxfh5naWnc+4gP9GRPM/lvLyMEj8/GaCYq5vx+7mkW1GjGPeJUSzB0Aw3Zq4x3smKHw/+urQXuvpt5npkMhDaDGpWhVjRoqsJUBFWo5fvENEyeZkEJqkyb9u/if3PlXR6sqQYwtrLJ2CxFVG3QKspik64qTKX8eA3qADawk9O3La+q6/J9KmOQzktFha2SbPMN5QHc4sVqA1Yyg2s/RjMbDy85XlX7qiubQfJEJ7NqWVOYA11bo1k0yvbu9EpThY1srMyqI1QdjhBWuoD6e6n2NFN5n+zbF1/q5ifNZNpXOczG4GvCRs/VlR3bDd5lbHVano58n1f7yg1l8nM2RjM/g3CbviOZMmHSTcQw1X1hymHblsj3mvQeldHMJLPNd+FehaJnG49Tbr9Eliwxy6HDj5FIRBX/f/7DDkzi26bYGgxN30tX3lXjCb4qwLa+Juu4oTKaqb63zisuaJ5wxPZVXCaqiluVbyZUxkkRld7IScYLt7lAe5o1UcLuYG1QDYJsBxM2DT1vnFq1SgxTyREkzKYx5Q1JVla8keBGCF2j4aUoehmOZMQT72xmc8XywOUO6srMBnARVzrcK0c8+p1/G7njkI12sjeaSn5dmIzK0ywso1lOTuJAkC9ZVHnTqQ5HENNTGY/8GiFMCqHYcctpBfE088p/lTFWTFe135x8n4qdO9mS3oKCxGvJGCZ0BiIelp3NvrdKcQh7z0jVjKGoEMr3mOKzDRPbL/E+nSGRIxqPTWVYlb54TdwTUpZLjtOPp5mfQa0X8vvX1LD+J9WDOpsBJ0eXJ6a2RIfXvbw9sOnDVR4aqTCaeX2LML+NLkwcQIm/qfSYAVjbIBrTs7IS812nI/35z4n9mTzplsz3AtzvK+8taopPhY3hH3DvSWYqrzbpmgwmqn7VSz55cK0ywLfSjLqCeovq2hJZDjlMR1C9WWc0s6nryXjpqPR3eQLK1OeoDGkbNybKZyrXfowJPI3Nm/UrR0TELTJUY5Bkx3nie7Vv745vxw62HJ3v4ahaPaLyPjPJJhucVHVMvqY7FAYI33FDZTTT1X/R2Cne43dfPlMdNvU5omy2Oqtfw5dqor4lQ55mTRSbDta287PFtsEK2gHyBstrU8IgRghTmMpoJP7yv2XZSkvtBy4qw5GJ4mK10UznCq3q+JPxNJM7Qh6nqPDpPM3k9FUGwyDs2uX2ZpI9dVTvVlPjPQOky1MR3UEIYj7J3mcqZcImLUC/dFe3FNMUpkJlNPNqG3RGM8dhS3ZlJVQ1o6rizjuBm2+2bzf8GL5NnmZcEVN5mgX15NVh8sgQT2W1ScPvQJ+jGyTYGM1UaamMomKYznia7J5mtvkUxKuqTRu1l0oyxhD1pERiGB8UjBjBDmTwmln+8sv4/20mJWzQGSFURvgwl2faDq5VZTgZzwtbeXVlKR1GM1kOWyOEbDBzHODBB9m/ZGXzs6dZ2NiWHZtyoZLPtlzzdOT75PY1GgWGD/cvR7L12sbwHbS+qsL87GkWtN741V/5Kbd+Pc1mzkxMw6RzqyYQvOAH9HghlkdR7+WoDHqyfCbE+1q1cv//L39he6CZ3j3omFL+JqKxWqUjpctoxu8VPbxM788R88G09Y7f9lVuA8T37dTJv9FMpYua0HnTtVTIaNZECTorFQa2RgivMBW6mRTVAE2+xwY/A+5DD42HceVV3I9ixQp1vMl0YCJ8Q1Qxvm7dvOMznZJi823kvbrEMHkJYzQKvPaaOi5x0GzjZWeTR6rlmaZZ1Ouuc59mZnp/UxkV6xufHZS9vmSjGT89NMwBt2rWR1yKKSoZyRjNTEYIfsoav2/xYjazxk/2k99fDNu8GVi1yiyTbViPHolhsku9apAgfiuV0SwVqAaXvH7yNkW1X0QY5UQMkxVsndFs3z42y6xK09aQJs+88nKjmzFVvYcKWyVZlwfy/1VGs1QOLk1yifXRZDSrqXHvh6RSmMMyJHLksDA9I03GIJVBSAwL0/PQ61k5/2zyJJn2X2U0s1meqTqxU5VWsu2LrRHCJo2gOpzOMGMTn6mc67adEFGVTVX76jURIafH7wuiN5m+jc3gPxV9jhymyjebNFWo9HdZH7D1NOPIRjCdLsHReVWbCOIZpDIcqcZMtsjvpfo2P/ygTlOu78mUJTEendHM67kg6er6HNFYZWuAD2vcB6iNZmJYTg7Qq5fekGjCyylFpSNx+KFVLRkymjVRbGagklFMVG7DXgMjU5gfK7+qEdcN2kyNWVCDHpejqCgexjtir5NFTWnInWS/fuq4OPX1iTP8fFBnwq+nmVqpibiucTnEtPnf/PRHfr/KbTtoeZUR4+aDei/lQ94TQpeuaOSRERWx7dvZIREmo9nSpe5BrZxW0Dpi62lmazQD/HuaiUYvx0k8eVGXx+vXA+PHAw8+aN/t+FWIRAVDbjdkJZnPXqoGJskMulWI79GunVsOPhuuKn9B64luY3n53VRKcqtWzPvvL39RK8SmAbeI+OyddwJjx8ZlE6+LYTbvpt5XMtgsUtieELaKuW6iQmU0Uw0wZW9PVZ+QjNHMxjAT5umZpvKqMq7K5bF9e285/NYl8SAl+ZtwUukxAyS2TbYGzVdfNcfvtx9SfS/5eVUd1rWltnliOzkst522A10VqtPobAfsuvbVy8gbjarbf9v3V21toOr7bOqwCj9lQiRT7avOkKgqr6q0/R4EIHrV22JrNBP7u61b1WUu6MSBbHTRGZtVfZA8zvBr5JTbcjFcvmbabiQVkzdyP8zT7tpVH1cybb9uDKoaO/Ew3mf6daBR9aeqtMX/8/ceONBfWs0RMpo1UVJtNJs2ze7ZZBosVeUUO4Bjj7V3jbV9Lz+eZuK9fMb34IODpWFrOPKSA/BWCMPwNONhfONPHqef/ebE/Q/CWJ4pyuE4wD33sL/lDehNBFUudJ2LOPgQZfv22/h9Ku87FbadOgD861/xUw7Fjl42CAFsGfGoUe4NiEWDBo9TPEVXhW5grivX/fu70/vb3xKfF/eECMMI4eVpJt5nWp4ZdMClQpTv0kuBX/wiLouokMhH2nNZgoSZPHe83q1168RBgJfRzCZM9NAE1MqbPAu6bx9w111uWWzbNZUHoa7PEeNJtaeZzkBkm478DXXtaxDDL6/PNuUpE55mqjA+8+6VpgrTfT17iumqb0zl4F8VXySSuN+SakDptd+c6b399EOqE3BVe14GxUsWXvY3b068L6h3iMpopotL9f1V5VW8r6HBTpc29a0yQdsn1eS4n4lw0fMkGU+zZOqIrmyKf6sMuqaJGtXyfFN5SqWnmWg0+/xz7/4gjrc1RX5W92142KefxsPS6WmmmgTlhDl5w8N0nmZ89ZFt/Cr8tImyHDwsKyv4xEAQr8Qw9eGmDhnNmig21uVkjEviEizTs2F7mvEG65hjgKuv1ivJNvGGYeXn8A5O5x0metvo0vWapZbJzk5sGMUORYfJ08ymg1F1nLzTEmf0VfeJsoozp2F5mqkUDd0GxCrCHOjywUplJVuiuGdPXD5xwB7mgJvn49tvA4895k5LrCeivKtXs7/lDWXlOL3QDcx1CrB4v+7bzp5tTtOUT7JXmYhuwM2fF41mqvcK65Qgnr44ESDvwWcymAQNS9bTTI7Xa8Ctuk+HaYZfbuuWLgW2bNHfY5LJxnNFbl952bAxhgRVknXtK79X3EtF9bzKaKaqw/+fvT+Ptiwp7kPh3z53rntrrq7qGm93QzeiaQkxirGZBTRi+PSYBIgnZGg02Fg8SZinJUa1ZSRkS9iWLQwIPmuxnmSjhy2sFsJ8sgbkJz0ZSQg3Qk0z3K7qmrrmqjvfe/b3R944O3acyMjIvXdh1RBrdde5sXNnRGZGRkRGRubevt3HHxDsLa/r251plhs0k0GIy+EPxTJnODSVE+/GWoo+QUyerDJtcFYQQspm28V0E9BkWANLXrvINCM9nNo4i9XvDayU5fCGrmb7JG2pW2O85MgEh9i8vhzB5v37bT4kHcsOaf7qf//vcV707GcdcmwlUJfjtTXd5266GWz5A/xfy8/PDZrFIBU0i0Gb4/mWXpMbsPQ7Bk3XvVY5LWhG9k5ulqRoWZuVWjkC7bjztQzXg2ZXKGhKXe62auCdxLGsEgltFjAalGVQCtZdDtrvLnmzjh54HLF+PxyjlHRzM83IeHjaoTmvTRc1QRkXQzjp/MX4oHbS8Um+ELT48IDl/Higawe+LIHf+q3wm9orFz+aYWvKR2rBTc/oeGZZAjt31vmT9XoNYUwnxGSi3/fdwafxZOGsnWu5s6ztopKMWnNLCzgcOgQ8+tHpdkiQ/Gk7hlq7YrimcqIFHLRyGv0UzWPH/LzlHM9s63RKSAXNCGctEiyankVdbGwknZhclOXwIk2bmzt2ALfdNozXIBYMuvHGkBn57QqacbuZk2nW1Z2ZkiftN4emi/8Y8Ow27d2iGPbzNHlK+YJcR8eepfgA9EyzVIAoRiMnME1zSfOriL+mNsebyarhNXmV2Wc5RyI1uabj/ZIPubjWbHxZ1jf0Jif1ury41Bzx+q9d6Ffa0OV91jTT7BnPqP8tM8kmJurvyY9uWJCrh6Su12SuySYffSkz5g9YfPJ512WmmZZVBdQ/lNOURo7O4XOPy7CUcfJvgXb20Erc0PqEgmaxdbEG2rrQ6/vH2n8twvWg2RUM0iGmxTFB08AEUP/6xwMPhEuq2zg6nqCZXEwCesbEvfdWv3OCEDFHyrOoy81m6sqJlzumtOiWzo/mILW700zHUZ13313Refazq3L8uJ18n0PTwKqmtPnYpHZemsqrtSPD70zTynl35TTIDZrJnTnu3MgL/OXzFHgXjnxBRllLsfamaFPdtEjiOCvTjJysWNAMsL/IpN0R0+/rRygtoP6leSODZDyI1tYh5AEHa9dfC0Lk0NSe5+y05wQJ/e0fFiSvfuU0Jyf1LJWmwSANZ81ha+HA65M6JRbQ9sorl5der2r/e94D3Hxz3eb87M+GZ13faRYrl5JPTYflzBttrgO+XfguA4naOHrtEJX76Z8O/z7taTYfHr+JsuoteeVH+jU9FssC9G6ixoBvahQFMDOTpuEdh5w7zbTgj2ZzOE7rk35/uA2WXH/Hdwzjpc6PBeB37QLuuSf87f3qo8dP8N5pptnrNvJAdUm9yX/HNtFitGVbUnec/df/6reB9N7f/Z2vfOrrmUCzr3eS/yP7xGuXqf/oaHTT9aZnw0iTGckbDya3XV9Ieaf6ZKCVr7m7CPxKiPkD/Himt9+tftbK8b/bxBKuNrgeNLtCQZvUExP1FO2migOo33/0C78QLnFus3CQkMqEsI52/emfpuvXeIsdWdLKyfetBUyKLpXzOPYSrEyI2N0h9LtNpplchPJMs9FR4ElPqvjgu9pf+Yq+qOnqTjNeJ+eNcPyOjsu90CXcrbcO4z7/+fY0NZzWj7FMM4nT6o05w9o7scVPbE6sr+cFm5v2CR8bbbf9KU8Bfv7nh8tZl8uWZf0icMI1kWO5UxkLmnUpJ1Sndpw6NRZa4Dl3wW3hLP2a+lKYfM8CrZzlED760cA/+kf6u95gu9V+LpuxYAifjzG56Pf145MeXmJ9J99fWgpzV+62F0V1B1+XX4rU+NcyQbQ+SWWmW0BzmjJIY5kzckxiG1NdyImFi8kO4WiTwisPHnnlftPUVLz+WKZZG9mMjaMcG6mbm2wGEDTNNNM2JbS7mGKBRC3LMHbMVmaIaWW1eUP6heREC7bkyGtsvnCcp99z5s3ISD1hoGnQzHtNAKDfWSbb4M02o7pjG8wSUkGzfh/4whd0/hYW6gkQfLz5aQQgXIejrZE0HzLmNzbdvIjVKTdILb2eCnLn+JJ8Pmn+pfZ+m8BSTtCMH89sQj83K/F60KwO14NmVyhII0kTXbv8uEuaEtp8fScWDOr3q3akFnp0UX3bwIfEcf7e/va4kxxrV2rHmN6Vxzjlc5n18IIX6JkQWpCx6UXN1u6gZ2w8BjbHmGrAy3L6P/VTdn1eh9C7w1+WwB13DONidbUNOFi7/nwseNCM019bAz75yXpwMbWDbJWLjf/p0+GrqnRpteT50qVh03Pq1HD90mniOILYcQzibWoqLPTloia2q0r8akEzT1+NjNRlAqhnL0jnx3II2wbNtA93yMVUrrx2IcOSjhYgGR9v1ycAcOCATpv/TWPzspcBe/f6MyG8+sqSV5qnbTLNrEWIF2Rm6sJCyFLTgmZtj/9r5UgO5YK3369nyHIZpjkWC8x4eCO89b71PHV0KkbXEwwikJsyVtDMOnKm0bf45XJIOMrKszZvmn7ZtSzDcWAOMf0s5ZXTod/07nd/t56JFuODZwVb5XhZKh/Tr8OZZvUKvbaF6tYCZJbekBs1sj6NRoq/mB+Sqk+TYe9GCPWv1gar/zQbm/MhAHmfmfaeN2iWG4BIrTnKEjhyRKfzkz8Z1i8En/tc9Zv7SLt3D394zeLzcvgqmu2jsvzDVhLa6FxrDaptckm+5LxuQjNWjvCxoBnx5ZUna7OSg7Wx6F0rXM1wPWh2hYIWIJOBtDaOvlaHVwHkOMlauVSmmQYeJSkdGuLDyjTbsSN8Ztfa9ZegOfExp0Mu6rR3iOef/ulwTK0ohp11bdybBs2sS8Tlrj7hLPA6hB7QnJ/YAqCNvMaMqYSyrI9Faoeb6r1cGRnSqZYy/8ADwB/+IfDZz1bPPYaT1ylBmxN0xxWBbMf8/OgQnYWF4bq1RYK2qJN8c+cntmNoHc+MzVdPpplcwPGMNhkk43+30ddawEFC10GzGB8psIIu5MC//OV5waAYTtuUSAW5iY9U/V5dQmDtXOcETqXO1ewa4T2bFZw+/bZsGPkdbTbMYgtuSZMCZjMzwK/8Sl2Gb745BFmkv+ClyXHpS/9LlT9PpllbO5Sz4WQFArQ57B0buWhM2SGCmIzE6O7YkS4n6Wvyyv26qSl7jkjI+XqmpktTOE1eU3VL8NgmnlUkbUzuRo3XpweGs5s9vlTOfJVtlbJvyWYq0+xv/ib8e//99fcPHtT54JA6IkkfXUjZSNlfvF7yaSQvT3yiXpdcJ/CsM35PmNafmt/K/7YCtx7QZEALEBGvqTncNBjMgc9XbdNA6rh+v/pKfE7gV0Jsk14LJJ4/H75aK09KpORK9inHpd7ztu1agOtBsysUpILSjIkGucKfKt9m8e9RFLk7pxZOU7qxAJHkg0DyHFv4eYNmHudJc+LIGFImiXa/WdPjM8FI1JmNZZrJ92++WW9D1zsUnkV8U+cvVk4CtSl1l4U8chaj6Qk4aA6ndTyz36+3hY51WF82jfGilZP107t/9Ed2fbTTzvFjY3E+LIcolvVA8iqdH5qLqeOZGs6bDRBbxPM7zdpmmlm6Q1tAyF3UZz+7XdCsqbxqQUKpc2OBmxjdsiywc2f9gScIoe0iF8Ww7tSuBGjqmGtBiNxMM082T0zXPf3pw3iZrSn7iXimeQO0tS/pIG+vVx2LunQpZDnJIATxqs23XbuG69R44/M1107JPsjZqNq8eRiXCpDF5pPMNEvZL0/QTFs0EhAdfjVD7HimBl1m5BF/cgx5n7QNmsX4kDpM2kMN5xlnCxd7X+oNuZnHy0mbw4OVsbFJ+bT0m98tFfPzPX60N0BiBXStTQlrbXH4cP1vzTfx8EuwvBzuhU6V++Y3gbe+FXjLW+rvEuzapdsDOjYdAwq88X7mxzO5HfKupbxrHO/GjWX7LL3cVpdo5bT1tcYHXw+13fTUQPOB1tbCus+6500Dy+/SyvG/Y+2/FuF60OwKhlQQpo3iILhcmWYajiYnvwuJyuXyrdWvZZVoC+ecBUzb3WFr4UuKW1tgkUP0hjeEf/nxA6LVdOcj1ic0NjJjgr+v9XGsnfLDFcDwkTgJ1AdaKrxGV4J3URcL6EqcXMBqC4wPf7j6PTc3XI8Fnl1a7vz90386jPv0p8PvL31peMHrDQQRbQ+PZTl8X4cnOKUdLffqDfmbB4hi8krj7NWT2uJcu2id9yn9lvfY8MBETLfE+IgtHFJBCN7+170OeP3rdRqxuxItXOxZLBgiy8pAIumg2J0+Go4fRc3hT1t0yXL/838O12XpV/6VVat+bVHnsTnSLmuX2XsXMRp9a8PICsx4dK61USVB6gQuw71elS2qBc282Wdan8d+y3+7vNNMA08/SXnS5DdG0+LDE4SIBb4JcvRrTF6/67uGy2r3l8WC4RQc0MAaLy0wEyvL73gty/ARhX/9r/WAXZhbdYY8wUFeTpubVqYZf1+zOakAYY4d1gKaspzmm+fQTGeG1nHW0TRJm4JbFn/amsSyB3/7t/V3Y6D5hzw7bHpa93OJ9vOfr9P5jd8I/8rjxDQ/Ndsk/5U0Pbgc0NZbfLxTPmQTGY75+dx+aD4CX2NRQLXLDXleNuYjSP811f+Wn8lBzq3rQbM6XA+aXaEQi4SnMpdyLwFMBc1iO0RyAePZbZIOscRZYCknyq7hNOnLUN5MM+kkz87q7ZLvpXCp8eIKi5clPmZm6mUWFqqdqTZ3mlmZZnJsUjISW6jFFsSU7mwBD5rFLrVtGjSzjqdquNTxzDNn4gvQFE6CdZeMFoDq96t7xRYXh+W4bdDsU5+q35Mh+eC4Rzyi+nt9vRjwR+BdwEgDHrvTLNAZzoyk302OZ0oYGQHuvHMYr2XuxI4zeI9USZzlJFoLGK5fNXni43DffcM4D2+SJofUnVg8aKbJXM68To1hLIAl69Oys5qOF9cv2qIutnDg9XmOZ3r7hNOi37F+SgV5NfDqUo2PWH0eOclx8FOLcI0/4oVDzjzx2AQtGKTxyfWkJr+SD+su2NgmIqev6aycTLOy1I+8aeVSQV6iI3Hcb4r5jzk+rQbUvte/vr6IHRsLR8M1Hym2qarN81iGkydoJAMknLbsq6ZBM+98lXxKudDuM7XGzPIHrHmrHU2TdHgWvsWLxFlrK28ANpXRJjdMCEe8fN/36e/RcVOZaRYLmvX7wL/7dwEXk02Pf2SVszYctKBuzM61lWEOnI4WSNTakvOxqxgflkxoGbRk+3ifpNbIBLnHMy3+rkW4HjS7QkEzHDFjwsH7WWSCVNZB1ymptCCQCstbp1Y/D8J4FkipTLNeL1zID9gLPw9/nkwzeVyA80zHvehvyjQiXiV4g0YSuDHVsgBvvjkc94oZWO/4yfpjQAGyG24AHvvY8Ftmn3nbnxPQ1XBa0Gzv3uGyHHL6Q4J8V7tjKBaI0RzFNkEzefeHrJsCmjSvaS5S0IyXpd/82JLmrFhZgJqTzOWJO5jW7mVsYaPhrAUMvbO4qO/yppxpr5MoIcaTdJI1GqlFo+WkabokJoMxJ5kCmtpXEeN0i8ZBCM/81476WeOVWtR5gmYxOv1+2i5beE1uuL7QgryEiwWPYrxyHM1rHoCzeOLjQFmRcl5pvPLnEieBbJPnmgQNmgbNcvRLDh/UJ00XjbIuwA6a8fZqNqeLTLNUQJR0TGxey68EctDGK+dOM76o54tYy3/1bJYSTEzUP46g+fkEsk5tcSw3obyZZjF5TYHlS3K4997hcpbc8HpzNhs1v0e+r92D6ZnXbdY9RCPVlph/TRAbRwrGpY5n0tjce2/9tICm57z6S8M98EC1mUtAd3XxdvB1jsZH1zi+zomtt/h7/X7l43a5Fpb+EMdJ2+cF4p1nUmp6xFr7eNcKVzNcD5pdoRCbjNrdVhy8mWZ0LwGfQPxsvUUjhuP3JsQWK0STZ4fMz4dsHQvKMpzr58f7vIvLGB/SmBBvpLDobwk5i9+c45mxdGG+MD15snq/TaaZBC3TjBsQCt7FnFOvw+pdwFCg6nWvq4yW/Cy4FiD2jE0sQKaBDJoRbs+eOk62qY2BlUC88aAhOUmxIDnRjzngGngdfd4O+RVPugPHyjTj9+J5AhPeTDNZznI62i7qJC3+tVKCnDvN+OXKsUCiFTyk35ouyV34p+RUGw/tuRU0Gx8P8qy9nxMM0t5N9YnkLUazrWPOebZsjrZI4vyRzpUZujF59WZVyeexhYSsHwAOHapwmsxJSC2ut2+v46htXR3PTN1pFgsWlmUIarzrXeHv3MC3B1JjI30YazNAApXjH8ewbJ8lm3wOf+d3Bl8sFjTzBmFi8qotXiWffI7l9HfO1zPl5qUWhJDBkPC8XqHlH8lrLLxBM8uGyfFLBQg99jAVUOflNBrah81k5pXGb0yXajjN5njsn/YFS/meN9Psox8N/8ovxUq9roFWhuNiQTM6vk96FNCDvKQ7+DFR+VEnqtsbRNXwv/Irw7i1tWq8tfVWylfzBH5TvGlzWKNBf5dlfqZZTgDW8pH48VoP0Pv8a9QxuO22+nvXM80quB40u4JBTmrpYLQJmlHdX/5yhZM7A4BvN1/jJebIaO2gr85YQHXxoJlmSDxZBXzBnQqaeTPNYk6i5hDGPjGvLViIF+9YUzm6ONQKGnLQgmZUH1fiOQsEb2BCAwoGjYzoQSNexkOTgxXQ1XA8mMxlR16Im4Kmi3CiqR1ZlX3CjX2sfsBubwpiQbP19eGgmRaMsZwVjWfLSV5bG5ZXkrFcpyNHXq1AGD3nfAD+zCWv86fR1LJWc4Nm/GivVq4sq7vetPpT7S2KarffO4e9dkhCTP97gmaWI6nZ4Zj+5uW1oJnGi8eO58irJ5AmAySWbrLkVcuytBa8kiduh2LHM3PmtNbnMfra+0VRXQHRdKMK8C1MYjzxfk+NjYbj12kQTgskSnnlwOf1zEzY/MjdlNBwKVuktZfPMesYPpXZt28Yp5WL8UyyyP0hwssAS0xeyxJ48pOH8ZousearZntimaxNfQ4N5/UZYotwLeg3MQE87nHDNK25aclrrE84eOawFjSz5i/n6aGHwr/yPlQt00yjYZWJ9QvNbx6oo3GQ+s8TvIvZW20DWes7bwIGX2/FdLo1X/mHSrwyrNkEbS1JdKxMs7abKHz+S39A9knK5mmyEeOF35HN6XjXAFczXA+aXaEQC0ylhDo3aPbxj9frl5ATNNMUDgdyMLRglQckDc8iXAv0WEdl6MiQtfBrGkiU9OkdT9AsV2HzTL5Y+zlQudiHAOQxUUmzLIFt2+r42MXvOZlmuUEzb8DBu4Apy4ouHeHq90M/0RHNG27wjf3lCJpx52THDt0J8y4wvVCWwHd8R/gtv+JZBc0qPOdFghX4thZwPKgtZZ3mFS2mNNDmfk5mpJZtxbMPScZ4AN4bNJP1ahArTzJC46CVS9kI6znxSzvG1tjI7BjC0djw+jh4HVHv7qgn0NMm8KHpbwkWTtbZ74e7BPnfOf2UCpDFsq74hgnXkTfdVK9fvqsFYWIL7phMy0Udr1PLNAP0zJWtW4H9+4fLWgGioC9KlT/SJdYcjukwr//mCSR6NtG8QU4rGOKRYTk2bfxGrZ9iPAHhqobXva5OQwtccZpAPQOnydczuf8jF7oyCGEFzaxgewxHoGXfEcix0RbgVlvbBKYlxOQzlinnbT+vP4bzZJp5vgrcJmjG65B//93f2bxoAS2O43RS7dAyzag+6Tt7dFVsfnmDOTLYzOnExiqF88h1jGfNXsk5Vpb69Si5ENO5vE/q9mhYv3YVNPMkllzLcD1odoVCzMGSRpdH2oH8O80kTQlNI+mWY9fv1xe6nsCZ3DHhvFk7BhzHPxhAvEgl7l3oeg1KagwB+44NUp5e5SeNiXcBR/cfWJlmckHDywDDi5XRUf0yYI9DpAXNZHu9QbM2mTsUNLv9duD9768Ha7ZuDWnOj3iEXx7kfPXwoQXNqBwPmsXmnHcOe4AHV4HhO82qDKKixien6cVxmvI3z/jTgrxUhvTGoUPARz4CvPnNOg3Cdb3QTTl13j7xZu6QPHA58+y08zKpTDPAF5SPzUWPk0yZshUM32lG9C0czyrTbAKnqfEaAxnkkSDH0DrSKumcOVNlK/D7d7wLG0/AQ9ZnZd/xjAkrACnnYWqOxPqE04gFzajMs541XC8/eqItGjWaMXvJFzCArUtTpwBStk+jv2PHsF2P+QMaePRralNA4mgOW8dEu/KR+POiAP7hP6zsrQyaaWAFjTQZjr1vHc+UPlGQV50hjw7z+o05+jXV1qZzJLYBKsfju79bLxPz6b0yqQVh5LNc+8d5s8pofFjQ7wNf/KLNi+VfSzop/5fLJvUPzZUDB2z+PbpK8mbhYngur5YukTx6g2YStLWftm7k/OXeaeZdgxBeziuuX5v66RZ/mm3W+vNahetBsysUYopTOmY7dwKPelSF80bDPdk+Gh+E05SL1yGUO9o5kLsI1xxzK9OMeOPBEQnexUpM4fEsC01h93r1ezdiCzPJWyyrTsv4k6Adz+SOiHQaJXDDzHHygu1Y1gCB7HceNJPt1T653jTTzFr8rqyEOyPGxqpyXE6sRZ3ETU7W7/TyGEWSFx40ozssOC42Nk0D3xrwbFGg7lD0+9Ui/9ix8IMfF/BmaXgWddLBIByf/7FxjkEXizpOhzs/xCvBe94T+s6TaacFIbT2FEU1J2hcNLlO7SpaQTPCU/2pTF7Jp+yTWP3eBXcKNP3qCZrt3NlNZmBMNvi/1qLuJS+J08zJZrKCdtq7fFz5u545rMmE185z2Ukdz5Q2J3fB7QHqk9hYxXA58hrrm3e9K+gJ+Ty2wPTS9PhIlizzQGIs0yyn/d5MXk2/UlnLL5GQsjllCTz88HBZ3l6pm/t94AlPCMF+b9aWFjSy9Iv0mXmdsU1fb3DB4zdYsqHxKcEzh3MX75pPL5/JtjU9oZAbNJPltfe1L0xaATxOx/oQBKDPT5JXfs2NBrE1ngesAHYsQBTzv3l9TYJmmh2i+WrVR3+XpZ0Vb/HrgVSfXI5Ms6a2+VqB60GzKxjkpNYMrDQ6XaaQAu0yzWI0PBkY2nspB0NTvNpihWepWAqL/paQk33mWXBrzr62+Jdtk2PN2+85KqO968k0k6AtroC489j0eGaTHUMN5w2mEJ+rq/ULTPm8sxZ1GsScROtdKk9ZRG9+cxWc+qM/qr/nCa4CebthHKj9FKyjfiE5oQynP/uzbQPadDSGxjTlJGtBDk6f16E5hDSvYl+PIhrehY13USdBBuB5/RRMzAlUxuhbPGmyntLpnuOZPCgX44PToWwlGYRos+COyWtscW3hZP179/oCDpwPK9BgBQEsvU7B8Rw77Al4SH5p7njbZQWyNTthHY+Uv3lgIpVpJkFrA5/Dsbkq+0QLEFF9Gs0UHxbPGh9A0JubNg33U04GgjfTisDqJxmYse4Si81XbSFuyasFnkyz3DkMAF/4AvAzPxMCZ9z3kfaF6pDyGht7yUvMb4rhtL6jj2/dfntVZ1f61es3eiCml2QdnqCZtREeCyRy8PpDWkArB2LjzevTMs3kfWCxoJkW/JOBNLlG5H4+B+/ahX/sTWuTBZYf1lReU+vI2Oa4Nod5fVRXv28fz+RBNQu89oqXvZyZZhxidvhahetBsysUYkpLm6BNgmbeyeHNyJF10m9+zEbuIsf4kF8T4qDtLFtGl5fXduqkEqfjXlbQTBubWBAiteDQFHZR1I9skvKURpLe4/2ltT9nwR077uZxCDW8du+MRp9nSwJVxkwXxzM1I6HhYmMo5ZW3l/72HJ2QDgznbXZ2uDznDQA+85nw7w03VM++9KXh+iXEnER5BM67qOP98UM/VL27vj78Naz19eprPr/zO8P1Wc6PFXCIBSF4H/CMzRhdifM6j6kghJbhKXeBuRxagURL58bACpp1cTzTymTjdd58M/BP/kl1EbdnU6Lt2HDg/Fl9Ytm5pz99mLcughCxPuAf5LF2uXNkwpO5I/+l+vlRHk/7tQBcasFtBatidlSCpl95XRK0bFGtTh40834IwOs3SPD0WcxWWTKS0i8SrKANt32xQEJKb6bKaX6brIfa8dd/Hf7VPihlBchiC26afwsLesCB+0g8y43Lq4cPwjfRa1Ru585w7QBdgyHbZrWV22rveHmeazhrk86bLWrxoulSLq9PelJ1NUPTaz1yM81SQTctaNbvB7mTOE1++Ls8yEPAT49I3ZxaJ8ZkmF8gTyDvMrb8AQItaBYLwKfma4ouh5g/IPXkz/1cVSffHNdoen1/DXjihpYtmhuo9dC1bPP1oNn1oNkVC9ouhRR2Uoh80nrvNNMmh0dh0UTWDL0GMgBGQQjrTrNHPjLOW67itBbcVmqstkv1Mz8zjLMg1iepTDMZSKO/5XFEy+mwFtwxR0eODfHIM2Zihi0Gmpx4dlat45nf+73hX++X9zQoS//9YrHsu9xMM88CRnuXxoOck+3bq/JPfWr9vTYLuJxMs9VV4HnPq+a3XEwQrK9Xcnv6dFVHijdJU0JqIcX1Cq/PchByFrqebEmpS4iP7/me4aCZtaizghAp58cbNPM+lzKcCgaNjNT1eaxPJI3h+TRMKDbXZT/EbFiqLo+z7g0MWUEAWedf/uXw+97FddMgr3yH99F3fAfwz/95uMNR6xOPzUktguW7MgjBbdIrX6n7Q1q9sUBaDGJ6XFuUE8T0f+7YxH5LH0brX85rE5ykmZrXRZH+aqXHJqYyzSzdTWNB9/+dPTtcj9X+mB0iv4KOz0u/bGWl/qEV6Q94+pfzoekDy0fyzGXZf9Z85TiLX4/eiOHKUrunUl/TxOrw8BSbn71eRd8b1MgJmjV5f31dzzSz7jnjbY9tfo2PAz//83V/Xdq+lK/n0V/PfnbF10tfatcn35fjFdNp9F4MJ2U49lVIDvzqGyqnzQmqk9uhGH8vfrH+TPJLGaFSl8Zo8rFPrW1i806CtkF4HSrICpp9+MMfxqte9So86UlPwu///u8P8J/5zGfwPd/zPXjmM585+O/48eOD5/fddx9+4Ad+AE9/+tNx991349ixY4NnS0tLeNe73oU777wTL3nJS/DZz362RvMzn/kM7rrrLjzrWc/C+973PqxqFxVdo5AKOGhGt02mmTdo5lGoKafLOj6oBQ20gIAnCGEteGMKK5ZpRh8SaLM7KHmKLep4O0h5fu1rw7zy9hAfsboIYg6ZDMLK4B53EDlYwZqmDqGVaUZZK96gmZVFIunzS6+lQ8z547tB3kWZtoCTY6/1JZWnbLStW6vyW7bU67KcBA45u2EcqL301UrOt1zcEm0pTxoflgOfypKJLSYIv7bmc65j89qTdaE9j+mS5z+/Xn8KvHpF6ydON/a35IMWoR5n1XJ2uX7VdlGBy3NnJIeYfrWCZv/iXwzrYAnaHE7xEatDvs+/Vqnxl4vjtDgv1uJTtp/rGfluTCZSC24N6F0ZNCOYmYmPTSwI4aGf+npmKsjbFCdpeua6lfUQyx5OjZekn9J5nA9vWz2BGY2WpV9jvFo0rWD43/4t8Kd/Gn5TUFBmlS0vDwfN7r8fOH6c+CpUX9Uz/pyXVDktc0f+bpql02YhHVtbTEyEr59KmqlNRA9P3MYeOAA88YmVzuL+K5WR4MFZet7jT2n1kf17xCMqefMGzWIZc+Pj1RfduS4FKhnWrnaRNC3coUNhEzdHljR5Jf9K6hatPinDfExj7/b79Xt1ue60dCLHpzLN5HtWOSsLWq4tpH7tKmhm6dTrkBk0O3jwIH7yJ38Sj3nMY4aePfnJT8af/MmfDP67cUMSV1ZW8I53vAOvfe1r8Qd/8Ae444478O53v3vw3oc//GGcP38e9957L37+538eH/jABzA3NwcAeOCBB/DLv/zL+KVf+iX87u/+Lo4ePYqPfexjbdp71YDH+aVyfKF6uYNmsXJeh5AW19YE5UrnzjvDf0RDM7AaH5rzJxfv1p1m2oJGlonxzHGpBVdsUcePZ1KZf/2vdZqW8teMRGoBp2VVpYJmWr1awMHTJ4B+p5m8fN6TZq8t6qk/U4ZDczo4zso06/frX74DhusinKSbcjpiQYf19bygmUeGJcj2c95imWbagpyg6aLO0h/SQfEGXGL6zzOHNZ60hZMs721/7qLGetcbMLVwUkdMTQ3Le2oXtQldifP0g6YTNB02NQW86lXA5s3xelMbHPxfDrGAJtX5qEcBz3lO+Jsfv7b6KSfwnQrMaHPUo0s5H3JhZtVP5bTnWtDME4SI6Vduh3L7QcowtZWynYmGZwHnCfJavNBvOQ7Pe17IXiV49KOb86HRfOELwxFrOXaajKRoePQw1W/xBMRpa4EZ79j8i38xHBTUjmdqXw+em0svriX/qeAEh1Q53k+W3tDqi9WllfeWA4Af+ZGg22ge8uC7NTbewLfElWUIkrz1rcM+vPSjOFi4V7wiXsbzvvU3+Wbf//1hQyDmX+cEzaTvr+nEtkEzLlcxP0eCJmN8bFK6JDWHZZmYveJrK1kuFtSigGYMUuvSVCYbf8bby2nm2o/YOxLnzcK+ViCrO+666y485SlPwbg8t2TAF7/4RUxNTeHlL385JiYm8Ja3vAVf+cpXBtlm9957L+6++27MzMzgsY99LO6880587nOfAwB89rOfxQte8ALcfvvtmJmZwZvf/Gb83u/9nklvZWUFly5dqv23tLSEfr9/1fwHkGDXpbvfL0E7ovR3WdZx6+vloI76u32BHy7H/967txzQAIBqJ7aiec89fbzrXX1WruKj4om3Ibwb2hH4CeWG2ynfKUsqVw6V47QqhRB+8E9/V+UqnouC+iHg1tbKjTaGv9fXwzs/+7P9AU62FcCAv0c9qsSePWUNJ4H4oOdEA6AxKlkf9Dd4HK6HcNTGqp+q9tN48XJcXiqeqvb3elWfUJ3hnfD32tpw27U+kfJKZTX6xBu1aXEx/Ds+3h8ai5GR8PfKyrCcV31J7Qq8jYzU5UCOTVpey9rYUHupfq2dO3eWuOOOsoYry7Imk5oMy7Hu9ertL8uqT/hYBL60PtH0QUyGbaB+oDZXc6I/mNcVjT7W10ts3RrqpX+1OazJq5Tbejnepn5tDoc6h+crL6PNTdKndSgFrTof9bGnvunX9CXR5OMn57nU61wvcp073A8cV/FZ0egPzYn1dV1eY23koMkrtWN8vGofp9PvD49FVWa4b7Wx0Z0/Xb/KOcx1qez3N7+5j127ysHYa2Mj6+P/8n7TdIi0OZyPqk+AQ4dKPO1pw33isTkpXOCD6ixrsln5BXUZTvWblFeO8+pXahv9pj6p7FiYR+vrUicQv3K+luy/qj/qc2d4LMPzClf3w8raHKa2vuhFffzLfynHRpvDjJpDXvk7XBY5jmzO5GTAP+Up1dhIPaGNl+YjyGdc501M9HHLLX0xXsGOkb+5efOwLvXpVwyVq+Pi+pXa9l3fFf49fz7wNzo63H5Ot2pjhVtfl/5xwK2v9wf+UEWzsifSN6M+GQ4kDM8Jkl+vj1T3G2lBbc1hffzjNrfeDvme1H3Dvyv+Cfbs6WPLFl02tT7RdW6avmXrqzEjnyntN/JyBw5Uejm2ZpN2jHwfieOwutof0Oj1KlmS/PX7JdbX+wN9XfFX78t+P9RX+e/1tRPJa1mWSnuHfQTLtpAe5rq6Xq4CWg/xseFzp/IjY2tXzXaEuoblenh+6TiA2zWOq+qrfNpgh3Te6usu3Zci3GMf299YF4S6/u7vgG99C6q80lhxW2TFDTS62rpR6xNA+gMwaV2J/3lh1F0yAV/60pfwvOc9Dzt27MBrXvMavPKVrwQAfOMb38Aj2aUlU1NTOHDgAL7xjW9genoap0+frj2/7bbbcN999w3efSq7lOfWW2/FQw89hKWlJUzSWTgBH//4x/GRj3ykhnvVq16FV7/61V019e8FLC0tYX5+Hbfc0sPqaoHDh6ewurqG+fkFAFsBAGtrayhLYHFxGUA4zL28vIa5uSMAbq7VR9l9hF9bW8Xc3EO1cmfOnAUQLil61asO41/+y0Mb9Kbx6lcfx9e/PoX/8T+2YHW1j36/wMLCgxtR+5uxttbH2to6gBBwDUI6gtXVFQAhBeHSpYtYXp5Avz+Os2fPYG7uIhYWbsDa2hSAKl2OaALAxYsXMTJSYmVlCv3+GBYX51lbVwGMY34+4LjOWFpaBLAJKysV/fX1dQCjOHPmFIDdWF5eQb9fYm7uGE6enASwFxcvXkK/P4mTJ08B2Ivz5y9gdHQz+v05HDs2CuAglpeXsbY2AqC6SXVtbR3Ly6v4wR88jpMnx/DRjx7A+nqJhYWFAb8Ei4uXAGzG+nofq6trWFkZATCKhx46gosX17G+fgDz86sANuH48WPo93fj7Nl5ANtq9VA/ra2FNpYlNsZgFOvrawDG0O+vo9/vASgQlGOB5eUlAJtqdZ05cxrADbh0aQH9foG5uRM4c2YzynIn5ucXMT5e4sKFFayubsb4+CKAzYN3gwwubhja6VqfBB6r7cV+v8TCwnzt/TBeoS0XLlwAsAUXLiwDmMTx43NYXS0A3ITz5y8C2IKzZ08CuBEnTgSeOVy6VMkOEHZr1tf7KMtq/yD8DYR7ksJqKRwLH98w3iMb/XsJy8tjWF7u4dKlRczNncHCwg1YWhrB8vIILl1axOLiKFZXC/T7Y+DysLS0jJWVHvr9FdD4r6ysot8fxdJS1f+rq2G8VlZCe1dXV7G+PjrgCwDOnQvz8uzZCyiKLZibm8OJE0Fez527AGAr9uxZxunTYzh27ASAvbU+OX36PIDtNdz8/CL6/Qnwebe4uIwbbujh4YfjmyZl2ceZM+exsrIFFy5cxJEj5wHchJMnH8b6+m6cO3cGu3ZtwenTYzh8+DAWF/fj0KElnD69BbfcchZzczs2xj/0ycJCmKc0X8P4BDmlPqF/w7PQX6dOPQxgDwDgzJmgS86cmQFwA/r9EmfPnt3o2924dGkey8ujmJs7hocf3gRgD5aXV7CwsAo+N/v9EpcuXQKX17IscO7cuaH+u3TpPIBtG3Ifxn51lXQq0O8fAjCCtbVVPPhg0LMXLgT5PXbsGMpyBWU5u6G7p7C2FuQPAFZX11CWoxtO2ghC4KvY+Ht0o0woT/8CwPnz5wDsAACcOHEcY2PLOH9+K/r9beDytLCwjKKYqOnL1dWgLzisrfUxMlLgttsW8Ld/O7NRjuR1CcAUVlfXN3ZEexs6fxSnT5/eGAdgeXkJc3PHsbDQAzCL9fUSKyvLOHnyHIC9OHNmWDYXFpbQ74+Dy2ZZFjVbAgQ5WVoK/Vd/n9uIJayujgEYxdGjD2FpaQ2rq/s2duknABxFr3cDzp9fQr+/GefOncXc3AUsLu7G0tIIgElcuhTGjfoEGBnYHA5hXk/VbE6/H/r19Olgc4BKXk+enAAQzppfvHgex4/PA9hf6xN6b35+AaurvVpbV1fXMT+/BCnDQYduq/FGsrGysroRIBqvyeva2n4A4+j3g/9Qlodw8eICgM04fvwEJieXsL5+EIuLqxttrOYr9QnZofX1NZTl2IYuDXJHc5jmLwCcPVv5GydPnsDU1BLOnt2Cfn87yrKHM2dOYXFxCouLowDWAUyj3+/j7NlzWF/fjpWVNVy8uAjyh8qywPr6+kb7tw9wQDmYr1y/X7wYxvXChQsoiqmB7MzNPYxjx8YB7Mfy8gpGR0scPnwcwE24dCmM+5EjhzEx0QdwM5aXVxBsRzlo79pafyPwVM2pMB8qXUawuFj1JfEEAIcPP4iJiRKXLu0c4B566Aj6/b04d24eY2MzeOITL6Isz2FhYReWlsbQ74/X7DvN1/n54HOQjADFwOaurVVzf3U18Mf167lz5zE3dw4nT44BCF+FuHTpItbW1rG6uhnnzl1Ev78ZfLmxsLCEtbWi1tZ+v9xoa2WfQ10VbwQXL4bxWl/vY2VlDUGu1jE3d3ijfw9s1D+K/fsfxv/4H7vx279NtDX7UvkF5DdynXvq1GnMzV0C94ePHDmKM2c2oSy3Ym7uQayt7cf584tYXp4a+AOLi7s3+CDbtYbz5+chl179fonl5RVcurQ6aGtZFlhbW8XCwlKt/f1+1X4ONIZcH5F+DXDTBm4Zhw8fA3DzQF657iSZIHkNPhIZg2KDt/CM2wWSDS7DFy4M83nxYvBJAODo0aNYWNiGxcURrK6O4NKlJXBd2u8XG+3aMuiT0NaqjQQkJ7wtxAv5r/1+NYdPnAhzuN8vMT8/j5MnLwHYi4cfHvYbybfkcPTocQD7cPp08KlOnDiFubl5aHDiRPArCObm5rC6ehDAKG67bR733z+Nw4cfAnBwUObBB49gfn4EwH6cPHkM/f4enD17EUUBbN68GS996cP4whe24dKldZw6tYSi2LmxjgsyurCwMhiHxcVlzM0dw9mz29Dvb8bc3GEsLt6AhYURAOtYXh7B3NxxLC2RDVqtjRvXQeHvpY21Hbc3a1heXgcwidnZczh3rsT6+laUZYnz5y/in/yTc/iLv9iCP/3T7SA5uvXWeXzP95zEH/3Rzej3gdXVFczN0Rc7bsLKyvrAx1pf376RbLMf+/cv4aGHQtsuXqRxr+Yr6dzKRwr8ra/3wP2Gfr/ckOHw3vz8RSwvTwIYx+nTYTwvXtyO9fUtAIqBr01juLZ2aEPGt2740Ttq4760tIyynMCFC+dANifwVk+7Jz5XVk7irW9dxOHDle0nWqdPB/26ttbH8vIyLl1aw9LSBE6fvgDgBly4cAFzc2cQgwsXtkPORc3elCXNuZmNNoSxL0seJwAOHz4cpXUlws0335wuhI6CZo9//OPxm7/5m7jxxhvxla98BT/1Uz+FnTt34jnPeQ4WFxcxPV03gtPT01hcXMTCwgJGRkZqAbDp6emNQAKG3p3ZuMVvcXExGjR705vehNe//vX1Ro6OZmXH/X2Gfr+Pw4cPY3JyEjMzwNveVuJP/xT49/8eGBkZxdatlWIfGQnDOzPDh3kUs8qn+CRufHxsCLdlS7V4uemm4BxNTgZF+rSn7cGzngX85V8WGBkZQa8X6qwuVexhbKwKTIyM9DboVOOyefNmnDoFAAVuuGEHZmd3YHq6wNgYsLhY8TE1VSnvHTs2oyyrI3kzM5W8jI6O1XA8NX5q43KPiYmK/thYUKY33LBr4/1xTE6GdtAXa6amZjA2BuzdGwzg9PQWFEUoQ/ddjY1NDKVG93ojmJoawezsLPuyXDE0N0I/zGw872FiYnzQ9oMHD2DbNmBsrMDERKhk3769GBsrsGXL1qF6JiY2DbWx1xvZ4HF0o40j7FmB9XVg06bhuXXDDcFQjI9vGowt6c/JySls2gRs3z6FXq/A5s0zuPnmEocPY8NhLDA1NQU5ZXu9EWzdWneGgQJbtgx/gmd6OrRly5Yt6PWAkZFgdG6+eRZLS6HMpk2bN/okGP5t24Y/s0qyMz1dYn6+2DhG0qvJxuhoD6ur9bTk8fEgSyS3QNBHZ8+GdO6tW8cwO7sZMzMFVlbCnWtbt46hLMPXjuRXI8fHJ9DvA5s3Vw/GxsZQFMD0dOWI0HhNTU3U+OCwffv2jTZtGYxN1SdbMDlZ4nnPG8Nv/VaBPXv2DL2/efO2IdzExNRATjnPqWSzkZEetm3bhl6vwPbtWzE7G+Ry584b0O8X2L17B57wBODP/3wNBw8eRK83gu3bQ5u2bg188Dk8OTm10f7wb1jQFxs8TtT6Bqjkec+eyunduTPoEvp6WlkW2LFj++AoyNTUNBYXQ7/RZdFjY+OYnpY2o8DmzVJegW3bhufe1q1bB3xTP3KdOjpaDHA33TS70e5Q9969e3HoUJiPExOTg3IEIyOjKIogp+Hv3saRoGouT0yMbbSjem/Hjm2D33v33ojZWeC++6qFCMHo6MTQcQOyJRx6vR6Koj5eJK+kQ4inoqj0687B118KTE1NYnZ2FpcuoYYj/arrtUn1q7vSxhdFqEsC17lTU5ODeb5//37s3g1MTBSDtu/fvw8TEwVmZsZRFGGuzc5ux6ZNxeBexS1bKpnobVSm25zJDf65zQn9unv3rgGO5JVf37p161bs27dlg962AZ5s1eTkpqE+GRkZqY0N9cnWrVvxutf1MT4OfOITgd/t20Odo6Njg3omJip5HR8vNp4H/2FkpMD0dNDTN964B7OzQabHx8PLr3nNJL70pRJ//dfAxYu9WrvHx0c3+qaSu8nJiY36q0bs3Fn5G0Tj618HaP7v2rUTZ88WWFys7po8eLCHnTu3oygKjI2NYcuWur7s9XrKfC0GuB5T+jSuW7ZsARAGY3p6GrOzlf8xNjaOiQng0KFDAIBNm0J/Hzp0cHB/2NhYkJ1iI12tKEr0er3B/CUoy6ofOEyxi8i4rB06dAiTk8CWLVU/Hjx4AGNjBTZv3oqREWDbtm2Ynd2KmZkCCwsYsi80P8nnoP4IbQntHGWGgHQu16+k57mN27JlM2ZmSvR6oW9HRuo6RpvDRVEMaHKo8xaAj9fk5PgGnyMDeR0bq+bwjh27BriVFd2+cLrkN3Kdu337TszO1v2JvXv34dixIPezs7MbemIMY2PAli3BH5ieLrC0BIyMlHje84AvfWkUMzNbcP58/ROIRVFgfHwCmzfXx390dNRsPwdaH5EdATDQr6Gvgq8yOTkxwJG8ku4MsjmyUb4YvAcU4iqTYuNr2MOyMcHO4ZMd5MDXKPv37xv4TNRvFY0e+n0oPmJ9Hsj2c/1KvsGuXWHsyrIYzGES67IsMDMzgxtvDH2xffuw3zg9PUxv9+5wBRHZqp07d2F2dtdQOaD6yBHB7Owser0C3/d9JR796Cl88IPA3r37sWlTiZtuAr7ylQJ79x7AhQuh/IED5OdvAxDuJXvWs/bgL/+ywKZNwLZtQf/zNdvoaDUO4+NhzLdsKTA+HsrNzBRYWwvXDlRrmGLDL63zu2lTfeNpYmJyyBcM6+xRfM/3lHjDG7bic58Lch300FbccstWfP3rlR4EgEc/egqPeETgmWw4l9debwQjI2QLCtx4Y9jw5T7fpk0zG3WN4QtfCDjSuVzHjoyM1nzacE1AUZvnmzdvHuilG24I47llS3UH4Y4dlU2anZ1FURTYvn0bRkcLbN26DSMjJdbXq/bRXNi+vZoHY2NBPp///BKf/zzZhMDn7t27MTtbP1o7OVlidnZ2sH4qih6mpqawdStw7BiwYwetzbbg0KHNQ0c8CbZuHX4wNjZsb4C6juS+9+zs7CAGEfz3a+/sZidBs/379w9+33HHHXjta1+L//bf/hue85znYGpqamPXtYL5+XlMTU1h06ZNWF9fr2WOzc/PDwyYfPfShmc9pX1mZQPGx8evmgCZBeEsdYFerzJmZVkIRyRM9vqdZkXNWa2gLvxUd51mVYYCYLTg6vV6g3ss6Jx3/f2iNpkrB7JC9nqVozMy0hvcCTWcyl5g927g5EngFa8o8J//M9Upz18Tb0Xtb46T9Ik2APT7xaAd1f0HhWhb9Tf1M/XJBz8YePzgBwNO1kU4CRVPBfi59dHReh/zftKPJ9XbXxSV8icavV6Fq5ykYaZIOfb7IYhJ7QgZWdgIZPH6gX/1r4AvfAH45Certkj+hu8IkDJc5433SejP3lC/k2yGXSW9T7T2E1A/1e9oictLv08GvhiMDc076iOt7XJuVuMV5xcoIDOJK8M1LIv9fjEYmxDAHh5b/cuDPpyE0HeBx5ERzkcV4BkZKTdkpof19WJwaXKlXyo6XhkOf3Nc1Ymkm/i8431EC4LU3IzNV81xqBaJVZ2aTiVckJthXcrLURslHyTDdd40edX7RMpTv19gYqL+NV597IflVepczmvVD5yP+liQTqD+4zbH4iWm/2z9Wpcn3u/cDvG7REhGtLHhvPH5OlxuGMeD8VJeA65gfRL+ff7zqzHV2kq2SuuT5zynGHzQgWgSb9U7lbxKGa7f8zIsr5s39/D93w/8zd/wcnl9k5JX0v39fqCxbRvw4z9e4M/+rG6HZPtlAIfzpvHE5VXzucKdNvWxqftDxYZuqurQbMKwj1T5ecN8xuSkLq9kD+r6ot4fsl4pw3K+AH55JZuTaivRTc1XAq5feb9yW0BycscdgbHnPrfAZz6jz1fL5my0aMhXKYrewPfR/CGOm54OwQleRrad+JZ4zUfS1qqajyL7hMpJeeXzT9pXrz8U8+ljfIbfvVqfpPwhq15Lr3Bdos3hZjYnlKPATFkOy0hVVvLf2/CRuCz3NgKRVf0kw2NjVd30Xl3migGOgN9LRj6PJpuBnwrX7w/7BHIOxuSyLMPdpaOjvH+pz4fXc7RhzfVkXRfV15KV/uH8hN/f930FXv5y4J3vHNa5xJ9o1eDXd3838M1vptegUu8FmS02PkZXYPNm4Ny5YRpyLQyEzTnJm9SlW7cCt9467CPRWpfbhz/5kwK33FLgGc+AG2I+vTaHpf8aeL32gmaXpcW8w2+55RY88MADg78XFxdx5MgR3HLLLdiyZQt27txZe37//ffjlltuUd/9RghYhwAA4NRJREFU2te+hv3790ezzK41qJyF8K80bGSIOC72IYCyrD/TnBeuSDlNWV4PEuh1SidRXsLIaci/X/jC+hcrtfbH2hKjD6BmnKrFQlUnV2oUvOFlCLdtG7Br13AbZLkYT9Qe6ndOh+NiQbNK+Q/jeLtk/Zoe5DzLPqF2yLpGR8F283SZkLR4/RzqBrheH/1LskNOh/ah3eGA0zBvsn4OWjmrT8gJGXYwhp1E3j7Jb32hM8wXEL9oPzhm1d/aexJy5jAHOU/ob/nhBjLWa2t1GQH0tlrz2jNO/F8ur/S3xv9wECLdfo2+9Tw2p+lfq62ynNVmi76Up34//pU9iYvpXDmGKV0nx0L+/drXhsvGqT6PbMbmSVEAu3cDT3lKPQgTG4vYOHhkU2urhuP9FRtrqede/GJbXi2bYIHHDqT6ROND1psjr7yctH309+xsyDgjPjw63KLfhD9LJnhdufLqxUt/QPMRU7ZE4zdFU3vGgyGaLpWQo19j/HEctYM2ZSgBKjVfpT6I8avZftleiavktRiqKzYWXjuszasYxPStNoc1/zKlGyROK0e/OU0pm6m2puhroPn0/O+YbMZw1cZgnObDD1e/yd+pNlurv/v9yn9dX690PflN/b7+oQnNx+TZSlSnXK/QhgMBr4+DR1fF9Bx/X9ZDfob2vNerPhQl5fKlL61/AI7Kb9tm2yEpe9QfP/7jwC/9kt8PI+B+Po3Vi15Up6n5V0D4wugP/zDwnOfEdb+mE7ncyPrvv1+vJwYxukAIPv7cz/nn1bUCWUGztbU1LC8vI1z2HX73+3389//+3zfunwC++tWv4rd+67fwzGc+EwDwhCc8AYuLi/jMZz6DlZUVfOxjH8Ptt9+OvXtDmuVdd92Fj370o5ifn8eXv/xl/PEf/zFe8IIXAABe9KIX4fOf/zy++tWv4tKlS/j1X/91vPjFL+6y/VcsxJRCyuhcrqAZx2sBopgjFnOmtKAO51WrKxZwaOo4a+3lSjxWJuUQexYGvB7NgMlFnWXUecDJuwiP8cS/dsjpVLtF8QChxp/WT5ZDxPskNl7kIGhfD9LaH3OINfqyv6i9muPM+0Rrp2yrJq/WImzHjnqdWp9QII3oeINmMWNtye7dd1eGXDqE1TFtIFxgWuG5EwnUj7JKx1QbL+9ml+TdO185zus4yCCvpC9xmrMG6HM/FuSV5SR45/r6ui9optUr28Dfs4Il/H1Nv955J0CnOvXxGm6IxfM//afAP/gHOs+afrUWCZa+SuG0ZzF54TLFeeNtkPx57FyTd1J607PgiMnBi18cgpqpPoktHGI0gPimTNom6wRIh/OFLwce1OO0Ygtsjxyknsd0iWVLUhsVFs0Yb3whKaFt0NDSIQSa/yPLe2x/DEcBB0/QjPMqAxUccv2hFK6e/VeVk/o5xq+Fi9HM5VPzo2Jt8NSb69PS75SvGsN5gmaf/nT1mwew+MYi+U1W0CwWqNX0Gr178811HqmcFtQm+YzNWwC4/fbh+btzp21vOZRl+AL05s3As55V0eX/8rJ8XIjG9HTYSCO8fDdHrmN6SHtX2/yWdoj7r/SehisK4KlPDf6vpGn5j7y9qeBmCsqy/jVlXs8jHhG+NHsd6pAVNLvnnnvw9Kc/HX/1V3+F97znPXj605+Ov/zLv8Sf//mf49WvfjWe+cxn4md+5mfwxje+cRD4Gh8fxy/+4i/ik5/8JJ7znOfgS1/6Et7//vcP6nzrW9+KmZkZvOhFL8I73/lOvPOd78RNN90EAHjkIx+Jn/iJn8Db3/523HXXXdizZw9++Id/uLvWX+EgJ1MsaMZxlhPDgwyaAdCCaikHI2aIYkZMC5ppkfqYY5JyEjWa8ncqi4wbulhwQdaZ4yRK/rQ+4Rl5sUwzj0Os9Z3VX7wdPCDCF5extnpwkl8COU48eEf/Up9QECb2yW1Jy9qB0ujLNsScGBobSfPAAT2DjOpLBdJiPMX6hI6J0t8Eb397RUPjQ2trrB9e8xrgSU+q+k7OE55pxvukfhwh/Pv4xweH6IYbKtwLXxh2F2+7zXbgpWzK5xyn6SZLr8WgyaJO8mQtTGLlNF3n5dOa63wn26pfsy8xnZNaEHE+eBBCCxB5F7WpABD9Tu0sc73G37P40Og+97nAwYPAvup+30byynW/1SfUrh/8wTB/ZLmYjFqLT/635uhbfDz3uVW5GBQF8P3fH4KanjlE42cFKjikghDeecvr0/6Wc7Op7bdwsTmsBRK5DGv2xWpDrmwQjvS81n5PxqMFmtzH5rUMaKZ8RG/QJGb7pY/EcXyO3HpriWc+E9iyJS4PqQzdFE4DbZ489rHh36mp4fHSfKQuM820zEjA9n1SOsTDU0q/crD0GtdDKbjzzqpcKtPsP//netCM5lO/P5xpZtns0dGqHj7/uWxq/qt2TQoQTvdIPfL0p6cDxoQDAj933ln56jE54X40b5Pl+2jyqpXTQPMHOPA70fp9YHkZmJ+vbxBo701OAu95D/DkJ9dp0b/W/JflNV3iAa/fJCEng/VagKw7zd773vfive997xD+iU98It5OKzAFHvOYx+A3f/M31WeTk5O45557ou++9KUvxUtf+tIcNq8J0CLQnkVCTLH3+xhcHk51ybLaBI4tODSFlbOAsYJmMcUpaVgLGI8xlQ4RoGeayYVPbHfAwmm80W8rA4Uv6iRoWR+WQ8yNqQQZIJN0+G6L1havIyp5kjjqW2noeX05mWbhLoLhPtdwgL641RwF4k86U9/93SFD7P77/QEHTouDHCdNnijTjBwg3id0XCU2phpOOlKbNwMXL9Z3DPliguogulX2XTGgzY8eUJnnPQ/4wz+scJOTwMteBnzoQxVtyV/MqKecZG3hleOMaJDKNNN40+aOtdDjEJPX2ALG4ongGc/A4GJdqz8sGebz1auH+d/eBUxTJ5kHcDkvHKftyPP6LRx/tmcP8O53A7/xGxXOMw70XLO5Uge97W3hE/W/8zsVL3feCXzlK8Dv/75dv8WTpv88TjiX6yc/ORyJZXumKn0LJ/Uv17eSZs4iwWqzNofls5id4ws/yV+TRYjHXyCasSCvdwy9YxLrO2tRlxoHL8T0q+ZL5uhS/p5VTmbuaP0udQmVGR8H3vhG4I/+KNz7GqPRRfZV7DnRfNrTQobnz/5sCAJIWrFNxFT9KZDyqulwrxxqz3J4Svmq0kbzcvLDOTHYu7eqQ8vGL8vKx/rrvw7jQvUTfX4NB/e3NH8NCIEe8r/kmkbLliReRkb0QBDPjCLgfaP5whzkvJHvcBzPPI+tLay1j+QvJRtFMdxmXo7zfOxY+Pe//JcwrjH9QvwdOBD6zloLxewLx8lMM97+224brpvz4sHFoMn8vhohK9PsOvz9Ac/CQe4ixN4j/Mc/Xv2tpeh6dyVzjx7ceSfwvd8b/ubHuGI8a04yQdMsHY5LZZqR88NpcEil/GsKUQN6HjMA9DvW5zJ9nPOhLYKsoBmvUwtWVcEQv/MTa7/lJHKHI2ZM5P1dz352nX8OsUWNNzNSOgDSiYkFEjXHnNrXdaYZD5rxOa3JOefDg+v1gsNAgUopA1SeB814n6ytDWef8fZZQYhYP3hx1jxsu8OfmuOyPXJxRf/GAjOpBYzGm9fpic1hTzktaGbVF8NpC12rT+ly3Ec8os6Lp/2pYGVqbLS66AOd/GOA1kLTo4c1p1kuHL7zO4E77qhwlmxIeOELgR/5EZtPzqNHXi1dmiOvsbKaLs21Q7H6PcAXdVR/qt4mPpJVVr4Ty9yx/MEuFkQaHxQI8I5Dqt6c56k5THxIXE5wTW6apgIHq6sYfIndM89y9aYFms3h/HIfjsu0pussHzGXT0uXxoKGuX2S0rm8vV6fngdlNf9FAy6Hsp95VhlBzp1mckOT+8Myu434lnqSaFiZZvzjK7xdlu6TsiQz42LjFPMveFnLR/yH/zCsLXN0biyAJYEfuZQB8+c8JwTJLN9fw0masXVOLEnBI4McPPqlC9twNcH1oNkVDFKYY8EazRBr5fglgqTYtPqf9zzbwGiLFSui/YM/CLzqVaGcDJppyk7uSmlKh7fTUn7WbkfMUPIMGs6HlV2Ss4CJ9R3vE95PqWMxd94Zjs7RXQRaW2M4glSmWcwxlcEuD6SUuHRQpNNBKdT091OfCvzar4VsJY0/4u3QoapOT2CCO8Tago07U+Qg7NpV9ZMWIMtZ1GiZZtqOId/N5JlmfEyBcPeFbP9P/RTw6lfrfUI0tT7h86Qohj8EQO9S38ScCSt46ZXhGM5yTNpCytHXFjCeHUjAt9BNtcNKudd2/fv98CWn2N0cHpzmhGv9LvUrPZe4H/kRYOPq1AHuHe8AfvmXh+loNOm3N5M3tkjQ+vBJTwJ+7MdCZmmqrbE6OMhjPLJOb+A7xgcAvPKV4fioV66soKGGayOv1hyWY2NBrJylN2LPJR+AnbXIy+fYQw6pYAW3w9oCU9YR27zh76TkNdY3WuYVp9tG16YWdXJ+akFe4kPjDQhHzoCQERbTzVrmjrQnPDDx0EPAX/7lMMOxOdJV0Ij/Ttkcb+A3hvOMDf8t+4jAs2GYM0ctnjje8vs5yOtqPAEL7m9yHxGobyxKGvxL7NyflP4WAPyjf9TH2Fi/ZnepnlimmfSH19erO3O3b6+3gTLNPPo/tt6IBc04FEW13khtosk6qE2zs2FtqfEWo8mDoRLooyJAxf+Tnzy8Jnnd64CN7xmatDi/2rOYDue88jLWXXQaeOxQ177xlQ7Xg2ZXKMSCMB6jYwVYgOreIDkB6W8eNIvtrKUc+Bjv1u71ox4VFPa3vlWvO+aEWs66heMKWsuq4ko8dYm6pvy8fNA7liPOnY7ZWWBmps4HEHB33113/mRbNRy//FhbnPE+kJlmEjwBFwJrcc37RBsbzhdvaywww52Y/+P/CMenvIs7zWGRbaMyU1Phjq7v//56P6WOXliOoxYgk3JHfFiZZvTeO94RvpbD6T7qUSHYCvjGlfcJ50Uez6QdU6B+MS7nXRuvnLGRv2Pvehf/OaDNKw20tmr8ftd3hX/Hx9svalI4DUheSRY43rI5coEQo68tpHh9kiYAPOEJwBveUMfxRUiMlsTJfpcLbK0Mpxlr/+Me12wcYvIa03OcF47Xgms59LXst5S8pmyVh76kGXuX7LBccFs2NydotmdP+PfWW0u1T6g+7wKO00oFNOVvi2ctIzHml2kbNan6c3gikJt5mu23aKZwBJYfLG2QFRzXeLv9duAjHwnXGMT0kLZhxmlYfeCR15iP1CSQJunF7KuUTW+gtKnN0fjg4G2rl6alSwD/h5H4uKaOZ37Xd4WrLLhtkbojFTSjfuLHM3mQi3B33AHs3Lk64I8fCZR+s+arUX1bt4ZNlMc+dtgWxPxojx6m+i0/n34T3xvfGcRDDw2X0zYlYhsVfJxjcmLZq23bhuk+4xn1DQLNR/DwpkFsQ7cogG98Azh3ri6vlgw23bzw6vxrBa4Hza4ioEmxY0dIDSWcx2HhE4qUbCzTTFvUpBSFd6FnZZq9+tXBsCwvp3c0YjhJ3zKmmsLiAaJYmZRy8iohesdSvDQWcteTeJPtshbmnqwHT4BIa6vldEjwZOloGU71LzT65JCMfVGEI1U808LTNzGng+8ikjF95CNDgEjy/b3fCzzxifpuKw8GpPopNjapTDPif3S02kmTu48Sx+vnQGMjFxPDmZHFgJfRUd0RSzkwvJyFiz3Pzdyh5098IvA931PHveY14X6aHPry39hCFwCe8xzg3/ybKmiWWgSk+LDe0eSQ8NpRby14Yx0J1wI82kJKvmvr3CLa/h07wte9LJ0vf8eCZrws4XbtCv9u25YfbPXYIflb+yBPSr96542Fl7x5nH++WPHQyXHgue3T2kp0f+EXqrnJedn43lSU7q5dwIc/TF8XCwQ0/SppSn49fZLro1jvWHY4RasJSDtBYAUh2m5KaPQljtvDVKaZhbMy+bUghOx3LdsuJq8SUpsNGs7ra8bsq+Yj5dDPmcNUf8z3SS3qvTYvR7/GAqmSlvwYlxWwGBsLviVvq9yA9wTNaF2mZTfKTQbiJyfTjMafstli+ou3lWx9TH41WZf8xmSM5J8SJf7mb4briq1p5PhSO9/3vpAFLuvh5ax6eNsIp41/ym/QQOpSS4ffd1/4vbg4zJMXUptI8vd1uB40u2LBCkz8wi9Ui3AgZLkA9btOtPoI6HL0kyfrZTxf7fIoWfmMg9xF1wy7fFdTdJw3r5MYy1ySOHl8KDYOHOdRZiklHdvR5IbYWqxqOMuZ0GjH2sb50CDmdOaODfW/PCbK5YRnM/H6NMfZ61RxeMUrwv0/mgPAnQ6+gOFtkM7Kq15V/7Tz5GScX96P9KloelcbGyvTjMArr7GFuTUOvE/oN/3Ng2YpBz41NwhmZ4dxBNKptOZrrH4AeOtbw+4iL/f854e73SSt1MKV/2tlPRRF/SujuQuTGH0NJB88QzW1O6wFyDQ9ZM0xHuTVLiLODQb9s38G/PzP+/tEyiLXrxz4JtW//bdVNmCsfRqOjoR7s6o43Zgd1myTBrFnlv7nZSz7kqIhn+WMDecppl+Jl6II48M3A4CQQbTxgXeTvpZhJ8HyVQin6U0NvPYw9tyyw3wzR/LhpevVk9LmpOyGVZcGXl2i2RJ+xMrSubyOWODLG4Sg37feGucxtlGR6yPFnms2R7Ov2oZkqq4YeOZ1zPZZG4Y5cujljfsDErQ5LG2EFTSTm5dcTmTQTN5pRnqO5jUFtIi2xEn+eKYZn/9aFiSvj+tXqXelPYxtesZshCcYTL/leks+T61nJS833ljPApc0Uxu1L3tZyMLjfm7snrfY2lXWH7MHHt80lnEugT976lMrXFEAP/qj4ZokrX7vXL9W4HrQ7AqFlJPMcePjwUmk7IiVFbs+UrJnzoS/ybGPfY1QUzop4x9TBNqHAOQ7Wn2pBWcMLJ6kQ0Q4vljRAmsxJW4pv5kZf5/JtlGf9/vh8+UE2ldgPE5y7HgT1Smfa8czZV0ew0bg2dm0gjXUJ1pbpZxYbQWqjE3ehy95Sbj/R2svx8lMM04z5qwC4RjnP/yHwEtfao/Xox4V5jVlusgdSOon3k4t0yy2E6jpEglWajx3zmTAXQuaWX0i+QMqfUabAkUBvOlNwPvfn15AcLBk83WvC+Mg6/IsBjzPLccphfPyooE117lM/7t/F5xEAm9QnsuWlAdN3rSFFBDXr/Xy9U6SbeeLFY2WBCnD9Lec51zf0D2KuWPzylcGeR1NfMdc6xOOi83hWF1tcV7Z1OrKtccWL1zfSvD6SFb98recL7FAKn+PaObOVw3nCa5yeZV8yPJtfSSrnGZLCIiXD34wfLHRgra6lv6mtt5+e8g8PHTIlhuqY2IinG7gGR1UTmazWf4AELLNb7ihhJYZGwscpeRAa7Ml45Z9JZoaLV5Xm0CWfMfKNIvV0URfpXBa5jmBJcP0rnWfFM/c4jQ4XfKHaL115531Y4zUT7EPAcR00+pq9aVH7VSExFE2m5ZpxnUuAT/VFAsY8/c1fW3plV4vZIoD1YZyioZHrmPyom3U8efSp+e4GG8xv0Grn/+r2TAJvK1W0IzDk59cL//4x4dAogbW2FyLcD1odgVDytHRHH1AD5rJdNuyrM5vv/nN4V8rCMPB2kX9hV+o7k2K8QzEj+1oNGIOoWV0+bvab3pf9p0WNIuV4biY8isK4J57wsJJvjM+HlesvJ+403HrreHy9jvusI8jeJwerW9422T2WcpJbrIw0MpR+yVOBmasdGnZhhit//P/BD70oXifSIdFOiLcwMYcaQ6Ee+xjh7/OI0HOkdidZlrmDgcre1DyVhThbg7aMdeCl9YRa+50xTIDeV2Wo/OkJ1V3ztCz8fF6xlfsXe6sxuY5ADznOeHurFzgdVuBWa8zxcvnBCZi+s2iwWWTj1dZpo9nSv2tleN9EuMjldmqQUq/eJ9rY+EJhmm8pRzNkZEgr9pRFf4u322PBc2sOezVvTH6mm2wFgmx93J48dgGLpu5C47UfNFAPpf20OoTynDy9kkKYjxrmzIEqSCfVj8H/pVkiw+uX6lPuF4mutu2VQvitpCykbxPnvnMys+VvMs+mZwElpaAw4freC3gIO26lE9Nf1t6LcdvSsm9Nk6egEMbefXwrukN4i3WfouWdw7H7Kcn4AIM3w9rzSUKQkk/TPPNRkaA3bvDZqAMkNHmuOZv1gPq5YCfv/iL8O+5c77MSOoDKa/UD1xGbrwRePvbbb8kZYdieB6Mfu5zw+99+4bLxfwmKa+ar6rxkbL1mv8qN4YJPOvjHL+N4x7/+PDbGzTjzzZvTpe36F/LcD1odoWCtdDjOP7b2knhk0emmpLStrJKOM5STjt2BEXrXdRZysNy1jm/3/EdwLOfHY5Q5dQf+1KkTLOW76ecFgl79lRKjMr98A+HgI1cONFzSZcb00c9yqf8JWhHUaTsaH0i73mL7fADwA/9UDjeaIHlaJEx7+p4pkaTt398HNi0Kd6HmuNM+Fj2HT2PBdK840XAZVHLAiwK/Xgm59WjS2gM/8W/AH76p6v6ZPaDFlyXO6tlWajZkhyayLDk2fOuFuRNvefFpQI8Wh/xMrHAd1GEjEfK0ouBx/mK8aw5f7lHu/gikj5SsmnTcDmp5zRdIunG2pCyKamycixSxzNTdkir3+Ip9kz2CdfPMdvvhdQ7mrzGsgi89XL+U3NUw8sNI1k2Nq+1Okk/UiZDrKym57V5woHG5qd/OhyByZ2vOX4R16WafQHy5zB/9spXhv92707zLo9n/szPAD/xEwHnOXbkgdimhObLNM0EIb/ht397mLaWacbpywAmt/Nam2X7U7aJw403Bj/35S/39aNlX6U+jtFvYl80eY0FyGLj67XN3jnE/47dwaeNDVA/URAD6SNrV91Qphn5SDzji+jE/EbtYn3tVIUnM1IG5mTb+XsHD4a7gL32gOqLrRFjet5ag3rtsGezzSM7VqaZFjCP0bJA40P62fyI5ehoCLJ6gmC8Tj4OqdMZTfyKqxGuB82uAtAmgGWcUxez0g4cdx74ZZKShmbovMYsBtZut+SX/605hCMjwOtfry/WNP74s7/6qzqOHEDNMY850jE61u+nPjXszMb4HL5YXU+zjrUrZpxizwhiO/qpPiHc059ev9ejKIIj/Q/+QZ3O4x4XjsZJ3ugdzehKR8QK3vD3JHhx3HmQ2TZappl8L4cmHd/ix7jkO9bXM7XjmbyMBGv3kXDUx9xZ6/WGL7SVsih1E5dhTi81Xm0cZy1zh5fJCXyn5pfHcW/i/N15Z7hLyzu/Zftj5STN1PEZDbTss8c/Phw71u4TkbxrtiqmXy054JAzTjIA36VsenmK8RmTV6/NSYGXJyuTWdKLtcWThWnxJMeKl8mZw1u3hoDWa15jl0vN/1hgpiiCPb/zznY2xyNPMftizWGvfGzaVL/P03pXZtBMToZ+5nQ9YPWDtKuxcrEsQG82ellWR9wIyK5rmUC8PrnAjvllsQz9VDY8Qa8X/Nxt2+I2T9KNyUmOLZE4r86TNDVI6bVU/Tk+giZTBNrYyI2V1PFMLauM4x54IPx7+nTVJ1qmGZcJKqedvKB2UEaSDPJqOkHa+tg6TFtbWhtLvJwG1vjEsqxlO/l73gQPC2I2h6+3CDc6Onx9UcpvaOK3cVysT2JAvLzjHcM4CywbfS3C9e64QsEbSY8tfiVwhT8zUzf+pLQ8QbOYEouBZwETq0dTnF5j7lVY8pk8ipjq3xyFmHI6Yu2NGVNLmWqKkLLdOB3Jk3ZvFgVrUpmMsXY95jHA9u31dv7YjwGPeESF27EjGCZadGhOAh+bmEwQ7mlPG26rBA/OWrDF+NCclRiO4Lu/O+zw33lnnCfpEHE+ZKbZP//nfhnmbU3JEpc7vqOpZZrJfsk9nikhR5dw/rTFtbVrHOOD46hu2oVN8ZSar/w9j6OTcqCscrHFNV8gEi5WB+9bXu6xj9X1SmxsPMczY3YhBh45kfo1Z5GfouW1A/K51K+aXgP0HeOmdibGk6XXtDpy56anHB+blD/kqf/OO8N81YDuzZN2UzueJ2lYGQ6eBUlRAO9/P/BP/6mvP7k/oMlICifr9YwDMCx3VnZ6LNNMA+9zr37lZTzjRbiXvKSOp6BGSv41XZLjv2vQZL5o5XMWzU3GycOnlNenPrW6cylVR0pvWnxqfAB+/3XYp4nTlMczZVYZAFy8GP7lm4ix+8ukfPX78UwzuvtVZpDxDV0tkBbz5y09LwNwsb6L2fCYXonZvpR+terXgOuwWLCayyuVo6QSz8Zi7oZ5DMfl1ZJdDgcPhqQFbbw8Psh1uB40u6LBUlhc+cly2o7In/xJ+PfWW8NuoIykx9KP22bupJzpGMh2yYU65y3XMedAuzRcKcWyVDTeNFqxtml4bsz4+/Jz15oxzd3ReMtbgLvvtnmOZZHJPtFkU6PtlZfx8ZBV88hHVrIty/GAniavHPfCF4b7sLS+0ZzE2I5bzIiT05FK27YMrKT/whfqmWZWgCG2wzkx4ZdhTb9wutJZSx3PlHrIyubxZEI0WUDIfs+drync2FiYS298o493zfnT5Evj19s3qfR7Xn+MN+/RrljQTNKPzTXLqUu1P8emeGSHjwPHX27Z1PgAhu0y4bxOrdf2WjhNXoH8Rb5cmOSMF/VJzM+JLQiagNZ+rUxs7sTm4T33hGObqTHZu7d+JDIl/5YtaTIPcp7R85zAN3/v2c8O/3nBI69aphnnw7I5lqzHghCaPxDjw+qTWD81CWRpOlc7imrVIXE59H/8x4evHCE54e384R8OG6kEFk9d6Vf+t2edw3HUBitgEfPDuF7fsyf8S9eryOOZhJMbJFIOCagcP9qoBdykb8rLyb566Uvj8yHmR3Lw2nCOk/5AjK6lc2M4SduaL4SjsfaexNLalAIPnzKQ6N2A4f/mbMC2taFXC1wPml2hEDOwlvG3MoHOng3/Tk8PL/RTi1qPQYrhYs9jQQqCJkGIFC8azR076jjreKbWv237IfZcBiHkjhHnw6vsZmbC5eqWMdG+nikNbOr4UFunXauHZJY/8xzHyAXZJ9ql9zyAGTt2qDkrsd27FC/W2FC/y0wzOU80GZb0Y/NJHs/Usu80J1EGfq3xijkwsi0WeJxkzZnwOncSnvSkeqaZ9g5vl+V0Wo6YxWfOHOI0Ncfcqs/iJZd+TJdw/nLrtGilnlu2L6cuC3J4S2WatXVuLf2fan/OLjofZ4um9TymS4G4rvfqEs9c17I0ZH0WHzfcANx2m982ep7zI1Ycb81hufERK2fxpPEBpPWrHIfXv9537+n+/cAP/ICv77RxSGUH8Tq07DCZkcPLabbe0iVUnyZfTfwlzzuafeXPtHnioRnj4/bbgVtu0WlZvk+uzcnhieOk3rj99uq5dTyzKICjR4HPfz7OW+xDAHyeaF8Y1+40o99UloJrsYx/GTTjQV5NhoEKR3z0euHOvO/7vqru2BzmPFBdEhf7HcPJPuJlvAG8WIJHjr8ADOtXmWnGQdO5VqJJjgxzeU3ZPM6LxHlt73UIcD1odoWCJwiR40zyL7fQu/J4Zk5qrORF8ulVWLHn0pnQMiFylZNWTgsQaenCMd5SCserMGO7SNxJlgE8awFzww3hX/qil0a/KMJxKo6LZTNxJR7b9dcg5ehq5WLP5fFEbfxzsg+9NAF94cTnjeVIy/dy2sxBGxv5IQDtWEAsQKaNYUo2i2I4kCgDYtoOWWy8PPpF8hP7LXHW8YHY8aEmjrlX12ibHLHARI4jIz/TnuJJyibHaYtr+qLe/v3DNOny/xitlJMcy1KxdHQMmuoVb5aKl5bXJljySjhNvzaRvRRotsHyB7xttTJmPPISW0gCvgWBxHnLEUidFdNhufXm8Cmfx8bBktfbbw8XyD/nORWOfAP+FecceeIL3dQctiBG673vrd8RZ8m9Zl+ID41n7d1+P1xh8YM/WL0rfQ6pO+WGQyygqfFiAb3zlKcM4yTvMVzK58jdFPDqV/kO7zetrDdo56UZq5fKkpz82I+FI9GALq/aBmQMYuuG2KkV6pOc45nDa4RQiAfNZIAs5ZtyGdmypWpDLEkhFeRtanNkH+XaHE3WNfBspHB9wHHeTaRcv0E+4zQB/4ZmSudYNuU6VHA9aHYFQ1OHUDueuboa/h0drQdhgPSi1uukazzFcLG2vfGN4bdmYIjXWL0pmlu2hH/5ETgCuYjjSlzWHzsq09ZwcF60o23cIBIfnHdex0tfGo6FyLvEJLzlLeFribxtsj5PIDEWhLBox4A7pBykc+4J8raRV0BPjdaOzsZ2/TkuJ6DHgS9OtLEhPoB60IwgFeSMyXUsG1TLvrOOZ1pORxeBbw34c07DezwlB6wx0+SVQ2x3UKs/Zgf+2T8DPvCB9DtW/ZZ+3bUrHDPj9+0dPBgu/X/hC3WeUsESbSER4097X/vtLRtzkuV7OYvcGC+aLkuNZyqQmNN+rZwnkBVrfyq7S/5+7nN9/MXmJY1NjkxYPKUWDvK5FiDRyqR48dK0dAkvIxfDnI9YHd/3ffVNtGc9C3jta4Hv/E6bT01etKNovExqsdZE51rjGbOvVja+HFfyr+jKDpm5w/0wSYP3ffg9TJB4+ZVfAX7kR9Lt/chHgOc9T3/m7VPPgrur8SGQui7Wb7n0NRzP0kq9K23O2Fh1x2GOrtOg368SEoBmmWbavKZyVL8GnkwzWZ8Mmsn5GuODfvN/U4E04kXieD1yw4iX8eJi9ccg9jz3JFaKflM+uLzyseIwPw/82q8BS0t6XTlBs7Z+8NUC14NmVxnEjDV/pgXN6KtGN9+sG3pNAQDDC2lrgnkdVyDuJNOup6SrLeosR1rj8+UvD85K7O4QTjeVCRF7X+K8hkOCdjwzdjxRg5GR+rEQjb+iCAHEzZvtMeYGlnjz9olXXjwLB20HTtLwBKZSBpzj5G6jPJ4Yo2llmuXOHT6vY2Mjj2fyMqlsSY7TINYnqeOZsZ06r9OR4oOAO4la+Zy2yjpj9FP8SZy2e5vqE63e974XePOb6+VnZoCdO/0ZWSlHWmvDnj3D/f/Yx9Yd+RzH2dKvqWMWOc6fR+9YczhFNyUnOXPd0q/aEbguaBJYQd7cPuHPXvGK+N2S3rGJLbhjm1dNINYeOSeabix69JunnNSlko/YuxpudDQEZbzlJWiZZgSe4KoXLHsd27ihf3OyVLSMepndnwomWPJKuOlp/QSA5Cn2zNMezi8H3l8evRqbr+QzpuYz4S1fNdfmc9wLXxg+4PCoR6Xf5eMgy1jHMz121XM8U2bj07FL2sS3glxaphlBLGhG/R6rj/dHTKZ5P8X8kpRtigGnJ+vi9cT8fC+tmIzG9LTGC5/XHDzBVq9t4OOrJSloY/Dnfw588YvAX/+1TjOV4CF/X4frQbMrFmK7MgTa0SNNiRHQcb3HPS4/0ywFXqPvcSK1yc75aJNpNjYGPOEJ9rtkdCyD4FFEFk57LnfKuKGQO6GEtwJEuY5Y6l3eJymnw9vmFH1ZLvUhAK+T7KXJ+1jL8JNjozmrmvEn8GafpBw77phpwSvJm6xLKxfjiWdBSidG0pXZktp4WQ5GG1yOk+zZpdbq9zy3xp/4kGAFr/bvr76WZYEl/9bisqujMlrf8meazKXkMMVTE73CHWIJVvDSy5OXD/53TqaZBbFyXt2YGyDLBY+uIT5icmLVlZPdB5QKrt1iMob7qZ8Kl6ZbYM0rzeYAdlaVVW8TnFzUyT5PyWvOvLVwnB/P2MRkgvtXXL48mWZ8MW3ZtJS8pqCJXvFuhOVAUQC/8AvAv/7XPr2mZePLAAEAbNuWrkvCxEQIzGv1WfpVPu8i04zLTirTjPpkbW34eKaULxkMk7zzOaetm7TNdpL1v/s74C/+ot4W6/REyk42tTla1irn16IZq7epPyB54eMq6/LoHA0880+TV1k3XZOxtJSnczV8Ext+NcL1oNlVDDGnVss00477eTNmOHTlOKeyrjSFzd9LQcrBkuV43xWFvYDR3ovhNJ5S/STr1AwnH6+mC13LMZc4GUi0FjBeWqmxlOMUy7TzyKvXSZTlrKwqWjjEjsrEZLiJkwoMjz/hYo6ZNl6cPwmevuM0YgHcGC+e8UotdOWz2HOOj7XfKwdeOtazVPtznZ0mDiGBJpuE70K/eniSDqGnjib61aOzNcfcO19TcugdV89GjUWzrbxq9eQEub39kIMjXWJlmuVCrm3WFrCSx1w+HvUo4Lu/O7/vJB9N7EsbvSFxMhOCQ2oTzWuPYzzF+kSW82Q4Ud9JWyo3Kq1MIPptyWvK5lg8WrzHcCn7QhlOXjnktmFsLGTLefWrJZu9HvC+94Wjwhb9xzwmZDw/8Yk2Ta0OOa6cN8Jpc5/KPeIRdZwE2tCN+T5FMXwKgAevgHgmI6+fcTfUrvX1+jFOKzNS81c9cpMj1ynZ4O2WOj3FS46fH5Pr2BqU9znHeY6sNuFJ402TTa3dlg7m78b4iNG/luF60OwKhZSwc+Unn8WcGIJYJF1TWDlZVdrz2ESNKY+YIqZ2bt0KHDpUXWDvoeXhmfddagHjrdPzTip4aDliuZkQsb6Wv0+f1p/zPtEcDK9B0CDVJ9rxzJi8purXcLHnmsFOpW3HHIymadvciEsc9Yn29UxLhptm+HDnL5b1pzlAsfbnBBJTvMmAm3SS+Xup3dEcB8IzdrHMyDZ0YzRjPBFYizorkzfnKGJst59wmi6J2S9Lb6XAM8e8maFNaGo4TyZEam62oa+Np6Sn2RfiI0bDQ7OJP2CNg9fmNPURtMCUrCOmN73zMZdP71Fvq12pZ955A8SvDbBo5fgD1jsyC0zW4d2U4AEMPg9jG5WcfizTzJKl1OaEd75o7/C/rfbT6ZNc2UiBhw/Z/n376h+k0GBmJtytqd3T65UXIH6FhSzPx/GZzwy/Kbj6X/9rdX8s1akdz9Tkk+xfLDOM6xN+KkjT1zLjU/uwgNYnmj3R+JDPcjLNUvLKQfPVZBskLqd+Scd6J7Y+ttYCvM7cTZSYDEvZ1PpCBvhTvpQG3o3SawWud8cVCiknOeY4Ab5MM6B+aXhssjfNNPMuHORzTanzRc3ICPCud4XAmVV/zDin+NR2G3Od39i4pcYzxh83sN7jmRakxmZxcRgnjbN8zxPktXAekBfhW0Ezj6PNwZIXjuc0eKaZrKOLrCLNAEr+CGdlmmm6xHPsWOOTH8+M9YnUQ6mgfIyW5COGSz2Pyau3Lm+5VBDCyoSIObBaXSlc7DlBTKdr8pWCnHHgPGnHMSx59dBP6Xrr/ZzdbFnOU7+nnKVLmwR5c+yQJq9NsyAtyOGJ6w3pDwDp7LscPmPzjweSYz5SjH4bvWX5MjE+aLy2bw8f7+Abi176GsT4TM3hXDop+in9ql0bkDOH+eKU2qAdz7Q272JH26h+q32pZ7kypskJf/ZjPwb86I/adIsCeM97gLe9rZnNof6M9YlGEwj3Dm/ditrXXr39FOON6w1NvxZF/b5juekHBBn7m78B/sN/AP7kT+plY34YUPebZJ9omYxyrvMMMtlG3i6vvMaSEoiPmF+Wsk0xSPkw9Pub3xwuFwvU5fgbOTzxseY4KcOct1yd41mXSr1h1Z2baaZBWz19tcD1oNlVADFFQAqRIHYuHNCPT8mFrrYblBM08vIeq0dTFARNd1G1cik+YkcRrTo9/KScjtg7mqHTxstql9fAAOHoSIwPIH08s4nyTRkW6oOUcfKkbVs0U8+5I2o5hF4D66HPjbjExTLNZBmCWDCY8xejT7/lsWCO0+iSzskZL/lb+9vik/8da2uubMR4s7JFLefPK69NdJ713NpFtoJmTeeLhkvpjZz+9/LJFyf8uZRfwnuyqprYRo/t8+pXr01L0dfK5OyiNxkvDaeNjdxFJ0gtnHJ4itlLqde82bhtcRaNVOb52Fj4ou5NNw3Xr0HK9sbKeTfRtDq8czn2XOsTz/H/WF28P/nYpzYq5VhoekPrk1SbvWDZIa39HDZvDl8KTY3JgQP1L6ym5pDkTzsmqLWBPxsfB37pl8JXmiVYwVP+PKZfrU3Ed78b+NmfreOKon7ZPgFtLhNe+3qmlo0f02skX9q8tja0uE/HM814v1uBNNkn1rzJsUPa+zEc8XfixHCZpvM6xUdM7okXSiqR62MvTe9cj2WeS19d44Hr4CY+rYe/aw2uB82uUPBE0mU5zdEjiO2acFxs97KJE5jrpEp8TuaSVv/jHhfubLjtNh9PMT5jSqqNktaeW/2kpWh726DR9GbfWU6HLJtaTLWVDTIYMSeE/m2buRTjifeZdqeZLN90B0oDPl+1uc7HZm3N1hEEniNgsT7RdvS1DLem6e0WfW85vuubk7njlRcNrHe1oGHXkOPExuxGV/OFt1t7x6LpOcaqQe7YcR5zj2e2kc2Ufo0dWU31uResemLHiQi6zD7zzDvi43Jn38nnsX7Pybz30s3lKaY3raM4KX3goS/BOp6pbdR46tSe58orL0N8bN4c/qWLs2W9PEDG7QYf/1iwMmbnrLZ6bU5Kv2rgma9NdIiXTzneWp80OZ6ay1/sb8v3mZgIx0CpHJXhMkF3wcnjmb2efk0G/at9CCAmX5xnCobF5J/PQ+14ZmxDNzYGms4lyEkiyJnDsTpTdsiCpro5djxTK2+tQSyePDpB6lJrHsXWPTG/IUb3OlwPml0VoAm1tduSyjTj5ejv2HFPzwKmidG1gj+5dWmwezfwb/9tSPH2vCt501K5U3x4HRLL+dOeW0YsRsNTJsanNjap7LsuM3es5ynZzFnUNeUptWNoOT9e3rRycscQqAfN6AiAx3DGMo1ivHCcdV+HdoxXM/4ETcdLg9jznOOZubgYf5a8pnBN6vc8/+mfBl71qvA7JhNNji5rkGpP6qiMVldO/dZv2R7NGfXO1xSfKZ44Ts4TDk0yeXNkQ3vXCvxr8u2hn6vzvcHmJnM4NV+1cp4j7E1k0/MuLxMLJKZoaThvUEsbGyDvTrMm4OGT61IOxMcznxmOIj7qUcNltGwxelc77qZlB9FvXkZC7Dix1eYmNoe3K8d/z5mvXpB9YtXRNpCWmguW7bfskJR1CkrxoJnMNONX31DbpJxo2UGxzLCyzD+eqQXmYmOhZZrxfuJBQ9l38rcGufKk2Rz+TPKfm0wQo8/lJPYhAMmHBC3Il8uTHNcYPS6rFi8WeGzOtQTXg2ZXKOSkMstn1p1mfDKurdUNVWxR25VCzFFYqXrbOKk5ijWmpJo4Fbn9JLOqpEG06vXQ9ChujrMcjJz7ZVLPPDxLZ1XiLFpe4xAzyjxAFHPEmi5qvHwQaA5RzPmLvUeQm2nGZVE7FhrLyONtuZxp9lb7U3otZ7y88zon+zBFvwnP27dXu+gx59cbGGuj86Uukc+9cujhPaVD6N9UoErW5cU1sU2anm+rS3L51GST+NCgK/ryuaZLU7avydwB4quLmH7NgSZ6TeLkYliORRdB3hx/wboSICavFo5fC5E7/1PHM3u9cBQxJjuxoBkPYPgzzQoAhWqHY33+lrcAP/RDw89i4O1bj33JlefcuWbZuRT9HBmWZbWMN8C/iahlS/LAiZZpJrOUYjbGOmKtZZ9ZwXqZGSl9VXlkMxbA1OaNLJNjh1Lgraepj2jRjNHn/Rm7H9jiow1O8qTJa8z+xoLjniCn115cK3A9aHaFQptdRJpAz3wm8OM/Hn5rqaZyh1BL/YxNRq8xS03UWIZVV7S8OFmfprA8vAB21lgMLD65wc1pQxyGNW+qXVaAiHBtjKl3nLhDkJO5kzuH5O/UPRmxYzy5DmFqjkxM1J/Juy5Su6g5O4axPrEcQt4n2kWqsq1NM1k9Rj82Np66tOcpR0eb99pxYg4eOdEgdUxcw8sNktx5mtN3Kf1L/8WCtxoNbx/l6nxtvmq6pAlPTWxTTpZKE12bytihf61MXi8tCzzyFLPDufXnzuFYcEUL/MdoefnrWl4tPtraQY6zxiYlr7L8Rz5S+aoe0OTVky0aq4sHHLi90u40kwHc2DE+yaPlIz35yeHjDbF2xtpg9a23/RrkyEGKp5i85tIisNYMFo6PgwRrI1iOq/R/qOzISPx4Jt9Y5LZPZpVpNkeWk+2SmWZSl/GgGbXBCv5b675UtmRsDL2ZYFp9Ob50jlzFnseOZ2p85F4H4+WJ/6Yx1cafeIqNaWrzIsbztQzXg2ZXAXgnokznfN7zwqecAeDChXAWf2KinmlG5/O1nbpcXlKTT1OiEryZDjlHhSw+ZN/Rb83R4eVzDX2MvmVMtEyeXOPTxJjkBoi0OtrQ97zDHQxexrPb7sVx0OQtJifERyow1cRxlEEz+a7nrjLAtwiN8eS55JZocFzu8Uxrrln8Sj5S2TFN5KGJvHoyzVK0LPBkn0obId9rQ7+JTrIWurk85eJi8ht7z8uT117H3k3N4a50mndsUjirDgvnecdrc5r0idd2e+ZrG/3ehe0DfMeCvOCRHbm4BPSgUap+7zh5j2em9Iv2rpb1I7P7Y/Jv2T5eNidLJeUPeI7UavzGrt6waLXBkZxoR9tS73l40t5v4r9amWZS1inD7AtfqN7lAVegfok8/attInruzJM8yzZz3mQQDgBWV4fvOZP1eU9KePSfhdOe83LT08NlmiZuWDSteujv2KavZQ9jtDx8yOdan8u+oGeeTLMUn03682qE60GzKxRyFnoSp2WVra6GryrxySiVqTbxmmQkpPj0PPeWifGkOVpe5RBzfiweU3yk6KaUmZbd46Hb1NHRcLE+kbg2DpdFH0g7sE2NhFdepTzFHLEudla1claGkZzDKSfR22ZJQwvgNsk048czvf1k8WnJa+580MCr82KQE+T1yktqDkmcNv4paEPf0r8x+xLbqLDotOFds33ER4yWR55yx4bzIutoq19zxo4gJ9OsyXil6HP/JXbs3qLRlc615DW3jiYg37WOdvHyuceVU/RlOZ5V01Y3WuVy57A1ry27qQXI5FFpefVJzOaUZTFEy5PdrfFmgfZcs8tdQK688L9jQRjrPYlLzSuNrvZ3TL9K30oLmvX7lQwsLACnT1flRkbixzO1jUV5/JfLHH9PyyLi/MvjmbJt/BoeXp88oSDnTZcnSjyys28fsGnTcPnLlWkWq0fLNAOGN8ItPlK42HNtXGlMtXpIpjyb9Dk8X8twPWh2BYNXEchnsS/ZyXdXV6tMMyC+U+dVRDmOe8yha+LAtVFUWn05mWZtaBItiZPltEyzFF3LgfA6H5JPLUslZUzbOEeeBTeHVEApVlcKJ3nhOOlg8fe6WujKLEiNDyqv7TTmZLxpvMh3qF2cjnZnogze56ayeyFWXxNHr6mjFXtHOquy/OVY1MR4kvJqzTNv/bHnHp6o/bJMjs3h4M3CtXSJhdPA2w+pzZtYn2hzOEUrBd4+0RYrnixAjbdUP3mOHnnsQoyWl9eUnsjZlLHqb1LO0hsab6l6NT60PtZA+gMpW+LhI+cdiYsdKfNuysSCkNrxTKIn60v5SG03b3J1Yqr9Vl0WT6l5GyvfdFHvhZR+oN+xO/gkLhY043eZvfOddZmwvp4pZULKHM/Ik+8NH88sVd54Oe14JpfrogC+//uHs7uszcxUtmAMYv6IfGbZHEtHd+GPSL60r53Kcrn+W0r/afLK5VDyIDPN2ujfrubhlQ7Xg2ZXKOREtOVEiGV9SGXKM81iivJyHZXxOGdWmTY0teeynOzLVHkPzaaOa1HoO1e59XpoWvVwwxmTuVhdOQ6f1Y5YdlPsva6O8cq5Q88th7hNtmiMDw2nORgcYtkR3nGQOG+mmed4ptWuFB+p57E5nEvLopniTzq/Ei6XQ6iBnMPe97w0c/sktdD10vXwlBobz262RiM1Tl6QcqLpEks2U7xpzz18eHCyzjbyas3hpnojxqdWVisnNyVy6vWAV4b4vGmaZZ2in/PcChBZvz3l2uhXzR6m6pDZN9THsaBZjPdKXvUPAWjgbXOMrvWOx/bx3095Srr+FOT4SCmetHKxTZ6ULrJ0qZXdWxR6phkB/c2/npm608ybLUo4y4fjvGnt4Gs/Luv0rhaoo36S9FInj7zzX3tX0gSAc+dCNl+sfBtcjGc5hjzTLMZvU73l+c1pyP4hGT12LL9+AivZ4FqE60GzKxRSmTtWxomW9aEp09TxTPme5EXimioHjmtCy6o/Vp+2y6G92+SoUI7y8fRdKtOsaf1aOU5D4iwHIycDweIjxTPvk1gQpolspAxHzNg02Vn2yknuuzSH24yNZw55jh4A9R1YzeBbGU7eMfS0JRUgSs2p1HhpOllrT9tMuyb6Tb6v2YMU/VyeYvxpzzQ+PEeqUvQtkLxpto/La9P5mmv7JF2Ob5otar2TyuT1HE+N/Z3DR+x9TZe0pRWnWUbL8fKeY81WxqPGX5Oxsa5I8OqXtromZedi9TXFWc9iAXhPJgiNq3bFgsTJPo4FiJoeY8t9bpWLZcfI93hdb3oT8G/+TbM5liqTssNd9YmGi8krPcvJNJNBM+7nxI72yaAZyZKWaabJYUzvcN5id5rJfuD1aTJt6dymY6jJq5Vp1hRydF5Mr2nraN5vvGwqiN6GJymvWv/Q33/91+377joEuB40u8Lg4kXg/vs3YWUl3yGWyk4GOrS0XcshsBxnr/Olvct58DjfbYyplzcOcmfxcjufMZyWaZZ7BMniKdeYaMY0Va/FT4q+tnCwMs3aZCRqoB2LjPEc26lrOodjz2MBTcJ5dgclrRRNDtwRT2WayeC9tYDJHcPUu5aT7IG2DiFBbGwIcrLvmugyS14lj1Tmfe8DfuiH/HVZdK05HFvoxupvovOsYLhm+6y6cnG5+pXzoh2xbiMHuTzH5DUnC7CJvFg2pwtaqXKp+nLktQ2f2rv8b+34lyfrwcuTZ/5dDtnUwMOn5g9Y+oA/51k/0qZJv9miQXYOyMsqk89iuCbv5GbQ9nrh7mOLfg5PvE9y5nBO/fJ3asNIC0BZmWa8zn4/rNE48Ewz7/FMnsko53DqmLDVLs8xdh6s47Ivy2r9ZAXvLJznHW0Oa+WbyKGFk8+9QbMmkNKT/Lm0fZpN5jLlOT2Qq/OvRbgeNLvC4MgR4FOf2oP5eV2CPULPAyykANbWdKOgLeos5dSUJ+/zNs5vGwMbMzBWdkyMfo7y8fAec5Jz68gF/o7Mqsodc++4euvJldcmfHKIBatSfWLRT2U4eY/gxoK8MedHc1as37Hn6aBZMShnjVcKmjo/vP3ae01ks2k9sfY33ZRoq1+tQOK+fdVXWmN1aTRzA55SXgnn0bmx+iTNprpEqzdFy8Nb6l0+l5rwE6s/R9fRs5z7kFK4GA0LVxT6QtfK6LTqyuEl1l9Ng4Ze8Mjrt+MqDc87XJdoZZvY3FzbzJ95sj40oL6LBTCsazJi+rUsixre074Yb7n1WHqtjX5rqos0O5zybXLlIMUTx8eyimX9vO+4n/ef/lP9fW29ZX1hnPwh7a4yGTTTjnFyHuU89GSaER3Jh9SvWgAuxzY1mcOWDutahlOJG9oH9WL85vIWe87rkX2u9U+u/9jGXl8rcD1odoWB15hYCxRtsscUoOZ0aMbXw5PGS47CShm7WL2pd6znWrncTDMvH94sMVlOO57Zpv0WTfmbvxNzOppCE8WuBWossBbcOXKdcpI9CwcLUnLtmZNA+r45D60YbYsn60MA1E+SD08A2sNHbIxznbYm76bqseS1a2fFM4faBHlz5Nqj1zT96tFbHvqedzXbl1t/ql6rHAePzfHQjJXT8Cm77ckMtWg10a/yfe7TePskF6c9zx3XNv5Q7ruxsel6AZfik/5OXSVi1eHh03rXs+nrqVcLkMkMn1SmWczfvhw2xzMXLL3WlX3zlOtKDlPlUm3Txoaexa7XoL+1oBGBdrKHPhbA6WuZS9q6TAbItOAa55Xz5sk043S1I7x8XkvwZDNpEJsvEufJjGz6LPZcykLOSSxvvRLn0ZNyHLiOI8jNfPPyfi3D9aDZVQqWsfB+PVPimu5Uep7FePbU0cT58ionz7E7jReLVhtlGqOVm2nm4cmjuAm4Q5Da9e96bLR3NAfWcxTL81zDxTLNNEcslXFjOaneMYnxljomqtGK0bSOgmp06XdMD3myebqYL5KPGLSh6Zkv8lms/V7ZbDuHeZ80CfK2pU+QOrLq4cmraz2BWS1zJ8WTBTl2UAPPwqcL+qnx6iII46FpvZOSVw3XxXxpoq8tnBc8Y6zNmxjO4qkrefLcN9dF36XGyxPkjdWhBRxk0EyjEdOvKV+6idzkyDP9nZMZ6cV55Yp+e+d8E7/JO095GW+mmTdoxo9n8pM9vC6+8U19oh3FlAGy2NFW/k4scy02NvJ4Zs6dZk2O2Fp4+W7OhnzufPC+Q3/LDygA7ed1jh2UY6/NZ/63Z/PC4rmN3bqa4HrQ7AqDXCPAQUsN1pRdbiS9jXLKMXA5BlYDr8LS6PNn0mB5eWpiODzZZ9LgpvhI8dREifKxaZsJ0ZQ+kJ+5kyubKXmR9XBj2tXc0MAa95jToTk/KVo5fcLnSezjI/Tc0i+xtliQMzZemh66Fi+prMYcec1x/iyeOMhjBm3q18rlzvs2c9jixdIbWrmUbLaRUwLvgpAW69456sXl9mEqq8ZDK2cuxeygpl81um30p/Y8l5ZX9puMiZQdrz/QhCcLcsemCcT0lkaf/xs7suqtPxbAiAXNYtd6VDZ3+OuZOTw1mUPauzmbAV3ZS4nTdK/3iLUG3jms4ahPZB05QbMnP7n+LpWz7jTr9apAGr+uQvKi3S8msyC1NpO+jm24yI0qz51mqas+cmTD6w+03VjUIMWTBB741OZSLh9NfJq6LonzkHuKJFc3XouQFTT78Ic/jFe96lV40pOehN///d+vPfvEJz6B5z//+Xjuc5+LD33oQyjZ6N133334gR/4ATz96U/H3XffjWP0/VMAS0tLeNe73oU777wTL3nJS/DZz362Vu9nPvMZ3HXXXXjWs56F973vfVhdXW3SzqsGvMrBWgRoQTMtap6Tfurh2eu4cv49yrGJ8+nlyRMY68r5tcpr9XmPHjTlKUexykwzi+8mhqOJM5kT5M3hRYOcTDNrLHNoppw/jbeYo5MKGnjBoku/pR4iXFunI7e/2jgG3jGM8afNYY+8dsGnVefl1KXa81Sml+di4cvFp+QjRd9LK8VHShekdEnsPS9o8qzV4+mTrmVDvsP1a857MZpxPsvou1rWqMVLG73Gj2jFgOuS2POcZ03tZc4ctZ63sdEef8DzrpZVpt1zlso08x5/92aQxsbSmsNSl2jP2uiNHFzMDmvQ5NSCRjelp2L3aMqysSttYoELud7idWkbizIYph3PJH6tDwHwcp5MM6KRSqpIHcVsoktivNO/OccNm+qtGH36zZNKctdgTSDGEx8r+rvJ8cwUnyl7eq1BVnccPHgQP/mTP4nHPOYxNfwXvvAFfOpTn8InPvEJ/If/8B/whS98Ab/zO78DAFhZWcE73vEOvPa1r8Uf/MEf4I477sC73/3uwbsf/vCHcf78edx77734+Z//eXzgAx/A3NwcAOCBBx7AL//yL+OXfumX8Lu/+7s4evQoPvaxj7Vt8xUNXUz+WNaHVIpSKVyOTIgcZzplDJvgUrQ8TnIu3baOo8VbE2fC4imHT83AtnG+Yu96dpYtI5bbN6l3LZ64YdPe89D00Pe0kfiQ9FPzOrfN8rnc5edywnGei5qb6JzYu97+bbLrnat/vA5hV3M4hmujS3Pmlae/c21Oqn4NvLrEcywkx77EaKaeSznxvtfkGKdWp+fobIwXDy5HXnq9+PGkXD5yn+fO7zbQRK5yN9Ha8BLDte2jXNlJbfyQ39ukfi3TTAtqyEyzuD9Q1PAeyJEDz1zgdlk+60peUiDlJGXLtfdT9ee8E7M5ms6NXY6/vg5s316Vz/kQAPUH8aEFZbW79YY/BFAP8o+M+K9wkcczqV2ybNNL/zVo6tPn0moi17E5LO/RbBqgStlr7X2ND80m87+bHpP3PLuWICtodtddd+EpT3kKxsfHa/h7770Xr3zlK3HgwAHs2rULb3jDG/B7v/d7AIAvfvGLmJqawstf/nJMTEzgLW95C77yla8Mss3uvfde3H333ZiZmcFjH/tY3Hnnnfjc5z4HAPjsZz+LF7zgBbj99tsxMzODN7/5zYN6r1XwOnrW5IztfEjFpQU/mjhCXkPsqcdbR1fKyXPnTa7CzlFYHt67TmVPtUvrk6aZZl658spd7oJbe+YNiqbaIY+7dSGvMfBkO5BRlfV2dbQp9ttyOog/Pl7a3PPoIQ9/Gh+psqk6vfM65RDmvBfjxYLUu03l1Vt/rozH5NUDuf2UGpuco8Oper1HMT06/9s1NhJSxzNz5TrFU+w5/Z3Kvuu6T1Jya9HP5TOHZ8B/dLYrnjzg1ZFt6rboaQGiFH8cF7u/TOKswBwPmlyO48S5+tWq14tL0fTouiZz04JYuZwNEs/c50ETGTTburV6nx/PJBsbC2Dx+njwiiB2PDN1l5g8/sn/lfS5rFtJFU0ynnP0m2WHPe/FnlvgyWbUkkq4zvXSbMKThrc+BMB5yjkmn6s3riUY7aKSb37zm7jrrrsGf99222341V/9VQDAN77xDTzykY8cPJuamsKBAwfwjW98A9PT0zh9+nTt+W233Yb77rtv8O5Tn/rUwbNbb70VDz30EJaWljA5OanysrKygpWVlRpudHR0KNB3pUJZ9kGxzrLss3TgOi6AjltbKwEUAPoD3Pp6uaGUylq5kZGAK4pi451yUMbCFUXJ6houp+F4O/o1DVS1Q2trCtfv+3D1fiL+hssRTmu/1i69HNWllRvmQ+vPOq7ehqou3q5hXNjxlONQaV4aB4+MxdpVlQk47xgGGsM0PXJXFMWgzbL9vN+8Y5iSV01OZJ9Yc9PbJ/U+1uQ18Mf7jnBVn6DWfg2XJ69aP3H+6rjwX13nFEWx0d5Ckc1qvla8cJrDOE9/1sdPk808eU3pEk3uuLzG52tq7jfXr5a8xmQ6pg+9uDp/2rxuol/hLCfrI/54P8mxAfp92X5Ll+rzVcowH8OU/hueS8Oy2YUMx/puGFcMsmU0+1K11Sev1HfEb31s4jahXsbXVq9cUxvqvkjA9T7zn/GOz/xzAMD2PwHKXwHedLjApx7zHhz5jud1Yl/oXb1PhmWHl+v36d08feXxm2Jjw3FAWr/652tcR/B3bR9p2B/gOlfKK2/Xzf/t43jq730cY6PhUfl/AT/y4Cjm9vxzlOUTUBQp2zzcJ6Ff4/5bE3nVfKQ6jXoft/HVLRynWfEXn9da+y9Hn2g2p+K5kgkKBsXaWpbA67/w47jlc1/GygpQ/k9g2yrwjjlg3xeB/8+5oKeWloDzm/Zh7R2fBDAGbtdCAGtYFns9rl+pLXUfKZQPPt6O//ez+D8+/c8AlNj1h0C5DSjKEq87WmJxsYfxMaD8I+Bt3+zhxP57ANyJmGxyXOChks319XLARyXDw7jYOKTWWz49Oewjfud3Fvjyl3U5bybXdju4vK6tVf5rGCtNvuL6YNin9c9r0iXP/sq/xTM++3+hXwJjo8DoGFD+etWSx58DDp0CVkcm8f8e+nUszRw09bBlc6g/yQbUbcGVDz3nOdROgmYLCwuYmZkZ/D09PY2FhQUAwOLiIqanp2vlp6ensbi4iIWFBYyMjNQCYNa7RGNxcTEaNPv4xz+Oj3zkIzXcq171Krz61a9u0cK/P3Dy5ASAfQCA8+fPYW7uPE6cqHBnzpzG3NwlnDgxCWAvAODUqYcxN7eAixdHABzChQvzAGZw+PDcRhT5Zqyt9bG6uo65uYdw4sQ4gP1YWlrF+Hgfc3PHsLKyF0Doczo+u7q6H8A41tfXMTd3GAAG5ZaXVzA3dxQAsLYWyi0uLmJu7gQAYHn5RgBTmJ+/hLm5UwCA06enAeyu0Th7dguAnQCAw4cf3Gjr3lpbT5+eAXDDRv+cwPT0Es6e3QxgFwDg+PFjKMsVnDpV1f/QQ0dw4cI6Tp6s+unBBx/E2BgZglkAxYBGMHI31/q9LA8BGMHKStXWfv8AgDEsLS1gbu4kAKAsQ12XLl3E3NzpjZG8CUCxUde5Wn+ePXsWc3MXAAAXL24HsA2rqxWN+fldADZjbW0Vc3MP4fz5rQB21Np/4UJ4j/ptcrKs4R58cA69HnDp0g4AW1GWfczNPQgAOHcu9Pn6+hrm5o4AAC5cCLIDACdOHMfExPJAToju0tIagIMbPIZxPXlyDMCBjTrOY27u7EAOw/iewdzcRZw7Nzp499SpU5ibm8fSUg/ALADg4YdPYm5uEQCwtLQHwKZaH5PcLS0FGVtevhH9/lSt/UtLuwFMoyzLgXwtLNwAYAarq6EvAWBxMZRbWVnG3FzIiL10aSeALTUZPnOmkruHHjqMs2f7Nbk7duwhnD07BuDGmtw8/PDUAFfJcCWb1FYum8ePH0NRrODkyerdo0cf2uhzDGTx4sXQxysrxYaMAZcuXcDc3Bmsrx9Evz+Cfr+ar8BNKMsCq6vLA/kieV1eXsLc3PENA3vzRn9V83V1dR+ACVy8WMn1wkKQzdDvcxvjFfqTxiKM9QFcvLiAopjG3Nwclpb2YG1tAsDIoF3z86HPw3uHMTXVH8g6H8Nz5wKOyyuXMeo7LmMnT54AsDKQr/n5eczNPYzz56v3Ll4M/Rbg5g1aYQz5fDh9OozhwoIur/PzQcb4/F9cDDJMNEimqY8mJkosLw/rXMKtrVVtJRyXV5JrPke4naD6uDwdPjxXkzlqK8dRW7kMnzwZ2spxx48fx9jYMh5+eBOAPYNx6PVWNmQn6DqSfwBYWwu68/z5oP/W1w8CGK3ZF5Jzrg9JDsPcD23t90M5bl9WVkI50kMAcP580HX9fqX/SCeSPHH9SuN64cI2ANsH7SqKFZw/X+EeeugILl5cx5kzlT548ME5jI4CZ84EmlyGQ+ZBkLFjx45idXW1NodJr/f7oU9o/OfnK5m7dKlqK9VFbT1/vpJ90rnB5715Y1yDzgWAixfDvOPySjZnYSHME5IvauuFC+sDvcnbSrLP5XVhIZTjOpf0K5fh48cr+0JzgsvwkSOHcfLkOEg2yZZyu0S2lNdF9oWXO378OEZGlrG4WPXnsWNHsb4e7tAtijD+JK/b/tP/jX3nvoIvHXoZsHMFEzeuYM//+1k8avt/w9ytzxnIUjVfq7aurATfZ2kp6Feg8pFIDwHVHOHjQHZiba2aE2fOBBzJ8PnzW7G+vg1AMWgr96NIhrlsHj0aZI5sP/Xvpk39mn9F8spljOs6wp06dQoPPjg/+JvaymWOZAng9qvSuWSHzp07P/CRCHfmTJBhAAO/htdHckd0Fxd3Y21tCkCBY8eOYm1tdSDT1NZz5/pDPlJRAHv+/P/GtrPfwtytz0avB2y+cQk3//dP48Rf/QGw6QkDmSBdEvok+NynTlX678SJ41hfLwDsRVkWG7rpNI4f5z59aOupU5XfdPp0aCuXV6qfz/8TJ05gYmJpQ8bINle6jmSR+ljz6Wlec1ta+UiVzl1aGpZhmsN8HMgmlGVFg9uJubk54Q+FtvL5Sm3lviTZF26byG/gfXfkSPAbAAx0J+m/uoyRzz2L9fUSvV7JfKRQhtpflsBTH/j3ePiG2/Hwltux58Z5rK4WePjsNKZ3LeIUxoESmDx+GE/85n/E//PA+wA8GsePH0W/v4qimMWlS4sApnHs2BHMz68PdAIQbMKlSzuxvDyBsgQuXVrC3NwZnD+/DWtrm7G+3hvYyOn/53ex//Tf4K9vfgVGdy1jZFfwB88tT+LChVFMTPSx48YFzP7Zf8H5v/g8sP1OnDlD+m/YrpNP2++Htc/kZB/AbiwuLmN8fA1zcw/j1KkwXmtrfVy8eAlzc2dUv0Hzc3k5WpdyeeL2mnwiwi0v70W/Pw6gGNgD8qO4DJPsc5tDPgJfq9X9hhMbslbN1yNHDmNysl+bw4cPH95YlxzE/PwSynJ8oHPX1rYCGBn0Jde55CORrxpkOPhDp09zPVz59NLnBID19aAnz58/jyNHzuNx3/o0Nl86gq8fvBNjYyXGx/qYvnEZBOdGxnB+YR1P/OZ/xH3f+B84eusuzM2dqNk53ufkN9V9pMAzt9fUF1cT3Hzzza5ynQTNNm3ahEuXLg3+np+fx6ZNQZCnpqYwPz9fKz8/P4+pqSls2rQJ6+vrtcwx612iMTU1FeXlTW96E17/+tfXcFdTptn6ehXd3bZtG2Znt4EHfHft2onZ2Z1YWqpwN9xwA2ZngfNh3mFyMji2N900OyhTlj1MTPQwOzuL0Q2pGB0dw+QkMDs7i8nJsPtWFOFvABgfD7ixsZEBbmKi2Ph3fKjc1NTUAEf1zczMYHY28HPiRMUzlfv61yvcoUOHam3duTO09ejRCrdnzx7MzgIPPljh9u7di4MHgVOnKtzBgwewdStq/TQ7ewhjY9hoZ7HRd4EGpTYDwI4dod9HRobbOjoacJs2bRrger2A27x5M2ZnZwb9WJY0hltr/bRjx3bMzobF15YtwzQ2bybcGGZnZ3H//RVvN94Y2r91a1Hrt6mpOm52dha9XlV/r9djfV5utGV0gDt7lvfnjZidrb4EFHB7avc4bN4cxpX6EwC2bt2K2dktAzkMbd2B2dkdYDF33HDDLszO7sLiYoXbvXs3NljB1FTgeXp605DcTU8HGaMyoa2HMDkJbNpEbS0G701PB9z4+NgAR+UmJiYGOOqnTZsqGeZyd+jQQUxP1+XuwIH9mJio/t6+PcjNhQsVjmT44YeH28rbv3fvXszOAhcvVrj9+/djd4izDWSR+pgn227dugWzs5sxNlZgcREYGRlhshl2LsfHK/miuqamJgc4Aj5fqc+3bKnkmmSz1yuH+hgAbrrpEE6eDJN4cnITer0gi5s2VV8T27dvP/bsqeqi/t20Cfjbv8VG/dUYfuUrAcfllcvYvn17cegQwPdu9u7dg/37ebumMTu7CWfOVDjqNyDs7JZlMRhDPh9I53Izx+V1Zma4n0jGtmwJNLi8HjoU5JVwXOdSn/O2ki7l8ko0p6aqOcK/oUM4Lk+zs7M1uaG2ch1JbeX9u2dPaCuX6xtvDDqC9yfJMFDpOqoPAMbG6vqP/ub2hXRpyr6QDOvyGuYIgIHuHB2t9B/N9bGx0MckX0A1rlyXUru2batwBw4cwPbtwDe/We/f0VHgG9/AoC1Ekx/r2r9/H268EViufN+BXSP7Mj4eeOPjx9tK8kr6gI8D6dy63xB0Lm8/t1ckTzRP+Jw+cOAAtm2rZJq3ld6jvgR0nVvZuQlw3VTVdwgTE6jZ4UOHDoLDtm1bMTu7dZCdEdpa2VICsi91+xXkdWO/FgCwb98+7N9PO+phcpO+Xp+ZxtGZm/HxZ30CL35xiUe8osT5XY9EgbImSzQ3x8bGhnBcv5IMT0+H/uU4Pg7HQ3wCo6PVnCC/iWz4V79KWQ9VW7kfRTLM1zz79u3Dvn3A175W4Q4ePIiZmYomUOkNDjT/OezeHeiSHE5OhrbyseFtpflK+jC0J+C2b9868JEIRzIMVHORZDP8Jnsd6NLfvK3cvhw8eBBbtgz7SEUBHBsbxbEbH4fPv+E3sGkTcPvdJdbHN2FifHKjj4NM8L7bsyf43OfOVbi9e28czPOypPk6U5uHJMPcb9i5M7SVz4fdu0P9bNk18P2AStfR/AcquaM+pjLcvtDc5PaF+o77CGSbuAxTf/JxJTvBaXA7IXUYtZUfCaO2jrLVKs1XbpvIH+J9d/DgwYHdJ91JNAAuT0FPhL8LjI5W/FIZ3v7VssSXvusNuPcRb8O/+lclzp8HPv6OHn78x/v4r/+1wNQUMPKf/m886vgfYfcNuzf4C3I3OlpgbCz0D9kJ6Ztu2VLg5Mngm23dOo7Z2c3Yti08L4qK3yOTEzg3vQ+fePYn8JrXlDj07KCvfu+Xl3H//dPYu7fEe99bYn7mRkyMh44hncD9AZLhh6qYCHbt2oGNpThGRycwPT2B2dlNg/Eqih42bw6yxH1V8hu4P0R2nutXWpcCVfu5DZM4kl+g8pGqfrN9JG1dSjjuN5w+DUbjIKamhnHU1rGxyYGcfOUr1ZqRbMQDD1Tvkc4l/xWo/Aa+D3HgwH7ccAP1b93nDG2qdOKhQ1sxhxKH9z8Fv/19/1/s3Als2wb8g39QKdk//Rzw+X9/HE/85n/E+Nj4oK18bHify3UEAHz1q9TeYMP6/T4OHz6MgwcPurOzriboJGh2880344EHHsAznvEMAMD999+PW265BQBwyy234NOf/vSg7OLiIo4cOYJbbrkFW7Zswc6dO/HAAw/gjjvuUN99gEne1772Nezfvz+aZQYExXa1BMg04DLa6/Vq586BoMgkjsqRkxhS98NCoUr/LTbeK9hnkYuNM9wFuw+gGBiRikaFq86BD+NCPfV3tXKBZq+GA4CRkV7N0dXar+FGRnzlCAdUadFWOa2tdrvquHDGXOunig9qr1Vfqk+09o+M9MDvk6jX3x/QoXHw1Mf50HkrarLE+dXaoOHq/VTxLOlaY52S4eqeAntcOY3R0eE+IVzFW54cemVd45m/OzJS8Vxd8BqXzYpfr7z6+4nLSdA51XjR4sE3X31jGOtPj7xqfZKrc2P9RDgaG21+VbrPp19TOMmfxBFd2YaUHHrlWtYvcVL/ae3Xx7o6WpBrhzT9KmXYO1+5rfLN6/q89PSdrfvj89XLb6yfJF1vfW3k1WPXmvgDJK85+pXT7PWAkjVW6omm/kAo79Ov1pzo9Sp5oramZDPHR5Kg9RMf/3Bxedq+xHFxHRF7V5vDln2J4QBUFwswH3kdVWCS3tXkiQd6Rka4v63PJY//znHau6n+HPbDfPKaskPSBwltjtOgdrSZw17dXG+/1k+VvNLxTHNuIow/2W8a57LsYX0dIbj6OAD/v4AD6j5iTBa5XqfjmSRzld9EvAC9guwH8YIaUH3Er0bT6jvuq8m1IJ8PbcarPg62vMp12eX2keS8G/ZfEeXNK5spm6PhioLNmw07z/tLg7Ks/O2Yn+td01Z8DduDqx2yWry2tobl5WWUZTn43e/3cdddd+G3f/u38dBDD+HUqVP45Cc/iRe/+MUAgCc84QlYXFzEZz7zGaysrOBjH/sYbr/9duzdG1I077rrLnz0ox/F/Pw8vvzlL+OP//iP8YIXvAAA8KIXvQif//zn8dWvfhWXLl3Cr//6rw/qvVah0OfD0HNeTuL4JZQcp5UbVmo2TxZ9i9/Yu8PKwi7vhRSflQIc5sPTJxbNrt/11tumDs9zbx1eGU7xXjfKdVwu3TbzyqJryY2n3i5xtIBpMk65vGtjQ7/pb3JOCS+vSEi1xYOLgUdeOVh6KEXTw1+ujvTWnyNXsk8saMITB355berdJrLfhW7UZF6DJu2P0fTWl6pfPtd82xx59Tzz0siZOxbdnDncVl6HoCwHgbNBu4sC1T1AcWizzvD0HdelXcyDNnx2bcu0Z5aM8zksL8l284ES5cadaIPFZlGgv3HPUxV4H64n5g+UZaHynSuHKR3SVL9a5VP15kIbXa6907ZPPHIS7oEaHkO6d3FkBJjYyIwqN+6G4rIov56p2Ry624rzRrhKZoJspvy6sihUPmR56a/ydmlttftoGHLGRltnNfURvZCaizxQJ9fMOT6Nh8+Uz93rAUUZxl/yQNDvVy+V8qGosymf1xpkZZrdc889+C//5b8AAP7qr/4K73nPe/Brv/ZreMYznoGvfe1reOMb34h+v49XvOIVeNnLXgYgZH794i/+In7u534OH/jAB3D77bfj/e9//6DOt771rbjnnnvwohe9CFu2bME73/lO3HTTTQCARz7ykfiJn/gJvP3tb8f8/Dye+9zn4od/+Ic7avqVCU0EXOJkMIyUkVSKWiBN4+VyGr1YnTGwHKgmk97rpMrfTZzPpuOZUvS57faOQ8yYeOuP1eVtg9Vut0PcwuhaBp5+p/huylusTq/zYUETh1TiYmPD+yTldDRxeL3ticmrt30p+pdbXpuMoaecFYhO1dtGrvhvq2+886kJ/RQfMZy3fq9tyqHrlfkcG+Ch32Se5NBO0affbWi38VFg0PDKS+ydxjxtAM96yJVXL2+p5x75y9UHqXesckWR90VR+awE6kEzAH2xsarRr2dRVTyEgEs8wNq1DGm43L5sMqdzZaONfrVwwPBGuEaPxsjDEw9e8UASX18BwwGykZHqmLm0CdIfCllldZq1QFqi3RwndYLHDtHfWoBMBvRSdcXKWXj5LBaY8s6NHP0Sq5Ovj2WQM4cnL8T6djAO7G8ZF+N/lw2CnLllrwXICpq9973vxXvf+1712Zve9Ca86U1vUp895jGPwW/+5m+qzyYnJ3HPPfdEab70pS/FS1/60hw2r2rowsBIpd7r6VllMhMkRt9LVwOvsrWeXQ6HlBSg5hBp2Weeert2CHOzqrpyzGPvWDu9KWiixFM7y7J8G4fQa/Q1OZFlvLgUn97+zm2/Vya8c0OOVxOnI9dwe/ouR1d5nLQc2bCeWePl4a1NuSZ1NZEhzfn1tjeXP085r835dtDMlReLftd2u6kO6UrncJBzuMv+StZXlgDb4d/AbuBt+m3sEAEn01RetXe6mo+pfm+c9WXwkhp/i6bJL0oAPaytsUwxFCjXy+i7mo8S85G+Xf6Ix7ZdLj1g1ddmEzEFTfwGGTTT6ipQol8WQz4NzwQr6Oi9yPCi9RavU9ZDwTseNOM0Bn4TKj1k+oPFcKaZdgpCttfKKotlmnWtf6x6u7ZvFm/0O5ZU0oVOy7ETgY9ycOxW46EsMchEKze+BO6hqfHXhV92NcC1dyD1GgFr8smgWczB1TLNmijHrpRdTIm6nZ82TrJTmbdx9Jo62N5Mszb9lWpjbAHTxqlqakw85S36VuAt9m7K6Yi916aftDo1mbACl16D6O3DnKBlk+OZ3rFJ1VMUfhnR8G31YJfy2pUMta2jyTikdv3le202CnLftQLAXdiNHIhlizaR1xR42tNE5nPB03dd25wYDAd5q+OZhCuLAgXK1rRkOa8Me2nm6hcvn9azNvOgSXukDklt3tlyHY5Ara/Xj2daQQgCqTva2A1vP6TKaj6Ch1aMbm65XFvatc1L2WFXxlBZYj0SNCO/JhY0K4p40IzzITPNiLfaUcxyWA9pPIfjxfEgL0EsyKslUGi4WP1djY1V3qLlpZnym+XxTD42nuOZKT69+oF0CR3PpL+145k8aJaqu2vbcDXC9aDZFQZeB94y4Kn041gmSAy6VpiWEun6aFusXVYmhNUnTRwcTznLwLWhlaJvPZc0mvR5GyXtzTRrSitHhrV5FwskdiXDuY5rGwfHG3CwdjFlHTwo7z1SZEGuQ9ZkfHPnbapuSya0uiyc9jynT3JoNdHlHHLv/7CedeHgWbKeKwcp8C7grWcpPjzjmnputTtXh7elH+Mp5Q/F3suhqT0vFJwXLpcMa++1aStBE3ntwuZ0of+tenN0rno8M/M0QsxHaiLDFq5JPR4aqbqanirwjk3u5nAMusjGB8Jxt1jQjNOQcqJlmsl2F0U8aCbL6e0SATJUx/MsHy2mX7UAmZXtGsPFoOmYaH+n5lguf7FAYs71IhbNnDnMcYNxYM/M45llmn4Xevhqh+tBs6sUrIngzTTr6nimt3zugsRr4JuU0+4/iL3bpE9ylVOuQ2jV0daBjRnsJvVafMfoa45VjtNzOcYr9k6bvs4xXLHAlIbrir7l2OZmsnK4XLJjyatVl4Zv4kjk6ss2jp6XvlWmC+cvZ67l6n/rvbYOaw4/Fn1rDCP38mbpsJQ+aqJLPO3OHcs2tgHw2RyLNw1ydN5QneIC5sGPUs80a2Pnteeafvceee7K5ljg0R2XU79LXG5gqlZXi0wzWXcTOejquUeHNKFllfeMZ5s53Ja+py9iMrGufMyhdlH/xsNSZHjxoFnMb9tQJdGgWcVLpYc0GR/oBiav3rnG9SvPvtPoaHA5/YGmvkIKPPMzllQiMxS1erU6vf2pPS+Q8SEAR6ZZDu1rFa4Hza4w6MIhkotVqWBjkfQYL22Vo/dd6XR46orxmXISrUyIppkITfj0ZPhYxlKj25VDZo1NrhPeRF4sGW5SR84zT32xRZ0X2swrr2OY20+eNvN/NRx3xHLH63Idz9TK5vZNbM5Zz7vQIV2Mq7fM5abPcend9Hgd2rNce9V0HDy8AOmgmYbzzuVcnZ/LhzerxKo3p788c7gLHyXGU9Ms2NxyXhvaxm7lQls7KP/28pcrY7lzWHs3Wq7MyzTT6uv1usuM9M5/TzZdTr1NcW3u4MvVw00gV16AeqYZ6SJ+PJMH0gA700zKEGXeSx9pKENNaYPWLsD34QqJ864FU4GfXHul4b4dujTlX8jjmfyZ76urNn3v8wGuqDLIisKfaZaimcJdy3A9aHaFQRtjyie7lZprHc/sgn6qPdbzLpxKD2iZZjnpt105Itozy8DnOtNW+ZijEzOaTZwrbx9qzz1ZgBquieH0Bms88trGcU49Tzk0sTpS9Xv72pNppqX8e/tE403DdaFLOMj25+gXj9x1cTyzicNjOaZd6PLYmOTc/9FEv3ehm3P1trde73E3D08pHan93bVO7sIOp/o69ryNbHp5UnFsBTIYzyJ+p1nO3GhaTvu7qczHaHnBOxbfLlreeaiWZ5lmg8wd2Jk7Hnm12tIE2sw161mbsfTw5N30baOjvPTcY4kS6/2ihuv19Eyz/nr8QwCxtVdRDB/1JFytXOJDAAP+Ct+HKyROBv5idDTIkeVcO+x5ry1/sf4kPP8wSJOjwynePRvKpJtIt3jvNNPq8vB0Ha4Hza446MLhk2fuY4aD/+5aOXmdGYuG91mu45SiYRlYbx3Wu14FbI2XNyOjiWPucQgvp/N1OfqkK0MrjV7TvszBeevuWl5zcXJsUncmdi071th0IQc5/eppT86OcBf8cZq57+VC0zvNNMjNVkzRkjhvn+QuJtpkmllltfJN5nzupoS3/q50LdBOXpvM/8FzdjyTPUV1w0y8vly5ToFXJjx8tNVrsWeX0w566mvTVu/xzFwfyeI7FUiy+LXop97Ntf0eXprw4a3D259Ans1J0toImvMxGRmpB7roQwAyaFYUzT8EMGQzEh8CqHDVyzmBHvo7del/7nojhvfO4dz53UauZT9p2XcatLVzrnaX6a9nUuHY1zO90OSdqxGuB82uMGijCGKTPbbbEavPQyvGs4XzQBPnqw3N3EBLrqPbZDzlM29qtLeM10mWMtTEcHr7QYOmi7o2cyi3n9o4et5xSPHn2rFy1uV1MDxHEb3Hv2P0PeVTfHplI1ev5L7bZPy99C2cVaaNbFj1efn0Hs/UILf9pmP6bRibNjx5aOXYPk89VjZuqi7tWRM+PXV0MW+jzzf+9WShdqVfPeWaZD1YkGOHJA8xXyGHRhN/xHrmKSfHuSxRD5phOAiTE4RI8Z2CVLssnix57UKvafV5j2d2bWdT78gTJbk6VNKqZZpFaGjHMzX9KuvS5lDOvJL3oaX6jvv0qaBZjKYX12b+59DK0WWxsoT3figvxVts/ebydYr6sUsZNCM5055pNLvyIa5muB40uwog1yHzfggg9czipYkh9CjlJgbey6dVznq3Sbu8PFlOZ24miteYWbxZNNq02UuT/84NmnkNXBvnQB57bnLMQHuW6s+cudv18dBcebWOf3t5ytEDOXM41b/a320cMo8sp3De8k3r60Jvx3DW8XcLmtDK5bNp+RhOPmuSaSb/jjnWXrvZRP82odVWNjy0vJA7Xio9luFBUBYFisiHANQ6ErgmVwLEoM0cTtXvDWTnQq6u81wJkMJpf2uZZiUK9EWm2fh4nF+qs03Wao5+94yd90qA3HFIPe9CX7SBTnT+hkxIf4/faRbLNBsZCUf7eN2xTLPYPVTVb/14pnyHfwggZ93AfTWzPzJtXwz4cymf3hNIVr05shZrh5Z80kSXpuao550ClR3S5vP6un48M4fmdajD9aDZFQZtji4Sjp/F5vimzn8K2hhCj4H1OkRN2uDZUW/TLq8RsXj3ttXiMacNMSevjZFowpP3iLGHhndhkttPl8OYevjk4HWOu+DTI5P8Toiu5cSL82SaefA573p1bqxMCpd61wOpxVpXeqXtURmrvIe+BTljw393Efjk9Vg0cnVDTvlcmfTQaDIOqXpi9XY1X5r6KN562/Dp5adpHTng8U26an8u/a5sCR2Vo6BZgXARPH9nYqJ6J5YJ1GRs2oxXbuD5cvkDFv0mgcSu6Mc+5tDEH+FBMz7W2v1lseOZ8ihmKsOLs2SOHdplRsbun7Voq3xEyuX6FVa9Xt+njX4tCsfYNNBfTeYYB/kFT/53OgDbTXuudrgeNLuCwavMpWKPZZppR6tyjYnXcHkWBrF3c8HrCOS+e7kyvXKdmFz6bR23lIHlkBvQy3nuCUI0kU3tWVsDGCvTBY7jPePeZr56aVr6hRYebY5nalk6sb6xAt/yHa8zkTNvm87Jpk4d0DyA0xUfXl2eq99ydW4Kcul76/fqlVye5N9t5DVFv43d1HiynjUdw67srBcG77AVyABXFBsXc7ejQdD0+oGur0noQl69z7RyXfDe5toMaB8CKIYzd0ZH03V3Ja+psfFkKTbVxzFoOuZt5mbOu9pGjRVIIlBlZyPTVNomOlJZFKhlmvGxp3ISJ/nwZppZmUYDf0mRV88c4sczh2l3ZyOb+kiper28WOWsfm1zekWjmfJ1hurbyDSUuoVAZpq1sXmXK6P4SoPr3XCFQRfGVN5p5lFOXQeILpeT3LXj3PT+jTZttfpfq8+bHZJLM/Y8Jgu5YxnjrY2Md5lVlarDIxtd747m9JPkoY2TnNtPnoDmtyvTzMO7Z4404c3LZxv5biMbsX6I4XLbkHK0+DuerxOn6vCU87bHezzOU5eGk7vCHj49tlqja/kDHvDQ7WIOaeUsaJMZ2QQG9ZXVsagBriiAyNczY/x5cLn95NV9bXjj4NFJbXjyQhcbO2r7N4Jma2v1DwHI45mp+uR1DbJsW1xTuWrjj3hxfJPLc1KjiWy00StWn6hZgyxYwcvVLu/feLi+VpqJCBwnM81iQbNBOfZBErPPiuGgWSpAWBTN9EZuOW89XejIJrKugZVM4q2rC52X+nrm+jowOhYI5BzPzH12LcH1oNkVBrmTWr6jZZppuxxaPRYNi79chdLE+ZfPmyjsFC8Enuy7JvV6y8txynUw2jqrTR3CNgZGA08g0Ts2XTtuVr3eQEJOlk6OY+HlqUmfWLzXnbUy+sluD/1UplnS6VWcVKuOXGcit++8DmEXOAva6gYJMRn2HM9sqt9i5ZraBm/5ro5nevokl0ZKDrq0IU3kMLecxYeX3zZZkOEPP90m87VpVmWTtrSxyU2DZjn85dDivzvZMGLPax8CyLxYvSi609td6L9cm5aqX3s31+ZYdbSxAzGc5x7NnLZqxzP5MT7AmUFU2B8CGPyO9nU5hLOy6mI+UpOjmBqkxquprm8jG035AOL+Y4puSqe1kfuiGPaL+ddXY3x04Q9cS3A9aHaFQVsDWxT1DA/+3OOkeZV/jL71bq5D2IXhTvF+uXdRUzgPfU9WT4yWBk2dNEumUjx1pcRzx6aLzB2vvGqQa5BitLT+bsuTF+ftY4nLuUhVPrN2riV4xzhGM1XOO3Zd6BKvE9s0lb6NzOc4Z/KLYjGcVZ+Hpxy9klNvCtrYHA+f3oBPqg1ePi0fwYKuy3nea1pXVt0s04w/lB8C0Orq2g5LndhkDufS9D5vMxa5fFrPcwOktT5Elc1T1VOgLNOZZrLOJv3h7YeUHYjpBG8dXfkNuZlmVjnteY7O175sKcvE2p/6EAC9sLaazjTT9KuVaTZ4T8t4hfaOfTxTvke/vf5729MuuX6gBbl6rY1uzpXXtn0y9IwdzyWZ4SAzzVLty/W9rkW4HjS7wsBruGLlNAPvybZIpfJa9HOVU265Jk6o912r3W0c9lwF1KavLZpNDFPMSWzihLfpLyubqau2Wu966mliONs4EJZD2DV9iydrbMLvEv1+kd2uNjKmOcKeulL0U2DR72K+dpnxmxpLq5z2vEk2T275rp05qd/cx7gy+67J1zNzAsCpOmPPc+tzOfcNbFTuBkCu/3I57JCn3i7mtUWj6znSxEeyeGq6YZrCWb5ayh7J8nUC1c/qeOZwppknwNCVnZfl5e+mPmobO2fVZ0GbbKYmsq75SLLdHl9BPqOgGWWH0TOZ7eOxK0VRHd83efLOF6U+rZyUp9Qc8daVetdTT9c2p40N92SatZHhFH+afi2KSNBs465FeR2El8+mG7BXK1zvjisYmignj8L2Pht8SchppLpQYk1odVHOejfFd+5iJtVPnkWdt34NmiwwmgYBvPVrZbvYRe1CNnMXMF0FOVL8ee6IauM4WO/yYyweGdba4g04ULlYEOJyOD05eiPXwbNodC3DVv1t6BOkHC6rvsu1uO56bCx9pEETm+Ohz6GL7BCrn7qQ5ZznsXK58zZWzkt/AGW1w89qgedOM+tZk/ZY5XNtbpv+TPHiod+kXFN5jdEYqotlc5BdKxOZO7E5eTlsvwXegE9TXrrQzd46mmQz5fo3lq8ywDHHStKqffFy46G808zTdxSAS5YXmUbxtg5nRnr6LtdW5pTToOkcbjLm3netd7ruk2zeUc80VI9njm5UEMmC1mg1GbtrBa4Hza4waHLcTXs/ZZQsQ+Wpq43jmqtsunL+LD45dNEnbZwOT/k2C06LVqoeWV8Tx6yNAcrNNMt1tHJ574qWNUc5WMfdms6vnHc1PvXgbv3OjTZGmspxh6ELvcIhN5vE4lOj34Vsavzmvuutv4m8pHRB7Hhmm/nSpO88feJ93kSuPdnNTeRPK9/03TZyoj3zyquENlkPKUjKuFHOop8TZPHUJ/VfG/vZdT91OQ9j9WnlZbk22aIcVbvTzLgjKtbuNjY1Z2xy6unKVnr5bGpztOdNdLNmc6z6vFl7sUyz2B3SqfntygxT+OTPa/6gIwgn+Wwzb7TnqUyzpj4SB2t91pUeamqPvev3WD1DPj0rWxR6ptlYy0yzNjb0aoTrQbOrAHKccO+RE6kUNMPhDYh437Xq0JSupzz/natgU/S8u/kWT953LIPozXCw6s/hjTuOBDEj4h0bL58aTYuud1Gl4ZrIVa5DmltvrL+8C6amtLrG5WZ6yfFMZZqldE3TIFgTx+FyOIRNnD8PNMkybaJfcy5gTtHqYl5r5XI3hXJlKOd4JkHXmyFa+Rx5TdHKXYSkyjWtX3veyg6VSoZHMXynWa7MNZlrslzbjdXcch5from85LbfK68EHv8hQJXNwb+e6ck0kzjvUac2dsZbTxtd1iWuiX61IMdHanQ8c+OlUvl6Zu1DAL3wsL+e//XMVACM6yEod5rJcmWH8tpmvHLkuq3+b6XfneVyA3RNfCRbZ9hfz+z3gZFIplmuj9REJ12NcD1odoWBJvSeRaH1ThdOh8Wn93lTB+/boRw5eBbcXS0qPP3URV/mKMSJifCvZxeqTT+k6vFkZGh1NBn7pkcZcp37VP05QcCcTLMU3dz+TDl9vV5epplHdlJBCEuGcudwE/3mzRyx6mjjJHpkuCt90QVPXejSFHj607vQzdURTe400/726pXcccy1ublzuQs91EZec+RlaMHNbugejGdRoID/CEzqmSZ/uX1CkJLhXNvopddGX2nPcu2Qtw9N3tgRuEE9RRWEsGhI3r3yavHW9h1v5pT1rE3w73L5SN7+1Hwkj82pzX1szHfRJ7XL+zceej4EYLXBxEWOZw7JZFEM+M6h2yTTLLecRT9VX6reXD69cyKWVOJ9L8VTqp7Y+Kc+BJDDi4W7luF60OwKg7YOqbaTYe18WIqrTdaD13B7DKwGbZxpjU/tnaYOnIeuLGfdEWW1NZZ948HF3qWLJTnEMoeaOLzevmm64G5iOLVnmsGU7zYxkla5Vga2CyfNSd8blM89lnW5Ms045DpwbXRy07HhkBs8tqCN3kzx1qW8NqnD43xrz7vSF57yqXdy7UYTh7etvKZw2rNcPaCVyR3zNro0hcvlScM1DUx4bVQT2+yhnyqTa/O8tKz+zLUBsXq5H9YXm1IeXVfHDwcxurC9wOX5ErG3XO4cbhLQ7Uq/xzYWvfzJMV9fr/D0LHY8s40/NMBl+AZ0PM9Dn357bbq3z2PlrHnq8b1SerNr/e7hV4NUn3PwZZrV67M+BMC/xMrpe2XNy8fVDte74QqDtoYjN/03NwiSy2fsHevdnGc5PGlgGY027fLSpN88UGU5hLl9YtHM6ZuYYWtrTC1aHnmN1eHBdeEQpurV6rLKxRxz67ibJa9eyA0ea06i5Th2tajRcG2O2cVwOX2ojY1nvlgOYRM7kNuuXIc0h77WJzGnvsmCX4NcndhGbjzlmmSaaX2Su0hoMzc8i7omfdN0DHMXLR7+NNzQc3Ysql7IfwQmBd7xsupvq+dStDhPGq6Nn2Xhcn2e3JMVtTrYWFdBs2IQNfP2sQxC5I5NCnLnXa7e9tqBFFgnNbz1N+kf7d3YvXTmnBso7uFMs7W16jcdz1xfK+36FN608qoMl+F4nnwu30VRfQggZ9ybBKBybWTsuSdxw9uHufoy9jzGm1dec+RaC5oN32kWdFNRhHelT7G2VmWayYdd659rBa4Hza4waKucXEZBwbVRTm2Ms+eZt5yXVuydXBpWec0QWnVo2V25fajV3yZbkEPMEWji6DQZuy4dwtz2W+82cdabyL/nTrMu+sTr6KSC8vJ4Zi6/WqaZvOhU4y/GU1fjb4FHXlP1eoMcTdvlHXPvotWbRQD4dv27sC+p+mJZsyloE+RNPc/V69bzNvKqfTG7C7vdpbx66Xv7AfBtSlg8pfj0+mUadBGEyMV5n3ehm5rIqyfw7qbFcNZ9rqn6iqJ72xsDz52RFrSxh7nlUrRy68+dL6l3vFloMmhGz9bW/JuIuZtisUwzTe5LI9MsVkdXsqnxw8FaD2m8Wc+69gc8/qP2zNO/sXJAd5lmY2N6+TYboNcyXA+aXQWQsxNvORHWRGlj4Ns4s03px+rz0OfQRbqwBrkGQDue2TQTooljnnIYPH3ird+rnD3ZSW0cMq2eXPlrY5ibZNik6onV0QSX43yl3m3jhHvncC6NNnqDP88JaHoXdxw8mR6xd636u3CgUpmR/DkFPWVgpmtHN5d3r3xr0ERerXq8fdJU5lPv5MpErh1KvZtTfwyX24dqPexDAPyh/BCAl74GXdhSgq70ipde7lzz1BWr14NLbeKYdaHK5iHdVBbF0B1RHj2VGgfPM6t+Ak2/xvqkjU/RZF5ZPpJVh3cDJkfmPPe+xjLNtA8B0PHMokDWhwBkG1K+36COyIcA5NfJweTV8hckXe/mmNaGNr6al14b+9rUR9LebWJnNVy2Dd2404z+tu40y/kQgJf3axGuB82uMMhNS4+9nzJKnt32Ng5R0yh3105VDs8ElsL0OpAazjrGZTl9lkxo9zx5xyEHmhrKNkE7r5Ns8ehykhL0rXJdOJUcYo7j/4pMs1ynr46rO3C5i5rUnWbaO7n8auW0v3MdrVze2vR5Gx1t4VKLgCb92uhS5gSfGnj57Fq/5/LJIdfmWOB91+qnLuS1ybseHpu0zwuDd9TFagG6p4rAmznRpR7Ole/YuxaOg8eH6LqtuXOtTVuLUv8QQIF00EzimugIry7vYjy9POX6Vxb9rgIzTfS/xLl8P2aoZJ/wO83Ajmc2TVJI4RD5EMCQX1UUQ0He1Lzt9dK231uX9W6snliftNFHXhlO4ZpmBno2+gmsTLMBDfZlX60cP54pP1JzuTJ+r3a4HjS7CsC7gOHPv52ZZrmLRa1cl89yyjXNNEsp5DYOU+6YWNBmt9EyJm14yuXdou93Pnx85NbnrSNlTNsY/aaB7xQtD80Y/Zxx0p6lPnDhhVzHqcncaBvQTPHRRTkC9w53y7mh9QnhPJlmXuevTT/l6teuskisd9rYYY1+rqx7A6QWTVlXrF5PPV23OYUzeWph07VyTXVTV36GRZODxWeuP9DGR7DkqUmmXfWw+mkdz/TImNfvVtnIkGGPzelabzbh00PfW1dKD1lBCEv/5Ni82ocANp55PgQg63Pbtygv6awyDSdpdLERF3vXa0M9MtFEhlOZi9a7Ht7a8mndaRabQ/KKEut4Zq6uaTLuVyNcD5pdYdDWgdcMS86its1kchuCTGe9CU7jKcWzpz6rjlT7NZqe9lgOoTfTrEk/WOW6coQIeBvJMOTKYq7R1ejnGo4cp86in2ucrXe7cpJzM4zqOqfu1Fn0vWMTyzSz3rVoaA5MExm+3EEzS3+n+LSgiX2xylk0gOZ3mlnP2tjLrueLVT4FTXnqwr5w8Nxp1qS/vDIce49DE38k2w6VWoZHsXFcariOJrQse5HrD3jraAKed9uMf5u55s1kNvuJZXMMgmZFAe3rlxZPRdHMfrSRIY+e9voUXvuS66N0rbdTQTOLJ91XEfQzj2fKTDNNJiXOndTAjg5r41PVY2dGynrpd5sMshzb55HxNvZFgzZ+k5VplltXjF/XF3A3xj+mW+TxzKa8XIcKrgfNrjDQlIN3AcPLep0Ir8GKvdcVTvu76wWEBp5dGW+mn1exe8fYqte769+F0fGWa+IwWjirT9pk0HmexWjIPrmc8sp/yy8PanxqcLl4aprJmuLbop8KmmnQtb6wynlkLcVHrn7JzbDoWm9rujFGL+frmVYbcnjytMe7MGvrJFuQm53QhVx75qul+2L1eur3vBOrQ3veJGMie65nypc3q5ODx+dqYt+79pE89XWR6ZF6p834a2CNiYdGahy8i/BUn3T5xeYucBY0sW+5m+4ccuXVklNp37QPAchMM23jweIjdw4H+vJOM53nFA2vLtMgZ2w88zRXH18ueeV85trZJpsXHlxRhP/0O81sWrn+0LUO14NmVxi0VQTWLodVT5tgUO5E9Bj6JvQ1aOI4e5RIbrualLOcNYsnTR5i9HMhNyOriZHISbNv0udNFwGp8rn96jVwwPDRNouXJpluuQu4/xWZZk2gjZx4cU2PhXShX3PBu7hsu7Ps+px6ZltTPGlzQ+Ozqc1pI0MpsOZwFzbP2x5Lv3o3R7xz2LtYsMp0lRFTluGPgQyxO83YG4NsDi9/Fk+5PoIF3k1SDZr4SB47rNXRpv1WgD53E7H2nN0bxTPNijKeaWaBvKTd279tfFUOuWOjPWuzHvCMjVdechIGPPW59Fok06woqqBZUSCaadZlti7PgtR45plmMjMylf1WFN3ZPu94eYJmXvlK8eRdq3jkL9WWJvPFczyT7luksVKDZqMb8tHhfZvXMlwPml1h0NaByFUoVuaMhWsSvc41Zl6nKhfHwRMs6KJdgP8z4ZbTE+OxSbk2xqTNOKVoaVlVHp7bBMOaOgxex6FJsIKDJ9PMO17yWaycl08rI69pH2p8Njme+e3UK9Zc9/LhDZRb71p8NtFbVvlUkNea123shgaW7fPucFvlOVg8NXE+m87hJtk8Hh3apU1PlbPA0imxck3m69pa+IPfD1PKC5g3XmhSv0dHxuqRz1KLYevdJuOgPc+9lzCXVq4dsuZwUobZ/6vAe1XAO3YxGl7ZtIKC8l3r68S5c7iL7C8L2shGV0EzT/Bj6FlRDI1J7U6zkfDC2pqeaWb5ajkZXkMfqQAwdKdZMSyvGli+hiaH2ntWvbFyOfO6jX736twUvVjf8N+ptWPKl3BdCVIM/oeiGL7TbG0NGBsvht9DXp/HcNciXA+aXcHQxHG1lHJulN9rJJs6OqlyHr5jfHrBQ7eJ0skt583qkeW0QIJWvsnRNg266P9Un3i+KpO7gOoaF/s7VT6HTw5W0CzXSW+6WEvR0Jw6T/nUpf9dyZXEdS2vnj706tLUu011nlcfe3eMvYt1IJ5p1mYeejeMvEEzWZe3jti7XsjVK96FUS7OGps2er7JQixWxltvzlyjoNn4+AaCKaUq+whA5AtlHNr4TVr5pvLaRpfG6o7h2rS1Ce+ynKWv0nZOH+vcO6IIPPpNqyM1Nrl2yGvTNVxuoNCqu4l+v1w+vYsWm/uyHL/TjKC/XtcJWqZZrl6t5DnOS61cgaHMSK8d9NiS1HgN852mH6vPKxspm9JUXlPvev2B1Pz33mlGZUZGKvkjCJlm9bJNeWoy165GuB40u8IgV6nF3s9ddLQJEOXyYUHugicFqb673A4hB889FPx3F2NiBSa8Y6jRaMNTythaQQhrV6zrIKcHdzlpcbCOZ+Y6Pd5yubrEerdJRoysq82dZt4d6yYynCOvKf3mXazk8tnGgcod8xhPTb+eqYH23HOXjIZLOeTfDkfTssPeDQIvTuPdc3S2jX71zmFZj9d/aDIO/B0KmtECBGWJvpJ9JD8EQNBkAZc71706RIM2feeVhVgZXq7NOHnti9Vfav1lOZRVWKIYCGuXvrFVPmWjrPnKwfJf2wR0vYFvictplwRrwzgGuXZ4qF7jQwC1O802Ms08xzNjfMR4GuDYMfE6L/LocFELsOTQyF0DeuVFe66NZ9NNNK1+Dk3XoBpd7yZaao5k+43sgzSjo/WgWb8f/uMfAsi1JTE+r2W4HjS7gsHr1DfZFbcUlXyvCU9tFl+e8lo5jwMRe9ei20UbYjhPfV5nxSqXyubxQu67TfrEk2mm/e0dhzYZE01lw1tvTF5zjmc2kdfcPrGcnxRPTfu/zfFMDdd0EeDBSV7bOJ9tFjC59LX6rXkVk1freGbuHOoi4GDJZspueOewp3yqntTiI1a+CU/a2HShSyxaXdghL/2cxfr6eviDH8+E3KjoYA6nymngmS9eGW4ir9a8z9UrqfqbyrXFI5e51EJ6EPBw0tUgdy5rdXYxh3MzbVK61LpP1cK1aVdOwoCnPo8sx+qSQTN61u/X+ez0C8SRvhvqn478ilqdLevyjnXuWtTrj1g+gpenNokD3qCdljBQvVC9NzICnDlTzXMKoI0lPgTQxpe4FuF60OwKgyYOhDZRm2bgNAnAaeA1RLI+b/S+7aLOet7lwqENLjfrgJ7xc+8ajt5tEoSwjElXQQjPLqrXmDWVwxQNrYx3UZPjwBDQ+Hk+BJAy0hp04RzV+66s8ZvrQKVwGuS2IbeOGK5Lec11Pr1HW3NlM3fTJUZfcwhzvy6m1Z+rG3NxTWxJbjnrnTY6RIOUvHqOzua2X3u3zVHs3LmRAq3cYAHCMs0G2Wfssu1cntos4Dw+krdPcoPtsee52aJev1GjqQXgrcC3lwajMHRvVFnkZ+7EeGsiG16bk8J5+Pbqd8uXjNGL0bLKc1zOuHruiHKNCatIluPHM2OZZp4+do8JyzTS/KuKbtBNRZHvB3mCVk38V++6zbIr3rZ41nE5NDxzuMmmBP/tunJlI9OwKIBvfSvg/vAPw7+DoNnGnWZFy6sD8vXm1Qmj6SLX4e8TNDFw2kThi2ttknt223OVb1c4iw+vEiOwvqgWo5tr4LyKyFsul76sX9tZ5UDvdpW500UdmjHxOIRNArq5/drFPEhBive2d5p1Ja9e3mMOWay8fKYtrtscz2wz1la9nC9PfW0WvCmHqAvInUM52TwxGW5iI6xMiFwHt81GUVeOZlM7bNUVwzUNmnnH3Bsg0sDTrrY+koZ78YtP4ejRA5ic5J0S/pGZZl1nYuTa91z55r9T/pAGuQvSpu1KlbNwrepgv2WmWUyGPDS68AdycE3vjNTqsnRuE7/RepYrQynwzh35LBXk6fXqHwKgutbX9bWVZVfcfkBEhw7Vk7Db2jyJyUlKb+fKEKDbfrlWtWxgk/ndxUaFR25iOEuuUvS1MtSH586Ff1dWwr8TE3a9qT7J4eNagMvkWl+HywU5jp6G04JmHmerawOba/SsCd5mUZNSWB6HMNWGpjsl/LelzL2KXtsJ1Bwdko2u74hqo4itBZyG63ph0tT5Txkky1nJ2XWzMs3kO17D3cYRSS+c45lmFi0N2gSI2ug1Ly7nQwBNeLPkquvMHUkzh89Un8g5nJth4dXDuXO9jd3SoInzKd9p0v8WfWscAN/xTO8CysJ19UEaWW/KRqbGZPPmdXzv9zKE804zrz3M3fVPlbNoaXW1sdHac2mHmthcTRa8OlTW57Wlev3VvVEDf6koAOgZRF4+u7IvGs6jX9v4rxauzRHr3LY2sf2e+kz7GrnTrChE0KwXHnoyzaxnZiCN3bdn+pVF0E2x/rJkwaOHvPolRt+Tje+Vja43fTXw2MG2ayBXn6AcyCEFx0gGl5fDv5NTA8Ft5Us26aerEa4Hza5gaGJMtaCZx4nJdf6aOEkav56J6lXOXocg9U6sb2L1tnF+PeW8hkBzarRAGsmG/HyxB7xOrQW5uz3AsJPYRg69zqS3nMW3Na84pAx8l8czvW2VvMXq8DgWbRx4KtdGXpvoJgungeX8tHH0rHJePnPlu41+B+xAYtOjXRxynb/cxYJ3Ee7FecE7Tt6Pymg8aZm8OUGzJnO4TZ9IWk3mhgZmOXYBd5VpVgwdgbGg68WKVzatejX7cbmy8b2QkiHreKY3m8OipQYmihCEiLXFo2va2GOLJtB8Y9GimZIhbbO1TXs8deTW5eXJnJssaCb9/NqdZhtBs/66HjSz+lN7pq7ZWEC3zvPwhwBk0ISDR3dafeK1kTE9bN1x2nQjXIMm71o4z3orRSvlI9m6KxzPLYphPS2DZlJfeW24LH+tQ6dBs7vvvhtPe9rT8MxnPhPPfOYz8ba3vW3w7BOf+ASe//zn47nPfS4+9KEPoWSa9b777sMP/MAP4OlPfzruvvtuHDt2bPBsaWkJ73rXu3DnnXfiJS95CT772c92yfIVDbkTnP9OKfEcw9rE+Wsa1LAcI403/rvrXSmvQ+5VRLmK1WqX5RBrQbMUzgu5jlgTRaylcscMTBf963meU59Wb24QW0LOhwBSz7R5peG8C3NdPuP3wci6UvDtCELk1pHqJ4nLdeDayGYK56HlXYSnaDUN7qVkzpvBaLWnS76blNOgTTAwl75nwa3Vm6JptaGLo11NbH8XY5LLU2oO5/pIuQs4jU+tLU2ObHZxp5m3n3IzeXP1O4xymo1MgeWjqOQ70u+xD600qdfyG3LvNNPqTcH/Cp/eo9dqd5pFZMOzGZNroyRuZEQEzZz9Za0LrTnU1kfoMsjr1SWWDMfqjr3rbX+TPrHmMK9L6umlpfDv+PgwTa0NMZ5SG/bXGnR+p9l73vMevPCFL6zhvvCFL+BTn/oUPvGJT2BychI/+qM/iptuugkvf/nLsbKygne84x24++678aIXvQgf/vCH8e53vxsf+chHAAAf/vCHcf78edx77734+te/jn/8j/8xHv3oR2N2drZr1q8K8DqsTTPNUpPJk+kSw2n8epSzxlOTRZ0XPEqka+WUa8wsnlIBsi4yzZqMtYXzBMj4u11kmnjlJeXMyHJtDGzM6fH0iddwe7+CRZDKHLHG0+N8pPjQ5NoLXoe0KU+cL488pWTDcvS0d71z2CM3MVxufSkcyV+uLm+jX702xwooa3C5HE3vPGmiw9oez2yzWGkTNNPK5M5vNy12AfelS/wFfTdfq7eJXFn1eTdAcuf1aINVQm5wVcPl3AWZqs9rS9V62VjzglZWYU7729i8FE6bw10cnbVk+NuRadakrtXV+DtynpjyEvkQAA+a9XoYZJrBkeHjkQndD9A/BDA+HnikNgN2ZqS2yRTz0TQ+c3xVWQ7o9soV77ooN0Cr4XJ1aWpcNeDPKZORPkhDmYZFUT2jehcWwr+bpotB2a58pGsZWuzR++Hee+/FK1/5Shw4cAC7du3CG97wBvze7/0eAOCLX/wipqam8PKXvxwTExN4y1vegq985SuDbLN7770Xd999N2ZmZvDYxz4Wd955Jz73uc99O9j+ew9NFib0jvYZWo/C9C6WOG+WQk4pNotHWVcM51VOXpA8pBxS76JKe1fbWVD8tyFaVp98u4NmnvI5uKaLusuF0yB3zLUgtvZOql+tO81yHYw2jkDaYanfaebVB22cHw0sGl792oaWNV9z50ZK5zTlPdXnVhtiYC2IPXPH6/x537V0eO7ucwq6kNcmzrcsH6vP+tBKU/0aoy9xbe408+rIJjbHgoMH4+/59eEwLjdbsgsd3eR4pga5cqLxqUFTP7TruUnkY8HYLr4AbNJ3+kjavM4JhsRw3sB3bhtzbX6OTaPjatZded62arzJoFksAO7ZHNfoq5uZEV7GxsJgD4JmCRtBgXGvXbFspNcep+yq/Jp2ro/oleEmGyqeOZTykVK6TFvn0Hjy7DECylXasiX8Oz8f/p2ZGaZp0ZXg1bnXCnSeafbBD34QH/zgB3Hbbbfh7W9/O2699VZ885vfxF133TUoc9ttt+FXf/VXAQDf+MY38MhHPnLwbGpqCgcOHMA3vvENTE9P4/Tp07Xnt912G+67774o/ZWVFazQZyM2YHR0FOOalF2B0O/3QbHOsuyzwIYPVxQFgAITE31mRAMOGC7HcUAPRVGi3+dWp46r3uPlNBzxV9UflERPLVenS1okvFu95++Tfi0ilIcjutTWsrTbqvVl9a6NC//q/WS1i/cJ4YLS66HfH+7fOq6/UX9+P2ltLUtdlsKzfFy/n6ZhyVIbHB9roqHNifq7dbnxtjUl19o4FIVFw5LNCkf6QJ/XqXFI92e/36/tlPJ+0vqyPr/i7feW4zjv3KS+k/M1yN1wn6fkn3ByXNP6NV7OK6+8/fp4peVVk81KV+nv8nGItZ+/S+NQb2vMlqR1btUntrxKHG+rt0/a2BcbF++Teru09g/jRkY0m0M07LnusdUkr/WxGS5H76bmsN7HcR3ZxuZQ/fJfACj6fdBKdGpqY/wL+hAAlyWvDGt6iHjxyWuv55vDXr9J+g2yD3LkVfORdJwtr1o50jv6vE7bTc6H5iMV7P66gRwWxUYGka5fiS7XifU+wQbdflK/NJFhbf7Lea3Jpkcf8r7T5jXvO8vmWD59CtfvN/fpV1ctGg4faX19o+UxHymMBTauoAgZPqk1DfEy3CemXisrPVTJXH+QabayQvUVUT4C73F58vtI7X16zeZUuPjYePVryjbZPpLmN4Z3uY7MbX/Mb9Dm8NpawPV6G2NT0p1mJQ4eLDE5SXqVAmw9FBsb1BC2yRpXzeZQ32n28GqAnnPHpNOg2dve9jbccsst6PV6+K3f+i3843/8j/GpT30KCwsLmGHhzunpaSxs5A4uLi5ienq6Vs/09DQWFxexsLCAkZERTE5Oqu9q8PGPf3xwtJPgVa96FV796ld30cS/J3AzAODhh09ibm6xhjt+/Cj6/dUa7ujRI7hwIWyBLC7eAGAGly6dwdzcRQDAwkLAnT9/FnNzFwAAKyt7AUzi7NlQ7ty5rQB2YGVlGXNzIQvwwoVtALZjcXEBc3MnAQCXLm0HsA3z85cwN3cKADA/vwPAVly4cA5zc+cAAGfPbgawa1A/AJw8OQbgQI3G8ePjAPZjbW0Nc3NHNnZyQruOHTuK9fVVXLw4AuAQAODIkcM4d66P8+dHAYQt4AcfnEOvB1y6VJWbm5sb6k8v7siRBzE+XmJhYTeAaVy6dAFzc2c2+nIXgM04f75q6/JyKMfbSv176tTDmJsL8ry0tAfAJpw4cRyjo8sbfbIJwB6cO1eNzZkzMwBu2KBxHqurBYCbBm0tCuDkyUkAe2ttePjhgOv3ywHu5MkJAPuwtraOubnDAIBz50Lfra5WOG8/ra7uAzBRa2u/fwjACE6dOoW5ufnaeydOHMfExHINd+zYUays1GWY+hwAFhdvBDCFEyeOoddb2ej30HenToU5ce7cFgA7sba2irm5h2r9trxcydfZs6HcwsI85uYe3mh/kPVLly5ibu40AODUqWkAu3HhwnnMzZ3dqC/0E6dx6lSQ4X6/j7m5B2ttOHnyBKamlmq448ePoSxXsLxcjeHRo0dw8eJ6rdyDD/pk86GHgvzX+/MI5ufXB/LK5yvJ5vx81dalpYDjbSUdcfZsJYcXL4Z5zcf19Okgr/xdws3PV31cFDsBAJcuhXKnT4exKcuSyWt4ryyrtpI+4O2nceByneonwtE85PNrbW0/gHGcOXMac3Ph7NXqasCRfAW4aYOnSg6rcTiCS5fWN9oY+u7EieMYG1vewAU9QTr8zJmgD9fXg54DgPPngxyurq5gbu4oAAzkemlpEXNzJ2rluM59+OEpADfi4sVqXIOPU28/9R3vdy6v09N1eT1x4hiKYqVW10MPBXmdn+8BmAUAHD78ICYmytq7fBzKchZAgSNHHsTYWL3c4cNBh126tBPAFiwsVPJKcriwULX10qUghxcvXhjIHNk5Pq4XLoR+OnOmklfSk3xOVH0X9Dr1EbX1woX1gd6kto6NlThxosJZ8nr+fHM7RPaF6yaSV95WkuvTp6u2Up+fOHECmzaFce33DwIYrfkN585tA7C9JusXL5K8hndJl3I9d/ZswJGtDnWRvC5hbu54Dcd1LtmmxcVKrrX2cxmT8vrww5UttWSYdC7HHT5c2Rd9HIDDhytbuHthASWCX0q6earfR1GUtbl58WLwh7gMnz8f+pePIflI584Fm877ieshss11PyzIE+kJLq9Hjx7F6upqrd+OHn0Ii4trePjhYKt4G8gH4+1fXNT6PNZPddzycpBD7iMRjvuDy8vBpp85w32k4EtwH4nkmuvSM2dCP3E7JP1LbW6eOhXsC8eRHK6vV3K9b2lpcASOyu0qy/DlurIqFxa0NwEAjhyZw8gIsLRU4ehdmnPnzp0ZjKslwydOnMDkZF2Gjx59CMvLazUc6SHex1zWl5ZCfz78cPC5LlwIsqnZFz4PdR8p4EhH8r67cKGS64WFYdkhX4fbdT43pS09evQolpeH/cHJSWu+xnEPPngMy8vD9vr8+fWBfVlaquYrrXNovvYuXMAsQuCUt5/sUGjHUZQPn8QhhKDZ4mJlr0g2l5crnUh9TPPkxInKbtAYnj5dzU2yQzsX5geyyW0uJYmcPRvobin7gJDXevvDu3UZDjpxff0AgLHBeiNAsCXcz6e6aL7ydcnx49WaRpNhsi/c5pw7F+STcBcvhnFYX6/WJTQ2XIYJx/Uw+RLcRyK/ifuqKyvD85WvLyudSD5y0GF8vGj9dvYs9xsewsLC2mB9wMdL0xEAUJY3bfRT5UuurwfcyZPBXm8p1wEUA/+lKA7h1KnzmJs7j5MnN6ModuLwkQdxM4IccnldXR32faldp09XNufkyWFfMvDP14ZXPtx8882ucp0Gze64447B7//9f//f8Tu/8zu47777sGnTJlwaXPwAzM/PY9OmTQBCZtk85RGy51NTU9i0aRPW19extLQ0CJzxdzV405vehNe//vU13NWXaRZgz57dkFe77du3D/v313EHDhzA1qDLsWlTULA33rgDs7M7AAAzMwG3Y8d2zM5uBwBMbXxxY+fOUO7v/i68Pzk5MbhPjhL+pqc3DXDbtxcbdc5gdjYEQ7dtKzb+3YbZ2cDIN7+JWv1AlSLMaVCK6tjYKGZnZ8GD2/v378O+fcD58xXu0KGD2LwZOHu2ws3OzqLXAy5cqOMk+HGHMD5e9duWLVswO7t5o93U1q2Dtk5P1/sSACYmAm737hsGY0jl9u27cYB7OPgotbE5GmzDRn9uY/cWADfdFF6kSyB5Gyg9HSgGODoHPzIyMsDNzNBuykh2P1G7duyo2hqyGYDdu3dhdnZX7b29e28ckuH9+/dhzx5Z/6FBSjLR2LdvLw4FW4bJyYCjOfH1r1PZsQFvR45Q2Uq+qNzMzDRmZ4Ne+epXA27Lls2YnQ3B/lOnCLcVs7NbAACkhsbGxlj7sdHm3lA/3XjjHqWte7F/P8CTYw8cOIBt22T7feNw000HIdXjgQMHsH07sHlz6CM+X0nmNm+u2krltm6t2kpyvXNnJYdUjo8r9VOQ//DumWCjMT0d+jhkmi3UytHYFEUlm+fOEa5qK08Rr9ow/G6qn4bltWoXydKuXTsxOxuCe2Nj1NZK524kG2Dfvr1D43rwYOhzoNK5fF5Tv5O8kq9Eeg4A/vZvA258fHyAe+CBgJuamhrgSF43b6507sUNP3ZmphpXfiyF3iVZ6fWG+27PnmF53bs3zDleF8kXN+OHDh0C2+uq0QRoRzOUk6aZdNiWLcPySnLI7QsdRwh6eMtGXwyPK/Xnrl2VvNL+28xMRYP6buvWoNf5fKK5ScdwQrsOYWwMNT0s7RfHkVzLPvHgqP1bt1bjOj4+3FbC3XBD1Vbqc66HqBz3G6jfuX9RyXB4l2xQr1fpOZrDIyOVDH/rWwE3NTU5pHNJHwDsS1+TU2b7mRvJdEKJsixqtpRA07n79u3FgQN13KFDhwa6W9bf7/dx+PBhHDx4cLAbXUxNAShr5U6PjAD9+tzcunVYhskf4vaFym3fHmw6UPlIXA+RrpuYqGwY+ToTE0FP1OV1H268sT43DxzYj1276kd8qC5+bQfhFheHcVo/aTjSpdxHIt+S+0iVzq38hkqGq3Elfc39hq99DRvlKlknfUp+iDYPyS5xHMlhUVRyXUxMAKv1cksbcjA6WpWTflivp/fd6Cj3kXbW+k2T4b17h2X4wIH92L27jiM9BFR9R/4Fp0t2iORQsy+bNlUy/I1vBBz3kQhHOpK3f3q6kmuSu+3by6rvNnxTbtertg7bUs0fPHToEKamZPt9svn4x+8duqfv4MED2LKl0q98vu4I4ljNV6bAt22r2k9zGAjzbudCxfSWLZW9enAjZqXpROpPLq80hnxeHzwY1nTl9CYA8xttDTqs3+/j1KkQjBsfD3QvbJxx5PLK4eabg+zQegAAbrop4EiWuG4in56vaQhIhnldmp/PZZjsC7c5ZMNvvHF3TV7Hxqp1CflYXIb/5/+kOof1MPcb7r8/lOO+KvfDLXtNcrJ9e9Bh/OgstZUfiySdy20MjVe1LtPl9eBBvh4oNuoLc+JcEfQQyevYWIHNm8M4PfBAWFPzOrkeJp3L/QbyS2+4obI5NIdJ/jV7eC1B58czOVCH3nzzzXjggQfwjGc8AwBw//3345ZbbgEA3HLLLfj0pz89eGdxcRFHjhzBLbfcgi1btmDnzp144IEHBgE5/q4G4+PjV02ALAW9Xm/oXLiGGxmpcOTsj4/3hs5Z83ISVx2nKjaOb+m46vx5hSMDxXEVnWGaWn2Eq98bEd7lBpDq40psZKSHoqjjtMnuxRHd6uy6r10cV71rl5Pt0spp7aqfpycHL/xdlsP9y3HkePX7+f2kyZLWVq1dBPxdCzc6Gq+vOoc/PDYhvVmXL16OjysFABYW7HLVWFQ4q62E4zKstdU7DlqfUH3a3NTaUI2hhrPHxuqTeh+XG/wGnNZv2nhpcq3JMAePvKbmJn/PUy42hoT70pfCv9/6Vg933KH3kXe8LBnW5FBvf568am3lC+6UDFf3lcTLabxpOrf6EqvWd1X9hEvJq8Rx/uRc4jQ0PazhpL2S4JNXrU+GZbMohnG8/VqfEHBdIt+1dGlKv3YhrxxHkJpzTXDDZZgMF0WtXAhKlqospfwmTQ9ZMqz1J+lr2UdSNofH0JbNNn6TV1619kt+Y+Ws+mI+Im8XtxuajwR2PHPQ1t7wWPN+Gh21+q7ceFZEZAyNcLyfqvuQhnE0r3P9gdQczp3/2lz3+n5tfKTx8bjf5PKHBouQArHxHxnpYWS0+lx9qo+lXdPsi+Yj9otwTFT2CdnEiYmK50LwwWFsbFhPEM6am219WsvmSB8h10dK+fS2HbJtjuwTzxo0Vi7mD8j5qvVTgXLjmHBow+hoONba64X12+go2HjH5NC7Lq3LjrSH1wp01uKLFy/iz/7sz7CysoLV1VV88pOfxIULF/DoRz8ad911F377t38bDz30EE6dOoVPfvKTePGLXwwAeMITnoDFxUV85jOfwcrKCj72sY/h9ttvx9694WjZXXfdhY9+9KOYn5/Hl7/8ZfzxH/8xXvCCF3TF9hUN1kWSsXIUNNM+BGB9NU9OKv47dWmmxpNVzqJhXfyo8RvDtQGLJ2+fyPKxd7ULXWW51JhLPrQPAfAMPq2cF6zLIlPt99ar9Ym8NNOSpVT92jjQrhHfTbbaY8l8qry3TzSwPgTg/SCH9wu48lmsnKef6O8mlwi36S/vHNZoWeU04GNMu3f0r9Z+q44UH+SIGTcZ1ECj69UrWvkm89oD3nnlnf+e8U/Zki7a4IVc+ilamk7w6FdNXjW7UQUmhvnV9JBX/r3Qtb7IBUu+6oux4Xc129ylvDbxH3PBO+e8dViyadG1+leTTa/v4/UvLN5Sz9rgeLurewyHn1lgzVdeh/cDUrntb1POC5ZPb/VTTA8XRXx+W364pRvUOa+0AQB27FjDy17Wx//2v8X55eAZ41wfKTVGTW1Oamy0ctYHTrw+AofhgFL8WYr31IdWNPqxL+COjFRr/LW14S8fN1mr5urrqx06yzRbW1vDr/7qr+Jb3/oWxsbGcNttt+FDH/oQZmZm8IxnPANf+9rX8MY3vhH9fh+veMUr8LKXvQxAyAz7xV/8Rfzcz/0cPvCBD+D222/H+9///kG9b33rW3HPPffgRS96EbZs2YJ3vvOduOmmm7pi+4qGJgbGGzSLTZQmk86rRCyHxRugsIIWXU16TxCsiSLScFbQLPZ3DGcFyDi0+XqmNtYWNHEIiS9OI/Y1viaLZkuGU4u/pg5xV0EzS+69QTNvwIESelPOuv6cdtvjZXLluk2Q1+ske52JlNN7663heMBznxuvwysbGh+Uzs+PaWvQ5XxtIsOevm6yuL9cQWtrzuduXjQB7xcVLUjNda1cbAETKy/r12xOSr9qEOvjsmynQ7J1blnikY/s4Ud/tF5JUZbJsbH6qUmfSPlrQl/STOG84KXvlWE6FpgaQ1mfdx5qQV6U5SCbhxMImTs6fQ+ua3nN9Zu8tl+ry2uH24y1VUfXYM2hIdxGA0OGz3A5+l1QFhl0OfH2jfTf6s+rLEj5zktewngqisBxpC89NqyNfOfaF46zvp6Zm8zRZAPMknXLf/L6Ayn5NjcFQR8CCH/zoNn6OlvLYdg2NQ2GXuvQWdBs+/bt+I3f+I3o8ze96U1405vepD57zGMeg9/8zd9Un01OTuKee+7phMerDZoYTi1oJnegtHe9itBamHMgHL8bxrsrbT2zlH8b58+imw4QxOuw6gUuT9AslR3QRRDC+6wrnGdXytvnmgw3lc0UdG2cLLm3nA4O2k605hzQkVXvIs1yYuiZllXBQcPRPRE8C9AL3gWsVt7r/GvyVB2TT/OR4s2S4VTgm+qje8E45MpwTtAsFuTWeGsyh613tT6xbEhqbHIXgd/OoFkKZ9VnZR/m2pfURg3dT5QK8uYuwtvgUjAzAzz+8bwSX11eHZmrE61+8G4sdr3Z2MXCzGv7LRm27JzGb5NMs1y4nH6D1m4ZNLM2rLR6Nf2amuu5bfx2bDx46Fq+Suy92O/YM2tOptY0gzGJ0JBgzfkU/K+aw7HTIynevH5um6CWZw3oxXnnH4dYdprMNLOy2Jq29VqHjlXPdfh2QhPlpAXNqrPTw+9aC25NEVjOCX+XnGR+USrRTxldi77FR1eT3qNEcneW+Dsp58fTDq+joTnmmvOTC96AQ+pdre+sXSmP86HR8hpd74JbA6/DcrkccSugnZrDWv1tMhvkOFlByRh9AnkhcA6QzrmcDqHmuMiNijbzwdJ/3qMy1oaJF5ero7zl2sictZDmOEvmvQser87V7KwXrKNVTWTYqyc9mWbaQloL3mrjQHOYX4qsQe6ir01gwgQ1ta2AzOZoMw5WEMLqf++CW4OuNxu7DvJaOAu87VKDZmU5uL+OMxDLIPLy6W1DF4t7IG5zutKlXhvuedakXBuQbTTnJnM2Y3a4KFDrpNSclM+0rDI104zJpt3Xw5lGXvCsd7x1xHCWT29thHvtlzeQljsnPQFQjvOuFTRaGq7YyDTkfjTPNBv4Goa+6iq4d63A9aDZVQYp5UQTijvuhLOOZ+Yu1rSFBn+Xgnb8CyuWg221y+uQdb07lRsgSI2NVo764nI7jinnxwu5i4QmDqF2PFOW09rgHX9vP2m43AXB5QzuShreOxxyA468/dqOoe6wlLVnVtDG64Q3Ae+iLnf+afqP6zWph3PHISVzuZlmbRZmGnQxTt4FV/W76hQrQKz1iRWAT83bXKeyi6BZan5J3nLqs8BDq8mdmbn3IXlt/mWTVy1otrEw1eptstAjXGoTMXdj0+ovb/DcC97sEAv+/+3deXgUVbo/8G+FBhIIECAQdokgi2zKMjKsCctwRcOiIg4/dVBBthHR0VEQEEdBcV9mEPTegZmRi49XZRAvw+A2oI+Kig6KyIyCcpHVKFEDBEzSvz+K0326+nTVqerqLXw/z8OTUOnuOt1VferUe95zjvy4AQPc7d8uQKGdaSYtBBDxwjGCIar9O22z7j9equuwTqaZ7rVPO+CoeA239ZUfbV8ndkGQWEGzIAzl9wo4/dme3mANVtjtQ9UeUp3Dod+lc9P2M8mKDpro0ukokXn5XttlRrodnqn6fO2um/HMoxtP4Cmea5N8/OWh47GCZkEYUV9Mt8eOQTMTg2YZzMuNjiqrTFROqkCaCG7pNlbtGidONzB2DWe3QbNkBCPcNjp0K3t5mxhyJi8Iq9PodNuzqtrmd6aZm79by+L0N+txd5tpowo4OAUS5VVGra/3ww+x9+VlWzzE67md08zpfFHd1OlmRlobh6pAQjI+G93vsG6GkV39J3cQWDsqdINmujehdoFvpwa8Hb8bznZ0O2DsbipUn508JYDqGNplVbm9viT65s7NPnSvQ4IqGO72Bkp1TY8naGYXZNeV6Ma/l4Ce3fnqdyei3Wv4/V32O8hr932ViXZTeOX26Me4DfxElMP+z1p0b6B1yy6zC5rZBSHctlG8DMUW5Dat3b5UvJyThYXOr+f2fFUGshBdP0Wuhhn9eGs5IldUjH682/cfz3fYj+CK7n2p3Tbd65fbtpSXeYp1gpxO7YZ47oFC78fyWk7DM71cG+yuF2ci3+Y0o2RS9Hyd5lQ5qeYvU23TyYRQvb7bG3P5BsZueKbd+3KK8lv36Zd4eupU7AI49euHt33/vfnzgw+AUaPsX0vmNkBWXe29lvRyU6t6ropdkMDa+HHKNLO7EHtZGc5OIhuEdux6lu0+S6eyqRrOOnPwmfvVzzRLJFX9phusUp07BQXAwYPqz1Ou62INlVGdX6p96maayftUvRfr90W1Ly+cnuslixVwPw+P6rlO1xdr2bwEQRIlnps6wel6rco819mX2xtpv4JmfgSBXB+7WJlmCFo3udq/7k2dSjw3kDqv74XfZdINLooOCrv2q5tMs1jDM3UXaVBtS8bnr3PD7/Q8t21J3c9EniLG7b68fE633BJ73lNrvWLbVhWZZkbs4ZnWTDPdAIqqfrPrPFKemwpGlgEEg74v7uUlQKbaFu9CAKrX1X2cU2akTn2l28Hs5b7QrjMKMK9D4rUCgXDdFxE0O11fOdWldu0hBs1MDJploKwss4GgWznJXzpVVpld0Mwu08yuEtO9MXfKNNMJ1iXyQmtHdz4ku4rVqWIfOND8XLp3D28TF367RWTjaiT6wK9Gst3fVT171kaHl0lpdTPN7AIuKqk6T3V6llXvwalXTNXoUA0nVj1XPMfuBl3384qH3XdYtV/dz043aGb9rHXng1KVzSlYYX1d1f5l8TSInejUN3bBQKfH2R0vp88z1vyIsbZZ96kqm1cdO6rfv6ru092XU9BMZGQUFIS3eZ3TzC5bSnWuq4K8KnL7xa4doJKwYIVmMMTtTZ3Tja7O+aosrmYbIR66gVe37QFVu1E+d0QbSbRfdb+v2udhHDe8sY5/VZV/da4qCGGt6+MJfOl2ItqVPdmZZnXqqPcJ6HUs2j3P+rv1vLc7DiraQTNN4u3o1q8Rz3VZh/gdNLPWDV7aam6Pq9P5Za1rdY+vl/ar10yziDnNLI+Tf3eqhxk0i+TzLQglg2EET/9U/c3+uao5zeyyz+x66nQbf3aNJN3VM48cib1/p4i+9W9+0Z0jSvezi9UgHDhQ/bhOnZzLplsOv4Jmup+/biPZbv4fu4wZu156p0adXXaEqrE+enT0a6iOTSIbhHbcZprZNfRVn7lqeKbTd2L/fnPpzVdfjSybap+JZPcd9lKvqD5PcS40bRreZm28uu1EcAqu2WXupEPQTB6qKpx/PtCgQfTrOgWN3Dac5c8kNOeHTbakU0PT+vqyeM/h224Dfvvb6H3EE3CQqY5/nz7A738P5OWFt51zjvkzNzfyteKpS+PJ2u3ZU+9xCWsHxMg001kIQPdmxe47rFr9XDery3qtlPndKeG2Y1Vm9zk5BWa9Bs2U50asOc3gfLK6vTH3u86161i0Cxo6DbFUff/tAm6q8opVr50e56Uz4rzzgCZN7B8DAC1bRtZzdp1oofcV+iV2pllWVuQTndoS1vfoZk6zoE4EN8ucb9FL0Cye64sdp6CZtQPWrt5wupbYPVd3CheZH5lmumz3D/P4i8cEApFBs9BnEcciNQyaRWKmWQay65VSUX0B7AJkgN7wTLsvs1MlZndDqKrETp3S27+XL/aIEZGreOry+4ZbXLydLmw6gS7dxoebTLPJkyOzD4Revez3H0/P8syZwL/+Ffl3UdZ69cLbxE14thmLcZ21KNPNNDMM4OmnI5+r+77cbvODbm+b7nuwyyJRNbrl59apYz6gZcvIsqn25XUhgP/3/8I3+bHo3ji6vfmTt3XvDixbFnmjO3gwsHZtdDmcAl+6N412QQjVe3YbZHfa5uSss4C9eyO3zZypfl1VIEH1ONVNherYyPWr6li7XQhAUAX4E5W5E082kU7GgvWGtrgY+PnPw9vjufbbdWjo3NQtWQI0bhz93KTWuaqgGaJXqNMNmul+nuI6Jx+fevWARo3CUzXovq7daul+cTslgNPjVNcXcQ1p1y68TXxO1pESqrI5bROBiYjPyzCPtd+djbp/89L2twZL7bLnVXWkbiBNZ06z8eOBfv3syxuPWbP0HnfXXer6yraNJC0EIJO/13LQTGchAOtrqDq2VI9TBnQVjCwzaJLIoJm4L/USoFYt7uV1Hk3xnVedw051iapsduek6lja1e9+169AMGKYcK1a4XvlykrL6plxLgRAJgbNMpDbxrxTA9/N8ExVOVS9WbrzmqgqrFatwr+LpegnTIi9f6dtTiZOjN42fz5QUWH/PLeZZk6PGz3a7B1r29Z+v2efbf6UP6dYZXPa5iZoNnBg9LYnn/SW9aHbSOza1fwnu/Zacz43+f2IRrI4X+xuzFRl0w3oepnDRGf/uq8RD7sGoV2PdCzxfCYiaHbhhZH7dHqem0ZHUZHzY3TnJXQbSLQ+zjp/y+jRkRmKunWk2+wAVf167rmR5WrYMHwcZIlsQN18M1Bebv8Y1bFRZwJE3zjodhCozmG7oJlOlobTtlguusj5/LYLBnqpS9zMJSZ3Urhte+jWpdZyNGoU/T1u1sy+rDIvwQXP4rj2697U5eWZ39Xhw8PbAgHgwQejXyvWvlQ35qrnOhk3Digrs3+MblaZXSBN9Tj5M+nSBXjsscjz84ILgD17woE03XaxqKc7dIjcPnAQcMED4f9HxCxc0g3yWx8fa5thRJdDVXfGmqbBaairbnvIrn4VbVZBlZ1vLa/dNr8Yhvr6ojo2qmO9axfwi19EPs7pe6U6/tb36BQ0c8tNp4SV205vt2UC7BeusAs42XUYOnXc7thh/nznHeDyy9WvKz9Hty7VvQf0g3g5uRzKOc1O0+1Y9D+4V3MwaJaBxCTaXr6A1kwcIDGZZrrDMayV+MKFkY3iRo3M3qDmzfX275ezzoretnhxZCDN7oZIt8dUrpxq1zYzUJx06GAGq3SHLupsU11M27d37sWylsEuCCNzOw+PrHnz6EaXKL/bTDO32TxOjeTcXHMeonHjov+m+169XLAWLAgvEOH0uro3ME5lU70fVY+h3euJ88fuHPF7vj2Z2wwyme7Nrw67TDOnwK/dPDzWbQ88EJl9l5UFPPSQfjn9uqmpVy/yJldFfJdVN35OQU67Dh35M7FOGG59jvV17ba5yTS7/PLw+xNUdUas19PtgJDZzcHodoJou89E9wZGxfpdl4NBTmXxEnBQGTQIeOsth526HJ6p4nRjFivgeMkl9kWTA/R27193xeJYLrooeltBAXD4cPj/unOauc00s54n1rqkdWtz4nfra6nKIRNzXkXUm8EgsrMNQM5azope9CEesY5/rO+lKuAgE8+TMxKtQR3dESC6bSTV998wzLaJXQevk0S2863s6sio4ZmGEXEORWXhhn5RD8+0tv2B8Hmn237SXgjAMDONvCwEoDo3da/D1r/F2qb6TNxkfDtlS6rqoZMnzZ+q5AjV3HdyfSmOl9vEiURkmsFmeGb4fUTXV6r69fPPzZ/yeSKmFVHdE5+JGDTLQDqViOrxADB1KvDuu/pzmlkzzbxk7tgF0qw3daosq1gX3GT3SlkDd6qMHLuGnp9lswuYWctkty3Wjevs2XvRsWNbOAXN3OxXt6fKy4VlwgRg/froIIxuwMEpS0f32BmGOQ9RrL9Z+XURlYemxOJ3VpWqkSwmEZezA3VuHFWNmnhv6mKRv8fxfCZ2jUm3/JjTzHrz9B//YWZcyOT5W5y4OecTwa7hqnu8ZKrvtfg85CHmHTqYQ2r794+9L6fsbbttADBypHq7E7cdEPI2Vda4yMx1G5hWBSD9yDSLZ6Jqv4JmV11lDu32SjegK1PVLyK4rVpl0I5uhrDfQ4cBYNEi5wyPeLLPvAZ5ddtDgYA59Pfii929vhc6dVh1tfPxnDQJ2LYtclv79sDXX0fWP2K+SGsd5mV4puo7LM5T6821TtvEui9ZMoNmbieMl1e1F50gqvk6Va8nv6641jk91yvxGn4tBGA3MsBLu0FVJ8Va4MQpeCvOYaeOmj59gPfeU2cut24d/Vz5NcSx1l1IKhH3gKrXlzPN5DnNVIvUqOrX/fvNnyKgCJjt5Ycfjpxv9kzGoFkGcvvFkx/ftGl0D6Hd8ExrurKXIITqpk5ErwcNci5/LMkOmlnpZprZNZwTVV63mWZWubnVyoladferyvBI5Pvv0AGYMye6HF4yzYSjR8O/16kDjB0LDBjgvYypDkK4nV/GKRNC1XBu3jx6nje5F0zaGvE33aBZvDd6y5Z56zFVfU6ih1LedtVVwGuvOQe1rezqTaehMrHO4UsvdVcGKy+dMn6yG2IkbxM3HPI2VWNWNPoaNgxvy8uLPl/r1wduvDH8f92gme45HA/doSe6n91ll5k3CPn57sqhmjdGN6Brl7XbubO7csj8CpplZWl0ZigyzYys6Hlj7ALr8rZPPzV/7twZHo7arh0wZYo5qblXdt/XRHxvred7PNccN5lmTnS/rwBw//2WDTZZhbrlkANJuu1Bu3NQflxxsflPNmmS2WkiP27qVPP8sgtC2GXpqL7Dstq1zfkGdSbgdyOZbXrVwjCxMs2CMCI+p6jnni64EWMhALtMM5lTphk05zQzEF+mmapNrzuM0andID4zuYMgVtDM6Vpi16EjP05MU2FNHLjttshEDWtWmapMMrvz1e9z2W4hAHl4ZhAGYJlvU1W/9ugBfPJJ9HnIgFkYg2YZSAzP9OsGRmdOM93hbrqZZnXrRt+suJUuQTOnxo+qp9j/NN1I8c5X4pXbHmNZfj5QWurPMdQNLqi2iZ4n6w1hvL3Pft3UeaU7VMbuBkMVhHAaZqca/m2dr0I34BDvOWz9Lrodiik/Tky4Km9r0cJbloruEBi7TAAvvch2klmXqtgNH3KqX1XnTmGhOWRLrASpK56gmd/ZPGLo25dfRpfJKTCj+kxycoBhw9yXw+48lKnOzVhBs6VLnRfu8IMv57UqaGaYN6ZOwVvVcfjhB/OndY4wa6aoH7y+fy83TvFkmunOaaZD90ZeKUbQTHchgMceUw+ZdcpO0c34VqldO3rRpoYNw9mz8us7BRzczPHqZr5BlWS0Ue3YjVCICpoZhn39J4JmCCrnKNPNVrY91pqrZ8azEICK7hy0dlRBM1Wmmfic7K45XrIlxXdSrLQrdOwYXdZLLzWzz610V4q1azfE0qwZ8M039o8xLHVTrVqRwzMjFgKAc9DsvPPMoJkq45FMDJplIN1I9s036zUudOY0052bRFWJiYwla+WUCKkImsmfm+piolpxTDX3k5/cZJUlYr9OlbO4SVClqCcqaGbXi6rqMfTSK2cnroa7ROdiCgC33qq/CpbT8frsM/OnvIpt797ADTeYvVN2rCuZAUDTpmZl0KiR+X/dgIPd56Wa99CJqjGj2hbPDYwO3YCuODflRo3fc7+JYUF+BXlvvx04cMB9OdxmmqkaxNbGn5dMJqdzQ/U4IVFBs1277PermxnplV1HkFOHWawbbq8ZKrGCEMGgc8eieJwfVOeG3ZBd1TUnGYFvL8f/kUe8ZU2qht/rBohUwYURI4AjR9Q3tjrlkMXz3RTPlbPRY4nVqaSbaZaoa048QTNxLhw/Hn85ZMlY0VVn/6rvoer+xanTQHDqeBGvnbAO9jjOF91OGbtMM+t5bW1fDBliTswvj27p1An48MPwUEjVNd3tOax6nE6W9X/8h/Nj7Nh9NrHMnes8TzEs55J1IQDr98mpo0LVvqRIDJplILuFAOQviXXVwVh0hmfa3Zg5pcuKSk8eJ+0HL424O+/0r2FqnVAVUM8bI96/HHDYudP86XcjWUinoJndJJxOz423HLpBM6fHxVuWWEEIJ+PHmzcJMt1zuFOnyP/b9Rg73ayIuQ6OHYt8bs+ezuUQDUJ5jqoLLvgew4fnITc3K6JsMjfDMx97zNtNkPhOirmdAPVxEn9PdNDMaVJmVcNRHJMPP4y/HHIZVHOKqTi9/w4dolej06EaAqIKaKs+Ez8bf7o3Bip+17niBlyuP+1uamTiBj9RQTNVMEw8Tr72ic9EdJzES+zP2nkV69gnKtMMp7M5VFmQTgGytm3NSZiti0PEy4+MEMB7BqDYv3y+6LYRVN+dhg2B6dPdlyOu9pDiWAcC5rH2wppBI/+eiqCZU9tH9TgxF+SJE/GXQ+Z2/j6/qa65Yuj05s2ns8jD4y+VnVwtW4o/hytEp/NPfJ6q+d8cM800ToYsxdBxQG+6Ed3h/7pBs0DAvB7I284/P3rk0bBhwM9/bh80U11zdDPSALNDT56/TJfdFAN+fV8bNIjO7i0pAbZskV7XkmloXQggPKdZ9LVJdVwZNHPGoFkGsruYernoqDLNrBd23eGZyQhCCF7ea5s2/u3f7qZOFTRTrdKSqOw7vxrLbsXT+GvXzpy81o+Gk93wJKdMM1XvuB+8DKdWLc3uZa45QH+4m+pxOTlmA9nLZyLOcesKhfJQjngXAnAaIhqLXdBM3peY8Ff+TNq0Mc9X+bleqQKVdkEz+Xz98cf49y+zC5ol6gZORVW/qr6vopynToULEmvohRd+ZYj6oUcP8+ZNtTKg001NYaE5rDOZmWbicXKQTzTI9+2Lvxzy/lQroDq9Vz9X5s1S1BuqmxDVdai4GHj9dW/BZTt2wc1kEPtyOjaq+s9LdoYbcV3fvcfMlEPRQi/r8B0W/Kh/dDsldK9DfnC65ufmAuXlkX8fMAA4dMjf/cvfV3F9lyf9B4B+/YAuk8L/V408sf4NiJ6aAjDnvLvvvvBczzJfzv8Yr3HNNRpP1cw0sz4+1jbdutkwItt1dplmXgK/gP/1LZDYNtKYMea/8AubP0QbyJppZq1jGDSLX4pHkJMXhhE708xLQ0DcvMqVfayVIp0mAxVlknugRMUXz7LTKqme/0B1MbFbslo13M/vnmVr2VSsvUtNmzoPsdOlO6RKrFYnn3OTJgG/+50/wSrdoJlqmEF2trmyziSpQRQP60q0smTewNgFtOVy7Nlj/hRDwQBg4kTzp5ebzHPOMVfzsuvV1B2e6XcgUwRV5MCX+E7Kn4mqoTttmjlcyGsQU2Y31NtpeKb4LnkNHMaie74m6hxW3UjbZZrJAbJEN/7cvOemTYHBg/3Zb69ewIoVkcNMdYd2iZVt/bjm6A6jUj3OevMZL9Uk0oJTYMLzHGoxMs2MoHpOM9VwalmLFsD115uZBH5KdRtJdWxU56bquiI6NBL1HY4n08ww1Jk7bvaryjRzKp+YzsCPjkVV56DqmiPqVTE6AvB/gRPr/mXyR//rX0e3y665xhzK5gdx37J1a3jb8OHmz4EDT284fdwHDDQihpRHfZ6nC26d0yzW1CyqgJkjlwsB6OrWLfy7bpteN8jtdUSJXdBMZjeVkF9Trqgy3Kx/c6NFC48FOZ1pKAfNlHOaIbq+Uh0Hcd8fypakKMw0y0DBoHmWyxeuW28F3n7b2+tdeaW5YpNcsc+ZA3z1Vfj/qqGIqopo717z5z//Gd7WtKk5pMzvoFmqqW6kxe9yZS4a5iIFGwAefRTYtCkxPR1A7OCCavGF++7zb7+qoXiqyllU7PLj6tb1r7IW71/ulVTdcIs5A+RzPSvL2xAQJ6kOmtllgsj+9S/zp9x7G888b/XqAXfcYf8Y1fmajAU0xI2ZfB6K4JPqpk4uZ4sW4WBivOzqV1VmoHxsGjYE+vY1A3h+8jI885xzzGFmfrDLNJPPQ1FOORgea04zv7j53vpZvwLR3wFV/Sp+l8+n8ePNuaAaN46/DHYBKvk4qAK5YgiSHxmagH3QzCm7d948b/Ptqdhl/sufibhGWrNj+vXzpxzpxC4LUPbKK+bPb78Nb2vd2pznKFFSFVBU1WuCvE01nPq664A33/SnHGJfqo4aeZ+qIZjiOX63X52y6rwO9XdL7lho2NBcUbF9e/vnqK7h1r8BiZ/PWMXN9er3v488J1T3NLrzaKr27zVoJq7zTnOa2Y0o0ZkL2A2/hmfOm+dtqLN4WfHZxB6eGV0O1XFo08ZcPdiPNkJNxaBZBjp50jzb5UZip07RcxjpatQo3IMlbxMZDID6giC+qHLF0b8/8Nxzkav0AP4Oi9R15ZV6kzx6pZoLTqV7d3NRhi5dwtvq1zdvYhIlVQ1CMb+SfD6pPp/x483zxq8bJyu7Hii5Ye5l8nivdIe7JYr4TOThfKqGSJs2ZpaZ3HAU33E/hzOpyqa7za/j1rUr8P77kXNHiHNXbjiOGGF2CCTqfLHOHSn/LgeIGjZUP3/aNP/L5BTIFHP1yebM8W/IuV0Pt6pMclkSfb6mE7tJ/+VMquxs/wIzqgCVakEGwDxmP/tZ9OP9ujbbZfLKdUirVmaATM4MbdbM44p/quwjxZxmqkxeEaRLZEAoXaim/ojVsVhebj9FiN+0r72xVs/0OD7Tbiiqitxu6NpVf65i3XLIn7kqg+zcc8027LXXhrdlZ5ujAqwrdCZCorLa7FgzPiMWnhAnpuWg2WWaycdadCQ4BeG0aM5pZhj644ljZc6r2iaqDi3r9bqqSt1h7vZ7Lc4Dp0n/xTVPXqRDzAv873+722cs4juoOoZegmY5OV7vhcxMQ7n9qFoIIIjo1TNjDbFlwMweg2YZ6Phx82xP5sVENaGruJjL2xo0ABYsSI/0zqFDE/v6qh4jMRn3jh3hdG7D8K+hoytVQTMxd40cNBMrL8rna7t25g12ouhmdYlGn9eV29xwCgz17w+8+27i9i9upHfvDm9TBc1Gjwa2bYu8iHfpYmaM9umTmLK5CR4+/rh/dd+gQebnLp8vRUXme5cbyq1amfVaotj1+qtWIvbaQeKG05yZM2YA770X+fc6dfQz1HT3r2qYywtSqDKeRSBEHmZSU6k6b8R5Yp1I2C+q4KXYpzVQuXx59GNvvtnbBMwqqmwmQS7nFVcAGzb4VHfECJrFGp4pl2PIEGDdOuAXv/ChHAlw8cX+DWOyq9fkbePGAc88E/ldHzbMnPfurLP8KYtnMYJmqiDEbbc5D520y0hSPTdRk+OrXlcEdOQM/dq1gRtvjH5sOrTxE8W2/RwjaBZ1XKUxfPKxLiwEFi/2qQMuGESHDgauu87hcXEMJxZU12FZrJWCrUGzvDxvWVV2HTVyR53o7JXbtD16AGvW+Dc1QNu26lE7gLe5iz07vRCA+OzlTLOIOc0MA7Bcm8TvqV58I9MwaJbB/J4bxI748sk3ROLLZv3SqVaAqYlUQbPevc0gkZg/JlkmTEhu1lQsgwaZk03Lw3JEJZ7MHgyx/6Ki8DYxPFbuHRUXjkTdXDqRGxrXXANcfXXi9ykvLiAaFt99F94mvs/yZ5KX5/8wM6/8zE40jOj6KxCQ5i9JEruVeK0NzLvvjhzqnUzyZ3Xeeea/RFFlmpSWmj/ff9+cA0r+u3yj37w58NRTyc3kBMzzxu8V5ZyogkZXXWXeKCSqjaD6XN0ES/3sRFINzxTDruVzx88sHRW7ILP8vW7YEHjggdhZo8l0zTXh75Qwdqx/r6+a+0ccE/l4ibaB/Jk0bWoGVxPtoov8e62IjKQYVHOJlZWZP63f4b/8JXE3tSLIbZ0fsndv4IILErNPN558Mvl1qbiuemmr2i0gZd3mta3eoUNkpydgfmesI3sSQTV1hFznifPUuk1eBAYwv9NehsSrri+qoJkgt5FEVrOYny6RUrEIm9x+rKoy61t5TjOxe1XQTG77kzMGzTLQzJn7kJPTGoaRvHQiVUNHBENSkT6dDlRpxkVFZnZDIoeFqqRLr/WQIeY/2RVXAC+/nNybhKwsc/iAfBwMw+zhs07+PH16cubJULHOMZDIDEERyO3ePbxNNGhENiAQnpT6/PMTVxaKpKpDY90seZ40VlN+fvSNtJDMIJSqY1x8TnKwTvQsW290kh0wA4DJk5O/TzEMRR6iUr9+8gO/qWoHxJo3q7o6sT38ykwzS/ZRrPmrUhH0vv12s0NLZrc4ix/s5r39+mszQAOYAd5bbzXnREymWNkiEWINz/SYuSM+C9UwOLlDSNWW8pOoN61vY8aMxO0zlnvuCc8vKwQCye/M7NzZXFTAttPbZaaZdSEAXbNnR861CwA33WQJQqnOTZXTmZHxdDjK70HVUSFGMsj1cE6OmbUoPzcvz1v9Z5dpJmeeA8CsWZFTAhmGOVebX1nwdpza8BMnhhfbipcB8/iLKVfk4arynGZBI3p4Zpcu5n1ZqhIGMtUZGu7IbHl5lUlPWRcBD3leLlHxySt5pUq3bslPMxVDEK0XAE9zpCTAddf5NG9CnIYPT04Pj5Vq+ICqhy9RQw6FxYvDPcnC734HfPppYvdr1bRp9E1Cnz7An/8cOYzNMNJnUuqf/Sxx896lk9q1zcamHPwWDTy/V9RzMndu5Lx/gFmn+T2JrhORJSU3dEUDTw4INWkCTJp0EAMHFkBnJbGaRgS8U91jbBhAz57msLpkUt3DzpyZvJskQdWbL87XdOiASNYk6jLVRN1iKgR5xW7DSPyQ88JCf4drN2hgDit1SwTNVKvYWucWTiSxf7+G4sajoCA586PpOPtsb8+zyzTzEl/t0SN6Vfu6db2v1t2jO9Bhvvvn7dpl/pQ70lTzSIo2rlzninPMjxXGVZ0ysep3VQa8H2XQIR//QYOiA3p+LthUO2DWGeeenjNUfEanTpnnnF2mmVaAmKIwaEZa6tc35xKSL/TNmgFPPOHPEvZutGsH7N8fuS2R82PF0revmd2gk5KfCslI2SZnzZtHB+tatkyPOUHq1TMz7dJ17qepU1NdguR58snI/9eqBTz0UHRmZKI1bBidFbpwoX8T/Os66ywz8C8Htbt3V2ektG9fkfBMJ1WHfjrU/Z06mRMcJ7u+z8mJDpDdcENyywCYN05iOKbQq5dmFpFXqgyP0wsBWBfuWLEi+XOMDh+e+iAqEL4hkzsSx40zs2WT3aE3b57HJ8bINOvbJwh4GNopzg/5hj8vL7pjLdECAfMaM2pUcveb8WJkmonrdCgwLY1NTtQqzm4yzXLrB5HrYVhoo0ZmFmDPnuFtH39s/pTr3QYNzEWm5Izv7t3NeQn9SGhQTaWSzE4RXXLQ7Fe/Suy+DAQxtMgAmkXuWxwXOdMMioxHrwHiMxmDZqRNlfGR7IAZANxxR3qsimYY6XHTRBSPRGfakXfpMO8RYNbzya7rDSM6EJSMjBSVBQuiAx/Ll6dmCKjVhAnA2rXJ60kXHn88ufuLZe5cYOfOJO9UcbNat66BurWDUUPqUrEozxVXJH+fKl27Ao89FjnHaU4OUFycujK5FmshAI+N0MLC6EDCbbeZw1WTyTDUi3SQgxhBs5wcYOlSaeSJNDwzHYJmXs9XEZiS2yKtW5uJC3Lm6l13mYFfub4bNw4YOdK/62TTpsCYMeH/165tJnSkYiRLLEltE1iOvzVoFupIPD2c3MswYYrEoBllnFStDElERGce1eI26dIAbd/enOvmTNWmTeT8NamSlQWcey4ADneJIAfMCJg4MYhu3b6GYYSXj83PT/48uOS/WKuwJztL209Tp5qLD8j3Xb/+tdlRIW9r0CB6fqysLH/nzFItRvXoo/69fqYTx8OaaSbCaunSZslkDJoREVFasM7hQUSUdnzOPqI05vOxDgSAxo0TlXpECRcj0yzK6b9n1w1GzAXte1kSnGnWpEl0MDA/P7GLVGSi+fMRmpA/aSzH3xo0E5lm1TAXAti7Nz1Wxs1kDJoREVHKLVvGnjAiIiKqGW68EUBeqktBiZbsxflURPtZZDaGMs1Ox9U46X/8GDQjIqKUS/bqt0REnsTKPkqHpQjJX8wqJJnLTLOEnidJyDSjNOaQaSaCZrXrGOjXN4i2fZNcvhqIQTMiIiIiIl2qQArVTDzWZKUbNEt1OXQfQ5nJZiGAcKaZYc7LytMgbpxSnYiIiIhIR6ysDWZz1Dw81iRze9wTnWmWDuWg1LAcU5FpdvKk+VOsfKp6LHnDoBkRERERkQ4O2Ttz8FiTjMMzKV1Yjr/ILBNBs9CUJzz+vmHQjIiIiIiIiIgow4j4WUWF+TPACbh8x6AZEREREZEOZh+dOXisScZMM0oXzDRLOgbNiIiIiIiIiIgyjJjTTGSaRcxpRr7IiKDZ0aNHceONN2LgwIG45JJL8N5776W6SERERER0pmH20ZmDx5pkzDSjdMFMs6TLiKDZ0qVL0axZM7z22muYPXs2br/9dvzwww+pLhYRERERnUkYSDlz8FiTjEEzShcxgmY//GD+HprTjMffN2kfNDt+/Dg2b96M6dOnIzs7G0VFRejQoQO2bNmS6qIREREREREREaVEXp4ZKPviC6BRI714KrmT9msr/N///R9yc3ORn58f2nbOOedgz549ysefOnUKp06ditgWCARQp4YM7q3esweNVqxAMC8P1fxGUAIEg0E0KivjOUYJwfOL/MTziRJJdX4ZBw4APXsiWF0depwBALt3I7hkSWoKSglhnB7VEnGsDQPYvt3TsWZ9ldmMI0dgAKgOBgHpnIgSDCILQHD1agS3bk1MWfbuBVq1ijg3q0//Xm2tm3btYt1UwxgnTiAIhM5DwwBatDDw9dcG2rQJoro6eHq7AWzejKBIRYtDMBhEw+PHUX3XXXG/VjrJytLLIUv7oNmJEydQv379iG3169dHeXm58vErV67E008/HbFtwoQJuPzyyxNWxmSqu20bCv74RwAAky0pURqd/slzjBKB5xf5iecTJZL1/AoCONq2LX7cuzf8mMJCNHrjDeChh5JdPEqgYO3aKG3eHMelY92kUyfkvvSS52PN+ipzBQFUt26Ng4aBKumcsDKOH0ers89GrXXrElqWsvbt8YOiHPv27Qv93rhjRzR4/33WTTVMdYMGKM3Pxwnp+A8enI3XX2+CAQNKsXevmUDUvGdPZH/wAfDRR77st2FODvZNmeLLa6WLwsJCrccZwWB6D3TdtWsXbrjhBrzyyiuhbffffz+ys7Mxe/bsqMfX+Eyz6mrs27cPbdu21Y6MErnBc4wSiecX+YnnEyUSzy/yE88nSiSeX5RINfX8qjGZZu3atUN5eTlKS0tDQzQ///xzjB07Vvn4OnXq1JgAmZ2srKwadcJS+uE5RonE84v8xPOJEonnF/mJ5xMlEs8vSqQz9fxK+3dcr149DBkyBCtWrEBFRQU2b96M3bt3Y8iQIakuGhERERERERER1VBpHzQDgNtvvx2HDx/G8OHD8dhjj+Hee+9Fw4YNU10sIiIiIiIiIiKqodJ+eCYANG7cGI8//niqi0FERERERERERGeIjMg0IyIiIiIiIiIiSiYGzYiIiIiIiIiIiCwYNCMiIiIiIiIiIrJg0IyIiIiIiIiIiMiCQTMiIiIiIiIiIiILBs2IiIiIiIiIiIgsGDQjIiIiIiIiIiKyYNCMiIiIiIiIiIjIgkEzIiIiIiIiIiIiCwbNiIiIiIiIiIiILBg0IyIiIiIiIiIismDQjIiIiIiIiIiIyMIIBoPBVBeCiIiIiIiIiIgonTDTjIiIiIiIiIiIyIJBMyIiIiIiIiIiIgsGzYiIiIiIiIiIiCwYNCMiIiIiIiIiIrJg0IyIiIiIiIiIiMiCQTMiIiIiIiIiIiILBs2IiIiIiIiIiIgsGDQjIiIiIiIiIiKyYNCMiIiIiIiIiIjIgkGzGuDAgQMYMGBAqotBRERERERERDVYSUkJPvnkk1QXI2kCqS4A2SspKcGSJUvQo0ePVBeFapCxY8ciLy8Pf/rTn1JdFKphPvzwQzz++OP48ssvEQgE0LFjRyxcuBCtW7dOddEoQz333HN49tlncfjwYTRp0gQXX3wxpkyZglq1asV8zvr167Fp0yY88cQTSSwpZZKSkhIEg0GsXbsWtWvXBgAsWbIETZs2xbRp01JcOso0JSUl+O6775CVlYU6deqgc+fOmDhxIoYOHZrqolEGOnXqFO69915s3boVx44dQ+fOnfHb3/4WHTt2BACsWrUKzzzzDKqrqzF27FjMnj0bhmGgsrISc+fOxY4dO/DNN99g48aNyM/PD73uokWL8Pe//x2BgBkCaNmyJZ577rmUvEdKL3IdBgB5eXlYv359ikuVPhg0IzrDbN++HWVlZTh06BD27duHtm3bprpIVEOUl5fjlltuwcKFCzFkyBBUVFRg69attsENIjv/+Z//iRdffBH33HMPevbsiT179mD+/Pn45ptvMH/+/FQXjzLc8ePHsX79elxyySWpLgrVAMuXL0ePHj1w9OhR/OMf/8DChQtxww034LLLLkt10SjDVFVVoXXr1li5ciXy8/OxZs0a/OY3v8G6devw1ltv4fnnn8eqVauQnZ2NGTNmoH379hg7diwAoHfv3rj66qtxzTXXKF972rRpmDx5chLfDWUKUYdRNA7PzBCLFi3CqlWrQv9fv349brjhhtQViDLWxo0bUVxcjH79+uFvf/sbAPUQXznttrS0FLNmzcLQoUMxbdo0LF26FEuWLEl62Sm97d27F9nZ2SgqKkJWVhbq1auH4uJitGjRAlVVVVixYgUuvvhijBo1Co888ggqKysBACtWrMD8+fMxZ84cDB06FDNnzsS3336b4ndDqfbjjz9i5cqVuO2229C7d28EAgF06tQJd999N9atW4evvvoKR48exR133IGRI0di+PDheOKJJ/D111/j3nvvxXvvvYfBgwfjl7/8ZarfCqWpSZMmYeXKlaG6SPbss89i7NixGDFiBBYuXIjy8nIAwIwZM/Dyyy+HHnf8+HEMGTKEdRaFNG7cGOPHj8eMGTPw5JNPoqqqCl988QWmTp2K4uJiXHnlldi5c2fo8fv378eNN96I4cOHY9SoUXj22WdTWHpKBzk5OZgyZQoKCgpQq1YtTJw4EQcOHEBZWRk2bNiAyy67DG3atEF+fj6uvPLKUHs+EAjgl7/8JQMf5ItDhw6F6qbLLrsMb7/9dsTft23bhnHjxmHEiBFYsWJFikqZHAyaEZ1BKisr8corr2DkyJEYOXIkNm7cqPW8pUuXoqCgAJs2bcKvf/3r0MWZSHbWWWehoqICixcvxttvvx26yQSA1atXY/v27XjmmWfw/PPPY9euXXj++edDf3/ttddwxRVXYNOmTSgoKMDSpUtT8RYojXz88ceorKzEoEGDIrZ37twZLVu2xLZt2zB//nzk5ORg3bp1+N///V8MHToUbdq0wdy5c/Gzn/0Mb775JtasWZOid0Dp7oILLkCzZs2ihqC88847+NOf/oRHH30U69evx4kTJ/DII48AAEaOHIlXX3019NgtW7agW7duaNq0aVLLTulv8ODB+P7777F7927Mnj0bkyZNwquvvoopU6bg1ltvxcmTJ1FZWYk5c+bg3HPPxYYNG/DCCy+gV69eqS46pZmPP/4YTZo0QV5eHr788svQME0A6NSpE/bs2aP9Wn/5y18wfPhwXHvttfjwww8TUVyqAaqrq3HTTTdh4MCB+Pvf/46FCxdiwYIFKC0tDT3m9ddfx8qVK7Fq1Sq89NJLePPNN1NY4sRi0IzoDPLOO+8gGAziggsuQHFxMQ4cOIBPP/3U9jmVlZXYsmULpk+fjrp166JHjx4YPHhwkkpMmSQ3NxdPPfUUKioqcNddd2HkyJFYsGABjh07hnXr1mHmzJnIy8tDgwYNcOWVV+L1118PPbd3797o378/6tati+nTp2Pz5s3K7A86c3z//ffIy8tTDu9t0qQJysrK8M9//hO33HIL6tWrh+zsbPTs2TMFJaVMdv3110dlm23atAmXXnopCgsLkZOTg1mzZmHTpk0AgGHDhuGDDz7Ajz/+CAChjigiKzGX1JtvvomOHTuiuLgYtWrVQlFREZo0aYJPPvkEO3bsQEVFBa6//nrUrVsXubm56Nq1a4pLTumkvLwcS5YswcyZMwGY2a25ubmhv9evXx/Hjx/Xeq0rrrgCa9euxcaNGzFhwgTcdNNNOHToUELKTZln1qxZKCoqQlFREWbMmIHKykpcfvnlCAQC6NmzJ/r06RORbTZp0iQ0btwYbdq0wfjx4yPa9TUN5zQjOoNs2LABxcXFCAQCaNiwIfr374+NGzfaDl8qKytDMBhEs2bNQtsKCgrwww8/JKPIlGE6duyIu+++GwDw2Wef4fbbb8cf//hHHDp0CLNmzYJhGACAYDCI5s2bh55n/T0YDKKsrCxiAls6szRq1AhlZWWoqqqKCpx99913qFWrFpo0aYLs7OwUlZBqgv79+yM/Pz9iyGVpaSn69OkT+n/Lli1x4sQJlJeXIy8vD+effz7+8Y9/oLi4GO+//z4WLFiQiqJTmhMZGdXV1Xj//fdRVFQU+ltlZSVKS0uRlZWFli1bhq6NRLKTJ0/iN7/5DQYNGhSas6xevXoRmfzHjh1DvXr1tF6vS5cuod8vvPBCbNiwAVu3bg29Np3Z/vCHP4SG9r7yyiuYP39+RL1VVVUVEdSX2+4tWrTA9u3bk1bWZGPQLEPk5OSgoqIi9H/OnUFuHTt2DFu2bEEgEAilzx4/fhyfffYZJk+ejMrKSlRWViIQCKCqqgpHjx4FYK6eYhgGSktLQ4Gzw4cPIycnJ2XvhTJD165dUVxcjN27d6N58+a4//77cc455ygfe+TIkYjfDcNAXl5ekkpK6ahnz54IBAJ46623Ilag+9e//oWDBw+iR48eePrpp1FRUREVOOMNKLkxdepU3HfffaFAWX5+fkT2xaFDh5CdnR3K7hBDNLOystCrVy/WVaT05ptvIi8vD23atMGgQYPwwAMPRD1m+/btOHjwIILBIOstilBZWYl58+ahWbNmmDNnTmh7YWEhvvjii9DUBf/+979x9tlne9oHzzmKpVmzZujYsSNWr14d8zFy2/3QoUM1epoCDs/MEJ06dcKWLVtQXl6Or7/+Gi+99FKqi0QZ5o033kBeXh5eeOEFrF69GqtXr8b//M//4OTJk/j888+Rn5+PjRs3orKyEitXrsRPP/0EwJxUdMiQIVixYgVOnTqFTz/9tEaPWSfvvvrqK6xevRrffPMNAHNhADHfz9ixY7Fs2TKUlpYiGAziwIED2LZtW+i5H330EbZu3YpTp07hqaeewpAhQ0JLotOZqUGDBrjmmmuwdOlSfPjhh6isrMTnn3+OBQsWYMyYMejTpw/OO+88PPTQQzh+/DgqKipCi5c0btwYhw8fRlVVVYrfBWWCn//852jSpAk2b94MABgxYgRefPFFfPXVVzhx4gSWLVuGX/ziF6HHFxcX46OPPsLatWs5NJOilJWV4a9//SuWL1+O6dOnY/Dgwdi5cyc2b96MqqoqVFRUhOb97NatG7Kzs/Ff//VfOHXqFMrLy/HZZ5+l+i1QGli8eDFOnjyJRYsWRQS3Ro8ejRdeeAH79+9HaWkpVq9ejQsvvDD091OnTuHkyZMAgJ9++in0O2DOH3vixAlUVlZi06ZN2L59O/r165e8N0UZo3v37qisrMSLL76In376CT/99BM++uijiA6lZ599FmVlZdi/fz/Wrl2LYcOGpbDEicU7kgxgGAZGjx6Nd999FxdddBHat2+PUaNGYceOHakuGmWQv/3tbxg7dmzUcLfRo0djw4YNmDdvHu677z488sgjuOqqqyJSbm+77TbceeedGDFiBLp27YqRI0eiTp06yX4LlObq1auHjz/+GH/+859x7NgxNGrUCMOHD8fkyZNhGAYqKytx3XXXoaysDC1atMCvfvWr0HOHDRuGNWvW4NZbb0W3bt1CQzzpzDZlyhQ0aNAA99xzDw4dOoQmTZqgpKQE1113HQDgnnvuwf3334+SkhIYhoHx48ejR48e6NevHwoKCjBixAi0atXKtqeUCDCzzWbPng0AGDhwIK666irMnj0bx44dw4ABA3DTTTeFHtugQQP06dMH77zzDh5++OFUFZnSzPTp05GVlYXatWujS5cuWLRoUWho06OPPoqHH34Yd911FwKBAHr16hXKpn3kkUewdOlSjBo1CnXq1MG1117Lec3OcAcPHsT69etRt25dFBcXh7Y//vjjGDRoED7//HNcffXVqK6uxrhx4zBmzJjQYy699FIcPHgQAFBSUgIA+OCDDwAA//3f/43f/e53MAwDZ511Fh544AG0atUqie+MMkUgEMCjjz6KBx98EMuWLUMwGMS5556LuXPnhh5TVFSEyZMn48cff8SECRMwZMiQFJY4sYxgMBhMdSEotuHDh2PlypVo165dqotCFDJv3jx06dIFV199daqLQjXAihUr8O2332LevHmpLgoREREREVEIh2emMdEr0LJlyxSXhM50X3zxBb744gtUV1dj69at2LJlS43uTSAiIiIiIiLi8Mw0tXjxYrz77ru44447ULt27VQXh85w5eXlWLRoEUpLS9G8eXPMmzcP7du3T3WxiIiIiIiIiBKGwzOJiIiIiIiIiIgsODyTiIiIiIiIiIjIgkEzIiIiIiIiIiIiCwbNiIiIiIiIiIiILBg0IyIiIiIiIiIismDQjIiIiChDffDBB+jbty/69u2LAwcOpLo4RERERDUKg2ZEREREGWDRokXo27cvrr/++tC23NxcdO/eHd27d0edOnVSWDoiIiKimieQ6gIQERERkTddunTBqlWrUl0MIiIiohrJCAaDwVQXgoiIiIhiKykpwcGDB6O2L1++HNOnTwcAvPTSS2jVqhUWLVqEl19+GS1btsS0adPw5JNPory8HGPGjMGsWbPwhz/8AS+99BIaNGiAyZMn47LLLgu93jfffINly5bhnXfeQVlZGQoKClBSUoLJkycjEGBfKxEREZ1Z2PohIiIiSnOdO3fGiRMnUFZWhvr166OwsBAAsGvXrpjPKS0txX333Yf8/HwcO3YMa9aswbvvvosjR44gNzcXhw4dwv33348+ffqgsLAQZWVlmDx5Mg4fPhzax549e7B8+XLs378fd955Z7LeLhEREVFa4JxmRERERGnuwQcfxKBBgwCYAbRVq1Zh1apV6NKlS8zn/PTTT/j973+PF198EQUFBQCAffv2Yc2aNXj++edRt25dVFdXY9u2bQCA5557DocPH0bTpk3x17/+FWvWrMHSpUsBAC+//DL27duX4HdJRERElF6YaUZERERUAzVs2BDnnXceAKBFixY4fPgwOnTogFatWgEAGjdujEOHDuG7774DAHz66acAgG+//RYjR46MeK1gMIgdO3agbdu2yXsDRERERCnGoBkRERFRDVS/fv3Q77Vq1YraZhgGADMgJv+Uh3/KsrOzE1ZWIiIionTEoBkRERFRBhBBq4qKioS8frdu3fD222+jVq1aWLJkSSgj7dixY3jjjTdQXFyckP0SERERpSsGzYiIiIgyQPv27QEAO3fuxMSJE5GTk4OpU6f69vqXX3451q1bhyNHjuDSSy9FYWEhjh07hsOHD6OyshIXX3yxb/siIiIiygRcCICIiIgoA4wZMwbDhg1Dbm4udu/ejR07dqC6utq312/cuDFWrlyJkpISNGrUCLt378bJkydx/vnn4+abb/ZtP0RERESZwgiKCSyIiIiIiIiIiIgIADPNiIiIiIiIiIiIojBoRkREREREREREZMGgGRERERERERERkQWDZkRERERERERERBYMmhEREREREREREVkwaEZERERERERERGTBoBkREREREREREZEFg2ZEREREREREREQWDJoRERERERERERFZMGhGRERERERERERkwaAZERERERERERGRBYNmREREREREREREFv8fi0fF77KKBFUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# load the data\n", + "series_taxi = TaxiNewYorkDataset().load()\n", + "\n", + "# define start and end dates for some known anomalies\n", + "anomalies_day = {\n", + " \"NYC Marathon\": (\"2014-11-02 00:00\", \"2014-11-02 23:30\"),\n", + " \"Thanksgiving \": (\"2014-11-27 00:00\", \"2014-11-27 23:30\"),\n", + " \"Christmas\": (\"2014-12-24 00:00\", \"2014-12-25 23:30\"),\n", + " \"New Years\": (\"2014-12-31 00:00\", \"2015-01-01 23:30\"),\n", + " \"Snow Blizzard\": (\"2015-01-26 00:00\", \"2015-01-27 23:30\"),\n", + "}\n", + "anomalies_day = {\n", + " k: (pd.Timestamp(v[0]), pd.Timestamp(v[1])) for k, v in anomalies_day.items()\n", + "}\n", + "\n", + "# create a series with the binary anomaly flags\n", + "anomalies = pd.Series([0] * len(series_taxi), index=series_taxi.time_index)\n", + "for start, end in anomalies_day.values():\n", + " anomalies.loc[(start <= anomalies.index) & (anomalies.index <= end)] = 1.0\n", + "\n", + "series_taxi_anomalies = TimeSeries.from_series(anomalies)\n", + "\n", + "# plot the data and the anomalies\n", + "fig, ax = plt.subplots(figsize=(15, 5))\n", + "series_taxi.plot(label=\"Number of taxi passengers\", linewidth=1, color=\"#6464ff\")\n", + "(series_taxi_anomalies * 10000).plot(label=\"5 known anomalies\", color=\"r\", linewidth=1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHECAYAAAAj78DAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqo0lEQVR4nOydeXxTVfr/Pzdt0yZpS6EtUNrSBahSqsiiiIWyCAJVxIVNcdAiy4w6KqLILGyCCLgN448ZGUU6XwdFB0XsUBARZVFcQERkL4VSdlpKlyRtmub+/jjcNEmTNDe5N+vzfr36gtwt55zce87nPs9znsPxPM+DIAiCIAgiAFH4ugAEQRAEQRDuQkKGIAiCIIiAhYQMQRAEQRABCwkZgiAIgiACFhIyBEEQBEEELCRkCIIgCIIIWEjIEARBEAQRsJCQIQiCIAgiYCEhQxAEQRBEwEJChiCClMLCQnAch6ioKJSVlbXYP3jwYOTk5AAAvv/+e4SHh2PWrFl2r7VkyRJwHIctW7aYtxUVFWH06NHo0KEDlEol2rVrhzvvvBNr165FY2Oj07INHjwYHMchMzMT9pKL79y5ExzHgeM4FBYWiqi1dOh0OixYsADffPNNi30LFiwAx3GoqKjwfsEIgrCChAxBBDkNDQ3461//6vSY22+/HS+++CL+9re/Yffu3Vb7fvvtNyxcuBAzZszAyJEjwfM8CgoKcO+998JkMuGNN97Atm3b8O9//xs9e/bEE088gX/84x+tlismJganTp3C9u3bW+x77733EBsbK66iEqPT6bBw4UK7QoYgCP+BhAxBBDkjR47EBx98gAMHDjg9bv78+bjpppvw2GOPQafTAQCMRiMee+wxpKSk4LXXXgMAvPrqqygsLMTChQuxadMmTJo0CXl5eRg9ejTeeOMNHDt2DH369Gm1XJ07d8btt9+O9957z2p7bW0t/vvf/2LChAlu1tg+jY2NMBqNkl6TIAjfQ0KGIIKc2bNnIz4+Hi+++KLT45RKJf7v//4P5eXl5mNfeeUV7N+/H4WFhYiOjkZjYyOWLVuGG2+8EXPnzrV7nY4dO2LAgAEulW3KlCn49NNPce3aNfO2devWAQAmTpzY4viSkhIUFBSgW7duUKvVSE5OxujRo3Hw4EGr47755htwHIf3338fs2bNQnJyMiIjI1FSUoIrV67giSeeQHZ2NqKjo9G+fXsMHToUu3btMp9/+vRpJCYmAgAWLlxodnM99thjVt9z6dIlPPTQQ2jTpg06dOiAKVOmoLq62uqY+vp6/OlPf0JGRgaUSiWSk5Px5JNPWtUZANLT03HPPfdgy5Yt6N27N1QqFW688cYWQo8gCGtIyBBEkBMTE4O//vWv+OKLL+y6cSy5+eabsXDhQqxcuRIrVqzAokWL8Nxzz2HgwIEAgL179+Lq1asYM2YMOI7zuGwTJ05EWFgYPvzwQ/O21atXY+zYsXZdS+fPn0d8fDyWLl2KLVu2YOXKlQgPD0e/fv1w7NixFsf/6U9/wpkzZ/D222+jqKgI7du3x9WrVwEwC9SmTZuwZs0aZGZmYvDgwWY3UlJSkjke6PHHH8eePXuwZ8+eFuLtwQcfRFZWFj755BPMmTMHH3zwAWbOnGnez/M87rvvPrz22mv43e9+h02bNuG5557Dv//9bwwdOhQNDQ1W1ztw4ABmzZqFmTNnYuPGjbj55pvx+OOPY+fOne41MEGEAjxBEEHJmjVreAD8Tz/9xDc0NPCZmZl83759eZPJxPM8zw8aNIjv0aNHi/OMRiPfv39/HgDfo0cPvr6+3rxv3bp1PAD+7bff9qhslt/96KOP8n379uV5nucPHTrEA+C/+eYb/qeffuIB8GvWrHF4HaPRyBsMBr5bt278zJkzzdu//vprHgCfl5fXalmMRiPf2NjI33nnnfz9999v3n7lyhUeAD9//vwW58yfP58HwC9fvtxq+xNPPMFHRUWZ23jLli12j/voo494APy//vUv87a0tDQ+KiqKLysrM2/T6/V8u3bt+BkzZrRaD4IIVcgiQxAhgFKpxOLFi7F37158/PHHTo8NCwvD/PnzAQB//vOfERkZKWvZpkyZgr179+LgwYNYvXo1unTpgry8PLvHGo1GLFmyBNnZ2VAqlQgPD4dSqcSJEydw5MiRFsc/+OCDdq/z9ttvo3fv3oiKikJ4eDgiIiLw1Vdf2b2GM+69916rzzfffDPq6+tx+fJlADBbwGxdUuPGjYNGo8FXX31ltf2WW25B586dzZ+joqKQlZVld9YZQRAMEjIEESJMnDgRvXv3xl/+8pdWp0cL4kWpVFptFwbZU6dOSVauvLw8dOvWDatWrcL777+PKVOmOHRbPffcc5g7dy7uu+8+FBUV4YcffsBPP/2Enj17Qq/Xtzg+KSmpxbY33ngDf/jDH9CvXz988skn+P777/HTTz9h5MiRdq/hjPj4eKvPQrsJ16msrER4eLg53kaA4zh07NgRlZWVTq8nXFNsuQgilAj3dQEIgvAOHMdh2bJlGD58OP71r3+5dY2+ffuiXbt22LhxI1555RVJ4mQAoKCgAH/961/BcRweffRRh8f95z//weTJk7FkyRKr7RUVFYiLi2txvL3y/ec//8HgwYPxz3/+02p7bW2te4V3Qnx8PIxGI65cuWIlZniex8WLF3HrrbdK/p0EEWqQRYYgQohhw4Zh+PDheOmll1BXVyf6/IiICLz44os4evQoFi1aZPeYy5cv49tvvxV13UcffRSjR4/GCy+8gOTkZIfHcRzXwtW1adMmnDt3zuXvsneNX3/9FXv27LHaZmtdcYc777wTABNPlnzyySfQarXm/QRBuA9ZZAgixFi2bBn69OmDy5cvo0ePHqLPf+GFF3DkyBHMnz8fP/74Ix5++GGkpqaiuroaO3fuxL/+9S8sXLgQubm5Ll+zU6dO+Oyzz1o97p577kFhYSFuvPFG3Hzzzdi3bx9effVVpKSkuPxd99xzDxYtWoT58+dj0KBBOHbsGF566SVkZGRY5ZmJiYlBWloaNm7ciDvvvBPt2rVDQkIC0tPTXf6u4cOHY8SIEXjxxRdRU1OD3Nxc/Prrr5g/fz569eqF3/3udy5fiyAI+5BFhiBCjF69euGhhx5y+3yO47BmzRps3LgRAPDss89i6NChmDx5Mvbu3Ytly5bhD3/4g1TFtWLFihV45JFH8Morr2D06NH4/PPP8emnn6JLly4uX+Mvf/kLZs2ahdWrV+Puu+/Gu+++i7fffttu7pvVq1dDrVbj3nvvxa233ooFCxaIKi/Hcfjss8/w3HPPYc2aNcjPzzdPxd6+fbvsgdQEEQpwPG9noROCIAiCIIgAgCwyBEEQBEEELCRkCIIgCIIIWEjIEARBEAQRsJCQIQiCIAgiYCEhQxAEQRBEwEJChiAIgiCIgIWEDEEQBEEQAQsJGTcxmUw4deoUTCaTr4viM0K9Daj+oV1/gNog1OsPUBv4Q/1JyBAEQRAEEbCQkCEIgiAIImAhIUMQBEEQRMBCQoYgCIIgiICFhAxBEARBEAGL20Lm119/xa233orCwkLztsLCQgwbNgxDhw7FihUrYLmw9qFDh/DQQw8hNzcX06dPx4ULF8z76uvrMXfuXOTl5eHuu+/Gli1brL6rqKgI+fn5GDRoEBYuXIjGxkZ3i00QBEEQRBDhlpAxmUx44403kJ2dbd62e/durF+/HoWFhfj444+xe/dufP755wAAg8GA2bNnY+LEidi+fTtycnIwb94887mrVq1CdXU1iouLsWTJEixduhRlZWUAgJKSErz55pt47bXXsGnTJpw/fx6rV6/2pM4EQRAEQQQJbgmZTz/9FDk5OcjIyDBvKy4uxtixY5GSkoKEhAQ88sgj2Lx5MwBg3759UKlUGDNmDCIjIzFt2jQcPnzYbJUpLi7G9OnTER0djZ49eyIvLw9bt24FAGzZsgXDhw9HdnY2oqOjMXXqVPN1CYIgCIIIbcLFnlBdXY0PP/wQa9aswRtvvGHefurUKeTn55s/Z2VlYeXKlQCA0tJSdO3a1bxPpVIhJSUFpaWl0Gg0qKystNqflZWFQ4cOmc/t37+/eV+3bt1w7tw51NfXIyoqqkX5DAYDDAaDdSXDw6FUKsVW1SlC8p9QTYIEUBtQ/UO7/gC1QajXH6A2kLv+CkXr9hbRQmblypV46KGHEBsba7Vdp9MhOjra/Fmj0UCn0wEA9Ho9NBqN1fEajQZ6vR46nQ5hYWFWosTZucJ36PV6u0JmzZo1eOedd6y2jRs3DuPHjxdbVZcoLy+X5bqBRKi3AdU/tOsPUBuEev0BagO56m/p+XGEKCFz9OhRHDp0CC+++GKLfWq1GnV1debPWq0WarUaALPAaLVaq+O1Wi1UKhXUajWampqsLCzOzhW+Q6VS2S1jQUEBJk2aZF1JmSwy5eXlSE1NdUkxBiOh3gZU/9CuP0BtEOr1B6gN/KH+ooTMzz//jDNnzphdSHV1dQgLC8PZs2eRkZGBkpISDBgwAABw/PhxZGZmAgAyMzOxYcMG83X0ej3Onj2LzMxMxMbGIj4+HiUlJcjJybF7bklJifncEydOIDk52a41BgCUSqXkosUZCoUiJG9eS0K9Daj+oV1/gNog1OsPUBv4sv6ivvWBBx7Ahg0bsHbtWqxduxZ5eXmYOHEinnnmGeTn5+OTTz7BuXPnUFFRgbVr12LUqFEAgD59+kCv16OoqAgGgwGrV69GdnY2kpKSAAD5+fl49913odVqcfDgQezcuRPDhw8HAIwcORLbtm3D0aNHUVdXh/fee898XYIgCMIzTp8+DY7j8Msvv/i6KGaOHj2K22+/HVFRUbjlllu8+t2FhYWIi4vz6ncSniFKyERFRSEhIcH8FxkZCbVajZiYGAwYMAAPPPAAJk+ejHHjxiE3Nxf33nsvAGYlWb58OdauXYshQ4bgwIEDeOmll8zXnTFjBqKjozFy5EjMmTMHc+bMQXp6OgCga9euePbZZzFz5kzk5+ejQ4cOmDJlinQtQBAE4UMee+wxcByHpUuXWm3/7LPPwHGcj0rlW+bPnw+NRoNjx47hq6++snvM4MGD8eyzz0r+3RMmTMDx48clvy4hH6KDfS1ZsGCB1eeCggIUFBTYPbZHjx5Yt26d3X1RUVFYvHixw+8ZPXo0Ro8e7XY5CYIg/JmoqCgsW7YMM2bMQNu2bX1dHEkwGAxuu/lPnjyJu+++G2lpaRKXqnVUKpXDGEzCOZ785p4Qug49giAk49Qp4OBBX5cicBk2bBg6duyIV155xeExCxYsaOFm+dvf/ma2XgPMunPfffdhyZIl6NChA+Li4rBw4UIYjUa88MILaNeuHVJSUvDee++1uP7Ro0dxxx13ICoqCj169MA333xjtf/w4cPIz89HdHQ0OnTogN/97neoqKgw7x88eDCeeuopPPfcc0hISDCHB9hiMpnw0ksvISUlBZGRkbjlllussrlzHId9+/bhpZdeAsdxLV6YhXru2LEDK1asAMdx4DgOp0+fRlNTEx5//HFkZGRApVLhhhtuwIoVK8zn1dfXo0ePHpg+fbp526lTp9CmTRvzbNfWXEuCK27dunW44447oFarMWLECKv2aq0cAPDNN9/gtttug0ajQVxcHHJzc82JYA8cOIAhQ4YgJiYGsbGx6NOnD/bu3Ws+97vvvkNeXh5UKhVSU1Px9NNPW02KSU9Px5IlSzBlyhTExMSgc+fO+Ne//mX1/d999x1uueUWREVFoW/fvmYLoKWL0ZXf/I9//CMWL16M9u3bm3/zBQsWoHPnzoiMjESnTp3w9NNPO2xPSeAJt2hqauJLS0v5pqYmXxfFZ4R6G1D9m+tfVMTzq1b5ukTeR4p74NFHH+XHjBnDf/rpp3xUVBRfXl7O8zzPb9iwgbfsoufPn8/37NnT6tw333yTT0tLs7pWTEwM/+STT/JHjx7lV69ezQPgR4wYwb/88sv88ePH+UWLFvERERH8mTNneJ7n+VOnTvEA+JSUFH79+vX84cOH+alTp/IxMTF8RUUFz/M8f/78eT4hIYH/05/+xB85coT/+eef+eHDh/NDhgwx13/QoEF8dHQ0/8ILL/BHjx7ljxw5Yre+b7zxBh8bG8t/+OGH/NGjR/nZs2fzERER/PHjx3me5/kLFy7wPXr04GfNmsVfuHCBr62tbXGNa9eu8f379+enTZvGX7hwgb9w4QJvNBp5g8HAz5s3j//xxx/50tJS/j//+Q+vVqv5jz76yHzu/v37eaVSyW/YsIE3Go18bm4uP2bMGPP+NWvW8G3atHH4e9m212+//cZPmDDBqr1aK0djYyPfpk0b/vnnn+dLSkr4w4cP84WFhXxZWRnP8zzfo0cP/pFHHuGPHDnCHz9+nP/444/5X375hed5nv/111/56Oho/s033+SPHz/Of/vtt3yvXr34xx57zFzGtLQ0vl27dvzKlSv5EydO8K+88gqvUCjMv0lNTQ3frl07/pFHHuEPHTrEFxcX81lZWTwAfv/+/a3+5gLCbz59+nT+8OHD/JEjR/j//ve/fGxsLF9cXMyXlZXxP/zwA/+vf/3LYXtKAQkZNwn1QYznqQ2o/s3137iR5996y9claonJxPM6nXx/dXVN/JEjp/i6uiar7SaT62UUhAzP8/ztt9/OT5kyhed594VMWlqa1T15ww038AMHDjR/NhqNvEaj4T/88EOe55sH5qVLl5qPaWxs5FNSUvhly5bxPM/zc+fO5e+66y6r7y4vL+cB8Nu2bTMLmVtuuaXV+nbq1Il/+eWXrbbdeuut/BNPPGH+3LNnT37+/PlOrzNo0CD+mWeeafX7nnjiCf7BBx+02rZ8+XI+ISGB/+Mf/8h37NiRv3Llinmfq0JGaK+mpib++PHjVu3VWjkqKyt5APw333xj99iYmBi+sLDQ7r7f/e53/PTp06227dq1i1coFLxer+d5ngmZRx55xLzfZDLx7du35//5z3/yPM/z//znP/n4+Hjz8TzP8++8846VkHH2mx87dozned78m1v2g6+//jqflZXFGwwGh20hNR7FyBAEQQAAzwM2CbX9gvp6QF6rtgJAeoutf/874E6YxbJlyzB06FDMmjXL7RL16NHDahpshw4dzKktACAsLAzx8fG4fPmy1XmWGdTDw8PRt29fHDlyBABbZubrr7+2SnoqcObMGfP/+/bt67RsNTU1OH/+PHJzc6225+bm4sCBAy7UrnXefvttvPvuuygrK4Ner4fBYGjhkps1axY2btyIt956C5s3b0ZCQoLo77Ftrz59+pjbq7VytGvXDo899hhGjBiB4cOHY9iwYRg/frx5Ju9zzz2HqVOn4v3338ewYcMwbtw4dOnSBQD7LUpKSrB27Vrzd/E8D5PJhFOnTqF79+4AgJtvvtm8n+M4dOzY0fybHzt2DDfffLNVGpPbbrvNqn7OfvOTJ08iKysLAJuVbMm4cePwt7/9DZmZmRg5ciTy8/MxevRohIfLJzdIyBAE4TEmk38KmagoJirkgiUDO4PU1M5W4sFBmqtWycvLw4gRI/DnP/8Zjz32mNU+hUIBnuettjU2Nra4RkREhNVnjuPsbnMlpbwwa8pkMmH06NFYtmyZ1X6TyWRVBtsM7q1dV4DneUlmaH388ceYOXMmXn/9dfTv3x8xMTF49dVX8cMPP1gdd/nyZRw7dgxhYWE4ceIERo4c6fF3A831cqUca9aswdNPP40tW7bgo48+wl//+ld8+eWXuP3227FgwQI8/PDD2LRpEzZv3oz58+dj3bp1uP/++2EymTBjxgy7cSedO3c2/9/Zb26vvW3vLUe/OQCz4AJa/uapqak4duwYvvzyS2zbtg1PPPEEXn31VezYsaNFmaSChAxBEB7jrxYZjnPPMuIqJhMQGclDpQKkygW2dOlS3HLLLeY3XoHExERcvHjRahCSMvfL999/j7y8PACA0WjEvn378NRTTwEAevfujU8++QTp6elWb9Ymk8kcoOoKsbGx6NSpE3bv3m3+LoAFntpaBFpDqVSiqanJatuuXbtwxx134IknnjBvO3nyZItzp0yZgpycHEybNg2PP/447rzzTmRnZ4v6ftv2+vnnn83t5Wo5evXqhV69euFPf/oT+vfvjw8++AC33347ALbmYFZWFmbOnImHHnoIa9aswf3334/evXvj0KFDVusTiuXGG2/E2rVr0dDQgMjISACwCiYGHP/mrqBSqXDvvffi3nvvxZNPPokbb7wRBw8eRO/evd0uszNo1hJBEB7jrxaZQOSmm27CpEmT8NZbb1ltHzx4MK5cuYLly5fj5MmTWLlyJTZv3izZ965cuRIbNmzA0aNH8eSTT6Kqqsqcs+vJJ5/E1atX8dBDD+HHH39EaWkptm7discff7yFmGiNF154AcuWLcNHH32EY8eOYc6cOfjll1/wzDPPiLpOeno6fvjhB5w+fRoVFRUwmUzo2rUr9u7diy+++ALHjx/H3Llz8dNPP7Wo5549e/B///d/ePjhhzF27FhMmjSpxWLDrWHZXvPnz7dqr9bKcerUKfzpT3/Cnj17UFZWhq1bt+L48ePo3r079Ho9nnrqKXzzzTcoKyvDt99+i59++snsMnrxxRexZ88ePPnkk/jll19w4sQJfP755/jjH//octkffvhhmEwmTJ8+HUeOHMEXX3yB1157DUCzVcnRbz5lyhSnv3lhYSFWr16N3377DaWlpXj//fehUqlknUpPQoYgCI/xV4tMoLJo0aIWpv7u3bvjH//4B1auXImePXvixx9/xPPPPy/Zdy5duhTLli1Dz549sWvXLmzcuNEcO9KpUyd8++23aGpqwogRI5CTk4NnnnkGbdq0EZ2W/umnn8asWbMwa9Ys3HTTTdiyZQs+//xzdOvWTdR1nn/+eYSFhSE7OxuJiYk4c+YMfv/73+OBBx7AhAkT0K9fP1RWVlpZRY4ePYoXXngB//jHP5CamgqACZJr165h7ty5or5faK9evXrhp59+woYNG8zt1Vo51Go1jh49igcffBBZWVmYPn06nnrqKcyYMQNhYWGorKzE5MmTkZWVhfHjx2PUqFFYuHAhABb7smPHDpw4cQIDBw5Er169MHfuXCt3T2vExsaiqKgIv/zyC2655Rb85S9/wbx58wDAHDfj7m8eFxeHd955B7m5ubj55pvx1VdfoaioCPHx8aLaVwwcb/u0EC4hmFTT0tJCdn2NUG8Dqn9z/f/7XwX27AH+9jdfl8q70D0QevU/ffo0MjIysH//ftxyyy1B0wZr165FQUEBqqurRSUE9If6U4wMQRAeQxYZgggs/u///g+ZmZlITk7GgQMH8OKLL2L8+PEBmdWYhAxBEB5jMgGNjezfAH4pJYiQ4eLFi5g3bx4uXryIpKQkjBs3Di+//LKvi+UWJGQIgvAYwUHd2AhcnwRBEEFJenp6i/ilQGT27NmYPXu2r4shCfTuRBCExwgpSci9RBCEtyEhQxCExwgvqCRkCILwNiRkCILwGLLIEAThK0jIEAThMYKQaWjwbTkIggg9SMgQBOEx5FoiCMJXkJAhCMJjyLVEEISvICFDEITHkEWGCAbS09Pxt1BLTx0EkJAhCMJjyCLjPo899hjuu+8+q23r169HVFQUli9f7ptCEUQAQQnxCILwGLLISMe7776LJ598EitXrsTUqVN9XRyC8HvIIkMQhMeQRUYali9fjqeeegoffPCBlYgRrDavvfYakpKSEB8fjyeffBKNjY3mY6qqqjB58mS0bdsWarUao0aNwokTJwAAPM8jMTERn3zyifn4W265Be3btzd/3rNnDyIiIlBXVwcA4DgO7777Lu6//36o1Wp069YNn3/+udPy/+c//0Hfvn0RExODjh074uGHH8bly5fN+7/55htwHIevvvoKffv2hVqtxh133IFjx45ZXeef//wnunTpAqVSiRtuuAHvv/++1X6O47Bq1Srcc889UKvV6N69O/bs2YOSkhIMHjwYGo0G/fv3x8mTJ83nnDx5EmPGjEGHDh0QHR2NW2+9Fdu2bXNYlylTpuCee+6x2mY0GtGxY0e89957TtuB8C4kZAiC8BjBIkPTr91nzpw5WLRoEf73v//hwQcfbLH/66+/xsmTJ/H111/j3//+NwoLC1FYWGje/9hjj2Hv3r34/PPPsWfPHvA8j/z8fDQ2NoLjOOTl5eGbb74BwETP4cOH0djYiMOHDwNgIqNPnz6Ijo42X3PhwoUYP348fv31V+Tn52PSpEm4evWqwzoYDAYsWrQIBw4cwGeffYZTp07hsccea3HcX/7yF7z++uvYu3cvwsPDMWXKFPO+DRs24JlnnsGsWbPw22+/YcaMGSgoKMDXX39tdY1FixZh8uTJ+OWXX3DjjTfi4YcfxowZM/CnP/0Je/fuBQA89dRT5uPr6uqQn5+Pbdu2Yf/+/RgxYgRGjx6NM2fO2K3L1KlTsWXLFly4cMG8rbi4GHV1dRg/frzDNiB8AE+4RVNTE19aWso3NTX5uig+I9TbgOrfXP8VK3h+6lSe//RTX5fKBpOJ56urZftrqqriTx04wDdVVVnvM5lcLuKjjz7KK5VKHgD/1VdfOTwmLS2NNxqN5m3jxo3jJ0yYwPM8zx8/fpwHwH/77bfm/RUVFbxKpeI//vhjnud5/u9//zufk5PD8zzPf/bZZ3zfvn35Bx54gF+5ciXP8zx/11138S+++KL5fAD8X//6V/Pnuro6nuM4fvPmzeZtrT0DP/74Iw+Ar62t5Xme57/++mseAL9t2zbzMZs2beIB8Hq9nud5nr/jjjv4adOmWV1n3LhxfH5+vsOy7dmzhwfAr1692rztww8/5KOiouyWSyA7O5t/6623zJ/T0tL4N99802r/smXLzJ/vu+8+/rHHHrO6BvUDvq8/WWQIgvAYnmeLRfqda6m2FmjTRrY/Rdu2SO/ZE4q2ba331daKKubNN9+M9PR0zJs3D7UOzu3RowfCwsLMn5OSksxumyNHjiA8PBz9+vUz74+Pj8cNN9yAI0eOAAAGDx6MQ4cOoaKiAjt27MDgwYMxePBg7NixA0ajEd999x0GDRrUolwCGo0GMTExVq4iW/bv348xY8YgLS0NMTExGDx4MAC0sHpYXjcpKQkArOqSm5trdXxubq65Hvau0aFDBwDATTfdZLWtvr4eNTU1AACtVovZs2cjOzsbcXFxiI6OxtGjRx1aZABmlVmzZo25fJs2bbKyHhH+AQkZgiA8xmTyUyETEwNUV8v2Z6qqwukDB2CqqrLeFxMjqpjJycnYsWMHLly4gJEjR9oVMxEREVafOY6D6XpwEu9gNWae58FxHAAgJycH8fHx2LFjh1nIDBo0CDt27MBPP/0EvV6PAQMGuPydtmi1Wtx1112Ijo7Gf/7zH/z000/YsGEDAOZycnRdoXyW1xW22auHs2s4u+4LL7yATz75BC+//DJ27dqFX375BTfddFOLslkyefJklJaWYs+ePfjPf/6D9PR0DBw40OHxhG+gWUsEQXgMzwNRUX4oZDgOiI2V7/omE/iYGPYdCs/eCzt37owdO3ZgyJAhuOuuu/DFF18g1sWyZ2dnw2g04ocffsAdd9wBAKisrMTx48fRvXt3ADDHyWzcuBG//fYbBg4ciJiYGDQ2NuLtt99G7969ESNSgFly9OhRVFRUYOnSpUhNTQUAc6yKGLp3747du3dj8uTJ5m3fffeduR7usmvXLjz22GO4//77AbCYmdOnTzs9Jz4+Hvfddx/WrFmDPXv2oKCgwKMyEPJAFhmCIDzGby0yAUZKSgq++eYbVFZW4q677kJ1dbVL53Xr1g1jxozBtGnTsHv3bhw4cACPPPIIkpOTMWbMGPNxgwcPxgcffICbb74ZsbGxZnGzdu1asxvIXTp37gylUom33noLpaWl+Pzzz7Fo0SLR13nhhRdQWFiIt99+GydOnMAbb7yBTz/9FM8//7xH5evatSs+/fRT/PLLLzhw4AAefvhhh9YlS6ZOnYp///vfOHLkCB599FGPykDIAwkZgiA8xm8tMgGI4Ga6du0ahg8fjmvXrrl03po1a9CnTx/cc8896N+/P3ieR3FxsZW7ZciQIWhqarISLYMGDUJTU1OL+BixJCYmorCwEP/973+RnZ2NpUuX4rXXXhN9nfvuuw8rVqzAq6++ih49emDVqlVYs2aNx0LrzTffRNu2bXHHHXdg9OjRGDFiBHr37t3qecOGDUNSUhJGjBiBTp06eVQGQh443pFzlXCKyWRCWVkZ0tLSoPDQpByohHobUP2b6//qqwqzkHnhBV+XzHvQPRD89dfpdOjUqRPee+89PPDAAy32h0IbOMMf6k8xMgRBeIxgkRE5WYcg/BaTyYSLFy/i9ddfR5s2bXDvvff6ukiEA0jIEAThMRQjQwQbZ86cQUZGBlJSUlBYWIjwcBou/RX6ZQiC8BiKkSGCjfT0dIfT2gn/QrRD6+WXX8aIESMwaNAgTJgwAbt27QIAFBUVoV+/fhg4cKD57+LFi+bzDh06hIceegi5ubmYPn26Vdrn+vp6zJ07F3l5ebj77ruxZcsWq+8sKipCfn4+Bg0ahIULF1qtL0IQhO8hiwxBEL5CtJCZNGkSioqKsGPHDsybNw9z5841Z0687bbbsGvXLvNfx44dAbBkSLNnz8bEiROxfft25OTkYN68eeZrrlq1CtXV1SguLsaSJUuwdOlSlJWVAQBKSkrw5ptv4rXXXsOmTZtw/vx5rF69Woq6EwQhEWSRIQjCV4gWMunp6VAqlQBYgiWDwYCKigqn5+zbtw8qlQpjxoxBZGQkpk2bhsOHD5utMsXFxZg+fTqio6PRs2dP5OXlYevWrQCALVu2YPjw4cjOzkZ0dDSmTp2KzZs3iy02QRAyYjIBERGA0ejrkhAEEWq4FSOzdOlSFBUVoaGhAYMGDUJmZiYOHTqEAwcO4M4770S7du0wYcIEjB07FgBQWlqKrl27ms9XqVRISUlBaWkpNBoNKisrrfZnZWXh0KFD5nP79+9v3tetWzecO3cO9fX1iIqKalE2g8HQIuV0eHi4WXxJhZBIyZWESsFKqLcB1b+5/jzPgeN48DwHkyl04groHgjt+gPUBnLX35Up3W4JmTlz5uCFF17A3r17UVJSAgDo3bs31q1bh44dO+Lw4cN4/vnnER8fjyFDhkCv10Oj0VhdQ6PRQK/XQ6fTISwszEqUaDQa6HQ6AGhxrrDEvF6vtytk1qxZg3feecdq27hx42Rbdr28vFyW6wYSod4GVP9yNDQko7q6Bjwfb3YLhxJ0D4R2/QFqA7nqn5GR0eoxbs9aCgsLQ79+/fDhhx8iMzPTymqSk5ODiRMn4uuvv8aQIUOgUqmg1WqtztdqtVCpVFCr1WhqarKysGi1WqjVagBocW5dXZ15uz0KCgowadIk60rKZJEpLy9HampqSCZBAqgNqP7N9Q8PD0NiYjvwPIe0tDRfF81r0D0Q2vUHqA38of4eT782mUw4e/Zsi+2WK5VmZmaaV0EFmDXl7NmzyMzMRGxsLOLj41FSUoKcnBwAwPHjx5GZmWk+V7D6AMCJEyeQnJxs1xoDAEqlUnLR4gyFQhGSN68lod4GVH8FTCYOYWHsmec4BWwWKg566B4I7foD1Aa+rL+ob9XpdNi8eTN0Oh2MRiO++uor7Nu3D7169cJ3332HqqoqAGwV1I8++si83HmfPn2g1+tRVFQEg8GA1atXIzs7G0lJSQCA/Px8vPvuu9BqtTh48CB27tyJ4cOHAwBGjhyJbdu24ejRo6irq8N7772HUaNGSdkGBEF4CM8DYWHN/ycIgvAWoiwyHMdh48aNWLZsGXieR2pqKhYvXoyuXbuiqKgI8+fPR319PRITEzF58mSzGFEqlVi+fDkWLVqEpUuXIjs7Gy+99JL5ujNmzMDixYsxcuRIxMbGYs6cOUhPTwfAVix99tlnMXPmTGi1WgwdOhRTpkyRrgUIgvAYk4mEDEEQvkGUkFGpVHj77bft7ps5cyZmzpzp8NwePXpg3bp1dvdFRUVh8eLFDs8dPXo0Ro8eLaaoBEF4EZ4HBKsyCRmCILxJ6Dr0CIKQDLLIEAThK0jIEAThMZYxMiGaToMgCB9BQoYgCI8xmci1RBCEbyAhQxCEx1haZAiCILwJCRmCIDzGMkaGXEsEQXgTEjIEQXgMzVoiCMJXkJAhCMJjaNYSQRC+goQMQRAeQ5l9CYLwFSRkCILwGJq1RBCEryAhQxCEx1CMDEEQvoKEDEEQHkMxMgRB+AoSMgRBeIQgXGj6NUEQvoCEDEEQHiEIF3ItEQThC0jIEAThEYJwUSgAjiMhQxCEdyEhQxCERwgWGY4jIUMQhPchIUMQhEeQRYYgCF9CQoYgCI8giwxBEL6EhAxBEB5haZFRKEjIEAThXUjIEAThEWSRIQjCl5CQIQjCI2xjZCiPDEEQ3oSEDEEQHmFrkSEIgvAmJGQIgvAImrVEEIQvISFDEIRH2FpkyLVEEIQ3ISFDEIRH8HyziCGLDEEQ3oaEDEEQHmEyNa+zREKGIAhvQ0KGIAiPECwyAAkZgiC8DwkZgiA8giwyBEH4EhIyBEF4BFlkCILwJSRkCILwCEuLDC1RQBCEtyEhQxCER9haZGj6NUEQ3oSEDEEQHkExMgRB+BISMgRBeIStRYYgCMKbkJAhCMIjbC0y5FoiCMKbiBYyL7/8MkaMGIFBgwZhwoQJ2LVrl3lfYWEhhg0bhqFDh2LFihXgLWzMhw4dwkMPPYTc3FxMnz4dFy5cMO+rr6/H3LlzkZeXh7vvvhtbtmyx+s6ioiLk5+dj0KBBWLhwIRobG92pK0EQMkCzlgiC8CWihcykSZNQVFSEHTt2YN68eZg7dy5qamqwe/durF+/HoWFhfj444+xe/dufP755wAAg8GA2bNnY+LEidi+fTtycnIwb9488zVXrVqF6upqFBcXY8mSJVi6dCnKysoAACUlJXjzzTfx2muvYdOmTTh//jxWr14tUfUJgvAUnqcYGYIgfIdoIZOeng6lUgkA4DgOBoMBFRUVKC4uxtixY5GSkoKEhAQ88sgj2Lx5MwBg3759UKlUGDNmDCIjIzFt2jQcPnzYbJUpLi7G9OnTER0djZ49eyIvLw9bt24FAGzZsgXDhw9HdnY2oqOjMXXqVPN1CYLwPSYTWWQIgvAd4e6ctHTpUhQVFaGhoQGDBg1CZmYmTp06hfz8fPMxWVlZWLlyJQCgtLQUXbt2Ne9TqVRISUlBaWkpNBoNKisrrfZnZWXh0KFD5nP79+9v3tetWzecO3cO9fX1iIqKalE2g8EAg8FgXcnwcLP4kgrT9UAAUwgHBIR6G1D9Wb2bmkzgOA4mEw+O49DUxIdMnAzdA6Fdf4DaQO76KxSt21vcEjJz5szBCy+8gL1796KkpAQAoNPpEB0dbT5Go9FAp9MBAPR6PTQajdU1NBoN9Ho9dDodwsLCrESJs3OF79Dr9XaFzJo1a/DOO+9YbRs3bhzGjx/vTlVbpby8XJbrBhKh3gahXv9Ll66gqSkBZWVn0diYjMuXr6KsTO/rYnmVUL8HQr3+ALWBXPXPyMho9Ri3hAwAhIWFoV+/fvjwww+RmZkJtVqNuro6836tVgu1Wg2AWWC0Wq3V+VqtFiqVCmq1Gk1NTVYWFmfnCt+hUqnslqugoACTJk2yrqRMFpny8nKkpqa6pBiDkVBvA6o/q39CQnsolQqkpaUhMpJDQkJ7pKX5unTege6B0K4/QG3gD/V3W8gImEwmnD17FhkZGSgpKcGAAQMAAMePH0dmZiYAIDMzExs2bDCfo9frcfbsWWRmZiI2Nhbx8fEoKSlBTk6O3XMFqw8AnDhxAsnJyXatMQCgVColFy3OUCgUIXnzWhLqbRDq9Qc4KBTCH4udC7XmCPV7INTrD1Ab+LL+or5Vp9Nh8+bN0Ol0MBqN+Oqrr7Bv3z706tUL+fn5+OSTT3Du3DlUVFRg7dq1GDVqFACgT58+0Ov1KCoqgsFgwOrVq5GdnY2kpCQAQH5+Pt59911otVocPHgQO3fuxPDhwwEAI0eOxLZt23D06FHU1dXhvffeM1+XIAjfYztrKURDBQiC8BGiLDIcx2Hjxo1YtmwZeJ5HamoqFi9ejK5du6Jr1644ceIEJk+eDJPJhPvuuw/33nsvAGYlWb58ORYtWoSlS5ciOzsbL730kvm6M2bMwOLFizFy5EjExsZizpw5SE9PBwB07doVzz77LGbOnAmtVouhQ4diypQp0rUAQRAeQbOWCILwJaKEjEqlwttvv+1wf0FBAQoKCuzu69GjB9atW2d3X1RUFBYvXuzwuqNHj8bo0aPFFJUgCC9BeWQIgvAloevQIwhCEsgiQxCELyEhQxCER5BFhiAIX0JChiAIjyCLDEEQvoSEDEEQHmFpkVEoSMgQBOFdSMgQBOERthYZmn5NEIQ3ISFDEIRH2MbIEARBeBMSMgRBgOfddwlRjAxBEL6EhAxBEFi/Hti0yb1zKbMvQRC+xOO1lgiCCHxOnwYcrMPaKmSRIQjCl5CQIQgCFy8CDtZhbRXKI0MQhC8hIUMQIY5OB9TUALW1QGMjEBEh7nyyyBAE4UsoRoYgQpyLF4GYGECpBC5dEn8+WWQIgvAlJGQIIsS5eBHo2JH9Xbgg/nyyyBAE4UvItUQQIY4gZIxG94QMWWQIgvAlJGQIIsS5dAno0gVoagLOnBF/vqVFhpYoIAjC25BriSBCnAsXgA4dgKQkaSwylEeGIAhvQkKGIJzQ2AicO+frUshLZSWQkAB06sTcTEajuPMpRoYgCF9CQoYgnPDf/wJLlgDXrvm6JPLQ2AgYDGzWUkICEBYmfuYSrbVEEIQvISFDEHZoaAAOHgS+/RZISwOKinxdInnQatm/ajUTI8nJwNmz4q5Bq18TBOFLKNiXIGwwmYAXX2TWivvvB266CViwAMjPB+LjfV06aamrY0sThF/vCZKTxbvSeJ6jWUsEQfgMEjIEYYNWy/7+3/8DIiPZtvR04MgRYMAAnxZNcrRaQKNp/pyczOopBoqRIQjCl5BriSBsqKpirhZBxABAVhZw/LjvyiQX9oSMeIsM5ZEhCMJ3kJAhCBuqq4G4OOtt/ipkjEbgb38D6uvdO7+uzlrIpKSwWUx6vf3vKitruZ3yyBAE4UtIyBCEDdeutRQyXbqw7RUV7G/uXODKFR8UzoaqKuDQIffyvwDMIhMd3fw5JobV3TYxHs8DH3wAvPIKix2y3adQWH8mCILwFiRkCMKGqqqWQiYqis1e2ryZxc5cvOheFlypqaxk/7qz2CPQ0iIDAN27M3FkyY8/Ar/8wtrB1ipDFhmCIHwJCRmCsMGeawkAhg9nVpkuXYDevf3DIuOpkLGNkQGAHj1aCpljx4CBA4Fu3YCSEut9lNmXIAhfQkKGIGywZ5EBgL59gT/+Efjd71g6/8uXfZ/97epV9q8nQsbStQQA2dlAeTkTdALXrgFt2wJduwInTwKnTjULGpq1RBCELyEhQxA2OLLIWNK+PXD5sleK45TKyualBdzBnmspJoZNN7e0yghxQ126MAHzj38AW7cy9UKzlgiC8CUkZAiH6PVsKq5tcGewYy/Y15b27f3DtXT1KrOgXLrknoCw51oCmAvp1Knmz9euAW3asDih+nq2UrYgnsgiQxCEL6GEeIQVX3zBAjsrKgCdjm2bOBG4807flstbGI1AbS0btJ3RoQNw7RoHg8G37qXKSvbbfPVVs/tHDPZcSwDLYCxYZIQ2iYsDIiKACROYa+2NN5igIYsMQRC+hIQMYcXXXwODB7O3/Ph4YMsW4Px5X5fKe9TUsH9bEzLR0UBUFI9r13z3CPE8s8h06MB+q4sXxQkZnndskWnXrjn+pqaGCZTYWPZ58GBmhVEogGvXIsgiQxCETyEhQ5jR6dgb/oABzW/pSUnA7t2+LZc3OHSIrTek07EBOyzM+fEcx9xLV69GeKeAdqitZdaStm3Z73TuHJs67SqCi8iekGnblgU9A+xf2zZRKJiAqqyMIIsMQRA+hYQMYaa8nL2JW7oakpLcT7YWKDQ0sOy4bds2T692BV8LmcpKFpgbGcmmTO/fDwwb5vr5Wi0THipVy33t2rH9DQ2Og58FIWObR6apya3qEARBuIWoYF+DwYCFCxciPz8fgwYNwvTp01FyfQ5mUVER+vXrh4EDB5r/LlpMpTh06BAeeugh5ObmYvr06bhgMTrW19dj7ty5yMvLw913340tW7ZYfW9RUZH5OxcuXIjGUIs+9RLl5UBqqvW2pCQ2s6W21jdl8gY1NWwAXrqUzcaZOdO189LTeZSVRclbOCdcvcoEBwD06cNmE1lOmW4Nwa2ksNMLREezeJirVx0HP3fsyIQc5ZEhCMKXiBIyTU1NSE5Oxpo1a7B9+3bk5eVh1qxZ5v233XYbdu3aZf7r2LEjACaAZs+ejYkTJ2L79u3IycnBvHnzzOetWrUK1dXVKC4uxpIlS7B06VKUXU8fWlJSgjfffBOvvfYaNm3ahPPnz2P16tVS1J2w4cyZlkImKopZKoLZKlNTwywbCgVzLymVrp3XqxdQVqaCVitv+RxRUcFiYwAmNDIzgZ9/dv382lr7biWACRLBvSTMWLKlQwe+hUWG823sM0EQIYgoIaNSqTB16lR06NABYWFhmDBhAs6fP49r1645PW/fvn1QqVQYM2YMIiMjMW3aNBw+fNhslSkuLsb06dMRHR2Nnj17Ii8vD1u3bgUAbNmyBcOHD0d2djaio6MxdepUbN682b3aEk6xZ5EBmFXm7FkWCGw0er9cclNT0xzIKoaEBCAx0YBff5W+TK5w+TKQmNj8uU8ftoyAq7SWL6dt29YtMhQjQxCEr/EoRubXX39Fu3btEHe9lztw4ADuvPNOtGvXDhMmTMDYsWMBAKWlpejatav5PJVKhZSUFJSWlkKj0aCystJqf1ZWFg5dn/tZWlqK/v37m/d169YN586dQ319PaKiWpr1DQYDDAaDdSXDw6F09TXbRUzX7eemILGjV1cD589zSEnhW7gGOnbksGEDUF/PATBh0CC2PVjaoLoaiI3lYDKJG4FNJhNuvFGLb75pC63WhLw81605UnDlCofevZt/r5QUlqTO1XpUVQFt2jg+vm1bDpWVPK5d49C1a8v7IjbWBL0+HI2NJgDCfg4mE0S3ZaASLM+Au4R6/QFqA7nrr7Dn+7bBbSFTV1eHJUuW4IknngAA9O7dG+vWrUPHjh1x+PBhPP/884iPj8eQIUOg1+uhsbFhazQa6PV66HQ6hIWFWYkSjUYD3fUkJrbnRl+PRNXr9XaFzJo1a/DOO+9YbRs3bhzGjx/vblWdUl5eLst1vcnVq+H44IMk9OihR11dRQtXiUoVDY5rh6FDq1FUFIuUlHKEW9w5gd4GZ87EQaEIR1lZhehzc3LCceFCJD7/PArh4ZeRkVEvQwntc+FCCkymCpSVse9saAjD1aupKC0ta3XWFQCcPRuPiAgTysqq7O5XKNqivDwMly9HwmC4irIyvdV+o5EDkI7KSgMSE7UoK6tBTU0ctNowlJVVelq9gCLQnwFPCfX6A9QGctU/IyOj1WPcEjINDQ2YNWsWBgwYgDFjxgAAkpOTzftzcnIwceJEfP311xgyZAhUKhW0NqOjVquFSqWCWq1GU1OTlYVFq9VCrVYDQItz6+rqzNvtUVBQgEmTJllXUiaLTHl5OVJTU11SjP7MwYNAejqHJ57QgONaBk2kpgJDhwJqdRyOHOFw5Uoabr89eNpg924OnToBaWkOAkYcwN5AyjFzZiTeeksBhaID0tLkKaMtTU1ATQ2HnJwOSEgQysNifDSaNHTo4Mo1OGRm8khLs+9Xy8gAPvuMA88Dt93WvkXiPJPJBKXShIaGSMTHK5GW1hZxcSxIJi3NTpa9ICRYngF3CfX6A9QG/lB/0ULGaDTiz3/+MxITE/Hss886PI6ziPrLzMzEhg0bzJ/1ej3Onj2LzMxMxMbGIj4+HiUlJcjJyQEAHD9+HJmZmeZzSyyW2z1x4gSSk5PtWmMAQKlUSi5anKFQKAL+5r10iQWKhoXZj9RUKJpjSNLTgatXOauZLoHeBrW1LA5IoXAvUlWhUCAhgWvRLnJSWcniUeLjm79ToWBxO5WVHJKSWr9GdTXQrp3jMsfHs5lNjz/OXG/2UKmaUFsbjrAwBRQKWJQltKJ+A/0Z8JRQrz9AbeDL+ov+1pdffhkNDQ1YsGCBlVj57rvvUHU9g9bRo0fx0UcfYeDAgQCAPn36QK/Xo6ioCAaDAatXr0Z2djaSrve2+fn5ePfdd6HVanHw4EHs3LkTw4cPBwCMHDkS27Ztw9GjR1FXV4f33nsPo0aN8rjiRDOXLrHATVdQqdgaTMGEMGvJExIS2Cwib3HlChMati6kxETX14BqbU2pbt2Ahx8G+vVzfIxabUJ9PWeVR4aCfQmC8CaiLDIXLlxAUVERIiMjMWTIEPP2v//97/jhhx8wf/581NfXIzExEZMnTzaLEaVSieXLl2PRokVYunQpsrOz8dJLL5nPnzFjBhYvXoyRI0ciNjYWc+bMQXp6OgCga9euePbZZzFz5kxotVoMHToUU6ZMkaDqBMAGnYsX4ZIrAgDUanG5SgKBmprWlyRojYQEcVOfPcV2xpJlOVwRVCYT+x2d1TsqCrB4zO2iUrHsd5YvYiRkCILwJqKETFJSEvbu3Wt3X69evTDTSSaxHj16YN26dXb3RUVFYfHixQ7PHT16NEaPHi2mqISLVFcDBgPLUusKKlXw5ZRhs5Y8u4a3LTIVFfaFTGIicOJE6+fX1jIx09oq362hVrOZCrTWEkEQviJ0HXoEAGaNadfO9WnDanXzqtjBQH09E3KeWmQSE1kG5HovTVq6csWxRcYV19K1a83Zez3B1iKjUFBmX4IIJq5cAdavB/77X1+XxDEkZEIcMW4lIPiETE0NizO5PknObTQa5orxllXm/HnYDehNTGRlaM0q4ihbr1jUaiZkyCJDEMHJZ58Bp04BX33FXNr+CAmZEEdMoC8QfMG+QlZfT1Prc5z33EsNDex3S0lpuS8hgVmFWlsb69o1lrnXU1QqZn6xzOxLEETwcOoUMGoUkJ0N7Nvn69LYh4RMiHPxojghE2wWGSniYwS8JWTOn2e/g734lqgoZqlpLU5GTosMuZYIInDR6Zhg2bWLvRBducJySvXp479CxqMlCojAR+ybuWCRCRb3gbACtBS0b89EhtycPcusMY6sH9nZwNGjrONxRGszllzFnkUmWO4Nggg13nqLJUjt0IEJmKYm1q9pNMAttwDvv89e1oQknP4CWWRCHK0WLTK2OkOtZje3zXJWAYtOJ52Quekm4MAB+S0SgpBxxI03AocPO7+GVPUWLDIkZAgisKmrA379FXj5ZWDRIiAnh8XHXM9NC40G6NwZKC31aTHtQkImxKmrEydkhJUhgiVORqfzPNBXoFs3JmJOnpTmeo44e9b+KuUCWVnsrenqVcfH1Nc3/5aeIMxaomBfgghszp1jM1iF2ZADBrAXXculjlJSWP/jb5CQCWEaGoDGRnFv5mFhQGRk8MTJaLXSCZmwMKBnT2D/fmmuZw+eb90io1azzuftt4EvvrB/TH09i6fxFFvXEmX2JYjAxLZfuekm9vmGG5q3JSeTkCH8DK2WvUGLdTEEU8CvlK4lgPmRDxyQ7nq2XL7M3HqdOjk/7uGHmWVm+3b7+/V6aSwybOo6TxaZIMBgoN8ulLEVMmFhwPz5TLwIpKQwy42/QUImhKmrY6JE7DpfajW5lhyRlMRcOnINCMeOMZ91a4nsOndmK5ZXVTGrmy1SWWQA5pq0XPOJBsPAorER+Ne/gGeeAXbv9nVp/I+dO+0/Q8FGa5ZegO2/epW9BPsTJGRCmLo696wRKlXwWGSkdC0BbPFJo1E+oXf0KAvmdYW4OCA83P6UcKksMgDw+OM8srLY/8m1FHgcPsziuu68E/jhB1+XxvdY9m3XrrGZOseP+6w4XsFkYjMuLa0v9tBoWL/ib1YZEjIhjNgZSwLBJGSktsioVEw81NRId00BnhcnZBQK+0sW8Ly0Fpn09OYlLgI1j4zJBBw54utS+IYDB4BevZiQKSmR594NFC5fBmbNApYuZYO1ELjvyvplgcyVK+wZcCXLuz+6l0jIhDBiZywJBJNrSa+XVshwHEuw11pmXXc4f54FaFvOImiN9u1bCpmGBiZmpLLIWBKoMTKnTgErVjBrWihhMrEptz17snxSGRneXcXd39i4Eejdm70AFBczIaNSBb+QOX+eJUa1dBE7olMn/1s4mIRMCOOuaylYgn15XnqLDMDcS3IImdJSNtCEi0hjmZjYUsgIC1tKZZGxJFCXKBCSf1VW+rok3qWsjAX5duvGPvfpI++sO3/m3DlW9wceAO66i1mqjh4FBg9mQjeY42QuXXJ9zb3YWP+z2pGQCWG0WjboiiVY1luqr2dvpFLOWgLke9D1evEWtPbtWy70ptezKfRig7xdIVBdS0Ickb8uiicXJ06w2W2COO7enVkhQs0yBbAZfrffDsTHszxNcXFAeTmQm8uel7IyX5dQPi5fdl3IREezl2B/goRMCFNbG9oWGZ2ODbxSWyZiYuQRMg0NrEMVgyOLjBzWGCBwXUuCkLl0ybfl8DZarfVaY0lJTNScOeO7MvkCvZ4FOg8axD5zHHDrrWzQbt+eib0ff/RtGeVEjEWGhAzhV7gb7BssQkarZdYlqS0TcsXIuCtkKiqsrSRSzliyJVCFzJUr7HcLNSFj61pVKJibKdhn6djyww8sRiQtrXnbkCHA737H7un77we+/z54Z3WJETIxMSRkCD/Ck2DfYBAyUifDE5DLImMwNM8OcpX4eBb7ce1a8zayyLSkooItthnqQgZg1odQEzIHDjC3kiWxsSzwF2AiZ+JEYNMm75dNburr2SKy7du7drxgkfGn55yETAgT6sG+cgT6AvLFyLhjkQkPZ7+xpYVITotMIOaRMRpZ4sCcnNCLkbE3ay8ri03DDsRYJ3eprGzdIpGU5H+WCCm4dIndA66+1EZHs5cjYdKAP0BCJoRx17Wk0fhfZkd3kFPI+ItrCWB1tPy99HqyyFhSWcmmnXbrxrKWBsvK7q5g7xlISWEDlb9NsZULnmf3QEKC8+M0GtZegXZ/t4YQ6OvqjEOVij0vcvRx7kJCJkQxGpmi9sS1FOhvbHIJGX9yLQHsN7YUMuRasubKFTaItW3L2tc2ODqYsfcMhIWxJS6CeZaOJXV17Nlq1875cRoNE3gNDd4pl7cQEx8DsGfc3wJ+SciEKMJN6I5rSaNpzg4byEi9PIFAbCyzekidd8Jdi4ytBU3uYN9AE7gVFUzIcByLhTh/3tcl8h6OxHx6OnD6tLdL4xsqKtjLR2vPlkrF7pFgcKtbItz/YiAhQ/gFwoKRYpKrCURFsViIQH+g5bLIREezDk9q06tUQoYsMtZYduRpaaFjiQAcPwNpaaEjZK5ebd0aA7A+T6UKDre6Je5kNychQ/gFNTXuuZUANljZxl0EInLNWgoLY9eV2r3krmvJ2xaZQBMylgNZWlro5FBpbGR/jiwy5eWhkRhPjEVCiJMJJtx5sSEhQ/gFtbXWibDEEgwPdG2t+2KuNeSYuUQWGXmoqrIWMqdPB14d3EF4fu0JmfbtgYiI0HCzVVayNAWuEAwvcLa482Ljb7lkSMiEKJ4O4sHwQFdVsQBPOWjThuVmkJJAiJEJxOnXV6823wedOjErRSgE/Op0zMJnz72sUABdugRvAjhLxAiZYJmxaYm7FhmatUT4nFC3yPB8YAoZKVxLZJFppqmJ3QfCQBYRASQnh0acTGsxYuPHAzt2AIcOea9MvkCsRSaQ+z171NeLf7Eh1xLhF4S6RUavZ8LAlSA/d5BayJhMLF7BHQHiTYsMEFhCRviN2rRp3hYqga6tCZmkJGD0aKC42Htl8jZCDhmyyIg7h4QM4RdIYZHRal3MoOSHVFWxh1euAT0uznpZAE8Rcle4a5Gx7HTktMgEmmvp6lUmYizdK506ARcv+q5M3sKVWXuZmcGd7dhgYM9DXJxrxwf6C5wtJhNZZIgApraWBWy5S6C7lizjIuRAaouMIGTcjZERMpLyPOWRseTq1ZZv4wkJ7C092HFFyCQmMkEudU4kf0How1x9HoLNImMwsD6BLDJEQCKFkJHrgT57FliyxP3zeb71xf/kjI8BmJCRctaSwcCsBmFh4s+1zEja0MCEhhz5cwDX05z7C/YEbUICm5IbSJYld3BFyLRpw6yAFRXeKZO30evZy4Grz1Wgv8DZotezf8UKmchI/0qISkImRPFUyMgZ9LZ9O3DqlPvX37IFmDvXuWtHbiETG8ssMlINhu4G+gLNGUnr6pj45DjKIyNgLxlafDxrb39645QDV4QMxzFhd+UK8M03wRc7JDYpZrC5lurrmShRiFQCUVEsZq+pSZ5yiYWETAjS2MiUuD+6lnQ6NuUzLMw93/zhw8DmzexN8uRJx8fJLWTi4tiDLlUbuTv1GmCdlGBBE9xKYjsuVwlE15KtkImKYs9GsFohBFwdxBMTmZApLgaOH5e/XN5ErJs1GC0y7rzUCC9V/rLulKjuzGAwYOHChcjPz8egQYMwffp0lJSUmPcXFhZi2LBhGDp0KFasWAHe4tXs0KFDeOihh5Cbm4vp06fjgsXSqvX19Zg7dy7y8vJw9913Y8uWLVbfW1RUZP7OhQsXojFYHbZeQpj/78msJblcSz/8wFbfTUtzT8iUlAC9egE9e7YuZOSasQSwwTAyUrqAX4PBfSEDNL9JarXyzlgKNIuMo/tAcC8FM2KEzJEjrK2CyRoBsDYQK2S81QYNDcDGjfI+T+4G/gt9kb+sFC9KyDQ1NSE5ORlr1qzB9u3bkZeXh1mzZgEAdu/ejfXr16OwsBAff/wxdu/ejc8//xwAE0CzZ8/GxIkTsX37duTk5GDevHnm665atQrV1dUoLi7GkiVLsHTpUpRdT+RQUlKCN998E6+99ho2bdqE8+fPY/Xq1VLVPySpq2MPpDvxFgJyuZbOnAFuvJFlFnVHyFy7xqwhXboApaWOj5M72BeQNuDXE9cS0LwCtl4vz7IMAoEkZHieWRrsTb0lIdNMQgJw8CD7vxBTESyIXWdIrWbneMPquGcP8L//yTtrzF2LTFgYi9nzlzgZUUsGqlQqTJ061fx5woQJWLFiBa5du4bi4mKMHTsWKSkpAIBHHnkEmzdvxpgxY7Bv3z6oVCqMGTMGADBt2jQMGzYMFy5cQFJSEoqLi/H6668jOjoaPXv2RF5eHrZu3Ypp06Zhy5YtGD58OLKzswEAU6dOxeLFi/H73//ebhkNBgMMNjIxPDwcSk9GATuYrt/JpkCyo1+nuhqIieFgMrk/4qhUQEODAk1N0rZBZSWH9HQeCgVw6ZL4MlZVcUhN5ZGRAfzf/3FoaOAREWF9DEuGx6FNG96jDqm1eyA2lsO1a559h0B9PaBUuv+bqdUc6upYW6hUnv32Ao7qz/PSXF9uamoAvV6BxERTi98oPp5DRQVarUcg9wM6HYeoqNbvz4QEwGRSQKnkodVat0kg1x9gYi4qyvX7lQ36CtTVmcwWbTnawGQCvvqKQ1gYcPIkj8REyS5thdj6WxIZyaG+npf9HlC44Ad3Y+3jZn799Ve0a9cOcXFxOHXqFPLz8837srKysHLlSgBAaWkpunbtat6nUqmQkpKC0tJSaDQaVFZWWu3PysrCoevpJEtLS9G/f3/zvm7duuHcuXOor69HlB2b2Jo1a/DOO+9YbRs3bhzGjx/vSVUdUl5eLst15eTUqWhERESjrMz9ZBlsMbkM6PVhkrbBpUvJMBqvIixMgbNnY1FWdqH1kyy4fLkTDIZr0Ol0UCo748cfLyElxdqRazBwaGhIR03NGRiNnj98juofEZGIsjIDkpI8N8tcuBADk0mNsrJWpmM5JAFnzxqhVJoARKGsTLrXPMv6X7qkhNHYAWVl3nsuamvDEBbGQ60W91ueOROJ2Nj2uHixZVk5Lgbl5a63dyD2A7W1KaipqUBZmfPX6sbGCAApyMjQobKSs9smgVh/ALh4sS2amhQoK3Ntvj3PA2Fh6Thx4hzatbNeUVPKNvjtNw1qauLRs6cWBw4ASUny5AM4fz4WJpN7/UFYWCrKyi6D51n/Ktc9kJGR0eoxbguZuro6LFmyBE888QQAQKfTIdoi6EKj0UB33feg1+uhsbFnazQa6PV66HQ6hIWFWYkSZ+cK36HX6+0KmYKCAkyaNMm6kjJZZMrLy5GamuqSYnSVffuA7t3lmx4LACdOAAkJHNLS0jy6Tng4j4YGDt27S9MGPA/U1nLo3r099Hpg+3bxZdTrOXTrloj0dKBzZw483xG2lxDcPVlZqR6511q7B5KSOHCcBmlpce5/yXWOHwfi4tz/zTp14swBwwkJ8Pi3B+zXn+cBhcLze0sM//oXh7ZtgXHjxL1VlpezdrFXVq0W2Lev9XrI1Q94A6ORQ1pahxbPhy3JyUCfPjyys1X47jvrNgnk+gPMytmmDZCW5nrAoEYDxMUlm9tN6jZYv57D7t3AI4/wAKLxxRecqPKJ4bffgHbt3HteNRoObdt2RGqq7+8Bt4RMQ0MDZs2ahQEDBpjdRWq1GnUW8xW1Wi3U10djlUoFrU2ElFarhUqlglqtRlNTk5WFxdm5wneoHDj2lEql5KLFGQqFQrIf79gx4F//YqnBn3nG9bTZYjEYWICXQuFZ0g+ViofBoJCsDWpq2IyqhAQOjY0sKLm+nnNZ1AnntGvHQaFgYrChgWsxQ6ehgfl3IyKk+d0c1T82lmWI9bSdAVY3Nk3SvWu1bcvur/Bw1hFLUSYBy/qHhTWLGW9x7hz73cV+5+XLQMeO9s9LTGRxVEDL+8ceUvYD3oLFS7VeP6US+P3vgd9+46DT2W+vQKw/wNogPl7cvaPRsBcm2+pK1QaHDwMFBUCvXhwqK1lercZGzqNgf0fU17N+0p3nNTKSlUuosi/vAdHfajQa8ec//xmJiYl49tlnzdszMjKsZjAdP34cmZmZAIDMzEyrfXq9HmfPnkVmZiZiY2MRHx/v8rknTpxAcnKyXWtMIGMyAf/9LzBmDJux88EH8n2XVCnqIyNZnIxUVFayaa9KJessNBpxqxDX1LBgU2HpBZXKfjBaQ4N8KfotkXKGgyfTr4HmwGOtVl5rn7eDfRsbmSA5c4Y9Q5WVwGuvAV991fq5ly4BHTrY39e2LXOfBmsumcZGVj8xgZ7BuGCiO8Gucs9cMhiay9SuHesT5crf48lYwPp/acvjLqJHoZdffhkNDQ1YsGABOIs0nvn5+fjkk09w7tw5VFRUYO3atRg1ahQAoE+fPtDr9SgqKoLBYMDq1auRnZ2NpKQk87nvvvsutFotDh48iJ07d2L48OEAgJEjR2Lbtm04evQo6urq8N5775mvG0ycOMHeAO+6Cxg3Djh6lJm+5cBg8GwGjIBKBRgM0goZy6mwHTsCF0SEyFRVsQFbeCmIirIvZOReNFHAn4RMXBwTMmITgInF23lkLl1iK1Y3NQHnzwOvvMJmG7nS8TsTMkolG0CCdakC4bkIdSEjdvo1IH87WKZa4Digd2/gyy/l+S5P+sKAFTIXLlxAUVER9u/fjyFDhmDgwIEYOHAg9u/fjwEDBuCBBx7A5MmTMW7cOOTm5uLee+8FwNw9y5cvx9q1azFkyBAcOHAAL730kvm6M2bMQHR0NEaOHIk5c+Zgzpw5SE9PBwB07doVzz77LGbOnIn8/Hx06NABU6ZMka4F/IS6OmbiVCqZRSE3lyV2c4etW4H333e8X0qLjMEgnQvBdhXa5GRmVnWV6mrrxd+iouxPFxWyWcqNlELGU/HpTYuMNzl3ji3ymJICfPYZ+83HjGl96rTJxCw5joQMwKwyVVWSFtdv0Oubp9C6ilrNLDnBlMZL7PRrwDsWGctnffRo9qJ7ff6LpASLRUZUjExSUhL27t3rcH9BQQEKCgrs7uvRowfWrVtnd19UVBQWL17s8LqjR4/G6NGjxRQ14LC9eYcPZ2n23clA+9tvLBnc2LH21bZUFpmoKOldS5ZCJiUF+PVX18+vqrIWMiqV/RwMcq7+bImQu0UKpHAtNTWx9ggm19L580zIRESwFPpjx7J7iMW3OEawtDiLQ2vXrvXrBCrCm7gY4SncNzodu5+CAXcsEnIvU2DbP8fEsPHgm2+AHj2k/S69PjiETOBFZwUptjdvYiKbvbR7t7jrNDWxRHCRkYAjzenpoCggtWvJdiViZxYZngc+/ZTFRggIyfAEHC1s5i0hI7y5SeFq8fQ3i4xkHXBtrbxCRqHwrmtJEDKdOzMLQ//+bFZWVZWQIsA+QkJEZ7PWgt0iI3YADw9nfVQwuZfccS3JaZER1i+yfdYTE+WJ1woWiwwJGT/B3kA1aBCwa5e4hbnOnWODSX4+8N13rn+XO3jDtXTtmv1O45dfmOtt/frmbbZCRqVy7FryVowMz0uTDbW62nMBIrxFyylkAO9bZJKTgVtuAR59lLll4+LYM+BMhNTUNAeFOyIULDJi8WaczJEjwIED8l1fWBFe7PMgZxsIuVxtLeZyfWdIxsgQ8mHP3XPzzcwfLSZi/eRJICODnVtaan9QkUrISO1aqquzXv9Jo2FvxbZWmcZGYN06FhR9+nTzQna2riVHwb7esshERrI3fk/f3q5eZW3Qvbtn1xHaJlhcSz/9xO6Z9HRmfhfyZioUrK7OAnVdETJkkWmJN4XMl18CO3fKd313Ap4BeS0ygpCxzUbuSbt/8QWbPGIPssgQkmJPyCgUzGx+SUQy15ISoGtXJghMJsfTj6URMrykrqXGxpZtkJLCrEyWnDvH6jBsGDBkCOvwjEYmaq7HiF8vn2Mh441gX46TptPbvx/o1s2z1coB71hkFArvCJnKShbQXlBgf+2ohATnQqa62jWLTLDOWnI3NsJbQqaxkeU9sn32pYTlxBHfF8i5ArbBwFx4ti5Pd9v97Fngk09YsLAtPO+ZdZqEDNECRwG4HTqIEzInTzIho1Kxh9SeX1VKi4yUQsZeG6SkWMfBAGxwSUhg9bvtNpZA6tgxVqdOnZqPc5RHxlsWGUAaIfPzz0CfPp6XpU0b9qZn+7YnJd6yyJw4wRJH3nKL/f2tiRBXXUvV1eJcu4GCuwOYt4TMyZNsMK+slG9hQncCngF5g30dLQ6rVrP+0Vncly08zyzX4eH2f7PGRnZvk0WGkAzL3AGWtG9vX8hcugSsXGk9aFRVMTdERkazNcDeDSyta0maGBmTyb5Fplu3ZteRQEUFEzIAEy6xsWzq7Y03WndKzqZfeyNGBmC/gSdBeno9G7QdDdhiiIuTPz7GW0Kmpsb5bL74eM+FjGDBunZNdPH8Hn93LR0+zO75mBgWB+Uu584BH31kPwDd3TaQ2yLjSMgA4r53/37WdoMHO+4HARIyhIQ4UuKOLDI//MACXi9arPtYUgKkpjbfmPasATzvnxYZITeFPSFz9ar1oGQpZDgO6NmTuZVuvLFl+ZqaWua98KZFxtMp2ELHZRn74y5t2waPkKmudj4FuDXXkitCJjycfYev4mSuXvWsLXmexREdPtxyn78KGaORuYr37GFTjTt1ct+99NtvwJIlwLZt7Pe2xZ0cMgDrVxsbm+NZpMSRkBEsqa62vcEAfPwxcP/9TNTb64P0emGpFvfKSkKGaIEz19Llyy07tJ9/ZjeSZZKkkyeBLl2aP9uzBhiN7O3E34J9HQW5RUWxuJfDh4H//Idl+rWd3dSzJ/vXNhhW6KhtTdPeipEBPHctNTayNpEi0dxNNwGPP+75dZwhCBm5xUxrMS6Jiext1NFU8Joa13KhdOjgmUXAHZqaWGqBF18EfvzR/eu89x7wzjss/4gt/hojU1YGbNwIjBzJ3KnJye61f1MTc6uMHcvKbE/IuDP1GmgWP3K4l5y9ZNq2fUMDsHCh/eznP/zAft/cXPlmb5KQIVrgSMgkJrLBzNK8ffEis9KMHAkcPNi8vaSkpZCxfdiEG8/f8sgIVhN7bwc33ghs2ADs2MEEnKVFBgCysoBp06y3Ac1Bc7YPcSDFyBgM0sW0KJVodaVjTxEEl9xCpqbGuZWqSxdWFnuzNXjeNYsMwCyCx465XUzRGI3Au+8yt8A99zBB486bv8nEnpW777ZvUfJXi0xDA/td77yTPb/Jye5ZZL79lv2bl8cEqyMh445FJiyM9R9ytIOzZKW2bS/MZlyzpmUc14EDQL9+MC+ea6+sniTDA0jIEHZwZlJs1846Q+3+/UB2NtC3L4sfaWhgf+XlLNBXwJGQ4ThpBkcp88gIA7a9xVO7d2eJ3Hr3ZmJNCPYVCAtjQb+2VguOsz9zKZBiZKTKwuwtvCVkrl1zLkTCwlhHvmdPy306Hev4XREyWVnsGfPWlPL//Y+9Yc+ezVLTR0ezXFJiERIC3nijfSHjr8G+trGCnTqxwVpM+587x2bqjB3L7oPYWGbBs8WTdcfkmoItRshcu8bcxXq99TR1g4Hl4Ln5ZvvnCZBFhpAcR8G+ADNv/+9/wNtvs8+nT7MOtkMH9rZx4gTbFhtrveiiIyGjVNoXDGIRXEtSdPLOHuCsLGDBAmDUKPaGbTBY17O1MtoTMt6MkfGk4xdcS4GCcF95wyLTmmvojjuYVWLzZuuZbzU17F5zxSqZmclEtJhV2D3h4kWWDycmhrVlv36Oc4A44/x5NlEgIYHV13a2i7sWGfbMiz/PVWzdvp07s+entbWzBAwG4O9/B4YObQ6Qd2aRcXcglyvg19k4YE/IJCQA997LcsUIVpmjR9lYIMzgVKvtu5aksMgYDN7N5O0IEjJ+grOBPD2ddab79rGbT0jLznFskD9xojl/jKVVwpGQkSo+RKUCeJ6TZBE5Z/XnOGZiTklhnXtsrOt1sDdzyduuJbLISEtjI7uvWxMyKSnAwIHsuSkubt4uuJVciTuKjGSzAL3lXrIdyNLTgVOnxF/nwgW2erzQRrYDubtCRqmUV8jY1l+pZO1vO3PREZWV7Hm7vl4xAPZbOxIy9nIQuYJcU7AdTfoQvtNWyMTFMUs1x7H7HGDr0/Xs2Xx/CzEytoJDCosMIE/Qs1hIyPgJzm7g++9nFok2bZjl5fLlZrXdtSsTMUL+GEvsCRlnil8swnWkyPPgiuUhPJx1as4W+rPFNpeMp7kTxOJphxdoFhlvCJmaGvY9riQInDgRGD+ePSNCmVyNjxHIynLPKuIOti8aaWmsvGJnTl28yPqI8HBWV9vz3RUycrsT7PWD3brZT+hmD3si1ZlryROLjD+4luLimPts2DDg66/Z9iNHWOiB5XlC8jtLpLDICGX2NSRk/ARX3rxTU9l0SiFuBmAP+alTLWcsAfYfNiln7LCYFl4SIeOq5eGGG9ibpqvYupY8zZ0gFimCfckiY40wY8lV92hGBvsNBPeQK1l9LenTh6U6kCsxmyW2QkZI8ijWKnP+PEsYCLDBznKygCcZXb0hZGz7JyFOyR7nz7OZO4JVuKampcB15FrS6/3PIiPWtSQEvPfqxZakOXeO3efdujUfFxnJnkt7lmlPLDLCZAp/iJMhIeMnuDJgde7MzIeCWwlgg3pkJPOBp6RYHy+3RQYAIiNNXhUyo0YBjzzi+nXtCRmFwntWDsGs6+7AThaZloi1qEREMMuG8FYv9vzUVDZ7cP9+ceV0B3sDeUaGuPXWeJ65lgQhY7tmVEMDO8YdMS/ERciFvfp36cJiZOxZpb74ggUDC0Kntrblb+vItaTVuj+QO8oa7inuBPsC7MW2Y0c2db1zZ+t6KRTss21Mj6cWGcB/An5JyPgBjrLa2pKaym5GyzT8HMdcShkZTCFbIrdFBgCUSu8KmfBwcRYK2w5HiI+RIi+LKwhmXXcfdlfuC3/CG0Lm2jXXcsBYYumeqKx0PVgcYHW6/Xbg++/Ffac72BvIxcbJVFezfkKwXNoKGeHN3N0YGTkDPO3VX6ViMXK2bVBVxfLs3HADS34H2BepjlxL7ibEE8okxar2toiNkbF8Dnr0YGL7hhtaPxeQJlaQhAxhRnjDaU1gdO7M/rUUMgBbOHHYsJbHC0LGclCR2lWhVHrXtSQW22Bfbwb6As2DhbszHKTMI+MNvGWRcUfIlJSw/1dUMAuLGHr3ZrEHcq+7ZG8gT0kRlxTu66/Zy41wnbZtrV1LgiXCnZmLcsdFtJYY1JLvv2epGYYObRYytbX2XUs6XcsM355Mv3a0IK2nuGqRMZmYOLNcpiMnh/3rSMjYCi9346QsISFDmBE6hdYG8oQEduPZupCys+2vxaPRtFwBW+qBXCrXklwuFHuuJW8KGWF1XXff3ihGpiViY1wAZs28fJm155UrLZMntkbbtqxOci0WKGBPyMTHM/HmyuzAy5dZSv6JE5u3xcVZW2S0WvcHcKFscg1ejp5Pe0Lm0iXmMuzenf2mV67Yt8jExLD7sra2eVtTE/suTywyvhIyZ8+ytmhqsk4K2a0by95tGR9je64lZJEhJMVgYA+arWvIFoWCJcqyXVPIEfZWwJbeIuNd15JYfC1kAM/M0IHmWhLe8uXMLVFeLi7gG2AdfmQkyydTWyveIhMRwe4by8FQaoxGNjjZCpnYWBZU6WjmkpAADWDWmF69rDM427qWtFqW38gd5A7wdNQP2Fs8V8jwrVIx1/qJE/YtMgoFq6+le0l4Hj2xyMjhWmpNyFRXA8uWAatWsRdVy5e/iAjg6aftW1kcCRmyyBCSIQTguhK3IeRScQV7K2A3NPinRUYuIWMb5BZoQibQXEsCcllkdDq2Ho+rYl6A41jw68GD7FlzZyCPiZFXyDhaPkShaClGLPnyS2DFCnZ+aWmzi0GgXbvmTL8AEzLuztYRyieXa8lRnit7FpkrV5oFqbAmk71ZS0DLmUs6HRNk7vY5clpknM1aMhiYBf7yZXELyVKwLyE7zgK8PMU24Ffq72IxMp5HzsolZGJirC1SvhAyjjJrugLNWrLm+HE2eIkJ1hXo1IklC0tIcC/YOzraO0LG3nPQrl3L1bxPnGAWpi++YIPysWPsc0aG9XEJCcySIlg0PBUySqV8U9EdCZn27Vmcj/C9jY1MnAkuwk6dmJCxN2sJaDlzSYiPcTfo3xcWmbg4tnZUQQFbh6tDB9eva68PksIiIwR/+5pWnBmEN5AzDsKekJFyIJfKtdTY6L652xm2g48UbyFi8dQiE4iuJbmEzNGjLVc5d5WkJLaYoLBauli8YZFxtHxIu3ZskUBLVq5kz3Z2NrM4fPUVEwHt21sfp1AwS255ObNcBKJFJiaGPUeXL7PfsbKSiTfBKtGpE7BpExuc7QkZW9eKJ8nwAN/MWgoPB373O/b/kSPFPWNqdctlNqR4qZMr6FksZJHxA+QcrNRqa4uE1BYZf3ctRUez+gsPvdRCzhU8jZEhi0wzR4+KdysJCHlVxMbHCMgtZJy5FQT3kEBDAxMkCxYAM2awAM/Dh5k1xp6VITWVCRlAGiEjZ4yMvTbgOCbQvvwSeOEFlvgtIaFZ9HXq1Jzx2V7d7AkZT9pApWJllXoWm6v9IMeJm3Vm61oyGtl3SWOR8VIuCyeQkPEDpE5SZ0l0dEuLjL/mkZGjDWJi2EMrdLyBGCMTSBYZOYVMUxMbwNLT3TtfEDJiZywJCKJYLurrHf/WgkVGaNeqKvaG3qkTG6SFKbe2biWBQBEyzl60OnRgU64bG4Ht260FaWwse9aFxTZtsY0V9NQiI/QhUlsj5OoHbV1Lwu8nhUWGYmQIAN6PkZFWyEiXR0YOy4NazTo24U060IRMoFlkACZm5BAywn3mrgsyPp49Z+4KmdhY+S0yju5NIUbmww+BoiImZNq2bRaOiYmsfllZ9s8XhAzPMzHmz0LGUf+UkcHSTAwfzmKlbH/HTp0cr79lu6SAJ8sTAM2TM6QUMkLiTDnGAnv1Vyg8/y65FxF1FRIyfoA3Y2T8NY+MXG3AcdZxMhQjIz8cJ8/0a53Os85XoQAmT7afMMwV5A72bc0iU1kJ7N7NlisQhIwAx7E1hxy53YTYmKoq/7XINDUx66kjIXPnncATT7C1r4CWLsJOnRznF7J1LXmyPAHA2lvqgF+jkYkZuWZv2ksM6mmGc3+xyFCwrx8QyEJGqTRJciPLmS/FcuaSL2JkPJm1FIjTr+WyyAgp5T3pfPv1c/9cb8TIOLPICPsvXmwpZADnllalkuXeKS+XZtaSHMG+jqafCwi/e0oKEy22Gc579nQ8k8fWteTJ8gQCUgf8upoY1R1shZxUL3RkkSHMBLaQ4SV5mOVsA8s36UB0LQWiRUYOPI1r8BTbqfxS48wio1KxZ/mee1giuIqKlkKmNYQpyp4kxAOY0JArh4pwfWdwHDB3LputZUmPHsxqYw9b14onyxMISJ1Lxtn0e09Rq1lZBUupFFOvAcojQ1ggZ7CvpZAxmfw7IZ5clgfLAchXQsbdtZYCUcgoFPK5ljwdfDxBuI/kylrcWj/wl7+w+JCwMBYj4o6QKStj95Q/Tr+ur2d9gCuzccLDxQlme7OWPL2XpHYtCX2gO2tgtYaweK3QV0tlkSEhQ5jxlkXGYGA3sz+6lrxlkQnEGBlyLTGkWOTOE6Kj5V1vqbWV6RMT2SDXvj3LpyI2KWBycvMK4J4M4nINXnK+0AlCRrgv/dEiI2cfKAQnC2JOSouMPyTEIyHjB3hDyFiqcaktMkYj59KCds4I5hiZUHMtAfLGyPiKyEj2W8jlXnJ1IBfWmXLHIlNTw+7HsDDx5ROQS8jIPXtTsEgD/muRkUvIcZy1VUpKiwwlxCMAeOcBrq9v9sF70onZolSyEcvTm1lOMScEaTY1OQ+olAtByIgd3E0mNpMh0CwyCoU8QsbXMTKAvAG/rqZGEAJaxQqZxET27HviVgLkC/CUOjWEJcIMHcGaJpVFRmohI+dLi+WkA7LIEJIjp5VAWAFbq2U3sdQdRXg4D4XCs1wywoAtt2tJKKO3B0OVqjlHhBgEK1egWWTkci35OkYGkHcKtqsDeceOTJCIDdgND2fneipk5Bq85BQyCoV1rJoUojiQXEuAdf2ljpGRK5O3q4gSMqtWrcK4ceNw66234osvvjBvLyoqQr9+/TBw4EDz38WLF837Dx06hIceegi5ubmYPn06Lly4YN5XX1+PuXPnIi8vD3fffTe2bNli9Z1FRUXIz8/HoEGDsHDhQjR66sPwQ1rzjXuCYFLUauUJdBXyKXjyQAudolyWByEjq1BGbwsDocMUG/Ard7vIRbDGyAAtp/FKiasDeZcubKqxO0GhnTpJI2QCzSIDNP92BgN7cfK0HaR2LclpmQesXUtSjQWRkQDPczAafbtMgahHITU1FbNmzUKPHj1a7Lvtttuwa9cu81/H645cg8GA2bNnY+LEidi+fTtycnIwb94883mrVq1CdXU1iouLsWTJEixduhRlZWUAgJKSErz55pt47bXXsGnTJpw/fx6rV6/2pL5+idwPsLBMQUODPAOBVEJG7hgZQTDKMSvAGQoF+16xnR4JGWv8wSLjSU6g1nC1H2jfHvjDH9z7jrQ08S4pW+QM9pV7INdqmwfzULPIWN67Ur0UCPerr9dbEpUQLz8/HwDw3nvvuXzOvn37oFKpMGbMGADAtGnTMGzYMFy4cAFJSUkoLi7G66+/jujoaPTs2RN5eXnYunUrpk2bhi1btmD48OHIvp4wYOrUqVi8eDF+//vfO/w+g8EAg43dMzw8HEqJ7xDT9TmYJgnmYjY0cFAqedmmdarVHGpreTQ1AZGRHEwmaUYZoe5skDa5Xf6GBoDjOCgU8rSBRgPo9QrU1poQFSV9/V25B1QqDjqduPo1NAARERx4nve56dYejurPcRyamqT/LXU6DlFR8j0nrqBScdenYLMfRMp+oL5e3n4AAIYOZa5cT74jIoL1WSYTL2n99XpAqZTu+bRFreZQV8dDq2X9oKf9Dev3OMnagFlk5Ku/SsVBq2X3rl7PITLS83stLIw9742NCknuAXsoXHjzlCyz74EDB3DnnXeiXbt2mDBhAsaOHQsAKC0tRdeuXc3HqVQqpKSkoLS0FBqNBpWVlVb7s7KycOjQIfO5/fv3N+/r1q0bzp07h/r6ekQ5sIutWbMG77zzjtW2cePGYfz48VJV1YpyYSU2D9BqU1FVdRllZfJMyFcoOqC8nL2G8LwaZWWXJL5+A8rLaxAT49681IqKCISHd8KZM2WSlkvAZALCwtLx229XERYWi7Kyc5Je35V7ICwsGWfOXEV4uOuv85cuKREW1hFlZWc8KZ7s2NbfZErF+fOXAEgbSFFd3Ql1dddQViaTb8cFGhvb4vJlBcrKKq22S9EP1NUlo7r6KsrKZDL5SMTVq0ro9db3pRT1v3w5DkZjOMrKKjy+lj14PhHnzjWA4xqgVLZHWZlnZa6tVePatTiUl58H4HkbXLrUBo2NSpSVXfHoOo5obGyHS5eAsrKrqK5OQl1dtSTPklKZBoOBk+QesEeGo5VQLZBEyPTu3Rvr1q1Dx44dcfjwYTz//POIj4/HkCFDoNfrobFxRmo0Guj1euh0OoSFhVmJEo1GA91125/tudHXo9v0er1DIVNQUIBJkyZZV1Imi0x5eTlSU1NdUozOMBo5pKV1RGqqRIWzISGBQ2RkFMLCgLZtOaSlpUlyXaENYmOViIlJQFqae6vxcRx7Q5KqXPZo3x6oq4tHTAwkr78r94BGw6Ft2/YQ89VGIxAVJW+7eIKj+oeHc+jYMUlUXV2hqYlDWlqi5NcVQ8eOwPnzHNLSWF8kZT/A8xxSUsTdI75ApRL6rDRJ669ScYiIANLSPAxecUBiIofISA1iY3nExHj+XGm1wHffcUhNTZWkDX75hUPbtkBamjz+044dgStXOKSlxYDnOaSmSvMsRUUxi4wU94C7SCJkkpOTzf/PycnBxIkT8fXXX2PIkCFQqVTQ2mSQ0mq1UKlUUKvVaGpqsrKwaLVaqK87wm3PrbuewEHlxLmnVColFy3OUCgUHv94BgN7iOW6B6KjmVleqRRmMUnrz1SpODQ0uF9+IX+C1OWypH174MwZYTVsab/HlXtAqQQaG8W1kTCTS852kQLb+rOMq9LfzzodE4Q+6isBCG7Klr+JFP0Ai2Hzbf1cISqK3ZsmU3NZpah/fT2LZ5Prfhd+u/p6TpJ+QEj7L9Tb0zZobJS3H9RoWB+oUHDXczJJc69FRvIwGDhJ7gF3keVbOYvc0ZmZmSgpKTF/1uv1OHv2LDIzMxEbG4v4+Hir/cePH0dmZqbdc0+cOIHk5GSH1phAxGgU3rzl+w6NpjnYVY7v8TR63xvLBnTowNaZ8dWtExEB0UkDGxsDL9AXkCePjMnk+4R4gHzBvkLCSjmD/qWiOcBT2uvK/ftaBvtK8T2BGOwr9awlgN0PjY2+Vd+ivt1oNKKhoQE8z5v/bzKZ8N1336GqqgoAcPToUXz00UcYOHAgAKBPnz7Q6/UoKiqCwWDA6tWrkZ2djaSkJAAsgPjdd9+FVqvFwYMHsXPnTgwfPhwAMHLkSGzbtg1Hjx5FXV0d3nvvPYwaNUrK+vscORcKE2jblq2WK1dH6elS7t4SMk1Nvpu+yywy4s6Ru2OTCzlmLQm5Knw9/dp28UGpqK9nLzQxMdJfW2qEdPdSCzq5p9cLWc6lEjJCvydVjKvcs1eFPDJCglSp2poJmQCatbR48WL873//AwDs378f8+fPx9tvv40ffvgB8+fPR319PRITEzF58mSzGFEqlVi+fDkWLVqEpUuXIjs7Gy+99JL5mjNmzMDixYsxcuRIxMbGYs6cOUhPTwcAdO3aFc8++yxmzpwJrVaLoUOHYsqUKRJV3T/whpBJSAAqK9mDLJdFxpMkYd54ExWyofrSIiP2DTYQ11kC5BEyen1zziJfInU2V4GaGpawztcWJ1dQKJoTA3o6ldsSKQdXeyQmAleuACkp0llkAOmsMt6afi2MOVI9S0olYDD41iIjSsgsWLAACxYsaLG9b9++mDlzpsPzevTogXXr1tndFxUVhcWLFzs8d/To0Rg9erSYYgYUggqX07UYHw9cvcoEjTx5ZHhcueK+IvfG+keCkPGV6d5d1xJZZBg6HbtHfB0/YruKslTU1DBrjJgVnX2JHEs1yL0ERYcOQEUFa+sE9+YlWCG1ZcpbriWhvFL1uVFRvrfI+HlYmf/C1u3x/MfzhjVCeGu6cEE+i4wnbyXecC21acPa2ZeuJbEWmUCJmbCF46Qztwv4QzI8gJVByAwrJTU1QGystNeUk5gYVmYpkdu11LYte6E4fVqa75Eiq7klci4aCTRbE3U6aV+e/cEiQ0LGTXbtAjZuTPT4OnL7RQFcn3YNVFeHrpDhODZzKZBcS5WVzJoWaMhhVfCH5QmAZjEltVUmEIWM1KuAS7X+jyM4jlllLl70fHkCASldjd5YogBg8ZJSPkv+ECNDQsZN2MJpnjefN4QM0GxK9Vch4402uOsu4MYb5f8ee7gT7BvIQkZq15LgevE1ERHsj4SMtBYZk0m+JVQsub5yjmTfI7VFRk4hExnJXmorKqQdB9hYSEImIJFSyHjDSuDPQsZbbXD77YBFyiOvEmoWGaldS9euAXFx0l7TXeSYgh2IQkbKGBmhPeV2HwqxclJ9j5QWGbmFDMcBSUnAiRPSCsbERB7R0U3SXdANSMi4SVSUNCrUWxYZYUD0RyHjDdeSrxFrkeH5wBUycuSR8SchI0xjlRISMkKGb+muaQ/BIuOvQkbu+mdkAEePStvf5uUBubnV0l3QDUjIuAkbmALHtURCxreItcjodKxd2rWTr0xyIrWQqaqSdqqvJ8gxc6m2loSMSiX/rC2pLTKB5FoC2OrntbX+EW8mJSRk3EQqv6C34kPkdi01Nro/kyNQZ+eIQaxFprKSdbb+MFNHLHLEyPiTRUYOIUMWGe8Mrh07sqB/qeKtWHZfz8cBnveOkLmeoi3o+lvJVr8ONZhrSQHAsx7bWxaZTp2A7t3lSbAmiKOGBpbUSyzeipHxJWLzyFy9GrjWmGB3LZGQYWWtrZXud/aWkImKAl5+WdrrSeFaamxkbSm3kElOZn00WWQIAEx8mEycx/kkvCVkoqOB556T59pKJXsLd9fEGgquJbF5ZCorpUna5QuUSmnXoDEapc8i6wlSB/s2NLC/QBIyMTFs8PVkaRJL/GV6vVikci0JfYPcQiY8nGU2Drb+liwybiKID0/n/tfXB1YHZg9PE0OFgkVGrGupoiIwA32B5lwdUlFdze4xf5h+DUgf7FtTw6bFBpIbUaViZZbKvRSoQkaqYF9ByHhjSZLBgwPX2usIssi4CbvheI/fSLwRqe4N3DWxCqv+BruQERvsG8iupY4dpRUyVVUsM3NYmHTX9ASpXUtCjhxfL78gBsv1lqQgkIWMVBYZpdI790BuLgszCCYC6NHxLxQKQKnkPb6JveVakht3LTIGAxMzwdAGzhBrkbl2zX9cKWKRWsj4U3wMIP3CkbW1TBQEGlIG/AaykJHiXpA7q2+wQ0LGAyIiTB5bZIJlxo6wpL1YpF6J1V8Ra5EJ1I4dYELm0iXpkuIFu5BpbAzMPoCEjLQxMiRk3IeEjAcolZ67loLJIuNO515fzwLQ3JntFEiInbUUyHFDCQnNCf2kwJ9yyADSCxmDwTuxEVITHS3dekskZIJjHPAVJGQ8QKn03CITTELGnQc6FOJjAPa2ZTK5nmsnkNslPBxITJTOvXTtGouR8RfksMgEqpDRaqXJYBeoQoZcS/4BCRkPiIiQxiITqAOWJZ4ImWAQcq0hDFSuWGV4Xv6VgOVGyjiZujr/mbEESBfgKWA0BqaQ0WgArVaaawWykGlo4Dx2o5JryTNIyHiAFBaZ+vrguIHJIuMc4Td2RcgIAdCB3C5SChmdjg2a/oIgZKSKAQpki0you5aEMnu6gDC5ljyDhIwHeBojI6SlDoYb2F0hEywWqdYIC2O5UFwJ+A2GAOh27ZhLSAp0Ov/KsRIV1Zw2QAoCNUZGaotMIN7vLBkoj4YGz1xsZJHxDBIyHuCpRaapiXWIgdiJ2eKurzhUXEsc5/oU7GAIgFarpRvk/FHIeJLJ2pZAtshI9RsH6swthYKVu6HBs6G0oSEw7wF/gYSMB0REmDxaMEwI/AyGG9jd6deh4loCXJ+CHQxtItUgZzKx6/iTkFEopFtjBwjsGBmpXEuBKuYAy3X33MdoJIuMJ5CQ8QBPXUveTEstNxTs2zqurrek1wd+m0jldqivZ1ZLf4qRAaQVMoHqWhLEqhQLRwaykImMBBobPXMtNTYGtgXW15CQ8QBPZy01NjITdTDcwO527KESIwO4nkumvj4wAx8tEYSMp4OcTte8lpc/IeUU7EAdxDUatnCup24Vk4m52QOxDQDBGu25RSZQ6+8PkJDxAE9jZIQOjJMmFYNP8WSJglAxqYaSa4kNcp4P9jodEw3+tg4RCRnhd+Gh13v24wjiPhDbABAsMp63QaDW3x/ws+4hsJBCyASDNQZwP0YmlISMq8G+wWClEsSHp+4lrdb/3EqAtEImUN/GOY79Np4KGSFWMFD7wshIwGDw3LUUiPeAv0BCxgOkcC0Fy83rrmspmNqgNcRYZAI9RkYY5DxdJdrfZiwJSJkUL1BjZAAWJ6PXe7YseaDHCkoR7BtK/aAckJDxAKlcS8EAe5jFJwkLpjZoDTHTrwPdIgNIM6vF35LhCahUnos0gUB+BqSwyDQ2sjxL/uY+dBWyyPieAL11/AOlkvforSyYbl4hOFVsezQ2hpZrydVZS4Ee7AtIM3PJXy0yUs5aCuR+gFndPLPIBHL9AUHIeC7mAtW15g+QkPEAssg0I4gRsUImkM3qYnF11lIwxMgA0ggZf8shIyClaylQY2QAwbUU2jN2oqI8D/YN9DbwNSRkPIBiZJpRKNzL5hpMbdAarlpkgsm1JIVFxl9dS6GeRwYQXEuhbpHxfImCQG8DX0NCxgOUShMMBvdXPg02t0psLFBbK+6cUHqAxeSRCfRgX0C6GBl/tciQawnQaKSZfh3IbhUpLDKB3ga+hoSMByiVTMG4a2IOtps3Olq8kKHp1y0hi0wz/uxaCvXp14A0s5YCWcgBFOzrD5CQ8YDISB4cx7vdoQXbzUsWGecola6J3kBdCdgWKdZbCgXXUiA/A1LNWgrU+gPSBfsGchv4GlGtv2rVKowbNw633norvvjiC6t9hYWFGDZsGIYOHYoVK1aAt8hNfujQITz00EPIzc3F9OnTceHCBfO++vp6zJ07F3l5ebj77ruxZcsWq+sWFRUhPz8fgwYNwsKFC9Hoyiutl+A4z1b5DTbXUkwMUFMj7pxQeoBdDRBtaKBZSwL+7FqSItiX5ylGJtD7AJZ6giwyvkSUkElNTcWsWbPQo0cPq+27d+/G+vXrUVhYiI8//hi7d+/G559/DgAwGAyYPXs2Jk6ciO3btyMnJwfz5s0zn7tq1SpUV1ejuLgYS5YswdKlS1FWVgYAKCkpwZtvvonXXnsNmzZtwvnz57F69WpP6ywpngqZYLp5Y2Lcs8gEk5hzhquDH7mWmvFnISOFRaapiYmZQO0HpJi1FOj9oBQWmUB2L/oDolo/Pz8ft99+O5Q2I09xcTHGjh2LlJQUJCQk4JFHHsHmzZsBAPv27YNKpcKYMWMQGRmJadOm4fDhw2arTHFxMaZPn47o6Gj07NkTeXl52Lp1KwBgy5YtGD58OLKzsxEdHY2pU6ear+svqNXuJ8YKthgZsa6lQH8bFYuruUeCKdjXEyHD8/4rZDQaNvh4apUR0vMH6jOg0bBAV08M5YE+iNNaS75HkmH01KlTyM/PN3/OysrCypUrAQClpaXo2rWreZ9KpUJKSgpKS0uh0WhQWVlptT8rKwuHDh0yn9u/f3/zvm7duuHcuXOor69HlINXVoPBAIPNHNfw8PAW4stTTNenKqnVPLRa3q2ZSwYDh4gIwGTycIlgHyG0gfCvRgPU1HAu18doBHhegbAwk9szv3yJbf1bIzIS0Oudt09TE+sUIyP9v01MjY1Qb94MPjoaJjsrn7atA3oc4ND0f7xbC6Pq9cCtxxVo8z8TTH4m+FUAel5IwNWrwwG4fg/YwtI3BO4zoFKZAChQW2tyeyA2GIDwcNf7DX+DzV4NQ1NTk1vnm0yA0Ri494DYflAsChdSPkvSPeh0OkRHR5s/azQa6K6bKfR6PTQ20XoajQZ6vR46nQ5hYWFWosTZucJ36PV6h0JmzZo1eOedd6y2jRs3DuPHj/eghs7Q4dw5A8rKqkWfWVWVAI3GiLKya9IXy4uUl5cDAHS6KFRVJaCs7KxL57HcC+m4ePEMrl0LzE4MaK5/a1y7poRW2wFlZY6PZ2b6NFy+7P9tEnH8OJL/+Ec09Oljd3+4Ccg7F4WGvzdAoRBfF6NBgcFXImD6ZwNcSL/jXRob8dQvv+Cbw6eR1s31e8CW6uowAJ1x7lyZW2LPH1Aq03Dy5EXU1rpnlrlypQ0MhgiUlVVIXDLvoNMpwPNpOHXqLCIixN/njY1CP1iOmpoAVDLXcfcZaI2MjIxWj5FEyKjVatRZJIzQarVQX7cHq1QqaG3sy1qtFiqVCmq1Gk1NTVYWFmfnCt+hchIJWVBQgEmTJlltk8siU15ejoQENZRKDdLS4kRfIzKSQ0ICj7S0NpKWzVsIbZCamgqFQoGICGZxSEtLc+l8ITC4S5fOAelis61/awjTNJ21z8WLLNFi166d/X5gM1VUwBQbi/DvvrNbf54HXn+Cw0sv8UhMFH/9w78A//sfh7/+1Q8FXWUl0L49lIp2ACpcvgdsuXSJ/d7p6a49M/6GyWSCStWEmJgkpKW5d8P+8gvLxZWW5ofT01ygoYGJj4SEFMTFib8HhNCEjIzUgIyNE9sPyoEkw0dGRgZKSkowYMAAAMDx48eRmZkJAMjMzMSGDRvMx+r1epw9exaZmZmIjY1FfHw8SkpKkJOTY/fckpIS87knTpxAcnKyQ2sMACiVSslFizM0Gg46HQeFQvxDbDQyMROoi6UJKBQKKBQKtGnDTOWNjZxLMR5GI5v5FRGh8PtB2xlC/VtDrWa+cJOJcyjczpwBUlOBsLAAaBCTCXxYmNP6R0fj+vMh/vJVVUC7dnDr2ZKd631MbVUTkuD6PWBLUxOLjfDLOrqIStUInS7M7UHMaGTNGahtwMrOo7HR/XuAXUcR0GOBu8+AJN8t5mCj0YiGhgbwPG/+v8lkQn5+Pj755BOcO3cOFRUVWLt2LUaNGgUA6NOnD/R6PYqKimAwGLB69WpkZ2cjKSkJAAsgfvfdd6HVanHw4EHs3LkTw4czv/PIkSOxbds2HD16FHV1dXjvvffM1/UX1Gre7WDfYAt01WiYMHE1m6sQ4BbIIkYMgiHR2bIWZWWAiwYt32M0gm/lBvYk4LeqCmjb1r1zZee6Eq2udC8uQiAY+gCVqsmjDM6BPumB41icjCeJUTmOrQBOuIcoIbN48WLk5uZi//79mD9/PnJzc/Hzzz9jwIABeOCBBzB58mSMGzcOubm5uPfeewEwC8ny5cuxdu1aDBkyBAcOHMBLL71kvuaMGTMQHR2NkSNHYs6cOZgzZw7S09MBAF27dsWzzz6LmTNnIj8/Hx06dMCUKVOkq70EsNVf3Ts30KP1bVEo2Bu4q7lkQmnqNcDqynHOZy6dPg1cv/39H6MRfCu9rydC5upVZpHxS66PvLVVRo8uEwyzVVQqk0ez04KhH1Qq3V93L9Re6ORAlA5esGABFixYYHdfQUEBCgoK7O7r0aMH1q1bZ3dfVFQUFi9e7PA7R48ejdGjR4spplehPDLWxMa6bpFhsxXkLY8/wXHOc8k0NTHXUiAJmdZ+QE8tMjff7N65snO93jVXScioVE3Qat0fhYOhDSIiTGhocM+tEgz19zUB7JHzDzyxyASDWdkWMdl9Q80iAzAh4+h+uXiRiZ2OHb1bJrdx0SLjrtvBry0y12MB6q55JmSCwRqhUpk8di0FehtERnrmWgr0+vsaEjIeQhYZa8QImWAUcq0RFeXYInP6NNC5MwIn4M8FiwwL9hV/aZMJuHbNj2NkOA58eDh0NU1wM30IgOB4Bjx1LQVDPxgR4b5rKRjErK8JlC7Tb2FrjcCtREbBeAO3aeO6kBFmK4QSzlLbV1UBCQneLY9HuGCRUavds8hUV7Pp234rZAAgPBxhfCPq6tz3jwbDIK5WN4W8kFEqTR7FyISSi10OSMh4iFrNOlx3zIrB8DZmS1wcG5BdIRjr3xrOLDJ6fYAtFmk0tjrVwt0VsK9eZfFW/tzBc+HhaKMxoqbG/ekmwTCIS+Fa8uff2RWkCPYl3IeEjIdERjJXgDuddTDewHFx7G3aFYKx/q3hLNg3EIUML1Owb1UVu5f8mogIxEUbUVvr/igcDFZZFuzr/vnB0A+w6dfuBTwHQ/19DQkZD+E49xeODIZOzJa4OBbb4AqhapFx5FoKRCHTmkXGXSFTV8firfya8HBoIo2or3e/Gw2GZ0CIkXF3qZ1g6AejotyPEyIh4zkkZCTAnc46WFd+btOGCRnehazyofgAk0XGNfR6/1z12orwcESFG92edgsExzOgUjWB5zmXVna3R3C0AQkZX0JCRgLcscgYr8/aDLYbOC6O1c2V9gjF6dehaJHR6cS/ret0gSFkVBEkZJRKHgoFH9IDuSfZjYPBIuVrSMhIgDu5MhqvLxQbbAN5VBT7c8W9FIwWqdZwNmspEIVMaxaZ6GhmnRP7tq7TBUBbSGCRCYZBTHCvk0XGvXODIdjZ15CQkYDoaPeFTDDewK7OXAqGTlwsweZaas0io1Sye1zs8xE4rqVGNDS4n9U2WMS8u3GCQLAIGfcDnoOh/r6GhIwExMS4J2SCdaEwV2cuBUsnLoagci01NbVqkeE49+JkAsW1FBlGriXAcyET6C90nkxBD8UXOqkhISMB0dFAba24c4T4kGBcKMzVmUuhGCPjyCJjMrFVsaOivF8mt3HBIgMEt5Dx1LVkMLAUDoGOs6U3nNHUxO79QB/IVaomNDZybuWSCQYh52tIyEiAuxaZQH94HSHMXGoNssg0I2zz+8HbEhdiZAD2fIgV+oHiWvLUIlNfHxxCxt0YGcHFHuj9gErFotkpn5hvICEjAe7GyASrChdjkQm1B9hRsK9ez6xzATWouWiRcVXYWhIowb6eCpmGhgD7zR3grkUmWISMQgGo1bxb7qVQ7AelhoSMBJBFxhpyLTkmJoZZomxN0PX1bDAIKFejixYZMUkSBQLFtaRUeG6RCSh3ogPcjZEJpkkP7uZMCuaxwFuQkJEAIUbGlSRwAsE8iLdt69qspVB8gNVq9vZm62oJCAuEDZyLFhkxy1YA7L4wGgNDyAgWGTHPviXBYpFRq3m3s5uHhwfQiu9OcMcyD4RmPyg1QXD7+J6YGHYzGgyun9PQELxCJj6eDVzC25YjQjFGRqGwHxyu1wfgm7kLq18D4hYSBZrf7P1e2F23yJhMXKv3uiPIIhM8fYC7FhmateQ5JGQkQKWy/5btjLo6duMHI7Gx7EW9tcErmDoxMcTEADU11tsCbuo10Pw63QpiLTI6XXP+Gb8mPBwRHEvR7W4yuGCxyDhL9OiMYIoV9MQiEyxt4CtIyEiAQiE+u69Wy278YEShYO6lq1edHxfM7jVnxMa2vFcCVci4apGprnZ9mYKAiI8BgPBwKExGhIebHCY5dEZTE3sGQtkiE0xWWXcyvAOh+0InJSRkJEJsLhmtNngtMgBzL7UmZILZveaM6OiWFhkh2DegcNEi06YNG7Rd7eQDYuo1wOre1ITISJNb1ggh4DuUhUxA3vcO0GjcW2+KhIznkJCRCLEzl4LZtQQA7doBlZWO9/N8AL15S0xsrP0YmYDr0F20yCiV7F53deaSVhsg90V4OGA0ui1kBCtOMIh5d4VMQN73DnDXtRQsuYR8CQkZiXDHIhOsriWACRlnFpmGBuZqCGYx5wh7CeICskN30SIDiAv4DZi2MAsZ3m2LTGRkcMzYUamYm8hoFHdewPzWLuBusG/AWCD9mCB4hPwDsWo82F1LrQmZgJmZIgP2hEwgTr921SIDMPeSqwG/AWOpk8AiEyxv4sLvJbYdAnK2ngPcscgIK8MH3LPvZ5CQkQixrqVgFzKtxcgIA3cwvI2KJVQtMq66lkJJyATLIB4Rwf7EupeCKUYmNpaJdTE5hQwGFj8WLG3gK0JwGJEHsa6lurrQcC05eqgDZrCSgWASMq5aZMQImYBpCw+FTLBMvRZwJ04mYH5rF2jblgkTMW0g3DfB0ga+goSMRLiazRZgsSHBbpFp14491I6sVAHpSpEIQcgIIm/vXqC8HEhN9W25ROPiEgWAOCETSMG+3HUhU18vfm2JYHItAe6ttxRMQkalYr+nmOU49PoAyZnk55CQkYiEBODKFdeOra9ng1gwW2QiI1n9HLmXdLrgFnLOiIlhXhm9Hrh8GVizBpg+HUhO9nXJROLiEgWA667Xq1eBQ4eAjAwPy+YNJLDIBItrCSCLDCDuhRYI7Rc6KSEhIxGJieymdCVqva6O9f/B9DZmD2dTsEP5AVap2BhYVwfs2wfccANw882+LpUbiLDI2MtmbI+PPgJuuQXIyvKsaF6BXEtWqNXig32DKU4IEL9AKs1YkgYSMhKhVjMLhCtWGcGtFFArHbuBs5lLoWyR4bjmpHj79gF9+vi6RG4i0iLTWgxZdTWwfz8wbpwEZfMG14WMSmVya9ptsA3iarX46cfBNpC3bSteyITqC52UkJCREFfdS8EeHyMQH08WGUd07gx89hlw9iyzQAQkIi0yBkNzNlt7nD3LLJuxsRKVT26uC5no6CaXrE22BJtryZ08KsE0/Rpwb4HUUO4HpYKEjIQkJromZIJ9xpIAWWQcM2UK6/RvvDGA26GpyWWLjGCBdGaVOXsWSEmRqGze4LqQ0WiaRC2KKRBswb7urDUUbBYJsTEywWaR8hUUKy0hrgqZULLI/PST/X2hPP0aYL//iy8yLRCwiLDIKBTN7qWEBPvHnDsXYAHPZouMETodJ3rNnPp6x20RiERHMzEqhmDKIwO4FyMTTPX3FWSRkRASMtY4s8gEzBRbGYmKCvD7QESMDNB6wG+gWmTUahMUCl60VSbYgn3FWmQaG9ktFEwDudgYGXItSYOkQmb69Om44447MHDgQAwcOBBPP/20eV9hYSGGDRuGoUOHYsWKFeAtMqUdOnQIDz30EHJzczF9+nRcuHDBvK++vh5z585FXl4e7r77bmzZskXKIksKuZasadeODVyNjS33kUk1CBCREA9wHPDL82xAu3AhMIUMxzVndRVDsAX7RkeLi5ERZjgFUxvExbF73F6fZw+yyEiD5K6l+fPnY8SIEVbbdu/ejfXr16OwsBBRUVH4wx/+gPT0dIwZMwYGgwGzZ8/G9OnTMXLkSKxatQrz5s3DO++8AwBYtWoVqqurUVxcjJMnT+KZZ55B9+7dkZaWJnXRPSYxkflHWzMxa7VMuQc7MTGsr796FejQwXofWWSCABFLFADWQubcOfY22q0b8PbbbFBXKALM1XJdyADuCZlQt8jo9awJxbjj/J3YWHYfV1e7di/TC500eMW1VFxcjLFjxyIlJQUJCQl45JFHsHnzZgDAvn37oFKpMGbMGERGRmLatGk4fPiw2SpTXFyM6dOnIzo6Gj179kReXh62bt3qjWKLJi6OBTS2ZloMlfgQhcKxe4ke4CBApEUmNpYJmR9+AF5+GfjgA5bl+sgR4OJFltk4oNbeshAyYhbFFAhGi4xO5/paQ8FojVAo2Euqo9matpBrSRokt8i8+uqrePXVV5GVlYWZM2eiW7duOHXqFPLz883HZGVlYeXKlQCA0tJSdO3a1bxPpVIhJSUFpaWl0Gg0qKystNqflZWFQ4cOOfx+g8EAg8FgtS08PBxKpVKqKgIATCaT1b8CsbEcqqp4xMc7Plen46BS8bA5NeBw1AaWtG3LoaLCuq5NTUBDgwJRUaaAbgNX6h/McNctMq7WPzoauHCBwyefAPfey+PTTzmcPs2jsZHDyy/zMBgQWPdDWJhZyMTE8Lh2DTCZXF8xsKGBg1IZ2P2A5TOgVgNNTQrodCaXBmc2iHOi2swfse0HkpI4nD3Lo1u31s/V6zlERQXPPSAHChfebiQVMk8//TQyMzOhUCjw0Ucf4ZlnnsH69euh0+kQbREUotFooLuey1qv10NjE/Go0Wig1+uh0+kQFhaGKIvXFstz7bFmzRqzW0pg3LhxGD9+vBRVbEF5ebnVZ5WqE0pKriEiwnEZq6uTUVt7FWVlbqQD9UNs28ASlSoe330XjqSkS+a4UK1WASANFRVnUF0d2J0Y4Lz+wUyyXg8+LMzl+hsMMTh2rA3q6sKQmXkGsbHJ+N//6tG+fQQqKpgF1p18LL4iproaquu+Mo6rxvnz4Sgrq3D5fJ2uM65evYDwcBcDKvyY8vJy8DygUKTj2LFzaNvW2Oo5Z86ooVDEoazsvBdKKD/CcxAd3RbHjimQmdm6Waa2NhU1NZdRVuYkwVKAIFc/mOHCeiWSCpmcnBzz/x999FF8/vnnOHToENRqNeosnKdarRbq634FlUoFrU2EmFarhUqlglqtRlNTE+rr681ixvJcexQUFGDSpElW2+SyyJSXlyM1NdVKMXbowCEiIhHOQngaGzmkp7d3ekwg4KgNLJk0CXjrLQ7btqVj+nQmWi5dAsLDeXTt2tmbxZUcV+ofzHAcB4SHu1z/qipg82YFbryR/fY33MDh55+jMWAA/DLmrVXatzcHeKSkxOLwYQXS0lybhsbzrB/IyOgUWHFBNtg+AxoNEBeX7FLfdv480KYNF5i/vQW2bdC9O7BrF4e0tNZndBgMHDIyOgZW2gEb/KEflDWPjFCpjIwMlJSUYMCAAQCA48ePIzMzEwCQmZmJDRs2mM/R6/U4e/YsMjMzERsbi/j4eJSUlJhFkuW59lAqlZKLFmcoFAqrHy8uDqiu5pz6+vV6QKNxfkwgYdsGlsTFAY89Brz6KqBQsDUZhPgY4XOg46z+wQx/PUbG1foLGXuzszkoFBy6dgV+/JEtEBmQ94JSCf66aykujkNNDedyPXQ65kaLiQmOfkC4B1icjGt1EnLIBORvbwehDVJSWDA7x3FOl6ExmVjAt1odXPeAT75bqgvV1tbi+++/h8FgQGNjI9auXYuamhp0794d+fn5+OSTT3Du3DlUVFRg7dq1GDVqFACgT58+0Ov1KCoqgsFgwOrVq5GdnY2kpCQAQH5+Pt59911otVocPHgQO3fuxPDhw6UqtuQwIeN4f2Mj+wulQNf4eCZeBI9gTU0ApaEnHCNy1lKzkGH/dunC/k1Pl7ZYXiM83JzRUGywb00NOz2Ygn0BcTOXgjHYFwA6dmQirbUMv/X1zDIXSmOBXEhmkTEajVi5ciVOnz6NiIgIZGVlYcWKFYiOjsaAAQNw4sQJTJ48GSaTCffddx/uvfdeAMyCsnz5cixatAhLly5FdnY2XnrpJfN1Z8yYgcWLF2PkyJGIjY3FnDlzkO7HPV9cHHD0qOP9Qu6EULp51Wr2V1HB1hiqrITTYGgiQBA5a6ldO2DMGDY7CWA5YyZNYh1/QGIza6mmhr1lu/JSWlfHpqMH28KxYnLJBKuQUSpZuonz59k97wi9nv3+wTQF31dIJmTatm2L999/3+H+goICFBQU2N3Xo0cPrFu3zu6+qKgoLF68WJIyeoM2bZxPv9Zq2Y0u4kU2KEhIaBYyV686f8CJAEGkRSY8HLjnnubPCgUweLD0xfIaNkKG55lVxpUcUTU1TMgEG2ItMm3ayFseX9GpE3MvWYSNtkCrFVxr3itXsEJNKDGtuZZCJYeMLQkJzbkVyCITJIi0yAQdFkImIoI9+xUuTloSLDLBhhiLTG1t8GY4T0pimaqdQS526SAhIzFxcexNo77e/v5gNae2Rnx8cydPFpkgQaRFJuiwEDKA60uUAGSRAYJ7qZb27Vu/F0jISAcJGYnRaFj/5sgqo9MF+EKBbmJpkSEhEySQRcZKyAjuU1cgi0zwtgHAhMylS86Pqa0N3vp7GxIyEsNxzpdyD9WU1IJFprGRiTwSMkEAWWTIImODmDWngtki06EDa4cGJ3nuyCIjHSRkZKA1IROqMTIVFWxKYlhY8Ab5hQwmEziTiSwyZJGxIjmZrZvV2urPJhOz3ASrkImOZi+szoQtCRnpICEjA506AaWl9veFqpCJj2dvJ+XlTOhRpH6Acz1/CllkyCJjSXw8y41z9qzz47RaNssrWN3sHMfuh8uXHR9TW0tCRipoOJGB3r2Bn3+2vwBeqAqZqCjmTtqxg2YsBQXXB3CyyFgLmdbcCQLBapHhOCAtDSgrc35cXR1LQxHMOVQ6dHAeJ0MWGekgISMDN9wAGAzAqVMt94WqkAGAhx8Gjhyh+JigQBjAySJj/hgTwwbnylbWCjSZgjvQMy0NOHPG+THBHB8j0JqFLlitcr6AhIwMhIcDPXsC+/a13Beq068B1iajRzenqCcCGLLItBAygjuhNfeSXi+ssyRz+XyEqxaZYBcy7ds7di2ZTKwNyCIjDSRkZGLAAGDnTqCkxHp7KFtkAODee4H+/X1dCsJjyCLTQsgALD6utUG8tja43SqdO7Osts4CfkNByAjLFDgKMWhqCl4x621IyMhEVhYwdizw978DH3/MzIgACRkiSCCLjF0h06MH8Ntvzk+rqWGDeLCtsySQkMCszs4EXSgImYwM9u+JEy33CWI22BYN9RUkZGRk8GDg979nM5iKi9k2EjJEUCAM4CRkrDbl5LABvLbW8WnV1cHtUuA4oHt34PBhx8cEa7CzJWFhQN++wPfft9xH8THSQkJGZrKzgbvvBvbvZ7MZ9HoSMkQQIGT1DVazgivYETJt2rBVvQ8dcnzaqVPM/RLMdO/OAvsdEczrLFnSrx+LlbR1s9GMJWkhIeMFbryR5U1Yu5YljEpI8HWJCMJDQj2rL2BXyADMKuPMvXTiBNCtm4zl8gOys5lg0+vt7w8F1xIAZGayetreDyRkpIWEjBeIiABuugnYs4fN2gnll1giSCAhA4SHg+P5FtGcN95oPy4CYIvJnjkT/EImPp79HT9uf3+oCBmOY3nF9u+33n7xIqWhkBISMl7ijjuYubVnT1+XhCAkgIRMc/1trDIZGWwpDnvLlJw6xTJbh0JSyJyclgO4QKgIGQDo1Qs4cIDdJrW17N+9e4E+fXxdsuCBhIyXuOkm4LnnyBpDBAkkZMz154TlGq4TFcWmYZ882fKUEyeArl29UTjf078/G7BtMx1v3syETMeOvimXt8nIYDOU3nwTmD0b2LiRTb0PdqucNyEhQxCEeEjIOLTIAECXLi3XWzt1Cti+HbjlFvmL5g+kpbF4QMvEoL/8AmzdCjz/PLNMhQIKBZu9VFsLjBgBbNnCLPS03px0hHhPRBCEW5CQcWiRAViQ565dzZ/1evZGfu+9wK23equAvoXj2IC9cydw++1s4N6yBRg1Kvhnbdny4IMsr5hCwWJjevXydYmCC9KEBEGIx2hkUeyhTCsWmbIyFtwLMEtEfDwwbJj3iucPDBzI4oV27GBZzs+fZ9tCjfBwlleG44C8PMohIzUkZAiCEA9ZZJxaZDp0YFaZ9evZ559+Am67zZuF8w9UKqCggGU3f+014M47Q3etOUI+QrwnIgjCLUjIAAoFeI6za5HhOOCxx4CXXmL5Qg4fBh56yPtF9AduvBH405+YgKEcWoQckEWGIAjxkJBhhIfbtcgAbCXsp55iydC6dGGfQ5XOnVn9adYmIQfUExEEIR4SMgwH2X0FbrgB+POfAZ73YpkIIsQgiwxBEOIhIcNwYpGxhCwRBCEfJGQIghAPCRlGKxYZgiDkh4QMQRDiISHDcNEiQxCEfJCQIQhCPCRkGOHhAAkZgvApJGQIghCP0cgyfIU64eHgyLVEED6FhAxBEOIhiwyDXEsE4XNIyBAEIR4SMgwK9iUIn0NChiAI8ZCQYZBFhiB8DgkZgiDEQ0KGQRYZgvA5ASFkqqqq8MwzzyA3NxcPPPAAfvzxR18XiSBCGxIyDLLIEITPCQghs2zZMiQmJuKrr77C008/jTlz5qCmpsbXxSKI0IWEDIMsMgThc/xeyOh0OuzYsQO///3vERUVhcGDB6NLly7YuXOnr4tGEKELCRkGWWQIwuf4fU905swZREdHI8Fi/fdu3bqhtLTU7vEGgwEGg8FqW3h4OJRKpaTl4r/8EgmrVgFqNfhQXUiF55Gg04VuG4Ry/X/9FXyfPgAAk8nk48L4Di4sDLH//jfw/fehdw8Aof0MCIR6G/A8onNyYHr+eVkur1C0bm/xeyGj1+uh0Wistmk0GtTV1dk9fs2aNXjnnXesto0bNw7jx4+XtFzKhgaoMjNxTdKrBibXfF0AH3PN1wXwBcOHQ5+XBwAoLy/3cWF8h2raNCh//RU6XxfEx1zzdQH8gGu+LoAPaWrfXrZ+ICMjo9Vj/F7IqFQqaLVaq21arRYqlcru8QUFBZg0aZLVNjksMqbUVJTfdBNSU1NdUozBiMlkQnl5eci2QajXPzbE6w9c7wcGDgzZNgj1ZwCgNvCH+vu9kOncuTPq6upQUVFhdi+dOHECY8aMsXu8UqmUXLQ4Q6FQhOTNa0motwHVP7TrD1AbhHr9AWoDX9bf71tdrVYjLy8Pq1atQn19PXbs2IGTJ08i77pZmyAIgiCI0MXvhQwAzJkzB5cuXcKdd96JFStW4JVXXkFsbKyvi0UQBEEQhI/xe9cSALRt2xZ///vffV0MgiAIgiD8jICwyBAEQRAEQdiDhAxBEARBEAELCRmCIAiCIAIWEjIEQRAEQQQsJGQIgiAIgghYSMgQBEEQBBGwkJAhCIIgCCJgISFDEARBEETAQkKGIAiCIIiAhYQMQRAEQRABCwkZgiAIgiACFo7ned7XhSAIgiAIgnAHssgQBEEQBBGwkJAhCIIgCCJgISFDEARBEETAQkKGIAiCIIiAhYQMQRAEQRABCwkZgiAIgiACFhIyBEEQBEEELCRkCIIgCIIIWEjIEARBEAQRsJCQIQiCIAgiYCEh4yIvv/wyRowYgUGDBmHChAnYtWuXeV9hYSGGDRuGoUOHYsWKFQjGVR8c1f/nn3/GtGnTMGDAAPzxj3/0cSmlY/To0bjnnnvQ2Nho3rZkyRKsWrXKh6XyLVVVVXjmmWeQm5uLBx54AD/++CMAoKioCA8//DDy8vIwZswYrF+/3scllQdH9f/mm2/w4IMPYtCgQRgxYgTeeOMNNDU1+bi08uCoDQSMRiMmTJiABx980EcllBdnz0C/fv0wcOBA89/Fixd9XFrpcfb7Hzx4EI899hgGDhyI/Px8fPnll94rGE+4xKlTp/iGhgae53n+t99+4wcNGsRXV1fzu3bt4u+++26+vLycv3LlCj927Fj+s88+83FppcdR/Q8dOsRv3ryZf+edd/innnrKx6WUjnvuuYcfMmQI/8knn5i3vfzyy/zbb7/tw1L5lhdffJFftGgRr9fr+a+//pofMmQIX11dza9fv57/9ddf+cbGRr6kpIQfPnw4v2/fPl8XV3Ic1f/SpUv81atXeZ7n+erqav4Pf/gD/9///tfHpZUHR20gsHbtWn7KlCn8Aw884MNSyoej+n/++edB1f85wlH9r1y5wo8cOZLftWsX39jYyFdVVfHl5eVeKxdZZFwkPT0dSqUSAMBxHAwGAyoqKlBcXIyxY8ciJSUFCQkJeOSRR7B582Yfl1Z6HNU/OzsbI0eORIcOHXxcQul5+OGHsWbNGhiNxhb71q1bhzFjxmDYsGGYN28e6urqAAB/+MMf8L///c98nE6nQ15eHiorK71WbjnQ6XTYsWMHfv/73yMqKgqDBw9Gly5dsHPnTjz44IO46aabEB4eji5duuC2227D4cOHfV1kSXFW//bt26Nt27ZWx587d85HJZUPZ20AAJWVldiwYQMKCgp8XFJ5aK3+wY6z+q9duxb33HMPBgwYgPDwcMTFxSElJcVrZSMhI4KlS5ciNzcXkydPRv/+/ZGZmYlTp06ha9eu5mOysrJQWlrqw1LKh736BzP9+vVDYmIiioqKrLbv2bMH//73v/G3v/0NRUVF0Ov1ePPNNwEAw4cPx7Zt28zH7ty5Ez169EB8fLxXyy41Z86cQXR0NBISEszbunXr1uJeb2pqwqFDh4Lu3mit/r/88gsGDRqEoUOHoqSkBGPGjPFVUWWjtTZ46623UFBQgKioKF8VUVZaq/+BAwdw5513Yty4cUHpXnVW/8OHD4PjOIwfPx4jRozA3LlzUVNT47WykZARwZw5c7Bz506sXLkSvXv3BsBUanR0tPkYjUYDnU7nqyLKir36BzvTp09vYZXZunUrHnzwQWRkZEClUuHJJ5/E1q1bAQBDhw7F3r17UVtbCwD48ssvMXz4cJ+UXUr0ej00Go3VNo1GA71eb7Xtn//8JxITE9G/f39vFk92Wqv/Lbfcgh07dmDjxo148MEHERMT44tiyoqzNvj1119x5swZjBo1ykelkx9n9e/duzfWrVuHL7/8EvPnz8e7776Lr7/+2kcllQdn9b9y5Qq2bNmCV199FZ999hmamprw+uuve61sJGREEhYWhn79+uGnn37Cnj17oFarzW4FANBqtVCr1T4sobzY1j/Yuf3225GQkGDlLqqoqEDHjh3Nn5OSkqDX61FXV4e4uDj06tUL33zzDerq6vDTTz9h6NChvii6pKhUKmi1WqttWq0WKpXK/Hn9+vXYvn07li9fDo7jvF1EWXGl/gCQnJyMLl26eLUT9xaO2iAqKgqvvfYaZs2aFXS/uyXO7oHk5GR06tQJCoUCOTk5mDhxYtAJGWf1j4yMxOjRo5GWlgaVSoWpU6fi22+/9VrZSMi4iclkwtmzZ5GRkYGSkhLz9uPHjwedWd0eQv1DgWnTpllZZRISEqxmJFy8eBFRUVFmy5zgXtqxYwd69uyJuLg4XxRbUjp37oy6ujpUVFSYt504ccJ8r2/duhVr1qzB//t//y8o6mtLa/W3hOf5oHw2HLVBly5dcPToUTz33HMYMWIEZs+ejbNnz2LEiBGor6/3YYmlRcw9EIyCzln9u3TpYnUs7+WZuyRkXECn02Hz5s3Q6XQwGo346quvsG/fPvTq1Qv5+fn45JNPcO7cOVRUVGDt2rVBZ151Vn+TyYSGhgYYjUar/wcT/fv3R7t27bBjxw4AwLBhw/Dpp5/i9OnT0Ov1+Mc//oG77rrLfPyQIUOwf/9+bNiwISjcSgCgVquRl5eHVatWob6+Hjt27MDJkyeRl5eH77//Hq+++ir+9re/oVOnTr4uqiw4q/+2bdvMwra8vByFhYXo27evj0ssPc7aoLi4GGvXrsXatWvx17/+FZ06dcLatWsRGRnp62JLhrP6f/fdd6iqqgIAHD16FB999BEGDhzo4xJLi7P633PPPSgqKsLZs2dRX1+PwsJCDBgwwGtlC/faNwUwHMdh48aNWLZsGXieR2pqKhYvXoyuXbuia9euOHHiBCZPngyTyYT77rsP9957r6+LLCnO6r937178/ve/Nx+bm5uLe+65BwsWLPBdgWVg2rRpePrppwGwOv7ud7/D008/Da1WizvuuAMzZ840HxsTE4M+ffpgz549eOONN3xVZMmZM2cO5s+fjzvvvBMdOnTAK6+8gtjYWKxZswY1NTWYMmWK+dhRo0bhz3/+sw9LKz2O6n/mzBm88cYbqKmpQZs2bTBs2DDMmDHD18WVBUdtYElsbCwUCoVVUGiw4Kj+P/zwA+bPn4/6+nokJiZi8uTJQfMSY4mj+t9+++14+OGH8fjjj8NoNOL222/HCy+84LVycby3bUAEQRAEQRASQa4lgiAIgiACFhIyBEEQBEEELCRkCIIgCIIIWEjIEARBEAQRsJCQIQiCIAgiYCEhQxAEQRBEwEJChiAIgiCIgIWEDEEQfsXevXvRt29f9O3bF+fPn/d1cQjCrzEYDFi4cCHy8/MxaNAgTJ8+3WrZnMLCQgwbNgxDhw7FihUrzMsHGI1GvPDCCxg1ahT69u1rtfSAJefPn0dubi6WLFnisAznz59H3759WyTBfPDBB7F3714JaukcEjIEQfiMBQsWoG/fvpg+fbp5W3R0NHJycpCTkwOlUunD0hGE/9PU1ITk5GSsWbMG27dvR15eHmbNmgUA2L17N9avX4/CwkJ8/PHH2L17Nz7//HPzub1798by5cudXv+NN97ADTfc0Go5wsLCsGfPHpw6dcqzCrkBCRmC+P/t3V1Ik18Ax/FvLJ060VmZzozY3yghguomscmokF7MF9KMmEU3GnTT21031YXWQi96IaImGSSGSZRaEgre9EJEXoRFVJYouE0rvXC2pcz/hTgaFRmU/vfn97nRec5zzvMMN37POc/zHPlPyczMpK6ujrq6uv/lY+5F/qTp1aZTUlIwGAzs3r2bgYEBRkZGuH//PiUlJaSnp7No0SLKyspoa2sDYP78+ezZs4fVq1f/tO0nT54wOTnJ+vXrf7kfBoOBkpISXC7XD8v9fj+nT59my5Yt5OXlUVtby+TkJH6/H7vdjtvtDtV9+vQppaWlM34PFGREZE7k5+fT2toKQFdXV2g66UdTS9MjN9Pb5OXlYbfbqampwe/3U1NTg91uZ8eOHTQ1NYX1MzQ0xKlTp9i6dStZWVkUFhbicrn+d4ubigC8ePGCBQsWYDab+fDhA8uXLw+VrVixgvfv38+onfHxcc6dO8fhw4dn3HdZWRmPHj2it7f3uzKXy0VfXx+3bt3C5XJx79492traiImJwWaz0dHREarb0dERthDvryjIiMicWLlyJWazGQCTyRSaTnr9+vVPt/n48SNnzpwhKioKn89HQ0MDe/fupbm5mfj4eDweD2fPng0Nb4+MjLB//35aWlr48uULVqsVj8fD5cuXqaysnI3DFJk1o6OjVFVVcfDgQQDGxsaIj48PlZtMJsbGxmbUVn19PRs2bGDp0qUz7j8xMZFdu3b9cFSmvb2diooKEhISsFgsOBwOHjx4AEBubi7t7e3A1LU7nZ2dv7XopoKMiMyJ6upqbDYbMBVqpqeTMjMzf7rN+Pg4Fy9e5Pbt26SkpADQ399PQ0MDTU1NGI1GgsEgz58/B6CxsRGv18vChQu5c+cODQ0NOJ1OAFpbW+nv7//LRykyOwKBAMeOHcNms1FYWAhAXFwco6OjoTo+n4+4uLhftjU4OEhzc3PYivbfKi0tJScnh5ycHDweT1iZw+Hg4cOH343KDA0NkZqaGnptsVgYGhoCIDs7m76+PgYGBnj27BmLFy9m2bJlMzpugPkzrikiMscSEhJYs2YNAKmpqXi9XjIyMkhLSwMgKSkJj8fD58+fAXj58iUAnz59+u4Mb3Jyku7u7t864xT5L5qYmOD48eMkJyeHTQVZrVbevXsXOmF48+YN//zzzy/be/XqFV6vl507dwJTIzvBYBC3282FCxdobGwMq//t3YVms5mSkhJqa2vD6iQnJ+PxeLBYLAB4PB6Sk5MBiI6Oxm6309HRQW9v729NK4GCjIhEEJPJFPrdYDB897d58+YBhG4xnf5pMpmwWq3ftRcTE/PX9lVktlRWVhIIBHA6naHPAMD27dtxOp3k5uZiNBqpr6/H4XCEyr9+/Rr6jIyPjxMIBDAajWRnZ3P37t1QvRs3bjA8PMyRI0dmtD9lZWUUFRWF2gbYvHkzV69exel04vP5qK+vDxvxyc3N5dKlS3i9Xq5fv/5bx68gIyJzZjpI+P3+v9L+qlWrePz4MQaDgaqqqtDIjc/no7Ozk40bN/6VfkVmi9vtpqWlBaPRGPb/fP78eWw2G2/fvmXfvn0Eg0GKioooKCgI1SkuLg7dLZSfnw9MPccpOjo67I7B2NhYxsbGQte0/YrZbKa4uDgskFRUVFBTU0NxcTFRUVEUFRWxbdu2UHlWVhYnTpxgyZIlpKen/9Z7MG/y28gkIjKLbt68SXV1NQAZGRnExsZSXl7OoUOHAGhubiYtLY2TJ0/S2tqKxWKhpaUFmPpi7OrqYt26dVy5cgWY+jJ2u92Ul5dz4MABhoeHcTgcDA4OEhUVhdVqxefz4fV6mZiYmJWHdYnI36WLfUVkzhQUFLBp0ybi4+Pp6emhu7ubYDD4x9pPSkri2rVr5Ofnk5iYSE9PD4FAgLVr13L06NE/1o+IzB2NyIiIiEjE0oiMiIiIRCwFGREREYlYCjIiIiISsRRkREREJGIpyIiIiEjEUpARERGRiKUgIyIiIhFLQUZEREQiloKMiIiIRCwFGREREYlYCjIiIiISsRRkREREJGL9C6vxsuj6F4F3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def plot_anom(selected_anomaly, delta_plotted_days):\n", + " one_day = series_taxi.freq * 24 * 2\n", + " anomaly_date = anomalies_day[selected_anomaly][0]\n", + " start_timestamp = anomaly_date - delta_plotted_days * one_day\n", + " end_timestamp = anomaly_date + (delta_plotted_days + 1) * one_day\n", + "\n", + " series_taxi[start_timestamp:end_timestamp].plot(\n", + " label=\"Number of taxi passengers\", color=\"#6464ff\", linewidth=0.8\n", + " )\n", + "\n", + " (series_taxi_anomalies[start_timestamp:end_timestamp] * 10000).plot(\n", + " label=\"Known anomaly\", color=\"r\", linewidth=0.8\n", + " )\n", + " plt.title(selected_anomaly)\n", + " plt.show()\n", + "\n", + "\n", + "for anom_name in anomalies_day:\n", + " plot_anom(anom_name, 3)\n", + " break # remove this to see all anomalies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The goal would be to detect these five irregular periods and identify other possible abnormal days. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Train a Darts forecasting model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will use a `RegressionModel` to predict the number of taxi passengers. The first 4500 timestamps will be used to train the model. The training set is considered to be anomaly-free, the five considered anomalies are located after the 4500th timestamps. The number of lags is set to 1 week, assuming the demand follows a periodicity of 1 week. To help the model, additional information on the targeted series is passed as covariates (the hour and the day of the week).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "RegressionModel(lags=336, lags_past_covariates=None, lags_future_covariates=[0], output_chunk_length=1, output_chunk_shift=0, add_encoders={'cyclic': {'future': ['hour', 'dayofweek']}}, model=None, multi_models=True, use_static_covariates=True)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# split the data in a training and testing set\n", + "s_taxi_train = series_taxi[:4500]\n", + "s_taxi_test = series_taxi[4500:]\n", + "\n", + "# Add covariates (hour and day of the week)\n", + "add_encoders = {\n", + " \"cyclic\": {\"future\": [\"hour\", \"dayofweek\"]},\n", + "}\n", + "\n", + "# one week corresponds to (7 days * 24 hours * 2) of 30 minutes\n", + "one_week = 7 * 24 * 2\n", + "\n", + "forecasting_model = RegressionModel(\n", + " lags=one_week,\n", + " lags_future_covariates=[0],\n", + " output_chunk_length=1,\n", + " add_encoders=add_encoders,\n", + ")\n", + "forecasting_model.fit(s_taxi_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use a Forecasting Anomaly Model " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The anomaly model consists of two inputs:\n", + "- a fitted `GlobalForecastingModel` (you can find a list [here](https://unit8co.github.io/darts/userguide/covariates.html#global-forecasting-models-gfms). If the model hasn't been fitted, set parameter `allow_model_training` to `True` when calling `fit()`)\n", + "- a single or list of `AnomalyScorer` (trainable or not)\n", + "\n", + "For this example, three scorers will be used:\n", + "- `NormScorer` (window is by default set to 1)\n", + "- `WassersteinScorer` with a half-day window (24 timestamps) and no window aggregation\n", + "- `WassersteinScorer` with a full-day window (48 timestamps) including window aggregation\n", + "\n", + "The `window` parameter is an integer value indicating the window size used by the scorer to transform the series into an anomaly score. A scorer will slice the given series into subsequences of size W and returns a value indicating how anomalous these subset of W values are.\n", + "\n", + "The `window_agg` can be used to transform the window-wise scores into point-wise scores by aggregating all anomaly scores from each window that the point was included in.\n", + "\n", + "The following figure illustrates the mechanism of a Forecasting Anomaly model:\n", + "\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using the main functions: fit(), score(), eval_metric() and show_anomalies()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# with timestamps of 30 minutes\n", + "half_a_day = 2 * 12\n", + "full_day = 2 * 24\n", + "\n", + "# instantiate the anomaly model with: one fitted model, and 3 scorers\n", + "anomaly_model = ForecastingAnomalyModel(\n", + " model=forecasting_model,\n", + " scorer=[\n", + " NormScorer(ord=1),\n", + " WassersteinScorer(window=half_a_day, window_agg=False),\n", + " WassersteinScorer(window=full_day, window_agg=True),\n", + " ],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's train the anomaly model with `fit()`. In sequence it will:\n", + "\n", + "- fit the forecasting model on the given series if it has not been fitted yet and `allow_model_training=True`.\n", + "- generate historical forecasts for the given series.\n", + "- feed the historical forecasts to each fittable/trainable scorer:\n", + " - compute the differences between the forecasts and the given series (controled by the scorers `diff_fn`, see Darts \"per time step\" metrics [here](https://unit8co.github.io/darts/generated_api/darts.metrics.html))\n", + " - train the scorer on these differences\n", + "\n", + "You can control how the historical forecasts are generated when calling `fit()` (the supported parameters are [here](https://unit8co.github.io/darts/generated_api/darts.ad.anomaly_model.forecasting_am.html#darts.ad.anomaly_model.forecasting_am.ForecastingAnomalyModel.fit))." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "961e3b451e6c49e6b04c4c1cd0f3aa8a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1 [00:00" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "START = 0.1\n", + "anomaly_model.fit(s_taxi_train, start=START, allow_model_training=False, verbose=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We call the function `score()` to compute the anomaly scores of a new series `s_taxi_test`. It returns the scores from each scorer in the anomaly model. We will use the results in the next section. With `return_model_prediction=True`, we can additionally get the historical forecasts generated by the forecasting model." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "50a7f565ce2a4cf6b49a69fb5cf209a0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1 [00:00 MAE: 595.190366262045, RMSE: 896.6287614972252\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABM0AAAG/CAYAAABL+CCVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7gURdbG3565+V5AQDIIXBEVUZIJETAhiGv8lGhEQFfXrIiBpOCCC4p5XSSoiygGVFYkioKgKAiCIDnnHG6cme7+/uju6qru6gk3z9zzex7lznRNd1V3dYW3zjml6LqugyAIgiAIgiAIgiAIgiAIhq+8M0AQBEEQBEEQBEEQBEEQFQ0SzQiCIAiCIAiCIAiCIAjCAYlmBEEQBEEQBEEQBEEQBOGARDOCIAiCIAiCIAiCIAiCcECiGUEQBEEQBEEQBEEQBEE4INGMIAiCIAiCIAiCIAiCIByQaEYQBEEQBEEQBEEQBEEQDkg0IwiCIAiCIAiCIAiCIAgHJJoRBEEQBEEQBEEQBEEQhAMSzcoBTdOwbds2aJpW3lkhShF6zkRJQvWpckDPmYgFqi+VA3rORElC9alyQM+ZKEkqe30i0YwgCIIgCIIgCIIgCIIgHJBoRhAEQRAEQRAEQRAEQRAOSDQjCIIgCIIgCIIgCIIgCAckmhEEQRAEQRAEQRAEQRCEAxLNCIIgCIIgCIIgCIIgCMIBiWYEQRAEQRAEQRAEQRAE4YBEM4IgCIIgCIIgCIIgCIJwQKIZQRAEQRAEQRAEQRAEQTgosmi2evVqXHTRRZgyZQr7bsqUKbjmmmtw1VVX4fXXX4eu6+zY2rVr0bt3b3To0AEDBw7Evn372LGCggIMGTIEnTp1wvXXX4/Zs2cL15o5cya6d++Ozp07Y8SIEQgGg0XNNkEQBEEQBEEQBEEQBEFEpEiimaZpePXVV9GiRQv23U8//YTPP/8cU6ZMwfTp0/HTTz/hm2++AQAEAgEMGjQIvXr1wvfff4+WLVti6NCh7LfvvfceTpw4gVmzZuHll1/G6NGjsWPHDgDA5s2b8dprr2Hs2LH49ttvsXfvXkycOLE4ZSYIgiAIgiAIgiAIgiCIsBRJNPvyyy/RsmVLNG3alH03a9Ys3HbbbWjYsCFOP/103HHHHfjuu+8AACtWrEB6ejpuuukmpKamYsCAAVi3bh2zNps1axYGDhyIrKwstGrVCp06dcLcuXMBALNnz0aXLl3QokULZGVloX///uy8BEEQBEEQBEEQBEEQBFEaJMX6gxMnTmDatGmYPHkyXn31Vfb9tm3b0L17d/a5efPmePvttwEAW7duRbNmzdix9PR0NGzYEFu3bkVmZiaOHDkiHG/evDnWrl3Lftu+fXt27KyzzsKePXtQUFCAtLQ0V/4CgQACgYBYyKQkpKSkxFrUUkPTNOFfIjGh50yUJFSfKgf0nIlYoPpSOaDnTJQkVJ8qBxXpOW/fvh1nnnkmVqxYgdatW5d3dgAA69evR79+/bBq1Sqcc845+P3338vs2lOmTMETTzyBo0ePltk1i0tFqk8lic8XnQ1ZzKLZ22+/jd69e6Nq1arC93l5ecjKymKfMzMzkZeXBwDIz89HZmamkD4zMxP5+fnIy8uD3+8XBLBwv7WukZ+fLxXNJk+ejAkTJgjf3X777ejRo0esRS11du3aVd5ZIMoAes5ESUL1qXJAz5mIBaovlQN6zkRJQvWpcrBr1y48/fTT+OKLL/D000/j73//Ozs2d+5cPPDAA9i6dWup5mHPnj0AgH379qF69eqleq1oGTRoEHw+H+bPn4+MjAwWGoqnd+/eOPfcc4WwUiVB+/btMW/ePOk1KzqJ1m7wnpPhiEk0W79+PdauXYtnnnnGdSwjIwM5OTnsc25uLjIyMgAYlmW5ublC+tzcXKSnpyMjIwOqqgqWY+F+a10jPT1dmsd7770Xffv2FQtZAS3Ndu3ahUaNGkWtbhLxBz1noiSh+lQ5oOdMxALVl8oBPWeiJKH6VDngn3NmZibS0tIwYcIEPPPMM0y4qlWrFgCgcePGpZoXa3PAevXqlei1AoFAkef4+/fvR/fu3XHZZZd5pklLS0PVqlVL/f7EAxWl3SjOMy8OMZX4999/x86dO9G9e3d07doV8+bNw6RJkzBy5Eg0bdoUmzdvZmk3btyI7OxsAEB2drZwLD8/H7t370Z2djaqVq2KmjVrRv3bTZs2oUGDBlIrMwBISUlBVlaW8F9aWhp8Pl+F+g9AueeB/qPnTP/F139UnyrHf/Sc6b9Y/qP6Ujn+o+dM/5Xkf1SfKsd/1nNWFAXXXHMN6tatizFjxnjWhRdffBFt27YVjr/xxhvIzs5mn/v164dbb70Vo0ePRr169VCjRg289NJL0DQNzzzzDE4//XScccYZmDJlius6GzduxOWXX46MjAycf/75WLRokZBm/fr1+Nvf/oaqVauiXr16uPvuu3H06FF2/KqrrsIjjzyCp556CrVr10bXrl09yz1y5EicccYZSE9PR9u2bTF37lx23O/3Y8WKFXjppZfg9/vx4osvus7Rr18//Pjjj3jjjTfg9/vh9/uxc+dO6LqOAQMG4Mwzz0RmZibOPfdcvPnmm+x3gUAA559/Ph544AH23Y4dO1C9enVMnDgRPp8PH374IWrUqOH53Hbu3Am/34/p06d73q9I+fD5fFi0aBEuvfRSVKlSBTVq1EDHjh2xa9cu+Hw+rFmzBldffTWqVauG0047DRdddBF+//139ttffvkFV1xxBTIzM9G4cWM8/vjjyMvLY8ezs7MxevRo9O/fH9WqVUOTJk3w/vvvC9f/5Zdf0LZtW2RkZODiiy/GN998A7/fj9WrVxf7mb/44oto0qQJC/v12GOPFfkdiYaYRLNbb70VM2bMwNSpUzF16lR06tQJvXr1wqOPPoru3bvjiy++wJ49e3D48GFMnToV1113HQCgXbt2yM/Px8yZMxEIBDBx4kS0aNEC9erVAwB0794d77//PnJzc7FmzRosWrQIXbp0AQB069YN8+fPx/r165GTk4NJkyax8xIEQRAiS9boKCjUyzsbBEEQBEEQRAXB7/fj5Zdfxptvvondu3cX61zff/899u7di0WLFuHVV1/F8OHD8be//Q3Vq1fHsmXL8MADD+CBBx5wufI9/fTTePLJJ7Fy5UpcdtlluPHGG3HkyBEAhutm586d0bp1ayxfvhyzZ8/GgQMHXCGWPvjgAyQlJWHJkiV47733pPl7/fXXMW7cOIwdOxarV69G165dceONN2LTpk3sWueddx6efPJJ7Nu3D0899ZT0HO3bt8eAAQOwb98+7Nu3D40aNYKmaWjYsCGmT5+OdevWYejQoXjuuecwffp0AIZ12tSpU/HBBx/gq6++gqqquPPOO3HllVdiwIABMd3ncPcrUj5CoRBuvvlmdO7cGatXr8bPP/+MgQMHQlEUAEDfvn3RsGFD/Pbbb1ixYgUGDx6M5ORkAMCaNWvQtWtX3HrrrVi9ejU+/fRTLFmyBMOGDRPyN27cOFx44YVYuXIlHnzwQfz973/H+vXrAQCnTp3CDTfcgPPPPx+///47XnrpJZe3YlGf+eeff47XXnsN7733HjZt2oSvvvoK559/fkz3Nmb0YjBs2DB98uTJ7POkSZP0q666Sr/iiiv08ePH65qmsWN//vmn3rNnT/2yyy7T+/fvr+/du5cdy8/P159//nn98ssv17t3765/9913wnW++eYbvVu3bnrHjh31YcOG6YWFhcXJdrmjqqq+detWXVXV8s4KUYrQcyZKkmjrEzqq+lNvU52LV6jdIGKB6kvlgJ4zUZJQfSpZ2rVrpzdo0KDM/2vXrl3YfPHP+e6779ZvuukmXdd1/dJLL9X79eun67quz5gxQ+flgGHDhumtWrUSzvPaa6/pjRs3Zp/vvvtuvXHjxkL9Ofvss/WOHTuyz6FQSM/MzNSnTZum67qub9u2TQegjx49mqUJBoN6w4YN9TFjxui6rutDhgzRr732WuHau3bt0gHoGzZs0HVd1zt37qy3bt06bLl1Xdfr16+vjxo1Svjuoosu0h988EH2uVWrVvqwYcPCnqdz5876o48+GvF6Dz74oP5///d/wnevvPKKfvrpp+sPP/ywXrduXf3QoUPs2OTJk/Vq1ap5ni+a+xUpH0eOHNEB6D/88IM0bZUqVfQpU6ZIj9155536wIEDhe9+/PFH3efz6bm5ubqu63rjxo31O+64gx3XNE2vXbu2/u677+q6ruvvvvuuXrNmTT0/P5+lmTBhgg5AX7lypa7rRX/m48aN05s3b64HAgHPe1HSxLwRAM/w4cOFz/feey/uvfdeadrzzjsPn3zyifRYWloaRo4c6XmdG264ATfccEOR80kQBFEZ+OCDDwDciZ+XbwbQvLyzQxAEQRAEkdDs37+fBbqPB8aMGYOrrroKTz75ZJHPcd555wmubXXq1EHLli3ZZ7/fj5o1a+LgwYPC79q3b8/+TkpKwoUXXoi//voLALBixQosXLhQ2FjQYsuWLWje3BjXXnjhhWHzdvLkSezduxcdOnQQvu/QoQP++OOPKEsYnn//+994//33sWPHDuTn5yMQCLh2BX3yySfx9ddf480338R3332H008/PebrhLtfkfJRo0YN3HPPPejatSu6dOmCa665Bj169GCefk888QT69++Pjz76CNdccw1uv/12nHnmmQCMZ7F582ZMnTqVXUvXdWiahm3btuG8884DAFxwwQXsuKIoqFu3LnvmGzZswAUXXCCE1Lr44ouF8hX1md9+++0YP348srOz0a1bN3Tv3h033HADkpKKJW2FpfTOTBAEQZQp99xzD9DxTixZshQkmhEEQRAEQZQudevWjavrdurUCV27dsVzzz1njBs5rFhZPMFg0HUOy43PQlEU6XeapkXMj+UuqGkabrjhBowZM8aVxhJ6ACAzMzPiOfnzWui67vquKEyfPh2PP/44xo0bh/bt26NKlSr417/+hWXLlgnpDh48iA0bNsDv92PTpk3o1q1bsa8N2OWKJh+TJ0/GI488gtmzZ+PTTz/FCy+8gHnz5uHSSy/F8OHD0adPH3z77bf47rvvMGzYMHzyySe45ZZboGka7r//fjzyyCPsXJqmYc+ePUxYA+T1wHrmsvvtrFtFfeaNGjXChg0bMG/ePMyfPx8PPvgg/vWvf+HHH3905amkINGMIAiCIAiCIAiCIGJk+fLl5Z2FmBk9ejRat27NLHksatWqhf379wuCx6pVq0rsur/88gs6deoEwIi5tWLFCvzjH/8AALRt2xZffPEFmjRpUiyLoapVq6J+/fr46aef2LUAYOnSpS5Lp0ikpKRAVVXhu8WLF+Oyyy7Dgw8+yL7bsmWL67f9+vVDy5YtMWDAANx33324+uqr0aJFi5iuH+5+RZuPNm3aoE2bNnj22WfRvn17fPzxx7j00ksBAM2bN0fz5s3x+OOPo3fv3pg8eTJuueUWtG3bFmvXrkWzZs3YeTRNQ3JyctQ7V55zzjmYOnUqCgsLkZqaCsD9rhTnmaenp+PGG2/EjTfeiIceegjnnHMO1qxZg7Zt28Z0nmihfYYJgiASjuKvpBEEQRAEQRCJx/nnn4++ffvizTffFL6/4oorcOjQIbzyyivYsmUL3n77bXz33Xcldt23334bM2bMwPr16/HQQw/h2LFj6NevHwDgoYcewtGjR9G7d2/8+uuv2Lp1K+bOnYt+/fq5hKtIPP300xgzZgw+/fRTbNiwAYMHD8aqVavw6KOPxnSeJk2aYNmyZdi+fTsOHz4MTdPQrFkzLF++HHPmzMHGjRsxZMgQ/Pbbb65y/vzzz/jwww/Rp08f3Hbbbejbty8CgUBM1w93vyLlY9u2bXj22Wfx888/Y8eOHZg7dy42btyIc889F/n5+fjHP/6BH374ATt27MCSJUvw22+/4dxzzwUAPPPMM/j555/x0EMPYdWqVdi0aRO++eYbV2iucPTp0weapmHgwIH466+/MGfOHIwdOxaAbS1X1Gc+ZcoUTJw4EX/++Se2bt2Kjz76COnp6WjcuHFM9zcWSDQjCIJIOEg0IwiCIAiCIOS89NJLLne5c889F++88w7efvtttGrVCr/++qt0Z8miMnr0aIwZMwatWrXC4sWL8fXXX7NYX/Xr18eSJUugqiq6du2Kli1b4tFHH0W1atWE+GnR8Mgjj+DJJ5/Ek08+ifPPPx+zZ8/GN998g7POOium8zz11FPw+/1o0aIFatWqhZ07d+KBBx7Arbfeip49e+KSSy7BkSNHBGuv9evX4+mnn8Y777yDRo0aATDEr+PHj2PIkCExXT/c/YqUj4yMDKxfvx7/93//h+bNm2PgwIH4xz/+gfvvvx9+vx9HjhzBXXfdhebNm6NHjx647rrrMGLECABGrLIff/wRmzZtQseOHdGmTRsMGzYMtWrVijrvVatWxcyZM7Fq1Sq0bt0azz//PIYOHQoALM5ZUZ/5aaedhgkTJqBDhw644IILsGDBAsycORM1a9aM6f7GgqI73xai1NE0DTt27EDjxo1jbgSI+IGeM1GSRFOfFEUBOqrAgf9C33BXGeeQKAmo3SBigepL5YCeM1GSUH2qHNBzjl+2b9+Opk2bYuXKla4NBsqLkqhPU6dOxb333osTJ04gPT29hHNYulBMM4IgiESjBAKdEgRBEARBEARBFIUPP/wQ2dnZaNCgAf744w8888wz6NGjR9wJZgCJZgRBEAkIiWYEQRAEQRAEQZQP+/fvx9ChQ7F//37Uq1cPt99+O0aNGlXe2SoSJJoRBEEQBEEQBEEQBEGUM02aNHHFm4tHBg0ahEGDBpV3NkoEcnAmCIJIOMjSjCAIgiAIgiAIoriQaEYQBEEQBEEQBEEQBEEQDkg0IwiCSDjI0owgCIIgCIIgCKK4kGhGEARBEARBEARBEARBEA5INCMIgkg0FLI0IwiCIAiCIAiCKC4kmhEEQSQcJJoRBEEQBEEQBEEUFxLNCIIgCIIgCIIgCIIoFsOHD0fr1q3Z53vuuQc333xzsc5ZEucoKYYPH446depAURR89dVXUf/uiiuuwGOPPVZq+Spttm/fjuzsbKxatSrq38R7mXlINCMIgkg4yNKMIAiCIAiCMEQnRVGgKAqSk5ORnZ2Np556Crm5uaV+7ddffx1TpkyJKu327duhKIpLmInlHKXJX3/9hREjRuC9997Dvn37cN1117nS/PDDD1AUBcePHy/7DBKlRlJ5Z4AgCIIoaUg0IwiCIAiCIAy6deuGyZMnIxgMYvHixejfvz9yc3Px7rvvutIGg0EkJyeXyHWrVatWIc5REmzZsgUAcNNNN0Gh+MGVCrI0IwiCIAiCIAiCIIgEJTU1FXXr1kWjRo3Qp08f9O3bl7kXWi6VkyZNQnZ2NlJTU6HrOk6cOIGBAweidu3aqFq1Kq666ir88ccfwnlHjx6NOnXqoEqVKrjvvvtQUFAgHHe6VmqahjFjxqBZs2ZITU3FGWecgVGjRgEAmjZtCgBo06YNFEXBFVdcIT1HYWEhHnnkEdSuXRtpaWm4/PLL8dtvv7HjlrXXggULcOGFFyIjIwOXXXYZNmzYEPYerVmzBldddRXS09NRs2ZNDBw4EDk5Oewe3XDDDQAAn88nFc22b9+OK6+8EgBQvXp1KIqCe+65Ryj7oEGDUKNGDdStWxfDhw8Xfh/N/XZeT1EUTJ8+HR07dkR6ejouuugibNy4Eb/99hsuvPBCZGVloVu3bjh06JCQjxdffBENGzZEamoqWrdujdmzZwvn/vXXX9GmTRukpaXhwgsvxMqVK13XX7duHbp3746srCzUqVMHd955Jw4fPhz2HscrJJoRBEEkGrT6RRAEQRAEQXiQnp6OYDDIPm/evBnTp0/HF198wdwjr7/+euzfvx+zZs3CihUr0LZtW1x99dU4evQoAGD69OkYNmwYRo0aheXLl6NevXp45513wl732WefxZgxYzBkyBCsW7cOH3/8MerUqQPAEGoAYP78+di3bx++/PJL6TkGDRqEL774Ah988AF+//13NGvWDF27dmX5snj++ecxbtw4LF++HElJSejXr59nvvLy8tCtWzdUr14dv/32Gz777DPMnz8f//jHPwAATz31FCZPngwA2LdvH/bt2+c6R6NGjfDFF18AADZs2IB9+/bh9ddfZ8c/+OADZGZmYtmyZXjllVfw4osvYt68eQAAXdcj3m8vhg0bhhdeeAG///47kpKS0Lt3bwwaNAivv/46Fi9ejC1btmDo0KEs/euvv45x48Zh7NixWL16Nbp27Yobb7wRmzZtAgDk5ubib3/7G84++2ysWLECw4cPx6BBg4Rr7tu3D507d0br1q2xfPlyzJ49GwcOHECPHj3C5jVeIfdMgiCIhINEM4IgCIIgiNImFNKx+1DkdCVNw1pAUlLRxnu//vorPv74Y1x99dXsu0AggI8++gi1atUCAHz//fdYs2YNDh48iNTUVADA2LFj8dVXX+Hzzz/HwIEDMX78ePTr1w/9+/cHAIwcORLz5893WZtZnDp1Cq+//jreeust3H333QCAM888E5dffjkAsGvXrFkTdevWlZ7DcimdMmUKiyk2YcIEzJs3DxMnTsTTTz/N0o4aNQqdO3cGAAwePBjXX389CgoKkJaW5jrv1KlTkZ+fjw8//BCZmZkAgLfeegs33HADxowZgzp16uC0004DAM+8+f1+1KhRAwBQu3Ztlt7iggsuwLBhwwAAZ511Ft566y0sWLAAXbp0wcKFCyPeby+eeuopdO3aFQDw6KOPonfv3liwYAE6dOgAALjvvvuEmHBjx47FM888g169egEAxowZg4ULF2L8+PF4++23MXXqVKiqikmTJiEjIwPnnXcedu7ciYceeoid491330Xbtm3x8ssvs+8mTZqERo0aYePGjWjevLlnfuMREs0IgiASEF3XKd4CQRAEQRBEKbL7ENC0p17m1932qYIm9aJP/7///Q9ZWVkIhUIIBoO46aab8Oabb7LjjRs3ZqIVAKxYsQI5OTmoWbOmcJ78/HwW2+uvv/7CAw88IBxv3749Fi5cKM3DX3/9hcLCQkGsi5UtW7YgGAwyQQgAkpOTcfHFF+Ovv/4S0l5wwQXs73r1jJt18OBBnHHGGdK8tWrViglmANChQwdomoYNGzYwa7jiwOfHytPBgwcBRHe/ozmvlc/zzz9f+M66zsmTJ7F3717h/gFGWS1XUOteZGRksOPt27cX0q9YsQILFy5EVlaWKz9btmwh0YwgCIKo6CgkmhEEQRAEQZQyDWsZAlZ5XDcWrrzySrz77rtITk5G/fr1XYH+ebEIMOJe1atXDz/88IPrXE4LqmhJT08v0u94dN0QKJ1jXNm4ly+jdUzTNM/zeo2bS2o87bzniqKw/BTnfsvK6fzOWe5w98+6x+HQNI1Z4TmxBMpEgkQzgiCIBCSaDo8gCIIgCIIoOklJsVl8lReZmZlo1qxZ1Onbtm2L/fv3IykpCU2aNJGmOffcc/HLL7/grrvuYt/98ssvnuc866yzkJ6ejgULFjCXTp6UlBQAgKqqnudo1qwZUlJS8NNPP6FPnz4AjN0+ly9fjsceeyyKkslp0aIFPvjgA+Tm5jIBccmSJfD5fDFZTUVTBhnR3O+SoGrVqqhfvz5++ukndOrUiX2/dOlSXHzxxQCMe/HRRx8hPz+fCZ3O59q2bVt88cUXaNKkCZKSEl9Soo0ACIIgEhASzQiCIAiCIIiicM0116B9+/a4+eabMWfOHGzfvh1Lly7FCy+8gOXLlwMw4mdNmjQJkyZNwsaNGzFs2DCsXbvW85xpaWl45plnMGjQIHz44YfYsmULfvnlF0ycOBGAEQcsPT2dBZU/ceKE6xyZmZn4+9//jqeffhqzZ8/GunXrMGDAAOTl5eG+++4rcnn79u2LtLQ03H333fjzzz+xcOFCPPzww7jzzjtjcs1s3LgxFEXB//73Pxw6dIjtvhmJaO53SfH0009jzJgx+PTTT7FhwwYMHjwYq1atwqOPPgoA6NOnD3w+H+677z6sW7cOs2bNwquvviqc46GHHsLRo0fRu3dv/Prrr9i6dSvmzp2Lfv36xSwYxgMkmhEEQSQcbjNsgiAIgiAIgogGRVEwa9YsdOrUCf369UPz5s3Rq1cvbN++nYlIPXv2xNChQ/HMM8+gXbt22LFjB/7+97+HPe+QIUPw5JNPYujQoTj33HPRs2dPFm8rKSkJb7zxBt577z3Ur18fN910k/Qco0ePxv/93//hzjvvRNu2bbF582bMmTMH1atXL3J5MzIyMGfOHBw9ehQXXXQRbrvtNlx99dV46623YjpPgwYNMGLECAwePBh16tRhu29GIpr7XVI88sgjePLJJ/Hkk0/i/PPPx+zZs/HNN9/grLPOAgBkZWVh5syZWLduHdq0aYPnn38e//znP4Vz1K9fH0uWLIGqqujatStatmyJRx99FNWqVYPPl3gSk6KTOUKZo2kaduzYgcaNGydkpSIM6DkTJUk09UlRFKCjChz+GgUru7Pdd4j4gdoNIhaovlQO6DkTJQnVp8oBPWeiJKns9anylZggCCLRURRyzyQIgiAIgiAIgigmJJoRBEEkIOSeSRAEQRAEQRAEUTxINCMIgkg4yNKMIAiCIAiCIAiiuJBoRhAEkXDQRgAEQRAEQRAEQRDFhUQzgiCIBIQszQiCIAiCIAiCIIoHiWYEQRAJB7lnEgRBEARBEARBFBcSzQiCIBINhdwzCYIgCIIgCIIgikvMotmoUaPQtWtXdO7cGT179sTixYsBADNnzsQll1yCjh07sv/279/Pfrd27Vr07t0bHTp0wMCBA7Fv3z52rKCgAEOGDEGnTp1w/fXXY/bs2cI1Z86cie7du6Nz584YMWIEgsFgUctLEARRKSBLM4IgCIIgCIIgiOIRs2jWt29fzJw5Ez/++COGDh2KIUOG4OTJkwCAiy++GIsXL2b/1a1bFwAQCAQwaNAg9OrVC99//z1atmyJoUOHsnO+9957OHHiBGbNmoWXX34Zo0ePxo4dOwAAmzdvxmuvvYaxY8fi22+/xd69ezFx4sSSKDtBEESCQpZmBEEQBEEQBEEQxSVm0axJkyZISUkBACiKgkAggMOHD4f9zYoVK5Ceno6bbroJqampGDBgANatW8eszWbNmoWBAwciKysLrVq1QqdOnTB37lwAwOzZs9GlSxe0aNECWVlZ6N+/P7777rtYs00QBFGJUMo7AwRBEARBEARBEHFPUlF+NHr0aMycOROFhYXo3LkzsrOzsXbtWvzxxx+4+uqrUaNGDfTs2RO33XYbAGDr1q1o1qwZ+316ejoaNmyIrVu3IjMzE0eOHBGON2/eHGvXrmW/bd++PTt21llnYc+ePSgoKEBaWporb4FAAIFAQCxkUhIT+ioClgUIWYIkNvSciZIk1vqkaRrVvTiE2g0iFqi+VA7oORMlCdWnygE9Z6IkSdT65PNFZ0NWJNFs8ODBePrpp7F8+XJs3rwZANC2bVt88sknqFu3LtatW4ennnoKNWvWxJVXXon8/HxkZmYK58jMzER+fj7y8vLg9/sFASwzMxN5eXkA4PptVlYW+14mmk2ePBkTJkwQvrv99tvRo0ePohS1VNm1a1d5Z4EoA+g5EyVJtPVp165dyM3NLeXcEKUFtRtELFB9qRzQcyZKEqpPlQN6zkRJkmj1qWnTplGlK5JoBgB+vx+XXHIJpk2bhuzsbMEarGXLlujVqxcWLlyIK6+8Eunp6a7JW25uLtLT05GRkQFVVQXLsdzcXGRkZACA67c5OTnsexn33nsv+vbtKxayAlqa7dq1C40aNYpa3STiD3rOREkSW31S0LBhQ9SqVatM8kaUHNRuELFA9aVyQM+ZKEmoPlUO6DkTJUllr09FFs0sNE3D7t27Xd8rih1TJzs7GzNmzGCf8/PzsXv3bmRnZ6Nq1aqoWbMmNm/ejJYtWwIANm7ciOzsbPZby5oNADZt2oQGDRpIrcwAICUlpUIJZOHw+XyVstJVNug5EyVJVPVJUajexTn0/IhYoPpSOaDnTJQkVJ8qB/SciZKkstanmEqcl5eH7777Dnl5eQiFQliwYAFWrFiBNm3aYOnSpTh27BgAYP369fj000/RsWNHAEC7du2Qn5+PmTNnIhAIYOLEiWjRogXq1asHAOjevTvef/995ObmYs2aNVi0aBG6dOkCAOjWrRvmz5+P9evXIycnB5MmTcJ1111XkveAIAiCIAiCIAiCIAiCIARisjRTFAVff/01xowZA13X0ahRI4wcORLNmjXDzJkzMWzYMBQUFKBWrVq46667mPCVkpKCV155BS+99BJGjx6NFi1a4MUXX2Tnvf/++zFy5Eh069YNVatWxeDBg9GkSRMAQLNmzfDYY4/h8ccfR25uLq666ir069ev5O4AQRBEwkG7ZxIEQRAEQRAEQRQXRdd1vbwzUdnQNA07duxA48aNK6V5Y2WBnjNRkkRTnxRFATqqwLH5OPh9G4ppFodQu0HEAtWXygE9Z6IkofpUOaDnTJQklb0+Vb4SEwRBVAJoPYQgCIIgCIIgCKJ4kGhGEARBEARBEARBEARBEA5INCMIgkg0FIppRhAEQRAEQRAEUVxINCMIgiAIgiAIgiAIgiAIBySaEQRBJBwKxTQjCIIgCIIgCIIoJiSaEQRBJBzknkkQBEEQBEEQBFFcSDQjCIIgCIIgCIIgCIIgCAckmhEEQSQc5JpJEARBEARBEARRXEg0IwiCSEAophlBEARBEARBEETxINGMIAgiYaBYZgRBEARBEARBECUFiWYEQRAEQRAEQRAEQRAE4YBEM4IgCIIgCIIgCIIgCIJwQKIZQRBEAkIxzQiCIAiCIAiCIIoHiWYEQRAJA8U0IwiCIAiCIAiCKClINCMIgkg4yMqMIAiCIAiCIAiiuJBoRhAEkXCQxRlBEARBEARBEERxIdGMIAgiYbDFMoppRhAEQRAEQRAEUTxINCMIgkg4SDAjCIIgCIIgCIIoLiSaEQRBEARBEARBEARBEIQDEs0IgiASBYVimREEQRAEQRAEQZQUJJoRBEEkIBTTjCAIgiAIgiAIoniQaEYQBEEQBEEQBEEQBEEQDkg0IwiCSBjIPZMgCIIgCIIgCKKkINGMIAgi0SDXTIIgCIIgCIIgiGJDohlBEESioSgU04wgCIIgCIIgCKKYkGhGEASRMJB7JkEQBEEQBEEQRElBohlBEARBEARBEARBEARBOCDRjCAIItEg10yCIAiCIAiCIIhiQ6IZQRBEAkIxzQiCIAiCIAiCIIoHiWYEQRAJA8U0IwiCIAiCIAiCKClINCMIgiAIgiAIgiAIgiAIBySaEQRBEARBEARBEARBEIQDEs0IgiASBYXcMwmCIAiCIAiCIEqKmEWzUaNGoWvXrujcuTN69uyJxYsXs2NTpkzBNddcg6uuugqvv/66EIh67dq16N27Nzp06ICBAwdi37597FhBQQGGDBmCTp064frrr8fs2bOFa86cORPdu3dH586dMWLECASDwaKUlSAIotJAGwEQBEEQBOFk8+bNGDduHFatWlXeWSEIgogLYhbN+vbti5kzZ+LHH3/E0KFDMWTIEJw8eRI//fQTPv/8c0yZMgXTp0/HTz/9hG+++QYAEAgEMGjQIPTq1Qvff/89WrZsiaFDh7Jzvvfeezhx4gRmzZqFl19+GaNHj8aOHTsAGA37a6+9hrFjx+Lbb7/F3r17MXHixBIqPkEQBEEQBEEQROXgyiuvxNtvv4127dqVd1YIgiDigphFsyZNmiAlJQUAoCgKAoEADh8+jFmzZuG2225Dw4YNcfrpp+OOO+7Ad999BwBYsWIF0tPTcdNNNyE1NRUDBgzAunXrmLXZrFmzMHDgQGRlZaFVq1bo1KkT5s6dCwCYPXs2unTpghYtWiArKwv9+/dn5yUIgiB4yD2TIAiCIAhv9u7dW95ZIAiCiCuSivKj0aNHY+bMmSgsLETnzp2RnZ2Nbdu2oXv37ixN8+bN8fbbbwMAtm7dimbNmrFj6enpaNiwIbZu3YrMzEwcOXJEON68eXOsXbuW/bZ9+/bs2FlnnYU9e/agoKAAaWlprrwFAgEEAgGxkElJTOirCGiaJvxLJCb0nImSJNb6pGka1b04hNoNIhaovlQO6DkTpQXVqcSF2g2iJEnU+uTzRWdDViTRbPDgwXj66aexfPlybN68GQCQl5eHrKwsliYzMxN5eXkAgPz8fGRmZgrnyMzMRH5+PvLy8uD3+wUBLNxvrWvk5+dLRbPJkydjwoQJwne33347evToUZSiliq7du0q7ywQZQA9Z6IkibY+7d69m+KaxTHUbhCxQPWlckDPmShprHA4ROJC7QZRkiRafWratGlU6YokmgGA3+/HJZdcgmnTpiE7OxsZGRnIyclhx3Nzc5GRkQHAsCzLzc0Vfp+bm4v09HRkZGRAVVXBcizcb61rpKenS/N17733om/fvmIhK6Cl2a5du9CoUaOo1U0i/qDnTJQk0dUn2z2zQYMGaNy4cdlkjigxqN0gYoHqS+WAnjNRWtA4IXGhdoMoSSp7fSqyaGahaRp2796Npk2bYvPmzbj88ssBABs3bkR2djYAIDs7GzNmzGC/yc/Px+7du5GdnY2qVauiZs2a2Lx5M1q2bCn9rWXNBgCbNm1CgwYNpFZmAJCSklKhBLJw+Hy+SlnpKhv0nImSJNr6RPUuvqHnR8QC1ZfKAT1noqSh+pT4ULtBlCSVtT7FVOK8vDx89913yMvLQygUwoIFC7BixQq0adMG3bt3xxdffIE9e/bg8OHDmDp1Kq677joAQLt27ZCfn4+ZM2ciEAhg4sSJaNGiBerVqwcA6N69O95//33k5uZizZo1WLRoEbp06QIA6NatG+bPn4/169cjJycHkyZNYuclCIIgCIIgCIIgIuOMR0RhHAiCICITk6WZoij4+uuvMWbMGOi6jkaNGmHkyJFo1qwZmjVrhk2bNuGuu+6Cpmm4+eabceONNwIwrL9eeeUVvPTSSxg9ejRatGiBF198kZ33/vvvx8iRI9GtWzdUrVoVgwcPRpMmTQAAzZo1w2OPPYbHH38cubm5uOqqq9CvX7+SuwMEQRAJCA2ECYIgCILgcYpmqqoiKanYjkcEQRAJjaLTzKrM0TQNO3bsQOPGjSuleWNlgZ4zUZJEU58UfxbQ4SRwbD62zWzOFh+I+IHaDSIWqL5UDug5EyVFMBgUwtgUFBQgNTW1HHNElBbUbhAlSWWvT5WvxARBEARBEARBEJUMp62E0/KMIAiCcEOiGUEQBEEQBEEQRILjFM1UVS2nnBAEQcQPJJoRBEEkCorC/iTPe4IgCIIgwkGiGUEQ4dB1HRs2bEAoFCrvrJQrJJoRBEEkHCSYEQRBEAQhQu6ZBEHEwksvvYRzzjkH3bt3L++slCskmhFEgpObm4snnngCL7/8MlkfJTD0bAmCIAiCCAe5ZxIEEQvDhg0DACxYsACBQKCcc1N+0B7DBJHgjBo1Cq+99hoA4Nxzz8Utt9xSzjkiSg8lchKCiEP++OMPBAIBXHTRReWdFYIgiISBRDOCICJy0VZg978qdXtBlmYEkeC8/fbb7O+vv/66HHNClBbTpk1D3759he/I8oxIFNauXYvWrVvj4osvxs8//1ze2SEIgohbyD2zdBkzZgz69OmDPXv2lHdWCKLkSGsM1H8EwWCwvHNSbpClGUEkOMnJyezvyh7EMRE5efIk+vS5E2g0CFCSI/+AIOKMRx99lP392GOPYdmyZeWYG4IgiPiF3DNLj/nz52Pw4MEAgOrVqwuL1gQR/2iVeh5JlmYEkeAkJdnaeGVu7BKVw4cPA9U6AU1GAlUvK+/slDm/rNVx+HjlsqrbtWsXdu7cWd7ZKDNOnTrF/vb7/eWYE4IgiAQhvTkAEs1KkpkzZ7K/33nnnXLMCUFEz4kTJ7B///4oUuqV2tKMRDOCSHB40YwGR/HL8xOAWb9luL5XFAXwpRsftIIyzlX50/7vOq4fVHk68Y0bN6JJkyZo2rQp/vrrr/LOTpmQm5vL/s7IcL8DBEEQRHToug4k1wYu/As47VpyzywhVq9ejTfeeIN9TklJKcfcEER0HDlyBGeccQYaNWqE3377LXxinSzNCIJIYHw++zUn0Sx+GT0V+MdbteQH/aZoptu72iRCTLOcPB1HTsjLsWnrbjS8ZjEAYPmaA4I1UiLz4IMPQtM0aJqGhx56qLyzUybwgzTe3ZwgCIKIDV3XAV+q8SG1EY0LS4hWrVoZYiQMa2hFoY2ZiIrPP//5T5w8eRKhUAi9e/cOnzjzPNw46sKyyVgFhEQzgkhw+AERb3VGJAahUAhQzBXNBItp1u6+AE6/wS2aaZqGjtc9hT2BDsZnPRkffPBBWWevXMjJyWF/5+fnl2NOyhh/NSCrbXnngiAIIq6ZMmUKoJkLbL5kEs1Kkkv3AU1eBCAuWBNEReXkyZPs7wMHDkRMfyy38lpQ0htNEAkOPyBKlHhAtW/U8ORb3i4FgUAAL730El5//fWEsLiyUBR3WQKBAADzXljiGeK/zEuXLsXGPYYIeOTIEeHYoUOHcOAoV0ZfKvbu3VuW2Ss1Zi8DjuV4d828K02lGpSf9xXQJoLrABH3FBYWCoN4giBKjqVLl+KRRx4BdNN6V0km98womTFjBqZPnx75fmVeACAx+udp06Zh4sSJJKxWEhJpvlQaxP8bTRBEWAqTzmV/J4podug48OaX3sfHjx+PoUOH4rHHHsOcOXPKLF+ljczYPxgMAro5iPMlzgoQbyb+yiuvCMdUVQUUzmrSl5oQA1QAuP4ZYNCEmp7HE1E0++yzzzBu3DhPyzlFUYCsi8o4V0RZc+zYMZxxxhmoX78+/vzzz/LODkEkHJ999pnxh+U6qJClWTTMmTMHt956K3r27IkFCxaET2yOx+K9f549ezb69OmD/v374+uvvy7v7BClBO9GTKJZeOL7jSYIAt2f1vDRHHlDN+rtpTievQCocy+Q0TJhRDMAUMMs9o0cOZL9/emnn5ZBbsoGWYiMYDAIKOZzZe6ZStx3fvxOPidOnBCOGbv3cDdDSYn7ASrP8UpkabZy5Ur06NEDTz31FMaPH++d0IrbRyQsL774Ig4ePIjc3Fzcfffd5Z0dgkg4UlNTxS9INIuK5557jv09YsQIeaK0Zua/TYC0ZnHfP48aNYr9/dJLL5VjTojSJDrRLHHmjsUhvt9ogiDw3TJgxBR3Q3f8+HG8MPw140Pz94F2fySUaBbOQj4nJ8cQCmv8DVlZWWWXqVJi3Xbj+aqaWzUzRDPT6kpJHEszw+3UQFXF+l1QUCAqiIov7geoADBjkVHOoOodQFjTNKCjCnRUE6LMvKjNT0ws/jnmdayvtbYss0SUE7xQvmfPnnLMCUEkJvaOjmYf40sh98woOHToEPv79NNPlyeq3cf4N7MlcNGGuN8I4OjRo+zvmjW9rd+JxMFTNEuqWrYZqaDE/4ibkFKpAkQTOL2a+7s9e/bYFkgmiSCa8QO8efPmuY7vO6xDvzxkCIXnfe1eWY1DvvjiK89jgmjmS4yYZqtWrRI+nwzUED4XFBS4fhPvAlIoFMKtLxjPLeQhmg0dOhR//PEH+xzvZQYi7+j73LDXyignRHnD75JKm9YQRMljiGYKkGzuxE2WZlHBjzk8F2L1kPAx3vtnfqwdbtdqpZOGd2bE95izMhOVpZlfnGTu27evNLNUYYnvN5qQ8sUXX6BGjRq4+eabyzsrFY4VK1bg8ssvx5AhQyq8+9r+/fvx+OOPY/r06RHTJkm0sLS0NDhf8XifiJw4cQJXXHEF+3zttde60rzy7nzhcyKsog4dPtLzmFE+swJU7VA2GSpl7rnnHsBvr2z5UCgcNwaw8b2K6+SFF15gfx855g6EHgwGDReJ6t3Zd/E+KAfM+ptcB6j/D/kxX5rwXSKUmZCTiKJZbr6OnLyKPdYgKg8+nw9o9BzQbo3xBYlmUcHfI88+KMFEM0VRgOpdgfSzPMfR1n2ZNp/qULzC11PP+ZK/ivDRGWe4shDfbzQh5bbbbkNBQQG+/vprbNq0qbyzU6EYP348lixZgpEjR2LJkiXlnR1PdF1HvTPOx/i3p6Fnz57YtWuXNJ2meQ/Gjc5MfMXjvRN/5plnsHjxYs/jR48exfjxrwvfxbtopus64MswPhz+wiX2CkHx6/YTfxen/PHHH0ZcEBNdF5+hMbkWRTMjzln8MmbMGPb3gQNHXc8vFAoBVdoDLWey7+L9fQbM+ttuLXDm665joVAI8ImWoolQ5sqGpmn49NNP0atXr7Abs/DvcKKIZtm9dNS+KX7bYiKx0HUdyGpnf0HumVHB3yNvjw3xPY9390yfzwe0nAVcuN6zjjz66KMAgLV/rinLrBEliO2yHWYcrYj9cV5eXmlmqcJCo88EpzJV7IKCAvTr1w/9+/cX4iHx/Pe//2V/r1+/vqyyFjMzZ84ELtoOXLoXALB69Wppuj9W/wUAkOkjhpgidtrxPjh67733wh434k6IZY73VdTVq1fbohkUV1B8TdNcbrgJQbIdN8RZbY26LZbZ652PS3zJmDJlivCVqqrCPQESQ0AyylUdgHsyoqoq4BM3AIj3iUhl5JtvvkGvXr3w6aefolu3bti7d680XSJamh08BuQXRk6XCJw6dQpXX3MdFCUJ999/f1wv3CQqrjEgWZpFBX+PZKKZrK7He//M59/rXX777bcBAMeOHS6TPJU2mqZh3rx5QhiMRMfpejtt2jThszHHEOuyLERKZSC+32giIokyaPnPf/6DevXquSaSPOPHj8fkyZMxceJEvPrqq67jP/zwg/C5IlumvPnmm8JucbLn+P7776Ntu4sBAH/++afcMgWSSWgCY8QvE5u1eBcKjx8/bscqU5KNTQ44BEuzRKLmTezPUEist0YnLpY5oUQzJRn9+/cXvlJVNeHcPwCgsNBWFFIc8QdDoZBrcwsSzeKPO++80/ij/qNA1kXYuXOnNB0vmoWLoRMv8G1SZZhkTJw4Ed/nTQVaL8F//vMffPXVV+WdJcIBiWZFg2+bZKKZ8a6LY/B475+jEc3sBPE9zrb48ssvce2116J169aeHj6JhnOBqk+fPsJnmdcSP26rTMT3G01EJN4FAwBYsmQJ7r//fuzfvx/33nsvdu/eLU03c6bttvTFF18Ix06ePIkrr7xS+K68RbOP5uh4+0t5R+R8brLnOGDAACYcnDxxwuVuaogpPvd38U5Huwxnn322cMjn87ms6+K9zIZwYA7SlCQ2+dJ1HfPnz8eiRYsSztKsVatWQoyrwqD4DGWWZvH+nAWUZHTp0kX4yhi0i+1AvA/Kd+7ciQkTJrDPKSmiVZnsORPxB5twnvkqcN4Mz3GJ0dalAunNE8LSbNSoUezvb775phxzUjZMnz4dSDoNqHIR0O4v/PTTT+WdJcKBWzRLSay+s5SI5J555MgRl8uH4ovvvotfoIo4l9S1hDDSuP3224GU+kBaM7zxxhvlnZ0KgWwuSaIZkZB4NWLBYBCrVq2Ki0buwQcfFD7/9ddf0nT8LonOVd3Nmze70pe3aHbXKB3/GC+//87n4tlh+ezV+Icfflg4ZExUEsvqysmZZ54pfDYGf4nlkipYDCrJ2L9/PwDg+++/R5cuXTB69Gi3pZmux8W77UV2drbwORSSiMiOMvMrwXGPkoKWLVsKXyVijML77rtP+JyaJgabFQRjIm4RrAP9VT0n6aqqAme+AVz4V0KIZu+88w77e8GCBZ7pDh06hNzc3LLIUqki7FSd0bz8MkJ4ouu6uLDoS477MVJZEGkjgMOHDwOF24XvfL74bsOiChBvp0icenTRVuCiDZVGTNY0DTj9dsMgQbIhk2wuWRksp2XE94ibiIjXRPLGG29EmzZt8NRTT5VxjmLHGZfNS+HmXSGcjV1mZmbY9BUNofNpNNhbAKk70PxDd90XY8Ipdtrx0AnEIvZIYyA5mrV4F1MEaxslCUOHDgUAPPTQQ3Yip2gWBy5sB4/pOHhM/qyd76ZTNJO5pDpdOCsamzZtQr9+92HGjBmRE/tSXaK+bLUv3kWz+fPnA7V6ss8pqWI7bbzPJJrFO0K/48/07IeCwSCQcS6AxIhpxr+fp06dkqZZvnw5GjVqhEaNGuHAgQNllbVSwflc161bV045Ibwg98yiYfS/KYCSKrU0M8bf4rhLifOwGfxix6JFi3Ds2DHvxLqaEPVIURRmjBDvc4do0TQNqN3X+OC1IVMixxCOgfgecRMRkQlMuq5j9uzZACCN/VXRSE8XXXZkFmJfffWV4J7I7wYCyMWi8mzg9+zZE/a4MLBpMsp7BafJS8a/ig/du3cXDhlBtCPfh4rEqk06fJ11HDkRnXCmqjILJLFxj3czYqd75o8//mj8yQtjcWiNU+cmHXU8dpVzvuMh6XOOL9GsW7dumLx5Am69/1Pk5+eHT+zPkAiH7tW+eBfNAADnfMz+THaIZrLBWjxbUFZWhGema8Jk5PkJGqbNN44bu6UafZb3DnXxA/9+evW9w4cPR2FhIY4dO4ZnnnmmrLJWKjjLaI0ziYoDuWcWDV3Xgba/Axeul/a7xn0Vv1f88S2aCeVMPwtPP/10mNRaQohMfL9TWd4LTdMAjbMck3lxkHsmABLNEh6ZGhxvDVuDBg0iprnllluEz9GIZuV1H1RVxYUXXhg2jTPYdcSJYkp9V0duTEDEwNrl3QlEKsdhc2PINVujO19QlcRsczT48d64C9Y2iu2OKz5vxwQzzoWFoliaBSu4aLZ1q1mpa9wYlSuW8x4koqWZE02XWMY6RLOEcQGpRAjPjLNI+PHHH/HyR0CfF432ynAdM/ruRKjb0bg3HT5s7zoXD5ZZk2fp+HpxdLFYiYqHewym0HOLloxzgbQzpONY2YJtIrln4sL1mDhxoiyV8Y+ulfv8oiTgLZy9yrN3716MHj0af/75Z1llq1TRNA0IHbe/UCQbMtFGAABINEt4ZKJZRCuHCoZTNIsmFllFFs02bdrE4lIBkO7Q4nRNiZhXfxXXczUmnLLGr3zYvHkzmjdvjquvvtozHwvmzwUA7D8YxgycQy6miM8+3s2InZZm7du3B+AY0Cjx1ZSfPHky7HFn/YjK0kyt4AN/610M457GI3XPdK5kx4EbbiwEguIzjFcXc0JEnJTbFglXXHEF+3bjxo3GH46FnngmGtGMDx3hDEVR0Th27Bj6jdZx8/Ny0SwRXGoTHePd463UFWpTo4Dvaz1FM2f/nEiimRfWQu7pN+Pxt+N/x+NoLM1uueUWPPvsszj//PPLKluliqqqQL0B9he+NOE4WZrZxNdMi4gZ2eQ03gL4ORuuaISfiiya+Xw+IMNubCdPnuxK4xx8SoUffjIZOi5353K4Z5ZnQ9ezZ09s3rob3y/8CR9++KHr+LZt2zB6zCsAgJf/OU5+EkXslEOqZMOEOHNJBYCCQh2aJp+ICNY2vmRkZGQAcAomblemiuzGNvi5l9jfMusK5wTT+ZzlMc0quGhmDUT0YFTCv/R9dgxchMDbcQgvmgCAU/dM+F1SKwm6rgOnXWt+kMe+OXjwoPGHKZolgiActWh2eg+gWqcKL5pZ8TQBY+dbJxW5zyEMjL6Hf7dINIuGSO2RsZDntASPb9EsqjaYG4dNnJUSJmF8EI1o9uuvv7K/Z8yYUe6byhUXV98kE80cctHYsWNLOVcVExLNEpzevXu7XminRdKIESMq9GAn0UQzv98PJNcMmyYa0azqaXXtD4rfHQcqFHKJTKU5KJ8wYQIGDRqE48ePS4///vvvQKslQMvvpNZ1q1atAqpeBgBYs9a92ykAlxWZKhVTkt3fVWA2bdqE9C46rntgmfS4aGmWzOqCaGkWX/F/3v3JdqeeO3eu67hLNJPtnok4s0DymbEZ9WBU1o9S98wE2w03OVl8V526sWwjgHgvc6Xl/O+Mf3VV2veeOnXK6COSTi/jjJUe0YhmGRkZwLnTgAsWVvgdNN966y3298KFC13Hq1Sp4vpOhtJJw5W3v4VrrrkG+/btK7H8EZFxv3vknhkr0Vqaxdu4zEmsolk8MH36dPTp08fTFT6mmGbJtXDrbX2FdjEe0TQNOLnU/sIhmrkWL/dPxllnnVVGuatYkGhWCXAGY3Vamg0fPhwrV64syywxgsEgbrzxRlxyySWewfGLIpo5J2Oy35SraKbb15Z1wElJSUD+FvZZNsnOrFLd/qAkR+XOlVdKrrnLly/HwIED8a9//St8sNCs1sBpVyAtLc11yOfzAY1HGB/8GfLVG2ccK5nbXhxZmqmqihatOgIA5v60Bzt27JCmsWOaJTFrwXgWzVD1Uvan7Dk7B/HODR/kMc0q7sBfVVXAb4pmmoelmRJeKJcFxa/IdTsaXM/Z8QgTscyE3NLs+uuvN/5IMoSXiryQFy18Ob0moPxGRxXd0oxHtpNetWrVgIJtwPEfPH9n9V8/rPJhwYIFGDBggGdaouRx9z2Jb2m2fv16vPbaa8XanTYq90xXTLP4dleMzj0zfkSz3Nxc9OzZE9OmTcN1110nTcOLZsFQhD7o0v1Ahxw88eTgksxmmcPGYXvGG//6UpGTk+M4ztWFU78kxEY9RYFEszhkyZIlePbZZ7F5s4c1TgRkHeS2bduKm60iMWfOHMycORO//vorbr75Zmkap7gVjSmsUzSrSJZmPp9PEM1kJCUlAYW2+4PMrVKYYCrJ7jhQkglnfn7pxPdasGABkH4O0PI7vP/++xHTe4pm7EM6Tpw44f6hK74RHJ/dMc3Kc0BYWFiIQ4cOeR7funUrQn4zZl/hLttFiUNwy/NXY3VBnITFb1MeVjQ7MhOAO15ZvLlnnjx5UnDPlIngDRo2Fj4HApFF8NJswz7+dhdue6H4Ivv3K3RPAUTTNEDNBXaPMz+Lx8k9MwHR5busOetIIjxn3qLa+T5b8O1fPMWb3bRpk+s7QzhIAUJHjS+qdnA91969ewufv/3221LLI+HG5Z5ZCWKatWnTBk888QT69OnjmWb27NmYNGmS5/xCibATrsw9U/HFt7CQaKIZv+mKzL0cEEWzabumeJ/s9Nvsv33x7ZbKYgRr1jzTLyyKuOq2HiLRjIgPfv31V1x++eUYPXo0zjrrrKjcfLKysoTPFamD5AeVy5cvl6YpiqWZ8zeyMpfXfdB1PTpLM078ke6CarkmbnvW29JMcVqalU5MM13XgQaPANWvjSq9TDQTnocvXbqSnZ4hun9I3TMriKVZYWEhzjnnHNSrVw/z5s3zTMMGHUqSdMA2d+5cWzhIqY3CgKEsRLI0q6iWGidOnABOLGKfZe+zqqpA6CRwaLqRRha7Lo42AsjPzxfcM2XPOWTtBLvf2KHKGRRf9j6XVt1esGAB+g45hC8WpQrxO2Jl5UYdVz+u42ePTaY0TQN0Fcj7y/wsHjfqBolmiYXc0sxJvMeJ+fHHH4XPeQXyMvN9e0WfiPD9trdwkAwkmy62KQ1c1qQzZnxl/OFLB6pcCqJsicayO5FQVZV513z//ffSNGvXrsV1112H++67z3PRV+H6Xn4jLwuZe2YFHpJEhRLNBlNxJJpFsygRdRt87qfFzE3FgbXblmim+IQ2wVW39ZDLMKWyQKJZnPHkk08Kn/fu3RvxN9FYXZXX5gC8a4IXRRHNnGkqkqUZmyiGwe/3A9U6sM9SSzPrFFoB4HOLZrLgjU7xoaQw3CIzok4vE82EDs2fIY/v4nNuBCDbVTHZ/V05MGPGDGzfvgNqchNce61cTAwEAoD/NOMDF6+MZ/r06UDSaexzQcBYJVYUBajaETjzdYloVjEFMwBYs2YNUGi3W7JBCnN10I37IY9dFz+WZsFgMGJMM1UzV/9PGSJVYVDW7pWNpdk111zD4i5ecsklRT7PqRzjnV670T3JAKx2I9Vow8DdAxOZpVmIRLP4xsPSDADQwB7fxLtodvPNNwPN3mGfvUQzvm+v6KIZ35fK3E11XTcWrQ58YHwRPOQee1ntdp27gdZLSiurhAeymGaJvBARTTsyceJE9veDDz7okcrue2fMmIGlS5cKR2WWZnF/W6MJ+5HaSPg4adKkUspM8YkmZmTRdgCu2O12JGzRzNQBFL9bNHNYmjnjhlcWYhLNAoEARowYge7du6Nz584YOHAgcxGcOXMmLrnkEnTs2JH9x6vxa9euRe/evdGhQwcMHDhQCP5ZUFCAIUOGoFOnTrj++utdMbhmzpzJrjlixIi4H0wVhyNHjgifi2J1JRMRysstIBq1Wup2GONvKpxoxoka0VgEySbZ7DFqhVG7Z2pa6exIpmka4I9eNJN1TEI8F1+GNL4Le4xBwwotJHPPdAmF5WhRWLc/cNFGzzSFhYV2gGwlSe6216CBHesNQEHAKI8RA244UP8fksFNBd95jrO0lNUF21zcuB/RWJo5455VJAKBgBBcVbrar5v11hy4OJOUpaUZgBJZQe7c0RDcBj7wqNyikIlmRv8jtTRz1O3Cwsrb/8crZzRuan/QVfkYzpcOZL/CPsb7OO/48eNAvfvZ57wCeftUWGi3+UWbsJUc85fruH6QdzvK90+eFktKMhA4CGhBQEnyFs2IcsHdZyS2aGaI0gpQxXvxJ5qFVcWxE2b37t0l53BamlXcxctoCKmOcaTj3dV1HWjxufDdfffdV9rZKjKnTp0Cql8HNPmnZxrnwoWXG6dANBZ5FRi2CK3b7pl8m0CWZjYxPWlVVdGgQQNMnjwZ33//PTp16iRYPl188cVYvHgx+69uXWN3v0AggEGDBqFXr174/vvv0bJlS2Hr6vfeew8nTpzArFmz8PLLL2P06NEsIPbmzZvx2muvYezYsfj222+xd+9eYVWgsnHOOecIn50WYjIlPRoBqbxEs2g6K2d+ZYM1q65ZVHzRLLyooaqqYY12fAFw8mePmGbmObSCqDcCKC2jq127doW1NDMCsIaPCSGKZulS0SxklXndzcZ5HOWRBWMNqeUzSK9evTqQUt/44HFvhOcq2QEVAOrUqSN8DvDumX7L9Tp+VroMS0v73ZOtWNmWZsb9iPeNAARLM8UvF8GZaGa0xU5Ls7KOaYZiuvcK8fl86di9e7crjd2GGWV2GsLKLM1KKy4jUXroOv8MVbllu7+a8DHeRTMnBYXy9ymv0H6ny1s0Gz5Jx6xfoksrG5OwmGZ60PhPspjntAQnyhZZn5HI7pmBQACofRfQeingy5SmiWRBaXwv9kPOmLsySzNNr+CLlxEIOjtkR+gTY7E8uh1zKwKnTp0Czv0MaDQIAPDTTz+50jhFs3HjxkVx5vgWzaKzNOPuC4lm0ZGeno7+/fujTp068Pv96NmzJ/bu3WusqIVhxYoVSE9Px0033YTU1FQMGDAA69atY9Zms2bNwsCBA5GVlYVWrVqhU6dORhwfGMEZu3TpghYtWiArKwv9+/fHd999V7TSJgDNmjUTPjsHLlOnTnX9Jpr4XuU1QI3mutG4Z0ZKU+FEswgrE6GQOVnUAp6TbGZ9oxcCig+BgMzSzDHJLuLYSOmkYcp33pPo//znP0BmS8/jU6ZMARoPE/PmIC8vz1idBjwtzTRr8mX63ksDxDuatYAa2QW4NEhOTmZiAPxVpWmE56okSeNHOeuuJaboShJQ5ULzt84OzDv4enmTm5sr1EvZIJVZkjHRTGZp5hRHK+7AXxDNIBdHmWimGnXGEkctZO9zaVkIGKvoxj13LkhESyAQsIVNX7o0qLCqWe+zaWnmmGQYZRbrdl5BYokplQGVF810Vb5IlySKZuXVP1sEgjoKAyXXhuZ7iGYFQfvelKd75smTJ/H7yhUAIN3F2ehP7PdTJnyqqmaEULBEM18yWZpVMIyFCL6drQSWZqn1jA/JNaRp+LGSp2gWIai/cY7Ecs9UHZZm6enOmMIqoFfccZeTU6dO2buYA+jbt68rjbMNfuONNyKfOM4tzdwxzSJZmgUrrWhWrN5r9erVqFGjBk477TQAwB9//IGrr74aNWrUQM+ePXHbbcbuElu3bhXEnvT0dDRs2BBbt25FZmYmjhw5Ihxv3rw51q5dy37bvn17duyss87Cnj17UFBQII2LFAgEXAJDUlJShfK/tRTcoqzuOC3J8vPzhfPIBpqBQCBimlAoVCqrTfPnz8fIkSPRv39/3HHHHa7jTtEvGAy6Gi2ZpZkzr87PzvLIJqmy80Ri+fLleP/993HPPffg0kvDB7H1es7O2EQnT550pWFWM1oAgB8FBQWSMpt/mMJCSNUkZXa4Z+pKkZ/zFz/quKurxyRCSeJiG/hc10hJSQGqXiTkzZkmNzcXOP49UKMr4M/A8ePHhTTGoMQsj2lGrKpwl9kppmhFL3NxCAaD9spN2hmR3aKVZLz44osYNmyYkMZ9nwrcu4T63cKgpmnlUu5IGKKZ/YxkbQ9za2B1W3e3YYpYZtWRpiJRUFBgr8gqSfL32RLNzLodDOkR3+dAsHTKbLS5xjOoWrWq5zVGfgiclgX841b3sYKCAqB6V+ODL01aZiaaqbZ7pqvMvlThN/kFaoV9zuVBccYTZYUmiGaaa9wCQIjbCACBIvTPJcmFA4Dt+4Hjs0pGOCsIyN/VggAAa2NdSd9pUdrP+cMPP0R+3nlANeC2227DsmXLhOMnTpwQ+hzZ+8zcufSA8Z+S4u7rJaJZRa67iYbb8k8ptfF/RaCgoMC2mk6qKS0nPz/0Hjf5HH9rkjGJ2z2zvO9ruHZjw4YN2Lt3Lzp37ixd1AqpCpAM4NRyoMqFKAgYm7hYwqIxJnGft7zL7MXJkyftDx1V5K+v68qrZ4zdsHi32/EA89xgu2f6hDbBVbf1EHS9/Ot2SRLVTrEohmiWk5ODl19+mQVNbNu2LT755BPUrVsX69atw1NPPYWaNWviyiuvRH5+PjIzRbPYzMxM5OfnIy8vD36/XxDAMjMzmZWJ87fWTpD5+flS0Wzy5MmYMGGC8N3tt9+OHj16FLWopQa/c2S0OHcU3LlzpxHzyCQjw+0Gtm/fPmHlcM+ePa40hw8flq4uFpeuXY1J0+LFi9GxY0fXccGFB8Cnn36KDh06CN/l5OQIn2V5dYpiubm5QhrZbjenTp2Kuczt27eHpmmYMGECtm7dGtVvnM959+7dQgM0fvx4PPLII2LezADahhWZH0ePHnXlVWXuXAHzN3lCmoMHDwJKfeE3waBaxOfcGCdP5WPHjoPyw7yJtuJzXSMnJ0dY3Tx48KArzcGDBwGfbZnyxx9LhTojxLEyG/eAozz79+93DVwKCgKlUrcjsW/fPls0a/0zPvvsM1x88cVCmo0buXhnZtmceWUr+rvHAg2fApQk/PDDD8bigNUE+tyi2d69e6XtQXlj1H/b5VT2PhcWmgN7PWjEQFLF+2JsHS5apuTlFZTLcwaMQcX46SFsPtwQ/37ksOv4rl27bFdaJQl79+51v8/MVdF4n/PzC4U0+/btc1gIADl5RX2fw8Mvzmia5nmNYZMaAwBuaOc+vm3bNqDpy8YHXxq2bdvmWp3MLwgZddh8T3Rdwfbt29mgfO/evYDiFM1C5facKzJFGU+UFcEQJzwpSdi/f7/7GTpEs4KCYLk+5zVbjbpdUnnwqrc5eSHWjgdDSsTrldZz3rVrF6C3AGAsDjrzsXPnTmFx5sSJE640uXnmpEsPmTHNkrF9+3ZxDOcSzSKXmSg53CFclFIb/1cEtm/fDibs+NKk5XQaWkjvBT+u7BgEFvuFdEYIElFwCYa8+86yxtluHD58GJd1exKh5LPw5gt/4frrr3f9Jr8gaLRNO0cB582ArvuxadMmpKYafXJubi6gOy3R/RWmzE6MZ2QjG9vIYv5FLI9kzhNP5OTkmBbC5nug+LFr1y6mtxiagSiaVeTxRlFo2rRp5EQoomhWWFiIJ598EpdffjluuukmABCEm5YtW6JXr15YuHAhrrzySqSnp7sa6tzcXKSnpyMjI4NtCWyJYLm5uWyy5/yt1fl67bp47733ukwuK6Kl2a5du9CoUaOo1U0LZ7mrVauGxo0bs88NGzZ0/aZ69epCmm3btrnSOM9TEjjdw2Tnr1JFNPfdv3+/K51zopWZmelK47yW3+8X0tSo4TbLTk5OjrnMvLIe6bdez9lY7RCfu6vMKWlAEGZcEB9SUlKENLquQ7dcmcyGzudLEtIYFqCO+qUkxVxmS6hVNb/3b5uM4j74XOlq1qwJ3rVDVt8yMjJsVyxfBnw+8TzGaocomjmvZVznuHBenz/251wS1KxZk8sn8Pnnn+P2228X0gjtopKEBg0auPLq8/mA0AkgfytLd9pppyEtjVuIkIhm9evXL5dyA8CRE8DJPKBpPfcx4523B5dVq1Z1l9lvtte6CmgB6LpY96pXrw5nXECfP/a6XVJcd911mJtvhA1o3NgdN2X79u2CpZm0vbUG5aZ1naZD0oaJ77MvOatUypySkgKYrmmpaRkRryE7Lizw+NNx+PBhdOnSRUjjTzZFXcuNWfHjjDPOYO1lzZo1AZ84OAtp7valMlOc8URZIbg2+ZKRmprqfoYO0UzTIvexZUFR89C6dWus4j4Hgpr0XHn59iRNh3dfVdzn/Ouvv+Ldd9/Ffffdh8svv9x1vHnz5sB33uObAwcO2DE6AVf/DADJKalAIYx224xpVq9ePdSvX5+VwSWaFWFMQhQdt1uVUirj/4qCET7IHCt41LXatWsLn2VpfD63O5pr7Klscf6qVO7rn3/+iWeeeQbdunXDww8/HDatV7sxbdo0hM77AQDw8MN+6a6hPr+5YMX652TUrl2beZcZ99Zhuegrn/E2AEz8Fhj4L0D9QX7cyrdFUpK7Pri0BUVSnjQxTFJpPeeyIi0tzZh7mYvUUPyoW7cuK5PLGEEPVejxRmkSs2gWCoXw3HPPoVatWnjsscc80/F+4dnZ2ZgxYwb7nJ+fj927dyM7OxtVq1ZFzZo1sXnzZrRsacRE2rhxI7Kzs9lvrR06AWDTpk1o0KCB1MoMMAb7FUkgC4fP54u50rnc+IJB4Rxe8YEiXSeaNE50Xcf69euRnZ3NVh54ZHG4nNdwmorv3r3blUYWk82ZRuYCyaeRxXcqSpl5dF2PKgaJ9Dk7XAjd5bH+MNwzA4GAkEbYVc60TAmGxPLIgmhruhJzme+++24A3+CPNevg87WVJ6pqu1BDcZfXELPs72T3nsUj04KAP931DI1zm02WKRSqGtzP2VFmVdPLpXE38mI3sfXq1XPlwxnT7Oyzz5bXbSWFG7gkQdM0YyJq1ROf+/1TlNifdUlxyQMatu0D9EXu6xuxruxnJKsLLLaVrgJ6ACHNL6kLzvpTvPe5qOi6bsTgNI0iA4GAq38KhUL27pmKH6oakDxnq8yGaOZ8n436JP4mqCaVSpkLCwuZS4s/KTXMNbhNKRz88ccfAFobH3wZePTRR10LWqpmCYXWe+CDrtvvq67rrrqtaqVT5ninKOOJskLYRK5wFwoKCiTvs/jOBEPufr5s8a7b0VCjRg1j4ctEVXXXmCEUCuHAqep2Gj1y3S7qc7bCnHz44YfS8ZAQn0hJcV3j2LFjQPMp7LPsGdoLeRqLaca/z8aYxCE+KPQ+lyWyjaiKOxauyAiuZUqydzlTGgIpdYCcFdI0iiRulTudexxTGve1e/fu2LNnD2bPno1evXq5NosCgNx8Ha9OB567w8fyyufFOU+Wxxw12wkWID7J3T/v+zdwxgv2j8Ld41Lmix/Dt9nOeaJsjOya08nKU/0aR5qK2/dGgx3TzBTNzEVtsUziRgAVebxRmsRc4lGjRqGwsBDDhw8XBJqlS5eyleX169fj008/Za5V7dq1Q35+PmbOnIlAIICJEyeiRYsWqFfPMEPo3r073n//feTm5mLNmjVYtGgRW5Hu1q0b5s+fj/Xr1yMnJweTJk3CddddV+yCxyuuoOCOmGAyH2Ona6Is6GdRAoGOGzcOLVq0wOWXXy4dhDldJmVxxZzXlQUIdgprFWUjAME/Pgai2QggEOSD/Ls3AjDKY8X3sibZknvgEhZiz++3334LAMjJkex4ZpFvr7ClpLqtnlJSUoS8eMXVg+IzY6EkudLI3DOlu2e6grGWT0B8YYfH4FGp0G/EPTPfCyVZ+v6qqmqYTnOimSGWc2sePvkiQnkwf7mObfu8jxcUFAhiouzdtAUkQzQTYiJBPvAvr40AnO3a8OHD5WmsyaKS5LF7pvmHubNoMBh5k4ugVjoLRPn5+cwV1HnvLcaPHx/2HPxCGfxVcOTIEVcau8wqW+Hk64PRJoiimVa8UKxEOcCatf2TAF2T757p3LSmAu+GGw3u2FF+V7nz8/OBcz62f+M7vSyyJkVoxySLMCdOnACSa7HP8h29rRdaMwU4n/A+y3Y99iW5r0WUHsbzcItmiYqxSGf1vcmeC+hotRho496IiRFhIwDZuL60hiR8iJ1Dhw5J00z8XwBDJ+rYdUC+27TT0EG2oV8oxM1DAMAnjlFVVQVUMXxOeW704Y+gaDjHmjIjE59TNJNYGLo3P4hv8cjeeCskHYe56rZevpv0lCcxPel9+/Zh5syZWLlyJa688kp07NgRHTt2xMqVK7Fs2TL06NEDHTt2xHPPPYe77rqLCV8pKSl45ZVXMHXqVFx55ZX4448/8OKLL7Lz3n///cjKykK3bt0wePBgDB48GE2aNAFg7Bb52GOP4fHHH0f37t1Rp04d9OvXr+TuQJwRSTSTdQg7d+4Mew6gaJ3m008/DcCIf7F3717XceegUTpRlAbJF5FtBBDreUpDNJOVJxpkwo6TnFxTIDF3z3Q+Z8GKzLTSiGaSXawtsD06Q13XgWNz2OdrruniSmPca8XxWcR4rj5TBHTvMCiIZh67KnpZ18XKoUOH8PzzzzPBsCgYYpeZ37x10t1Ag8EgkLsaUI3g+LL3MKSa5dbM35uCIgscDxjumRo/ISu/nTO7PBH+2oWFhcIzkor47BSGeyYLGG/CdnI79DnwezsAgKaVT5md7cDXX3/tSmOIZmZdMEVPJ6zpZiJ4FLvhhkqnzAfVi9nGHoGgvG94/PEn2d+ygfsFF1xgf/BXwQMPPOBKY1d3ja1wugbljm3udSRV2J1hCTnseelGHZbunulot4PlKJpt376dLcysWrWqSOdg7drOfxr/Kkms3A8//DDOPPNMfPHFF/YPdBWqr2YRcxyeDRs2GDEVfW7XcQshqLdENAuFQsDBj4wPWqFUNLNfXR2ACig+iQgujiOSkirOgk9lQLYRQMLvnsktWHkaDaSE3yVaUdyiGd8PyXb0Lgst0qsvfOutdwAAQ14YIj1epUoVIXyIbJdI1SqAZsW6kohmrhAw5berYiTDJ1VVgWPz2WeZaOb3Oy1hJUKrLtYhn/M3cQazNNODMNptcRzm3j2z8opmMUnC9erVw/Lly6XH2rRpg8cff9zzt+eddx4++eQT6bG0tDSMHDnS87c33HADbrjhhliymrAUxdJMarET4byxImt8orE0K4poVlEszYq6OheNpVlubj6QClMQc1uaie6Zckuzku/EDfcS57M26qCHGS+fXy6N5/NQ/EwolFua8SbEUVqaFUFMGTBgABM/Dh48iFq1aknTncrTUSVDLsqpqmrHsfKlSUUz5qqoFTK3SyeaJRhxlmahUEi0rPKlA/smAGlNgJo3wLmSHC1dntDwVC8FXS8uhrgaAWZppuYCBVsiWJqFAD0AVWZppviAwD4gaAg2pSUgRcL5bjo3LmFpfJEszbgywwiezr9vsgFqaa1k56r2BCLodV+r2+L4J5984oqtIsQG8VeRupDYlmY6AE0+yXYNylOk7RBRcdGFuu22uAIApIoxYUKqvL8pC15++WVAfRnwpeKee+4pknAWDKlACoDjc4FGzwCKH/n5+Vi/fj3eeustIKMF7r33XqDjXcYP9BBKS/e/7bbbgIt3G33IMkmgSTjc5hUP0cyyKlGSUSAVzSxx1LY04/txmaVZUjJZmpUlskDniSyaCZZmvmQEg0EkJYl1UBprz4FbNDN2HbVixMnHnsXJeQSSawPBw5KNHQw2bdoENAP++/FneHGIJF6Zz1qgNt4/Z5B8gBPNdFs0c4vgHiFUSphAUMctz+v47xAF1avI+wSftZeSpsPnc6eJxtJMcVoUKskoKChg4xlDQBPP40+q2CGhjp3SsfMA0KqZ11wFppdPUGohTJZmNvFtU1gJcb70zsGnbNUhGgGpuJ2mTBBzfheNpVk0Lpwysas8LM2KJZpZr17AvasnAORYu1BpAUDxeViamQMB0zLFKRoI18kzdmkUrJNiRpeuLvOuXAAQ8hJlI7hnCpZmShhLMz0Eq9NyXkpqaVYE98yvv/4aqHs/kHqGsUov4be/dFTtpmP/Efn5VVW1N0jwpUqtKwwLJL/phpssr6eWgKSKlmbBIJfWl2bcl+ML2VdFscaZvxx4+aOSm7nJFlkM0cxv1lufXDSz6qm5EQCUFOF9Y5ZmMMUWlJ97ptGu2XVbJpoJ7pkSK0qAFxasY4pkgOqI11dKZdby7c1iZJZmmqYZoicAnPpV6toRCATsVV1/lseiCe/O5XYLcLYbAABfSkJP8gDjWa9ZsyZhLOrsx1wA+JLZuMWKXQsAqObYXTu9ebm5jRUWFgKaUb83b3FvnAQYO7u2v/pe3Hxrb+nYhrmX6iEmFhYWFhoxeqtdCbRbw6w5jXQadF0plWf+559/AklVgJTanmkKCgqAJNPSzcvSzJdivqc+FBRI3mede5/h5W7tcM/0k2hWlpSUp0m8IFqaJXvPQyIsZLtEM8e5ZOdgi3+lwaX7gPoPSUUzIXyFtWu3A6ONM9/hsz+UjlvY2JlZmokLu2VpabZ1LzDrF2D2Mu80hw4Zwt+in+SJjGdkPxNZTC6/0x1TSRbusRD70aSid9M3PaujdT/vTDKjbs49kyzN5JBoFmeUhKVZaYhmMjGlKKKZZ6yrMJ+NnST1sGlKQzQr6j0TGqCgPB5BYaGZNz3gHdPMl2EIKcwyRWZp5gP2vgX80cH4rkjumZaAoUstBPLy8hzudu4zOCf84WOaBcNYmiXZO7zAbUUmm2QXxdIMAHDWO8DZH3puOrJpt/HvCflCn5h/X5q0/jPRTM0FfGlyK1CJpVkwGBSfty8dbKJSTJJLcKHw008/dX1nDGKTzIGYfJXbuREAfCnC/WSDQmbRUIznXEwCgQCQbLtVecZ3ZAN39/ts/M76wyqnmK4sLc0CXHvO4ivyxwMBe2Ktui0oAavMPuO4v4p8QcQpmsEnGaw52iyHgJqI3HTTTbjgggswaNCg8s5KicAmj1oBoKSyfkRoW52imS+j3J5zUlKSEGtSRoMGDfBLcCK+XnstPvvsM9fxoPUas3h9hmvYhg0bgPQzzYP8++yu/6WDvM0dNmyYHRtTEiPT6J9TAPUUAKBQEp3Cbo909j67RXDxfvrJ0qxMcY+RKoGlGWflHY3HixSXRZW4yHnq1Ck4++dSE1OSTfG72pXS0DjGGMtsc7NflY5JAoGAvUBXu69UfGP9M2dp5hLNnNZapWRplmQOg0NhqurPS5cAAK659m/S40IsaMifu8/v3N03WRh7Gn87QuFU8OHIdrltBsPekMl2zyRLMzkkmsUZpeWeWdyBmqcgwCGPgVH8mGZFFQorhnumxy4vlmigFcJaoeYJhUKAP9NcDVfN78T8GPnzm8KC3DIrKpjYJRfNDAsqzopM0oM4J/xh3TMjxTTTQ5xQIgto69w9sxirfcmnu0z52bXM8cSsWd9KXS+FMiqpYawx/UDoBODPlL+bzOoqwCZfoVAIhQGHaGZNzozE0ZROSkmKZjNnznR9Z1iaJZuCsNzSzP7KKpNk5Uvxgbc0K68NH4y2z65zsh11DRcR75hmws6YbLLucwuFro09SqfMgYB93WDI/f4Y5TEnu74U6aYozN1LPelpacYWbHUNhnumZLAmcc9M5EkeAMyaNQsAMHbs2HLOSckgWpqlsLpguTZJcdSFssR474xMJye7BaR169aBibkZLTFv3jz3OVhTbFpGmwtBx44dAxo8ahzjJ5i6Jl0sKnEyW0vfxYYNG9qTIYl7piGCpzAXzUKJmO5yz4zC0szvr9iuTYmG2xq/9EQzWT0ra8S+N4ylWSSclmY+WzSbP38+HnzwQbcleHFiCIfDZ4Y+OP0mrN9y2HVYmC+kNZU+32AwyFm1mxt9OLB3z5S7Z0ayNDt58iQmT55suIoWEyvIv9ejysvL4+YF8kGss+5LRTOf47e+FLdQ6KCiW5pFyp8gmnlZmpFoBoBEs7ijKBsBlJelmfO6O3bscKUpiZhm0QhiZWlptnHjRjz66KP46aefpMc1TQNSGhgfPEzCNd5Vy8vSzJ9pWCjplnuaxD1T8Zmig5FGK8orH0E0MwQjH6Dmm3nzqoNRbgQQNqZZNO6ZThP5YvRoHmKXkV8jf0888ZTUIkSoHx6WZoKw4JOLZiFmaRYwy26IZoEAly9/himaFV38ttqOlOKKZpqdL1l7xGKaRWtpBh3OYMXMPbOiWJpltQqbJtLumaI4ZE1cIwtIpbHCqaqqcF5ZQPbCwkLb0sxDEGOCsGaIpNIVfvbI5O6ZTncKAK5BbKJR1i6ZK1euLJFJTTiY67GWDygpkTfRMeOqlNdzNq5rPAfXbmoAli1bBmSPMz4kny7fkU+wlg2xuh0KhYCMFsYxfpML0+2x1ITC4wuMf9POkL6LTZs2ZZNof3KG6zhzz2SimfsSwsYe5kYAkWKaFS9kBBErrmdQShsBjBs3DlWrVpXuJl2WCP1m5gVRWZrJ7ofMPVPTNOzatYtteueeUvtKpz3nhKnPv5zlOizEGd77trdLLieaySzN7KybC9Wy3TPDxDR7+OGH0a9fP7Rq1arY8y3Lk9JrzGNsRmQelLiX2/kNL5q5hpEy6zrXM63YbVikGigs8HgtUgvumeUvhpcXFftJEy6cDY9TxIjG6ioaYSpWonHPHDFihCtNUdwznZ1QUUWz4pbZa0B/9dVX4423/oPOV9/i/bvm/zE/eYhmzAIjjGjmSwe0PGZd5Jzc2hsB2JZmulaUSZktmnnHNPOx1QfZbVFVFcj53fgQOl5M90zLddUdA0YW06x4woLuKZp9/sUM448af8Pbb7/tOu4UzWTnYdZ16qkwlmbWLqlBc/JliGYFhc57qIJ3z4z1OVsaXEoxQlKcPHlS6FBlz5m5Z4aNacZvBGC46MkFJN7SrHwm2MFgEDjHdkOtX7++K4247b2XFaW12mfdswjBWFE6lmbMctQUIwOSsa4omlUNIwhb77PPY7Ji/sGsYWXumZXL0qwsy7Zo0SK0bdsW55xzjrFjZBH5+eef8be//Q1vvPGGh4Bk/SFamknbKDWHhSUor+dsWBcbeZO5A6mqCpx+q/EhpZ6H9b75B+eeGQqFxDGbZTGy5VEY7VgplpkFQ5f3RSkpKWDTK2dcH7jdM0Oq4iq3+D67yyOzNJNZshKlh9EnSzbWKWGeeuopFBQUSMf9ZYnRxph9SMMnorA0U7Br1y5XGsUZ/8q0upozZw6fyPGrUhLBuXdo48aNrsNG/2xtxKN5b/7G7bhevXp1VxpdsBw1Fmz5c8k36rHbjg8//BDoqCK//hgcOXIkcrmiwMs9MxSyBB9I3csBzj3THNvI74tZ5hM/Gv/KNj/QHPHfIsTDq+jYFsLmHEKRjD0pphkAEs3ijpKwNCuyT3+Yc3pOmjhklldF2Qggmt+Up6XZ7t27gRZfA+0PSWM6Cfn3aGx1cKKBZMWdrRbqtn+93D3TJ7hnQvHHLppxIlRYSzOzIZWJF+xeqzmArocJRmvt6BNpIwAgWneuYlmaQfMUzWbNmm38kf2K9Lgomskt1pg7qZoD+DLCB8W3LM1M976AU83gn3MRsGLwFGezuk2bNgmimacFqiWaeaxyCxsBwBj0uizNFHMjAA9Ly2gIhnQonTSs2OD9W13XMeU73bMeGYM1u62rUqWK+zoRLM3sjQ3AuUj53WV2WpqVgvsHE8HN7ehlg1TBPdNfLYKlWUAqFAL8qq61e6bsfa5clmasrUw+vdSv1adPHwDGfS7q5Pb333/HZZddhm+/W4BHnxiCuXPnutLY8eELASWV1X/Xczy1Alh6mlRALUuSkpJYpmXCtKZpwPEfjA/566Pb5AJ+t2hm7a58clnpW5pF2IikMKADWW2NpK6dAt2WZlBS3OFB7MCM0vLIYppV9HhAiYbb2i++Y5qFQjqGT9KksTcBt7VyRKMBxY+RI0e6TySxNFNV1bEDo1NAKh0RPCPrNO9rwiGaeeRB0zQgeJB9lo1bhP5ZDwouqew6rjJLXBVq9ZQXJAasdsKrvTAs5yw30giWZkcN67xGZzR2p7HasK3PmOeSWJqVlUVhCaFHmAOJsSiNOQm5Z8oh0SzOKImYZtEIU5Fw7gQo+71TYOnXr58rTVHcM52/ke9cVT4xzdg5q3UCADz77LMRriuf9ArKv8O/3D6HKIhpDisyu6HjLJAk54qINVgIuxGAD5ZbmcxNjnVW5gR61apVrjTMMs60TIlsaWZ0Xu5BeQlamunelmaiQOVuSp2iWWHAQzRT/Ibbki/Z3uKbP48mtzQLBJ11Wi2WaMaqXIS+f9p8HenXaN7BZVU7vpXnzk5KkjnAiWBpBtO1WFHcnbjlnmlaRxRlfm09kgUrvNP8sha49586Fq+WHw+FuF1LdbnIGgwGgdR6xsYfkphmgtjL3Fs9Ypqd+g1Ycy2gq6ViXWe07eaOrgB03T3oFizNwgnCit98zh4DdzbHtoUFVVVx/PhxXHzxxbj//vvFwZqaAyipcT3Ji0QwGDRWyi89AFTvXqrX4vvxKVOmFOkcgwcPNv644AfgsmPSoPh2jE7R0szdF5nvMxcP69gpHX1e1Fy7Q3vx7ZyfsfKP9WHT7Dus49IHNOQVyM/JW5oFJdf1+Xx2P6MkSXdGtrU2TXDPFEWzqsa/eiFkonFJ0bVrV8NKDJBargPAcbUZ+1txxvUBb2lmtum+VMn4k7NMMcvjCqLtmFSHVLI0K0vKMqZZWfD7RmDEFGDecvlxoW89tTyy0YBkUQvgXMy5dKqqijswuoS1Ioy3o8DHxQFU/KmusZix+YFlaSZffDDcDB0WVA7sMpuimUNAYgtsQuZkrgruzdpixbqsV1U1LOfM5xbO0oyNPYGsTIlQyKxlzbbN4ZIq28Xcy5K+IhAIBHDgoCGOyha0ANlih90P/f7773jvvffEMpNoRsQLpWVpVlzRTNbgygQWJ0WxNHN+jkY0i8btM1Zk90wWEN6J+Mw8LM1YGxaUWofZu9aYg1PAJTQJlmYsTWyDctFySy6aGe52ftaQyix+7CD/hmi2aNEi72uZZZZbmiUL7pnOQbnM0sw12IkKq4PQwsTf4crpcwczdtVTaQwYSzQrMD+764MGc5Kh25ZmxkYA5gl5EZENgmIvs/Uqhhvb5OTp6POijoKAfPASCASAvA3ss+wdM56RtTudfMCuM0uzkJkhL3Px4rlnWmUN91MrTYFHNQiFQrbrseJDUFJmY4fN2kDhLumgXOqeKbW6MjeNOL4A0DWUxpb2Tkszmcgn7kgmn4TbMRWDYVa72V/Gf4oxwH/sscfw28ot5ooxL5rlldpEpKJgWPSYE5707FK91tGjR4G0bM+V+WhgwniViwDIF5Ps/qzAsFDysjRj7Ze9WDRjETBtPrDHHe/axWeffYa/jboE7e7ejzVr1nimq3+rjmXrgN88tDWF9a1wW/TCshxNMt4RX3pk12PY7plC/29ZmmkFsOK4lYaAoSiKLXJ7WH3y7acuGZfILM3cC1vsrzCLWk5LMxLNyhJpXLk4bk9PM1+hI+449gAcfav5DkrTMPxyV0VJrCtBNEs/GzILpNJ4n/l3RpcsSAmLWopcNGP3JXctEDwkvy86J4JLRDNjPuAWE93tevGtsE6eMtqdE6dypMcFSzOfW0hkadhmY0BQakVs5dl095RtfuCyxK24otn8+fOhmu4CXbt2laZx91VG35uTk4N27dqZG3qRpRlAolncUVqWZrF2mtFYiDkFFpmg5DxPNKJfNEKbpol+/GVlaWZb1nh3EgUF5gA5eMy9SmOdm3l2GC5O8jhuPqMz4lwv+XvBW5qlsC0RY5twiqsqctGMCRiaZT3gPg+LJWBamslg+TXLLLc0syznAEi2Ri4xSzO2WhbG0oxvPhW3aObMf2HQPTkQLM0A6a4/qiSmWTAYRNCyNLNW16x4BACgxG4uXlBonOfI0eOeaeb8yuVdcvpAIAA+Tkbr1q1daQRLMy/3TEu01AIwJq+SjQAc7plF2QiAmfyHGddar07YWBrcJERmEePc5MLT0swatABy0Yxt7AEAaqm4NhmimR/8NvNOUcwQysNPwpnIp3nHp7LFFE1Y4Zw3bx7Q/hDQYgYEf2GtAKXqwlYBYBY9QNkMTi/aBGT/q8g/r1GjBlDvQfY5rGhmPr9gUDO/d74rlnJvC0jBoFH3Fv7gXmhxMmOGEWdSr9rJ0900N9++5sqVK6VpjPplppP0VyxGYegE4MsML5pxm1yEQiG73QaAJNPSTCuErD8rKYJBFcg4x/wkf1/5xS6ZGG9bmpmTVp87tqB9Crm7tRGLVbQC0cvRDbcykmjumT6zqp50G7UDsNoYM5HXhjQOSzPpXMUjQLyiKECdfsCF69xWVqX0Pms6v5GD+z00+mdrfOq1Q7k1h5CPtwGnpVmIWddZSC3NlOQohMnYee75IQCAiZOmSI8bopl5DV9aGK8lHxszyzY5YosHHkKhLCZgRbY0E5599jgcP37clcYOJSBamv322292Iu45Z2Wlo7JColmc4XwxnY1hNKKTZ3DuGCiKaCZzYXAHkvVYEQnz2csSyDVYc1C6lmbeE/jCwkIgsA/I/QNIawKkNXOlsTurkNSywt6NkrMik7lzmRNxI0ZLKOZOXBSh9AgWJd7umaFQyNjhUcuBq8Nx5TcURlhQ7I7RayUbPmMyU7DN+F1RVrmU8KIZ27TAIgpLM2fMOYAXHE3RTHffGzumWRBIbQBkXmAHawdsiyDLDQjwFCbD8eJLRhyPxYsWGwH9JeRyr/Sfa91mGsa9cmzM4EDTNGNwGdY907z/esA4H7dauvSX3zHynVVwWVHCHZg6EitXGdYon33+pafImGTeSq/mglmdmLvHyty5jDQ+szzhLM34/Ivvsx3TzB7UlYZoZrTbtggusyQzLM0s0cxtiQY4LM0iuWc6LFNYf1SjK4RhilaAWIX/eIO5ZwIwNjspg1gp9R8C/FlF+mnt2rWBZm+yz878CrH4TEHdCv7utkiwPtur3Z9/9gkAoP+A+3HgwIGwefnll1/Y317jgiPH7Lbt8ccek6YxXJeiEM20XMHdlMfL9VgwXLPuuVZYqpZmwZBuCyUeIvemTZu5vCuu52i8zylgQbCVVPeipxA43F0ewYrSwsP6hygdysI9M9LmXSWJVeW8FrUE7wMlGZ9//rlHGhOHMGSncXzh4yzNUhuZ33FtaPBIKYpm/IJtslw0s4TCOneFmVeFtwTXeUszzcM9UxLTzH0ueRzjWJgzZx4AYNvWHdLjtvcNpK7jQhrLK0YmmvGLHVoAUMQYqlJLM4nVbUXBCJ9j3pcGj+H11193pREszbh4okaYAgv7OU96/z+orJBoFmdEiiVWVEszWeyhcBRFNCtKvDLZd9GKZq6tzsMcLwphLc3CDBJYh2atMle/xn1u3tJMYjVkT7IjWZoZu2caopk9EYkWZiFmFCrMzkP8RgAeMc2STwcC+z0FHcN6yHbh9LY04zpymXum4gf2/Qf4rRmgq64dNqPCEs08YlQVFBQI5ahdp5G8zGoOcOBDI28SN1FbNDPeFZlopiNZtEBq9DRycnLs6+ucpRmzQopdNHv33X+b+dY8d9L7+Vc7sNftPdzBXY36YXcrhZ4iq+2eKX3nmUtqCPzumcFgEB16z4V6zpdmStvSzCkyRcMtt94GAFi9eg1+/vlnaRrL0iXPwz/TEFCTmfApi9HD7osWkIpMTFhggrBb4LZFKFs0Lg3tyBaEVcGykYe5f1g7bEp8j+33OYx7Jtsl1RQ/zfZJHPDy9zPkaZ0YT3y9WMcfm8NsLGEJC3qolEUzbghY74EinSE5WbSu8Dl2mRPco8x2zhKO5DHNAD6I/Px5xu50qqph3bp1YfPCn8+ZD4v1G7Zwn8I8Ay6kgTRmkJJkvPOeojFXJs6tPsg3Ub4M64qQBc4vKUK8ui6xijh16hTE6YB7nGAsdqQYiwN6SGppJojgkphmqqoCfhLNyhPjXvOWSrEvNkXC6B/SgPPnA0mnleoih3VqV4hXdpyz0PYlY+zYsfI0FpKxJyC3NGMbATQeanznrwIc+R+wqoN0UbekEMaJkvdQCNCfca734mWY3eoB2BuSecQ0Y4uBPLyIl1KP/b7498ESPiMsugOAIhfNnHMVy+JZSCMsdgSji2nmsSNxRSAnJwf8GGrv3r2uNHYsZctC2BDNhDJxz7lNm/NLJ7NxAIlmcYbTbLgolmayl9t4saLHbUXjEfcjwnWjsTSTCkYRzuvMU1mJZk5Ls/POO8+VhplOs8lvGHcWc7Atv0+m1ZUVmNef5RbNYAwWkpOT2Wp3LAMYW3gzMhXW0izMRgChUAhIOs1cffMh+0y3dZ2w8uW1eyazrgO83TNFa5wiWaZwlmayMrMVNnMSmJpexZVGVVUgeNgQCiEZdIG7v5ZopskmnMngd6QErPfVYWnGi2ZOF1VVxeOPP477778/TNw9a8Dh84xH+P6ECezvrVu3u447B1GBgMf7zHbPlA8qdSRxFnQ6S/fDDz8Ade5i+RQsLYsw4Tx+3LQ6UfyeW6I/+9wLAIDx49+SHmfumaZoFghraWZYpUW0NNOCcLpd2INCu/5resmv4jO3SmubeS9LMyUV0Iy6VCiJ+2S7Z4ZZyWbVQ3QLENpmYdcm4x7Eu6XZzc/raN0vnGhmWZqppSua+bl2K3isSAN/53MVV6edlmaWNabxmT3HPNNqVZe129azjrwQEI1o9sijT0Y8j+CeKalvTDRT8+Hp8sVPvmD0S6FQCEFeVGfiqAqjnKXknslbVEgszYxFIC5fkrbU7osCUgsMI435B2ex4LY0y+B+EARAollJonTSMOdX7zajLNwzQ6EQkH4ucNqVQNVOpbrIEZ2lmcIWrLzTmDQZ5eGqaP7xs7mrsWz3zKQqgHoKOPULIHFPLimEOL1elmZcvorqnqkJ/bN790xBqGL5Md7n7du3A9mvsd8X+z5wcem8jSssS7O0qBb4QxJTfXvRX2NCodubxSmayeNalgWBQABLly71bEON/Np1ISMjw5XGFUrA7IcOHz4MVGkP1LwF/HP2udeFKw0kmsUZkUSzimRp5hzsR+PnXpaWZsVtxGW/ty3NjDzpkoDstuk050fugP3OFEucgotoaRYw3BGTa8ljmumipVnMGwFE457JdUSa1+6Z8DMhRJYFIaaZl6WZYI0Txj1TCChdhNW+qCzNfMwlzyl2yfIim+czkc/D0owFTta4+567xqhnLHC8dUzFuec2N/OfJLx/EydOxPjx4/Gf//xHvp268SPjn5o3eAproSAvprnL7LQ0Kyj0WOGEtYORx0YA4Muss3QPP/wwkFLXzG4yAB1+vx27I+bJF9sBzy8dTADA99//CAD49bffpceNiWAyE5A0zT25ZzHNwm1ywdft0BEguabbPdMltpe8q6IdL84UYSUin2FJkGKLILIVW9b+eMc0s12nrcGa8ZxF4UVh71lpTkTKim3btoU9LrpnhkpVIMyoWt/+oJ6MavMeJ5FEs7CWZsz9x6rnfLttPme2EOCLuNEO3+b9+OOP0jQbNnKWZh5WC0KZJPXN3gjAWzSzJ7aa0PeKlmacaFaalmaCkO/V/nD3QlJmZmmmB8wJtHsXW7vrNy2AzfPk5+fj4osvxmVdnxBjmumGkBHP73NF5NufI4lmpeueKZ5PL1VR1GoevUQzu98MwLkJhYWqqkbIFACo2y+8gMRCYBgWSEL77K9it1dFWKSOBl3XHaKZ29LMOQ5bu3at6zyRxtsANzPhFtDcropyS7OmTZsCtW63Ml0Cdcwaq/kiLN4DOHO8t6WZNbYBEJJUGlH4d1vXGXEZHeFYylE069GjBzp06ID+/ftLjzvvuzxMktUP24uXmqZhw4YNQOufgBafA6ddzdIrJJoR8UJJWJrJGkfZixSOaESzaCzCnGk8zYhj+CzLU5m7Z55cBgAoVKu60tiWZlaeIuzgAsAZmNcV3yt0AvBXC++eycWJiZZoRDPbDcvKq/s8zOUrzA6bzhgL3u6Z1gU0VzpXmiLEiWExt8wyy+qt8b4osLalDqkeohnXQct28bTdM83d5ByiGYsjY1ma7Z8M5Pzh4Z6pgelHjsngrFmz2N/Tpk2TF5wb/Hi3B+Jk0gmzqDpquFTJBrKCe6ZkkmjUpxShXDDdOA+aW2cb108BdB3JyfZgKvZ32o514gkT1uRpnJZmQrwRE8MyxXbPjGhpFjwMJNeUuGf67TQOQXjUhzr+74XiD9DZdayBsmSSLeweCCAgHXzyYrpX7Dr+nbAn2aLLnw/YPwFYnMKE8vKyNMsr0HH8VPEsv2666SbjD10zdq90ILhnVr0YO/YX/Xo//RHEzt37PY8npdW0P3gIdIGgjsff1PDG5/J8OH/z0UcfSY6LopkOQyixB+vWTsCc6731nJk5oj/i4h6fl6NHj8qt9Pj3WEmR9mnOmGbSSanlkq34EAhKxj+Cmw/vnmktiKmCRaFTEM4v1JFfGN2zP3z4MHbu3Ol5nPW3ppDlLLPxPvPvnIdopqQYbZhHfFR7wcy2rlNVFXPmzMFv65OA1kuAzNb2DyTBxYmiY9X/cPdTZmlW0u1pNHOOksK2NAvXPvmApGrGglvSaR5pwltm2e+zavbjhjhUWFgIHPnWOOZLB6AZVq6lJIIzEVDNMbxMfG5LM2d5HnjA7XpvL+p6xzrWBRHcLSA5rwMAcndrreQszSDfrVuwqEquKRUK7TAY3pZmgou5JI6bNC5jObpnfv311wCADz74QHrcaWkWfpMLq92WWPxXuxw4tRy3tFpcMhmPU0g0izOck9loBKRoOrBYG7SiiGalZWlWVqKZfAdLEfZ8NhudVFBzB4g3GnzOzdDhnins9mNOJpxbwNsuL9wg1bG1tNQ9syiWZtHGNDMDh8vcM1nDbZbHUzTjYpp5W+NYEwB3edyWZlrMAxdm3WX+PmxMszDlsctsiome7pneVnrGqpYVNN8uMwvWDsB2z9Tg81kTPdHag3ch8Hb3suuYp0UHX1clO7+yum3mV5UISEw087A0sy0arPtuu2cywQEAql4CQEMKE1iKYlFo1u3URtKVSSF2nZKE6dOnu9KwCSezFnSLo7almTymmatua4WuFWSXeyZnyQEAL7yv48tFUZfcE77dsCa1UpGPuXYAAS/3TC5miuegXLIyL4hmitVWqmaZy2/3zHo3nED163WsXPVnkc+xZs0a8y9NGl9EcM+s/w90fjT2+ITWeTo+7EfjTlPwzTffSNMEdc7qx+MZPT9Bx/jPgEffkLcbzt84hS02yQPYOwJfKoLBICeaWfWHsyJm+THP3+DhiJZmzrGAVPzndzr2pUiFOOO6tlgnF5A4l+xgmIUvzuXFcM+0LpLDTb4scdBoDwOBAOrdmIcmt0XeoOnAgQNo3LgxmjRpgmXLlknTsMmhR9/qitPjtWjFLM08wkYIQqHGyrxz507DYgEA/JlA7lrgz+6e5yGKxqiXxwAAPg+zsY3L0kwSE6u4GPVJET+XEgu+/wEAsHbdRulx1g+dMOtfUg15Gm78E9Y90+GqePDgQbv98qXb4+1Ssoq2x5UaLDdp7wVmb5z9czCaMivRuGe6RTxAL4F33HbPDBuvzOTmm2+Wp+EMFuSbc1lZ1qRlVlXV2NRMyJp8t86KQEyWZlyYDGZFuX+KeSgEhI7i6nOKPvZJBEg0iyN0XcfkyZPx6quvsu+KYmkWjTVXJErL0qwsRDMr1omqxhYvJiarOKtRlqxkMNNpJkCIeRBiwHhYb9lmxvz1fO4OzbReYe6ZpRnTjO2e6T6P8Sx8tpgiSSNOxKOIaeZZZs4axxy4F1k00+WWZs4dBmWCmF1m1cybO43LtdVxHiMvhoBk1FvVthRgE1HbPZNZmoWJ/+Nd58OvRjnTyLoPZmlmueFK3FZt0cwQkjwnpMJE2phM1qlTx1kaThAuhntmUnXpQMzYecjadS4JPXu6Nz+wLc2M30tCFEaMaWYL5W4rssLCQtx3330YPHiwMOCz6n9JD9YEcc50z5QuGHDvvMw9k5XJXMmWukLonLUsJ3ALoln6WYCuIyUlBdZEpDwm2Zs3b8bJwqoAgO433Vn8E8oqChyiGYCTsUVOYHz7rWn9kNFSFJv5a/HxtTzu61rOm1TWdkRqW4XJDHunfQ7RzLI0E+uCYGlW977YRLOkGjhx4oQ7kWBpJo+nZZTJ29KMWSOzGG3uy+iCgMSt3ltWyWquHRRfN8VBM82osVNwIj8dB0+k4NChQ2HLPGrUKOTlB6CnNESPHj2kaZh7phaAbAxgtE9RuGcqKUafZ1qgutNwgcMdbRh3Z4DAXuDYHLI0K2GGDnsRAHDw4EEcO3ZMmsZlaebLKCVhx15sLU1B4YnHjRiFX3zxtfQ4Gzda7peKeyHbKTLJRTNu0xqzH1dV1Xw/zffJlw7oIS6GcMkv8NgukXJRh5VHGKu5x4OCpRk8BCSJtaxrYd7lnmm0C+lZtSTXKxqCG6jij+B6aeA9J1XYGEomFKq8taweBHximeU7AJfPQl401m22x4v3b0Sh0K63Rrm5hXhdE2P4VUJINIsjFEVBnz59MHDgQPadvLEUiUY0Kw1LM+cAe9++fRHPU5Kima7ryM3NxaBBg/Dmm2+y71NTU9nfsZTbWZ65c+eGyavxr0wcsmOaGQerVq0CAHjuPxq+/VnnYgqBdWhOSzN7IiK3NNu+z1rZMdysjEmovYIAAIcOHUIoFEJ+fj527dolLbPonimPH2fnxRTNJFZXtnumaY0m2WGQdcBmjAXpc+ZjOnntzmUKVX6/n4kpsQuFtqWZ50YAXHlkboiss4rF0sxx73gBKTU1lU2+hJgV3ITTtjQTB0l8UGxP0SyCe6ZrpySJe6YtCFux69zPWVWtCWcAsp0QhZVUI8OwXLVcViG6ZogppjtXkUUzX0qYgZiZprZbMAO43TN1y8XWnYZZ4EVbtzkrjTfffBOTJk0yU7rrf+m4f4gbAVh15pjpmsjaFlOwDYZ1z7TeeUnsRt0sByAIC4ZAZpJxLgANNWrUKLWJSDTs2GFvdb9/n9tCLHZ06QDUiGlmD8pTw3gOh4NNmv1ZnmnEZyK/r4XcGFvWjEYlmjn6M8CISyNseGOkNj8bk27R4ityPDihbWsyCidPnnQn8oV3QwSAP//801a9PAWkZBZrLyjZ/ENweeHcM9mrwlua6Sprw1RVxYvj/sfOY7nfeJGXlwc0HQNcvF3q7gvw7pny9oct8DDCiGZhLc04N1DOElY4V1Zrrp0j0axE4cSwsIvJgmiWVuKLEIawkCJ+Li0iWFSxRWjTyjW72TmuNE6RKbylmS1WaZpmW5EDQGp9AKVraWb3qxqsOG1y4wl+rOa1eGn3z0GJaAadE8G9Fqmdgpw5Jq9egxfNincfBEtYD9GMjf25azoRrOgRjaWZe8MTw/vDYWlWTgt5bDzMb+jjQBpawIEdW1YHvzApzoUAWK7HlZjKXfo4xe+3G4OSsjSLtUFzpo/G0mzPnj1FEsAi7Z7pJQJomoYRI0bgX//6l/A9L5rF0pk7r1u9enXvNGajLLutzErIHDjqZtp//hfoMUy3G3aAdWjOeFhek2xVVXHwmI6mPXXszjnb7CxV10YAr7/+OmrXro3OnTvjzDPPROPGjYW4V2J5ohDNOOFH9jhYh8ZcON1pBKsrxcc15I7jUhce7jrmhJ9ZphQlphm3e6a3pZntnqlKd+GxBTzA/Qzta9lWVVJLM/MchmjGxZhSTFHQmnDqKk5LMif2uWuE96Ik3DNPnDghCGXJKWmuNC5LM102cLEyYghscuGfF4QNiyVVVSWWI5YFkjFIjH1wbg3EwohmMCcY1ToDae5dX21LM2/RzOmeKW/3+Hh9tpXGrFmzgPRzgHZ/QbSiLEVLM7PdMPJh5Hfh7zpqXG/E9HIOuANhNwIwhWXJjTFimnHu1qY4KsY0Ayf8i4sDZYmmaUDAjKnnEUA+JjxWbZ2WZmkpRYtpNnToUPMv+TBP13VRBPOY4OUVcKvskmZU0zRDADIRBE/A0Z+ZJ1C8LM2s3eiMBQfD0sz8jZqDsWPHSstiUa9ePfuDLzUKSzN5AOzNmzeDuYU6YtqwMilJsDb/kIpmGmeZYi5YGe6ZloVwLuCzxiKq2J+pttiXmZkZrsjGeDDD2KXbq59jk0OP9odNSoOHgPytYazr+JhmbrHLPq0mtE/CPU6uBbsNI9GsRGFimOIZf9YldPjSS8kaymoHfKW7A3CEaay9GGv075lVDPfM3377DePHj8exY8fsNurw10DBTvm8iglPOqxYV8wah+8PHBtvxdpXbd++HTfccAOGDBkiPW5bXVluom73WqfVlay/imZRS9ioR2LlzdpB9kUhrDFdaipnjVVM8VDoQzximrms6yRCoW2QYC3wS8YtkphmfN5dorOZp/Jow/Ly8oDMNsBlx4GU+mHm9vZ9kcaDE6zr7Hrrer66SqJZeWeAiJ1wollFsjST5eX48eNh08gEsUiimVenpGmaSzADSk408264wQkl7vPYVkKWaMZ3QvykFaxD02SimcudyxAW8s25/6lAdVgrUk73TMvybunSpdi3bx90Xcf111/vyqsY/yLS7pmmUOhljSBYZhm76cyYMQO//vqrfR4rphncVg1uodBj5cuc8POT7JhFM8sawWP3TFv4tERAmUWV1VkZ15aJKSqrL3LRjC+zbWmWxFl0caIZNKQlFQCHvwRCosVBVKIZN8jIzXWLZs4dmXx+twkMS8NEM3cXw77TwsQ0412PuZhmbksK3m2vOJZmqdKdA10D4uTTXWmYpZklmknqgu2eKd8tzq63nAjOB8WvfQeQ0dy09NDKYCXbbWm2wTRGLQi4B9zBoDsPLI3mHfdP13XILOecwgugm22YvTgQKwcOHJAKo9GiaRosd7xw7s8xnDGMaGb3UcnO8XmUMOthn1vcBiQueZzbXmHAflY7dmxnf8//3r0jpaqqQM4K9rlmzZrCcXv3Ot5qzIfCwkJ7UqZZwr9mP2dWt8175M8yBRdvnDUsGtHMsy5VudjMqltUYAsrYdwzRUszWxBjLrFCTDMzndWfcSKkS0B2wE9iPK2LrHdPK5RO5IVFGE7gc5c5vKWZ4JLKvc/udpmLZUcxzUoOrm6HDYfCT4T9sbtnFhQUYNKkSViyZIn0uODC5ksp1vP9+uuvMXv27KjGLbI0bKysG/17QaGGnJwcXHzxxXj88cfx3HPPiQs8nju3O90zk20rSr4dTarOuWfGvjPp3Xffjf8t0TDyrWVYunSpd3mggd+QgMdlaeblnqlw/bNE+Bc8XCReG27BMMjGYT4/V8eKKYwLc6Kw7pnhPSFclmayWMRO90zZ7pnOc5eT8K+qqjEuBICkatIxrFM0k7cLVntsWRT6bUGYt8xmYWIqL5W79HFKcUUzWZqyEs3kcaq8P0cTQyWcaCaDn5DFMsl25kXWcOvCyoxb7GK/U3j3M/uYqjk76AjumZLdxpLM6rFq9Z9m4667NgLYsmUL0FEFTusCdMgFGo+QllnsiMLFNLN3z5RtBGAPXOwYbf/9739x66234pJLLsG2bdtclinyHUPdLqlu90zO0swRLD0ajE4xvKWZa5VOUtXs5yyPSyd855HGNjnXTbHXeIZ2TDONDQDsVSD3/Y9mYsV3rLl5XgKSD1ANQU0Wksm1EYAkphkTGHX57pmC+wG7kIelmSUgmWmc73N+oVt0F1DCW5q54r9IVi/ZTpKmS6rsnbfFRDMWipelmUMQDoVChohgiSinXQFAE2KmhELyXQ+LiiBy6LalmTXA9Pl4i04zppnUzUF8n2WvoGF9yZVZunsmwMoM98A9GubNm4cGDRqgefPm0oFlNBj1yHLZK4Ghk4elmdM9s+gRRMxfVrkQsjg+RrvmN2JrcdZFa7boSLtGx55DRln37bVd9//2t5td53EOysO+z1b9VkzRTLIRgF23/e6JkCVkeVBQIPZPYUWzwj2wJge7DuhQOmmszAKSmE+2pVkUohmLE2O4Z7I2Uc1jMZCMdCrXHpr3M3BQ2ufy+P1+oHoX45RelmZMNJPHNBPib3psGMQszfQgE9NdaYTA4failmucRe6ZpQPXV8nqDXsOHmJ5tIwZMwb33XcfLr/8culmJqqqGrtVAoCSXGRLsy+//BI333wzrrvuOqxYscIjld0+eC58cTuUFwR0/PHHH+z4v//9b3F8GnbndoAXU6SimZJUrEWtRYsWAS1nAufPxqpVq1zHbe8DMx9R7J6ZnOqIwQX3GFa6+yj/lWQnepclknqKpRGnAbGLh+682ruYe3sFhI/jZo9JLNFMtthn/sHdX5doJnFJLTfRjLPolM1VxPmMvF0QXI/DuWfqIRLNyjsDROzwlbak3DNj7TSjEc1keXE2dpFEM1m+YrE0k1HUmGZFsTQLO4G2hDWN64R0bpWIDbbd57EDh/MCkrWqazSceXmFsAbCSUlJEGOamec7f7ZhiXDGC2HKHGVMMysovpdo5rDMuueee4DadwMNn8J7773n6sSlQqFz8wOzzMGQMen51w/3s06xqMFYhY5CCWMKrvhZmWWm7YaLo497hrJrmX94uLYaHZ5RZndMM84ayDibIKjzxGppll8gMeFmgzW59SPAu2d6W13Zolk4SzOHe6YplMgsFnhLs2AwiMOHD+Pll1/G4sWLkdHF2PnPG7PMvtTwq5ehU2J6DudGAJ7umZalGdz3xXb/YBWC1e06deoAde4yvk5tJBWEebe0DRs2hCtwRGxx2qpbRpvx1lvvAgC+X/gj965aMc3cba3djskH5UI7B7B3VdMk9VjnLc1ij2l27bXXQlVV7Ny5Ex9//LFHuXWM+0SX7oRoHOfKWBLumR47ijndM4vs2uTYIc+J27rIuPdbzDnwoeNWBrh3zuWW4p5EyBfprLptldcQzWzLJGuwr0kshPl3TjF2YvSgsJC7tq5LJ9GK33IxtEWqjbuNY1v2GP8mpXAxa/xhLM3MBQSJoaUjBpJtvRVSYdRjrQDWbnssnTX5stpiX5p8B1COcONB+3vrHZPHNLOtDjV49ZmClQZnITbuEx1TvrNiHXJlDmtpxotm5TPhTEg490zZBJp9JywExX7/hw8fzv7+3//+5zoeCoUAf1Xz/EW3NLvtttvY35988onruOg2KY/FKvStWiEKAxoOHz5shDw4ayIAhyeEp6UZb3VliymuY4pfEP6te1uUdpwfe2qasQBotw9WexpuDGWQIgml4fb+EJ8Rc2Vk7ZPuajtclmahY6xNFcbEwYPFeseF56wky10M+XYTQPWabq8A5+K9d5xVwG4LxffDtdOw2YaVh7WscP99GWFEMzu/YS3NuN0zbddj3jI7lUSz8s4AUTSsSUVFcc+MVogrDdEsXEwzGSXlnum92gHW0cjiWNnWOKJVGmBYYwiuWuw8MgGJExa4ge6aNeaWwEoSLNc+3tLM1RBGKjNrcOVxMuy8hLOoEifZrH8+exLQdIxtLcOZi8tdUuXumT//utr4Lq0pkHQagBKKaaYkeVuasbhPgDXZ5zFEMyVsXbCt8iwrPcl1zKD4TDSzVpQUbgIDgG1+YFKcmGYFhWHKHEY0c24EoElimtmimWHd4LlKKuwuawwM2f0JHGDHnBsBPPjgg3j++efRqVMnAMBnC6OxNAsjmnE7TMksjJwbAchurx3TTB5LQ25d57NFM8EtVBWsrkKhkLHtvcm///1v7/JGgf3Oa2xAuGzZMmzYsAkA0Lt3X9e7Go2lWX6+eH/FwT/AT7Kd8QxFMaV4A1QvEWLLHuCpd3R84fZABADR0qwk3DO1fGm75BTN8otoGSfm0ctC0oqLaCyOOPNjbHhiT7Azsqq5zuOcOHlO4ByWZgUFBdxg3bKWFS3NhF2CjR+iSZMmmDNnjrTETitn2XhCh/Wuap4T5JDGTTJ9mRHdM0OyjW343fa4nTGNiZpu5MGXZk9KBUHYvJ/+jIg7hnq1+TwsFp0ekL4/tuWoJaCGc1HTwVuIPfWOjnv/aVxXF1zYbEtYt6UZ757ptpQpbdZs0dGsd9lPckudCBYlbOwpuLEVz9LPucCxd+9eXH755fYGJMVwz+TrMz9utxCC8COcS6rCFhg13Rw/nfECUPceLo3VV/ld75HQhgHgd89k784Jy1XVL+zoraoqtm7dirPOOgvt27ePydKZH5MkXanj9qG6OFbw2ADJXlS3PnvE0xUWtTyOS2KOivfFGdPMb47nuZOdXFIClmZmGcJt2gQFOPUbAODsc1q40tgLdaalWUiVPGsrsS38uyzNeNFMM+pMuVmamWMw+OWimaZpQMFW9rkwIEkj7AxrPHfb0ox7vtUuJ9GsvDNAFA0v0aysNgKIxtKsJEQz7xgF4a8T7vuiimbOvHgFWjWvbvxfEtPJcNuzOyNd1zB//nx23HApMV0vLYHCHERbMd5cwoJur8xv32GuxCvJbPJrxzTzucx1LdLTPUy4mbCQhOnTp8vTcIKATExxCWKaIgg5tmiWhIgxzRyT7FAohClTptgJk04HdJWzxinORgD+CO6Z1qq7u9PMy8uzhS3ILZA0QUByCy68sGCIgLylmXUvZJZm4jNQFAVIPxuo/1AY0cz+TUFBuDJb4qiH63TUGwGEINs9U7RMAXj3TDY5NXfCEjZ8MAWkzz77DGj8EnD2fwEAOeEMNaKKaSaKo05clmaSZscdA8/rOtYBWxA7deqUmFhwSXXX7Tp16niX12TRKl0aw0TIC+eeadRlux1w1oWwMc3MNCdO5ngc55+ztcLpPFvxLM14vKwxLbd2iZGlnV9uR8UiY7lTqLnScjjdMw8cOOjeNTaq6/ATY4/4g4of9oYPxkCZbx727dsH5K5ln88+5zzXedgk4qixkYzT5cWOr2NOQgBA8Ruimc5PyAChr1J8psDJlcOXAl3Xccstt0iLLF90cOY12eiHJFYEgNk/WxN+XZWKOqyvMtshTVNc7ao9UbXEZ8s905yY6AHzOfPvvMPSTElCTm54SzOhPifVlKYR3DO9RDPeut1zx1Br3KJy7QBfZvYXeEvYUChkWOta7bZjI4DSstJQOmn4foW7nftgtsasChMKNsGVh5VwxzEEe++LirM9ffbZZ5GTk8P1F0V3z+Rxx7mEKKorcus6cRFa48ZhipiGc8/0dnc07xMXIJ61fznLzdP6Tc8OW3D5+9//ji1btuCXX37Bq6++GnWZ+TGJrgNf/OjYCMAc93iKfNZnWWxZl6WZbMHBsbjvuDdOTxReKGQLGCeXAZaFXBERrPmU5PBuuGZ5LKvjbXt19B6h2WmE8Zy73bb7EI21Yfz74bY0C0rrTFlge98A8GV4W+BBAQ59CgAIBGRjNc7SjOuHXJaEai6JZuWdAaJoVDRLs9ISzaKxNCsr0cx5vuK5Z9qulbqmokuXLuz4k08+CdZBM1dFYzDk66zjlY+dA1iA76AHD37O+Cp7rClCSdwzfe5JlGyXLtH8N9Uwa3dgx0CSW0vZ98Xu0KD4hcFWMBjkguKHcc90WZoZjfvxE5yw4DNElKLGlVBV1b4/YS3NOHcWycq8MeGzNwKQjRudMX2cFjb8ZIbtnsnHNOPdM62YZpILKYoCnPUucOYbEiseK5F9vwsllma2NYL9DOWbdNiimWywZpc5jBuQwrsec+6ZbOe5AnbMaWkGADjjOaB2b3k5BaLZPdNyg1VRparb0oaJZpbY6zlA5eL+SQeocgFpy5Ytzly5LM146tevH7bEwaCKzo/ouP3RH6RtpPFMxY0A0tPTuUmQ31UXnK4drEzcoPzkqVz5cUeMQk3T3G0ILxQWc5JntIVurGopWYgFYL2LJSCaWdvDa7ne/bWPt6pQsG3bttiv44izY/HTamMHVBbTzEMoURRg06ZNADQg53cAwImTbvGOxVUxra6cm6JILc3gjGmmsn/5drugoMD4bfCIcTzzAiD9bE9rQaG/lQjytlVoUCiz9SsdlmhmPqPQCemii21pZlqBKcmufkIIis/1EUaZNWPizbtnCoKw3YacOOVRIU2ESUyDR/Dzzz+70rD2xrSkkY6hLAHVQ0x0WuzINzSxrqPBap+YaKb4PUWz0phwWnlZ8LvY1gaDQUyaNAkAsHDhDyV+3XKFvfPhRDMvF+ui4ZxEfzhtthEvN/N8M0HxNgJAUk0g4zxv0Yy9K+6YpoCzb9Xt91JxiGace6Z8jsH3z3a9ZWME1WoL/K7QICtXrmTnmrrkPKzfEZ2IGFYEcVgFufOrAAXGbuqeC9lcWBXnmMS2VuPH2+K1Nh+q75hLaFw7Z50oJG1DY0EQAf1Zrg3ljPyr4GMIFwaMf1//XMcnC/gy22kAieDobLcdY1RnOAKvOlMWOK2SPd0zuTIHZAuckr5Kammm5ZFoVt4ZIIqGJThEY5kVTjSzXoBYGzTpYNRBPMQ0i0U0k65Ie10z0u6ZgqWZmOjTTz/lJhmWK5zdcM35VWZpZjfuws6HqY3AJtn8xEhieeApmjFhwW0eb6exV6llt90Wf8x7yFbjDFydLNwdvbDaZJXZ7IxP8lYsvlQIcZ9gxVhQsWjRInlwaOd1oolpxqwBHYKNkIbbCEBSF9g4hVlveZVZsnsm70IHALrm2aEpigKoxoRFh3vwacDFBvFyz+QGWah9h7z9sQRUXYWq+3HkyBHccOs96Hvf88ZzZmU2OvOI7pmcpZm986ZtacbHQJINGsLCCcLhd2RSAV2TxsBgE5EwMc2i3iWVd4Uw67bLPUuo237XJDtS4PCJk6cAAL769ifDKs+zzNbE13xPnZZm/Cp1yGuXY7u+OOPkuVbvhVgaznqsC6v3RRqA+9IA+DwtzSyxTFL1jfzn59t5LY57piXIeFiauVayPdziI2Pfw9T0Kuzvjv/QMeBfuu3izYQSt6WZsaLvZ3X75Cm3q6CqqkByDeYy7XRVtNswcxUbgLURgC60BYC407PPvL7ZbxTuNVyqLlznWWKxOXJPJgXRjBN1PvzwAwDAn3/+aVyTPaOT8Bb2bUsz2eKKJlia2UKUqlp9hmos8HCCoSBIm5zMDT8ZEzeTUOxdUzmY1QfnnrnnkBEHdNMu3uVLhdWWhrU087AQE8tst08u0YyJp3KrtmiItMmLbHMGAJg2bRqOHTsGALjq6qtjvm5FhS12mMjaDCaUOwg5ffNiwOUenFTD+JDZ0vhXSSmepVmrH4B2q6WimWhRJe//WWwuGG7RxkcFcFma2e6ZnuMaSQxh9r5aOytbohmXJiPDjpG47tQNeOqd6O6Hdd+ssUmSTxfGhPxCk67reP7NnTh+MmBb9+Yb8U11uEUzt6WZeNw9JhEXrI6e1PGfX3oDNboD+94Dlp0hzEPsMY48DEcsCGP/mjdg4WqPMAGcZXvA7NADIe80sgU4MSg+Z2hglUZmaVZO7pmiUUO4mGb2OMwSzUIhne2SbZdPd/RV3PgPINEMJJrFLdZAKRoBKZxoZnVEsarkRbU0i1Uki+YcZRXTzNkoRuee6bF7phBvQDzvOeecAzbJsKyuuIZLUZwTEfN65kC3dZt2jkyp3ETEWzTjO3YLoVGu0s51XExjDJStFd4la3RkddW4NArsgM+ipZkgmnEunDxsJUninnng4CFnrgRrHFVVMWLECHS+9i506NAh7CBOFM0ixDTjYsB4x/KxBFTZap/5h4d7Jm+lYQglxjO0Y2Sp3KqZ5hnfxufzAf5Mz3yYhWV/eVuacabtNW/xXpE1J4q6ruDjjz/G/3YPx8ebXsK4ceO4fNnPRlpm3tLMHHSxCbleyI6x+2K6P8UEJ5rJVi/FFWZNujMsG0SFiWnG7rnHLqmuoPhc3XZfUxNipoRCIWPgahJJYHn99beNP5QkvP/+++HLzFs2MvxcGtvq0HPHMasNM13Ytm3bhuPHj3tYjlquHa5cCav3Vr17YYKGP7dGOSHrkAs0nyzdsRKwB9d7D8vPl5eXZz/c4liaJVU1/tXywlh9c+dPrl0k0axaddtVr0nTZsKxY6e4CTQTSow2jK+/bIHHFM1y8zyE5aQaQNCIq+fcMde2HOUfqjmxcsY0c1gIM0szYRMBb0RLM6Oe7ty5E71798Zrr71mWvGJlmaHDh3CBx8Yotk//vGw0T8nVTPqpZYPy2LtZK6ONVu4SYaiwNrwJKylGScy2e+zxtosu+x2O8db/Z7ICV+/hfcueABZWVmuNEIcSfO+7DLDIG7Z6xDKPSynRUszeyHDs8ycJSzbnVMr5I5DeOc3b96Miy66CHfccUdUIktGFx0jP/Q+bokAzlMJi2aefWH8IYzVII/v5WlpFtvwX4Bf/DTaSPOdyLzA+Le4lmYZRmwqWbstxO7yWDQTF2cM0cwZ88sen8qDussXqXlrHL89JuEtzSSimZHv6IpuvQfWxguhUAH279/PxoS8pdmTg4bh5c8a4sIb3hPLA3ss/dTgl1Cv1dNYuHChqw931gF2jxxjEuudF9IHj6B6Zh54l2zBi6KYlmbODR8mfWrELVNVFW98uAbHT+Ryz8i4TiBgZJAXz+1FXSvzbkszVi6H1RU77ljUsFzey0M0E/qKcKKZxNKsy5PGLtkAP9cShULBaAIAtACJZuWdAaJoWBXXHUfD3Ro7X2aZaFZW7plya4ToP0ebRnYtizKxNDMHhTJXLWYlxOK5iPns2LGjPckwB+U6bJFLUfjVM9O6yFzV1TQNefkOf39eNLMGw7FYmnEdREpWE/b3rgN8fDV7ldqauEybr8MKx2KnsSYZfqHxNdwzrfxaZY7ePfOkI16SM+6Tpml46dX/ARdvxdqtAazdeBAFhfL6IYiKil/iHgeuM/GeZNiDjnCx3qzEogXStr068gqsOBDGZMYWh/gA2Rp498ywu2eak3VZPoxE9v0+djzHdZjVBdU8dvR/8neRTXKNAer7778PpJ0BAJg5cyZX5giWZoI4qkDTNKiaWT6ne6ZWAChpHivN8uIaZbZdDj/67zSPMtvxUGSWZk4rSme9Nc5jZcYaoMraQbcrhCEUmmnzN5vHNLfVVZVL2bmW/hZ+98x8K16dkiSNY2i0LXzdNi0bWRB3v10XLKtDySq/c/dMKH7MmTMH2dnZaNq0qSFSSmIUaprmbjd13tLMHoCP+gh45PUYrBjqeE/IrcH10VPSw6alWQm6Z6ryjQBcq7v+dMybNy/my/CnDobEFWVFDzg2AnAL/6pqCbC2ICyz3tE0zXAzDBlihK4b7e0Vfz+A5949Jd8lVbGsEZzumZrQVzFLN24naQC47LLLpGUWmiOtEJqmoU+fPvjkk0/wxBNPYPXq1ca9NS1hAZ/L1bOwsBCoerktrJnvYd+XdFxwL38fffZE2SeKZnYcN4DfCCAUCnGWZpqZF/d94YfmufnhxyiCJaqS4rZ40zTbuljNgT3ZN7OucG27VRc83TOtxQzjPfS2NLPK7W1p5tzY46677sLy5csxdepUfPnll2HLbDH3t9gtzYT3vzjvcQVDbDd0b0szv3uc53SpjgXn4qeL4lqamcjaStH7wO6D5s6di0suuQTvv/++YxFIh8bia0kszTR5fCrRugvgF/zsUAXmb5JqutwzU1JSjGeT2hhA7KLZO++8Y2YkhG+//Rb2e6iz9/C1140NgLZsWm8vqnKbah08eBDjPq+G/dXG4KqrrnItakljmkk2G5PPt1ScccYZ5v3xOTxH7PtQVMTnDNa2P/fc83j0/fNwQbf/uCznCs0GwGoHxFjQlsWzMa585WMdD72qmfeKXUQQR1lJK6x7ZnoYd177vgSDRj5/WGmn0fm5KPecmUX17teslCSalXcGiKJhVdxoLc34Tqs0RLM333wzYhqgbEWzRYsWSb/nRbNY3LmisTQT8qKHpJ1jIfudkdaZhq3Kcu6Z8LI003WXRVUg4By48FZXfnMjgugszZwdREDLYnFZzrhdx7T5ojUUH2iV3yHQ2UFDSXJbmjHDojC7Z5qTbKP+22VWnINfayMAfpKdXN04llIP5w+ohVteCGOhaN2ftKbYtXu3RxrbJVXmnuncqUca08zpnmSufGX30nHHS7owcJFuBMDHNIu0EYC5Bbz3gM3uDg4cPOI6yjpfNc8QcPLWe1uacdYI/H1JTU3lJsqiACI9h5EQzAKJuWdagrVZt7V8wJ9ehIELV298HpaWESzNnKu6svurOmI3Wa/GX9t1HD2pi/XJLJe9YmttfpDPjvFWh6FQiDsGTP3487AlZqJZ7TsF0cxqmwURXA+B7WLIgrjzGwHYgphsss7HOoTix3XXXQcAOH78ON599124xRTTLcA1ieNFcHGA6qETywmd8uzr8gqMfB45Jt+t0BAnSkI0q2r+oYURzcTzy3aOiwRfVa2Jw9tvG5OvxYsWmFZcolBiLLpYO0Jym9aY71tINerJZ599hk8//ZRtTGM8Z9vqauzYsfhxbS38c1omt/GN9ZyNuiNaI0gszSz3TMGF1MBrcYB1OQU7YVnyLVmyhB1fs2YNRDdEq97aN8sQ6lTg1DLw/cemXfb1BStiU1jm679tXWeUSazb1ne8QA7w7zz//PPyw1sZ5uTwoQkyXCKgqqpGndOCRtvNhGnjuKI4NgIIazltxVo1ng+/Sckvv/xi1AXB3dSKaWZOaLmYZvyGD6qqGrHYavUCzp+PP/9ci2jId69bMqzQPfL+zrZOShSEeqOHiWkm2SyiSN6ZmRcAGee7RTOXJZsP1157LXbu3FmEi3B59FqYZxsB2H1Q165d8euvv2LAgAEO8UeHrln5tJ+9bbFjbgTguRjItVe8e6ZlsZu3Dtg/wSUI+/1+oMlo4OKtxs+jLLPVz508edK8bshcMOXfQ8VcuDDFUK3QXNC3RX0dSThy5Aig2LsCO8UUZ1dkW+OJ3ixWnvbsPcAlDnGLug5r8ZKOaQYAegAFBQV45V+GmLNr73FzsxzOoirgFM0kYxJTHHrm3zre+cpMx/LtbgsDQR13TegLVLUXKct/I4AoLM04Lx/pTueCUMiPPU3RrNB6d0k0q9ylj2O8RLNoXBX5l9to3Isvmskoys6X0ZRH0zRs3LgRzz77LFatWuWZl7Vr5QMvPjZCLJPs2CzNAOiah9UJ73YGV3wjO9aM7Z7J70CkgG8s3TvpsaDcQTNov8PSrLCwELKNANLTw7hnhsxOO7kmgsEg64i27XOuwmmArqCgoAAfT/sEAPDTTz+JK3kAnJZmMcU0s4RCs3EPhUJQfM5JlOreYdAasJsxN2YvcxXXvo7PHvgdyzvNO14T7MmX9yRDNcvjvpb9E8cACMDqrdZ1DBN590YAzphm5kYAkiGZIZpVM5JJ4ls4zd8lXlhcnVOZ4OVtaWaugsInWEKkpKSIz1lJYiucm3frOJWnO84Bdl+MgZhDNLMskLR8wJdm/LbGDe7Me8EPxHxuqyvb0tJ4PrqueLRZ4kDMextz0T2zxV06rntajFPi91ur1g5LM2aloQpx3FRVBQq2c2XyillnwGKLpdRGWpoxiJ4/fz5Ob3od7uk3kLM6sSb7piDAuSY6V3Vlsf9kwhoAoOZNQFJ1iZhil5m9+/snmsc0bjMTcQDu9wH7Dus4dirMVIRZjsp3WAOA/041dgb+8if5LlSGmGJdowQszWregK+WuXc6dcc0i62fYr/h2s9A0Mj3I489DQAozM/BihUrIAR/N13pBg9+FgAwcfIHnDhv3Q8/vvvuO/TodQ963T0YM2fOtCeYzFUxCc888wy79tKlS+FyPTafs/2a2EIL37bbMc3MviVSma0kocMQYm5ljwOy2jksR43JrvisFXvCqVnWlT7s3LkTGzcZE94NGzZwlipm+6skIxAI4JtvvsGPP/7otozg3DM1TXeUhxOZ4LY0y5fsZMzD2lc9BPjSXTvLhUIhIKkKoJ4C73rDXmfe0ozVBeMdnzZfR9MemnlvrTLZbfv48ePZde644w6jzklczNlEjbMQ5kVwVVWNRYtzpgKnXYl1+xuFLTMre4F3nQjvRGC9GwlmacaVR9bOBQIBI/6g87dFsTRruxJot8rlMeASzerdj91Nd+DOO++M/RocYYP8A6z9ciK6GcotzVwxR70swaU7PXPvzorzgX3/NvpVLk1SUhKQ1YY7X3Rlds9/QlxoDqsNMcdhlgWhVmAuNiiAam7cYrULXL/iXMiWj7flZQaAdhdewmVU3MBFXAQv4Zhm5jmNXaZT2PVtEdASy4x8HzlmzF2OHjvhGLcD0rGa09KMsyLLs5qvFK7fLseYZoJQHtY9k7M0C+nYuHEjO37kyBGuPlpu9Y6NAKwxnB7yXLCqLJBoFqfEEtMMEDuc0ohpFm0al/+41Mok/Dk0TUPXrl0xevRotGnTxjMvMtcjwFs0s1bQv/rqK+nvnNcJH9MMMGI6Ga/Yjv06lq7RzTRm53TyF/PEokJhNHx8Z2UMyq3r25ZmxqDdub01s/BST7F82Obi5iTBWpXiyMgI456pB9jAPxAIMNEsyS8KeJaYMnXqVJzM7AMAuPKqqyWWZhLRjMV9MmMgmfeuoFCHpunCdWxLG3Py5WzKrBhg/CTbejbN3nGV01Vm3roulCzfwIK3NIvCPVPX3Z2NaGkmClGhkFhmfiOAWGOa6brOLO1k7pnOQWRQdQsv9oqqY7DmvC9sm3JDNOQncYZoZrkbGh13gdIEAHBWHx29hks2uTBdEAQLJG7y5febbj+WaHbaFa68e8M9k8xW3uKo9XzM+hYM6Zj+vfU+W5Y2tkWV674w6zojjarpzEJk/fYCwYrDNfh0lVnc2MOwNLN3NWzfoXPYEhcU2vXUaiO7XNcDR8+YhQ9mGTGgBOseyz2TC4LP3hFOTPEUUJkLp3mvW3wJnP2RWVd99nvJu2eyMlvn190iuHVWH1D/Vh1t7gsjmrHdKL1Fswnvf8D+NiySbKbN1zF8wXNgollxLFSsmGYAXpt5luuwy/0DsVlEW+jc42CWJExQ1c1nz73Pih979uzB3r17AQD/+c9EW5znBLERI0YA53wCXLwFw4cP5wRh29KMR4xLBtZHGG2+h6UZvxGAIHKZl/CIS8faNi0gimYNHgOajOL6TZ29P/YCBGyhTvEbacw2ecSIEazfvuOOO7h+0VzYUpIxffp03DSiKa4YuAN//vknLEs0vu+1Y5qJFlksxAJvaWbe8/wIlmYsiLuaK7W2NeK4ZRptBDcJtJph5p7J+hON5XX8Zzq27zdvqdDnGX/z1vy7d+82X2X+mVrumVZZrcUOzS38c9YboYAjxIQD6/3csOUQC+rvxLI0c1YV0T0zvqZAD76q4Ze18nbOaaHo6Z6ZVAMIivesGPsACPdTamlminRenh/Rwo+vflmrY+cBfnwEyEIEAJxowOIiKo7xjmK3YR7xdIUxLiC8Ry73TMBcjLLrtt/vB/z2onR490z5GM76oW0lZ7Xb5jjMZ1mRhezFBmt3X1+6Ia47revgAzRrfGqUucsTGs7qrUk2P1DZtQKBgCj8MUszu392xjQrSh924KiOk7nccw6asYuDh8z7YPVnqm2Bxy1MBoNBzJv3AwDg2eee48bkduPgHqvx5TLaMCuNbOG73C3NrLlPuN0zufFpMKhi+vTp7Pjzzz/Pbchjz2cESzNuLkqWZkRcEktMMyCyaBbrC+9M36JFC1eaaESzWC3PrO+2b98uTcMPpmvVqiXJuSia8eWYPXs2evTogVtuuUVw6ZClBaJwz4RtMXHlozo6PGS5P5n34ORiQM2F7giuaG+jba3OGoNyZmnmcM80rMjszsplmQKVs9IwLc2STnPfGMkA0p4cqKJoZt4Kv4/Piy2m8NZFTPwRtnoOtxGAcV+te5feRcfzE0QxxRhw66xxD7lMjlVXJ86s61Lc1h3CL60BVa45cU6u7uF6xsV9kqykiYKLfKBkTzg1ltdvvvkGALBn73589NFHsO4tv2MiAPdkklmaeZXJTCZp9m33BIOQnuZKIw4cdfmAg7c6NN1Tne+nHfvbWAHkRbxt+/hBLm+RqZgTPXNAzolmtqWZOWF0bKwRbnyq+JOA0CmjziVVNWIeycrMTRRDoRDe/hLoOdyIOyfUfy6GnpAH50YAuoIhQ4YAAE6eOI6//vqLncMZD8V+nx0TTr7ecROV9YH78NlC71JbMS0AbmHBck1Nred2/bWEBRbTjNs9k1mOGmUOhXTkFzrdPB2WZgCQUt9sk5xx3PyiGy4T5dyLA1Y7alX5Hfs9i8xNKMLsRMmJPZYFnsWU73RDxC/mRgChUAjwuwO18/z222+uiWdRJhy89UhQtSeI1r/u3TO5DUYAWyzl3DPZ4k3WBcY1VNV2PeaENR6hPhkJwRY7nO6Zjnh9MVuasSaDE83MQOLI/dMhyHOiGWtTk7j8qux9NiacRhrD0owri2ZY1zzzzDNA5nlAnTvwr3/9C8L7zLn5GL/V7PvBFniMa9mWbuaOpTmiu6UT1j6oOYAv3dUP2RuVhMBPAqWWZo5JE99n2WXWWV6Fe69ZcdK4e6PYiwzGVw63es7dOgm2m6kWshcBZPTq1ctIl1THvNdueLcsF9YOj3E2BXr3K+CxN6MTzbzdM2sAoSOO3xY9T3x9k7tnlgz8HKb933VcNJC30AYAd3xCO0+W54YOTXcuEvq48Alh4nsJCzz8+8wvJhqkp6cL75Hf7xfCP4TVzLhxmGz+Y+ddZ+2T874b7aZivG+6BvhN0Ywrs6x/1nUd85cDm/fwC/O8xb/xu9zcXPE5OyzNDMHFOmZYmvXt2xcbNoSPt+qk7s06Lr7f2iXXvP+Fu8E2XlFsSzPbJdWoJyFVx86dO1mf8P6Eidx4TnTP5NE0TlRzxPqUistqLhuTsNtRAjH8osFpaeY9J1WE58yLZqtXr+bCjuhCH2H3C7Y3i9eCVWUhvnoMghFLTDMgsmjGYpNEifM63rvWiEQjmm3fvh1XX301Hn74Ye+YLxx8R8nv5OMV5N9ySXVe//HHH2d/jxgxIuJ1o3HPtMx/DxwygiQvXLiQG9gbK866LubbnszwkwxboLAHuZxlChcfSpW4czFhzZokSEQzWdWxLUpEq5P9B46YeS2wG1bO0qxKlSr2SViHIlrj8KLZnj17OGHBsjSzG+fvfxcFGWdMJ6c5vdSFLYLbmlBmxXTP0QoBX7rHTmLcZE6y0sQ2azA7YNkqlWAKbub1tttuA2CIjePGjWN1gRc+DXirLwiDNifWjjlGvrwszSyhQsXJXM31bgpxbzx2TxNEJlPs4jtZ1wokIOzClJEmW9W1r8XcM3WHeybvOuAQzbZv3y5t24w2zxQNQkcAJRmzZs3yuC+2IBwKhbD7kCUM8YNL+xm62zXrovYqKHNt0jXMmTOHlZmJo9bgk1nP2JZmdrw+vx3Q3Tx+TOmAO0eFc1W02xoWK8v6TtdF11/wlma2YOQSwc0Bd8/hOjK6eFjg8cMNX7Lx/rviuDncMy0hhrlk20Lh5A8N9+8tmzd5l5WVOQrRzGe3DwUFYhp3P/T/7H132GRFlf57b3d/ab7JM0wCBoYooJhFSSYUUcyArmGRFVxdWSWs8hNFQJSVhcW0BhAwsYKKCUFUgjKIIFnSkAYm5/jl7r73/v6oOnXOqarbX38zgzrr1PPwMF939b2V65z3vOecLQPN+vr6BIAXlmXLluE73/lOAMqNOSssNBjtQAsX/ydlQKzIQOeKW0sAmD1bMWdykTMQZfuv97MdM8/13ykzimlW0YprjGmWVEqZZmUZgAuPaWbiedm7qLnWY0XLPtOeEK7HYj9PmDABtH77+vpEn3OYOEi6zwZ0lftZZqH1QcAs3ueiCRQ5NvlJbrzC9/0QkHQiz3MsW7YM733ve3HRRRfZOdRAoQTN0lQqX7wWsixDX1+/HddC97nIIZV7gJIzSIZ8JkAz+5mTSYogpllHB8ft+/kvftWyz08++aT7dyzrMTAKe2rm8eb/22EigLJMl0qBpv3tFZcIIOtX8sLWZM/8a4Fm/hm8ZqOUFQAkqc6MKtsk3DMLAs1ILkkqgUxS6qoYMfAow7Itxj2T76oANGttyfPe26o/pv8m1AGP+9DQEJ9h1qDIxnjw+Su9PxADfvz72fzOgGYyGH5T3c+GUcvfUV0Cu2PlrkcLrN4QDsxji7W+Y5hdVc89M7f900yztWvXinGVQGHmPguJJxB95vMSAO6JYX42uYpcn+nhBb7/m2cfOGPdC0BlfFvumYD28tG6P7tnaqYZgWaNHe6Zf+sG7ChbVsrcM7eUaeZ/Plppx1VxS0Gz973vfbj55pvxta99LZo1zP+NFJoC8ClSykAzdehFGDvtMM10/8xBf/vtt2Owz+R3/8pXviIAnhwoChTQgY1/9atfQVu1yD3NMisScaGhiLhnhqCZdG0yMc26gcwLGFwa5JzYCMw0e897jwcA/Ojqq7yLyPxbMTUkM8U9R4Nm9957L9bQBedZvgAJFBpBgJUMj43jJiJTzCxllRKlfN2SZZKBufJx0eAdKagcSNUwFmKKnmaa0ZzyuGHCK4DxLwMKk/ygkkIJxsyGADhOA+D7pNSb4pKMxDRTwmdeB5Iafvazn5XUaQUOMbBJ61/uJQOIUEMsmCjWXU+ntIy5wWFA2MU08wJKi/Z0d2tQYqC/3zK5dHFZIosMxOZ8wQteoOooYc2+o9lsYrMlUuaFNy7CGrt8bYH7Hi9cPfPSWMwUSkkvmSn8Lnfs+K5N9l3Gqlw1Qb5tmdSKzCSEXbeuxWfM7uG9aurlri67pLB75tKlS/FT64GzadOmIE6MErKTDnbPjLi85A4c9ZhmIpbeBz/+LQDAow/fC4AZZ9FCQFWJMmnWAp8Pmwf47li/fj3+QK5FIuj0lpQnnngCrcSub3/729HnbwnTTC6xZsA0S5lhJRhVCkAiVpl3/nN2VQLN6IVkRNIMBFbgxL1H7jrunPKYZrY9xiBGQH1rtqzpM4Fwpm+aiVKBYixYBU+7ZwpQ0BkHKkbekq5N0jJvzw5ZOjs7HSDMd1VVx/ET4JJMWsPuoTlQNLFpU2vWlWKi2vYff/zxuPKH1+D000/Hn//85wAobO2eaeo8+OCDWLDAaInXXXcddCxWOa52dAkE91xs4zHNNPCfZRmauTwfWgMvcg+vWLE6WmfhMyaBDwF/VJSIth25Z5IstLkvnqhEuXUnYWIWAAw0ULgN+m2+5ePwt2CaAeDA7oJpFgNQtRHaMM0c8ATY+4QeOjb3TMc0c4CzKXJt57kNm1GRSXdadFSc/YE+lyRGP3D72ZxnfrwyxzQrcnsudIqzBwII0kwzKc9p2QduPzum2fR3i4ZlgbGvkDJPbTow/T144IEHSrv90g+Z+K6xotn8HB+Swy5kwghk2YI5vPiOqehTpj+jphaFldNDmQQAjvpEpH1ZP8tEotz6wLMPmiljd20a7r333nidJAF7BVSD0C1B1uPEy55JZ0W+AzQb00lZr9dxzjnn4KijjsLhhx+Ok046SVl8vvOd7+C1r30tXv3qV+PLX/6ympiHH34Y7373u3HwwQfjpJNOwooVK9x3w8PD+MxnPoPDDjsMb3zjG3HDDTeo91577bXuneecc84WCZD/10qZe6Y8AMpSQcvNLQGkrQHNYnMSA/AajQaOOeYYvOIVr8CyZcuibJbbbrvN/f3QQw+N+m6ZwUn2uWydSGBN9ln+W9aJfQ+0zzR75pln3C3585//XDC6DNMMRRKCdOqyMuALCZ4qplkRJgLgwMzsCiFZSuZysRkHVf9CkFMzzTiT3n33G9fF+++7WzBKGFjQ/alE3D9igpWdO+fmEwHNrMLjU8EzHzSTbLQkxfr16xWTxHR4CN/97nfhF23Vyhxo8PTyAslhOTb2FZ5ixeDdR79UoOPVwj2N4t7YcQmDjtJlxWPnSlIFDpwPTDkKsPHK0rTgcQILggA0yAS9/+oNvhRjhDQlcOdDQFLF008/HY6LY7cZYS3Pc1x66aU47LDDcOutt+q1YAU6yTSLJXyQy66jBtx4Xw8w5Y1ev6x7JqxC7axmgrFg2xMu44SzT8X6XGSguER+0evWrD/Zhyz3BDoB3j3/hAIv/CAz0mSf1RFW5MadI6JwGldFYs94rk3ShS2pqv3cWijnvTcywnvN/N8GQpeux8TYcUqGAMEFIPaRj3zEPfdzn/tcoIho0CzCNBN9XrnKKsIONAv3vCvTjwNgANfSQuwnx5rTxcR5FKBZP98dX/ziF9EkXy9hqd+SwgBSvPD9sXWgWeEB8M5VU8T/cWARgWY+6yrtiSor0rqt3XAiTLMis7H7zDNM7C4zzy52p61nW6rcGXU8NLFpShRz9poU7pmCURLGA/JjmlW5jogzac4wnpPFi5fQi0DMB1kkICxZ0VF3Uy/uGQOF5s4dqWcq3IFfmCVjEvxkWYYbb7wJOHgAmHI07r77bjBQyHN49dU/BgB8/wff99jiph3nn3++G7v3ve99AijMnWIly1MLF6LsfnbhE1q4mOcy5ue0Y3HN79tTOn9+19woWPKv//pvAIAf//gn6nP91O0HNLvpppsAAI8//lTUzU276Vcwf/78oI4zHuZ1cYf+tZhmW+fWNXr2TJ3NlYoOnG9YNdo9s4J77rFgQwnTTIHtACQDKRbTjGXPuHumb59eu7HAvY9ZWVcktQp1qATLli2DL29oplkqADKrYyQJM7EAvtMl0yypqPFbuXKleA8UIDYwMADM/awYoIxjCLv9TN81gImHAPt+b1TXvpXr458rY6w9w7R7Zm71Mela6fc5FfNIc6VDjGhdBu4szLLM6BDRxnFGYgB4apnpePWvgC0pplltKs4999ygTsA0E3oVYIFCl5wGrs8KNIPde2uu3BHTbCyVsyzDnDlzcMUVV+Dmm2/GYYcdhtNOOw2AyZD3k5/8BN/5znfwox/9CLfddpuLzVOv1/GJT3wC73rXu3DzzTfjgAMOwFlnneWe+61vfQubNm3C9ddfjy984Qv4z//8TyxatAiAoWFffPHFuPDCC3Hddddh+fLluOyyy7ZV/7fb0k72zHbAoTLW1apVq/CCF7wAhxxySFRg21L3zB/84Af4yU9+gj/96U844YQTSpgq8f6U1fntb3/r/t0OaCbryGfJ1O29vSFVoxXTjNqp22YuNG1RF0IbgQ9JggMOOMB7m0eLRoJnFi2x7ewTwkIRZJVzlmdSYgrt/lEKmkUEJ0U9F0wzBhhy70Iz/1Zjn1R0PBR7KAcXKAk/gkZs0kgDWbOhwCzfPTMA/KR7JlLzHD/5wchirFmzJuizckMEg2b32oQzS1b7lkcWJq77kxi7wlMyrKvujXcXePhpn4FEbA8xJipmhFE400RckirtuHlGmVAy0hSCWOTYdwJ3kRvlK6kpFirXSVVb6/U6TjrpJMyfPx+HH354yDTz3DN/97vfaWEKZt1JcPTfv7mLEbIUCCiYZkUDaG6wX9lEAMI6lkUSLsQAbmUhLhpAWis5j7QC3Ww2neycZVB7kZgpS5cuxZqNps7g4GDE/UPOgQXNrFAumaMGEKZqtJ9jwdIrkAlF2gXNvvY/l9h/xZhmVkBFlfeErRsyU1Jl5XzyySdHBc2MEiSs97bPRgGm2HXcZx8c9cWXxsjGFiEGGOyKgWY6qDAwKIKv//d//zfcqZ3wGGxJ0eMYFrf+PMVzrO6ZPmiW596YJZWIG25FK72VHrFHPNBMuGeOFtPszkXPA/a5HGy84X0UgGYe00wxJqTbdQloyS7+I6Kt/tzT80w/tNtSVbuT2vXmM80eeuhheiEoUY8s0k1dumeGzwY068qy67wxL1XYINwQBdPMjU/vC8U46/v50ksNq/HSSy4R7c1Aa8GEWDDjuXHjRnGGxZlmixavdO/xAbHS7JninDvw+S/mh836IN55VptMja55uPLKK4OPFy8xhvnVq1d538g7dvthTbz97W83/0gquPjii4PvlXvmxMNx9dVXB3XKmWZjBbQ0e5xKa9Bs65TtUbNnQrKIU+CA3wAds7xs9IZJpGT5JAWfQ9aQF4tp5rOupAsbNGjmkjbZ9V+tVoHqRPe9f00d9YkCLzrRgi1Vtv6Ux9+U8oZgmwNgliG7pJKsJu8vN3Yio70EXU477TQBvAGkYzimmSxFwRlDk0rUONpOSUuWoTxPlXum279F4J6JhAwQMuEDPYfqpCqRiAGjpUzC4ChhEkHx4p4dfYYZr8pfAVtSe74Wj+HtAGIvlAYVZprpPjOL0spd8yvA2muihJJ/pDKmae3u7sYHP/hBzJgxA5VKBccddxyWL1+OjRs34vrrr8c73/lO7Lzzzpg2bRre+9734te//jUA4J577kF3dzfe8pa3oLOzEyeeeCIeeeQRxza7/vrrcdJJJ6G3txcHHnggDjvsMAeE3HDDDTjiiCOw3377obe3Fx/84Afdc/+RSzsxzcpYZO24Z5566qm4//778cc//hFf/OIXg/dvKWj2yCOPuH//9re/3SagmWSmteOe6buLUZHg4LhxJZkkRSFF/JxzzsGMGTNw5ZVXenWM4qIs6pAsE2sFQqL6adonLytj/fi3j34MAPCn229XTDMZ00m7ZzJoxgqnFdzTmhBgqV3hWCsrmgLNqu7Z6kKTQCGVpCou0NxdMmHxQLOkgpNPPhkA8OijDyvWA7MRvKyKzY2uXTLWm4njNkG/rmhG2ZUaBGFlkpYNgzwCNLDWqFpVPsdzZ7ECxxGnFjjgnz0GkoiZxeOmx4jdM1k4YqGInhEvdTEdpTHNiIZt3Y18GnboeincIWrTuI6MaRZj17m1kNm/C0SmAUBuATcjsDo2QtEAhhe5Ok4Rt2BK3gwzr5WCZm4OG0LJLumzYJo5MTKXwBqtlxT//u//7p5xwQUXRIBCMSaFzFSlM8PqrLIkQMu1XWErc9HgPd+qSKWmMs6+m2OacUylDLCgvo4BIxVzBh98g40fXFkBTWkHZ7uS2fbI2u3aE2OapVpYtGVkcINxRYv2meuWg2bE2AU29w3o77jhwfPGUjheVovvI88fK9MsGJ+0pu+hxHfPzFjZEkwzHRTfjJEEkKIxzSSAlKS4c+Ub7PeaFa2SDogMwJJpptwZ1fkWjr8CCi2A5DNKAtBKAmkAmN1GYGLO86XmRDCELeAuizw3ou6ZpUyz1LJixZhPfh1uub98vTmDUW6MHRLUZCBUuJgjsbGfuM/MuuVxMaCZZCvKeyYP1/HBAxoolEwzZ8jz3OoFCF5EmL5tlbQrzn5wzyu5f8yPt+ydf4PCLKCqjhlri9rzPXsD094R1DH7u2bueAmaFWMcBxETV8pQZk+XKNVb6QpL57A8401sLWaauXu+OgGY/Fpg+nGRmGbENKN1kfIzyD0zGtMszkAazT0zyzLPTTAEzZYK2+2kSVPcv0OwPAFqOwFT36bkbeWe6bKr27tVhmUR9xfLanw/33XXXe5NhqEqgUKWsSTBwPy0V2UMjZ/tGJVpJrexjEemDGz2HlLvQBq4ZyKpeISPVISMyNxnZ555pqvxyU9+UpzPcGdhnufBHGLoSaDvbrUWAOBRK5r+NUAzdda3As28efZBM/sPMz+iz2YOKmoOd7hnbkX5y1/+gilTpmDSpEl4+umnseeee7rv9t57byxcuBAAsHDhQvVdd3c3dt55ZyxcuBCbN2/GunXr2v7tXnvthWXLloUL2JZ6vY7+/n713/DwsKMa/r38B2Crfi9jmsWeDYQA0ljq3H777e7ze++9N3iHb/UxKYh1nRgg4QJP2zIaaFYKapQU2Z8yK03oLqbH1P+c/vMVF+rz2WefjTVr1nAqeiqWjeNowwAM20h8b10v5e9Cq5apc9ttt7v3msPMADtSmWw0GixEu0PS0sOVy0vINGtm4VpymbeE1dtYwmuuD8yeyL0LmgZcxkrIXTuUoDvpCL70xaVH7pP9fZuVwiNBAxN01D6/sc4+I1OMHQOaTQT6RUyFJAn2Ba9tyW4gxaqw41QIMJH6Y55VIw/HPBfzzIKL3Dd5ngswJXcAH7dPCp9mfaZJIZQ3wYCyfebL0KypjRs34hvf+AYeeZTdOQpydQzm2YJmwlUxWP/OVdEoqOvWrQOmvws4aBXIqsrAmlm306ZNgyyOgSfcM0mpGhqSQg4Ff2fwOUfFAEOChcZMM6MUF4NhYPihoaH4fnb9MX329z27arGAKtOtN5rS1YOBzzvuuMO9+7777kOYPVN2M1MMGLludUBdj3VlQWNmpmQs9OdF9G4485IceOF9/O5dPiV+z2OlAbFECK1gcMWtvxDAStM0SOzhM80kiyhw26O6DgTMeZ5djEFPfMmHnct/eCdy3eHh8K4y7pl8Ji5evEz8VhYZPHrs97YZtxCMpv+uvPJKYM4pRuETJXa/tpIn+NyG3RtVHdMGgmnmgP9UG0QqPbwWhHumEazNO7Ms4xiJeQQ0Q6pc0Gs1a6whQM4/8wuaZ9EeFV+MpiEcf9VnmQgg8QExMkj5wByApKpBY3tuG9lAns2kENLZoeeUFZWc3ZZIuSWDmB/TzJ5hS5YsYaCwaAKzP4L3XzCjVG5syvPB9dkDzRxzNGdwQbjq6nve3HkdHR2QDHllBPLjb4r55nOb93PTZc+kOKvaxbzRaBjDTnMj0GAEodV651d2I03TsI67PxOtA0jEIgl/9/f6H7e5it122230s6U6Oahj1naHWbPSPTMLZYKWbalNdb+VMpQ6PyJrY4v7LN5z5JFHus8uv/xySOBkZGREz70KgG/uZ46FRuzhCj+DjFqFHg8J2nACC/JyEIZlAM95znMwdepUtf5vueUW1Zd6Q69t2mZ5nmPSZB7b9evXh+t93x8YJr6Qt12IBgB8tpNMYgxf/jnHRkNmIEkGmUtmIj1ebJ8DN9hKtzL28TkL+EyzVnNN8RXzPMfHPvYx9/vLLruM5bCYXpVIVjKHUjDgXiR2HQGcSYI777zTte2pp56CYprZs7DRaDhMwpUV3wTufxnoHqH1SWV4JNQht/V/jkWZj8DEdyu5F6Xbauyu8g08VsZatWoV6wWgISvHHrbn/9otW8yz6+/vxxe+8AUXx2RwcFC5tI0bN86hvENDQwFzZ9y4cRgaGsLg4CAqlYoKHN7qt/SOoaGhIC08AFxxxRW49NJL1WfHHHMMjj322C3t6rNWlixZMnqlkkKTnGUZnnrqKdx7773Ya6+9FNVUIsKLFy92i53GNk11UORnnnkGkyZNAgD1nIGBgYCaumqVprw3Go2gTiyTjb84YymiZZHtoNKuq0rstwACv/2HH34Y3/zmN5X1ZMOGDUF/TCwBLiMjIyZemSjaMmQEVBMbwJakirqLj8NMs6GhIaBb/DS4rFK+FIscp59+OrD35QC5R9rLavXq1XwxOEXExpWxF705CLsC0GxoaDjos2GDSqZB1dRxilFm2EYOQBJ9HngIGHcAgApunX8bcAiE8qWDjuK5NwAL3mu768VZsmO1ePFiINkJjpljD/fVq1eyJTvb7MZsaGjIjcuqVauAtAfI5GWfYP369UGfly9fDlZsTJ+XLFmCdX0TAeyEZctXWNByKoCmU3aWLVuGIj8QQAcWLVqEuqN38bgsWLAAwPMAAIsWLYJKCgFPEZH9L4x1z2xpAZrJmGbI7douXD/+67/+Cz/+8Y+B7n2A3Wkkk/h+dqCZ6fOmTZtUvZUrV8IFBbeMhYceegiYcLBtTpdZZyrQdWhZdPFtrOCSZQWefmYxgF1x/333AR0Huz6bMywHUMWaNWswUi/sumZA2exbM74rVqwIhAIkCZYsWRI/nwhssuy6VatWqXpu/QsBddGiRXh0wQiAffHQw48YZkiilVJ59m7atEkwLSIxzZAb8BEzoYU1A0o2KPOpiGk2MjLiACQzLxUGPGHOryeeWBe42H7zFztDKVY9+xphUIyZYQ/a/iRmTZp1xeDD2rVrxTxHWF8jIxih9Z9L0IyE9prpczIepIjUrVBuPqezjs6wwt5bBnxYvXo1FMAMAEUenWfzPq67dkN/UGfNmjXmnfkIUBmHu+6+j+t07ib6zsBhqbtGi8J7iIt8zuIlq4BDLgx+t2HDxlHfJ+UJBmfgGEhGIeB+mD7vArefkwpWr17GY5902L/F2iKmcbdZkyMjI6iOiHOu8NyzEgGa0X6urwA6Z9k59EAzWMXbnqmGdUhnDp8lwyMsb5BhdOLEidxn655pZACeM3Nuz4JkVLEBCkBStXt+WgCUo1OucZrDuHumkX2k8mXuPHNX7grNnCNjhznnzP2zt30/yzo0v77cODQ0AoyDVZy67N6ktlbMGCTdpq0W1Dd1OtwcmTAFgjlNLjwCNBscGgZqEOMSYY1YRd0Bq0kFmzdvxuDgEDARkIkApNyyatUq4xKdNvm8ANrbY2kXNm1aGtZ1cQwreOKJJ5zusGG9lEu3bB//bQoDoX19fUG7Ddiq2ZCPP/64MlQ7OajQMc3qjRbuZ7FC8bk2zcfatWvdb5ctW4ZS0CwJ5Y6xFJJHpFxvzhDbv53ehTVrPmTl0w7XTnc/C/fM9evXw1k1kxTwjFpZVqi2Ll261D2jUqmgCT47hoaGgB4Dml166aU48MADrafURCCpREOAPPToU3jyycJ5A+XZHABGtpYs9Ng8o2MX21Y+n5z8BgBJleNIuj2fmLHCHFvHui5227PV7vlNmzYBE+zQpcTAC2WSAGRwsULNnl++fCnKmGbla2Au8qyBRYuWAwB++tOfAi/5PlAUuPXWWwG8AFKWNrIencN2ThPthmjW40xbJ8Xw8AjQK9uk2Wiuzx7TbO3atfjqV78K7CSSHxQZ3va2t+Fnf+E68/94L4AXAgBu+cPtWHTM3JK+bptidMuK0eXSTnR0TwjG18nkznhZRb3O4KgxjBlWYrVaRd16S2zatMmMzVQNmm3evBlz5szZKvzi77HsvvvubdXbItBsZGQEp512Gg455BC85S1vAQD09PQo0GFgYMBmBDPMMt8HemBgAN3d3ejp6XH0VQLBWv2W3mFiwITlAx/4AN7znvfoTlargfLwtyx5boT7XXbZZYuD6sn+/PCHP8RnP/tZ7LbbbjjuuOOidWbOnIm5c80GJjZWpVJRQOfs2bMxfbqheErAq1arud9SmTJlivq70Whg1113VWytWFww3x9aupDGSmmg9pIiBQSf1UZFtn3q1Kk444wzcP311wft9Pu8dOlS9Xe9Xsfs2bPVZyY1vS1WyTbtYNcmnnO2AgV+4vKyssAaCyMFUJ0CVCYAzU0GVN5oLqvx48fzRSJAs2nTpjmQqaenxwhXnntmR0dX0OcFCxYwsGBdTCZPnswCaZGhu3sCXEYa22czDrnrMw5hYZmeE+zJynjdbqncK0ZbYdbWoDncJ06cyOBT1u/aZdayuWB7e7sBNOAyEAIAUowbNy7osxE+yUpnLsSddtoJwz07AQBmzJhlwOUkBXJ2z5w+fTrqIwMAOtDX14dKRbiH2HG57rrrQKDZE088gYLcIoQA5IrHNJs0aRLSZCULxsryZvos19+sWbMMYDbrI8CeX+WhLNKgz0ZYEEyztIoDDjhA1Zs6dSqAfgUOmQQLdg+kXcI6aQHhJFVru1ar8RlhLV9FAcyZsysA627hlkWBjo4ODInnOPdMARRKq+64ceNC0AzGaur32SnLgmk2ZcoUVe+pp56CDwgvXrwYf75zCTBjX/ziF7/izJeCaSbPNdN/j2mWA7y+czNudj57enqAQbmf7bNEfC9zhpn1b5IIDDGwDcMKWbBgAY4++mg9EL6eu/5X2GWX/4Tca+x+x8qxywYIAEnVzrNw5/JYJ+PGjUOlQvOeOQWan0Ex85iNU1fnkxfTzM2zGd/JkycH76T3+vNsCvevUu0N6pg5SkFsvmZWYO7cuZj/FwAvfUqMHwPW8fe0LmYP6Wx/9Xode+21lwEppseNex2d3aXvi8kTxm2JWFeGWTxz5kzwmCVir7LSZNabPUO7dkeWDkKD6TWz3uyZUxQFn3NFjlgmyWYzt5KmZV011wPVyejtrYSgWZFZw51pD8+LPhtrHWY8VqxYgZce9UU0MBm3/fg9os917o+4e3kd07q1BttkyNXp7e0Fs64MaGzucHk2e+6ZXp/NGh4AkJszaVMGgO5+yWI249bb2wtszIC0IhJkaKBwl112icqNlao9MC3gO3HiRHFH2P4Q6G/HsaurCy7xRdc8c28kA5BGrfHjxwP9/J6OGh3MfJ+FxcxVd3c3MJS5d6UVe/+LmGa9vb1AnzkXJk+eDCTL1RkGoMUeE+9OuzBjxoywLs1JUsOMGTMc43nqdMF8TrZsH/9NikhmMnHixKDdas+bihg3bhzmzJnjPjHznJj9IWJwJWko47csbt9m+PSnP40TTzwR06ZNM0bkFkyzsY81z3NnZ2fw+1mzZgHY6P52MqyLT5nw/SviexmAXbhnTnq1+acFbH0ZyQAriburRooMSDowceJE8/ykgjQFTjjhBADGO4fOVCIiyNI/0MSTTz7tWHPVqmnL3LlzUaux3hLqXglQJddc3odmXu24d85Gtfq4bS+zQg35hO9wareM76jOlY4JQGUfUNzYzMo/EydONPu77x5gww3ArmcCqGKnnXby5LA4aNZqDXR0cH+dnkfnlZN3TX+MfJ+6Okae0KCZwgmSFFU6w0riezmZRBg06HxasmQJsJNsbSZkTzPPF150EQATX/GJZTV846qF+M9Pvqq0v1tbpk6dCiTrgGwQqE5CM69g7ty5+OB/XI0r7joOy65aafo0kEAy/qVM7sIBFTpze09Pj9IL0jTFQQcdhCOOOAJLly7dKvxiey5j7nGz2cSnPvUpTJ8+HR//+Mfd57vvvrvKpPn4449j3rx5AIB58+ap74aGhrB06VLMm2cu66lTp7b92yeeeAJz5syJsswAs+h7e3vVf11dJubB39N/ALbq95Ii+dnPfhaAYYrJ+GNScSuKwv2WXB4rlUrgnyzbR6VarUbb75c8z3HJJZfgkEMOwc0331yaPdP/zVhLaXBMaEDMB7mo+AkSfMAMMO30+xzLVBqmwZZ1zOGj6iRVLF263FbmS1y5oVZ6wcAD1UuEQFQAL18DTHsbmFJrLk/l5+8stppSzsFg9Vw0syI+z4563uTfJwyaBRnBqM8E5qhsaqyshBlDvUs2SYUykuOsz37eUpBln20cN1pGjj0nXF6ky5cMJg0z//G1nXJbLSuuWiEFxsagc3Fv2E3u6YXGNfCtb32rcEPkcZEJUK644gqdPbOEmUXPqFarqKS5UIhE3B37DAlau74IwAww7pDxea4xaGbHPU1T1F4N/OlhZhlJcMisN5rnLhWbS7v28XgXXp+zHFhPsdG8/cPumYllINVM+4R7przozdlQBfqFCyKM0Bvdz84Ni+MSheNC1ljTZxND0fTh0m9fLvpcILbnK5WKcMNt2m4mAnjObaZSM27SncvEcaP9TGs7V+5cOu4UjUuCVatWBX1Wx+3IUiAbDII3s9sDC6iFnQPz6Aq7BbgECSHln91Kec+7symVMUl0gHjlXiaYZjJODI+5LOH55eZR1B1uJJFxsX2w76s3zLnw5DMb9SucIm4SmYz13o61+5prrkGaGssu8niWxEYzH5M8oeJ7FSK+l4j/c8stt/CZKFwy3FqYdRKueubLts8EmlU45hjIbVSwZSOZJB1gWUj3zC67R0KmmTy3uc36bKS76tOf/jSGd/8est2/jFNPPVX0WWbP5PON94q/V/muc2EARPIP+o4Lvadwd4QsMpmMczeV+0ae20WmzrAgJIItdLb7c5/J7JlJzc493xG8FuidFBTcKud7fUsECc/Mf75rK4AHXfIDPv+DMvlIbw4r8UQAhU5gBACNZhb0ecGCBSX7WYx32oWOjg71/bmXbQLGH2THoGZjkpL8K++Yv70u0O5/zAw08khcPtWg2dDQkKrzw7sOBmZ9CNrwZNwRx9YWYcCFievL51scNNtl1922oM/cH5LVZDHAD382MGxd/V0m5Nw7Q4yROnDP3O8ntjsc08w/X+kZMqlWnnP2zDTl+0e6J0eT01R6sGLFCqSpYYmtXGniextXQe4PrVs5p3wOslzp7i8AqM0Q5wx7BbDLJgBUOKSJkGFlWxdVPwns+imw/sDytoslR/dVWlOJAFT8NO8Ma32H8fkWxvfUZxhnQjbjokNGmD7qME6J8MLJrWGlIwwB5LPr7PjK7OD03bhx4yAT5Nz2R5EJbMLL8V+/fhVuuummZ+1McHqIlQ3zvIJHHnkEV/zSsDH/6Z/eY9d6qkAzOc8cXkRmojd18jwH0hqmTp2ElStXYv78+Q4z+Fufh9v8fG2zjBk0+/znP4+RkRGcffbZSkE76qijcM0112DZsmVYu3YtrrzySrzhDSYA7Ite9CIMDQ3h2muvRb1ex2WXXYb99tvPWgnMb7/97W9jYGAADz74IG699VYcccQRAIAjjzwSN954IxYsWID+/n5cfvnl7rn/yIUmuRXoNFoiAB80i8UPA4yPvl9i763X6zj11FPxpz/9CUcccUS0jg8ybQlo1so9U1IsKdGEX+QGKaOYlgcO18WPradAQSusmt/RBVATBz27Z6px2Pu7cEor1UtCQcX8UwJiXqwSYb03fc74QiOARBR2G+Vi2kWKVVP8nlkkg4ODHlBiwZSGZVR07yOeWLh2hAeVYCA5ZgoBCwXw8nWGHl2IYOlJRQOF2aAbF6NkFwwsJPJCNe9rncacXUCbzSYuu+zbAIArvvM9cRGxlW7lypUOtHj66acFQMEWQQn2NxoNduFUClrIlAIoe6YUSgkokeCcVzrmhJ/5IC28RAAiKH7/YIE8B264sxCKYAZakxoc7bLjIq26qXpXnuc6jhty5EWCU045PWxmIQAximGRdFj2Efc5yLZH2X5Ef2Nu4G4OnVtZq+yZLKBOmTLF7bEsK3Sf7bqV6ypNpYsaCS5CCSoy486hhHJWOF2QZj8eUBA/RAKoSVRY17HUDJCsgggDAjRgAVUHsK/oODER0EBlzxJCuVRwZFB0qYi4YPSFODeVQCeUhKZ0tSpaCD8CNKubuRgYKjDudTmWrCoYOLHMNnKJ/a8LztOPcQyGSul92arEsmdSMo01a9YAzc38xeAjwKofADDuU1T6Bwu89pQcfYMRZcwWpURZ90ydCKCCxxbD1qEzOdUGESqTXgnpts3zYNwkdZbg0FWR14YAzZIuL3ad3S9FxMCjQhXQOJp3PvEExy9UbokSNBNMMw0Ii/vQB828+yycNwn8h3PKIBT1p8n3kLo3ADbwmLtGKX/ijo6x7s1YUFMkOMpMMxlfTRkXHLBAYTIEczTxEiQA2LyZQhvY+ywArQHMPB5whgwG/kfqGbdR9ZnPuWbT3vvCmPejH/0o2mc13pUeda9efPHFOOf7E4G51kCV1JQ812yKfRthJf/dFgfYV6Nyi7vDXf1QvrntqeeafxR6bvMxZM/UwJhZw4ZBH2mDKPPm7dH2O1wRGY1jffazBC947Al79jFopgPGSyO13X8qSznFHNVrm+UACfaK7JlJBSn4jHJhJWydgF2VdrtA99/4xjfQtHrDV7/6VTw26XeuWvyOYXd3bVzgBFH63Cx4zztZrZPBY8847Ernzu57qWM40AwpkDFD1+xBcxZqPWT0e5L2p4xpK9ti2O8G2KGzR53b7p10tje5zyKedGDgSWtqXZkM4OK+sWdynluD9Kb53Ghi1IqxO+444b5py1e+8pVR+7+lxa1LMqimnSYDaNWwaf/whz8I+ZRdUgPQTMphImMoGWTSJMf06dPHBC79Xy1jGoEVK1bg2muvxX333YdXvepVOPTQQ3HooYfivvvuwyGHHIK3v/3teP/7349jjjkGBx98MN785jcDMOyvCy64AFdeeSVe9apX4YEHHsC5557rnvuhD30Ivb29OPLII3HGGWfgjDPOwG677QYA2HPPPfHxj38cp5xyCo466ijMmDHDUWD/kQst3qgVwxafUeX/u13QrN1g/P39/Uo5jbXNf9aWgGatylizZwZZYGyJsdlibfVBM/23UDhdEEbhqiXYOPqy2kUIuQBd9AymSAGnYJYGRCDnogmncBJopoI9h6yrRr0MQJKgWZVBN9sWQ12PCOX0/FS6UseVbPOoiq6DChRQWOl230uhnBV48OVRZCowqWLjuPeF4BEgLS/c1maziZ/82KRwv+SSy7T10tb5wx/+ABbEaljqYuAxq0GuvWuuuUYoHiwARcemMKBZIlk9EcaC6JzZf+OeGz4LabA3GDRrKABp9Ubz/dQJIl13wCKz+zztErGU2Kob7nnXKbuuEvz8578QY8Xfm7VdsEKf2jYKQFkKqGZtVuADwuVKBvWngVLQzFOgtSJe8eqY9eYnFeGkEBykVrIo3WcKQCKmGQEB7OIsWVea6cnjJ/vy4YtynPylHE0XH62hQQNaUx0zNQhnBVQFGrgzgNgwxCLT4x0kuZBMMwhwzgsc7hhIhQBkJZho21Pr6AzOsFh2LmaFmvLHOwwLcekaYHAYmP8X4KpbeoAprwe5Z47UDYP2sUf/oh8mFJN2Y2vKophPANDc5O5MMx5i/a28HFj+ZQCG+UblvieAm+4B/vzoaO+RoFlVxPYBMPFw4MWPGFazYyh62TPVA+lcqKhEAPW6ZBQWiDLNBENaMs0UaCaYZvJsZzaBBISBZsasK/0uugcMQMjAOMCZn+VerXgMDIrNo12yVZKBXT8DvGK9bTfV0etf7klWsr33lzDNNBttdNCM2RN1PsOoPWm3YNKx8ca0gwEJBs4JqKO1IENc0BjZ+6xMfSh0op4sy8K4jEUWnHMm1mWuzm6TSTRSFGCn7xjDOJRf15Q8V2+IO0bJJn/nRWQD9c+exx57DGeffbZeh5WJalx++2dxtsgsy0UWgEStisu0Cpg9X53k5OhWoFmWRz9uXdI2QDOxFp588hnTBvpdkWsAqRCgGa1FuQYc00y/h+98Depz9swq0pR/JNmlro7qV4/TFYxx3/z2hz/8oarGfY6Bmnw+6XH3zhArqzUaDd5baQ9GVCxKZhe5klFYJCFjWfmHkwWRV0hVsd+1TMJ9L8ueedFF/w0AWLL4GRc7WrbFJWIRLFdzZnGMTtYD6JzzQMAk9WQSI/MF60oyzQSAFOizRWbdP3me04pnMEJrz6itLc5AIkCzzs5OsW8EW1u4pPryKXymmQOELQMw2bZ6+vZcxhTTbNasWTYNbbx84AMfwAc+8IHod/vvvz+uuuqq6HddXV0477zzot8BwNFHHx3GZvkHL88W02zRokUmU4ko7YJmvoBTBlqN9pytKe2AZrLPZVlY22Wa+QwW9btCCNwSNKPDS8R9Us9OSLn03TMpZoFkD2kB1QnDpBSblnPmuTT13E9E21uBZjDghktn7QS4lEEzn2kmgAU1JtIVSBYX/NsyTCTTzGPXSTaOtmrRM2OKCF38VOKKr7QqKgYG9SftsJa2imrrxo0bwcFlq6iPcAwqGpfe3l5omDblOqSIRIXOGNOMFDu2nhmFVioFPeGjbH+kdT5kmhnli8iH1YoQloUyqYTP6mTDlumWTAoPNEu7RYprBmWU6zEVNc9W6Eu6LLDnpJ8I06xzbKBZkYNiMfnnkXSz0go0KeKpWC88h/KMueehNRiskIVfuB4LhcB9hjxw1Rqp2za5mGZZhGk23vzGrT/NNPsmYZLZkAVK6EzymGazP4IH//QZYJ9x5lmJZAvyfmbmphWKPdZJo9Hw3HBpP/tMs8Trs3ARLMS56Vn4TcYj++xRig9UDQ0XNESmHfU6Pv29GcDEGcCAAcnq9cwEV849gVe4Z24500ych4117g4KACtidwGcfRBAR43aXf4eBRZZ90zjAuwpLbM/Cqy7zs2PZmWIImKaaeZ0FUuXLrPxpXO0ZJrRfm4MA7XxcffMQrsCacaEkGHstHd2dgL2+BkaGgK65nF7nduSzzSTZzu9o1PXSVKYeJXiPuuy75/OcWPh2Mh6zMyemgBfyZZZciUgLJlmKtul6PPd99wTzgvA7pkKKLTjWhkvxoDPMJ9ppjOGZnzPU9zRGf8CbPqDm6NSppntjwwZYdwzCTSLZ8/MsmHjwukxzcpBMwlShiCSKtVJSnE957s1YJb9Q8lSf+dFhLnw+/uGN7wBT+/8JDDlp8DQE8DwIqA2TdX74a8WAqD9IdwziwxZ3j5oply4J78WePk6rHvUMGzMnRqPU7xFov4oTDN1zgHYsKnPto/bYM5VWv/Cs8OBZkJGEhm9ZeFQDjrDYJ7naGY5kFRRSXivygzA0ex8lR6nnxhZIU5+4DvG9rE2GahbDw4hV2oX8xQrkncA454HrLsWpGMYPcTurUo3hocF8B9jmpHrZVLjM1kBhfaMWnoRsOzLSNP/BzpfWCYvxDlXDpqd+enPAod8Eihy/PKXv8SHP/xh9T0zzfgM00yzxDtbGfjhO0+GpyADj7dWq1OAya/jNhdS3vANBTb+bDHkZOHBoVCffDZBM6efubnqtGe5le0TIbsVdD9rLx9pyDH3M6/bzDJQd4BmXHZw7bbTImOalZV2mGZy8+R5jje/+c343Oc+p55TqnB6xRdwRsuMSe/0S9nB2k6RfY4BX4C2TpfViR107bhn6uex0OiyNvY8Bzhoufhe0sVtSSrigoCtI8CUSq94h3aFGBkZMcJwUVcHv+mztDL7AFIL90yPaaaEksSCZokGU/gghgcC5e45wdynXaKOB5op95xCxH3y3EULBhYkmBJnmlWiwGrgnplULEuDGF61iCXPi+8VuOGaZwbJMSTTzLnhxlxGKF6G+yFczApFJfdKzJLulDe/z1a5y43ybixNogc0LuSe6cAUK/B1zBRZm3JXR50flQmcSVIxFmzHpkjXe1KsBNMsqVkggxqWq9g4nHpdj0VsnpW7aUumGTGqDHjHljnAWTM9ZpYEzTbM/TWw75W2vWzt4xg10t1WuqSa/Tw8YveMCIovFc7QnRJAiXsmX/kE9lLqdrFHX77OsK6cgOq5Z0bdzFq4ZzpgTTPNTCxJwcYpBEDt3DMZWJDumSZmmhbIgSJ6RiuFAgDSbjQaDfzoRz8GAHzqU2fyd3aMRxpWMfDiPpqYimBwb4zFjePGm4GVVwBJ1d2T5syU8R8zt6ele+bPf2Zc1n5x7a9L3xNzzzTviYl8DPybsz1y/wq3bc2crsHtBWe995lm7Mq1VUwzcb5lVquVyWQ2dLwZ2Oe73F7frZIYR86FR4Bm4q7SbFkBlNPdou5fqqPXv8meJ9e2AQhDphuEIp6L9U9nu4wHVMLgoWFRQCGDZgr4L/hckYCEcs+UYCIBCntfAuxyBr0IrZlmhTqf8jzn9evYslngbm3mNEdbTDP57iK+713p2EnLZeOez//e8+u45d5yb41tXWa+Nce3f7WF70vKQbOnn37G/GPa282YZv0sq9nywx/+L/+gkPd/IdzWRi/K/ZdKz3PEdyXrtIVXTGlJmelYDpppN1N93iceCC3uMwJw5X6WMUdFeWpFDdjrmwCgQgmYe8iycQQr1Mnbrk7Yd5JJjBdIXI9zfZYAtTufKbxLaNRa0XOG7ZevY5Dht5uzW4P3fBCT2b6bZayE47jRmD79CaC+zCQOsWBiXCZpodsJ1r1JWBArsTOMgUIF1Mn7w41LwutcGEpVXO89vgLM+GeQkZr6w2648tzJ2D3TyoFDQ6HeKGXtZrPAxr5td94w08yeb0mVDfoAnGeE0meqah4YbCw8Q0aGrNgBmvllB2i2nZZni2n2l7/8JXhOu0yzvr4+9XeMxeUfmgsWLAjqbE2mUwmalbHI2gHNtjSmmf5bsMia1qoz6dX6+yICmnXuAkx5s7hIjZsbKxixmGYSEKtZ0IwYbQI0c8BC6J7p4msFfSZgoclKk1D0b731ViHkm/qaaeYlApCCiywE8Ag2GltX9WUuXTvYJVUoGdadkS6AKFBYEhtEx6hqAqjaNOcMminQQNCzFWgWiT2hQLO0m58pmFlRobMgphk9vyLeL+I0hD+MfFbmnmnp9kXmAKRHFjwGALj9T3d4McAEgESCbWUCK7ll86ziyzDIVAYUsusxMc0ogUUrppnvnhmPXccKNSn77cU0M6ABzwOPCyuTShCriWxtDhxIeV8IAJr7Y+Zjw4YN5vu8AXa31jHAXFBeCACzDDSTjMxCgG70eV3EgXRryxfKq8IVQgDcoij3zBKmGbdHx2hTSTvEGSiTBbBiJOariDNOnGtdkRmmXdqN9evX4zNnGXb7yhUrxTMoEUAeKGRq/LYwptmnPvUp0+7GOgOcJVU3T+4cc4WBFRdIHcB/fsG0+5JL4+56gGRREiBcFQCUV9w4e+e2KsQ0q2rm9CvWA9PeIdrbVIwY/R6a56YAq3ymWdYm08yMmZQVBrCneJlcJzGmGd8xvsKpXY9zrkMuMJUJslNu7NS47fFVYJ8roFhXat/QWWH67Nyt3RxQfDEBmqVlbm+kCJqxUqBGpTd0cZV3pi1LN0zVdzjdmbUp/KKZ5EUizu1oyQNAjJlmdPangYLWdEwz7rPM4q6KPG9GA7ArE7SRSLa7c2e8//N/PdBs1Xrgf3629aBZYARSLoZWDkm0wWpkWCQZyTVo1irMi1/8xDGyRAE1euWW6N0C2G2UGnUTsa4q+pxLUtxzzz0CNBCGPMe6Gs8PdO6Zem1ff/ck+7xExX1SoFnKHZRMM8PMCrtGa1IzzfR7A6aZ7j2UTOJ0KwnssKym5ibtQb3eFHVioBmVNEgEoGRBAP/xH/+hstUHIR5alGazACYf4dpispHr4twzS5lmKfrrvWYfCEOeludSTyYxMp/UGVl+rwYJHwKmWcQ9c2hYeJeotpvysa8UmPzGrT9vdn1njnseK7hNtJ8JNHMG/oqnz5g7L2CawZPDqM92H1R2IEWu7BiK7bTQoi8DhoC/fkyzdphm7bDItgY0k/0pA8RknTLqbLugmS+sqRhpipliixACWCn1YppVJ1mmR4l7phf3KWCduGDp9Myc3TOTCjMOfNCsUTLPMtYJgWapVPQBH1jQ7owyLgpZx1qAZoLhwjGENPAWKlbkzkV9zpTgorP9wT2zJQNJKPuOTWd/x0HMWckwYAq7Z/LxymBKZ6cYi+oUAWKwoFvmnlmpVITFhwAIIZR481kUQjGTJdJvJ1B5rKt//mejKF31w6vwq3tmAbWpIYAk5uiZZ54RYycBF1t2+xyPS8HjEhW0C3JbMs8xzAfKnumBZkpY8xMBtOGeaYPCthPTTLHrnKCpEwGoWEte/BjzO9Fntz8kM8W8q7+/H5wx1FFKlPuTY/cVuRiXJLq23Z703TPp84GHZe/d2aOtrCkDCwI0lmd7o9HQTDMX98wXOVIGU5R7pj1zAqAw5/c7ZgyXlkyzwgIfFITZscbEnWSVpkZTZl2j4RB3gqeQtlOyLMPixYvFemqqdR+AZsI9s2GZOgpo8t17ReEELgxkaYakKO7sScpBM99oIs+VPb5ElRBlmnGrFIuSDRmAy/TsAcKaacbvjIFmmPMx0V7zDq1AS9AKCAFYMLDm7grBWKAkM5tv1++xe16dYbM/4r6XbsXKhcgHzfw+SyOQbVt0VGWSEVKSqC3V8dolVRnXeG3fvOyfodYLuWdGy+gxzfhMNu1pOKZZ0z1DurmxC2cOye6M7bHVGwqgZ3/+wMVtKylplyfP6XZHolI8qyXdUkcKkRQp6G9FAg0EgvtgojS2yjtpS5hm/losWnxnylje4YqKaRbKMn4CFwWMmwfY/8vkRB7rSjHNzNorCm10Wrlqo/u3zDBo2DhmrwXumQIQjsWMU0wzFxdWn+n1JoN/XGi/03722HWqru1zkur7LKkZt1KqI9hSPBaFe55k8/vumXfffTcuuOACBZS7hCtFrgDdmP73Pz8DsN9PXVuUwVGWRMo4/tlewf2d1wG9LzD9Ve6Z/Hue0sLJfAo0y6z+lnYH4SDCzNcZZs6c6fpsQDN7zhBJAlDxx3943SIAMEDuVpQlq4Ef/LYQcjutf9JVSCaXmbR5XOTaZvZ1Eazt3Lln/vUMC3/vZQdotp2WdrJYxJhmX/nKV7B06VIAIWgmM1HJUs7G0cUH8Eysq9F/5xcFLIyxtAOIbUv3TF+wvPbaa8VfEWt3DECiFNiZANzo966eBFNiTDNzcLtYJYXMMKgTAXAQTz0X9bKYZk6YzgEQ04xjmgEIgAU1LipuAF16CZr+eO58mmuvs97Tb71kAvJCY3euJqQiwoJL6jHDqF1xxUDRmdU7bF/TGr71rW+ZcQnAFLJU1aBo9IUAmagU0o2An8PsM1lXxDSzbTfzQiCkqcNCSZl7HoC0M1jfQUwzCyANDNAeTvC/fz7Muk/6gBiPi6kqGXAeaDzj/WClPHfjEr+KdPZM556p5lkAwkitlc0HzUJmnevzWJlm/jz77plWsFSCn3Txk4kA3JlAbskyvpd5jgYKPQDJrk0DrAkrLAAkiZtjOu/5HdQO83vOKAgtFNIcJiVMM49dKvscMM1cjELx/NoM124prClmWMA0y3g/O3ada3A5aEbjEwPNEAHNGlloWR4R47gFMc2WucQgJPxrxka9XjcB+l1bGDRsWJfmjRs3CnAm3DPz58/Hb3/7W8EqYBA8AAFd8c7tWB2XCMBzz5Ql0if/e46NIxI+AAjdMz1AywGvpmRWgS43sJkzQ69bMnaESV5cnzvmKLdhBb5RiIXadNkpcEy/+NgG2TMDEFD3mePK5Qo0k+6Z99xzD2688UYURQHOgmfmTsU0S3t1xtCYUQvAyIhgn0tD06Y/hl0SRpOysfeZZg7wcPNcqD4bRbzgNUS1ilDJ/vhXC+DAP/AHwwtHAc26vftOPzNCsH9WyxZHHylxz8yyDOjai+u5s70FsK/czvOo+2BZUUkxvNIaNGv7FVwk0ywL28jGUNufxEvskaTArI8AXbuBASRiXUVkcnE/k/y0efNmXH/DTdSggI2TZZZplvBY+4kA8sg61u6ZJNfp8+yZZRSMP7Jo6Bzz72cZKkEwzXzW7Ybu93KdqHsmG+CkIU+5ZwqQSxrmlYu7GN8YaLZqg9ZnYvcqAz989vgyCReWw3wG3mOPPS7GxXjlaFktd3V9N1wnDzQMIPb2t781SHgyNGT1SWEoJX3zpptuwoYN6wAAxxxzTNDHdsuqVSam3dDwMFyMVOGeqRI7Qcb15HmWYyx1oyBubEEsyh2gGZUdoNl2WtphbPlMs8cffxwf+xhbY33Q7MEHH4w+p12mmX9B33TTTUGddhSNbeWeWVa2NBFAO31WRdKiaatJ1w7f8hVkZxGWIOmeGc0wKMAhxzSjKgJAItAswjRrRPry+9//Ho5RopgGxLpKgT2+DPS+UAnTypLtmAiiz0ni4tKERQjlJChWpPtBEQKFDvDxQDNlWQ/dM0tBMy+gqHOZAUybdjkDmHS46DMxzezzO+cAc04XfZaAC71fggiF6HOVvxdjYmKaFfq3Ku5TJp5FrEdPuM2G4OIJAbjl3gI7vTkX4Cgp2f48S2CBmFahUmqKFG4i4GjQZ4+l4d6jY5q5WHpFE7wHCsVqePTRR+EyL7r3aTfca/9YIDlMMImIadZO9kxqB+2vtEsDa3a9jQqaJalQ1GcBu3/RtSVgURLTzM2vdmdkppkAUMGg2fvf//7I2LJyzK4U8OaBLdk6NpSXHSvCrrvjjjvYJUvsIyVyHLQc6NoDvgLNLnkCnIkyzTwQHPHzmLNxWtCs0m3BJ4opJ+fK7GHnnqm+E3dCx5wxg2bufnXnkFEw6S5vNBrMUAIgwV8CHdQ55ClS9957Lw477DC8/vWvx+9+9zv44JxWrEQR53Y5G62JUUEzx54rcc9UTLNEs+ZEIgDJQGIFXd+NpOSnaQo0N8bbkngg4NQ34enap8W4sEXd9XnWB7E2f5mYI6Gg0d7t2k2Pnd2rZWcYu1tXxdoWoFmhMz2ze7IHmqXm+U899RRe8sav4Ih3fQPXX389Gslk+xwDMCo3rETG+smhWBpinocGB8EgdMbgQ9S9X7qkxopwmad70c0zuYRpN/RGo4FCZqx2TwrH9M4H1vIf665DeK968qPPNPPAvkbz2VcIN27ciB//2MRQ3GKmWUkigJGREaBrV64njI56XIRsHLhntt+MuHumxzQrwnN4i5hm4j2NCNOM91MZ06wC7PlV0cbCtkWs3yQCmiXMuvrZz34GF1gdiTJqSffM6rZwz0w9wkB1MhYvXoxKVa5p4YapGLURwxcBhfBApgmvAHY7j+vYfRjXKxPFnHOgmZVXFGgGeYZR+/iZsedr0DqPEhbU89QZJuaZimPgVTygUMhcrs+erCbkID/hg5MFLblhp+lTrMzDIBO7Z/J5Q3LRww8/7HQ8k5Rny8pxx5mkGzdcf71IBFACmiUyUVUBMt7Ic8HsS8M0CwBhu6R3MM247ADNttOyJUyzG264QX3vJwIoA6vaZZptq2yZ2yoRQFkJ/bnD0i7TrLXiJGnRtk/VCfr7QrhnBpZbEqo9ppkXrDPIJOm7sDmmmXkHuxrqufBjmq1bt84wqpR7ZkX3p/clJgMbtVcxzWLzSABSC9BMgA8c70muTZ0xNMo0cxYwU+e2225DABSWgGa/+93vwDEwzKWpXImSGrDb5y1DiMEHtRaeczWw6/+jDrmxV3XGHwQ872bRb5rnuPJlmGbUdgIgcjHPejxVVkQ3dCIIN4DLry+wZqPvntlkACmJCJY+gOTqdABdu1vhnoWbzLcQOwUqd2PXmqVh9ohbU4qBpFkNjpouMy96oNn1dwgBXzI6SplmBL5KRcTWq/R4zMQ8FMRqU8UTaf4rUPtj59Mt0zIWFL+MaWbWNsc0E2tBgGZ33nlnOLQ0honnnglf4JZ9tnXmXYgHlu/rgT+pPnvHvxwbN1A8It5HwTzPeL8GSpR7Jr0fPC62z4qxI0dX7K+Lf1Tgi1cW2t0tN6CxXrdSaTJrstHIwzOZBNPGGqBjNtatWxeOa4vCMT9Tsc84plnAzE47nBJHCmOz2QRmnWTbrc/Xs846y/37wx/+cLCfg4QIrrCS3fLctsCPeU4Z06wEmLPfxzMaA5KBFKz/iIGHQDMTm8iugSHBlJfKpGjPpq63ib0qrO5ynsc9l98ZU0qrUyLjUnJu0z1k1z+7+Mi1Hcv0LFmcttj7/7zzzkOx9xXAfj/Gu/7121gz84diDNMA7A2Dcidhn1FAu2d67GpZRmOaFTo5i8rI6sAUDfwbQx4ZqvhOLrz1unr1aix87B7xrgbfQ7Ax0Bxz15a0y52FzFjhMrINmGbHfjbHh/6rXLb9p3/6Jxx77LEAgm3bfnHGtCQEzWQiF+duze6ZeZ4DHbNFHc89cwyomTKmxb5LqgiyDgMYK2bmr+NmBNx0a1S4ZzoXaPu3K2XumdIlUjDWSBao1WoCsEwCBpJzzxSgmYynaxg7ozDNXLgHDzSrjEd/fz+qNdHG6iRbl97hM818tngOji3LsRtVnUisKzcudLcLOVfGNKPfSKBcsWXlfRADzZQHcRHVvRgI9QwZwvWeC8kkNIe0bqT8QQBqqvvsXHVTJW+omGa5Ac323WePABwdGbGdEYYckgVNfMbR9d/Ryh9uvQ0AsGjRM2IMMnc/6zAPBJpJdrUXyzntdmtJMgoNQ9L2YQdS5MqOodhOSzugmc80kywzeoZU7soApy1lmrX7rC2pU1bGCpptbSKA1kChEFClhUd9H7nEqYi4Tea7GJgirQMiK5Z0z4TOnlnGNGuOPwJ5nuPxxx/HMcccgxNPPNF8oZQvj7Ew64OiLXyhlcfGaQGm+OMimWbjDlDPCOLEpJaBJKz30iV1+fLlQhG3xYvtdfeCAstWbsTXv/51OAFeuWcSaObFpZMWdVKs++/z+hOx/M75eKTfJYkASplmGliQRVn4XXuHId1V1ltg4+qrrxZgk2Rd2b2y+xd0n6MB4mvAS560dQrw+vfOipQEE6F8RRVO7Z6pgRICCiMB4h1Dh8dKzjMdXSeeeCKPoVX2S5lmDmTyLJxpt8dMNP8uPZ+dUloCFBYaHHLsOnKPA4BCZ57Tme+o/QyaqTNRWlqj7pm+q0IkHgoATHkTFBssqWDChAn8/fNvE8qIBBZagaOmP8wME+CkioFUHtNM3kGnfq3AGd8qlICPbBBIuz2lyQOEkaHRjAT+JcWsNh2Y8V4FUrVTXJIdt+a0m9PSpUuBtb8AGhtsvU53RhNpr9FoADNPsL/QLth5ngNzTgF2+7wAZzJQlrBS98yy/ezXseCbYtTqSmgJpnix+DSjKtN11H4m5ZDblUvQjIo6N4twr3JFfmfMzbYyXgNb/nMCsImU+xb7Wc21zzTLA0U8lgiA+ifb2xz3MvEuM1Z63SZ4qn6MWRfCeBNlFDrjmFGsygFUyTRrcW5LtofPNEPByQ9cHB5hwHC19JguXrzYe1UDEhz6zW9+E7J1KuPw8988CoDOc92nZrblRloqP74FuOTa8u9//WvOdLvlNmFePwFopoAfNuRRvcceewyY/WFRR8rquRXL2kO1ms2mlgdEYaZZxOjcJl6Q5wUazSI4f2MxzUKmmZfYJkisIkJGUB0Jsgr3TNpn+v5MxF2lQbPUj2lm7zzDRgsnfWREumfa9/prd8Ihtg1ift05krh9WAqI+TpGwueCHhdz9mi5hd8j3epbM8084L/Q98HISCS7ZBtMM8eGFzKWz37nUkACWcisi2tlPPc7eA79NHPP889kd6c2jfFrv312Vy6pWZZxZngBmtGYmr24DRhbYk0HsUt9/SyJZM/0kxil3XbPhlmPC4pptgMpcmXHUGynpR02Vln2TCq+e2YZAES/vffee/Ha174WX/va17YAQDKlHabZ1oBmpUEkS+qUuWcODg4GIGBpvJyyErN2q0x6pJSOwjQjhSE650LJhsiemeuYZny4i5hmvuIz4WA0Gg0cc8wx+Mmv7sXPfnWbsU727B8BzeLKr1aIyphmll1XJqQ5ZTlBHEyRFhFiIIUxzSS7zhQPKExrKiPTS04q8P7ziJ5PbCkBmjklu0X8hGyj+ViyHnymmb100blLODZJSZ8t06yiEgEQCMjsIhnTzCkrQwvFK5hp9sc//hHXX/8bAMCX/ucHwKwPgZXsqlBk/EKWbG9t73auNy5mbTd9aVlmZBvFtUm6Z7KAXIi1q7NncjysJmRSBrlPCYAwwVhJUWOBUBadJSoioKY9WLlypa6T+Fmb1BNZ4Wy1n5Wrlp8IIFdWXcWkEkKZdv+gIiytdm0r90x4AndMQKXfOyVXCKiy1HayVXlc4sCCFtaY4aLBFCm4R5lmAgD52c9+5j52ccDIPdMHzTpmibYY4TMvEs2QAaDjAAG//OUvw760KOeff76Zy85duW+CaWYs0U1gQOz0AwABAABJREFU42/ND6oT4WKaWZbFffcJMH72R3Dlb3nM8zwH5l0I7HKGfSad8U2xB1qwfykRQHTPMyCmXBVVFVovZXdwEsmAWgnWrVRKdfZMLnSk6NiZPqvEY4i5ItdWJQTW0i7oOJ6jgYl2b5QAws5tSQRnVkyzIlNgIiv0epwTe0bKsywNklj4AHeCRclJQHU878OgDgy7Lu1SyqROmqD71NrYIVy1fMA9mgggEYa83Ntn+v3mrAr7TGNSrVah45+acuUdBlwsl13+CqU2A8CWgWYqCHmiA/ybMZEu0Wzgof2hElQB8N0zkaRjA826do9+x0yzMAlYuzHNjj+/QMeri0Ambh3TrF2mmTnnNLDgAY6AusOlHsUAEjOZCBCrVrh9PgMpxjQbaZj6RVEAuWUZE4uMyq5nYmRkBJVqzOXdY5pFs2dyiAXtqij3EJ0LidYrxRnis67YIMugWfTc9gy5z3/+C4NebOgTfxRZe0yzVkBhYMi2a7E6SfTJu8/8kqRx90ykQGF0xs6aPOdoXOwaiMQ0y3NhKNmaImJbszcJ3RUVD5xLtVE3EtMM418K7PNdoDopjONm1+0OphmXHUOxnZaxMs1iQfl90KwMQKIL+vDDD8dNN92Ek08+Oeqa8vcAmo2VaRYIE6KYYO+t29W6rbELTRaiCCd8sKmvSagml4KIpbvQrorRRACOQi2BNYo/QFWGgU23YGRkxDAiXvIEcMBvgP1/adNBM2gWV0QghJK0XOCmuEstY5pJS3b8PfFEAA1xKek+T5gwIQoUurhLtjy0aByw1yU2tlAREQKgBVShKOrYdeO8PguFiJQCGYeEniXdcL0xMUwz+ydl5ywyHHjg8wAA3//+D3j8YPftzH8BuufxY/IhIO1Eo9HA+973Pm7v7hcCnTvb/hpGidnjJcwUCaa0ZK9E5rk6SYFeZo5bMZB8oU8ChbmycDLTTAConpJx+fX2H5XxwE7vgRTE2olppvZz2o377n+Y15YCyiNFuTbFAYwAQEppbWfuGXH3p1yNKwmf6q6QlmbFRojFQ6G9moYMjdp0sZ+EgCrLjA+4Pjn3zBJgIeqeqdxwocaFXc7EO0Ub3v72t7uPn/e85zEIkQ8zaEZtibrbVa1xQbbXP+u3QPvd92pg0isdOGfOU/Nc0+9OYGS5rVxBR42AEjMOKoBw7wvxvs9z+wKlN8Y0a7mfW8Q088HRIsbQlms7XqJMM5TNs8c0E4XmWSsIHuBbxjSTVvcYixIJGISW7Si7wwkQjt9VlUoFiasDhMB/pgxfOvkBy1SJdRGT+2xwSMZLzHivxpRjoSgG85xUgKlHc5/dXRfrk7ifS0AzGZdRJ3zI3DPkfua7Jld72meaPfXUU7rd1j1TrYddz+LvR2zyjf57AdgM7y3W55aUeqM12FQUBTD1LSaGI7bo1NCuip4RaHh4GDLeGYMpFSfTB7K5557p7vI2yoc/8u+l3znQLIuAZm2SbH4+XzxLMc3CBzg508V06tSyp88+jTFq09A9XxrQzDrlWZNJeAwDyXxeEcHqwuyZsVheIkwEZeaVd1Hf3cCKb2JkZARpGpEJnaeBz373Em/FkvlId15hNNFrgGWCdtwzpWFeG7747J4wYWLQjetvvEf81cI9053bUg4rm2cJDpFb/UT+d2AQ8ftcDcBRJwvatdbZAeXNYhiF1IQwppkK67E10Is4c12oHZ/U4GSBFPfff79350VAMwBIuwKg0Bm8Y0ayf9CyAzTbTstYQbM77rgj+H6soJkEmM4///zSeq3K34N7puwzx5kJy+9///tR29WaadaOy4sUWPw59d0z7TPGPVfVkQq0c8/M63xwekyzaJyYwUchY38AAHoP5DgYRQaylqv+rGVGR8A0K2U1lIApNCZULylj44RBhGPZM5lpZgOcRpSvesP8fe+9Rqhev3EQmPx6bouKEyDcEF2hcfEuaOeCSH02QomOsRAZm6QENCv87JkV159P/+tz8bw9gOPeeaT6SZZlfCG6VzDT7Omnn+YLmFLWO6CCALE4069U+ZJ16Dm+tDzrI1BrOxFrW3c6ZJrR5e/muVAKmhPaIdgrJbHrMO+/gZ59WIBqxTQTLA0/CxUOGbLjl0OxK6KFQdYyACPONKtDJgIIkwXINpqxoz6Xs2/zyLr1FQixFmR7J7/OAGfOFSgCms08np/TKsNgEXPPFKAFAEgLvwP+E+j9XC05jxM7hjkoY5ZiI1THe302/eEsw/Rdpv9fAhi0LNPeYv+RO0G0KeOVpZ1mjz74BmDJ+ejqNGdNo8U1Q32WoBnHKLTAC53bpexfoYiUueTJPZ/HDGQMrJVBA6UJH8S6LWea8TMHB0eCPoeuxWVuiDXeK0klrDPnY/ZvH0wsAxxb9dkYO5KE9jzEPcTryQ/A7FjEKhGAuRd0PBrhWpaLmGbCPVO3VSqKsfZm7iy0L4jUkeBofJ6lexozYSXAqWPXrVq1is+wFqCZyUAr3plr98xms8l3GQA01gLDzwCDCwAAF1xwQWmbt7Rcd9Mj3N4IW2t4eBiYc5r7e+3a1WN+h3ZFq4WgmZJJ2CBC8m1wLiqmmTzjRy83Pbpf9HOTydXev1vBNEtksH4BcMYyfHJMsyHjhleb4gXFj7tnqmf77vn2XiVZQOsUiXI9lq6XKjSWnwjAHW88xiN1AfTSeMn4p/VVIANRLItswDSLMuekvC1AJuWSOgqAhFQxhLV7Zua5Z4o9D18mASoVLds2m03098u1EnfPdCEkfLasOx98hryQyRWwlnIdaRAM+gxlmFdAoQU4i0IkcaD4drRGcwbNiCFsmGb2e+lOPYZiGKc8hsp4KEkN7uXy/GTZRtWpTqanK71qzZo1oHF96MG/bFF7/y+WHaDZdlrGCpoZ+rsuw8PD6jlloFnst7GyrUCzdp5TVsbKNGsFmm21e6YSRmLz5VGEA4WG/jaAS5nCI633Lntm0YATUAsZ00y47UmF04IpASORDn8fTKH+THub6A4L00opVV1uAaa4MYHrT2sGklSgq6KNXp8TXxHnQta+17/eAGXNZi4uPL58dUwbP6ZZhLHgAoraPimhpER6dIzCOFCVpikqMqaZdSGaOaWJB65IUavq8Y7utVzHNHPz54RuDxCLssgytAUIOwun118Cqly9krUtWZTOXSjhZ5tKSkHjOEnS2laJ79Oe/W3freBTyjSjvSIFVDsue31dNrhE+PTHpRUgTCyygtdd0mGUw8BVUfTZuS6M5p5Jhcaxouc5FQxJ97xWSrYnoEYL1ylz/RvdPTNRgIva865LJW048FZg3yvhQIi0ptkIMqOxAz4r7DLmmmnXxqKz7PtGv2tKi0hUUbegWZZlliU8Ylw08wF0ddo4Vi1oGt/73vdMywOtVFqgWyQC8JlmLdlFlXLwreD7rEy0DO8qydCUdTzABRo0Gxmpo16v6z53zBBvkmeY19bZH4EE+KLjknaibeMAschKWJRpmiJFLtaLBOTA55xi6RGAJM8ts4+zLAPqq0U7bZExzSSjlCuAzuSWawGF+K7VHZ7ye1Z9V1UxQKE4w1x/GByV4INxTQ7PMB8sCBRqzz2z0Wjw2ABw42zbuXTp0ni/t6IcfyIDYrfcckvw/cDAALDp9+7vJx5/rG1XSP3cOGhmwP0O+HHKkLQAzZQLbAw8aFGckq0eKMCUGpy7oSitzjAq/f396OvbDMDGp5NMs4h7pjvHi8IApNVpHsDYTiIA6c7L53/8PtPumRIQky5sfiIAt47FuFMsL+NCaNd1RTCxCpMpeWRkpMTMmkDLG9QfmQhDyNtlxrFAtqHH8xnAmehtn2mMC98907SnjGnmu5nqJER2XFoyzby2CpdlVwryEIkkSHCJ2ApvXMLiGzKci7Rd2yMNDY4aNhoNqQDNUhmL0lbwM/y2WXTm2kJkyiQZi0gNzDRze8Flz6zqPpNXTFJRBIx7771XjGt7gPo/QtkBmm2nZawxzWIH0eOPP64UqjJwbGBgoK02/T24Z7YT06xd0Ky3t1f9PebkB0ULwd08EfoST7UF3x1YLVzYvEDoLihsGWimLL9inG2snwULFnjP51gRDIK0YCwo5avMSl0Cpvh9LrNkF9qFzbmk5sNgQEonAogChQAalmm2du1afr8AJ+IsMk/IUu6Zto5yz/SUr6JsD7QAkKzylbjUz6SkZaUAenRtetkzXRl/kP1HouewVLESAkfZPBMgFrWSShZlmZItmGaQwXula5Nwz3RttjHNnIDC1rcnnhCx5siqm3aDgOksy9Df34/LL78cjzzyiBAOMygBdRT35PJzgZX1lvu5ZUyzFi5sQimlZCZRQwLtf59p071HpD+jueGOwq4T7K2y9RTGdKJ9yHtFsuuccUAIp74briuUfEVYY1XMxQkvF23hOoF7Jo2/VXCOeuOb4/1tpxRNp+RSvDLT7y7VJ2KaNcuuxMZ63HrrraZZ/v1E7plFA0hbJAJoCxyis9C38HvPcWDK6EwzDYjxupXxc6Ry5vdt06ZNFnyIqJQW1G99hkXYCFQ6Zqo9X36fsYJWdldJAMkUn4GRKXad6Z8I7kxFMs0KdkfjdzXCu0q1ieen/Ayze84xddpkmq3+garBd5V/9/K5z25uUibRoFle6PcbVyPfPbOiQTPpniYYhQAE43zblc39fJeuWLFCfZdlGY4//nhPSS7alqmpHHnkkbx+khTDDR4DxzQjl8iEDSLkHRKCZl5MMyRtAXmcqTkszWZTMM1C0CwvAc2c7AXgf/7nf1w7jj32WPWuUvdMOufyYVDoCbcuY+6ZLvtoxFAkABc6TzVzJ4m4Z5p3SdCMDXkVBXRUEyYm1JuCUUdrXjHADEN4eHg4zjRzTGtvP084SDyD5W11tk8/RtdRMp97gXuPfybzHeAnAvAMeXTO0rh4oNm6deu8c6jKYSUEK61voA70HBBpawQcLTNw1qYDL3pQjIsEHN1guH+VxjTb/Ee885DNeOlzoLxZDBvN9mVkCY+iPbfN7+2Zv4VMMwWaFQI0c3KLB/YqHapEVhNjJw0ZtqH2XTtAMyo7QLPttIyVaVaWJXJbgmbtMMTaAc22hmk2Gmh2+OGHt9VnAJg3b576++677w7qjM40G8XlxaeLS4HPHY4WfGgVA0mxrqx7prsApHsmubx48b0smBKMh8vq0+XaUapYBaBBCwYSEhStLI+tGEiSaebiPnVp0KyIxLqKMM0a/l1QnQR2m+EYAAr4lO4fzm3Vs3ylok7bTDNSROJKnmGa2b8pqHqRq7PAgeleWnpXykCzDhu0nZRYn2nWd498CLRQ0mqeBRsh3mmUumcWMpNkIoRhIWQWhUr4EFXQhHvmf/zHf4jnW8Uh7Xbzk+c5zj77bPzLd47Hi15/PisJ7axtXymNdjcX89xqbYu9mhJoRvOpXRWVK54rrEiWMs2UK0Wr86kNd64yNp/tU2umWSSOmwIqRZ+lG7qL3UhVWrHdqB0GhFQCtwq+zG01VnBb58/zwGeLeWd3z/gW7xqlkJALVgaVe6YtXV01VScoSQWTJxvmR6j0avfMlmfyaCBTALi0ANNbMM2CpB3BPEPdZ6aPBKzJYhLalLu7j3JXBfFdvDodswLApXzsqE65sSNNMgV6aKaZSASQyD7zGgHg3HxUzJog85/HNIsF/G7zDBu1zxL4z7VR1oUSUEwzcfcVkQybEaaZz076xS9+odskkx+A3PWkQspGCt4fxPrhs2KszC/dWb7rfWP2FVdcget+fbNOAAWbnKTNYlxSofbc/LWnun+bmGYdAqjyz/ZR3DOtrNXOGPz5z38uVaAbjYaIaRZ6rcTEvX/5l3/B9OnT8YUvmGycS5cudWs7iGlWlggAkftZueTJfkpXRXLPnyRb6fZzFDRz7pnMQCL3THnNSgaSAYHMlz1Y5OpQaBClE1WEQdYyhwzTrMQ9s4iAQ6rkbn7jycZsnRjTTDC0pFFLxfcS8mc0ZITHNKt6oNm5556r250I0EzGcdvtP61XRIl3jh8qQbm62zodM8NxKe1ziXtmkgLZEM4/YS26OxOVCEC5Zy67CFj5HQBw68O4Z9q1tIVMMxeKBmA5SDHKI0wzN+f+nUdd5nGWfTbfUSzK0fX2f5SyAzTbTks7oJlkmrUDmpW5Z/61QbNnI6bZd77zHXzuc5/DVVddpcauVZslsPD444/jsssuC+q0wzQrvdDkJR4bF0HDNe5ccUu3ZJq57Jkxppm0oFEAZsqsaN32gv4ElrpWQIlnmR8FKFT9GV7s1fOEcvWIXFnmHWhWDIvDXcQ0k8ACcmDwMfeoRkwZpWekbGnSlsluXTfKNPPcM+VF35Jp5oEpHqNKuWdaoSQ8C6TQ6b9iBEi7Sve6cXmTwA/12U9pL1kErRiFJYAYPc+Bo63AFPOuePZMKNdjR6GX7plJBQ899BAAcs+hfhAgbF2xbMy5iy66CAAw3HWol2GzHfZKzkJJdJ5tnTIw0XPV4sywFpw1HVKBhm0nGJiyfab5L70rpMLaCgQBRgFKIoJYSZ3WTDMJUAuXA9tnuZ8NC6xTK3+CUdjRERFKibkzKoBk9rxjmjXWopotgztPLRs4ena0WyJMM+Oe2amAQALNiJR78MEHmwDRriQONIsyzYR7ZkvFCkJBDIAWgF0vIzHA5HMoa2cbMc00wJ1H6vjMLPlMk3GxKAre57IUYv+UMmHNPEfXdqUXbQFIgoHXytgRMs3s7wCgyEJlJeaeae9is58JNPPcrHxDhswMG4D6or3Nza4tDHxiFCWbjVoTerUyLJlm7DIvFWjtYs4xknI1n3KPsTw2CtMsqbk9KsGULMssqGX71FjDPdoanVAZyHS56aabgBfcBcz8AH848TAbL6i9wv1mWX1147nu3+acqoHjiPlue/YZI0uB9SZbdsw9sx3QbOHChcDwouh3zWaTmTDUloEHgUWfNW+JjPHll18OADjzzDMB2EQNEgQX6y92vXAyEQZHS90zfSM11Zn+TlGF7yo6T31QxY9pRjhJtcLrUt7PnHgLqCbMwCP3TDXuSrY052NpTDNnTGjHSN1ObOVy90zpMt+SaeaHjFCM2nCf3XzzzbpNNF4AklQAYd17ibZGzjAfHI25Z8okC46h7PeZ3+mDo+XJD/hdBJAh6weWfw0A0JDhF6w8k1SkC237RYFmO5/GbqtBTDOSfYU+IWQbzZ70mWYR0GyHe6YrO0Cz7bSM1T2zDDRrJ6ZZzLUzVrZVTLOtsfqVgWYHHXQQPv3pT2PmzJmqz61cSuV3F154YbRO6z6bQznIjCkERwIWoqyrwD2zBRvHXuKGgWFBsw03ut/LTJKm2Avt/pcCd+5qhJy0K5wfX+igYPYt3U3bc0ml/qRrvg88cVLQr3I2TiQRQNplFWhS8qRLqgcsPHAw8ODrAJQF2LZjkHQg6p5J7l7UHyn40/hK0Cy46EskdOqzcgmru+90IoAqiEkyJvdMyzoZGBgo2SsMwLJSCy/5BCtNrQWxVoCYq4gAKBTfmUvcrJco0wwomWchrCUpli1bjqIovHNTKMPCiurW/KwPGuXGY5qVuycXrs9m7FuAoy2YKaF7pnU3FQBSR0eHq8N9MWeAqdIG06wV04baORqjUFhs8zwHmjF399y9qyU4KvtM1lM3h4kKutvX18dMs+ZG+xwG7jo7O4O3oMhAmSSVe2bQVrPuTXzHVIB6ZIQwe3KsoNmMGTLmFoMmyj0z1e6ZnR0dQJG77GtpmmrFysV68yzZSIQyKZhmozDEAuXLsd7YballjE57Fpbt+SDuTSummRLcvTsnEUyz0ntmFGVSxk2LAl4WqJYA0lOnAHd4sdPInaWFW30lcKuXAJJ2T1Z9VokAzHgYQDgCmpUBYu57Nt4E93NGSZ4y3Q4kwMrLgQXvi/SZz+000cBCwDQj5lzgnpnzHR5hmkl20ZNPPinGhh4TiWmW1MDZ61iBdvch9VusuVL353aK2o+6dHR0AD3PCT7/6le/2vbjHftf7SlPbldxxOwdKQwZLiwE1dlC98yhoSGUuZZF3TOHFiJZYeJ+tpM9M3S3FgbuPFzTIdPM8wpQmc5p/bWQW4JzroRpptwzTbvSlNst3TONDGHWbFeNnxV3z/RBM8M0i4+dxzRrmeQlCfUQv44f30swY333zOFmhwlB0lzvuWeas1C73nPjfRfd4E5ySXqAJLre7fN8zw7FNPMNPLZObXJ0XHSfeb347plskGWZW7pnGmDN9G/ixPGg+50S/SRJ4s7zJI3IJ20UF37EFrP3aZzN3tM6XIxpNpp7ZgYpR5qf7gDNqOwAzbbT8my4Z5aBZu3EKmu33tawyNopZaCZVJZln1sx32R/urriloFR3TPJTU5daATsyAvFfr/8f0Sj23HPLJT1nrOp5MDm24D50gqU60umyIDmBqC+rAXTzM/E0yqxASvQLAT7zWUFjfpTXf0NoL48fBbSUkFAWuZNTDPrnilcXiS7zvTFjktzAzBkYlvFmWYEmlWdAq0u93EHeHWlgEpMMxlQ3WOalbAwogBS//2uz8o9k5SvIisF0LMsAzbfCay7TryiCaCKvr4+Baq74tz8RssYJxW01gCq+37gL/E+l8WZKbR75ooVK2w9O54AkCQ8z0qA0sIaKr3IssxzP07E/wXwIwRXbclup89inssYha6to7mkesKnW5dJyMZJWHijMWhaTbC1e2YL5lBggS4DFoQwXhbrrVUcN+g+u3n23DPlfu7r64NzQye2WTIKaJZUARjWVeu1bYRPzp6ZW6CCzhZimkW60qKo/ZakToAmYMDMdacCzSSjtigKc9ZJ9/AkcWtagWadO5sswAHTLAaUtFjbDjTjs31U98xSEByKFV3GNHN1fAOPLEkHli1bZplmMZlCgoAlAF/s3Paf4QNI2YAJOK763Ho/J0mCNKHzit3qpYFHrn/uc6ZAM2PQkO0HVEwzCRSOEnM0nOch0Z9CzG8K9N8LrPlfr890h5t6SVIA637pqqRparIJJikaMhGAm+dCAeVlSrZ0S3bZ2yvjRVvE/QwCnmtQCYzEWaqYZmLNxcKrtl3SyD1qS/QcgnHbbLcMDw+b4Ps7vUd9vnz5cv4+7fBimkWAHxcnEtDume2DZsYoG+tT6oFmti1pBzo6KKbT6H0NQDNxzjRzeV/b9tTrcEzxmNyiguLTWhglFisYBAFCnUUabOW7quKelQykVatWgUCIXoGJNbNE9Bnx9pJ7ZjQuLBkQR3PPlAz5SCF5rhRMSdU9lGUZhpoTzPgNLwrdM8njxe75ZJCzy/qgmWH+i76lEjQTcot0E1SGSZL5vDiGkkVMz5eMUCHD6gzMnqtiO0wz6Z5p56mzs+b2GukYEjTLEddTRytuf9kSumfaNem8LDymmVovYZ+jHgwAXvnKw7eovf8Xyw7QbDstz4Z7Zll8r3ZjjG2rRABbU8pimsnxamfsAN0fcoHxS0sQsMzy6zPNJBtn0x+4XlvumbGYZvYgFyVgmjnLLz3GJAII+uOsikxnHjWmWas67hJn1440iSk+5NpnlcuFMhZVJKaZUzZz9x6Z/MD0ucLfe65R+tUSNDOXVOv+CAE1Fj+hLZDJPssHkBadbZ9RWEVEuGd6FzgABaA1m00DEAqhhfrT19cXd2FzrI5WrpdksY0opc1N9CLuD32v2ApUrTUgzKwKjxUmBB3O7CSV7AxYeBpQX2k+2uf7qNfr2jCQeM8kppkIDKxSeivgsx0wsUQJobaW7OeAaUYKp2CayTquz3Ktgy2c0TORFCsfENYNRamSUV/l2stZX4HouAhFJA62FOXsIucSOaKAf8M0s66MIllJS/fMyjgYpllVsBZtaWwQbTV9ddkzKeaUa8uWMc3U/VidIkAz85FzzxQxzQxQ2HRCuVFapTsYg2aFnIedPwlMezucqz5ZoOX4Z5YV2A7TTLhntmM0ia+nRDHNorGuEGOa2btq4enO5QX7/xzf+ta3yhV9uQ9bArli/au4jXpcTDGAvY51atmlZa7H8BK4JFU44F8YeOS4mHoh04zkAeWSOuX1ur0tgUJ/nkUdB5oxG8e8k4wU3nPcGWbqJSiAZ85yYyJZ0c1mLvpDbM2CgejEy7BZwjRrNBrAhIOB3heIptQVwHHNNdfAgOkS7GVg7oADDuC+qfdEhqvtYtfp+l+H35TIo+14ilAZGhoCdnq/2c+iUNImds8UTDPJ/oUAzZxLsJTpzR3cjmw+PDwCzLuIP3jMup3aOXRKPbl/1qaio2ZBs7aZZqLsz0BsltGY8bpdN+6jwM6n8X72zzDfwNlO1m/7nLJEABJA4gzATTXXkv0+ODjo9u6LZt2O6sDtpj+WOdfaPbNFTLMk8fZ8K/fMNoDCAEypufdI18ssyzA4RPdChnHjjLwkASQJgp/wlsnAX15r3hRdA5JB3BVNBICefb32enJY956y03oOaa9NeYOu48lLAIBpb3X/9BmFHBMud/vXd8/Mc3OuG4a4WTeZPcPMXW73xRbGNFOeEJvmi+yZDJoFMc3cfimCc8G0hcfZnNu+zgS85MUv3KL2/l8sO0Cz7bSMlWlW5mK5LZlm2yqm2daUsTLNWhXZ74kTJ45aJyxSyY4wzSSARN9nIuuQBM18YIGys7hse+aC5ktcS4EB08y33tsA8S2ZZorOHGdDKaZZaYZB6g9ZqYHAZ16CKUUhWBHmPWF6a+vCRuMnA8T7YAoAn+Wh302gGY1jCzZCW8qkxzQrc1f0XF5MV+2etIwqFzeDAIhS90w5T2Kea9OBmcdjeHi4JKtiSUyzoJ1mLQSshpHFXIeU+CRUUsTDwj6L97DbklTitGIVB4RzYNV3gIffbD4bdyDq9bpnGKD6bLE1oBlb0jlbGCuKo7oeJ6OAZq3YOB7TTDPdSOCqqj3v+lzk6vygtV3ONGsD4C6Lh0JAbAAstFJEBLBg3aPpPUHwd7Ke0lzkQ0oRMfNCTDPKJMhMs2ifK70g1lUAFBIzVLRVuj4Yd9itc8+s14Uraecu7pwhhd0lAijYwMWKSBV5nhsFzIuhpJhmtB46dzH/r06KK5OAcKXlvRqMS8Q907n5LPNczCJMs+6h36sq0ZhmDmxGHECiu6r/XuCpj9mPuoQiE1vf4h4qBfg8tkg+BNy1D8e8FDE6Adg9X2jGoGRRlrhsa7d665atWFeZGhdTz95VKnum6WdpxlClTLbBHFWx60g+9PpM96//HDfPpl6a6nsmAM0CcLQV04yLvJ+bzSbQMdtri5nfPM/x1FNP4a677gKmHs3PcSwaczZMnjyZx1jIP1vFNBNAvw+GlRlVP/jBDwaf/eH+Ak8vD+fVuESGbDaSpc05JYFCYk7zecgyUqw95s5qh2k2POzrEfSbik4EUDSBzXcAy76CWtWMTx5lS8VKvB0EMsnzaajrYPsvuoc8I5AyXlKsp6S1oci6W9P4Gt2JATsJ6stxlXKYNOTxHQ5M6V6Hycverfqj3DNnnqDb62KaxUaEAO2k3DjgxqWVSyrL7Zp1RWsu4Xp2TfX3Gzmjq6vTnYdBDGF7blerVcfOjWZQled32hlnmnXubOsym031uWe/SJ9HMfAoY2xYSplmhc80y10dE9MsNwxTYprJLefGd8ugF+MiauX2bFAbda0XSRCXroPCCchzW5QpR6k/Tde0e2Zly5r7f7LsGIrttGyrmGZ/babZWNwzp06d2nZdKmWg2dYyzcra3U5MM3W4KwWBlGzBxsll0gVBSQ5AM3JnzEvcM7m9X/7yl9tkmkVimqn4FbI/krEwINopFfEWl5UfID4Q5kiBMJfQnJ3niro6HoqjgiMHVnwTWPB+oBgJY11JoZxAs9z0TzNTbJ2EL82WQkks6KgqRShMRIvsMxUeF2cFAixoZi7sYD0X0t3LYwpMOdK8KS8B20T8oJZB/ktZlA2u44G9vb29kWe1cM+ktT3plcDEQ2gUTP9oXeZ1lT3TlAqkEm5+VosYDoTlWlrgRFtMEpSU13YrF1sCUEez2rdk40gWZcrsoSIHmtYtrDpZpXc3XbHz9vDRwKJzAXAA2tFimjkwJffuCOEKEcyzYynFgIWwTy5OhnOzEHeFBxSa59i9Su4q+VCYkYwsrI+9F9j8J8gAt1HX47QTpZkklauiET6ZaZbrOFKWaba5Txg42ij1RgOOxZjU+AxqEdOMXY/NGTQwOKjdM32mmQ8g1aa4+QnOZJWMw8xzyDQjmYAVEfPa1Bhu7vIt/LR/zHsmN3+jmmPWtlnTHKRfgClFFnc9Rrif9tprL82uk0X1ueRMhn+25xhfW8XAv2Bm2YaItRo+x71HsqIRObfprnIGnDyMJePYpSxf0NVcmjF0NPdZ8PkUjIuSSWSfzf2x9957i+fkYp7l2FKbEsuuM381M1qXst0FszcV00yw6MAsDUCAyqpLDTeHv/nNbzhgOIHGHrtOn2O8phY+vSQyXm0WWqeTX4fbn9hFffW/v3g4+pMYePDKfy9w8L+Fnw8PD4fAJeABYjVhMGHmNNXp6+uDzpgunifcM0fqBb7w/SIObgAYHPblNAaDNdOsaWLHrvkhajULmsWuxANvB+Z+znukfWaqQ6JkeRKccc0Rkj0zDcBG72dryGoV38u5WzPgqOWGQjGqZPzNiu+eqUA8812aFqikue1PartbAoLbeyjP8xKmGcm3o4XSaINdFwNT3F4j3YWNJv0DZq2NH893kZEnhYHGts/FIkW4BmbNmgXlWqlAs0h/Unbdbxm7cVRjd+7WfVlx7pRJFVkmYprBj2km2WhmnIy8YI1i9n7XgOSWQS+KaYacmWZ0V/jZMzvnAi95QoxL3vLdeZ4b1rDnntmmyvwPUXYMxXZatkVMs+c85zltJQLYlkyzsYBm7YJbsrTDNGv3ubI/ZaBja/dMYdVCCjTWY6/6xyGtrQ5YoPZJxbWVe6YA4aSrFlvec3z961/HqlWr8O///u8hsGAP2tNPPx0ve9nLIJlmCpAlppkTZiMWK1KASYGWrAbFEKM+56rPaQJodwGwIm5Bn850vfgykj3TXRx1YM2VADR12hQBJmabgWwQjeoeABCyB9z4e8CCX/yYZq1i/fgKTTYUqcfzvH9yphByE5s9k/6suv6UrWezZiNMAZh1G3fb892nInVaAUg0j4KNRt+nKVBZ9nnvYdy/yIvMPE96jWygfa4V6MrA0SLDL3/5S26PdXNQ4KhiR5k+G2Ga+9w3WFihrgVQKPuilPgygYzaKlk/m9x3MrEHtzMDGuvM34OPCquuFwNpZBGw/lcAgNVrzZ5pCZpJ9zTaxy7eDQHcnptDSR3XjgffAPT9meu6tcBMs913n6fGI2CaESuC2tRYp9yt2eqbmXctOkcpOp2dnXAZ9GSx7slBVkXnhpg7Idi41aTcPhJELStn8RI/DmPrUm92MGMkZfcNjmlmrci5xzQTwYgHBjkTmx0oB5qpeVbnkFi38nOXTYxBkJbumYE7cAEMP8115Tw79xW9B2S8Mne+RJlm/rmd48Ybb8Qf/vAH96xNmzbpLHiqiP4kqYlh+eS/6bZKg4h9BzNExLh4fdaArKxj6w0uUC3RbvXWPbOMXeeD4OJeJEbiaEyzlgq0OrdTYNOtwJqfsLu1cGEz7TBno5KrIoxCE2KBNWLFNMsI+M9EnUIlMymNaSbEq2VrK8A+3xUGQ9jxMefBhg0bAP/MFUxAB+oM2fmh8xTAOed4wM1YinBv+tqNnCRoYGAAA4NxubFREhBxfV/4mdnf4XyTXG7cujvg3DOTBChM7DE6D0855RQxvvCeZ+Sxoihw1U0NnHlpgW9csxE/nx++844774m2W4GSBJrZQu6ZUSbbhJcBu37K/Vk4wxOAiufdkdTC/R7IG6OElWjrDmd2EUCgGY2b/Y2tIz07AtDMZ6MBqKYJqhWz/4l5V2pgs3dVnufKKYQLyQCjsMgkUB6VTwlM9L4b9zzz/yS1OgHLuSMjZu11drI8JWUS1x46U+345V5HdtppJ22YTxg0S2X2TNIjkpq+q0rdTTMhb5cZTVoDSImLDQg0sxZMM7Gm8gJuLZBY3rQ0Vr3+twVoVnjumWa9NJtNliHG7S9/jSg46j0/cM8syuMm/yOWHaDZdlq2NqbZPvvsg5///OfqoG8FDLVD3d7W7plbslHbiWnWrnumBMTKAMXREwEIYGHJ+ZiMuxjEiLgqRm9HyTTz2SAELEjQwFq+5syZYy4lyMw2qapzzDHH4KMf/agBcGwigCBgtepP5PJ1AhIrTc6FLfOkQOm2Z9tivF4iTDMSyosC09M/As+c6Z4hqdNGcAnZCFGgUDLN6ivRLKpifKjP5AroBXwtZV2NlWmWIHnyXzH1qReE9YT1fqfKn8W4GOs9K6EV1+eymGYm+x+NpdfqMqYZyELaQigRilXgqijXgpvnxPYAqKz+jvcsvRb0d3nIGCLmnGOajYQJHywI1tvbize+8Uj7kWGa1Tqk9TrlZ5YwzVbsvsDEufCF8lYW21auioBoq/l+xqp3AU+c6J7BSS40aAAUJrHHhl8razePSy6eDzy+tBtFUZSAozGmGYFmBObSum2R/EOw0bjPBfDgkaISKyLUp0pVg9QBu0gCYg+8Ehi4TwionksqAD9zlGKGqZLxGRZldJLAXbHKakW0j85tq6y2f5WhKAo0crH2kk73TgIG6k0ynJTHNBv0ryGRCEAbjMScSwYSzfOanwBLvsDfK8AlApr5SoZVol72speJd+ZibZt61VSf6xIcYrBWWMaLJrtke2u7Vqthzpw57ln1el1Y/73iM80CVoEHgttzhUE9QMYxlH2OumcKoFC61wIaQDLzQnuV165MbGN/Bd89kxRVk/ChjGnWwsAj+uzO7cY6YMFxUNkmfaZZ4QOFgrGQ0B0u3TO1S2qW5WKvsuwj51nHNOMi3TMfXmyZyp3CRdPujTw3RsJwz9O6FUyogb8A668HGmtcrWcWL42MV5sl6h5s2V25z242pd7Iop/HZm1oaAiY91/B5wo0S2ri3E6MO1xtqhfMvsLgqDJmmj1UFAW+f+XPAAAf/epEvO3McI3dfsfdXift3411AWiWpikuueQSdHV1RvtcrlMQ00zE98rriLrVF8J4Y++G1gZOwcYZJQO2As2c8a0mniUBsZh7pmS+VSzYAse8ynLJQIq1l899xTQThlRtjC2TSQp9/gfFNw6EhQEkwagCUEn5eTIEjGRlSaaZf2ca2T3ONIMEzZThYjTgs3DnyqjxN1voXY45Z9ttZMOaApH8RAC5dc9M0xRV+2hSI7cF00wxLQsBmtFdQX0mPbE2Xf4a6myP9NnoBfRXBaQn7gDNuOwAzbbTsjUxzX7wgx9gwYIF2HvvvZVCVRb3DGgPENvW7pntbNSDDjpI/b0tmWayrcaKGZaW46KEcj5MlbUvcL3MgT+SC0/C9UjJzkMX2jBdvRG4Z87keA5xV8XMAjEVIzRb98xqzLVJJAIoZ5pFlC8XN4cKXeLc5zhoJgGkHLVqFRh60j1DKhkcLJ2fcdxxx4mxprYaofyoo6wPf9FEUZisdGpNkCWHQLNRad7igi61fGlFJMnWI8k3Ruqxwlmr2T6axljGAivRLIjF17MJEGxBJq9kWQlDjRh7rRgLwnpZ6p4pXL7kPCeJf1EX9EX0PaGbnXU9IaYZuWcq5ZbdVjtqtN6rqNfrqNaEe08Z0yyqBGUIFM7Y2m6baZY6RXKvnVYI1kMRB4eigHAMWAPvgwOuw+DgYOuYZhIEdEwzyjzH+9mt/403A8u+ovsiwXgb90nHKGR3Cbe2k2H1jHgiALtuN8/nPvtgInK8973vdWNBDA6V7VKWMrc94SpH+8vFNCN3Cxpfqwg3s/YFSXM2CIt6Yw2YaWY+cqBZi5hmjTw8m8nYpYF/Oef+fi4MUDL4KH+vXPvkuMiYZmJNehZ3V8ftQ/OMHiwGFn7C1ZBMMzO+njGnKAOQcj7/qNUuzkyJ8qsAbu8MFLEouU4ulF1bx2eaxQAkj3WlgZJEZz12QJMAzWJx3CJMs0bn82x8ozKwQbIryoBEH9TP8ZznPEf0mc65RNUJmWaeQSQB7w+6qyRQ6PrDsg8H2vaYZqLtq1evdf9+7AnBanRtMb/L89xkk9zl/4V9FkYtd1/ldcg1UanEs1y2VZK4zKkCf3vFB5Aee8zE0XMJI0QZzQPEua1SmAwkQHM9UJ3qxTeqGGbhPc8Dhhfy58I986bFx0TfZaoVCAKYDy0ABh4Gsr4gptn8+fNx4oknore3x/ZDr93YOlZJLmQct7QDqE2JJLCg8U2g1lLUwJOZ+rFMwrKOYp3b87VmZemkanUJX/bM1fkr5W2zto0s6eRtFO755S7mTXfuF0rGYpnQN8aG7Orc7edR3TNb6FtS3siyzIFf8spheVuf25K960+5AR3Fmko7nHFAuWf6slrLc64d90yrz7jfh2tRMs2yHBgcHDZxUbPN6O7u1uOCFKtXrzbxG4sMPT09bmxoq2vCyJZBL4pplqRhTLPEi2nWtZfosw+Ohn02TDNiRZOMugM0k2UHaLadltgifs1rXqP+lsKdBMRC33tTWoFeJiZC69Ju7LN2y1jjtgHbNnumPHzWrVsXrTNqTDN5iavg9AADSKk+vJUliZ6TuAMMACcCgA6ubH7GoAGVMBEAAy7ValUxzarVkswu/uVLF7RiF5HyaoWJVVeYGEuUxVCx64iB5CvZ/C7FABCKrWSamYcwsPD9738fl1xySanb3mc/+1kceuihICGr0WggVbe/ZYSQm0FSaS2ISWVlFKYZtSNBgdRf3zKrKCmkAghk0EyydsouNGKgJGI9cfEZVfwzL2ZEKbsuj/fZSUVybRNzj+bae5ZkWuoBCdkzPtOsEFkVPdA4SRJ0ddLcG6ZZmornde0m6udO+SplVPnM0ZXfjteh8SizJrq2CuaKEIQrlYoBF729Kovpc4E4sMYuqQ4cDdaAthybMSDQTLKLhJU6SYGRJXjzAbeIvmTeuWKFWv99HtNsQmUh8NSp7j2hS15FrX3usz/PWuknZgqDEH6Rc0jKM/SZbN0cjLJqxtWsQ59pVn4/bR4ocPuDvNbr9TorgQ+/FXjsPfBBs0Zm57JFTLMC9mwS64XuoCjwT31LJCs058+pzwGwRl8JAFWCtBGWKz+T77MkAbD2J+7rwA2R1qEDyGIAEr9L3u+OAZ+kwOLPAfc832uHTFQSOXcUQ9jcz9KViI0dmkUZAEiu/dQnvW7Nue3+ggO4xfiXMi1l2ILdv8Auqe2w6yKs9FIQ0K0nBg1Ml8X9K8fOjQuBZtplVLukUp8Fo9C5ZxolWzPNxL6a+jY88ohJOvLzX4TZKen3eZ7j2GOPBWb8s1eB2ipjbhGAx+3d/7nPC5/dRjn11FMRDWGA1gbiunDPvPPOO7HvviY74NDgAO6//35Vd/PmzdFnaKZZh2CPJY6ZRW2YOnUqnBvXoB9nzYz5aF4gw8PD0DFuxe+T0D2T9mrvuB7bzsLpIas3FPhFxP1TuR4nOqYZpr5ZxQczP6DkOMxabAmIyUQwLVlKHA+uXq8DU99ovk4F00y6Z6LcPVNmLk1cJkqOG1e6ny0wl+c5CpVEwXetlWdYLMzJaEwz/1wIi++eSW2v+nqVOtvDu9OPlddoNOAnuRhuFPadMZk8RXDOBcXrc9nYts2uA7JmgY19NqRD1qczhtp1t3z5cpDRee+993ZJuyguo2aabRkIpRIBIBXumdbA4rMop71F/hraKBEHzdjAw8aOHaAZlx2g2XZaYsCPDyBJQUcCYmWuiq0AoKuvvnrUNv09gGbbMnumFCL6+/3YXKaMzjRLlLVbMc0iANKsWTMDZVGz0Qoc3vtvwLIv2Y6lkWxj5sIOgMIIsMBMMxaySkGz4CKifoi4Ej4bJ+sDFp/jKWgEDqW2beIZrtDhnrBgLxh6MqaZ7aF7x3vf+15MmDAhZOOIC0CCbs1mU8dPSARoZlkeo7u8RIS1gQdtc5mlR21NkiSyvkWf6aKicUsSDZoRayfKNDOX4WhMszym9LvsRKMBhYJ1OGqWVAJHgRAc1YwF/xm1Ws240gBqbFz2xsbqkGkmxqWjg1mD5VmomGnGQohfeG0zuy7iCuQDAovPw4y1J4TPcopkoQEZe0YYfVSDvbJEWVc+08wChcadK6bACaFeMc0sm9XtZxE42bOo834We8xZesN3MYuyAgzcZ99ThKBBaZ9lHbOfjdJvzg9KfqBi48gilfQkARqrgP77gNXfE302+8vsH7M2lLundQlq5Z551Cd0UG8XrBsA+u4wWTSFFdu0nZhm5vnvfOc7VUwzo2DYwMsU9Dvh5AdKKFfKra9YybOYxsRnZlEVAl4kowqg9R+ePRIQJjCFB0oyzaj9Zk7tPrVuXWNjmqXA5j8Dgw8G7eD7OQbWC6BcGWfEPoqAd2EiAPt7ew7uvvtu6k2GdQV+Bt2dgtEWxvQjYE3fi0NDQ+XMFNuOhnN7jdypyrgmWWSSaemDmjGXVA2Opso9k0AzMh4Ipplbc6LPDtClOmL97fIfWL9+PZ555pk4YCPiT02ePDnyfa7ewXtA31uNRhl7r7xs2LABF198McqYZgzQhaXR4LE644wz+GwoCpx55pmq7umnnx4+YOhJj2nWxee2B3AAJmmGc+MKitn7MebXo48+6v69efNmBEwzQMl8DJo1GDTrJc+J1Bnf3//5Am//TAsmNgBUhHvmxt8DQ09GZBIC2PgOLw8r0TR3XFprwVClZzLTTHnguHNKnMlJibytjI9ch4D5XLlnlrSXQDP5+ebbRJ1c7B9hHBh6ylagPddGTLMWcIBkVGmmWaLr+CEjCj8RgF5jBnTUa2rEDXesPVbuStpwz2yHXSeJCbE+27WY5cDGfvPv3m6+94KkEBYc7ejocEwzMuTpuLBbBr34TLPB5iRg3HPBoQSqLQBhMhSUvzvLMsF2ZffMLYkv/n+17BiJ7bTEFrEPGElBpww0k/9uxTSLZ77Tpd2EAVTe9KY3tfx+rHHbgGePaVbmujpqTDNo90x5gfAhxgCSOVN9bUwAC0WOyZ0rmSGBJKJwtr7EXR0JIAlrbFF2LAQXkVYiJWMhqOOeUXCfJZgSBQoZJFFMM0TiPpW6sHmKnh2XW2+91Qk+jz32GCoVsY56KFNYm9kzrdW9ZR1PEUli1hvXVgOmyJgKQBq6Z0bYHvKZnCo91O7zPI+ngHdKbET43HynbScpikl4Qbv3yz6zC08avFKv/12yS4FH3+W+q9VqwOLzRNvM2GDgLya+V3NjGBRfMC07O/gzAyCFXSaLKJLUguMxwdJb22XsFZ+lsfEW9NZv09VUTLPQZZtdmyRAoRseunAKhowDzSoMmvmxBQXDh5kpdh9voIyHDKa4/tCcyGzAio0DpGmCF77wwMj4sZJd8dhvcffMWJ+loGz2s2TKEGurNO6T78JTFMB9L2YQFsQcrTDTrIjHNCuKtJSd8ccH9d8qdkvRwEc/+lHsussc1WYKGIwiwy233IIrr7xSMc0ajQYrkuQ2mVQNSEJ9ppIIdzPleinAXsWuk4pVAqy+ygTOzz33TAcCCDasLK6OAFPEPDPTzGNUuTgtmWBp6PVfyjSLnXEBEzZ2D8m7QQLCElT0+oxYIgC5n4FavsokHrC/SZIkwjSTYGIkLqlb/011N27YsGGUOG42hliMYRy450igUIBmCgQXdWSflYEHRtES79PumdTnTOxJDZTLINu+ktvV1YUf/vCHYX+pLYl0vYx8L4ByxTQThcD2sRTnNlkCjAWsKFGke2Y96wQmHubaO6p8uuJSoO9uLxFAF+/VIlNgoqtjXQTf/va323qF+H8SBc1MnDhTBgcHEWQvtW0OQTNmmnV3d7l1R3L0Hfc8GXmOLbSOZEwzmyW1PLYs3DvKQYPMPqfWgoFk+5Mw8+6x5RP5K3LPtONr3OMqfG7ZIs9tjmkmmGYoHPBUzhwVzCEpqz3yTt1WJW/bh276PY/JaNkzA/k0LNJgpWKaCdAsYILbc1u6Z0aZZvZerC35JABghBxYYg1x98loBls5LpESMORjr0pUuweHTMO6u+KMQhkmJk1TVG01YqQrcLTFe1sVzTRLsGH2FfaLXK+XUpdU7+71Ssg0S9263VFM2QGabacltoh90GysTLNWMc0ooHyrMlbQLIxXpEs7G7VVn2XZ2kQAWwSaKcHdCJ9JoGzH2Dj0vbCCkHumL+QiCV2bbMyF1u6Z4nB3rKtUXYiRDkFdvk7oIqZZFvZZCMmmSEWcwZTQAmrbWuKeyXHcNBvhhBNOcE8oAwrTlNpnLrvPfe5z2m2PSsLj2k5Kbwc+NCgOCwELmdeOFElSRNa3VERySHo4AOu2RwJbFaPFNGNFJMY0y5EXsd9VvD6LvdLcwO0sRhNKSPkSazsBkgDAI8AlAfIGdqtcaVg49hl6radQ7mX0aZRpllnQTMd1jMYDEoKYzHQVtFNadcuUUvgKbQkbR6xt333SsBA9sKqI9NkHFmRcIltcnJmAdZLoebYA7FHjj2ZLtgMWhHU0YJ14bBz76DA2D81zaudVK67tuGeGiT1Mm3V699w2vYQ5Erh2eECjY6ZULdNMstkKrhuLHwIjXF/7x/DdEjR789FH4atf/SroqiLlidw4UOQ4/PDDrbW64t5l1qb9kYhdU28IS7YbrDKmmVy31HcGQRhAHQBWfFPMQY7QSBFb27ZOIs52Mc8cP9Mq3wRgDD9j3tV3ZxwEL0LQzLgtFfY89Ufcm+dYIgD/zEDuMc1yb00mfCZRUYoIAcK5UmwDplngwhxzTyaQySr6tlx88cWtmWagPSDA0dI+m3HxDVIaBI8wzaQ7V4mxT7mkJhVxbnOfo+w61T5TfvrTnxr3xWjyA2P4yvNc78UiXNsqppkC8IBGc+xMM1daMc1KXDfrdT6PH0nOB577W2o4JkyY0Pp91mimQbNOOCBdgKM0JgTIVyrANddcY8JTSAMXEixbtix4lWyLuSfEufL0p/h9SRrENKO9Ku/nLDMGgU2b/di8EliIgWZmLEuZZnSuJYJFHIwbgWYtgAXqj2VXn3TSSfjFzSv010UBkh2feeYZkJF6/Pjxro5kZjnw1LJofffMcqZZxm21e+IljdcC2Sbue5m8rfazGZ+gzzJjrpRPI8UPE0B3ljz+VegQwMktimnmGWr7+geBtAvz+j+IzoHfmWY1aC3E5ofZqBxiwdM7iwZIDhs1zjD1OXK2SF2tmefIbAzTqtjS0uBZbzBbtlKpOPdMZciTstQWFJ9pliWT7DeZW7etk5ZpPST2/JTiDu9wz4yWHaDZdlracc8si2lWBiC1Ar3acb0cq3vmaOBVOxvVKExcnq1EAFvGNAtBpjC+UMGgAfQlxAcsHbbmEFfuFA40k8JmCKa0ApAka6XZbCIvlR9NW0vdM8VFxBdEgXe/+91g4aaAA1OcYlWI/lA1ya7zspqhPKZZAJpFWA1uXOzvkyRBEROgnHtmJCPT6iv5GZCKegos/7phQcn58wBLE/u+hGmWSICVhR5WGm2/E68/uvFqDtBYYzIRPnkyAJtCu4iA1hTTLMY0UyBgoeuQKyp3hgEX28+UwCBVTcyzYxDyPCu3XHJp9JTBqOuxXdtdHXzG1Ot1ZNG1nXr9iZxLQrBUAdVVybnPbqxaxH2ya9sH0h1LwwlHJawrxUwR+xH63IomNxAuPNKFbc6cOd5+lgK9nCPRZ591giJkFKq1nQfnIDNt5BzqMyHoswTxYkyzMvBzVNaV2V8mJqDZYyFQaIAs//z/ye+BN/+/cJFJi3pHzTKSrPRNwji5caQpnw3SDVeBZjJAfFP0mUrnLkGfw3Ur+1wGrBGY6DOz0tHXNuAFiDf9SpMGmAln10G2GbitA6gvF2ecXguOafvg64GiaQ08Zr9FYyUmkThusp0KmDPj4t4N8J6PMS3lewj4KQEKg5hmDgT3QWP5LrvWi6ZSCufPnz9KTDOg0fTuZxd7NMKugxdTMQDBU66jit7zhlEYOcNcn0nGYDnAJevw9rMPZpx//vktZEHTV3bVtYUyw4q1zUyo0Agh3SXbLU5e9s6ZBx54wLSsBZup0eSzbVPxHP6iyENZM/HG3p49AwMm8D+7Z0rGPwMcAFwohnCfACTXXXTRRcE3U6dO5TY3GgzGN9YDS78o3uczzZh5xfE3zfnyjW98A+jcVb9o5omiOXZsfNBMxQfzS4K2EgHYmGbB3AwvEhXN2t60aRMuvfUwoHtfoP8BfozP2LEueXvssYerI+8qlwgAmmmmEgGUMc2gM0BGjVHy3B64H1j7U2DTH+wzGAQP+pxtFs8oaYMtbMBNLcPXfF4VTDOWV/XZoZhmEqhuNDDS7AKSFBPHZeioWvDJhiko1UMUczoBhp/2vm+4cyRww6VkGUKG5THQRcooeV6AyKgSNJOJY8wZwjJ5jWKaSXBUGWnGXjTAmvK/hcG2ddKy8jMJsAnCXCIAds/cAZpx2QGabaelHffMMqZZWSKAVqVVUNPYO9opo4FX2zKm2Za4Z8pLrSwRglSaTjrpJP8J+nB31PsI00xZbL2iAKSc2Qf2B1H3TJTENJNCuWSaCYFDWXhGlnM7C2nhEXX8mGbuHQYMCBUrsvpTnzWjyo2dAx/CrGZlGdYkiBpXvoTVxFovq9Vq3JMrYWDOCRyU0MBlO5SgARBX0CJMM4zCNCu8RAB+TLOEQLnymGZy3f3g5N/j919uGqEKNoW2L4wDQrmJCJ9KwPDWwrqf4+hJbwWvCxoDX4H251muf5/1UAhGIWAU3JDhxQKqBo2TJEFXlzYcxFmUidtjreNB+Pu5wO7NL4o6JEyzMJMIAEQ9K2AUEgBdeAonoFhk9ImwZHOdHN/+9rcxcQK70jvrf9CnRCsiklEi97NknShXLQ8QFgJc/NgWdYqQRVmuZI/SZ2KauaD6gnUVBT8NUKIZSICO6WTOBc6eGWPXxUGzvsFY33UiAAJyq9UqkDeQFQSamf5WA5cXM09GmSY3xhA0U+y66iSvz7FEABIwzB34QPP8ile8Qu3F2FooX9tyLXgAEurQgZ1LGIWRTJ2VSgXIR2AYGKyIBM2wxpKW8QdVTEDBIlMAqgcyFX5Mv8K9S59zuftNyDSzgJboN2eS9NxWKQ5TkQEbDBuJXVL9Yt5pGIvyTGmI70MQUMc0iwOFgVzlxaL0Y9cFTDN3hnmgWcA0iyt85ZnyzDpxTLP++4DhxcDGm7w+j+KeGbemtCxG3q0AvS9Unx9//PGizXH5uqGyZ8p+5WG2zMAl0gBTmzZtEu/pBLtnMpDrM81oThIFcpr1EsvSOXHiRPdvxTTLRV3BwI7FNGOXZwNi1Ot1oMrPBQB07GTbJwBNBZo1xV0lxmv6sfYfCbTcEtsfGYLsmQQoOxY93HOefvppYKd/AmZ/WLC7PDaOuNPK3DNHi2lWnnxI3DF27UeNUVImyYfw6lnfAJrU3hwSsAQSYNFngbv30/drBKwOimW/N7PMAVoVDzRTCYzs3akTAfDj+vr6gOoUAMDEcQU6qqYOM81ijSDZUybzGQLWXafHrQxAaq4X49K6z9KYmefsZlkKmjVpnumuItDMgoBynlsAV62KMpg4JhjAxo6kha5OZ3T5u/M8F3OaujN5B2jGZQdotp2WscY0K/vttgTNtjXTbEtimm3LRAAUM+WII47AQw89FK0j+xwKluYQkxe9tLqYOp4LmxLuhWJKrk0R98zAzcFnVEEKLlrJ9plmmbgQ3bu5sVDAgnKBoLqhkjGqS2oChO5j9nKQyplQ4AKmmVVEokChZNdJdoT9/ezZs+NBvZ/5tFOg3eU7vAi4/xBg/XXc98D6Q5aaRNSRSnwSd8+MMc3EPJsA8Ylrk2LtUC3xTOme2TuuC7Nm7uSelzUL5EUkqO/wQjf2TlFxArLXH2hXRbWvnOVLz3O5255UWj1l0gGHqeuzLFGmWcQ9c2RkJIip4epD7NVSsEUKa6a9B874MwtsjkmRurmPihoECEQZhbDzTH9Von0uY5q94AUvwJvf/EZXr16vlyiciV7bCrRswTQL3NNIEU5En0vWtpg/1eck0X0WFs54n/V+HhPTrJBsBNOGKVOmeECJWQMye6a+Z8pBs7LimGZFhs5O8ywaaxKq6YoNgivbeXJMs7yBUZlmutNCgTB7xcQ1yvl78zb7f3Nea8A6vhZKmWaOKQfI+86AZpQxLY0CGBIoNK/ic86Mh2HUNDI+48Lz1Dyz6YcSkN8H7NSy7Jn6bC91SbW73UyfBoQDRUQxzWQCAtkeuxaLBrDyCmeoGY1p1mwy8AkAWP+reJ/tuCigvC2g0NZzcTWBNE2Cea74ILic56IsY2i8b+aMisizBTPNjBt6A1jxddEWOuciiQBEaW6Be2aj0QDm/Dsw6dXAumvd5+vXr+c2S+Bn6YXAwtPMby1tZWBgwFuaiY2TxWXKtDlen835RKAZM83odwR8yphm5ptKKlkvdJ+b8/v5z39+vI/y3wSaNdaIWiwLmPHVTDNpsHUusg0BUpmWcV1aJ3LsZEKm2Nr3mdNlzC0Z0wwpsOxi4xWg7gpzzm3cuFF0kefEsHHovfa3RcxILWVyZuwQ864oTBw5NReqvaLPozDNZIzO5z3veXB7350zIiFZNgAMPcZ16DktgJw8z91+ZvdvoOqdCwmKQCaXZ6qUvwYHB4GKSRIxvieBvRZRz8yzo94fMZdUv+1FUwNI8juVUVj+LnyXlFGyLHfhE6pB8gN57hpDfaVSQbWq7/VtxzSTdwmNNclh7WW9L3u/AYR9ptkO90xZdoBm22mJLeJnk3X1twDNtoRptq0TAcyfPx833XRTaR3Z5zIXhsA9Mwog0aUovnJ/SEXcY10hjbg2eeAQtODi6iCeSVLpXo7dVQcBHM6q1bSxu0aW2Dq5fkepkpETgmK7WXhjAiG4J+IZvpJhwSPAKSKhG67XHjsuxhps+nzggQeGF/TjJwGrvwtt4bSXaN+fELikejFg5syRgm4Gn/EWBsSnceE+x8AUnQig9YXG1HQfHDWU8Rze+fDgkcCDR3iAWAoML8b+E34JrLHBmAUbIQBcogwkAZoFLDxSxOUzWOHRWVNtPU8BlkFquZ51z+zyQLN2KP+jMM1kNlwVIF5ZL1sBSELJLkJXRcNMIUCJ+hwDCkOmWSyOW9ySnUQApJDpp88MOUdi3NS6RRwQ9phmus/W9TgVwpq1cJ599tl4xzvegd///veRWFemjmPpgJlmmYz9EWmHXLcHHHAA3BorcpCCZpTEVCj4QhEpAc3KlpeLaVY03D1BDB8CzQjwCy3ZZr+bZ5D7IN/HFI+pFDQrwj5rQKwQ6xbQa5vGxa8jFSJZtFCe0Gf0KwLNABgGTQhgSJdU9y5l4LGxnPKKYpqpNecMOrQXPcVUrVvb0kK7EgWuitb4E/TZrUm6w0MAiVlXNDa5eE8ke6xVVrDpD8CSz4NiMb3uda8bPaYZMc2Q48hxbwRWXlreZ3iGioKVL25vjC1OZ48FR9tmmrFMUxrTbOFpDlwCgGOOOaYcNBPgkAGpeoB8UK8pwTosTwSwhaBZdWrwOa2PZrMJPOfH/EV9lQPX6tYd9Nxzz4Way7QnYHyN+A4c9uwx7uOxRAC5ONutkcxefHHRN7d7yDuzswHlKmrAOQuaPcyGGbojymKaSYNtlmXo6ekBRjyXuqSKPPeMKZUu8Q6WT+NrX4OjMRAEjbXuLJUsfPd8bzyUd4kwUphg6eFdFTVSS++PQriYW7lfZQD2i+/lAAtOq+LpGGXGjiQSkkC9q6QN9HVRuLUzUm+6/vhnoWme3s+S1ShFNwkqd1QzB5o1mub30evMxbwT/fEZY0XT1QnWgn8utGB+SV0tywtkuanj5p7qCF2Mzrk0TU34hSLXCR+oLZVuDA6P/cwJ2Wr23znrZ6XrX4xd9HvQ2qa/4oDwP3rZMRLbaflrM83aAcTG6p75bIBm2zqm2bp164LPn/vc57p/twTNpLKiXOkUKgXNxtEHKV84FlijGEjiEmcrtXbPDNl18mLkw126Z2ZZ5gFIBbDhRpPB0Kd5Dy/E6YdeDPTdJeqHSoa5WES/FFACm67eL0IRL3x3rkS0uR2mmRwXU8e5HnnZgFS/AShrnxU4Tj755FEu3wKvetWr4C4mwczitkbWtwSZCs89E8ZCyS6nVcg5jBUpJLGwRopVjhye28fgQ9ZNQYBDSQqgiRdP+zkH6I9R/qNgis9ACte3rlN4gDA0iCZcUvfdd18AwJlnnhkCSGKeu7u4jyMjIyXBZUl4Funh/eIzzRLZ59DNzc1xmpQDSIppxuNisu0l3JcxxDRL0xQdNW4/KzLeGnGWec0WdKAsYOdYWjaFkt3SPTPS51ZMM3hKNlIQaPC6170OP/nJT3D44YeH7tYWTJFrhhMBlN0dYZ+DQOiBghZh15WBZt7yJsXLuGcaxZZcyIlpZhJ9FiJYt39XSRDPgmhij+hAw230GV6sQFHHFHPnaAC70HUiRgpTjc5bAlPoM/uzJEElEaBZKdNMntt8j8gzsZnlBhwFIuA0KbWp+30wJvIdcp4dgBQH1qIAknsP/c8DhF3TUqHocb+DzLCWLYuRJcDy/wHFYkqSpAXTzAIkmd2PQZB/GpcICC7Xv28EKgVHBVDonm176bukCjYvFafc+0yz+nJg2ZdcvZ6eHgZjon2mOzwHKhOAZh/0mmLjQCnTbAvcM+v1OpDbGEmWMQOwXJtlGVCToFoRnFN//OMf9VxWujE0rGOaNZoxowvHKzNglnDPFIAssWPojCCFOOaeOTIywgZQAMjrCjRzTLPGOqAug+MzQFEKmgmj1OzZs6Gy+wKggPdKzoskAuC71y90n0WYZmt+ZJs5BA0yCbn0kXcAC/7JvsusUwWaTXkD9zbPxV3VJtPMntsyphkZoFvGNPOSFuhaZMiQrveeTBILq+Lmvez8jzRFgGb1Ou8h/1ww7pl6P6dp6h4tjZZmv/aYOzjN0NFh+thwTLNoS9xaUjE61/1CVGH3zBCQLDkLI1CIH9OMgGfJNDP1qPNsyHZ6VZFpphm95zk/wqSjxn7mlDLNKPkBWsQ0c2d7WrKHaG2HgPAOphmXHaDZdlpiirJ/gD1bmSRlOfFEDuA5VqbZ3yqm2Vj6HIvz8KEPfcj9uzXTzKfLRgAkFdPJP+oSXUcxkOx8uJhmkslUcon7lq+AgRRhmg38BXjo9cDgI6BrTAocE7oGwaAGvUMrGW25Z/qFLhgJLPhgis+cizLNfCVbUuRZEAup4DQIUkAVSrZIxKAvX6lYCWDBUzhbZs+M9tlzz3QKS0n2zCRRbfaZZnkO5PBBXhEwGgI0K7LQhQdSEBPgRdBnf559xZ5AYxawwlhX7i83Nj/4wQ+wePFinHfeeREWpfm7s7MT48d1AtkQMLwIQ0NDcfdM8O/LXTs8dp1iaQirrueelkRZGhFA2AOQmJGXcvtki6NMs3jG0JZMM+i4Tz4gH7geFz44yuPS0iVVMc3oPR5olnjCWlQRCYFCua4feOBB87Yy/KjwFSvPJY9YZJCxaHIv4YwFzRCCZv6W/vznPw+Agmh3A/lQAJoRy4LaXGkV08zGWZwg4tYNjZj9MlrGUHlu63XLdbgT/touwrXQylWR7jNvz+vYdZKBBFWn9bnNZxiBo6VMM8FWpphgdrAQgIAx98zA2FHGnBZAYYrwDHOHWOqeI8fWZEYWrk0+mDjtHcC0t3LG0BZMsywv3BxqI0Siz0kFjgqmmd/nooRpllTcgo+6Z7p1zG4+7nQoihAEd8CaLiMjI5aVUsY0E+6ZlfFA1hdZ261jmhGINZbSaDQsEAMg7XGfK9DML/ZsJWbb5s2bgyqSgZLnOepNf+wlmAKsX7/RgGbFiGHIP3Y8QuatbVsaOSMKAZpJNl9RjzDNOkHu0aKiuztjoBkb61KOaZZ26UdYGasoxL4I3DNbMc3ggSmirP2pTcwEtxZ4buy7Rp4B1lzNnyVpdG4AhBkG0Y68bfaYlsMEaBbtU8bz7M7TiNEx0SEjNPs9Ces4I580ZIs9H4RKMXcLndsmS6S4e0UxQ6D3s0n+Yvb9gw8+hOXLTZxkxzTLh1CtVtDZ0QFkQ2hmNFdRxQBK9iTZaeUlwIL3cPsLv47sJxVhHIjIfDKTq4lpZur4KmYgt1j3TDrfKGapD442xqYu23Z4d5YEzWyfAxk2YJQL3cS7e7MsQ0UabHe4ZwZlB2i2nZbYIvYFm79GTLN3vpNTq/8tmGb+M8qeuSVMszzPceWVV6rPTjnlFPX70d0zBV025p7pxTRLg0sRoEuPLggNpqRCuZGCbox1FQfWyphmew5/FBNXfCToj7J8+fTkiJIRzmNBWo5pSnSaNVCoGXqJZx1P3WUVZ5qJPkNYgSq9QNfcONNMpu72lGwNIJGFUypFhQcgwRuXknmWLA13UWnQTMY4irnh6uClOaQyqJlmRcjGUaCYjoGkA8RnWkBVbkt0GedCyeZ5DliFTpGSgDBf8qbPgjUiQMBddtnFjKUQyu3oOqCjp6cbePp0IB8woFlse7l3Up/FGeISYbACHYAPDnCxzCzJNCsFRwn0jANIjiIvBDFZygCkNE3R2akTwJTGNJOKSCLG3yUZoXHVrJMge2YkKHh7TDMfWJB95r1KRQMaHtAqgPvBwUHn8hgUNYfg/ijB0meXtp89s+IN8//+7/8CIKZZN5ANafdM8a66DQ5eq/JD2IWNYqyZc3tqx+OuTl+/MezkeQ6tFFDx92qM8SzBFLMuoyxKWgvqOaJ4QnmSFMHaVq6Kdp7/+Z//GYcccgiuvvpqwUwJ17Zsd5YX7pgOz1O5Tiy7YugJ4JFj+HsFOps9GLhnKmCtrM/0HAEUtuwznTd6/SdJoedAKjSbbzd9JkZVTHS37+SYQ2Sko/2swXnaz0H2TN/wFWOaudAI5QYRVibtvi8yA2gBQP/dIaMwYhwABGhWGtNMuGdWeoGs32uLxzSjtgj3v2YWPHnU0mg0RHsTYOgpAC1As6HHXcbCem7eHWOHDtV5bjdv3oyAlaWyKgLPLLZ3VD4MrLoMGFnk5pPYq9SUUvfMKGjWDGOaVSeKIPOw2ZbNenPjm9bQimk2MjKCILmBBYfMeERAM+tW6VzmY0W5Z4o6uczOwnLuaK6Kmzf3hd/BxjQLzrASppknbyummb2H2koEQF4ZvnumL5MEISNIHkzU+W8HRjzIP/91kW57nCUyPAtTCfwrwJ3b8453vMONI4FmlUrFJgYZQY5aiSEbkNndpXyq2t0qEUCZh0ikmP3N7pm5lZer3lGoGfI8LnS/0xYPMnluQQmYZnR2OvfMSJ9p/Uc8IXqeOFI9XzHNiMlW7GCaybIDNNtOSwz48Rd2GesqyPLSRikDzeSzZJ0TTjhh1Gdui0QAfp/biWk2FqDwuuuuU5+98pWvLO3zlrln2oNUWeapsFWWlUSfDZKwMqms1JEYCxFgTVnvkwoaDWaadWElbvztLzF79mwBxuhsoDqgN7VDKhklTBvJNCsTXBK+hBRQmCSsZLj3lgCF8BURwbqacBCw03tsxtCgATjssMNA8xPEsRJtCVkakbg3kmlj+9w68xwpPDS2AjRTbI5y90x3SSummWm3VDjxzGd4zMXYS/e0MKuiRwUvImAK9DynUVdFYhRyO0tZGg5A0mMXDRAPA5p1d3fDZMzqtEyz2Eilus9SKF95iehzuLa1m1seru2oq2LGfUYIpGs2Du8BWVq5Kkr3TJcIAKmxxP5596Adcg59QF7tHwkaS3AU4X4uj2km+lwGFJIwWOryYusIMEV+PjAw4ATcsLCCR+epZuMQaFZRQrl2ecmjoFlRFHjqqYXqbePGGbetRqMBdO0GVMaFTDPLWNu0uR8AMGXyRPf7rq4upzAODAyA3HxeNPF7eGHxPgBAvZ4bYKFlgHitZITGG3k3GJApGvcsst6C8RVMM7N3/TMM/Az7nDe96U2YP38+jj322HCe/XPbAQKFY44Gd4g7N3nNveENbwAzqnLdH8Wc8Pez7HMLplnUPROlfZZjq/c8GZTEnl/1XSAbbO3OJQwipftZKpiSXafck0MXzjijsOLqaaDQ9MMxFsjAg9wocPMrQP89IaPQzsG3v/1trFy5kt/kYpHVDOM9coa52FDOfVmMnWAXKUV70mtclS3PninKkx8Biqa7BxWg/qfpJnmQZcHVsx6UlWEBmm3cuJEBprv3Be7aOzh7nDenDHLu2JhmDvrHvR1AibHOnvEmW7CQYYndakuz2TQx3GxCir322guf/OQnQUZDztTcOqZZnGkmQLMy90xyUY+prS7cgHDhHHgYWPB+YP313rgIzwEU2Hnnnb2HmXOhr68/MlbExqG/WPYMDPMlsa7ad88UsqcFekMXdN8gEgHNRgXW6FlyH3pNke6ZLZhmpnl6PydJgiyjvZLgjjvucOOItAfIBhk0yw2g2mg04rJa2unOJ5bVcuvyK0EzM3ZhjNoYUGjHtLkZWPUD961ZawQ65ygKKwt4ljFt4DRymUkEQOEXRkn4MIYSMs2szF003LgEoFlGoLFgmjmGnX5+lvlJLswZvQM04zIm0Oxb3/oWjjnmGLzkJS/Bb37zG/f5tddei5e97GU49NBD3X/y0nv44Yfx7ne/GwcffDBOOukkrFjB/vDDw8P4zGc+g8MOOwxvfOMbccMNN6h3XnvttTjqqKNw+OGH45xzzhkzm+n/atka0GxLAKTYuH/xi18sZV2VvVuWdphmY3XhfLaTH3R0dKh2t50IQAqfvnumOLh10xJ+js+68tz2NC26BV2c6qQdQFFHtVpVrK1mM3MKZ5IAL37xi7F06VKzLwvvIio8F8LEB+bioABf0FKx8os83EP3TKNkCLBOgXimhLFxzLgxddqULBMZQx8xVrBTP/RqfPOb3/QEDslG4PFXwIJyz5RdzsUlhNCdCAjAlJh7Jlsw40ChGkFnwQxjmmVZwX127hYCFJBCSRGJ+1TGrqPPCFgb1W1PuGeWzLMGU0IgNmBdCaZZd3c3UIwAaUcL90xSUCNMs4wEZ1+BlgCqz8aRfW4Fjop59th1SUD51xIkg04hG6erk88h556ZpEBjNTCymNtvx0zGBgmYZtKlSgFI1FxmHbZc2/KcK/w+27UdEdbiwD/1lxURCdw3Gg1mmi3/OvDQUaIZoZIRMtgyXkt2XJV7pmCayTviv//7v/H5z5+vet3T0+PmAbueCXTMcPeEDPK/efNm1Otm3KdOmex+393dDXLTefzxx0FuPo88/ACm9FolOalhcHCwZG0DSrEqYTcGZxhiMc18xWp0plk0ppkfr69owSh0RgQbG0esmzwH31UBIC/BIdEfBex4gBi8+F4+UK72a5t9tqC5U7QE29Lf87GsZdydQaDSg2YbTLMsK9w7fLayHlezFwP3TJ9dGr3PaI+IPrv7o7BKtmQIS5nFgMkBo1CAD/KMaTYFaDb0tDjDAJaxchP0Phhbe58oppnc77BjFg7naMXIxNTHBJSsIa2YtlOgftOJ9QCA3t5xQNaPRmEAoZhL9UiD75++vj644PtDTwLDTzkAic6eBrmz5TKUCAPLADDU/WoAEsgUxRplFyxYgFagWaPRAMY9Dxh5BmeddRYWLFiAiRMnuvWv3TMb2j2zNhWY/RHkeW4ZbT7TTLhnRplm5l42Yx6TJEhukAaRJrDmSgAFFixYgM985jNuLcgg8oGB34IPff1x0CxMBBDK2yokiQBTNNMsac00kyCgL+s99gHgkbdF5VNzhol1KQA62vP/9m//pvUQdc/bsvZnYkgKZpo1rdwRMZqkkZhm6q558cNAx85uHIlplqYpg2ZJJ+r1epxplnaDZE85LieddBKPoQPNhYHfAr0aTNd6yMSl78UuQ592X5u1X9g+07rOAh1TMeSFTCKZ5K3nuf2imGZJBc5l3QcKJfBJcRfVfRaXyfM8h5tSoWPsAM24jGkGd9llF5x22mnYf//9g+9e+tKXYv78+e6/mTNnAjAL7xOf+ATe9a534eabb8YBBxyAs846y/3uW9/6FjZt2oTrr78eX/jCF/Cf//mfWLRoEQDgySefxMUXX4wLL7wQ1113HZYvX47LLrtsa/r7f6bEFOVn0z3Td0P585//jE984hNqM0mq+bYCzUbbrO2CZluaCODDH/6w+qyjo6MUKAxdGGSsAnNZaQUNoMvTWWy9NhTS5UsBQ8x0MjED4owq1TZlWTdBqWu1mlKOOPMWnBLL4GUYGyFkpshLUwjcgYJG1nT3P6/j4nAvfIaexzQT1r54XAkBJlrrWKVSAZ75NLD5du2eOfgIML+CudM2qT5L90xf4Q+ABQfq+FbBxH0WBxbkhVbmwmaFQTCYUraeZcB6/i0pnOLyXfVdYNX3GCBSwIIZM+2SCg0gSaVU9qVos8+ujsdctKyOis808yyuDCJLhT5DR0eHFcTqLQUxo+Tkep6zfuy+bD9odp2nQAfsOgEgCQZGuZIdESpB+436nIIE1Ne+9rUAgHPPPTd0/xDrv6ODzyF2z/SUcFpbnnumcucKmGZmbuKMQiGIlfbZm+dC7+dK4BYQcz2WQLlY/+IMMllS7ftXXAJsYAOfVkREf5TbBq17HtfQPbnJY2fL6aefroVVALvuuisAK4D33Q0MPu4xzYxQ3d/f7945rodZGIZpZtr8mc98xilojzzyCGo0DbueaRXOkrvSVyAi+0ydYWo/e4CwB5S3dj2m6rzuAhZlxJKt55P2PINmVDXzmGbqHPSZZjHgXwE2iVACaVwye4YRgCrHrrzPZu/657b7C7SmmNmbWfd5MbZ2XCZOtKxDGzurkXHG0HTZf2HXDe/V7QC55KXu/GSjlryHab96zGk3LvIsLcueqY1AGmD1lEm7Vz/1qU/hS1/6Eu67777Q+CSAPnM/n2X7kzBoVnjGW3GfUdB7M28SBfNAHQ/AM+/YBkyz3ABMacUAQpIcQMWATM2W7qDDTe1ej6QDyBt4wQueb9y9ZQZIAGt6TzeVi5BpRsHLC/u37z5uGw4gsaw2qTNUI0yzScDwIowbN46BATDzpzQRAADUVwimmQeaQbgq0hqNxDQzcR1jnbDnmWccoLLPPvsEjDda/1HmKBJs3lzONNNxrELPDgCeUdeMCbNlGeAImGZrfmTuLcUE987b1d8z7uZKJpd7VbpnmncZ45n5OzRka7ll0uK3YtbGk/lbkfxgaGjE7VVfx0yTJH52SNlj0ivdOJrkOJJpNgykVlaL3Wcb/+DdZ+IdxF7Mh7xxSYClFwDzOcu267Nj9QJJUqCzk9elAs3qnITHj3Ot7zOWW9gboBKf5y0oOnumuM/SbtfnIHtmjGkG7vP+65+nns8hVTXYu6OYMqYZPOqoo3DQQQd5QXFbl3vuuQfd3d14y1vegs7OTpx44ol45JFH3IVy/fXX46STTkJvby8OPPBAHHbYYfjtb03A1htuuAFHHHEE9ttvP/T29uKDH/wgfv3rX7d8X71eR39/v/pveHjY0bf/Xv4DsNW/H620AofoOWWbwQlrYlypHHLIIXjRi14UtENa3dsB49oBxMbKNNuaPt9xxx24/fbbrXXf1PdBuGq1qn4vlaZyQADQoIC08FhgwR3cwsqqWDsWWHOsFhlTywJckSDCer2IAzftBPIRtt7bw3ekzvETKmmhfy+ZZjHly2eaJfJijgGF1PYSlwFnBRLCsOpzyMYpCr/Nkp7NgEsiLMPNZpPBlILHjRV7nXlOZ56i/mtgIRGgoOuPY1QBYUBXiLEz8+wDC24/WEVbshHCcyERMRRy+07+d6OZO4XzwP3nYNHvXo3XvvY11oVJ9tm8T4MpLKC6vwM2AlmMRwHNRkn4ACDiqphF+iyteBWnJJvn1YG0wya5CMe9UuGYgAwwZZg6Zbzoc6bXtmTXKWCB1m0LQFi6pMbOBAAVH1goMnzpS1/C+vXrceaZZ9r1WUT3fGcHC7LDw8Muw6Deg7SOKry23VprxTTz4/WF1ku/L65ewvPstydJEqQkrYngygDPc1EUYt8I8EE+K6ngxhtvdAL3lCn6HgvZCH68RIj9RW0pnKuFe5dlmhGTb/HKHNjpn+GLVFOnTmN2xcgSYONvUavVrEW34p5jBHECXbjPnZ2dDFAAdlxMO5wX7rS3WYWzNdNMMoRNP3NdB3o/K2afEri5Tmu2LJA4hqb9uiiEJZsBYQCRc5vq8PyYINy2xQXcuZ0mEdDefAOtTEoWmQCdFQAr15QPTMeYZl6fE3hjC1ZEZH8Uow1RptlvfvMbrFmzxoFmWV5z85j23YZx2f2iHRI0k6BoCdNMulj5Mc3amWfJWPD6LGMgmWeZ/syaNQsnn3wy9thjD6tEyj7z2CdJAmwwXif1JinYEdCMmNN5IYCvHHo/5w5wkYYgWZrZ2OXxkZERKHDCti2tdCLPc6xfvx7Y+HuT/dQWI1dnFvDNDVg+uEC1td6suncYl0njFXDooYfiNa95DQBzZhgXthxDPa+33RbKvHJhzlHk5u9KtRrRH4yyPTxS53PPzgmdb3meC8DKgLwGSLFzlqRoNBp2fM1ZmSQJ11n/G2BkKRqNBoaHzX2sS+L64+ZGunDau8qMeQloZpnXBmgUax3CoF94RpMix3777ec9y/Rn8ZIlkfcAc+fODV2PrVwp10cSgClmDqQxlvss+rTg3cCTH3bt4P6UyYyJMpC6PtC7gwQuCEEzOtvtWZd6sprZz+bvZjN3czx16lTVZ8MuleelBtLNw8yaajQaQIWZZga8N+6Zw8PDzMLccKNh1v2xl8cFOuwNAKA2xfy/sUaPi2uHvosCAycKnH322e7rk08+GRUr0y54jFned999t+pzYNSFzzSr6DAZotTrYztzVGKDpMaAWHVC2Gc33gI0U3KYmWcptxu5BKI/8bVNdf8v/dduGZ0O1GZ54IEH8JrXvAZTpkzBcccd5wLEL1y4EHvuuaer193djZ133hkLFy7EuHHjsG7dOvX93nvvjYcfftj99uUvf7n7bq+99sKyZcswPDxsLLCRcsUVV+DSSy9Vnx1zzDE49thjt1VXt1lZUnIot1MGBgaCz1SKZMAIW5GyevVqx+Zbu3ZttM7111+PO++8E6eeeqr7DZWRkRH3e/9zKoODMvhm+32Qpdlsjgqs+X2OWfcAYPHixU6oXrVqVbTOxIkT0dnZ6Q6R4eHhIIPOunXrsGHDBvd3v6Bwy88BmEOMDiSrLA4NDQnABWAwhS6kEUybNg3GuVkoocKdq7+/XwjCKZYtW2YvaAkaZFi2bJkDOzds2CAuicQILcUwVqxYgU2bNrnnbdrU5w7URoPn2awl846hoSGrUBfGOimt14r9Yto7MDDgASGaXRePl5cTysLPcAJ/guXLlyOBp1gVOVasWOHOhrVr14o+wwnLy5cvNwKtVVjXrl0rFM7c/dasJSG4WAFk06ZNcEKAo79rxcq4Zoi1W+jLqsibyOD3m+oYQWBwcFApPKtXr9bumfaCXrJkiQN6zVyaNTU0NGRMy0WB1atXY9myZW6uhoZGnHtmZi3El1xyCZYvX45fv+0b3Oduo1j19fWhpdseCrvnJfgo1y3QbDYi7ihi/Rf0DL7AVq9ezcJnkro5XLFiBXp7TQZBM05ynlNXZ/Xq1SDK/8aNG11gZDXqBY/94MAgaB03m01PsZXvSESfqU9W4ZSAaZGH2bwcw0WMmxAu165dK7YQAVQ5Vq5ciZ6eHrPnYI6WzCk5vP77+vqAld8BOmZh5cqVzu1v+rSpWLNJtsMIVwzYFOa885mjUoFGrgMkOzaOsDAXOUZG6oC8opWFszDvFALs2rVrUWS0vnhtr1y5EhMmTHD10qQwu0Yo/WvWrBEgSwWnnXYaxk02MkVRxPcYr1Wr/CphWoJUZi2oM0y4Zy5ZsgSTJ0/GBy7aCdjncuDJf1NvGxwyZ+iKFSuAZA+gyLB5cx8WLVpkz2bDbFy0aJETUOv1ujt33RmQVDBp0iRsFNbl+gjfsSbAdknoCqtM8pmU6/NUjIvrs5sjGj/BeKbxR25YB/67hCJi+qj3c57zXBEgvHbtWtdnenyh6uQu61qamjUwNFx3a7vwY41Jppndq2aeRX98ELwoVBwbVrL0+g/kFrefzZ6vjwyLZyTYsGED6o0RmGTFqTg/GaQ2Z7PYd3ZcVq9ejcmTJ7uzt5klZkx7DdNas50sgJTRHNA9JEAzn2lW5FYm8UAztRbyiDyn+9xsiHkuCmzYsAGN+ojRMIRRa8OGDWqeU+T2V7yf169fb8bDxujqH6ybPZ7sijKm2cDgEDo6CvM+yeIzIwIkNaxatcrKc6knjwAj9Uy1q51C65HbYtrWaAKLFi0ycmZtimUE2f7a+7uZmzozZszA4kIASPkgmnkHnn76aaRpanSEtBPI6xgaGjLvFOzURYsWoSim2t8OY/z48XjJS16Cm+8wEuTwsDl/8tysnyTtwKJFizRbxp7fAwNeVsykivXr17txMWfYDKAw8sCiRYuszDseQIrVq1djYHAQqBpW7rJly9Dd3W1lZHOGLV++HBs2D6oICPZlWLRokZKnjeteHfjLq4DpxwGo2DGP6ARkbEs7rU5AYJEpixYtsnM/EUgSxUabNWsWTjnlFDz44IOYNm0arnrY7PmNGzbpdzx4JHbfZSKOPfYcfPM7lr0sDDzB2k7szhN1Nm7cKMBW0+fBwUGx30Sx57YZky57r3rnbeR+NjK5lE9zlkesnGWeGWOaJfbVmQISzP0n72cDYNdqNdXnIvflf9seBWI3sGjRIrPH0x4gH8Lg4KCZEyurPf3009yvBe8CmkK3sneMOdvMWbpp0yZg813m+2wzSFcJwMQIA9XJ5EWOgw46CPiW+XavvfYyMpbrCwOf+qwQ95k1DmzatMkmEjBeIQsXLrT3hp7nhc8sQmfcISxa1PpPOoCRp837110LTHkjy+1SbyYwndxWk6p7RlEUZozumGHk7xftiWYjBbqpP2l0bQNbh1/8PZbdd9+9rXrbBDR74QtfiKuuugozZ87EI488gtNPPx1Tp07Fq171KgwNDblguFTGjRuHoSGzUSqVigLAxo0b5y5o/7ekJA0NDZWCZh/4wAfwnve8R3eyWh0TO+7ZLnmeY8mSJdhll13adhX0i88EA4BJkyapv8k1xC+zZ8/G3LlzAZQv/Llz52Lx4sXubxp7wMRpod8vW7Ys+vspU6aUN96WyZMnt/y+s7NzVNDMHwdql1/mzZvnniUpuLLstttu6OjocOBamqYuJo1830477eT+ltbtqVOnek/0LbaFHUcp0GkAqaOjA9dccw0OPsN8+6//+q/45q2SjZZbij8d1Im1fEGDQ0WGuXPnYvr06a7drj1Ejc9HMG/ePAucmjZVOzpdW7q6Ot14mgPzQcCxnUxbpkyZguPeehCuXgTUmk+hgUPgu7yQdZW7TICLmY+OmBuxVLKL3CjOAkDaddddhTsLAxC77LKLa7M5O3zFKMNuu+1mYi4WDwJJ1SrlqXgvcOCBB5rsjFZwYdYWrVtpYZYAkhmXcG1L5hxQrVZQ87OBSaYZCowfP57HLUlEQoZMXGg5dtttN3ceyv1g1qZpz+zZs7Hbbru559U6Oq0enKOrq8uNGbvqpmwBLXJ7tnhgiue2p/uc87jYfdfRUUM9miCBAJfc9FkotrNnz+ZsgkL43HnnnV2bjQIQzvO8efMYEE5oL4fnbVHw2Ju4bAaYGzduHDS7KGRgqD1P8b3EPFcqSeS8ESyNyJkwc+bMkGmGXK1tQABIgKuz6667YsaMGUB9GdC5s11Dpi21DnndkzBdEazIwsyzyrbnAyWFO1NMnyWYmNg+VyL3s9zPhd2bfCbMnDlTuJWmIOFTzjMApClB5Sygzpo1i5XkF96HCQt3RZ6avtYq5rxyo2vnJ01T1x9ztoh7ULpn2nE1fQ5Bs+nTp2Pu3LkYR9fEnswqAYCJEydj7ty5dh7M2p05cybmzp1r3rvGKMBmHZnve3t7XZ932mkn964XvehFuOlhU+ejH/2oARIsfpNlGSrVMunbzE9CrjPuPPWs7oota9eCZFEGrEO7X5Vuqc/27u5OfgbMHdlZE0Cv3WszZsxQ81xJCst3pL1k1vacOXOcHaparSGz8aMqlQTVzk4wnOuBQyjsvTkgvpfgkNkP5vwh8McDkOR6UWIP7WdTr6e7W91V06dPR093lyFwKqYZv2fu3LmouLhnFVdn9uzZmDdvnqubF8TiN6CZjrVHdfje7O3thTJ2BEyzQoFypl2Ft/7pLhLFc8/s6qIA3QCtnZ4eOvd4P0+dOjXYz7l7j1lT06ZNMwqMBaGq1W4zdzH3TNufjo4uVKsdom3+2q5g4sSJ5lzyXdUBIKmWyo5lxdy1IdOsu2cC5s6da+6bpAvIR7DPPvvg0ksvxSc+8Qkgz1DkRoaZNm0asE7cD9kgkI7DzJkz0d3djaeeegoUf3bq1KnmDregWUdHh22zWfV7ztsVDz/4ZxOndsJzUQCoVEydIjNEhJ6e8Zg7d64ZB4eDmj3b9DMOJxXxDtIvzPkzffoszJ07l8/eJMX48eNRq9q+FE3svvvu6OzstOvLGGimT5+OpNKNoCQJZs2aZe8N245KF9B/H9B3BzDtHUBStesgpjPxfcaJaswc//rXv8bcuXONTlIY42eeE5Bk7pgLL7wQAHDBBRcY0MyB7Vze/+ZZuPzyy5EkCTrprhLumdOmTdNnWFrAcg+dTD516lR7ZhqZftasWUY+GEiBZV/CYfs+g1vpAVZukf3p7u7GC17wAtx33322jgdwF4W9S6QnhDSok9w+Hcp478AUllukbtPV1YWOGi2YFMQ0o/uPSq0m7vCE97N+Vx1z5841MrjNKD1x4kQzJ4sN02zatGmiX76h1b/Drey56VaTZITqJMLbwu13z3iv5JYUu+++O+6+FOioGn2QQwCyIUPez4DMds11pk6davbLCr7fzdmj11RPTy92nu3rjeXF6OR0T9QMcLb4XKAYcWtBZ9iEMz64uGeqz4lpV8OQZ2q156DHuWjz/SzP7W2BX2zPZZv0eM6cOZg9ezbSNMUBBxyAd73rXbjlllsAGGaZb5kbGBhAd3c3enp6kGWZsnoMDAw4oML/LVkhiFURKx0dHejt7VX/dXV1uZg+fy//Adiq38fcH/0FXAYO1Wo195yyuGfValV9J9lA5Cbmt6NlJsmSd7Qq7cQ088ehVqsFv6nVajZmSOs+07jIlOE+bfOlL32p+r1kkYQHiGQgmcvKCLke08zzq3/FK14BAOjssuCkApn8uEPmckvTBOxSZC4S83kqqMIkDBBoNozOzk4V04SDCDN1V/0eSRBL4MrvXIw7L7wbV3/3fCcccTsKz81HjIt0ZwmKZCzEkx+orDXWdUPOM/dZK8BubVtlNM9zkW0vx5vf/Ga84x3v4HFJdDwg5ZLnuyraPpv02VLAt4wq57Y0SoD4wo/VlAh3Q8k0K9Q8y2dKmraLXWfnIcth+1yo/eyyQSY6O1HgnhlhaSi3vQjTLAHK3TPV2tZ9DmNGZKPMc8XNE/enYuc5dHHIC55D6ZKqXPIoQLHHxlFniVKyW8yzYl2FMf+q1ap2VUzY3VTfA/QLtvxWq1WRcdG4HhOjUAWBFusoCDQsY5r5gHBh45gkvF90f2iZR/osWJSxPleCPmdhn12cGBZQq9Uq3vGOt7lnnXDCCRY4MKykIEC8556jA94DFHhfjoHZz6F7JrkflVmLk9SsU+n2S2xmeQYZ63AaX9sqnk8FQBMHHniguj9VMhO/RGLjBC6pwV3lZ4a16z92tquS89wA0EleEvuZGxzQXpN9NucY1WGmGa0FWsdZVriYTUniyxNinVig1vTHN97Ydol3uLO9kGubxyWMXWpAGX2feWs7kgFYvkedc8SotZ+rmKNN7pfvQuWCvzdzyPtZMdh8phlyPS4+4CRddVWfyXDDcotcK0mSCJdUZhT6+1m7cJo16eIbkYthDgty1IA8zjTL8gIclkwAkjQuicywaQxPX/jAOlejmY1dBjcsPzEuNqZZV/d4pGnK+7XI8LWvfQ2HHnqokCnMGdRfHw90zgHqK7B3fg6QDwCVcWg0GuLcMAHSOzo6RGxF8/s0TVHp/xMAoFbNXMxdig9Jy6VYb0LeTOxYWiqn1hshkEjtUGcY+AwzOobZI1mWcRbSounkaXk/F0WB4ZHYQZUIFrptX9rDMpR/V0V+L9tB6//CCy/EkUceKeT6XD/Hyi1altAGTgBA3TD3XN3ArbgY5Qwz5zZnVcxdn12sq+GF2G2atEAI46U4b3/yk5/g9a9/PY4//njoM1nIUGVGXSEz6n3unduJjdFpy/HHH+/dz2Yv+n1Wcdzsfg4ydeZ1pKkFd2wigGq1akMRcPZMLUuKYmUJfw6DOtDx7S677DL9LDcuqRu+NE3xon1SPHcP2x/X58TJlR/72Me8M8yTW6yOMXXqVLdujXcK4K/dcz933phxA7ew0hqIhWo7BH3Pi7kFIBMk0DwnKLDvvvu6mnvuuWeYDdSGZ9mW+MXf43/tlmcFJpQX+bx58/Dkk0+6v4eGhrB06VLMmzcPEyZMwNSpU9X3jz/+uLGsRX77xBNPYM6cOaUss3+kEgOTkiTBy172Mvd3WVwxuUBa1ZHfSTcA+Xv5bwma/a0SAcQ2QJjtJL7s6XNql/Mht+UXv/gFent7S7NnBs+NXFbG6iYPbs00k08YaVD/BfgQyTxnMpJJQcQcdEEmScc044wrdOnR80xmHL44dd/koWzaQuvkpS99qQUEQ/dMw+TyFDR1WUWEKHe4M7Aj3UxGRka8mGYcaFW3Wban4hQAjjdQMzHNLGj23Ofuj1/84hdiHXmXrxv/FpY8AhZUjJHwgi4FU+xa8d9jBDELdgimjewzP1Na2Qqxny0bwU1HSSZKefn6YIpbf3Ke/ZhmFjQTrJM0yHDnWu3eo9c2nUP0GxqbWGZYMc8JC6wuXo/NYETz3Nl8DBd8OMH/ey/w7dM26T4LwaeUaZZIYEFS/wvRTtO10sDhUrEVQmWSJEghFYjUCS6yaACpCuRm/TMYU7OJAApbX+4zEqZFTDMfkCfl3nNJDbJnShYZUA4ICxaljoVoQfAgRmEYgFYFS7dCeZqmePvb3+rq9Pb2Is+pLd66lDHNpAIhARQHCNAYRBJhWGCNzv8EcddIirPEgFfmJQIwCrDJKMdgLxU/LooUYt08bLix/ZhmZXH0IuBomG3SA9aKWKwrvRZ0sr7Ugoz0NysZ/tpW2enEPJvvzENlTLMkALDl/hFgVzS+FzOVy+P1AQSshWtbMEdh7zOxnsxdItetp8g60JDazOufZRLb57ywSrQ03FCfxRqW8xO4JNm+2PtMZdtzbFn7HHVG+X1mplmaJpByjYldJ2UfM4el+1mAo3z3kiGPktqUM83yHDoRgM80s7Eb5Z226062ftaPrGgti8bKqaeeCkx9k/0rcW3r7DasvNiedwBlYmJvDdbte5d9BXtMuAvIBoC02xEJXCKAoi4MX17m3s1/Ajbdho4a94GmK8sK6yKdAP33ozPmcWNl0OERHzSroF7n8Xbx4ArOICiNsc1mE8Mjlh+acjxgGRA9z3OMNOIygDNS035Lu8V8yzOwRCewBk4ZozOUbaQBIZRb3F0s9jMA4K49LVMftk/0HQPC4RnG40hB21kOK9yZXBBIV+Q455xz2LtFrFu5n+fNm4cbbrgB559/PkK2bIl8qs5te85lzMsNgMIE+MhHPuK+Pvroo0V/UrcXQ5nE/cvdnVK/MIX2dQZUjHsmJwIYAdIuG8uPnu2tywg4Wp6tG+7Oe9nLXoY9dzLg53HHHcdjJwzZfkkTeW6n7qyWJYzdaOZ58uTJQNoF7Hw61q1bH00EcOeddwXvbFV09swOIOlkJpll16m4Z+ZH9v8h0yxJEnzpS1/CvHnzsMcee+CCCy7Q69b2eUciAC5jAs2azSZGRkZQFIX7d57nuP322108pwULFuDqq6/GoYceCgB40YtehKGhIVx77bWo1+u47LLLsN9++xlaL0xygW9/+9sYGBjAgw8+iFtvvRVHHHEEAODII4/EjTfeiAULFqC/vx+XX365DVS9o8SAnzRN8bOf/Qznn38+HnjggWcNNCvLRDlWplk7oJnvHhmr4//tj43flrL30rPo91mWqT5R7D35/FETAXgX2pw5cxAIuwJY8B/BF2DiKTz8WwOm0N+pE9RCYSDngxDm4neZqsiq2+Q2SzDLKbkuHkTYFge4SPdMFGxxoeJlVdRsBFeJD3cr/Lz7GBPwttK1E2bOnClAAGbaRNsj2RH20pNBuCVLQ7aE+6OFLJ0IAFoBkoq4SgGvwZQ0GYVpFigqiVAmhFUwIqzR+mLlii1FpNi4YNFFBDQLmGaRLKkBgy+SMdRzw40ChSDLvwRt2D0zTT1LngUKW84z2OLpBHYAzWbmpm1u30fwH+9O8IWTUhz98obuc5RpRgq0BhYMmEJrIQ/6nMaAf1mnBCh0UxIBDbieVDgNqJOmKbOiKFC9bZ7eZglI2ZfZM6PZcCWYAj9jlgVHyfUP5twoZZrJNVfoPld8QKyI9Nk1hZXsJEmUwphlGQoC/qNMs1QBhXKNmLZKSy0zfrD5TlGHmXwAUE293z9wGACg0cjs/4lJ1oxmzzSKLQvcVPhsrog6TT7D1v0KGHhQZwD2i291D8Y/ziILwFHfPbP0DOM7Rp3tlu3D+5kVkQBMibgn07hIQIC2Xpraez7rBwYfhzQqKbDXB0fdO8zajvdZrsFYJkmvzx5QZQBOAu+5P3xPWmVaKqXeOUffGYZwDAQH97mUoQ3Rf75nFLuOgEJVJ5Kh2WOamSnl9WRAM7GHktDAY34n38XAmvmvsH0uRs2emWUFWFTLvT4zUC6NIq96QRNzVr4BGH4GWT520Gzz5s3ApNfYvzLImGYAGAi37FIAimlWr9fRqNt2rvqeIQPkg0BlHO69917zrEYDhkVfdx4T0ggEAFmRgJhdPK52JIrEtsPcZXHvE7OvA6YZKDEUuC32jKJ3yXAOjUYDQ8MWOBShAHywyoVeXPtz8SYBmtEZk/aI+9fsHRdbNigE2lZCuYVqOBm2IgCMokSW4PsMAA7Ybw/jWmtLACzE7me1tnk/s6eCnz2zwMyZM7F48WLccccdoPu5DBwK5R4BFDY3mY9cfC95h9tzYcF7gYffYj+nPtN+1kYI024JFFbgG6npd2pciKWqGP7mN8PDwwYYzQdZbrExzWTCBxnXHIA7b30wMagj7yo7do/99t1Y+8smXv/614ux0/eK6o/7LHHnRgCOKgZeCjrPu7u7gc7ZQM8+2NTfDBM+wIZJGUNR+yOxTDPKmmuBzyB7JhXJNBMy+fTp0/HEE0/g8ccfx/Tp00OmWcTY8Y9cxgSanXfeeTj44INx33334bOf/SwOPvhg3Hvvvbjzzjtx7LHH4tBDD8WnPvUpvP/973fAV0dHBy644AJceeWVeNWrXoUHHngA5557rnvmhz70IfT29uLII4/EGWecgTPOOMMh+nvuuSc+/vGP45RTTsFRRx2FGTNm4IQTTth2vd+OSww0SxLjI3/GGWfgec973laBZo6NY8tYmWatXGhb9UGWJEnw05/+FIARNk4++eRoHf+ZMffM0d4rx0G6Z8bYc2VMs3KrO0CH+9ve9jZ02Ox2Bx54IHyFk5SMF+0DfOAo7xJHeHGaQJC+VSsEU5zgkvAlQUKttAQ1m8yakunJze/Nd5IuHl7iUuE0fT7yyCOdEGv2tueSqkdNgAi6z9/46hcBAOedebyl/kt3lpBpxnR8UgaZyWEu8oYTPl0WNtFnyc4LhSx6t/23B46GoBkBLqn7WSDQyQstIgiYjEyJtx7KLzQZk8yB4A4cJUGqXBDjSz50FQ0YhSSsqbZI10vvK1eFwETRZ0/hVIwFwbRRY+fNs2aaEVBYOGAhDda2ABaEa9Ro2TO1O1fEPTMpSWnvlGc/S6oVUKUCnQjhUxQNLLDl17kGW/eawrkqih8n1OeKcGGg8ZcJHySL0vytwAflwjYKOCoUdZ8tq+eZhLUW1ntnHCDmKNeTLqmBC5vts3TPVO7j1H/l6m6ty2t/BPxxHD/HCe5AIkE3FIYxAp9pVg0VTvsuo9iaPRbcRTbGmnyGZstSSnuUFB8E94Fau/5iZ5grcm2bcYm7HtvzP4ns+YQy7pUDYlR0JlU+wwDJNEvcfk4S4MwzzwT+tBNw74FiPn1wKMY0S907tOs9AeW8tuMKmu6zucP1ftYKburWD/0+NHyx8mWeab7JxBkWjL8ExJSBrYRp1hIopDpG4Y2CZoDbJ6YZdA4WnJihaIqzrgVzVJxzDBQmrs8me6ZhXOliQbMczlXXNDXXdQKmmdlDPXgaKOpbBJqp0ljnQLN6w7TDKf5F7sAqdjs1TLMRC6rXasbgjcy4Z77pTYbB5phmuQTNmm7Pm0Rc5qyU8UwrYr2MDppZ+YVirD5+PPD0p0xf6rx2Splm4nwhppmL+QUph5k214lpZjPCAgAxZBQbp2dvIO3BG9/4RjVmPlsHAHbbfR4UyBSRocrk05AEoO+zyprv4y9/+YuKr60zDJp7PDRqUR0ttzCIJIFCXvscu04aO1q01Y2HkCcGHwbueynQd6cGkBIBgjdWAet/ZX9Lz2H5FAD+493ARf+mgXs20jVG388xppk99y677DJQTLPf//73dm8Y90yzd1iG0iV3Yyfl01//+tc4/PDD7d7xvT8oDEmCqZM6mFEoDNkxphllz5QGntZAoZlbDg1iSr3eQBBrDMD0nWYE75RleKTApKNyPLPCvEPtj7TDgGaSaSaBwrXXYI9pS9DqPqOxZYO8z6I063YHaMZlTIkAzj77bJx99tnB5y9+8YtxyimnlP5u//33x1VXXRX9rqurC+edd17pb48++mgcffTRY2nmP0Qpc8+UpR3QrAy4csCCLWXgUBnrajSGWKt3y+8PO+wwPPzww5gwYQJ++MMfjvoMufmptAOaxYDELMtUn+jzsj6naYqzzjoL5513Hvbaay881git952dndhnn7l4cCHwtre9DQ/8RLOu6BC7+1Lzu4sukqBMogXYu/YChp9GUXwO2v0jtOpqxdD0gwJYSkCkkfElLFkCfMkkgnUVAVykBd32efLkydh//zl4eDFw2mmn4eSvSXZReCkmSYIi4p45ceIE9P+mQE/XbPO+ADSIuGdaJdnVK2GaoUi8Z8aEEgEOjSw1v998OzD5KPgXdEdHB/DUx4Cd3mc/9wCkiBW0IGEtRjm3QiV/xqBBS9DMi0ngwFE3z5F1EvTZBwqlAoh4e00LYBEU6kILdp18Biu2inUl3JZCC7IGd2geFVCYFcwoFM2Q7hJOMUAZ0ywVDyhj40hBLNJnBTL57hT0eMmiLLFwKiG2CorpJ2NlaaaZ787FgIuaZxnTTLLr7HpR4EM0jlukECgjlfn/z96fh912VXXC6G+ttfd+m9PkpDkJCWlIhNCIhYpWFdIjKKDg1RJLBBt4JHZViijId6Wx4VMEKcW6PFaKQuJn2X7iLaEqAlpRC65VKogoKRskGNLnpDvd2+2917p/zGaMMecYc673zQE5X971PJDz7j33XLOfY/zGb4yRMs3idUMKdH6+szXIhNjZlOaBs65y0JIBSCtc2eHAAnPPFGAKCAj3ikg4/9uGu27SeRpiUHEmWeaeKeKVaftxHucyU75Ac5h6Z77rB/4B02YL3/adbr0tl0ufwdGPf4gP1ZBxwH9A4GgEQjhrwv1XUzIEoxBI2I2dwjTLmaPud/xsd/szAkiMgRSZZg3w7d/+7dje3sbKygre9LZfx6dje91aiyAjAIj1R2duFpcxYSOk+9Q9knXltjOheZTZk99pPbB9G3DqL4H7P+jOuTAEClA48Zt92Q+YMANPxqKM48qNECwWZeb2rTHNuBLuPtNBcCCAZpItTooY3b8600y43idGoK51ySCWfXDlOuiYhPzx89kHsiTc+ujZ2cLBB84048DzEnUjb/ZMSeH9N1+/jf/PTztAb7507XcAj9ujQQYl90zHmgpM1Nm0dQ7ePhFAiO+1s7MDHHk2MLuExeslluutt94az4QQ1saNnQcce1/H2tXA9AIbNEODAJqt7/wpNk47AO6uncfHUgRYJf1h4xuYZqsrKfBP7pkRNLv59cA5T3dsHLCYc5zLMbvQJ+dg56TC9UjbEeQJVR5kwH8qt0Q5OYI+wNr970TTfLt430RxtzZZ0fEMWzKmGQE/BITQ2ueyNGdFlz0pkjKnPupLcqNuG0Ed8aRyi6/iLd/Dx4/dva3hnsldzFk4FHluunf/5m/+JvCF3w4MO/izP/szR7TpHWjG3TO79OhhACwH2p/73Ofiuc99Ln7lV34F//UnTjG5hQGFfOyEl4OUCalc/Bcstmwut7j7meudW9tz6Xrsn8c+5nH5S9lz9wPA8VPADX8BvPxrUqbZxIGOETRLXFKPfwjf99Rb8aq/fzRVqMin6dN1HbATDGzUn/3HPfsjcZY+NeAHKLPIxpQZE9OMH+I8aP6YbKWPf/zji9+Huh/3uMfh0ksvVV0+NaZZDTTT+jyGaRY+L4GJP/7jP44TJ054IDhnIDVNg6suYRejYA3lBzcJ2424WK+99lo025/GC17wtTj33HPzIMKWeybABN2W+iOUvM63RQOQGmHJy9ZCasnzgsuhQw5EXV9fRxo/IfXOzMEqes+BtYYJFuE1retTr7hnilhXKdNsGYVPEyi0wKH+NPDhFWD7Fpof9ysgxNfZuBH4R58GNViZ4nuUPgsXtvRy5qBZAKNaNMKiLh8euJcYmG5OuXtm1aVVjZORM1OIjQjWZ6lA5wBSYPWwOhYPuO8mR9xcKUq2atVNWDBA4p657GMPchZlYr1M3TOj6yUHFpLA4ViC9rwtiAmgMPSFucotl0tMoiU7KceehgMLreKe2U4daMbYOPJZklAuwCzONDP6rI4LgeC5kh2MA26NpEBVDhrkjEJXrqEy/jzsuo5lsApMMz//KbDAY5oJYKGXZZKYZmrA+1gP0PKYZsH9DsQ00xTojGnm+1yPaebcM+++++449n/3d3+XxTR7+b+6Gi941uUI640HTnZ93qGxFEwzADX3zKaB6Z7JznaNaUZuuDorGkDiki3LUHyvhoHgThH8nu/5Hrz85S+XZwYHxDLXY7D9qrCuIis01KedYbLPbo3S2ibWldz3GLaBjz0RmN+VxDQLdziNr3DPtGLXKSCgYAinQGGpzwDtAdUlVWOasa8HNt6MdZIZdsUdLs+58N1iyUGzk0mnXVt5TDPJ9PNz0bQq02w6nQKHvhw7F/8f2PWzcrn775+cg8dfegyBabbwQ6Mxs7h75nw+jy6RK7MwwQ8Ak3PjK06fPg2c/zXA7MLIdHKZ0p2xj7NPuXdH1wVg2TPeHvYyYO2RUS7/0i/9UupHkE1a992Bde/2BeDY8stiMe6eaTHNtreXvj+ae6Znmi19X7c+A3zmx30pJaYZAHTnMKBxIgPEs2eIMolyn/F2CLdodv6nZdh9NpmkZ38qe+prW95VXbyf05hmqUcAIIHGNPFW3h95PzdNgx/5kR8BAFx++eXy3PZylpnAhRl102cizu3cswNgsnzCrhP3a8Pe3U7ivrHcM5umwe///u+THidi13H5FLF87hWAQpnwfd5nUgeCjqbcVRlDvs9As50dFruOPdz9WXtS2S2rQ7hnpvOcyqdAura10DjC2JHcQ/vPPmh21j4aaLYXptleQDOLaZZm2Kw9T3nKU/AjP/Ij+Kqv+iq88Y1vzL6vuVlqZc4E0yz8O00EMAY0A4ADBw4kgBjAL7RfeV2Dv3p3EuQ/AEHJsLnDnYMP7gC75pprcOzYMfzu7/6ua1O8N0nJ4FZFoRj6SysoFpKBRECf5Z5pxYwoCSUvf37DmEbSPTMHA5ILbdAPbWnJKzHNAphCgAuPFcTjZPCLU2VdqS5JKQMpUUQAkFWrjTXlbCl+iefvCdmyOOiosfRCW3nGvsjSCLL5IqzNcYKYFHwUoSRjKQEElARBTHmGuZs77poT4tZs/DXatiUAqcCuE8wUdAnTrPd9HmgL8N8yQTlzz4yMqh40P+E9KUsjlKM+52wQ0NgJyzAJlcvlkgWgJXZdHoCWAwtO+IzC2rAA4N0zWVtkOyjOjFxzHFhI3DNjbKgwz4Hi0cQ1YzMKw7joLqkTIzYIf+Q8txGAmyZMM2KOJjEuB8Y0E2wEvrZdcP74nqHHeeedhy/6oi+KbZX1JKBZHFsXRw+AYIkFxZXOl8Aiy+c5i2nWTGKZ97znPQjA5+te9zo1eyY/A3kiAPd5YJqFNVw6wxL3TGjZG2l81fusaT2YQn+P2s8JmBLqdEwz/WwRDAHunsldzOP6I2aX3GMKIKyy6/w52+RKOLWHKeMNX2/0fc4004BC2K7Hsc7Q3lIigLBfLXA0tANi7EU517LYFvalb3NY3yNAcASmHmfbhD5798zukMI0I9Asut6LRAwDQlIUwTQbGNNsr48HmdBvubhLSUwzdzYYoBkCaObGamU2cefC9u3A7JL4itOnT8d/B9CsbdyZsVwuGdguXS9jTLMAmvknlPmJn/gJrK6FhGrBCOeZZqtTYHIIAEuuAOCuu+6KY3f++ecDYIkA4JhzOwtXfjZNdIyBXCd3Fi0wLHDJJcw1rXGJi3JQwCdFYECjANXueU+oIN5nFLux5p5pAFEc3IYOmgkXNsOoJUFwd/aQq7aTjT72sY+VmWYAFmk8XTGuuUzSNA3e/OY34+6778Yv/MIvQDvb8/1cB5BkmAyLaRb/BRn3jNXnY8p9x3d8R6zn+77v+9za7LeAdhWbm5txntsWePazn43bb78dH/nIR6L8S5lwNeAzISxoxmEU7qpYjvfZYJqJc5sMX5w48vG/+oTKNNveTuSG5AkAPO3nPrY3PjEMjLyfcxYxQGEB/H2mzjMBtqE/+6AZPTl6sP+cFc/nAjTbbUyzWvu09r75zW/GBz7wgRhkP/2eP5qAowEuewHNdsM047+3smdm4AMDmQ6tN/iiL2jYZcLAlORskmWkUH7++ednAma4rCYTmcihaRqqOzLNWL8E00wqJ6I/kEyzolDC+vyKFzTo/7hlFxoDUxrFUiTARB000y5x82KMdfNgrJxp45UTLq+loBsDkM4991zWkgRYGAYF4E3iJyQKjxDWmCDwAz/wA65dkymuvvpqBrA4pUe/y7yVeemEc85eCUDLYok4tkWgUYApnJmRgKNREOOgWS/mmdhuvKkeNEsBvA+vA7e/w4PgHBySymRst2BaKtkzfZ8JQNLXCVl1DaZZ4p6ZnyVcMYbunsmtfXEPkfDiGIWpG6Lm/pG6SxiJACJQmApIzDLPXb+HdJ7D+DMwJU3sIdh1VvKDdD8TUCXAFA98qgKqkt49vas40yzus798CvCRL5R95gJ3GjhcxDRz7/jjP/5jfPCDH8TP/MzPIGWaDT0ppnFsQUIvZ2lo7pmk/Gpu9QumMCbggxdut7e30XsA6fz7XoO/vi5RvhpFmQyp6pvAFmF3SAoIDz3AFdrGcM+M50JQePg6aD3wT38HhT+33vt/KIG2I4A0UAvSbSjZqQw04zHNIlsq7NeEgRFdsqk/Zp8ZUJX2xcVxS5VxWU/btixjaK6gyUQAvljK9BP7tmWK4jIvw86f1D0zlRPsc47KtGK/D5JpFoHPQsIHhbETpiK6Z7arkHFCqR39MMSYZm6sWJ97BzYTaEbraTKZAJ/5aez2cQH6V/y+WDhAPYBm3j2TM71Nppl3355NOwcaLO4FJkfie1TQrB3iGWbFK+Prxbk0ArjrV2KZQ4cO4eKLAzgXZBMns6zOWkxx3FdAIOWdd94Zz1yX0Aq0dvz50g9hvRIonMY0WywB9HOcf/75uPrqq30p5p4pmGbr+Mqv/MoINGbumSEOWwDBG5kIgK9bYunzO9wAXOJdBTLmsGciZE95PsW64j4K55xb/9dffz2CTP/yl79cZM8k4ybdw04F4fuZt9WWSY4ePcrKsLN9GIQrr3sG1pf03HaPjHWlg2ZZyAhv4PnyLyfGYpijSy65xNXTz/H1X//1jinpY5ptbGwgyo3+tRdcENyLaS1pshHXVfwLoc5z4vGiydLEim7iGWbeVeyca9sWH/3oR2OZt7/936sxzbZ30hiN8gmYWrzuQx3cOM3dM6GvBVZYymrKO6MXAIuPvQ+a0ZOO6P5zljy2NZOez3VMs7R9IesJD6CZlinVk36mgWbpOERhjT21v9N3PRj3TFFfCrhol3iSSTKd1tQdTz8IkQncPMYPtSmUkdZhfkFzphl/Dbfe5MyUpB4BphiAWAEoJBZKGBfFMsbaT5a8eb62eUwVkDDArSmcadYWhRLq85/8yZ/g1a9+NX7lV34FUihx7X3qU5/qhAI49+I8Y2jSF85EYAyan/qpnwIAvP77n4HZbCbmgTOqtEcT2kN5cs9UrJeKYJkzzXJwlKzo/hmk8KkykHrGNOOCjaecO4AzvDZXJsPT8LUAI3vmshcKZ/wFW7ccWFBjmon9HMYlteQxoaSYSZLtoTC2Q+qe2cEUynn8EBbTjLtnVplmWsyUYQe4+zeAu35ZAiV+XUo3N4AE1CDkWmAKARgp08y57fE+W8yU+C9wADU9kwMDqW09gHfyfwKbfxvP5OwMs9wzWcytc889F895znO8cC+ZZvOdjXxsoTPN7EQAEuAG2PpNMmx2XecMTV6ZvPTSSyM4urrzl3j8VQw0GzjAx/vMmGaZcSAB/qPbHj/njLXN3T/4WvDumSE+F8Xi00BwsDKpQunq7PvBBIQzplm6bgVoSwCSlA2YS2pT2s9hveSKLaDENEMr1xvgjX1cKZXnYWRdDaC1Hcb2Mz8J/OMbqD+RSaAlcGHAmmCaBXCUgZqMaabPM5WRmJnGNNPPsCym2UDZeTP3TPC+yHYs0yQvgmm2AzQz1T1zMpkAx/8Y6OcivEjtOX36NNC4INxf9VVfhaZpfPKfORYL1yfTPRMkdyw8M2tlpaPsr57lBQCnThFodfDgQQDApB2guWcK0CwyE30igJ07gPvfr4dNiaEj3LjPZi1Wdv4K2LyJsjBCAv9ZNlCfUKbvvXzVpverK9P3ve+zqyOAb+FsyJhmTecMlIJpxhZbd9gVY3JyNbs7ZxFrMc0SrwA9nEuybhW5PGNdedf8O++8E8AArH0BADCgMGGacUO2BfApRl0bHPJlMMQ45P/8n/9z5+UzglErmeDGuZ322RtE3vfe9/LR82vfMUAxzDGZTFzoFi8Puv0V9ANtLbUCAM9dL6WBR9dDpNyiA0gMHAUZ6exxcWXatsWnPvUpKuTXd8o0W1aOnG2PqQmmGVoGlIH+rbjhXnjhhYl8yowYyHUvIGGaGUzwh/KzD5qdpc9nk2kWmAK7jWmW1vHe974Xv/Zrv4Zf+7Vfq7ZjTH+sMv/yX/7L+PfKykrWJ42Nlj5jmGa7yZ6pU4SVwz1xVVTd7RT3zPRJmWarKxpoFsp4AKXjQsHS97nANBsY08xiKWVZFS0mE/U5KrZiXCSAVOxzZJot8rUpYqqQMEdsGUn5F/JYRn8nweUxj3kM3vKWt+DLvuzLZBl/Qc9mM3zsYx/DH/7hH+JVr3oV6IL277HiMCTAwvr6OnZuaPCGV1woywWmGexblwvtBPi6dzq3i1zYU5lmYfx3bgVuejVw969BW9sOrOHtSYQSDTTjTDNlnp2SzYRcL3ymwr+MjdNF4U24Zy7JnStjFHJXCI1pJuaHxiU/P3Prpc1GY4otm0fHTOFCucW64n2m9e8UGQoeH9252mT8WZwZLlg+5jGPAf7uJU7RUiy2bo2kjEIpiBXBlCGpw1uNrdTtdp/duEXl965fAYalCIrftg2+5Vu+hdXA46Hw84kBwjwRgGJdjnF8GNPsvnvvlP0N68k3ZHt7Dhz8YuCcpydMMwaIKX3OY5pR9sxrr70WWH8c8LDvwJOe9CRiXaVnmGBRMuVrSJlm4Qxz50/mnimYlh2UIzmOL60FXqj1AFLCqFKyKoosqSnTjAU5j+6ZSVvIZYYUwXyeE2ZW6pI69Ej3s/4ogDDrc9+zDK2MSZw+nZHkAkDMDiuyZwZZ4eYfA275PxmgFMZ/oDsw9NlimkXFqmcKcxc/y8+wxACXMFNyphmBz7LP/A6Xc8CzZ3JgQT6eadaTAupEL5b8YJgDLQPNUoZqvwG0U2xuleML8ef06dNwTLOdaBR25+5OdLksumfymGZDj5XZFM9//vNd9sz2YHzP/fffH/8d2O1t40CzRXDP9OAEvxP5HuEsVhmyI/zLy6CtA81WZq0DMDY/iWP3bcUzzsye2W8C3Zpgmk0YaEbAf+vvI7cmZ7MZrQcPKohA5wCOzG7z72JsW74XH/jv9O/MPbPCzLLc9lLgX9n6MjQCu9OsMsw1v+s6YO2RwGUu7hhnmskxc3/PFwUjdeqSZ5UJY8rO/3/37/4d/vRP/xRPeMITWJkg+ytue6m80efZMzueSZLdVUePnk+FGpbJloFmLiafm2fHsAz6SapjcINVqwOFqdyisdHieZzL/lQOVIc/S8cY8rrOr9WPfnHssxbTbFlBzbbCFe3b5lx5GwmaDdueoDLItTAMeMxjHoN/9ii3r1/zmtcgZZppa5uD3PvumflTkgT2n8/j57MJmu2aUWW844ILLsCLX/ziGP+g1N4HA5q95z3vwU/8xE/gz//8zzOGnPY7zYVTGxNnFStnz+SgmgkOAVKIFeWDq2K4rLQ+6+6Z/EkDJ/NArLGuJhF0m7Stngo+immWtyW35DEFLXwSgELBxjGUbFMRCf2J/4pCSb5m2Peg8c2ZZvklogolg0b518HRCy+8EM94xjOECwO3npmWr8SqOJ0QqCjf12ZxGHidJFRwppn/rgh8JoIlH//b/h0wbKtA4crKClPQAG2esz0sEgHkgudisUhiLLj+pFnAUpZGaK5gmvWhP8rZE5iWIRFGyjRDEMQksJBnhgqsUL+eGsNV0Vrb/YZ3YcvdlrJzLf5MMrNS98wY3yu1hg85wN00DX7v934Pr33ta112K762OdOVB+ROlAz9CUAhV+aDRDh14OgYoJADa8w1o+s64NhvAf22Y5p5sKrBgDe/+c34tm/7Nnzf931fbGsOIHGGZFiToS2yHWnwawD44z+6QXY3ricPmvksedi6KXfPjG5Hrs/lmGZuPbdt61gah54IwN1DkfyjsSj9aIgzLK5tzTiQM5AIQPJ1WyxKzljgytewLZlm7Nw2FRGFaRbuuqGnnZczd9laatg+swAkwboKj2eXNk3sT2rgieWaSXZuu9dMyD2zwDQD2N2fMBYAIOS56AcQczS7NzkIyO7nFODmZZSYZrHKgnsmldH2qcI0M0FwvufduBAT033ngvyTK5Z4gtwyQLpn8nnuK0wzf5bdfGfCYis8jgnjApcH0OzIkSPAMMepDXeukZsg7WnOzNrZ2XHng3et/Lmf+znXlu4QnvhEt6/vu+8+98LP/CTOO+88N1JtAOV6cs+EvBMjG3NoCFhLyhABJcgmjnE6m05ckpHlcWByGL/8y7/sxlhhrhPouI75fI4+MvpprAgw7lysKj+PKysrbP3q7pn/6gt+VjcuDD3woQ645ad8D7z8lDCnbc8DqPtVyD9BVlPmXzPemEzw6J7p5vmHf/iHY5mV1fXYZ+vcXga5xQJ+EpmkbLzP9RBhsFWNHe6hczsAYoWYZk0LF2fVGfJEdQ1jmvksnF3X+SRhbo050KysYxQTJAgDj9HnFCjM1UsG2AUdQpNJwnvkuX3xxRe7PeS/yzLDYgTTLA2VGgFWAs0e++gvwKtf/WqpbzLZ8iO//dW46TeAZz7zmfn9rLxTeJv4c3sfNKNHWSb7z9nw6Myb9ADTp1djVWnfP5iYZvkBVS6zV9CsbVtccskleP3rX+9YP8j7NGas+G/Cdw/aPbPiziKYZgYtmtPOtcOf3sddtVpGH+d1hX9M/W/4O4ILGylGHJCRbQXMy9dwZ5TjkrgqNnKtuctFY+OkfQ4vDpdADig6faeNfQrW/CymWZFdVxFKxoCjQ3pBe+Vr8x+AUx9Lxi4X+Kg/DdXV5IkAeMejZZgJ7aFKN8+l/vA+a+OfWmyDFTt1z2Rru1HOm2HuBCdjbc/nc2b5Ckp2n4FmJMQGcNBJI5xptljQPKngKLzi5dlFGWg2JH0OoNn8btafHDTQlexgoXbff8EjLnBuVre+FVdccYXMMMjAIdHniE1LRkgEzcAZTG7NXXfddUo7Qn/c/nnEIx6Bn/7pn8aTn/zkXBAL7bj5x4C/eXHodNhovs8aOFoACpupjHUVhc+C2x4TYimmmdvPy+WSuaQ2OOecc/DLv/zLePvb3w7bMs+kV6FYtZngTswcB77N53Ps7MyBk3/G6uDMXWAnZMm65/9W3TO5+6YKmkX3DvebNI6b7DMbL8GuMs7JhoH67gNoDKQUQIrGjvs+wGZIKl9d2+LRj340cOMLgU98La688kolS+oiN/jFPoSzO49pthxgumeKeJf8PFVdFYktImOaLWk/B6OFwhAjVkaH1KgS3OhyZVypJ/6MjANhXIJitlwiZs/Mzn4FBJRru0nK6KCZnB9k69+1lbPRku/blSR7ZphnrR72roRpFkD05QBwVyz5ENMsrIUuyV6KYQdok0QAfj1MJhPg9F8DAD55a0WDZQ8xzQg0O++884B+BydPu7hrGjPLAeauDVtbW46Z5VliF1xwgVOG29W4ho4fPw7s3A2cvhHnnHOO758b++Wy8QHT3R4S2TP9uFJMM7ee0nvTjU+4p2VbsTgBdIcdmAdphBM6wnIDaNdcKAAlphlnrnAAbzKZoGHGXs098wPX/w5LNsABMVd/SITl1ja5idpyGDcUtfS5KFMA/v1DyQH8+aSxKMVd5YC/2WyGl770pbHM1/2/XsT6nIBm0fujIKuVDJyxDJfbSebI6uHsOjVAfKiig+bZAUDKLX5ddl2XjE3KNFsS08zP4cbGRtzv1hxSjLBCXLrauHCjruKSSmehl90VA89ECZzfdR1+/Md/PN43j33cFxFLjD080Yb2BKZZiI0amZghHimA/3jtv8/7zMZuOmlw5SUtWy8N3WeKak5jHOZQ178eqs/+SJylzxiQCdBBsRrTjIRT+m5M9kyrLWcKNNPqGdNnC2yz/j5jMc0UYCG/oIN7Jim2WbtGuGfGy6oNgFiJXh3cH9rY7ibGuhrUtoi2uh9lbVGZZqp7puxz08hkDW7MiU1lu2fGf0XlNmfjDEwJpz5xgX5nZ876zMYrje9lXtA5SyMHloM1ly7ol770pcBHHg187MvwTd/0TVJYMxiF8n2dAZox95BEaOdZ2LQ1CXghMWHXNU2DG264Ac961rOYVYsLjhrTjMA9wAkgKmgWg/nm8xyZZlHhdAJ3ntwj/GMa3+X628U2zRc9W3OGVXcRgKTgUhVcCJV5Dmv75jcAH39G7EMUsMCABdHnAADSerr+v/1XfO0XfQRvffMb8MhHPpK5OZCSnQNIYS+GVOxeSArZM9tpkrp9wItf/GKqIFLwQ/8qLEpepj8N3PNb8b0cWFAZSFwoT/dzO3MMpAljPClukQAPyhzOhiWxi1mMNjt2HXNh43OYJQLga7vMNPubv/kbRFBV9DeA08BOSKkX3Jgh3TOdMukUpewu4sw3BqzxvbRcLln2QDa0nGkW1hI/Wz7z08Atb4YEI9w861kVScmI+/XGrwU+7JVxcVe5JfG7v/u7+OePPIbv/Nbn4Cu/8iulwlmLjaPE9AvfDUMjwFH5e6Yk8jXHg/8r7ow504zdQ9CVjEYwuHNAWCQCKDHN4p3dxDMoZdf1/RATPuRnS840U40dvAy0RAChDDHNVGNUKMP389bNwN2/CkBmVrSZZqEeGpf0roqJABImmmuaa+swAMs+rAVAuGf2cwSmWWB7NP7cjX3vt7C9rTPN/vgvB6+g0xNBM8Y0O3ToEDDMsbMDyrzu17fmnnnbbbfF7//kT/7EjVm7ANoV7Hh5e2NjA+gOAMPcMXFArMNFHxhvro4Q84yPXcye6ZVf7sJJUxruaXe3xnNleQLoDjsGHQox2voNoFv3YS484MmueW6g5LEbp9Mp2ihndCrT7NZbbxUu6tE9c+jxDd/wDXjhC1/oft0igimWJwQByFIm52XILZL2vB4UnwElyt3pyoR7s4t9XllZEXMwXzYxeyYHqoSxb9nHdxQNnEU2mpTbTWaWIh+FZ7Kb7JmRuZjv+TCPf/RHfxTrIaZZ4p6p6Q9iDlt7numQysqIcSm6ZzJ5w2SaBRlTyi0Pe9jD4h1zycMv05lmFapZYJoFm1vMtMr2yBMe/wUSEIt9LoVeKfU53I0SBNx/3JPeqPvPWfKcKdBMq0cDhx5M9kwLNKvVM4Y5N6bPuwXWaqAZL1tOBJAi/yVLUVA4tf6FS88ShLllPYAGmtUkjUPCv4PvM8VXyDMMJtYb9YLmCmcOMmX9gbuYMtBs4GUq7pks0HA+96HPASh0f3IwxcoYSqwupuSpVroUZLIsXwSmtM2AV77ylfjhH/5hvPa1r8V3f/d3QzIR9D4LIKNp0arMRPfwwL1ZIoCFLojJMQjj7/rzzGc+E//9v/93vOQlL4kCqn8pAC+Q79zBasrdM23QrI3riQM7j3nMY5gA6eZ5MsldpMjCOaEmIXHPFPH6tDUJprwtJWgW3T/YPEcAaQs48SH/eRDEmvir/OnpPb6Oq6++Gu973/ui64bMGOr6n44dWX6pz03TeKaZU2AIjHH7PWPS8L1ajO/i+2wq4mVBTDLNkjq8C5sMHN7l4BpsMIUDUDwRQNem85yCkRrTbEHjogTCJTDAsTmbpol1UR2cucuYZugVpllH4GYyz8SgI+UyWPgnkwnwty5em4jjlp5hgmmW7PmbXwfM72QgThsVqww0y1zMWf08y2w8j906fvSjH40//dM/xTvf+U40jQ+NMHg2iOFWL1mU8kwNbkLL3mZdCYOKuIcU90wGMnVdRwt46JN7CEhjUbrx5ndMzuIbyzQTcdgauddiTLOhYfM84ClPeQpVMKTzXAjgH8E7jWnGzx6geEekiuSfXwXc+laWkEkyFvJ55kqpazOBZu6b6J7pv5fxLIlpprtnAlkigIbCGkS5o59jSwHN/u4zA57x/QNu+Av5ueae6fYzsdrmwSU7y57p7rL/8l/+CwIbJ45HE2Iuur8f2DwEdAcw6e+iOzwwzfrGJwpwdfCEWxMGOHJAvuyeSQrya17zGgeaTQ7hec97nqvLdM/cBNo15ipKbDhAggp0zi0lA0nENKO74bLLLhMsYmJO01r6jTc2eMOLPoFw9ljZMwkckoYiU55jBs70Eex3414kELyN4zabzYSsuz0HA3LpPfzcdi7+FgiYG7XK8mkukxMQxeRTBSgkY0eHunumZJqJx4Nmn/jEJxBiowmmWTMh90zTfZbPYSX5Qck9U8inBaCQMTF1vbSnPoOFjADpGBHwYk/NPTMwzXa8+h3Zddu3xTLrK0qfi2Nn65sA8nNbMXY8lJ888NH+c1Y8Y0AmYG9Ms90wqvbKIkvLWAkJrHaXPtsL08xyWeVgoTYu3AKpWkQ48m+BZgVrh7zEbTCFmCkh85QCMkVFfCL/hhM0l+BMM+vAZUIulmiatM9JEO0RtOg2Wnz5ExQMRcn2zyQTuPPA7G0CmoVq+IW2MyelNDOKNQOGRODIAGHFklezarWtc9V461vfCgD4+Mc/zgAKV4cJEjNXzyZhFHKFgrtCZIkAeqL850yz2HJb+MysfYPLEnrTk4C7fxWrq6vYShTOtm3yfR6ttTRu73jHO/AlX/Il+Iqv+AocPnzYvS8oTU2H6UQ5s+IUSXCQW2znc5qnfJ4D5BEE3DRYfQsBICkWW9efxM2hVc7IEYzCrmu8zBwU6FKGQQmUR6ZZM8HW1lZsc+6xXQa4pTBNZQ4dOpT3J9nPJtNM2R9oZlguNyTobghrInA4A5miYgUmoEI5T5vBqyI0/oKNBQ+sRGZXPvbuXW5cF4uFH2MGwsT+Emi2vWMxzRZAu+6VwZWsz9LFDeDBlZ1r8D3A4MAAyhia9Ln1rSmepykDyYjvxfezxnLlLEojgDDtyXC+KPPM75lGi/ez9Eq/rthmAJQW0ywDExX3zGAoiopp3mVxx2QsyvFMMxE/xwML5J7pvul7SmbSNMCb3vQm/M3f/A3atsXNn/kM/k7rs3g469CNgYxd1zO9rovvyfsM6rMlk3AGhuHaJN1o3bhEQCaCoz75EIgtdTpUwOI+9WhYnZFqisC6jaDZpIt9jADGMMfJ00kAIQAnfVLcYw/Izzc2NqAmAth0rLb5fI75svdbie5fzjR72MMeBjR3A1hQZsxugW0AOz4D5+mtBjgIrHf30pjFmGYDY5otVKbZEGKaKYkA4pO4Z3Zdh6c97Wl4y6/+AdAdillFtcQG7gxzhi8JmlH1HKyiuIxuns8/dLsrtDyJvl/PgIVrr71WGBeIaUZ377/+ygY33DCHcM+02EVZoqoCA6nGNBMAhMYED6/xMsWQg2bzRUPumeyM46BZDBmhMj4HDrVlZXTD1xhXxfwh1nMHtFOg3876LGVyA3CJIVGAwDRrmsYzKVlMs5QVDTAZgfdHMd5nckuBdcU8IdIn/oYZMnLjZef8J6OBh4VPYMazRmWald0ztxPQLDIxhzmuPvpp/P2xK9F1Td7nGjMxAMIaGUGQH0Kfp1m5h+qTa2X7z1nx7NVVERgPmp0NMc0+G0wz/m8XD0L+xqKqjqFO22XCIaYwh0RsKEtADYdlgWkWm+L7IZhk7r8OTOn0i0hYbwwlO42BVIrjxi7F1N1OKhgV98yUKcDLJMBCGKfMbU9hmsV3VEFAzkDKBSgplLRsHGDUY4MpkmnWZe2lcWSXJ3fP9O3icTJsa6HeFgrsK/t85MgR/NEN1+MnX/3V+I//8T+ydpKS13WdiyFz+q/cT7mA6t9z7rnn4tWvfrWLqQUuoDowpZPN9W327YvuybytjPUTwOn099wdkjNbRCKAxGKrrDfJInN9VgGKGgguwBK3Nmw2jmTX8UQAW4xplr1mN1Z3Vua8887Dj/7oj+JRj3oUXve614H2M81z/nCh3L0nKnmbf4+LLrpIUbLHWO+ZVZft56rbXhzXFEyBBKmUdkSmWcNBsyC0sjpAQjFnnQjQDNw9k5TW8PBEANTuJTHNeqeozhcgl9Rk5AUIbp2ngoHk7pwsEUDq2gHtbpUsSlMo55Z5LaZZwjRrFNclnj0znWcJQDWkZEf3zIb6zFysXN3kqkiGogAU5oAw2cXceJVZlLTv//N//s+45ppr8KEPfcj3IfxGrm2AAKQ+YZodPnwYv//7v48PfOADOOfw4aTPKaOzSebZtSPNkprGNGuUPUJBznVGKMU0kwyMbJ752syYZm7t9/1ATLNh6WJ/xcczzQZiHXZC9mnAwZTg5hnO+0c96lG+wXP8m3/7g0if+0/6tyQYp3NFdEyzsJ951uLFYhGTgGSgGZiroQe8fuiHfggAMGn9GbZ05UNGz/VVmqNgM1r2jTt7PJC+urpK4xqzZzYiXqKePTMY9IhJ40ItLOhsgnTPJAbkBOgXEKDZsATPeMiZK5TwxMkklxy+C7jrl4F+M2OaTZe346u/+qvzRACKgSd1z9fOH5JP2dk+wvtDYyAJ9nvCCqU5iLUisAEnk4nYbzvzQXXPBEgWjbKadh+Ks30kUDjCqGv3ORhFCOxS2xOBwjzuGdCSPunr2djYUBIBuPnRwS5bbomG5Ro4Gj1nDPkI7Exm7ssq4SKOC53bPCbuYgkChD/53cBHvhDALphm3D3Tz+EFB47LPmfyaT12XX2edXbdQ/nZH4mz9NkrgJT+dizTjINHY1hkGRunUuazCZqdCaZZ27bxXWOAwoyNUwVcAmizNzAlA82UmGbSOiwVjXBhLwOwkLAE6JIJn+XKl0oXL8U0Y6BNFCR27vQlJeuqDJoFpUdxz4xlAgOPM5CCks2ZZqkQkArgVqBVpqRZ48LdfDJ3oiAMlMGUlJ2Y1uME9/CZH4thKff0sCSmmbKeZLB1Q3Ax1vbTn/50vO51r8OFF16o9Nm//y++GPiLL/G15WshfVIwRY3XZ4DGUWgEsFgsY1tSJqZk1zmhvMg08wLd5ZdfLhsSrcY0z0WmWckNl8XJ0OqhcBtyz0flDfBxesLaTt/CWTfG2k5BcL9e3vSmN+Hv//7v8exnPxsaUKj3Wb7nD//wD3HVPc/Gtz35z/Ev/sW/SMDRVhXWJjxODHPzkQLqQAHik2aEBBE0R1qwdM+oCOU090y//heLBXN/yplmSyWmmeaeScG6pWIkrPuh396S7b5z8zxfDDCZZlyRURRO3l5eRsaO4u6ZtLYvvfTSWOTAgQNybZuhBPh+nmR3DQCk2en4dg3rZBiA3p91qrFD9EeZ57TPjOXk+twnZzI7t295SwT+TffMjb8Dbv05hWnm3v3lX/7luPbaa6OLJQ2V30ts/fMYVXGesz63iCwM9Q7h/bf7nIY0iO0SoFmoV4J7/CGwJO8PlUn3M607As0aimmGHu94xztYDX0clxDTrMusKgSmBBfD0Ixbb73V9825cHI5FyBlNXpX+8dl/nOJAKTr5Q7QOqbZYun3CQg44EwzDnhFUK3r/fvcb7e23YvX1ohBHkOOhXFR3ODCuUExzdw9KF1bw8M9GVxbsgzMINCMy0gEFE4ZILZQzjB393LjwGQyEawWEdPsb78V977/XAY+OODTAY1tARwK7pnsDvePdMlDLKMaBPmeV0aMQLpw72lGLba22Tzzc3Vn3jCgMGHL+p9Tcq5SbEF9z0cZJjKn83FR9RBFxZEg+CSbZ95mdy7Itf2tj3qNOzMF08wxFafTqTT2bW2p8zOaLch1FQtYywwiJbnSPsNyI9AyWbduDiPgtdwAFvcAIJdy69mee6ObAM3c+n/hF30If3Yt00kzwoIR3y6R1dIn6w/2Y5rxR9ka+8/Z8IwBgoAyKFb73nLP/Kdimu2VXWeDD/rfGlhYG7O0joylUaUI62AKCfo6gBHrShVoZchlRj55MZLbXoMgBOgXKz+Urf7wlxsXWrys3GX2xV/8xcD/PB/4yGNwySWXQCpohlCe9Ee19hluq6T4hnhDQWEtgCmj3TPrQUdVhScBR809ERl/uXVSCMVB0eYxzXxb+r4x15NMlZ4DO+JSdQWz9sq1EIQSxT0zrKlGFzyBxBUiEdpjmbjNgnsm74/7QzDNGl1ALTPNUoHbMT2uv/56vOpVr8Iv/uIvgijyJHC/8pWvjO/5xm/8RghA2JhnOcZ6ltRJBhSGpjURHN7aXqhr7ilfNJAS3HQIa3sM08w8wxg4ajKQGjo3vuzLvgyf+t834JfffS2rS7LrykyzNo6fBMEZKykDwcH6wsafu8sNqXvmSKYZDxYemGZeKOYxzSSTxmU51VypYxnhLpq4Z/r3cAZSDhQmY+bnOWTFe+ITn8jaTveMngiA1jYAvOpVr8JjH/tYXHjhhfj1X/91jGFRCuGdBQXnD8W6ytd/+P0wtDFbX/oamndac5l7pkgE4NY/d9t3/zXclv7x/4jAv+me+dHHAbe9jUAzrpgOaWwuSNfjhJkVwOJBzLNleNH3M5anEBXzxphnQI1pBgC47e0xZiWV0edZMM1CJr0SW7bANIuJAPxejOwwAFddeSUAzzRjDDx6mnimcKZZkAsiSNYzF0P/LBYDbjvm/v3eD8uxjqBZv6O6Ks7nc8w98MUzSUbQDBw0Y6DaxLteLt3fATQ7wEGz4J65HCijrurW3aMfwBhgY9wz3R5wTLOe2gmKacav8Ajctx40Y9l9RRlw90w3zzGmmR8Pyp7pElMdOsRixXF2nsJAUplmlmtfYuC0AaQASORDJgyHNTkqcVUUHjyMgZTKcmF/932QlzUDJ3uHKZMz0Ewx6uYG2/w8pT6H+1lnIAljRcJSOrS6GecoMs1aB7p+8Rd/sTgveOKPsgfPeF2l1mddrmTvSeM3hjKKV0C8n0GgGYGjPckHFffM6677vwAAf/yh/wkguGe6/swmPb78sQw0i3oV1HNZrlmSybM+p/3ZZ5qJZ38kztJnLOuqBq6VgDYrttcYFtmZAM1KwFbps1QIHAOsWaCYBpqNZpoZLA1ZT88O2/zgjkKFAWBQmxMFWr3oQ6VeyNOYZiF+gnpZjXDPTOi/poUnsk5cHb/4i7+Iqy4/D4979GX4sR/7MamgVd0zc+ZcrUymZDeGkp5lMay5Z1plwoXWynp5GeH+VHNtapEyMACZhZTaRAw8aanLhSyAC0wELKjCZwKm6Ow6pnA2GuDMygwGIMyVwaZjbCF6SOHMmZYBEHNgivsjZSOY7DqhZHNhjQCX5z3veXjb296Gyy67jMAA5h4YAikDwLd8y7cwwMCe55Qir52gBG6GPlOp6cT9e3uH2hyG9uT7G3zgZ8H61kET/CUzx/e5tP4D8B9/y56EZVPvc6sCisQ0C/uExTRT3K0zACnNvhn7w9wzRVzGXFBOmWZOEXT9uvrop3HBOcDKilNyQ0wz1ybX/giEpG5HinsmzxznRykKsXmffc+SLSQUGaYovvKVr8SnPvUp/NEf/REkA8vtxclkAixCLKUe6dnetsD6+jpuvPFG3HrrrS6mIQdtTFY0ZxQ6xSIFkKTypTHN3PkTQMlynxXQrGmZPYvWAgGZ8H3hzCynyJqKa9PF9/D4UkeOHFGUtKHQZ2JdhXVH66D1iWuQnf05s4vt5xtfCNz0Q8jccANoFkHTho1l5/vs9/M/vhb400vztvp5/pEf+ZHYlhe+8IWsPeEeHxfTTMqfDvjhTDMpi7n/Dtw9Mw3emLpnNpM4ZzF4/pCDZv/27QO+62dduf/vh4AP/xXdKY7N5EAz4XrZO8aai2nmyk5S0AyMaQbJEguGkMXCsa525qGdtFZC9sy+yjRbYhhabG6FPi110Cy61xNof95558Vz59ixY9RndFm8sgape6ZkIHFjSOqeyeUR7p7J5SN+BvKzVmeIyUQAVWOfaeAM+zTfZ+J9BSNnBoJ7Ru10OgX+/FF+TJdqIgD+3kV0z6wwzUxZjYNmhTucn+15lyWYYhizJ9zYkRiBOGA8n89x8cUXA80URy84gqZp2FroWOIPC9QM97Ohqwjvj3xcJOtQlxVo/LguMsI9U7mfl9w9E4HBjMztmz993+Njf/lxAMDv/8EfAQBzzxwRf9YCR7kRyOyzdDfdZ5rRo+2N/ecsePbKugIk6LOXmGa7dc8cDTIVvh9bBtibe+aZYJoVwRSTOh2EQV3JyJgchiKSs052554ZmWaRCl4LrlkSSuhQ1g/u4MJGdVxyySX45Cc/iU984hM+xTmvxwKQQp9JuE+fJulzmDo1ppkaQ4n31xJK8gvaHLtoyZONlWwqXSCh3w0ghabANIsuZtRm4X5gCGKdGFdDcEkBJOsSdxqXbytidkjAs64EG60AIEVlsKvQ6HOmWRDyXXpva59x5Y33h8VAGgWOJsJnomRzwKW0nyOD0bsqakBhvud79p37r2OadWIcDq43WFsNbeV9tvZq6G+brRfJtAzzbAQgb/Q6wpODKdp+DC/uosJO1ns3Vy6xRyPLh99zgIPvsxjfqklAqjYqO6KdjGnGmQ3f9eTfxbH3tTFZRQA4AtNsOk0BMR43qMvOjjymGTE5uCW770kATzPqthnritbcVVddxTL6QayFyWQC3P4fgL96FtyZw924mHjuFcGMTVVkmnElY5ExzSbcFchgmgGt39PIFM6JFdOMuSR3ytnOFR2n3EhXRS2THoFvbm+3bYsPfvCDOHjwIB7/+MfjJS95ST42CusnS2wj3DPp3A5rKgOEhcKfnMn3/TeXDRFsnfs+u3VE/Yp99HtADZAt7lU3tq9//evx0z/90/j1X/91fMmXfEnizqXfr5IR6MYoDSVA4JD83vXZ/dcxzcJY8QbTfibQbIq25SA5HGjWTgRo9h9+VxZ56r9JQLN2htw907GuFotFdM/s2LucC1rqnkmAVzB2zBcDNjc349l+YI3WysSXWQ4tA82WybjQetsKgZEsphljcYd6HNvf1X3nnXdSn5tWZMYE4DN+zgRopgF4QCdcRSeTCY4fPx7XyG/+5m9GYKHRQDPwRAC2e6YDoXIZKmOamcCaZJdq6ksWSqB2VzHApes6l8AFzG2vydnk4ffuiHPvyOWW+C+YMknmnlkAUyLryuiziDlai4crzzAOfrr94cYvrCdqayWZQ8oWhAKICe8PS4ZNQmkoZ3s8G+P+0OY57DU5zyQPOr0qMs2GgT4vuGeSoQBA4+R6cs8cJ5PregitbTOmmch6vM8048/+SJylz1jW1YMBzcYwzcYAYhbTrFbPmQLNxjDwLCbZg3LPFIcYUL+s8ksoXs7xUrT64/+RxO6SdUmQSWbPdG0ZGMuj6KplWjIkuyjtE4E+BJSE79u2JYuTsPZZ7plh/PKMTbFNUbiX7pmCOs2YZjmLIPye5qho4THBUTkumTIv1ktrAgsARJ9TAEkkAvDzPGHvyoHNGruuAIglbg61PjcAvuEbvgHvfve78a53vcu7KnJFvMRAovVQdD1O4/CA1r0LaTZS+IyBwxkzg+9nRfiMa5sDCxYIXgEWBIiKVhViac/nQCExzUjw4gKSYJEF90yLCesKIawX26ob3pO3Va6FEqOQC+WFmGbxbMhdFXdYn7vS2hbrloGSPKaZcv6kTDMSbsnVbWXF/TfEMpsvXNt00IxnldNjE0nmG4/jRmzZ3giKL11SS2dYGFcGmmEJHP9jPy45OCreI8CwyjxHRd31IWddhboCaEzf8b0RMC074QOtOcE0QyPj43FAJjLNlpB7BKOZZk960pNw11134eMf/zgBismdlvVZ3DUSNOZK+sIDheodooCW73znOwEAX/qlX4pHX311KC3vqs1Puo/7jexcaTDgGc94RnzPt33bt7F3U58PHDiA1772tfjmb/5majNnjkKLXcdlEnmPpEp2UFq7rsOjLwcuv4jGbLlkTDM+LsHwwUGzdorOGxi+9Vu/1ZVTmGalh5hmCmgW3DM9aDbpaJ/k7pkG06wHTp486eSWfo4DB9bZmA2sz14WMOOIdTi9seX7KPcZeZNz90x35q6trUEC+sC2P6MmE7nwuq5HiWnG439F90wPzr3rXe8CDjweuOBf4brrriPWVQaaubbEmGaWe2ZVJuGGr/zOI3m7iXVVWdGGwVXeVTQuTdNEmcTFohx8n5N3+Hl25CL9PJWxHy1AbA7BNDONuuU7XACFhuwo9rPXIwTTjLnZEqgczjN/5jcTwSwtzuEo74+SDMvnOe8znduhnJE902BmkewZwFEva0SmWQU0i/f+BMMwMEB4RDzpEeBokWnG3HD3mWb0KKL4/nM2PHsFkNLfNk2eDUoDzXhMszFMszNRZgxoNgYo3G0ZjWnGWXfj+5OyrmrIv8L64TRwBcAIT8Y60VwVo1AeWFeW0JErirn1Jm8LUZ4bdmFVYpopTBtJndbHJbYZDEBS10f4RwDN0v5WmGZpzIjBGJeCICb7nAMYVGYMuy6UkxkTw+MEk4Qp0Ca/T9yETCXQsCiqwqdq1eLgqFtvTdPgO77jO/Dyl7+cgWFhLdSUbGf50q1jyfrnSravchHnWRM+ww/SceEgy4h5zoAF992XPAq47MJkzzf5uMm6aD9qwk10r/Z95mWmUw+azcmNNo/vFcaxU9eCAA1roHFC+VeZZgxMqTPNcoFZjEvizpW7KupnS8YcVYHygSkZ+bkQs0pyppkfm3B3rMzcnOzsuPGbe/BsOknr4W5HuVU3PeOCkh0ZCyymmZkxNDvDLLYgaB6HJEC8e4sUuJNvs7VQcs+MbpyuD3lMM84utZhmQXlDBqRXY5o1Lfp+TmX8ucATSnDlhlhXhXsVMqbZ+vq6MAilTLN0fGXGT7fOJUPYnQcWu05jEbdti+/8zu/Epz/9afyv//W/EndIdp8d/0MXU3R5IpMTmgZ4xjOegZ/92Z/F937v9+Lnfu7nZIbNMW64JrDA96OUO7jBcHs7zJXb75+4rsGnfr2Jvx8GYDmEsWJtmR8TwFtkmjVuHUQw0INdIX5X7aGYZglo1rusmvP5HMs+GK0IkK8mAvDGjsViwL333ouQXZBnDA0sYmLkSOAtjp0/JzcCaGa5ZwaXL8Y0c3NAbq0A4hzMUtCsHZDGNFPlXOGeydb/OU+LZUMiAL6aMvfMkltlBBlK8ik3iJRiXfn7TGEgSeA/l5epLn+GeWNHeFe4B7a2dlife/n72CxbJmwqZVwbkphmI9h1xayK8X5WZEcjuzUg1/5iscCyd58HUJkDvfxOtdaSHwFdrxLeH61957E+61nZgxzbxrPOJDYoMcCmfu0ue5bwgbn9j2eaOfCaXDxHJG0a4wmhhrThe2CfaZY++yNxlj6mS0/y1EAz7e8zwTQbU6YGmqWf7bXPY5hmNdBsT+6ZLGC7eyo+5orwmR/IVoZB/1kCDskyoaE5G0cCE7nCKi9WIFy+KpjCmWaDvBQE08y8ePnY2cpXKijpTDMZ9ykI2VzhpADxNbe9gsABOS6mVSvQ35Pu5MJaJRGAwi4Cknh+UdEjYSyzFirriXAhHVjIBBdlHgWAGgUxZZ4FS6kS66rEooxtzmP6ySxUBlBCUfTBBbHDB70yf+rjbG0D2voXYG8yzx95Z4NP/2aT7PlcmJNjQ0Ch6m4d+5zv56lf5zs7tDYzoFYwZCwhKwVQSzFgSBDL+lQ554BEKIee/EAALkxZ4czReQQKFfcRrmSkZW75GeC2n3fnZEH5iokA0DD3TAk0BaZZYJjtzN0enE4nST25eya/X7KYZkzJdgYvN0aLxUD4ruHmYyl46jwjDxCfs2U1plkv6rDXNlcmFdYVB8YKTDOymFt9bsDPlje+8Q0AgMOHz8HDLrqQxsWfC8QEgn8/HxdX3Q/+4A/Gfr3nPe/JsmeaRrqEaaYa7oRSmsQ0Eywyud9pXKUiH9r5iEc8AtPplI2TMkeLB7C6uoo07EHo3w/90A/hHe94B84777zEHX5E1uMENKAy7H5NGO78PNje8fJnjBfUYDJpYlv7oXHLc+iday8AfPypwKe+H4G94lzClkC7IoLzf9d3fRe0RAClZ+nr4e6Zbq/uIDDNFhbTzAPllEmSJwJwv1n2cKCZD5R+/vnnUx0TGnsCqrQEIu7+IKaZdM98wVeEfwVDp5ujKP+3iAAHEBi8wHSa6AttzjQru2e691BMM3qIdUXzoyYCUBliiVu9Kp9yNlouZ2XgNnRgQQL/JTlWBx+2Nk8BAG6++RYPmnWFDMBBVqt4QpgAUtk9UxjEDfmU+izDyeQgeMvaI8+51M027g/ONOMZUMe4ZypyOzHHRwJINdYVJwKoyQ/4uS2BtUkEzWhtc2PMUuKk4kmZZhsbGxTTTCVg5GFiqgZO5b2Ze+Z+9kzx5Dfd/nNWPGNAJkAHeFR6qfL3mJhmmlCcfr5X0GwM02wMaDZmXCxQLIBmFqhmtUUCJeHzQbnoK6wfcUnkh3+sKwENNGChFNMsZbbYhzK7iEx3LjqU01M5Z+MYfRaMtRoDqZAIQCg0JIiMZprFPwMoYDFtOOhSiJ9gCGI5E2Ec0ywdFrk2LaaZXE8ZaG6yrtg7UuFTFW5YzAiV9cPnubC2I9tSd0l1ZbgSJ8twirwJpvB5Zkr2//z/3YBrHvu9+J3rfhCCaWathQQ0Dl+3rXPJkAKd3WcxT02eWcv1MfxDuh4DwGxKyleVaVYSuKN7WpgjTUBlzFEArdqnkWCKYNdZFn6LaeaVu0U4p7SzJTRcAQr/8f8NzI85kDkKlvm5wAEMYq+4sQp35urKDBj6CJYtgntmyjRL3TM15ZfHNEvcJWK8vpDAhX0WHhoCMrzoSgbA3XxS9lfmzpJ8K0GbfK3IPnFlMo9pxpkygAySnd1VyM/TSaTjhLXt9vzrXvejAJybeJfFEAvgHcWgis1n7pmXXHIJPvGJT+CGG27A13/91yfg9Th3az0eUCvOOb7ucrA4V/Iy0LIYr1LO0Q033IBXvOIV+LM/+zM21qHPWXck08xiv8d9YjPNZFw5t35En/3vA/icgsqhur4ffCZViil3bvc3+PoXPgcRTF8ssVyG95K26jJFjgPNQrY7x4SZgWfPpJhmMxHTTHXPtGKaefftvm88wOTqXF1dZWPm/yESiBjB99FhY9P3aZBMs3/3b4Dve8KrEJXtRjlbGGi27eMyzqZcxvCgR9Nha1tnmvG9TEChA83SdRNYV5zRKZhm0T3TiFeWMJCKxj5lj+h3eCnuk3535u9LGDuMwfqpT30qNln8Pst6XGN25WUy0KwKpujnKfWZG9YL7qLhnOKsq8Q9M2Wa8bbyO9Vuq+93LZSMchfJMvp5GvscZXfJnJNlpHFAEE+GJRZLtraZXFVKBCBBsyk2NzdjHXU9JJ8fbW2r8SrFXpJzuP8AKf9+/zlLHg24Gcs009lM+d8Phmn22QDE9goU7pZpxv8dBAYpqOl9zoE1iepXkf8i06ymiITD0nbPbBIAaZK6ZzJmi0l/r8XuijGdwqGsuSEOKAkbuwMWSMnQsEyp0JCQ3jQN4K2Z80WYg0JKb8ZGsC8iQJtHATg2uiAmL2d7ngmk0AEksfYTpgC1pbyeMreAYYm2Td2TOYBUuMQLcxhZcwZQm79PZ9e5fqfrn33n/x2TXGj7TCiTJHA87nGPw7XX/gcXX2b4DYh5LsaV0Od5LLAgBW49jhvVbcc0c2MWBGH5e1oqnTqHND+ApYhrgLBqSBEu5gVmimDX5dWkDKSwH0lJDG64+tkiYsCYLpyhDJ2FGWjm9zy5Z0q2h1PEFz5jq09OAC2mmWPBaKyTOCaCaSbLdB2wAHM9Ri78i7WtnC3ENAD4fs1kBzGHxtrm7Iuqu3Ubx01lmjEFrWHV5Heicc9E1yjaqwHImc5W1FhvKysrwLH/Gzj6zUC/hbYZHOQS43u553GPe5zLFgqQW1UzyfZHeIhlod8jss/hrE3cMxN5IgVHcyZBxQjE9vMzn/lMPPOZz5RlAlCouqeFMnafM2Vy0Jhm7A5JWBr89zs7C2AFSBl6oR3LfnB/eFDtOc95Do4dO+bOhiNPBeDu+aCoc9BsdXXVKevtLIJmw5D3GXBxMbuOuWemiQB6Yppp78pjmumJAAgQc6CZOH+CrTWC7Y6JpTPNWtx11zH/qWR0Ng2cgSBm5At3fWi3kzOqoJn/cxi6rD9ujmgvOyN0G89KuT4piL+eCCAkVMnvobhWZhf7zhkyCZfVFMOXxmJNjU30PskcVcGUHb7++dke3MS72J7c3To5t8cwzUa6Z9bAlKJ7JsuOnJ/bvM3yDoj3pgdiF304xzhoxplmeVvlXdWqZTJdRbmLqJ5ynyX5oVUBpNx7I0l+gCX6Hhgat8+6Dugj02y8e+bm5qZgmtlyGOwyUT/TZYXYnxhPtItn6v7jnlyi2X/OimevoNkYkEkDzXYb06wGrJ0p0GyvfS4BhzV23nj3TM6uAMzDPV6chZhmBesxwGnRBaZZIgxzWSC3LhhMs4YdykWhRD+UI7BQdc9kF1qNdRVAA21tJ3GfeLyTEBNqsQhgSoV1ZbI0crdVlcnRNHFcVPfMhHVorlvmkprF8iEf3Pgurlxp68lUrBiAVBQ+S3RxQ5iTfbaBNWrzEmhn/nd1FqXss5/nZZiDmjJpCRy9XP8m07KJ5dIYSPkeGREUv9FjmnWdr6sNQCGNyyy40DRT1pbkHaPcM1MwpRCXMYIpfp0uN9jbOCBcmecAlMR305OCxtxVMTSLQPAC0yzZZz//8z8PAPiar/kalqmOLK28HjURQHsA6DeYe6ZjrywWTgEPGQ9nhntmUfkV7jWJJdtP6nxBZ1DOYq0zFpp0/WugGVJwVH4rgKoC8C9dmyS7RZZZQjMOjLlnckVQ9tnFZGaMKn8uzGYzYPtm4GNfBqBHGw8SDyBV3aRr8b38HFgGsqGPd5UFIJGSrbxDAMolpiXNkX3+T6ho1md+L5bcM7l8o7hzTViZpkUGFAb3zBDTLFHgMlb0IFkeTdPEtbNYDARkMfc/t1cdQBVAMy7v8icQ3hxotgr0W0oiABfTbOHfxba8YNu47Jhyz0cmanTfdHHSMtAMYOdGlwFVXPG96aZ/9GO3xBVXXCH6I+8st0Yli9UBGMMwOLd3SOAfYDHb2lm1LZTwpM/dM5uO3DORgmY+oco8yAvKPXT4X7g/1h8LWyZZQsqw8o6R4APdZ+mTGrXKTLM29lnsx7g33Gf5/RxHEOEMyw3MsXTscy6rLRH5MQpQKNupywpAyv519bhM97wM0yOS9cQBYw4qh+XE10nRPTMCjkHmGCGrlZhZBXBUAk25AU2MsWJkC4DvoucsSgD+TBrPNHNJMGJcNCvWG+S5XGNRmjHNQHIYsM8048/+SJyljwbcjAHEdgOa8bKfr0yzMaCZzdjR666N7Xj3TMm6spVS/fCndwVlX784AQYSRGAhb590qZAHprQK54pifihbQglvq9KGKJTYQAmBTFKx1esiAEkP5JnGNKPvxsS6onu3ckFHBp4h0EVXRV0oob7owo8cGwINVMbagccDF34zjUuntNcASmTbSDjS57ll5SyWkp9nBfjM90jNtSkE+S8orgFAYtWE/sfU7arbUmh4mKM+3/PCSp2vS816WXbDtedZru1OBQrd+5bQkh+szEI7iWmWuWfGPpPlWAWExbjUA+o2zYDnPe95wJ9fBfzpFfjar/1aiHNhDDOl6J45kDDJ9uOEZSTTzicxRsn4/8AP/ABuv/12vO9975PjoqwFspgzpll3AFiejncDB8SWyyVlz2QHECmDnXBbyt7FY/UkLlQT7npcU76YS+uYcZnNZnj6058OAPie7/kepGf7GODfXtssppkCmtE+0fYzs+ybQCFriwGaSdZhG/ssx4UDy0BTDQFQAZACENuU3NUJEBagWarYJq/JzxbtbE9AJu3+Be8PE19EPaGwAgbwPvPYdSZQGPZ8lwOFkaEkEwFQn0M7bKWWMhUS02zSkgvuysoK0phmXN7ljwDNZg8Hdu5I9vwO0DqmWT+4vnGX7Nw9U4JMKmiWMM2ozEQE31eBqqaNDLGDB9ez9S2NfnIvdp1rx3w+Z1krgdlMOihNusC0nMa2rK2tybb4eSy6ZzYTCorPPo5nIDxjVwGdu64jllnv456Zd1UYJ3+XsEfKc63/HbInk5dNMCWch/nZLn+fy3K58bKS9ds0cJLxQZNzNSOElvBEnruunhw0S42yiXumSOgQPERS98yu7J4ZmWYEWOqyZ9gnVp/r4Cj1p8n6I8ssXRkFuMfg3MIpXt8Q76tq9kzGNJvP5ywDZy17Zl4mux+KfZb38z5oRs/+SJylz5lkmqmHgH+CFe3BxDTbLWhlfTamHuDB97kGmlkHiA6UcADJcCEpsMjokujUw5/aHECbnGkT64q/CwpX2ifbKiwvGagXtKSs66CBYJqxWDN5n+vMlEyxUhWaMC6BaUbvCpc1TwRgKpOMGaRe4rU4GRVBbFcKJ+h9ajDuw0/yffZlLJZGkwNiblzCmJECrfeZWy8tMBGw5pDaEgSSUhBtnghAGZeo6OXumRP/+2EIe3FEbB1zDqMkm/VJgIAl98xh7DwHwUV3z0zXAgdHiWk2sYXySswUAZrF/VqKY0hr++Uvfzle9W+/Fdd8x/Pxxje+MQETay6pbaY4iTYZTMvArnWMCH1saZ67WCashYsvvtgzU4ISqLMIeKym5XLpWScONAv3JWeIOTaaa9tsloJmzD1TYV1l7pk+U14EFnyzFks6m4sBpY07hJgdci188IMfxMc//nH85E/+ZLJujTNsBPAfla+gTGJhgCl0xvCv5b2pA3j0+9AWec495vKGnRHU5zS7YGxX6HPWm2R8S4AwYzYUXY+jgssAYebaRPNckCeKirxki+TncuizBwoV90whbxRBcM58M4Joi7WgZwzd8dlnU6ZZDPrPlPTMCBz2yGLAcghnJfVJi2lmgWahGdvb28D0AmB+LK4ZzjRz7mctMMxFbODZbBZdON27JkIpnc0mcQ1sb28jJAKQ5w+tkwg+mAbMLrqGazKhMG5lMc0ap6wvFgTgAVgx3DM5aMZjsPE7r+ie2XSRScPlmjwzsiF7fuan/F8BWLBYV0C4z4rGyyjD5uMmz5dWlWOl254CPrRTYOUKWPtZyiSNrh+EP9l+ztfBEPuinVHy3tXlFupzcM909XJwlOriLKU0EcA20K44wNgbOAMTkwN80T1TzdzOmWbuHWUDf0WeM+QjOX7hfMpdFfN5ThO4LNEPEJlhJ379jE4EcPRFuOv+ALw1+n4XLqmlMrZ8KsvRut13z6RHOQ72n7Ph+Vy4Z/J/8xgPewKQCt9bZfYCrPE2W/XU6j5j7pmQQq4OmnHk30pnzANf19wz9QDxrn3Sam4mArAseRHsAmzQILFkWJa8yFgoWdxHKF88pplKNQ7NVdz2mDAdlGNTyY5sHEMoiY8FIEkwpco0K7pn8phm8nuxNhUGnkaxLwKFlvWSBcu2hRLJItPXdtmFk+ri4GjNRSoBzWIMqk5d2658AhSqoHFC+S9ZOEvAAvpxfY5t7oz93Ij1z9eCcM8MTLPOmOcxrMOaq27TkJLRuLl929vehmuvvRaHDh0CB8OstZ0yzXRGYVhXuetYx5lmjX6eEvO0jWXytcCYNopQPplMgH47KsfL5RLo1oF+Q7K0RWZMrxRn7plLUn49aJDdRTwRQBI7Lejj5JKan/0CHDWNM6BxiQJ1g9lshn/2z/6ZsldzgXtXwH90ySOFWK1L2c+Zwqr1WYC5cm3f+p4Gr/rXbG8m7Do5dvGt/m9FmYz1VBIBMKaZyt5Kzjl+vuTMFnl/xzKVezNTnNQyoT8eNCu6pLp1Ycth4a7pMsBLjEs4G1J2XQwAH9aIFQCelNq0LQHUkUwz0lY10GxnZwfBJZA/gWnmWGKtAIjymGYd0O+IPjtgbQdoZipLzH3v2Kf0/VwB0nmZDiWXyMUiMHmy7iCy+qN7JovH1A1AO8M9F77LvWflMgDAwZWToo54pAXQDEuZuIDP4xj3zEZzz/Sg2TzIjso6WNwb6wnynAokur/k5cHbmhiBiqyrgiFIA7Gzs+Hq/8hkBYtpRiBVkWlWimMl4H5Nhg11hD5nXU72cw7KUJ/DuEgAaTqdupAN7ZrfP977g8c0S7NnFo2x4T4bE0rG0Gea8jznht1C9swQAwz8fnb7m5hmDZqG+lF3z6R3/eofnifcM20dA4UyCUO7Zpjfd8/Mnv2ROEufvYJmNUAo/bv2Hmsz1cqMAcT2UgZ48EyzWvnRfU5ZV3tQMiTd2VayKaCuE/p1V8XQ0E7+BlzgDhd0KRU3YF7QaVDwBDTLgQUrQHwQ5FwZe07IGqMzzUKlwT2T98l92cfMcyNiXUEDShijygQWBvZ9QeEpKDPU56B85YKwXPuhTAp4j1WaqM+6xUqOi235MgAZXsYY/9gnFutHZWkIxVUBCuM6MfZZljG0xKiCWo+0cFbAUWY9Ntc2YxiNAZB4NRnTTHUr8P9g7plpmUYALsb6F/HKjHM76XOZjeOBQmWeU6Cw4wGjeey6GjhUApCEcaHLxsWBZptAu8YSAXTgrBLONNva2gKm5wGQ8YCoTCcSAagKMo9plrJBwJJcIBeEM+aoxjSLf/q1qxoHOANPqmGiTMEIFPvEwBQ9G25QaoyYZilLQGuLYIzQPD/8aIO2bdCJdenqzANbj3BVFGVKBh7OHC1Y+ANo1iSgWcboLLBYTSU7lzmycyH+Joy90p/IXKn1eQBnmpksDaZkZ31uOuzsLGOfTTnLYJqF7vU9sBzcHzzmawTN2qnbq/BMMwXMve8BBxgRM7TPmWbtzLtntkiZZhE082E0chA8TQ6iMc2UWIgmQ7XFjo/PZrr4cyaN4vq9feDZri2TC4B+jkOrkoUXs4MyphlnbPL7l4/bZDLBK1/5SuD0jXEsHBtHnv0EAMJnI24zuYWXsWRLIbf4O69hse1EmYLhN5bjhqBaTLPkHnn5y1/OS6rvEUmoLAMPB/6Tc072WYJmZhlDPgUUgNvSVzjgkq7tfhNo1wVoxmP+NQE0C4CR5eUA0DssN9wYMiU/53L5VJcrM1a0Ms/SWCFlreie2TcR8GqaIY5l3T2T9vSR9W3mnllL1FZaC7S27XkOsqdu7HgoP7lEs/+cFc8YIAjYG9Mss3QX3nM2gGZngmlW+z4tQ4AOF3KV8hV3FnEgGxdnLMeUq0mXlxHAwpDGBmmlVUwVSpjFyrqIotUyKNDaGHGXr4pgP4aNMyamWZsnApCggSH4CMHFEMSE5cu11xyX+B4DWBDrRbnFAVdOid3l+sTWpjIuUpnUlaYasCAVaH1chDBuuRbEtWCXiX0altRnZZ6JRalkzxQsDV2Zl8BCm4EGBNa04QOkYyfL6MJntOwXBE8aG860sc4wnWm2EuLOhJhmGjgqAqHrbZFgSmEtcBZlMj+iz9X9TAF1bTaOzrQMFutFiGmmAQIZozAvM2mTcdHijPUbQLdOTDMWpweQ5/Hm5iZw5JkAgFWGyVC8somagVOWCevOKaXEBglAIeJkZUB6HKMwzwo4ymPXFePe+HqU98jzOF8reV2Nn+fc3E6Ghhw0zlwvke+P/GwpMZpp/etZPAECCissVwMET41SY5hm/F25wprfd1KRN5TsuH/sMzdlpBeZZujq53Y8U0tMM2JpxLUdGUZNdM80+xzdO/N3hLXjyGpBPiq7Z/71X38CaJmr7se+HADw5p/5WQCcaUasqhjTLATtHjpg2MlBM89SdYNrMM0iKytPBEDjKhMB5DKqH9cIFFryRDgvE0CeyUrkKrqTuTBHO0A7jW1RmWbBPZOdld/93d8N/O2LAQBP+oqnovceLXw5uX75RADLsO8rMonFBBdB5Fsb+B8FIMmkJypoxtc2u0dEWYMhfPvtt4aaoMkksm363Zrtd0AHolIPERPUl9kz9T7zhCUJ08zfm4JpxvZi2KvLZeiTImPxOSyFjBAG/nqW1LK8Ec6XQkyzOM95IoC+R2RRtgE0Q48CZibdMwEcWj0d46LpOgYZzrT5cfLpMplno88ie+Y+04w/+yNxlj6fK/dMfuFr77E2Uw1Y060y9nvG1gOM67MOTum/H/N9WicpBv6Cif+ftqvMNNOsx2afORtHmRYS7mdIrZdCePWXXS5wcItV7bKqgGZNA+1gF30ugInyfUFR1cqE5uZg4iQq0KRM5usiEUosKjhAF7BFkS8AJXIt6EKYrEuPXTfKPTMqb0AVWChateS42G4BOlBCbfGAzINwz6Q2BwYSfZfFAyqx66D3uWkauIxHUigx2Wgl0LjiHqX2WRFuyKKagxizmVO2KBGAFsctVKQL3O69fC3ke0T0xxA+ZRldmQe4chWAkhxMoXPIl+H72QfIJgCpxBztCsACZw7lfZ5MJsAyYZolLBfXZ8Y0274N2LwpB804i0yJeyPd+hAFd1Js3ccxyQU0ACkMHilf5fWf70V5zgUwRVTBhO1QppZJ0oOjKMxzdCOxft+qQv2YsyUqEcbZfumll2bJc9T+CJCpwqL07ypnp8vXP4+jF+Y5fY1kpeuyAp0ZVCZfC/IsLSZeMVwiRZ+ZMpnKk8K46BU0yTRz4zGfB7aUIR8VGD8UhqFHAKti8HrooNltd9wlO7Pj/r7xf/89ABAzFAnTrHcxzdz3M6BXmGY9Z5p1AjTjQDoxzRRATABrMgMnjQsLTo5cVqDxJwBbuJYxUYKz3jLQbBLW/wwBBOTgMwePXD1tfM/q6qoDEQHPxvFVsWlumibe732vy4209gFr/efAv7vz8vEoh9KQ76Pz0gRTYpk0sUd8q+tn0pbtLZ99OoZPqDDNTINtkMPC5/Ws92X3zHAGFfQV5i4tAGHP0HaZY51sM5twOcsbvpY6o8qViW+LfdbvKiarleSWwjwLA49lWOdAYcKojaDZ0EQWZRPmaBgT06wFFg8AAN70pp/xbLVcbqT7kusrtcRzNN78kaxoeSbsP/ug2Vn7nEnQbLcAUo7858+ZYJqpAl+lHmAc06wE2p0xdl08eIIQWotpVqE7F9g48UBsbfdMsiDPMkGMhFdSJlWrlogTUAqKrwv2AnwruWeGS6/mnslctTSL4CRRALh7JgFoBKZkfeZCSZEKDtBxarmt6gJfLCMo3vo80+UYwBTFvSA+QYFPXJtEEO0RLmwmcw6kuBYp/9Z7mHDT5AJf7EUCCE/yIsRWsWIgieC0BaAwWnUN1mFc/8ZayOI+yXZm81xlXYX+lFxEctCYAJlpVCbteSbLsV2mUctIML3S5zHAP4hFqV0tNMaFGIXBVbGWJdWy3nOgRGFmcTcTwTRDb7tnNhNg2BLKJM0RA8RqiQASVkk4w5YhmYkacyXWZioiefbMmmtTmG16aC0ApfheUsmYFEAz3fVYAAI15a1wtmSAix+XD33oQ3jlK1+JG264IQGHZDuonvDuXbhnqvXI/ay7qIW25m3JjFZFdl1jr4Wkz1p/JiLx0LhsuBoLLAPxMtcmBxhbweyzs0VNBODOzp05nS0Tdp464EaCZotF8iIf38y5B3qmmX9fnghgSqCA6Z65QuPH9jNnmjmAycU0y+XT1D1TcevmgCV0o6K4s1J3OjYE7j3O2JqyMWMyzWaKkNggbwvPmkgAKsVwcwlcgrtaFhQ/VqcbdaVM0qprOyuDfB/SmmvYPrN0DGmIM2U6xfVYlDX2s3Q3rclq+v2cy2GADhRK1lWRXVcwfkk9Qu5nbiSKiQCGHtMpW9stA81qDHlDV5FAF2z5VBiyYQNIifuybaDpgMQNN6z9ZQ9iUbYNMc3GuGfe/wfA1s1AM8Xdd99d7k/QQZT1ksueGBHTTO/zQ/nJaUT7z1nx1IAdq9wYcKoGmmkgB08UkJbZK2i2lzJam3dbd22MRoNmSQyS9IAaI+SOuahEuZhhMG9fF9rdznQhS2Ty1BWrvuYzH9kIBQW6khkzG5eRLmxpoHNXJrS34p5pMM0kgJS3JVcUoSuc3D3TEjaE5aukcA4IFvMUNJNMM6lYi7awNVcECk0FmjNKgFRwEcBnCRAWVrwSS4PWtirQpfPc8nnma7umKIb9qgfF72tCCe8PjD1fUeZFudbez1HhVJRs93vPNBuWKDPNdOBT1knjolqyhWU+vx8kc7QGFBZi1wlgXgq6k0kAkMKPa1lSrbXAmUO5QsTBLmKaScArc89sJkA/d0qiqIeAUc39g0DysM+ka33Y230PP6GlGG322h5nvZfnnH62M2BNOVvi2EQlrVMZhXTOBdaV8ftRRojKPcPv6LbFU57yFDzlKU/x7w2/CestayoEM3FMJsmSeyYzDiB1Sc0UHuP3u2GuFzPyhbG3AHuYdcg2k/Kly2aSmSJBMwc0LnwEfjUWqMFsoXd498xFDzTelTJzz3TsrwCa/ft3XAscejGrhWdvhAhon4NmYc/nfaZkAbp7Zp4c5CB0ppkr47J8dnaZkAEPpTuEu2fy8aexjkyzXnHPnDTOe5LFNLOA/9Q9s2lcFtseLoGLy3CdA0iTrsEOwIASK3M7wO8qU27x96+dqIrus3ImSVsul6C8BB/keeX+nbt+J+d2yahlGHW1+9k+t/k5WDjDCu73Gdt1SJhmfj9H98wkyQUZUKg/mvFyGcct77M0XgLa+Z/JnrD0h1R2N+IycvdMxcXcMc08aMaYZv2gXAT+oUQAS4SYi+58yu88ScBALFNn1xV0yf3smeqjHKP7z9nwfL4wzaw6c8G//M7PJmg2hmm2G/dMq4zKxonU6vxSzK3HhUuowkyhcrrbHsAuf4XyL5RRw+WiyZhmpQDxJTYCd88sMAAM65naZkCN2UEKjbNqTSZ8nkOjbGvhJIt1tczaEv82AKTMqmWBo1F50BV+ehcpVh3LAkb18H4pCqewpObraZK6pJbmuQYU1uZZCHS1LKm2e2b8mck0k8KeOc+wx991RQolOsDh6xijzBfdMxnTzFKyOWicZcP1rn9WANvYlXBGae5c7B+W9T5zzzQUkYLFHJDKoPtdKXB13ufgnlkEAStKBsBYKGHskjLcVY4SAbRREaQ+O6GXGCPSbYlYFjzI/0K5axo6WxJFXPTZPMPC37TmikB5zSBSimk2mmkW1sNEVUppL1lMs92AQzpQm4O5WvbkUFi/z1yZcP67PteBwlJmWA6CKzHNYlw6AzQTbOUxYGLBhdlww83L6HcVxSQL86QBWnwuO3G/5u5glbMlYaqFJ8yhA83yOEqae+Ynbvw72ZmYvdEHpGfgT9jTGZOmaQEsdKYZB82YIs6zZ1IcMS2UxvhEACX3TDJuNXEuY1sY1Yy3JQfN/D9aAs1UWRgtnZWgszL8fr6gGE+prBzFNuOcI/dniP1syy20pvijAkhFg+2YvdbFPgvQ7P4/AG5/h3lvAmDyrX5v5kYg69wmcEhNzhXl00aVcYF0P1pnR0tlkrOBzoNOgGZ8f8jQCLpMSDKJfm6TYZ7J7tpaAL8fSjpG8IbQ5SgBrKVsTd/nYSDXYxHTrMA0I2Nc78+MKU6dOgUTEAbrc8lDhHk/mcYb4Zmhn+8P1Wd/JM7SZ6+g2RgQbLdMsxqYVQPVHsx7bAF1fPvSMnsFClWrVoH+qwmwZWu4Dj7IugKjSmtfKFxyzyThM2+LB0DcXzZQAkSBO1V85eFuXYocfMgP//CQImLHNBMKTRpkm1vOLKZZw/prxExpk8DJquVLWLVKQGEY/5J75oDghpuOr1y7HkxkH+VrrhBctmi9lOCo7ZKqC3OxrTGrqN4W8b7AulIu+q5rTdCYrPck7OVtaanPJbeAOMfGuIg+1xiFeR1ZuUKMwoxp1qa/Z+6ZWp9jeVtwlAykwp6vuqRKcLS8nytMM+gMpIlwZbRAy9CxEWWi27YWZ8yBAWX3TLcWeGwiriBk7pmKaxMAlunPK7bs7JZs2REgiLEW6G5qoK2FXOE05jlhmpUZSLqLeawLAyJA1yi/L7CiMzZakdFsg6wNj3sJXbEdnz1zJNNMSfJCsa5I+TVZV2PPnxqwXMie2SZAoX1XcbelfG3LMnKvSaAwXweiPwWmWQTN5sRi5exrAs0mETSLoFZ4PGh297F7AQDb2yGDJGVcjYBXyMLpZQ6+52ezmWOaRfdMCZSPyZ4ZQTN0IhGA6Z4Z5YDSHIWzhSv8VH5jYyO2JXXPjKDZCKaZ/wScgdSxZCYELMh2UqIeOufM88lIbOP+LYPI1w08+t2b7meV1SwY7vI8bNsWWB4Pb1X7DCADnW3Dl36HCwO0AZTksmcpi3nZyJ/XRfvZsazdOoj7o5dMM7oL6H62zyeaZxsQiwNpyy3GnRj7HAExBxrq8xze1wkdjQONAXDn2TOHAtNsPp8jgHDBffz06dNRVrZlTxTKSKZZOaZZOLf3s2fyZ9898yx9zqR7ZolppiUCyNkI1mU8/p1jALEx9QDjmGYPll3XdZ2nxut10gEVFPUxl1UpppktCMdyw1IFxGKZKGBa7plSmM7Gn7sJKYeyoMgHF56kDQI0G8sSqDIWAlCirSGw9vS6MFeKaZYKJSXXpjA2muDCLXk1oLAALBBQEphmBdDMtydzz4zrEioIS3/qghiBgIjzrAslEhDT93y46HXlN/aJu+0pQmzKwONluq4DduzMsFmfrfXP/1T6JOfQ72c1q1+dUUige1CgS2ycvM8EmrmYOMVYV2OYWQbILQFhrxBYjJ4KIDy6zxwcZcudW7JHsShNl1QeMyVfL23r0sYPNfdML2yTAr1Q3DNZIgAjfohsT8JMGZHkIp4RjT3+cs9bCmcCmqmMheD+NCKmmQf+zZhm3A03Y1FKBkbRCNE0xjnXMqXWUNDinzpQ6OqpA0gp82cM04yPS3Y/q/u5BQXV19d2ds+ocf+C4mUDhR2fgyJLg7VHUb5oDnJAV2NLpeMmFWRrXFicpMkasNwUjPOVlRWkMc1ioP6bfxzYuimCZqdObwGAy+Y5ATAs457mzNHNzU2EMyFnmm1T/Vr2TK9kc9Asl1vcueEU60nW73xc9YzqxDQLCn+SCMAvQaes6+6Zs1mIw1YBzZJkJsQ0c+1y7pmhXRbTzCdn0ZhmgwTEikwzv4907w92hyMHp8X7CoZdeddLwCUHr/WzJTWY64Zs6o8OIEn3TFguqYUYkbHP3HtGlaNaKpOwS8k902aadendqxmBRLgBSw7L+5zrKlz2LIWACbJ7zqKUfQ5zoGUA7jBfBNCsib8pJQJwe9uPuWfCOqZZWNskS8g5BDRZTRo4w3laOLf3s2eqzz5odpY+ewWQxoBTnwum2W7r0P62PttLn7MLuFJ+nHtmOb2vFPh0BVrEETAEYVlXLkCFhwTmMUwzI9ZPBEmsQzlcyLogkCnZqiCQXPRFFzbGQFKMIQQMTDOhXdDNLTaO4rZns3FC3RWKvNGfphkwFJR5UZe3hHeqEhEq9NZ5BqxRn1svNFRckgyBsGn9TEf3TMtVMYApJaYHlRnDQJqo8xwUNCOmGWczKO+RTDN9zdGfehkpuFhrpdmFsNar/ZF9JiU7B0e9QmUInxNuvbfmKMpg+rrMzrCimwoBa2MYSJoSQQJx7sImmVsWmML6E/ucrIU0ppkhuC8F08ydn9I9051hPKB3rkDnMc3y+yv+KwqxApxLQIe8z+wMsxhIYp7zsRPlDaYZKeChTC2UwAimWWSOGmeYB5DMs6VgeCFgLigRdVdFPZ5iOHs6cz+njCqbyUFGoAz4T9zBqsYmay9W2GgZYGmyEcLZU4rL6GNuJUBJNi5BAUyZZol7ZvqaTGEtuaGjA7oDQH9K7DHunukC/AOP/cIvwd8AwB3/AZjfDbSrvsHud9s7DjRrWySggGOaUSIABTRTYppJJTu4XnpgodeYZjzuWQfAinvWxTZrd4gbc+aeyQO3d00OminumS4xihu/MtMs3LESTAxuoPPFQO6ZSVOzpE1F9ntbL+PvCDUbawQR9T0U+zTm3uNstGxtpwBG9pqq7C9jjhYAJOaeqfdZGvLKwL8tF2rsOg1AcqDZOlJAOMtcXY25aMhhiSHPlNWiTFIyXoa6dABJynSd0DO4l0PIAMyZZiE5gPZQVu4FQkwzl0gjXwsSKIR6F2WGJOj3mTR26DLJQ/nJV0nhufbaa/GiF70IX/7lX44PfOAD4rvrrrsOz372s/GsZz0Lb3/720Vg+BtvvBEvfvGL8eQnPxnXXHMN7rjjjvjd1tYWXv/61+NpT3savuZrvgbvf//7Rb3ve9/78PznPx9Pf/rT8eM//uMZu+eh+uzVPfNMgGYlwEn77EyBZmPaDjx4ptmYOkcBhRVLEim9ukIa35sIwkXWVZuDQ3mZHDSTrhD6JdI2gUUQhIBKVkWrzxVXLWH9LLhn0vjlLhexX/GCdRZc223AEnzivxCUFdvy5esuxVgoxAhoAJRAG4ApNDFAfIVpNvTObU20pcwo7JQYSDYbp8A0466KZtBYNs+1tR2SHyi3Vs5AonqEe2ajK9Bd/LugQCsB1XVLtj22GlBeZmnkCrToM2Om8DLu94HFpI+tDHhvzHMKuFhru3CG5cJaBUyJ2TMNNg5T6GVMMx5YX+/PmCyp5PI4sRVxH2eMYppJYZnO00a4Z2ZMM+TZM8vgZgcMi9gvctujM9lkkZVA8DjWhbUQ/wxjj+wRCo2hcKaAsM2i1N1wJfBTWXMFRpW2X831X3TPDO9ybGb7rvLKZDstAIW0/tXsmWE/WwY2lOWJDGQqMmTCuVI4k2GDo5ohTmea0VrIYppFmaTNxkS2Iyh4FeNAdxBYGqBZS0yz7bmf52Entsu/EQCws+MUYB73y50/zlDhQIFc4XR9Yu6ZiUs2l0kc0yR3z6SzvcVy6c7CBhI4dvWFsyXUjewR4EHS3ilzzzx9+jRCTLPUPdP12yVS0Ng47sxjXgoeQCJGm3vPcjlE5k265iYV90zp5dCqZWgP+jb49W+Ph76HZDnbWEH7MQCSVEbIR1E/0AAUbnivJTAy7mfB+EfGrsvO0yLjv6yLiPt5D0yzpklkEvUMY4Z505DHZRJAnefK2Z/Xpd/P8kyVZcR+DslMGvpN3T3TryEP6rvPrLXNmWZAuiZFOw0iR2xzXNt6nx/Kz65G4rLLLsMP/dAP4Qu/8AvF5x/+8Ifx27/927juuuvwW7/1W/jwhz+M9773vQBcwMzXvOY1+OZv/mbccMMNePzjH483vOEN8bfXXnstjh8/juuvvx4/9VM/hTe/+c24+eabAQD/8A//gJ/7uZ/Dz/7sz+K//bf/httvvx3vete7Hmyf/x/xfK7cMz9bTLMxwNtegLWxdZfK7JVpplsywuFvXFYYcQmhfri7z5YeWBjHNMuAwoErX4rCGQT9GKTTsmSEMvmhLJhmVSW7Ud+TjU1B+YrDoICJGkvDVLILsQ9IUQyMEa2dY9hFQAlwEXUFplktppnmtpG452RrWwguhmI1BihEeQ7HlIl94oCYpcQFhbMQgyoI7DZQYu8zwTRTwJ8MEC4p6oX3iP4UXFKlsi7HRYBmJtMsbg7Y88w6r7Q3nik1Ro8Q1kog+BIUSynvc8Y0Y9VkAJIGCHMQxAJQWw4gWecCgKZN3DP7hGnm+kxMM81VizPjpDJJ4xI638EFztdc2EId2jyPUHb4PBt9liwAXeCWYPpI90wze6YOCOfgUEFhLbHr0ju6BLIG8C7vMgOHKn0Wd1W9z13a58BQMl3M2/o876aM4YYr+9OZSjbd9V75UlmUoZ6wL5LsmRx0Q34OZuErCokAHGi2DixPizJaIoCtbT8/fQqaufafGB4NAJhOtf08JdAs2fNN07jkPUb2zOh6idYpyJVEAAQqa26GS3b+j3DPzGKa0TurTLPBZpoJt/kwD6Czcjp17VosqQ8pgBQBPCafqnKN+6tepmTUHWGkluy50n4MYSHcWg5lpBzWqn0GkLRFu6vi29T7OZeljT5XgPTY54Sxr5+pMjZyqIvfz1tbW35tJ3oIN95Ybuipe6bphmv3WWMKloHCBhaAROdcfh9RnycU0wyMaZZfA/GJoNmwlKCZSVgou6RmaxsoGER42Jp9phl/duWe+fznPx8A8Eu/9Evi8+uvvx7f+I3fiEsvvRQA8NKXvhS/93u/h6/7uq/DRz/6UaytreHrvu7rAACveMUr8OxnPxt33HEHLr74Ylx//fV429vehoMHD+IJT3gCnva0p+GDH/wgXvGKV+D9738/nvOc5+Bxj3scAOA7v/M78aY3vQnf/d3fbbZxZ2fHUxhZJyeTzDryT/n0fqf0pR1TebQNPgxDVqcGDu2mjBbTrGkaUYd2wGptKdVhPbUytfeE9qVltMM+lLEUOl6HdYiI93BFHe7gztqa0K/TOqQLSaOWkeUcaKCNb7RueaYZL0OgGx38aR2dyCrnyuTjnwsl+fxIQUDrjxSEtfckfYYTCtMyk671uAy5rYq1rQCFYm1zoMSXSduSBYuGtiYHf3MHkCHvsws0b88z/bv3c9ijbZX1Qg1DUFTE2o4X56C+J8g93GKb9VkBCvU+hzqMtS0sgoO6biPowpRsdc8HhTOZR6kcO5fUtC1ZFqpBKxMaRHOUrUshrOXryT0cTM/73Pc9A7HJPVM/5ySwIPZzBGRatT8CKG/0/tBRaK9/jdGjnnOFsY3t4Uyb1jjnght6Mi6TyQRY8v4oc9i1wEKCKVmZOM9eKVXXQgMgyZ4JOnc5k8C5apF7ptyLIQ5PFxXO/F1ckejQNoPs80LGcUt/n7Eiht5n8+Jl2Pr39eR7Pj3nlPnhAIV1zsX2eOaotZ+FG266tj0YY6wn7WxRxyVRdvIy4V/2fda6hernz7rPIIBCPoeyzew+m9AcEUNpBg5q5n3minguBwiQuzjPvTr22dgxoNDscwIs5GcDnXNhP/R9bzLNVPkoAnPKHc73T7sO9BtCDpjNZgLs6vs+Ms2OXnAEx+7eQFgbV37BI9H3Pe6fvQAAMJ10yRw5MGtjYwPcaMXbM2mXWDYttZnJYnQmB9fLKTCcApDc4RGkDaBZXxmX/Dztew8UxEyDrWjvlIm4DjRzSQz4GQYooFm/haZZUdrLQLN+O75n5uMtzBdxK2fzTAYe+5wLn/E9z9f2MAz0ghg30Fr7YQ/pa3vM2ZHVxdZ2bjzO+3zkyBE8oIBU6rldkkkSMEWVT0fcz67NUl5Iy5XGhRt4KM7nXMinkyw0gvKOKOJSGVUPYW7dtkxu6ztA0PMYqIxF5dzthP7F+7wITLO2Qde6s6ofbB3XAfh+3fTufHKgmS6Tp0AhBmtc2igHpGNL/eGu3bLcmcAvPh+fsWy6MxLT7NOf/nQE1ADg6quvxjve8Q4AwE033YRHPvKR8bu1tTVceumluOmmm3DgwAHce++94vurr74aN954Y/ztk570pPjdox71KNx2223Y2trC6uqq2pZ3v/vdeOc73yk+e9GLXoRv+qZvevAdPcPPLbfcsuff3n333dln9957b2TphSfEaAhP3/dZmdTldWtrK5ZZLpdInxMnTog6uCtueO66665YJgZXLbTjnnvuycpsbm6KMnfeeWdWRuuzC5ao9yc8KbC6sbERy5w8eTJ7z87OTlZH+vA+b2xsMECMkH9eh5tDrnD2OH36tNJnfqEtcd9992dtcW32AvfQi/7wcUATyizE+M7nc6aIOIUvn2en0Dml1glbd999tyjTNMEu7Q6goV+K7++44w4aF3/4p22988472SXuLsX778/77ATTPioi83k+z9s7W/4emWbvWiwWwIRbsgecOnVK1LFY7LhTksW9OXbsmHxPYoVum0HvM3PP1NakGzlSBO+7776sjGDzDQtsb28r6+ULqD1Dj/l8Hsu486Bnl2GPkydPijp2drZ8V2gtpH1uEqZZA63PQRh3AlbaZ5pnApm0Pj/wwANe8PDzvJ2PHfXLueHyd+3s7JCwN/Tq/tjZCVnTiHV4//3Hk/UfhATar5/5zGeiy53Yq15oT/tMa4Hq0NZ2CiDN59tZmc3NTaa4uj6EMqdPn4Zwz0R+tiwWC5BF0bXlnnvuEWX6PqxtmqNbbrkl9vm+++7zfabv0z4fP34cQljDgAceeKA6z/1yru/5YYjjMgwLuZ/BLaRDdodsb28DHVdkhmzNzXc2gRWwtbDEbbfdJu6xxgPcW1tbvn9ubd11111YXV31gcDduNx5551AcyEwLMT54pQ4f6YyNk46B41QBidosNTXtr8f0vHf2dkBppxpOWR3yNAv6B1+Ldx6661CfqB2BCU3vxOpjANT0jsE8OuBGTvSOwLw65cBNwv2LvqOFJ70HDx58mRytgyZrODmcynWwm233Sba0S8ZqAlgscjX5M7ODtCFOcjPU8DJKcBR1ue8HupXAJBIRjpx4gTQbwPNStxDaZ/dng/nj362bG1tQRrhetx+++3CqLyzswPMwl0ELJeLrK1u7IbY5/TepD43iBl8hyVuv/1238+kzQw0+8xnPgPAy3FRVgjyxCLvTwJMpHu+X3r5tumAdgXod8QecWM7B5oZjh93Z/7W1hIYeqytkTu1A5SmuPnmm7FcOPmx7Saxnvvuuw/BPfPYsWNA83hgcKA6b0/X+jXF3BnD/erWrTN2nDhxAoHddf/91Cc3LoFpRrEd+TtcGZYBD8BS268RRG3iXIazeT6n8+6uu+4CmouBYRHHSMwBj2mGpVh3J06cYGsOCEAgnbvu7FksegSxok/WXB8Yf4wVmp4tbdui57KlP49DmbvuuotkNT9uwyD1kGPHjsk9ZMhqDzzwACKY4s+O22+/XehLtB8DOOrO1JWVFZLXmVF9kczPS17yErzjo4Gp5s6wtM+L+TYwBbgRmsvk7h7ioUHcP3kd7g4fwOXgdA/FPg+XIMoLcP1xcrh7XL94PKwh7ue77747jgdf21wW6+M9NInjn54tA0/44MvwPt9+++1M3na6V5P0+Z577mH3g5s/bZ7jPd74/TEsceedd+Lw4cOxTFzfUe5z8sLm5qa/nxdszNx5tBzc+bLskb0zPHfccQfQXOTe7w0mJ0+e9GfpIOSEY8eOgdZj42tw8mkwdkWdlHkFpHcIANx///3AsArunnn77bdnevyDwS8+H58rr7xyVLkzApptbGzg4MGD8e8DBw7EjbS5uYkDBw6I8gcOHMDm5iY2NjbQdZ0AwEq/De/Y3Nw0QbOXvexleMlLXiI++3xkmt1yyy247LLLRqOb6eMOOvlceOGFuOKKK8Rnhw4dEn+vrKxkZdKxPHz4cCyztraWvefcc88VdWhstEsuuSSWSQGq8BteR7pGADffvIwGvml9PnLkiPj70KFDWZm0X+ecc04sc95552XvWV9fF3Xw2DThufjii2MZd9jKRABd24g63CXC2WhD1lZiU3XxsLzggguy/px77rmurtaBBnwOeR+wQaAZL7O+vg7cL5lm6TwTRT64Z/aizwB8gGxEJWMy6cT3Ylwavc9RIGEsJa3P55xzjh8bt7cPrOdr+8D6OrARLNk9jhw5Ivu85JbsXqwDAFhfWwXmQLwQhx4Pe9jDRBkKIk9uS/x7J0hxAavHgQMHsra2LcS4pH2OFsqgmA4LrB9Yz9dL/MNdeHztHjx4UK65YRBj4sZsDdhGnENgyPsczX2hz4OyP7hyNmR9dmC9dGc8//zzs3E5//zzwRXoAwdW83k+cAB4wM/z0Iuz49ChQ8B9ErRM19zBgweAkxJATdsS49ewObryyisj69SBUL3oTzo/bi3I9Z++RzAAfJ/X1vK17e5DPy5Dj4NsfI8cOQLhnjnka3ttbY0pVq4t6Xk6DVkXWHsf8YhHxDPftUEyetKzkoRKIMRAOu+88/R5ZqyT2WySlXH3GSnZqytTubZPSVfFdJ4PHDgAbAbjgCuT7rMD62ueaUnx4C6//HIcPXqUjUsb98fq6mrca1dccQWuuOIKJ1T7tbC+vu6U9WEbR48eTc7L3tlxI6ttKe5OAFiZsUQBTYeuhezzcbnP0ntzfX0d2JFASdqOKaWni3sk7bOI9QZgdWWWzQ+5C7k1md4hAHDBBReAGzsmkyYr48aPrf/VWbK2+RnWZ2vu3HPPhTRIDVmf19fXgRNciehx2WWX4bLLLotlZnzs4TIFqvfqdjif8vMUcHIKB4Rn0y4r4+4zimO4wtb/BRdcAGKaNWqfndwjAeH0bHHnJFPWhwGXXnppPi6LnvU534cHDhxwY+dlEk3euOiii4DhDv8uB8g84hGPEAqn+zed7Wj6RA7jCjgwTdpyzjnnAHdwF7g+a8vaWnCF7IDG7UNexhkfdoB2irZtccUVV2Bn2QLDDs5hbcWwRDdx63Do/8jN0SqduQ5wSdwzscz3WqBwRaV0Efe8u+vcGphMJgiJAI4evVCOS2ARRxaZvH+1Muvr8t4U8gRjyYT2Hjq4DpwOY7iG4Cqa3hFuP0r3TF7GgUcsllh7AFjeiosvvhJXXHGFk7EALIcWnY/xNE32x4H1kIiBjEDp2dJ1HXoBRA3iLD1x4gQCa4Ynz8nuxBU8iDsAANlPSURBVGQPpfsMCPtRGn8vv/xyPOxhD0vGRQZUv+KKK7CysuLldQ78y7sMSM8wd86lZ8vaWhgXOsO4TB5BcsZAahvZ50OHDjGQyQHP6R0C8DOMxubyyy/3a5a1mbuYM7mQZJ/OJ89xa5vP44zvDehyC91V1A7eZxlDL8ipcn+Q7ETjps2z20dhTbn9kZ6XYp48OHrFFVfgvPPO82PLkyc4l+7V6SocWwzZO8NzzjnnIDLN/P5ysqY7/y+66CKpy0RwL1zCTlYLDwGAbaxD67Ob5/tFn+lsOjP4xdn8nBHQbH19XbB7Tp8+7SfRHULcshS+X1tbw/r6OpbLpWCOlX4b3qEBOeGZzWafVwBZ6WlbPYvSmEcDbbquy+OZJICW9s7UVXEymSRxJcrvsfzfpV+3fNJ27LWM1ue0zbw/4dHiuJXau9s+u/gW0pLUNFD6Ew5bJ7ykfaYU5KQUaX0mdwnnnmmWia59C6XPUghI29LFRADBPTNvS+q2p/Y5idOgznPCxrHnmZTs6SRf2yIelo8vItb2kinZyntEPCEvrGVlGl4GCPMo+iMutLzPsR42/sU5BIBhgZWVFWW98PYsjXlugUFfT5NJB2xJNze7z+TmkM/h3CuJtXkmRV3bq2m2vemkMC4+GHfW58g0W6rzrAW5TdtCRwbNc7bnhbUv30Pa2jbPZKZAd01+5kgXKVmPiHvj1222n3nMoEZfC+QK0UDbI9p+bppGWZNBWemAQT/DZMwUsIC5SZ+TmH7qPBv7TJ65rkw6z86Fc8HqydeCu2JaLJdLpwCsXgGgx3TqFG/3HrcWnJuVc20K31N7WuwAiK5WyRkFMOAGjjXSNnpGMmBQ11PmnqnNc5ogobgWPLtUm58kppm2ttP93DVaAhY/z4G920L2OZnD4j6z1nYclzbOsz0ueTtEPWEOlHOO2rPjYmoBaFsl9lxocxiXrpV97ndATDNjP3O3VaU/0d2I7fl0vclzBWgaI0sewrtG7GevjM9mM6U9xKjl94hc2/5cS9oS5SzGNMv6zO/wllwMQxnnnumU0sXCuV/NlyvA4gTW1tbwtV/7tfiv//W/AsMSy94zmjx7rZuux3rW19c942rijNpegV5fXxftmcVYYR0CM0ucG/7cdm7fFCxdjotkmvFzMJYJLpzNBOjnmEzzOQKANHtmeBdPcuDiK+VjR3Pg4695EJCfc04fY4zN7gCwPBXXgssoOsdiOaDxoFm6zyY8ppmx57uuwzzGEMvXP60nMLlFk8nlHa6tbSGXm3dE2CNtHNvQZ/ke95v0PKVzMuznvM8ifIhytsf3cPfMxpBP2dlvnmFxP5fOFzrDeJ9c7EDmnjnN17YMRaC3JU8W0OdymBIax74f7D5Hmc6zvLX7WcqO7gwK618CeKEtFNNsGGwMYBl1kx4yEYAxzzzxln9s2VO/Q2K5OM9ORtTkcu23D4XnjPT4yiuvxD/8wz/Ev//+7/8eV111FQDgqquuEt9tbm7i1ltvxVVXXYXDhw/j/PPPH/3bT37yk3j4wx9ussweSs+YAP1aOW2R68KOe6yYZrupU/t+L0H+x5TRyo0J7J8f/PJJP6vVmQvkQDlrjVNI1aQMipKtv7uHYzTs2GUCM8tKBMCs99k4RuHTM83UwKRMuAE/vv3Hwv/fCQJm4PBAnVbKyP7Y2TNpHgqJAJhynAHIkUXm51GZoxQ004PLsgvNnMPYMnVsXd2egQRE0Iw/Yl0qgUvFmmNAbd5eyYAsK8dA0yp7td9y67HR55kUY3stUDmKB5QmPxD9YrHrxJhEYVqf50zBU8pk4GiyFmitEThqBx+3x1aWCwp0aW1PsjXlxkMyzfR5Zkq2trazRBha8gNpsbXPsDB2hYyhPI6VIp0QAy/sefpOKtkE1OZ9DmtbP8NiGcY0y+8UNx7zxQLHt464D899TgSteea07e1tr6xvZ8aujsdw8fs1vVtWZsH63sJlXqT1L5IfMDBFtrVL+pyPf1MJrizKKNkdaexC4U59jxybSiIAxkDKguIPOTit/57Olrw/DVv/rbpeskQA1pnMAHvz3EYPNCu+nnqfJyx7oVvbfh2ZazKMq75X4zuEi462Fnh/gK4oS1T2c7xfXTlVHmV3OB8XARp4GSrLqsgVfuOck/GwVoB+WwlUT6CZc+E+DCxPYHV1Fb/zO7/jSy7R9+79Sw+aTaZkwHfGfAd0OU8Qt+9SI/9EMJY7IYtxmWRnZwdoXdvU+4wlAkjvRDn2k0zeE+WEeybPaknleCbPtB4HUvj4a8q7CMQAgDaCZpQIYBrHNoRJSq+7CV8LMOSwuJaCDCvXP4FYQDR8qQkUuCGvkpyIyct2e4IOlWTPTJhBaSIAcVeZ+9n/gzFq8/s5gKJBD0FSBxu3Rj8TqM8SxDbvmpjAKLmr/O8pEYDMnimTzej3EN1/+rhIWc6DsJpMLrwcdJmczpcAKi/0e4QzzWAYtcIZFo2KS/SF7JnOQ8uvgZ4nAsjnSOxjFrsu73NubEofqRfpMslD+VHEUvsJF8owDPHffd/j+c9/Pt7znvfgtttuwz333INf/dVfxfOe9zwAwBOf+ERsbm7ife97H3Z2dvCud70Lj3vc43DxxRcDcMkF/tN/+k84ffo0/vqv/xr/43/8DzznOc8BADz3uc/FH/zBH+Bv//ZvcerUKfzSL/1SrPeh/owBv4AHD5qNAZxsIXHc91a7dgvOWb8bAzDuts+1OunCA1MCd69AjxGExfvaNaDfKbTPM80gD/8xoEGXXmgasBCrDABSAShsCgqPuMQrwEJbAc2iUG6BKSSImUBhAUBqeMYf5Bc0uVQGENBQMoQFTb/ECVBEHTRDfuFlyqQl7HHWoVqGtzW/oJumAfptoF0FDECMAwuW4Bnr4oqVoq2LINrJPEoWpf4eCSzoCjQJqEHIU4S1CghOijqt7bLCaWfPlIHDtUxhkmlm9pm5Z+Z9Dr8Ja0jWkwc0zusgwROoZ1Xkrh15n/M9n7wnsusqAB5jCNjAGin7GZjuf7JY9Nje9nG/Vi6PCjI/55yr1gwYdjIjVEy+FxghilAeM/RZmSSVZCbqmJUAYX7OWQpazJ5MLIL0kUzjccYOM0sqc8/kZeT5VFFYWUyzIoBtKIsiezLy+4zetYx9tg1WDPg362FAOet013UZ08wEe2vnjzhzC8aMAvApAftKxlAGLKRyCTFqPYAaQY2ECRuVdPkOuZ/1e5NYtx2CmzRvR9M0aD1jfT6fO2V1cghYnsTKygqm02l0ZQ9Kbr91KwBgvbs/1rO6uuqV2xb33Xd/VDht0CwHtDhDmBIBpMACP5/C/pAgrJBtCqCZcM9MFGQO2vK2aJ4cIqaZKnMweaFdB/rNWIZnEZ7PF75dQ/6O2B9dbhTMLiArQ2cC4ripANIIMCWXlw1Qnt1VbUP7RILX7nfpfUeynt2WLIGRBqak7plJd+R7dDmY+rxEVXY0zvYIngammbKeBCvUkFtyoFCWkXK9B5Cq4Kh+zkn2uuu/bXxsEWTuUCaXsVxbwj4fChCM23O+nZXsmZJBrJ+Vcv1XznahF+V9fig/uxqJN73pTXjyk5+Mj33sY3jjG9+IJz/5yfiLv/gLPOUpT8E3fMM34Nu+7dvwohe9CE9+8pPxwhe+EICj5r7lLW/Br/7qr+KZz3wmPv7xj+MnfuInYp3f9V3fhYMHD+K5z30uXvva1+K1r31t9MN95CMfiVe+8pX4wR/8QTz/+c/HRRddhJe//OVnrvdn8XMmmWa7BZB2C3g1TWMIb+U6dOtxuS1aud324Uy0RYAbzFUxa1ewmBtCe24Zrgio7SowbBf64F2bEuWM3mNb3dvW96edFgSF8A8PILXavEvKueYenF7io5hmE6vPPtbbHphm4oI2ymTZMzWgkFsVLXAovstWOAmAgwqaiflILMexz9OjwHnPhwWU5OOiKdC8rfnabtvWMc2aFZSVVsk0KyqckS1oldEBpFxwKTFTwrocwTTT+lyx5I0BJAG+T4ICnRWRIJPKKBzBNIssJWOO0j6rlmzeHwscZdbhEouSMVxsoJAxzRgGZbln5m0pnz9CyTaExrAGF8sB920/3H34jz8a9yMXYh3TzDGAc6ZZODsCa6TENPN1h3MYKbuusLaFglYAR0sKUQT1bSBXngsF5YsBSK0FIBlrYQxzNDcOFBiFRbZIerYrfd4NgKQwMKw+c9BCA0fts4XOn70wzaQsUAPNbAMPndudubbTPvNXSeDHK4JJU3JZwVJqfTvanGnm3uXOlMVi4VlVK0C/FfdrqKMfGiyXSwxbtwLze3DOlBJHOGCNBzJ3fU7DxUxT90yNaYbOnRsKaMaBNeusJIBjBGgWE/ZIhZ+7ZzrWm2uLahQJMc3QZrIlwAyasT3L2Cc6tydM4a+dyRWmmclAStwzi0ZdfQ9RuZqRjcktAPjwy/Op9W3R3lG+qzQmOG+HAEVLDKTEkFRm1xXkwihTBDCX3kUurXxtLyQgzA3HVZlcv+fVsU36kgH6xjzL+1WCyuGRwHMrygiZJMaUI/lsQKsm0gMCu9OvWe/+7D7L10J+rucP9RlFHSM/t3Njx0P5yX3vCs+P/diP4cd+7MfU7172spfhZS97mfrdF37hF+I3fuM31O9WV1fxpje9yXznC17wArzgBS/YTTMfEs9Y0GwM66oECO2VdaXVyTPL7AUQG9O/sXWX+nAm3DNV0MyiyxYAsUzJqwFI7RqwPGWPZwAWNGtgCPI59GpbSIayFWRxocG4rJQYSHqf7XGJdUVlRRcK6aLPLaBCsDQUkYkIOmopk2mfNaGEx68wwCFeT22eARU0G+WeeeCfuT/u/V21LdLS1BgK2og+c6aZNc8jXCGEwmlYvdzvltAApEzJrrlBmyBTLK32OXcbqymtdp8jA6O1XaQEyJQAwlJgd+NngqNFZkr4R6hbMhoI+IQ5hwLobRyYZCvZfXyXCsqkQDkzz4s4M0NfVqxK+zmOXVDiNJcv99/FoseN+Gn3x9Y/RgWZWA/ePTPGNDsk6hHJVUz3zIlLRtIGd0ZadxJM0c9tUmRKZ1iTrMsSu1QHyt1n7M4bDSD1WRlSRHL3TKHklVwVR7shNrDO5WzPW6BZZJqV2LLcxdyqh4FmrFAEDdqZqUzqbqsSpN0dsD8x7yFieLm7t9hntHHf15gpTeqeyRmFyM8EGS9UB/C6rgPmAXxbAZYnc3mu7TH3Sul87uNz+dhcNCbOhTCyPZanMVslQMzFRgugGcX3ytwZ455vs/uKA2Lb29vAgUkGLAj3TL8uU/fMHFirMM1U90yaqxiXcXlaZ5rFmGZu7WRlOp8jM4mTBPhze0tmGFRBswU/k0tx9vRzTshOEdSpge01F3O+16x9FFhXSVuCwbDknrl6ObD+uILcEt6pyxz073DG5WdYBiAV97yMAWwaaBSvAAkgASERAF8rlI8mhEZQ5jlWqfdZGn3DXlP6MmKepSEuly3l+OVnUB4+wc1z13XAzhLABH2vg1LOPdPfy5xptpLfZ1KXaeJ7+BP1P/eLytoO8fpyHeKh/uyPxFn6jAGqtM/GgFPiEBsR02wMgLcXptleymjldss0OxPumQC3sugCd2ZJqrmNFYCFCBq0ayjGNAvumUPFPVNVJsPLwsG8+/hepKi0/kvF9YkHtWx0gST2xwABsz6zAPHyPTWmWVCIWlgK9CjWVRRM9T67esa6Z46MaeYt77mrRKwNtiLD3WLqTLO0qe6C3gJ3z9TPororhBTECvNsMM0y98wSgFTos4zphwII3sT+2ABGV1/bY1hX8fzQXFFkUGSbjVOyZMfe5w0AG/dYxhDExNlRAlN0lzzR58iWXQpgYTzTjO9na12WWQ2caRaeldkkluNAuWOaTYFhO7tPSUnoEATZtD2z6J6ZAy5CKK8qMjQuRWaWyS5NmGYagCTO/wpLKbgtIbe0x/GLMZvoO6Ec1/qDyjwnoQJqTLNyfK+K9R49m8McKEyVbB7HkNZtUCZrcdxaFbSkPttnFJ0rFXdTeNZJFRwN7tb5PEd5gLmwiT4L2QfCZRVQglsrcoBQohX3TFeva+c8Ms0cq0oyzRboh5bcptALFlkEjwCQu3XeHjLEhT2vxTSbEBunH8E0s+JhNR0Co8eWWfmaqbtnpushJgKIQGEOAghwp5FAILntEdMsvVtzxk6Jaaaf/7SewGQ1y22P5ABt/RNoTPJyDUDioQTkPmz9Z8h/DwCXvRrW/SzlFkPmaLjs6avK3jOAyz5mn1GRkSKLOGfUUmw7BpqZMc1IPrL1EL3P0hiorydxvxTie0nQSweQCIzK95B0FaV55szJvs/vAoC5ZwamWTNlcc4Udt2QgHNKnYSh2kxwKTvqZ9hD+VFE8f3nbHjGMs3GgGYlQGi3zDSrLepB8yDrGPvZbkGwM9VneUDlSoZgABjCv8a6KgIL7SrQ66AZCcOWeya/aCrxvWpue2NimhkXtLAeF9y5aGxsBhKNS8E9sxDLIWvvCDaOacmL/bFAs1DPiHhAALglXI4Jb4/iqkgFYIMGQSCsgCklAGlY1Nf2CKYZAcIzc55J+M+Bh8zd1ASzeJ9HsOuSpoq9WuwzZzeOi2lmMlMYIyTfz2U2jhS0rHmWoEGqnElGra1AdzwYdwlMiW5h+btEn9tcEZSuFFDfI/dzAdgcyzRbksA7m6X7zCkrkmk2TeoJ40vuXPnd5MsoiTCytb1HRuGYcelGxDST50JtbXv3TMVVUbAoeb1I13YBKBSAfAkoLIGjbP2X2L9BsVKYEaLPBZdUoYjDZQmW30kX8+oc1txWqwBqpc8R1Ky5Z3rQrBpzVLoEyvHQ5QmZSVVvi5gfwz1z2rl6FwvPJPPKokjs4d0zKdbQUgHNGNPMcOeaZjHNUiXbKdNF98wA6vu1MlGZZiNjmonsmSQjcYNEKREAxZIM7pkaUMj2UcKolcA/AQtmf4x7U4I6+fonsB2oGjhZPN0i66ogL0e5RXFnz2UFSz8IldX2vC1DNW3DxgQ6uy7WoZ8b1Gd/P/s5tM+OnCEsjZdAcPcVMrmIoWrJaqAyFjgqjIFMjknb6f4yz7nRMc2MMyg35LkWkXw8ER5Y/HHnjD9DfczAzc1NaGub9Dfe57xOyRav6VXhzNlnmvFnfyTO0udMgmYl5tiY9+wFZNoLmDem7WPbt1ummWq9rLU3zTCoXYqjFLhyGXp3j1FMMyV7ZsY0KwIlXWxLDVgoJz/QlRlpPbYFFwmIjWGaFdwzSwqnYCyMSX6gtYFT8S0lgwkMxjwLkEJxuchAsxLTrOiqWHHPTABhfW2zOFZjYprVXFLHgKN+nnULsy3gagDqblmUwtJtAJLZ2BbdM4mBoSmcUeFRrIYSBNSBqrwtpXmugeChjLVXQz0TE1hIgZJyn/MzLFO+NNeOTKAuxDSLTBA7I9/Q02/XVqdJHe6ci9kz1UQACWimAeFx7Gb+3awdESi0AXlSEGoKXg1MCf+wmYDCaDJmP6MEmnH3TEX53RWAZLgNV1jcXfx7BNhbdc/kTLMaIKzcVTy+l3VuV1wvJSuiIHNgKPZHAo4j7mfoSlwKLHCXQM21SQdTuFHLOnMDyDRTQbPA/NtZoMA0Y6AZctDMvYczzZx8kYFmU9++6J6ZMM3A3DOVuE8a0yw9KyWYPgH6nCFG488Z7nR3TthB42KauTNMBc16z0QzzpeJAENc2yTTjMXfRG4kytdChTmqAGvyrioZ+xgDrCRvjGG7DgO0RFW58Thf27I+XZ6QZ3uj/C6cyQ37vpBVsea2NwZAYsa+NIGLc7/2v2nXszuxbVsPEHEA1dIx9LOdAKQ2Cmn2PMOUj4BkbSYx/8JDZ2oOJmZMcN9+zigtMs38fDim2QQnTpxQ15s0quh9dm0N/7Bd71MDz757pnz2R+Isfc6ke2Z2wWVWrd3X+blimo0BCncL/I0Zo125Z5aCjnJqfJVpppeJdYWDTgnEGts39NAYO+KiMYASYkUUBIVUybbaUAANJFClK/OxzfDsuqLbnr/ELaZZgWkgWQ25IKb3uSaIjQAWDEahe3z9iiAsQbGcWi3LlwQxbvmtu+3ZroqAxUCi9R8EuoorUDWmWR/n2bQ8VplmtsJJrKuaGy5grSepwLk2F9l1CmiQtzl3PZb7uVX3M+0NApmy9oo1mT+yz7YC3QnG2jglW0v4IIA1i2lWYM5Jly8DKIzjEpS43KIer8iVh8fP1lh8Iw4Iu0xhKzrTLA5rp+5XgAEsbUgEkPRHGDsehHtmDUyJ95ceD8jV4/8xxrUvsK6QKw0EugfjS/rdiBiF4Wwx1oI82/U7TzAtq6zQ8e6Z5UQAUwEq0DuYy3BpnquAWJnpLcH/CrO9auDRmTb5uwyX1OQMS91jJdOsVe8HrqBa7pmRabZkTLO+AJr5c4GDZk3ToOFsTMVoBTB3a2XPc0CM3Lo198xwPoW9KPcQB99KTDNxByft5eWje6Yic1BMsxks90xyQ29je3L3TAJK0uWUgQKjQGNNDii7Z44Bw6g9I5jczN06O8Mio819UWSajZJPnUEp17Xgvmv0sdUAJG3PCyZflWmm7/mubaKcjPXHAht/axiyJ6Z8NBEM1FxuyY0qeZ+bpgGEfjYiEUAtplkkCmgu5gz4b8IcufO8yjRjiQB8g7P1RmctvUfzz5Q6aQ0ctRnlD+XH0sr2n8/zZ68A0m5BszMV06wGmo1hjI3pn/bZboG/MwYUclQfpcuqNS8ISYnWhf/47mDtVi5wajMxzTLQLFG+8rZwa6GliICVMQSBGCNMV1oj02wUUNi7QKmb/1ARCg12nYg3ULPk6cpKk8xzOvRCQDLcZgB+oU3rfQZUcDR3z1RYV1TA7nOyLm1rn1/bWpbUCgPJjb9k4NUtXyWmWYilocQ0i0CttbbZPqslfCgmAhjRZxGbqBYU33bPpD3fZXs+28+WMhmVjAKwEPuTKxn5PFuC2EjQzAj+npXxxoHsropW4QIgVjFCCDBRGVsAiKSyc7+aPltJjU1OGS0zzcL4kiU7LUPAjWeasVhDWfZME5wux72J7qRxXLSxC+BdEKYVF0N+LtQs2Up/wpOxDllTckPSCABp5NleZlfX3DNHuKS2gS1YONsVEFwqkwUFusoWZ0p2CVhGGRCTLjwjzzBNiUuU7EkGmpUBYcFKNxR+cc+3DrzOQR23luecaYaFdM/EEsPgmaPrjwNWrswyY06E+1Onnru5eybd4xwQs9wzI4AamC2s/bIMZwXpoJmrlyUpytwm3eMUeAeO5cw5HtPM7YWcjdaxPruxzJhmHFhIlpM822t3uH7OSXBIZ8tKEMqWSaSxoiJHKWub2tKAgB0NwPNP8X7m55whtzD3zLQ38awFUErgImUkHTSjPWuAZh3imkW7CixPKGu7bMiWYHreZ8GaNth1cVwA844HtJhmucydzjNvrozFF9Z2I/Z5ETQTTDMvdChne9M0aFKX1CpoVgslsOL/1rN7PlQfRSzdf86GZ6/umWN+t1um2V5AJg0Qq4FkZxIoLAF/e3XPzNvPae/yMKV2SRaTfiCz4Js1QAxAKnDL9nm6uAUgscsqm2ehQDSGghYUvIn8W7TBptADqSCnv4f67Md4eaLANAvsurnd56KrIrdk1xQra55lIgB1DoO1uLUVzjiHgH2B33e9L2xkSaXa1LHtus4xaC74epiKeAoI15hmRYGvMdtCfdbZRXoZwz3TsEDHMkk8FBsorOznWKYg8LG2lIEFL3zmXWbnh+GembikmuAQc880z7AIFCL5ngvcnQkCdiNcj2n8giJonNvRVbcU00w/T3PFyjpzF3HstbWwEnTlgQTe9TXFPTMyzfSYZpl7JnLQjM5dC1iQAbJtAMkGU6i9jV0mTQSgsR/FuTAueyaPYyXLsEQAXbq2OahfSWxgnC20llqzz3ENjokzWTBY0flUcc9krGidXUTAvykrFNjimZJdvPMq7pmMjVYGEwPwlBWRxj4oTLNqdmvGNDPc6agdnRt/xcUwkL+IaTYtM80u+V6gW8tAs65jSqnJNEsBpDQRgAOQ+j6cc/VEACkTWTJcKkwzHtMMFaaZkgggMs1iTDOFaTZh578HHwQ4F5maHkBK2pkzdnYPghMYDJJbFGDB3Xn2HqJx48HS83Fxa1uPSyraGlxSNXlieRo4+VE/IjUQXD/DyKAZQButz7EwykChdM+sMs2SaiZdWGeId6LOkLfnWXqiGGUq8ql7F1uTRp/JgN9l+yM8qYGHsz6tmGaj3TP92hKgmZnAxRscDUah+MzQZQA+z3lylv1nHzQ7a5/PpntmDUDaC5i1l3acKdDss8E0G1dnaGTFqlWwEgHJJT6KgVTJQghkgIsUAizFKjQoCCUlFzb94M6UGU1REWnkCyBT0uci06xd0YHCMYyFChuBhJ0ALFhsnAZBqFQvq5BRzTPNquCo4Ybb3vYzVI/mhkstU98T/77g62GtyyyTpLm2gbBW6uyWmisQVKVIlKm5Z9bcHIoxSkKf9XmWTLNJAbThLiIjgEKMAZAsplkbBaQyUNjq4GiSCEBlmomYODX3TNvCWVKgZb/GxDTT1y2NS2AIWKyrJULsLm29rK34v0PgbwBra5TJltpZjml25JyDvvNBmSyAZt7ym8U0S7KxmswhZnipMhbUMgw0M4FPUH+qIJMHAS2mWQSipHImlKaxsUBrAe9r7pk1VugumWZdkytKtGYMt/rRLql0nhaV7FKZAFgW+0ws1zHzrDIfUgDVcs88E0yzaBzLAaSY2KPniQBKMc3ckzHNQrWtd89UGF7TaSwENaZZZFQBdvbMsN463z65nmSfbdCMM2LD+RPGj5d/4IEHUI5pxplm+RwQu66N6zuPaRb2ag4CZoydItirAy6x3eyOMUGzilFLsJkStmB40rWtMs3iPjRkqLt/Bdj6lNnn/NweET5E24ecgVQCUwQD24pp1iOGWEjnsQOt7XYluxPl+q+B+p1ZRga85+e41udOHTdgF+6Z4pyzgP/Glw+/ceB4kWnmCQ5xf7kaoMrt8U7x60mpc1fJxiJDeB80409+G+4/Z8WzV6bZGODpTDDNaoCXjXDbvxkDtGl177Z9ewUf88tqRCKAijuFK9eAuzMWrboALJBJsEKSS14CCzpQJYIiWxb+ygVNAJLdH8kGscdFWA4x2ELhsAQaAzSrBFfWLHk2UKj3mSvQxTgZUeGcquPi6naCkXsM0IwDFFpA6ViZ1R//9z2/UygT6tABpNjnUMZk9AR2S2VtB6CpGNNMD4ovBR9dqM/Wv8q05MAPMpdU0eea6x9QAR8SwUUR+krsOhpbr2SUmGZxz+8eKHTt4Gw0CxDm9Yx0z7QSARhs2dyqWwIta8DCAoEVpPWJwpfReKyvrSbvcWvbuVnpMc0uufgi37HgzrXIQbNorMhd+8YwhAXg4vujj4t0hbPXQsG1Q5z/tViULrbmVAkBkQJI6touuO0JAKnERktAmdw4wM/2MVlfa4pIiGmWFUlcmzSm2S5impkhFhjgWLt/C30mBkYNBNeD/GdtDm6rafbMxNhRnOfEvVD2hzNQcwNbYJoJ90yWlCPIV0MVNGNx/4wYhZJpNgI0G8E0S8dWrBeFlSvHLxhlO9He3/md34nlPvnJTyIAeCpoFpkwnTq+xNjs4nsEaMZdj5HvD8lyqhlEAoCkuGcC4MYo/T5rEO+H2v2MDoCbQ1t2tFiUPDRFDuwIWbkWSqMQ+kOyyHQwJf5GkZ9Em+M94v5tM+kDWJUYFumCgJbJlgwQttwijH1mbGWpe2kPjUvtnFuKdavrsgQUcmZWxn733z8oppl5nyXyqZp9PPyrK69tUPgErZ6H8rMPmp2lz1jQbAxbqwSCjYlpNqZO1TXiDPxmr0yzErBmCxe7qzN1YasyzUoB4o2gl3ldUIXLvIwFINnCQscTAZgWnljaFbXc9lh/yoJwaVxkn22Ad1AFxzzVeSV7pkmLDv9wdWeU9Ohu2sQ6dIUzsJRm6ri4d9nAJ9Ujg33mQkmsTR3btm2Be94D7Nxp9lkq0LnARxZQmELJrphmERwtgGZBiC25Z5biPlUV6PCysLYL7TSBBy+QAHWFE0tg9Qr/u6wI20vGPHM3UEvhTADsHCgMfwdAuBYbxACEY0wbXcjN+6Oz6wSYqIJmQZHR1y0BArSfTZApCo1ZM7C+6n/TrsXP1tbo3/zcIKbZdnafHlj3QFtjK9mxeW1wZ6QGjQGEhTJZcs+M5zL0MnFcxjDNJuZaIDBlJpTnrEx0zzQCeteYc5W1INgiJoDKQbMRiQCKoQQY06y2n1VjRzlAtgYapGsh3kWFM5fWgu2e6eoJLsyV/RwTe+R9pjlwX5qAsAHCSqZZYf0LMF0BzTzYtew7B5q1Mntm2GfLfhdMswSEiu+K2TO7bK5T0MFOBLBg45IbGOR6mahgF9XF3DNZWw4fPiwLG+6ZMaZZW4ppFtrn28zObmKaSWAhb2clfIjCTMwZqhDja8ZlLBhJ3e/8/cyYZvZ+zJNc0HcN609hP+8ijmG2/uNvWt/2rDsM3KoYB+K7dNAs63PGGGTnaZOzr7O9WpNbzDvc/6M4z/Js1+Z5dzHNgixccc9swm9GJAKA/70IF2HI5FF/0PVN90upGxTB0cgWVJv3kH32h+MsfcYwwLTP7AuAnn8qplmtzJi2j21faVx2W94uExqpM82k8K8LwgBX1m2FU4ApJWDBAFyk774ufHZdS2Usl7tKnyXrwbKYtJAuqSXGArHrzHkLdPFSHLeqUGKDKaPmmbtnmvPMA22X3AL8U3JVDO3Zg3umaO9odl3utidjRhRiCjEwsahkV/usM80EIFBipiRuS2afDQApKvpAVKC1M62JwJqtcNLYuKfsnjnJBEcC8EJ/LDCFKyIjmGaaIBZBM/t86hI3tyII3h3wfbbWP7ln5okAykwzMS7FYOmLKDQ2yIXalZk/O7r1+BkHzWg9etDMiGk2m/E2SwYGjV3ovHfPZKCZdP+w5jAoIqRkVEEzC2QaykDJaGZWUKwM0EwoIiaLsrK2RVKIWsIT6/xne74YA2YM64r26sSK4xaVr0pMs1EguBH6oNJnwTQzjDe012psWRYbx8oALFx1k3NbGPLys19mz+zscUFw/3N7xGKa9UPLGB7ENFtbWwOGJeaL3n1/3/XArW/LQLPoeVmMaRbmtUVgl4Y2S0YhMIpp1s/1rKIDA3WMRAAE7oe7nuSo7/3e75WFlbiw9K4dd8aZTL4gk3igkMVuFDHNIuvK6E/t3E7c0FXZRwAcyh0DFuezKJOEfTRR74i4/pXkH9nZYzLBJdOsaOwzjaCh0Z38W/RZyi3mOZeAz/ZdoycCoNACHTSmWVzbLDlX+a7amx4i22af7QLQNVxSCfjP11R2P/vvu64D1h8NPPz78Y935m0DgA/e8xZg/WpEphnPnqmCo2XPJvfuesZQN4cDm8N9phl/lO2z/5wNz5l0zyyBTHsBxMaUGdOOMwWajfldrc97AgqTRABt6VIsAmJ16wDVBVVwzMsooFklvpG05BnW7vB3CG7aKXMR3R11QQDwrIaKO6Poj+GeScrrLBNgScmgy9e2IpGyYvbZAFO4Al0KwCliBo2KXaczzYSbZ9E905hD3l5DWOsS65pyP0thzQjE7ZZJeS0Q0AFVCQl1EUuj4J5ZioeSuGdWwVGlzyLgfQ0cLcQPkYBwvo+oTK+eC2Ldlly1Ku6ZBIjZoFlXAUfdu8K5YJ9hcQ6nFwBbN2PS5W4LBD7UmKPGus1YrKVxsZlmq6srQL8FtOvsM909c2trC2b2zOnUr02vZKuJAHwDAtOsU9Z2wa1+dwpaeHdBQSuA+jFe05iYKe1U7S8Q1sKg7mfpellQoKMiXlA4E3ZdrqwHAMnuT5yDtsa6CsC/5VYf2jPNgAdSjisKK1/bJffMJry/kj3TOsMicMPdFwv9gc5YoHM7TwqRGTss5hwHUBWlVrK3JDAUnlnUR6fY3NyMYJUGmm1vbyOwyEymGUvskbsqMmC56J7Z+LtTyZ7JWWTKO+hcyd+RjU2UTWS5Cy+8EPirZ5O84cdEB80WrM/aPuJ9dvOkZs+MwILCNKsk6pGgcX4uULtpz6sB4pterJXy2nbj2ygxCnMWpfb7BhYIPs5gy9ZCzT3TSOYjyhTc6jP3TOR9ljJJvueFm643JPG1HddtgVGb6yEjXBVVN1ywMjX3TNprto4QGF6We2bj3+t1lbWrAQAf/1R+/wHAyf4R7h/DArl7Zkk+Dca+esZQ2whE8s8+00w++8Nxlj57BZDGAEL/FNkzx5QZA7SdifadcfdM6BThTMi1DjGetazo/hEusZJSSpkXi65NJVfFgmtlysZJD1zp7lgCxBrfDt16lvW5BhQqSra0nFWUjKL7h/9HIY6bK9PEPqtCSTLPRWABqChfUAVqWd6aw6BAh/GvxcPK1zYATBL6u75nwv/pgqNsD2CxKMk6lgs2uZJdivvUjJ5n1WIrhM+CuzUwDlgAgJN/bq+FoQQsjHFhC4qVsf7jWrKVDOG2apxhEwGaVSycALA8WQbBWyMRQGRpNOp6ylx1TaCcAAGtz7PZLAPNcvdMp4xubfvA4lr2zGjJJmZKHtMsnGEh7lOiCI5hDiWW+fLZDluJY26I2poUblhFRmFwz8xjuMUyBiAsjR0l4HPOlEmd9cmVHZtpHAwIJRceuofqxo5aMhPJxKH+SEZhERw1yghGuWuMsV7oXLGVycDGrDCEFfc02WZeJmkH73NRJmlNhT8DHDUmVIhF1s48aDbJQTM4Rf3kyZNxr6ag2VrIoNtMY5m0PbNJeNcaUga8ZJH5utREAJz9oiUb4AwZp7jX3TMd8ye0NwNYfUyzlZUVUYc8d1v1XRHoD+7s/XYCmiVMs2SpSPm0ds55eXqP7plNAM0KBk5a2x3QTtE2FtOMsSgzOYzHNBvBNDNZxGGedXk6NWSrDCQOIFUZtW6vaew6YqkG1pX8firA0xxUprVA81zc86arYj0RQJqcqAyazeASF5SyZ+YJTzT3zK5tRJ/uO5m9Vj5Z9kxrnhOm2YPJbs0YkvsxzeSjiP37z9nwNE2zJ1BpDNiWW+/Hl7fK7AU0GwN+mRfaLn9nAwvj2qaXGZEIYATTLM2qWBfKK9YxIANcpO/+CCW7Gjg89FlTZhiAYSgQXUxNrQN4WZ9L7pmGkp27NtWCaBvjIoCSXOBzn3lgyAAnXHs406ykfBHwqY5dnIMHkz2TC3QlNzdbKGlF8N9S4PAg5FZiIBX6XGKakWVyjMBNSmlWJgqfYwEkaz/LebYBsdDnWmKPAtOMMVNU4H90rDeb8k/xymz3NNHnUSB4jVHoWEo5aMaVr0L2wKKVugWPP6Xt55UVp2BG98wPTc2YZls7oU95TDPJ0piooFkqxGYxzQQgVjvDSiATA5CKrIYC0yy0vbAWhLGoFNMsAsLaGTYGBJfumfaer/SZuSrarKugQO79DKN+5UwzCaboSrZUavV7hgA+Agp1YDmsqZp7pu3OJfoDnbFA93MOLOQueQ+WaUZ7JGeahbtqxphm5J65vr4e6zh+/DhC7K4UNDuwvs7WnQ4gdV0DLE8D3SH3QRrTTLDIgBRYlqBZvj+ANLj+CKYZGqBdFe5yBE7Dfe+ZZpxRC3DgswBKBgZqd4777/J0LCPOwMg0U9qZuN7bZ7tuhKPyjCGv3WeCaVZL7OHlH5N1xRg7nfJ7o63UXg4CWkA5Y5qpYHqo0DZwSl2llj3TnUF6PfyO0BJUJKBZcv7TurXnWZ5Punxaiz8LIGNd2QaRJXD0m9wHs4tteVk55/Kzx8mNfH88cEprHXuy7JmGQbCibwIggrEiJ+dtzplz+88+aHZWPzriLZ+9gD27ZZqNAeL2AprtBfzS6tktqLdXdp0NpuiHjxD+CzHN2nYsmFKO7xUt6wDSzIsiBkbJqhvjZOjtpT4H4UcbZ6nk6cACByjGMc2KoFkzRRrXIxfECq5NRYp8AqZoglgXxkwHbVyfydpdVL4qTLNoYWrXgOSCFmNkgAakfDWwFE6hTAIGgBR+ows2rp6Gje04MMU+wwoxzeK6teaQgSmmm5v/x5g4GQU3B1FPKVh6FMR1AEkK7lrCBwmImcAnc2e0BcIxQKE9h7FpNTBlLAjeWEwzGY/GtFIXgwgHRSRkOqwwzYYlgF6AZs5i7t4zDP4+NZlmBIiZgYaZ8pW5sI2Oy1hROAWAZChElZhmgikwknVVNszl+0i6CRX6zEGzIuuK+lw2DuSBr2M9ca+OSGZiGTs4iDdoDOExBh7GxqkqnLDLxHOhwjSr9VnEdDLkxDAHDKSS7aB51mXVYODRz1xhHDNBHccERTPFxsYGUqbZ6upqPFscaObWYAaaHThAe8RwnWzb1oFmEw8gqTHNWjZHFutwAviYaDrTLPR5MmLNtXBMGgLNxJpFi+BinoJmBAjboGQ8syaH3X/7U7E9xIqbxj7nAeSDUdc+t8W6rQIuNiDQNL0DcRvbYEuAVpj/AtNMMXZo7PeygadUpmzIpj/DvCpnsjAIGoavuO4CA9sAChm7Ln0Vxbbz+3zQmGaMLT7KPXNMnGHlPutkn4tMs/jB4YIsHAzIiXumyPTpxt/12dWztVMBpfo0e6Zxh3NPFeiyWprduipvQzd2PJSf/eE4i58zBZrp1kj9HVodewHWxoB3+eHf6Fb4M9A+E1jYRZ21g9sWcm3FFgBlRfFgSvESB0wLQiq45wonZ6bUYsC0qsIfYy8ZoJm88HSFx5VjF1rRwl9WsoUgZWYMJUXE7DNT0EwwJQglZqrnJo6tatWKfZ5WrEBz94fJNPP1XPwK4MizRBlZvgQahEQMNcClYLHt6oIYLQ97LYwBzUj56rIyGRvHFLi5cKME0Y5WU7+GNEueUPYtplkoPIIiX+uzwa7TBG4TBC+4Z2bgqAUIhz5b7lwiLlcpycUIplmIh5UwMISV2nJhEP0pKVYsppmiHKysrABDAM3c9zlotuPaGQExAzTDQgB0pmLUGEwzobAW2AijmGbhtxZotoznk61k9PW1HZXMQiIABiDlZ9gumGaNDggT2OXXWdE9s+aquDTroPaMBcHdHjHdMz3LyV4nNrBA2TPtPgtgoeSqFUGzCiu6dfH/VtrjehkMCFniMtCsYtSi9RbuKgOkqjDNaL9y90wC8fjZcvr0acCIaXbgwAHPCpm49ylZK7uuA/rTwOQIAKBhrn2SURjmSAPNFm7MDNdLGdMsD00h6+JMs63YZyFfNS0C0yx1z6S91sFi7RDTzLHrJu1OXDN87INKqmfP5IBwCUAK67/AIi7FYuVZCIvumQSItcWYZp51xcCUXPYfkw3Xuqv4OVd3VdT6LIC1qntmDTRjLKVEbCEZl8BGPaZZTVar3OFpTDPNwDm2z8MSWPiza/PTql7KZWE7pllY21LHns/LoNnKigPwRSKAES6pZaOufT9L5nQ+hw/1Z384zuLns8U0qwFINRaZVqb2t1aPacneZT1ngmmmCmKVOiUDIz/EcgaAxUAKl/jMBJBSlkYRWAAywGW0JY8LJaqCFksnf6d99sKCBXbFS08XlkVdAIpMs+DOmAiwmXumCSzI9trgqAcWslb4/hSSCQA881YhOx1XVmqgmehnaGsLbPx9+Aumko3gOlADU2xLnggQbwHCI+KepQBSmYFUcc8sBsVnQrkKJvK2QnXbE4CYySgMZSrMUZT3M1myczfPHODO94cMnN8WlIwa04wLqJbFlvW56M4VXI9L7plhng2mGYtRqO/nSgyYsN5C9kxlniPTrFtHmCcOmhETbQ0h62Ua9JjavHDAAnSrbs5YUNZ2IS4j7VU6w2xFpCRwc4WoEt+r4OYj7iojppm7q0rMUWlsKiqTJffMikuqZGZVgELXoQIgPNI9s7XcM8vnk2BRWsC/wq6zmWal/Txh/RnBll2cwLTL2TgS+DcYVSHwuAkCMhnKKlOJaTaZTDzYNfNMMxe/S4BmAwPNvBEuBc0cIy2wpqSLZ3jatoVz7XYAUtcs4ncCEItgrgGaKYkEwpPHNMvBu1hXcM9sHLgZ3kXrCW4O/Jio7pnRFdT922Sa+czI05bWwnQ6dePRrsAytmqZke11WznnBCtIOZ8iaDZT65B9tkEzOrfzrMd0r4a9WkngUgIKOaNcBZCC0T2wvyyjLorndtyPBaAwzkGrxzGM68CPic4047JaJSGZafgdASCFz5Q7JnuXlz8np27I64n3ax44P5dJ3FhPp9O41nfm+Tjy5+C6B82SmGam7lVc27Fnpnwq5O2kP/vPPmh2Vj9jgJwxoFmJaWZbge12aHWOAcTGlEnbc6aAQpuNo382jl0XGqkDC5kFtOa2V1WyRzJTAB00S2IgFd02DAUttfCkqdCbpvHjQAqPflmFz5xQNwYotOekxK4b6dpUUEQktd24rNqBCZVW/AT/WTV2XRk0a7M4EonydfMbgPkxBAZGUckusg553ANlr+6GaVZwZxRgr5EIQLj5lNwza7HrCq7Ho9KYC0FMd+dK43vZ/SkDhanCmZ1hu4oHpK8FGvvO7LNkFD7YRAAj2DgRWCu5Z5YUq7BuW/WsJOZEyAyY99nFNNsC2tXYZq5MOtBs030fmWbbBfdMD5pZwdK5e+Y06XPFbW+829KAOM8WiyDEq7GAfx7Ue1QykxLTzIO1GotSuBVbQGFQNDp1niXABxX8oXdV2HXMPbMOFJYSASzj2ZFlTBQMpDHMlFrsRsBU1uHXQinWDwsHYctM+l6V/SJwNPdy4IBYfp5G5jUbl7QtOQO1N/ahc8/UsmfydR3dN5WYZsQcDSywuQ6aDUuEJCIcTBSul0X3TJ48JJcDdhfTrHcHe7sC7kIuGCeBMTtsZ0wzd0fwRACae2Y4/1d8+xLZs9/234Xfa2dY2agrQKZSUhTGhNKNfcyzYyTTbHXFOMMYQzjLnjmaadZUZDWe/EaTTzkIaOhMXG4pejnQuo3jpPZZj2MYs9S2/q5Mzn8tmU8RHLXus/jeIJ9mTUU3ViYBGdD43RueeJ/5O7xNmaPi7HFt4WfCtsI0Gwb67OB6uMv8mJjGsdCgwCgshdKwgUJpsN0HzdJnfzjO4mcM00w/cORTAoT2yjSrAVd7BfjGMM3G9LlU5ky5Z9YCM4rDqaBwjol1JYXyEYHzh4VQ8rKYZmacmJr7E1h/LACpQSnbFZAo4iOzZ+5Wyc7cM0vWvlKmnqTPeiZJCXxqbZ1OA+tkVhFcAmhmJFGoAsLesmywBcn6HPpcj2mmWi9HJAKIQGHJPVnM84iYZiX3zBogXHRJleCoCppxQcyaw9jlsa6KY/az4Z5ZiwcU5rAklAeLOHQAiVyyS+5coWMOEB4zz7Z7ps5GEyC4X7dFV62SmxsDqerZMw33zACqBVcUhWlGjJBcscra3K6gnElPX9sCQC1lw2VgihoPRYCJJQZSAFkfbEwzHRAWTINR7pk64CKC2QNqe2M9CptTtmfEXjUMVvq4KEwzAY5aYC9npoxgmpksvTHsOoppNoZRWDRqtdNsLYy5nx3gsuP3jz4us9lMrgX0OHz4sNIf5yJIMc0WOWiGzn/v2qaCZtE909WhhxRZImSSnHRMQRX72Y+XNS4xWUDBPbPARqO6eEw4aq9gmoWkBcuTNgjIgMv0XbPZlDFzZXw711bONKswwcckwii556NHKbENublV5G30EQQ8sL5il1EYwtSOxjzDyGBl3+Fy7Bu1HtkfSyYPL60wzdADk/MAABOcsvscjOYp0yxmqSXQLGOacaNWiS1Yyp6cGO91rwCuY1Tc0JtwDljgKGMUpjHNBHPOjTXfQ5p75tY2sU8PHVx1Z0rsT6uf22IOjbUtyoxzz9wHzeSzPxxn8fPZcs88EzHNPldMszH9+adyz0wZSCqYEWNGFBTORjJTqkp2ibHDAKRDhw7F73JgIVc4JbBggSmyz+plJaxaunIcL552xeyPZKaU3DNDGSsRgFe+SlatooImL2iVjRNdbFdMcEgqcSOYZtv/qI9L8rPMPZODZjULpwfW9PXP3bmUvUroEGzQzO/nmhvuqPhewY2wkj3TjPtUAda4uylgxEPha6HmnjmWdVXLnunK5PMc+qOD0zlLyQKQymCKTNphxTQLjXaAiw2IlUGzEggurNSGAkGgcxeFZbNMG9wt8v5El6JOj2kmmGYBNFNimtG7au6ZAcQrxDcyWB40h+EMq7sqqunqI3hng727jmlWYpoZ7pkaIGwzMGwGUsY0KwKFNutEsq5K2TNHgGZxP1tASWfuM8nA0Nd/FsetWM9IxWqUu7UO2tC5PSmAQ3Q/68C/B81KTLMIArp6uOwT6/HumZubmw7Q6jcT0MydLaWYZjKove6eGfvVBaaZBppNAOaeyftEbLZwhlnumQFkskEzVy9nrRELT9xBPutlM2wY4I6MDauDm8HIIBk7wj2zmPCh7JUhQOPi+c/OOTVYepDVbKA89tnfEQfWZ3qZAKwNC0yYRYTaUTnDOHO0xDQrsKsj86kQbkAyzSp7fupBs2bDKMNcFZN6ZlP/dxvuykJMsypb0AZHyUhny+QRACskAhB379BjluxlVzebZwAtcz2Whrw2toWfCTuLfA3edCuN7YEDB0nmb6aAZexOEwFohmyuk450z9QSIT2Un33Q7Cx+9gKIjQF7dss0+1yCZqoAUqlnnCtlGTTbW53+HwYgJoRkrxzogJ1kKVWBhTEg07DAwYMH43civbt3eRnD0siEG846AWOhiHoYA89y/2j9JdGuoqx87Y5pls8zE6atPkcAybjEY50FoFCwBUsuL4FFNoJpNr/PKMMacNsvKABSiGFSApCC9blVgSpaSx5MKcU082xBvc8tlXkQmefStZDPc5lFmbl/qOCo/4cR5Fb2ueTmEOpxILgN9o4ACotMs7Cf9TmU7sm6Ik4AReizBhqEOSy47cUy9riIvWq4Z6bgQwaaCSu1waIcWJkio9bOnimVQItptu3Or9aOaRaVnmClzrtMa1th4wigvWTsSCzz+n02hmm2LO5Vdz/3USgfY8ioM820/cwNGbWYZvr6zxRo1TLPQLMSUDjGPbPCokwZaxkInsTlss/ksOcfREyzgeawelcVgQXaqzY4Gpg/BffMGtOstZlmMk6SqzMFzbJEAJNDwPKUkghgQjHNsMzkUTcukmlWc8+cTWivSdfL1n/WijmSe979W3c3Lcc9i3UtN4AuyII0B4Jp5rNeTrCV1UF7hOTC9F3xvAxAIWNdxbOyWTGBT9obtOftM6wGRPGwEll3WOKtFfM+o/PJ3RFrqzloRvM8y9a/ZowdAwLad9UEMFlX9ayKMnxCQfZkWUInjbEW2D2SLrlI1CoxzUaFWKiAoyMM2VMue9ZcUr3ule6z2GfGNOuadD8z9rtvm2CaKaDZE7+LdLMLDhxHw5NTmGsBos9ayBRZpgCO8nneR4nEsz8cZ/GzF6bZGLCnFtPsTLhnnimm2ZliwuWpzst1jgEfZTBKI14Q6gDSaPfMijuXdPlaukxP/pGJAHShXLjFGIEkUwuPuja4VcsCkIL1tamAZrthmpXcM8coIjX3pzFMMy+ImQIsc3mxFauye2YENvod4PTHbaaZj9uir+3gOqALsSQc2eCoBMT0eZ7G/WwDa2TJhlmPcNtTmWYjXDsqCmcn3E0tJZvvZ8t9FlTGWLfpXi26NgHA2iNz0EwwR0sBsmnP66AxxboquznorkLuXQF8s5lm8gwrlanENGPumfp+HgMULmhtK1JSdL/sDsTzJWOahZhaheyZXdcByxPA5Hz/7vxdpHyt6soXjwFjKZzCbanGLqoBSJX4XoxpVp/nWkwzt6ZyQHg3TDO9zynTTHMxJyZgrc/ENKvLQ2OYZlr2TB43ygAmBDNlREwzyz0zjv24u6oqk6DEdKowzQr3M7lVEuCis64kozZliBFjzccsaw/moJmvw32/CvTbo5hmOlBOTLPMPTOsST9HKZAuGelunXNZTraXwDtz/JcnI5OMM80EiKvEXwuPALitmGbRXT1nmrn+cKaZ5Urd0zlnMpD4PV8IIh+C4isXGoFMlUQADCjhGY2zMs1Mlz1j2AMdBKT9Y8sko+6zLKZZ1tQknu44BpJt4BlAd6esZyVlmg0a00xmA62Do9q41DOGTmfhvROzzxFA8gYrDTSL6z8w09l+FgxJlhCu5p75pY/0gOSHOpxzYIkusAUfpHvmNExaASiUepW+Rx7Kzz5odhY/ewHN7E2v12sq7oW/tTrHgE6fLdBszLuyoLvJs5c+p6wTta0iTbCVSZJd4iOzZ9aVFZn5ScY3atU6MkVcEW6m0UVqWjiU62yc6LLQrZljJyyhJUtRMaYZYyMofdaslzZjx7ZeTiJbcAWWYpUqIvaFVrbwR3CnzYU1Emoa15Z+u6A0hT7nCloKFGoubGNYV9MRwJoEPitB8QFg6HPgX4ApJRCwKwtrYp5rmSStdRsabcf3Gg8U+j5Pz1eAhaXrb0mRqbhwkuAfLMfamRwEMfucSy22Y+a5DvxLFkceP8Taz1zhtBhI5Hqj7ufJBM798kBsT8Y0i4yTAJrNdQV6505g5VJXrzK+1J41oN82AieTMK2CKRVlkuY5KBkG0ywkAhiZPXMMi7KcPTMX7uWZ7AxP+vnE3NzMc3tEn3fDNDPWf+p6vNtzTqxbz/QbM8+6nEPZcMusHv099C4CCncLcIcnjosV02xUdmse0ywv4+Qc6fKlgzohe+amA8P702pMs9OnT7u9uNw0QDMftLtxrDPTJdu7c80m6Xehz/qZK4EFt//X19fzMrHPU3P8HdPsVGSSmUyzGHOxwkA1gMuu6wRoNsmYZjseaNTncPRaGJUBnmJIqgz5yDSz5e14P9diUQYwRTV2eMNkzd205p4Jfv7XmWYaCEJgls2uc23m8bqsM4yBZl26F8N7QjxlK6ZZALhr7pn6uEjmnN7n6Go5yj3Tna1FplmUhRPQLHNd9kyzT34vAGBnkVWJC8/ZBu76vwC4BENSZtTl0zZlFGqgWQCra7HreEwzZW0/lJ990OwsfsYAOWNAsxKAdKZAqb20VSszxj1zL+6ju2WajRuXcME4QVVXAsM/bJApXsitE/6qVqAS06zk2iRYJwXXphg01rDex8CZlUDohTIRNPPumWMs82OAwhw0C4qtLoiRItPCYiwIqy70y2rCMzKNAc0slhJnmkHfewLASphkBCI2XpjbKfS5McclZaaU3fZsRmEaV6I6zyWFMyq9mpsPi41jCfWcaQYD+GcAkgamNCOAQhHfq+hWvJs+yzOJQMDWnMMs3oYFjjIlu8g0gw18Rotra/dZMG+L7pmkiOesaClw62t7BNMsgkM6UDidToHlaQfq+3nKs2cGxskM6N0+U/fRcsODbzpoRsrXKjBsG2vbPsMyJcN0T2bu1lrsOg58GnOYZs+0QbMy00yyVyqZYS2GZGD6GQkfUhDcjuM2JjnLGACJ7qHqOdcr85zsVX0/+/vMmGcBrPn2FtloRRCc7iob+NTvXtlnYrVlIHjcQ4UzLCQCMEIJZEwz8yz0iQA2t11dLJNkFtOsXQf6jYJbJAFaqnsmCJTnwcVpXMP5lJ8JJCcEYG5ZYJoReGfOY79BIKrJNPPjoAAlbp5ZXC3TEDGPYAmPDSUSARhMWCGfGsA/re3WrIfOBZt11cb4szbrKmMXKZp0yT1ZAP+lRACJC2f5PnP/NplmBSPQLGQz9TGEq257Q49JyZAdDWgJaBYYeUb2TBF/sBZ/c5R7ZgCQeqTPLMqekwpQSMbLItMMcOdcKm8n/em6ztVz57XAHe/EYpnftfPFMq6dtbU1AnJZGIYqOKoAwrMZ6/OYmKPQ1/ZD+dkfjrP40RUcFD8bwzSrgWZjADDVCrrLttrKV/ndYwCu3fZ5TNuycQllDOsbwC6wxllYtDIxeCZQBsRGKdkF0Cy6bTRqe8UFUKTRh8DJFghSZ+NMJ+GiX0NREWFAoV2mFjjcdisQ4IOhiJN1zFayO840K7pnjolLF0CzxijD/uilsEzjYTPNSJGx+yzdJYw+x/VfAJCiEN6ZZVJmig0IU1bFDASPiqI+z0JR9JnRzBiEY2OaVZlmTnAZw8apsusgzyQJ8JXmcIT7027A0ZqSvQum2W5BcBmjrQQgSQXPdu2rMc18sN6qe6aLl2S7IZICXc6euV5gmoX+VBK41OKeReDfiOMWQaYa06xT30N91pVJWWaAptBIplllnuN+Lq1tf4Yp+1muhcK5HfdhaT/rsTVlnwNotqWc22UWZQRs2oJixc853970oTL2Xk0NPA+KaRaVbM09kwGf1hyGIPLFRADynNPHzrGdNja3Y79y90zvvtm5RAFF98y24p7p9xp3VRRAbg00i8H7F+LsEe1giQBMmbXfYZ+kTLPgFubPp3yryv4Y4ytkx+R+lnOoz7OUPXVAmJjTBDKZsQ7jeavILdydsebC1oRYlAVmLpDtEWmk0/tD7whlCu6ZLMNsroekTDMFTAnTUZDbUwCpeG77RBlpW1wW1Tm4e2bGNIv3c4HxDy7baOecZJpp91nsc2t7f8g5rDDNgEzeloa8Ju6NWM8wx1xhms3nS3AGO+kPtkEkyp4e4Na8PwRoVpTVuMt43r6H8rMPmp3Fz16C4o9hmuWbHub32u/HvPdMMc3GvHvMu84EUGgzOSY2gMQtCMYFHa1AAMouLyS414EFhaWRWO91oDAwdnQgMAp0re3C041JBBBiZ7RrJlAi+zwuEUAuuJQt2QJwqSorATTL20qptu1soGkigKqFv2n1MrzuYTsHUyLTzIFmplDCYpqpfWZgSpoZ1vWHAWIm00xS5KuAsJJ8QvYLwM5ttntmyfU4CrGduuZIiA1CiSYoh0ZPzHVLSUVHxEwBzDLCkg2FaSYs86WMZLSf9TOMUq7rgLAECosCdy1APAP+q2w07Qy76NuB854PC4SVSmlJwWPumYqU5FyKQoarknsmxTbS7l5qT1BKCyziLgfN6AyrMc24QaSUDbfzf1tWdwI+i8D/6KQ1I1hKGnNUsH9r7pkFwIUBhSqLUqyF0rkdFKtCZtjK2pbKlzXPHcLa1u9ev+YMwxf12VasxB4x+iNDCeye5S37TMaOvM8hyL9+Jjv3wuPevbBVyzgAmwHL1rjE7JkBREpAM6/8njrts+L2GwX3zAkANx9m9swm1K2BZn6eYYFmLF6ZsodkTLPOHP84xuEZ+tgnsR4LIJNgO1UTKk0z8EEkAigxASHvcH0/+wRGhreEaysxzfRzLhS2XbLdZxQbTQMWpBFIY0UPAuDT5e0xzDl5n2Xnv8hEr9/hs1nL+lyKpzvyDDNkgXhGheQ4KtNsKc5tkyHMkpblfQ4N8kBh1lJgRbiKVsJKALCYZvKck54dmXsmctBskYcJxHzRx/eura1J4NNM4MVj8RngaBxrW1YTQCF02f6h/OyPxln87AVA+my4Z+4WlBrbVtuqu7t3j2HX8TJ7bZsuoJYt80LJNg6x2XTCLquShccfdIsH6sBCkWmmCz7ystIF1DHumSnTTAVTeND1Mcy5UYK7tAKRJXsM0yx8ngsUdNHbMSOE4GKyrrgiUgIKQ5kWF198cf4uLhQtTyn72cc0a6cZqEbv4MKnNc8MNKuBKUafx8c0I8WqCiDNjxmuEA0sBZqUFRJiq0wzjc6f7Oci0wwwlVL3lNl1cv0DKysrSluDNbYAGjDWlQmCR8q/xjTzv2ltF3MB9o4CCktCeQE0m17g/mj0/hDw35UBYQ4Uquy6iXOrBGKbVaZZO0VwjzLPbQbQmWwneKbZUIppRpbsrK2jkryU97MAxIx1G+MTtSsVAEkHSmSffZnVR+XMlKhM6n3OQDPL5YsDhWqm51DPTH0PjcuYdVt2zyRjBTKmWQ721twzW3X8SWktgQYSKLTlsHJcurTP1fsZJaZZp47bZDIBFseB7ogJPvDMlxawEMGu4J7p+6W6Z276fi83jeyZ3oDW6mC5AJAgXRUjuyueTzmQLjNj6oCYjGnm2pQCfLEt/Xb8u2lozYj12ARXUuPu5Ua2ItPM7bkcKCknc8hkT8s9MzLNXJtqTDN1/YvA+WNiCAPTfGkXQeMohxVijhIAFfpTMg6UAMsAfHrQTLljVsK8Fjwh4toEKnoIMYTtfRbuSnle5gbOAnO6UCbumciQzwGk1QgUrpb7zBi1pi45kI7B+yxAcHb2EGi2qDLNVldXWUxkf89r91mSqEpnmnVUz5jM7aEP+0989kGzs/gZA5qVwCGrTH64w/x+bJnPFtNsL4BdrcyYOscAa9K1yYrjE/5h02WJsgyzHnGJz++pAwtV16YKG6HGNCskLdgVmAKoym/W5z24Z5IANSn3mSmTtmsHgWZarIcYtqSQPTBlmtnAwjxUZoBm7HfL0zj//PPl72P2zBWg37HBoUJMszSOm+q2Fy/xAjjKY5qZ7rwMEK7FxvFlcvfMsmtTtraLTLPQ56wZ9Jsii7JjAveIuE/m2SGZZhloJtg41l6VAJKuiJcB4Ukr57nIQALMvSrBlDFZRRXQ7O++I4yA2h/BzCoChcT+0uY5Cv9AbI/NNJuoyrOruxXvspkcPbREAAJMKfZ5hHtmBRCOQElbc9vbKa4FeW6XYpr5tdCtGczRiXk+CdDMcM+UYweVaSZAsxIbAeW1nYJDVdB4UNwzK2CvALibUogFYtporGjaIyNB8DH7ud+qz/OgMAp7toeUceu6zmeftZlmWkwz9Q7vx7lnbs99/TWmmQGWC6BcDSXA5bCae+ZkRJ9d+dSFk+oiptmU+YcLZlHj22rK0twt0pincL8mfY5Ms+ieWfm9EeQ/NwKNWP9qHEPG6jHWfxoaQTu3qzHNKveziGlWTGxQPgtjZs/oSpr3ZxZQP+8JUWdd6ec2GWXdmajH/NtBMaYZFsV5FmNnrYUoe9oMeWKaVdwzd8k0M/Uq0N0rmWZ52xZLyTSbiGygrapbpYkAVHA0+KQWQgbJedZ13Yfysz8aZ/Hz2XLP3K2r4hiwbgzTbAwYN4Zptheg8LPhnpkGRVYPZQ6alVzYRgmo/uBenqozU6qJAEoXdAeLySEEbusiin0uufnw350pplkhEUC1z2F9VCzZBiuILEV2nAy3BsuJAEI/XF0NDh48qPSZ/bE8haNHj7LvAojo3TMtplmMaaYrnFk8IFX5qoNmkaXkM7XVlckxWRWXuZKdMG3Klmz3bzNAvLfYatMjmWbjYoNU122/NWL9S9CMGAv2ftYyVemKCHc91sCU8BsdbBTt8X2u9qffGAWOZvM8v9cF6B8VOFkHCnN367zPAjTr3X+zRAARwKi4Z/Kg4FZGssA0s2KaFYLij1E4iQni97OytlPmtA2OBiX8QcY040yODFjY8fNTU46DMmnE30QP56pSYPlVEgEIplmRFToiplk4F4qJADr17qUMkH5c4nvTtu6AgoKXMobailXqnlmdw+WpEcYBwz2zxjTjbLQKIGYBFBSDcIaNjQJoho5YMmZMs2Vx39Nc5q6KwsAT3DMnSp9jBuAKaIYOgfGWZtgE/PizmGaZq2jYpwZrDuDgkL9rSsHbzYQPzD3TdD0uh1igsad2mGB6jPuk3FXRK6Dinjlw0CwrUjT20Zls388CjGSAS9ZnnlVXGbtZvM9WzPNpZWVGwOWoc7tiEDHuougGzUAzXiZzzyyxDiNIq4xL9GCw2eIrswA+15hm5ZhmEvhX3DOjsYMMGZxpprpnzntwY5xInubfl8c0Y2Wgy+RTnvxgVIK1faZZ+uyDZmfxc6bcM0sA0hiWlgai1UCzvTLN9lLPmD6cieyZ+uEeFBErEYCM76WVGc80KyviJcuXAEGKVmpyKyi6cxVjmtWZZpMJv6xKmSSDkl0KtD0ippkRA4YEl5FMM2sOO27VGuOeqdcT+uGeJsuaBSSCYL8lysRYGrWYZgNjmlkKGhsXNabZCEbh+sz3Ze2RsMYlpncHUGZp6GAK9YcEbtuS3UYrqS5wz6PFVlM4BbvOYEhKZsoIoHC5URgXX+bYbxtMM7vPAij3wEKVdVVjjhpzOIaZIvt8eo9nmIyHYp5PBZdUUkTsRADnnXce608OmgkAo3GKQtE9M7AA8iJUpltHylyhMywoGfl6ygwiJovYB3AGVFfFVNk3DTxBCR/FutIBF6GInPxIPs88Y2KNaVYC/jlzVOlzGm7ABpB2cff2IxIBDFrg8GAs0Vl8uXtmKXZXAP4re7UIjtL9XAW4S6AZK6O6Z7Yz0yAl3ZN18MEBYsz9z3Qbc2Di1nYe00wov60Hn5al7JmzCPSZTDO/pnLZM3HPHJEIQGMptY1f280umGZZfLXANJuqfYn9Ye5yqjEp3q+TDHzgY18FSphRV13bgZlVlGHLLOIIgI3Obt1nwGYsU2Sa+RAYY+Ks+vPQXv9hPEtxSWfmXiXQ2HbPbJoGjWGYlOOiZzEH+FyTe2buqsu8AiwDDzcCqew63/4IIGVN9Rmutz2AV4jjxox9YxIB8LZIEJz6w5lmn7751qxOzjRbXV3FZJK6Z2ps8aBjBK+AvM8rKzOUQE3ZZta//Sc++6NxFj9j2FtjQDNVyPDPGHBIt5DI50wF8D9T7pmfjeyZNhunhOqHBtkuL5JpNsIKhN6OX/EgmGbRcjbqgi65doQ+lxhIY4Vy35/tm226uOGSKhTOYvIDBpoVLZz2PE+SRACmIsIUTvOyqoFmXMge5mItRNCsaZwQZbpnsuyZ5jx7UMZi10XBpVPrAICDK9tUpuieGVyP77UBJBYnyXR5qcUPYcKaai3vKYit6uYgUnqPi+9lKtmMdVUdl5N/ljPNuNW9yhYsAAtgMc2UJUkCqg38S0FsBNOsBJpFoVwTuMtB8bMA2TUXc+iuN5dccgmw+gXuj/VHYzKZiHpICSGl1Waa9dHyPjUTAfQR5LZdFQuKYmIQMYHyEN9LAQqlq+6DZJoZwd9FmTDPJ/4kZ6ZEF6sCCBgZP616Rknlq9BnjIhpthv3zF5f21LJluMijGIG603MT3GeKaZZ0T2z0J8xBp7x+zmc7fcp53Zgzrk2qX3uGaNQYQhHRb0J7JYcZHIK9A69CxD3iIgjFjP/bdnumf6OaCzjS5Cj1LuKAWLI2acyppkOJrq6GlZmroJmbdtKplnmnunXXHDPLDHNggFNMSbR+ZIzzUQigBJDiQFzNoA0gr1VucNbwTQrxGVkcmUdBDeYZmjc/0zZU2YxLxpsAVVWJkO2bbCNRp6CfBrqd88Idqlytsezu8o087Kamek5GPs6VSeKIGZMYGEAhX1wFR3hnllkmo1wz2SsuFhPP8diARw7dkzU6UAzYprFIyCyq5VxEWC8zpB351U5ZJAkYOyDZumzPxpn8bMXIIorVlaZ3YJmNRAN2BtD7EzVcyYSAdT6bL6XuWeqvxExzXRwKI2fU7+sSoe7f9REAAPOGNPMB1FVxzIChbqiLurxfa6zcU4VAGFS0HLQjFnmi30mppk9zzYbYTplFk4DHIrCveuQeVk94+lPAQBccPQiFRwVilASADhjmg07BkuDM80s1z4ChPVzgjPN9D6vznr214h53r55lICag+DcbcOY537LC406EOjaQQK3CiDxmBGjAKSSUB5ctTbrgjuWyjzLmCm2kh2AwlpiD0vJ9p+NBcGLfQ4xkArAgjHP1FYbBMxdUg2mWYg5BH2eDxw4QII/8nuVEgF4lgxKbohLoHNu1rOu18tEUKaUVVHfq2NYGoIJAl3gJraNzcBIgf86gLStjkspe2Z8RzsDHmwiAHafmQkfYuDwEe6ZpUQAMb7XZv0Mg3JXgQEYJiuUuWcWEwHYbNkU1K/ezwbwKYGFnTqAujyer+1+x51NhmuZOJ88CK6yW/odoAtgVz523D0zJv3R3DObCck//Y4Bmi0isGa67bE1Zcc063wfazHNdNBmMvH3t2eJabK/e/ec/U0NFuuxHcM0c981ynkpygxKIoDoGqjfVdLwpe/5KJMU2Ft0XhYSAcSzowKaGYCY6HMEXLS7KjDb9baS3BPGosA0a4NMXgg3MIZp1tpMM/foTNjwuM/COZef7VkiAC2mWQSERxiBfJvyPk+IRVbscygzLo5blWmmZs/kjOelBM38d3feeaeoc3tniTDWR44cIQY6SwRg7xHb2OfGt0zkIECX/73/hGcfNDuLn72wrrSLMxUmHyzTbAxD7EwxzcYzvsaXGTOO44FCQvV1ACkIJXbMFMk0KwXFH0EjjgJhhWlmxoPgVq0SS6N0KEt3LtuSXXbPlAr0mCCdWp+DwK0rnKlAaDLNQOCozS4iS565XkYwzX7+598GAHjFNdeo309qoFmIadY45oqdCCCsl1KMkYm9bkcwzVZWZsDxD4fGqmVienffH+4GJ8oMOgNJsOIMS7azQJ924IV3z9TTu5NrU6dkZFoRMSNKTLNduGcaMc2k4N6Ls51ATQJTzDlM0qGrZQqUfzHPhnEgZa9U93OvK9lins0zDLCC1VOsMZtdKhlVOoDUti26CZ036ZqM4ATghfIC02xYApPDwHKj4Oajx7qSCnQN+A8KWr7mUtDMTARQYdRKA8+IDKj9Zt09c9D2c3C3KynZnLFjsSgpXqWmQBOAOj6rXBXgNtyt4zz5enJwNIBmOmhJgJgdbiCOXXDPrDLN9P186NAhcLelKlBoyC2SUau5Hoc9tAaNRebqLCf2IECAXMJ0YMEDsVEZ12KatQygmGd7muYggGYWKDk+ptl0os0hYx0a+2zShjIHinLjOYdY1t9pMv5hbjxQWwQNItMsK0JgihXTbNgmA0PxriLDl76fOdMsP6MItLFBMwLcK+6ZDBCr7nmTaUaGjLStcW8UgDUCc4OMV8gGXcjcLtwzC0yzYQzTLOz5xb02gF1imiUhFvSz3ctzrhJ9vfTeDbQWSqDgnjlGx0iZZvxdZIxdBXel5u6ZaKY4fvy4qHNnex7X19GjR51MH0H7Vm2vOFegr+3INPNGxbouqeu2D+VnfzTO4udzwTQbAziNB5Ds34ypd2w9n41EADUgrgj8lAInh4+aCnV6N+5cxcPd129avmxLXlQOgtCoCJ/S8lWLaVZy4eSKyAj3zCIDrxTTjFkvTWvfEAXCOkW+xMAoW/KEol0QXC6+6CgA4MKjF6nftwmjMA8QX04EQAJuEOgsJWM3TLMR8fpKYApTJp3CppRhVtCie6alZC9PEWhWZJqt+r+V4LIr4eycmOvWASxjFE4SyqvjgqWYZzp7SOC2wSEPjpoAEmOaaWd7dD1eU98DJPt5jDvXmDIW0wwwFR7h/lEKHB6ZIDoDKZbzT3qvNk2Djo9LLaYZAPQbI8ooTLOKkiHdcEvMLLLea0AhAVG1c243TDM9q2JpPxPwM4t91vvDwVEjEQDvc4lp5ho7gmk2ps97ZJqFdhist9w92QBHmXua1mfxLqM/F110EUICjBTgE/0x2IKyz4XEHhx4tuSNfk6MKotpxuMo1dwzpxf4cgloFmONkfyjv4szzaxECyNjminsLnFnNivm/TBt/dhNzjHLAMA5hylBgB3TbKa2BeDgjq2sE3A/yfZzZJoBQLeKKrvIAA1oH7aw2DjSE4KFkMjaSkzA3QJi4SndVZmMVWWaNSoImN7PWlgJAZoZAKsEE3V5DgDQj3BDD+OyuK/unollHgtUcWfkT2rgscdlO54bWltTppltyKCz0AaNC4a8ftONvR//tm3JVXpYAAefgH+8U87Zqe0AbgEXXnhhMs8lpqXXz4bedkmtMM1S0MxcCw/R54yCZtdccw2+4iu+Ak996lPx1Kc+Fd///d8fv7vuuuvw7Gc/G8961rPw9re/HcNAl8mNN96IF7/4xXjyk5+Ma665BnfccUf8bmtrC69//evxtKc9DV/zNV+D97///WeyyWf1sxfQTHPnerBMs9rfe23rmHr2AnBpZbJLPHnUC7pQH9VDqL5q4ZmG4I32BS1dIUZcVsPSjmkWuPOqeya/rEpxb2wquDjczYtIZieyFZERTLOKS6r4nQqalV3YNKaZrqyUGRjRal4AR8cyzYKc1+fyuH8X38+G216MaTbX+8zdM60+Byuo6WLrGzo2M+yYbD7DUgXNSswUUkRaWEwzAs0OICji6h6vuGfGmGYG0wmAy2I2ylWx7ApRYpoRo7CL/bHnMOx5CwQvs66cK8QWXKD6Me5c48BR+64qKdlBmawAC2MSAcR2Zc3w7yM3LdX1KVTbrsFimglw1GBdyfVvMc0CIFyJAWOwiFNFRHPDlaxDI3ZjALRch+pru8Q0M+KeOeBnGzwRgK5wBtd7/f5N+6wp+2Pu3vSusu9nclsac87xPgtFxnCzku6ZumKVuWeaAEc5/uDhw4cdM7fW5wrTTOz5bl13zwTiHjLlDQDBhdNmt4xwz2zXgC/581guj2k2icDPyizfzxQbquKeGRKNWIzCaMjI+yPODO9+psqWnR87D5pZyu+5Rw7TbyymWTsrn2FDAIBgu/wyrws1EQAAl8mwdA/ZwH96nzVKOyI45PeQfQ+V4ximgFh1basgOA+NUMueqRt1CSixQwmk7pnqWkncM212EfVHO7fJKAvVUJTuxcOHDxp3eGWeWfgEk1EbWGTGHFJMszW1jtgfdrbXvVmUmGb9hq/sYDx7zjnnHN909921H3yEqPP+xaOAi14OwDHNyGBlG0RS431RJy2EDxGeHbF/+094zvhovPGNb8SHPvQhfOhDH8Iv/MIvAAA+/OEP47d/+7dx3XXX4bd+67fw4Q9/GO9973sBADs7O3jNa16Db/7mb8YNN9yAxz/+8XjDG94Q67v22mtx/PhxXH/99fipn/opvPnNb8bNN998ppt9Vj5jAKQUEDubYprtlWk2BjQrMc3GjNF4plkZ1Z8FzaqxL6sxTLOUpTGGaZYd7pW4N2Rtnfr6rNTi5Zhmk+iSalt4hCJSyphYucRLwo2wXpZi/TDXA5vyv4gWniKLrC2MS6JwWpdV+HgwQLP3/9719IcVuy4AhcOikAjA/06xXqZrW+1zVLwLoHFwl3Mvqlu+hoWa/KCaVTHS+QtKdlTEHciml2FsQaWtq7MAgttuAQI0M8pIwWVE1ibTPbNF0T2NuwKZAipPBGAo2f02ggtVVfgssmXJxfZhD3uY0ecSaFYOlu7WW3BzKI3LIv6tAUgAcP78PbEdKmgWmtatZ22lutm4GPG9qkyzKEwXYp1U3HxcPcSotYPil5kGQgEeA6YUmWa0FjKmWYxp1qpncsY0MwHhMrsuZZpp/XFMiTLTTADc6LFYLLIy6X7O76oAmk3KgFgIN2Cyccg902SaoeyeOZlMnJFhbJ+HHltbW0YZP89Hv6nqnmm6QwIRKNcBMck00+/wHWD1EfShGtOs8wbBuQrqx/OyC4k9siK051uDaZa44Wr7gwKDr5qgzbSjWGUl0OzwYQLN+p6fex2tRw+4FJlm4b1T6/zXY5qJc9sI2SGAf+OcS2XYoixdCIcSz45qIgDf5tmFhXNOj2lGRtQJijKJMOoWMiMXMj1LplkBQIrtKSUC8PO8clld3lZYnylof+6Rc5S2BgO0Ps8C+HSNMsaFADFb9twuzrO4e5cnbL1qINAsAmIIstGm/+Ng3IcHD7oYpti+FQCwPtvO6sXsQpx//vlYWVlJ1osOJgoWWQkorMjtrh/7Mc2s53MCIV5//fX4xm/8Rlx66aW44IIL8NKXvhS/93u/BwD46Ec/irW1NXzd130dVlZW8IpXvAL/+3//78g2u/7663HNNdfg4MGDeMITnoCnPe1p+OAHP/i5aPbn/XOm3DP1OBH5v606U+HBRrh319YzxTTbi3umbvXRy2vfx/dW3DOjUFVgmqUubNXDvcS6iv0uuGcaF7SzzJDrgWZRlDRiyz0zKLb2hSbYHoZ1TAh1RaZZ+O2Qr+0AGpSYZkwoadp87ZD7RyV1dbRwloA1UjhN0My/3mKacQEWwwLnn39+8o6hCKak7LqmMfrMLMfqHI5mmpGbjw0gEThqZ4YlMCV3eWFr24yTwQJKKwq/ZJrpbV1d8eu/XYe1nx1oRkBh1Uo99Dhy5EhlXDSmGQfBK9b7IrCwiGvBVLIDaFZyz6wAhRIQ63HeeeeV+1xzzzRdL7n7UyERgG+HBo4CwMH2M/5fg3qvRpZJuwYt/hH1md61W9CMAGGvfJWAf2a9N/c8agASMSRN4L8vM82EYlVKBGCwrkghophmZbDXjYt+5xNzuuqeaazblZUVuV5G7Oe3vOUtehnDCCTWpI9jpe7VXipW+n5m2TNN400ZKHSg2Unfn4LBijFt3vnOd1bKQJlnDprlwHM8t4FozDDZLd16bK+qcPY7UZkHgLaje4/G34NmfQE0w5hEAHpMM2Es8e5cOtjOsnEbrpeziQTNLHmCZ9Xc2tyUbYlrbprdq7I/NIczCzQzYprFUA+AqfBnBs6Se6YT0lTWFQHLNlCSekvUQXBd/k/Z4jpDeAqL/Z4xzUpGrRhz1IrLGIDCgnsmc7e2gZIymJKyS9W9GNyXh2V2b0o3aH2eia22Eturn4U7KBny4p436oh9DHtg8UCdadbPhawW3TOByDRr2xYPf/jD3WcP/AFw/H+gYUa67W0C0B796EdTPfw+s5hmkdRQAApBoJnJIgt9PvXxfaZZ8ih2kAf3vPWtb8Vb3/pWXH311fjBH/xBPOpRj8KnP/1pPP/5z49lrr76arzjHe8AANx000145CMfGb9bW1vDpZdeiptuugkHDhzAvffeK76/+uqrceONN5rv39nZwc7OjvhsMpmoF9w/1dP3vfjvXh/tMq3VOZlMsjKpMDkMQ3SftS4DXocGZKXv0C6EtEz6rvQ9Wj1Avc/auzSgkJdZWVnBJhMg0jo04U1vKyH/Wn9WZr7PXuDT+pMKsVp/wnfhv1p7/Ivcf7zFI5SJVjF2QaftjVRjn+mtbfO2RiHWs660Pk+jwLdqlomMEAAhHs1e+tw0DXDoy9wfh58i6olCIUvprb4nxkYAOqXPNC5HzDoiaNaGWAVGGXaJp/WEf6+t9Pg/X9HimhcM6FXkjH3mreVynsP3rbrmomtUZJ30Rn88Rd4zPfL9LGOape+JY8cAJK1MGI/Qn+pa8IJJNs8s1ok+z17h9O43aZ8iaMZYoeq67bc9u0hv6+rqKgMf9HkWCgt6nHPOOdVxyeeZg+D5e8Sebzp1jiLDhcX30tftlnNttfZ8wpYds5+1u8rdSwSO8jkQlv1mWugPgYBaW4QiPizQdvp5S65MA1ZXV/O1EA0ipPDr9xAxas0zLPZ5W1nbMhFA2mc5z7T/87VNQHmrzHNkYADm+ndlCPhP3xMfBqaY9xlzz8zmObpz+f0GZZ4HOc9pGTr/7T6LtWDcvRRcGZXzKZy7BfkvMjmuyO6qtvW/bPS7VQD/XrFKyzRN4w1f/j7r9jbPTdMAy9OxP9U+G+e/2M/I5aiu7d3uaFeA5UnjTJagmT4uMhGAKtsMc6AlFvOU7Vca2w4hY+VsNjPOQorZNO0s+TS4Gubn3GzaYgcAd8PN7s2uwTYro43tyoRcrDDMTXnivPPOA25zn9197B45vl3j19wskxlj1cMADqbMZsY5N/QecNwWfY5yMiAMbPk8B1Z0o66nCIIHplkz2PKGl8OKd5U3fJlrO2HjlGWShXJuS6aZviapP/a5zYK/K7IaAYX6/qA+B5A1Pzey/pT6zAxf6Ty6fRTcJvO1HeXKpjLPjK1my9vb4O6m+rgErEDvs7ifl6dsmYR5ORw6dCiWkYY8ygA8m83wLd/yLfi1X/s1YOcu7MwvQt/3OL0J/NXfPQDgKADg/PPPR997EHMe5NNWvWcE61CRX6lMH+U9W5eU7pnaufFg8YvPt2csOHhGQbPv//7vx1VXXYW2bfGbv/mb+IEf+AH89m//NjY2NoiOCJeufWPD+fJubm5m7jYHDhzA5uYmNjY20HWdCBTIf6s97373uzOL1ote9CJ80zd905no4hl9brnllgf1e45IA8Ctt97qWAzsuffee8Xf999/f+beeurUKfE3//6ee+7J3nvXXXcJSnf6+2EYsndwAAoANjY2sjLz+Vz8fe+991br+cxnPoP0ufvuu8Xfd9xxB06fPi0+O3HiRFaGr6vpdCre9cADD4i2pL8HkLV1a2uLXQADtra2ctfieKC6S+S+++7LymxsbICzcW677bYs28pdd93FDu4ed999dwZmnjhxAjx7Jn/PnXfeidSF7a677sr73J8LTBwDpG3yPp86dQrcPVOb58V8A1jxfUav9nl7e5uBBkvcfvvtmUvL3XffTWV8n9N67r//fmBxPzA5Apz+S9x++1dEUN2tbQkspHXcf//9QN8CnYuj1SBf2ydPngSWm8Ds4QAG7Ozs6GuBWfLuv/9EVmZnZ4dd4q7Pg+KDeeutt+DFTwHuOwbcl30LIcwhae+xY8cQlRTvhpj2+b777qNxgWOa6WdGWC89tre3lTncYop4r549p0+fZsJajzvuuCO7vNzaJABVm+cHHngAaK90f6x9gSgT1zazXqZnyz333MOEaWrLcknCg1vbc7cWhqU6z9vb2w5Aal18r+PHj+v7ObIoB7XPwno5DDh58qS+thHA/x733HNPvCuPHTuG1N362LFjSp8JKAF63HrrrcL6e+LECVdP6+6V7Z38DHPn3DbQHgXQ48SJfG27M4z26h133JFlnHTschK40/bGPg9HfZmFmMd49gBRKdLnmcVDGZa47bbbxB127733srYusFgs8nMbIOPc4JSztEzb+Pnz1m6tHnmGLdU7wvWZmGZ8H7lzn8U0GxbZeer6E/aqA41vv/12cd+ePHkSbs+7cemXeVvdXiWmmbYm3R1BDID0DgHCPBPIpJ0L7gwKcuFS3L+bm5tkXGhXgX4zu5/duC4IsPfzzA2q6TnXL+dZO44fPw4MYa30OHXqVFZGrBfo6zaOry/zoz/6o/paCGWOvgj33fdLosykHQhMQZ/1eT6fIxpm/H125513CoOxWy80Bktlnu+77z7aR77taZm+74WBR+uzBFPc+KRl3B1Md1x6Xs4mwCYQgefTp08re5Eppcr433XXXZAxzRa49dZbheHTzSFjo/XbmIDGN85xM0Fwz2zb1h47BtCpd9UwiWO3ubkpykwnEjSbz/N1SWfLKoAFHnggX5cYFg5Q9my0O++8M9MPADh3Mg+and6Q93jXctBMv/PEfoYuIz3wwAOuTLMCDKdEn92eZKDZkN8h8T5jLubpPLu76rx4z2tyy2KxADH+F9nYUxkC1tJ9BgC333676LMm/8T7FQD6bdEn11aZxTk9W0g+dcw5YMA999wjyri1ROETmtbSQygRgNZWd7bTftb6HL4r9fnOO+8E3/Npn44fP+50CA+aLZfLvM8hppmf57TPJ0+eBIb1CHC3Sp/jHeHZ79q6PXnyJDgrWpPVHCAW7ue5ul7EuZ2UcXoMA/WxiGPy+Mc/3v9mgVOn3b3/Pf/+AnzgI0dj3bPZDDfffDOtSRZW4rbbbhMylNMfKBGA1menB5NMPmaeVb0VDx6/+Hx7rrzyylHlzihoFhcBgG//9m/He9/7Xtx4441YX18XQunp06fj4b22tpYBGqdPn8ba2hrW19exXDpBMiwO/lvtednLXoaXvOQl4rPPR6bZLbfcgssuu+xBUR/PPfdc8feVV16ZKSIXXSQz7F1xxRW44oorxGfcBzuUCY+2MS699FJRJn3HbDbL3pG62pxzzjlZmTTA98Me9rBqPen3QA6kXXXVVRkwm47dVVddJYDd1dVVAYxdfPHF4l1Hjx4Vv59Op1lb3DvogDp06FDe54PrTmb0F/RFF12UlbnggguYENvjyiuvzPaAO7j/TJS5+OKLRRnnpkdMM/4eova28RJX53m5Cay4cerafPxdW4Pla8Dhw4ezMgcPrAM7c6BzcZ8uvPDCrMzRo0eFMnn55Zdn6+yOO+5gh3uvrm03Tx5YuPd9eMQj3hLdFW+55RaQ9dL1+eEPf7io48ILL3Qssqmb765rs3e4MpuOaYMeBw4c0PcYs+RpfX7iE58I9J5FO/S4/PLLcckll8Tvx58b0gLE3+OAFgaaDX22ti+88EIAx0Auefk8u/kJa3vAwYMH9T7fNkRB+OjRo0Y9FD/nsssuw2WXXSbKEEAHAG4tpPWcf/75wMQD+Rt/h8sv/9exjHAx9CyBtM+f+tSn/LoNCv8SV1xxhR8L9xw5coQJnz3W19f1dnxyG/j/t3feYVYU2ft/u2+exCTCkJOABJWggORgYglKMqwKqGAEMa0YMCAYV8UsCj/YdVlY14y75oABc/ZrxjUgQVFQmHzD74/qVN1V3c1w79wZ5nyex8cZbk/f6lRd9dZ7zgnlA0iitLRU/oywL0L79u3Rtm1b4/NkMolvv/2Wm4i3a9dO/F2p7UZ7O3fubDzzbALNC4X2Y2aD8vdhFvZIoFOnTpzY3qJFC8vzDOTKjjlZzZ5nJFFSUuLYpmXLlrDm6xNdw2QyyT3P9v7HOHeW8A/r81pZWWneS1oYdMuW/DEzYW0DrMVMOnbsyC0CcROiVBx5+c57G7A6rJOIxWKObWJRbYFCC88U9f+bN28GUu8ZxyN6L3L3S7Kau44Op1kq5XiHlJWVAakvOEdthw4duHdYq1at2LlXg1rbI5L7zXwPFRcXS66zvmiVEN63fDiXs/8B9H5bGxfa+ihucUGNAalfHf0pez/qTrOE0Z9an+effvoJSH0OfRgciTjHLfx9m0JRUZFjm1QqBdQ+abTV/g4B9PvOXNQaOnSoYxsmuJgCkv28hMNBJqZoYVb2/pQ9P3p+L9Yv289/IpGwvIeAqOCYW7duDaS26XsVXmd2HObzLHpWtZOj/T+BM844w7ENy1toLv3Y791wWGWiWSAGICHsW4JqislmWiEAe1uYs7cGZhEk1ldaow2YsLbecIjhrTaIFJjnhvWVfE4zUf/P+u3NhmgWiwYl77xfjHNnP6ZoJMzufC0MV9RvGDUINPFB9G7Nzc1lbkBNNLPfC/p4onXr1sDjZwH73Q0ofHsDAQW1gBGeKeqfjHeNRk5OVD5eUNm1sN5TXL+vhZbZzwkTY76xLA5IxmoW4T+gKuI5hi6IJWqF49PCwkJgu544XzxW40PVIXzPs3tbf+aruWvEhB+rKzTp6FuY2KU7zRThWI29739xPebi4mJYCxuIxmrsPW8uXoqOmR2Hecyic6dtZGxrPy/sPaOnMkk43ptMBPyEu86tW7d2zkOStUDQLGYiPmYzPFM0JjfaAgAp8ViNO+aUeGxjGg4ApGq568zubV00Y8+qfu8b87NUHIEg62s2WT0qvz6Btv1YX5abmwv8od8vzI3XsWNHboGzqKgI+M4MzxQdM3ufaeP2VMr7mBUFhYWFwn5jb/WLxkrawzOt6Ce0U6dO+OabbzB06FAAwFdffYXOnTsDYGLFo48+avxNZWUlNm3ahM6dO6OgoAAlJSX45ptvDEHO+rciwuFwgxLI3FBVcbJKv9iPMxgMeubeikajnrnDrJ+LYrhDoRC3jT0uXXRc9raK8oaJ4tu98pNJ86rYvtsrR5l9G3tbIpHIHh+zUUpbjQGplPD6RCJhoMJMLi7ahkuWroVhiXOVmKv39vYa+7FUz7R+biSINJxmKfF1Tv5mhGcGVK+4+pTwvBgWbU1kEh0zG+j6OGaLY0F0ndk2+uCY3w+7J/mwJXtb2HmtNgbBAdV577DzUgGoedCrwUlzQ2ltFW3Dcl2ZExHRNoCPfiPFi2bO62x1ryUd55ZP8s8WOcXPs2nzFj3PRq4SSxiK+N42B2ui68znw4rLt9EHa7ve5O5/1o4qTexiYTbi62xa/kX3Ewu9rNVcoUnhdWD3QhX0RMPyYzZFM9Hx8E6zpMu9re+GDUD1bVieJT3JrSo8ZiMXk0VAsm/D5YZyO55klXQf3Hlx2YZ/nsX3Ap/3L+58nm15n4R9mCVHoeies/e3sufQdIGmtPA523kJab+rUSCxW34NLeKovJ/T7/9qSR9m5rGy78Os4mz2c/ZtYrEYrLmuVNV5PHz+QfH7zJ4nRn48pqNQdF6459n2PuO+Q41A1G+z+63WDPPRQl+F94KWDygQkIxbUhVGW0XHHIvFgGp9cdHt3jaPR3peLEKO8zpqPytmAnnr56qqQlGS7Fu0Cb/wXrCIZoGA4L7l7n/5e0gPiwUCwuPRz4e+n+nTp4uvs8I/e9yzaFQXjzmed3MfmtdMW3gUjuUs7rpgQHGMebnxBgCWgzDX1p/qollQ2ha2nek0Cwed55d75gXvmWhE69eVkPReMfsWM/Rb+LzGywEUS9sLaJPtX+8AyuagVRFf2dXI86eI+1PAFl4JIBqWjQuT7HlN1nDHzO5b7enQUiOI30N6IQDxWI1Pci7uw8LhMFA6mf0iGbeY15DdT/J5SJL7G/G4RXea1XD7MZPZB4xFdfvxGAVG9MUOQb9tPKt6HyYYn5rFKfKl7zOjv9TOi+fzvO0fCHX2mIdI362VXHimc16lR+eIrzN7VsuNsZr0mJPVQLBIeG6N/Rh9mHgcxpA/q8YxW5xm9ntbVVOaWzPCHbNh5EjFUVOrz5UsY/dNt6C4eCxUVeXzVWoRIuJzm/Aeq1kiRDyPGUzwrtM8ZB8lbUe8a9cuvPnmm6ipqUFtbS1Wr16NP/74A/vvvz/GjRuHhx9+GD/99BO2b9+O1atX46ijjgLA3BWVlZVYt24dampqsGLFCvTs2dNQYceNG4fly5ejvLwcn3zyCV555RUcdthh6Wp2oyZThQCsiJOQChIzerRDmMDVhp8k/yIRz474BcfjVggAcJ4nYRUYj7YaSSA9K7i4V63xUz2TH7iIk+KzNmttsA4QYRnIKQHIqhNxIiAA1a3amGYRFh2zkTgcMAYudthLXHcauJUG5yfZwm100SwlKvutizpMTBEmoDVcNMwKbsc8L6wQgPT+t4hD0m2MCae4vLUfVMVZmY37Di7nmSzpbgrWPBnC/VicZtLrrDstJfcCXz1T3N/wApI4MTJrjz4pFVSq0q+PNuERVx6Kw0wE7UweywbT7oUADLFK24doG77Ihfjc2XOaSY85VMx+qfrGWQggWcUEPkuONsffW0UzwTFxz7PkmI37H5A+q0zo0MPd3QoBmH2YPEG8Rvw353W2FgIQ3HPG5MsSnindhn2JsB2ARTRLOZPMA0AoyE/45QUs3O9t7rwka8XHbEwyZNdQ7+cU4XkxxV5tcUDQt4vyezmO2Vo9U/Ku2uNjtiVDZ59p95saFX4P986UJNrmC7iwyZcde78tOh77Ao80cbjHvc29q+DsC02hJCL9nqA1Qby0WIApIIkSh9vzTMorrOl55YLSZ8Q85pTLmER+zBFONJNU5rVONAXbcEnOYXku7dtYhDUk+cIdZp8Q1MY2HtUztefIEDqt7bUuAgnGahFdNNMchaJzG41o+9Uq80rHjXreOZdCACeccAJaFKkIfjIQjz+yxtZWi2jmsxBANOQcL5hjLRVI1Tj2E9LLgUqKBhkLBy5J8Q3xwsjFmoKdUCgERPUwLElFe5toLC8WoB3nz2u9+3YlKBh7WlIJCPpkcyFbZWNyt/eZn+qZiriACLcNAFk/B4C7znUuBOCSoN9sqzkPkfbbenEuwbvXXASNSa8h98xLtmGfmedFPpc038+Oe1t/hjTHp/49RmRVKo6aGtYf8JcmZUREmblYA9ALGInvFx+FAIzxj7/qmdZCYkQanWbxeBx33XUXvvvuO4RCIXTr1g233XYb8vLyMHToUHz99dc4+eSTkUwmcfTRR2PixIkA2EW88cYbcc011+D6669Hz549sWjRImO/p59+OhYvXowjjzwSBQUFWLBgATp27JiuZjdq0iWauanF8o7RROQiq0tb/Yhm0sGZy75F32XNVSTar7iqi3x7+WSyCgixkCJX0QyQCguGvVrbRloJxjKJkzkErU4z5/FYk+JLqtakzCS3okGJOYkLA6gWHo/hNAMg69xjsZilpL3LxMpDKGTbmCtF1rBWc/CqGsKC0HVpFQql1Yl2G8KCVNQ0rrNLBSOb06wuvP322xhwHvt5w4YN3GcO0UzQXmMQ7CKasXOdMkQz+TEnLQNhyT1puf+l/Y3FRSm9/yEWzdhEsZqt9EmusyGIGeGZzrZwopmrOGQ6qlS1biK4XRAW3QvsGmhtiO8UiGa6UCgWhE1BTP87SYVBY/XSrQ+rNvYh2ua1114Dkkcax+M94HbZRs87VPWdQ0zhnDYy4T8VN6+zl+CS8iGaCc4bYCnyEsiBrHom76J06+fcqmfyhQDEIrilbxc8r0w02w09d51cTDFDzEXXh3PLSp5Vuzgqn4ho5zfWzblIZSSIZ+fW9Rpq3yMWU6qMSXZAoJrxCxluQrmP59niupJvY553h7AftAoYkveMmtTC6cTCGn8N4V09U3LMAMzzojidWyamG1MkLLB/M/fvGIcZhZLE1TMBW4VKQV/J+idTEBMJwoaL2NiPRDQznGZuopmlEICg6+DHJALRTK8govVhQtHMOC850ncRv5ghFtYA5jT73//+h5qaGkeV5ogeB6qGpeff7jSLOacYvHM06RTNgsGAlsctKLy3+QVOt8WBSnPcIjsn314AdL4ZsmeVX8hLIhCQiL16v53YKRfN9G1aHI9g8O/83+v3m3adhQt5ukPYtWKoRTQT3NumkBsBErtdjtm9b2eY19meTgewO4QllWx1MStZKem3dee0KhcTk2ZUgHSxwxDnquXHnPzDOGZpP2d5P3uKxoJ+IRxSWdEOi7sOsJ6/BGpq2d/v5lJ2Jw03mvmeN8Mz5QKqhwEjsYulm3Hr2w2nmeKaDqspkjbRrKioCA888ID081mzZmHWrFnCz3r16oW1a9cKP4tGo1i8eHFa2rivYc3BBfgTzeQrImLkrib5PjPpNFu3bp20rbL2iLCLZl77qLvTTBNcEhU+X9DObdq2bQvryqRwghaJALHO2m9uq7puTjPNtquwVQ1xp2x9WbmsUlvCM+0w54/7RKRt27amaCZbYbYO1iTCgpvgYljsjdUb5zEbrgYjPFMyKDGOx4fTTDLI5ULPbI6SPaF///7Qz8vgwYOd32FzmolFZtNpFlCd4igvprgcD5JS1w+gTzh36Y1xmUy6u6645zUV53IYsvutirkFNaeZcDHBKiAJBAxTNIsK92G0I2kKSIGAbGJlhmd6TrIlx2wXwa3bGIKAGjJWOMWukypTKBGI4Pzz7DIQ83CO/vDDDywfonY8cneduwOJXWf9OXJO4oJGDh62iCB8V8V/BcKtjO+RiomS79AxRTNF2CeLQsvs8Pe2m8hkhmc6nWbukwwzTEiVuoiZaLbd6OeCMgEpZQrCora2b98e1uTKUteVh9NMURQYRWuqf0AodCDfFl00C4hFA4doJtvGeFbdFkTcnWacaOYqiJnPsx/RzNV1JXO6hhRU6b8I7m1u8QZiodDuKPR0mkF1eVe5O81YH+ZyzGFtXKI5UzxFMzjFIft1FjnN7MKaXczlJvuW6pnC40nFjX45HHSeX+55FpyXWNQqVHk4zbS+xdP16eI0A5jYLZoc5+bm4hfdmSIRDfiQPBaeaYcXjWsE42ddEBZP+E2RKmCEZwqvsxGqLnZdBYNBoPz/tHb4cL+7Oc1s6ROExyxxZrHPrFVfZYvUenimS/SHEUrq4TRTI0Did1+L954OJEVx5J51HHOwCMEgX4jOGAcrbA4QCLldZ7ZwIncIa9UzpfMQzUUcr3QZq1nfVZLIDhdXKGBb4BEsjpmOc+b+1Y/HmL+n4oZo9vtuyx+mksYzycawZnimKhiTG/e/9qxKjzn+O/TQY/l1NkWzxpLuqr6Q96JEg8dPtQf7YF7kNHObnNdFNPPjEKur06xHjx7Stsr2U5dtvJxmvkNSjUmpR3gmIN0mLy+Pe4lL2xvrxn5RAr4m2Y62pvT8XmI3jpmHQS9X72yHObgUW86Ntno4U5o3b86JZt4hPG5OMzPMxwoLq9Ff0OJj5oRPiFep/Uys+MmKW3imXBBIB6wd7k4zQ4x0cZqZOc3YgEzeT6Q0kUnsOiwsLLSs8KfkE2hDTBFvYzjfACAV51bM2THr4VwxYXsdoplbeKaldLsdp9NM5gCoNI7HMzzTLbwA2r9bJsKApe8BADXXRTSr1nIL2kMDLNtAX8l2cZol3Z/niy++mDvmugoLdnHUKZppP2jhRMJJRvUm060mC3lJ6nmsfIhmalS8kGHLO+TtNHMT/v06zZzn1nyeVbBVaue5ZfldqozzIloc4MUU8b1QUFAAa6iuXAQ0XXqeoYo7XxZcZ+0+UcXhaSzHnHs/ZwjLxvG5TL4A6fNshM4AcBc+5Q4MYz+W+8jZXn1nUem5jUUsxyANyeZzmtnZ8/BM1dfkS3T/cwLFzpcd2xhilrZQIez7OaeZcxtVVaHoeekgDpnkxmHaRNohmlV+AURaA8ESyJxm9sWxcNjjea79RRCeqf2uyEWzWEQ7aJUVSBDdl59++qnlWXS6Mf2Qm5sL1P4MhNtKzz8nIMEi+lkwhXuIQ9j0jtvNaeYnPDNZa1nscx4PL6b7iP6Q3P+8UCgWzbjFgd+e4c6doihQFD3ZutgVzTnNtCIvwmM2cgi7HXPCGLfIoxzcx6f6ZzoipxnnFi8+QuI00xeGnQ4wztEpuc7mPERfvJeNpfVxu5uj0H2xj7FnTjNnH6a1zzYmsYZn1sbZ3yc5LcwmmumLl4oKRbDAyeX0c4tISuyBuw5izaApQ6JZI8buNBPhJzzTTUCSD2jlf19XQcyPY2327NnStsr2I2JPRbO6OM2MyXEgB7KXrz3ptHAgHIsBNZu038SiWTgcBr6/iv2ihIWTODbJ0yfZsvDMIGQ5kOxOM9GqlpFc0yXXFXM1uLsRWOeuL7uIB46cFVwy+eIGayleNDOT+2pCoWDwaRyPEZLq5TRzcV0l3a8zP+DOjGgmcprZ22JM8Iyk4M4XNDt3SSNsQ+6c0ypmJWuE2xQVFcEqCMvFFB03McUUzRS7e0GfHGvFJ6SCmI40hNMs3S66PnzSafF13rJlC1CjVxj04caRiIneIrg2IAzkQZ7fqNLiNHN8hSWEU+4WZP2C++DzwAMPNEUzSb9gD2GTi6P6buKOatFGbhyJG9CRu0hxip+RSMSSC0h8nQGLaBbIlbh/tQmAlnfIOx+QjzD0pMhpFgcsFYDFQokehh4Q9lFmTjOf4Zl7kSeGv84uTjPDFe3cJqjnsXJx2hj5vbR9iCdfpgMpKO233d9VbP/m8+fpinZ1l2rnvfpHR8VvM1RRnMcNAKIR67/JFoHMfs4zp5mf8Ey4iGZGCGfA8awC+nteE7Q2zhO7e5N6gQrxvRIKWYVC8QJOUDHjnuQ5zfR7m/3f2l4uP1ggF0h65DTT2iIft2hjkZotjn4h6kM0i0Y0F5JW1VLUlh9//JHLaVYX0SwnJweo2QJE2khFA3a/mKGXojkGHxXgltOMOZrd3bKqcBvzXaU7kJzHY3egevZhkufMGC8D8OU0++kWpxCoL0aqYjHLFEH0fkFSYMFwgosXvjinmWtaCT9OswT/N27HDMm8yfgemWimVz1WhcdsOMSMeYjMIV+jPR8u6VCMPsyPgCR2y/LvM+ezGA7p42A+ZJ4XzdgxJK3TuxSrym0ej35eAnJHoSGgukUF+MjjZplnktOMh0SzRowfBdhPeKYbdXGa+QnPrKuwxso4u+PnGL22SWtOM89E6O45zdjAZau2Ta3jc6O9xgBVLAgmEgnpJJu97PRqPmHhIIsdj5mvQ9TfchVp3F7QHqv3XOJwyX5EFTbtsImt+dKzwq4xH54pdGBYwzOl7jozDMJbEHNLxqpfX/dwirriEM1kOc2Q1HLxicMzI5EIUHQE28YrfFZlzkLR8bAS8O6rutFoFGbidmdoB+AUUxzt0O/JgNh1xeclYm0Rb1MLWWJxwJ/T7KmnnmIhgi7HbA/hlB+z+HnmXDSSYza20YtcSFcvtRxgroNPd6eZIdBp28ifEb0NbuGZpjhqDxExnGZqFNIQc0sidJGjKi8vz5xsuoSeGaJZxefiQgDWkC6JM4V3mrk5asXhmYYgpoaMsDG50yxghN6LBWHTaSYPz3R3afB9mL+cZtJjtryr7KFjhtPMLRE650CSOQotTjNpGLq7i1hvI/u/mzPLfbLOiWafTWVuawsRfbKoiMVRAMiJWvYreF7Z+8w9PJO/zm7HrD3zivwZGTHiUG2TkDAygvWXuqvTef/z4yPxdQ4HedFM2G8Eqi3by/pt83sAGBNWwHYfaO5G+fNs7kculJvOUWd4prZfNQJZIZJYLApr7kDpInB8h9GWuownWI7CuCHUejrNkpUu50XuxgnqD6ub41/vw7xy7mr5vVzThwBamFvdBCTueCROM851JRi3GIuRksJCzHmaYscLcVJ8s//3OmZTeJYv3vvo5yxiilwcTdl+N/HnNKthbZW8zxyL9z5yUe6V08wiFErDMy33trXfML/HFC1dRTOJ08wMaw2y+1aWZ9hImeInssntXWU6hMlpxkOiWSPGjzjkRzRLpZyDRZ26iGbyUKK938aPu85PeGZBQYHxc4cOHRyfe+U08+OuM1bvAfmAz5bTTLSfWCxmGZSLKyNyDhdVfF+wPG76/gVJ/FWto5Ss3puDElXb3vmCNkQmQCoOsfPiPsm2D6ZFk1L+vIgHdOXl5bCufDnaYQvPFDvNalwHJfwqtfiYucG0m7Bguc5uVW3rih+nWSgUAvIHGb+LxJRIJAK9zLmr0yxYyH5JikUzXvgUD1xycnIMK75ooAXYC2G4iGZaqKLURab/jeDNyJVld3O8cTnNnNtccMEF8MoBxgZe+n2r1M1pZgvPFLtOTNFANKdiz1jCGHDLn1V3oZATzZK1wm2Ys8Y9WTrf7zonADkxy4TTbcCtITrmvLw8GJV71Yi7aPZ2J+CjYe6TL785zdzCM3UxxXb/m04zSF2fZuh90NtpZuxX1j+53/9+VrL9OArZ+1fv/xKOUKBgUJuoaI5CsQhr7T8zF57JPvMTzmhO1j2vc+J3R9UyPu+WxJVuE828wjODbvkqvY7Hh9PsqisuAQCcNvsMuVCuO82QYI5UC/wCm6xysuW6JcVhiCHVktNMGp6pf4/EaWaIZjGh8GMcjyFwi7dholnc2MZ+TFEjp1kUstym3CKppG8ZPHiwJcVF3Zxm3HtREFYJWHJvAUCy2kVM0YVCQSEAvb+R5DQzFxdMAUnuNPOR34tt4SvdgLcT3MV1peVXE41bjKqvSlR43yqKws6LEjBC7/fKaQZI+zBezKpx6cN8HLNlfCkOz9THys7vMfpkNQa9Sq1cWNMWsqXV3f3MMfy4iN1DzHkneK1R8ZJvryY8W/rkSCRi3Ndx/dHgnGYpQ4AznkMlDCiq8Dqb4pw8X5k9X5+f8ExymvGQaNaI8XMz2y3x8rA9Md7hUnuQ38tjGz+imT1kQYSf83LCCSegrKwMAHDeeec5Pt9Tp5morWxgo7ulXBKHe4S8sNUG0/4rIhKJoFPHtgCAUWMOF27DTbIFBHXRTLJ6b7e2BwWTDENkAiBzS3ECn6vTzBwsi+AEF0mBhK1bt0r/3nSaqdJVLV7gE4ez8O4Vf04zueVfLPykC97NA4herpFIxMz5BBfRzMDtePSvEYtmfFik2L0Si8VMITgpdprx/8YPothKoC6aie369vBMqbvOcg2lk30PAWngwIGw5pqRi4nmfSsXFsSimaIoUBXt3wIxlwm09d52fAXvNPBTpc3tXrD0hdL+0sOBZM9pZqewUBNXJCK4qqpQFfO8SisAJ0zR7Ouvv3ZsA7CK4aj+AYjvcHGaxQ0Xq6frxO2YLZMv6/uaE90kDmF2L5k5CgHnIoSR0wzQJk2SYjO+nGbuExE+B4ykOmA0CrMvTDgWy4KBACemCNvCOZBkhQCsi1oejoW9CM9k2+j9i1hkYu9nxWivML+XhyAZC1uvm/hZNPOvifu5goICbmIlPx79vCiorRU74Dt1aA0AKG0ujhCoqanhHOXWxUzA3udKXGQhq8gnc5qZ7tKgV3imdt9ZHSOGyx4wxkd+nGbylBEJYxu50ywqFNUA/Zl2F81OO+00wDKeqIvTjF/UlYmWFqeZGpaLZsaz5nyH8znNZFUikxYBSea6sjjN3CpJAtJcfLyA6seN40c0qzHmG0Zb9PYFYpCNlYMBLQWGFqor79vZv8sXdd1Tg/B9i4toZsxDXEIVXcIz2SKcnjtQ4jRLVjJBTMuXKzR+pOJGKgFDfLTAO83c3HX6uMUtPFO//11EM4vTzC6aGXM8JQprn6woCpvPpuKGaJbgDsV0mtlz7gYE4xZzvBH2EEf33lHYlCHRrBHj52a2W0VFNBSnmZ/9pMtpVlRUhPfeew+vv/465s2b5/h8T3Oa+XGaySec7g4k9qJxF1MURcGDa+4DAMw/+2ThNiNGjID+yK9YscLxufHykZQxt+cDkuY08+U0MyciUtHMUlVOBCcsSNxkEyZMMP7+pptucrZDTzoqqarIHQ/cBiXuEzhusCA5ZrcQw3Thx2nGi5GAKhiUcM+H5N7mQqok4Zn8RFwsfLLJpF7Vslo4cG/VqpUlpM6JIQhr7fV0mklFA3eBmxNZXcNw3RM08+Efe+40A4Cg6l49kA/DEt/bhtNM24c8lNR0zkkXTYzqmW4TOPN5FlVz8xLNigqbcZ975boSHTMA0+WqhPD9998LN9m+fbvxc3Fxsbitlussei/ZwzOl4cn65CtVjQMOOIDfh9Fvs0G5/ZgN16LuwBD0p9x9K3FzxmIxVnkLkN7/fvI78m4EsWjGnjVTNLMvlnFCrcxpZvknkWmX24cSdLm3/QhIPpxZFqeZaBsu9YRgocePozkasZxL2fNq+SfRwldRURGsodSyZ/WaRVew7YtL0KZNG+E2RnouyWO23377oaSIjVHnzz/f8bk9bFLaD1pEKNE2ibglPFPyHCqiQkHcd3iHZ/KTdTenmdyNZrhlC0dLj4d3monDM9m/mePGukx+WR8mF/gArQ+r+pb9EiyUb2P0L4KcZtbwTFmoolEIQBU+i1zuLogXOPl3nlt4prtLSf+M+xsbkUiE67fbtm3LfR7VXaEubllD7A3kC99n7B1pWQSSOc3095mvyA6XohGW6pnyuaHcaZaXlwcUj5d+D7tPdNHMJTwzWWMpWiMTkNwXO/h3lUu/bZxfsWhmLL5rxyR8VyXKgWAzx/HoopkulsWtXVBKLprJCwFoopmr08xHeKaOoggLPjRlSDRrxPhxVO2taCZPZCpvRyadZn5e/H5EMwAoKyvDoYceKkninC6nmR7+4bba4T4oZ9fQ24E0oE9rfP6AgonDxW68rl27om279gCAWbNmOT43kisrqsvLypoPxfkdfE4zf04z+XkxJ5MizPBKwO4u0unatSt6dGO5VObPn899pqoqAvoEWhFXJHPmgPEOz5Q6JIOl2neJJ2jM1ZNZp5l9UCMaRDlcTrJQRR23Yza+xofTTNIPKYoCVGvCRe0vwm26deuGgzt8CgBYvny54/NggBfNRA4k6+BLJKbwbjS3+7bKdRt+wl/rEoZrtlkkILEKobozxUs0k4XtWcRRwUCM3ZN+whyqXLfx4zQDgH59e7P/9ztQmDjceh7y853nJCcnxk2yheff0nWLBtwATAFWCeC2224TbnLHHXcYP59/vnPCzwbL+kREPMnmwzNdiku4hvnoO4vIJ1YpvQKqeGLFL/CIn9WcnByg4v+074rJw5ZS7iv8/CRDkug8GjW3EThc2DG555G0Os2kEysuPFkWkuq+wKO3wfguL6eZEpAKC0cd9ScAwJ133i5ur8dEMGqtXCh14FkntZIFHiMfYqH0eC67dAEAYNLRk6V9mP6s5cfEnwcCAdx4/VUAgJNmnu743B6e6cehLdrm119/NX7+8MMPXduq96nWsbOqqma1Q80BJq+e6e4A4595p2hmVJ+MtMXeOM3sCwx+x8VWuDGWRMBTVRVI7DJ+P/jgg8Xb6PdU6RT38ExZZUyuEIDTGWR3mkmjAnSnZUDch/Fh0G5CubtoVlBQwDnN7HMK4zqrMXlYcUDrM4IFwnvbcIJrSMenlkr08jFJhdFWPw4keRSSuY39Oufl5QFBfYFJLLwF1VomTCtsXC12mllSLEgX793nGDk5OUC4pdYUcVvY37vnNDPcfoCwXzCKmgULHeffFM3YQQzsaf3LpCA8U68Y6nyfGYvdalja9/sOz7TvlzAg0awRUx+iWbrCM9OV08xPnqfc3FycddZZKCgowL/+9S/P7UWkI6cZF/LiJzzT1YHkHp6p06OD+/kJhdn9IDqPRnJlSXvt+YDk4Zk+CgH4cZp5iGaqqmLQoAEAgDPPPEO4DQC0b8Ps0uKwDX1QIl7JY8fjngOJExMl1zk3NxcoGqP9QXOX61wP4Zmc00wmFFpXL73CM8XXkBPNUuLqmfaQLxn333Iaev8xDI/9+37h54qi4K3/Xo7fn9yNU0891fF5LMKHatVlkm0Pz5SHObi7ruwuGRmnnMKE7WnHThc+ryUlJWb5cMF+ItYurI6iWSwW4ypJeh+PS5J/j1B1ALhyIcuBdP75zpB5ANh///3RqhUb6C666grH5+wauYv2YYtoIDe86a5FFYMGDRJucuyxx2L58uVYt24d+vfv7/werpiJi0vDIzyTOc20c2oJFTePwZJQWnBfGuH9et4bQQ4YTjRzc5rponWwWD7g9nDa8C7KpHCMYg/PtJObmwtrTiexOGT+LJpAcyFjcFv48lFtzNKHycYoI4cPAQDk5OY7XCc6/fr1AwAcc/SEOrXFvpjhFbYqPR6t2A+Kj5BeZ/04AwFxzj8AyNF2M6SPdBOMH9YMrYqBrm0lLkuPcEe7Q1uWg9CLWEjPCZtrfrf1e/TmBXKkohm7p/TcUC75yIxCAM5nJC/H6hZ0Ec0sYyi5aKYvqlTXKUcqP8n2d27l50Xru0JFnk4z4ZjEKASg33ciYc3MaSZa+GKh7uZ19XSa+aowqHiLZqlqxzY51tx1sneVPj4N5MnHp0ZOQEAwJNdc3ruNNouOp7Ky0rLA45bTzOyLRQ4ke04z+zZ5eXnAV/r4TJxknolmISN3oNCkYYl4CQQk4xZLygjRuW3fvj1QcrTW8Jh3fq9QiVw0g5dotgui6qV5eXlAKoFEUkEymcTgXta/tDvNLMUPpEKhvjjmVt16D5xmED8jTRk6G40Y5jRwx48zq0ePHsbPhxxyCPeZSGWuS3hmXZxmsof1zjvvRJcuXbB69Wrh5wBw1113YceOHZg+fbp0GzcykdNMOsn2WAVin6VHTEnKdQnTaaZ9j/hl5S4g2VdA65rTrFmzZpYXtFg0A4Cz514AAJh75gzpNh1dCq5GgubLV54PyD2EzR6eKXdd6cm8xQISAAw+lE3QDz9sjLzRe4Hze32EZ8om2Tp5/bxDqSXHzIetyq/zaaedhk8+fB2TJk2SbqMoiiMnjk5OzDoRkTyLlgTR0vBMSyi1Z04z14GLHqoizgUEAHPPOQsAMGG8cwINsJDAdkXMQXHRRRc6Pi/Iz3d1fbK8Z9aVY+d35OTkcKKZp1AoEVCNsAutLbJ+rqQoR/tecRi+qqoYO2YsAGD2aU63bCQSsYQQ+hFThF8DM0+YKs2jGQqFcOqpp2L8+PHCz3nRzEeoVrJGGObJTZBTTtHMMAspYqeZsRJuJMh2Ps/8Ao/4Oufk5JjV+IJyB5Kvqn6WMGfpMXuJZh5J8a1VFWVRuF5OMz9h9ewjM8wzHhe/o6+/fjEAYMaMmfLiEtr/RYVI7MfsvQghLqAT5u5/yfGoZv/OCgjJmT5KLsbEIgqS6xUMO1C+TYsiBVseU1GQ69yGOWnM94Mf0Ux6X1rEBRGtS605ppwLztGIHk7nEZ7pUT2THZO8kmRuTgTY/QF75iVOzLy8PCCnm+v38LkQqxyf+4EXzVyeZ5347y653sw2OIof6Cs8bgWZDKdZwH1RV9HDM53Ni0ajQMWnxu/yfKL6c1b3nGb5+fnuTrOYdi5zesnHJEH3tBKqqiIc3DOnmTRk3o/TzCguFBPOP1VVBeLaQt5nkx2iWSgUMiuHK4p4fqnoQmG+0IFnX8gWFQJgopmPgjQ7X9a2cZl76WOBkgl1Es3YoqK4IEebNm205yuAbdu22QoBCJxmqvzeNgqjqfKcZuw5NEVw2TFff/31AIBgMOwoztLUIdGsESMabNopKSnBsGHDAEAaZjJp0iQMHz4c/fv3x8qVK7nPRKvAdQnPTJfTDADOPvtsfPPNNzjhhBOEn7u1wy/py2nm4Xqwimau+RPSI5qdMVFBrsR8yIWwCSYifkIV+QmeeNDuJ6cZO7/uTjMA+H0323+xWCsBANxyjoIXbhUP2iNB/pjtbXEkiJeGZ7pP4Fq2bGn+4mIFP/mkkwAAt95yo/DzdBAJWycZ3qKZyFFofz48nWYuVS9zYmxfbdq09tX+upCbk+Pt+gxZHRjOffjPaeYeqsgn3ZWLZtKJvoaiKPj0ubPxj/kf4LrrrnN8np+f7xkebv0n0ffl5OTAqCQpmaiz+98sfiAdoBoCkjh3HWDmoQq5GBr0rjcou0bxndr3+HDaSE7yP//5T9buQNCXW1sEF/Li5jQzKm+VOyomAnyIbLMCZ0iq4YpUxSHmiqKwMLwAy/cmLeyh3yvR9nIBSc9Lp4al76pTT2U5NY877jjh5wAwfBhbHOjWY3+5C0BbKBo8eKDjc19OM6sILgvD9XCasYmIt9PsrDNnAgCKS8vQvHlz4TZtyloAAAqLnNdYJ6L1QQUCnZa5Enz0P15pDQJm7kfpRLHyK+NHWZJ/AEi9ouLwQ9w7qr2pAs36H3enGZuYm2Hqou+79NJLXftaACgt5p8t+zsuP0+b4GsOGLk4ZBYFEj3z7L2oT8QnOrbhKnZLnGZ8vlA30UzuUPWDn/BMg6ofgB8WezvNarc7BJcc3ZKoMCe8tA+z5J8VOs2S1UCAPTzy6u7W8ZxkccCP08wSnilarGM5R7Xrkqp25q7TnWaKCmnRLOufyPIYhnzkNPNY+Bo6dKjZt7s4zU46dqzWsPbo0qWL43NVVc2+I1kjdqPpohjEolkoYK0G7QzP5PpkuKSJ8RNiu0kfZ/sTR0Xt5QoYJZ1ieiQSsTjX+fPfokULAKxY0I4dO7hCAKFw0Dh2Z3ims5mGaObiNLM7d2Xv8AsvZIuwnTp1rFNY974MiWaNmGAwiM6dOwMApkyZItxGURS89NJL+P7774UJ7wH2kli/fj3effdd9OzJBVUjGAw6OgH7oKQugpg8+bv7fuqLZJJfvXDayX3mX0u6TybD4TBQerS2kzzpMc+dezYA4NFH/u2n+VIWnKhg19OS/CNWm7OgQ+VW3VNJVsHMBhee6boa7j0o6dVrfwDAmDGjpMczeThw+MFAaTPpJsiNKRjdX3zM0RCf98mRLygQ4OzfQcHbyk94ZpcuXSyDNXGpcwD40+AAZk8AurfP3L0fi1lf/JLqmVxyWa/wTBfRrPxj7Q/aSo/5sssuBgDMn3eOj9bXDbtdX/i8hq2TbEloh5+cZhbHjlxkMu8XGboolONiFi4oyMefJ/cXtoUTzWRJ8VX3UMVYLAZUb2K/KCGX8EwfeZ90p4calk6ka7TTEnEZp00byf5WKpp55W/xEZ55/PHHa5/XLdQLsN8LbtUztXsgUSGcZHTv3h0lBazNJxw32fG5cYiSnGYAgGYjWF4ciJ9n9u51z1fD57eTv59PP20mAGDEyJHCzwHgqitYGO6cOWcJP49EIjj66KMBAEsWX+34nHc0y55n8x6TFo02Et67HbN2vkItpMe8+CqW3+uEE2dJ739dCE46jREG500HXr1T4cPJNfLy8jixXZ6PyXQGiaiu/N34WeaKwx8bjB/d0ndkGl60FF/n4uJiw0Vpza1lpUWLFp6imf35tKf2MHIoBnKEYZWAvRCA2I1s5BgEgJwejsIe3MRWEuLJnYdEhbdo5nHsMpg4ZzpTXCfQ73QCfrpFHHJnPS+fT0enTp24z2PawhnrwyT3digA5jQLCu+FcDgM1P5qOmplopkFae5GP4KLUTE0xiIjRFicZvZ3Xm6OpS2SnGbWVAIyZ1A04md8qos24iqRnNPMpRDA0qW3AAA6dOktzXXVp5d2bQO5jusMwLJQISlwpLqPyR3Cp8xp5rHAwD7zEaqomG0UFaLj8rgJHKhssUnrl2xjQrMYWRDV1dXcuyFmOb/G2FMLmxe9w+1OM9HxdOjQwfJ+kF9n/d/dQu+bKiSaNXJefPFF3H///Vi2bJl0m0AgwFZu64h1VYslROU7fz9OM3siaz+50uqamyIdfPzxx9zvwtLJFuQ2bz85zfSVFXlcfd8+7OXTu7dLchCfyF0efHima7lot8qYXjmFwmEg9yD2ixqVHvPsU5iT8PbbbpUeS1mpgmduVoUOMD8YIRdu7bU4FqTJZT0G9q1btwa+vUjfi/SY27VUcN9FdT8eP3CimWBgzxdYAAKy62xBGpKt5YeBIq5UBQDt2rD42S5dBAOsNMGvHsvCM81/kwoyRUewXyQV8HihRDxwCQQCxrEee6x4sQMA9msLrLlSwaSh0k1cybeFZ4qdTu7FD4LBoFkZTc2VCwuRduyXaFcX0UwbOKpy55b+p3ku5q5xgxUkXlbkIbQeK6kRy/McVOQuVgAQ1BrwTV5enmX13iU8UxfckxXSYgHvPz4dl0//Fnfedr3j85BeGVZlDhZheHjFOuNnUbl69k4w/07qNDP/Qjrg1o2sbuJQSTETB/Py5JW5WrcuAwD06tnd+R2cW1P8PBfkmxOcmqrdjs9ZI03RTHrMYS2+v2is9N4uLAhr7RKH8gKmENy5tbxvz89RMPQA8ef5+fmwpj4QhQ3zfbf43v7lF7OYyssvvyxtC7fPLMGFZ0pCFTnXUvx3x+eA7gBzF47sz57dScPC3WtdwzN5p5kiFFPYddTGfJ8fj9LSUu5z3g0intiOHj0a+JwJ+0hWyatnKns3hubaKgmPtSM6L0YFXwBIVjucWTn6mESNSsMDw+Ggpn6LwzNZ+LhZ8EHqNLMgfeb95DHUKZsjFFPYF+idodPpl2MVzWTvKovwL9smFnZ3mrG8Zz5SwFjCM6uqxOG8RnSTKhbMAGDJVecDAC6/5DyhSztlVNGWLS5YRTPn/R8MBqFa3tuiw+EWSSVzFX3/7P9iMREAZp1q5kvu3bu3ZD9m0RpHYY9YzHL++XeVEdWhBFFVVcWlz4laktKa4Zl6vj5nE/gIEbdUAuaYxCsay83x31Qh0ayR06FDB5x22mnCsI50YR2cSSeKFvyIZqJt7O4uWX6i+sA+2BF2hBakTjNj0iQe2AcCATMHgJoj7cQOYaYr18nk3pITM48xoDpfIlz5d4iPOS8vDwho1y1YIhfW8vqyX9SI9JjnTIpg2YUK9u+Uueot0Yjlu1MJ4YAvzCVOlohmlpBU6Yvol7Xs/4qacUG4SxtgxEHiz/h7N+UYSAaDQSiWAaf0GlqQrl7u/oD9okQ8K6x5hSPuDZxLRhJmErVcetGKbSQSAX7RnJ5K1CWnmXe5+ksW/AUAcO5csdMGYIPB48YoCAbrdmJ4p1lC2J9ai+dJx0/6IEsSkpefn88qvQFAsJl0UP7wvx8AAJx+5nxpmw/tDTy0SMGgXtJNtLZKwq19iGa5uea9a+RPETCmPwvtrisHH3wwF54pzQ9q5LerlAoU7cuiuOYcsSBZkKed70BMOpmP4XvjZ9EqNQDTlQJx386/wxXpva2LQ3EXPVLPqxV2Ma7o3YVogsAvzoj7XOv9LhXNuDAfyUKent8r8Yf0mBVFwXFjgLMny++XwnwF79ynYLY4RaEndqeZyJXIKq3qIXneeax275acFwt+Ck5lCq46oEQ0e+ONN8xf9MIoNiKRCLDtH67fZR/jXX755dzvRnisFp4pEqoURTGvkaIInTbsvtSewZrNjvei4RgBgFRc2Ce0a9cOqPyS/aKGxeOWcNgcf9YRTjRzcZoNGDDA+FkkILE5hJn3yT5+Np1mzFkoXrwMWsIzJQVPjDA4FwHJgtShbfQt4rQSAHDNdXcYP8ucZlMOZ4tJJ530Z8dnsVgM2PGs9j3i+UEkHOTOvzCE3HLpRePTgoICU7RR5Au2s09lbYxGAo6IIzuVLtG+E444GB+sULDovMHiDfR+SVHE6VsC1jzDYmGHjwqQFQLwUwHV22k2f+5sAMCMseJ8ffp3sN0470u708z6ud1pZg3PNJ4JWEUzvRCAi9NM0g6DuNYWibvRilsET1OFRDPCE+tgWfQC9xOq6Edksu8nm6KZtTgC4BQF/DjN+PBM8QRuxIgR5kAvkC8PVezEEuq2KsmcspCXa15n0URFURTTmSJZAQ2FQkCkDfsl0o5V5bHBBjdax62EpC+iWETBnIniF2u6iFriwIJBcTUfaziX1P5eu5X9Em7p8oLWV4EUX0U89oZv1qh4+XZx9845zZJVkhXzoOVnyXV+o7nrNn369AG+PpWtwm1bhaKiImF7dINXJqOx+dw4CaFLIxp2X72MRCLArjfZL2rYewGh8isXyz/brjA/c+IpG/yb/Y9o1ZdLii97zPSJl+Iimum5W5IV0kH5iKH9ATiLzVhRFAVTRtb9meecu5I8Mc0s75Xqarlo8PytKmYeVfe+p0+fPpZV3YRQNOMdkOI8SV60KLXmN0oI+7Bo2OoolIhm1d+Z23iJZooqTRCvL+zUuBh79G407HL7612zKFTX7jQTTeY5UckijsmQLnbseI79P/4Hamrk+1lzperqIgOAAT3qfm+zQgBm2J5UNNNyOqF6s3A/48aN8/wua2SCMMSqnrA7hEWiGSf8ScLdx44dC3y3AHg9H2eeeaZwG/s91KFDB+531p/WGtUzZeFpxr0myN2lM2z4SADA+PFHOD6zO81Ez3Nubq45blRz5E6z/10AfDZN3E4f2EUz2WLfpZdeijZt2mD27NlCwYUJjrrTzCmK5ca0sXKsq4vTLMDeM2pYOJ5meQ6t4daS6A8Lomd+v/328wyDBoBJ45gF3M2N/NB9p+D7f2zC3/62yvGZve+XO9fdIzdiEVNpSSac93+zZs1M0azocOnxnPznqQCARdcsljvnNKo9on0P2k/ez6USphNfWF02VOt5/qNh94Vs3znNLGPC8vJy4SYH7BfFV6sVrLpCPH4FgEWLFgEApkw5RtwWI281vzBvd5pZX6mRqHkNjMVAPaeZ4Jg50czVaabnt4vLw/MBDOwJLJyRwZXsRgqJZoQn1sGyaOKVLqfZ5Ml8vpZshmdedNFFxs/33nuv43PfTjOjYpDY/tuhQwdTQAo1R1lZmbRNmRSPAN5RGI+LV6mNSbabtXfTX80fN21yfJyTkwN8pVW+U4KeL+hMYh2QWsO2rFidGVIHUrlWkSm3D3777TfxlxkTngqpgFQf8KJZpfC+sopmouusKAoQN49TFqpyyozpwGshdGmTYoNRAXooZOadZubgXyhgWHKDpASV1jgRXAkJn/l4PA4EteW5Hc9KRZA/tN03L/R/DHtKfn4+kKvly5EkyLaGoXLh2VYMp5k4p1lxcTHwwxLtN7kDqaSZgrVXKjjJOU9MG36cZtZr8vO2rZlti6ViqPTdaQm5q0soXHEh7ygU7YNzI0Ai/FR8bvzoWcwnkCdtq15opsalZo3+mZvTbP40BSsuVpCX45FfMBUXCkjcopuPROhff/21+IPKL7QfUqiurltC9XTAwn31CU+t8L3JXRNBpVUAWLBggfHzlVdeKdzm8ccfN37WC0llA7bAprvHxE6zO++803M/nTp1wr///W/MO+c0XHbZZcJt7H21PaWJIZoB0ueZfaaLZr9IxzYnz2Djn6uvuNTxGVcdUCKasVyTPwGV3wI7X5SHfsd3Ar8+Im6nD/Lz8zmXjMxpdswxx2DTpk2477775AsrRrEGZ/+TkxM1859KEtGHQ0EWKh0sFLquuArAEI8n/Ihm3H5cKkn26cK+oFWx8GOD9u3bC9+9ubm5QMysgOqdL1TsHirINZ+J3budTsvCwkLPMHQAKMhj+2nRQj4HAVjKiPW3p2OwJnZ35cRiQEILs076cZrJQmxNJ7Kn0yyxS7jAr7NfO/fjPWzsaADA1ClHi9tiCc+09htmteMAqqqqsN0SXR6ONXNup/ooBADANay4Vhu3KwHX99mb96oY1Y9EMzskmhGepMNp5hXuqG9z3333AQD+8Q93K32mKSgoQCKRQG1tLU4//XTH5/ZjlA4UkqZoJuvEiouYWNU7d5Vw8F9fsJVsNnFOxsUTKyNJZ7CZXNS0uMhESYSHDx8O/PEW+0Uy+K8vrPdzWGJ7UGEuq0Wjzvuf7cMUHLZs2SLcz6mnsKpyhfmhrLooc2yimQjr8+mnCq3sXrjjjjuwdu1avPDCC9L73wjPzODbKCcnB4hpOWokA9RoxDyGRNy5lMoGsNrzHG7pWAgANFfGlnuAj0YAiV3S6zxuENC61L3q697CO23ECoa1Yq40VDFpCogffPCB4+Pc3FzTpaQEXIWfY8coXPXKdMOEKveJ7TPPPJOx77cSjUaBCk1wcXOmWAb3dXGaMWHBHJR7Oc1Ul5BUHdkEYty4ccC2vwEbz8dBBx0k3CZXO8zqWnkC+a5tgCkjWBEXGe1aKjjlTy5huBanmcg5yj17PpxmX375pfsGShBt2rTx3E+mYO4ibVYlcWBUV1cDvz7hup+hQ80kiZde6hRtAHDXNtOLdW6wPFWaEJBKONxfADBqlFYoaNvfcPHFF0v3NXXqVNx2223Sa2gfk9rfaXz1UrfnWb8vU9LxXDLJzqm1YrMOl5tL8jyzAiI1wLv7ATWbhONpe7qTulBVVcWS62ttqWslvfz8fAw+mAlE9y69xPE5d50lQlWEG585Q7IVRbEsUgPBgLP/8ROeCQCo/Zn936WSpI7b4oAbRUVFQI6Wr1GWZzUcNquYJKvEzuk887zsECzYsvG1pSiK5HnWF1bcwuoBljLiwK7p6BOS8kgUj3yV0YA5JvGseuyykPfgg6xKdlF+grlR64h+a4oeOXt4pnVMYnWaVVdXY8uvloqsUfNeNkUzrRCAIDyTib36+ZQ7zVbeeS4AoFlJe4x0KdZDiCHRjPDEOjkUiSD2TtgrvwggTy47e/ZspFIp/PnPzhwA9Y2q+s89Je249dCm/EPQqlUr4d++uqwM8498C88/eX+d25oO2HU2q8AIsVSnEokGADB+/HhjH9YBug5XICFZI5zw1BfWxMlhidNMsQhLItHMjmywevNfWXnrFTdOyupEhBMSJMmRFUu5OT9C7ueffy7895ycHBx77LHCyY6O7nYSrZ6li1gsZqkkJh4VWs+LKBEuy1dj/vt3333n2CYQCLCByx+vARCXKAeA7u0V/PSIKs3NlQ540UxyzJbqsaLiB+xvzXtEuhpryXWYTeE/EokAxUeyX1IJaR9VH7BqblrSdYm7kX1mThDqMtFlYoo5KBe9W3Oi5sOVjDtdlAY7ngf+eAtPPvmk8ON77rkHpwx9Dauu7SstLhQOKTigC3D8GPm9HQkreOgaFc3y9iYM13RgiBZe/IjG1onSf//7X+E2Dz30EAAgFAriqKOOqlN700EkEjET3Uv67Ycffhj4fBrwhjzHrfXd4ybSvnSbgjfvza7TIBaLsZA9AAiXsYI6NhRFwW9PVOH1VT1x7bXX1vm7rGM90ZgkXy8EAHiEZ5p5kkTtBWAk/BYl2i4oKACqfzD25cd9minRjOXcNUWzvRmrvfboXPzwYC1OnzPD8RnvxqmRuHItJ0smplgdtYIwdD9OMwBAjbbwmUp5ptJwCzF3o6ioCPjhGu17xI6qcDgMBLR+rPxj4TG3aFECVHwGQLxgqygKUGM6qjdvFodt6ym0vESzvcWY26WS6Nevn+NzP2GrucHtxs+i85aXlwfEd7BfCkdJhc9pUyZh6Zk78e2r8+osCAOmu7pW8Jph97buEJaLZlVVVaisNp/ZwhxzrGUUgdFEM9FYjbnr9O8Rh74CwOFjWK65YyZPz2q+ysYKiWaEJ16iGcAPxEQPq10k8JOAtjEhterrpdAjbdG1a1fhJj275OLWSwejZcuWGWqdPwKBgKXakvjNuWvnT+yHP96QxsPfddddAIAO+R9h5syZwm3OOoMl1+zYvnlWw3BTqZThrrNavrlt9InK5rtQWyuerNx0003Gz6eccopwm2bNCpB6RcXkw9zt75kmYqnKIxs0Ji1lfPwID/YcgHuCPnHIpI7IDZokFcVKS0uBd7oCX83Gtm3bxDtKmnkvZH1Y//79jZ+z+Uxz100iGhQX2fJmeCATxP70J01MSFajc+fO/huZZiKRiJm4PRUX3rv1NVBklTHdc8oBwDytGERpfkWdqlwz0Uy/F8VuEGsOmFTSxWn26RHAR4dKE1u3b98eK1aswIwZzomvlY9WqujRIYP5NznXj7j4QUlJCbDrPdf9WB3tAwcOFG4zZQqrcLtf5zZZfVepqsqFZ4oYP348e9bjO133NWUE0Fms5xiM7KtgYM/simbRaBT49jz2i0slyKLCHBw6eKAvV7QM67tddD9x4Zm1v0lFs8XXXAEAaN++nVQ0O0zLmy9KtJ2fnw/U6E4nf6KZ6Li7detm/HzyySd77kPE0UcfbYZzSfpTv6iqinatxMfCJvz6gpQiPLeJoMUhKCn+EfVYBPItmlnCuY2KkQKeuknBM3+t2zNSXFxs9ts5PYXvB+bA08afiXJhezt16uQdfl79HdvP5rul4lDEp9Nsb7ntttsQwXYM7viR8L7kXGKpWs/5pEgcVlUVqDHHcL/++qtjG51zjy9GYcHeFRvL0W5rkeuQd5qJwjPNQgDxeJL/O42CggL2fGjV6EW3LXs/6OOApDSCR29rMkXyT12gs0Z4YhXKZBMO6zayFa7p06cbPx98sEtcRiNEmrtiqllV6IADDqiv5tSJ7dvN1Rup00yvvLLt73jqqaeEm7Rv3x41Lyr49ulR0knG7Uuvw0XHfIN3183emybvNbW1tYZaI0quCQBbN2m5bpKV0mO2Jhf2k2g5m1RXm24pe7l7naTleZYNsp5//nnj53POOafO7ZE6nNKINXdDOCqOiayqqgKq/gds+3/S/dz81xuMn+fMmSPc5sEHH8SZZ56JJ554Iquhxxyy8EzL8ykTCq33c7t27YTbLFvG8j4OOfQQqeBSH3A5OiThRDNmzABezwU2FGP58uWZbZAhmtVKHQs3LjoLi459Hx+/eFWdRBlONEslhC7Wr74yQw9//vln4X6mTp1q/HzsscfucTvqk5KSEqC5Np6Q5Os75phjgB8WA5CLBnsiasei2RWQmOtEEy0EORcB4IorrjB+fuCBB6T7eugaFRvXNvzhf0lJiVnQQPUWjzIJJ9TGf5WK4Oecxd4LgwcPku6rSxsFqVdUlDRz3lPNmjUzHapJF0ebB7m5uXjnnXewdOlS3HbbbXXaBxNtdNEsc85dzlFYMFh4bmtVy7MqeZ/FLFYzP04zmQNp6tRJAID9unVzDc88cqCCTh7FP2QUFxcDIa2YUrilcEGKhd7ria7EKV7y8/O5/LIiIpEI8EYxsHGudB7STDMRyqqup4uSkhJUvdICG544X/h+ZvlnTdFMtM2nn35q/LxhwwbxF1kK28gWu9OFLjiKit/wLsoEJ2bbnWa1cfFitSGaaf2/NCrD4miTOQpztEfArYAFISd7y2ZEo+GPP8zkkn4mRE88Ic6pcddddyE3Nxfdu3d3raDWGJGFp112yfnYec/3mDiyCKFQYf02ag+xVkMrLpIlW0oA7/cHyj9y3ZdX3qJAIIAbz+vmuk29oa9gy9w4xc3w2/8WAFtXSHehl1RX1ezmgPGFXsWq4nPpgNBaCEAmmo0ZMwa4mu1rb8QhfQCQhmgSKdZ7Ww2JRwt33XUX1q5dCwBYsmSJcJtzzz0Xy9/4DkV5NRg9erRwm86dO+Puu+/eyxanGcm9/dprrwFanm9R0Q6A5aX770wAid3S8CeWJyiJ9u2y65bl3K8SMeX666/Hr7/+ipKSEqkTNm0Yopk8zCcSCWPh2QOEn/khNzfXqMYqC8P98ccfgY7u+/n73/+O2tpa1NTUYOHChXVuT33gx0XZvHlz/OeB0/H00/NxwQWLpPt67hYFHTxu27lTgD8flt1+fdCgQcgp2oUKALcsFjv98vLykEqlkEi4JL9uRPTp0wcjhw/Ey3Hg6MmZFXKtLh5RZdhIJMLC9nJ6AIldUjHLrbiFH5o3b27m1FIUzrlsZfny5Tj//PMxd+5c6b4GDBiAAQPq3rcAsAi0SXlExV7CCQvJauG5bZW7CV/qRhrJM79lyxZA094qK3Y5Pm/RooX5y45npRWAr1x4CR6aiYy+H1gxKO2ei/+BvDynyzgWi7GcctGOAMTOuBNPPBEXX3ciKiu+wL///W/hdz377LOYP38+OnTogBNOOEG4TTikIPVK9seufE6zuotdV199Na68bRIQKsWUa09NU+vEFGrD35F9nZ8VFRWZ97YS5IuP6bnKtKT8VtFM7DSTV88EYMk/m5QuiOuRHceOzv61boyQaEZ4YhXN/OSrka1Sl5aW4v/9P7mLozHz7rvvCv89FArh0Zs77FXYQH0RCoUAbY4XkSRqWLRokbGa/cILL9RX0zIGN6lOigdijz/+uFFBbNasWdJ9vXaXktFqiOknJRX4OnXqhE8045FMHEoX+qORqCfRrCD5vnCb4uJivPfee/jkk084V6yVQCCAz/6dvfDDPSGVSrFKtm0vBCC+t1u1aoWtHw03q3gJ6Ny5M77/VzmCgRDKPCprZVtYGDduHBZcNxY44HlpaFRxcTHL/VQPtG/XEj8AgBLMWK63aDQK5GsTax9uHFEeGYAN0h977LE0tixz8KKZvOMYN26cp/N37ADve/b2c7P//g4Ggxg0eChe/Ag492xxCgCdfUEwA9j7+YXnn0JgJDCgb8+MfpcxRkvFUVPjLBxRUVEBVGsLCxJhBzDzag3oXve+8I1XnsDgucCkKTOlecROPfVUzJo1K+Njy79cdB5ufBZo0bIVOnbsmJHvYOGZ2oQ/WS0U53q1+ATrdTO0ZHHAymuvvuT4N+O5eKMESFSgqupq4d+yHJApxKJ7qYC6UFxcDGy+C2h7PpCKC3Mef/zxx8C3FwCtzwYgXpAtKirCxveWY8uWLejbV6DagDnE33333UYxD2FOMzP0XsT8+fOxVIu8X7NmjXCbiy66CKnUjSgrKxPmVk4nboLj6NGjgcRVAIDOXfk0JqwPMZ1m8YTYacbyKZou+qBENLvh2oW4+P8BKByDM88UO10VpWGIo42Vhv8EEVnHmsR7+PDhwm2s4ZbWEIGmwoUXXpjtJuw1p556quVnsTh0wQUX4Pbbb8fzzz+fcTGlPmCrfdrPpeKqWkOHDsUdd9yBOXPm4Prrr5fua0gfBd08SlM3BIzk86mUdOW4a9f9jJ9lOdrS1h6tOUlxusS0MGPGDODd/YFPJ+AvF50n3a5fv36YMWNGxlbU65M+ffoAv/0HADC0v1hAWr16NfDH68C2lfjpp5+k+2pflovWLdzPSeoVFX8anN37v0+fPrjk4vkAgJtvvSurbQGAZXez4h9/ufTqjE1Y+LLx4u/o3r07q+S5/WEceeSRGWlHfTJw4EDgl38BAEaPOTzLralHtGImmSwg0tBQVRXP/FXBhcdl9nv69+8PvNkKeKuNMN0AKwSjPWvJKqlopigKyp9VcP5eGOO6dSoEAIRzxG4RnfoQQaZpoYpz5pyRse8LhUKW0LJqoYD07bcbzV+S4vBkKzNniEOyR48ezXL+pWrQq1cv4Tb6mnEmU0cUFhZyVadFudN69uwJ/PEq8IX7zV9WVoZ+/fo1/CgHH3ApgBLlwm2uvPJKzDjwHlwz+Rkcd5z43MRiMVx55ZXSNBr1RWFhIR59eDUA4NCho7jPrE6zyspqJBJip1koFOIWh3Ji4sWxrp3YomZ+jrxyL7F3kGhGeHLDDTegefPmyM/Pl06gV69ejXHjxuHaa69lHX0TwCqgXHKJs4x2Y+OYY44xfj7+hJOE2+Tk5GDu3LksNG8fYMmSJQj+xCoYXThPXrH1nHPOwbJly3h7fyPllFNmaj+lcNFFFwm30Ve58mLiwh7pRB+HZzI8c+TIkXjgvoW4Yu6ArA+i6otRo0bh3Jl9MTp0OB74uzh31+jRo/Hll19i27ZtUmdWY2P61AkAgHA0e7nVdA45qCMAoFVb8eQsHbRq1QqoYOkBDhkoXl1es2YNAh8egLwfT9mr/IMNhbZt2+KhxWFM63EfHrgzs6J+QyKRbPyT4rpw+CEKIuHMHvucOXNw7OTROLBnG+E4Vw9BByB1Q+nkRJW9Ejb1cC9RoYD6JhJix6EGMjcOSCQSnNNMJP40a9YM2PY37Q/ERXheeOEFQ1xYsUJcjX7FihUYMmQIZsyYYVZ6t6GnjMikaGYVyVq0FDu4Fy0yw8qbN2+eucY0IFiaCD384A/hNoWFhVh1x9m4fH72qhnvCYcM6A0ACEX4NCZGIQAAlVU1XBEGR/+iWF1oYtFMr+J5yzkk7WQKCs8kPOnevTt++OEHJJNJaSLQ/fbbD//5z3/quWXZ5dxzz0WLFi3Qu3dv1wo7jQU2UGEdc3Gzxu+08UPnzp3xf08djx073sHAgY3jBby39Ot7EIAUysrKpFXwDuqqYPVzKex6JvMvX8NplkHRDGC5P5oSiqJg6dKlnttZE9PuC+iJbis9CorVB0X5wKUnAbMy2LVMmzYNy1efhTfjf8dR48STwL59+2LLli0IBoOcu7YxM2XKFGiFLZsMV574G974WuyIJvaOcDhs5LQUMXXqVBy/+Bn2S6o6o1V4VVXB6oXAnwZn7Ct8o+dAyuT7+fDDD0fOVQ+jAsCYMaOE2yxZsgQPDr8ZqZYz8OQT4txdo0ePRmhxArVxuQuvY8eOLJenC3peuo5Ow1vaCIVC2LBhAw69GDh0sDhvXUlJCT7++GM8/PDDmc+/2UAoKysDHjsBKB6XscIT9Y2ucVXbor6NQgAAqqprOdHMcex6RV1AGp5crJnLYvVTILxJQqIZ4Yu6VvDZl4lGo645rhojg3oBbZsDrUqazor2viYaeKFf2dLSEkSj4oHl+ccCM4+qn3vAcJplMDyTaDp0aQ0s+DNwjDiTQL2iKAqWzM7sc5SXl4ebbrwWw84H2rXrKN2uqTgV9mU6toxjxL5VQ6nREAwGgWKmfhc0KxGGEKaTE7KcH1JHF5Ay+X7Ozc3Fx09ORdc/Ay1bis9rly5d8NjqazDpCmDEkIOk+woGFNRKir/7paSZgo1rgc51rIzpl8GDB+PRJSkMP1AuDvXp04elWmgiXHLJJVi9ejX++G0FXnrllWw3Jy3oC3nVtroGRngmgKrqOJfX1+E02/G08ePbb70h/J4iTTTbR1JaNkhINCMIwuCNe8jWu6+jRz64pSdRVQWlhd77eu4WxVjdqiv1UT2TaDoEAgquO71hTDjri2A9FNMgiKaOoqSQSil46J9LuSp4+zLhenCaAUCXdjkAkhjTX953TxxZgpoXU67V2dOVdi3TgpnO0cOa1rvKixYtWuCHH35AeXk5SkpKst2ctKC7NWvcRLOqWvb+/vZCYOdLiM2a59hWN88fPEBczKdLG+Cu8xRMbgALhvsqJJoRBEE0IXTRLB05Y/1UnvOCnGYEsXeoKnt4SDQjiMzx76tVrNuQwmHDm0beXsB0msW9C1buNalXvBUvN8EMAFI0jmj0RKPRfSq6SU99I3aaaTnNquNIJhWg+keg/ENHeOZTTz2F0Veynx999BHp95x1jPAjIk2QrYQgCKIJYTjNGsgCZ2utQNgBXbLbDoJorBTmJrFfW2CcuA4AQRBpYMpIBasubVrTppIC9v/fxDnZGxzkWCcaKnbRjM9pFmeFXrTf7eGZo0aZuf6aisu1IUJOM4IgiCaErpU1lOrkRfkKUq80kMYQRCMkFAS++Af2qmIfQRCEnUBAwT0XAOMbQFECP5BjnWiodLXVcLGGZ1ZXx5FMKYbzTFQE4YxJwO7KjDeTcIFEM4IgiCZEOsMzCYIgCILYdzljUuMZLJDTjGiIbFyroLUtRRuX06wmwYlmjkIAAO65oGm5XBsiJJoRBEE0IRpaeCZBEARBEMTecv9fFLz8AdnNiIaFqLAEE81YzGZVdQKJYBBIsXT/ItGMyD4kmhEEQTQhdNHs7c+z2w6CIAiCIIh0MfMoBTOPohVBouETCAQQCKSQALA9cTBSQRVIkmjWkCGvH0EQRBOChpMEQRAEQRAEkT0iISbDbIpcwP5BE82Ki4uz1STChUYhmu3YsQPnnnsuhgwZgsmTJ+Ptt9/OdpMIgiAaJZTLjCAIgiAIgiCyRyRsG5CnqqGqKkpLS7PTIMKVRiGa3XDDDWjevDleeOEFzJs3DwsWLMAffzSS+scEQRANCBLNCIIgCIIgCCJ7lBQX8v+QrEaHDh0QCASy0h7CnQYvmlVUVGD9+vU444wzEI1GMXLkSHTp0gWvvPJKtptGEATR6CDRjCAIgiAIgiCyxyEH9+X/IVWDvn37ijcmsk6DLwTwww8/IC8vj7Mq7rfffvj222+F29fU1KCmpob7t2AwiHA4nNF27glJrSZykmoj79PQdSbSSbrup5SlsBTdmw0P6jeIPYHul6YBXWcindD91DSg69ywOenEE/DPa7VfKr4Ean7GuHHjGuz12lfvJ1X15yFr8KJZZWUlcnNzuX/Lzc3F7t27hduvXLkS999/P/dv06ZNw/Tp0zPWxrry448/ZrsJRD1A15lIJ3t7P/22SwXQDgDw/fffp6FFRCagfoPYE+h+aRrQdSbSCd1PTQO6zg2T7t27GT/HPuuPk2efjJEjRzb4sfm+dj916tTJ13YNXjSLxWIoLy/n/q28vFxajnXWrFn485//zP1bQ3Sa/fjjj2jXrp1vdZNofNB1JtJJuu6nvN/Z/8+ZDHTo0CFNrSPSBfUbxJ5A90vTgK4zkU7ofmoa0HVuPOzatQtKA8+f0tTvpwYvmrVv3x67d+/G9u3bjRDNr7/+GpMmTRJuHw6HG5RA5oaqqk3ypmtq0HUm0sne3k+BQApACmUlClS1Yb+gmzLUbxB7At0vTQO6zkQ6ofupaUDXueHyxj0pVNUAgUDjuT5N9X5q8Eeck5OD4cOHY9myZaiqqsL69euxceNGDB8+PNtNIwiCaHToC1mklxEEQRAEQRBEdhjUS8HIvjQgbww0eNEMABYsWIBt27ZhzJgxuO2223DdddehoKAg280iCIJodOiv5ia4SEQQBEEQBEEQBLFHNPjwTAAoKirC7bffnu1mEARBNHp0p1kjcoITBEEQBEEQBEFkBZo2EQRBNEHIaUYQBEEQBEEQBOEOTZsIgiCaEIkk+z/lNCMIgiAIgiAIgnCHRDOCIIgmRFIXzaj3JwiCIAiCIAiCcIWmTQRBEE2IZnlAy2LgT4Oz3RKCIAiCIAiCIIiGTaMoBEAQBEGkh1BQwdbHKDaTIAiCIAiCIAjCC3KaEQRBEARBEARBEARBEIQNEs0IgiAIgiAIgiAIgiAIwgaJZgRBEARBEARBEARBEARhg0QzgiAIgiAIgiAIgiAIgrBBohlBEARBEARBEARBEARB2CDRjCAIgiAIgiAIgiAIgiBskGhGEARBEARBEARBEARBEDZINCMIgiAIgiAIgiAIgiAIGySaEQRBEARBEARBEARBEIQNEs0IgiAIgiAIgiAIgiAIwgaJZgRBEARBEARBEARBEARhg0QzgiAIgiAIgiAIgiAIgrBBohlBEARBEARBEARBEARB2CDRjCAIgiAIgiAIgiAIgiBskGhGEARBEARBEARBEARBEDZINCMIgiAIgiAIgiAIgiAIG0oqlUpluxEEQRAEQRAEQRAEQRAE0ZAgpxlBEARBEARBEARBEARB2CDRjCAIgiAIgiAIgiAIgiBskGhGEARBEARBEARBEARBEDZINCMIgiAIgiAIgiAIgiAIGySaEQRBEARBEARBEARBEIQNEs0IgiAIgiAIgiAIgiAIwgaJZgRBEARBEARBEARBEARhg0QzgiAIgiAIgiAIgiAIgrBBohlBEARBEARBEARBEARB2CDRjCAIgiAIgiAIgiAIgvBkwoQJ+OSTT7LdjHqDRLMM8uCDD2Ly5MkYMmQIJkyYgGXLliGRSLj+zbp16zB37tx6aiGRLpYtW4Zp06bh4IMPxjPPPGP8+7p16zBw4EAMGzbM+G/r1q1ZbCnREJkwYQLGjx+P2tpa49+uvfZaLFu2LIutIjIN9RuEGxMmTMCQIUMwbNgwjBkzBmeddRbWr1+f7WYRGYb6BSJdNLVJbVOG+g1ib7GOOYYNG4YJEyZku0kNimC2G7Cvsnz5cjzyyCNYvHgxDjjgAHz77be4/PLL8csvv+Dyyy/PdvOINNOuXTtccMEFuPfeex2fHXLIIbjjjjuy0CqiMVFRUYF169Zh8uTJ2W4KUU9Qv0F4ce+996JPnz7YsWMHXn75ZVxxxRWYO3cupk6dmu2mERmC+gWCIPYU6jeIdKCPOQgn5DTLALt27cLKlStx8cUXo1+/fggGg+jWrRuuueYaPP744/juu++wY8cOXHbZZTjssMMwZswY3HHHHdi0aROuu+46vP322xg2bBiOP/74bB8K4ZNx48Zh0KBBCIfD2W4K0Ug54YQTsHLlSsTjccdna9euxaRJkzB27FhcccUV2L17NwDgzDPPxJNPPmlsV1FRgeHDh+PXX3+tt3YTdYf6DcIvRUVFOOaYY3DmmWfinnvuQSKRwDfffIPZs2dj1KhROPHEE/HZZ58Z2//0008499xzMWbMGBxxxBFYu3ZtFltP7AnULxDp5uOPP8bJJ5+MESNGYPz48Vx/sGzZMlxxxRW4+OKLMXz4cMycORNbtmzJYmuJukD9BpEJtm7daowlpk6dig0bNnCfv/feezj66KMxduzYfT46hkSzDPDxxx8jHo9j6NCh3L93794dZWVleO+993D55ZcjFovh8ccfx3/+8x+MGDECbdu2xSWXXIJDDjkEr776KtasWZOlIyDSyUcffYQxY8Zg2rRpeOihh7LdHKKBMnDgQDRv3hzr1q3j/v2NN97A3/72NyxduhTr1q1DZWUlbr31VgDAYYcdhueff97Y9pVXXkGvXr1QUlJSr20n0g/1G4SIYcOG4ffff8fGjRsxb948nHDCCXj++edx2mmn4aKLLkJ1dTXi8Tjmz5+Pnj174r///S8efvhhHHjggdluOpEGqF8g6kIwGMSll16Kl156CTfeeCPuuecefPHFF8bnL730Eo477ji8+OKLaN++Pe6///4stpZIN9RvEHUhmUzivPPOw5AhQ/DMM8/giiuuwMKFC7F9+3ZjmxdffBErV67EqlWr8MQTT+DVV1/NYoszC4VnZoDff/8dhYWFCAQCjs+Ki4uxc+dOfPjhh7j55psRjUYBAAcccEB9N5OoB/r164e1a9eiVatW+Oyzz3DhhReipKQEo0aNynbTiAbInDlzcO2113J5BJ599llMmTIFnTp1AgCcffbZOOmkk7Bw4UKMHj0at9xyC3bt2oX8/Hw899xzOOyww7LVfCJNUL9ByCgtLQUAvPrqq+jatatxT4wcORIrVqzAJ598gmAwiKqqKsyZMweKoiASiWD//ffPZrOJNED9AlFXevbsyf08ZMgQfPTRR+jRowcAYNCgQejbty8A4PDDD9/nHSNNCeo3iD3h7LPPhqoyT1X37t0Rj8cxffp0AEyr6N+/PzZs2ICJEycCYFEyRUVFhhv+xRdfxLBhw7LW/kxColkGaNasGXbu3IlEIuEQzn777TcEAgEUFxcbghmx79KmTRvj5969e+O4447DSy+9RC8rQsigQYNQWlrKhVxu374d/fv3N34vKytDZWUldu/ejcLCQvTt2xcvv/wyRo0ahXfeeQcLFy7MRtOJNEL9BiFDX+FNJpN45513MHLkSOOzeDyO7du3Q1VVlJWVQVGULLWSyATULxB1ZePGjbj55pvx1Vdfoba2FjU1NejYsaPxeVFRkfFzNBpFRUVFFlpJZALqN4g94a677jJymj333HO4/PLLuXFGIpHgFuFatGhh/NyqVSt89NFH9dbW+oZEswxwwAEHIBgM4rXXXsOIESOMf//yyy+xZcsW9OnTB/fffz+qqqocwhkNcvdt6PoSXsyePRvXX3+9IZSVlpZylY62bt2KaDSKvLw8AGaIpqqqOPDAA1FYWJiNZhMZhPoNQufVV19FYWEh2rZti6FDh+Kmm25ybPPRRx9hy5YtSKVSdO/sw9C1Jfxy4403on///rjlllsQjUZx6aWXIpVKZbtZRBagfoPwS/PmzdG1a1esXr1aus3PP/9s/Lx169Z9Oj0M5TTLAPn5+Zg1axZuuOEGvP/++4jH4/j666+xcOFCTJw4Ef3798dBBx2Em2++GRUVFaiqqjJKQhcVFWHbtm1IJBJZPgpiT4jH46iurkYqlTJ+TiaT2LBhA3bs2AEA+OKLL/Cvf/1rn7WtEulh8ODBKC4uxvr16wEAY8eOxSOPPILvvvsOlZWVuPvuu3H44Ycb248aNQoffPABHn30UQrNbGRQv0H4ZefOnXjsscdw77334owzzsCwYcPw2WefYf369UgkEqiqqsKGDRuwe/du9OrVC9FoFCtWrEBNTQ12796Nzz//PNuHQPiE+gUi3VRUVCAvLw+RSAQffPABXn/99Ww3iUgz1G8Q6aZ3796Ix+N45JFHUFtbi9raWnzwwQfcQv7atWuxc+dO/PTTT3j00UcxevToLLY4s5DTLEOcdtppyM/Px+LFi7F161YUFxdjwoQJOPXUUwEAixcvxo033ogJEyZAURQcc8wx6NOnDw4++GC0bNkSY8eORevWrV3VXaLhsHjxYiOk7oMPPsCVV16Je++9F2+99RauvPJKVFVVoXnz5jj55JNJ2CA8mT17NubNmwcAGDJkCE466STMmzcP5eXlOPTQQ3HeeecZ2+bn56N///544403cMstt2SryUQdoH6D8OKMM86AqqoIhULo0aMHrrrqKiNUYunSpbjllltw9dVXIxgM4sADDzSc7rfeeituuOEGHHHEEQiHwzjllFMor1kjgfoFIp0oioK5c+diyZIluPfeezFw4EAMHz48280i0gz1G0S6CQaDWLp0Kf7617/i7rvvRiqVQs+ePXHJJZcY24wcORIzZ87Erl27MG3atH26b1FS5M8lCIIgCIIgCILYZxgzZgxWrlyJ9u3bZ7spBEEQjRoKzyQIgiAIgiAIgthHePfddwGw4kEEQRDE3kHhmQRBEARBEARBEPsAS5YswZtvvonLLrsMoVAo280hCIJo9FB4JkEQBEEQBEEQBEEQBEHYoPBMgiAIgiAIgiAIgiAIgrBBohlBEARBEARBEARBEARB2CDRjCAIgiAIgiAIgiAIgiBskGhGEARBEARBEARBEARB7FNs3rwZhx566F7tg6pnEgRBEARBNFLeffddnHHGGQCAJ554Aq1bt85yiwiCIAiC2NeoqanBddddh7feegvl5eXo3r07/vKXv6Br164AgFWrVuEf//gHkskkJk2ahHnz5kFRFMTjcVxyySX49NNP8csvv+Dpp59GaWmpsd+rrroKzzzzDIJBJk2VlZXhwQcfFLZh8+bNmDhxImKxmPFvI0eOxDXXXJPBIyfRjCAIgiAIolFw1VVX4cknn0S/fv1w3333AQDy8vLQu3dvAEA4HM5m8wiCIAiC2EdJJBJo06YNVq5cidLSUqxZswYXXHABHn/8cbz22mt46KGHsGrVKkSjUZx55pno2LEjJk2aBADo168fTj75ZMyaNUu479NPPx0zZ8701Y5wOIxXX301XYflCwrPJAiCIAiCaKT06NEDq1atwqpVq7iVW4IgCIIgiHQRi8Vw2mmnoWXLlggEAjj22GOxefNm7Ny5E//9738xdepUtG3bFqWlpTjxxBPx1FNPAQCCwSCOP/549OnTJ6Pte++993DiiSdi5MiRmDNnDjZt2sR9vnbtWowdOxYTJ07E+vXr92jfJJoRBEEQBEE0cCZMmIAnn3wSAPD+++9jwIABGDBgAN59913j582bNwNgjrQBAwYYf/OnP/0JI0aMwM0334yqqircfPPNGDFiBMaPH4+HHnqI+55ffvkFV199NY488kgMGjQIkyZNwvLlyxGPx+v9mAmCIAiCaJh8/PHHKC4uRmFhIf73v/8ZYZoA0K1bN3z77be+9/XAAw9gzJgxOOWUU/D+++/vcVu2bt2KBQsW4MILL8QLL7yA0aNH45JLLkEqlQIA1NbWYuPGjfjPf/6DBQsWYOHChdixY4fv/ZNoRhAEQRAE0cDp3r07CgsLAQC5ubno3bs3evfujS+++EL6N9u3b8f111+PUCiE8vJyrFmzBieddBKeeOIJ5OXlYevWrbjxxhvxv//9DwCwc+dOzJw5E+vWrUNlZSU6deqErVu34t5778WSJUvq4zAJgiAIgmjg7N69G9deey3OOussAEBFRQXy8vKMz3Nzc1FRUeFrX8cddxweffRRPP3005g2bRrOO+88bN26Vbp9TU0NRo4cafz32muv4emnn8aYMWNw0EEHIRAI4LjjjsOWLVuMxcRUKoU5c+YgEong0EMPRe/evfH666/7Pl4SzQiCIAiCIBo4f/3rXzF06FAATEDTQzJ79Ogh/Zva2lrceeedeOSRR9CyZUsAwI8//og1a9bgoYceQiQSQTKZxHvvvQcAePDBB7Ft2zaUlJTgsccew5o1a3DDDTcAAJ588kn8+OOPGT5KgiAIgiAaMtXV1bjgggswdOhQI2dZTk4Odu/ebWxTXl6OnJwcX/vr0aMHCgoKEAqFcNRRR+GAAw7AW2+9BQCYPn06hg0bhmHDhhlCWjgcxssvv2z8N3ToUGzduhXr1q3jxLTKykr88ssvAABVVbkUFi1btsT27dt9HzMVAiAIgiAIgtgHKSgowEEHHQQAaNWqFbZt24YuXboYFTaLioqwdetW/PbbbwCA//u//wMA/PrrrzjssMO4faVSKXz66ado165d/R0AQRAEQRANhng8jksvvRTNmzfH/PnzjX/v1KkTvvnmG2Nx76uvvkLnzp3r9B2Kohg/26to6s4xO82bN8eUKVNw/vnnOz7bvHkzkskktm/fjubNmwMAtm3bhn79+vluEznNCIIgCIIg9kFyc3ONnwOBgOPf9IGpnvND/781/NP6XzQara+mEwRBEATRwFiyZAmqq6tx1VVXceLWuHHj8PDDD+Onn37C9u3bsXr1ahx11FHG5zU1NaiurgbAXPD6zwDwwgsvoLKyEvF4HM8++yw++ugjHHzwwXvUriOPPBLPPfccPvzwQySTSZSXl+P55583PlcUBcuXL0dNTQ3efPNNfPLJJxgyZIjv/ZPTjCAIgiAIohGgi1ZVVVUZ2X+vXr2wYcMGBAIBXHvttYYjrby8HC+99BJGjRqVke8lCIIgCKJhs2XLFqxbtw6RSIQbD9x+++0YOnQovv76a5x88slIJpM4+uijMXHiRGObKVOmYMuWLQBYYSMAePfddwEA//znP7Fo0SIoioIOHTrgpptuMsYffmnTpg0WL16MpUuX4rvvvkMsFsOAAQMwduxYAEAoFEKnTp0wbtw4xGIxLFq0CMXFxb73T6IZQRAEQRBEI6Bjx44AgM8++wzHHnssYrEYZs+enbb9T58+HY8//jh+/vlnTJkyBZ06dUJ5eTm2bduGeDyO8ePHp+27CIIgCIJoPJSVlRlCl4hZs2Zh1qxZws/WrVsn/bsVK1b4bkPr1q2xYcMG4Wf9+/fHqlWrXP/muOOO8/1dVig8kyAIgiAIohEwceJEjB49Gnl5edi4cSM+/fRTJJPJtO2/qKgIK1euxIQJE9CsWTNs3LgR1dXV6Nu3rzBPCEEQBEEQxL6OktITWBAEQRAEQRAEQRAEQRAEAYCcZgRBEARBEARBEARBEAThgEQzgiAIgiAIgiAIgiAIgrBBohlBEARBEARBEARBEARB2CDRjCAIgiAIgiAIgiAIgiBskGhGEARBEARBEARBEARBEDZINCMIgiAIgiAIgiAIgiAIGySaEQRBEARBEARBEARBEIQNEs0IgiAIgiAIgiAIgiAIwgaJZgRBEARBEARBEARBEARhg0QzgiAIgiAIgiAIgiAIgrBBohlBEARBEARBEARBEARB2CDRjCAIgiAIgiAIgiAIgiBs/H8jleGhRjg7QQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# compute the MAE and RMSE on the test set\n", + "print(\n", + " \"On testing set -> MAE: {}, RMSE: {}\".format(\n", + " mae(model_forecasting, s_taxi_test), rmse(model_forecasting, s_taxi_test)\n", + " )\n", + ")\n", + "\n", + "# plot the data and the anomalies\n", + "fig, ax = plt.subplots(figsize=(15, 5))\n", + "s_taxi_test.plot(label=\"Number of taxi passengers\")\n", + "model_forecasting.plot(label=\"Prediction of the model\", linewidth=0.9)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To evaluate the anomaly model, we call the function `eval_metric()`. It outputs the score of an agnostic threshold metric (\"AUC-ROC\" or \"AUC-PR\"), between the predicted anomaly score time series and some known binary ground-truth time series indicating the presence of actual anomalies. \n", + "\n", + "It will return a dictionary containing the name of the scorer and its score." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AUC_ROCAUC_PR
Norm (ord=1)_w=10.6580740.215601
WassersteinScorer_w=240.8849150.609469
WassersteinScorer_w=480.9500350.687788
\n", + "
" + ], + "text/plain": [ + " AUC_ROC AUC_PR\n", + "Norm (ord=1)_w=1 0.658074 0.215601\n", + "WassersteinScorer_w=24 0.884915 0.609469\n", + "WassersteinScorer_w=48 0.950035 0.687788" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "metric_names = [\"AUC_ROC\", \"AUC_PR\"]\n", + "metric_data = []\n", + "for metric_name in metric_names:\n", + " metric_data.append(\n", + " anomaly_model.eval_metric(\n", + " anomalies=series_taxi_anomalies,\n", + " series=s_taxi_test,\n", + " start=START,\n", + " metric=metric_name,\n", + " )\n", + " )\n", + "pd.DataFrame(data=metric_data, index=metric_names).T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that the anomaly model, using the `WassersteinScorer`, can separate the abnormal days from the normal ones. The AUC ROC is above 0.9. Additionally, a window of size 48 timestamps (24 hours) is a better option than a window of size 24 timestamps (12 hours). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We call the function `show_anomalies()` to visualize the results. It plots the forecasts, predicted scores, the input series, and the actual anomalies (if provided). The scorers with different windows will be separated. It is possible to compute a metric that will be shown next to the scorer’s name. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAARSCAYAAABhf3JeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeXwURdrHf909M8kkk3CEECBAIHIoonihiygIwnKJoKt44AWeq6uC97qigsgiHui+q6urHOq64IHiIoeooMilHArKHYGQi0BC7jm7u94/qrune6ZzklOe7+eDZvqq6urq6l899dRTAmOMgSAIgiAIgiCaOWJTZ4AgCIIgCIIgagIJV4IgCIIgCKJFQMKVIAiCIAiCaBGQcCUIgiAIgiBaBCRcCYIgCIIgiBYBCVeCIAiCIAiiRUDClSAIgiAIgmgRkHAlCIIgCIIgWgQkXAmCIAiCIIgWAQlXgmgA/vGPf0AQBPTt27eps9IgdOvWDbfddltTZ6PBEAQBzz77rPF79+7dePbZZ3H48OF6T+vyyy/HPffcY/z+9ttvIQiC8U+SJCQnJ2Ps2LHYunVrvaffXFm4cCEEQWiQMjejl3Nl9XnGjBnGMfWZl9tuuw3dunWr07mXXXYZLrvsMuN3UVERWrdujaVLl9ZL3giiOUPClSAagPnz5wMAdu3ahR9++KGJc0OcLLt378b06dPrXUR9/vnn2LBhA6ZNmxa1b9asWdi0aRO+/fZbTJs2DRs3bsTgwYNx4MCBes1Dc2XMmDHYtGkTOnbs2OBpJSQk4OOPP0ZZWZllO2MMCxcuRGJiYoPn4WRo06YNpk6dikcffRTBYLCps0MQDQoJV4KoZ7Zu3YodO3ZgzJgxAIB58+Y1cY5aHoqiIBAINHU2GpxZs2bhqquuQmpqatS+nj174g9/+AMuvfRSPPDAA5g7dy68Xi/+85//NHo+vV5vo6eZnJyMP/zhD4iJiWnwtMaNGwfGGBYvXmzZvmbNGhw6dAjXXXddg+fhZLnnnntw+PBhfPLJJ02dFYJoUEi4EkQ9owvV2bNn4+KLL8bixYujPvyHDx+GIAh46aWX8Morr6B79+7weDwYMGAANm/eHHXN//3vfxgwYADi4uKQkJCA4cOHY9OmTZZjnn32WQiCgJ07d+Laa69Fq1at0LZtWzz00EOQZRn79u3DyJEjkZCQgG7dumHOnDmW8/1+Px5++GGcc845xrkDBgzA559/XuX9lpeXo3Xr1rj77ruj9h0+fBiSJOHFF1+s9Hy9LObMmYOZM2eie/fuiImJwdq1awHwjsCVV16Jtm3bIjY2Fueeey4++ugjyzW8Xi8eeeQRdO/eHbGxsWjbti0uuOACLFq0yDgmcnhVp7oh24ULF+Laa68FAAwZMsQYNl64cCEA4KeffsIVV1yB9u3bIyYmBp06dcKYMWOQnZ1d6TX183788UfcfPPNVR6nc8EFFwAA8vPzLdsPHDiAG2+80Uj/jDPOwOuvvx51/q5du/DHP/4RcXFxSE5Oxn333Yfly5dDEAR8++23xnGXXXYZ+vbti3Xr1uHiiy9GXFwcJk+eDAAoLS01ytnlciE1NRVTpkxBRUWFJa2PP/4YF110EVq1aoW4uDikp6cb1wAAVVUxc+ZM9O7dG263G61bt8bZZ5+N1157zTimMleB+fPno1+/fsZzvuqqq7Bnzx7LMbfddhs8Hg8yMjIwevRoeDwedOnSBQ8//LBth6hVq1a46qqrjJESc1oDBw5Er169os6paV70e+ndu7fxfN577z3b6wWDQcycOROnn346YmJikJycjEmTJuH48eO2x5tJSUnB8OHD8eabb1Z7LEG0ZEi4EkQ94vP5sGjRIvTv3x99+/bF5MmTUVZWho8//tj2+Ndffx1fffUVXn31VXzwwQeoqKjA6NGjUVJSYhzz3//+F+PGjUNiYiIWLVqEefPmoaioCJdddhnWr18fdc0JEyagX79+WLJkCe68807MnTsXU6dOxfjx4zFmzBh89tlnGDp0KB5//HF8+umnxnmBQAAnTpzAI488gqVLl2LRokW45JJLcPXVV1f6oQUAj8eDyZMn44MPPrDkGwDeeOMNuFwui2ipjH/84x9Ys2YNXnrpJaxcuRKnn3461q5di4EDB6K4uBhvvvkmPv/8c5xzzjm47rrrDOEIAA899BD+9a9/4YEHHsCqVavw/vvv49prr0VhYWG16VbHmDFjMGvWLAD8eW3atAmbNm3CmDFjUFFRgeHDhyM/P9/yLLt27Ro17BzJF198AUmSMGjQoBrl49ChQwBgEVG7d+9G//798euvv+Lll1/GF198gTFjxuCBBx7A9OnTjePy8vIwePBg7Nu3D//617/w3nvvoaysDH/5y19s08rLy8NNN92EG2+8EStWrMC9994Lr9eLwYMH491338UDDzyAlStX4vHHH8fChQtx5ZVXgjEGANi0aROuu+46pKenY/HixVi+fDmefvppyLJsXH/OnDl49tlnccMNN2D58uX48MMPcfvtt6O4uLjKMvj73/+O22+/HWeeeSY+/fRTvPbaa9i5cycGDBgQ5UIRCoVw5ZVX4vLLL8fnn3+OyZMnY+7cuXjhhRdsr3377bdj8+bNhvAsLi7Gp59+ittvv/2k8rJw4UJMmjQJZ5xxBpYsWYKnnnoKzz33HNasWWO5nqqqGDduHGbPno0bb7wRy5cvx+zZs/HVV1/hsssug8/nq7JsAN7p2LBhQ7XlSBAtGkYQRL3x3nvvMQDszTffZIwxVlZWxjweD7v00kstxx06dIgBYGeddRaTZdnY/uOPPzIAbNGiRYwxxhRFYZ06dWJnnXUWUxTFOK6srIy1b9+eXXzxxca2Z555hgFgL7/8siWtc845hwFgn376qbEtFAqx5ORkdvXVV1d6L7Iss1AoxG6//XZ27rnnWvalpaWxW2+91fj922+/MVEU2dy5c41tPp+PJSUlsUmTJlWahrksTjvtNBYMBi37Tj/9dHbuueeyUChk2X7FFVewjh07GmXSt29fNn78+CrTGTx4MBs8eHDU9ltvvZWlpaVZtgFgzzzzjPH7448/ZgDY2rVrLcdt3bqVAWBLly6tMm07Ro0axU4//fSo7WvXrmUA2IcffshCoRDzer1sw4YNrHfv3qxPnz6sqKjIOHbEiBGsc+fOrKSkxHKNv/zlLyw2NpadOHGCMcbYo48+ygRBYLt27bIcN2LEiKj7Gjx4MAPAvvnmG8uxf//735koimzLli2W7Z988gkDwFasWMEYY+yll15iAFhxcXGl937FFVewc845p/LCYYwtWLCAAWCHDh1ijDFWVFTE3G43Gz16tOW4I0eOsJiYGHbjjTca22699VYGgH300UeWY0ePHs169+5t2QaA3XfffUxVVda9e3f2yCOPMMYYe/3115nH42FlZWXsxRdfrFNe9Pf3vPPOY6qqGscdPnyYOZ1OS71btGgRA8CWLFliueaWLVsYAPbGG28Y2yqry1999RUDwFauXBm1jyB+L5DFlSDqkXnz5sHtduP6668HwK2R1157Lb7//nvbSTVjxoyBJEnG77PPPhsAkJmZCQDYt28fcnNzcfPNN0MUw6+rx+PBn/70J2zevDnKDeGKK66w/D7jjDMgCAJGjRplbHM4HOjRo4eRjs7HH3+MgQMHwuPxwOFwwOl0Yt68ebbDn2bS09NxxRVX4I033jAsb//9739RWFhYqVUvkiuvvBJOp9P4nZGRgb1792LixIkAAFmWjX+jR49GXl4e9u3bBwC48MILsXLlSjzxxBP49ttva2Sdqg969OiBNm3a4PHHH8ebb76J3bt31/jc3NxctG/fvtL91113HZxOJ+Li4jBw4ECUlpZi+fLlaN26NQDu2vHNN9/gqquuQlxcXFT5+P1+w+3ku+++Q9++fdGnTx9LGjfccINt2m3atMHQoUMt27744gv07dsX55xzjiWtESNGWNwN+vfvD4Bb/j/66CPk5OREXf/CCy/Ejh07cO+99+LLL79EaWlpteW1adMm+Hy+qNn/Xbp0wdChQ/HNN99YtguCgLFjx1q2nX322VF13nz8bbfdhvfffx+yLGPevHmYMGECPB5PnfOiv7833ngjBEEwjktLS8PFF19sOfeLL75A69atMXbsWEv5nnPOOejQoYPFnaMy9PpkV+YE8XuBhCtB1BMZGRlYt24dxowZA8YYiouLUVxcjGuuuQYAovznACApKcnyW5+IogsvfajbbmZ1p06doKoqioqKLNvbtm1r+e1yuRAXF4fY2Nio7X6/3/j96aefYsKECUhNTcV//vMfbNq0CVu2bMHkyZMtx1XGgw8+iAMHDuCrr74CwIfVBwwYgPPOO6/ac+3uUfflfOSRR+B0Oi3/7r33XgBAQUEBAO5m8Pjjj2Pp0qUYMmQI2rZti/Hjxzf4DPxWrVrhu+++wznnnIMnn3wSZ555Jjp16oRnnnkGoVCoynN9Pl/UMzHzwgsvYMuWLfjuu+/wt7/9Dfn5+Rg/frzho1lYWAhZlvF///d/UeUzevRoAOHyKSwsREpKSlQadtsA+/qWn5+PnTt3RqWVkJAAxpiR1qBBg7B06VLIsoxbbrkFnTt3Rt++fS3+xn/961/x0ksvYfPmzRg1ahSSkpJw+eWXVxnuq7p3IdItxK7Ox8TEVFmXdX/SWbNmYfv27ZW6CdQ0L/r/O3ToEHVc5Lb8/HwUFxfD5XJFlfHRo0eN8q0K/X4bq+NGEE2Bo6kzQBC/F+bPnw/GGD755BPbmb3vvvsuZs6cabGwVocubPPy8qL25ebmQhRFtGnTpu6ZNvGf//wH3bt3x4cffmixDtV0dv/QoUPRt29f/POf/4TH48H27dtrNQPenCYAtGvXDgAXOVdffbXtOb179wYAxMfHY/r06Zg+fTry8/MN6+vYsWOxd+9eAPyjHumDC6BGgqAqzjrrLCxevBiMMezcuRMLFy7EjBkz4Ha78cQTT1R6Xrt27XDixIlK96enpxsTsgYNGgS3242nnnoK//d//4dHHnkEbdq0gSRJuPnmm3HffffZXqN79+4AeD2KnNQFAEePHrU9L/JZ6Pl1u922HTB9v864ceMwbtw4BAIBbN68GX//+99x4403olu3bhgwYAAcDgceeughPPTQQyguLsbXX3+NJ598EiNGjEBWVhbi4uKirl/du2BOv6506dIFw4YNw/Tp09G7d+8oq2ht86IfZ1fOkdvatWuHpKQkrFq1yjbNhISEavOv16f6KAuCaK6QcCWIekBRFLz77rs47bTT8M4770Tt/+KLL/Dyyy9j5cqVUUP5VdG7d2+kpqbiv//9Lx555BFDUFRUVGDJkiVGpIH6QBAEuFwui2g5evRotVEFzDzwwAO45557UFJSgpSUFGM2fl3o3bs3evbsiR07dhiTo2pCSkoKbrvtNuzYsQOvvvoqvF4v4uLi0K1bN3z88ccIBAKGZbuwsBAbN26sNk5npCXcDkEQ0K9fP8ydOxcLFy7E9u3bq7zm6aefXquA8Y899hgWLlyI2bNn4+6770ZCQgKGDBmCn376CWeffTZcLlel5w4ePBgvvfQSdu/ebXEXiAz/VBVXXHEFZs2ahaSkJEMQV0dMTAwGDx6M1q1b48svv8RPP/2EAQMGWI5p3bo1rrnmGuTk5GDKlCk4fPhwlEsDAAwYMAButxv/+c9/LPUqOzsba9asMUY2TpaHH34Ybre7yrpb07z07t0bHTt2xKJFi/DQQw8Z71ZmZiY2btyITp06GedeccUVWLx4MRRFwUUXXVSnvB88eBAAbMuPIH4vkHAliHpg5cqVyM3NxQsvvGAbckm3RM6bN69WwlUURcyZMwcTJ07EFVdcgbvvvhuBQAAvvvgiiouLMXv27Hq7hyuuuAKffvop7r33XlxzzTXIysrCc889h44dO9Z4yP2mm27CX//6V6xbtw5PPfVUlWKqJrz11lsYNWoURowYgdtuuw2pqak4ceIE9uzZg+3btxvRGi666CJcccUVOPvss9GmTRvs2bMH77//vkXY33zzzXjrrbdw00034c4770RhYSHmzJlTo+Dy+gpo//73v5GQkIDY2Fh0794dmzZtwhtvvIHx48cjPT0djDF8+umnKC4uxvDhw6u85mWXXYb58+dj//79lYZbMuN0OjFr1ixMmDABr732Gp566im89tpruOSSS3DppZfiz3/+M7p164aysjJkZGRg2bJlxsz1KVOmYP78+Rg1ahRmzJiBlJQU/Pe//zWs0Wb/6cqYMmUKlixZgkGDBmHq1Kk4++yzoaoqjhw5gtWrV+Phhx/GRRddhKeffhrZ2dm4/PLL0blzZxQXF+O1116D0+nE4MGDAQBjx45F3759ccEFFyA5ORmZmZl49dVXkZaWhp49e9qm37p1a0ybNg1PPvkkbrnlFtxwww0oLCzE9OnTERsbi2eeeabae6gJf/zjH/HHP/6xymNqmhdRFPHcc8/hjjvuwFVXXYU777wTxcXFePbZZ6NcBa6//np88MEHGD16NB588EFceOGFcDqdyM7Oxtq1azFu3DhcddVVVeZr8+bNSEpKwllnnXVyhUAQzZmmnBlGEL8Xxo8fz1wuFzt27Filx1x//fXM4XCwo0ePGjPpX3zxxajjEDGjnTHGli5dyi666CIWGxvL4uPj2eWXX842bNhgOUaPKnD8+HHL9ltvvZXFx8dHpTN48GB25plnWrbNnj2bdevWjcXExLAzzjiDvf3228Z1zURGFTBz2223MYfDwbKzsysrCgtVlQVjjO3YsYNNmDCBtW/fnjmdTtahQwc2dOhQI3IDY4w98cQT7IILLmBt2rRhMTExLD09nU2dOpUVFBRYrvXuu++yM844g8XGxrI+ffqwDz/8sEZRBRhj7NVXX2Xdu3dnkiQxAGzBggVs79697IYbbmCnnXYac7vdrFWrVuzCCy9kCxcurPa+S0pKmMfjYXPmzLFs16MKfPzxx7bnXXTRRaxNmzbGrP1Dhw6xyZMns9TUVOZ0OllycjK7+OKL2cyZMy3n/frrr2zYsGEsNjaWtW3blt1+++3s3XffZQDYjh07jOPs6oVOeXk5e+qpp1jv3r2Zy+VirVq1YmeddRabOnUqO3r0KGOMsS+++IKNGjWKpaamMpfLxdq3b89Gjx7Nvv/+e+M6L7/8Mrv44otZu3btmMvlYl27dmW33347O3z4sHFMZFQBnXfeeYedffbZRvrjxo2LipZQWZ23q8vQogpURWRUgdrkRT+uZ8+ezOVysV69erH58+fb1rtQKMReeukl1q9fPxYbG8s8Hg87/fTT2d13380OHDhgHGcXVUBVVZaWlsbuv//+Ku+FIFo6AmPaFGCCIIiTJBgMolu3brjkkkuiFgkgorn//vvxzTffYNeuXbZ+pQ3NXXfdhUWLFqGwsPCkreNE0/LNN9/gj3/8I3bt2oXTTz+9qbNDEA0GCVeCIE6a48ePY9++fViwYAEWLlyILVu21DiawKlMfn4+evXqhXnz5tWbj2ZlzJgxA506dUJ6ejrKy8vxxRdf4J133sFTTz2FGTNmNGjaRMMzZMgQ9OjRA2+//XZTZ4UgGhTycSUI4qRZvnw5Jk2ahI4dO+KNN94g0VpDUlJS8MEHH0SFNGsInE4nXnzxRWRnZ0OWZfTs2ROvvPIKHnzwwQZPm2hYioqKMHjwYCNMHEH8niGLK0EQBEEQBNEioAUICIIgCIIgiBYBCVeCIAiCIAiiRUDClSAIgiAIgmgRkHAlCIIgCIIgWgQkXAmCIAiCIIgWAQlXgiAIgiAIokVAwpUgCIIgCIJoEZBwJQiCIAiCIFoEJFwJgiAIgiCIFgEJV4IgCIIgCKJFQMKVIAiCIAiCaBGQcCUIgiAIgiBaBCRcCYIgCIIgiBYBCVeCIAiCIAiiRUDClSAIgiAIgmgRkHAlCIIgCIIgWgQkXAmCIAiCIIgWAQlXgiAIgiAIokVAwpUgCIIgCIJoEZBwJQiCIAiCIFoEJFwJgiAIgiCIFgEJV4IgCIIgCKJFQMKVIAiCIAiCaBGQcCUIgiAIgiBaBCRcCYIgCIIgiBYBCVeCIAiCIAiiRUDClSAIgiAIgmgRkHAlCIIgCIIgWgQkXAmCIAiCIIgWAQlXgiAIgiAIokVAwpUgCIIgCIJoEZBwJQiCIAiCIFoEJFwJgiAIgiCIFgEJV4IgCIIgCKJFQMKVIAiCIAiCaBGQcCUIgiAIgiBaBCRcCYIgCIIgiBYBCVeCIAiCIAiiRUDClSAIgiAIgmgRkHAlCIIgCIIgWgQkXAmCIAiCIIgWAQlXgiAIgiAIokVAwpUgCIIgCIJoEZBwJQiCIAiCIFoEJFwJgiAIgiCIFgEJV4IgCIIgCKJFQMKVIAiCIAiCaBGQcCUIgiAIgiBaBCRcCYIgCIIgiBYBCVeCIAiCIAiiRUDClSAIgiAIgmgRkHAlCIIgCIIgWgQkXAmCIAiCIIgWAQlXgiAIgiAIokVAwpUgCIIgCIJoEZBwJQiCIAiCIFoEJFwJgiAIgiCIFgEJV4IgCIIgCKJFQMKVIAiCIAiCaBGQcCUIgiAIgiBaBCRcCYIgCIIgiBYBCVeCIAiCIAiiRUDClSAIgiAIgmgRkHAlCIIgCIIgWgQkXAmCIAiCIIgWAQlXgiAIgiAIokVAwpUgCIIgCIJoEZBwJQiCIAiCIFoEJFwJgiAIgiCIFgEJV4IgCIIgCKJFQMKVIAiCIAiCaBGQcCUIgiAIgiBaBCRcCYIgCIIgiBYBCVeCIAiCIAiiRUDClSAIgiAIgmgRkHAlCIIgCIIgWgQkXAmCIAiCIIgWAQlXgiAIgiAIokVAwpUgCIIgCIJoEZBwJQiCIAiCIFoEJFwJgiAIgiCIFgEJV4IgCIIgCKJFQMKVIAiCIAiCaBGQcCUIgiAIgiBaBCRcCYIgCIIgiBYBCVeCIAiCIAiiRUDClSAIgiAIgmgRkHAlCIIgCIIgWgQkXAmCIAiCIIgWAQlXgiAIgiAIokVAwpUgCII4pbjsssswZcqUGh+/cOFCtG7dusHyQxBEzSHhShBElRw/fhxOpxNerxeyLCM+Ph5Hjhwx9nfr1g2CIEAQBMTFxaFv37546623mjDHBNEy6datG1599dUGuXZtxTpBNFdIuBIEUSWbNm3COeecg7i4OGzbtg1t27ZF165dLcfMmDEDeXl52LlzJ8aPH4977rkHH374YRPluOkJBoNNnQWCIIjfJSRcCYKoko0bN2LgwIEAgPXr1xt/m0lISECHDh3Qo0cPzJw5Ez179sTSpUsBAI8//jh69eqFuLg4pKenY9q0aQiFQsa5O3bswJAhQ5CQkIDExEScf/752Lp1KwAgMzMTY8eORZs2bRAfH48zzzwTK1asMM7dvXs3Ro8eDY/Hg5SUFNx8880oKCgw9l922WV44IEH8Nhjj6Ft27bo0KEDnn32WUve9+7di0suuQSxsbHo06cPvv76awiCYOQfAHJycnDdddehTZs2SEpKwrhx43D48GFj/2233Ybx48fj73//Ozp16oRevXoBAN544w307NkTsbGxSElJwTXXXFOnZ3AqcNlll+H+++/HlClT0KZNG6SkpODf//43KioqMGnSJCQkJOC0007DypUrLed99913uPDCCxETE4OOHTviiSeegCzLxv6Kigrccsst8Hg86NixI15++eWotIPBIB577DGkpqYiPj4eF110Eb799tta5f+XX37B0KFD4Xa7kZSUhLvuugvl5eWW+4u0eI4fPx633XabsT8zMxNTp041RjCAsJvC0qVL0atXL8TGxmL48OHIysoyrqPXPzNTpkzBZZddZuz/7rvv8NprrxnXNtdfgmhJkHAlCCKKI0eOoHXr1mjdujVeeeUVvPXWW2jdujWefPJJLF26FK1bt8a9995b6fmxsbGGOE1ISMDChQuxe/duvPbaa3j77bcxd+5c49iJEyeic+fO2LJlC7Zt24YnnngCTqcTAHDfffchEAhg3bp1+OWXX/DCCy/A4/EAAPLy8jB48GCcc8452Lp1K1atWoX8/HxMmDDBkpd3330X8fHx+OGHHzBnzhzMmDEDX331FQBAVVWMHz8ecXFx+OGHH/Dvf/8bf/vb3yzne71eDBkyBB6PB+vWrcP69evh8XgwcuRIi2X1m2++wZ49e/DVV1/hiy++wNatW/HAAw9gxowZ2LdvH1atWoVBgwadxFP5/fPuu++iXbt2+PHHH3H//ffjz3/+M6699lpcfPHF2L59O0aMGIGbb74ZXq8XAO9QjB49Gv3798eOHTvwr3/9C/PmzcPMmTONaz766KNYu3YtPvvsM6xevRrffvsttm3bZkl30qRJ2LBhAxYvXoydO3fi2muvxciRI3HgwIEa5dvr9WLkyJFo06YNtmzZgo8//hhff/01/vKXv9T43j/99FN07tzZGL3Iy8uzXP/555/Hu+++iw0bNqC0tBTXX399ja/92muvYcCAAbjzzjuNa3fp0qXG5xNEs4IRBEFEEAqF2KFDh9iOHTuY0+lkP//8M8vIyGAej4d999137NChQ+z48eOMMcbS0tLY3LlzjfMWLFjAALA33njD9tpz5sxh559/vvE7ISGBLVy40PbYs846iz377LO2+6ZNm8b++Mc/WrZlZWUxAGzfvn2MMcYGDx7MLrnkEssx/fv3Z48//jhjjLGVK1cyh8PB8vLyjP1fffUVA8A+++wzxhhj8+bNY71792aqqhrHBAIB5na72ZdffskYY+zWW29lKSkpLBAIGMcsWbKEJSYmstLSUtv8E1Yin5Usyyw+Pp7dfPPNxra8vDwGgG3atIkxxtiTTz4Z9Wxef/115vF4mKIorKysjLlcLrZ48WJjf2FhIXO73ezBBx9kjDGWkZHBBEFgOTk5lvxcfvnl7K9//StjjLEFCxawVq1aVZr3f//736xNmzasvLzc2LZ8+XImiiI7evSocX96mjrjxo1jt956q/Hb/C7p6O/T5s2bjW179uxhANgPP/zAGOP1b9y4cZbzHnzwQTZ48GDjt136BNEScTSlaCaIU5U///nPyMnJabT0UlNT8a9//avGxzscDnTr1g0fffQR+vfvj379+mHDhg1ISUmxtRo+/vjjeOqppxAIBOByufDoo4/i7rvvBgB88sknePXVV5GRkYHy8nLIsozExETj3Iceegh33HEH3n//fQwbNgzXXnstTjvtNADAAw88gD//+c9YvXo1hg0bhj/96U84++yzAQDbtm3D2rVrDQusmd9++80YrteP1+nYsSOOHTsGANi3bx+6dOmCDh06GPsvvPBCy/Hbtm1DRkYGEhISLNv9fj9+++034/dZZ50Fl8tl/B4+fDjS0tKQnp6OkSNHYuTIkbjqqqsQFxdXWbE3KH9+WUXO8cZLLzUZ+NfDtRvUMz8rSZKQlJSEs846y9iWkpICAMbz27NnDwYMGGAMqwPAwIEDUV5ejuzsbBQVFSEYDGLAgAHG/rZt26J3797G7+3bt4MxZtQXnUAggKSkpBrle8+ePejXrx/i4+Mt+VBVFfv27TPyXVccDgcuuOAC4/fpp5+O1q1bY8+ePVH1lSB+75BwJYgmoDYisik488wzkZmZiVAoBFVV4fF4IMsyZFmGx+NBWloadu3aZRz/6KOP4rbbbkNcXBw6duxoCInNmzfj+uuvx/Tp0zFixAi0atUKixcvtvgZPvvss7jxxhuxfPlyrFy5Es888wwWL16Mq666CnfccQdGjBiB5cuXY/Xq1fj73/+Ol19+Gffffz9UVcXYsWPxwgsvROW/Y8eOxt+624GOIAhQVRUAwBiziB47VFXF+eefjw8++CBqX3JysvG3WbQA3EVi+/bt+Pbbb7F69Wo8/fTTePbZZ7Fly5YmCa1UWxHZFNg9K/M2/VlV9fwYY8ax+t9VoaoqJEnCtm3bIEmSZZ9dp8iOquqRvl0Uxaj8mH29q8Pu+vV1bYJoSTT/lowgiEZnxYoV+Pnnn9GhQwf85z//wc8//4y+ffvi1Vdfxc8//2yZIAUA7dq1Q48ePdCpUyfLB3bDhg1IS0vD3/72N1xwwQXo2bMnMjMzo9Lr1asXpk6ditWrV+Pqq6/GggULjH1dunTBPffcg08//RQPP/ww3n77bQDAeeedh127dqFbt27o0aOH5V+kiKyM008/HUeOHEF+fr6xbcuWLZZjzjvvPBw4cADt27ePSqdVq1ZVXt/hcGDYsGGYM2cOdu7cicOHD2PNmjU1yhtRPX369MHGjRstom3jxo1ISEhAamoqevToAafTic2bNxv7i4qKsH//fuP3ueeeC0VRcOzYsajna7bEV5ePn3/+GRUVFca2DRs2QBRFw5KbnJxs8VtVFAW//vqr5ToulwuKokRdX5ZlY8IiwEcKiouLcfrpp9teGwB+/vnnGl2bIFoaJFwJgogiLS0NHo8H+fn5GDduHLp27Yrdu3fj6quvRo8ePZCWllaj6/To0QNHjhzB4sWL8dtvv+Ef//gHPvvsM2O/z+fDX/7yF3z77bfIzMzEhg0bsGXLFpxxxhkA+MzoL7/8EocOHcL27duxZs0aY999992HEydO4IYbbsCPP/6IgwcPYvXq1Zg8eXKNP9DDhw/HaaedhltvvRU7d+7Ehg0bjMlZugCfOHEi2rVrh3HjxuH777/HoUOH8N133+HBBx9EdnZ2pdf+4osv8I9//AM///wzMjMz8d5770FVVcswNXFy3HvvvcjKysL999+PvXv34vPPP8czzzyDhx56CKIowuPx4Pbbb8ejjz6Kb775Br/++ituu+02iGL409erVy9MnDgRt9xyCz799FMcOnQIW7ZswQsvvBDVQauMiRMnIjY2Frfeeit+/fVXrF27Fvfffz9uvvlmw01g6NChWL58OZYvX469e/fi3nvvRXFxseU63bp1w7p165CTk2OJjuF0OnH//ffjhx9+wPbt2zFp0iT84Q9/MNwEhg4diq1bt+K9997DgQMH8Mwzz0SJ4m7duuGHH37A4cOHUVBQYFitCaKlQcKVIAhbvv32W/Tv3x+xsbH44YcfkJqaik6dOtXqGuPGjcPUqVPxl7/8Beeccw42btyIadOmGfslSUJhYSFuueUW9OrVCxMmTMCoUaMwffp0ANwqdd999+GMM87AyJEj0bt3b7zxxhsAgE6dOmHDhg1QFAUjRoxA37598eCDD6JVq1YWYVIVkiRh6dKlKC8vR//+/XHHHXfgqaeeAsAjIwBAXFwc1q1bh65du+Lqq6/GGWecgcmTJ8Pn81l8dSNp3bo1Pv30UwwdOhRnnHEG3nzzTSxatAhnnnlmrcqQqJzU1FSsWLECP/74I/r164d77rkHt99+u/EMAeDFF1/EoEGDcOWVV2LYsGG45JJLcP7551uus2DBAtxyyy14+OGH0bt3b1x55ZX44YcfajzzPi4uDl9++SVOnDiB/v3745prrsHll1+Of/7zn8YxkydPxq233opbbrkFgwcPRvfu3TFkyBDLdWbMmIHDhw/jtNNOs7ihxMXF4fHHH8eNN96IAQMGwO12Y/Hixcb+ESNGYNq0aXjsscfQv39/lJWV4ZZbbrFc+5FHHoEkSejTpw+Sk5Mti4gQREtCYDVxAiIIgjhF2LBhAy655BJkZGQYk8QIoqlYuHAhpkyZEmWdJYhTFZqcRRDEKc1nn30Gj8eDnj17IiMjAw8++CAGDhxIopUgCKIZQsKVIIhTmrKyMjz22GPIyspCu3btMGzYMNvVlQiCIIimh1wFaomqqsjMzERaWlqN/eh+b1AZ1B0qOyqDmkLlRGVwMlDZURmcLM21/JpPTgiCIAiCIAiiCki4EgRBEARBEC0CEq4EQRAEQRBEi4CEK0EQBEEQBNEiqLNw3blzJ/r374+FCxca2xYuXIhhw4Zh6NCheO211yzL8O3atQs33HADBg4ciLvuusuyPJ3f78e0adMwaNAgjBkzBqtWrbKktWzZMowePRqDBw/G9OnTaQ1mgiAIgiCIU5A6CVdVVfHKK6+gT58+xrb169fjk08+wcKFC/HRRx9h/fr1+N///gcACAaDeOyxx3D99ddjzZo16Nu3L55++mnj3LfeegslJSVYsWIFZs2ahdmzZxvrmWdkZGDu3Ll46aWXsHz5cuTm5mLevHknc88EQRAEQRBEC6ROwvXTTz9F37590b17d2PbihUrcM0116Bz585o164dbrrpJqxcuRIAsG3bNrjdbowbNw4xMTG48847sXv3bsPqumLFCtx1113weDzo168fBg0ahNWrVwMAVq1aheHDh6NPnz7weDy44447jOsSBEEQBEEQpw61XoCgpKQEixYtwoIFC/DKK68Y2w8dOoTRo0cbv3v16oXXX38dAHDw4EH06NHD2Od2u9G5c2ccPHgQ8fHxKCwstOzv1asXdu3aZZw7YMAAY1/Pnj2Rk5MDv99vrCVuJhgMIhgMWm/S4YDL5artrdqiqqrl/6ciVAZ1h8qOyqCmUDlRGZwMVHZUBidLU5RfTeLF1lq4vv7667jhhhuQmJho2e71euHxeIzf8fHx8Hq9AACfz4f4+HjL8fHx8fD5fPB6vZAkySJCqzpXT8Pn89kK1wULFuDtt9+2bLv22msxYcKE2t5qlWRlZdXr9VoiVAZ1h8qOyqCmUDlRGZwMVHZUBidLY5afeSS/MmolXPfu3Ytdu3bh8ccfj9oXFxeH8vJy43dFRQXi4uIAcAtrRUWF5fiKigq43W7ExcVBURSLBbWqc/U03G63bR4nTZqEiRMnWm+yni2uWVlZ6NKlS7NaSaIxoTKoO1R2VAY1hcqJyuBkoLKjMjhZmmv51Uq4bt++HUeOHDFcAsrLyyFJErKzs9G9e3dkZGTgkksuAQDs378f6enpAID09HR89tlnxnV8Ph+ys7ORnp6OxMREJCUlISMjA3379rU9NyMjwzj3wIEDSE1NtbW2AoDL5ao3kVoVoig2qwfZFFAZ1B1z2f1zCcOdY4EYl9DEuWpcqP7UDConKoOTgcqOyuBkaW7lV6ucXH311fjss8/wwQcf4IMPPsCgQYNw/fXX48EHH8To0aOxZMkS5OTkoKCgAB988AFGjRoFADj//PPh8/mwbNkyBINBzJs3D3369EHHjh0BAKNHj8Y777yDiooK/PLLL1i3bh2GDx8OABg5ciS+/vpr7N27F+Xl5Zg/f75xXYL4PXD/awzHipo6FwRBEATR/KmVxTU2NtZi6YyJiUFcXBwSEhJwySWX4MCBA7jlllugqirGjx+PK6+8EgC3gs6ZMwfPPfccZs+ejT59+mDGjBnGde6++27MnDkTI0eORGJiIp544gl069YNANCjRw9MmTIFU6dORUVFBYYOHYrJkyfXw60TRPOBVX8IQRAEQZzyCMy8SgBRLaqqIjMzE2lpac3KdN6YUBnUHbuyEwapOPyRgLQOp4arANWfmkHlRGVwMlDZURmcLM21/JpPTgiCIAiCIAiiCki4EgRBEARBEC0CEq4E0Qwghx2CIAiCqB4SrgTRDCDhShAEQRDVQ8KVIAiCIAiCaBGQcCUIgiAIgiBaBCRcCaIZQJ4CBEEQBFE9JFwJohlAPq4EQRAEUT0kXAmiGUDrgBAEQRBE9ZBwJYhmAOlWgiAIgqgeEq4E0QxQSbkSBEEQRLWQcCWIZgC5ChAEQRBE9ZBwJYhmgKqScCUIgiCI6iDhShDNALK4EgRBEET1kHAliGYACVeCIAiCqB4SrgTRDCDhShAEQRDVQ8KVIJoBqtrUOSAIgiCI5g8JV4JoBpDFlSAIgiCqh4QrQTQDGEi4EgRBEER1kHAliGYAhcMiCIIgiOqptXB9/vnnMWLECAwePBjXXXcdvv/+ewDAsmXLcNFFF+HSSy81/h09etQ4b9euXbjhhhswcOBA3HXXXcjLyzP2+f1+TJs2DYMGDcKYMWOwatUqS5rLli3D6NGjMXjwYEyfPh2hUKiu90sQzRJGwpUgCIIgqqXWwnXixIlYtmwZvvvuOzz99NOYNm0aSktLAQAXXnghvv/+e+Nfhw4dAADBYBCPPfYYrr/+eqxZswZ9+/bF008/bVzzrbfeQklJCVasWIFZs2Zh9uzZyMzMBABkZGRg7ty5eOmll7B8+XLk5uZi3rx59XHvBNFsIFcBgiAIgqgeR21P6Natm/G3IAgIBoMoKCio8pxt27bB7XZj3LhxAIA777wTw4YNQ15eHjp27IgVK1bg5ZdfhsfjQb9+/TBo0CCsXr0ad955J1atWoXhw4ejT58+AIA77rgDM2fOxD333GObVjAYRDAYtN6kwwGXy1XbW7VF1aZ/q6fwNHAqg7pTWdkpinrKlCfVn5pB5URlcDJQ2VEZnCxNUX6iWL09tdbCFQBmz56NZcuWIRAIYPDgwUhPT8euXbuwY8cOXH755Wjbti2uu+46XHPNNQCAgwcPokePHsb5brcbnTt3xsGDBxEfH4/CwkLL/l69emHXrl3GuQMGDDD29ezZEzk5OfD7/YiNjY3K24IFC/D2229btl177bWYMGFCXW61UrKysur1ei0RKoO6Yy27NOTm5iEz4UST5acpoPpTM6icqAxOBio7KoOTpTHLr3v37tUeUyfh+sQTT+DRRx/F1q1bkZGRAQA477zzsHjxYnTo0AG7d+/GI488gqSkJAwZMgQ+nw/x8fGWa8THx8Pn88Hr9UKSJIsIjY+Ph9frBYCocz0ej7HdTrhOmjQJEydOtN5kPVtcs7Ky0KVLlxr1DH6PUBnUncrKrkOHDkhLS2zCnDUeVH9qBpUTlcHJQGVHZXCyNNfyq5NwBQBJknDRRRdh0aJFSE9Pt1hF+/bti+uvvx5r167FkCFD4Ha7UVFRYTm/oqICbrcbcXFxUBTFYkGtqKhAXFwcAESdW15ebmy3w+Vy1ZtIrQpRFJvVg2wKqAzqjrXsVAinYFlS/akZVE5UBicDlR2VwcnS3MrvpHOiqiqys7OjtguCYPydnp5uWGYBbi3Nzs5Geno6EhMTkZSUZNm/f/9+pKen25574MABpKam2lpbCYIgCIIgiN8vtRKuXq8XK1euhNfrhSzL+Oabb7Bt2zace+652LhxI4qKigAAe/fuxYcffohLL70UAHD++efD5/Nh2bJlCAaDmDdvHvr06YOOHTsCAEaPHo133nkHFRUV+OWXX7Bu3ToMHz4cADBy5Eh8/fXX2Lt3L8rLyzF//nyMGjWqPsuAIJociuNKEARBENVTK1cBQRDw+eef44UXXgBjDF26dMHMmTPRo0cPLFu2DM888wz8fj+Sk5Nxyy23GOLT5XJhzpw5eO655zB79mz06dMHM2bMMK579913Y+bMmRg5ciQSExPxxBNPGNELevTogSlTpmDq1KmoqKjA0KFDMXny5PorAYJoDpBuJQiCIIhqERgtkl4rVFVFZmYm0tLSmpXPR2NCZVB37MpOGKRi/WtlGHhuqybOXeNA9admUDlRGZwMVHZUBidLcy2/5pMTgjiFof4jQRAEQVQPCVeCaAaQbCUIgiCI6iHhShDNADK4EgRBEET1kHAlCIIgCIIgWgQkXAmiGSAIZHIlCIIgiOog4UoQzQByFSAIgiCI6iHhShAEQRAEQbQISLgSBEEQBEEQLQISrgTRDKA4rgRBEARRPSRcCYIgCIIgiBYBCVeCIAiCIAiiRUDClSCaAeQqQBAEQRDVQ8KVIJoBgtDUOSAIgiCI5g8JV4JoBjCVLK4EQRAEUR0kXAmCIAiCIIgWAQlXgiAIgiAIokVAwpUgmgXkKkAQBEEQ1UHClSAIgiAIgmgRkHAlCIIgCIIgWgS1Fq7PP/88RowYgcGDB+O6667D999/b+xbuHAhhg0bhqFDh+K1116zxKbctWsXbrjhBgwcOBB33XUX8vLyjH1+vx/Tpk3DoEGDMGbMGKxatcqS5rJlyzB69GgMHjwY06dPRygUqsu9EkSzheK4EgRBEET11Fq4Tpw4EcuWLcN3332Hp59+GtOmTUNpaSnWr1+PTz75BAsXLsRHH32E9evX43//+x8AIBgM4rHHHsP111+PNWvWoG/fvnj66aeNa7711lsoKSnBihUrMGvWLMyePRuZmZkAgIyMDMydOxcvvfQSli9fjtzcXMybN6+ebp8gCIIgCIJoKdRauHbr1g0ulwsAIAgCgsEgCgoKsGLFClxzzTXo3Lkz2rVrh5tuugkrV64EAGzbtg1utxvjxo1DTEwM7rzzTuzevduwuq5YsQJ33XUXPB4P+vXrh0GDBmH16tUAgFWrVmH48OHo06cPPB4P7rjjDuO6BEEQBEHYs2jRoqbOAkHUO466nDR79mwsW7YMgUAAgwcPRnp6Og4dOoTRo0cbx/Tq1Quvv/46AODgwYPo0aOHsc/tdqNz5844ePAg4uPjUVhYaNnfq1cv7Nq1yzh3wIABxr6ePXsiJycHfr8fsbGxUXkLBoMIBoPWm3Q4DLF9sqiqavn/qQiVQd2prOwUVT1lypPqT82gcqIyOBlUVcXXX3+Nxx57rKmz0mRQ/Tk5mqL8RLF6e2qdhOsTTzyBRx99FFu3bkVGRgYAwOv1wuPxGMfEx8fD6/UCAHw+H+Lj4y3XiI+Ph8/ng9frhSRJFhFa1bl6Gj6fz1a4LliwAG+//bZl27XXXosJEybU5VYrJSsrq16v1xKhMqg71rJLQ35+PjIzfU2Wn6aA6k/NoHKiMqgrqqpS2YHqz8nSmOXXvXv3ao+pk3AFAEmScNFFF2HRokVIT09HXFwcysvLjf0VFRWIi4sDwC2sFRUVlvMrKirgdrsRFxcHRVEsFtSqztXTcLvdtvmaNGkSJk6caL3Jera4ZmVloUuXLjXqGfweoTKoO5WVXUpKe6SlpTRhzhoPqj81g8qJyuBkULVRnFO57Kj+nBzNtfzqLFx1VFVFdnY2unfvjoyMDFxyySUAgP379yM9PR0AkJ6ejs8++8w4x+fzITs7G+np6UhMTERSUhIyMjLQt29f23N1qy4AHDhwAKmpqbbWVgBwuVz1JlKrQhTFZvUgmwIqg7pjLTsVgnDqlSXVn5pB5URlUFcURaGyA9Wfk6W5lV+tcuL1erFy5Up4vV7IsoxvvvkG27Ztw7nnnovRo0djyZIlyMnJQUFBAT744AOMGjUKAHD++efD5/Nh2bJlCAaDmDdvHvr06YOOHTsCAEaPHo133nkHFRUV+OWXX7Bu3ToMHz4cADBy5Eh8/fXX2Lt3L8rLyzF//nzjugRBEARB2KMoSlNngSDqnVpZXAVBwOeff44XXngBjDF06dIFM2fORI8ePdCjRw8cOHAAt9xyC1RVxfjx43HllVcC4FbQOXPm4LnnnsPs2bPRp08fzJgxw7ju3XffjZkzZ2LkyJFITEzEE088gW7dugEAevTogSlTpmDq1KmoqKjA0KFDMXny5PorAYJoBlAcV4Ig6hualET8HqmVcHW73XjzzTcr3T9p0iRMmjTJdt+ZZ56JxYsX2+6LjY3FzJkzK73u2LFjMXbs2NpklSAIgiBOaUi4Er9Hmo/TAkEQBEEQ9Qa5ChB1pbS0tKmzUCkkXIkmJRAINHUWmgfkKkAQRD1DwpWoK61at2vqLFQKCVeiydixY0el0SFONUi3Ni1er5c6UcTvDlVVyX+eqBuX+Js6B5VCwpVoMny+Uyvgvh1nXT6nqbNAALjqqqvwt7/9ramzQRD1TksUrnfccYexJDzRdDTXqkPClWgymlNcuMbieLH196+hRwAADE3XQvz1LRV5BU3bQjX1JJLc3FyEQqEmzQNB1DfHYyY3+btVF+bNm4fi4uKmzsYpT3P1NDn1lAPRbDgVhWuH8U2bvqIwVPjCIvVQLsPsD4Cdv8lNmCu+El9TEgwG4XQ6mzQPBFHfHIuf0uKE6+tvvA0IziZvE04lpkyZgscffzxq+9XTmiAzNeDUUw5Es6GxG9T8EwylFc1z7KOxhmTe+QI49/ZwYvfP2gEA+HHLT42TgWaK33kWDhb1aupsEES9UVhYCKDpRzNqy19eFYGebzV1Nk4p9u3bhwMHDkRtX76pCTJTA0i4Ek1GqbdxReTIRxmmvWNNc+HChSgqKmrUfDQl/1u+Bpl5Yd/iffv4csr+QOONCUmXNVpSNaY47lZsOXpZU2ejSfH7/SgrK2vqbBD1RPv27QE0b+HKGMPnn39u3ehMBhxtGi3f69evR1ZWVqOk1VwRBKFF+UKTcCUajTNusjZEw5/uD6Q+3GjpMwbIEfps0qRJ2LlzZ6OkHwxV3jA0VpuRk5sD1eS4xARteFxoumE5xhjgPr3R0jtw4ACuueYa47eqMgSlbnA7yhstD82RJ554An/605+aOhtEPdOchavP58P48eOtGwURSLoSwVDj5Hvs2LGVLo50qkDClSAqYe8Rm43pjTerXhKBkEm5/nqQAZcqyDjqaZT0T1QRz7mxGo39GTmQYbpfgS+eJwiN0xT87e3oj9GmXxlwwa5GSR8AMjIysGTJEuP3Kwv3wu88E5Jwak/OKiwspJBgv0NkufkKV/sg9wIAoKhcaJQ8+P3+qLCMLy1qOSLuVISEayPw/fffQ5abdvKLHQUFBQ12bb/fGgNOUZq+ISgsPI4lny41fj/xJn8m5f7GmZRTeKLhyrum+NpbHfDDFtfG+Uis+O5o1LaBY2c1Sto6Pr8KdHnC+L1x83YAAGONUwbNlWAwCJfL1WjpHcxlUNWmbxd+t/T5HwDAH2ymU8NRmTWYy5KKRoqWqLa/HcdL4yzbHv3XqVUvRVFs1pb5SEi4NgKDBg3CkSN25samJTk5uUFiqW7b44W713OWbaEI3d7YwxKqqiLz0EH4fEFj24YN67W8NE4eioubn/8gA7e4Zhxt1Sjp7d23N3pj1ycbJW2dPdkeoNvzxu9wXTx1Plb79+9Hdna2ZRtjDEIjdWAA4LTrGX6Kng9C1BcJ5wEAAsHmK0hsvwNaHfQ2Uvz7YNo/MOebGxsnsWaKw+Folsa1yiDh2kg0Zm9GUZSopf5mzpyJDz/8MOpYr9db7+n/+79bgG5W4bpy9RrL78bu3fn9fkCMhcMZtigFg/rQcON8rL2+yodhm86/iPu2frgxvXFSE3lZB4PBao5sOPwRSbcg1656o/c5Y9H3smeitjemcG1qYi7eh379Rzd1NhoQ/ixDcvOt4FVaXP2NVxcTYyoaLa1IGGN48cUXmyx9gAvXlStXthjxSsK1kWhMoeZwOHDfffdZtn3yySf47rvvjN8XXXQRgPpZverW51V8vDbcOLoc0Q3l1VdfZ/nd2MK1osILePrB4QgLVz2MbGMNEZtn7quq2mTRDDwwmbkaybfVSE4r6qYclvpixWrb7aeUgG0zCiUpL1s2lYY6IEtuXCF36HBmo6ZnJujoiZ3uL5os/caisSY51QW7dsCTkAAACDWSb64QOop+nXY3Slp2MMbw2Dvtmix9AFDEVoC7NwlXwkqkRW3jxo0Nmt6vv/5a5f7t27lfX31Mxvhyi3Xilcth0+C0GWH52dDCJdJ3zufn1lWLcNVEW2PplUCQNwqKouCrr75C27ZtjX0NYXFljOFoYfR1E+JjjL/FBtbs0dYe/jsU6TvSiPyc3Ttiy6mkWDVUPyBa/fryA32xN3RPo2Yj0vJ+8ODBRk3/VCAQbL71mzEWVQ91Q0JjzYsQ0LS+1qqqAim3Nln6APCbdxRwwW4EmrE/tBkSro2EeeieMYaBAwc2aHr5+fnG3+Xl5dixYwfcbrexTV+1KtKloE5EiK4YJ/9taQxOf99yTEML16ufYnjlw3D6Ia0RZI7Wxjbd+ic3UgPpD3CxFgwGG2X2duZRoONV0fcmICwaG3pk2DWURXyA+N+BUBM2kCk3WX7q1bf5ft4blvFPqvhxNwODBAGNa52LdE047bTTGiwt84pxpxLN3lVgYKTvvyZcG0tMCsCa3y5tnLRsaA5hqFwObtip8JHFlTBhXge9MdZENwvSnJwcALCE/KhP4Zp/vBTBYFiIObSQoFXFLa1v4Rrpq3skH8jICacf1KwOgmgKe6J9M5XI4K4NREBzFQiFQo2y3G1ltyUgXP904TC8728Nlo+isvBz0IWRP9D0jbWOGPYZadqMNCaCAF2qf74e+HlfGVQmQEDjdijsLF0N9SH3jDiFnq8JWWm+rgKKXd6Exra42vP2ssZJ3+5buHXrVmzdurVR0geAggDvMPoDzbeumCHh2kiYxWpDT0xJSEjApEmTjN96iJsGs7g6WuHw4cPGTz0mqL+K2az1kq5GKCQjPsXaY96/fy+OHQuHn9L9pSQpXOWFiH31zYEsa8MX0CaDhUJylKWpIb7V7//vsO12gYXroijwhNvENdzkBGsHhv9dVd1odE6d+UhhUqcALPwMiktKocIBsZGFayAQ0Yk//b8NMmG0pmL4t5zfk7htXAFYF+za3oDYHUAjWlwr4a4Xm064Tp8+Hc8991yjWWO9Mo8q4/WTxZUw0b9/f+NvXbh+9NFHJ31du4rt8VgD6usi1WxxFYxebQN8qDThqvuV2nEyFte33nrL0hGoqPAB526xHFMhnI6vv9th/NZdKh1m4aqVQaAKy/DJ0Gsiszwf3X8oEIwWrg3BjMVpttsZM7kKGE6uDSckgya3gFh3IoDm1bM3fJ2b7/e9/nH3tEzMCwSCKCplcAiNu3qYP1K4Jl/XIMvO2k1CjWd7gfLtlm09bmCYO3duvafflDRri6uNOJXFJL6v0QR34/Zc33rrLYsrn923UBAE/K/gP5jx6leNkqceSb8BFbui2uU+yTsqOaNpIeHaBOgz9+6+++6TvtZVV12F99+3+o9KkmQRpPrf5uHperW4AhFf/WjhGi8dt/hW2g4R1ZB7Xgzh570lxu+ySiJVl1SE09CtfoLkCB+gtVcNIVz1cjUPieuBwMu8apOFHYpDFpgafuaCVggN6XMcNE3ESkninaf6cBWYvoDxVbeq4HBe9DHtHD8jxfGj8Vt/FqeSbgUACOGFN378cSty845DFBrX4uKzsfCUltW/9b+iIvqaHmcp4DnP+F1ezo956KGH6j39pqSpLK7//ve/8fnnn1u2RbYzVeWtsSyuTIip/qB65J577sG2bduM3/q3cOr/hcumVOkOSPFY8kP3RsmTKMUgIU5BKGLuQXMdjKqVcA0Gg5g+fTpGjx6NwYMH46677kJGRgYAYNmyZbjoootw6aWXGv+OHg2vkrNr1y7ccMMNGDhwIO666y7k5eUZ+/x+P6ZNm4ZBgwZhzJgxWLVqlSXdZcuWGWlOnz69UXxE68r8+fOrFSX6y9uq1ckHfd+3bx9+/vlnyzZJkixhLXQRZRap9W1xVU0hpfbk8tAe+mQkAOgQ8zM8wiHjt7EMIavDs+x0LzLzwwK0osI+UnVKhy7G3/oEBVkNf6wNV4F6EK7nnHOO5bduVfeaBNratesAcJ9PQRCBuDONfWojmfvixRyLFVgUbSbS1TPmmapt3cfRSvilXlwFnn27FJ+vza/ymLe/YLhhhvXeJFhddYzlbk8pk6sVWVGBmM6NNjnry695VBXzqk56vfT66/85FJdUb0nOzdPq0un/rff0m5KTMRKcDO+//z6WLl1q2SZJkuW3bg22C8PUWIJb1aIaNOYkKbOA1+9z+/7w/rzQAL5PbRzboqIKkAQZcoQeaK5hnWtVKoqiIDU1FQsWLMCaNWswaNAgPPzww8b+Cy+8EN9//73xr0OHDgD4R/yxxx7D9ddfjzVr1qBv3754+umnjfPeeustlJSUYMWKFZg1axZmz56NzEwe3y8jIwNz587FSy+9hOXLlyM3Nxfz5s2rj3tvEDZv3lztMXqljVwfuS7ExcVF+YRFWlz1RqEhhaushmt4SNGDzIcbI1VlEITwvesNllAX4QrAaTKcllciXB3OcJiVYEiFABkeRzh2qv5SBuuhH7Qj0TrkuOcQF0cV3vDFNxbey9MLqqgIOIHzd558wrVEEAQwk21RaISJECFTHEnGAIcg10+IHkHET9u3VXlIwbFcFJ6oRrQIUtX7TwGK/MlA8oRGE67vruCjJObOrb6qnVwPs+CfelvFwdzwdYpK7P1mzZZ3h1OzvCVfZ3tsS6WxoqZEpSt1QqnfHbXdLBBVLW/Tpk2LPr+xBLdmcdW/kw0eYzr9VfiD4e+lfp8hy2xaXi4xjsZZqEVRRUiibHHrAho+XGJdqZVwdbvduOOOO5CSkgJJknDdddchNzcXxcXFVZ63bds2uN1ujBs3DjExMbjzzjuxe/duw+q6YsUK3HXXXfB4POjXrx8GDRqE1at5kPBVq1Zh+PDh6NOnDzweD+644w6sXLmybnfbCAwbNqzaY+rTrzQuLi7Kf8vhcES5CgwZMsSyrb5dBWQlXMNTEssgBHMslnFV5asm6dt0p3yBVf1iLvmW2faEzZPy73zU3kISK4UFS0gBusV9D1Ewq9T69XE1WzZyC/QIAuEPc4XCLdHBkIwjBfH1kmatCU8mBwCIunBtQIuruQxUBjhEuZ4mZ4lIP63qobR/v/kPlFdUHXqMoXHj+TZHFMZHIoRGKgVjAqdJuJaU8+dUH5Mln38f2GkKlFGZcDXDfneec007OWs3ewY/F10dtd08OVkPU7h///6o4xrbUOz3cwNIgwvX1Psx8da/GD914bp79x5jm/41PbPjITQGChPgEFl4JFTPRzMVro7qD6mcnTt3om3btmjdujUAYMeOHbj88svRtm1bXHfddbjmmmsA8KDSPXr0MM5zu93o3LkzDh48iPj4eBQWFlr29+rVC7t27TLOHTBggLGvZ8+eyMnJgd/vt7VYBoPBqFn7DofDmFl/suiVurLKrVuw7PYb1katZ+dwOGr9kvh8Pkt0ALfbjbKyMst1RFFEKBQytoVCITidTsiybGzT82k+rqbYlYGiwJSeAkFg8AeC4WOZAEFgCAQCcDqdhi+NgKrTv+ZpwPcV4HJaG18BinHejryzgCRrfpxqHlo5MqGqfQDw9bodggJFhakM+LEhWa2Xxir3uB+p7Xmd9GrWo2+/W4/uE/9oOa68wo9/rj7Hsk1VlAZrMMPPiwsTxpipDHi5KiprsPQDQdmSB0lSEQxFp6coau0aSkGACOtz/+tbwN9NruMx7S9HwJlU5fuo99/N5dIcqK6tqc80dOEKnPy78MNu4JWPgA+frfwYQXPX8PvDdaOk1A/AA7+lvtS9DI4dOw5V5Z3FomJvpdfRtwVNbgvNqR6cLCFTu9+YCIIAVY2uT16vF04nr2/6d6C0zBd2oQt9jRLnMMjyybeJNak/yc5fcTzUFxUVXsTHx2vGlZhqzzsZgr2XmeqdbPw/Mj1VbZy6yFQGUWAIBPn3mBuLBOP70Jj1pyahIussXMvLyzFr1izcey8f/jzvvPOwePFidOjQAbt378YjjzyCpKQkDBkyBD6fD/HxVgtTfHw8fD4fvF4vJEmyiND4+Hhj+DvyXH3GvM/nsxWuCxYswNtvv23Zdu2112LChAl1vVVbsrKybLfrswV1Vwcz+rYjR/gyU6qq2h5XGWVlZejXr59ldZnk5GRs27bNch1VVVFcXGxsy8rKgqqqKCwsjEovNze30jy88sorOHHiBGbOnGm7P1wGaViz9ntkZvLGqLSsDAIUZGXlIDOZHyErCiCqOHjwIFq1aoXDR/IBdISAUDVlkIaMg0cQH8tfoDKfAKArjh87iszMUgAA06qx+ToCHCiv8BvbcvOOgakBhNRYY5uqKoAIlJaW1eo5VJbPCQ9tw3+f7wwAyM8vBtAeWdk5xrX7tf4ZR71pyM8/HrVCybFjx3HSWYiiCwDRSD8kM6iKDAYpvE2zgFdU+E66DBat9WDL/hi8cnehaWsajmTnIrMdf5/9/gCgxkCWmaX+AMDBQ5lGDOCa0RElpUWWfM9ZlIZ7RoZ/B+KHA7DWDX2UQd/m1UYs5JBcD/Wg/qmsrTk5eJlnZmYCrDMqfNoENaacdBls+zUOn3ybXPV1VG5dLThRahx34LcCAO2QnX0UmZnW1ZRqXwZp+PXXXcg8rxsA4OBhHsv64MGDhp8lHyFhRvq8TeoEwL79bnlwA0d+/nFkZjbuBCQAAAshGIr+xh04cADJyfzDkJt3FMBZ2OF/KNwuazaKE0Ul9fYc9Prz4cojePNzYO2bXY19TjUfyS4B+w+UwufzapZXvrreyaaffVxCjIshuZVZ+KUBcX2Ma2fnFgFoB5WF06sIcc1TVu5tlLoYCATBmIDc3KPIzHRpbWQ65BDvYDZMG2RP9+7VT0irk3ANBAJ4+OGHcckll2DcuHEAgNTUVGN/3759cf3112Pt2rUYMmQI3G531KzOiooKuN1uxMXFQVEUiwW1oqICcXG84Yo8t7y83Nhux6RJkzBx4kTrTdazxTUrKwtdunSx7Rno1ue0tHAootGjR1u26WIhPj7eclx1FBYWRl27a9eu2Lhxo2WbXq76tvz8fLRq1QoJCQnGNt3i2q5du0rzUF5ejkOHDkXttyuDsnKvcVxsbC5EgaF1myRjmyRlwCGJSElJQUpKCsp8/DwRcrVlkNKhK5K0eWxrtvHeaYeUdkhL441fUrtjKGTWcpHEbIiS09jWdlcIsTHFUOXwNod0EGBATKy7Vs+hMgJK+Hkm/cobqrS09HAZOPeidaIbguhE5KuX3D75pPMQ/0egYnX4twAVDOFy8flVOBy5UJhoelbcXScmJvak0//bzLk4fcADxnX0Xnrbtu2QlsbbB5crAy6nBEUNRb1DXbqkweWMvm7lhOCxeYfs7iOcJ0CSjgIQjG3x8XydcofTUS/1oL6orq05Wdzice1+ZTBtgook2pdfbejCNWKV1+na+RiwDXDFhN+93Yf5PbZt195Sh6org3379mHlypWYMmWKZbsnIdG4zoaD/BvSsWNH49shSflgYOjSpStEUcCJsvD1m1M9qDvHAABt2rRtkvtxSL8Cgsuadmy65Ztz4HAxAEARw3mURD48nuBJrFW+Z8yYgSuuuALnnReOFLF8o4q+qeH6c+RYNjJ9A2G+rCgdRoxTRHL7jkhLS7PojZMtt+tnA327A28/Fr1Pv7bMdC0TbpOyFf7/uDhPozw7hzMLLqeENm1bIS0tzRgVjonhuqmh2qC6UmvhKssynnzySSQnJ0c1FGbMM+vT09Px2WefGb99Ph+ys7ORnp6OxMREJCUlISMjA3379gXA/V3S09ONc/XIBQDvraWmplY6scnlctWbSK0KURRtH6T+sTbv03v4+jbdZ9PhcFRZGe655x68+eabxm+7sFaMMUiSFJWeoiiW9GJiYqCqapRvK2Os0jzo/rOV7Q+XgQoIznB6AERBhayopnNFSKJg5EvVJnOJglzNC6EipAgQNS/xhNgQAAckMVwObdt1QOHxiHBfggKFmZ+RAIcEqCHTcYIAMC5mTv6lVHFeT69xHVULOcUghLcxES6HCkVlUExRGHhWhJPKw5ufM/iD1mcZKxXDp7Q2pa9CFBhUFk7LJSmAP9Oyrc4IDuTmZEIUudsP920VISuw1A1J4lElLPUHelnVwldAdAIssk5H3of1fWSMQRAYmKluCPr/o85tHlTW1pwM7R0/QoACUUwBmAqfFk9VgHrSacXFMACVtytAOJpFKBQ+btIrHQEAqhr9HKoqg40bN+Lhhx+OCGOlQjCdo0/ANLeLAJ98wrS6b/apbI71oNbobmusae5HEhlUJeJZ9j8Av3+/qU3im0XBVF/0fKN2+X7ppZeQmJiICy64wNh25ZPAwXfD9ScxnveMLd9QAE6JGfXO7BN8suXmkFQoUd8Xa5tkTC9g5rqpt4n1/+7bwQA4JAZFseZV13EN0QadDLXOyfPPP49AIIBnn33WIk43btyIoiI+Y3vv3r348MMPcemlfDWj888/Hz6fD8uWLUMwGMS8efPQp08fdOzIG6rRo0fjnXfeQUVFBX755ResW7cOw4fzIb6RI0fi66+/xt69e1FeXo758+dj1KhRJ33jDUVNJjvp4lb386mMt956y/Lbbn17O+FpF8fV5XJFbasuv4Ig1DxECDNHEOANkTmqABclzLA26w7pTql63xmzew3TJnOZJxOZJ4YZeYdiCSUiKwySJICZBKP+V1UTkwoLC7Fo0aJq8whYl44NaPduntGrqCKcDgZZZlC0PLeNqX4I5qM1rNoQQZ+ti96f7NqDNkI42oEsq8ZKWTqSqAKHHq+fcFiiEz5feEKcXgbmmaoq4x0IuxnDdZknqKrhOrb916pDY/H0gehpWKfi5CwVxhsgupDtPRdA/UzO2rvn52qPURSga/wOBLRJepcNHY3SCn12de3ycPff84HEi6O2m9/1MzpyM3AgYJ3/IArMmAxmRDNgjRvLtqFpqslZosBswzkVFIe/Y/o7b4lmoU3cU2vZHsTFe6pddS0+Lvqby5gASVQQlPX6Vzd/TkVhWLnZWta8rav6vHBoyOgDVVaLjnwNYYzhRCmL2MZHW/R2OXIeSHOjVsI1Ly8Py5Ytw08//YQhQ4YY8Vp/+ukn/PDDD5gwYQIuvfRSPPnkk7jlllsM8elyuTBnzhx88MEHGDJkCHbs2IEZM2YY17377rvh8XgwcuRIPPHEE3jiiSfQrVs3AECPHj0wZcoUTJ06FaNHj0ZKSgomT55cfyVQz9jFo4tErxQOR+0M3nbC1WxF1YmMKiDLMmJiYizbjEkZ1aiFGgfKL/nOdG2miVRzWYiapYtpeWKIlUoRI1UfX9Gscfz+YFS+7RpHSbAKV1Vl3AJgel/1W6vK7/x/X27HjX+1zng9/w4VS74NX6jMy/82RyfQRbv5o6EygVtcmYAOrfkCCq1j+HBeVf2D655l2F+Nvo23GYBQFGs4k5CsGs72BoIAMKXKMqgxHe+BLKYYP/Xg8uag1kzlPXu7j0NdtDMzNfal5dFxzfomrYdb2W06Xhdn5sR0a2wzbaUbgMrutD7CYQV80e/0R6sLkZMfHoJVGbdGBTWx+J38BQJaiKDahm9Skm4GWkdHc7FMHtX+DETEvhNMwjX0exWuTbR0qiSqtsKrwhvuPOiRWKwRHeoW6aQ4fR12ZqVGbTe3rZ44hyVdjghJVI143pEhoWpKYSkw+jFrnkVBqXIFSZ4Xfg6zeSsbok3akQEkXREtXB0SM9rq5i5ca6WcOnbsiK1bt9ruO/fcczF16tRKzz3zzDOxePFi232xsbGVTgACgLFjx2Ls2LG1yWqToSgKHA6HNiRp/9R10dVQwtVuAYJIi6tdbNeTI3yvusXVLFwZBEhC+MWQFRW92u5GflH1bwZvwLTQVZrFxPxxk22EqygoUFl4po+qMjgqsbhWJdpyCpxAV2uMwd2HgZwCU/60IjR/EwPBEMAUS+OrqBJcDhWyzHBul0PYldMpygJaGdWN0rht5l4oLDwky9NnUcKVl4dSb6FnmNMsXK2hzwB9SMreCsSfaS1bSpPI8Aai63Jkh4A/6+hGG2gY60ZNadu2LU6cONFk6etYw8XVjcgg8wBw3cw2GJP+Hr5YeBsA/X1kUFTTqI6ozTSvbRxXwQF0eiBqs7mO6Uno0T50REE1LF76/80r/P0eaCqLKxeu0XXBLFxlrX2sYHxSK2MMgUAIcNdeuIacPbB0X5eo7WW+8Hsd4+R/Z+VVoFvnBJ4mBEiianxT6mpxlWza6EMHD+CX0nwAQyo9T198hiG6rBqiTbKLW64yHq5St7jqwv53EceVqB5ZluF2u6tc3aumrgKRRIb50q8VKZDry1WgsjxYAkgbjUs4D4zxD4K558ogQhLU8LCcwiyiqirMM/AV48UKnxsjRS9AIEC2NJqKyriPqzlJkw9YZQiI7iw4HQyfLFlq/NZFpTmofigkQ4BiEdjc4sogK8zIf42FazUNSIwz+jqMiRYLWsjGVYCpjFtcG+Db5tOEpPlDoLsK2H0c6hJ43lx/vT574Woe/rZLQf9ANqXFtaioqFmEYKof0WZfjiqzjoA4JQWKIuC3HO2pBPhwfq2FQ9FXgPeXqM3WTiP/O3KJWUEIp6fHFP39WFw1C3YtX+5NmzbVS+qSCJTgnKjt5rjKRpUXuBEnNTUVPh9vz+siuENqdA/e/HnU60G51/zNEKzfpoh2KD8/H1MerdywpmNrXGBytSszGovxwKb9aqRFVxkT4JAYZM2vQe/ENSO3VgvNNFstF0VRqhWudbW42glXOx/XSN9UVVXhdDrr5CoQSe9zxuL2p8KrFe3RI3UI4TwojA/Lm1cCYRDhMPVqZUWtcW8uEAiXpawwgFljA/Zqtx9QreJVFBQjTBagC9dIiyvPS1X+nZJNJsu8Ar7PGRe13eTSC1lWuHg2fYMVJiHGyYctZaNHq4umqhu36oZsCo7Z+RIIFtGmKNHCVWXAlCkPVFkGpRUMa7ZZ9weCzFZodowPh2rz68LV3IFhgEMSbZehrIulwxwwW+/gWOo+s664wIWsNR1mObbpsHu/q2PAgAHYt29flccUFxdHLaNtR6pjdf2snFVJZTVPvFNV8PZA5Z1cAMCJFcCxxXXqwAhC9KeM2bgKRA7bmjvYeroiav8cmiWCPmmxduV58cXR/sLVoaoMx4oi/DtFBaoQHf3no0+WGn/r7UAXz14A0BYl0vJdT/04s6+sLlxlyyiQAEcVrgI7f83Aaz88Wae0uXtaRN08sRIo+CycJ5kBBUvgUI8a2zo6vud5VxtLuAIOSQiPPpDF9dRCt7hGfoQihSRQe+Gqnxd5LbsZuNUJV52qhKudmDpc1BXvbgjP2ow1AjiYLK7ax8gqhvhwjLlXW1Nro98kXFVVBZgSMelJgMCsllEBMlTT0IuiT86ysb5V1UAKNehy6t9H8xCMokKzuJqPExHj4nnRz9G/8dXNgYt08H/4nyp+PRg+ySlV9hzDzyUksyhNwRiD0yFWmf76ncDlU60HXP0Uw9Pz7YSrKYZqULe4moWkNmHBLFJLNgCF/6uTb5m5HoT9iq1C2eweoShWG8bRo0cNYc2acnpW/9+QmVd7wbR582b88ku0tdHMeeedh1EzL7PZw0siVjgOABgxwGNse2a+/UuRczy6jK5/1nqsnYgEgJhYj/G32VXA6OSLMQALIlRLg2dy+xS0b58Utd1scVVVBoGF4PVFCtewYNXr0u9GuKL2wrWuVv/Nu4CUcdZ04l1exCi/RR0bksNvoF7msWJx+ABjEZ/6eR8Vy0I5mjuApa0RIEmqYXGPdFWpaTbsik4S1SgXgPbt26FDx07Gb1lRAbkMbnc4Xr1uYGmIznTI5puvMkCSBJO/N/+/ndtPc4CEaz1TmXA1U5vGwXyseSUs87ZIVwEebsp6XqRwPeuss9C7d+86+LgKXJlqhAWPaRhQEwvWaAC6cOUnKAqr8TCEeUIFb3gUS6OmqELUEKcIFczkKsDDhgmWsWLGAKj+KhsmsQbe6frp5g+uqjKIglVgMwa4HLyxNoaHhJrVhUjh+spHwE8Hwr8dknU2qB2KwsLWLT2fTIDTIVQp3u1iq54oA/IjXDJdyhHLcFd4eV+zkBTgcAhW/zX5BBDMtbXCVglTLB+ZoJaOJZpFhKtApJ9vx/NmYMevB428NRmx3VBcVgf/0rSZuP2Ou6s85NgJBRDtQgRa3Xy4dYVvm7HQ/lqd/2R9WfZmMny4xnqM7WNkQcgsvKiAyrjLjaKKhkvJaT37oHNq+1pPzmIQbAdULRMjVQECQlGiRBTC76JhZfq9CNc6LOdc1zkPMTbVSxBEy7dCp3PX9HB6+oR6PYudHwccbSz7TpagqWHWy8Lid880i6tsb3Gt6QRlu86/JCLKz1eAta1RVYa+fc+A0xWeYatfqiHapLzc3OiNDHA6+EhhQUEBUlO5z7GjdivCNBokXOsZWZbhcrmiBIS58iuKgueff75GAtY8yUo/Xl9TWd8W2SvSl9rTYYxFRRro2rUrZs6cedLhsHTHcnR+2JQnPRSK5WrcAd6wbtTcVSBodhVQGcBki8hRVAGIGuJkMFsbuWiz3o8oOYETy+3a1nCuK7EeWVLSLhmyWFf1ZWnNFl4BfjkGJ7yt+EeVqaZxrKrL2ewXFs6bWYXzMgqG7MqBI0csqZpznMEvx8LlkqoU7y6bgQGXAwhE6CwBquU6wZACMBUhU55UBjglq6U0OTkZp52WbpP3ymGM1wPzsLJuRTEPB7MIdwlZjlhWtsc/EXJ01a5Z4+QbhJqOQFjo+lf429xa5SG+M76vcr8+o9vOLcb2eFNBrfoher9iE/9HUH0IhEzuRCqDU1Ihq0LYh12IQbzbWWvhal6a0pKPCB9XUbAXrrqICfud/z6Eq17va2NxrbNwtencCqIEZtO4mjv4xox6vU51nwXE8jjQ9RUNIeuYdeQNTLGO+OihGvVvU5SrSs1kUuGJ4qhtDsnGVSCirZcVxi2zpuP0caH6Eu+WPDl5L6Ok1BzlQ+CuAgq0BRh4Xnr37ln/GagHSLjWM4FAAHFxcVWKUlVV4XA4aiRcq/NLrcziaucqEBmqK3ISV02Ij/fA/OIZosTTL5we424AkaJXNMWJk2tlcTWHU2JRs/VVBgg2MfDMKGp0eg6HE6891rXqyVlidI+zVXCVsWQlwEVqbPBni/DhH0o1anLW0m2nY8X+K3hPmsk1trjmHy+K2mb2bWQKz4/PV/lHV1GsrgJ9bijAr8cvgFMSqoysUFx8PGqbywkEIpMSmNaJ4IRCCsBC1g8BA5wOq4+rKIqVxnatDF7WsqV89SgWAZPFVbf+h39HR1bIP1ai761x+ifDlz8yzPlvdKVjtQ1cqRHs8lKV+xmsqsJ4L7VH1cbB6xF/P6oXr2bhIYo2k+xs2pRotxlu4VGUsHANyiKfIFLLYojscOjRV6wWV0BEKOraosjCfvdaPXW0QOF6IIvZCFRNuNbW4nph7ZcYtWvLucU1+mGWBRJM6TEAzDokrvrw5Pgt9ROiD8CLS5LDl2bgE6YiKoLDVA8i963a3qZG6dhNpHKIzDZagPlQRVEhiVZDi25prX0nrnr0zkROfrlpG5+8rKiMR+4RufXXWUt3xsaChGs94/f74Xa7q7RUKopSY98Rq78es90WuZJWTVwFgLoJ1w4dO1jET9BmEpqq+bhGNpjcuhH2J6tpVAFzQyJrPWZrqBuhku+t1ceNTw6xNg4xTrHKBpJF9ZaBLh1ciEVORCrWmfmqyrRFEMzXAob1zUavpD3cUs1Cxtn6sz148CDWrIkYewWwemv0WFwgELa8M5V/bCt8ZsustVDkiMlZpUHuF+h0Vu3jKgd9Udt27dyGX/ccsGwToFomE3DhKkdEFdCDckfWDcFima0OVQUEFrJcW7e4BiJcBSz3IqvRVUVrpBvLxfXrrQzvfBGdWKgBPlIAILBof3tzZ1fSImfUdNUyc5nLMj/X7DMY+Wx53VYss9tVxuCUuKuAfm5IEeGU1DpN0rPkT6tH5ndPZXx5aVtXAVlFIBDC0RM8H1I9hARrbHpNZNi8O3Kr/r2oeXnKsgLEdK6XPHExGp329vyBxt+KquKsDnugmNtZ0QmXg9VauCbFZtvvMFl9ucU1FFXHRCHsKhBZR+Yuq6nVMfr9kSSGYOz5NnkK/ykr0fM9WB38kytj925rxdAnLRaWmCdPC5Ak/t36crMXGMDjizubp24l4Vrf6D6u1Vlcaypc7VwFIrfZLQFbnasAUDPhGmnN9QiH0S4mvARv5Eo0PD3+QYgsAsk0HMOH7qtMOpxGMNJHSYmeeAG1ys4C9zmN2MYAl1Os0uJq5xwfOTNd1ayr5saIi/dIgQ0MPvMYuiT8xsuGhSBGNOyHDh2yjZU878voXj8zrRqlKCrEUBaCQfP1rDem2LlnhE4gxlm1qwCzsZpUlBfB64sILRThKhCSFe5XGNHJcDpFKJEfDi0KxaofGG55vvovFrdPyBYLmm6xtVjomWBjcY24mOgGdlxWL5Ozlm+KHmmIZP36DSguKoza/vdFHpujw3y2jtlOjjJT7mUQBkWUnyZc9XyF24aIMHoij8CgH1fZffzvf18Yf4tamVWYwgtFugrICiCyYJTF1eXkljbdBzGk6CvLAf4Aw/Z9NXsegihYhqR1lxNr550vLx058UsQeL2Z9NhKPLLwTACAQ2yZ4bAqq3a1ET+hOgbft0ubMSDo6hu1PbssLAQVha+eaJk9L8ZBkoRauwq0ceUhQQm3nXr9PXo07NOpat8POaL9kcRwPO66WjntRozsYrtGEjkSZtlXD1bnM888M+Ka/P7KK6yTWJ2SAEVhULTOKAq/wNNVeyE1GSRc65lXXnkFp512WrUW15qu+1sTVwHztXQ3hJpEFahOuNrdQ7yYhwQpz/gduRINoFk3xMqEa9hVoCYvNQAjthwQjioQKQgFsKonJqksyoePMQEup1Rlz96u0ecTPUxD1LLK07dxFTA3vowJcLkkKKp2rBoEjHBYenqK7epr56aXRedNNlsWGQQmV2m1U1RE+wI628JZjdXZfrJNCEeyrE7+PJKE2a9Y5UPElokQiI6nC32SDMPuw8Bn6yrPS/jaDAJkS97CqyNFRBWwnKdGL2sak4p33nm7+kRrwBWPM/ywq2qLXW7eUYufus7yH+Jsjg5z7dMKrr7z3ajtHTxhS9NObRK3PxC+x/g4HtvSIkhNE7Gsk7PCddHrjfarBoBtP+8N/2DRfsWRrgLc31u2LOmrqEybqBi2uMqqxCeIKMBf3/Th/Duj6/LSpUtx1dXXWrYJgnXSZXjZSmt6kiAbK3Xp6D6ui366gm849GSN26XmRla29X00fFxrIX7qumpU/rGCqG0qA2JCO6s8T1EZnI4IP1ApHpJYe+GqsoiYzVpFzj4Sdn1QFN5ORopMs1GlNr72lvRtCtohVX8Pdm5suttBQ4R21ttj86Q1lXGLK/c917aHjiE+OppZs6CFvqLNm8jJUTpmi0ddLK76EF9VFlf9d1XCtayMi6DqhKvD4cDevXut2ySrFTJkEq5vfMaw+kfGl1cVWLQ4Ebkf2W85DEVlYi0sruYFCHiP2WJN0fwYQ1XE0Qn3aq2C11mNxdWu980YDMHJr61qPr3hY1SmuUuYipdBs/CqQpTFtUrhqvpx6RnHjJ/6fZrnjamMR1aoapjV1uIKwOmUqgy7YjfU6BAVoPXllm0C+HK24TwhWriCRxVQVeDEiRNon5IKCNo62bLCrfU1sVKoDAJToDIBFT5uidQ7GRZXAZ6TcJ5UG+tG/Nk84kQ9YVgsKsUaW7amOKUQdvyaEb3DdCm9WVn1Y3hbhcpXM9PfdT5CET5P/0hyd+6wv3PmUfv7WHcoHOcz4zfuLmKud5Hih2n1INJtxung9VaWFUANQVElPmFLYXh1ic0axgDWbi3H0mMLLNsEWNs7Y/Ufy6gMt7hGNneiaO2cjho10jbdloA/crZkHXxc6ypcDx48FLWNt0nWtCVWjM6e8DdFUbjLSGT7I4lV+93bwV3GzO2yfi/mibzchSvSLUkUzTFe62Zxtesg1GRSvmIzGghNyNfL/LTY0yw/9QnDkc/aIfHoMsYKcnWZLNpIkHBtAMzCURebZpFoF3u1MiKtq4wxfPjhh5Zt5uF8uwUJIl0FEhMTAVQvXDt06ACPxzp8GRlQ2ex/+ubnDF9sYobFNdJaKYlcCA6byvDBuo6GjytjDH/+85/x6quv4uGHH0YkZosr7zFHTs4SIEC1HBeJnSBiAJwOqUr/TrtGX4UQsSKVAkGwrsutuw9EhgSLMSyuDHyFHobzO2403Z+NcGWyRYzpK8sILEKQIQQbY62BXMmQVHV+vpHDagAfno3aFiHeuVU0cvUwPiSlMh5w/3jvLAgQtCFbhkfeYDBNdq0U/dqKKuDVj4EL7w53lKJdBSLOsymDmoa8qQl2M6yj06v9R8HvrbBd9jnOGS4wu45JSuxBAGZXo4jICobFlfuK6zl7Y95Ky3X081u1aW9sO1F4TLtm+H7+9dZ71vNYtGhUVf6hVJnWhrAAFObQJmxF34NOSI0BRKtlmj87k3CVVQhyYdQETklQbHxcrUO8NZ2g1hypLAJKrVwF6rrcqRTtDMnUsAX0p59+AgA4WSHauExD9ywcFs16vaqF6+49+zDvfeuiGpGh7/T62rZta2ObououRjbC9SSXfFVsMlypcI2YnBUVX7s+La7990esmhltceUdSQGqGp6kZreSV3OBhGsDYLa46sLSLBJr4yoQGbMVsA7hRwpVuygDdu4DQPXC1W5/pHA1N4qSxIf5mO4qENFe6sMxksSDUEsij2OqKMCbG2/E04t64cNvoodZzT1Dfk3r4gb6ggfBkIxHH33U9l54rzaydVA1a2OlRWD7EY0cflY1S6a5fBU9jqtZuIJx1wQWtrgKggq3Izz5yV64KggEwtv0RtchWctFhFJlo6tWYnF1uRwWwRm5Ao6deJfU4qhtAqxRBbiF12oFZqa4sXrdLq/waxbXmrfSvLGXoaqC5gIBqNrEC2t9iQiHZfORAFAji+uyZctqlLdAtUONIuo0E8zZFuj+gmWTS85Am9hj+PkAw6V/UY1h7tKy8IxhPbyT0XFmLMISxu+dxzkOu/h8c9BqUdffBfPIRqcO7QA1iJCsYvhDKo4WMoTS/205Tw8NZ5kspcKwvAcCIYAFoagOzX0AGNztW8M318zWrD5R2yLD9ukuKpFRBSRRifJxjbS4SjWcMNocsbrkhJ9xVYH8H3roIXi9XuO3OQZyVfztb3+zhhYUo4WrOaLHeeedB0Bz6WLmNoJplvcI4SoKVeb7pXd+wh1v/9EmPdNvG+Gqz4eINHKIgsniWkcfV9uRqRpYXGWb+R56DuopIhiC5ljoeizbYISrgPYu6J3Q+uzM1zckXBsA86z+yiyuNXUVMAtXxhjOO+88nHXWWcY2u8lZkaLYTswCdYsqECVcTV1ChyZcuXXD3sdVt5T9/PMuSKIQntDTaiDKYkYiJ/HVqDTNQsSwtEVY8URBRSAo46UfXog6H9CjCoR/C4NUHA1dCKdDQlXL6tlaXKMm/GgLLlgsrrwMLMXLuKuA4ePKZOPjok8MkmXZ3uJqnrWtx520iHemuQpUeitQVFgiOSSAD9m5TOJ9//79USvg2FlsYsRyIHjMsk0QVEvAbEXlYtpsjTN8XFXgZz0ogRSnCYhazH5WVIiQoTIBe/bsQ8Dn1dwHQggGrXXa8qzsXAXArX/VceWVV1p+L1jBMPPd6LKpLjqCjDg4EO3jWhf4+yMgp4CvcBYI8uv6feHOUIzILbJhH3mtDLTOlm7d0X3A9XoVDFk7Y3ZD8CGZAcyPkKzi661AfhFwVjvrWve8E2f1R1YZg9PBa38gENRWunPC5eQfcpdDhqB6EcmWzDNsCiFCuBpCOdLiyt8P8+Q1PapAYiwvo5pGVqiK33JYlGW3MbBE77Asd1t5XubOnYsTJ07YXqMqZs2aZfl2CDYWV8tyy5fyY/X6as6bQ2LhdiPEQ+9JkoCq9KPDER7W+Px7huPFvB6bwwvqZWBd9ppBiFgYBoAh2gCTcNVGtFxCaeUZMWHXTtakI8S/2ZHb9HexfsRjhS9auFpcBTSLq6KG45Er7e+sl7QbAhKuDYDZAmAnXGtjcTWvwKWqKmJiYqKssHY+rmbMYjbSz7Yq4Wp3rUjharHiMhnBkMotoCIfDvcZk0SYNizHeIOgiRU+qSp8iQTZ+tEDwkPjABfKdh8lUVCqtBbYOcADgEOqzsc1eltkVAEeZkq1+riqfLm/SKuBw2H1cRWgWMy3xeUS9hy3zgLlrgLmcEO6ADGlxwSIQvQQmJnIISldxMa4wmXQe+zGqPPsLBBp3bpHDXeLkdYUlcdMNXduGACnkw8RH8rT7gOxEAWhyrzvO2J1PVE0y4mqAjt/3YXy8lJtm2wRrtziGkZVbSZnoXrrgt1ExU27GJZtjN5eXTxaBW44xGhRVjeYFsWD//JW8Ji0DiF8/RixBB7xSLj90cpAEARtGz9ZLwK9Y5R/ZCv27NljXEffbn5fZQWaxVVv7wCnUAZJLQrfrwJIghplcXVKApgK+ANBiAiZhCsgCBKqXBnEgghEvI988Q9zegIk0ToCAuixpRnO7rSf/66DTjicxzB5dvjCPW5g+PLHKk5oIMxWRFkOx4iubulUcxt/7vmX1Dg987dDsol3HdlOAnrn1nwN8NBXeqzT0s38ehJ3XyouLkZSUvRyvuYVncb/jWHtds0tCGbjAU87Vgq70igqgxgR/xngHZaoVbUUPheknfMXJEk/2ReCCbuON2MMCPDJk7PeZ+FnYSkDuwg7mo9rPU3OKiuPiE4UOmad9Aw+EiYrdvGAmx8kXBsAO4ureZsuGquKPKDvsxOukdtq4iqgH6Nb84LBYJ2EqygiouEJ/9j642a8++5/uHVD5C9d3HCGCh8/RhJ58PLDRxngOVcb1rSGUBJtLFHvvLPAlCcuWMyNBNN8XKt64fjkDDurs1jlc7Br9NUIv0nuz2ozOUu0fqyBsFDWJ6yYZsgAAH47logvfrs5IkXFEqYmJEd/kFTGuKtAqPJ7iRyS0ieGucyTs1JuiTrPzmLDmBBlnYr089WXmI18Vk7to1RUXGq6luaDy+xn5J9+E8PGnWExxt0QFG02rAuMqdpkMNkyVM+Y1eKqqPbipDqLq9174pQAu75S9fFo7ZcorQ2T/q5bk1RjmA8Id/JENRyFQmWiJeqGonBfF1EQEQqFIiyuWniq0AlUuEegoMgcLUCrd6bqICuAwAIWURtSnBARsJwnimpER0tzFWACQiEZkqCAwWW4CvCFP2r41Ra4O4gsM3z7E9OEqxrxfvAJhVGuAtoQsZ433tzV7sN9MBdYsMK6LWjji9zQmK2liqIYdaw68aN/L44WysBFmVUfrJP2LI4VWeOARhI5MgXorgLh34bFNUKKODQfV0VRcKLMiYvutt5E5IglY7AsLiLLjL+zTEZKfFY4TypvpyLdkswuI3OWpAFMRoxyQJtXUrMOjS6G8wrMIzyAXo//9rZpNUnBel6lUQXqacnXMq912XQBisXiyicqc/eMhoonXZ+QcG0A6sPiqn9kIkVqZFirmkzO0o8xRyTw+/11Eq7RothcyRXEuuPAmOYWoL2k+iGSxB2/PbE8D6LIRYWiMIjeX7TrR5fLkOFXhVNQdCsew0drGLbsYYbFtSpDV6SrgI4kCcbM5tXfbI7abzdypgvl8LVVzcJsnZwlafk0wy2u+oz7ELd8IdxRsZvRKkC1hGjRG9jIWdOCoCCkAK7BZbb+oooa4eMq6BZX7uNamYCPjLkK6PmPaPyFaGs8Xz3MKiSdDm5xbR2nC1FRizihgglOxErRob8A4K1/v2P8bYgTJmh1lEFVeJB5S4McIRK51dk8SsDzZhbhi762G/4PAX2tk5WcDti6ZlQfTqduUQXMLDSywjtM+nfcpy1A4TXFVdXjKluiCghmX3yTjyv0SRv82GMl4eepP0dzNZEVAQILGJ0FWWEW4ZpXwKAoqmZxtb4fegxlIw6zICHGpfssR/SQNSQxur1iTIQAFTkFwJAHGRSZDwebXz0+AhJtTRIFXu/0d8kcMs8uZBkAXHJftOiJpLTMvg43JJHC1fi7Gour/q0pM/lFV0vXacg8anYjsevcWofpAc2lyuwHr+rD6RFRBbSJe4IgAI42+HGPZXdUp9kfCAAsPGrgHMo0X2fuvlRUquKXDL82F8BGuJp8XPfnxmPUGevRJoFpnW6rRb8y9OXP//s1Q0k5Q1EZiwrRZdeJsIsqoJ9RXz6uZRXWmN/8m6LgoX+q2LyLGQYFRa3dZL6mgoRrAxBpcRVFsdZRBeyEq764QG0nZ5mPKS/njVMgEKgX4WpuFD3xbnTp0t1icTWj+xH177rL+C1Aa/SM60aXy8IfRiIYYlj6vd4QcB/XafMYPlyjD5Wqto2nOZ92w8EOia8atXTtCYyYfiE+Xmu9hmoXxzXCkqAoiFrilseN5RbXxd8wlFbwfU5duKqAYLPkqz9oM1sfqmX4W29YLBPUoC/6oCLE4uHzRysqJaJnrzeoLpcDqopo31rTvQARnSimp2q6XoSfr27hjVzljPfsw/nneQ8PtfmVBNt8QAivHsa0qA1M86NjEAxfSssiDNqCA4wx3H333ZpwFbRdDFCifRtvnFGJcG1jnQzicnI/0Khjq/ETZKb/niy6q42efb8/AETEqVSZaFi+PSNUw1UAAjSLkhZVQLtIKCRDAK8L1oge/Jrt4ovx9ttv48orrzTcM/QOV0lpKWRVggheMJ2u5hZQSVSjhKTTIWiWMmjvgQMxTr5eOgQJzGZWs8cVvYqb3hEwXB20D3PUkq9ieKhWz6/uWx0WruGruj3tLZNadDb8EpF6M5nDEu0qoHdwqz7PbFCpDaJgNqCEy/rAgQM4duyY1k5aF4aJnJzFo0sAerufksJDt+kWV1VVgfYTbdK2Fvpvvx3UJqSZ2h9ZBbQVDe98egvOuc1vWoo7woIrCpa2XpJ4rQqFFK3zW/37qte3n3bswtipWRh2b45271bLv44vwNBtgmoYY3SOFTEoLB6Abd+tTpR7rR0ZUVAQDMn4xxLgJ22ugW5x1auBUz5UP4k3ACRcGwBzOCy7qAK6q0BVfnWVWVwjhWtNJ2fp2z777DMAwI8//lijBQjs/GXNvWNzgyUIPI4nY0zzheXb9SQkkS9rKUK/J9UIAG6URWSRMBWXdv8Bh/KAq/4WntylqgyqokBlTPPvtA5JR9+L/Som+sxm/TYnPGNtKfRLWjsLVosrt2SaJhhAn6XJRcUN0xl+OainJxplBCiGxU+/vs9OuArWZTBlRQWY1YePT84K+wv7ImI6lntZ1DC5IVydEhiAQ7mVCFetQfaZJvwwmxiN3LphnrjHNHcJFTc9p2LNNgYVguEuYdwT4x8O42Oi2Pt/Ls+YAAA4diKghfZSTDOJBe3+FEuYFyBsWfz3gs+5S4XAjFGRlFg+QS3SVcDrt95byGZpY6YGccBmlclqhasK5AfPq9JFpaYIgibaFZ4/vzbRSVEZPl26EhUVPq0u8qHBCl941EKANd60vnIWXxaXl+GSDeF13mVFhaAUI9bhwy/7CrF1T0gLeaQYzy4YDBmCRYd34qwRJ3gYJBGMCdo7rQKCaPi4qswa7k3n0h67wMPIVY6i+ZyrDFj9I8OODBaeMKqV+TfbeHnpLip6O2aJLnFxMS79S7WPwHYYub4sZbXBOipjLyqjOHcLtu2Xos7ve/UP1aZnFq7mtnfMmDF48cUXuUEhYg6DgIiQeSpfiMbyKmxsZSxAoCgK0PXJqLTtRv4Y32Fs4x0YGSrjbRdTFa2TFz05S4/jqr8PuTlZEEXe7jLN1aY69DJQVQW/Hc7BkawcbaKgvcU1EAQyj2qjc6Zv07CpDBVCT+34+pqcZR4h5OKdL8mtd+xNcVwVBkH1UjisUw1zOKz6dhWwW1ygsslZ7777LmbPnm2xwrZr1844NvJakRa3qizDgSDw2sf8JUhy7keM5IW+Vr2q+Szq19bbNIek+R4ZDuqKtmJSeNJQZAMhKscgwW+88Lo/qaICGbkStu44YrK4RudTX/CAiyh7H1eVCXBWssyjfs2KCrNos/pNMm2oxzo5S7O4KuFzABj+nfqCAYJgtZCXeGPgEKxDlHq8Uh3eQMrRE9TE8EQony9cb4rKGBJGsqhhcv1vl0sCYwJ+2m8vuPR0vF5TGahhS8Ks95mWz/CwM8+n5i6hMHz8LcPuw0yLrKDF7wzptkfREBBdYr5HG+dvti4Txf42AICU8U6TOBG1db4FbRjQbllPASVlMvCHXM26z7PJy1GzvEV8COP/aE3fzhr9607r0rxtx/Dyq25Guf7YqooAUXP4BLU133wNAPD5g9AXffjTrDPwj0W5WqdNCS+FyrShSQE2wlUTftpH63hpePa2IusTI4ENRwahIOllYwREFwL6IhICGPLzC4zrOUSezzue+QXD794JxkyuAiwsglxOSRMsVkuVDmMqIBdVWSLc0s8ncD70OsP85ZpwNVlcVZWnF/ZxDVtgzRSW2D9La4e9yuzUO4u/YZj3RXS+Aib/dkVRjHxVKVw95+FYET/QHCt6V0H/avMhQoHXz/Dax8yShv7N0y3petvHNB/UKD/4yE+MUm5MzqpsNcTItlxWNBFm2cbrK3eD0i6t6vG1GbpPULHnsMnyrjIcPZrP86rIEAWmuR1V79rz5Y/ad00NIj25yBC75nYS4J1a/Zf+fHgZhHNu9puvrw5Qhd/qaiZARSgkQ1EU7N/PJybqIcj4N0+txeTIxoeEawNQH+Gw9PMjw2FVZnGNtPACwIYNG7BkyRKL5bRr167GuZErfDmd1sjpdm4H+u9Sn4iHXucve1vXYfRu+7M2WUY0rJuGAU0FAEFbgCDckAoCb8hk7YNovr6RHriwVU0NjyCEJ14UlUlaeuHhPnP5bPiVz/JVI4WrystVdxWItNKFy4Bfq9xrDtZstTZyUWwTDstkdd66bRuCwSCcTp6e4SpgDBzzc2UlOvCzAKsol7VFGCyzppnuP8Z/e01LcOrujtEfCZ52jMuhheey72HrloR33/+vKb2w1flvb+tlYW1luXWDi4JQIIAtW7fxToLmLiEr4I2jIBirqgmihCL1LIz9a3SLnewpDOdJG+4y+kBM0Do1XFhNe0fFiVK9ngkor/BqeeKiTYDVSiTZmOPN9SgQtSoRIKjWDkaR5tZYnXANv6v899GjR6s8vioEzU1CVWUjn4aQjOmMkgoBDCKPYaoJV12kRVpc9UUl9NWFAKtVTdaW2VVVoCyQAKd6VPOXDQ/Ly4pi1A1Z1SeEcss7g4S1W8rw4+4QFBXauyBo6fHznQ4JTBOSdos0RPoMWssC2v3pk7P0TqbuKmBqk7S2WJ+Uo28XdUWvMfaiYtu0zM2FncWV1dd0cBuWfs/wXxs/bLPFVJbDbUt1rgJMEyi1Xeo0JKvIOQ5M+T8W4ceuj2gIhuWb50mJiiqgu5VFovu41lS4KorK3wTT9yMkK0Y94G2T7lbDXbgOHwUKtUhXksgt/7p/vMMhaKOBCiAw5Ofn491337WkWeYN38jIRxhf8lX1QpQc0Ffx0ttlY7K1yf/eEK4RPq554WbO+Ka88iFDQXHdVaw3yuLKtAm/ghHHVzJbXGHfcWwu1Eq4BoNBTJ8+HaNHj8bgwYNx1113ISMjvAThwoULMWzYMAwdOhSvvfaapeHftWsXbrjhBgwcOBB33XUX8vLC6937/X5MmzYNgwYNwpgxY7BqlXVFjGXLlhlpTp8+3XbYrjnRkJOz7KIR6Onpiwzo19YjEJgtp+aGINLiapcH+3wyI7CyagyTA6oSQuGJEs1vKSyizK4CfDhGS1/gwxSyNkOc34u1odKFrb4ONw9nEhauQRmGq4BupVv2RXgSjZ52lAO8NntdbyArW+qQG+VkhGTFCO2lIuzjmlegWXMjPrIq04dH+e+p01egKNgZDocEhQnGDHh+v+GGzRg2tRS3jC1bthk/Q4bly2zlgGZJ0PxETQsW+LUqJEeUgZ6O0ylpbVRlZcDTOfe8P1jSi27Y+Ee/zMsMC4QeFo0xFSGZ+4s5tZW6eAzQIPROjaKqgMAr1rEIo5ogF+L8zrvCedItrqpg+gCEhwFnvgfkHA8L1wqTcBUEGJZ+Hf3jaf4YmV+N6OU0AUUJ2MYarW4hhYD2Tuudkcj4sLVB9xnUX1M9TJiiMoDxslCZAIeoGrGA9Q+X7vurY7G4au9j13bhCTv60Kuiaq4AgshnckMxOgGhkGqMSAQ0X2NZUbWoASIUVYIIGYwJcDn4aAfTxC/A66Kihu8jEl69ed46dbvAtkxkJbxqXWHhCRQXF4Pprju6f7iWX93HVW9PHBHN3erV1m+RzpF80zOwcxVoQOEqivaWuKDJ4irL4agCdis6WdA6rLVd7jUUCo+U2U3o0TswehULBGVtZMpscbVOiNPRV86q7F2KnMSrKCpvjkx1WpF5pBWmjcZACHd4wy5g/P96p+an/YqWvgOiYHL7cffGG4uzLGkmjrTOa5C1Dp/TGRuec6B1tPRvfzAkG8/FsAIr1u+HeeVAvawefp1h7xHboqgRxwrCsWgjO/3GqJOoR3IAAOX34yqgKApSU1OxYMECrFmzBoMGDTKW6Fy/fj0++eQTLFy4EB999BHWr1+P//3vfwC4+Hrsscdw/fXXY82aNejbty+efvpp47pvvfUWSkpKsGLFCsyaNQuzZ89GZmYmACAjIwNz587FSy+9hOXLlyM3Nxfz5s2rr/tvECqbnBUZDqsq9GMqcxV48cUXUVpaaklPURSLldTlciEQCFi2RQpXO4EcmZ4dwUBQO0YLkQUBDklAhdev+bjCZCXl/9dX1jIsrmBGAHB9aDKyCdMtrjt/+VVLT3cV0C08uv9q2OI6btxVxvn6u2n2Y+U7uLDjFlcBgaC9gOcCIARZVhA3nOFIPm8BdWvGHXOYVk78fgNBHruWqQIckin8SdengNhu3K9PtwRBgcCsVgLuE2VtrBlTACEc4Jt/JLif748//ogNGzYY1k29bH3+kOWaADBp7mm2k7OcWoenUvGuL4WoWH0U7ZctZfh+h2aBsPj+qnBI3KLvcnBrTEiz4HHhKmgdj0reCxZESJaMVZtUlfssckEiaFZHZgSZ5/el1SkxLFwVVZ9Rz+udXuFETbma5+JY/dGiLfL6fUVSbRB3I7g4/2n2R6yt36tuwQqLTu3DrKiANomRl1G4Y7dplwQGiXcaTXnV/Tv1IO0A0C054oMHWfO7YwBEbZg/vEwkt7iK2igBv4bfH+AT6SBybaH5mjqdvAbqw7cA4HBw639lM5tVFcYQZl7XHy3l5fNpz9hwI2HIzz+GnOwjPByWFPZxLSou5vcs8DYkbHG1prfbexO+3xGdlzF/Cc/QWrPmG5t8Npxwzco6gt27I6bZMwVbt+80fgZDivEMqxvxNSyuwdoJFbkSd4SQkISgGmP4T+q7juYfj3IV0EdAeD7C13BIfOJecUSgg19+Y3jgNatLEgAsWrwY+fn5AAuPUnIXNEWzvDOAmUbC9BG7omIA4WHyzbt5O+tT22pWSa3w4nphp+/uqDKwhHjT3jnuDsDfET1oh/6OyxEhqADdzcve36S+XAX+8cYCU55V0+gcMz6SDklzm1GBpLJX0LX0nvpJvAGolXB1u9244447kJKSAkmScN111yE3NxfFxcVYsWIFrrnmGnTu3Bnt2rXDTTfdhJUrueVr27ZtcLvdGDduHGJiYnDnnXdi9+7dhtV1xYoVuOuuu+DxeNCvXz8MGjQIq1evBgCsWrUKw4cPR58+feDxeHDHHXcY122umC2uumiMjOMaKQhvv/12LFgQrlyqqiI2NrZSi+tjjz2G3377DQAXoHrolkiLa1lZGf75z38a2xRFwRVXXGGcFw6FEh2+xZzPI0es3T2vFi9SD+zPGJDgcaN1myT+oZTCH3795ePhsMIWPG4l1BsY1Sg7a1nqIUl04Q2LqwD3Lxcsok232gFATu5RIw/mnr0kah9KbaJQZVYJfRUeXYz4AlZXAX9QHxLn9/PovxhumM6g6OI94rI8Pf2DHx1VIKSJUksZMMVyT0aAdQY8P/tVPPvcy4aA0MvWbHE1l6jVl1O3cvHGWhLM7hDhFpOLdxkBU99Gn81vx9rv+CIGvLOgPSumQnI4wZhgrFHPXQVCAATD8mW2xhj3KzMwJYBv1h8w/Gy5lV6LKCHyu9SHAfV6oGh+qQJMFleFhwTTLf06+uQs68SR8N92ol6SHIYqMIdOqtZ3VQi7hQCRE2kqP62DayscsH7JBWj1XzS9H9BEKuOTS1QmwimFQ6rdOqcV/EoCBG1ipF5DRJOrgKSJHktUAZOPqz6ZiunpGRZXxbDG66L4ggv6QxK5xZWXFz/PKQlgTDTyDOjh4vgQrSC68M4X1jLgFqxwIZnL7kRRkVauzJgYKYgCZEXWBItglO9tL3dGWVkZRG1SoDE5S4yu10dPRD+LY4VhS3tZaUnUfrmKSa8nS2HBcZSVVVg3ChJ+KLjF+OkPKMb7XF04LGNiXR1cBXTRa07jaNI8rD8yXBu6D0/G6tmzNwqOH4uYxAroaxcwUydeEnkbGTny8stB4P+WACyig5tf7AYSuAU+oMXQ5e0kC/u4CuFOkl6ts7L57ErDZUThjVxIjYUoap15/bNi095xw4nW3mjfClm3poDrABGqEYfbvALiCU002/r5AmivLLWI/Dr7UqshBBW38dMoA5XflX6D+vshKwyiWooYMbpeNxdOysd1586daNu2LVq3bo1Dhw6hR48exr5evXrh4MGDAICDBw9a9rndbnTu3BkHDx5EaWkpCgsLa3xuz549kZOTU2mMvWAwiPLycss/v98PVVXr7R+AKvfr8VJ1KyjABVkoFIKqqkaPkDFmnLN+/Xrs2rXL+C3LMmJiYuDz+YxtuouBfk2fz2e8NLqfCg+Dwl8Yl8uF3NxcY/UbxhhkWTZCjgAwrLR6nsz3oSiKYSlOS0uDLMum9DThqgkBLph5b1rVRJs+fOjVJgrpEQSMCRKMv4zBoGJYXASBWcsSXJDqsytlmcdM1Rvb9Fb7DNFmNLynh30xN2/isVl5LFJTZ8LwqYU2UcgaGzdcBgwCkxHQTHHcf1HvTasIBHmZ65ZFfxDIPqZNTJIilnyFttwp0wWGDMYUrR4oOHbsGB9+g2LJA2MyIEjG71BIgR4S7KfSydgZeMQYntXLxesNq0zzR4VbSfUYh9oQkfb83E5T0HiZmeqiwmN1BsPbFE1A6O+DbCrfo9qkHFlWTWJahSBIYJpI5WWuLzjAt4VkxVjmkT9zfv2bZjIgthvQ4TZDgHJ/ufCqUeFwWMyod/5AyPgYVngrtOengNtnGfdr1otGs8hYozcwS5kDfHhU38aFOH9WFRVhIREKWZ9fdPshGnVJVVXsUObYphnZ1jhQgQTxkGU7wIz6xM9XIQoyvw/GJ2npIxIWP26Bf7y4JVmvB8zIv/G3HM5LMKRAhLZ0q9aZ4hE1wuUjy7LxPurWcQiiFrpMBKAAAo8XKWrxOxWtEwJwX2NFZfD7A1DENrj7Jb0+aPVO5R07Pb3Ijr3xjPX40IIIORQyXHfkCOu2KDLIcthfXB9FUFXVWH40sk0CACbGhZ+L02XJIwAoctV14GT++f0+OF2uqDyZ8+Dzy4a7h6KySq8FADGOoNaWWd1hqvsGhkIyMg8fMupJ+BmEEFJd/N2DKXau4ACYYviuqqqquT3BqDsAUFRUZMyRWLP2O0t+9KWxVQZTegDreC/g6ghACwkHvR5zn2tzXswRaIxQcFpHlim6QUbi3xSTFVpfxMNSBnLYKsvdM/TA/rxDqGiGFr1sg8EQvwcGHC8oNMpOLwPzs9z68WVQVeBgTnj0ti71BQjivPP/YGrPVa1zq3c6VKMMFJVpPq5K1ChxY/2rCdELDNeQ8vJyzJo1C/feey8ALpw8Ho+xPz4+3hBTPp8P8fHxlvPj4+Ph8/ng9XohSRJiY2NrdK6ehs/ns5yjs2DBArz99tuWbddeey0mTJhQ11u1JSsrq9J9xcXFyMvLw3vvvYd+/frB6/WirKwM2dnZcLvdKCgoMO5fd4nYv38/jh49avwuLCyEJEk4fvy4se348ePw+/0oKODC4OjRo/D5fFAUBYcO8QYkIyMD5eXlRtnqHDt2DD6fD7m5uYboz8vLQ0lJCX755Rf84x//AAAjLQAoKSmBLMvGtj179sDr9UJRVfi0axQUFECWgwixEJgiQFFiEQiEEAzIKNUCWj//wr9QVn42fN4Q1GAIPp8WU7bCC0V2ICs7xxi6VxXFkgfG+DBtSQm/l6KSEjA1FiUlAQhqGX7aW4xS95/QPe475ObmAegKJF0JReFLx/p8XFCUlpWDKSoUpRUOH86EgBitDHMRCik4dqwQYN0AwWFJv6zMC0BGZmY2gI7Iys7lHQeBl1VpRQfk5uVDVYIIyQ4cObQXOUfbo32KF3IoxpgUpHP8+DHuUxuUeU844AeTAigoKETXvn9G4PQ1iMFRSx7iYp0oL3cZ23LzjkJgaSgtq0CFzw0xJh5+fwGYKiM//ziA03AkOxeKwt+PnJwcAKkAgIDfB1WJx6HDmVAUXubZ2VlQVBW5uUcBdAEAHDqcCc0Qi6LiEogIIOdogZGHYCAIxlTtdxoOHsqEqoTAIKFcE82FRcVgSizv5DAVpWXlUBUFpSUnoKpAcWkFwEJgggC/z4uCghOQZW4ZOHz4MDIzeT3JyEoBwO/lcOYRAMnIyckFU0MIhkQEg0EwJqCsrAJMTTQsGYczs6GovAOmW97zjuYjGApCVV3IzMwyOoHHjx+DoirIPJLF65CWVlwM/0JyH+sz8NvBTMRo4WT9/iAAXgbpt6aFn3HBCWRmVu4KpH90D2dmw1eqAG2GGfsOHQpfX0dva2RFBWOKUeaHDmWCMQWhkIzSUj5iknfcCzBFGwJVUVxShpDMwBQ/srIrAPAwO4qsQGVBXkZaGRQXnYCiOpGTmwtBs2gVFRUjMzMTLy/yYfi5PgAxqPD6EQrFgjGJC3bmRv6x4wB6Iz//uCbcZc2alQpAhCIHoCjxKFZTUMpOg9e3CkVaekUlpWCMP9/SkmJUlIvw+/kysIr2nupl4PX6ITAZB347BCAdBw8eNPKfk5MHoDOOHj0GqE74/AFAEFFRUQElFEIMfCgpsQrXgN+PgsITCAR5Za+oKIeiJCAzMxMCuK/iicJjyMw0x49Ng8xijHehVLN+ht/ZNBwvKITpFa5XFDkIVbW21UCaJQ+ZR3IhsA4AgPJyb8SxsJx39GguMjNjkZd3DEAvY0/l5/DzcvPykRArA0hHYSE3S/92MBNQ/fD5BSiyCqaq2jvbFYhN550dhYXLrrQcMW4JihKDgwcPQVFVFBUVoaDgGPz+IH47eMiSn8KCOADJxqp7+rugSxlFVXD4cCaAttp3pbMWDssPxoCy8gowNQ5FRbxdPpJXjqDiQEVFEfw+Fa0TAgB6IxiSIYkKjmRlm0bjlKgyP3j4CFxSCMBpyD92HAJLRXFJGVSlFSDwNkJgMg4dygTQF5lHsrlLgQDk5eYBSMeJEyfg84lGvdOf5dG8XIRCKtb8cAxAe3z6TRFSE0pRWwS0hc8fwvdbcjBvVQIS1WKAtTW+z+Vl5VAUF0pKi1FWVgEl5MCokX/ELWOuNd67qvROfdO9e/dqj6mTcA0EAnj44YdxySWXYNy4cQCAuLg4I7g9AFRUVCAuLg4At7CaLRL6frfbjbi4OCiKAr/fbwjRqs7V03C73bBj0qRJmDjRGrDY4XDA5XLZHl9bVFVFVlYWunTpUqn/Z1JSEtq3b48//elPWLZsGWJiYtC2bVt06NABaWlpaN26NTp06IDY2FikpYU/eO3btzd+x8bGIjY2Fq1bt0br1q1x/PhxtGnTBgkJCWjbti0AoEOHDnC73XC73ejYkfc2L7/8ctx+++1wu93o0KGDce2OHTsiNjYWycnJxvldunRBfHw88vLyMH/+fAA86oA+XOPxeCx5TE5OhtvthlQhIhTi4iQmxo3YGC+Y7ITkACp858LhXAdPvBNxcfwL/Z9dDwCxQOtWmwEmw+Hkvc+4OA9iYmS0b58Ch1QMgK9BbS4TUcyEw+FEm7a8w+KJT4BTkhEX74EAFaUyFxkxLglJyWFLsu5D3LZtGwDAih+duHtcLCRJQteuaZCEIwgBSEvrAkkqR2Kr1toMd1jSj3X/BhEK2rdP0cq8EySJDy+lpaXhl19/QfLkZMTEFMCrOHH06FEUFTkRmxYHD4tBjBBnqRtpXVPB2CE4nA5IIkNsjBPO2Fi0bZuEQOdXAHBLpjkPDsev6NipM9LS0iBdBqycEYIoMLjdcXA6AFV0wul0weWUjWeb2KotJIlbHjp07GRcKz7eDUkS0KVLGiTpKCAD3bt3gyQWolWbthCUEjCpFTp3TkMs1wzwePIhIojEVklGvhzODIimsurSJQ0OKRsqJLjdfAGBxIRWcLlExMTGAlAR646DJFUgObkdVJaN2Nh4iJABQURCQjwSE1tDFHm9CgZDSEvrpdUxLfOFy9AplYfpad8+BU5nOSRJQlxcLAABse44OJ0CPJ5E7dm3gySWwOmU0LoNX++8XbtkxMaUwhl0oEOHjpCkCkAGOnfuCEk8iJSUjkZZpaZ2RaLWZz6cw4Vhh05pCMlAfCwQE5sFMGZ5VgAQn9AqapsZQeIuUu1TOiKto1XgpnZOQ7wbKCkHEuKsbY0oZkKCYFw7tXNXSOIxSJITrVrzev72hjHwiFmI9yQCTEFMjBuiFEKcG2jbNrzmuyQ5EOMS0S65EyQpB5CB5OR2kMRyJCe3h0MqBFQgPt6DtLQ0vL4KuHFELiTxBFwuN1xOCYIoITbWDUkC2mjlm9iqNUSpCA5VRHJye+2GRcS4nJACEpyCDKi83WjfnqfniU/grhoykJychJhYPySnYhkb1cvA5cqGKITQqRMfhevQIRWSxL8JbbS63zapHZzOUjidMRBFEQ6HBAExiI+PRbzHFGfYlQ5PfCavdxIXpq1bJUCSHEhLS4Mg5IGBR92IfJ5MiENaWipyjgPvbOZ1xnxMq1aJVdaBk8HpzIQQkGyvr29LvzUNya49QBCIjXVXmZdnnn4WT93/HRJbWb/R1eW/TZskJCVyUZfYqjUAoH2HrhCQB4crFqIUhAARXbrwNhrnbQcAiNIPxrXj4jKQ0CoRkiSjc+cucDqKkZaWhoO5DA7nEQwdOgwf/xbOj2MLt1IWBbtY86i5UkmihNTUzgCAlJSOWoxYATExMRAEBrc7Hi6nAE9CKwDAi19cCABo3WoTVFVBTKzmNuWIQYyTIbl9B4hiDqByV5rIMklN7QqRebXyaAtBUBHvSeD+4oIDTicfTdLb4OTkFEgSd7trr418JiS2RoKHWzjN10/vngZRKkNyex5Lee5nbfDSg22qfCZ2iCiBwxmDT1dn4v1vLsbjVybC6RAQFxcPgCEu3gNJUtAuKRGx7lLExDrRvVsSBg06p0Z6pymodU5kWcaTTz6J5ORkTJkyxdjevXt3S4SB/fv3Iz09HQCQnp5u2efz+ZCdnY309HQkJiYiKSmpxuceOHAAqampttZWgE9I8ng8ln+xsbFaw18//wDU6BgAGDt2LHbv3m0IKX1yldPpNHxfRVFEYmIiOnfubDnf6XRCVVV88MEHOO+88yAIAhwOh8UPVL+GmdLSUggCf1l1JEkyjtNFvJ4nuyVj9Xya82P2n9X9lh5//AltRrZgRBpgTITTwWeYm3Fqwf7Dcf0EiAIss6IFIVy2gqDNSoVo5JUPNTNtcpNqNFgOiRmTXszExvAJQWXOIXA4wnnXF0FwOXnoEutEm/Bz4cHUw7NQuWWJ35qqMkCIAcB9ehkTeGgplaGouAROKdq53uVyQlX1UDGKFsdV8y/0nKNdWrbWJ0EFn7QkGGWgT8rhDvWCUZb6MebVo7Zv/8n4WxIFI+C0kSenQ3NvCfsa86FcvQx4ecmKZKobPLKCEa3CtJqYqlnrVMbrBGMCwFR8+eVXyM/PN+J38tBf3FVAEgVYQ3fyay9YISC3wFyCmi8n05aKZNwfjvuTCZrbgBaGSeFuAqIAhAN5c39QI3yZtlnSlsphACBz3y7VVAb6kGJIBgY/AEybBxwq7AQB0f7qilJ1+wCBt11eX9B67rEPAO19bnsFotoaQIQghNNzD8qBvgCBIIYFcDgEkWK4tjhEZlm+mAFwSIrFH9fh0MqAiYYPuF4Gepnrs5H5ML/I30eBmYZumVE/DUNVr3cN/9kk5x64hVxtspSWZ0Gvu1o4LAbTOwlLGfCZ6orho+gz1XPdH5cxHh2A13EBW378Adu3/wSHKFjqfch5mrHks14/nA4Ret3TfWlLS4qi2nYVXBR/tuIH+IKuiOcE4xoN8Y/7bUZsYz4jD4afqPYuM1N7ZvudEvm9RM4prO77xqceWH3D848VQB8mBwv7n0divFfgC5Lo19PbFJeTx5Y2R2YVRRF79u4GAHy2/VxjG69Dmg1OCOdJr688NJWeT8ESplDHocXz1t1pdN95HuVFS19gUWXAICCkuThoS3qY/P8FLbqAaqRnuCKZ2urp02doEyOtC/64XPzbpCrhl7Ru9YXHAa/w6flEeNVB08w9l1OCqvK20uWULPfZUHW50jpZDbUWrs8//zwCgQCeffZZi+AZPXo0lixZgpycHBQUFOCDDz7AqFGjAADnn38+fD4fli1bhmAwiHnz5qFPnz6GlXD06NF45513UFFRgV9++QXr1q3D8OHDAQAjR47E119/jb1796K8vBzz5883rttc4R+68JuhCz7D/ykiHJYuNCPjszqdTiiKYvj+qKo1HJa+XRTDfq9mzMLVaHBVFQ6Hw9imqqrFT8wcakxVrXFczT6uxkQoVweIIn8Z9I/d7t27jVU4zOjb9GD6KgBB1H0h+TbrKiOajyvTPqpauqIx6UkXdFzEhGxmIusTj4BwvEUeNikcVUBl+qpNmq+SqSgVlQfa1j+KelB1ADhxoggQXZi/YCFUbeUip8uJUEjBt99+p4UEszbaLqek+QFz4Wo75TdimwAVKiRDZJhXjTKEK6xrsftMk7PKy8OWFFEM+xqbtwG6j5Y+UcM6YUhEMCIwtjWWLc+b/qHkZf7pll4mUcNQoA0nShKfnCNrkxm48OdLLhph5LRG/Y45DIe1MKcpHVKMevfdzljj2qIeVUDz5dSP0SMBCKZZ73roGX2Neh19chafWKGHqwrv12Oz7tl/EIEQsOgbYE9+OoDo51dd3EwJ3M3GvKgFv+nwzH87GESrBIjprIkYqyATRc2Hjykor/BBlhVIkmmGtH7PogJzlC+Jq34oqqqtH29dg/6bn2J4PA29g2DEzg0vtyxrE+xEmCY8Jl5k8qfmvSY91rM+YUZvOyRtsmSkaNHRxUjYfz5cT/VYu3yyC9OEkAh0eQyQEuBwWGe/87ICVCUcbcD83dT97oPB6PkUeuco7+gxy/ZNv2qTcCqJUlIT8k9UfW5k6D3pkmK0cRxEinMLgPBMd0HU2+pqEjxrNSp8zOLnXxNkWdUC7IfnM5SUlENgquZFrv83kvBzrQg4jE5NSLb6Ov8/e28eZ8lRXQmfiMh879XWVd3Ve7dUkpAESDKbWCUkEAZbFhaMDWIHI7Ha4DGMPXwYm13WMNhjsL+BMQYMHo/GYgwGIxYZs9istgEJISSzaOt9q95qeVtmRnx/3LixZb6qbix9lsaK3w/UlS8zMjIyMuLGueee6wI4gzLSYAlUV/gd/+r/u9UZjcKOO0oMUzdcpaLrytIAd/5nPHrdX0JJGzexQlDUYKgtZciOO04WY4OztPZa1kAQS2Hgxhzm3mmDAuMbZUpCQ2DdZF3x56SK/T4dsFDZOUJTQ8KscRSoXM8keF8rJ2W47tu3D9dffz1uuukmXHLJJbjoootw0UUX4aabbsITn/hE/PIv/zJe8pKX4IorrsCFF17o9AlbrRbe/e5349prr8Ull1yCm2++Ge94xztcva961aswOTmJSy+9FG984xvxxje+EaeddhoA4Mwzz8TrXvc6vP71r8dll12GTZs24aqrrrrneuBeKKGRCtQNV61jlGZ6etoFc3EJDVeXiUTHyQZCwzW9HxAnFAgNVz5+IoZr2M4we5D78B/yv8hwNYDkRby11SJtcb8oRXnIy4qRT1oAq8pHk4aRkxVn1ArQGa0JSdCs82gRV0LVkBThjHR6XotGFhWUsAkIMkoIQIaJnYSDerQ1cv1OmWFlRlxb+MTH/xqDfpcQxiwHxh8MQLro+bBkGaEMjBgzwhn1VZIIgFFnNlz9BGmczBAhY/69/NVf/XXw3B6NExZ8CI023jQUgSxZkeSol2KIYREi83D9BQDD0ovI8/1+uG8Duep4k2FPzyzKVZaELjPimuYPr5Vgsn/L/1wHKY0L9nKLRCB1w8F6Qnik44tf+jIh+S6QjYMz2HA14OQUofHOhtmx410cP3YYR4+z0VlflldLQCD1ArDnj6MkEQCwadP6WirK+PHJKxBLZlnzIBhoygqsw1S4/qYH4/DRbm1jR0FtJsq2lDk5LO0MSTJE6Zy3/cUsKjFp5zO4cRwvzNqh7+EY4+QGQgoM9Ay+fsfPUNIHA7e4Az6ymVCr+vLEKgY8PsMc7EM7d80fV8isV2aorJt65sl1lQ9TuYAU3mCGqkTcpqZAYI5qT9NMH12gufR3rz27ds2Jls3/YeXxQyi77xst16Cw8lNAIO3lJBBXN6K1OXlVgbLS7l5VZMDGqZ9XMpyv+87FTkO5DAzXTBEKnsqiNZnBAOJ52fbDD3aMWfktQAqadyvrqdGJQcwpZsvK4AXPfgr+8N1vhhKxLFso/7fcs2NjUGBoA6+0sYCCNralgcfOZZYL13hb39T5aAIaM5sSWSeNPXzc4BXvXv1dXfsFOx+jQhUwbyqtoYSfw0NFDa0JXMqy+7bhelIc1y1btuA73/nOyN+vvPJKXHnllY2/nXvuubjuuusaf+t0Orj66qtH1nv55Zfj8ssvP5mm/puWFD1lw3WlzFlFUYxEXJVSrs4Qcf3TP/1TfPrTn8aLX/ziRsM1pRSE9QI/neEqEtcQQMgJuQftBzb7i8jUP6NMNNsJHQQq4+uQAii1doLSoeFKE5mPCgWA//6+9+PUh7/MC5TbnbZSwQ4WQFEWyLM8mjRZ6qYoKmSisAaxdBqgwlSkK5kirsJHYDpjht3KsgUIQSL+JVCace5wUhBI5hfSHJUOZRLWwRSV1HAVFYxR4Fv/8ac3QoqDdsHX0Ebh+MIi2i0flXrL8q8gBxH5W62AMmKpAqH8F7/ioiid2kKoW1ppQIkCw9K3k40TH11rJ3YTZ6FyxrTRBK+DNjDGsHxMSVQQmSD0I/RMwzm8KgsY03ZoRYqmDO0zhIbV+9/3flz4zHe7DRPfR2Uc6V+Bk1PExjudt7DYx6C/hKEmznWTSP5KqOmBAwdwfGEZ0IMaAtrptK2BPSqwS1iENRjnwwF0J482SF5ZQQNqClj7VEjx9Vq7yHMRLMxODgvIpDdEykAyS5iBNQQAY5RFvAOt31JbGkkspcXftZICWk4AmIAUxFdk1Nb9bmBlgOp9S/f28lthwgg2IN776a2Q8kg0H2D8ocjUN+NjpqhtmPhboCh0ryTB5Ss30vUT+XEAa09a+/SeK/Gc0S8kxu2wKd0UVd+Ijyp+837ipSh9xjSSvKtoc2QqHJo/isNHuzhlkxr1KbvCS2FR+pTUDCikUl6jsqaFcoGxsSsAIxydTduxnfaJk4KCwebNG7B161YI+eNoDii0j1d4xFVsuJYwwxBxJYqMEAYHiofh4CGJteK77jmYVoDEKI4M196dwNgZtPYaUr1AeQzIZgAAuw5qfOgzAh98Q3NXcHnR1QYv/DnOYudHTKU5OQ7Nf9y2zFL5/q9DXB8oJ1ZSBBSAk5Y4fPgwrr322oiLBMBJZXFhA5ONXJatCg3XT37yk+5+qYg5/y9sU1hv2E7WvQNieZmQ0woA733ve/G1r33N/ebqFvR3Jvy1qsFoyxQZhVXgPic5mlCE3//G6V3ZyAEAjJ/rPzoYYIyipJWMJ4KlckOtnXyLstLIJGdICakCdO6gCN8DG650/u07F7HQsxGsFSGuyDc7bpPXF5QUOJWiznYCLUuNVg40Lc4ATW43/dhg77xHMnt9asNXvj/tMgNJUaE/KHHXXXdDBajzkfIhvjoR9jdLFdWNisWlLqT0yBkA/MnfWPeaKCI+pDGpQe8du6HhSsiXoedc/ywQukp9XmlBwVmQFo0PNl8NvQLEmxNCooUdO4TihnQJ3mQIYXxWoY0vSHRcGeGxPLtKI1Pa/ZsLt+3osWUIVNBgb0a9pSuhpvPz87TImiGGhU6+IxMtlFz27duH5eVlsH5wtCm2/xeOMyV1LQMbuT0Tw7WWPYw2dlp7xFVrk8gkaYfuD1rnYVgqQnhtPf/1E3MA816DCYA3Z2HGI6UkccUN3LijjEkGLODO5V/uOIZd+47XXK/LAVXAyftUxiYbEJjW33a/Z0pEc5JA6dJcuj6Rwsmscf/pYJl8yusMhF7EuVsowKZILKAUgb03CvOaw1JULTd1uiZYI3A1w9HVcZKIa1X6DQRnGKSEFxoLww3A2p/DChipK8rmYC5LEyCuPEekZzfUZqKXGp2htXGbK5PN4vP/chHJFCb1ygBxZbRRyVgeb8PYTvfvPZYxNhiUbs106Y81z6mWHyp8cpy/+vgnceTIEUvJGWG4loftMQmD+pxw++0/qffBiMIbsBgB5yQ+AGAciEGbRsou94Dh+u+wpIgrB0ZprfGNb3wD3//+92uIa2pohohrnucoyxKvfe1rI6pASJxODVemFnD5aTmu4f3e//7346gV+Q4/fCHqPDviy8STjHIc1wCRE3ayd3ar/+2//eF70V1asIirPXjKGxxSRGknmSoQJCAAnMtbJ20CCEnLZGmP0a6Wuo8eKkzvyYgrT2B/8DcPRi9/lK3bALINnHc9bFSAd+Gd8fuNiCu5WAlNUMIbF5H71yKuz3yTwZ/8TeCe6voNhk8nqKGNBMbOJuSrwS0YL8yw2rlFQM+g/y4tdZ3bjo2+X/1vxgrSlygCxNVAkLC2nVSHQfrHMAuMUpwpxwATP2PReJ+AQKAAhGxM1tBUIrendXcJYWDUFO4+2IEKkjC87U92oCgKCATG5Pb/BNIVjTmfjipQaWtMe9fpS6/x3NNBoUHSbdZD0LDxWInfSN+XAEyBYaG91inoWyiKCnfvixeqJzzhCXjve99rV0OdbMZocYsNYF48481ljb6UoD6O52sF/Lk/BkHmCU4xy+Nk19FNlk9K53erdXxi40Yk3AgrJQKqgP+dAzhF8EyPefkApz53Ct/dfwEZB7buENXloXHw4KEgAYGvI89EDXEN0WLqJ9oQVwEnMA0fMHLKjcNDhw7Hv0Xgw8om2/wxg2f9bjx+PvCBD6x4DQDOPxYfbG93nXz4OP3DGd4nQBUwBqtTdZJSVl6/V1vtT5onNUq10bbBIHX3p0VSPJxLKgIAkvmWybXNiGt8LKTNlJXlUweGmJKmZszz/FNVfhOrLKjCZbbj8/zysBsMS+edYv48eQPjMVXZ9eOjH/3zSMfd3z/YqBmiphAvlzdkQQKaVTOc+ELobwltpPvGtObsYXTPH/7wRzhw8ACBONYjmqW5j+9j5b7duvtpSRHXMHMWy4c1Rc+N4rhmWeb4pSHiykhpaqRyiRe4ZqqAMWZFwzWz6UBXqtsdC/7NaT3DkjNVQAfR/cIGG9lzdg8uAgB86lOfwjuvvgZl0YUxMdLmFqVwcpAxp44n9jpVgCYCZVE13tWWlXY798GgwD98z+B9f23wxS9+CUpoj6zosH+s4QrKtAIAc7N+IcszEaHL1AbAGKInTIznGB9rO4NvRn+Ta3b1zx9eQG9As+TCkufaSYtES6Gh2w8CZi6xdcduMuIahpMooWGDoad9AHQd7cTZPepX6//5P/9XZBDS+TFy2+uXAbAbLhLCGtjhRk460Xxpc9iniOuoiIgYcWUuJB37wY8XLFWA/r6rewkOHz4cIXSuH2TsmlSZHxscuFeWxC//8xu84TssAGHChaP+HXzwyw9tbDsAfPOb9h0bEipf7g6B4X7bJkJ8fnAHjbF9digdWP9BfGf3z/h1LaIhVc7440IeCZ18H6lhYikjIc832NwqRxUwkeHK92cDQ0DXvB229sY88yJC/+03aoJMdpmENnXEtWcCqbuAKvAf3nEqjlVn2nZbFLbbdZtGFSG8Kce1tEL3sYEvwDQWpsHU3zGPsb/6q0+4Y9/9kRfIp+tql0Vl/xHgr78aH3v1q1dPs5lyXNPy23/KD2nR0BF242e/FQAl5gRSFQN4/ydjo5A3DtQfFX0npoKxyhkimTeYhhMWnpfpe6RjrC5RM3qTaYG8CPE5EaouVKR4AsAqbKTzARvKlNGNjsV9ImX47PTf/qB0myjyEFbQWsTjXIQIL6sgpICCcA+3YZ3Xwwes4RqM45PJykaKMES3k8pznqWbJzW+d9sRYPqpPjjrAcT132dJDUlGLsNjKeIK+PSF559/fs1w5WtDwzVEXpvynY+iCjDiyu0Mg67e9773Re0O7x2WdBNvDCJDVSVuOT5WVpa/Zg1ARjy4rdOK3CC/9IfPgH74d4E1F1oOqq8nsx9diHaF+dIBDmRJ+8BPkJldKHlXW1We09YblPjGLcBb/swAp10NJSu3CBvLqRWI3YKVoePtzE/MhPDEfSCdC0ngJS9+AV76Ky9xvx2TF9A5diLes2cf/sdn1uC4fAIAgb37DgXPwlyq2B1cMyASdzBRBWLE1Z7oEFwAGJYV9h+2G6SxiyGljlAKCqzTzs30ne9591Un932gpCF6a7hwKNrUEDJRAZbjGhsVbKXFbkBdC9YIzs3XW+MkeK7WNhucFRv00h6Lot3BqI/NAlUZ/OhH9FwHDs6TsVkKIErJuzqaFZbX/Pa1wOzlOOecB6MsNZZ71nC1gULDosInP3U9AGD7s+iasv1gHOmuDbomfBEaJugCINjYifD7SPvAWGM23FDQ4llpzzusalQBr+QAwMpzmRrSL4RoTKMcofHWSgzz1fPiuVJK4TDzEQAMzbTtF3tg/ByXoS4PsjnkiReIjO6EPiDIKO/1h24DUzNcjQ9K2vLo33eHDxw8jH7PK0UM6jZaVL7w7YaDjz/UcDAuNGUFY7yySU7sIRdkZZudBiJx+dTf+zTfZRl7IDriYNMleM17AuOt9B4Xmj9Ll5UJouWaFG1ggk2fX9M80h9SBZo4rtF8YArr3UgM1/BjENZbF34fKvYO8jGtgVLHVAHiwdM5Mtro038Hw9KNH619psBQ+SHM9BgFkVXx+uX/HQ+cMIgUiIOkVytVBUgU0EZa2UDPcdWWKoCNzwPUGDL7LWgT073ui+W+3br7aUnlsJoM1ybElY3PG2+8EZ/85CcxGAxQVVWCUkikaOdPa7hym8J2felLX4raHaZ9C4uJ0Dda/sNWNfE7XaSolm7nzan2+Bk74qi/YOxBgMisURyjR8w9dccEEsPVPm/QBm+4VqT7GhTagVMf9vsFFo/PY6nLqKzncrLUkxAGg0BDUhsv1+WeN2uaIGnRMZB47s+28POPy20fBgsqP1c2HVwZcxSVlXmRofEu4+c9Xs1ZN3nQB4I27/0hRfO7e4LVHSzKVGgc4Fex8XluQvbPS1qdjLi+4n3nYX/3DNsH8fNyMI8/RosSI7wGym5q6huPNFAtHlPcv/bg1Pl2Qg5Omjq/hvoYIDBm7UJpXWNlgPoUReV0Hf/T1V+BxICC0ALDNUQ1c5s8Af0dGFke+n8AAJs3bURRaiwtDyF7PwC+TrnRi0LjB7f9OLpEmCEOHV7EgQMH7DOHnUB+9ZjjalygCJdU/itU9ODiVQVMEJxlIgOUUW7eiPzo4OmExgf19Ko1NvikjqCHhmvmECA4hFdJkkpLDddx3O2fRcZybsZw0GvwfVilk9L4rIscfOKus+2Jg2QIiT585DhaNnS5zlnWzn46dT0FQGJ4EBNjAn/z6evdWasZrh/5bIPMUb5u5YtgN5cmXD9K/0AAhpaq4qgCI0iuH/q8R/aKskqeczTi5lRtKk910ZZLWZax2gtxycNvONjs2+ORqoBkw9XTicL7Rnvt6niUstjXGz9HjcaWzhG2DZUmyhgb0rTZC+fXep8MhqXrX6IKVHZuDOoWOrhfwDWN2uTHe3qXoqggbJIDY0xEj1mtVDzHGuGe64Mf/BBRI9z9raSkVXv5h3/4Kvq95eYK7yPlAcP1XiijENfQuGwyXMOd1G//9m/j7rvvdnJYXELENbxfk+Ga0hX4WJgMITVcN2zYELU7y7JGjdh0LicxY/93GghBx8hAJM5jZduARpdiWnfsCkWNKuCDbew1KxiuVamRzkFVRaoCAE1G//RP38KwtFwnYfz9GUkQcdQ5G67hq2k1UAXoNRCytWEGmJkStZnKGa4qSJMsUgPUB2dxIZ1c34C+2ViTJZLSUgUGZU2CJXSPDosqWdDjZzOGDYjQiGMB+NAYsnzF4GYsh0UauaXluIrmwBYTowsxx5UWJR0g/VkD+peijdT2GHFlXltRGiimS5QaSlnr5fT/Yg1XEfU55fymv9dOEJVjfTs2POPiF4my0ljuFbY+cs+XlYaUFiUsySgSeoDdezwCFm1ywN96cAerrBBxXGW6sWM9ZG+8h3MEb+yqSkeInRCIkHkDWeNWL3RzAKJxgVXBOPBUAc+pdYhrQhWYNLf6OpxqgusQW09wH0V0g47yqCIlQDHYlP1z0J6UKkDGUa8/DHi+yUMY4+Y/4YzG0hpIvq6//GLt8aOyuLi48gkjyi23fB+VCDJHJrrPQ/e9M4Cxutt3WFQJVWD0NTzWysojieyxok1OuO6Y5u8afr1zFK4q1XEV0feeLkMCFXkDRJwVMzTUafuWxl80Bc1axLUyNnkOnVeUZqWuwGBYuTYeXc7dvBwaroS42j9Ofxcw9WhLFQi+42AuNsbgt57n/y4rDVEQnagsjVcmOIFSWmO6MpZITC2yGuOINhnMcQUUlpeXRtR43ygPGK73QmlCXBm5vPjiiwE0UwVSF0Cn0zkhw3WUjusoxHV8fBxf//rX3XVMR7jgggvwS7/0S+6aoihGUgVSLx6hov5v4qrF5+SZD7wAKKAr5RE1FZ0sCJmVvooMCJHutC2PNkJhaDYZBqgaF5pbrdE2rBIyv3eJQ7ILzETGkEdcwz6oT5C+iMhwTFUaaiVFnYWlSyTGSYokEF8v7gMpiA6RCpmHskRlWdkc4/Y6i1o+5Jf/Ba955/dgIKBEvPvnRTwaB3ZnX7CeJhhxZXFuDViOazzMbCWp4ZpweNP7qQb94HRseG61X2TZiBoMtZN1o6DBwNDCEMNKJEi/Rq8/xIbsO3jmI38AAJiZ8alVa+XwJ6md1nDudodQgmW76Fs4ZbtPlUoNLqCdcqFJvv+6goiycj+Z8G7rVLsXjLiGHoIggxEbrmWpkz7niPsY3Yxsk2yNVUioD/7Qe8TuyBBxZaSt9t0ExpmUOvnW2XgPnsUG4Iyro+5YnqVjjFCoWKuTvq1hoaEkb2Do90OH2I1v3Lzihr8p7P39eDn39NrjR0Uk399v/o6naaUKEHGRKMTG4Cm8RB8AnH+WDe7hflmpKlvKBHHNhTdcbr31VnzsYx9zf3N/lKXvh0obm6glDkyqjbugf3zcBnvCAqqAlcMK21RWiUsdpUs6EZZ0DjQmXq68tnRwTIVSUNTGLNnsNQW5FUXlxtR//dR5FASZIMPkAbEnrX0q0NpSm8/TrI+//2shp1XjIeu+Axz7EopSnxTi2utrh7j6XhBBMKyBzz5pVRyEhNEnbhz/W5QHDNd7oayUgGB8fNydkxqgqeHaarVqhitflyYXOBmqgFIKF154YYS4jo2NOUMZoLS7f/mXf+kkudLSlNUmPJY38IgyJVDarCLq2GewaeoIlLSRwULi7OGv1+rkelNXKAVe+Ch7YRfhlljEaTMe8YqNGnaF6jraWGlMHv9T4OgX0B+WLgqU7pculByYVO+XcJFvClALn4kNVBI5Ctz2ol4v1R3eXweGH7czNtRt5fHCbF2h/UFVWzgJSaP3f/eOXRFSwu61H80/GB/72qxFLXUjf201dIMpFM6N5XRcE0gXQMwnHbEohYayqutWpvxnPkaIK18XIK5gbmP8fEoMUZRwqTSpHo3BoICERp4zgjgaovm5CzdTXdbTsNwr3QaMvQ9r17HXw/JIzQDa+O89Rlwtyh0FxNHYaEmP6EkJhImRDN8v4biSoWFc+uairKI+F877EI+NCFXLN0BwdrbD1wNDH42dGhCApf1IbidvbmPENUTslYx5282Ia4DGH/86AIv+Iywi0A9mzq6wNKDKvWfuo/l5zprnU3i6adeUNogmnANxUuXzt5zn/v317zdbm1VVIdQstUdtG+g/W2YG9s+VEdfp4Rfcv4dF5YI4n3jGjRiXHuH/1Kc+hV//dT83M0WqrHw/aMtXL7WJ5i/aODfPZ7zWSMt1pkQn9JuStLkdDEu/ma6ChwQgRBUpwHBJPRIpEp6rdAPsEdeqgkNcU29gmFbZ90VVQ+xZss3VHQVnBc8fHKP2NL+notDYvm0Ttm8et5zaE9iJ2HLbDvIgaRO4zIS08zLfj54rd2CTxPrZtSd8j3+L8oDhei+U1HANOa5scI5CXFMlgFGI64karmEgVtgWvo6iyclwZUOZzwMwEnGNDSRZCxBpQhsp5aKAMRpjO38VD918t0WZKggYbG7/oHYffo6YN0lGTiY9R0wKgarU2Nj+ATaO7wdPArGxR4eHRVVDG6sKyMq9wNL3MByW2LLtFH8/WTd8gFjDkX8N+yBvQJ39M0m/xtm2zGbfp3aOCEqpGRCBoUntJGNwWt1hLxjWjDYp6H979h7A/n174j7QQC4JpXvfR76KXhBo4tPsAof728A5v+NI9boBkSmRWguBG5CpDsq907SuOlWg4ZTapsZA9v8l6KuUK0fPc/jIcezZs8teZxHXQrsNUVFqx3EFCHEtSuHQQQBWR7cAYJwhltJDwsIUlkwJFCXxlp3hatGpfk1Oq0SRnw7MPMW2vwFtdAOwclSBLPBIpBxXWNSZNjXsGpUAdCSHdef+vPZeUsOcg1jyyiP0JO2l8biHrUNLBZmnornMq4s4xDWjOYnS24YbBBH8O/WuMOLqjxDSbzfPt78WAH2PFX00eOjGH9s2iJohIO3GjhFXxhOGLimHN0RKftemwLDUaAfJPlZTl3r4KfH3l2f+gpbqpacDAA4e7gJb4w2+SHjgA6sM46X2mu8/CFDbsvRUgdTQTeUdv/atm+mays/L+49PQQiWjQupAini6utmfqxXFTCe45rRHLG01MWmmb77PeIxizJ4J76kyxVneHPXjQgcrgy59POc5bCETagAnLK+i/HxCaRlMEyAJRsMllIFanQJEQdn2SjTGpgFwGay82owK3IXktLOKijJmcw84pqpQLbLJYYhlPvBDzkH55wzWhnlvlAeMFzvhbJayte0bN26FcBPb7gyp/Z5z3sexsbGIsM1NFKBuuHKiGun03EqBnwtMNpwDdcNg7qOa2bdwWFxrggAU1NTyLLMcw2FwNjYGJpKumPmwAsVRF8y4ipgoqhbYwwmW4u27wQEJIbD0hkZ7nkYKTAlBkMypvz9Vkdc+VnDRZ5ck6MnmZQqkNkc9kOxoVH7MI1+Ji5VwO+0i3BHWh0li8xEqJqk+37v5lsx6HeT+g3mxinU+ZbBb2B5uRtcZxBzx2gijd1Wza771NBhg56CtrSTw2rUe0wM18i7BkJq4nFn0XkrxwPAyWFtGrvL1SEFcGj+KHgyH7P2RlkaN66qKqVCVCgrCSljtJEyNvlnHBUMAwBl5flzZaUt6stBKoRSesOVjSKDcuzRlvMcfwvOOHHQ19C5AXMVqjuImOcLrznpzlGE/TvEddfv48dLPx9tUgVgqQn+mRjlXtfej4dsIXe6sIg2zzV8foy4+m+Gv8dM8WYvfrEq4M+w3JcvptYvmeW4Ggh88pMfB0AGidF0+vZpliBLRe4JdR4MKyimS9gh8MOdTN3Q7kF+stNunk2BstR48EP8gr+a4TreKhyPGfB0IwBoBUYs67ICwK79vYi+4pJ7UNMBAIXL5qVtvc337+ePcP+mLFgAln+ATVPz0Xmp4fqMN1DgTln6OeH6mx8BKSorbXhiHFcO7MwUwMou/JpZVaCsNF548W5sb/0DGa4REKETxQsqEXcUlIJYJ+M1/UQd4qoRcVx57F/9gh82wgnDYRW/ZyFr8zJTd6Ji6oirsF601DAtKw2lhE0iUo3ciDSVqjJQsop5vqluto2lyAJ++X1cVOABw/XeKCshrlzabb8z73RokeXsWFxWMlxnZmai+1VVhfXr1+Pnf/7no/vyBxQarqHwfEgVCBFX1nZdFXHV3l0fuitbedOultAUIQS+//3v41WvehWkZPF6g9/4jd+o3YfkfkQyYdWNNuYx0iF/sjZAnnsVBQiBYWEDk779YHceBRcYwJTo9jVm13g0N5OmFowmRspv+XPyXLq/H3pKjKAYeEHoNOXrkjkDX7+loSsig0X4Bd6WmlteKKQC4NJyXOdOOxPnnXdOVHelDS54wmPpUplHi4JMZIO84aqjY0BsuGVWH3FGefoGy2H1+0NyAwoVBAYA+M5DkRvrXq6pCtT7PF2UtAZk5fV0hXWJr1/jDXEhBPK848hujLIUpcaUvAtY+EeiCiSR8cOSuL1clNQOcRXezhxZGMDNlEBRUGILEfBsyXANGl4rCSpjEuPEFBSYZEg7+lce+ef2een9zo3/k7uUpOhCI5zc5MPSQCmJ//S6XwWQGgJ1BCvkVv/iI2+359H3kdJRZOAhYF1JaqtxbdCaE3kE95U+O3mmUs1mAyD2ymQZR5MLrJ2h6PlQDsunoK3TT5hrnFIFegPeRHkXeX/i56juXKKs4uQQq6VQ1UYA2Rr8ZBed94PDT3S/MZJ4xx6D9Zf7ehYW480mzVuF7wbAf7fGI6575+NkJmkpioo8SDveiiecFk8+H/ve5ShawVyRradrqrjPJUimLJzNCOmvb24BYGA/BuaXU2BiiLzbDVgGZLJAf1jF9xNVY9KE+H0SYtq4uQ1KyHFtWYURBkMgrPHesAMYFlXd+2gQGe9pAKBrWRgHY+ibabLxi9IirpIM5ZNgCqBvKS/aBLExZ77PGu+J+oGS1iP6QAKCf5dlNVWBa6+91qGsABzS2IS4ap2khbTu/TD6n+smfpbfHRtj8JrXvMbVxcdWQly53asZrtoAT5j7TiDTYX/oE6rlkRNf2PjRxmD9+vVot9vOpSgA/MIv/AJqfmVoADKZsLTlVIXHvKqAsAgMGbPAxQ8hF6aStIAPh1Ysv3+7u77SwKZNG4Dhfhw6JtDOAhe8atJHbU6RqDXwpHPJ6GrnxLHblP0z3vGiPcmZcXBWWpoCtOL+JOMh5v76SfvFT/iGb2eYgMBOgEWhayLTWgu0rJFfaZVQE2Kj8WBxPiij2MqIa5bR35NyD87eRsY7B2fdeONNUIf/CmcuXBFzXHs/RiltgNMKqgKMcofdQoarIcP1J6+iZwa5ADntIVMFykrj7AefDey8xl1fVQaza8eBozegLGNlBWElyGI+qXGZc/ioafheuHB3sfwXS5AJIRzvdTB0HBJ737iOOOVr4g42ZaCsIPDs//AU204RJaKgPohR7iwTdlyTpuzsuinqk0jJgagCBgi+dX8OGyFe5s5dGLcTlldsWFWA+8VSBRKOqwkix1VicJN3hIzSnzvnZlu3sfxngXaLKq/rKoccV39MWG8KJ0Xgd3blH/8Mt6YWMCqhURQa7bxyRsviUmxkpoUpJV+9uf6bz0gXH9+xL06AMhhqSMQnXfexvwJAnGyADOR/us3gV/+bwev+eAT6WVaoKuDKl74EV155ZfTbzfvOQdU63R+wSVfKEsnapO1mJeS4JiofNj0zAAwtV9ZlbCtTxFXYYCk/nmK3fNWI5qYcVzdewXXXNyucFKXS3mhzwYv2W2myFweFRurxr4xxYAngqTRREfHcbTQh1U1Th6cKAMOibDxnVOn1C2SK0pFHwYucbECuqx3TgXTWfbU8YLjeC4UNycsvvxxvetObYIyJ9FBf8IIXIMsyZ2Qy4vqvpQo0Ga6XXnqpaxMQUwX43KqqaogrZ+UaqeNqDDrZELy4GNCidGaPDOUm8X3+MNLsOcMgg5FIsxxZxDXul7r7iwTP4agCsCFPZWWwde2y6wMpgFtv+zF279oZpVesKoNnP+uX8Kxn/QcUiRRUk8RSqirARpQ2Bpc/er/tA2+81wWd4+wqKUyXIlVAXQpKa6AVcOoIraJzcuWRpTQnthTAsETNcK50gIIhXtAFENEeNFoeca2s5p+pP0oYpHfNVccA+DzkgMTUuMa4uT2ikQBAP7NGgvTPR33g/23s/xkDPPPxR2zdwdgY7nPPXFYGLes6N2BUzUYx73iz74NKY2Z6DS6+6ImkYRoarhbVG+uEi5J3VzoRgBEcZQAuba6SwlIFgjSXgto5LONFQySWqzGGgp52/VeIRsQVzsCOAk0sAjol73T309yJtk0SFFEvBZyOaS0gTvM7Zm4cGR0QPuCKZNjY6A4NbV98AgK4YDDWkmRsFwCWekAnC2grKjWmM9cH4y3aROSZcFSBlkXT89xvgHmOUMm4oznUeoHs/RcXY01LCviJg2mlKMmw0hqnzdxpr1vZcOWI+KbRMhxyRqr4+Gv+x2nu35W26iAYcsMAWE7pj67COZOU1csY4P/9K6Ih/UODkfzIDV9CWZLReeaZp2N2dnZEq2wRbXv/uuu+qlEFmmTR6KL+IFYVKLVxc5LL4qTZE0Cc0Ph+qfYslWi5EryB8YdoMx1/UxFVIGdgx3uZpKwHGwNWDivxAjEdxd2vAfhgaoRrs6V8NCGuZWUcVaAoYuN9VOFzev2SqAJGxn3QyPOVbrOnmpCT+1B5wHC9FwobrlJKZ/iN4rhWVeVoA3/+53++KuLKhuv09DRe/OIXu/uNMlybqAKphmwTx3VVxFXT5M/opvXI4Npr/8K2kyaLKbkDTzib+WSW/xP2lUUuvdu8RMy312B0MeoXYw2Eb66zx0KqANUkbDRnmJVHCIO/+vhf48D+PXjlK1/p34Mm92ieSYqkjvq8IWWoiEXQuXAOeABo5Z7nu+IONuFpUj2rIQm8qPl36RIeGDi9TDJco0ogJRsn6VgzCD1EKafWGIMJ80N3zOm4HiXByia6BHNcDYSXmcko5e3ZD34IHvzgs+x5IziuWSwtFS0SToRd4NkXHqPT7YS8ZnoavHpwH0y2u8jLuz3imkj3AFbpwPKAi0QKSkCj0gZjyksFZQoYDFjOyj5/Ym188qsGH/sSHSu1AL77CNI0LmljtXnzRrz61a+GUjSmiioO3IwN12ATZ0rUvg9TkBSUJuOPswAJ4VMrr1E7yHhPkKDMfh9FaSAkXPYsrYFzZr+NadzkzMloEQwWdR7nQpArOQ6CTCkGnuqRIq40pdDvP96t0Ao9IGmwiyCSZKifyTxGbaQ3XPn7cPMWGyfhmKI6hqWfS75811MRF8oiNxiEhitl16u0cVJiwyI12OLyuRv+zt0zLXztVS9/TXR8UAQ560uDbr/06iq2nidccCFQHsHs2gl3+Cs3EzgSJLjzbZeUnreqELiI6eH/23UMTAQTAyOuVTxHSKGtIRkarkmq4WBe+94dvAGke1XBeKE1ir5l8pQx4uqrUkLXtF0BJN+sbXuo9ZxkUANiVQGmCjgKjLC/NxquJjEAPWrp+mUEVSBsg7bxGU33IJ4qeWROFHH1hmtl16M6zzftgywTbq7mDe99tTxguN4LJXTds1HZZLhKKVGWpUNcAdQM15XksH7v934vuh9f0xSc1aQqwIU5rk2Gq1IKVVVhYiKOqNQmRlNoMRMOWeTMHOPyAJ7+SIrczlRdAizNGS9Td4mpaugftdlaytVx+3weGYqpAn4BYneLytpIhfy03dlnmaRAhTBoJVnc6H7NHFethevfPPeTRb6C4dr0S2PShwhlQg1JCLlULiWnDbbZMMn9ZCx9wBr03/DZc0JZIrqf/7cxrNUYB8QVpcHYGI9f74p/67O/Q89tjQUTGFGZ29kjcQ02zNqRMncd/eP7CVsRKVeQ4X7NNVdTqwRlxHEcVHjENXXDE89OOCpBU0CchgC+faZtN3MKfUXpc/zy7xq85r3WcK0EPv/560kaziK6p82dgve///3Wna9RVrHx0EwVMCD+L8E72oA2EOWxAHX2mwVCeAPOKRvvQTpJyVQa67LlZ2d9X/ZmuGh98KbMjztGajggjje3PEsYA7zmGcftuwpVBeheeaaCBdY+uC4gAymiTCXZrATXE7qayWAxEGi3vE6lZjTMuqw5oNFVJWw64AblkeAFQBuBxW7AAbfzgdbe4F/NcOVNQxPKxmlb//n78/UfAWyQ/4hhodHrV8iSFKFaA29+8+/g13+d1BRWkmcDYDWFS2t0x7/91vv5zXkPnzdcE/1goVFWflMA8DeT8pGpfO0HbX9MsBxW3FbqT0GqMcn3KG0661ws4vlPofVKIFUV0Hb+8aUxOMsas5UWXlVAiJgqEBp+WMI5W/ejP9R1xNXEijcUTJzcUMTtpA2T9WAlr4vlG6VkhBerFr7fVX+4CT88/mSkm0ZS/RGYFkFiD+sJewBx/XdaVjJcUyO0LEuHuF5++eW14KxRiCtfH56XuhRHBWeFhitfOyo4ixHjhz3sYbjqqqui+sluZcRHWEOEFzOPNjrDUbFGY2wUFlEmq9gdBENSHnUkmhBXdtfxjtwbJ0wVQNAHhCg96clPxfnnPyp6lrKiHNV5JlEUVWTXCiFriwsZbRpYvhXo73QzozbGoU4x4rryp5bORRL1Ra+egCCdkP3kxP3AVIEnP/hfbB3eaFPSANoHjRHyJaK/3fNaoyN03QvQAju7fl30DKEAd5j2Ns+8EcVuXJcpJ+Aarlmzxt+4PF7rg0dt/hZmxC2uXh0ZwB5JYO4cu+DdRsslvmgwXEuPbhBVIObrOY1Ro939GHnzwVm+4/7+Jvr3YfsYZSWwedOsM1yLgNfH7Wwaa0EPxIgrB+Bo4NeePQWYIWXFsWMjd4irN97DjVxR2JTSN1+E9WuMU8uQAnj1M4E16k73Prn/nCFgDcawz92GiTcG8aPAAPjFx1muM89JxlMFpA3OCgf2N77xtdhwlWlwFpUQcVVW+84YTxUgRIk3t/a8xGVKmxqSKWui67jzDLC4HMqNEd+SZPpODHFlioPjsR7z6baLssJgaICHXtd4qZIaw6Kysl22AvtQpTZotTLXvytmzrr5yRHimo+Yp/qzr/Z/SKa2xUY3q1SEhiuPaV/o34OhwZf//psAvAF35OgxjI93onMrzZ4y2LUwuJ9Nbbwu+xf84a9xkLCOpO+Eff66mzxBXB3HFW68hGBIGpw6m92GSx92JwZDgzT9uTaCMgK6ulNjGrVNuHUyYFiUtXWcvIGeA38yVIHwhuEj5zb9eqZ8w/LMplteJf7ivlDu4827f5aUc7oS4loUxUkhrqHhGqZuHRWcFRquXN+JUAWY48rt3rBhA1772tcG1zQgQfCIXZgLmdvAvKW4D4AiWCTYOIhrrfOLtAWdXKCZ4JSlnuMKO/F4cXOaAPPWOLZs2VSrL1MSWSYoUCHiSZEbe0L7aFvidxpg4RtA91ZvtAXUhHYuHdqxElUg/GXPXwucO/0ZZKqsnVRH/2iS/Phbj7t7VLZjHPVCxG1iw5U4rnGnenTDIkERqkXvpcBa3wdWvsnbusLdg9+5j+CVEd8SoL5hQyc0II4fD4zV4/9QayOsERXKYfH9wuxIKjCiiDJCfWNgLMpUz6BGCTqEy2wV04opKNAY4HWv+4/2+WC1Xk1twQGA674U93GlBcY6GbKMgqVClIslsrwOLP23kuuTNhps2rQJj3jEw4BA8mhiYhwwOuCv+T53iCvYfWq810AIYOGbFnFlPU2BiTGBMTFPbkz3aHXOoAqQTH4WkaDcfmyIYI4Q9nk8Shkj7/T7kcMHIuOLNsD1xdt7gWI5rAhxjaomYKGKXMvC98GIT1ZAwwBYWA6pAtoi9AYcl9MUvMnFGAPY6Pxbbv0RAGBqyns/iqJCb9B4qX2WCsOiQq9feZUL3shpTqjh14GRZfFbzutVmZAqEF9jJh7h/7AGd6ljxFU6wyqmCmieR6plV+/vfFDjrsEzfPsMcX5bQVAT4DfTQnAWN/+bZKktA+Qu2wN9U4/Y9C1sVN8ALNpvDIA7fgNAc/yFVxUQboMtZbAhE2mPAJ22wGCYIuakNRuey2hxWhopKsMCqcqMpwoISsV9ApBr0zsP1w82pkM+MqfiNlAjx/59pTxguN4LJUVc2WXPx8LzQsQVSFA1e00TVQA4OcOVf0sN16bgrH6/j/e85z3uHmxwp9cJ4XfXNDkIh7iSa8XfG/CIYBqcRcgXP2Mzzyc6JvyOOZb2ClA1YeWaAqNNCAkJQ9y7NDDJEuDzTFEqw6DPpzvHUWmD8byL1zz2vdwElJXGgx98NtatW+uelfiTdcQ1Ww1xtffbul5Yl3EAGxz5PPVBaLjaPjEGmLTyt42IK1iWKGwf57BO+sAa+bwLr9EzCHJ1f7NskABw/mZvYIYUgDzjPqC+5euMRcMc2ijr7rsm9xrRFQzIBeifyeuA+kWJNwv0vHBGG7v+2K35+7//++4W3C/SBk/FUlAki2Yg8IIXvMDej6WLmmd6NuQecZatX0uMtTOnKlBWxhvvFvlyrl2m98gp3wbrgm+12lgzNe4WHppjAEA7Vyhx1fwi7AxJAcD4cRa2nD0J/vsQdoGzRq8IESw7tgOKiutzQd9Znebgvw+VBe+PDVceLwLI+zcD/R2Ynd2AELslPrTGhNyDR566O6g7CO6RsJ4aj7iGqT7JeKc+CL0rJuiD0Ygrjb2l5QoPn/07Wzdp8tJGhNo6XCE1p9Ya2PJyAMCx4xT8tSQfQT/ueheGhUZ/ONrwzaTGcFiiN6gQ6gpT3XCavNQvvu8euenrcUWmdOOgqvx4deN56aaRbahqHFeaM/p9n3CC5smKggl3vMV95Lry9AYeO1rrmgIcqwoIIaFNgrgGdC0e5ywp5b512A2MAbBACG9WS/3rOaw6QFxJdcPeS8ra/NRuSQyKeK3wCG+wxol6kB1EwnG1Xg3nAYn6gA1X0nE9GY7rqGN5Jiw73lfGwVmAcN/jfbU8YLjeC6WJKtAUnc+IK2e3AuLB9bM/+7MrUgXYcF1JVSBEXNlQXg1xvfvuu/Gtb30LF1xwQYQUhx+UR/GsAcEuOOa4ST+peeOkLpFF2UmC4CyRcFz3/CHYmH3KOTYjFOo75noQgJ3EagFbhPCmdiSjFJkNznIGy3A/MlGiqmjn/KqXv8jdrygNOp22NciskWG8IdJqKWeEpLp4UfOTiYpQ6GDRu/UXycNtDC576Fchy33WgIDlI9m+DGReeAFgxJVvoS0PcFjQxP8Hf/AHUR/wBMl/+wZbJDxYWRgFiRBQ1BHXlOMqJYh/aKgNJAVVHxtaAzNr18X9xm5raoHrS36+JsRV2iA95+qGdWFaqsBv/dZv2doEyqqClIIknhKdSk8V8AZapvzi2QC4OkPghU+16KmW6LSlowqUpXbvj12f6abMiEBBBF58XwoDr+NqN42GhPMdxzVUFXAccOG8IyWv8vZ+7EnwXEMTUD84gISDnKxBmPmNZIRyV/U+CelE/N9IVUBaVQEDrNv3EkwPPo2x8alY9s16FiblHlx41t3ueBj4SWM4Rlzd/CMCSkGSsc1xXBlxvcXrYgdPAW0E+sMKecbPrR0H80QQ11CRoNLUPmOj9TE8iKLU2LlrX+26n1l7AwC7YSo1eoMAceVvXHvFBoDGxsVnfo+us0ZuVVXIF26wbbdUAe0NQC5j2Dn6GarYIONgvxBJjJJcHP0ixve/FQAw0fEcUF5fmrx4ZIRLi9zGiGsoou+BgYBbzfOSsfOtXaNaWT03YaZoA1OZcLMnXHBWyHEtradmrC0xLBviL4ylVVmjn2kOcYmDUSn9tcGwKGp74MoCLUoJGzBKx3/jj1ZB9GvH/L+ZFhAjrtKpkTyAuP47LCcTnFUURZT+NRxwb3/72x3ieuaZFAzChitLbKX3Cw3XVPoqVDsIS8hx1Vo7usBb3vKW0YarCSYZh+YFrt8wCjMxYuI+iLmGvGOWGODpD/8XYOc7qW5tcMaGo666GhgXGGiCKrLGbIw6S+mDT8JCO3uBVqZocnA8h5Z1y9sFymn8GWf4sDHEfcCLdytIQJAirrV5IZqQBYqyTM+I+jw0XF1gkhPx98g39QGi52UEUkrgN3/zN6P6lRT4ved/Dw/bekctdSktADHiWpaMvAMuOAsh4uqwOh+ta1+QgXB2cCpLBDDiG7dBJwYoTANVIEFcmRPNVTHqXFSIUTVriCspUJUlFpe6McdVBIar63Pm8DVTBdggu+X7N9q+UWhZLjXxWUOUUFh6gjfIAaBtfN542jBVdjHVMMZnupMSlioAywEXEa+4ss/LzZRCOO7vy172MkxNTflvJqCRhFQBYdtlAPzc2f9Azyh9/4aIa8QrtoX4c/FmThuqg96ZNyq01lie+GV8f/f2mJpgaQ+ApyYBiPqS3yshrsrWzZQG75ZIuYuAnSMKMk4eZOfd+AwyTPqD0qlwKBtYEyGuJ2i4psPmsssuRVlWWFisp30dFmwoGxRFheMLXaztHAK++3C7uTQoLSdSBOMdurD9RdcXRQnh9LyZogK30eGSt8ZHPkNVJR5CO9fMrrca419TfnMLAN0foHXko9Smyj+/46prAxV1hrByWGEbAxAnSMXNVAFR47gGiKsdWUylUeVeX5c12nQQnCV53jeMJtNzLPdKKFlirC0xKOpGomHd2NueTW0Qde9VmhiGqQJFjeMqnOINqQp4D+wffwIjy2qGKwdwhoZrniu7KZX/d3FcP/CBD+CKK67AYx7zGPzt3/6tO3799dfjcY97HC666CL3v/3797vfb731Vjz/+c/HhRdeiFe+8pXYt8/vJPv9Pt785jfj4osvxtOf/nTccMMN0T2vv/56XHbZZXjSk56Et7/97SiKeoq3+1o5WcM1NCTDczii3xjjNEdDqkCYSCCkIazEcR2FuIaqAn/yJ38CAHj84x8/0nD1dTPnjZEsvp8/N0JcdYw20m6f+YcALKq1IbsZH3nLRnzmM5+x9wsWKdNgAAvhs19FfFm/ezSQdiKtUwW0oYX07sPr8JnvnesNztYYNqyfdZmzWhmj3D74RLCljBhxbbcUfHDW6C2ssLxL9yxMFVj8bnSeRxs5upv6UrnNgkSaGcgFTDgAzbjNQmq8s4vxtE1DdLJeIwJqgrSUzqWKWPbIGI+8t/IQcfULpTEU8c3uzKb84RWPlb3/3bfBxC5rul9gDCk//sPgLO8+NC74IJTfofdALmilBD772U/jmmv+S9KmqoZIKMkLkH+WsPB+ZX5+v22/okxAVv6rrLybnDmuWgN/+OoFrFO3AQAmcIerjyOPBWBj5j3iSu+4shmi6MatzH+P4SaO3wNlOhL40Ic+hE6n44JpQgOCNgtxZjBjgP/n1RdQP4ebhQBxTTdMfK0PpGPD1Rt7zl0p6D3Odj+EDZPHY9erDKlC3C8CMReX5iYBE4wNRtDY/GaUyTb+22fh4acd89+2MHj/+97v7tsSx7Blchc4Un0w1AHiaqxKBFBUBLk2yeVxcYbrjndgy4yXV8MPLnfI2rAh81ZZAdj/Z9aI0Th8ZAlTEznQ/YHzVn1n53kYFJmzVAyEawt7U44tFpidbuHDH/6w3TBVZLQlHNcwDW1aKp14JCQZn+3OGHDwOrzmNa+hb6/S2LZ9O975znf6a6swkQJ5C+OEFfwbB2cJVI3BWdpu4pgqYL91u5k2RgNWw/QjH/kzAD6jYZSWNRDf542ODMAXqSRu/O6NWFpaQrdfIZMV2i1peephi41FXAU++9nP2HrqhiTLzrmr7LDsD8pEzcJYjivND8W/gioQBWdlHH/hDzq1lyCr4321nJThesopp+A3f/M3ce6559Z+e+xjH4uvfe1r7n+bN28GQNHpb3jDG/C85z0PX/7yl3HeeefhLW95i7vuAx/4AI4fP47Pfe5zuOaaa/Cud70LO3bsAADcfvvteM973oM/+IM/wGc/+1ns3bsXH/7wh/81z/v/SzmZ4KyyLBsR1y9+8YuRIeoDnJT7+56gCvC1k5OTGBsbQ1VV2L59OwDK6BW2OzKwDU8OxvPPjDfQKDjLLmIBIlhHSkWCuPpd9YYNG/D0pz89uJ+/rinIq6zRAix6K7lvLfeuEXElHtHsVIlMkTQM5v8Gf/QfyeDSbmffjCgxN8hoRIarowqsxHFNZmtGlGbGYwFzT88wluMqLE/PXqfqCzpfJ/wrsq5Qv4jxcW03B61coNRx5O369euhjcGEOoCHbp13fVA33o2jIwC0GWBBebcgCACQMEbiIQ85G49//OMbdRIJWBTAnvcGzxKiePx9eAOxlXsFCIe4yljPF4b7OMZzhSBEg5HLfn9IRs3yrYDugXUWjREuUUMeUQXqs/1N3/senZfl9tYZGa4ZUwWCrFGSjNlKCzzlUZXLfBRuAlnejNygFXjhISkoARiNPGf+s4yyADmuqvCocRXIYXEfhLxbRnzcuBM2q5Xx7XKIK5LNQhUbu+6tOTpR08bDzhEGeMpTnoJTtkxgWKab3YQWRM20ckp8PzbaYo8LoUz+2dyGSQD/60PvwGMf86jo+5id9rdYq36MU6fvcm3uD6rA4CZpJm0MegW965WoAgXn/i0OwSAwDo9+zqUD7vU9dMjPU1YCf/Lbmxyd6OiigeLNtPVWHVjagLsPTUTzHhtJ/OwLSxUmxgSuuuoqaygb53VyHQogy8dGPkNZxd+sgPU+GAB3/T/47//9v4MCOGlsdjod9xxV5akClZ3cWfYpLMaQZJkUlioQdKkKEsNIKYEfXAbOeibcpMRBenCSjrlVl5hqHcczLqAIuMymO9VaoO040SEFBsDW12DXQYNur4QSFdqtDEVpUmVFB85s2bLZ9UulDTDYTXOJ6yuNy8/7JmBKN68NhlXz2qSYk65r82RTORHElf9+9TO5PxkM+L9MVeCyyy7D4x//eLRardVPtuW73/0uxsbG8MxnPhPtdhuveMUrcNtttznU9XOf+xxe+cpXYnJyEg9/+MNx8cUX4wtf+AIA4IYbbsDTnvY0nHPOOZicnMTLX/5yfP7zn1/xfsPhEEtLS9H/+v0+OLXpPfE/AKv+7mWafPrXoihgjHHnCSEwGAwghMA73/lOcKDUi1/8YlxyySWO35ryXPnvcEIOkWimEoTX8fncLm4D3/O5z30unvGMZ6AsS5xzDuWlVkq5a7hO3waAnYY8mRjApbsktJNXK29MVZpO5Pt7Q9LYPjFORsb3p51AgsWIszj5zYCxixmb0cItwnCTJSFVFDVtovfFu9qfmTuOczffSQv6gY/gVy6laY8Xysy5n5lIz33CRps3EjkfNOCN5zQVsLa+Z1YD4D4oC0pMsf+TQ1x//fXURu0RCee2du8hcCPb/nd9bl3ZfE8hjHOT+zbAGSh5RotSmCJ07dppaA1MqP14/+sGrm6Sb/HIDr0r3ybWMCQKBbdJu3OvfOmv4P3vfz8hyEGQBkBc5Ha7jc9c/zdugBEqY5y7loaXf74QuY0yUpUgJN4ieT5oLfgeYTAc2vSrSkDIDGWpcdHPDCCroxFVwCPFnH7Ut4GfYXFZ4+++RMEw0iby0EZBSWOlbQxxaoVVM7CuQG0N8UPl+aT+EBjEAkB/UACMcjPH1fW5hpL+mwyj/MuEGkGLPFnvfk5iGSc7P8AkmY/IEKBXFfSBHUMh5adIND3duzL+vfC44wspkpvOvfbaa3HREx+LYUnG7Lfff8xeJ1DaOcJLEQk79nkM2Y2N8Yu451v6UC9nVBjg+c9/Pqanp/24hsEjzzLYlP2z/24N83zpPXD/ZpJSvpaBygYF0jSvEf2BNdz0AKWOQY1MCQyGJXp9695HgcFQu/HzzGc8HVIYDIYF3vKxR+Cmg0+xz+IzSWnj52JtPOJqQPfq9oZQ0s7Bkgxplp4K17hWx+t3p8BLmcrFWWUFw3Mhf1MFvZeZmRmceuqpAIBi6A1XSnfq+9zPy37DyW50twTd9FjMdA4TDYHf8dG/BUBj2s1/doNrdDBH2I1WSyzg91/VdWNDa9o0hn2Qyq7duUdjqVsik6VVoPFrAxa/g9PaX4Af4sEcXGrivN71RnvMOFUTIYB162YhABw+soDFxWOJLUHnKQUMhmWk8T1qfJWNVDP/LUrh1Uve93p+f4CG94SdqL1zT//vREq2+iknVm6++Wb87M/+LNatW4fnPve5ePazid9x5513On4mQCje9u3bceedd2JiYgKHDx+Ofj/77LNx6623umuf8IQnuN/OOuss7NmzB/1+P5KQCstHPvIRfPCDH4yOXXHFFXjOc55zTz0qAGDXrl0jf5ufn8f8/Dy63S6OHaNBePjwYczPz6PX6zlEudvtYteuXeh2u3jhC1+Iv//7v8fOnTvR7XbdOb1eD0eOHMGhQ4dc3UePHkWv18Pu3RRRe/z4cSilsLCwgG63i16vhyzLcPToURw8SPy4PXv2oNvt4vDhwzhw4EBU//Hjx9154b937tyJxcVF7N69G71ez2022OAd9PsANAaDAaqqg6IosXffHgAPwfz8IfT7Q1RVC8eOLQIADh06gMGwQKVV0AdLWFjMURZt7NixA7oqsGPHLlRV5c6pqgoLC4sorVu0KjX6gwJV1bbnzKHX7QIVUJYtDPo9GANUZYHl5T4WFxcAAPv2H0BVDnF8YRn5xHJUf7c3wLFjQywtD7G01EZbdAEY229LGGAZVdXCwQN7ATwYxXCAw0cKDIc5dJWj1IASGr1eH0ePHqbnPbjPTuQVDuzfB2C9Gzfh8/V6PcwfOoyqamHHjh0YDgfYd+AgtWthH84991xU1V7Mzy+g16PJuygKFEUJZQocPLAfwBosLS1guZ+h0mvcM5fFEAtBzvTFhSUM+m3osg/V9mOx0hW6y30cO3YUR1sH0etP4NjCgruu2+2hWF5GWY7hyJGDALahGA5w8GAXZTmB4XBAfV5VWF7u4tgxmlyXFo/ZhA4a+/fvBfAg7N69CwC5Bvfs2YXucY2jRw6j1xu4dzor9uLundtRVRUqy4erdIWDBw5iMDDQuoXSaGhToT8Y2u9jDstLx9Ht9lFVYzh65AgAoN/rohz0gawHoysMhgX6/SGGgy6GQxH0QYkjR5cxHCzhoosuwt9/6XocOHgIg8EsmYRViW63j2GhsG/fXgDrURY9HJo/gqrajIWFpejd/txvbwE2vJDa0B9ix44dqHSFnTt3YGnxOBaWBI4cAXo9jR07dqDfX8aRIzmGwxKHDu4DsNbRcLhUusTOXXtQVRkG/WVoXaCqKiwtLWNh4RhgNHrdRfQHQ1SVxr59uwFMY3l5EUvLJYpCoipLVFqju7yEQXeAqpp0fVAWQywslGi3pf0eKxw4cBDF0EBroiRpIzAcDnHwwAEAp6LfW8bSsrHfOvV5UfRx/Pgi+n3a8A6HQ1RVB8NhgYMH9wPYgD17dqHSFXq9Prrd0s5TuynlsqY+7HcXUek2iqLCkfm9AGbQ73dxaL6HqprE4tKinZNKHD16HN0BgSqLi4uoqhk3jwFzOHyYxpjW4+j16Js4duwIer2++/YAoBj2ceSoxnCY0Tuz77OqKvQHAxjQeN63/zDKomfvX+DIkWPo9xdRFLSxO3pswdWZll27DwDYBJgBFhZpLprFHjzliiswGHRx+MhRtOx8p9DDbT86hLVTGYoK2L9vF6pyiN2799F3qFv42te+hmf/bh933b0TwKlYXuriwIEjAE7HcFiispvQXn+AHTt24O6dx2A0jclBv4dDh/ro9UocOXwQO3ZI98yhAcRzLaousPNqLG9+Co4d8zSHqixw7NgiytLg3PPOtXNZH/sP0Nx2ySWX4KKLLsITXzmP48eOAjgdr3zK93DRo2agP7KMI0ePo9vLknm5j6NH51EUBfbu24/FJZt+d+lGFMMeDh6aR6U77hpdldh34CCGwwq6ylDpElII9AdDzM8fAnAWlhaPotcDqqqFfXv3AliL+fmD6A8KDMscBw/sRdHvYHl5ETAVqmoGhw4eBPBgHDy4F4OlCqbqYeH4EXS7Q8zPHwd2Xg3seCvk+pej13sMhoXG/v37gCPfxqCvcWieUrvPPeRs/AhAVZWYP7yIXi/Hg7ZqnP2gjfjbr+/G52/4Oxw5vCXqg+MLy8D4EMNBB/sPLOLYMT+fjxpfS0tLAM4FjMamo7+BavYFUeri5aUFDAaFX4f+6SLs2fN1VHbjsXv3TnRaft5Zyd65p8vpp5++6jn3iOH6qEc9Ctdddx02b96M2267Db/1W7+F2dlZXHLJJej1erWsSxMTE+j1euh2u1BKRUboxMQEul16Mem1k5OT7vgow/XKK6/EC1/4wvghs+ykUOKVitYau3btwimnnFLjinLZvHkz9uzZg6mpKczOzsIYg82bN2N5eRljY2OYm5sDQELr69evx/T0NObm5pxRPzk56c4ZGxvDzMyMo16sX78ehw8fxtjYGM444wwAwLp16zAzM4OFhQUsLi6i3W5jbGwMa9aswZYtWwAAc3NzmJqawuTkJLZu3erq73Q6GB8fx9zcHIQQGBsbw/r16901a9euxaZNmzA2NoZt27YBsNxbrTE+1oEAkLfakEpCZRlOPYVoBlu2bELe2gulFGbXUWT4Kdu3Icu6UFK6+0+vuQtHuwLttsLc3Bzy/FZs3rwFSh105yi1HxOTU4CcwA3vHmB58Wy8809uh1LKnTM5OYFWBrRymiAgJPI8Q97qYGaG/H3T09NotY6i1Z7A5NREUP8B5HkbmzfNYLk3RN7qY3xM4PTT5/CgBz0I02uOwlQKSimccTr3Wwvjk+PotCtkmURVKigpkLfa2LiBghNOm9sOqZYASJx6KvXLKaecAmBv1Pax8buxdt06ZGoJc3NzGO/chtnZ2aQPDmBmZgYTE10IYdBq5SgGGbKsha3btgIAZqanoQW5vWam6Znb7Rzt9jgmp+g7mpicwEQ/R69nMD7R8fXLA2h3xrBxwyxOPUVBZS1MTKxxY3pyYhw9PQ6pMpw+x1SSNtZMt5FnGp1OG0JQiuOxsXHMrqNrN25YByW70ELh9NPmkj7IMXfqKVg7BWzePECrVbh+Gc9+jC1btkOpfTjlFDvupMLs+g3odI5TFjSZQRiJvNXG5k2ky7th/Vq020ehlMKmTbN2bIxj2fTQ6oxBSiDPc0xOZlgC0Om0XR/k2QF0xiYw1hH4pz0XAQ95Ptat+ybGx9oQADKl0Gp3oDKBuVNPAQBMTY5hzZoZKKUwM73GfR9zc3M4vAggp3lnaoq+cSUPYG5uDhvWH0Rn1wATkwqlqTA3N4c1U7djYnINpFrEnEWmtBbI8hycsCzPFDZs2IQ8O4aJ8Q6kWIRSCuPjE1i7dgbAXqybWYssp74847TTaGysWYO81UWrlaPSArKQWLNmEqbKkWWZ64N2+y60Oy2smaRjSh2gPm8fg5IKShkILZHnLWzdSnPSzMwUBhVRnjZuoD4f67TQGZvEuBiDEECr1YZSNK62baXxevppp0HJo2i1OpicoiCgM04/DUrthxHKzj+7sO9oD0pl2L59mxuL0zMdKKVdsopcKVIfaE3Y/p5yVCp+ti2bNyLLl2x/jQMQ2LhxPVqtQ/H32LkLY+MKYx3t+oD/2263LW82x8TkBKamyHAba2eYmFoDpYCHnbaIW/YCnY6fY9LCgCt0HxMTNDay7ACuu+46/MobvoLxiSl0NbnpJ/NDWLtuM+a2TkCqHTjjtFPQ6dyOtbM0z0yNFbjggguQqb/Htm00Lh9zbse5qkm1xqLOqoW5uTnsPJij0z5s14XdmFqTI8uXsW3bFszNnQql9uPUU+cg5RFw/I57Fj0Ajv898vwyTE75NTDPM4yNT0JlPfztDZ/HlllgfOwWrFkzgzwbOINEqaOYmKBnu+qZG3HeQ7ciyw6iMzaFqSKZl1sdbN60EZ32ItZv2IDx8SN463Nuw9u/ZtDKM0zPrIOSA8zNzeEDH/gArvm4wszMLDrtY1YrWcJAotVqYdOmjQCATRvXo9WmcXCanc+3bd2CLF+CHOQ44/Q5rJnqYGZ6LwbDCkpJ15ebN86i3RIYH7sb27dtgcz2Y2Yt0ex6oHVBt9vIeiW2b9sK3PowjD/hS1i7dh2mp/t48bNfgN+9DsgyhYmJNZicEPjBn7SQqQ34wP/O8chHPRrn7loT9cH4+ATWzoxh6rjCmmmBhZ5XGRk1vhYYdCgOYar6NhbVizE+7m2pmZk1yPLjftwP9+C0uVMh1U4YI3Da3Klot07M3vm3KPdIS7Zt24atW7dCSonzzjsPz3ve8/CVr3wFABley8vL0flswI2Pjzvd0PA3mlTq19Iugo6PKq1WC5OTk9H/Op2O43jeE/8DsOLvmXULSinx5Cc/GW9729uQZZlz16fnZVnmgqeYu8rnhNzW8L8hx5V5r2H7mq5jvirfj+s3xiDLMuR57qD6D33oQ5BSNt6PAyGI5xdyp/z5mVLeaW/blGXKOQ75/kpJlJo4NXTMBiAIRM8DEK/w5x8/htk1QWS7ex82Sl14viUH8DDXkfmLlaZUmGH9xgi0WhnarRxVRe7QK6+8EkqpgKcJdNo0aUibAID6mf9H982s/5D0AKl+p2EqJThEyL0D6qTgmYWjQvg2Wu6Ro4dw6Ilw2W6kpIhsISiYwL0rA5dFRwhpuY2WO8b1Cx+g1m7l5BKHhJIav/Fs4OxtXeemG+vkrs85KIi1WcmVTEE29NzCjQMWF3d9Dt8GSvXpn1kp46Ky262Mu9b2QcDhtcdY7aHT8ilDnR6jsMFL0r+rTMlAs9WOBQEbLCVRihnbRh9hS/xOAMZzlnMr2g0YhNnRpJQ4uuj+RJa1XD9LKZHnCpVNIJHndj4IA0SshBM9S8hJZzUEAdLvtLQaY9O7mgqtlgTnZm/Zvssy4vBJIdzckGXSZjoSQR/4KObw2xNSuO+K3x1/661c+WDGQKu30iKmOQjLrbX91Gpl/v3JLKjLjwNqtx0rXHdAB3F0KUluXumoPPU5giQJEcwRNE8xq8B9j/b74DnJ1SH4fkRtKCs/xljJARCYnaJdBnGFm9eIH99J3qsXPP9ZqIyI7pPnClUFfOmW9ehkA2zs3I2lbmW/7wztlnBqFs86/2a89mnfsfWSa/2hs9/FE84pA167cJH2pLxAaa0zZftYES+cA5NoXbBrVRB17saD7ODcc850kmtclGT9Umk3ltKNA5HM5+zuPn1b259X0TyVzstZRu/EaKIc5ZnAxz72McxMT0bz5Ctf+co4rkHYZMOG5xr7zQbjdXpqyh7LwFmvOu3crU0so8djT0mD/sAgUxpjndzqvAo86UkXYd26dXY9Tb4F6fW8L33Kw/Hg7X03J0lJerD0vRG3OpqXYeXiMgUjMvxg53TA0R5thzi+vRyDLnt2HCC6jtsppcStt95qaXB2fsziNtyT9tOJ2FerlXvFhA6DFM444wzcfvvt7m92cZ9xxhlYs2YNZmdno99//OMfOyQxvfYnP/kJtm3bNhJtva8UKX2U/yMe8Qi84Q1vcEZjel6TqkAa5BHyWVOuaXq/xzzmMbjoootq1/GgGKUqoJRyKgZsdPN1teAs4QOhpqYmsHnLNns/H3AhpeefhYE6KWecg2Sc8oAgnmaaPUSHAWoy0RgF82dNtCh5/U46cM4556wQnEUTRp5LVIYMcx804/mXHOzCUbCkQ2pXPttOp/GZhYtneLekE4QNOoJ25zZlR/FUQOMmvjBQSAU53L0uLvEdw6AVJYGiqkuecMBOlinLkTZ47VP/Ce/9jxLbZgdOHaDT5mAQH30dBsWFEbvUh2w4JOM6MAq9+DXcdQObC5ONfuY6+4A44ailLgFB5hcJ5Qx62E2G73vewISfGnGEDZSU7njYd9L2pYbv8yxjDrHAgzYdd9l5orLr3UiV1dlojBIQWG1XY2hx3Zb/fT0IkblxjuPq5bCEDc5qZcJtAnwfiDjaGkGAWsh7lbAqH/6e9O0ZnL/lWzh/63fsUa/1GqZS9QFxYbYy7l+r8hEGZxkOCow3oFzIeGCONI8p4fRn+UyJ5qQaYSHJtVD9QXilgaCfeQOTZpbjzYC1hNAfapeZjPV8mZN5zXO/Wg8gC8pLf/f7AIBTtq6NossB2uwVpcYTztqPFzz2q5g/tBvf+/6P7J0puE9JCv4ypsDEGG/QjKXl0GZPBM3lprAE07CoIu3cqkp1XFnIvyGJghrDNVe/BWUVq7ts2DDrJOzcHCxBiSiSKrSl/2zcuMG3vSExjNa0OeQNlbaqKM95znOQ51nE2wTg4xoAbO/8MzbLfwAsH14IAXxrFp2WTxDAmrtSckCjVz9hCTkpDNotG1xpKix1h9BFD512hlL74NepqSkIqzjBsm9XX301vJyiwfkPaeGH/3vcvguNKPBSkFJErCrgg7PunN+CP/vKQ1YMzjq6aOIEOmocVdm1bY/PDf8+55xzaM2GBMT/ZaoCZVliMBjAGOP+rbXGN7/5TRw9ehQA8MMf/hAf+9jHnPF0/vnno9fr4frrr8dwOMSHP/xhnHPOOc6Ffdlll+FDH/oQlpeXccstt+CrX/0qnva0pwEALr30Unzxi1/ED3/4QywtLeHP/uzP8Au/8Av35PPfKyWM8ucyynBtUhVYyXAF6iT58H6//uu/jt/7vd+rXceGa6rjGqoeNBmuYeKEubk5fOYzn4GAgLaBTuvXr8fZZ51N97OI4Pz1NiONna4eeVYJ3PQ4K9cUP5tUNno8MA6KhhzfoYwOaT0m9Ugv6MwfLQeDSQHc9TGBix6mnMGSZgYhtFG5CGmtw8XUG5JSSmDpe2QU23bPdb6GrYrk4Yz2wTSKo0+A2sQdGuYCaaYVUXvHEAYsh8XPZux661FYm+Uo0uqMDTSOwC8r4YXLuQ809S0j+KEiAwc0GBMirj5wQARPSRsYbqcX+qpvpgNZqSQdcCZJGgaA01UEvPEe9mfYB60GHVcZjAPfB35Rcq2xC7+SwNnbaQxWFX/HpFLBMR7OaFMCHL8xOzWMpLt8A0voZLVpZZIWvQpOC5QlsrQTQSdDj7Vz334VJ9CwwRrSNob7QAIAGVMhmsJ9z+gRg4ZSxt8e91WpES2ommxEfOYvXotPfeTXXB/y+8wzq+QgGiTI+GawwR/B5pbnJm2ADWv6mBv7qkfuebNrEwT457N1V7S59QGqxm6AfZ1p4SQXEeKa1RNfEPIVGMGuK0y02heFdnJjeQabgIA2Iu2WQlGMtjBUn6TOJsdzpHE0mZIoSwr2yjOJwwd340/+9CMAgK5eDymFk8wqCu08ElLYVLHFGMY6LddsAzLIPnf1Xtxy+MkAgP6gimTYCpuxjRFkgSQRTFLG2qx7GjyT5Hclou+/qnhz74swA/zHp/ksXiwPlSx90NZjRptPSnYTzq9RWmrQq2I1i4dt+RecM/uPhLzyuCuPWc1Wum5iTKD4srBqFoTQhps9Uk0xyK3hWpYl/s/HP4WbbvxHtNsZZQ+zKiobNmzA2NiYS9AhhcDv/M7v0HyeYhU2q2N941xXVmBt4GGZ2z4Z/V7OeoHBdV8OePEig9Glu+7tz/2Be7Z0ZaLxbsGQ+w4roLGcVPOuvvpqXHjhhbjpppvw1re+FRdeeCFuvPFG/NM//ROe85zn4KKLLsKb3vQmvOQlL3HGZ6vVwrvf/W5ce+21uOSSS3DzzTfjHe94h6vzVa96FSYnJ3HppZfijW98I974xjfiNMvLOvPMM/G6170Or3/963HZZZdh06ZNuOqqq+65p7+XSoiApsfS81LEdTXDNZS7AoBf+7Vfa7wfX5caqaMQVzZsXbR/A+Ka5zme/vSnR+jmFU8GHncOWwRkLMxO28hMa4xd+IRH49juLzamfOXJJ0VcY0tPxMhXg3SSEH7nG1IFyJUtcNoW4US5Seom7ityx0hCXDXczp7bGLkmbzo/2tlvG7sRm9U/cBd4STDFLn44CaBRhfRJA8S1qs9O2k6GZEYRChVSIaRdOAQCwxH+XQFAv8id8S4D413Y+pUSznDVwWaBKQfGCHTafqEsK9bK5FriTQYt9BL+V18ixDXZ1FAELX0vDnE1gfEuvAybMb5/Wy2/KDkjKkBXQx3XVGaTn0cpiU1rfZ8Lq0YgoL12btjnVrVhw4YNbu6KH7SsIeh5Jq30lRd95xST7LLds2sHji8sup57y0uFbaNXVmBVAcN6xaaycj9+w0r9K5wBSi5UuIQHsfGeymGRN0AK47wyEHGfs6B71OeibhQLEPKtnFHj39+G6SEumP1TP45482HpKDTOvUHhFC/cvGEaENe4z1lxIjSinMs0nKsF0TFqn6yI/zEoQsTVZo2yBv1CbwKf/v6jMaoYtIDbno1WLjFMUkxnmUBRGQxLMlyhu1js0u8L1Rm2X8hILUrjMoOR8Vdh19I5aLczrF8/a/uXqEd57lOLD4YB4qqky/rlPEqBLOHDputK9+1cWKqLP8abo3Bbzu7v9OMvyhKtludqSjfu4l7STBUQJAWVbopJkSJog1PPAP74j/8YH/3oR2newGjPX5YJnyo6WJ9oY0dGN1OtiqLC+MQMYApCXCu/7nzlK1/Bq1/1ighxpXYy8OEbKgRQJZ4/KSjBRIq4ak3fwbBi1He05Xr4OPGno4DOir0y5Bnge4XKB/y8LIfVJO13XyonFZz1tre9DW9729tqxx/96Efj9a9//cjrzj33XFx33XWNv3U6HVx99dUjr7388stx+eWXn0wz/81LkyG5UsrXk0Vcw0H5vve9D3/0R3+Eoiiic4QQtaQEo6gCjMKuRhXwdXu33NWvoPN+/Z2M+rDR5lEfIQSmp6ex0D3uUELfLxJl5Xf/UhqbPz3sA3b1IKjb/777EwK/+4es0Ri4DxMdVzrWLIyuLVUgyxS0NpYX6nf24QS9efNmP9GyzW4flicZINZuXZHeInjCYFTXG8VhMZGGKV0YTsjME6N/B5NmRe8lu+kcnP+c38K37jiDqAINfaAkBXMYDC0fsf4+3UIpfdpUIeCQQQNv1NBxvxDED5QgrhF6Q9IvgOfGAgFqSCxh8OLmENc8TPrALlSfgIDbxzzfsE2EZvJmT7g+kQKYmn8Xtm04A4U+v4762MHxuMc9DnfddRc2P+VbyXOWtY1IZjdIzIMEaAEdlLQhIQNQ44477oLBOK68jNtodSoBSEGyVUBIpdFR9jCq2wQIKKtaikaqAI+hcPGMhf3tIwWoc57ZpCjG97nfSDIizIi1qM1T9O0xN8+PF+oTCV3FhgC1O97cCkEUB191/fuhjZ3d+FkU3WfTSupqogogqF/AIaLUB0Tz4O//7G3d2rVhedKTn4YHndIhzeQyRPapP7t9DUiNsY4CqkX0izy6XklC54qyQqtFBqkUcAb9WDvHtA1cMyB6y9iYD1AeDEvHjWfdaG18djthMwMCwC8+/TJ8/3/H7fcc7bhvqspEiJ20x9Ikq0VZIc/a0bVlCbTb8UDjefmuO+/Axz/xVej8fNdPjYhrIDPV6XTAcooINlq0MY+fh+hRQDiowu9jy+aNtt0aZ539UDz3iq0Ya+eUJMUirpOTk2i3W2DlRp/KGYFsmz2GUAec2y4aqQLsCVvsWlWdBvZGWkIPT2i4eqMfjh8c3r8OL9w3y30cEL5/llGI64lwXFOUlI8JIfB3f/d3OPPMM2s7LjZS02NNdIWUKsB6rydluMIbEHE7vbnpco4HpZEqIATKyruy2V2SlhDhSQ3JbRtsZpXIJSUswhMbqYwKyAaqQJ4p6/akQACX6z4xqvbt2xe5Xt/73ve6xBg62LGHqO7MVAu/fHHtsfz9NRsU4Q497ACPZGbF3ZhsLVJwVsL9S3m+jDpLAYjBnWipAkoClZZQyddPFApLFQi4WwDTF6hfWy4JA1Bqh3uiEXENjqeGcuhSpMAO/1umgIGlCnCgEmDpGQAeufbjePiav3S34GfJM4ka+pdyXO0EXup04SBDMlMCD9rm34uUwPjSJ7Auv6uGpiiHjq8w4ZtiBOLKbkDfXgoMpEAtGA0pMwAC7/11vxGghZlTvFaul5X9O8v8xs6hR8zvFBy0aCzVI34vbLSFYzfUJnaPBL9JdVQB+Os8PcNvyNxYjG7IHD4ad+mmPbMcV/BG8vbXeiQMHtuT1vXK4yk1QgCmowg7R3hUPtSkBdjjgZoBkZaq0i7VaKboOYwdL9s3aJyz+fbR15oMmzbMUPalirROpdCuP8vSoCw0Zeorl1DqeONL7n0yLpkqoKTBsKywrXMjOp3cvzMDaCNx3hktbGx9DwAhrpxMRSlhEdcgu52A09NuCphp5TZoLvhoVYi4BpvpojS1z6MsKxe8ROfZ2IPoVsIGHQrsP3gc/+dvvh3FHjDVJbqCDeURG62yLNFp5w2Gaz2TlHSGqx/rtFkAsswQVUCLeJ6U0s0R4ea9cu4O92g0XiOk3zRmdWSOa2fx00Bx2PV5Xu7EqBIarr/yK79Cx4LN5uzsbMPW7v5THjBc74VyMoZrynFdKTjrqU99KlqtVmNw1igjVQiBAwcOYM2aNSdEFQgN2bCesLi0kw1rtQwWrqbJIW07iZfH/LWy1LWJThuAY3uUkjVARQpGnQDYYClKQYi4X4Tld6ZUAcOIK03IlQnQY+vCTe/HCM/WrVudsDaMR1rpempoKxf4xNWjP7fQnR9mbEnbKCSw+fDL8Jit3wAgo+AsRrno3+GkycasN7bKxHBlF5uSIVXALwAh4urdz96VFo6FEI0DvEu/bvx41NcbEP5+Q4u4+qQP2qHlH/vI2/CJv3inrQdRilmuJwsQV1Y/4DeSKYmqYiOG+8xSBaTA77zYYEvrO67vvv71r+NlL7uSFrdgbLCR04TwPf4hFnWTY7X3yQY2i77792IDkRSALS/HP9+x0XLHfRsLO+6U0GDE1TgkU6OVNwdB+s0mt13YwJkEcU04riG3mjs8RJ1DnmiYoCPd3ApGx4O6BWiTmGUymge5hEoLUgpg3/8IDNf43THnfFRR0m9qBGh3Jy3vNZxvlGCvTIO1HpSy0sGmEZb6QeOHFFpGmwbDAhjrKLRyiaKyGZNkYLhWGkWpkecSz3n2L+Bhj7qw1i9lqVFU2nHOhZ07tdbIc2+4GtDGbXysjUMHSPt7MCgdzcFnZIqz25WWuNzkNqYMdZQpEPs4HTmNMRP4y5jLmSKu8RxhPW1VPO4Api9JYOuroR/6STvO4fo8yCtA94Pf1AR3cxxp3hylryZTovGbISqNX+uKosKwAHIFdNhwDTbqbgMezhEMqkR8UuM2xa7tQmBYNlMFMiWwufzfwJHP+LavMNjDjfK73vUu6gW7Af3zNwlc/OjZ2vPen8oDhuu9UE4mOOtfy3HlelJDOWzDxo0b3XkrqQqEf69MFWB0M37uEImS/AEH52TKu3G58IIaurspajrtg5gq0MRxZXewFC5fCioTR897wzW+ntAGhVZGkjlh6lYlDaoaym1qCzPAwScAjn814n2uVARilGAUx5UyWwm84uUvwxMvvAC8dDu3tfKR434j4CO5eezQZkEmk6ZP+UiGq45QbjL+knYHxvvasQXkg1vBrvvQcOY+GGsDD5Nvip7cIa6JqkCmBPqW4+pQPBiXz3xqagpTVsrGLYLfuzCgCoTc3yA4S7DLzHKrg4XSIR6MOsPzfM844wysWzvjOa7O7VjnysJ+e2bhH+nvzum1jU9mUcqqMsgCagmjt9x/hxbaQMAF9t+HIUPHBG5Am0krzxB7NpZuJNTZekR+7RcP4RUXf80aW7GyguurYGw0elfgzwmDwUIlh6oChIw9CSGtw9dvHFUgLbSRpOtVMLeUFsXzfER2vTqTqV6XnTfCzW2TwUJBOTFVoMYrNB4p5rYRP5mePc/z+nSiRAABAABJREFUmns4LIOSApxauUJZGpvq07hnLityebdyhYeddzZanTXQWmNT/m17P2BYalSVcaivknSNMSY2XC36nGXCtSni5zq+tXB8a+bLhilzXSmORlSB17zksdRvwnumQk9K2YC4GrsJ50JzSTNSmikBiJb7OwRH0nnSj4PwqAg2ds1Gambn/bguOA8P11eWFYYlIexjnZaLh3CIqx1j4bxM31TMR3EGdvLtjQrOUlLgmmveibPPfohre5aP1qZv2jRx373kUoHpiTqwdH8qDxiu90L51yCu95Th2kQLWM3A5bKa4eq4o7VJJkVh4hMcKT5E1izvzBttxqUtDUssh9W82LDLhtvOCGQjVSA1XA0twCpjhCcwXBOqANdTRtQE2wcgFOcb/6OF8bETT3rBBhlgd+iNEw9NdG9605tw6aVPA0/IToJI+AAcj9D5wLaLL74Y27dvb6QKUFQ2GbjEcY1ltFLDktvJffCIrbdi7d4XQQhtFRn4HOM2K1IK3Pz37wpqiBeTSFVAwSGu/HlQOuDmDZMQABb/EXnuUX1GXNlgouuMowpUAR8Z4E1NaLynfUDjzpiUb4kEuSXqzne+813bwBHBWVpEiGuWxcj+hokj2L72WIK4GkelOWXNTkwsEl3CLcymQiaTRemmx/jgLGHwG69+Nt5zza9RZHpNWSHmaQNwKTmTTnfvLg8WfW/42G8oCUgJN6B8rNLCUZXSQjnkEQVnERJGxjuEvx9xuW3zGlZlIQW0oRY95tQfov0vT6YI8yaOaxLE1TQv63Bza6kClQ3uy7JYqunAEYM3/amfRIaFwPhYZqkCiAxXpgp86m+ux+5dO9DKBYqSspWF9yN01UtYEfVD281puKbwc/n2Dwal47Myx9WEiKsEyqIK+MBhnxKq7+dJ4FcuBU7b2LVUAS8nJ4RpnidN3B5H9agBAdLPbzY4MtzgpwaaT+Uc1xMavIS4JmuTaqCxSUEa48KP/6LUuPOunVhePIp2LqGNtEoywebKIJmXbTtj94OlowSHBHlTan1gg+bWrZ1B3mr7bztpb3zNCMM1nM9HXn3fLw8YrvdC+f9TVYCPpcYn0wKaArZGcWi5nGhwVpOnItJxNYiQ00aOKxuuK1IFWM7E1qO8VmfYJm2js6SF1hgllKlxohOeHbzIc8sK4dPk742TmuEq4oAfLsZKl1xwwQWNLrZRpQoNV0l/x88Xo9w0PzLyIHDplt+LAoUiqoCdM7/whS/gGc94huvzyHAFJ2YQjuNKAQbe6GySDXJcQzsuRYK4NnEN/R19Sd9ppoTn2LlnbpbMYcS11WpZ168AUH9/QsAGdYUGZ9jHniogJdFRQnceGVGixnEtE6qAAH2PF1xwgW1gXQ4rd4ird68rKVAG5130oO+hpYaAiTmDZUkBHJkyEJoStHgVDA2lUPvOPBofHJPMe/X3pM1I/M1Uwbfn+hweXXXBYAIu+tp9H4LfkYCEgTH1DVOlgbVrp/HYxz4WaWFkmt/ZwYMHXVBOhFYlhk/ToszGiRAG460hZO/WEZtgFsP3lemUowjEc5L1HLF0ESGu/hvecwj4L//LXzssgYmxDK1coagEikJDRVQBgzMedBbOPfchaOekctDvDyAlc2rJjc3JVLjPG6UEg4Zv2kQZoAaFdjJzeSZQVDqQYaO6hnaD9JiH0rW8DnTG2mjlClpLtxH56Jskzt7WpU0GfFcxDzWdAbQxtU1j1UQVCAxz3vjEnpT6WthEGYk9U/VN+GiN8ZgKVZQaf/Ppz+Hzn/80lAKMkXZ+DeYaYwGMYA7WCR8llFMMj5GOdNgQ4zbY/C3wsMpFnNgp6jdjcPrUjckxBAFq9TX0/lQeMFzvhXIyqgJNiOtKhuXJIK4nEpzVVE7EcE2z4gCJC7XB0GGOa7R4qhRxHZWAINgtyvqOWQjhDEllM4Cw4HnqjtG6gSpgBPJMeY5rgDrxol/rg8TNyu2Mpa9W39dy28Ndew1xFcx/9s9hLMdVKYHPf+zNZKhbpOjBWxeAH720sQ+URZ5iCoWJg7NMouTQgG44V5ogPV/i+XKUv336E/RHpXqaWSYwHHJwCPcTGrnVxPMFBoMBLajsSmvguL7i6T288pfXOqMtXDxpXMcZsCLucSCZE7kBK0QQJ20aKz9mzLDWdxzcwoEX1N54g5RnwKBgQznoA9vnsdKI7SdTIZMaKUaqBAeohRtJNlIDw9V5JIKNbLpJFSGn1mYi4uCsCGWidmd6Hm3Vc8h3upGstMDM9BRe9rKXIS1sbBpL/diwYUOwYTJxPTW1kLjPmTsuAvc3aXoisqzc5jYw6KuK6Etbt251qccpC1U4DozdiEjkeY7bb/+Ju74ViwJgWDLiSlmyBjarH/UncVw3bNyM2XUzaOcCZSmwtDxArtibIKz2qtc5ltKgWCHpAfeJMQbDIDiLEF4vw0Z9oAlAAPBzjxHY3PoOjDGYEDtw3dvH7XcmIh585ubJOOiyCeRo8oQVDXJmHJzl/w5Qbtk0L5va2ADiTQaBKvHvWYMhR3QimjfGO8Bku4uyrACRoSx64Ch8Unsx7hpDTfXtFJQwI/mEUOqYqiSsBytFXGleFnazQGvMf778ZozJQ2gqNEeQR+Kyxyd94NaP+obt/lQeMFzvhfKvURVYLXPWyVIF0mNNHNe0jEpAwIWMtibkK40SF9GC4Mj0CI8liKuEkzMJaq5xXNPC6KoQwC897gAeVr7ELYpx2kmDUoeToX1mQ8ZSy3K3Ui5V3U0OVGnQCminnUVW8YntaqtKx1GoNWFtEUnm0Kkxx5VRUQFgzXgFHPwLsPh1mnqzhrg2cFxDhQTZlPRBeETiFa94Bb7xjW8Q4qp9RC3n+K6XdAzHm5FcCafj6p/ZajSmi1LSBz6ILERmaBy857cfi/905cPAgSR1/nPiJg8m+0z5iOEwoKqoydpQEg02Vp/97F9ysjlcWnlm0RM/XphryIU3C2EQmxReVeClL30p/uIv/sK2k8c5y2H5Bn31q191/Rtt4pRwHD7fdkTfI4DIOGnqc3YbwxhwqlU2gIUA5pZfh8duvoE2Ucamo/zGpOsrokvUaQLUJ5z4QkTvmNNCtzINmNK2u460udLfAZVJe3/7DMZ4FDY4VVrur5+TNEmzCeCss87CunWzdiOZGm0UcENoVjxGe4O4OUUpMDme2fmGpLWUUxUgY1bbeaqVSwwrgeXu0OlwElWAEVc/Fsuybo3ETSH6y7Co0LZGqpPySqgCPBaFhTqNMViTH8QzL8q84RpshpQdTyahClRN32yywScEMvWE0becZRIb1gwx1V6y44CvqUtD0TeczsuxF0rJupGaBxteV5f0gEKeCTztId9FUWpceNEl+I1f/1V3Xji/KueVCakJ7A0MN7embrwLq/IRzcvafh/S0e9qwZJJMYbULSCAz7479Ob6NmUNqPP9qTxguN4L5USDs5RSEeLadB3w01MFmrJkpYZrEyJ2Iohrk7Yj/waECFrYBzFJnvqAJr9oYS50MtH5TCRcT9Mkw968l135fNz4rU85hCc0dKXld9YWYiOQ58q5jLRJEddmtLGJj5QqFjQVEz6f4OAsj7jWOEqCg7N4Z09tdhHo8BMtBAUvZVlm31VqoDUhrmywsOHK7jzYNqEWbOIXJRoneZ4D0BHium7d7Kp9AXg3PCMXWeapAgBgvipXpgq4CTkwXB26wAihv8arWcQGfVkJqCBVb2jcZlZOKVyUKPgEibudeKhaG1z1c/N47FkL0MZme7KGXW6NvRBxTcdZlMLXIa7GoTenn346nvzkJ1MfwC7My7dickxHC/NFF13kPRvBuFMNRiqj9n5T0xCEyKiz7QO/6As3bzDiKgQgMQRHZvO7Ov+R57jzQrpEWjKLiJKLGL7PLar2qNMPAv+4KXA1cxuT+r59BqQQbhw873nPwxe/+EUrdUcGv+sDRqLdnKTR65cQiMdQyGNkLwnLqZVJOqzHvor6/TPfpP8WlcTEeO4Q12ENcbVa0orSUGsNLPeGkXRaWcXZrphGkpZww0mGkMEwoApkGT0vi/1zXRxrwO80XCvonZMxy/2UBzz10DtWVqaZZpEabVU8TwG2TUriz1//Y5w5e3v0rSvl6WH++ZpAlRiIaAJQmhBXou4Ec5JFuaem1mL7tk1BGwEh/dxNz5dutEyyQawj0UKglvZWwDjPEHuT0vk8LbffcTudk2wWIq9lA6f3/lQeMFzvhfLTIq5syN6biGsTVaAedHCCwVk13lucLURrUUNz7N7XHWtCXIeFjnan1AehATGK4+pdqFLKCIV197PtSlFbbajeVq5QGZJ58YuSl9HxfTBKy/YEqAK+I1xvRMFZjdwtNm79OKBpTcY8VGu8P/7xj8fi4mLkJnd9oMhwrSOu0kqCZXbXHqpE1Cc65mSm6EZT5HhTCZ+Q9DpHG67cxrCfgl9ixKOmFYzImOa2V4m6BI/rSMM0DM5ywYWhq7m+KElJupyVNnj2RYuY21hAa4PBoHB1sZwQodx0LE8oKX4DIyOkvSiag12UBLD3jzA5VjW6PWuyT4oX5vg8DpYK+yDtcjLebbsD7VzfTh/BH/KteY74zne+Q8dgx102CnGVAeocGAJ2A3PhBU/ARz74HkhpvC5m90eY7Ayih52cnIw4rhs3bsSFF15I485IiNBwdQa93TQIg96ghBAGc5sFfuYM6gCO9ua+1Jo2Pu2WwLp16wBDCGy4CX3bR+jfZSkx0cnQaimUmoTnmduYZ8omM5DIMuE0f7u9ITgXR6aChAeBkkPZpE4fDBXe/A0L7dBVRlxhkrpKj1TuLx4T8XxDOpGblzOWw0oQ1xHjJzLaZPN8SoYrnPEeB2c1AAoj1F4i4KMBbVQS0Kh/MyE4wXq3ReU3CwDPEVx3PeW0S3sb1M2bfpl8e5TVMWyclSlUwgVBht6OptLt9pBmFOM+iAKcR9Zw3y8PGK73QvlpVQVWSt36r5HDSu+XorBpOTE5rGa3HB9q+jCENdjiNsXonxSU9i6+2kQGaFNEpDckQ3dMvPOl+3FEfWqse44rI65+QyEaDIFm3UiD1RFXgbo5G7odZQPiKjE6IM4ZvM54p/HS6XQC5CvoA4u4higXG3ee46qjiY6QzMSYbugDTkUrpMDrnwOcvmXFrnCFFz2uKs8kbWCS5yzK5kUpRJ1dFHVk0Nd5vpWJDTRePEdxXBn9ozrt2JDcphhxHRYVjDHIrYuv0kBvULoAHJLfES5imI7JyHBl4yTtgzTHOcAbtNGLkhrRB2UVczn5O+KxyK7K2iY1VBAJxkZoYPNm4YwzzsCWLVsgUJfDcpuFlHTOfWCDJYEY+WbEdfPmzXjpS19qEVd6PnXzw/Go0/ZH9SwuLrrvOOw64hXHhqvfTPOzGPQHFQQMXv1MgU9dwwik7SdrKGtNFIB2S2LLli3YumUdBoVNeWpLt0//LbTE5ETLaoES/SNMolFpmvNy5YNy+oPKUQU8x9UbUU56KimhySQFMBgUGBYabXtdK5c1IX8pDIoqpupQ8CUb6srNk25elmFqbH+sripgImOP25XSdOie5AHJc2U3MDFyyskpuNAcUVfBWCnZCT0PAQHpsTD2IFMSRalRVhLtlj+X1mePuLInLJSGJNQ5WJtQ9/g4r0H6fVQ+q6MxHqAZVSiZxOo835VUCe7r5QHD9V4oP62qgFKqxnkFfjqqwChjtonjmta3WgICKYyLVI9LIA7Nxl7jrs//3RScVVYpXSKmCjj+bNgm6fmd/nlJxzU12iojGhfiVq4sAZ6CDkIXrk43C4zKNCJfcdtrRQDhbOvdRn6Bbkpl2CjzEmh8+iCy8J3XOYpSAdqo6JgQrOPog7N8pLodY0Gf33DNQRcckbwpZ7D84WslNq4dPTmGv5BxKV1/5krUDFfSaGwIzkJsYHM7I4O+AXUOxx2fV1Uhh9q6QhPetvsev9ayRhRqgUJlaaxRmrmAv16/dGgKu/2YV+zaFHJck7993Sk21BR8Ul+EG5H3ZAxLGdNrBJhX3NDnTBVIOLUAbPIPGq+f+MQn8Nu//dt2IykRejuEiF3UaSEKCaPO3Mb6xlkIT+vYvWsnnvvc59TqUg5x9cfIkyDj9ycRGSzOcG0QhpdS4C9e912cd/Y6lJqCupzrHgX6Q1IQ4MKIaVlJTI63HFWgKLx+Z54rm1VNOMRVa4NBgMoSHcFEGx/+PsLyF/95Z2SkcSrlotAuI11uqQJhYZ3jsBjjJ1hFIfUJ4srejjhhRhNir02dojJqg5RnEjAaN998SxRHwRv1sPD9GtP1BvdKvyAGOaI+sHO8CAzXstSEquf+3NAAJf5sjIo6oCdtp6mPYaIKxOBLaXnwzhNm6v3kO6yicdHAg43QavEA4vpASQojmyeiKlAUhUNc70mqwIkirj8dx1VEbuugJQk6lWoDwGpuhotEjLgqOdoVGk6Qo6gCcXSwsIkEgmMS0DpePAG/eOZZwCNiQ1kAyXrgFrdG9G/EIhy0NlpMOAo9NJAIaYsnsFQwn27oH1k492xsRNUXCVqsw3gYWgSIPuBoCIF7PRXt/vknbg4CIcJ20mIq0nauUggB9eMnz2VN2ocSBMTuNYCDAtn4825APq3JaGNaRVOEuw+u8xq4XE+cSrVqNKKkTb1ZacoIxdHWvX6JLJA8coirUxWQCPOHj0q00axTGWvL1mkdpIkpRVx/qVOuszVmXb9Y12toCIh6oAejQLNrKkrL6jYLhGoLQQZy6PKn+xFVIF+JKhD1uUWwtEnmETYyBDZv3mz51nFpClAjNFMCwn/gQsTBi1Ky4RrXR1QB4EUvehEmxjuWKiDRsWicFCX6AxMhrmy4ag202xnarQyVkRZx5U2NlT0yxG1kzd/hULvxE/JSWxknIBA1juvDT+9HBoqUwHBoEdeWR/pTZJ++tfj7CxFXn2UxBhQqHfPJWS4uNtB0g8JFk1INqwpIFMUAEGTA1/W1Y28HbabDG8YULtmQeZHnvLCkm9ssI5Q73JwAxP2P54gY4eU2pf1bVfW1qSxDfjl/74jUXkJN81oxJYrS2E1j0xrK7w+1570/lQcM13uh/LSI6z1JFWjis7JhvBJVoCnla53jGrsT3bVI3Uai4eMRNXTKmDhqui5nwlQBXhAatBdFM+JaM9pknd/J9WeZImkfI6z7OZgg0/ux4Zp8/HV+5+idP5dh1cJyP0Wd65HqcWYgqih1gaXohrAGac1oM6mqAIt9B9ytcNzJeh/EaUR9O5uk0lYrzo0biLAPy9RwXUE/2CGu3nBdP5MDO94+GnGt8XzjhADUBymiBHAPcxayVFVACYOi0CiqDJPjCi1reISuXi8n5GW72EXMpYkqwNzDxkVJUF7y7du2nBjiKpsR15DnK6Apo1F0M/qf5/XZSGaAjLZ9/4M8G0ndjDKlAXE6kSULS8if9c+CGoKlWM6t1lBfaGzI+DopyQMTGK40rsM5iQzXmncFqBlRpRZBKlXKiBUaru4xBRlu7VZmo/w9VaCVK1Q2IUDOHFcNDArjxk9uFSi0AVTmjZHSZl6Dv000FpQE+gMybpjj2s4p/XFYpLSqHsHhdB3gPnBgRcaGZKw7XKUJOpysVXg/2AQoYe00ZhlxBae4DubJSteftzZHJAhok1SjfxpflJQR/Yx48ZR2ut0KMk0mdAkmKsSxB+kGvw58SCGIp93Euw+Sohgz+nuBKVFY7nN6Rgj+CEHeuvtruf+2/D5cVnLdp5msQo7rT4u4rqQq0IS4xvqPPw3i6iOGg1a6+9KzCGjI+seDhsXTeM6pkuQiXhVxbSDSp9wfdnumXKrwftRmYxGrWMM0DbyI7icY4UGtpJIuq5UbbnsMrv2nC4PJXtTcwTwh1+crv8BSO+uRqqkclpSAgYpdthKojAzQRhMZ71kjStHMcQ1dUifaB8w59YhrnSrArrS6CyxM7+rRxo0bZlDc8WbrOo+RRWe0RYoTli4RnBhyzpqCApkqEBZpU2+WlcJERyLPmaNYQiWGa0hNqHNc60YbuQ6bkX4pBT760Y9i86YNjd9Hyu9k4z2lS4QbO79ZSOYkW+dYO8g6FIKy0qYaTr49eg/hMYuqnQDi6q+RTj3D32/09+ifV9Y8Pp7jmtAlkqQovUEZb6aFVV+w7y5X1CYKzvL852FRYlgEl3H77LzbbufQ2kQcVwrYAir2AllaSVGaOsdVS2eAkhyWRoRAJhOGkArdfoWygkMNKeFB3FcUkBYb6/XkOCKaJ0Md4oj2pNPtfZykhM4zDjGPz6R6p9dMAZOPrCl6nHjQbOqVWX1OkskGhuYk2jhOjHlEvx6tT+M8nM8J5KgbrlESBsk8X98GAc9x9dn8YuWB+EFLfOGWMy3oUAeN3GZz9ce/T5cHDNd7oZyohur/36oCozi0TRSD1RDXxh2riSdM4rg2fTwJVQDS5a2WEhjWyPUiChRqEk9mA61utCUc14TDZ2sHy3Q5F5jxASNNE50UooYkcBfEOq4nXkJEIJWQERgdDMbHUh5q+Lx11FnVOGax2HfKiaq/c486B+209ZxsEgZHGbH92coUipTjynJYTdc74zIeG1mWWTS+SVmhYVOTIK7GGOcm98FZ/gaMOqcBTuRSVOjYfPRaA71BhYzdwS1LSTExxzXsY89xjeuuGvogXjwF0qmd6QMpTSeMnudjIVVACEMIr2z4jqVA9+9k4/cYqgq4IryqgDskvIHWVPKmjEbKZ2wL+6W+YYqLVxUI6rJoeGS8yxiNl9JgMEi41SbeEGY2e1ilZWC4GkI3A6NwopM8X55Dax0ZrsR7pfeQKeFQ52FhIjmsylIFopSvVfrNxO/mJ8cfh1/9ozUoK5+RKs/r0flKAv1+GY3rlPNKNBLj5u48SSJC968bkiEPPjxPB9J+7g52rj7noWcDE+clqgL1OYk30xE6Lupu8hNJjML0BX6+TgsUbFcBY0E670hVQIZ0It/OJumrOuKKSIbNHdMyogqEc36tmAoHFtaM0FlHYEc8gLg+UJIyypBMjcYmVYGf1nBt4qGeqKrAasFZtbplE1UgMTXthJl+X6a2eHouF/9djtTqpH9nStQQJXre+kRgakYbqwqE1xpXH/dXZAjIhiAA2YAs8uK56leVwEWubdQvUtXpEtJSBep1y6hfasoKiDln9DwCxkhkEcfVwBgVIJCJ9mGDkoNq4HfShFzPTLaa8cptCt2OaYQ0Ba3V+zccG42bjAbkPWNJsChQSLgANS7hO27iVisXnBU+C1EFtJEY62QWcY2pAuQitnJYGQfJyEhQPVOcAjY2rstA89f2AEywWRCibkhyuuV0HKSaxrzxcFQB0RylDXiOe6i2ELazKQAnlG+jY5SUIBuZgEDVvr1MydqmkQykGM1Ni+QxFhwjqoBsmCNCCo5Bf9hAFUiCcpjjyoE7SgnrlrcXLHwTy4d/kDxfBmMIKY0MV+2NUsdxLYzb+OS5RKmNCyqlNgh7rxRxjftk3xGFShuHuLYyiTKhCgiBiB4xo35Yo60ATFEJxoFOv70GOpHTBg5AFWmTPtQQVwoi5XcR67GuJIclwkrsb3yvuseuqbAEIPfBWEs4lYixjkdcaXML1wf07flvjdemsLBMmIzWIeqD8FNg6pWKENc6ku5Kvs63KfmJ0Gp/r/tzecBwvRfKKLQzNUpHIa73lqrAKMQ1LatlzuJd9ErVEHLZYLgiRlyVBIxRAbrRnPkk1e87MVWBusFCHCRVR1zDykR9ghzN7wzriZFhbntaROPRAFEW9VzsTTt0qt274Zo2C81UAQEN1UihCNFiY+LJvnFRMqmhbBr6gJ96dGFtWYe45srlSvdtHKWs4I02perRss5giYw2WXdlu01UYLgGi0TmsofF46kenEWGSKWtUoV1dw+GlUvZyUFkteCsCHFtoAqM4D+nnOW0OLpEg/EeIa4C0PAGoN8wpQaFCPqFDWWDLVu24LOf/axDbtMxnFI2uF0rIa5N+sGp65XfXTw24utowxuPA1J8kBHHlZD3WA5rMKzTl8IEHawzWhkZUQUGw4Aq0N+BXbv3Rk3L8xzaWMTVjo2O1Xb1GqbKI66hjmvpg5f4fsMksJVSkMbtripCDbmdrRZlC4w8CQro9is3NsbkYZuxLe7TNHixqm3srKRccIxR0XpimCbuJhlyfDh0+X//+zfjf/75/6p/e6PQxnCOWB1wDVQ36O9WTql6Ky3QaWW+D9K1KQFBPOqcfGe1+aeudMJAQJ6pWDt3xHQqj/8dsHRjo2RWhDoL4EQoXPfV8oDhei+UEw2WOlGOa2iUnoyqQNP9TtZwbQoqE6KJ41qnHJBLI0EpkC5mAhqZWwCUEDY7UnhdbJA1RVRKwa6Q5BjqqI9OeHbMcY3aGbj8VQOi1NgHtg3xIlxvq2k8GhqJ9dzWUsQJCML6a8FZyUQeR4nz5KoixFVYgyXkuIbqABSAk7RX1ukLkoOzTpJExVxnh7iqUekcR0zIjmbRZOiQ/E2NKoAYcZV2kfCqECbyLDSNg0xxm0JjwWBYahhjXMCf1oKoArbPPbLvaSt5JmqIa6McVq0P6pzBtLBMWNoHKceVjctQPL0odc2zgASNZxmkLMtw2WWXecpItDmqqwoIt2FqbnuWjU7FmX7rKyJR4E1NYrgqiTSLHCtcqCBLXX+oa4hrmMiEaR5V5Q3XTFFGrCF7DkxVc+UrpWC0iWgA7VaGquKseJQ5qzIWcWWOq+VDG0OGLbebaFaBES7r3PSyom/LUQUyWduESwEMhpV77wK6GXGFBzDyrIkyEktKAQHaGG0kTcRx9/WLGuLKfX782BEg8S4I0aBzyutAMEecCMc1U8y7tyh3Jq0EmUC7zQNGRIZkUypVlhZLP6EqoBhw28sEceVxHXFcG4EBPr8EBnuwmhwWfefxZuX+VB4wXO+FcqJu+n8LjmsTopuWJsM1ndRq/DXEnwC1s8FoC1A1wCKuUIGb3NT4a1z3Ss1uMiQ9ChPv7FN3JWESDUhCuCilkc2yYUKGqE1GI1qLpgnD7YYtfy3iuI7s8zDKtoHj6gz1sO0WdU6QLx0hX7Tx8EFzzVSBNN+2R7lX7ADb9gQZCmV0VMOzSNIUTUP+ws3JqIXDJFxnh/DKdFyLBHUOdFxdgJqJ6qkSJJqSErDhmqFl07sOhtrJIXHRgcuWBca5+GCtGFls5gxiRcS1ScOUjPz4eyQKTIg2op5m1yRR2tznDd9erCpAxm260aHvv3nA5Emf0P3qlBgevyuNO/rqZHSdUqwqEI/FSKJPGAxHIq50Qw5MKo1Ep+0N18GgxB137rRXVA0JJeh6ogrQv9ttQkArTaoDLUuXGJYGechx1YAxoXeMNv3heGkycDiIjHVcW7msbRKVYmNd274zjRSuUNZKjaIKJHUL1DcZNJfUqR6M0OeZwKbsn6NNqrFKA9H9RINnyjRxXGvdUiu0jofBWaT2QKg6W5cmMpQJFIgLtamuKpDqsXLiizhwmCX6fD+bFb51HgtVk951YPDSfwTur6jrSRmuH/jAB3DFFVfgMY95DP72b/82+u2jH/0onvrUp+IpT3kK/uiP/igyrm699VY8//nPx4UXXohXvvKV2Ldvn/ut3+/jzW9+My6++GI8/elPxw033BDVe/311+Oyyy7Dk570JLz97W9HURS4r5cTDc5iQ/JfmzlrlKpAeuynoQo0P0t9t5iWlRDXcG6iRWI1xJXSj66EKBEfqe6SanJNaqMihMfvPt3tYOBdxmnAD+CN96gPBL2rVCO2XkYZrvRfJZuCT6wQfAPi6iZNVQ+I4YCt+P3V6RLMcQ0nzZgq0NAHkgJr4j6P+ZYnWpSS0AGNJFMN2rmiOUAtlGYiN2CymDUYUcypTaN64wA1kbgBpTW24wU3de8py9MmdEg51JAM19T48UGAeU1VwMsLcSFUpr4IkpRQPBbDoiQbbUG/KFHb1Ehwv4R1112ThAZ6g0nH9pILCooRJVNrgxCwKCwaC6sKhL3WJPvGyF48taUbfNsHYf3KBio2GcGBoTModGMf+CQMlCpaa+kyUilF9BAjWsDwAHD07zyCnqCEZWUc0tZuZaisxm+ekyqFNgJFYYKUr/Qt8BijdhoMC0CgIe1rUCi5gVcV4PTDYW8R4uqTIghh0A8zKbg+8Bu7PCPqUFiYAhC/8zpqSHNJXV+bzg/mJIRGm4Yjl7pzUfse/TMFG636z7XiAjjd85HerTYSrcCrtprGuPMQRMea+iVOfEHnMcc1vV/zB+M8OQmVhq/z3/X902DlclKG6ymnnILf/M3fxLnnnhsd//rXv46Pf/zj+OhHP4r/83/+D77+9a/j05/+NABgOBziDW94A573vOfhy1/+Ms477zy85S1vcdd+4AMfwPHjx/G5z30O11xzDd71rndhx44dAIDbb78d73nPe/AHf/AH+OxnP4u9e/fiwx/+8L/2me/1cl9VFRhFFWiiJoSGa9omJpufCMc1LSlVgHhn3pBUlrsVt0isirgyWlZzH5p4QSeXtKoR4ONPQUQT8sho/XTiAeujhnU1TZGjJh2uWyJMNcq/NblC40wy1kgN2ykYHfPHGhFXa0CEaKM2iHhhdTRXNLgBm4TEm4tAPKbShAepRA8FBdYD1GK+Jbutg8nfGUf+fsx3TCkUFLAVaDQGfd7kdm1E/6x7ncaQdDnG+wFVwNcvMEpVIFOxrisAlwwjfcd6RECKb6es8XxdgFqYqUcau2kTwbOM0M4N+rxZ5UPWvsea8SzI4zJquLSsrnL4s1KyRpdo8q7U2isAIOU6i9rmltE/7hfSY63LC2kNZOH3oVlVQNl+ERgWFfqDCtj1X4HDn8TCwnKtXcaQl8kFZzmNX+JIO45rWacKAP69U3BWTBVoKpWBRXOtjqvjuMZ90B9Uji6hpEEvURkA4rklt2mMw5I1eQic1nN4P0ToJj9Xys8N53N6zvomtRZRL1LEtT6XNRWmL7lsfrlNxavlSB1X2eBpZIM09aClcSKNiCtSTxhqRn9Y+DtsogqEsQD393JShutll12Gxz/+8Wi1WtHxz33uc3j2s5+N7du3Y/369XjRi16Ez3/+8wCA7373uxgbG8Mzn/lMtNttvOIVr8Btt93mUNfPfe5zeOUrX4nJyUk8/OEPx8UXX4wvfOELAIAbbrgBT3va03DOOedgcnISL3/5y1299+Xy06oK/LTBWSfDcU2Pcf1hWQ1x5Y8u/TCiuUJwoFK666tL8hD6x39T4ECasq+uIZjcW4ziuCaZeiw1ITQu61QBExmgtDDX0ZsqeRZGXFfTcR212w/djo3C8406rqGrziJ0KaKVIKD0WDHqLCWgERr0JtqhN0oeNRrvVhP3JHf0tEj5ujIbGBEWJQhZXMmIalIVSBUL6DyBkelHI0kw3+dN316mRA05UYr1NOkaTmoxLDRaedw2beCyRnG6YVd3g/h+c7pTcleuTBUQjd4OY9IgPUZh7fcvGgwBWJ62M5gaNguMcifeDiToKlEFsqTtvq4mxYKmzGCMkq4aoJYYycIazunGTgd0IikpQUANcYU3PFo5I8PGqURkChgOS/QHJZ7ylIsAQwihMQbHqjOjukijVdi6aGyy4cqav0WJWA4rpS8py3EVo2YYKlUlIjmsVq5qmyEKLPObRClJh7g2DgI+e9bAcRWNcwQi/jzXn+prQ6D2LYcbdSWFRVxDuhZLZAUNMXU60chJOPqOmUpDB3PFiCsczQJoUB5JqqR5Mlkfwd9HsA5JVsYIzrOqG7FE3wogjn0BqZ63u+5+jrRyyVY/ZfVy11134bLLLnN/n3322Xjf+94HALjzzjtx5pn+Ix0bG8P27dtx5513YmJiAocPH45+P/vss3Hrrbe6a5/whCe438466yzs2bMH/X4fnU4iiGfLcDjEcDiMjmVZVjO2f9rCEfZNWUTCwgFNfJ4QwtEcwmu5rezWD/8GyBDSWo/8L5/TdL+qqqLzAKAsy1r9q9WVXkMIj7ATkL2OLk76hbJkpcekCI/RwiWFJoNZAGXBH5+/jl0fab/752XJquAcF3RlorYzp9Zfq2EgorqN5SRRm3zKPncNjIvE9cc4iCzoTzLHauOm6Vm4Pz2fzMT3q5Ln49110Jc6ub9DoqJ2+gU87D9AuTYY0OTH75Q3BuH9mLsV9QGjCyu8q/i9huNQuDZJaawUVNhGokuk4yzsc46wF3Y80YXkok7HASkr6HhsGElZwuyxqorfA29x/DXGZR3iY0pQUA4fyyySynJYYdtZR5WeGdE483/H/VtW9bFRJmMx7V8aGzJ65+SRUFFdgLZItO9PDs5K+5zvRwszUSjCNhFlQ8fXwYuo8/MYZPb9GVu3H68uzW4yVqsKECp5n1o0zEFJuy1VIBqDUMmcRFJm7vkEyWHF/QTnFeHvQ2ueN4R7771BiW5fYKydAabC9Mw6LPcMBmZdUJdAUVRQPA4EBUoKTXJYwlJWhoV240dJUxsbUhgMrISV1mm/+2euNI27VmbbmdHf4TogJekOK0n1KGHQ7Ra1MaaN//55rgn7XMKg1IjHveDMTnHbK6Oi+gVEbf3S2rjrXvSiF+JY+Y/Y1xXROCiDeTKcX2C4XcZthmrruAnGmf1mJPeBAxSEWzcB4pP6dvvj4XxbVSaeg3neMPF3TCisqbVBBXMSUeLqayQATExMYDgc2uDedJ40jetOky2TztWr2Tv3ZFmNygjcQ4Zrt9vF5OSk+3tiYgLdbhcA0Ov1MDExEZ0/MTGBXq+HbrcLpVRkhK50Ld+j1+uNNFw/8pGP4IMf/GB07IorrsBznvOcf8UT1suuXbtG/nbs2DH0ej0sLi462sNgMEC320W323XHjh49isXFRRw+fBg7duzA0tISDhw4gOPHj7tzer0eFhYWsHfvXkgpMT8/j8XFRfR6PXfO/Pw8lpaWcOTIEXdsaWkJ3W4Xu3fvxvLysrtfWZbYuXOnQ0t6vR6MMdH9jh49iv3792PNmjU4dOgQ5ufno/sNhwNoAywu+efTVQXA16O1RlUZlGXpjgE0sZXF0B07PH8IGtvQXaa6ut0lLA7GURa+rqqq0O31cfTokegYAPf38ePHMCxKDAaF7/N+D5Wme+zYQTvk7vIStFmHw/Pz7lhVFtDa11XpCoOixIED+7FjRw/z8/MYDIaoqo47Z3l5EcPhBHrB+6yqCkWpsWfPbhwbsxO4tUTCPgBoU+GPzdl+pT5eXFzA8rJEVY65c4qyQLc3wOLi8aidCN7d4fl5FEWJQvn7dZeXUVUdHAv67vjxYzBC4djReV//sA9tFHbt3oFWRu3u9Qauzw/sX8CwKFFVMhhji+gPNAaDgTtWlkMUpcHBgwewY4dofFdcwj4wxsBo48bG4vEjWFrqRX1eDAcYlgLdsSruc1CfLx5voarI0MqkP2fh+DFUegOWgu9x/vA8DCawtOT7s9/votJTOHzoAHbsGKKqKiwsLkPILBjntFDz38eOHUZ/WEIF9xsOe9h/oERVtbFjxw4sLy+jKCocOLSA4WAYtF1jOCxw8OB+7NhR4tDBQxgMC1SVoD5YOI5KG1SV9m3sdTHsawwGraCeEoNhiUOHDoK7OO3z+UMHofU0er1uMF4OodJrMej7Y71uF5VeiyNHaE4qywILiyVamamNu127diJTAvsO9FEUJSrt+2B5eQlFOYXFxYXo/RkI7Ny5w6FBRTGAgcLu3f5YVRlI0HfcGxBSHNZ9/NgRDIYFVCajd1dWEzh67GjUv+m4MwYYDvvBs5DxXhZ+DC8tLaKqZrG0eAw7duxAUfQxP38cRaGjunvdvuungwfo3ZVlht27d2NiYgLFsI8DBw5hadBBMewCqJDlbezatRPAqdEYnj+8hL59D2VFOesBjb17d6EsSxSFxpGjy65fjh07guVuH1WVR2NjUGTQVTznxmNhDqUmfdnD8wewY8cC5g/2MRhW0fc46Hdx5GiBsqSxWOkCO3ftRVXmUbuXl3s4dvSonSOO2XqEO2dxcQH9/kbI3PdvVZboDwyOHJnHjh1t1/aqWoNjx45E4yx8lqqqMBgWOHjoIHbsqNDvLUNledTufr+LXtlBr+vfMQRQlhX27N0NVMdwbGGAsozb6fvJH5ufP4SqGsOgT3UdP3YE3eUeqmo8atPi4hIEqA0O+DGI+mCpO0BZ+vE6HAwwLDIs2jFGfdDDsDDoButqWQ5RVQYH9u9DRy2hqjS6y7RGp+0HyGu7fv167N+3H8UwXkP7/SEOH/ZrYdO8PGquXsneuafL6aefvuo594jhOj4+jqWlJff38vIyxsfHARDCyoZT+PvY2BjGx8dth3oEdaVr+R5jY2Mj23LllVfihS98YXTsnkZcd+3ahVNOOWXkzmB6ehpZlmFmZgZzc2yUDJFlGdasWeOObdiwAVmWYfPmzZibm8O6deswPT2NsizdOWNjY5icnMT27dsxNzeH8fFxZ/jzOZs3b0ar1cL69evdsenpaeR5jlNPPRXr1q0DAKxfvx7GGJx22mmurdzv4f2mpqbc/e644w43EbtzOodwRAvMTE+5Y0odAGDc38YYQHwfeZ65YwAA8UO02y3f9ju6gMiwdob6ZXrNbegujKPVKqK6250O1q+fTe7n271u7XEodRRjY8odm5j4CYTIsGnTxqBf9gMiw5bN/lie3wExlL5ueQBZlmP79q2Ym1uPPfM5snwRSvm6p9fcDqlamJz0/aKyI5CFxOmnz2GsLWw79wMQ7hzauR6CUiLuFwCTE207DvahtWeILPP3a7f2IpNtzMxMR+0M+2DznSWk2od2yx+bnNwBIRVmZ33frV9/DECGTZs2BO/9bkBkOH3uFGQZINV+tNsdbNhAY1jLo1Aq7oOZmUNQahnjY77v2vmtkFphy5bNI8cG9cHeqC4aGz9Bp51jbm4OGzYcR7uN6Jzx8R9jUHUwOYmobqWAuVNPxZqpNrnD1DyU9PdbP3sYQihMB+N18480gAHWBv05MUFj45RTtmFubgOU2o/x8cnoHKkOQAR9vmmjhlRLyDP/PicndmB6eg2UGmBubg69Xg9S3oqx8Wmsne4lbc8xd8p2zM1twvKwDaXucs+8ccMitF6O+mBy8i6KbBb+u8rzXVBKYMvmzZibO6Xx+9gzD0AMMDE+7o7dsacChMbkpD82NbULQihs2khjo926A+1OCxMdJOPO4PTTToOUQNbpQqr9yBB+H3shZYaZad93nc5OABKnnXaqe+Vj7pgfB1IdQQYaU92+hsGdUNLXvWFjBamOodXKgz7fCSEzrJ+dHDlHAIAQd6HTaQdjEYDYh7ExPyetnTkAiAzr1tLYnxj7MTpjU+i0u1HdrfYYNm1ah7m5OffupJQ4/fTT7Tx6OyanpmHyDmbWjOP9738/rvmbcWzffmrULqUOYGJyDab79Mw0hg8A0DjjtDlCyuQhtMcmMTVGa8PmTV3k+UEo5cfBmqm70NcTaLXoHF6rmIrm52YBKXOcdtopmJubgGz3INVeKB2OszuR5znG2lRXp3UH1szMopWHfbAfnbExzM5SH0BNQmU/hip9PWvX/gAqa6PTHrpjrfwOqKyFDRs2BONuByAyrF/v18xMzUNXOuqnPG9h65bNmJvbis2370ee3w2l/PwzMfEvGPQ6mJyUrg9orslw6qmnYPvmNZhe6EOqw1CI5590rt66RwFiCRMTY5ibm8OWLRpZK/4elTqA8YlJzEwH64A8GPX32rUH0WotIG/5d9UZuxOqq7B2ZjLog90QcoCZGT9PtVu3AyLH3KnbMLd9mtbCsTGsX78OSi3U1hB+hvUbNqHdPhL3XauNTZs2jZyXm76ZE7F3/i3KPWK4nn766bj99tvxxCc+EQDw4x//GGeccQYA4IwzzsAnP/lJd26v18Pu3btxxhlnYM2aNZidncXtt9+O8847r/Ha22+/3V37k5/8BNu2bRuJtgJAq9W6x4zUlYqUcuSLzLLMcUn5nCzLHJ81PZbnOaSUyLLMulz8dZ6/SNfxJMTpSfm39DqlFKqqiu7H6UzTzFn8G//NMj5SSpeSMKybye1SilpdcZ+wBl8QEQkFpUzQBxIGCnlG9TN3K70OVqYo7XP3vJkCJxtwxyQJxqvgOhKRV8hzETyz5cIm98ttH5BMUdxPHO2sgj5gVzO1U7g+CK+jPhCQCN+Dtm2Dux9rofpnsRHoDePOt0k5DnEokUO54EXQBwoQWdSfzD+k84QlecCdw1qR0f0CiaWwHmMzIY1qp+8HU+8XSedxlDaCupUU0IUVJE/GWZaF94vbRFHEMurPPFcwUMgyz+fObOBeK6e6hNCUZU0FY8W2NKxHW15a2OeV1TXlb8iAULR2K35/GgJ5TuOs08odHYOuy5wrNvyGh0UFEdyPXP4SKgvqJuaAb2embB+ExzJoVFAy6WNQ/9M3b3Oqq/q3raxED7VTJuNOOo3aeIylcwa/93gccF2ZAmD8swM0fllyLR7nMvrWudTGWHAdKx2E/ZJlkvjetj+Vsrz7dC4zcOO8lVMGLAPh5vM8kygKCuxq5QLPetaz8K5P77G8nHjsVxpuDgxajiwT9mVKVJVBO5f2fsq55f1YlFhcNlDS1PrAn0djWhuBsQ61c6yTg2Wtwv4sKrhvjRQSdPSOeRxkGc8RmVP0qM0RMp4jdDKfs55ueIzjJNL3x+845D9H848WtXnSQLh3lWcZmubldLyQGogfG+2Wz+IWzjX8LcTHgm9Byvp4lTwvh+uzQKVV0gf0bectPo8oVUrKpB0I7k3/FbLpm03HWHpO+nz+7/uS4XpSLSnLEoPBgKIg7b+11rjsssvwiU98Anv27MH8/DyuvfZa/MIv/AIA4Pzzz0ev18P111+P4XCID3/4wzjnnHOwZcsWABTw9aEPfQjLy8u45ZZb8NWvfhVPe9rTAACXXnopvvjFL+KHP/whlpaW8Gd/9meu3vtykfKnUxVoOgc4seAs4ln5+40KzjqRHM1sqI5+luYI3rTmpjsZZFBBlhoi2OfgZkopGkXmG1OpBueQ0VgPWjGpVqe0bQiiOChApH4/J9GVRHv7+9UDherZe068cMSwFAKHlqaj33xA3OjKfT76+LomDVOIWFlBCsCIOHAlDOpixYKwODml5H5pUE5jsYZVepDvn2csIRO/u6Y+SOVhwmQVQBA5Ho1hMgaiCF4bKMgyQQJ6hEKC/9sHZ/mHURLoD4DCkOdIKcreMCg0Wllcl9Y+1zzluw/qzhp0MUVdnor4lStr53rxfZEcy2p1IdBVdXzShnHHxzKb4Ss8wysIBH0uBNL86M3jRIE3c1xPWDhoLVYHWD04CwCQzFsUFBjLwCkbtMaB3JRIgLiHUVXGB1Tm/O4CXdU8o03GsCDDVUqS7BsWGuuzW6K6yiA4KyxC+PYOC+OSG4zKKDYsmgI464WzugE2KDCRkMukwKDwSgcUrFU1z8vum20IpFPMsU+vE8lYRJSxjZ69Pi+Hfa5UPXWrdPNk/Zl9AOcKqgLRmCKaCt+vZXVc07JSlD89B2rfsUD9m+U5NpUpjBPD8IaJJtDm9VxQUClGj9f7ezkpw/Xqq6/GhRdeiJtuuglvfetbceGFF+LGG2/EE5/4RPzyL/8yXvKSl+CKK67AhRdeiGc84xkACAF997vfjWuvvRaXXHIJbr75ZrzjHe9wdb7qVa/C5OQkLr30UrzxjW/EG9/4RufKPvPMM/G6170Or3/963HZZZdh06ZNuOqqq+65p7+XSpOxJ4RoNFxPJHPWPSWHxUEDq5VVDVdRF55vLknUPchozJRvg5RkRIXRsrQw1z+62uQQnCLtwlWPGI4NK2+0Bf0CAGn0arATJW2++NY8+aX3wwqalMGZaDLr2XDdfWQSN+97GGKJpRMwTkYZrrVocr/4hfUjMTRCVYGmlJxK1DN1seG6mk5gfSmL31WTHJaSdRkdui6WkDEQ8aZGshEV1gVAZPGmRtjxmXnDtaxpgyZtcpHHcd1//Y9bcaQ6z96fNozDwqDVSgxXI9z90ixRpOtqgEbjPXg+G5AWGdjpeLWGengKex+iDYxFzPn74AC89HsMC3sf4j4XDmXi0mhMNBimNpyR2q3qv7NsUFSP+/7D4w1tFvU5ib7Z4FuTNiUyb6YFbLR+fBVp8Frj3Xp8SMeZOjTPBYpSW8OV5nfi2JaYyI5EdZWVT+caNDb6q6iMMzYzVVeXUEpgUOjVjXdQX7VdAgLagIa9IiVQFH5jQZuxBlWBAFAIUWDXJtmQza9BBSNN/U3nYYSqAB0bFBI3HXoaou9DNIMH4ebWJcxYpSjW+LVtyq36QlJzQ5R/XDmrvUR9wOBPg7JCWBcBD6pmuAo7jpuXcwp0XOld3d/LSVEF3va2t+Ftb3tb429XXnklrrzyysbfzj33XFx33XWNv3U6HVx99dUj73n55Zfj8ssvP5lm/puXlYzGlSSyTsRwZXT1p7lfk9HbVFLDta7j2oyqpetSqr8IWKpAgFz43TM/X31CputWNpRZ8Dw8hXbM9exIBjmU9H3I7sK47cGi1KhhWp8g2YCI224aVuzmB/HpQGXtLGew1DrB96VokKxyUlDJBAnExigbd2G9OqCVjEZcU9TARIvLSqWOp/iu8tJe8YaprgnJmrvh/Zjo4OsykJFWuVISEAm6IQEjsghxbcrmExZGXNNj/cLfTAgy6orSi767PjCxLFGEuDZkImL0JnpaubqucuYQ17AP6HtMjUvKLOddr2W1srwZu0JVOBZ5w5QYIunYp9+bDFfj6ml6lsaEElgdcU37gO8XzkmcxY2NhcxmpEqHgXbIl9UwtVXwXJkriWGhMSgM2rmwyLvGYFjUDJ2iEhhvjf62AUZc2VAWaErMUBTpt9BctJFOmi3P6kg4ZeEKvU6MuKYbrxh5ZyUJLt47569xYzhFuRsQ13TOMfBt2nskQ2li2iCL/affQpzy1c6TSTcxNcG3SSLMsthqNFyxKohDOuCI5iTaEDYl45G1VNwGdR1Xej6bMa/hnjR3xscMVkaG70/l/xL7+75VmoxGADV+aYq4Nhmg6XVNhusoo7gJhW1qa1pOjCqQohtoMIob0A0RUwWcERVMkE2unpWyhVA9o9DGeDJUFuEN0UYyXMMLGW303KO6himnKEzvF7eBjOn65FtPDAhknPbWoeth3XUjsXa9Rf9EbTIUCL2Q3r0ZG67xTMcJAXihlI0oXqUTlBuMnK5irFNnRSUUgicdV9NgvCd9IBrGRrJXkNYdHLaJEdcsoozYZBiuXwzlDq99Nr7hIc83rLusEoMT1vCo6bgKxx9ODdXMuV5jA40lc3y74zStQP37kczzjQxXi7imKFeQVY3kvlb+9sgdnKRS5Q1TsuGtUQWEQM1wTTRh0yJlvc8ZKT4RgfX6lKeSOQLROJDSoCgbjCHjN5KpBi/gqQJFadDKfK55kr6KB3FVNVMFwlKWBm07VnLW+A0NLQUMS0RG+KhCyUb882qj4rok10V/Z5Iyaa2UjSlrogpIUfMUseEa0TMUyZLF6U7r/WECb07lvrFww9QAHhBN3L1jGisN83LyraXJcVqtZsPVBHSJpuIyZ4WovqWfpRQVSnwRbtYJVMkDa5bnO2HR3qQ1oHmraQ0VWJUqcD+xax8wXO+FMsoADQ1CPu9kEVcOxErv14SuNh07kbKa4aoki8yvXlcd3ZDxoit5t+53w2UVI2YQdle7wg19wgN/jFxNieC5EkA2g+mJYHJAffttDKCyEEmoI0UaKV+untLS8APErUXTwuwQV8n1hc9iVu0DKZr4ncQDixFXi/A1UAXCYhC6CuucOne/yIBgIyqtKS7UA+mmJs6cVen4YdhwjcdUHXFN78bpTlN0AyI2WKjNyrljpdAWbWxqvW1nVuf5ZpnAD3atqz3zsDS1BAQhsteyGZIcYteYgAB17q+gdJmhYV7vA1qE61SBLNl8xZxPKYCywe1Yq9vE36yQqM0R9c0RI/3pxk7U+KTR/ZqSU0ibNGCFd8V/p0cIcQ3bJC2lyc9NRVnfbIbJKijJRFxvnkuUpSHEteUN1/6ggBF5dG5ZmWgT1VTKSrtNDnHARfR4mZIYFj51rH8+///+mN+w0DeQ9GcNceXgrKTuwJBUDcL+UtLYDH/wnqnYaDNGxfOU0+EO7wfXTykvl+upGtKDG/i5c1SQEQcFchEypgpkSjmt4bCsxnGVdv2KNuGi7iVxmfsSMEQbFSGu3lBupgooqdEfVnVKVSNVIH4e1s69r5cHDNd7oZyM4ZpyXJtSsp4oVaDpWHq/EymrG640GaXPV58smpiM8YeZUgWUQp03yWTzJvvPPVsd7XTcxgRNAYCZqRRxDRplYtfSqOw9qVEsEE/kVHR97UwM12c+ZjcUlpFnbCzU39PN+x6GQ/3TVzSipOVupby31IAIeXnuWgmY6L6GkJLg/dSMIcfzDSZ7NCFfDZN606IUGJdKUf70cAQpZ7gGmwWQARxxc5MFSFqXX2y0CSAJ0uNAQV4YpTA2i1u9+WE9KcqdN/CBAUJh2wlVQAdUgTy37ubQcDX8lPZ5BWrojRCreyTomRqyh4m8lkENQtIGz/5dNRrvvjCSGqPO7Pr1xxqpAqJOpWkKeoyexfZLHXFVNcQ1HbMpfcG2NjqmVIy8K4mRiCuPn3Yrq80ReUbZ0oqS3qVSCgYG130lxx2LT4jOJY7rCg8NrzxAbbR9ED6FNTZraaERG450TCFOP2yic5QUKCrhjGClYI2hOuLquMBS1jajxLtPvUdwiiz+PG5TCgQ0bWro2NMeXWIqOxD97r6FZPpJs/kln5U9JqPNCX8zjiqwEuK6whzRRJfwHsKgD5wyRtoHcb/wGiOga2MOIArNcGQg3cpjDKLJF3jfKw8YrvdCOVHDNTVUT5Tjmhqpo9DVJt7riZQTpQqsjrg2BWcli5nbzdJ/lRQok50okdAbeJNB1U1UAUaZUncMAIeqUf3U1qjqYGfPqFpYeDJKXWD12bCBTJWUi889gjHsRp5xPSKoj0q/7KBfTa3oCmVjIYqM5eChhj7IAyOKJrRwrGi7uPh6mlKppuOANxCruaQI5U6nH+HQZt7ARNc09HkzeB1vmJhHGaPOAmlwlrD0AYe4SkPcxpUMwqxOzwilw7gYMMc1mROMlxojGTRvlGaZqvWBR5SC5xMNnPN0o6XqdAka33GgIlMFeOx7Q3lkF3gFgeAYeUDqVIEmxLX+7aWGcvw7bxaaOK7x96hRH2NNHNf6ZjrkFSpVV3IAYkMgDawD6PsqSk0u/paVMjTAcq9uGlQV3MZ1VKkqz0tv5YTGhzVxQGMduJWQIh5IJgkCaurjsgwoXBIYNiKuIaWqKTV2Pd2yQH28KsmbqOBagUbEla+bmRSYbd8Ztb3RK2N8W+JjaX9LFxTIfWCCTU0rzxoRTp0aymmtUjam5w3nVzqmaoYrf4+pR4mua0ZcpTSNChAAGtYPUfvrAcT132kZxXEdRRU4EY7ralSBE1UVOJFyIohrfeKrlxQBtS2L3aqBcUh11xdmATht11HFBWc1GJIxl8ovNP7aJpdUiDay0RZTHFJkSDRMtGgw0MLgE65LG+kWLp5cwrp/4aFfwZpsd0MfpPU0UwVSbiPQxHENUGhou1lg1GkEz7cmL1RHN5qKgcBh89jaMU8VkDYyNnh3ggO2/DVNri2T8CXcApSOOxEjGYy4cgCVFNZgWXGzgJoRlWcSs5NLtXOLCmi16rAdvw/ypsDVlTdwXKWsB4MQgpUGkSXIlxJIjTbqg6yOuAaGHFMTVkOUjE0d6+4nURt3hOrHRn0jx3UVZY6RHNc0uAd1xI6OpwcSw1UJGJE5XqGSQNGAOocBnFLW3eR5Rrnti8ogzxQ4kPCMzf1am8oKyFfhuFbaeAUK1SCHpSSKMg40o3b6uSsOSk2MlgScCBHXTImRygoh4lrbMElRCyaklKYxEEGX5jU3eQ1xDTwL5E2K7+c2cbXNSfwdN8EJNplz0CYJEyjQEOKa9hmgV/HKNFOqRK0PeEOWcs6RUNK0Ie+asP9On0IKoqek6HiKcjeV+0vw1gOG671UQmOTy7+1qsBIbk/y9Z+I4doYnFWr+USoAsl/lURVJVHTnNt6VY5rGuFOC2UavQrEhiu7OqNnCRBXLzMV8rTq8lu0O07ahdEMz7BN2mRopYhrcAVF9a88sfiAmOCYspSGFG0EIsI/yyX5FhriTQbGexMPrkYVECaSEqJS7wHTKGjiURjVEK0vFSggLpyQG7ujvjFIjTYpAahxjLeTY4HrXEmDskQDb9KXJsS1lSs06e2UJWrBWWHgpRDE04wNVxE9JHPj6ohrokmbjJNM0SIcBahlAhBZgvAwyuSN9zqvOC5N3w9xZePNrUo2R4A3OOM+QbLoxn2ZKebUhnUTRzKeIpq9HfVniccr1eED9xh9FIFBKCQFVMWGQNzOVkYc16oyyHM/X85MDPGkUz8TnUtUgZWXYxbtB0Ld2OApJFBUdWUFE4yptzzrJpx/6u21tjb1cVHJ2HAt9AiqwOjB4WMB/DEBNi6DsahAiGsUNNtM9XD0MtkMKKTfB023dY9dzRtoEqpAZj0SHBOQswdERHWUI3SO3bPJuhqKEqJBDks2BKjVx7CxG9c9xcV46TW+vZf9Z40D5eOgpLGBdHE5ITks8QDi+u+6jDJc7wkd1xNVFUh1Y5s+riaJrLCdTW1SkiJAV6cKADVulUgi8dmQdBxXyjqUGkPVKiietO69VLAeSYS759KuQBUQMZeKjZPI2GwQdG+aZJqMttRwlWy4WqOmSVWAkLbVROZlDQVmke5o3NkTIqqABCK9KOhIU5AQ5tXdgIQuNHFckyAAITCLrydP4JG23KoKIBl36ThIwvgAMKLtS+Yi6uvjYO1UuBlhQ87fb3WOq7QLni8UqJP48AwpFLRb8feYzhMhP6+JKsDBLvE3FHsIqA/q7UyN95RfTn1AFWYOSawjrmSUmuTvZGFWdaqAkgZoRFzTDfCJaOeeCOKqGxDXBjRXqGQzLQCh3PdBmbNSWpBApXXUd2nJM4mhpQqEMmhlUdVQ7mFhVqUKaO15sKQpmmxOMklUgYSpQp8Rva/TNvYw0eqiyaCPpaBo45i5+dlSBdI2reIm50C6GtpYowoAEDHiOio4K5yX03Hu+aTBdaa+hTENc1LKjSfKSOba1OQBEYKCF1eKqxNNwAdTBYJGZZlEkZ0ej+GGTWGIHv/zD/3xb//QuD4YFnXPLdW38hgTkI2b7vtaecBwvZdKk+HaJIeVZs5ajSrQNPAaUdEGg3OUHFZqCIdBXc1117VBgQaTrTHIIkVhEsO1iSogWFUgbXxQq128I1REsLZjuHg2GK4NyIwxqLnlIm1QwcZC3M50oWymDwCx4Sqhka1IFSAkTKzIUeJMLxEtQMoarcPr065CFQiMRNFgYDASnbqtm+WwVi8h11ApSRuYsJ9EsyZkvX8T4z0jWkDYB56i4g+SweKNLSlHUQVCVIZQ0vC9tHIFJYZ42sa3R1cVlYgMGJI4q6M+jGq1ckZcY+O6MUL5BAyIkX2gwjYBYdAaI66191nbLdTfVU1+SwIQMdJO32v67TUlCQjbbSPQEyPcJMipGEHTaTKKI8pI8n0QdzT9rkhvWq1gseQtZakCMad+WOpEhs2gPzQrGsGADc4KaD4mSfqQKYlS15UVjBEui1KWy8bI+LRkGT2zD85qogoIrIa4KtFMGUnl2wh4yCPjfRT/2SOuo2QKm5VAYo5rs7pEalyGVBrWQo7uJ8grsxrimn6zTfrauRIwchLf37Emqr9pbeLLugHrxMWJCEp2UkeUgTpVIOlAIWDQQJy9j5UHDNd7qfy0iOtqqgJN5UQN1xNBXFOktikBAUvPNPGIkpY1Gq5NqgKO46qYwxciJyOCs8JaRd2IojrrEcP0m19Aa9Grhidbv4Bpo6InlErUUGdZ38S7JwhLegqht7lDXJs2KcIabSutbbyLD08hVCJBG53rKzDahIgQV+7zeDE9UcR19QQEKeeL7+qD9QRRRkIExFIFQmB4JQOHS56pGjrO96nxfANE0CFtK2wWGHENXaitXFp0NTbSSi3QCRFXJr8FJeSFczamsMiGjZ1sSG2c1kvvPJHDyuqGK/eBk8OSdZUPiBEod5J9qh6IqYFELp3GXRrM1oSjB9co1RiICaQ83ybEtZld0jxHMFUINT1fKWADoaKOieps5Z4qEH5rRVFGqCi5dtPgrHorK+29JFkTVUCRrnJdDsu/h1zVA4XcHaP1wxrB/x975x1mRZH9/W933zh3ZphhyGlggBEHFAEDSM6ICq4KuqIgrmBc1Ne4uooKKoZdw8qurBLUHwYEAygiooCyiqKCIig5R4cwTL6h6/2jb/ft6qo7GWaGOZ/nuTBd3V1dfbq6+tSpU6csWShxlKHSlxrWdaebjiK6CqgAVI84MckxKdYeuiw298D2PkbzhrO+OhRsY4RAdi+2TmnUD161jcCILjGl+4BrUZmLMoBl0TaOM/6ulxDm8nf6hdvvxd4HMd8Zw+LqmEinmP7IJbfLStxvWM2CFNeThEzZlIWnsiuJZXEVkCFzFXC5XAiFQuVWXM0ylD45y+nHKP8giLqJJvS+AXC9Wufa74piDhE78nI02k4FzaVp0Q8qr3Sb92mVQQEEy4zNH8jI22FxVeNMzhIaNrmrgDMv3aa49srKt/KzymheT/BjtOejCscYz5FXvswG0j77XbC4qlFLWwkNnUtTBP8109JWku+fkSJTKWLKpculRkOuxfZqkg+eAtHiyhgvd9NXzWkxAxzD5I571VTDt7GkYUCXZljL7ad6PC5jlribV1wjEZRqcTUmUNh8XB0+dZbLCKcQiuu8O7Esrtz7EbMo2vOy+71qiuiiYshcvIasHjjbDafFVWpVgxrnvTHLrUgUZQg+vIpkqNlpjbfK5pykBz70lHPpX1U1XD9KWjTAEx26d3ZiQiHe4qqpDMUhZxg18f513WjTgHgLHigIy3xcWawOm5ErhGFyyYRGu6uAuQqYc3RFZ6zkSCeaaoxICJ1bvpwuDYDihj0gh2wEy77og+ECxKNGy21XQBWYo512xVVicRXaG9WwuFrfQrGtUaM+riX0bQ0ZCBZXsa3WVAVgIQzonBvLX2p1timutk7IgaNmR8u0uNqKo5hxY0tWXAFAtqJhTYMU15NEWS2u9v8rqrhW1lWgNIurmLf4UZI5dTs/LsZxTgso//GMTYSyZ10Gi6uqwLnOs9Vj5hS52H3HZCCPFxhTpiU+rqopA1s5lXgqmhOHghSd3W1aXBrU09HA/ZswHCxYNxwyV1VFVNQdq7+YaQA/Ocvp46qaloSShsDMiV+cDIy4gyVZogCITmfgh3HNVaTE6AvOzoIoX2c0C3fUVYCzNkbrncfpKgD7MRAUFicul2l1jpXC51ER0jV4PLEg84ZPpAKvV+PSnL6w9rzcbmMRVeaod06rujUx0alV2NAkPq6momSPH6pELaCxSAemz3n8DhMgvgtG+yFTThxDrY4OU/QK8jl3tntxhmGzwn1xrgKi4iMfBeI7J1bUDWtFMyAS4Z+xZfkuoYPmdhtRBSI641wFQuEIJ3MtujIXr7iKhdRZ7FnFJu7Z70FBhDnjs/Khp8wwWmJngVflXJqKiK5xk7NCYcCpDIkT1HgsFy5HJ1yYmBT90+t1cWmydjnW6RQnZ5kxt1XntwlOX3JZqEZnPeA7t1KLK1jU4lpCB8YtWlw1TRy1NDqXbq6uGPsdnVub64XM7UNTDZ9pvrNpzBkQ2zKhES7l7asZkOJ6kiirjysAuN1ua7s0H1cZ8RRXWbzX0spZJsVVFSdnySZ5GelieWWuAqZFwhxacg7BlzbMYQawFhoCZxxXiYXE2O1sIG3Lj5rKiV2BsJQ22wcdABwfE8X2r5U3UyCEXUEsDJNskpXML8wZCio229qepgFQoWpivbM3kM6Pj6qYk7NKrneywNrOIWK7JCwZCCnGMebjMe5X9JHUGT+RRu7j6gwkrgG2mfKA/aNkl4tEEYjIO3yxvKMWV9shAb+GsM5/gBgMy5uHmzUt+uhxw7ouTQglpEUVSc76p8is3DyqqsLw37XlJfHzNbPgXQUkvtzOcjOA72SInVvnjHTjOEVQZo3z4vvZGe4vzvBbxrvuXOu+YhZX43+zY+fSFISdS5SqhsJS0mpXHreGSMRwKbCHQQs5fFw1DSgOKZLJWfx2RFdii1VIFFeXSzVcBRxFsrcbhvuJpHvteI/NvKzOu0tBKOy04rFSwxSasZ5LGzmxllV12124RBnYO2jmKBR3PcnEPcXQXB3IOgaKo6NlWjBj74KhMvEKt7AMtQN3VJaCK40zvrZMBgAUFnMdAKIW9GjZZO7KWjT+tPP7IfVVd8Csq9ZsSHE9SZQ1HBYQ87esalcB2WpapZWzLBPGrNAzDiVKUrIy+5N5bOu1O4eozQUIhG+ELXMjPIxjzXFNEy28UqszE3rSdkuiqaDBGQ4LGvcxNj7WzjuWONc7Al2rqgKoHstVwGx8VYnPIDcZxHEpK7KCszFUeKXG5bAomWXn8jIb5BJaCGsmt+NjJpRTApM5uao+MMTWYo8wVRi+dH4EDXuL+HHjLItusx5IlBMusoLzIwjDz6+Er5LbZSwPaj/G79MQYW7e4grjI2O3KCmQuTnYwmG5NXFoMqpIOj9KRiioktsI477tClO0HjijCtj2GfXAEcVAka2RLl/8gx8BEcsl7zSWYnFVRUu/GXu1BKNzLG9JukvSJlkW6ajvKB8OT4kqdiUproarQCQCeD2xmy8O6pySqqkMoYjC1cV4rgKWMu3ShLEcw70mZiW1crIpZIZCKgrAGYLMHGWKTVSLrsplr3cKoh07e35i58+5OIWpcNqtzuZKbR4P3ybJHIrsFld7xARzn7OjBYjjXrLRQOdk29gCFOa7I3cFk/u4xsptWFzFMIXi6mGiDBSVARLF1byeM+rIhC7Px3xcbemqonPhDeMjxp+viZDiepKQKZuhUMiyrgIVV1zFsERyi6vzOFmF1HWd8/csk4+rFrVuOhzfRFeBeMNy4stqftDNcFj2INqqqiCsy/OK5QPhQ2kMEbukljY7Qs8+us03Rs4g2qo4NBmnfNJJa3Bai2CFStLU6EfDFizcnHzGxfhzWFyNMjknGIhKm/mnS4jjyt9Lae4ZLkkHxrD+aeBnqssmyUiUE9WHjzd0j5ZNjfpWiq4CYpxDHgbnR1iDPcQTILqoAKIvqzlBrCQ/RnfU+mcXU6Jfgw4vZzkBjKVTPdxqZbrYYYIKV/S5G3kr4C08JURysCsskjYCgGNiW1QpcYnvRywcljEkblduZYH9xUU1AKergDMwvnWcsMRxyVEFtGh4M/7DbFyPr4sSi6siD8LOW1x5S7Q16YnrEJbesXO7tairAG9FKygC/N7Yu62pQCisSpYKdgwR67EyyYL9GxOTNKG+MhaLDuCx/KYdV3K4u7hdvNuBy6UgFIFDeZfJwDEpUDNdnPjRKmcccLOeeN0OVwHu+fEuMWYYNv56quBSpSiKMBIGR30FxBEte4hGs4zO5XMN5d25zLfCvX9ejzHRja+v0Qgw3PWM/92CqwBvgGJRV4izk97COe1i1+ndMQfN6+fBpUFw67AsrqUprjXfvRUAKa4njUgkwimEABAOh7nZ7E7F1bmSFmAog04XA5nLgXPil/06JmVRXOO5CvDKnzg0KRv2NNLlPjix65lKm1Few+LqnAWvCx8OIU/NiLnHDT/ZJlfE8pLlYdjt+HsR42vyyqbE2gixRy73elVhdxUwy2et2KRGLSdcwPPohAbNIXNbvjL3BSPvWBBtAJbbAP/cRcteRFesySD8XdquB374ychG45Qh6QpGEoMrAGsWsfVxE/w7nQG647gK2JKclhP739wiDI4PvmVxLUlxdRsWV/vHO8EftRrbOqmAMcGQU1xV0dKvw209d9MFgLszTfTzjVm+45cz9j4rQprbxcvTfpyqAhGHm45s0gzAKwuqqhiTpRzKnhPnwheAOSIR/wvqdmlRxYdXhpxL+BqjImLdkCmbMt9Gs24YSpzjeqoRT7ekkQWP25gIFdF5i2tBMbiFL1yasXCAqLjy6Lb6I1te1Yg3rQkdMLtfqCw2sHmM043EUIKjbZNL5uPKor6bJdU7cbEaLdqWSYfJHRZXsW442nDnogGa+aycHSunL7loebdHLIDtOvaYxs62RlENH2Ze5g5fZ5cKXdcE5R1xIt7YJ/KpCu8qoCjRCBeaig5Jn6JhSuy+dD0Cr9dr+LiGeR9XTWGI6LJOm9PYVPLobk2BFNeThHMiFiBaXE3FwUzTNA3BYJA7z3CA5xVHZ96KogiLDTiVZkDuKhAvRJdzwhinFFvDgHbrkcyRXvS3Mq4R+9voDetWw24G+1dVx0dCl3xwbO+cGWOPbwhM9wONO06OfRaqzPdQEYbgmWOdd8Fw5ChjLEmFYutFW8q7zcdVZy7B4mqP3xctqEMGZtinWJrpKqDayhmzJNgtrnwZNdVY9EGUl9PC6xxGNp+7c9jT+QEquYF0S1akMpVZlVPeAelQsy3Jmh0uc5ewD1c6yuOyhh3jN5Nulwqm8K4CAb/xPnu9DsVVVxwfJSYJ9xN77rEPtzg5i+8sKFGrmj0v5yQ9c/lS/l037yGWZtaNmMx03dlhkrk4iL7OcNQDmV5WEYuryyW6IRjF5S39Mh9IQLRIGueL74e1AIEqWlw9rggizFuiNd7rMS2uCuciEgwxyy3IvF4ooorLATvQbb6N1oiavYOmGQuZOF0ynK4CMr9Ip2uS4XoVi2HqcasIRfiwb2rUz7ckg4K1+IfDsuhcIcqyuHqck7P4dsRwMeB9x/kOjMpZmIFoG+Gsr3C0pTCOcXYIzTyNfMw4rvZ22VxZLr4MPB7DEGE/xOMyIslw31WHi4qZP5jtW6HEZG6MCMXy1CM6fD6fYcEPMe61UlUdEZ03KEiRTz6ocZDiepIoi+IqcxVwWlzNsFYlKa6yVbJkiqvs5YoXoisWhF2M42r4UvJWJgVM0iDKndbtDZZxbd1q2I3eqXPtcGN2t1vmJBfFFbW42stpKiWcL5WkQM5iq4oYgtnpA6Zayrut8Y3OqHfiHBTXdT5UkmXV8MSsYvZlGoGYr5hdOTEGu2IlNeKV8sPW5uQsmcJSkguF5SpQgkXJ9DkV1xx3WlxFVwHDWlTyB0+c1BG1OnPuEpJha4eCb3dDiZUzZoGy8nfIwLTelBwOC2Bwcx2txAQzZBE/6qHrimPGsFhfGDS4NT12vxKfQVk4LAbe39Kp1MSOtSugpgwcH0oAXo85YRRRX05bHgqTKgKCHzw0vsMkWRlKbiUuWXGNLUsbS9NUBVDdjtEViTW+LK4C1giI2SYpiOj89XzuMMIs4PBx5fM1J2dFIoCXiyrArE6qmX8oonHWeBm6HpsLYHQawQ1Ju1zGREFn0x90Z+JYcaPoteQWV6fMjbw065l53ApCYceiAUrZ/OB15yhQtI3gLIKOkTczfyf2hWGMbZml2DlpVjaHQebrzHtXm4/WXjecodpMGZQ0KuNxa4a/PuwdA4ApHshGgTw2GRgLdNiNHNHwW5pq+Dnbnn9EjyquGoQQXaoiLgstw2g2ar7mSorrScI5BA8YrgJl8XF1Dvk7rbClLWRgz9NOWSyumqZxK2nJlGLjY+1yKKASKwxUqRVSdaxuBabDF7VOud0aIg6/SZfKoqFZnB+h2J+aVaZYmvkhcHM+fGKBnDPxFVWy1KDjdTY/zLwMxAZShs74Gf2mbH0ecyEKc8jP6d/pkIHD4up2u8RYhFE/X42zuMYsCLH8+TIaDV3JnQXL19DRQDotXwp0gIlykeks5nNwWR8gh2+cMHNc5qLCW4+8NsuZlZcax7rB3Z8Z0D1+Q26EMuM/CIkJUYurYwECxviPkiqbFKi4SnYVMBUBobPgHLaWT3GSKRkyGcTcl8QPnix8nOETLvNxjR1nV95ix8k6kiW7CphWWulSzqXWDTH+NMBPHDP3u+0+ro730a0xROB1WLD4i3k9LsNVgJuUpwgWV7dbRVh3ccqsrNdhvI8265/DfcFQZOQW5UN5zaxrxbe4xraNhTU0m8VVEZa9NTo1ciMJl4/jO2C21fwokPG/c+UsZz0zfNxtiit4SZmdaX6EQOaTrUJVHe4DkLeJvDwVbmKtoqBUq7PXbbbnsWM8bmPRGW6ypMp3mGDem81VQI1ez6Up8Hq93Lda1yPw+XxR1xM4Ov3M6IC6eNk5YdZFazakuJ4kZBZXACUqrs4Z/ea+YDDIvVAVdRUoq8W1NMXVCvbPlUGmtMmtVfzEHQWAbosqoAnxWLWo4urmhoj4D7PHnCTDNQ6qcD2pEuKcyBJV2vhjnLOmo/fHTepggMTi6kTXdd5lRDU/DqaCFbWcOBRXw6pmtyQ4F48wHf5t12IaoCU4ZpNLLE6OhlezFJb4TYQ5IUYIN6aowgedCT5ncsX1/ku+svLRZct6MtE1QXQV4H3cPFaHwG79U7n/AVGJMlYnKlkG0TO5MiUGTFcBh8WVMYdfsURxhRsuLaq4RuuYHSuUkN3iqojWeGnUBsk9ArwMTHeYlKSYsu9UBORuQc6FPqIdJtv13FLFVUgSrFrCOQrkFlfwHVNDQXJ2dlWpYueSdOzM8loRSxT+eGd8ZGc99HpMH1e7i4gRqsjDWVxVRHQ35wcri/5sjNTYj+GjkxgLgril92c+mrJaXA0XGDfsrgLhiBh7NRLhJ+45MecCcD7nGqLtm9gmCTGFJSoKZ7mXWFzty8Ia5YxEVz60neboFBuJTh9esTPk7FQZ7hJlsLjq/Ail26UAiod790xZ2zu8xqIEdsWVRX1cNRQVFeFE7glrnx7RLR9XIwIEbz02lGdbIRigCJal2uErQIrrScKpEJrIJmfZ/UnjKa6lWVyrcnJWWSyu9mUhAdNfT/yYyTqidguPYXFllsXVXKLUGbg84rQkONocI1g73zh4reURxcaBkwHjM4x3L05/S6fFVVMYmGNlINnnNykpCW3atLHlZZTP64nVB9F3VFxcwDk5S1UA58pkSQnmB91uSRDrpRjHNbroQynWRtF/zbwH+3mSxjDOkFSi3563Y4WxqMVVqHdSy2LsPNOSzUcQEC2uMlcBp9ImR25x9Xkcihpj/Puv6FIfV5cW83EV41TK3TPgdBWA/PMjU8JLsjobk7NEZU+wZDpcaTTTRcVWJq/Eh1MW2xWQd2rsZYI0ZrPoDiKUU3FJlWV7c+mcnOWKdqK4NslluCZxnQVH/FmvV0M4ooLpjHMNCoV5WRiKnNshH+c6u0ZHklNcmTi8zxTRVQCwKa5ucRlhI2/nctnGpEOz7fS6VYQi4hLXhtIWX40wJozy76zp1mV304ktQOMoNHPMqAfffulw1DtVFUZljOgdTpcc2SQ9ud897w6iQvBxLSXWs9erRcsUS/O4ASgesdMP3o1MUZjU4qppKt58802s/na1tS8SCSMhISEauoxfbEBTGXQmWlyFDiKTtaY1jypVXCdOnIgLL7wQvXv3Ru/evTFp0iRr35w5czBo0CAMGDAAL774Imcp2rBhA/785z+jZ8+emDhxIg4cOGDtKyoqwsMPP4w+ffrg4osvxpIlS6qyyCeVslpcTeK5Cjh9TCvq41rWyVn2+K/SvNXoMIfTCiN8g+QffZdTcYXOKa46c862jPYWnY7ltqw9bs2I42i3uEY/BKW5CsgsrqJCwTeQRmxQN+/jqoqTkGSkpqSgbdu2tjKZPe2YqwCDBs3hS+W0uDpdBZSoBdTe9p6dEbHyNJHHnnQorqqxsktJcSpNqxP/rPjOmIkYsF5uEfR5bT58jkMs9wxhopAzb76T4TN9XDllz7QkxQ8JZk4QKz32If8R9HsV7rpGmRh05gg9J/OJVmIW1+iZgn+5MySYaYHkLa5y5U/2PvKTsxzHR63czs6CE6eV2xVdrYwbHvWInWl5165kjOhGvDXXPms+libxcYVcBi7u/TAVCPuEUU3oTBtWbrsFlB9G9ns1RHRjVMTeYQlH+JW0XBoQgYdfDpiJozeM8c/KOaHK61bB4JF2znOLE417KsHiKlVcHRZXrjOtRv2fJb7LVpk8UYOCvW5oAJyr+UXz5ZZlZRqcMUwFhIUTZPU1El350HYaVK59Na4nN+5onLIncxVQJJOe7M9Fg854GXjcCqB6HO2yWYftxi1wyrum6QjrxnNJSEjgrhMKhZCamgotGg7L2bm1R4mw7lcodZyGo4Yha0kqxeTJkzF06FAubdWqVZg/fz7mzJkDn8+HW265Ba1bt8bIkSMRDAZx3333YeLEiRg2bBhmzJiBRx55BK+++ioAYMaMGcjJycHixYuxbds23HHHHTjzzDORnp5e1UWvcmTKY0mKazxXgXCYf3njLR3rjMfqpCyuAmXzcVUMyx7nKiAbPlSlFldBcWU6vF4fgNgEI83e0KlAhLkcFiXepmQMBzvWjLd8XOMrJ4BhcbWnGkO4TguTc6a6TBliYMIrxYAShj2N83iLq7GONe8XZsTolEzOYnzv3+kuYSnDXH2RPBTnUpwKi1obS7KmSCyuNh88rlwSP1TZcDA3+USI/wjByq3Y/jVxDk16PaI1TrpqlNNVQFOiQ5qlNOSOCT9GPoyPKhD1t+Q/SjIfVzd8HvvHRd6pUh3KrDN2brzvj+xxlmZxFVwFVLFjF71FPk+FP0/m4xrPl5WzxisKN3RuuqjwfpOmxY5vF6XWeEm9s/u4xiZn2SyujtGcWKeNt7jaFYkEnwsF4Xo4EOwCt7vQOioYAnxee5sLMHjg89rLGpH6d3LuUo7hbr9PA1SfZAUuW7ldmrBYjZmX01UANlcBr8dYApYbflaMyCMltRFejws6XNyzcmnRxSK4746YR4QpsE9Mko0iOEfCXNGRGpUzqsSxuMraZanFlfs68KNAccNM8QYUZwff41IB1SuNZsGPygBA7PvvUiMIRXxwu1T4/X4UpI1AYbFRUzYeaoeUlCK4tKPRyVm8UcWYIxHf+AMAOnMhyJIFGdQ0qtTiGo/FixfjyiuvRIsWLdCgQQNce+21+PTTTwEAP/74I/x+P0aOHAmv14sJEyZg48aNltV18eLFmDhxIhITE9G5c2f06dMHS5cuPRXFrjQVsbhWRHG1RwCwn1eW8lTEVcD4SPATfmShfQDJaleQuQqErOERy7pha2dcLnChWQBzQlUMr8cl+NSZHx6N+yiJDZMxwd1h3ZSFT5FYFgUfV0UyTiex+tj1EbPMJ3KO2fJWYS+qOZOan5ylcB83RQGg8Eth+iQz6uO7S9iupyFquSh5GBCOOK7mh1WIQiEsTsGkipVZXlPp4D5KMourKvFjdFiPYs9KfGdKsrga1htJY+8kzvCzj1slS4fumMgim3wFxe2YpMPL0lxxx77YgKnI8e5rcmcBmQW9JOXd8HHl3z1DLS+5k2p3e3Gm8UiUB2HJTv4wY9KOw+IqeR/l4bAAx4KCAAA9ErL+jvm42iKdML69M9owjbe4Mo0Lcxfwu3AgeJ6RZ7Q9VhQdwbDqsLgqYPA4JkLq4CyuihJdyECzHcF37BITzM60eH8mmqZBZ6LiqjPF0UZEFVeXqcQrCDsiK5idmpJGZUwZChZXxS1Yx51EIoBiszbK1HFZVAFh0qyiCwYF5gi5CBjRF3bltBOuYb8/3eGeYUxQcyrvzkl6mtHxsXfsomqAPWpLzN0lJhenq4BLjSDMPHC7FCQlJQEAso8DedF+UaNGjWKTs+zfK9XwKxaiYDDe/J4faYoCvbEgg5pGlVtcn332WTz77LPIzMzEXXfdhfbt22PHjh0YPny4dUxmZiamT58OANi+fTvatYtVFr/fjxYtWmD79u0IBAI4cuQItz8zMxMbNmyIe/1gMIhgMMiluVwueDyeKrk/U6nT5eMtcY83cVo07ccoioJQKMSlme4D/OxBo+GRlcGel/P6pvJgTzNXxbKfF4lEuGNMVwWrTKaCxpjtPON15a4HLRpWySED1VF2FrIWWrDCWoHZrmd8qPi8jIbd3Ha7jKEX2M4zLQ+KrVxmQ2+//v6Cdggpjbh70eEso8LlY37I7WUy5OJynAfuerqu4+ILCtCjk8sasjMnPHTr1jX6bBEN3u6UryreC4ttG4/XUCDMNNPR355mfgHs5QyF+HptTFAzlKH49ZWBKW4ub/ODYT/HnN1tl4E5TOXM21gxK3Y/xnK/dhm4+HoH8Xmaq4c587anmeG47PXMbOjt9c5c1jeeDGJ5i2lej2YrZwQMXqueA4Axq1kVznO7jbqn63p06A5CPbDLwJhlrznKZZhcS5KBdT2Xwj1Tez6qohsWM1sZVNVIc+ZjP8b0CrDLxRx6d7ZlzrSwUg/BiNeSgbkgiPVcFBhuOorjXXCUQZW0SdBDKA6Jz+rTxR/joUmDjDwQawsNIwGLKsq2MmhMkDmLqvSWDNyAhkJE4LcMAgoiKAqp8Lj59pQpKve+g0XAuHbZ9KW0v+8q9374veaIDSzZ2TENHnpE/H7oLGpZtu7PaE/NvIxFGFzGsLtNvhFdfNfsMjeUMF4uRn11Q1XCwvPj6oGuQEGIa/MZcwnXsr/D5qiTWQ90XY/WYdVxnip9Z7MLGpf4zpiKq/1eIrq8LYt9h1QYIfNsaZqZN19fnecqAKDH5ORSI4gwD1QVWLZsGYbd+gkKiy9GwBiwRP369aGpQDjMl8kKQWZvzxUVjPG6hVs5gYbuX6Hrg7lylFXfqQpK8hc2qVLFddKkScjIyICqqnj33Xdxxx13YP78+SgoKEBiYqJ1XCAQQEFBAQCgsLAQgUCAyycQCKCwsBAFBQXQNA0+n096rozZs2dbbgYmo0aNwujRo6viFi327NlT6jFHjx7Frl27uLQjR45YaaZV2dw+fPgwioqKuGMKCgpQUFDA5WPKxkw7evQoAOCPP/6w0rKzs7m8zfydaYWFhSgsLLTS8vLyUFxcbG2HQiEUFRUhNzfXSjtxIgdQ2uDosdj9RcJB6LqXy1tBEgoKCh0ySEde3gnuemApsXL/cRgMDVBQkBcrQ7AAOlw4eHA/WDjXuF5Eh6pGYucdCwJIQl5erJzHj2UDaI09e3ZZvfLs7CMAWnJl0sMhTi56JAhd9/PHMIZwOGSTuSHfnJxjVlpxUQEYNO48BnDnAcCkywAgB2bSpm0hAPWtOnX8eA4YzkBRYYFNTrkAVGT/ccg6LxIOIaIz6xhDF6uHQtt5J/KKANTDgYMHEHDnAAAO/BEG0JYr07HjJzgZhIJF0JmK/fv2ITfHY8kc0G3PKgdABifzwqICLh/ACNMSiTBHPTA6Tc66kXvCkGckEoHOgFAoaKt3xwBoyDl+1FY/g9D1BIfMVQSDQSHvo0eysWuXOyorBqA19u3bbQ0T5xw/xpW9qDAfDBr++OMwdu2KWGV23h+QjsLCfCEtJydWTqaHEXLIIBwsgu6oL0A6QsF82zNVoEdiMs89cRwRvSny8/Ns5SwEoGL37lg+kXAYkbAu5J2XmyOkHcmO3d/xY7wMCgtyEWEuHD8Wa5P0cCF01oCXOQNCoVi7kXP8MIB0ZB/5A7t2eaNl5/MGgNzcXFGeSjrWHRlqpSmKglA4bG0HwwDUJpzMjx07AgA4dPAAElxGnqFQEIw5n1Vj5OYVCDLQ9dg7evjwMQBNsXfvXmiahuPHjkCHhgKbzIuLCgDFhd27d8dkrgM6C9qeHaCjOQDje6EoCqAHkZsfwomcI3xecGHfvt2WPCLhEHTF3ibpCEci/DPWGfRIrNw5ObkA0rj21c6uXbuQm5uLUDgCl+Z8R4GILa8j2UcAtEDuCaMO5+QcQSjiRXFx7F0Ph4MIRzw4dOgAAp58o0yO9+PQoUMAOqDQ9r0qKswDFBf27d+JwjzjfTx69A/uPAAoLAwBsLURejFCzO0oN0PE1r7mnjgGhqY4YWuXVUWHrqtCGxEOFQn1wFkGIB3Hbe2NrjPokVhdDIWCCIVdOHLkD+za5YrKQOfyKQ5GwJCCoqLYtzA/13gXDh8+hF27iqIyEL9N+fm5UBCwfWeLEY5oOHhwP1ITGSLhIPbs3YczrjXq2b59+1BUmI+iYg1FtvcjFCqCzjTs2ROrr7rOENFDDnnqkna5bPpOVWGfuByPKlVcO3XqZP09btw4LFy4EBs2bEBCQoKhoETJz8+POhYbFtb8/Hwun/z8fPj9fiQkJCASiaCoqMhSXu3nyhg/fjzGjBnDpVW1xXXPnj1o2bJlqT2DRo0aCb64LVq0sNJMq6i5feTIETDG0LhxYyutfv36UBSFy8ftdiMpKclKMzsFTZs2tdL27dvH5Q0A27ZtE9J++eUX/PLLL5g7dy4ARJ27NesYs6eVmppqpTVIKwAUNxo3amileb0HAEV13G82XG6fIIOGDdKstIKCAoAdRnp6awBAboEKKC7US060jklK3AUGN1qnt0KjBskAAE3dD5fmso6pl2oon6kp9ay03YeNRrF169j192a7BRnU832FvKINSE/vaNyLZz+gaHy5lS3wet0x+f4REe4lKXG3cJ7ffwBFeTonT2f9ca8/wZUpJSUHgAuJif5YWr1DYNDQtFlTpKe3NM5zH4OiOsqJEwgEEqy0UMgoZ6uWLZGebtQTTyAkyMDnP8ClJfi3AIoLGRnpSPAb746q/QEFYeuYYwXZgOJGik3mqSm7hLw9nj1QCsHXKXYQLrdLqBstmht12FAsN8Pr8VjHNGxwAEzR0LBRg1g5ffsBxZnPXvj9XiHvJk0bC2kZbdKtTk3DBhGu7Kmph8DgRvNmTZCe3iwqg0PC/QFAsq2+mrRuFXvXvZ7dKCpyOerGrmh9acmd1zDNkKdhmd4Llyv2jBs1ygWDipR6ybb3/wAAvo3Q1O1QXaIM6qelCmktWzZHeroxPNigwR+8DFJ2gikeNG7c0Cbz7YDqceSzC35f7Hr7jhiflmY2mTdvFhRkFwiI9cXElAFwEKqtDWQMgAokJcVk3riR0WFq1aol0lsabYTPJ7aBYAXw+ROE69115yQr7USR8X1p06YNFEVBs6bHweBGamqsnqfU+0Ood6r6G1wq3wYyAGf5X0br1rcDADzuHdDhRYvmTWx5ZQOKhjZt2lhtuaZtAdRYe+NyZSOi63y5ld/g8cTKUFhojBc3iD5js61pU/Q3BOtfh/T0LOTn54Phd3jcuqOcGxFIiLU3e7KNzoZZzla7ImBKAZJsbYvPa7x7RtuSEi03/35EIsaYdVJyIPZNS9kLAMho3Rr1kox60mTrceFZaa4cqEq+leZx70Iw5OaOUZRcuD2xtCaN88EUD9LS0iwZuLSN8jbCx9dhRS/CBa1+Qnr6hbDTpLHtO65sgscdex+TArvB4EHTJrHvgKYdAoO9vWNgSi4CgZh801sZ39UWLZohPb0BAKDpXvHblOBfC0WJ2Nrl38EUD1qnN0fDVDdU9Vc0bmIorQF1L9LT05FSbw+ghpCUFLteIMH8NjWPyVc7BhV8fVWV3+ByeWxlL7u+cyqpclcBO+aNtmnTBlu3bkWvXr0AAJs3b0ZGRgYAICMjAx988IF1TmFhIfbu3YuMjAwkJycjLS0NW7dutZRi+7kyPB5PlSmpJaGqapkepPMYr9drpdnjtwKGQhoKheByubg0p48pi8aDdObjdru585zXl62Y5Nxn+tSa22aMWPv1PG4VUN1wuzRbngoAfnlMBRGEI8xxPR1ut8aXk8X8ej0edzSkS0y+Rsw7NzxulyOv2PXsUQliabx8jeuJaeZUkNi9GJYu7hhmhKKyJlKZCybYrmdY7vgyKoqxprhsIp6ZNqArs9LMZwDFmHUbS1MBRYPHJjtzqU/nvbhssvN6VVHmLlEG5khQbKKf4RNll7k5oSFWD7ToBA7VlibmrapG0HN+Igs4eUZLAb/PzV1PU5lNBsYEPL7esahbhaNeKM5nrHPnmWl83M/YxDAA8EX9pl2umE+5oqhgujPUnc7JwEwLJMTedTMuLi8XQwNznufz2stpDE3GJvC5Dd9j2/WMmKmOfFhImDwE6PC4xet5PbFnHAtnZvzv92qW/6VVf7QIdHgcz5N/PwJ+0z80lneCX2yTzDiSzjLZ05To5Czh2amx61mhq2zllPn+A5GofyOfV3JSgq1NMn3jzRXQNEBxcbIzJoM6Y1kbSrUzbxW6Tb4MwbCGBL+tjY8uEuJ2x+5HiYbD4uq54113vh9er6Fsej38cZ++eQNSUlKgqircbnd0MhEvT6Z44PMU2OqZ8fzMOuzzuqEzN1wuW5miYcI8Hns9MwbvY3IyvsUu1fH9gBFlgpOB41lFdCNObaye68bsfEc7Yn/XPR6X0CZpKhPfBUXl3isjsyIk+QqE5+eytZ0sGkM5di9AmGlw29pJY3Ur1bYNIBoyz0xLTDQnI7tsefHtj3E9nZOBS2PQ4YHX44LL5YICPerHzZCqbYKqtoLbrUbjntu/TWLsdcOfwtmWMUm7XHZ951RRZSXJzc3F6tWrEQwGEQqFMHfuXJw4cQJnnnkmhg8fjgULFmDfvn3Izs7G3LlzcdFFFwEAunXrhsLCQixatAjBYBAzZ85EVlYWmjZtCgAYPnw4XnvtNeTn52P9+vX46quvMHjw4Koq9kklIpkFUNFwWHZMXyVnPvY0WVQB5wQZwHC9ePDBB61tj8fD+QjH/LxsZYr6d9ody2WrACnQEQqLvjF8PEQXwGITI4yPBh+L0O1SjGDYLv569niE7uhKNHZH/UDAK15bMjEpEtEd6zobpbfjnHxiKmh80HUGOOK4GkqwKHc7jRumOM4xP7z2NAWG0mb/UEpimCr8jHqrbPawK5JZx+EIX0azseXj/qnc5BOP21SYYvm5XGK9k8bThHyyBb/aFD/z1xVd3ICbRKKKEy/gmNQVO7/k5s5ZNzxuBVD48EKaaqyEVNq5AOD3xd51l8aEkDzmB1U8zx5Gi59o5nZp0ln+zqZcgRh03bimWE4uDJNDcB6PCh0ex/WYcL1YOQzMWfP22d0+r2gnka3i5ERR5JOsuBnZ5vLOXJskyYzpiEjc9ezvlbOeuM2FQWzp7mhd5MspWzYAXGxXTWUoDqvcYgNGx5wfFTSihdhkroiyMqIKxLbNNt/tCM3Uvn17NG5sWNQ9Hk90pSc+Mx0eeN22dy36Hpt12OfVoMMDe9bWEswlLHtrfu+4qAIus0Nhe36yqAK6wrU3LlW2kADfThrvrFtYlUv2LojtsiMzSdmci2N43QoiuiMsouPbZOBYpCQhOooliSrAlzEC1S4DjUUXmYh1cMz6HGQp1v2GdeciPoAzvJosyhAzdgjpNY0qs7iGw2FMnz4dO3fuhNvtRmZmJl588UUkJiaiV69e2LJlC8aOHQtd13HZZZdhxIgRAIwX6ZlnnsGUKVMwbdo0ZGVl4fHHH7fyvemmmzB16lQMGzYMycnJeOCBB9C6deuqKvZJRaa42mf7O5VLVZWHw3Lm41QkZZYFc9jIjqyi+nw+a3YiICqusuvJllfUVDGqgKLoCEtm8GafcCjvum1GrxlGx77ijrnKiGaLZ6cyhHVeoXCWqWFaPeHasgbScODnFQFxRSP+fY5ZZRyKq8pb+xVFhfxzFsPZkbVbCqw0RQEUPtqCaRnmL+iCEFIQfJggo4HkyxSO6DDiBZrXli14oHKzUM1lK/nVkcSLu2TylH8jOGXPGULGVKL5IOgMQrxLaXBxuXJpxzmj3u1WAdULTYvVT5+rALnFaWLeEi3J5/PY9ksUVwWQKYBcOCzwqoDHo0U7UQ7F1SFM2WpBgPzjaA9q75Sbz6MCiocLsSRTuJ1lMu/B/r7JFNeyoKlh6b1wH2YrvJltRrYqC7YVgS7Rlj02RVKILmHGdbVHFXCLclShC88YADczXlOBUNAFv8+mBEdla/8e6HBDU2IGC01ToOv8NY1V8mL3YryrrMRwWMboh+T9ULzweWLneaLvWiDBrrh6+QgtqjF5UWhTbZePjSqKChofN1YssxGnlm/zdaGjpzgMCmq0DeQVV2d9NSZ0Oa/IoEjex7Buj9WrcYqkx41o1A27IUl8141vWiwtMTqbil/VUbw20yNQFF5xZXDHJh4rMcXVlI2xEpvj+6xBWBzHXGSGv6CzxamZVJnimpqaijfffDPu/vHjx2P8+PHSfR07dsQ777wj3efz+TB16tQqKeOpxowQYOdkhMOSWVy7desmXFtm6k9MTLQmBADGcFNxcTF3jLAql9nw2NNUHbri5s5ToRsKkQN7khkOy8Qc8nMG+4aicavbqCqgR+wfb6PRtisnCT5RQZN9uI3ICrYGRKYQOpZSNS2unDVOEgnLGM4veUamGDvTPsRkphlWGT6AtCYNp6RpMiu3vSMgliEcYZxSahyvOTo7KncvmlUP7HmLQvC5gwgjUUiXrZxlXybVGWvRlDk3vK/qQoPs/Jjx91QSvCy9bgVQvXBpMR98jxaBzmSh5sTc7BY0w+ojduxKtbg64t26NOOZuzRn3XcM7UFHRKJElboAgUMB9npU4aOrKaIi4Hw/EnxinGP7fVn3F6dP1yxxJ4CM6PV06MwtHCNbgMBeTgWAEIqOManFNTkpNm/C2UaYSq1dufJI6rkiWXHPKIc9gDxDOKI5Vs6SjICwRCRqBdwxMour3IJecj03znNkpvpg62fBFe3MJPhN9wMNTOFXNFSji1NwozJMh2oLCWgprlzIPFPpiuUlDYfltLhquvDuCfG1Les4397J4msL/RcmXznL3jF2flE8bmPxCH4USGZx5d+PxOhoIGfFlyjvjEX4918FmOK16qIC3QrvZirULpeCiMPi6o6GLrSjKgxhWWTcWmBxLXnsjKgwpr+qLN2krIqrMx+nIhnzS4y9YPZIDCayIeukpCRu4pzM4socL7S1zrs91qqmg8FpbWQIh8VrKk5Fw6a4mkPFvKIlDtVpGiQ9Zr6B9EtcnaWBrnVdWINb+DA7LISWxdXes5e8TYZVVEx3HsOXUVTeDxxPjCrvsettOnoWirwX8CcrKtyaeEF+mFMsQyTCAMdHgjk6IlAYdy8eyy/N9kF3LnMKwOPSweBUPJi0PtotrlB4xdWqBw5rvKhEyVe7Ks3i6lRoTOXCLnNjFbeShxMBAJvGc4qrGY6Gg0Ugi/ubwLkKOGTgcUVj2dqvDdFFRYkgUlZXAZt7htNi7rNWc3NYXIXOgsaV01wBzV7vuGcbRY/zcvTJ+N7621DwJZZMiRXPzbk9QDAeKYpuTVi0Uz81NjrjXOY44BeVDHGlJNPHVaK42lwFXCoQ0l1IsMlCZr01wrDxncSIQ9NyLo1t5VeCxdXMW1RcvdwCCG7L4mrUYb9XA1O8vOKqiBZX58pLsfi1sTRzfgBncY3jKqBysjPCsNlxLituur3whhYI75kCXeKmIlfauG+GGffRvBe3Ah1efnVGmcU1TseON3zILa6cq4DL8Ec279nuKmAq+W5NQUTXRKOKUwZKnBGCmq+3ntzJWXUZt9stKIBmuolMcXWmV3QBApl11ZkPACxZsgR+v9/alllc4/m4uji/MFHRUZWI1FWgdUZbPkFicVU1Xjlx3lM8X0N+aFlmcRXloqoqvC6bkqGZMRltRXT4uForZ3EfM0l54vjn2XE2FPYJPSZ/nIg685cWDB9wLBkKoZwyy3DEYXH1uHRA9XPHqOAVCNniBn5JkHlNUwR5KooKXWKJ9nnsdUh1WLljKxmZeD2KYE1xfsxMSvNxLSzk39fYymt83ZcprtnZf/AJh9+Az/eS7Twm8c+LxHHf4a3Oim3I2O3SBFcajwuCv6Wq6NLhdXPikx17UPsEP//MvV7R2mjUc8e9KLwVz+USO3blsbjaI8eoimyImH8/zPotrgLGy8Xt0uD1iVFpuLwclSchwZxIY5O5zFVA0RGSuTTYlS8NiOguroMntbRBg6bwiyKIrgKq9F32lKK4xrO4apq9A2NaXI120ePRAMUnuAqIK7bx4yixScK2kbDoJD1+4QCxnHp0cpaJ1OIKNzQ1dow5SZezuGpiGwHEqXuK2EYIy3/bTvR5FDDFB7eLt6qLrgL8apBG/WHcPBGZ5d2IKB7L260xw4c3eprdVcD81rndKiJMharaOz6AU92TLRrEzJAdNRxSXE8SHo+n3BZX2ZC/THF1zlKXRRCQIftINm/enNuWRWSI5+Pq4hoH0eKqKixqyYsx/3EFF2TxCm6/fr1s9xL9UNqHOayhJYdVVKJAlLauPGOiJt2vbz9s2VfyB8+pDFmWYW7yiTgZzPCXLU1x5RVsc1t0ro/XuPFIRjHBGw1Ehb7n+e2xbn8BEB3S97hEBUdVGMK2D3MgwRtNt1tc4ymuYl2X+bV5OFcBhxXPJ3YWPG5NOjlL7uMqptkpCvLvmddSXG31TtOkH7y2GXx4paZNmyI5OdnaNoYr+QLEC+ptzsgHTBnE2hGP24g4YX+eHpdYIFUJIyJxaZBdk1NcAw7F1Rwmt13Q65G4qDj8ka1Rg1IsrvEU1z59+lh/y5bsBByjHVabZMtbcUHXGnDnNGhQH1261BfyCtgGqJo0TIL9/QhEFVd7R90jGbYoyjuMwnBASFeck2uYwn0H7L6lVtmZyim8vx7uDPjEY2SjPD5JB4E7D/LzdFv7bRoQAlEl0+91wVyQwMRYatjlmMDpHJ0TV/Py+4x2w7lUq5MIc1hcNdmS2jo0NSbfxOizElyjHCMEoWAR8vOd8eDl/p3MZqnkFx82LK6G4hrLy1xelUPh3w/TXctVihVfUxUw+8pZ0XfdlLHCIjbFNfZd1hlvVfdEo9LYUSWuLboekU7srmnUfNW6lhLPVcBu3ayoxdU5xOoMq2XiDOQ7YMCAaEDo+HglypdTcTWtGvYXzesxfG/sKIoOZ1CBK/opaNHI4UNmt2hJLK4e8XsXXfpSkl6K4togLVU8x+XifFw9Ll24F4BXnGPLK8bSDpxoKJyTkOCD1yO6bZSEeR3BzxfySQxO3DJFxiGXwx8Wcdv/77rm2LagkbXt94pNgzFkax9+Mi3hSonnaaoi+Bqe0aEDunQ5RzjWwzng8ssymsPW9mpu+GCK/mvyCQYl+2xkZLTny+IR67kWJ0JCZia/VOT+/fsdESfiKa5iOfkJavwEHHc0BJm9wyRTXN1qIUK6xF1I0uTbowqYSoW1bVlcHUqbIHNjFTDrmGgHmFNcveKLnJXVUUgDjHjMJqoSkSqu0slZNrks33IuoPGKpBGWjM+n7zmAzcUVqqrg/mti26bi6uY6TKIcj/2xA0UhsePPWw1Nv9CY/LwS6y1T3NHJktHz1BAQOcEfE2cSYmmT4AxLrUMIenF0ToCBqZibnbbY6ErsFLdbFfytnZN7zG9aUTj27BOi7gec4iqdnKVyk7NkiqvCCuGyKa5mZ5qPOAGhvjKmY/PmLUKabKn0Zg3djuNsUQU8CqAFOBcVo6Muj65iYvZ77Ms7+7xi3XG5VLBIbCRI7C/FfFxNgVrLpjtduByKayhYhGJHZ93tcpUYJ7+mQBbXk4RMcb388suRmhpTnBISEjBz5kxru6yKq8wP1X6+yfbt27ltVVXRqFEjlITM4ipYeKONjH2WbYJPA1S+wvt9Hvj9SSiNRJuRJ+bfyQ8HO9FUBcw5IxKlW53NmHd2ruir4I/jsW2PKwKmiB99rsfsFi1KMtllZWVBDZQh5o8E3qIU/V9mKnGWE6JLiNPY3rB+yY1TIEFsGhTwkw5Myy1vdRbPc2mqYHV2aS6hvt57dRipyTG5M8XpN2m6UDgUCIeLioIwgqIIwHRJouNMe92IWRv5D7FMcfV4xI6OHcMXl3924Qiv1Jj4bMPITh9XTzS2rF3mBRJlyaUUIayLZWrevJV4rC2vgOOjZT5Pu9JmuA+I/rr2+zPeQ53L23h+vPDq108T0gBeQTKsbiUrAlb4LW6UQkdE52W+4iUFqY4macVL4js17eZYWoLl4yr6gNrp2rkt1u4WO8a8xdWI7GpXkOy+pdY5qht6JOayNSxrDT5em8kdE3E1w+G8bOFcWQfBDgNvsQcAFO1AoxR7OfnOs+kHbZ+tb3Qy+bqoKHzHwGwj7LP1TZ9he8cuwS+2t7rDx9UdDQVlR9EL4LJNRjVn6/OjMorEl5whIcBPGHW7PWjQUDQ+dG4fe480zYXiolin34yewRlfJBF2AL6+mvW7pE4jYBhydN2muDoUfLurgD1Ors40x/vhFpT3/fv2Am5+RCKrYxYymtV8J1dSXE8SL7zwAjIz+YZmwYIF3Lamabjhhhus7XiuAk4Lq9frlSquVREgWGYldlpc/dGGx65Ebc1uI/gHZbRphazW4ofSyf89bBuKjX7weN9G+fCzbKC1NBEE/MCD1/Fpl1zIv6helw6m8g2p4Wtov45RTnujnZTID7MCwM0jFeQVVqwhsFvaTJ862QfTyVc/HhPzKmcREiWKqyxWL8DXO9NCZ8fjcUPV+A9OeqMQmjfgZfzMrU4FjPfF81uuArGbSUkEoDoafEVDMCSx4JSy3nanDOCy3rFtc4KRuwwWV00tuSk1QvLwx0QihpLtpFWrJrYtXnENhl3RSAex+8sPisPTLpWBhSXPwivWUXvdSEpKhF2R9PmiHTTbB9NYmMFZD+Sh73gfPnG/TJa//5+CNk3FdCf2jl2TBqYVL5Z217Dv8NziHtw5Ffkom77ynI+rZBJikwZ+sP0pQvrqb1fFyqwZ0UDsrgJSiys0TuE1wpKJik1+UFT4vGVSXB2C//Fs9Hp6qbVphsxLTIgqsJoGgHHP0LC885FHXGoIId3RM4gUch1X0yrKldkjvj+6s9MmsZw6La5GG8F3pv0esZKl1a8HHOcV14YNUtG6tcSNxLYkvTNWr9drjsrwSqkuaSdl7lr26BLGd44vq9ulQbdZXJ1+4qrtvTtQ3M3KJwI3XFpMwZbJt2Onjtiw+bCjjPI44DUNUlxPEqNGjSr3OfEsrk7iWVxlx5aXDRs2CGlOxbVhqvGRsH/QZcP2zRuIaTL8EouDz2tv2MVzIvBBZ2KjXRjkD87kV9OE36vgiQklv5ked0SwHgPy2ZZ2BeKvV2r47xJ+/wVZFW8F7KGlzOHjsiiuRRFJ6KlyFiMpIApdUXSpJYGzjktcBXp0vwD/28lXkMfHHUVGm5Kt8Qwa1zkyrX92macmiRVP1xrix/2iMtewURNu+7wO/P6s1go+eMJu6RcVV1XiixfwA41EQxuHzyv64oZ1fkEHAMhdoiBgC4fhnBR4dlvTCmy/vlimjRt+BtpJ/AYlurvduul8j/2WzJ0WVx4FEcGf3XmeGbLOzvlnAs/d6nAjacVvh8OMU2CsctsEk5Yivq9eTYxlXRFi8VHtHRjxuHoJIci875wRPYx6HasLMveaiK5wixT4vIrQQWvAPoceaSGc63KXrLhCcUPXnQaKCHSdj0/KnRKVARcSzOOCMPlNDaIg7FRMeZeYekmi4lq/vvgCNUhLQJOWsQbc73cJ0UkUPZ/3E42KjGuT3GLdSQz44Pc049K8bqA4xLs6XD1QNAjZO1uWxdXNl6G0dtLELmdZG+12a1yc84DfGblHFxaPSUpwQ2cert7J/J6TAl5A4fMrDsm/tzUNUlxrEOZQMxf/MY7i6pz5D8hDYJUXp18sICqujdNEB3ifSyzPGw9VXGkzh+cAcL1Sk9+yz4EQYQlAcZBvkDfNLb8VOkE2dAddHn7LJpemDSsu/8MLxWsm2BopnyR8yrnpW/HDLt63Ejlfo8tZO4S8yqu4JieKwjUsriUP2bKIWA8YFMFA59LKUiaF8/syLaB2mQf88okEoYhYfpeL/2B+/9+S64ZPprgqYoSEY58opYYgap/RFFjPdyh0pgkWV9PCFTuGXyXLnLhlrwcZTSWmThaShtqSrInCWcycddy08Lg5f3ZJpwaiPzvAu3UAAPuK3z6rrYKzHEFGhDIzcLEsTRL9MdkZlmK+AA0bJKMqsXeiDmYXCftvuzIAT+4zAJ7m0i+77E/W316PC86lN2WuAg0aNkX3rinWtuGKxSsZHpeO4ojjGW+5CWn1HinxPoyVPvmKsHXrVrRqFRsdk8V6BvhOjsftFizvLk2HHhKH5e0jNfWSxXbS8Kvkn993MxvD42psbQf84vUUvQAum5HBjEVrb5NkE+aaNK6PszL6c2mJfvH9eHuys43gF7VISTKuwyuuolsQwIdvM7HXg9QkYMMb/DEjR4wAUmNtqhmRwX6t4mAEdleapEQPdMXHda58knfW5wXgGFm8ZpCC9mJfqMZR+bFlosowFU/7SlZlVVzHjx+PtLS0Spfh+uuvLzX8ljnUY48/2K5NYzgJ+BUE/BVTXu3+PrJZtwkHH+HCN5nIFjwoLzILloIIwhFZj9k+BFZxxbVhiph3os3qaSoL9l50n/abhXP2fNIW/3n6OiG9vK4CSZLlcnfmX4AcpZuQzlu+vMDRT7n9Pg8q1hhqidh1LGYVSbCszrFDCoKif6cnvBVprl+4tCMfK0hvUj4hWD6uNoVlxx9p0L18Z6E0pRUA6iWKE5pcbh+YYPlywk/OMoeo7d+hQV3F0ZerrhgKFzsipJf2enRsAxz6yDbMGlVck5NjSrdf4scciejYs3u3kO73l+z7WxYYU6S+wAGfRAu30evC8yp9bZ5YGZIbZALhXG5vzwvPx5xXn3aeBJfb1pb5XEI9sIdzip3jQ2ObGd8nscpmJc7HWbaQawCAg69xK6/JUBQFYYdfR9u2bTn3hXhB6O3KUJh5BR9Jl6pL4gfz4dsS43Q2nSQHFE6pP5DbXDhG0Qu4qALWqo62jl1QF91j3C4g5PDS+eIFBQ+PK0MbYTO5ptVTo/nZ54Bo0og3rlIaYVVVkNWaPybB70V9m1N2YoBv79wuFcXFfBtSL9kLKH5OBjL3kWaNU1GvPu+Tc8coBcN71HxfAVJcaxBmw5GYGPtIyGb579mzBwcOHODSZs2axUUsqCiKogiTZnRd50NRRV/A1Hqx691yRTLefbTqKrxdCXR7xPu6YdyV0ph7LqfvVkWuLVFcQ642+KOgiZBu9+n0elRIVpmtMEm2Rsrjjrpn2D4u3377jXBOixYtuPpjUn6Lq6gQpnr2So8N67EP8QVdM4ANl3D777gSWP5CxerGH3kp1t9m42ufrJd/RHRtqef9Q1DU6yeX//qWj6tNU96Tm1HufAAgOSAqe5rLJ7VQ24m3iIddeZct5DDnH3/C7gV823H9RUA7x7c/ssI52UNBo1SJ4poUq1NJAcl753LhvPNERTExUPlRIJ0posX1hw5wFf9e4nltmwF/H1vpy1t0zMqy/v7LxSr2fFg2i67LFiPamDjFt6+aIirg4QivJCZIFNcGiQXQisXOa2krH9mD1peE0/oH8GHAnH7rgLkQjUMxVT3w2IbrK9qXObPlCSFNU4qgMNlEZZvvqH5Q2O9xQZjA2TBFEUY8nHi9Hm6CdUqSGKIvJTEihGEDgOw83vJblrqpqnw9qJfksLq7NRRFRxlTfUejx3gBLcB1FhIkoejSWzZE/Qa1wLwqgVwFahBmg2NXPGRKyNlnn40tW7YI6ScLXdelCrQ9bE/Ps6q2l6a5Yx881S1+ICZefTaa8aEz0aZJCEP7d670tb1ueat+TsPlAHjHyObNYpZmRVGQvajq5GBXXE2/NbvietllI/Ht3LLlVW7FVeKH1i/lISxc8h0A/mNZUMwrFU8++SS3rWlKqTFUy4I5SSI5MVY3/jrhYvzjS/64du06SCe8lBfTumlXBDokfoLtB30ABpcrL9nIwzWXdca5u8QhZzuqIo+QYK8bLVq0AL42Js+Y+HxeNHXMUp79t5JnOsuoF40TZbcqdz1TbJOaNW8Jx1xUAHx81IrCGKA6Iw8UbsFZnc7kkm77E39ISpKCKTdWYbtk8wc0RpPKdprmclhcVV6JOKtTlvMU/PdeBS1tAWC2b1kH4BzuGL/fj8JC3o/3/fffLzVyjIogQnrpn36n9Q8AiiOxm569TOzIuzSI8YMVF+c36RP7xACA7e+U/KyapUmsmEoxFIijFvbOwriLEzF30QsA/p+VlhyQ+ymXxhuPNkGj1Nh9108W3ft8HogTRgFs2MG/yFNuLL0AisK7BaUkOyyubg3FxUa+TZKzATRAarIfUPgwZT6J4upxGT6ttRFSXGsgzpWsnPz3v/9FUVHJH7yqxumy0CgljJNZffKDMRmcn+UBfr8OQExLO6utKvjGbZ9X+WFJANJJJjg4E19t/Q+AW7hkryT2XlWRaBuuV1VR8+t+wfnA3LJZmMvrKiBze7j7rpvRLoMfWspsEcHgPrwy/7e//a18FysBu8+lGckhOSlWtob1xQleiUmpqCfqVuUmQfKF/fqNHtKJkaXhlcxs/uuoBAAlhyVjig8F4RRJ2WIfogYNGuB///tfuctUFpKTjPfQXn8G9WyNX2ceBxCbgf3wOEWY7HZWBj9kW1FatmyNY4X8UIbMyvzyXSd3ANE5tFxWXG67xVWifGnipLVhF/DHjblqOOZN5s+79957kZOTw6X96U8O7V1WHrUYEb1i7dbR/JLrq9TiGs5B/cTYyIIsLjcAtCkt4oMmXltFIeCwuLZI+AWtW55hbbdtm4GPX+JHNl5/UKnQ7Pkh5/MnmUP39u/jup/WAEov7rhuKa+j5zmdyn295ASgYYpt2zFy43GrluJqjpSmJJshwWJlbdJYtAC3bqqg7zmVH6GsDkhxrYHY/UllH8nk5GRuVZ5TwQ8//IBrr73W2l794j4A6fFPqCSqFmtY26an4rn7u560azkJSnqhn/+7DY4ceYhL2/CGwjUqVY1deZStdlWe6GflbaRl7hI9e/ZEz549ubRNb53EKajFe9A8NQK7goR1PdCk4bfWZoJfw7FPeLnc+ielwsORdtKb86GhAENJrAgtmlbM/7xYa4fdeWL6eV14P9sLL7ywQvmXhiw8naqq6NieDxt04yViBftlTtUoko0aN4GnoAp6IpUpQyqQWIG47ErOctRPjBkZQgX7AHThjklJAoZdUHI+Hdo1hrMunnnmmfKDS+HMM9rhjJYVc3lRbX6+/73rOCY+n8Lt/3ntGkQaO27muxY46+EFAIzRMFlbVhbaNjwEgFf+Dm96Fx9vzAVm/8VK27PkHO4YRVFw0UUXcWnJgaqxxPsl8Wev+/PFeOXT47C3Wz8sHF+h/J2TF7M68N9cj0dDYVRxNY0bSYFoSDBbbzM5IIbauv4iBddfVPP9WWWQ4lrDcFqrevTocdKsKWWle/fuuOOOO07pNe2hg9xuN+6+++5Tdu0e3dKBz/i0QYMGCcfJhtKqkmTbcj6yeJflsaKWV3HtmNkYW+fsAtC6fCdWIe/9/TDO7sQraHrOasGHz5zZa3JZ76p5LhX9wMpoUD+hyvK6pMn/Q0rSC1WSV1nod3Y+XFr1KY4RXb6E76nk0EcVK8DX//ahbduB1na9JFH7TUpQ8OmzJdfZlCoUv9frgmQAp0yckRlTeM/rIMrk+nFj8O43fKdmyeL30b1794pd0EZmG7Hzd+E5SWjevIPk6FODbET0/hvPwP03npzrpdXzwd6OeNwu5BcaPtKKakZBMctmc22pApedmgQprjUMp3+g3+8/adaUsvLtt9+WflAV06px9fUErxjWDmxYtV3eonGjWEPdsY0xucZOeZTR0iZsyI5vm9G6XOdUNVdeKk72Ke991BTatwBm/638Zb/1ksOY9zW/ms+ieS9UUanKxvKXS1/97mQy4aITqN9ADGlUG3COUFzYqy+wqPz5NKgH/G961dR9lwbpYhFlwe7rfPYZ4qjfWR074K3/8R20oUOHSstQXrp27QpnyKzqNuokJSUBv18L4C0r7WS2Uc6RJK9HQ0GRIRPT4mp2uO1zUGppsxkXUlyJGscXzysY0O00e9MqgL1xv6y3IlgSmzUABpw6D4o6yR+S+LoVwe9VhI5HWUhMcHPL7NZFOrUOIv3keSWdUo6cMIZxy4uqKrjwrKopQ2UUV7vlTlVVzLiHvxePu2y+wKHlFbNgFy2rWe+C2+1G5OD/nbLraQ5/aI9bQ2FRBJqio9cZBwHEogQU2OLXNk4t3R2lNkGKK1HjIKXVoLRZr+lNFHxRwTBTRNloIImveypRFfmiAUTt5LwOwENimOVTSkUV15xPFWHIeeII/v1QFfkqilWFVxLTu7qpiqXWK4rXoyGviOGCNptwUbc/uH0j+8VGalo2Lt0dpTZBiitB1FAqMpwm47/3nj4NVl3jqr55GHNRaukHErWCDukKppay5PTJpntWxXyGyzKh6XQbkq7peDwuFOUzMD0krJwZL+zY6QAprgRRQ6kqxXXCpfQ1qa3UC+inzTA5UTOYPP7ktgeyiaRE1bHiJVt8Vq8bhUcZ9EgxF/M9d0npiynUZkhxJYgaSlUE7ScIgjhV/KkP0KHV6asw1QT6nmNfZtyL/CIdkXAxEhNjrgGns9IK1JIlX48dO4Y77rgDPXv2xOWXX47vv/++uotEECedqrK4EgRBnAoapijoc87prTTVJAIBP1b8nomdx9KtlQXrArVCcX366afRsGFDfPHFF5g0aRIeeOABnDghrltMEKcTFVmSkCAIgqgbJEYXqTkRrC9dHv50pcZ/GgsKCrBy5UrcfPPN8Pl86NevH9q2bYuvvvqquotGECcVsrgSBEEQ8XD5jMUedF1BamrdmcRZ431cd+/ejcTERG6pxfbt22P79u3S44PBoLBMqsvlgsdTNVPs9Oji6bqul3Lk6QvJoOKUR3YKGPSTGVummqD6UzZITiSDykCyO/1loHibAQAGtn4fjF0LVsUz46pDfmUJL1bjFdfCwkLBdyMQCCAvT7KAN4DZs2fj1Vdf5dJGjRqF0aNHV2m59uzZU6X51UZIBhWndNmlY8+eXad1eBmqP2WD5EQyqAwku9NXBpEiP4BG+M9jvbFr166Tdp1TKb82bdqUekyNV1z9fj/y8/O5tPz8fPj9funx48ePx5gxY7i0qra47tmzBy1btqzWwMPVCcmg4pRHdq1bn55xkKj+lA2SE8mgMpDsTn8Z3NAKiLiA9JMUM6+myq/GK66tWrVCXl4esrOzLXeBLVu2YOTIkdLjPR5PlSmpJaGqao16kNUByaDilC47/bSXLdWfskFyIhlUBpLd6S2Dm+WqUJVS0+RXc0oSh4SEBPTp0wczZsxAUVERVq5ciW3btqFPnz7VXTSCIAiCIAjiFFLjFVcAeOCBB3Do0CEMHDgQL774Ip566ikkJydXd7EIgiAIgiCIU0iNdxUAgNTUVLz00kvVXQyCIAiCIAiiGqkVFleCqGv8997TOJwAQRAEQVQQUlwJogYy4VJSXAmCIAjCCSmuBEEQBEEQRK2AFFeCIAiCIAiiVkCKK0EQBEEQBFErIMWVIAiCIAiCqBWQ4koQBEEQBEHUCkhxJQiCIAiCIGoFpLgSBEEQBEEQtQJSXAmCIAiCIIhaASmuBEEQBEEQRK2AFFeCIAiCIAiiVqAwxlh1F4IgCIIgCIIgSoMsrgRBEARBEEStgBRXgiAIgiAIolZAiitBEARBEARRKyDFlSAIgiAIgqgVkOJKEARBEARB1ApIcSUIgiAIgiBqBaS4EgRBEARBELUCUlwJgiAIgiCIWgEprgRBEARBEEStgBRXgiAIgiAIolZAiitBEARBEARRK6gTiuv8+fOhKAreffddYV/nzp2hKAo+++wzYV/btm3RtWtXAMCKFSugKApWrFhRZeXauXMnFEXBnDlzqizPqmLDhg249dZb0aNHDwQCgSq/d4IgCIIgiPJSJxTXfv36QVEULF++nEs/evQo1q9fj0AgIOzbu3cvtm/fjv79+wMAunbtim+//dZSZE93fvjhB3z44YeoX78+Bg4cWN3FIQiCIAiCqBuKa4MGDdCpUyfBYrhy5Uq4XC785S9/ERRXc9tUXJOTk9G9e3ckJyefkjJXN9dddx3279+PTz75BGPHjq3u4hAEQRAEQdQNxRUwFNBNmzbhwIEDVtqKFStw3nnnYfjw4fjxxx+Rm5vL7dM0Db1797a2ncPl119/PRITE7F161YMHz4ciYmJaNmyJe6++24UFxdz19+/fz9Gjx6NpKQk1KtXD1dddRUOHjwoLevChQvRo0cPJCQkICkpCYMHD8a3335r7d+wYQMURcF7771npf34449QFAUdO3bk8hoxYgS6detWbnmpap2pGgRBEARB1BLqjHZiWk7tiufy5cvRt29f9OzZE4qi4Ouvv+b2de3aFfXq1Ssx31AohBEjRmDgwIH46KOPcMMNN+D555/H008/bR1TWFiIQYMGYenSpXjqqafw3nvvoUmTJrjqqquE/N566y2MHDkSycnJePvttzFz5kwcO3YM/fr1w6pVqwAAHTt2RNOmTbFs2TLrvGXLlsHv92Pjxo3Yv38/ACAcDmPlypUYNGiQde+KouDRRx8tn/AIgiAIgiBqAHVGce3bty9UVbUU1yNHjuDXX39F3759kZiYiK5du1ruAXv27MGOHTssZbckgsEgHnvsMdx9990YOHAgHnvsMVx00UV46623rGNef/11/Pbbb3jjjTdw++23Y8iQIXjxxRcxdOhQLi9d13HvvffirLPOwqeffoqRI0di9OjRWLFiBVJSUnD//fdbxw4cOFBQXK+99lqkpqZa6d9//z1OnDhhKa6KokDTNLKmEgRBEARRK6kzGkxqaio6d+5sKa4rV66Epmno2bMnAEOxNRVXp39rSSiKgksvvZRLO/vss7Fr1y5re/ny5UhKSsKIESO446655hpue9OmTdi/fz+uu+46TrlMTEzEFVdcgdWrV6OgoACAobhu374dO3bsQFFREVatWoVhw4ahf//++PzzzwEYyqzX60WvXr2sewyHw3jkkUdKvS+CIAiCIIiaRp1RXAFDEd28eTP279+P5cuXo1u3bkhMTARgKHVr165FTk4Oli9fDpfLZSl8JZGQkACfz8eleb1eFBUVWdtHjhxB48aNhXObNGnCbR85cgQA0LRpU+HYZs2aQdd1HDt2DAAsK+qyZcuwatUqhEIhDBgwAIMGDcIXX3xh7evZsyf8fn+p90EQBEEQBFHTqXOKK2D4eq5YsQJ9+/a19plK6ldffWVN2jKV2sqSlpaGQ4cOCenOyVlpaWkAwE0gM9m/fz9UVUVqaioAoEWLFsjMzMSyZcvw+eef49xzz0VKSgoGDhyIAwcO4LvvvsPq1astBZcgiJpNnz59OBejqkRRFHz44YcnJW8AePnll4URpXgcOXIEjRo1ws6dO09aeaqSjz/+GF26dIGu69VdFIIgUMcU1z59+kDTNMyfPx8bNmxAv379rH316tXDOeecg9dffx07d+4sk5tAWenfvz9yc3OxcOFCLt35kTrjjDPQvHlzvPXWW2CMWen5+flYsGCBFWnAZNCgQfjyyy/x+eefY/DgwQCAzMxMtGrVCo888ghCoRAprkSd5frrr4eiKJg2bRqX/uGHH0JRlGoqlZyPP/4YBw8exNVXX13dRREoKirC9ddfj7POOgsulwuXXXaZcMyECROwZs0aawJpSTz11FO49NJL0bp1aytt9+7duPTSSxEIBNCgQQNMmjQJwWCw1Ly+/fZbDBgwAIFAACkpKejXrx8KCwut/a1bt4aiKNzvgQce4PJYs2YNBg4ciJSUFKSmpmLIkCFYt26dtf+SSy6BoignrVNBEET5qFOKa3JyMrp27YoPP/wQqqpa/q0mffv2xfvvvw+gbP6tZWXs2LHIzMzE2LFjMX36dCxduhR33nmnsFqXqqp45plnsG7dOlxyySVYuHAh3nvvPfTv3x/Hjx8XPsADBw5EdnY21q5daymuZvrSpUuRmprKhcIy49Y+/vjjpZa5oKAA8+fPx/z587F69Wrr/Pnz5+PTTz+tjDgI4pTh8/nw9NNPWy42VUVZlKry8NJLL2H8+PGVmjgZCoWqsEQxIpEI/H4/Jk2aFLcj7PV6cc011+Bf//pXiXkVFhZi5syZuPHGG7n8L774YuTn52PVqlV45513sGDBAtx9990l5vXtt99i2LBhGDJkCL7//nusWbMGt99+uyDDxx9/HAcOHLB+f//73619ubm5GDp0KFq1aoXvvvsOq1atQnJyMoYOHcrJc/z48aXeG0EQpwhWx7jvvvsYAHbuuecK+z788EMGgHk8Hpafn8/tW758OQPAli9fbqWNGzeOBQIBIZ/Jkyczp2j37t3LrrjiCpaYmMiSkpLYFVdcwb755hsGgM2ePVsoxwUXXMB8Ph8LBAJs4MCB7H//+59wnWPHjjFVVVkgEGDBYNBKnzt3LgPALr/8cuk9TJ48OZ54LHbs2MEASH/p6emlnk8Q1c24cePYJZdcwjp06MDuvfdeK/2DDz4Q3s/58+ezrKws5vF4WHp6Onvuuee4/enp6WzKlCls3LhxLDk5mY0dO5bNnj2b1atXjy1atIhlZmYyv9/PrrjiCpaXl8fmzJnD0tPTWUpKCrv99ttZOByOW84//viDKYrCfv31Vy59165dbMSIESwQCLCkpCQ2atQodvDgQWv/5MmTWefOndnMmTNZmzZtmKIoTNd1tnnzZta7d2/m9XrZmWeeyZYuXcoAsA8++KAS0jQYN24cGzlypHTfihUrmMfjYQUFBXHPX7BgAWvQoAGXtnjxYqaqKtu3b5+V9vbbbzOv18tycnLi5nXBBRewv//97yWWNz09nT3//PNx969Zs4YBYLt377bSfvnlFwaAbd261UrbuXMnA8C2bdtW4vUIgjj51DnFlSCIuoGpZL3//vvM5/OxPXv2MMZExfWHH35gqqqyxx9/nG3atInNnj2b+f1+rkOZnp7OkpOT2bPPPsu2bNnCtmzZwmbPns3cbjcbPHgw++mnn9jKlStZWloaGzJkCBs9ejTbsGEDW7RoEfN4POydd96JW84PPviABQIBFolErDRd11mXLl1Yr1692A8//MBWr17Nunbtyvr27WsdM3nyZBYIBNjQoUPZTz/9xH7++WcWDodZp06dWL9+/djatWvZypUrWZcuXQTFNSsriwUCgbi/rKysEmUqIy8vjymKwlasWBH3Xu+44w42bNgwLu3hhx9mZ599Npd29OhRBoB9+eWX0nwOHTrEALCXXnqJ9ejRgzVq1Ij16dOHff3119xx6enprEmTJqx+/fqsc+fObOrUqay4uNjaf+LECdagQQM2efJkVlxczAoKCtgdd9zBOnbsyEKhEJdXo0aN2Jw5c+LeG0EQpwbXqbTuEgRBnGr+9Kc/4ZxzzsHkyZMxc+ZMYf8///lPDBw4EA8//DAAw09848aNePbZZ3H99ddbxw0YMAD33HOPtW1G8/jPf/6Dtm3bAgCuvPJKvPnmmzh06BASExORlZWF/v37Y/ny5dIFRwBg586daNy4MTfEvWzZMvzyyy/YsWMHWrZsCQB488030bFjR6xZswbnnXceAMNl4c0330TDhg0BAEuXLsVvv/2GnTt3okWLFgCAJ598EhdddBF3zcWLF5foWuB2u+Pui4fpZ7pz505u4qvzXps1a8alHTx4UIi6kpqaCo/HE3d1we3btwMAHn30UTz33HM455xz8MYbb2DgwIH49ddf0b59ewDAHXfcga5duyI1NRXff/89/va3v2HHjh147bXXAABJSUlYsWIFRo4ciSlTpgAwnv9nn30Gl4v/PDZv3rzWTCgjiNMZUlwJgqgQt9xyC/bt23fKrte8eXP85z//qdC5Tz/9NAYMGCD1m/ztt98wcuRILq1nz5544YUXEIlEoGkaAODcc88Vzk1ISLCUVgBo3LgxWrduzUUkady4MQ4fPhy3bIWFhUJIvd9++w0tW7a0lFYAyMrKQkpKCn777TdLcU1PT7eUVvO8Vq1aWUorAPTo0UO4Znp6etzyVAa/32/FmpYhu1cA0slyjLG4k+jMGf433XQTxo8fDwDo0qULvvjiC8yaNQtPPfUUAOCuu+6yzjn77LORmpqKK6+8Ek8//TTS0tJQWFiIG264AT179sTbb7+NSCSC5557DsOHD8eaNWu4UIKl3RtBEKcGUlwJgqgQFVUiq4M+ffpg6NChePDBBzkrKiBXkJgtqodJIBAQ0pyWSUVRpGklhVJq0KCBMHksntLmTHeWSVZuWT4dO3bkFklxkp6ejg0bNsTdH4+jR49yirQT2b02adIE3333HZd27NgxhEIhafxrIBbrOisri0s/88wzsXv37rjX7969OwBg69atSEtLw1tvvYWdO3fi22+/tSzeb731FlJTU/HRRx9xUR5KuzeCIE4NpLgSBFEnmDZtGs455xxkZmZy6VlZWUIYp2+++QaZmZmWtfVk0qVLFxw8eBDHjh2z4jRnZWVh9+7d2LNnj2V13bhxI3JycnDmmWfGzcs8b//+/daQ/LfffiscdzJcBbZt24aioiJ06dIl7jFdunTB//3f/3FpPXr0wBNPPIEDBw5YCunSpUvh9Xq5qCh2WrdujWbNmmHTpk1c+ubNmwW3CDtr164FEFN8CwoKoKoqp9yb2/bORlFREbZt21bivREEcWqoU+GwCIKou5x11lkYM2aMENbo7rvvxhdffIEpU6Zg8+bNeP311/Hyyy9z/qwnky5duqBhw4b43//+Z6UNGjQIZ599NsaMGYOffvoJ33//PcaOHYu+fftKXRbs551xxhkYO3Ysfv75Z3z99dd46KGHhOPS09PRrl27uD+nK8HGjRuxbt06HD16FDk5OVi3bh0X6xQAvv76a2RkZHCuE06GDh2KDRs2cFbXIUOGICsrC9dddx3Wrl2LL774Avfccw8mTJiA5ORkAMC+ffvQoUMHfP/99wAMK/K9996Ll156CfPnz8fWrVvx8MMP4/fff8df/vIXAIbC/vzzz2PdunXYsWMH5s2bh5tuugkjRoxAq1atAACDBw/GsWPHcNttt+G3337Dhg0bMH78eLhcLi4k4urVq+H1eqVuFwRBnFpIcSUIos4wZcoUYTi9a9eumDdvHt555x106tQJjzzyCB5//HHBpeBkoWkabrjhBsydO9dKM1e6Sk1NRZ8+fTBo0CBkZGTg3XffLTEvVVXxwQcfoLi4GOeffz5uvPFGPPHEE5Uu4/Dhw9GlSxcsWrQIK1asQJcuXQTr49tvv40JEyaUmM9ZZ52Fc889F/PmzbPSNE3DJ598Ap/Ph549e2L06NG47LLL8Nxzz1nHhEIhbNq0ifMxvfPOO/G3v/0Nd911Fzp37owvvvgCn3/+uaU4e71evPvuu+jXrx+ysrLwyCOPYMKECXj77betPDp06IBFixbhl19+QY8ePdC7d2/s378fS5Ys4ZbefvvttzFmzBhuARiCIKoHhcmcogiCIIhTxqFDh9CxY0f8+OOPJ23i1Mnk119/xcCBA7F582bUq1evxGMXL16Me+65B7/++mulFlw4Vfzxxx/o0KEDfvjhB7Rp06a6i0MQdZ6a32rUMHRdx44dO+r0utUkg4pDsiMZyGjcuDFmzpzJTSyqTXLav38/3njjjVKVVsCw3t50001likhRE2SwY8cO/Pvf/651SmtNkF11QzKoHDVVfjQ5iyAIogbgDMlVmxgyZEi5jr/jjjtOUkmqnvPPPx/nn39+dReDIIgoZHElCIIgCIIgagWkuBIEQRAEQRC1gnIprsFgEI899hiGDx+Ovn37YuLEidi6dau1f86cORg0aBAGDBiAF198kZu9u2HDBvz5z39Gz549MXHiRBw4cMDaV1RUhIcffhh9+vTBxRdfjCVLlnDXXbRokXXNxx57rMT4gwRBEARBEMTpSbkU10gkgubNm2P27Nn48ssv0adPH2sJxVWrVmH+/PmYM2cO5s2bh1WrVmHhwoUADIX3vvvuw9VXX40vv/zSCjljMmPGDOTk5GDx4sV48sknMW3aNGtVl61bt+L555/Hc889h08++QT79++XrjdOELWVo0eP1jjnd4IgCIKoiZRLcfX7/bjxxhvRuHFjaJqGq666Cvv378fx48exePFiXHnllWjRogUaNGiAa6+9Fp9++ikA4Mcff4Tf78fIkSPh9XoxYcIEbNy40bK6Ll68GBMnTkRiYiI6d+6MPn36YOnSpQCAJUuWYPDgwcjKykJiYiJuvPFGK1+COB1IS0vDZ599Vt3FIAiCIIgaT6WiCvzyyy+oX78+UlJSsGPHDgwfPtzal5mZienTpwMAtm/fjnbt2ln7/H4/WrRoge3btyMQCODIkSPc/szMTGud7O3bt3OrlbRv3x779u1DUVERfD6fUKZgMIhgMMjfpMsFj8dTmVu1MC1jddlCRjKoOPFkV1RUVGfkSfWnbJCcSAaVgWRHMqgs1SG/ssR2rrDimpeXhyeffBK33norAGPN58TERGt/IBCwVjkpLCxEIBDgzg8EAigsLERBQQE0TeOU0JLONa9RWFgoVVxnz56NV199lUsbNWoURo8eXdFblbJnz54qza82QjKoOE7ZHT582HKPqStQ/SkbJCeSQWUg2ZEMKsuplF9Z4iVXSHEtLi7G3XffjV69elmxBxMSEpCXl2cdk5+fby2P5/f7kZ+fz+WRn58Pv9+PhIQERCIRzoJa0rnmNfx+v7Rs48ePx5gxY/ibrGKL6549e9CyZctaserLyYBkUHHiya5hw4a1csWkikD1p2yQnEgGlYFkRzKoLDVVfuVWXMPhMB588EE0bNgQd955p5Xepk0bbN26Fb169QIAbN68GRkZGQCAjIwMfPDBB9axhYWF2Lt3LzIyMpCcnIy0tDRs3boVnTp1kp5rj1ywZcsWNG/eXGptBQCPx1NlSmpJqKpaox5kdUAyqDhO2dVFWdbFe64IJCeSQWUg2ZEMKktNk1+5S/LEE0+guLgYjz76KBRFsdKHDx+OBQsWYN++fcjOzsbcuXNx0UUXAQC6deuGwsJCLFq0CMFgEDNnzkRWVhaaNm1qnfvaa68hPz8f69evx1dffYXBgwcDAIYNG4Zly5bh999/R15eHmbNmmXlSxAEQRAEQdQdymVxPXDgABYtWgSv14v+/ftb6S+99BJ69eqFLVu2YOzYsdB1HZdddhlGjBgBwLCCPvPMM5gyZQqmTZuGrKwsPP7449b5N910E6ZOnYphw4YhOTkZDzzwAFq3bg0AaNeuHe68807cddddyM/Px4ABA3DDDTdUwa0TRM3BHvOYIAiCIAg55VJcmzZtih9++CHu/vHjx2P8+PHSfR07dsQ777wj3efz+TB16tS4+V566aW49NJLy1NUgiAIgiAI4jSj5jgtEEQdxu52QxAEQRCEHFJcCaIGQK4CBEEQBFE6pLgSBEEQBEEQtQJSXAmCIAiCIIhaASmuBEEQBEEQRK2AFFeCqAGQjytBEARBlA4prgRBEARBEEStgBRXgiAIgiAIolZAiitBEARBEARRKyDFlSBqAOTjShAEQRClQ4orQRAEQRAEUSsgxZUgCIIgCIKoFZDiShAEQRAEQdQKSHElCIIgCIIgagWkuBJEDYAmZxEEQRBE6ZDiShAEQRAEQdQKSHElCIIgCIIgagWkuBIEQRAEQRC1AlJcCYIgCIIgiFoBKa4EQRAEQRBEraBciuuMGTMwatQonHfeefjss8+s9EWLFuGCCy5A7969rd/Bgwet/Rs2bMCf//xn9OzZExMnTsSBAwesfUVFRXj44YfRp08fXHzxxViyZAl3zUWLFmH48OHo27cvHnvsMYRCoYreK0HUWCiqAEEQBEGUTrkU15YtW+Luu+9Gx44dhX3nn38+vv76a+vXpEkTAEAwGMR9992Hq6++Gl9++SU6deqERx55xDpvxowZyMnJweLFi/Hkk09i2rRp2LVrFwBg69ateP755/Hcc8/hk08+wf79+zFz5szK3C9BEARBEARRSymX4jp8+HB0794dHo+nzOf8+OOP8Pv9GDlyJLxeLyZMmICNGzdaVtfFixdj4sSJSExMROfOndGnTx8sXboUALBkyRIMHjwYWVlZSExMxI033ohPP/20PEUmCIIgCIIgThNcVZXRzz//jIEDB6J+/fq46qqrcOWVVwIAtm/fjnbt2lnH+f1+tGjRAtu3b0cgEMCRI0e4/ZmZmdiwYYN1bo8ePax97du3x759+1BUVASfzyctRzAYRDAY5G/S5SqXsl0Suq5z/9dFSAYVJ57sdF2vM/Kk+lM2SE4kg8pAsiMZVJbqkJ+qlm5PrRLFtWvXrnjnnXfQpEkTbNy4Effccw/S0tLQv39/FBYWIhAIcMcHAgEUFhaioKAAmqZxSmggEEBBQQEACOcmJiZa6fEU19mzZ+PVV1/l0kaNGoXRo0dXxa1a7Nmzp0rzq42QDCqOU3bZ2dmWi0xdgepP2SA5kQwqA8mOZFBZTqX82rRpU+oxVaK4Nm/e3Pq7U6dOuPrqq7F8+XL0798ffr8f+fn53PH5+fnw+/1ISEhAJBLhLKj5+flISEgAAOHcvLw8Kz0e48ePx5gxY7i0qra47tmzBy1btixTz+B0hGRQceLJLi0tDenp6dVYslMH1Z+yQXIiGVQGkh3JoLLUVPlVmauAHUVRrL8zMjLwwQcfWNuFhYXYu3cvMjIykJycjLS0NGzduhWdOnUCAGzevBkZGRnWuVu3brXO3bJlC5o3bx7X2goAHo+nypTUklBVtUY9yOqAZFBxnLKri7Ksi/dcEUhOJIPKQLIjGVSWmia/cpUkHA6juLgYjDHrb13X8c033+DYsWMAgN9//x3vvvsuevfuDQDo1q0bCgsLsWjRIgSDQcycORNZWVlo2rQpAGPC12uvvYb8/HysX78eX331FQYPHgwAGDZsGJYtW4bff/8deXl5mDVrFi666KKqvH+CIAiCIAiillAui+vUqVPx8ccfAwDWrl2LyZMn45VXXsF3332HyZMno6ioCA0bNsTYsWMt5dPj8eCZZ57BlClTMG3aNGRlZeHxxx+38rzpppswdepUDBs2DMnJyXjggQfQunVrAEC7du1w55134q677kJ+fj4GDBiAG264oYpunSAIgiAIgqhNKIwin5cLXdexa9cupKen1yjT+amEZFBxZLJTFAXvvPMOrrrqqmou3amB6k/ZIDmRDCoDyY5kUFlqqvxqTkkIgiAIgiAIogRIcSWIGoB9QiNBEARBEHJIcSWIGgB57BAEQRBE6ZDiShAEQRAEQdQKSHElCIIgCIIgagWkuBIEQRAEQRC1AlJcCaIGQD6uBEEQBFE6pLgSBEEQBEEQtQJSXAmCIAiCIIhaASmuBEEQBEEQRK2AFFeCqAGQjytBEARBlA4prgRBEARBEEStgBRXgqgB0JKvBEEQBFE6pLgSRA2AXAUIgiAIonRIcSUIgiAIgiBqBaS4EkQNgCyuBEEQBFE6pLgSBEEQBEEQtQJSXAmiBkAWV4IgCIIoHVJcCaIGQIorQRAEQZQOKa4EQRAEQRBEraBciuuMGTMwatQonHfeefjss8+4fXPmzMGgQYMwYMAAvPjii5wFacOGDfjzn/+Mnj17YuLEiThw4IC1r6ioCA8//DD69OmDiy++GEuWLOHyXbRoEYYPH46+ffviscceQygUqsh9EgRBEARBELWccimuLVu2xN13342OHTty6atWrcL8+fMxZ84czJs3D6tWrcLChQsBAMFgEPfddx+uvvpqfPnll+jUqRMeeeQR69wZM2YgJycHixcvxpNPPolp06Zh165dAICtW7fi+eefx3PPPYdPPvkE+/fvx8yZMyt7zwRR4yBXAYIgCIIoHVd5Dh4+fDgAYNasWVz64sWLceWVV6JFixYAgGuvvRaffvopRo4ciR9//BF+vx8jR44EAEyYMAGDBg3CgQMH0LRpUyxevBj/+Mc/kJiYiM6dO6NPnz5YunQpJkyYgCVLlmDw4MHIysoCANx4442YOnUqbr755rhlDAaDCAaD/E26XPB4POW51bjous79XxchGVSceLKLRCJ1Rp5Uf8oGyYlkUBlIdiSDylId8lPV0u2p5VJc47Fjxw5LqQWAzMxMTJ8+HQCwfft2tGvXztrn9/vRokULbN++HYFAAEeOHOH2Z2ZmYsOGDda5PXr0sPa1b98e+/btQ1FREXw+n7Qss2fPxquvvsqljRo1CqNHj678jdrYs2dPleZXGyEZVByn7I4cOWKNNNQVqP6UDZITyaCiPPTQQ3jiiSequxjVDtWfynEq5demTZtSj6kSxbWgoACJiYnWdiAQQEFBAQCgsLAQgUCAOz4QCKCwsBAFBQXQNI1TQks617xGYWFhXMV1/PjxGDNmDJdW1RbXPXv2oGXLlmXqGZyOkAwqTjzZpaWlIT09vRpLduqg+lM2SE4kg8qg6zrefvttvPHGG3VWdlR/KkdNlV+VKK4JCQnIy8uztvPz85GQkADAsLDm5+dzx+fn58Pv9yMhIQGRSISzoJZ0rnkNv98ftywej6fKlNSSUFW1Rj3I6oBkUHGcslMUpc7JkupP2SA5kQwqA8mOZFBZapr8qqQkbdq0wdatW63tzZs3IyMjAwCQkZHB7SssLMTevXuRkZGB5ORkpKWllfncLVu2oHnz5nGtrQRRW6HJWQRBEARROuVSXMPhMIqLi8EYs/7WdR3Dhw/HggULsG/fPmRnZ2Pu3Lm46KKLAADdunVDYWEhFi1ahGAwiJkzZyIrKwtNmzYFYEz4eu2115Cfn4/169fjq6++wuDBgwEAw4YNw7Jly/D7778jLy8Ps2bNsvIlCIIgCIIg6hblchWYOnUqPv74YwDA2rVrMXnyZLzyyivo1asXtmzZgrFjx0LXdVx22WUYMWIEAGPo/plnnsGUKVMwbdo0ZGVl4fHHH7fyvOmmmzB16lQMGzYMycnJeOCBB9C6dWsAQLt27XDnnXfirrvuQn5+PgYMGIAbbrihim6dIGoOZHElCIIgiNJRGH0xy4Wu69i1axfS09NrlM/HqYRkUHFkslMUBbNmzcL48eOruXSnBqo/ZYPkRDKoDLquQ9M0RCKROis7qj+Vo6bKr+aUhCDqMNR/JAiCIIjSIcWVIAiCIAiCqBWQ4koQBEEQBEHUCkhxJYgaALkKEARRlVCbQpyukOJKEDUA+sgQBFGVUJtCnK6Q4koQBEEQpxmkuBKnK6S4EkQNgD4yBEFUJdSmEKcrpLgSRA2APjIEQVQl1KYQpyukuBIEQRDEaQYprsTpCimuBEEQBHGaQYorcbpCiitB1ADoI0MQRFVCbQpxukKKK0HUAOgjQxBEVUJtCnG6QoorQRAEQZxmkOJKnK6Q4koQBEEQBEHUCkhxJYgaAFlHCIKoSqhNIU5XSHEliBoAfWQIgqhKqE0hTldIcSUIgiCI0wxSXInTFVJcCYIgCOI0gxRX4nSFFFeCqAHQR4YgiKqE2hTidKVKFdeJEyfiwgsvRO/evdG7d29MmjTJ2jdnzhwMGjQIAwYMwIsvvsi9VBs2bMCf//xn9OzZExMnTsSBAwesfUVFRXj44YfRp08fXHzxxViyZElVFpkgagT0kSEIoiqhNoU4XXFVdYaTJ0/G0KFDubRVq1Zh/vz5mDNnDnw+H2655Ra0bt0aI0eORDAYxH333YeJEydi2LBhmDFjBh555BG8+uqrAIAZM2YgJycHixcvxrZt23DHHXfgzDPPRHp6elUXnSAIgiBOC0hxJU5XTomrwOLFi3HllVeiRYsWaNCgAa699lp8+umnAIAff/wRfr8fI0eOhNfrxYQJE7Bx40bL6rp48WJMnDgRiYmJ6Ny5M/r06YOlS5eeimITxCmDPjIEQVQl1KYQpytVbnF99tln8eyzzyIzMxN33XUX2rdvjx07dmD48OHWMZmZmZg+fToAYPv27WjXrp21z+/3o0WLFti+fTsCgQCOHDnC7c/MzMSGDRviXj8YDCIYDHJpLpcLHo+nSu5P13Xu/7oIyaDixJOdrut1Rp5Uf8oGyYlkUBkikQiAui07qj+Vozrkp6ql21OrVHGdNGkSMjIyoKoq3n33Xdxxxx2YP38+CgoKkJiYaB0XCARQUFAAACgsLEQgEODyCQQCKCwsREFBATRNg8/nk54rY/bs2ZabgcmoUaMwevToqrhFiz179lRpfrURkkHFccru6NGj2LVrl/X3ww8/bHXuTleo/pQNkhPJoCIcPXoUAMkOOP1loOt6mRS+inIq5demTZtSj6lSxbVTp07W3+PGjcPChQuxYcMGJCQkIC8vz9qXn5+PhIQEAIaFNT8/n8snPz8ffr8fCQkJiEQiKCoqspRX+7kyxo8fjzFjxnBpVW1x3bNnD1q2bHlSK0pNhmRQceLJrn79+pbfdl5eHj799NPT1o+b6k/ZIDmRDCqD+c2srOzC4TCKi4sFA1NtoK7UH03TLAt7VVJT5VflrgJ2zBtt06YNtm7dil69egEANm/ejIyMDABARkYGPvjgA+ucwsJC7N27FxkZGUhOTkZaWhq2bt1qKcX2c2V4PJ4qU1JLQlXVGvUgqwOSQcWRyc7cdv5/ukL1p2yQnEgGFUFRFACVl90rr7yCV199FevXr6+qop1y6kL9OZn3V9PkV2Ulyc3NxerVqxEMBhEKhTB37lycOHECZ555JoYPH44FCxZg3759yM7Oxty5c3HRRRcBALp164bCwkIsWrQIwWAQM2fORFZWFpo2bQoAGD58OF577TXk5+dj/fr1+OqrrzB48OCqKjZB1DhoUgVBEJWlqtqRnJwc/PHHH1WSF0FUBVVmcQ2Hw5g+fTp27twJt9uNzMxMvPjii0hMTESvXr2wZcsWjB07Frqu47LLLsOIESMAGBbSZ555BlOmTMG0adOQlZWFxx9/3Mr3pptuwtSpUzFs2DAkJyfjgQceQOvWrauq2ARRI7D7cZPiShBETYExZllvCaImUGWKa2pqKt588824+8ePH4/x48dL93Xs2BHvvPOOdJ/P58PUqVOrpIzEyaGoqAiFhYVITU2t7qLUWho0aFDdRSAI4jSiqjrApLjWDo4dO1ZnvsE1x2mBqLX885//xIUXXljdxajVkJWVIIiqhBTXusWJEyequwinDFJciUoTCoWQk5NT3cUgCIIgolSl4lqTJuZUB4WFhTXOzzccDnPbdekZ1Z07JU4aJysUR13C/pEh6ytBEJWlqtoRXdfLZHGNRCL46aefuLTc3NzT4tvw/PPPo3v37tVdDA63281tk+JKEOXA5XKdFo0TQVQVuq5TB4SoVk61q8COHTvQrVs3Lm348OHCgkBVweHDh6s8z5IoLi5GcXHxKb1mealLq4OR4kpUGrK4EgTPsGHD8K9//au6i0HUYWSK68KFC/HGG2+UO5+yWPM0TRPSVq1ahUOHDpXremWhcePGVZ5nSdQGP9+69A0mxZWoNKS4Vh6yzp1ebNmyBQcPHqzuYhB1mPPPP19ImzdvHmbNmlWufMqqtMkUVwAlLtFeWzjViuuaNWvQp0+fcp1Tl77BpLgSlWbKlCnIzc2t7mIQZeTNN99EKBSq7mKc1oTDYZw4cQJPPfUUrrvuuuoujsXx48eruwh1FsYYdu3adcquJxtOX79+PVauXFmufMqqtMWzyu7duxdLliwp1zVrGqdacd2zZw++/vrrUo976aWXrL+dk7UqytChQ5GXl1cleZ0sSHElKg19DMvPyJEjue1TOTlr7NixOHLkyEm9Rl1n7969mD59Og4cOIDvv/8ehYWF1V0kZGdnS+M8/u1vf6uG0tQ99u7dW+2L51Tkva+sxfWTTz6xVsosC7NmzcKwYcPKfPypoKa5CpjfiLVr11ppVWVxXbp0aY0PrUWKK0FUAx9//HHcfTLFdc6cOfjuu++q7Po1qRE+nTlx4gQ2b96MsWPHVndR4lrZp02bdopLwjNx4kR88skn1VqGquTQoUN4/fXXAQBffPEFbrjhBjDGcODAgWopz86dO62/y/re2+tKSUpbOBy22qt4He7yhkrcu3cvfvnlFyH96NGjwrWrepJWdna2NN0ug99//71KrxnveiVhTsSaM2cOtmzZAgBYtGgR9uzZc9LLVhMgxZUgagDORhkA/vvf/1p/P/bYY1i4cGGVXY8U11ODqcAcO3as0nkxxkp08fjtt99KPF8267gm+FYvWLAAv/76a3UXo8po0qQJrr/+egDGTPvZs2fjp59+wgUXXFAt5Wnbtm2J+//6179y2z///DM8Ho+1bSpt2dnZmDRpEndsnz59MHPmTACx+nXNNdeUWqaioiKh7u3cuRP5+flQFEVaL9PS0rjthQsXVvkkrYYNG0rT7YrrmWeeWaXXNBk2bJg1RF+aQm63rpq+9A888ADefvvtk1K2mgYprgRRBVTWJ+jWW28V0swPgklVKhmRSIQmD51E+vfvj6uvvtraLu3ZPfPMM9i6dWuJx7z55ps499xz4+7Pysritp0+b7KhxPfee69M5SPKxvTp062/d+7cCZfLWFXd/P9UsG/fvnId//LLL3Pb55xzDrdtKm3Hjx8XImVs377dihpg1qGyKE9t2rTBRx99xKWdddZZePXVV+MqrtXJqXAV+Oyzz6y5IrLvwYkTJ/D2229j4sSJnM+wPZ5rVU7QOvvss7F///4qy68qIcWVOClUNI7l7t27K/TyxespnwqOHz+OpKSkMh07b948rFq1qkzHmopHz549sXv37gqXT1EU/PHHH2jZsqWVdtddd6Fp06alnnuyfWFzc3Px448/ntRrxFPQt23bBr/fb1l5qmpyQ3FxMXRd5yar2Ot0QUGBINf7778fa9asKTHf48ePl6rc2nG73ZYV7OKLL0YwGOT2BwIBQemoCo4fP15u5el04fbbb7f+/uijjyylIl6bdjJm3Ldo0aLc55iWfLvibWIuQCC7h0OHDuGtt96yjisrBw8ejDuh16m4HjlyhHN3MHEG4K9KnN+TmuDjumHDBlxzzTV4/fXXuW+IvZ158MEHwRjDhg0bcPfdd8fNq7i4GEVFRdb2+vXrsXHjRmubMYb169dXyUjRyYAUV+KkcMUVV+Dpp58u93np6elYsWJFuc+L55sk41//+leZhrPKSlkU7WAwCMYYJk+ejA8//BCA0Tg888wzwrHm0oLmx+Sbb74p9aPw2WefAQDGjRvHpXfu3BmA4Yqwd+9eK/3dd9/lymb/gL799ttWw9igQYNS760yXHrppVIrYlVag5s2bSodYi8sLERRUREWLFgAIL4PaHnx+XzCakP25/fss8+id+/e1nZZOwdlCTvn/JiHw2EcO3YMixcvtiZR7tq1C7quo6CgwCqXvXw5OTnlnnlu5/HHH8eQIUPKfPzRo0drRMik8kwgcnLVVVcJrhqHDx+25OoMzA8YbgSBQMDa/uCDD4Rj5syZU6WdR3udDIVC1rbpGiDz32SMYdOmTVbHxzlxx1R4qqrzoygKN1T+xBNPYODAgcJxZVFcnZ21spKdnW3dj67rOHDgQJVagssTZUHXdYRCIXi9XgDGPT377LPWfme7lZ+fj59//hn//Oc/4+Z5xx13YNy4cXjhhRcAAPfeey8efvjhctxB9UKKK1FlFBcXWy/2hx9+yClK5aGiK4CU9bxff/21VOtWVdO2bVsMGzYMmzdvxvvvvw8AWLZsGTZs2GAdk5KSAgDWR3/9+vVl7uUPGzYMX331lRBc3Jzk0KFDBwAQZrcXFBTg3nvvxcUXX2ylPfTQQ5g3b1457q5i3HHHHdZqNGbv35zMVBZrcHmQWVPNj7Wp7Ns/So888ghuvvnmcl/ntttuA2B0ZuzKGGOMs5baI3GY9aE0VFWV3oeiKJZFyrk/GAyifv36AGKdu9atW1tLc5ofdvu7s3TpUvTr169MZZIRT8Fevnx53HPKEnWhPBbx+fPnl/lYkyVLlnDvQXmYN28etm/fzqU9+eSTJXaGzHfbrHeXX345IpEId5/jx4+vUFtl+tg6sdfx2bNnC/tlbajpf2/WlcWLF2P9+vXCcQ888AB3nZ07d8Ln81lpX375JWfl++abb6y/s7OzkZeXh0gkgk2bNnH55ubmCrIFyuZ+4ff7pfMHSsI83pTVzz//jDfffBOqqlr1+oMPPsCjjz5arnztxOskrVu3Dvfee6+1fc0112Ds2LHo06cP53dsx9npu+GGG6y/t23bJj3n6NGjOHr0KO666y5s2LAB+fn5eP/9960JwOa9V7eVOR6kuBKVwj6U0L59e85vKRwOIzMzk2usAMRdScX8eMksD3ZGjx5tNW5//etfrRe9rC4G//3vf4Uh19deew0zZswo0/kVYe/evYI1Y8iQIVzDkJOTY1n/ZDz11FPW3+vXr8e0adO4j5w5ZGeyefNmIQ/7xwUwhotfeukl7jnu2LHjlCwf+PLLL1uNbufOnTF16lRccMEFnHWqoKAAt956q3Rm8qJFi8pczs2bN2PixIlcmjN8j9lYB4NBTJkypUL1wfTvCwaDXD3WdR3t27fH4cOH8eijj0pnmJuW+HjIFMInn3wSgOEzaMc8zq442Ucl5s6dCwCWAhKJRDBr1izuY/zVV1/h73//e9zy9OjRQ9rBiae4DhgwIG5e8bA/9/IMDY8aNarc1wIMpQww6kK7du3KdM4PP/xgneNEpmybx7344osAwLkBBYNBqdW8vMgUd6cSIlOqnc+tsLDQmmBoKq6hUAhnn302N3x/9dVXc6M427ZtQ5s2bTB48GArbeDAgfD7/VZ80ldeecXaZ/rZ3nPPPULn2x77tqCgwPqemEPk8+fPx+jRo4V7MSmv1dW8L7NtufbaawEYbYiZ17fffiu0txXFbl1et24dnnvuOWv77bffxg8//IDVq1fHVcDz8/O57Q8++MB61k4f1UmTJgkRbTp16mSNsJl12XweJ2PVs6qAFFeiUtjDluzZs0cY1tqyZYvVQPbo0QNr165FkyZNsHbtWuEFMl0E/vOf/3DpTiXzvffes3rgL7/8svWimw28s0FmjEnDhNgVhYULF1Y4JI9pvaoIzo/JlVdeWabzXn/9dfztb3/D2rVrrQbWGQDc7rNkYg9Ybefnn3/mhucZYxg+fHiZylIZTLeIzZs34+GHH8bvv//OyeTYsWP4z3/+I10FaMSIEUKjHY9NmzYJa6Y7P9KmHB9//PFy3QNgdEwKCwutDoD5AXDmbVfEnM/LVAIzMjKwb98+TJ06FZFIxLKayOJkPvTQQ0La6tWrrRnY9nfBlDUAa4jwnXfescr3l7/8BY899pj1bn399dd49dVXsWTJEqkS//PPP+PQoUNCmDaXy1WisrV7924h9nO8IVjTWmyiKAouvfTSuHnLMK36W7duxc8//4wtW7Zg5syZeOKJJwAYrhumHEwefPBBbNu2DWvWrInrLnPxxRdj7ty5JSpGMjl06NABS5YssZ7BjTfeaO2TKZMVUVyd74VpgbWPgsnqk/2dYIxx22bZzPKYI0OjR4/mlFYAVogmGTLXh3iLF1x00UX4/PPPre0xY8ZYvptm+bds2VKiNX/p0qXS9HhLMpv3bL6z9nbUlIGmadiyZQvmzp2LdevWCRPcysK8efNwySWXcJERHnzwQeE409JqH52z45wYfM0111jv01/+8hf85z//sTq4//rXv3DppZdizZo1WLZsWdyymW5+gwYNKscdnTpIcSXKjd2p3t74aZrGNeLmPrNHuXr1asu39PXXX8eECRNw4sQJ6Qs0efJkAEZD1b59e2RnZyMzM9PazxjD1KlTuXMWLFgATdOEIZVdu3ahVatWwjXMxm7v3r0IhULQNA3FxcW45557rI9dWTA/pH379uXK55x0JPs4lzfQs9lwmo1qOBzGP/7xDwBi4x9vaCkeS5cutT5469evx1dffWXt27lzJ/bt2yf9iD7//PPW/2b5Dh8+LAyBM8awefNm5OfnW/Itza/ULE9OTg7efPNN6XNZsGCBoDxEIhGu/DLLrFNxPXz4MPLz8wXr7rPPPotZs2ZJr/23v/0NOTk5aNmyJRISEuLex+rVqwHAelZATDGwBxG//fbbsWPHDhw/fhyTJ09GMBhEZmYmbr31Vut9ikQiyMvLixsKKBgMWvdg96XNzs6Oa82zW4BNq/zf//53HD58GG+++abgNhGJRKz63L17d26f3eJqPj/T2tu0aVOkp6dzPnrmcaaF+v777xfCJdnfJfO9Na3GduzP3MQcrn7yySdx8803IzMzEzfeeKPVcf7kk0+ETrQZ2/bEiROcomVOvAOA//3vfzhw4IDleyhD9r5s3rwZd955p7Vtfybm+7Bp0ybLz9j5jtjbGSfxOgCm1dRk586duOWWW7i0AwcO4LXXXrO2ly9fzl3brLt25Q2Qv1tmp3fRokXCvj/96U9ceZs1aybtgEYiEcEX9NChQ/j3v//NXd9+z6tXrxbaVPM7cfToUe4dnjRpEt59911hIqH5zHRdFyYnOe994sSJ6NKlixBSTMbrr7+OG264Aeeddx4Aox6UxQ3EvFa8ttIpu59//tmSyZYtW/CPf/wDDz30EHcvssluQC2KLsKIchGJRNj27dtZJBKp7qJUGwAsGXzyyScMAAPAfD4fe+aZZ1hubi4DwG688UZr38aNG62/AbCkpCRue8WKFWzevHlcmnktAGznzp0MACssLGQA2Msvv8wdC4D9+9//5s5ljLHi4mL27rvvMgCsoKCAFRUVceeMGTOGAWCpqalc+vbt29mDDz7IsrOzGWOM6brOpk+fLshi+/btQpkZYywUCjEA7N5772X5+flCWSvzs8vlyiuvtP7+61//ygCwIUOGsEgkwv7f//t/5cr3L3/5C7edkJDAALBIJMJ69+7NrrvuOu4e7fXB/H/Tpk2MMcbeeust61zGGPP7/Vb5hg4dyq6//noGgLlcLqEcqqoyAGzXrl3swgsv5PZt3ryZu+6xY8cYALZjxw521VVXcfsAsHA4zACwWbNmCWX/8ssvubxbtWrFbr311riyBsD279/PiouLma7rVtp7771X4Wf53//+t8T9c+fOtf4+99xzGQD25JNPWs9G9vviiy+k6RMnTmRpaWnlLmPbtm0ZADZq1ChWv359tnnzZtanTx8GgD311FMMAAuFQpZcH330UQaAjR8/3srjjz/+4PJ88MEHWTAYtJ51jx49GAA2cOBA65j58+czwHgX33jjDe78xx57zHo+69evZ8FgkO3Zs4d7Zrfffrv1d0ZGBgPA2rdvb+XRuHFjxhhjHo+Hy/v//u//rL+XL1/OALB58+axZs2asa5du7Lrr7+ePfroo8zr9bKHH36YrVu3jgFgCxcuFGT3j3/8g9s25eb8mW3mjh07BLm/9dZbLBwOs99//916tgMGDGC//vorKygosOS+bdu2Mj/T5557Tkh78803ue358+dbz8X+M9veDh06MADsiiuuqHD9//333+Pu++qrr4S0rl27CuV94oknWMOGDa1nPXfuXK4dUBSFRSIR1qJFC/avf/1LaCPeeecdIQ0AO3z4sHD9l156idu2f8fMZzNu3DjGmPHNcLZX9t/f//536++zzjqrVFlNmDCB277zzjuldQwAmzFjhnXvZtq//vWvCj2jmqjvkOJaTkhxjSmuQ4cOLbHC2xu0e++9t8RjzQ+Y/Wc25kBMcT106FDcPOwvZvfu3VlKSgqXZv9olfZbvHgxA8B++ukndvDgQda/f38GgB0/fpzpum79nOdt2bKFHTx4UNronuzfpEmTrL9fffXVSufn9/sZAEshuOGGG6x9jDHWuHFjtmLFCmvbvu/MM89kgPFReeedd6rsHj/44APhevafvY4CvPLkPMZUZuy/ESNGcNvZ2dnS63z00UfW31lZWRW+n9tuu63E/X/+85+FtM6dO1foWpdffjlr0aJFpZ/Bu+++yxo1asQAsCZNmnD7cnJy2CWXXMKAmGIDgB08eJA7bvz48ezBBx8s0/XMd8/+a9euHQPAjh49ygCwlStXst27dzMALBgMWsc9/fTT3Hn2D7nH42EPPPCAkLfzHADs2muvLbWczg7M+eefz6ZNm1ame7z00ksZAKHjBIBT2u0dbLON+vrrr1lxcXGln+s999zDbcvKcip///vf/4S0Tp06xT1+3759DAB7/fXXma7rLBKJWPvMv+fMmcN27dpl1RUA7OGHH2bBYFAwhlx22WXCNW6++eZSy52ZmckYY5bi27t37yp5Ps7f7bffzubNm2d14kp7dvE6TaX9aqK+Q4prOanriqv5If/1119LrfCDBg2q1ItpV3ydFlvZz27hrarfqlWruO29e/eyjh07MiBmjTldf6biKvt1796dAbA+zFu3brX2yRT6U/W7++67LQtYvN/06dO5kQL7b/jw4dz2qFGjpMfdcsst1f58yvvr3bu3ZcU7Fb+mTZty167KvM844wwGgKWkpDDAsKibFlr7yEtJP7fbLU2XWSMr8jvrrLPYfffdZ22bIxbl/cWrg2YdLq3zU9Zfz549T1ndKMvP7ACV9WcqmrJOu12JBWLtl/kbO3Zsma7xyCOPlOk4xhgbMmSItV2ZUZl4vwYNGrCPP/6Y3X///cI+ZyekMr+aqO/UCsX16NGjbNKkSezCCy9kf/rTn9h3331XbWWp64rrN998U+0NWnX+7FbbNm3aVHt5qvvXoEEDIa28H5yq/pXVkleZ3znnnFPtsi/vz24Bre2/1q1bx903bty4uPsqYx2v7K+qlZerr7662p+D7BcIBOLuy8zMPOnX9/l8QppTcT3Zv3/+85/c9iuvvFLl10hNTY3rFlSVv5qo79QKxfX+++9nU6ZMYYWFhWz58uWsf//+LCcnp1rKUtcV188///yUNgD0q5s/pw90Tf0lJydXexnoV7N/559/PgNEd4nT9Xf55ZfH3eecY3CqfjK3oNr+a9KkCVuzZo213bBhw5NynZqo79T4qAIFBQVYuXIlbr75Zvh8PvTr1w9t27aVzh4lTj4XXHBBpc53roNdk+natespuY45S5aIIQuOXhLp6enlvsbZZ59d7nOcyGa2x8M+e9zv91f62jKGDBmCIUOGCKG/TEpaBrKm0b59e/Tq1eukXyfeYhcVCb7evXt3NGnSBI899piVNmbMGKxatSpuFIiKLHRRXVx++eUAgDfffDPuMXfddRe3ba/3JUVgAGA977KEpPt//+//lXqMiWwBg/JSE94d+8IgkUgEycnJ1ra5+El5cIZfdC7qcMUVV5Q7z1NCdWvOpfHbb7+xQYMGcWlPP/00e/HFF6XHFxcXs9zcXO5XWFjIIpFIlfxCoRDbvn07C4VCVZZnbfvFG6IaMmQI++abb6zZnnfeeSf78MMP2dSpU63ZoB9++CHbtWuXdU6vXr24PK655hoGgDVr1owBxqzTYcOGsYSEBMuHzf674IILuG1zVrLpA3f22WdLy3rixAnWsGFDYUasOekDAFu0aBEDjAkBl112mTVb2pyxaf6cM9/tP9Pv1u531b9/f5acnMxeeOEFVlxcLB3G+tOf/sSWL1/OmjdvbqXZJ418+OGHnL+i2+1mzzzzjLQM06ZNs4b027VrJ7g4OCcwZWVlsR9//NHadrlc7MUXX2QALP/eeD/zucX7xfMrNH/ffPMN+8tf/sIKCwuZx+NhHTp0YI0bN2ZffvmlMGv7jDPOYG63m51xxhnshx9+EPIy/R+XLFnCgFiEAfNnThq76667hGfw8ccfW0Pre/fu5faZM/offPBBK09zhi9gDFXaJ3X98ssvDAB7//33WWZmJguHwywSiXCT6QB+ZnEkEinVT81sg5588kkGGMPnwWDQaqdOnDjBALB69epZ58yZM4eL5HDjjTeynJwca3KQ+c689NJLwuRL2UQ3+8+0Pr/++utW2jPPPMP5Pzt/pizvuusudv7557NXXnmFtWrVigFgM2fOZKFQiLVu3Zp5vV6maRoDeFeA559/ns2cOZOrXyNHjmQtW7ZkAwYMYIDRxmzZssU6ZujQodzzueqqq1i/fv1YmzZtuPbio48+YikpKdZElylTpjDAmOA1f/58bqKUKdPrr7+eLVy4kP3222+Wa8D69euttnPixInslltusXx+PR4P27x5syCXO+64Q+pj/u9//5tt27bNsuIuXbqUtWnThrVt21bw22zTpg179NFH2fPPP88AWG1JvKH8e+65h/373/9mq1evFvaZk03NCVD298WMPHDo0CH28ssvs3A4bE0gnDFjBtuyZQvLyclhEyZMYJFIhF133XXs5ptvturXhg0buHpv/z8/P5+lpaVZERPs7ejChQuZoihcVIjDhw9b9QQwopzEq3s//vhjmd29LrjgAhYOh9mYMWOsOvL888+zm2++mV1yySXsiy++4N4h8zd16lRpfmZ0j7feesua6HjppZdacjP9oS+88EJuUtWBAwfYnXfeydatW8defvllduDAAQYY80EikQjzeDzcNZ999lmrXnbp0oXLKyEhgX399dfW+VdeeSXbtm0b69evn3VMdeg7ZUFhrGYH7lq7di0ee+wxLlj89OnTkZeXh/vvv184fsaMGYK1YdSoUSWurEFUjFAoFHc1m4KCghLjWtphjCEYDAq98UgkAk3TwBhDYWGhkF+8wPv2PM3zXS4XdF3n4s6Gw2FomsatQW1fhrEki0s4HEY4HOaWNHRenzEGVVVRVFQU97h4eZdlOcNgMAhVVbljzXNDoRBcLpd1D8FgEIwxuN1uqKqKEydOwO/3IxKJwOv1WsfZZWKuZ+92u4VnY+5LSEiw5GrerynLSCRi/WR1oaioCJqmlboikv1ZhMNh6Lou3Ld5nFmWYDAIj8dj1aHi4mJ4vV5LZuY9OolEl9x03q/5DM2yOOUbD/P6hYWFgpXVvga5WV+CwSBXV4qLi+HxeLjrmHna77u4uLjUOmbWDcYYCgoKrHxNOYbDYRQVFUmft5P8/HwEAgFr27w/U+5OzHszr1lcXAxN06CqKvLz8616FK8umDEszf3O52TWW7MOmtjfvdzcXCQlJVn7iouLrXpkl29eXh5UVeXqbF5eHhITE616JCMSiUBV1VO+TKa52lZFrxvvnuzvsf1dk7X7pnyc55e1TGYcbbM+BAKBuOfn5uaCMYakpCToum4do+u6Vb8BucXcrIeKolj11Kx/Zt0xY0Lb4xHb67Su68jLy+OsnXaCwaD1jprnhcNhKIpitU3xnpe9DpnPRdd1FBcXlzhKY5cVY8yq6zV1ydaScK4CKKP0r2M14/f7hQC7+fn5cR/i+PHjMWbMGC7N5XKVOxh7PHRdx549e9CyZcu4q32c7pgyyMjIqLMyqChUf2IyaN++fZ2VQVmgukJtTWWg+kMyqCw1VX41XnFt1aoV8vLykJ2dbS29t2XLFowcOVJ6vMfjqTIltSRUVa1RD7I6IBlUHJIdyaCskJxIBpWBZEcyqCw1TX41pyRxSEhIQJ8+fTBjxgwUFRVh5cqV2LZtG/r06VPdRSMIgiAIgiBOITVecQWMtbMPHTqEgQMH4sUXX8RTTz0V17+EIAiCIAiCOD2p8a4CAJCamoqXXnqpuotBEARBEARBVCM1PqoAQRAEQRAEQQC1xFWAIAiCIAiCIEhxJQiCIAiCIGoFpLgSBEEQBEEQtQJSXAmCIAiCIIhaASmuBEEQBEEQRK2AFFeCIAiCIAiiVkCKK0EQBEEQBFErIMWVIAiCIAiCqBWQ4koQBEEQBEHUCkhxJQiCIAiCIGoFpLgSBEEQBEEQtYI6objOnz8fiqLg3XffFfZ17twZiqLgs88+E/a1bdsWXbt2BQCsWLECiqJgxYoVVVaunTt3QlEUzJkzp8ryrCpee+01XHbZZWjdujX8fj/atWuHW265BQcOHCjxvEOHDiEtLQ2KomD+/PmnqLQEQRAEQdQF6oTi2q9fPyiKguXLl3PpR48exfr16xEIBIR9e/fuxfbt29G/f38AQNeuXfHtt99aiuzpzuTJk5GYmIgnn3wSS5YswX333YePP/4Y3bp1w6FDh+Ked9ttt8Hn853CkhIEQRAEUVdwVXcBTgUNGjRAp06dBGvpypUr4XK58Je//EVQXM1tU3FNTk5G9+7dT0l5awJr165Fo0aNrO2+ffuia9euOO+88/Dqq6/i73//u3DOggUL8Nlnn2H69OkYN27cqSwuQRAEQRB1gDphcQUMBXTTpk3cUPeKFStw3nnnYfjw4fjxxx+Rm5vL7dM0Db1797a2na4C119/PRITE7F161YMHz4ciYmJaNmyJe6++24UFxdz19+/fz9Gjx6NpKQk1KtXD1dddRUOHjwoLevChQvRo0cPJCQkICkpCYMHD8a3335r7d+wYQMURcF7771npf34449QFAUdO3bk8hoxYgS6detWbnnZlVaTbt26QdM07NmzR9h39OhR3HbbbXjiiSfQqlWrcl+PIAiCIAiiNOqU4gqAUzyXL1+Ovn37omfPnlAUBV9//TW3r2vXrqhXr16J+YZCIYwYMQIDBw7ERx99hBtuuAHPP/88nn76aeuYwsJCDBo0CEuXLsVTTz2F9957D02aNMFVV10l5PfWW29h5MiRSE5Oxttvv42ZM2fi2LFj6NevH1atWgUA6NixI5o2bYply5ZZ5y1btgx+vx8bN27E/v37AQDhcBgrV67EoEGDrHtXFAWPPvpo+YQXZeXKlYhEIoJyDACTJk1CmzZtcPvtt1cob4IgCIIgiNKoM4pr3759oaqqpbgeOXIEv/76K/r27YvExER07drVcg/Ys2cPduzYYSm7JREMBvHYY4/h7rvvxsCBA/HYY4/hoosuwltvvWUd8/rrr+O3337DG2+8gdtvvx1DhgzBiy++iKFDh3J56bqOe++9F2eddRY+/fRTjBw5EqNHj8aKFSuQkpKC+++/3zp24MCBguJ67bXXIjU11Ur//vvvceLECUtxVRQFmqZBVcv/2HNzc3HrrbeiZcuWuOGGG7h9n3zyCebNm4dXX321QnkTBEEQBEGUhTqjZaSmpqJz586W4rpy5UpomoaePXsCMBRbU3F1+reWhKIouPTSS7m0s88+G7t27bK2ly9fjqSkJIwYMYI77pprruG2N23ahP379+O6667jFMDExERcccUVWL16NQoKCgAYiuv27duxY8cOFBUVYdWqVRg2bBj69++Pzz//HIChzHq9XvTq1cu6x3A4jEceeaTU+7JTVFSEyy+/HLt27cJ7772HxMREa19OTg5uuukm3H///ejUqVO58iUIgiAIgigPdUZxBQxFdPPmzdi/fz+WL1+Obt26WUpY3759sXbtWuTk5GD58uVwuVyWwlcSCQkJwix6r9eLoqIia/vIkSNo3LixcG6TJk247SNHjgAAmjZtKhzbrFkz6LqOY8eOAYBlRV22bBlWrVqFUCiEAQMGYNCgQfjiiy+sfT179oTf7y/1PuJRXFyMP/3pT1i1ahUWLlyICy64gNv/0EMPwe124/bbb8fx48dx/Phx5OXlAQAKCgpw/PhxMMYqfH2CIAiCIAiTOqe4Aoav54oVK9C3b19rn6mkfvXVV9akLbtlsTKkpaVJQ0g5J2elpaUBgDRW6v79+6GqKlJTUwEALVq0QGZmJpYtW4bPP/8c5557LlJSUjBw4EAcOHAA3333HVavXm0puBWhuLgYl112GZYvX44PP/wQAwcOFI759ddfsXPnTjRp0gSpqalITU21LNDjxo1DamoqcnJyKlwGgiBErr/+elx22WXVXYxq4csvv0SHDh2g63p1F6VM3HPPPZg0aVJ1F4MgThvqlOLap08faJqG+fPnY8OGDejXr5+1r169ejjnnHPw+uuvY+fOnWVyEygr/fv3R25uLhYuXMil2/1gAeCMM85A8+bN8dZbb3FWyvz8fCxYsMCKNGAyaNAgfPnll/j8888xePBgAEBmZiZatWqFRx55BKFQqMKKq2lp/fLLL7FgwQLBH9fkhRdewPLly7nf888/DwB49NFHsXz58irrABB1h1deeQVJSUkIh8NWWl5eHtxutxXpw+Trr7+GoijYvHnzqS5mpamoAvriiy+We+GStWvX4pJLLkGjRo3g8/nQunVrXHXVVcjOzi739auT++67Dw899BDnTrVy5Up069YNPp8PGRkZeOWVV0rNZ82aNRg4cCBSUlKQmpqKIUOGYN26ddwxn332Gbp3746kpCQ0bNgQV1xxBXbs2GHtNye8On+///47V97Zs2dz5xEEUXHqlOKanJyMrl274sMPP4SqqpZ/q0nfvn3x/vvvAyibf2tZGTt2LDIzMzF27FhMnz4dS5cuxZ133ims1qWqKp555hmsW7cOl1xyCRYuXIj33nsP/fv3x/HjxzFt2jTu+IEDByI7Oxtr1661FFczfenSpUhNTeVCYZlxax9//PFSy3zllVfi008/xb333ou0tDSsXr3a+m3cuNE67pxzzkG/fv243znnnAPAiH7Qr18/uFx1IlwwUYX0798feXl5+OGHH6y0r7/+Gk2aNMGaNWssX2/AUB6aNWuGzMzM6ihqXEKh0EnLu169ekhJSSnz8YcPH8agQYPQoEEDfPbZZ/jtt98wa9YsNG3alJNlVVNRGcQ775tvvsGWLVswatQoK23Hjh0YPnw4evfujbVr1+LBBx/EpEmTsGDBgrj55+bmYujQoWjVqhW+++47rFq1CsnJyRg6dKh17e3bt2PkyJEYMGAA1q1bh88++wzZ2dm4/PLLhfzMUIvmr3379ta+Ro0aYciQIWVSpgmCKAOsjnHfffcxAOzcc88V9n344YcMAPN4PCw/P5/bt3z5cgaALV++3EobN24cCwQCQj6TJ09mTtHu3buXXXHFFSwxMZElJSWxK664gn3zzTcMAJs9e7ZQjgsuuID5fD4WCATYwIED2f/+9z/hOseOHWOqqrJAIMCCwaCVPnfuXAaAXX755dJ7mDx5cjzxWACI++vbt2+J55rXee+990q9DkHEo1mzZuypp56ytu+77z522223saysLPb5559b6QMGDGBjxoxhjDH25ptvsm7durHExETWuHFj9uc//5kdOnTIOvbo0aPsmmuuYQ0aNGA+n4+1a9eOzZo1izHGWHFxMbvttttYkyZNmNfrZenp6ezJJ5+0zj1+/DibMGECa9iwIUtKSmL9+/dn69ats/ZPnjyZde7cmc2cOZO1adOGKYrCdF1n7733HuvUqRPz+Xysfv36bODAgSwvL89qJ+w/s33Zu3cvGz16NEtJSWH169dnI0aMYDt27LCuNW7cODZy5Ehru2/fvuyvf/0ru/fee1lqaipr3Lgx955/8MEHzOVysVAoVKLMf/31VzZ8+HCWlJTEEhMTWa9evdjWrVsZY4xFIhH22GOPsebNmzOPx8M6d+7MPv30U+vcHTt2MADs3XffZX379mVer9eS7axZs1iHDh2Y1+tlZ5xxBps+fXqZznPy17/+lV155ZVc2n333cc6dOjApd10002se/fuce9zzZo1DADbvXu3lfbLL78wANb9vvfee8zlcrFIJGIds3DhQqYoitXemm3dsWPH4l6LMcbmzJnDWrZsWeIxBEGUjTqnuBIEUTu45ppr2JAhQ6zt8847j7333nvslltuYQ8++CBjzFA2/X4/e+211xhjjM2cOZMtXryYbdu2jX377bese/fu7KKLLrLyuO2229g555zD1qxZw3bs2ME+//xztnDhQsYYY88++yxr2bIl++qrr9jOnTvZ119/zd566y3GGGO6rrOePXuySy+9lK1Zs4Zt3ryZ3X333SwtLY0dOXKEMWYoroFAgA0dOpT99NNP7Oeff2b79+9nLpeL/fOf/2Q7duxgv/zyC5s+fTrLzc1lubm5bPTo0WzYsGHswIED7MCBA6y4uJjl5+ez9u3bsxtuuIH98ssvbOPGjeyaa65hZ5xxBisuLmaMyRXX5ORk9uijj7LNmzez119/nSmKwpYuXcoYY+zbb79lANi8efOYrutSee/du5fVr1+fXX755WzNmjVs06ZNbNasWez3339njDH2z3/+kyUnJ7O3336b/f777+y+++5jbrebbd68mTEWU0Bbt27NFixYwLZv38727dvH/vvf/7KmTZtaaQsWLGD169dnc+bMKfE8GZ07d2bTpk3j0nr37s0mTZrEpb3//vvM5XJxHXo7J06cYA0aNGCTJ09mxcXFrKCggN1xxx2sY8eOlnK/Y8cO5vV62WuvvcbC4TA7fvw4GzVqFBs6dKiVj6m4tm7dmjVp0oQNGDCAffnll8L1Nm7cyACwnTt3SstDEETZoTFcgqij3HLLLdi3b98pu17z5s3xn//8p8zH9+vXD3fddRfC4TAKCwuxdu1a9OnTB5FIBC+99BIAYPXq1SgsLLRce+wxhjMyMvDSSy/h/PPPR15eHhITE7F792506dIF5557LgCgdevW1vG7d+9G+/bt0atXLyiKgvT0dGvf8uXLsX79ehw+fBherxcA8Nxzz+HDDz/E/PnzMXHiRABGXOc333wTDRs2BAD89NNPCIfDuPzyy638zjrrLCtfv9+P4uJiLsLI//3f/0FVVbz22mtQFAUAMHv2bKSkpGDFihUYMmSIVF5nn302Jk+eDABo3749Xn75ZXzxxRcYPHgwunfvjgcffBDXXHMNbr75Zpx//vkYMGAAxo4da0U8mT59OurVq4d33nkHbrcbADj3i+eeew73338/rr76agDA008/jeXLl+OFF17A9OnTrePuvPNObjh9ypQp+Mc//mGltWnTBhs3bsSMGTO4paGd58nYuXMnmjVrxqUdPHhQiNrSuHFjhMNhZGdnS6O0JCUlYcWKFRg5ciSmTJli3etnn31muTa1bt0aS5cuxahRo3DTTTchEomgR48eWLx4sZVP06ZN8d//z959xzV1/f8Df4UdlrIUUERRcW9tVVyIWxHbulpXbaut1dav2lo/He5aq7bWWtta6+hwVa1b66gL914oKjJEQNmyAiHk/fuD371NSAIBMhjv5+PhQ3Lvzb0nJze575x7zvv88gs6dOiAvLw8/PHHHwgKCsKpU6fQo0cPcbs6deqI5Vc9rxhjpceBK2PVVGmCSHMIDAxEdnY2rly5grS0NPj7+6NWrVro2bMnxo0bh+zsbJw6dQr16tWDn58fgMIBSPPnz8fNmzeRmpoqjjx/8uQJmjdvjilTpuC1117D9evX0a9fPwwbNgxdu3YFUDhQqm/fvmjSpAkGDBiAIUOGiEHitWvXkJWVJWb+EMhkMjx+/Fh87OvrKwatANCmTRsEBQWhVatW6N+/P/r164fhw4eL2UG0uXbtGiIiIuDk5KS2PDc3V+1YRbVu3VrtsZeXFxITE8XHX375JWbOnIkTJ07g4sWL+Pnnn7FkyRKcOXMGrVq1ws2bN9G9e3cxaFWVkZGB+Ph4jXEBAQEBuHXrltoy4UcBACQlJSE2NhZvv/02Jk2aJC5XKBQasxKqPk8XmUymkX4QgBjgC+j/D24tulx1P2+99RYCAgKwdetWFBQUYMWKFRg0aBCuXLkCqVSKZ8+e4Z133sGECRPw+uuvIzMzE3PnzsXw4cNx7NgxSCQSNGnSBE2aNBH326VLF8TGxmLFihVqgauQktCY/YkZqy44cGWMVUiNGjVC3bp1cfLkSaSlpYnp6zw9PdGgQQOcO3cOJ0+eRO/evQEUZt/o168f+vXrhz///BMeHh548uQJ+vfvD7lcDgAYOHAgYmJicPDgQRw/fhxBQUGYOnUqVqxYgfbt2yMqKgqHDx/G8ePHMXLkSPTp0wc7d+6EUqmEl5eX2pTRAtVBUg4ODmrrLC0tcezYMZw/fx5Hjx7F6tWr8dlnn+HSpUto0KCB1tetVCrRoUMHbN68WWOdalBcVNGAUyKRaKSMcnNzw4gRIzBixAh89dVXaNeuHVasWIHffvtNr3zP2gLEostU60A4/rp16zRyQFtaWup8ni7u7u5iLmuBp6enRmrBxMREWFlZafzQEGzZsgXR0dG4cOGCmJ1gy5YtcHFxwd69ezF69GisWbMGzs7OWLZsmfi8P//8Ez4+Prh06RI6d+6sdd+dO3fGn3/+qbYsNTUVQPHvH2NMP9UqqwBjrHIJDAwU8y6rpq/r2bMnjhw5gosXL4rdBMLDw5GcnIylS5eie/fuaNq0qVqLo8DDwwNvvvkm/vzzT3z33Xf45ZdfxHXOzs4YNWoU1q1bh+3bt2PXrl1ITU1F+/bt8ezZM1hZWaFRo0Zq/9zd3Yt9DRKJBAEBAViwYAFu3LgBGxsb7N69GwBgY2ODgoICte3bt2+PR48eoVatWhrHKtpKWR42NjZo2LAhsrOzARS22IaGhmod0e/s7Axvb2+cPXtWbfn58+fRrFkznceoXbs26tSpg8jISI3XoitwL067du3UspoAha2cwmyBgqNHj6Jjx45aW4+BwpZPCwsLtaBbeCwE2zk5ORrBtfC4uByyN27c0OiecPfuXVhbW6NFixYlvELGWEk4cGWMVViBgYE4e/Ysbt68qTZhSM+ePbFu3Trk5uaKgWu9evVgY2OD1atXIzIyEvv27RP7Lwrmzp2LvXv3IiIiAmFhYThw4IAYeK1cuRLbtm1DeHg4Hj58iB07dsDT0xM1a9ZEnz590KVLFwwbNgxHjhxBdHQ0zp8/j88//1wtZVdRly5dwpIlS3D16lU8efIEf//9N5KSksRj1q9fH7dv38aDBw+QnJyM/Px8jBkzBu7u7ggJCUFoaCiioqJw+vRpTJ8+HU+fPi1TPR44cABjx47FgQMH8PDhQzx48AArVqzAoUOHEBISAgCYNm0aMjIyMHr0aFy9ehWPHj3CH3/8gQcPHgAAPv74Y3z99dfYvn07Hjx4gDlz5uDmzZuYPn16sceeP38+vvrqK6xatQoPHz7EnTt3sHHjRnz77belfh39+/fXCJ7fe+89xMTEYObMmWKar/Xr1+Ojjz4St9m9ezeaNm0qPu7bty/S0tIwdepU3L9/H2FhYZg4cSKsrKzE82nw4MG4cuUKFi5ciEePHuH69euYOHEifH190a5dOwCFeaz37NmDR48eISwsDP/73/+wa9cuTJs2Ta2MoaGh6N69e7lmMWSM/X/mHh3GGGO6CCPOi6Y7io2NJQDUsGFDteVbtmyh+vXrk62tLXXp0oX27dtHAOjGjRtERLRo0SJq1qwZSaVScnV1pZCQEIqMjCQiol9++YXatm1LDg4O5OzsTEFBQXT9+nVx3xkZGfTBBx+Qt7c3WVtbk4+PD40ZM0ZMqSSkw1J179496t+/P3l4eJCtrS35+/vT6tWrxfWJiYnUt29fcnR0VEuHlZCQQOPHjyd3d3eytbUlPz8/mjRpEr148YKItGcVmD59utqxQ0JCaMKECURE9PjxY5o0aRL5+/uTVCqlmjVrUqdOnTRS8d26dYv69etH9vb25OTkRN27d6fHjx8TkXo6LGtra53psIS6VrV582Zq27Yt2djYkIuLC/Xo0YP+/vvvEp9XVGpqKkmlUjHTgeDUqVPUrl07srGxofr169NPP/2ktn7jxo0aKQqPHj1KAQEBVKNGDXJxcaHevXvThQsX1LbZunUrtWvXjhwcHMjDw4OGDh1K9+/fF9d//fXX1LBhQ7KzsyMXFxfq1q0bHTx4UKPc/v7+tHXr1hJfH2OsZBIinkieMcZY5TB79my8ePECa9euNXdR9HLw4EF8/PHHuH37Nk/GwpgBcFeBUlIqlYiKiqo082QbA9dB2XHdcR3oi+tJex189tln8PX11egbXFFlZ2dj48aNJg9a+fzhOiivilp//POPMcZYpVGjRg18+umn5i6G3kaOHGnuIjBWpXCLK2OMMcYYqxQ4cGWMMcYYY5UCB66MMcYYY6xS4MCVsQogNDQUly9fNncxGGOMsQqNB2cxVgEsW7YMEokE+/btM3dRGGOMsQqLW1wZqwAKCgp0Tk/JGGOMsULc4spYBRATE4NHjx7h+fPnqF27trmLwxhjjFVI3OLKWAVw79495Ofn48KFC+YuCmOMMVZhceDKWAXQsGFDAICnp6eZS8IYY4xVXBy4MmZmCoUCzZs3BwDu58oYY4wVgwNXxsxMJpPByckJH330EYjI3MVhjDHGKiwOXBkzs5ycHNjb28PJyYkDV8YYY6wYHLgyZmbZ2dlwcHCARCIxd1EYY4yxCo0DV8bMTGhxBcAtrowxxlgxDBa4yuVyLFiwAIMGDULPnj0xefJkREREiOs3bdqEPn36oHfv3li1apXaBTosLAyvv/46AgICMHnyZCQkJIjrcnNz8cUXX6BHjx4YPHgw/vnnH0MVmbEK4c6dO4iNjYVEIuHAlTHGGCuGwQLXgoIC1KlTBxs3bsSJEyfQo0cPzJo1CwBw9uxZ7Ny5E5s2bcJff/2Fs2fPilNbyuVyzJ49G6NHj8aJEyfQsmVLzJ07V9zv2rVr8eLFCxw6dAhLlizB0qVLERMTY6hiM2Z2Bw4cwM2bNzlwZYwxxkpgsMBVKpXinXfeQe3atWFpaYlRo0YhPj4e6enpOHToEIYPH466devC3d0dY8eOxeHDhwEA165dg1QqRUhICGxtbTFp0iTcu3dPbHU9dOgQJk+eDEdHR7Rp0wY9evTA0aNHDVVsxswuKCgICxcu5MCVMcYYK4HRpny9ffs2XF1dUbNmTURFRWHQoEHiOn9/f6xZswYAEBkZiUaNGonrpFIp6tati8jISDg4OCAlJUVtvb+/P8LCwnQeVy6XQy6Xqy2zsrKCjY2NQV6XUqlU+7864jooO211l5eXB0tLS3F5Va9XPn/0w/XEdVAeXHdcB+VljvqzsCi5PdUogWtWVhaWLFmC999/H0Dh4BNHR0dxvYODA3JycgAU5rB0cHBQe76DgwNkMhlycnJgaWkJOzs7rc/VZuPGjVi3bp3ashEjRmDkyJHlfl2qYmNjDbq/yojroOxU6y4xMREODg5IS0tDQkJCtekKw+ePfrieuA7Kg+uO66C8TFl/DRo0KHEbgweueXl5mDVrFrp164aQkBAAgL29PbKyssRtsrOzxVHUUqkU2dnZavvIzs6GVCqFvb09CgoKkJubKwavqs/VZuLEiRgzZozaMkO3uMbGxsLHx0evXwZVEddB2WmrO0dHR9SpUwdxcXGoXbs2fH19zVxK4+LzRz9cT1wH5cF1x3VQXhW1/gwauCoUCnz66afw8PDA//3f/4nLGzRogIiICHTr1g0A8PDhQ/j5+QEA/Pz8sHv3bnFbmUyGp0+fws/PD87OznBzc0NERARatmyp8VxtbGxsDBakFsfCwqJCvZHmwHVQdqp1p1AoYGdnBwsLC0gkkmpTp3z+6IfrieugPLjuuA7Kq6LVn0FL8uWXXyIvLw/z589XS6Y+aNAg7Nq1C3FxcUhOTsbmzZsxcOBAAECHDh0gk8mwf/9+yOVyrF+/Hs2bN4eXl5f43F9//RXZ2dm4c+cOzpw5g759+xqy2IyZlVwuh7W1NQ/OYowxxkpgsBbXhIQE7N+/H7a2tggMDBSXf//99+jWrRsePXqE8ePHQ6lUYtiwYRg6dCiAwhbSZcuWYdGiRVi6dCmaN2+OhQsXis9/9913sXjxYgwYMADOzs6YM2cO6tevb6hiM2Z2+fn5YuDKGGOMMd0MFrh6eXnh6tWrOtdPnDgREydO1LquRUuw5t0AALf9SURBVIsW2LZtm9Z1dnZ2WLx4sUHKyFhFlJ+fL3Zv4RZXxhhjTLeK02mBsWpKoVDA0tKSuwowxhhjJeDAlTEzIyJIJBIOXBljjLEScODKmJlx4MoYY4zphwNXxsxMNXBljDHGmG4cuDJWAQhBK7e4MsYYY7px4MqYmQnBKncVYIwxxorHgStjZsZ9XBljjDH9cODKmJlx4MoYY4zphwNXxsyMB2cxxhhj+uHAlTEzEwJX4W/GGGOMaceBK2MVAHcVYIwxxkrGgStjZsZZBRhjjDH9cODKmJlxH1fGmLH88MMP5i4CYwbFgStjZsZ9XBljxjJ9+nQUFBSYuxiMGQwHroyZGafDYowZgxCw5uXlmbkkjBkOB66MVQAcuDLGDE0IWHNzc81cEsYMhwNXxsyMB2cxxoxBCFg5cGVViUED17Vr12LEiBHo1KkTjhw5Ii7fv38/Xn75ZXTv3l389+zZM3F9WFgYXn/9dQQEBGDy5MlISEgQ1+Xm5uKLL75Ajx49MHjwYPzzzz+GLDJjZseDsxhjxsAtrqwqMmjg6uPjg1mzZqFFixYa61566SWEhoaK/zw9PQEAcrkcs2fPxujRo3HixAm0bNkSc+fOFZ+3du1avHjxAocOHcKSJUuwdOlSxMTEGLLYjJkVD85ijBkDB66sKjJo4Dpo0CB07twZNjY2ej/n2rVrkEqlCAkJga2tLSZNmoR79+6Jra6HDh3C5MmT4ejoiDZt2qBHjx44evSoIYvNmFnx4CzGmDFw4MqqIitTHejWrVsICgqCq6srRo0aheHDhwMAIiMj0ahRI3E7qVSKunXrIjIyEg4ODkhJSVFb7+/vj7CwMJ3HkcvlkMvlasusrKxKFUwXR6lUqv1fHXEdlJ22ulMqlSAiEBEKCgqqfL3y+aMfrieug/JQKpXIzc2FnZ0dZDJZtaxDPn/Kxxz1Z2FRcnuqSQLX9u3bY9u2bfD09MS9e/fw0Ucfwc3NDYGBgZDJZHBwcFDb3sHBATKZDDk5ObC0tISdnZ3aupycHJ3H2rhxI9atW6e2bMSIERg5cqRBX1NsbKxB91cZcR2UnWrdZWVl4enTp0hNTQURVZuuMHz+6IfrieugrPLy8uDo6IjY2Fh4e3ubuzhmw+dP+Ziy/ho0aFDiNiYJXOvUqSP+3bJlS4wePRonT55EYGAgpFIpsrOz1bbPzs6GVCqFvb09CgoKxF+Nwjp7e3udx5o4cSLGjBmjtszQLa6xsbHw8fHR65dBVcR1UHba6s7BwQE+Pj5wd3eHq6srfH19zVxK4+LzRz9cT1wH5aFUKhEaGgpXV1fUrFmzyn+vaMPnT/lU1PozWVcBVaqjp/38/LB7927xsUwmw9OnT+Hn5wdnZ2e4ubkhIiICLVu2BAA8fPgQfn5+OvdtY2NjsCC1OBYWFhXqjTQHroOyK1p3lpaWsLCwgEQiqTZ1yuePfrieuA7KKiUlBXXq1EF+fr5Z62/GjBlYuXKl2Y7P50/5VLT6M2hJFAoF8vLyQETi30qlEufPn0daWhoAIDw8HNu3b0f37t0BAB06dIBMJsP+/fshl8uxfv16NG/eHF5eXgAKB3z9+uuvyM7Oxp07d3DmzBn07dvXkMVmzKx4cBZjzBgyMzNRu3ZtjXEfpvbdd9+Z9fisajFo4Lp48WIEBATgxo0bmDdvHgICAnD9+nVcunQJI0eORPfu3fHpp59i/PjxYvBpY2ODZcuWYfPmzQgMDMStW7ewcOFCcZ/vvvsuHB0dMWDAAMyZMwdz5sxB/fr1DVlsxsyKA1fGmDHk5eUhPT1dHAxtTk+ePDF3EVgVYdCuAvPnz8f8+fM1lnfs2BEzZszQ+bwWLVpg27ZtWtfZ2dlh8eLFhioiYxUSB66MMUPLy8urMBObPH/+HPXq1TN3MVgVUHE6LTBWTalO+coYY4aSl5eH9957D1Kp1NxFMXt3BVZ1cODKmJnxzFmMMWPIzc1F48aN0adPH3MXBQqFwtxFYFUEB66MmRn3cWWMGUN6ejqcnZ3NejdH+E7jwJUZCgeujJkZB66MMWPIyMhArVq1zFqGgoICAEB+fr5Zy8GqDg5cGTMzDlwZY8ZQUFAACwsLs36vCAErt7gyQ+HAlbEKQAhcGWPMkMz9vSIErtziygyFA1fGzEy1NYRbXBljhmbO4DU/Px+Wlpbc4soMhgNXxsyMuwowxqoquVwOe3t7bnE1gepy/eDAlTEz48CVMVZV5efnw97enltcTcDConqEdNXjVTJWgXHgyhgzJnMPzpJKpRy4GgERiVkbBEUfV0UcuDJWAfDgLMZYVSQErtxVwPBWrFiB1157DQDw4sULANVjEBwHroyZGQ/OYoxVVUIfV25xNby4uDjs3bsXAPDPP/8A4MCVMWYC3FWAMVZVCX1cq0NAZWrOzs7i3zY2NgA4cGWMmQAHrowxYzJ3Oizu42oceXl5aNSoEQAgNzcX9vb2kMvlZi6V8XHgypiZceDKGDMmcw/O4q4CxpGbmws7OzsAhUGsk5MTt7gyxoxPNXBljLGqhPO4Gk9ubi6kUqn4NweujDGTEYJWbnFljBlKRfg+kclkcHZ25hZXI8jNzYWtra34t6OjIweujDHjEy4u3FWAMVbVCIFrdQioTC03NxcODg4oKCjgrgJltXbtWowYMQKdOnXCkSNH1NZt2rQJffr0Qe/evbFq1Sq1C3RYWBhef/11BAQEYPLkyUhISBDX5ebm4osvvkCPHj0wePBgMeUDY1UF93FljBlDReh+NGrUKBARt7gaQV5entjKyl0FysjHxwezZs1CixYt1JafPXsWO3fuxKZNm/DXX3/h7Nmz2LdvH4DC/i+zZ8/G6NGjceLECbRs2RJz584Vn7t27Vq8ePEChw4dwpIlS7B06VLExMQYstiMmRUHroyxqoqIEBgYyIGrERARbGxsoFAoxMC1OmQVsDLkzgYNGgQA2LBhg9ryQ4cOYfjw4ahbty4AYOzYsTh8+DBCQkJw7do1SKVShISEAAAmTZqEPn36ICEhAV5eXjh06BC++eYbODo6ok2bNujRoweOHj2KSZMmaS2DXC7XeOOsrKzEHGflpVQq1f6vjrgOyk5b3SmVShARiAhKpbLK1yufP/rheqq8dRATE4NOnTohMTHRbGUQvlfMXYeDBw9G06ZNcfDgQZOXwdyv3diICJaWlsjLyxP7uObl5Rns9Zqj/iwsSm5PNWjgqktUVJQY1AKAv78/1qxZAwCIjIwU85ABgFQqRd26dREZGQkHBwekpKSorff390dYWJjOY23cuBHr1q1TWzZixAiMHDnSUC8HABAbG2vQ/VVGXAdlp1p3MpkMT548QVJSElJSUqrNHQU+f/TD9VT56uDRo0daP8t+fn6IjIw0aVliY2ORk5Njtu+V3NxcPHv2DGlpaWYrQ2U7f/Qlk8lgZ2eHyMhIJCUlwdbWFk+fPjV4PZuy/ho0aFDiNiYJXHNycuDo6Cg+dnBwQE5ODoDCindwcFDb3sHBATKZDDk5ObC0tBTzlBV9rjYTJ07EmDFj1JYZusU1NjYWPj4+ev0yqIq4DspOW91JpVL4+vqiVq1aKCgogK+vr5lLaVx8/uiH66ny1kFqaioAaP0sm+rzrVQqIZFI4OPjI37HmINUKkX9+vVhZ2dn8jJU1vNHX9nZ2fDz84OnpydsbGzg7e0NV1dXg9VzRa0/kwSu9vb2yMrKEh9nZ2fD3t4eQOFJnZ2drbZ9dnY2pFIp7O3tUVBQoJZkV/W52tjY2BgsSC2OhYVFhXojzYHroOxU604ikcDCwgKWlpbi39UBnz/64XqqfHUgNK5oK7OpX4eFhYXZv1dsbW1RUFBgtjJUtvNHH8+fP8eFCxfQoUMHMatAjRo1oFAoDP5aK1r9maQkDRo0QEREhPj44cOH8PPzA1B460R1nUwmw9OnT+Hn5wdnZ2e4ubnpfC5jVUlFGAHMGCs/1YaaoqrDqO+irKyseHCWgQn1aW1tLWYVcHZ2rhaDswwauCoUCuTl5YmpL4ROwoMGDcKuXbsQFxeH5ORkbN68GQMHDgQAdOjQATKZDPv374dcLsf69evRvHlzeHl5ASgc8PXrr78iOzsbd+7cwZkzZ9C3b19DFpuxCoOzCjBW+d2/f1/nuqioKBOWxPwkEokYXDHDkclkAAoDV4VCgfz8fDg4OFSLwNWgXQUWL16MAwcOAABu3LiBefPm4eeff0a3bt3w6NEjjB8/HkqlEsOGDcPQoUMBFN7aX7ZsGRYtWoSlS5eiefPmWLhwobjPd999F4sXL8aAAQPg7OyMOXPmoH79+oYsNmMVAqfDYqxqmDVrlsYyYWR20a5xVZnwmrnF1fBycnLw6aefQiKR4OHDh5DL5bC1ta0W55dBA9f58+dj/vz5WtdNnDgREydO1LquRYsW2LZtm9Z1dnZ2WLx4saGKyFiFxYErY1WHajYcpVIpTp5TXDcCYxG+W0zdHSkvLw92dnawsrLiFlcDk8lksLe3h0KhwLBhwwAAU6dOFQcGVmUmGZzFGCtZ0cA1Li4Ozs7OcHJyMmOpGGOlFRwcrPZZjo2NxeDBgwGYL3BVKpWwtLQ06XHz8/NhbW3N/feNICcnB1KpFLm5ueIyGxubatFVoOIME2Osmiv65R4UFMR3GxirpCwsLMRb5UJ/RG9vbzx//twsZTHH3RwhcGWGJ7S4qtavra2tWiBbVXHgylgFonpxsba2Fi94jLHKxc7OTgwi8vLyAAAvvfRSsRPoGIu5uiFx4Go8Qourav0SET7++GMzlso0OHBlrIIoenG5e/euGUvDGCsrIoJUKhV/eAqBa+PGjc0yDazQVcDUFAoFrKy4R6IxCC2uqvXr4eFhxhKZDgeujFUQ2lpFTN0njTFmGKotrkK/Q3d3d7PcyuWuAlVPTk4O7O3tYWtrKy5r2bIlhgwZYsZSmQYHroxVEKqBqzAC19XV1ZxFYoyVkjAISluLq6urq1kCV3O1uKoGrpwxxbBkMhmkUqk4q6igOgyE48CVsQpC9Qvn3r17AEw/PSRjrHyEW7iqI76FwNXZ2dksAZy5WlxVuwpUh4DKlIQW16KBa3XAV0XGKhDh4vLee+8BQLUYIcpYVaIaUAgtrsL/NWrUMEsAVxFaXJlh6WpxJaIq37rNgStjFYRqV4GLFy+iV69enA6rkouLi8Phw4fNXQxmQkLgqtpVICkpCYD5Wj5VU3OZEgeuxqOrxdXGxqbKT/bAgStjFUTRwVnBwcFmLA0zhL1794qz2rDqITs7WwwohDsmQu5We3t7s5TJXIGraleBqt4KaGq6WlxVz7uqigNXxioI1cDV29sbH3zwgZlLxMqLL9bVj7YW18TERERHRyMgIMAsZeIW16pHV4urnZ2d2Ke6quLAlbEKQrXvW926dWFtbc2trlWAXC7HhQsXzF0MZiKqgavQ8pWYmIjatWsDMN0gJdUfTZaWlmYPXHlwlmEVbXFt0qQJAG5xZYyZmHCx8fT0NHNJmCEI7+fQoUPNXBJmKtoGZ+Xl5YkBhqla4YlIzEpiYWGBgoICkxxXFU9AYDy5ubmws7MTz6vw8HAA1WPaVw5cGasgzDUtIzMe4f1MTk42c0mYqeTk5MDBwUGtq4A5FBQUiK2cFaHF1dLSEgqFwuRlqKqICBKJhPu4MsbMhwPXqkMulyMtLc3cxWBmILS4Pnv2DO+//77ZyiFMhACYvsX1wYMHANQDV1tb2yrf99IcOHBljJkNB65Vx88//4wOHTrw+1kNHT9+HAUFBXB0dNS6fv/+/bh+/brRy6FUKsWuAqVtcT116hQiIiLKdNyMjAw0bdoUQGFXAQ5cjYsHZzHGzIYHL1QdRISEhARzF4OZwW+//YZ79+5h8ODBGD16tNZt0tPTxb9feeUVo5RDqVSK3ymlzSrw1ltv4ccffyzTcd98803x7/z8fLGPa2kC1x9++AExMTFlOn51Y2dnBwcHB7XH3OJqQJMnT0bXrl3RvXt3dO/eHR9++KG4btOmTejTpw969+6NVatWqbVUhIWF4fXXX0dAQAAmT57MF4QKhoiQmprKrUsGwHVYNdjb2yM3N1fs08cDVKqPSZMm4d1339XZx/Wnn35SCyz27NmDL7/80uDlKCgoKPPgrKioKNjY2JTpuLt37xb/Vu0qUJqWwA8++IAnX9GTtbU1srKyxMccuBrBvHnzEBoaitDQUHz//fcAgLNnz2Lnzp3YtGkT/vrrL5w9exb79u0DUNhXbPbs2Rg9ejROnDiBli1bYu7cuaYuNivGuXPn4ObmJr5nrGyErgIFBQW4e/cuACAyMpKD2UpIKpUCAP78808Aha1NwnvKqrb8/HxIpVJxlqwnT56o3U1xdHQUAw0hkDt37pzBy6Hax7W0XQWcnZ3VWvGUSiVCQ0P1fr6Pjw8Aza4C+gZU/fr1Q2pqqt7HY//hrAImcujQIQwfPhx169aFu7s7xo4dK06TeO3aNUilUoSEhMDW1haTJk3CvXv3uNW1AhFmg+GpLctHCFyTkpLElpKwsDC1X9OschBaWm/cuAEAmDNnjjjtJ6vacnNzYWtrC6DwDoqvr6/ajFlOTk7IzMwEUDglcLdu3fDSSy8ZvByqfVxL2+Lq7e2t1p3h0qVL6NGjh17P7dixI9q0aQNAvatAaVpcbW1tq/y0pcZSHVpcTX7/avny5Vi+fDn8/f0xY8YMNG7cGFFRURg0aJC4jb+/P9asWQOgsMWpUaNG4jqpVIq6desiMjISXl5eGvuXy+WQy+Vqy6ysrMp826Mo4VerOVKLVBRF66CgoADTp09HTExMta4XfWg7f4gISqVS/F+hUCAwMFDcRi6XG6VeVS9splQdPkM5OTlqj52dnZGXl1eq11wd6qkklbEOZDIZrK2toVQqxUBt27Zt2Lx5M4DCH/qZmZlQKpXIyMhArVq1kJWVZfDXqFAoIJFIxM+5QqHQ6xgFBQVwdXVFenq6uH3Xrl0BlPw+ODk5ITAwUNxWLpeLrb22trbIyckpcR8KhUKcNre8dVIZzx99CdeLomxsbJCRkWGQ12yO+tPnmmTSwPXDDz+En58fLCwssH37dkyfPh07d+5ETk6O2ghMBwcH8YtfJpOp3bIQ1uvKj7dx40asW7dObdmIESMwcuRIg76W2NhYg+6vMhLq4OnTp7CyskJGRgZ3qNdTbGyseEGRyWSIiYlBcnIykpOT8eTJE+Tk5CAmJgYjR45EZGQk3N3dy33Md955BxMmTED37t0RExODwMBAREZGGuDVlE1F+gzl5eWJrWSGkJCQgL59++LYsWPYunUrIiIiEBcXV6bPh7Hr6fr162jcuDGcnJyMepzyqEjnSkmysrIQFxcHAHj27BkAYP78+eJ7n5WVhadPnyImJgYRERGQSqV4/vy5wb87hTs3sbGxyMzMRGxsrM5MB6qys7Ph6OiIZ8+eaZRpx44dxbYO5+TkICcnBxYWFoiOjkZiYiJcXV0RExODR48e4YsvvijxO2fDhg04ceIEgoKC1I7funVr3L59u8Tya2OI86dNmzbo06cPvvnmm3Lvq7yaN2+OgIAAredMRkYG4uPjy30+Xbx4Ee3bt4eNjY1JP38NGjQocRuTBq4tW7YU/54wYQL27duHsLAw2Nvbq90OFX5tAYUtrNnZ2Wr7yc7OFvuQFTVx4kSMGTNGbZmhW1xjY2Ph4+NjltaqiqBoHcTGxsLDwwNSqRS+vr7mLl6FJtRdVFQUJkyYgJiYGLHesrKyYGdnBy8vL9SoUQO+vr5wcXFB7dq1Ubdu3XIf+8SJE5g6dSrq1auHsLAwADDL+1XRPkPx8fHw8/MzaJ5Le3t7zJ49G8eOHcPIkSOxYMEChIeHY+LEiQAgvu+1atXSuY/y1lN4eDjq1q1bYrDi5+eHnTt3Gm10e3lUtHNFH6rfg/n5+Xjrrbfw+eefi/1cs7KycOnSJfj6+uLhw4fw8/PDkydPDP5ZtLKygqWlJXx8fODi4gJPT0/4+vqWeKclKSkJ3t7eSE5OFsvUv39/KBQKjB49usTPiY2NDezt7eHt7Q0nJyfUqVMHvr6+4usv6XUKPyCLXk+ysrJKXUeGPH8yMzNx/Phxs1/jnj17htzcXJ3X23r16iEpKanc5fTz88ONGzdgY2NT4T5/Zh3qKlREgwYNEBERgW7dugGA+GEGCitPdZSiTCbD06dPxfVF2djYGCxILY6FhUWFeiPNQagDpVIJa2trWFtba7SeM+2eP3+Op0+fwsLCAhKJBBYWFrC3txdvLVpZWcHCwgK2trbi6ODAwECcPHmyTMcTWn6cnZ3x7NkzBAcHA9DvtoyxVJTPkNAf1ZBlycvLg4uLCzw8PMT39u+//8by5csBAK+++iq6dOmiV8qhstZTixYt8Oabb2Ljxo0lbisMJqqoKsq5og/h8wwUBlve3t7iICmg8DOYlZUFCwsL5OTkoHbt2njw4IHBX9+HH34o1pvQz1Qul0MqleL69eto166d1ufl5eXB3t5e7XXY2NiIAWVJ5bx48SIGDhyIgoICKBQK2NraqqXjKun59erVw+DBg9WOLwxQLWsdGer8adq0qdnPw4sXLwJQP89USaVS5OXlGaSccXFxqFGjRoX7/JmsJJmZmbh48SLkcjny8/OxefNmZGRkoFmzZhg0aBB27dqFuLg4JCcnY/PmzRg4cCAAoEOHDpDJZNi/fz/kcjnWr1+P5s2ba+3fysxDuM1ap04dpKSkmLs4lULRftjAf53qVdPYWFtbQy6XIycnB6dOnSpzhgHVOdO3bt1a9oJXQUW7FhmCMDd9YmIiAOC1115D3759xfXPnz/H/fv3DX5cVRYWFti0aZPG8nnz5mlkAMnJyTHLXPZVXXZ2tkZXNycnJ/EOY1ZWFtzd3Y0yNeyePXvEkfnC4Cxh0I7QZ1UbmUymdkdT+M4RsgOUxNLSEjY2Nhg+fLhaVoHijqmKiNRywQL//bg0V9cmIkJwcDCcnZ3NcnxVJTXMGXJw1j///GOQ/RiayQJXhUKBNWvWICgoCP3790doaChWrVoFR0dHdOvWDa+++irGjx+PESNGICAgAEOHDgVQ+CYtW7YMmzdvRmBgIG7duoWFCxeaqthMD7m5ubCzs8OaNWuwY8cOcxenUtDWT0pIY1JQUCC20NjY2CA/P18c4ZuRkVGm4wlByf79+/Hxxx+Ly6vioIXSWrJkCQDNAVXlIXwmBNbW1mqjpD09PXHq1CmDHU+b/v37a12+c+dO/Pvvv2rLRowYga+++sqo5aku9u/fL/6tmpJKoJoOKysrC87OzkZLeSecc8IAKeGOjmpgM3XqVOzdu1d8HBMTg2fPnollys/Ph42NDV68eFHi8dq0aYMHDx6goKAA//zzj1pWgffee0+801McmUwGe3t7WFlZieUXAntzXfuFYF5XF0VTKul7SjV7Q15eXqkbk4hIfO+Fu+AVjcm6Cri4uOCPP/7QuX7ixIli/6+iWrRogW3bthmraKychP42ixYtgre3t7mLUyk8fvwYAQEBasuEX8qqFzuhxVUIWFNTU1GjRo1SH0/oYrB27Vq15doGP1Y3AwYMwD///AMHBweDBRBFA1cbGxu1VnY/Pz+jXwQdHBzQp08ftWWXL1+GlZWV1tbVL774Ap9//rlRy1QdCHcLgf8+v6psbGzEwOLrr7/G77//brSyCMcWWly1paM6cuQIXrx4gZCQEPFxenq62Cc1NTUVLi4uYnejhIQEeHt7a3xWlEolfH194e7uLgbmqhMQ6EsIEi9evIjY2Fj4+fmJA8I6dOhQqn0ZSmpqKlxdXY3SMl5a2dnZkEgkWu/aAeotrj///DNWrlyJ6Ohovfe/evVqHD16FAAqbFqtitNpgVVawkW6adOmnHtPT4GBgbh69aqYuxUo7Jsk3LJV7VuWn58vBq5laRVUKpWYPHmy1tGahmxlrKyMcfuvpMBVLpfj/Pnzpbqg6EOYwOLJkydidwVBeno6Xn75ZVhaWmoNXCtCa1JlV1BQoBaoqbYaahMTE6PRImtIQqBVtMUV+K/1sk6dOmp3curUqYOPPvoIjx49gkKhQHp6OlxcXHD69GkAwPnz57UeSy6Xi/1ghck2VLsK6CsnJwdSqRQ1a9bEw4cPAQAPHjwQX4cpPH78WO1xRkaGSbsJJCQk4PPPP8fz58811uXk5MDNzU3nd3fRrgIl5Y/Ozc1V+xESHh6OgwcPiusqIg5cWbnJZDLY2dnB0dFRIwME004ikYgXNOGLRbi4qHYVEFpsVq5cCQBl+sWflpYm7guA2sBGfr901+mzZ8/KPPmDahJ6QD1wFQIAPz8/rF69ukz71+WTTz7Bu+++C19fX/EHkNAdRLgIJSYmqgWugwYNglKpRFBQkEHLUh3l5eWp/QD4888/MX78eI3tVGfSat26tdHKIwQ3wnmQl5eHTz/9FEBhX2cAqFmzJvbv3y8Gh0KQJpFI8PjxY7HV1NLSEs2aNdN561k1pdzp06fRt29fyOVytemOlUpliQNMP//8c8jlckyZMkVtQFCbNm306q5gCI0aNVLrRmXodHkluXnzJr788kt8+OGHGutycnJQp04dnTOLqc6cJeTOLU6DBg1w4MAB8bFwvQAKu3dURBy4snITWpccHBw4ECoF4VfupUuX1JYnJiaKaZKEFlehq0xZAlfhV/vcuXMREhKCyMhI3Lp1C++++674pVY0T9+jR49KfRxDmjx5slqZDh8+rNEv0xCUSiXOnTuHuLg4vPzyy2rrvLy8ytzHKzU1VWsf17y8PPTq1QtEhA0bNhh8kOnt27exfv16AIXvu6OjI8LDwwH8d+7ExcWhoKAAo0aNwuTJk3Ho0CG1QIqVXdGBTb1799aaAUf47AcHBxs1f67wnp89exYLFy7U+EEFQAxEhc98RkYGnJycEBISIk4iIPzovX//PhYsWKD1WHK5XBw4VKdOHbi7uyMtLU2txTUmJga9e/cW89wWJQzCatGihdgX+OnTpwAKB1GaKnAFoNY6XTRwVSqVajOLGZqQDlRburycnBw0bdoUT5480fpc1RbXku6iJCcn49mzZ2qDNW/dulXWYpsMB66s3ITA1dbWVu8p/aqz/Px8hIWF6exP+fTpUzFvq2ofuY4dO5YrcHVwcBAHYbRu3Rre3t7Izs5GZmYm6tWrp/Ycf3//Uh+nPG7evKn2eN26dWplGjRokEZ/TUPIyMhAamoqvL29Ub9+fY0fXmXJkrF161YcPXpUraVJeB+Fix0RwcPDw+DTwKreln769Cn+/vtvtGjRAkBhECO05CsUCly8eFEto0J1C16NMSCqaOCqi1DXqgO5jEFoNTx37hz+/fdfMQA7ffo0QkJCUFBQgHPnzgH4L8jNzMwUU3YlJSVp9FONj49Xm8IWAKKjo3HgwAG14K5mzZpITk5We67weRLSwhUlfP7c3NyQmpqKrVu3isFsca2MxqAtcBW6dt24cQMuLi5GO7ZwDmkL1HNycuDh4aHzWqt6HVb9zGvj4eEBAGrjJjp16gRPT0+1VtiKhgNXVm7C4CxtAxGYpnv37iEqKgo//fSTxrpLly5h0qRJ8PHxAVAYdAqDPTw9PZGQkFDq4z1//hyvv/46evXqhddff11cLgSyRftumWMAgq6ckoBxAgyBTCbD5MmTARS2kgp96vQply5vvPGGxjKhG4gwR72bmxs8PDyQnJxchlLr5ubmJv79/PlzsbVPoVBAJpOJP4hkMplGi41Qz3v37q2waXAM5dy5c0bJS6lv4ApoT4lnSLVr18aMGTMAAOvXr8fEiRPFAKx58+ZwdXUVA8nFixeLn/vHjx/DyckJa9aswQcffKAWuApdZ9q0aaN2rA0bNuCtt95SS9UklUqRmZmp9gNO+P4Svt+KUu2a06tXL9StW1cMwlxcXIzaylmUav9Oof+uEBSWtQuRvoTP4h9//KHxnZ+VlVVs3mULCwvcuXMHQGGQW/RHhjaqPy5sbGxw48YNDBw4sEzXG1PgwJWVm9DHtWjKH6bdv//+i8WLF2vtP5SUlISCggIxwGjcuLG4Ljo6WiO/ob7HmzVrFmrWrIn3339fXG5vb682CEHo9/jWW28BMG7AqI1wSxuAWtqce/fuibfdhUEfhqL6xW5lZYULFy4A+C9vY1nr4O+//9a6XAhc3d3d4eLiotaf7MWLF2LrUlncv38fmZmZGDRokLhswoQJAAoH1GRlZYmtRLm5uWJA0blzZwD/vd8zZ85UGxlfFenq0lR0MExSUhK+/vprvfdbmsD15s2baNu2LQDoHDBXHp06dRKnOm/cuDHc3d3FwFXoBykEJm3bthUD1/DwcEilUgwdOhS9evVSC1yFDCRubm5q56rQcq/a4mpnZ4fMzEyNwVmvvPKKztZ91YDQzc0NBQUFiIqKwuzZs2FnZweZTGay7yXVwFWoNyJCZmam0QPXy5cvi38XzdTz4sULzJgxo9jvwqioKKSkpCArK6vYwHXAgAEYPHgwli5dKi4TzmELC4tiZ/YzJw5cWbkJXQVkMpnaB8CUkpOT8f3335fqOar56kyFiPDDDz+IX3zCbVyBcAEQvjDGjRsnritLGiygsLO9MN1yQECAeLvNwcEBUVFR4nabN28G8N8oe+FXuzHl5+eLo5SbNWumtq5Vq1bIyMjAixcv8MUXX8DHx8fgfdxUp5ceM2aM2GIpfHmXdLtMmAZT1dChQ8XUQqr279+Pbdu2wcXFBe7u7hppqWrWrCm2/pZF8+bNYWFhodZaOnv2bHz44Yfo2bMnevXqpda6LgQPQh/LgwcPYubMmWZL8q6LMXINCz8gVIMviUQCT09P8TERISwsDHPmzNF7v6UJXGfMmCF2kZFKpUa90yGVSpGbmytmmhBaDj/77DN8+OGHsLOzE/u4duzYERKJBNOmTUPDhg01ugpERkbCyclJDOyEfpLW1taoWbOmuJ2trS2ysrLUnrtmzRpMnz5d7Qeb4I8//sDbb78tDhpzdHREZmYmsrOz0bx5c0gkEhw4cACfffYZgMJuPkKaLGPQ1lVg586dqFWrlnidM1YebF35atPT07F582bUrl0bDRs21Pn8L774ArGxsZg3b16xXYCsra3VZiYFSncOmwsHrqzchMBVdTCKqb355puYPn16qZ5jYWGB7t27G6lE2uXm5sLX11ds+RTSjgiE1jJt/ZKKznaUmJiodutfF9U0NRKJRGx1s7e3VxsYJty6bNGiBYKDg8W8jcYUFRWFgIAAvPLKK2qtrESE/Px8HD9+XJxGePDgwRg+fLhBj//SSy+JrRv29vbiYLXMzEw4OTmhY8eOxU76cP78eWzfvl1tWXFzwYeFhaFu3bpwd3cHoNmqrc/0rMXJysrCmjVrsGLFCjGA1ZXGRzjHJk2aJC5buXIlunTpAgC4evUqrly5Uq7y6Ku4tDuNGjUy+PEyMjLg4eEhzmymTUREBAIDA0u131u3bul10RemxxaonnuGUHRyC6lUisjISHFwlnB3LCoqCl26dIFSqdSYFEXIElM0cG3QoIHYUJGfny/2k8zPz8e9e/fE7ezs7JCVlaXWVeD9999H27ZtsXjxYjEAFTx69Ajnzp0TW3VVA1fVacTj4uJAREhPT8eVK1eMlrKpadOm4t/Lly+HUqkU73i5urrCxsZGzPZiSNHR0Xj55ZfRr18/AP/9sFQqleJ3d0ndXGrWrIn09HQMGjQIAQEBSE9PR0xMjLhe9VyztrZGx44dxcdlyb1rahy4snITAtdWrVppzIzy4sWLMrVqlnagSNEAsCRC64IwMMFUMjIy0KFDB9SpUwcA4Ovrqxakuri44N1339X6XFdXV3Tp0kVspRs2bFiJE3MoFAqdA0BUbyF169ZNDGCysrLQpEkTnSN/DUn4Ara0tBTPk9zcXISFhWHJkiW4d++e2CoaGxtr8GA6Ly9PvLDa29uLLUFC4Dp06NBiW56FFEICIio20D148CAGDhyokcGgvL777jsAheV+7733MGvWLHHmLNUfLQ0bNhRbqYKCgiCTyTBixAi1fQmjijt16qS15djQFAoFpFKp1m4SV69eNcox09LS0KJFC8THxwOA1gBWWKcPpVKJsLAwvPvuu3q1nNrZ2eHmzZsIDQ0FUHjuGbLFNTAwUO08dHZ2xsGDBzUGGXXq1An9+vUTpyMuKCgQvy+cnJzw6aefag1knJyccOHCBRw6dEhtueoPaV1dBYQ7R0uWLEHXrl2RmJgIiUQifraFcqv2J1WdJMXKygoWFhZicG7oAY7azsNLly6Jd62Awv7DL7/8Mj766COd+5FIJKXOskNE6N+/Pw4ePIhp06bh3r174ntTmvOjZs2aOHjwIKKiouDq6oolS5aolb/opDN169aFQqHAjRs3sH///go/UJMDV1Zu2m4trF69Gp07d1ZLIq0v4Yvj9u3bej8nODgYQ4YM0Xt7Qw+K0dfnn3+uMfBF9YtSKpXi559/Vlv/ww8/iP2ZmjRpIrZqCP0xVfuGFlVcPyjV2+5C32QiQlJSElq3bl2qC3dZCa0lqrcODx06hKioKLRu3RpnzpwR+6GuXLlSrxawBw8e6J3dom/fvti1axeAwkBl1qxZAAqDdycnJ9StW7fYVjnhoim8Jzk5Oahdu7bWbYUZkoYMGaI1d2ePHj0AoEyZOTZt2gTgv1vgqoQBM0SEwYMH4+LFi8jMzESNGjXU7pJcu3ZNfA0CUwzOEAYICbP1qBICfEN36UlOTkbTpk3FY7dq1UpcJwQIwudLHzExMWJgoE8LoBA4COeBMPmIIQjBsOrkFlKpFAEBARppnbKyssTWzJYtWyIhIQGjRo0CAHHCEtU0VwJ7e3uEhIRg/Pjxat1bVG/dC2mZiguCLly4IH5ehG5Svr6+AP5rvFAtI1AYuFpZWeH48eMAtAea5ZGeno7Ro0ejQ4cO4mCwWrVqoVOnTnj77bfh7e2NqKgosaVZW3AqfA6FH/85OTli/tziHDlyRLxeCmmvhO/m0nwvWFtbY8WKFbh//z5cXV2xfPlyWFtb67xj5ezsjIyMDBw+fFjvY5gTB66s3Ip+GR49ehRLly4Vb0MXbYFKTU3V+Us0MzNTHLCg2kG9OMJFrTS/ElVHVH/66afiBSwzM1Mc0FCaY+u7rnXr1lqzCRRn6tSpYl9Yf39/8UtR6LSvayAQUHi7Uwhqiho8eLD440DIkXrw4EE8evQInTt3NngfV5lMpnFxFh5bW1vjwIEDWLFihdii7OfnBxsbG+Tk5MDBwQF+fn565bxs2rSpRn/ZooT+zba2tmLL86uvvipmBHjx4gVq1KhRYt9D4QfQsWPHABS25OsKQISWTW2vITs7G56enli4cKHO2/NyuVxrwNu7d2+xlVTb4EjVZVKpFBKJBI8ePdIYtNG+fXvxb1NmlhAS0g8ePFhteUpKCoKDgzF06FCD9m3u378/vvrqK/j6+orfQ4mJibhw4QIGDhwoBiv/+9//xKCqpOBI6F6hz7bAf+eA0I3DkF0FhB9ARbNGuLq6qn1XC9OGCkHp3bt38eeff4p9Jx0cHBAcHKwROAL/dd/IyMiAr68vxo8fD7lcLnaBAQoDV13fj6p35lxdXdXWvfrqq2qPs7Oz1VoI8/Ly0KhRI3EK+cePH+PEiRPFVQkAzbsjQOFno2iKLQ8PD7i5uaFNmzbirXnhB5RwZyosLEwMXLX11xVyKQs//m/duoWvvvqqxDKqXsNGjRolPp45cyZ27NgBAPjll19K3I9Qp9u2bROvE2lpadi1a5f4wyo3N1d87aGhofjll19MfgeyrDhwZeVGRGofuP3796u11hW9je/m5oa5c+dq3VdSUhLCwsIAQOPLUhcLC4tS3d7Iz8/H3r17ceXKFXzwwQf46quvxFv34eHh2LFjh87kzqrOnj0LT09PrS0sEyZMEOcHV1V0KtDSevbsGf766y8Aha0b586dK3Y0spCTURtnZ2e0atUKn3zyiXhhCA4OxsGDB1G/fn2Nvpvl9fbbb2vcohJ+MAiv4fLlyyAi/PHHH5BIJHj48CHeeecdKBQKMaUUoDn6W9Xo0aORnp5e7I+KyZMn44svvlA7Z1RnfktJSYGbmxtsbW2LTcHz/PlzNGjQQK3VUNd5KAQMqoGrsO3z58/h5eWFBg0aiAnXVRER6tevr/XHhOpMRNpes+oAPOHYcXFxuHHjhsa2MpkM165dU/shGhAQUKZsFvr64IMPxL9/++038W93d3ckJCTAyspKnG3MEM6cOQMAqFevnvh+9+7dG507d0arVq3EHyPBwcGIi4vDm2++WWIaJmtra7HO9AlcLS0t1TKG3Lt3TwzEdPnmm2/0bnmuX7++xrJbt26JA7EEwnctUHgLPycnR22AGvBftxlVqj9y6tevj99++02jS0Bx33NCPmkAaoHjunXrNAJZ1cBZLpcjJSVF/L4GCu9kFJ31TVs9NW3aVCMF2eLFi7VOha16l0V1Cm6gMGhPSEgQ7zJqOzc3bNgA4L87McJnUPV1a1O0ZVt4LXv27MG+ffvg7e2t1iddF+HHS7du3cTAVchUI5Tb2dlZDFSjoqLwv//9T6PrR0XFgSsrs7y8PK19fH744Qfxb2E2raItYNouzsB/t6/HjBmjV3oY1dsn+/bt03oxLmrnzp3YunUrfH19sWrVKrX9CK0exY0mP3HiBGbOnIn09HQkJiZCKpWqjS7NzMwUbwsXvc2cmZmpd0CuzZEjR8QyC/Oiq/4IKHqbWp/jCSNk3377bXGZtbU12rZtq7MVSNuFQVvLgyoh2BRa+jZs2CAORhMu9jt27MCoUaPE0clCX2TVrihxcXHw9PTU2bq4bds2pKWlFZuy5tdff8WXX36pFmSqBsZC4FqjRg3s27cPd+7cwU8//QQiwrVr18TpMzMyMrB3714sWrQIQOGPKF393oqO4heWKZVK3Lt3D25ubqhTp47WLhrx8fHibXtt3QEAoGHDhnjllVc0lrdo0UIMZFSDJaFbhCo7Ozu0b98eEokEw4YNA1A4AE3b56o8t+9TUlLEi/t7772HPXv2AIDG+Xb16lUMGDAAr776aonde86fP6/XxBnCre0aNWogOzsbRCSekx06dFBLiWZpaYlatWpp/FAKDw/Hw4cPxfPl6dOnYn9g1XRkukilUrWA7cCBA+LnWhuFQoGPPvpI7Jry+uuvq3UFKKpo8CeUEfjv/Nm/f79aBokZM2Zg0aJFGvWs7cevapqkoj9GBcVNkSqRSLBp0yYx9Z4wKFHbHQXVwVnW1taQSCSwtbWFu7s7Xn31VY2Av1u3brCwsNCYkRD4L1B3dXXFkydP8Msvv6jdERSuORYWFuJ3jjAFrqB+/fp45513YGNjg4kTJ4rn7P/+9z/xM96wYUNcvnxZ7Lcr/C90wxAQESIjI8WAOjs7G99++63aD6UDBw4gKioKJ06c0PvaIWwn3GEBNK+5+fn54vdsr1699NpvRcGBKysze3t7fPPNN2qjFQGIg0JeeuklZGdnY8WKFQgPD0dqaqr4RS+0GhY1Z84cDBs2DKNGjdIaNEkkErWpQIUvcnd3d3z77bd6TQsqfOm6u7trtI4lJyfj888/x/379wEU3mr5/fffUa9ePZw7dw4SiQRBQUFYuXKlWpCQnp6OTz/9FHv37lVLCZaSkoKbN2/in3/+ARHhxIkTarfTSuunn37Ce++9h7CwMOzfv18cDZqWloalS5dqDZTLOqVk165dtQYLMpkMFhYWanloU1JS4OrqKraWfvzxxxrP6927N4DCHwnHjx8XWw6GDRuG//u//8M///wjzpYlBOBCpgjVYEB4b7S1igu3A6dNm6Zz1iuhFaRFixZq6XtUJScnw83NDR06dMCRI0fQunVrvP/++3j06BE6duyI3r1749VXX4VEIkHLli3FW5/JycniLURdVN8PBwcH5OTk4JNPPsHz589Rp04dsV/cO++8g+XLlyM5ORlnz54Vn6MasKgGjw8ePBAHaamaMWMGoqKiQERqrWkljUzevXu3+HlV7W9ORHjy5AksLCyQnZ2NuXPnlhjEZmVlibcq16xZgzt37uDtt9+GRCJBXl4e/P39sX//fvHHg/Aar1+/Lk67e+3aNcjlcnz55Zca+09MTERycrJeUxULAaOjoyPOnj2LP/74Q2xpatmyJSIiIrBu3ToxyPH29hYDj507d2LatGlo1qwZmjRpojaw8rvvvsO8efP06oc9ePBgtWChaGqjolMwR0REAPivW9C2bdvU+iOqtiRaWVlh+fLlGj++hfdSV15PobVbtTUzNjYWc+fO1fgOqVOnjlhnqlkDVJWUXWHChAni57tx48ZqeW0FBw4cQGZmplpwvH//fhw6dAg7duzQ2P7y5cu4fv06gML8xL///jsWLlwoNkwkJSVBoVAgLS0Njx8/xpgxYwD898P5xYsXGDhwIH7++WexASY5OVktFWG3bt3ElmF/f3/xh5Bqly25XI7atWsjJSUFEolE7Eev2tCSk5MDCwsLNGzYEP/3f/8HoDCAb9mypdbUh7m5uXqPFxGua1KptNgGICG4V71rUykQK5WCggKKjIykgoICcxfFbAoKCuju3bsklUpp6NChpHoa9evXj6ysrAgAXbx4kTZu3EgA1P65urqSRCKh3bt3U0ZGBhUUFJCPjw8REb311lt05MgROn78OH333XcaxwZAb7zxBmVlZRER0d27d+mTTz4hIqKEhAQCQDKZTNz+u+++o9DQUMrKyiKFQkFERLt376Zff/1V3CYrK4sGDBhARETLly+nffv20cCBA4mIyNfXV6P8AOizzz4T//by8iJLS0tx+bJly+jEiRO0fPlyOn36NE2dOlXtueU5fx48eEAdO3ak7777Tqx3AHT37l1x/zk5OeL2PXr0oLt37+q17x9++IGGDx9OV69eJSKiuXPnkre3N/Xq1YsyMzOpefPmdOTIEerRo4d4rIsXL9JLL71EZ86cIQAUGhpKCxYsIAD04sULevLkCeXk5NCKFSto1qxZ4vMaNmxIACgqKkp8L4mIevfuTSNGjBAfy2QySkxMFB8PGTKEVq1aRcHBweLrVygUdPbsWQoMDCQANGnSJJo/f774OoiIlEqlWC8AaPny5VSjRg2aMWOGWh0MHjyYlEolzZo1ix48eED5+flq793ixYvFv2fOnEnBwcFERBQUFERERJMmTaKEhASddQyAlEql+FjYfvr06RQREUGZmZk0atQo8b1zcnISj/fjjz/Shg0bqEGDBiSXyyksLIysrKwoMDCQrl+/rtd7LPjwww8pLCxMr20BkJubm/hY9Vxr0KABAaD79++rPWfRokW0detWIir8XKq+9wDo7bffFv8eMmQIJSUl0ZkzZ6hevXpq2wnftwBoy5Yt4vL09HTxWCtXriQAtGbNGgJAMTExNHbsWJ2vJzg4mA4fPkzJyckEgGrVqkW2trZERJSdna12fCKipUuX0rJly4iIaNy4cRrfBXfu3KH27dvrVZe6REdH09ixY6mgoIBu3rxJAOjTTz+l6OhoIiK6cOECeXh4EABKTEyk5s2b03vvvSc+HwB5e3vT+fPn6aWXXiIizWtV9+7dxTolIvL391d73958800CIH5PCvsFQLGxsVrLDYAOHDigdd2RI0fUrg26NG3aVHydRQ0ePJh69OihUaYWLVqobRccHExKpZIA0PDhw2ns2LFq79Gff/5JAGjs2LGUkJBAPj4+9NVXX9HkyZMJAF29epVmzZpFH330kdq+AdC6deto0qRJWssXHh4uvsZJkyYRANqxYwcBoKysLHJ0dNQ4XwTC+yz8UygUFBAQoPZahTII/95///0S61MwcuRIUiqVYnl++uknnWUhIgoLCyMLCwu197qixjscuJZSRX0jTUm1DtauXav2AbCzs6OAgAACQLdu3SKFQqFxodL1j4ho2rRpFBUVRefPn6clS5bQO++8Q9999x3Nnz+fvv76a+rUqZO4/cqVK+ncuXO0ZMkS8fhTp06lqKgoIiIaNWqUuK0QTN+/f582btxI27dvV3tNqhfGAwcOUKdOnejbb7+lXr16EQA6fvw4SSQS+t///kdERFeuXKE1a9aQQqGgZcuWqb2OGTNm0IMHD2j9+vX0008/0bRp0wwWuApflADo5s2bRFR4YVUNjmvVqkUffPABff/99wSAnjx5UqZjvfPOO+L+ir5XRS8MACgkJETtsbOzs8bylJQUtX0U1ahRI5o1a5bOMg0ePJgA0JUrVwgAHT58mOLj4zUuAD/88AMdOnSIfvrpJ/r222/pwoULaheVR48e0UsvvaRRBgBka2tLEyZMoJSUFHEZAPr888/FHyhCgDx06FAiInrllVcoOjqamjZtSnl5eTrLrxq0EhHNmTNH3N/Tp0+JiKhmzZq0efNmGjRoEPXu3VvjIiM8nj59OgFQ+xFmLA4ODnT79m3Kysqi3377TeO9//HHH2nNmjX0559/0tmzZ8Xlr7/+us7P++HDh9Ve240bNwgAjRkzhgCQg4OD+F1z5MgR+uabb8Tt+/fvT/b29kRUeIFWrUfhR82GDRvo9OnT9Omnn5JCoaCnT59S8+bNxR8bqnV59OhRcZmFhYVauQ4fPkzNmjWj33//XeMc1xUElJZcLqd27dpp7LNnz54UERFBANTKBYCGDRtGqamp9MMPPxAAtR85RJrXqvz8/GLPTSFoV2VnZ0cAKDc3V+tzhPdRF31/NOsyf/58jTIBoH/++UdjmfBv9uzZlJubq3atAED169cnAHTixAmaMmUKjR49moYPH07du3en4cOHEwBq3LgxJSUlifv94osvCCj8UaRLr1696PTp02rfdb169RID6b///lu89gwaNIjkcjmtXLmSVqxYQQBoxIgRNHjwYDpx4oTGD2kiokGDBlFISEix711x5HI5xcXFkVKppJSUFPrrr7/Iy8tL6zmbn5+v9riixjscuJZSRX0jTUm1DqKiojQuqhKJhGJiYsQ6unPnjrgOKPzF36FDB61f/r1796aUlBSNX6PCv27duqk9btSoEf3www/i8UePHq3xnLp164pBlPCvaGuTsLx169akVCppypQpBIDeeustSktLK7Y+1q9fTwDEC7azszNlZGTQnj17CAANGDCAANC0adNo4cKF5T5/hEAyMzOTiIjWrl1LnTp1IldXV7WLV3kvqBcvXlTbj5ubm/h3RkYGyeVy+vzzzwkALVmyhBITE8X177//vs6L+7lz58QgsqjmzZvTtGnTdJapZcuW9MYbbxARad2/cAyh7oXzsVWrVuJjb29vsRxHjhxR279UKlULmoiIPvroIwJAq1evJgD0ww8/iBcqoaVVW4Cpj6+//lp8ntCKKDx2cXHRCKKIiN59911x2a5duzSCYWMoWscWFhY0cOBA6tGjB7m4uNCrr76q8QPnpZdeUgsMAdAXX3xBW7ZsoWHDhon7FYKQ3NxcunHjBimVSvr6669JJpOJ3zX379/X+l7Xrl2bunTpQjExMeTn50e3bt2iFi1a6Dw3AKgFrg4ODhrv2a1bt0gikYjLnzx5onF+ZWdn07Rp0+jHH38s9+dMVx0X/bdhwwY6ceIEAaDdu3erfaddunRJ/HvIkCFEVLZrVc+ePdUeZ2dn04sXL3Ru/8orr1B4eHiZXq8+fvnlF426BUDnzp3TWAaAJk6cqNZiefHiRfFaIwSSwjkn/C0Erdrex4ULFxIAevbsmc4yCs/z9/cX9yX8mKxZsyYpFAoxINT2vTh16lTq3r071alTh3bt2qWx/+vXr5f6jkpJtm3bRpcuXSpxu4oa71SKwDU1NZU+/PBD6tq1K73yyit6VbixVNQ30pRU6yA9PV3tww4UtihqExQURPfu3RMfC7cFDx06pBZY5Ofni7f9hX/Xrl2j0NBQevz4Md2/f5+sra3Fdb///ru4T6H1QQgwhOCubdu24gX37NmzWl/T0KFDaerUqURU2DImkUgoNDS0xPoQWqCICr9knJ2diYjUWp7++usvjborqzfffFPt1uRff/0lXsyEFu6NGzdSrVq16MKFC2U+jlBewbfffks+Pj5qXTGISO1L9dmzZ+Ixc3NzKTc3lxITEyk9PZ3i4+OJiCgvL4/c3d1JLpdrHO/jjz+mFStW6FW2OXPmiLc3N23aRNHR0RQTE0NEJN7it7e3F9+DO3fu0KRJk0oM9Pbv3681ELl//z716tVLfDxq1Chavnw5Ef3XElzaAOb48eNkaWlJx48fF5cJQfeQIUPEFn/VOlcqleJtv6ItJMaiUCjo1KlTBBR2hzl06BCdOnWKWrZsKf44cHV1pZs3b4rBp42NjVoZx40bp9aNhYg0Hhel+nkBQL/88gtdvnxZo+WzqNOnT9PMmTM1goSaNWtS7dq1xe2++OILmj9/vsbzMzMzxa4meXl5Oo+1aNEisrKyomvXrulXkcUQPre7du2ixMREOn78OAGFd1ZU3+dTp06RTCYTy/PLL78QEdHOnTspIiJC3K4qXKuio6Pp+++/V1t29OhRje8gR0dHOnPmjNYWw4sXL9Kff/5JRETnz58Xu0cA/916nzt3Lu3fv1+8WyfYvXs3vfPOO8WWUXgfZs6cKV4P9+zZo3XbpUuXitu3a9eObt68SZmZmWK3iqLdBMytop5DlSJw/eSTT2jRokUkk8no5MmTFBgYWOyvQGOqqG+kKRWtg/LcDhI+qEqlkpKSksS+ptq20Wbr1q1aW0RLuiAaUlRUlNifj0i9vEqlkj777DPxsSHOn7S0NHr8+LH4WC6X07vvviv2BS3rLSVTMdVnKDY2lpRKJcXFxdHz58/1fl5ubq74Q0Nfjx8/FrtuGMKpU6coMjKSbt++rXZHQdXPP/9ssOOVVUZGBsXHx9OzZ89o//79Bt+/6rmi2hdaVXE/RIquu3r1Kn388celLsfnn3+u9XsoLS1NZ/9PQyguIFYqlcW+dr5WFV8HycnJWn88l1bR9yE1NVXn+3L79m3au3dvhf+OFlTUc0hCZOApSQwsJycHQUFB2L9/vzgae9KkSQgJCSnVTEmGolQqERMTA19f3xJH5VZVXAdlx3XHdaAvrieug/LguuM6KK+KWn/a81hUIE+ePIGjo6NaCqHGjRur5Z9TJZfLNZIMW1lZaU3sWxZCShHVvJ3VDddB2XHdcR3oi+uJ66A8uO64DsrLHPWnT4Bc4QNXmUymkeDYwcFBZ3LxjRs3inMeC0aMGFGqaTz1UTTPXnXEdVB2XHdcB/rieuI6KA+uO66D8jJl/WmbyayoCh+4SqVSjXnts7OzdSY3njhxophUWGDoFtfY2Fj4+PhUqKZzU+I6KDuuO64DfXE9cR2UB9cd10F5VdT6q/CBa7169ZCVlYXk5GSxu8CjR4/E6fWKsrGxMViQWhwLC4sK9UaaA9dB2XHdcR3oi+uJ66A8uO64DsqrotVfhR+cBQCffPIJnJ2dMWvWLFy6dAkLFizAnj17NOZPZowxxhhjVVelCFzT0tIwb948XLt2DbVr18Ynn3yCl19+2dzFYowxxhhjJlQpAlfGGGOMMcYqTqcFxhhjjDHGisGBK2OMMcYYqxQ4cGWMMcYYY5UCB66MMcYYY6xS4MCVMcYYY4xVChy4MsYYY4yxSoEDV8YYY4wxVilw4MoYY4wxxioFDlwZY4wxxlilUC0C1507d0IikWD79u0a69q0aQOJRIIjR45orGvYsCHat28PADh16hQkEglOnTplsHJFR0dDIpFg06ZNBtunsYwdOxYSiQRDhgzRWJeRkYHPPvsM/v7+sLe3R506dTBixAiEhYWZoaSMMcYYq6qqReDaq1cvSCQSnDx5Um15amoq7ty5AwcHB411T58+RWRkJAIDAwEA7du3x4ULF8RAtjo5ePAg9uzZA2dnZ63rg4OD8d1332HSpEk4ePAgli5dips3b6JLly6IiYkxcWkZY4wxVlVVi8DV3d0dLVu21GgtPX36NKysrPD2229rBK7CYyFwdXZ2RufOnXUGb1XVixcv8O6772LRokVwcXHRWB8REYEzZ85g5syZ+PjjjxEYGIhx48bh999/R2ZmJv7++28zlJoxxhhjVVG1CFyBwgD0wYMHSEhIEJedOnUKnTp1wqBBg3Dt2jVkZmaqrbO0tET37t3Fx0W7Crz55ptwdHREREQEBg0aBEdHR/j4+GDWrFnIy8tTO358fDxGjhwJJycn1KhRA6NGjcKzZ8+0lnXfvn3o0qUL7O3t4eTkhL59++LChQvi+rCwMEgkEuzYsUNcdu3aNUgkErRo0UJtX0OHDkWHDh1KX2H/36xZs+Dl5YUPP/xQ63pra2sAQI0aNdSW16xZEwBgZ2dX5mMzxhhjjKmqVoErALXA8+TJk+jZsycCAgIgkUgQGhqqtq59+/YaAVlR+fn5GDp0KIKCgrB371689dZbWLlyJb7++mtxG5lMhj59+uDo0aP46quvsGPHDnh6emLUqFEa+9uyZQtCQkLg7OyMrVu3Yv369UhLS0OvXr1w9uxZAECLFi3g5eWF48ePi887fvw4pFIp7t27h/j4eACAQqHA6dOn0adPH/G1SyQSzJ8/X686O378OH7//Xf8+uuvsLS01LqNr68vQkJCsHLlSpw8eRJZWVkIDw/Hhx9+iHr16mH06NF6HYsxxhhjrCTVJnDt2bMnLCwsxMA1JSUFd+/eRc+ePeHo6Ij27duL3QNiY2MRFRUlBrvFkcvlWLBgAWbNmoWgoCAsWLAAAwcOxJYtW8RtfvvtN9y/fx+///47pk2bhn79+mHVqlXo37+/2r6USiU+/vhjtGrVCocPH0ZISAhGjhyJU6dOoWbNmvjkk0/EbYOCgjQC17Fjx8LFxUVcfvnyZWRkZIiBq0QigaWlJSwsSn7bs7KyMGnSJHz00Udo06ZNsdvu2LEDgwcPRu/eveHk5IRmzZohMTERp0+f1tq9gDHGGGOsLKpN4Ori4oI2bdqIgevp06dhaWmJgIAAAIWBrRC4Fu3fWhyJRILg4GC1Za1bt1YblHTy5Ek4OTlh6NChatu98cYbao8fPHiA+Ph4jBs3Ti24dHR0xGuvvYaLFy8iJycHQGHgGhkZiaioKOTm5uLs2bMYMGAAAgMDcezYMQCFwaytrS26desmvkaFQoG5c+eW+LrmzJkDa2trvbadMmUKdu3ahZUrV+L06dPYvn07bGxs0Lt3bx6cxRhjjDGDqTaBK1AYiD58+BDx8fE4efIkOnToAEdHRwCFQd2NGzfw4sULnDx5ElZWVmLAVxx7e3uNfpy2trbIzc0VH6ekpKB27doaz/X09FR7nJKSAgDw8vLS2Nbb2xtKpRJpaWkAILaiHj9+HGfPnkV+fj569+6NPn364N9//xXXBQQEQCqVlvg6VF2+fBk//vgjli1bhtzcXKSnpyM9PR1KpRIKhQLp6eliH95//vkH69evx9q1a/F///d/6NGjB0aOHIljx44hNTVV724JjDHGGGMlqXaBK1DY1/PUqVPo2bOnuE4IUs+cOSMO2hKC2vJyc3PD8+fPNZYXHZzl5uYGAGoDyATx8fGwsLAQb73XrVsX/v7+OH78OI4dO4aOHTuiZs2aCAoKQkJCAi5duoSLFy+KAW5p3Lt3D0SEV155BS4uLuK/2NhYHDlyBC4uLvjpp58AADdv3gQAdOrUSW0fNWvWRKNGjXD37t1SH58xVnpvvvkmhg0bZu5imMWJEyfQtGlTKJVKcxcFP/zwg8bdNcaY4VSrwLVHjx6wtLTEzp07ERYWhl69eonratSogbZt2+K3335DdHS0Xt0E9BUYGIjMzEzs27dPbblqP1gAaNKkCerUqYMtW7aAiMTl2dnZ2LVrl5hpQNCnTx+cOHECx44dQ9++fQEA/v7+qFevHubOnYv8/PwyBa4DBgzAyZMnNf7Vrl0bnTt3xsmTJzF8+HAAhS3BAHDx4kW1faSkpODhw4eoW7duqY/PmDY///wznJycoFAoxGVZWVmwtrYWs38IQkNDIZFI8PDhQ1MXs9zKGoCuWrWq1JOZ3LhxA0OGDEGtWrVgZ2eH+vXrY9SoUUhOTi718c1p9uzZ+Oyzz9S6WJ0+fRodOnSAnZ0d/Pz88PPPP5e4n3///Rddu3aFk5MTvLy88Mknn6idb8KkMUX//fPPP+I2kyZNwpUrV8TBtIwxA6NqplOnTiSRSMjS0pJevHihtm7GjBkkkUgIAB07dkxt3cmTJwkAnTx5Ulw2YcIEcnBw0DjGvHnzSLVqs7Ozyd/fn2rUqEE//PADHTlyhKZPn0716tUjALRx40Zx282bNxMAGjRoEO3du5f++usv6tSpE9nY2FBoaKjacXbt2kUACACdPn1aXD5x4kQCQC4uLlRQUCAuP3XqFFlaWtKCBQtKVWcCX19fGjx4sNqyzMxM8vX1JRcXF1qxYgWdOHGCNm/eTG3btiVLS0u1+mKsPMLDwwkAXbhwQVx26NAhqlu3Ltna2lJ2dra4fOHCheTt7W2OYhZLLpeXuM2ECRMoJCTE6GV5/vw5ubq60oQJE+j69esUGRlJ//77L02fPp1iYmKMdlx96qA0zzt37hw5OzuTTCYTl0VGRpK9vT1Nnz6d7t27R+vWrSNra2vauXOnzv3funWLbGxsaMGCBfTo0SM6deoUNW3alGbNmiVuExUVRQDo+PHjlJCQIP7Ly8tT29fMmTNp5MiRZXqdjLHiVbvAdfbs2QSAOnbsqLFuz549BIBsbGzULoJE5QtciYiePn1Kr732Gjk6OpKTkxO99tprdP78eY3AVSjHyy+/THZ2duTg4EBBQUF07tw5jeOkpaWRhYUFOTg4qH2pC8Hvq6++qvU1zJs3T1f1FEtb4EpElJCQQNOmTaNGjRqRnZ0deXt70+DBg9UCDMYMwdvbm7766ivx8ezZs2nq1KnUvHlztR+bvXv3pjFjxhAR0R9//EEdOnQgR0dHql27Nr3++uv0/PlzcdvU1FR64403yN3dnezs7KhRo0a0YcMGIiLKy8ujqVOnkqenJ9na2pKvry8tWbJEfG56ejpNmjSJPDw8yMnJiQIDA+nmzZvi+nnz5lGbNm1o/fr11KBBA5JIJKRUKmnHjh3UsmVLsrOzI1dXVwoKCqKsrCzxu0P1n/Cd8/TpUxo5ciTVrFmTXF1daejQoRQVFSUeq2jA27NnT/rggw/o448/JhcXF6pdu7baZ3/37t1kZWVF+fn5xdb53bt3adCgQeTk5ESOjo7UrVs3ioiIICKigoICWrBgAdWpU4dsbGyoTZs2dPjwYfG5QqC3fft26tmzJ9na2op1u2HDBmratCnZ2tpSkyZNaM2aNXo9r6gPPviAhg8frrZs9uzZ1LRpU7Vl7777LnXu3Fnn6/zf//6ncV3YvXs32dnZUUZGhlq5bty4UWydnTp1imxsbCgnJ6fY7RhjpVftAlfGWOX1xhtvUL9+/cTHnTp1oh07dtCUKVPo008/JaLCYFMqldKvv/5KRETr16+nQ4cO0ePHj+nChQvUuXNnGjhwoLiPqVOnUtu2benKlSsUFRVFx44do3379hER0fLly8nHx4fOnDlD0dHRFBoaSlu2bCEiIqVSSQEBARQcHExXrlyhhw8f0qxZs8jNzY1SUlKIqDBwdXBwoP79+9P169fp1q1bFB8fT1ZWVvTtt99SVFQU3b59m9asWUOZmZmUmZlJI0eOpAEDBqi15mVnZ1Pjxo3prbfeotu3b9O9e/fojTfeoCZNmoitfdoCV2dnZ5o/fz49fPiQfvvtN5JIJHT06FEiIrpw4QIBoL/++ouUSqXW+n769Cm5urrSq6++SleuXKEHDx7Qhg0bKDw8nIiIvv32W3J2dqatW7dSeHg4zZ49m6ytrenhw4dE9F+gV79+fdq1axdFRkZSXFwc/fLLL+Tl5SUu27VrF7m6utKmTZuKfZ42bdq0oaVLl6ot6969O3344Ydqy/7++2+ysrLS2XI7c+ZM6tatm9qyf/75R+3Hg1AuHx8f8vDwoK5du9KOHTs09pWVlUUSiYROnTql9ViMsbLjwJUxVmn88ssv5ODgQPn5+ZSRkUFWVlb0/Plz2rZtG3Xt2pWIiE6fPk0A6PHjx1r3cfnyZQJAmZmZREQUHBxMEydO1LrtBx98QL1799Ya2P3777/k7OxMubm5assbNmxIa9euJaLCwNXa2poSExPF9deuXSMAFB0drfWY2roKrF+/npo0aaJWDiFAP3LkiNbn9ezZUyMQ69SpE33yySfi408//ZSsrKzI1dWVBgwYQMuWLaNnz56J6//3v/9RgwYNdAZ73t7e9OWXX2oc4/333yei/wK97777Tm0bHx8f8QeAYNGiRdSlS5din6dNjRo16Pfff1db1rhxY41ynTt3jgBQfHy81v0cOXKELCwsaMuWLaRQKOjp06fUrVs3AiCWNSkpib799lu6dOkSXblyhb744guysLCgP/74Q2N/Li4uYiDOGDMcK+P2oGWMVSZTpkxBXFycyY5Xp04dMUOFPgIDA5GdnY0rV64gLS0N/v7+qFWrFnr27Ilx48YhOzsbp06dQr169eDn5wegcADS/PnzcfPmTaSmpoojz588eYLmzZtjypQpeO2113D9+nX069cPw4YNQ9euXQEUDpTq27cvmjRpggEDBmDIkCHo168fgMJplrOyssRsIAKZTIbHjx+Lj319feHh4SE+btOmDYKCgtCqVSv0798f/fr1w/Dhw4udrOPatWuIiIiAk5OT2vLc3Fy1YxXVunVrtcdeXl5ITEwUH3/55ZeYOXMmTpw4gYsXL+Lnn3/GkiVLcObMGbRq1Qo3b95E9+7dxamdVWVkZCA+Pl7MhS0ICAjArVu31JZ17NhR/DspKQmxsbF4++23MWnSJHG5QqHQmKlQ9Xm6yGQyrVNLSyQStcf0/we8Fl0u6NevH5YvX4733nsP48aNg62tLb744gucPXtWnDnQ3d0dM2bMUCtfWloali1bhrFjx6rtTyqVinm3GWOGw4ErY0xUmiDSHBo1aoS6devi5MmTSEtLE1PaeXp6okGDBjh37hxOnjyJ3r17AyjMyNGvXz/069cPf/75Jzw8PPDkyRP0798fcrkcADBw4EDExMTg4MGDOH78OIKCgjB16lSsWLEC7du3R1RUFA4fPozjx49j5MiR6NOnD3bu3AmlUgkvLy+1aaQFNWvWFP92cHBQW2dpaYljx47h/PnzOHr0KFavXo3PPvsMly5dQoMGDbS+bqVSiQ4dOmDz5s0a61SD4qKKBpwSiUQjZZSbmxtGjBiBESNG4KuvvkK7du2wYsUK/Pbbb3rlgNYWIBZdploHwvHXrVuHl19+WW27olNLF607bdzd3cX81gJPT0+NdIOJiYmwsrLS+KGhaubMmZgxYwYSEhLg4uKC6Oho/O9//9P5vgBA586d8euvv2osT01NLfa9YYyVTbVKh8UYq/wCAwPFXMyqKe169uyJI0eO4OLFi2I6u/DwcCQnJ2Pp0qXo3r07mjZtqtbiKPDw8MCbb76JP//8E9999x1++eUXcZ2zszNGjRqFdevWYfv27di1axdSU1PRvn17PHv2DFZWVmjUqJHaP3d392Jfg0QiQUBAABYsWIAbN27AxsYGu3fvBgDY2NigoKBAbfv27dvj0aNHqFWrlsaxirZSloeNjQ0aNmyI7OxsAIUttqGhocjPz9fY1tnZGd7e3hppn86fP49mzZrpPEbt2rVRp04dREZGaryW4gJEXdq1a4d79+6pLevSpYs4g6Dg6NGj6Nixo9bWY1USiQTe3t6QSqXYunUrfHx80L59e53b37hxQ2PSmMePHyM3Nxft2rUr5athjJWEA1fGWKUSGBiIs2fP4ubNm2qTiPTs2RPr1q1Dbm6uGLjWq1cPNjY2WL16NSIjI7Fv3z4sWrRIbX9z587F3r17ERERgbCwMBw4cEAMvFauXIlt27YhPDwcDx8+xI4dO+Dp6YmaNWuiT58+6NKlC4YNG4YjR44gOjoa58+fx+eff46rV6/qLP+lS5ewZMkSXL16FU+ePMHff/+NpKQk8Zj169fH7du38eDBAyQnJyM/Px9jxoyBu7s7QkJCEBoaiqioKJw+fRrTp0/H06dPy1SPBw4cwNixY3HgwAE8fPgQDx48wIoVK3Do0CGEhIQAAKZNm4aMjAyMHj0aV69exaNHj/DHH3/gwYMHAICPP/4YX3/9NbZv344HDx5gzpw5uHnzJqZPn17ssefPn4+vvvoKq1atwsOHD3Hnzh1s3LgR3377balfR//+/TWC5/feew8xMTGYOXMm7t+/jw0bNmD9+vX46KOPxG12796Npk2bqj1v+fLluHPnDsLCwrBo0SIsXboU33//vdgS/Ntvv2HLli24f/++WF/ff/89PvjgA7X9hIaGws/PDw0bNiz162GMlcDcnWwZY6w0hIE7RdMdxcbGEgBq2LCh2vItW7ZQ/fr1ydbWlrp06UL79u1TS2m0aNEiatasGUmlUnJ1daWQkBCKjIwkosLBYG3btiUHBwdydnamoKAgun79urjvjIwM+uCDD8jb25usra3Jx8eHxowZQ0+ePCGi/9Jhqbp37x7179+fPDw8yNbWlvz9/Wn16tXi+sTEROrbty85OjqqjWhPSEig8ePHk7u7O9na2pKfnx9NmjRJzEetbXDW9OnT1Y4dEhJCEyZMICKix48f06RJk8jf35+kUinVrFmTOnXqpJGe79atW9SvXz+yt7cnJycn6t69uzjwTTUdlrW1tc50WNrSRwn5nm1sbMjFxYV69OhBf//9d4nPKyo1NZWkUqmY6UBw6tQpateuHdnY2FD9+vXpp59+Ulu/ceNGjbSFgYGBVKNGDbKzs6OXX36ZDh06pLZ+06ZN1KxZM7EuOnTooHVgVr9+/dTStjHGDEdCpDJFE2OMMVbJzJ49Gy9evMDatWvNXRTcvXsXQUFBePjwoUG7cTDGCnFXgVJSKpWIioqqEHNimwvXQdlx3XEd6IvrSf86+Oyzz+Dr66vRN9gc4uPj8fvvv5s9aOXzh+ugvCpq/XFWAcYYY5VajRo18Omnn5q7GAAgpktjjBkHt7gyxhhjjLFKgQNXxhhjjDFWKXDgyhhjjDHGKgUOXBljjDHGWKXAgStjZtahQwfcvn3b3MVgjDHGKjwOXBkzs+vXryMpKcncxWCMMcYqPA5cGasAsrKyzF0ExhhjrMLjwJWxCiAlJcXcRWCMMcYqPA5cGTMzZ2dnpKammrsYjDHGWIXHgStjZubq6sotrowxxpgeOHBlzMzc3Ny4xZUxxhjTAweujJkREcHV1ZUDV8YYY0wPHLgyZkbZ2dlwc3NDbm6uuYvCGGOMVXgcuDJmRhkZGahRo4a5i8EYY4xVChy4MmZGGRkZcHZ2NncxGGOMsUqBA1fGzCgzMxNOTk7mLgZjjDFWKXDgypgZqba4EpGZS8MYY4xVbBy4MmZGQuBqb28PmUxm7uIwxhhjFRoHroyZUWZmJpydnVGzZk2kp6ebuziMMcZYhcaBK2NmlJGRAScnJw5cGWOMMT1w4MqYGQldBThwZYwxxkrGgStjZsSBK2OMMaY/DlwZMyMhHRYHrowxxljJDBq4rl27FiNGjECnTp1w5MgRtXWbNm1Cnz590Lt3b6xatUot9U9YWBhef/11BAQEYPLkyUhISBDX5ebm4osvvkCPHj0wePBg/PPPP4YsMmNmxYErY4wxpj+DBq4+Pj6YNWsWWrRoobb87Nmz2LlzJzZt2oS//voLZ8+exb59+wAAcrkcs2fPxujRo3HixAm0bNkSc+fOFZ+7du1avHjxAocOHcKSJUuwdOlSxMTEGLLYjJlNdnY2HBwcOHBljDHG9GBlyJ0NGjQIALBhwwa15YcOHcLw4cNRt25dAMDYsWNx+PBhhISE4Nq1a5BKpQgJCQEATJo0CX369EFCQgK8vLxw6NAhfPPNN3B0dESbNm3Qo0cPHD16FJMmTdJaBrlcDrlcrv4iraxgY2NjkNeoVCrV/q+OuA7KrmjdyeVyWFpawtnZGWlpadWiTvn80Q/XE9dBeXDdcR2Ulznqz8Ki5PZUgwauukRFRYlBLQD4+/tjzZo1AIDIyEg0atRIXCeVSlG3bl1ERkbCwcEBKSkpauv9/f0RFham81gbN27EunXr1JaNGDECI0eONNTLAQDExsYadH+VEddB2Ql1J5PJEBMTg6ysLDx9+rRa3U3g80c/XE9cB+XBdcd1UF6mrL8GDRqUuI1JAtecnBw4OjqKjx0cHJCTkwOg8MLt4OCgtr2DgwNkMhlycnJgaWkJOzs7rc/VZuLEiRgzZozaMkO3uMbGxsLHx0evXwZVEddB2RWtO6lUCl9fX9SqVQsKhQK+vr7mLqLR8fmjH64nroPy4LrjOiivilp/Jglc7e3tkZWVJT7Ozs6Gvb09gMIW1uzsbLXts7OzIZVKYW9vj4KCAuTm5orBq+pztbGxsTFYkFocCwuLCvVGmgPXQdkJdSf8s7e3R25ubrWqTz5/9MP1xHVQHlx3XAflVdHqzyQladCgASIiIsTHDx8+hJ+fHwDAz89PbZ1MJsPTp0/h5+cHZ2dnuLm56XwuY5WdkF1DIpGYuSSMMcZYxWfQwFWhUCAvLw9EJP6tVCoxaNAg7Nq1C3FxcUhOTsbmzZsxcOBAAECHDh0gk8mwf/9+yOVyrF+/Hs2bN4eXlxeAwgFfv/76K7Kzs3Hnzh2cOXMGffv2NWSxGWOMMcZYJWDQrgKLFy/GgQMHAAA3btzAvHnz8PPPP6Nbt2549OgRxo8fD6VSiWHDhmHo0KEACm/tL1u2DIsWLcLSpUvRvHlzLFy4UNznu+++i8WLF2PAgAFwdnbGnDlzUL9+fUMWmzGzUCqVFer2C2OMMVbRGTRwnT9/PubPn6913cSJEzFx4kSt61q0aIFt27ZpXWdnZ4fFixcbqoiMVRgymQxSqVRtGRFxtwHGGGNMB27uYcxMsrKy1LJt2NvbQyaTmbFEjDHGWMXGgStjZpKdna0WuPLsWYwxxljxOHBlzEyysrLUchhz4MoYY4wVjwNXxsykaFcBDlwZY4yx4nHgypiZaOsq8OLFCzOWiDHGGKvYOHBlzEy4qwBjjDFWOhy4MmYm3FWAMcYYKx2D5nFljOkvKysL7u7u4mMOXBljjOlr5MiR8PLyQm5uLtauXWvu4pgMt7gyZiacDosxxlhZKJVKZGVl4ZVXXkFMTAwUCoW5i2QyHLgyZibcx5UxxlhZhIeHo1mzZujVqxcaNWqEuLg4cxfJZDhwZcxMuI8rY4yxsoiOjkajRo0AAPXq1UNMTIyZS2Q6HLgyZiZFuwrY2dnxlK+MMYMgIgwaNMjcxWBGkpaWBldXVwCAp6cnnj9/buYSmQ4HroyZSdGuAhKJBERkxhIxxqqK1NRUhIeHm7sYzEhSU1Ph4uICAKhVqxYSExPNXCLT4cCVMTMpGrgyxpihJCQkAABycnLMXBJmDKmpqWKLa+3atTlwZYwZn1KphJUVZ6RjjBleQkICLC0tq9WgnepEtatArVq1uKsAY8z4dHUL4O4CjLHyevbsGVq2bMmBaxWl2lXAw8ODW1wZY+YhlUqRm5tr7mIwxiq55ORkNG/eHE+fPjV3UZgRvHjxAjVq1AAA2NjYID8/38wlMh0OXBkzE4lEorGMU2IxxgwhOTkZ/v7+SEpKMndRmBEolUpYWPwXwmm7nlRVHLgyZibaugRw4MoYM4Tk5GT4+fkhOTnZ3EVhzKA4cGWsAuHAlTFmCELgmpKSYrYyEBGysrLMdvyqrGgLq42NDfLy8sxUGtPiwJUxMyh6m0fAgStjzBDy8/Ph7u5u1sB127Zt6Nixo9mOX1Vpu1tXnXK5cuDKmBnk5ORozeHKgStjzBAkEglsbW3N2gr38OFD/j4zAm3XD1dXV6SmppqpRKbFgStjZqBr8gEOXBljhlARBuskJCSgfv361eYWtqmopsISuLi4VJtrBweujJlBVlYWHB0dNZZz4MoYqyqePXuGdu3aibN4McNQnTVLULNmTaSlpZmpRKbFgStjZpCdnc2BK2PMKPLz89Vm5TPXpCYFBQWoV68e4uPjzXL8qkp11iyBi4sLB66MMePhrgKMMWPJyMiAs7MzAMDR0dGsI/u9vb25xdXAuKsAY8zkuKsAY1UfEZllJjzVWZXMlVmgoKAAEokEXl5e3OJqYNpaXLmrAGPMqHR1FZBKpcjJyTFDiRhjhrZnzx7UrVvX5Lfqiwau5piEIDk5GbVq1YK3tzcHrgamq8WVA1fGmNHo6ipQEUYCM8YMY+/evQgODsb58+dNelzVwNXNzc0sgWt8fDy8vLw4cDUC7uPKGDM5XS2ujLGqQalUIiEhAfPnz8fKlStNeuz09HSxj6ubm5tZugrEx8fD29u7WgVUpqItq4CTkxMyMjLMVCLT4sCVMTPgwJWxqu3KlSvo1KkTfH190axZMxw6dMhkx64IXQViYmLg6+sLiURitqwGVZW2rgLaZmKsqqrPK2WsAtHVVUDAX/SMVW779u3DkCFDAADTp0/Hli1bTHbsol0FzNHiGhMTg/r165v8uNVBbm4upFKpuYthNhy4MmYGurIKAIUDtMwxEpkxZhjXrl3D3bt38dJLLwEobPU05XScFaHFNTo6Gr6+vgAAOzs7/k4zgerS4MGBK2NmUFzgyimxGKvclixZgrVr16rdvvXw8EBiYqJJjl8RBmfl5OSId5W8vLw4lyszGA5cGTOD4vq4cuDKWOUVFxcHJycneHp6qi3v3LkzLl26ZJIyqAau9vb2kMlkJjmuLpzL1TSqS8s2B66MmUFWVhbs7e21ruPAlbHK69KlS+jWrZvG8vbt2+PGjRsmKYNq4GoOMplMrQ9m7dq1TdbaXNUVFBToHIhVXTI4cODKmBkolUpYWlpqXceBK2OV1+XLl8W+raoaNmyIqKgok5QhNzcXdnZ2JjmWNlFRUWoDs2rXro3nz5+brTxVSXp6OmrWrKl1XXWZPYsDV8bMoLiJBjhwZazyunfvHpo3b66x3M3NDUlJSSYrR9HvGFMO3ImKioKfn5/4uFatWtziaiDJycnw8PDQus7FxaVaXDs4cGXMDIq7iHDgyljlRUSwsrLSWG7OWfEcHR2RnZ1tsuNFRkaiQYMG4mNucTWcpKQkuLu7a13HXQUYY2bBgStjVZOVlRUUCoXJj2vqXK7c4mo8SUlJOltcuasAY8xoSuoqUB2+fBiravLz87W2tgrMlRbK1Llco6OjUa9ePfGxnZ0d8vLyTHb8qoy7Cpg4cJ08eTK6du2K7t27o3v37vjwww/FdZs2bUKfPn3Qu3dvrFq1Su1WalhYGF5//XUEBARg8uTJnA+OVXrFdRVwc3MzabJyxphhFNcaBgD16tXDkydPjFoGbcGzqQNXuVwOW1tbtWXVJTm+sZXUVaA6XDtM3uI6b948hIaGIjQ0FN9//z0A4OzZs9i5cyc2bdqEv/76C2fPnsW+ffsAFH4AZs+ejdGjR+PEiRNo2bIl5s6da+piM2YwxaUzAarPlw9jVc3z589Ru3ZtnetNEbhmZGTA2dlZbZkpuwpwgGpcxf04qi6NHhWiq8ChQ4cwfPhw1K1bF+7u7hg7diwOHz4MoHDqPKlUipCQENja2mLSpEm4d+8et7qySksmk+mcfAAAbGxszNIPjjFWPomJiSUGrrGxsUYtg7YcrqZscdV1K9vGxoa7CxhAcnKyzhZXc82SZmq6O+MYyfLly7F8+XL4+/tjxowZaNy4MaKiojBo0CBxG39/f6xZswZA4ejERo0aieukUinq1q2LyMhIeHl5aexfLpdDLperLbOysoKNjY1Byq9UKtX+r464DspOqVQiJycH9vb2xdZffn5+la1fPn/0w/VU+eogISEBHh4eOstbt25dxMTEGPX1pKWlwdnZWa3uXF1dkZSUZJJ6fPz4MerXr69xLA8PDzx//hx169Y1ehkEle380Ud6ejqcnJy0viYnJyekp6cb7PWao/6KuxspMGng+uGHH8LPzw8WFhbYvn07pk+fjp07dyInJ0etBcrBwQE5OTkAClunhPmOVdfrmsJu48aNWLdundqyESNGYOTIkQZ9Lcb+1VwZcB2UTXZ2NogIMTExOrextbXFzZs34eLiYsKSmRafP/rheqo8dfDgwQO0bdtW52c7Pz8fERERxX72y+vhw4dQKpVincXGxkImkyE6OtqoxxVcvnwZzs7OGscSvtMKCgqMXoaiKsv5ow+ZTFZsdxOZTGbw99mU9aeaRk0XkwauLVu2FP+eMGEC9u3bh7CwMNjb2yMrK0tcl52dLU6HKZVKNfLPZWdnq00np2rixIkYM2aM2jJDt7jGxsbCx8dHr18GVRHXQdkplUqEhYXBy8sLvr6+OrcLDAzEs2fP0LZtW9MVzkT4/NEP11PlqwO5XI5WrVoV+9m2trYudn153bx5E76+vvDx8RHrzsPDA3l5eUY9riAzMxM9e/bUOJa/vz8sLS1NUgZBZTt/9CGVSoutw5LWl0ZFrT+TdxVQJVREgwYNEBERIc7v/PDhQzEHnJ+fH3bv3i0+RyaT4enTp2o54lTZ2NgYLEgtjoWFRYV6I82B66BscnJy4OTkVGzdvfzyyzh69KhaF5qqhs8f/XA9VZ46SExMhJeXV7FllUgkRn0tmZmZcHFxEY9hYWEBR0dHyGQyk9RhdHQ03nrrLY1jeXp6IikpySzvY2U5f/RR0vljjPOrotWfyUqSmZmJixcvQi6XIz8/H5s3b0ZGRgaaNWuGQYMGYdeuXYiLi0NycjI2b96MgQMHAgA6dOgAmUyG/fv3Qy6XY/369WjevLnW/q2MVQY5OTka3V+Katu2LW7evGmaAjGjyMnJ0dmliVVNxc0jL3BwcFC7w2ho2gZnmdKzZ8/g6empsZxnzyo/YXxEcaysrJCfn2+iEpmHyQJXhUKBNWvWICgoCP3790doaChWrVoFR0dHdOvWDa+++irGjx+PESNGICAgAEOHDgVQ2IK6bNkybN68GYGBgbh16xYWLlxoqmIzZnDZ2dklBq5Cwm5OLVM5xcfHY8CAAQgMDMShQ4fMXRxmQiVN7WrszALmDlyJSGsd8OxZ5VdcDleBq6trlU+JZbKuAi4uLvjjjz90rp84cSImTpyodV2LFi2wbds2YxWNMZOSyWTFpswRCDkfTdknjBnG7t27MXv2bDRu3Bg///xzle7ywUpH+Fw3a9bMKPvXFbhKJBKdQaWhFDdzGLe4ll9JE1wA/+Xs1ecaU1lVnE4LjFUT+rS4AkCnTp1w5coVE5SIGdq9e/fQqlUrNGrUCI8fPzZ3cZgJFBQUwNLSssTtjD0Jga7A1d7eXszWYyzCQB5tnJ2d8eLFC6Mev6orLoerwN3d3WSTTZgLB66MmVjR9G+6NGvWDA8ePDBBiZihPXnyBD4+PrC0tKxSOSSZbsXNIa+qfv36iIqKMlo5dAWuppiEICoqSmc6I2O29FYXKSkpJQau1WESAg5cGTOxkmbOEjRq1AgREREmKBEzNCISR+HWqFED6enp5i0QMzpdg5KKatiwoVFb4WUymdZ0kaaY9rW4wJWVX3JyMtzc3IrdxsPDA0lJSSYqkXlw4MqYienbVcDd3b3KfwFVRUVbvFq0aIGwsDAzloiZQkJCgl6Bq4ODg0ZuckPT1rppihbX6OjoYgNXoZ8tKxt9WlyrQ19iDlwZMzF9uwpIJBK+vVYJRUdHo379+uLjli1b4u7du+YrEDMJfVtcBaYO4EzVVUD13C/KycnJqKnAqjp9Wlw9PT05cGWMGVZ2drZegStg/JyPzPBiYmLUMkFwi2v1UJrA1dPTE8+ePTNyidSZoqtAampqsXls+S5S+aSkpJQYuNauXdvk55apceDKmInl5uaWmERawP1cK5+igWuDBg2MOhiHVQylCVwbN26MR48eGblE6ozd4qpPV4nq0P/SmGQyWYnXDiEHeFXGgStjJqZUKvWePo8D18qnaOBqYWHBmQWqgWfPnumdO7Nx48ZG+VwrFAqdKbmMnSbpxIkT6NGjR7HbmKK7Aqv6OHBlrAIzVOAaGRmJVq1a8S1rE3jy5Anq1auntszNzY1bmqq40nQBaty4MR4+fGjwMmRkZMDZ2VnrOmOnSfrrr7/w6quvFrsNt7hWLjdu3DB3EbTiwJUxEyvNgCtDtczs378fU6ZMwYwZM7B3795y74/ppu12Xq9evXD8+HEzlYiZQmk+102aNEF4eLjBy1DcdK/29vZGy2aQnp4OOzu7Eqea5RZX05BKpeWebCI7OxtfffWVgUpkWBy4MmZipRlNXKtWLYOMEA0NDcW4ceOwa9cu/Pzzz1V+ZpWKJjg4GPv27TN3MVgFYWNjg/z8fIPvt7jAtaxZSpRKZYlB0NmzZ9G9e/cS98UtrmWXk5Oj99gIQ2QWuHHjBtq1a1eufRgLB66MVWCGyHtYUFCAnJwcODk5wcnJCcHBwbhw4YKBSshUKZVKrcGBh4cHMjIyjBKsMPOTyWSws7Mr1XOMMfq7uMAVKFsKrk2bNmHcuHHFbnP58mV07ty5xH3pk1UgPDyc08dpoU8qLIEhzq0rV66gY8eO5dqHsXDgypiJlbbVo7y3+MLDw9GiRQvxcdeuXXH+/Pky74/plpSUpHPazy5duvAPhiqqtDlcAaB169a4c+eOQctRUuBqaWkJhUJRqn3u3r0bNWvWxPjx4zFlyhSt29y+fRutW7cucV9ubm5ITU3VuT4/Px+TJ0/G1KlTeaKCIvRJhSUwRIvr+fPn8fLLL5drH8bCgStjJqRQKPTOKCBo2LAhIiMjy3zM+/fvo3nz5uLjli1b4vbt22XeH9MtPj4e3t7eWtcNHDgQhw8fNnoZZDIZmjdvjmPHjhW73ZEjRxAbG4vMzEyjl6mqK2vgaujPYXp6erGBa506dRAfH6/3/mJiYuDu7o5Vq1ZhypQpePLkiUbgS0TIz8+HjY1NifuztLREQUGBzvW7du3CqFGj0K1bN1y8eFHvclYH+syaJSjv7FkKhQI5OTk6B/qZGweujJlQdna23v2UBOUdoBUeHo5mzZqJj62srGBra8sTGxhBXFwc6tSpo3Vdu3btTDJK98svv8TcuXPx1Vdf6QxKIyMj8cUXX2DAgAFwcXFBXFyc0ctVlZUlcG3VqpXJW1x9fX0RExNT7D6USiUSExMBAFu3bsUbb7wBR0dHdOnSBW3bttUo86NHj9CoUaPyF/7/H2/cuHGYOHEiNmzYYJB9VhWl6Srg6emJhISEMh/r2rVr6NChQ5mfb2wcuDJmQllZWaUOXMubEis8PBxNmjRRW9ajRw+EhoaWeZ9Mu+ICVwsLC3h6epaqxau0fv75Z7x48QKjR4/G1KlTsX79eq3bffzxx/jrr79w/Phx7NmzB7///rvRylQdlCVwNcZApZIC13r16uHJkyfF7uO7775D69atkZubixMnTqB3797ius6dO2u0hF64cAFdunQpX8FR+GPKzc0Nzs7OaNSoEZ49e8Y/rlWUpquAPu9zcf7991/06dOnzM83Ng5cGTOhFy9ewMnJqVTPadSoUblm2UlPT4eLi4vasj59+nB6JiMorqsAAPTv3x9Hjx41yrELCgqwa9cufP/99wCAYcOG4cCBA3jx4oXadrt370adOnVQv359eHl5YeDAgTh9+rRRylRdlCVwBQrvfpS2z2lxSgpcGzZsiHv37mldl5iYiE8//RSnT5/G0qVLMWfOHDRv3lxtQoPOnTtr9NMubeBqbW2tdZDizp078cYbb4iPR4wYgT/++EPv/VZ1pQlcPTw8xFbzsrhw4YJeg+3MhQNXxkwoIyND7yTlAi8vrzLf9tE1Y1Pz5s15MgIjKK7FFQB69uyJM2fOGOXYd+/eRYcOHcTBf5aWlli4cCEGDx6M8+fPIyoqCl9//TV+/PFHfPvtt+LzLC0t4ePjg+joaKOUqzp49uwZvLy8Sv08Q0/9WlLg2qFDB1y8eFEjcLx37x5Gjx6NPn36YM+ePXj99dfx+++/Y8KECWrbeXh4aORh1TbhRnF05XK9cOECAgICxMcjRozA1atXMWvWLB6ohdIFrmVJeybYt28fmjZtqlefZXPhwJUxE0pPTy91i2t5UmLFxcXBx8dH6z5r1apVrl/lTFNiYqLOrAIA4O3tXa6+Z8U5e/YsunXrprasa9euOHz4MD7//HPMnDkT8fHx+PLLL2FlZaW23SuvvILdu3cbpVzVQUnvuy6GHqBVUuBqYWGBKVOmYNCgQQgMDMSff/4JIsKMGTOwdetW9O7dGxKJBLa2tkhJSdGax1P1eyMzMxOOjo6lCpS0pcTKz8+HQqGAVCoVl0mlUqxfvx7u7u745Zdf9N6/MVy7dk3tx545JCcn6z04C9Ddsl2SX3/9FfPmzSv180yJA1dWbnFxcXjw4IG5i1EpPHnypNhbybrY29uXaSaU8PBwNG3aVOu6vn37clJ8AyMinXPFC4yRvxMoTF/TtWtXjeVOTk5YuHAh6tWrh1WrVuGll17S2CYoKAj//vuvwctUXSgUCo0fA/owdEosfZLUDx8+HMeOHcPx48dx69YtBAQEoG/fvqhdu7badrqC0S5duojp9C5fvqz1fCqOtlbbq1ev6swZOnv2bOzYsQO5ubmlOo4hLVq0CLdv38Y333xjtjJkZGSUqtGjLP1cz5w5A29v71LfFTQ1DlxZuc2ePRtjx441dzEqhejoaNStW7fUz2vYsCEeP35c6ufdv39fLaOAqlGjRmHLli2Qy+Wl3i/TTp+W8aFDh2Lz5s0GP3ZaWhpcXV21ruvWrRtWrVql87m2trZo0qSJ0boxMO2aNWums89pWenb+mlpaYnly5djw4YN+L//+z+99x8QEIBz584BAI4fP47AwMBSlU/boLSTJ0+iV69eOss5ceJE/Prrr6U6jqE8ffoULi4u2LhxI6KiorB161azlAMoXRcAPz+/Ul0zjh07hq+++gorVqwoS9FMigNXVm7Dhw9HmzZtjDL3dlUTGRmp9dZ9ScraF664FlcbGxsEBwcbbbBQZXH27FmDTIGbmpqKmjVrlrhdSEiIwQfGxcbGFtu3Vh8zZswwW3BQmRUUFJQ6N7PA1tbW7D8cmzZtWqrWYqF/vEKhwOXLl9G+fftSHa9OnToaLYEXL14sdjDQ6NGjsXv3buTl5ZXqWIZw8uRJ9OnTBxKJBKtWrcKmTZtMXoayKM04hoKCAixbtgw7duyo8K2tAAeuzABeeeUVTJ8+XRzNzHTLysqCg4NDqZ9X1sA1Nja22Bbe0aNHV5ovYmO4ffs2vvzyS0ydOrXc+woLC1OboUwXS0tLuLq6GiRYFpw7d05tYEtZ1K1bFxkZGRpZCFjxkpKSUKtWrTI/XyqVlqkbkLlYWFhAKpVi7dq1GD58eKkHAnXq1AmXLl0SHwuBu62trc7nWFpa4s0338S6devKVuhyOHnypNiqbGlpCU9PT6OPDfjiiy/UXuuLFy9KPRlAmzZtcOvWrWK3uXz5MvLz8/H5559j7NixlSJoBThwZQbSqlUrxMfHG/RiXNXk5uaWej5zQVkDVyIqtjXIy8sL7u7uFXJu8ISEBKSnpxv1GMuXL8eaNWuQl5dX7hmkwsLC0LJlS7227dmzp0FTUJ07d05jYFZZjBw5Ejt27DBAiaqPkjJJlKRZs2a4f/++AUtkfLNmzcK+ffvw5ptvlvq5jo6OyM/PFz9v+vaTfeONN7Bnzx6TB/kJCQlq4xK05bI1pPj4eERERGD79u1i16OwsDC12Q/1UatWLcTFxensvnTq1Cn07t0bLVu2hJ2dHcaPH1/uspsKB67MYCZPnmyWX8SVxb1790r95SOoXbt2qUejlzT9o+DDDz/EypUry1QuY8jPz8fEiRPx/vvvY/To0di5c6dRjpOXl4eMjAz4+flhyJAhOHjwYLn2d/fuXb1aXAGgV69eOHXqVLmOp+rx48do2LBhufczbNgw7Nmzp/wFqkZKyt1bEkOlpivrALGy6Nq1K44cOaKWBaA0hg8fLn6uT5w4oVc/WUtLS7zxxhsmzX7x5MkTja5dXbp00chla0ibN2/G+PHj0a1bN5w4cQJAYf/Tskzy0L59e1y9elVjORFh2bJliI6OxoULFzBv3rxypdAyNQ5cmcH079+fE5kX4/bt22jVqlWZniuRSGBtbV2qPl4PHjzQ2b9VlRBMX79+vUxlM7QVK1YgKCgIu3fvxsGDB42WCufGjRvitIYhISHlDtiio6NRv359vbY1ZP7OsqQk0sXe3h5eXl7lmqmtuilvi2uLFi0MErhmZGRU2Lnli3r11Vfxxx9/QC6X49KlS3pnJhg6dCj27t1r5NL9JzQ0FD169FBb1rJlS4NP1SsgIhw9ehR9+/bFtGnTsHjxYvz000949OiRzsFrxRkzZozWgaDHjh1D+/bt4e7urnNAZ0XGgSszGKHvHucG1e7WrVto3bp1mZ/fvn37UgWXxQ3MKmrx4sWYO3euWRJ9E5HYr/L48eO4f/8+xowZA6DwnDJ0knaB6oAQd3d3yGQyZGdnl3l/JXXLUCWRSODs7IyMjIwyH09w9uxZrWmwymrChAk8BWwplLfF1d/fHw8fPix3OUrK4VqRODg4YPLkyRg6dCj8/PxgbW2t1/Pc3d1ha2tbrulM9aVQKLBp0yb0799fbbmVlRUkEkmZcqSW5Nq1a2jXrh2srKzg7u6O1atX4969e1i/fn2ZBgC2bt0at27dQkxMjLhMoVBg+fLl+Pjjjw1ZdJPiwJUZ1IABA3DkyBFzF6NCioiIQKNGjcr8/ICAAJw9e1bv7YtLhVWUl5cXgoKCSpUWxxAKCgrw8ccfo2PHjliwYAEWL16MH374Qa31MDg4GPv37zf4sYu29PTp0wcnT54s077KkoD+pZdewuXLl8t0PFUHDx7E4MGDy70fQUBAAM6fP8+zFenp6dOnZUpxJzBUZoHKFLgChQNDFyxYgGXLlpXqee+88w42bNhgpFL9Z/ny5Rg3bpzWz7WhJ44QbNq0SW22spYtW2L16tXFDlwryeeff47Ro0eLuXO//PJLvPXWW5XqXCmKA1dmUP3798c///xj7mJUOESEgoKCEpPTFycgIKBUgdWjR49KFSjPmDEDAAwSTOlr3759sLW1xcOHD9GrVy+sXr1a43Znjx49EBoaavBjv3jxQi191cCBA3Ho0KEy7UvfjAKqVBO5l8fjx4/RuHHjcu9HIJFI0LVrVzFXJyteUlJSqWY00sbBwaFcrf1A5QtcAeDll18udT/ZHj164OzZszqnszaEu3fv4vr16xg3bpzW9V27djV4P9e8vDxERESU+nukJEFBQfj666+xYsUKbNiwAVFRURg9erRBj2FqHLgyg6pVqxbS0tKgUCjMXZQK5dmzZ+W6nQgAdnZ2qFu3rt79D/Py8kqdxWDGjBn48ssvy1K8UouPj8eaNWvw8ccfQyKRoGfPnlr7ANvb20OhUBj01lxCQgI8PT3VljVq1AiPHz9GdnY23nrrLYwfP17vVsfSZBQQlLbrhzZpaWlwcXEp1z60mTBhgklataoCIip3/2JDZBaojIFrWQjfFcYcT/HZZ59h1apVOt/Xzp07GzxwPX78OAYMGGDQfQp69OiBEydOYP/+/di4cWOlGoilDQeuzOCMPeqyMrp16xbatGlT7v2MHz8ev/32W4nbyeVyvfuNqapfvz7q1atn9PQ82dnZGDt2LBYsWKBX0v6XXnoJV65cMdjxL126pHWUbrNmzdCtWzeMGzcO9evXF0f1lqQsLa52dnZQKBTlmsrywoULZRptXJKGDRsiPT29Sqa3y8zMxCuvvII///wTU6dORbt27crcx1QYGFdehhiglZqaapQfMRWRvt+DZXHr1i3Uq1ev2IYGNzc3pKamGvTH9KlTpxAUFGSw/RX1xx9/4Mcff6z0QSvAgSszAlOP/CyL58+fY8GCBfjrr79Mcrzbt2+Xa2CWICAgAJcvXy5xUM/jx4/L3J/21VdfNXrKmT/++APTp0/XO2l+UFCQQWf40jVTz4IFC3DkyBEEBgbigw8+0HtSjdjY2DLNiPbqq69iy5YtpX6e4Pz58wYdmKXqrbfewsaNG42yb30QkVFmlZo/fz6mTJmC8PBwjBw5Env27MGcOXPw4MGDUucILU+KO1UtWrQody7llJSUcndZqCx8fX2Rnp5ulIHA33zzjV4TkvTu3bvMfeK1KcuP39Jo0qQJvLy8jLZ/U+LAlRlc69atERERgenTpxtk1LShERHeeustdO/eHbt27dKa587QDBW4SiQSTJs2DfPnzy/2on7//n29MwoUJQzOMZaCggKEhoYiODhY7+d07twZ586dM9iAIV0JvWvUqCHOguTh4QFfX98Sz4+CggIApZtHXPDGG29g8+bNZU5ofuPGDYOcV9oMGDDAoBfm0jh//jx69OiBwMBAg2aUyMrKwv3799GvXz8sXrwYPXv2hK+vL4KDg7F8+XIMGzYMcrkckZGRWLx4cYn9KA31ufb39y/3lNkpKSlwc3Mrd1kqi7lz5xp8ZPyBAwdQq1Ytvb47hw8fbrCGj8zMTDg4OJR56uDqhmuJGZxEIsGePXvQq1cvjB07FlOmTDHqHNNyuRxZWVl6b//PP/+gc+fO6N27N3766SfMnj27xAD75s2b2LRpE4KDg/H222+X+vauIW/jDRkyBM2aNcPQoUMhk8m0bnPz5s0yd02wsbGBnZ2d0X50HDhwAIGBgaX6krawsEDr1q1x48aNch8/Pz8fEolEr4Fys2bNwjfffFPsNrt37y5TjkWgsLvArl27MHfu3FIHaE+fPoWbm1uZuoTow8rKCjVr1hRHI5uCUqnE/Pnz8cMPP+DgwYPYtm0bvv32W4Pt//fff8fYsWM1lk+cOBG//vorpk+fjuDgYMyePRvp6elYvXp1sfu7du0a2rZtW+5yWVtbg4jKNTYgOTm5WgWu7du3BxEZrFtTbm4uVq5cicWLF+u1fYMGDRAXF2eQa9uZM2cMMvNddcGBKzOaV155Bfv27UNwcDBef/11nUFWeTx+/BhBQUEYMGBAifMyA4WtratXr8YHH3wAAHB1dcX8+fPx6aef6nzOmjVrsHr1alhYWGD79u0YMWIEJk+erHfrX3JyskGTPEskEkyaNAkzZ87Umb7q7t27pR4spKp379569+/Ul1wux5MnT7B69WqMGDGi1M9/++23DTIZwfXr19GuXTu9tvX19YWNjQ2ioqK0rk9OTsaPP/6I999/v8zlqVmzJtatW4f33nuvVH0tt2zZgjfeeKPMx9XHoEGDjJKKrKiMjAxs3boVw4YNQ506dbBlyxY4OzvDx8cHPj4+BhmIEx8fj7179xZ77g0ePBhHjhzBzp07sXz5ckREROCdd97RCCi3bt2Kd955B5mZmXpPOlGSVq1alSuxfVxcXJW5Fayv+fPnY968eQbZ159//onx48eXakBr//79DZL+8fDhwxg0aFC591NtECuVgoICioyMpIKCAnMXxWzKUgfHjx+ntm3bUnBwMMXHxxukHPn5+dS3b1968uQJPX/+nPr06UNyubzY55w4cYI+++wzjeVTpkyhjz76iMLDw9WWb9++ncaNG0dKpVJt+Zo1a2jevHl6lXPXrl30008/EZHhz58FCxbQihUr1JYpFAoaOHBgufYbFxdHo0ePLtc+VEVGRlLv3r2pb9++dPfu3TLXwZAhQyg9Pb1cZVmxYgUdO3ZM7+1Pnz5Nc+fO1VgeHx9PvXv3pmvXrpWrPIK4uDgKDAyktLQ0IvrvXElJSaHMzEy1bZVKJfXt25fy8/MNcmxdMjMzKTg42Gj7VyqVtGrVKhowYACtX7+eEhIS1NYXFBTQ9evXqU+fPuX+zIwdO5Zu3bpV6udt3ryZxo0bR0lJSZSWlkbLli2jCRMmUHR0tMb3QnkcOHCAVq9eXabnpqam0siRI9WWVZdr1cyZM+nAgQNa1+lbB8LnKTc3t1THjouLozFjxpTqOUW9ePGC+vbtW659GEtFPYc4cC2livpGmlJZ6yA/P5/Cw8MpMDCQYmNjtW5z/Phxev78uV77W716Nf3666/i499//52WL19e7HOCg4MpKSlJY7lSqaTLly9Tv3796Pjx4/Tw4UMaO3YsffjhhzqDg+nTp9P27ds1lj958oQUCoX4eMiQIeIxDX3+KJVKmjp1Ku3atUtcdurUKZo/f3659/3mm2/S9evX1ZbdvXuXvv32W5o3bx4NGTKEBg8eTEOGDKG33nqLTp48qXEhf/LkCU2ZMoVGjBhBERERRFS+OtixYwd9//33Wtfl5eXRjh07KCwsrNh9DBs2TCMQLI5SqaSgoCDKzs4WH//www/Uv39/unfvnv6F18OFCxeof//+FB8fTwUFBXTlyhXq1asX9enTh/r160enT58mIqKbN2/SjBkzDHpsXd58802Kjo42+H4TEhJo+PDhtGLFCp0BoHCufP/997R27doyH+v69ev03nvvlfn5oaGhNHLkSHrttddo+/btap9vQ0lNTS3zj8VVq1bRhg0b1JZVl2uVTCaj4cOH09ChQykwMJC+++47MQDVtw5Onz6ttUFDH0OGDNH4Pnn+/DnFxMSQUqmkvXv3UlRUlNbnRkdH08CBA+nUqVNlOraxVdRziAPXUqqob6QplbcOwsPDKSQkhObPn08FBQWUkZFBc+bMoQEDBtBHH31EvXv3Fi/Qujx//pz69eunVgalUknDhg2jK1euaH3OuXPnaNasWcXuNyMjg/5fe3ceFlXZ/w/8PTDsSCgg4E6SoeISbhUgIGiagrtiqKG5tWjuaYq7Prn7PPUt1wvKfEQzzCjTTNNUykfJNVxxw2UQVEx2hjm/P8jzEwEdhJlz5sz7dV1cDuecOec+9+d2+Mxnztznww8/FN5++23h/PnzT922qKhICA0NFR48eCAef/r06UK/fv2E4OBgYceOHcLBgweFyZMni88xxPgpKCgQunbtKr44Dh48uMIXysq4c+eO0KlTJ7EC+M033wh9+vQR9uzZIyQlJZX64339+nVhxowZQteuXYVevXoJ06ZNE9577z2hb9++ZZLfqvRBYWGhEBoaWiZxSE5OFkJDQ4XPPvtM6Nu3b4WVqwsXLghDhw6t9HG3bdsmLF68WNDpdMKECROETz75xGCvAWfPnhVCQkKEffv2CQEBAcKJEycEnU4nZGdnC2FhYcL69euFsLAw4ezZswY5/pMOHjwoTJ06tUr7OHfunPCf//xHGDhwoPhmp0ePHsKpU6ee+rxHY6WwsFDo2rWrcP369TLb/O9//xMGDhworFq1SsjLyyt3PwMHDhSuXbtWpXMwhjfeeEOvKrpOpxMOHjwojBkzRhg5cqQwcuTIMs8zt79V2dnZQnFxsbBp0yYhODhYOHfuXJk+SEtLExISEsqMk8jIyAqLKc+yefNmYcqUKeI+z5w5I4SEhAhRUVFCQECAMGXKFKFz587Cd999J2g0GqGgoEAQBEFITU0VQkJChNTU1CqctWHJdQypBIH39asMnU6Ha9euoWHDhmb7DcDq6oPY2FgkJCTA0tIS7733Hrp06QKg5Ju/H3zwAZycnODi4oKWLVvi1q1bCAoKEq/bHDx4MCZNmlTmWsWsrCz069cP48aNw4svvijeitPDwwODBw/Gl19+WWbi+apISkrCsmXLEBkZiTVr1mDAgAEYPXo0ioqKMGLECKSlpWHLli3ibQMNNX4uXLiAadOmoUuXLrhy5QoWL15cLftNTk7GhAkT4O/vj2vXruGrr76CWq1+6nMKCwtx5swZ2NralvvN/ar2QWxsLLZv3w4/Pz8EBATg77//xoYNG7Bx40bUqlULgiBg5syZcHJywkcffQSg5NrmtWvXYtOmTYiLi8OLL75YqWMKgoBu3brB2dkZHTt2rNI1rfo4ceIEvv76a0RERCAgIEDsp/T0dBw4cABt27at9DlURZ8+fTBhwgQEBgbq/RxBEHD79m1s27YNu3fvRnR0NLp27YoaNWrovY/Hx8qFCxcwffp0JCQkQKVSQaPRYNGiRbh37x5WrFiBvXv3YsOGDQgKCsL48ePF46SkpGDJkiWIi4ur7Gkb3YoVK+Dm5oYhQ4bgxo0bSE1NRWFhIR4+fIjDhw8jPT0dDx48QH5+Pl577TW89dZbyMnJgZ+fX5lZLcz5b9WtW7cQHR2NxMRE3Lx5E+vWrcOpU6fg6uqKZs2a4dSpU9i4cSMsLCywb98+fP311899ww1BEPDVV18hPj4eLi4uyMrKwoYNG+Du7o7s7Gw4OjoiLy8Py5cvx7Vr13Dx4kU0b94cKSkp+Oqrr55rGj1jkesYYuJaSXINpDEZqw+Sk5ORk5ODc+fOwdPTE4mJicjIyICbmxvq1q1b4UX59+/fR1xcHNLT0+Hu7g6NRoPU1FRMmTIFHTp0qPZ27ty5E+vXr8fWrVufmdQZsu/Wr1+Pq1evYv78+dU6yfTDhw/x+++/IywsrFraXB19kJ6ejmvXruG3336DVqvFuHHjYG9vL64XBAGzZ8+GhYUFJkyYgNGjR+P111/Hu++++9zfwr958yauXr2q99yzVSWn15qsrCxMnDgRDRo0wJAhQ+Dp6Vmqvx+n0+mwaNEiHDp0CPXq1UPnzp3Rr1+/57rd8ZN9sHLlShw7dgzFxcUoKirClClTSs3HKwgCfvrpJyxbtgw9evRATk4O9u3bh40bN6JevXrPff7GUlBQgClTpiA1NRWenp5o2rQprKysYGNjg6CgILi4uIhvgp9FTuNHCps3b8a5c+egUqng6OiIyZMni+vWrl2LhIQEWFlZwdPTE8uWLStzq+nncf36ddSpU+epfwd0Oh3S0tJQu3btSt/u1tjkOoaYuFaSXANpTFL2wb1796DRaKpl0m8pcPwYtw9Wr16NXbt2YfLkySY33YzcxoogCNi+fTsOHDiAGzduoLi4GO3bt4eHhwdu3LiBS5cu4d69e7CwsEB4eDhGjhxZ5WOW1wdXrlyBs7PzU6eXy83NRVJSEhwdHdGyZcsKk2wlk9v4MTZBEDBlyhRcvnwZ33zzTZk3Tjk5ObC3t1fEnaQMRa5jiIlrJck1kMbEPnh+7Dv2gb7k3k9///03Tp8+jfT0dNStWxfe3t7VPo+o3PtAzth37IOqkmv/Pf1zTZm4f/8+5syZg2PHjsHd3R3Tpk1D+/btpW4WEZHZcnJyMtplE0REj8gnhX6KxYsXw83NDXv37sW4ceMwbdo0Wd5KlIiIiIgMR/aJa25uLg4cOIAxY8bA1tYWwcHBaNy4MX777Tepm0ZERERERiT7SwWuX78OR0dHuLq6isteeuklXL58udztCwsLUVhYWGqZWq2GtbV1tbRHp9OV+tccsQ+eH/uOfaAv9hP7oCrYd+yDqpKi//S5llb2iWteXh4cHBxKLXNwcEB2dna528fGxmLdunWllvXv3x8DBgyo1nalpaVV6/5MEfvg+bHv2Af6Yj+xD6qCfcc+qCpj9p+Xl9czt5F94mpnZ4ecnJxSy3Jyciqc/2zYsGGIiooqtcza2rraKq5EREREJA3ZX+PaoEEDZGdnIzMzU1x28eLFCu8aY21tDUdHx1I/TFqJiIiITJ/sE1d7e3t07NgRa9asQX5+Pg4cOIDU1FR07NhR6qYRERERkRGZxA0I7t+/j9mzZyM5ORnu7u746KOPDHLrTiIiIiKSL5NIXImIiIiIZH+pABERERERwMSViIiIiEwEE1ciIiIiMglMXImIiIjIJDBxJSIiIiKTwMSViIiIiEwCE1ciIiIiMglMXImIiIjIJDBxJSIiIiKTwMSViIiIiEwCE1ciIiIiMglMXImIiIjIJDBxJSIiIiKTwMSViIgqLTg4GOPHjxd/b9SoEVatWiVZe4jIPKilbgAREZm+o0ePwsHBQepmEJHCMXElIqIqc3Nzk7oJRGQGeKkAEZFEdu3ahYCAADg7O8PFxQU9evRAamoqAODq1atQqVRISEhASEgI7O3t0apVK/z++++l9vHtt9+iefPmsLGxQaNGjbB8+fJS6xs1aoQFCxZg6NChcHR0RMOGDbFjxw5kZGSgZ8+ecHR0RIsWLXDs2DHxOXfv3sWgQYNQr1492Nvbo0WLFti8efNTz+XJSwUePHiAUaNGoXbt2nByckKnTp1w8uRJcf3JkycREhKCGjVqwMnJCW3atCnVBiKi8jBxJSKSSE5ODiZOnIijR49i7969sLCwQO/evaHT6cRtZsyYgcmTJ+PEiRNo0qQJBg0aBK1WCwBITk7GgAEDEBkZidOnT2POnDmIiYlBXFxcqeOsXLkS/v7+OH78OLp3744hQ4Zg6NChGDx4MP788094e3tj6NChEAQBAJCfn482bdrghx9+wJkzZzBq1CgMGTIER44c0eu8BEFA9+7dodFosHPnTiQnJ8PPzw+hoaG4d+8eACAqKgr16tXD0aNHkZycjGnTpsHKyqoaepWIlEwlPHqlIiJSitxc4Nw54x/Xxwewt3/up2dkZKB27do4ffo0HB0d4eXlhfXr1+Odd94BAKSkpKB58+Y4e/YsfHx8EBUVhYyMDPz888/iPqZOnYoff/wRf/31F4CSSmhgYCA2btwIANBoNPD09ERMTAzmzZsHAPjjjz/w2muv4fbt2/Dw8Ci3bd27d0fTpk2xbNkyACVfzmrdurVYZW3UqBHGjx+P8ePHY9++fejduzfu3LkDGxsbcR/e3t6YOnUqRo0aBScnJ3z66ad4++23n7u/iMj88BpXIlKec+eANm2Mf9zkZMDPT+/NU1NTERMTgz/++AOZmZlipfX69eto1qwZAKBly5bi9p6engCAO3fuwMfHB2fPnkXPnj1L7dPf3x+rVq1CcXExLC0ty+zD3d0dANCiRYsyy+7cuQMPDw8UFxfjk08+wZYtW3Dz5k0UFBSgoKBA7y9fJScnIzs7Gy4uLqWW5+XliZdCTJw4ESNGjMDGjRsRFhaG/v37o3Hjxnrtn4jMFxNXIlIeH5+SJFKK41ZCeHg46tevj3Xr1qFOnTrQ6XTw9fVFYWGhuM3jH5+rVCoAEBNcQRDEZY+U9yFaeft42n6XL1+OlStXYtWqVWjRogUcHBwwfvz4Uu16Gp1OB09PT+zfv7/MOmdnZwDAnDlz8NZbb+HHH3/ETz/9hNmzZyM+Ph69e/fW6xhEZJ6YuBKR8tjbV6ryKYW7d+/i7NmzWLNmDQIDAwEAhw4dqtQ+mjVrVuY5SUlJaNKkiVhtfR4HDx5Ez549MXjwYAAliejFixfRtGlTvZ7v5+cHjUYDtVqNRo0aVbhdkyZN0KRJE0yYMAGDBg1CbGwsE1cieip+OYuISAI1a9aEi4sL1q5di0uXLmHfvn2YOHFipfYxadIk7N27F/Pnz8eFCxfw5Zdf4rPPPsPkyZOr1DZvb2/s2bMHSUlJOHv2LEaPHg2NRqP388PCwvDaa6+hV69e2L17N65evYqkpCTMnDkTx44dQ15eHj744APs378f165dw+HDh3H06FG9E2MiMl9MXImIJGBhYYH4+HgkJyfD19cXEyZMwNKlSyu1Dz8/P2zduhXx8fHw9fXFrFmzMG/ePERHR1epbTExMfDz88Mbb7yB4OBgeHh4oFevXno/X6VSYefOnejYsSOGDx+OJk2aIDIyElevXoW7uzssLS1x9+5dDB06FE2aNMGAAQPQrVs3zJ07t0rtJiLl46wCRERERGQSWHElIiIiIpPAxJWIiIiITAIT10rS6XS4cuVKqTvbmBv2wfNj37EP9MV+Yh9UBfuOfVBVcu0/Jq5EREREZBKYuBIRERGRSWDiSkREREQmgYkrEREREZkEJq5EREREZBKYuBIRERGRSWDiSkREREQmgYkrEREREZkEoyauGzZswNy5c0stGz58OPbt24dLly5h5MiRCAkJweDBg5GSkgKgZALcpUuXIjQ0FEFBQYiKikJWVpYxm01EREREMqA25sG6deuGqKgoTJ8+HdbW1rh9+zauXLmCDh06oH///pgyZQo6duyIgwcPYsqUKUhISEBycjJOnTqFHTt2wM7ODhcvXoS1tXWFxygsLERhYWGpZWq1+qnPqYxHd5CQ250kjIl98PzK9F1eHlRjxwJ//11qOyEqCujZ09jNMwrFj5/586E6fbrUIqFtW2Dq1ErtRvH9pAeT6YPz56GaOxfQap++nbs7hH//G7AwQM3o3/+G6vDhUotq5+YC9vYQHlsmDB8OdO1a/ceXIZMZP3pSxcQA588/YyMVhEmTgPbtq3w8KfrPQo//G0ZNXOvUqYPGjRvj8OHDCAkJwe7duxEcHIxDhw7B29sbISEhAIDg4GBs2LABp0+fhlqtRk5ODq5evYrmzZvDx8fnqceIjY3FunXrSi3r378/BgwYUK3nkpaWVq37M0Xsg+f3qO+szp5FvdhY5LduDV2NGgAAm9OnkZ+bizutW0vYQsNT6vhpuGwZitzcoK1XDwBgdf06VL/9hrSBA59rf0rtp8qQex/U+OYbuG7ZgtzAwAq3sbx7Fzbffovr0dHQubpWexvqrVwJCAKKvLzEZSoA+dnZ4u82J08iVxCQ2bRptR9fzuQ+fvTVaPFiFHl5QevpWeE2tkeO4IGHB7Lc3avtuMbsP6/Hxm9FjJq4AiVV159//llMXD/88EOcP38eR48eRXBwsLidVqtFZmYmunbtir59+2LRokW4c+cOunfvjrFjx0KtLr/pw4YNQ1RUVKll1V1xTUtLQ/369fV6Z6BE7IPnV6bvHjwAAFivXg20awcAUHXrBnt7ezRs2FDKphqM0sePSqWC+oMPoB4/vmTBwoVQff55peOp9H7Sh8n0gYsLBGtr2O7fX/E2338P9O6N+vXrA7VrV3sTVGo1EBkJywULAJTfd6rgYDg6OMBBoa8tTzKZ8VMJ6okToR49usL1qhdfhPMLL+CFaoixXPvP6IlrWFgYPvvsM5w5cwb37t1Du3btcP/+fQQEBGDp0qXlPicqKgpRUVHQaDT48MMP0aRJE3Tv3r3cba2trastSX0aCwsLWQVSCuyD5yf2nUol/i5+fPjPMpXC+1ax40cQoFKpSsdTEJ47nortp0owlT54aoz/WWfx+NioToIAqFRl2lBe3yn9teVJpjJ+nunR64ge51KdMZZb/xm9JS+88AL8/Pwwd+5cdO7cGZaWlggMDERKSgoOHDiA4uJi5OfnIykpCdnZ2UhJScFff/0FrVYLBwcHqNVqWFpaGrvZRIb1T7Ja5jGZJsbT/DwrzsYYB3JoAxkWYyzNdFjdunXDlStX0PWfC8QdHR2xatUqxMfHo3PnzoiIiMD27dsBANnZ2Zg3bx5CQkLQt29ftGrVCp07d5ai2UTVTxAqt5zkr7zYMZ7KVpn4Gmos6LtfjkXTxRgDkOBSAQCoXbs26tatC19fX3HZSy+9hC+++KLMtu3bt8eWLVuM2TwiIiIikiGjV1y1Wi3i4+MRERFh7EMTyc+jd8ZPfrSs8HfMivbPtYYixlP5nox5eR6tN2TFVZ82cCyaLsYYgJET16ysLAQFBeHmzZsY+JxTwxARERGReTLqpQLOzs44/MQEyUQEfplHaRhP8yP1l2YqU/Ul08UYS/PlLCL6B7+cpTz8cpb5kcOXs0zl+GR4Co8xE1ciOWCFTlkYT/Mjh0qYHNpAhsUYM3ElkhQrrsrDiqv5kUPFlVMlKZscxphMMHElkgNW6JSF8TQ/cqiEyaENZFiMMRNXIkmx4qo8rLiaHzlUw1hxVTY5jDGZYOJKRERkaGZQCSMyBiauRFLiDQiUhzcgMD/6TEX1+LZStYFj0XSV97eiPGYQYyauRERERGQSmLgSSYkVV+VhxdX88JavZGisuIqYuBIRERGRSWDiSiQHnD5JWRhP8yP1NEW85auyVabiqnBMXImkxOmwlIfTYZkfU5qqSOrjk+EpPMZMXInkgBU6ZWE8zY8cKmFyaAMZFmPMxJVIUqy4Kg8rruZHDhVX3oBA2eQwxmSCiSsREZGhmUEljMgYmLgSSYnTYSkPp8MyP7wBARkap8MSMXElIiIyNFZciaoFE1ciKbHiqjysuJofVlzJ0FhxFTFxJSIiIiKTwMSVSA44fZKyMJ7mR+ppingDAmXjDQhETFyJpMTpsJSH02GZH1Oaqkjq45PhKTzGTFyJ5IAVOmVhPM2P1JUwVlyVjRVXERNXIimx4moeGE9lY8WV5EThMWbiSkREZGhmUAkjMgYmrkRS4nRYysJ4midOh0WGxumwRExciYiIDI0VV6JqwcSVSEqs0CkL42meWHElQ2PFVcTElYiIyNBYcSWqFkxcieSA0ycpC+NpfqSOM6fDUjZOhyVi4kokJU6HpSyMp3nidFgkJwqPMRNXIjlghU5ZGE/zI3UljBVXZWPFVcTElUhKrNApC+NpnlhxJTlReIyZuBIRERmaMSqupFyMr4iJK5GUOH2SsjCe5kkO02EBnCrJHDDGTFyJiIgMzgyuPSQyBiauRFJihU5ZGE/zJIeKK29AoGy8AYGIiSsREZGhseJKVC2YuBLJAadPUhbG0/xIHWdOh6VsnA5LxMSVSEqcPklZGE/zpE98HyUUUo8FqY9PhqfwGDNxJZIDVuiUhfE0P1LHmRVXZWPFVcTElUhKrNApC+NpnngDApIThceYiSsREZGh8QYEVBWMr4iJK5GUOH2SsjCe5kkO02EBnCrJHDDGTFyJiIgMjhVXqgrGV8TElUhKrNApC+NpnlhxJWNhjJm4EhERGRwrrlQVjK+IiSuRHHD6JGVhPM2PHOLMqZKUjzFm4kokKU6fpCyMm3niDQhIThQeYyauRHLACp2yMJ7mR+o48wYEysYbEIiYuBJJiRVXZXla3BhT5WLFleRE4TFm4kpERGTqFJ6smD3GV8TElUhKnD5JWSqK5+PrSHk4HRYZC2PMxJWIiMjgOB0WVQXjK2LiSiQlVlyVhRVX88SKKxkLY8zElYiIyOBYcaWqYHxFTFyJ5IDTJykL42l+5BBnTpWkfIwxE1ciSXE6LGXhdFjmSQ7TYem7X45D01SZuCk8xkxcieSAFTplYTzNjxzizGqc8jHGTFyJJMWKq7Kw4mqe5FBx1ZfUxyfDU3iMmbgSERGZOoUnK2aP8RUxcSWSEqfDUhZOh2We9JkOyxjjgFMlKR9jzMSViIjI5Ck8WTF7jK+IiSuRlFhxVRZWXM0Tb0BAxsIYM3ElIiIyON6AgKqC8RUxcSWSA06fpCyMp/mRQ5w5VZLyMcZMXIkkxemwlIXTYZknTodFhsYbEIiYuBLJASt0ysJ4mh85xJnVOOVjjJm4EkmKFVdlYcXVPEldcWU1TvkYYxETVyIiIiIyCUxciaTE6bCUhdNhmSfegICMhTFm4kpERGTSFJ6oEBjjxzBxJZISK67KwoqreWLFlYyFMWbiSkREZNIUnqgQGOPHMHElkgNOn6QsjKf5kUOcOVWS8jHGTFyJJMXpsJSF02GZJ06HRYbGGIuYuBLJASt0ysJ4mh85xJnVOOVjjJm4EkmKFVdlYcXVPLHiSobGGIuYuBLJASt0ysJ4mh85xJnVOOVjjJm4EkmKFVdlYcXVPLHiSobGGIuYuBIRERGRSWDiSiQl3oBAWXgDAvPEGxCQsTDGTFyJiIhMmsITFQJj/BgmrkRywC/zKAvjaX7k8KUZObSBDIsxZuJKJCl+OUtZ+OUs8yT1F2ekPj4ZHmMsYuJKJAes0CkL42l+5BBnVuOUjzFm4kokKVZclYUVV/PE6bDI0BhjERNXIjlghU5ZGE/zI4c4sxqnfIwxE1ciSbHiqiysuJonVlzJ0BhjERNXIiIiIjIJTFyJpMQbECgLb0BgnqS+AUF5466iNnAcmibGWMTElYiIiIhMAhNXIimx4qosrLiaJ6krrk8e42nrOQ5NG2PMxJWIiMikKTxRITDGj2HiSiQHnD5JWRhP8yOHaYrk0AYyLMaYiSuRpDgdlrJwOizzJPVURVIfnwyPMRYxcSWSA1bolIXxND9yiDOrccrHGDNxJZIUK67KwoqreeINCMjQGGMRE1ciIiIiMglMXImkxOmwlIXTYZknqafD4uT0yscYi5i4EhEREZFJUEvdAABo27YtPv74Y8TFxSEnJwdDhgxBdHQ0ACA/Px8rV67E/v37oVar0adPHwwfPhwqM7gAWZYKC4GiIqjy84G8PMCC730qRacr3XeFhSXLn6zQ6XQl2yjRk32gJPn5Jf+WV3HNy6tcTJXcT/oylT7QavWvuD46n+r0aH/6tKG4WLmvLU8ylfGjj/JeW8qjUpWMx+qIsU4ny+qtLBJXAEhOTsaWLVtw8+ZNvP322+jSpQvq1KmD9evX4/r16/jmm2+Qk5OD999/H56ennjzzTfL3U9hYSEKHyUD/1Cr1bC2tq6Wdup0ulL/mhvVsGGw+O9/0UjqhpgoC6BM3wmWlhAEoeRFAoDKygqqy5cBe3tjN88oyusDpdGp1WI8oVaXfLTl5VWpfZhDPz2LKfWBEBAA4Wl/Fx6Ng549DdaGx8ddeX+rVFZWUP31l2JfW55kSuNHX6VeW8qhsrKCaseOaomxBQDLw4eha9CgyvvS+5h6vMGQTeIaHR0NOzs7eHt7o3HjxkhNTUWdOnWwZ88ezJkzB05OTnByckJUVBR2795dYeIaGxuLdevWlVrWv39/DBgwoFrbm5aWVq37MxU2vXtD3a6d1M1QlGIPD+TfvCn+btGrF+xcXWX5TpeeTbCzQ66HB3DtWskCLy/Yf/45VAUF0jaMDKqwWTMUPYp5Bezi4mBx/75Bji9YWSG3adP/P+7+8fjfKouBA2FXv75Bjk+GJzg4INfZuUyMH6ceNw42/v7Vdkyds7NR8x0vPd7gyyZxrVmzpvjY1tYWubm5AICMjAx4eHiI6zw9PZGRkVHhfoYNG4aoqKhSy6q74pqWlob69evr9c5AcRo2ZB9UgV5917Ah8Morxm2YEZnl+HnppUo/xSz76QmK64MhQ4x2qHL7rmFDoG1bo7VBaoobP/po2BCopsRVp9MhR4b9J5vEtSJubm7QaDTw9PQEAGg0Gri5uVW4vbW1dbUlqU9jYWEhq0BKgX3w/Nh37AN9sZ/YB1XBvmMfVJXc+k8+LalAaGgo1q1bh4cPH0Kj0WDTpk3o0qWL1M0iIiIiIiOTfeI6atQo1K1bF3379sU777yDrl27olu3blI3i4iIiIiMTBaXChw7dqzU72vXrhUf29raYsaMGZgxY4axm0VEREREMiL7iisREREREcDElYiIiIhMBBNXIiIiIjIJTFyJiIiIyCQwcSUiIiIik6ASBN5XkoiIiIjkjxVXIiIiIjIJTFyJiIiIyCQwcSUiIiIik8DElYiIiIhMAhNXIiIiIjIJTFyJiIiIyCQwcSUiIiIik8DElYiIiIhMAhNXIiIiIjIJTFyJiIiIqELh4eE4ffq01M0AwMS1XFu3bkWfPn3g7++P8PBwrFmzBsXFxU99TmJiIsaOHWukFhrPmjVr0L9/f7Rr1w67d+8WlycmJqJDhw4IDAwUfzQajYQtlV54eDh69OiBoqIicdmiRYuwZs0aCVslLY6f8oWHh8Pf3x+BgYEIDQ3Fe++9hwMHDkjdLElxrDwfOSUUUuL4qZzHX4MCAwMRHh4udZP0ppa6AXKzfv16JCQkYMGCBWjZsiUuX76MmTNnIiMjAzNnzpS6eUZXv359TJo0CatXry6zrn379vj0008laJV85ebmIjExEX369JG6KbLA8VOx1atXo0WLFrh//z7279+PWbNmYezYsejXr5/UTZMExwpVBcdP5T16DTI1rLg+5uHDh4iNjcVHH30EPz8/qNVqNGnSBPPnz8eOHTtw9epV3L9/HzNmzEDnzp0RGhqKTz/9FDdu3MC//vUv/O9//0NgYCAGDRok9alUmzfffBOvvvoqrK2tpW6KSXjrrbcQGxsLrVZbZl18fDx69uyJsLAwzJo1C9nZ2QCAd999Fz/88IO4XW5uLjp27Ii7d+8ard2GwvHzbDVr1kTv3r3x7rvv4osvvkBxcTEuXbqEkSNHIiQkBIMHD0ZKSoq4/c2bN/Hhhx8iNDQUb7zxBuLj4yVsffXhWKmaU6dOYejQoQgKCkKPHj1KjYs1a9Zg1qxZ+Oijj9CxY0dER0fj9u3bEra2+nH8VJ1GoxFfW/r164ekpKRS65OTk9GrVy+EhYVJ+kkiE9fHnDp1ClqtFgEBAaWWv/zyy/D09ERycjJmzpwJOzs77NixAz/++COCgoJQr149TJ8+He3bt8fBgwexefNmic7AuE6ePInQ0FD0798f27Ztk7o5stChQwe4ubkhMTGx1PLff/8dX375JVatWoXExETk5eVh5cqVAIDOnTvjl19+Ebf97bff0Lx5c7i4uBi17cbG8VNaYGAgHjx4gNTUVIwbNw5vvfUWfvnlF4wYMQJTpkxBQUEBtFotxo8fj2bNmmHnzp349ttv0apVK6mbbnAcK8+mVqvx8ccf49dff8WSJUvwxRdf4Ny5c+L6X3/9FZGRkdi3bx8aNGiAdevWSdha4+L4eTadTocJEybA398fu3fvxqxZsxATE4PMzExxm3379iE2NhZxcXH4/vvvcfDgQUnayksFHvPgwQM4OzvD0tKyzLpatWohKysLJ06cwPLly2FrawsAaNmypbGbKQt+fn6Ij4+Hh4cHUlJSMHnyZLi4uCAkJETqpklu1KhRWLRoUalrhn7++Wf07dsXXl5eAID3338fQ4YMQUxMDDp16oQVK1bg4cOHqFGjBvbs2YPOnTtL1Xyj4Pgpy9XVFQBw8OBBeHt7i30RHByMDRs24PTp01Cr1cjPz8eoUaOgUqlgY2ODpk2bStlsg+NY0U+zZs1KPfb398fJkyfh4+MDAHj11VfxyiuvAAC6dOliNtfec/xU7P3334eFRUn98uWXX4ZWq8WAAQMAlOQ2bdq0QVJSEiIiIgCUfKJYs2ZN8VOiffv2ITAw0OjtZuL6mBdeeAFZWVkoLi4uk7zeu3cPlpaWqFWrlpi0mrO6deuKj319fREZGYlff/2VLwYo+QPh6upa6uP/zMxMtGnTRvzd09MTeXl5yM7OhrOzM1555RXs378fISEhOHr0KGJiYqRoutFw/JT1qLKh0+lw9OhRBAcHi+u0Wi0yMzNhYWEBT09PqFQqiVppfBwr+klNTcXy5ctx4cIFFBUVobCwEI0aNRLX16xZU3xsa2uL3NxcCVppfBw/Ffu///s/8RrXPXv2YObMmaVed4qLi0u9Ma5du7b42MPDAydPnjRaWx/HxPUxLVu2hFqtxqFDhxAUFCQuP3/+PG7fvo0WLVpg3bp1yM/PL5O8mtMfkvKY+/k/aeTIkfjkk0/EZNXV1bXUN1k1Gg1sbW3h6OgI4P9fLmBhYYFWrVrB2dlZimZLhuOnpNLq7OyMevXqISAgAEuXLi2zzcmTJ3H79m0IgmC2fWau5/0sS5YsQZs2bbBixQrY2tri448/hiAIUjdLdjh+yufm5gZvb29s2rSpwm3u3LkjPtZoNJJdzsZrXB9To0YNDBs2DIsXL8aff/4JrVaLixcvIiYmBhEREWjTpg1at26N5cuXIzc3F/n5+eI0JDVr1kR6evozp80yNVqtFgUFBRAEQXys0+mQlJSE+/fvAwDOnTuHLVu2SPKRgVy99tprqFWrljjFUVhYGBISEnD16lXk5eXh888/R5cuXcTtQ0JCcPz4cWzfvl1Rlwlw/DxbVlYWvvvuO6xevRpjxoxBYGAgUlJScODAARQXFyM/Px9JSUnIzs5G8+bNYWtriw0bNqCwsBDZ2dk4e/as1KdQLThWqiY3NxeOjo6wsbHB8ePHcfjwYambZFQcP1Xj6+sLrVaLhIQEFBUVoaioCMePHy9VcImPj0dWVhZu3ryJ7du3o1OnTpK0lRXXJ4wYMQI1atTAggULoNFoUKtWLYSHh+Odd94BACxYsABLlixBeHg4VCoVevfujRYtWqBdu3Zwd3dHWFgY6tSp89R3LaZkwYIF4kfex48fx+zZs7F69WocOXIEs2fPRn5+Ptzc3DB06FBFJVzVYeTIkRg3bhwAwN/fH0OGDMG4ceOQk5OD119/HRMmTBC3rVGjBtq0aYPff/8dK1askKrJ1Y7jp2JjxoyBhYUFrKys4OPjgzlz5ogf061atQorVqzA3LlzoVar0apVK/EToZUrV2Lx4sV44403YG1tjeHDhyviOleOleenUqkwduxYLFy4EKtXr0aHDh3QsWNHqZtlVBw/VaNWq7Fq1SosW7YMn3/+OQRBQLNmzTB9+nRxm+DgYERHR+Phw4fo37+/ZGNMJfCzBCIiIpMUGhqK2NhYNGjQQOqmEBkFLxUgIiIyQceOHQNQ8mVPInPBSwWIiIhMzMKFC/HHH39gxowZsLKykro5REbDSwWIiIiIyCTwUgEiIiIiMglMXImIiIjIJDBxJSIiIiKTwMSViIiIiAzu1q1beP3116u0D84qQEQkA8eOHcOYMWMAAN9//z3q1KkjcYuISK4KCwvxr3/9C0eOHEFOTg5efvllTJ06Fd7e3gCAuLg4fP3119DpdOjZsyfGjRsHlUoFrVaL6dOn48yZM8jIyMCuXbvg6uoq7nfOnDnYvXs31OqS9NDT0xNbt24ttw23bt1CREQE7OzsxGXBwcGYP3++Ac+ciSsRkdHNmTMHP/zwA/z8/LB27VoAgKOjI3x9fQEA1tbWUjaPiGSuuLgYdevWRWxsLFxdXbF582ZMmjQJO3bswKFDh7Bt2zbExcXB1tYW7777Lho1aoSePXsCAPz8/DB06FAMGzas3H2PHj0a0dHRerXD2toaBw8erK7T0gsvFSAikgEfHx/ExcUhLi6uVAWEiOhJdnZ2GDFiBNzd3WFpaYmBAwfi1q1byMrKws6dO9GvXz/Uq1cPrq6uGDx4MH766ScAJbd2HTRoEFq0aGHQ9iUnJ2Pw4MEIDg7GqFGjcOPGjVLr4+PjERYWhoiICBw4cKBS+2biSkRkROHh4eI91f/880+0bdsWbdu2xbFjx8THt27dAlBSmW3btq34nO7duyMoKAjLly9Hfn4+li9fjqCgIPTo0QPbtm0rdZyMjAzMnTsXXbt2xauvvoqePXti/fr10Gq1Rj9nIjKsU6dOoVatWnB2dsaVK1fESwYAoEmTJrh8+bLe+9q4cSNCQ0MxfPhw/Pnnn5Vui0ajwbRp0zB58mTs3bsXnTp1wvTp0/HotgFFRUVITU3Fjz/+iGnTpiEmJgb379/Xe/9MXImIjOjll1+Gs7MzAMDBwQG+vr7w9fXFuXPnKnxOZmYmPvnkE1hZWSEnJwebN2/GkCFD8P3338PR0REajQZLlizBlStXAABZWVmIjo5GYmIi8vLy4OXlBY1Gg9WrV2PhwoXGOE0iMpLs7GwsWrQI7733HgAgNzcXjo6O4noHBwfk5ubqta/IyEhs374du3btQv/+/TFhwgRoNJoKty8sLERwcLD4c+jQIezatQuhoaFo3bo1LC0tERkZidu3b4tvyAVBwKhRo2BjY4PXX38dvr6+OHz4sN7ny8SViMiIli1bhoCAAAAlSeyjywN8fHwqfE5RURE+++wzJCQkwN3dHQCQlpaGzZs3Y9u2bbCxsYFOp0NycjIAYOvWrUhPT4eLiwu+++47bN68GYsXLwYA/PDDD0hLSzPwWRKRMRQUFGDSpEkICAgQr2G1t7dHdna2uE1OTg7s7e312p+Pjw+cnJxgZWWFbt26oWXLljhy5AgAYMCAAQgMDERgYKCYzFpbW2P//v3iT0BAADQaDRITE0sltHl5ecjIyAAAWFhYlLocyt3dHZmZmXqfM7+cRUQkc05OTmjdujUAwMPDA+np6WjcuLE480DNmjWh0Whw7949AMBff/0FALh79y46d+5cal+CIODMmTOoX7++8U6AiKqdVqvFxx9/DDc3N4wfP15c7uXlhUuXLolvkC9cuIAXX3zxuY6hUqnEx0/OLvCogvokNzc39O3bFxMnTiyz7tatW9DpdMjMzISbmxsAID09HX5+fnq3iRVXIiKZc3BwEB9bWlqWWfboj8uja8ge/fv4pQiP/9ja2hqr6URkIAsXLkRBQQHmzJlTKsF888038e233+LmzZvIzMzEpk2b0K1bN3F9YWEhCgoKAJR8mvPoMQDs3bsXeXl50Gq1+Pnnn3Hy5Em0a9euUu3q2rUr9uzZgxMnTkCn0yEnJwe//PKLuF6lUmH9+vUoLCzEH3/8gdOnT8Pf31/v/bPiSkRkZI8Sx/z8fIPsv3nz5khKSoKlpSUWLVokVmZzcnLw66+/IiQkxCDHJSLjuH37NhITE2FjY1Pq//N//vMfBAQE4OLFixg6dCh0Oh169eqFiIgIcZu+ffvi9u3bAEq+LAqUzCMNAP/9738xb948qFQqNGzYEEuXLq30nNJ169bFggULsGrVKly9ehV2dnZo27YtwsLCAABWVlbw8vLCm2++CTs7O8ybNw+1atXSe/9MXImIjKxRo0YAgJSUFAwcOBB2dnYYOXJkte1/wIAB2LFjB+7cuYO+ffvCy8sLOTk5SE9Ph1arRY8ePartWERkfJ6enmKyWZ5hw4ZVOE9rYmJihc/bsGGD3m2oU6cOkpKSyl3Xpk0bxMXFPfU5kZGReh/rcbxUgIjIyCIiItCpUyc4OjoiNTUVZ86cgU6nq7b916xZE7GxsQgPD8cLL7yA1NRUFBQU4JVXXin3ujMiIlOhEh5dDEVEREREJGOsuBIRERGRSWDiSkREREQmgYkrEREREZkEJq5EREREZBKYuBIRERGRSWDiSkREREQmgYkrEREREZkEJq5EREREZBKYuBIRERGRSWDiSkREREQmgYkrEREREZkEJq5EREREZBL+H31cM7IOtZCuAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "anomaly_model.show_anomalies(\n", + " series=s_taxi_test,\n", + " anomalies=series_taxi_anomalies[pred_start:],\n", + " start=START,\n", + " metric=\"AUC_ROC\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Convert an anomaly score to a binary prediction with a `Detector`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Darts' Anomaly Detectors convert anomaly scores into binary anomlies/predictions. In this example, we'll use the `QuantileDetector`.\n", + "\n", + "It detects anomalies based on the quantile values (`high_quantile` and/or `low_quantile`) of historical data. It flags times as anomalous when the values exceed these quantile thresholds. In this example, the anomaly scores were computed for the absolute residuals of the model. It is lower-bound by 0. We set `low_quantile=None` (default), as we only want to flag values above `high_quantile`. \n", + "\n", + "We set `high_quantile` to `0.95`. This value must be chosen carefully, as it will convert the `(1- high_quantile) * 100` % biggest anomaly scores into a prediction of anomalies. In our case, we want to see the 5% most anomalous timestamps. \n", + "\n", + "> Note: You can also use `ThresholdDetector` to define some fixed value thresholds for anomaly detection" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from darts.ad.detectors import QuantileDetector\n", + "\n", + "contamination = 0.95\n", + "detector = QuantileDetector(high_quantile=contamination)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnD0lEQVR4nO3de1wU9foH8M8uy8LCgiAQogLiJUs9WWo3UcKwElMxFevkybTjreNJu0cX09OxlFJL65Qc7eA5XayOlak/L5UpVmqmdcqyUjGRRBAURZbLAju/P2CnXXbBHdjL7Mzn/Xr5cnZ2mHn2+3125tn5zs5qBEEQQERERER+T+vrAIiIiIjIPVjYERERESkECzsiIiIihWBhR0RERKQQLOyIiIiIFIKFHREREZFCsLAjIiIiUggWdkREREQKwcKOiIiISCFUV9hZLBb8+uuvsFgsvg7F77Et7bE92obt5oht4j5sS0dsE/eRY1uqrrAjIiIiUioWdkREREQKwcKOiIiISCEkFXY5OTnIzMzE1VdfjW3btrW4XE1NDebNm4eUlBTceuut2Lp1a7sDJSIiIqLWSSrs4uPj8dBDD6Fv376tLpeTk4Pz589j8+bNeO6557B48WIUFBS0K1AiIiIiap2kwm7kyJG47rrroNfrW11u8+bNmDFjBoxGI/r374+UlBR8/PHH7QqUiIiIiFqnc/cKKyoqcObMGfTs2VOcd+mll+LHH39s8W/MZjPMZrN9YDrdRQvItrB+JVlOX032VxaLBUVFRZgyZQp++eWXFpfr06cP3njjDcTFxXkxOu9jbrUN282RP7fJ1q1b8fDDD+Ps2bMOz6WlpWHNmjUICAjweBzr1q3DU089hYqKCjQ0NCAgIABXX3011q5di5CQEI9v36q8vBx33nknvvvuO3FeYmIiXn/9dfTp08drcdjy5/y6mDVr1mDhwoWoqqpyeC4wMBB/+ctf8Nhjj7lte95sS63WtXNxbi/sqqqqEBAQgODgYHFeaGio00a2ys3NxapVq+zmZWZmYuLEie4OT1RYWOixdavJhx9+iF27drW6TElJCV599VVMmzbNS1H5FnOrbdhujvyxTZ555hn89NNPTp97++23kZGRgauvvtrjccybNw9Hjhyxm7dp0yb8+9//xsiRIz2+fat3333XYcSqpKQES5cuxdNPP+21OJzxx/y6mCeffBLFxcUtPj9//nyMHTvWrkZxB2+0ZVJSkkvLub2wCwkJQUNDA2pqasSGM5lMrX5Cmjp1KiZNmmQfmAfP2BUWFiI+Pt7l6pecs1gsdgV7bGwsDAaD+LiqqgqnT58GAOj1eiQmJno9Rm9ibrUN282RP7dJfX29ON2tWzcAjWetzp8/DwAwGo1e2RdYR4G0Wi3Cw8Nx7tw5AIDBYPDqvsi2gOjQoYPYDlqt1mf7RH/Or4uprq4G0FhDdO3aVZxfXFyMmpoa1NXVoVOnTujQoYNbtifHtnR7YRceHo6oqCgcPXoU/fr1AwAcPnwY3bt3b/Fv9Hq9R4q41mi1Wtl0glKsXbsWw4YNEx9v2bJF/GSs0WhU097MrbZhuzny5zbR6XT49ddfATSexZs/fz4A77+mmJgYzJkzB08++aRPtq/RaMTp++67DwsXLhTn+7pv/Tm/LqZXr144dOiQ+HjEiBHi3Tw88brl1JaSoqivr0dtbS0EQRCnnY0rjxw5EqtXr4bJZMLBgwexa9cu3HTTTW4LmuRDEAS3LkdE/u1i73Vv7Qta2o6390VyiUMtXGlXpbe9pMJu4cKFSE5Oxrfffov58+cjOTkZ33zzDbZs2WJ3PdzMmTNhNBoxYsQIZGVlISsrSzwlT0RERESeIWkodsGCBViwYIHT59LT08Xp4OBg8XQzEZGaLFiwAOvXr8f//vc/AMCUKVNw7tw5rF+/vs3rdMc6yPdsh2WJPEUeA8Lkt2xPaTffadk+Vvqpb5K/KVOmQKPRQKPRIDAwEN27d8fDDz8Mk8nk0e0uX74ca9ascWnZ48ePQ6PRiEVhW9bha9b3uu3735f7Amuf+2r7zWORQxxK5iz/mj9Wetu7/csTRERyNWLECOTm5qKurg6ff/45pk2bBpPJhNdee81uubq6OgQGBrplm+749p27vsGnJnI5eMslDlIPnrEjItUICgpCp06dEB8fjzvvvBOTJk3C+vXrsWDBAlx55ZX417/+he7duyMoKAiCIOD8+fOYMWMGLrnkEoSHh+PGG2+0u9EsACxevBixsbEICwvDn//8Z9TU1Ng9P2XKFIwdO1Z8bLFYkJ2djZ49eyIoKAgJCQl49tlnAfx+n6qBAweie/fuuPHGG52uo7a2FnPmzMEll1yC4OBgDBkyBF9//bX4/M6dO6HRaLB9+3YMGjQIISEhGDx4cKs3EifP41AseQMLO3Kb1k59E8mRwWBAXV0dAODo0aN477338P7774tDobfeeiuKi4uxefNmHDhwAAMGDEBaWpr4qwrvvfce5s+fj2effRb79+9HXFwcXn311Va3+fjjjyM7Oxvz5s3DoUOH8PbbbyM2NhYAsG/fPgDAxx9/jK+++grr1q1zuo5HH30U77//Pv7973/jm2++Qc+ePXHLLbc4/NrDk08+iaVLl2L//v3Q6XS455572txWUrU0FOttzYdifUkucaiBmo9HHIqlduHtTggABg0a1Ord3i/G+pNPUnXq1An79+9v0zb37duHt99+G2lpaQAab2j7xhtvICYmBgDw2Wef4eDBgzh9+jSCgoIAAEuWLMH69euxbt06zJgxAy+99BLuuece8VdVFi5ciE8//dThrJ3VhQsXsHz5crzyyiu4++67AQA9evTAkCFDAEDcdlRUFCIjI9GxY0eHdViHjtesWSN+aW3VqlX45JNP8Prrr+ORRx4Rl3322Wdxww03AACysrJw66232t083hN4uxN5xqEWvN0JCzsicoPi4mKcPHnS12Fc1KZNm2A0GlFfX4+6ujpkZGTg5ZdfxquvvorExESxsAKAAwcOoLKyElFRUXbrqK6uRn5+PgDgp59+wqxZs+yev/7667Fjxw6n2//pp59QW1srFpNtkZ+fj7q6OiQnJ4vzAgMDcc011zj8lNcVV1whTlt/q/n06dNISEho8/ap7dR01oh8h4UduY2aT32rXadOndr19+05YyfFsGHD8NprryEwMBCdO3e2+4JEaGio3bIWiwVxcXHYuXOnw3oiIiIkxwrA7if32qqlb/0JguAwz/b1WZ/z1g+/y2koVi7kFIvSqfl4xMKOvELpp77Vrq3DoUBjoVFQUIDExESP/yRPaGgoevbs6dKyAwYMQHFxMXQ6XYs3WL/88suxd+9eTJ48WZy3d+/eFtfZq1cvGAwGbN++XRy+tWX9acWGhoYW19GzZ0/o9Xp88cUXuPPOOwE0fot3//79uP/++114ZZ7FoVh5xqEWHIplYUdE5NTw4cNx/fXXY+zYscjOzkbv3r1RVFSEzZs3Y+zYsRg0aBDmzp2Lu+++G4MGDcKQIUPw1ltv4ccff2zxt7GDg4Px2GOP4dFHH4Ver0dycjJKS0vx448/4s9//jMuueQSGAwGbNu2DTfffDMiIiIQGRlpt47Q0FDce++9eOSRR9CxY0ckJCTg+eefR1VVFf785z97o2mojdR01oh8h4UduY2aT32T8mg0GmzevBlPPvkk7rnnHpSWlqJTp05ISUkRv8V6++23Iz8/H4899hhqamowfvx43HvvveKPjTszb9486HQ6PP300ygqKkJcXJx4nZ5Op8OKFSvwzDPPYP78+Rg6dKjToeDFixfDYrHgrrvuwoULFzBo0CBs27bNoQj0Jbm8/+USByCvWNRGTW3Pwo7ahd+KJX/R2i83tPRziWFhYVixYgVWrFjR4t8+8cQTeOKJJ+zmZWdnt7hdrVaLJ598Ek8++aTT9U2bNg333HOPODztbB3BwcGtxpWamurwnrvyyiu98j50tg1f3PW/pV/F4VCssrV0DaqzZZSK97EjIiIiUggWdkRERF6gpuFA8h0WdtQuLQ13NH+s9FPfRNTI2VCYL/cFzX95wpf7IrnEoWQtDcWqqe1Z2BERkeLI5eAtlzhIPVjYEREReQGHYskbWNiR2/B2J0RkJadfnpDLvkgucaiBmo9HLOyoXXi7EyKyxV+ekGccasFfnmBhR0RE5BVqOmtEvsPCjtxGzae+icgeh2IdySUONVDz8YiFHbULh2KJyBaHYuUZh1pwKJaFHRERkVeo6awR+Q4LO3IbNZ/6JiJ7cnn/yyUOQF6xqI2a2p6FHbULh2KJyJaz97qv7/rv6+07I5c4lKalX55wtoxSSS7sysvLMXfuXCQnJ2PcuHHYt2+f0+VOnjyJ2bNnIzU1Fenp6cjNzW13sERERK6Qy8G7tZ9dJPIEyYVddnY2YmJisH37dsyZMwdZWVmoqKhwWO6FF15Aly5d8Omnn2L16tV49913WywCSRk4FEtEVnJ5/8slDkBesaiNmtpeUmFXVVWFvLw8zJo1C8HBwUhNTUWPHj2wa9cuh2VPnTqFm2++GTqdDl26dMGVV16JY8eOuS1wkgcOxRKRLQ7FukYucSgNh2IBnZSFT5w4AaPRiOjoaHFer169nBZsmZmZ2LZtG6644goUFxfj4MGDmDZtmtP1ms1mmM1m+8B0Ouj1einhucRisdj9T23XvA0tFovdPNtpQRAU3+bMrbZhuzlSSptY47c9kDbfT3hKa7cZ8Wa7Nt8P+ioOW0rJr4tpqe3dmYPebEut1rVzcZIKu+rqaoSGhtrNCw0NRWVlpcOy/fv3x7p16zB06FA0NDRgxowZ6Nmzp9P15ubmYtWqVXbzMjMzMXHiRCnhSVJYWOixdatVcXExCgoKxMclJSXi9Pnz5+2eUzLmVtuw3Rz5Y5vU1dUBaDyQWt/z5eXl4vOlpaVe2Rc0NDQAAOrr6+3mnzlzxqv7ItvXbjttMpl8vk/0x/xyldlstmvf6upqcfq3335zOJnUXt5oy6SkJJeWk1TYGQwGmEwmu3kmkwkGg8FuXkNDA+bOnYvJkydjwoQJOH36NO6//350794dw4cPd1jv1KlTMWnSJPvAPHjGrrCwEPHx8S5Xv+Rc808ocXFxSExMFB8fP35cnO7QoYPdc0rE3Gobtpsjf26TwMBAAI1nF6zv+Y4dO4rPx8TEeGVfEBAQIMZjOywXFRXl1X1RZGSk3batQkNDfbZP9Of8clVQUJBd+4aEhIjTXbt2RVxcnFu2I8e2lFTYJSQkoLKyEmVlZeJw7JEjR5CRkWG3XEVFBUpLSzFhwgTodDp07twZqampOHDggNPCTq/Xe6SIa41Wq5VNJyhF8zZt3r5qaW/mVtuw3Rz5Y5vYDnlZY2/+82LeeE2tXUflqzZtft2Xr/vWH/PrYpzlH+D5HJRTW0qKIiQkBCkpKcjJyUFNTQ3y8vKQn5+PlJQUu+UiIyMRGxuL9evXw2KxoKSkBHl5eejRo4dbgyciIvIXavpmJvmO5PIyKysLJSUlSEtLw/Lly7Fo0SKEh4djy5YtdtfEZWdnY/PmzRg2bBgmT56Ma665Brfddptbgyd54e1OiMhKLu9/ucQByCsWtVFT20saigUaz8atWLHCYX56ejrS09PFx3379sW//vWv9kVHssfbnRCRLTne7sSWr7dvJZc4lIa3O+FPihERkQLJ5eDNX54gb2NhR27DoVgispLL+18ucQDyikVt1NT2LOyoXTgUS0S25DgU6+vtOyOXOJSGQ7Es7IiISIHkcvDmUCx5Gws7chsOxRKRlVze/3KJA5BXLGqjprZnYUftwqFYIrLFoVjXyCUOpeFQLAs7IiJSILkcvOUSB6kHCzsiIiIvUNNwIPkOCztyG15jR0RWcnn/yyUOQF6xqI2a2p6FHbULr7EjIltyucaupW+jentf1NL2uE/0DF5jx8KOiIjIK9R01oh8h4UduQ2HYonISi7vf7nEAcgrFrVRU9uzsKN24VAsEdmSy1CsnLbvjFziUCoOxRIRESmIXA7e/OUJ8jYWduQ2HIolIiu5vP/lEgcgr1jURk1tz8KO2oVDsURki0OxrpFLHEri6tlRpbc9CzsiIlIcuRy8ORRL3sbCjtyGQ7FEZCWX979c4gDkFYvaqKntWdhRu3AolohscSjWNXKJQ0k4FNuIhR0RESmOXA7ecomD1IOFHRERkReoaTiQfIeFHblNa9fY8VMrkTpc7Lc6vb0vaB6HL/dF3Cd6Vmttqqa2Z2FHREQexTNV5G1qzjkWdkREpDhyOSvD252Qt0ku7MrLyzF37lwkJydj3Lhx2LdvX4vLbtiwAbfddhuGDBmCCRMmoKCgoF3BkrzxdidEZCWX979c4gDkFYvaqKntdVL/IDs7GzExMdi+fTv27t2LrKwsrF+/HuHh4XbL7dq1C2+++SaWLFmC7t274+TJkwgLC3Nb4CQPvN0JEdni7U5cI5c4lIS3O2kk6YxdVVUV8vLyMGvWLAQHByM1NRU9evTArl27HJZdvXo1HnzwQfTo0QMajQZdu3ZFhw4d3BY4ERFRS+Ry8OZQLHmbpDN2J06cgNFoRHR0tDivV69eOHbsmN1yDQ0N+OWXX3D06FE888wz0Ol0GD16NKZNm+Y0sc1mM8xms31gOh30er2U8FxisVjs/qe2a96GgiDYzbPdoTV/TomYW23DdnOkhDbRaDRi/Lb7AovF4tXX5exbsd7cfvP9oK/isKWE/HKm+etp6fW5Mwe92ZZarWvn4iQVdtXV1QgNDbWbFxoaisrKSrt5Z8+eRUNDA77++mu8++67MJlMmDNnDmJjYzFmzBiH9ebm5mLVqlV28zIzMzFx4kQp4UlSWFjosXWrie2OqqioyG5I/tSpU+J0RUWFaq6xZG61DdvNkT+2SV1dHYDGD/jW9/zZs2fF58vKyryyL7Dum+rq6uyKu7Nnz3p1X3T+/HlxuqysTJyuqqry+T7RH/OrNdbcA4Da2lq79jWZTOL0b7/9Bp1O8pVorfJGWyYlJbm0nKRXZjAY7BoHaGwsg8FgNy8oKAgAcPfddyMsLAxhYWHIzMzEl19+6bSwmzp1KiZNmmQfmAfP2BUWFiI+Pt7l6peca/4JpXPnzkhMTBQfnz59WpwOCwuze06JmFttw3Zz5M9tYj1gBgQEiO/5qKgo8fmoqCiv7gsCAwPtHkdGRnp1+7YfdmNiYsRpg8Hgs32iP+dXa2wLu+DgYLv2tT0p1aVLF7e1vRzbUlJhl5CQgMrKSpSVlYnDsUeOHEFGRobdcuHh4XYJDLR+vYNer/dIEdcarVYrm05QioCAALs2DQgIEKc1Go1q2pu51TZsN0f+3Ca273nbM2befk3Ovq3vq+3LbZ/oz/nlTPPXYvu4+bS7X7ec2lJSFCEhIUhJSUFOTg5qamqQl5eH/Px8pKSkOCw7atQo/Oc//4HJZEJpaSnef/99DBkyxG2BkzzwW7FEZOti73Vf7wt8vX0rucShJDweNZJcXmZlZaGkpARpaWlYvnw5Fi1ahPDwcGzZssXumrgZM2YgOjoaI0eOxOTJk3HjjTdi1KhRbg2eiIjkz9ffBvX19sn71Nznkq8ejIyMxIoVKxzmp6enIz09XXwcGBiIp556Ck899VT7IiQiIpJILmdleLsT8jZ5DAiT32ptpyXHm4ISkWdZ3+stFTHe3hc4u92Jr3Cf6Fmttama2p6FHREReZSvz1T5evvkfWrucxZ2RESkOHI5K8OhWPI2FnbkNq0NxRKRusjl/S+XOAB5xaI2amp7FnbULvx6ORHZcvZe9/X1Tb7evjNyiUNJXD07qvS2Z2FHRESKI5eDN4diydtY2JHbcCiWiKzk8v6XSxyAvGJRGzW1PQs7ahcOxRKRLf7yhGvkEoeS8HjUiIUdERF5lC/OlshlCFQucaiNmtuahR25DYdiichKLu9/ucQByCsWtVFT27OwI69Q+qlvImrEoVjXyCUOJeFQbCMWdkRE5FG+Plvi6+1bySUONVBzW7OwI7fhUCwRWfn6/X+x36z1dhyA72NRMzW1PQs7ahee+iYiWxyKdY1c4lASHo8asbAjIiKPUtPZEpIHNeccCzsiIlIcuZyV4VAseRsLO3IbXmNHRFZyef/LJQ5AXrGojZranoUdtQuvaSAiW87e67YHVV/sC3y9fWfkEoeSuHp2VOltz8KOiIgURy4Hbw7FkrexsCO34VAsEVnJ5f0vlzgAecWiNmpqexZ21C4ciiUiW7zdiWvkEoeS8HjUiIUdERF5lK/Plvh6+1ZyiUMN1NzWLOzIbTgUS0RWvn7/85cnyJaa2p6FHbULT30TkS0OxbpGLnEoCY9HjSQXduXl5Zg7dy6Sk5Mxbtw47Nu3r9Xli4qKkJycjOeee67NQRIRkf/y9dkSX2/fSi5xqIGa21pyYZednY2YmBhs374dc+bMQVZWFioqKlpcftmyZejdu3e7giT/wKFYIrLy9fufQ7FkS01tL6mwq6qqQl5eHmbNmoXg4GCkpqaiR48e2LVrl9Pl9+zZA0EQcO2117olWJIfnvomIlscinWNXOJQEh6PGumkLHzixAkYjUZER0eL83r16oVjx445LFtXV4fly5fjhRdewObNm1tdr9lshtlstg9Mp4Ner5cSnkssFovd/9R2zdvQYrHYzbOdFgRB8W3O3GobtpsjpbSJNX7bA2nz/YSnCYLg8MsT3t6+lVz2iUrJr+acHZOsPJWD3mxLrda1c3GSCrvq6mqEhobazQsNDUVlZaXDsm+99RaSk5MRHx9/0fXm5uZi1apVdvMyMzMxceJEKeFJUlhY6LF1q9XJkyeh0/2eUkVFReJ0ZWUlCgoKfBGW1zG32obt5sgf28R6gKuvrxff82fOnBGfP3v2rFf2BdYDefOTBufOnfPqvuj8+fPidGlpqThdU1Pj832iP+ZXa2wvC2vevrZ1SlFRETp06ODWbXujLZOSklxaTlJhZzAYYDKZ7OaZTCYYDAa7eadPn8aGDRvwxhtvuLTeqVOnYtKkSfaBefCMXWFhIeLj412ufsm55p9QunbtisTERPGxba4YjUa755SIudU2bDdH/twm1ngDAwPF93xUVJT4fMeOHb26LwgKCrJ7HBER4dXth4eHi9OxsbHidHBwsM/2if6cX62xLaKbt29YWJg43blzZ7e1vRzbUlJhl5CQgMrKSpSVlYnDsUeOHEFGRobdcocOHUJJSQnGjRsHoPHaPIvFglOnTuHll192WK9er/dIEdcarVYrm07wZ7ant5u3afP2VUt7M7fahu3myB/bpPk+wfZ/oPEidm++JmcXzftq+3LbJ/pjfrXGtq2b51lrz7mDnNpSUmEXEhKClJQU5OTk4KGHHsJXX32F/Px8pKSk2C03ePBgfPTRR+LjN998E+Xl5XjggQfcEzUREfkNX38j0dfbt5JLHGqg5raWXF5mZWWhpKQEaWlpWL58ORYtWoTw8HBs2bJFvCZOr9cjOjpa/GcwGBAUFISIiAh3x08ywtudEJGVr9//vN0J2VJT20s6YwcAkZGRWLFihcP89PR0pKenO/2bmTNnSo+M/AK/Xk5Etni7E9fIJQ4l4fGokTwGhImISLF8fbbE19u3kkscaqDmtmZhR27DoVgispLL+9/XcXAoVh7U1PYs7MgrlH7qm4gacSjWNXKJQ0k4FNuIhR0REXmUms6WtIbt4D1qbmsWduQ2HIolIitfvv/lNPwpp1jUTE1tz8KO2oWnvonIFodiXSOXOJSEx6NGLOyIiIiIFIKFHREReZS3h8Gan5HhsLD6qLmtWdhRu7S207J9rPRT30TU6GK/+ODtfUHzOHy5L+I+0bNaa1M1tT0LOyIiIiKFYGFHREQe5ethMV9v30oucaiBmtuahR25DW93QkRWvK6tkZxiUTM1tT0LO2oXfr2ciGzxdieukUscSsLjUSMWdkRE5FG+Plvi6+1bySUONVBzW7OwI7fhUCwRWXEotpGcYlEzNbU9CztqF576JiJbHIp1jVziUBIejxqxsCMiIo/y9dkSX2/fSi5xqIGa25qFHbkNh2KJyIpDsY3kFIuaqantWdhRu/DUNxHZ4lCsa+QSh5LweNSIhR0RERGRQrCwIyIij/L1MJivt28llzjUQM1tzcKO2qW160fU9KPLRNTI+l5v6cDqjX1Ba/slb++LWoqF+0T3a61N1dT2LOyIiIiIFIKFHREReZSvh8V8vX0rucShBmpua8mFXXl5OebOnYvk5GSMGzcO+/btc7rcsmXLkJGRgZSUFNx111345ptv2h0syRtvd0JEVrzdSSM5xaJmamp7yYVddnY2YmJisH37dsyZMwdZWVmoqKhwWM5oNOKVV17Bzp07cffdd+Phhx+GyWRyS9Dkf5R+TQMRNeLtTlwjlziUhLc7aSSpsKuqqkJeXh5mzZqF4OBgpKamokePHti1a5fDsjNmzEB8fDy0Wi2GDx+OoKAgnDhxwm2BExGRf/D12RJfb99KLnGogZrbWidl4RMnTsBoNCI6Olqc16tXLxw7dqzVvysqKkJFRQXi4+OdPm82m2E2m+0D0+mg1+ulhOcSi8Vi9z+1XfM2FATBbp7tp6LmzykRc6tt2G6OlNAmGo3G6evwxr6goaGhxee8vS9qaZ/Y/DlvUkJ+OeNqnlksFre9dm+2pVbr2rk4SYVddXU1QkND7eaFhoaisrKyxb+pr6/HggULcNddd8FoNDpdJjc3F6tWrbKbl5mZiYkTJ0oJT5LCwkKPrVtNbHdUv/32G2pra8XHJ0+eFKdNJhMKCgq8GpuvMLfahu3myB/bxHqAM5vN4nu+rKxMfP7MmTMe3xfY7odspwHg/PnzXt0XXbhwQZw+deqUOF1TU+PzfaI/5ldrSkpKxOmqqiq79rW9ZOzUqVNub3tvtGVSUpJLy0kq7AwGg8N1ciaTCQaDwenygiBgwYIFiIyMxIwZM1pc79SpUzFp0iT7wDx4xq6wsFAcJqa2a/4JpWvXrujUqZP42LboCwkJQWJiotdi8wXmVtuw3Rz5c5tYh8D0er34nrcd5enYsaPH9wU1NTXidFBQkN1z4eHhXt0XhYWFidOdO3e2i8tX+0R/zq/WBAYGitPNjznh4eHidKdOndzW9nJsS0mFXUJCAiorK1FWVia+UY8cOYKMjAynyz///PMoLS3Fyy+/3OoL1uv1HiniWqPVamXTCUoREBBg16YBAQHitEajUU17M7fahu3myJ/bxPY97+19ge36m2/L2/si22u9bNsBcH1ozVP8Ob+cad7vLeWBJ163nNpSUhQhISFISUlBTk4OampqkJeXh/z8fKSkpDgsm5OTg++++w5Lly71etFG3sNvIRGRLTl8K7a1bfjylyd8GYca8HjUSHJ5mZWVhZKSEqSlpWH58uVYtGgRwsPDsWXLFrtr4latWoXjx48jPT0dQ4cOxdChQ7Flyxa3Bk9EROQv1PxNTfIeSUOxABAZGYkVK1Y4zE9PT0d6err4eP/+/e2LjPwOb1BMRFa2739f7gs0Go1s9kVyiUMN1Hw8kseAMPktnvomIlscinVte9wnuh+PR41Y2BEREREpBAs7IiLyKF8Pg/l6++R9au5zFnbkNmq+poGI7Pny/W871Obr/ZCcYlEzNbU9CztqF17TQES25HCNnZy3byWXOJSEx6NGLOyIiIiIFIKFHbkNh2KJyMqXtztpfkZGTsPC3C96h5qPRyzsqF146puIbHEo1jVyiUNJeDxqxMKOiIiISCFY2JHbqPnUNxHZ4y9POJJTLEqn5uMRCztqF576JiJbchiK5S9PqBOPR41Y2BEREREpBAs7chs1n/omInscinUkp1iUTs3HIxZ21C489U1EtjgU69r2uE90Px6PGrGwIyIiIlIIFnZERORRvh4G8/X2yfvU3Ocs7Mht1HxNAxHZk9OvPfgSf3lCHtTU7izsyCuUfk0DETWSwzV2ct6+lVziUBJeY9eIhR0RERGRQrCwI7fhUCwRWfF2J47kFIvSqfl4xMKO2oWnvonIlhyGYnm7E3Xi8agRCzsiIiIihWBhR26j5lPfRGRPTkOxcsGhWO9R8/GIhR21C099E5EtDsW6tj3uE92Px6NGkgu78vJyzJ07F8nJyRg3bhz27dvndLmamhrMmzcPKSkpuPXWW7F169Z2B0tERERELdNJ/YPs7GzExMRg+/bt2Lt3L7KysrB+/XqEh4fbLZeTk4Pz589j8+bNyM/Px9y5c3H55ZcjMTHRbcGTvKj51DcR2ZPTUKxc9kVyikXp1Hw8klTYVVVVIS8vDxs3bkRwcDBSU1Px1ltvYdeuXRg1apTdsps3b8bSpUthNBrRv39/pKSk4OOPP8b06dPd+gLa4+uvv0ZZWZmvw/BbFosFZ8+edWnZkpISbNmyxcMR+ZbFYsHp06dxySWXQKvlVQ6uYrs5UnKb/PLLLx7fF1y4cKHF544fP+7VfdFvv/3mdP758+d9tk9Uan4VFRW5tNxXX32F2tpat2zTYrHgzJkzsjppJamwO3HiBIxGI6Kjo8V5vXr1wrFjx+yWq6iowJkzZ9CzZ09x3qWXXooff/zR6XrNZjPMZrN9YDod9Hq9lPBcYrFYxP+ffPJJfPLJJ27fhlpZLBaxfa2Prb766iuMHDnSF2ERkY/Y7m+t3njjDbzxxhu+CgmbNm3Cpk2bfLJt23b49ddfuU/0IEEQ7Nrb9rq6J554wq3bMhqNuPPOO926TmdcLcIlFXbV1dUIDQ21mxcaGorKykq7eVVVVQgICEBwcLDdclVVVU7Xm5ubi1WrVtnNy8zMxMSJE6WEJ0lhYSFqamo8tn616dy5M8rKylBeXi7Oq6urQ0xMDEpLS30YGRH5Qnx8PAoKCgDA4VIdb+ratSsSEhIQFBTktrM0bWE0GlFfX4+ePXu2eJKD3CcuLk7MPwCIiYnx6PYKCws9un4ASEpKcmk5SYWdwWCAyWSym2cymWAwGOzmhYSEoKGhATU1NWJxZzKZEBIS4nS9U6dOxaRJk+wD8+AZu8LCQsTHx2PatGlIS0tz+zbUQhAEnD9/HjExMRg/fjy6d+/usMzOnTuxfv161NXV+SBC77K2R4cOHVR1PUd7sd0c+XubREVF4c4770RERAQAIDExETt37sTOnTu9GkdsbCzuuOMOlJeXIy8vDx9//LHdWRxvCQgIwKhRo3D55Zdj06ZNeO+991BdXe31OKz8Pb8uJj4+HrfffrtdbTJ79mzExcXhl19+ceu2BEFAVVUV4uPjZTOsLamwS0hIQGVlJcrKysTh2CNHjiAjI8NuufDwcERFReHo0aPo168fAODw4cNOD/wAoNfrPVLEtUar1WLy5Mle3abSWCwWFBQUIDExscWE7tOnD/r06ePlyHzDlfYgR2w3R0pskxtuuAE33HCD17drsVhQXl6Oq6++Gtdee63Xt99ct27d8Oijj/o0BiXm18Xo9Xrccccdbl+vtS21Wq1s2lJSFCEhIUhJSUFOTg5qamqQl5eH/Px8pKSkOCw7cuRIrF69GiaTCQcPHsSuXbtw0003uS1wIiIiIrInubzMyspCSUkJ0tLSsHz5cixatAjh4eHYsmWL3TVxM2fOhNFoxIgRI5CVlYWsrCx069bNnbETERERkQ3J97GLjIzEihUrHOanp6cjPT1dfBwcHIyFCxe2LzoiIiIicpk8BoSJiIiIqN1Y2BEREREpBAs7IiIiIoXQCLa3YyYiIiIiv8UzdkREREQKwcKOiIiISCFY2BEREREpBAs7IiIiIoVgYUdEqrN//34MGjQIgwYNQlFRka/DISJyGxZ2RKRoCxYswKBBgzBjxgxxntFoRL9+/dCvXz/o9XofRkdE5F6Sf1KMiMjfXXbZZVizZo2vwyAicjvex46IFGv06NE4deqUw/yVK1di1qxZAIANGzagc+fOWLBgATZt2oS4uDjMnDkTr732GiorKzFmzBjMnj0b//jHP7BhwwaEhYVhypQpmDBhgri+0tJSvPrqq9izZw/OnTuH2NhYjB49GlOmTIFOx8/PROQ93OMQkWL17t0b1dXVOHfuHEJDQ5GUlAQA+Pnnn1v8m7KyMixevBjR0dEwmUxYu3Yt9u7di9OnT8NoNKK4uBjPP/88Bg4ciKSkJJw7dw5TpkxBSUmJuI1jx45h5cqVOHnyJObPn++tl0tExGvsiEi5lixZgiFDhgBoLPLWrFmDNWvW4LLLLmvxb+rq6vDKK6/ggw8+QGxsLACgsLAQa9euxbp16xAUFASLxYIDBw4AAN577z2UlJQgKioK69evx9q1a5GdnQ0A2LRpEwoLCz38KomIfsczdkRENsLDw3HllVcCADp16oSSkhL06NEDnTt3BgBERkaiuLgYZ8+eBQD8+OOPAIAzZ87gpptusluXIAj44YcfEB8f770XQESqxsKOiMhGaGioOB0QEOAwT6PRAGgs2mz/tx3qtRUcHOyxWImImmNhR0SKZi2sampqPLL+vn37Yvfu3QgICMBzzz0nntkzmUzYsWMHhg0b5pHtEhE5w8KOiBStW7duAIBDhw7h9ttvh8FgwPTp0922/okTJ+Kjjz7C6dOnMX78eCQlJcFkMqGkpAT19fUYNWqU27ZFRHQx/PIEESnamDFjcOONN8JoNCI/Px8//PADLBaL29YfGRmJ3NxcjB49Gh06dEB+fj5qa2tx1VVX4cEHH3TbdoiIXMH72BEREREpBM/YERERESkECzsiIiIihWBhR0RERKQQLOyIiIiIFIKFHREREZFCsLAjIiIiUggWdkREREQKwcKOiIiISCFY2BEREREpBAs7IiIiIoVgYUdERESkECzsiIiIiBSChR0RERGRQrCwIyIiIlIIFnZERERECsHCjoiIiEghWNgRERERKYTqCjuLxYJff/0VFovF16H4PbalPbZH27DdHLFN3Idt6Yht4j5ybEvVFXZERERESsXCjoiIiEghWNgRERERKQQLOyIiIiKFkFTY5eTkIDMzE1dffTW2bdvW4nI1NTWYN28eUlJScOutt2Lr1q3tDpSIiIiIWiepsIuPj8dDDz2Evn37trpcTk4Ozp8/j82bN+O5557D4sWLUVBQ0K5AiYiIiKh1OikLjxw5EgDwr3/9q9XlNm/ejKVLl8JoNKJ///5ISUnBxx9/jOnTp7c9UpK//Hzg8ceBkyft53fsCMyfDwwa5Ju4yL1qa4FHHgEOHLCfHxgITJ8OTJrkm7jIN+rrgcceA/buvfiywcHAX/8K3HabZ2L55z+BN98EGhrEWRoAcbW10AQF/b6cRgOMGgVkZXkmDvK+jRuB5cuB6uqLL3v11cALLzTusxRIUmHnioqKCpw5cwY9e/YU51166aX48ccfW/wbs9kMs9lsH5hOB71e7+7wxHvNyOmeM/6qeVtqXngBmv/+1+mygtkMYcsWr8XmC6rJrY8+gvbll50+JXz9NYTbbms8gLtINe0mgV+1ybZt0C5b5vLiwvffQ8jIcH8cZ89CM3s2NPX1drM1AJxm45dfwpKRAfTu7f5YZM6v8stFmpkzoTl1yrWFd++GJTUVGDOm3dv1Zltqta4Nsrq9sKuqqkJAQACCbXbsoaGhqKqqavFvcnNzsWrVKrt5mZmZmDhxorvDExUWFnps3WpjbctLCgoQ2sIy5qIiFKlkOF7puRV2+DCiW3hOU1WFE0eOwBIeLnm9Sm+3tvCHNjH+8gtiJCyvKSvDcQ/sC3SFhYhvVtRdTPEPP6BWwocQpfGH/HJVt7IyScuf+eUXVLoxD73RlklJSS4t5/bCLiQkBA0NDaipqRGLO5PJhJCQkBb/ZurUqZjUbPjGk2fsCgsLER8f73L1S841b0uNTR9bfv0V6NoVGoMBmvp66IOCkJiY6MNoPU81udWxozhpef11YPJkaG69FZqPPwbQeC0uIiJcXp1q2k0Cv2qTqChx0rJiBXDvvU4X0yQnQ7NvHwB4Zl9gc8ZEuP12CG++2TS72X7q0UehefFFAECnTp0Ahe+XnPGr/JJIuOoqCE155mDVKmj/8hcAQFRUFKLc0PdybEu3F3bh4eGIiorC0aNH0a9fPwDA4cOH0b179xb/Rq/Xe6SIa41Wq5VNJ/g7Z22pDQwEdLrGa1kAaAQBGpW0t+Jzq6lPAUCr0zX2s83r1Wo0do9dpfh2awO/aBPbfAgIaMyHiy3niddks35NQAA01jgsFkCrhVana9yuG3JVKfwiv1wlCAAAjUbze983ZzPf3X0vp7aUFEV9fT1qa2shCII47WxceeTIkVi9ejVMJhMOHjyIXbt24aabbnJb0ERERETkSFJht3DhQiQnJ+Pbb7/F/PnzkZycjG+++QZbtmyxux5u5syZMBqNGDFiBLKyspCVlYVu3bq5O3YiIiIisiFpKHbBggVYsGCB0+fS09PF6eDgYCxcuLBdgZGfsw6L2AyPkAKxn8lWa3ngzRyRSxzkfex7/qQYuVHTNQ6SnyP/crG+ZF+rS1v62xM5Ipc4yDek9qWC+56FHREREZFCsLAjz+AQnTqwn8mWXIbB5BIHeR/7noUduRGHYtWBQ7FkSy5DoHKJg3yDQ7EiFnZERERECsHCjjyDQ3TqwH4mW3IZBpNLHOR97HsWduRGHIpVBw7Fki25DIHKJQ7yDQ7FiljYERERESkECzvyDJWc8qYm7G8C/GMYTC5xkGf4Qw56GAs78izrG0nBp71Vx7YvVbKjpFbIZQiUealuHIoVsbAj91HwG4UkYB6Qv2CukgKxsCMiIiJSCBZ25Bm8DYY6sJ/Jllyub5JLHOR97HsWduRGvN2JOvB2J2RLjtfY+TIO8g8K7nsWdkREREQKwcKOPINDdOrAfiZbchkGk0sc5H3sexZ25EYcilUHDsWSLbkMgcolDvI+9r0dFnZERERECsHCjjxDJae8qQn7mwD/GAaTSxzkGf6Qgx7Gwo48i788oTy8wz/ZksswGPNSveSSgzLBwo7cR8FvFJKAeUD+grlKCsTCjjyDn5jVhf1NgH8Mg8klDvIMf8hBD2NhR57FoVjl4ZAX2ZLLMBjzUr3kkoMywcKO3EfBbxSSgHlA/oK5SgokubArLy/H3LlzkZycjHHjxmHfvn1Olzt58iRmz56N1NRUpKenIzc3t93BEhEREVHLJBd22dnZiImJwfbt2zFnzhxkZWWhoqLCYbkXXngBXbp0waefforVq1fj3XffbbEIJAVq/osE/GSsHM6GvDj0pV6uDoHaPufLoVjmqvLIJQdlQlJhV1VVhby8PMyaNQvBwcFITU1Fjx49sGvXLodlT506hZtvvhk6nQ5dunTBlVdeiWPHjrktcJIhBb9RSALmAfkL5iopkE7KwidOnIDRaER0dLQ4r1evXk4LtszMTGzbtg1XXHEFiouLcfDgQUybNs3pes1mM8xms31gOh30er2U8FxisVjs/qe2a96WGkGAxvY5iwUaABoAAgBB4W2umtwSBPETodjPTvreVappNwn8qk0sFod8cMa6L7jYcu6IQxAEcX/jyn5Kbfwqv1xh2/do5Vhjm6uC4Ja+92ZbarWunYuTVNhVV1cjNDTUbl5oaCgqKysdlu3fvz/WrVuHoUOHoqGhATNmzEDPnj2drjc3NxerVq2ym5eZmYmJEydKCU+SwsJCj61bbaxtGVtdjRDrvN9+g+XCBSQIAgIA1NXV4WRBgc9i9Cal51b42bOIapouLStDVUEBLqmuhnXP8Ntvv6Ghrk7yepXebm3hD20SdvYsrB/1z5w9i8oW3uedamthaJo+ceIEhOBgt8YRWFSErk3TlSYTyprFYW3LiIoKRDbNKykpQY1K9kvO+EN+uaS+HklNk7W1tTjVQp+GnjmDS5qmz549iwtu7HtvtGVSUtLFF4LEws5gMMBkMtnNM5lMMBgMdvMaGhowd+5cTJ48GRMmTMDp06dx//33o3v37hg+fLjDeqdOnYpJkybZB+bBM3aFhYWIj493ufol55q3pcZmRx0fHw9ERkLT1MaBOh0SExN9FapXqCa3IiPFyZiYGCAxEZqQEHFe1y5dgC5dXF6datpNAr9qE5t8iIqKQlQL73Pb/UNCfDxgkzNuceGCOGk0GhHaFIfDfqpDB3G52EsuARS+X3LGr/LLFTYfJIOCg1s+1tiMNnaMjERHN/S9HNtSUmGXkJCAyspKlJWVicOxR44cQUZGht1yFRUVKC0txYQJE6DT6dC5c2ekpqbiwIEDTgs7vV7vkSKuNVqtVjad4O/EtrS5MFWr1QI27asBxCJP6RSfW876uZW+d5Xi260N/KJNbOJzte/bmiOuxqHRaBz2N67sp9TGL/LLFa4ea2xzVaNxa9/LqS0lRRESEoKUlBTk5OSgpqYGeXl5yM/PR0pKit1ykZGRiI2Nxfr162GxWFBSUoK8vDz06NHDrcGTjPGbZ+rC/ibAP76NKpc4yDP8IQc9THJ5mZWVhZKSEqSlpWH58uVYtGgRwsPDsWXLFrtr4rKzs7F582YMGzYMkydPxjXXXIPbbrvNrcGTH+DtTpSHd/gnW3K56z/zUr3kkoMyIWkoFmg8G7dixQqH+enp6UhPTxcf9+3bF//617/aFx35FwW/UUgC5gH5C+YqKZA8BoRJefiJWV3Y3wT4xzCYXOIgz/CHHPQwFnbkWRyKVR4OeZEtuQyDMS/VSy45KBMs7Mh9FPxGIQmYB+QvmKukQCzsiIiIiBSChR15RvMfh+cnY+VwNuTFoS/1kssPsLclDlIGueSgTLCwI/dR8BuFJGAekL9grpICsbAjIiIiUggWduQZHO5QF/Y3Af4xBCqXOMgz/CEHPYyFHXkWr7FTHt5WgmzJ5VYTzEv1kksOygQLO3IfBb9RSALmAfkL5iopEAs78gx+YlYX9jcB/jEMJpc4yDP8IQc9jIUdeRaHYpWHQ15kSy7DYMxL9ZJLDsoECztyHwW/UUgC5gH5C+YqKRALO/IMfmJWF/Y3Af4xDCaXOMgz/CEHPYyFHXkWh2KVh0NeZEsuw2DMS/WSSw7KBAs7ch8Fv1FIAuYB+QvmKikQCzsiIiIihWBhR57RfCiEn4yVw1lfcuhLveTyA+yurpO5qjxyyUGZYGFH7sMDvvo4618F7zDJT7i632GukgKxsCMiIiJSCBZ25Bk8U6cu7G8C/ONWE3KJgzzDH3LQw1jYkWfxdifKw9tKkC253GqCealecslBmWBhR+6j4DcKScA8IH/BXCUFklzYlZeXY+7cuUhOTsa4ceOwb9++FpfdsGEDbrvtNgwZMgQTJkxAQUFBu4IlP8JPzOrC/ibAP4bB5BIHeYY/5KCH6aT+QXZ2NmJiYrB9+3bs3bsXWVlZWL9+PcLDw+2W27VrF958800sWbIE3bt3x8mTJxEWFua2wMlPcChWeTjkRbbkMgzGvFQvueSgTEg6Y1dVVYW8vDzMmjULwcHBSE1NRY8ePbBr1y6HZVevXo0HH3wQPXr0gEajQdeuXdGhQwe3BU4ypOA3CknAPCB/wVwlBZJ0xu7EiRMwGo2Ijo4W5/Xq1QvHjh2zW66hoQG//PILjh49imeeeQY6nQ6jR4/GtGnToHHyScpsNsNsNtsHptNBr9dLCc8lFovF7n9qu+ZtqWn6BwAWQQAsFnGeAEBQeJurJrcEQfxEaLFY7PrZdp6rVNNuEvhVm9jmQ9P73pn25IhLLBYxDkEQxP2Ns7Zsnr9q41f55QrbvkcrxxoXc1Xapr3Xllqta+fiJBV21dXVCA0NtZsXGhqKyspKu3lnz55FQ0MDvv76a7z77rswmUyYM2cOYmNjMWbMGIf15ubmYtWqVXbzMjMzMXHiRCnhSVJYWOixdauNtS071dTA0DSvoKAACApCvMUCHYCGujoUquQaS6XnVkR5OSKbpk+XlqK6oAAxJhOMTfNOnjyJ+sBAyetVeru1hT+0SfiZM4hqmi4rK4Ophfd5bHU1QpqmC0+cgKXZcaO99KdOoUvTdEVlJc42i8Palh3Ky9GxaV5paSmqVLJfcsYf8ssVmooKdGuarq6pQUkLfRpSWorYpulzZ8/ivBv73httmZSU5NJykgo7g8EAk8lkN89kMsFgMNjNCwoKAgDcfffdCAsLQ1hYGDIzM/Hll186LeymTp2KSZMm2QfmwTN2hYWFiI+Pd7n6Jeeat6Wmqd8BIDExEQgKgiYgAAAQoNM1zlMw1eRWRIQ4eckllwCJidDYfODr0rkzIKGvVdNuEvhVm3TsKE5GR0cjuoW+19gcJ+Lj4wGbkR+3KCkRJ8PDwhDWFIdDW0ZGisvFREdLylWl8Kv8csX58+KkITi45WNNTIw4GREZiQg39L0c21JSYZeQkIDKykqUlZWJw7FHjhxBRkaG3XLh4eGIsWlAoPHUeEv0er1HirjWaLVa2XSCv3PWltqAAMBmngaARiXtrfjcsrmcQqvVNvazzevVNnvsKsW3Wxv4RZvY5kOz970dN+RIq2z3NxqNw/5GbEtPx+FH/CK/XGHb91pty8eaphMNAKDVaNza93JqS0lRhISEICUlBTk5OaipqUFeXh7y8/ORkpLisOyoUaPwn//8ByaTCaWlpXj//fcxZMgQtwVOfoYXKSsH+5JsyeUbicxL9ZJLDsqE5PIyKysLJSUlSEtLw/Lly7Fo0SKEh4djy5YtdtfEzZgxA9HR0Rg5ciQmT56MG2+8EaNGjXJr8OQHeNsBZWP/khwxL0nFJN/HLjIyEitWrHCYn56ejvT0dPFxYGAgnnrqKTz11FPti5D8h4I/AZEEzAPyF8xVUiB5DAiT8vATs7qwvwnwj7v+yyUO8gx/yEEPY2FHnsVfnlAe3uGfbMnl+ibmpXrJJQdlgoUduY+C3ygkAfOA/AVzlRSIhR15Bj8xqwv7mwD/GAaTSxzkGf6Qgx7Gwo48i0OxysMhL7Ill2Ew5qV6eTAHu3Xrhpdeekl8rNFosH79eunb8yIWduQ+LN4IYB6Q/5Bprk6ZMgVjx461m7du3ToEBwfj+eef901QBAA4deqU3R1A5Ejy7U6IXMJPzOrC/ibAP4bB5BKHBKtXr8bs2bPxj3/8A9OmTfN1OPLm4Rzs1KlTu9fhaTxjR94h00/G1AbsS7Ilx6FYBXn++efx17/+FW+//bZdUWc9q7dkyRLExcUhKioKs2fPRl1dnbhMeXk5Jk+ejMjISISEhCA9PR1HjhwB0Pgzn7GxsXj//ffF5a+88srG339usmfPHgQGBqKyshJA4zDk6tWrcdtttyEkJAS9evXChg0bWo3/zTffxKBBgxAWFoZOnTrhzjvvxOnTp8Xnd+7cCY1Gg+3bt2PQoEEICQnB4MGD8csvv9it57XXXkOPHj2g1+vRu3dvvPHGG78/KQjQAMgBMOrrrxESEoLLL78ce/bswdGjR5GamorQ0FBc/8gjyLf5m/z8fGRkZCA2NhZGoxFXX301Pv3001ZfT/Oh2JMnT+K+++5DVFQUoqKikJGRgePHj9u9vmuuuQahoaGIiIhAcnIyCgoKWt1Ge7GwI8/yw0/HJAH7l+RIIXmZlZWFv//979i0aRPGjx/v8PyOHTuQn5+PHTt24N///jfWrFmDNWvWiM9PmTIF+/fvx4YNG7Bnzx4IgoCRI0eirq4OGo0GQ4cOxc6dOwE0FoGHDh1CXV0dDh06BKCxKBk4cCCMRqO4zr/97W+YOHEivv/+e4wcORKTJk3C2bNnW3wNZrMZf//73/Hdd99h/fr1+PXXXzFlyhSH5Z588kksXboU+/fvh06nwz333CM+9+GHH2Lu3Ll46KGH8MMPP2DmzJmYOnUqduzYYbeOvwOY3LUr/ve//+Gyyy7DnXfeiZkzZ+Lxxx/H/v37AQB/tVm+srISI0eOxKeffopvv/0Wt9xyC0aPHo0TJ060+HpsVVVVIS0tDSEhIdi5cye++OILGI1GjBgxAmazGfX19Rg7dixuuOEGfP/999izZw9mzJgBjafzU1CZhoYG4dixY0JDQ4OvQ/F7Dm05eLAgNH5uFgTrvPj4xsedO/suUC9RTW49/fTv/bxtW+O8qVN/n3fokKTVqabdJPCrNsnO/r3vP/ig5eXGjv19uVOn3B/Hl1/+vv4HHxRnO7TlkiW/L/ff/7o/Dje4++67Bb1eLwAQtm/f3uIyiYmJQn19vTgvMzNTuP322wVBEITDhw8LAIQvv/xSfL6srEwwGAzCO++8Ixw7dkxYvny50K9fP0EQBGH9+vXCoEGDhHHjxgn/+Mc/BEEQhJtvvll47LHHxL8HIDz11FPi48rKSkGj0Qhbtmxx+bXt27dPACBcuHBBEARB2LFjhwBA+PTTT8Vl/u///k8AIFRXVwuCIAiDBw8Wpk+fbreezMxMYeTIkdYX1hgbIAi33ioIgiDs2bNHACC8/vrr4t+sfeQRIdja9wsXOo2vT58+wssvvyw+TkxMFF588UW7Nvjwww8FQRCE119/Xejdu7eQn58v5ldtba1gMBiEbdu2CWfOnBEACDt37nS5fdyBZ+zIOxQ6TKJK7Euy5W9DsTbfcMTMmUDXrt75N2iQpJdzxRVXoFu3bnj66adx4cIFp8v07dsXAQEB4uO4uDhxmPOnn36CTqfDtddeKz4fFRWF3r174+effwYA3HDDDfjxxx9RVlaGvLw8pKamIjU1FXl5eaivr8fu3btxww03OMRlFRoairCwMLuh1ea+/fZbZGRkIDExEWFhYUhNTQUAh7NituuNi4sDALvXkpycbLd8cnIyfvrpp8YHTX1/hc3zsbGxAIA//OEPv8+LiEANgIqmvzGZTHj00UfRp08fREREwGg04ueff3b5jN2BAwdw9OhR/OEPf0B4eDiMRiM6duyImpoa5Ofno2PHjpgyZYp4JnD58uU4deqUS+tuD355gjxLIUMi1AL2L8lRa3lpWyS1MoToa126dMH777+PYcOGYcSIEdi6dSvCwsLslgkMDLR7rNFoYLFYADReQ+eMIAjiUGC/fv0QFRWFvLw85OXl4ZlnnkF8fDyeffZZfP3116iursaQIUNc3mZzJpMJN998M26++Wa8+eabiImJwYkTJ3DLLbfAbDa3uF5rfLbrbT58afs6xHU0i6vF9TY9fuSRR7Bt2zYsWbIEPXv2hMFgwIQJExxia4nFYsHAgQOxePFidOnSBVrt7+fKYmJiAAC5ubmYM2cOtm7dinfffRdPPfUUPvnkE1x33XUubaMtWNiR+/BMDgHMA5K3sDDg/PnG6Y4dAYPBO9ttw7cpExISkJeXh2HDhuHmm2/Gtm3bEB4e7tLf9unTB/X19fjqq68wePBgAMCZM2dw+PBhXHbZZQAaC52UlBR89NFH+OGHHzB06FCEhYWhrq4OK1euxIABAxyKSSl+/vlnlJWVYfHixYiPjwcA8Vo3KS6//HJ88cUXmDx5sjhv9+7duPzyy9scGwB8/vnnmDJlCm677TYAjdfc2X7x4WIGDBiAd999F1FRUejZs6ddYWfrqquuwlVXXYXHH38c119/Pd5++20WduSHmn9i5sFeOZz1Jc/cqZerNwa2fc6XQ7EPPAA89FDj9MqVQGam+2Nxo65du2Lnzp12xV2HDh0u+ne9evVCRkYGpk+fjpycHISFhSErKwtdunRBRkYGioqKAACpqal44IEHcNVVV4lFY0pKCt566y08+OCD7Yo9ISEBer0eL7/8MmbNmoUffvgBf//73yWv55FHHsHEiRMxYMAApKWlYePGjfjggw9+/wZrW25OLQjo2bMnPvjgA4wePRoajQbz5s1r8eyjM5MmTcILL7yAmTNnYvHixUhISMCJEyfwwQcf4JFHHkFdXR3++c9/YsyYMejcuTN++eUXHD582K5A9QReY0eexQO+srF/SY4UlpddunRBXl4ezp07h5tuugnnzp1z6e9yc3MxcOBAjBo1Ctdffz0EQcDmzZvthieHDRuGhoYG8do3oPHau4aGBofr66SKiYnBmjVr8N///hd9+vTB4sWLsWTJEsnrGTt2LJYvX44XXngBffv2RU5ODnJzc+1ibosXX3wRkZGRGDx4MEaPHo1bbrkFAwYMcPnvrd+G7dy5MyZMmIDLL78c99xzD6qrqxEeHo6QkBD8/PPPGD9+PC699FLMmDEDf/3rXzFz5sx2xX0xPGNH7sOzcgQwD8h/yDRXbW9ZYhUXFyd+6aGlZWx/+goAIiMj8Z///MdhOduzUv369XO4Hu/+++/H/fff7/B3zq7bu1iR+cc//hF//OMfW1xPamqqw3qvvPJKh3n33nsv7r333ha30zyybt26Oawj9Yor7Jbr1q0bPvvsM7tlZs+ebfe4+dBs83V26tQJS5YsQWJiosNQbHh4OD788MMWY/YUnrEjz1DYJ2a6CPY3AfzlCfI9f8hBD2NhR94h00/G1AbsS7Llb7c7IeWRSw7KBAs7ch9eVK8+zvpXwTtM8hMSLqAnUhoWdkTUfizgCfCPYTC5xEGe4Q856GEs7Mg7+MlYOdiXZEsuw2DMS/WSSw7KBAs78iyVfEJSLfYvyRHzklSMhR25j/UTEHeq6uPpm8+Sf/CHYTDmqrL5Qw56GAs78g7uQJWDfUm25DIMxrxUL7nkoExILuzKy8sxd+5cJCcnY9y4cdi3b1+ryxcVFSE5ORnPPfdcm4MkP6aST0iqxf4lOWJekopJLuyys7MRExOD7du3Y86cOcjKykJFRUWLyy9btgy9e/duV5DkJxT8CYgkYB6Qv2CukgJJKuyqqqqQl5eHWbNmITg4GKmpqejRowd27drldPk9e/ZAEARce+21bgmW/ATvbaZsvF8h2XL1B9g9fW2bq+tkriqPXHJQJiT9VuyJEydgNBoRHR0tzuvVqxeOHTvmsGxdXZ34o72bN29udb1msxlms9k+MJ0Oer1eSngusf5Gnu1v5VHbNG9LTdM/AYBgnafROMxTKrXklkYQYN09WgQBsFjs51ksgIQ2UEu7SeFXbSII4hmC1vq+PTniEotFjMN2f+PQli7Gq2R+lV+usO17QWj5WOPqcpI27b22bP5btC2RVNhVV1cjNDTUbl5oaCgqKysdln3rrbeQnJyM+Pj4i643NzcXq1atspuXmZmJiRMnSglPksLCQo+tW22sbdm5pgZBTfMKCgoAAF3r6xGIxqQ/0TRP6ZSeW5HnzyOiabqkpAQ1BQWIqqxEeNO8U0VFMHfoIHm9Sm+3tvCHNok4dw6RTdOnT59GdQvv85iqKhibpn/77Tc0uPmMSXBJCeKaps+fP4/yZnFY2zL87FlENc0rKy2FSSX7JWf8Ib9cEXD6NBKapquqq3G6hT41nD6NTk3T586dwzk39r032jIpKcml5SQVdgaDASaTyW6eyWSCwWCwm3f69Gls2LABb7zxhkvrnTp1KiZNmmQfmAfP2BUWFiI+Pt7l6peca96WmqCmsk6jQWJiYuOkrjHFtFqtOE+p1JJbGpuiLTY2FkhMhCYsTJwXFxcHSOhrtbSbFH7VJhER4uQlTfngjMbmpEDXrl2BhASny7XZr7+Kkx06dEB4UxwObRkVJS4XHR2NaIXvl5zxq/xyhU2tEBIS0vKxJjZWnIyIiEAHN/S9HNtSUmGXkJCAyspKlJWVicOxR44cQUZGht1yhw4dQklJCcaNGweg8do8i8WCU6dO4eWXX3ZYr16v90gR1xqtViubTvB3zdtSA0DTrG01guAwT6nUlFtarRbQau2uXRHntWFdamk3V/lbm7Ta97Y5otG0KUdaZbN+jUbjsL8R29INuaoU/pZfLbpI34sucpxqDzm1paTCLiQkBCkpKcjJycFDDz2Er776Cvn5+UhJSbFbbvDgwfjoo4/Ex2+++SbKy8vxwAMPuCdq8h+8UFnZ2L8kR8xLUjHJ5WVWVhZKSkqQlpaG5cuXY9GiRQgPD8eWLVvEa+L0en3jKe6mfwaDAUFBQYiwOWVPCsRfnlAvlXzbjC7CH+76z1xVNn/IQQ+TdMYOACIjI7FixQqH+enp6UhPT3f6NzNnzpQeGSkLd6DKwb4kW3K56z/zUr3kkoMyIY8BYVIulXxCUi32L8kR85JUjIUduQ+HYtWLw1sE+McwGHNV2fwhBz2MhR15B3egysG+JFtyGQZjXqqXXHJQJljYkWep5BOSarF/SY6Yl6RiLOzIfRT8CYgkYB6Qv2CukgKxsCP3c/ZpmTtQ5XDWlzxDol5y+QF2V9fJXFUeueSgTLCwIyIiIlIIFnbkWfx0rGzsX5Ij5iWpGAs7ch/e7kS9VDLEQRfhD7eaYK4qmz/koIexsCPv4A5UOdiXZEsut5pgXqqXXHJQJljYkWep5BOSarF/SY6Yl6RiLOzIfTgUq14c3iLAP4bBmKvK5g856GEs7Mg7uANVDvYl2ZLLMBjzUr3kkoMywcKOPEsln5BUi/1LcsS8JBVjYUfuw6FY9eLwFgH+MQzGXFU2f8hBD2NhR97BHahysC/JllyGwZiX6iWXHJQJFnZERERECsHCjtzH2VCsSk59q5a1fzm8RYB8hsH4e6HqJZcc9CEWduQd3IEqB/uSbMllGIx5qV5yyUGZYGFHREREpBAs7MizVHLqW7XYvyRHzEtSMRZ25D683Yl68bolAvzj+ibmqrL5Qw56GAs78g7uQJWDfUm25HJ9E/NSveSSgzLBwo48SyWfkFSL/UtyxLwkFZNc2JWXl2Pu3LlITk7GuHHjsG/fPqfLLVu2DBkZGUhJScFdd92Fb775pt3BksxxKFa9OLxFgH8MgzFXlc0fctDDJBd22dnZiImJwfbt2zFnzhxkZWWhoqLCYTmj0YhXXnkFO3fuxN13342HH34YJpPJLUGTH+IOVDnYl2RLLsNgzEv1kksOyoSkwq6qqgp5eXmYNWsWgoODkZqaih49emDXrl0Oy86YMQPx8fHQarUYPnw4goKCcOLECbcFTn5CJZ+QVIv9S3LEvCQV00lZ+MSJEzAajYiOjhbn9erVC8eOHWv174qKilBRUYH4+Hinz5vNZpjNZvvAdDro9Xop4bnEYrHY/U9t17wtNYIADQBBo4Fgndf0TwDEeUqlltyy9jPQ9FotFrGfAcDS0ABIaAO1tJsU/tQmdvkgCC32vV2ONOWNW1ks4pkK2zgc2lIQfl9OYq4qhT/ll0ts+r7VY41N3wuC4JZjkjfbUqt17VycpMKuuroaoaGhdvNCQ0NRWVnZ4t/U19djwYIFuOuuu2A0Gp0uk5ubi1WrVtnNy8zMxMSJE6WEJ0lhYaHH1q021rbsUlcHPRrfMAUFBY3zzObGeRaLOE/plJ5bHSsq0KFp+lRxMcwFBXbziouLUduGvlZ6u7WFP7RJ5LlziGiaLikpQU0LfR9dWYmwpumikydRZzC4NQ5DSQk6NU2fP3cO55rFYW1L45kziGmad+bsWVSqZL/kjD/klyt0v/0G62kjk8mE0hb6NKi4GJ2bpivOn8dZN/a9N9oyKSnJpeUkFXYGg8HhOjmTyQRDC29QQRCwYMECREZGYsaMGS2ud+rUqZg0aZJ9YB48Y1dYWCgOE1PbNW9LTWAgAECj0SAxMbFxuqkPbecplVpySxMWJk7HdeoEJCZCEx4uzuvUNM9Vamk3KfypTTQdOojTsbGxLfa9xuaDfefOnSXliEsuuUSc7BARgQ5N63doy6gocbmojh0RpfD9kjP+lF8uqasTJ0NDQxHSUp/aFF/h4eEIc0Pfy7EtJRV2CQkJqKysRFlZmTgce+TIEWRkZDhd/vnnn0dpaSlefvnlVl+wXq/3SBHXGq1WK5tO8HfN21Kj0UBjfdx0rYsG+H2ewik+t2yuX9IGBABabeM/67xmj12l+HZrA79oE2f54IwbcqRVF1m/2JYBAZ6Nw4/4RX65wvb4o9W2fKyx6Xu745RbQpBPW0qKIiQkBCkpKcjJyUFNTQ3y8vKQn5+PlJQUh2VzcnLw3XffYenSpV4v2shHWvuWkYK/gaQ6F+tL9rW6yOUbiXKJg7yPfW9HcnmZlZWFkpISpKWlYfny5Vi0aBHCw8OxZcsWu2viVq1ahePHjyM9PR1Dhw7F0KFDsWXLFrcGT0RERES/kzQUCwCRkZFYsWKFw/z09HSkp6eLj/fv39++yEgZeNsBZWP/khwxL0nF5DEgTMrQ2i9PKPi0t+o460vezV+9bPvb1bv++3IolrmqPHLJQZlgYUdERESkECzsyLM4JKJs7F+SI+YlqRgLO3Kf1oZiSdlUMsRBF+EPP8DOXFU2f8hBD2NhR97BHahysC/JllxuNcG8VC+55KBMsLAjIiIiUggWduR+tqe7VXLqW7Ws/ct+JkA+w2ByiYO8j33Pwo7ciL88oQ785QmyJZdhMLnEQd7HvrfDwo6IiIhIIVjYkftxKFY9OBRLtuQyDCaXOMj72Pcs7MiNOBSrDhyKJVtyGQaTSxzkfex7OyzsiIiIiBSChR15lkpOfasW+5fkiHlJKsbCjtyntV+eUPBpb9Vx1pe8m796yeUH2F1dJ3NVeeSSgzLBwo6IiIhIIVjYERERESkECztyH2dDsbzWRdmc3e5EwUMcdBFyudUEh+PUSy456EMs7Mg7uANVDvYl2ZLLrSaYl+ollxyUCRZ2RERERArBwo7cj0Ox6sFfniBbchkGk0sc5H3sexZ25Eb85Ql14C9PkC25DIPJJQ7yPva9HRZ2RERERArBwo7cj0Ox6sGhWLIll2EwucRB3se+Z2FHbsShWHXgUCzZksswmFziIO9j39uRXNiVl5dj7ty5SE5Oxrhx47Bv3z6ny9XU1GDevHlISUnBrbfeiq1bt7Y7WCIiIiJqmU7qH2RnZyMmJgbbt2/H3r17kZWVhfXr1yM8PNxuuZycHJw/fx6bN29Gfn4+5s6di8svvxyJiYluC578gEpOfasW+5fkiHlJKiapsKuqqkJeXh42btyI4OBgpKam4q233sKuXbswatQou2U3b96MpUuXwmg0on///khJScHHH3+M6dOnu/UFtMtvvwFVVb6Own9ZLNCdPAnU1gJaLWA2N85vaad6+LD3YvOF5u2hVOfPO86z7fPCQml9rZZ2k8Kf2qS8/PdpV69vOn4cMBrdG0dRkWvL2cZRUqL8/ZIz/pRfrjh+/PdpV3OwvNw9fW+xQHfqFCCjk1aSCrsTJ07AaDQiOjpanNerVy8cO3bMbrmKigqcOXMGPXv2FOddeuml+PHHH52u12w2w2wtCqyB6XTQ6/VSwnOJxWIR/9fccw80n3zi9m2ohRZAvJP5AgChqZ01Tf8AAL17eyUuX2mpPZTMYrEAFgs0gvB7P0+ZImkdamy3i/HXNrHmgzN2OTJ+vGfjEAQxDkuz/2Gx/H4N0rPPNv5TGX/NL1cIgiAefxzY9v3atY3/2kkLoIvRCIvtBxwP0bpYhEsq7KqrqxEaGmo3LzQ0FJWVlXbzqqqqEBAQgODgYLvlqlo4O5abm4tVq1bZzcvMzMTEiROlhCdJYWEhYmtqEOKxLaiXOTYWRQUFAICY6Gi4+XM5yYQQGIjCujpYCgoQZjQi+uJ/QgomaLX4TRDQ0PTeb65DeDg6eimWUoMBVc3iKCwsBAAEBQWhs5fiIO87Fx6Ocy3kYIDFgviAAGgaGty+XWt+eVJSUpJLy0kq7AwGA0wmk908k8kEg8FgNy8kJAQNDQ2oqakRizuTyYSQEOdl1NSpUzFp0iT7wDx4xq6wsBDx8fHQjhoFoVs3t29DLQRBgKmqCqEhIdBYT3EbjQicOfP3aylffhnCpZcCZWW+C9RLnLaHUmm1EG67DfFXXdX4+L77YBEEaH7+WfKqVNVuLvK7NtFoINx6K7ped13Lyzz2GCzBwdA0G+FxN6F/f8RMmwYEBgJots/XaoGEBFhefRWaPXs8Goec+V1+uSopCR3mzkWHiAjnzycmQnj3XWDjxhbPLEslCAIqGxp+zy8ZkFTYJSQkoLKyEmVlZeJw7JEjR5CRkWG3XHh4OKKionD06FH069cPAHD48GF0797d6Xr1er1HirjWaLVaaB991KvbVBrBYkFZQQFCExOhsUlou91EUhKwbJnXY/OFltpDqez62WgEnniiTetRW7u5wh/b5KLlQWQksGCBz+LQarW/H3jvvbfxn0r5Y3656qJ5OH68Wy8FECwWnCkogNE2v3xMUhQhISFISUlBTk4OampqkJeXh/z8fKSkpDgsO3LkSKxevRomkwkHDx7Erl27cNNNN7ktcCIiIiKyJ7m8zMrKQklJCdLS0rB8+XIsWrQI4eHh2LJli901cTNnzoTRaMSIESOQlZWFrKwsdOOwJxEREZHHSL6PXWRkJFasWOEwPz09Henp6eLj4OBgLFy4sH3REREREZHL5DEgTERERETtxsKOiIiISCFY2BEREREphEYQBMHXQRARERFR+/GMHREREZFCsLAjIiIiUggWdkREREQKwcKOiIiISCFY2BEREREpBAs7IiIiIoVgYUdERESkECzsiIiIiBSChR0RERGRG4wePRoHDx70aQyKLexycnKQmZmJq6++Gtu2bRPnb9y4Eddeey2GDh0q/isuLvZhpPI0evRojBo1CnV1deK85557Djk5OT6MSj6YX64ZPXo0kpOTMXToUKSlpeEvf/kL8vLyfB2WrDCX2k8OB1M5Ym61n+0+bOjQoRg9erSvQ7oona8D8JT4+Hg89NBDWLlypcNz11xzDV5++WUfROVfqqqqsHHjRowbN87XocgO88t1K1euxB/+8AeUl5dj586dePrpp3HfffdhwoQJvg5NFphL5CnMLfew7sP8hWLP2I0cORLXXXcd9Hq9r0PxW3feeSdyc3NRX1/v8Nw777yDjIwMDB8+HE8//TQqKysBAPfeey82bdokLldVVYWUlBScOXPGa3F7A/NLusjISNx2222499578dprr6GhoQFHjx7F9OnTMWzYMPzpT3/CoUOHxOVPnjyJuXPnIi0tDbfccgveeecdH0bvOcwl9/n+++8xefJk3HDDDRg1apRdzuTk5ODpp5/GY489hpSUFEyZMgWnTp3yYbSex9zyjOLiYnHfNGHCBOzevdvu+QMHDmDs2LEYPny4T0a5FFvYtea7775DWloaMjMzsW7dOl+HI1vXXnstYmJisHHjRrv5e/bswb///W+89NJL2LhxI6qrq/Hiiy8CAG666SZ8+umn4rK7du1C3759ERUV5dXYfYn51bqhQ4fi/PnzyM/Px5w5c3DnnXfi008/xbRp0/DII4+gtrYW9fX1uP/++9GnTx9s3rwZ77//Pvr37+/r0L2OuSSNTqfDE088gR07duD555/Ha6+9hp9//ll8fseOHbjjjjvw2WefISEhAatWrfJhtL7F3Gobi8WCBx54AMnJydi2bRuefvppzJs3D2VlZeIyn332GXJzc7FmzRps2LABn3/+uVdjVOxQbEsGDBiAd955B506dcKhQ4fw8MMPIyoqCsOGDfN1aLI0Y8YMPPfcc3bXFXz88ccYP348kpKSAACzZ8/GXXfdhXnz5uHGG2/EsmXLcOHCBYSFheGTTz7BTTfd5KvwvY75dXHR0dEAgM8//xw9e/YU2yY1NRWvv/46Dh48CJ1Oh5qaGsyYMQMajQZBQUG4/PLLfRm21zGXpOvTp4/ddHJyMr777jtcdtllAIDrrrsOV111FQDg5ptvVu01w8wtaWbPng2ttvE8WO/evVFfX4+JEycCAK644goMHDgQu3fvxpgxYwA0jnZFRkaKoxSfffYZhg4d6rV4VVfYdenSRZzu168f7rjjDuzYsYMJ3YLrrrsO0dHRdsOrZWVlGDhwoPg4Li4O1dXVqKysREREBK666irs3LkTw4YNw9dff4158+b5InSfYH5dnPWTrcViwddff43U1FTxufr6epSVlUGr1SIuLg4ajcZHUfoec0m6/Px8LF26FIcPH0ZdXR3MZjO6desmPh8ZGSlOBwcHo6qqygdR+h5zS5p//OMf4jV2n3zyCZ566im7/VZDQ4PdB89LLrlEnO7UqRO+++47r8UKqLCwa07NBw5XTZ8+HYsXLxaLuejoaLtvUBUXFyM4OBhGoxHA78OxWq0W/fv3R0REhC/ClgXml6PPP/8cERER6Nq1K4YMGYIXXnjBYZnvvvsOp06dgiAIbMMmbIeLe/755zFw4EAsW7YMwcHBeOKJJyAIgq/Dkj3mlutiYmLQs2dPvPXWWy0uc/r0aXG6uLjY65ciKfYau/r6etTW1kIQBHHaYrFg9+7dKC8vBwD8/PPPePfdd716itQfXX/99ejYsaN4m4rhw4fjgw8+wPHjx1FdXY1XX30VN998s7j8sGHD8O233+LDDz9U7DAs80u6c+fOYf369Vi5ciVmzZqFoUOH4tChQ8jLy0NDQwNqamqwe/duVFZWom/fvggODsbrr78Os9mMyspK/PTTT75+CR7BXHKfqqoqGI1GBAUF4dtvv8WXX37p65B8irnlfv369UN9fT0++OAD1NXVoa6uDt9++63dyY533nkH586dw8mTJ/Hhhx/ixhtv9GqMij1jt3DhQnH48Ntvv8X8+fOxcuVKfPXVV5g/fz5qamoQExODyZMnK7b4cKfp06djzpw5AIDk5GTcddddmDNnDkwmEwYPHowHHnhAXDYsLAwDBw7Enj17sGzZMl+F7FHML9fNmjULWq0WgYGBuOyyy7BgwQJxGOOll17CsmXL8Le//Q06nQ79+/fHFVdcAZ1OhxdffBHZ2dm45ZZboNfrcc899yjyOjvmkntoNBrcd999ePbZZ7Fy5Upce+21SElJ8XVYPsXccj+dToeXXnoJS5YswauvvgpBENCnTx88/vjj4jKpqamYMmUKLly4gMzMTK/noUbgeWoiIvJjaWlpyM3NRUJCgq9DIfI5xQ7FEhGR8u3fvx9A45e4iEjBQ7FERKRszz77LPbu3Ysnn3wSgYGBvg6HSBY4FEtERESkEByKJSIiIlIIFnZERERECsHCjoiIiEghWNgRERERKQQLOyIiIiIZKCoqwuDBg9u1Dt7uhIhUZ//+/Zg1axYAYMOGDejcubOPIyIidzKbzVi0aBG++uormEwm9O7dG48++ih69uwJAFizZg3efPNNWCwWZGRkYM6cOdBoNKivr8fjjz+OH374AaWlpdi6dSuio6PF9S5YsADbtm2DTtdYPsXFxeG9995zGkNRURHGjBkDg8EgzktNTcXf//53D75yFnZEpHALFizApk2bMGDAAPzzn/8EABiNRvTr1w8AoNfrfRkeEXlAQ0MDunTpgtzcXERHR2Pt2rV46KGH8NFHH+GLL77AunXrsGbNGgQHB+Pee+9Ft27dkJGRAQAYMGAAJk+ejKlTpzpd98yZMzFlyhSX4tDr9fj888/d9bJcwqFYIlKdyy67DGvWrMGaNWvsPo0TkTIYDAZMmzYNsbGxCAgIwO23346ioiKcO3cOmzdvxoQJE9C1a1dER0fjT3/6E7Zs2QKg8bdg//jHP+IPf/iDR+M7cOAA/vSnPyE1NRUzZszAb7/9Zvf8O++8g+HDh2PMmDHIy8uTtG4WdkSkWKNHjxZ/BP2bb77BoEGDMGjQIOzfv1+cLioqAtB4Zm/QoEHi39x666244YYbsHTpUtTU1GDp0qW44YYbMGrUKKxbt85uO6Wlpfjb3/6GESNG4LrrrkNGRgZWr16N+vp6r79mInL0/fffo2PHjoiIiMCvv/4qDskCwKWXXopjx465vK433ngDaWlpuOeee/DNN99IjqW4uBhZWVl4+OGHsX37dtx44414/PHHYf29iLq6OuTn5+P//u//kJWVhXnz5qG8vNzl9bOwIyLF6t27NyIiIgAAoaGh6NevH/r164eff/65xb8pKyvD4sWLERgYCJPJhLVr1+Kuu+7Chg0bYDQaUVxcjOeffx6//vorAODcuXOYMmUKNm7ciOrqaiQlJaG4uBgrV67Es88+642XSUStqKysxHPPPYe//OUvAICqqioYjUbx+dDQUFRVVbm0rjvuuAMffvghtm7diszMTDzwwAMoLi5ucXmz2YzU1FTx3xdffIGtW7ciLS0NV155JQICAnDHHXfg1KlT4odMQRAwY8YMBAUFYfDgwejXrx++/PJLl18vCzsiUqwlS5ZgyJAhABqLPOvw62WXXdbi39TV1eGVV17BBx98gNjYWABAYWEh1q5di3Xr1iEoKAgWiwUHDhwAALz33nsoKSlBVFQU1q9fj7Vr1yI7OxsAsGnTJhQWFnr4VRJRS2pra/HQQw9hyJAh4jV0ISEhqKysFJcxmUwICQlxaX2XXXYZwsPDERgYiPT0dFxxxRX46quvAAATJ07E0KFDMXToULHY0+v12Llzp/hvyJAhKC4uxsaNG+0KvurqapSWlgIAtFqt3SUisbGxKCsrc/k188sTREQ2wsPDceWVVwIAOnXqhJKSEvTo0UP85mxkZCSKi4tx9uxZAMCPP/4IADhz5gxuuukmu3UJgoAffvgB8fHx3nsBRAQAqK+vxxNPPIGYmBjcf//94vykpCQcPXpU/NB3+PBhdO/evU3b0Gg04nTzb8daz8A1FxMTg/Hjx+PBBx90eK6oqAgWiwVlZWWIiYkBAJSUlGDAgAEux8QzdkRENkJDQ8XpgIAAh3nWHbn1ehjr/7ZDvbb/goODvRU6Edl49tlnUVtbiwULFtgVYCNHjsT777+PkydPoqysDG+99RbS09PF581mM2prawE0nsG3TgPA9u3bUV1djfr6enz88cf47rvvcPXVV0uKa8SIEfjkk0/wv//9DxaLBSaTCZ9++qn4vEajwerVq2E2m7F3714cPHgQycnJLq+fZ+yISNGshVVNTY1H1t+3b1/s3r0bAQEBeO6558QzeyaTCTt27MCwYcM8sl0iatmpU6ewceNGBAUF2b0HV6xYgSFDhuDIkSOYPHkyLBYLxo4dizFjxojLjB8/HqdOnQLQ+AUsoPHelwDw9ttv45lnnoFGo0FiYiJeeOEFyffB7NKlCxYuXIiXXnoJx48fh8FgwKBBgzB8+HAAQGBgIJKSkjBy5EgYDAY888wz6Nixo8vrZ2FHRIrWrVs3AMChQ4dw++23w2AwYPr06W5b/8SJE/HRRx/h9OnTGD9+PJKSkmAymVBSUoL6+nqMGjXKbdsiItfExcWJxZgzU6dObfE+dRs3bmzx715//XWXY+jcuTN2797t9LmBAwdizZo1rf7NHXfc4fK2bHEologUbcyYMbjxxhthNBqRn5+PH374ARaLxW3rj4yMRG5uLkaPHo0OHTogPz8ftbW1uOqqq5xeQ0NE5EkawXqBCBERERH5NZ6xIyIiIlIIFnZERERECsHCjoiIiEghWNgRERERKQQLOyIiIiKFYGFHREREpBAs7IiIiIgUgoUdERERkUKwsCMiIiJSCBZ2RERERArBwo6IiIhIIVjYERERESnE/wP6tMI4+xWrGwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# use the anomaly score that gave the best AUC ROC score: Wasserstein anomaly score with a window of 'full_day'\n", + "best_anomaly_score = anomaly_scores[-1]\n", + "\n", + "# fit and detect on the anomaly scores, it will return a binary prediction\n", + "anomaly_pred = detector.fit_detect(series=best_anomaly_score)\n", + "\n", + "# plot the binary prediction\n", + "fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True)\n", + "anomaly_pred.plot(label=\"Prediction\", ax=ax1)\n", + "series_taxi_anomalies[anomaly_pred.start_time() :].plot(\n", + " label=\"Known anomalies\", ax=ax2, color=\"red\"\n", + ")\n", + "fig.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "accuracy: 0.91/1\n", + "precision: 0.76/1\n", + "recall: 0.32/1\n", + "f1: 0.45/1\n" + ] + } + ], + "source": [ + "for metric_name in [\"accuracy\", \"precision\", \"recall\", \"f1\"]:\n", + " metric_val = detector.eval_metric(\n", + " pred_scores=best_anomaly_score,\n", + " anomalies=series_taxi_anomalies,\n", + " window=full_day,\n", + " metric=metric_name,\n", + " )\n", + " print(metric_name + f\": {metric_val:.2f}/1\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using the functions show_anomalies_from_scores(), eval_metric_from_scores()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Internally, methods `eval_metric()` and `show_anomalies()` call `eval_metric_from_scores()` and `show_anomalies_from_scores()`, respectively. We can also call them directly with pre-computed anomaly scores to avoid having to re-generate the scores each time.\n", + "\n", + "Let's reproduce the results from above. Both functions require the window sizes used to compute each of the anomaly scores. In our case, the window sizes were `1, 24 (half_a_day), 48 (full_day)`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AUC_ROCAUC_PR
Norm (ord=1)_10.6580740.215601
WassersteinScorer_240.8849150.609469
WassersteinScorer_480.9500350.687788
\n", + "
" + ], + "text/plain": [ + " AUC_ROC AUC_PR\n", + "Norm (ord=1)_1 0.658074 0.215601\n", + "WassersteinScorer_24 0.884915 0.609469\n", + "WassersteinScorer_48 0.950035 0.687788" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "windows = [1, half_a_day, full_day]\n", + "scorer_names = [f\"{scorer}_{w}\" for scorer, w in zip(anomaly_model.scorers, windows)]\n", + "\n", + "metric_data = {\"AUC_ROC\": [], \"AUC_PR\": []}\n", + "for metric_name in metric_data:\n", + " metric_data[metric_name] = eval_metric_from_scores(\n", + " anomalies=series_taxi_anomalies,\n", + " pred_scores=anomaly_scores,\n", + " window=windows,\n", + " metric=metric_name,\n", + " )\n", + "\n", + "pd.DataFrame(index=scorer_names, data=metric_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the AUC ROC and AUC PR values are identical to before." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For visualizing the anomalies:\n", + "\n", + "- if we want to compute a metric, we need to specify the window sizes as well\n", + "- optionally, we can indicate the scorers’ names that generated the scores" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAARSCAYAAABhf3JeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wVVfr/PzNz7829KZSEkECAQGiKYMH2s4EgLFVB17ooigVdywpiYXVRQERE17K7+rUhsK4ruqIoUkQEUYpIkV5DCSEJCQkJabfNzPn9cWbmztw76SFFnvfrheZOO2fOnDnzOc95znMExhgDQRAEQRAEQTRxxMbOAEEQBEEQBEFUBxKuBEEQBEEQRLOAhCtBEARBEATRLCDhShAEQRAEQTQLSLgSBEEQBEEQzQISrgRBEARBEESzgIQrQRAEQRAE0Swg4UoQBEEQBEE0C0i4EgRBEARBEM0CEq5Es+Yf//gHBEFA7969GzsrZ4TOnTvjnnvuaexsnDEEQcDUqVON33v27MHUqVNx9OjRRstTZcybNw+CIDTZ/FXGqVOncPvtt6Nt27YQBAGjR49u7CydUcrLyzF16lT8+OOPEfua83OsCTNnzsSiRYsituv3v3nz5jOeh2uvvRbXXnvtGU+HOHsg4Uo0az766CMAwO7du7Fx48ZGzg1RV/bs2YNp06Y1WUExYsQIbNiwAe3atWvsrNSYF198EV999RXeeOMNbNiwAbNnz27sLJ1RysvLMW3aNFvh2pyfY02oSLgSRHPG0dgZIIjasnnzZmzfvh0jRozAkiVLMGfOHFx++eWNna1mhaIokGUZUVFRjZ2VZkFiYiISExMbOxu1YteuXejatSvGjBlTL9djjMHn88Hj8dTL9RqS5vwcCeJshyyuRLNlzpw5AIBZs2bhyiuvxIIFC1BeXm455ujRoxAEAa+99hpef/11dOnSBbGxsbjiiivwyy+/RFzzm2++wRVXXIHo6GjExcVh8ODB2LBhg+WYqVOnQhAE7NixA7fccgtatmyJ+Ph4PPHEE5BlGfv378fQoUMRFxeHzp07R1i2fD4fJk2ahAsvvNA494orrsDXX39d6f2WlpaiVatWePDBByP2HT16FJIk4dVXX63wfL0sZs+ejRkzZqBLly6IiorC6tWrAfCOwA033ID4+Hi43W5cdNFF+Pzzzy3XKC8vx5NPPokuXbrA7XYjPj4el1xyCT799FPjmIqGBu+55x507ty5wvzNmzcPt9xyCwBgwIABEAQBgiBg3rx5AIDffvsNI0eORNu2bREVFYX27dtjxIgROH78eIXXBCp2twjPp6qqmDFjBnr27AmPx4NWrVrh/PPPx1tvvWXJY/gQ87XXXovevXtj06ZNuOaaaxAdHY20tDTMmjULqqpa0ty9ezf+8Ic/IDo6GomJiXjkkUewZMkSCIJgaxk0k56ejnHjxqF79+6Ijo5GSkoKrr/+euzcubPS8/TnvnLlSuzdu9coVz29U6dO4eGHH0ZKSgpcLhfS0tLw3HPPwe/3W64jCAIeffRRvPvuuzj33HMRFRWF+fPnAwAOHjyIP/3pT8azOffcc/H2229H5KWoqAiTJk1CWloaoqKi0LZtWwwfPhz79u0zjpk2bRouv/xyxMfHo0WLFujbty/mzJkDxpjlWqtWrcK1116LhIQEeDwedOrUCX/84x9RXl6Oo0ePGsJ02rRpxj3r9aAxn2Nd2w8AKC4uNt5Dl8uFlJQUTJgwAWVlZZbnVVZWhvnz5xv3H/5elpSU4M9//jPatGmDhIQE3HTTTcjOzrYco6oqZs+ejXPOOcd4ZmPHjo147xhjmD17NlJTU+F2u9G3b18sW7as0rIgiFrBCKIZUl5ezlq2bMkuvfRSxhhjH374IQPA5s2bZznuyJEjDADr3LkzGzp0KFu0aBFbtGgR69OnD2vdujUrKioyjv3kk08YAPaHP/yBLVq0iH322Wfs4osvZi6Xi/3888/GcS+88AIDwHr27MlefPFF9v3337Onn36aAWCPPvooO+ecc9g//vEP9v3337Nx48YxAGzhwoXG+UVFReyee+5hH3/8MVu1ahVbvnw5e/LJJ5koimz+/PmW/KemprK7777b+D1x4kQWExNjyTdjjD311FPM7Xaz/Pz8CstML4uUlBQ2YMAA9sUXX7AVK1awI0eOsFWrVjGXy8WuueYa9tlnn7Hly5eze+65hwFgc+fONa7x4IMPsujoaPb666+z1atXs2+//ZbNmjWL/fOf/zSO6d+/P+vfv39E+nfffTdLTU21bAPAXnjhBcYYY3l5eWzmzJkMAHv77bfZhg0b2IYNG1heXh4rLS1lCQkJ7JJLLmGff/45W7NmDfvss8/YQw89xPbs2VPhPduVYUX5fPnll5kkSeyFF15gP/zwA1u+fDl788032dSpU41j5s6dywCwI0eOWK6TkJDAunfvzt599132/fffs4cffpgBsDzP7OxslpCQwDp16sTmzZvHli5dyu666y7WuXNnBoCtXr260vtYs2YNmzRpEvviiy/YmjVr2FdffcVGjx7NPB4P27dvX4Xn+Xw+tmHDBnbRRRextLQ0o1xPnz7NvF4vO//881lMTAx77bXX2IoVK9iUKVOYw+Fgw4cPt1xHrzvnn38+++9//8tWrVrFdu3axXbv3s1atmzJ+vTpw/7973+zFStWsEmTJjFRFC1lV1xczM477zwWExPDpk+fzr777ju2cOFC9vjjj7NVq1YZx91zzz1szpw57Pvvv2fff/89e/HFF5nH42HTpk0zjjly5Ahzu91s8ODBbNGiRezHH39kn3zyCbvrrrtYYWEh8/l8bPny5QwAu++++4x7Tk9Pb/TnWNf2o6ysjF144YWsTZs27PXXX2crV65kb731FmvZsiUbOHAgU1WVMcbYhg0bmMfjYcOHDzfuf/fu3Zb7T0tLY4899hj77rvv2Icffshat27NBgwYYMnv+PHjjbwtX76cvfvuuywxMZF17NiRnTx5MuK+7rvvPrZs2TL2/vvvs5SUFJacnGzbHhBEbSHhSjRL/v3vfzMA7N1332WMMVZSUsJiY2PZNddcYzlOF2t9+vRhsiwb23/99VcGgH366aeMMcYURWHt27dnffr0YYqiGMeVlJSwtm3bsiuvvNLYpjfQf//73y1pXXjhhQwA+/LLL41twWCQJSYmsptuuqnCe5FlmQWDQXbfffexiy66yLIvXHQdOnSIiaLI3njjDWOb1+tlCQkJbNy4cRWmYS6Lrl27skAgYNl3zjnnsIsuuogFg0HL9pEjR7J27doZZdK7d282evToStOprXBljLH//e9/th//zZs3MwBs0aJFlaZtR3WF68iRI9mFF15Y6bUqEjwA2MaNGy3H9urViw0ZMsT4/dRTTzFBEAzxoDNkyJBqCZ5wZFlmgUCAde/enU2cOLHK4/v378/OO+88y7Z3332XAWCff/65Zfsrr7zCALAVK1YY2wCwli1bslOnTkXkv0OHDuz06dOW7Y8++ihzu93G8dOnT2cA2Pfff1/te1QUhQWDQTZ9+nSWkJBgiLIvvviCAWDbtm2r8NyTJ09G1C+dxnyOdW0/Xn75ZSaKItu0aZPlfL1Mli5damyLiYmxrfv6/T/88MOW7bNnz2YAWE5ODmOMsb1799oet3HjRgaAPfvss4wxxgoLC5nb7WY33nij5bh169YxACRciXqFXAWIZsmcOXPg8Xhw++23AwBiY2Nxyy234Oeff8bBgwcjjh8xYgQkSTJ+n3/++QCAjIwMAMD+/fuRnZ2Nu+66C6IYei1iY2Pxxz/+Eb/88kuEG8LIkSMtv88991wIgoBhw4YZ2xwOB7p162ako/O///0PV111FWJjY+FwOOB0OjFnzhzs3bu30vtOS0vDyJEj8c477xhDp//9739RUFCARx99tNJzdW644QY4nU7jd3p6Ovbt22f4PsqybPwbPnw4cnJysH//fgDAZZddhmXLlmHy5Mn48ccf4fV6q5VmXenWrRtat26NZ555Bu+++y727NlT72lcdtll2L59Ox5++GF89913KC4urva5ycnJuOyyyyzbzj//fMtzX7NmDXr37o1evXpZjrvjjjuqlYYsy5g5cyZ69eoFl8sFh8MBl8uFgwcPVllvKmLVqlWIiYnBzTffbNmuD6n/8MMPlu0DBw5E69atjd8+nw8//PADbrzxRkRHR0fUHZ/PZ7jkLFu2DD169MCgQYOqzNOgQYPQsmVLSJIEp9OJ559/HgUFBcjLywMAXHjhhXC5XBg/fjzmz5+Pw4cP1+r+w2mI56hT2/bj22+/Re/evXHhhRdaynvIkCHVclUwc8MNN1h+h7eLuhtRuKvNZZddhnPPPdeoHxs2bIDP54vwn77yyiuRmppa7fwQRHUg4Uo0O9LT0/HTTz9hxIgRYIyhqKgIRUVFxsdXjzRgJiEhwfJbn4ykC6+CggIAsJ1l3L59e6iqisLCQsv2+Ph4y2+Xy4Xo6Gi43e6I7T6fz/j95Zdf4tZbb0VKSgr+85//YMOGDdi0aRPuvfdey3EV8fjjj+PgwYP4/vvvAQBvv/02rrjiCvTt27fKc+3uMTc3FwDw5JNPwul0Wv49/PDDAID8/HwAPPzYM888g0WLFmHAgAGIj4/H6NGjbTsL9UnLli2xZs0aXHjhhXj22Wdx3nnnoX379njhhRcQDAbrJY2//vWveO211/DLL79g2LBhSEhIwHXXXVetkEHh9Qvgdcws7AsKCpCUlBRxnN02O5544glMmTIFo0ePxuLFi7Fx40Zs2rQJF1xwQa07EAUFBUhOToYgCJbtbdu2hcPhMN4LnfC6U1BQAFmW8c9//jOi7gwfPhxAqO6cPHkSHTp0qDQ/v/76K/7whz8AAD744AOsW7cOmzZtwnPPPQcg9L527doVK1euRNu2bfHII4+ga9eu6Nq1q8UfuTY0xHPUqW37kZubix07dkSUd1xcHBhjRnlXh7q2i/p+/f/JyckRx9ltI4i6QFEFiGbHRx99BMYYvvjiC3zxxRcR++fPn48ZM2ZYLKxVoTfgOTk5Efuys7MhiqLF0lQX/vOf/6BLly747LPPLIIhfDJMRQwcOBC9e/fGv/71L8TGxmLr1q34z3/+U+30w0VKmzZtAHDhdtNNN9me07NnTwBATEwMpk2bhmnTpiE3N9ewvl5//fXGBBu3243Tp09HXKMmH1Q7+vTpgwULFoAxhh07dmDevHmYPn06PB4PJk+eXOF5brfbtmzz8/ONewe4deuJJ57AE088gaKiIqxcuRLPPvsshgwZgszMTERHR9cp/wkJCUYnwcyJEyeqdf5//vMfjB07FjNnzoy4j1atWtU6Txs3bgRjzFIv8vLyIMuypXyAyLrTunVrSJKEu+66C4888ohtGl26dAHAZ/JXNZFuwYIFcDqd+Pbbby0Czi6k0zXXXINrrrkGiqJg8+bN+Oc//4kJEyYgKSnJGIk5E9T1OdaVNm3awOPx2HbQ9f31hbldDO90ZGdnG2npx9mVwYkTJyqdlEkQNYUsrkSzQlEUzJ8/H127dsXq1asj/k2aNAk5OTk1ns3as2dPpKSk4L///a9l9nJZWRkWLlxoRBqoDwRBgMvlsoiAEydOVBlVwMxf/vIXLFmyBH/961+RlJRkzMavDT179kT37t2xfft2XHLJJbb/4uLiIs5LSkrCPffcgzvuuAP79+83XCk6d+6MAwcOWMRiQUEB1q9fX2Vewi0+dgiCgAsuuABvvPEGWrVqha1bt1Z6zc6dO2PHjh2WbQcOHDDcH+xo1aoVbr75ZjzyyCM4depUvcSV7d+/P3bt2hXh5rBgwYJqnS8IQkTYsiVLliArK6vWebruuutQWloaIQz//e9/G/srIzo6GgMGDMBvv/2G888/37bu6KJm2LBhOHDgAFatWlXh9QRBgMPhsHQ6vV4vPv744wrPkSQJl19+uRHFQK8P1alLtaGuz7GujBw5EocOHUJCQoJteZtFYri1uKYMHDgQACI6xps2bcLevXuN+vH//t//g9vtxieffGI5bv369RFuUgRRV8jiSjQrli1bhuzsbLzyyiu2IZd0S+ScOXMifMgqQxRFzJ49G2PGjMHIkSPx4IMPwu/349VXX0VRURFmzZpVb/cwcuRIfPnll3j44Ydx8803IzMzEy+++CLatWtX7SH3O++8E3/961/x008/4W9/+xtcLled8vTee+9h2LBhGDJkCO655x6kpKTg1KlT2Lt3L7Zu3Yr//e9/AIDLL78cI0eOxPnnn4/WrVtj7969+Pjjjy3C/q677sJ7772HO++8Ew888AAKCgowe/ZstGjRosp86Cugvf/++4iLi4Pb7UaXLl2wYcMGvPPOOxg9ejTS0tLAGMOXX36JoqIiDB48uNJr3nXXXbjzzjvx8MMP449//CMyMjIwe/bsiDie119/PXr37o1LLrkEiYmJyMjIwJtvvonU1FR07969NsVqYcKECfjoo48wbNgwTJ8+HUlJSfjvf/9rWKrNvtV2jBw5EvPmzcM555yD888/H1u2bMGrr75a5fB7ZYwdOxZvv/027r77bhw9ehR9+vTB2rVrMXPmTAwfPrxKf1QAeOutt3D11VfjmmuuwZ///Gd07twZJSUlSE9Px+LFiw2hOmHCBHz22WcYNWoUJk+ejMsuuwxerxdr1qzByJEjMWDAAIwYMQKvv/46/vSnP2H8+PEoKCjAa6+9FiHY3333XaxatQojRoxAp06d4PP5DAuknue4uDikpqbi66+/xnXXXYf4+Hi0adOmzta/uj7HujJhwgQsXLgQ/fr1w8SJE3H++edDVVUcO3YMK1aswKRJk4x41n369MGPP/6IxYsXo127doiLizNGT6pDz549MX78ePzzn/+EKIoYNmwYjh49iilTpqBjx46YOHEiAG55f/LJJzFjxgzcf//9uOWWW5CZmYmpU6eSqwBR/zTevDCCqDmjR49mLpeL5eXlVXjM7bffzhwOBztx4oQxk/7VV1+NOA42M44XLVrELr/8cuZ2u1lMTAy77rrr2Lp16yzH6LOCzaFgGOOz5mNiYiLSsZvNPWvWLNa5c2cWFRXFzj33XPbBBx8Y1zVT0Yx4xnjYIIfDwY4fP15RUViorCwYY2z79u3s1ltvZW3btmVOp5MlJyezgQMHGpEbGGNs8uTJ7JJLLmGtW7dmUVFRLC0tjU2cODEiDNf8+fPZueeey9xuN+vVqxf77LPPqhVVgDHG3nzzTdalSxcmSZIRjmvfvn3sjjvuYF27dmUej4e1bNmSXXbZZRHhz+xQVZXNnj2bpaWlMbfbzS655BK2atWqiKgCf//739mVV17J2rRpw1wuF+vUqRO777772NGjR41jKpqNHv58GbOPorBr1y42aNAg5na7WXx8PLvvvvvY/PnzGQC2ffv2Su+jsLCQ3Xfffaxt27YsOjqaXX311eznn3+uMIpDOBXls6CggD300EOsXbt2zOFwsNTUVPbXv/6V+Xw+y3EA2COPPGJ77SNHjrB7772XpaSkMKfTyRITE9mVV17JZsyYEXEPjz/+OOvUqRNzOp2sbdu2bMSIEZZwXh999BHr2bOnUb9efvllNmfOHEu5b9iwgd14440sNTWVRUVFsYSEBNa/f3/2zTffWNJbuXIlu+iii1hUVBQDYLxLjfkc66P9KC0tZX/7299Yz549mcvlMsKRTZw4kZ04ccI4btu2beyqq65i0dHRltn9+v2HRyZYvXp1RGQERVHYK6+8wnr06MGcTidr06YNu/POO1lmZqblXFVV2csvv8w6duzIXC4XO//889nixYurXT8JoroIjIVFdSYIoskTCATQuXNnXH311RGLBBDNi/Hjx+PTTz9FQUFBnS3nRONBz5EgGgZyFSCIZsTJkyexf/9+zJ07F7m5uZVOSiKaHtOnT0f79u2RlpaG0tJSfPvtt/jwww/rxd2DaDjoORJE40HClSCaEUuWLMG4cePQrl07vPPOO9UOgUU0DZxOJ1599VUcP34csiyje/fueP311/H44483dtaIGkDPkSAaD3IVIAiCIAiCIJoFFA6LIAiCIAiCaBaQcCUIgiAIgiCaBSRcCYIgCIIgiGYBCVeCIAiCIAiiWUDClSAIgiAIgmgWkHAlCIIgCIIgmgUkXAmCIAiCIIhmAQlXgiAIgiAIollAwpUgCIIgCIJoFpBwJQiCIAiCIJoFJFwJgiAIgiCIZgEJV4IgCIIgCKJZQMKVIAiCIAiCaBaQcCUIgiAIgiCaBSRcCYIgCIIgiGYBCVeCIAiCIAiiWUDClSAIgiAIgmgWkHAlCIIgCIIgmgUkXAmCIAiCIIhmAQlXgiAIgiAIollAwpUgCIIgCIJoFpBwJQiCIAiCIJoFJFwJgiAIgiCIZgEJV4IgCIIgCKJZQMKVIAiCIAiCaBaQcCUIgiAIgiCaBSRcCYIgCIIgiGYBCVeCIAiCIAiiWUDClSAIgiAIgmgWkHAlCIIgCIIgmgUkXAmCIAiCIIhmAQlXgiAIgiAIollAwpUgCIIgCIJoFpBwJQiCIAiCIJoFJFwJgiAIgiCIZgEJV4IgCIIgCKJZQMKVIAiCIAiCaBaQcCUIgiAIgiCaBSRcCYIgCIIgiGYBCVeCIAiCIAiiWUDClSAIgiAIgmgWkHAlCIIgCIIgmgUkXAmCIAiCIIhmAQlXgiAIgiAIollAwpUgCIIgCIJoFpBwJQiCIAiCIJoFJFwJgiAIgiCIZgEJV4IgCIIgCKJZQMKVIAiCIAiCaBaQcCUIgiAIgiCaBSRcCYIgCIIgiGYBCVeCIAiCIAiiWUDClSAIgiAIgmgWkHAlCIIgCIIgmgUkXAmCIAiCIIhmAQlXgiAIgiAIollAwpUgCIIgCIJoFpBwJQiCIAiCIJoFJFwJgiAIgiCIZgEJV4IgCIIgCKJZQMKVIAiCIAiCaBaQcCUIgiAIgiCaBSRcCYIgCIIgiGYBCVeCIAiCIAiiWUDClSAIgiAIgmgWkHAlCIIgCIIgmgUkXAmCIAiCIIhmAQlXgiAIgiAIollAwpUgCIIgCIJoFpBwJQiCIAiCIJoFJFwJgiAIgiCIZgEJV4IgCIIgCKJZQMKVIAiCIAiCaBaQcCUIgiAIgiCaBSRcCYIgCIIgiGYBCVeCIAiCIAiiWUDClSAIgiAIgmgWkHAlCIIgCIIgmgUkXAmCIAiCIIhmAQlXgiAIgiAIollAwpUgCIIgCIJoFpBwJQiCIAiCIJoFJFwJgiAIgiCIZgEJV4IgCIIgCKJZQMKVIAiCIAiCaBaQcCUIgiAIgiCaBSRcCYIgCIIgiGYBCVeCIAiCIAiiWUDClSAIgiAIgmgWkHAlCIIgCIIgmgUkXAmCIIizimuvvRYTJkyo9vHz5s1Dq1atzlh+CIKoPiRcCYKolJMnT8LpdKK8vByyLCMmJgbHjh0z9nfu3BmCIEAQBERHR6N379547733GjHHBNE86dy5M958880zcu2ainWCaKqQcCUIolI2bNiACy+8ENHR0diyZQvi4+PRqVMnyzHTp09HTk4OduzYgdGjR+Ohhx7CZ5991kg5bnwCgUBjZ4EgCOJ3CQlXgiAqZf369bjqqqsAAGvXrjX+NhMXF4fk5GR069YNM2bMQPfu3bFo0SIAwDPPPIMePXogOjoaaWlpmDJlCoLBoHHu9u3bMWDAAMTFxaFFixa4+OKLsXnzZgBARkYGrr/+erRu3RoxMTE477zzsHTpUuPcPXv2YPjw4YiNjUVSUhLuuusu5OfnG/uvvfZa/OUvf8HTTz+N+Ph4JCcnY+rUqZa879u3D1dffTXcbjd69eqFlStXQhAEI/8AkJWVhdtuuw2tW7dGQkICRo0ahaNHjxr777nnHowePRovv/wy2rdvjx49egAA3nnnHXTv3h1utxtJSUm4+eaba/UMzgauvfZaPPbYY5gwYQJat26NpKQkvP/++ygrK8O4ceMQFxeHrl27YtmyZZbz1qxZg8suuwxRUVFo164dJk+eDFmWjf1lZWUYO3YsYmNj0a5dO/z973+PSDsQCODpp59GSkoKYmJicPnll+PHH3+sUf537tyJgQMHwuPxICEhAePHj0dpaanl/sItnqNHj8Y999xj7M/IyMDEiRONEQwg5KawaNEi9OjRA263G4MHD0ZmZqZxHb3+mZkwYQKuvfZaY/+aNWvw1ltvGdc211+CaE6QcCUIIoJjx46hVatWaNWqFV5//XW89957aNWqFZ599lksWrQIrVq1wsMPP1zh+W632xCncXFxmDdvHvbs2YO33noLH3zwAd544w3j2DFjxqBDhw7YtGkTtmzZgsmTJ8PpdAIAHnnkEfj9fvz000/YuXMnXnnlFcTGxgIAcnJy0L9/f1x44YXYvHkzli9fjtzcXNx6662WvMyfPx8xMTHYuHEjZs+ejenTp+P7778HAKiqitGjRyM6OhobN27E+++/j+eee85yfnl5OQYMGIDY2Fj89NNPWLt2LWJjYzF06FCLZfWHH37A3r178f333+Pbb7/F5s2b8Ze//AXTp0/H/v37sXz5cvTr168OT+X3z/z589GmTRv8+uuveOyxx/DnP/8Zt9xyC6688kps3boVQ4YMwV133YXy8nIAvEMxfPhwXHrppdi+fTv+7//+D3PmzMGMGTOMaz711FNYvXo1vvrqK6xYsQI//vgjtmzZYkl33LhxWLduHRYsWIAdO3bglltuwdChQ3Hw4MFq5bu8vBxDhw5F69atsWnTJvzvf//DypUr8eijj1b73r/88kt06NDBGL3IycmxXP+ll17C/PnzsW7dOhQXF+P222+v9rXfeustXHHFFXjggQeMa3fs2LHa5xNEk4IRBEGEEQwG2ZEjR9j27duZ0+lk27ZtY+np6Sw2NpatWbOGHTlyhJ08eZIxxlhqaip74403jPPmzp3LALB33nnH9tqzZ89mF198sfE7Li6OzZs3z/bYPn36sKlTp9rumzJlCvvDH/5g2ZaZmckAsP379zPGGOvfvz+7+uqrLcdceuml7JlnnmGMMbZs2TLmcDhYTk6Osf/7779nANhXX33FGGNszpw5rGfPnkxVVeMYv9/PPB4P++677xhjjN19990sKSmJ+f1+45iFCxeyFi1asOLiYtv8E1bCn5UsyywmJobdddddxracnBwGgG3YsIExxtizzz4b8WzefvttFhsbyxRFYSUlJczlcrEFCxYY+wsKCpjH42GPP/44Y4yx9PR0JggCy8rKsuTnuuuuY3/9618ZY4zNnTuXtWzZssK8v//++6x169astLTU2LZkyRImiiI7ceKEcX96mjqjRo1id999t/Hb/C7p6O/TL7/8Ymzbu3cvA8A2btzIGOP1b9SoUZbzHn/8cda/f3/jt136BNEccTSmaCaIs5U///nPyMrKarD0UlJS8H//93/VPt7hcKBz5874/PPPcemll+KCCy7AunXrkJSUZGs1fOaZZ/C3v/0Nfr8fLpcLTz31FB588EEAwBdffIE333wT6enpKC0thSzLaNGihXHuE088gfvvvx8ff/wxBg0ahFtuuQVdu3YFAPzlL3/Bn//8Z6xYsQKDBg3CH//4R5x//vkAgC1btmD16tWGBdbMoUOHjOF6/Xiddu3aIS8vDwCwf/9+dOzYEcnJycb+yy67zHL8li1bkJ6ejri4OMt2n8+HQ4cOGb/79OkDl8tl/B48eDBSU1ORlpaGoUOHYujQobjxxhsRHR1dUbGfUf78dxVZJxsuvZRE4P8m1WxQz/ysJElCQkIC+vTpY2xLSkoCAOP57d27F1dccYUxrA4AV111FUpLS3H8+HEUFhYiEAjgiiuuMPbHx8ejZ8+exu+tW7eCMWbUFx2/34+EhIRq5Xvv3r244IILEBMTY8mHqqrYv3+/ke/a4nA4cMkllxi/zznnHLRq1Qp79+6NqK8E8XuHhCtBNAI1EZGNwXnnnYeMjAwEg0GoqorY2FjIsgxZlhEbG4vU1FTs3r3bOP6pp57CPffcg+joaLRr184QEr/88gtuv/12TJs2DUOGDEHLli2xYMECi5/h1KlT8ac//QlLlizBsmXL8MILL2DBggW48cYbcf/992PIkCFYsmQJVqxYgZdffhl///vf8dhjj0FVVVx//fV45ZVXIvLfrl0742/d7UBHEASoqgoAYIxZRI8dqqri4osvxieffBKxLzEx0fjbLFoA7iKxdetW/Pjjj1ixYgWef/55TJ06FZs2bWqU0Eo1FZGNgd2zMm/Tn1Vlz48xZhyr/10ZqqpCkiRs2bIFkiRZ9tl1iuyorB7p20VRjMiP2de7KuyuX1/XJojmRNNvyQiCaHCWLl2Kbdu2ITk5Gf/5z3+wbds29O7dG2+++Sa2bdtmmSAFAG3atEG3bt3Qvn17ywd23bp1SE1NxXPPPYdLLrkE3bt3R0ZGRkR6PXr0wMSJE7FixQrcdNNNmDt3rrGvY8eOeOihh/Dll19i0qRJ+OCDDwAAffv2xe7du9G5c2d069bN8i9cRFbEOeecg2PHjiE3N9fYtmnTJssxffv2xcGDB9G2bduIdFq2bFnp9R0OBwYNGoTZs2djx44dOHr0KFatWlWtvBFV06tXL6xfv94i2tavX4+4uDikpKSgW7ducDqd+OWXX4z9hYWFOHDggPH7oosugqIoyMvLi3i+Zkt8VfnYtm0bysrKjG3r1q2DKIqGJTcxMdHit6ooCnbt2mW5jsvlgqIoEdeXZdmYsAjwkYKioiKcc845ttcGgG3btlXr2gTR3CDhShBEBKmpqYiNjUVubi5GjRqFTp06Yc+ePbjpppvQrVs3pKamVus63bp1w7Fjx7BgwQIcOnQI//jHP/DVV18Z+71eLx599FH8+OOPyMjIwLp167Bp0yace+65APjM6O+++w5HjhzB1q1bsWrVKmPfI488glOnTuGOO+7Ar7/+isOHD2PFihW49957q/2BHjx4MLp27Yq7774bO3bswLp164zJWboAHzNmDNq0aYNRo0bh559/xpEjR7BmzRo8/vjjOH78eIXX/vbbb/GPf/wD27ZtQ0ZGBv79739DVVXLMDVRNx5++GFkZmbisccew759+/D111/jhRdewBNPPAFRFBEbG4v77rsPTz31FH744Qfs2rUL99xzD0Qx9Onr0aMHxowZg7Fjx+LLL7/EkSNHsGnTJrzyyisRHbSKGDNmDNxuN+6++27s2rULq1evxmOPPYa77rrLcBMYOHAglixZgiVLlmDfvn14+OGHUVRUZLlO586d8dNPPyErK8sSHcPpdOKxxx7Dxo0bsXXrVowbNw7/7//9P8NNYODAgdi8eTP+/e9/4+DBg3jhhRciRHHnzp2xceNGHD16FPn5+YbVmiCaGyRcCYKw5ccff8Sll14Kt9uNjRs3IiUlBe3bt6/RNUaNGoWJEyfi0UcfxYUXXoj169djypQpxn5JklBQUICxY8eiR48euPXWWzFs2DBMmzYNALdKPfLIIzj33HMxdOhQ9OzZE++88w4AoH379li3bh0URcGQIUPQu3dvPP7442jZsqVFmFSGJElYtGgRSktLcemll+L+++/H3/72NwA8MgIAREdH46effkKnTp1w00034dxzz8W9994Lr9dr8dUNp1WrVvjyyy8xcOBAnHvuuXj33Xfx6aef4rzzzqtRGRIVk5KSgqVLl+LXX3/FBRdcgIceegj33Xef8QwB4NVXX0W/fv1www03YNCgQbj66qtx8cUXW64zd+5cjB07FpMmTULPnj1xww03YOPGjdWeeR8dHY3vvvsOp06dwqWXXoqbb74Z1113Hf71r38Zx9x77724++67MXbsWPTv3x9dunTBgAEDLNeZPn06jh49iq5du1rcUKKjo/HMM8/gT3/6E6644gp4PB4sWLDA2D9kyBBMmTIFTz/9NC699FKUlJRg7Nixlms/+eSTkCQJvXr1QmJiomUREYJoTgisOk5ABEEQZwnr1q3D1VdfjfT0dGOSGEE0FvPmzcOECRMirLMEcbZCk7MIgjir+eqrrxAbG4vu3bsjPT0djz/+OK666ioSrQRBEE0QEq4EQZzVlJSU4Omnn0ZmZibatGmDQYMG2a6uRBAEQTQ+5CpQQ1RVRUZGBlJTU6vtR/d7g8qg9lDZURlUFyonKoO6QGVHZVBXmmr5NZ2cEARBEARBEEQlkHAlCIIgCIIgmgUkXAmCIAiCIIhmAQlXgiAIgiAIollQa+G6Y8cOXHrppZg3b56xbd68eRg0aBAGDhyIt956y7IM3+7du3HHHXfgqquuwvjx4y3L0/l8PkyZMgX9+vXDiBEjsHz5cktaixcvxvDhw9G/f39MmzaN1mAmCIIgCII4C6mVcFVVFa+//jp69eplbFu7di2++OILzJs3D59//jnWrl2Lb775BgAQCATw9NNP4/bbb8eqVavQu3dvPP/888a57733Hk6fPo2lS5di5syZmDVrlrGeeXp6Ot544w289tprWLJkCbKzszFnzpy63DNBEARBEATRDKmVcP3yyy/Ru3dvdOnSxdi2dOlS3HzzzejQoQPatGmDO++8E8uWLQMAbNmyBR6PB6NGjUJUVBQeeOAB7Nmzx7C6Ll26FOPHj0dsbCwuuOAC9OvXDytWrAAALF++HIMHD0avXr0QGxuL+++/37guQRAEQRAEcfZQ4wUITp8+jU8//RRz587F66+/bmw/cuQIhg8fbvzu0aMH3n77bQDA4cOH0a1bN2Ofx+NBhw4dcPjwYcTExKCgoMCyv0ePHti9e7dx7hVXXGHs6969O7KysuDz+Yy1xM0EAgEEAgHrTToccLlcNb1VW1RVtfz/bITKoPZQ2VEZVBcqJyqDukBlR2VQVxqj/KoTL7bGwvXtt9/GHXfcgRYtWli2l5eXIzY21vgdExOD8vJyAIDX60VMTIzl+JiYGHi9XpSXl0OSJIsIrexcPQ2v12srXOfOnYsPPvjAsu2WW27BrbfeWtNbrZTMzMx6vV5zhMqg9lDZURlUFyonKoO6QGVHZVBXGrL8zCP5FVEj4bpv3z7s3r0bzzzzTMS+6OholJaWGr/LysoQHR0NgFtYy8rKLMeXlZXB4/EgOjoaiqJYLKiVnaun4fF4bPM4btw4jBkzxnqT9WxxzczMRMeOHZvUShINCZVB7aGyozKoLlROVAZ1gcqOyqCuNNXyq5Fw3bp1K44dO2a4BJSWlkKSJBw/fhxdunRBeno6rr76agDAgQMHkJaWBgBIS0vDV199ZVzH6/Xi+PHjSEtLQ4sWLZCQkID09HT07t3b9tz09HTj3IMHDyIlJcXW2goALper3kRqZYii2KQeZGNAZVB7zGX3r4UMD1wPRLmERs5Vw0L1p3pQOVEZ1AUqOyqDutLUyq9GObnpppvw1Vdf4ZNPPsEnn3yCfv364fbbb8fjjz+O4cOHY+HChcjKykJ+fj4++eQTDBs2DABw8cUXw+v1YvHixQgEApgzZw569eqFdu3aAQCGDx+ODz/8EGVlZdi5cyd++uknDB48GAAwdOhQrFy5Evv27UNpaSk++ugj47oE8XvgsbcY8gobOxcEQRAE0fSpkcXV7XZbLJ1RUVGIjo5GXFwcrr76ahw8eBBjx46FqqoYPXo0brjhBgDcCjp79my8+OKLmDVrFnr16oXp06cb13nwwQcxY8YMDB06FC1atMDkyZPRuXNnAEC3bt0wYcIETJw4EWVlZRg4cCDuvffeerh1gmg6sKoPIQiCIIizHoGZVwkgqkRVVWRkZCA1NbVJmc4bEiqD2mNXdkI/FUc/F5CafHa4ClD9qR5UTlQGdYHKjsqgrjTV8ms6OSEIgiAIgiCISiDhShAEQRAEQTQLSLgSRBOAHHYIgiAIompIuBJEE4CEK0EQBEFUDQlXgiAIgiAIollAwpUgCIIgCIJoFpBwJYgmAHkKEARBEETVkHAliCYA+bgSBEEQRNWQcCWIJgCtA0IQBEEQVUPClSCaAKRbCYIgCKJqSLgSRBNAJeVKEARBEFVCwpUgmgDkKkAQBEEQVUPClSCaAKpKwpUgCIIgqoKEK0E0AcjiShAEQRBVQ8KVIJoAJFwJgiAIompIuBJEE4CEK0EQBEFUDQlXgmgCqGpj54AgCIIgmj4kXAmiCUAWV4IgCIKoGhKuBNEEYCDhShAEQRBVQcKVIJoAFA6LIAiCIKqmxsL1pZdewpAhQ9C/f3/cdttt+PnnnwEAixcvxuWXX45rrrnG+HfixAnjvN27d+OOO+7AVVddhfHjxyMnJ8fY5/P5MGXKFPTr1w8jRozA8uXLLWkuXrwYw4cPR//+/TFt2jQEg8Ha3i9BNEkYCVeCIAiCqJIaC9cxY8Zg8eLFWLNmDZ5//nlMmTIFxcXFAIDLLrsMP//8s/EvOTkZABAIBPD000/j9ttvx6pVq9C7d288//zzxjXfe+89nD59GkuXLsXMmTMxa9YsZGRkAADS09Pxxhtv4LXXXsOSJUuQnZ2NOXPm1Me9E0STgVwFCIIgCKJqHDU9oXPnzsbfgiAgEAggPz+/0nO2bNkCj8eDUaNGAQAeeOABDBo0CDk5OWjXrh2WLl2Kv//974iNjcUFF1yAfv36YcWKFXjggQewfPlyDB48GL169QIA3H///ZgxYwYeeugh27QCgQACgYD1Jh0OuFyumt6qLao2/Vs9i6eBUxnUnorKTlHUs6Y8qf5UDyonKoO6QGVHZVBXGqP8RLFqe2qNhSsAzJo1C4sXL4bf70f//v2RlpaG3bt3Y/v27bjuuusQHx+P2267DTfffDMA4PDhw+jWrZtxvsfjQYcOHXD48GHExMSgoKDAsr9Hjx7YvXu3ce4VV1xh7OvevTuysrLg8/ngdrsj8jZ37lx88MEHlm233HILbr311trcaoVkZmbW6/WaI1QGtcdadqnIzs5BRtypRstPY0D1p3pQOVEZ1AUqOyqDutKQ5delS5cqj6mVcJ08eTKeeuopbN68Genp6QCAvn37YsGCBUhOTsaePXvw5JNPIiEhAQMGDIDX60VMTIzlGjExMfB6vSgvL4ckSRYRGhMTg/LycgCIODc2NtbYbidcx40bhzFjxlhvsp4trpmZmejYsWO1ega/R6gMak9FZZecnIzU1BaNmLOGg+pP9aByojKoC1R2VAZ1pamWX62EKwBIkoTLL78cn376KdLS0ixW0d69e+P222/H6tWrMWDAAHg8HpSVlVnOLysrg8fjQXR0NBRFsVhQy8rKEB0dDQAR55aWlhrb7XC5XPUmUitDFMUm9SAbAyqD2mMtOxXCWViWVH+qB5UTlUFdoLKjMqgrTa386pwTVVVx/PjxiO2CIBh/p6WlGZZZgFtLjx8/jrS0NLRo0QIJCQmW/QcOHEBaWprtuQcPHkRKSoqttZUgCIIgCIL4/VIj4VpeXo5ly5ahvLwcsizjhx9+wJYtW3DRRRdh/fr1KCwsBADs27cPn332Ga655hoAwMUXXwyv14vFixcjEAhgzpw56NWrF9q1awcAGD58OD788EOUlZVh586d+OmnnzB48GAAwNChQ7Fy5Urs27cPpaWl+OijjzBs2LD6LAOCaHQojitBEARBVE2NXAUEQcDXX3+NV155BYwxdOzYETNmzEC3bt2wePFivPDCC/D5fEhMTMTYsWMN8elyuTB79my8+OKLmDVrFnr16oXp06cb133wwQcxY8YMDB06FC1atMDkyZON6AXdunXDhAkTMHHiRJSVlWHgwIG49957668ECKIpQLqVIAiCIKpEYLRIeo1QVRUZGRlITU1tUj4fDQmVQe2xKzuhn4q1b5XgqotaNnLuGgaqP9WDyonKoC5Q2VEZ1JWmWn5NJycEcRZD/UeCIAiCqBoSrgTRBCDZShAEQRBVQ8KVIJoAZHAlCIIgiKoh4UoQBEEQBEE0C0i4EkQTQBDI5EoQBEEQVUHClSCaAOQqQBAEQRBVQ8KVIAiCIAiCaBaQcCUIgiAIgiCaBSRcCaIJQHFcCYIgCKJqSLgSBEEQBEEQzQISrgRBEARBEESzgIQrQTQByFWAIAiCIKqGhCtBNAEEobFzQBAEQRBNHxKuBNEEYCpZXAmCIAiiKki4EgRBEARBEM0CEq4EQRAEQRBEs4CEK0E0CchVgCAIgiCqgoQrQRAEQRAE0Swg4UoQBEEQBEE0C2osXF966SUMGTIE/fv3x2233Yaff/7Z2Ddv3jwMGjQIAwcOxFtvvWWJTbl7927ccccduOqqqzB+/Hjk5OQY+3w+H6ZMmYJ+/fphxIgRWL58uSXNxYsXY/jw4ejfvz+mTZuGYDBYm3sliCYLxXElCIIgiKqpsXAdM2YMFi9ejDVr1uD555/HlClTUFxcjLVr1+KLL77AvHnz8Pnnn2Pt2rX45ptvAACBQABPP/00br/9dqxatQq9e/fG888/b1zzvffew+nTp7F06VLMnDkTs2bNQkZGBgAgPT0db7zxBl577TUsWbIE2dnZmDNnTj3dPkEQBEEQBNFcqLFw7dy5M1wuFwBAEAQEAgHk5+dj6dKluPnmm9GhQwe0adMGd955J5YtWwYA2LJlCzweD0aNGoWoqCg88MAD2LNnj2F1Xbp0KcaPH4/Y2FhccMEF6NevH1asWAEAWL58OQYPHoxevXohNjYW999/v3FdgiAIgiDs+fTTTxs7CwRR7zhqc9KsWbOwePFi+P1+9O/fH2lpaThy5AiGDx9uHNOjRw+8/fbbAIDDhw+jW7duxj6Px4MOHTrg8OHDiImJQUFBgWV/jx49sHv3buPcK664wtjXvXt3ZGVlwefzwe12R+QtEAggEAhYb9LhMMR2XVFV1fL/sxEqg9pTUdkpqnrWlCfVn+pB5URlUBdUVcXKlSvx9NNPN3ZWGg2qP3WjMcpPFKu2p9ZKuE6ePBlPPfUUNm/ejPT0dABAeXk5YmNjjWNiYmJQXl4OAPB6vYiJibFcIyYmBl6vF+Xl5ZAkySJCKztXT8Pr9doK17lz5+KDDz6wbLvllltw66231uZWKyQzM7Ner9ccoTKoPdayS0Vubi4yMryNlp/GgOpP9aByojKoLaqqUtmB6k9dacjy69KlS5XH1Eq4AoAkSbj88svx6aefIi0tDdHR0SgtLTX2l5WVITo6GgC3sJaVlVnOLysrg8fjQXR0NBRFsVhQKztXT8Pj8djma9y4cRgzZoz1JuvZ4pqZmYmOHTtWq2fwe4TKoPZUVHZJSW2RmprUiDlrOKj+VA8qJyqDuqBqozhnc9lR/akbTbX8ai1cdVRVxfHjx9GlSxekp6fj6quvBgAcOHAAaWlpAIC0tDR89dVXxjlerxfHjx9HWloaWrRogYSEBKSnp6N379625+pWXQA4ePAgUlJSbK2tAOByuepNpFaGKIpN6kE2BlQGtcdadioE4ewrS6o/1YPKicqgtiiKQmUHqj91pamVX41yUl5ejmXLlqG8vByyLOOHH37Ali1bcNFFF2H48OFYuHAhsrKykJ+fj08++QTDhg0DAFx88cXwer1YvHgxAoEA5syZg169eqFdu3YAgOHDh+PDDz9EWVkZdu7ciZ9++gmDBw8GAAwdOhQrV67Evn37UFpaio8++si4LkEQBEEQ9iiK0thZIIh6p0YWV0EQ8PXXX+OVV14BYwwdO3bEjBkz0K1bN3Tr1g0HDx7E2LFjoaoqRo8ejRtuuAEAt4LOnj0bL774ImbNmoVevXph+vTpxnUffPBBzJgxA0OHDkWLFi0wefJkdO7cGQDQrVs3TJgwARMnTkRZWRkGDhyIe++9t/5KgCCaABTHlSCI+oYmJRG/R2okXD0eD959990K948bNw7jxo2z3XfeeedhwYIFtvvcbjdmzJhR4XWvv/56XH/99TXJKkEQBEGc1ZBwJX6PNB2nBYIgCIIg6g1yFSBqS3FxcWNnoUJIuBKNit/vb+wsNA3IVYAgiHqGhCtRW1q2atPYWagQEq5Eo7F9+/YKo0OcbZBubVzKy8upE0X87lBVlfznidpxta+xc1AhJFyJRsPrPbsC7tvR57rZjZ0FAsCNN96I5557rrGzQRD1TnMUrvfff7+xJDzReDTVqkPClWg0mlJcuIbiZJH1967gkwAAhsZrIf76noqc/MZtoRp7Ekl2djaCwWCj5oEg6puTUfc2+rtVG+bMmYOioqLGzsZZT1P1NDn7lAPRZDgbhWvy6MZNX1EYyrwhkXokm2HWJ8COQ3Ij5oqvxNeYBAIBOJ3ORs0DQdQ3eTETmp1wffudDwDB2ehtwtnEhAkT8Mwzz0Rsv2lKI2SmGpx9yoFoMjR0g5p7iqG4rGmOfTTUkMyH3wIX3RdK7LGZ2wEAv276rWEy0ETxOfvgcGGPxs4GQdQbBQUFABp/NKOmPPqmCHR/r7GzcVaxf/9+HDx4MGL7kg2NkJlqQMKVaDSKyxtWRA59imHKh9Y0582bh8LCwgbNR2PyzZJVyMgJ+Rbv38+XU/b5G25MSLq2wZKqNkXRd2PTiWsbOxuNis/nQ0lJSWNng6gn2rZtC6BpC1fGGL7++mvrRmci4GjdYPleu3YtMjMzGyStpoogCM3KF5qEK9FgnHuntSEa/PylQMqkBkufMUAO02fjxo3Djh07GiT9QLDihqGh2oys7CyoJsclJmjD40LjDcsxxgDPOQ2W3sGDB3HzzTcbv1WVISB1hsdR2mB5aIpMnjwZf/zjHxs7G0Q905SFq9frxejRo60bBRFIuAGBYMPk+/rrr69wcaSzBRKuBFEB+47ZbExruFn1kggETcp112EGXKMg/URsg6R/qpJ4zg3VaBxIz4IM0/0KfPE8QWiYpuC5DyI/Rht2MeCS3Q2SPgCkp6dj4cKFxu/X5+2Dz3keJOHsnpxVUFBAIcF+h8hy0xWu9kHuBQBAYanQIHnw+XwRYRlf+7T5iLizERKuDcDPP/8MWW7cyS925Ofnn7Fr+3zWGHCK0vgNQUHBSSz8cpHxe/K7/JmU+hpmUk7BqTNX3tXF29bqgB+yuDbMR2LpmhMR2666fmaDpK3j9alAx8nG7/W/bAUAMNYwZdBUCQQCcLlcDZbe4WwGVW38duF3S69vAAC+QBOdGo6KrMFclpQ1ULREte19OFkcbdn21P+dXfVSFMUmbZkPh4RrA9CvXz8cO2ZnbmxcEhMTz0gs1S17y+Hp8aJlWzBMtzf0sISqqsg4chheb8DYtm7dWi0vDZOHoqKm5z/IwC2u6SdaNkh6+/bvi9zY6dkGSVtn7/FYoPNLxu9QXTx7PlYHDhzA8ePHLdsYYxAaqAMDAF1vZ/gtcj4IUV/E9QUA+ANNV5DYfge0OljeQPHvA6n/wOwf/tQwiTVRHA5HkzSuVQQJ1waiIXsziqJELPU3Y8YMfPbZZxHHlpeX13v67/93E9DZKlyXrVhl+d3QvTufzweIbjicIYtSIKAPDTfMx7rcW/EwbOP5F3Hf1s/WpzVMaiIv60AgUMWRZw5fWNLNyLWr3uh54fXofe0LEdsbUrg2NlFX7scFlw5v7GycQfizDMpNt4JXanH1NVxdbBFV1mBphcMYw6uvvtpo6QNcuC5btqzZiFcSrg1EQwo1h8OBRx55xLLtiy++wJo1a4zfl19+OYD6Wb3q7pdU/G91qHF0OSIbyptuus3yu6GFa1lZORB7ARyOkHDVw8g21BCxeea+qqqNFs0gFiYzVwP5thrJaUXdmMNS3y5dYbv9rBKwrYfhdNLfLZuKg8nIlBtWyB05mtGg6ZkJOLpjh+fbRku/oWioSU61wa4diI2LAwAEG8g3VwiewAXt9zRIWnYwxvD0h20aLX0AUMSWgKcnCVfCSrhFbf369Wc0vV27dlW6f+tW7tdXH5MxvttknXjlctg0OK2HWH6eaeES7jvn9XHrqkW4aqKtofSKP8AbBUVR8P333yM+Pt7YdyYsrowxnCiIvG5cTJTxt3iGNXuktYf/Dob7jjQg2473DNtyNilWDdUHiFa/vlx/b+wLPtSg2Qi3vB8+fLhB0z8b8Aeabv1mjEXUQ92Q0FDzIgQ0rq+1qqpA0t2Nlj4AHCofBlyyB/4m7A9thoRrA2EeumeM4aqrrjqj6eXm5hp/l5aWYvv27fB4PMY2fdWqcJeCWhEmuqKc/LelMTjnY8sxZ1q43vQ3htc/C6Uf1BpB5mhlbNOtf3IDNZA+PxdrgUCgQWZvZ5wA2t0YeW8CQqLxTI8MuwaysA8Q/9sfbMQGMulOy0+9+jbdz/uZZfSzKn7dw8AgQUDDWufCXRO6du16xtIyrxh3NtHkXQWuCvf914RrQ4lJAVh16JqGScuGphCGyuXghp0yL1lcCRPmddAbYk10syDNysoCAEvIj/oUrrknixEIhISYQwsJWlnc0voWruG+usdygfSsUPoBzeogiKawJ9o3UwkP7nqG8GuuAsFgsEGWu63otgSE6p8uHAb3PnTG8lFYEnoOujDy+Ru/sdYRQz4jjZuRhkQQoEv1r9cC2/aXQGUCBDRsh8LO0nWmPuSxQ86i52tCVpquq4BilzehoS2u9nywuGHSt/sWbt68GZs3b26Q9AEg3887jD5/060rZki4NhBmsXqmJ6bExcVh3Lhxxm89xM0Zs7g6WuLo0aPGTz0mqK+S2az1kq5GMCgjJsnaYz5wYB/y8kLhp3R/KUkKVXkhbF99czDT2vD5tclgwaAcYWk6E9/qj785artdYKG6KAo84dbRZ25ygrUDw/+urG40OGfPfKQQKRMAFnoGRaeLocIBsYGFq98f1ok/579nZMJodcXwoazfk7htWAFYG+zaXr/YBUADWlwrYPyrjSdcp02bhhdffLHBrLHlMo8qU+4jiyth4tJLLzX+1oXr559/Xufr2lXs2FhrQH1dpJotroLRqz0DHypNuOp+pXbUxeL63nvvWToCZWVe4KJNlmPKhHOwcs1247fuUukwC1etDPyVWIbrQo8xzPJ8dP8hfyBSuJ4Jpi9Itd3OmMlVwHByPXNCMmByC3B7WgBoWj17w9e56X7f6x9Pd8vEPL8/gMJiBofQsKuH+cKFa+JtZ2TZWbtJqDFsH1C61bKt2x0Mb7zxRr2n35g0aYurjTiVxQS+r8EEd8P2XN977z2LK5/dt1AQBHyT/x9Mf/P7BslTt4RDQNnuiHa5V+L2Cs5oXEi4NgL6zL0HH3ywzte68cYb8fHHVv9RSZIsglT/2zw8Xa8WVyDsqx8pXGOkkxbfStshomry0KtBbNt32vhdUkGk6tNloTR0q58gOUIHaO3VmRCuermah8T1QOAl5WqjhR2KRiaYGnrmglYIZ9LnOGCaiJWUwDtP9eEqMG0u46tuVcLRnMhj2ji2Icnxq/FbfxZnk24FAAihhTd+/XUzsnNOQhQa1uLitbHwFJfUv/W/rCzymrHOYiC2r/G7tJQf88QTT9R7+o1JY1lc33//fXz99deWbeHtTGV5ayiLKxOiqj6oHnnooYewZcsW47f+LZz4z1DZFCtdACkGCzd2aZA8iVIU4qIVBMPmHjTVwagaCddAIIBp06Zh+PDh6N+/P8aPH4/09HQAwOLFi3H55ZfjmmuuMf6dOBFaJWf37t244447cNVVV2H8+PHIyckx9vl8PkyZMgX9+vXDiBEjsHz5cku6ixcvNtKcNm1ag/iI1paPPvqoSlGiv7wtW9Y96Pv+/fuxbds2yzZJkixhLXQRZRap9W1xVU0hpfZm89Ae+mQkAEiO2oZY4Yjx21iGkNXiWbZ/GBm5IQFaVmYfqTopuaPxtz5BQVZDH2vDVaAehOuFF15o+a1b1ctNAm316p8AcJ9PQRCB6POMfWoDmftixCyLFVgUbSbS1TPmmarxnpNoKeysF1eBqR8U4+vVuZUe88G3DHdMt96bBKurjrHc7VllcrUiKyoQ1aHBJmd9t5JHVTGv6qTXy3Jf/T+HotNVW5Kzc7S6dM5/6z39xqQuRoK68PHHH2PRokWWbZIkWX7r1mC7MEwNJbhVLapBQ06SMgt4/T63HgjtzwlewfepDWNbVFQBkiBDDtMDTTWsc41KRVEUpKSkYO7cuVi1ahX69euHSZMmGfsvu+wy/Pzzz8a/5ORkAPwj/vTTT+P222/HqlWr0Lt3bzz//PPGee+99x5Onz6NpUuXYubMmZg1axYyMnh8v/T0dLzxxht47bXXsGTJEmRnZ2POnDn1ce9nhF9++aXKY/RKG74+cm2Ijo6O8AkLt7jqjcKZFK6yGqrhQUUPMh9qjFSVQRBC9643WEJthCsAp8lwWlqBcHU4Q2FWAkEVAmTEOkKxU/WXMlAP/aDtLaxDjnuPcHFUVh66+PqCh3l6ARVlfidw8Y66J1xDBEEAM9kWhQaYCBE0xZFkDHAIcv2E6BFE/LZ1S6WH5Odlo+BUFaJFkCrffxZQ6EsEEm9tMOE6fykfJTF3bvVV7eR6mAX/tw9UHM4OXafwtL3frNny7nBqlrfE22yPba40VNSUiHSl9ij2eSK2mwWiquVtypQpkec3lODWLK76d/KMx5hOexO+QOh7qd9n0DKblpdLlKNhFmpRVBGSKFvcuoAzHy6xttRIuHo8Htx///1ISkqCJEm47bbbkJ2djaKiokrP27JlCzweD0aNGoWoqCg88MAD2LNnj2F1Xbp0KcaPH4/Y2FhccMEF6NevH1as4EHCly9fjsGDB6NXr16IjY3F/fffj2XLltXubhuAQYMGVXlMffqVRkdHR/hvORyOCFeBAQMGWLbVt6uArIRqeFKLEgiBLItlXFX5qkn6Nt0pX2CVv5gLf2S2PWHzpPwHnrK3kLilkGAJKkDn6J8hCmaVWr8+rmbLRna+HkEg9GEuU7glOhCUcSw/pl7SrDGhyeQAAFEXrmfQ4mouA5UBDlGup8lZItK6Vj6U9v67/0BpWeWhxxgaNp5vU0RhfCRCaKBSMCZwmoTr6VL+nOpjsuRLHwM7TIEyKhKuZtjvznOucSdn7WEvYFvhTRHbzZOT9TCFBw4ciDiuoQ3FPh83gJxx4ZryGMbc/ajxUxeue/bsNbbpX9Pz2h1BQ6AwAQ6RhUZC9Xw0UeHqqPqQitmxYwfi4+PRqlUrAMD27dtx3XXXIT4+HrfddhtuvvlmADyodLdu3YzzPB4POnTogMOHDyMmJgYFBQWW/T169MDu3buNc6+44gpjX/fu3ZGVlQWfz2drsQwEAhGz9h0OhzGzvq7olbqiyq1bsOz2G9ZGrWfncDhq/JJ4vV5LdACPx4OSkhLLdURRRDAYNLYFg0E4nU7Ismxs0/NpPq662JWBosCUngJBYPD5A6FjmQBBYPD7/XA6nYYvjYDK07/5ecD7PeByWhtfAYpx3vacPkCCNT9ONQctHRlQ1V4A+HrdDkGBosJUBvzYoKzWS2OVfdKHlLa8TpZr1qMf16xFlzF/sBxXWubDv1ZcaNmmKsoZazBDz4sLE8aYqQx4uSoqO2Pp+wOyJQ+SpCIQjExPUdSaNZSCABHW5/7X94CXTa7jUW2vg9+ZUOn7qPffzeXSFKiqranPNHThCtT9Xdi4B3j9c+CzqRUfI2juGj5fqG6cLvYBiIXPUl9qXwZ5eSehqryzWFhUXuF19G0Bk9tCU6oHdSVoavcbEkEQoKqR9am8vBxOJ69v+neguMQbcqELrsRp5yDIct3bxOrUn0TnLpwM9kZZWTliYmI040pUlefVhUDPxaZ6Jxv/D09PVRumLjKVQRQY/AH+PebGIsH4PjRk/alOqMhaC9fS0lLMnDkTDz/Mhz/79u2LBQsWIDk5GXv27MGTTz6JhIQEDBgwAF6vFzExVgtTTEwMvF4vysvLIUmSRYTGxMQYw9/h5+oz5r1er61wnTt3Lj744APLtltuuQW33nprbW/VlszMTNvt+mxB3dXBjL7t2DG+zJSqqrbHVURJSQkuuOACy+oyiYmJ2LJli+U6qqqiqKjI2JaZmQlVVVFQUBCRXnZ2doV5eP3113Hq1CnMmDHDdn+oDFKxavXPyMjgjVFxSQkEKMjMzEJGIj9CVhRAVHH48GG0bNkSR4/lAmgHAcEqyiAV6YePIcbNX6ASrwCgE07mnUBGRjEAgGnV2HwdAQ6UlvmMbdk5eWCqH0HVbWxTVQUQgeLikho9h4ryeesTW/DflzoAAHJziwC0RebxLOPaF7TahhPlqcjNPRmxQkle3knUOQsRdAQgGukHZQZVkcEghbZpFvCyMm+dy+DT1bHYdCAKrz9YYNqaimPHs5HRhr/PPp8fUKMgy8xSfwDg8JEMIwZw9WiH08WFlnzP/jQVDw0N/fbHDAZgrRv6KIO+rVwbsZCDcj3Ug/qnorambvAyz8jIAFgHlHm1CWpMqXMZbNkVjS9+TKz8Oiq3ruafKjaOO3goH0AbHD9+AhkZ1tWUal4Gqdi1azcy+nYGABw+ymNZHz582PCz5CMkzEift0ntAdi3380PbuDIzT2JjIyGnYAEAGBBBIKR37iDBw8iMZF/GLJzTgDog+2+J0LtsmajOFV4ut6eg15/Plt2DO9+Dax+t5Oxz6nmItEl4MDBYni95Zrlla+uV9f0j5+UEOViSGxpFn6pQHQv49rHswsBtIHKQumVBbnmKSktb5C66PcHwJiA7OwTyMhwaW1kGuQg72CemTbIni5dqp6QVivh6vf7MWnSJFx99dUYNWoUACAlJcXY37t3b9x+++1YvXo1BgwYAI/HEzGrs6ysDB6PB9HR0VAUxWJBLSsrQ3Q0b7jCzy0tLTW22zFu3DiMGTPGepP1bHHNzMxEx44dbXsGuvU5NTUUimj48OGWbbpYiImJsRxXFQUFBRHX7tSpE9avX2/Zppervi03NxctW7ZEXFycsU23uLZp06bCPJSWluLIkSMR++3KoKS03DjO7c6GKDC0ap1gbJOkdDgkEUlJSUhKSkKJl58nQq6yDJKSOyFBm8e2agvvnSYntUFqKm/8EtrkoYBZy0USj0OUnMa2+N1BuKOKoMqhbQ7pMMCAKLenRs+hIvxK6Hkm7OINVWpqWqgMnPvQqoUHguhE+KuX2DaxznmI+QNQtiL0W4AKhlC5eH0qHI5sKEw0PSvurhMV5a5z+s/NeAPnXPEX4zp6Lz0+vg1SU3n74HKlw+WUoKjBiHeoY8dUuJyR162YIGJt3iG7+wjlCZCkEwAEY1tMDF+n3OF01Es9qC+qamvqikc8qd2vDKZNUJFE+/KrCR25Rqz0Op065AFbAFdU6N3bc5TfY3ybtpY6VFUZ7N+/H8uWLcOECRMs22PjWhjXWXeYf0PatWtnfDskKRcMDB07doIoCjhVErp+U6oHtScPANC6dXyj3I9D2gUILmva7jTLN+fg0SIAgCKG8iiJfHg8LrZFjfI9ffp0jBw5En37hiJFLFmvondKqP4cyzuODO9VMF9WlI4iyikisW07pKamWvRGXcvt9llA7y7AB09H7tOvLTNdy4TapOMK/390dGyDPDuHMxMup4TW8S2RmppqjApHRXHddKbaoNpSY+EqyzKeffZZJCYmRjQUZswz69PS0vDVV18Zv71eL44fP460tDS0aNECCQkJSE9PR+/evQFwf5e0tDTjXD1yAcB7aykpKRVObHK5XPUmUitDFEXbB6l/rM379B6+vk332XQ4HJVWhoceegjvvvuu8dsurBVjDJIkRaSnKIolvaioKKiqGuHbyhirMA+6/2xF+0NloAKCM5QeAFFQISuq6VwRkigY+VK1yVyiIFfxQqgIKgJEzUs8zh0E4IAkhsohvk0yCk6GhfsSFCjM/IwEOCRADZqOEwSAcTFT95dSRd/u5cZ1VC3kFIMQ2sZEuBwqFJVBMUVh4FkR6pSHd79m8AWsz9ItFcGrtDKlr0IUGFQWSsslKYAvw7Kt1ggOZGdlQBS52w/3bRUhK7DUDUniUSUs9Qd6WdXAV0B0Aiy8Toffh/V9ZIxBEBiYqW4I+v8jzm0aVNTW1IW2jl8hQIEoJgFMhVeLpypArXNa0VEMQMXtChCKZhEMho4b93o7AICqRj6Hyspg/fr1mDRpUlgYKxWC6Rx9Aqa5XQT45BOm1X2zT2VTrAc1RndbY41zP5LIoCphz/LSg/D5DpjaJL5ZFEz1Rc83apbv1157DS1atMAll1xibLvhWeDw/FD9aRHDe8aWbygAp8SMemf2Ca5ruTkkFUrE98XaJhnTC5i5buptYv2/+3YwAA6JQVGsedV13Jlog+pCjXPy0ksvwe/3Y+rUqRZxun79ehQW8hnb+/btw2effYZrruGrGV188cXwer1YvHgxAoEA5syZg169eqFdO95QDR8+HB9++CHKysqwc+dO/PTTTxg8mA/xDR06FCtXrsS+fftQWlqKjz76CMOGDavzjZ8pqjPZSRe3up9PRbz33nuW33br29sJT7s4ri6XK2JbVfkVBKH6IUKYOYIAb4jMUQW4KGGGtVl3SHdKVfvOmN1rmDaZyzyZyDwxzMg7FEsoEVlhkCQBzCQY9b8qm5hUUFCATz/9tMo8AtalY/3avZtn9CqqCKeDQZYZFC3P8VFVD8F8vopVGSLoq58i9ye69qK1EIp2IMuqsVKWjiSqwJFn6iccluiE1xuaEKeXgXmmqsp4B8JuxnBt5gmqaqiObd1VeWgsnj4QOQ3rbJycpcJ4A0QXjpdfBKB+Jmft27utymMUBegUsx1+bZLetQOHo7hMn11dszw8+HIu0OLKiO3md/3cdtwM7Pdb5z+IAjMmgxnRDFjDxrI90zTW5CxRYLbhnPKLQt8x/Z23RLPQJu6pNWwPomNiq1x1LSY68pvLmABJVBCQ9fpXO39ORWFY9ou1rHlbV/l5odCQkQeqrAYd+WrCGMOpYha2jY+26O1y+DyQpkaNhGtOTg4WL16M3377DQMGDDDitf7222/YuHEjbr31VlxzzTV49tlnMXbsWEN8ulwuzJ49G5988gkGDBiA7du3Y/r06cZ1H3zwQcTGxmLo0KGYPHkyJk+ejM6dOwMAunXrhgkTJmDixIkYPnw4kpKScO+999ZfCdQzdvHowtErhcNRM4O3nXA1W1F1wqMKyLKMqKgoyzZjUkYVaqHagfJPrzFdm2ki1VwWombpYlqeGNxSMaKkquMrmjWOzxeIyLdd4ygJVuGqqoxbAEzvq35rlfmdf/PdVvzpr9YZrxffr2Lhj6ELlZTzv83RCXTRbv5oqEzgFlcmILkVX0ChVRQfzqusf3DbVIYDVejbGJsBCEWxhjMJyqrhbG8gCABTKi2DatPuIchikvFTDy5vDmrNVN6zt/s41EY7M1NjX1waGdesd8JaeJQ9puN1cWZOTLfGNtFW+gxQ0Z3WRzgsvzfynf58RQGyckNDsCrj1qiAJhbXyN/Cr4UIqmn4JiXhLqBVZDQXy+RR7U9/WOw7wSRcg79X4dpIS6dKomorvMrKQ50HPRKLNaJD7SKdFKX9hB2ZKRHbzW1rbLTDki5HhCSqRjzv8JBQ1aWgGBj+tDXPoqBUuoIkzws/h9m8lWeiTdqeDiSMjBSuDokZbXVTF641Uk7t2rXD5s2bbfdddNFFmDhxYoXnnnfeeViwYIHtPrfbXeEEIAC4/vrrcf3119ckq42GoihwOBzakKT9U9dF15kSrnYLEIRbXO1iu9aN0L3qFlezcGUQIAmhF0NWVPSI34PcwqrfDN6AaaGrNIuJ+eMm2whXUVCgstBMH1VlcFRgca1MtGXlO4FO1hiDe44CWfmm/GlFaP4m+gNBgCmWxldRJbgcKmSZ4aKOR7A7q32EBbQiqhql8djMvVBYaEiWp88ihCsvD6XeQs8wp1m4WkOfAfqQlL0ViD/TGraUJpFR7o+sy+EdAv6sIxtt4MxYN6pLfHw8Tp061Wjp61jDxdWO8CDzAHDbjNYYkfZvfDvvHgD6+8igqKZRHVGbaV7TOK6CA2j/l4jN5jqmJ6FH+9ARBdWweOn/N6/w93ugsSyuXLhG1gWzcJW19rGM8UmtjDH4/UHAU3PhGnR2w6L9HSO2l3hD73WUk/+dmVOGzh3ieJoQIImq8U2prcVVsmmjjxw+iJ3FuQAGVHievvgMQ2RZnYk2yS5uucp4uErd4qoL+99FHFeiamRZhsfjqXR1r+q6CoQTHuZLv1a4QK4vV4GK8mAJIG00LqE8MMY/COaeK4MISVBDw3IKs4iqyjDPwFeMFyt0bpQUuQCBANnSaCoq4z6u5iRNPmAVISCys+B0MHyxcJHxWxeV5qD6waAMAYpFYHOLK4OsMCP/1RauVTQgUc7I6zAmWixoQRtXAaYybnE9A982ryYkzR8C3VXA7uNQm8Dz5vpb7rUXrubhb7sU9A9kY1pcCwsLm0QIpvoRbfblqDLrCIhTUqAoAg5laU/Fz4fzaywcCr8HyndGbLZ2Gvnf4UvMCkIoPT2m6O/H4qpZsGv4cm/YsKFeUpdE4DQujNhujqtsVHmBG3FSUlLg9fL2vDaCO6hG9uDNn0e9HpSWm78ZgvXbFNYO5ebmYsJTFRvWdGyNC0yucmVGYzEe2LRfDbToKmMCHBKDrPk16J24JuTWaqGJZqv5oihKlcK1thZXO+Fq5+Ma7puqqiqcTmetXAXC6Xnh9bjvb6HVivbqkTqEUB4UxoflzSuBMIhwmHq1sqJWuzfn94fKUlYYwKyxAXu0OQCoVvEqCooRJgvQhWu4xZXnpTL/TskmkyXlAn7OGhWx3eTSC1lWuHg2fYMVJiHKyYctZaNHq4umyhu3qoZs8vPsfAkEi2hTlEjhqjJgwoS/VFoGxWUMq7ZY9/sDzFZotosJhWrz6cLV3IFhgEMSbZehrI2lwxwwW+/gWOo+s664wIWsNR1mObbxsHu/q+KKK67A/v37Kz2mqKgoYhltO1IcK+pn5awKKqt54p2qgrcHKu/kAgBOLQXyFtSqAyMIkZ8yZuMqED5sa+5g6+mKqPlzaJII+qTFmpXnlVdG+gtXhaoy5BWG+XeKClQhMvrP518sMv7W24GOsfsAQFuUSMt3PfXjzL6yunCVLaNAAhyVuArs2JWOtzY+W6u0uXtaWN08tQzI/yqUJ5kB+QvhUE8Y29o5fuZ5VxtKuAIOSQiNPpDF9exCt7iGf4TChSRQc+Gqnxd+LbsZuFUJV53KhKudmDpa2Anz14VmbbqNAA4mi6v2MbKKIT4cY+7VVtfa6DMJV1VVAaaETXoSIDCrZVSADNU09KLok7NsrG+VNZBCNbqc+vfRPASjqNAsrubjRES5eF70c/RvfFVz4MId/Cf9S8Wuw6GTnFJFzzH0XIIyi9AUjDE4HWKl6a/dAVw30XrATX9jeP4jO+FqiqEa0C2uZiGpTVgwi9TT64CCb2rlW2auByG/YqtQNrtHKIrVhnHixAlDWLPGnJ516SFk5NRcMP3yyy/YuTPS2mimb9++GDbjWps9vCTcwkkAwJArYo1tL3xk/1JknYwso9unWo+1E5EAEOWONf42uwoYnXwxCmABBGto8Exsm4S2bRMitpstrqrKILAgyr3hwjUkWPW69LsRrqi5cK2t1f+X3UDSKGs6Ma5yRCmHIo4NyqE3UC9zt1gUOsBYxKd+3kfFslCO5g5gaWsESJJqWNzDXVWqmw27opNENcIFoG3bNkhu1974LSsqIJfA4wnFq9cNLGeiMx20+earDJAkweTvzf9v5/bTFCDhWs9UJFzN1KRxMB9rXgnLvC3cVYCHm7KeFy5c+/Tpg549e9bCx1XgylQjJHhMw4CaWLBGA9CFKz9BUVi1hyHMEyp4w6NYGjVFFSKGOEWoYCZXAR42TLCMFTMGQPVV2jCJ1fBO1083f3BVlUEUrAKbMcDl4I21MTwkVK8uhAvX1z8HfjsY+u2QrLNB7VAUFrJu6flkApwOoVLxbhdb9VQJkBvmkulSjlmGu0LL+5qFpACHQ7D6r8mngEC2rRW2Uphi+cgEtHQs0SzCXAXC/Xzb9Z2O7bsOG3lrNNydUVRSC//S1Bm47/4HKz0k75QCiHYhAq1uPty6wrdNn2d/rQ5/tL4s+zIYPltlPcb2MbIAZBZaVEBl3OVGUUXDpaRr917okNK2xpOzGATbAVXLxEhVgIBghCgRhdC7aFiZfi/CtRbLOdd2zkOUTfUSBNHyrdDp0CktlJ4+oV7PYodnAEdry766EjA1zHpZWPzumWZxle0trtWdoGzX+ZdERPj5CrC2NarK0Lv3uXC6QjNs9UudiTYpJzs7ciMDnA4+Upifn4+UFO5z7KjZijANBgnXekaWZbhcrggBYa78iqLgpZdeqpaANU+y0o/X11TWt4X3ivSl9nQYYxGRBjp16oQZM2bUORyW7liODpNMedJDoViuxh3gDetG9V0FAmZXAZUBTLaIHEUVgIghTgaztZGLNuv9iJITOLXErm0N5boC65ElJe2SQYt1VV+W1mzhFeCTo3CqvCX/qDLVNI5VeTmb/cJCeTOrcF5GgaBdOXDksCVVs04y+GQ3XC6pUvHushkYcDkAf5jOEqBarhMIKgBTETTlSWWAU7JaShMTE9G1a5pN3iuGMV4PzMPKuhXFPBzMwtwlZDlsWdlu/0LQ0Um7ZrWTPyNUdwTCQqe/wtf67koP8Z77c6X79Rnddm4xtsebCmr5xsj9ik38H0H1wh80uROpDE5JhawKIR92IQoxHmeNhat5aUpLPsJ8XEXBXrjqIibkd/77EK56va+JxbXWwtWmcyuIEphN42ru4Bsz6vU61WUm4OZxoOsrGkJmnnXkDUyxjvjooRr1b1OEq0r1ZFLBqaKIbQ7JxlUgrK2XFcYts6bj9HGh+hLvljw5eS/jdLE5yofAXQUUaAsw8Lz07Nm9/jNQD5BwrWf8fj+io6MrFaWqqsLhcFRLuFbll1qRxdXOVSA8VFf4JK7qEBMTC/OLZ4iS2AtC6THuBhAuekVTnDi5RhZXczglFjFbX2WAYBMDz4yiRqbncDjx1tOdKp+cJUb2OFsGlhtLVgJcpLoD2yzCh38o1YjJWYu2nIOlB0bynjSTq21xzT1ZGLHN7NvIFJ4fr7fij66iWF0Fet2Rj10nL4FTEiqNrFBUdDJim8sJ+MOTEpjWieAEgwrAgtYPAQOcDquPqyiKFcZ2rQhe1rKlfPUoFn6TxVW3/od+R0ZWyM07re+tdvp14btfGWb/N7LSsZoGrtQIdHyt0v0MVlVhvJfao2rt4PWIvx9Vi1ez8BBFm0l2Nm1KpNsMt/AoSki4BmSRTxCpYTGEdzj06CtWiysgIhhxbVFkIb97rZ46mqFwPZjJbASqJlxranG9rOZLjNq15dziGvkwS/xxpvQYAGYdEle9eHb0pvoJ0Qfg1YWJoUsz8AlTYRXBYaoH4fuWb21drXTsJlI5RGYbLcB8qKKokESroUW3tNa8E1c1emciK7fUtI1PXlZUxiP3iNz666yhO2NDQcK1nvH5fPB4PJVaKhVFqbbviNVfj9luC19JqzquAkDthGtyu2SL+AnYTEJTNR/X8AaTWzdC/mTVjSpgbkhkrcdsDXUjVPC9tfq48ckh1sYhyilW2kCyiN4y0DHZBTeywlKxzsxXVaYtgmC+FjCo93H0SNjLLdUsaJytP9vDhw9j1aqwsVcAKzZHjsX5/SHLO1P5x7bMa7bMWgtFDpucVRzgfoFOZ+U+rnLAG7Ft944t2LX3oGWbANUymYALVzksqoAelDu8bggWy2xVqCogsKDl2rrF1R/mKmC5F1mNrCpaI91QLq4rNzN8+G1kYsEz8JECAIFF+tubO7uSFjmjuquWmctclvm5Zp/B8GfL67Zimd2uMganxF0F9HODiginpNZqkp4lf1o9Mr97KuPLS9u6Csgq/P4gTpzi+ZDqISRYQ9NjDMMve8K36t+L6penLCtAVId6yRMXo5Fpb829yvhbUVX0Sd4LxdzOik64HKzGwjXBfdx+h8nqyy2uwYg6JgohV4HwOvLG4upaHSPfH0liCLgvtslT6E9ZiZzvwWrhn1wRe/ZYK4Y+abHgtHnytABJ4t+t734pB67g8cWdTVO3knCtb3Qf16osrtUVrnauAuHb7JaArcpVAKiecA235sYKR9EmKrQEb/hKNDw9/kEILwLJNBzDh+4rTTqURiDcR0mJnHgBtdLOAvc5DdvGAJdTrNTiauccHz4zXdWsq+bGiIv3cIEN9D8vDx3jDvGyYUGIYQ37kSNHbGMlz/kustfPTKtGKYoKMZiJQMB8PeuNKXbuGcFTiHJW7irAbKwmZaWFKPeGhRYKcxUIygr3KwzrZDidIpTwD4cWhWL5RoaxL1X9xeL2CdliQdMtthYLPRNsLK5hFxM9wPZr62Vy1pINkSMN4axduw5FhQUR21/+NNbm6BBf/cRsJ0eZKS1nEPqFlZ8mXPV8hdqGsDB6Io/AoB9X0X188823xt+iVmZlpvBC4a4CsgKILBBhcXU5uaVN90EMKvrKcoDPz7B1f/WehyAKliFp3eXE2nnny0uHT/wSBF5vxj29DE/OOw8A4BCbZzisiqpdTcRPsJbB9+3SZgwIuHpHbD9eEhKCisJXT7TMnhejIUlCjV0FWrtyEKeE2k69/p44EfLpVLXvhxzW/khiKB53ba2cdiNGdrFdwwkfCbPsqwer83nnnRd2TX5/pWXWSaxOSYCiMChaZxQF3+L5yr2QGg0SrvXM66+/jq5du1Zpca3uur/VcRUwX0t3Q6hOVIGqhKvdPcSIOYiTcozf4SvRAJp1Q6xIuIZcBarzUgMwYssBoagC4YJQAKt8YpLKInz4GBPgckqV9uztGn0+0cM0RC2rPH0bVwFz48uYAJdLgqJqx6oBwAiHpaen2K6+dlFaSWTeZLNlkUFgcqVWO0VFpC+gMx7OKqzO9pNtgjiWaXXy55EkzH7FKh8itkyEQGQ8XeiTZBj2HAW++qnivISuzSBAtuQttDpSWFQBy3lq5LKmUSn48MMPqk60Gox8hmHj7sotdtk5Jyx+6jpLNkbbHB3ilucV3PTA/IjtybEhS9MObRK3zx+6x5hoHtvSIkhNE7Gsk7NCdbG8PNKvGgC2bNsX+sEi/YrDXQW4v7dsWdJXUZk2UTFkcZVViU8QUYC/vuvFxQ9E1uVFixbhxptusWwTBOuky9Cyldb0JEE2VurS0X1cP/1tJN9w5Nlqt0tNjczj1vfR8HGtgfip7apRuXn5EdtUBkQFd1R6nqIyOB1hfqBSDCSx5sJVZWExm7WKfPxYyPVBUXg7GS4yzUaVmvjaW9K3KWiHVPU92Lmx6W4HZyK0s94emyetqYxbXLnvubY9mIeYyGhmTYJm+oo2bcInR+mYLR61sbjqQ3yVWVz135UJ15ISLoKqEq4OhwP79u2zbpOsVsigSbi+8xXDil8ZX15VYJHiROR+ZIeyGApLxBpYXM0LEPAes8WaovkxBiuJoxPq1VoFr7MKi6td75sxGIKTX1vVfHpDx6hMc5cwFS+DZuFVhQiLa6XCVfXhmnPzjJ/6fZrnjamMR1aobJjV1uIKwOmUKg27YjfU6BAVoNV1lm0C+HK2oTwhUriCRxVQVeDUqVNom5QCCNo62bLCrfXVsVKoDAJToDIBZV5uidQ7GRZXAZ6TUJ5UG+tGzPk84kQ9YVgsKsQaW7a6OKUgtu9Kj9xhupTerCz/NbStTOWrmenvOh+hCJ2nfyS5O3fI3znjhP19/HQkFOcz/RB3FzHXu3Dxw7R6EO4243TweivLCqAGoagSn7ClMLy50GYNYwCrN5diUd5cyzYB1vbOWP3HMirDLa7hzZ0oWjunw4YNtU23OeALny1ZCx/X2grXw4ePRGzjbZI1bYkVoUNs6JuiKNxlJLz9kcTK/e7t4C5j5nZZvxfzRF7uwhXuliSK5hivtbO42nUQqjMpX7EZDYQm5Otlfpq7q+WnPmE4/Fk7JB5dxlhBrjaTRRsIEq5nALNw1MWmWSTaxV6tiHDrKmMMn332mWWbeTjfbkGCcFeBFi1aAKhauCYnJyM21jp8GR5Q2ex/+u7XDN9uYIbFNdxaKYlcCA6ayPDJT+0MH1fGGP785z/jzTffxKRJkxCO2eLKe8zhk7MECFAtx4VjJ4gYAKdDqtS/067RVyGErUilQBCs63Lr7gPhIcGiDIsrA1+hh+HidutN92cjXJlsEWP6yjICCxNkCMLGWGsgVzAkVZWfb/iwGsCHZyO2hYl3bhUNXz2MD0mpjAfcP9kzEwIEbciW4cl3GEyTXStEv7aiCnjzf8BlD4Y6SpGuAmHn2ZRBdUPeVAe7GdaR6dX8o+ArL7Nd9jnaGSowu45JkvswALOrUVhkBcPiyn3F9Zy9M2eZ5Tr6+S1btzW2nSrI064Zup//e+/f1vNYpGhUVf6hVJnWhjA/FObQJmxF3oNOUI0CRKtlmj87k3CVVQhyQcQETklQbHxcrUO81Z2g1hSpKAJKjVwFarvcqRTpDMnUkAX0t99+AwA4WQFau0xD9ywUFs16vcqF6569+zHnY+uiGuGh7/T6Gh/fytimqLqLkY1wreOSr4pNhisUrmGTsyLia9enxfXSA2GrZkZaXHlHUoCqhiap2a3k1VQg4XoGMFtcdWFpFok1cRUIj9kKWIfww4WqXZQBO/cBoGrharc/XLiaG0VJ4sN8THcVCGsv9eEYSeJBqCWRxzFVFODd9X/C85/2wGc/RA6zmnuG/JrWxQ30BQ8CQRlPPfWU7b3wXm1466Bq1sYKi8D2Ixo+/Kxqlkxz+Sp6HFezcAXjrgksZHEVBBUeR2jyk71wVeD3h7bpja5DspaLCKXSRletwOLqcjksgjN8BRw78S6pRRHbBFijCnALr9UKzExxY/W6XVrm0yyu1W+leWMvQ1UFzQUCULWJF9b6EhYOy+YjAaBaFtfFixdXK2/+KocaRdRqJpgzHujyimWTS05Ha3ceth1kuOZR1RjmLi4JzRjWwzsZHWfGwixh/N55nOOQi88Ph60Wdf1dMI9stE9uA6gBBGUVg59QcaKAIZj2vuU8PTScZbKUCsPy7vcHARaAojo09wGgf+cfDd9cM5sze0VsCw/bp7uohEcVkEQlwsc13OIqVXPCaFPE6pITesaVBfJ/4oknUF5ebvw2x0CujOeee84aWlCMFK7miB59+/YFoLl0MXMbwTTLe5hwFYVK8/3ah7/h/g/+YJOe6beNcNXnQ4QbOUTBZHGtpY+r7chUNSyuss18Dz0H9RQRDAFzLHQ9lm0gzFVAexf0Tmh9dubrGxKuZwDzrP6KLK7VdRUwC1fGGPr27Ys+ffoY2+wmZ4WLYjsxC9QuqkCEcDV1CR2acOXWDXsfV91Stm3bbkiiEJrQ0/IqlEQNRVaLNyPSNAsRw9IWZsUTBRX+gIzXNr4ScT6gRxUI/Rb6qTgRvAxOh4TKltWztbhGTPjRFlywWFx5GViKl3FXAcPHlcnGx0WfGCTLsr3F1TxrW487aRHvTHMVqPBWoKiwRHKIAx+yc5nE+4EDByJWwLGz2ESJpUAgz7JNEFRLwGxF5WLabI0zfFxVYJselECK1gREDWY/KypEyFCZgL1798PvLdfcB4IIBKx12vKs7FwFwK1/VXHDDTdYfs9dyjBjfmTZVBUdQUY0HIj0ca0N/P0RkJXPVzjzB/h1fd5QZyhK5BbZkI+8VgZaZ0u37ug+4Hq9CgStnTG7IfigzADmQ1BWsXIzkFsI9GljXeued+Ks/sgqY3A6eO33+wPaSndOuJz8Q+5yyBDUcoSzKeNcm0IIE66GUA63uPL3wzx5TY8q0MLNy6i6kRUq41AWi7DsNgSW6B2W5W4rzssbb7yBU6dO2V6jMmbOnGn5dgg2FlfLcsvX8GP1+mrOm0NioXYjyEPvSZKAyvSjwxEa1vj6Z4aTRbwem8ML6mVgXfaaQQhbGAaAIdoAk3DVRrRcQnHFGTFh105WpyPEv9nh2/R3sX7EY5k3UrhaXAU0i6uihuKRK20fqJe0zwQkXM8AZguAnXCticXVvAKXqqqIioqKsMLa+biaMYvZcD/byoSr3bXChavFistkBIIqt4CKfDjca0wSYdqwHOMNgiZW+KSq0CXiZOtHDwgNjQNcKNt9lERBqdRaYOcADwAOqSof18ht4VEFeJgp1erjqvLl/sKtBg6H1cdVgGIx3xaVSth70joLlLsKmMMN6QLElB4TIAqRQ2BmwoekdBEb5QqVQc/r10ecZ2eBSO3cJWK4Wwy3pqg8Zqq5c8MAOJ18iPhIjnYfcEMUhErzvv+Y1fVE0Swnqgrs2LUbpaXF2jbZIly5xTWEqtpMzkLV1gW7iYobdjMsXh+5vap4tAo8cIiRoqx2MC2KB/9VXsZj0jqE0PWjxNOIFY+F2h+tDARB0Lbxk/Ui0DtGucc2Y+/evcZ19O3m91VWoFlc9fYOcAolkNTC0P0qgCSoERZXpySAqYDPH4CIoEm4AoIgodKVQSyIQNj7yBf/MKcnQBKtIyCAHlua4fz2B/jvWuiEozkM984KXbjbHQzf/VrJCWcIsxVRlkMxoqtaOtXcxl908dXVTs/87ZBs4l2Ht5OA3rk1XwM89JUe67T4F349ibsvFRUVISEhcjlf84pOo59jWL1VcwuC2XjA03ZLIVcaRWUQw+I/A7zDErGqlsLngrRx7kSC9Jt9IZiw63gzxgA/nzw582MWehaWMrCLsKP5uNbT5KyS0rDoRME866Rn8JEwWbGLB9z0IOF6BrCzuJq36aKxssgD+j474Rq+rTquAvoxujUvEAjUSriKIsIantCPzb/+gvnz/8OtGyJ/6aIHM5R5+TGSyIOXHz3BgNiLtGFNawgl0cYS9eGHc0154oLF3Egwzce1sheOT86wszqLlT4Hu0ZfDfOb5P6sNpOzROvHGggJZX3CimmGDADgUF4LfHvorrAUFUuYmqAc+UFSGeOuAsGK7yV8SEqfGOYyT85KGhtxnp3FhjEhwjoV7uerLzEb/qyc2kepsKjYdC3NB5fZz8g/506G9TtCYoy7ISjabFgXGFO1yWCyZaieMavFVVHtxUlVFle798QpAXZ9parj0dovUVoTxr2sW5NUY5gPCHXyRDUUhUJloiXqhqJwXxdREBEMBsMsrlp4quAplHmGIL/QHC1Aq3em6iArgMD8FlEbVJwQ4becJ4pqWEdLcxVgAoJBGZKggMFluArwhT+q+dUWuDuILDP8+BvThKsa9n7wCYURrgLaELGeN97c1ezDfTgbmLvUui1g44t8pjFbSxVFMepYVeJH/16cKJCByzMqP1gndSryCq1xQMMJH5kCdFeB0G/D4homRRyaj6uiKDhV4sTlD1pvInzEkjFYFheRZcbfWSYjKSYzlCeVt1Phbklml5HZC1MBJiNKOajNK6leh0YXwzn55hEeQK/Hz31gWk1SsJ5XYVSBelrytaTcumy6AMViceUTlbl7xpmKJ12fkHA9A9SHxVX/yISL1PCwVtWZnKUfY45I4PP5aiVcI0WxuZIrcHuiwZjmFqC9pPohksQdv2PdPA+iyEWFojCI5Tu160eWy4DBN4ZSUHQrHsPnqxg27WWGxbUyQ1e4q4COJAnGzOYVP/wSsd9u5EwXyqFrq5qF2To5S9LyaYZbXPUZ90Fu+UKoo2I3o1WAagnRojew4bOmBUFBUAFc/Uts/UUVNczHVdAtrtzHtSIBHx5zFdDzH9b4C5HWeL56mFVIOh3c4toqWheiohZxQgUTnHBLkaG/AOC99z80/jbECRO0OsqgKjzIvKVBDhOJ3OpsHiXgeTOL8E9X2g3/B4He1slKTgdsXTOqDqdTu6gCZuYZWeEdJv077tUWoCg3xVXV4ypbogoIZl98k48r9Ekb/Ni806HnqT9HczWRFQEC8xudBVlhFuGak8+gKKpmcbW+H3oMZSMOsyAhyqX7LIf1kDUkMbK9YkyEABVZ+cCAxxkUmQ8Hm189PgISaU0SBV7v9HfJHDLPLmQZAFz9SKToCae4xL4On0nChavxdxUWV/1bU2Lyi66STlOQccLsRmLXubUO0wOaS5XZD17Vh9PDogpoE/cEQQAcrfHrXsvuiE6zz+8HWGjUwDmQab7O3H2psFjFznSfNhfARriafFwPZMdg2Llr0TqOaZ1uq0W/IvTlz/+7kuF0KUNhCYsI0WXXibCLKqCfUV8+riVl1pjf/Jui4Il/qfhlNzMMCopas8l8jQUJ1zNAuMVVFMUaRxWwE6764gI1nZxlPqa0lDdOfr+/XoSruVGMjfGgY8cuFourGd2P6NJOu43fArRGz7huZLnM2zgUgSDDop/1hoD7uE6Zw/DZKn2oVLVtPM35tBsOdkh81ahFq09hyLTL8L/V1muodnFcwywJioKIJW553FhucV3wA0NxGd/n1IWrCgg2S776Ajaz9aFahr/1hsUyQQ36og8qgiwGXl+kolLCevZ6g+pyOaCqiPStNd0LENaJYnqqpuuF+fnqFt7wVc54zz6Uf5730FCbT4mzzQeE0OphTIvawDQ/OgbB8KW0LMKgLTjAGMODDz6oCVdB28UAJdK38U/TKxCura2TQVxO7gcacWwVfoLM9N+6orva6Nn3+fxAWJxKlYmG5Tt2iGq4CkCAZlHSogpoFwkGZQjgdcEa0YNfs01MET744APccMMNhnuG3uE6XVwMWZUgghdM+5u4BVQS1Qgh6XQImqUM2nvgQJSTr5cOQQKzmdUc64pcxU3vCBiuDtqHOWLJVzE0VKvnV/etDgnX0FU9sW0tk1p01u0MS72JzGGJdBXQO7iVn2c2qNQEUTAbUEJlffDgQeTl5WntpHVhmPDJWTy6BKC3+0lJPHSbbnFVVRVoO8YmbWuhHzp0WJuQZmp/ZBXQVjR84PlNuPAen2kp7jALrihY2npJ4rUqGFS0zm/V76te337bvhvXT8zEoIeztHu3Wv51vH6GzreqhjFGJ6+QQWExAGz7brWitNzakREFBYGgjH8sBH7T5hroFle9GjjlI/WT+BmAhOsZwBwOyy6qgO4qUJlfXUUW13DhWt3JWfq2r776CgDw66+/VmsBAjt/WXPv2NxgCQKP48kY03xh+XY9CUnky1qK0O9JNQKAG2URXiRMxTVdNuJIDnDjc6HJXarKoCoKVMY0/07rkHTkvdivYqLPbNZv89YXrC2FfklrZ8FqceWWTNMEA+izNLmouGMaw87DenqiUUaAYlj89Ot77YSrYF0GU1ZUgFl9+PjkrJC/sDcspmNpOYsYJjeEq1MCA3AkuwLhqjXIXtOEH2YTo5FbN8wT95jmLqHizhdVrNrCoEIw3CWMe2L8w2F8TBR7/88l6bcCAPJO+bXQXoppJrGg3Z9iCfMChCyL78/9mrtUCMwYFUly8wlq4a4C5T7rvQVtljZmagAHbVaZrFK4qkBuoG+lLirVRRA00a7w/Pm0iU6KyvDlomUoK/NqdZEPDZZ5Q6MWAqzxpvWVs/iyuLwMF64LrfMuKyoEpQhuhxc79xdg896gFvJIMZ5dIBA0BIsO78RZI07wMEgiGBO0d1oFBNHwcVWZNdybzjXddoOHkasYRfM5Vxmw4leG7eksNGFUK/MftvDy0l1U9HbMEl3iyiJc82iVj8B2GLm+LGU1wToqYy8qI7hoE7YckCLO733TxirTMwtXc9s7YsQIvPrqq9ygEDaHQUBYyDyVL0RjeRXWtzQWIFAUBej0bETadiN/jO8wtvEOjAyV8baLqYrWyYucnKXHcdXfh+ysTIgib3eZ5mpTFXoZqKqCQ0ezcCwzS5soaG9x9QeAjBPa6Jzp2zRoIkOZ0F07vr4mZ5lHCLl450ty6x17UxxXhUFQyykc1tmGORxWfbsK2C0uUNHkrPnz52PWrFkWK2ybNm2MY8OvFW5xq8wy7A8Ab/2PvwQJzgOIksqhr1Wvaj6L+rX1Ns0hab5HhoO6oq2YFJo0FN5AiEoeJPiMF173J1VUID1bwubtx0wW18h86gsecBFl7+OqMgHOCpZ51K9ZVmYWbVa/SaYN9VgnZ2kWVyV0DgDDv1NfMEAQrBby0+VRcAjWIUo9XqkObyDlyAlqYmgilNcbqjeFJQxxQ1nEMLn+t8slgTEBvx2wF1x6OuXlpjJQQ5aEmR8zLZ+hYWeeT81dQmH4348Me44yLbKCFr8zqNseRUNAdIz6Ga2dh2xdJop8rQEASaOdJnEiaut8C9owoN2yngJOl8jA/8vWrPs8m7wcNctb2Icw5g/W9O2s0bt2WJfmjR/By6+qGeX6Y6ssAkT14RPUVv2wEgDg9QWgL/rwx5nn4h+fZmudNiW0FCrThiYF2AhXTfhpH62TxaHZ24qsT4wE1h3rh/yEvxsjILoQ0BeREMCQm5tvXM8h8nze/8JODH5wBxgzuQqwkAhyOSVNsFgtVTqMqYBcWGmJcEs/n8D5xNsMHy3RhKvJ4qqqPL2Qj2vIAmum4LT9s7R22CvNTr2z4AeGOd9G5stv8m9XFMXIV6XCNbYv8gr5geZY0bvzL60yHyIUlPsY3vofs6Shf/N0S7re9jHNBzXCDz78E6OUGpOzKloNMbwtlxVNhFm28frK3aC0S6t6fG2GLreq2HvUZHlXGU6cyOV5VWSIAtPcjqp27fnuV+27pgaQllhoiF1zOwnwTq3+S38+vAxCOTf7zddXB6jMZ3U1E6AiGJShKAoOHOATE/UQZPybp9ZgcmTDQ8L1DFAf4bD088PDYVVkcQ238ALAunXrsHDhQovltFOnTsa54St8OZ3WyOl2bgf672KviCfe5i97vOsoesZv0ybLiIZ10zCgqQAgaAsQhBpSQeANmax9EM3XN9IDF7aqqeERhNDEi8ISSUsvNNxnLp91u/gsXzVcuKq8XHVXgXArXagM+LVKy83Bmq3WRi6KbcJhmazOm7dsQSAQgNPJ0zNcBYyBY36urEQGfhZgFeWytgiDZdY00/3H+O9y0xKcurtj5EeCpx3lcmjhuex72LolYf7H/zWlF7I6P/eBXhbWVpZbN7goCPr92LR5C+8kaO4SsgLeOAqCsaqaIEooVPvg+r9GttiJsQWhPGnDXUYfiAlap4YLqykfqjhVrNczAaVl5VqeuGgTYLUSSTbmeHM98kesSgQIqrWDUai5NVYlXEPvKv994sSJSo+vDEFzk1BV2cinISSjOuB0mQAGkccw1YSrLtLCLa76ohL66kKA1aoma8vsqipQ4o+DUz2h+cuGhuVlRTHqhqzqE0K55Z1BwupNJfh1TxCKCu1dELT0+PlOhwSmCUm7RRrCfQatZQHt/vTJWXonU3cVMLVJWlusT8rRt4u6ote4/vIi27TMzYWdxZXV13RwGxb9zPBfGz9ss8VUlkNtS1WuAkwTKDVd6jQoq8g6CUz4JwvzY9dHNATD8s3zpEREFdDdysLRfVyrK1wVReVvgun7EZQVox7wtkl3q+EuXEdPAAVapCtJ5JZ/3T/e4RC00UAFEBhyc3Mxf/58S5ol5aEbGfok40u+quUQJQf0Vbz0dtmYbG3yvzeEa5iPa06omTO+Ka9/xpBfVHsVWx5hcWXahF/BiOMrmS2usO84NhVqJFwDgQCmTZuG4cOHo3///hg/fjzS00NLEM6bNw+DBg3CwIED8dZbb1ka/t27d+OOO+7AVVddhfHjxyMnJ7Tevc/nw5QpU9CvXz+MGDECy5dbV8RYvHixkea0adNsh+2aEmdycpZdNAI9PX2RAf3aegQCs+XU3BCEW1zt8mCfT2YEVlaNYXJAVYIoOHVa81sKiSizqwAfjtHSF/gwhazNEOf3Ym2odGGrr8PNw5mEhGtAhuEqoFvpFn8bmkSjpx3hAK/NXtcbyIqWOuRGORlBWTFCe6kI+bjm5GvW3LCPrMr04VH+e+K0pSgMdIDDIUFhgjEDnt9vqGEzhk0txS1j06Ytxs+gYfkyWzmgWRI0P1HTggU+rQrJYWWgp+N0SlobVVEZ8HQu6vv/LOlFNmz8o19SzgwLhB4WjTEVQZn7izm1lbp4DNAA9E6NoqqAwCtWXphRTZALcHGH3aE86RZXVTB9AELDgDP+DWSdDAnXMpNwFQQYln4d/eNp/hiZX43I5TQBRfHbxhqtaiEFv/ZO652R8PiwNUH3GdRfUz1MmKIygPGyUJkAh6gasYD1D5fu+6tjsbhq72OnNqEJO/rQq6JqrgCCyGdyQzE6AcGgaoxI+DVfY1lRtagBIhRVgggZjAlwOfhoB9PEL8DroqKG7iMcXr153tp3vsS2TGQltGpdQcEpFBUVgemuO7p/uJZf3cdVb08cYc3dihXWb5HOsVzTM7BzFTiDwlUU7S1xAZPFVZZDUQXsVnSyoHVYa7rcazAYGimzm9Cjd2D0KuYPyNrIlNniap0Qp6OvnFXRuxQ+iVdRVN4cmeq0IvNIK0wbjYEQ6vCGXMD4//VOzW8HFC19B0TB5Pbj6Yl3FmRa0mwx1DqvQdY6fE6nOzTnQOto6d/+QFA2nothBVas3w/zyoF6WU16m2HfMduiqBZ5+aFYtOGdfmPUSdQjOQCA8vtxFVAUBSkpKZg7dy5WrVqFfv36GUt0rl27Fl988QXmzZuHzz//HGvXrsU333wDgIuvp59+GrfffjtWrVqF3r174/nnnzeu+9577+H06dNYunQpZs6ciVmzZiEjIwMAkJ6ejjfeeAOvvfYalixZguzsbMyZM6e+7v+MUNHkrPBwWJWhH1ORq8Crr76K4uJiS3qKolispC6XC36/37ItXLjaCeTw9OwI+APaMVqILAhwSALKyn2ajytMVlL+f31lLcPiCmYEANeHJsObMN3iumPnLi093VVAt/Do/qshi+uoUTca5+vvptmPle/gwo5bXAX4A/YCnguAIGRZQfRghmO5vAXUrRn3z2ZaOfH79Qd47FqmCnBIpvAnnf4GuDtzvz7dEgQFArNaCbhPlLWxZkwBhFCAb/6R4H6+v/76K9atW2dYN/Wy9fqClmsCwLg3utpOznJqHZ4Kxbu+FKJi9VG0X7aU4eftmgXC4vurwiFxi77Lwa0xQc2Cx4WroHU8KngvWABBWTJWbVJV7rPIBYmgWR2ZEWSe35dWp8SQcFVUfUY9r3d6hRM15Wqei2P1R4u0yOv3FU6VQdyN4OL8p9kfsaZ+r7oFKyQ6tQ+zogLaJEZeRqGO3YbdEhgk3mk05VX379SDtANA58SwDx5kze+OARC1Yf7QMpHc4ipqowT8Gj6fn0+kg8i1heZr6nTyGqgP3wKAw8Gt/xXNbFZVGEOYOZ1+tZSX16s9Y8ONhCE3Nw9Zx4/xcFhSyMe1sKiI37PA25CQxdWa3p7yO/Hz9si8jHg0NENr1aofbPJ55oRrZuYx7NkTNs2eKdi8dYfxMxBUjGdY1YivYXEN1EyoyBW4IwSFBATUKMN/Ut91IvdkhKuAPgLC8xG6hkPiE/eKwgId7DzE8Je3rC5JAPDpggXIzc0FWGiUkrugKZrlnQHMNBKmj9gVFgEIDZP/soe3s141XrNKaoUX3QM7vA9GlIElxJv2znF3AP6O6EE79HdcDgtBBehuXvb+JvXlKvCPd+aa8qyaRueY8ZF0SJrbjAoklLyOTsUP1U/iZ4AaCVePx4P7778fSUlJkCQJt912G7Kzs1FUVISlS5fi5ptvRocOHdCmTRvceeedWLaMW762bNkCj8eDUaNGISoqCg888AD27NljWF2XLl2K8ePHIzY2FhdccAH69euHFStWAACWL1+OwYMHo1evXoiNjcX9999vXLepYra46qIxPI5ruCC87777MHduqHKpqgq3212hxfXpp5/GoUOHAHABqoduCbe4lpSU4F//+pexTVEUjBw50jgvFAolMnyLOZ/Hjlm7e+VavEg9sD9jQFysB61aJ/APpRT68OsvHw+HFbLgcSuh3sCoRtlZy1IPSaILb1hcBbh/uWARbbrVDgCysk8YeTD37CVR+1BqE4Uqskroq/DoYsTrt7oK+AL6kDi/n6f+j+GOaQyKLt7DLsvT0z/4kVEFgpootZQBUyz3ZARYZ8BLs97E1Bf/bggIvWzNFldziVp9OXUrF2+sJcHsDhFqMbl4l+E39W302fx2rF7DFzHgnQXtWTEVksMJxgRjjXruKhAEIBiWL7M1xrhfmYEpfvyw9qDhZ8ut9FpECZHfpT4MqNcDRfNLFWCyuCo8JJhu6dfRJ2dZJ46E/rYT9ZLkMFSBOXRSlb6rQsgtBAifSFPxacmuzXDA+iUXoNV/0fR+QBOpjE8uUZkIpxQKqXb37JbwKXEQtImReg0RTa4CkiZ6LFEFTD6u+mQqpqdnWFwVwxqvi+JLLrkUksgtrry8+HlOSQBjopFnQA8Xx4doBdGFD7+1lgG3YIUKyVx2pwoLtXJlxsRIQRQgK7ImWASjfO/5eweUlJRA1CYFGpOzxMh6feJU5LPIKwhZ2kuKT0fslyuZ9FpXCvJPoqSkzLpRkLAxf6zx0+dXjPe5qnBYxsS6WrgK6KLXnMaJhDlYe2ywNnQfmozVvXtP5J/MC5vECuhrFzBTJ14SeRsZPvKy8zDwz4UAC+vg5hZ5gDhugfdrMXR5O8lCPq5CqJOkV+vM43x2peEyovBGLqi6IYpaZ17/rNi0d9xworU32rdC1q0p4DpAhGrE4TavgHhKE822fr4A2iqLLCK/1r7UahABxWP8NMpA5Xel36D+fsgKg6gWI0qMrNdNhTr5uO7YsQPx8fFo1aoVjhw5gm7duhn7evTogcOHDwMADh8+bNnn8XjQoUMHHD58GMXFxSgoKKj2ud27d0dWVlaFMfYCgQBKS0st/3w+H1RVrbd/ACrdr8dL1a2gABdkwWAQqqoaPULGmHHO2rVrsXv3buO3LMuIioqC1+s1tukuBvo1vV6v8dLofio8DAp/YVwuF7Kzs43VbxhjkGXZCDkCwLDS6nky34eiKIalODU1FbIsm9LThKsmBLhg5r1pVRNt+vBhuTZRSI8gYEyQYPxlDAQUw+IiCMxaluCCVJ9dKcs8Zqre2Ka13G+INqPhPSfki/nLBh6blcciNXUmDJ9aaBOFrLFxQ2XAIDAZfs0Ux/0X9d60Cn+Al7luWfQFgON52sQkKWzJV2jLnTJdYMhgTNHqgYK8vDw+/AbFkgfGZECQjN/BoAI9JNhvxfdih/9JY3hWL5fy8pDKNH9UuJVUj3GoDRFpz8/jNAWNl5mpLio8VmcgtE3RBIT+Psim8j2hTcqRZdUkplUIggSmiVRe5vqCA3xbUFaMZR75M+fXv3MGA9ydgeR7DAHK/eVCq0aFwmExo975/EHjY1hWXqY9PwXcPsu4X7NeNJpFxhq9gVnKHODDo/o2LsT5syorCwmJYND6/CLbD9GoS6qqYrsy2zbN8LbGgTLEiUcs2wFm1Cd+vgpRkPl9MD5JSx+RsPhxC/zjxS3Jej1gRv6Nv+VQXgJBBSK0pVu1zhSPqBEqH1mWjfdRt45DELXQZSIABRB4vEhRi9+paJ0QgPsaKyqDz+eHIrbGg6/p9UGrdyrv2OnphXfsjWesx4cWRMjBoOG6I4dZt0WRQZZD/uL6KIKqqsbyo+FtEgAwMTr0XJwuSx4BQJErrwN1+efzeeF0uSLyZM6D1ycb7h6Kyiq8FgBEOQJaW2Z1h6nqGxgMysg4esSoJ6FnEERQdfF3D6bYuYIDYIrhu6qqqub2BKPuAEBhYaExR2LV6jWW/OhLY6sMpvQA1u5hwNUOgBYSDno95j7X5ryYI9AYoeC0jixTdIOMxL8pJiu0voiHpQzkkFWWu2fogf15h1DRDC162QYCQX4PDDiZX2CUnV4G5me5+X/XQlWBw1mh0dva1BcggL4X/z9Te65qnVu906EaZaCoTPNxVSJGiRvqX3WIXGC4mpSWlmLmzJl4+OGHAXDhFBsba+yPiYkxxJTX60VMTIzl/JiYGHi9XpSXl0OSJLjd7mqdq6fh9Xot5+jMnTsXH3zwgWXbLbfcgltvvbW2t2pLZmZmhfuKioqQk5ODf//737jgggtQXl6OkpISHD9+HB6PB/n5+cb96y4RBw4cwIkTJ4zfBQUFkCQJJ0+eNLadPHkSPp8P+flcGJw4cQJerxeKouDIEd6ApKeno7S01Chbnby8PHi9XmRnZxuiPycnB6dPn8bOnTvxj3/8AwCMtADg9OnTkGXZ2LZ3716Ul5dDUVV4tWvk5+dDlgMIsiCYIkBR3PD7gwj4ZRRrAa1feuX/UFJ6PrzlQaiBILxeLaZsWTkU2YHM41nG0L2qKJY8MMaHaU+f5vdSePo0mOrG6dN+CGoJfttXhGLPH9Eleg2ys3MAdAISboCi8KVjvV4uKIpLSsEUFYrSEkePZkBAlFaG2QgGFeTlFQCsMyA4LOmXlJQDkJGRcRxAO2Qez+YdB4GXVXFZMrJzcqEqAQRlB44d2YesE23RNqkccjDKmBSkc/JkHvepDci8J+z3gUl+5OcXoFPvP8N/zipE4YQlD9FuJ0pLXca27JwTEFgqikvKUOb1QIyKgc+XD6bKyM09CaArjh3PhqLw9yMrKwtACgDA7/NCVWJw5GgGFIWX+fHjmVBUFdnZJwB0BAAcOZoBzRCLwqLTEOFH1ol8Iw8BfwCMqdrvVBw+kgFVCYJBQqkmmgsKi8AUN+/kMBXFJaVQFQXFp09BVYGi4jKABcEEAT5vOfLzT0GWuWXg6NGjyMjg9SQ9MwkAv5ejGccAJCIrKxtMDSIQFBEIBMCYgJKSMjC1hWHJOJpxHIrKO2C65T3nRC4CwQBU1YWMjEyjE3jyZB4UVUHGsUxeh7S0oqP4F5L7WJ+LQ4czEKWFk/X5AgB4GaTdnRp6xvmnkJFRsSuQ/tE9mnEc3mIFaD3I2HfkSOj6OnpbIysqGFOMMj9yJAOMKQgGZRQX8xGTnJPlAFO0IVAVRadLEJQZmOJD5vEyADzMjiIrUFmAl5FWBkWFp6CoTmRlZ0PQLFqFhUXIyMjA3z/1YvBFXgBRKCv3IRh0gzGJC3bmQW7eSQA9kZt7UhPusmbNSgEgQpH9UJQYFKlJKGZdUe5djkItvcLTxWCMP9/i00UoKxXh8/FlYBXtPdXLoLzcB4HJOHjoCIA0HD582Mh/VlYOgA44cSIPUJ3w+vyAIKKsrAxKMIgoeHH6tFW4+n0+5Becgj/AK3tZWSkUJQ4ZGRkQwH0VTxXkISPDHD82FTKLMt6FYs36GXpnU3EyvwCmV7heUeQAVNXaVgOpljxkHMuGwJIBAKWl5WHHwnLeiRPZyMhwIycnD0APY0/F5/DzsnNyEeeWAaShoICbpQ8dzgBUH7w+AYqsgqmq9s52AtxpvLOjsFDZFZciyiNBUaJw+PARKKqKwsJC5OfnwecL4NDhI5b8FORHA0g0Vt3T3wVdyiiqgqNHMwDEa9+VDlo4LB8YA0pKy8DUaBQW8nb5WE4pAooDZWWF8HlVtIrzA+iJQFCGJCo4lnncNBqnRJT54aPH4JKCALoiN+8kBJaCotMlUJWWgMDbCIHJOHIkA0BvZBw7zl0KBCAnOwdAGk6dOgWvVzTqnf4sT+RkIxhUsWpjHoC2+PKHQqTEFaOmCIiH1xfEz5uyMGd5HFqoRQCLN77PpSWlUBQXThcXoaSkDErQgWFD/4CxI24x3rvK9E5906VLlyqPqZVw9fv9mDRpEq6++mqMGjUKABAdHW0EtweAsrIyREdHA+AWVrNFQt/v8XgQHR0NRVHg8/kMIVrZuXoaHo8HdowbNw5jxlgDFjscDrhcLtvja4qqqsjMzETHjh0r9P9MSEhA27Zt8cc//hGLFy9GVFQU4uPjkZycjNTUVLRq1QrJyclwu91ITQ198Nq2bWv8drvdcLvdaNWqFVq1aoWTJ0+idevWiIuLQ3x8PAAgOTkZHo8HHo8H7drx3uZ1112H++67Dx6PB8nJyca127VrB7fbjcTEROP8jh07IiYmBjk5Ofjoo48A8KgD+nBNbGysJY+JiYnweDyQykQEg1ycREV54I4qB5OdkBxAmfciOJw/ITbGieho/oX+z+6/AG6gVctfACbD4eS9z+joWERFyWjbNgkOqQgAX4PaXCaimAGHw4nW8bzDEhsTB6ckIzomFgJUFMtcZES5JCQkhizJug9xfHxrAMDSX514cJQbkiShU6dUSMIxBAGkpnaEJJWiRctW2gx3WNJ3ew5BhIK2bZO0Mm8PSeLDS6mpqdi5aycS701EVFQ+yhUnTpw4gcJCJ9yp0YhlUYgSoi11I7VTChg7AofTAUlkcEc54XS7ER+fAH+H1wFwS6Y5Dw7HLrRr3wGpqamQrgWWTQ9CFBg8nmg4HYAqOuF0uuByysazbdEyHpLELQ/J7dob14qJ8UCSBHTsmApJOgHIQJcunSGJBWjZOh6CchpMaokOHVLh5poBsbG5EBFAi5YJRr4cznSIprLq2DEVDuk4VEjwePgCAi3iWsLlEhHldgNQ4fZEQ5LKkJjYBio7Drc7BiJkQBARFxeDFi1aQRR5vQoEgkhN7aHVMS3zBYvRPoWH6WnbNglOZykkSUJ0tBuAALcnGk6ngNjYFtqzbwNJPA2nU0Kr1ny98zZtEuGOKoYz4EBycjtIUhkgAx06tIMkHkZSUjujrFJSOqGF1mc+msWFYXL7VARlIMYNRLkzAcYszwoAYuJaRmwzI0jcRaptUjuktrMK3JQOqYjxAKdLgbhoa1sjihmQIBjXTunQCZKYB0lyomUrXs8/WDcCsWImYmJbAExBVJQHohREtAeIjw+t+S5JDkS5RLRJbA9JygJkIDGxDSSxFImJbeGQCgAViImJRWpqKt5eDvxpSDYk8RRcLg9cTgmCKMHt9kCSgNZa+bZo2QqiVAiHKiIxsa12wyKiXE5IfglOQQZU3m60bcvTi42J464aMpCYmIAotw+SU7GMjepl4HIdhygE0b49H4VLTk6BJPFvQmut7scntIHTWQynMwqiKMLhkCAgCjExbsTEmuIMu9IQG5PB653EhWmrlnGQJAdSU1MhCDlg4FE3wp8nE6KRmpqCrJPAh7/wOmM+pmXLFpXWgbrgdGZA8Eu219e3pd2dikTXXiAAuN2eSvPywvNT8bfH1qBFS+s3uqr8t26dgIQWXNS1aNkKANA2uRME5MDhckOUAhAgomNH3kaj71YAgChtNK4dHZ2OuJYtIEkyOnToCKejCKmpqTiczeBwHsPAgYPwv0Oh/Dg2cStlYaCjNY+aK5UkSkhJ6QAASEpqp8WIFRAVFQVBYPB4YuByCoiNawkAePXbywAArVpugKoqiHJrblOOKEQ5GRLbJkMUswCVu9KEl0lKSieIrFwrj3gIgoqY2DjuLy444HTy0SS9DU5MTIIkcbe7ttrIZ1yLVoiL5RZO8/XTuqRClEqQ2JbHUn7jq9Z47fHWlT4TO0SchsMZhS9XZODjH67EMze0gNMhIDo6BgBDdEwsJElBm4QWcHuKEeV2okvnBPTrd2G19E5jUOOcyLKMZ599FomJiZgwYYKxvUuXLpYIAwcOHEBaWhoAIC0tzbLP6/Xi+PHjSEtLQ4sWLZCQkFDtcw8ePIiUlBRbayvAJyTFxsZa/rndbq3hr59/AKp1DABcf/312LNnjyGk9MlVTqfT8H0VRREtWrRAhw4dLOc7nU6oqopPPvkEffv2hSAIcDgcFj9Q/RpmiouLIQj8ZdWRJMk4Thfxep7slozV82nOj9l/VvdbeuaZydqMbMGINMCYCKeDzzA349SC/Yfi+gkQBVhmRQtCqGwFQZuVCtHIKx9qZtrkJtVosBwSMya9mHFH8QlBJc4BcDhCedcXQXA5eegS60Sb0HPhwdRDs1C5ZYnfmqoyQIgCwH16GRN4aCmVobDoNJxSpHO9y+WEquqhYhQtjqvmXxh7oXZp2VqfBBV80pJglIE+KYc71AtGWerHmFeP2rr1N+NvSRSMgNNGnpwOzb0l5GvMh3L1MuDlJSuSqW7wyApGtArTamKqZq1TGa8TjAkAU/Hdd98jNzfXiN/JQ39xVwFJFGAN3cmvPXepgOx8cwlqvpxMWyqScX847k8maG4DWhgmhbsJiAIQCuTN/UGN8GXaZklbKocBgMx9u1RTGehDikEZ6P8XYMoc4EhBewiI9FdXlMrbBwi87Sr3Bqzn5n0CaO9z/EhEtDWACEEIpefplwV9AQJBDAngUAgixXBtcYjMsnwxA+CQFIs/rsOhlQETDR9wvQz0MtdnI/NhfpG/jwIzDd0yo34ahqoe8w3/2QTnXniEbG2ylJZnQa+7WjgsBtM7CUsZ8JnqiuGj6DXVc90flzEeHYDXcQGbft2IrVt/g0MULPU+6OxqLPms1w+nQ4Re93Rf2uLThRFtuwouir9auhHegCvsOcG4xpn4x/02w7Yxr5EHw09Ue5eZqT2z/U6J/F7C5xRW9X3jUw+svuG5efnQh8nBQv7n4RjvFfiCJPr19DbF5eSxpc2RWUVRxN59ewAAX229yNjG65BmgxNCedLrKw9NpedTsIQp1HFo8bx1dxrdd55HedHSF1hEGTAICGouDtqSHib/f0GLLqAa6RmuSKa2etq06drESOuCPy4X/zapSuglrV194XHAy7x6PhFaddA0c8/llKCqvK10OSXLfZ6pulxhnayCGgvXl156CX6/H1OnTrUInuHDh2PhwoXIyspCfn4+PvnkEwwbNgwAcPHFF8Pr9WLx4sUIBAKYM2cOevXqZVgJhw8fjg8//BBlZWXYuXMnfvrpJwwePBgAMHToUKxcuRL79u1DaWkpPvroI+O6TRX+oQu9GbrgM/yfwsJh6UIzPD6r0+mEoiiG74+qWsNh6dtFMeT3asYsXI0GV1XhcDiMbaqqWvzEzKHGVNUax9Xs42pMhHIlQxT5y6B/7Pbs2WOswmFG36YH01cBCKLuC8m3WVcZ0XxcmfZR1dIVjUlPuqDjIiZoMxNZn3gEhOIt8rBJoagCKtNXbdJ8lUxFqag80Lb+UdSDqgPAqVOFgOjCR3PnQdVWLnK6nAgGFfz44xotJJi10XY5Jc0PmAtX2ym/YdsEqFAhGSLDvGqUIVxhXYvda5qcVVoasqSIYsjX2LwN0H209Ika1glDIgJhgbGtsWx53vQPJS/zLzf1MIkahnxtOFGS+OQcWZvMwIU/X3LRCCOnNer3z2Y4qoU5TUpOMurdmh1u49qiHlVA8+XUj9EjAfx/9t48XpejrBP/VlX3+75nu+fce+5+b3KSSxIgiWxhTUggCBqDgVEIO0jCquAIo8MPUfaYYdARdAZGBATHyRgUBAlLRBZlVYGEEBIgZLv7du5y1nfp7qrfH089tXW/59yLyZiMqc8Hck+/3dXV1dVVT32f7/N9RBD1ztIznKOeCwdnUWAFy1X531mb9Ye33Yl+Afzll4AfHtwBoP7+VtPNVCCaTZjUgh7aR/43FQMZmwDt7daIiQ0yKS2Hz1RYXOqiLCsoFURI8zPLCqHKlyKrH5XWNn98nIP+Sze2SU+DNwhOO9enWy5tgJ1EEPC45nEBn5p2Taz1zAEzPHcoGyyZGi1c2Bjx/Hk/Tllrl4JdjDWEJHDKGwA1gSyLo9+prwBdebWBcN1k3v1gUI+n4M3R/gOHouPf+oENwhmiUnIi5eDRla9NpffUE49jbXYnNuXfBuAj3YXkuXqVG/7MF7DUNRHP/0RKWWorsO/jGebmFiGMtixy/v+0+Pe61M/cpqYoY66zC+AMylCDJVBd4Xf8q/99qzMahR13lBimbrhKRdeVpQHu/M949Lq/hJI2bmKFoKj+QFvKkB13nCzGBmdp7bWsgSCWwsCNOcy80wYFxjfKlISGwLrxuuLPSRX7fTpgobJzhKaGhFnjKFC5nknwvlZOynDdv38/rrvuOtx44424+OKLceGFF+LCCy/EjTfeiCc+8Yn45V/+ZbzkJS/B5ZdfjgsuuMDpE7ZaLbz73e/GNddcg4svvhg33XQT3vGOd7h6X/WqV2F8fByXXHIJ3vjGN+KNb3wjTjvtNADAGWecgde97nV4/etfj0svvRSbNm3ClVdeec/1wL1QQiMVqBuuWscozeTkpAvm4hIari4TiY6TDYSGa3o/IE4oEBqufPxEDNewnWH2IPfhP+R/k+FqAMmLeGurRdriflGK8pCXFSOftABWlY8mDSMnK86oFaAzWhOSoFnn0SKuhKohKcIZ6fS8Fo0sKihhExBklBCADBM7CQf1aGvk+p0yw8qMuLbwiY//Dfq9ZUIYsxwYfTAA6aLnw5JlhDIwYswIZ9RXSSIARp3ZcPUTpHEyQ4SM+ffy13/9N8FzezROWPAhNNp401AEsmRFkqNeigEGRYjMw/UXAAxKLyLP9/vR/g3kquNNhj09syhXWRK6zIhrmj+8VoLJ/i3/ax2kNC7Yyy0SgdQNB+sJ4ZGOL37py4Tku0A2Ds5gw9WAk1OExjsbZsfnljF3/AiOzbHRWV+WV0tAIPU8sPePoyQRALBp0/paKsr48ckrEEtmWfMgGGjKCqzDVLjuxgfjyLHl2saOgtpMlG0pc3JY2hmSZIjSOW/7i2lUYtzOZ3DjOF6YtUPfwzHGyQ2EFOjrKXz9jp+hpA8GbnEHfGQzoVb15YlVDHh8hjnYB3bump1TyKxXZqCsm3rqyXWVD1O5gBTeYIaqRNympkBgjmpP00wfm6e59HevOat2zYmWzf9h5fFDKLvvGy3XoLDyU0Ag7eUkEFc3orU5eVWBstLuXlVkwMapn1cynK/9zkVOQ7kMDNdMEQqeyqI1mcEA4nnZ9sMPdo5Y+S1ACpp3K+up0YlBzClmy8rgBc9+Cv7w3W+GErEsWyj/t9S1Y6NfYGADr7SxgII2tqWBx85llgvXeFvfxHloAhozmxJZJ409Mmfwinev/q6u+YKdj1GhCpg3ldZQws/hoaKG1gQuZdl923A9KY7rli1b8J3vfGfo71dccQWuuOKKxt/OOeccXHvttY2/dTodXHXVVUPrveyyy3DZZZedTFP/TUuKnrLhulLmrKIohiKuSilXZ4i4/umf/ik+/elP48UvfnGj4ZpSCsJ6gZ/OcBWJawgg5ITcg/YDm/5FZOpfUCaa7YQOApXxdUgBlFo7QenQcKWJzEeFAsD/eN/7cerDX+YFyu1OW6lgBwugKAvkWR5Nmix1UxQVMlFYg1g6DVBhKtKVTBFX4SMwnTHDbmXZAoQgEf8SKM0odzgpCCTzC2mOSocyCetgikpquIoKxijwrf/40xshxSG74GtoozA3v4B2y0el3rz0K8hBRP5WK6CMWKpAKP/Fr7goSqe2EOqWVhpQosCg9O1k48RH19qJ3cRZqJwxbTTB66ANjDEsH1MSFUQmCP0QPdNwDq/KAsa0HVqRoikD+wyhYfX+970fFzzz3W7DxPdRGUf6V+DkFLHxTufNL/TQ7y1ioIlz3SSSvxJqevDgQczNLwG6X0NAO522NbCHBXYJi7AG43zQh+7k0QbJKytoQE0Aa58KKb5eaxd5LoKF2clhAZn0hkgZSGYJ07eGAGCMsoh3oPVbaksjiaW0+LtWUkDLMQBjkIL4iozaut8NrAxQvW/p3l5+K0wYwQbEez+9FVIejeYDjD4UmfpmfMwUtQ0TfwsUhe6VJLh85Qa6fiyfA7D2pLVP77kSzxm9QmLUDpvSTVH1jfiw4jfvJ16K0mdMI8m7ijZHpsLh2WM4cmwZp2xSwz5lV3gpLEqfkpoBhVTKa1jWtFAuMDZ2BWCEo7NpO7bTPnFSUDDYvHkDtm7dCiFvi+aAQvt4hUdcyYZrCTMIEVeiyAhhcLB4GA4dllgrvuueg2kFSIziyHDt3gmM7KC115DqBcrjQDYFANh9SONDnxH44Buau4LLi64yeOHPcRY7P2IqzclxaP7jtmWWyvf/HOL6QDmxkiKgAJy0xJEjR3DNNddEXCQATiqLCxuYbOSybFVouH7yk59090tFzPl/YZvCesN2su4dEMvLhJxWAHjve9+Lr33ta+43V7egvzPhr1UNRlumyCisAvc5ydGEIvz+N07vykYOAGD0HP/RwQAjFCWtZDwRLJYbau3kW5SVRiY5Q0pIFaBz+0X4HthwpfNv37WA+a6NYK0IcUW+2XGbvL6gpMCpFHW2E2hZarRyoGlxBmhyu/E2g32zHsns9qgNX/n+pMsMJEWFXr/EXXfdDRWgzkfLh/jqRNjfLFVUNyoWFpchpUfOAOBP/ta610QR8SGNSQ1679gNDVdCvgw95/pngdBV6vNKCwrOgrRofLD5augVIN6cEBIt7NghFDekS/AmQwjjswptfEGi48oIj+XZVRqZ0u7fXLhtx44vQaCCBnsz6i1dCTWdnZ2lRdYMMCh08h2ZaKHksn//fiwtLYH1g6NNsf2/cJwpqWsZ2MjtmRiutexhtLHT2iOuWptEJkk7dL/fOheDUhHCa+v5r5+YAZj3GkwAvDkLMx4pJYkrbuDGHWVMMmABdy4/vOM4du+fq7lelwKqgJP3qYxNNiAwqb/tfs+UiOYkgdKluXR9IoWTWeP+08Ey+ZTXGQi9gHO2UIBNkVhAKQJ7bxTmNYelqFpu6nRNsEbgaoajq+MkEdeq9BsIzjBICS805gcbgLU/hxUwUleUzcFcliZAXHmOSM9uqM1ELzU6Q2vjNlcmm8bnf3ghyRQm9coAcWW0UclYHm/DyC73772WMdbvl27NdOmPNc+plh8qfHKcv/74J3H06FFLyRliuJZH7DEJg/qccPvtP6n3wZDCG7AYAeckPgBgHIhBm0bKLveA4frvsKSIKwdGaa3xjW98A9///vdriGtqaIaIa57nKMsSr33tayOqQEicTg1XphZw+Wk5ruH93v/+9+OYFfkOP3wh6jw74svEk4xyHNcAkRN2snd2q//tv/3he7G8OG8RV3vwlDc4pIjSTjJVIEhAADiXt07aBBCSlsnSHqNdLXUfPVSY3pMRV57A/uBvH4xu/ihbtwFkGzj3OtioAO/C2/H7jYgruVgJTVDCGxeR+9cirs98k8Gf/G3gnlr2GwyfTlBDGwmMnEXIV4NbMF6YYbVzi4CeQf9dXFx2bjs2+n71vxkrSF+iCBBXA0HC2nZSHQTpH8MsMEpxphwDjP2MReN9AgKBAhCyMVlDU4ncntbdJYSBURO4+1AHKkjC8LY/2YmiKCAQGJPb/xNIVzTmfDqqQKWtMe1dpy+92nNP+4UGSbdZD0HDxmMlfiN9XwIwBQaF9lqnoG+hKCrcvT9eqJ7whCfgve99r10NdbIZo8UtNoB58Yw3lzX6UoL6OJ6vFfDn/ugHmSc4xSyPk93HNlk+KZ2/XK3jExs3IuFGWCkRUAX87xzAKYJneszL+zj1uRP47oHzyTiwdYeoLg+NQ4cOBwkIfB15JmqIa4gWUz/RhrgKOIFp+ICRE24cHj58JP4tAh9WNtlmjxs863fj8fOBD3xgxWsAcP6x+GB7u+vkI3P0D2d4nwBVwBisTtVJSll5/V5ttT9pntQo1UbbBoPU3Z8WSfFwLqkIAEjmWybXNiOu8bGQNlNWlk8dGGJKmpoxz/NPVflNrLKgCpfpjs/zy8OuPyidd4r58+QNjMdUZdePj370zyMdd3//YKNmiJpCvFzekAUJaFbNcOILob8ltJHuG9Oas4fRPX/0ox/j4KGDBOJYj2iW5j6+j5X7duvupyVFXMPMWSwf1hQ9N4zjmmWZ45eGiCsjpamRyiVe4JqpAsaYFQ3XzKYDXaludyz4N6f1DEvOVAEdRPcLG2xkz9nTvxAA8KlPfQrvvOpqlMUyjImRNrcohZODjDl1PLHXqQI0ESiLqvGutqy027n3+wX+8XsG7/sbgy9+8UtQQntkRYf9Yw1XUKYVAJiZ9gtZnokIXaY2AMYQPWFsNMfoSNsZfFP6m1yzq3/2yDy6fZol5xc9105aJFoKDd1+EDB1sa07dpMR1zCcRAkN6w887QOg62gnzu5Rv1r/r//1vyODkM6PkdturwyA3XCRENbADjdy0onmS5vDPkVch0VExIgrcyHp2A9um7dUAfr7ruWLceTIkQihc/0gY9ekyvzY4MC9siR++Z9f7w3fQQEIEy4c9e/gg19+aGPbAeCb37Tv2JBQ+dLyABgcsG0ixOcHd9AY22+H0sH1H8R39vyMX9ciGlLljD8u5JHQyfeRGiaWMhLyfIPNrXJUARMZrnx/NjAEdM3bYWtvzDMvIvTffqMmyGSXSWhTR1y7JpC6C6gC/+Edp+J4dYZtt0Vhl5fdplFFCG/KcS2t0H1s4AswjYVpMPV3zGPsr//6E+7Yd3/sBfLputplUTlwFPibr8bHXv3q1dNsphzXtPz2n/JDWjR0iN342W8FQIk5gVTFAN7/ydgo5I0D9UdF34mpYKxyhkjmDabhhIXnZfoe6RirS9SM3mRaIC9CfE6EqgsVKZ4AsAob6XzAhjJldKNjcZ9IGT47/bfXL90mijyEFbQW8TgXIcLLKggpoCDcw21Y5/XwAWu4BuP4ZLKykSIM0e2k8pxn6eZJje/dehSYfKoPznoAcf33WVJDkpHL8FiKuAI+feF5551XM1z52tBwDZHXpnznw6gCjLhyO8Ogq/e9731Ru8N7hyXdxBuDyFBViVuOj5WV5a9ZA5ARD27rpCI3yC/94TOgH/5dYM0FloPq68nsRxeiXWG+dIADWdI+8BNkZhdK3tVWlee0dfslvnEz8JY/M8BpV0HJyi3CxnJqBWK3YGXoeDvzEzMhPHEfSOdCEnjJi1+Al/7KS9xvx+X5dI6diPfu3Y//+Zk1mJNPACCwb//h4FmYSxW7g2sGROIOJqpAjLjaEx2CCwCDssKBI3aDNHIRpNQRSkGBddq5mb7zPe++6uS+D5Q0RG8NFw5FmxpCJirAclxjo4KttNgNqGvBGsG5+XprnATP1dpmg7Nig17aY1G0Oxj1sVmgKoMf/5ie6+ChWTI2SwFEKXlXR7PC8prfvgaYvgxnn/1glKXGUtcarjZQaFBU+OSnrgMAbH8WXVO2H4yjy2uDrglfhIYJugAINnYi/D7SPjDWmA03FLR4VtrzDqsaVcArOQCw8lymhvQLIRrTKEdovLUSw3z1vHiulFI4zHwEAAMzafvFHhg922Woy4NsDnniBSKjO6EPCDLKu72B28DUDFfjg5K2PPr33eGDh46g1/VKEf26jRaVL3y74eDjDzccjAtNWcEYr2ySE3vIBVnZZqeBSFw+9Q8+zXdZxh6IjjjUdAle857AeCu9x4Xmz9JlZYJouSZFG5hg0+fXNI/0h1SBJo5rNB+Ywno3EsM1/BiE9daF34eKvYN8TGug1DFVgHjwdI6MNvr03/6gdONHa58pMFR+CDM9RkFkVbx++X/HAycMIgXiIOnVSlUBEgW0kVY20HNctaUKYOPzADWCzH4L2sR0r/tiuW+37n5aUjmsJsO1CXFl4/OGG27AJz/5SfT7fVRVlaAUEina+dMartymsF1f+tKXonaHad/CYiL0jZb/sFVN/E4XKaql23lzqj1+xo445i8YeRAgMmsUx+gRc0/dMYHEcLXPG7TBG64V6b4GhXbg1Ie9XoGFuVksLjMq67mcLPUkhEE/0JDUxst1uefNmiZIWnQMJJ77sy38/ONy24fBgsrPlU0GV8YcRWVlXmRovMv4eeeqGesmD/pA0Oa9N6BofndPsLqDRZkKjYP8KjY+z03I/nlJq5MR11e871wcWN5h+yB+Xg7m8cdoUWKE10DZTU1945EGqsVjivvXHpw4z07IwUkT59VQHwMExqxdKK1rrAxQn6KonK7jf7rqK5DoUxBaYLiGqGZukyegtxNDy0P/CgCwedNGFKXG4tIAsvsD4OuUG70oNH5w623RJcIMcPjIAg4ePGifOewE8qvHHFfjAkW4pPJfoaIHF68qYILgLBMZoIxy80bkx4dOJzQ+qKdbrbHBJ3UEPTRcM4cAwSG8SpJUWmq4juJu/ywylnMzhoNeg+/DKp2Uxmdd5OATd51tTxwkQ0j0kaNzaNnQ5TpnWTv76dT1FACJwSGMjQj87aevc2etZrh+5LMNMkf5upUvgt1cmnD9KP0DARhYqoqjCgwhuX7o8x7ZK8oqec7hiJtTtak81UVbLmVZxmovxCUPv+Fgs2+PR6oCkg1XTycK7xvttau5KGWxrzd+jhqNLZ0jbBsqTZQxNqRpsxfOr/U+6Q9K179EFajs3BjULXRwv4BrGrXJj/f0LkVRQdgkB8aYiB6zWql4jjXCPdcHP/ghoka4+1tJSav28o//+FX0ukvNFd5HygOG671QhiGuoXHZZLiGO6nf/u3fxt133+3ksLiEiGt4vybDNaUr8LEwGUJquG7YsCFqd5ZljRqx6VxOYsb+7zQQgo6RgUicx8q2AY0uxbTu2BWKGlXAB9vYa1YwXKtSI52DqopUBQCajP75n7+FQWm5TsL4+zOSIOKoczZcw1fTaqAK0GsgZGvDFDA1IWozlTNcVZAmWaQGqA/O4kI6ub4BPbOxJkskpaUK9MuaBEvoHh0UVbKgx89mDBsQoRHHAvChMWT5isHNWA6LNHJLy3EVzYEtJkYXYo4rLUo6QPqzBvQvRRup7THiyry2ojRQTJcoNZSy1svp/8UariLqc8r5TX+vHSMqx/p2bHjGxS8SZaWx1C1sfeSeLysNKS1KWJJRJHQfe/Z6BCza5IC/9eAOVlkh4rjKdGPHesjeeA/nCN7YVZWOEDshECHzBrLGrZ5fzgGIxgVWBePAUwU8p9YhrglVYNzc4utwqgmuQ2w9wX0U0Q06yqOKlADFYFP2L0F7UqoAGUfd3iDg+SYPYYyb/4QzGktrIPm6/vKLtcePysLCwsonDCk33/x9VCLIHJnoPg/c984Axupu30FRJVSB4dfwWCsrjySyx4o2OeG6Y5q/a/j1zlG4qlTHVUTfe7oMCVTkDRBxVszQUKftWxp/0RQ0axHXytjkOXReUZqVugL9QeXaeGwpd/NyaLgS4mr/OP1dwMSjLVUg+I6DudgYg996nv+7rDREQXSisjRemeAESmmN6cpYIjG1yGqMI9pkMMcVUFhaWhxS432jPGC43gulCXFl5PKiiy4C0EwVSF0AnU7nhAzXYTquwxDX0dFRfP3rX3fXMR3h/PPPxy/90i+5a4qiGEoVSL14hIr6v4mrFp+TZz7wAqCArpRH1FR0siBkVvoqMiBEutO2PNoIhaHZZBCgalxobrVG26BKyPzeJQ7JLjATGUMecQ37oD5B+iIiwzFVaaiVFHUWli6RGCcpkkB8vbgPpCA6RCpkHsoSlWVlc4zb6yxq+ZBf/iFe887vwUBAiXj3z4t4NA7szr5gPU0w4sri3BqwHNd4mNlKUsM14fCm91MN+sHp2PDcar/IshHVH2gn60ZBg4GhhQEGlUiQfo1ub4AN2XfwzEf+AAAwNeVTq9bKkU9SO63hvLw8gBIs20XfwinbfapUanAB7ZQLTfL91xVElJX7yYR3W6favWDENfQQBBmM2HAtS530OUfcx+hmZJtka6xCQn3wh94jdkeGiCsjbbXvJjDOpNTJt87Ge/AsNgBnVB1zx/IsHWOEQsVanfRtDQoNJXkDQ78fPsxufOPmFTf8TWHv78fLOafXHj8qIvn+fvN3PE0rVYCIi0QhNgZP4SX6AOC8M21wD/fLSlXZUiaIay684XLLLbfgYx/7mPub+6MsfT9U2thELXFgUm3cBf3j4zbYExZQBawcVtimskpc6ihd0omwpHOgMfFy5bWlg2MqlIKiNmbJZq8pyK0oKjem/uunzqUgyAQZJg+IPWntU4HWltp8nmZ9/P1fCzmtGg9Z9x3g+JdQlPqkENduTzvE1feCCIJhDXz2SaviICSMPnHj+N+iPGC43gtlpQQEo6Oj7pzUAE0N11arVTNc+bo0ucDJUAWUUrjgggsixHVkZMQZygCl3f3Lv/xLJ8mVlqasNuGxvIFHlCmB0mYVUcc/g00TR6GkjQwWEmcNfr1WJ9ebukIp8MJH2Qu7CLfEAk6b8ohXbNSwK1TX0cZKY3zuT4FjX0BvULooULpfulByYFK9X8JFvilALXwmNlBJ5Chw24t6vVR3eH8dGH7czthQt5XHC7N1hfb6VW3hJCSN3v/dO3dHSAm71348+2B87GvTFrXUjfy11dANplA4N5bTcU0gXQAxn3TIohQayqquW5nyn/kYIa58XYC4grmN8fMpMUBRwqXSpHo0+v0CEhp5zgjicIjm5y7YTHVZT8NSt3QbMPY+rF3HXg/LIzV9aOO/9xhxtSh3FBBHY6MlPaInJRAmRjJ8v4TjSoaGcembi7KK+lw470M8NiJULd8AwdnZjlwHDHw0dmpAAJb2I7mdvLmNEdcQsVcy5m03I64BGj/3dQAW/UdYRKAfzJxdYWlAlXvP3Eezs5w1z6fwdNOuKW0QTTgH4qTK528+1/37699vtjarqkKoWWqP2jbQf7ZM9e2fKyOuk4MvuH8PisoFcT5xxw0YlR7h/9SnPoVf/3U/NzNFqqx8P2jLVy+1ieYv2jg3z2e81kjLdaZEJ/SbkrS57Q9Kv5mugocEIEQVKcBwST0SKRKeq3QD7BHXqoJDXFNvYJhW2fdFVUPsWbLN1R0FZwXPHxyj9jS/p6LQ2L5tE7ZvHrWc2hPYidhy607yIGkTuMyEtPMy34+eK3dgk8T66bUnfI9/i/KA4XovlNRwDTmubHAOQ1xTJYBhiOuJGq5hIFbYFr6OosnJcGVDmc8DMBRxjQ0kWQsQaUIbKeWigDEaI7t+FQ/dfLdFmSoIGGxu/6B2H36OmDdJRk4mPUdMCoGq1NjY/gE2jh4ATwKxsUeHB0VVQxurCsjKfcDi9zAYlNiy7RR/P1k3fIBYw5F/Dfsgb0Cd/TNJv8bZtkxn36d2DglKqRkQgaFJ7SRjcFLdYS8Y1Iw2Keh/e/cdxIH9e+M+0EAuCaV730e+im4QaOLT7AJHetvAOb/jSPW6AZEpkVoLgRuQqQ7KvdO0rjpVoOGU2qbGQPZ+GPRVypWj5zlydA579+6211nEtdBuQ1SU2nFcAUJci1I4dBCA1dEtABhniKX0kLAwhSVTAkVJvGVnuFp0qleT0ypR5KcDU0+x7W9AG90ArBxVIAs8EinHFRZ1pk0Nu0YlAB3JYd15IK+9l9Qw5yCWvPIIPUl7aTzuYevQUkHmqWgu8+oiDnHNaE6i9LbhBkEE/069K4y4+iOE9NvN8+2vBUDfY0UfDR668TbbBlEzBKTd2DHiynjCwCXl8IZIye/aFBiUGu0g2cdq6lIPPyX+/vLMX9BS3fR0AMChI8vA1niDLxIeeN8qw3ipveb79wPUtiw9VSA1dFN5x6996ya6pvLz8oG5CQjBsnEhVSBFXH3dzI/1qgLGc1wzmiMWF5exaarnfo94zKIM3okv6XLFGd7cdUMChytDLv08ZzksYRMqAKesX8bo6BjS0h8kwJINBkupAjW6hIiDs2yUaQ3MAmAz2Xk1mBW5C0lpZxWU5ExmHnHNVCDb5RLDEMr94IecjbPPHq6Mcl8oDxiu90JZLeVrWrZu3QrgpzdcmVP7vOc9DyMjI5HhGhqpQN1wZcS10+k4FQO+FhhuuIbrhkFdxzWz7uCwOFcEgImJCWRZ5rmGQmBkZARNJd0xc+CFCqIvGXEVMFHUrTEG460F23cCAhKDQemMDPc8jBSYEv0BGVP+fqsjrvys4SJPrsnhk0xKFchsDvuB2NCofZhGPxOXKuB32kW4I62OkkVmIlRN0n2/d9Mt6PeWk/oNZkYp1Pnm/m9gaWk5uM4g5o7RRBq7rZpd96mhwwY9BW1pJ4fVqPeYGK6Rdw2E1MTjzqLzVo4HgJPD2jRyl6tDCuDw7DHwZD5i7Y2yNG5cVVVKhahQVhJSxmgjZWzyzzgsGAYAysrz58pKW9SXg1QIpfSGKxtFBuXIoy3nOf4WnHHioK+BcwPmKlR3EDHPF15z0p2jCPt3iOvu38dtiz8fbVIFYKkJ/pkY5V7XPoCHbCF3urCINs81fH6MuPpvhr/HTPFmL36xKuDPsNyXL6bWL5nluBoIfPKTHwdABonRdPr2SZYgS0XuCXXuDyoopkvYIfCjXUzd0O5BfrLLbp5NgbLUePBD/IK/muE62iocjxnwdCMAaAVGLOuyAsDuA92IvuKSe1DTAQCFy+albb3N9+/lj3D/pixYAJZ+gE0Ts9F5qeH6jDdQ4E5Z+jnhupseASkqK214YhxXDuzMFMDKLvyaWVWgrDReeNEebG/9IxmuERChE8ULKhF3FJSCWCfjNf1EHeKqEXFceexf9YIfNcIJg0EVv2cha/MyU3eiYuqIq7BetNQwLSsNpYRNIlIN3Yg0laoyULKKeb6pbraNpcgCfvl9XFTgAcP13igrIa5c2m2/M+90aJHl7FhcVjJcp6amovtVVYX169fj53/+56P78gcUGq6h8HxIFQgRV9Z2XRVx1d5dH7orW3nTrpbQFCEEvv/97+NVr3oVpGTxeoPf+I3fqN2H5H5EMmHVjTbmMdIhf7I2QJ57FQUIgUFhA5O+/WB3HgUXGMCUWO5pTK/xaG4mTS0YTQyV3/Ln5Ll0fz/0lBhBMfCC0GnK10WzA1+/uaErIoNF+AXelppbXiikAuDSclxnTjsD5557dlR3pQ3Of8Jj6VKZR4uCTGSDvOGqo2NAbLhlVh9xSnn6Bsth9XoDcgMKFQQGAPjOQ5Eb616uqQrU+zxdlLQGZOX1dIV1ia9f4w1xIQTyvOPIboyyFKXGhLwLmP8nogokkfGDkri9XJTUDnEV3s4cWhjAzZRAUVBiCxHwbMlwDRpeKwkqYxLjxBQUmGRIO/pXHvnn9nnp/c6M/rO7lKToQiOc3OSD0kApif/0ul8FkBoCdQQr5Fb/4iNvt+fR95HSUWTgIWBdSWqrcW3QmhN5BPeVPjt5plLNZgMg9spkGUeTC6ydouj5UA7Lp6Ct00+Ya5xSBbp93kR5F3lv7Oeo7lyirOLkEKulUNVGANka/GQ3nfeDI090vzGSeMdeg/WX+XrmF+LNJs1bhe8GwH+3xiOu+2bjZCZpKYqKPEg734onnBZPPh/73mUoWsFcka2na6q4zyVIpiyczQjpr29uAaBvPwbml1NgYoi82w1YBmSyQG9QxfcTVWPShPh9EmLauLkNSshxbVmFEQZDIKzx3rADGBRV3ftoEBnvaQCga1kYB2Pom2my8YvSIq6SDOWTYAqgZykv2gSxMWe8zxrvifqBktYj+kACgn+XZTVVgWuuucahrAAc0tiEuGqdpIW07v0w+p/rJn6W3x0bY/Ca17zG1cXHVkJcud2rGa7aAE+Y+U4g02F/6BGq5ZETX9j40cZg/fr1aLfbzqUoAPzCL/wCan5laAAymbC05VSFx7yqgLAIDBmzwEUPIRemkrSADwZWLL93u7u+0sCmTRuAwQEcPi7QzgIXvGrSR21Okag18KRzyOhq58Sx25T9C97xor3JmXFwVlqaArTi/iTjIeb++kn7xU/4hm9nmIDAToBFoWsi01oLtKyRX2mVUBNio/FQcR4oo9jKiGuW0d/jci/O2kbGOwdn3XDDjVBH/hpnzF8ec1y7t6GUNsBpBVUBRrnDbiHD1ZDh+pNX0TODXICc9pCpAmWlcdaDzwJ2Xe2uryqD6bWjwLHrUZaxsoKwEmQxn9S4zDl81DR8L1y4u1j+iyXIhBCO99ofOA6JvW9cR5zyNXEHmzJQVhB49n94im2niBJRUB/EKHeWCTuuSVN2et0E9Umk5EBUAQME37o/h40QL3PnLozbCcsrNqwqwP1iqQIJx9UEkeMqMbjJO0JG6c+dfZOt21j+s0C7RZXXdZVDjqs/Jqw3hZMi8Du74o9/hltTCxiV0CgKjXZeOaNlYTE2MtPClJKv3lT/zWeki4/v3B8nQOkPNCTik6792F8DIE42QAbyP99q8Kv/zeB1fzwE/SwrVBVwxUtfgiuuuCL67ab9Z6Nqne4P2KQrZYlkbdJ2sxJyXBOVD5ueGQAGlivrMraVKeIqbLCUH0+xW75qRHNTjqsbr+C665sVTopSaW+0ueBF+6002Yv9QiP1+FfGOLAE8FSaqIh47jaakOqmqcNTBYBBUTaeM6x0ewUyRenIo+BFTjYg19WO6UA6675aHjBc74XChuRll12GN73pTTDGRHqoL3jBC5BlmTMyGXH911IFmgzXSy65xLUJiKkCfG5VVTXElbNyDdVxNQadbABeXAxoUTqjS4Zyk/g+fxhp9pxBkMFIpFmOLOIa90vd/UWC53BUAdiQp7Iy2Lp2yfWBFMAtt96GPbt3RekVq8rg2c/6JTzrWf8BRSIF1SSxlKoKsBGljcFljz5g+8Ab73VB5zi7SgrTpUgVUJeC0hpoBZw6QqvonFx5ZCnNiS0FMChRM5wrHaBgiBd0AUS0B42WR1wrq/ln6o8SBuldfeVxAD4POSAxMaoxam6PaCQA0MuskSD981Ef+H8b+3/GAM98/FFbdzA2BvvdM5eVQcu6zg0YVbNRzDvf7Pug0piaXIOLLnwiaZiGhqtF9UY64aLk3ZVOBGAIRxmAS5urpLBUgSDNpaB2Dsp40RCJ5WqMoaCn3f8VohFxhTOwo0ATi4BOyDvd/TR3om2TBEXUSwGnY1oLiNP8jpkbR0YHhA+4Ihk2NrpDQ9sXn4AALhiMtSQZ2wWAxS7QyQLaikqN6cz1wWiLNhF5JhxVoGXR9Dz3G2CeI1Qy7mgOtV4ge/+FhVjTkgJ+4mBaKUoyrLTGaVN32utWNlw5Ir5ptAwGnJEqPv6a/3ma+3elrToIBtwwAJZT+uMrcfY4ZfUyBvjvf000pH9sMJIfueFLKEsyOs8443RMT08PaZUtom3vX3fdVzWqQJMsGl3U68eqAqU2bk5yWZw0ewKIExrfL9WepRItV4I3MP4QbabjbyqiCuQM7Hgvk5T1YGPAymElXiCmo7j7NQAfTI1wbbaUjybEtayMowoURWy8Dyt8TrdXElXAyLgPGnm+0m32VBNych8qDxiu90Jhw1VK6Qy/YRzXqqocbeDP//zPV0Vc2XCdnJzEi1/8Yne/YYZrE1Ug1ZBt4riuirhqmvwZ3bQeGVxzzV/YdtJkMSF34glnMZ/M8n/CvrLIpXebl4j59hqMLkb9YqyB8M119lhIFaCahI3mDLPyCGHw1x//Gxw8sBevfOUr/XvQ5B7NM0mR1FGfN6QMFbEIOhfOAQ8ArdzzfFfcwSY8TapnNSSBFzX/Ll3CAwOnl0mGa1QJpGTjJB1rBqGHKOXUGmMwZn7kjjkd12MkWNlEl2COq4HwMjMZpbw968EPwYMffKY9bwjHNYulpaJFwomwCzz7guN0up2Q10xOglcP7oPx9jLy8m6PuCbSPYBVOrA84CKRghLQqLTBiPJSQZkC+n2Ws7LPn1gbn/yqwce+RMdKLYDvPoI0jUvaWG3evBGvfvWroRSNqaKKAzdjwzXYxJkSte/DFCQFpcn44yxAQvjUymvUTjLeEyQos99HURoICZc9S2vg7OlvYxI3OnMyWgSDRZ3HuRDkSo6DIFOKgad6pIgrTSn0+217FFqhByQNdhFEkgz1M5nHqI30hit/H27eYuMkHFNUx6D0c8mX73oq4kJZ5Pr90HCl7HqVNk5KbFCkBltcPnf937t7poWvvfLlr4mO94sgZ31psNwrvbqKrecJ518AlEcxvXbMHf7KTQSOBAnufNslpeetKgQuYnr4/3YtAxPBxMCIaxXPEVJoa0iGhmuSajiY1753B28A6V5VMF5ojaJvmTxljLj6qpTQNW1XAMk3a9seaj0nGdSAWFWAqQKOAiPs742Gq0kMQI9aun4ZQhUI26BtfEbTPYinSh6ZE0VcveFa2fWozvNN+yDLhJurecN7Xy0PGK73Qgld92xUNhmuUkqUZekQVwA1w3UlOazf+73fi+7H1zQFZzWpCnBhjmuT4aqUQlVVGBuLIyq1idEUWsyEQxY5M8eoPIinP5IitzNVlwBLc8bL1F1iqhr6R222lnI1Z5/PI0MxVcAvQOxuUVkbqZCftjv7LJMUqBAGrSSLG92vmeOqtXD9m+d+sshXMFybfmlM+hChTKghCSGXyqXktME2G8a5n4ylD1iD/hs+e04oS0T38/82hrUa44C4ojQYGeHx613xb332d+i5rbFgAiMqczt7JK7Bhlk7Uuauo398P2ErIuUKMtyvvvoqapWgjDiOgwqPuKZueOLZCUclaAqI0xDAt8+w7WZOoa8ofY5f/l2D17zXGq6VwOc/fx1Jw1lE97SZU/D+97/fuvM1yio2HpqpAgbE/yV4RxvQBqI8HqDOfrNACG/AOWXjPUgnKZlKY122/Oys78veDBetD96U+XHHSA0HxPHmlmcJY4DXPGPOvqtQVYDulWcqWGDtg+sCMpAiylSSzUpwPaGrmQwWA4F2y+tUakbDrMuaAxpdVcKmA25QHgleALQRWFgOOOB2PtDaG/yrGa68aWhC2Tht6798f7b+I4AN8p8wKDS6vQpZkiJUa+DNb/4d/Pqvk5rCSvJsAKymcGmN7vi333o/vznv4fOGa6IfLDTKym8KAP5mUj4yla/9oO2PCZbDittK/SlINSb5HqVNZ52LBTz/KbReCaSqAtrOP740BmdZY7bSwqsKCBFTBULDD4s4e+sB9Aa6jriaWPGGgomTG4q4nbRhsh6s5HWxfKOUjPBi1cL3u/IPN+FHc09Gumkk1R+BSREk9rCesAcQ13+nZSXDNTVCy7J0iOtll11WC84ahrjy9eF5qUtxWHBWaLjytcOCsxgxftjDHoYrr7wyqp/sVkZ8hDVEeDHzaKMzHBVrNMZGYRFlsordQTAk5VFHoglxZXcd78i9ccJUAQR9QIjSk578VJx33qOiZykrylGdZxJFUUV2rRCytriQ0aaBpVuA3i43M2pjHOoUI64rf2rpXCRRX/TqCQjSCdlPTtwPTBV48oN/aOvwRpuSBtA+aIyQLxH97Z7XGh2h616AFtjp9euiZwgFuMO0t3nmjSh247pMOQHXcM2aNf7G5VytDx61+VuYEje7enVkAHskgblz7IJ3Gy2X+KLBcC09ukFUgZiv5zRGjXb3Y+TNB2f5jvuHG+nfR+xjlJXA5k3TznAtAl4ft7NprAU9ECOuHICjgV979gRgBpQVx46N3CGu3ngPN3JFYVNK33Qh1q8xTi1DCuDVzwTWqDvd++T+c4aANRjDPncbJt4YxI8CA+AXH2e5zjwnGU8VkDY4KxzY3/jG12LDVabBWVRCxFVZ7TtjPFWAECXe3NrzEpcpbWpIpqyJruPOM8DCUig3RnxLkuk7McSVKQ6Ox3rcp9suygr9gQEeem3jpUpqDIrKynbZCuxDldqg1cpc/66YOeumJ0eIaz5knupNv9r/IZnaFhvdrFIRGq48pn2hf/cHBl/+h28C8Abc0WPHMTraic6tNHvKYNfC4H42tfG67If4w1/jIGEdSd8J+/x1N3mCuDqOK9x4CcGQNDh1OrsVlzzsTvQHBmn6c20EZQR0dafGNGqbcOtkwKAoa+s4eQM9B/5kqALhDcNHzm369Uz5huWZTbe8SvzFfaHcx5t3/ywp53QlxLUoipNCXEPDNUzdOiw4KzRcub4ToQowx5XbvWHDBrz2ta8NrmlAguARuzAXMreBeUtxHwBFsEiwcRDXWucXaQs6uUAzwSlLPccVduLx4uY0AeatUWzZsqlWX6YkskxQoELEkyI39pj20bbE7zTA/DeA5Vu80RZQE9q5dGjHSlSB8Je9fyNwzuRnkKmydlId/aNJ8uNvnXP3qGzHOOqFiNvEhitxXONO9eiGRYIiVIveS4G1vg+sfJO3dYW7B79zH8ErI74lQH3Dhk5oQMzNBcbq3D/W2ghrRIVyWHy/MDuSCowoooxQ3xgYizLVM6hRgg7hMlvFtGIKCjQGeN3r/qN9PlitV1NbcADg2i/FfVxpgZFOhiyjYKkQ5WKJLK8DS/+t5PqkjQabNm3CIx7xMCCQPBobGwWMDvhrvs8d4gp2nxrvNRACmP+mRVxZT1NgbERgRMySG9M9Wp0zqAIkk59FJCi3HxsimCOEfR6PUsbIO/1+9MjByPiiDXB98fZeoFgOK0Jco6oJWKgi17LwfTDkkxXQMADml0KqgLYIvQHH5TQFb3IxxgA2Ov/mW34MAJiY8N6PoqjQ7Tdeap+lwqCo0O1VXuWCN3KaE2r4dWBoWfiW83pVJqQKxNeYsUf4P6zBXeoYcZXOsIqpAprnkWrJ1fs7H9S4q/8M3z5DnN9WENQE+M20EJzFzf8mWWrLALnL9kDf1CM2fQsb1TcAi/YbA+CO3wDQHH/hVQWE22BLGWzIRNojQKct0B+kiDlpzYbnMlqclkaKyqBAqjLjqQKCUnGfAOTa9M7D9YON6ZCPzKm4DdTQsX9fKQ8YrvdCSRFXdtnzsfC8EHEFElTNXtNEFQBOznDl31LDtSk4q9fr4T3veY+7Bxvc6XVC+N01TQ7CIa7kWvH3BjwimAZnEfLFz9jM84mOCb9jjqW9AlRNWLmmwGgTQkLCEPcuDUyyBPg8U5TKMOjzyc4cKm0wmi/jNY99LzcBZaXx4AefhXXr1rpnJf5kHXHNVkNc7f22rhfWZRzABkc/T30QGq62T4wBxq38bSPiCpYlCtvHOayTPrBGPu/Ca/QMglzd3ywbJACct9kbmCEFIM+4D6hv+Tpj0TCHNsq6+67JvUZ0BQNyAfpn8jqgflHizQI9L5zRxq4/dmv+/u//vrsF94u0wVOxFBTJohkIvOAFL7D3Y+mi5pmeDblHnGnr1xIj7cypCpSV8ca7Rb6ca5fpPXLCt8G64FutNtZMjLqFh+YYANDOFUpcNb8IO0NSADB+nIUtZ0+C/z6EXeCs0StCBMuO7YCi4vpc0HdWpzn470Nlwftjw5XHiwDy3k1AbyempzcgxG6JD60xJvfikafuCeoOgnskrKfGI65hqk8y3qkPQu+KCfpgOOJKY29xqcLDp//e1k2avLQRobYOVkjNqbUGtrwcAHB8joK/FuUj6Mfd78Kg0OgNhhu+mdQYDEp0+xVCXWGqG06Tl/rF990jN309rsiUbhxUlR+vbjwv3ji0DVWN40pzRq/nE07QPFlRMOHOt7iPXFee3sBjR2tdU4BjVQEhJLRJENeArsXjnCWl3LcOu4ExAOYJ4c1qqX89h1UHiCupbth7SVmbn9otiX4RrxUe4Q3WOFEPsoNIOK7Wq+E8IFEfsOFKOq4nw3EddizPhGXH+8o4OAsQ7nu8r5YHDNd7oTRRBZqi8xlx5exWQDy4fvZnf3ZFqgAbriupCoSIKxvKqyGud999N771rW/h/PPPj5Di8IPyKJ41INgFxxw36Sc1b5zUJbIoO0kQnCUSjuvePwQbs08522aEQn3HXA8CsJNYLWCLEN7UjmSUIrPBWc5gGRxAJkpUFe2cX/XyF7n7FaVBp9O2Bpk1Mow3RFot5YyQVBcvan4yUREKHSx6t/wiebiNwaUP/Spkud8aELB8JNuXgcwLLwCMuPIttOUBDgqa+P/gD/4g6gOeIPlv32CLhAcrC6MgEQKKOuKaclylBPEPDbWBpKDqY0NrYGrturjf2G1NLXB9yc/XhLhKG6TnXN2wLkxLFfit3/otW5tAWVWQUpDEU6JT6akC3kDLlF88GwBXZwi88KkWPdUSnbZ0VIGy1O79sesz3ZQZESiIwIvvS2HgdVztptGQcL7juIaqAo4DLpx3pORV3t6PPQmea2gC6gcHkHCQkzUIM7+RjFDuqt4nIZ2I/xupCkirKmCAdftfgsn+pzEyOhHLvlnPwrjciwvOvNsdDwM/aQzHiKubf0RAKUgytjmOKyOuN3td7OApoI1Ab1Ahz/i5teNgngjiGioSVJraZ2y0PgaHUJQau3bvr133M2uvB2A3TKVGtx8grvyNa6/YANDYuOiM79F11sitqgr5/PW27ZYqoL0ByGUEu4Y/QxUbZBzsFyKJUZKLY1/E6IG3AgDGOp4DyutLkxePjHBpkdsYcQ1F9D0wEHCreV4ydr61a1Qrq+cmzBRtYCoTbvaEC84KOa6l9dSMtCUGZUP8hbG0Kmv0M80hLnEwKqW/NhgURW0PXFmgRSlhA0bp+G/80SqIfu2Y/zfTAmLEVTo1kgcQ13+H5WSCs4qiiNK/hgPu7W9/u0NczziDgkHYcGWJrfR+oeGaSl+FagdhCTmuWmtHF3jLW94y3HA1wSTj0LzA9RtGYSZGTNwHMdeQd8wSfTz94T8Edr2T6tYGOzYcc9XVwLjAQBNUkTVmY9RZSh98Ehba2Qu0MkWTg+M5tKxb3i5QTuPPOMOHjSHuA168W0ECghRxrc0L0YQsUJRlekbU56Hh6gKTnIi/R76pDxA9LyOQUgK/+Zu/GdWvpMDvPf97eNjWO2qpS2kBiBHXsmTkHXDBWQgRV4fV+Whd+4IMhLODU1kigBHfuA06MUBhGqgCCeLKnGiuilHnokKMqllDXEmBqiyxsLgcc1xFYLi6PmcOXzNVgA2ym79/g+0bhZblUhOfNUQJhaUneIMcANrG542nDVNlF1MNY3ymOylhqQKwHHAR8Yor+7zcTCmE4/6+7GUvw8TEhP9mAhpJSBUQtl0GwM+d9Y/0jNL3b4i4RrxiW4g/F2/mtKE66J15o0JrjaWxX8b392yPqQmW9gB4ahKAqC/5vRLiqmzdTGnwbomUuwjYOaIg4+RBdt6NzyDDpNcvnQqHsoE1EeJ6goZrOmwuvfQSlGWF+YV62tdBwYayQVFUmJtfxtrOYeC7D7ebS4PSciJFMN6hC9tfdH1RlBBOz5spKnAbHS55a3ToM1RV4iG0c830eqsx/jXlN7cAsPwDtI5+lNpU+ed3XHVtoKLOEFYOK2xjAOIEqbiZKiBqHNcAcbUji6k0qtzn67JGmw6CsyTP+4bRZHqOpW4JJUuMtCX6Rd1INKwbe+uzqQ2i7r1KE8MwVaCocVyFU7whVQHvgf3jT2BoWc1w5QDO0HDNc2U3pfL/LY7rBz7wAVx++eV4zGMeg7/7u79zx6+77jo87nGPw4UXXuj+d+DAAff7Lbfcguc///m44IIL8MpXvhL79/udZK/Xw5vf/GZcdNFFePrTn47rr78+uud1112HSy+9FE960pPw9re/HUVRT/F2Xysna7iGhmR4Dkf0G2Oc5mhIFQgTCYQ0hJU4rsMQ11BV4E/+5E8AAI9//OOHGq6+bua8MZLF9/PnRoirjtFG2u0z/xCARbU2ZDfhI2/ZiM985jP2fsEiZRoMYCF89quIL+t3jwbSTqR1qoA2tJDefWQdPvO9c7zB2RrBhvXTLnNWK2OU2wefCLaUESOu7ZaCD84avoUVlnfpnoWpAgvfjc7zaCNHd1NfKrdZkEgzA7mACQegGbdZSI13djGetmmATtZtREBNkJbSuVQRyx4Z45H3Vh4irn6hNIYivtmd2ZQ/vOKxsu9/+DaY2GVN9wuMIeXHfxic5d2HxgUfhPI79B7IBa2UwGc/+2lcffV/SdpU1RAJJXkB8s8SFt6vzM4esO1XlAnIyn+VlXeTM8dVa+APXz2PdepWAMAY7nD1ceSxAGzMvEdc6R1XNkMU3biV+e8x3MTxe6BMRwIf+tCH0Ol0XDBNaEDQZiHODGYM8P+9+nzq53CzECCu6YaJr/WBdGy4emPPuSsFvcfp5Q9hw/hc7HqVIVWI+0Ug5uLS3CRggrHBCBqb34wy2cZ/+0w8/LTj/tsWBu9/3/vdfVviOLaM7wZHqvcHOkBcjVWJAIqKINcmuTwuznDd+Q5smfLyavjBZQ5ZGzRk3iorAAf+zBoxGkeOLmJiLAeWf+C8Vd/ZdS76ReYsFQPh2sLelOMLBaYnW/jwhz9sN0wVGW0JxzVMQ5uWSiceCUnGZ7szAhy6Fq95zWvo26s0tm3fjne+853+2ipMpEDewjhhBf/GwVkCVWNwlrabOKYK2G/dbqaN0YDVMP3IR/4MgM9oGKVlDcT3eaMjA/BFKokbvnsDFhcXsdyrkMkK7Za0PPWwxcYirgKf/exnbD11Q5Jl59xVdlj2+mWiZmEsx5Xmh+JfQRWIgrMyjr/wB53aS5DV8b5aTspwPeWUU/Cbv/mbOOecc2q/Pfaxj8XXvvY197/NmzcDoOj0N7zhDXje856HL3/5yzj33HPxlre8xV33gQ98AHNzc/jc5z6Hq6++Gu9617uwc+dOAMDtt9+O97znPfiDP/gDfPazn8W+ffvw4Q9/+F/zvP9XyskEZ5Vl2Yi4fvGLX4wMUR/gpNzf9wRVgK8dHx/HyMgIqqrC9u3bAVBGr7DdkYFteHIwnn9mvIFGwVl2EQsQwTpSKhLE1e+qN2zYgKc//enB/fx1TUFeZY0WYNFbyX1ruXeNiCvxiKYnSmSKpGEw+7f4o/9IBpd2O/tmRIm5QUYjMlwdVWAljmsyWzOiNDUaC5h7eoaxHFdheXr2OlVf0Pk64V+RdYX6RYyPa7s5aOUCpY4jb9evXw9tDMbUQTx066zrg7rxbhwdAaDNAAvKuwVBAICEMRIPechZePzjH9+ok0jAogD2vjd4lhDF4+/DG4it3CtAOMRVxnq+MNzHMZ4rBCEajFz2egMyapZuAXQXrLNojHCJGvKIKlCf7W/83vfovCy3t87IcM2YKhBkjZJkzFZa4CmPqlzmo3ATyPJm5AatwAsPSUEJwGjkOfOfZZQFyHFVhUeNq0AOi/sg5N0y4uPGnbBZrYxvl0NckWwWqtjYdW/N0YmaNh52jjDAU57yFJyyZQyDMt3sJrQgaqaVU+L7sdEWe1wIZfLP5jZMAvjfH3oHHvuYR0Xfx/Skv8VadRtOnbzLtbnXrwKDm6SZtDHoFvSuV6IKFJz7tzgMg8A4PPY5lw642/PQIT9PWQn8yW9vcnSiYwsGijfT1lt1cHED7j48Fs17bCTxs88vVhgbEbjyyiutoWyc18l1KIAsHxn6DGUVf7MC1vtgANz1/+F//I//AQrgpLHZ6XTcc1SVpwpUdnJn2aewGEOSZVJYqkDQpSpIDCOlBH5wKTjrmXCTEgfpwUk65lZdYqI1h2ecTxFwmU13qrVA23GiQwoMgK2vwe5DBsvdEkpUaLcyFKVJlRUdOLNly2bXL5U2QH8PzSWurzQuO/ebgCndvNYfVM1rk2JOuq7Nk03lRBBX/vvVz+T+ZDDg/zFVgUsvvRSPf/zj0Wq1Vj/Zlu9+97sYGRnBM5/5TLTbbbziFa/Arbfe6lDXz33uc3jlK1+J8fFxPPzhD8dFF12EL3zhCwCA66+/Hk972tNw9tlnY3x8HC9/+cvx+c9/fsX7DQYDLC4uRv/r9Xrg1Kb3xP8ArPq7l2ny6V+LooAxxp0nhEC/34cQAu985zvBgVIvfvGLcfHFFzt+a8pz5b/DCTlEoplKEF7H53O7uA18z+c+97l4xjOegbIscfbZlJdaKeWu4Tp9GwB2GvJkYgCX7pLQTl6tvDFVaTqR7+8NSWP7xDgZGd+fdgIJFiPO4uQ3A8YuZmxGC7cIw02WhFRR1LSJ3hfvan9mZg7nbL6TFvSDH8GvXELTHi+UmXM/M5Ge+4SNNm8kcj5owBvPaSpgbX3PrAbAfVAWlJjiwCcHuO6666iN2iMSzm3t3kPgRrb97/rcurL5nkIY5yb3bYAzUPKMFqUwRejatZPQGhhTB/D+1/Vd3STf4pEdele+TaxhSBQKbpN2517x0l/B+9//fkKQgyANgLjI7XYbn7nub90AI1TGOHctDS//fCFyG2WkKkFIvEXyfNBa8D3CYDCw6VeVgJAZylLjwp/pQ1bHIqqAR4o5/ahvAz/DwpLG33+JgmGkTeShjYKSxkrbGOLUCqtmYF2B2hrih8vzSP0hMIgFgF6/ABjlZo6r63MNJf03GUb5lwk1ghZ5st79nMQyTnZ+gEkyH5EhQK8q6AM7hkLKT5Foerp3Zfx74XHHF1IkN517zTXX4MInPhaDkozZb7//uL1OoLRzhJciEnbs8xiyGxvjF3HPt/ShXs6oMMDzn/98TE5O+nENg0eeabAp+xf/3Rrm+dJ74P7NJKV8LQOVDQqkaV4jen1ruOk+Sh2DGpkS6A9KdHvWvY8C/YF24+eZz3g6pDDoDwq85WOPwI2HnmKfxWeS0sbPxdp4xNWA7rXcHUBJOwdLMqRZeipc41odr9+dAi9lKhdnlRUMz4X8TRX0XqampnDqqacCAIqBN1wp3anvcz8v+w0nu9HdEnTjYzHVOUI0BH7Hx/4OAI1pN//ZDa7RwRxhN1otMY/ff9WyGxta06Yx7INUdu3OvRqLyyUyWVoFGr82YOE7OK39BfghHszBpSbO611vtMeMUzURAli3bhoCwJGj81hYOJ7YEnSeUkB/UEYa38PGV9lINfPfohReveR9r+f3B2h4T9iJ2jv39P9OpGSrn3Ji5aabbsLP/uzPYt26dXjuc5+LZz+b+B133nmn42cChOJt374dd955J8bGxnDkyJHo97POOgu33HKLu/YJT3iC++3MM8/E3r170ev1IgmpsHzkIx/BBz/4wejY5Zdfjuc85zn31KMCAHbv3j30t9nZWczOzmJ5eRnHj9MgPHLkCGZnZ9Htdh2ivLy8jN27d2N5eRkvfOEL8Q//8A/YtWsXlpeX3TndbhdHjx7F4cOHXd3Hjh1Dt9vFnj0UUTs3NwelFObn57G8vIxut4ssy3Ds2DEcOkT8uL1792J5eRlHjhzBwYMHo/rn5ubceeG/d+3ahYWFBezZswfdbtdtNtjg7fd6ADT6/T6qqoOiKLFv/14AD8Hs7GH0egNUVQvHjy8AAA4fPoj+oEClVdAHi5hfyFEWbezcuRO6KrBz525UVeXOqaoK8/MLKK1btCo1ev0CVdW258ygu7wMVEBZttDvdWEMUJUFlpZ6WFiYBwDsP3AQVTnA3PwS8rGlqP7lbh/Hjw+wuDTA4mIbbbEMwNh+W0QfS6iqFg4d3AfgwSgGfRw5WmAwyKGrHKUGlNDodns4duwIPe+h/XYir3DwwH4A6924CZ+v2+1i9vARVFULO3fuxGDQx/6Dh6hd8/txzjnnoKr2YXZ2Ht0uTd5FUaAoSihT4NDBAwDWYHFxHku9DJVe4565LAaYD3KmL8wvot9rQ5c9qLYfi5WusLzUw/Hjx3CsdQjd3hiOz8+765aXuyiWllCWIzh69BCAbSgGfRw6tIyyHMNg0Kc+ryosLS3j+HGaXBcXjtuEDhoHDuwD8CDs2bMbALkG9+7djeU5jWNHj6Db7bt3Oi324e5d21FVFSrLh6t0hUMHD6HfN9C6hdJoaFOh1x/Y72MGS4tzWF7uoapGcOzoUQBAr7uMst8Dsi6MrtAfFOj1Bhj0lzEYiKAPShw9toRBfxEXXngh/uFL1+HgocPo96fJJKxKLC/3MCgU9u/fB2A9yqKLw7NHUVWbMT+/GL3bn/vtLcCGF1IbegPs3LkTla6wa9dOLC7MYX5R4OhRoNvV2LlzJ3q9JRw9mmMwKHH40H4Aax0Nh0ulS+zavRdVlaHfW4LWBaqqwuLiEubnjwNGo7u8gF5/gKrS2L9/D4BJLC0tYHGpRFFIVGWJSmssLy2iv9xHVY27PiiLAebnS7Tb0n6PFQ4ePIRiYKA1UZK0ERgMBjh08CCAU9HrLmFxydhvnfq8KHqYm1tAr0cb3sFggKrqYDAocOjQAQAbsHfvblS6Qrfbw/JyaeepPZRyWVMf9pYXUOk2iqLC0dl9AKbQ6y3j8GwXVTWOhcUFOyeVOHZsDst9AlUWFhZQVVNuHgNmcOQIjTGtR9Ht0jdx/PhRdLs99+0BQDHo4egxjcEgo3dm32dVVej1+zCg8bz/wBGURdfev8DRo8fR6y2gKGhjd+z4vKszLbv3HASwCTB9zC/QXDSNvXjK5Zej31/GkaPH0LLznUIXt/74MNZOZCgq4MD+3ajKAfbs2U/foW7ha1/7Gp79uz3cdfcuAKdiaXEZBw8eBXA6BoMSld2Ednt97Ny5E3fvOg6jaUz2e10cPtxDt1vi6JFD2LlTumcODSCea1EtA7uuwtLmp+D4cU9zqMoCx48voCwNzjn3HDuX9XDgIM1tF198MS688EI88ZWzmDt+DMDpeOVTvocLHzUF/ZElHD02h+VulszLPRw7NouiKLBv/wEsLNr0u4s3oBh0cejwLCrdcdfoqsT+g4cwGFTQVYZKl5BCoNcfYHb2MIAzsbhwDN0uUFUt7N+3D8BazM4eQq9fYFDmOHRwH4peB0tLC4CpUFVTOHzoEIAH49ChfegvVjBVF/NzR7G8PMDs7Byw6ypg51sh178c3e5jMCg0DhzYDxz9Nvo9jcOzlNp95iFn4ccAqqrE7JEFdLs5HrRV46wHbcTffX0PPn/93+PokS1RH8zNLwGjAwz6HRw4uIDjx/18Pmx8LS4uAjgHMBqbjv0GqukXRKmLlxbn0e8Xfh365wuxd+/XUdmNx549u9Bp+XlnJXvnni6nn376qufcI4brox71KFx77bXYvHkzbr31VvzWb/0WpqencfHFF6Pb7dayLo2NjaHb7WJ5eRlKqcgIHRsbw/IyvZj02vHxcXd8mOF6xRVX4IUvfGH8kFl2UijxSkVrjd27d+OUU06pcUW5bN68GXv37sXExASmp6dhjMHmzZuxtLSEkZERzMzMACCh9fXr12NychIzMzPOqB8fH3fnjIyMYGpqylEv1q9fjyNHjmBkZAQ7duwAAKxbtw5TU1OYn5/HwsIC2u02RkZGsGbNGmzZsgUAMDMzg4mJCYyPj2Pr1q2u/k6ng9HRUczMzEAIgZGREaxfv95ds3btWmzatAkjIyPYtm0bAMu91RqjIx0IAHmrDakkVJbh1FOIZrBlyybkrX1QSmF6HUWGn7J9G7JsGUpKd//JNXfh2LJAu60wMzODPL8FmzdvgVKH3DlKHcDY+AQgx3D9u/tYWjgL7/yT26GUcueMj4+hlQGtnCYICIk8z5C3OpiaIn/f5OQkWq1jaLXHMD4xFtR/EHnexuZNU1jqDpC3ehgdETj99Bk86EEPwuSaYzCVglIKO07nfmthdHwUnXaFLJOoSgUlBfJWGxs3UHDCaTPbIdUiAIlTT6V+OeWUUwDsi9o+Mno31q5bh0wtYmZmBqOdWzE9PZ30wUFMTU1hbGwZQhi0WjmKfoYsa2Hrtq0AgKnJSWhBbq+pSXrmdjtHuz2K8Qn6jsbGxzDWy9HtGoyOdXz98iDanRFs3DCNU09RUFkLY2Nr3JgeHxtFV49CqgynzzCVpI01k23kmUan04YQlOJ4ZGQU0+vo2o0b1kHJZWihcPppM0kf5Jg59RSsnQA2b+6j1Spcv4xmt2HLlu1Qaj9OOcWOO6kwvX4DOp05yoImMwgjkbfa2LyJdHk3rF+LdvsYlFLYtGnajo1RLJkuWp0RSAnkeY7x8QyLADqdtuuDPDuIzsgYRjoC/7z3QuAhz8e6dd/E6EgbAkCmFFrtDlQmMHPqKQCAifERrFkzBaUUpibXuO9jZmYGRxYA5DTvTEzQN67kQczMzGDD+kPo7O5jbFyhNBVmZmawZuJ2jI2vgVQLmLHIlNYCWZ6DE5blmcKGDZuQZ8cxNtqBFAtQSmF0dAxr104B2Id1U2uR5dSXO047jcbGmjXIW8totXJUWkAWEmvWjMNUObIsc33Qbt+FdqeFNeN0TKmD1Oft41BSQSkDoSXyvIWtW2lOmpqaQL8iytPGDdTnI50WOiPjGBUjEAJotdpQisbVtq00Xk8/7TQoeQytVgfjExQEtOP006DUARih7PyzG/uPdaFUhu3bt7mxODnVgVLaJavIlSL1gdaY7e8JR6XiZ9uyeSOyfNH21ygAgY0b16PVOhx/j527MDKqMNLRrg/4v+122/Jmc4yNj2Figgy3kXaGsYk1UAp42GkLuHkf0On4OSYtDLhC9zA2RmMjyw7i2muvxa+84SsYHZvAsiY3/Xh+GGvXbcbM1jFItRM7TjsFnc7tWDtN88zESIHzzz8fmfoHbNtG4/Ix53Scq5pUayzqrFqYmZnBrkM5Ou0jdl3Yg4k1ObJ8Cdu2bcHMzKlQ6gBOPXUGUh4Fx++4Z9F9YO4fkOeXYnzCr4F5nmFkdBwq6+Lvrv88tkwDoyM3Y82aKeRZ3xkkSh3D2Bg925XP3IhzH7oVWXYInZEJTBTJvNzqYPOmjei0F7B+wwaMjh7FW59zK97+NYNWnmFyah2U7GNmZgYf+MAHcPXHFaamptFpH7dayRIGEq1WC5s2bQQAbNq4Hq02jYPT7Hy+besWZPkiZD/HjtNnsGaig6nJfegPKiglXV9u3jiNdktgdORubN+2BTI7gKm1RLPrgtYF3W4j65bYvm0rcMvDMPqEL2Ht2nWYnOzhxc9+AX73WiDLFMbG1mB8TOAHf9JCpjbgA/8nxyMf9Wics3tN1Aejo2NYOzWCiTmFNZMC812vMjJsfM0z6FAcxkT1bSyoF2N01NtSU1NrkOVzftwP9uK0mVMh1S4YI3DazKlot07M3vm3KPdIS7Zt24atW7dCSolzzz0Xz3ve8/CVr3wFABleS0tL0flswI2Ojjrd0PA3mlTq19Iugo4PK61WC+Pj49H/Op2O43jeE/8DsOLvmXULSinx5Cc/GW9729uQZZlz16fnZVnmgqeYu8rnhNzW8L8hx5V5r2H7mq5jvirfj+s3xiDLMuR57qD6D33oQ5BSNt6PAyGI5xdyp/z5mVLeaW/blGXKOQ75/kpJlJo4NXTMBiAIRM8DEK/w5x8/guk1QWS7ex82Sl14viUH8DDXkfmLlaZUmGH9xgi0WhnarRxVRe7QK664AkqpgKcJdNo0aUibAID6mf9H982s/5D0AKl+p2EqJThEyL0D6qTgmYWjQvg2Wu6Ro4dw6Ilw2W6kpIhsISiYwL0rA5dFRwhpuY2WO8b1Cx+g1m7l5BKHhJIav/Fs4Kxty85NN9LJXZ9zUBBrs5IrmYJs6LmFGwcsLu76HL4NlOrTP7NSxkVlt1sZd63tg4DDa4+x2kOn5VOGOj1GYYOXpH9XmZKBZqsdCwI2WEqiFFO2jT7ClvidAIznLOdWtBswCLOjSSlxbMH9iSxruX6WUiLPFSqbQCLP7XwQBohYCSd6lpCTzmoIAqTfaWk1xqZ3NRVaLQnOzd6yfZdlxOGTQri5IcukzXQkgj7wUczhtyekcN8Vvzv+1lu58sGMgVZvpUVMcxCWW2v7qdXK/PuTWVCXHwfUbjtWuO6ADuLoUpLcvNJReepzBEkSIpgjaJ5iVoH7Hu33wXOSq0Pw/YjaUFZ+jLGSAyAwPUG7DOIKN68Rt91J3qsXPP9ZqIyI7pPnClUFfOnm9ehkfWzs3I3F5cp+3xnaLeHULJ513k147dO+Y+sl1/pDp7+LJ5xdBrx24SLtSXmB0lpnyvaxIl44BybRumDXqiDq3I0H2cE5Z5/hJNe4KMn6pdJuLKUbByKZz9ndffq2tj+vonkqnZezjN6J0UQ5yjOBj33sY5iaHI/myVe+8pVxXIOwyYYNzzX2mw3G6+TEhD2WgbNeddq5W5tYRo/HnpIGvb5BpjRGOrnVeRV40pMuxLp16+x6mnwL0ut5X/KUh+PB23tuTpKS9GDpeyNudTQvw8rFZQpGZPjBrsmAoz3cDnF8ezkCXXbtOEB0HbdTSolbbrnF0uDs/JjFbbgn7acTsa9WK/eKCR0GKezYsQO33367+5td3Dt27MCaNWswPT0d/X7bbbc5JDG99ic/+Qm2bds2FG29rxQpfZT/Ix7xCLzhDW9wRmN6XpOqQBrkEfJZU65per/HPOYxuPDCC2vX8aAYpiqglHIqBmx083W14CzhA6EmJsawecs2ez8fcCGl55+FgTopZ5yDZJzygCCeZpo9RIcBajLRGAXzZ020KHn9Tjpw9tlnrxCcRRNGnktUhgxzHzTj+Zcc7MJRsKRDalc+206n8ZmFi2d4t6QThA06gnbnNmVH8VRA4ya+MFBIBTncvS4u8R3DoBUlgaKqS55wwE6WKcuRNnjtU/8Z7/2PEtum+04doNPmYBAffR0GxYURu9SHbDgk4zowCr34Ndx1fZsLk41+5jr7gDjhqKUuAUHmFwnlDHrYTYbve97AhJ8acYQNlJTueNh30valhu/zLGMOscCDNs257DxR2f1upMrqbDRGCQistqsxtLhuy/+hHoTI3DjHcfVyWMIGZ7Uy4TYBvg9EHG2NIEAt5L1KWJUPf0/69gzO2/ItnLf1O/ao13oNU6n6gLgwWxn3r1X5CIOzDAcFxhtQLmQ8MEeax5Rw+rN8pkRzUo2wkORaqP4gvNJA0M+8gUkzy/FmwFpC6A20y0zGer7Mybz6uV+tB5AF5aW/+30AwClb10bR5QBt9opS4wlnHsALHvtVzB7eg+99/8f2zhTcpyQFfxlTYGyEN2jG0nJosyeC5nJTWIJpUFSRdm5VpTquLOTfkERBjeDqq96CsorVXTZsmHYSdm4OlqBEFEkV2tJ/Nm7c4NvekBhGa9oc8oZKW1WU5zznOcjzLOJtAvBxDQC2d/4Fm+U/ApYPL4QAvjWNTssnCGDNXSk5oNGrn7CEnBQG7ZYNrjQVFpcH0EUXnXaGUvvg14mJCQirOMGyb1dddRW8nKLBeQ9p4Uf/Z9S+C40o8FKQUkSsKuCDs+6c3YI/+8pDVgzOOrZg4gQ6ahRVuWzbHp8b/n322WfTmg0JiP/HVAXKskS/34cxxv1ba41vfvObOHbsGADgRz/6ET72sY854+m8885Dt9vFddddh8FggA9/+MM4++yznQv70ksvxYc+9CEsLS3h5ptvxle/+lU87WlPAwBccskl+OIXv4gf/ehHWFxcxJ/92Z/hF37hF+7J579XShjlz2WY4dqkKrCS4QrUSfLh/X79138dv/d7v1e7jg3XVMc1VD1oMlzDxAkzMzP4zGc+AwEBbQOd1q9fj7POPIvuZxHB2etsRho7XT3yzBK48XFWril+Nqls9HhgHBQNOb5DGR3SekzqkV7QmT9aDgaTArjrYwIXPkw5gyXNDEJoo3IR0lqHi6k3JKWUwOL3yCi27Z7pfA1bFcnDGe2DaRRHnwC1iTs0zAXSTCui9o4hDFgOi5/N2PXWo7A2y1Gk1RkbaByBX1bCC5dzH2jqW0bwQ0UGDmgwJkRcfeCACJ6SNjDcTi/0Vd9MB7JSSTrgTJI0DACnqwh44z3sz7APWg06rjIYB74P/KLkWmMXfiWBs7bTGKwq/o5JpYJjPJzRpgQ4fmN6YhBJd/kGltDJatPKJC16FZwWKEtkaSeCToYea+e+/UpOoGGDNaRtDPeBBAAypkI0hfue0SMGDaWMvz3uq1IjWlA12Yj4zF+8Fp/6yK+5PuT3mWdWyUE0SJDxzWCDP4LNLc9N2gAb1vQwM/JVj9zzZtcmCPDPZ+uuaHPrA1SN3QD7OtPCSS4ixDWrJ74g5Cswgl1XmGi1Lwrt5MbyDDYBAW1E2i2FohhuYageSZ2Nj+ZI42gyJVGWFOyVZxJHDu3Bn/zpRwAAy3o9pBROMqsotPNISGFTxRYjGOm0XLMNyCD73FX7cPORJwMAev0qkmErbMY2RpAFkkQwSRlps+5p8EyS35WIvv+q4s29L8L08R+f5rN4sTxUsvRBW48ZbT4p2U04v0ZpqUGvitUsHrblhzh7+p8IeeVxVx63mq103diIQPFlYdUsCKENN3ukmmKQW8O1LEv81cc/hRtv+Ce02xllD7MqKhs2bMDIyIhL0CGFwO/8zu/QfJ5iFTarY33jXFdWYG3gQZnbPhn+Xs58gcG1Xw548SKD0aW77u3P/YF7tnRlovFuwZD7DiugsZxU86666ipccMEFuPHGG/HWt74VF1xwAW644Qb88z//M57znOfgwgsvxJve9Ca85CUvccZnq9XCu9/9blxzzTW4+OKLcdNNN+Ed73iHq/NVr3oVxsfHcckll+CNb3wj3vjGN+I0y8s644wz8LrXvQ6vf/3rcemll2LTpk248sor77mnv5dKiICmx9LzUsR1NcM1lLsCgF/7tV9rvB9flxqpwxBXNmxdtH8D4prnOZ7+9KdH6OblTwYedzZbBGQsTE/ayExrjF3whEfj+J4vNqZ85cknRVxjS0/EyFeDdJIQfucbUgXIlS1w2hbhRLlJ6ibuK3LHSEJcNdzOntsYuSZvPC/a2W8buQGb1T9yF3hJMMUufjgJoGGF9EkDxLWqz07aToZkRhEKFVIhpF04BALDEf5dAUCvyJ3xLgPjXdj6lRLOcNXBZoEpB8YIdNp+oSwr1srkWuJNBi30Ev5XXyLENdnUUAQtfS8OcTWB8S68DJsxvn9bLb8oOSMqQFdDHddUZpOfRymJTWt9nwurRiCgvXZu2OdWtWHDhg1u7ooftKwh6HkmrfSVF33nFJPsst27eyfm5hdcz73lpcK20SsrsKqAYb1iU1m5H79hpf4VzgAlFypcwoPYeE/lsMgbIIVxXhmIuM9Z0D3qc1E3igUI+VbOqPHvb8PkAOdP/6kfR7z5sHQUGufeoHCKF27eMA2Ia9znrDgRGlHOZRrO1YLoGLVPVsT/6Bch4mqzRlmDfr47hk9//9EYVgxawK3PRiuXGCQpprNMoKgMBiUZrtDLWFim3+erHbZfyEgtSuMyg5HxV2H34tlotzOsXz9t+5eoR3nuU4v3BwHiqqTL+uU8SoEs4cMm60r37VxYqos/xpujcFvO7u/04y/KEq2W52pKN+7iXtJMFRAkBZVuikmRImiDU88A/viP/xgf/ehHad7AcM9flgmfKjpYn2hjR0Y3U62KosLo2BRgCkJcK7/ufOUrX8GrX/WKCHGldjLw4RsqBFAlnj8pKMFEirhqTd/BoGLUd7jlemSO+NNRQGfFXhnyDPC9QuUDfl6Ww2qS9rsvlZMKznrb296Gt73tbbXjj370o/H6179+6HXnnHMOrr322sbfOp0OrrrqqqHXXnbZZbjssstOppn/5qXJkFwp5evJIq7hoHzf+96HP/qjP0JRFNE5QohaUoJhVAFGYVejCvi6vVvuqlfQeb/+TkZ92GjzqI8QApOTk5hfnnMooe8XibLyu38pjc2fHvYBu3oQ1O1/3/MJgd/9Q9ZoDNyHiY4rHWsWRteWKpBlClobywv1O/twgt68ebOfaNlmtw/LkwwQa7euSG8RPGEwquuN4rCYSMOULgwnZOaJ0b+DSbOi95LdeDbOe85v4Vt37CCqQEMfKEnBHAYDy0esv0+3UEqfNlUIOGTQwBs1dNwvBPEDJYhrhN6Q9AvgubFAgBoSSxi8uDnENQ+TPrAL1Scg4PYxzzdsE6GZvNkTrk+kACZm34VtG3ag0OfVUR87OB73uMfhrrvuwuanfCt5zrK2EcnsBol5kAAtoP2SNiRkAGrcccddMBjFFZdyG61OJQApSLYKCKk0OsoeRnWbAAFlVUvRSBXgMRQunrGwv32kAHXOM5sUxfg+9xtJRoQZsRa1eYq+Pebm+fFCfSKhq9gQoHbHm1shiOLgq65/P7Sxsxs/i6L7bFpJXU1UAQT1CzhElPqAaB78/Z+1bbl2bVie9OSn4UGndEgzuQyRferP5Z4GpMZIRwHVAnpFHl2vJKFzRVmh1SKDVAo4g36knWPSBq4ZEL1lZMQHKPcHpePGs260Nj67nbCZAQHgF59+Kb7/f+L2e4523DdVZSLETtpjaZLVoqyQZ+3o2rIE2u14oPG8fNedd+Djn/gqdH6e66dGxDWQmep0OmA5RQQbLdqYx89D9CggHFTh97Fl80bbbo0zz3oonnv5Voy0c0qSYhHX8fFxtNstsHKjT+WMQLbNHkOoA85tF41UAfaELSxbVZ0G9kZaQg9PaLh6ox+OHxzevw4v3DfLfRwQvn+WYYjriXBcU5SUjwkh8Pd///c444wzajsuNlLTY010hZQqwHqvJ2W4whsQcTu9uelyjgelkSogBMrKu7LZXZKWEOFJDcltG2xmlcglJSzCExupjArIBqpAninr9qRAAJfrPjGq9u/fH7le3/ve97rEGDrYsYeo7tREC798Ue2x/P01GxThDj3sAI9kZsXdGG8tUHBWwv1Leb6MOksBiP6daKkCSgKVllDJ108UCksVCLhbANMXqF9bLgkDUGqHe6IRcQ2Op4Zy6FKkwA7/W6aAvqUKcKASYOkZAB659uN4+Jq/dLfgZ8kziRr6l3Jc7QRe6nThIEMyUwIP2ubfi5TA6OInsC6/q4amKIeOrzDhm2II4spuQN9eCgykQC0YDSkzAALv/XW/EaCFmVO8Vq6Xlf07y/zGzqFHzO8UHLRoLNUjfi9stIVjN9Qmdo8Ev0l1VAH46zw9w2/I3FiMbsgcPhp36aY9sxxX8Eby9td6JAwe25PW9crjKTVCAKajCDtHeFQ+1KQF2OOBmgGRlqrSLtVopug5jB0v2zdonL359uHXmgybNkxR9qWKtE6l0K4/y9KgLDRl6isXUep440vufTIumSqgpMGgrLCtcwM6ndy/MwNoI3HujhY2tr4HgBBXTqailLCIa5DdTsDpaTcFzLRyGzQXfLQqRFyDzXRRmtrnUZaVC16i82zsQXQrYYMOBQ4cmsNf/e23o9gDprpEV7ChPGSjVZYlOu28wXCtZ5KSznD1Y502C0CWGaIKaBHPk1K6OSLcvFfO3eEejcZrhPSbxqyOzHHtLHwaKI64Ps/LXRhWQsP1V37lV+hYsNmcnp5u2Nrdf8oDhuu9UE7GcE05risFZz31qU9Fq9VqDM4aZqQKIXDw4EGsWbPmhKgCoSEb1hMWl3ayYa2WwcLVNDmkbSfx8pi/Vpa6NtFpA3Bsj1KyBqhIwagTABssRSkIEfeLsPzOlCpgGHGlCbkyAXpsXbjp/Rjh2bp1qxPWhvFIK11PDW3lAp+4avjnFrrzw4wtaRuFBDYfeRkes/UbAGQUnMUoF/07nDTZmPXGVpkYruxiUzKkCvgFIERcvfvZu9LCsRCicYB36deNH4/6egPC329gEVef9EE7tPxjH3kbPvEX77T1IEoxy/VkAeLK6gf8RjIlUVVsxHCfWaqAFPidFxtsaX3H9d3Xv/51vOxlV9DiFowNNnKaEL7HP8SibnKk9j7ZwGbRd/9ebCCSArDl5fiXOzZa7rhvY2HHnRIajLgah2RqtPLmIEi/2eS2Cxs4kyCuCcc15FZzh4eoc8gTDRN0pJtbweh4ULcAbRKzTEbzIJdQaUFKAez/n4HhGr875pwPK0r6TY0A7e6k5b2G840S7JVpsNaDUlY62DTCUj9o/JBCy3DTYFAAIx2FVi5RVDZjkgwM10qjKDXyXOI5z/4FPOxRF9T6pSw1iko7zrmwc6fWGnnuDVcD2riNjrRx+CBpf/f7paM5+IxMcXa70hKXm9zGlKGOMgViP6cjpzFmAn8ZczlTxDWeI6ynrYrHHcD0JQlsfTX0Qz9pxzlcnwd5Beh+8Jua4G6OI82bo/TVZEo0fjNEpfFrXVFUGBRAroAOG67BRt1twMM5gkGViE9q3KbYtV0IDMpmqkCmBDaX/wc4+hnf9hUGe7hRfte73kW9YDegf/4mgYsePV173vtTecBwvRfKyQRn/Ws5rlxPaiiHbdi4caM7byVVgfDvlakCjG7Gzx0iUZI/4OCcTHk3LhdeUEN3N0VNp30QUwWaOK7sDpbC5UtBZeLoeW+4xtcT2qDQykgyJ0zdqqRBVUO5TW1hBjj4BMDcVyPe50pFIEYJhnFcKbOVwCte/jI88YLzwUu3c1srHznuNwI+kpvHwV/HYAABAABJREFUDm0WZDJp+pSPZLjqCOUm4y9pd2C8rx2ZR96/Bey6Dw1n7oORNvAw+aboyR3imqgKZEqgZzmuDsWDcfnMJyYmMGGlbNwi+L0LAqpAyP0NgrMEu8wstzpYKB3iwagzPM93x44dWLd2ynNcnduxzpWF/fbM/D/R353TaxufzKKUVWWQBdQSRm+5/w7Pt4GAC+y/D0OGjgncgDaTVp4h9mws3kCos/WI/NovHsYrLvqaNbZiZQXXV8HYaPSuwJ8TBoOFSg5VBQgZexJCWoev3ziqQFpoI0nXq2BuKS2K5/mI7Hp1JlO9LjtvhJvbJoOFgnJiqkCNV2g8UsxtI34yPXue5zX3cFj6JQU4tXKFsjQ21adxz1xW5PJu5QoPO/cstDproLXGpvzb9n7AoNSoKuNQXyXpGmNMbLha9DnLhGtTxM91fGvh+NbMlw1T5rpSHIuoAq95yWOp34T3TIWelLIBcTV2E86F5pJmpDRTAhAt93cIjqTzpB8H4VERbOyajdTMzvtxXXAeHq6vLCsMSkLYRzotFw/hEFc7xsJ5mb6pmI/iDOzk2xsWnKWkwNVXvxNnnfUQ1/YsH65N37Rp4r57ySUCk2N1YOn+VB4wXO+F8q9BXO8pw7WJFrCagctlNcPVcUdrk0yKwsQnOFJ8iKxZ3pk32oxLWxqWWA6rebFhlw23nRHIRqpAargaWoBVxghPYLgmVAGup4yoCbYPQCjON/5nC6MjJ570gg0ywO7QGycemuje9KY34ZJLngaekJ0EkfABOB6h84FtF110EbZv395IFaCobDJwieMay2ilhiW3k/vgEVtvwdp9L4IQ2ioy8DnGbVakFLjpH94V1BAvJpGqgIJDXPnzoHTAzRsmIQAs/BPy3KP6jLiywUTXGUcVqAI+MsCbmtB4T/uAxp0xKd8SCXJL1J3vfOe7toFDgrO0iBDXLIuR/Q1jR7F97fEEcTWOSnPKml0YWyC6hFuYTYVMJovSjY/xwVnC4Dde/Wy85+pfo8j0mrJCzNMG4FJyJp3u3l0eLPre8LHfUBKQEm5A+VilhaMqpYVyyCMKziIkjIx3CH8/4nLb5jWsykIKaEMtesypP0L7h0+mCPMmjmsSxNU0L+twc2upApUN7suyWKrp4FGDN/2pn0QGhcDoSGapAogMV6YKfOpvr8Oe3TvRygWKkrKVhfcjdNVLWBH1Q9vNabim8HP59vf7peOzMsfVhIirBMqiCvjAYZ8Squ/nSeBXLgFO27hsqQJeTk4I0zxPmrg9jupRAwKkn99scGS4wU8NNJ/KOa4nNHgJcU3WJtVAY5OCNMaFH/9FqXHnXbuwtHAM7VxCG2mVZILNlUEyL9t2xu4HS0cJDgnyptT6wAbNrVs7hbzV9t920t74miGGazifD736vl8eMFzvhfJ/U1WAj6XGJ9MCmgK2hnFouZxocFaTpyLScTWIkNNGjisbritSBVjOxNajvFZn2CZto7OkhdYYJZSpcaITnh28yHPLCuHT5O+Nk5rhKuKAHy7GSpecf/75jS62YaUKDVdJf8fPF6PcND8y8iBwyZbfiwKFIqqAnTO/8IUv4BnPeIbr88hwBSdmEI7jSgEG3uhskg1yXEM7LkWCuDZxDf0dfUnfaaaE59i5Z26WzGHEtdVqWdevAFB/f0LABnWFBmfYx54qICXRUUJ3HhlRosZxLROqgAB9j+eff75tYF0OK3eIq3evKylQBudd+KDvoaUGgIk5g2VJARyZMhCaErR4FQwNpVD7zjwaHxyTzHv196TNSPzNVMG35/ocHl11wWACLvrafR+C35GAhIEx9Q1TpYG1ayfx2Mc+FmlhZJrf2aFDh1xQToRWJYZP06LMxokQBqOtAWT3liGbYBbD95XplKMIxHOS9RyxdBEhrv4b3nsY+C//2187KIGxkQytXKGoBIpCQ0VUAYMdDzoT55zzELRzUjno9fqQkjm15MbmZCrc541SgkHDN22iDFD9QjuZuTwTKCodyLBRXQO7QXrMQ+laXgc6I220cgWtpduIfPRNEmdtW6ZNBnxXMQ81nQG0MbVNY9VEFQgMc974xJ6U+lrYRBmJPVP1TfhwjfGYClWUGn/76c/h85//NJQCjJF2fg3mGmMBjGAO1gkfJZRTDI+RjnTYEOM22Pwt8LDKRZzYKeo3Y3D6xA3JMQQBavU19P5UHjBc74VyMqoCTYjrSoblySCuJxKc1VROxHBNs+IAiQu1wdBhjmu0eKoUcR2WgCDYLcr6jlkI4QxJZTOAsOB56o7RuoEqYATyTHmOa4A68aJf64PEzcrtjKWvVt/XctvDXXsNcRXMf/bPYSzHVSmBz3/szWSoW6TowVvngR+/tLEPlEWeYgqFiYOzTKLk0IBuOFeaID1f4vlylL99+hP0R6V6mlkmMBhwcAj3Exq51cTzBfr9Pi2o7Epr4Li+4uldvPKX1zqjLVw8aVzHGbAi7nEgmRO5AStEECdtGis/Zsyg1ncc3MKBF9TeeIOUZ0C/YEM56APb57HSiO0nUyGTGilGqgQHqIUbSTZSA8PVeSSCjWy6SRUhp9ZmIuLgrAhlonZnehZt1XXId7qRrLTA1OQEXvaylyEtbGwaS/3YsGFDsGEycT01tZC4z5k7LgL3N2l6IrKs3OY2MOiriuhLW7dudanHKQtVOA6M3YhI5HmO22//ibu+FYsCYFAy4kpZsvo2qx/1J3FcN2zcjOl1U2jnAmUpsLjUR67YmyCs9qrXOZbSoFgh6QH3iTEGgyA4ixBeL8NGfaAJQADwc48R2Nz6DowxGBM7ce3bR+13JiIefObmyTjosgnkaPKEFQ1yZhyc5f8OUG7ZNC+b2tgA4k0GgSrx71mDIUd0Ipo3RjvAeHsZZVkBIkNZdMFR+KT2Ytw1hprq2ykoYUbyCaHUMVVJWA9WirjSvCzsZoHWmP982U0YkYfRVGiOII/EpY9P+sCtH/UN2/2pPGC43gvlX6MqsFrmrJOlCqTHmjiuaRmWgIALGW1NyFcaJS6iBcGR6REeSxBXCSdnEtRc47imhdFVIYBfetxBPKx8iVsU47STBqUOJ0P7zIaMpZblbqVcqrqbHKjSoBXQTjuLrOIT29VWlY6jUGvC2iKSzKFTY44ro6ICwJrRCjj0F2Dx6zT1Zg1xbeC4hgoJsinpg/CIxCte8Qp84xvfIMRV+4hazvFdL+kYjjcjuRJOx9U/s9VoTBelpA98EFmIzNA4eM9vPxb/6YqHgQNJ6vznxE0eTPaZ8hHDYUBVUZO1oSQabKw++9m/5GRzuLTyzKInfrww15ALbxbCIDYpvKrAS1/6UvzFX/yFbSePc5bD8g366le/6vo32sQp4Th8vu2IvkcAkXHS1OfsNoYx4FSrbAALAcwsvQ6P3Xw9baKMTUf5jXHXV0SXqNMEqE848YWI3jGnhW5lGjClbXcdaXOltxMqk/b+9hmM8ShscKq03F8/J2mSZhPAmWeeiXXrpu1GMjXaKOCG0Kx4jHb7cXOKUmB8NLPzDUlrKacqQMastvNUK5cYVAJLywOnw0lUAUZc/Vgsy7o1EjeF6C+DokLbGqlOyiuhCvBYFBbqNMZgTX4Iz7ww84ZrsBlSdjyZhCpQNX2zyQafEMjUE0bfcpZJbFgzwER70Y4DvqYuDUXfcDovx14oJetGah5seF1d0gMKeSbwtId8F0WpccGFF+M3fv1X3Xnh/KqcVyakJrA3MNzcmrrxLqzKRzQva/t9SEe/qwVLJsUYUreAAD777tCb69uUNaDO96fygOF6L5QTDc5SSkWIa9N1wE9PFWjKkpUark2I2Ikgrk3ajvwbECJoYR/EJHnqA5r8ooW50MlE5zORcD1Nkwx78152xfNxw7c+5RCe0NCVlt9ZW4iNQJ4r5zLSJkVcm9HGJj5SqljQVEz4fIKDszziWuMoCQ7O4p09tdlFoMNPtBAUvJRlmX1XqYHWhLiywcKGK7vzYNuEWrCJX5RonOR5DkBHiOu6ddOr9gXg3fCMXGSZpwoAgPmqXJkq4CbkwHB16AIjhP4ar2YRG/RlJaCCVL2hcZtZOaVwUaLgEyTuduKham1w5c/N4rFnzkMbm+3JGna5NfZCxDUdZ1EKX4e4GofenH766Xjyk59MfQC7MC/dgvERHS3MF154ofdsBONONRipjNr7TU1DECKjzrYP/KIv3LzBiKsQgMQAHJnN7+q8R57tzgvpEmnJLCJKLmL4Preo2qNOPwT806bA1cxtTOr79g5IIdw4eN7znocvfvGLVuqODH7XB4xEuzlJo9srIRCPoZDHyF4SllMrk3RYj30V9ftnvkn/LSqJsdHcIa6DGuJqtaQVpaHWGljqDiLptLKKs10xjSQt4YaTDCGDQUAVyDJ6Xhb757o41oDfabhW0DsnY5b7KQ946qF3rKxMM80iNdqqeJ4CbJuUxJ+//jacMX179K0r5elh/vmaQJUYiGgCUJoQV6LuBHOSRbknJtZi+7ZNQRsBIf3cTc+XbrRMskGsI9FCoJb2VsA4zxB7k9L5PC2333E7nZNsFiKvZQOn9/5UHjBc74Xy0yKubMjem4hrE1WgHnRwgsFZNd5bnC1Ea1FDc+ze1x1rQlwHhY52p9QHoQExjOPqXahSygiFdfez7UpRW22o3lauUBmSefGLkpfR8X0wTMv2BKgCviNcb0TBWY3cLTZu/TigaU3GPFRrvD/+8Y/HwsJC5CZ3faDIcK0jrtJKgmV21x6qRNQnOuZkpuhGU+R4UwmfkPQ6hxuu3Mawn4JfYsSjphWMyJjmtleJugSP60jDNAzOcsGFoau5vihJSbqclTZ49oULmNlYQGuDfr9wdbGcEKHcdCxPKCl+AyMjpL0omoNdlASw748wPlI1uj1rsk+KF+b4PA6WCvsg7XIy3m27A+1c304fwR/yrXmO+M53vkPHYMddNgxxlQHqHBgCdgNzwflPwEc++B5Iabwu5vKPMd7pRw87Pj4ecVw3btyICy64gMadkRCh4eoMertpEAbdfgkhDGY2C/zMDuoAjvbmvtSaNj7tlsC6desAQwhsuAl920fo32UpMdbJ0GoplJqE55nbmGfKJjOQyDLhNH+XuwNwLo5MBQkPAiWHskmdPhgqvPkbFNqhq4y4wiR1lR6pPFA8JuL5hnQiNy9nLIeVIK5Dxk9ktMnm+ZQMVzjjPQ7OagAUhqi9RMBHA9qoJKBR/2ZCcIL1bovKbxYAniO47nrKaZf2NqibN/0y+fYoq2PYOCtTqIQLggy9HU1lebmLNKMY90EU4Dy0hvt+ecBwvRfKT6sqsFLq1n+NHFZ6vxSFTcuJyWE1u+X4UNOHIazBFrcpRv+koLR38dUmMkCbIiK9IRm6Y+KdL92PI+pTY91zXBlx9RsK0WAINOtGGqyOuArUzdnQ7SgbEFeJ4QFxzuB1xjuNl06nEyBfQR9YxDVEudi48xxXHU10hGQmxnRDH3AqWiEFXv8c4PQtK3aFK7zocVV5JmkDkzxnUTYvSiHq7KKoI4O+zvOtTGyg8eI5jOPK6B/VaceG5DbFiOugqGCMQW5dfJUGuv3SBeCQ/I5wEcN0TEaGKxsnaR+kOc4B3qANX5TUkD4oq5jLyd8Rj0V2VdY2qaGCSDA2QgObNws7duzAli1bIFCXw3KbhZR0zn1ggyWBGPlmxHXz5s146UtfahFXej5108PxqNMORPUsLCy47zjsOuIVx4ar30zzsxj0+hUEDF79TIFPXc0IpO0nayhrTRSAdktiy5Yt2LplHfqFTXlqy3KP/ltoifGxltUCJfpHmESj0jTn5coH5fT6laMKeI6rN6Kc9FRSQpNJCqDfLzAoNNr2ulYua0L+UhgUVUzVoeBLNtSVmyfdvCzD1Nj+WF1VwETGHrcrpenQPckDkufKbmBi5JSTU3ChOaKugrFSshN6HgIC0mNh7EGmJIpSo6wk2i1/Lq3PHnFlT1goDUmoc7A2oe7xcV6D9PuofFZHYzxAM6xQMonVeb4rqRLc18sDhuu9UH5aVQGlVI3zCvx0VIFhxmwTxzWtb7UEBFIYF6kel0Acmo29xl2f/7spOKusUrpETBVw/NmwTdLzO/3zko5rarRVRjQuxK1cWQI8BR2ELlydbhYYlWlEvuK214oAwtnWu438At2UyrBR5iXQ+PRBZOE7r3MUpQK0UdExIVjH0Qdn+Uh1O8aCPr/+6kMuOCJ5U85g+cPXSmxcO3xyDH8h41K6/syVqBmupNHYEJyF2MDmdkYGfQPqHI47Pq+qQg61dYUmvG33PX6tZY0o1AKFytJYozRzAX/dXunQFHb7Ma/YtSnkuCZ/+7pTbKgp+KS+CDci78kYljKm1wgwr7ihz5kqkHBqAdjkHzReP/GJT+C3f/u37UZSIvR2CBG7qNNCFBJGnbmN9Y2zEJ7WsWf3Ljz3uc+p1aUc4uqPkSdBxu9PIjJYnOHaIAwvpcBfvO67OPesdSg1BXU51z0K9AakIMCFEdOykhgfbTmqQFF4/c48VzarmnCIq9YG/QCVJTqCiTY+/H2E5S/+867ISONUykWhXUa63FIFwsI6x2Exxk+wikLqE8SVvR1xwowmxF6bOkVl2AYpzyRgNG666eYojoI36mHh+zWm6w3ulX5BDHJEfWDneBEYrmWpCVXP/bmhAUr82RgVdUBP2k5TH8NEFYjBl9Ly4J0nzNT7yXdYReOigQcbodXiAcT1gZIURjZPRFWgKAqHuN6TVIETRVx/Oo6riNzWQUsSdCrVBoDV3AwXiRhxVXK4KzScIIdRBeLoYGETCQTHJKB1vHgCfvHMs4BHxIayAJL1wC1ujejfkEU4aG20mHAUemggEdIWT2CpYD7d0D+ycO7Z2IiqLxK0WIfxMLQIEH3A0RAC93oq2v3zT9wcBEKE7aTFVKTtXKUQAurHT57LmrQPJQiI3WsABwWy8efdgHxak9HGtIqmCHcfXOc1cLmeOJVq1WhESZt6s9KUEYqjrbu9ElkgeeQQV6cqIBHmDx+WaKNZpzLWlq3TOkgTU4q4/lKnXGdrzLp+sa7X0BAQ9UAPRoGm11SUltVtFgjVFoIM5NDlT/cjqkC+ElUg6nOLYGmTzCNsZAhs3rzZ8q3j0hSgRmimBIT/wIWIgxelZMM1ro+oAsCLXvQijI12LFVAomPROClK9PomQlzZcNUaaLcztFsZKiMt4sqbGit7ZIjbyJq/g4F24yfkpbYyTkAgahzXh5/eiwwUKYHBwCKuLY/0p8g+fWvx9xcirj7LYgwoVDrmk7NcXGyg6QaFiyalGlYVkCiKPiDIgK/ra8feDtpMhzeMKVyyIfMiz3lhSTe3WUYod7g5AYj7H88RMcLLbUr7t6rqa1NZhvxy/t4Rqb2Emua1YkoUpbGbxqY1lN8fas97fyoPGK73QvlpEdd7kirQxGdlw3glqkBTytc6xzV2J7prkbqNRMPHI2rolDFx1HRdzoSpArwgNGgvimbEtWa0yTq/k+vPMkXSPkZY93MwQab3Y8M1+fjr/M7hO38ug6qFpV6KOtcj1ePMQFRR6gJL0Q1hDdKa0WZSVQEW+w64W+G4k/U+iNOI+nY2SaWtVpwbNxBhH5Sp4bqCfrBDXL3hun4qB3a+fTjiWuP5xgkBqA9SRAngHuYsZKmqgBIGRaFRVBnGRxVa1vAIXb1eTsjLdrGLmEsTVYC5h42LkqC85Nu3bTkxxFU2I64hz1dAU0aj6Gb0P8/rs5HMABlt+/8neTaSuhllSgPidCJLFpaQP+ufBTUES7GcW62hvtDYkPF1UpIHJjBcaVyHcxIZrjXvClAzokotglSqlBErNFzdYwoy3NqtzEb5e6pAK1eobEKAnDmuGugXxo2f3CpQaAOozBsjpc28Bn+baCwoCfT6ZNwwx7WdU/rjsEhpVT2Cw+k6wH3gwIqMDclYd7hKE3Q4WavwfrAJUMLaacwy4gpOcR3Mk5WuP29tjkgQ0CapRv80vigpI/oZ8eIp7XS7FWSaTOgSTFSIYw/SDX4d+JBCEE+7iXcfJEUxZvj3AlOisNzn9IwQ/BGCvHX313L/bfl9uKzkuk8zWYUc158WcV1JVaAJcY31H38axNVHDAetdPelZxHQkPWPBw2Lp/GcUyXJRbwq4tpApE+5P+z2TLlU4f2ozcYiVrGGaRp4Ed1PMMKDWkklXVYr19/6GFzzzxcEk72ouYN5Qq7PV36BpXbWI1VTOSwpAQMVu2wlUBkZoI0mMt6zRpSimeMauqROtA+Yc+oR1zpVgF1pdRdYmN7Vo40bN0yhuOPN1nUeI4vOaIsUJyxdIjgx5Jw1BQUyVSAs0qbeLCuFsY5EnjNHsYRKDNeQmlDnuNaNNnIdNiP9Ugp89KMfxeZNGxq/j5TfycZ7SpcIN3Z+s5DMSbbOkXaQdSgEZaVNNZx8e/QewmMWVTsBxNVfI516hr/f8O/RP6+seXw8xzWhSyRJUbr9Mt5MC6u+YN9drqhNFJzl+c+DosSgCC7j9tl5t93OobWJOK4UsAVU7AWytJKiNHWOq5bOACU5LI0IgUwmDCEVlnsVygoONaSEB3FfUUBabKzXk+OIaJ4MdYgj2pNOt/dxkhI6zzjEPD6T6p1cMwGMP7Km6HHiQbOpV2b1OUkmGxiak2jjODbiEf16tD6N83A+J5CjbrhGSRgk83x9GwQ8x9Vn84uVB+IHLfGFm8+woEMdNHKbzdUf/z5dHjBc74Vyohqq/7dVBYZxaJsoBqshro07VhNPmMRxbfp4EqoApMtbLSUwqJHrRRQo1CSezAZa3WhLOK4Jh8/WDpbpci4w4wNGmiY6KUQNSeAuiHVcT7yEiEAqISMwPBiMj6U81PB566izqnHMYrHvlBNVf+cedQ7aaes52SQMjjJi+7OVKRQpx5XlsJqud8ZlPDayLLNofJOyQsOmJkFcjTHOTe6Ds/wNGHVOA5zIpajQsfnotQa6/QoZu4NblpJiYo5r2Mee4xrXXTX0Qbx4CqRTO9MHUppOGD3Px0KqgBCGEF7Z8B1LgeW/l43fY6gq4IrwqgLukPAGWlPJmzIaKZ+xLeyX+oYpLl5VIKjLouGR8S5jNF5Kg34/4VabeEOY2exhlZaB4WoI3QyMwrFO8nx5Dq11ZLgS75XeQ6aEQ50HhYnksCpLFYhSvlbpNxO/m5/MPQ6/+kdrUFY+I1We16PzlQR6vTIa1ynnlWgkxs3deZJEhO5fNyRDHnx4ng6k/dwd7Fx99kPPAsbOTVQF6nMSb6YjdFzU3eQnkhiF6Qv8fJ0WKNiuAkaCdN6RqoAM6US+nU3SV3XEFZEMmzumZUQVCOf8WjEVDs6vGaKzjsCOeABxfaAkZZghmRqNTaoCP63h2sRDPVFVgdWCs2p1yyaqQGJq2gkz/b5MbfH0XC7+uxyq1Un/zpSoIUr0vPWJwNSMNlYVCK81rj7ur8gQkA1BALIBWeTFc9WvKoGLXNuoX6Sq0yWkpQrU65ZRv9SUFRBzzuh5BIyRyCKOq4ExKkAgE+3DBiUH1cDvpAm5nplsNeOV2xS6HdMIaQpaq/dvODYaNxkNyHvGkmBRoJBwAWpcwnfcxK1WLjgrfBaiCmgjMdLJLOIaUwXIRWzlsDIOkpGRoHqmOAVsbFyXgeav7QGYYLMgRN2Q5HTL6ThINY154+GoAqI5ShvwHPdQbSFsZ1MATijfRscoKUE2NAGBqn17mZK1TSMZSDGamxbJYyw4RlQB2TBHhBQcg96ggSqQBOUwx5UDd5QS1i1vL5j/JpaO/CB5vgzGEFIaGa7aG6WO41oYt/HJc4lSGxdUSm0Q9l4p4hr3yf6jCpU2DnFtZRJlQhUQAhE9Ykr9qEZbAZiiEowDnX57DXQipw0cgCrSJn2oIa4URMrvItZjXUkOS4SV2N/4XnWPXVNhCUDug5GWcCoRIx2PuNLmFq4P6Nvz3xqvTWFhmTAZrUPUB+GnwNQrFSGudSTdlXydb1PyE6HV/l735/KA4XovlGFoZ2qUDkNc7y1VgWGIa1pWy5zFu+iVqiHkssFwRYy4KgkYowJ0oznzSarfd2KqAnWDhThIqo64hpWJ+gQ5nN8Z1hMjw9z2tIjGowGiLOq52Jt26FS7d8M1bRaaqQICGqqRQhGixcbEk33jomRSQ9k09AE/9fDC2rIOcc2Vy5Xu2zhMWcEbbUrVo2WdwRIZbbLuynabqMBwDRaJzGUPi8dTPTiLDJFKW6UK6+7uDyqXspODyGrBWRHi2kAVGMJ/TjnLaXF0iQbjPUJcBaDhDUC/YUoNChH0CxvKBlu2bMFnP/tZh9ymYzilbHC7VkJcm/SDU9crv7t4bMTX0YY3Hgek+CAjjish77EcVn9Qpy+FCTpYZ7QyMqIK9AcBVaC3E7v37Iualuc5tLGIqx0bHavt6jVMlUdcQx3X0gcv8f0GSWArpSCN211VhBpyO1styhYYeRIUsNyr3NgYkUdsxra4T9Pgxaq2sbOScsExRkXriWGauJtkyPHh0OX//e/fhP/15/+7/u0NQxvDOWJ1wDVQ3aC/Wzml6q20QKeV+T5I16YEBPGoc/Kd1eafutIJAwF5pmLt3CHTqZz7e2DxhkbJrAh1FsCJULjuq+UBw/VeKCcaLHWiHNfQKD0ZVYGm+52s4doUVCZEE8e1Tjkgl0aCUiBdzAQ0MrcAKCFsdqTwutgga4qolIJdIckx1FEfnfDsmOMatTNw+asGRKmxD2wb4kW43lbTeDQ0Euu5raWIExCE9deCs5KJPI4S58lVRYirsAZLyHEN1QEoACdpr6zTFyQHZ50kiYq5zg5xVcPSOQ6ZkB3NosnQIfmbGlUAMeIq7SLhVSFM5FloGgeZ4jaFxoLBoNQwxriAP60FUQVsn3tk39NW8kzUENdGOaxaH9Q5g2lhmbC0D1KOKxuXoXh6UeqaZwEJGs8ySFmW4dJLL/WUkWhzVFcVEG7D1Nz2LBueijP91ldEosCbmsRwVRJpFjlWuFBBlrreQNcQ1zCRCdM8qsobrpmijFgD9hyYqubKV0rBaBPRANqtDFXFWfEoc1ZlLOLKHFfLhzaGDFtuN9GsAiNc1rnpZUXflqMKZLK2CZcC6A8q994FdDPiCg9g5FkTZSSWlAICtDHaSJqI4+7rFzXElft87vhRIPEuCNGgc8rrQDBHnAjHNVPMu7codyatBJlAu80DRkSGZFMqVZYWSz+hKqAYcNvLBHHlcR1xXBuBAT6/BPp7sZocFn3n8Wbl/lQeMFzvhXKibvp/C45rE6KblibDNZ3Uavw1xJ8AtbPBaAtQNcAirlCBm9zU+Gtc90rNbjIkPQoT7+xTdyVhEg1IQrgopZHNsmFChqhNRkNai6YJw+2GLX8t4rgO7fMwyraB4+oM9bDtFnVOkC8dIV+08fBBc81UgTTftke5V+wA2/YEGQpldFTDs0jSFE1D/sLNybCFwyRcZ4fwynRciwR1DnRcXYCaieqpEiSakhKw4ZqhZdO79gfaySFx0YHLlgXGufhgrRhZbOYMYkXEtUnDlIz8+HskCkyINqKeZtckUdrc5w3fXqwqQMZtutGh7795wORJn9D96pQYHr8rjTv66mR0nVKsKhCPxUiiTxgMhiKudEMOTCqNRKftDdd+v8Qdd+6yV1QNCSXoeqIK0L/bbUJAK02qAy1LlxiUBnnIcdWAMaF3jDb94XhpMnA4iIx1XFu5rG0SlWJjXdu+M40UrlDWSg2jCiR1C9Q3GTSX1KkejNDnmcCm7F+iTaqxSgPR/USDZ8o0cVxr3VIrtI6HwVmk9kCoOluXJjKUCRSIC7WpriqQ6rFy4os4cJgl+nw/mxW+dR4LVZPedWDw0n8E7q+o60kZrh/4wAdw+eWX4zGPeQz+7u/+Lvrtox/9KJ761KfiKU95Cv7oj/4oMq5uueUWPP/5z8cFF1yAV77yldi/f7/7rdfr4c1vfjMuuugiPP3pT8f1118f1Xvdddfh0ksvxZOe9CS8/e1vR1EUuK+XEw3OYkPyX5s5a5iqQHrsp6EKND9LfbeYlpUQ13BuokViNcSV0o+uhCgRH6nukmpyTWqjIoTH7z7d7WDgXcZpwA/gjfeoDwS9q1Qjtl6GGa70XyWbgk+sEHwD4uomTVUPiOGArfj91ekSzHENJ82YKtDQB5ICa+I+j/mWJ1qUktABjSRTDdq5ojlALZRmIjdgspg1GFHMqU2jeuMANZG4AaU1tuMFN3XvKcvTJnRIOdSQDNfU+PFBgHlNVcDLC3EhVKa+CJKUUDwWw6IkG21BvyhR29RIcL+Eddddk4QGeoNJx/aSCwqKESVTa4MQsCgsGgurCoS91iT7xshePLWlG3zbB2H9ygYqNhnBgaHTL3RjH/gkDJQqWmvpMlIpRfQQI1rA4CBw7O89gp6ghGVlHNLWbmWorMZvnpMqhTYCRWGClK/0LfAYo3YaDApAoCHta1AouYFXFeD0w2FvEeLqkyIIYdALMym4PvAbuzwj6lBYmAIQv/M6akhzSV1fm84P5iSERpuGI5e6c1H7Hv0zBRut+s+14gI43fOR3q02Eq3Aq7aaxrjzEETHmvolTnxB5zHHNb1f8wfjPDkJlYav89/1/dNg5XJShuspp5yC3/zN38Q555wTHf/617+Oj3/84/joRz+Kv/qrv8LXv/51fPrTnwYADAYDvOENb8Dznvc8fPnLX8a5556Lt7zlLe7aD3zgA5ibm8PnPvc5XH311XjXu96FnTt3AgBuv/12vOc978Ef/MEf4LOf/Sz27duHD3/4w//aZ77Xy31VVWAYVaCJmhAarmmbmGx+IhzXtKRUAeKdeUNSWe5W3CKxKuLKaFnNfWjiBZ1c0qpGgI8/BRFNyEOj9dOJB6yPGtbVNEUOm3S4bokw1Sj/1uQKjTPJWCM1bKdgdMwfa0RcrQERoo3aIOKF1dFc0eAGbBISby4C8ZhKEx6kEj0UFFgPUIv5luy2DiZ/Zxz5+zHfMaVQUMBWoNEY9HmT27UR/bPudRpD0uUY7wVUAV+/wDBVgUzFuq4AXDKM9B3rIQEpvp2yxvN1AWphph5p7KZNBM8yRDs36PNmlQ9Z+x5rxrMgj8uw4dKyusrhz0rJGl2iybtSa68AgJTrLGqbW0b/uF9Ij7UuL6Q1kIXfh2ZVAWX7RWBQVOj1K2D3fwWOfBLz80u1dhlDXiYXnOU0fokj7TiuZZ0qAPj3TsFZMVWgqVQGFs21Oq6O4xr3Qa9fObqEkgbdRGUAiOeW3KYxDkvW5CFwWs/h/RChm/xcKT83nM/pOeub1FpEvUgR1/pc1lSYvuSy+eU2Fa+WQ3VcZYOnkQ3S1IOWxok0Iq5IPWGoGf1h4e+wiSoQxgLc38tJGa6XXnopHv/4x6PVakXHP/e5z+HZz342tm/fjvXr1+NFL3oRPv/5zwMAvvvd72JkZATPfOYz0W638YpXvAK33nqrQ10/97nP4ZWvfCXGx8fx8Ic/HBdddBG+8IUvAACuv/56PO1pT8PZZ5+N8fFxvPzlL3f13pfLT6sq8NMGZ50MxzU9xvWHZTXElT+69MOI5grBgUrprq8uyUPoH/9NgQNpyr66hmBybzGM45pk6rHUhNC4rFMFTGSA0sJcR2+q5FkYcV1Nx3XYbj90OzYKzzfquIauOovQpYhWgoDSY8Wos5SARmjQm2iH3ih51Gi8W03ck9zR0yLl68psYERYlCBkcSUjqklVIFUsoPMEhqYfjSTBfJ83fXuZEjXkRCnW06RrOKnFoNBo5XHbtIHLGsXphl3dDeL7zelOyV25MlVANHo7jEmD9BiFtd+/aDAEYHnazmBq2Cwwyp14O5Cgq0QVyJK2+7qaFAuaMoMxSrpqgFpiJAtrOKcbOx3QiaSkBAE1xBXe8GjljAwbpxKRKWAwKNHrl3jKUy4EDCGExhgcr86I6iKNVmHrorHJhitr/hYlYjmslL6kLMdVDJthqFSViOSwWrmqbYYosMxvEqUkHeLaOAj47FkDx1U0zhGI+PNcf6qvDYHatxxu1JUUFnEN6VoskRU0xNTpREMn4eg7ZioNHcwVI65wNAugQXkkqZLmyWR9BH8fwTokWRkjOM+qbsQSfSuAOPYFpHre7rr7OdLKJVv9lNXLXXfdhUsvvdT9fdZZZ+F973sfAODOO+/EGWf4j3RkZATbt2/HnXfeibGxMRw5ciT6/ayzzsItt9zirn3CE57gfjvzzDOxd+9e9Ho9dDqJIJ4tg8EAg8EgOpZlWc3Y/mkLR9g3ZREJCwc08XlCCEdzCK/ltrJbP/wbIENIaz30v3xO0/2qqorOA4CyLGv1r1ZXeg0hPMJOQPY6ujjpF8qSlR6TIjxGC5cUmgxmAZQFf3z+OnZ9pP3un5clq4JzXNCVidrOnFp/rYaBiOo2lpNEbfIp+9w1MC4S1x/jILKgP8kcq42bpmfh/vR8MhPfr0qej3fXQV/q5P4OiYra6RfwsP8A5dpgQJMfv1PeGIT3Y+5W1AeMLqzwruL3Go5D4dokpbFSUGEbiS6RjrOwzznCXtjxRBeSizodB6SsoOOxYSRlCbPHqip+D7zF8dcYl3WIjylBQTl8LLNIKsthhW1nHVV6ZkTjzP8d929Z1cdGmYzFtH9pbMjonZNHQkV1Adoi0b4/OTgr7XO+Hy3MRKEI20SUDR1fBy+izs9jkNn3Z2zdfry6NLvJWK0qQKjkfWrRMAcl7bZUgWgMQiVzEkmZuecTJIcV9xOcV4S/D6153hDuvXf7JZZ7AiPtDDAVJqfWYalr0DfrgroEiqKC4nEgKFBSaJLDEpayMii0Gz9KmtrYkMKgbyWstE773T9zpWnctTLbzoz+DtcBKUl3WEmqRwmD5eWiNsa08d8/zzVhn0sYlBrxuBec2Slue2VUVL+AqK1fWht33Yte9EIcL/8J+5dFNA7KYJ4M5xcYbpdxm6HaOm6CcWa/Gcl94AAF4dZNgPikvt3+eDjfVpWJ52CeN0z8HRMKa2ptUMGcRJS4+hoJAGNjYxgMBja4N50nTeO602TLpHP1avbOPVlWozIC95Dhury8jPHxcff32NgYlpeXAQDdbhdjY2PR+WNjY+h2u1heXoZSKjJCV7qW79Htdocarh/5yEfwwQ9+MDp2+eWX4znPec6/4gnrZffu3UN/O378OLrdLhYWFhztod/vY3l5GcvLy+7YsWPHsLCwgCNHjmDnzp1YXFzEwYMHMTc3587pdruYn5/Hvn37IKXE7OwsFhYW0O123Tmzs7NYXFzE0aNH3bHFxUUsLy9jz549WFpacvcryxK7du1yaEm324UxJrrfsWPHcODAAaxZswaHDx/G7OxsdL/BoA9tgIVF/3y6qgD4erTWqCqDsizdMYAmtrIYuGNHZg9DYxuWl6iu5eVFLPRHURa+rqqqsNzt4dixo9ExAO7vubnjGBQl+v3C93mvi0rTPXbupB3y8tIitFmHI7Oz7lhVFtDa11XpCv2ixMGDB7BzZxezs7Po9weoqo47Z2lpAYPBGLrB+6yqCkWpsXfvHhwfsRO4tUTCPgBoU+GPzdh+pT5eWJjH0pJEVY64c4qywHK3j4WFuaidCN7dkdlZFEWJQvn7LS8toao6OB703dzccRihcPzYrK9/0IM2Crv37EQro3Z3u33X5wcPzGNQlKgqGYyxBfT6Gv1+3x0rywGK0uDQoYPYuVM0visuYR8YY2C0cWNjYe4oFhe7UZ8Xgz4GpcDySBX3OajPF+ZaqCoytDLpz5mfO45Kb8Bi8D3OHpmFwRgWF31/9nrLqPQEjhw+iJ07B6iqCvMLSxAyC8Y5LdT89/HjR9AblFDB/QaDLg4cLFFVbezcuRNLS0soigoHD89j0B8EbdcYDAocOnQAO3eWOHzoMPqDAlUlqA/m51Bpg6rSvo3dZQx6Gv1+K6inRH9Q4vDhQ+AuTvt89vAhaD2Jbnc5GC+HUem16Pf8se7yMiq9FkeP0pxUlgXmF0q0MlMbd7t370KmBPYf7KEoSlTa98HS0iKKcgILC/PR+zMQ2LVrp0ODiqIPA4U9e/yxqjKQoO+42yekOKx77vhR9AcFVCajd1dWYzh2/FjUv+m4MwYYDHrBs5DxXhZ+DC8uLqCqprG4cBw7d+5EUfQwOzuHotBR3d3lnuunQwfp3ZVlhj179mBsbAzFoIeDBw9jsd9BMVgGUCHL29i9exeAU6MxPHtkET37HsqKctYDGvv27UZZligKjaPHlly/HD9+FEvLPVRVHo2NfpFBV/GcG4+FGZSa9GWPzB7Ezp3zmD3UQ39QRd9jv7eMo8cKlCWNxUoX2LV7H6oyj9q9tNTF8WPH7Bxx3NYj3DkLC/Po9TZC5r5/q7JEr29w9Ogsdu5su7ZX1RocP340Gmfhs1RVhf6gwKHDh7BzZ4Vedwkqy6N293rL6JYddJf9O4YAyrLC3n17gOo4js/3UZZxO30/+WOzs4dRVSPo96iuueNHsbzURVWNRm1aWFiEALXBAT8GUR8sLvdRln68Dvp9DIoMC3aMUR90MSgMloN1tSwHqCqDgwf2o6MWUVUay0u0RqftB8hru379ehzYfwDFIF5De70Bjhzxa2HTvDxsrl7J3rmny+mnn77qOfeI4To6OorFxUX399LSEkZHRwEQwsqGU/j7yMgIRkdHbYd6BHWla/keIyMjQ9tyxRVX4IUvfGF07J5GXHfv3o1TTjll6M5gcnISWZZhamoKMzNslAyQZRnWrFnjjm3YsAFZlmHz5s2YmZnBunXrMDk5ibIs3TkjIyMYHx/H9u3bMTMzg9HRUWf48zmbN29Gq9XC+vXr3bHJyUnkeY5TTz0V69atAwCsX78exhicdtpprq3c7+H9JiYm3P3uuOMONxG7czqHcVQLTE1OuGNKHQRg3N/GGEB8H3meuWMAAPEjtNst3/Y7lgGRYe0U9cvkmluxPD+KVquI6m53Oli/fjq5n2/3urVzUOoYRkaUOzY29hMIkWHTpo1BvxwARIYtm/2xPL8DYiB93fIgsizH9u1bMTOzHntnc2T5ApTydU+uuR1StTA+7vtFZUchC4nTT5/BSFvYdh4AINw5tHM9DKVE3C8AxsfadhzsR2vvAFnm79du7UMm25iamozaGfbB5jtLSLUf7ZY/Nj6+E0IqTE/7vlu//jiADJs2bQje+92AyHD6zCnIMkCqA2i3O9iwgcawlsegVNwHU1OHodQSRkd837XzWyC1wpYtm4eODeqDfVFdNDZ+gk47x8zMDDZsmEO7jeic0dHb0K86GB9HVLdSwMypp2LNRJvcYWoWSvr7rZ8+AiEUJoPxuvnHGkAfa4P+HBujsXHKKdswM7MBSh3A6Oh4dI5UByGCPt+0UUOqReSZf5/jYzsxObkGSvUxMzODbrcLKW/ByOgk1k52k7bnmDllO2ZmNmFp0IZSd7ln3rhhAVovRX0wPn4XRTYL/13l+W4oJbBl82bMzJzS+H3snQUg+hgbHXXH7thbAUJjfNwfm5jYDSEUNm2ksdFu3YF2p4WxDpJxZ3D6aadBSiDrLEOqA8gQfh/7IGWGqUnfd53OLgASp512qnvlI+6YHwdSHUUGGlPLPQ2DO6Gkr3vDxgpSHUerlQd9vgtCZlg/PT50jgAAIe5Cp9MOxiIAsR8jI35OWjt1EBAZ1q2lsT82chs6IxPotJejulvtEWzatA4zMzPu3Ukpcfrpp9t59HaMT0zC5B1MrRnF+9//flz9t6PYvv3UqF1KHcTY+BpM9uiZaQwfBKCx47QZQsrkYbRHxjExQmvD5k3LyPNDUMqPgzUTd6Gnx9Bq0Tm8VjEVzc/NAlLmOO20UzAzMwbZ7kKqfVA6HGd3Is9zjLSprk7rDqyZmkYrD/vgADojI5iepj6AGofKboMqfT1r1/4AKmuj0x64Y638DqishQ0bNgTjbicgMqxf79fMTM1CVzrqpzxvYeuWzZiZ2YrNtx9Ant8Npfz8Mzb2Q/S7HYyPS9cHNNdkOPXUU7B98xpMzvcg1REoxPNPOldv3asAsYixsRHMzMxgyxaNrBV/j0odxOjYOKYmg3VAHor6e+3aQ2i15pG3/LvqjNwJtaywdmo86IM9ELKPqSk/T7VbtwMix8yp2zCzfZLWwpERrF+/DkrN19YQfob1Gzah3T4a912rjU2bNg2dl5u+mROxd/4tyj1iuJ5++um4/fbb8cQnPhEAcNttt2HHjh0AgB07duCTn/ykO7fb7WLPnj3YsWMH1qxZg+npadx+++0499xzG6+9/fbb3bU/+clPsG3btqFoKwC0Wq17zEhdqUgph77ILMscl5TPybLM8VnTY3meQ0qJLMusy8Vf5/mLdB1PQpyelH9Lr1NKoaqq6H6czjTNnMW/8d8s4yOldCkJw7qZ3C6lqNUV9wlr8AURkVBQygR9IGGgkGdUP3O30utgZYrSPnfPmylwsgF3TJJgvAquIxF5hTwXwTNbLmxyv9z2AckUxf3E0c4q6AN2NVM7heuD8DrqAwGJ8D1o2za4+7EWqn8WG4HeMO58m5TjEIcSOZQLXgR9oACRRf3J/EM6T1iSB9w5rBUZ3S+QWArrMTYT0rB2+n4w9X6RdB5HaSOoW0kBXVhB8mScZVl4v7hNFEUso/7McwUDhSzzfO7MBu61cqpLCE1Z1lQwVmxLw3q05aWFfV5ZXVP+hgwIRWu34venIZDnNM46rdzRMei6zLliw294UFQQwf3I5S+hsqBuYg74dmbK9kF4LINGBSWTPgb1P33zNqe6qn/bykr0UDtlMu6k06iNx1g6Z/B7j8cB15UpAMY/O0DjlyXX4nEuo2+dS22MBdex0kHYL1kmie9t+1Mpy7tP5zIDN85bOWXAMhBuPs8ziaKgwK5WLvCsZz0L7/r0XsvLicd+peHmwKDlyDJhX6ZEVRm0c2nvp5xb3o9FiYUlAyVNrQ/8eTSmtREY6VA7Rzo5WNYq7M+igvvWSCFBR++Yx0GW8RyROUWP2hwh4zlCJ/M56+mGxzhOIn1//I5D/nM0/2hRmycNhHtXeZahaV5Oxwupgfix0W75LG7hXMPfQnws+BakrI9XyfNyuD4LVFolfUDfdt7i84hSpaRM2oHg3vRfIZu+2XSMpeekz+f/vi8ZrifVkrIs0e/3KQrS/ltrjUsvvRSf+MQnsHfvXszOzuKaa67BL/zCLwAAzjvvPHS7XVx33XUYDAb48Ic/jLPPPhtbtmwBQAFfH/rQh7C0tISbb74ZX/3qV/G0pz0NAHDJJZfgi1/8In70ox9hcXERf/Znf+bqvS8XKX86VYGmc4ATC84inpW/37DgrBPJ0cyG6vBnaY7gTWtuupNBBhVkqSGCfQ5uppSiUWS+MZVqcA4ZjfWgFZNqdUrbhiCKgwJE6vdzEl1JtLe/Xz1QqJ6958QLRwxLIXB4cTL6zQfEDa/c56OPr2vSMIWIlRWkAIyIA1fCoC5WLAiLk1NK7pcG5TQWa1ilB/n+ecYSMvG7a+qDVB4mTFYBBJHj0RgmYyCK4LWBgiwTJKCHKCT4v31wln8YJYFeHygMeY6UouwN/UKjlcV1ae1zzVO++6DurEEXU9TlqYhfubJ2rhffF8mxrFYXAl1VxydtGHd8LLMZvsIzvIJA0OdCIM2P3jxOFHgzx/WEhYPWYnWA1YOzAADJvEVBgbEMnLJBaxzITYkEiHsYVWV8QGXO7y7QVc0z2mQMCjJcpSTJvkGhsT67OaqrDIKzwiKEb++gMC65wbCMYoOiKYCzXjirG2CDAhMJuUwK9AuvdEDBWlXzvOy+2YZAOsUc+/Q6kYxFRBnb6Nnr83LY50rVU7dKN0/Wn9kHcK6gKhCNKaKp8P1aVsc1LStF+dNzoPYdC9S/WZ5jU5nCODEMb5hoAm1ezwUFlWL4eL2/l5MyXK+66ipccMEFuPHGG/HWt74VF1xwAW644QY88YlPxC//8i/jJS95CS6//HJccMEFeMYzngGAENB3v/vduOaaa3DxxRfjpptuwjve8Q5X56te9SqMj4/jkksuwRvf+Ea88Y1vdK7sM844A6973evw+te/Hpdeeik2bdqEK6+88p57+nupNBl7QohGw/VEMmfdU3JYHDSwWlnVcBV14fnmkkTdg4zGTPk2SElGVBgtSwtz/aOrTQ7BKdIuXPWI4diw8kZb0C8AkEavBjtR0uaLb82TX3o/rKBJGZyJJrOeDdc9R8dx0/6HIZZYOgHjZJjhWosm94tfWD8SQyNUFWhKyalEPVMXG66r6QTWl7L4XTXJYSlZl9Gh62IJGQMRb2okG1FhXQBEFm9qhB2fmTdcy5o2aNImF3kc1/03/7QVR6tz7f1pwzgoDFqtxHA1wt0vzRJFuq4GaDTeg+ezAWmRgZ2OV2uoh6ew9yHawFjEnL8PDsBLv8ewsPch7nPhUCYujcZEg2Fqwxmp3ar+O8sGRfW47z883tBmUZ+T6JsNvjVpUyLzZlrARuvHV5EGrzXerceHdJypQ/NcoCi1NVxpfieObYmx7GhUV1n5dK5BY6O/iso4YzNTdXUJpQT6hV7deAf1VdslIKANaNgrUgJF4TcWtBlrUBUIAIUQBXZtkg3Z/BpUMNLU33QehqgK0LF+IXHj4ach+j5EM3gQbm5dwoxVimKNX9um3KovJDU3RPnHlbPaS9QHDP40KCuEdRHwoGqGq7DjuHk5p0DHld7V/b2cFFXgbW97G972trc1/nbFFVfgiiuuaPztnHPOwbXXXtv4W6fTwVVXXTX0npdddhkuu+yyk2nmv3lZyWhcSSLrRAxXRld/mvs1Gb1NJTVc6zquzahaui6l+ouApQoEyIXfPfPz1Sdkum5lQ5kFz8NTaMdcz45kkENJ34fsLozbHixKjRqm9QmSDYi47aZhxW5+EJ8OVNbOcgZLrRN8X4oGySonBZVMkEBsjLJxF9arA1rJcMQ1RQ1MtLisVOp4iu8qL+0Vb5jqmpCsuRvej4kOvi4DGWmVKyUBkaAbEjAiixDXpmw+YWHENT3WK/zNhCCjrii96LvrAxPLEkWIa0MmIkZvoqeVq+sqZw5xDfuAvsfUuKTMct71WlYry5uxK1SFY5E3TIkhko59+r3JcDWunqZnaUwogdUR17QP+H7hnMRZ3NhYyGxGqnQYaId8WQ1TWwXPlbmSGBQa/cKgnQuLvGv0B0XN0CkqgdHW8G8bYMSVDWWBpsQMRZF+C81FG+mk2fKsjoRTFq7Q68SIa7rxipF3VpLg4r1z/ho3hlOUuwFxTeccA9+mfUczlCamDbLYf/otxClf7TyZdBNTE3ybJMIsi61GwxWrgjikA45oTqINYVMyHllLxW1Q13Gl57MZ8xruSXNnfMxgZWT4/lT+H7G/71ulyWgEUOOXpohrkwGaXtdkuA4ziptQ2Ka2puXEqAIpuoEGo7gB3RAxVcAZUcEE2eTqWSlbCNUzDG2MJ0NlEd4QbSTDNbyQ0UbPPaprmHKKwvR+cRvImK5PvvXEgEDGaW8duh7WXTcSa9db9E/UJkOB0Avp3Zux4RrPdJwQgBdK2YjiVTpBucHI6SrGOnVWVEIheNJxNQ3Ge9IHomFsJHsFad3BYZsYcc0iyohNhuH6xVDu8Npn4xse8nzDussqMThhDY+ajqtw/OHUUM2c6zU20Fgyx7c7TtMK1L8fyTzfyHC1iGuKcgVZ1Ujua+Vvj9zBSSpV3jAlG94aVUAI1AzXRBM2LVLW+5yR4hMRWK9PeSqZIxCNAykNirLBGDJ+I5lq8AKeKlCUBq3M55on6at4EFdVM1UgLGVp0LZjJWeN39DQUsCgRGSEDyuUbMQ/rzYqrktyXfR3JimT1krZmLImqoAUNU8RG64RPUORLFmc7rTeHybw5lTuGws3TA3gAdHE3TumsdIwLyffWpocp9VqNlxNQJdoKi5zVojqW/pZSlGhxBfhZp1AlTywZnm+ExbtTVoDmrea1lCBVakC9xO79gHD9V4owwzQ0CDk804WceVArPR+Tehq07ETKasZrkqyyPzqddXRDRkvupJ36343XFYxYgZhd7Ur3NAnPPDHyNWUCJ4rAWRTmBwLJgfUt9/GACoLkYQ6UqSR8uXqKS0NP0DcWjQtzA5xlVxf+Cxm1T6QoonfSTywGHG1CF8DVSAsBqGrsM6pc/eLDAg2otKa4kI9kG5q4sxZlY4fhg3XeEzVEdf0bpzuNEU3IGKDhdqsnDtWCm3RxqbW23ZmdZ5vlgn8YPe62jMPSlNLQBAiey2bIckhdo0JCFDn/gpKlxka5vU+oEW4ThXIks1XzPmUAigb3I61uk38zQqJ2hxR3xwx0p9u7ESNTxrdryk5hbRJA1Z4V/x3eoQQ17BN0lKa/NxUlPXNZpisgpJMxPXmuURZGkJcW95w7fULGJFH55aViTZRTaWstNvkEAdcRI+XKYlB4VPH+ufz/++P+Q0LfQNJf9YQVw7OSuoODEnVIOwvJY3N8AfvmYqNNmNUPE85He7wfnD9lPJyuZ6qIT24gZ87hwUZcVAgFyFjqkCmlNMaDstqHFdp169oEy7qXhKXuS8BQ7RREeLqDeVmqoCSGr1BVadUNVIF4udh7dz7ennAcL0XyskYrinHtSkl64lSBZqOpfc7kbK64UqTUfp89cmiickYf5gpVUAp1HmTTDZvsv/cs9XRTsdtTNAUAJiaSBHXoFEmdi0Ny96TGsUC8URORdfXzsRwfeZj9kBhCXnGxkL9Pd20/2E43Dt9RSNKWu5WyntLDYiQl+eulYCJ7msIKQneT80YcjzfYLJHE/LVMKk3LUqBcakU5U8PR5ByhmuwWQAZwBE3N1mApHX5xUabAJIgPQ4U5IVRCmOzuNWbH9aTotx5Ax8YIBS2nVAFdEAVyHPrbg4NV8NPaZ9XoIbeCLG6R4KeqSF7mMhrGdQgJG3w7N9Vo/HuCyOpMerMrl9/rJEqIOpUmqagx+hZbL/UEVdVQ1zTMZvSF2xro2NKxci7khiKuPL4abey2hyRZ5QtrSjpXSqlYGBw7Vdy3LHwhOhc4riu8NDwygPURtsH4VNYY7OWFhqx4UjHFOL0wyY6R0mBohLOCFYK1hiqI66OCyxlbTNKvPvUewSnyOLP4zalQEDTpoaOPe3RJSayg9Hv7ltIpp80m1/yWdljMtqc8DfjqAIrIa4rzBFNdAnvIQz6wCljpH0Q9wuvMQK6NuYAotAMhgbSrTzGIJp8gfe98oDhei+UEzVcU0P1RDmuqZE6DF1t4r2eSDlRqsDqiGtTcFaymLndLP1XSYEy2YkSCb2BNxlU3UQVYJQpdccAcKga1U9tjaoOdvaMqoWFJ6PUBVafDRvIVEm56JyjGMEe5BnXI4L6qPTKDnrVxIquUDYWoshYDh5q6IM8MKJoQgvHiraLi6+nKZVqOg54A7GaS4pQ7nT6EQ5t5g1MdE1DnzeD1/GGiXmUMeoskAZnCUsfcIirNMRtXMkgzOr0jFA6jIsBc1yTOcF4qTGSQfNGaZapWh94RCl4PtHAOU83WqpOl6DxHQcqMlWAx743lId2gVcQCI6RB6ROFWhCXOvfXmoox7/zZqGJ4xp/jxr1MdbEca1vpkNeoVJ1JQcgNgTSwDqAvq+i1OTib1kpQwMsdeumQVXBbVyHlaryvPRWTmh8WBMHNNaBWwkp4oFkkiCgpj4uy4DCJYFBI+IaUqqaUmPX0y0L1MerkryJCq4VaERc+bqpcYHp9p1R2xu9Msa3JT6W9rd0QYHcBybY1LTyrBHh1KmhnNYqZWN63nB+pWOqZrjy95h6lOi6ZsRVStOoAAGgYf0Qtb8eQFz/nZZhHNdhVIET4biuRhU4UVWBEykngrjWJ756SRFQ27LYrRoYh1R3fWEWgNN2HVZccFaDIRlzqfxC469tckmFaCMbbTHFIUWGRMNEiwYDLQw+4bq0kW7h4sklrPsXHvoVrMn2NPRBWk8zVSDlNgJNHNcAhYa2mwVGnYbwfGvyQnV0o6kYCBwxj60d81QBaSNjg3cnOGDLX9Pk2jIJX8ItQOm4EzGSwYgrB1BJYQ2WFTcLqBlReSYxPb5YO7eogFarDtvx+yBvClxdeQPHVcp6MAghWGkQWYJ8KYHUaKM+yOqIa2DIMTVhNUTJ2NSx7n4StXFHqH5s1DdyXFdR5hjKcU2De1BH7Oh4eiAxXJWAEZnjFSoJFA2ocxjAKWXdTZ5nlNu+qAzyTIEDCXds7tXaVFZAvgrHtdLGK1CoBjksJVGUcaAZtdPPXXFQamK0JOBEiLhmSgxVVggR19qGSYpaMCGlNI2BCLo0r7nJa4hr4Fkgb1J8P7eJq21O4u+4CU6wyZyDNkmYQIGGENe0zwC9ilemmVIlan3AG7KUc46EkqYNedeE/Xf6FFIQPSVFx1OUu6ncX4K3HjBc76USGptc/q1VBYZye5Kv/0QM18bgrFrNJ0IVSP6rJKoqiZrm3NarclzTCHdaKNPoVSA2XNnVGT1LgLh6mamQp1WX36LdcdIuDGd4hm3SJkMrRVyDKyiqf+WJxQfEBMeUpTSkaCMQEf5ZLsm30BBvMjDem3hwNaqAMJGUEJV6D5hGQROPwqiGaH2pQAFx4YTc2B31jUFqtEkJQI1itJ0cC1znShqUJRp4k740Ia6tXKFJb6csUQvOCgMvhSCeZmy4iughmRtXR1wTTdpknGSKFuEoQC0TgMgShIdRJm+813nFcWn6fogrG29uVbI5ArzBGfcJkkU37stMMac2rJs4kvEU0eztqD9LPF6pDh+4x+ijCAxCISmgKjYE4na2MuK4VpVBnvv5cmpsgCed+pnoXKIKrLwcs2g/EOrGBk8hgaKqKyuYYEy95Vk34rxTb6+1tamPi0rGhmuhh1AFhg8OHwvgjwmwcRmMRQVCXKOg2Waqh6OXyWZAIf0+aLqte+xq3kCTUAUy65HgmICcPSAiqqMconPsnk3W1VCUEA1yWLIhQK0+ho3duO4tLsJLr/btvfQ/axwsHwcljQ2ki8sJyWGJBxDXf9dlmOF6T+i4nqiqQKob2/RxNUlkhe1sapOSFAG6OlUAqHGrRBKJz4ak47hS1qHUGKpWQfGkde+lgvVIItw9l3YFqoCIuVRsnETGZoOge9Mk02S0pYarZMPVGjVNqgKEtK0mMi9rKDCLdEfjzp4QUQUkEOlFQUeagoQwr+4GJHShieOaBAEIgWl8PXkCj7TlVlUAybhLx0ESxgeAEW1fMhdRXx8HayfCzQgbcv5+q3NcpV3wfKFAncSHZ0ihoN2Kv8d0ngj5eU1UAQ52ib+h2ENAfVBvZ2q8p/xy6gOqMHNIYh1xJaPUJH8nC7OqUwWUNEAj4ppugE9EO/dEEFfdgLg2oLlCJZtpAQjlvg/KnJXSggQqraO+S0ueSQwsVSCUQSuLqoZyDwqzKlVAa8+DJU3RZHOSSaIKJEwV+ozofZ22sYux1jKaDPpYCoo2jpmbny1VIG3TKm5yDqSroY01qgAAESOuw4Kzwnk5HeeeTxpcZ+pbGNMwJ6XceKKMZK5NTR4QISh4caW4OtEEfDBVIGhUlkkU2enxGG7YFIbo8b/8yB//9o+M64NBUffcUn0rjzEB2bjpvq+VBwzXe6k0Ga5Nclhp5qzVqAJNA68RFW0wOIfJYaWGcBjU1Vx3XRsUaDDZGoMsUhQmMVybqAKCVQXSxge12sU7QkUEazuGi2eD4dqAzBiDmlsu0gYVbCzE7UwXymb6ABAbrhIa2YpUAULCxIocJc70EtECpKzROrw+7SpUgcBIFA0GBiPRqdu6WQ5r9RJyDZWStIEJ+0k0a0LW+zcx3jOiBYR94Ckq/iAZLN7YknIYVSBEZQglDd9LK1dQYoCnbXx7dFVRiciAIYmzOurDqFYrZ8Q1Nq4bI5RPwIAY2gcqbBMQBq0x4lp7n7XdQv1d1eS3JAARI+30vabfXlOSgLDdNgI9McJNgpyKITSdJqM4oowk3wdxR9PvivSm1QoWS95SlioQc+oHpU5k2Ax6A7OiEQzY4KyA5mOSpA+Zkih1XVnBGOGyKGW5bIyMT0uW0TP74KwmqoDAaoirEs2UkVS+jYCHPDLeh/GfPeI6TKawWQkk5rg2q0ukxmVIpWEt5Oh+grwyqyGu6TfbpK+dKwEjx/H/s3fe8VUUax//7e6pOUlIKNIJCRA1oCjYkN4EUcGrggWlqViv5XotVy8iitiv4hWVqxT1xUKxgCIiCigqFkSlSe9VWkg/Zef9Y8/u2dmZkw5JyPP9fA5kZ3dnZ5+dnX3mmWee+WN7Mpe/7NtknpZv8zqx5okoxmInokUZEF0FHAJUFDBIHGerGaS4HifKa3EtKaqAjNIqrqWxuDottbIFCMzQMzI/IkfJpIqrLKqA5eOqmT58dstJnMlZ9lwVUYky8hRnDBv7Yh9QYfYqMxvb2AdMZxp3h6qmCFZnVezEW3dgx3mIYb11WxZXWSdFiSptxX3bzF68/RDDKuGwNlpDXzalTVE4i6spc/5jWlqLa8kLEDh9vsyrxibrKYbLiN0CEnUVsBuGi1NwTNwuTbCOm9cR/HxtFkHL0lZMZ8G0uNqHUD1uNWpd5ZW0sK7AZ7e4ms5vNux+4eZqTHZUScdOlSxt7MzXeOaOcFguUXE1ZWCFw1LFKB9Q4li5HatPiRMxdcARLt2od87JbDI7uu0cTZNOxAScfr4yi6vcu0TeRpiuQhDi+aoKohOhOMFweXrcMVcB+7sWCoU5q6gxtOucnCWWMqLHRklcMlcBzYirLIbDij0HtyZOFLKuyH0/okqwJQsljjJU8lLDuu5001FEVwEVgOoRJyY5JsXaQ5fF5h7Y3sdo3nDWV4eCbYwQyO7F1imN+sGrthEY0SWmZB9wLSpzUQawLNrGccbfdRLCXP5Ov3D7vdj7IOY7Y1hcHRPpFNMfufh2WYn7DatekOJ6nJApm7LwVHYlsTSuAjJkrgIulwuhUKjMiqtZhpInZzn9GOUfBFE30YTeNwCuV+tc+11RzCFiR16ORtupoLk0LfpB5ZVu8z6tMiiAYJmx+QMZeTssrmqcyVlCwyZ3FXDmpdsU1y5ZeVZ+VhnN6wl+jPZ8VOEY4znyypfZQNpnvwsWVzVqaSumoXNpiuC/ZlraivP9M1JkKkVMuXS51GjItdheTfLBUyBaXBnj5W76qjktZoBjmNxxr5pq+DYWNwzo0gxruf1Uj8dlzBJ384prJIISLa7GBAqbj6vDp85yGeEUQnGddyeWxZV7P2IWRXtedr9XTRFdVAyZi9eQ1QNnu+G0uEqtalDjvDdmuRWJogzBh1eRDDU7rfFW2ZyT9MCHnnIu/auqhutHcYsGeKJD985OTCjEW1w1laEo5AyjJt6/rhttGhBvwQMFYZmPK4vVYTNyhTBMLpnQaHcVMFcBc46u6IwVH+lEU40RCaFzy5fTpQFQ3LAH5JCNYNkXfTBcgHjUaLntCqgCc7TTrrhKLK5Ce6MaFlfrWyi2NWrUx7WYvq0hA8HiKrbVmqoALIRe7XNi+UutzjbF1dYJ2XvY7GiZFldbcRQzbmzxiisAyFY0rG6Q4nqcKK3F1f5/eRXXiroKlGRxFfMWP0oyp27nx8U4zmkB5T+esYlQ9qxLYXFVFTjXebZ6zJwiF7vvmAzk8QJjyrTEx1U1ZWArpxJPRXPiUJCis7tNi0v9Ojrqu9cJw8GCdcMhc1VVREXdsfqLmQbwk7OcPq6qaUkobgjMnPjFycCIO1icJQqA6HQGfhjXXEVKjL7g7CyI8nVGs3BHXQU4a2O03nmcrgKwHwNBYXHicplW51gpfB4VIV2DxxMLMm/4RCrwejUuzekLa8/L7TYWUWWOeue0qlsTE51ahQ1N4uNqKkr2+KFK1AIai3Rg+pzH7zAB4rtgtB8y5cQx1OroMEWvIJ9zZ7sXZxg2K9wX5yogKj7yUSC+c2JF3bBWNAMiEf4ZW5bvYjpobrcRVSCiM85VIBSOcDLXoitz8YqrWEidxZ5VbOKe/R4URJgzPisfesoMoyV2FnhVzqWpiOgaNzkrFAacypA4QY3HcuFydMKFiUnRP71eF5cma5djnU5xcpYZc1t1fpvg9CWXhWp01gO+cyu1uIJFLa7FdGDcosVV08RRS6Nz6ebqirHf0bm1uV7I3D401fCZ5jubxpwBsS0TGuES3r7qASmux4nS+rgCgNvttrZL8nGVEU9xlcV7LamcpVJcVXFylmySl5EullfmKmBaJMyhJecQfEnDHGYAa6EhcMZxlVhIjN3OBtK2/KipnNgVCEtps33QAcDxMVFs/1p5MwVC2BXEwjDJJlnJ/MKcoaBis63taRoAFaom1jt7A+n8+KiKOTmr+HonC6ztHCK2S8KSgZBiHGM+HuN+RR9JnfETaeQ+rs5A4hpgmykP2D9KdrlIFIGIvMMXyztqcbUdEvBrCOv8B4jBsLx5uFnToo8eN6zr0oRQQlpUkeSsf4rMys2jqioM/11bXhI/XzML3lVA4svtLDcD+E6G2Ll1zkg3jlMEZdY4L76fneH+4gy/ZbzrzrXuy2dxNf43O3YuTUHYuUSpaigsxa125XFriEQMlwJ7GLSQw8dV04CikCKZnMVvR3QltliFRHF1uVTDVcBRJHu7YbifSLrXjvfYzMvqvLsUhMJOKx4rMUyhGeu5pJETa1lVt92FS5SBvYNmjkJx15NM3FMMzdWBrGOgODpapgUz9i4YKhOvcAvLUDtwR2UpuNI442vLZABAYTHXASBqQY+WTeaurEXjTzu/H1JfdQfMumr1hhTX40Rpw2EBMX/LynYVkK2mVVI5SzNhzAo941CiJCUrtT+Zx7Zeu3OI2lyAQPhG2DI3wsM41hzXNNHCK7U6M6EnbbckmgoanOGwoHEfY+Nj7bxjiXO9I9C1qiqA6rFcBczGV5X4DHKTQRyXsiIrOBtDhVdqXA6Lkll2Li+zQS6mhbBmcjs+ZkI5JTCZk6vqA0NsLfYIU4XhS+dH0LC3iB83zrLoNuuBRDnhIis4P4Iw/PyK+Sq5XcbyoPZj/D4NEebmLa4wPjJ2i5ICmZuDLRyWWxOHJqOKpPOjZISCKr6NMO7brjBF64EzqoBtn1EPHFEMFNka6fLFP/gRELFc8k5jCRZXVbT0m7FXizE6x/KWpLskbZJlkY76jvLh8JSoYlec4mq4CkQigNcTu/mioM4pqZrKEIooXF2M5ypgKdMuTRjLMdxrYlZSKyebQmYopKIAnCHIzFGm2ES16Kpc9nqnINqxs+cndv6ci1OYCqfd6myu1Obx8G2SzKHIbnG1R0ww9zk7WoA47iUbDXROto0tQGG+O3JXMLmPa6zchsVVDFMorh4mykBRGSBRXM3rOaOO3Hz2izEfV1u6quhceMP4iPHnqyOkuB4nZMpmKBSyrKtA+RVXMSyR3OLqPE5WIXVd5/w9S+XjqkWtmw7HN9FVIN6wnPiymh90MxyWPYi2qioI6/K8YvlA+FAaQ8QuqaXNjtCzj27zjZEziLYqDk3GKZ900hqc1iJYoZI0NfrRsAULNyefcTH+HBZXo0zOCQai0mb+6RLiuPL3UpJ7hkvSgTGsfxr4meqySTIS5UT14dM1F0TLpkZ9K0VXATHOIQ+D8yOswR7iCRBdVADRl9WcIFacH6M7av2ziynRr0GHl7OcAMbSqR5utTJd7DBBhSv63I28FfAWnmIiOdgVFkkbAcAxsS2qlLjE9yMWDssYErcrt7LA/uKiGoDTVcAZGN86TljiuPioAlo0vBn/YTaux9dFicVVkQdh5y2uvCXamvTEdQhL7ti53VrUVYC3ouUXAn5v7N3WVCAUViVLBTuGiPVYmWTB/o2JSZpQXxmLRQfwWH7Tjis53F3cLt7twOVSEIrAobzLZOCYFKiZLk78aJUzDrhZT7xuh6sA9/x4lxgzDBt/PVVwqVIURRgJg6O+AuKIlj1Eo1lG5/K5hvLuXOZb4d4/r8eY6MbX12gEGO56xv9uwVWAN0CxqCvEmUnv4qzWset0bZuNpnVz4dIguHVYFteSFNfq794KgBTX40YkEuEUQgAIh8PcbHan4upcSQswlEGni4HM5cA58ct+HZPSKK7xXAV45U8cmpQNexrpch+c2PVMpc0or2Fxdc6C14UPh5CnZsTc44afbJMrYnnJ8jDsdvy9iPE1eWVTYm2E2COXe72qsLsKmOWzVmxSo5YTLuB5dEKD5pC5LV+Z+4KRdyyINgDLbYB/7qJlL6Ir1mQQ/i5t1wM//GRko3HKkHQFI4nBFYA1i9j6uAn+nc4A3XFcBWxJTsuJ/W9uEQbHB9+yuBanuLoNi6v9453gj1qNbZ1UwJhgyCmuqmjp1+G2nrvpAsDdmSb6+cYs3/HLGXufFSHN7eLlaT9OVYGIw01HNmkG4JUFVVWMyVIOZc+Jc+ELwByRiP8Fdbu0qOLDK0POJXyNURGxbsiUTZlvo1k3DCXOcT3ViKdb3MiCx21MhIrovMU1vwjcwhcuzVg4QFRceXRb/ZEtr2rEm9aEDpjdL1QWG9g8xulGYijB0bbJJfNxZVHfzeLqnbhYjRZty6TD5A6Lq1g3HG24c9EAzXxWzo6V05dctLzbIxbAdh17TGNnW6Oohg8zL3OHr7NLha5rgvKOOBFv7BP5VIV3FVCUaIQLTcVpSZ+jQUrsvnQ9Aq/Xa/i4hnkfV01hiOiyTpvT2FT86G51gRTX44RzIhYgWlxNxcFM0zQNwWCQO89wgOcVR2feiqIIiw04lWZA7ioQL0SXc8IYpxRbw4B265HMkV70tzKuEfvb6A3rVsNuBvtXVcdHQpd8cGzvnBljj28ITPcDjTtOjn0Wqsz3UBGG4JljnXfBcOQoYyxJhWLrRVvKu83HVWcuweJqj98XLahDBmbYp1ia6Sqg2soZsyTYLa58GTXVWPRBlJfTwuscRjafu3PY0/kBKr6BdEtWpDKVWZVT3gHpULMtyZodLnOXsA9XOsrjsoYd4zeTbpcKpvCuAgG/8T57vQ7FVVccHyUmCfcTe+6xD7c4OYvvLChRq5o9L+ckPXP5Uv5dN+8hlmbWjZjMdN3ZYZK5OIi+znDUA5leVh6Lq8sluiEYxeUt/TIfSEC0SBrni++HtQCBKlpcPa4IIsxbrDXe6zEtrgrnIhIMMcstyLxeKKKKywE70G2+jdaImr2DphkLmThdMpyuAjK/SKdrkuF6FYth6nGrCEX4sG9q1M+3OIOCtfiHw7LoXCHKsrh6nJOz+HbEcDHgfcf5DozKWZiBaBvhrK9wtKUwjnF2CM08jXzMOK72dtlcWS6+DDwewxBhP8TjMiLJcN9Vh4uKmT+Y7VuhxGRujAjF8tQjOnw+n2HBDzHutVJVHRGdNyhIkU8+qHaQ4nqcKI3iKnMVcFpczbBWxSmuslWyZIqr7OWKF6IrFoRdjONq+FLyViYFTNIgyp3W7Q2WcW3datiN3qlz7XBjdrdb5iQXxRW1uNrLaSolnC+VpEDOYquKGILZ6QOmWsq7rfGNzqh34hwU13U+VJJl1fDErGL2ZRqBmK+YXTkxBrtiJTXilfLD1ubkLJnCUpwLheUqUIxFyfQ5Fdccd1pcRVcBw1pU/AdPnNQRtTpz7hKSYWuHgm93Q4mVM2aBsvJ3yMC03hQfDgtgcHMdrcQEM2QRP+qh64pjxrBYXxg0uDU9dr8Sn0FZOCwG3t/SqdTEjrUroKYMHB9KAF6POWEUUV9OWx4KkyoCgh88NL7DJFkZSm4lLl5xjS1LG0vTVAVQ3Y7RFYk1vjSuAtYIiNkmKYjo/PV87jDCLODwceXzNSdnRSKAl4sqwKxOqpl/KKJx1ngZuh6bC2B0GsENSbtcxkRBZ9MfdGfiSNEp0WvJLa5OmRt5adYz87gVhMKORQOU0vnB685RoGgbwVkEHSNvZv5O7AvDGNsyS7Fz0qxsDoPM15n3rjYfrb1uOEO1mTIoblTG49YMf33YOwYAUzyQjQJ5bDIwFuiwGzmi4bc01fBztj3/iB5VXDUIIbpURVwWWobRbFR/zZUU1+OEcwgeMFwFSuPj6hzyd1phS1rIwJ6nndJYXDVN41bSkinFxsfa5VBAJVYYqFIrpOpY3QpMhy9qnXK7NUQcfpMulUVDszg/QrE/NatMsTTzQ+DmfPjEAjln4iuqZKlBx+tsfph5GYgNpAyd8TP6Tdn6POZCFOaQn9O/0yEDh8XV7XaJsQijfr4aZ3GNWRBi+fNlNBq64jsLlq+ho4F0Wr4U6AAT5SLTWczn4LI+QA7fOGHmuMxFhbceeW2WMysvNY51g7s/M6B7/IbcCGXGfxASE6IWV8cCBIzxHyVVNilQcRXvKmAqAkJnwTlsLZ/iJFMyZDKIuS+JHzxZ+DjDJ1zm4xo7zq68xY6TdSSLdxUwrbTSpZxLrBti/GmAnzhm7nfbfVwd76NbY4jA67Bg8RfzelyGqwA3KU8RLK5ut4qw7uKUWVmvw3gfbdY/h/uCocjILcr7c5tY14pvcY1tGwtraDaLqyIse2t0auRGEi4fx3fAbKv5USDjf+fKWc56Zvi42xRX8JIyO9P8CIHMJ1uFqjrcByBvE3l5KtzEWkVBiVZnr9tsz2PHeNzGojPcZEmV7zDBvDebq4AavZ5LU+D1erlvta5H4PP5oq4ncHT6mdEBdfGyc8Ksi1ZvSHE9TsgsrgCKVVydM/rNfcFgkHuhyusqUFqLa0mKqxXsnyuDTGmTW6v4iTsKAN0WVUAT4rFqUcXVzQ0R8R9mjzlJhmscVOF6UiXEOZElqrTxxzhnTUfvj5vUwQCJxdWJruu8y4hqfhxMBStqOXEoroZVzW5JcC4eYTr8267FNEBLcMwml1icHA2vZiks8ZsIc0KMEG5MUYUPOhN8zuSK64OXfmPlo8uW9WSia4LoKsD7uHmsDoHd+qdy/wOiEmWsTlS8DKJncmVKDJiuAg6LK2MOv2KJ4go3XFpUcY3WMTtWKCG7xVURrfHSqA2SewR4GZjuMClJMWXfqQjI3YKcC31EO0y267mliquQJFi1hHMUyC2u4DumhoLk7OyqUsXOJenYmeW1IpYo/PHO+MjOeuj1mD6udhcRI1SRh7O4qojobs4PVhb92RipsR/DRycxFgRxS+/PfDSltbgaLjBu2F0FwhEx9mokwk/cc2LOBeB8zjVE2zexTRJiCktUFM5yL7G42peFNcoZia58aDvN0Sk2Ep0+vGJnyNmpMtwlSmFx1fkRSrdLARQP9+6ZsrZ3eI1FCeyKK4v6uGooLCzEsZxj1j49ols+rkYECN56bCjPtkIwQBEsSzXDV4AU1+OEUyE0kU3OsvuTxlNcS7K4VubkrNJYXO3LQgKmv574MZN1RO0WHsPiyiyLq7lEqTNwecRpSXC0OUawdr5x8FrLI4qNAycDxmcY716c/pZOi6umMDDHykCyz29SUhLS09NteRnl83pi9UH0HRUXF3BOzlIVwLkyWVKC+UG3WxLEeinGcY0u+lCCtVH0XzPvwX6epDGMMySV6Lfn7VhhLGpxFeqd1LIYO8+0ZPMRBESLq8xVwKm0yZFbXH0eh6LGGP/+K7rUx9WlxXxcxTiVcvcMOF0FIP/8yJTw4qzOxuQsUdkTLJkOVxrNdFGxlckr8eGUxXYF5J0ae5kgjdksuoMI5VRcUmXZ3lw6J2e5op0ork1yGa5JXGfBEX/W69UQjqhgOuNcg0JhXhaGIud2yMe5zq7RkeQUVyYO7zNFdBUAbIqrW1xG2MjbuVy2MenQbDu9bhWhiLjEtaG0xVcjjAmj/DtrunXZ3XRiC9A4Cs0cM+rBt186HPVOVYVRGSN6h9MlRzZJT+53z7uDqBB8XEuI9ez1atEyxdI8bgCKR+z0g3cjUxQmtbhqmop33nkHy39Ybu2LRMJISEiIhi7jFxvQVAadiRZXoYPIZK1p9aNSFdfRo0fjwgsvRNeuXdG1a1fcdddd1r7p06ejT58+6NWrFyZOnMhZitasWYNrr70WnTt3xujRo7F3715rX2FhIcaMGYNu3brhkksuwYIFCyqzyMeV0lpcTeK5Cjh9TMvr41rayVn2+K/SvNXoMIfTCiN8g+QffZdTcYXOKa46c862jPYWnY7ltqw9bs2I42i3uEY/BCW5CsgsrqJCwTeQRmxQN+/jqoqTkGSkpqSgVatWtjKZPe2YqwCDBs3hS+W0uDpdBZSoBdTe9p6ZEbHyNJHHnnQorqqxsktxcSpNqxP/rPjOmIkYsF5uEfR5bT58jkMs9wxhopAzb76T4TN9XDllz7QkxQ8JZk4QKzn2If8R9HsV7rpGmRh05gg9J/OJVmIW1+iZgn+5MySYaYHkLa5y5U/2PvKTsxzHR63czs6CE6eV2xVdrYwbHvWInWl51654jOhGvDXXPms+libxcYVcBi7u/TAVCPuEUU3oTBtWbrsFlB9G9ns1RHRjVMTeYQlH+JW0XBoQgYdfDpiJozeM8c/KOaHK61bB4JF2znOKEo17KsbiKlVcHRZXrjOtRv2fJb7LVpk8UYOCvW5oAJyr+UXz5ZZlZRqcMUwFhIUTZPU1El350HYaVK59Na4nN+5onLIncxVQJJOe7M9Fg854GXjcCqB6HO2yWYftxi1wyrum6QjrxnNJSEjgrhMKhZCamgotGg7L2bm1R4mw7lcodZyGo5oha0kqxNixY9GvXz8ubdmyZZg9ezamT58On8+H2267DS1btsSgQYMQDAbxwAMPYPTo0ejfvz8mT56MRx99FG+88QYAYPLkycjOzsb8+fOxefNm3H333Tj99NORlpZW2UWvdGTKY3GKazxXgXCYf3njLR3rjMfqpDSuAqXzcVUMyx7nKiAbPlSlFldBcWU6vF4fgNgEI83e0KlAhLkcFiXepmQMBzvWjLd8XOMrJ4BhcbWnGkO4TguTc6a6TBliYMIrxYBihj2N83iLq7GONe8XZsTolEzOYnzv3+kuYSnDXH2RPBTnUpwKi1obi7OmSCyuNh88rlwSP1TZcDA3+USI/wjByq3Y/jVxDk16PaI1TrpqlNNVQFOiQ5olNOSOCT9GPoyPKhD1t+Q/SjIfVzd8HvvHRd6pUh3KrDN2brzvj+xxlmRxFVwFVLFjF71FPk+FP0/m4xrPl5WzxisKN3RuuqjwfpOmxY5vF6XWeEm9s/u4xiZn2SyujtGcWKeNt7jaFYkEnwv54TrYGzwbbneBdVQwBPi89jYXYPDA57WXNSL17+TcpRzD3X6fBqg+yQpctnK7NGGxGjMvp6sAbK4CXo+xBCw3/KwYkUeKayO8Hhd0uLhn5dKii0Vw3x0xjwhTYJ+YJBtFcI6EuaIjNSpnVIljcZW1y1KLK/d14EeB4oaZ4g0ozg6+x6UCqlcazYIflQGA2PffpUYQivjgdqnw+/3IrzcQBUVGTVm7vzVSUgrh0g5HJ2fxRhVjjkR84w8A6MyFIEsWZFDdqFSLazzmz5+Pq666Cs2aNUP9+vVx/fXX4/PPPwcArFixAn6/H4MGDYLX68XNN9+MtWvXWlbX+fPnY/To0UhMTET79u3RrVs3LFy48EQUu8KUx+JaHsXVHgHAfl5pylMeVwHjI8FP+JGF9gEkq11B5ioQsoZHLOuGrZ1xucCFZgHMCVUxvB6X4FNnfng07qMkNkzGBHeHdVMWPkViWRR8XBXJOJ3E6mPXR8wyH8s+Ystbhb2o5kxqfnKWwn3cFAWAwi+F6ZPMqI/vLmG7noao5aL4YUA44riaH1YhCoWwOAWTKlZmeU2lg/soySyuqsSP0WE9ij0r8Z0pzuJqWG8kjb2TOMPPPm6VLB26YyKLbPIVFLdjkg4vS3PFHftiA6Yix7uvyZ0FZBb04pR3w8eVf/cMtbz4Tqrd7cWZxiNRHoQlO/nDjEk7Dour5H2Uh8MCHAsKAgD0SMj6O+bjaot0wvj2zmjDNN7iyjQuzF3A78Le4LlGntH2WFF0BMOqw+KqgMHjmAipg7O4Kkp0IQPNdgTfsUtMMDvT4v2ZaJoGnYmKq84URxsRVVxdphKvIOyIrGB2aooblTFlKFhcFbdgHXcSiQCKzdooU8dlUQWESbOKLhgUmCPkImBEX9ie3Vq4hv3+dId7hjFBzam8OyfpaUbHx96xi6oB9qgtMXeXmFycrgIuNYIw88DtUpCUlAQAOHgUyI32i0455ZTY5Cz790o1/IqFKBiMN7/nRRojX28oyKC6UekW1+eeew7PPfccMjMzce+996JNmzbYunUrBgwYYB2TmZmJSZMmAQC2bNmC1q1jlcXv96NZs2bYsmULAoEADh06xO3PzMzEmjVr4l4/GAwiGAxyaS6XCx6Pp1Luz1TqdPl4S9zjTZwWTfsxiqIgFApxaab7AD970Gh4ZGWw5+W8vqk82NPMVbHs50UiEe4Y01XBKpOpoDFmO894XbnrQYuGVXLIQHWUnYWshRassFZgtusZHyo+L6NhN7fdLmPoBbbzTMuDYiuX2dDbr78nvzVCyincvehwllHh8jE/5PYyGXJxOc4Ddz1d13HJ+fno1M5lDdmZEx46duwQfbaIBm93ylcV74XFto3HaygQZprp6G9PM78A9nKGQny9NiaoGcpQ/PrKwBQ3l7f5wbCfY87utsvAHKZy5m2smBW7H2O5X7sMXHy9g/g8zdXDnHnb08xwXPZ6Zjb09npnLusbTwaxvMU0r0ezlTMCBq9VzwHAmNWsCue53Ubd03U9OnQHoR7YZWDMstcc5TJMrsXJwLqeS+GeqT0fVdENi5mtDKpqpDnzsR9jegXY5WIOvTvbMmdaWKmDYMRrycBcEMR6LgoMNx3F8S44yqBK2iToIRSFxGf1+fxP8chdfYw8EGsLDSMBiyrKtjJoTJA5i6r0lgzcgIYCROC3DAIKIigMqfC4+faUKSr3voNFwLh22fSltL/vKvd++L3miA0s2dkxDR56RPx+6CxqWbbuz2hPzbyMRRhcxrC7Tb4RXXzX7DI3lDBeLkZ9dUNVwsLz4+qBrkBBiGvzGXMJ17K/w+aok1kPdF2P1mHVcZ4qfWcP5jcs9p0xFVf7vUR0eVsW+w6pMELm2dI0M2++vjrPVQBAj8nJpUYQYR6oKrBo0SL0v/0zFBRdgoAxYIm6detCU4FwmC+TFYLM3p4rKhjjdQu3cgwN3Kuh6325cpRW36kMivMXNqlUxfWuu+5CRkYGVFXFBx98gLvvvhuzZ89Gfn4+EhMTreMCgQDy8/MBAAUFBQgEAlw+gUAABQUFyM/Ph6Zp8Pl80nNlTJs2zXIzMBk8eDCGDBlSGbdosXPnzhKPOXz4MLZv386lHTp0yEozrcrm9oEDB1BYWMgdk5+fj/z8fC4fUzZm2uHDhwEAf/31l5V28OBBLm8zf2daQUEBCgoKrLTc3FwUFRVZ26FQCIWFhcjJybHSjh3LBpR0HD4Su79IOAhd93J5K0hCfn6BQwZpyM09xl0PLCVW7r8OgKE+8vNzY2UI5kOHC/v27QEL5xjXi+hQ1UjsvCNBAEnIzY2V8+iRgwBaYufO7Vav/ODBQwCac2XSwyFOLnokCF3388cwhnA4ZJO5Id/s7CNWWlFhPhg07jwGcOcBwF2XA0A2zKT1m0MA6lp16ujRbDCcisKCfJuccgCoOPjXfuu8SDiEiM6sYwxdrA4KbOcdyy0EUAd79+1FwJ0NANj7VxhAK65MR44e42QQChZCZyr27N6NnGyPJXNAtz2rbAAZnMwLCvO5fAAjTEskwhz1wOg0OetGzjFDnpFIBDoDQqGgrd4dAaAh++hhW/0MQtcTHDJXEQwGhbwPHzqI7dvdUVkxAC2xe/cOa5g4++gRruyFBXlg0PDXXwewfXvEKrPz/oA0FBTkCWnZ2bFyMj2MkEMG4WAhdEd9AdIQCubZnqkCPRKTec6xo4jojZGXl2srZwEAFTt2xPKJhMOIhHUh79ycbCHt0MHY/R09wsugID8HEebC0SOxNkkPF0Bn9XmZMyAUirUb2UcPAEjDwUN/Yft2b7TsfN4AkJOTI8pTScNvh/pZaYqiIBQOW9vBMAC1ESfzI0cOAQD279uLBJeRZygUBGPOZ9UQObn5ggx0PfaOHjhwBEBj7Nq1C5qm4eiRQ9ChId8m86LCfEBxYceOHTGZ64DOgrZnB+hoCsD4XiiKAuhB5OSFcCz7EJ8XXNi9e4clj0g4BF2xt0k6wpEI/4x1Bj0SK3d2dg6Aelz7amf79u3IyclBKByBS3O+o0DEltehg4cANEPOMaMOZ2cfQijiRVFR7F0Ph4MIRzzYv38vAp48o0yO92P//v0ATkOB7XtVWJALKC7s3rMNBbnG+3j48F/ceQBQUBACYGsj9CKEmNtRboaIrX3NOXYEDI1xzNYuq4oOXVeFNiIcKhTqgbMMQBqO2tobXWfQI7G6GAoFEQq7cOjQX9i+3RWVgc7lUxSMgCEFhYWxb2FejvEuHDiwH9u3F0ZlIH6b8vJyoCBg+84WIRzRsG/fHqQmMkTCQezctRunXm/Us927d6OwIA+FRRoKbe9HKFQInWnYuTNWX3WdIaKHHPLUJe1y6fSdysI+cTkelaq4tmvXzvp7+PDhmDt3LtasWYOEhARDQYmSl5cXdSw2LKx5eXlcPnl5efD7/UhISEAkEkFhYaGlvNrPlTFy5EgMHTqUS6tsi+vOnTvRvHnzEnsGp5xyiuCL26xZMyvNtIqa24cOHQJjDA0bNrTS6tatC0VRuHzcbjeSkpKsNLNT0LhxYytt9+7dXN4AsHnzZiHtjz/+wB9//IEZM2YAQNS5W7OOMXtaqampVlr9evmA4kbDUxpYaV7vXkBRHfd7EC63T5BBg/r1rLT8/HyAHUBaWksAQE6+Cigu1ElOtI5JStwOBjdaprXAKfWTAQCaugcuzWUdUyfVUD5TU+pYaTsOGI1iy5ax6+866BZkUMf3DXIL1yAtra1xL549gKLx5VY2wut1x+T7V0S4l6TEHcJ5fv9eFObqnDyd9ce96hhXppSUbAAuJCb6Y2l19oNBQ+MmjZGW1tw4z30EiuooJ44hEEiw0kIho5wtmjdHWppRTzyBkCADn38vl5bg3wgoLmRkpCHBb7w7qvYXFIStY47kHwQUN1JsMk9N2S7k7fHshFIAvk6xfXC5XULdaNbUqMOGYrkBXo/HOqZB/b1gioYGp9SPldO3B1Cc+eyC3+8V8m7UuKGQlpGeZnVqGtSPcGVPTd0PBjeaNmmEtLQmURnsF+4PAJJt9dWkZYvYu+717EBhoctRN7ZH60tz7rwG9Qx5GpbpXXC5Ys/4lFNywKAipU6y7f3fC4BvIzR1C1SXKIO69VKFtObNmyItzRgerF//L14GKdvAFA8aNmxgk/kWQPU48tkOvy92vd2HjE9LE5vMmzYJCrILBMT6YmLKANgH1dYGMgZABZKSYjJveIrRYWrRojnSmhtthM8ntoFg+fD5E4Tr3XvPXVbasULj+5Keng5FUdCk8VEwuJGaGqvnKXX+Euqdqq6DS+XbQAbgDP8raNnyTgCAx70VOrxo1rSRLa+DgKIhPT3dass1bSOgxtobl+sgIrrOl1tZB48nVoaCAmO8uH70GZttTXrhvxCsewPS0rKQl5cHhj/hceuOcq5FICHW3uw8aHQ2zHK22B4BU/KRZGtbfF7j3TPalpRoufn3IxIxxqyTkgOxb1rKLgBARsuWqJNk1JNGm44Kz0pzZUNV8qw0j3s7giE3d4yi5MDtiaU1apgHpnhQr149SwYuba28jfDxdVjRC3F+i1+RlnYh7DRqaPuOK+vhccfex6TADjB40LhR7DugafvBYG/vGJiSg0AgJt+0FsZ3tVmzJkhLqw8AaLxL/DYl+FdCUSK2dvlPMMWDlmlN0SDVDVVdjYaNDKU1oO5CWloaUursBNQQkpJi1wskmN+mpjH5akeggq+vqrIOLpfHVvbS6zsnkkp3FbBj3mh6ejo2bdqELl26AAA2bNiAjIwMAEBGRgY++ugj65yCggLs2rULGRkZSE5ORr169bBp0yZLKbafK8Pj8VSaklocqqqW6kE6j/F6vVaaPX4rYCikoVAILpeLS3P6mLJoPEhnPm63mzvPeX3ZiknOfaZPrbltxoi1X8/jVgHVDbdLs+WpAOCXx1QQQTjCHNfT4XZrfDlZzK/X43FHQ7rE5GvEvHPD43Y58opdzx6VIJbGy9e4nphmTgWJ3Yth6eKOYUYoKmsilblggu16huWOL6OiGGuKyybimWm9OjArzXwGUIxZt7E0FVA0eGyyM5f6dN6LyyY7r1cVZe4SZWCOBMUm+hk+UXaZmxMaYvVAi07gUG1pYt6qagQ95yeygJNntBTw+9zc9TSV2WRgTMDj6x2LulU46oXifMY6d56Zxsf9jE0MAwBf1G/a5Yr5lCuKCqY7Q93pnAzMtEBC7F034+LycjE0MOd5Pq+9nMbQZGwCn9vwPbZdz4iZ6siHhYTJQ4AOj1u8ntcTe8axcGbG/36vZvlfWvVHi0CHx/E8+fcj4Df9Q2N5J/jFNsmMI+kskz1NiU7OEp6dGrueFbrKVk6Z7z8Qifo38nklJyXY2iTTN95cAU0DFBcnO2MyqDOWtaFUO/NWodvkyxAMa0jw29r46CIhbnfsfpRoOCyunjvedef74fUayqbXwx/3+TujkJKSAlVV4Xa7o5OJeHkyxQOfJ99Wz4znZ9Zhn9cNnbnhctnKFA0T5vHY65kxeB+Tk/EtdqmO7weMKBOcDBzPKqIbcWpj9Vw3Zuc72hH7u+7xuIQ2SVOZ+C4oKvdeGZkVIsmXLzw/l63tZNEYyrF7AcJMg9vWThqrW6m2bQDRkHlmWmKiORnZZcuLb3+M6+mcDFwagw4PvB4XXC4XFOhRP26GVG09VLUF3G41Gvfc/m0SY68b/hTOtoxJ2uXS6zsnikorSU5ODpYvX45gMIhQKIQZM2bg2LFjOP300zFgwADMmTMHu3fvxsGDBzFjxgxcfPHFAICOHTuioKAA8+bNQzAYxJQpU5CVlYXGjRsDAAYMGIA333wTeXl5WLVqFb755hv07du3sop9XIlIZgGUNxyWHdNXyZmPPU0WVcA5QQYwXC8efvhha9vj8XA+wjE/L1uZov6ddsdy2SpACnSEwqJvDB8P0QWw2MQI46PBxyJ0uxQjGLaLv549HqE7uhKN3VE/EPCK15ZMTIpEdMe6zkbp7Tgnn5gKGh90nQGOOK6GEizK3U7DBimOc8wPrz1NgaG02T+UkhimCj+j3iqbPeyKZNZxOMKX0Wxs+bh/Kjf5xOM2FaZYfi6XWO+k8TQhn2zBrzbFz/x1RRc34CaRqOLECzgmdcXOL765c9YNj1sBFD68kKYaKyGVdC4A+H2xd92lMSEkj/lBFc+zh9HiJ5q5XZp0lr+zKVcgBl03rimWkwvD5BCcx6NCh8dxPSZcL1YOA3PWvH12t88r2klkqzg5URT5JCtuRra5vDPXJkkyYzoiEnc9+3vlrCduc2EQW7o7Whf5csqWDQAX21VTGYrCKrfYgNEx50cFjWghNpkroqyMqAKxbbPNdztCM7Vp0wYNGxoWdY/HE13pic9Mhwdet+1di77HZh32eTXo8MCetbUEczHL3prfOy6qgMvsUNienyyqgK5w7Y1LlS0kwLeTxjvrFlblkr0LYrvsyExSNufiGF63gojuCIvo+DYZOBYpSYiOYkmiCvBljEC1y0Bj0UUmYh0csz4HWYp1v2HduYgP4AyvJosyxIwdQnp1o9IsruFwGJMmTcK2bdvgdruRmZmJiRMnIjExEV26dMHGjRsxbNgw6LqOyy+/HAMHDgRgvEjPPvssnnjiCTz99NPIysrC448/buV7yy23YPz48ejfvz+Sk5Px0EMPoWXLlpVV7OOKTHG1z/Z3KpeqKg+H5czHqUjKLAvmsJEdWUX1+XzW7ERAVFxl15Mtr6ipYlQBRdERlszgPXjMobzrthm9Zhgd+4o75iojmi2encoQ1nmFwlmmBvXqCNeWNZCGAz+vCIgrGvHvc8wq41BcVd7arygq5J+zGM6OrN1SYKUpCqDw0RZMyzB/QReEkILgwwQZDSRfpnBEhxEv0Ly2bMEDlZuFai5bya+OJF7cJZOn/BvBKXvOEDKmEs0HQWcQ4l1Kg4vLlUs7zhn1brcKqF5oWqx++lz5yCmqJ+Yt0ZJ8Po9tv0RxVQCZAsiFwwKvCng8WrQT5VBcHcKUrRYEyD+O9qD2Trn5PCqgeLgQSzKF21km8x7s75tMcS0NmhqW3gv3YbbCm9lmZKuyYFsR6BJt2WNTJIXoEmZcV3tUAbcoRxW68IwBcDPjNRUIBV3w+2xKcFS29u+BDjc0JWaw0DQFus5f01glL3YvxrvKig2HZYx+SN4PxQufJ3aeJ/quBRLsiquXj9CiGpMXhTbVdvnYqKKooPFxY8UyG3Fq+TZfFzp6isOgoEbbQF5xddZXY0KX84oMiuR9DOv2WL0ap0h63IhG3bAbksR33fimxdISo7Op+FUdxWszPQJF4RVXBnds4rESU1xN2RgrsTm+zxqExXHMRWb4CzpbnOpJpSmuqampeOedd+LuHzlyJEaOHCnd17ZtW7z//vvSfT6fD+PHj6+UMp5ozAgBdo5HOCyZxbVjx47CtWWm/sTERGtCAGAMNxUVFXHHCKtymQ2PPU3VoStu7jwVuqEQObAnmeGwTMwhP2ewbygat7qNqgJ6xP7xNhptu3KS4BMVNNmH24isYGtAZAqhYylV0+LKWeMkkbCM4fziZ2SKsTPtQ0xmmmGV4QNIa9JwSpoms3LbOwJiGcIRximlxvGao7OjcveiWfXAnrcoBJ87iDAShXTZyln2ZVKdsRZNmXPD+6ouNMjOjxl/T8XBy9LrVgDVC5cW88H3aBHoTBZqTszNbkEzrD5ix65Ei6sj3q1LM565S3PWfcfQHnREJEpUiQsQOBRgr0cVPrqaIioCzvcjwSfGObbfl3V/cfp0TRK3AciIXk+HztzCMbIFCOzlVAAIoegYk1pck5Ni8yacbYSp1NqVK4+kniuSFfeMctgDyDOEI5pj5SzJCAhLRKKWzx0js7jKLejF13PjPEdmqg+2fhZc0c5Mgt90P9DAFH5FQzW6OAU3KsN0qLaQgJbiyoXMM5WuWF7ScFhOi6umC++eEF/bso7z7Z0svrbQf2HylbPsHWPnF8XjNhaP4EeBZBZX/v1IjI4GclZ8ifLOWIR//1WAKV6rLirQrfBupkLtcimIOCyu7mjoQjuqwhCWRcatARbX4sfOiHJj+qvK0k1Kq7g683EqkjG/xNgLZo/EYCIbsk5KSuImzsksrszxQlvrvNtjrWo6GJzWRoZwWLym4lQ0bIqrOVTMK1riUJ2mQdJj5htIv8TVWRroWteFNbiFD7PDQmhZXO09e8nbZFhFxXTnMXwZReV979HEqPIeu976w2eg0Hs+f7Kiwq2JF+SHOcUyRCIMcHwkmKMjAoVx9+Kx/NJsH3TnMqcAPC4dDE7Fg0nro93iCoVXXK164LDGi0qUfLWrkiyuToXGVC7sMjdWcSt+OBEAsH4kp7ia4Wg4WASyuL8JnKuAQwYeVzSWrf3aEF1UlAgipXUVsLlnOC3mPms1N4fFVegsaFw5zRXQ7PWOe7ZR9DgvR7eMn6y/DQVfYsmUWPHcnNsDBOORoujWhEU7dVNjozPOZY4DflHJEFdKMn1cJYqrzVXApQIh3YUEmyxk1lsjDBvfSYw4NC3n0thWfsVYXM28RcXVyy2A4LYsrkYd9ns1MMXLK66KaHF1rrwUi18bSzPnB3AW1ziuAionOyMMmx3nsuKm2wtvaIHwninQJW4qcqWN+2aYcR/Ne3Er0OHlV2eUWVzjdOx4w4fc4sq5CrgMf2Tznu2uAqaS79YURHRNNKo4ZaDEGSGo/nrr8Z2cVZtxu92CAmimm8gUV2d6eRcgkFlXnfkAwIIFC+D3+61tmcU1no+ri/MLExUdVYlIXQVaZrTiEyQWV1XjlRPnPcXzNeSHlmUWV1EuqqrC67IpGZoZk9FWRIePq7VyFvcxk5Qnjn+eHWdDYZ/QY/LXsagzf0nB8AHHkqEQyimzDEccFlePSwdUP3eMCl6BkC1u4JcEmdc0RZCnoqjQJZZon8deh1SHlTu2kpGJ16MI1hTnx8ykJB/XggL+fY2tvMbXfZnievDgX3zCgbfh871sO49J/PMicdx3eKuzYhsydrs0wZXG44Lgb6kqunR43Zz4ZMce1D7Bzz9zr1e0Nhr13HEvCm/Fc7nEjl1ZLK72yDGqIhsi5t8Ps36Lq4DxcnG7NHh9YlQaLi9H5UlIMCfS2GQucxVQdIRkLg125UsDIrqL6+BJLW3QoCn8ogiiq4AqfZc9JSiu8SyummbvwJgWV6Nd9Hg0QPEJrgLiim38OEpskrBtJCw6SY9fOEAspx6dnGUitbjCDU2NHWNO0uUsrprYRgBx6p4ithHC8t+2E30eBUzxwe3ireqiqwC/GqRRfxg3T0RmeTciisfydmvM8OGNnmZ3FTC/dW63ighToar2jg/gVPdkiwYxM2RHNYcU1+OEx+Mps8VVNuQvU1yds9RlEQRkyD6STZs25bZlERni+bi6uMZBtLiqCota8mLMflzB+Vm8gtujRxfbvUQ/lPZhDmtoyWEVlSgQJa0rz5ioSffo3gMbdxf/wXMqQ5ZlmJt8Ik4GM/xlS1JceQXb3Bad6+M1bjySUUzwRgNRoe98Xhv8ticfiA7pe1yigqMqDGHbhzmQ4I2m2y2u8RRXsa7L/No8nKuAw4rnEzsLHrcmnZwl93EV0+wUBvn3zGsprrZ6p2nSD16rDD68UuPGjZGcnGxtG8OVfAHiBfU2Z+QDpgxi7YjHbUScsD9Pj0sskKqEEZG4NMiuySmuAYfiag6T2y7o9UhcVBz+yNaoQQkW13iKa7du3ay/ZUt2Ao7RDqtNsuWtuKBr9blz6tevi7PPrivkFbANUDVqkAT7+xGIKq72jrpHMmxRmHsABeGAkK44J9cwhfsO2H1LrbIzlVN4Vx9oD/jEY2SjPD5JB4E7D/LzdFv7bRoQAlEl0+91wVyQwMRYatjlmMDpHJ0TV/Py+4x2w7lUq5MIc1hcNdmS2jo0NSbfxOizElyjHCMEoWAh8vKc8eDl/p3MZqnkFx82LK6G4hrLy1xelUPh3w/TXctVghVfUxUw+8pZ0XfdlLHCIjbFNfZd1hlvVfdEo9LYUSWuLboekU7srm5Uf9W6hhLPVcBu3SyvxdU5xOoMq2XiDOTbq1evaEDo+HglypdTcTWtGvYXzesxfG/sKIoOZ1CBK3soaHaKw4fMbtGSWFw94vcuuvSlJL0ExbV+vVTxHJeL83H1uHThXgBecY4trxhL23usgXBOQoIPXo/otlEc5nUEP1/IJzE4ccsUGYdcDnxcyG3/44am2DznFGvb7xWbBmPI1j78ZFrClWLP01RF8DU89bTTcPbZZwnHejgHXH5ZRnPY2l7NDR9M0X9NPsGgeJ+NjIw2fFk8Yj3X4kRIyMzkl4rcs2ePI+JEPMVVLCc/QY2fgOOOhiCzd5hkiqtbLUBIl7gLSZp8e1QBU6mwti2Lq0NpE2RurAJmHRPtAHOKq1d8kbOy2gppgBGP2URVIlLFVTo5yyaXxRvPATRekTTCkvH5dD8LsLm4QlUVPHhdbNtUXN1ch0mU45G/tqIwJHb8eauh6Rcak59XYr1lijs6WTJ6nhoCIsf4Y+JMQixpEpxhqXUIQS+KzgkwMBVzs9MWG12JneJ2q4K/tXNyj/lNKwzHnn1C1P2AU1ylk7NUbnKWTHFVWAFcNsXV7EzzEScg1FfGdGzYsFFIky2V3qSB23GcLaqARwG0AOeiYnTU5dFVTMx+j315Z59XrDsulwoWiY0Eif2lmI+rKVBr2XSnC5dDcQ0FC1Hk6Ky7Xa5i4+RXF8jiepyQKa5XXHEFUlNjilNCQgKmTJlibZdWcZX5odrPN9myZQu3raoqTjnlFBSHzOIqWHijjYx9lm2CTwNUvsL7fR74/UkoiUSbkSfm38kPBzvRVAXMOSMSJVudzZh3dq7sruCvo7FtjysCpogffa7H7BYtSjLZZWVlQQ2UIuaPBN6iFP1fZipxlhOiS4jT2N6gbvGNUyBBbBoU8JMOTMstb3UWz3NpqmB1dmkuob7ef00YqckxuTPF6TdpulA4FAiHi4qCMIKiCMB0SaLjTHvdiFkb+Q+xTHH1eMSOjh3DF5d/duEIr9SY+GzDyE4fV080tqxd5vkSZcmlFCKsi2Vq2rSFeKwtr4Djo2U+T7vSZrgPiP669vsz3kOdy9t4frzw6tatJ6QBvIJkWN2KVwSs8FvcKIWOiM7LfMnLClIdTdKSl8V36ulbY2kJlo+r6ANqp0P7Vli5Q+wY8xZXI7KrXUGy+5Za56hu6JGYy1b/rJ/x6cpM7piIqwkO5B4UzpV1EOww8BZ7AEDhVpySYi8n33k2/aDts/WNTiZfFxWF7xiYbYR9tr7pM2zv2CX4xfZWd/i4uqOhoOwoej5ctsmo5mx9flRGkfiSMyQE+AmjbrcH9RuIxof2bWLvkaa5UFQY6/Sb0TM444skwg7A11ezfhfXaQQMQ46u2xRXh4JvdxWwx8nVmeZ4P9yC8r5n9y7AzY9IZLXNQkaT6u/kSorrceKll15CZibf0MyZM4fb1jQNo0aNsrbjuQo4Laxer1equFZGgGCZldhpcfVHGx67ErXpYLrgH5SR3gJZLcUPpZP/G2Mbio1+8HjfRvnws2ygtSQRBPzAwzfwaZdeyL+oXpcOpvINqeFraL+OUU57o52UyA+zAsCtgxTkFpSvIbBb2kyfOtkH08k3K46IeZWxCIkSxVUWqxfg651pobPj8bihavwHJ+2UEJrW52X87O1OBYz3xfNbrgKxm0lJBKA6GnxFQzAkseCUsN52uwzg8q6xbXOCkbsUFldNLb4pNULy8MdEIoaS7aRFi0a2LV5xDYZd0UgHsfvLC4rD0y6VgYUlz8Ir1lF73UhKSoRdkfT5oh002wfTWJjBWQ/koe94Hz5xv0yWf/6fgvTGYroTe8euUX3TihdLu7f/j3h+fifunPJ8lE1fec7HVTIJsVF9P9ieFCF9+Q/LYmXWjGggdlcBqcUVGqfwGmHJRMUmLygqfN5SKa4Owa84E12eWWhtmiHzEhOiCqymAWDcMzQs73zkEZcaQkh39AwiBVzH1bSKcmX2iO+P7uy0SSynTour0UbwnWm/R6xk9erWAY7yimuD+qlo2VLiRmJbkt4Zq9frNUdleKVUl7STMncte3QJ4zvHl9Xt0qDbLK5OP3HV9t7tLepo5ROBGy4tpmDL5Nu2XVus2XDAUUZ5HPDqBimux4nBgweX+Zx4Flcn8SyusmPLypo1a4Q0p+LaINX4SNg/6LJh+6b1xTQZfonFwee1N+ziORH4oDOx0S4I8gdn8qtpwu9V8OTNxb+ZHndEsB4D8tmWdgXi71dp+N8Cfv/5WeVvBeyhpczh49IoroURSeipMhYjKSAKXVF0qSWBs45LXAU6XXA+vtvGV5DHhx9GRnrx1ngGjescmdY/u8xTk8SKp2sNsGKPqMw1OKURt33uafz+rJYKPnrSbukXFVdV4osX8AOniIY2Dp9X9MUN6/yCDgCQs0BBwBYOwzkp8MxWphXYfn2xTGvX/A60lvgNSnR3u3XT+R77LZk7La48CiKCP7vzPDNknZ3zTgeev93hRtKC3w6HGafAWOW2CaZeivi+ejUxlnV5iMVHtXdgxOPqJIQg875zRvQw6nWsLsjcayK6wi1S4PMqQgetPvsSeqSZcK7LXbziCsUNXXcaKCLQdT4+KXdKVAZcSDCPC8LkNzWI/LBTMeVdYuokiYpr3briC1S/XgIaNY814H6/S4hOouh5vJ9oVGRcm+QW605iwAe/pwmX5nUDRSHe1eGa3qJByN7Zsiyubr4MJbWTJnY5y9pot1vj4pwH/M7IPbqweExSghs683D1Tub3nBTwAgqfX1FI/r2tbpDiWo0wh5q5+I9xFFfnzH9AHgKrrDj9YgFRcW1YT3SA97nE8rz9SPmVNnN4DgDXKzVZd/AsCBGWABQF+QZ5/YyyW6ETZEN30OXht2xyadyg/PI/MFe8ZoKtkfJJwqeck7YJv2znfSuR/S3OPmOrkFdZFdfkRFG4hsW1+CFbFhHrAYMiGOhcWmnKpHB+X6YF1C7zgF8+kSAUEcvvcvEfzJ/+V3zd8MkUV0WMkHDkM6XEEERtMhoDq/gOhc40weJqWrhix/CrZJkTt+z1IKOxxNTJQtJQW5I1UTiLmbOOmxYeN+fPLunUQPRnB3i3DgBg3/DbZ7RScIYjyIhQZgYulqVJoj8mO8NSzBegQf1kVCb2TtS+g4XC/juuCsCT8yyAZ7j0yy//m/W31+OCc+lNmatA/QaNcUGHFGvbcMXilQyPS0dRxPGMN96CenUeLfY+jJU++YqwadMmtGgRGx2TxXoG+E6Ox+0WLO8uTYceEofl7SM1dZLFdtLwq+Sf349TGsLjamhtB/zi9RQ9Hy6bkcGMRWtvk2QT5ho1rIszMnpyaYl+8f14b6yzjeAXtUhJMq7DK66iWxDAh28zsdeD1CRgzdv8MYMGDgRSY22qGZHBfq2iYAR2V5qkRA90xcd1rnySd9bnBeAYWbyuj4I2Yl+o2lHxsWWi0jAVT/tKVqVVXEeOHIl69epVuAwjRowoMfyWOdRjjz/YOr0hnAT8CgL+8imvdn8f2azbhH2PcuGbTGQLHpQVmQVLQQThiKzHbB8CK7/i2iBFzDvRZvU0lQV7L7pbmw3COTs/a4XXnrlBSC+rq0CSZLncbXnnI1vpKKTzli8vcPhzbr/Pg/I1hloith+JWUUSLKtz7JD8oOjf6QlvQj3XH1zaoU8VpDUqmxAsH1ebwrL1r3rQvXxnoSSlFQDqJIoTmlxuH5hg+XLCT84yh6jt36E+HcTRl6uv7AcXOySkl/R6tE0H9n9iG2aNKq7JyTGl2y/xY45EdOzcsUNI9/uL9/0tDYwpUl/ggE+ihdvocuG5Fb42T6wMyfUzgXAOt7fzhedh+hvPOE+Cy21ry3wuoR7YwznFzvGhoc2M75NYZbMSZ+MMW8g1AMC+N7mV12QoioKww6+jVatWnPtCvCD0dmUozLyCj6RL1SXxg/nwbYlxOptOkgMKp9TvzWkqHKPo+VxUAWtVR1vHLqiL7jFuFxByeOl89ZKCMcNL0UbYTK716qjR/OxzQDRpxBtXCY2wqirIaskfk+D3oq7NKTsxwLd3bpeKoiK+DamT7AUUPycDmftIk4apqFOX98m5e7CCAZ2qv68AKa7VCLPhSEyMfSRks/x37tyJvXv3cmlTp07lIhaUF0VRhEkzuq7zoaiiL2Bqndj1brsyGR88VnkV3q4Euj3ifY0afpU05p7L6btVnmtLFNeQKx1/5TcS0u0+nV6PCskqs+UmydZIedxR9wzbx+WHH74XzmnWrBlXf0zKbnEVFcJUzy7psWE99iE+v0MGsOZSbv/dVwGLXypf3fgrN8X622x87ZP18g6Jri11vH8Jinrd5LJf3/JxtWnKO3MyypwPACQHRGVPc/mkFmo78RbxsCvvsoUcpr/wN+yYw7cdIy4GWju+/ZElzskeCk5JlSiuSbE6lRSQvHcuF849V1QUEwMVHwXSmSJaXH85Da6iP4s9r1UT4N/DKnx5i7ZZWdbfN16iYufHpbPoumwxoo2JU3z7qimiAh6O8EpigkRxrZ+YD61I7LyWtPKRPWh9cTitfwAfBszptw6YC9E4FFPVA49tuL68fZnTmx8T0jSlEAqTTVS2+Y7q+4T9HheECZwNUhRhxMOJ1+vhJlinJIkh+lISI0IYNgA4mMtbfktTN1WVrwd1khxWd7eGwugoY6rvcPQYL6AFuM5CgiQUXVrzBqhbvwaYVyWQq0A1wmxw7IqHTAk588wzsXHjRiH9eKHrulSBtoft6XxG5fbSNHfsg6e6xQ/E6GvORBM+dCbSG4XQr2f7Cl/b65a36mc1WAyAd4xs2iRmaVYUBQfnVZ4c7Iqr6bdmV1wvv3wQfphRurzKrLhK/NB6pDyCuQt+BMB/LPOLeKViwoQJ3LamKSXGUC0N5iSJ5MRY3fj7zZfgha/541q3Pk064aWsmNZNuyJwWuJn2LLPB6BvmfKSjTxcd3l7nLNdHHK2oyryCAn2utGsWTPgW2PyjInP50Vjxyzlaf8qfqazjDrROFF2q3KH08U2qUnT5nDMRQXAx0ctL4wBqjPyQMFGnNHudC7pjr/xh6QkKXjipkpsl2z+gMZoUulO01wOi6vKKxFntMtynoL/3a+guS0AzJaNvwE4izvG7/ejoID34/3www9LjByjIoiQXvKn32n9A4CiSOympy0SO/IuDWL8YMXF+U36xD4xAGDL+8U/qyb1JFZMpQgKxFELe2dh+CWJmDHvJQD/sNKSA3I/5ZJ4+7FGOCU1dt91k0X3Pp8H4oRRAGu28i/yEzeVXABF4d2CUpIdFle3hqIiI99GyQcB1Edqsh9Q+DBlPoni6nEZPq01EVJcqyHOlayc/O9//0NhYfEfvMrG6bJwSkoYx7P65AVjMjgvywP8eQOAmJZ2RitV8I3bMrPiw5IApJNMsG8Kvtn0GoDbuGSvJPZeZZFoG65XVVHzu+D884AZpbMwl9VVQOb2cN+9t6J1Bj+0lNksgr7deGX+X//6V9kuVgx2n0szkkNyUqxsDeqKE7wSk1JRR9StykyC5Av77dudpBMjS8Irmdn898EJAIoPS8YUH/LDKZKyxT5E9evXx3fffVfmMpWG5CTjPbTXnz6dW2L1lKMAYjOwxwxXhMluZ2TwQ7blpXnzljhSwA9lyKzMr9x7fAcQnUPLpcXltltcJcqXJk5a638+f9zQqwdg5lj+vPvvvx/Z2dlc2t/+5tDeZeVRixDRy9duHc4rvr5KLa7hbNRNjI0syOJyA0B6SREfNPHaKgoAh8W1WcIfaNn8VGu7VasMfPoyP7Lx1sNKuWbPX3Qef5I5dG//Pv7268+A0oU7rmPKW+h8VrsyXy85AWiQYtt2jNx43KqluJojpSnJZkiwWFkbNRQtwC0bK+h+VsVHKKsCUlyrIXZ/UtlHMjk5mVuV50Twyy+/4Prrr7e2l0/cDSAt/gkVRNViDWurtFQ8/2CH43YtJ0FJL/TLV9Nx6NAjXNqatxWuUals7MqjbLWrskQ/K2sjLXOX6Ny5Mzp37sylrX/3OE5BLdqJpqkR2BUk/NYJjRr8YG0m+DUc+YyXy+1/U8o9HGknrSkfGgowlMTy0Kxx+fzPi7TW2JErpp97Nu9ne+GFF5Yr/5KQhadTVRVt2/Bhg266VKxgf0yvHEXylIaN4MmvhJ5IRcqQCiSWIy67kr0YdRNjRoZQ/m4AZ3PHpCQB/c8vPp/TWjeEsy6efvrp8oNL4PRTW+PU5uVzeVFtfr7/u/coRr+Ywu3/feXPiDR03MyPzXDGmDkAjNEwWVtWGlo12A+AV/4OrP8An67NAabdaKXtXHAWd4yiKLj44ou5tORA5Vji/ZL4szdcewle//wo7O3WL3NHlit/5+TFrNP4b67Ho6Egqriaxo2kQDQkmK23mRwQQ22NuFjBiIurvz+rDFJcqxlOa1WnTp2OmzWltFxwwQW4++67T+g17aGD3G437rvvvhN27U4d04Av+LQ+ffoIx8mG0iqTZNtyPrJ4l2WxopZVcW2b2RCbpm8H0LJsJ1Yis/59AGe24xU0PXu54MNnzuw1ubxr5TyX8n5gZdSvm1BpeV3a6B9ISXqpUvIqDT3OzINLqzrFMaLLl/A9kez/pHwF+PZVH1q16m1t10kStd+kBAWfP1d8nU2pRPF7vS5IBnBKxamZMYX33NNEmYwYPhQffM93ahbM/xAXXHBB+S5oIzNd7PxdeFYSmjY9TXL0iUE2IvrgTafiwZuOz/Xq1fHB3o543C7kFRg+0opqRkExy2ZzbakEl53qBCmu1Qynf6Df7z9u1pTS8sMPP5R8UCXTomHV9QSv7N8arH+VXd6i4SmxhrptujG5xk5ZlNGSJmzIjm+V0bJM51Q2V10mTvYp631UF9o0A6b9q+xlv/3SA5j5Lb+az7yZL1VSqUrH4ldKXv3ueHLzxcdQt74Y0qgm4ByhuLBLd2Be2fOpXwf4blLl1H2XBuliEaXB7ut85qniqN8ZbU/Du9/xHbR+/fpJy1BWOnToAGfIrKo26iQlJQF/Xg/gXSvteLZRzpEkr0dDfqEhE9Piana47XNQamizGRdSXIlqx1cvKujV8SR708qBvXG/vKsiWBKb1Ad6nTgPilrJX5L4uuXB71WEjkdpSExwc8vs1kbatQwi7fh5JZ1QDh0zhnHLiqoquPCMyilDRRRXu+VOVVVM/id/Lx536XyBQ4vLZ8EuXFS93gW3243Ivv87YdfTHP7QHreGgsIINEVHl1P3AYhFCci3xa9tmFqyO0pNghRXotpBSqtBSbNe0xop+KqcYaaI0lFfEl/3RKIq8kUDiJrJuacBj4hhlk8o5VVcsz9XhCHn0QP590NV5KsoVhZeSUzvqqYyllovL16PhtxChvPT1+Pijn9x+wb1iI3UNG9YsjtKTYIUV4KoppRnOE3G/+4/eRqs2sbV3XMx9OLUkg8kagSnpSkYX8KS08ebC7LK5zNcmglNJ9uQdHXH43GhMI+B6SFh5cx4YcdOBkhxJYhqSmUprjdfRl+TmkqdgH7SDJMT1YOxI49veyCbSEpUHktetsVn9bpRcJhBjxRxMd9zFpS8mEJNhhRXgqimVEbQfoIgiBPF37oBp7U4eRWm6kD3s+zLjHuRV6gjEi5CYmLMNeBkVlqBGrLk65EjR3D33Xejc+fOuOKKK/DTTz9VdZEI4rhTWRZXgiCIE0GDFAXdzjq5labqRCDgx5I/M7HtSJq1smBtoEYors888wwaNGiAr776CnfddRceeughHDsmrltMECcT5VmSkCAIgqgdJEYXqTkWrCtdHv5kpdp/GvPz87F06VLceuut8Pl86NGjB1q1aoVvvvmmqotGEMcVsrgSBEEQ8XD5jMUedF1BamrtmcRZ7X1cd+zYgcTERG6pxTZt2mDLli3S44PBoLBMqsvlgsdTOVPs9Oji6bqul3DkyQvJoPyURXYKGPTjGVumiqD6UzpITiSDikCyO/lloHibAAB6t/wQjF0PVskz46pCfqUJL1btFdeCggLBdyMQCCA3V7KAN4Bp06bhjTfe4NIGDx6MIUOGVGq5du7cWan51URIBuWnZNmlYefO7Sd1eBmqP6WD5EQyqAgku5NXBpFCP4BT8Nq4rti+fftxu86JlF96enqJx1R7xdXv9yMvL49Ly8vLg9/vlx4/cuRIDB06lEurbIvrzp070bx58yoNPFyVkAzKT1lk17LlyRkHiepP6SA5kQwqAsnu5JfBqBZAxAWkHaeYedVVftVecW3RogVyc3Nx8OBBy11g48aNGDRokPR4j8dTaUpqcaiqWq0eZFVAMig/JctOP+llS/WndJCcSAYVgWR3csvgVrkqVKlUN/lVn5LEISEhAd26dcPkyZNRWFiIpUuXYvPmzejWrVtVF40gCIIgCII4gVR7xRUAHnroIezfvx+9e/fGxIkT8dRTTyE5Obmqi0UQBEEQBEGcQKq9qwAApKam4uWXX67qYhAEQRAEQRBVSI2wuBJEbeN/95/E4QQIgiAIopyQ4koQ1ZCbLyPFlSAIgiCckOJKEARBEARB1AhIcSUIgiAIgiBqBKS4EgRBEARBEDUCUlwJgiAIgiCIGgEprgRBEARBEESNgBRXgiAIgiAIokZAiitBEARBEARRIyDFlSAIgiAIgqgRkOJKEARBEARB1AhIcSUIgiAIgiBqBApjjFV1IQiCIAiCIAiiJMjiShAEQRAEQdQISHElCIIgCIIgagSkuBIEQRAEQRA1AlJcCYIgCIIgiBoBKa4EQRAEQRBEjYAUV4IgCIIgCKJGQIorQRAEQRAEUSMgxZUgCIIgCIKoEZDiShAEQRAEQdQISHElCIIgCIIgagSkuBIEQRAEQRA1glqhuM6ePRuKouCDDz4Q9rVv3x6KouCLL74Q9rVq1QodOnQAACxZsgSKomDJkiWVVq5t27ZBURRMnz690vKsLNasWYPbb78dnTp1QiAQqPR7JwiCIAiCKCu1QnHt0aMHFEXB4sWLufTDhw9j1apVCAQCwr5du3Zhy5Yt6NmzJwCgQ4cO+OGHHyxF9mTnl19+wccff4y6deuid+/eVV0cgiAIgiCI2qG41q9fH+3atRMshkuXLoXL5cKNN94oKK7mtqm4Jicn44ILLkBycvIJKXNVc8MNN2DPnj347LPPMGzYsKouDkEQBEEQRO1QXAFDAV2/fj327t1rpS1ZsgTnnnsuBgwYgBUrViAnJ4fbp2kaunbtam07h8tHjBiBxMREbNq0CQMGDEBiYiKaN2+O++67D0VFRdz19+zZgyFDhiApKQl16tTB1VdfjX379knLOnfuXHTq1AkJCQlISkpC37598cMPP1j716xZA0VRMGvWLCttxYoVUBQFbdu25fIaOHAgOnbsWGZ5qWqtqRoEQRAEQdQQao12YlpO7Yrn4sWL0b17d3Tu3BmKouDbb7/l9nXo0AF16tQpNt9QKISBAweid+/e+OSTTzBq1Ci8+OKLeOaZZ6xjCgoK0KdPHyxcuBBPPfUUZs2ahUaNGuHqq68W8nv33XcxaNAgJCcn47333sOUKVNw5MgR9OjRA8uWLQMAtG3bFo0bN8aiRYus8xYtWgS/34+1a9diz549AIBwOIylS5eiT58+1r0rioLHHnusbMIjCIIgCIKoBtQaxbV79+5QVdVSXA8dOoTVq1eje/fuSExMRIcOHSz3gJ07d2Lr1q2WslscwWAQ48aNw3333YfevXtj3LhxuPjii/Huu+9ax7z11ltYt24d3n77bdx555246KKLMHHiRPTr14/LS9d13H///TjjjDPw+eefY9CgQRgyZAiWLFmClJQUPPjgg9axvXv3FhTX66+/HqmpqVb6Tz/9hGPHjlmKq6Io0DSNrKkEQRAEQdRIao0Gk5qaivbt21uK69KlS6FpGjp37gzAUGxNxdXp31ociqLgsssu49LOPPNMbN++3dpevHgxkpKSMHDgQO646667jttev3499uzZgxtuuIFTLhMTE3HllVdi+fLlyM/PB2Aorlu2bMHWrVtRWFiIZcuWoX///ujZsye+/PJLAIYy6/V60aVLF+sew+EwHn300RLviyAIgiAIorpRaxRXwFBEN2zYgD179mDx4sXo2LEjEhMTARhK3cqVK5GdnY3FixfD5XJZCl9xJCQkwOfzcWlerxeFhYXW9qFDh9CwYUPh3EaNGnHbhw4dAgA0btxYOLZJkybQdR1HjhwBAMuKumjRIixbtgyhUAi9evVCnz598NVXX1n7OnfuDL/fX+J9EARBEARBVHdqneIKGL6eS5YsQffu3a19ppL6zTffWJO2TKW2otSrVw/79+8X0p2Ts+rVqwcA3AQykz179kBVVaSmpgIAmjVrhszMTCxatAhffvklzjnnHKSkpKB3797Yu3cvfvzxRyxfvtxScAmCqFq6devGuRBVJoqi4OOPPz4ueQPAK6+8IowYHS/Wr1+PRo0acZNlqzMnUjYEQdQyxbVbt27QNA2zZ8/GmjVr0KNHD2tfnTp1cNZZZ+Gtt97Ctm3bSuUmUFp69uyJnJwczJ07l0t3fsROPfVUNG3aFO+++y4YY1Z6Xl4e5syZY0UaMOnTpw++/vprfPnll+jbty8AIDMzEy1atMCjjz6KUChEiitx0jJixAgoioKnn36aS//444+hKEoVlUrOp59+in379uGaa66p6qIIFBYWYsSIETjjjDPgcrlw+eWXC8fcfPPN+Pnnn60JoqXhySefxIUXXoiEhASkpKSU+rxHHnkEd9xxB5KSkqy0VatWoXv37vD7/WjatCkef/xxro2Mx2effYbzzz8ffr8f9evXxxVXXMHtVxRF+L3++uvcMV988QUuuOACJCUloUGDBrjyyiuxdetWa395ZEMQRPmpVYprcnIyOnTogI8//hiqqlr+rSbdu3fHhx9+CKB0/q2lZdiwYcjMzMSwYcMwadIkLFy4EPfcc4+wWpeqqnj22Wfx22+/4dJLL8XcuXMxa9Ys9OzZE0ePHhU+0L1798bBgwexcuVKS3E10xcuXIjU1FQuFJYZt/bxxx8vscz5+fmYPXs2Zs+ejeXLl1vnz549G59//nlFxEEQlYbP58MzzzxjudBUFsFgsFLze/nllzFy5MgKTYwMhUKVWKIYkUgEfr8fd911V9yOrtfrxXXXXYf//ve/pc43GAxi8ODBuO2220p9zq5duzB37lyMHDnSSjt27Bj69u2LJk2a4Oeff8Z///tfPP/88/jPf/5TbF5z5szBDTfcgJEjR+L333/Hd999J8wrAIBp06Zh79691m/48OHWvi1btmDQoEHo1asXfvvtN3zxxRc4ePAgpwCXRzYEQVQAVst44IEHGAB2zjnnCPs+/vhjBoB5PB6Wl5fH7Vu8eDEDwBYvXmylDR8+nAUCASGfsWPHMqdod+3axa688kqWmJjIkpKS2JVXXsm+//57BoBNmzZNKMf555/PfD4fCwQCrHfv3uy7774TrnPkyBGmqioLBAIsGAxa6TNmzGAA2BVXXCG9h7Fjx8YTj8XWrVsZAOkvLS2txPMJ4ngzfPhwdumll7LTTjuN3X///Vb6Rx99JLx/s2fPZllZWczj8bC0tDT2/PPPc/vT0tLYE088wYYPH86Sk5PZsGHD2LRp01idOnXYvHnzWGZmJvP7/ezKK69kubm5bPr06SwtLY2lpKSwO++8k4XD4bjl/Ouvv5iiKGz16tVc+vbt29nAgQNZIBBgSUlJbPDgwWzfvn3W/rFjx7L27duzKVOmsPT0dKYoCtN1nW3YsIF17dqVeb1edvrpp7OFCxcyAOyjjz6qgDQNhg8fzgYNGiTdt2TJEubxeFh+fn6Z8jTlWBpeeOEFoW1+9dVXWZ06dVhhYaGV9tRTT7EmTZowXdel+YRCIda0aVP25ptvFnu9kuQ2a9Ys5nK5WCQSsdLmzp3LFEXh2tzyyoYgiLJT6xRXgiBODkwl68MPP2Q+n4/t3LmTMSYqrr/88gtTVZU9/vjjbP369WzatGnM7/dzHca0tDSWnJzMnnvuObZx40a2ceNGNm3aNOZ2u1nfvn3Zr7/+ypYuXcrq1avHLrroIjZkyBC2Zs0aNm/ePObxeNj7778ft5wfffQRCwQCnPKj6zo7++yzWZcuXdgvv/zCli9fzjp06MC6d+9uHTN27FgWCARYv3792K+//sp+//13Fg6HWbt27ViPHj3YypUr2dKlS9nZZ58tKGBZWVksEAjE/WVlZRUrUxm5ublMURS2ZMmSYp6KSFkU10GDBrFbb72VS7vhhhvYwIEDubRff/2VAWBbtmyR5vPjjz8yAGzq1KnsrLPOYo0aNWL9+/cXOg8AWNOmTVm9evXYOeecw1577TXuOW3dupV5vV725ptvsnA4zI4ePcoGDx7M+vXrx+VTXtkQBFF2XCfUvEsQBFHJ/O1vf8NZZ52FsWPHYsqUKcL+//znP+jduzfGjBkDwPADX7t2LZ577jmMGDHCOq5Xr1745z//aW2b0Tpee+01tGrVCgBw1VVX4Z133sH+/fuRmJiIrKws9OzZE4sXL5YuKAIA27ZtQ8OGDTk3gUWLFuGPP/7A1q1b0bx5cwDAO++8g7Zt2+Lnn3/GueeeC8AYbn/nnXfQoEEDAMDChQuxbt06bNu2Dc2aNQMATJgwARdffDF3zfnz5xfrWuB2u+Pui0cgEEBKSgq2bdvGTWytTLZt2yas9Ldv3z60bNmSSzOjtOzbtw/p6elCPlu2bAEAPPbYY/jPf/6Dli1b4oUXXkD37t2xYcMG1K1bFwDwxBNPoHfv3vD7/fjqq69w33334eDBg/j3v/8NAGjZsiUWLlyIwYMH45ZbbkEkEkGnTp0wf/587nonQjYEQRiQ4koQhJTbbrsNu3fvPmHXa9q0KV577bVynfvMM8+gV69euO+++4R969atw6BBg7i0zp0746WXXkIkEoGmaQCAc845Rzg3ISHBUloBQ2Fq2bIlF3GkYcOGOHDgQNyyFRQUCCHz1q1bh+bNm1tKKwBkZWUhJSUF69atsxTXtLQ0S2k1z2vRooWltAJAp06dhGumpaXFLU9F8Pv9Vizp44FMVgCEyXYsOjEr3iQ8XdcBGBO9rrzySgCGL2uzZs0wa9Ys3HLLLQBgKagAcNZZZwEAHn/8cSt93759uOmmmzB8+HBce+21yMnJwaOPPoqrrroKX375JXf94y0bgiAMSHElCEJKeZXIqqBbt27o168fHn74Yc6KChhKTjzFx04gEBDSnJZJRVGkaaaiJKN+/frC5DFZmWTpzjLJyi3Lp23bttwiKE7S0tKwZs2auPvjcfjwYU6RrmxksmrUqJEQOtDsKMjiYwOxWNhZWVlWmtfrRUZGBnbs2BH3+hdccAGOHTuG/fv3o2HDhpg0aRKSk5Px7LPPWsf83//9H5o3b44ff/wRF1xwgZV+vGVDEIQBKa4EQZwUPP300zjrrLOQmZnJpWdlZQmhir7//ntkZmZa1tbjydlnn419+/bhyJEjVhzmrKws7NixAzt37rSsrmvXrkV2djZOP/30uHmZ5+3ZswdNmjQBAPzwww/CccfDVWDz5s0oLCzE2WefXeZzS8vZZ5+NtWvXcmmdOnXCww8/jGAwCI/HA8BwmWjSpIngQmDSsWNHeL1erF+/3orRHQqFsG3btmKt0StXroTP57PCd+Xn5wt1xNy2d1ZOhGwIgjCoVeGwCII4eTnjjDMwdOhQISzRfffdh6+++gpPPPEENmzYgLfeeguvvPIK5896PDn77LPRoEEDfPfdd1Zanz59cOaZZ2Lo0KH49ddf8dNPP2HYsGHo3r271GXBft6pp56KYcOG4ffff8e3336LRx55RDguLS0NrVu3jvtzKm9r167Fb7/9hsOHDyM7Oxu//fYbfvvtN+6Yb7/9FhkZGZzrRHHs2LEDv/32G3bs2IFIJGLlmZubG/ecfv364YcffkAkErHSrrvuOni9XowYMQKrV6/GRx99hAkTJuAf//iHZW3+6aefcNppp1muLcnJybj11lsxduxYLFy4EOvXr7fCcg0ePBgAMG/ePLzxxhtYvXo1Nm/ejDfffBOPPPIIRo8eDa/XCwC45JJL8PPPP+Pxxx/Hxo0b8euvv2LkyJFIS0vjlNSyyoYgiApQlTPDCIIgyotsBvy2bduY1+uNGw7L7XazFi1asOeee47bn5aWxl588UUuTTYb3gxRVVI5nDz00EPsmmuu4dJKGw7Lyfr161mXLl2Yx+NhmZmZbMGCBRUOh5WWliYNfWfnoosuYk899VSp8xw+fLg0T3tIQSfhcJg1bdqULViwgEv/448/rBBgjRo1Yo899hgXCssM9bd161YrLRgMsvvuu4+dcsopLCkpifXp04eLKvD555+zs846iyUmJrKEhATWrl079tJLL7FQKMRd+7333mNnn302CwQCrEGDBmzgwIFs3bp1FZINQRDlR2GsFMuPEARBEOVm//79aNu2LVasWHHcJk4dT1avXo3evXtjw4YNqFOnznG91quvvopPPvlEWKClunIiZUMQBLkKlBld17F169ZiJ2Oc7JAMyg/JrnbKoGHDhpgyZUqxE4OcVCc57dmzB2+//fYJUcxGjx6Nbt26IScnp1rJIB4nUjZloSbI7nhDMqgY1VV+NDmLIAjiBOAMyVWTuOiii7jtCRMmYMKECdJju3btWqFloV0ul+W3W90+mDKcsiEI4vhCiitBEARRJm699VYMGTJEus/v95/g0hAEUZsgxZUgCIIoE3Xr1rVWnyIIgjiRlMnHNRgMYty4cRgwYAC6d++O0aNHY9OmTdb+6dOno0+fPujVqxcmTpzIBctes2YNrr32WnTu3BmjR4/G3r17rX2FhYUYM2YMunXrhksuuQQLFizgrjtv3jzrmuPGjSs2PiFBEARBEARxclImxTUSiaBp06aYNm0avv76a3Tr1s1aYnHZsmWYPXs2pk+fjpkzZ2LZsmWYO3cuAEPhfeCBB3DNNdfg66+/Rrt27fDoo49a+U6ePBnZ2dmYP38+JkyYgKefftpa9WXTpk148cUX8fzzz+Ozzz7Dnj17pOuRE0RN5fDhwzXCl48gCIIgqpoyKa5+vx833XQTGjZsCE3TcPXVV2PPnj04evQo5s+fj6uuugrNmjVD/fr1cf3111sO+itWrIDf78egQYPg9Xpx8803Y+3atZbVdf78+Rg9ejQSExPRvn17dOvWDQsXLgQALFiwAH379kVWVhYSExNx0003VcjxnyCqG/Xq1asxoX8IgiAIoiqpkI/rH3/8gbp16yIlJQVbt27FgAEDrH2ZmZmYNGkSAGDLli1o3bq1tc/v96NZs2bYsmULAoEADh06xO3PzMy01tHesmULOnXqZO1r06YNdu/ejcLCQvh8PqFMwWAQwWCQv0mXy1oqsKKYlrHabCEjGZSfeLIrLCysNfKk+lM6SE4kg4pAsiMZVJSqkJ+qlmxPLbfimpubiwkTJuD2228HYKzpnJiYaO0PBALIz88HABQUFCAQCHDnBwIBFBQUWGtB25XQ4s41r1FQUCBVXKdNm4Y33niDSxs8eHDcGbDlZefOnZWaX02EZFB+nLI7cOCA5R5TW6D6UzpITiSDikCyIxlUlBMpv/T09BKPKZfiWlRUhPvuuw9dunSxYhMmJCRwa1Dn5eUhISEBgGFhzcvL4/LIy8uD3+9HQkICIpEIZ0Et7lzzGvFCrowcORJDhw7lb7KSLa47d+5E8+bNS9UzOBkhGZSfeLJr0KBBjVxRqTxQ/SkdJCeSQUUg2ZEMKkp1lV+ZFddwOIyHH34YDRo0wD333GOlp6enY9OmTejSpQsAYMOGDcjIyAAAZGRk4KOPPrKOLSgowK5du5CRkYHk5GTUq1cPmzZtQrt27aTn2iMXbNy4EU2bNpVaWwHA4/FUmpJaHKqqVqsHWRWQDMqPU3a1UZa18Z7LA8mJZFARSHYkg4pS3eRX5pI8+eSTKCoqwmOPPQZFUaz0AQMGYM6cOdi9ezcOHjyIGTNm4OKLLwYAdOzYEQUFBZg3bx6CwSCmTJmCrKwsNG7c2Dr3zTffRF5eHlatWoVvvvkGffv2BQD0798fixYtwp9//onc3FxMnTrVypcgCIIgCIKoPZTJ4rp3717MmzcPXq8XPXv2tNJffvlldOnSBRs3bsSwYcOg6zouv/xyDBw4EIBhBX322WfxxBNP4Omnn0ZWVhYef/xx6/xbbrkF48ePR//+/ZGcnIyHHnoILVu2BAC0bt0a99xzD+69917k5eWhV69eGDVqVCXcOkFUH+wxjwmCIAiCkFMmxbVx48b45Zdf4u4fOXIkRo4cKd3Xtm1bvP/++9J9Pp8P48ePj5vvZZddhssuu6wsRSUIgiAIgiBOMqqP0wJB1GLsbjcEQRAEQcghxZUgqgHkKkAQBEEQJUOKK0EQBEEQBFEjIMWVIAiCIAiCqBGQ4koQBEEQBEHUCEhxJYhqAPm4EgRBEETJkOJKEARBEARB1AhIcSUIgiAIgiBqBKS4EgRBEARBEDUCUlwJohpAPq4EQRAEUTKkuBIEQRAEQRA1AlJcCYIgCIIgiBoBKa4EQRAEQRBEjYAUV4IgCIIgCKJGQIorQVQDaHIWQRAEQZQMKa4EQRAEQRBEjYAUV4IgCIIgCKJGQIorQRAEQRAEUSMgxZUgCIIgCIKoEZDiShAEQRAEQdQIyqS4Tp48GYMHD8a5556LL774wkqfN28ezj//fHTt2tX67du3z9q/Zs0aXHvttejcuTNGjx6NvXv3WvsKCwsxZswYdOvWDZdccgkWLFjAXXPevHkYMGAAunfvjnHjxiEUCpX3Xgmi2kJRBQiCIAiiZMqkuDZv3hz33Xcf2rZtK+w777zz8O2331q/Ro0aAQCCwSAeeOABXHPNNfj666/Rrl07PProo9Z5kydPRnZ2NubPn48JEybg6aefxvbt2wEAmzZtwosvvojnn38en332Gfbs2YMpU6ZU5H4JgiAIgiCIGkqZFNcBAwbgggsugMfjKfU5K1asgN/vx6BBg+D1enHzzTdj7dq1ltV1/vz5GD16NBITE9G+fXt069YNCxcuBAAsWLAAffv2RVZWFhITE3HTTTfh888/L0uRCYIgCIIgiJMEV2Vl9Pvvv6N3796oW7curr76alx11VUAgC1btqB169bWcX6/H82aNcOWLVsQCARw6NAhbn9mZibWrFljndupUydrX5s2bbB7924UFhbC5/NJyxEMBhEMBvmbdLnKpGwXh67r3P+1EZJB+YknO13Xa408qf6UDpITyaAikOxIBhWlKuSnqiXbUytFce3QoQPef/99NGrUCGvXrsU///lP1KtXDz179kRBQQECgQB3fCAQQEFBAfLz86FpGqeEBgIB5OfnA4BwbmJiopUeT3GdNm0a3njjDS5t8ODBGDJkSGXcqsXOnTsrNb+aCMmg/Dhld/DgQctFprZA9ad0kJxIBhWBZEcyqCgnUn7p6eklHlMpimvTpk2tv9u1a4drrrkGixcvRs+ePeH3+5GXl8cdn5eXB7/fj4SEBEQiEc6CmpeXh4SEBAAQzs3NzbXS4zFy5EgMHTqUS6tsi+vOnTvRvHnzUvUMTkZIBuUnnuzq1auHtLS0KizZiYPqT+kgOZEMKgLJjmRQUaqr/CrNVcCOoijW3xkZGfjoo4+s7YKCAuzatQsZGRlITk5GvXr1sGnTJrRr1w4AsGHDBmRkZFjnbtq0yTp348aNaNq0aVxrKwB4PJ5KU1KLQ1XVavUgqwKSQflxyq42yrI23nN5IDmRDCoCyY5kUFGqm/zKVJJwOIyioiIwxqy/dV3H999/jyNHjgAA/vzzT3zwwQfo2rUrAKBjx44oKCjAvHnzEAwGMWXKFGRlZaFx48YAjAlfb775JvLy8rBq1Sp888036Nu3LwCgf//+WLRoEf7880/k5uZi6tSpuPjiiyvz/gmCIAiCIIgaQpksruPHj8enn34KAFi5ciXGjh2L119/HT/++CPGjh2LwsJCNGjQAMOGDbOUT4/Hg2effRZPPPEEnn76aWRlZeHxxx+38rzlllswfvx49O/fH8nJyXjooYfQsmVLAEDr1q1xzz334N5770VeXh569eqFUaNGVdKtEwRBEARBEDUJhVHk8zKh6zq2b9+OtLS0amU6P5GQDMqPTHaKouD999/H1VdfXcWlOzFQ/SkdJCeSQUUg2ZEMKkp1lV/1KQlBEARBEARBFAMprgRRDbBPaCQIgiAIQg4prgRRDSCPHYIgCIIoGVJcCYIgCIIgiBoBKa4EQRAEQRBEjYAUV4IgCIIgCKJGQIorQVQDyMeVIAiCIEqGFFeCIAiCIAiiRkCKK0EQBEEQBFEjIMWVIAiCIAiCqBGQ4koQ1QDycSUIgiCIkiHFlSAIgiAIgqgRkOJKENUAWvKVIAiCIEqGFFeCqAaQqwBBEARBlAwprgRBEARBEESNgBRXgqgGkMWVIAiCIEqGFFeCIAiCIAiiRkCKK0FUA8jiShAEQRAlQ4orQVQDSHElCIIgiJIhxZUgCIIgCIKoEZRJcZ08eTIGDx6Mc889F1988QW3b/r06ejTpw969eqFiRMnchakNWvW4Nprr0Xnzp0xevRo7N2719pXWFiIMWPGoFu3brjkkkuwYMECLt958+ZhwIAB6N69O8aNG4dQKFSe+yQIgiAIgiBqOGVSXJs3b4777rsPbdu25dKXLVuG2bNnY/r06Zg5cyaWLVuGuXPnAgCCwSAeeOABXHPNNfj666/Rrl07PProo9a5kydPRnZ2NubPn48JEybg6aefxvbt2wEAmzZtwosvvojnn38en332Gfbs2YMpU6ZU9J4JotpBrgIEQRAEUTKushw8YMAAAMDUqVO59Pnz5+Oqq65Cs2bNAADXX389Pv/8cwwaNAgrVqyA3+/HoEGDAAA333wz+vTpg71796Jx48aYP38+XnjhBSQmJqJ9+/bo1q0bFi5ciJtvvhkLFixA3759kZWVBQC46aabMH78eNx6661xyxgMBhEMBvmbdLng8XjKcqtx0XWd+782QjIoP/FkF4lEao08qf6UDpITyaAikOxIBhWlKuSnqiXbU8ukuMZj69atllILAJmZmZg0aRIAYMuWLWjdurW1z+/3o1mzZtiyZQsCgQAOHTrE7c/MzMSaNWusczt16mTta9OmDXbv3o3CwkL4fD5pWaZNm4Y33niDSxs8eDCGDBlS8Ru1sXPnzkrNryZCMig/TtkdOnTIGmmoLVD9KR0kJ5JBeXnkkUfw5JNPVnUxqhyqPxXjRMovPT29xGMqRXHNz89HYmKitR0IBJCfnw8AKCgoQCAQ4I4PBAIoKChAfn4+NE3jlNDizjWvUVBQEFdxHTlyJIYOHcqlVbbFdefOnWjevHmpegYnIySD8hNPdvXq1UNaWloVluzEQfWndJCcSAYVQdd1vPfee3j77bdrreyo/lSM6iq/SlFcExISkJuba23n5eUhISEBgGFhzcvL447Py8uD3+9HQkICIpEIZ0Et7lzzGn6/P25ZPB5PpSmpxaGqarV6kFUByaD8OGWnKEqtkyXVn9JBciIZVASSHcmgolQ3+VVKSdLT07Fp0yZre8OGDcjIyAAAZGRkcPsKCgqwa9cuZGRkIDk5GfXq1Sv1uRs3bkTTpk3jWlsJoqZCk7MIgiAIomTKpLiGw2EUFRWBMWb9res6BgwYgDlz5mD37t04ePAgZsyYgYsvvhgA0LFjRxQUFGDevHkIBoOYMmUKsrKy0LhxYwDGhK8333wTeXl5WLVqFb755hv07dsXANC/f38sWrQIf/75J3JzczF16lQrX4IgCIIgCKJ2USZXgfHjx+PTTz8FAKxcuRJjx47F66+/ji5dumDjxo0YNmwYdF3H5ZdfjoEDBwIwhu6fffZZPPHEE3j66aeRlZWFxx9/3Mrzlltuwfjx49G/f38kJyfjoYceQsuWLQEArVu3xj333IN7770XeXl56NWrF0aNGlVJt04Q1QeyuBIEQRBEySiMvphlQtd1bN++HWlpadXK5+NEQjIoPzLZKYqCqVOnYuTIkVVcuhMD1Z/SQXIiGVQEXdehaRoikUitlR3Vn4pRXeVXfUpCELUY6j8SBEEQRMmQ4koQBEEQBEHUCEhxJQiCIAiCIGoEpLgSRDWAXAUIgqhMqE0hTlZIcSWIagB9ZAiCqEyoTSFOVkhxJQiCIIiTDFJciZMVUlwJohpAHxmCICoTalOIkxVSXAmiGkAfGYIgKhNqU4iTFVJcCYIgCOIkgxRX4mSFFFeCIAiCOMkgxZU4WSHFlSCqAfSRIQiiMqE2hThZIcWVIKoB9JEhCKIyoTaFOFkhxZUgCIIgTjJIcSVOVkhxJQiCIAiCIGoEpLgSRDWArCMEQVQm1KYQJyukuBJENYA+MgRBVCbUphAnK6S4EgRBEMRJBimuxMkKKa4EQRAEcZJBiitxskKKK0FUA+gjQxBEZUJtCnGyUqmK6+jRo3HhhReia9eu6Nq1K+666y5r3/Tp09GnTx/06tULEydO5F6qNWvW4Nprr0Xnzp0xevRo7N2719pXWFiIMWPGoFu3brjkkkuwYMGCyiwyQVQL6CNDEERlQm0KcbLiquwMx44di379+nFpy5Ytw+zZszF9+nT4fD7cdtttaNmyJQYNGoRgMIgHHngAo0ePRv/+/TF58mQ8+uijeOONNwAAkydPRnZ2NubPn4/Nmzfj7rvvxumnn460tLTKLjpBEARBnBSQ4kqcrJwQV4H58+fjqquuQrNmzVC/fn1cf/31+PzzzwEAK1asgN/vx6BBg+D1enHzzTdj7dq1ltV1/vz5GD16NBITE9G+fXt069YNCxcuPBHFJogTBn1kCIKoTKhNIU5WKt3i+txzz+G5555DZmYm7r33XrRp0wZbt27FgAEDrGMyMzMxadIkAMCWLVvQunVra5/f70ezZs2wZcsWBAIBHDp0iNufmZmJNWvWxL1+MBhEMBjk0lwuFzweT6Xcn67r3P+1EZJB+YknO13Xa408qf6UDpITyaAiRCIRALVbdlR/KkZVyE9VS7anVqrietdddyEjIwOqquKDDz7A3XffjdmzZyM/Px+JiYnWcYFAAPn5+QCAgoICBAIBLp9AIICCggLk5+dD0zT4fD7puTKmTZtmuRmYDB48GEOGDKmMW7TYuXNnpeZXEyEZlB+n7A4fPozt27dbf48ZM8bq3J2sUP0pHSQnkkF5OHz4MACSHXDyy0DX9VIpfOXlRMovPT29xGMqVXFt166d9ffw4cMxd+5crFmzBgkJCcjNzbX25eXlISEhAYBhYc3Ly+PyycvLg9/vR0JCAiKRCAoLCy3l1X6ujJEjR2Lo0KFcWmVbXHfu3InmzZsf14pSnSEZlJ94sqtbt67lt52bm4vPP//8pPXjpvpTOkhOJIOKYH4zKyq7cDiMoqIiwcBUE6gt9UfTNMvCXplUV/lVuquAHfNG09PTsWnTJnTp0gUAsGHDBmRkZAAAMjIy8NFHH1nnFBQUYNeuXcjIyEBycjLq1auHTZs2WUqx/VwZHo+n0pTU4lBVtVo9yKqAZFB+ZLIzt53/n6xQ/SkdJCeSQXlQFAVAxWX3+uuv44033sCqVasqq2gnnNpQf47n/VU3+VVaSXJycrB8+XIEg0GEQiHMmDEDx44dw+mnn44BAwZgzpw52L17Nw4ePIgZM2bg4osvBgB07NgRBQUFmDdvHoLBIKZMmYKsrCw0btwYADBgwAC8+eabyMvLw6pVq/DNN9+gb9++lVVsgqh20KQKgiAqSmW1I9nZ2fjrr78qJS+CqAwqzeIaDocxadIkbNu2DW63G5mZmZg4cSISExPRpUsXbNy4EcOGDYOu67j88ssxcOBAAIaF9Nlnn8UTTzyBp59+GllZWXj88cetfG+55RaMHz8e/fv3R3JyMh566CG0bNmysopNENUCux83Ka4EQVQXGGOW9ZYgqgOVprimpqbinXfeibt/5MiRGDlypHRf27Zt8f7770v3+Xw+jB8/vlLKSBwfCgsLUVBQgNTU1KouSo2lfv36VV0EgiBOIiqrA0yKa83gyJEjteYbXH2cFogay3/+8x9ceOGFVV2MGg1ZWQmCqExIca1dHDt2rKqLcMIgxZWoMKFQCNnZ2VVdDIIgCCJKZSqu1WliTlVQUFBQ7fx8w+Ewt12bnlHtuVPiuHG8QnHUJuwfGbK+EgRRUSqrHdF1vVQW10gkgl9//ZVLy8nJOSm+DS+++CIuuOCCqi4Gh9vt5rZJcSWIMuByuU6KxokgKgtd16kDQlQpJ9pVYOvWrejYsSOXNmDAAGFBoMrgwIEDlZ5ncRQVFaGoqOiEXrOs1KbVwUhxJSoMWVwJgqd///7473//W9XFIGoxMsV17ty5ePvtt8ucT2mseZqmCWnLli3D/v37y3S90tCwYcNKz7M4aoKfb236BpPiSlQYUlwrDlnnTi42btyIffv2VXUxiFrMeeedJ6TNnDkTU6dOLVM+pVXaZIorgGKXaK8pnGjF9eeff0a3bt3KdE5t+gaT4kpUmCeeeAI5OTlVXQyilLzzzjsIhUJVXYyTmnA4jGPHjuGpp57CDTfcUNXFsTh69GhVF6HWwhjD9u3bT9j1ZMPpq1atwtKlS8uUT2mVtnhW2V27dmHBggVlumZ140Qrrjt37sS3335b4nEvv/yy9bdzslZ56devH3Jzcyslr+MFKa5EhaGPYdkZNGgQt30iJ2cNGzYMhw4dOq7XqO3s2rULkyZNwt69e/HTTz+hoKCgqouEgwcPSuM8/utf/6qC0tQ+du3aVeWL55Tnva+oxfWzzz6zVsosDVOnTkX//v1LffyJoLq5CpjfiJUrV1pplWVxXbhwYbUPrUWKK0FUAZ9++mncfTLFdfr06fjxxx8r7frVqRE+mTl27Bg2bNiAYcOGVXVR4lrZn3766RNcEp7Ro0fjs88+q9IyVCb79+/HW2+9BQD46quvMGrUKDDGsHfv3iopz7Zt26y/S/ve2+tKcUpbOBy22qt4He6yhkrctWsX/vjjDyH98OHDwrUre5LWwYMHpel2Gfz555+Ves141ysOcyLW9OnTsXHjRgDAvHnzsHPnzuNetuoAKa4EUQ1wNsoA8L///c/6e9y4cZg7d26lXY8U1xODqcAcOXKkwnkxxop18Vi3bl2x58tmHVcH3+o5c+Zg9erVVV2MSqNRo0YYMWIEAGOm/bRp0/Drr7/i/PPPr5LytGrVqtj9f//737nt33//HR6Px9o2lbaDBw/irrvu4o7t1q0bpkyZAiBWv6677roSy1RYWCjUvW3btiEvLw+KokjrZb169bjtuXPnVvokrQYNGkjT7Yrr6aefXqnXNOnfv781RF+SQm63rpq+9A899BDee++941K26gYprgRRCVTUJ+j2228X0swPgkllKhmRSIQmDx1HevbsiWuuucbaLunZPfvss9i0aVOxx7zzzjs455xz4u7Pysritp0+b7KhxFmzZpWqfETpmDRpkvX3tm3b4HIZq6qb/58Idu/eXabjX3nlFW77rLPO4rZNpe3o0aNCpIwtW7ZYUQPMOlQa5Sk9PR2ffPIJl3bGGWfgjTfeiKu4ViUnwlXgiy++sOaKyL4Hx44dw3vvvYfRo0dzPsP2eK6VOUHrzDPPxJ49eyotv8qEFFfiuFDeOJY7duwo18sXr6d8Ijh69CiSkpJKdezMmTOxbNmyUh1rKh6dO3fGjh07yl0+RVHw119/oXnz5lbavffei8aNG5d47vH2hc3JycGKFSuO6zXiKeibN2+G3++3rDyVNbmhqKgIuq5zk1XsdTo/P1+Q64MPPoiff/652HyPHj1aonJrx+12W1awSy65BMFgkNsfCAQEpaMyOHr0aJmVp5OFO++80/r7k08+sZSKeG3a8Zhx36xZszKfY1ry7Yq3ibkAgewe9u/fj3fffdc6rrTs27cv7oRep+J66NAhzt3BxBmAvzJxfk+qg4/rmjVrcN111+Gtt97iviH2dubhhx8GYwxr1qzBfffdFzevoqIiFBYWWturVq3C2rVrrW3GGFatWlUpI0XHA1JciePClVdeiWeeeabM56WlpWHJkiVlPi+eb5KM//73v6UaziotpVG0g8EgGGMYO3YsPv74YwBG4/Dss88Kx5pLC5ofk++//77Ej8IXX3wBABg+fDiX3r59ewCGK8KuXbus9A8++IArm/0D+t5771kNY/369Uu8t4pw2WWXSa2IlWkNbty4sXSIvaCgAIWFhZgzZw6A+D6gZcXn8wmrDdmf33PPPYeuXbta26XtHJQm7JzzYx4Oh3HkyBHMnz/fmkS5fft26LqO/Px8q1z28mVnZ5d55rmdxx9/HBdddFGpjz98+HC1CJlUlglETq6++mrBVePAgQOWXJ2B+QHDjSAQCFjbH330kXDM9OnTK7XzaK+ToVDI2jZdA2T+m4wxrF+/3ur4OCfumApPZXV+FEXhhsqffPJJ9O7dWziuNIqrs7NWWg4ePGjdj67r2Lt3b6VagssSZUHXdYRCIXi9XgDGPT333HPWfme7lZeXh99//x3/+c9/4uZ59913Y/jw4XjppZcAAPfffz/GjBlThjuoWkhxJSqNoqIi68X++OOPOUWpLJR3BZDSnrd69eoSrVuVTatWrdC/f39s2LABH374IQBg0aJFWLNmjXVMSkoKAFgf/VWrVpW6l9+/f3988803QnBxc5LDaaedBgDC7Pb8/Hzcf//9uOSSS6y0Rx55BDNnzizD3ZWPu+++21qNxuz9m5OZSmMNLgsya6r5sTaVfftH6dFHH8Wtt95a5uvccccdAIzOjF0ZY4xx1lJ7JA6zPpSEqqrS+1AUxbJIOfcHg0HUrVsXQKxz17JlS2tpTvPDbn93Fi5ciB49epSqTDLiKdiLFy+Oe05poi6UxSI+e/bsUh9rsmDBAu49KAszZ87Eli1buLQJEyYU2xky322z3l1xxRWIRCLcfY4cObJcbZXpY+vEXsenTZsm7Je1oab/vVlX5s+fj1WrVgnHPfTQQ9x1tm3bBp/PZ6V9/fXXnJXv+++/t/4+ePAgcnNzEYlEsH79ei7fnJwcQbZA6dwv/H6/dP5AcZjHm7L6/fff8c4770BVVatef/TRR3jsscfKlK+deJ2k3377Dffff7+1fd1112HYsGHo1q0b53dsx9npGzVqlPX35s2bpeccPnwYhw8fxr333os1a9YgLy8PH374oTUB2Lz3qrYyx4MUV6JC2IcS2rRpw/kthcNhZGZmco0VgLgrqZgfL5nlwc6QIUOsxu3vf/+79aKX1sXgf//7nzDk+uabb2Ly5MmlOr887Nq1S7BmXHTRRVzDkJ2dbVn/ZDz11FPW36tWrcLTTz/NfeTMITuTDRs2CHnYPy6AMVz88ssvc89x69atJ2T5wFdeecVqdNu3b4/x48fj/PPP56xT+fn5uP3226Uzk+fNm1fqcm7YsAGjR4/m0pzhe8zGOhgM4oknnihXfTD9+4LBIFePdV1HmzZtcODAATz22GPSGeamJT4eMoVwwoQJAAyfQTvmcXbFyT4qMWPGDACwFJBIJIKpU6dyH+NvvvkG//73v+OWp1OnTtIOTjzFtVevXnHziof9uZdlaHjw4MFlvhZgKGWAURdat25dqnN++eUX6xwnMmXbPG7ixIkAwLkBBYNBqdW8rMgUd6cSIlOqnc+toKDAmmBoKq6hUAhnnnkmN3x/zTXXcKM4mzdvRnp6Ovr27Wul9e7dG36/34pP+vrrr1v7TD/bf/7zn0Ln2x77Nj8/3/qemEPks2fPxpAhQ4R7MSmr1dW8L7Ntuf766wEYbYiZ1w8//CC0t+XFbl3+7bff8Pzzz1vb7733Hn755RcsX748rgKel5fHbX/00UfWs3b6qN51111CRJt27dpZI2xmXTafx/FY9awyIMWVqBD2sCU7d+4UhrU2btxoNZCdOnXCypUr0ahRI6xcuVJ4gUwXgddee41LdyqZs2bNsnrgr7zyivWimw28s0FmjEnDhNgVhblz55Y7JI9pvSoPzo/JVVddVarz3nrrLfzrX//CypUrrQbWGQDc7rNkYg9Ybef333/nhucZYxgwYECpylIRTLeIDRs2YMyYMfjzzz85mRw5cgSvvfaadBWggQMHCo12PNavXy+sme78SJtyfPzxx8t0D4DRMSkoKLA6AOYHwJm3XRFzPi9TCczIyMDu3bsxfvx4RCIRy2oii5P5yCOPCGnLly+3ZmDb3wVT1gCsIcL333/fKt+NN96IcePGWe/Wt99+izfeeAMLFiyQKvG///479u/fL4Rpc7lcxSpbO3bsEGI/xxuCNa3FJoqi4LLLLoubtwzTqr9p0yb8/vvv2LhxI6ZMmYInn3wSgOG6YcrB5OGHH8bmzZvx888/x3WXueSSSzBjxoxiFSOZHE477TQsWLDAegY33XSTtU+mTJZHcXW+F6YF1j4KJqtP9neCMcZtm2Uzy2OODA0ZMoRTWgFYIZpkyFwf4i1ecPHFF+PLL7+0tocOHWr5bprl37hxY7HW/IULF0rT4y3JbN6z+c7a21FTBpqmYePGjZgxYwZ+++03YYJbaZg5cyYuvfRSLjLCww8/LBxnWlrto3N2nBODr7vuOut9uvHGG/Haa69ZHdz//ve/uOyyy/Dzzz9j0aJFcctmuvn16dOnDHd04iDFlSgzdqd6e+OnaRrXiJv7zB7l8uXLLd/St956CzfffDOOHTsmfYHGjh0LwGio2rRpg4MHDyIzM9PazxjD+PHjuXPmzJkDTdOEIZXt27ejRYsWwjXMxm7Xrl0IhULQNA1FRUX45z//aX3sSoP5Ie3evTtXPuekI9nHuayBns2G02xUw+EwXnjhBQBi4x9vaCkeCxcutD54q1atwjfffGPt27ZtG3bv3i39iL744ovW/2b5Dhw4IAyBM8awYcMG5OXlWfItya/ULE92djbeeecd6XOZM2eOoDxEIhGu/DLLrFNxPXDgAPLy8gTr7nPPPYepU6dKr/2vf/0L2dnZaN68ORISEuLex/LlywHAelZATDGwBxG/8847sXXrVhw9ehRjx45FMBhEZmYmbr/9dut9ikQiyM3NjRsKKBgMWvdg96U9ePBgXGue3QJsWuX//e9/48CBA3jnnXcEt4lIJGLV5wsuuIDbZ7e4ms/PtPY2btwYaWlpnI+eeZxpoX7wwQeFcEn2d8l8b02rsR37Mzcxh6snTJiAW2+9FZmZmbjpppusjvNnn30mdKLN2LbHjh3jFC1z4h0AfPfdd9i7d6/leyhD9r5s2LAB99xzj7Vtfybm+7B+/XrLz9j5jtjbGSfxOgCm1dRk27ZtuO2227i0vXv34s0337S2Fy9ezF3brLt25Q2Qv1tmp3fevHnCvr/97W9ceZs0aSLtgEYiEcEXdP/+/Xj11Ve569vvefny5UKban4nDh8+zL3Dd911Fz744ANhIqH5zHRdFyYnOe999OjROPvss4WQYjLeeustjBo1Cueeey4Aox6Uxg3EvFa8ttIpu99//92SycaNG/HCCy/gkUce4e5FNtkNqEHRRRhRJiKRCNuyZQuLRCJVXZQqA4Alg88++4wBYACYz+djzz77LMvJyWEA2E033WTtW7t2rfU3AJaUlMRtL1myhM2cOZNLM68FgG3bto0BYAUFBQwAe+WVV7hjAbBXX32VO5cxxoqKitgHH3zAALD8/HxWWFjInTN06FAGgKWmpnLpW7ZsYQ8//DA7ePAgY4wxXdfZpEmTBFls2bJFKDNjjIVCIQaA3X///SwvL08oa0V+drlcddVV1t9///vfGQB20UUXsUgkwv7xj3+UKd8bb7yR205ISGAAWCQSYV27dmU33HADd4/2+mD+v379esYYY++++651LmOM+f1+q3z9+vVjI0aMYACYy+USyqGqKgPAtm/fzi688EJu34YNG7jrHjlyhAFgW7duZVdffTW3DwALh8MMAJs6dapQ9q+//prLu0WLFuz222+PK2sAbM+ePayoqIjpum6lzZo1q9zP8n//+1+x+2fMmGH9fc455zAAbMKECdazkf2++uorafro0aNZvXr1ylzGVq1aMQBs8ODBrG7dumzDhg2sW7duDAB76qmnGAAWCoUsuT722GMMABs5cqSVx19//cXl+fDDD7NgMGg9606dOjEArHfv3tYxs2fPZoDxLr799tvc+ePGjbOez6pVq1gwGGQ7d+7kntmdd95p/Z2RkcEAsDZt2lh5NGzYkDHGmMfj4fL+v//7P+vvxYsXMwBs5syZrEmTJqxDhw5sxIgR7LHHHmNer5eNGTOG/fbbbwwAmzt3riC7F154gds25eb8mW3m1q1bBbm/++67LBwOsz///NN6tr169WKrV69m+fn5ltw3b95c6mf6/PPPC2nvvPMOtz179mzrudh/Ztt72mmnMQDsyiuvLHf9//PPP+Pu++abb4S0Dh06COV98sknWYMGDaxnPWPGDK4dUBSFRSIR1qxZM/bf//5XaCPef/99IQ0AO3DggHD9l19+mdu2f8fMZzN8+HDGmPHNcLZX9t+///1v6+8zzjijRFndfPPN3PY999wjrWMA2OTJk617N9P++9//lusZVUd9hxTXMkKKa0xx7devX7EV3t6g3X///cUea37A7D+zMQdiiuv+/fvj5mF/MS+44AKWkpLCpdk/WiX95s+fzwCwX3/9le3bt4/17NmTAWBHjx5luq5bP+d5GzduZPv27ZM2usf7d9ddd1l/v/HGGxXOz+/3MwCWQjBq1ChrH2OMNWzYkC1ZssTatu87/fTTGWB8VN5///1Ku8ePPvpIuJ79Z6+jAK88OY8xlRn7b+DAgdz2wYMHpdf55JNPrL+zsrLKfT933HFHsfuvvfZaIa19+/blutYVV1zBmjVrVuFn8MEHH7BTTjmFAWCNGjXi9mVnZ7NLL72UATHFBgDbt28fd9zIkSPZww8/XKrrme+e/de6dWsGgB0+fJgBYEuXLmU7duxgAFgwGLSOe+aZZ7jz7B9yj8fDHnroISFv5zkA2PXXX19iOZ0dmPPOO489/fTTpbrHyy67jAEQOk4AOKXd3sE226hvv/2WFRUVVfi5/vOf/+S2ZWU5kb/vvvtOSGvXrl3c43fv3s0AsLfeeovpus4ikYi1z/x7+vTpbPv27VZdAcDGjBnDgsGgYAy5/PLLhWvceuutJZY7MzOTMcYsxbdr166V8nycvzvvvJPNnDnT6sSV9OzidZpK+lVHfYcU1zJS2xVX80O+evXqEit8nz59KvRi2hVfp8VW9rNbeCvrt2zZMm57165drG3btgyIWWNO1p+puMp+F1xwAQNgfZg3bdpk7ZMp9Cfqd99991kWsHi/SZMmcSMF9t+AAQO47cGDB0uPu+2226r8+ZT117VrV8uKdyJ+jRs35q5dmXmfeuqpDABLSUlhgGFRNy209pGX4n5ut1uaLrNGlud3xhlnsAceeMDaNkcsyvqLVwfNOlxS56e0v86dO5+wulGan9kBKu3PVDRlnXa7EgvE2i/zN2zYsFJd49FHHy3VcYwxdtFFF1nbFRmViferX78++/TTT9mDDz4o7HN2Qiryq476To1QXA8fPszuuusuduGFF7K//e1v7Mcff6yystR2xfX777+v8gatKn92q216enqVl6eqf/Xr1xfSyvrBqexfaS15FfmdddZZVS77sv7sFtCa/mvZsmXcfcOHD4+7ryLW8Yr+Klt5ueaaa6r8Och+gUAg7r7MzMzjfn2fzyekORXX4/37z3/+w22//vrrlX6N1NTUuG5BlfmrjvpOjVBcH3zwQfbEE0+wgoICtnjxYtazZ0+WnZ1dJWWp7Yrrl19+eUIbAPrVzp/TB7q6/pKTk6u8DPSr3r/zzjuPAaK7xMn6u+KKK+Luc84xOFE/mVtQTf81atSI/fzzz9Z2gwYNjst1qqO+U+2jCuTn52Pp0qW49dZb4fP50KNHD7Rq1Uo6e5Q4/px//vkVOt+5DnZ1pkOHDifkOuYsWSKGLDh6caSlpZX5GmeeeWaZz3Eim9keD/vscb/fX+Fry7joootw0UUXCaG/TIpbBrK60aZNG3Tp0uW4XyfeYhflCb5+wQUXoFGjRhg3bpyVNnToUCxbtixuFIjyLHRRVVxxxRUAgHfeeSfuMffeey+3ba/3xUVgAGA979KEpPvHP/5R4jEmsgUMykp1eHfsC4NEIhEkJydb2+biJ2XBGX7RuajDlVdeWeY8TwhVrTmXxLp161ifPn24tGeeeYZNnDhRenxRURHLycnhfgUFBSwSiVTKLxQKsS1btrBQKFRpeda0X7whqosuuoh9//331mzPe+65h3388cds/Pjx1mzQjz/+mG3fvt06p0uXLlwe1113HQPAmjRpwgBj1mn//v1ZQkKC5cNm/51//vnctjkr2fSBO/PMM6VlPXbsGGvQoIEwI9ac9AGAzZs3jwHGhIDLL7/cmi1tztg0f86Z7/af6Xdr97vq2bMnS05OZi+99BIrKiqSDmP97W9/Y4sXL2ZNmza10uyTRj7++GPOX9HtdrNnn31WWoann37aGtJv3bq14OLgnMCUlZXFVqxYYW27XC42ceJEBsDy7433M59bvF88v0Lz9/3337Mbb7yRFRQUMI/Hw0477TTWsGFD9vXXXwuztk899VTmdrvZqaeeyn755RchL9P/ccGCBQyIRRgwf+aksXvvvVd4Bp9++qk1tL5r1y5unzmj/+GHH7byNGf4AsZQpX1S1x9//MEAsA8//JBlZmaycDjMIpEIN5kO4GcWRyKREv3UzDZowoQJDDCGz4PBoNVOHTt2jAFgderUsc6ZPn06F8nhpptuYtnZ2dbkIPOdefnll4XJl7KJbvafaX1+6623rLRnn32W8392/kxZ3nvvvey8885jr7/+OmvRogUDwKZMmcJCoRBr2bIl83q9TNM0BvCuAC+++CKbMmUKV78GDRrEmjdvznr16sUAo43ZuHGjdUy/fv2453P11VezHj16sPT0dK69+OSTT1hKSoo10eWJJ55ggDHBa/bs2dxEKVOmI0aMYHPnzmXr1q2zXANWrVpltZ2jR49mt912m+Xz6/F42IYNGwS53H333VIf81dffZVt3rzZsuIuXLiQpaens1atWgl+m+np6eyxxx5jL774IgNgtSXxhvL/+c9/sldffZUtX75c2GdONjUnQNnfFzPywP79+9krr7zCwuGwNYFw8uTJbOPGjSw7O5vdfPPNLBKJsBtuuIHdeuutVv1as2YNV+/t/+fl5bF69epZERPs7ejcuXOZoihcVIgDBw5Y9QQwopzEq3srVqwotbvX+eefz8LhMBs6dKhVR1588UV26623sksvvZR99dVX3Dtk/saPHy/Nz4zu8e6771oTHS+77DJLbqY/9IUXXshNqtq7dy+755572G+//cZeeeUVtnfvXgYY80EikQjzeDzcNZ977jmrXp599tlcXgkJCezbb7+1zr/qqqvY5s2bWY8ePaxjqkLfKQ0KY9U7cNfKlSsxbtw4Llj8pEmTkJubiwcffFA4fvLkyYK1YfDgwcWurEGUj1AoFHc1m/z8/GLjWtphjCEYDAq98UgkAk3TwBhDQUGBkF+8wPv2PM3zXS4XdF3n4s6Gw2FomsatQW1fhrE4i0s4HEY4HOaWNHRenzEGVVVRWFgY97h4eZdmOcNgMAhVVbljzXNDoRBcLpd1D8FgEIwxuN1uqKqKY8eOwe/3IxKJwOv1WsfZZWKuZ+92u4VnY+5LSEiw5GrerynLSCRi/WR1obCwEJqmlbgikv1ZhMNh6Lou3Ld5nFmWYDAIj8dj1aGioiJ4vV5LZuY9OolEl9x03q/5DM2yOOUbD/P6BQUFgpXVvga5WV+CwSBXV4qKiuDxeLjrmHna77uoqKjEOmbWDcYY8vPzrXxNOYbDYRQWFkqft5O8vDwEAgFr27w/U+5OzHszr1lUVARN06CqKvLy8qx6FK8umDEszf3O52TWW7MOmtjfvZycHCQlJVn7ioqKrHpkl29ubi5UVeXqbG5uLhITE616JCMSiUBV1RO+TKa52lZ5rxvvnuzvsf1dk7X7pnyc55e2TGYcbbM+BAKBuOfn5OSAMYakpCToum4do+u6Vb8BucXcrIeKolj11Kx/Zt0xY0Lb4xHb67Su68jNzeWsnXaCwaD1jprnhcNhKIpitU3xnpe9DpnPRdd1FBUVFTtKY5cVY8yq69V1ydbicK4CKKPkr2MV4/f7hQC7eXl5cR/iyJEjMXToUC7N5XKVORh7PHRdx86dO9G8efO4q32c7JgyyMjIqLUyKC9Uf2IyaNOmTa2VQWmgukJtTUWg+kMyqCjVVX7VXnFt0aIFcnNzcfDgQWvpvY0bN2LQoEHS4z0eT6UpqcWhqmq1epBVAcmg/JDsSAalheREMqgIJDuSQUWpbvKrPiWJQ0JCArp164bJkyejsLAQS5cuxebNm9GtW7eqLhpBEARBEARxAqn2iitgrJ29f/9+9O7dGxMnTsRTTz0V17+EIAiCIAiCODmp9q4CAJCamoqXX365qotBEARBEARBVCHVPqoAQRAEQRAEQQA1xFWAIAiCIAiCIEhxJQiCIAiCIGoEpLgSBEEQBEEQNQJSXAmCIAiCIIgaASmuBEEQBEEQRI2AFFeCIAiCIAiiRkCKK0EQBEEQBFEjIMWVIAiCIAiCqBGQ4koQBEEQBEHUCEhxJQiCIAiCIGoEpLgSBEEQBEEQNYJaobjOnj0biqLggw8+EPa1b98eiqLgiy++EPa1atUKHTp0AAAsWbIEiqJgyZIllVaubdu2QVEUTJ8+vdLyrCzefPNNXH755WjZsiX8fj9at26N2267DXv37i32vP3796NevXpQFAWzZ88+QaUlCIIgCKI2UCsU1x49ekBRFCxevJhLP3z4MFatWoVAICDs27VrF7Zs2YKePXsCADp06IAffvjBUmRPdsaOHYvExERMmDABCxYswAMPPIBPP/0UHTt2xP79++Oed8cdd8Dn853AkhIEQRAEUVtwVXUBTgT169dHu3btBGvp0qVL4XK5cOONNwqKq7ltKq7Jycm44IILTkh5qwMrV67EKaecYm13794dHTp0wLnnnos33ngD//73v4Vz5syZgy+++AKTJk3C8OHDT2RxCYIgCIKoBdQKiytgKKDr16/nhrqXLFmCc889FwMGDMCKFSuQk5PD7dM0DV27drW2na4CI0aMQGJiIjZt2oQBAwYgMTERzZs3x3333YeioiLu+nv27MGQIUOQlJSEOnXq4Oqrr8a+ffukZZ07dy46deqEhIQEJCUloW/fvvjhhx+s/WvWrIGiKJg1a5aVtmLFCiiKgrZt23J5DRw4EB07diyzvOxKq0nHjh2haRp27twp7Dt8+DDuuOMOPPnkk2jRokWZr0cQBEEQBFEStUpxBcApnosXL0b37t3RuXNnKIqCb7/9ltvXoUMH1KlTp9h8Q6EQBg4ciN69e+OTTz7BqFGj8OKLL+KZZ56xjikoKECfPn2wcOFCPPXUU5g1axYaNWqEq6++Wsjv3XffxaBBg5CcnIz33nsPU6ZMwZEjR9CjRw8sW7YMANC2bVs0btwYixYtss5btGgR/H4/1q5diz179gAAwuEwli5dij59+lj3rigKHnvssbIJL8rSpUsRiUQE5RgA7rrrLqSnp+POO+8sV94EQRAEQRAlUWsU1+7du0NVVUtxPXToEFavXo3u3bsjMTERHTp0sNwDdu7cia1bt1rKbnEEg0GMGzcO9913H3r37o1x48bh4osvxrvvvmsd89Zbb2HdunV4++23ceedd+Kiiy7CxIkT0a9fPy4vXddx//3344wzzsDnn3+OQYMGYciQIViyZAlSUlLw4IMPWsf27t1bUFyvv/56pKamWuk//fQTjh07ZimuiqJA0zSoatkfe05ODm6//XY0b94co0aN4vZ99tlnmDlzJt54441y5U0QBEEQBFEaao2WkZqaivbt21uK69KlS6FpGjp37gzAUGxNxdXp31ociqLgsssu49LOPPNMbN++3dpevHgxkpKSMHDgQO646667jttev3499uzZgxtuuIFTABMTE3HllVdi+fLlyM/PB2Aorlu2bMHWrVtRWFiIZcuWoX///ujZsye+/PJLAIYy6/V60aVLF+sew+EwHn300RLvy05hYSGuuOIKbN++HbNmzUJiYqK1Lzs7G7fccgsefPBBtGvXrkz5EgRBEARBlIVao7gChiK6YcMG7NmzB4sXL0bHjh0tJax79+5YuXIlsrOzsXjxYrhcLkvhK46EhARhFr3X60VhYaG1fejQITRs2FA4t1GjRtz2oUOHAACNGzcWjm3SpAl0XceRI0cAwLKiLlq0CMuWLUMoFEKvXr3Qp08ffPXVV9a+zp07w+/3l3gf8SgqKsLf/vY3LFu2DHPnzsX555/P7X/kkUfgdrtx55134ujRozh69Chyc3MBAPn5+Th69CgYY+W+PkHUBkaMGIHLL7+8qotx0jJmzBiMHj26qotRas4991x8+OGHVV0MgqiW1DrFFTB8PZcsWYLu3btb+0wl9ZtvvrEmbdktixWhXr160hBSzslZ9erVAwBprNQ9e/ZAVVWkpqYCAJo1a4bMzEwsWrQIX375Jc455xykpKSgd+/e2Lt3L3788UcsX77cUnDLQ1FRES6//HIsXrwYH3/8MXr37i0cs3r1amzbtg2NGjVCamoqUlNTLQv08OHDkZqaiuzs7HKXgTg5eP3115GUlIRwOGyl5ebmwu12WxMgTb799lsoioINGzac6GJWmPIqoBMnTixzPOeVK1fi0ksvxSmnnAKfz4eWLVvi6quvxsGDB8t8/apmyZIlGDRoEBo3boxAIICzzjoLM2bMiHv8d999B5fLhbPOOqvEvPfv34+JEyfi4Ycf5tJfffVVpKenw+fzoWPHjtwch3jMmDED7du3R0JCAho3boyRI0daBgeTl156Caeeeir8fj+aN2+Oe++9lzNkPPbYY1AUhfs5jRhjxozBQw89BF3XSywTQdQ2apXi2q1bN2iahtmzZ2PNmjXo0aOHta9OnTo466yz8NZbb2Hbtm2lchMoLT179kROTg7mzp3Lpdv9YAHg1FNPRdOmTfHuu+9yVsq8vDzMmTPHijRg0qdPH3z99df48ssv0bdvXwBAZmYmWrRogUcffRShUKjciqtpaf36668xZ84cwR/X5KWXXsLixYu534svvgjAaKAXL15caR0AoubSs2dP5Obm4pdffrHSvv32WzRq1Ag///yz5QIDGEpMkyZNkJmZWRVFjUsoFDpuedepUwcpKSmlPv7AgQPo06cP6tevjy+++ALr1q3D1KlT0bhxY06WlU15ZVDSed9//z3OPPNMzJkzB3/88QdGjRqFYcOGYd68ecKx2dnZGDZsmLQjLWPKlCno1KkTWrZsaaV98MEHuOeee/DII49g5cqV6Nq1Ky6++GLs2LEjbj7Lli3DsGHDcOONN2LNmjWYNWsWfv75Z9x0003WMTNmzMBDDz2EsWPHYt26dZgyZQo++OAD/Otf/+Lyatu2Lfbu3Wv9Vq1axe2/5JJLkJ2dLV0YhyBqPayWce655zJFUZimaSw7O5vbd++99zJFURgA9uWXX3L7Fi9ezACwxYsXW2nDhw9ngUBAuMbYsWOZXbR5eXksMzOT1alTh73yyivsiy++YHfffTdr0aIFA8CmTZtmHTtjxgwGgA0YMIB98sknbObMmezcc89lHo+Hffvtt9x15syZwwAwAGzp0qVW+siRIxkAlpqayiKRiJW+ZMkSpmkaGzduXIlyuvTSSxkA9sgjj7AffviB+61Zs6bYc01ZzZo1q8TrELWHJk2asKeeesrafuCBB9gdd9zBsrKyuPetV69ebOjQoYwxxt555x3WsWNHlpiYyBo2bMiuvfZatn//fuvYw4cPs+uuu47Vr1+f+Xw+1rp1azZ16lTGGGNFRUXsjjvuYI0aNWJer5elpaWxCRMmWOcePXqU3XzzzaxBgwYsKSmJ9ezZk/3222/W/rFjx7L27duzKVOmsPT0dKYoCtN1nc2aNYu1a9eO+Xw+VrduXda7d2+Wm5trvff2n9le7Nq1iw0ZMoSlpKSwunXrsoEDB7KtW7da1xo+fDgbNGiQtd29e3f297//nd1///0sNTWVNWzYkI0dO9ba/9FHHzGXy8VCoVCxMl+9ejUbMGAAS0pKYomJiaxLly5s06ZNjDHGIpEIGzduHGvatCnzeDysffv27PPPP7fO3bp1KwPAPvjgA9a9e3fm9Xot2U6dOpWddtppzOv1slNPPZVNmjSpVOeVhQEDBrCRI0cK6VdffTX797//bT2fkjjjjDPYK6+8wqWdd9557NZbb+XSTjvtNPbQQw/Fzee5555jGRkZXNrLL7/MmjVrZm3fcccdrFevXtwx//jHP1iXLl2s7dKWe8SIEeyGG24o8TiCqG3UKosrYFh+GGM4++yzkZyczO3r3r07GGPweDy48MILK+2aCQkJ+Prrr9GnTx889NBDuOqqq7Br1y68//77wrHXXXcdPv74Yxw6dAhXX301Ro4cieTkZCxevFjwue3VqxdUVUUgEECnTp2sdNPK2rNnT26SF2MMkUikVMNPn376KQDgySefRKdOnbjf7bffXi45ELWbHj16cAt9LF68GD169OAmRgaDQfzwww/WiEcwGMQTTzyB33//HR9//DG2bt2KESNGWHmMGTMGa9euxeeff45169bhtddeQ/369QEAL7/8MubOnYuZM2di/fr1+L//+z/L6sYYwyWXXIJ9+/Zh/vz5WLFiBTp06IDevXvj8OHDVv6bNm3CzJkzMWfOHPz222/Yt28frr32WowaNQrr1q3DkiVLcMUVV4Axhn/+858YMmQI+vfvb1nSLrzwQuTn56Nnz55ITEzEN998g2XLliExMRH9+/dHMBiMK6+33noLgUAAP/74I5599lk8/vjj1sTLRo0aIRwO46OPPorrQ757925069YNPp8PX3/9NVasWIFRo0ZZ7hoTJ07ECy+8gOeffx5//PEH+vXrh4EDB2Ljxo1cPg8++CDuuusurFu3Dv369cMbb7yBRx55BE8++STWrVuHCRMmYMyYMXjrrbeKPa+sZGdno27dulzatGnTsHnzZowdO7ZUeRw5cgSrV6/GOeecY6UFg0GsWLECF110EXfsRRddhO+//z5uXhdeeCF27dqF+fPngzGG/fv3Y/bs2bjkkkusY7p06YIVK1bgp59+AgBs2bIF8+fP544BgI0bN6JJkyZIT0/HNddcgy1btgjXO++880rlvkAQtY4qVJoJgqhF/O9//2OBQICFQiF27Ngx5nK52P79+9n777/PLrzwQsYYY0uXLmUA2ObNm6V5/PTTTwwAy8nJYYwxdtlll0mtcowx9ve//5316tWL6bou7Pvqq69YcnIyKyws5NJbtWrFJk+ezBgzLGNut5sdOHDA2r9ixQoGgG3btk16TafllDHGpkyZwk499VSuHEVFRczv97MvvvhCel737t05Kx1jxmjRgw8+aG0//PDDzOVysbp167L+/fuzZ599lu3bt8/a/69//Yulp6ezYDAoLWuTJk3Yk08+KVzj9ttvZ4zFLKcvvfQSd0zz5s3Zu+++y6U98cQTrFOnTsWeVxZmzZrFPB4PW716tZW2YcMGdsopp7D169czxkpnuVy5ciUDwHbs2GGl7d69mwFg3333HXfsk08+yTIzM0ssV2JiInO5XAwAGzhwoCDfl19+mbndbuuY/2fvvuOaut4/gH/CCISlTJmiqLhHXdXiQtyKWOvetsVqtVq1+u1yVq1VW2utbdU6Oqy2at0468I90QouBAEBRZZACISQ8/uD373NJQkEyGA879fLl+Tem3tPTm5yn5x7znOmTZsmWB8WFsb27NnD7t69y06ePMm6d+/O6tSpw1JTUwXbHThwgJmZmQnumhFCGKsRU74SUhNMmzYNiYmJRjuel5cXfvzxR523DwwMhFQqxfXr15GRkQF/f3+4ubmhe/fuGD9+PKRSKc6ePYu6devCz88PQNEApMWLFyMiIgLp6en83YL4+Hg0a9YM06ZNw1tvvYVbt26hT58+GDJkCH+3ZNKkSejduzcaN26Mfv36YdCgQXwr282bN5GTk8MPiOTIZDI8efKEf+zr6wtXV1f+cevWrREUFISWLVuib9++6NOnD4YNG8YPmtTk5s2biI6Ohr29vWB5Xl6e4FjFtWrVSvDYw8MDKSkp/OPly5djzpw5OH36NK5cuYKffvoJK1aswPnz59GyZUtERESga9eusLS0VNt3VlYWkpKS+HSAnICAANy5c0ewTLW18uXLl0hISMA777yD0NBQfrlCoVCbrEX1eWVx9uxZTJo0CZs3b+YnOyksLMSYMWOwZMmSMvV9lslkAKCW+QUoSmWoijGmtkxVVFQUZs6ciYULF6Jv375ITk7GvHnzMHXqVGzZsoUv+/Lly/HDDz/g9ddfR3R0NGbNmgUPDw8sWLAAANC/f39+ny1btkTnzp3RoEED/PLLL5gzZw6/TiKRQKlUIj8/v0KZYQipbihwJaSaKEsQaQoNGzaEt7c3zpw5g4yMDD6rh7u7O+rXr4+LFy/izJkz6NmzJ4CiQYl9+vRBnz598Pvvv8PV1RXx8fHo27cvf4u9f//+iIuLw5EjR3Dq1CkEBQVh+vTpWLNmDdq2bYvY2FgcPXoUp06dwogRI9CrVy/s2bMHSqUSHh4egpn0OKqDpGxtbQXrzM3NcfLkSVy6dAknTpzA+vXr8dlnn+Hq1auoX7++xtetVCrRrl07jaPkVYPi4ooHnCKRSK2bj7OzM4YPH47hw4fjyy+/xGuvvYY1a9bgl19+0SnY0SV4U60D7vibN29WS41nbm6u9Xm6OnfuHIKDg/HNN99gwoQJ/PLs7GzcuHEDt2/f5mfnUyqVYIzBwsICJ06c4M8bVVy3kYyMDL6uXVxcYG5urpbVJSUlRWPaQs6XX36JgIAAzJs3D0DRDwtbW1t07doVy5Yt44PT8ePH8wO2WrZsCalUiilTpuCzzz7TOEGLra0tWrZsqdZFIz09HTY2NhS0ElJMjevjSggxncDAQD4dnWpWj+7du+P48eO4cuUK37/1wYMHSE1NxcqVK9G1a1c0adJE0OLIcXV1xaRJk/D777/j22+/xaZNm/h1Dg4OGDlyJDZv3ow///wTe/fuRXp6Otq2bYvnz5/DwsICDRs2FPzjgh1tRCIRAgICsGTJEty+fRtisRj79u0DAIjFYhQWFgq2b9u2LR4/fgw3Nze1Y5U2pXRZiMViNGjQAFKpFEBRYBUeHq5xRL+DgwM8PT35aaQ5ly5dQtOmTbUeo06dOvDy8kJMTIzaa9EWuOvq7NmzGDhwIFauXKmWc9XBwQH//vsvIiIi+H9Tp05F48aNERERoRZEcxo0aAAHBwdERUXxy8RiMdq1a8f3F+acPHmyxLENubm5aoEnF6yz/+9nrG0bxpjWvsj5+fm4f/++Wv7ue/fuoW3btlrLQ0hNRS2uhBCjCQwMxPTp01FQUCDIo9y9e3dMmzYNeXl5fOBat25diMVirF+/HlOnTsW9e/fwxRdfCPa3cOFCtGvXDs2bN0d+fj4OHz7MB15r166Fh4cH2rRpAzMzM+zevRvu7u6oXbs2evXqhc6dO2PIkCH46quv0LhxYyQlJSEsLAxDhgzRepv76tWr+Oeff9CnTx+4ubnh6tWrePnyJX/MevXq4fjx43j48CGcnZ1Rq1YtjB07FqtXr0ZISAiWLl0Kb29vxMfH4++//8a8efPg7e1d5no8fPgwdu3ahVGjRsHf3x+MMRw6dAhhYWHYtm0bAGDGjBlYv349Ro0ahU8++QS1atXClStX0LFjRzRu3Bjz5s3DokWL0KBBA7Rp0wbbtm1DREREiflTgaI0dzNnzoSDgwP69++P/Px83LhxAxkZGYJb3WXBBa2zZs3CW2+9xbeGisViODk5wczMTG1mPi5/bUkz9pmZmaFXr164cOGCIL/unDlzMH78eLRv3x6dO3fGpk2bEB8fj6lTp/LbfPLJJ0hMTMSvv/4KAAgODkZoaCh+/PFHvqvAhx9+iI4dO8LT05Pf5ptvvsFrr73GdxVYsGABBg8ezAe5H330EYKDg1G3bl2kpKRg2bJlyMrKwsSJEwVlDw8PVxtARggBDc4ihBgPN3CnSZMmguUJCQkMAGvQoIFg+R9//MHq1avHrKysWOfOndnBgwcZAHb79m3GWNGgoKZNmzKJRMKcnJxYSEgIi4mJYYwVDQZr06YNs7W1ZQ4ODiwoKIjdunWL33dWVhb74IMPmKenJ7O0tGQ+Pj5s7Nix/EAeTYN/oqKiWN++fZmrqyuzsrJi/v7+bP369fz6lJQU1rt3b2ZnZydIh5WcnMwmTJjAXFxcmJWVFfPz82OhoaF8Sj5Ng7NmzZolOHZISAibOHEiY4yxJ0+esNDQUObv788kEgmrXbs269ChgyC1HmOM3blzh/Xp04fZ2Ngwe3t71rVrV37gm2o6LEtLS63psLi6VrVjxw7Wpk0bJhaLmaOjI+vWrRv7+++/S32eNhMnTlRLJQaAde/eXetzdE0rdezYMebl5aU2yGnDhg3M19eXicVi1rZtW0FKQa5MxY//3XffsWbNmjGJRMI8PDzY2LFj2bNnz/j1BQUFbPHixaxBgwbM2tqa+fj4sPfff59lZGTw24wcOZJ5eHgwS0tL5unpyYYOHaqWYvDZs2fM0tKSJSQklPr6CKlpRIzRfJyEEEKqJ8YYOnXqhA8//BCjR482dXF0Mm/ePLx69UrQ7YUQUoT6uBJCCKm2RCIRNm3aJJhuuLJzc3NT6xZDCClCgWsZKZVKxMbG1ug5pKkOyo/qjupAV9Wpnvr37w87OzuN/1asWKH1efqqg9atW2P8+PEV2ocxzZs3r8QMB7qoTudPeVEdVExlrT8anEUIIcSgfv75Zz6nanHFZ8cihJCSUOBKCCHEoLy8vExdBEJINUFdBQghhBBCSJVAgSshhBBCCKkSKHAlpBIIDw/HtWvXTF0MQgghpFKjPq6EVAKrVq2CSCTCwYMHTV0UQgghpNKiFldCKoHCwkJYWlqauhiEEEJIpUYtroRUAnFxcXj8+DFevHhR4fyNhBBCSHVFLa6EVAJRUVEoKCjA5cuXTV0UQgghpNKiwJWQSqBBgwYAAHd3dxOXhBBCCKm8KHAlxMQUCgWaNWsGANTPlRBCCCkBBa6EmJhMJoO9vT0++ugjMMZMXRxCCCGk0qLAlRATy83NhY2NDezt7SlwJYQQQkpAgSshJiaVSmFrawuRSGTqohBCCCGVGgWuhJgY1+IKgFpcCSGEkBLoLXCVy+VYsmQJBgwYgO7du2PKlCmIjo7m12/fvh29evVCz549sW7dOsEFOjIyEqNHj0ZAQACmTJmC5ORkfl1eXh4WLFiAbt26YeDAgTh27Ji+ikxIpfDvv/8iISEBIpGIAldCCCGkBHoLXAsLC+Hl5YVt27bh9OnT6NatG+bOnQsAuHDhAvbs2YPt27fjr7/+woULF/ipLeVyOebPn49Ro0bh9OnTaNGiBRYuXMjvd+PGjXj16hXCwsKwYsUKrFy5EnFxcfoqNiEmd/jwYURERFDgSgghhJRCb4GrRCLBu+++izp16sDc3BwjR45EUlISMjMzERYWhmHDhsHb2xsuLi4YN24cjh49CgC4efMmJBIJQkJCYGVlhdDQUERFRfGtrmFhYZgyZQrs7OzQunVrdOvWDSdOnNBXsQkxuaCgICxdupQCV0IIIaQUBpvy9e7du3ByckLt2rURGxuLAQMG8Ov8/f2xYcMGAEBMTAwaNmzIr5NIJPD29kZMTAxsbW2RlpYmWO/v74/IyEitx5XL5ZDL5YJlFhYWEIvFenldSqVS8H9NRHVQfprqLj8/H+bm5vzy6l6vdP7ohuqJ6qAiqO6oDirKFPVnZlZ6e6pBAtecnBysWLEC77//PoCiwSd2dnb8eltbW+Tm5gIoymFpa2sreL6trS1kMhlyc3Nhbm4Oa2trjc/VZNu2bdi8ebNg2fDhwzFixIgKvy5VCQkJet1fVUR1UH6qdZeSkgJbW1tkZGQgOTm5xnSFofNHN1RPVAcVQXVHdVBRxqy/+vXrl7qN3gPX/Px8zJ07F126dEFISAgAwMbGBjk5Ofw2UqmUH0UtkUgglUoF+5BKpZBIJLCxsUFhYSHy8vL44FX1uZpMnjwZY8eOFSzTd4trQkICfHx8dPplUB1RHZSfprqzs7ODl5cXEhMTUadOHfj6+pq4lIZF549uqJ6oDiqC6o7qoKIqa/3pNfh/QdsAALtgSURBVHBVKBT49NNP4erqig8//JBfXr9+fURHR6NLly4AgEePHsHPzw8A4Ofnh3379vHbymQyPHv2DH5+fnBwcICzszOio6PRokULtedqIhaL9RaklsTMzKxSvZGmQHVQfqp1p1AoYG1tDTMzM4hEohpTp3T+6IbqieqgIqjuqA4qqrLVn15Lsnz5cuTn52Px4sWCZOoDBgzA3r17kZiYiNTUVOzYsQP9+/cHALRr1w4ymQyHDh2CXC7Hli1b0KxZM3h4ePDP/fnnnyGVSvHvv//i/Pnz6N27tz6LTYhJyeVyWFpa0uAsQgghpBR6a3FNTk7GoUOHYGVlhcDAQH75d999hy5duuDx48eYMGEClEolhgwZgsGDBwMoaiFdtWoVvvjiC6xcuRLNmjXD0qVL+ee/9957WLZsGfr16wcHBwd8/PHHqFevnr6KTYjJFRQU8IErIYQQQrTTW+Dq4eGBGzduaF0/efJkTJ48WeO65s2bY9euXRrXWVtbY9myZXopIyGVUUFBAd+9hVpcCSGEEO0qT6cFQmoohUIBc3Nz6ipACCGElIICV0JMjDEGkUhEgSshhBBSCgpcCTExClwJIYQQ3VDgSoiJqQauhBBCCNGOAldCKgEuaKUWV0IIIUQ7ClwJMTEuWKWuAoQQQkjJKHAlxMSojyshhBCiGwpcCTExClwJIYQQ3VDgSoiJ0eAsQgghRDcUuBJiYlzgyv1NCCGEEM0ocCWkEqCuAoQQQkjpKHAlxMQoqwAhhBCiGwpcCTEx6uNKCDGU77//3tRFIESvKHAlxMSojyshxFBmzZqFwsJCUxeDEL2hwJUQE6N0WIQQQ+AC1vz8fBOXhBD9ocCVkEqAAldCiL5xAWteXp6JS0KI/lDgSoiJ0eAsQoghcAErBa6kOtFr4Lpx40YMHz4cHTp0wPHjx/nlhw4dwuuvv46uXbvy/54/f86vj4yMxOjRoxEQEIApU6YgOTmZX5eXl4cFCxagW7duGDhwII4dO6bPIhNicjQ4ixBiCNTiSqojvQauPj4+mDt3Lpo3b662rmPHjggPD+f/ubu7AwDkcjnmz5+PUaNG4fTp02jRogUWLlzIP2/jxo149eoVwsLCsGLFCqxcuRJxcXH6LDYhJkWDswghhkCBK6mO9Bq4DhgwAJ06dYJYLNb5OTdv3oREIkFISAisrKwQGhqKqKgovtU1LCwMU6ZMgZ2dHVq3bo1u3brhxIkT+iw2ISZFg7MIIYZAgSupjiyMdaA7d+4gKCgITk5OGDlyJIYNGwYAiImJQcOGDfntJBIJvL29ERMTA1tbW6SlpQnW+/v7IzIyUutx5HI55HK5YJmFhUWZgumSKJVKwf81EdVB+WmqO6VSCcYYGGMoLCys9vVK549uqJ6oDipCqVQiLy8P1tbWkMlkNbIO6fypGFPUn5lZ6e2pRglc27Zti127dsHd3R1RUVH46KOP4OzsjMDAQMhkMtja2gq2t7W1hUwmQ25uLszNzWFtbS1Yl5ubq/VY27Ztw+bNmwXLhg8fjhEjRuj1NSUkJOh1f1UR1UH5qdZdTk4Onj17hvT0dDDGakxXGDp/dEP1RHVQXvn5+bCzs0NCQgI8PT1NXRyTofOnYoxZf/Xr1y91G6MErl5eXvzfLVq0wKhRo3DmzBkEBgZCIpFAKpUKtpdKpZBIJLCxsUFhYSH/q5FbZ2Njo/VYkydPxtixYwXL9N3impCQAB8fH51+GVRHVAflp6nubG1t4ePjAxcXFzg5OcHX19fEpTQsOn90Q/VEdVARSqUS4eHhcHJyQu3atav994omdP5UTGWtP6N1FVClOnraz88P+/bt4x/LZDI8e/YMfn5+cHBwgLOzM6Kjo9GiRQsAwKNHj+Dn56d132KxWG9BaknMzMwq1RtpClQH5Ve87szNzWFmZgaRSFRj6pTOH91QPVEdlFdaWhq8vLxQUFBg0vqbPXs21q5da7Lj0/lTMZWt/vRaEoVCgfz8fDDG+L+VSiUuXbqEjIwMAMCDBw/w559/omvXrgCAdu3aQSaT4dChQ5DL5diyZQuaNWsGDw8PAEUDvn7++WdIpVL8+++/OH/+PHr37q3PYhNiUjQ4ixBiCNnZ2ahTp47auA9j+/bbb016fFK96DVwXbZsGQICAnD79m0sWrQIAQEBuHXrFq5evYoRI0aga9eu+PTTTzFhwgQ++BSLxVi1ahV27NiBwMBA3LlzB0uXLuX3+d5778HOzg79+vXDxx9/jI8//hj16tXTZ7EJMSkKXAkhhpCfn4/MzEx+MLQpxcfHm7oIpJrQa1eBxYsXY/HixWrL27dvj9mzZ2t9XvPmzbFr1y6N66ytrbFs2TJ9FZGQSokCV0KIvuXn51eaiU1evHiBunXrmroYpBqoPJ0WCKmhVKd8JYQQfcnPz8fUqVMhkUhMXRSTd1cg1QcFroSYGM2cRQgxhLy8PDRq1Ai9evUydVGgUChMXQRSTVDgSoiJUR9XQoghZGZmwsHBwaR3c7jvNApcib5Q4EqIiVHgSggxhKysLLi5uZm0DIWFhQCAgoICk5aDVB8UuBJiYhS4EkIMobCwEGZmZib9XuECVmpxJfpCgSshlQAXuBJCiD6Z+nuFC1ypxZXoCwWuhJiYamsItbgSQvTNlMFrQUEBzM3NqcWV6A0FroSYGHUVIIRUV3K5HDY2NtTiagQ15fpBgSshJkaBKyGkuiooKICNjQ21uBqBmVnNCOlqxqskpBKjwJUQYkimHpwlkUgocDUAxhiftYFT/HF1RIErIZUADc4ihFRHXOBKXQX0b82aNXjrrbcAAK9evQJQMwbBUeBKiInR4CxCSHXF9XGlFlf9S0xMxIEDBwAAx44dA0CBKyHECKirACGkuuL6uNaEgMrYHBwc+L/FYjEAClwJIUZAgSshxJBMnQ6L+rgaRn5+Pho2bAgAyMvLg42NDeRyuYlLZXgUuBJiYhS4EkIMydSDs6irgGHk5eXB2toaQFEQa29vTy2uhBDDUw1cCSGkOqE8roaTl5cHiUTC/02BKyHEaLiglVpcCSH6Uhm+T2QyGRwcHKjF1QDy8vJgZWXF/21nZ0eBKyHE8LiLC3UVIIRUN1zgWhMCKmPLy8uDra0tCgsLqatAeW3cuBHDhw9Hhw4dcPz4ccG67du3o1evXujZsyfWrVsnuEBHRkZi9OjRCAgIwJQpU5CcnMyvy8vLw4IFC9CtWzcMHDiQT/lASHVBfVwJIYZQGbofjRw5EowxanE1gPz8fL6VlboKlJOPjw/mzp2L5s2bC5ZfuHABe/bswfbt2/HXX3/hwoULOHjwIICi/i/z58/HqFGjcPr0abRo0QILFy7kn7tx40a8evUKYWFhWLFiBVauXIm4uDh9FpsQk6LAlRBSXTHGEBgYSIGrATDGIBaLoVAo+MC1JmQVsNDnzgYMGAAA2Lp1q2B5WFgYhg0bBm9vbwDAuHHjcPToUYSEhODmzZuQSCQICQkBAISGhqJXr15ITk6Gh4cHwsLC8PXXX8POzg6tW7dGt27dcOLECYSGhmosg1wuV3vjLCws+BxnFaVUKgX/10RUB+Wnqe6USiUYY2CMQalUVvt6pfNHN1RPVbcO4uLi0KFDB6SkpJisDNz3iqnrcODAgWjSpAmOHDli9DKY+rUbGmMM5ubmyM/P5/u45ufn6+31mqL+zMxKb0/Va+CqTWxsLB/UAoC/vz82bNgAAIiJieHzkAGARCKBt7c3YmJiYGtri7S0NMF6f39/REZGaj3Wtm3bsHnzZsGy4cOHY8SIEfp6OQCAhIQEve6vKqI6KD/VupPJZIiPj8fLly+RlpZWY+4o0PmjG6qnqlcHjx8/1vhZ9vPzQ0xMjFHLkpCQgNzcXJN9r+Tl5eH58+fIyMgwWRmq2vmjK5lMBmtra8TExODly5ewsrLCs2fP9F7Pxqy/+vXrl7qNUQLX3Nxc2NnZ8Y9tbW2Rm5sLoKjibW1tBdvb2tpCJpMhNzcX5ubmfJ6y4s/VZPLkyRg7dqxgmb5bXBMSEuDj46PTL4PqiOqg/DTVnUQiga+vL9zc3FBYWAhfX18Tl9Kw6PzRDdVT1a2D9PR0AND4WTbW51upVEIkEsHHx4f/jjEFiUSCevXqwdra2uhlqKrnj66kUin8/Pzg7u4OsVgMT09PODk56a2eK2v9GSVwtbGxQU5ODv9YKpXCxsYGQNFJLZVKBdtLpVJIJBLY2NigsLBQkGRX9bmaiMVivQWpJTEzM6tUb6QpUB2Un2rdiUQimJmZwdzcnP+7JqDzRzdUT1WvDrjGFU1lNvbrMDMzM/n3ipWVFQoLC01Whqp2/ujixYsXuHz5Mtq1a8dnFahVqxYUCoXeX2tlqz+jlKR+/fqIjo7mHz969Ah+fn4Aim6dqK6TyWR49uwZ/Pz84ODgAGdnZ63PJaQ6qQwjgAkhFafaUFNcTRj1XZyFhQUNztIzrj4tLS35rAIODg41YnCWXgNXhUKB/Px8PvUF10l4wIAB2Lt3LxITE5GamoodO3agf//+AIB27dpBJpPh0KFDkMvl2LJlC5o1awYPDw8ARQO+fv75Z0ilUvz77784f/48evfurc9iE1JpUFYBQqq++/fva10XGxtrxJKYnkgk4oMroj8ymQxAUeCqUChQUFAAW1vbGhG46rWrwLJly3D48GEAwO3bt7Fo0SL89NNP6NKlCx4/fowJEyZAqVRiyJAhGDx4MICiW/urVq3CF198gZUrV6JZs2ZYunQpv8/33nsPy5YtQ79+/eDg4ICPP/4Y9erV02exCakUKB0WIdXD3Llz1ZZxI7OLd42rzrjXTC2u+pebm4tPP/0UIpEIjx49glwuh5WVVY04v/QauC5evBiLFy/WuG7y5MmYPHmyxnXNmzfHrl27NK6ztrbGsmXL9FVEQiotClwJqT5Us+EolUp+8pySuhEYCvfdYuzuSPn5+bC2toaFhQW1uOqZTCaDjY0NFAoFhgwZAgCYPn06PzCwOjPK4CxCSOmKB66JiYlwcHCAvb29CUtFCCmr4OBgwWc5ISEBAwcOBGC6wFWpVMLc3Nyoxy0oKIClpSX13zeA3NxcSCQS5OXl8cvEYnGN6CpQeYaJEVLDFf9yDwoKorsNhFRRZmZm/K1yrj+ip6cnXrx4YZKymOJuDhe4Ev3jWlxV69fKykoQyFZXFLgSUomoXlwsLS35Cx4hpGqxtrbmg4j8/HwAQMeOHUucQMdQTNUNiQJXw+FaXFXrlzGGefPmmbBUxkGBKyGVRPGLy71790xYGkJIeTHGIJFI+B+eXODaqFEjk0wDy3UVMDaFQgELC+qRaAhci6tq/bq6upqwRMZDgSshlYSmVhFj90kjhOiHaosr1+/QxcXFJLdyqatA9ZObmwsbGxtYWVnxy1q0aIFBgwaZsFTGQYErIZWEauDKjcB1cnIyZZEIIWXEDYLS1OLq5ORkksDVVC2uqoErZUzRL5lMBolEws8qyqkJA+EocCWkklD9womKigJg/OkhCSEVw93CVR3xzQWuDg4OJgngTNXiqtpVoCYEVMbEtbgWD1xrAroqElKJcBeXqVOnAkCNGCFKSHWiGlBwLa7c/7Vq1TJJAFcZWlyJfmlrcWWMVfvWbQpcCakkVLsKXLlyBT169KB0WFVcYmIijh49aupiECPiAlfVrgIvX74EYLqWT9XUXMZEgavhaGtxFYvF1X6yBwpcCakkig/OCg4ONmFpiD4cOHCAn9WG1AxSqZQPKLg7JlzuVhsbG5OUyVSBq2pXgereCmhs2lpcVc+76ooCV0IqCdXA1dPTEx988IGJS0Qqii7WNY+mFteUlBQ8ffoUAQEBJikTtbhWP9paXK2trfk+1dUVBa6EVBKqfd+8vb1haWlJra7VgFwux+XLl01dDGIkqoEr1/KVkpKCOnXqADDeICXVH03m5uYmD1xpcJZ+FW9xbdy4MQBqcSWEGBl3sXF3dzdxSYg+cO/n4MGDTVwSYiyaBmfl5+fzAYaxWuEZY3xWEjMzMxQWFhrluKpoAgLDycvLg7W1NX9ePXjwAEDNmPaVAldCKglTTctIDId7P1NTU01cEmIsubm5sLW1FXQVMIXCwkK+lbMytLiam5tDoVAYvQzVFWMMIpGI+rgSQkyHAtfqQy6XIyMjw9TFICbAtbg+f/4c77//vsnKwU2EABi/xfXhw4cAhIGrlZVVte97aQoUuBJCTIYC1+rjp59+Qrt27ej9rIFOnTqFwsJC2NnZaVx/6NAh3Lp1y+DlUCqVfFeBsra4nj17FtHR0eU6blZWFpo0aQKgqKsABa6GRYOzCCEmQ4MXqg/GGJKTk01dDGICv/zyC6KiojBw4ECMGjVK4zaZmZn832+++aZByqFUKvnvlLJmFXj77bfxww8/lOu4kyZN4v8uKCjg+7iWJXD9/vvvERcXV67j1zTW1tawtbUVPKYWVz2aMmUK3njjDXTt2hVdu3bFzJkz+XXbt29Hr1690LNnT6xbt07QUhEZGYnRo0cjICAAU6ZMoQtCJcMYQ3p6OrUu6QHVYfVgY2ODvLw8vk8fDVCpOUJDQ/Hee+9p7eP6448/CgKL/fv3Y/ny5XovR2FhYbkHZ8XGxkIsFpfruPv27eP/Vu0qUJaWwA8++IAmX9GRpaUlcnJy+McUuBrAokWLEB4ejvDwcHz33XcAgAsXLmDPnj3Yvn07/vrrL1y4cAEHDx4EUNRXbP78+Rg1ahROnz6NFi1aYOHChcYuNinBxYsX4ezszL9npHy4rgKFhYW4d+8eACAmJoaC2SpIIpEAAH7//XcARa1N3HtKqreCggJIJBJ+lqz4+HjB3RQ7Ozs+0OACuYsXL+q9HKp9XMvaVcDBwUHQiqdUKhEeHq7z8318fACodxXQNaDq06cP0tPTdT4e+Q9lFTCSsLAwDBs2DN7e3nBxccG4ceP4aRJv3rwJiUSCkJAQWFlZITQ0FFFRUdTqWolws8HQ1JYVwwWuL1++5FtKIiMjBb+mSdXAtbTevn0bAPDxxx/z036S6i0vLw9WVlYAiu6g+Pr6CmbMsre3R3Z2NoCiKYG7dOmCjh076r0cqn1cy9ri6unpKejOcPXqVXTr1k2n57Zv3x6tW7cGIOwqUJYWVysrq2o/bamh1IQWV6Pfv1q9ejVWr14Nf39/zJ49G40aNUJsbCwGDBjAb+Pv748NGzYAKGpxatiwIb9OIpHA29sbMTEx8PDwUNu/XC6HXC4XLLOwsCj3bY/iuF+tpkgtUlkUr4PCwkLMmjULcXFxNbpedKHp/GGMQalU8v8rFAoEBgby28jlcoPUq+qFzZhqwmcoNzdX8NjBwQH5+flles01oZ5KUxXrQCaTwdLSEkqlkg/Udu3ahR07dgAo+qGfnZ0NpVKJrKwsuLm5IScnR++vUaFQQCQS8Z9zhUKh0zEKCwvh5OSEzMxMfvs33ngDQOnvg729PQIDA/lt5XI539prZWWF3NzcUvehUCj4aXMrWidV8fzRFXe9KE4sFiMrK0svr9kU9afLNcmogevMmTPh5+cHMzMz/Pnnn5g1axb27NmD3NxcwQhMW1tb/otfJpMJbllw67Xlx9u2bRs2b94sWDZ8+HCMGDFCr68lISFBr/urirg6ePbsGSwsLJCVlUUd6nWUkJDAX1BkMhni4uKQmpqK1NRUxMfHIzc3F3FxcRgxYgRiYmLg4uJS4WO+++67mDhxIrp27Yq4uDgEBgYiJiZGD6+mfCrTZyg/P59vJdOH5ORk9O7dGydPnsTOnTsRHR2NxMTEcn0+DF1Pt27dQqNGjWBvb2/Q41REZTpXSpOTk4PExEQAwPPnzwEAixcv5t/7nJwcPHv2DHFxcYiOjoZEIsGLFy/0/t3J3blJSEhAdnY2EhIStGY6UCWVSmFnZ4fnz5+rlWn37t0ltg7n5uYiNzcXZmZmePr0KVJSUuDk5IS4uDg8fvwYCxYsKPU7Z+vWrTh9+jSCgoIEx2/VqhXu3r1bavk10cf507p1a/Tq1Qtff/11hfdVUc2aNUNAQIDGcyYrKwtJSUkVPp+uXLmCtm3bQiwWG/XzV79+/VK3MWrg2qJFC/7viRMn4uDBg4iMjISNjY3gdij3awsoamGVSqWC/UilUr4PWXGTJ0/G2LFjBcv03eKakJAAHx8fk7RWVQbF6yAhIQGurq6QSCTw9fU1dfEqNa7uYmNjMXHiRMTFxfH1lpOTA2tra3h4eKBWrVrw9fWFo6Mj6tSpA29v7wof+/Tp05g+fTrq1q2LyMhIADDJ+1XZPkNJSUnw8/PTa55LGxsbzJ8/HydPnsSIESOwZMkSPHjwAJMnTwYA/n13c3PTuo+K1tODBw/g7e1darDi5+eHPXv2GGx0e0VUtnNFF6rfgwUFBXj77bfx+eef8/1cc3JycPXqVfj6+uLRo0fw8/NDfHy83j+LFhYWMDc3h4+PDxwdHeHu7g5fX99S77S8fPkSnp6eSE1N5cvUt29fKBQKjBo1qtTPiVgsho2NDTw9PWFvbw8vLy/4+vryr7+018n9gCx+PcnJySlzHenz/MnOzsapU6dMfo17/vw58vLytF5v69ati5cvX1a4nH5+frh9+zbEYnGl+/yZdKgrVxH169dHdHQ0unTpAgD8hxkoqjzVUYoymQzPnj3j1xcnFov1FqSWxMzMrFK9kabA1YFSqYSlpSUsLS3VWs+JZi9evMCzZ89gZmYGkUgEMzMz2NjY8LcWLSwsYGZmBisrK350cGBgIM6cOVOu43EtPw4ODnj+/DmCg4MB6HZbxlAqy2eI64+qz7Lk5+fD0dERrq6u/Hv7999/Y/Xq1QCAoUOHonPnzjqlHCpvPTVv3hyTJk3Ctm3bSt2WG0xUWVWWc0UX3OcZKAq2PD09+UFSQNFnMCcnB2ZmZsjNzUWdOnXw8OFDvb++mTNn8vXG9TOVy+WQSCS4desWXnvtNY3Py8/Ph42NjeB1iMViPqAsrZxXrlxB//79UVhYCIVCASsrK0E6rtKeX7duXQwcOFBwfG6AannrSF/nT5MmTUx+Hl65cgWA8DxTJZFIkJ+fr5dyJiYmolatWpXu82e0kmRnZ+PKlSuQy+UoKCjAjh07kJWVhaZNm2LAgAHYu3cvEhMTkZqaih07dqB///4AgHbt2kEmk+HQoUOQy+XYsmULmjVrprF/KzEN7jarl5cX0tLSTF2cKqF4P2zgv071qmlsLC0tIZfLkZubi7Nnz5Y7w4DqnOk7d+4sf8GroeJdi/SBm5s+JSUFAPDWW2+hd+/e/PoXL17g/v37ej+uKjMzM2zfvl1t+aJFi9QygOTm5ppkLvvqTiqVqnV1s7e35+8w5uTkwMXFxSBTw+7fv58fmc8NzuIG7XB9VjWRyWSCO5rcdw6XHaA05ubmEIvFGDZsmCCrQEnHVMUYE+SCBf77cWmqrk2MMQQHB8PBwcEkx1dVWsOcPgdnHTt2TC/70TejBa4KhQIbNmxAUFAQ+vbti/DwcKxbtw52dnbo0qULhg4digkTJmD48OEICAjA4MGDARS9SatWrcKOHTsQGBiIO3fuYOnSpcYqNtFBXl4erK2tsWHDBuzevdvUxakSNPWT4tKYFBYW8i00YrEYBQUF/AjfrKysch2PC0oOHTqEefPm8cur46CFslqxYgUA9QFVFcF9JjiWlpaCUdLu7u44e/as3o6nSd++fTUu37NnD/755x/BsuHDh+PLL780aHlqikOHDvF/q6ak4qimw8rJyYGDg4PBUt5x5xw3QIq7o6Ma2EyfPh0HDhzgH8fFxeH58+d8mQoKCiAWi/Hq1atSj9e6dWs8fPgQhYWFOHbsmCCrwNSpU/k7PSWRyWSwsbGBhYUFX34usDfVtZ8L5rV1UTSm0r6nVLM35Ofnl7kxiTHGv/fcXfDKxmhdBRwdHfHbb79pXT958mS+/1dxzZs3x65duwxVNFJBXH+bL774Ap6enqYuTpXw5MkTBAQECJZxv5RVL3ZciysXsKanp6NWrVplPh7XxWDjxo2C5ZoGP9Y0/fr1w7Fjx2Bra6u3AKJ44CoWiwWt7H5+fga/CNra2qJXr16CZdeuXYOFhYXG1tUFCxbg888/N2iZagLubiHw3+dXlVgs5gOLr776Cr/++qvBysIdm2tx1ZSO6vjx43j16hVCQkL4x5mZmXyf1PT0dDg6OvLdjZKTk+Hp6an2WVEqlfD19YWLiwsfmKtOQKArLki8cuUKEhIS4Ofnxw8Ia9euXZn2pS/p6elwcnIySMt4WUmlUohEIo137QBhi+tPP/2EtWvX4unTpzrvf/369Thx4gQAVNq0WpWn0wKpsriLdJMmTSj3no4CAwNx48YNPncrUNQ3ibtlq9q3rKCggA9cy9MqqFQqMWXKFI2jNfXZylhVGeL2X2mBq1wux6VLl8p0QdEFN4FFfHw8312Bk5mZiddffx3m5uYaA9fK0JpU1RUWFgoCNdVWQ03i4uLUWmT1iQu0ire4Av+1Xnp5eQnu5Hh5eeGjjz7C48ePoVAokJmZCUdHR5w7dw4AcOnSJY3HksvlfD9YbrIN1a4CusrNzYVEIkHt2rXx6NEjAMDDhw/512EMT548ETzOysoyajeB5ORkfP7553jx4oXautzcXDg7O2v97i7eVaC0/NF5eXmCHyEPHjzAkSNH+HWVEQWupMJkMhmsra1hZ2enlgGCaCYSifgLGvfFwl1cVLsKcC02a9euBYBy/eLPyMjg9wVAMLCR3i/tdfr8+fNyT/6gmoQeEAauXADg5+eH9evXl2v/2vzvf//De++9B19fX/4HENcdhLsIpaSkCALXAQMGQKlUIigoSK9lqYny8/MFPwB+//13TJgwQW071Zm0WrVqZbDycMENdx7k5+fj008/BVDU1xkAateujUOHDvHBIRekiUQiPHnyhG81NTc3R9OmTbXeelZNKXfu3Dn07t0bcrlcMN2xUqksdYDp559/DrlcjmnTpgkGBLVu3Vqn7gr60LBhQ0E3Kn2nyytNREQEli9fjpkzZ6qty83NhZeXl9aZxVRnzuJy55akfv36OHz4MP+Yu14ARd07KiMKXEmFca1Ltra2FAiVAfcr9+rVq4LlKSkpfJokrsWV6ypTnsCV+9W+cOFChISEICYmBnfu3MF7773Hf6kVz9P3+PHjMh9Hn6ZMmSIo09GjR9X6ZeqDUqnExYsXkZiYiNdff12wzsPDo9x9vNLT0zX2cc3Pz0ePHj3AGMPWrVv1Psj07t272LJlC4Ci993Ozg4PHjwA8N+5k5iYiMLCQowcORJTpkxBWFiYIJAi5Vd8YFPPnj01ZsDhPvvBwcEGzZ/LvecXLlzA0qVL1X5QAeADUe4zn5WVBXt7e4SEhPCTCHA/eu/fv48lS5ZoPJZcLucHDnl5ecHFxQUZGRmCFte4uDj07NmTz3NbHDcIq3nz5nxf4GfPngEoGkRprMAVgKB1unjgqlQqBTOL6RuXDlRTurzc3Fw0adIE8fHxGp+r2uJa2l2U1NRUPH/+XDBY886dO+UtttFQ4EoqjAtcraysdJ7SryYrKChAZGSk1v6Uz5494/O2qvaRa9++fYUCV1tbW34QRqtWreDp6QmpVIrs7GzUrVtX8Bx/f/8yH6ciIiIiBI83b94sKNOAAQPU+mvqQ1ZWFtLT0+Hp6Yl69eqp/fAqT5aMnTt34sSJE4KWJu595C52jDG4urrqfRpY1dvSz549w99//43mzZsDKApiuJZ8hUKBK1euCDIq1LTg1RADoooHrtpwda06kMsQuFbDixcv4p9//uEDsHPnziEkJASFhYW4ePEigP+C3OzsbD5l18uXL9X6qSYlJQmmsAWAp0+f4vDhw4Lgrnbt2khNTRU8l/s8cWnhiuM+f87OzkhPT8fOnTv5YLakVkZD0BS4cl27bt++DUdHR4MdmzuHNAXqubm5cHV11XqtVb0Oq37mNXF1dQUAwbiJDh06wN3dXdAKW9lQ4EoqjBucpWkgAlEXFRWF2NhY/Pjjj2rrrl69itDQUPj4+AAoCjq5wR7u7u5ITk4u8/FevHiB0aNHo0ePHhg9ejS/nAtki/fdMsUABG05JQHDBBgcmUyGKVOmAChqJeX61OlSLm3GjBmjtozrBsLNUe/s7AxXV1ekpqaWo9TaOTs783+/ePGCb+1TKBSQyWT8DyKZTKbWYsPV84EDByptGhx9uXjxokHyUuoauAKaU+LpU506dTB79mwAwJYtWzB58mQ+AGvWrBmcnJz4QHLZsmX85/7Jkyewt7fHhg0b8MEHHwgCV67rTOvWrQXH2rp1K95++21BqiaJRILs7GzBDzju+4v7fitOtWtOjx494O3tzQdhjo6OBm3lLE61fyfXf5cLCsvbhUhX3Gfxt99+U/vOz8nJKTHvspmZGf79918ARUFu8R8Zmqj+uBCLxbh9+zb69+9fruuNMVDgSiqM6+NaPOUP0eyff/7BsmXLNPYfevnyJQoLC/kAo1GjRvy6p0+fquU31PV4c+fORe3atfH+++/zy21sbASDELh+j2+//TYAwwaMmnC3tAEI0uZERUXxt925QR/6ovrFbmFhgcuXLwP4L29jeevg77//1ricC1xdXFzg6Ogo6E/26tUrvnWpPO7fv4/s7GwMGDCAXzZx4kQARQNqcnJy+FaivLw8PqDo1KkTgP/e7zlz5ghGxldH2ro0FR8M8/LlS3z11Vc677csgWtERATatGkDAFoHzFVEhw4d+KnOGzVqBBcXFz5w5fpBcoFJmzZt+MD1wYMHkEgkGDx4MHr06CEIXLkMJM7OzoJzlWu5V21xtba2RnZ2ttrgrDfffFNr675qQOjs7IzCwkLExsZi/vz5sLa2hkwmM9r3kmrgytUbYwzZ2dkGD1yvXbvG/108U8+rV68we/bsEr8LY2NjkZaWhpycnBID1379+mHgwIFYuXIlv4w7h83MzEqc2c+UKHAlFcZ1FZDJZIIPgDGlpqbiu+++K9NzVPPVGQtjDN9//z3/xcfdxuVwFwDuC2P8+PH8uvKkwQKKOttz0y0HBATwt9tsbW0RGxvLb7djxw4A/42y5361G1JBQQE/Srlp06aCdS1btkRWVhZevXqFBQsWwMfHR+993FSnlx47dizfYsl9eZd2u4ybBlPV4MGD+dRCqg4dOoRdu3bB0dERLi4uammpateuzbf+lkezZs1gZmYmaC2dP38+Zs6cie7du6NHjx6C1nUueOD6WB45cgRz5swxWZJ3bQyRa5j7AaEafIlEIri7u/OPGWOIjIzExx9/rPN+yxK4zp49m+8iI5FIDHqnQyKRIC8vj880wbUcfvbZZ5g5cyasra35Pq7t27eHSCTCjBkz0KBBA7WuAjExMbC3t+cDO66fpKWlJWrXrs1vZ2VlhZycHMFzN2zYgFmzZgl+sHF+++03vPPOO/ygMTs7O2RnZ0MqlaJZs2YQiUQ4fPgwPvvsMwBF3Xy4NFmGoKmrwJ49e+Dm5sZf5wyVB1tbvtrMzEzs2LEDderUQYMGDbQ+f8GCBUhISMCiRYtK7AJkaWkpmJkUKNs5bCoUuJIK4wJX1cEoxjZp0iTMmjWrTM8xMzND165dDVQizfLy8uDr68u3fHJpRzhca5mmfknFZztKSUkR3PrXRjVNjUgk4lvdbGxsBAPDuFuXzZs3R3BwMJ+30ZBiY2MREBCAN998U9DKyhhDQUEBTp06xU8jPHDgQAwbNkyvx+/YsSPfumFjY8MPVsvOzoa9vT3at29f4qQPly5dwp9//ilYVtJc8JGRkfD29oaLiwsA9VZtXaZnLUlOTg42bNiANWvW8AGstjQ+3DkWGhrKL1u7di06d+4MALhx4wauX79eofLoqqS0Ow0bNtT78bKysuDq6srPbKZJdHQ0AgMDy7TfO3fu6HTR56bH5qiee/pQfHILiUSCmJgYfnAWd3csNjYWnTt3hlKpVJsUhcsSUzxwrV+/Pt9QUVBQwPeTLCgoQFRUFL+dtbU1cnJyBF0F3n//fbRp0wbLli3jA1DO48ePcfHiRb5VVzVwVZ1GPDExEYwxZGZm4vr16wZL2dSkSRP+79WrV0OpVPJ3vJycnCAWi/lsL/r09OlTvP766+jTpw+A/35YKpVK/ru7tG4utWvXRmZmJgYMGICAgABkZmYiLi6OX696rllaWqJ9+/b84/Lk3jU2ClxJhXGBa8uWLdVmRnn16lW5WjXLOlCkeABYGq51gRuYYCxZWVlo164dvLy8AAC+vr6CINXR0RHvvfeexuc6OTmhc+fOfCvdkCFDSp2YQ6FQaB0AonoLqUuXLnwAk5OTg8aNG2sd+atP3Bewubk5f57k5eUhMjISK1asQFRUFN8qmpCQoPdgOj8/n7+w2tjY8C1BXOA6ePDgElueuRRCHMZYiYHukSNH0L9/f7UMBhX17bffAigq99SpUzF37lx+5izVHy0NGjTgW6mCgoIgk8kwfPhwwb64UcUdOnTQ2HKsbwqFAhKJRGM3iRs3bhjkmBkZGWjevDmSkpIAQGMAy63ThVKpRGRkJN577z2dWk6tra0RERGB8PBwAEXnnj5bXAMDAwXnoYODA44cOaI2yKhDhw7o06cPPx1xYWEh/31hb2+PTz/9VGMgY29vj8uXLyMsLEywXPWHtLauAtydoxUrVuCNN95ASkoKRCIR/9nmyq3an1R1khQLCwuYmZnxwbm+BzhqOg+vXr3K37UCivoPv/766/joo4+07kckEpU5yw5jDH379sWRI0cwY8YMREVF8e9NWc6P2rVr48iRI4iNjYWTkxNWrFghKH/xSWe8vb2hUChw+/ZtHDp0qNIP1KTAlVSYplsL69evR6dOnQRJpHXFfXHcvXtX5+cEBwdj0KBBOm+v70Exuvr888/VBr6oflFKJBL89NNPgvXff/8935+pcePGfKsG1x9TtW9ocSX1g1K97c71TWaM4eXLl2jVqlWZLtzlxbWWqN46DAsLQ2xsLFq1aoXz58/z/VDXrl2rUwvYw4cPdc5u0bt3b+zduxdAUaAyd+5cAEXBu729Pby9vUtsleMumtx7kpubizp16mjclpshadCgQRpzd3br1g0AypWZY/v27QD+uwWuihswwxjDwIEDceXKFWRnZ6NWrVqCuyQ3b97kXwPHGIMzuAFC3Gw9qrgAX99delJTU9GkSRP+2C1btuTXcQEC9/nSRVxcHB8Y6NICyAUO3HnATT6iD1wwrDq5hUQiQUBAgFpap5ycHL41s0WLFkhOTsbIkSMBgJ+wRDXNFcfGxgYhISGYMGGCoHuL6q17Li1TSUHQ5cuX+c8L103K19cXwH+NF6plBIoCVwsLC5w6dQqA5kCzIjIzMzFq1Ci0a9eOHwzm5uaGDh064J133oGnpydiY2P5lmZNwSn3OeR+/Ofm5vL5c0ty/Phx/nrJpb3ivpvL8r1gaWmJNWvW4P79+3BycsLq1athaWmp9Y6Vg4MDsrKycPToUZ2PYUoUuJIKK/5leOLECaxcuZK/DV28BSo9PV3rL9Hs7Gx+wIJqB/WScBe1svxKVB1R/emnn/IXsOzsbH5AQ1mOreu6Vq1aacwmUJLp06fzfWH9/f35L0Wu0762gUBA0e1OLqgpbuDAgfyPAy5H6pEjR/D48WN06tRJ731cZTKZ2sWZe2xpaYnDhw9jzZo1fIuyn58fxGIxcnNzYWtrCz8/P51yXjZp0kStv2xxXP9mKysrvuV56NChfEaAV69eoVatWqX2PeR+AJ08eRJAUUu+tgCEa9nU9BqkUinc3d2xdOlSrbfn5XK5xoC3Z8+efCuppsGRqsskEglEIhEeP36sNmijbdu2/N/GzCzBJaQfOHCgYHlaWhqCg4MxePBgvfZt7tu3L7788kv4+vry30MpKSm4fPky+vfvzwcrn3zyCR9UlRYccd0rdNkW+O8c4Lpx6LOrAPcDqHjWCCcnJ8F3NTdtKBeU3rt3D7///jvfd9LW1hbBwcFqgSPwX/eNrKws+Pr6YsKECZDL5XwXGKAocNX2/ah6Z87JyUmwbujQoYLHUqlU0EKYn5+Phg0b8lPIP3nyBKdPny6pSgCo3x0Bij4bxVNsubq6wtnZGa1bt+ZvzXM/oLg7U5GRkXzgqqm/LpdLmfvxf+fOHXz55ZelllH1GjZy5Ej+8Zw5c7B7924AwKZNm0rdD1enu3bt4q8TGRkZ2Lt3L//DKi8vj3/t4eHh2LRpk9HvQJYXBa6kwhhjgg/coUOHBK11xW/jOzs7Y+HChRr39fLlS0RGRgKA2pelNmZmZmW6vVFQUIADBw7g+vXr+OCDD/Dll1/yt+4fPHiA3bt3a03urOrChQtwd3fX2MIyceJEfn5wVcWnAi2r58+f46+//gJQ1Lpx8eLFEkcjczkZNXFwcEDLli3xv//9j78wBAcH48iRI6hXr55a382Keuedd9RuUXE/GLjXcO3aNTDG8Ntvv0EkEuHRo0d49913oVAo+JRSgProb1WjRo1CZmZmiT8qpkyZggULFgjOGdWZ39LS0uDs7AwrK6sSU/C8ePEC9evXF7QaajsPuYBBNXDltn3x4gU8PDxQv359PuG6KsYY6tWrp/HHhOpMRJpes+oAPO7YiYmJuH37ttq2MpkMN2/eFPwQDQgIKFc2C1198MEH/N+//PIL/7eLiwuSk5NhYWHBzzamD+fPnwcA1K1bl3+/e/bsiU6dOqFly5b8j5Hg4GAkJiZi0qRJpaZhsrS05OtMl8DV3NxckDEkKiqKD8S0+frrr3Vuea5Xr57asjt37vADsTjcdy1QdAs/NzdXMEAN+K/bjCrVHzn16tXDL7/8otYloKTvOS6fNABB4Lh582a1QFY1cJbL5UhLS+O/r4GiOxnFZ33TVE9NmjRRS0G2bNkyjVNhq95lUZ2CGygK2pOTk/m7jJrOza1btwL4704M9xlUfd2aFG/Z5l7L/v37cfDgQXh6egr6pGvD/Xjp0qULH7hymWq4cjs4OPCBamxsLD755BO1rh+VFQWupNzy8/M19vH5/vvv+b+52bSKt4BpujgD/92+Hjt2rE7pYVRvnxw8eFDjxbi4PXv2YOfOnfD19cW6desE++FaPUoaTX769GnMmTMHmZmZSElJgUQiEYwuzc7O5m8LF7/NnJ2drXNArsnx48f5MnPzoqv+CCh+m1qX43EjZN955x1+maWlJdq0aaO1FUjThUFTy4MqLtjkWvq2bt3KD0bjLva7d+/GyJEj+dHJXF9k1a4oiYmJcHd319q6uGvXLmRkZJSYsubnn3/G8uXLBUGmamDMBa61atXCwYMH8e+//+LHH38EYww3b97kp8/MysrCgQMH8MUXXwAo+hGlrd9b8VH83DKlUomoqCg4OzvDy8tLYxeNpKQk/ra9pu4AANCgQQO8+eabasubN2/OBzKqwRLXLUKVtbU12rZtC5FIhCFDhgAoGoCm6XNVkdv3aWlp/MV96tSp2L9/PwConW83btxAv379MHTo0FK791y6dEmniTO4W9u1atWCVCoFY4w/J9u1aydIiWZubg43Nze1H0oPHjzAo0eP+PPl2bNnfH9g1XRk2kgkEkHAdvjwYf5zrYlCocBHH33Ed00ZPXq0oCtAccWDP66MwH/nz6FDhwQZJGbPno0vvvhCrZ41/fhVTZNU/Mcop6QpUkUiEbZv386n3uMGJWq6o6A6OMvS0hIikQhWVlZwcXHB0KFD1QL+Ll26wMzMTG1GQuC/QN3JyQnx8fHYtGmT4I4gd80xMzPjv3O4KXA59erVw7vvvguxWIzJkyfz5+wnn3zCf8YbNGiAa9eu8f12uf+5bhgcxhhiYmL4gFoqleKbb74R/FA6fPgwYmNjcfr0aZ2vHdx23B0WQP2aW1BQwH/P9ujRQ6f9VhYUuJJys7Gxwddffy0YrQiAHxTSsWNHSKVSrFmzBg8ePEB6ejr/Rc+1Ghb38ccfY8iQIRg5cqTGoEkkEgmmAuW+yF1cXPDNN9/oNC0o96Xr4uKi1jqWmpqKzz//HPfv3wdQdKvl119/Rd26dXHx4kWIRCIEBQVh7dq1giAhMzMTn376KQ4cOCBICZaWloaIiAgcO3YMjDGcPn1acDutrH788UdMnToVkZGROHToED8aNCMjAytXrtQYKJd3Ssk33nhDY7Agk8lgZmYmyEOblpYGJycnvrV03rx5as/r2bMngKIfCadOneJbDoYMGYIPP/wQx44d42fL4gJwLlOEajDAvTeaWsW524EzZszQOusV1wrSvHlzQfoeVampqXB2dka7du1w/PhxtGrVCu+//z4eP36M9u3bo2fPnhg6dChEIhFatGjB3/pMTU3lbyFqo/p+2NraIjc3F//73//w4sULeHl58f3i3n33XaxevRqpqam4cOEC/xzVgEU1eHz48CE/SEvV7NmzERsbC8aYoDWttJHJ+/bt4z+vqv3NGWOIj4+HmZkZpFIpFi5cWGoQm5OTw9+q3LBhA/7991+88847EIlEyM/Ph7+/Pw4dOsT/eOBe461bt/hpd2/evAm5XI7ly5er7T8lJQWpqak6TVXMBYx2dna4cOECfvvtN76lqUWLFoiOjsbmzZv5IMfT05MPPPbs2YMZM2agadOmaNy4sWBg5bfffotFixbp1A974MCBgmCheGqj4lMwR0dHA/ivW9CuXbsE/RFVWxItLCywevVqtR/f3HupLa8n19qt2pqZkJCAhQsXqn2HeHl58XWmmjVAVWnZFSZOnMh/vhs1aiTIa8s5fPgwsrOzBcHxoUOHEBYWht27d6ttf+3aNdy6dQtAUX7iX3/9FUuXLuUbJl6+fAmFQoGMjAw8efIEY8eOBfDfD+dXr16hf//++Omnn/gGmNTUVEEqwi5duvAtw/7+/vwPIdUuW3K5HHXq1EFaWhpEIhHfj161oSU3NxdmZmZo0KABPvzwQwBFAXyLFi00pj7My8vTebwId12TSCQlNgBxwb3qXZsqgZEyKSwsZDExMaywsNDURTGZwsJCdu/ePSaRSNjgwYOZ6mnUp08fZmFhwQCwK1eusG3btjEAgn9OTk5MJBKxffv2saysLFZYWMh8fHwYY4y9/fbb7Pjx4+zUqVPs22+/VTs2ADZmzBiWk5PDGGPs3r177H//+x9jjLHk5GQGgMlkMn77b7/9loWHh7OcnBymUCgYY4zt27eP/fzzz/w2OTk5rF+/fowxxlavXs0OHjzI+vfvzxhjzNfXV638ANhnn33G/+3h4cHMzc355atWrWKnT59mq1evZufOnWPTp08XPLci58/Dhw9Z+/bt2bfffsvXOwB27949fv+5ubn89t26dWP37t3Tad/ff/89GzZsGLtx4wZjjLGFCxcyT09P1qNHD5adnc2aNWvGjh8/zrp168Yf68qVK6xjx47s/PnzDAALDw9nS5YsYQDYq1evWHx8PMvNzWVr1qxhc+fO5Z/XoEEDBoDFxsby7yVjjPXs2ZMNHz6cfyyTyVhKSgr/eNCgQWzdunUsODiYf/0KhYJduHCBBQYGMgAsNDSULV68mH8djDGmVCr5egHAVq9ezWrVqsVmz54tqIOBAwcypVLJ5s6dyx4+fMgKCgoE792yZcv4v+fMmcOCg4MZY4wFBQUxxhgLDQ1lycnJWusYAFMqlfxjbvtZs2ax6Oholp2dzUaOHMm/d/b29vzxfvjhB7Z161ZWv359JpfLWWRkJLOwsGCBgYHs1q1bOr3HnJkzZ7LIyEidtgXAnJ2d+ceq51r9+vUZAHb//n3Bc7744gu2c+dOxljR51L1vQfA3nnnHf7vQYMGsZcvX7Lz58+zunXrCrbjvm8BsD/++INfnpmZyR9r7dq1DADbsGEDA8Di4uLYuHHjtL6e4OBgdvToUZaamsoAMDc3N2ZlZcUYY0wqlQqOzxhjK1euZKtWrWKMMTZ+/Hi174J///2XtW3bVqe61Obp06ds3LhxrLCwkEVERDAA7NNPP2VPnz5ljDF2+fJl5urqygCwlJQU1qxZMzZ16lT++QCYp6cnu3TpEuvYsSNjTP1a1bVrV75OGWPM399f8L5NmjSJAeC/J7n9AmAJCQkayw2AHT58WOO648ePC64N2jRp0oR/ncUNHDiQdevWTa1MzZs3F2wXHBzMlEolA8CGDRvGxo0bJ3iPfv/9dwaAjRs3jiUnJzMfHx/25ZdfsilTpjAA7MaNG2zu3Lnso48+EuwbANu8eTMLDQ3VWL4HDx7wrzE0NJQBYLt372YAWE5ODrOzs1M7Xzjc+8z9UygULCAgQPBauTJw/95///1S65MzYsQIplQq+fL8+OOPWsvCGGORkZHMzMxM8F5X1niHAtcyqqxvpDGp1sHGjRsFHwBra2sWEBDAALA7d+4whUKhdqHS9o8xxmbMmMFiY2PZpUuX2IoVK9i7777Lvv32W7Z48WL21VdfsQ4dOvDbr127ll28eJGtWLGCP/706dNZbGwsY4yxkSNH8ttywfT9+/fZtm3b2J9//il4TaoXxsOHD7MOHTqwb775hvXo0YMBYKdOnWIikYh98sknjDHGrl+/zjZs2MAUCgVbtWqV4HXMnj2bPXz4kG3ZsoX9+OOPbMaMGXoLXLkvSgAsIiKCMVZ0YVUNjt3c3NgHH3zAvvvuOwaAxcfHl+tY7777Lr+/4u9V8QsDABYSEiJ47ODgoLY8LS1NsI/iGjZsyObOnau1TAMHDmQA2PXr1xkAdvToUZaUlKR2Afj+++9ZWFgY+/HHH9k333zDLl++LLioPH78mHXs2FGtDACYlZUVmzhxIktLS+OXAWCff/45/wOFC5AHDx7MGGPszTffZE+fPmVNmjRh+fn5WsuvGrQyxtjHH3/M7+/Zs2eMMcZq167NduzYwQYMGMB69uypdpHhHs+aNYsBEPwIMxRbW1t29+5dlpOTw3755Re19/6HH35gGzZsYL///ju7cOECv3z06NFaP+9Hjx4VvLbbt28zAGzs2LEMALO1teW/a44fP86+/vprfvu+ffsyGxsbxljRBVq1HrkfNVu3bmXnzp1jn376KVMoFOzZs2esWbNm/I8N1bo8ceIEv8zMzExQrqNHj7KmTZuyX3/9Ve0c1xYElJVcLmevvfaa2j67d+/OoqOjGQBBuQCwIUOGsPT0dPb9998zAIIfOYypX6sKCgpKPDe5oF2VtbU1A8Dy8vI0Pod7H7XR9UezNosXL1YrEwB27NgxtWXcv/nz57O8vDzBtQIAq1evHgPATp8+zaZNm8ZGjRrFhg0bxrp27cqGDRvGALBGjRqxly9f8vtdsGABA4p+FGnTo0cPdu7cOcF3XY8ePfhA+u+//+avPQMGDGByuZytXbuWrVmzhgFgw4cPZwMHDmSnT59W+yHNGGMDBgxgISEhJb53JZHL5SwxMZEplUqWlpbG/vrrL+bh4aHxnC0oKBA8rqzxDgWuZVRZ30hjUq2D2NhYtYuqSCRicXFxfB39+++//Dqg6Bd/u3btNH759+zZk6Wlpan9GuX+denSRfC4YcOG7Pvvv+ePP2rUKLXneHt780EU9694axO3vFWrVkypVLJp06YxAOztt99mGRkZJdbHli1bGAD+gu3g4MCysrLY/v37GQDWr18/BoDNmDGDLV26tMLnDxdIZmdnM8YY27hxI+vQoQNzcnISXLwqekG9cuWKYD/Ozs7831lZWUwul7PPP/+cAWArVqxgKSkp/Pr3339f68X94sWLfBBZXLNmzdiMGTO0lqlFixZszJgxjDGmcf/cMbi6587Hli1b8o89PT35chw/flywf4lEIgiaGGPso48+YgDY+vXrGQD2/fff8xcqrqVVU4Cpi6+++op/HteKyD12dHRUC6IYY+y9997jl+3du1ctGDaE4nVsZmbG+vfvz7p168YcHR3Z0KFD1X7gdOzYURAYAmALFixgf/zxBxsyZAi/Xy4IycvLY7dv32ZKpZJ99dVXTCaT8d819+/f1/he16lTh3Xu3JnFxcUxPz8/dufOHda8eXOt5wYAQeBqa2ur9p7duXOHiUQifnl8fLza+SWVStmMGTPYDz/8UOHPmbY6Lv5v69at7PTp0wwA27dvn+A77erVq/zfgwYNYoyV71rVvXt3wWOpVMpevXqldfs333yTPXjwoFyvVxebNm1Sq1sA7OLFi2rLALDJkycLWiyvXLnCX2u4QJI757i/uaBV0/u4dOlSBoA9f/5caxm55/n7+/P74n5M1q5dmykUCj4g1PS9OH36dNa1a1fm5eXF9u7dq7b/W7dulfmOSml27drFrl69Wup2lTXeqRKBa3p6Ops5cyZ744032JtvvqlThRtKZX0jjUm1DjIzMwUfdqCoRVGToKAgFhUVxT/mbguGhYUJAouCggL+tj/37+bNmyw8PJw9efKE3b9/n1laWvLrfv31V36fXOsDF2BwwV2bNm34C+6FCxc0vqbBgwez6dOnM8aKWsZEIhELDw8vtT64FijGir5kHBwcGGNM0PL0119/qdVdeU2aNElwa/Kvv/7iL2ZcC/e2bduYm5sbu3z5crmPw5WX88033zAfHx9BVwzGmOBL9fnz5/wx8/LyWF5eHktJSWGZmZksKSmJMcZYfn4+c3FxYXK5XO148+bNY2vWrNGpbB9//DF/e3P79u3s6dOnLC4ujjHG+Fv8NjY2/Hvw77//stDQ0FIDvUOHDmkMRO7fv8969OjBPx45ciRbvXo1Y+y/luCyBjCnTp1i5ubm7NSpU/wyLugeNGgQ3+KvWudKpZK/7Ve8hcRQFAoFO3v2LAOKusOEhYWxs2fPshYtWvA/DpycnFhERAQffIrFYkEZx48fL+jGwhhTe1yc6ucFANu0aRO7du2aWstncefOnWNz5sxRCxJq167N6tSpw2+3YMECtnjxYrXnZ2dn811N8vPztR7riy++YBYWFuzmzZu6VWQJuM/t3r17WUpKCjt16hQDiu6sqL7PZ8+eZTKZjC/Ppk2bGGOM7dmzh0VHR/PbVYdr1dOnT9l3330nWHbixAm17yA7Ozt2/vx5jS2GV65cYb///jtjjLFLly7x3SOA/269L1y4kB06dIi/W8fZt28fe/fdd0ssI/c+zJkzh78e7t+/X+O2K1eu5Ld/7bXXWEREBMvOzua7VRTvJmBqlfUcqhKB6//+9z/2xRdfMJlMxs6cOcMCAwNL/BVoSJX1jTSm4nVQkdtB3AdVqVSyly9f8n1NNW2jyc6dOzW2iJZ2QdSn2NhYvj8fY8LyKpVK9tlnn/GP9XH+ZGRksCdPnvCP5XI5e++99/i+oOW9pWQsxvoMJSQkMKVSyRITE9mLFy90fl5eXh7/Q0NXT5484btu6MPZs2dZTEwMu3v3ruCOgqqffvpJb8crr6ysLJaUlMSeP3/ODh06pPf9q54rqn2hVZX0Q6T4uhs3brB58+aVuRyff/65xu+hjIwMrf0/9aGkgFipVJb42ulaVXIdpKamavzxXFbF34f09HSt78vdu3fZgQMHKv13NKeynkMixvQ8JYme5ebmIigoCIcOHeJHY4eGhiIkJKRMMyXpi1KpRFxcHHx9fUsdlVtdUR2UH9Ud1YGuqJ6oDiqC6o7qoKIqa/1pzmNRicTHx8POzk6QQqhRo0aC/HOq5HK5WpJhCwsLjYl9y4NLKaKat7OmoTooP6o7qgNdUT1RHVQE1R3VQUWZov50CZArfeAqk8nUEhzb2tpqTS6+bds2fs5jzvDhw8s0jacuiufZq4moDsqP6o7qQFdUT1QHFUF1R3VQUcasP00zmRVX6QNXiUSiNq+9VCrVmtx48uTJfFJhjr5bXBMSEuDj41Opms6Nieqg/KjuqA50RfVEdVARVHdUBxVVWeuv0geudevWRU5ODlJTU/nuAo8fP+an1ytOLBbrLUgtiZmZWaV6I02B6qD8qO6oDnRF9UR1UBFUd1QHFVXZ6q/SD84CgP/9739wcHDA3LlzcfXqVSxZsgT79+9Xmz+ZEEIIIYRUX1UicM3IyMCiRYtw8+ZN1KlTB//73//w+uuvm7pYhBBCCCHEiKpE4EoIIYQQQkjl6bRACCGEEEJICShwJYQQQgghVQIFroQQQgghpEqgwJUQQgghhFQJFLgSQgghhJAqgQJXQgghhBBSJVDgSgghhBBCqgQKXAkhhBBCSJVAgSshhBBCCKkSakTgumfPHohEIvz5559q61q3bg2RSITjx4+rrWvQoAHatm0LADh79ixEIhHOnj2rt3I9ffoUIpEI27dv19s+DWXcuHEQiUQYNGiQ2rqsrCx89tln8Pf3h42NDby8vDB8+HBERkaaoKSEEEIIqa5qRODao0cPiEQinDlzRrA8PT0d//77L2xtbdXWPXv2DDExMQgMDAQAtG3bFpcvX+YD2ZrkyJEj2L9/PxwcHDSuDw4OxrfffovQ0FAcOXIEK1euREREBDp37oy4uDgjl5YQQggh1VWNCFxdXFzQokULtdbSc+fOwcLCAu+8845a4Mo95gJXBwcHdOrUSWvwVl29evUK7733Hr744gs4OjqqrY+Ojsb58+cxZ84czJs3D4GBgRg/fjx+/fVXZGdn4++//zZBqQkhhBBSHdWIwBUoCkAfPnyI5ORkftnZs2fRoUMHDBgwADdv3kR2drZgnbm5Obp27co/Lt5VYNKkSbCzs0N0dDQGDBgAOzs7+Pj4YO7cucjPzxccPykpCSNGjIC9vT1q1aqFkSNH4vnz5xrLevDgQXTu3Bk2Njawt7dH7969cfnyZX59ZGQkRCIRdu/ezS+7efMmRCIRmjdvLtjX4MGD0a5du7JX2P+bO3cuPDw8MHPmTI3rLS0tAQC1atUSLK9duzYAwNrautzHJoQQQghRVaMCVwCCwPPMmTPo3r07AgICIBKJEB4eLljXtm1btYCsuIKCAgwePBhBQUE4cOAA3n77baxduxZfffUVv41MJkOvXr1w4sQJfPnll9i9ezfc3d0xcuRItf398ccfCAkJgYODA3bu3IktW7YgIyMDPXr0wIULFwAAzZs3h4eHB06dOsU/79SpU5BIJIiKikJSUhIAQKFQ4Ny5c+jVqxf/2kUiERYvXqxTnZ06dQq//vorfv75Z5ibm2vcxtfXFyEhIVi7di3OnDmDnJwcPHjwADNnzkTdunUxatQonY5FCCGEEFKaGhO4du/eHWZmZnzgmpaWhnv37qF79+6ws7ND27Zt+e4BCQkJiI2N5YPdksjlcixZsgRz585FUFAQlixZgv79++OPP/7gt/nll19w//59/Prrr5gxYwb69OmDdevWoW/fvoJ9KZVKzJs3Dy1btsTRo0cREhKCESNG4OzZs6hduzb+97//8dsGBQWpBa7jxo2Do6Mjv/zatWvIysriA1eRSARzc3OYmZX+tufk5CA0NBQfffQRWrduXeK2u3fvxsCBA9GzZ0/Y29ujadOmSElJwblz5zR2LyCEEEIIKY8aE7g6OjqidevWfOB67tw5mJubIyAgAEBRYMsFrsX7t5ZEJBIhODhYsKxVq1aCQUlnzpyBvb09Bg8eLNhuzJgxgscPHz5EUlISxo8fLwgu7ezs8NZbb+HKlSvIzc0FUBS4xsTEIDY2Fnl5ebhw4QL69euHwMBAnDx5EkBRMGtlZYUuXbrwr1GhUGDhwoWlvq6PP/4YlpaWOm07bdo07N27F2vXrsW5c+fw559/QiwWo2fPnjQ4ixBCCCF6U2MCV6AoEH306BGSkpJw5swZtGvXDnZ2dgCKgrrbt2/j1atXOHPmDCwsLPiAryQ2NjZq/TitrKyQl5fHP05LS0OdOnXUnuvu7i54nJaWBgDw8PBQ29bT0xNKpRIZGRkAwLeinjp1ChcuXEBBQQF69uyJXr164Z9//uHXBQQEQCKRlPo6VF27dg0//PADVq1ahby8PGRmZiIzMxNKpRIKhQKZmZl8H95jx45hy5Yt2LhxIz788EN069YNI0aMwMmTJ5Genq5ztwRCCCGEkNLUuMAVKOrrefbsWXTv3p1fxwWp58+f5wdtcUFtRTk7O+PFixdqy4sPznJ2dgYAwQAyTlJSEszMzPhb797e3vD398epU6dw8uRJtG/fHrVr10ZQUBCSk5Nx9epVXLlyhQ9wyyIqKgqMMbz55ptwdHTk/yUkJOD48eNwdHTEjz/+CACIiIgAAHTo0EGwj9q1a6Nhw4a4d+9emY9PSE03adIkDBkyxNTFqLYWLFiAKVOmmLoYAIBhw4bhm2++MXUxCKkyalTg2q1bN5ibm2PPnj2IjIxEjx49+HW1atVCmzZt8Msvv+Dp06c6dRPQVWBgILKzs3Hw4EHBctV+sADQuHFjeHl54Y8//gBjjF8ulUqxd+9ePtMAp1evXjh9+jROnjyJ3r17AwD8/f1Rt25dLFy4EAUFBeUKXPv164czZ86o/atTpw46deqEM2fOYNiwYQCKWoIB4MqVK4J9pKWl4dGjR/D29i7z8Un199NPP8He3h4KhYJflpOTA0tLSz6TByc8PBwikQiPHj0ydjErrLwB6Lp168o8Mcnt27cxaNAguLm5wdraGvXq1cPIkSORmppa5uNXJtHR0bC3t+czlajasWMHWrduDRsbG3h4eGDy5Mn8nSttXrx4gXXr1uHTTz8VLP/hhx9Qv359WFtbo127doLButps2LABTZs2hUQiQePGjfHrr78K1m/fvh0ikUjtn+oduYULF2L58uXIysoq9XiEEACshunQoQMTiUTM3NycvXr1SrBu9uzZTCQSMQDs5MmTgnVnzpxhANiZM2f4ZRMnTmS2trZqx1i0aBFTrVqpVMr8/f1ZrVq12Pfff8+OHz/OZs2axerWrcsAsG3btvHb7tixgwFgAwYMYAcOHGB//fUX69ChAxOLxSw8PFxwnL179zIADAA7d+4cv3zy5MkMAHN0dGSFhYX88rNnzzJzc3O2ZMmSMtUZx9fXlw0cOFCwLDs7m/n6+jJHR0e2Zs0advr0abZjxw7Wpk0bZm5uLqgvQjgPHjxgANjly5f5ZWFhYczb25tZWVkxqVTKL1+6dCnz9PQ0RTFLJJfLS91m4sSJLCQkxOBlefHiBXNycmITJ05kt27dYjExMeyff/5hs2bNYnFxcQY7ri51UJHnyeVy1r59e9a/f39Wq1Ytwbrw8HBmZmbG1q1bx2JiYlh4eDhr3rw5GzJkSIn7XL58OevTp49g2a5du5ilpSXbvHkzi4qKYrNmzWK2trYl1t0PP/zA7O3t2a5du9iTJ0/Yzp07mZ2dHTt48CC/zbZt25iDgwNLTk4W/Cuubdu27IcfftChRgghNS5wnT9/PgPA2rdvr7Zu//79DAATi8WCCydjFQtcGWPs2bNn7K233mJ2dnbM3t6evfXWW+zSpUtqgStXjtdff51ZW1szW1tbFhQUxC5evKh2nIyMDGZmZsZsbW0FFwIu+B06dKjG17Bo0SJt1VMiTYErY4wlJyezGTNmsIYNGzJra2vm6enJBg4cKAhKCCnO09OTffnll/zj+fPns+nTp7NmzZoJfjj27NmTjR07ljHG2G+//cbatWvH7OzsWJ06ddjo0aPZixcv+G3T09PZmDFjmIuLC7O2tmYNGzZkW7duZYwxlp+fz6ZPn87c3d2ZlZUV8/X1ZStWrOCfm5mZyUJDQ5mrqyuzt7dngYGBLCIigl+/aNEi1rp1a7ZlyxZWv359JhKJmFKpZLt372YtWrRg1tbWzMnJiQUFBbGcnBz+e0D1H/f98ezZMzZixAhWu3Zt5uTkxAYPHsxiY2P5YxUPeLt3784++OADNm/ePObo6Mjq1Kkj+Bzv27ePWVhYsIKCghLr/N69e2zAgAHM3t6e2dnZsS5durDo6GjGGGOFhYVsyZIlzMvLi4nFYta6dWt29OhR/rmxsbEMAPvzzz9Z9+7dmZWVFV+3W7duZU2aNGFWVlascePGbMOGDTo9rzTz589n48aNY9u2bVMLXFevXs38/PwEy7777jvm7e1d4j5btmzJvv/+e8Gyjh07sqlTpwqWNWnShH388cda99O5c2f20UcfCZbNmjWLBQQE8I81lVuTxYsXs65du5a6HSGkBgauhJDKYcyYMYKWrw4dOrDdu3ezadOmsU8//ZQxVhRsSiQS9vPPPzPGGNuyZQsLCwtjT548YZcvX2adOnVi/fv35/cxffp01qZNG3b9+nUWGxvLTp48ybeArV69mvn4+LDz58+zp0+fsvDwcPbHH38wxhhTKpUsICCABQcHs+vXr7NHjx6xuXPnMmdnZ5aWlsYYKwpcbW1tWd++fdmtW7fYnTt3WFJSErOwsGDffPMNi42NZXfv3mUbNmxg2dnZLDs7m40YMYL169ePb2nLz89nUqmUNWrUiL399tvs7t27LCoqio0ZM4Y1btyY5efnM8Y0B64ODg5s8eLF7NGjR+yXX35hIpGInThxgjHG2OXLlxkA9tdffzGlUqmxvp89e8acnJzY0KFD2fXr19nDhw/Z1q1b2YMHDxhjjH3zzTfMwcGB7dy5kz148IDNnz+fWVpaskePHjHG/gtA69Wrx/bu3ctiYmJYYmIi27RpE/Pw8OCX7d27lzk5ObHt27eX+LzS/PPPP6x+/frs1atXGgPAixcvMrFYzI4cOcKUSiV7/vw569atG3vvvfe07jM9PZ2JRCJ25coVfll+fj4zNzdnf//9t2DbmTNnsm7dumndV9u2bdnnn38uWPbxxx8zS0tLviFh27ZtzNzcnNWtW5d5eXmxgQMHslu3bqntKywsjFlZWbG8vDytxyOEFKHAlRBiEps2bWK2trasoKCAZWVlMQsLC/bixQu2a9cu9sYbbzDGGDt37hwDwJ48eaJxH9euXWMAWHZ2NmOMseDgYDZ58mSN237wwQesZ8+eGgO7f/75hzk4OKgFDg0aNGAbN25kjBUFrpaWliwlJYVff/PmTQaAPX36VOMxNXUV2LJlC2vcuLGgHFyAfvz4cY3P6969O+vSpYtgPx06dGD/+9//+Meffvops7CwYE5OTqxfv35s1apV7Pnz5/z6Tz75hNWvX1/rbXpPT0+2fPlytWO8//77jLH/AtBvv/1WsI2Pjw//A4DzxRdfsM6dO5f4vJKkpqYyHx8fvguUtpbL3bt3Mzs7O2ZhYcEAsMGDB5fYDeH27dsMAIuPj+eXJSYmMgBqd7WWL1/O/P39te7rk08+Ye7u7uzGjRtMqVSy69evMzc3NwaAJSUlMcaKflD89ttvLCIigp0/f5699dZbTCKR8D8GOHfu3CnxPCKE/MfCwF1oCSEmMm3aNCQmJhrteF5eXny2CV0EBgZCKpXi+vXryMjIgL+/P9zc3NC9e3eMHz8eUqkUZ8+eRd26deHn5wegaADS4sWLERERgfT0dCiVSgBAfHw8mjVrhmnTpuGtt97CrVu30KdPHwwZMgRvvPEGgKKBUr1790bjxo3Rr18/DBo0CH369AFQNGVyTk4On9mDI5PJ8OTJE/6xr68vXF1d+cetW7dGUFAQWrZsib59+6JPnz4YNmxYiRNv3Lx5kx9wpCovL09wrOJatWoleOzh4YGUlBT+8fLlyzFnzhycPn0aV65cwU8//YQVK1bg/PnzaNmyJSIiItC1a1d+mmZVWVlZSEpK4vNacwICAnDnzh3Bsvbt2/N/v3z5EgkJCXjnnXcQGhrKL1coFGqzDqo+rzShoaEYM2YMunXrpnWbqKgozJw5EwsXLkTfvn2RnJyMefPmYerUqdiyZYvG58hkMgCap6IWiUSCx4wxtWWqFixYgOfPn6NTp05gjKFOnTqYNGkSVq1axc802KlTJ3Tq1Il/TkBAANq2bYv169fju+++45dzKQu5PN2EEO0ocCWkmipLEGkKDRs2hLe3N86cOYOMjAw+PZ27uzvq16+Pixcv4syZM+jZsyeAouwaffr0QZ8+ffD777/D1dUV8fHx6Nu3L+RyOQCgf//+iIuLw5EjR3Dq1CkEBQVh+vTpWLNmDdq2bYvY2FgcPXoUp06dwogRI9CrVy/s2bMHSqUSHh4egimhOaqj2W1tbQXrzM3NcfLkSVy6dAknTpzA+vXr8dlnn+Hq1auoX7++xtetVCrRrl077NixQ22dalBcXPGAUyQS8YE7x9nZGcOHD8fw4cPx5Zdf4rXXXsOaNWvwyy+/6JTPWZfgTbUOuONv3rwZr7/+umC74tNEF6+7kpw+fRoHDx7EmjVr+HIolUpYWFhg06ZNePvtt/Hll18iICAA8+bNA1AU2Nva2qJr165YtmyZxnzYLi4uAICMjAy+rl1cXGBubq6WnjAlJUVj/m2ORCLB1q1bsXHjRrx48QIeHh7YtGkT7O3t+eMUZ2Zmhg4dOuDx48eC5enp6QBKfv8JIUVqVDosQkjlEhgYyOdVVk1P1717dxw/fhxXrlzhU9M9ePAAqampWLlyJbp27YomTZoIWhw5rq6umDRpEn7//Xd8++232LRpE7/OwcEBI0eOxObNm/Hnn39i7969SE9PR9u2bfH8+XNYWFigYcOGgn/aghCOSCRCQEAAlixZgtu3b0MsFmPfvn0AALFYjMLCQsH2bdu2xePHj+Hm5qZ2rOKtlBUhFovRoEEDSKVSAEWBXXh4OAoKCtS2dXBwgKenJy5cuCBYfunSJTRt2lTrMerUqQMvLy/ExMSovRZtgbsuLl++jIiICP7f0qVLYW9vj4iICLz55psAiloni09fzQXLTCWdoKoGDRrAwcEBUVFR/DKxWIx27drxMw5yTp48ybfWl8TS0hLe3t4wNzfHrl27MGjQIK3TajPGEBERoRZU37t3D97e3qWea4QQanElhJhQYGAgpk+fjoKCAsGEIN27d8e0adOQl5fHB65169aFWCzG+vXrMXXqVNy7dw9ffPGFYH8LFy5Eu3bt0Lx5c+Tn5+Pw4cN84LV27Vp4eHigTZs2MDMzw+7du+Hu7o7atWujV69e6Ny5M4YMGYKvvvoKjRs3RlJSEsLCwjBkyBCtt7mvXr2Kf/75B3369IGbmxuuXr2Kly9f8sesV68ejh8/jocPH8LZ2Rm1atXC2LFjsXr1aoSEhGDp0qXw9vZGfHw8/v77b8ybN69cuY8PHz6MXbt2YdSoUfD39wdjDIcOHUJYWBi2bdsGAJgxYwbWr1+PUaNG4ZNPPkGtWrVw5coVdOzYEY0bN8a8efOwaNEiNGjQAG3atMG2bdsQERGhsWVY1eLFizFz5kw4ODigf//+yM/Px40bN5CRkYE5c+aU+bUAUAuWb9y4ATMzM7Ro0YJfFhwcjNDQUPz44498V4EPP/wQHTt25PNLF2dmZoZevXrhwoULgvy6c+bMwfjx49G+fXt07twZmzZtQnx8PKZOncpv88knnyAxMZHP1fro0SNcu3YNr7/+OjIyMvDNN9/g3r17+OWXX/jnLFmyBJ06dUKjRo2QlZWF7777DhEREdiwYYOgXOHh4Xy3FUJIKUzYv5YQUsNxA3eaNGkiWJ6QkMAAsAYNGgiW//HHH6xevXrMysqKde7cmR08eJABYLdv32aMFQ0Katq0KZNIJMzJyYmFhISwmJgYxljRYLA2bdowW1tb5uDgwIKCggQjvLOystgHH3zAPD09maWlJfPx8WFjx47lB/Jw6bBURUVFsb59+zJXV1dmZWXF/P392fr16/n1KSkprHfv3szOzk6QDis5OZlNmDCBubi4MCsrK+bn58dCQ0P53NKaBmfNmjVLcOyQkBA2ceJExhhjT548YaGhoczf359JJBJWu3Zt1qFDB7VUe3fu3GF9+vRhNjY2zN7ennXt2pUf+KaaDsvS0lJrOiyurlVxuZvFYjFzdHRk3bp140fpl/Q8XWkbnPXdd9+xZs2aMYlEwjw8PNjYsWPZs2fPStzXsWPHmJeXlyDHNWOMbdiwgfn6+jKxWMzatm0ryI3NWNF70r17d/5xVFQUa9OmDZNIJMzBwYGFhITwGRo4H374Iatbty4Ti8XM1dWV9enTh126dEmwjUwmYw4ODpQ+kBAdiRjTck+FEEIIqWYYY+jUqRM+/PBDjB492tTFwYYNG3DgwAGcOHHC1EUhpEqgPq5lpFQqERsbqzYooiahOig/qjuqA11RPRmmDkQiETZt2iSYbtiULC0tsX79er3vl84fqoOKqqz1R4ErIYQQo+rfvz/s7Ow0/luxYoXBj9+6dWuMHz/e4MfRxZQpU9C4cWNTF4OQKoMGZxFCCDGqn3/+mc+pWpyTk5ORS0MIqUoocCWEEGJUXl5epi4CIaSKoq4ChBBCCCGkSqDAlRBCCCGEVAkUuBJiYu3atcPdu3dNXQxCCCGk0qPAlRATu3XrFl6+fGnqYhBCCCGVHgWuhFQCOTk5pi4CIYQQUulR4EpIJZCWlmbqIhBCCCGVHgWuhJiYg4MD0tPTTV0MQgghpNKjwJUQE3NycqIWV0IIIUQHFLgSYmLOzs7U4koIIYTogAJXQkyIMQYnJycKXAkhhBAdUOBKiAlJpVI4OzsjLy/P1EUhhBBCKj0KXAkxoaysLNSqVcvUxSCEEEKqBApcCTGhrKwsODg4mLoYhBBCSJVAgSshJpSdnQ17e3tTF4MQQgipEihwJcSEVFtcGWMmLg0hhBBSuVHgSogJcYGrjY0NZDKZqYtDCCGEVGoUuBJiQtnZ2XBwcEDt2rWRmZlp6uIQQgghlRoFroSYUFZWFuzt7SlwJYQQQnRAgSshJsR1FaDAlRBCCCkdBa6EmBAFroQQQojuKHAlxIS4dFgUuBJCCCGl02vgunHjRgwfPhwdOnTA8ePHBeu2b9+OXr16oWfPnli3bp0g9U9kZCRGjx6NgIAATJkyBcnJyfy6vLw8LFiwAN26dcPAgQNx7NgxfRaZEJOiwJUQQgjRnV4DVx8fH8ydOxfNmzcXLL9w4QL27NmD7du346+//sKFCxdw8OBBAIBcLsf8+fMxatQonD59Gi1atMDChQv5527cuBGvXr1CWFgYVqxYgZUrVyIuLk6fxSbEZKRSKWxtbSlwJYQQQnRgoc+dDRgwAACwdetWwfKwsDAMGzYM3t7eAIBx48bh6NGjCAkJwc2bNyGRSBASEgIACA0NRa9evZCcnAwPDw+EhYXh66+/hp2dHVq3bo1u3brhxIkTCA0N1VgGuVwOuVwufJEWFhCLxXp5jUqlUvB/TUR1UH7F604ul8Pc3BwODg7IyMioEXVK549uqJ6oDiqC6o7qoKJMUX9mZqW3p+o1cNUmNjaWD2oBwN/fHxs2bAAAxMTEoGHDhvw6iUQCb29vxMTEwNbWFmlpaYL1/v7+iIyM1Hqsbdu2YfPmzYJlw4cPx4gRI/T1cgAACQkJet1fVUR1UH5c3clkMsTFxSEnJwfPnj2rUXcT6PzRDdUT1UFFUN1RHVSUMeuvfv36pW5jlMA1NzcXdnZ2/GNbW1vk5uYCKLpw29raCra3tbWFTCZDbm4uzM3NYW1trfG5mkyePBljx44VLNN3i2tCQgJ8fHx0+mVQHVEdlF/xupNIJPD19YWbmxsUCgV8fX1NXUSDo/NHN1RPVAcVQXVHdVBRlbX+jBK42tjYICcnh38slUphY2MDoKiFVSqVCraXSqWQSCSwsbFBYWEh8vLy+OBV9bmaiMVivQWpJTEzM6tUb6QpUB2UH1d33D8bGxvk5eXVqPqk80c3VE9UBxVBdUd1UFGVrf6MUpL69esjOjqaf/zo0SP4+fkBAPz8/ATrZDIZnj17Bj8/Pzg4OMDZ2Vnrcwmp6rjsGiKRyMQlIYQQQio/vQauCoUC+fn5YIzxfyuVSgwYMAB79+5FYmIiUlNTsWPHDvTv3x8A0K5dO8hkMhw6dAhyuRxbtmxBs2bN4OHhAaBowNfPP/8MqVSKf//9F+fPn0fv3r31WWxCCCGEEFIF6LWrwLJly3D48GEAwO3bt7Fo0SL89NNP6NKlCx4/fowJEyZAqVRiyJAhGDx4MICiW/urVq3CF198gZUrV6JZs2ZYunQpv8/33nsPy5YtQ79+/eDg4ICPP/4Y9erV02exCTEJpVJZqW6/EEIIIZWdXgPXxYsXY/HixRrXTZ48GZMnT9a4rnnz5ti1a5fGddbW1li2bJm+ikhIpSGTySCRSATLGGPUbYAQQgjRgpp7CDGRnJwcQbYNGxsbyGQyE5aIEEIIqdwocCXERKRSqSBwpdmzCCGEkJJR4EqIieTk5AhyGFPgSgghhJSMAldCTKR4VwEKXAkhhJCSUeBKiIlo6irw6tUrE5aIEEIIqdwocCXERKirACGEEFI2FLgSYiLUVYAQQggpG73mcSWE6C4nJwcuLi78YwpcCSGE6GrEiBHw8PBAXl4eNm7caOriGA21uBJiIpQOixBCSHkolUrk5OTgzTffRFxcHBQKhamLZDQUuBJiItTHlRBCSHk8ePAATZs2RY8ePdCwYUMkJiaaukhGQ4ErISZCfVwJIYSUx9OnT9GwYUMAQN26dREXF2fiEhkPBa6EmEjxrgLW1tY05SshRC8YYxgwYICpi0EMJCMjA05OTgAAd3d3vHjxwsQlMh4KXAkxkeJdBUQiERhjJiwRIaS6SE9Px4MHD0xdDGIg6enpcHR0BAC4ubkhJSXFxCUyHgpcCTGR4oErIYToS3JyMgAgNzfXxCUhhpCens63uNapU4cCV0KI4SmVSlhYUEY6Qoj+JScnw9zcvEYN2qlJVLsKuLm5UVcBQojhaesWQN0FCCEV9fz5c7Ro0YIC12pKtauAq6srtbgSQkxDIpEgLy/P1MUghFRxqampaNasGZ49e2bqohADePXqFWrVqgUAEIvFKCgoMHGJjIcCV0JMRCQSqS2jlFiEEH1ITU2Fv78/Xr58aeqiEANQKpUwM/svhNN0PamuKHAlxEQ0dQmgwJUQog+pqanw8/NDamqqqYtCiF5R4EpIJUKBKyFEH7jANS0tzWRlYIwhJyfHZMevzoq3sIrFYuTn55uoNMZFgSshJlD8Ng+HAldCiD4UFBTAxcXFpIHrrl270L59e5Mdv7rSdLeuJuVypcCVEBPIzc3VmMOVAldCiD6IRCJYWVmZtBXu0aNH9H1mAJquH05OTkhPTzdRiYyLAldCTEDb5AMUuBJC9KEyDNZJTk5GvXr1aswtbGNRTYXFcXR0rDHXDgpcCTGBnJwc2NnZqS2nwJUQUl08f/4cr732Gj+LF9EP1VmzOLVr10ZGRoaJSmRcFLgSYgJSqZQCV0KIQRQUFAhm5TPVpCaFhYWoW7cukpKSTHL86kp11iyOo6MjBa6EEMOhrgKEEEPJysqCg4MDAMDOzs6kI/s9PT2pxVXPqKsAIcToqKsAIdUfY8wkM+GpzqpkqswChYWFEIlE8PDwoBZXPdPU4kpdBQghBqWtq4BEIkFubq4JSkQI0bf9+/fD29vb6LfqiweuppiEIDU1FW5ubvD09KTAVc+0tbhS4EoIMRhtXQUqw0hgQoh+HDhwAMHBwbh06ZJRj6sauDo7O5skcE1KSoKHhwcFrgZAfVwJIUanrcWVEFI9KJVKJCcnY/HixVi7dq1Rj52Zmcn3cXV2djZJV4GkpCR4enrWqIDKWDRlFbC3t0dWVpaJSmRcFLgSYgIUuBJSvV2/fh0dOnSAr68vmjZtirCwMKMduzJ0FYiLi4Ovry9EIpHJshpUV5q6CmiaibG6qjmvlJBKRFtXAQ590RNStR08eBCDBg0CAMyaNQt//PGH0Y5dvKuAKVpc4+LiUK9ePaMftybIy8uDRCIxdTFMhgJXQkxAW1YBoGiAlilGIhNC9OPmzZu4d+8eOnbsCKCo1dOY03FWhhbXp0+fwtfXFwBgbW1N32lGUFMaPChwJcQESgpcKSUWIVXbihUrsHHjRsHtW1dXV6SkpBjl+JVhcFZubi5/V8nDw4NyuRK9ocCVEBMoqY8rBa6EVF2JiYmwt7eHu7u7YHmnTp1w9epVo5RBNXC1sbGBTCYzynG1oVyuxlFTWrYpcCXEBHJycmBjY6NxHQWuhFRdV69eRZcuXdSWt23bFrdv3zZKGVQDV1OQyWSCPph16tQxWmtzdVdYWKh1IFZNyeBAgSshJqBUKmFubq5xHQWuhFRd165d4/u2qmrQoAFiY2ONUoa8vDxYW1sb5ViaxMbGCgZm1alTBy9evDBZeaqTzMxM1K5dW+O6mjJ7FgWuhJhASRMNUOBKSNUVFRWFZs2aqS13dnbGy5cvjVaO4t8xxhy4ExsbCz8/P/6xm5sbtbjqSWpqKlxdXTWuc3R0rBHXDgpcCTGBki4iFLgSUnUxxmBhYaG23JSz4tnZ2UEqlRrteDExMahfvz7/mFpc9efly5dwcXHRuI66ChBCTIICV0KqJwsLCygUCqMf19i5XKnF1XBevnyptcWVugoQQgymtK4CNeHLh5DqpqCgQGNrK8dUaaGMncv16dOnqFu3Lv/Y2toa+fn5Rjt+dUZdBYwcuE6ZMgVvvPEGunbtiq5du2LmzJn8uu3bt6NXr17o2bMn1q1bJ7iVGhkZidGjRyMgIABTpkyhfHCkyiupq4Czs7NRk5UTQvSjpNYwAKhbty7i4+MNWgZNwbOxA1e5XA4rKyvBspqSHN/QSusqUBOuHUZvcV20aBHCw8MRHh6O7777DgBw4cIF7NmzB9u3b8dff/2FCxcu4ODBgwCKPgDz58/HqFGjcPr0abRo0QILFy40drEJ0ZuS0pkANefLh5Dq5sWLF6hTp47W9cYIXLOysuDg4CBYZsyuAhSgGlZJP45qSqNHpegqEBYWhmHDhsHb2xsuLi4YN24cjh49CqBo6jyJRIKQkBBYWVkhNDQUUVFR1OpKqiyZTKZ18gEAEIvFJukHRwipmJSUlFID14SEBIOWQVMOV2O2uGq7lS0Wi6m7gB6kpqZqbXE11Sxpxqa9M46BrF69GqtXr4a/vz9mz56NRo0aITY2FgMGDOC38ff3x4YNGwAUjU5s2LAhv04ikcDb2xsxMTHw8PBQ279cLodcLhcss7CwgFgs1kv5lUql4P+aiOqg/JRKJXJzc2FjY1Ni/RUUFFTb+qXzRzdUT1WvDpKTk+Hq6qq1vN7e3oiLizPo68nIyICDg4Og7pycnPDy5Uuj1OOTJ09Qr149tWO5urrixYsX8Pb2NngZOFXt/NFFZmYm7O3tNb4me3t7ZGZm6u31mqL+SrobyTFq4Dpz5kz4+fnBzMwMf/75J2bNmoU9e/YgNzdX0AJla2uL3NxcAEWtU9x8x6rrtU1ht23bNmzevFmwbPjw4RgxYoReX4uhfzVXBVQH5SOVSsEYQ1xcnNZtrKysEBERAUdHRyOWzLjo/NEN1VPVqYOHDx+iTZs2Wj/bBQUFiI6OLvGzX1GPHj2CUqnk6ywhIQEymQxPnz416HE5165dg4ODg9qxuO+0wsJCg5ehuKpy/uhCJpOV2N1EJpPp/X02Zv2pplHTxqiBa4sWLfi/J06ciIMHDyIyMhI2NjbIycnh10mlUn46TIlEopZ/TiqVCqaTUzV58mSMHTtWsEzfLa4JCQnw8fHR6ZdBdUR1UH5KpRKRkZHw8PCAr6+v1u0CAwPx/PlztGnTxniFMxI6f3RD9VT16kAul6Nly5YlfrYtLS1LXF9RERER8PX1hY+PD193rq6uyM/PN+hxOdnZ2ejevbvasfz9/WFubm6UMnCq2vmjC4lEUmIdlra+LCpr/Rm9q4AqriLq16+P6Ohofn7nR48e8Tng/Pz8sG/fPv45MpkMz549E+SIUyUWi/UWpJbEzMysUr2RpkB1UD65ubmwt7cvse5ef/11nDhxQtCFprqh80c3VE9Vpw5SUlLg4eFRYllFIpFBX0t2djYcHR35Y5iZmcHOzg4ymcwodfj06VO8/fbbasdyd3fHy5cvTfI+VpXzRxelnT+GOL8qW/0ZrSTZ2dm4cuUK5HI5CgoKsGPHDmRlZaFp06YYMGAA9u7di8TERKSmpmLHjh3o378/AKBdu3aQyWQ4dOgQ5HI5tmzZgmbNmmns30pIVZCbm6vW/aW4Nm3aICIiwjgFIgaRm5urtUsTqZ5KmkeeY2trK7jDqG+aBmcZ0/Pnz+Hu7q62nGbPqjhufERJLCwsUFBQYKQSmYbRAleFQoENGzYgKCgIffv2RXh4ONatWwc7Ozt06dIFQ4cOxYQJEzB8+HAEBARg8ODBAIpaUFetWoUdO3YgMDAQd+7cwdKlS41VbEL0TiqVlhq4cgm7KbVM1ZSUlIR+/fohMDAQYWFhpi4OMaLSpnY1dGYBUweujDGNdUCzZ1VcSTlcOU5OTtU+JZbRugo4Ojrit99+07p+8uTJmDx5ssZ1zZs3x65duwxVNEKMSiaTlZgyh8PlfDRmnzCiH/v27cP8+fPRqFEj/PTTT9W6ywcpG+5z3bRpU4PsX1vgKhKJtAaV+lLSzGHU4lpxpU1wAfyXs1eXa0xVVXk6LRBSQ+jS4goAHTp0wPXr141QIqJvUVFRaNmyJRo2bIgnT56YujjECAoLC2Fubl7qdoaehEBb4GpjY8Nn6zEUbiCPJg4ODnj16pVBj1/dlZTDlePi4mK0ySZMhQJXQoysePo3bZo2bYqHDx8aoURE3+Lj4+Hj4wNzc/NqlUOSaFfSHPKq6tWrh9jYWIOVQ1vgaoxJCGJjY7WmMzJkS29NkZaWVmrgWhMmIaDAlRAjK23mLE7Dhg0RHR1thBIRfWOM8aNwa9WqhczMTNMWiBictkFJxTVo0MCgrfAymUxjukhjTPtaUuBKKi41NRXOzs4lbuPq6oqXL18aqUSmQYErIUama1cBFxeXav8FVB0Vb/Fq3rw5IiMjTVgiYgzJyck6Ba62trZqucn1TVPrpjFaXJ8+fVpi4Mr1syXlo0uLa03oS0yBKyFGpmtXAZFIRLfXqqCnT5+iXr16/OMWLVrg3r17pisQMQpdW1w5xg7gjNVVQPXcL87e3t6gqcCqO11aXN3d3SlwJYTol1Qq1SlwBQyf85HoX1xcnCATBLW41gxlCVzd3d3x/PlzA5dIyBhdBdLT00vMY0t3kSomLS2t1MC1Tp06Rj+3jI0CV0KMLC8vr9Qk0hzq51r1FA9c69evb9DBOKRyKEvg2qhRIzx+/NjAJRIydIurLl0lakL/S0OSyWSlXju4HODVGQWuhBiZUqnUefo8ClyrnuKBq5mZGWUWqAGeP3+uc+7MRo0aGeRzrVAotKbkMnSapNOnT6Nbt24lbmOM7gqk+qPAlZBKTF+Ba0xMDFq2bEm3rI0gPj4edevWFSxzdnamlqZqrixdgBo1aoRHjx7pvQxZWVlwcHDQuM7QaZL++usvDB06tMRtqMW1arl9+7api6ARBa6EGFlZBlzpq2Xm0KFDmDZtGmbPno0DBw5UeH9EO02383r06IFTp06ZqETEGMryuW7cuDEePHig9zKUNN2rjY2NwbIZZGZmwtrautSpZqnF1TgkEkmFJ5uQSqX48ssv9VQi/aLAlRAjK8toYjc3N72MEA0PD8f48eOxd+9e/PTTT9V+ZpXKJjg4GAcPHjR1MUglIRaLUVBQoPf9lhS4ljdLiVKpLDUIunDhArp27VrqvqjFtfxyc3N1Hhuhj8wCt2/fxmuvvVahfRgKBa6EVGL6yHtYWFiI3Nxc2Nvbw97eHsHBwbh8+bKeSkhUKZVKjcGBq6srsrKyDBKsENOTyWSwtrYu03MMMfq7pMAVKF8Kru3bt2P8+PElbnPt2jV06tSp1H3pklXgwYMHlD5OA11SYXH0cW5dv34d7du3r9A+DIUCV0KMrKytHhW9xffgwQM0b96cf/zGG2/g0qVL5d4f0e7ly5dap/3s3Lkz/WCopsqawxUAWrVqhX///Vev5SgtcDU3N4dCoSjTPvft24fatWtjwoQJmDZtmsZt7t69i1atWpW6L2dnZ6Snp2tdX1BQgClTpmD69Ok0UUExuqTC4uijxfXSpUt4/fXXK7QPQ6HAlRAjUigUOmcU4DRo0AAxMTHlPub9+/fRrFkz/nGLFi1w9+7dcu+PaJeUlARPT0+N6/r374+jR48avAwymQzNmjXDyZMnS9zu+PHjSEhIQHZ2tsHLVN2VN3DV9+cwMzOzxMDVy8sLSUlJOu8vLi4OLi4uWLduHaZNm4b4+Hi1wJcxhoKCAojF4lL3Z25ujsLCQq3r9+7di5EjR6JLly64cuWKzuWsCXSZNYtT0dmzFAoFcnNztQ70MzUKXAkxIqlUqnM/JU5FB2g9ePAATZs25R9bWFjAysqKJjYwgMTERHh5eWlc99prrxlllO7y5cuxcOFCfPnll1qD0piYGCxYsAD9+vWDo6MjEhMTDV6u6qw8gWvLli2N3uLq6+uLuLi4EvehVCqRkpICANi5cyfGjBkDOzs7dO7cGW3atFEr8+PHj9GwYcOKF/7/jzd+/HhMnjwZW7du1cs+q4uydBVwd3dHcnJyuY918+ZNtGvXrtzPNzQKXAkxopycnDIHrhVNifXgwQM0btxYsKxbt24IDw8v9z6JZiUFrmZmZnB3dy9Ti1dZ/fTTT3j16hVGjRqF6dOnY8uWLRq3mzdvHv766y+cOnUK+/fvx6+//mqwMtUE5QlcDTFQqbTAtW7duoiPjy9xH99++y1atWqFvLw8nD59Gj179uTXderUSa0l9PLly+jcuXPFCo6iH1POzs5wcHBAw4YN8fz5c/pxraIsXQV0eZ9L8s8//6BXr17lfr6hUeBKiBG9evUK9vb2ZXpOw4YNKzTLTmZmJhwdHQXLevXqRemZDKCkrgIA0LdvX5w4ccIgxy4sLMTevXvx3XffAQCGDBmCw4cP49WrV4Lt9u3bBy8vL9SrVw8eHh7o378/zp07Z5Ay1RTlCVyBorsfZe1zWpLSAtcGDRogKipK47qUlBR8+umnOHfuHFauXImPP/4YzZo1E0xo0KlTJ7V+2mUNXC0tLTUOUtyzZw/GjBnDPx4+fDh+++03nfdb3ZUlcHV1deVbzcvj8uXLOg22MxUKXAkxoqysLJ2TlHM8PDzKfdtH24xNzZo1o8kIDKCkFlcA6N69O86fP2+QY9+7dw/t2rXjB/+Zm5tj6dKlGDhwIC5duoTY2Fh89dVX+OGHH/DNN9/wzzM3N4ePjw+ePn1qkHLVBM+fP4eHh0eZn6fvqV9LC1zbtWuHK1euqAWOUVFRGDVqFHr16oX9+/dj9OjR+PXXXzFx4kTBdq6urmp5WDVNuFESbblcL1++jICAAP7x8OHDcePGDcydO5cGaqFsgWt50p5xDh48iCZNmujUZ9lUKHAlxIgyMzPL3OJakZRYiYmJ8PHx0bhPNze3Cv0qJ+pSUlK0ZhUAAE9Pzwr1PSvJhQsX0KVLF8GyN954A0ePHsXnn3+OOXPmICkpCcuXL4eFhYVguzfffBP79u0zSLlqgtLed230PUCrtMDVzMwM06ZNw4ABAxAYGIjff/8djDHMnj0bO3fuRM+ePSESiWBlZYW0tDSNeTxVvzeys7NhZ2dXpkBJU0qsgoICKBQKSCQSfplEIsGWLVvg4uKCTZs26bx/Q7h586bgx54ppKam6jw4C9Desl2an3/+GYsWLSrz84yJAldSYYmJiXj48KGpi1ElxMfHl3grWRsbG5tyzYTy4MEDNGnSROO63r17U1J8PWOMaZ0rnmOI/J1AUfqaN954Q225vb09li5dirp162LdunXo2LGj2jZBQUH4559/9F6mmkKhUKj9GNCFvlNi6ZKkftiwYTh58iROnTqFO3fuICAgAL1790adOnUE22kLRjt37syn07t27ZrG86kkmlptb9y4oTVn6Pz587F7927k5eWV6Tj69MUXX+Du3bv4+uuvTVaGrKysMjV6lKef6/nz5+Hp6Vnmu4LGRoErqbD58+dj3Lhxpi5GlfD06VN4e3uX+XkNGjTAkydPyvy8+/fvCzIKqBo5ciT++OMPyOXyMu+XaKZLy/jgwYOxY8cOvR87IyMDTk5OGtd16dIF69at0/pcKysrNG7c2GDdGIhmTZs21drntLx0bf00NzfH6tWrsXXrVnz44Yc67z8gIAAXL14EAJw6dQqBgYFlKp+mQWlnzpxBjx49tJZz8uTJ+Pnnn8t0HH159uwZHB0dsW3bNsTGxmLnzp0mKQdQti4Afn5+ZbpmnDx5El9++SXWrFlTnqIZFQWupMKGDRuG1q1bG2Tu7eomJiZG46370pS3L1xJLa5isRjBwcEGGyxUVVy4cEEvU+Cmp6ejdu3apW4XEhKi94FxCQkJJfat1cXs2bNNFhxUZYWFhWXOzcyxsrIy+Q/HJk2alKm1mOsfr1AocO3aNbRt27ZMx/Py8lJrCbxy5UqJg4FGjRqFffv2IT8/v0zH0oczZ86gV69eEIlEWLduHbZv3270MpRHWcYxFBYWYtWqVdi9e3elb20FKHAlevDmm29i1qxZ/Ghmol1OTg5sbW3L/LzyBq4JCQkltvCOGjWqynwRG8Ldu3exfPlyTJ8+vcL7ioyMFMxQpo25uTmcnJz0EixzLl68KBjYUh7e3t7IyspSy0JASvby5Uu4ubmV+/kSiaRc3YBMxczMDBKJBBs3bsSwYcPKPBCoQ4cOuHr1Kv+YC9ytrKy0Psfc3ByTJk3C5s2by1foCjhz5gzfqmxubg53d3eDjw1YsGCB4LW+evWqzJMBtG7dGnfu3Clxm2vXrqGgoACff/45xo0bVyWCVoACV6InLVu2RFJSkl4vxtVNXl5emecz55Q3cGWMldga5OHhARcXl0o5N3hycjIyMzMNeozVq1djw4YNyM/Pr/AMUpGRkWjRooVO23bv3l2vKaguXryoNjCrPEaMGIHdu3froUQ1R2mZJErTtGlT3L9/X48lMry5c+fi4MGDmDRpUpmfa2dnh4KCAv7zpms/2TFjxmD//v1GD/KTk5MF4xI05bLVp6SkJERHR+PPP//kux5FRkYKZj/UhZubGxITE7V2Xzp79ix69uyJFi1awNraGhMmTKhw2Y2FAleiN1OmTDHJL+KqIioqqsxfPpw6deqUeTR6adM/cmbOnIm1a9eWq1yGUFBQgMmTJ+P999/HqFGjsGfPHoMcJz8/H1lZWfDz88OgQYNw5MiRCu3v3r17OrW4AkCPHj1w9uzZCh1P1ZMnT9CgQYMK72fIkCHYv39/xQtUg5SWu7c0+kpNV94BYuXxxhtv4Pjx44IsAGUxbNgw/nN9+vRpnfrJmpubY8yYMUbNfhEfH6/Wtatz585quWz1aceOHZgwYQK6dOmC06dPAyjqf1qeSR7atm2LGzduqC1njGHVqlV4+vQpLl++jEWLFlUohZaxUeBK9KZv376UyLwEd+/eRcuWLcv1XJFIBEtLyzL18Xr48KHW/q2quGD61q1b5Sqbvq1ZswZBQUHYt28fjhw5YrBUOLdv3+anNQwJCalwwPb06VPUq1dPp231mb+zPCmJtLGxsYGHh0eFZmqraSra4tq8eXO9BK5ZWVmVdm754oYOHYrffvsNcrkcV69e1TkzweDBg3HgwAEDl+4/4eHh6Natm2BZixYt9D5VL4cxhhMnTqB3796YMWMGli1bhh9//BGPHz/WOnitJGPHjtU4EPTkyZNo27YtXFxctA7orMwocCV6w/Xdo9ygmt25cwetWrUq9/Pbtm1bpuCypIFZxS1btgwLFy40SaJvxhjfr/LUqVO4f/8+xo4dC6DonNJ3knaO6oAQFxcXyGQySKXScu+vtG4ZqkQiERwcHJCVlVXu43EuXLigMQ1WeU2cOJGmgC2Dira4+vv749GjRxUuR2k5XCsTW1tbTJkyBYMHD4afnx8sLS11ep6LiwusrKwqNJ2prhQKBbZv346+ffsKlltYWEAkEpUrR2ppbt68iddeew0WFhZwcXHB+vXrERUVhS1btpRrAGCrVq1w584dxMXF8csUCgVWr16NefPm6bPoRkWBK9Grfv364fjx46YuRqUUHR2Nhg0blvv5AQEBuHDhgs7bl5QKqzgPDw8EBQWVKS2OPhQWFmLevHlo3749lixZgmXLluH7778XtB4GBwfj0KFDej928ZaeXr164cyZM+XaV3kS0Hfs2BHXrl0r1/FUHTlyBAMHDqzwfjgBAQG4dOkSzVako2fPnpUrxR1HX5kFqlLgChQNDF2yZAlWrVpVpue9++672Lp1q4FK9Z/Vq1dj/PjxGj/X+p44grN9+3bBbGUtWrTA+vXrSxy4VprPP/8co0aN4nPnLl++HG+//XaVOleKo8CV6FXfvn1x7NgxUxej0mGMobCwsNTk9CUJCAgoU2D1+PHjMgXKs2fPBgC9BFO6OnjwIKysrPDo0SP06NED69evV7vd2a1bN4SHh+v92K9evRKkr+rfvz/CwsLKtS9dMwqoUk3kXhFPnjxBo0aNKrwfjkgkwhtvvMHn6iQle/nyZZlmNNLE1ta2Qq39QNULXAHg9ddfL3M/2W7duuHChQtap7PWh3v37uHWrVsYP368xvVvvPGG3vu55ufnIzo6uszfI6UJCgrCV199hTVr1mDr1q2IjY3FqFGj9HoMY6PAleiVm5sbMjIyoFAoTF2USuX58+cVup0IANbW1vD29ta5/2F+fn6ZsxjMnj0by5cvL0/xyiwpKQkbNmzAvHnzIBKJ0L17d419gG1sbKBQKPR6ay45ORnu7u6CZQ0bNsSTJ08glUrx9ttvY8KECTq3OpYlowCnrF0/NMnIyICjo2OF9qHJxIkTjdKqVR0wxircv1gfmQWqYuBaHtx3hSHHU3z22WdYt26d1ve1U6dOeg9cT506hX79+ul1n5xu3brh9OnTOHToELZt21alBmJpQoEr0TtDj7qsiu7cuYPWrVtXeD8TJkzAL7/8Uup2crlc535jqurVq4e6desaPD2PVCrFuHHjsGTJEp2S9nfs2BHXr1/X2/GvXr2qcZRu06ZN0aVLF4wfPx716tXjR/WWpjwtrtbW1lAoFBWayvLy5cvlGm1cmgYNGiAzM7NaprfLzs7Gm2++id9//x3Tp0/Ha6+9Vu4+ptzAuIrSxwCt9PR0g/yIqYx0/R4sjzt37qBu3bolNjQ4OzsjPT1drz+mz549i6CgIL3tr7jffvsNP/zwQ5UPWgEKXIkBGHvkZ3m8ePECS5YswV9//WWU4929e7dCA7M4AQEBuHbtWqmDep48eVLu/rRDhw41eMqZ3377DbNmzdI5aX5QUJBeZ/jSNlPPkiVLcPz4cQQGBuKDDz7QeVKNhISEcs2INnToUPzxxx9lfh7n0qVLeh2Ypertt9/Gtm3bDLJvXTDGDDKr1OLFizFt2jQ8ePAAI0aMwP79+/Hxxx/j4cOHZc4RWpEUd6qaN29e4VzKaWlpFe6yUFX4+voiMzPTIAOBv/76a50mJOnZs2e5+8RrUp4fv2XRuHFjeHh4GGz/xkSBK9G7Vq1aITo6GrNmzdLLqGl9Y4zh7bffRteuXbF3716Nee70TV+Bq0gkwowZM7B48eISL+r379/XOaNAcdzgHEMpLCxEeHg4goODdX5Op06dcPHiRb0NGNKW0LtWrVr8LEiurq7w9fUt9fwoLCwEULZ5xDljxozBjh07yp3Q/Pbt23o5rzTp16+fXi/MZXHp0iV069YNgYGBes0okZOTg/v376NPnz5YtmwZunfvDl9fXwQHB2P16tUYMmQI5HI5YmJisGzZslL7Uerrc+3v71/hKbPT0tLg7Oxc4bJUFQsXLtT7yPjDhw/Dzc1Np+/OYcOG6a3hIzs7G7a2tuWeOrimoVoieicSibB//3706NED48aNw7Rp0ww6x7RcLkdOTo7O2x87dgydOnVCz5498eOPP2L+/PmlBtgRERHYvn07goOD8c4775T59q4+b+MNGjQITZs2xeDBgyGTyTRuExERUe6uCWKxGNbW1gb70XH48GEEBgaW6UvazMwMrVq1wu3btyt8/IKCAohEIp0Gys2dOxdff/11idvs27evXDkWgaLuAnv37sXChQvLHKA9e/YMzs7O5eoSogsLCwvUrl2bH41sDEqlEosXL8b333+PI0eOYNeuXfjmm2/0tv9ff/0V48aNU1s+efJk/Pzzz5g1axaCg4Mxf/58ZGZmYv369SXu7+bNm2jTpk2Fy2VpaQnGWIXGBqSmptaowLVt27ZgjOmtW1NeXh7Wrl2LZcuW6bR9/fr1kZiYqJdr2/nz5/Uy811NQYErMZg333wTBw8eRHBwMEaPHq01yKqIJ0+eICgoCP369St1XmagqLV1/fr1+OCDDwAATk5OWLx4MT799FOtz9mwYQPWr18PMzMz/Pnnnxg+fDimTJmic+tfamqqXpM8i0QihIaGYs6cOVrTV927d6/Mg4VU9ezZU+f+nbqSy+WIj4/H+vXrMXz48DI//5133tHLZAS3bt3Ca6+9ptO2vr6+EIvFiI2N1bg+NTUVP/zwA95///1yl6d27drYvHkzpk6dWqa+ln/88QfGjBlT7uPqYsCAAQZJRVZcVlYWdu7ciSFDhsDLywt//PEHHBwc4OPjAx8fH70MxElKSsKBAwdKPPcGDhyI48ePY8+ePVi9ejWio6Px7rvvqgWUO3fuxLvvvovs7GydJ50oTcuWLSuU2D4xMbHa3ArW1eLFi7Fo0SK97Ov333/HhAkTyjSgtW/fvnpJ/3j06FEMGDCgwvupMRgpk8LCQhYTE8MKCwtNXRSTKU8dnDp1irVp04YFBwezpKQkvZSjoKCA9e7dm8XHx7MXL16wXr16MblcXuJzTp8+zT777DO15dOmTWMfffQRe/DggWD5n3/+ycaPH8+USqVg+YYNG9iiRYt0KufevXvZjz/+yBjT//mzZMkStmbNGsEyhULB+vfvX6H9JiYmslGjRlVoH6piYmJYz549We/evdm9e/fKXQeDBg1imZmZFSrLmjVr2MmTJ3Xe/ty5c2zhwoVqy5OSkljPnj3ZzZs3K1QeTmJiIgsMDGQZGRmMsf/OlbS0tP9r787DoirfPoB/BwYERMIFAZeUNHNBM9wqQUBAMcElFS3Q0NJsU3EpTU0t85e7pW+5vlDmT0zTDFvMNEmlRTG3kFQSJWUQVEx2hnneP8zzioANwsw5c+b7uS4v4azPPPfDzD33nHmOuHnzZrltDQaDCAkJEaWlpbVy7qrcvHlThIeHm+z4BoNBvP/++yI0NFRs2LBBZGZmlltfVlYmjh49KoKDg2v8NxMVFSWOHz9e7f02bdokRo4cKbKzs8X169fFokWLxHPPPSfS09MrPC/UxK5du8TKlSvva99r166JiIiIcsus5bVq8uTJYteuXZWuM7YPbv89FRUVVevcly5dEpGRkdXa5243btwQISEhNTqGqSh1DDFxrSalBtKc7rcPSktLRWpqqggMDBQZGRmVbvP999+LrKwso463cuVKsX79eun3Tz75RCxevPie+4SHh4vs7OwKyw0Gg/j1119Fnz59xPfffy/OnDkjoqKixIQJE6pMDiZOnCi2bNlSYfnFixeFXq+Xfg8LC5POWdvjx2AwiFdeeUV8/vnn0rL9+/eLuXPn1vjY0dHR4ujRo+WWnTp1SixbtkzMmTNHhIWFif79+4uwsDAxZswY8cMPP1R4Ib948aJ46aWXxLBhw8S5c+eEEDXrg61bt4oPPvig0nXFxcVi69at4vfff7/nMQYNGlQhEbwXg8EggoKCRH5+vvT7qlWrRN++fUVKSorxjTfCTz/9JPr27SsuX74sysrKxOHDh0VAQIAIDg4Wffr0EYmJiUIIIY4dOyZiYmJq9dxViY6OFunp6bV+3MzMTDF06FCxZMmSKhPA22Plgw8+EGvWrLnvcx09elSMHz/+vvc/cOCAiIiIEEOGDBFbtmwp9/ddW65du3bfbxbff/998b//+7/lllnLa1VhYaEYOnSoGDBggAgMDBQrVqyQElBj+yAxMbHSgoYxwsLCKjyfZGVliQsXLgiDwSB27twpzp8/X+m+6enpol+/fmL//v33dW5TU+oYYuJaTUoNpDnVtA9SU1PFwIEDxdy5c0VZWZn4+++/xfTp00VoaKiYOnWq6N27t/QCXZWsrCzRp0+fcm0wGAxi0KBB4vDhw5Xuc+jQITFlypR7Hvfvv/8WEydOFM8995z4448/7rltaWmpCAoKEjdu3JDOP2PGDDF06FAREBAgdu7cKQ4cOCCmTp0q7WOK8VNcXCxCQ0OlJ8eoqKgqnyir48qVK6J3795SBXDr1q3i6aefFnv27BFJSUnlXrwvXrwoZs6cKUJDQ8WgQYPE9OnTxcsvvyyGDBlSIfmtSR+UlJSIoKCgColDcnKyCAoKEqtWrRJDhgypsnJ15swZMWrUqGqfd9u2bWLhwoXCYDCImJgY8d5775nsOeD06dMiMDBQ7Nu3T/j6+opjx44Jg8Eg8vLyRHBwsFi/fr0IDg4Wp0+fNsn573bgwAHx+uuv1+gYqamp4oMPPhDDhw+X3uyEhYWJEydO3HO/22OlpKREhIaGiosXL1bY5tdffxXDhw8XK1asEIWFhZUeZ/jw4eLChQs1egzm0LdvX6Oq6AaDQRw4cECMHz9ejB07VowdO7bCftb2WpWXlyfKysrEpk2bREBAgEhNTa3QBxkZGWL79u0VxsmIESOqLKb8m82bN4tp06ZJxzx16pQIDAwUkZGRwtfXV0ybNk2EhISIL774Quh0OlFcXCyEECItLU0EBgaKtLS0Gjxq01LqGNIIwfv6VYfBYMCFCxfQokULq/0GYG31QWxsLLZv3w5bW1u8/PLL6NOnD4Bb3/x99dVX4eLigoYNG6JTp064fPky/P39pes2o6KiMGXKlArXKubm5mLo0KGYMGECHnroIelWnB4eHoiKisLHH39cYeL5mkhKSsKSJUswYsQIrFmzBhEREXjxxRdRWlqKF154ARkZGdiyZYt020BTjZ8zZ85g+vTp6NOnD86fP4+FCxfWynGTk5MRExODnj174sKFC/jkk0+g1WrvuU9JSQlOnToFBweHSr+5X9M+iI2NxY4dO+Dj4wNfX1/8/fff2LBhAzZu3IgGDRpACIFZs2bBxcUFb7zxBoBb1zavXbsWmzZtQlxcHB566KFqnVMIgX79+sHV1RW9evWq0TWtxjh27Bg+/fRTDBgwAL6+vlI/ZWVlITExEV27dq32Y6iJp59+GjExMfDz8zN6HyEEMjMzsW3bNuzevRvR0dEIDQ1FvXr1jD7GnWPlzJkzmDFjBrZv3w6NRgOdTocFCxbg2rVrWLZsGfbu3YsNGzbA398fkyZNks6TkpKCRYsWIS4urroP2+yWLVsGNzc3jBw5En/99RfS0tJQUlKCmzdv4tChQ8jKysKNGzdQVFSEJ554As8++yzy8/Ph4+NTYVYLa36tunz5MqKjo5GQkIBLly5h3bp1OHHiBBo1aoT27dvjxIkT2LhxI2xsbLBv3z58+umn933DDSEEPvnkE8THx6Nhw4bIzc3Fhg0b4O7ujry8PDg7O6OwsBBLly7FhQsXcPbsWXTo0AEpKSn45JNP7msaPXNR6hhi4lpNSg2kOZmrD5KTk5Gfn4/U1FR4enoiISEB2dnZcHNzQ9OmTau8KP/69euIi4tDVlYW3N3dodPpkJaWhmnTpqFHjx613s6vv/4a69evx2efffavSZ0p+279+vVIT0/HO++8U6uTTN+8eRM//fQTgoODa6XNtdEHWVlZuHDhAn788Ufo9XpMmDABTk5O0nohBObMmQMbGxvExMTgxRdfxJNPPomXXnrpvr+Ff+nSJaSnpxs992xNKem5Jjc3F5MnT8aDDz6IkSNHwtPTs1x/38lgMGDBggU4ePAgmjVrhpCQEAwdOvS+bnd8dx8sX74cR44cQVlZGUpLSzFt2rRy8/EKIfDNN99gyZIlCAsLQ35+Pvbt24eNGzeiWbNm9/34zaW4uBjTpk1DWloaPD090a5dO9jZ2aFOnTrw9/dHw4YNpTfB/0ZJ40cOmzdvRmpqKjQaDZydnTF16lRp3dq1a7F9+3bY2dnB09MTS5YsqXCr6ftx8eJFNGnS5J6vAwaDARkZGWjcuHG1b3drbkodQ0xcq0mpgTQnOfvg2rVr0Ol0tTLptxw4fszbB6tXr8a3336LqVOnWtx0M0obK0II7NixA4mJifjrr79QVlaG7t27w8PDA3/99RfOnTuHa9euwcbGBuHh4Rg7dmyNz1lZH5w/fx6urq73nF6uoKAASUlJcHZ2RqdOnapMstVMaePH3IQQmDZtGv78809s3bq1whun/Px8ODk5qeJOUqai1DHExLWalBpIc2If3D/2HfvAWErvp7///hsnT55EVlYWmjZtitatW9f6PKJK7wMlY9+xD2pKqf137881FeL69euYO3cujhw5And3d0yfPh3du3eXu1lERFbLxcXFbJdNEBHdppwU+h4WLlwINzc37N27FxMmTMD06dMVeStRIiIiIjIdxSeuBQUFSExMxPjx4+Hg4ICAgAC0atUKP/74o9xNIyIiIiIzUvylAhcvXoSzszMaNWokLXv44Yfx559/Vrp9SUkJSkpKyi3TarWwt7evlfYYDIZy/1sj9sH9Y9+xD4zFfmIf1AT7jn1QU3L0nzHX0io+cS0sLETdunXLLatbty7y8vIq3T42Nhbr1q0rt2zYsGGIiIio1XZlZGTU6vEsEfvg/rHv2AfGYj+xD2qCfcc+qClz9p+Xl9e/bqP4xNXR0RH5+fnlluXn51c5/9no0aMRGRlZbpm9vX2tVVyJiIiISB6Kv8b1wQcfRF5eHnJycqRlZ8+erfKuMfb29nB2di73j0krERERkeVTfOLq5OSEXr16Yc2aNSgqKkJiYiLS0tLQq1cvuZtGRERERGZkETcguH79OubMmYPk5GS4u7vjjTfeMMmtO4mIiIhIuSwicSUiIiIiUvylAkREREREABNXIiIiIrIQTFyJiIiIyCIwcSUiIiIii8DElYiIiIgsAhNXIiIiIrIITFyJiIiIyCIwcSUiIiIii8DElYiIiIgsAhNXIiIiIrIITFyJiIiIyCIwcSUiIiIii8DElYiIiIgsAhNXIiKqtoCAAEyaNEn6vWXLllixYoVs7SEi66CVuwFERGT5Dh8+jLp168rdDCJSOSauRERUY25ubnI3gYisAC8VICKSybfffgtfX1+4urqiYcOGCAsLQ1paGgAgPT0dGo0G27dvR2BgIJycnPDoo4/ip59+KneMzz//HB06dECdOnXQsmVLLF26tNz6li1bYv78+Rg1ahScnZ3RokUL7Ny5E9nZ2Rg4cCCcnZ3RsWNHHDlyRNrn6tWreOaZZ9CsWTM4OTmhY8eO2Lx58z0fy92XCty4cQPjxo1D48aN4eLigt69e+P48ePS+uPHjyMwMBD16tWDi4sLunTpUq4NRESVYeJKRCST/Px8TJ48GYcPH8bevXthY2ODwYMHw2AwSNvMnDkTU6dOxbFjx9CmTRs888wz0Ov1AIDk5GRERERgxIgROHnyJObOnYvZs2cjLi6u3HmWL1+Onj174rfffkP//v0xcuRIjBo1ClFRUTh69Chat26NUaNGQQgBACgqKkKXLl2wa9cunDp1CuPGjcPIkSPxyy+/GPW4hBDo378/dDodvv76ayQnJ8PHxwdBQUG4du0aACAyMhLNmjXD4cOHkZycjOnTp8POzq4WepWI1Ewjbj9TERGpRUEBkJpq/vO2bQs4Od337tnZ2WjcuDFOnjwJZ2dneHl5Yf369Xj++ecBACkpKejQoQNOnz6Ntm3bIjIyEtnZ2fjuu++kY7z++uv46quv8PvvvwO4VQn18/PDxo0bAQA6nQ6enp6YPXs23n77bQDAzz//jCeeeAKZmZnw8PCotG39+/dHu3btsGTJEgC3vpzVuXNnqcrasmVLTJo0CZMmTcK+ffswePBgXLlyBXXq1JGO0bp1a7z++usYN24cXFxcsHLlSjz33HP33V9EZH14jSsRqU9qKtCli/nPm5wM+PgYvXlaWhpmz56Nn3/+GTk5OVKl9eLFi2jfvj0AoFOnTtL2np6eAIArV66gbdu2OH36NAYOHFjumD179sSKFStQVlYGW1vbCsdwd3cHAHTs2LHCsitXrsDDwwNlZWV47733sGXLFly6dAnFxcUoLi42+stXycnJyMvLQ8OGDcstLywslC6FmDx5Ml544QVs3LgRwcHBGDZsGFq1amXU8YnIejFxJSL1adv2VhIpx3mrITw8HM2bN8e6devQpEkTGAwGeHt7o6SkRNrmzo/PNRoNAEgJrhBCWnZbZR+iVXaMex136dKlWL58OVasWIGOHTuibt26mDRpUrl23YvBYICnpyf2799fYZ2rqysAYO7cuXj22Wfx1Vdf4ZtvvsGcOXMQHx+PwYMHG3UOIrJOTFyJSH2cnKpV+ZTD1atXcfr0aaxZswZ+fn4AgIMHD1brGO3bt6+wT1JSEtq0aSNVW+/HgQMHMHDgQERFRQG4lYiePXsW7dq1M2p/Hx8f6HQ6aLVatGzZssrt2rRpgzZt2iAmJgbPPPMMYmNjmbgS0T3xy1lERDKoX78+GjZsiLVr1+LcuXPYt28fJk+eXK1jTJkyBXv37sU777yDM2fO4OOPP8aqVaswderUGrWtdevW2LNnD5KSknD69Gm8+OKL0Ol0Ru8fHByMJ554AoMGDcLu3buRnp6OpKQkzJo1C0eOHEFhYSFeffVV7N+/HxcuXMChQ4dw+PBhoxNjIrJeTFyJiGRgY2OD+Ph4JCcnw9vbGzExMVi8eHG1juHj44PPPvsM8fHx8Pb2xltvvYW3334b0dHRNWrb7Nmz4ePjg759+yIgIAAeHh4YNGiQ0ftrNBp8/fXX6NWrF8aMGYM2bdpgxIgRSE9Ph7u7O2xtbXH16lWMGjUKbdq0QUREBPr164d58+bVqN1EpH6cVYCIiIiILAIrrkRERERkEZi4EhEREZFFYOJaTQaDAefPny93Zxtrwz64f+w79oGx2E/sg5pg37EPakqp/cfElYiIiIgsAhNXIiIiIrIITFyJiIiIyCIwcSUiIiIii8DElYiIiIgsAhNXIiIiIrIITFyJiIiIyCIwcSUiIiIii2DWxHXDhg2YN29euWVjxozBvn37cO7cOYwdOxaBgYGIiopCSkoKgFsT4C5evBhBQUHw9/dHZGQkcnNzzdlsIiIiIlIArTlP1q9fP0RGRmLGjBmwt7dHZmYmzp8/jx49emDYsGGYNm0aevXqhQMHDmDatGnYvn07kpOTceLECezcuROOjo44e/Ys7O3tqzxHSUkJSkpKyi3TarX33Kc6bt9BQml3kjAn9sH9q9B3hYXQvPYa8Pff5bYTkZHAwIHmbp5ZqH78vPMONCdPllskunYFXn+9WodRfT8ZwWL64I8/oJk3D9Dr772duzvE++8DNiaoGb3/PjSHDpVb1LigAHBygrhjmRgzBggNrf3zK5DFjB8jaWbPBv7441820kBMmQJ0717j88nRfzZG/G2YNXFt0qQJWrVqhUOHDiEwMBC7d+9GQEAADh48iNatWyMwMBAAEBAQgA0bNuDkyZPQarXIz89Heno6OnTogLZt297zHLGxsVi3bl25ZcOGDUNEREStPpaMjIxaPZ4lYh/cv9t9Z3f6NJrFxqKoc2cY6tUDANQ5eRJFBQW40rmzjC00PbWOnxZLlqDUzQ36Zs0AAHYXL0Lz44/IGD78vo6n1n6qDqX3Qb2tW9FoyxYU+PlVuY3t1auo8/nnuBgdDUOjRrXehmbLlwNCoNTLS1qmAVCUlyf9Xuf4cRQIgZx27Wr9/Eqm9PFjrJYLF6LUywt6T88qt3H45Rfc8PBArrt7rZ3XnP3ndcf4rYpZE1fgVtX1u+++kxLXiRMn4o8//sDhw4cREBAgbafX65GTk4PQ0FAMGTIECxYswJUrV9C/f3+89tpr0Gorb/ro0aMRGRlZblltV1wzMjLQvHlzo94ZqBH74P5V6LsbNwAA9qtXA926AQA0/frByckJLVq0kLOpJqP28aPRaKB99VVoJ026teDdd6H58MNqx1Pt/WQMi+mDhg0h7O3hsH9/1dt8+SUweDCaN28ONG5c603QaLXAiBGwnT8fQOV9pwkIgHPduqir0ueWu1nM+KkG7eTJ0L74YpXrNQ89BNcHHsADtRBjpfaf2RPX4OBgrFq1CqdOncK1a9fQrVs3XL9+Hb6+vli8eHGl+0RGRiIyMhI6nQ4TJ05EmzZt0L9//0q3tbe3r7Uk9V5sbGwUFUg5sA/un9R3Go30u/Tx4T/LNCrvW9WOHyGg0WjKx1OI+46navupGiylD+4Z43/W2dw5NmqTEIBGU6ENlfWd2p9b7mYp4+df3X4eMeKx1GaMldZ/Zm/JAw88AB8fH8ybNw8hISGwtbWFn58fUlJSkJiYiLKyMhQVFSEpKQl5eXlISUnB77//Dr1ej7p160Kr1cLW1tbczSYyrX+S1Qo/k2ViPK3Pv8XZHONACW0g02KM5ZkOq1+/fjh//jxC/7lA3NnZGStWrEB8fDxCQkIwYMAA7NixAwCQl5eHt99+G4GBgRgyZAgeffRRhISEyNFsotonRPWWk/JVFjvGU92qE19TjQVjj8uxaLkYYwAyXCoAAI0bN0bTpk3h7e0tLXv44Yfx0UcfVdi2e/fu2LJlizmbR0REREQKZPaKq16vR3x8PAYMGGDuUxMpz+13xnd/tKzyd8yq9s+1hhLGU/3ujnllbq83ZcXVmDZwLFouxhiAmRPX3Nxc+Pv749KlSxh+n1PDEBEREZF1MuulAq6urjh01wTJRAR+mUdtGE/rI/eXZqpT9SXLxRjL8+UsIvoHv5ylPvxylvVRwpezLOX8ZHoqjzETVyIlYIVOXRhP66OESpgS2kCmxRgzcSWSFSuu6sOKq/VRQsWVUyWpmxLGmEIwcSVSAlbo1IXxtD5KqIQpoQ1kWowxE1ciWbHiqj6suFofJVTDWHFVNyWMMYVg4kpERGRqVlAJIzIHJq5EcuINCNSHNyCwPsZMRXXntnK1gWPRclX2WlEZK4gxE1ciIiIisghMXInkxIqr+rDian14y1cyNVZcJUxciYiIiMgiMHElUgJOn6QujKf1kXuaIt7yVd2qU3FVOSauRHLidFjqw+mwrI8lTVUk9/nJ9FQeYyauRErACp26MJ7WRwmVMCW0gUyLMWbiSiQrVlzVhxVX66OEiitvQKBuShhjCsHElYiIyNSsoBJGZA5MXInkxOmw1IfTYVkf3oCATI3TYUmYuBIREZkaK65EtYKJK5GcWHFVH1ZcrQ8rrmRqrLhKmLgSERERkUVg4kqkBJw+SV0YT+sj9zRFvAGBuvEGBBImrkRy4nRY6sPpsKyPJU1VJPf5yfRUHmMmrkRKwAqdujCe1kfuShgrrurGiquEiSuRnFhxtQ6Mp7qx4kpKovIYM3ElIiIyNSuohBGZAxNXIjlxOix1YTytE6fDIlPjdFgSJq5ERESmxoorUa1g4kokJ1bo1IXxtE6suJKpseIqYeJKRERkaqy4EtUKJq5ESsDpk9SF8bQ+cseZ02GpG6fDkjBxJZITp8NSF8bTOnE6LFISlceYiSuRErBCpy6Mp/WRuxLGiqu6seIqYeJKJCdW6NSF8bROrLiSkqg8xkxciYiITM0cFVdSL8ZXwsSVSE6cPkldGE/rpITpsABOlWQNGGMmrkRERCZnBdceEpkDE1ciObFCpy6Mp3VSQsWVNyBQN96AQMLElYiIyNRYcSWqFUxciZSA0yepC+NpfeSOM6fDUjdOhyVh4kokJ06fpC6Mp3UyJr63Ewq5x4Lc5yfTU3mMmbgSKQErdOrCeFofuePMiqu6seIqYeJKJCdW6NSF8bROvAEBKYnKY8zElYiIyNR4AwKqCcZXwsSVSE6cPkldGE/rpITpsABOlWQNGGMmrkRERCbHiivVBOMrYeJKJCdW6NSF8bROrLiSuTDGTFyJiIhMjhVXqgnGV8LElUgJOH2SujCe1kcJceZUSerHGDNxJZIVp09SF8bNOvEGBKQkKo8xE1ciJWCFTl0YT+sjd5x5AwJ14w0IJExcieTEiqu63CtujKl6seJKSqLyGDNxJSIisnQqT1asHuMrYeJKJCdOn6QuVcXzznWkPpwOi8yFMWbiSkREZHKcDotqgvGVMHElkhMrrurCiqt1YsWVzIUxZuJKRERkcqy4Uk0wvhImrkRKwOmT1IXxtD5KiDOnSlI/xpiJK5GsOB2WunA6LOukhOmwjD0ux6Flqk7cVB5jJq5ESsAKnbowntZHCXFmNU79GGMmrkSyYsVVXVhxtU5KqLgaS+7zk+mpPMZMXImIiCydypMVq8f4Spi4EsmJ02GpC6fDsk7GTIdljnHAqZLUjzFm4kpERGTxVJ6sWD3GV8LElUhOrLiqCyuu1ok3ICBzYYyZuBIREZkcb0BANcH4Spi4EikBp09SF8bT+ighzpwqSf0YYyauRLLidFjqwumwrBOnwyJT4w0IJExciZSAFTp1YTytjxLizGqc+jHGTFyJZMWKq7qw4mqd5K64shqnfoyxhIkrEREREVkEJq5EcuJ0WOrC6bCsE29AQObCGDNxJSIismgqT1QIjPEdmLgSyYkVV3VhxdU6seJK5sIYM3ElIiKyaCpPVAiM8R2YuBIpAadPUhfG0/ooIc6cKkn9GGMmrkSy4nRY6sLpsKwTp8MiU2OMJUxciZSAFTp1YTytjxLizGqc+jHGTFyJZMWKq7qw4mqdWHElU2OMJUxciZSAFTp1YTytjxLizGqc+jHGTFyJZMWKq7qw4mqdWHElU2OMJUxciYiIiMgiMHElkhNvQKAuvAGBdeINCMhcGGMmrkRERBZN5YkKgTG+AxNXIiXgl3nUhfG0Pkr40owS2kCmxRgzcSWSFb+cpS78cpZ1kvuLM3Kfn0yPMZYwcSVSAlbo1IXxtD5KiDOrcerHGDNxJZIVK67qwoqrdeJ0WGRqjLGEiSuRErBCpy6Mp/VRQpxZjVM/xpiJK5GsWHFVF1ZcrRMrrmRqjLGEiSsRERERWQQmrkRy4g0I1IU3ILBOct+AoLJxV1UbOA4tE2MsYeJKRERERBaBiSuRnFhxVRdWXK2T3BXXu89xr/Uch5aNMWbiSkREZNFUnqgQGOM7MHElUgJOn6QujKf1UcI0RUpoA5kWY8zElUhWnA5LXTgdlnWSe6oiuc9PpscYS5i4EikBK3TqwnhaHyXEmdU49WOMmbgSyYoVV3VhxdU68QYEZGqMsYSJKxERERFZBCauRHLidFjqwumwrJPc02Fxcnr1Y4wlTFyJiIiIyCJo5W4AAHTt2hVvvvkm4uLikJ+fj5EjRyI6OhoAUFRUhOXLl2P//v3QarV4+umnMWbMGGis4AJkRSopAUpLoSkqAgoLARu+96kWg6F835WU3Fp+d4XOYLi1jRrd3QdqUlR06//KKq6FhdWLqZr7yViW0gd6vfEV19uPpzbdPp4xbSgrU+9zy90sZfwYo7LnlspoNLfGY23E2GBQZPVWEYkrACQnJ2PLli24dOkSnnvuOfTp0wdNmjTB+vXrcfHiRWzduhX5+fl45ZVX4OnpiaeeeqrS45SUlKDkdjLwD61WC3t7+1ppp8FgKPe/tdGMHg2b//4XLeVuiIWyASr0nbC1hRDi1pMEAI2dHTR//gk4OZm7eWZRWR+ojUGrleIJrfbWR1teXtU6hjX007+xpD4Qvr4Q93pduD0OBg40WRvuHHeVvVZp7Oyg+f131T633M2Sxo+xyj23VEJjZwfNzp21EmMbALaHDsHw4IM1PpbR5zTiDYZiEtfo6Gg4OjqidevWaNWqFdLS0tCkSRPs2bMHc+fOhYuLC1xcXBAZGYndu3dXmbjGxsZi3bp15ZYNGzYMERERtdrejIyMWj2epagzeDC03brJ3QxVKfPwQNGlS9LvNoMGwbFRI0W+06V/JxwdUeDhAVy4cGuBlxecPvwQmuJieRtGJlXSvj1Kb8e8Co5xcbC5ft0k5xd2diho1+7/x90/7nytshk+HI7Nm5vk/GR6om5dFLi6VojxnbQTJqBOz561dk6Dq6tZ8x0vI97gKyZxrV+/vvSzg4MDCgoKAADZ2dnw8PCQ1nl6eiI7O7vK44wePRqRkZHlltV2xTUjIwPNmzc36p2B6rRowT6oAaP6rkUL4LHHzNswM7LK8fPww9XexSr76S6q64ORI812qkr7rkULoGtXs7VBbqobP8Zo0QKopcTVYDAgX4H9p5jEtSpubm7Q6XTw9PQEAOh0Ori5uVW5vb29fa0lqfdiY2OjqEDKgX1w/9h37ANjsZ/YBzXBvmMf1JTS+k85LalCUFAQ1q1bh5s3b0Kn02HTpk3o06eP3M0iIiIiIjNTfOI6btw4NG3aFEOGDMHzzz+P0NBQ9OvXT+5mEREREZGZKeJSgSNHjpT7fe3atdLPDg4OmDlzJmbOnGnuZhERERGRgii+4kpEREREBDBxJSIiIiILwcSViIiIiCwCE1ciIiIisghMXImIiIjIImiE4H0liYiIiEj5WHElIiIiIovAxJWIiIiILAITVyIiIiKyCExciYiIiMgiMHElIiIiIovAxJWIiIiILAITVyIiIiKyCExciYiIiMgiMHElIiIiIovAxJWIiIiIqhQeHo6TJ0/K3QwATFwr9dlnn+Hpp59Gz549ER4ejjVr1qCsrOye+yQkJOC1114zUwvNZ82aNRg2bBi6deuG3bt3S8sTEhLQo0cP+Pn5Sf90Op2MLZVfeHg4wsLCUFpaKi1bsGAB1qxZI2Or5MXxU7nw8HD07NkTfn5+CAoKwssvv4zExES5myUrjpX7o6SEQk4cP9Vz53OQn58fwsPD5W6S0bRyN0Bp1q9fj+3bt2P+/Pno1KkT/vzzT8yaNQvZ2dmYNWuW3M0zu+bNm2PKlClYvXp1hXXdu3fHypUrZWiVchUUFCAhIQFPP/203E1RBI6fqq1evRodO3bE9evXsX//frz11lt47bXXMHToULmbJguOFaoJjp/qu/0cZGlYcb3DzZs3ERsbizfeeAM+Pj7QarVo06YN3nnnHezcuRPp6em4fv06Zs6ciZCQEAQFBWHlypX466+/8J///Ae//vor/Pz88Mwzz8j9UGrNU089hccffxz29vZyN8UiPPvss4iNjYVer6+wLj4+HgMHDkRwcDDeeust5OXlAQBeeukl7Nq1S9quoKAAvXr1wtWrV83WblPh+Pl39evXx+DBg/HSSy/ho48+QllZGc6dO4exY8ciMDAQUVFRSElJkba/dOkSJk6ciKCgIPTt2xfx8fEytr72cKzUzIkTJzBq1Cj4+/sjLCys3LhYs2YN3nrrLbzxxhvo1asXoqOjkZmZKWNrax/HT83pdDrpuWXo0KFISkoqtz45ORmDBg1CcHCwrJ8kMnG9w4kTJ6DX6+Hr61tu+SOPPAJPT08kJydj1qxZcHR0xM6dO/HVV1/B398fzZo1w4wZM9C9e3ccOHAAmzdvlukRmNfx48cRFBSEYcOGYdu2bXI3RxF69OgBNzc3JCQklFv+008/4eOPP8aKFSuQkJCAwsJCLF++HAAQEhKC77//Xtr2xx9/RIcOHdCwYUOztt3cOH7K8/Pzw40bN5CWloYJEybg2Wefxffff48XXngB06ZNQ3FxMfR6PSZNmoT27dvj66+/xueff45HH31U7qabHMfKv9NqtXjzzTfxww8/YNGiRfjoo4+Qmpoqrf/hhx8wYsQI7Nu3Dw8++CDWrVsnY2vNi+Pn3xkMBsTExKBnz57YvXs33nrrLcyePRs5OTnSNvv27UNsbCzi4uLw5Zdf4sCBA7K0lZcK3OHGjRtwdXWFra1thXUNGjRAbm4ujh07hqVLl8LBwQEA0KlTJ3M3UxF8fHwQHx8PDw8PpKSkYOrUqWjYsCECAwPlbprsxo0bhwULFpS7Zui7777DkCFD4OXlBQB45ZVXMHLkSMyePRu9e/fGsmXLcPPmTdSrVw979uxBSEiIXM03C46fiho1agQAOHDgAFq3bi31RUBAADZs2ICTJ09Cq9WiqKgI48aNg0ajQZ06ddCuXTs5m21yHCvGad++fbmfe/bsiePHj6Nt27YAgMcffxyPPfYYAKBPnz5Wc+09x0/VXnnlFdjY3KpfPvLII9Dr9YiIiABwK7fp0qULkpKSMGDAAAC3PlGsX7++9CnRvn374OfnZ/Z2M3G9wwMPPIDc3FyUlZVVSF6vXbsGW1tbNGjQQEparVnTpk2ln729vTFixAj88MMPfDLArReIRo0alfv4PycnB126dJF+9/T0RGFhIfLy8uDq6orHHnsM+/fvR2BgIA4fPozZs2fL0XSz4fip6HZlw2Aw4PDhwwgICJDW6fV65OTkwMbGBp6entBoNDK10vw4VoyTlpaGpUuX4syZMygtLUVJSQlatmwpra9fv770s4ODAwoKCmRopflx/FTtf/7nf6RrXPfs2YNZs2aVe94pKysr98a4cePG0s8eHh44fvy42dp6Jyaud+jUqRO0Wi0OHjwIf39/afkff/yBzMxMdOzYEevWrUNRUVGF5NWaXkgqY+2P/25jx47Fe++9JyWrjRo1KvdNVp1OBwcHBzg7OwP4/8sFbGxs8Oijj8LV1VWOZsuG4+dWpdXV1RXNmjWDr68vFi9eXGGb48ePIzMzE0IIq+0za33c/2bRokXo0qULli1bBgcHB7z55psQQsjdLMXh+Kmcm5sbWrdujU2bNlW5zZUrV6SfdTqdbJez8RrXO9SrVw+jR4/GwoULcfToUej1epw9exazZ8/GgAED0KVLF3Tu3BlLly5FQUEBioqKpGlI6tevj6ysrH+dNsvS6PV6FBcXQwgh/WwwGJCUlITr168DAFJTU7FlyxZZPjJQqieeeAINGjSQpjgKDg7G9u3bkZ6ejsLCQnz44Yfo06ePtH1gYCB+++037NixQ1WXCXD8/Lvc3Fx88cUXWL16NcaPHw8/Pz+kpKQgMTERZWVlKCoqQlJSEvLy8tChQwc4ODhgw4YNKCkpQV5eHk6fPi33Q6gVHCs1U1BQAGdnZ9SpUwe//fYbDh06JHeTzIrjp2a8vb2h1+uxfft2lJaWorS0FL/99lu5gkt8fDxyc3Nx6dIl7NixA71795alray43uWFF15AvXr1MH/+fOh0OjRo0ADh4eF4/vnnAQDz58/HokWLEB4eDo1Gg8GDB6Njx47o1q0b3N3dERwcjCZNmtzzXYslmT9/vvSR92+//YY5c+Zg9erV+OWXXzBnzhwUFRXBzc0No0aNUlXCVRvGjh2LCRMmAAB69uyJkSNHYsKECcjPz8eTTz6JmJgYadt69eqhS5cu+Omnn7Bs2TK5mlzrOH6qNn78eNjY2MDOzg5t27bF3LlzpY/pVqxYgWXLlmHevHnQarV49NFHpU+Eli9fjoULF6Jv376wt7fHmDFjVHGdK8fK/dNoNHjttdfw7rvvYvXq1ejRowd69eold7PMiuOnZrRaLVasWIElS5bgww8/hBAC7du3x4wZM6RtAgICEB0djZs3b2LYsGGyjTGN4GcJREREFikoKAixsbF48MEH5W4KkVnwUgEiIiILdOTIEQC3vuxJZC14qQAREZGFeffdd/Hzzz9j5syZsLOzk7s5RGbDSwWIiIiIyCLwUgEiIiIisghMXImIiIjIIjBxJSIiIiKLwMSViIiIiEzu8uXLePLJJ2t0DM4qQESkAEeOHMH48eMBAF9++SWaNGkic4uISKlKSkrwn//8B7/88gvy8/PxyCOP4PXXX0fr1q0BAHFxcfj0009hMBgwcOBATJgwARqNBnq9HjNmzMCpU6eQnZ2Nb7/9Fo0aNZKOO3fuXOzevRta7a300NPTE5999lmlbbh8+TIGDBgAR0dHaVlAQADeeecdEz5yJq5ERGY3d+5c7Nq1Cz4+Pli7di0AwNnZGd7e3gAAe3t7OZtHRApXVlaGpk2bIjY2Fo0aNcLmzZsxZcoU7Ny5EwcPHsS2bdsQFxcHBwcHvPTSS2jZsiUGDhwIAPDx8cGoUaMwevToSo/94osvIjo62qh22Nvb48CBA7X1sIzCSwWIiBSgbdu2iIuLQ1xcXLkKCBHR3RwdHfHCCy/A3d0dtra2GD58OC5fvozc3Fx8/fXXGDp0KJo1a4ZGjRohKioK33zzDYBbt3Z95pln0LFjR5O2Lzk5GVFRUQgICMC4cePw119/lVsfHx+P4OBgDBgwAImJidU6NhNXIiIzCg8Pl+6pfvToUXTt2hVdu3bFkSNHpJ8vX74M4FZltmvXrtI+/fv3h7+/P5YuXYqioiIsXboU/v7+CAsLw7Zt28qdJzs7G/PmzUNoaCgef/xxDBw4EOvXr4derzf7YyYi0zpx4gQaNGgAV1dXnD9/XrpkAADatGmDP//80+hjbdy4EUFBQRgzZgyOHj1a7bbodDpMnz4dU6dOxd69e9G7d2/MmDEDt28bUFpairS0NHz11VeYPn06Zs+ejevXrxt9fCauRERm9Mgjj8DV1RUAULduXXh7e8Pb2xupqalV7pOTk4P33nsPdnZ2yM/Px+bNmzFy5Eh8+eWXcHZ2hk6nw6JFi3D+/HkAQG5uLqKjo5GQkIDCwkJ4eXlBp9Nh9erVePfdd83xMInITPLy8rBgwQK8/PLLAICCggI4OztL6+vWrYuCggKjjjVixAjs2LED3377LYYNG4aYmBjodLoqty8pKUFAQID07+DBg/j2228RFBSEzp07w9bWFiNGjEBmZqb0hlwIgXHjxqFOnTp48skn4e3tjUOHDhn9eJm4EhGZ0ZIlS+Dr6wvgVhJ7+/KAtm3bVrlPaWkpVq1ahe3bt8Pd3R0AkJGRgc2bN2Pbtm2oU6cODAYDkpOTAQCfffYZsrKy0LBhQ3zxxRfYvHkzFi5cCADYtWsXMjIyTPwoicgciouLMWXKFPj6+krXsDo5OSEvL0/aJj8/H05OTkYdr23btnBxcYGdnR369euHTp064ZdffgEAREREwM/PD35+flIya29vj/3790v/fH19odPpkJCQUC6hLSwsRHZ2NgDAxsam3OVQ7u7uyMnJMfox88tZREQK5+Ligs6dOwMAPDw8kJWVhVatWkkzD9SvXx86nQ7Xrl0DAPz+++8AgKtXryIkJKTcsYQQOHXqFJo3b26+B0BEtU6v1+PNN9+Em5sbJk2aJC338vLCuXPnpDfIZ86cwUMPPXRf59BoNNLPd88ucLuCejc3NzcMGTIEkydPrrDu8uXLMBgMyMnJgZubGwAgKysLPj4+RreJFVciIoWrW7eu9LOtrW2FZbdfXG5fQ3b7/zsvRbjzn4ODg7maTkQm8u6776K4uBhz584tl2A+9dRT+Pzzz3Hp0iXk5ORg06ZN6Nevn7S+pKQExcXFAG59mnP7ZwDYu3cvCgsLodfr8d133+H48ePo1q1btdoVGhqKPXv24NixYzAYDMjPz8f3338vrddoNFi/fj1KSkrw888/4+TJk+jZs6fRx2fFlYjIzG4njkVFRSY5focOHZCUlARbW1ssWLBAqszm5+fjhx9+QGBgoEnOS0TmkZmZiYSEBNSpU6fc3/MHH3wAX19fnD17FqNGjYLBYMCgQYMwYMAAaZshQ4YgMzMTwK0viwK35pEGgP/+9794++23odFo0KJFCyxevLjac0o3bdoU8+fPx4oVK5Ceng5HR0d07doVwcHBAAA7Ozt4eXnhqaeegqOjI95++200aNDA6OMzcSUiMrOWLVsCAFJSUjB8+HA4Ojpi7NixtXb8iIgI7Ny5E1euXMGQIUPg5eWF/Px8ZGVlQa/XIywsrNbORUTm5+npKSWblRk9enSV87QmJCRUud+GDRuMbkOTJk2QlJRU6bouXbogLi7unvuMGDHC6HPdiZcKEBGZ2YABA9C7d284OzsjLS0Np06dgsFgqLXj169fH7GxsQgPD8cDDzyAtLQ0FBcX47HHHqv0ujMiIkuhEbcvhiIiIiIiUjBWXImIiIjIIjBxJSIiIiKLwMSViIiIiCwCE1ciIiIisghMXImIiIjIIjBxJSIiIiKLwMSViIiIiCwCE1ciIiIisghMXImIiIjIIjBxJSIiIiKLwMSViIiIiCwCE1ciIiIisgj/BxikBXdOV9xxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "show_anomalies_from_scores(\n", + " series=s_taxi_test,\n", + " anomalies=series_taxi_anomalies[pred_start:],\n", + " pred_scores=anomaly_scores,\n", + " pred_series=model_forecasting,\n", + " window=windows,\n", + " title=\"Anomaly results using a forecasting method\",\n", + " names_of_scorers=scorer_names,\n", + " metric=\"AUC_ROC\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A zoom on each anomalies: visualize the results" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAHECAYAAAAj78DAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hUVfrHP3dmMpmW3kiH0EMvinQQEEQpdlwVARFddW0sqOsiYmGx62+XtVJcxbZ2BJEFEURQAaW3hEBISEJ6mZbJzJzfH0NGhoSQDiHn8zw8mtPuOWfm3vne97znPYoQQiCRSCQSiUTSAlGd7w5IJBKJRCKR1BcpZCQSiUQikbRYpJCRSCQSiUTSYpFCRiKRSCQSSYtFChmJRCKRSCQtFilkJBKJRCKRtFikkJFIJBKJRNJikUJGIpFIJBJJi0UKGYlEIpFIJC0WKWQkkouU5cuXoygKOp2O9PT0KvkjRoyge/fuAPz8889oNBpmz55dbVsLFy5EURTWrFnjTVu5ciUTJkwgKioKrVZLaGgoo0aNYsWKFVRUVNTYtxEjRqAoCklJSVQXXHzTpk0oioKiKCxfvrwOo248rFYrTz75JD/88EOVvCeffBJFUcjPz2/+jkkkEh+kkJFILnLKy8v5+9//XmOZyy67jEceeYRXX32VzZs3++Tt3buXBQsWcNdddzFu3DiEEEyfPp2JEyfidrt5+eWXWbduHe+++y69evXinnvu4d///vc5+xUQEMDRo0f5/vvvq+QtXbqUwMDAug20kbFarSxYsKBaISORSC4cpJCRSC5yxo0bxwcffMCuXbtqLDd//nx69OjBtGnTsFqtADidTqZNm0ZcXBwvvvgiAC+88ALLly9nwYIFrFq1iltuuYVhw4YxYcIEXn75ZQ4dOkS/fv3O2a+EhAQuu+wyli5d6pNeVlbGf//7X2666aZ6jrh6KioqcDqdjdqmRCI5/0ghI5Fc5MydO5ewsDAeeeSRGstptVr+85//kJGR4S37j3/8g99//53ly5djMpmoqKjgueeeo0uXLsybN6/adtq0acOQIUNq1bcZM2bw+eefU1xc7E376KOPAJgyZUqV8qmpqUyfPp2OHTtiMBiIjY1lwoQJ7Nmzx6fcDz/8gKIovPfee8yePZvY2Fj8/f1JTU0lLy+Pe+65h+TkZEwmE5GRkVx++eX8+OOP3vrHjh0jIiICgAULFniXuaZNm+ZznZMnT3LzzTcTFBREVFQUM2bMoKSkxKeM3W7nscceo127dmi1WmJjY7n33nt9xgzQtm1brr76atasWUPfvn3R6/V06dKlitCTSCS+SCEjkVzkBAQE8Pe//53vvvuu2mWc0+nZsycLFixg8eLFvPbaazz99NM8/PDDDB06FIDt27dTWFjIpEmTUBSlwX2bMmUKarWaDz/80Ju2ZMkSrr/++mqXlrKysggLC2PRokWsWbOGxYsXo9FoGDBgAIcOHapS/rHHHuP48eO88cYbrFy5ksjISAoLCwGPBWrVqlUsW7aMpKQkRowY4V1Gio6O9voD3XHHHWzdupWtW7dWEW/XXXcdnTp14rPPPuPRRx/lgw8+4KGHHvLmCyGYPHkyL774IrfddhurVq3i4Ycf5t133+Xyyy+nvLzcp71du3Yxe/ZsHnroIb766it69uzJHXfcwaZNm+o3wRJJa0BIJJKLkmXLlglAbNu2TZSXl4ukpCTRv39/4Xa7hRBCDB8+XHTr1q1KPafTKQYOHCgA0a1bN2G32715H330kQDEG2+80aC+nX7t22+/XfTv318IIcS+ffsEIH744Qexbds2AYhly5adtR2n0ykcDofo2LGjeOihh7zpGzZsEIAYNmzYOfvidDpFRUWFGDVqlLjmmmu86Xl5eQIQ8+fPr1Jn/vz5AhDPP/+8T/o999wjdDqdd47XrFlTbbmPP/5YAOKtt97ypiUmJgqdTifS09O9aTabTYSGhoq77rrrnOOQSFor0iIjkbQCtFotzzzzDNu3b+eTTz6psaxarWb+/PkA/O1vf8Pf379J+zZjxgy2b9/Onj17WLJkCe3bt2fYsGHVlnU6nSxcuJDk5GS0Wi0ajQatVktKSgoHDhyoUv66666rtp033niDvn37otPp0Gg0+Pn5sX79+mrbqImJEyf6/N2zZ0/sdju5ubkAXgvYmUtSN9xwA0ajkfXr1/uk9+7dm4SEBO/fOp2OTp06VbvrTCKReJBCRiJpJUyZMoW+ffvy+OOPn3N7dKV40Wq1PumVP7JHjx5ttH4NGzaMjh078uabb/Lee+8xY8aMsy5bPfzww8ybN4/JkyezcuVKfvnlF7Zt20avXr2w2WxVykdHR1dJe/nll/nzn//MgAED+Oyzz/j555/Ztm0b48aNq7aNmggLC/P5u3LeKtspKChAo9F4/W0qURSFNm3aUFBQUGN7lW3WtV8SSWtCc747IJFImgdFUXjuuecYM2YMb731Vr3a6N+/P6GhoXz11Vf84x//aBQ/GYDp06fz97//HUVRuP32289a7v3332fq1KksXLjQJz0/P5/g4OAq5avr3/vvv8+IESN4/fXXfdLLysrq1/kaCAsLw+l0kpeX5yNmhBDk5ORwySWXNPo1JZLWhrTISCStiNGjRzNmzBieeuopzGZznev7+fnxyCOPcPDgQZ5++ulqy+Tm5vLTTz/Vqd3bb7+dCRMmMGfOHGJjY89aTlGUKktdq1at4sSJE7W+VnVt7N69m61bt/qknWldqQ+jRo0CPOLpdD777DMsFos3XyKR1B9pkZFIWhnPPfcc/fr1Izc3l27dutW5/pw5czhw4ADz58/n119/5U9/+hPx8fGUlJSwadMm3nrrLRYsWMDgwYNr3WZMTAxffvnlOctdffXVLF++nC5dutCzZ0927NjBCy+8QFxcXK2vdfXVV/P0008zf/58hg8fzqFDh3jqqado166dT5yZgIAAEhMT+eqrrxg1ahShoaGEh4fTtm3bWl9rzJgxjB07lkceeYTS0lIGDx7M7t27mT9/Pn369OG2226rdVsSiaR6pEVGImll9OnTh5tvvrne9RVFYdmyZXz11VcAPPjgg1x++eVMnTqV7du389xzz/HnP/+5sbrrw2uvvcatt97KP/7xDyZMmMDXX3/N559/Tvv27WvdxuOPP87s2bNZsmQJV111Fe+88w5vvPFGtbFvlixZgsFgYOLEiVxyySU8+eSTdeqvoih8+eWXPPzwwyxbtozx48d7t2J///33Te5ILZG0BhQhqjnoRCKRSCQSiaQFIC0yEolEIpFIWixSyEgkEolEImmxSCEjkUgkEomkxSKFjEQikUgkkhaLFDISiUQikUhaLFLISCQSiUQiabFIISORSCQSiaTFIoVMPXG73Rw9ehS3232+u3LeaO1zIMffuscPcg5a+/hBzsGFMH4pZCQSiUQikbRYpJCRSCQSiUTSYpFCRiKRSCQSSYtFChmJRCKRSCQtFilkJBKJRCKRtFikkJFIJBKJRNJikUJGIpFIJBJJi0UKGYlEIpFIJC2WeguZ3bt3c8kll7B8+XJv2vLlyxk9ejSXX345r732GkIIb96+ffu4+eabGTx4MLNmzSI7O9ubZ7fbmTdvHsOGDeOqq65izZo1PtdauXIl48ePZ/jw4SxYsICKior6dlsikUgkEslFRL2EjNvt5uWXXyY5OdmbtnnzZj799FOWL1/OJ598wubNm/n6668BcDgczJ07lylTpvD999/TvXt3nnjiCW/dN998k5KSElavXs3ChQtZtGgR6enpAKSmpvLKK6/w4osvsmrVKrKysliyZElDxiyRSCQSieQiQVOfSp9//jndu3fHbDZ701avXs31119PXFwcALfeeivffvstkyZNYseOHej1eiZNmgTAnXfeyejRo8nOziY6OprVq1fz0ksvYTKZ6NWrF8OGDWPt2rXceeedrFmzhjFjxnhF08yZM3nmmWe4++67q+2bw+HA4XD4DlKjQavV1meoZ6UyHHNrDUsNcg7k+Fv3+EHOQWsfP8g5aOrxq1TntrfUWciUlJTw4YcfsmzZMl5++WVv+tGjRxk/frz3706dOrF48WIA0tLS6NChgzdPr9cTFxdHWloaRqORgoICn/xOnTqxb98+b92BAwd68zp27MiJEyew2+3odLoq/Vu2bBlvv/22T9oNN9zAjTfeWNeh1oqMjIwmabcl0drnQI6/dY8f5By09vGDnIOmGn+7du3OWabOQmbx4sXcfPPNBAYG+qRbrVZMJpP3b6PRiNVqBcBms2E0Gn3KG41GbDYbVqsVtVrtI0pqqlt5DZvNVq2QmT59OrfccovvIJvIIpORkUF8fHytFOPFyPmcg2PHjtG+fXt27NhB7969m/XalZw5/oMHDzJjxgx27txJly5d+O2335qtL8uXL+fhhx+msLCw2a4p7wE5B619/HB+5yApKYkHHniABx54oFmvezoXwnegTkLm4MGD7Nu3j0ceeaRKnsFg8FlqslgsGAwGwGOBsVgsPuUtFgt6vR6DwYDL5fKxsNRUt/Iaer2+2j5qtdpGFy01oVKpWuUNPG3aNN59913mzJnDokWLvHPw5Zdfcs011/g4ejcFlde7EOa/sg8LFizAaDRy6NAhTCZTtf0aMWIEvXv35tVXX23UPtx8881cffXV52UuLoTP4HzTmuZg2rRpFBcX8+WXX3rTPv/8c6ZOncpTTz3F3Llzz1/nziPn6zugKMoF8d07n/dAnYTMb7/9xvHjx71LSGazGbVaTWZmJu3atSM1NZUhQ4YAcPjwYZKSkgCPavziiy+87dhsNjIzM0lKSiIwMJCwsDBSU1Pp3r17tXVTU1O9dVNSUoiNja3WGiNpXnQ6HW+++SaPPPIIYWFh57s7jYLD4ai3ED5y5AhXXXUViYmJjdyrc6PX688q7iU105DPXAIff/wx8+fPZ/HixcycOfN8d0fSCqmTfLr22mv54osvWLFiBStWrGDYsGFMmTKFBx54gPHjx/PZZ59x4sQJ8vPzWbFiBVdeeSUA/fr1w2azsXLlShwOB0uWLCE5OZno6GgAxo8fzzvvvIPFYmHPnj1s2rSJMWPGADBu3DjWrVvHwYMHMZvNLF261Nuu5PwyatQoIiIiWLRo0VnLPPnkk1WWfl599VXatm3r/XvatGlMnjyZhQsXEhUVRXBwMAsWLMDpdDJnzhxCQ0OJi4tj6dKlVdo/ePAggwYNQqfT0a1bN3744Qef/P379zN+/HhMJhNRUVHcdttt5Ofne/NHjBjBfffdx8MPP0x4eLj3e3cmbrebp556iri4OPz9/endu7dPmABFUdixYwdPPfUUiqLw5JNPVmlj2rRpbNy4kddeew1FUVAUhWPHjuFyubjjjjto164der2ezp0789prr3nr2e12unXrxqxZs7xpR48eJSgoyOsPtnz5coKDg6vtO3iW4hRF4aOPPjrrfJ2rHwA//PADl156KUajkdDQUG644QbvDsNfd/xK+77tCQgIIDAwkH79+rF9+3Zv3S1btjBs2DD0ej3x8fHcf//9PtbWtm3bsnDhQmbMmEFAQAAJCQm89dZbPtffsmULvXv3RqfT0b9/f7788ksURWHnzp3eMvX9zJ988kkSEhLw9/cnJiaG+++//6zzKfHwwgsvMH/+fN5//30fEVN5T7/44otER0cTFhbGvffe6xM6o6ioiKlTpxISEoLBYODKK68kJSUFACEEERERfPbZZ97yvXv3JjIy0vv31q1b8fPz81rpFUXhnXfe4ZprrsFgMNCxY0fvztmz8f7779O/f38CAgJo06YNf/rTn8jNzfXm//DDDyiKwvr16+nfvz8Gg4FBgwZx6NChKu107NgRrVZL586dee+993zyFUXhzTff5Oqrr8ZgMNC1a1e2bt1KamoqI0aMwGg0MnDgQI4cOeKtc+TIESZNmkRUVBQmk4lLLrmEdevWnXUsM2bM4Oqrr/ZJczqdtGnTptpn50WFaADz588Xy5Yt8/69dOlScfnll4sRI0aIV199Vbjdbm/e3r17xU033SQGDRokZs6cKbKysrx5NptNPP7442LIkCFi/Pjx4ttvv/W5ztdffy3GjRsnhg4dKubPny/Ky8sb0u1GweVyibS0NOFyuc53V84Lt99+u5g4caJ4/fXXhU6nExkZGUIIIb744gtx+tdq/vz5olevXj51X3nlFZGYmOjTVkBAgLj33nvFwYMHxZIlSwQgxo4dK5599llx+PBh8fTTTws/Pz9x/PhxIYQQR48eFYCIi4sTn376qdi/f7+YOXOmCAgIEPn5+UIIIbKyskR4eLh47LHHxIEDB8Rvv/0mxowZI0aOHOm99vDhw4XJZBJz5swRBw8eFAcOHKh2vC+//LIIDAwUH374oTh48KCYO3eu8PPzE+vXrxcul0tkZ2eLbt26idmzZ4vs7GxRVlZWpY3i4mIxcOBAceedd4rs7GyRnZ0tnE6ncDgc4oknnhC//vqrSEtLE++//74wGAzi448/9tb9/fffhVarFV988YVwOp1i8ODBYtKkSd78ZcuWiaCgoLN+XrWZr3P1o6KiQgQFBYm//vWvIjU1Vezdu1e88MIL4ujRo0IIITp26SjoiThw4IA4fPiw+OSTT8TOnTuFEELs3r1bmEwm8corr4jDhw+Ln376SfTp00dMmzbN28fExEQRGhoqFi9eLFJSUsQ//vEPoVKpvJ9JaWmpCA0NFbfeeqvYt2+fWL16tejUqZMAxO+//96gz/y///2vCAwMFKtXrxbp6enil19+EW+99dZZ57OS1vgcuP3228WkSZPEI488Ikwmk/jPf/5TZfy33367CAwMFHfffbc4cOCAWLlypTAYDD5zOnHiRNG1a1exadMmsXPnTjF27FjRoUMH4XA4hBBCXHvtteK+++4TQghRWFgo/Pz8RHBwsNi3b58QQoiFCxeKAQMGeNur/H5/8MEHIiUlRdx///3CZDKJgoKCs45lyZIlYvXq1eLIkSNi69at4rLLLhNXXnmlN3/Dhg0CEAMGDBA//PCD2Ldvnxg6dKgYNGiQt8ynn34q/Pz8xL/+9S9x6NAh8dJLLwm1Wi2+//57n77FxsaKjz/+WBw6dEhMnjxZtG3bVlx++eVizZo1Yv/+/eKyyy4T48aN89bZuXOneOONN8Tu3bvF4cOHxeOPPy50Op1IT0/3lklMTBSvvPKKEEKIn376SajVap/f1q+++koYjcZqn0eNxYVwDzRIyLRmmvLDc7uFsFqb/99puvOcVAqZtLQ0cdlll4kZM2YIIeovZBITE33msnPnzmLo0KHev51OpzAajeLDDz8UQvzxw7xo0SJvmYqKChEXFyeee+45IYQQ8+bNE1dccYXPtTMyMgQgDh06JITw/Kj17t37nOONiYkRzz77rE/aJZdcIm699VZvv3v16iXmz59fYzvDhw8XDzzwwDmvd88994jrrrvOJ+35558X4eHh4i9/+Yto06aNyMvL8+bVVsjUNF/n6kdBQYEAxA8//CCE8L0HcnKEMBiNgsmICldFlXZuu+02MWvWLJ+0H3/8UahUKmGz2YQQnofyrbfe6s13u90iMjJSvP7660IIIV5//XURFhbmLS+EEG+//baPkKnvZ/7SSy+JTp06eX9Ea0ujPwfcbiFKSpr/Xx1u/ttvv11otVoBiP/973/Vjr/ynnY6nd60G264Qdx0001CCCEOHz4sAPHTTz958/Pz84VerxeffPKJEEKI//u//xPdu3cXQgjx5Zdfiv79+4trr71WLF68WAghxBVXXCEeeeQRb31A/P3vf/f+bTabhaIoVV6Ma+LXX38VgPeHv1LIrFu3zltm1apVAvB+DwcNGiSmTJniMwc33HCDGD9+/Fn7tnXrVgGIJUuWeNM+/PBDodPpauxfcnKy+Oc//+n9+3QhU5l/+v08efJkn5eFpuBCEDL1iiMjaVrsdjgfVu3/+z+oj5vFP/7xD0aPHs3s2bPrfe1u3br5OIpFRUV5faYA1Go1YWFhPmZfwGdrvkajoX///hw4cACAHTt2sGHDBp/ddJUcOXKETp06AdC/f/8a+1ZaWkpWVhaDBw/2SR80aBC//vprLUdYM2+88QbvvPMO6enp2Gw2HA5HlSW52bNn89VXX/HPf/6Tb7/9lvDw8Dpfp6b5Olc/QkNDmTZtGmPHjmXMmDGMGjWKgQMHkpiYyLZtcMnwqWz8+nXGjB7D2CvGcsMNN9C+fXvA81mkpqayYsUK77WEELjdbo4ePUrXrl0B6NmzpzdfURTatGnj/cwPHTpEz549ffzjLr30Up/x1fczv+GGG3j11VdJSkpi3LhxjB8/ngkTJqDRNPMjsqwMgoKa95oAJSVwxk7UmujZsyf5+fk8+eSTvP7669WW6datG2q12vt3dHQ0e/bsAeDAgQNoNBoGDBjgzQ8LC6Nz587e7+OIESN44IEHyM/PZ+PGjYwYMYKEhAQ2btzIrFmz2LJlCw8++GCVflViNBoJCAio8sw4nd9//50nn3ySnTt3UlhY6I2Fcvz4cZ+Ar6e3W+kSkZubS0JCAgcOHOCaa67xaXfw4MFVlmVPbyMqKgqAHj16+KTZ7XZKS0sJDAzEYrGwYMECvvnmG7KysnA6ndhsNo4fP37W8cycOZO33nqLuXPnkpuby6pVq1i/fv1Zy18sSCFzAaLTeUTF+bhufRg2bBhjx47lb3/7G9OmTfPJU6lUVXYwVXfEhJ+fn8/fiqJUm1aboEuKogAev5YJEybw3HPPVSlT+TACqoQGOFe7lZw5rvryySef8NBDD/HSSy8xcOBAAgICeOGFF/jll198yuXm5nLo0CHUajUpKSmMGzeuUa5fOa7a9GPZsmXcf//9rFmzhk8++YS///3vrF27Frd7EIOu+DMbk15ndPxovl/3PfPnz+ejjz7immuuwe12c9ddd1Xrd5KQkOD9/5o+cyHEOT+D+n7m8fHxHDp0iP/973+sW7eOe+65hxdeeIGNGzdW6VOTEhDgERXNTUBAnYrHxsby2WefMXLkSKZPn8769esJOkOAneuzrI7TP+Pu3bsTFhbGxo0b2bhxI0899RTx8fE8++yzbNu2DZvN5t1cUptrnonFYuGKK67giiuu4P333yciIoLjx48zduzYKkFVT2/39OfLmWnVjaOmNmpqd86cOXz33Xe8+OKLdOjQAb1ez/XXX1+lb6czdepUHn30UbZu3crWrVtp27YtQ4cOPWv5iwUpZC5AFKV+lpHzyaJFi+jdu7f3jbeSiIgIcnJyfG7s0x0zG8rPP//MsGHDAI9j244dO7jvvvsA6Nu3L5999hlt27Zt0Jt1YGAgMTExbN682Xst8DgbdunSpU5tabVaXC6XT9qPP/7IoEGDuOeee7xppzv9VTJjxgy6d+/OnXfeyR133MGoUaN83hprQ03zVdt+9OnThz59+vDII4/Qv39/PvzwQ0aPHoSjwgXhMOPPM3h87uPcfPPNLFu2jGuuuYa+ffuyb98+n8CXdaVLly6sWLGC8vJy/P39AXyciaFhn7ler2fixIlMnDiRe++9ly5durBnzx769u1b7z7XGUWpk2XkfJKQkMCGDRsYNmwY48aN47vvvqsSX+xsJCcn43Q6+eWXXxg0aBAABQUFHD582GudUxSFYcOG8dVXX7F3716GDh1KQEAAFRUVvPHGG/Tt25eAOgqw0zl48CD5+fksWrSI+Ph4oOr3qTZ07dq1Sr0tW7Z4x1FffvzxR6ZNm+a19pjNZo4dO1ZjnbCwMCZPnsyyZcvYunUr06dPb1AfWgrnf/O55KKgR48e3HLLLfzzn//0SR8xYgR5eXk8//zzHDlyhMWLF/Ptt9822nUXL17MF198wcGDB7n33nspKipixowZANx7770UFhZy88038+uvv5KWlsbatWuZMWNGFTFxLubMmcNzzz3Hxx9/zKFDh3j00UfZuXNnFQvUuWjbti2//PILx44dIz8/H7fbTYcOHdi+fTvfffcdhw8fZt68eWzbtq3KOLdu3cp//vMf/vSnP3H99ddzyy231Ph2Vh01zde5+nH06FEee+wxtm7dSnp6OmvXruXo0aN06dIFm83G2k//AUfhyNEj/PTTT2zbts37MH/kkUfYunUr9957Lzt37iQlJYWvv/6av/zlL7Xu+5/+9CfcbjezZs3iwIED3rdV+ONttr6f+fLly1myZAl79+4lLS2N9957D71ef1620rck4uLi+PDDDykoKOCKK66gpJbWpI4dOzJp0iTuvPNONm/ezK5du7j11luJjY31HmUDnufHBx98QM+ePQkMDPSKmxUrVjBixIgG9T0hIQGtVss///lP0tLS+Prrr3n66afr3M7s2bP57LPPeOONN0hJSeHll1/m888/569//WuD+tehQwc+//xzdu7cya5du7zf/3Mxc+ZM3n33XQ4cOMDtt9/eoD60FKSQkTQaTz/9dBWTcdeuXfn3v//N4sWL6dWrF7/++muDb/DTWbRoEc899xy9evXixx9/5KuvvvL6jsTExPDTTz/hcrkYO3Ys3bt354EHHiAoKKjOgZvuv/9+Zs+ezezZs+nRowdr1qzhyy+/rFX47NP561//ilqtJjk52WvKvvvuu7n22mu56aabGDBgAAUFBT5WkYMHDzJnzhz+/e9/e98cFy9eTHFxMfPmzavT9Wuar3P1w2AwcPDgQa677jo6derE3XffzW233cZdd92FoqixWorhC7j8ksu58cYbufLKK1mwYAHg8Q/YuHEjKSkpDB06lD59+jBv3jyf5Z5zERgYyMqVK9m5cye9e/fm8ccf9x4+W+k3U9/PPDg4mLfffpvBgwfTs2dP1q9fz8qVKy+a+EhNSZs2bdiwYQPFxcWMGTOG4uLiWtVbtmwZ/fr14+qrr2bgwIEIIVi9erXPcsvIkSNxuVw+omX48OG4XC6GDx/eoH5HRESwfPly/vvf/5KcnMyiRYu8wrguTJ48mXnz5vHSSy/RrVs33nzzTZYtW9ZgofXKK68QEhLCoEGDmDBhAmPHjq2VdXD06NFER0czduxYYmJiGtSHloIiGmuhv5XhdrtJT08nMTHxgoiqeD5o7XPQksZ/7Ngx2rVrx++//95oRzqcPv7PP1fxzc5feNfvMnbetZNebXo1yjXOxYoVK5g+fTolJSXnJSBgS/oONAWtffxw4c2B1WolJiaGpUuXcu211zb59S6E8UsfGYlE0mCEgIoKN/hBuau8ya7zn//8h6SkJGJjY9m1axePPPIIN954o4xqLGn1uN1ucnJyeOmllwgKCmLixInnu0vNhhQyEomkwbjd4HB6fFDKnU0nZHJycnjiiSfIyckhOjqaG264gWeffbbJrieRtBSOHz9Ou3btiIuLY/ny5c0fOuA80npGKpG0Ytq2bdukB3m63eCo8DgiNqVFZu7cua32UEKJpCaa+h6/kDn/C3oSiaTFIwQ43U1vkZFIJJIzkUJGIpE0GLcbBE1vkZFIJJIzkUJGIpE0GCFOEzLSIiORSJoRKWQkEkmD8VhkTi0tSYuMRCJpRqSQkUgkDUYIQJEWGYlE0vxIISORSBqM2w1uaZGRSCTnASlkJBcsP/zwA4qi1DrkOXi2IL766qtN1qe6MmLECB588EHv343RvwttjOARMkgfGUkL4UK8hyT1RwoZSb2YNm0aarWaxx9/vErePffcg6IodT5QsTWwbds2Zs2aVauyy5cvJzg4uEFtNBdCSItMa2PLli34+fnJ+1xy3pFCRlJv4uPj+eabb7DZbN40u93Ohx9+SEJCwnnsWeNS1xOmayIiIgKDwXDe22hs3G6kj0wrY+nSpdx3331s376d48ePn+/uXNRUVFSc7y5c0EghI6k3ffr0ISYmhs8//9yb9vnnnxMfH0+fPn18ypaXl3P//fcTGRmJTqdjyJAhbNu2zafM6tWr6dSpE3q9npEjR3Ls2LEq19yyZQvDhg1Dr9cTHx/P/fffj8ViqXWfp02bxuTJk1mwYAGRkZEEBgZy1113+YiVESNGcN999/Hwww8THh7OmDFjANi/fz/jx4/HZDIRFRXF1KlTKSws9NazWCxMnToVk8lEdHQ0L730UpXrn2nSLi4uZtasWURFRaHT6ejevTvffPMNP/zwg/cwREVRUBSFJ598sto2jh8/zqRJkzCZTAQGBnLjjTdy8uRJb/6TTz5J7969ee+992jbti1BQUFMmTKFsrKyWs/bufDZfi0tMhc9FouFTz75hLvvvpvLL7+cd9991ye/cll4/fr19O/fH4PBwKBBgzh06JBPuddff5327duj1Wrp3Lkz7733nk++oii8+eabXH311RgMBrp27crWrVtJTU1lxIgRGI1GBg4cyJEjR7x1jhw5wqRJk4iKisJkMnHJJZewbt26s45lxowZXH311T5pTqeTNm3asHTp0mrrpKenM2HCBEJCQggICGDs2LGsXr3am79v3z6uuuoqAgMDCQgIYOjQod4+ut1unnrqKeLi4vD396d3796sWbPGW/fYsWMoisInn3zCiBEj0Ol0vP/++4DnxPCuXbui0+no0qUL//73v886rtaEFDKSBnH99df7PMSWLl3KjBkzqpSbO3cun332Ge+++y6//fYbHTp0YOzYsV4hkJGRwbXXXsv48ePZuXMnM2fO5NFHH/VpY8+ePYwdO5Zrr72W3bt38/HHH7N582buu+++OvV5/fr1HDhwgA0bNvDhhx/yxRdfsGDBAp8y7777LhqNhp9++ok333yT7Oxshg8fTu/evdm+fTtr1qzh5MmT/OUvf/HWmTNnDhs2bOCLL75g7dq1/PDDD+zYseOs/XC73Vx55ZVs2bKF999/n/3797No0SLUajWDBg3i1VdfJTAwkOzsbLKzs/nrX/9apQ0hBJMnT6awsJCNGzfyv//9jyNHjnDTTTf5lDty5Ahffvkl33zzDd988w0bN25k0aJFdZq3mvDZfi0tMhc9H3/8MZ07d6Zz585MmjSJ5cuXVxse//HHH+ell15i+/btaDQan2fDF198wQMPPMDs2bPZu3cvd911F9OnT2fDhg0+bTz99NNMnTqVnTt30qVLF/70pz9x11138dhjj7F9+3YAn2eA2Wxm/PjxrFu3jt9//52xY8cyYcKEs1qNZs6cyZo1a8jOzvamrV69GrPZzI033lhtnXvvvZfy8nI2bdrErl27mDt3LiaTCYATJ04wbNgwdDod33//PTt27GDGjBk4nU4AXnvtNV566SVefPFFdu/ezdixY5k4cSIpKSk+13jkkUe4//77OXDgAGPHjuXtt9/m8ccf59lnn+XAgQMsXLiQefPmVRGRrRIhqRcul0ukpaUJl8vV6G273W5RYi9p9n9ut7vWfbz99tvFxIkTxfbt24W/v784evSoOHbsmNDpdCIvL09MmjRJ3H777UIIIcxms/Dz8xMrVqzw1nc4HCImJkY8//zzQgghHnvsMdG1a1efPjzyyCMCEEVFRUIIIW677TYxa9Ysn378+OOPQqVSCZvNJoQQIjExUbzyyis19js0NFRYLBZv2uuvvy5MJpP3sxw+fLjo3bu3T7158+aJK664wictPT1dAOLAgQOirKxMaLVa8dFHH3nzCwoKhF6vFw888IA37fT+fffdd0KlUolDhw5V29dly5aJoKCgKumnt7F27VqhVqvF8ePHvfn79u0TgPj111+FEELMnz9fGAwGUVpa6i0zZ84cMWDAgLPMUu04/R745z+FGPGX9wVPIu5aeVeD2m1JNPZzwO12i5KSkmb/V5d7XwghBg0aJF599VXhcrnE4cOHRXh4uPjf//7nzd+wYYMAxLp167xpq1atEoD3Xh00aJC48847fdq94YYbxPjx471/A+Lvf/+79++tW7cKQCxZssSb9uGHHwqdTldjf5OTk8U///lP799nPieSk5PFc8895/178uTJYtq0aWdtr0ePHuLJJ58UQlT9Djz22GOiXbt2wuFwVFs3JiZGPPvssz5pl1xyibjnnnuEEEIcPXpUAOLVV1/1KRMfHy8++OADn7Snn35aDBw48Kz9bA6a8rewtshDIy9AyhxlBC0KavbrljxaQqB/YJ3qhIaGMn78eN59912EEFx11VWEh4f7lDly5AgVFRUMHjzYm+bn58ell17KgQMHADhw4ACXXXYZiqJ4ywwcONCnnR07dpCamsqKFSu8aUII3G43R48epWvXrrXqc69evXx8TAYOHIjZbCYjI4PExEQA+vfvX+XaGzZs8L51nTm+8vJyHA6HT59DQ0Pp3LnzWfuxc+dO4uLi6NSpU636XR0HDhwgPj6e+Ph4b1pycjLBwcEcOHCASy65BPAsRwUEBHjLREdHk5ubW+/rnokQIBTp7NtQysrKCAo6D/d+SQmBgbW79w8dOsSvv/7qXVLWaDTceOONLF26lNGjR/uU7dmzp/f/o6OjAcjNzSUhIYEDBw5UcVofPHgwr7322lnbiIqKAqBHjx4+aXa7ndLSUgIDA7FYLCxYsIBvvvmGrKwsnE4nNputRj+emTNn8tZbbzF37lxyc3NZtWoV69evP2v5+++/nz//+c+sXbuWUaNGcdlll3mfHTt37mTo0KH4+flVqVdaWkpWVpbPs7By3Lt27fJJO/0ZlJeXR0ZGBnfccQd33nmnN93pdJ6X78uFhhQyFyAB2gBKHi05L9etD9OnT+f+++8HYPHixVXyxSmT8+kipTK9Mk3U4tRWt9vNXXfd5b3W6TSGc/Hp/TMajVWuPWHCBJ577jmftBMnTtC/f3+fNfraotfr69/ZU5w+hzWln/lQVRQFt2fPdKPgdoOils6+DSUgIICSkvNw7wfU/t5fsmQJTqeT2NhYb5oQAj8/P4qKiggJCfGmn/69q/w+nv69q+mZUFMbNbU7Z84cvvvuO1588UU6dOiAXq/n+uuvr9Fpf+rUqTz66KNs3bqVrVu30rZtW4YOHXrW8jNnzmTs2LGsWrWK7777jkWLFvHiiy9y//331+q+rs24T38GVY7t7bffZsCAAT7l1Gr1Oa93sSOFzAWIoih1toycT8aNG+d9SIwdO7ZKfocOHdBqtWzevJk//elPgMcLf/v27d4YK8nJyXz55Zc+9X7++Wefv/v27cu+ffvo0KFDg/q7a9cubDab94Hz888/YzKZiIuLO2udvn378tlnn9G2bVs0Gs9t43a78fPzw2g00qFDB/z8/Pj555+9oqqoqIjDhw8zfPjwatvs2bMnmZmZHD58uFqrjFarxeVy1TiW5ORkjh8/TkZGhtcqs3//fkpKSmptoWoMhAA/P+ns21AURam1ZeR84HQ6+c9//sNLL73EFVdcgdvtJisri5iYGG644QZWrFhRa5+1rl27snnzZqZOnepN27JlS4O/tz/++CPTpk3jmmuuATw+M9VtHDidsLAwJk+ezLJly9i6dSvTp08/53Xi4+O5++67mTVrFvfeey/vvPMO999/Pz179uTdd9+loqKiygtEYGAgMTExbN68mWHDhnnTt2zZwqWXXnrWa0VFRREbG0taWhq33HLLOfvW2pDOvpIGo1arOXDgAAcOHKj27cBoNPLnP/+ZOXPmsGbNGvbv38+dd96J1WrljjvuAODuu+/myJEjPPzwwxw6dIgPPviA5cuX+7TzyCOPsHXrVu6991527txJSkoKX3/9tY/DbW1wOBzccccd7N+/n2+//Zb58+dz3333oVKd/Xa49957KSws5Oabb+bXX38lLS2NtWvXMnfuXFwuFyaTiTvuuIM5c+awfv169u7dy7Rp02psc/jw4QwbNozrrruO//3vfxw9epRvv/3Wu4Ohbdu2mM1m1q9fT35+PlartUobo0ePpmfPntxyyy389ttv/Prrr0ydOpXhw4dXWR5rStxuUGmks+/FzjfffENRURF33HEH3bt3p3v37nTu3Jnu3btz/fXXs2TJklq3NWfOHJYvX84bb7xBSkoKL7/8Mp9//nm1Tu11oUOHDnz++efs3LmTXbt28ac//alW1seZM2fy7rvvcuDAAW6//fYayz744IN89913HD16lN9++42tW7fSpUsXwON4XFpaypQpU9i+fTspKSm899573h1bc+bM4bnnnuPjjz/m0KFDPProo+zcuZMHHnigxms++eST/OMf/+C1117j8OHD7Nmzh2XLlvHyyy/XcmYuXqSQkTQKgYGBNb5JLlq0iOuuu47bbruNvn37kpqaynfffec1QyckJPDZZ5+xcuVKevXqxRtvvMHChQt92ujZsycbN24kJSWFoUOH0qdPH+bNm+dde68to0aNomPHjgwbNowbb7yRCRMmeLc2n42YmBh++uknXC4XY8eOpXv37jz00EMEBAR4xcoLL7zAsGHDmDhxIqNHj2bIkCH069evxnY/++wzLrnkEm6++WaSk5O9wghg0KBB3H333dx0001ERETw/PPPV6mvKApffvklISEhDBs2jNGjR5OUlMTHH39cpzlpKEKA5pRFxu60N+u1Jc3HkiVLGD16dLV+Gddddx07d+7kt99+q1VbkydP5rXXXuOFF16gW7duvPnmmyxbtowRI0Y0qI+vvPIKISEhDBo0iAkTJjB27Fj69u17znqjR48mOjqasWPHEhMTU2NZl8vFvffeS9euXRk/fjxJSUneZfWwsDC+//57zGYzw4cPp1+/frz99tte68z999/P7NmzmT17Nj169GDNmjV8/fXXdOzYscZrzpw5k3feeYfly5fTo0cPhg8fzvLly2nXrl0tZ+biRRG1cU6QVMHtdpOenk5iYmKNb90XMy1xDqZNm0ZxcXGVZaz60BLH35icPv6XXlKx2fFvvnbey5CEIfw4/cfz3b1mQX4HLp7xW61WYmJiWLp0Kddee22t611Mc1AfLoTxSx8ZiUTSYNxu0Gjc4JRLS5KWhdvtJicnh5deeomgoCAmTpx4vrskqSNSyEgkkgYjBKj8XKjQSGdfSYvi+PHjtGvXjri4OJYvX+515pe0HOQnJmlVnOlALGkcKi0yfsIgLTKSFkXbtm1rFf5BcuHS+hb0JBJJoyMEqDVuNOilRUYikTQrdRYyzz77LGPHjmX48OHcdNNN/Pijx6lv5cqVDBgwgKFDh3r/5eTkeOvt27ePm2++mcGDBzNr1iyfcy3sdjvz5s1j2LBhXHXVVT4HaFW2PX78eIYPH86CBQvkSaASyQVG5fZrtdBLi4xEImlW6ixkbrnlFlauXMnGjRt54oknmDdvHqWlpQBceuml/Pjjj95/bdq0ATxxO+bOncuUKVP4/vvv6d69O0888YS3zTfffJOSkhJWr17NwoULWbRoEenp6QCkpqbyyiuv8OKLL7Jq1SqysrLqFKtAIpE0PZUWGbXbIC0yEomkWamzkGnbti1arRbwxLBwOBzk5+fXWGfHjh3o9XomTZqEv78/d955J/v37/daZVavXs2sWbMwmUz06tWLYcOGsXbtWgDWrFnDmDFjSE5OxmQyMXPmTL799tu6dlsikTQhbjegcqF2S4uMRCJpXurl7Lto0SJWrlxJeXk5w4cPJykpiX379rFr1y5GjRpFaGgoN910E9dffz0AaWlpPmHl9Xo9cXFxpKWlYTQaKSgo8Mnv1KkT+/bt89Y9/SC+jh07cuLECex2OzqdrkrfHA5HlTM1NBqNV3w1FpWRIhvzvJqWRmufAzn+P8bvdiuguNAIj0WmtcyJ/A607vGDnIOmHn9tYtPUS8g8+uijzJkzh+3bt5Oamgp4zqL56KOPaNOmDfv37+evf/0rYWFhjBw5EpvNVuUQPqPRiM1mw2q1olarfUSJ0Wj0hmM/s27l6cM2m61aIbNs2TLefvttn7QbbriBG2+8sT5DPScZGRlN0m5LorXPgRx/Bg5HLDabBY0w4HQ7OXrsKCql9ewlkN+B1j1+kHPQVOOvTeTiem+/VqvVDBgwgA8//JCkpCQfq0n37t2ZMmUKGzZsYOTIkej1eiwWi099i8WCXq/HYDDgcrl8LCwWiwWDwQBQpa7ZbPamV8f06dOrHKrVVBaZyoP6WmM0R5BzIMf/x/jVajU6gxa18NyXbWLboPdr+OneFzryO9C6xw9yDi6E8Tc4jozb7SYzM7NK+ulHkiclJfHFF194/7bZbGRmZpKUlERgYCBhYWGkpqbSvXt3AA4fPkxSUpK3bqXVByAlJYXY2NhqrTHgOTG4sUVLTahUqlb55T2d1j4HcvwqhFBAEWiE5wWkQlRgVBnPUfPiQX4HWvf4Qc7B+Rx/na5qtVr59ttvsVqtOJ1O1q9fz44dO+jTpw9btmyhqKgIgIMHD/Lxxx8zdOhQAPr164fNZmPlypU4HA6WLFlCcnKy97C/8ePH884772CxWNizZw+bNm1izJgxAIwbN45169Zx8OBBzGYzS5cu5corr2zMOZBIJA3E7QahuLwWGenwK5FImos6WWQUReGrr77iueeeQwhBfHw8zzzzDB06dGDlypXMnz8fu91OREQEU6dO9YoRrVbL888/z9NPP82iRYtITk7mqaee8rZ711138cwzzzBu3DgCAwN59NFHadu2LeA5kv3BBx/koYcewmKxcPnllzNjxozGmwGJRNJghAAUNxrhsZTKLdgSiaS5qJOQ0ev1vPHGG9XmPfTQQzz00ENnrdutWzc++uijavN0Oh3PPPPMWetOmDCBCRMm1KWrEomkGXG7AcWNItT4q/2lRUYikTQbrXdBTyKRNBpCgFu4UFDhr/GXFhmJRNJsSCEjkUgajNcig7TISCSS5kUKGYlE0mCEADcuQIVWLS0yEomk+ZBCRiKRNJg/fGRU0iIjkUiaFSlkJBJJgxECBC7v0pLdaT/fXZJIJK0EKWQkEkmDcbtB4EY5tbTkcDnOXUkikUgagQZH9pVIJBKPRcbj7KsoatyidR6gJ5FImh8pZCQSSYPxWGRcKEKFoqikkJFIJM2GXFqSSCQNRggQimdpSUGRQkYikTQbUshIJJIG43ZXBsRToygqBOJ8d0kikbQSpJCRSCQNQojTfWRUqJBLSxKJpPmQQkYikTQIccr4Ik6dtSSXliQSSXMihYxEImkQ7lOaxS1cKIrH2VcIubQkkUiaBylkJBJJg/BaZIQbFdIiI5FImhe5/VoikTQIr0UGFypUIH1kJBJJMyKFjEQiaRCVFhm3cP+xtCR3LUkkkmZCChmJRNIgTveRUaEGubQkkUiaEekjI5FIGoTXIoMblSIj+0okkuZFWmQkEkmDqLTICHHqrCXkriWJRNJ8SIuMRCJpEJVCxiVcqBQVcmlJIpE0J9IiI5FIGoR3+zVu1KhALi1JJJJmRFpkJBJJg/BaZNwuVMqppSW5a0kikTQTUshIJJIGIQQoisfZV0EuLUkkkuZFChmJRNIg3G5QqTxxZFSKWh4aKZFImhUpZCQSSYOotMh4lpbkWUsSiaR5kUJGIpE0CB+LjAyIJ5FImhkpZCQSSYNwu09ZZE5tv5ZLSxKJpDmRQkYikTQIIf6wyCiKCpU8a0kikTQjUshIJJIGUWmRcQs3atQg5NKSRCJpPqSQkUgkDaLSIuNyu7ynX0shI5FImgspZCQSSYM43SKjkmctSSSSZqbOQubZZ59l7NixDB8+nJtuuokff/zRm7d8+XJGjx7N5ZdfzmuvvebzMNu3bx8333wzgwcPZtasWWRnZ3vz7HY78+bNY9iwYVx11VWsWbPG55orV65k/PjxDB8+nAULFlBRUVGfsUokkibAa5E55eyryF1LEomkGamzkLnllltYuXIlGzdu5IknnmDevHmUlpayefNmPv30U5YvX84nn3zC5s2b+frrrwFwOBzMnTuXKVOm8P3339O9e3eeeOIJb5tvvvkmJSUlrF69moULF7Jo0SLS09MBSE1N5ZVXXuHFF19k1apVZGVlsWTJkkYavkQiaSg+FhmVCkXuWpJIJM1InYVM27Zt0Wq1ACiKgsPhID8/n9WrV3P99dcTFxdHeHg4t956K99++y0AO3bsQK/XM2nSJPz9/bnzzjvZv3+/1yqzevVqZs2ahclkolevXgwbNoy1a9cCsGbNGsaMGUNycjImk4mZM2d625VIJOef031k1MizliQSSfNSr9OvFy1axMqVKykvL2f48OEkJSVx9OhRxo8f7y3TqVMnFi9eDEBaWhodOnTw5un1euLi4khLS8NoNFJQUOCT36lTJ/bt2+etO3DgQG9ex44dOXHiBHa7HZ1OV6VvDocDh8PhO0iNxiu+Ggv3qZPyKv/bGmntcyDH7xm3y+VGpVJObb9WPGluV6uYF/kdaN3jBzkHTT1+lerc9pZ6CZlHH32UOXPmsH37dlJTUwGwWq2YTCZvGaPRiNVqBcBms2E0Gn3aMBqN2Gw2rFYrarXaR5TUVLfyGjabrVohs2zZMt5++22ftBtuuIEbb7yxPkM9JxkZGU3Sbkuitc9Bax9/Tk4eLlc4jgoHbqeg3FZOUXGRd3m4NdDavwOtffwg56Cpxt+uXbtzlqmXkAFQq9UMGDCADz/8kKSkJAwGA2az2ZtvsVgwGAyAxwJjsVh86lssFvR6PQaDAZfL5WNhqalu5TX0en21/Zo+fTq33HKL7yCbyCKTkZFBfHx8rRTjxUhrnwM5fs/4IyIi0WpVKGoFrVaLQW8kMDCQxMTE893FJkd+B1r3+EHOwYUw/noLmUrcbjeZmZm0a9eO1NRUhgwZAsDhw4dJSkoCICkpiS+++MJbx2azkZmZSVJSEoGBgYSFhZGamkr37t2rrVtp9QFISUkhNja2WmsMgFarbXTRUhMqlapVfnlPp7XPQWsfPygoinIqIJ4GTkX2bU1z0tq/A619/CDn4HyOv05XtVqtfPvtt1itVpxOJ+vXr2fHjh306dOH8ePH89lnn3HixAny8/NZsWIFV155JQD9+vXDZrOxcuVKHA4HS5YsITk5mejoaADGjx/PO++8g8ViYc+ePWzatIkxY8YAMG7cONatW8fBgwcxm80sXbrU265EIjn/VB4aWXn6tUo6+0okkmakThYZRVH46quveO655xBCEB8fzzPPPEOHDh3o0KEDKSkpTJ06FbfbzeTJk5k4cSLgsZI8//zzPP300yxatIjk5GSeeuopb7t33XUXzzzzDOPGjSMwMJBHH32Utm3bAtChQwcefPBBHnroISwWC5dffjkzZsxovBmQSCQN4syzluT2a4lE0pzUScjo9XreeOONs+ZPnz6d6dOnV5vXrVs3Pvroo2rzdDodzzzzzFnbnTBhAhMmTKhLVyUSSTNxehwZjUoNMiCeRCJpRlrvgp5EImkUTo/sq6CSRxRIJJJmRQoZiUTSIHxOv1bUcmlJIpE0K1LISCSSBnF6ZF+VogIhl5YkEknzIYWMRCJpED4WGZUaRZG7liQSSfMhhYxEImkQ3u3Xp3xkVHJpSSKRNCNSyEgkkgZx+vZrlaJC7lqSSCTNiRQyEomkQVRZWpK7liQSSTPS4CMKJBJJy+fTT8GiziAz7D88PuzxOtUVAlA8FhiVokIRcmlJIpE0H9IiI5FIOHoUlh5+nue3PF/num43XiGjVmRAPIlE0rxIISOR1JLnNj/Hf3b953x3o0k4ml3EVttSSstLKbGX1KmuEKCoXMApi4w8a0kikTQjUshIJLXkq0NfsTVj6/nuRqNjNsMOsZQwRz9MWhMZpRl1qu92A6rTlpbkriWJRNKMSCEjkdQCt3Cz++RussxZ57srjU52NpQYt5Hkuoo2+ngySuohZE4tLcmzliQSSXMjhYxEUgvSitKwVFjILss+311pdHJyoFyXSUJQPKGa+DpbZDzOvnJpSSKRnB+kkJFIasHOnJ1oVBqyyi5Oi4xZyaRdWBwB7oZZZFQqedaSRCJpXqSQkUhq4HDBYeb+by67cnYxJGEIOeYcXG7X+e5Wo3Iiy02xK4suMbH42xPqZ5E55eyrlmctSSSSZkYKGYmkBpb+vpQXtrzA69tfZ1z7cbiEizxr3vnuVqOSlpOHU1TQo20slMZzvOR4neq73QCVzr4yIJ5EImlepJCRSGrg8/1fMyL8JgpsBVwaeymh+tCLanlJCMgyZxKmC6d9og5RHM/x4vrvWpIWGYlE0txIISORnIXD+amkFR0hYddbvDLoIwYnDCYmIOaicvi126FMySQ2MI7AQGijjyezLLNai0p2WTY3fXpTlTwhQJzh7CuFjEQiaS6kkJFIquGXX+Dv760k0T2SyVcGYv7lJjSKlpiAmIvKImM2g1WTSXxQHACdo+Mpd9nJt+ZXKZtSmMIn+z5hb+5en3TPWUu+cWTkriWJRNJcSCEjkZxBRQW88w4cc27lpktHctVVUFAAR45w0QkZiwUcukziAmMBaJ9gIEAVwZGiI1XKVkb8XXl4pU+6EAooLhQU1GoFIZeWJBJJMyKFjERyBsXFoFKBLjyH5PhYtFro0gUOHYIY08UlZMxmsGkziQv0WGTi4iCBIaxPW1+lbLG9GKgqZCq3X6tVahQFubQkkUiaFSlkJJIzKC6GoCA4aTlJlDEKgM6d4eBBiA6IJtt8YfnIHD1a/7qepaUTPkImouRKvk39tkrZkvISLo29lG0ntnHSfNKbXukjo1JUHiGjyF1LEomk+ZBCRiI5g+JiCA6GHHMObUxtAI9F5sgRiNTHcKLsBD//7FmCOt+YzbBwIeTVc0e4xQJl/GGRadMGYq1X8nPmzxTZinzKpmWVQH4nukZ05ZcTv3jTKy0ylUJG7lqSSCTNiRQyEskZFBWBMdhGaXkpUSaPRSYqCkwm0Fs7s+/kQd5e4uRIVTeSZqegwPPfnJz61S8rE5SIP4SMRgM9EuNIMHRlXdo6b7n8fNj0SwnmgiBiDG19Ys14jihwo1ZOLS0JubQkkUiaDylkJJIzKCoCVcBJ1IqaMH0YAIoC3brByqVdEU4NqjZ7OXnyHA01Aw0VMidLi3AIG7EBsd60Hj0gyT2O74585037/nswhJQQGRhMgCuR9OJ0b57bfcbSkty1JJFImhEpZCSSMyguBpf+JBHGCNQqtTf91lvh2WdUDG57Ke6Yn8nNVc5fJ0+Rf2qXdH2FTGZpJgZ1IAH+Ad60nj1BlzOSjcc2etMKC0HRFxMXHoTGkkB68XHsdk+eEJ7t15XOvvL0a4lE0pxIISORnEFxMVRo//CPqUSjgYgIGJx4GZn8fMFYZEym+guZHGsmkbo4n7TYWEhSDyGtKI3M0kzAMycOVQmJbYKoyE/k18PpfPKJR8i53eDGY5FRqQC5a0kikTQjUshIqkUIwWf7P6PTPzvxn13/Od/daVaKisCm/mPH0plcFncZKbafyc1t5o5VQ0EBJCd7TrCuDydtJ4g2+AoZRYF+3QNJ0vfzWmWKisAuSugQH0RFfgJ5juNkejSOxyKj8vWRkbuWJBJJcyGFjMSHQ4fgnY+z6LLocqb99x7cuV1446cV57tbzYbb7bE+WJSqFplKLou7jGNlh8koyMd1ng/CLijw+O6UlXl2INWVfEcmsQFxVdLbtIEkZSQ/HPsBtxtKSsDqLiE6OJgBnROxqrM5kVPu2XotQCB3LUkkkvODFDISHz78EFYdX4FGW8GXo1K4PepVfs3b4I3qerFjNoPLBSWus1tkwgxhjE4aw+bgeyguVldbprkoKID4eAgMrN/yUpErk/jgqkImNBTalA9nY/pG75yUVRQTpAvisb+0wU/lR5Erk7Iy9ant1384+8qlJYlE0pxIISPx4nB4liiC2qUysddQRg0JZGj3JCJUnasNkHYxUVwMNpvnv0Yj5NtOerdeV8cH162g0H8H7x34qNn6eCZWq6fPYWEeC0pWHQMOl5d7DoxsGxpbJS80FHQlvUgtTCUnvxyj0RMQL8g/CJWiIj4oHlVoOvn52lO7lnwj+8pdSxKJpLmQQkYCeHxi1u7eicEAmdYjdAjtAEBMDLS1T+LrQ1+f5x42HU4nPPYYzHown2efsxMS4hsMrzrCDeFcapjC3oK9Zy3T1BQUgF4PBgP8HriA2zYNYN7382pd32IBizqTduFVLTJhYeAqjkHvp2fviSMEBFdgrbASpAsCICEogdLArbx7+G2fyL4qFXJpSSKRNCt1EjIOh4MFCxYwfvx4hg8fzqxZs0hNTQVg5cqVDBgwgKFDh3r/5Zxm6963bx8333wzgwcPZtasWWSf5p1ot9uZN28ew4YN46qrrmLNmjU+1125cqX3mgsWLKDiQgipepGx4dgGJqzqQ1BcFqmFqT5CJrD0Mnbm7D7PPWw6SkvB7rawuesAbMNmc9ddvscTnI2E0ChyzIXN1MuqFBR4BEdZeRlf5j9PaPFoFm9bXGsRYTaDVZ1JYjVLS4GBoFErtAvsyP6TKeiDSgEI1gUDkBiUyGr7E7yfO58KlxPwOPuCPGtJIpE0L3USMi6Xi9jYWJYtW8b333/PsGHDmD17tjf/0ksv5ccff/T+a9PG80brcDiYO3cuU6ZM4fvvv6d79+488cQT3npvvvkmJSUlrF69moULF7Jo0SLS0z0Bt1JTU3nllVd48cUXWbVqFVlZWSxZsqQxxi45jYU/LgSgLGQzx0uOe4WMyQRR/u04VnT0ot2JUlICO8MeQ6vR8PmRd3EZTpBVllWjRQagT6dICmwF3ngqzYndaScn10VYGHy6/1M6h3diYsCTWB12DuUfqlUbJ4vKcKhKvVF9T0elgpAQiDd0IqXwMNrAEjQqDXqNHvA4PA+PuBaAEleOT0A85K4liUTSjNRJyOj1embOnElUVBRqtZqbbrqJrKwsiouLa6y3Y8cO9Ho9kyZNwt/fnzvvvJP9+/d7rTKrV69m1qxZmEwmevXqxbBhw1i7di0Aa9asYcyYMSQnJ2MymZg5cybffntx+2s0N7+e+JVfTvxCFyays+ITdBod0QHR3vwuUW2xuax8t/n879JpCvIKy9nlv5jPbvyMnlE96f92fy6Lu4wu4V1qrNclLgq7Joc9e5qpo6cx5dMpfH7kXaKiYPmu5UzrNY3LLvUjTnUJWzK21KqN1NwT+KEnRBdSbX5oKERqOnKs7DBqYzFB/kEoHm9e7u5/N29f8Ql6dySFFVnes5Y8cWTk0pJEImk+NA2pvHv3bkJDQwkODgZg165djBo1itDQUG666Sauv/56ANLS0ujQoYO3nl6vJy4ujrS0NIxGIwUFBT75nTp1Yt++fd66AwcO9OZ17NiREydOYLfb0el0VfrkcDhwOBy+g9Ro0Gq1DRlqFdxut89/WzIbjm5gVOJYCrZfzk/qhz3WGIH3xygxxoD+cASvf3gUI2EMHuypd7HMQVreCQA6h3Zm7qC5PL3paT657hMUlBrHFmGIwKbOZcMGBavVzaBB4OfXPH0+XnKcvKJtjG8/gR/3/8hH135E8Qk34ZsvY0vGFqb3nn7ONtLyMwhWxyCEqNaCEhqqEOLuwGbbZhRdEcG6YJ/5CAx0o3fGUFiRSZAwnVpaEl4fmZb+vagNF8s9UF9a+/hBzkFTj1+lOre9pd5Cxmw2s3DhQu655x4A+vbty0cffUSbNm3Yv38/f/3rXwkLC2PkyJHYbDaMRqNPfaPRiM1mw2q1olarfUSJ0WjEarUCVKlrMpm86dUJmWXLlvH222/7pN1www3ceOON9R1qjWRkZDRJu83JnqOpZByMYXhMdzZbyonRxXiX9gAMBhOBrrbE9djDl1/2pU2bDDSnfXNa+hzsP55CoBJFZkYmvXS9+PSKTynNLaWU0hrrOcudOIQVuzuPTz8NR4iTtGvXPOtMJ8tOorLv5XDZeuJMcdgL7DgcmQSVDmJj2l99Pr+zcezkCUyqkLOWValCUBfHk+tModh+HL2i9ynrdCoYXLGcKMsgzByDy+mitLQYu60cu9teqz5cLLT0e6ChtPbxg5yDphp/u3btzlmmXkKmvLyc2bNnM2TIECZNmgRAbOwfWzi7d+/OlClT2LBhAyNHjkSv12M5I1qXxWJBr9djMBhwuVw+FhaLxYLBYACoUtdsNnvTq2P69OnccsstvoNsIotMRkYG8fHxtVKMFzLHvzYTG5TEs/dfyuLntfSI7UFiYqI3Py4O3rO1JS4uD3uOmtzcRAYOvHjmoNi1gzD/GJ8x14Y4Vxx+Kj9uvrOI1e9HoFJFUccm6k2JowSnsp8y0zEuibuExMRE3G6Idur4X+kRgqKCvI65Z6PMaSPcGH7WcbdrBz9/1QtzcDamGDMR5RE+Zd1uNwFEU+zMxRTQAZ1DR3BwMDqLAT+tX53nsyVysdwD9aW1jx9axxwU2gp5+7e3eWTwI1XyLoTx11nIOJ1O/va3vxEREcGDDz541nKVa+kASUlJfPHFF96/bTYbmZmZJCUlERgYSFhYGKmpqXTv3h2Aw4cPk5SU5K1buTMKICUlhdjY2GqtMQBarbbRRUtNqFSqFv/lzbWepF9sNHqtjr7RfekS3sVnTCoVdIpMIr30GJcmKhQVKZw+5JY+BzmWHCL10fUaQ5gujDxrHpGRncnP952XpsLutGOpsIDKwqasbxnbYeypzwASwiMJ9Y/kcOFhLou7rMZ2CqzFhEWHnnXc4eHgMocTGBHCxhNrCdIFVSkbpGpDofM4qMQpHxkFRVHjxt2ivxN1paXfAw2ltY8fLu45+OXEL8z/YT5zB8/1OUj3dM7n+Ot81WeffZby8nKefPJJH7GyZcsWioqKADh48CAff/wxQ4cOBaBfv37YbDZWrlyJw+FgyZIlJCcnEx3tcSgdP34877zzDhaLhT179rBp0ybGjBkDwLhx41i3bh0HDx7EbDazdOlSrrzyygYPXPIHhY4c2kd5duh8cdMXTO01tUqZdsHtOFp8FIPBE4jtYiLXlk20KaZedcN14Zy0nCQ8/I+TqJuaAmsBAEEikU3HN9GnTR9vXkQExPh34nDB4XO2U1xeRLipekdfgE6d4M6ZCk+PepJvDn9TrYUnzC+aMjzOvmqVGpVKnrUkkbQ0dubspPO/OpNVVn1UzfSSdCrcFd5DZC806mSRyc7OZuXKlfj7+zNy5Ehv+v/93//xyy+/MH/+fOx2OxEREUydOtUrRrRaLc8//zxPP/00ixYtIjk5maeeespb/6677uKZZ55h3LhxBAYG8uijj9K2bVsAOnTowIMPPshDDz2ExWLh8ssvZ8aMGY0wdAl4zhYqdZ+kc4xHyJxty3Hb4LYcKz6GIQEKz1/olCahwJFFj6D6LYOE6cM4aTlJuwj49ddG7thZyLfmY9IEk6D0Zk9FOn2j+3rzIiIgPOfcQsZz5EAhUUFnF3BaLQwYAAO4H2uFlWhTdJUyYdooLK4TvmctyV1LLZL04nQijZHo/apftpdcvBwtOsrhgsNM/HAim2dsRqfxXfFILz4VDqUwlcTgC2/JuE5CJjo6mu3bt1eb16dPHx566KGz1u3WrRsffVR9OHedTsczzzxz1roTJkxgwoQJdemqpJZk55VTriqka3zNMVPahbTjWPExdJ3dWK0Xj/lUCChxZRMfUvMyzNkI14WTa84logPk5Z06CVo5d72GUGArwKSE0z6gOwUV23yOUoiIgIDjnThcUP19WklJCZSrimgT1K1W13x0yKPVpkfqo7A6shB44sgAIGRAvJbI+A/GM3fQXG7vffv57oqkmTE7zFwWdxknSk+w8dhGxnYY65N/vPQ44BEyo5JGnY8u1sjF84skqRcH0nNBKLQJDK+xXOIpi0W+OHRRLS1ZrWBRskmKqN/SUpguzLu0ZLM1z7JbvjUff3cYI+LGMaO3r3UyMhL8zR1JKUypsY3iYnD5FRJhDG1QX6KNbXCoirG7zagV9akjCuRZSy2NE6Un2J+3/4JdOpA0LWaHmTB9GIPiB7E9y/cl6PBh2Lo/HQOhpBYeOU89rBkpZFo5h07kEKCKQKOq2Tjnr/FnXIdx/FT02UUlZEpLwabJJjG06rJJbQjXe3xk9HpPFOS8vEbuYDUUWAtQO8IYlzyEpy9/2icvIgKUIs/SUk1+KkVFUKEpIkR/dh+Z2hBhCkIl/MhzZJ4W2VcuLbU01h9dD0C2OfscJSUXI2aHGZPWxCUxl7Ata5tP3tq1UKocJ7p8JLszU8/SwvlFCplWzpGTOYT617ysVMmNyTeyLvuTi0rI5BU6sKnyiAmop5DRhZNryQU8IqI5hExWcT5qezjx8dX0JxwCKtpjq7Cd1XEPPBaZclURofqGWWRMRoHBFU2ePcPn9GspZFoW64+uJ8g/SAqZVkqZowyT1kT/mP4+Fhkh4PARB8WuLC6LupyDudIiI7kAySg6SZShdkJmYueJpJsPc6L8QBP3qvk4lncSBcXHz6QuROgjvA//5hIy6XkFBPmHcSrUkg8aDXRuryNKl1Cjw29REdhE4VmPJ6gter0bgyuWk+UZ8qylFooQgnVp67gh+Qayy6SQaY2YHWYCtAG01fUlqyyLl97KZvFiz/Ms35GJWqXmmn5DyLKn4nJdePe2FDKtnHx7zjkPR6wkwD+AEfFXkKKs4mKJxp1Zko1JiTzn0trZaB/UnmPFx7BWWImPh9RmsLyeKMonugafpuRkCHbVvHOpsKQCuzA3eGnJYHBhcMWQa8+QZy21ULLN2WSVZXFt12ulRaaVYnaYMfqZeO35AMLpSr52G4cPw3ffgSH6OHGBcVzRryNOxcq2Aznnu7tVkEKmlVNUkUN0YO2EDMAlsf0o0Ow+Lyc+NwUnyrII1tRvWQkgSh9FsC6Yfbn76NsXDhxoeoff3LIC4sLCzpqfnAx+ZR1ILUw7a5lCazFAgy0yfwiZTNSK2muRkUKm5VBiL8HgZ6BdSDuyy7KlNe0M7ll1D09tfKrGpdqWjtlhRnGasNng6l4DWWn9G+5uH7BpE2gj00kMSiRArydIieWX5nhbqyNSyLRiPDFkcogLqr2Q6R3TgyLtHs44caLFklF2lCj/tvWurygKvaJ6sevkLiIjIToadu1qvP5VR6E9n6Q2Z7fIJCZCkDuJnelplJefpQ1bIVqVrsExQwwGN0Z3LGUVxd6lJUXuWmpRlDnKCNAGEG2KptxVTkl5yfnu0nkhx5zDd6nf+aSV2Et4ffvrfLDnA97c/uZ56lnTY3aYcZhNxMTAK+NeYmbfmbx1cjoVigWXKd0bOybB0JWdJ/af595WRQqZVozNBhZVNvGhtRcyPaN6UKzZT5nF2YQ9az4yrSnEGzo2qI0ekT3YfXI3AP36wY4djdGz6qmogDJXAR1jz26RUamgT7skdh5L4+WXqy9TUl5EkLZhjr4A/v5uTMJj0ap09pVLSy2LsvIyAvwDCPQPRK/Rt1o/mdlrZ3Pft/f5pKWXpBPoH8jEzhMpsBWcp541PWWOMuylJuLiIEgXxAMDHiAuKI7OY3/gUPlGb/Tw5PBuHCrcd557WxUpZFoxZjOYNUfpFHHu00UrSQpJQoWGfTnnDoHfEjhRfph2gZ0a1EbPqJ7sOrmLrLIswttmN6mfTGoqlKsLarTIAMyYnESFKY2sLM/OgzPxCJmGLSuBJ/hfmNYTg6fSIiPccmmpJVHmKEOnBPDNNwqRhuhW6SezM2cnn+7/lCOFR7A4/jA3pxd7llXC9GEU2i6ykOanYXaYsRQGeHdCKorClR2u5FfnO/yUuYmbut0EQL/47hy377vgfCSlkGnF5BVbsaqzaR+aVOs6apWaSKUb+/L2NGHPmo9cZwrtQxpmkekV1YtdObsYvnw4bx96BosFnE1ksNq9z4FDKSXccHaLDHjOxipxFFNSXkRZWdX8kopCQnQNt8gA9GkfC+D1kVGQu5ZaEpl5ZRRkB7BlC/g7olulRealrS9xd7+7CdWHsi/vD4tDWmE6lqxENM7Qi9oiY3aYKc03+YR0GNdhHF8e/JLL211O9KnwFAM7dKNQvY/c3PPU0bMghUwr5nDuMfwwEGGIqFO9WL8eHChs+ULGVmGjWBync3jDhExyRDJmh5mMkgzyyk8AVCseGoPfDnjeCsPOIWSCdEGE6cMQIWnVPnTMziJCDQ23yADcc5vnIee1yMiAeC2Kg2llhBgDmDoVRFk0J0pbn5BJLUxlYPxAekT25J2v97Bjh8eHcE/GMXT2RKz5F7dFpqzc7F1aqmRk25Fo1Vpu7XGrN61HVDI29Un2HLmwRJ0UMq2YlII0wlRJPqeY14YE/x4cLmn5QuZI0RH8hLHeUX0r0Wl0/Gv8v3hu9HPkWLIxmTwRgxsbiwWOZOcToA1Aq9aes3xSSBIEVxUyFRVgE0WENZKQCdAGYPQz+jj7tjQhU1AATz1V/TLcxU5qRhnRIQF07gwmEc3+DI+Qmf7VdNanrT/PvWsessqyiAmIIaSiB7+d2M1HH8Hq1XDoZDomZyIlOaHeU+cvRsrsZsICTBiNf6QZtUbWT13PTd1v8qYF6YIIUcfxS9qF5ScjhUwr5ljxUaL8ar+sVEm0IYF8e8vfiphSkEKQsyMmU8NPeby7/930je5Ldlk2AQFNI2QOHQJjRME5rTGVJIUkUW5M4+RJ33S7HcpVhUSYGmdpSVEUYgNjUatOnbVEy9u1lJHh+ddUlrQLleJiyC0uIy4yAJUKOsVEsysjle9Sv2P5zuXsyG5Cz/ULBCEE2WXZhGiiKUvtgSp6D1OmwNatkFGaTteYRPIzLl6LjBACc0UZsRGmKnlDEoZUeWlqZ+zGwQvM4VcKmVZMRlka0fraO/pWEqg3YnW1/P3XB/IOE1DRsdoIufUhOiCaHHMOAQGiSYRMURFog/MJN9Ts6FtJ+5D2mDVpVaIN22zgUBcRog9utL7FBMSc5uzb8paWKuco58KL9dWk7N0L+uAywkwBAPyp30QOW3/m+v9eT7ghnBzzxT8hBbYCKtwVHNkVTaegnqRZdtOjh6CsDHLL0xk3MBGXOZSS8hKc7otjt+bplLvKceMiPjKgVuU7BHbjuPXC2oIthUwr5oQtjThj3S0ygToj5a6Wf+DSwdwUgpydGk/ImKKpcFegDihoEiHjsaQUEKavvUWmQBypsrRks4FLU0JoA6P6nk5MQIyPs29LFTJnWq8udgoLQaXzbL8GGNunG9fm/sadPR7k/kvvbxVCJrssm0D/QH750cSUy7tRWl7K/21/ia69y7CpcxncLZHO8Z57rshWdJ572/iYHWYAEqOrWmSqIym4AzmOCysonhQyrZiTjjTaBdddyAQbDdjdLd8ik158nGAlEU39TieoglFrJEAbgEufTUkTxBRzOMCm1N4i0za4LbmOdHJzfX0/bDao0BQTrAtutL7FBsT+cdZSC9y1lJcHWm3rs8hYrVCh8gTEA/D3hx5tY7km6GkSghJahZDJKssi1C8apxMG9jey9ra1LPl9CW9YR+Gn6IgLjuLKMTo0wsD+Yxefn4zZYUYRKuKjdbUq3zG8PfnuC+vwSClkWilCCPJdaXXael1JsMGIQ7R8IZNnzSNEW7cdW+ciOiAah39Ok1hkysvBrtTeIpMQlEC2JQOrze3j+2G3g0PVuELm9l63c2ffO1v00lLnzq3PImO1QoXyh0UGPPNw8CC0MbVpNULG3xHDkCGeQ1dHtB3BlhlbEGo77UITUBSFfv0gSBvKR19dfH4yRRYzGmEiOrp2voJd27SnRDmGy+1q4p7VHilkWin51nwqsNIxom2d64YGGKnA1uJ+rM6kwJZHiH8jCxlTNDZ1dpMJGYuovUUmLjCOclc5GPJ8+mO1QrnSuEKmW2Q3hiYORaVqebuW3G7Iz4cePVqnRaacPywyAF26eBzLo4ytQ8hkm7PROqJJTPwjLUQfwrqp61g6cak3LdIUxsnSi88ik5FbhlaYCA6uXfnOUQkI3BzJz2zSftUFKWRaKfnWfPyEkYjgujuIRAR59uhZK1qun4wQgqLyPML1jW+RsShNKWRqv2tJ76cn0hiJ03Qcs/mPdLsd7DSukPGhhZ21VFTkWXpLTvYImqYKZnghYrGA3V2GSfuHf0RSkifqt5+jDUX2IsqdZzmw6yIhqywLjS2GM89hjTRGMjhhsPfvUH0oxY6LzyKTmWtGpw44tePw3AQH+mFyJbAv+8JZXpJCppWSZylE6wrBVDv/Lh/CTwkZc3nLXV4qc5RRIRxEGhvfIlPibjohU+bKr/XSEniWlxy64z6HfFqsbuyihCBdUKP30fMwbFlLS7m5EBoKERGeIxfy8893j5oPqxVsbt+lJT8/iIuDspPhqBQVJy0X93pbRnE22vLoKkLmTCKMYVhFAQ5H8/SrucjON2PU1P6HQKWCENGegyelkJGcZ3KKi9C66ydkggP8UISaInPLtcjkWfJQoyHcFNyo7UaboilyZjfJMQXl5VDmLKj10hJ4hIxV62uRKbSUIRBNYpFpiWct5eV5RIxKBVFtBFktP0RSrbFawebyXVoCaNcO0o+qiTRGXvTLSxnFWYRoYs65ezHCFEq5qtDnpeBiILfYTIB/3X4IwtXtSS2QQkZynskuLsKghOLnV/e6er2CRhjJL225d3SeNY8AdThGY8OD4Z1OdEA0+XZPZNTGDq5WXg4lzvxaLy0BJAQmYFafKWSKUaHyWU5oLBQFEEqL2rWUn+8RMi63i3f8evLMz4+2qP43BKsVLBW+FhnwCJljx1qHw2+OOZuYgJhzlgs3huHUFlx0Qqa03IzRr27Pgjb+7TlaLIWM5DxzsqQQo7p+cURUKtBipNDccu/oPEseRiWi0WLIVBJtiibbnIXR2PjRfW3lTsoqiutskSlVfJeWiuzFGNRBqJTGv/09QqZlWWQKCiAsDFYeXkm5UsgP+R/x3E/Pne9uNTkVFWBzOHC4HdVaZI4fhyjDxS1khBDk27NJCDn3MSWh+lCcfoWsT/v+ohK6Zoe5yud/LmL1SWRY0pqoR3VHCplWSm5ZEQGa+gdE0ypGilqykLHmoRcRBNTt/j0nXSO6crT4KLqgskaPJVNS7gnGVVcfmSK3r0Wm2FZCgF9w43buFJVxZFqSkCks9PjIvPrzq9zR/X66mx9g24lt57tbTU5lDBmgikUmKsrzwhKouriFjNlhpkI4SIg498tBmD6MNPUqpm0Yxd7cvc3Qu+bBUlGGqY5LS/GBbTlpT2+iHtUdKWRaKQXWIoL963/Wjk7VwoWMJQ9tRQQhjRfcFvBEuI0PjKfE9EvjC5mKfPQaA3o/fa3rJAQlkF/ha5EpKS8mQBvcuJ07hUqFZ2mpBe1aKiiAE2xjW9Y2Hh5xJ2pnCCdLL74IrmditQLaMhQUjH5GnzyVCjp0gPLCi1/IAMRVc87QmUSZonDjxF+lx1LRcp99Z2J11t1HJswUgM1lPnfBZkIKmVZKoa2QEF39f8X9VQZKrE3j7Jtdls11n1zXJG1XkmvJQ22POOdOhfowKH4Q2ZotFBc3brulzgJCdXXrcEJQAsUVuRSbbX+04ygmUNv4O5ag5S0tOZ2egxP/tf9x/nLpX4gMCCU2NIS8sotfyFgsoDZ4tl4rSlVfsSlToCijDQcys89D75qHMkcZauFPVMS5nQXHdRjHgoiDhGvjWnToiTOxusoI0tVRyAQYcVJ+wQTFk0KmlVJSXkSosf5CRq8xUmJrmreSvbl7+fzA5016rkl2aR5+TWCRAY+QSXc3rpBxuTzB8ML0tfePAYgwRqBV+ZNtPe5NK6touhgyLU3IFBfDcd03/J77K48MfgSAdtEhFF6EZ+qcidUKan1VR99KoqLguoH9+DVnEw7XRbbn+BRl5Wb8RADhtbitVIqKxKC2+GHA4riILDKuEkKNwXWqExbkcS68UASdFDKtlNKKIiJM9f8VN/oZKbU1zZc4q8yz//VA/oEmaR8guySPQE0EutodL1InBsUP4rBtK0XFjfe2Ul7uOTAyvA47lsDz8I0PaEeW/Q/HPLOzuFFPvj4dRQHRgnYtzdvwOOtDb+TVca8ScuoQzXZRIZidrUPIKP41O3qO7zEIjTuQb1O+bcaeNR9FFjMat4mgWhoojUbQCMMF8wPeUNxusFFU5zAUF1pQVClkWilmZxFRgfX3kTH4GSlrooB4J8pOAHAgr+mETK4lj4hGDoZXSc+onghcpBQ3Xv8dDrCqc2gTEFXnuknB7clzpuF2ex5cFncxoYbgRuvb6SgK4PZE9r3QxYzFYeHtA89zj+4npvWe5k1PiAzBTukFYzZvKiwWQHt2iwxAmygVSeZbeHfn+83XsWYkv7QMP2FCX0u3M6MRNG7jBfMD3lAqz12LDKjbS21IoBaV0FwwvkJSyLRSrKKQNkH1t8gE+BsxN5F5dW+6xyKzv55CpqICfvnF98TnMymw5dHG1DRCRqPSeKwgluPnLlxL7HYo98shOqBNnet2CE+iVJ2GzXbqwaUUN3ogwEoql5aAC97hd/PxzYT7xdEzoo9PelKM574otBafh141H1YruLVVg+GdjskE3dy3sDp15UXz4306hRYz/tQ+PL/RCCq34YL5AW8oNhs4VEVEBATXqZ5O57FMXShLbFLItEKEENgoIia0/kLG5N90X+J9x7MIdLZnb07dhYzbDe+8A/94d1uNJxkXO/KIDWkaIQMQbgijwJaPu5FcRRwOKNfkEG06d7yLM+kU3h6z3xEsFs9buEPVtEJGCI/j6IVukfn+6Pd01l5O6BmGyfgoAyrhR3ruxb28ZLWCW1Nao0VGUaBTSBcQCovfy2DXrmbsYDNQZClDp6q9o6vRCCrXxbO0VClkQvV1+y3wCBkjpfYLYx7qJGQcDgcLFixg/PjxDB8+nFmzZpGamurNX758OaNHj+byyy/ntdde83mQ7du3j5tvvpnBgwcza9YssrP/8IS32+3MmzePYcOGcdVVV7FmzRqf665cudJ7zQULFlBRUVHf8UqAIrMNt+IgPrz+S0uBuqYxr+bmQo4liwTn6HpZZLZuhf0ZJ/gq6lI276k+zoHdaadcWIkPq5vjbF2ICgjHrspvtOi+djvY1Dm0MdXdItM+JAmzXxpms+fHy6kpJrgJzlkCX4vMhe7wu+HYBuJdI6vsXPPzU9ARwrGTF7eQsVjArGSdUxxHRSmE+sWyZW/mRXd8Q7HVjF5d+2BSRiMoFcYLxhLRUGw2QblSd+d/f3/PElux9cKYhzoJGZfLRWxsLMuWLeP7779n2LBhzJ49G4DNmzfz6aefsnz5cj755BM2b97M119/DXgE0Ny5c5kyZQrff/893bt354knnvC2++abb1JSUsLq1atZuHAhixYtIj3d8yOUmprKK6+8wosvvsiqVavIyspiyZIljTX+C461R9Y2+Q6BjHzPCa7RtT23vRoCDUZszsYXMj//DA7dCfoEj+aE5VidxVJODkS298S9+O7QxmrLVMaOiAlv5Gh4pxFhDMOtK2i0nUsOB1hU2fUSMkkhSZSo0jCbBRYLVKibbteSJ47MhS9kiu3F7MjeQVjZyCoWGQCjKoSMvItbyFitUOhKp21w2xrLRUaCtjyOIteJiy48f4ndjEFdN4sMFc1jkcnPh6ee8iyVN9k1ysoQitvr6F5b/Pw8S0slLVHI6PV6Zs6cSVRUFGq1mptuuomsrCyKi4tZvXo1119/PXFxcYSHh3Prrbfy7bceT/cdO3ag1+uZNGkS/v7+3Hnnnezfv99rlVm9ejWzZs3CZDLRq1cvhg0bxtq1awFYs2YNY8aMITk5GZPJxMyZM73tXmzYnXbGrxjP0t+XNul1ThQUoRWB+GnU9W4j2GDE5rbU6IdSH7Jz3JS6s+kd2Re9KpBD+YfqVL+4GFw6z5rStryzCxlFqGgT1gRblk4RbgjH5Z/faEKmvBwsSv0sMu1C2lGhWMgozD0VzbWkibdfn1pauoB9ZHbl7CI2IJbyvFiiqvGfDvQLIavw4hcyeRXHaiVkNNZYLOpMmih01Hmj1FaG0a9uFhmV04i5vOknYv16OJbh4HjjudpVIa+sGAWFQP/AOtVTqTzR3Ztq52pd0TSk8u7duwkNDSU4OJijR48yfvx4b16nTp1YvHgxAGlpaXTo0MGbp9friYuLIy0tDaPRSEFBgU9+p06d2Ldvn7fuwIEDvXkdO3bkxIkT2O12dNXsnXU4HDjOOGddo9Gg1WobMtQquE85P7gbywkC2HdyHy7hYtHmRUzvNR0/dT1OdKwFWUUFGJTQBvU92KCnAgsVFUqjzkF6fi5uXHRs04a22QNZn7aeXlG9al2/sFChPDEbrVrLUedGiovdBJ5xj5bYytAIIyEhAre7/j+2NX0HwvRhOP0OUVzsbhQ/mUKzGQcWooxRdZ5vnVpHoCqalIJUjERgV4oJ1AY2+HM76/hPCRmny4lbdWFaZdKK0ogzJqEo4tT3wDc/WBdMdnHhOeeoKZ4DzYXVqpDjPkZCYEKN/Q8PB6MrDpcxE4vF955pyeMHKCv3CJna9l+v91giiq1ZVcbemHNgs8GSXz9iU+yfufpgOu3a1U1o1JbcsgJ0ShCIultQtYqREmtZk38HVLXwxK63kDGbzSxcuJB77rkHAKvVisn0h4nOaDRiPSXfbTYbRqNvCGyj0YjNZsNqtaJWq31ESU11K69hs9mqFTLLli3j7bff9km74YYbuPHGG+s71BrJyMhotLZ+OPIDfSP6UmgvZPHGxVzT/ppGa/t0UjKPoyfIu3xXH5w2K07Fgs2matQ5SC/MJzAkGH91KYnWSXyw8y2ui6l9lN/8/DgKI48wqM0gNmZu4ptNuxncw9cf5EDmEfyEiaKi41itDbcaVDd+YRVYOUl6egkJCcUNvsbBzDzU+FF6spQype6ONxGqtuzP2keYvSM2UYSt0EZ6eeOclXL6+HNytDidnpeGY+nHqoS+bwr27jViMLhJSrKdu/ApdqXvwuSMIiSkgoyME1XyTRoD2QX5tb5HGvMeaC6KyiLIV3LQmDU1jtPhUGNwxWIzraGw0E56etUjC1ri+AEKLYVEqkPr9Cz0V+nJKy6sUqex5qC4WMM73x7lh8A78VP5sXrPBvok926Uts/k+MlM9ATX67dAi47M3BzvuJvqO9CuXbtzlqmXkCkvL2f27NkMGTKESZMmAWAwGDCfdjKdxWLBcOpoYb1ej+WMxVWLxYJer8dgMOByuXwsLDXVrbyG/iwb/6dPn84tt9ziO8gmsshkZGQQHx9fK8VYGzIOZKMpuITBCYGk2FNITExslHbPxKH6nkBtWIPaT7Qn4lJbKC9XER8f0yhzUFEB+eX7iA2Ko0ePSCK/vI7/+f8FVbCK+KD4c9YXAsxmBcVko6ehJ0dyykixH+RPib4i9vfiVDTCSIcOCbXedlkdNX0HOjs649hejKIEk5jYcMda+7bjBKra0LZt23rVjw9oT57zJHaVE4Ggb6e++Gv8G9Sn6sYvBKgUzyFT8fHxNe6IaSw+/VQhOBhGjhTM2zCPcR3Gsfvkbn449gMfX/9xtXWKdxUTqe1CfLxftfdBfHgbDmSXnvMeaYrnQHNR6ErBX62jX+d+1R5RcDo3j4/hjX25uB06nzlpyeMHcOAgIii8Ts9Ck7+RcsXtrdPYc/DJJwoHNC9wS+dbKbVUsPvgzyQkTOIcH1G9KFftJMAvpF6/BTpNACqthvj4+PP+HaizkHE6nfztb38jIiKCBx980Jverl07UlNTGTJkCACHDx8mKSkJgKSkJL744gtvWZvNRmZmJklJSQQGBhIWFkZqairdu3evtu7pO6NSUlKIjY2t1hoDoNVqG1201IRKpWq0D2/TwX20cU4gcy+UJ6xqsi9FiaOUAE1wg9oP8A/ApbLicKgabQ6Ki8Hul0V8cCwRESr8XREMihnOF4e+4MHLHjxnfYvF4xRb5sqlnak7EX7tyDKfqNK3EpsNLSY0msaZ3+rGH2GMwOzOx2JRUKka/gTKs+US4hdd73mODYzjaFY2OZaTmNQh6LW1P3jyXJw+frUaEKd8r5TamYUbgtPlIitLRUkJZJZl8NxPz/Hy1lfQaXSUOUpxuB3oNFWfFekl6XQoH0GbmOo/n+iQULZV5OB0qqjN46QxnwPNgdsNBa504gISUKvP7Ss3oGs8T/+WidVa/Xw1xfgf/u5hIo2RPDrk0UZt93SszjKC9AF16rvJ30ihw1qlTmPNgdkMJVG/M7z9HbicKv526HWKilS1OkahrpSUlxCgCalXv/VqI+bT5uF83gN1vuqzzz5LeXk5Tz75pI+KHz9+PJ999hknTpwgPz+fFStWcOWVVwLQr18/bDYbK1euxOFwsGTJEpKTk4mOjvbWfeedd7BYLOzZs4dNmzYxZswYAMaNG8e6des4ePAgZrOZpUuXetu9mCgshMPFe5g2vgfXjU4kJS+d8vKmuZbZUYZB07A3ZaOfEadiweFovC9uQQEIUxYxAdFoNJ61+Z6BI9iRvaNW9YuLPfEN8u0niTRGEqqNIt9eNZhMkcWMv1K3Q9LqSrghnFJnAWVljePwmmfLIcSv7o6+lcQHx5DvyCLXcpJQbf3bORfNuf0635pP1ItRZNmOcPIkfHvoe9rrLmVy5kGejdmPwc9wVmfxY8XHUEra0uYsUxEVGEKFpojCwiYcwHmkvBzK1Od29K0kLjCOAnsuZdbmOXPp3Z3v8srPr/DriV+b9Do2l5kgfd2ehSZ/A5Ym3LVkd7g4WPI7/aL7MbrDcPK129m6o2lOmi4uLyJAG1yvujq1ocmCotaVOv0KZWdns3LlSn7//XdGjhzJ0KFDGTp0KL///jtDhgzh2muvZerUqdxwww0MHjyYiRMnAh4ryfPPP8+KFSsYOXIku3bt4qmnnvK2e9ddd2EymRg3bhyPPvoojz76qNeE3qFDBx588EEeeughxo8fT1RUFDNmzGi8GbhA2JtahEV9gjE9uzOidyJl6nQ2barfj2B6Ouzff/Z8S4UFo1/DfsiNWiMVioXy8sazd+bnQ7kug7iAOABiY0FYQym2F9eqflERBAfDSctJokxRhPlHUVCNkCm1W9CpmtZ3I9wQjlNUUGhtnEAyBeU5DRIg7cJiKHZlkWfPIVzXdELGs/26eXYtvfrzqxTaC3CE7yAsDD7dvh5T3uVMHpmAs7gN3SK7sS9vX5V6TreTjJIMnAVnFzKh+hBc2otXyNhsHiGTFNq2VuWjTFEoikKBI7vRgjzWxPwf5nNd1+vINjftyds2t5kQQ92ehYF6I7YmFDK5zsO4hZuuEV1JDE4k2hDHm/9b32gxqU6npLyIYP/6BUY1aIxYHS1w11J0dDTbt28/a/706dOZPn16tXndunXjo48+qjZPp9PxzDPPnLXdCRMmMGHChLp0tcVxoHAfgcQSog9BrVLjwMxXa4sYOTIUTR0XANetg7Q0eOYZql1XtVaYCa/jzXsmBj8DFXh8ZBqLggKwqDOIDxoAQHw8/H40hCJT7bbBFhVBSAjkWnKJMkYRbohkb+lPVcqV2sx1iuZZHwL9A9EoGvLN+UDDdxwUOrJJCD63n9DZSIqMwUwWuZYcIkLrfl5TbWkui0yxvZh//vpPEvTJ2PV7STDdwL9OrueeditIToZ9+6Bb227sy60qZE6Uepx7ldK4swqZEH0IzovYImO1gs3/GO2Ce9SqvEaloY0xGovqBDZbIsYmfA9wup1klmby1MineGLDE+eu0ADKRRkhxroKGQNWc9NZIk6IHXQL64VG5Xnwzx32EE+uvZ9Pvh7OHbcEN+q1zM5i4nX1FDJ+RoorMhu1P/Wl5SzqXuTkWk4SpIoBPD+CwbpgbNrj/LSt7ibFlBRPhNyUlOrzrS4LAdoGWmT8jLiowFreeAfr5edDKZnEB3p+sOPjwVoYTJG9eiFz7Jgn4m0lxcUQGOTyLDmYoog0RFHizK1Sr9RuQa9uWouMoiiE6MIoshc0SqydooocIvT1t6R0iIzBps4h15ZVr1g0taW5hMy6tHUkBiVymf8Mivz2oGlzCLtSxO2jBhIW5hHFyRHVW2SOFR+jjSGOoADNWQ8LDNGFUK4UUVDQZEM4r9hsYNYcrfXSEkBcYCxWTdPHkskx5+AWbvpF9yPbnN2kR12UCzOhprotLQUZDJS7m2YS3G44qdpB76h+3rS/XPoXuoR0Z8mxxxr9emXOIkLqGVPK6GfAeoGcOSWFzAVCaXkpBvUfb+6JQYnEdE9l/Nq27Dm5p9btFBZ6LBODB8OPP1ZfxuY0Y/Jv+NISQKnNfo6StSc/X1BQkeHdoRQXB9aCEIptxVXK5ubC88/Dl1/+kVZUBOqAfNzCTaQxkjamKErdVZeWzA4zhgYurdWGMEMYZpGPoxHcCsyuIkL19T9SIjqgDUJxUajZU68TtGtLc521lFWWRVJIEvrSHmQ595Lu/w0d/YaT3ElHWJjH6budqRt7c/dWqXus+BhtdG2pKbB1iD4Eqyi8iC0ygnzVPrpFdqt1naTQJGz6lCYXMpmlmbQxtSFYlYDD5Tjri0xDEQIcShlhAXV7FoQYjU0mZBwOKPDbSb+Yvt40RVG4LmkmR50/N/r1LK5iwoz1s8gYtUZsrgtjaUkKmQuEUvsZQiY4kZ3uFVgpYFtaag01fUlJ8VgyRoyA33+vvozdbSHAv2EWicr4IGZH7WN3nIuTJSVYXWavRSYsDEzqEAptvg8yIeD996FzZ9i0Ce+PTXExCEMugf6B6DQ62gREYRa5VSwDZQ4zBk3TxzeJNIZTrirA3EA/vfJyj/hqF1N/B21/jT9GwinQ/k5ccMu3yGSXZROkisad051M6xFWZ67goXHXoiiec2ACAqCN0p20orQq4eSPFR8jXJNIUA274pNCkigXFtLyW2Z8lHORVpiOU7HRJbxLrev0j+5Pvv+2Jj+mILM0k7jAONauDMBfMZJdVnc/mftW38c3h7+psUyZ1YFbcRARWLf7KsRkoFxYmkSoOxxgV+dXuUc7h3ekQKTU65pHjnBWy6LVXUSYMbgePQWT1ojNJS0yktMoqyjFqPG1yKw+4jmr6kBm7dchU1OhY0ePCCgvp9qdT3a3mUBdwywSapUavSqAYntJg9o5nUJnBia/AIJOHWioKNA2Ohi7y0a584+B5OR4bs4774TevWHNGo+4OX4clICTRBk9FoeYoEjcOCk6QwhZHRZMDVxaqw3hxnDcuvwGP/h37waXuozE6Ib1OVgTg0NVQkJo0zr7CnfTC5nMkmzS90Uz6fJognXB7MrZxaTOk7z54eGgtkYTpAviYP5Bn7o55hxMxFSJ+Hw6Jq2JrsF92FO6uamGUGvcws2x4mON2ub+gt1EqbqgVdc+VMUlsZeQrdrWLBaZuMA49u0Dozu6Xg6//0v7H/d/ez9259ktxvklnhszPLBu91VogAGBu0nOxCsvB6diweRv8EnvHNmeCsXCSUtVC3NNmM3wz396zrCrDhvFhJvqaZHxN1AuLTKS0ylzlGLy8xUybuEmWBXD0YLaC5mUFOjQASwijyz/DdX+iJYLC0H6hlskAjVhFJcXN7idSgrdGcSYfB1aO8QGA/jsXMrL8/xQfXXkQ7peeoLt2+HECc+6vyrQs2MJICzAhEYYyLX4+slYKszNImTC9GG4/Btukdm+HdwaM4ENDC4X7u/xwYoLbrqlJThtaakJdy2lnszGKKKZPFmhe2R3hiQM8X7u4Pl+FBQodIuo6vBbYCvAzxlWo0UGYFDcEFIcPzbLLp2aWJe2jiveu6JR2zxUvJt4/551qtM3ui9mckgvqhoJuTHJKMkgSImjrAy0jmgyS+ouZLLKsjA7zPzr13+dtUxeaRkIpYpoOBdhgZ5np6UJ/EMcDnCqLJi0vs/nsEA9Rmcch/LP4vh4Fr74whNfqzrx6XRCuVJEVGBwvfoaqDNid0uLjOQ0LBW+QiYhKAGNSsOoiNvILK0qZMrK4JszLKcWCxw4mcI/j82i3T8TWBN+BWXmqk9hhzAT1MBdSwDB/uGUVDTO+rUQUOLOIC7AV8h07eSPH3qfdfK8PLCFbOeWz29hydG/IwSsXAmdOkFq0UESgzxRKvV60LuiqrzF2FwNX1qrDeGGcCr88hpkkXE4YM8ecNBw8RVl8AiZ6ICmXlryCJmmtMictGQTHxKNWg239LiFBwY84JMfHu5xHu8e2b2Kn0yBrQB1eViNFhmAUR2Hkq3Z3GAh2lBSClIotDWus06qeTft9HUTMiatiWhNMjvztjVqX84ksywTlTmeHj3AJKJJyc5m6e9Lq7yQnA2zw4zZYebJEU/y7s732LqVah3uC81m/DCiUur2MxgW6PEQb4oTsCstMkbtmUf6QKCzI/tzai9kjh71WGIc3d9he+H6Kvk2m0fIRAbVzyIToDNSLoWM5HQszlICtH88WUe2G8m/rvwXPdp046StqpD5+Wf46it8nBFTUgTfRV1BOWWsn7oet+Iku6jq0o8Dc6NYZIK1oZQ4G+cB63SCWZ1BXGCcT3qXLuDnCuFEQbE3LTfPzefl93BLz1v4aN+HxCSn89tv0LUrrE5dzbgO4wCPkNG5IskqPVPImAlo4NJabYg0RmJX5zXoh9BshvKKCspd5Q0WMrGBMSAUIowRDWqnJlSqymMKVE0qZPLLs4gN9ATUvKv/XVyX7HseV6WQ6VbNzqV8az4qe/g5LTLD2w2myG8vaVnn5xRs16kNgUeLj1LmqF8QkbSjLtIznFXSj1l30z6gbkIGoIP+EvYXN52QcbvhcE4mxelx9OgBkYZo9mQd5u5v7uan41VDKVRHdpnn0NgBgdexN3cP/15WWO09WFBWVq/AmAEmFWqho6QJ1tjsdkEF1ipnlGm1EOzqyIHcqkJm24lt5Jh9z79yu2HFChg7FjY5XuOrgoVV6hWby3GpbETWc2kpSG/AgVxakpyGxeUrZMIN4dzV/y46R8dR6Mqs8kaxfTu41Vb2nvayufVAOmYlkyUTlzAwbiBqtJwoyvOp53RChWKpc+yE6gjVh2FuJCHjcHhiyJwZKyUwEIzqYPakFrFmjUe47Tq5i+yKQ7x19VtM6jKJLZqnPf1JzGJXzi6vkNHpQO+OIqvY903O7rIQqGsOZ99IbEpugy0yaD1P4YaeW9SjbQwh/uHe+BRNgWfXEigoTeIMmV6cjsPloMxVQHxw9FnLhYd7fKmq24JdYC3AbTn30lKUKYowVQf+d6h2P6CNhRAeJ/YHHvAEtkwrSsPhctTZJ+OLL+Dafz3BLR/+2SfdVmEjpyKFzrWMIXM6nQP6k2KuXaTt+nD8OKTmZpAcF8cll0BccDTrsj+hwl1BvjW/Vm1klWURbYpmzadRxPp3pihgMyXVuPIVWczolLrfU0YjaNxGCsoa3xpRZreDIjD4+S53KQqEqzqQUvCHkKmogNdfh3u+uZ8H1zzoU37HDs9L0MARJaRb95FSsYn0Yt+DIXNLiwEI0QfXq6+BBiMVQlpkJKdhdZUSpKtq6+6REIdZlUlp6R8/Cseyy1hWfBtLo43c8eNwb4CvDWk/0jmwHwY/A4qiYFIiyC7xvfntdoFTMRPSCBGtwvXhlLkb5221vNxjkUkMqRr0LdQQwoatRSxeuZlNP5s5WLSbLsG90Pvp+ceof7Dh5KeED/8vv5tXMyBuAOEGz6EkWi0Y3FFVLDJ2YSa4EZbWzkWkMRIzuQ2yyFRUgNB63sbPfLjVlR4xHekUkdSgNs5FZQDGprDICCHo9K9OrD2yFgUVCWGRZy3bsaMnxpDR0o1jxccwO/74EApsBbjKzr20BNA3eCTrjnzfGN2vFW43fPwxfP019O8PH30EaUVHASgrr71VRghYv8FJeshSUuxbffKOlxxHg5a4wNg69y/KGEVpRdMF1zFbXFhUWcy4Pg6DAdqFR2Nze8ZdWyGTbc4mQImmuBjGJQ8j37ixeiFjrV9gTI0G/DBQVNb41ohSm0cYnLm0BNBG25GjJX/sYC0shB2/Cfbm7OeTfZ/4hOnYsQMGDoSdeb8SY2hLR67k3V3v+rSXW1qMRujrfXhskN6AU7HjcjdeLLH6IoXMBYLNXb2QaRcei1txcCD9j5v4rysX4AhIZe01uyi36Hl5y6seX4rSHxnRbqi3XKAmnJNlvhaZUms5QnE3ikUm3BiGxd04DzWHA6yaEyQExVXJaxMUQr65mJ+ibuHj/R+QbttDj0jP22RSSBLLJy/n5WO38si6uVzd8WpvPUWBAFUk2WW+QqZcmAkyNI9FptR1skFCxuEA4efxj6nrWv6ZjGo3io3TNjaojXPRlELG5rThcDn4aO9HGEUk4aFntyz5+cGll8LBHZGEG8LZn+c5s8NaYcXutKNxnNsiA3BFp1H8XlLVv6CpWLMGdu2C+x620G74T7iFIDU/DcBHjJ2LoiI4ItbhVFnJcx/EVvFHmIRCWyF6wjAY6n68SLAhAJu76ZyGskpPIhQXMQEef67OMR6r24DYAbUWMoezs7HnxXDttXB50nBO+G2qVsgUW8swaOr3HNQqBorMjS9kSqwWFBT0mqqRGmP8O5Ju/mMLdlERaIKzsYsyroq5g2d/fBYAi93Bnr2CPn1gS8YW+kQMpKPjRlalrPJpL6+sCL0SXO++hpg8z1Cbs/FCcNQXKWQuEOyilGB9VSFj8DNgIJT//u84L73l8d4/ULCXq+OmMrpHTwaLR1ny+1IOptrI9f+RK7r8IWSC/CLItfje/IUWz0OooduvASJN4VgpbJTItQ4HOFTF1QZ9iwsPpufgExSJ4/xW8CN5qt30T/hjfX9yl8nsv2c/r1/1Onf1v8unbpC6qrOvAwuhjSDkzkWkMRKLq4QSc/1P/3Q4PBaZxthlpShKvd++akvl4beKojT6rqXKH/KvDn2F3hV9TiEyeDBs364Qo+nGj4c8y0v51nwUFEyaEHRVD8WuwpQBI8lX9rI/vXaOpg0lIwMSL91Dl6VhjPzPUFxdPsbiKsVP5VdrP5kiWxGvbn6DfaELub37LLQiiF05f6xBF9oK0YnQs0Y1rolggwm7uwkO/TlFVlkWRsK939OhXbsSXT6MEbHjybedW8hUVMDqTVkkRURz2WUwNGEoJ9y/cbKwqugotBUS6Fe/IJP+KiNFTRBQp9RuwQ+Dz4HMlcQbO+BwlZNR6oltVFwMrtD9xBjaEXHsHr5N/Ran28n4d69lXcj1RMc62Zq5lUujB6K2R1JaXurTXoGlGINSP/8YwGvVL7Of/+UlKWQuEMpFKcGG6m3dEbo4vih7hL9n9sZqFWSVp9ArvhOKAqPaDydAieLB9bMoUh9iSMJgb71Q/wgKbL4WmWKzBYSCTlOLp/g5iAoMxa4UUFHR4KZwOKBCqf4HO1QfQqrdcwputt+PFGn30DfWd32/fWh7bup+UxUhFOAXQslpW7fdbkEFZkJMzRBH5tQS10lz3jlKnp1Ki0yAtmH+Mc1FU1pkLKdO2jU7zOgqzi1kEhM95nX/0mS+23EA8PjHBGpDCA5UV3sO2ZnEhUTQRtWDT7Y1z/JSeTkcK/+NS2Mv5d5L7uWbwpfQu8OJNEbWamlpa8ZWui7uyn9TlhOpj2P2kPsJc/Rh69E/omMW2YvQukPqKWQCKBdNZ5EptpWhV/3xwXaIjOP+wI24SiNrZZHJz4dCZzbD+sSgKJ5Tu7WKniOFaVXKFtoLCPYPq1c/dSoDxU3g7Ftmt+Kvqn4JOdDoT5yuM7tP7gY8Fpky3QF6x3YlwtULxe3HurR1/JSzlhL9bgYuuYxN6ZsYlDAQd7mhyi6rAmsRBnVwvftq0vuhCDXFVilkJHjW/sspJaQaiwxA9/h4jirrsatz2bTnKCUcY0CHjgB07qwwSjxHcZmTmW2fI8zwx40Zpg+nwO77I1pkNaPFVK3irytRgWHYVfk+5x3VF1u5E6diq/YHO1gXzC+Zv5AckYxFnYlVlUP3yO61ajdAG0Sp4w+7srXcgVBchJqafmlJo9IQrA0j31b/t/mKCk8wvOaIe9MYNKmQqbCg1+jRqrQY3NHn9HFRFLjlFhjSK46M4hMI4fGPCdTUblmpkkvCR/H90Q0N63wtKS+HElcWcYFxTO4ymb2F2zE526FXm2plkXl317tM7DyRR8K28njnD2gXGk+Mqg/bM/8QMoW2QrSuUAz1cLkKNphwUNZkx0+U2qv6rXTuDJa88LMKmdPj/JSWQrlfFjEBniUpRVGI0bUnrfhIlXrF5QWE6uopZDQGSptAyJgdFvxV1T+bjEaI1/b0ETJF6gN0i0xm7BUqElyXM/d/cwlzd+XjK7Ywq98s3prwFpcl9kHtNnpfBCoptBVhUtffIqPTKWiEsUl2b9UVKWQuAOxOO27FSZip+idz2+C2jO84nihVV5Zt/QIVWrrFe3xJOnUC/fEJDM7+kL+PnONTL9IYQUmF781fYrOgVRrnR7xNQDjl6oJGETIlp5zcqtuZE6ILocxRRv+Y/rQ39iFC045A/9qdKB3kH4S54g+Tan6Z522yrtE860u4IZICe/2FjMMBLo25wTuWmotKIdMUu5YsDgvBumB6hl1KiCbau4x1LrrFx1BKNjk5HouMSV07R99KhnX5//beOzyO8t7fvmf7bNOqd9uSZWOwAWODMbhRbIoxmGYgQDiBBAhphPAmIZyTAAmQQOipHJrzy/GBQ2jBxDRDwBBaqDYYY8tVtvpq+872ef9Ya23ZKltmJa0093XpkrRT9nlmZ2c+863T2eZqzntFW0gGKLvibVRbq1k4cSEOk4NKQyN62XaQReZAVwEkU7WPqTmGtjaBmmSYCZNMM1nftU/IOIM96KLZuZZKLDZkIZG3uAhfuH8h49rTv5DZtQtuvBF+9OKP+az9MzwekLRtqRgbgHrbZFr8BwsZb8xJmTk7IWPWWfDmwaXiDwcwDSBkzGao1u4TMm43dMS/5NCyQ5k1Cxw9i9nQuYG6wFkcO6Ocq2ZfxaVHXIpZ1GDgYIuMW3Jj0zuyHqtOB3rZgke1yKjAvgtSsaX/m9WvT/41/3f+/zHVfiRvdj9FmaYJ7d6reEVFUqkLQrLJ4v5U2Mrwxg4I9pX8WdVO6I9SsZSw4CIQzD1q3R1MXqQPrJ8ASYsMwLTSaSw7fCHHNaZf/6LIZMcf3WeR6fElXWs2UxZX8SyoMFfgiXVmXR02ElEtMr0EoslCYddOu5fjTFekvV1dUTUxYxubNydjZEQ5M4vMERPrCRlb+PDDLAadIZEI9ERaqbHVoNfqOXfauRxSPB1N1HaQReaoB49i3c51fV7b5trGJEcDbW2khMw0x0y2eNenhGWXvwdjIkshs7dTdCaBx5ngC/kPCsCdPBnivjK6AgcLmTVroNmzkXs/uIvXtr+G1wt+oY1q277U/EbHZNpCBwsZX8xJuTU7ISPqzfjD+bHIiNqBhUx5oq9FpiW0kUPLD8XhgNnFiwGYW3Jmn/gvQUgWr5NiUp/vpCfiosiYvUUGktlbqmtJBQC35EUrG7Gb+w/EtBltWA1WZlYfSYf+PerNU1PLBCFplZk8mYOeUKvt5fgTB1pk/BgVssiUmktBkOnw5p6C7Q35MWBGq9EetKxYTH7ZDik7hP9a+J/84YyBy44fvG0Rwbg3dRHvCeyt5qnJ3bWWDlW2CiRNZ789r9IhGoWYRo2RgaRFxqK3UCsczSRHQ9rbVduqCWiSQsYpOTHEyijN4P5VZ0+WQHj77fy1XOglFAJnZN+N+MEzH+QHs24kEeprkUnICXZ5dvHmjn1ZaPFEnB3uHTjkRkIhqNpbwHlK6WTCCSlVNK0rkBQy6QQ7H4hNNCDIOjxSfgJ+A9GDhYzRCA2VZfgi3j61dNrakhleHZMeQIuOTd2b6HIHkWQP1dZ9QmZq2WS64gc33g0knFTYshMyVr0Vf5ZFCgcjGA1i0vbv87NYoDR6BF85vyIUC9HudtET6Uw1/lx4eCNndL7B4kOPOWhbm8mc2n8v3og7ZyFjFGy4gyNc+hpVyIwKnAEv+oQdwxD92+Y3HQlAU8mUPq+fdhosW3bw+jWOMgJ09bEG+MIBRK0yT/dmvRmdLNLhyz0F2xMauMpmyiJTNo0SseSg6r+DUWwuIkE89QV2BwIYyH98TC9VtgpC2s6s3RKRCMSE4ekNpQR9XEt5yFqyGCy43eBwpL9dtbWaQNzDl80SzqATTaiU8gyKG9cX1RNOSHy5s4enPn8uq27M6RIOQ3eoLXUj1ml0TKzXkpD6WmTcITexRDIrpZfd3t3Issxnb9Uzc2YyBR2gstREkaaa7e5kPZpufw82XUnarrn9MZkEDLItlf2oNP6IH7P+4HN9UmVScDiD+641//43TDnCxUfRvzIz8n2+7PqSLT2bETW2PrGCh1VPxq3ZetDDRBAn1UXZCRmHqRhvxJ3VtoMRiAQw92OVhr2F+IJ12I12NrRvZHewmTKxPHV9POIIqI4s4tBDD35I663kvr+Q8UVdFO/dNluMghVPSBUyKoDT78UgDy1k5u0VMkfW9RUyEyYkLTIHUl9STljTjbSfO9sX8ismZADMQgmdCggZb8iHSdO/1aFELEEraJlc3M8kh6DXXecJJ91L7oAfg0KutXSotFYQ0Xf2+QwyIZmWXniuJSFfriV9Ushk4hoqNZei0+jY42mj3ddNIpiZkLEarDhMDgLaFn70yg9Zu21txmNPB1mGUFimI9jaJ8ajpASEqA1XcJ+Q6e079O7ud1PHeZtrG9WWCXzyoZ4LL9y33+JiKJIb2L63sF6P1IPDkGXasRF0CSs9/jxZZGJ+rP0ImbpqPaJQ1CdOprMTvjL+lZnVM2kIXMTGzk184XmfQ+1z+tRcml49Gb92Jz3ufa0aYjEICU6qHdkJmRKxBJ9CVc33R4oNLGTMZpAkgUniEby6fj0eXTNNJU2p5Q0NsHRp//cCm9mAVtD2CfgNxN2UmHOzyIgaG948WecyQRUyo4CeQFLI6IaoHF9jq6bOVsdJ09MrLV5bXE5U46fbvS8adzAfbDZYhFK60ixUNRjesB9xACEzo2IGr//H61nVQLGKegyY8YT2ChnJj2kYhUyFJSlkcrHIRCkc11LvU37eXEsGC9u2JVOr0x6ToKHKWoVgb2W3M9kwMhMhA1Bvrydo2UiLb2dKFCtNLAYh2U04Hu4T42G1gkmw4fTue/LtDHRSY6shHAvzwbaveOGFZKCvLdbAwoX0cZ2VlIA10piyyLhCPRSbshMyWi0YZBuuPFlkpFj/1sfKShDlvgG/HR0yr7ke4qrZV3LUhEPoCXfzWfAFZpbN7bPtpOIJAHzZuiv1mtsXIarxU1ucnZApNRfjjysvZIJDCBmXCyIth/P02+sJW5qZUrpPyGg0cM45+yxx+2OxCBg1fQN+AwkXpWZHTuM1aax4wqpFRgVwB70YGTqNQhAENn53I3Nq56S131Jz8mLV4tz35ff344POBaumBGcgd4uMP+wb0FKkETQsnLgwq/2azWAUilIB1V5p4KyAfFBpqUTSZm+RiUYhTAFaZPKRtRQNoJMtdHYm48IyocZWg6G0jTaPE4ehLONA1zp7Ha3ml4CkWycfhEIQ1LZh0Vv6CFdBgCKTDae/r0Wm1lbL0TVH8+A/3uXvf4eNbdswBRs55JC++y0rA6PUQHN3Ush4o65+C0+mi0Gw5i1GJhjzYzUefK5XVYE+VtbnoWmD6wM6wrtYcdgKptQXUaytYbP8IsfW9hUyOo0OhzCJLzv2Bfzu7klesyrt2R2HMmsJAYXas+xPKB7EMkArEoslmWp+8uFH4NStJ2hqTttKbbGAQbAQiO6zyEgJN6WW3CwyZp0Nn+paUgFwSV5MQnr5oJmk4eo0OkS5hD3ufZlLwUgAcz99PLLFpiumJ5T7k0lSYClvdbDZwJCwp56ivaGBBVM+qLBUEBQ6cnMtUXjp1/myyET9VhoayLgGSrW1GsHWRrfUQbW9LOP3rrfXs02TFDK91j2lCYdB0rVSbas+qM6Tw2JNZfZBUsgkfBUUS8fw4Z6PKS2FT3ZsQ+drpPGAdloOB1ToG/iqczsJOYEv2kNZlh2PIWkd2t/NpSRSwo+9HyFTUQGGaBm7e5JCJhiETfLfOWvK2VgMFmproUSehizEmTfp2IO31zX2KYrX5nZikG0YtEP48wegwlqCJOfBtRQP9NtnCZKf4zXXwNdOPAK/eQMR69Y+rqXBEEUOSsGWcFFuc+Q0XovOlpeg50xRhcwowBNKX8hkikVTRqtnPyEzgA86W6w6e7/1LDLFH8m+78lg2O2gixelbj6esA+LLj/Huj/KzGUE5W4CgeysE5EIhOXCs8jkK/064LZw2GGZb1ttrWYnbxEQOjiifFbG29cX1RMg+T3Kl2spHIaIsa1Pxk0vpVYbntC+G0aHv5NAZwWx7glYqnczaxZs6thGraWx3xo5U8ob2O7ehi/sI0GCcmv2FhmTxoY3T0/hoYS/3/YpJlOyd9z2jm4+/hi6usBt+pS5E44GoLYWTP5p2GOTaaw82G9YbpxAq78l9X+bpxsz2bmVACrtxUiCMu1Z9iecCGAz9i9kBAFmzYLDK2fgDHeyXfo4bSFjsYCefUXx4okEYcFNZVGuFhkr/qgqZFQAb8iLqM3PzbVIV06nb585NhgPYFXQImPWWRQ5kYMxHxa98lYHqxV0sSLcoaTY8oW9WPXDK2SihHAHsguSiUaTF/dCiZHZZ0hQPmspEAngc2YpZGzV/Kv7OarDJ1BfmfmxrLcnu7LXGQ/Nq2spbOhbzK2XMnvf9Os9nk4M0QouXV5LwtKaLBon7+Cw6kn97vvwukY6wy10BDrQoKXcnv35JGqseDPoxJ0JYbl/IQPJSuXvfNbBn/4EGzeCy7CeI6uSCRDV1VAjLWFq6NJ+08orTRNoC+6LkenwOrFoshcyVY4SIoKHUFjZzs/hRACbafDrs9VgZXLxZKSYlJFFRiebU64lp88HgkxVjkLGarD1cVeNFKqQGQV4wl4s+RIy+jI6A/ssMtIAPuhsseqtBKK5W2SSlqL8uJb0CTtd3uRTtC/ixTqMosBhciAg0OHLLiA6EgEpoVpkIBkQnghbqKzMfNtqazUxOcZE6ayMA30haZEBmKyfnzeLTCQCIV1rvxaZSoeNQMzH7t3J+imt7k7sugomltTQ6mulviGEpO1gdlP/UdBHNdUioOWz9s8wCyVYrdnXURK1Nnx5CvAMy34c5v7P9WPLl7BesxJ//bOsfs2Jlz0cUZksjmkwwBz72ZysvbnfHlq1lgl0hPYJma6AE5sueyFTXVSyt4aWsudCWA5gMw7tNz2i8ggcJkfasU4WC+gSlpRrqd3jQpA1OVc4txmT5+VIowqZUYA/4sOszc/NNdk4ct9NVEr4BzRdZoPNYFXkRA7GfVgUdHn1YjCQTNv0JcVWIOpLu72BEmg1WqzaErqD2QVER6MQihdOjAwkxYyAoLyQkQLoEpasKtL2ZgEdZVl2UAXsdJjkmIRW0FGbOD5vFplwGFzar5hccnAAZ1WxDSnu47HH4OWXod3fSbm5ghpbDe3+djojO9AJBhbOruh33w0TtVhjE/nXrncxySXk0jPVrLOm1cAyU2Q5GQ82kJC5Zsmp3Dl3Fc8IX2NT5FXK9BNSNVQg6V4aqPVEra0eZ3Sfa8kZTPbcypYisxmNrKfNpVycTCIBEYJDWmQgKWSaSprS7plnNoMmvs+11Ol1Y5AdGPS5SQCbwYoUH3khM0TCr8pwEIgGqBwg5S5XSsVyWl37LDLhRGDAC0U22AwWgoncLTJS3I/NmHmdmHSw6otwBpJPToGYF7vpkCG2UJYi/cAN74YiGQBaOAXxIJkGKggaxbOW/OFk6YChyhT0x+zq2fxo7o+4c/FEtAcXjx6SxuJGnj7hK55b15y3YN+glGAP7zG37lcHLaspsxHGxzsdr1Kn1dKt62SurYJqazVxOc6HrR8yqXgCZaX935hKS2FK9Fz+++PfU5I4EksOlxuL3kYgmn3/sIGIRiEqDCxkGhrguoblPN8+nw8jP+OIoiP7LK+rY8BWIJOKJ+BKtJCQE2gEDc6Qk2Jj5kHfvQiCgEkuUaSqeS/J4pcBisxDfziXHH4JM6tmpr3vpJDZF+zb6XNhwpHlSPdhN9mQ4mrWkgogxYKIuixa0aZBmaWsT+PIUMJHkajcTbHIZFFEkUsJX7/ZCkpgM9hxBZM3n2DcR5FpeK0bDmMprnB2FplIVCYYK5wYGUhaZDQo71ryRQJZW+2qbdXcferdWYmYXg6taiQecOTNtdTs+ooYYY6sPPKgZTWlNiKCjy1Vt7MmeDM9kU7qHBUYdUbKzGW82/IuE4omDLhvQYCzSm9AiwF9LDeLjFVvy0uAZzicrGJdMsTgvnfsNfh0Oziuse9xOvlkuOii/reZVFJHnGiqkGAuna97EYUSuvzKWWRSQkYcWshMKZ3C2dPOTnvfZjMI0X3p106/BxMZVJUcgCKTjVBi5C0yqpAZBYRiQcyG/AiZKls5nv0aR4bx5Jxytz9FJishOXeLTDjhx54ngVFkKsKzN9hXSngpNg+fawmgxFSGO5ydRSYYkUiQKCiLTL5cS4FIAKuCbtFMsdkgFijKm2vps553mag/Gr324IpmRaIVWYixU36bNt2/CMRdTChNupFqbDW8u/tdJhYNXiVwSl0xF5b8htLQ3JwsMlaDlUAehExQihPTBIe0GJ91yFnU2euY1zC7z+tmMwP20Cq2mTDLFezyJONkPFEnJVl2vu7FIhQrKmSSQi6Q6oukJGYzaBLmVMduV9CLWaOAkBGthGRVyKgA0iBFkHKlyl6GP5EUMtEohAW3wkLGTJjchUxI9lEk5kfIOMR96deS7MWRp/cZiDKxDHc0OyETiCWPbaHFyGgEjeJZS8Ho0Bkd+cRmAyFcRCgW6tO8UCk2uN9linhc/++99/Ovs9dRk0iuM7E86RqpsdWwvmP9oBYZSMaQTOi6mqO8/5WTRcZmyI87oTezzz7Eua7X6vns259x1iFnpb1viwUssQm0eJJxMr6Yk/JchYy2hO6AwhYZTVDRrNJeRDEZ7OuVksfYFfRgViDBxGG2EZZV15IKEI4HByyClCt1xeUESd5EJUkmovFQkUmjmiEoNluICL4BfdPpEsFH0QBpl7lSYrbjiyaFTET2UWIZXotMmaUUXyw715I31o1Vn33hrpFAEPLTaykY82MfQSFjNpOKK8hHnMwm/7tMs/YvZESdiEbQsLhhMceYV2BMFFNZljwnam21xOX4kBaZ2lrYvRt0Oobs6zYYNpOVYB4CPHv8yRtiOtfCErGkTz+lobBYwBKdwHZX0iLjjzupsOcmZOy6ElyScjEyvRaZfNwLdDowaS14paRFxh3yYtHlfh8osdiI4Fc8Hi5T1GDfUUAoEcCaRspdNtQWlxESnIQjCZy+ILIQp8ziUGz/DrOZqOBFkmQsluxTOpPZCvmxOpRaiwi0epFlCAteymzDK2QqrGX4Ex9nvJ0sgy/RTamYfVDiSKDR5Me1JMUD2NOIH8gXGk3SRWHQGHCH3JRbssjjHgBZlmkNf0WTtf8+aoIgYDPYWDJ5CV7fYrr+baR4bwmQ3rozQ1lkamqS55TVSr8pyumSjIvIg0VG8qOTTeg0yt+WzGawxiewzZkUMkGcVOUoZGz6YlwKVDXvJRROEBMkLHlK/DDrzPjDSYuMUvW0ii1WEGSkWJalyxVCtciMAsKJIHYxP0JmYlk5spBgd7eLTq8bgCKTcjfyYrMFWUjQ48+yKyJ70y4Fn6LZVPtTYS8iGPcQCslEBC+ltuF101TZS5EEJ9FoZtvFYhDWdFNmVu6GORwkY2SUzVpKyAnCiSCONDI68onNBla98gG/4XiYODEc4sDfzUfOeoQzp55JU20JhwW/fZCQmegY3CIjiskGkrnEx0D+Ajw9wfx1ptfpoEioZ6drFwk5QYgeqotyEzIOYwnusHJCxrO3s6w5T2EGFoMFfzhpkfFGvNgMCgkZIBAb2aJ4GQmZBx98kBUrVnDMMcfw8ssvp15fvXo1xx57LAsWLEj9tLe3p5Z/8cUXfO1rX2PevHlcddVVtLW1pZaFQiF+/vOfs3DhQs444wxeeumlPu+5evVqli5dyqJFi7jllluIZno3yBO7PLvY4NygyL4icjAvAV4AdtGCThZp6emiy+fGINvQanJI3TiAXn9utzf7C1skIhMV/BRb8iMwyu12JNmDJxBGFmKUD7NFprqojLCmO+N+S5EISJouyi2FZZEB5QviSdHkwXPkehfOEYsFLFrlA379kaSFYzCr5HmHnYeoF6mrSwqS3jT0XiFTZx+6QE5tLTnFxyTHaCVCfiwyxjx2pi/R19Lqb8Xp9yALCWpLchMyxaYSvFHlXEu98Sv5CjOwGMwEIsn38CskZOwWAxrZkLeWFemSkZCpr6/n+uuvZ/r06QctmzNnDm+99Vbqp6qqCoBIJMJPfvITLrroIl5//XVmzJjBL37xi9R2Dz74IB6PhzVr1nD77bfzm9/8hp07dwLQ3NzMvffey1133cU//vEPWltbeeSRR3KZr2KsaV7DvZ/em/N+ZFkmSjCtlLtsMVPGHlc33X4PJsGh6L71Gj06WcTpzz7g1x0MgiBTkichU11cREyQaHMnn56GO2up0lZGSNtNMEOjVSSStMgUmpDJh2upN2209wlwpDCbQdQUKR4j4wv70KDFajIOuW5TE+x3CeWw8sOYUzsHk66f2vwHoIyQsREjTDSu7EOlN+THlEchU2qspiPQxh6XE42sp6Iot/cqFovxRpWzyHhDAQQ0GLVDnwPZYDPuS7/2xzyKWOaNRtAnbHiy7YqrEBkJmaVLlzJ37lwMGUSKffTRR4iiyPLlyzEajVx55ZVs3LgxZZVZs2YNV111FVarlSOPPJKFCxfyyiuvAPDSSy+xZMkSDjvsMKxWK9/61rd48cUXMxly3jDpTITj4Zz3E4qFkJEpyrSdbwZYhXLaPF30BNyYFRYyAEbsOQmZHn/SmpOvm1RdWbKM9+aubWhkPUZdfi4UA1FqLiWscWYnZHTdlJsLS8j0BvsqmbUUiATQoMVhHdmgZ7MZREF515Iv4sOADVFMv1JrL00lTbz/rffT2m7JEjjnnGxGuI9eF7BP4a7H3pAfUx4701eI1TjD7bS6nJgSpRiNOQQKAaXmEvxx5YSMW/JhEmxpV+vNFJvJTHCvCygQ8w7qxkwXvR70sg1PKPvQAiVQLKrqs88+4+STT6akpIQLL7yQ888/H4Bt27bR1LSvsZUoitTV1bFt2zYsFgtOp7PP8qlTp/LFF1+ktj3uuH1R/FOmTGHPnj2EQiFM/XUGI2kBikT6pkbqdLqMxFc6mLRJIZPIMV3Hv7dniV005byvgbDpymj3dWLUmDFrihR7n979mAQbTr876/32+L1oZAN6jS4vx6C0SI8Yr+KDHZ9hxK74/IfaX4mphJgg4fT6mZRIX7CGwxDVdVNmnpG3cyMXBpq/IAgIaIjFY4qN2xf2oceCKMokEiOXIWE2CxidRbgkF4lEIu1zYCi8IS8G2YrBkMg5A3AwrNbkTy7vUWROXnv9YT/2vQGjSnzO3pAXUWPN27leaa4kIoX5qmsLIqU5v0+puYhgwq3YOeAOujEJyl2fDsRmMhPyBEkkEkiJZBkKJd7LgBVPKJi3cWs0Q9tbFBEys2bN4oknnqCqqoqNGzfy//1//x+lpaWceOKJSJKE5QC/tsViQZIkgsEgWq22jyixWCwE9z66Hritda9NVJKkAYXMY489xkMPPdTntRUrVnDBBRcoMdUUAXeAUCxES0vL0CsPQmugNbk/j4udO7uGWDs7rEIxu7pbsOqKMGFNue6UwoiVls7WrPe7Zdd2DLLy49ofB/V82PIphjzMf6hzIJ6Igyzw1a7NlGXQbXbPHiOSphNBEvJ6bHLlwPknEvXEojE6OjvYKSoz7uau5mQdDG8HO3eGFNlnNkQiRWgiFnZ27OzzmeR6Hdi6Zys62YrLNbLzS4cepw6tbGLLzi3E7cnuz7nOH6Db60SPKW/nuoEyjIKFD3Z+gJmSnN9HCMeRZFdq7rkeg/aedoyCJW/z1yYSSDE/O3fuJBj3IETiiryXESu+UFCRc6A/GhoahlxHESFTW1ub+nvGjBlcdNFF/POf/+TEE09EFEUCgb4RzYFAAFEUMZvNxOPxPhaWQCCAea/d9MBt/XvrDIiDdI27/PLLueSSS/q8lg+LTF20jnAiTH19fVqKcSBC3SF0skhjQ21WXX3TodxSSQA/eo1IkamUiRMHz25Il0QiQUtLCxa9g7hOznq/hj0tGLAqNq7+qDRNYpe0GbOmSPH5p3MOiEIxCTGzYxQKQVjrZGrd1Lwem2wZaP46nYDRYKSsvEyxcTcnmtHJFhoaKpkweJZxXtm2DUy7S8EUY+LEiRmdA4NhDprRJ2xMnFjJKPyo+1BUBDpZpKi0hPqqekXmDxAVohSJjryd65WVAg5vNbvD27Hrcz83p/mMxD6RqKiuoLOtM+djENe/j1Wfv/nXVQaJtEpMnDiRiOBjcu1ERd7LpLHjDQcUOQeyJS91ZPb38TU2NvLss8+m/pckid27d9PY2Ijdbqe0tJTm5mZmzJgBwObNm2lsbExt29zcnNp2y5Yt1NbWDmiNATAYDIqLlv4wG8yEYiE0Gk1OH54/EkKXsGA2a8jXOVBmrmSL+ws0sgG7waH4yWbW2vCG/Vnv1xuSMAiWvH4J6mwT+bJ7LbWG6Yq/TzrngEUopUdyZfTe0ShIQjcV1ooRu0Ckw4HzTwb7alLLlCAYldAlLFit+fuepIPVCrq4A2942wFzzvU6EEAXtyGKIzu/dBBF0CbM+KRQas65zh+Sx8BqsebtXLdawSZUsdX3BZN0J+f8PlWOZOydb2+7hlyPgS/iw6Kz523+xRYbUYIIgkAYL+VFytwLTBor/khAkXMgWzJ611gsRjgcRpbl1N+JRIJ33nkHlyuZhrZp0yb+7//+jwULFgAwe/ZsJEli9erVRCIRHnnkEQ477DCqq6uBZADxww8/TCAQYMOGDaxbt44lS5YAcNppp7F27Vo2bdqE3+/n0Ucf5fTTT1dy/lkj6kRC8dxNwO5AAJ1sxpjH+NPJxQ20h7bji3qwGxyK79+qt+MLZx/455UCGDX5TattLJlIWOPCrB2ZUv8mjTVVwyFdIhGZoNBFeUHWkVE2a8np96BPFJHHmPi0MJtBGylSPNjXFfShS9gY5hJHWWE0gg4Rd1DZTBV/1Dtke4JcsFjAkqimLbSdIkNuqdcADqsJrWzCGVQmBdsf9WHR5W/+JTYzMjLOoIuEEFWsMKioseGPFlDW0q233sq8efP45JNPuOmmm5g3bx4ff/wx77//PhdccAELFizgxhtv5LLLLkuJEYPBwJ133smqVas48cQT+eyzz/jlL3+Z2ufVV1+N1WrltNNO44YbbuCGG25g0qRJADQ1NfHDH/6Q6667jqVLl1JZWckVV1yh3OxzQKmsJa8URCubcyoZPhSHVU+mK96ML+qmyKRce4JerAYbvkj2WUseKYBRk9871LTqpAlViWqW2WDSWPBHMhMyHilIjBBlatYS7d5kpskgxthhwWwGIlYCGX6WQ+H0+jFgHXGhlg4aDRgEMz1eZTNVfLEeSnPsfzQY5eWgDyUfoItz7HwNyXPBkHDQ4XHnvC9QrrbLQJRYkw+LO3uSGcMVdmXey6y1ZnxtU5qMXEs333wzN99880GvH3300Vx33XUDbjd9+nSeeOKJfpeZTCZuvfXWAbc988wzOfPMMzMZ5rAg6kRFhIxHCmLAnFdz8qxJTQSFLrqjuyg2LVZ8/zaDjW5P9kLGHw4iavNrkTm8foSFjDZzIdMd7EZAQ7GYfoDwaEAQQIOyBfHavd1YhLIRd7uYzZAI76vHoRROf/JpPE+Zt4pj0phx+ZV9CvfFnZRZShTd5/5UVYEQqIIiKBVzFzJGIxgTxXT53DSUVOW8v2DcR2ker08ldhPIAjucrWhlI0VWZdwAZr2VQKxDkX1li9prKUvkqIloIko8Ec/JL+gNBjEI+X0Ma6wuwZgoplX+jGKzQ/H92412duZwIvvDAURdfoXM9LpkhKjVMDK2e1FrIZjhza/D141VU5pRc7zRQPJmLCjaoqAr4MSmzd/TerpYLEDUgi+sbCVTd9CP1TCyxf4ywagTcefQlqQ/Aokeyq35EzIOB9iEpEWmzJL7uSQIySaiXT4XKDDsYMzLJGPugmggLBYBS7yO9e2fY5Dtij0UHGM9m7h2ZIVMYV0hRxFfbkhmToViucXJ+ELBvMeHaDRQQhMxQaLUorxryWGyE4jlYJGJBDDnWcgUiw6M2LEbR8gio8v8KX53TxdF+sJyK8Fei4zCLQq6g93YR8GxMJtBL1syjncaCrfkw24qgACZvZh1ZtwBZYWMRE/OjRwHQxCgzpEUMuVWZd7HrCnGGXArsq9gwktRHq9PZjM4YtP4YPcHGFHufQ61H8sU3SLF9pcNqpDJEvveFPBcu376QvmPDwGoNEwGoFTBzte9FIk2pET2QiYQCSDmqVHa/kywT6SpfmRuFmZd5haZNk83JaaRv3lnSm/TSEWDfYNORdwBuaLTgahVPkbGG/JTJBaORcasF/EqWJY+FoOQ0EOlPX8WGYCGsqSQUUowWTQOeoLKBH5LcR92BRv6HojBACWJaXza/T4mQbn3MRohEhlZKaEKmSyxmZP+xVwtMv5wEJN2GG7i1mT15HKbQ/F9O8y5CZlgNIg1T63r9+ecGaczt+HwvL9Pf5h1FqR4Zje/Tp9TERP4cNObtaRksK8r5KTCNjqOhc1kIRBV1rXkC/vy1jQ1H1iM5lSTQyUIBONENG6qHfkVMlP3ZsvWFCnzgGDROehRKGspJCer7eYLQYAG2zTaw9sRNcoJmUmTZKqqco8XzQVVyGSJaNKglY2prrzZ4o8Mj5BpKt4rZOzKu5ZKLXbCcvbp18FYIG8dX/fnjiV3sGTykry/T3+Y9WakDFrdyzL0SG4qbIUV6At768go7FpyR7upcYwO65TdZCEYCygaAxSI+vLWNDUfWI0igbByFpnWveU7qoryK2SmTSjnrM73qCtRpqSBXV+sWCf0MN68N7Q9vHoaAGatcu8zaxYceWQBdb9W2YfRmKxumatrKRAJ5j3QFeDQyqSQqciDkCmx2AnjJdvreigewGbK/zEYSSyGzCwyXi+EZDeVRY78DSpPKO1akmUZf9xJXcnosMgUiVZk5JytsfsTjPsptReOa8kumvFHlLPItHt60MpGzPqBq7YrQVUVVESOVSzN3W5w4Am7FdlXGJ8ijRwH49jJSSFj0Y1MrGC+UIVMlphMoJVNOV/MApEAZl3+LTJzG49gmv9qHFblC3GU2mxEBC+xWHbbS/EANmMBFNDIAYveQjiRvpDp7gbZ5KZYVF545puUa0khi0UgGiBGmAllo8Mi49jb/80fUe4pNJTwUW4vHIuMTRQJRpSzyHR4exApzVvn514qKmDhQlCohEpSyETcOe8nkYAI3ry7F+ccWo0+YcOqL7zrymCoQiZLjEbQyiLBHF1LUiyI2ZD/m/ghk2w8cMqf0WqV33eZzU5ME8AfiGe1fTgRHPMWGavRQihDIYPRg8PkyNuY8oXSFhln0Ikga5hQ4VBkf7liF00ICIrVkkkkICz7qXAUjkXGYTYjxYKKderu9PVgFvLrVoJksPbXv578rQTFYjH+mDvn/YTDMlGNj1Jrfi0lFRUCJYlpeS28NxKoQiZLkkLGRCCUm0VGigWxDEPGjl4PS/IUHlJqSX4pnL7snlDDiQBF4tgWMjZjZhYZpxNiOndBChmbDeIx5YTMblc3xkQJpSWj43JltQoYNRbFMpeCQYhqfFQVF45FxmEViSERVMi71B3owarJv5BRmmLRoYiQ8UlhEkI0dS3NF4IAh5kXMcEyJa/vM9yoBfGyJOlayj0FUYoFsQyDRSaf9Abqdvu8NJG5yTJCIGWuH6vYjBYicmZCJqLJT0uJfFNdDeEW5bKWdnU7Mcmlo6Z8v9kMRsGqmEXG6YoRF0KU2grHImMXzSS0QbzZJyv2oTvoxKYrPCFTZnEQSOSetdTtSx7I4chc+9/LfzvirT6UZnQ84hQgOl0y2NeXo5AJxYNYC9ytohE0GGQbTn/mmUvxOEQJUDRa7lJ5wmayECEz11KYwnQtVVdDJKygRcbpxKopHTXl+1NF8RSKkWnvSe7HNkJVp7NB1InIOglf9smKfeiRerDrC0/IlFqKkWR3zvFgrqAPjazHpMtj9+C9VFUlqxyPJVQhkwN6wYgvR9dSKDE2Al2Ngp2eQOaPZ+EwRIWxb5EpEjMTMn4/BOKF6VqqqoJwSDkh0+oaHVV9exFF0KOca6l7rxoYjhIESmHWm5F1yllk3KEeHMbRkZWWCeU2BwliOWev9gS8GLDlPdh5rKIKmRwwCCL+cG5CJpIIYjMVvpARsxQykgRxIYjDXDgX8WywiRaiGQgZKSTjj3koMhamaykaFYhElHEtdficFI+im5wogi6hnGvJF/JjwFJQPbVEvUhcE1TMIuOJ9OAwFp5FptyW/H56IrlV93UHfYq2DRhvFM43ZxRi0Jjwh3JT4hF5jAgZjQ23lI2QkYkKAWzGsS1kHKKFmBAkHk/v5u6VAsTleEFaZGw20Gs1uL3KWGS6At2UmUeXRUabUM615An7MAqF41aCpEUmJkj4/cpYELzRHkrNhSdkrBYtBtmeu5CRvIq2DRhvqEImBwwaI8FIjhYZxoY1wqy14wll/njmCYRAkAvKrJ4NRWYLCHLaweHevbUpRqrJZa6Ioga3Rxkh0xNyKtbkTwnMZtDGlHMteUM+TELhBPpCUshECeJXqJSOL+4sSCEjiqBP2PHneC4khUxhidnRhCpkcsCgMeVcpjtKEPsYCHS16Ox4QplbZNzB5AXAPAwp6CNJr1jtne9gxGLJ+BibwYZWk4fCP8OAaBLwepVxLfliPZSNopucKIIQt+R88+olEPFj0hSWkBF1IlFZIqBQ78xAoocy6+j5jNMlKWRseHPshu4N+xTtfzTeUIVMDhi1RqRo9hYZWZbHTMaOxWDDG85CyASCCAiIuvyWJh9pbKIJZAFPGkImHIaIxkNRAbqVejGbNPj8ylhkAnEXZaOo55Qogi5uxRtSxhwRjIQwaArr/DfrzURk5SwyYdmf9xoq+cBkAr1sw51jA01v2IuoVS0y2aIKmRwwak05NY2UomEQZOxjIEbGprfjj2TuWnIHA+gxj/lofa1WQC9b0hIyoRBENW6KC1jI6PUawhFlhExQdlFhHWVCRrbgkZQxR4RiYQyawirsIepFIokwXoXEaowQVjH/qcdKo9OBQbbhybEyYDASRNSObfd6PlGFTA6YtKacWhT0nvxjwSJjN9rxRzO3yHiCAYzC+PgC60nv5idJIBsLsxheL3qdQFiBrCVZhhAuKotGj5DR6cCkseBVSMhIsRAGbWHdxHtdwZ6AMv2WYoSwGgtLzPVi0uTuWgpGJUzawrLKjSZUIZMDJp2BUCyc9fbeveZIm1j4J7DdZCMQy1zIeEMBjJrCF3LpoMeCN5SeRUYu0D5LvRj0GiIKWGTCYZmw4Ka6ePQIGQBRp5xrKRQNYdQW1k281xXsCUhZd73vRZZl4kIYq1hYx6AXUQEhE4pLmMa4ez2fqEImB0SdiVA8+ycSdzCANiFiNBT+x+Aw2QnGM3ct+cNBTOPEpGrAgi9NIVOofZZ6Meg1hCIxVq3/35z20+H2IQtxakaZkLHolAv2DcfCmApMyJh0yfGG4hLRaG5uYSmafBi0FKhFRtRacz4XQjGp4MTsaKLw76AjiKg3Es5ByPhCQfSY0YyBT6HYbEdKZG6R8YUCmDTjQ8gYNRZ84aF96ZK0V8gYHfkfVJ7Q6wXcmq1c+uwlxBPZdUUHaHO5QBYoNo+uQFCLQbn061C88FxLgpAM0I9rgkhSbhcw/97q6NYCbQBk1trw51gcMRwPjfmEh3wyBm6hI0dSyGSfteQLBdHJY8OtUmy2E8pCyARjAUTdOBEyggV/GiboUAiiWk9Bx8gY9BoiGjdATuXbO7wuTDhGXdVbi0G5gnjheChl4SgkzHozOjGIJOVWIqBXyNgL1LVk0dtyrvIcikuIelXIZMvoujoUGBaDkXAid4vMWKDYYiNEFkImGsCkHRvHYCiMmgyEjKawXUtaQUNcl6x2mktmX4fXhSiMLrcSgM1oJRhTxiITiYcLUsiIehGDWSIYzF3ICLIGk0Gn0MiGF6veRiCWm6iNJCTVIpMDqpDJAdFgICpnb5Hxh4IYxkjGTqnVTgQfiQzjO6VYEPM4sciYNOm5IyQJwkJhB/sKgkBUu1fI5GCR6fK5sGhGn5CxmyxICgmZpEWmsFxLsL9FJnfXklY2odMVZgkGq8FGMJ6ra0lC1BeemB0tqEImByx6I5FcLDLhAAZhbFgjyu12ohov4QyTuKR4ALN+fAgZUWtJywQdCkFA7qZELLxKp71ohP1cSzlYZJwBF1bd6BMyRaKFUEIhi0wihGgovJuYqBPRmoK5W2TCIbQU3vx7sRttSPEcLTJyCLNBtchkiypkcsBiNBIl+4t0IBIcM0Km1GojLoTx+CMZbSfFAohjvD1BL6IufSHTE2+h3l4/DKPKDxpBQ1jI3SLjDPZg149CIWO2EkooEyMTTYQL8mncrDejMUo5W2QCoRC6QhcyOZ4LkYSkCpkcUIVMDliMBmJk71oKRIJjpoaKQ0xmlXS6M0vBDiWCWMeLRUZnIZiGkPFJITyxTuqLClfICAiE5GTMVC4WGVfIRZFx9AkZh9lCVA7llJHVSyQRQtQXpmtJMOQe7BuMhNEXspAx5S5qo7KEuQDF7GhBFTI5YDUZiCFlHBfSSyAaHDOpxyadCY2so82VWTv7cDyI2TA2xNxQmHVWArGhhV57cDd6wUCFpWIYRpUfNIIGmeQXIxeLjCfiotg0+oRMiSXZF0eJzKWIHCpIi4yoF0EfIBjM7TYSjBS2RcZhthGSc7TIIGExqhaZbFGFTA7YRSNxQUKSsittGYwEx0zGjiAIWIQydvd0Z7RdJCFhGScmVaveRjAdISPtolKsH3Upx5mwf++sUCx7q6U34hqVsUKl9mS3al8W/cUOJCaHMRdgjMyxtceyzvW/uQuZcAh9gfWa2h+HaCOCHzmHEscxOaQKmRwo3CvlKMBqMiALCTy+WFbbB6IBjGNEyADYdeXs8XRmtE1YDmIZJxYZu9GWVvXjruguqsyF61YC+oiwXFxL/piLUsvos8hYzVr0sjmrju8HEpVDmA2F51q6bu51dEZ28XH4mZz2E4yG0AuFK2SKLTZkEgSj2TeOjCJhVYVM1mQkZB588EFWrFjBMcccw8svv9xn2cqVK1m8eDEnnXQS999/fx91+sUXX/C1r32NefPmcdVVV9HW1pZaFgqF+PnPf87ChQs544wzeOmll/rsd/Xq1SxdupRFixZxyy23EI1Gs5lnXjDvLWDU7c3OrCjFgohjSMg49BV0eLsy2iYiB7Eax84xGAyHaE/LItMTbaHOOmEYRpQ/+giZHFxLgYSLctvoEzKiCHrZnrNFRpaTDRMLsTy/xWDhmuk/433+lNN+gpEQhgIWMr1uxlzOhRhSQZ4Do4WMhEx9fT3XX38906dP7/P622+/zVNPPcXKlSt58sknefvtt3n++ecBiEQi/OQnP+Giiy7i9ddfZ8aMGfziF79Ibfvggw/i8XhYs2YNt99+O7/5zW/YuXMnAM3Nzdx7773cdddd/OMf/6C1tZVHHnkk1zkrhllnBlmg05vdCSzFxo5rCaDUVEFHIDOLTFQeP75hh9mGlBj6XHEldlFfVNhCRmCfaykXi0xQdlExWoVMwoY3lJuQicUgTrhgb2Izqg7FT3tO+5Cihe1aspkNaGUDvnB250I8ESchRMfNdTAfZCRkli5dyty5czEYDH1eX7NmDeeffz51dXWUlZVx6aWX8uKLLwLw0UcfIYoiy5cvx2g0cuWVV7Jx48aUVWbNmjVcddVVWK1WjjzySBYuXMgrr7wCwEsvvcSSJUs47LDDsFqtfOtb30rtdzSgETQYBSvdWQqZUCyIZQxl7JSby3GG0hcysgxRgthMY0fMDUax2UZYHvpccbOLCY4x5FrK0iKTSEAIF1VFo0/I2GygS9jo9uXmWopGIS6EMBsLz7UEUF9SjqTpIpJZ1YU+SJEQhgIWMiZTbta53hgym0kVMtmiSE3o7du3s3Tp0tT/U6dO5Q9/+AMA27Zto6mpKbVMFEXq6urYtm0bFosFp9PZZ/nUqVP54osvUtsed9xxqWVTpkxhz549hEIhTAM0GItEIkQO+FbpdLqDxFeuJPamKpkEO90+d+r/TAjGA4g6MattRwO94+79XWEtp3nP5rTnE41CTAhiNZgK8hgcOP+hcJgthGTvoOtHo+DT7KKhuG7UH5OE10vpz38Oej2yIBCIRvnH7t180NXFRFOAhxOglQ3M/OCvyJWfZrz/cBj+uLGHWVt/jWy0KT+BHDACv/yyi/YTPFCc/jlwIOFwUshYjIZR/3n3R21xKVGNjy6XRG1ldjdiKSph0BTmNQBAr0+gT9hwS4N/twfCF0qWZCjUcyDT62CmaNLoqqyIkAkGg1it1tT/FouFYDAZ+CRJEhZLX6uDxWJBkiSCwSBarbaPKBls2973kCRpQCHz2GOP8dBDD/V5bcWKFVxwwQU5zHBgTIKVXR1tKXdYJgQjPuQoWW07mmhpaQHAihF3tCPt+UiShpgQJOj1FvQx6J3/UMQliagQYPuO7QNmJPn9AgFtC+aoftQfE/2XX1Lzt7/hueYaHl2/nlv+9S9qrFZmV1Xx4PoWJhTBeU0WysxaJtoz717d2iOxqwgiZVW4hdxqlSiNIEl8570WfrhrDzSlfw4ciNutIy6EcTtd7BRG9+fdH7FEMtHh400biYXKstqHO+BGm9CO+vN9IEIhDfqEjS27tjNZ25Dx9jtdSe+Eu7uLHOKFR5xsvwND0dAw9DFVRMiYzWb8/n0Br4FAALM56S4QRZFAoG8RsEAggCiKmM1m4vF4HwvLYNv2vocoDqz8L7/8ci655JI+r+XLItPS0oJVX0RMIzNx4sSM9xETwpQXlWa17Wig9xjU19ej0Wg4rGMygc8fZ8KEiQhptE1xuyEuSEyZ1MDE2sI7BgfOfyii2iJYByVVpRSZ+r+xf7Kph5gmwHGHzcFuGl1WiANJdHUhW62snDiRX61cyVOrV3PyyScjCALXPXMdD/z8AW7/PMAZp09k6X/dk/H+//riWn734Wv84uf352H0OeJywX//N9F4siBeuufAgRgMSYtMQ90kJlYW5nfAJBcT1gnZX8e0YDZZCvY6GI0m0Ms2tCZjVnNwayJoZSNNkyei8G1qWMj0OpgPFBEyDQ0NNDc3M3/+fAA2b95MY2MjAI2NjTz77LOpdSVJYvfu3TQ2NmK32yktLaW5uZkZM2b0u21zc3Nq2y1btlBbWzugNQbAYDAoLloGw6q34w75svoAw4kgFqN1xD58pdBoNGg0GiaWVSEJXYRCGixphP7EYknXkl0s7GPQO/+hKC9Kihe3FKDY7Oh3nfc378AilOIwFyk5xPyQSHB/OMwtt9zCK6+8wpw5c1KLbCU2uBDK/304L97+LDcGb+SXv/xlRt/NTV2bqTVOG53nxt55ePfGyKR7DhxIPL43RsZgHp3zTAOLUEabpzvr8YfiYUxasWDnr9eDAStuyZ/VHAKRMFpZxGDQUKCHAMj+O6DIe2eyciwWIxwOI8ty6u9EIsHSpUt5+umn2bNnD93d3axatYrTTz8dgNmzZyNJEqtXryYSifDII49w2GGHUV1dDSQDiB9++GECgQAbNmxg3bp1LFmyBIDTTjuNtWvXsmnTJvx+P48++mhqv6MFm9GGN5RdwF9EDmIzjp1g37riCiRtJ15veoWhIhGZmCaIeZz0WrJZdGgT4qDB4Z+1bKVGnDyMo8qe3z3xBLcEg7z00kt9RAzszVoSYOKcuSz6xVm8/PLLHH/88WzevDnt/Te7NzHJOk3pYSuDLvkM6A/kFuwbDsvEhTAmXeEGu9o0ZXT4MiuEuT+ReKig5w9gxIZbyq4Mhy8koZNNBS1iRpqMDt2tt97KvHnz+OSTT7jpppuYN28eH3/8MfPnz+fcc8/lsssuY8WKFcybN4+zzjoLSFpI7rzzTlatWsWJJ57IZ599xi9/+cvUPq+++mqsViunnXYaN9xwAzfccAOTJk0CoKmpiR/+8Idcd911LF26lMrKSq644grlZq8ANoMt62j1cCIwporBVVjKSQgRWp3pXdz9oWSrbFE3PqL1dTowyDacvoHPl686m5lS2jTg8tHCAw88wE0PP8ya8vKDRAzsy1oqNlSgKTXx3nvvsWjRImbPns3f/va3tN5jZ2ATU0pGt5AJSPs+y2wKogXDycQEo64ws5YA7NpSOgPZC5nQGBAyJo0Vj5TdfcAfktAxPq6B+SIj19LNN9/MzTff3O+yyy+/nMsvv7zfZdOnT+eJJ57od5nJZOLWW28d8D3PPPNMzjzzzEyGOaw4RDs7IllaZBhbxeDsRjtaDOxydjGboV0jXil54R8vFhkAI3ac/v4veIEAtIW3cnbN6LbI3H///dx000289OtfM/vuu/tdRyNoEHUiNqOV9kgIo9HI3XffzaJFi/j617/Oxx9/zK233opWO3AQb1tsEzMqR6mQ2Tvu0F5rrDvkZtL9k+j8cWdGN2V/OJl6W8g3coehlO5gZoUw92csWGQsmmK6g9mJuWSvKVXI5IJqzMoRh2gnEMtcyMiyTHSMCRlBELAK5ex2pVdLplfIiPrx8yU2CjZcgf6FzI4dIInNTK8evRaZXhHzyiuvMKepCVnX/7OQIAjYjXasJpFgZF8dmbPOOov333+f5557jmXLluH19v/d8YV9+NjDUfWjVMhoNCQ0ApGwD1mGPd49+CK+jK0ywXDSKlnIN/JiQwk9oeyFTDhRmE0z96dEW0dbILusHX9YKugWDaMBVcjkSLElvUaABxKJR5BJYBfHTowMJNsU7HGnJ2T84SA6jAXdHDFTRI0NV7D/m/fu3eDVbWVy8ei0yPQRMXPmJKO1BxAyGkGDzWjDZhIPKog3bdo03n//fQDmzZvXb9rt+tbNGOOlTKnNLqV3OJC1WmTZTyikoTOYPOfDsXBG+wjstcjoNXrFxzdclJiKcUdziJFJhDAVuJAp1dXSJmUnZAIRCb1qkcmJ8XMHyROlFhthvBlXtux9crOLY8ciA1BirKDdl97TmT8koWdszX8oRK0N9wC+dJc/iCfRSlPJ6LPIHCRiAGKxAS0yGkGD3WjHLoqE+qnsa7fbWb16NQsXLmTOnDkpYdPLpy2bKU5MxTyKTw9ZrwN8eL06Ove25ojEM7sQBMIh9Jj6dAsvNMrMJXhiObiWEiHMBS5kyvS1dIayEzLBsIRBowqZXFCFTI6U2uxENT6CGcb5BaLJ+jhjrSx1ubmCzkBHWuv6I0EMwii+U+UBs86GZ4D+PDu92zBqLFRYKoZ5VINz3333cfPNN/Pqq6/2DeyNxVKxIgcikHQt2c0ioXj/LQp0Oh2///3vufHGGzn55JP7BAHvdHbg0FWnVY9oxNDpQAjg82npCiRv5OF4ZhaZYCSMrsDdChWWYvyJ7C0yUbnwXUsVxjq8MSeBSGDolQ8gGA1hEMbWfWC4UYVMjhSZbMS0XgIZnr/BaBCtbMJoGFsfQW1RNV1S29ArAoFwcNx9gS0624DN5Xb5m6kxNo2qp/P77rsvVSfmmGOO6btwCIuMzWDDYRGJJAbutSQIAtdeey2PP/443/zmN/n1r3+NLMu0eTop1o8uQXcQOh0kAvj92qwtMsFICL1QuBlLAJW2YoJkb5GJymHMhsIWMiUmB3rBRIs3c6tMb4sGlexRpCDeeMZutBPTZCdkdLIZfeG6xvtlQnENb8beSGvdQETCoBlfFhmrYWAh0yptpdbcOMwjGphBRQwMapE5supITDoTDkQi8tBNI88880zWrVvHsmXL2Lx5M52zoNgwujuACzodiYSbUEigU5ddjIwUDRV8oGd1kYOQ0MO9//odixrnMat6Vkbbx+RQwQsZiyVBiXYCLZ4WppVlFqAejKqupVwZW+aAEcBuTLqWMhUy3lAQXcJSkCWpB6OxvAYfrYTTuJ4HIkGM40zI2Aw2/NH+hUxXZBe11tFRpn1IEQMQjQ5okTmt6TSunXstxTaRqCwhp1EjcebMmXzwwQesX7+ed+9fjSUxus8NQadHlwBvSEpZZDJ1LUnRMHpNYVtkaoqKQZD50dof8OKWFzPePiqHsBgLW8iIYgK7XM8uz66Mt5WiEkatKmRyQRUyOWIzJIN9MxUyPikwJi0yk8trCWr34HINvW4gGsQ4zp5E7EYbgQGEjDPWQp2tfphHdDBpiRgY1CLTS4lNJCZIhELpvXdNTQ3r1q0jYUzw6r33s2XLlgxGPrwIesNeIRPM2rUkRUMF71YQ9UbO8D3N8savZVUUMEbhCxmzOY4tkZ2QCcVCGAv8HBhpVCGTI3ajnRhhejyZXcC8obHpWqq11xDUtOPsiQ+5rhSRMGlH91O30hQNUnfIndhNfdHICpl7772XW265hVdffXVwEQODxsj04rCaiAsSPl96bSsALBYL4oUODj96IXPnzmXt2rVpbzucCDodoqzHEw7ss8hk6lqKjI2b2AzdORTpKg5KtU+HGIXvWhLFBGJ0Aru8WVhkYhIm1SKTE6qQyRG7MdkIcLD+Of3hkfzoZetAZTgKlmprNbIQZ0fX0MF/UiyISTe+hIxDtCEl+j9XvEILDSUjJ2TuvfdefvnLX/Lqq69y9NFHD71BPD6kkDHrRWQhgccfy2gsPrmLy6/5OXfddRfLly/nzjvvRE7HPzWc6PVYBAveUFLI6DX6jC0y4VgYg7awXUsAZjNoZXNWFpm4EMI6SCPgQkAU4xilelo8mQf7hmISpnHSpiVfqEImR0w6Exq0dPkyq+7rDfkxYB3d6aVZYNQZsQilbOtqHXLdYCyIOM6eRIrN/QuZUDRCUOigsXRkhEzGIgbSci31Vm12etJ/Ug9Gg4TxU2Ov4PLLL2fdunX84Q9/YMWKFfgG6VM17Oh0WDHhjnbji/ios9dlHiMTC2HUFvZNHPYKmfjBxQ+HIh6XiVH4QsZsTmAITWBnNq6luDRu+s3lC1XI5IggCFh0dpz+zIWMUbDmaVQjS6mhhl2uoYVMKBZEHGcWmWKLjbB88M14W9ceBLRMLK0a9jFlJWIgLddS7wW6x5v+Da4r0IUga6hylAAwe/ZsPvroIzweD3PmzGHTpk3pjzGf6HRYNCKd0R1oBA3VtuqsXEuF3J6gF4sFhLiIFM1MyATDURDkghcyohjHmCjBI3ky3jaSGBvnwEiiChkFsOrtA/bPGQhfeOwKmXJTDa2+NIRMXBpXDSMBSq02whx8rmztbsESr8FiHtzCoTRZixhIyyJj0BoQEOhyZyBkgl2Ichk2y759l5WV8dJLL3HOOecwZ84cnn766czGmg90Oop1drbLb1FmLkPUiVkE+4YxFXDn615EEYR45q4ln5SMAi90IaPVgtVoxh/1Z7xtOK66lnJFFTIKYDMM3D9nIPxjWMjU2GpoC+wZcr1QPDiuGkYC1JWWEhZcBKS+MSM7elqwyfVohvEbec8992QvYmDQ9OteBEHAIIh0udITMu+2vEuHvwNjvPyg9gRarZbbb7+dv/zlL1xxxRX85Cc/IRbLLPZGUXQ6Tq05nc26Z6kwV2DUGTN2LYXihV/VFpKuJSKZu5b8oV4hU/hiziFakWJBEnIio+3CcQnzOLsOKo0qZBTAbrLjDXvTqpXRiy/ix6Qdm0Km3lFDd2hoi0w4ERx3FpnGiioQZLZ39m2sudPdQpEwfPEx99xzD7/61a+yFzGAMEjTyP0xakWcabiWOgOdHP/o8azZ/BKmeMWAfZbOOeccPvjgA/7xj39wyimn0HnAsRw2dDpmlk2nLnQq5ZYKDFpDxhaZUKzwM3YAzGYZouaMXUu9QsakL/yCWkXmZAPgTI9BWJYQx8A5MJKoQkYBKqyl+OTOtIrA9eKP+DGPUSHTWF6LO95KNDr4euGEhMUwvoSMSW9ATJSztbOv0GvxtlCiHR4ho4SIAZIxMkO4lgBMOjGtGJnNzs0A/HXD/0NMDCxkAA455BDef/99KisrmTlzJm+99Vbaw1YMnQ6jNsYC18P8fN4tGLXGjGNkwrEwoqHwrREWCyQiYsaupUA4hFYu7KaZvZRYk9dzfyQz91IkERx310GlUYWMAkwta8KnayaThApfyI/NOFaFTA1B3R56egZfL5IIYjaMP5OqXVPNDmdfIdPqb6HMkH8hc88993Drrbeydu3a3EQMJGNk0rDIiHoTLv/QQmaLcwsGrQFfxIuFiiF3bbVa+d///V/+8z//k9NOO234U7T1evSaGJZ4HTNLj8/KtRSOjxWLTFLIZONa0lH48wdw2Axo0aUaAqdLSPalynioZIcqZBRgaukUAsZm/BkIcX/Ej900NoVMQ/FE/LodOJ2DrxeWg1iN4+9JpFhbQ4s72VhTlmVuXXcr/3auZZLpyLy+b6+IefXVV5k9e3buO0zTImMxiHiDEokhQge29GxhxWErELVm7NrytIYgCALf/e53eeONN/jjH//I2WefjSudstJKoNOhicfQ6RJIEhg0mbmWYrFkn6FCr2oLyWDfRChz11IgPHaEjNUKJo01Y4tMSPZSpAqZnFCFjAI0lTTh1W3JyCITiPopEsemkJnkmERY8LCj3T3oehE5iN00/oRMqbGGVm/SIvOV8ytuXXcrt059jcPtC/P2nnfffbeyIgbStshYjWYiBPEOEQ+/pWcLR1YeyYqGa5hoyGyMxxxzDB9//DHxeJxZs2bx4YcfZrR9Vuh0EI9jNCaFjFGXmWspHIa4EMZiHBuupVgoc9eSOxDAIIyNa4DFIqPHQiCSvkVGlmXC+CgSbXkc2dhHFTIKMKV0Cm5hOy7PEEEh+xGM+XGYx6aQcZgcmDUOvurYPuA6iQREZYkiy/hzLVWI1bQHk0Kmw99Bta2aSdrjBo0JyYW7776b2267TVkRA8mspTQsMg6xCI3oGbL/1hbnFqaUTuGayXdxpHlpxsMpKSnh+eef59vf/jaLFi3ivvvuy6+rSaeDaBSTaa9FRmvIyLUUCkFI202p1ZG/MQ4TZjPEpMxdS90BF2ahOE+jGl6sVjCQmUUm6YaSKbWqFplcUIWMAtTb69GgZatzZ9rbSAk/xZaxKWQAqowNbHEOLGRCIYgJQYqtY+NpLBOqrTV0h5Kupe5gN+XmciQpaZ5XmryJGEjbIlMilqCxuAYVMrIs09zTzJSSKQSDZC3qNBoNP/3pT3nllVe455578utq0ukgFttnkdEaM3IthULg1n/BjIrp+RnfMGI2g7w3aykT8egMuLBqS/I4suHDagVdwpJRjIwvnDTjl9lVi0wuqEJGAbQaLRX6Rpp70u/UG0r4KbOPXSFTb2ugxbtjwOWBAEQFP8VWy/ANapRQV1RDTzRpkekKdlFmLsuLkOkVMWvXrlVexEBalX0Bik3FJIw9uN0Dr9PmbyMYDTK5ZHJOQqaXefPm8emnn5JIJDj66KP57LPPctthfxwoZDJ0LTl9fnzaHUwvHxtCRieLyMgZWaV6JBc2/dixyGjimVlk3JIXrWyiyDrGugcPM6qQUYg68xR2+NIXMhHZT4lt7AqZxuIGWqWBLTKBgExY00O5pXQYRzU6qC+uxh3fK2QCXZRbkhYZJV1L+4uYWbNmKbfj/UlTyJSIJcT1rkGFzBbnFuqL6jHpTIoIGUi6mv7+97/zjW98g3nz5rFq1arcd7o/+wmZYDDpWook0rfIbOzeiFkuo8JSoey4RgCtllQGYiYBv65QD/YxImSKi0GIWvCF07fIdPu96BP2vLmVxwuqkFGIibYp7A42p7VuPBEnJoQoH8MWmakVk+iObSce7395p8eLLMQpEceGWTkTGstrCNBJLBGjO9hNmVhOT49yFpm77ror/yIG0mpRAEmLTETbM6hr6dP2Tzm07FAAxYQMJF1NP//5z/nb3/7G97//fa699lqiQxU4She9HmKxvTEyQsZ1ZDZ1f0GFMH1M1FABsO89gTOJk/GEXRQZx4aQcThAl7Di9KVvken2+TDINgq8Q8OIowoZhZha1kRrKD0h45GSir3CMXaFzGHVDXi12wd8Cm/zONGgpchYNKzjGg00lier+7Z5O+gMdLHzyzISCTj00Nz3fdddd3H77bfnX8RARhaZkODCM0g/vSc3PsnyQ5YD0NOTzIJRktNPP50PP/yQN998k5NOOom2trbcd6rTIRzoWsrArfKV63NqdDNyH8cowWrWoRP0GWUueaMuSkxj42FGrwdRZ6HHl75FxunzYsQ+rK1JxiLq4VOIQ6rqcMV3D1krA6DLk1TsFY6xGx/SVNZAQLeD7u7+A/86vD2YhZIx8zSaCaXFekzxCpo7W9nZ3YW3rZzrr0/62HNhWEUMpG+REYsJJlwDlifY6d7Jv/f8m/MPO5/PP4cdOyAfw29sbOSdd95h0qRJzJ49m3feeSe3HaZcS3IqaymTYN+tvi+oN44dIWOxgEmbWS0ZX6yHYnFsWGQAbIbMLDI9AR8mQc1YyhVVyCjEITW1BDStQ6aYAnS6/ehkEZNxeDsdDyeTHJOICkGa27r6Xd7ld2LRjI0nsUzR68Em17GlYxd7XN3MmFyGw5HbPoddxEDa6dclYgm+WM+AdWSe+PwJTm48mRJTOX/9K5x3XjLeIB+YzWb+3//7f9x4440sWbKEP/zhD9mnaKfSr+OprKVMXEvb/V8wwVT4gb69iCIYhMxSsP1xF6WWMSRkTBbcwfQtMq6AF1GrZizliipkFGJCcQ1hrZPdbUNfyLq9fgyMXbcSgFlvplQ7kU9bN/S7vDvoxK4ff4G+vZQLh/BJy1f0hLqYMz29KrYDMSIiBpIWGf3Q2RbFpmK80aRFpj+L5SvbXuHsQ86mvR38fliwIA9j3Q9BEPje977Hyy+/zK233so3vvENJCmz+idAyiJjNifwejOzyLT52uiJtjLZdkTm7ztKsVpBL2RWFC+YcFFuHTsPNA6zFU8ws6wls1a1yOSKKmQUosJSgQYtm/YM3fXZ6fNjFMa2kAE4zHY8H3X1b753BnsoGsdC5tjJ03jtsy+RhC6Ompq9kPnTn/40MiIG0m5RUCKW4It4icsxAv08rO5072RK6RRaWqCujmGLF5g/fz4ff/wxW7du5fjjj2f79oGz7Pplr5Cx2WJ4PJnFyLy5800mGGdSYh47MWIWC+jJzLUk4aLcOnYsMg5LZllLnpAPi161yOSKKmQUQiNocOiq2dIxtJDp8fsxaca+kJlVcTwbff/qd1lPyInDOHaexDLl9KMPJVz2b+JChAprWVb7ePzxx/nJT37CP/7xj+EXMQDxeFoF8VIxECb3Qe6lhJxgt3c39fZ6WlqgfngagKeorq7m9ddfZ/78+Rx99NG8/PLL6W+8V8hYrXE8HjBo0nctvbHjDaYaTmAMdCdIYbWCVk7fIpOQE4RwUWkfO0Km1JZZHRlv2ItNr1pkckUVMgpSYaple/eeIddzBfyI2rEvZOZPOJ4dsXdJyAf7EzwRJyXi+LXITCubxq7gV2gFLQ6TI+PtX3zxRb71rW/x1FNPcdxxxyk/wHRI0yIj6kSMWiM6+8FxMl2BLsLxMHX2OnbvTlpkhhuDwcDvfvc77rvvPs477zxuu+02EulE7e9Nv7Za48TjAvFo+q6lN3a8QaPmhDGVdmu1gjaRfoyMW/KCIFPlGDsPNGV2C8FYBpV9Iz5sasPInFGFjILU2GrY4x3aIuMO+rHox76QOa7xCOJynA3tXxy0zBvrocw8foXMlNIpaAQNZeayjDO3/vWvf3HBBRfw6KOPcuqpp+ZphGmQZosCQRAoFovRWg7OXNrl2UW5uRyTThwRi8z+fP3rX+ett97i4Ycf5txzz8UzWL44pCwyer2MKMpEpfRcS22+Nrb0bKE+sWDMCRlNPH3XUrvbhSBrqSgaO9fCCocVKe4n3fhxf8RLkVF1LeWKokLmqquu4vjjj2fBggUsWLCAH/zgB6llK1euZPHixZx00kncf//9fTIFvvjiC772ta8xb948rrrqqj41HkKhED//+c9ZuHAhZ5xxBi+99JKSQ1aUiSW1dAT3DHkSe0PjQ8hUlOmoiBzLa1sOdi/5407KLGPnSSxTTDoTDY4Gyi2ZxcesX7+eZcuWcdddd3HhhRfmaXRpkqZFBpJxMoj7LDKynNRBLd4WSrQTeO+9ZKDvSFhk9ueoo47io48+IhQKMWfOHDZu3DjwynuFDEBREYSD6Vlk3t/zPtPLp6OJOMackBFi6buW2jw9GBPFmExjpwRDucNClAD+NL1LgZiPIpNqkckVxS0yN910E2+99RZvvfUWDzzwAABvv/02Tz31FCtXruTJJ5/k7bff5vnnnwcgEonwk5/8hIsuuojXX3+dGTNm8Itf/CK1vwcffBCPx8OaNWu4/fbb+c1vfsPOnek3ZxxOGstr8AmtA6aZ9uIL+7Eaxr6Q0euhRjObj/asP2hZIOGkyj5+LTIAh5YfSrk5fSGzdetWTjnlFH784x9z9dVX53FkaRKNIqeRtQTJzCXZlLTIOJ1w553wxz8mLTKyu55HH4WKCkZFzEhJSQn/+Mc/uOCCC5g7dy5/+9vf+l9xb/o1JIVMJJhejExXoIsaWw2hEGNOyBAzp+1a6vS6MFHMWColVWKxEtf66elJb/1g3IvDrFpkcmVou7ACrFmzhvPPP5+6vY9bl156KS+++CLLly/no48+QhRFli9PVvW88sorWbx4MW1tbVRXV7NmzRruvvturFYrRx55JAsXLuSVV17hyiuv7Pe9IpEIkUjfpyKdTofBYFB0Tr0+9P196XX2akL6l+npSWAb5Nz0R3w4Sizp+eFHMf0dgwOpE5vY4nyyzzqJBEj0UGkvLuhjkM78B+OQ0kPY5dmV1vatra0sWbKEiy++mJ/+9Kej4rgJewvipTOWYlMx8YQTj0fmz39OtiDYvBkSE3eil+r5zncShMP9p2ePBIIgcMsttzBr1iy+8Y1v8P7773P77bej29+VptXuZ5GRkfx6wvHwkMfDJbkoMhYRCskYDPKomXM27P8dMJtBiIv4pGBa50Sn14kolIyKczkX9j8Gok4kpgmwZ08iLTeplPBSbLYW9DHI9To4FJo00hgVFzK//e1v+e1vf8vUqVO57rrrmDJlCtu3b2fp0qWpdaZOncof/vAHALZt20ZTU1NqmSiK1NXVsW3bNiwWC06ns8/yqVOn8sUXB8dc9PLYY4/x0EMP9XltxYoVXHDBBUpNsQ8tLS2pv7VBLZJuD5s3dwEDm1e9IS9lCc2otSxlyv7H4EBqDBNY5/6qz1wlSUNI40QIRcbEMRhs/oOxonYF/kr/kMfA7XZz0UUXMWvWLL73ve+xa9eurN5PaWolCVmrTWv+hrgBV3gXL+z+H0paL+X7329h27ZaPty8jXLDcTgcyWMw2k6HmTNn8swzz3DNNdfwzjvv8MADD1BamrQk2rxexL1BP4LgpbsjSiQ29Dm9s3Mn2piWYDCBy9XOzp3pVwMerbS0tJBIgE42sbuzI63v9fb2XYgUjYlrACSPgcfvIYKfjRs9VFe7h9wmlPBBODYmjkG218GhaGhoGHIdRYXMD37wAxobG9FoNPzf//0f1157LU899RTBYBDrfvXXLRYLwWDyRi9JEpYDGqtYLBYkSSIYDKLVajHtZ3/df9v+uPzyy7nkkkv6vJYvi0xLSwv19fUpxRgwB/CvbUWvL2PixIHtpWE5SFXpJCZOnKjomIab/o7BgXztVAN/fG43n35RwfKlyaZybR0xIho3Rx0ynQmOEYzuzJF05j8YExn68w8Gg1x88cUceuih/O///m9fi8AIIwgC6HRpzb/+q3r+3+6/4BK6+FntWUyfXseUKQJPdbWzvKphVH8XJk6cyIcffsg3v/lNzj33XP72t79xzDHHQHl5qiBgfb2Njs2lRBIRJkyYMGgAt7xRpt5WjzeqYdKkaiorh2smynPgd0DUmUEXSOvzDL8bw6YrHdWffTrsfwzMkhmZBD1eU3rHQPAyZcLEgj4GuV4HlUDRq+KMGfv6hvzHf/wHzz//PF988QVmsxn/ftFPgUAA8972tqIoEjigSlYgEEAURcxmM/F4nFAolBIz+2/bHwaDQXHRMhgajSb14U1wTCCKxHZnOydpagfcJpjwUmKxj9iHrjT7H4MDmXdEDeYXrDz7xnbOWZY8Pzr3BhFV2MrHxDEYbP65IMsy3/rWt9BqtTzxxBPDel6ng7w32Ded+ZeIJbgiyXYV9Yf0oNEUMWUKeLp3cfiEiaP+PLDb7Tz55JPcc889qYSFbxmNyHtdSw6HQNCfDPCJE8egGfizcofc1Fgm0BMTsNuFMdEwsPccEPVm/CFnWp+nW3Jj15eM+s8+XTQaDfa9gbs72wJoNIO3s48nEkQFPxVFjjFxDPJ1HUzrvfO6872TamhooLl5X2fozZs309jYCCQbue2/TJIkdu/eTWNjI3a7ndLS0gG3HW3YjXYOt57Eq21PDLhOLAZBuqkuyq0sfaEgCAJTSqbQGt5MeG8cZIvTiVY2IuoG/6KPd2677Tbee+89nnnmmT5WyVFDmunXALOrZ3P59O8hxispn9ANwISGCJKmg9lNhWGVEwSB66+/ntWrV/Ozn/2Mq/76V8L7BfsGPEkhM1TArzvkxkQxWm2yP9FYwmoQ8YfTy1pyhropMoytgH+TzoSAgNMXGLBJai+9zSXLi9Rg31xRTMj4fD7ee+89IpEI0WiUVatW4fV6OfTQQ1m6dClPP/00e/bsobu7m1WrVnH66acDMHv2bCRJYvXq1UQiER555BEOO+wwqqurAVi6dCkPP/wwgUCADRs2sG7dOpYsWaLUsBXnzPpv8KZn5YCN6CQJQppuah3ZVXMtRKaVTyVg2kx38v7Fri4nVk3puOx8nS7PPPMMd9xxB88//zwVFRUjPZz+ySD9+oypZ/Dns35HsbEMU0nyRIjYNmPUiMyaWp3PUSrOSSedxMcff8ynLS0s/OgjWltb+wqZIWrJuENuDHFHsu5K4T+I98FqNBOIpJe15Ax1UGoqYL9aPwiCgNVgxVocYM8QtVE7PHst06qQyRnFvkaxWIw//OEPnHzyyZx66qm89dZb3H///VitVubPn8+5557LZZddxooVK5g3bx5nnXUWkHQF3XnnnaxatYoTTzyRzz77jF/+8pep/V599dVYrVZOO+00brjhBm644QYmTZqk1LAV58wp59AT38lHbR/1uzwQgLCmmyr7+BEyU0qmELJsSQmZ7c7dlBoGdr2Ndz799FP+4z/+g7/+9a8cccQobioYjabVNLIXgwGaaktxhZMnwqaeDRxRPR2DvvDu5vX19ay7+WaO3JtxuWHDGyRiSXfSULVk3CE3urhj0MzGQsVqEtMWMq5oBxXmsSVkAKwGK0UV3qGFjNuDXrag16X3MKAyMIrFyBQXF/PXv/51wOWXX345l19+eb/Lpk+fzhNP9O+OMZlM3HrrrYqMcTioKbNQH13CP7f/k6Nrjj5ouT+QIKRxUjqOyvNPLZ2KT/8GXckQCXa4d1JtLtzgtnzS0dHB8uXL+dnPfsbZZ5890sMZnAwsMr2UmctwSk4APu/8nMMrDs/HyIYFk9nMf0+cSOM553DOOWeycOEf0dZr03ItaSMO7GOwDppdNCNJ6bmW3NEOauxjT8hUWavQGzuGFDI7utuwUljWyNFK4T0KjXIcDjCHJ9Ps7L+TbofHgyzEKTOPH4vM1NKpdMv7XEutgV1MKJowsoMahYTDYc4991zmzZvHz372s5EeztBkECPTS5lYRncweSJs6NzA4ZWFK2R6K/tedNFFPPfcc7z55nXIT8hs3zF4F21XyAXhsSpkRKTY0EJGlmW8iQ5qi8aekKmx1RA17aGzc/D1drlacWhrhmdQYxxVyCiM1QqORANbuvu/mLW6u9FiGBeVfXuZUjoFT7yTls5k75rOyE4ml6oWmf2RZZmrr76aaDTKI488UhjxQ1laZPoImQK2yOzfouDkk0/m9ts3oRF1LJu/jB/96Ec8/fTT7Ny5s0+8XCgWIhQLIUtj07VUai0iGB+itDngCXuIE2FiadUwjGp4qbHVIOlaae+Q+ar7qwHX2+1pVV3sCqEKGYURBKgyNbDD3b+Q6fR1YxUybxRYyJSIJTgMpWzp2UI0Cu7ELqZVqUJmf+6++27Wrl3Lc889h1goqSxZWGRKzaV0B7vxhX3scO8obIvM3u7XvTQ1VWA+u5jf/e/v8Hg8/OpXv2Ly5MlUVFRw2mmn8Z//+Z/85X/+Au0QcpvGpJCpcjgIxt0A3PmvO3l8w+P9rtfub0cni1QWj70HulpbLV728FXwbY575LgBEz/aAq1UmFSLjBKMnupaY4gJtgb+HthBQk6gEfpqxQ5/Nzbd+HEr9TLZMZXtWzbT03M0ft1OplWrrqVeXnjhBW6++WbefPNNamoK5MKWSCAkElnHyHze+TkVlgoqLKM0Iysd9rPIQLI+npAwMO2oaXxz+TeBZDmJ9evX8+GHH/LRRx/xwksvwOfwo2gJ9fVTOOGEY5k3bx4LFixg2rRpBf+AM3WCAwk3oZDMOy3vUGmp5GuHf+2g9dp8HZjildhshT3f/qix1fBOyztEzZtwhVz0SD2Umg+OieySWplZevwIjHDsoQqZPDCjfiKRrWHa/e3U2PremLqD3RSNQyEzrWIKX27ZwhfNXiIaNw0lqkUG4PPPP+fiiy/m0UcfZfbs2SM9nPSJxwGQM42R2etaWt+xvrDdSnCQkKmoACFu7JN+LYoixx57LMceeywA7+9+n7OfOJuL9nxAU9N62tre5fHHH+faa6+lvLycU089lVNPPZXFixfjcDiGe0Y5M7HSgSzE2LwjSI/UM2ADyZ3dHYjxyjFplaq117LHt4di2xaQobmnuV8h44y0UldUIA8uoxzVtZQHjp9jwpKoSQX8vtvyLrs8yf44Tqkbh3H8CZlDy6cSsW3m2dd3YcRKsal4pIc04nR3d3PWWWdx3XXX5a0XWN7YWwguY9eSmHQtfdL+CUdVHZWHgQ0j+3W/hl6LjBG/NHD6tTvkplgsRhDqOeOMM7j11lv55z//SU9PDw8//DB2u52bb76ZsrIy5s2bx+2338769esHdE+MNor2VrbduNWNK+Riu6t/F3uLqwMLlZlk7xcMNbYaWn2t+I1bANjq2trveq54KxOKVSGjBKqQyQNNTVCUaODdL5Nf4m8+/00e+fgRAFzhbkpM40/ITC2dilC+mebunZTqB+9FMx6IRCKcd955zJ49m5tuummkh5M5ey0R2Qb7ftT2EbOqZ+VjZMPHARYZiwV0goFO58Dp166QC4fJgd9PH2uEKIqccsop3H333Xz++efs2LGDK664gn//+98cf/zxTJo0ie9+97u8/PLLRCKjt8mkTqND1NjY3OKmR+php2cnCfngrsitng6KtGMvYwmSMTKukIv2xHqsmlKae5qJJWJE4/tEryzL+ORWGspUIaMEqpDJAxoNNJY08O6m7Wx2bubL7i/Z0pNU5+5IN2Xi+BMyU0qnsMu/hcPnqxlLsizz3e9+F5/Px8qVKwuzz0rvDTwL11IsEeOTtk/GnJARBDDqjHS7BxYy7pAbm74YWWbQ9Ou6ujq++c1v8uyzz9Ld3c2DDz4IwLe+9S3Ky8u56KKLePzxx/F6h84QGm6KjA627XHjklxE4hFafa0HrdPu66BYP/YyliAZ0K7X6GmPbGMyp7DVtZUb1t7Aj1/9cWqdroCThBBlcqVaR0YJCvAKWhgc09TAlq7t3LPm74g6MSVkfLFuyq3jT8g0lTThCXt4x/e/TK8d30LmgQceYPXq1fz9738/qPN7wZClRcZutCef2vUiU0qn5GNkw8cBQgbAYjKwu21w15JZ40AU0y+KbDKZOO200/jDH/7Arl27eP3115k6dSq333475eXlLFu2jEcffRSn05nLbBSj1OJgt6cdKSYh6sR+3UudwQ7Kxlh7gl40goZqWzUaQUOpewlbupt55stn+Mq5LxV7S8ceDIkiqksL9Ps/ylCFTJ44ZtKhdBW9yBObH2JG7Ao2dW1OmhPjTirGoZCxGqxcfPjFTCmdwrVzrx3p4YwYL7zwAjfeeCPPPfcc9fWF0SyxX7K0yAiCQKlYysyqmQdl9BUcB6RfAxTbjGzbFWKgkBZ3yI1I9jVkBEFg9uzZ/PKXv2TDhg18/vnnLFiwgD//+c9UVVWxePFi/vSnP9He3p7dGyhAidmBXJQUL0dWHcn2fkpRdEsdlI/B9gS91NpqmVg0kQnmQ/l367/Z7t7OTvfO1PJtna1YEjVjMkZoJCjwK8no5YLpF3DLSb+gplLPBbXX44966Qp2EaCb6qLxJ2QAVp27iseWP8a0smkjPZQR4f333+eiiy5i5cqVzJ07d6SHkxu9N/As3GJl5jJmVRW4Wwn6tciUO8x4JYmOjv43cYfc6GIOlEpImjJlCj/96U/54IMP2Lp1K8uWLePxxx+nrq6OhQsX8rvf/Y49Q9XKVxiHyYFQsg2TYGVq6VR2uHcctE5PpJ0q69gVMjW2GppKmjjl6CZicpTG4kZ2eXalgra3O1txaNRieEqhCpk8odVoueaYa9j4vS+44JQGLPFa3vlqMxLdTCgbn0JmPLN582aWLVvG7bffzooVK0Z6OLkTiyHr9cnAkAxpKmliwcQFeRjUMNOPkLEazRRXBFm/vv9NnJKTkNtBU5Pyw5kwYQI//OEPWbduHbt37+aiiy7i2WefZdKkScyfP5/7779/WESNw+RAMm3HkCihwdGQssjc+a87+cunfyGWiNETa6XeUZf3sYwUjcWNzKiYwSnzSzEk7PzH9G8TiAbokXoA2O1upVivxscohSpkhoH6eigTpnLPs/8kqnUzpVKNVB9PtLe3c9ppp3HFFVfwgx/8YKSHowzRaMZupV6eu+g5zjv0PIUHNALodAixGPv7kcx6MyUVEp9/fvDqspwsEqfpnMXUqfkdWlVVFd/5znd4/fXX2bNnD5deeinPP/88kyZNYsGCBTzwwAO0th4chKsEDpODrtg29LFiSrUNqRiZlZ+uZO32tbR4WgBoKClg1+oQ/PLEX3LbSbdRWiqwQnyQI2NXUWwqZqcn6V7a7WuhwjR25z/cqEJmGBCEZNbOO5pfs7TxbCrHsElVpS8+n48zzjiD448/nl//+tcjPRzlyKI9wf6MifT73vnvLQ4ISSFjLgqybVuflwHY2LURl+TC4pzH5MnDN8yKigq+/e1v89prr7F7924uueQSnnvuOSZOnMjChQv5/e9/T1tbm2Lv5zA52OnZgcNYguiZyYetH7LFuSWZvencwjbXNoqYiMM+duuxmnQmRH2y1cg3j72Irz4rYqJjYqqe2PaeFiaXqUJGKVQhM0wsnD6VuEbil4v/c6SHojJMhMNhzjnnHEpKSnj00UcLM816IHIUMmOCvfMXDhAyGmMQjQZ27+67+stbX+bIohOYPNGEyTScA91HZWUl3/72t3n99ddpaWnhoosu4qmnnmLChAksWrSIRx99lEAgkNN7FBmLiMQj1JaU0LXhCCY5JvGDl36AzWBjS88WNrZtwxptHJNVfftj1izYuhVKdRP5x9s76eqCDqmFBUeoQkYpxtCVdXSz7LCT+P+O+/84qrrAq5mqpEU8Hueyyy7D4/HwzDPPYDAYRnpIyqIKmX3z3y9Oxqw3I8WCTJ4Mzc19V3956yvUSKfk3a2ULr3upzfeeINdu3Zx/vnnc99991FbW8v3v/99Pu/PP5YGDpMDgMbqYlpaBJZPuoyXml/iksMvoUfq4dGXP2SSfTKTJik3l9FMUVGySGr7pgl8vHUXd90Fkr6FQ2tVIaMUqpAZJo6qPorfnvLbkR6GyjAgyzLXXnstn376KWvWrME2Fh89VSGTKgRzoEUmGE0Kma17K9O/ueNN6u+tZ+3WtZS5T+Okk0ZisINTXV3N97//fT777DNefPFFfD4fxxxzDAsWLOB//ud/CIVCae+rV8hU2EqYPRtqey5GQOCcQ8/Bri1np+5llh3fSIYliAqaM8+EE4+aSM30nUgJLyG81NtVIaMUqpBRUVGYX/3qVzz77LO8/PLLlJeXj/Rw8kMsln5Ft7HKABaZXiHTa5H5vPNzqk0NXOD6hN/+dBolJSMw1jQRBIHjjjuOlStXsmfPHs4//3xuu+02amtruf7669m8efOQ++gVMsViMSecABvfq+PpM99gbsXJmENTcMk7mVzSmN+JjDKmTYOFR06gQ9rFlde3YNFbUsdJJXdUIaOiohBOp5MrrriC++67j5dffplJY9l2rlpkBoyRCUaDNDZCKASffQY9Ug9iqJFTjjx80LYEo42SkhKuvfZaNm7cyDPPPENrayuHH344p5xyCs8++yyxA1LPe+m9QZeIJUyeDAsXwvrVC1n5mJZaMVnNubF4fAkZgEmOSWx1bWW3bxf1RfVjI+B9lKAKGRWVHPH7/axcuZJDDz2Uzs5OPv30U2bMmDHSw8ovOaRfjxl6fSP7dcDuFTJGI1x8MaxcCbt7evB3lXDssSMzzFwRBIFFixbx+OOPs2vXLk444QR++MMfMnHiRH7xi18cVJsmZZHZ2+H+nHNg8mSoroYls8avkDmy6kjCsTAvNr+oupUURhUyKipZ0N7ezkMPPcQ3v/lNKioq+M1vfsPvfvc7Vq9ezYQJE0Z6ePlHtciAICBrtf1aZADmzoU5c+Cf7/UgUsK0MVDQurKykhtvvJFt27bx0EMPsWHDBk466SROP/10nnrqKcLhcB+LDCQ9kJdeCitWwFETplAqllJkKhrBWYwMBq2BExtO5K/r/6oKGYVRhYyKShrIssxnn33GrbfeyrHHHktdXR1/+ctfmDNnDp988gmbNm3iwgsvHD/mYlXIJDmguu/+Qgbga1+DSdN6OGVBSTbdHEYtWq2WpUuX8uyzz7Ju3ToWLVrET3/6U8rKyrj6sqvhM9BIB094SeMS7jvtvuEf8Cjh1Mmn4g65qS9ShYySjKGvloqKsgQCAV544QW+853vMHHiRObNm8cnn3zCt7/9bfbs2cPbb7/N1VdfzSGHHDLSQx1+VCGTRKcb0CLTS0DuYWr9KI7wzZHKykpuuOEGmpubeeuttzj88MMp31DOkiOXMG/ePH7xi1+wbt06IpEIxWIxlx5x6UgPecQ4dfKpAKpFRmHUK5GKyl5kWeaLL77glVde4cUXX2TdunXU1dVx+umn89BDD3HCCSdgNBpT6ycSiREc7QijCpkkB3TA7k/I9Eg9KTfLWEYQBGbOnMnMmTO56aab2L17N6+88gqvvfYaDz74IH6/n4ULF3LyySdzwgknMHPmTHTj7BxqKmlievl0Di0/dKSHMqYYX2eRisoBtLS08Nprr7F27VrWrl2Lz+dj0aJFnHXWWfzxj39kypQpIz3E0Ymafp0kDYvMeBEyB1JXV8cVV1zBFVdcgSzLfP7557z22mu89tpr3HrrrSQSCebMmcNRRx3FUUcdxcyZM5k6deqYFjeCILDhmg3jxwU9TIzdM0ZFpR/cbjdvvPFGSrg0NzczZ84cFi9ezJNPPsncuXPHXhXefKBaZJL0EyMTjoeJJ+JoNVpkWR63QmZ/BEHg8MMP5/DDD+eHP/wh8Xic9evX88EHH/Dpp5/ywAMPsH79emKxGA0NDTQ1NTFlypQ+PxMmTEA7BqroqSJGedQrkcqYJhwO8+6776aEy4cffsjUqVNZvHgxd955J4sWLaKoaPxlUOSMmn6dpLcD9l7MejMAUkzCarDij/iJJWLjXsgciFarTVlieonH4+zcuZMtW7akftasWcOWLVvYvn07giDQ2NjYR9w0NTXR1NREXV0detVCOG5Rr0QqY4pEIsH69etTwmXdunUUFRWxePFirrnmGhYvXkxtbe1ID7PwicUYVzXmB6If1xJAMBrEarDSI/WgETTYjQVUCW+E0Gq1NDY20tjYyKmnntpnWTQaZefOnTQ3N6dEzvPPP09zczPbt28nkUhQU1PDhAkTqK+vZ8KECamf3v9LS0tVa8gYRRUyKgWNLMts3bqVN954I+V/lySJE044gdNPP527776bww47TL2AKY3qWkpygGtJr9GjFbSpOJkeqYdiUzEaQU0QzQW9Xp+yvpx22ml9lsViMdra2mhpaWHXrl2pn7Vr16b+7unpQavVUlJSQllZGaWlpX1+el8rKipCp9Oh1WrR6XQD/m2323E4HKn1VUYW9RNQKSgkSWLDhg188MEHvPXWW7z11ls4nc5UnMv3vvc95syZo5qZ840qZJIcYJERBAFRLxKIBHj+q+cx682qWynP6HQ66uvrqa+v5/jjj+93nUAgQGdnJ06nE6fTSXd3d+pvp9PJJ598Qnd3N16vl1gsRjweJxaLHfR3LBYjGo3i9XqJ7q3oLIoiVquV4uJi7HY7RUVFqd/FxcU4HA6Ki4sP+rv3f1EUh/NwjUnUK5HKqEOWZVwuF62trTQ3N7Np0ya+/PJLPvnkEzZu3IjD4WD27NksWLCA7373u8yZMweTyTTSwx5fqFlLSQ5Iv4ake2mnZyfLn1jOfy34L1XIjAIsFgsNDQ00NDQosj9ZlgmFQng8Hnp6eti8eTNmsxmfz4fX68Xj8eDxeHC73Wzbtg2Xy4XL5cLtdqf+DgQCABiNxgFFTu/fdrsdm82W+n3g3/uXhRiPFISQcblc3HzzzXz44Yep4ktz5swZ6WHlTDweJxAIEAwGU78P/Lv3/3g8jkaj6fOj1WrT+t9gMGAymTCZTBiNxtTfJpMJq9WK1WpFMwxlR/cXKG1tbf3+7v07HA5jsVhoamrikEMOYdq0aZx77rnMmjWLuro61VU00qgWmSQHWGQgKWS29mwF4O9f/Z06e91IjEwljwiCgCiKiKJIRUUFoigyceLEjK6j0Wi0j7Dp7+/29na+/PJLvF4vPp8vJZR6/47vPfcMBkNK1AwmeOx2O+Xl5VRUVFBZWUlFRQXl5eUFL4QK4kp0xx13UF5ezmuvvcZ7773HDTfcwHPPPYd9BFvJfvrppzz99NPYbLY+psdoNJoSH36/n0AgcNDfvf+Hw+HU/vR6PWazOfVjsVj6/K/T6UgkEn1+4vH4Qa8d+Ho8HicSiRAOhwmFQqmfcDicMo1C8oll/y9Cfz8WiwVBEJBlObV/t9uNzWYDSL0uyzKRSKSP6barq4v29nbC4TA2m43q6mqqq6upqamhurqauXPn9vm/pqYmtV+VUYgqZJIcECMDe4WMKylkNnRu4IjKI0ZiZCqjHL1eT3l5OeXl5VltL8sykiT1K3AO/N/r9dLa2sqXX35Jd3c3nZ2ddHR04HQ6AXA4HFRUVPQROL2/e8VObzxRSUnJqCtRMeqvRMFgkDfffJPVq1djMpk44YQTWLVqFevWrWPZsmUjNq6Ojg4+++wz7HY7er2+TyCYxWKhpKQEq9WKxWJJ/fT3f69oGYmYjlgsht/v73PyD/bjcrmA5NNI74/f7yeRSKDRaBAEIfXbYDAwY8aMPsF0vSLFarUO+1xVFEZNv05yQPo1JIXMNte2VHE81bWkkg8EQUg96FZWVma1j1gsRldXF52dnSlx0/v3jh07+OCDD+jo6EjFFPn9fiApwnrvd1qtlnPOOYdHHnlEyellxKi/Eu3atQur1UpZWVnqtSlTprBt27Z+149EIkQikT6v6XQ6xRXkKX4/J7a3Y3S5QAE3h6zAmDJFCxTt/ckKWSYcDifNkhkcg5GYaz4QZJnqcBjBaEQeb66uXbuQ96bIjudWDYJej+PeexGeeCJ1DjzSsZlY4gt+oxdxSRJ1Tz2HfNvHIzzS/DCuvwN7KeRjoAWq9v4MiMkEdXVQV0c4kaAnFiMQjxOXZeJAPJFAMJnydh1Ix1036oWMJElYLJY+r1kslpQyPJDHHnuMhx56qM9rK1as4IILLlB0XLrSUoyXXaboPlVUConwzJlAss3DeEX/059iaG7u89pzG3rY4tnC/Jpj2endyayKWYg1C0dohCoqyqLj4Iff6IQJebsOpBOgPeqFjCiKqejuXgKBwIApa5dffjmXXHJJn9fyYZFJ1NfT0tBAfX39sATKjkYSiQQtLS3j9hio8x/f84e914FDD+1zDD792xs8u+lLjli8lKsOW0GxqRibcWzGe6nngHoMRsP8R72QmTBhAn6/n+7u7pR7acuWLSxfvrzf9Q0Gw7AGIvVmCI1nxvsxUOc/vucPfY+BxZC0INfYaphUPGkERzV8qOeAegxGcv6j/qibzWYWLlzIgw8+SCgU4s0332Tr1q0sXKiaalVUVEYfZl2yTUG1rXqER6KiMj4Y9UIG4IYbbqCjo4OTTz6Z+++/n1//+tcjmnqtoqKiMhC9/ZaqraqQUVEZDka9awmguLiYBx54YKSHoaKiojIkKSGjWmRUVIaFgrDIqKioqBQKZr0Zk85EkTHrwgYqKioZoAoZFRUVFQUx681UWavUNhoqKsOEKmRUVFRUFMSsN6vxMSoqw0hBxMioqKioFArLpy1nesX0kR6Gisq4QRUyKioqKgpSZa2iyjpo0XcVFRUFUV1LKioqKioqKgWLKmRUVFRUVFRUChZVyKioqKioqKgULKqQUVFRUVFRUSlYVCGjoqKioqKiUrCoQkZFRUVFRUWlYFGFjIqKioqKikrBogoZFRUVFRUVlYJFFTIqKioqKioqBYsqZFRUVFRUVFQKFlXIqKioqKioqBQsqpBRUVFRUVFRKVhUIaOioqKioqJSsKhCRkVFRUVFRaVgUYWMioqKioqKSsEiyLIsj/QgVFRUVFRUVFSyQbXIqKioqKioqBQsqpBRUVFRUVFRKVhUIaOioqKioqJSsKhCRkVFRUVFRaVgUYWMioqKioqKSsGiChkVFRUVFRWVgkUVMioqKioqKioFiypkVFRUVFRUVAoWVcioqKioqKioFCyqkFFRUVFRUVEpWFQhkya33XYbp556KosWLeLCCy/krbfeSi1buXIlixcv5qSTTuL+++9nLHZ9GGj+H3/8MVdeeSXz58/n+9///giPUjnOPPNMli1bRjQaTb12++238+CDD47gqEYWl8vFtddey7x58zj33HP54IMPAFi9ejUXX3wxCxcuZPny5Tz11FMjPNL8MND833jjDc477zwWLVrEqaeeyj333EM8Hh/h0eaHgY5BL7FYjAsvvJDzzjtvhEaYXwb7Dhx77LEsWLAg9dPe3j7Co1WewT7/DRs28I1vfIMFCxawdOlSXn311eEbmKySFtu3b5fD4bAsy7L8+eefy4sWLZI9Ho/81ltvyWeccYbc0tIid3V1yeeff7783HPPjfBolWeg+X/xxRfyiy++KD/00EPy9773vREepXIsW7ZMPvHEE+Wnn3469dptt90m//nPfx7BUY0sP/3pT+Vf/epXsiRJ8j//+U/5xBNPlD0ej/zUU0/J69evl6PRqNzc3CwvWbJE/uijj0Z6uIoz0Pw7Ojrknp4eWZZl2ePxyNdcc438t7/9bYRHmx8GOga9rFq1Sr7iiivkc889dwRHmT8Gmv/zzz8/pq5/AzHQ/Lu6uuTTTjtNfuutt+RoNCq7XC65paVl2MalWmTSZNKkSRgMBgAEQSASidDd3c2aNWs4//zzKiZfCAAADdVJREFUqauro6ysjEsvvZQXX3xxhEerPAPN/7DDDuO0006jsrJyhEeoPBdffDGPPfYYsVjsoGVPPPEEy5cvZ/HixfziF7/A7/cDcM011/DCCy+k1gsGgyxcuBCn0zls484HwWCQN998k29/+9uYTCZOOOEEJk+ezLp16zjvvPM4/PDD0el0TJ48mTlz5rBx48aRHrKiDDb/iooKiouL+6y/Z8+eERpp/hjsGAA4nU6effZZLr/88hEeaX4Yav5jncHmv2rVKpYtW8b8+fPR6XQ4HA7q6uqGbWyqkMmA3/zmN8ybN4/LLruM4447jsbGRrZv305TU1NqnalTp7Jt27YRHGX+6G/+Y5ljjz2W8vJyVq9e3ef1d999l7/85S/cd999rF69GkmSuPfeewFYsmQJa9euTa27bt06pk+fTmlp6bCOXWl27dqF1WqlrKws9dqUKVMOOtfj8ThffPHFmDs3hpr/p59+yqJFizjppJNobm5m+fLlIzXUvDHUMfjd737H5ZdfjslkGqkh5pWh5v/ZZ59x8skns2LFijHpXh1s/hs3bkQQBC644AJOPfVUfv7zn+P1eodtbKqQyYAbbriBdevW8Yc//IFZs2YBSZVqtVpT61gsFoLB4EgNMa/0N/+xzlVXXXWQVeaVV17hvPPOo6GhAVEU+e53v8srr7wCwEknncSHH36Iz+cD4NVXX2XJkiUjMnYlkSQJi8XS5zWLxYIkSX1e+9Of/kR5eTnHHXfccA4v7ww1/5kzZ/Lmm2/y97//nfPOOw+bzTYSw8wrgx2D9evXs2vXLk4//fQRGl3+GWz+s2bN4oknnuDVV1/lpptu4uGHH+af//znCI00Pww2/66uLl566SV++9vf8txzzxGPx7n77ruHbWyqkMkQrVbLsccey7///W/effddzGZzyq0AEAgEMJvNIzjC/HLg/Mc6c+fOpaysrI+7qLu7m6qqqtT/1dXVSJKE3+/H4XBw1FFH8cYbb+D3+/n3v//NSSedNBJDVxRRFAkEAn1eCwQCiKKY+v+pp57i9ddf584770QQhOEeYl5JZ/4AtbW1TJ48eVgv4sPFQMfAZDJx1113cf3114+5z31/BjsHamtrqampQaPRMGPGDC666KIxJ2QGm7/RaOTMM89k4sSJiKLIt771Lf71r38N29hUIZMliUSC3bt309DQQHNzc+r1zZs3jzmzen/0zn88cOWVV/axypSVlfXJSGhvb8dkMqUsc73upTfffJMjjzwSh8MxEsNWlAkTJuD3++nu7k69tmXLltS5/sorr/DYY4/x+9//fkzM90CGmv/+yLI8Jr8bAx2DyZMns2nTJn70ox9x6qmn8pOf/ITdu3dz6qmnEgqFRnDEypLJOTAWBd1g8588eXKfdeVhztxVhUwaBINBXnzxRYLBILFYjNdee42PPvqIo446iqVLl/L000+zZ88euru7WbVq1Zgzrw42/0QiQTgcJhaL9fl7LHHcccdRUlLCm2++CcDixYt55pln2LFjB5Ik8cc//pFTTjkltf6JJ57IJ598wrPPPjsm3EoAZrOZhQsX8uCDDxIKhXjzzTfZunUrCxcu5L333uO3v/0t9913HzU1NSM91Lww2PzXrl2bErYtLS2sXLmSo48+eoRHrDyDHYM1a9awatUqVq1axX/9139RU1PDqlWrMBqNIz1sxRhs/u+88w4ulwuATZs28X//938sWLBghEesLIPNf9myZaxevZrdu3cTCoVYuXIl8+fPH7ax6YbtnQoYQRD4+9//zh133IEsy9TX13PrrbfS1NREU1MTW7Zs4bLLLiORSHD22Wdz1llnjfSQFWWw+X/44Yd8+9vfTq07b948li1bxs033zxyA84DV155JT/4wQ+A5By//vWv84Mf/IBAIMDxxx/Pddddl1rXZrMxe/Zs3n33Xe65556RGrLi3HDDDdx0002cfPLJVFZW8utf/xq73c5jjz2G1+vliiuuSK17+umnc+ONN47gaJVnoPnv2rWLe+65B6/XS1FREYsXL+bqq68e6eHmhYGOwf7Y7XY0Gk2foNCxwkDzf//997npppsIhUKUl5dz2WWXjZmHmP0ZaP5z587l4osv5pvf/CaxWIy5c+fy4x//eNjGJcjDbQNSUVFRUVFRUVEI1bWkoqKioqKiUrCoQkZFRUVFRUWlYFGFjIqKioqKikrBogoZFRUVFRUVlYJFFTIqKioqKioqBYsqZFRUVFRUVFQKFlXIqKioqKioqBQsqpBRUVEZVXz44YccffTRHH300bS2to70cFRURjWRSIRbbrmFpUuXsmjRIq666qo+bXNWrlzJ4sWLOemkk7j//vtT7QNisRg//vGPOf300zn66KP7tB7Yn9bWVubNm8ftt98+4BhaW1s5+uijDyqCed555/Hhhx8qMMvBUYWMiorKiHHzzTdz9NFHc9VVV6Ves1qtzJgxgxkzZmAwGEZwdCoqo594PE5tbS2PPfYYr7/+OgsXLuT6668H4O233+app55i5cqVPPnkk7z99ts8//zzqW1nzZrFnXfeOej+77nnHg455JAhx6HVann33XfZvn17bhPKAlXIqKiojCqmTZvGypUrWbly5Zgsc6+ioiS93aYrKyvRarVceOGFtLa24na7WbNmDeeffz51dXWUlZVx6aWX8uKLLwKg0+n42te+xuGHHz7gvt99911kWebYY48dchxarZbzzz+fhx9+uN/loVCIX//615x66qmcccYZPPLII8iyTCgUYtGiRbS1taXWff/997ngggvSPgaqkFFRURkRzjzzTF544QUAPv7445Q7qT/XUq/lpnebM844g0WLFnH33XcTCoW4++67WbRoEcuWLeOpp57q8z5dXV3ccsstnHbaacydO5fly5fz8MMPj7nmpioqAOvXr6ekpASHw8H27dtpampKLZs6dSrbtm1Laz/RaJT777+fH/7wh2m/96WXXsq//vUvduzYcdCyhx9+mF27dvG3v/2Nhx9+mH/84x+8+OKLmEwm5s+fz9q1a1Prrl27tk8j3qFQhYyKisqIcMghh+BwOACwWCwpd9KmTZsG3Ka7u5vf/OY36PV6AoEAjz/+OF//+td5/vnnsVqttLe3c+edd6bM2263m2984xusXr0aSZJoaGigvb2dP//5z9x2223DMU0VlWHD7/dz++23853vfAeAYDCI1WpNLbdYLASDwbT2tWrVKubNm0d9fX3a719UVMSKFSv6tcq8+uqrXHXVVdjtdqqrq7nkkkt4+eWXAViyZAmvvvoqkIzd+ec//5lR001VyKioqIwId911F/PnzweSoqbXnTRt2rQBt4lGo/z+97/nmWeeobKyEoCWlhYef/xxnnrqKYxGI4lEgo8++giAJ598ko6ODkpLS3nuued4/PHHueOOOwB44YUXaGlpyfMsVVSGh3A4zPXXX8/8+fNZvnw5AGazGb/fn1onEAhgNpuH3FdnZyfPP/98n472+3PBBRewYMECFixYQHt7e59ll1xyCW+//fZBVpmuri6qqqpS/1dXV9PV1QXA8ccfz65du2htbeXf//43FRUVTJw4Ma15A+jSXlNFRUVlhLHb7cycOROAqqoqOjo6mDx5MjU1NQAUFxfT3t5OT08PAF988QUATqfzoCc8WZb5/PPPM3riVFEZjcRiMW688UbKy8v7uIIaGhpobm5OPTBs3ryZxsbGIfe3ceNGOjo6OPfcc4GkZSeRSNDW1sbvfvc7nnzyyT7r759d6HA4OP/883nkkUf6rFNeXk57ezvV1dUAtLe3U15eDoDBYGDRokWsXbuWHTt2ZORWAlXIqKioFBAWiyX1t1arPeg1QRAAUimmvb8tFgsNDQ0H7c9kMuVtrCoqw8Vtt91GOBzmjjvuSH0HAJYuXcodd9zBkiVLMBqNrFq1iksuuSS1PBKJpL4j0WiUcDiM0Wjk+OOP5+9//3tqvf/5n//B5XJx3XXXpTWeSy+9lLPPPju1b4CTTz6Zhx56iDvuuINAIMCqVav6WHyWLFnCH//4Rzo6OvjLX/6S0fxVIaOiojJi9AqJUCiUl/1Pnz6dd955B61Wy+23356y3AQCAf75z39y4okn5uV9VVSGi7a2NlavXo3RaOxzPj/wwAPMnz+fLVu2cNlll5FIJDj77LM566yzUuucd955qWyhM888E0jWcTIYDH0yBkVRJBgMpmLahsLhcHDeeef1ESRXXXUVd999N+eddx56vZ6zzz6b008/PbV87ty53HTTTdTW1lJXV5fRMRDk/SWTioqKyjDyxBNPcNdddwEwefJkRFHkyiuv5NprrwXg+eefp6amhptvvpkXXniB6upqVq9eDSQvjB9//DGzZs3iv//7v4HkxbitrY0rr7ySq6++GpfLxSWXXEJnZyd6vZ6GhgYCgQAdHR3EYrFhKdaloqKSX9RgXxUVlRHjrLPO4qSTTsJqtbJ161Y+//xzEomEYvsvLi7mscce48wzz6SoqIitW7cSDoc56qij+NGPfqTY+6ioqIwcqkVGRUVFRUVFpWBRLTIqKioqKioqBYsqZFRUVFRUVFQKFlXIqKioqKioqBQsqpBRUVFRUVFRKVhUIaOioqKioqJSsKhCRkVFRUVFRaVgUYWMioqKioqKSsGiChkVFRUVFRWVgkUVMioqKioqKioFiypkVFRUVFRUVAoWVcioqKioqKioFCyqkFFRUVFRUVEpWP5/RxdY18lFCi4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def plot_anom_eval(selected_anomaly, delta_plotted_days):\n", + " one_day = series_taxi.freq * 24 * 2\n", + " anomaly_date = anomalies_day[selected_anomaly][0]\n", + " start = anomaly_date - one_day * delta_plotted_days\n", + " end = anomaly_date + one_day * (delta_plotted_days + 1)\n", + "\n", + " # input series and forecasts\n", + " series_taxi[start:end].plot(\n", + " label=\"Number of taxi passengers\", color=\"#6464ff\", linewidth=0.8\n", + " )\n", + " model_forecasting[start:end].plot(\n", + " label=\"Model prediction\", color=\"green\", linewidth=0.8\n", + " )\n", + "\n", + " # actual anomalies and predicted scores\n", + " (series_taxi_anomalies[start:end] * 10000).plot(\n", + " label=\"Known anomaly\", color=\"r\", linewidth=0.8\n", + " )\n", + " # Scaler transforms scores into a value range between (0, 1)\n", + " (Scaler().fit_transform(best_anomaly_score)[start:end] * 10000).plot(\n", + " label=\"Anomaly score\", color=\"black\", linewidth=0.8\n", + " )\n", + " plt.legend(loc=\"upper center\", ncols=2)\n", + " plt.title(selected_anomaly)\n", + " fig.tight_layout()\n", + " plt.show()\n", + "\n", + "\n", + "for anom_name in anomalies_day:\n", + " plot_anom_eval(anom_name, 3)\n", + " break # remove this to see all anomalies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simple case: `KMeansScorer`" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's have a closer look at the scorer's `window` parameter on the example of the `KmeansScorer`. We'll use two toy datasets to demonstrate how the scorers perform with different window sizes. In first example we set `window=1` on a multivariate time series, and in the second we set `window=2` on a univariate time series. \n", + "\n", + "The figure below illustrates the Scorer's windowing process:\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Multivariate case with window=1 " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Synthetic data creation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data is a multivariate series (2 components/columns). Each step has either value of `0` or `1`, and the two components always have opposite values:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
comp1comp2
State 101
State 210
\n", + "
" + ], + "text/plain": [ + " comp1 comp2\n", + "State 1 0 1\n", + "State 2 1 0" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.DataFrame(index=[\"State 1\", \"State 2\"], data={\"comp1\": [0, 1], \"comp2\": [1, 0]})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At each timestamp, it has a 50% chance to switch state and a 50% chance to keep the same state. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Train set" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def generate_data_ex1(random_state: int):\n", + " np.random.seed(random_state)\n", + "\n", + " # create the train set\n", + " comp1 = np.expand_dims(np.random.choice(a=[0, 1], size=100, p=[0.5, 0.5]), axis=1)\n", + " comp2 = (comp1 == 0).astype(float)\n", + " vals = np.concatenate([comp1, comp2], axis=1)\n", + " return vals" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAHECAYAAAAAtJEVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRV0lEQVR4nO29e5wcVZn//+nLTF+nZ7pnwiSQZHIlICjggq4EhnBTErloIOiKykXE/FYFFcUsioSvGAgqShZX8w1rdBUVZP0qrgRcAiS7KCKgXMLFJJghIRcyMz3T93v9/uip6qq+1uWc6qqe5/165ZWe6upTp06des7nPM+5OARBEEAQBEEQBGEiznZngCAIgiCI6QcJEIIgCIIgTIcECEEQBEEQpkMChCAIgiAI0yEBQhAEQRCE6ZAAIQiCIAjCdEiAEARBEARhOiRACIIgCIIwHRIgBEEQBEGYDgkQgrAhDodD1b8nnnjC0HXWrl0Lh8Oh67dPPPEEkzy0m5dffhlr167Fnj172p0VgugoHLQUO0HYj6eeekrx99e//nU8/vjjeOyxxxTH3/a2tyEUCum+zr59+7Bv3z784z/+o+bfxmIxvPzyy4bz0G4eeOABrFq1Co8//jiWLVvW7uwQRMfgbncGCILQTrUgmDFjBpxOZ0uhkEql4Pf7VV9n9uzZmD17tq48hkIhXcKFIIjpAYVgCKJDWbZsGY4//nhs374dp556Kvx+P6666ioAwH333Yf3vve9mDVrFnw+H4499lisWbMGyWRSkUa9EMy8efNw/vnn4+GHH8Y73/lO+Hw+HHPMMfjhD3+oOK9eCOaKK65AMBjErl27sGLFCgSDQcyZMwfXX389stms4vf79u3DJZdcgp6eHvT19eGyyy7Dn//8ZzgcDvzoRz9qeu+pVApf/OIXMX/+fHi9XkQiEZx88sn4+c9/rjjvmWeewYUXXohIJAKv14uTTjoJ999/v/T9j370I6xatQoAcOaZZ0qhrVbXJwiiNeQBIYgO5sCBA/joRz+KG264AevWrYPTWe5z7Ny5EytWrMDnPvc5BAIBvPrqq1i/fj2efvrpmjBOPZ5//nlcf/31WLNmDQYHB3HPPffgE5/4BBYtWoTh4eGmv83n87jwwgvxiU98Atdffz22b9+Or3/96+jt7cXXvvY1AEAymcSZZ56J8fFxrF+/HosWLcLDDz+MD33oQ6ru+wtf+AJ+8pOf4NZbb8VJJ52EZDKJl156CWNjY9I5jz/+OM477zy8+93vxg9+8AP09vbiF7/4BT70oQ8hlUrhiiuuwPvf/36sW7cON954I773ve/hne98JwBg4cKFqvJBEEQTBIIgbM/ll18uBAIBxbEzzjhDACBs3bq16W9LpZKQz+eFbdu2CQCE559/Xvru5ptvFqrNxNDQkOD1eoWRkRHpWDqdFiKRiPCpT31KOvb4448LAITHH39ckU8Awv33369Ic8WKFcKSJUukv7/3ve8JAIQtW7YozvvUpz4lABA2b97c9J6OP/544QMf+EDTc4455hjhpJNOEvL5vOL4+eefL8yaNUsoFouCIAjCL3/5y5r7IAjCOBSCIYgOJhwO46yzzqo5/vrrr+MjH/kIZs6cCZfLha6uLpxxxhkAgFdeeaVluieeeCLmzp0r/e31enH00UdjZGSk5W8dDgcuuOACxbF3vOMdit9u27YNPT09OO+88xTn/dM//VPL9AHgXe96F7Zs2YI1a9bgiSeeQDqdVny/a9cuvPrqq7jssssAAIVCQfq3YsUKHDhwAK+99pqqaxEEoQ8KwRBEBzNr1qyaY4lEAqeffjq8Xi9uvfVWHH300fD7/di7dy9WrlxZ01jXo7+/v+aYx+NR9Vu/3w+v11vz20wmI/09NjaGwcHBmt/WO1aPDRs2YPbs2bjvvvuwfv16eL1evO9978M3v/lNLF68GIcOHQIAfPGLX8QXv/jFummMjo6quhZBEPogAUIQHUy9NTwee+wx7N+/H0888YTk9QCAiYkJE3PWnP7+fjz99NM1xw8ePKjq94FAALfccgtuueUWHDp0SPKGXHDBBXj11VcxMDAAAPiXf/kXrFy5sm4aS5Ys0X8DBEG0hAQIQUwzRFHi8XgUxzdu3NiO7NTljDPOwP33348tW7Zg+fLl0vFf/OIXmtMaHBzEFVdcgeeffx7f/e53kUqlsGTJEixevBjPP/881q1b1/T3Yjmp8e4QBKEeEiAEMc049dRTEQ6HsXr1atx8883o6urCvffei+eff77dWZO4/PLL8Z3vfAcf/ehHceutt2LRokXYsmULHnnkEQCQZvM04t3vfjfOP/98vOMd70A4HMYrr7yCn/zkJ3jPe94jrYOyceNGLF++HO973/twxRVX4KijjsL4+DheeeUVPPfcc/jlL38JADj++OMBAP/3//5f9PT0wOv1Yv78+XXDUARBqIcGoRLENKO/vx+/+93v4Pf78dGPfhRXXXUVgsEg7rvvvnZnTSIQCOCxxx7DsmXLcMMNN+Diiy/GG2+8gX/7t38DAPT19TX9/VlnnYUHH3wQV155Jd773vfijjvuwMc//nH89re/lc4588wz8fTTT6Ovrw+f+9zncM455+D/+//+Pzz66KM455xzpPPmz5+P7373u3j++eexbNkynHLKKYp0CILQBy3FThCEbVi3bh2++tWv4o033tC9QitBENaAQjAEQViSu+++GwBwzDHHIJ/P47HHHsOGDRvw0Y9+lMQHQXQAJEAIgrAkfr8f3/nOd7Bnzx5ks1nMnTsXX/7yl/HVr3613VkjCIIBFIIhCIIgCMJ0aBAqQRAEQRCmQwKEIAiCIAjTIQFCEARBEITpkAAhCIIgCMJ0pp0AKZVK+Pvf/45SqdTurHCH7rVzmU73S/fauUyn+51O96qWaSdACIIgCIJoPyRACIIgCIIwHRIgBEEQBEGYDgkQgiAIgiBMhwQIQRAEQRCmQwKEIAiCIAjTIQFCEARBEITpkAAhCIIgCMJ0SIAQBEEQBGE6JEAIgiAIgjAdEiAEQRAEQZgOCRCCIAiCIExHkwDZuHEjVq1ahVNOOQWPPPJIw/MymQxuuukmDA8P4/3vfz8efvhhwxklCIIgCKJz0CRA5syZg+uvvx7HHXdc0/M2btyIyclJPPTQQ1i3bh1uv/12jIyMGMooQRAEQRCdg1vLyStWrAAA/PCHP2x63kMPPYRvf/vbCAaDOOGEEzA8PIzf//73+OQnP6k/pwx46I8CXtgNRCdCCPcBDofA/BpBH7DqTOCIsIN52i+99BJ27NiBD3zgA/B4PEzTFgQBD/8JeGE302RNQxCAYi6I1RcD/b3s03/22WexdetWCAL7OqMHQRAQjUYRDofhcLCva1aC7rU5s2bNwqpVq+Dz+ZjnZ+uzAgpF4L2ngHnZZzIZ/OpXv8LAwACGhoaYpg0Ah8YF/PJxIJlhnrTE3EHg4jOA7i62ZSMIAh566CH09PRgeHiYadoA8IutAnbtAyIh4LJzgd5ge94rTQJEDbFYDGNjY1i0aJF07Oijj8aOHTsa/iaXyyGXyykz5naju7ubad7ufxz48cMAEJ46wqcx+fX/Ao98i23asVgMS5cuRSwWw/r16/HFL36x5W9KpZLi/2Y8+gyw4gbD2Wwz/XhxRMDPbm59v1o4cOAATj311Jo6ShBWYefOnbjllluYpvn0K8A5ny9/fvwuYPgEtjbtW9/6Fm666Sb09vZiz549CIVCTNP/8Frgib8yTbIud34auG5V67LRYo+3bNmC888/HwDw17/+FW9/+9uNZbKKnz8KPPhk+fNFpwE9frbP1ulUF1xhLkBSqRRcLhe8Xq90LBAIIJVKNfzN5s2bsWnTJsWxVatW4dJLL2Wat0SiH0CQaZr1ePrlIkZG9jFN84UXXkAsFgMAbNu2DatWrVL9271797Y857+fCqEizOzLUzsKGBnZzzTN7du3k/ggLM3//M//MA9zP/KHIIB+AMB//3EcQ31xpulv374dADA5OYk//OEPOPbYY5mm/6eX58CMeRZPPJfEB941qvp8Nfb40UcflT4/8sgjzMXZgcODAMptdHx8BLkE0+Qxf/58VecxFyB+vx/FYhGZTEYSIclkEn6/v+FvrrzySlx22WXKjHHwgKz5OPBP7y1hdHQUAwMDcDjYVs4b/y/w2l4glnJh9uwhuFzs0n7ttdekz9lsVpXLslQqYe/evZgzZ05LRSrI8vqNTwLHzNWd1bbw2e8K2D/mQCztZu7Odbsrr8lVV12F97///UzT14MgCLJ63PlhCbrX+ueuWrUKgiAgnU4zr/eOLtm13BEMDUWYpp/JVGIjHo+Haf4zWSA91Wc4bh7wfz7BLGkA5bDOx79R/pwtBjA0FGj5Gy32WO4lcTqdzJ9taqps/F7g6MXsw19qYS5AQqEQ+vv7sWvXLhx//PEAgL/97W9YsGBBw990d3czFxv1OPkY4J1HAyMjaQwNOVW7idRyz3+V8NqUuI2lHOjvZWcsJyYmpM/j4+Oa8u50tr7XaLxS4S9c6sDxC+xl6Nf/rIT9Y8BEwgFBcMDl4lP2Z5xxBlauXMksbb2USiWMjIxgaGiIeT22GnSvjenr60M0GtVsE9QgtwnRuHq3ulrGx8cr6UejTNOfTAoQQ+yLZgMrz2Cb92JRwOXrBAiC9rJRZY+jUcVn5mU/9WwjPeyfqxY0XblQKCCbzUIQBOlzvXjWihUrcM899yCZTOLFF1/E9u3bce655zLLtFWJyLxk4zG2actfVvlnZunLvKsRtt4+Uwj3lP8XBGAyyTZteXlHImx7gQRhBLE+crEJsfqfmaXP0abxtmculwN9U9F8u5WNIAhS+bTb1msSILfeeiuWLl2Kv/zlL7j55puxdOlSPPfcc9iyZYtivManPvUpBINBnHfeeVizZg3WrFmDefPmsc675VAIELbhUv4CRPYSiY25nTBL/JEAIayEWB+j0aiqwY1akNsw1vZMEIQaDwhL5DYgwsmeiTaHddkAfO19Ogtkp0Iw/W0WIJpCMGvXrsXatWvrfrd8+XLps9frxa233mooY3ZEXtF5NoLxeBz5fB5dXV1NfqEx/an8+jyAz2Ov8AtgXtmTACGshFgfBUHA5OQkwmF2A8l5ekDS6TSy2WwlfdYeELkACfGxZ5EeYDfKIZhSSYDTye46XL1DirJhmrRmOjugajLyis6zEQQ49Bgs4pLTi1neJxIghJWQ10eeDRVve2a3EIw8Xd5hXzuWjVpIgDDErEaw3t+G058yMLzclbwxywPCsodJEEbhKkA4hmDMsmcA/xBM9fWMUh2esmPZqIUECEPMagTr/W2EdFZAZiom2G5FrJewCWNAenp6mIa9CMIovASIIAiK9yiWBPIFdotV8ffoVvLKzQPCyd7H43EUi8VK2jYMT6mFBAhD5EuAj8fYrizHU4CMTVY+t3tQkl76TfA+9ff3s02YIAwir5NjY2PM0o2ngEJReSzK8L2qzivPRpaXTZPb+zGGAqS6LGKxGPL5PLP0x2gMSGciV8QsKyRQ+8KyNDZWignqRVH2k+zEn9wdSuM/CKvBywNSr0fPspdfnVeW9gwwp5GN9PAZ81evLFh6iCgE06GYFRME+BmbdldIvfAafxOPx1EoFMrXIAFCWIxOESB2nOnBy97XKwu2z5Z/eEotJEAY0ifbZoZlI5hIJKRGUEqflwBpc0xQL7zisTQDhrAy3ARIHfvF0qZV5zWVSimWZjec/pQNcLvKO5TzgFenh7sAsZDHmwQIQ3itjjedKqReeIk/EiCElekUDwjAOMwgW1aA1/5Byk4PvwG6jY7pTt9CHm8SIIzhsTredKqQenG7gR5/eSVI8oAQ0wVTPSB26lSZsKwAeUCMQwKEMeIDFVfHY8F0igkaoS9QHrZPAoSYLsjXpeHuAYnbo5efLwiIp8qfedoz+44BKf/v6S6vfN1OSIAwRlTcpVJ57jwLppMiNkJvYMoDwkn8kQAhrIbb7UYoVH5peXVKKseYJc/VpkVNsmdhedjXJmUDVPLazzE8pRYSIIzh4ZajEIw6+qYESKkEqQdkFBIghNXhsSOu2YNQGx3TlbZJ9sztdiAUmLqmTcoGkI2PsYCtJwHCGB6zMUwVIDb2gPQFS9JnHmVPAoSwInIBIgiMPH9tGITKRYBwtmeivbdL2WSyAlJTk42sYOtJgDCGR1xQXvlEl9nExIRiuV5D6U8p4u4uwO9lkmRbEEMwAB/vEwkQwoqI9bJYLCIeZ1Px5bZL9NKzsmeZTAapVGoqbdliXqwEiCIEwzfEIJ90wEz8TZUDj7IxKzylFhIgjFHsiMuhEZwzZ470eWJigk36shHj7Y4JGqEvQB4QYvrBYyaMaLsCPiDcozxmFPl0W7k9s1sIBqg04sUi+7DvkUceKdljLuKMQjCdB+8QzKJFi+oeN5S+bM68nekNyjZwIgFCTBPk+8Gwsgni/lCRHvZhBu72rA0hmOrr6kW+6vXAwIA0y4n1cwWsYe9JgDBGuSEdmzTlewMsXLiw7nG9ZHMCkunyZ7tuRCcSlo0BYbUXj1jGgUAAHk+b56wRRB3kwpiFTRAEQdEpERuqiQRQLBoPM/C0Z4ByujBvm8Z6Q7pkMolcrrw1eSQSkZ4tu7KpfLbCqtckQBij3JCObUzQ7/fjyCOPrDluKO0OGYAK8A3BkPeDsCqsQzCpDJCb2nw10lOxC4JQFiFGkedx7ty5cLvdNceNYGYvn7UHpNrjKj5bVmP+rDbjkQQIY3gOQpVXSPlxQ2lbbFCSEZSDUI2LP9oJl7ADzG1CVaeEdyPb29tbc9xQ+ibaNMWYP44CBGAz5s9qHU4SIIxhvQ5IdSPI1dhYQBEboY/xGJBUKqVwhxKEFeHdKWFt06ob2b6+vprjhtJvwyBUgE/ZsH+21lr12t3uDHQaYca9hXQ6jWw2C6A82Iz1gLNO2AlXpJdxCIYGoBJ2gGenpD8EeLrqf6c7fVke+/v7JQESj8eRz+fR1dXV4Jcq058SAk4npIXCeMHTO9Tf3y9NV67+Tnf6FutwkgeEMV1uB3r85c+8XXIUglHCeh0QEiCEHeAbgnFwDzOIAgRgsyOumMdwD+B0mrMOSPm6xsO+083ekwDhAMsdcblXSIspYiN0u4Ggr/yZPCDEdIFrI9VjXgim+jvd6ZuwE66I7UIwNAak85HPmze6Ot50iwkahaf4IwgrwnpH3HYNQq3+Tg/FoiDN1DHDnpk1C6b6O93pT+WxS9ZZayckQDggVvxCEUikjaVlVm8BsL8HBOAr/gjCing8HgQC5cEObGyCslPCK8zgdrsRDAaZ2jT5NGEz7JlizJ8dPCCy9V2ssOo1CRAOsJyKW10hXS4X01HjVnPJGUW8h3wB0gJreiEBQtgFljvimhWCiUQicDgcTD0gZtszT7cDAY5hX14eEKt0NkmAcIClW65eI8jN2HSAAGHZIyEBQtgFljvimhWCEfPM0gPSDnvGcql6ngIkXxCk/WqsYutJgHCAZY+hmQCJRqMolUp1f6c6/amXxu2CNHvHzvD0PhGEVRGn5+dyOcXUTT2MVQmQvmDlb6P2LJ/PSzv2chEgbQgps9wRV7x/r9cLn8/HVIBYMdxOAoQD/Qynrcn3AKgWIKVSCZOTk3V/pzp90SVnkZigUeR7Pxjdm0Fe9vL1VwjCarDcD0a0Wd5uwOdxwO12oHdKhIwZMzd1Rb08BMMq7wDQ32uOPRNtTi5vPOwr3j93cUYekM4lwrARbOYBqf5eV/oWiwkahXf4iyCsCFObUGd3bCnMwMGjy7KRHWujBwRgVz5i2bjdbkmgGRZnFgy3kwDhgFljQKq/14oVY4JGCXMIwYjuUIKwKrw7JaJ9iMaBUkl/mIG3AKmewWMGrOx9Op1GJpMppyl7nqzG/ClDMNbwdpMA4QDLaWtipfN4PFIjyMrYRC2oiI0S4TAIlbwfhNVhZRPSWQHp7FSadTwgpRIQS+pOvq4ACQaDcDqdNd/rSr8dg1AZdXoaeVxZjfmjEMw0gZdLThyjwWo/GCsOSjIKD/FHAoSwOjw6JfLxVP2VYRqGbFr1XicA4HQ6pcXU7DjQUrFUPeOykX8ulUqIxfQrHArBTBN4hGDkFZKVsbGiIjYKS3doOl0eUUYChLA6vG0Cq/eqUS9ftG92HGjJu2zYPVtZeMoiHU4SIBxgtSNuJpORptRxqZAKRWyNmKBRWHmf5JtikQAhrA53AWJSmGFiYgLFYlF/+rJ3Xj59mCdmlU31OZrTt2CHkwQIB7weB/ze8mcejSCXCmkRRWwUVuKPZsAQdoJLp0Q2UJFHmEGeZ/l+NhMTE/rTn3rn+4KAy2VOp0rZ6WE7QLf6M6tn208CpLNhsTredFTERvF5yv8AEiDE9MHuIRjWjayZ9sw2ZWNBe08ChBMsVsfj/7J21k64Iix2xCUBQtiJTgnBVJ+jhVJJkAbRmipAbFA2QMUeulxAKKA7GaaQAOGEWCmzOUjT2rSixl1JIZhaeHqfCMKK+Hw+eL3luC+zTkmddUCqz9Gc/lTenE4nQqFKoiwa2ViyPE0YMNeesRp3ZpYHJBy0zqrXJEA4wcIt16hCdnV1oaenp+YczelbcFoWC8R7yeTK6xrogQQIYTdYzCSRL7XOMwQTDoeltT8ANo1su+yZz+OAt3sqDxb2gMi33bAKJEA4wWLefLNGkMXqeHJjY5VBSSzoZ+ASbTQnnyCsimgTjCzZ3agRZ7W9RPVeJyIsvLqKfWBMtmeivTdSNjwFSKEgYDIxlZ6FbD0JEE6w6DHU24iu+m8j22+LxsbptE5MkAUsjGWzsicIKyLW00wmI61ho5VGYVkWs8sKhYK0eWYjewboF1DtHGTJIuwr3ndXVxcCgYpBZlE2E4nKZyuF20mAcEI+bU3vDpJqPCCFQkHa3lpz+mJMsAdwOq0RE2QBz/AXQVgVlmGMLjcQkG1/1N3lQHDqb73vlHx6bTMBojfvyo3ozLVnLMO+8lWvAUbeIYuG20mAcILFwCQ1AqT6PE3pizFBCyliFijWLCABQkwTmNqEUO1ARaOzy8yyZ0D7PCDV+dBCo60furu7EQwGFedoTtuiEw5IgHCCdy/c6H4wxaIgueWspIhZwFL8VbtDCcKqsGzE642hEI+Nx/QtLdBsXJWdB6FWX0+Pvc9ms0gmy7v81RtzZnSAsVKcWcfbTQKEEyw2RZM3gqICltI3+MJaNSbIAta9EatMWSOIZhi1Cbm8gMTU0JF6Dbh4rFCEdJ4WmnWo+vr6pPdMfyPbvr1OjHZ6Wm39YHTMH4Vgphkse+H1GkGjxsaKq+KxgqX4o/ALYReM2oSoYhn2Oukb7OU3EyAulwt9fX0152lKv60hGGNh31YhX/mYv0QiUfN9y/QpBDO94BkTrD6mS4BYVBGzwKj4y+Vy0ktOAoSwC7w7JUZtmtpGdjqGYNSWTfW5qtOPWXPVaxIgnDDaCObzeWl2C58KKUvLQoqYBUYNJe2ES9gRpp2SVh4QHTZNbSMbjUZREpc01ZK+7F0P2ywEw12AWHAjOoAECDd8HsBjYHU8tTFBgEVvp7PGOPDujRCEFeFtE8wKM5RKJcRi2i8g5qnHD3S5TZ6Gq+j0GBugy9/ea/45N0iAcMLhcBhanMZMRWylCskCvxfo7ip/5tEbIQgrwj0EY/UwQxs2ohOxfNmQAJl+GJk3b2qF7LAQDG/xRxBWxOjU/LEWNsHKYQZBENq6rpGVywaoPFuHA+i10KoCJEA4Ir4IqQyQ0bg6XqsKaXR1vDGLDkpiBU/xRxBWxO/3o7u7HPfVs2R3q4GK8oZ9bFJ7mEGeJ3HGiyJ9A41sIl2eHgy0yQOiKBvtvzerw9kXBFwu64TcSYBwRL4hXVRjQ9hqLxKv1wu/319zrlrauXGTGYj3lEwD2Zw2YykvT9qIjrALDofD0EySVmFZVr38vr4+uFyu2vQN7HnSbnsW8BkL+7ay93YOTzWDBAhHFKpYYyhATS/ckLGxaEyQFUZisuQBIewKM5vAcR2QVvZMfq5a5F6HdtgzM8f8aRVnpZIgdYCtFm4nAcIR3o2gkdXx5Cq9L9j4PLtipLdGAoSwK2J9TSaTyGazmn7Lcx2QUqkkzezjIUCsMKieRdjX5XIhFKq9ASNlM5kExObBap1NEiAcUWyKxqERFMMDuVwOqVRKW/oWjQmywoixJAFC2BV5fZVP5VeDaKNcLiBUZ6Ci1+OA36s8Vy2Tk5NSJ6lRWNOQAFF4b9pjz8TGXU/Yt9XWD8zKxu4CJBqN4rrrrsPSpUuxcuVKPP3003XPe/PNN/HpT38ay5Ytw/Lly7F582bDmbUbvBtBFj0Gq1VIVhjZEZcECGFXWDRUkZ7anXCl9HWGGcyyZ0AbPSAye691zF+r8JR8zJ8xcaYtX7zRLEDWr1+PGTNmYOvWrbj22muxZs2auovGfPOb38RRRx2FRx99FPfccw/uu+++hmKlU2EVgmHdY1DEBDtWgFQ+6/U+NXKHEoRV4d0pkYcZtIR9tXh0q89Xlb4FGlm9Niefz0ttaLMOj97xPVYQZ43QJEBSqRS2bduG1atXw+v1YtmyZVi4cCG2b99ec+6BAwfw3ve+F263G0cddRROPPFEvP7668wybgeUFVKfS65ZI6jX2MSSgLjSsdUUMStYeJ/C4TDthEvYCr02oVAQMDm1x1kzmyDatGwOSGsYYqJGgBhZWsAKe53otTkTExOVNFQKEE3izwLhqUa4tZz8xhtvIBgMYmBgQDq2ePHiusJi1apVeOSRR/COd7wDBw8exIsvvoirr766brq5XA65XE6ZMbdbmtPOEnGPAT17DWhFPrhzbFLbNeWNoCAIdSuc/IUdHR2tSb/RvY7KRoyHe8wpC95U36ui7GMCSiXtvbVIJGLZsjGzHrcbulf1yNfXqGcTGlG9j0qj38n3WBmdEDD7CHXv1ejoaCWNcLjmPkulEpxOJ0KhEGKxGMbHxzWVgXyWYV9Q2/vOCkXZTNbmoaE9blA21YgCJJvNIplMSiGZVshnCIVD5pSN06nOt6FJgKTTaQQCytFJgUCg7vbAJ5xwAh544AGcfvrpKBaLuOaaa7Bo0aK66W7evBmbNm1SHFu1ahUuvfRSLdnTxN69e7mlLZKOuQDMBgDsO5jEyMho8x/IECtlT08PRkZG6p4jFyW7du1qeF71ve74ezeAWQCALkccIyPap+xZFfFes8nKPY68qf4eC4UCJifLb2wgEGhYplbBjHpsFeheWyNvvHbv3q26/r5+0A3gKACAx5nAyEj9qZ7djgiAckv70mv7UUznVaW/a9cuRR6r8yXeryhADh8+rOnde/PQDADlBjkV24eRkaLq37JCyAcBlMNIO/8+ipHZybrnVT/bl19+Wfrsdrsb3rfH45E+v/DCC5g1a5aqfL2+txdAHwCgkH4LIyNpVb8zwvz581Wdp0mA+Hw+JJPKQk0mk/D5fIpjxWIR1113HT7+8Y/jkksuwVtvvYXPfe5zWLBgAc4555yadK+88kpcdtllyoxx9IDs3bsXc+bMUa3S9BKZUfmcLQYwNKRuDdxisSjFBAcHBzE0NFT3PLmgczgcNec1utfX3qqcM3RkD4aG7B+Hqb5XQVZ18lB/j/LeyMyZMxuWfbsxsx63G7pX9SxZskTxt9r6e0DWh5wzK4ihofpz8+ceWfnsDR4Jta+HPJS5ePFiKV/V93vEEUdg3759mJycxNy5c1WHQDOFyue3HzMbXk/jc3mxaF7ls7N7AENDA4rvGz3bl156Sfo8b968hs9s9uzZ0me/36/62ZZk1eiYRUeofmZmoEmAzJ07F4lEAqOjo1IYZufOnbjooosU54kK9pJLLoHb7caRRx6JZcuW4dlnn60rQLq7u7mIjWY4nU7uxiwUEOB2CSgUywOB1F6veifcRr+Th8Ki0WjD86rvdSIhAJiaEtfrgNNprbigEcR7Heir3GNUQ9nL47H9/f2Wb/DMqMdWge61NWptQjVRlTahP1Q5byKh3nbIbdrAwEBNvsT7FcMMhUIBqVQKPT3qOg7j8bLnx+8F/L721JGBXnU2p8Yeq7Q58kG6ExMT6p9tvOIVG7CYvdf0pPx+P4aHh7Fx40ZkMhls27YNu3fvxvDwsOK8cDiMwcFB/PrXv0apVMKhQ4ewbds2LFy4kGnmrY7D4dC1OI3aaaB6B5wpVg20v/OjLj1+wD212rOWAWE0BZewM3pXzFQ7i0Q+wFPL6s6tlhqv950Wm9bOjehE9JYNd3vfSeuArFmzBocOHcLZZ5+Nu+66C7fddhtCoRC2bNmiGLOxfv16PPTQQzjzzDPx8Y9/HO9617vwwQ9+kGnm7YC4L4GWRlDPy6rJ2MjEkHy/mk5CLv70GkraB4awG0YbcKDFNFydMz30NLJqbZogCJJNa6c9k+9Bw9ve6322YYuteq0pBAOUvRsbNmyoOb58+XIsX75c+vu4447DD3/4Q2O56wDElzmeAvIFAV3u1u4v3opYMWWtQz0gQPne3oqSB4SYPvT09MDlcqFYLGqzCbJlAtSsAwKIdkSdO1+eF/nsvZr0ddi0dLY8LRiwjgeEt8dbT4czFADcKtofM5keAdU2oqfHoLZC+nw+aWQ0j96O3akWf2ogAULYGb074uoJwehpZHt6etDV1dU4fR0CpN0b0Yn0+MvL2AP8vUN2C081ggQIZ/Sshqq2QjocDilMoK23Uz9/nYb83tQujUwChLA7RgVIszCG3jCDmJdWYU09jaxV7JneHXHVrHpd/Z3aspGHp6xo60mAcEZPj0FLI2jU2IQtqIpZwdP7RBBWRay3sVgM+by6dTrUNuJ67JkgCC33OpHS1yNALLAMu3R9A5MOHA4Hensbqz89ZRNPAcWiMm9WggQIZ+RL3+ppBNX2GNLpNNJpdQvMiPno8UPVmBS7wtP7RBBWRV5v5VM8myG+Hw4H0NtkuSKfB/B0K3/Ting8juJUK9jqndLTy1eGlNtrz0QBFEtqD/uGw+GmU2vtLs7qQQKEM7wbQT3bb1vZJccSxY64FIIhpglGGqpwD5quE6EnzKDXntktBFN9/YnaBcLrotY7pGfMn9XH+5EA4YxZIZjq3zVCEARLD0piiZEQTCt3KEFYFSONuBqboDXMwF2AWKiXr7XDWSwWJS9Vq7LRM8DYSuKsHiRAOKNsBLW55NQ0glpf2EQaKFg4JsgSI96nvr4+uMQh7QRhI7TahFJJkAZpq7EJok1LZYBMtrVN0yJA9OyIa4WdcKXra+z0TE5OSnt6qfG4ahYg8sHFbQ5P1YMECGd4N4JajY3VXXIsUXqftIk/Cr8QdkXrOIqJBCDua6lKgGicXaZFgHg8HmnDUzv28rWGfbWGfMVzUqkUMplM6/QtVDb1IAHCGSMhGC0VUv67pmlbyF3JG629kVKpJI2jIQFC2BXeNkGrTdPbyNoyBKPR5ugtG0DdmD8rlU09SIBwhncjqNXYWHlfANZoNZRa3aEEYUW0rpip1Ssqt2nyRcAaoXap8epzxsfHpfexGVbq5Sv2g1FRNkYEiCp7P2md8FQ9SIBwpjcoWx1PZSNYKpUAaK+QWo2NFWOCLOnXaAxoHxiiE9DsAdHYgJsVZshms0ilUq3Tn7Jp3m7A722vTZMv4qYm7KtXnAF8nq3ZkADhjMPhkDYA4u2S64QKyZJQABCn1fMwlARhRYyFYFo34FrHtXG3aeKsPgvYMzNDMJ0QcicBYgLStDWqkKbidDqklV55lD1BWBHeA9Mt18hqmELMG7PGxwAqPd6yPFhx1WsSICYgVsqJBFBosTqe1gqpdcS7laasmYGWRZNIgBCdQG9vLxyOsidDq1e0X4VN0Bpm4ClAMlkBqanJIFawZ0a8Q2rCvnrFZcAHeLqtF3InAWICcmXeanU8rS9rIBCQdpekEEwtcvFXLLIVfwRhRZxOp7SeBo9OiV4PSCAQkFbybJq+hkbWavasN1Bezh7g0+nR3uGcStuC3g+ABIgpaHHLaa2QWlfHm04hGICv+CMIq6LJJmgehFr/tw3T17i2jiYBYjF7pgj7cg7BtCobq++EC5AAMQUtPQatLjlAo7GRXd+KMUHWaHGJkgAhOgWx/k5MTEgbwTXC0DogLd4pLTvhimjp5VtxYUW9Yd++vr7WaWsQIKkMkMsr82Q1SICYgGLaGodGUDwvkUggl8s1T39KEfu9gNdjvZgga3h6nwjCqoj1VxAETE42n4Mut0l9wdZpB32AW1xaoIU9S6VSkk3i4gFReG+sYc/0hH17e3vhdrtbp63XO2QRcVYNCRAT4N0Ialkdz+oxQdbo9T6RACHsjJ5GvDcIuN2tG3GHw6F6Qzqj9sxuIRigYu8FAZhMNj9Xq3coGAxKQkWLOFMzuLgdkAAxAd6NoNoX1g4xQdbo9T7JN8UiCLuhJYwhLtKnpQFXG2YwVYBYxKaptfelUkmzANEy5s+KZVMNCRATUMZM1c/EUNsIqn1h01kgm6vNUyejx/sUCoVUuUMJwqqotQmlkr5OiXhuPAXkmywtwF2AxK23rIDaMTLxeFzTqtdS+roEiDXCU9WQADEB3o2g2hfWiu5K3ujxPlH4hbA7am1CPAVMtYHaPCAym9ZsR1w9AsTn88Hr9db8vm76FrRpau293pCveG48Hkc+n2943pgFy6YaEiAm0K9SEQP6GkG1xkZeIeWLCXUyikWTmnif5KP1aR8Ywu6oXTFTr5te7YZ0Wvc6qT5X0zgHi9g0+R5bzcrGqAABmo/5oxAMAUC9S07PlLXqc1UbG4sqYtYoDGWTso/FYtJ0RfKAEHZHtVdU50JeZvXyWy03bkWbprZsjIozoNWztV54qhoSICagWB2vSYWMx+MoFAoAOFVIG8QEWaNW/NEMGKKT4B2WVTu426gASafTSKfTjdOfunaXu7zcuBVQG/Zl4QGxe4eTBIgJuFwOaX49D5ec2hHvVlu22Azk6xrw6KkRhBXRI0D6e9V3StSGlfUsrAioDzOIXs1ICNL+N+1G7aQDFmWjvsOpOnlTIQFiEmrmzbNQxDQIVYlc/JEHhJgu6ArB6ByEagWbZiV7xrtsOqnDSQLEJMQXJBovT32rB/+X1foxQR7wFH8EYUXky3rz6CUrwwxsp+FWn9so/7m8gMRUdMZK9szMEIyaZ+vtBnwWXfWaBIhJqFkdT2+FDIVCcLlcNWnUpG8DRcwD8V55iD+CsCJutxu9veVpITw6JVrHVnm9Xvh86gdpqGlkozq9N7zhHfbV6t2ysq0nAWISal5YvTFBh8Ohavvt6RiCASr3WioBMcbijyCsipqprGaFYLS+U2rCDFYd4+B2O9DLMexr5/BUNSRATEKNW85II6jZ2FjoheWNGmNJAoToNOQ2QVxxsxo2IZjG5+kVIGoaWSvbMzVL1evd+kFN2aSzAtLZqfMtVjZySICYBO9GUDx/cnJSmspbk/7Uy+DpBnweTcnbGt7ijyCsiOhFKJVKiMfrGx352jhhDT3lUABwTrUejeyZfAotFwGi8Ohaa4yDfNxZq7BvMBhEd3e3+rQ1hqesuhEdQALENOQvCE8PCABMTEzUT1/mkrPKlDUz0Br+IgFCdAJaGvGgD+juUm8TnE6HJFgavVPy6bPcBYjFGll52Deeqn+OXu9QKBSCc0r92bFs5JAAMQnejaAWl6WVKyQPFIsmqfA+0U64RCfA2ya0CjOYZc8A69m0VvZe76rXAOB0OluO+RsjAULI0RqC0doItnphM1kBqczUuRYelMQDLSGYQCAAj2caxaeIjqXVipmCIFS8onoEyNRvJhJAoc6OuHqXGq8+v3EvXzaDx2I2TV6e9baASCaT0kZyejyurcb8WTk8JYcEiEkoVw6sHxMUX1g9jWArY2PFTZvMQn6/jfaDEcuMNqIjOoVWjXgyDeSnhovpacDlv5lI1H5vxAMSCATQ1dUFoPFy48pVXDUlz51WK8UaEWfy30xMTEh7WMmhEAyhQEsIxkiFlKejSHuaTsEFWi+aZMQdShBWpaVNMBjCaOXVNSJAHA5H616+RdcBAVqHfY2OOWs15s/K4Sk5JEBMotXLarQR1CRALFwhedBK/Bl1hxKEFeHdKWn1XrFqZO040LJV2JelAKnr8bZweEoOCRCTCMtWx6u3IV0qlUIulwOgr0K2WrhHqYitGxPkAc+eGkFYFS0CRE8Io7/Fjrh6F1YUEfOfSCQk2yhHDKe6XOVpwVZCizjTUzYt7b2FxZkcEiAm4XY7pJeEt0uOQjBKwpx7IwRhRTSFYHQMVOQt7FvtiCu+y+Gg9ZYVUJZNbdiXu72nEAxRTbNpa6YKEAtXSB50uR3o8Zc/kwAhpgu8bYKZYYZmjawV7Vnby8YmHU4SICYiXx1PEJSqmJW7sjot6Vh8eu6EK9JsR1wSIEQnIp/Kz0WAtJjZZ/S9ahZmKBQETCZq82EVzBofU52WdGzKznW5gYD6PQBNhwSIiYiVslisXR3PaIXs7e2V3JB2VsS8kHufmok/EiBEp9Dd3Y1gsDz4rGWnxOgg1CbCvqurC4GA9kEazRpZ+bRfK9ozRdi3jSH3SMh64Sk5JEBMpJlbzmiFdLlc6Ovrq0lLSt8mMUFeiPdcKAKJtPI7EiBEpyJ6EerZBPlgeJ4hmEgkoqsRbNbIWt2edXc5EJzyPLQzBGPlfWAAEiCm0swtx6IRbDZtbTqPAQH4lz1BWBG5Tajx/LFcB6SFANFDUwFiA4+u2rCvnq0fmpVNLi9InSyr23oSICbSzGXJUoBEo9Ga7bfFF9btgqTMpxM8vU8EYVXE+pzP55FMJhXfyd8DLTvhivTJlhaotme5XA6JREKRB62oFiAWXVZAEiBNwr4+nw8+n3aDbHdxJkICxESa7YjLUoAIgoDJSeViI+KceavHBHnBW/wRhBVptmCVaIN8HsDn0W4TXC6HJEKq1zZiac+q0wOsH4IBKo1/vtA47Ku3bMRwuzwt6W8blI0ICRATkS/2U90IGt0boPp3jYyN1WOCvJAvmlRtLFmUPUFYETWNuJFGqlGYgbUAaWTPAOvaNIW9l+VXEATpfvSWTbMxf+QBIerCOwzQyNjk8rBNTJAXajwget2hBGFV1LjqjTRS4nsVjQOlUiXMwN0DErP+sgKN7H06nUY2my2fY6DD02jMnx3CUyIkQEyk2bx5sRJ5vV7djWCjFzZq4U2bzEKN+CPvB9FpNLIJ6ayAzNTq5oY8IFPvlSAAk7IhJiwESCgUgsvlqkkPgKU3ohNp1OlhFfJtNOaPQjBEXdT0wo1UyEYL99ipQvJCjfgjAUJ0Go0ECKsQRqMwg9GFFYHyWDVxhkjzXr6u5LnTaMwfi7KR/7ZUKinG/FEIhqiLvDI0GrTFQhHL0wPs8bLyppH4S6fTyGQy5XNIgBAdBm+b0MizyLqXXy1Axmxg0xpNU2ZdNtVp2iE8JUICxEQarY6XTqeRTpcHaXCpkAY3neoEeBtKgrAi6myCgfRNCjNMTk6iUChU0p96hx0OoNdiO+GKmFU21WnayeNNAsREPN0OaV1+eSMo3+mRPCB8aLQjLgkQopNRZxP0d0rUhBlY2bSJiYmaa/UFy9OBrYiy08N2gG71bxs+WwrBEHLq7YjLKiaoahDqNBUgXo8Dfm/5M4/eCEFYEe4hGM5hhlbj2qxszxqVDXU4K5AAMZl6O+KSIjaHVuKPBAjRaTSyCWOMbEI7wgylkiB1qqxsz9odgnG5gJBFw1MiJEBMRnxhcnkgVR77yKxCNtp+204xQZ7wFH8EYUW8Xi/8fj8APgMVW4UZXC4XQiH9F6jXyE4my9N+AWvbM95h31YdzkiP9Ve9JgFiMvXccqwqpNvtll52u7rkeCLeezYHpMvrAJEAITqeejNJWHVKWoVgwuGwoUawXiNrF3vm8zjg85Q/mylA5NtuWB3NAiQajeK6667D0qVLsXLlSjz99NMNz33wwQfxwQ9+EKeddhouueQSjIyMGMpsJ1DPLceyEaxnbFi5W+1OvZkwJECITkes12NjYxXPH4cQjNzOGF1qXEq/lQCxuD0Ty0deNjzHgOQLAmJTC8JZvWwAwK31B+vXr8eMGTOwdetWPPXUU1izZg1+/etf17jZtm/fjp/+9Kf41re+hQULFuDNN99ET48NSoQz/Rw9IOLv9+zZo9h+Ozp1HZcL6A02+XGHU70Xz+wj2A0AJgirItqUbDaLdDoNv9/PzItQL8yQz+cRi8UU19ZLXQEi897I32kr0h8C3jwshn3Lx8T76O7ulsJjeqhXNhMJ2fc28IBoEiCpVArbtm3Db3/7W3i9Xixbtgz33nsvtm/fjvPPP19x7j333IMvfOELWLhwIQBg9uzZDdPN5XLI5XLKjLnd6O7u1pI9VYhL1lZvV28W8hd2dFJAqSRgdHRUOtbX12cob+I4kGKxKE1bG48LABwIB8tjH6q3hu4E1DzXsEx8HZ5gX/Zm0u56bCZ0r8aQjw0bHR3F7NmzJbHQ3QV4uwXFPi5acDmBHj8QT5UFSKlUUoj6cDjc9F5a3a9819fR0VGUSiWMyhZxDAetXS9EL0Q2ByTT5XzKvUNG7HFvb0V9jY+Pl8tmovJ9uKd9ZeN0qguuaBIgb7zxBoLBIAYGBqRjixcvxuuvv644r1gs4rXXXsOuXbvwf/7P/4Hb7cYFF1yAq6++um48cPPmzdi0aZPi2KpVq3DppZdqyZ4m9u7dyy3tZpRyQQDlnvauPWMYmZfAvn37pO9TqZShUJXX65U+79ixA3PmzMHoZFmA9PjyGBnZrzttO9DsuTqKIQBlY/za7sNYEEnhwIED0veJRMJ2YcJ21eN2QPeqD3lH7qWXXkKxWMRb0aMAuNHrL+CNN940lH7IfxTiKTdGJ4oYGdmnaA88Ho+qd6rR/YoLNIrnjIyMYNeeig0t5UYxMpKs+1sr4HEPAChPRXnptf2YFakIkJ6eHsP2JhgMIpFI4NChQxgZGcHLu7oBzAIAuBHDyEi0eQKcmD9/vqrzNAmQdDqNQEA5rycQCCCRSCiOjY+Po1gs4s9//jPuu+8+JJNJXHvttRgcHMSFF15Yk+6VV16Jyy67TJkxjh6QvXv3Ys6cOapVGksWy56Lo6sfQ0P90s6IAPCOd7wDwaD+OMmcOXOkzx6PB4UiEE+V73Mw0oWhoSHdaVsZNc91wdzKZ5d3BoaGyoIPKBvpY445xvKjxkXaXY/NhO7VGHPnViq+1+vF0NAQYuVqjyPCbsM2YTACvDkKTCRdmDt3CPv3Vzo5c+fObZp+q/uVh+2z2SyGhobg6Kp8v3j+AIaGBmp+ZxVmD1Y+e4NHIpvdJYmqmTNnGi77gYEBJBIJxGIxDA0N4SVZ/3LeUSEMDVk7DqNJgPh8PiSTSrWZTCZrdm/1eMpDfy+//HL09PSgp6cHq1atwpNPPllXgHR3d3MRG81wOp1tMWYDvQKAqYFg8XI+RJdlV1cXenp6DDWC8nEMExMTcPtmSn9HQupdY3al2XOVl/1E3AGn06HYg0fcedNOtKsetwO6V31U24R8wYFkpvwesLAJkVDZzV8sAcmMQ7FiaX9/v6r0G92vOItGEAREo9GyvYxVwgoDveX32Kr0hyp5nUg4kS9U4keRSMR42cvG/DkcjqkxIMLUta1dNoDGWTBz585FIpFQxM137tyJBQsWKM4LhUKYMWOG4lgnjjvQQ7OZGJFIxHAPvHpg0kSy8ojtMCiJJ/V2xKWdcIlOp9omsF4ZudqmsRxU73K5pHEg9QahWt2myZe5H48rl5NnYXPENIrFIuLxuG2mKItoEiB+vx/Dw8PYuHEjMpkMtm3bht27d2N4eLjm3PPPPx//8R//gWQyicOHD+M///M/cdpppzHLuF1ptg4IywoppjuZkAmQaT4JqXoKdDablTx6JECITqXaJrBuwKttGuup7dVLC9ipka0uG14CBBCfrX12wgV0rAOyZs0aHDp0CGeffTbuuusu3HbbbQiFQtiyZYti0Og111yDgYEBrFixAh//+Mdx1lln1cyUmY5UN4K5XE4aQ8NiGqi8Qkaj0SoPiLXdcbyp7qmxmo9PEFamej8V1utoVNs01gJEzH80Gi3PspHlP2zxZQXk5RuNl3f1lb7jIUBstEYKoGMdkHA4jA0bNtQcX758OZYvXy793dXVha9+9av46le/aiyHHYbP44C3W0Amx6cRrK6QgURlXIMdFDFPeBtKgrAi1TZhTDaNlUWnpLwjbmWBM14eEEEQMDk5ifF4efppKAC43dbuVFV7QBzxicp3vAWIDez99BjRZTHke5LwelmBOmNAbKCIeeLzAJ6psc48DCVBWBFTQzAm2DT5XidWp7psuHtAbLRIG0ACpC3Id2U1VYDYQBHzxOFwcC17grAivN30PAehVqcxNlZpZO1gz6rLhvsYkKln63AAvRbfCRcgAdIWxBcnnQUOHJqoHGdQIeWrHkajUUwkSIDI4el9Iggr4vP5pKURxsbGmA9UVOwHMylIC205HA7Fap2605e9m/sOTqJYrL2uVTF7EKq450y4B5afgguQAGkL8v1g9h2srKvCokJ6PB5psbiyB6QyBqTfBi8sb8QySGWAQ4cr7lDaB4boVBwOh2ImiVmDUPv6+pisraMQIAcq9tIO9szvlYV9TRyEaofwFEACpC3IX9g336osNcyqFy7f/XKSPCAKFGV/iH3ZE4QVaShAOK4DwtqeAVX20gb2rDrsy3PSwehYVNqMzg5lA5AAaQvyynFotLIJH+sXVj4GxC4xQd7IjeWhMfZlTxBWRKzfqVQKoxOV1TmZh2BighRm4CFADo7mK8dt0suXh31FD4jb7WayO7y8bN4ay0o77pIAIRpSnrZW5vBEsXKc0QsrhhPy+by06mFfEHC5rB8T5I38xTwcZV/2BGFF5PVbtDluV3knW6N4uh0ITO3GMTpRkla9ZhXWVOa9UDluk3WNRKGUygDRybIHh8Wq12I6Im9FZWVjE3FGAqQNVPcYpOMcegziIFS7KGLeyI0Wj7InCCuiGCsQq+wDw2rzxUqYga89G1esYcIkee7I8zmRKJc3q7JRjPmL2WsVVIAESFtQVkjZQmHMX1gH4unyWnN2UcS8kZeDGJ5yuVxM3KEEYVXqdkoYVnnRpilm3XEQIFEbrmskt/epXHk2EssOj5iWHWc8kgBpA/IXRxQILpcLoRCbWiNVbncvBEwpbptUSN7IyyGeLu/rzcodShBWRbIJDjeS2alOCUObINq0fNEJOP3KaxpEvrSA+M4C9rFpCqHkLpcJDwESk5dNjz3sGQmQNiB/cZLZsiIWt51mkr4kQCqV3C4vK2/qlT2FX4hORxqP4e6TjjEVIPK0GDeybrdb6pyJ72zNNS2MYqwKRwFSREXp2KVsSIC0AXnlSBfKvQWW61DUFSA2cVfyRl4OuVI5dkoChLjuuuvwD//wD/B4PDjxxBPbnR3mVGxCxc7wCMEAALrYN7KifcwUfJVr2sSm8S4bKa0u+3U4SYC0AfmLU0B5O0cuFZI8IDXw7KkR9kUQBFx11VX40Ic+1O6scIG3TTArzJATKtvfhu0iQBRlUw4ncbf3NikbEiBtIOADusR9iDm+rApFbJOYIG+UAoS9MSCaUyqVsH79eixatAgejwdz587FN77xDQDAiy++iLPOOgs+nw/9/f245pprkEgkpN9eeeWV+MAHPoB169ZhcHAQfX19uOWWW1AoFPClL30JkUgEs2fPxg9/+EPpN3v27IHD4cAvfvELnHrqqfB6vTjuuOPwxBNPKPK1YcMGfPrTn8aCBQtMKQezqd9LZmcTzAozwFV+ZwO+8vRfO8C701NPgNhhIzqABEhbcDgclUppUoUkD0iZoK+8/gEALu5Qojn/8i//gvXr1+Omm27Cyy+/jJ/97GcYHBxEKpXCeeedh3A4jD//+c/45S9/iUcffRSf+cxnFL9/7LHHsH//fmzfvh133nkn1q5di/PPPx/hcBh/+tOfsHr1aqxevRp79+5V/O5LX/oSrr/+evzlL3/BqaeeigsvvFDas2Q6wLuXrAwz9CuvySL9KgFllx4+UJVXrmXDJ7zGE3frUwgeRHqAQ+MwzwNCAgSAKP4EvBVFR4VgTj75ZBw8eND0686cORPPPPOMqnPj8Tjuuusu3H333bj88ssBAAsXLsRpp52GTZs2IZ1O4z/+4z+kdQ3uvvtuXHDBBbjtttukNCKRCDZs2ACn04klS5bgjjvuQCqVwo033gigLHBuv/12PPnkk/jwhz8s/e4zn/kMLr74YgDA97//fTz88MP493//d9xwww1MysHqVARIZUYJvxAM/zCDneyZeR6QyrPtCzY42WKQAGkTkovM3QM4uvi75Gz0wvKmP4QpAVLuMXTCRnQHDx7Em2++2e5sNOWVV15BNpvF2WefXfe7E044QRIfALB06VKUSiW89tprGBoaAgAcd9xxcDorjtvBwUEcf/zx0t8ulwv9/f146623FOm/5z3vkT673W6cfPLJeOWVV5jdm9UJBoNwu90ocOqU1Gtk5dNnDacfiZSn9zrLs2DsZM8U4RATxFlvEHC77RGeIgHSJqp7DCwrpM/ng9frRYZCMHWphL/Yi792MXPmTMtf1+fzNfxOEISG09Dlx7u6umq+q3esVCqhFdNp7RdxR9y3TAnBRBAKheB2s2teIpGIbUPKYti3UIQps2DsEn4BSIC0jeoeA+tGsL+/H2/a9IXlDU/x1y7UhkHayeLFi+Hz+bB161ZcffXViu/e9ra34cc//jGSyaTkBXnyySfhdDpx9NFHI5PJGLr2U089heHhYQBAoVDAs88+WzO+pNOJRCJ4S+AzULG/yp6x9ipGIpGqQfVMk+dKvbAvy/Ipp+WwZXiKBEibUA5MYi9AIpEI3nRWXKBhm8QEzYC3+CPq4/V68eUvfxk33HADuru7sXTpUhw+fBg7duzAZZddhptvvhmXX3451q5di8OHD+Ozn/0sPvaxj2FwcBAjIyOGrv29730PixcvxrHHHovvfOc7iEajuOqqq6Tvd+3ahUQigYMHDyKdTuOvf/0rgLIw6u7uNnRtqxCJRIBJEzwgHES9nT0gQLmsRQHidDqZrXoNTJWNqwdwuKRr2QUSIG2iPG1tavMgDo1gJBIBEuU0Q34BbjdNeBKpdheTADGPm266CW63G1/72tewf/9+zJo1C6tXr4bf78cjjzyC6667Dqeccgr8fj8uvvhi3HnnnUyue/vtt2P9+vX4y1/+goULF+I3v/kNBgYGpO+vvvpqbNu2Tfr7pJNOAgD8/e9/x7x585jkod1EIhEgVe6UOJ0CQgF2ISifxwFvdwmZnINbh0opQOwVPquEfUPoC89QjGMynLaNxRkJkDah7DH083lhM1ODkgJFAK7mP5hGlNdE4Sf+iMY4nU585StfwVe+8pWa797+9rfjscceqzkujufYvHlzjeGuXs8DKK/9Uc2xxx6Lp556qmG+6qXTaUQiEeDgVKfEV4LTydYm9PqLyOTc/DpUNpxmKiK3970D85im7fP50B2YiVyda1kd6ha3CWUIhr3LMhyuxEyD3jzTtO1OtQekt9cmq/YQhAH6+/ulnnKPL9fibO0EfVN2hpcA4TSF2AzCQUH63NM3xDz9YLiSpp3EGQmQNlHtAWHdCAZ7ZwGOsoPL32VsAF+nIS97f+gopu5QgrAqfeF+aTM6HjZBStPlR0/vEUzTtnOYAQD8nqz02Rc6inn6gdBs6bOdwlMUgmkT8hfIE5wJl4utO9QbnFVJ35UEYP+1Llgh7yF4Ake2LyMEd+bNmwdBEFqfOA3wBmcCjrLY9rhSYG0TvK4UgPDUtWY1P1kj3d3dcPsGUZj62069fEAsG2/5M+OyAQCPLM2gNwfA0/hkC0FdvzYhf4G6fIPM05en2eWIM0/fzvQGK2tEdPnZlz1BWBHeNsEtS5PHe9Xlr3hV7OYB6YKsbDjb+25nosmZ1oIESJvok8UEnZ6BJmfqw+GZUUm/NMk8fTsjNwbObvZlTxBWxCWzM87SBPP0ncVKmjzeK3ma4R57ebXk5e2U2WZm6cvSdHF4trwgAdImhMIkIEw5FN0cZmHIBmwhP84+fTtTkJVHF7vlognCyggyOyPwsAny94qLTZtKs5iGUEyzT58nirLhYHNkaXJ5tpwgAdImotFxSRgUHexnYcjTLGUPM0/fzuTTo5L4Kzn62psZgjCJksImjDJPvyizM0Une5tWEtMsjGF83D6NLKC0wVzsvZPvs+UFCZA2MTY2JqnivMB+mdI8KoNMsinzd0m1MuPjY0AhCgDICTYbzUYQOsmjYmdyHGxCPnWo8pnDeyW9q4Xxsv20EfLy5lE28jRzsudgdUiAtInx8XFJgORKfhQKbGOa2aK/8jl5gGnadmd8vOJ9kpcTQXQyqVxlM8BsYj/z9DOyNDMFtu9VOiugKEwtiZ8ft50HJBOv2OAMB5sjlXchjtgkeUCIFpQbwaj09wTjgcvxVGWH0NTkXraJ2xy5+EvnPczFH0FYkahs4ktych/z9OV2ZjLJtmmR5x2FqO0ESGJyPyAUAQCpnJd5+lKaNvMOkQBpE/JGEADGGc+Kk6cXj77BNnGbUy57fuKPsBfPP/88/umf/glz5syBz+fDsccei7vuuqvd2WKO0iYY29yvHnI7w9yexWR/FOznAYlGK2HfeKarxdnaEAQB8czUkl42KxtaiKxNlBvByhLpY5MA5jBMX2YAJkb/zi7hDkAeggHKZTXQ1778EO3l2WefxYwZM/DTn/4Uc+bMwR/+8Adcc801cLlc+MxnPtPu7DFD3ojHx/egWCwyWwBREARMjL4OLKi9FgvG5OnlxzE+bi+vpdTh7Bpg7h1KpoFCcSpNmwkQ8oC0Ce4eEPGFLSaQSkSRzWabnj+dqCl7xsaSaEypVML69euxaNEieDwezJ07F9/4xjcAAC+++CLOOuss+Hw+9Pf345prrkEiUXFPXXnllfjABz6AdevWYXBwEH19fbjllltQKBTwpS99CZFIBLNnz8YPf/hD6Td79uyBw+HAL37xC5x66qnwer047rjjFJvPXXXVVdiwYQPOOOMMLFiwAB/96Edx5ZVX4le/+pVp5WIGika8MIGJiQlmaSeTSRSyE0CpvMcMeUCUyG3ORMKBYpGdgFKUdd5e4SkSIG2iphfOuBGU0pu6RjQabXzyNIMESPv4l3/5F6xfvx433XQTXn75ZfzsZz/D4OAgUqkUzjvvPITDYfz5z3/GL3/5Szz66KM1HojHHnsM+/fvx/bt23HnnXdi7dq1OP/88xEOh/GnP/0Jq1evxurVq7F3r3Lc05e+9CVcf/31+Mtf/oJTTz0VF154YdNY+eTkZMftklyxCVEAJaYNlZTW1HvFzZ4BthwDwjPsa2dxRiGYNlGukIXK3wxfWEEQKqpYNAjj45g5cya7i9gY3t6ndnDyJ0s42Aa7MzMCPLNJXT8mHo/jrrvuwt13343LL78cALBw4UKcdtpp2LRpE9LpNP7jP/4DgUAAAHD33XfjggsuwG233SalEYlEsGHDBjidTixZsgR33HEHUqkUbrzxRgBlgXP77bfjySefxIc//GHpd5/5zGdw8cUXAwC+//3v4+GHH8a///u/44YbbqjJ5x//+Efcf//9+N3vfqevUCxKPZvALG25AOmeyV6AKAahjmN8vNTwXKtRKpXKHcABZaenn9FyICRACM3UCJC4AIDNLoapDJATh5dwMDZ2p3oGUid4QA6OA29afL25V155BdlsFmeffXbd70444QRJfADA0qVLUSqV8Nprr2FoqLzd+HHHHafYvXhwcBDHH3+89LfL5UJ/fz/eeustRfrvec97pM9utxsnn3wyXnnllZp87NixAxdddBG+9rWv4dxzz9V/sxajVBIqM0l4CpApj2siDeTyArq72Ni08ZgsZJG3lwCJxWIolUo1485YoQzBjGN80j62ngRImyg3gnw8INXuSul6BICpsijKeyPsxF+7mNmmaIGW6/p8vobfCYIAh6P+M5Af7+rqqvmu3rFSqXUDVX29l19+GWeddRY++clP4qtf/WrL39uJWBKQioSDTah4QCrCPhoHBhnVy9pevn0ESHV4CmBr78fkW30VxpFIJJDL5dDd3c3uIpwgAdImeIZgqkeMS9cjUCpNxb4DnRWCURsGaSeLFy+Gz+fD1q1bcfXVVyu+e9vb3oYf//jHSCaTkhfkySefhNPpxNFHH41MJmPo2k899RSGh4cBAIVCAc8++6xifMmOHTtw1lln4fLLL5cGxXYS1b1kAEzXi5DSkjWyYzGGAsTGIZh6AmSMZYezqmyA8pi/wUHr7/RNAqQNCIJQrpSOyjRcpi45RW+hbBhIgJSJx+NT7tCK8e2EEIwd8Hq9+PKXv4wbbrgB3d3dWLp0KQ4fPowdO3bgsssuw80334zLL78ca9euxeHDh/HZz34WH/vYxzA4OIiREWPrVnzve9/D4sWLceyxx+I73/kOotEorrrqKgBl8XHmmWfive99L77whS/g4MHystkulwszZrDfubQdVHsQAL4hmJprGk1f0akas9U0XP5lowxPidckAULUJRaLoVgsApgEUALgZFshOfd27EyjnhphDjfddBPcbje+9rWvYf/+/Zg1axZWr14Nv9+PRx55BNdddx1OOeUU+P1+XHzxxbjzzjuZXPf222/H+vXr8Ze//AULFy7Eb37zGwwMlLd3/+Uvf4nDhw/j3nvvxb333iv9ZmhoCHv27GFy/XZjmgDhFGYQbZoDOQilFNJpIJ1ONw3rWYV6Nodl2Jf3s+UJCZA2UKkcArodSeSEHhoDYhIVQ8lH/BHNcTqd+MpXvoKvfOUrNd+9/e1vx2OPPVZzXBzPsXnzZsUAVACK9TxE6omGY489Fk899VTdPK1duxZr165tnXkbo+yUsPeK1hUgHLy63Y4kxBWNxsfHcdRRR7G7CCe4l02dEIxd7L31A8cdiLxy+LrS5WPcQjD2qpC8qZRDCV53eVwBCRCi0+HdKTErBCPaS8U1LY6p4ampZ2sXjzcJkDYgf3ECnvLKgdF4eaock/TjsnRIgCioV/adMAiVIJrRnhAMG3uWywtITOmOgKeyorNdbBr38JToHXIXgFJGeU2LQwKkDcgrR8hXngkjCMBkklH6ssrtLE3WXHM6U6/sWYo/wlrMmzcPgiDgxBNPbHdW2oq8UxL0TglvDgLE46oYMVbCXr4TrvjOyq9pdSoCZKJyjEMIxo5lQwKkDcgrR1+wMp1MMZ/bSPoyARLyF2quOZ2pV/YsxR9BWBG5bQn3lP/nIUD6ghWhw6qXLx8krkjfJjZNHvbtmRIJPDwgdiwbEiBtQF45+nsrI6FZVUq5uu4LlGquOZ1Rln2l+tM4EKKTkduE/lDZ5kSjUVULtqlKf+q9EtMGGNozWToKe2kTm6bs9JRFAisPSDorIFN2aNmybEiAtAF55ZgRrkxEYlUpxRfW2w1E+srT1GKxGPL5fJNfTQ/kZX9EuLIVOQkQopOR12/R5pRKJcRixit+Op2WFoobCHfDNfVasbZnQNU7a5NGVsxnT0+P5HVlFfZVPlf7lQ0JkDYgrxyzBirL5bL2gERCQG9vZccjlttv2xV52Q/2y8qeBqISHYxoW3r8wIBsFzQWDZXCq9gfQTiovKbh9GXv5swBT93rWhkxn5FIRPJIl0rl5fENpy0XZ5EuuKbUn13KhgRIG5BXjiOPqCykw9plGekB+vr66l53uqIse2/lOHlAiA5G3imJRCrro7MWIJFIBJGQ8pqG05e9mwp7aQN7Jq16jXLZ9AYqIS8W5SMfHzMQAsLhcDltG5QNQAKkLcgrx+yZld0/WVTIdFZAemqmWrUHxC6VkidiGQSDQRwhD3+RACE6FEEQFJ0SuQBhsV6EPA25AJlMAIUCizBDJY25s2T20gb2LJFIoDC151ckEmE+6UButyIhh/Rs7VA2AAmQtiBvBAcj8kaQbUwwTB6QGuS9EdFQAhSCITqXRBooFMufTfGA9FS+iyYMJ694N2fN8Ei7vNrBnsnzGA6H0RcoVr5jYHPkacif7eTkpCR8rAwJkDYg9hgikQhk4Vg2FVI+YjykFCB2WR2PF4IgSGXQ39+PfpkAGZukdUCIzkTZSzYvBFN9bd3py8MMvZVevh3sWbV3SO4BYV021d4tO4z5IwFiMtUxQXlvgUmFrFLE5AGpUO0OJQ8IMR2o7pTwFCDVwp55IyvLvx3sWXXZ9AVYC5BKx4mHuOQNCRCTSSaT0nTYsiKufMdDEZMAqcC7p0YQVqSRmx7g5QGRrUfBMMzgcpVn8Yj5TyaTyGazTX7ZfqrLplfuAeEQgunv7697batCAsRkqiuk2+1ArzhtjXEIJkyDUBVUl32YsfgjCCui7JQ4TB0DwrJTFekBHA5l/qPRqPELcKR2DIjcA8J2zB+PAca80SxAotEorrvuOixduhQrV67E008/3fT8/fv3Y+nSpVi3bp3uTHYS1S8rAOmFZR6CIQ+IgnriLzQ1qJ5CMESnYvsxILIpxOI16l3bilSXjWIQKsfwVPW1rYpmAbJ+/XrMmDEDW7duxbXXXos1a9Y0XU3vzjvvxJIlSwxlspOoK0Bk8+YFwZgqro4JkgCpwFv8EYQVGWvSS+YuQOLG7FmhIGByaiaN+K7aqZE1KwTT3QX4vfYqG0CjAEmlUti2bRtWr14Nr9eLZcuWYeHChdi+fXvd8//4xz9CEAS8+93vZpLZTqBZI1gsGl8dr9ol19PTA4fDUXPt6Qhv8UcQVqS6U+J2uxEKlSs+SwHS3d0Nv9/PNAQjn8bbCR6QXj+fWTD1wlNWLxsAcLc+pcIbb7yBYDCIgYEB6djixYvx+uuv15ybz+dx11134Zvf/CYeeuihpunmcjnkcjllxtxuab43S8TNl1htwqSV0dFR6XNfXx9KpZK0OyUAjE4K6PHrbwiVO0eW4Mg5EQ6HMT4+jvHx8bbdN2/UPFd5TLS67ItFYDIhIBSwhwhpdz02E7pXY1TvJlsqCYhEIojFYkxsgnxWnyAIioH1Y7Hm99LqfkcnKp/DPeXz5F7d0dFRS9eLaptTKBTQ4xcQTzkw3qJs1CAJkFBt2YyNjbWtbJxOdb4NTQIknU4jEAgojgUCASQStavN3HvvvVi6dCnmzJnTMt3Nmzdj06ZNimOrVq3CpZdeqiV7mti7dy+3tJshF2ulUgkjIyPockQAlFvCHa8dgLNKjGlh/+EjAJSXK07F9iHgLXtBxsfHMTo6ipGRESPZtzzNnuuePXukz/l8HiMjI/C6BgCU6/SLr+zD7BnF+j+2KO2qx+2A7lUfbx6aAcAPoGwTRkaKCAbLKmF8fBx79uyRvKR6EBvZnp4ejIyMIJlwAijb/f2H0hgZeatlGo3u9+Vd3QBmAQDciGFkJKrwVO7evdvSNu3AgQPS52QyCY/Hg5C/iHjKjcMTRYyM7NOddjYPJDNDAAB/dwYjI4eQTqel7/fu3du2spk/f76q8zQJEJ/Ph2RSGSNIJpPw+XyKY2+99RYefPBB/OQnP1GV7pVXXonLLrtMmTGOHpC9e/dizpw5qlUaS+Qvz5IlSzA0NIShIyvfe4KzMDSkP/30lHbpcgNLFs3Gvn17ccQRR2BkZASxWAyzZ8+WNizqJNQ8V/nKgMceeyyGhoYwe2ble19otqGyN5N212MzoXs1Rka2IObbj5kNrwcYHBzESy+9hEKhgP7+fvT09DROoAnZbBapVApAOc2hoSHMLgIOByAIQLrgw1CTl6rV/b60v/J53lEhDA2FcPTRRyvOaZZ+uxHLxu/3Y9GiRdi7dy9m9Lnw5igwmXRh7twh6NV+B2WTXGbN8GJoaEjxHLPZrKXLBtAoQObOnYtEIoHR0VEpDLNz505cdNFFivNefvllHDp0CCtXrgRQfgilUgkHDhzAv/7rv9ak293dzUVsNMPpdLbFmMmnjQ0MDMDpdKK/VwBQFiYTcQecTgO9kVjZ5RYJAS5X+f7EuKAgCIjH44o4YafR7LnWL/uKi3IiYazs20G76nE7oHvVx3i8XMf9XsDvK6cpXy8iGo0qputrQb7aZiQSmcp3OfwbjZdDMGruo9H9TiQqtrE/VH4/5UMAotGopeuEPDwl5rN/ap2UQhFIZhwIBfTZnKisbAZ6y2UYDofhcDggCILlywbQKED8fj+Gh4exceNGXH/99fjTn/6E3bt3Y3h4WHHeqaeeit/85jfS3z/96U8RjUbx+c9/nk2ubUyzgZCA8ZHR0pQ1WYememBSJwuQZtQfAOyA+BLTTBiiE5EPVBSptgnz5s3Tl3addwoo27Ro3Pg7VT3NtPo6Vh5oWb3qtUi4appyKFD9S3VUTzgAAJfLhb6+PkSjUUuXjYhmebRmzRocOnQIZ599Nu666y7cdtttCIVC2LJlizRmo7u7GwMDA9I/n88Hj8ejGCAzXZEPShK3Tma1dHE2JyA5FQKU7zFjt8VpeCHeu9/vh9frBaAspzESIESHIQhCzToaALtGvKEAmWoQJxJAsah/YLd8Gq/4rtrFnqVSKWmlVnmeWdn76p1wpc82WqpekwcEKDeaGzZsqDm+fPlyLF++vO5vPvWpT2nPWYciVgqfzyeNnVEu3CMA0OmSq1qETMRuy/Pyol5vhPWqjQRhJdJZIDs1LqyfswCR2xlRLAgCMJlU2jhN6dfp5ff09MDlcqFYLFranjUqG1Ye7+pl2KXPkQh2796NaDSKUqlk6TCMdXPWobRsBDlVyOrrTzcauUNrxR9BdA71QhiAeR6Q6jxoTr9O/uXrXVjZnplaNnU6nIIgYHJyUv8FTIAEiMm0bgQNpN2gQoqhHvn1pxvpdLquO5R2xCU6Gd6dkmZjQKRzjNi0Fvm3sj1rVDZhZh4Q5QJz9a5l5RAVQALEVNLpNDKZDICqCsnKA9IiJghY+4XlCe/eCEFYkVa9ZMAEAcLApjkcQK9ssKZ4rVgsJu0ubjXa5QGxk70nAWIijSpkd5cDwamlVHj2FqrzMJ1o2BthJP4IwoqMyTzwPDoljRvZyrVYNLLhHiimyMuvJZ8KbCXUeYcMDNDlHF4zAxIgJtKoQgKVCmRkJkYnKGJeNCp7T7cDAQbijyCsiN1DMKI9jFStk2YHm6bKAzLNx/yRADERNQJkPKZ/U7TqTafqXcvqFZIXTcuedsQlOhTe48J4hmCKRQET4k64VbNo7GDTuI+PmfqtywX0+CvH7VA2IiRATERNI5gvQFrLQ3P6DRSxfP0Vq1dIXqgSf7QjLtFhNOqUeDweaV8vFgLE5XIplgFXjnPQ905NJsvTeIHOEiBh2WZ9LASIuBNuvWtZtWxESICYSKN54QCbHkOj3o7b7ZaWWrZ6heSFGvGXywOpjJm5Igi+NOqUAGxmkshn9SkaQY72DLDH2kaNbI7XU14WH2ATgrGjOBMhAWIiahpBQL8qlo8f4WFs7IwaDwhAYRiis2jWiIvvwdjYmG7PnzjNs9k7NaZzKYpGgyyrr2dVm6bG3ustm3xBQGxqX9h+G5aNCAkQE+HdCMpjgtX7C8gFSKlU0ncBG6O67GkmDNFBqPGA5HI5addWLeTzecTjcUVaIoowg14PiIq8A9ZtZMV8eTyemh3jjYZ9ozYvGxESICbSrBHsl02RM+qyrI4Jyq9XKpUkozGdaBb+YrU3A0FYDbE+e7oBn0f5ndGGSr67dLU9c7sdUifIaIcKUNrH6utZtZFtFJ4CKjZHb9i3mWfLTgtPkgAxEfmqdFw8IA1igtXXs/rqeDxoXvYV40Ab0hGdhJpOCaCvoWrWoRKvKc+D5vRVhmCsas8ahacA4/a+Wdm43W6EQuWDJEAICZ4hGHlMsFoRA/YYtMWTpu5QWg2V6FDETkn1OAGArQCp9ioClQ3pxuNAqaQ9zKAIwdhsHZB0Oo10ujydsV7ZGA37KsNTtZuXite0YtnIIQFiImJl6O7uht/vV3ynXJxG+8sqzpcHWntArF4pedDMHUqDUIlOJJMVJPc+D5ug1gNSKgFx7UNMGk4hBoDe3l7pPbaiPWsWngKMd3qahWDk1xwfH7f00gIkQEyEZyPYzCUnXrM6H9OJepsAiih7I9Z9WQlCC80GKgLGvaItBYhRm9Yk/06nUxrrYEV71rpsjC1Vr9beF4tFxGLW7VWRADER1Y0gR0Usz8d0IZPJSKP8efRGCMKKjHG2CZoEiJ4wg4ZevtXgXjYNdsKtd00rlo8ICRCTyGazSCbLgzTqVUijm6K1ignapULyoKU7lEIwRAfC2yuqNgRTnRfV6ct+0xes/V685sTEBIrFovYLcMTMsrFzh5MEiEm0agR9Hoc0TU7P4jSdUiF5wLs3QhBWhHenhHeYQfTg9AbL03pr0p+6piAImJzUuaIXJ7SFpwwO0CUPCNGKVhUSUC5Oozl9GgPSkFZl7/M44O2eOpc8IESHwLtTYlYIpl7eq69pNZtmanjKxvaeBIhJqBIgBubNd0pMkAe8xR9BWBE7h2BKJaHpukbV17SaTTMrBONwAL2B2u+tXDZySICYRKs580DlRcvkgHRWm1tOHrap12Ow0+p4rOEt/gjCirTqlPh8Pni95V3R9CzmJf7G4XBIm13KUewHozHMEE+Vp+8CjT0gVl7bSIsHRM/ih+Jvwj2A02nfMX8kQExCSyMIaG8IW8UEu7u7EQwGa/IyHdDiAUlntYs/grAirUIwgLGZJOJvwuEwnM7apsTI4O5W3hvA2o1s67BveXl8wJgHpN4Cc9XXtFrZyCEBYhJqGsF+WSfCyAvbX9sZUVzXyhWSB2q8T/IXOUphGKIDaNUpAdgIEN4dKjs2sq3svcPhkO5La9i3WBSkhSftKM7kkAAxiWZ7kUjHDUzFbRUTlF/XyPbbdkRV2ctdotYaUE8QutDiRZAvHa6GYrGIiYkJRRo1aRsYaKnVA2K1/WDE/LjdbsnzXI3esK9i1WsbDtCVQwLEJNSFAfRPWxNf8EYxQaDS+y8UCkgkEnXP6US0hGAAGohKdAaiDelyA0Ff/XPk74N8qYBWiOIDaOxV7O5ySNc1FoKpb8+s3MiK+env769Z9VpEb9jX7uEpOSRATEJzI6jzhW2kiKuva+VKyRp142+MrVlAEFZDPoukYSOo0yaoeafEa8vzojr9JhvR1buu1exZq/AUoLT3WsK+akJrdhnzRwLEJDQPQtVQIdXEBKuva+VKyRrxXpu6Q2k1VKLDUNMp0TuTRLMAiUFT2NfOvfxcLid5mJuWjc4xMmoGF8uvbbXwlBwSICYhviAulws9PfVrjd7V8SaTgPhukwCppdkmgCIUgiE6iVxekHag5WETVAuQKVOXLwBJ9UNMmu6EK9LX11c3P+2m1arX0nc6Oz1qwlPya1t5R1wSICahuRHkqIjl+ZkOqHKHKnoj1nxZCUItURUhDMC8EAygTdirCcG43W5p/REr2TP1ZSML+zIOwcivnc/npX3IrAYJEJPQ2ghqWZxGjbuy+tpWemF5ks/nEY+X31gevRGCsCK8bYJWD0h1nlqhWFhRRf6tZM94l00ndThJgJhAPp9HLFauNVxcchoVMWDdCskaXe5QCsEQNoe3TdDlAdFp08IqGtnx8XGUxKVT2wz3slERnqq+tlXtPQkQE5BPWWtWIf1eoLur/FmTS06hiFvHBAHrVkjW8O6NEIQV4W0TuIcZpvIf9JWn8zZMf+rapVJJ8nS2G33hKQ0DdDuow0kCxATUrMQJlKfK6VmcRh6usXuFZI1aYxDwlddLAMgDQtgfPSEYLbMl1CzuB1SFlTUs8NdqIzoRK+4Ho6fTo6VsWu37Ve/aVimbakiAmIDaCgnomzdPY0Aao7bsHQ6HYsogQdgZS4ZgVNo0QRAqU4hbCBAr2jQzB+iqCU9V58lKkAAxAT0CJJkGsjl1bjlFTLBJhZyOO+JqKnvaEZfoENTahEAggK6uctxXrwCRT4etRs/SAsl0edou0DzvgDUbWf5jQMr/9wUBl8veIXcSICag1l0J6NsUTbFxU4ON6IDy9ts+n68mT52M/D6bhb+AStkl0uV1FAjCrqj1ijocDl0zScRze3t74Xa7G56nZ2yVWnsG6A8h8UStvQ/qDPuqDU+RACEA6POAAOorpdppWUClEbZqhWSNHg8IQF4Qwt6o2U1WxIgAUSvqq/PUNG0N9syKjaymMX8aw76lkiB1TO04PqYaEiAmwLsRlL/YffVXGq+5vpVXx2MJb/FHEFZErQcEqLwXiUQCuVyuZdqlUkma3t7qnQrrsWc68g5Yp5GVr3odCjW/Aa1h31gSEGcb21GcVUMCxAS0NYLaN0UTz+sNAm5345ig/PrZbFbT9tt2hTwgxHREFNAuFxAKND9X3lNWsyNuLBaT1txo9U75PA74PFN50tGhajaFuPr6VmlkxXyEw+GGq16LiAJLbdhX7eBi8frVebIaJEBMwKwQTCtFXH19q1ZKlvAWfwRhRcSpmuFg451wRbTaBC3vFKB9Zl+neEBUlY3MZqsZ86clPGWHMX8kQEyAZy+8VBJUD0qqvr5VXlieiPfodDpbu0MpBEN0CDxtgmYBojHMYGcBUigUMDlZVn9axBmgrny0lI08D1Yom3qQADEB8eE7HA5p86RGaJ22Fk+pjwkC1ntheSN3hzqdzas7hWCITqBQEDBZ3g3eGgJkKg+ZHJDOqgkzqJtCDFgvzKB21WvpHI2dHmUIprlnS54HK5RNPUiAmIDeRlDNhnR6FbE8X52MJneojjULCMJqTCQqn3l0SvR6QAB1wl7tRnQA0N3djWAwWJOvdqG9bLSFfbWEYOR5yGQylhzzRwLEBPQ3girS1jAoqToPVnhheVIsFqUeCY/eCEFYEd42Qa8HBOBr06xgz7iXTYd1OEmAcIZ3I6h2XwDpHItXSJZododSCIboAPT2kgF1gxW1LKwIKG2aVq9us6XGq/NghaUFjAgQNWUzpnIn3Hp5sKK9JwHCmcnJSemlaLVoDwD0+MtT5wA9vQX1MUHAmhWSJbx7IwRhRZS9ZPY2wawwg89TnsbbCtGu5vN5JJPJ1hfgiLHwlIrxMQbEpRXtPQkQzmitkFp3xO00lxxLtJZ9KCATfxSCIWyKpUMwGgZaqsl7dR7abdPMKhug9TL11Xlod9nUgwQIZ7RWSKCydLKqCikTIK2WXK7OgxUrJEvULoksolX8EYQV4d1LNmucgxp7Vp2Hdts0rWXTr7NsAG3hqeq8WQUSIJzRGi8FKi9sLAnkC83dcoopaypeWHlDbNXFaVhhpOzVxGMJworIXflqesmhUAiuKdcfDwGibGSb27N0VkBmajV4PR6Qdts0LZtfAvrFWY8f6Gqx6jVAAmTao8cDIq+U8il1ddPX2Nvx+XzweDw1eetEdJX9VBmqEX8EYUWUS5m3Pt/hcEjraWgRID09Pejq6mp5vpYwg1Z7BlirkeUd9tUanrL6hnQkQDhjpBEEWqtirWNA9G6/bUd4iz+CsCJa1tEQ0bJLtpZlBQC+9qw6H+22aXrG/IWnNhBtVTaCIGjadqM6D+0um3qQAOGM0Uaw5QsrU81qYoLyfFixQrKEd9kThBXROggVqLwfk5OTKBQKDc8TBEG7ANFpz+zYyGpZ9VpE7V45iTRQKCp/0zJtC4Wn6kEChDP6GkHZtDWVLsugD+juah0TlOcjlUohk8mo+o0d4e19IggrItZbhwPobbETroj8/ZCvn1NNIpGQBIrad8rvBbqnIjWaQjAqphBX58MqAqSvr08aV9MKUUxMJsrL6DdM2+beoXqQAOEM9xCMxphgdT7UbL9tV3iLP4KwIqLN6AsCLhfbRlzPO6VldpndG1mt3iFAae+bhX31jI/x+/3o7u5W5M1KkADhDM8wgCImqFOAWLFSskJ+b319fap+Qx4Qwu4Y7ZSwFiDyvLT0gNg4BFMqlaQOnZ6yAZqXj57QmtXH/JEA4YyuRlCxPG9jl1wyDeSnwrVqX1bAOi8sb4y4QwESIIT9KJUEREUBwsEmGBUgyTSQzTW2aWOT2pYVAKyzI6581Wu9HpBmNkfpAVHn2ZLnxYq2ngQIZ8SH3tvbC7fbreo3qiukDkUMTD8Bor83QtNwCXsxmQTE7VAs5QGR2bQo416+z+eDz+eryZ/Z6Bdn6paqH9MRnpLnJZlMIpvNqv+hCWgWINFoFNdddx2WLl2KlStX4umnn6573p133omLLroIw8PD+NjHPobnnnvOcGbtiFgp1SxKI6LWJad1Izrp3GkgQHS7QykEQ9gYPWMoAPWzJfQs7ledl2aL/OkZ5wBom0bMC6PeIUBD2XTImD/NAmT9+vWYMWMGtm7dimuvvRZr1qxBLFZbasFgEHfffTeeeOIJXH755fjiF7/Y9o2CzKZUKhnvhZMHRBexWAylUgkAn7InCCuitwE30wOiOsygw6bZUoCoLhvZCrcdYu81CZBUKoVt27Zh9erV8Hq9WLZsGRYuXIjt27fXnHvNNddgzpw5cDqdOOecc+DxePDGG28wy7gdiMfjuhrB3gDgnHoyal/WfpVT1qrzYrUKyQqt+8BI58qm7tMsGMJu8O6U8A4ziPn3dJen76pOfyovmUwG6XRa/Q8ZordslDanyTTcDuxwqhuUMMUbb7yBYDCIgYEB6djixYvx+uuvN/3d/v37EYvFMGfOnLrf53I55HI5Zcbcbmn6EEtEQSD+z5PDhw9Ln8PhsKZrhoNld9x4rHFeR2UhmL4eAaWSsvI2ulf5oK3R0VFTyoI31feqt+x7fOX1EwShHOKyatmYWY/bDd2rekarwrJq05EPkB8bG2v4O3kIRst7JV8kcTRWsVXV9ytf6VMQBGlQZ8v0ZTbt8OHDmD17tqrfsWR0dFSRn+qyafRs+4KVz81sjjzk3hestfeNaIe9dzrV+TY0CZB0Oo1AQLmyTSAQQCLRePJyoVDA2rVr8bGPfQzBYLDuOZs3b8amTZsUx1atWoVLL71US/Y0sXfvXm5pi+zYsUP63NXVhZGREdW/7fEdibFYF0YnixgZ2Vf3nNffCAEoV65i5i2MjNRX/tX3Ku8h7Nu3T1O+rI54r6+++qp0zOVyabrHXv9sTCRdeGs8j5GR/czzyBIz6rFVoHttza49QQBlj18pN4qREXVhb3l4fP/+/Q3flzfffFP6nEqlVL9XpawfwAwAwOsj4xgZUboXxfsdm5wDwIkebw4jIwdUpQ1A0Vl96aWXUCwWVf+WFfKOeKFQaFg2NfY47gZwVPm7g0mMjIzW+RVw4PAggLJbKD4+gpyOrSJ27txpir2fP3++qvM0CRCfz1czjiOZTEojkKsRBAFr165FOBzGNddc0zDdK6+8EpdddpkyYxw9IHv37pXCQzx57bXXpM9DQ0MYGhpS/dvBCLDnEBBLuTB79hDqzSIVZMeWLDwC1ck3ule5Sy6bzWrKl1Wpvlf5jKP58+druseBPmAiCcTSXZYtGzPrcbuhe9WAzKIvnj+AoaGBxufKmDNnDhwOBwRBQDqdbljv5Ssnv/3tb4fXqy5OcnTFIQnBHcHQUNkGye83X3AiNTVJY7C/W9O7N3fuXOmz1+tty3sr9ywcc8wxNXlo9Gx7Kg4KZIsBDA3VX742NRUk8HuBoxerv79FixZJn51Op6VsmiYBMnfuXCQSCYyOjkphmJ07d+Kiiy6qe/4dd9yBw4cP41//9V+bvkzd3d1cxEYznE4nd2MmX9K4v79f0/UioXJlFgQgnnbUXZY4Gq9U+IFeB5zO+uNAqu81FArB7XajUChgfHy8o4y6eK+Gy/7N8qqEguBQvZpkOzCjHlsFutfWqLUJ9a4XDocxPj7e1CaIYwj8fj/8fr/qfA30CgCEqTzWuuidTicmkw7pnEhIvRsfUI7zmpiYaEs9kc8wGRgYaJiH6mcb7hHgcAgQhPplIzI+9WwjPdrKRj5kIhqNWuod0pQTv9+P4eFhbNy4EZlMBtu2bcPu3bsxPDxcc+7GjRvx/PPP49vf/rbp4sIq6B2UBKibjaF3UJLVV8djAYuyF4TyugoEYRf02gRA3UwSPbP6qvPC2p5V56ddNk2vzXG5HNI4kEZlIwiCrhVuq/NitQ3pNEuhNWvW4NChQzj77LNx11134bbbbkMoFMKWLVsUYzY2bdqEPXv2YPny5Tj99NNx+umnY8uWLUwzb3W4CxDZcbU74VbnhwRILbQWCGFX9E5jBSrvSTQarTtQUc9OuPXy0mh2md4pxNX5sYIAkQ/8VEOrperTWSCbU56rOm0LlE0jNIVggHLBbtiwoeb48uXLsXz5cunvZ555xljOOgBmjWCLF9bnAXwebWECMT/xeBz5fB5dXV2afm91eIs/grAiik5J/TH/DRHfE0EQMDk5WdOIptNpaSVNre9Ujx9wuYBiUV2HSu1OuNL5FmhkxeuKIW4tRHqA3SiHYEoloSZ0Zndx1gjrBIM6EGONYKUCyqdfKdLX6ZKrzo/VVsdjATMBQmuBEDZCrK+hAOB2s23EjbxTanbE1bvUeHV+2i1AtJYN0DrsayQ81dPTI+2FRQJkGsG7EZTPmdeKFV5Ynhhyh8o2eiIPCGEneNoEI/YMaB1msHMv30h4CmjtdTVSNlYe80cChCPGGkFZOnUqZCojIKMzJgi0/4XljXhPPT09msNLFIIh7IiRgYpA68GKeveBkX4zZdNiSSBfqF1ES74KqN08IPF4XFp7xEjZAPU93op9vzSGp+R5spqtJwHCEXkjqHUmkLIRrPOyGlDEQPtfWN4w641QCIawCfFUeYwFwKdTwsoDAtTfEdeITfP7/fB4POV02mDPWJZNPZtjJAQjz1MsFkM+n9eeACdIgHDESCPYr6FCyvcSUEsnCxC5O1TLPjAi/S3EH0FYEd6dEqaNbIswg1ab1u4wg9Gy6W+xV45y3y/NySvyJF8jqd2QAOGEIAiSy9JqMUFA2TBbbW64UeLxOAqFAgDjZd9se2yCsBJGGnBAmwAxLuxrv2fVy2+HPZNfU0/ZtLb3+sNTgHU7nCRAOJFIJAw1gvINiup6QAxMWavOk5UqJAsM99RoHRDChigacIOdEj4eEFkvv4lNc7uAYP3dPZqnP5WnVCqlWDLeDKwegmn1bNsFCRBOGK2QrVbHY9VbAKxVIVlgtOxbiT+CsCKsBioCnARIC2EvzeAJlUMqmtNv49ICbMtm+oz5IwHCCaMVEpBNW+MQgrFqhWSB0bJ3ux3obbE0MkFYDd6dEu5jQMQZPDrsWXWezLZpVveAWNXekwDhBFMBMrU6niL9Do0JsoBJ2bdYNIkgrIbRTklfX18lLd4CJK60Z/lCeXpu9Xma0u8UAdKkw+npLq98rTl9i+4HQwKEEywbwVKpPMVOkb5BRRwKhaRdEUmA1NJM/BGEFTHaKXG73ejtLY9ebSZAPB4PfD7tgzSahWAmErLzpqEAkS+b3zQ81WM8PGUle08ChBMsG0GgtlIa7e2I228D1qqQLOAt/gjCihjtlADNF6ySLyugqxFsEmYwas/EfEnp2UyAuN0OhAJTaTUJwdhRnDWDBAgnWDaCQIsXloOxsTO8xR9BWBGWjfj4+DgEoSrsa2BdI6BFh4qheALaK0C0rnot0ijsm8kKSGWU52hOmwTI9IJ1I1i9PK/4wnZ3AX6vruSlfE1MTEjLCHcCzAUIzYQhbIC8noYNNlTFYhHxeCXBTCaDVCqlOEcrvQFAdJxUN7JGZ/BU56tdAiQQCEgrsmpFHvaVi7+ozcVZM0iAcIJNI9h43rz4wuqNCVbny0qr4xmFufeJPCCEDRDracAHeLqN2wT5YEUW75TT6ZCEUfUCf0bXMKnOV7sEiN6yASriolisDMgFjO0SLNLb2yu1EyRApgG8G0GjMUHAuqrYKEzcoS2WRiYIq2FkJ1yRRjaBhT0DGocZogxDyoC59szoTrgijew9i9CaVcf8kQDhBM9xCIqYIAmQGsR78fv98Hr1xacoBEPYCaM74YpwFyBTeZtIAMViJczAYgxIu1b7TKVSyOXKW5OzKBtAWR7Kfb/0ebYAa475IwHCCRaNoHJDuvoxQT0bE0m/tejyvEYxshGdSKt9KwjCSqQyQG5qk1MjNkGNAGH1Xsmn3hrdbA0AgsEg3G53OT0T7RmPsmHtAQGsOeaPBAgnjGxEJ9LIA8KitwBYd3EaIxjdBFBEuSEdrQNCWBsWs+KAxp0S1h4QgL1Nk++Ia6Y9k1/LWNnUD/uyfraCIGBycrLF2eZAAoQDzGKCJilioHM8IMzcoTQIlbARY5xtAhcBIg8zMM5/uzwgfEIwxhaYk35rQXtPAoQD6XQa2WwWgLEKGW6wDojRnXCl31qwQhqFd0+NIKwIq16yWYNQAWWexbCy0wlpQS5d6U/lLR6PI5/P609IA7zLppM7nCRAOMCqQna5HejxT6XJOQRjlQppFFZl30j8EYQVUdoE9p0SdsK+eZgh3FOerqs7/TbsiMun08N2gC5gTXtPAoQDrCokoFycRkq/gxWxUViVfXeXA8Gp7S7IA0JYHd42gX+YYep7A3kH2mPTTA1PddiYPxIgHGAqQGTz5sXV8To5JmgU3uKPIKwIq0ZKvm6OWSGYYqkyI8ZI3gGbC5AWIRi3C1KnSFf6FrT3JEA4wKMRzBeAZHoqfUa9nVbbb9sRLgIkhpp9MQjCSrDqlHR3dyMYLG/NWk+AuN1u6Xs91AszxFNOiK/XdPaANBzzJ1vfRe+q1wAJkGkDj0YQqFREVr0dl8sliRCrVEijyOO+rLxPcvFHEFaEVacEqD+TxOhOuFLadezZRNJZ93td6dtYgHi6HQjUCfuyWOEWIAEybeARggEq+7+w2BtA+r0FV8czAm/xRxBWhFWnBKi8N2NjY5Lnj8XaOkB9ezaRIAEi/b5qr5xcXkA8NfWdDcumFSRAOGCWB8TlgjRLRnf6U/mLRqMolUrGErMAvMQfDUQlrAyrmRJA5b3J5/NIJpPI5XJIJBKK7/TSJ4veSB4QuQCxYS9fvI7X64XPZ2CQBmrDvix2wpV+TwJkesBqaV4AiPTUTluTjxg34g4FKpWyVCohFrN/K8tN/Nm/aIgORqyf3m7A52FjE4Dy+8QyrOl2O9A7JULEPE8kXZX0DUwhBtqzvQSLRSdFqsO+LJaoF7HimD8SIBxg2Qj298rSjSn/N1ohgc7bD0ZuLI2Kv375mgUUgiEsjFg/5fZCL9UChGWHCqjYLTHPk7IxIEZtWjs9IEzKRm7v42w9W263G7295QtYxdaTAOEAq70BgKowQBzIF9jFBAFrzg03gngPLN2hQCVeTRBWhNVARaC2U8KyQwVU3qtoHCiV+I0BMcOepdNppNPpmmvrpTrsqxxcbMw7BFSeLQmQDkZ8uB6Ph2kjOB5jGxMErBkXNAJTdygNQiVsQDorIF3e+YGLTWAuQKYa2VIJiCWVHhCj+Q+FQnA6y+mZYc94iTOgjgBh+GzHx8ctMeaPBAgHWE1ZA1pUSAa9HRIgjVH2RmgdEMKa8LYJXBvZeNU0XIP5dzqd0mJq9hQgyrAvyxAMoBzzF4+3v1dFAoQD3BrBOD9FDNhfgGQyGbbuUBqEStgA3jaBlwcEKOed5ToggLlLC/AuG3nHpxM7nCRAGJPJZJBKlQdpsKiQ4eoKyWjTKSkNi1VII0xOVgZqUAiGmC7w6iUD5nhAJhOVWTB9+hdZraQ/lceJiQkUi0XjCTbBriEYwBpj/kiAMIbllDUA8Hoc8HvLnykE05yJiQnpMw/xRxBWhPVARf4CRLm0gOgB6QsCLhfb/MttAg/4ijOBu7hsNyRAGMO6QgIVoUEhmOaw9oD4PA74POXPJEAIq2LnEEw0XhmEyiLvgLk2jX8Ipv53utO3mL0nAcIYLgJEtjoeq02npDQsViGNwNoDAsjKnkIwhEVh3Uuu3hGXZy9/dLIyDZcESJ0QzNSzdTqBUMBw8paz9yRAGMNTgGRywL7DsuMMFHGj7bftCBcBInqfyANCWBTWAxV9Pp+0fMDY2Jg0VsDpdCIUMq4S5I3snoNASSiHXVjkHegcATIWq6w/FO4BnM7OG/NHAoQxPEMwALBzn+w4gx5DV1cXenrKF7BChTQC6xAMoBR/6SxNxSWsB+sQDKCcSSLahXA4LK2xYShtmT3bxdieAfYWID6PA97uqbRlHhA7ijM1kABhDE8PCMD3hbVChTQCTw8IQF4QwpqwDsEA9QUIF3v2puy4DRtZnvb+rQlgMqE8ZjhtEiCdDet9EwDl/ggHp5J3OoFeBjFBQGlsxO237YhcgDAr+zp78RCElWA9UBGo2IRMJiN5Flk1sPLZZQdlbSCLfWwAc/e3EtPv6upCIMDGIIv2/q1o7TGjkADpcFjuAyOlU2e9D1YxQaDywhYKBUusjqcX3h6QMRIghAURPSDdXUDA2M4PEvUEPCtR393lQI+/9jiLKcSAuWtdiOn39/cbXvVapJ63gzwghCp4h2CkY4x6OoD1KqVe+MyCUa5ZQBBWQxyoGOkBu0awzvvD6p0COqeRZR2eAurbdlb23mpj/kiAMIb3IFTpGKOXFegcASK6ilm6Q2k1VMLqSAMVOdmEZsd0p8/Rppllz7LZLJLJZM01jVJfnLERloC1xvyRAGGM+FDdbjeCQQbrCoM8IGoRPSAsNgEUoUGohJXJ5gQky9sf2UuAcLRpfX190mee9oz1qtdSWhy9Q4C1xvyRAGEMy51wRcyqkIC9BQjrwXJA9cJA9h2gS3QmUfkMGE6dkmbHdKfP0aa5XC5JhPC0Zzy83UD9sTA8nm0+n5c8OO2CBAhjTIsJkgBRkMvluLtDKQRDWA0eU3ABe4dgAHPCDNwEiIkdznZvSEcChCH5fF6aRWIXdyXQGQKEmzuUQjCEheExBRdojwckzCH/0WgUpVKJXcIyOkGAtNvekwBhCK9G0OcBPN3KYzwGJQHtr5B6McMYkAAhrIZyFVQ+NqHZMd3pV4UZevxAl5t9/kulEmIxPi8uvxCMumO607eQvScBwhBeFdLhcNRUwE5VxHrhVfZ+b3l9BYBCMIT1sG0IpiqvLBtYwBybRh4Q45AAYQivCgnwfWGtVCH1Yob4Iw8IYTU6JQTDsoEFOk+A9LGZUFlO30L2ngQIQ7gKEI4ekE7YEdcM8UceEMJqKHbCZWgT/H4/uruVcV/59Faj1Ngz8oBU0qoqi74g4HJ1ZsidBAhDeOwDI8Kzx+D1euH3l9dGbneF1Auv8TdApayT6fK6CwRhFXiFYBwOh+I96uvrg8vlYpZ+dV7DjD0gZuwHw0uABHxAl7vyN6s9ckRIgHQoPHvh1ZsRsdqcSEpv6oVtd4XUC0/xJy/rKHlBCAshD8HwsgnVn5mkzdmeme0BYVk+DodDUR529A6phQQIQ3hsRCelV/WCsowJApX8jo2NtX11PD2YVfa0IR1hJeT1kec4CtbvVPWUW55557XWhZiuy+WS9ldhhbw8WJeNmbsFt4IECEP4jkOoxABZxwSBSn5zuRxSqRTTtM3ArPE3NBCVsBJifXS5UHeHWSPwFCBejwN+r+xaNuzl81j1WoSnALHSmD/NAiQajeK6667D0qVLsXLlSjz99NN1z8tkMrjpppswPDyM97///Xj44YcNZ9bqmNUIsq6QgLXccnowS/yRACGshFgfWe6EK8JTgABKm8Z6DIjZAoQ1CnvPWJxZacyfZgGyfv16zJgxA1u3bsW1116LNWvW1F3oZePGjZicnMRDDz2EdevW4fbbb8fIyAiTTFsVs6bhkgCpRRyE6nK5EAqxLSBajp2wKjx2whXhLkBsPM4hn89L7R73suH4bNtt692tT6mQSqWwbds2/Pa3v4XX68WyZctw7733Yvv27Tj//PMV5z700EP49re/jWAwiBNOOAHDw8P4/e9/j09+8pNMb0ALDz30EF544QVEo1GEw2HmPYZXXnkFAOB0Ork2gqxfVkD5En3/+9/H/Pnz2V+EI3v27AEALs9VXt6/2i7grWjjc81CEIDoRAjhPsDhsN+YHS3QvTY+Nza1lxhvm2C3RlYeZnjppZewfv16pumn02npM38PCFt7BpTzvG/fPmnMH2ubqRZNAuSNN95AMBjEwMCAdGzx4sV4/fXXFefFYjGMjY1h0aJF0rGjjz4aO3bsqJtuLpdDLpdTZsztrpmHbpT7778fP/7xj5mmWQ+x8rPcg0A+6DTcoy5t8Rw158pf2I0bN2rPoEWIRCLM936Ql/1//QH4rz9YpREUn5lV8sMTutemv1BpE7QgX/cjHA4zT18+ELUvUALL5MWBofF4HHv27MGaNWvYJV6F2rLRZI/lZdMjoFRiW+9F0ZTNZpFMJqWQDCucTnXBFU0CJJ1OIxAIKI4FAgEkEgnFsVQqBZfLBa/Xqziv0eDGzZs3Y9OmTYpjq1atwqWXXqoley2pzicv3vOe9zAPNwUcwGDfUTg04caJ88YwMqL+Xvbu3dvynLe97W1GsmcZ3vWudzEv+8GAAyH/UYil2K2DQBAseeeCcYyMsI0PLlmyBE6nE4IgYMmSJczfq3fOD+L/be/Hkf0FePEmWEfoly5dasrYwxNPPFFT2aixx8cd1Q1gFrpcAhYNvImRkaKBHNbi8Xikzy+88AJmzZrFNH21HnSHoGHO5auvvorPfvaz+O///m/p2B133AGv14trr71WOhaLxXDWWWfhf//3fyUR8tOf/hQ7duzAbbfdVpOuWR6Q5557DiMjIxgdHcXAwAAXt1MwGMQZZ5yBrq4u5mlPxIGRQ8A7FgJqsl4qlbB3717MmTNHlSLdvXs3XnzxRQY5NR9BEJDL5bBy5UouZT86ATz5UtntbQUEoSSrx509mY3utTlHDgCnHKPOJmhlZGQEpVKJS0hWEIDn/lZCd2kfjlsyW3WvWS35fB5PPPEEkskk03TlDA0N4aSTTlJ1rlZ7vGsf4O0GZh9hNJe1bN++HYcPH0YkEsE//uM/wufzMU2fiwdk7ty5SCQS0gsCADt37sRFF12kOC8UCqG/vx+7du3C8ccfDwD429/+hgULFtRNt7u7m7nYqMfJJ5+Md77znRgZGcHQ0BDzCs+bSG/5n1acTqeqe128eDEWL16sI2ftp1QqYWRkBF1dXVye6xER4IPDzJPVTakEjIykMTSk7tnaGbrX9sF7LNg/LAFGRgTVNkoLHo8H73vf+5imyQK193r0XH55WLZsGb/ENaDpifv9fgwPD2Pjxo3IZDLYtm0bdu/ejeHhWsu8YsUK3HPPPUgmk3jxxRexfft2nHvuucwyThAEQRCEfdEsOdesWYNDhw7h7LPPxl133YXbbrsNoVAIW7ZsUYzZ+NSnPoVgMIjzzjsPa9aswZo1azBv3jyWeScIgiAIwqZoCsEA5RG/GzZsqDm+fPlyLF++XPrb6/Xi1ltvNZY7giAIgiA6kvYHGQmCIAiCmHaQACEIgiAIwnRIgBAEQRAEYTokQAiCIAiCMB0SIARBEARBmA4JEIIgCIIgTIcECEEQBEEQpkMChCAIgiAI0yEBQhAEQRCE6ZAAIQiCIAjCdEiAEARBEARhOg5BEIR2Z4IgCIIgiOkFeUAIgiAIgjAdEiAEQRAEQZgOCRCCIAiCIEyHBAhBEARBEKZDAoQgCIIgCNMhAUIQBEEQhOmQACEIgiAIwnRIgBAEQRAEYTokQAiCIAiCMB0SIARBEARBmE5HCpBoNIrrrrsOS5cuxcqVK/H000/XPS+TyeCmm27C8PAw3v/+9+Phhx82OafGyeVyuOWWW7BixQqcccYZuOaaa7Br1666565duxbvec97cPrpp+P000/HpZdeanJujXPNNdfg1FNPle7h2muvrXteJzxb8R7FfyeffDK2bt1a91y7PduNGzdi1apVOOWUU/DII48ovvvRj36Ec845B2eddRbuuusuNNst4re//a1U92+55Rbk83neWddFo/v97W9/i4985CMYHh7GRRddhAceeKBhGs888wxOOeUURZ34y1/+Ykb2NdHsXt/97ncr8n/w4MGG6djh2Ta613Xr1inu893vfjc+//nP103DLs+VC0IH8uUvf1n4+te/LqTTaeHxxx8XzjzzTGFycrLmvO9+97vCZz/7WSEejwt//etfhTPOOEPYs2dPG3Ksn1QqJWzatEk4ePCgUCgUhJ/85CfChRdeWPfcm2++Wdi8ebO5GWTMJz/5SeHhhx9ueV4nPFs5f/vb34RTTz1VSCQSdb+327P93e9+J/zxj38ULr/8csXz/J//+R/h/e9/v7B3717h8OHDwiWXXCL8+te/rpvGzp07hTPPPFPYsWOHEI/HhWuuuUb4/ve/b9YtaKLR/T7wwAPCCy+8IOTzeWHXrl3CueeeKzz77LN10/jzn/8srFy50qws66bRvT744IPCZz7zGVVp2OXZNrrXaj7ykY8I/+///b+639nlufKg4zwgqVQK27Ztw+rVq+H1erFs2TIsXLgQ27dvrzn3oYcewjXXXINgMIgTTjgBw8PD+P3vf9+GXOvH5/Ph6quvxuDgIFwuFz70oQ9h//79mJiYaHfW2konPFs5W7ZswRlnnIFAINDurDBhxYoV+Md//Ed0d3crjj/00EO45JJLMHv2bAwMDOCjH/0otmzZUjeNhx9+GOeeey7e9ra3IRgM4uqrr254brtpdL8XX3wx3v72t8PtdmPhwoV417vehZdffrlNuWRDo3vVgl2erZp7/fvf/46///3vOOecc0zMmT3oOAHyxhtvIBgMYmBgQDq2ePFivP7664rzYrEYxsbGsGjRIunY0UcfXXOe3XjhhRcQiUTQ19dX9/uf/OQnOPvss3HVVVfhueeeMzdzjPjmN7+Jc845B//8z/+MnTt31nzfac9WEAQ88sgjWL58edPzOuHZ/v3vf1f93F5//XXFuYsXL8abb76JTCbDPZ88KBaL2LFjBxYsWNDwnAMHDuDcc8/FBz/4QWzatAnFYtHEHBrn+eefx9lnn41Vq1Y1DTd10rPdsmULTjvtNASDwYbn2P256sXd7gywJp1O1/QSA4EAEomE4lgqlYLL5YLX61Wcl0qlTMknDxKJBNatW4d//ud/rvv9hz/8YXzhC1+Az+fDo48+is9//vO47777MHPmTJNzqp9rr70WCxYsgNPpxH333YfrrrsODzzwAPx+v3ROpz3b5557DplMBu95z3santMJzxYoPzu5oW723KrfdfF36XRa8eztwve//33MmDGj4XOeN28efvazn2Hu3LnYs2cP1qxZA7/fj8suu8zknOrjne98J37xi19g5syZePnll/HFL34R/f39OPPMM2vO7aRn+8gjj+Bzn/tcw+/t/lyN0HEeEJ/Ph2QyqTiWTCbh8/kUx/x+P4rFokJRJ5NJRUNmJ7LZLK6//nqcdtppuOiii+qec8wxxyAUCqGrqwvLly/HO97xDvzpT38yOafGOP744+H3++H1enH55ZfD5/Nhx44dinM67dmK7mi3u3F/oROeLVB+dvLOQrPnVv2ui7+rftftwAMPPIDHHnsMd9xxBxwOR91zBgYGMG/ePDidTixYsACf+MQn8MQTT5ibUQMcddRROPLII+F0OnH88cfjwx/+MB5//PG653bKs33++ecRi8WwdOnShufY/bkaoeMEyNy5c5FIJDA6Oiod27lzZ41bMxQKob+/XzFj5G9/+1tT96dVKRQKuPHGGzFjxoymSruaRobOTjidtVW4k55tPp/H1q1bcd5552n6nV2f7fz581U/twULFijO3blzJ4466ijb9ZB///vfY/Pmzbj77rsbhk7rUa/u24lmdbRTnu3DDz+Ms88+W9N4GLs/Vy103J36/X4MDw9j48aNyGQy2LZtG3bv3o3h4eGac1esWIF77rkHyWQSL774IrZv345zzz23Dbk2xje+8Q1ks1msXbu26Uu9detWpNNpFAoF/P73v8fzzz+PU045xcScGiMej+Opp55CLpdDPp/Hvffei1gshmOPPbbm3E55tk8++aQ0kLYZdnu2hUIB2WwWgiBIn0ulElasWIH//M//xJtvvonR0VHce++9Dce+nHfeeXj00Ufx6quvIpFI4Ic//GHLcTLtotH9PvXUU/jmN7+J7373uzjyyCObpvHMM89I01bfeOMN/Pu//ztOO+00M7KviUb3+oc//AHRaBQA8Oqrr+K+++7D6aefXjcNuzzbRvcqfvff//3fLTsPdnmuPHAIQpNJ9jYlGo3i5ptvxrPPPovBwUF8+ctfxrvf/W5s2bIFmzdvxv333w+gvFbErbfeim3btiEUCuGzn/2s5p5muzlw4AAuuOACeDwehXLesGEDDh48qLjfT3ziE9i1axccDgeGhobw6U9/Gu9617valXXNRKNRXHvttdizZw+6urpw9NFH43Of+xyOOeaYjny2APDlL38Zc+fOxac//WnF8er7tduzXbt2Lf7rv/5LcewHP/gBTj75ZGzevBk//elPUSqV8IEPfADXXnutJKxPP/10bNiwASeddBKA8loR//Zv/4ZkMomzzjoLN954o6HZF7xodL+bNm3CX//6V0Wely9fjhtvvBGA8n5/+tOf4t5770U8HkckEsGKFStw9dVXNw3NtYNG9/o///M/eOihh5DJZDBjxgxceuml+PCHPyydY8dn26we/+///i9uu+02/Pa3v63xatjxufKgIwUIQRAEQRDWpuNCMARBEARBWB8SIARBEARBmA4JEIIgCIIgTIcECEEQBEEQpkMChCAIgiAI0yEBQhAEQRCE6ZAAIQiCIAjCdEiAEATBhGeeeQYnn3wyTj75ZOzfv7/d2SEIwuKQACEIQjNr167FySefjGuuuUY6FgwGcfzxx+P444+33IqVBEFYj85f65UgCFM45phj8KMf/ajd2SAIwibQUuwEQWjiggsuwIEDB2qO/+AHP8Dq1asBAA8++CCOPPJIaa+MWbNm4VOf+hS+//3vI5FI4MILL8SnP/1pfO9738ODDz6Inp4eXHHFFbjkkkuk9A4fPox/+7d/wx//+EdMTExgcHAQF1xwAa644oppsU8GQXQ69BYTBKGJJUuWIJ1OY2JiAoFAAPPnzwdQ3uG0EaOjo7j99tsxMDCAZDKJn//853jqqafw1ltvIRgM4uDBg7jjjjvwD//wD5g/fz4mJiZwxRVX4NChQ9I1Xn/9dfzgBz/Am2++iZtvvtms2yUIghM0BoQgCE1861vfkrYLX7JkCX70ox/hRz/6EY455piGv8nn87j77rvxq1/9CoODgwCAvXv34uc//zkeeOABeDwelEolPPvsswCA+++/H4cOHUJ/fz9+/etf4+c//znWr18PAPiv//ov7N27l/NdEgTBG/KAEATBnVAohBNPPBEAMHPmTBw6dAgLFy7EkUceCQAIh8M4ePAgxsfHAQA7duwAAIyNjeHcc89VpCUIAl566SXMmTPHvBsgCII5JEAIguBOIBCQPrtcrppjDocDQFlcyP+Xh3jkeL1ebnklCMIcSIAQBKEZUQBkMhku6R933HH4wx/+AJfLhXXr1kmekmQyiccffxxnnnkml+sSBGEeJEAIgtDMvHnzAAAvv/wyPvShD8Hn8+GTn/wks/QvvfRS/OY3v8Fbb72Fiy++GPPnz0cymcShQ4dQKBRw/vnnM7sWQRDtgQahEgShmQsvvBBnnXUWgsEgdu/ejZdeegmlUolZ+uFwGJs3b8YFF1yA3t5e7N69G9lsFieddBK+8IUvMLsOQRDtg9YBIQiCIAjCdMgDQhAEQRCE6ZAAIQiCIAjCdEiAEARBEARhOiRACIIgCIIwHRIgBEEQBEGYDgkQgiAIgiBMhwQIQRAEQRCmQwKEIAiCIAjTIQFCEARBEITpkAAhCIIgCMJ0SIAQBEEQBGE6JEAIgiAIgjCd/x87bPeBZbDCSQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = generate_data_ex1(random_state=40)\n", + "series_train = TimeSeries.from_values(data, columns=[\"comp1\", \"comp2\"])\n", + "\n", + "# visualize the train set\n", + "series_train[:20].plot()\n", + "plt.title(\"Training set\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Test set" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We create the test set using the same rules as the train set but we'll inject six anomalies of three different types. The anomalies can be longer than one timestamp. The types are:\n", + "\n", + "- 1st type: replacing the value of one component (0 or 1) with 2\n", + "- 2nd type: adding +1 or -1 to both components\n", + "- 3rd type: both components have the same value" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# inject anomalies in the test timeseries\n", + "data = generate_data_ex1(random_state=3)\n", + "\n", + "# 2 anomalies per type\n", + "# type 1: random values for only one component\n", + "data[20:21, 0] = 2\n", + "data[30:32, 1] = 2\n", + "\n", + "# type 2: shift both components values (+/- 1 for both components)\n", + "data[45:47, :] += 1\n", + "data[60:64, :] -= 1\n", + "\n", + "# type 3: switch one value to the another\n", + "data[75:82, 0] = data[75:82, 1]\n", + "data[90:96, 1] = data[90:96, 0]\n", + "\n", + "series_test = TimeSeries.from_values(data, columns=[\"component 1\", \"component 2\"])\n", + "\n", + "# create the binary anomalies ground truth series\n", + "anomalies = ~((data == [0, 1]).all(axis=1) | (data == [1, 0]).all(axis=1))\n", + "anomalies = TimeSeries.from_times_and_values(\n", + " times=series_test.time_index, values=anomalies, columns=[\"is_anomaly\"]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the anomalies. From left to right, the first two anomalies correspond to the first type, the third and the fourth correspond to the second type, and the last two to the third type.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqUAAAJICAYAAABYAp1uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9UElEQVR4nOzdeZgjdZ0/8HflPruT9NxXz4GICKIouogMsIAyIIwXiI5yicBPdEEQZdlFBgUE0VVWEVlEPFZE3YX1QlBBEB3F4UYOuWaaua9Op5N00rnq90dNpatSVUlVUpXz/XoeHqar05U6v/Wpz/cSRFEUQURERETUQa5ObwAREREREYNSIiIiIuo4BqVERERE1HEMSomIiIio4xiUEhEREVHHMSglIiIioo5jUEpEREREHceglIiIiIg6jkEpEREREXUcg1KiASAIgqn/HnjggZa/a2pqCmvXrtVd1/e+9z0IgoCNGze2/D2dtG7dOqxduxYTExOd3hSNI488EkceeWT1524+H2eccQaWLl3a1N/efvvt+PrXv27r9hBRZ3k6vQFE5Ly//OUvqp+/+MUv4g9/+APuv/9+1fL999+/5e+amprClVdeCQCq4AgATjjhBPzlL3/B/PnzW/6eTlq3bh2uvPJKnHHGGYjFYp3enLq6+XxcfvnluOCCC5r629tvvx1///vfceGFF9q7UUTUMQxKiQbAP/3TP6l+nj17Nlwul2a502bPno3Zs2e39TvJWKfOx9TUFEKhEFasWNH27yai7sXqeyICABQKBVx11VXYb7/94Pf7MXv2bJx55pnYtWuX6nP3338/jjzySIyMjCAYDGLJkiV4//vfj6mpKWzcuLEa5Fx55ZXVZgFnnHEGAP3q4iOPPBIHHHAA1q9fj8MPPxyhUAjLly/Htddei0qlovruZ555Bu985zsRCoUwe/ZsnH/++fj1r39tqunBrl27cM4552Dx4sXV/TvssMPw+9//XvW53//+9zj66KMxNDSEUCiEww47DPfdd1/192vXrsUll1wCAFi2bJmppg9nnHEGIpEInn/+ebzrXe9COBzG/Pnzce211wIA/vrXv+Id73gHwuEw9t13X3z/+99X/f3atWshCIJmvY2q362ejwsvvBDhcBiTk5OadX3wgx/E3LlzUSwWAQA/+clP8M53vhPz589HMBjE6173Olx66aXIZrO6+/7000/jne98J6LRKI4++ujq72qr72+88UasXLkSc+bMQTgcxoEHHogvf/nL1e8FpGvm17/+NcbGxlTNT2Rmr2Ui6i7MlBIRKpUKVq9ejYceegif/exn8fa3vx1jY2O44oorcOSRR+KRRx5BMBjExo0bccIJJ+Dwww/Hd7/7XcRiMWzZsgX33HMPCoUC5s+fj3vuuQfHHXccPvaxj+Hss88GgIbZuO3bt2PNmjW4+OKLccUVV+Cuu+7Cv/7rv2LBggU47bTTAADbtm3DEUccgXA4jJtuuglz5szBj3/8Y3zyk580tY8f/ehH8dhjj+Hqq6/Gvvvui4mJCTz22GPYs2dP9TP//d//jdNOOw2rV6/G97//fXi9Xtx8881417vehXvvvRdHH300zj77bIyPj+Mb3/gG7rzzzmrVd6OmD8ViEe973/tw3nnn4ZJLLsHtt9+Of/3Xf8Xk5CT+93//F5/73OewaNEifOMb38AZZ5yBAw44AG9+85tN7ZsRq+fjrLPOwg033ICf/vSn1c8CwMTEBH7+85/j/PPPh9frBQC8+OKLOP7446uB7PPPP4/rrrsOf/vb3zTNQgqFAk466SSce+65uPTSS1EqlQy3+eWXX8aHP/xhLFu2DD6fD08++SSuvvpqPP/88/jud78LAPjWt76Fc845By+//DLuuusu1d+bvZaJqAuJRDRwTj/9dDEcDld//vGPfywCEP/3f/9X9bn169eLAMRvfetboiiK4v/8z/+IAMQnnnjCcN27du0SAYhXXHGF5ne33XabCEDcsGFDddkRRxwhAhAffvhh1Wf3339/8V3velf150suuUQUBEF85plnVJ9717veJQIQ//CHP9Td50gkIl544YWGv89ms2IikRBPPPFE1fJyuSwedNBB4lvf+tbqsuuvv16zH/WcfvrpmuNbLBbF2bNniwDExx57rLp8z549otvtFi+66KLqsiuuuELUK66NjucRRxxR/dnq+Tj44IPFt7/97arPfetb3xIBiE8//bTu/lUqFbFYLIoPPvigCEB88sknNfv+3e9+V/e4jI6O6q5TFKVjXywWxR/84Aei2+0Wx8fHq7874YQTdP/W7LVMRN2H1fdEhF/96leIxWI48cQTUSqVqv+98Y1vxLx586pV02984xvh8/lwzjnn4Pvf/z5eeeUVW75/3rx5eOtb36pa9oY3vAFjY2PVnx988EEccMABmozkhz70IVPf8da3vhXf+973cNVVV+Gvf/2rqjoYkDovjY+P4/TTT1cdg0qlguOOOw7r16/XVE1bIQgCjj/++OrPHo8H++yzD+bPn483velN1eWJRAJz5sxR7Xs7nXnmmVi3bh3+8Y9/VJfddtttOOSQQ3DAAQdUl73yyiv48Ic/jHnz5sHtdsPr9eKII44AADz33HOa9b7//e839f2PP/44TjrpJIyMjFTXe9ppp6FcLuOFF15o+Pdmr2Ui6j4MSokIO3bswMTEBHw+H7xer+q/7du3Y/fu3QCAFStW4Pe//z3mzJmD888/HytWrMCKFStwww03tPT9IyMjmmV+vx+5XK768549ezB37lzN5/SW6fnJT36C008/Hd/5zndw6KGHIpFI4LTTTsP27dsBSMcAAD7wgQ9ojsF1110HURQxPj7ezO4BAEKhEAKBgGqZz+dDIpHQfNbn8yGfzzf9Xa1Ys2YN/H4/vve97wEAnn32Waxfvx5nnnlm9TOZTAaHH344Hn74YVx11VV44IEHsH79etx5550AoDpvgLTvQ0NDDb/71VdfxeGHH44tW7bghhtuwEMPPYT169fjxhtv1F2vHrPXMhF1H7YpJSLMmjULIyMjuOeee3R/H41Gq/8+/PDDcfjhh6NcLuORRx7BN77xDVx44YWYO3cuTj31VMe2cWRkpBo4KslBZSOzZs3C17/+dXz961/Hq6++il/84he49NJLsXPnTtxzzz2YNWsWAOAb3/iG4agEZgNgu8nB7PT0NPx+f3W5EwFWPB7H6tWr8YMf/ABXXXUVbrvtNgQCAVVG+v7778fWrVvxwAMPVLOjAAzHbdXrpKXn//7v/5DNZnHnnXdidHS0uvyJJ54wvf1WrmUi6i4MSokI7373u3HHHXegXC7jbW97m6m/cbvdeNvb3ob99tsPP/rRj/DYY4/h1FNPrQZNZrJaVhxxxBH4yle+gmeffVZVhX/HHXdYXteSJUvwyU9+Evfddx/+/Oc/AwAOO+wwxGIxPPvssw07Tzm1j0bkHupPPfUUDjnkkOryX/7ylw3/tpltPfPMM/HTn/4Ud999N/77v/8b733ve1XjscpBpjJABoCbb77Z9Hfo0VuvKIq45ZZbNJ+tzaTLmrmWiag7MCglIpx66qn40Y9+hOOPPx4XXHAB3vrWt8Lr9WLz5s34wx/+gNWrV+O9730vvv3tb+P+++/HCSecgCVLliCfz1d7RB9zzDEApEzU6Ogofv7zn+Poo49GIpHArFmzmp65R3bhhRfiu9/9LlatWoUvfOELmDt3Lm6//XY8//zzAACXy7g1UiqVwlFHHYUPf/jD2G+//RCNRrF+/Xrcc889eN/73gcAiEQi+MY3voHTTz8d4+Pj+MAHPoA5c+Zg165dePLJJ7Fr1y7cdNNNAIADDzwQAHDDDTfg9NNPh9frxWtf+1rHsnDHH388EokEPvaxj+ELX/gCPB4Pvve972HTpk0N/7aZ8/HOd74TixYtwic+8Qls375dVXUPAG9/+9sRj8dx3nnn4YorroDX68WPfvQjPPnkky3t57HHHgufz4cPfehD+OxnP4t8Po+bbroJyWRS89kDDzwQd955J2666Sa8+c1vhsvlwlve8hbT1zIRdaFO97Qiovar7X0vilJv8K985SviQQcdJAYCATESiYj77befeO6554ovvviiKIqi+Je//EV873vfK46Ojop+v18cGRkRjzjiCPEXv/iFal2///3vxTe96U2i3+8XAYinn366KIrGvcVf//rX625jbe/qv//97+IxxxwjBgIBMZFIiB/72MfE73//+5oe37Xy+bx43nnniW94wxvEoaEhMRgMiq997WvFK664Qsxms6rPPvjgg+IJJ5wgJhIJ0ev1igsXLhRPOOEE8Wc/+5nqc//6r/8qLliwQHS5XA17/+sd73r7Pjo6Kp5wwgmqZX/729/Et7/97WI4HBYXLlwoXnHFFeJ3vvOdhr3vRdHa+ZBddtllIgBx8eLFYrlc1vx+3bp14qGHHiqGQiFx9uzZ4tlnny0+9thjIgDxtttua7jv8u9qz/Evf/nL6jW4cOFC8ZJLLhF/85vfaI7x+Pi4+IEPfECMxWKiIAiq0QnMXMtE1H0EURTFDsXDREQtO+ecc/DjH/8Ye/bsgc/n6/TmEBFRk1h9T0Q94wtf+AIWLFiA5cuXI5PJ4Fe/+hW+853v4N///d8ZkBIR9TgGpUTUM7xeL66//nps3rwZpVIJr3nNa/Af//EfuOCCCzq9aURE1CJW3xMRERFRx3HwfCIiIiLqOAalRERERNRxDEqJiIiIqOMYlBIRERFRxzEoJSIiIqKOY1BKRERERB3HoJSIiIiIOo5BKRERERF1HINSIiIiIuo4BqVERERE1HEMSomIiIio4xiUEhEREVHHMSglIiIioo5jUEpEREREHceglIiIiIg6jkEpEREREXUcg1IiIiIi6jgGpURERETUcQxKiYiIiKjjGJQSERERUccxKCUiIiKijmNQSkREREQdx6CUiIiIiDqOQSkRERERdRyDUiIiIiLqOAalRERERNRxDEqJiIiIqOMYlBIRERFRxzEoJSIiIqKOY1BKRFTjyCOPxIUXXtjwc3feeSfe9a53YdasWRAEAU888YTj20b9zcy1VywW8bnPfQ4HHnggwuEwFixYgNNOOw1bt25tz0YSOYRBKRFRk7LZLA477DBce+21nd4UGiBTU1N47LHHcPnll+Oxxx7DnXfeiRdeeAEnnXRSpzeNqDUiEQ2UcrksXnvtteKKFStEn88nLl68WLzqqquqv3/qqafEo446SgwEAmIikRA//vGPi+l0uvr7008/XVy9erV49dVXi3PmzBGHh4fFtWvXisViUfzMZz4jxuNxceHCheKtt95a/ZsNGzaIAMQf//jH4qGHHir6/X5x//33F//whz+otu2BBx4QDznkENHn84nz5s0TP/e5z4nFYrH6+yOOOEL81Kc+JV5yySViPB4X586dK15xxRWqdUxMTIgf//jHxdmzZ4vRaFQ86qijxCeeeKL6+yuuuEI86KCDxB/84Afi6OioODQ0JH7wgx8UJycnq/sHQPXfhg0b6h5Tef8ef/xxk2dhMPHas//ak/3tb38TAYhjY2OmPk/UjRiUEg2Yz372s2I8Hhe/973viS+99JL40EMPibfccosoiqKYzWbFBQsWiO973/vEp59+WrzvvvvEZcuWiaeffnr1708//XQxGo2K559/vvj888+Lt956qwhAfNe73iVeffXV4gsvvCB+8YtfFL1er/jqq6+KojgTGCxatEj8n//5H/HZZ58Vzz77bDEajYq7d+8WRVEUN2/eLIZCIfETn/iE+Nxzz4l33XWXOGvWLNWD/4gjjhCHhobEtWvXii+88IL4/e9/XxQEQfztb38riqIoVioV8bDDDhNPPPFEcf369eILL7wgXnzxxeLIyIi4Z88eURSlwCASiVT38Y9//KM4b9488bLLLhNFUQosDj30UPHjH/+4uG3bNnHbtm1iqVSqe0wZlJrDa8/+a0/2u9/9ThQEQUylUi2dI6JOYlBKNEAmJydFv99fDQRq/dd//ZcYj8fFTCZTXfbrX/9adLlc4vbt20VRlAKD0dFRsVwuVz/z2te+Vjz88MOrP5dKJTEcDos//vGPRVGcCQyuvfba6meKxaK4aNEi8brrrhNFURQvu+wy8bWvfa1YqVSqn7nxxhvFSCRS/a4jjjhCfMc73qHa5kMOOUT83Oc+J4qiKN53333i0NCQmM/nVZ9ZsWKFePPNN4uiKAUGoVComp0SRVG85JJLxLe97W3Vn4844gjxggsu0D1GehiUNsZrz5lrTxRFMZfLiW9+85vFNWvWWPo7om7jaW9jAaL+9//+3//Dli1b2vZ9CxcuxE033WTqs8899xymp6dx9NFHG/7+oIMOQjgcri477LDDUKlU8I9//ANz584FALz+9a+HyzXTJH3u3Lk44IADqj+73W6MjIxg586dqvUfeuih1X97PB685S1vwXPPPVf97kMPPRSCIKi+O5PJYPPmzViyZAkA4A1veINqnfPnz69+z6OPPopMJoORkRHVZ3K5HF5++eXqz0uXLkU0GtVdRy/7f1+tYMuu9n3fwtnATReb65rAa09i97VXLBZx6qmnolKp4Fvf+lbT6yHqBgxKiWxmNkDshGAwWPf3oiiqHsxKyuVer1fzO71llUql4TbJ69X7blEUTX23/D2VSgXz58/HAw88oPmeWCxmah29zGyA2Am89hqvw6pisYhTTjkFGzZswP3334+hoaGm1kPULbq3BCMi273mNa9BMBjEfffdp/v7/fffH0888QSy2Wx12Z///Ge4XC7su+++LX//X//61+q/S6USHn30Uey3337V7163bl01GACAdevWIRqNYuHChabWf/DBB2P79u3weDzYZ599VP/NmjXL9Hb6fD6Uy2XTn6fGeO2ZY/bakwPSF198Eb///e81GVqiXsSglGiABAIBfO5zn8NnP/tZ/OAHP8DLL7+Mv/71r7j11lsBAGvWrEEgEMDpp5+Ov//97/jDH/6AT33qU/joRz9arT5txY033oi77roLzz//PM4//3wkk0mcddZZAIBPfOIT2LRpEz71qU/h+eefx89//nNcccUVuOiii1TVtfUcc8wxOPTQQ/Ge97wH9957LzZu3Ih169bh3//93/HII4+Y3s6lS5fi4YcfxsaNG7F7927DTNb4+DieeOIJPPvsswCAf/zjH3jiiSewfft20981KHjtmWPm2iuVSvjABz6ARx55BD/60Y9QLpexfft2bN++HYVCwfR3EXUbBqVEA+byyy/HxRdfjM9//vN43etehw9+8IPVNm2hUAj33nsvxsfHccghh+ADH/gAjj76aHzzm9+05buvvfZaXHfddTjooIPw0EMP4ec//3k1i7Rw4ULcfffd+Nvf/oaDDjoI5513Hj72sY/h3//9302vXxAE3H333Vi5ciXOOuss7Lvvvjj11FOxceNGS4HNZz7zGbjdbuy///6YPXs2Xn31Vd3P/eIXv8Cb3vQmnHDCCQCAU089FW9605vw7W9/2/R3DRJee42ZufY2b96MX/ziF9i8eTPe+MY3Yv78+dX/1q1bZ/q7iLqNICrrK4iIHLBx40YsW7YMjz/+ON74xjd2enNogPDaI+odzJQSERERUccxKCUiIiKijmP1PRERERF1HDOlRERERNRxDEotqFQq2LBhQ18Msj3IeB77A89jf+B57A88j72vG84hg1IiIiIi6jgGpURERETUcQxKiYiIiKjjGJQSERERUccxKCUiIiKijmNQSkREREQdx6CUiIiIiDqOQSkRERERdZwjQWmhUMCVV16J448/HkcccQTOOeccvPTSS7qfzefzuPzyy7Fy5UqccMIJuOeee5zYJCIiIiLqYo4EpeVyGQsXLsRtt92G+++/HytXrsTFF1+s+9mbb74ZqVQKd999N6655hpce+21GBsbc2KziIiIiKhLeZxYaTAYxNlnn139+YMf/CBuuOEGTExMIBaLqT57991346tf/SoikQgOOuggrFy5Er/97W/x8Y9/XLPeQqGAQqGg3gGPBz6fz4nd0JCn3uI0ar2N57E/8Dz2B57H/sDz2PucPocuV+M8qCNBaa2nnnoKiURCE5BOTk5iz5492GeffarL9t13XzzzzDO667nttttwyy23qJadfPLJOOWUU2zf5no2bdrU1u8je/35z39GPp/H0Ucf3elNcczd60P4we+iiAbVhcuOpBs/v3I7BKFDG+aAdt2Poihi9erVmDt3rmp5Op3G6aefjlWrVrVlO/oVy9X+wPPY+5w6h8uWLWv4GceD0kwmg2uuuQaf+MQnNL+bmpqC2+1GIBCoLguHw5iamtJd15lnnok1a9aolrU7U7pp0yYsXrzYVMRP3emBBx7A2NhYX5/H4nrgix8HjnmLevnJnwfmLxiFvz23jKPafT/mcjnst99++MlPfqJa/rvf/Q7PP/88RkdHHd+GfsRytT/wPPa+bjiHjgal09PTuPjii/GOd7wDq1ev1vw+FAqhXC4jn89XA9NsNotQKKS7Pp/P17YAtB6Xy8WbrodNT08jlUr19XnMF0SEg4DLpU6JhgIVTBcFBAP9kypt13ksFAoIhUKa7wqHw5ienu7ba6ld+vl+HCQ8j72vk+fQsW8tlUq47LLLMHv2bFx44YW6nxkaGsLIyIiqZ/4LL7yA5cuXO7VZRMjn80ilUp3eDEflCyICOu9vAR+QL2iXU2O5XE5VqyMLBALI5XId2CIiov7iWFB69dVXY3p6GmvXroVQpwHb8ccfj+985zvIZrN4+umn8cc//hHHHnusU5tFhFwu1/dBaW4aCPq1y4N+6XdkXS6XQzAY1CwPBoMMSomIbOBI9f22bdvwy1/+En6/H0cddVR1+X/+539i+/btuO222/DTn/4UAHDuuefiqquuwnHHHYehoSFceumlWLp0qRObRQRgUDKlQFAnUxpkprRp+XzeMCjN5/Md2CIiov7iSFA6f/58PPLII4a/V/ZSDQQCuOqqq5zYDCJduVwOk5OTnd4MR+UK0K++Z6a0aay+JyJyFlsj08DJ5/PIZrOd3gxH5QsG1fc+gZnSJjFTSkTkLAalNHByuVxXjOLgpNy0QabUJ2VRyTpmSomInMWglAaOHFyIotjpTXHMdAG6Y5Gyo1PzjDo6BQIBZkqJiGzAoJQGTj6fRzweN5ykoV/ojXoR9LOjU7OMqu/rjS5CRETmMSilgTM9PY2RkREkk8lOb0rbBXzMlDbLqPqeiIjswaCUBo4oiojFYgMZlDJT2jyjTCkREdmDQSkNHEEQEIvFMD4+3ulNaTtmSpvHTCkRkbMYlNLAEUURQ0NDA5spZVDaHKOOTgD6utMcEVG7MCilgTQ8PDywQSmr75uTz+eZKSUichCDUhpIw8PDmJiY6PRmtJ1Ufc+sXjPqZUrZA5+IqHUMSmkgMVNKVrGjExGRsxiU0sARBKGvg9JKRYRR4o4dnZrXqKMT25USEbWGQSkNpOHh4b7tfT9d1J9iFNjb0YmZ0qbUy5QGAgFMTzPaJyJqBYNSGiiVSgWCICAcDiOTyXR6cxxhNO89IC1n9X1z6mVKA4EAcrlcm7eIiKi/MCilgSL3oO7njim5aSkjqifgA/JM6DWlUCjA59OP9oPBIINSIqIWMSilgTIIw/rkC8ZBaT8H4+1gdPyCwSDy+Xybt4aIqL8wKKWBUm9Yn35Rr/qenMHqeyKi1jEopYFS21mlH3tMS5lS44xo/+1x5zFTSkTUOgalNFCUnVUikUhfdnZiprT9mCklImodg1IaKMrq+3g83pdjldbr6AQAbFXanHpZdXZ0IiJqHYNSGijKjk79GpTW6+hEzggEAqy+JyJqEYNSGiiDkill9b396o1cwEwpEVHrGJTSQMnn8/D7pTRiLBbry6A0XwCCDErbih2diIhax6CUBooyU5pIJPpyqtFcAQg0qL7vx1EHnFQul+tmStnRiYiodQxKaaAoh4Tq5+r7epnSgJ9TjVo1PT1dd3xbZkqJiFrHoJQGinJIqH4NSht1dAr6GJRaVW/ee4CZUiIiOzAopYEyGB2dxLodnQI+KZtK5jWaCYwdnYiIWseglAYKh4SSfsdMqTW1M4HVYvU9EVHrGJTSQFFmvMLh8EDO6MRMqXWsvicich6DUhooyoxXvd7UvaxxplRgUGoRM6VERM5jUEoDpTbj1Y+BaaNpRll9bx0zpUREzmNQSgOlUYeVfsDqe/uxoxMRkfMcCUpvvvlmnHzyyTjkkENw7733Gn5u7dq1OPTQQ3H44Yfj8MMPxymnnOLE5hBVKTs6yfptIPliCfB6jH/PTKl1eteNks/nQ6HAg0pE1Io6j67mLV68GBdffDG+/e1vN/zsueeeizPOOMOJzSDSkDNeExMTAIBoNIp0Oo2hoaHObpjN6s4+xEypZY0ypf3YDISIqN0cyZQef/zx+Kd/+if4fJyAm7pLsViE1+ut/pxIJPpyWKh6gn4GpVY16uhEREStcyRTasUPf/hD/PCHP8To6Cg++clP4uCDDzb8bKFQ0FSReTyetgW/lUpF9X/qPaIoVqvrK5UKYrEYdu/ejcWLF3d4y+wjov416vMAu6aBSqW3my20837MZrOYNWtW3e8SRZFlQxNYrvYHnsfe5/Q5dLka50E7GpSeeuqpuOiiixAMBvH73/8en/70p/GTn/wE8+bN0/38bbfdhltuuUW17OSTT257W9RNmza19fvIPrlcrnr+Nm3aBFEU8fzzzyORSHR4y+yTm5qNsbFdhr+fnAhg63YvxsbSbdwq57Tjfty2bRvi8TjGxsYMP5PL5er+nupjudofeB57n1PncNmyZQ0/09GgdL/99qv+e9WqVbj77rvx8MMPY/Xq1bqfP/PMM7FmzRrVsnZnSjdt2oTFixebivip+wSDQSxevLh6HpcvXw6fz4fR0dFOb5ptgiHU3Z8taWBTEhgd7e1AvJ33YzAYxOjoaN3jKn+GrGG52h94HntfN5zDjlffKzXqLODz+bqinarL5eJN16MEQaieO5fLhZGREezatauvzqeASt39CflF5Iti3+xzO+7HfD6PcDhc93uU1xZZx3K1P/A89r5OnkNHvrVUKmF6ehqiKFb/rddG4b777kMul0OpVMJvf/tbPPnkkzjkkEOc2CQiXfF4nB2dqCF2dCIicp4jmdKrrroKv/rVrwAAjz/+OK644gp8+9vfxq5du3Dbbbfhpz/9KQDg9ttvxxe+8AUIgoDR0VFcf/31WLBggRObRKQrkUhgfHy805vRVgEfxym1qtGMTkRE1DpHgtK1a9di7dq1ur9btWpV9d+33nqrE19PZFq/ZUrLZRGNal2YKbXOTKZUEARUKvWbThARkTGWnjTQ+i0ozRfqz3sPcEanZpjJlAYCAeTz+TZtERFR/2FQSgOjXC5rslj9Nmd5o3nvAc7o1IxGMzoB/XctERG1G4NSGhh6VbD9Nj2kmUypzwsUiu3Znn5RKpVUM4HpCQaDzJQSEbWAQSkNDKMqWHmGp35gJlPab4F4twgEAsyUEhG1gEEpDYxBGNbHTKaUnMFMKRFRaxiU0sAwypS6XK6+ma85Nw0EfcyEdgIzpURErWFQSgPDqLPK0NAQJicnO7BF9ssVGlffk3VmmniwoxMRUWsYlNLAyOfzupnSfhoWitX3ncMhoYiIWsOglAaGUaa0n4JSMx2dyDozncOYKSUiag2DUhoYRh2d+mmqUWZKO4cdnYiIWsOglAaGUUenfsuUMijtDHZ0IiJqDYNSGhhGmdJ+C0rNVN8LAlAu98/4rE4qlUpwu90NP8dMKRFRaxiU0sAYhEyp2er7oB+Y5qxOphh1kKvFTCkRUWsYlNLAYEenGQGf9FlqzMy89wA7OhERtYpBKQ2MQai+zxdE05lSBqXmmJ0JjNX3REStYVBKA6Ne9X2/9L63kinNF5zfnn5gdN3UYvU9EVFrGJTSwDDKeAWDQUxP90fa0EqbUmZKzWGmlIioPRiU0sAwm/HqZWaHhAr6BWZKTWKmlIioPRiU0sAw22Gll+UK7OhkN3Z0IiJqDwalNDDMVsP2svw0EDQRlAZ9UgBLjVkZEorV90REzWNQSgOjXjWsy+VCuVxu8xbZr1QGPJ7G87QH/FIAS42ZzZR6vV4Uixz8lYioWQxKaWDUy5QODw8jlUq1eYs6h5lS88xm2AWh8csAEREZY1BKA6NUKsHj8ej+rp/GKjUj6OeQUGYNQgc5IqJuwKCUCIMXlLKjk3mD0BaZiKgbMCglwuAFpcyUmsdMKRFRezAoJcLgBaXMlJo3CEOJERF1AwalRAASiUTfTDVqhjSjk9jpzegJrL4nImoPBqVEGLxMKavvzWP1PRFRezAoJcLgBaWsvjePmVIiovZgUEqE/ghKSyURHre5zzJTap6VTGm/TMJARNQJDEqJ0B9Baa4gzdRkBjOl5lnp6BQMBpHL5RzeIiKi/sSglAZCvYHzAcDv92N6urejtHzB3Lz3gNzRydnt6Rf5fN50pjQQCCCfzzu8RURE/YlBKQ2EQeiskpuWgk0zvB4BJdYym1Iul+u+0CgxU0pE1DxHgtKbb74ZJ598Mg455BDce++9hp/L5/O4/PLLsXLlSpxwwgm45557nNgcIlOdVXp97vJ8QaqWp84JBoPMlBIRNcmRoHTx4sW4+OKL8frXv77u526++WakUincfffduOaaa3DttddibGzMiU2iATcIA6BbyZSSMwKBADOlRERNMlcnZdHxxx8PAPjud79b93N33303vvrVryISieCggw7CypUr8dvf/hYf//jHdT9fKBRQKKi7DHs8Hvh87UkPFYtFZDIZpFIpuFwz8bwgCIhEIprPiyKgl3zLZrOoVCqmvtPj8egGU1N5oGxuFbZwCUBYJ6YTRVGTYRT3jsleu+/lchlTU1OadRjto97xE/euvPY7C0Vgumi8/bvGcxA8Q0hlKqhUKqhUoDkHgiCgWCzC7VZ3Yc9NQ7eqO+QHaj6KUqmkG5R4vV7d5gOZKcDsEPYet37QKV9Pu/a4gIoHqZS5bvXFUhCpVP0AKhwOq6516e/0e+77PIC/5lYURRGZTEbzWaN7Jj8NFE02K6hUKsjkBKQyFbgcbIhUrASQypi72QTPEHaN501/vllet36nNr37sVwGpiy0Hw74AG/Nk6FSqSCbzTaxpWp615N8H5otE62wcj0ZMbrvrJR9xWLRUgZd7zgZPU/y+TyKRW3hl8nNbE87+LzS9po5j3YdJz0ulwvhcFj3O/WOXyaTqT5XGvF4vAgGzTUDK5Uq2LnHhnsmAE35ZmUfjZ6Z+WnA51Wv28l7EYDmmtbjSFBqxuTkJPbs2YN99tmnumzffffFM888Y/g3t912G2655RbVspNPPhmnnHKKY9uptHnzZnzlK1/RLH/xxRdx3XXX4YADDlAtP+8/Z+Pb/7JLtWzLli0444wzGmaRZU8++STuv/9+1QU1NS3ghMvn46Dl7RvT57kxL269aCcWzVaX8Oeddx6+/e1vq5Y9v8mL36wP4dPvS6mWf/Ob38Rjjz2GoaEh1fIXX3wRv/71r1XLdiTd+OYvhvHF09WzLN1+++1YuHAhjjjiCNXyj39tNsJB44JlMhXG1q3vwatfzGJH0o2TDw/jfa5Nqs94vV489dRTSCQSquXHXroAr1+qPtbJtAuHH5jD2celVcuvuuoqbN68WROAbtmyBT/72c9Uy17Y7MUFN83CaxfXiaYVnt/kxT1Xb1Mt27VrF0499VQceOCB2F18PVLlFXjq178wtb7HM5fhtNOuMfz9zp078d73vhcnn3yyavklt4wgXxA0Afn4pAs/+OxO1bL169fji1/8IpYvX67el+efx7e+9S3N8vd9YR6WzCmZ2n7JCABnM5OPZ87BaV8093B56aV34oHNMYz8pvWHUT0bt3vwf2u3q5aNjY3hRz/6ES677DLV8u/8JoqH/h5EPNr4QVOpAF63iK+eu0e1/M4778TPfvYzzJ07t+lt3rVrF0488USceuqpur/ftGmT7vJWfPDquZg/0lpU+vQGH+67bqtqWTqdxpVXXql5Hvz8LyF4XMAJb1O/fH/qU5+Cy+Uy1URo9+7deOc734nTTjtNtXztD+M494RJzE+o9+fEE0/EihUrVMsmSsvxxNQnEXW/2vD77LIjO4rn/9vcefzVwyFUKsBJh6qP0wUXXACgtaZUzz77LL773e9i0aJFquV6z+PnnnsOF198Mfbdd19T675/+yfx1B37NP4ggH/50rN46LnZiPibLwvylVlY4vsdFvsfVC1/6qmncNddd2F4eFi1XG8fH374Yfz973/Hxz72MdXytT+M4+zjJjXPdMCZexEAli1b1vAzHQtKp6am4Ha7VQ/vcDism0mTnXnmmVizZo1qWTszpYsXL8bXv/51LF68WBXx33jjjfB4PBgdHVV9/pXt0CzbvXs31qxZgyuuuMLUd65ZswYjIyOIRqPVZa/uAE44FPjGhd4W9saaq34A+CKLULM7eOWVVzT7+OIuYLoCjI7GVMsLhQJuvfVWLF26VLX8Pe95D5YsWaIqiJIFYKoEjI5GVZ8tlaSApfY7gyHgLuP4Cn/969O4//77cdllb8EfHqvg/r+5NOdx8eLFiEQiqnVPF4CDXgP87AvqY/33V4Dbfx/E6Kg6gM3n87jjjjs0hcXq1au118c48PGTgE+fYu76fc+/AYsXj6rebNPpNE455RRcc801+M3DwMZtwP97z5mm1nfSvwJ3fekuw98/9NBD+Otf/6rZ7oII/N+12rf31Zdpz8ujjz6KCy+8EGeeqd6mL3/5y/B6vZrPL5oL3HWNuTYIlUoFmzZt0pxHu61efQPu+tLPTX32W9/6M5YvX47jjjvOse0B9I/1li1bkM/nNcuLAvCtzwD7L228XlGUrrPRUXUWu1Kp4Etf+pLmZdCKBx54AI8//rhm+5w8j/NmA3dd3do6PrgWmDNvVJUtfeWVVzA5Oandl78BohuactLlcuH//u//TH3fo48+il/96leadWeLgD8ypFq3KIpYvnw57rpLfR/f8zDwylbgE+9tHATYZdmqddiTjOPgN7624XmsPAKILu1xEkURP/+5uXvNyBe/+EX4fD5Tz+MXXngB5513Hj71qU+ZWnf0n7dh8eJ5cLkaB83p6Q244cIQPvret5jf+Bp/eBx44sXX49OnXKhaftFFFyEUCmmeVZv3aPfx4YcfRqlU0iwvAThgvyEMK271dpWp9XQsKA2FQiiXy6rhVrLZLEKhkOHf+Hy+tgWg9bhcLtUJSyQSmip9ANi6p4LpooCgf+YCTqVSSCQSpk+4vG5lkJPKikgMiW29aBJREakMVDdjoVDApk2bNNuRyoqYyGi3b2JiAiMjI5rlkUgEuVxOVZ2byoqYSOuvIxaLaZYLqNQ9HoVCAaFQCC6XC4khIJV1mzqPRsd6ZFh/HzOZDIaHh7XbJwjV/6rrzohIDMFUAQcAw2GpujoW1b+eCkURoYD59bmE+sdsZGQEExMT2s+IFXg82r/TOwepVEr3nOsd60pFhEuwfl3Xnke7CYJgev2hUAiFQsHxe9PtqkAUBbjd6mtB73xNZCoYGRJMXxd659Ho3rUiFAohn88brsOJ89ioXDAjEa0glRUQDpo71l6P9lhbuYaM7ruJTAWpjHrdU1NT1XJNSSq3zJcFdogESti8YwpvMXEeJzIiRFF7r1s5Tkb0ypbpgojNu7TfZ/V5XBBj2J3MYd5sbdOjWqmMC4sXRFvan5Eh/eeM0bMqqfPMNLpWM7kKhiP65YLTZWo9HRsSamhoCCMjI3jppZeqy1544QVNdV4v0Bt4fbogYioPJNW1u0gmk4jH4y2tO5kG4tH2FTYAEI/q78v09LSmDWUyrf0sIDXZUGZ8q+s22MektikikslkU4PcK4eEikeB1JT20jc+1tr16R0PQHrT1LuZw+Gwpk2e0bqNGJ0D+Xqyu6OT0YQCRo0kREDTNsvoetdbdyoL1Vt7L2pXR6dYBJiouT+M7g2r15ne+bVabunp1ZEJjO47o2OdTGuPoNk2i4DxfadXrhqdF6vn3A6xcAXbdpm79pNpUbf8tHKcjBiV4/kCkJs2Vz7pKZZElMQgxrZMmvr8ZM6N0QVDjT9Yh9FzxvCZqfNZo2tVFNv70mKWI0FpqVTC9PQ0RFGs/luv4ezxxx+P73znO8hms3j66afxxz/+Eccee6wTm+QoowsEAMZrrt/x8fGWg9LxyfYXOPEoMF5zwY+Pj6v+X10+qf0sAN03Y0Dax9p1JNPaYyd/V+1ny2VRtwG7knJIqHgUmMhYCUq1Kw/6rXUe0dvH8SaCUr1zoAxK7RwSSm+b64kEpc4VRtvXaN3jk0C8x4PSdgVe8ah+2aJ3vvIFIOBv7eFjtdzS06sjE8SjguZhb3Ssxyf1AwMrhoeHMTExobvuevd/7Wfb/owYErB9t7l+Dsm0/jPClu0wKGvl71Vth4WgVP7bTdvMbfjUtBeL57celOodJ924wCDwHh8f76nZCh0JSq+66iocdthhePzxx3HFFVfgsMMOw2OPPYbf/OY3qk5J5557LiKRCI477jhceumluPTSSzXtDXuBUVDldtuTKdVbdyeCUr19cbvdOoGciLRx02Dtug1uML11pNPppjJsyiGhIkGps5jZ7dA71lYb4usHvKK1oDSifTgqr6d8wVqm1O0GSiXjzITeQPD1MhmNMrmqz1rISndSsVg0PXA+0L7ASy9QSiaTSKftedLXnudsNqvb29eKdk8sYEfWDdB/AUgmk7qjqExOae8Bq9eQy+XS3fZ0zkqm1FrZYoeRIRd2Jc11UpzIAJM1/X/K5bItVcZGZYve89jKy1YyLTV52rzd3MOtIgI+n7vxB+uIhvSfg1ZjjslJc9ndbuBIm9K1a9di7dq1ur9btWpV9d+BQABXXXWVE5vQVolEQvcmGJ2rf4HU9u5utO49e9Q9YZNp4DWLDP7AIYkhuVpK0RkpmcTo6Kh23zPAkIXnl/7xk9pElUoiPJ6Z7wyHw5obLJkGEg0K4Fwuh5GREQD6w4IA0o3+xBNPWF63rN5D0OgaMbtuQD4H6mXK68lqpjTgkwLZiEEpoBd4T+WlIUp0t29vULpE0UHb6Ho3PB5D3VWdZHV823YFXomotnlLMpnUjGzRjGhIynhHa5r3tzq5RLur76cL2iHKmmF03y1atAiTk5OIxWKq39UO1TcxMdFylrlcFhGL6JfBevdXMiNtdzvNHfHilU06ba50VHSKylQqpTmWzXDqeZxMAyORDLbtbt/8zNI9pz1YiUQCTz75pGqZch8XzFIs1ykX7HphcwKnGbWB7ptZBlixwKE2pZn2vwUbZcFWrFihWwCMDEkdV2R6Y/pV123wZrt8vrbdnN6btJk2trUzOul9OpFIWMpK165jamrKMJtkR2awUSYyXwCCFh7CQT+Qa1DbVnvO6m2zXvZO7oih+WyPZErNzASm1M7qe71rYeHChZqg2GooGY9o123HbGftrr7PWbwfjFgp+wRoj3cz7XFrj3cqK5WHZp8nE2mp3XE7zZsVwITJRL1dx0mPUdnS6vM4mQYWxPPYOW6uiYJdr9d667Gyj4VCQTNE4VQeCHXprNsMSm3g9XqrQxXJkmlguVNBaRdV3y9fvlynkxcwJ66unqmXcTIMSnWOnx4zx0PZ0cmI1WMtCOrAu9651Vu31YKhYUengmip+j7okwZQtqJ+UKp/vvQCmqGhId2Md7cFpWauG6X2Vd9rj3UqlcLSpUtV11m5LFqeWMDoPLaq3ZnSvE0d/+IRKRGgZFT26bEj2LL6PCmVAa/HrrDInIVzg5jINh9SOB2U6h2/QqEAv9/cRZJMA0vmlLB7osXZGGxg9ZkpCIKqqUk3lrUyBqUOkS4QQVOYKYfAMqNbglKvR0CxprmQUcEsQpttaSZgWzhbnXnL5/Pw+XzaHt4mjodexqu2BsNqu8+hsDrwtrqPIqxloKRgQb3RyhENmqm+N5Mp1RZmBhlvnWDGqJrI5XJp2uN1Y0HZS5nScrmMkZER1XWWygLDFpuC1ma87ZrdxePxaF7enZQr2NPxz+hlcNmyZapjLYqibSMX1L7cJNPA/BEBuZqXSKN1d6JydtG8CNJT5ttQ1o7WYVdQ6vP5NDM/Vp/HLbxsJdPA8oUCkiaaZ45P5OBx23Pf6I1qYvSs0ttHURQ1SQCpqZQtm2c7BqU2qb1oxieltxa9HuRW6F182Vx3pN7Hx8exfPly3V6otb0G6zUo12u0LQe24waBraowM5kpVQYXoYC2M5ZRxrteZrCVfbRKryemckQDqx2dgn796UKVhoaGkErNzMxVb8QAvQ4hVox3oHNGI92cKR2f1IYetddZM4F+7XlMp9O6Q7k1o51t2ewaIk0vKJ2ensa8efNUxzqbk9pbez3SkICyZkYuqD2PRr3p7RgVwS6jC4eQmW78FpCbFuH37W0+pAiyndyX8UlReh7XvNRbuR7H08BrR31IZRsnEjZuTiEaMDdTXyN6o5roBd7jaeOYQ3M9paWOs92IQalDkmlRtw2QVeFw2HDu8E6rV4VVm22p16DcaFy+2oeBHJTWdiYZN9FhqDZDHQuXTZ2biYxxpimhs31G+6jX+N6qRtWq1jOl2sxLrdrtrtc5KzGkruasVCqWrlOrHb/aoVszpXqdbwDtvTQ+ab3zWO26rXbO7Bb5gnSNt2ooDKR0+u/UHmv5BcCo3LJC777TC0q76dzMmx3BdKnxLIPV46RTm+bUviQz+m1yLa0jLeLAfUKYzDXuH75pWxrDEXsypbXPGSOpzN6OTooyWB7RwOha7UYMSm3i9XpRLM68GSXTwOg87bAXVoPJ2lmAOql2MwzbsAn6DzajgllvYHnA+OGoLbAbZ9hqM6XD4YrujV775iyKUM2ao6QXeJutvpdmL6q/zbWCfgHTNZlN5bXRTKa0UVBqpTCrfcik0+m6vcEFQbCc8W63bs6U6l2/ZoMZK+u2q1oVaO/LtF2ZUqMBxjXHem+PdzuCes19Z9CbPpPJqGbCA6RB3r2tjUTUFJdLMNW5R375tPKMsErTUSwDLK0JSsvlMtxu8wcqmQb2HQ1iutg48N6yY8q2ssxsW31RBGYNqz8rj/xgR7nQLgxKbRKLxVQDHqey2pNu1zhsnYpR3S71uJaiKCIWi6nGRkxlpV6fVh5stYG3HLAZraOZt77a4GIoXNGdMcoKK/tYG3inp7RD7lhVG0BbzZSaqb7XHmvjFwCrwUxtxrtQBPw2ZLbs1K1DQnk9AkqK/hZyTYAdGZF4VJ1tsTNYaCerL2lWCIKgf6wjgqWXVSP66wZcLnXnSnlblLo54ABm2qXbcZyMuN1uVVMsUZSeS8omW/KU1WZNZIBEVH+IplrbduUxMmxPeKU3qokeweZnZqcwKLVJ7UnXm8Krdg77ZnRyfLFYVH+IJr1sVyvZFjlgq+3Y08oNVlsNOxzSz5TWZrzrsRp4K9lRKNQOt1SpGGd19QR89mZKw0GpXV31sw3OuVGzjW5itfre4/GgXG5/71zDeyPTRFBqoZNiN7N7hjNZoyrReM0YsvYEpdLLYG3nSj3dHHAA9jZzMFKbJAKk57Hy8Wn1+8plqMbMrmfHeAFz4o0zqmYYZUprA2/AuPOtleRCpzEotYleUAqo36lauenkwM+ODFuzah9W8jZpg1LBMKA0YiWwrT3WZjJstZlSo+p7vcLMiNVC1Y6qaruuJ6DZTGm9IbIES9unuWfMbHSbWa2+bye9Y22UYbPCyWChneyqvpfJ96+cXDAMSmvKSasZOaBOe1WDMlip3ggZ7VCbya3VjqDUqGxpJSi1Uj7tTpYxb5Y9F59RUFr7rJITYRWdfdS7ntj7vs/Vy/rIBUezvQuj0Wi1irwTcxrL4lGh4XzF8vbV9pw3s+/ycVIWWnrrqO1JaKawqFQqqvZDRkGp8jzKvUSN1PaAtnJ+x5t8cLgEqd2u1e/TYzZTqjzWkxZeihptnx0jEjjNaqa0U4zujWYyIuGa3r7d1MPbirxNQ0IB6vbX8vHQdLic1A+2SqWSpWlGAePe98oy0ajWrJPPCL+niK076z8kjMr36elp02OGNmKmbGklCG40TNqeSREL5thTbhiNalL7rAroHDqjcqHeKCqdxqDUJnqzAQHSECFTezvjNtu7ULnuTlbNKBum1/ZmVwaUiSH9t+B6+64KvNNS253adnPyOuyo9jUTlDbqDV471WMmk6k7dI6yY0+zPc1jEandLtB6b1UzHZ30Rg0w21ml0fYp110ui3B3YWnUzZlSj1vq1ALMHGvlfQTIve+trVfT1KSLenhbYWemNDE0ExgYBTPy1MjKzzb9fTX3XaEk1QYlhmbaF2azWU0nJ2k7OpcFiwQKeHVL/Z0fT4tSRyedcZftojx+uWn1pCLKJFEz13XAV8LWnfU7JExkBCxZYM+DunZUk+ry2rhAp0bEqHNwZkoaaqobdeFjoDcpg5m84q1FGZw1+2amDZQ6UzVjtC/hcBhTU1ILcrkNW8AvoKBomqnXS1RJedMoA2/lnsrfWXuDNXM0zAal9V4A9KpV6gVsyoCh2ZcLO64nWTPV942OtQDFC4qF6vuJTPunRTTDakendoor2njLx9qojbdVevedHdo5gL6dmdLa+04OZpT3u7paurVgy+i+M3P/dzJxEQ2WsWlb/UavRtX3do7MoCnH95YtocDMi7iV67pQFOHbm+weCpYw1iDwTufcGLUpKNWb9hfQiQv2vojolcF6iZxuGdWnFoNSmxjdBE4EpZ2rvtffF6N9r1XvJjCzj3ptuZqZRhEwDkq1WWnjbQ7oDNFUjx3nUdkTs9VgoZmOTo1EQzM9XK0Epd3aOaObq++VDyvlsVbeZ8US4PO29vCxMyht15BZwN5MqW1BaeP7Tn4htyPYqs14z2yHiaA0Y70dsV2GwxVs3TlV9zNGQamdjMqWZp/HynUMh0Vs3lY/U5oreLFwnj3paqPjpN1H6TpT1oDJ+xgIBDA9bXFO6Q5hUGoT1QWSUd4ErQcRRutuN3NB6UwbNmWTp0ajBhgVIsq/qlQqml6vzWbYgj4RWZ0xzq0GSsrts7aPzfV+tD9TWn+bA4FAdTB4o2kUm90+o0K1m3Rz9b1R2WLXCB1yh5WpqSnbAvN2TS4AALmCaFv1vdF1LQhCdbSF9N4q0eHwTBObQqFguT0poJ2GVz6j5jKlnetZHR8SsH13/eBnMiv1Eo+GZnqKl0olW4ZLrG6HQdliR1CaGAK27Kz/YlURAY/Hnv2pbeMtszvw7hYMSm2ivECkhuYzN4HcmLvZDgPadduzzZa3Q9GxR7kvykbUzW6fch3KQlXZbk4WjUar8/g2XT1pEP80m70zEwjYcpwUBU47OjopZXKN2yEpG+Vb6ejUrQ3vuzpTWudYtxqYKjPegH1Vfe3MlOZtHBIqHplpP6481sPDw6ppeAVBgNstQI4n7QgKSqWZ9tZGZbBSJ58Rs4Zd2LGn/pB6ci9xl2tmtI5mRiiox6isjUeFhm2D9Sif6SMxD7bvbs+LFWB87xnFBUblgt5oOd2IQalN4vF4dXgG1VtLTRVbsx2dWs2w2UHZsadu9f3e7XO5pOp1swFbo7c+WW07LqvTKFrZDrMdBhp1cgJqzqPBDC2NJIZmXnKU11MzBU3QB+QsND8w0zlL2RGjUXvM2nbE3TbFKNDdmVJlx0Pl/RgKhaptvO1Yt53aNbkAIF3bdnZ0alRLpCTfjXYEpcraIGVwbPQ86WT77LkjXuyZrN8zXa+ksrsznVEfhaYzpYoayrkJH3aO2zOvfSuM93GmDC4Wi/D51G9mmRwQ6dCwkmYwKLWJsgF/barfjur7buh9H4sAEzoBkfLmkHuJyp9PZY17iSqp3voUwWCjeX/HmxiHUab3AqreDrHhut17A28z51bdGU6aNtQqo3aEUttBa+sy09EJmHkJMHPtKQv9RlPk2tHxy2nNdHTyeDymJ2BohfJYT05OVifmkK+zUkmEhVkUDddtZ4eIdlbf293RSc5QKu87vdEplFoJSuXROpQvx2aCqkrF/CDvdpuT8DXVycvuamblGJ6q46cI6vUCNsPtU7w0L5jtx65k2fCzlUqlqc639eitTxUXZGaeVUYvlC6XC+Vyuamxi9uJQakDtIWIdJNauQmUms3e2c3jEVDWqZZSbp/y5pELUDMFjrJwVwZs8lufUXBgqt2nQRZRELQDPcdiMUvV93L7MatBabOU15NyRINmHsBmq+9VhVmDdp/KQr8RvZ7L3aZ26DMzlO1wnaQMUERRrLbJk++lVjJm8n1XqVRsDUrb3tHJ4Tal8j0tiqKq7JP/3UoGUM54K+875agm3dhecMGcIFJZ47BC7ziJormXeiu8Xu9MkshEwNaIsnxaMDdUP1EykYfPYxy0Nqv2OWYm8Fbeu7FYDKlUqmvLWhmDUgckFRk2O3oYqjJsheYybHYzU4UlP9haCdiMAltlFqHRDWb0MhANqtvNATWFmYXMYHuD0pmf5UKnmQdwwGcuUyq3m7OaKbWiW6e9a6ZNabuqqI2GHpKvs1YePvJ5nJycxNCQfW/B7c6UOhGUlkqlankiH+vaKlG/TxoasJVgq3oeDXrTd2NQunBuCOmccceu2nIqtHccbyf3RVt930QmV7GOJfMjdQPvjVtSiATtHfasto03YPysatRbv1s7lcoYlDrA6AJptoGx8iHX6TbK8vcbBaXKzbMjYDNahzqLUH+bjbJdRjevHOjJvUTrbneTgXezp9Hoempmnm+PR4CZadqtBDlyoW82w1Y7i1e3kUd8sKJdgVdc0cZbeS3Y8fCRsy12BwvtzJQWioDXesd3XcqgwPBYKwJHK2WfEaP7Tq8MVurkIyIxHMB0yfig1+6LHcfJiF7ZYsdL8+ii4bqB96ZtGQyH6rertarRdk9mZ2bak8vgYrGomsVQeT116xSjAINSW8ltyZQ9iaMhaWrGVnTjILepVKqaQZHbtih7iQIzvQDN9BIPBoO6nTOM1iF/p5kMm1HVv7KXoh65l2g9VvZR3uZKRWy6zZHfJ2Bap7lis1khMw8webvN9OqVj4fy+mi4DaLY0R7DdmtX4BXb27649mW3em+0MF6llevainZmSkXRvrKzXg9ovXtDDupbOX6N7rtMJoNwWP3WPF2YGeS9ExqVl3pB6Xja2alsU5mZ5IJ8XZdKJVXA1ojyHMyKB1EoGf/t5m1Z28syK88q+bO1IxrIQWm3l7UMSm0kt+VSZtjkwqyZ+Y+7kdcjDdGkbMMWjUaRyWQwUTOGqtxb30y7Kvk4VSqiqgOS0TqsvPUZZUprpwlthtxGycw+ytndVBaItVgo1AYizWRKzZKv62RGbHisrRwPAIhEIshmsyiWWx/kvVu0K/CSp+HN5XIIhWbqju3IiEjnUbS9V3Q7e9+3Q/XeqBkFRB6FopUMoHrdM8vlUU0AnSlhuzwLpjlOipomu6ey9Xq9KBaLEDETsMkZ74mJCUvnJZWdaZ/dqOZk2+48Zseb7GFoQDmqSePP6pfB8sQw3VorJWNQaiP5zbY2wybAnnHYagO2TpCrEZSFoVHv7GaqZlJZYFhTDaZtm2Xlrc8oUxozqBKx0ns6rgiaG+2j3Bu91d6PArRDUDXb1tjMXxhVUeqRZxMxe87ldfdHOCppZxW1AO2xtiMj4lS1aluPjQMXVW2GzaiKXc5W2VN9r64Nkkc10cvedkPAUe+wazLKDlbf65Ut8jGzmpmtVAC329wFtXO8iDlxi0OhNGBUfa/3rJIDb6NyIZnpzvb7MgalNqrXkaXVm04QBEykRVXA1gn12rbUtmEzCijrMds2S84ilMpSxqieetX3Rg3Cx8fNdUiSh2hqdnaQZtV+n51TKtay0qa0+oJiMSjtJ+3OBhrdG3Z0dLI7WGhn9b0TkskJ/Qe9wQt5KpVqOhnRaN2629cVnVhElEr6bSprm5S0IyjV3Q4HO1btnihj3iybetjtZTSqid6zyqgMtpJc6CQGpTaqvpnplAnj463dBENDQ9i0Ld3xi0k5MK+SKIotFziCIGBPSpsVmNDJRFoJZqx2dEokEti6PWmqjWbTgXcLDw6XC9i9R/19+QIQsLccrJKPdTYnTXlnxqAHpW1rN4l6D5/mMyJWM95mtTNTardwENiyXR2U+v1+TE9PGwaO5XLZUttFJeOgVKiOmVqrk9NQy4K+Erbu1I+ajY5TqVSC12tzdtEguSAIdiSJYBh4j0+KWDDX3tHp6yVQtu2YQKjm8Va/XOj8NVIPg1IbyTdBbQ/5cBDYuiPV0k0Qj8fx6rZMxy+meBTYtrugG+TVBpTyjWS2qmRoaAhbdmRVAZtnb7s5vY5OZoMZw0xpBLqFezwel14ATBxreR/1Oh0Y2TPZWvVJLAJp+9qcKRVhruOIXoFYb927dk80Pch7N2pn4OV1Azt3qwOlSCSCdDrd0sNHEARL59Gsdnd0slM8qr3vZONpvbKvtQ2Qm4MVa2qD4lFg846c7oQk45Odz4JFgyWMbdHvlVP7oiQfJyemvozH49i2c0KTXBBF60mi2q0LeIuGgfdERsDieeaeBWYpJ29QLY/H8epW/WeV0TPTSnKhExiU2iiRSGDn7rTmJohHgc3bp1pqyJ1IJLB5e7alDJsdElFg8/aM5oaORCLYvntadXP4vNJAz9ls1lTAFo/HsWXHlO4NpvfWJ89m0YhhRyeDgZTj8Tg275gy1WFA2SvSTMA2PDyMrTtzLXVGSAwBm7ZlVddTzsbZazTft7eBvFkCgN17xk1d74lEAlt2dP5ly07tDLwSQ5DKBcW9IV+HtR0PmzE+bu48mtXLmVKp7MvqBjNGzY5a+j6D2aLiUWDLjqzueemGjk6xiIhXt+r3IDVqe+sE6ZmpfZ6Eg8D2XWnT13V+WoS/Jok7FCrjVYPAezLnwdLFw81ssiGjZ1UikcBmg2dmbeCtTOR044g+MgalNorH49i2K6+5QBJRSMtbzJTqrbvd4nv3pfaGTiQS2LY7r1sgNppusrruvfuot47aQbzj8Th2j6fgMZFhq9um1KCdjnSsG2+z3yegWDJ/k9txHuNRQXM9tTJQeKMshdXOSMMRYMfunOlM6bZd+Y5nd/Q0m71pZ+BldD8C0tSzjdpb16PXiapVvdz7Xu++k9UGg3aM7BGJRJDJaFdS73nSDVWziSEBW3fqn2PNcRqSjpMTQVI8Hsd2nedJ3OLzWC/Qj0VEbNqe1f18vuDBgjn2Fmh1q+91nlWRILBzj/rFRW5q0u0YlNooHo9j+55pTaEQjwrYMV5oOSjdsafQ8QInHgV27tHuSzwel5bXbJ+VskY6fjrr2Pt/5VAc8veZGVopl8vpZkqDfmlKU73tcOpYGx0nS+uIADtrrqdmp1T0eoBSuf5nfD4fCgXzc7nHo5COn8mgdMeeYsdrAPQUCoWmpgVuZ+AVjwq696MdBAHI5/Wb6jSrXVnkSkWExTkPGopHIZVPNcfa7XYjmxdV7fqGwkBystLU9SOTA7XaO8OoDAa01eOdMGvYje279c+xcpB3QAqeJrOiI8MlxuNx6blbU7ZYKZ8AbecsQAq8N283HoDc6oQbjchtvGtJ5adezKG/j92cIZUxKLVRPB7H7mRJNQ4bIF0gu5OlloPSXROljlfNxKPAromyblC6a6LcUoGYSCSwe6KkWYfXA1REdaEViUQwkRFMZdisThUZj8exK1lyJHtXPU4trDseBXYl1ecg32T1fcCnX9jVKiGoepg02r7dOteI7mfjcd1z3g2amfcekDKl7aq+N7of7TAUBkqivR022pVFbvZ+qEcqx8uarHQsFkOxWFQ98F0uAYVCseWmDxXRrakNqnfOuyFTOmfEi11J42k2a4cTLBWLLQ+XqEd6HmufSYmoIJU5LXRMnRUzDrydUG/yht0TZSR0gtI9qYrmuHZ6RkgzGJTaKBaLqWZzksmNlFsNSsdb7CBjB2lfKrpB6fhkRbN9LgGoiOYus3g8jvGUqAnY4lGgUFE/HAVBQFEMm8qwGVXfA/ozGiUSCUvHulgsqcYMrcfoOFmhdw6azZQG/dIDvJFCJWx6m+MRAdlpr6mALh6Pt9zxyyn1rpt62psp1b8fI5EISuXW5t+OR4GCzUFpuzKlzd4P9RiV4/F4XLcmoVgstvyyUKiENLVBRucckNoRD9vbx8ay+bMC2D3RoPpFoVBo/TjpqZYtOs+T8UnRdCCsF+jPSfgMA2+n4j699UrPTO3zJB4RkCv6NSMaWEkudAqDUhu53W4UymHdmyCZEVoOSs1mBp0kDdGk3Zd4PI5cvqRpwxYOFOELzTG17uo+1txgsShQELVRS1GMmApmrGa8jLbDSLlcwHBsxPS6s7kKAk0MdF9dR1R7DnLToqOZUrPHWt6+gmjuQo1EIkhPeboyKLWaYZe1s6NTPApMTnk0L0VDsRFUyuabXBitW+++a0WvZ0qTGeiWfUWdoLRQbL1ZRVGMVmcSUm1HWv95UhHND/LulAVzQxi30MnLjuOkJxaL6Zbj8SiQL4VMD0GlNwnF/Nn6gXelYu+c943E43Eksy7dfdS7d8sYQizS3elSx4LSZDKJCy64AIcddhje97734W9/+5vu59auXYtDDz0Uhx9+OA4//HCccsopTm1SWxREbUYpHgWmy+ZvAj2JRAKTU+6OP7zdbgHTBW3VRzwe150FKeDJIzS00NS64/E4ctPagC3iL8Lt1wZ9RTFiqjlDvYyXS5DanynFYjGkcx7TTSUCnjxC0QWmPptIJFAsmkhN1lvHEJCd9qlGNGi2o5NRW6VaFdcwhsPmCtzEkHRuzJAz3p1ulqLHqC1yI+3s6JSISlns2jZswch8BD2tbUMsLKIMewsct9vdlge3E5nSRBRI5zyaDNtwLI5iSSdTakMG0BucjbBfXV74vALyBW0zgm4xujCKVFYbWhh1HJQyyvbvi8fjQaES0n0emy2fAP1M6aK5Yd2ORzv3TCHgba2GwogAg2eVzku9tI/alHkgugBBb3dPXuHYZOzXXXcdZs+ejfvuuw9//etfcemll+L//u//VD2oZeeeey7OOOMMpzalrfQySgmLN4GeeDyOfGFTSxk2u5SKBd3e93pBqd+dhRiaa2q98XgcheJO3XX4w/M0y4tiZO9bX/1jUi9TOrx3yj7lOXO73bqFmRGfKwtf2Pw+lkxOYWq4jihQRFTVzsjp6ntvcC787ikAjaPHeBQoWbjei4h2/GVLT69kSvXKFn94Lny5LIBZTa/b75mC12QtR7dxKlNa0EkuhCJz4YFOpxcxj3DUXA2KEV94HvyuLAB1+SUFcrM1n+/80wFYunAYmbw2tJjK64+P6UYOwYh2X+ygl7gwCtiMJNOipp/IkgURpKa0gffYlklEg84EpcMRqaOYsjmHUeBtlBjwhebC58oC6HAbjzocyZROTU3hwQcfxHnnnYdAIIAjjzwSK1aswB//+Ecnvq6r6AWlVm8CPYFAAJVye6sGjOi1lTLKlHrENDwBcw9GaR3aCMmDNDwBnULLm4Df3TgbVC9TKk8TWqskhky3vZG2z/w+FuwISmuup+Y7OgmmMqWewCx4YK5ObihUQdFChq2oU7vQDXohU2oUlLr9c+BBa2MSGd53PUB6SbM3RAsHgZKovR48gdm694YHabj9rQX1Rvdd0aEqbzskYkEUS9qx+vSqwQFnrzPj53FrmdKli4aRzmkD703b0hgOO1M9bjQsVEnUthONBEuoCNoEgpVyvFMcyZS++uqriEQimDVr5kH9mte8Bq+88oru53/4wx/ihz/8IUZHR/HJT34SBx98sO7nCoUCCgV10OLxeFoadsMKudqpXvVTWYgi6M2jUplJWwX9QEn021Jt1e42K3qKxRLC4bBqW0LhYZSKW7TbV04CnoSp7fb7/aiUK9rPliYgeLXrcPlGgFISlUr9bNbU1JS07przV6lUEIu4sCclYuk8dUEiQpplxMxYlUJ5AvDETe1jJDKMUnFTS+fR7QJEUV0NOjUN+L2ipnqnkYBP+ttGfyd4E0BpApXK/IbrdFUmIJg8HgBQrIQRDVZQqVgLIszcj63IZrPSy6DF9fv9fkxNTbXlXo0GRRTFkOa7BG98773RwjYY3HetEkVRtU4nzmM2DwS8ja/rZmi20xuDUJ7QnoPyBASv+ftAz8x9p15HuVRRlWmAFIj7vJ17RijPowjtduyZlPok6B0ns+WnVUUxgHBAXS6G/UWUEDX9feNpYDisXkdsyI9iSdsURZrgxplzEItIswGOztNe05pnVSkJwae9d6XrybhccLpMNTNUliNBaS6X08zgEw6HdQcCPvXUU3HRRRchGAzi97//PT796U/jJz/5CebN01bX3nbbbbjllltUy04++eS2t0PdtGmT4e/KQggbX34aU+mZN79isYhKBRgbG2vpe8vlcsvrsEOlPI0XX35VNcvFrpSAyvS4Zvsm94yh4FpgarvLFaBcLmk+O77zJWQLszXLC+UQdmx5DmNj9TOPe/bswa5duzSZ3E2bNkEsRfHcS0XMCqirWyvliuljnZ3YjFR8ianPT2RcqBSSLZ3HSqWiuRaSE7Oxfesuy2MzZtMRjG0qYSxRv7o5Vwxgz46XMDbWOH28ZWwTimLE9D6K8ODFF57VnTbRjHr3YyteffVVTE1NWT5X5XIZyWRr59isqakpiHBpviuVdSGberWlbdi9/UXkinHb9yOXy+mu087z+OqmAKYyXoyN2ZsV0iuDdyUryKW3apbn09uwKxlt6fhlp30Y3/kyxsbUMwRVykW8suFV1XBRO5JueDGMsTHzs685YdOmTbrH6fmX/EDRj7Ex9UxI+fQ27JoIO3K/iBXgxRdfgN8/kyTatWs3ykLQ9Pdt3zUbE7t3YbLmsOrv40743c48p8Wi9Kwa8avLar3t2Dq2EYWKtgzO5L1I7d6AsbH6zUqcKlOXLVvW8DOOBKXBYBDZrHq2g2w2q1uFut9++1X/vWrVKtx99914+OGHsXr1as1nzzzzTKxZs0a1rN2Z0k2bNmHx4sWGEX8wkEUkImB0dLS6bOfOnQgEMqplVpXLgNu9raV12CXg+QeG4qOYp7iu868CAe9jmu0L+f8Ed2CBqe0enwQCnpc1n40G18MfmqtZ7g4UkBjKN1y3y+XCvvvuW73+lOdx+RIXfD6gdhUe7y7MmzdPVZgZ8Xv+gPDwYoyONu7QVdwMBLyPt3QeU6kUfP6kah3BELBsmfV1LpwvDWbdaHO8wQKGQrtNbffOnTvhCwyb3sdAcBKRSMTyMTFzP7YiGo3C5XI1da78fn9b7tVNmzYhEChpvisS88C/7R8tbUMs/AS8Qe1916pgMKhapxPn8YlNwAIBGB21rwNNsViEx7NTczzis4fhFbT3tAf3IT5nBUZHm+9P4A8XMRTarlm33/MShhOjmBWbWZapAIsXAKOjnWkLozyPbvcOzTY//iqwbAkwOqpuduDBfYjPXo7RUXun5gSAQHACQ0NDqiSX1FZce88Y8Qf0y1a9fcyXXsXyxV5H7v3lSwBfQO9ZtRPz589XxUFbtmyF1x/XbEcgUkIksNVw+5wuU81wJChdsmQJMpkMdu/eXa3Cf/HFF3UDzVr1Zhzw+XxtC0DrcblchifM5/Mhldqt+n0qlYLP52vpJE9kRPhcuer3d5LPlUEqK2DB7JlzlcqK8AkZzbaV8jtRCgyZ2uZUVoTXpV1HZXoXSohqlns8AWQzEw3XPT09jWAwqPmcy+XCrGEBW3ZJg13LRFGEz+tFKpXSzdjXKuV2oiyY30e942SF7vUkVppaZzggolBU77+ekhBBZXq3uX1MpeD1zTK9PT6vD6lUquljUu9+bEWhUEA4rO3ZboYgCG25T6Vrwau97xBFKbezpW0o5XejhIjt+2F0bOw8j4WiiJC/8XVthXRdezXTJhsd6/L0LhTF1o5fCRGU87s065DL4DkJdRk8MmTvPjfD5XLtHdUE8HgUz8GsiFnD2u0rGZTvdpDLlgULZkZHSaVS8Hnjpr9PEIzL1trleyYreON+2meNHWYNi9i2R+9ZJe3j3LkznW0nJ1Pw+hbolwv5xuWCU2WqGY58aygUwsqVK3HzzTcjn8/jwQcfxMsvv4yVK1dqPnvfffchl8uhVCrht7/9LZ588kkccsghTmxWW3i9XiSTSdWyZDIJn9fb9FzagNTAORIoIpVKtbqJLRFFET5XVtPgOpnG3l59atOZ7ciXzfVgTqYBn5DVtGfJZXagoNNuVO9YGzG6wfQaj0/lgVBANL3ufNbiPuocJyuSyST8PjeKpdbbywV8QM5E73sRAWQmd5lap3y9m+X1eUwf63ZqtqNTOxkd63w5iOnstpbWnU3vBlw2j6vUJrkmh0irJ5lMIhwQkanpw5bOeeASJzWf9yKDVKa1AHG6HEI+u0O1rFKpGJbB3dJhMOQrYtM29bPKaPvc4iQms9qOUa0SRVG3bEkmk/D6zJdPRmdQEESUSupnVXISWDDHmdHp9Z5V2Zz+syqZTMLn0+Ycp8tB5DPbHdk+uzgWCl966aXYsWMHjj76aNxwww340pe+hKGhIfzmN79RtQG9/fbbcdxxx+GYY47Bj370I1x//fWqt5peIooivF4vxsfVjU+SySQiISBtPFVuQ8k0MBSuaNbdblNTUwj7C0jWNA9OpgGvkNEE3lOTW5Evmns6jE8CQ6GyJvBOTYzD49FmyM0GpfVeBqQbXf378UlgOFwxHShVpvfo9sTUIx0nbeBtRTKZxHCogonWOlcD2DsklIne916fFxMT5o6HlUK/WBIR6OKgtJkhodopmUwiGHBjuqC+hjM5L4o5cy8R9dbt8zpTM9XKC7oZuWn7h4SS77vxmvgzmRbhFbQ3o1fIYDzd2n66PV6kJvaolqXTaUSDJd0yuFuC0miojLEt6gjKaJY8n5BBMmP/9ZDNAZGgoClbxsfH4W0xSQQAIV9JE3insgIWz3dmhhu9Z1UyLT2r9GIOr869W4YP6ZR22MVu4tg4pfF4HP/5n/+pWb5q1SqsWrWq+vOtt97q1Ca03VQeiIZdum8t8lvOUJMjQyXT0ninnX54K/dFtTwtBZTpdFo1Fm0+lwZEc2/B0j5KhYhyuJNkMgnPPG2Q4/WZz5QaiUegLdwz0lzHZl8APEhjwmR/imQGiEVEpFKppod0kc7BbCTTwOxYU6uoMpsp9Xh8po+1nL0rl8WGs8vID9JOX9d6mh2ntJ2U96OyjfdEVnr5aXXdnnDzE34Y8Xq9KBaLjjbFanYyiXqSySQSQ7OQTAOjilY9yTR0h9nxCtpsplUejw/JHcbPE9XyNLCg+WFpbRULi9i8XV2wGgXNHmRaPk56jMqWZDKJ4bALmRwaDvuXmxYRMLiO5MB72eKZcjyd82B0oTMzgeie84zxPsq1s8qmJh6Pz3RyoVM4zaiNxieBkWG37pvZrGGX5g3b+rq1AW+7Sfvi1uzLeBoYiblbyuQmM8BIzKVZx+TkJDwe9ftTsSQiGNBmpa2S5kGu2Y40MEvnPBpxCWUUTU71PD4J6VpoYbvHx8cxEnPbUpCbndFJrwbAyPj4OBLDbqRMxETjk61fN07pher78fFxjAy7NdM6lsuAS2htWJfx8XFL1ZxmtWNyASdmdJKPde19N56Wsn21vK7Wgy2P260ZtaZ6zjVlsH4mshMSQwI271C3c5ADqFpeIdPSs9HIeFp6HutlEfWOn+46JmE4tbde4J0rejBvtjMD08ej0Nzn0vNEP+YYjro1tbMul4BSyZnB/e3CoNRGyQwwJ6HfpnROwtdSAZXMAHNHzGernCLti0fnLV3EnHhrmctkGsbrELSfnatzrK0K+AVM14wolUwDc0acqVJOpkXMGWnxOCWTmJvw2lKQB3xAvlC/GqtSEeG2UJjJ22fmerfrPDqhVzKlevejHQqFAjxuF8ple6tWg8Gg45ML5AuiI9X3esc6Nw34PBXVkHO5XA6RgNhSky0Aug0aje4vuTatG8xJeLBjt/ptNzMFRGpup0KhgKCvgqwD7yjJdL3nsfnyySjQTwwL2LpTex071UEo6Bc0s+9Jzyr9fZwd1+6jAOebzrSKQamNkmlg3iy/7gUyf5a/taA0Dcwb0a673ZLJJObPDui2bZk/W7t99UZT0Kw7LWKezjqAvcHTtKj4LDAr7sHUVONSv9E21P7WyrGuVKSemWb30ugasSKZTErraFOmdDIrTXFn9lxa2T47jodTeiFTKpUtAe3DZ++pauUBJAgCYnun4bVTO2a8ciJTKl3X2mMNAIlEHBMTE6rPJhIxtPL8LxRF+Dza+04qg/26ZXC3ZErnJHzYmdSOH623L4mEMzNTJdOQnrs6z2Mr5VPtFKOyOXEPttcE3k6Pe2D2WTUxMaGJOSoVERYexx3DoNRGUmAW1HTUSSaTWDA3qGm7aG3dorSOLghKF8wJaW7oiYzU61C5fZVKBYIgwOuBqZ7iyTSwYI52HwVB0LSnkdufOiGZBhbMDZk61pOTk6o2tGbWvXCOuXUbrqPmHLQSeAT90Lx9a77P4sOuWCxiVsxc9k46560dD6e0miltR0aiWrbUHGtRlMZZTadbe3MxmtqwFe2ovm922t16kskkFs7RHmsBUh8K5TVc2y6+qe8zuO+MyuDJbPN9Fuw2f3YAe1KNm4/Ix8mJktyoHJ+YmJCeMy1mSo0C73Yy2sdKpSI191Pso3x9WEkUdQKDUhsl08DIkKDpWT0xMYFFc8MtZ0oXzYt0vO1dMpnEwrkRTfakVAZmjcRUN0c6nUY0GkUsAlM9xccngcXzIqp1yNOn1XZIMppHuRm1ocP4pIjF88KmAiW5UPW4zQXexRIwe9Zwy0Hp4vkz11OhCPibfAAHfI0zpc1kYMwGM1Km1Gcq491urWRK5c48TstkMppMaaEowuvRBkrNiEcF24PSXs6ULpof0fSoF+F8UKp8piSTSSyaF9Gcl4rY+TFKZQvnaoNmPXYcJ8N1p6XtUGawAWkGpNqArd46jMq++bMD2D2hnS7XSbVPmGRaelbVxgWiKOomcuJRacKhdpRNzWJQaiMp1a9dXiqVMCvm1lS3WF336MKhjmeUkskkRkbi0Lv/4vG46uYYHx9HPB43HaAUS8DcOep1ZDIZRCIRqTe8og2l2UDJzPz1LgGqdnPJNLB4flRTmOmRC9VY1FzgrfcAs2pqampv9ZO0za08gE1lSjNAPCKYLsz0CsR6605Eha5s59TKkFDtaDcJSMc6MSRgfFJ9/cajQCKRaPo6K5VKcLlcPZspdSIonZiYwJIFUW2VKPTLvkRCmk2q2WtbOo+CJuM9Pj6O2bNiKJnsXNkJSxZEkVKMPWp0DJRBqXJueTsk0yJmDbt0g8WEhZdmo+dMbeC9dWcGAa+znYhqn1Xj6b3HWmf88tqOUfK+xGIxU8+2TmFQaiOjcdgA/V7eVhSKwLw5rWc+WiUHmnqMsgW1AWU9xuvQf+sTBG1mWqlQKDScKrQ2k5vMALNiLlMPk2rgHTF/fmsfYM1IDAnVzHErYzJKHZ3qf0bOSsdiMdPXn15PUf11d0+P4VrT09NNZ0rbEXjJjO6NVq6ziYkJxGKxlsstPe3IlDpRfV8ulzG7ZtSL1N721kblViggDRXYjHHFebQ7C+u0pYuGkcnPjJiSyQERneGX5PIz2uI43nrG6wSUUvlkonxPi4a975csiGIyOxNCjW2ZRDTobFA6XNPGWxopRj/wri0Xxvc2ebOjBsVJDEptVLen3lDrGQe/349CwcSgkg6SGqbrzyddm5mRP2tl3/UKYL11SBm2xu3mzGS7atet10vUyMz2ma/mbCWDJYtHZrY5XwCCTT6AXS5BN+utJNcAmNnuUqkEj8ezNxNhrh2xXu1CN6gd48+KdgRessSQummL3DmjlYeP6r6zYZIGpXZkkYslwOuxvyq7NsiUe7zrlX3xeLylcr/RupW6raYhNhRAsTwTXhiNDNDMM8KseqMRWGleZFQ+LV00jHR+Zsi0zdsyiEWcPQ+1Gd5sDgjXPKump6fh9/s1ZbAdNSjtwKDURvI4bIFAQJUlEQTB9HiQjXS6kXI2m0U4HFb14pN7iZrNchoRBG3gbZwpFXWzCLXMdFapbTcnCNZ6mpvdx1JJhMfdevW9IAjweASU91bfOTGlolLSIGOjR5lhM3POJzJSptrl0n/b71XtyJTKQfNwGEjVBKVmz5eR6nUdsT9YaGcW2W7SvPczPxsda6tlnx6jdU9PTyMYDKq2IzcNhLpsRlhlCVqv01arx8mIHLApy/JCoQCfz2cpKDVKNMWGAihXZkKoLTtzjr9g67Xxlq7JmX1sVLtoR02dkxiU2kjOsCkLkUKhAK/Xa1sw2Q1vxIIgwK8Yokm+2GszIFYDNr3h3dTr0L71NXrwmumsUrt9Vg6xlX2UA7BWMt7yiAZKeQemVFQy+wIAWH/IVCqA261tN9fr2pEpldtbu1yC6ppNpqVMui1BqcmMtxXtzCI7QXOsdapEZ4L65juKNSrjlJ0ru2k4KD3ycdIsVzTxsjsoBfY+q/z+6kuQ1WYV6an6sz4pr4Xtu/MYiTk2SSYA4wyvMi4wE5QyUzpABEFQvYnY0f6nXNYP2DpJmUFRtu/UvTlMZFvkgA0wf4PFTDx4zVTfG93ofr+/4cPTShBmx4NDbwgqKVPqXAbdSmEmHw+/T0DBQgfPbi8orWpHFbWybFGGjUZtEZtZd692dLKbnFyoZSZTaqZttR6jl0G5fFS2he/OoHSmTDIaLcXJ60ymPH5yG1azSSLRwogGO8eLmJuwfwY0JU0CZe//jQLvrKqpifnkQid1WajTH/RuAkA7nINZE4rp2VwuF8pyvW0HyAWisrCVChztjavufV9/740KVeU6lIW7nGFr1D4mn8+bypTK61YGxGba3lgPSgXN91ih95LjRKcO1XdmrAelgLnrXf5MtxeUVrUj8DJ64bWj7ZiTwUIvZkqVbekFYaanuFEnwFQqhaGhIduq7/WqW5Wd0IzK4E4SBBGFgvSsMirfq819aob8s4OybGk2SWSllN6VLGPeLGcn26h9Vsln3EzgbcfLajswKHWA8mGgKszQ3LAXyrfMeDzeseEcVAGbomOP0ZzG8r6byRYoAza3210NvOVCpLbdnKxR+xhTHZ0UD45Mbqa6xszNKxcACRO9OcfrNLw3SznUjNcjted1YvgbJWn90gtAo7ZIyu2zwsy6e0k7Ai+jkTCSaRGJodbajsnn0e/TTsPbql7MlCqP9VB4pqe4HGx5vV7NNLytDqkl1wYpnyfyDHKAun1hN3YYDPsLGNsiDVVkFJSWy2W43W7bR3kwSi7U66jbjNrAe9G8OnX9NlA+q5RNC2r3sd7LKoPSAaG8CZQnXXmBDEekWRWsUgZsnbygMpkMolGpZFEWtspejsohmqpjeJoYPF/uTQ+ox1GTCxGXS1C9tcovgfZ0dJrJ5CoLTzPHWu50YLX6Xhl4W6G8nuTvdDoo1XsbN7N9jfI20wURfq/5dfeSdmVK5Qes1JGyfhtvq+s2ex6tatcYrnbSu++AmRcAI1Kv8uZqRSqiVBukvDdSqRSGh4cV6967HRkYDl3UKUOhMl7dKkWayYyo+0IuZ/NaOU560lPAkE5yQXVdC/WTRGZqs8L+IjZtk/YxlXVhyXxnT4KZZ5VR4D1dmEkudHNZy6DUJspx2IxugmbfmpUFTicf3sYF88zNMTw8jMlJ6SaVx3n0eMwNO2R0g9V7ONrd0clqUCozFXgr1t3sAMZ658Dp6nuZ1aDU5VIP9Kz5bJPHuhe0I1OquhYU7bZTWWC4xekEnRwLs1er73XLPkXZrHe8W8mU6r0MmimDu0UsAmzeLmVhGm2f3c1EzDxPGo2NOpUHwg1q44dCZYztDbzTOQ9GFw23vO31mHlWqcpgncDbynjTncCg1CZyj1fAgaC0Sx7eZgrEZrfPaB3yEFRK0wVpGkUz32e1o1OzWWnlEE1GbDlOqnMg2JYpNZMVMBNIK7evUaDeLde1nlZHuWh3RyflNVwuSxk2u9Ztt16svle/AAh1g0FVrZkNwZbyWqqXse22oDQxJGDrzr3b3YVBaaPvNBPoKwPvQsmNWfHmZoAzy8yzqlHg7fF4OtovpREGpTapvQn0GlbHI0JTjbmN1t1u2syMXI0g6hYAysK50TO+tt2sch1yBkLc+7OVYMZMRyefV0ChVH87jKj2se4njY+TFU5kSn1eGPaUL5fFalMJj8ejaTdnZvsMP9slzVL0yANQN6t2rGIn6L2g1Go2uC4Wi9Xe5i6XNGSbXZzOlJZKItxue9dZe13LbeTzBSCwd+QLj8eDQqGgehGOBJufqUg+4spRTYyy492YKZ0d92D7Hmlw7mxOmnhAKZ/Pw+eTCq6gH5iyYRxvmVHZomwbbEdQmhgSsGW7dIJFoNre1ynKNt6mYg7FPnZ+MElzGJTaZHxSukCB+jdBM425pXVDs+520+yLqvf9zPY1EzQrAzajTi/yBATKmzEYDGJqyrjUtzp/uXLdjTrflMtlS4XQuA0vF3qFaquZ0noTO8jTKDa3ffWnl7XjeDillXnvgfZkSs2ULY2m4TXDTNMUK5zOlOYdmExC2YHPKJiRy2blZ5ttQpGfnmlvXbsd6jJYPQpAN5k74sPO8ZmX2NpjoW7faW/LZaNnkvI7E1GhbgfccYOxVZWUgXe7KTvOKuOCiYmJartjuVwol0WYHNmq4xiU2kQZzAwNDVXbVSobHTc7lVptwNbJ6nu9fUllZ8YYlbdP2UsUkLNx9dsXNgq85Z6HUscq6Q6rnc2ilplMqWY7TGYzU6kUYrGY6XVP1AS8zWZKq+egGpSKTU8zCkgP8LzBWP7K42FGqVSqZtgSUdStGVCuu9sa35vpIFdPuzs6GZUtyjbezbJ7CkinA3Yn2lirghmD4yFfw3Y0fTDqTW90ztNT0qgA3WTBnCD2pIxfiOzuCa9ad0a/bFF2FDOTKW1U9s2b5cOupLPz3RupTaAoR2hw760qSESl2lnlM7rbMSi1ifICUQZjVm4CM+vuljalyrYq8pihyu1T7jfQeN+Vg+fL66ide1xeh9EQVHrMZrzkb0lmzFex1z58fJ76gXepPDMft13V9+Ny9X0LmaGAzzhTmqzJFjTKaOidLyO1Ge9uamdopoNcPe3ozDM1NYVQSOpdKR/r6YIIvyIga/Y6U59He2fbUQ707YTcNFp6SdOjrRKV7nPl3SAf69pyoZkkYG1venka3npttjs9BXWtRXND1ZdSvU3THCcbv9soSSSKYjVgs6P6fv5sKfAulSpty0RWn1UGzcF0n5k1++L1epueVdBpDEptUnvS5TZAyrcWM4PIN1p3twSltVMbyowK5kYFgF7Alk6nq0NQSesQdG+wesxmvNxuqS2aUWGmx+o+KjV7HuURDWa+T2z5IRz01c+UNluY2VHod0ovZEqBmQeQNPi4qDmmzVxnxWIRHs/MdIl2D2zucrkcnS4550CmVC+5UDvTnlHZB1hv21v7MiiXRcp1u92NRzXppCULopjMGp9rveC9mXG8ddetCNiMrjc7yqdFc0NIpoGtO9MIeG0e0NeAPKpJ7bMqlUppPqsOShXBape14VdiUGoTZYZNyY6emHZk2OxQW4jIu6a83Y2D0vrZFmWZ0SiwrS0s6rWbM5vxkrMOtRnveu3xOhGUqtZhU0enQJ02pa0EOY0L/e7rMSzrhUypkureUGTYmrnO5Fl2atfdK5xoU1qbXBhPzwy9JTMqt8JBqaOPFUb3nZkyuFssXRRDJu81nD++dl+Gws2N463HKEmkfR7Xa1LWuHxasiCKVNaFV7dMIhpsT492o2eV8T62Vo63G4NSm9Q+DADt23G8QRs7I8q1eL1eFIvteSOrZaatlNyovHa2GasBm9E6xtPaRv31Mppmq+/ldev1EjViOfBWfl+ThYLympILp1yLD+GgT0DOZKa03nZrMmwNC339B0c36IWOTrUPn/FJbeeMZq6zVl62uoE8A5mdlMc66BeQn9aWQ4blVqTxjHa19O47vXXXbls3iYR9KFVcDee9l9l5nZnJctqRKZUD77GtGcQi7TkP8r2ezWufVbUv09JnRd1rlUFpn1P2kAf0H0pBv2CYkeoF2Wy22oZNVttL1DDLaaFg9vl8KBaLdTKl6jfYer3kzXZ0UgaUZttmGQXNeoolER7FMDV29DZ3uwWUK9JDuKVMaZ3q+3GDh6OeZDKpybDV630/kVFnmuzoKW6Xbq++r1QqqutUzjLVPkibmb5V97q2cQpIp7VrMgmjKtHaDjzNBFtGQUShUNAMVZbNNR7kvZOMgjsr5adVegFbPp9XHbvEUP3vqy379ETCPpQrLmzdmauOvuO0es8qw2dmRh2fMCgdAFM1N0EikcC2bdtaqgKUdVPzdeVNEAoAW/dog/F8Pq8pmOv14K0N2OTv0axjb+attmdqvRvMbMYrYfDgUI4RWEt/+/TXX9uTUw68rTAagqpQhKpzi1X1hoRKptXTA9brJW/1YSxPoyiLxWK67aI6odXqe6c786TTaQwNzdwE8jS8Vu4NI/r3bndm4/Q4Me2u3otq7bE26n2fGLLeUax2+lKj+87nBXYku2/eeyXlaCmq5Zry094OdapnVSiErVu3qr5PzngbyRg0O9CzfXces+Puxh+0gTyqiV5coHvvylX9iprcbhvtRIlBqY1Uvd7icWzYsEFT1WI1wDQK2Dqh9nvjUeCVrdpmC3JAabZqZsKgN73ROozacukxm/GS1117aOtVw1rZR71sgdXzqDcElQCpXVkr10SjIaHMVvtoRiPwCijVaWZVu8Xd9PbeaqbU6c48ek1pBNjTdqwfqu/tzJTWZtgAqZww2+6zmeNntG69MnjDtu7tMKh3TcqcvM70ypZXXnnF8lBdZspVQQB2JUuYk2hDeh7GxykYDGLbtm2qfZQD79raxW4bF1qJQalD4vE4Xn755ZbHq5vIALGaG9rtdjecWacdqkGpwVuwtsAxyDhaLLQqFSkzVF1e58E7PT1dnTWk0b7oVVFaCcIaB6WtvUzYMf6hnsZDQs38bOV4WNVNQWmrmVKnGR1rBqX2d3TSfQEQgD01VezyNLzaUUOaCEoz5s7jTGKgm+rTZrgEEdvHy7rlu9VhA1th1/NYjygCuyfKmD+7PeWF/KyqjZfr7SM7OpHhBWJ12Au9DlRm5iC3m/6QGgJe3qLtoSiKYssBm9vtxs6dO1XriIb0e2fWu8Fqxzo1Eo8CYztETXWN9aDUWuBthd7D0edFddq5ZtXLlEpNA8y9APRbUNpKphRwtgOK7rBDkDo12B2Uej31M97dxu5Mqd6xHgoDG7eLqrLZ7XajXC4bjq9sRSqjrQ3avXu3pvmOURncLcKBIp7fOG04Mo1yf+wKSisV0VLA1iqXIGJXClg412Rdf4viUWBsu/6zSm8f5WY9DEoHiF6QaVRdMByRqp/N0gvYOpF6r337B6SL/OWt2mDL5XJh9+7dqn0fDhtPVajXOzMWi2maP8jt5mrZNbzSKzr7Uu9Y186PbrX63u12W2pXqvdwjEdbnwKyXqa09nhbDUqNwrLctKhpB9tNBaXVmcDaTe9Yh/zAlt3q66yZUQCsnMdWOBW0tyNTGo/olxd6pA481va1ImprgzZs2KDKLMrr1iuDu8VQqIwXN+lnSnVHp7Gh7bLeEFRGz2OjJJEoiqav+XCgiG3jfiye354pk4zOeb0mCtMWkgudxqDUBnpTvCUSCbzyyiuaadQSFnuy1vbql9fd7gtKOZ9zdTv2BnK12xeLxbBr1y5VwFZvoGe9KfWMjp+eej2Mzba1TAzp74uVY11vjnC98xiPxy1lvI3OwVSL/WnqdXSqVe9Y622fxy21i66lN4VfMz3FnWJHptTJtt+618IQsHG7OsNm17rt5vf7HZtRxu6OTvrHWtAtL/TU6wBplhxwmC2Du0U8CmzYLpg+Tnb0vjd6ZuodP6MkUSZnvpPTcKiM8akYli+ONbfBFtV7Vunto0uA5tnbTZ1KazEotYFeFswolW51yj6jdbc7KDXK0hm9seltn9Ez2mgft2zZogkMpnWm1LTjeMQiwCvbtG2z6q27NuioG3jXTBvYaN2669A9B0JLU4wC9avva0/Z8PCwYWFmJZPbLde1kVY7OjnN6FiPT6ozbID14Lh28HzA/hFAnBzHtR3V9/Ho3vJCJwOo1xnJalBae7z1OrHI6+7mTGliSMDm3T7HjpMeS8/jiP536jWbMxKLAtNiAolYe8qL6rWn86zS28fhCDA5pV6H3NSkGzEotYHRTTA5OalbiPRTUDqZ1d8+Kw9CvQJAXkftegSh9eBOj9cjoFx27ljrzQ5iT1Da+gNYqr7XZjNrp1EEpMLMaCxRo2pOw0Jfp1lKtwSlvdjRKR4VmppnvVa5XFZNggAYZ7yb5eSMV/mC6Hz1fRQolqQRJpT8fj/CYXWqOhRovTYDkII4s2Vwt5gd96JYcmkmM9C7vwJ+AdM2JM+lBIC2bLHyPLbSB0Aan7R9Q6bJbbxNxxyR7hpWshHHgtJkMokLLrgAhx12GN73vvfhb3/7m+7n8vk8Lr/8cqxcuRInnHAC7rnnHqc2yTFGD1jl/6vL+ywoVf6/ujwet9Sg3Chg01tHPKr9vkAggOnp1mcl0Fu30bE2GjPUiB3n0egctDLvPWCcKZ3ISBlks/QybEY1A91yXRvp1UypUUaq1UkJYja0XVZycnKBdmVK9Y61XrllNVOdmxZ1az/01m1UBneLuSM+BL3a8+zUSCKAcdmi/H91ed3yydx5mx33wgMbbw4T4hHjZJBy/GLA+FrtVo4Fpddddx1mz56N++67D//yL/+CSy+9VHcqyJtvvhmpVAp33303rrnmGlx77bUYGxtzarMcoXcTRKNRuN1uG4LS1jNsdjAqmAVB24bNKKD0eaUZoDTr1hmntH5Qqi0s7Og0YSUo1QvAAOP3Zb0Ar7sypTrfZ5AtMDrWpVJJk2GzkonopqDUrkypU515jLLSeuerXpMLPbojbRhkvJvlbKa09Rc1JcOgVOeFzajcsnIZGFUdGwWlbjcQ6dL3pwWzA/C7tefZKCi1424xKluMArZWM6VzR3zwu6caf9BGRs+qWCymO0LDwAelU1NTePDBB3HeeechEAjgyCOPxIoVK/DHP/5R89m7774b55xzDiKRCA466CCsXLkSv/3tb53YLMeM6xQigiAgkUjo9pa00phbb6qzTvS+15tzORoCRoa0bdjqBZRGBYBewGY2U2oXoxtd71jrHQ8A8BsE3qUy4PG0NoqC3nfGo6136gj6gZxOplQaFaG1ih+j8V/1RlwIBAKOzoJkhR0dnfx+vy0ZfD1TU1Oa7auXvWu1vIhHBVunGnU0U2pz73uj+85sptTy9xnMFa+37uGwVAZ3akKVRhbOC8MraLOIRuWnHfSOXzQaxaxZs3QCNvPlk5EFswO62WAnGT2rrDwzfT6fY+VTKzyNP2Ldq6++ikgkglmzZlWXveY1r8Err7yi+tzk5CT27NmDffbZp7ps3333xTPPPKO73kKhoOmx6fF4TA2ObofMVAVPb/BhZ64CZRz291eA9x2hHVpi+fLlAKCqOotFgOfHgPXPmXsnfHUHMBwSVeuOxWJ46aWXsH79+hb2xprnnnsOq1at0lQDrlgAzbJYLIZ4PK5ZHo8ADz0lYtl89b5PZgGXS7uPRuuIRUTNsS6Xy5rjIWd8atch/6xZd1S77kgkgi1btmjW/eyzz+pvXxR44AkRI0Pq7csX9I/TM888Y/o8jo+Pw+v1aq6ngE+7biv8HmDrbmD9c+p1rH9eOt61x9rv92PdunXwer2q5cViUbuPEeDBJ4DXLFKv49kx4B1v0K47l8uZPh6VSgU7duzAzp07LTWlMGPbtm3w+/0tHddAIIB169ZphlKzQy6Xk4atUaTgYhH5fNVck/E4/vznP5sKTEulkuYaA6Trev1zgNtlT+Z3z/QoHnsBKAcrEIQKEjrXsF6v91JJmtd8uOYlds+ePdi4cSMAYMu2ZXjm72MI+VtrsiDbvHkzotGo+r4LS8dE757WO34QgL89WzHV5vfJl/XXLWfClMsFAVg2r7X73y565eqS+RGUpzdg/fo9qs8+8sgjmn0BpP15+Fn189Wq518Fjv8n/eexXvn02/Xa5/HfNwAnHWZuTPGF80II+yfaeg6MnlVz5szR3Uej62nPnj2YN29edZnRs9EuZsppR4LSXC6naewdDoeRyajfmKampuB2u1XVZOFwGFNT+qnw2267Dbfccotq2cknn4xTTjnFpi2vb+eEG394MgI8qX61cgvAkDuNsTH1ifzkJz+paYrgKgiYFR7C7Sabzv7TayvYskWdXqxUKnjta1+L22+/3fpONCmRSMDtdmv255MnBjA2pn5LjEajOOKIIzSfPXRfHx58Moi/PKle95EHlDE2pn2bPvHEEzXreOOoB5GAiLGxsuazesdDbx2yTZs2qX4+5TA/cpPTGKsZImTlypW66z7mmGM06z7mQD/uXaet9j32oBLGalYcCoUQCARMn8cjjzxS833lEnD8wX6MjTX/xiuKwFtWDOH2e7RPghPemsXYmHr2sJNOOgk/+9nPNJ89/vjjNds3O+RCIR/VXO8RL+CvTGJsTF3oH3PMMW29ro285S1vwbZt21rKQB177LH45S9/aeNWzdC79vyigHe+0YuxMfWL+1ve8hbcd999ePzxx02t+6STTtKse7/5Hvzqr2G8ssngjyx6essSbM0LeGbbBB58Koj//IQbgqBe+Zo1a/CjH/1IteyRF/x46O8BfPp96uYIX/rSl1AsFhGLxfDyhjNw5//cDpdgz4P1He94h6asKFeADx6uve9e97rXweVyaY7f6rcG8eN7zSdP3vnmKYyNqccwfve73w1BEEyVwZ2kPFYelHHkPo/j9tv/ofmc3nX2nrcFcMe9raW5E0HAXdSWLXrP46jbBS+05ZMgAMNe7TNdz8JECae9s9DWZoenvEP/WXX++edrtmNexIVDlrs119Phhx+OHTt26GZLa693uyxbtqzhZwTRgUZPzz//PD71qU/hd7/7XXXZl7/8ZQQCAfzLv/xLddnk5CT++Z//GX/605+qgel///d/45lnnsGXvvQlzXo7nSmtVCrYtGkTFi9ebHtmhtqH57E/8Dz2rv/6r//CggUL8O53vxuXf0fEoftuw3HvmFc9j5VKBStWrMCGDRtUf/eLPwO/Ww9840L1+s4++2xcffXVmDt3LlZfBvz8mjbtCFXxfux9Tp/DjmVKlyxZgkwmg927d1er8F988UWsXr1a9bmhoSGMjIzgpZdewgEHHAAAeOGFF6rV3rV8Pl/bAtB6XC4Xb7o+wPPYH3gee08oFML09DRcLhdGhitIZd2q85hKpbBnzx7NeU1lRExkRM3yiYkJjIyMwOVyQUCF10MH8X7sfZ08h458aygUwsqVK3HzzTcjn8/jwQcfxMsvv4yVK1dqPnv88cfjO9/5DrLZLJ5++mn88Y9/xLHHHuvEZhERURdQdnSKRYBUVv0oSiaTyGazmml4k2n9zpKlUqkrEhZE1BrHQuFLL70UO3bswNFHH40bbrgBX/rSlzA0NITf/OY3qjag5557LiKRCI477jhceumluPTSS7F06VKnNouIiDpMOaOTNAC8NihV/r+6PCMi2d4hIYmojRypvgeknl3/+Z//qVm+atUqrFq1qvpzIBDAVVdd5dRmEBFRl1EO/xWPAqkpbVDq8/mQTCYxZ86cmeVp/TF1iag/sOEHERG1VW2mVK/6ftmyZdpMaVo7WQfg3CQFRNReDEqJiKitlDM6xSPARE1QOj4+juXLl2vGVp3MSpN2KIPQYrGomUmMiHoTg1IiImorZUenxJB+m9IVK1ZoMqWiKAWlWcXMlRMTE47NDkRE7cWglIiI2kpZfR/0A/mCepICo6AU0E5XbDSPOhH1HgalRETUVsqOTnqTZiWTSSxfvlwTlArC3qA0o/6sHJQWSyK8rMkn6lkMSomIqK2UmVIAqO2mpBeUiqIIUQTiEcEwU5qbBgIcrpSoZzEoJSKitlJ2dNKTz+cxb948VVA6lQdCAW31/fj4eDUozRek5gBE1JsYlBIRUVv5/X5MT88MOCoAqFTUn4nFYqqgNJmWAtJ4FBifnPlcMplEIpEAwEwpUa9jUEpERG0l1DQkjYYqmMyqP+PxeFAul6s/y0FpYsi4oxMzpUS9jUEpERF11HC4ouq8JAetyuA1mQYSUWFv9f1MK1S2KSXqHwxKiYioo4ZClWr2s1wuw+XSPpqU1ff1OjoF/Trd+YmoJzAoJSKijhoOzwSlqVQKw8PDms8kM4qgtGZIqFgsBoDV90S9jkEpERF11HC4gvG9QamyN73X6612iBqflALSSBBIT838balUgtfrBcDqe6Jex6CUiIg6KqbIlCqr4+PxeLUHfjItIh7VdpJSYqaUqLcxKCUioo4aClcwoQhK5SGeEomEIiiVMqW1lEEqM6VEvY1BKRERddRwyEymVBoOCpDGNdWTKwBBBqVEPYtBKRERtZ0gCBBFaWgn5ZBQRkFpekpqTyoTRRGFQgEez8xk9/lpVt8T9TIGpURE1HaBQAD5fB7A3o5Oe2dpMgpKgZmq+kgIyOTUnwWkTCmr74l6F4NSIiJqu0AggFwuJ/3bJyJfkJYre9/XBqWyeETqjV8blLKjE1Fv8zT+CBERkb2CwWA1U6pU29FpfHxc8xl5qtGc4rMAkJsWEfBx8HyiXsWglIiI2i4YDFYzpQAgd6LXq76X257K4lGhGpSqqu/ZppSopzEoJSKitlO2KVUqFovw+aSGoXJQms1J7Uhl8lSjtUFpnm1KiXoa25QSEVHb6WVKy2V1RnR4eBipVEoaozQys1wOSjUdnZgpJeppDEqJiKjtlB2dAGA4DKSyUFXVu91uVCrSFKTKgfPloFTZKQpgRyeiXsfqeyIiarvajk6JvYFmLVEU987mNNOBKR4FxtOipqMTq++JehuDUiIiarva6vt4FNg1UVYNhi+rnWI0YdCmtFIBXC72vifqVQxKiYio7Wo7OsWjwOZtGcRiMdXnBEHQBKVy9X1+YkLzeSLqXWxTSkREbVebKY1FgS07p1SZTwDw+/3YmSxW570HgFAAmMoDlUoFbre7XZtMRA5jUEpERG1X29EpHgG27cprgtJ4PI7tu/KqTKk83Wjt+KVE1NsYlBIRUdvVdnSKR4Ede4r6QemeompIKABgOErUfxiUEhFR29VmShNDwO6Jkqo3PSBNNbp7oqzKlBJRf2JQSkREbafJlEaA8UnoZkrT2TLCwZoViBX4fIE2bCkRtQuDUiIiaju9IaFSWUE3KC0Ui9V2pDKfu4DI8Ly2bCsRtYftQ0I988wzuOqqq/Dqq6/i9a9/Pa688krMnz9f97MnnngixsfH4XJJsfGqVatw2WWX2b1JRETUZWqHhPL7gNx0RTcoLRYL2r/35BCILKj+zE5PRL3P1qC0UCjgs5/9LM455xwcd9xxuPnmm/H5z38et9xyi+HffPvb38aBBx5o52YQEVGXq82UAkCxWEQ8Pke1TApKi5q/97my8IVmPlsoAj6vM9tKRO1ha/X9o48+imAwiNWrV8Pv9+PjH/84nn32WWzbts3OryEioh5X29EJAAoFbe/7WCyOYkEblLrFSXiCM0Ep570n6n22ZkpfeeUV7LPPPtWfg8EgFi1ahFdeecWwCv8zn/kMRFHEG97wBlx88cWGnwOkTGyhoK7G8Xg88PnaM9lxpVJR/Z96E89jf+B57G1+vx+5XE51HkWxDLfbrTqnbn8MYmmr5jwL5STgi1eXZ3OA38vroVN4P/Y+p8+h3FSzHluD0lwuh3A4rFoWDoc1b8Oyq666Cvvttx+KxSK+/e1v4+KLL8aPfvQjTYN22W233aZpCnDyySfjlFNOsWcHTNq0aVNbv4+cwfPYH3gee5MoikilUtXzt2nTJlTKZbyyYQxuxbNr004XSvndGBsbU/19OvkqypVl1eWbdnlQKkQxNpZs2z6QFu/H3ufUOVy2bFnDz1gKSs8//3w8/vjjur8766yzEAwGkc1mVcuz2SyCwdqxPCQHHXQQAOmN+dOf/jSOPPJIbNmyBYsWLdL9/Jlnnok1a9aod6DNmdJNmzZh8eLFpiJ+6k48j/2B57H3BYNBLF68uHoeA56XMJwYxcjwzGeSBSDoXYfR0VH133r/gPDwIoyOSs+LKQCzR4DR0SFQ+/F+7H3dcA4tBaU33nhj3d//5S9/wV133VX9OZfLYfPmzVi+fHnDdQuCYJghlfl8vrYFoPW4XC7edH2A57E/8Dz2LkEQqufO5XLB68oilRUwOz7zLEhlRXiFjOYcF3M7URQj1eXTBRGhgMhrocN4P/a+Tp5DW7/1zW9+M3K5HH75y1+iUCjg1ltvxf7776/bTnT79u146qmnUCqVkMvlcMMNN2DevHlYsGCBzpqJiKifFYtFBNxTGJ9ULx+fBHxCVvP5fHorpssztXD5AhD01U9sEFF3s7VNqc/nw5e//GV88YtfxLXXXov9998fX/jCF6q/v+aaawAAl112GbLZLK6++mps2bIFgUAAb3jDG/Af//EffMMiIhpAyWQSw+EKkpma5RnA68poPp/PbIOQn6k5yxWAQOcr0oioBbYPnv/6178ed9xxh+7vlAPjr1ixAj/5yU/s/noiIupByWQSiaiAZLpmeRqI+IvI5XKq/gkuTGO6OJMZzU1zSCiiXse0JBERdVwymcRIzK0TlIoYibkxPj5e9+/zzJQS9TwGpURE1HHJZBJzEl7dTOmchBfJpHqop9ppRZkpJep9DEqJiKjjkskk5s3yY3xSHWyOTwLzZ/s1QWktzuhE1PsYlBIRUUe4XC6Uy2UAwMTEBBbOCWkypblpYM5IVBWU5nI5BAIBCAJQqYjVz7H6nqi3MSglIqKOCAaDyOfzAIDx8XEsWRDVBKUAMDKSUAWlyWQSiUQCwxEgtXe0KFbfE/U+BqVERNQRgUCgGpQmk0nMmR1Dqaz9XDwe1wSl8Xgc8QiqQSw7OhH1PtuHhCIiIjIjGAwil8sBmAk09cTjcVXve/mzgehMUJqbFhH0c/B8ol7GTCkREXWEMlM6MTGBWCwGZTcnub2oYaZUMa4pM6VEvY9BKRERdYQyU1oqleDxqCvvJrPAcEQblI6Pj+8NSpWZUrYpJep1DEqJiKgjAoFANSiVedxAsSRlSJNpIB4FotEo0umZHlByR6d4VBoyCuCQUET9gEEpERF1hLL3vSweBSb2TnUvB6Uul0s1WL5cfZ8YUmRKWX1P1PMYlBIRUUcoq+8FQeqkpOxRn8wA8Yi289JMm1JpGlIAyHOcUqKex973RETUEXJHp0KhAK/XCwCqzktyprRWtfd9SQpcAUDETGBLRL2JQSkREXWEnClNpVLV4aCU7UTHJ4F5iZnPi6IIQRCQSqUwNDSEQHEmq8pwlKj3sfqeiIg6Qu7oNDk5qQpKlZnSxJD071AohKmpKQBScOpyuRDwC8gXOrHlROQEBqVERNQRckeniYkJJBJSSlTZeSmZFqvV94mEeqpRIuo/DEqJiKgj5KA0lUohFosB0GZK5aBUOVapsu2o/C/loPtE1JsYlBIRUUfIHZ201fd7xynNaINS5dBQRNRfGJQSEVFHGHV0knvUS7M07R0qKh7H+Pg4crkcgsFgdR0uF1AuM1Al6gfsfU9ERB0hZ0rL5XI1KI0pxilVkjOl8hSjsuEwkMq2a4uJyEnMlBIRUUfoZUq9HgGlsvazclAqj1FaXb53CCkOCUXU+xiUEhFRRyiDUrn3vZIy0JR738vz3leXDwnYtgcIcN57op7HoJSIiDpCrr5Pp9MYHh6uLhcAVCoilBM01cuUbt3NKUaJ+gGDUiIi6gg5U1qpVOB2u6vLRUjtRIcjM5+tF5Ru2wMEGZQS9TwGpURE1BEejwelUkmz3OsGtu8B4oqgNBKJIJ1Oazo6xaPA1j0iM6VEfYBBKRERdYxyIHxZPAps2DYzRqnyc5pMaWRvppRtSol6HoNSIiLqGL3B8BNDwCtbpU5MtbQdnYAtu2bGMyWi3sWglIiIOiafz8PnU9e9x6MCXtkmqjKlgJQt1e3otIcdnYj6AYNSIiLqmFQqpep5D0iB5itboQlKASCdTiMajao+y+p7ov7AoJSIiDpmenoaQ0NDqmXxKPDyFm1QGg6HkU6nVe1QfV5psH1mSol6H4NSIiLqmGAwqJspfVknUyoPC1UrHmWmlKgfMCglIqKOCQQC2qA0AuSm1UNCAVJQWtv+VP48g1Ki3mdrUFoqlXDJJZdg1apVeMtb3oLdu3fX/fzmzZtx1lln4bDDDsOaNWvwwgsv2Lk5RETU5QKBAGKxmGpZYm9tfm2mNJFI6E5Hmhhi9T1RP7A9U3rwwQfjy1/+sqnPXnbZZfinf/on3H///TjppJNwySWX6A6kTERE/SkYDOq2KQ36gUDNME/xeFzV877280TU22wNSj0eDz70oQ/hwAMPbPjZjRs3YmxsDGeeeSb8fj8++MEPolwu46mnnrJzk4iIqIvpVd/HIjPZUqV6QSkzpUS9z9OpL96wYQNGR0fh9Xqry17zmtfglVdewcEHH6z7N4VCAYVCQbXM4/HotjFyQqVSUf2fehPPY3/geewPclCqPI+CACydqz23w8PDiMVimuWxCOD3iqhUtAPxU3vwfux9Tp9Dl6txHrRjQenU1BQiEXUr9nA4jKmpKcO/ue2223DLLbeolp188sk45ZRTHNlGI5s2bWrr95EzeB77A89jb/vIRz6ChQsXas7jFWs8GBtTN+eaO3cujj/+eIyNjamWv/dtHkSEEmoWUwfwfux9Tp3DZcuWNfyMpaD0/PPPx+OPP677u7POOgtnn3226XWFQiFkMhnVsmw2i1AoZPg3Z555JtasWaNa1u5M6aZNm7B48WJTET91J57H/sDz2B8WL16sex5HR82vw8pnyRm8H3tfN5xDS0HpjTfeaNsXL1u2DGNjYyiVSvB4pM148cUX8dGPftTwb3w+X9sC0HpcLhdvuj7A89gfeB77A89jf+B57H2dPIe2f2uhUMD09DQAoFgsVv9da+nSpRgdHcX3vvc9FAoF/OxnP4Pb7cYb3vAGuzeJiIiIiLqc7UHp+9//fhx22GEAgBNPPLH6bwC45pprcM0111R/vvrqq7Fu3TocddRRuOuuu/DlL3+5mjUlIiIiosFhewT4y1/+0vB3l112mernxYsX47vf/a7dm0BEREREPYYNP4iIiIio4xiUEhEREVHHMSglIiIioo5jUEpEREREHceglIiIiIg6jkEpEREREXUcg1IiIiIi6jhBFEWx0xtBRERERIONmVIiIiIi6jgGpURERETUcQxKiYiIiKjjGJQSERERUccxKCUiIiKijmNQSkREREQdx6CUiIiIiDqOQSkRERERdRyDUiIiIiLqOAalRERERNRxDEqJiIiIqOMYlBIRERFRxzEoJSIiIqKOY1BKRERERB3HoJSIiIiIOo5BKRERERF1HINSIiIiIuo4BqVERERE1HEMSomIiIio4xiUEhEREVHHMSglIiIioo5jUEpEREREHceglIiIiIg6jkEpEREREXUcg1IiIiIi6jgGpURERETUcQxKiYhI48gjj8SFF15Y/Xnp0qX4+te/3rHtIaL+5+n0BhARUfdbv349wuFwpzeDiPoYg1IiImpo9uzZnd4EIupzrL4nInLIPffcg3e84x2IxWIYGRnBu9/9brz88ssAgI0bN0IQBNx555046qijEAqFcNBBB+Evf/mLah3/+7//i9e//vXw+/1YunQpvvrVr6p+v3TpUlx11VU47bTTEIlEMDo6ip///OfYtWsXVq9ejUgkggMPPBCPPPJI9W/27NmDD33oQ1i0aBFCoRAOPPBA/PjHP667L7XV96lUCueccw7mzJmDoaEh/PM//zOefPLJ6u+ffPJJHHXUUYhGoxgaGsKb3/xm1TYQEdVippSIes/UFPD88+3/3v32A0Ih0x/PZrO46KKLcOCBByKbzeLzn/883vve9+KJJ56ofubf/u3f8JWvfAWvec1r8G//9m/40Ic+hJdeegkejwePPvooTjnlFKxduxYf/OAHsW7dOnziE5/AyMgIzjjjjOo6vva1r+Gaa67B5Zdfjq997Wv46Ec/isMOOwxnnXUWrr/+enzuc5/DaaedhmeeeQaCICCfz+PNb34zPve5z2FoaAi//vWv8dGPfhTLly/H2972tob7JYoiTjjhBCQSCdx9990YHh7GzTffjKOPPhovvPACEokE1qxZgze96U246aab4Ha78cQTT8Dr9Vo52kQ0aEQiol7z6KOiCLT/v0cfbWmzd+7cKQIQn376aXHDhg0iAPE73/lO9ffPPPOMCEB87rnnRFEUxQ9/+MPiscceq1rHJZdcIu6///7Vn0dHR8WPfOQj1Z+3bdsmAhAvv/zy6rK//OUvIgBx27Zthtt2/PHHixdffHH15yOOOEK84IILVN/zta99TRRFUbzvvvvEoaEhMZ/Pq9axYsUK8eabbxZFURSj0aj4ve99r9EhISKqYqaUiHrPfvsBjz7ame+14OWXX8bll1+Ov/71r9i9ezcqlQoA4NVXX8X+++8PAHjDG95Q/fz8+fMBADt37sR+++2H5557DqtXr1at87DDDsPXv/51lMtluN1uzTrmzp0LADjwwAM1y3bu3Il58+ahXC7j2muvxU9+8hNs2bIF09PTmJ6eNt2R6dFHH0Umk8HIyIhqeS6XqzZPuOiii3D22Wfjhz/8IY455hicfPLJWLFihan1E9FgYlBKRL0nFAIOPrjTW9HQiSeeiMWLF+OWW27BggULUKlUcMABB6BQKFQ/o6zSFgQBAKrBqyiK1WUyURQ136O3jnrr/epXv4qvfe1r+PrXv44DDzwQ4XAYF154oWq76qlUKpg/fz4eeOABze9isRgAYO3atfjwhz+MX//61/jNb36DK664AnfccQfe+973mvoOIho8DEqJiBywZ88ePPfcc7j55ptx+OGHAwD+9Kc/WVrH/vvvr/mbdevWYd99961mSZvx0EMPYfXq1fjIRz4CQAoyX3zxRbzuda8z9fcHH3wwtm/fDo/Hg6VLlxp+bt9998W+++6LT3/60/jQhz6E2267jUEpERli73siIgfE43GMjIzgv/7rv/DSSy/h/vvvx0UXXWRpHRdffDHuu+8+fPGLX8QLL7yA73//+/jmN7+Jz3zmMy1t2z777IPf/e53WLduHZ577jmce+652L59u+m/P+aYY3DooYfiPe95D+69915s3LgR69atw7//+7/jkUceQS6Xwyc/+Uk88MADGBsbw5///GesX7/edNBLRIOJQSkRkQNcLhfuuOMOPProozjggAPw6U9/Gtdff72ldRx88MH46U9/ijvuuAMHHHAAPv/5z+MLX/iCqud9My6//HIcfPDBeNe73oUjjzwS8+bNw3ve8x7Tfy8IAu6++26sXLkSZ511Fvbdd1+ceuqp2LhxI+bOnQu32409e/bgtNNOw7777otTTjkFq1atwpVXXtnSdhNRfxNEvQZKRERERERtxEwpEREREXUcg1IiIiIi6jgGpURERETUcQxKLahUKtiwYUN1rD/qTTyP/YHnsT/wPPYHnsfe1w3nkEEpEREREXUcg1IiIiIi6jgGpURERETUcQxKiYiIiKjjGJQSERERUccxKCUiIiKijmNQSkREREQdx6CUiIiIiDqOQSkRERERdZzHzpXdeuut2Lx5M6644orqsrPOOgsf+chHsGTJElx33XV46aWXsHDhQlx22WXYf//9UalU8NWvfhX33HMPSqUSFi1ahBtvvBGxWEyz/kKhgEKhoN4Bjwc+n8/O3TAkz3LAGSt6W2X7drh37UJl8eJOb4pzxsaAJ5/ULvf5gH/+Z+n/Pa7t92OhANx/v/T/Wm98I7BkSXu2o89UnngCoUcfhThrFiqC0NxKBAFYuRIYHrZ343rVxATw0EOAKLbtK0VRRGj3bu15XLgQePOb27YdjvrjH6Vj204HHwwsWtSWr3K6THW5GudBBVG076rdunUr1qxZg3vvvRc+nw/btm3Dhz/8YfzqV7/CySefjEsuuQQrV67EQw89hOuvvx533nknHn30Udx000246aabEAwG8eKLL2LJkiUIhUKa9d9888245ZZbVMtOPvlknHLKKXbtAg2A2RdeCCGXw86bb+70pjhm3mmnIfinP+n+bseNN2Jq1ao2b1HvC/3mN5h7/vm6v5s6/HDs+P7327xF/WHJwQfDbcODPvmpT2Hi059ufYP6QPzLX0bs29/u9GYAAESfDxv//nfAY2sOrO08mzZh8RFHtP17s0cfjZ01cU+vWrZsWcPP2HqVLFiwACtWrMCf//xnHHXUUbj33ntx5JFH4k9/+hP22WcfHHXUUQCAI488ErfeeiuefvppeDweZLNZbNy4Ea9//eux3377Ga7/zDPPxJo1a9Q70OZM6aZNm7B48WJTET91qWwWhYmJvj6PwtQUxNNOg/jlL88sFEUICxZgttsNjI52buNs0vb70eWCKAgQt26VMnN7CZdcguBzz2G0D45p21UqcE1MYM+//RuGzz+/6fMoHHMMYuUyhnkOAABCqQTxjW+EeM89bfvOSqWCLVu2YOHChTPn8Re/gOucczA6a1bvZ7F37QIAVH73O+DAA9vylcK//AtCW7a0rWzphhjH9leXVatW4be//W01KL3gggvwj3/8A+vXr8eRRx5Z/VypVMLu3btx3HHH4f3vfz+uueYa7Ny5EyeccAI+9alPwaPzVuXz+doWgNbjcrn6NpgZBGImA1cm09/nMZ0G5syBMHeuenk4DCGbBfpov9t2HrNZIBKBMG+eevns2cDf/gahj45p22SzAIDynDlwzZ3b/HmMxYBMhudAlskA8bj2/ndSpYJKPq8+j3urnV3ZLBCPt29bnLD3WnUtXQq067jOng08/3zbr+tOPhttD0qPOeYYfPOb38Tf//53jI+P45BDDkEymcQ73vEOXH/99bp/s2bNGqxZswbbt2/HBRdcgH333RcnnHCC3ZtGJMlkIExNdXornJXJAJGIdnkkIv2OrOMxtd/e41bRaa5lCc+BmtG12m7yNvTDuZH3oZ3HdQCva9tD4eHhYRx88MG48sorceyxx8LtduPwww/Hs88+iwcffBDlchn5fB7r1q1DJpPBs88+i2eeeQalUgnhcBgejwdut9vuzSKakU5Lb+79LJ0GolHt8mhU+h1Zx2Nqv73HTWz1Qc9zoGZ0rbabvA39cG7kfWjncR3A69qR/OyqVauwYcMGHHfccQCASCSCr3/967jjjjtw7LHH4qSTTsJdd90FAMhkMvjCF76Ao446Cu9///tx0EEH4dhjj3Vis4gkmYxUhd2vKpVqVbPGAL5526ZRprSNPZ37BjOlzmCm1H6ZjNSWvNVr1YoBvK4d6Q43Z84cLFy4EAcccEB12Wte8xrcdNNNms++9a1vxU9+8hMnNoNIXzoNV7GISqnUF0MjaeRyUoBklNUbsELONvUypZUKkM8DwWD7t6uXyUFpONzaegYwo1RXJtNdmdJ+KHPkQL/ZYcuaEY1K5Xm5DAxIDbLtmdJSqYQ77rgDJ510kt2rJmpdoQChWJT+3Q8FpR754WyU1ePDuzn1MqUAj2sz5Or7VoPSAcwo1ZVOd1emtB/ujU4c037KNJtka1A6MTGBI444Alu2bMEHP/hBO1dNZA9l4divN7q8X8yU2qtephTgcW0GM6XO6JZMaSgkZRb74d7oxDEdwLLF1ur7WCyGP//5z3auksheypu7Xx9ijTKlGza0d3v6RSYDrFihXd5P2aB2kzOlbFNqH1HsnjalgtA/tTOdzJT2w/EziYO60WBhprR/99tpzJTaL5ORqu5bHRMxGgWmpwG5ac4gy+WkNs7dkCkF+qfMYaa0LRiU0mBhprR/99tpbFNqP7uyTwPY9s5Qvfu/E/qlzGGmtC0YlNJgYaa0f/fbacyU2s+u7FM/jYfZqnr3fyf0S5nDTGlbMCilwTJImVK9ziNy1oJjalpTr53eAGYzbMNMqf2YKXUGM6VtwaCUBsugZEpDIf1x7aJRoFQCCoX2b1cvy+elsQL1MiUeDxAI9O/15CRmSu3HTKkzOpEp7afRC0xiUEqDJZOB6PWi0s+9deu90Q/gm7ctGs173S/ZoHZLp/Uz+lYxUzqDmVJndCJT2k+jF5jEoJQGy952gZVIBEK/PsDqvdEPYBslWzSa97pfskHtxkyp/ZgpdUanxn7tl+NnEoNSGix72wVWQqH+fYAxU2o/ZkqdwTal9qvXprwT+uHeEMXOzZLVD8fPAlsHzyfqenszpaLL1b8PMGZK7cdMqTPsyj75/VLb3gF6eBvKZIBgUDoe3aAf7o3paeM25U7rh+NnQZdctURtImdKBaF/H2DMlNqPmVJn2JV9ktveDdDD21C3zHsv64d7o5PtdPvh+FnAoJQGy94CuwL07wMskwFiMf3fMVPaHGZKnZHJQLQr+xSNDtTD21C3zHsvk+8NUZReHnpRJ9vpDljZwjalNFj2ZkrFUKh/b3RmSu3HTKkz7MzqMVMq6cZMabksDavWq5gpbRsGpTRY5ExpONy/D7B6mRKfT/qvX/fdKem01G7R69X//YBlM2xRKEhz1dv1oGemVNKNmVKgt+8PZkrbhkEpDZa9BbYYDvfvA6xRpmTA3rxtYTSbk4zH1Dq7s0/MlEq6MVMK9Pb9wUxp27BNKQ0WOVM6Pd2/D7BGmZIBe/O2hdG89zIeU+vszj4xUyrJZIChoU5vxQxmSlszYGULM6U0WPZ2rKj089snM6X2Y6bUfsyUOoOZUvsxU9o2zJTSYNlbYFfHKe3lHqF6CgXpP2b17GUmU5rPA6VS94wP2e2YKXUG25TaL5Op36bcSf0weoEFzJTS4KhUgGy22tFJqFSAXK7TW2WvRr3E5d/x4W2NmUyp/Dkyh5lSZzBTar9OHtN+GL3AAgalNDiyWen/kYjU0Qnov4eYmewTM6XWmcmUAjyuVjBT6oxuy5T2wwtbJ4/pgJUtDEppcCgeghU5KO23h5iZ7BMzpdaZzZTyuJrHTKkzui1T6vVKVd+9fG90OlMqb8MAYOMnGhyKh2ClXJb+3W8PMWZKncFMqf0ymZmAxQ4D1vZOV7EozdPeTZlSoPfLHGZK24aZUhocioBNZKa0PdvTL5gptZ/d2adIRApIp6bsW2evMdOmvBN6vcxhprRtGJTS4FBmSkMh6d/99vbJTKkzmCm1n93ZJ3ldA/Lw1tXJ8TTr6fUyh5nStmFQSoNDmSnt17dPZkqdwUyp/ZzIlAID8/DW1cnxNOvp9TKHmdK2YVBKg2NQMqUeT/12etGoVMUpt6ul+kolaeiwepmSYBCQx74lc5gptR8zpc7oZKZ0wF62GJTS4JBv6nAY8HggBgL99wCT3+jrdfSQCzl5iCyqTzGUmCFB6P1sULsxU2o/Zkqd0clMaT+MXmABg1IaHOm0FJC69l72/TiEjJk3+gFro9Qy+WFg5rjymJrHTKn9mCl1RqfHfu3142cBg1IaHLUFSz8Otm3mjX7A2ii1zGyP5l7PBrUbM6X2Y6bUGZ0e+7XXj58FDEppcNQWLMyUOr89/YCZUmfYnX3q12HerMhkALcbCAQ6vSVqvXxvlMuN25Q7rZePn0UMSmlwMFMqYabUGmZKnWF39sntBkKhgXl46zLTprwTevne6IaxX3v5+FnEoJQGR+1DMBzuvwcYM6X2Y6bUGU600+vHF00rOt320Ugv3xvd0E63l4+fRQxKaXAwUyphptQaZkqd4UQ7vX5skmNFp9s+GolEpCrwUqnTW2JdN7TTHaCyhUEpDQ62KZWEQlL1Xr/tu1PSael4yWPbGhmgbEbLKhVpqC1mSu3VzZlSoDeHoWOmtK0YlNLgYKZU4nJJTRf6bd+dIs/m1Kid3gBlM1pmZuzXZvTji6YV3ZwpBXrz/mCmtK0YlNLgYKZ0xgC9ebes0bz3Mh5T85zKPvXji6YV3Z4p7cX7g5nStmJQSoOjpsAW+/EBZjZTMkBv3i1rNO+9jMfUPKeyT/34omkFM6X2Y6a0rRiU0uDo90yplXZ6A/Tm3TKrmVJRdH6beh0zpc5gptR+mYy5NuVOGqDymkEpDY7aAjsSAfL53uwRqmdqSgqImNWzl5VMaaUi9TKm+pgpdQYzpfbrhrFfe3n0AosYlNJgmJ4GikVtphTon4eYlezTAL15t8xKphTgcTWDmVJnMFNqv244pr08eoFFDEppMOg9BOV/98tDzEr2iZlS86xkSgEeVzOYKXVGt2ZKg0Fp1I9evDe64ZgOUNnCoJQGg95DkJlSZ7enXzBTaj/5GMnz1dtlkDOlotgdWT09gtC7LwzdcEwHqGxhUEqDgZlSNWZKzWOm1H7ptBSQumx+BEUiQKEg/TdorLQp74ReLXOYKW0rBqU0GAYpU2o2gOqX/XYaM6X2MxvoW9Vv97QVVu7/TujV2hmnrlUrBui6ZlBKg2GQMqVmA6h+2W+nMVNqP7OBvlWD/GJg5f7vhF7OlHb6mPbbs6oOBqU0GAYpU2qmnZ6cKeWYmvWJovmHUr9dT05yOlM6AA9vDWZKncFMaVsxKKXBoJcp7eUeoXrSaWmAZ7e78WejUWnMu+lp57erl+Xz0tijZh5KHg8QCPTP9eQkZkrtx0ypM7ohUxoKSZ3FevH4WcSglAZDOg14vYDPN7Osl3uE6rHyRj9Ab94tsfqg79VsULsxU2o/Zkqd0Q2Z0n57VtXBoJQGg9GwHv3UttLKG/0AtVFqidUHfa9mg9qNmVL7MVPqjG7IlAL99ayqg0EpDQajYT366e2TmVL7MVPqDGZK7efU2K926cV7Qx77tdOZUqC/nlV1MCilwcBMqRozpeYwU+oMp7JPfr/UtncAHt4a6bTUTt7j6fSW6OvFeyOfB8plZkrbiEEpDQZmStWYKTWHmVJnOJV9ktveDcDDW6NbMnpGevHe6KZ2uv30rKqDQSkNhnqZ0n650a1MhzfIbe+saCZTymPamJNTN/bTPW1FN0yHWU8vDkNnZepmpw3Idc2glAZDvUxpv2RVrEyHN8ht76ywMnUrMDBVbC1zcurGfrqnreiG6TDriUalqvB8vtNbYp7V+99JA3JdMyilwcBMqZrPJ/3XL/vulExGaqfo9Zr7PDOljRUKQLHITKndeiFTCvTWuWGmtO0YlNJgYKZUq5/23SlWO+QwU9qY09mnQb2ueyFTCvTWuWGmtO0YlNJgYKZUq5/23SlWO48wU9qY09mnQb2umSm1HzOlbceglAYDM6Va/bTvTmGm1H7MlDqDmVL7MVPadgxKaTA0ypT2Uo9QPYWC9B8zpfZqJlOazwOlknPb1OuYKXUGM6X2s9qm3En98qxqgEEp9b9KBchmjTOllQqQy7V/u+zUzHh6A/Lm3ZJmMqVAbz14242ZUmcwU2q/bjqmkUjvjV7QBAal1P+yWen/RplSoPeDiGayT4OaUbKimUyp/Hekj5lSZzBTar9uOqb98qxqgEEp9b96mZl+Ga+zmezToGaUrGg2U8rjaoyZUmd0U1ZPj8cDBAK9dW666Zj2y7OqAQal1P/qZWb65e2TmVJnMFNqv0xGaqPn9zuz/mhUqh2pVJxZfzcqFoHp6e7J6hnptdEpmCltOwal1P+YKdU3qBklK5gptZ/T2adIROoMMjXl3Hd0m26ao72eXhudgpnStmNQSv2PmVJ9zJQ2xkyp/ZzOPvXLPW1FN42nWQ8zpc0bkOuaQSn1P2ZK9TFT2hgzpfZrR6ZU/p5B0U3jadbDTGnzBuS6ZlBK/a9eFqFfMluZjNSRwEo7vWhUquIsl53brl5WKknDr1h5KAUCgMvV+9eTk5gptR8zpc7opkxpvzyrGmBQSv1PfrMMhbS/68UeoXrkN3pBMP83ciEnD5lFas086AWh97JB7cZMqf2YKXVGN2VK5c6BvXT8msCglPqf3C7QZXC590Pbymbe6Acxo2RFs51Hei0b1G7MlNqPmVJndFOmFOiPZ1UDDEqp/zV62+2HtpXNvNEPYkbJCvm4NBPs85gaY6bUfsyUOqObMqVAfzyrGmBQSv2v0dtuP7x9MlNqP2ZKneF09ikcnvmeQZHJAG631BSpm/XSvVEuS9NPM1PaVgxKqf8xU6pvEDNKVjBT6gyns09ut9R+fJDOQTNtyjuhl+6Nbhz7tR+eVQ0wKKX+x0ypPmZK62Om1BntaKfXD/e0Fd3W9tFIL90b3dhOdwCuawal1P+YKdXHTGl9zJQ6ox3t9Prhnrai29o+GolGpSrxUqnTW9JYN7bTHYDrmkEp9T9mSvWFQlJ1X6/vu1MyGWnEhmDQ2t/1Ujao3SoVaQgyZkrt1UuZUqA3hqFjprQjGJRS/2OmVJ/LJXUK6fV9d0qz7fSYKTUmByPMlNqrlzKlQG+cG2ZKO4JBKfU/ZkqN9cO+O8XqvPcyZkqNtSv7NGjXda9lSnvh3DBT2hEMSqn/MVNqrB/23SlW572XMVNqrF3Zp0G7rpkptR8zpR3BoJT6X79nSltpp9fr++6kVjOlomj/NvU6ZkqdwUyp/TIZqemO3vTUnTIA1zWDUupvomguU5rP90aPUD1TU9J+MlNqr1YypZWK1MuY1JgpdQYzpfbrxrFfI5HeGb2gSQxKqb8VCtIN3ChTCvTuG2gr2acBePNuWiuZUvnvSY2ZUmcwU2q/bjym8vb0wugFTWJQSv3NTGam18frbCX7NGgZJStayZTKf09qzJQ6o1cypcGgNOpHL5ybbjymvf6sMoFBKfU3M5kZZkrt3Z5+wUyp/eRjIs9P75RBuq5FsTuzenoEoXdGp+jGY9rrzyoTGJRSf2OmtL5ByyhZwUyp/dJpKSB1OfzoiUSkpjuFgrPf0w1aaVPeCb0yOgUzpR3BoJT6GzOl9Q1SRskqZkrt167sU6/f01Z043ia9TBT2rwBuK4ZlFJ/Y6a0PmZKjTFTar92ZZ96/Z62ohvH06yHmdLmDcB1zaCU+tsgZUqbaacnZ0o5pqaa3E6vmYeSfB569XpyEjOl9mOm1BnMlHYEg1Lqb2ayCIFA7/QI1ZNOSwM8u93W/zYSkYbMmp62f7t6WS4njTXazEPJ45F6Gffq9eQkZkrtx0ypM7oxU9pLoxf8//buNSaKe38D+LNcXXbFKhAK1coKrcaSnBoxvWCxSiu6FjTg3aYQq1ujiTb2hYlpItXWXtKcE6u2GrVs0iJp64VS6yU2x2hTbW3xhRFrVBRBdEFUPOyyuwg7/xeU/ZdycYGZ/c0Mzych4IzM/ma+M8t3np2d7Sc2paRvTicQEdH+1RODQdvXVg7kjH4QnHn3S8f26O8fJa2kQcHGpFR+TEqVocakVEt3L+gnNqWkb4Ge7Wr52sqBnNEPpkSpLzq2x0CafW7TrpiUyo9JqTLUmJQC2v5bFQA2paRvgV4XqOWzTyal8mNSqgwmpfIb6L4abFo4NtR871ctv6oXADalpG+BvoNaK2fv3WFSKj8mpcoIVvoUEdF+be9gqEFTU/u1hv25plwELRwbHg/Q1qbORp9JKZGGMSnt3WBKlPqCSakygpU+af068b5Qa6LXEy0cG2q+Tlfn+zWbUtI3JqW9Y1LaPSalygjmdXo6T5T81HrtY086jg0134ZOzdfp6ny/ZlNK+saktHf89KHuMSlVRjBTPZ0nSn5aTEp9vvaXyNWKSakwbEpJ35iU9q7jdllaXXelNDW13782LKx/v6/l/UkpXi/w8CGTUrlpMSkF1F0bJqXCsCklfRssSelAnjy1vO5K4TaVX7DfJT5YajDQfTXYtPDqjJrvaKDz/ZpNKenbYElKB/Iyk5bXXSncpvIb6HW6fTVYajDQfTXYtJSUqnG76ny/ZlNK+sak9NG0vO5K4TaVH5NSZTAplR+TUmHYlJK+9SUpdTrV/Y7Q7rS0tH8x1ZOXHEmpxwO0tso3Jq1jUqoMJqXya2oCIiOB8HDRI+lKC3cvGAA2paRfbW1Ac3PgSanPB7jdyo9LTnKc0ev8zLtf5EhKO5ZD7ZiUKoNJqfzUvE21cPeCAWBTSvrlcrV/DzQpBdR99t4dOdKnwZIo9YUcSWnHcqgdk1JlaC0p1cK9kdW8TXX+3MKmlPSrL8mMFs7eu8OkVBlMSuXHpFQZak71uhMW1n67NTXXRs3bVOfPLWxKSb/6ksxo9eyTSakymJTKr6mp/Rq9yMjgPF7HdeI+X3AeT4SHD9vv/6rWVK8nan/OYVIqDJtS0i8mpYEZLIlSXzAplV+w06eOx2puDt5jBpua3yXeG7U/5zApFYZNKekXk9LAqD21EIFJqfyCnT4Nhhqo+X6avVH7cw6TUmGC0pSmpaXhwIEDyMnJQWZmJux2u3+ex+PBhx9+iKysLMyaNQt79uyBpNNbHVCQMSkNjNpTCxGYlMpPVFKq5xowKVUGk1Jh+vnBzn1XXl6Ob775BrW1tcjPz8f06dORmJiI3bt3o7q6Gt999x1cLhdWrVqFhIQEWK3WLstoaWlBS0tL5xUIC0NERERQ1kHauxdx+/YBUVGQDIagPCYNQHU1DAB8JlOn68p8f/3s+/u1ZlFRCAEg/ec/QGlpUIc5IFevAmFhkMLD+3/tnMmEkOZmSEuWyDs2pUkS4pqb5T8eJQkGj6fLftMnEREwhIYCW7cChw/LNzYtO3sWiImB9I9t2u3xKAeTqf2YXrMGGD5c3mWrxb173T7HidCXOhrMZuC//wXU+pxz8SLwr3912VdVoeNv1b//DRw8OKBFSXl5wJw5/n8rdiz+JSTk0Tlo0JrSgoICGI1GpKSkIDk5GZWVlUhMTMTx48dRWFiI6OhoREdHY8mSJTh27Fi3TWlRURF27drVadq8efMwf/78oKzD0KoqmBwOeIPyaCSH1txcNDQ0AHfvdplXU1PT6d8xCxci/Pp1oLIyWMMbOIMBDxctwt3q6n4vItxiQUx6urbW+y+hgDLHY3o67iYl4eGNG/1eRMzixQi/fFmT21URMTFozsrC/3rYpv88HgfKYDQiLjMTIffuAffuybpsNfG98gruhIdDGsC+KqdA6mjOzIT5wQP1Hhtjx+LBpElwq2Sb/pNcf6ucVVVwdrOOch+LHSwWyyP/j0EKwmvlaWlpOHr0KGJjYwEANpsNeXl5yMrKwosvvoj9+/cjISEBAHD69Gls27YNe/fu7bIc0Umpz+dDTU0NRo0aFVDHT+rEOuoD66gPrKM+sI7ap3QNVZWU9iQuLg4Oh8PflDocDsTFxXX7fyMiIoLWgPYmJCSEB50OsI76wDrqA+uoD6yj9omsofA9JzMzE7t27UJTUxMcDgeKi4sxffp00cMiIiIioiAS3pTabDY88cQTyMvLw5tvvokZM2Zg5syZoodFREREREEUlGtK9cLn8+HGjRsYPXo0X57QMNZRH1hHfWAd9YF11D411JB7DhEREREJx6aUiIiIiIRjU0pEREREwrEpJSIiIiLh2JQSERERkXBsSomIiIhION4SioiIiIiEY1JKRERERMKxKSUiIiIi4diUEhEREZFwbEqJiIiISDg2pUREREQkHJtSIiIiIhKOTSkRERERCcemlIiIiIiEY1NKRERERMKxKSUiIiIi4diUBuj+/ftYs2YN0tPTkZubi7Nnz4oeEgWgpaUF7733HqxWK6ZMmQKbzYarV6/659vtdrzyyiuYNm0atmzZAn7qrrqdP38ekyZNgt1u909jDbXFbrdj1qxZyMjIwOLFi9HU1OSfzjpqw6VLl7B06VJMmTIFs2fPRllZmX8e66heO3fuxLx58zBp0iQcO3as07ze6lZRUYFFixYhPT0dNpsNt2/fVm6QEgVk3bp10qZNmyS32y2dOHFCmjp1qvTgwQPRw6JHaG5ulnbt2iU5HA6ptbVV+uqrr6ScnBxJkiTp559/lmbNmiXV1NRId+7ckebOnSuVlpYKHjH1pK2tTcrPz5feeOMNqaioSJIk1lBrSkpKpOXLl0u3bt2SfD6fdOXKFcnj8bCOGjNv3jxp9+7dUltbm/Tnn39KL730klRVVcU6qtyPP/4onTlzRsrPz5eOHj3qn95b3bxer2S1WqXS0lLJ4/FIW7ZskZYtW6bYGJmUBqC5uRknT57EihUrMGTIELz88stITk7GqVOnRA+NHsFoNGLZsmWIj49HaGgoFixYgFu3bqGxsRGHDx/G3LlzMXLkSMTGxuL111/HkSNHRA+ZenDgwAGkpqbCYrH4p7GG2tHW1oaioiK8++67SEhIgMFgQEpKCiIjI1lHjXE4HJgxYwZCQkIwbtw4JCUl4caNG6yjylmtVjz//POIiIjoNL23upWXl8NoNGL27NmIjIzE8uXLcfHiRcXSUjalAaiurobZbEZsbKx/2lNPPYVr164JHBX1x/nz5zFixAg89thjuH79OlJSUvzznn76adZUpR48eICSkhLYbLZO01lD7aivr4fX68VPP/2E6dOnIzc3F/v27QPAOmrN/PnzcfjwYbS2tuLChQuoq6tDamoq66hRvdXt2rVrneYZjUaMHDlSsbqGKbJUnXG73TCZTJ2mmUwmOJ1OQSOi/nA6ndi8eTNWrlwJoD0BN5vN/vkmkwnNzc2ihke92L59OxYtWoTo6OhO01lD7aivr4fT6cTNmzdRVlaG2tparFy5EklJSayjxrzwwgvYsGEDdu/eDQBYv349RowYwTpqVG9166n/cbvdioyFTWkAjEYjXC5Xp2kulwtGo1HQiKivvF4v3nnnHUyePBmzZ88GAERFRXU6sXC5XIiKihI1ROrBpUuXUFFRgXXr1nWZxxpqR2RkJADAZrNhyJAhSE5OhtVqxS+//MI6akhjYyPWrl2LwsJCZGRk4Pr161i9ejWSk5NZR43qrW7B7n/48n0AnnzySTidTjQ0NPinXblyBWPGjBE4KgpUa2sr1q9fj7i4OLz99tv+6RaLpdM78S9fvsyaqtC5c+dQXV0Nq9WKrKwsHD9+HF9++SXef/991lBDRo8ejfDw8G7nsY7aUVtbC7PZjKlTpyI0NBQpKSmYOHEizp07xzpqVG91GzNmTKd5brcbN2/eVKyubEoDEBUVhYyMDOzcuRMejwcnT55EZWUlMjIyRA+NAvDBBx/A6/WisLAQBoPBP91qtWL//v2ora1FQ0MDiouLMXPmTIEjpe7k5ubi4MGDKC4uRnFxMTIyMrBw4UKsWbOGNdQQo9GIzMxM7NmzBy0tLaiqqsKRI0eQnp7OOmrI6NGj4XK5cOrUKUiShKqqKvz+++9ISUlhHVWutbUVXq8XkiT5f/b5fL3WbeLEiXC73fjhhx/Q0tKCPXv2YPz48UhISFBkjAZJ4k3EAnH//n1s2LAB5eXliI+Px7p16/Dcc8+JHhY9wu3bt5GdnY3IyEiEhPz/Odhnn32GCRMmoKioCF9//TV8Ph/mzJmD1atXd2pcSX0KCwuRlJSEgoICAGANNaSpqQkbN27Eb7/9hmHDhiE/Px9z584FwDpqyZkzZ7B161bcvHkTQ4cORV5eHpYuXQqAdVSzwsJCHDp0qNO0HTt2IC0trde6VVRUYNOmTaipqcH48eOxceNGNqVEREREpF98+Z6IiIiIhGNTSkRERETCsSklIiIiIuHYlBIRERGRcGxKiYiIiEg4NqVEREREJBybUiIiIiISjk0pEVEQ/PHHH0hLS0NaWhpu3bolejhERKrDppSISGaFhYVIS0uDzWbzTzObzUhNTUVqaioiIiIEjo6ISJ3CRA+AiGgwGDduHOx2u+hhEBGpFj9mlIhIRtnZ2bh9+3aX6Tt27MCKFSsAAGVlZUhMTPR/FnVCQgLeeustfPHFF3A6ncjJycGqVauwfft2lJWVYejQoSgoKPB/TjwA3LlzB59//jnOnDmDxsZGxMfHIzs7GwUFBQgLY95ARNrDZy4iIhmNHTsWbrcbjY2NMJlMsFgsAIBLly71+DsNDQ346KOPEBsbC5fLhZKSEvz666+or6+H2WyGw+HAJ598gokTJ8JisaCxsREFBQWoq6vzP8a1a9ewY8cO1NbWYsOGDcFaXSIi2fCaUiIiGX366aeYPHkygPYG1W63w263Y9y4cT3+zsOHD7Ft2zYcOHAA8fHxAICamhqUlJRg3759iIyMhM/nQ3l5OQDg22+/RV1dHWJiYlBaWoqSkhJ8/PHHAIBDhw6hpqZG4bUkIpIfk1IiIsGio6Px7LPPAgAef/xx1NXVITk5GYmJiQCA4cOHw+Fw4N69ewCAiooKAMDdu3fx6quvdlqWJEm4cOECRo0aFbwVICKSAZtSIiLBTCaT/+fQ0NAu0wwGA4D2hvPv3/9+ecDfDRkyRLGxEhEphU0pEZHMOppCj8ejyPKfeeYZnD59GqGhodi8ebM/UXW5XDhx4gSmTp2qyOMSESmJTSkRkcySkpIAABcvXsSCBQtgNBqxfPly2ZY/f/58fP/996ivr0deXh4sFgtcLhfq6urQ2tqK1157TbbHIiIKFr7RiYhIZjk5OZg2bRrMZjMqKytx4cIF+Hw+2ZY/fPhwFBUVITs7G8OGDUNlZSW8Xi8mTJiAtWvXyvY4RETBxPuUEhEREZFwTEqJiIiISDg2pUREREQkHJtSIiIiIhKOTSkRERERCcemlIiIiIiEY1NKRERERMKxKSUiIiIi4diUEhEREZFwbEqJiIiISDg2pUREREQkHJtSIiIiIhKOTSkRERERCfd/8G8z6ThknMEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "show_anomalies_from_scores(\n", + " series=series_test, anomalies=anomalies, title=\"Testing set multivariate\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Use the scorer `KMeansScorer()`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll use the `KMeansScorer` to locate the anomalies with the following parameters:\n", + "\n", + "- `k`=2: The number of clusters/centroids generated by the KMeans model. We choose two since we know that there are only two valid states.\n", + "- `window`=1 (default): Each timestamp is considered independently by the KMeans model. It indicates the size of the window used to create the subsequences of the series (`window` is identical to a positive target `lag` for our [regression models](https://unit8co.github.io/darts/examples/20-RegressionModel-examples.html#Darts-Regression-Models)). In this example we know that each anomaly can be detected by only looking one step.\n", + "- `component_wise`=False (default): All components are used together as features with a single KMeans model. If `True`, we would fit a dedicated model per component. For this example we need information about both components to find all anomalies.\n", + "\n", + "We'll fit `KMeansScorer` on the anomaly-free training series, compute the anomaly scores on the test series, and finally evaluate the scores." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Kmeans_scorer = KMeansScorer(k=2, window=1, component_wise=False)\n", + "\n", + "# fit the KmeansScorer on the train timeseries 'series_train'\n", + "Kmeans_scorer.fit(series_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAikAAAHECAYAAAD8obrfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACC/UlEQVR4nO3deXgTVdsH4F/aNM3SlQIFSk3LWlYRRAUEiojsgmyKyFYFFBBZ5ANRARFBQRReXxBEKIqIqCAKslMEF1AQlFeQHUqpssrWNU1zvj9qhky2Ju1k5iR57uviIp1MZs48mcw8c5YZFWOMgRBCCCGEMyFKF4AQQgghxBlKUgghhBDCJUpSCCGEEMIlSlIIIYQQwiVKUgghhBDCJUpSCCGEEMIlSlIIIYQQwiVKUgghhBDCJUpSCCGEEMIlSlK88J///AcqlQoNGzZUuig+kZSUhCFDhihdDO6cO3cOXbt2RYUKFaBSqTB27Fili+SWSqXC6NGjHaZPmzYNKpUKzz33HCwWC86dOweVSgWVSoXp06c7XVZaWpowj78rKirCkiVL0Lx5c1SoUAF6vR5GoxE9evTAV199pXTx/MZff/2F6dOn47ffflO6KEHru+++g0qlwnfffSdMmz59ekD8Tu1RkuKF5cuXAwCOHDmCn3/+WeHSELmMGzcOP//8M5YvX469e/di3LhxShfJK4wxjBkzBjNmzMDkyZPx/vvvIyTkzk8/MjISK1asgMViEX0uJycHX3zxBaKiouQusk8MHDgQzz//PNq1a4dPPvkEGzZswCuvvAK1Wo2tW7cqXTy/8ddff+G1116jJIUzzzzzDPbu3at0MSRHSYqHDhw4gN9//x1du3YFACxbtkzhEpHSFBcXo7CwsNzL+eOPP3DfffehZ8+eeOCBB2A0Gp3OV1RUBLPZXO71SclsNmPw4MF47733MHfuXMyePdthnscffxyZmZnYuXOnaPqaNWtQXFyMRx99VK7i+szZs2exZs0avPTSS5gzZw66dOmC9u3bY9iwYVi7di0WLVokW1kYY8jPzy/XMnjc11zJy8tTughBoXr16njggQeULobkKEnxkDUpefPNN9GyZUt89tlnDj8+a/X522+/jXfeeQfJycmIiIhAixYtsG/fPodlfvPNN2jRogX0ej0iIyPRoUMHh0zYWoV3+PBh9O3bF9HR0ahQoQLGjx8Ps9mM48ePo1OnToiMjERSUhLmzJkj+nxBQQEmTJiAJk2aCJ9t0aIFvv76a7fbm5OTg5iYGIwYMcLhvXPnziE0NBRz5851u4z3338fd999NyIiIhAZGYmUlBRMmTJFNE92djaGDx+OxMREaDQaVKtWDX369MGlS5eEec6fP4+nnnoKlStXRnh4OOrVq4d58+aJrvytsZ8zZw5mzpyJ5ORkhIeHY9euXQBKksxHH30UFSpUgFarxT333IPPP//cbfmtVaqnTp3C5s2bhWaPc+fOCe+tXLkSEyZMQEJCAsLDw3Hq1CkAJbVud999N7RaLSpUqIDHHnsMf/75p2j5Q4YMQUREBI4dO4aOHTvCYDCgatWqePPNNwEA+/btw4MPPgiDwYA6dergo48+clteewUFBejduzc+/fRTfPjhh3jxxRedzle3bl20bNlSqCm0Wr58OXr16oXo6Ginn1uzZg1atGgBg8GAiIgIdOzYEYcOHRLNc+DAATzxxBNISkqCTqdDUlIS+vfvj8zMTNF8K1asgEqlwq5du/Dcc8+hYsWKiIuLQ69evfDXX3+J5s3IyEBqairi4uKg0+lw1113oXfv3m5PhteuXQMAVK1a1en7tjVLAHDjxg1MmDABNWrUQHh4OCpXrowuXbrg2LFjwjz//PMPRo4ciYSEBGg0GtSoUQMvv/yyQ2JsbX5bvHgx6tWrh/DwcOG7PHnyJJ588knRvr1w4ULR50vb12wVFRWhcuXKGDhwoMN7N27cgE6nw/jx4wEAFosFM2fORN26daHT6RATE4PGjRtjwYIFLuP43XffoXnz5gCAoUOHOjQXWvfp//3vf3jkkUcQGRmJ9u3bA3DdnJyamorU1FTRtFu3buHFF19EcnIyNBoNEhISMHbsWOTm5rosm9X27dvRo0cPVK9eHVqtFrVq1cKIESNw9epV0XzWY+uRI0fQv39/REdHIz4+Hmlpabh586Zo3oKCArz00kui8owaNQo3btwQzZeUlIRu3bph48aNuOeee6DT6VCvXj1s3LgRQMl+Xq9ePRgMBtx33304cOCA6POe/l6ccdXc48nv9MyZM3jiiSdQrVo1hIeHIz4+Hu3bt+ejtoyRUuXl5bHo6GjWvHlzxhhjH374IQPAVqxYIZrv7NmzDABLSkpinTp1YuvXr2fr169njRo1YrGxsezGjRvCvKtWrWIA2COPPMLWr1/P1qxZw5o1a8Y0Gg37/vvvhfmmTZvGALC6deuy119/nW3fvp393//9HwPARo8ezVJSUth//vMftn37djZ06FAGgK1du1b4/I0bN9iQIUPYypUrWUZGBtuyZQt78cUXWUhICPvoo49E5TcajWzw4MHC3+PGjWMGg0FUbsYYmzhxItNqtezq1asuY7Z69WoGgD3//PNs27ZtbMeOHWzx4sVszJgxwjwXLlxgVatWZRUrVmTvvPMO27FjB1uzZg1LS0tjf/75J2OMscuXL7OEhARWqVIltnjxYrZlyxY2evRoBoA999xzDrFPSEhg7dq1Y19++SXbtm0bO3v2LMvIyGAajYa1bt2arVmzhm3ZsoUNGTKEAWDp6ekut+HmzZts7969rEqVKqxVq1Zs7969bO/evaygoIDt2rVLWF+fPn3YN998wzZu3MiuXbvGZs2axQCw/v37s2+//ZZ9/PHHrEaNGiw6OpqdOHFCWP7gwYOZRqNh9erVYwsWLBB9hy+99BKrU6cOW7ZsGdu6dSvr1q0bA8AOHDjgsrxWANigQYNYamoq02g07Msvv3Q6nzVmc+fOZcuWLWNarZb9888/jDHGjh07xgCwjIwMNmrUKGZ/qHjjjTeYSqViaWlpbOPGjWzdunWsRYsWzGAwsCNHjgjzffHFF2zq1Knsq6++Yrt372afffYZa9u2LatUqRK7cuWKMF96ejoDwGrUqMGef/55tnXrVvbhhx+y2NhY1q5dO1GZtVot69ChA1u/fj377rvv2KpVq9jAgQPZ9evXXcYkJyeHxcTEsCpVqrAlS5aws2fPupz31q1brEGDBsxgMLAZM2awrVu3srVr17IXXniBZWRkMMYYy8/PZ40bN2YGg4G9/fbbbNu2bezVV19larWadenSxeH7SEhIYI0bN2affvopy8jIYH/88Qc7cuQIi46OZo0aNWIff/wx27ZtG5swYQILCQlh06dPFz7vbl9zZty4cUyn07GbN2+Kpi9atIgBYIcPH2aMMTZ79mwWGhrKpk2bxnbu3Mm2bNnC5s+fL1q3vZs3bwrf1SuvvCL8JrKyshhjJft0WFgYS0pKYrNnz2Y7d+5kW7duZYw5Hl+s2rZty9q2bSv8nZuby5o0aSI6LixYsIBFR0ezhx56iFksFpflY4yx999/n82ePZt98803bPfu3eyjjz5id999N6tbty4zmUzCfLbH1qlTp7Lt27ezd955h4WHh7OhQ4cK81ksFtaxY0emVqvZq6++yrZt28befvttZjAY2D333MMKCgqEeY1GI6tevTpr2LAhW716Ndu0aRO7//77WVhYGJs6dSpr1aoVW7duHfvqq69YnTp1WHx8PMvLyxM+7+nvxbpP7Nq1y2F7bHn6O61bty6rVasWW7lyJdu9ezdbu3YtmzBhgmj5SqEkxQMff/wxA8AWL17MGGPs9u3bLCIigrVu3Vo0n/Wg36hRI2Y2m4Xpv/zyCwPAVq9ezRhjrLi4mFWrVo01atSIFRcXC/Pdvn2bVa5cmbVs2VKYZt3x5s2bJ1pXkyZNGAC2bt06YVpRURGrVKkS69Wrl8ttMZvNrKioiD399NPsnnvuEb1nfxA5ffo0CwkJYe+++64wLT8/n8XFxYl+xM6MHj2axcTEuJ0nLS2NhYWFsaNHj7qcZ/LkyQwA+/nnn0XTn3vuOaZSqdjx48cZY3diX7NmTdGBiDHGUlJS2D333MOKiopE07t168aqVq0q+g6cMRqNrGvXrqJp1oNEmzZtRNOvX7/OdDqdw4nq/PnzLDw8nD355JPCtMGDBzskldbvEAA7ePCgMP3atWssNDSUjR8/3m1ZGSs5KVr/ffDBBy7ns01SrPv0f//7X8ZYSSKanJzMLBaLQ5Jy/vx5plar2fPPPy9a3u3bt1mVKlVYv379XK7TbDaznJwcZjAY2IIFC4Tp1hPfyJEjRfPPmTOHAWB///03Y4yxL7/8kgFgv/32W6lxsPftt9+yihUrCrGJi4tjffv2Zd98841ovhkzZjAAbPv27S6XtXjxYgaAff7556Lpb731FgPAtm3bJkwDwKKjo4UE0Kpjx46sevXqDsnE6NGjRQmjq33NlcOHDzv97u+77z7WrFkz4e9u3bqxJk2aeLRMW/v373eZ4Fv36eXLlzu852mSMnv2bBYSEsL2798vms/63W/atMnjslosFlZUVMQyMzMZAPb1118L71mPrXPmzBF9ZuTIkUyr1QrJ0JYtW5zOt2bNGoc4G41GptPp2IULF4Rpv/32GwPAqlatynJzc4Xp69evZwAc9j9brn4vniQpnv5Or169ygCw+fPnuyyHkqi5xwPLli2DTqfDE088AQCIiIhA37598f333+PkyZMO83ft2hWhoaHC340bNwYAocru+PHj+OuvvzBw4EBRNXNERAR69+6Nffv2OVRdd+vWTfR3vXr1oFKp0LlzZ2GaWq1GrVq1HKoGv/jiC7Rq1QoRERFQq9UICwvDsmXLHJof7NWoUQPdunXDokWLwBgDAHz66ae4du2a09Ejtu677z7cuHED/fv3x9dff+1Q1QoAmzdvRrt27VCvXj2Xy8nIyED9+vVx3333iaYPGTIEjDFkZGSIpj/66KMICwsT/j516hSOHTuGAQMGACjpo2H916VLF/z99984fvy4221xp3fv3qK/9+7di/z8fIdq7cTERDz00EMO/T5UKhW6dOki/G39DqtWrYp77rlHmF6hQgVUrlzZo2pfAGjdujViYmLw2muvOW0WsGfdp5cvXw6z2YyPP/5YqM63t3XrVpjNZgwaNEgUT61Wi7Zt24pGHOTk5GDSpEmoVasW1Go11Go1IiIikJub63T/s+//Yv/badKkCTQaDYYPH46PPvoIZ86c8SgeANClSxecP38eX331FV588UU0aNAA69evx6OPPiranzdv3ow6derg4YcfdrmsjIwMGAwG9OnTRzTd+r3bf88PPfQQYmNjhb8LCgqwc+dOPPbYY9Dr9Q77ZUFBgUMTsf2+5kqjRo3QrFkzpKenC9P+/PNP/PLLL0hLSxOm3Xffffj9998xcuRIbN26Fbdu3fJo+Z7wtKzObNy4EQ0bNkSTJk1EcenYsaPDiBZnLl++jGeffRaJiYnC8c7aj8zTfa6goACXL18GAOEYY/+b7tu3LwwGg8N33aRJEyQkJAh/W49vqamp0Ov1DtNtf9Pe/l7c8fR3WqFCBdSsWRNz587FO++8g0OHDjl0olcSJSmlOHXqFPbs2YOuXbuCMYYbN27gxo0bwsHJvh0fAOLi4kR/h4eHA4DQWc5d+3i1atVgsVhw/fp10fQKFSqI/tZoNNDr9dBqtQ7TCwoKhL/XrVuHfv36ISEhAZ988gn27t2L/fv3Iy0tTTSfKy+88AJOnjyJ7du3AwAWLlyIFi1aoGnTpm4/N3DgQCxfvhyZmZno3bs3KleujPvvv19YDgBcuXIF1atXd7uca9euuYyT9X1b9vNa+7a8+OKLCAsLE/0bOXIkADhNoDxlv77Svlv78rr6Du2/b+t0T74zoORAu2PHDuTl5aFt27Y4ceJEqZ95+umncfDgQbzxxhu4cuWKy+Ho1pg2b97cIaZr1qwRxfPJJ5/Ef//7XzzzzDPYunUrfvnlF+zfvx+VKlVy2nm0tN9OzZo1sWPHDlSuXBmjRo1CzZo1UbNmTbf9KGzpdDr07NkTc+fOxe7du3Hq1CnUr18fCxcuxJEjRwB4vl9WqVLFIYmrXLky1Gp1qfvltWvXYDab8d577znE0Jq02u+XrvrTOJOWloa9e/cKfWjS09MRHh6O/v37C/O89NJLePvtt7Fv3z507twZcXFxaN++vUM/CW/p9fpyjQi7dOkSDh8+7BCXyMhIMMbc/l4tFgseeeQRrFu3Dv/3f/+HnTt34pdffhESvrLsc9euXYNarUalSpVE86lUKlSpUsXhu3Z2rHY33fY37e3vxR1Pf6cqlQo7d+5Ex44dMWfOHDRt2hSVKlXCmDFjcPv2ba/W6QtqpQvAu+XLl4Mxhi+//BJffvmlw/sfffQRZs6cKao5KY31R/H33387vPfXX38hJCREdNVVHp988gmSk5OxZs0a0QHV01EvDz30EBo2bIj//ve/iIiIwMGDB/HJJ5949NmhQ4di6NChyM3NxZ49ezBt2jR069YNJ06cgNFoRKVKlXDhwgW3y4iLi3MZJwCoWLGiaLr9ScP6/ksvvYRevXo5XUfdunU92h5n7NdX2ndrX15fatasGXbs2IEOHTqgXbt2yMjIcLutrVq1Qt26dTFjxgx06NABiYmJTuezbsOXX37pcqQTANy8eRMbN27EtGnTMHnyZGF6YWEh/vnnnzJuVUktUevWrVFcXIwDBw7gvffew9ixYxEfHy/UdnrqrrvuwvDhwzF27FgcOXIEDRo08Hi//Pnnn8EYE+0Dly9fhtlsLnW/jI2NRWhoKAYOHIhRo0Y5XUdycrLbZbjTv39/jB8/HitWrMAbb7yBlStXomfPnqLjilqtxvjx4zF+/HjcuHEDO3bswJQpU9CxY0dkZWWJrvq94aqcWq3W6XHn6tWronhVrFgROp3O6QWg9X1X/vjjD/z+++9YsWIFBg8eLEz3pDbRlbi4OJjNZly5ckWUqDDGcPHiRaEjcXlJ/Xvx9HcKAEajURgccuLECXz++eeYPn06TCYTFi9e7PW6pURJihvFxcX46KOPULNmTXz44YcO72/cuBHz5s3D5s2bHZpj3Klbty4SEhLw6aef4sUXXxR+1Lm5uVi7dq0w4kcKKpUKGo1GdOC4ePFiqaN7bI0ZMwbPPvssbt68ifj4ePTt29erMhgMBnTu3Bkmkwk9e/bEkSNHYDQa0blzZ6xcuRLHjx93efJs3749Zs+ejYMHD4pqbz7++GOoVCq0a9fO7brr1q2L2rVr4/fff8esWbO8KndZtGjRAjqdDp988okoThcuXEBGRoZD84CvNW3aFDt37sTDDz8sJCopKSku53/llVfw5ZdfujxxAkDHjh2hVqtx+vRpt9X6KpUKjDHhytTqww8/RHFxsfcbYyc0NBT3338/UlJSsGrVKhw8eNBlknL79m2oVCpEREQ4vGetRrfWznXu3BlTp05FRkYGHnroIafLa9++PT7//HOsX78ejz32mDD9448/Ft53R6/Xo127djh06BAaN24sXFVLJTY2Fj179sTHH3+MFi1a4OLFi6KmHnsxMTHo06cPsrOzMXbsWJw7dw7169d3Oq99TYOnkpKScPjwYdG0EydO4Pjx46LEo1u3bpg1axbi4uIcErXSWI9z9vvckiVLvFqOrfbt22POnDn45JNPRPdIWrt2LXJzc0v9rj0l9e/F09+pvTp16uCVV17B2rVrcfDgQa/XKzVKUtzYvHkz/vrrL7z11lsOQ+QACDUMy5Yt8ypJCQkJwZw5czBgwAB069YNI0aMQGFhIebOnYsbN24IQ1Cl0K1bN6xbtw4jR45Enz59kJWVhddffx1Vq1Z12p/GmaeeegovvfQS9uzZg1deecWjA+qwYcOg0+nQqlUrVK1aFRcvXsTs2bMRHR0tXHnMmDEDmzdvRps2bTBlyhQ0atQIN27cwJYtWzB+/HikpKRg3Lhx+Pjjj9G1a1fMmDEDRqMR3377LRYtWoTnnnsOderUKbUsS5YsQefOndGxY0cMGTIECQkJ+Oeff/Dnn3/i4MGD+OKLLzyKgydiYmLw6quvYsqUKRg0aBD69++Pa9eu4bXXXoNWq8W0adMkW5enmjRpgp07d6J9+/ZCouKqH9BTTz2Fp556yu3ykpKSMGPGDLz88ss4c+YMOnXqhNjYWFy6dAm//PILDAYDXnvtNURFRaFNmzaYO3cuKlasiKSkJOzevRvLli1DTExMmbZl8eLFyMjIQNeuXXHXXXehoKBAuOJ214fk+PHj6NixI5544gm0bdsWVatWxfXr1/Htt9/igw8+QGpqKlq2bAkAGDt2LNasWYMePXpg8uTJuO+++5Cfn4/du3ejW7duaNeuHQYNGoSFCxdi8ODBOHfuHBo1aoQffvgBs2bNQpcuXdyWxWrBggV48MEH0bp1azz33HNISkrC7du3cerUKWzYsMGhv5W30tLSsGbNGowePRrVq1d3KFP37t3RsGFD3HvvvahUqRIyMzMxf/58GI1G1K5d2+Vya9asCZ1Oh1WrVqFevXqIiIhAtWrVhCTPlYEDB+Kpp57CyJEj0bt3b2RmZmLOnDkOzShjx47F2rVr0aZNG4wbNw6NGzeGxWLB+fPnsW3bNkyYMAH333+/03WkpKSgZs2amDx5MhhjqFChAjZs2CBqZvZWhw4d0LFjR0yaNAm3bt1Cq1atcPjwYUybNg333HOP0+HeZSH178XT3+nhw4cxevRo9O3bF7Vr14ZGo0FGRgYOHz4sqtFRjFI9dv1Bz549mUajYZcvX3Y5zxNPPMHUajW7ePGiaLSEPQBs2rRpomnr169n999/P9NqtcxgMLD27duzH3/8UTSPtce27fAzxkp60RsMBof1tG3bljVo0EA07c0332RJSUksPDyc1atXjy1dutTpcDVXve8ZY2zIkCFMrVaLeq2789FHH7F27dqx+Ph4ptFoWLVq1Vi/fv2E4Y9WWVlZLC0tjVWpUoWFhYUJ8126dEmYJzMzkz355JMsLi6OhYWFsbp167K5c+eKRuW4iz1jjP3++++sX79+rHLlyiwsLIxVqVKFPfTQQ8KILXfcje754osvnH7mww8/ZI0bN2YajYZFR0ezHj16iIb8Mebdd+iqHM4AYKNGjXKY/vvvv7OKFSuy+Ph4duTIkVJjZuVsCDJjJftvu3btWFRUFAsPD2dGo5H16dOH7dixQ5jnwoULrHfv3iw2NpZFRkayTp06sT/++MNhX7OO7rEf0WE/imHv3r3sscceY0ajkYWHh7O4uDjWtm1btyMkGCsZdTVz5kz20EMPsYSEBKbRaJjBYGBNmjRhM2fOFA0Dtc7/wgsvsLvuuouFhYWxypUrs65du7Jjx44J81y7do09++yzrGrVqkytVjOj0cheeukl0ZBUxlx/H4yV7LdpaWksISGBhYWFsUqVKrGWLVuymTNnOsTA1b7mSnFxMUtMTGQA2Msvv+zw/rx581jLli1ZxYoVmUajYXfddRd7+umn2blz50pd9urVq1lKSgoLCwsTHdtc7dOMlYy0mTNnDqtRowbTarXs3nvvZRkZGQ6jexgrGTL+yiuvsLp16wq/oUaNGrFx48axixcvui3b0aNHWYcOHVhkZCSLjY1lffv2ZefPn3c4Brs6tlr3Rdth6vn5+WzSpEnMaDSysLAwVrVqVfbcc885DHt39Rt1tg84+/15+nvxdAgyY6X/Ti9dusSGDBnCUlJSmMFgYBEREaxx48bs3XffFY1SVYqKsX+HbRDigslkQlJSEh588MFSb4BGCCGESIWae4hLV65cwfHjx5Geno5Lly7xUfVHCCEkaFCSQlz69ttvMXToUFStWhWLFi0qddgxIYQQIiVq7iGEEEIIl+hmboQQQgjhEiUphBBCCOESJSmEEEII4RIlKYQQQgjhEiUpLlgsFpw9e5arp0EGKoq1fCjW8qFYy4diLR+5Y01JCiGEEEK4REkKIYQQQrhESQohhBBCuERJCiGEEEK45JMkZcmSJejbty+aN2+OrVu3upxv+vTpaNGiBVq3bo3WrVujX79+vigOIYQQQvyQT57dk5iYiAkTJmDx4sWlzjtixAgMGTLEF8UghBBCiB/zSZLSpUsXAMDy5cslXa7JZILJZBJNU6vV0Gg0kq4HgDC8ioa0+R7FWj4Ua/lQrOVDsZaPlLEOCSm9MUfxpyCvXLkSK1euhNFoxOjRo90+aTc9PR1Lly4VTevbt69Pm4mysrJ8tmwiRrGWD8VaPhRr+VCs5SNFrJOTk0udx6dPQR4+fDh69+6Njh07On3/2LFjqFatGnQ6HXbs2IE333wTa9asQZUqVZzOL3dNSlZWFhITEz3K9kjZUazlQ7GWD8VaPhRr+UgZa+5rUlJSUoTXnTt3xqZNm/Dzzz+jR48eTufXaDQ+SUjcCQkJoZ1eJhRr+VCs5UOxlg/FWj5yxZqrb1OlUildBEIIIYRwwidJitlsRmFhIRhjwmtnnWx27tyJ/Px8mM1mbNu2Db///juaN2/uiyIRQgghxM/4pLln5syZ2LhxIwDg0KFDmDZtGhYvXowrV64gPT0dn3/+OQDg008/xYwZM6BSqWA0GjF37lxUq1bNF0UihBBCiJ/xacdZf2axWJCZmQmj0UhtnD5GsZYPxVo+FGv5UKzlI3esFR+CTILbrVu3sH79etSsWRNGo1Hp4njs4MGD2LFjB2xzfLVaje7du6NOnToKlkwZly5dwhdffIHc3FzR9CZNmuCRRx4Juv5mJpMJa9euxW+//YbY2Fivtj8qKgqPP/44KlSo4MMSEuIfKEkhiho/fjyWLVuG2rVr488//1S6OB65dOkSWrRo4TAcHgDmzp2L8+fPyz4KTWn9+/fHrl27nL63a9cupKamylsghS1ZsgRjxowp8+e3b9+OdevWSVgiQvwT1YsRRR06dAgAcPLkSZjNZoVL45mjR486TVCAkgTm4sWLMpdIedbv0ZnffvtNvoJwwl08PBGMMSPEGapJIYoqKCgQvQ4PD1ewNJ6xLXP//v3Rr18//Oc//xFqEmzfDxbWbU5KSsK7776LX375BbNnzxa9F0xst3nRokWoWrWqR58bPnw4rly5EpQxI8QZSlKIovLz80Wvo6OjFSyNZ2zL3KRJE/Ts2RObN28WkhTb94MBY0w4qcbHx6Nnz57Q6XRCkhJs8QDE29y9e3dUr17do89NmjQJV65cCcqYEeIMNfcQRdnXpPgD23LqdDrR//bvB4PCwkLhNcWjhLN9xBPWeYMxZoQ4Q0kKUZS/JylarVb0v/37wYDi4chZTDxhnbegoAB0dwhCKEkhCrNv7vEHtuV0dlL2l+2QCsXDke02e9PPyjZutjVUhAQrSlKIYmz7MgD+c8VNzT1iFA9H1m3WaDRe3fAq2ONGiD1KUohi7K8U/eWKm2oOxCgejqzb7O1otWCPGyH2KEkhirG/UvSXK0dn/Q2C+QqYalIcWbfZm/4o9vMHY9wIsUdJClFMICQp1pNxMJ9cqOOsI+s2e1uTEuzJHSH2KEkhirGvzvaX6m1q3hCjeDii5h5CpEFJClFMINWkBPMVsLN4qNVqqNVqh/eDRVmbe4J5PyLEGUpSiGICIUmh5g3X9wSxvedHMCkuLkZRURGA8tWkBFvcCHGGkhSiGPvqbH85KFPzhpizeNi+DrZ42O7H1NxDSPlQkkIUEwg1KdTc4/oW8MF6i/fyJCnBvB8R4gwlKUQx1HE2MFBNilhZ7zYLBPd+RIgzlKQQxQRCTYr1JBTMV8BUkyJW1uf22M8fbHEjxBlKUohi/D1JCQ8PF255HswnF086zgbTw/KouYcQ6VCSQhTj7809zk7Itu8Hi9KaexhjMJlMspdLKdTcQ4h0KEkhivH3mhRnTRu27weL0pp77OcJdOVp7gnWmBHiCiUpRDH+PgTZ9gRke8UcbFfApdWk2M8T6GgIMiHSoSSFKMY+KfGXg7Kzu4mGhoYiLCxM9H6wKK1Piv08gU6q5p5gihkhrlCSQhRjfxAuLCxUqCTecdbcY/t3sJ1cqLlHjDrOEiIdSlKIYvyxuae4uFjoBGrf34DuC0LNPQA19xAiJUpSiGL8sbnHtrbHPkmhmhSqSQFcJ22eoOYeQsQoSSGK8cfRPa5OyEDwPlCP+qSIUXMPIdKhJIUoxh/vk+LuKjnYm3tUKhU0Go0wPVibLug+KYRIh5IUophAq0mx/l1YWBiUd1jVarVQqVTC9GCtFaD7pBAiHUpSiGL8seOsJzUpgH9si1Sc3TfG/u9gqhUoT3OPbU1UMMWMEFcoSSGK8ceOs+6ukoP1Kri0Idm28wSD8nScValUQdu3iRBnKEkhinF2nxTem0k86ThrP1+gc3ZzO/u/gzEegPc1KUDwjhIjxBlKUohinNWc8H5DN0+be/yhVkgq1NwjVt4kJVg7YBPiDCUpRDHOrhR5PzBTc48jau4RK8/oHiB4h7IT4gwlKUQxzg7CvB+YqblHzGw2w2w2A6DmHitq7iFEOpSkEMU4qzXhvSaFmnvE3NUsBWM8AOlqUoIpZoS4QkkKUUyg1aQEY/MGxcNRee6TAtyJm20tFSHBipIUohhnV4q8n8yoJkWM4uHIug+HhIRArVZ7/flgbSYjxBmfJClLlixB37590bx5c2zdutXlfAUFBXj11VfRpk0bdO3aFVu2bPFFcQiHXF0l8n4yo46zYlST4si6D+t0OtEdeD1FSQohd/gkSUlMTMSECRPQoEEDt/MtWbIEN2/exKZNmzBr1iy8+eabyMzM9EWRCGdcDTXm/aBMHWfFPO2TEizxAFzfN8ZTwZrcEeKM93WRHujSpQsAYPny5W7n27RpE+bNm4eIiAjcfffdaNOmDbZt24Zhw4b5oliEI65qTHg/KFPzhhjFw1F5k5RAjdv8+fOxY8cOnyybMYb8/HxR7VV0dDQmTpyIJk2a+GSd5fXdd99h4cKFPvuOjUYjpk2bhsqVK/tk+XLxSZLiiVu3buHatWuoVauWMK1OnTo4cuSIy8+YTCaYTCbRNLVaLXrehVQsFovofyKtvLw8p9Nzc3O5jrntAUWj0YjKajuSIz8/n8vtkHq/tv0etVqty3gUFBRwGQ9fsG3uAbyPtW3c8vLyAiJuhw4dwrhx42Rfb3Z2NjIyMmRfryeGDh2Kc+fO+XQdsbGxmDFjhqTLlPIYEhJSemOOYklKXl4eQkNDRVcNBoPB5ckLANLT07F06VLRtL59+6Jfv34+K2dWVpbPlh3MXP04s7OzuW7yu3LlivD6xo0borLevn1beP33339zvR1S7dfnz58XXhcUFIi22fYRBzdv3uQ6HlKyJinWA7C3sbbtq3X27FlERUVJVziF7N+/X5H1nj59msv9zmKxyFKuo0eP+mw9UhxDkpOTS51HsSRFr9ejuLgYBQUFQqKSm5sLvV7v8jNDhw7FgAEDRNN8WZOSlZWFxMREj7I94p1bt24Jr0NCQoSsXK/Xw2g0KlWsUtmO1khOThaVNTExUXit1Wq53A6p9+vffvtNeF2lShWHbQ4PD0dhYSEsFguX8ZAaY0xo7omMjAQAr2NdqVIl4XVMTExAxM22n83s2bPx9NNPS7p8i8WC7OxsJCQkICQkBM2bN0dmZiYKCgq4jF9ubq6QxD/44INYt26dZMu+ePEiGjduDKBkf5R6++U+NyqWpERFRSEuLg6nTp1Cw4YNAQAnTpxAjRo1XH5Go9H4JCFxJyQkhJIUH7BttouJicE///wjTOc53rYdfg0Gg6isBoNBNB/P2yHVfm37Per1eodl6nQ6FBYWoqCggOt4SMVkMgknH+sFl7extr1Q4/334CnbGvIqVaqIEjEpWCwW5OXloVKlSggJCRFqn3JycriMn208YmNjJY2HbXNhbm6uz7ZfrnOjT9ZgNpuFJ9paXztrv+rSpQs+/PBD5Obm4n//+x/27NmDDh06+KJIhDO2fTtiYmKE19Rx1r+4i4fttGCJR3lviQ8E5n6Uk5MjvI6IiPD5+qzrKCgoQHFxsc/X5y1fxsP2Ysl2Pf7KJ0nKzJkz0apVKxw6dAjTpk1Dq1atcPDgQWzevFnUf2TEiBGIiIhAp06dMHnyZEyePBlJSUm+KBLhjO3BPDY2VnjN+0GZ7pMi5m5Itu20YImH7f7rLB6eCMSh27m5ucJrOZMU+3XzwpfxCA0NFfY9HrfdWz5p7pk+fTqmT5/u9L3OnTsLr7VaLWbOnOmLIhDO2R58/akmhe6TIlbaLeCD7Ym+5b0lPhCYya5SNSnWdfPW+djX8YiIiEB+fj7VpBBSVv7e3OPslueBWE1fGmruEZMiSQnE/UjpJIU3ciQp9uvxV5SkEEX4e3OPVqt1uOV5IF4Bl8bT5p6ioiIu+wZIjZp7nKMkRYySFM9RkkIUYXswt01SeD8o29+oy1YgXgGXxtOaFID/71YKUjf3BMp+ZHuytO3Y6Su8dx71dTysy8zLy/P7iwNKUogiAqEmxV6wnZABz/uk2M8bqEpL2jwRiDGjmhQxuWpSANd39/YXlKQQRfh7x1lnNSkajUZoAuJ9O6TiaXOP/byBqrR4eCIQY2Y7ysTdDTulEsyje+yXyWOS5g1KUogi/L3jrLOrZJVKFXQdRb1p7gmGmFDHWeesJ0q9Xo/Q0FCfr4/3k7ScNSk8JmneoCSFKMIfm3tsb3nu6gQUbPcFoZoUMeo465z1pCxHU4/9eoI9SeFx+71BSQpRhO3BNzo62ul03pjNZuHOya5OQHRfELFAPOG6I8UdZwMxsaMkRYySFM9RkkIUYX/FaT2g83xQ9qRTJDX3iAVi04U71NzjnPVEKcfIHvv18HiSlmt0j/26/BElKUQR9gdzfzi5e3ICCubmHmcxCcRaAXeouceR2WwWtoNqUkpQTYrnKEkhivD3mpTSmnt4TrakZN1OtVrtcAdeIDBrBdyh+6Q4kvu5Pfbr4fEkTUmK5yhJIYqwP5hbkxSeD8re1KQUFxfDbDbLUi4luRuSbT+d5wRUKlST4kjpJIXH0S2+HpJNSQoh5WQ/KsQfOpx6kqQE2gmmNKWNdgrWeABlr0lRq9XCMN1AiJncN3KzXw+PJ2nbPjohIdKfhnlP0rxBSQpRhH2Hy0Br7rGfP1C5u2+M/fRgiIcUSQpwZ/8KhJhRkuLI16OdeN9+b1CSQhRhPZiHhoZCrVYLSYrZbOa2mcSb5h77+QMVNfeISdHcAwTWUHYlkpTw8HChNorHkzQlKZ6jJIUowv7kZntPCV4PzJ7c8jxYmzeouaeE1DUpgRAzuR8uCJTc/dm6Lh5P0r4ekk1DkAkpJ/tmAn9IUry5T4r9/IGIMUbNPXakSlICaZSYEjUptuvi7SRtNptRWFgIgGpSPEFJClGE/RW4P5zMqLlHzGQyCa+puacENfc4UmJ0j+26eOs4Kkc8KEkhpJysB3N/au6hjrNiVLPkyBcdZxlj5S6XknioSeEphnLEg5IUQsrJvibFH5IUqkkR86SPTjDFA5C+uQcQ11j5I6WTFLPZzFUM5YiHVqsVhjbzVpPkLUpSiOxsnyZsPYn5wxU33SdFjOLhyLrvajSact3/IpDipnSSYl8GpckRD5VKxW2fHG9RkkJkZzKZhOpXf6pJoeYeMWrucVTaaCdPBdKt8ZUY3WO/Lp5O1HLFg+fRTd6gJIXIztkVuG2SwutBmZp7xKi5x5F9X6uyopqU8gvmmhTbZfO07WVBSQqRnbOTmz/UpNB9UsSouceRL2pS/D1uSo/usS+D0uSKByUphJSRs2YCf0hSqHlDjOLhSKokJZDiRjUpYnLXpBQVFXHVcdhblKQQ2Tm7AveHgzI194h5UrMUFhYWUA/LKw019ziiJEVM7iQF4KsmyVuUpBDZOeuA6m81KdRx1rOaFNv3Aj0eFotFuGKljrN3WE/KoaGhot+5r1GSwuf2e4uSFCK70jrO8pqkUE2KmCc1KbbvBXo8rLc6B6gmxZbtc2pUKpVs66XRPXxuv7coSSGyc3Zy84caCOooKubpjcsC6Rbv7nhas+SJQNqPfP3EX1d4rUmgmhTvUJJCZBcIHWepuYeae+xJdbdZIDCbeyhJKUFJincoSSGyo46zgYGae8SkerggEDg1KYwxodOmkkkKTx1H5R6CDFCSQohX/L3jrLtbnvtDsiWVstSk8PSgN6lRTYojk8kEs9kMgGpSrKgmxTuUpBDZOTuYazQap+/zxJN7YFBNiiPre4wxFBUV+bxcSvE0Hp4IlJoUpYYf26+Pp5M0DUH2DiUpRHb+3tzjSa2B7fyBytuOs/afCTTUcdYRJSmOrGVRq9WiizOp8br93qIkhcjO35t73F0l+0OyJRVvm3vsPxNoqLnHkVIPF7RfH08nabmGZPO6/d6iJIXIrrSaFF6TFE9qUkJDQxEWFiaaP1B529xj/5lAQ809jpSsSeH1JC3XaCeqSSGkjPz9KcilXSUHy31BqLlHjJp7HCn1cEGg5JEM1uMKT30y5BrtREkKIWXkj809FotFuKNoaVfJwXJfEGruEaPmHkdK1qTYrpOXkzRjjGpSvERJCpGds4O5Wq2GWq0GwOdB2faW56WdgILlviDU3CNG90lxREmKWGFhIYqLiwFQkuIpnyQp169fxwsvvIBWrVqhV69e+OWXX5zON336dLRo0QKtW7dG69at0a9fP18Uh3DG1cGc52YSb05AVJMiRjUp3qOaFGnwlqTIGY9AGYKs9sVC33rrLVSqVAk7d+7Evn37MHnyZKxfvx5RUVEO844YMQJDhgzxRTEIp1wdzLVaLXJycrhMUrw5AQVjTYq7p9sGS00KdZx1pOToHtt15ubmwmKxuLwJo1zkjAevHYe9Jfk3lpeXh927d+PZZ5+FVqtFamoqatasiT179ki9KuKnXJ3wrQd2Hq8cvUlSbGuEguEOq1qt1u1QykA54ZaGOs464qUmBSg5NylNzniEhYUJ92Hx5yRF8pqU8+fPIyIiAhUrVhSm1a5dG2fOnHE6/8qVK7Fy5UoYjUaMHj0aTZs2dblsk8kEk8kkmuarG+JYLBbR/0Q6tgeL8PBwIca2J3fe4m5bXarVat2Wz755o7wnLClJuV9bT8qlxcO2lsV6RRuIbJMUjUZTrljbHtPy8/P9Nma3b98WXuv1ep9th6tY29Ym3Lp1C3q93ifr99StW7eE1waDweffa0REBP755x/k5ORIti4pjyGe1GxJnqTk5+c7VGMZDAanmdwTTzyB8ePHQ6fTYceOHRg3bhzWrFmDKlWqOF12eno6li5dKprWt29fn/ZlycrK8tmyg9XNmzeF15cvXxZ+uKGhoQBK9qHMzExFyubK2bNnhddFRUUel+/kyZNOmzmVJsV+bf1NazQat/GwTUqzs7O5+26lcvnyZeH1zZs3hRiXNdYajQYmkwm3bt3y25hdvHhReH379m2fb4d9rG1r+E6cOCHqAK8E24v14uJin8fDeoF08+ZNydclxTEkOTm51HkkT1J0Op1DJ53c3FynbbQpKSnC686dO2PTpk34+eef0aNHD6fLHjp0KAYMGCCa5sualKysLCQmJirejhnIateuDaBkh4+MjARQUpNy1113+fRujN66cOGC8LpSpUowGo0u542JiRHN6yrpVoKU+7X1wXEGg8FtPKpVqya8joiIcDuvP7PexA8AkpKSkJiYWK5Y63Q6mEwmWCwWv42Z7W+4du3aPtsOV/t1fHy88Do6OlrxOP7222/C64SEBJ+XJyYmBn/99Rfy8/MlW5fc50bJk5S77roLOTk5uHr1qtDkc/LkSZeJh63STkoajcanzzpwJiQkhJIUiVmrxcPDw6FWq4VqQ9tE1mw2u+2MKTfbKzC9Xu92n7DdjsLCQi73Hyn2a9vmHnfLsq1iLygo4DIeUnC1j5Q11jqdDjdv3kR+fr7fxsz2gjUqKsrn22Efa+uFD1BSo6d0HG1rFSMjI31eHmu/l9zcXKhUKkkv/OQ6N0q+Br1ejzZt2mDJkiUoKCjA7t27cfr0abRp08Zh3p07dyI/Px9msxnbtm3D77//jubNm0tdJMIZV3du5XmoallG99h/LtBYt620kSzBEg8p75MC8D0k31M8dZzlofOo3PGwroMxxt0x1VM+SYMmT56MS5cuoX379liwYAFmz56NqKgobN68WdR/5NNPP0WnTp3w8MMPY9WqVZg7d66oapgEJlcP6uN5RENZ7pNi/7lAUlxcjKKiIgCej3YCAjcegLT3SQH4Hu3mKV6GINuXRSlyx4O37S8Ln9wnJTY2Fv/5z38cpnfu3BmdO3cW/l62bJkvVk8450lNCm9JCtWkiHlzT5BgiAcg7X1SgMCqSbE27cqNalLE21+5cmWfr1Nq/tnQSfyaqySF57tsluU+KfafCyQUD0dS3ifFdhlFRUXCrdT9jVwP03OFt7uuyv3ARd6StLKgJIXIjpp7/J83J+RgiAdwZ59VqVSikT5lFQg1UHI9TM8V3k7SStek+CNKUois3PVl4PmgTM09YtTc48i2I7EUoyh4Tto9RUmKGCUp3qMkhcjK3cme5ytuqjkQo3g4sh2SLQV/j5vFYuGquYeHkzQlKd6jJIXIyt0VOM9Xjt7UHPC8HVKhPimOXPW1Kit/r4GyvSeIEiN77NfLw0laydE9PPTJKQtKUois3J3cAqXjrL+fXDxBzT2OXPW1Kit/T+6UvkeK/XqDMUnhbfvLgpIUIit3HVB5PihTx1kxb5p7bO8cHKjxAHxbk+KPcaMkxZG1DFqtVpYh2bxtf1lQkkJk5WmfFN6SFKpJEfOmJiUkJERIVAI1HoDnd+D1FM+/B0/IPdzWGV6HIMsVD0pSCPGSv3acpT4YYt7eXTUQbkzmju29THzRcdYf48ZDTYrtSCseTtJyj3aiJIUQL1FzT2Dw9sZl1nkCNR5S3xIfoOYeKYSEhAh9P3g4SVOS4j1KUoisPO04y1uSQs09Yt7eAt46D8XDczwn7Z7gIUmxXbfSJ+ni4mJhxBMlKZ6jJIXIyt0VOM81EHRfEDGqSRGT+pb49svxx7gp/XBB+3UrfZJWYkg2DUEmxEv+fp8UlUoFjUbjdl6qSXFENSne8/f9iGpSxJSIB9WkEOIlf2/u0Wq1pd7ynOdkSypl7ThrMplgsVh8Vi6l+KJPir/vRzyM7rFdt8lkEh7JoQQl4qHX64XXlKQQ4gFPO87yVr3tzS3Ped4OqZS1uQfwzxNuaai5xxFvNSmAsk0eSsSDt47DZUFJCpGVv9ekeNO0Yfu5QFPW5h77zwYKau5xxGOSouSJWql48NLcVVaUpBBZ+ft9Ujy5Srbts+KPJxdPlLW5x/6zgcLXNSn+GDNKUsQoSSkbSlKIrPz9PimeXCWrVCoazWKH5wRUCnSfFEe8je4B+ElS5IwHNfcQ4gV/b+7x9AREo1nEeP5upUD3SXFENSliStekFBYWwmw2y7ZeqVCSQmTl7gqc1wfRleWW51STIhboNSnUcdYRb6N7AGU7zioVD162v6woSSGycnfFadtMwtOVY1mukqkmRYxqUrzn7zGz1hyoVCrJYlIWVJPCx/aXFSUpRFaltd3znqR4W5PC03ZIiTrOitF9UhxZT4gGgwEhIcqdang5SVOSUjaUpBBZlVYtzmMzSVmq8nncDilZtys0NBRqtbrU+f296aI01NzjSO6H6bnCy0makpSyoSSFyKq0anEem0nK09xjNpv9srNaaby5b4z9fDx9t1Kh5h5HlKSIUZJSNpSkEFl52tzD05VjeZp7gJJe9YHG29FO/t50URpf1KSo1WqhmcQfY2bb3KMkGoLMx/aXFSUpRFbu7pMC8NmXo7QyO+PvVfWl8eYxAfbzBWI8fNEnxbbDqb/FrKioCCaTCQDVpDhbN43u8RwlKURW1oN5SEiI074M1oOy7bBfpZXlBOTvVfWloeYeMV809wB8Ju2e4GX4sf36g30IMtWkEFIK2ytwZ08T5rFZoDwdZ+0/HyioJkXMF809tsvyt5jxciM3+/XzUJMi95BsXra/rChJIbIq7Qqcxyvu8nSctf98IGCMUU2KHV/VpPDYkdwTlKQ4su1I7OwCzVd42f6yoiSFyKq0Dpc81qSUt+MsL9shlaKiIjDGAFA8rHzRJ8V2Wf4WM0pSHCk12omX7S8rSlKIrEprJuCxWYCae8QoHo7kaO6xJob+gJeHCwIlTyW39n/jIUmROx40uocQL1Bzj/+jeDjyVU2KNW6MMRQVFUm2XF/jqSbFtgw8JClUk+IdSlKIbBhjVJMSACgejqzbFBYWhtDQUMmW669x42l0j20ZlBrdYzKZhCRTySSFhiAT4oZtXwZXV+A89l0oS80Bj9shFeqj48jbm9t5yl9roKgmRUzJpI1qUgjxkCcnNx4PynSfFDFq7nHk7WgnT/lrcsdzkqJE3x4l40FJCiEe8qSZgMfqbWreEKN4OPL2vjGe8te48ZqkWCwWRZI9JePBS8fhsqIkhcjGkytwHq+4qeZAjOLhyFc1Kf4aN55G99iXQYkTtZLxUKlUwjopSSHEDU+aTXis3qY+GGJliYe/PyyvNL7qk+Kv+xGvNSmA8kmKEvFQuk9OeVCSQmRDzT2BoSzxUKlUfnuL99LY3oGXmntKKH1StkdJCiUpItevX8cLL7yAVq1aoVevXvjll1+czldQUIBXX30Vbdq0QdeuXbFlyxZfFIdwgpp7AkNZbwHvr7d4L01hYaHwmpp7SvA6BBlQZhiu0vGwHYLtTzcFBADHx9BK4K233kKlSpWwc+dO7Nu3D5MnT8b69esRFRUlmm/JkiW4efMmNm3ahNOnT+OFF15AvXr1YDQafVEsojCqSQkMZb27aqDWpPjqbrP2y/OnuCldc2CPalJK1llcXIzCwkLJ91NfkjxJycvLw+7du7FhwwZotVqkpqZi1apV2LNnD7p16yaad9OmTZg3bx4iIiJw9913o02bNti2bRuGDRsmdbG8smvXLuTm5uLy5cuoXLmy0JZOyufXX38VXntSk/K///0PmzZt8nm5SpOdnS28LktNysmTJ7nYDqBkdEN592tPvkdnrPPeunWLm3hI4fr168JrX9ak7Nu3z29OLllZWcJr3pKUPXv2wGQyybr+/fv3Oy2LXGzX6azCoDSRkZFo3bq11MXyiORJyvnz5xEREYGKFSsK02rXro0zZ86I5rt16xauXbuGWrVqCdPq1KmDI0eOuFy2yWRy2LnUajU0Go1EpS+RlpaGc+fOSbpMIhYeHg6LxQIAov9tv8tPP/0Un376qSLlcyUsLEworzu227Fly5aAbcrUaDQexQO4Uytw+/ZtdO3a1ZfFUoyr/bqsbPejuXPnYu7cueUroMzCwsKgVqvLFQNPlBZr2xE1r7/+uk/LUhq9Xu/zeNiz3f7+/ft7/fnGjRvj0KFDAKTZr608uVCSPEnJz893GGJlMBgcqtjy8vIQGhoqujIwGAzIy8tzuez09HQsXbpUNK1v377o16+fBCW/w2w2S7o84ig+Ph6ZmZmiaVlZWTAYDAgLC+PyOSW1a9cW1aq4Y7FYEB0djZs3b/q4VMqKi4tz+B5dqVGjBv744w8fl0hZiYmJTvfrsqpcuXJ5i6SoevXqebx/SMFVrOPj42UrgzshISGIjY2VNSYAyt2FwmQySbpfWyUnJ5c6j+RJik6nc+iYlJub61ANqtfrUVxcjIKCAiFRyc3NhV6vd7nsoUOHYsCAAaJpvqhJmThxIq5fv46bN28iOjoaKpVK0uUHu0aNGqF79+5CFm2xWJCVlYXExEQYjUbs2bMH27dv56qDl1arRZ8+fbz6se/ZswcbNmxAcXGxD0vmHcaYZPv1gw8+iNTUVI/nX7ZsGVavXi1qHgkk1atXxxNPPCEcz2z367I2rRmNRnz77bc4cOCAlEWVhV6vR79+/VC9enWfr6u0WN91113YsGEDDh486POyuNOuXTu0atVK9vVOnz4d9erVK3NiUalSJeHYJ8V+7Q0Vk/hMkJeXh/bt22PDhg1Ck8+wYcPQo0cPhz4pHTt2xLx589CwYUMAwNSpU5GYmKh4nxSg5IvIzMyE0WikPik+RrGWD8VaPhRr+VCs5SN3rCVfg16vR5s2bbBkyRIUFBRg9+7dOH36NNq0aeMwb5cuXfDhhx8iNzcX//vf/7Bnzx506NBB6iIRQgghxA/5JA2aPHkyLl26hPbt22PBggWYPXs2oqKisHnzZlH/kREjRiAiIgKdOnXC5MmTMXnyZCQlJfmiSIQQQgjxM5I39wQKqj6UD8VaPhRr+VCs5UOxlo/fN/cQQgghhEiBkhRCCCGEcImSFEIIIYRwiZIUQgghhHCJkhRCCCGEcImSFEIIIYRwiZIUQgghXktKSsL8+fOVLobPpaamYuzYsUoXI2hRkkIIIQr56aefEBoaik6dOildFCKjc+fOQaVS4bfffhOm3b59G6mpqUhJSRGesaNSqaBSqbBv3z7R5wsLCxEXFweVSoXvvvtOxpLLj5IUQghRyPLly/H888/jhx9+wPnz55UuTkDj8cnqVleuXEG7du2Qk5ODH374AYmJicJ7iYmJSE9PF83/1VdfISIiQu5iKoKSFEIIUUBubi4+//xzPPfcc+jWrRtWrFghev+7776DSqXCzp07ce+990Kv16Nly5Y4fvy4aL73338fNWvWhEajQd26dbFy5UrR+yqVCkuWLEG3bt2g1+tRr1497N27F6dOnUJqaioMBgNatGiB06dPC585ffo0evTogfj4eERERKB58+bYsWOHy21JS0tzeICs2WxGlSpVsHz5cqefyczMRPfu3REbGwuDwYAGDRpg06ZNwvtHjhxB165dERUVhcjISLRu3Vooo8ViwYwZM1C9enWEh4ejadOm2L17t/BZa03F559/jtTUVGi1WnzyyScAgPT0dNSrVw9arRYpKSlYtGiRy+2y3ZbRo0cjJiYGcXFxeOWVV4SntM+YMQONGjVy+EyzZs0wderUUpedlZWF1q1bIzIyErt27RIezGs1ePBgfPbZZ8jPzxemLV++HIMHD3ZYVnZ2Nh5//HHExsYiLi4OPXr0wLlz54T39+/fjw4dOqBixYqIjo5G27ZtHZ4MrVKp8OGHH+Kxxx6DXq9H7dq18c033wjvX79+HWPHjkV8fDx0Oh1q167tkERJihGniouL2ZkzZ1hxcbHSRQl4FGv5UKzlU1qsly1bxu69917GGGMbNmxgSUlJzGKxCO/v2rWLAWD3338/++6779iRI0dY69atWcuWLYV51q1bx8LCwtjChQvZ8ePH2bx581hoaCjLyMgQ5gHAEhIS2Jo1a9jx48dZz549WVJSEnvooYfYli1b2NGjR9kDDzzAOnXqJHzmt99+Y4sXL2aHDx9mJ06cYC+//DLTarUsMzNTmMdoNLJ3332XMcbYjz/+yEJDQ9lff/0lvP/1118zg8HAbt++7XT7u3btyjp06MAOHz7MTp8+zTZs2MB2797NGGPswoULrEKFCqxXr15s//797Pjx42z58uXs2LFjjDHG3nnnHRYVFcVWr17Njh07xiZOnMjCwsKE98+ePcsAsKSkJLZ27Vp25swZlp2dzT744ANWtWpVYdratWtZhQoV2IoVK1x+j23btmURERHshRdeYMeOHWOffPIJ0+v17IMPPmCMMZaVlcVCQkLYL7/8Inzm999/ZyqVip0+fdrpMq3l++yzz1hiYiLr0aMHKygocJgPAPvqq6/Y3XffzVauXMkYY+z8+fMsPDycnThxggFgu3btYowxlpuby2rXrs3S0tLY4cOH2dGjR9mTTz7J6tatywoLCxljjO3cuZOtXLmSHT16lB09epQ9/fTTLD4+nt26dUu0zurVq7NPP/2UnTx5ko0ZM4ZFRESwa9euMcYYGzlyJKtfvz77+eef2dmzZ9n27dvZN9984zJ+5UVJigt0MJcPxVo+wRDrZs2asYSEBNn/NWvWTFSO0mLdsmVLNn/+fMYYY0VFRaxixYps+/btwvvWJGXHjh3CtG+//ZYBYPn5+cIyhg0bJlpu3759WZcuXYS/AbBXXnlF+Hvv3r0MAFu2bJkwbfXq1Uyr1bqNa/369dl7770n/G2bpFjff+utt4S/e/bsyYYMGeJyeY0aNWLTp093+t5LL73EkpOTmclkcvp+tWrV2BtvvCH8XVxczBo3bsyee+45xtidJMAaX6vExET26aefiqa9/vrrrEWLFi7L2bZtW1avXj1RAjlp0iRWr1494e/OnTsL62aMsbFjx7LU1FSXy7SWT6PRsNTUVGY2m53OZ01S5s+fz9q1a8cYY+y1115jjz32GLt+/booSVm2bBmrW7euqJyFhYVMp9OxrVu3Ol2+2WxmkZGRbMOGDaJ12u4vOTk5TKVSsc2bNzPGGOvWrRvr06ePbMcQSlJcCIaDOS8o1vIJhlgnJCQwALL/S0hIEJXDXayPHTvG1Go1u3jxojBt1KhRrH///sLf1iTl8uXLwrSDBw8yAEKNRmxsrEMtwPz581lycrLwNwD2+eefC3+fOXOGARBd+WdkZDAA7ObNm4yxkhPTxIkTWb169Vh0dDQzGAwsJCSETZw4UfiMfZLyzjvvsJSUFMYYY5cuXWJhYWFsz549Lr+npUuXMrVazVq2bMmmTp3Kfv/9d+G9zp07s0GDBjn93M2bNxkA9t133wnTiouL2dChQ4UTuTUJ+OGHH4R5Ll++zAAwnU7HDAaD8C88PJxVrlzZZTnbtm3Lhg4dKpq2fv16plarheRi3bp1LCYmhuXn5zOTycQqVarEPv74Y5fLtJavb9++TK1WszVr1jidz5qkXL16lWm1Wnb69GmWnJzMNmzY4JCkjBw5koWGhoq2zWAwMJVKxRYtWsQYK/leRowYwWrXrs2ioqKE9xcuXChap+3+whhjUVFR7KOPPmKMMbZx40am1WrZ3XffzSZOnMh+/PFHl9spBbVk7UaEEMKBKlWqcL/eZcuWwWw2IyEhQZjGGENYWBiuX7+O2NhYYXpYWJjwWqVSASjpk2E/zXY59tOcLcPdcidOnIitW7fi7bffRq1ataDT6dCnTx+YTCaX2zRo0CBMnjwZe/fuxd69e5GUlITWrVu7nP+ZZ55Bx44d8e2332Lbtm2YPXs25s2bh+effx46nc7l57zZboPBILy2btvSpUtx//33i+YLDQ0tdX3udO/eHeHh4fjqq68QHh6OwsJC9O7du9TPTZkyBY0bN8aAAQPAGMPjjz/udL64uDh069YNTz/9NAoKCtC5c2fcvn1bNI/FYkGzZs2watUqh89XqlQJADBkyBBcuXIF8+fPh9FoRHh4OFq0aOHwvdruG0BJrK3x69y5M77//nscPnwYGRkZaN++PUaNGoW333671O0tC0pSCCEB5cCBA0oXwS2z2YyPP/4Y8+bNwyOPPCJ6r3fv3li1ahVGjx7t0bLq1auHH374AYMGDRKm/fTTT6hXr165yvj9999jyJAheOyxxwAAOTk5og6YzsTFxaFnz55IT0/H3r17MXTo0FLXk5iYiGeffRbPPvssXnrpJSxduhTPP/88GjdujI8++ghFRUUOJ8yoqChUq1YNP/zwA9q0aSNMP3jwIB588EGX64qPj0dCQgLOnDmDAQMGlFo2W/ZDgPft24fatWsLyY1arcbgwYORnp6O8PBwPPHEE9Dr9R4t+5VXXoFarcaAAQNgsVjQv39/p/OlpaWhS5cumDRpktOkqmnTplizZg0qV66MqKgop8v4/vvvsWjRInTp0gVASafdq1evelROW3FxcRgyZAjS0tLQunVrTJw4kZIUQggJBBs3bsT169fx9NNPIzo6WvRenz59sGzZMo+TlIkTJ6Jfv35o2rQp2rdvjw0bNmDdunVuR+J4olatWli3bh26d+8OlUqFV199VVR748ozzzyDbt26obi42OnoE1tjx45F586dUadOHVy/fh0ZGRlCcjV69Gi89957eOKJJ/DSSy8hOjoa+/btw3333Ye6deti4sSJmDZtGmrWrIkmTZpg+fLl+PPPP/H555+7Xef06dMxZswYREVFoXPnzigsLMSBAwdw/fp1jB8/3uXnsrKyMH78eIwYMQIHDx7Ee++9h3nz5jlsu7X8P/74Y6mxsjV58mSEhoZi4MCBsFgsTpOoTp064cqVKy4TkAEDBmDu3Lno0aOHMPLp/PnzWLduHSZOnIjq1aujVq1aWLlyJe69917cunULEydO9KjWyta0adOQmJiI1NRUFBUVYePGjeVOit2hJIUQQmS0bNkyPPzwww4JClBSkzJr1iyHYaGu9OzZEwsWLMDcuXMxZswYJCcnIz09HampqeUq47vvvou0tDS0bNkSFStWxKRJk3Dr1q1SP/fwww+jatWqaNCgAapVq+Z23uLiYowaNQoXLlxAVFQUOnXqhHfffRdAyZV6RkYGJk6ciLZt2yI0NBRNmjRBq1atAABjxozBrVu3MGHCBFy+fBn169fHBx98gNq1a7td5zPPPAO9Xo+5c+fi//7v/2AwGNCoUaNS7yg7aNAg5Ofn47777kNoaCief/55DB8+XDRP7dq10bJlS1y7ds2hOckTEydORGhoKAYPHgyLxYKBAweK3lepVA7Dk23p9Xrs2bMHkyZNQq9evXD79m0kJCSgffv2QmKzfPlyDB8+HPfccw/uuusuzJo1Cy+++KJX5dRoNJg7dy7Gjh0LnU6H1q1b47PPPvN6ez2l+rejDLFjsViQmZkJo9GIkBC6nYwvUazlQ7GWTzDGOi8vD9WqVcPy5cvRq1cv2dbLQ6wZY0hJScGIESPc1sr4O7ljTTUphBBCysViseDixYuYN28eoqOj8eijjypdJFldvnwZK1euRHZ2tkd9cYjnKEkhhBBSLufPn0dycjKqV6+OFStWQK0OrlNLfHw8KlasiA8++EA0MouUX3DtSYQQQiSXlJSEYO45EMzb7mvB0VBKCCGEEL9DSQohhBBCuERJCiGEEEK4REkKIYQQQrhESQohhBBCuERJCiGEEEK4REkKIYTILDU1tdRbsQc6igHxBN0nhRBCZLZu3TqHp/sSQhxRkkIIITKrUKGC0kUgxC9Qcw8hhMjMtqlj0aJFqF27NrRaLeLj49GnTx+PlrFlyxY8+OCDiImJQVxcHLp164bTp08L7587dw4qlQrr1q1Du3btoNfrcffdd2Pv3r2i5axduxYNGjRAeHg4kpKSMG/ePNH7SUlJmDlzJgYNGoSIiAgYjUZ8/fXXuHLlCnr06IGIiAg0atQIBw4cED5z7do19O/fH9WrV4der0ejRo2wevVql9syY8YMNGrUyGF6s2bNMHXqVI/iQQIT1aQQQgLKvcMsuPiP/OutUgE4sNS7674DBw5gzJgxWLlyJVq2bIl//vkH33//vUefzc3Nxfjx49GoUSPk5uZi6tSpeOyxx/Dbb7+Jnk778ssv4+2330bt2rXx8ssvo3///jh16hTUajV+/fVX9OvXD9OnT8fjjz+On376CSNHjkRcXByGDBkiLOPdd9/FrFmz8Oqrr+Ldd9/FwIED0apVK6SlpWHu3LmYNGkSBg0ahCNHjkClUqGgoADNmjXDpEmTEBUVhW+//RYDBw5EjRo1cP/99ztsS1paGl577TXs378fzZs3BwAcPnwYhw4dwhdffOFVTElgoSSFEBJQLv4DZF9RuhSeOX/+PAwGA7p164bIyEgYjUbcc889Hn22d+/eor+XLVuGypUr4+jRo2jYsKEw/cUXX0TXrl0BAK+99hoaNGiAU6dOISUlBe+88w7at2+PV199FQBQp04dHD16FHPnzhUlKV26dMGIESMAAFOnTsX777+P5s2bo2/fvgCASZMmoUWLFrh06RKqVKmChIQEvPjii8Lnn3/+eWzZsgVffPGF0ySlevXq6NixI9LT04UkJT09HW3btkWNGjU8igcJTJSkEEICShWFunuUZb0dOnSA0WhEjRo10KlTJ3Tq1AmPPfYY9Hp9qZ89ffo0Xn31Vezbtw9Xr16FxWIBUJL42CYpjRs3Fl5XrVoVAHD58mWkpKTgzz//RI8ePUTLbdWqFebPn4/i4mKEhoY6LCM+Ph4ARM0z1mmXL19GlSpVUFxcjDfffBNr1qxBdnY2CgsLUVhYCIPB4HJ7hg0bhrS0NLzzzjsIDQ3FqlWrHJqeSPChJIUQElC8bXJRUmRkJA4ePIjvvvsO27Ztw9SpUzF9+nTs378fMTExbj/bvXt3JCYmYunSpahWrRosFgsaNmwIk8kkms92FJFKpQIAIaFhjAnTrJw90dfZMtwtd968eXj33Xcxf/58NGrUCAaDAWPHjnUom/32hIeH46uvvkJ4eDgKCwsdaotI8KEkhRBCFKRWq/Hwww/j4YcfxrRp0xATE4OMjAz06tXL5WeuXbuGP//8E0uWLEHr1q0BAD/88IPX665fv77D53766SfUqVNHqEUpi++//x49evTAU089BaAkeTl58iTq1avn8jNqtRqDBw9Geno6wsPD8cQTT3hUo0QCGyUphBCikI0bN+LMmTNo06YNYmNjsWnTJlgsFtStW9ft52JjYxEXF4cPPvgAVatWxfnz5zF58mSv1z9hwgQ0b94cr7/+Oh5//HHs3bsX//3vf7Fo0aKybhIAoFatWli7di1++uknxMbG4p133sHFixfdJikA8Mwzzwjz/Pjjj+UqAwkM/lMvSgghASYmJgbr1q3DQw89hHr16mHx4sVYvXo1GjRo4PZzISEh+Oyzz/Drr7+iYcOGGDduHObOnev1+ps2bYrPP/8cn332GRo2bIipU6dixowZok6zZfHqq6+iadOm6NixI1JTU1GlShX07Nmz1M/Vrl0bLVu2RN26dZ12sCXBR8WcNUASWCwWZGZmwmg0iobzEelRrOVDsZYPxdp7jDGkpKRgxIgRGD9+vMefo1jLR+5YU3MPIYQQxV2+fBkrV65EdnY2hg4dqnRxCCckT1KOHDmCmTNn4vz582jQoAFee+01Ydibve7du+Off/4RsrHOnTtjypQpUheJEEL8yvnz51G/fn2X7x89ehR33XWXjCXyvfj4eFSsWBEffPABYmNjlS4O4YSkSYrJZML//d//Yfjw4ejUqROWLFmCqVOnYunSpS4/s3jxYqe3QyaEkGBVrVo1/Pbbb27fDzTU84A4I2mS8uuvv0Kn0wk3Bxo2bBgefvhh/P333y5rU7xhMpkcxtmr1WpoNJpyL9uedby/9X/iOxRr+VCs5VOeWIeEhJR6p1X6Du+g/Vo+Usbakz4tkiYpZ86cQa1atYS/dTodqlevjjNnzrhMUl588UUwxtC4cWNMmDDBbTKTnp7uUCvTt29f9OvXT5oNcCIrK8tnyyZiFGv5UKzlQ7GWD8VaPlLEOjk5udR5JE1S8vPzHW57bDAYkJ+f73T+mTNnIiUlBUVFRVi8eDEmTJiAVatWOdwB0Wro0KEYMGCAaJova1KysrKQmJhIvcV9jGItH4q1fCjW8qFYy0fuWHuVpIwaNQqHDh1y+l5aWhp0Oh1yc3NF03Nzc6HT6Zx+5u677wYAhIeHY9y4cUhNTUV2djaqV6/udH6NRuOThMSdkJAQ2ullQrGWD8VaPhRr+VCs5SNXrL1KUhYuXOj2/b179+Krr74S/s7Pz8eFCxc8eoqlSqVyWYNCCCGEkOAjaRrUrFkz5OfnY8OGDTCZTFi2bBnq16/vtJ/JxYsXcfjwYZjNZuTn52PBggWoUqVKQPZaJ4QQQoj3JO2TotFoMGfOHLz++ut48803Ub9+fcyYMUN4f9asWQCAKVOmIDc3F2+88Qays7Oh1WrRuHFjvPPOO1RVRwghhBAAPriZW4MGDfDZZ585fc/2Rm01a9bEmjVrpF49IYQQQgIEVVsQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLlKQQQgghhEuUpBBCCCGES5SkEEIIIYRLkiYpZrMZEydOROfOnXHvvffi6tWrbue/cOEC0tLS0KpVKwwYMAAnTpyQsjiEEEII8WOS16Q0bdoUc+bM8WjeKVOm4IEHHkBGRgYeffRRTJw4EWazWeoiEUIIIcQPqSVdmFqN/v37ezTvuXPnkJmZiWXLliEsLAyPP/44Vq5cicOHD6Np06ZSFotwbNdBhikfAF2bR2DKUKVL4xnGGEa/y/DtPoCxO9PVoUBaFxVeHqRSrnAKWb2D4fWPGHILxNOb1AI+eVWFSH1wxeRkFsMzc4BTFxKgVgOAxePPRumBWcNV6N4qcGJmsTAMm8Ow41ffrcNsFsc62gC8OUKFLi34jONHmxlmr2LIL/TN8o3xwLJJKtRO5HP7PSVpkuKNs2fPwmg0IiwsTJhWu3ZtnDlzxmWSYjKZYDKZRNPUajU0Go3k5bNYLKL/iW+8/hGw7yhw+HQs/m+g5d+DDN8OngAWrXf+3tTlDMO7M8RFy1okj/lqv35pCZB5yXH6+UvA57sYhnZmjm8GsEXrgT2/A2U9xE5dxtC1ReDE7PvDwPJNvl6LY6ynLWfodD+fcXxxEXD1pu+Wf/4SsPArhndGS7v9Uh5DQkJKb8xR7JSQl5eHiIgI0TSDwYC8vDyXn0lPT8fSpUtF0/r27Yt+/fr5pIwAkJWV5bNlEyD7clUAGuQVhuDkmfPQh/N5QLH1x3EtgHgAgEFrgUFrwa28EBSYQmCxAP87lo3kKnw3W0q9X1+6ngggBOpQhgqRxSgsUuFmbigA4MTZ68jMvCXp+nh39kIcgJLjW1xkMUJDPduvr94MhYWp8PdVMzIzs31YQnkdOaEHUAkAEKG1QK/17cWfNY5/cRrHYgtw9aYRABAWyhAbWSzhslW4dqvkt3cuOweZmdckW7YtKY4hycnJpc7jVZIyatQoHDp0yOl7aWlpeOaZZzxell6vR05Ojmhabm4u9Hq9y88MHToUAwYMEE3zZU1KVlYWEhMTPcr2SNkU2pzLYypUR9WK/Mdaf/bO62lDQjDhiRCMehdY/HXJtOgKCTAalSlbaXyxXxcXAwX/VnDeV0+F7/+rxvYDQKcXS6aFhcfCaIyVZF3+gtmE9vd0FapWDPXocw0GAcfOA/lFahh53YnKQPfnnddvPheC53pI+zu336/rDgBOZQMFnMbxts21eJsmKmybJ119waV/gGq9Sl6zkAgYjRHuP+Aluc+NXkVm4cKFkq04OTkZmZmZMJvNUP9bx3/y5EkMHDjQ5Wc0Go1PEhJ3QkJCKEnxoZyCO1dUeYX+Eeu8Qgag5Mo4Qq9CSIgKETqb7SgomcYzKffrnPw78TBoS5YdqbszLbfAs2rdQJJrs19H6j2PteHf/SgnH1CpVFCp+N6PPJVXcGd/iNT57vdh3a9t48jjvmcbjwidtGWM1Mvz25Pr3Cj5GkwmEwoLS3oCFRUVCa/tJSUlwWg0YsWKFTCZTPjiiy8QGhqKxo0bS10kwrGcfOeveZZjcxUUobP+f+eg6y/bIRXb7RXioXf+frCw3Wa91vPPWeNnsdypnQoEzvYRX7Kuw1QEFJn5a0L2ZTxs97dA+O1JnqT07t0brVq1AgB0795deA0As2bNwqxZs4S/33jjDfz0009o164dvvrqK8yZM0eoVSGBz2xmKLQ5ENuPDOGVbTnvJCnO3w8GubYH3H+Tk2COB3AnJvpwC7y52BTFLQBOMFa5BXcSBTmTFIDPODo7hkglJEQFw7/L5HHbvSV5RrBhwwaX702ZMkX0d2JiIpYvXy51EYifsD95+UvWX9K8UcJZkuIv2yEVpzUptvFw3Rc+YFljotd6dxVvvx9VjJGuTEpSqibFuu6YSN+v0xu+jkeEriRBCYRjEX+NdSRo2P+A/OUHRSdlsVLj4Sffq5Ss22wI924US6DGLcdJbZsv8R5HOZIU+/X4K0pSiGICNknxk+2QijgeJX1zdOGAtc9nsMUDkK4mJVAoXZPCG2e/GSlRkkKIBOx/QP7SfursgGsQHRT566jnS7bxMPzbaU+lUgXUgdIbZjMTOr3qNVSTAohrFw1edCQuKwPnnUdFvxkfJG3W7S8wleyP/oySFKKYQKhJMVBNisurZOuBMtjiYdvXytuaFEOAjhKTvSZFz3ccnY0QlFIgdVynJIUoJhCSFGrucX0CCtaaFPHwY6pJAe5si0pV0hToa7zHUa4+Kfbr8keUpBDF2Dfv+EvGn+vkgBtIVy7eynWVpPzbQTLo4mGzvQYvH/PA+9DZsrLGpORmf76/QR3vcfT1kOxAOh5RkkIU4+81KRE6CHcEDaQrF2+JhmTbjNywvaGWqci/28W9YVuVTx1nS9j+ZuTAexxlrUnx89GGlKQQxQRCkmLF+0HRl0pr7gH8/2rOG6LmHhqCDICSFHvU3OM5SlKIYgIpSQnXAKGh4veDhSdJir9fzXlDPNqpPDUpgVP7JPxmZLhHCsB/HH2epHDecdgblKQQxdgfPHhsO3bGWZKiUqnujGYJohMy4HwIMhBYV3PesN1WHdWkwFTEYCoqeS3H8GP79fAYR7mGINuvyx9RkkIU4481KaYihiJzyWv7gwuNZnE+BNl+nkAnOgF52XHWEIBJii+fU+MK7w+4pOYez1GSQhRjX3PiDz8mdwdcSlKoTwog3RBkf6lZLI2r0V++xPu+52yEoJQoSSFEAv54x1l3N2Gy/s3jQdGXrNsbGlrSN8cqIkBvTFYaqYYgB0rM5L6Rm/16eGx+dTZCUEq8J2neoCSFKMYfm3vcHXCtfxeZg3PIrf0BNxBPuJ6w7Wvl9R1nA7CJTPEkhcM4+nq0E+8dh71BSQpRTKAmKfbzBTpXB1ze+wX4iug5NV52nA0NVQnV/4ESMyWSFE2YCmFqx/XzQtYkhcOaJG9QkkIUY3/wKCwCijh/GJa7A24gdnr0hHVb7UduBNKB0hvi0T3e78+B1rdJPJLF93ebFdbF8bOjhN+Mj5KUQDoWUZJCFOPsx8N7vxR3j1gPxpoUxpjrmpQgjAdgPyTbu5oUILCTFLlqUmzXxVscbUcIytPc45t1yIWSFKIYZx26eP9BiTpFUs0BTEWAubjktUPNkk18bJ9VEujEo3u8325r3Py9w6OVEqN7bNfFWxzlGJJNSQohEnD24+H9ByW6KrS7e2YgHRg8RX10HJXntvjAnf0qrwAoLvb/5E6xmhT9nfUzxk8c3Y0QlEog/fYoSSGKsG0msMXbVY8990OQ7zT/8L4dUvHkvjGA/x8ovWGNiToU0Ki9/7xt3PIKpSmTkpRu7rFYgAKTfOstjRzx0ISV7H+A/x+LKEkhiig0AcXFjtN5P5lRzYEYxcOR+B4Y3n8+0JoNRU/JViBJKSmDfOstjRxJikql4rZPjrcoSSGKcPXD4f0H5e6Ay+tB0Zfc1iwF6xDkcg4vDbT9SOmaFICvZE+ueFCSQkg5uExSODqYOON2CHIA3oirNO4elBaM8QBcD8n2VCAnKb4acusMr/ufePSX74ZkGyhJIaTsbH84tlXivP+gXD3xFwjOmgN3Q7J5v6GWL7gbku0pXk+uZcVFTQpHcVSiJoWnjsPeoiSFKMK2M1elmDuveTqYOONxR9E8/z0oeKO0A64wDJTz71Uqtn2tpGju8fdOj4DyQ5ABvuIoOoboXc9XXtbtLy4u2S/9FSUpRBG2J7cqFZxP5xENQRbzNEkJxniUtWkj0B7MqFxNCp9xlGMIsv2yedp+b1GSQhRh+0OtHHvnNe83/XLb3MPplZsvlXZjqmBLUqS4UVegNRtatyFMXdIEKBdeT9JyN/cA/n08oiSFKML2hxof63w6j6zl04Q5HnB5PSj6kjc1Kf7cLu4pKU5AvI5KKStfP0zPFV6TPbmGZAfK8YiSFKIIv23u+fek4ezgEmgdHj1h2/fGWfOGNU6MAfkBcGOy0kjT3ON8ef6qvKOdykr0e+Qo2XNXGyulQDkeUZJCFOG3SYqbq8JAevKopzytSbGfN1BJXpOS7/+1T4rVpHAaR9maezitSfIWJSlEEbZtpPG2SQpHVzzOWMvt7AooTK1CuKbktT8fFLxR2gHXNnELhhE+UnSKFD+YsXzlURpjTNgGX45kcYbXPhlyPGCwZNk2HYc5P666Q0kKUYTtlY2/1KR4cg+MYOsoSjUpYtLXpJSvPEorMJU8OwdQuiZF3nW7426EoJR43X5vUZJCFGH7o4mNBNShzGE6b/ILS/pWAJSkWFGSIkZ9UsSUGn5svz6e4ihXnxRet99blKQQRdgfvKyPtOepWtaeJwfcYLt5me335eyAGygHSk/REGQxue4J4gyv+567EYJS4rW5y1uUpBBF2B+8DFr+a1I8qaa1nqhzCwCLhZ/Oer5ijUm4BlCrHQ+4vN5Qy1ekuErm9eRaFnLVGjjDa0d267HP1/Gg0T2ElINjTYqfJSml1KQE25Db0uJhO28gk+IeGFoNEBJiXZ4EhVKQks09vJ6k5RrtxOvoJm9RkkIUYX+FpddahOm83vTLk6rr4Dspl/xP8SghxUlZpVLd6dvkx6MyAGWTlNBQFXTh/5aDozgqk6T4dl2+REkKUYS1jVQXDoSGAoZ/a1IslpIRATwqrf8FEDgHBk+VdsANuiHIEp2UbZsN/Zm4j458t8S/s07HcihJNCTb10lKgPRtoiSFKML+5GatSbF9jzfiE5DzA24wJSkWCxMSD89qUvisIZOSVB1FA2WUmJI1Kbbr5CWOnowQlEqgPF5BLeXCzGYzXnrpJfzxxx+4cuUKtmzZgooVK7qcv3v37vjnn38Q8m8DbOfOnTFlyhQpi0Q4ZX+rbGufFKDkB1UpRv4ylcabPin28weiPA9GsgRTPADHfeR6btmWw9vJtazkuieIK7zFUc6kLVB+e5ImKQDQtGlTDBo0CEOHDvVo/sWLF6NRo0ZSF4NwzqEmJfxOTQovVbP2PEpSbA7Egd684clw20A5UHrKvknwehmXY41bkRkwFTFZnx4sJSWHINuuM78QKC5mCA1VNo5yJm2BcudiSZMUtVqN/v37S7lIEoCKi5lwFW79oeq1NjUpnJ7MPElSDFoVAP5HKknBk+GlwZakWLdRqynpa1VW9nGrEFa+cinFtolP7iHIgF2fqAIgyiB/GWzJOSQ7NFQFrYahwOTfvz3Ja1K89eKLL4IxhsaNG2PChAmoWrWqy3lNJhNMJnGvSrVaDY1GI3m5LP/ey9n6P5GO/Q/VYrEIHWcB4FYu4/IeI7dtrgr1WudltD3w3Mrjbzuk3K9v2TRlGHTOl6kPv/P6dl7g/55sawjLE2vbk+utXIaYCL72I0958puRgqtYi36PuQwROmXjKPrNaH3/e4jQQUhSpFqXlMcQa1cPdxRNUmbOnImUlBQUFRVh8eLFmDBhAlatWgWVynmVXHp6OpYuXSqa1rdvX/Tr189nZczKyvLZsoPVlRshABIBAKEsD1lZV6DXRgnvnz1/GZmV+Ev9/74UAyAaAJBz8yIyMx1vhFKQawBQ0g/rfPY1ZGbmyFdAL0ixX586Gw6gCgDAUnQLmZmOjRu5BSoAdwEArt3IR2bm5XKvl2c3c6oDCIU2zIysrGwAZYx1cRyACADAyTPZYAVm6Qopo4tXKgCIBADcvvEXMjOLfLo++1irLHfieOJ0NopylY3jmUwtgHgAQLHpBjIzb/p0fdqwBABq3MwpRmbmBUmXLcUxJDk5udR5vEpSRo0ahUOHDjl9Ly0tDc8884w3i8Pdd98NAAgPD8e4ceOQmpqK7OxsVK9e3en8Q4cOxYABA0TTfFmTkpWVhcTERI+yPeK5Iptq8EpxeiQmJsIQfkOYpouoDKNR/nKVJsSmyr1mUhWnZTRm3nkdrouD0Rjn+4J5Qcr9+tilO6+rxUfBaIxymMf2YquY6WDk8YuVUP6/Fb0xkWokJiaWOdbxNuMNomITuPw9eEJlc4apXaMajM4P7eXmar+2jWN0BeXjePD8ndcJVWJgNMb4dH0xkcCFq0C+KVSy357c50avkpSFCxf6qhxQqVQua1CsNBqNTxISd0JCQihJkVheIYO130akviTGtkOQ8wpVCAnhr6NgbsGdMkYZnJcxSn9n23ILPKvOVIIU+3Vege336DweISElw8vzCkqqnHmNhxRK+lqVxCNCf2dbyxLrSL3N76GAz9+DJ0S/GRf7iJTsY81bHD35zUgp4t/tzysAGFNJ2nFYrnOj5GswmUwoLCypBi8qKhJe27t48SIOHz4Ms9mM/Px8LFiwAFWqVEG1atWkLhLhjLPOY/ZDkHlEQ5DFPB1OydswUF/JsznUlXckS6A880j5Ich8xVHu+8bYriPP+amYe5L3Senduzf+/vtvACX3QQGAAwcOAABmzZoFAJgyZQpyc3PxxhtvIDs7G1qtFo0bN8Y777wT0FdapISzH2qgDEEOpjusenIHXqAkVpev83GS8KVcCUduBEqya1t2207UcuHt+T2iCzQZkhTRMOT8kpprfyN5krJhwwaX79neqK1mzZpYs2aN1KsnfsDxzq3MbggyA8Bf9bbogEtDbqkmxY6UV8mBsh9Za0VLHn+hwG3xObs1vBQPoPRGIOxHVG1BZOesCtjgR7fFN+jgsi05EA4KnvL0gGt9r8BU0m8jUFGS4kiuh+m5wlsc5b65HW/bXxaUpBDZ5Tpt7uH/Zm6lPafG/j1et0Mq3takAPw25UlB0iQlQO5cLNfD9FyJ4Kz51ZO7NEspEI5HlKQQ2Tk7mBv86I6z7vob6MIB6yA1XrdDKp52iuStX4CvSJmkiGPmv7VPfNWkKB9HJTvO+utvj5IUIjtnt8rWhftPc4+7g0tIiErYJl63Qyoe16Rw1i/AVzx5SranAuHkUlzMkP/viBI+khRlymBL/iSFr9FNZUFJCpGd89E9fNekmM0lz8AASj+4BE1HUQ/b1wPlkfGlkXK4LW8n17KQu2nDGd7iKHuSEgAXCJSkENk5+6GGhpQ0lQB8tB3b8+aAax1aGMj9LwDvhiBb+euB0hM0BFlM7uG2zvDW1OjJCEEp2Q9B9keUpBDZubqa4LkGwpsrIJ63Q0rW7VOp7iSYzgRClbMnaHSPmNy1Bs7wVpNgLYNe63qEoJQCYT+iJIXILtdFtTjPJ3dvalKs7xeagCKz8p31fMW2I7G7A27wjO6R7h4YhgCImbNRfHLjbd/zZISglHjrOFwWlKQQ2fllTYoX9zfgbdijr3g6ciMQruY8IWXNQZhahXCN43L9CQ81KVpNyfOj7MujFLlHOwXCb4+SFCI7648lJKTkIGJl/UHlF/J30y9v2tcD4cDgCU8PuLz1C/AVqU/KwigxP+1sLOVop7JSqVR3Ln44iCMlKd6jJIXIzraZwPbJ17YdyXiomrXlzQE3EA4MnhAOuKWMZAm2eADSnIR4rln0BA81KbbrVjqO3owQlEog/PYoSSGyc3U1wfMPypsDbjDUHBSZGUxFJa9LG8ki7rzIVw2ZlKQezcLLybWseBjdA4Cb+xZ5OhpOSgaOj6meoiSFyM6TJIW3vhxlGd0D8FcjJBVvOkUGy31SpO4oal1GbgFgsfhfcsdjTQpjysVRiXjwfEz1FCUpRHaBXpMSoQ/8IbdlTdoCNR6A50OyPWWNG2MQ7tzqT3hLUszFEGr/lCDlzf48FQiP6aAkhcjKVMRQZC557U9JSlmGIAOBW3NANUuObJNv275WZeXvccuVcEh2efASRyWGZIs6DnN2TPUUJSlEVu5O9jwnKd7cA4Pn7ZAK1aQ4knrkhr/HjZuaFE5u6KZUPChJIcQLovuN2FV58nxQti03DUGmjsTOSJ2k+HunR26SFE7iqNSQbEpSCPGCqMe/XQ93PccnM6o5EPPmgBuuAUJDHT8XaHxak+KHzYZcJikKxpFqUsqGkhQiK3c/VJ57ope15iC3wP9GZXhC9DC9UuIRCO3ipbHtayXVcFt/T3Z5G4IM8FOTItcQZOBO7IvMJfupv6EkhcjK0ySFt4My1aSIeXtVGOhJijcdqz3l7w9m5KcmhY84Kl2TAvhnB2xKUoisxAdzcTMBzw/D8mp0Dycd9XyprEkKbzVkUvHm2U6e8veTi7XM9o+/kBsvcfRFIusJXpq7yoqSFCIrf69JUYcCmjD38/K8HVIpT02KkjfU8hVfXCX7+35kPSFKNSS7rHiJo2iEoEz3SQH42f6yoiSFyMrfkxRPDrj+fuXiCW+GZNvOo/QNtXyFkhRHcj9MzxVe4uiL2jZP8LL9ZUVJCpGVu6G8PA+5FB6K6MUJ2fZzgcbbkzIvnRd9xRdJivj34H+1T9wkKZw0v/LQJ8Uff3uUpBBZBUJNSmk0YSqoA3zIrbcjN3j+bqUgHrkhTdOGP9fIMcZETztXkihBzuPj2T2yju7R8tFxuKwoSSGyctdMwEsHN3u2B1xPr4BsHw4XiLztBBjoSYpvRvfcee1vMTMVlTTtARzUpHASRx5qUvzxeERJCpGVu4O5VlMyEgDg66BsKgKKvTzgBvqQW2/b13m+B44UfPHwOH8+uSg1ksUZXuKo2OgeTpq7yoqSFCIrd1cTKpXNyZ2j6u2yXAEFfJLi7egePz9QlsbXQ5D9LWZKPPHXFV7iaF13aGjJXZjl4s/NhgAlKURmpZ3ceDy5lylJ0d/5bCAPuQ1Tl/TBKQ0vN9TyFRrdI8bLjdzs189DkiL3kGxetr+sKEkhsgqaJOXf+SwWoMAkfZmUVtY+OrafDSTeDsn2hC68pHaxZPnSLFMuSg23dYaXUYNKjXbi+SaZnqAkhciqtFEh1l7vPNVAlKVXfuCflEv+9/SAS0OQvRcSohIeuulvMeOpJiVMrRKaVyhJkXfdUqAkhcjK+iPRhJUcPOzxeNOvsrSvi4c9SlseHng7vNTfD5Sl8dXwUh5rFj3hiyHZ5WFQONlTcki2v18gUJJCZGV7q2xneOmJb0tcde3ZAZfH7ZAKY0zYJk+TtkBPUnw1ciMQkhSla1Jsy6BUHAtN3o8QlIq/H4soSSGyEk5urpIUDkeBlOUEFMgn5QJTSV8boGzxyPXDdvHS+Go0i78+mJGnIci2ZVAqjkrGg8djqjcoSSGyKq1dlseTe3k6ztp/PhBQPBz5urmnwASYzf6T3PFak5JbAFgs8sdRyXhQcw8hHvLkzq08jukv20k5cIfclmXkhr9fzZXGtq+VJ0OyPeWvVfU83ScFuBNHxoD8QvnXr2SSoglTCU9u98ffHiUpRDb5hSUHCYBqUvwZxcNRaX2tyspf42b7jByealIAZeKodM0SjzfJ9BQlKUQ2nlSJ8/gwLNt7C3halc/LvRl8oSxNG/5e5VwaX43c8Ne4KfUwPVeU/j16+0BOqSk9uqk8KEkhsvGkCljpKx5nyl1z4IdXL+6UJR7+erL1lK/ugcHj78ETStcc2FM6jmUZISglpUc3lYekScq5c+cwduxYtG/fHg8//DBeffVV3Lp1y+X8Fy5cQFpaGlq1aoUBAwbgxIkTUhaHcCbXgwMXj23wuR4kV/Z43A6piEcqeHbAVatV0GocPx8IREOyfZik+NMIH15H9wDKxFHpeNh2HOblJpmekjRJycnJwcMPP4yvv/4aGzZsQFFREebPn+9y/ilTpuCBBx5ARkYGHn30UUycOBFms1nKIhGOeHJ1pfQVjzPl74PhXweF0pT1Ktmfr+bc8aSvVVlF6Plr/vQE1aSIKR0PpTsOl4dayoU1bNgQDRs2FP7u2bMn3n33Xafznjt3DpmZmVi2bBnCwsLw+OOPY+XKlTh8+DCaNm0qZbG8tvhrhhu3ges3ohAbA6hUgXWSUcqp7NI709nWVGz5mXFx19k/zt55XZYk5Yf/AW+t4mMfYqz8+/XPR22+Ry9GbkTogKs3gcvX+YmHFHILfNdJ1HZ5n+5g+N8ZaZfvK8fP33mtRB8MeyU1fiXf0yfbGQ6dlHf9P/xP2Y7Etut8cxXzup9QpRggrasydw6WNEmxd/jwYdSoUcPpe2fPnoXRaERYWJgwrXbt2jhz5ozLJMVkMsFkEj+tTa1WQ6OR9rnXb60Czl0EgNh/pwTOAZUX+nDA8u8dwWz/14ffqdzbth/Ytp+v2Os0zKP7LOhtDgL7jgD7jvC0HdLt17pwz+IB3DlQ3s4DJi/hKR7S0Wud79flWZ7Vqu2Avx2LNGFAaIjn+0hZlRZr25Pyyq2AknH05jcjFdtE8fWPAG+3v3FNYEjnks9IsV9bhYSU3pjjsyTl+PHjWLNmDT744AOn7+fl5SEiIkI0zWAwIC/PdS/D9PR0LF26VDStb9++6NevX/kLbMNsToCP87egl1Llb2RmihPOrKwsxGlViNIn4FZeqEIlc+3+lAJcuHDJo3lDioHEStWQdSWs9Jn9lCaMwRiTjczMYo/mv7dWLP44G+XjUimrifEaMjNzRNOysrLKvLxaldQIUVWDhSn//JuyaFEvH5mZl2Vbn6tY164cBpWqKpjCcdSHW1AtMhuZmeU/wXvjbmMEPkNcmT9vMpmQmfm3aFp59mur5OTkUudRMS960YwaNQqHDh1y+l5aWhqeeeYZAEB2djaGDx+OiRMnIjU11en8u3btQnp6Oj7++GNh2rhx49CqVSv06dPH6WfkqknZth/Izbfg6tWrqFixIlQqGgQlpYbJQK3qd/62WCzIyspCYmIiQkJCcPUG8OMfd9r5eaDVAKlNAG2455+5lQvs/v3OMzt4wJh0+/X99YGqXhz3LBbg+8PA9dvlWi23EisDTesAqn/Pg/b7dVmdvwQc9MMxBXptyW9GI0Oe7kmsz/0N/HbK92Vxp2VDoHJs6fNJjTHg0MmSfaksogzAQ/82cEi1XwM+qElZuHBhqfNcvXoVo0aNwtNPP+0yQQFKMqjMzEyYzWao1SXFOHnyJAYOHOjyMxqNRvKExJlO95ccUDMz82E0hpT7iyCeCQkpiXXlCsBjbZQuTfnFRAI9HlS6FGJK7tchIUA7ZbubKcK6X5dVUtWSf6R07mJdI6HkX7C6N6Xkn1TKu197vB4pF5aTk4Pnn38eXbt2Ra9evdzOm5SUBKPRiBUrVsBkMuGLL75AaGgoGjduLGWRCCGEEOKnJO148d133+HkyZO4cOGCqBnn+++/BwDMmjULQMnQYwB44403MG3aNKSnp8NoNGLOnDlCrQohhBBCgptXfVKCicViQWZmJoxGIzX3+BjFWj4Ua/lQrOVDsZaP3LGmb5MQQgghXKIkhRBCCCFcoiSFEEIIIVyiJIUQQgghXKIkhRBCCCFcoiSFEEIIIVyiJIUQQgghXKIkhRBCCCFcoiSFEEIIIVyiJIUQQgghXKIkhRBCCCFcomf3EEIIIYRLVJNCCCGEEC5RkkIIIYQQLlGSQgghhBAuUZJCCCGEEC5RkkIIIYQQLlGSQgghhBAuUZJCCCGEEC5RkkIIIYQQLlGSQgghhBAuUZJCCCGEEC5RkuLE9evX8cILL6BVq1bo1asXfvnlF6WLFBBMJhNee+01dOnSBW3btsXw4cNx6tQp4f0VK1bg4YcfxkMPPYQFCxaAntggjcOHD6N58+ZYsWKFMI1iLb0VK1aga9euaNOmDZ588kncvn1bmE6xls6xY8eQlpaGtm3bokePHvjmm2+E9yjW5bNkyRL07dsXzZs3x9atW0XvuYvtkSNH0L9/f7Rq1QrDhw/H33//LV2hGHEwadIk9vrrr7P8/Hy2a9cu1q5dO3bz5k2li+X38vLy2NKlS9nFixeZ2WxmK1euZI8++ihjjLHvv/+ede3alWVlZbErV66wPn36sPXr1ytcYv9XXFzMBg8ezAYNGsTS09MZYxRrX1i9ejUbNmwY++uvv5jFYmEnT55kBQUFFGsf6Nu3L/vwww9ZcXEx+/PPP1nr1q3ZuXPnKNYS+Pbbb9nevXvZ4MGD2ZYtW4Tp7mJbWFjIunTpwtavX88KCgrYggUL2DPPPCNZmagmxU5eXh52796NZ599FlqtFqmpqahZsyb27NmjdNH8nk6nwzPPPIP4+HiEhobi8ccfx19//YUbN25g06ZN6NOnD6pXr46KFSviqaeewubNm5Uust9bt24dGjZsiOTkZGEaxVpaxcXFSE9PxyuvvIKqVatCpVKhVq1aCA8Pp1j7wMWLF9GpUyeEhIQgJSUFSUlJyMzMpFhLoEuXLnjggQeg0WhE093F9tdff4VOp0OPHj0QHh6OYcOG4ejRo5LVplCSYuf8+fOIiIhAxYoVhWm1a9fGmTNnFCxVYDp8+DAqVKiAmJgYnD17FrVq1RLeq1OnDsW8nG7evInVq1dj+PDhoukUa2ldvnwZhYWF2LFjBx555BH06tULX375JQCKtS/069cPmzZtgtlsxh9//IFLly6hYcOGFGsfchfbM2fOiN7T6XSoXr26ZLFXS7KUAJKfnw+DwSCaZjAYkJOTo1CJAlNOTg5mzZqFkSNHAiipwYqIiBDeNxgMyMvLU6p4AWHhwoXo378/oqKiRNMp1tK6fPkycnJycOHCBXzzzTfIzs7GyJEjkZSURLH2gRYtWmDatGn48MMPAQBTpkxBhQoVKNY+5C62rs6Z+fn5kqybkhQ7Op0Oubm5omm5ubnQ6XQKlSjwFBYWYsKECXjwwQfRo0cPAIBerxclgrm5udDr9UoV0e8dO3YMR44cwaRJkxzeo1hLKzw8HAAwfPhwaLVa1KxZE126dMGPP/5IsZbYjRs3MH78eEyfPh1t2rTB2bNnMWbMGNSsWZNi7UPuYuvrcyY199i56667kJOTg6tXrwrTTp48iRo1aihYqsBhNpsxZcoUVKpUCWPHjhWmJycni0b6nDhxgmJeDgcPHsT58+fRpUsXdOzYEdu3b8fy5csxc+ZMirXEjEYjwsLCnL5HsZZWdnY2IiIi0K5dO4SGhqJWrVpo1qwZDh48SLH2IXexrVGjhui9/Px8XLhwQbLYU5JiR6/Xo02bNliyZAkKCgqwe/dunD59Gm3atFG6aAHhjTfeQGFhIaZPnw6VSiVM79KlC9auXYvs7GxcvXoVq1atQufOnRUsqX/r1asXvvrqK6xatQqrVq1CmzZt8MQTT+CFF16gWEtMp9Ohffv2WLZsGUwmE86dO4fNmzejVatWFGuJGY1G5ObmYs+ePWCM4dy5c9i/fz9q1apFsZaA2WxGYWEhGGPCa4vF4ja2zZo1Q35+PjZs2ACTyYRly5ahfv36qFq1qiRlUjFGA8ntXb9+HdOmTcOvv/6K+Ph4TJo0Cffff7/SxfJ7f//9N7p3747w8HCEhNzJj//zn//gnnvuQXp6Oj755BNYLBb07NkTY8aMESUypOymT5+OpKQkDBkyBAAo1hK7ffs2ZsyYgZ9//hnR0dEYPHgw+vTpA4BiLbW9e/fivffew4ULFxAZGYnevXsjLS0NAMW6vKZPn46NGzeKpi1evBj33nuv29geOXIEr7/+OrKyslC/fn3MmDGDkhRCCCGEBDZq7iGEEEIIlyhJIYQQQgiXKEkhhBBCCJcoSSGEEEIIlyhJIYQQQgiXKEkhhBBCCJcoSSGEEEIIlyhJIYTI6sCBA7j33ntx77334q+//lK6OIQQjlGSQgjxmenTp+Pee+/F8OHDhWkRERFo2LAhGjZsCI1Go2DpCCG8o6cgE0JklZKSghUrVihdDEKIH6Db4hNCfKJ79+74+++/HaYvXrwYzz77LADgm2++QbVq1YRnhlStWhUjRozA+++/j5ycHDz66KMYNWoUFi5ciG+++QaRkZEYMmSI8FwcALhy5QoWLVqEvXv34saNG4iPj0f37t0xZMgQqNV0HUaIP6NfMCHEJ+rWrYv8/HzcuHEDBoMBycnJAIBjx465/MzVq1fx5ptvomLFisjNzcXq1auxb98+XL58GREREbh48SLmzJmDZs2aITk5GTdu3MCQIUNw6dIlYR1nzpzB4sWLkZ2djWnTpsm1uYQQH6A+KYQQn3j77bfx4IMPAihJWFasWIEVK1YgJSXF5WeKiorw3//+F+vWrUN8fDwAICsrC6tXr8aXX36J8PBwWCwW/PrrrwCAzz//HJcuXUJcXBzWr1+P1atX46233gIAbNy4EVlZWT7eSkKIL1FNCiGEG1FRUWjSpAkAoEqVKrh06RJq1qyJatWqAQBiY2Nx8eJF/PPPPwBKHhEPANeuXUOHDh1Ey2KM4Y8//kBiYqJ8G0AIkRQlKYQQbhgMBuF1aGiowzSVSgWgJAGx/d+2OcmWVqv1WVkJIb5HSQohxGesSUJBQYFPlt+gQQP89NNPCA0NxaxZs4Qal9zcXOzatQvt2rXzyXoJIfKgJIUQ4jNJSUkAgKNHj+Lxxx+HTqfDsGHDJFt+v3798PXXX+Py5cvo3bs3kpOTkZubi0uXLsFsNqNbt26SrYsQIj/qOEsI8ZlHH30UDz30ECIiInD69Gn88ccfsFgski0/NjYW6enp6N69O6Kjo3H69GkUFhbinnvuwfjx4yVbDyFEGXSfFEIIIYRwiWpSCCGEEMIlSlIIIYQQwiVKUgghhBDCJUpSCCGEEMIlSlIIIYQQwiVKUgghhBDCJUpSCCGEEMIlSlIIIYQQwiVKUgghhBDCJUpSCCGEEMIlSlIIIYQQwiVKUgghhBDCpf8H4szahQsmAzsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "anomaly_score = Kmeans_scorer.score(series_test)\n", + "\n", + "# visualize the anomaly score compared to the true anomalies\n", + "anomaly_score.plot(label=\"Anomaly score by KMeans\")\n", + "(anomalies - 2).plot()\n", + "plt.title(\"Anomaly score from KMeans Scorer vs true anomalies\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nice! We can see that the anomaly scores accurately indicate the position of the 6 anomalies.\n", + "\n", + "To evaluate the scores, we can call `eval_metric()`. It expects the true anomalies, the series, and the name of the agnostic threshold metric (AUC-ROC or AUC-PR)." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AUC_ROC: 1.0\n", + "AUC_PR: 1.0\n" + ] + } + ], + "source": [ + "for metric_name in [\"AUC_ROC\", \"AUC_PR\"]:\n", + " metric_val = Kmeans_scorer.eval_metric(anomalies, series_test, metric=metric_name)\n", + " print(metric_name + f\": {metric_val}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And again, let's visualize the results with `show_anomalies()`:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqUAAAL2CAYAAAB4wu9rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+bElEQVR4nOydeZxT1fn/Pzf7nklmYAYGGDZxRaxrKQpStAouWBW0pS7QqnWp1uJC/VZFixa1ttXWFn8WcWm1rnWrCy4otu6Ku4IgDMMyLJNkkslkz/n9EW7mrsnN5CaZ5Xm/Xr5kbm5Ozj33nnM+93me8xyOMcZAEARBEARBEDXEUOsKEARBEARBEASJUoIgCIIgCKLmkCglCIIgCIIgag6JUoIgCIIgCKLmkCglCIIgCIIgag6JUoIgCIIgCKLmkCglCIIgCIIgag6JUoIgCIIgCKLmkCglCIIgCIIgag6JUqLfcuedd4LjOBxwwAG1rkpFGD16NM4999xaV6NicByHxYsX5//+8ssvsXjxYmzatEm33zj66KMH7PNRTTZt2gSO4/D73/++1lXpV0SjUdxyyy2YNGkSPB4P3G43xo0bh7lz5+KNN96odfUIos9BopTot9x7770AgC+++ALvvvtujWtDlMuXX36JG264QVdRShC1IpPJ4Ac/+AFuuukmnH766Xjsscfw+OOP4/LLL0dnZyfefPPNWleRIPocplpXgCB6wwcffIBPPvkEJ5xwAv7zn/9g+fLlOOKII2pdrX5FJpNBOp2G1WqtdVWIMmGMIR6Pw26397qMVCoFjuNgMtG0oAerV6/GW2+9hXvvvRfz58/PHz/uuONwySWXIJvNVq0uevT1WCwGm80GjuN0rBlBiCFLKdEvWb58OQBg6dKl+N73vod//etf6O7uFp0jdDn+4Q9/wJgxY+ByuTB58mS88847sjKfeeYZTJ48GQ6HA263G8ceeyzefvtt0TmLFy8Gx3H49NNPMWfOHHi9Xvj9fvzqV79COp3G2rVrcfzxx8PtdmP06NG49dZbRd+Px+NYuHAhDjrooPx3J0+ejKeffrrg9XZ1daGurg4XXHCB7LNNmzbBaDTitttuU/0+3xa33norlixZgjFjxsBqtWLVqlUAciL/5JNPht/vh81mw3e+8x08+uijojK6u7txxRVXYMyYMbDZbPD7/Tj00EPx8MMP5885+uijcfTRR8t+/9xzz8Xo0aNV63ffffdhzpw5AIDp06eD4zhwHIf77rsPALBmzRqceOKJGDp0KKxWK4YPH44TTjgBW7ZsUS1TyJtvvonvfve7sNvtaG5uxrXXXotMJgMgJ+j22msvHHfccbLvdXV1wev14uKLLy5Y/mOPPYYjjjgCXq8XDocDY8eOxYIFC0TnhEIhLFy4EGPHjoXVasXQoUMxa9YsfP311/lzAoEALrroIjQ3N8NisWDs2LH4v//7PyQSCVFZHMfhkksuwbJly7DvvvvCarXi/vvvBwB88803+PGPf5xvq3333Rd33XWX6Puvv/46OI7Dgw8+iIULF6K5uRlWqxXr16/X1J5ATsSec845cLlceO655wqey//eQw89hKuvvhrDhg2Dy+XCSSedhB07diASieD8889HQ0MDGhoaMH/+fHR1dYnKYIzhr3/9Kw466CDY7Xb4fD6cfvrp+Pbbb0Xnvfzyy5g9ezZGjBgBm82G8ePH44ILLsDu3btF5/F9+YsvvsCPfvQjeL1eNDY2YsGCBejs7BSdq+X+Suno6AAADBs2TPFzg0E8/W7duhXnn38+Ro4cCYvFguHDh+P000/Hjh078uds3rwZP/nJT0T39vbbbxcJXD36+n333QeO47By5UosWLAAQ4YMgcPhkD2HBKE7jCD6Gd3d3czr9bLDDjuMMcbY3//+dwaA3XfffaLzNm7cyACw0aNHs+OPP5499dRT7KmnnmITJ05kPp+PhUKh/Ln//Oc/GQD2gx/8gD311FPskUceYYcccgizWCzszTffzJ93/fXXMwBs7733Zr/97W/Zyy+/zK666ioGgF1yySVsn332YXfeeSd7+eWX2fz58xkA9sQTT+S/HwqF2LnnnssefPBB9tprr7EXX3yRXXHFFcxgMLD7779fVP+WlhZ2zjnn5P++/PLLmdPpFNWbMcauvPJKZrPZ2O7du1XbjG+L5uZmNn36dPb444+zlStXso0bN7LXXnuNWSwWdtRRR7FHHnmEvfjii+zcc89lANiKFSvyZVxwwQXM4XCwP/zhD2zVqlXsueeeY0uXLmV//vOf8+dMmzaNTZs2Tfb755xzDmtpaREdA8Cuv/56xhhjO3fuZDfffDMDwO666y729ttvs7fffpvt3LmTdXV1sfr6enbooYeyRx99lL3xxhvskUceYT//+c/Zl19+qXrNfH3q6+vZ8OHD2Z133sleeukldumllzIA7OKLL86fd8cddzCO49i6detE37/rrrsYAPbFF1+o/sZbb73FOI5jZ555Jnv++efZa6+9xlasWMHOOuus/DnhcJjtv//+zOl0shtvvJG99NJL7IknnmCXXXYZe+211xhjjMViMXbggQcyp9PJfv/737OVK1eya6+9lplMJjZr1ixZ2zU3N7MDDzyQPfTQQ+y1115jn3/+Ofviiy+Y1+tlEydOZA888ABbuXIlW7hwITMYDGzx4sX5769atSpfxumnn86eeeYZ9txzz7GOjg7Fa+Sfn9tuu40xxlgwGGTTp09nTU1N7IMPPih4D4S/19LSws4991z24osvsmXLljGXy8WmT5/Ojj32WHbFFVewlStXsltuuYUZjUb2i1/8QlTGeeedx8xmM1u4cCF78cUX2UMPPcT22Wcf1tjYyNrb2/Pn/e1vf2O/+93v2DPPPMPeeOMNdv/997NJkyaxvffemyWTyfx5wr583XXXsZdffpn94Q9/YFarlc2fP7+k+6vWZmazmU2YMIH94x//YNu2bVM9d8uWLWzYsGGsoaGB/eEPf2CvvPIKe+SRR9iCBQvYV199xRjL9ZHm5mY2ZMgQtmzZMvbiiy+ySy65hAFgF154oexeldPXV6xYkS/j/PPPZy+88AJ7/PHHWTqdLnyjCaJMSJQS/Y4HHniAAWDLli1jjDEWiUSYy+ViRx11lOg8fnCeOHGiaDB97733GAD28MMPM8YYy2QybPjw4WzixIksk8nkz4tEImzo0KHse9/7Xv4YP5Hdfvvtot866KCDGAD25JNP5o+lUik2ZMgQduqpp6peSzqdZqlUiv30pz9l3/nOd0SfSUXphg0bmMFgYH/84x/zx2KxGKuvrxdNokrwbTFu3DjRxMwYY/vssw/7zne+w1KplOj4iSeeyIYNG5ZvkwMOOICdcsopBX+nt6KUMcYee+wxBoCtWrVKdN4HH3zAALCnnnqq4G+r1QcAe/rpp0XHzzvvPGYwGFhraytjLCca3W43u+yyy0Tn7bfffmz69OkFf+P3v/89AyB7WRBy4403MgDs5ZdfVj1n2bJlDAB79NFHRcdvueUWBoCtXLkyfwwA83q9LBAIiM497rjj2IgRI1hnZ6fo+CWXXMJsNlv+fF4kTp06teC18QhF6caNG9l+++3H9ttvP7Zp0yZN3+d/76STThId/+Uvf8kAsEsvvVR0/JRTTmF+vz//99tvv63Y79ra2pjdbmdXXXWV4u9ms1mWSqVYa2ur7Dng+/Ktt94q+s5FF13EbDYby2azjDFt91eN5cuXM5fLxQAwAGzYsGHs7LPPZqtXrxadt2DBAmY2mwu+ZC1atIgBYO+++67o+IUXXsg4jmNr165ljOnT13lRevbZZ5d8zQRRDuS+J/ody5cvh91ux5lnngkAcLlcmDNnDt5880188803svNPOOEEGI3G/N8HHnggAKC1tRUAsHbtWmzbtg1nnXWWyKXmcrlw2mmn4Z133pGFBpx44omiv/fdd19wHIeZM2fmj5lMJowfPz7/OzyPPfYYpkyZApfLBZPJBLPZjOXLl+Orr74qeN1jx47FiSeeiL/+9a9gjAEAHnroIXR0dOCSSy4p+F2ek08+GWazOf/3+vXr8fXXX2PevHkAgHQ6nf9v1qxZ2L59O9auXQsAOPzww/HCCy9g0aJFeP311xGLxTT9ZrmMHz8ePp8PV199NZYtW4Yvv/yypO+73W6cfPLJomM//vGPkc1msXr16vw58+fPx3333YdoNAoAeO211/Dll18WbdvDDjsMADB37lw8+uij2Lp1q+ycF154ARMmTMAxxxyjWs5rr70Gp9OJ008/XXScz8Dw6quvio5///vfh8/ny/8dj8fx6quv4oc//CEcDofsXsbjcVnYymmnnVbw2qR89NFH+O53v4vGxkb873//Q0tLi+hz4W+m0+n8c8qj1G+AXB+VHg8EAnkX/nPPPQeO4/CTn/xEVH5TUxMmTZqE119/Pf/dnTt34uc//zlGjhyZ7198PZX6mPTZOPDAAxGPx7Fz504A2u6vGgsWLMCWLVvw0EMP4dJLL8XIkSPxj3/8A9OmTROF27zwwguYPn16vj2UeO2117Dffvvh8MMPFx0/99xzwRjDa6+9Jruu3vZ1nlKfD4IoFxKlRL9i/fr1WL16NU444QQwxhAKhRAKhfITOb8iX0h9fb3obz7YnxdVhWK/hg8fjmw2i2AwKDru9/tFf1ssFjgcDthsNtnxeDye//vJJ5/E3Llz0dzcjH/84x94++238f7772PBggWi89S47LLL8M033+Dll18GANx1112YPHkyDj744KLfVbpGPl7tiiuugNlsFv130UUXAUA+Fu/OO+/E1VdfjaeeegrTp0+H3+/HKaecovgioCderxdvvPEGDjroIFxzzTXYf//9MXz4cFx//fVIpVJFv9/Y2Cg71tTUBKDn3gPAL37xC0QiEfzzn/8EAPzlL3/BiBEjMHv27ILlT506FU899RTS6TTOPvtsjBgxAgcccIAo1nbXrl0YMWJEwXI6OjrQ1NQkW0gydOhQmEwmUV0B+b3s6OhAOp3Gn//8Z9m9nDVrFgDI4irV4h3VePnll7Fjxw787Gc/Q11dnexz6e/yca48Sv2m0HG+T+zYsQOMMTQ2Nsp+45133slfVzabxQ9+8AM8+eSTuOqqq/Dqq6/ivffey4txpRepYuODlvtbCK/Xix/96Ee444478O677+LTTz9FY2Mj/u///g+hUAiA9udDbYziPxdSTl9XK4MgKg0tsyT6Fffeey8YY3j88cfx+OOPyz6///77sWTJEpFltBj8pLR9+3bZZ9u2bYPBYBBZpMrhH//4B8aMGYNHHnlEJD60LiD4/ve/jwMOOAB/+ctf4HK58NFHH+Ef//iH5t+XCp6GhgYAwK9//Wuceuqpit/Ze++9AQBOpxM33HADbrjhBuzYsSNvNT3ppJPyi3VsNptskQggn+xKZeLEifjXv/4Fxhg+/fRT3Hfffbjxxhtht9uxaNGigt8VLhThaW9vByAWJOPHj8fMmTNx1113YebMmXjmmWdwww03aHqWZs+ejdmzZyORSOCdd97B7373O/z4xz/G6NGjMXnyZAwZMqTooqz6+nq8++67YIyJ7tPOnTuRTqfz94pHei99Ph+MRiPOOuss1YVZY8aMKVhGMa688kps2LABZ599dl6kCXn//fcL/l5vaWhoAMdxePPNNxVXkPPHPv/8c3zyySe47777cM455+Q/L2UBlxLF7m8p7L///jjzzDPxpz/9CevWrcPhhx+u+flQG6MAFH0+SunramUQRKUhUUr0GzKZDO6//36MGzcOf//732WfP/fcc7j99tvxwgsvyNyEhdh7773R3NyMhx56CFdccUV+II5Go3jiiSfyK/L1gOM4WCwW0WDf3t5edPW9kEsvvRQ///nP0dnZicbGxvyq9d6w9957Y6+99sInn3yCm2++WfP3Ghsbce655+KTTz7Bn/70J3R3d8PhcGD06NF47LHHkEgk8kKho6MDb731FjweT8EypRYqJTiOw6RJk/DHP/4R9913Hz766KOidY1EInjmmWdEbtqHHnoIBoMBU6dOFZ172WWX4Qc/+AHOOeccGI1GnHfeeUXLl17DtGnTUFdXh5deeglr1qzB5MmTMXPmTFx33XV47bXX8P3vf1/xuzNmzMCjjz6Kp556Cj/84Q/zxx944IH854VwOByYPn061qxZgwMPPDBvbdQTg8GAu+++Gy6XC+eeey6i0SguvPDC/OeHHnqo7r8J5Nz+S5cuxdatWzF37lzV8/h+JRWud999ty71ULu/SnR0dMDtdiveB/4ljrdyzpw5Ew8++CDWrl0rE4Y8M2bMwO9+9zt89NFHIs/IAw88AI7jMH369IJ1721fJ4hqQqKU6De88MIL2LZtG2655RbFtEO8BXH58uUliVKDwYBbb70V8+bNw4knnogLLrgAiUQCt912G0KhEJYuXarbNZx44ol48skncdFFF+H0009HW1sbfvvb32LYsGGa3eA/+clP8Otf/xqrV6/Gb37zm7LFx913342ZM2fiuOOOw7nnnovm5mYEAgF89dVX+Oijj/DYY48BAI444giceOKJOPDAA+Hz+fDVV1/hwQcfFIn2s846C3fffTd+8pOf4LzzzkNHRwduvfXWooIUQH7npf/3//4f3G43bDYbxowZg7fffht//etfccopp2Ds2LFgjOHJJ59EKBTCscceW7Tc+vp6XHjhhdi8eTMmTJiA559/Hvfccw8uvPBCjBo1SnTusccei/322w+rVq3Kp94pxnXXXYctW7ZgxowZGDFiBEKhEO644w6YzWZMmzYNAPDLX/4SjzzyCGbPno1Fixbh8MMPRywWwxtvvIETTzwR06dPx9lnn4277roL55xzDjZt2oSJEyfiv//9L26++WbMmjWrYDwqzx133IEjjzwSRx11FC688EKMHj0akUgE69evx7PPPiuLO+wtt99+O9xuNy666CJ0dXXhyiuv1KVcNaZMmYLzzz8f8+fPxwcffICpU6fC6XRi+/bt+O9//4uJEyfiwgsvxD777INx48Zh0aJFYIzB7/fj2WefzYe79AYt91eJVatW4bLLLsO8efPwve99D/X19di5cycefvhhvPjii/lQAAC48cYb8cILL2Dq1Km45pprMHHiRIRCIbz44ov41a9+hX322QeXX345HnjgAZxwwgm48cYb0dLSgv/85z/461//igsvvBATJkwoei1a+zpB1IxarbAiiFI55ZRTmMViYTt37lQ958wzz2Qmk4m1t7fL0tgIgWTlN2OMPfXUU+yII45gNpuNOZ1ONmPGDPa///1PdA6/YnfXrl2i4+eccw5zOp2y35k2bRrbf//9RceWLl3KRo8ezaxWK9t3333ZPffcky9XiHT1vZBzzz2XmUwmtmXLFrWmEFGoLRhj7JNPPmFz585lQ4cOZWazmTU1NbHvf//7+QwHjOVW/x566KHM5/Mxq9XKxo4dyy6//HJZKqr777+f7bvvvsxms7H99tuPPfLII5pW3zPG2J/+9Cc2ZswYZjQa82lqvv76a/ajH/2IjRs3jtntdub1etnhhx8uSwGmBN/+r7/+Ojv00EOZ1Wplw4YNY9dcc41sBTLP4sWLGQD2zjvvFC2fMcaee+45NnPmTNbc3MwsFgsbOnQomzVrliiVGGO5NEqXXXYZGzVqFDObzWzo0KHshBNOYF9//XX+nI6ODvbzn/+cDRs2jJlMJtbS0sJ+/etfs3g8Lms7YUorIRs3bmQLFixgzc3NzGw2syFDhrDvfe97bMmSJflz+NXwjz32mKZrVHt+brvtNgaAXXfddQW/r/Z7/Crv999/X3RcrZ/de++97IgjjmBOp5PZ7XY2btw4dvbZZ4vSUn355Zfs2GOPZW63m/l8PjZnzhy2efNm2fOm9ht8nTZu3MgY035/pbS1tbHf/OY3bMqUKaypqYmZTCbmdrvZEUccwf785z/L0iu1tbWxBQsWsKamJmY2m9nw4cPZ3Llz2Y4dO/LntLa2sh//+Mesvr6emc1mtvfee7PbbrtNlDVEj76udl8IotJwjEmWRxIE0adJJpMYPXo0jjzySFnSa6J8Dj30UHAcJ4uPJAiCICoLue8Jop+wa9curF27FitWrMCOHTuKLvAhtBMOh/H555/jueeew4cffoh///vfta4SQRDEoINEKUH0E/7zn/9g/vz5GDZsGP76179qTgNFFOejjz7C9OnTUV9fj+uvvx6nnHJKratEEAQx6CD3PUEQBEEQBFFzKHk+QRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRAEQRAEUXNIlBIEQRAEQRA1h0QpQRCEhKOPPhq//OUvi5735JNP4rjjjkNDQwM4jsPHH39c8boRAxstz14qlcLVV1+NiRMnwul0Yvjw4Tj77LOxbdu26lSSICoEiVKCIIheEo1GMWXKFCxdurTWVSEGEd3d3fjoo49w7bXX4qOPPsKTTz6JdevW4eSTT6511QiiPBhBEIOKTCbDli5dysaNG8csFgsbOXIkW7JkSf7zTz/9lE2fPp3ZbDbm9/vZeeedxyKRSP7zc845h82ePZvddNNNbOjQoczr9bLFixezVCrFrrjiCubz+VhzczNbvnx5/jsbN25kANjDDz/MJk+ezKxWK9tvv/3YqlWrRHV7/fXX2WGHHcYsFgtrampiV199NUulUvnPp02bxn7xi1+wK6+8kvl8PtbY2Miuv/56URmhUIidd955bMiQIcztdrPp06ezjz/+OP/59ddfzyZNmsQeeOAB1tLSwjweDzvjjDNYOBzOXx8A0X8bN24s2Kb89a1Zs0bjXRic0LOn/7PH89577zEArLW1VdP5BNEXIVFKEIOMq666ivl8Pnbfffex9evXszfffJPdc889jDHGotEoGz58ODv11FPZZ599xl599VU2ZswYds455+S/f8455zC3280uvvhi9vXXX7Ply5czAOy4445jN910E1u3bh377W9/y8xmM9u8eTNjrEcYjBgxgj3++OPsyy+/ZD/72c+Y2+1mu3fvZowxtmXLFuZwONhFF13EvvrqK/bvf/+bNTQ0iCb+adOmMY/HwxYvXszWrVvH7r//fsZxHFu5ciVjjLFsNsumTJnCTjrpJPb++++zdevWsYULF7L6+nrW0dHBGMsJA5fLlb/G1atXs6amJnbNNdcwxnLCYvLkyey8885j27dvZ9u3b2fpdLpgm5Io1QY9e/o/ezwvv/wy4ziOdXZ2lnWPCKKWkCgliEFEOBxmVqs1LwSk/L//9/+Yz+djXV1d+WP/+c9/mMFgYO3t7YyxnDBoaWlhmUwmf87ee+/NjjrqqPzf6XSaOZ1O9vDDDzPGeoTB0qVL8+ekUik2YsQIdssttzDGGLvmmmvY3nvvzbLZbP6cu+66i7lcrvxvTZs2jR155JGiOh922GHs6quvZowx9uqrrzKPx8Pi8bjonHHjxrG7776bMZYTBg6HI2+dYoyxK6+8kh1xxBH5v6dNm8Yuu+wyxTZSgkRpcejZq8yzxxhjsViMHXLIIWzevHklfY8g+hqm6gYLEMTA58ILL8TWrVur9nvNzc3429/+puncr776ColEAjNmzFD9fNKkSXA6nfljU6ZMQTabxdq1a9HY2AgA2H///WEw9ISkNzY24oADDsj/bTQaUV9fj507d4rKnzx5cv7fJpMJhx56KL766qv8b0+ePBkcx4l+u6urC1u2bMGoUaMAAAceeKCozGHDhuV/58MPP0RXVxfq6+tF58RiMWzYsCH/9+jRo+F2uxXL6M9ceHsWW3dV7/eahwB/W6htaQI9ezn0fvZSqRTOPPNMZLNZ/PWvf+11OQTRFyBRShA6o1Ug1gK73V7wc8aYaGIWIjxuNptlnykdy2azRevEl6v024wxTb/N/042m8WwYcPw+uuvy36nrq5OUxn9Ga0CsRbQs1e8jFJJpVKYO3cuNm7ciNdeew0ej6dX5RBEX6HvjmAEQejOXnvtBbvdjldffVXx8/322w8ff/wxotFo/tj//vc/GAwGTJgwoezff+edd/L/TqfT+PDDD7HPPvvkf/utt97KiwEAeOutt+B2u9Hc3Kyp/IMPPhjt7e0wmUwYP3686L+GhgbN9bRYLMhkMprPJ4pDz542tD57vCD95ptv8Morr8gstATRHyFRShCDCJvNhquvvhpXXXUVHnjgAWzYsAHvvPMOli9fDgCYN28ebDYbzjnnHHz++edYtWoVfvGLX+Css87Ku0/L4a677sK///1vfP3117j44osRDAaxYMECAMBFF12EtrY2/OIXv8DXX3+Np59+Gtdffz1+9atfidy1hTjmmGMwefJknHLKKXjppZewadMmvPXWW/jNb36DDz74QHM9R48ejXfffRebNm3C7t27VS1ZgUAAH3/8Mb788ksAwNq1a/Hxxx+jvb1d828NFujZ04aWZy+dTuP000/HBx98gH/+85/IZDJob29He3s7ksmk5t8iiL4GiVKCGGRce+21WLhwIa677jrsu+++OOOMM/IxbQ6HAy+99BICgQAOO+wwnH766ZgxYwb+8pe/6PLbS5cuxS233IJJkybhzTffxNNPP523IjU3N+P555/He++9h0mTJuHnP/85fvrTn+I3v/mN5vI5jsPzzz+PqVOnYsGCBZgwYQLOPPNMbNq0qSRhc8UVV8BoNGK//fbDkCFDsHnzZsXznnnmGXznO9/BCSecAAA488wz8Z3vfAfLli3T/FuDCXr2iqPl2duyZQueeeYZbNmyBQcddBCGDRuW/++tt97S/FsE0dfgmNBfQRAEUQE2bdqEMWPGYM2aNTjooINqXR1iEEHPHkH0H8hSShAEQRAEQdQcEqUEQRAEQRBEzSH3PUEQBEEQBFFzyFJaAtlsFhs3bhwQ+QwHM3QfBwZ0HwcGdB8HBnQf+z994R6SKCUIgiAIgiBqDolSgiAIgiAIouaQKCUIgiAIgiBqDolSgiAIgiAIouaQKCUIgiAIgiBqDolSgiAIgiAIouaQKCUIgiAIgiBqTkVEaTKZxA033IBZs2Zh2rRpOP/887F+/XrFc+PxOK699lpMnToVJ5xwAl588cVKVIkgCIIgCILow1RElGYyGTQ3N2PFihV47bXXMHXqVCxcuFDx3LvvvhudnZ14/vnncfPNN2Pp0qVobW2tRLUIgiAIgiCIPkpFRKndbsfPfvYzNDY2wmg04owzzsC2bdsQCoVk5z7//PM4//zz4XK5MGnSJEydOhUrV66sRLUIgiAIgiCIPoqpGj/y6aefwu/3o66uTnQ8HA6jo6MD48ePzx+bMGECvvjiC8Vykskkksmk6JjJZILFYtG9zkrwW2/RNmr9m87OToTD4QF9Hzs6gQ/XyY/brcBRB1a/PpWgFv1x9erViMfjsuOHHHII6uvrq1aPgQSNqwMDuo/9n0rfQ4OhuB204qK0q6sLN998My666CLZZ93d3TAajbDZbPljTqcT3d3dimWtWLEC99xzj+jYnDlzMHfuXH0rXYS2traq/h6hL88++yy6urrg8XhqXZWK8Y9XXVi7xYK9hqdExx9Z7cIzN2yHcQAtcaxWf0yn07joootwxhlniI5/8803eP/99/GTn/ykKvUYqNC4OjCg+9j/qdQ9HDNmTNFzKipKE4kEFi5ciCOPPBKzZ8+Wfe5wOJDJZBCPx/PCNBqNwuFwKJY3f/58zJs3T3Ss2pbStrY2jBw5UpPiJ/omdrsdW7duHdD30e4EFpwEHP0d8fGvtgGNTS1w2mtTLz2pdn+MRCKYNGkSrr32WtHxVatW4eOPP0ZLS0vF6zAQoXF1YED3sf/TF+5hxURpOp3GNddcgyFDhuCXv/yl4jkejwf19fVYv349DjjgAADAunXrMHbsWMXzLRZL1QRoIQwGA3W6fkwymUQoFBrQ9zGRYnDYAIOBEx23W7NIpDi4nZzKN/sf1bqPyWQSdrtd9lsOhwOJRGLAPkvVYiD3x8EE3cf+Ty3vYcV+9aabbkIikcDixYvBceoT4KxZs/D3v/8d0WgUn332GVavXo1jjz22UtUiCMRiMXR2dta6GhUllmCwW+XH7VYgnpQfJ4oTi8Vgt8tNzHa7HbFYrAY1IgiCGFhUxFK6fft2PPvss7BarZg+fXr++J133on29nasWLECjz76KADgggsuwJIlS3D88cfD4/Fg0aJFGD16dCWqRRAABosohbIoteQ+I0qHRClBEERlqYgoHTZsGD744APVz2fOnJn/t81mw5IlSypRDYJQZFCI0mROgEqxW3OfEaVDopQgCKKyUOAHMegYFKJUzVJq5chS2ktIlBIEQVQWEqXEoGMwCAh1UUru+95CopQgCKKykCglBh2xWEyUG3cgEksANjX3PYnSXqEmSm02G4lSgiAIHSBRSgw64vE4XC6XbHewgUSWAUajPOuFzUKr73uLMJ+yEJPJhEwmU4MaEQRBDCxIlBKDjng8jqFDhyIYDNa6KhVDLQkbWUp7j5qlFEDBtHcEQRCENkiUEoOObDYLv98/oEWpGpQSqvcUEqUEQRBE+ZAoJQYlXq8XgUCg1tWoOmQp7T0kSgmCICoLiVJi0MEYG9yilGJKewWJUoIgiMpCopQYlNTV1Q1O9z1ZSntNIVHKGKtybQiCIAYeJEqJQYnX6x3QolRNItksQCxBAqo3qK2+JwiCIPSBRCkx6OA4blC77yklVO+g1fcEQRCVhUQpMSgZyO57xhilhKoAxWJKyYVPEARRHiRKiUHJQLaUxpOATWGLUYBEaTkUEqVWqxWJBDUsQRBEOZAoJQYV2WwWHMfB5XIhHA7XujoVIZbI5SNVwm6h1fe9pZAotdvttNUoQRBEmZAoJQYV/GKVgRwDGEvkLKJKWC1AgkRpr0gmk7BYlNU+iVKCIIjyIVFKDCpisdiAX0FdSJRyHAcKfewdjDHVlxkSpQRBEOVDopQYVMTj8QGfAD2eVBelRGWw2WyIx+O1rgZBEES/hkQpMaiQxgUOxBXTsQRgswzc8IRaUSjkgyylBEEQ5UOilBhUCEWpx+NBJBKpcY30p5D7HgAGcDhtzSBRShAEUT4kSolBhVCU+v3+AZkWKpZUX31PVAYSpQRBEOVDopQYVAhFqc/nG5iitIillNAfEqUEQRDlQ6KUGFRILaUDcVenYqJ0AIbRVoVC8cckSgmCIMqHRCkxqIjH47Bac4qNLKWEXtDqe4IgiPIhUUoMKgaD+z6eBGwFYkoNBiCTIXNpKaTTaZhMJtXPyVJKEARRPiRKiUEFue9zn8VpV6eSKLTFKECilCAIQg9IlBKDikGx+l6DKI0lqlefgQCJUoIgiMpDopQYVAwKUZpkhUWphURpqZAoJQiCqDwkSolBxWCIKY0lCucptVtzuUwJ7ZAoJQiCqDwkSolBRSwWg81mAwCYzWak0+ka10h/yH2vPyRKCYIgKg+JUmJQEY/HC4qLgUA8WViU2iwcidISicfj+ZcZJSglFEEQRPmQKCUGFcUsXgOBWKJwSihafV86ZCklCIKoPCRKiUHFYBClxSyl5L4vHRKlBEEQlaciovTuu+/GnDlzcNhhh+Gll15SPW/x4sWYPHkyjjrqKBx11FGYO3duJapDEHmk4sJisSCRGFgKLZsFDAZO9XMSpaVTTJQajUZks9kq1oggCGLgob5FSRmMHDkSCxcuxLJly4qee8EFF+Dcc8+tRDUIQoY0NtDn8yEYDKKpqamGtaoulBKqdAaDhZ0gCKLWVESUzpo1CwBw77336lpuMplEMikOhjOZTLBYCgTQ6QhvCSGLSP8lk8nk/53NZuHz+dDR0YGhQ4fWsFb6wlD4GbVagM4gkM32761Gq9kfo9EoPB5Pwd/KZrM0NvQCGlcHBnQf+z+VvocGQ3HnfEVEaSk8+OCDePDBB9HS0oJLLrkEBx98sOq5K1aswD333CM6NmfOnKq7/dva2qr6e4R+xGKx/P1ra2sDx3H48ssv4XA4alwz/Yh1D0Fr6y7Vz8NBG7a1m9HaGqlirSpHNfrj9u3b4XA40NraqnpOLBYr+DlRGBpXBwZ0H/s/lbqHY8aMKXpOTUXpmWeeiV/96lew2+145ZVXcPnll+ORRx5RdaXOnz8f8+bNEx2rtqW0ra0NI0eO1KT4ib6Hw+HAyJEj8/dx7NixsFgsaGlpqXXVdMPuQMHr2dwJbI8ALS3+KtZKf6rZH+12O0aPHl2wXR0Ox4B6jqoFjasDA7qP/Z++cA9rKkr32Wef/L9nzpyJ559/Hu+++y5mz56teL7FYqmaAC2EwWCgTtdP4Tguf+8MBgPq6+vR2dk5oO4nh2zB63HaGBKpwouh+hPV6I/xeBxOp7Pg7wifLaJ0aFwdGNB97P/U8h72qSeH4wbGJEn0H/x+/4DcarQQudX3/TuetNrQQieCIIjKUxFRmk6nkUgkwBjL/1spcPbVV19FLBZDOp3GypUr8cknn+Cwww6rRJUIQpHBK0prXYv+BYlSgiCIylMR9/2SJUvw3HPPAQDWrFmD66+/HsuWLcOuXbuwYsUKPProowCAhx56CDfeeCM4jkNLSwtuu+02DB8+vBJVIghFfD7fgBKl2SxDMYcDpYQqHa2ilDFGHh+CIIheUhFRunjxYixevFjxs5kzZ+b/vXz58kr8PEGowpjYbe33+xEMBmtUG/2JJwtvMQrssZTSNqMloUWU2mw2xONxsqgSBEH0kj4VU0oQlSSblS8AcrlciEQGRmokoPgWo0BOtJKltDSkmy4owYtSgiAIoneQKCUGDUrCYqC5WmOJ4qLUagESZCktiWQyWTTzh91uRywWq1KNCIIgBh4kSolBw2BYrBJLFHffDzQhXi2KtRuJUoIgiPIgUUoMGgaLKC1mKQVQdDEUUTokSgmCIMqDRCkxaFATpRzHDZj9mnOilBRnLSBRShAEUR4kSolBg5oo9Xg8A2axUyyZS/lUDEa580tCmrVBCRKlBEEQ5UGilBg0qKXrGUgJ9LW67wn9odX3BEEQ5UGilBg0xGIxxbQ+A0mUakkJRZSOlsVhZCklCIIoDxKlxKBBzX3v8/kGTAJ9LavvicpAopQgCKI8SJQSgwY1UTqQLKXkvq8dJEoJgiDKg0QpMWggUdqD0QhkMrTaSQupVAomU/EdmUmUEgRBlAeJUmLQUMh9P9hEqd1KW41qRWt+WxKlBEEQ5UGilBg0FLKUDpiYUo0poeyW3LlEcUiUEgRBVAcSpcSgYTCkhIonmSZLqc1CllKtxONxxawNUiglFEEQRHmQKCUGDWopoQba6nty3+sLWUoJgiCqA4lSYtCgJi5MJhPS6XQNaqQ/WlNC2a25nKZEcUiUEgRBVAcSpcSgQau46M9ot5RyZCnVCIlSgiCI6kCilBg0kCjtgdz32iFRShAEUR1IlBKDhsEgSuNJ7e57EqXa0Prc2Gw2EqUEQRBlQKKUGDSorb4HAKvVOiBWTjMGGAzF92mn1ffa0br63mg0IpvNVqFGBEEQAxMSpcSgoZC4GEi5SrVAeUq1U4qFneOKvxAQBEEQypAoJQYNjDFV0TCQ0kJpgdz32hkMYR8EQRB9ARKlBIGBlUBfC5QSSjskSgmCIKoDiVKCwOAUpWQp1QaJUoIgiOpAopQgQKKUUIdEKUEQRHUgUUoQGKwxpazW1egXlCJKGaM2JQiC6C0kSgkCg89SSimhtKM1JRRBEARRHiRKCQIDQ5RmswwGjT2aUkJpp9SUUGQtJQiC6B0kSgkCA8N9r3U3J4BiSkuhFFFqs9kGxCYMBEEQtYBEKTEoyGQyBRObO51OdHV1VbFG+hNLlCZKKSWUNkoRpXa7nbYaJQiC6CUkSolBQaEtRoGBsRNPLJETm1qwmIFkqrL1GSikUimYzWZN55IoJQiC6D0VEaV333035syZg8MOOwwvvfSS6nnxeBzXXnstpk6dihNOOAEvvvhiJapDEIMirU8pojQX+1jZ+gwUCu0EJoVEKUEQRO+piCgdOXIkFi5ciP3337/geXfffTc6Ozvx/PPP4+abb8bSpUvR2tpaiSoRg5xiltKBQCypXZQSlYFiSgmCIHqPqRKFzpo1CwBw7733Fjzv+eefx+233w6Xy4VJkyZh6tSpWLlyJc477zzF85PJJJJJcSCcyWSCxaIxkK5Mstms6P9E/yEajcJmsyGbzRa8j+l0GgatS9j7GN1xwGbW/nwy9O9nuZr9Uetv2Gw2RKPRft2u1YbG1YEB3cf+T6XvoZa5tSKiVAvhcBgdHR0YP358/tiECRPwxRdfqH5nxYoVuOeee0TH5syZg7lz51asnkI2b96MJUuWyI63t7fj9ttvx1577SU6ft0Dftx4tjjN0M6dO7FgwQIMHz5c02+2t7fj6aefFrkP40kOp/22Cc316V5cRe/YHjDinl/uQpM/Izp+3XXX4cYbbxQd+7bdhNc/sWPBcRHR8fvvvx8vv/wyHA6H6HgkEsHDDz8sOtYRNuCBV9y4/NRO0fFnn30WjY2NOPzww0XHr7ynHp1R9Qc+EvFgx46z8dnl3QhFDfjpcXYchzbROWazGZ9//jm8Xq/o+Kk3NqHBI77uaNyAk78bxRlHixdH/fnPf8aHH34oe1HKZDJYvny56NimHSZceleDrE3VCEUNePT/doiOBYNBnHXWWRg+fDiC2YkIZydg9T+f0FTex6nFOO64xaqfd3Z24pxzzsm/ZPLc9LAP3243wShpbquZ4c8X7xYd++yzz3Dttddi6NChouPt7e246667MHLkSNHxc38/FBZTKXEFQwBU1jL5cfhqHHd5t6ZzN7Wejmc3eODzaTu/tyRSHO6/cqfo2LZt2/D000/jwgsvFB3/1+suPPuOE05b8Ykmy4BRQ9O4bp44E8VLL72Ee++9V9Y3SiEcDuPHP/4xTj75ZMXP29raFI+Xw3l/HIJyw8V3hox4anG76Fh3dzfuvPNOLFq0SHT81TV2GA0MR08SP5PXXnst2tvbNYWBRCIRzJ07Fz/84Q9Fx+/4txc//n4EQ7zi+zhv3jw4nU7Rsa7sKHyZvgIWrnpp7rqSHnz+oFPTfVz1iQ1ZxmHGQeJQl+uvvx7btm0rK8Z/+/btuOeee9DU1CQ6rjQfb9iwAZdffrnsXDU+7b4A7/zjEE3n/ubOr/Ds+0NhNfU+zUmauTHK+DiGGt8WHd+6dSseeeQRuFwu0XGla/zkk0+wbt06zJkzR3T8tsfq8OPvR9BcL59/KtEXAWDMmDFFz6mZKO3u7obRaBQlpXY6nejuVh/M58+fj3nz5omOVdNSOnLkSPy///f/MHLkSJHi//Of/wzGGFpaWkTnv78OaGlxi44FAgGceuqpuOGGGzT95o9+9CMMGTJENOhs2QlM+w5w1+XVuW4AuPE+wOQYAckl4v3335dd94YOYHcUaGnxi44Hg0Hcf//9GDt2rOj47NmzMWrUKNFA1LkB2BYCWlrqROd2dnairq5O9pvxDPDSH9Xr/+67n+GVV17B//3f/+HVD7J440OT7D6OGDECLpdLVHYyBYweDjzxW3F5n30LPPKaDS0t9aLju3btwpNPPgmfzye7RmmdNwWBs2cCC89Ur7eojGuAkSNbRLlIo9EoTjzxRPzud7/Di+8C324DLvrh+ZrLe/pm9ZjvN954Ax988IGs3jsjwMo/QpYT9eRfAy0t4slxzZo1uOSSS/DTn/5UdHzp0qUwGAyyst0u4Jnfaao+stks2traZPdRb2bPvgVP//FpTefedddrGD9+PI477riK1Qfg21rcdtu3b8eOHTtkxzsTwLIrgQPE3U6RbBb44W+AlhaP6Hg0GsXSpUtx9NFH97rOq1atwieffCKrXyXvo90BPH1zeWXMuQ5obGqBTRAas2nTJmzatEl2LV3vA2YTZONkZ2cnVq5cqen33n//fbz44ouysrd1AmZHnazs+vp6PP20+Plc+T6wrg245FRNP6kLLce/jVDEhEkH7FX0PkY/zHlqpNcSCATw0ksvlSVKb7jhBphMJk3z8fr167FgwQJcdtllmsr2fH8LRo5shsFQvH7bgxvxx0utmH/6wdorL+HVD4HPvz0Al4n1JH75y1/CbrfL5qqPv5Vf4/vvv49QKCRrj0gS2G8vL+oEp1drTC1EzUSpw+FAJpMR7ZYSjUZlVjQhFoulagK0EAaDQXTD6uvrEQqFZDdxy+4skikONmvPAxwKhVBfX6/5hvNlu909T04oylDvYVV9aOq9DKEuiDpjKpVCa2urrB6hLoZgRF6/YDCIhoYG2XGXy4V4PC4S3oXK8Hq9suMcly3YHolEAg6HAwaDAfVeoDNq0HQfO1XausGrXL9wOAyfz6dQPy7/n/Aa673QNMABgNeZRTTOwetSfp4SKQaHTXt5HAq3WUNDA4LBoOwcxrIwmeTfU7oHoVBI8Z4rtXU2y2DgSn+upfdRbziO01y+w+FAIpGoeN80GrJgjIPRKH4WlO5XMJJFQx2n6bnIfVV+H9X6bik4HA7E43HVMipxH4s941qo92bRGeXgsGto664szEZ5W5fyDKn1u2Aki1CXuOxYLJYf14SEuhjqPdrHAj3w2FNo2x7Fdw4sfh+DXQyMyevHcRyMRmNZ9VAaW5Iphs075WNLqfNxgvkR6IxjaL2z6LmhLg6jm91lPX8NXoZgl7zeanNVQGFOUntWw9Es6tzK40Klx9RC1Cx4zuPxoL6+HuvXr88fW7duncyK1h/w+/2yxOvJFEM0BgTFHmwEg0H4/WILYqllByOA31PdFEZ+t/K1xONx2WrjYER+LpATbB6PR3Zc7RqVyggGg4pJ7ou1hnD1vd8DRVe/0q5OubaWl+f3KNePMWVR5XK5ZF4AtbLVUPpN4fNUyup7AEXdmkr3BVBvaw7yvd/VnnelssNRiN7a+yPVWn3vcwOdUfExtb4R7MqdrxWl+1vquKVELTIT6JHpze/OtaEQ1baOAMGIPPykFMufWr9TGhPV7kupY4se1Dmz2LZT2/0NRljZ7aSG2nwSSwDxhLbxSYlUmiHNHGjd0ln8ZADhbiNGj+h9uAugPs/oMWcqvRT0BSoiStPpNBKJBBhj+X8rBc7OmjULf//73xGNRvHZZ59h9erVOPbYYytRpYri8/kUxQwABCQPSSAQkLl2Sy07EC5tktEDn1v5WgDIHvhAWH4ukHMNKAk2tWtUKiMQCMjOzWRY0clHKEp9biAUlb+NK+3qlGtreeF2K4duhVBGtS0m9biPPnfuO6IyBM9TqaK0WEoopToDObebEk47EJXMSWrPu2J7RACfS3ZqTWGMlbRtaDVFqdKzoHS/cs+F9slH6WpLHbeU6K/psnxuTnNbq41bpTxDXq8XoVBIU9lq96Umc4SHQ/tubTty6NFOqvVQGWsBuWgr5bkO7Xkxad2mUHEFogkLRg4r781AqZ8D6tcYSwAxifBWe1b7KhURpUuWLMGUKVOwZs0aXH/99ZgyZQo++ugjvPDCC6JFSRdccAFcLheOP/54LFq0CIsWLcLo0aMrUaWKomRhC4QBk1F54ijVUqpUtr/KA47fo3wtJpNJoX4MkRLWeSheYwSKZUQiEdm5nVGgroiYEaaEctmBaFw+SavVQ4+2Vi6blVS2380pTkq9tZQajUA6rT4J2O12mXW30KThV3lxUbOUKj7XVfYAFCOdTmtOnA9ULyWU36MslCIRbRNmMaT3uVholRaqLUr1EDiA+tjX1dUlM7Z0RuXCJ5VKwWTSHilnMBgUjTiRbu3zSSDMqm4pbfAasDOgbUeOUBcQkrRTJpPRxWWsNo6bjNrHJyUCYcDAZbClXdvklmWAxVJeKILbAYQVfq7QNSoJb73GhWpQkZjSxYsXY/HixYqfzZw5M/9vm82muJq9v6H2gIxu0keU7tq1S1b2hJEqX6gQuYGZQejcCwQCGD16tOK1e0qYv5QFSk6wpdIMZlPPbzocDoTDYcm5xV1VsVgMDQ0NANRden6/Hx999FHJZfMUFGyqIkxb2YD65Mg/T/EkYC8h5NpuzeU2dauMAkqutGgsJ+oL1W9Uo3L9ROfq0B7VoNRNF6olvNReADweT0nJ/pXwOHICyCMJmyvXtVptURpPat92txBqbT1q1Ch0dnbKLG0ZiZ7UI/Qhk2F7rGbyMVhRlOr0Ml0KjfUWrG/VtlVzVmGoDIVCZVvjAfWxpdz5OBAGGlxRbNtVvTzEuT4nbyy/3481a9aIjgmvcXiD4PiecUGIXi9slaB/JmTsY9TV1SnGd4xrVo5FKtV9Ly+b1cR9rxTPNG7cOMVrb/DmBlKeQp1A+Rpz7ReStF9uJyImO1fJxS4kFouJMj2UUg+tbR2NRmUpOvQqG1C/B3n3fYnJ8+2WnHW1FArV2efmZPXr7u5WFHV6tEc16KuiVO1ZGDFiRNm/r1S2HlRblJbqOVCjlLFPiVLHfCVCXcDY4YX7v/T8Yt4jvRk2xCqzfpaCHu0EFJ5PtLafYv0iQLM/rtkaXElKucZkMilbIB6NAa7yHB8Vg0SpDpjNZqTT4pyhgTAwbnjhGEAt9BWLks+l7BYYN26crH6JFDDUJ16IUUiwqVmape2nJmy1WAW0iItSXewGg1h4F3rrViq7u8RJs5h7PJZgJVmG7NacNakUCrW1kiUXULaweTweucW7BtadYvRVUarU1qFQSOa5SKWZLJ9sb8rWg2rvdqWbpTTvJepBbexTolTvGI9wvAuEc6JUq/s5nQFMpuqGwoxociDY1XtJ0dt2kqIWbzlOof2UBJtq/SJAS1Mau4LF80pXegMBtblKSXMAuZCQTCYjOLfvjbU8JEorRCAMjB/ByQazZDIJq1W7ElETbNW2KJlMHNKSvhgIBDB+/HjFgVk6sZUq2GIJoHmIOG6OT38iRav7XiguOORyMgpRsngXKtvnFltyS71GoMRVuQqTY1dXVz6VVqmWIbu1uKXUaDSKB7MCcZ9KolkNJYs3ue+1o9TWjDE0NDSInrNQV+ltKo1dVlugWComk0n0LFUavSylSiKdt5QK25oxppi5oDdiy+VyIRrteasPRIDh9RwSkpdIvYScHrQMdyMSKx4RKOz3IuGt07UoGokibM983PtyA2FgrxEGTWXsDsZgNenzrOfmKvFYqbYod/wI+boD/nzh4rm+ONbykCjVCam4CHbl3lqk1sVS47KUHr54iatp9UJa9WAwiPHjx8vqxyE3sQmvvVBcldI1cpCnwxCWIRzMtKQ/kYoLjyOLsCSljtKkWahsqVuvN9dYCmrpQfhnqhKiVDqYFWoPpfoVet5lfSZS/cUZxeizotQjTz3EcZzsOQv2wiIivY+dnZ1l7eRUK3QTpQopoVKpFBobG0VtzcfhOqziFdC9cUtLU/7w/U5pDFYac2qxXHDMyDpEE8Wtjt3xXFy62yHO1qFH7C2PfGzBnvlY3me0EowA+421orO7uGxq3dIJj0MfN7/XJV/0qzZXqWkOpeepWMhbrSBRqhNKVp9xzcrWjFLoS2lUpFVXc2ExyFNIFQpbUHK3MORCBpTKcLvd6OrqmSW0pD8Rrr4HconotVj1wtHc4KmEX5IqptA1KllKSw01V0sPwlPqJGyzcJpEqbDehdI29SzEyFFsNa2sz/TBmFLh5h5aqJaLWulZYIzJnjO1lGallN2XrHGlUGoqLDWcduVMILK+sWcc0qP91MpWGoOVxpxaLGPx19mRzBS3lObbSWV81wPV+Vihz2glEGY4cC+nJmtw67YIvE597oLauC+teziaW2QqHIOTySRMJpPi80Tu+wGOdDIKhIGRQ4GuvqEnK0IkEsGoUaNkMWxmY2nue7vdrjiRq5Uhm3g1pFaSWry8zqwmNwyD+tu03yMfVAtZSoV1zmRKj/UzmzikCniE4qUudNJgKVUSOaqWUsmLSCgUQl1dnWrZUhd+sA/mKe2rltI6lzh0hG/HUu6XGqX03b5MLFFaNgo1VPu/Slvr0X5a76PSQsJYguliIa4UfDxjNZ+zSDfQ0igen0qJJwVy3x3bbEUyXTzN05b2bt28PqWERdVL5iTe+iyfM8l9P+CRmse7YjkLm3A4K7UT8Oixy4Ue2KzyHTGcTqcolyXvZirkei9GOs1gMqqXoebaKoRUXNS5sjKXnBKFWr4U973NZkMi0aMAQyXusqNUn2w2K3o2Sl3YwaeEKoS8rdVd7KW0B5Bb7CTMn5epweKMYvRGlFbDUmo0cqKY6Gg0Crfbrdw3SnXfu8VuTr1WRVebUrNRFEL6VCq6RLty3hOl0KWy3fdduftiMuZe/IX1UHJV18oKpqX38jsS+j3aQ7xKRclj4bRDtOFJqb8XjubCM7Rc4/bdCQzx6ZNxU9pOPNL7znHa58xabK6gFRKlOiG1hDG2xxIkOKe3g7vQmpROM5S5NXCvka7A5/MhSleJ5l0zGl3bUvh0JlJ3MF+GtK2DkeLpT6QpobwOZUupzWYTWboKOWCU3vS1XmNvBwVhfcLhsCjWj3/mtKIlJZSaG1EJm5UTreYv1h6yPqOp1tWlVFGqlvi8EgjbS61v9CYkQin0Ri+xUM38iHrFlALitk4kEjCbzYXd92W2n7xsli9byUIupJaCQ8vdLRTmoNfLjzS2mvd4CZur1N/L7tmWU8s17uhIotGvfdONQqi5761Wq3iuYoDDJvbOqs+ZfS9+n4dEqU6ora4W0tvB3WQy5VcT9tbCpgdSd7US/Ors3Lm9W1mZd++oDO7Sts5kc5ajQkhjA72ujOK1CN8o1VbT5s8tY/LJXWN5VsFyxYKWlFBKbh+tz1+x+mnpM7WmVFFaK1RDW3rhvh8oMaV6pYQCxCugeeuTVPioue/D4bAseXkxtIYGKFHLndEMHEM8kS54jtr4HgwGC4b7lEIl52Mt7ApmMHyI9lj0QqjNu8K5in82pUYJ9ZA3iikd8EjN4zwGrueB6W0nEK6AruXDJNzaUG3XmN7GCwmFN+/e8TiBToWUS9IOpnX4Fda3zplFUGFwF5attKuN6FxJiqZSEzH35k3VagYSyfKeJ57exJTm4la1tTiJ0srDW8r4ttbDImK1cEgJdIWek3c1Q5H0tJTWuZHP1sG3h3DMAsRjn5JHqRSkfSPUBXid4jFYbSFhLecIhyWB1q2dBc8RhngJ54hsNgujTm5AYftls8rGhVLd93wZRi3COwyMGFZg8igBv4qlVKg5It25VfqyegjmTHLfDzKEk0E2y/KpO7yuniTyvXXfC8uuZSoHYcxgJBKB2517qoWJefldebxOsZup2LXX1dX1CO89HUbqKuHLUHLNlIrXmVWM0xGWXazjSmMoi63UNplMSKVSmsrW8pvlxvppTQmlZdcaJYrVT1h2qYn/q0VvRGm1XNQOwf3j21oa09rbjAZ6hB2pll2l9tFTlApXiqu1B7/TXs59X941SvtdluW8QcL+39nZqWhZrOXOaC5bGpu3FXanCUMRpCma9ELYfkLjgsEgNhJpfa4ZY/k+4bSligrvzm4DRg7TZ9WmWjvJdYH8u8I5U/iSk0zlXj77IiRKdULNwiZ8y+mtxUFYdi2T3grdLcJrqaurQ2dnp6h+0oUYiUSi4KYBWq5RzVLaG9RSQpXS1lLhXQyRxbuX91HtHvQGm4aY0lLbWrgQoxRLaS0XZxSi1JRQ1URoaVJr6849FrZy0NNSarVaRQv+KomeolRooVRrj7yLvUjqNi0opckDtPX/Ws4RXmcGbdsLD4qidqrAdraA+jjudfYYiUp5rvmFywDgdWSwaUvhGxyJmTB2ZF1vqi5DLWRDdo17xk8D17PTIH+NShvD9FVIlOqE0DwufEC0DGa9LbvaqE2Cos6hIT2TYtkaBAqf/kR4bizB4NAw8UjdZ2qWUlE9ugrHfUqFdzEXnbzs4vWWlaHD88RjlyT5VsLr9YqS5xetn8CSU4oo7as7jPTGUlotF7Uw1kytrdmexRmlIvxGsdRepVDNvMt6pYQCxC75QmLQJ3Hf99YqrCVNnmo9ariIxedi2Lqj8P0NdskXOultPRfPScL5uOc3S3HfC+cknxvYsiNa8Pxk2gh/nT5hP1KPHI9IF0R64ojrXHLhbTQaq7YAs1xIlOqEVFTxpnS/xN1arqW0lq4Z4S4ywmsRdg5hrKRwbi42UYvc5sIy0DNg8elPpC52LQOwdNAzGXMLpArWQ2ehJC67dxOHcMKTuhFL1UJatxnl2y61J1VXKfUrJkrFz03fcyf15ZhSYeohPdPpAIDZBCRTufueyWR0i/WrqihN6pevU2j9FPY74fWkM4DFzMFu7Uk91NXVlQ9zKhV+zBQuuNQyn9TS69BQZ8COQOHVk/yOhDYrh+SeTY9isVh+u2Q9UBtbfII+U9LCVMFc0FBnKCq89RzJzApbfAMFNIfKGNxXUksWg0SpTgjdLQFRJxBbM8qNKa1l0lthmifhtYjqJ4iVZKxHDBZ7ExZbzVi+DJejJ8UFX4bFYkEymZT9XqkoVUlqvdNadiqVgslUOC9db8sWIrQuSAfVUo0NdkvxPKW5cnMFa8n84BPschUMBgtuT6n23PQl+rIolT4LfH80Go35BTi9tT+pWWfKpVp5XIHcC5deccrScZzvd8IXTb6thakAy/Fm8P2uO55L9ZOvR7hwTGQt+1JDnRG7goX3fGcK/9YzHRSgPrZIw+lKS+GXm9OH+Exo3134bV7vSFml8qTXyOsC4RgcDofzL0WlGBdqCYlSnXA6nfmtL4UPiBZ3SzGkgq1mMaUq7kJh/fgEw0BuII0leiHYBMK7WHyWHqmVCtZDw+DOGNO0GERYdqiXsX5qMWWZDOuVpbRYSighWkJHhM9IsdW0spetASJKOY6riqtMOrYIXxJDoVBZLlEtqYd6gzQPcCUpdYezQmgJXVJCj3hc2XxSxNIXFYjYatNYb8HuUOnPvt7pmVTnE0H7CRfrFq2fYHwa1mDFzkDh1ffVQDVEQTBHSDM/MMZ6nfmlWpAo1QnhzhpqpvRSOoEQqSuiVm/BDluPW0rNfQ/0uAn4aw+FQkUHHKHFQbg4gy9DzYVYTgdTEnHiFY3FXwB44a3FfSqyqrDiuVWVEIZQCGP9ejMBa3HfAz3bgWpxsQvdi8XcRRaLRZIGTFO1q0pvRKnSbjKVQNjWyWQyvyCLf86igsUZpZetvItMuVQ9plRHUSoMXeJfAIRjn/Bp5/9dTuYCPluHMP7c48wtpOXLVhpzONTOVTt8qA2haOHfVmsnPUWp0+lENJoLrJTGgwqfa63tJByfmpscolSAUuKJNIycvrZSpVqKdQFT1BzC63M6nYjFYn3WK8VDolRH8jkDJZ2Af4B7k68OEAul3lrY9EC4I4aa+17YFXn3ohY3iSivnGBxBu+KUFtsoaWDqeXzs5rlC30cDkd+21QtZfMWlFKvsRy3Km+xSafTeQt0byZgLavvgZ420dIepS5eyPcZQchGX6I3q++rJUqFqYeEbc0/Z4FILuSm92XrH77QX0Wp0H0fiUTgcuUalh/7EkkGs8AZZDDkvBflWAB5i7fQdZyzwuc+VxtzarkzWvNQB8JRde9ISrIjIZ+tQ2/3vXCnQeHYIrR4l+JJEI59I5qcCEbU5/HWrZ1w2lK9qrcaFrN8i2+Hw6HonVUbg/lnta/G7/OQKK0AQhe7HmkvvF5vPuVSb1fT6o0WF5bfzSEQ0eaaUS8DimWYzWYkk0lNi5Hi8bjixCpNcg2I3yw1iVKV+imeq0MqK7XdPXpjKbWYkV9oUPA3BSJHk/s+zEp2HfdV930qlYLZXNp2gdUSXsVSxZSzUE/4sqWnBauaolTPHZ2kWyznvUF72lpq6a9z5QwI5bRfsftYyR2JesuwoQ5EE+r9RRqXzlsuK3ktovAHgZGotDJ65vQxIzwId6sL701bwvA6CsfVlkopcxXfd6UhRKWM47WERKmO8PteCx+QOlf5CwYMBkNV94zWgtSFFQgEZNtyljKxeTyevPDWUgbvogx2FU9BpWbtKRavyq+mLQRvydXqvldqp1Jw2YGubvnx3qS/0Wq1L0Xk8CK9u7u7pNW0fTUlFFC6K7SqolRlA4hyLSL8JKi3BauaojSb1e8F3mTikCmwAlo60evRfsVERCgUki0kzGQYammzsJiNKDS6STMDVOrlR/qb/HzMW7yz2WxJ/VoYQjFymBfdSXXh3ba9S3evj5pxi7+GdCa3Sr/nXIZIJCJ6Pnh3P7nvBxG8RVPYCUwmDpls6Z1ASl8RpfyOGEILEr8bU6RbHMPGvwVriavihbdw54xCZZTSwdREabEVxlpavJTJx+PxIBwOi1bTlopwZa+QmI6LOqTkXwA0xDOXcs+BXFxpIpGo6eIMvamW8LJbufxCQqE1V4/JJ7eDEdM91q+aolRv1FZA9/SNnvG9lJdVNQr1O8aY4kLCzmjOENJXEYYiAD0pmvTeNQzoMRKlBIKNt2BHIhF4PNrfgoV9yWQyIFtgcti2K456r77SyqcS462kC9TGYPHLqq7V0xUSpTrCv9kK31p4Su0ESvQFYSrcEYPHaDQik8nIrF28JbKUt+BoLGcNzJexxx0sLaMU610sFlOMC/SpWEqF26YWo5Rr5IW3HlZB6TXl0t9UxkTS09bFF355nLmFalrvuWihSD/Jo1eMagsvpRe2ct10lXTfVyslVCWQGhfUxqFSwnrUUOt3bkGaPCl92eMAyOvHW/srYSkVhr3x8BbvUn8vUcK2nO27ExjqL5xtplTUQnV44S2E986qz5m92+CmWpAo1RHpKnQh5XY6juPQ1c3grHHKxEKpYpQHnNKC/WXuHZXBne9gWhYzqLrvVdyf/GCmZQji3UEl7Q7Sy92cRGVIhIieizqklCJyDIacJbcUUVpunG1fo9qiVK1vlGMRqZT7vpopofSGQy7vo9QlqihK9XTfK42rBcfg2r/cqaVEUxzfK+S+LzS2lGrBlrZooRbeGUhjWIO+g7Ga+164xTcP751VGheCwWBuASSJ0sGBWifgUH7KC5fLha07YzV/w/F7cm4EqVWL4zjZtpz8wFzKtXdIrAJCV4RSTCn/24UoFFOqtn1b+84gLBrWt/CpYkrfHaT3E4eBAzo6xO1RaVEaDAZFOWgLUcrzzpdd+2lUmd54J6opSpXamu8b5eQ0djtyOYf7s/teb8O7zQps3xESiUw+M4VarGQqlYLF0rvVVnzfCEoWB/HeI6VxT48X3nKxmdPYHVS+x9LNX/g5Qm0xajkUGlv0EMFqwjsQZmhu6mUuNhWUFjoBuWvcviMgm6vUxgVy3w8yhKmRhCgNZr0pe9OWcM0fJp8LaO+Qr0hmjKGjk8lWVmpNlwTkhPe2nXFRzJHVwiGRkpdRioVNbcATpusS4vf70bo1rOltkp98hDtnFKOjzPRHHifQtr2zaqKUf66zGjM/8JZSLffc5/Nh1+6A7gKillQrJRSQi/HetVtsNfd6vblUQmWkhOIFT39efa83Plcu3Y+wPfjUQ4GIZOxzlZ91he93sT3bcvaUzWH77qTimNYXFrG4bGlsbOtU/ExaP34MrkRoms/nQ/vOkKJxoVwPgNWcxs4OhRWnAIIRDiOa9M3bqDZX+Xw+tG6V6wKlMZifM7UaF2oFiVId8fv92Lm7E1bJi7HfnVuRV87g7vf7saU9WnPXjN+DXD0k1+JwOLCjIyXqHPxCjHA4rCme1u/3o629S1P6k1JEaanu+3xbaxjcefc9Y0wxF6oUt9uN9l2JsqwZuedJfA/03L1G9nu9cLF3dGh332/d0dVnF2f0Js61msLL5wa2tIvHFj52WY+NNkiU9uD3yPsdj7L7vjyhpZomz6M+n/SFmNI6VxatW5UVuXRDEj1SJqrh9/tz7SRpD7sV2LErrPm5VtqW02NPo3WrcgxFuNuIMSP0vQmF0r9tae9WnE/U3PdZ1rfj90mU6ojf78e2nTHZROD35FbklStKtyqUXW38HmC7wrX4/X5s2yUPL+CffS2dwOfzYdvOuLwMAJ2dnaJYLp/Ph45ACBp0YMnue5/Ph607YppeAOxWDnENCehFZe+MlTVx+D0ctu+KyWNKdcrJKIV3B2sdxjwOYMdu5clbit/vx/ad8ZpPpEr01npTTeHldwPbdsYU2zqRBGzW8iYfvVdFV7Nt9Da++T0ctu2Ky9qD4ziZS1SPbVr5bB3SO1hoPpGGEdSCeg+HbTuVrYhqqbMqIZL8fj+2K8xJvgJ9Rgkld3edi6kK7+6kGSOHeRU/6y1+dy40Q3bc78e2nd0i7yIAOKzAzo6I6Br7ywshiVId8fl8aN8tt4L53BzadyfKdt8rlV1tfG5gu8K15OqXVEhdon1y9/v9ymVAvs2o3+/Hjt0JTRY2tdX3DpvyKla/348dHfJ66IHaNZZC7h4kdXHf8zuqFMJut6O7O6Z5pxifG7lr1Oi+b9+dkA2qfYHeJM4Hqm0p5TS3dW+IRrt139GpGqEN2SzTPSQk91wnZGKG4zh0Rpkoa4jXCQTC2V49Pzz8ymppv/O5gfZdyvOJNIygFtR7Ddi2S/ked3aJXcduBxCKaPMylYrP58P23UnZ2OL3KM9haiiFRPg9wJYdysI7y3Jpo/TEae/ZXlYIP+9KRXPuGZGPC+XkyK4WJEp1xO/3Y1cwI7Ow+d25FXnlWkpzZZdby/JQuxa/34+dwXR5FkC/H7uCKVkZZiOQZeIUG263G4FwVtPvqVlK1Sat3LXI66EHuWsss508wC7JPYj1cvcauzXn+i9GBnbN+6j7Pcg9CxotpTuD6Zq/bCnR2y02q2opLaGtS8XjBNKw62rFqtbqez13c+Lxu+X9DsitgE6n0qJ2Mho5JBKp8hfTMCOMklna71a/533Bfd/UYMGODuWt4qQ7EhoMHJKpVEVeqvx+f+5+SdrD7+Zyc2lJllJxHxjiM6F9d/VSm6n1wdz4mZGNn/y4IBellaqhfpAo1ZG6ujrFRSx+D9DRycoWpR2d2Zq/BeeuJasoSpXqZzQAjGl7zHw+H3Z3ynOo+T1AiokjszmOQ5K5Rav91ShVXPh8vtz90tjW6XRa8yKnXNnl3Ue/G+gIZ3VJCWW35r5bjCRzaW4Pv5tDV9ysqc39fn/unvdB931/EaVK/dHpdCKdSZdddiqr74BTrbapRIy13wPs7szKJnq/349kSv5ml9JBbKWYUy6qVO45kEsMX+v47OFDbNgV1L7NZipZvnhXIj+2KLjvOxTuoxpKqfAa69WFdzVRm3f9bg6xlE2W+SHDOTQbF2oFiVIdMZlMiKftip0g1MWV7b4PdnE1tyjVuYBOhWvx+XyIxzOybTmdthSszkZNZfv9/lw7Sa6xzg2kmHykTTGXJnFXaroRtXqokckk4a2r11x2NJYVraYtFZ8buWdB5L5nvZqEbRZtolRrW/P1SyrcLyVcLhci3caav2wpEY/HFcM+ilHN1fc+d25hhfSlyOtrAMuUN2mWch+1Ui1RWolsFLlx3CATUD6fD6mUvK2TOoitFHPJRGah+SSTzVlpa8nwRkdJW2tXylJaV1eHzqh8HPd7gHjarjm0Qsl9P0xFeKuliaoUPp8PoS65ddynMmdm4EGdq2+bSysmSoPBIC677DJMmTIFp556Kt577z3F8xYvXozJkyfjqKOOwlFHHYW5c+dWqkpVIcXcim+28YyjrPgiv9+PcB+YvI1GDvGksvteyVpgN8dh9zRrKtvv96M7npUtznDbUjDahsjOTzFXWe57IJfzM5MRd9K6ujqEu02arXc2UxwO93BN56q1Uyn4PUA0YYXD0fPK21vLkFZLaYbzwOvUNuDmLNvaxAzHcZrvY7XpF5ZSN5DMumQxeQ73cNhM5dWhzsmQ5vS9MUajsSoTdyVEqd8NhGNGmYCq8/mVRWkqCZ+vPFFqtg+FyyoeLyxmDrGEdvdztWlpdiMUlUsLtbUFKR3aSQmTyYRExqE4H6eY9olUKSRiZJNDMWvAzo5u2MzleSjU4JCLlRaiNlf5PcovlDb3cDgsfXtHNX33whJwyy23YMiQIXj11VfxzjvvYNGiRXjqqacUUwNdcMEFOPfccytVlaqSYm4FU7r2SVoNn8+HeKKt7NW0epBKJhVFaSopH5gthi5kHU2ays1ZHNoVy7A4hsmOJ5kLPjdD4f01CouLOldu21RhpzYajUhm5W4zNSyGKCzOUq6xfFGaYi5RnFGl3fdW5zBYjd0ANKT2KtHtmwvD0Hx61egXolTlBcDiaIIlFgXQ0OuybaZuWOxDy6hd7aiIKPUAiYwDJpN42rS7GmHmorLzDSwGp7v37Q8AFucwWAxdAMQW+5zLu2/em9HNXkRicgNMNAa4FFzHJnTD7q7MtSQVjESlegCCESYLE2tp9qBTQXhvbOuEx14ZUVrnzs1VQn1hMpmQzMq9WGrC2+psgsUQBdB3E5VWxFLa3d2NN954Az//+c9hs9lw9NFHY9y4cVi9enUlfq5PoRYDVK4otdlsVXcNqJFKqYjStFxsmRGB2S63cirh8/kUha1aGQZLwx6hVJhC4kJtp4w0s4tW0xbChLDma/T7la0qpeBzyWNsey9KOU2i1GQbAjO05bjxODLIcNpVZhpkKe0tamOLya79fqlhQhimfixKbRr3KteKwwZkmDycw2wfChPkg4ge7We2D4GZk5edsy72zZXV/jo70hm5tFDbptiEMMy2yjxnaYVY+FKNRNJdqABg9Ahl4d22vati7nG1FIZpZpPNVS5bElmDPC2V0ToEJlZmrrIKUxFL6ebNm+FyudDQ0POWuNdee+Hbb79VPP/BBx/Egw8+iJaWFlxyySU4+OCDFc9LJpNIJsXCx2Qy9Xobt1LhRWEhcZgxeGE1diOb7XlKrGYgzay6iMq+IEzT6QzsdruoLjaHF+nkZln9WCoAZvJrqrfFYkE2m1UoIwiY5WVw5nqwVADZbOHI7e7u7nzZgPg+1rkM2N3JMGaYfCBhTONOI2nt1+h0eZFKbirrPhoMuVW5wjK6E4DVxGTunWLYzEA0LncLyTD7wdJBZLPFwxS4tPL9UiOZdcJlyyCbLe0dWUt/LIdoNNqrl0Gr1Yru7u6q9FWXjSHFnPLfMvH3q/d1YKkgOHO97tfBGBOVWYn7GI3nnu1S+4MWZOOTsQ5Qaut0CDANKe+6TH6wVBDZbIvocCaThdUqnlO647ndA2s1RwjvI4O8HrtDOc+UUjsxk/7PGQCkmA12q3hctJsTyHAezb/X0Ql4neIyPC4L0hmDrIy27V3wuStzD+pcwO4Qw+im4nNVru8qzJkWP5AOqNav0mOqltRfFRGlsVgMTqfYkuN0OtHVJc/+euaZZ+JXv/oV7HY7XnnlFVx++eV45JFH0NQkd4euWLEC99xzj+jYnDlzqh6H2tbWpvpZBg58+81n6G7qWdyTSCTAGENra2tZv5vJZMsuQw9Ythvr1rfBZunpBDuDBmSTHbL6hQObkDC0aKp3Kg1kMynZuYGd6xFNDJMdT2QcaG/7Eq1NhVd67t69G7t375ZZKNva2oCUG1+vT2GoXRxnk8lksGnTJk3pcKKhLQj5xmm6xkDEAKQCZd3HTCaDbFb8LARDQ9C+fVfJuRm7oy5s3pJBa0Nhy14sZUNH+zq0tha3MLRt2ogU82i/Rs6Er7/+QtOuX4q/V6A/lsPmzZvR3d1d8r3KZrMIBoNV6auRSATgDLLfCnVx6Aq1lVWHjvZ16E4O1f06YrGYYpl63sfWNhu6oya0tipkHC+DTCYjq/uuUBaxyFbZ8XjXNuwK+spqv2jSisDO9WhtFVtFs5kE1m9ohVkwg28PGGGGF62tpe2+pjdtbW2K7fT1BiuQtqC1VWzui0W2YlewrjL9hQHr1q0VLVjcuXMXspxd8+/t7BiC4O5dCHWIjytf407YzeXP9Yqkc3PVEIW5Svp72zZvQDIrH4O74hYEd29Ea2thz16lxtQxY8YUPaciotRutyMaFcfYRKNRRVfYPvvsk//3zJkz8fzzz+Pdd9/F7NmzZefOnz8f8+bNEx2rtqW0ra0NI0eOVFX8dnsMTmcaLS09b7bt7e2w2eKiY6WSSgNG4/ayytALu+lLuH2jMFwQLtUNwGF+T1Y/p+UNGOzNaGkZVbTcXSHAZlonK8PjeAdWZ5PsuMmWhs8TLtomBoMBEyZMyA9Mwvs4brQBBg6QFmG27MLQoUNFi4nUsBpfgatuFFpaiseVJtoAm/mDsu5jIBCAzdopKsPuAEaPLr3M4U2A0ya/filmexoexzZN9d6+fTusNrfma7TbI3A6HSW3iZb+WA4ulwsmk6lX98pqtValr27atAl2G5P9lqvOAtvWz8qqg8f5AcyORt2vw263i8qsxH30bAaajUBLi7asGFqIx+Mwm3fJ2sM/xA8z3pWPT+wl+IaMQ0tL73PwWB0ZeOybZWXbzWvh8bdgqECrhjNASzPQ0lKbAG3hfTQa22V1/mATMK4FaGkRh36Z8RJ8Q8aipUX/XFY2eyfcbjeGD+/x8OS0CKf5ubbZlcdWo3GHrIxEejPGtVgq0vfHteQ2O1Gbq4T6qq1tC6z2Olk9bK4s3LZNqvWr9JiqhYqI0lGjRqGrqwu7d+/Ou/C/+eYbRaEppZBlymKxVE2AFsJgMKjeMIvFjFBot+jzUCgEi8Vc1k0OdzPYjFFkMpmyVvHrgZmLItTFYcTQnnsV6mIwc1HZNSZjO5C2y1cHKxHqYjAb5GWkYjuRYvIyzGYruiKdRctOpVKw2+VJwA0GA+o9HDZuFyd0zmYZrBYLOjs74XIVHyhTsR1IQ/s1WhSusRQ6OzthtlhEZXDI9qpMp40hkRJfvxIp5kI6vkvTb+Tq16S5PhZzrq172yaF+mM5JJNJOJ3OXpXNcVxVBvVcW9vkfQZupGLa7pcamfhuxX5XLmpto+d9TKQYnLbiz3UpdHZ2wmIxA+BE5SaZS7GtM4kOxDOOsq4pBRdS8Z3ysW/PGNxULx6D/W59r7k3GAwGGDkgnsjAYe+Zq0JdDI0+ef3S8V1IVuA5AwCz2YJQKIQRI0b01CMUgsU8VPPvFRpbpcd3d2Zx+IHl3XM16j0MrTvkc5XFbEYoFBJ5pzs7QzCZ5cIyxVxIde8oWr9KjalaqMivOhwOTJ06FXfffTfi8TjeeOMNbNiwAVOnTpWd++qrryIWiyGdTmPlypX45JNPcNhhh1WiWlXBYjYjGAyKjgUCAVgsJlnqoVIIhAG3PY1QKFRmDcsjm83CYuiS7escCANmgzwKOx7Zhlham6UgGAFsxm6Zm7073I5UVm5lN1vMCAS0uapUd8RQ2KM60g247FnNZccj2xFLaVsQE4zkFm6VQyAQgN3KIZ4oP15O6+p7GGyIdO7WVGYgEIDFrO3lkTFW0n2sJr1d6ARUZi9vJQKBAMxmiyz2OZ62I961tayyO0O7YTTqvIS9SlRi9X0gEIDbnkGnZKF9qMsAE+uUnW/mwghFynsOEhk7YmFxRpJ0Og2rMao4BveVBYMuWwqtW8VtorSHPJBb6FRuOymRzTJYFMaWYDAIs6V8w46BY+iOieeqQCSXLqoSKM1V4SjgtmeVNYeC8SqediDetb0i9dOLiknhRYsWYceOHZgxYwbuuOMO/O53v4PH48ELL7wgigF96KGHcPzxx+OYY47BP//5T9x2220iU3t/Qq0TBAIB1DkZQmWENwXCQJ2L1XzyDofD8DoyshxtgXBOUGYy4vjOrtBWxFPaBEogDNQ55R0sGAzApNDBzObyxYzfndsvWqkemstOB9DZbdR0aiAM2M2xslbgBwIB+FxMtBKztxpIqyi1lNDWgUBA86AfSwAuu6Hmz7US5YjSahEIBOB2cIhKQoLD3UawVHltWsp9LBVNCwjLoFKitM6VVRCDDGZOPribuS7Z2FIqZpMFwaA4mDEUCuXGJ4UxuK+IUo8zg01bxQ0VCCvv3KZHOynRGc3l2lWaj60WsyYjUaHn1GWXC+/OLgNamitzE3KiVDJXRZR1gWrfNVjQGdpVkfrpRcXylPp8Ptx5552y4zNnzsTMmTPzfy9fvrxSVag64ShQ55ZPsMFgEH4Ph2AEqJdnadAE/5ZZ68lbeC2i45E9O42EQqiv74njSqeT0PruE4gAfi+HYDCIoUN7UoQEg0GYPeIOxhiDxWyRCVglCg0sPoU0G7kUIAZNZQOAmetGp8YXDmHZwmsshdw9aEYgAgwrLw2iZlFqtpgR3KWtPYLBIOw2E5IpJtvhS3ZuBPB5OM1tXU36gygV9kdhDshwFDChvLRUwWAQlnr9w6VsNhsSiUSvdsvSSi4llL5l5tp6OAJhYJxgP5BgBIqi1GKQWzNLxWwxI7hF+pKuPgaPH4E+gc8FbG0Xm5QDkdxxKWauq6QdoLSiNrYEAgH43AZZfmolIt1Q3ZbT48gJ733H9wzCkbgZo0f0cpIvQm4nP/GxnC7gFDWHzZoT3sIdvsx7XP19GdpmVEcCEWCoz6jYCYb4TGUNULmyTTWfvHPXYpRbCyIsd7wM0RyMINdOkjJisRiMRrElMpYAPK7yLaV1LrkozdVD+7VwHINWw09wzzNSTr2VnqfeGp7sFiCWLP5lk0n7YBYIBDCkzqRpogmEy2+PStEfRGm+P0ramrHcc1kOoVAIJrP+dotq5HGNJXPPtp7wba30EmvmukQvv9lsFhYdxJbBYEAiIX5rLDQG95VNKBrqDNi6U3yPecOFEMZyVuZyxbsSamNLMBhUbD8l1EIOgJyXTSq8UxkD6jyVednyKcxVgXBurlLSHPVek6J3ti+klSwEiVIdCYSBxnqLoim9qd6iuC1ZuWVXm0AggKYGi6LLu6nM+uWuUVlochBbPANhoKmhfFFqMnHISPpooXqUSyDMyi47EAigsd6si3XBbgXiRSylqTSDxaTd5Zp/RjQM+oFI33iulShHlFbaPc2TH1sqMKlns1lYzRwSGl5aSsFms1VclMaTrCLue6VxPJ0BXE6r6JoikQh8Xpu2eG0V1J6hnnrIx+C+4r4f6jehfbc4p3giCdmOhNFoFF63DckKbIJUaD5u1NhnCrWpkvCuJCYTh7Qk+2FBzaEyBlcr3r23kCjVkWAEGD7UrvhmNnyorSwRoVZ2tcldi13Rujh8qF32xsZxHDhO2yQdCDM0D7UpluFx5lwp+XMjQIPXgHS6/NFM2kUDEaBZ4VqUSKVSJWVDCKi0Uynw96CclxwemyVnVSr4e3usBVoHs87OTgxrsGp63oMltHW1icfjFXUx60GhscVoNJa9e5jajmflUBVLaQViSvm2lk70HHI7tQmf4WAwWPbe9NFYznUs7XeFxuC+IkqHDbFhV7D42My3UyVkktrYEggEcsc1hFzldqFSrl2j3ywT3pWWe9Lyg125a5Tqgq6uLpnhIpkqzbhQK0iU6ghvYevuFm99GQgE0NzoLM99H2YY0eSo+eSduxaHfBVgN9A0xCXqHMlkEiaTCQ5bbreRYgS7gBFNLlkHY4zB5xavPMy5grQNAcXElLSLBiPAiCanpheAYDCY3+5PS2fv7AKGN8qvsRQCgUCufnvaI5Nh6G32Di0xpYFwzu2mdTDLZrO5OCeN7vvhjbV/2VKiHEupwSDf7aUS5McWQVvz98nv95cdP6bkMiyX/ipK+X4nbQ+G3BoK4TMcCATKFqV8DKa03wUCATQ3ycfg7kRu2+C+wPChdnR0ajBEBALw+XyyMVgPAhHk5ioFwabVk6MUcsDT2GCVCe9Kyz1p+YEwFHUBYwx+t3gMFr609GVhSqJUR9TeqiKRCJobbeW57yNAy3B3zSfvQCCAYUPrFEVmfb1fVD/+LdgvEZRqdHYBzY3ia0yn0zCZTLJ0GLxbpRKdKxBmGKWxrfnJx2mHbAW0EowB9X5fWfcxGAxi1DBXfiVmPNn7CVirKPV7cs+11vZWSl+iVvZQn0kXi7felCNKbTYb4nENb2Jlkkwm0egXxxd37bGwSYVSKfDbFmp9uSiF/ixKRw13y1ZAA7kXAKkole5NX/Lv7RnjzGazyOKdE8dekeeorzFqmAvBruICWQ/xrlp2GBg2xCrbyAfYszioTPf9iEax8O6OpWAsM467VHJzlUexnyvNmT53blMQqeGsL0GiVEfUHmCO41Dv4RQHM610dgGjmssTM3oQCARQX++XpSAq5MLye6BpYmMMaGgQlxEKheDz+eB3cyJ3SyAMTUH9mUymaBJghxWICXJ+BsLA8KFWTR2XH1RzqaWK1weQT2ClkslkMKTOkLfYlDMBaxKlkVxbu91uxa2CldAsSvvQ4gwp5YjSaggvnpyLXfz8+j3lPWfd3d1wOp2a72MpVEuU6r36vqurCyMaxWEz8QSDzaI+9hmNQDrdu3GffxlUKru+Xi7k+oaNNMeYER6EBWnyUmkGk0LWPH78tJhy7mU9CYQZ6r2coqdM63hdaJ4ZNdwtEt6tWzvhspcXLlMMu2SuyoXNyecqjuNkoTe80azc+afSkCjVkWBEOQ8b734u1w3m9boRDldgRUMJ8O5qqcFMzYXl8/ngc8vTl6ihZnFQdt/ntnOUrk4VokVYqIUGaImh5OtXSuyddJIpFY7jcnUWitJeTsBmU24L20Lwbe3z+YrWm7ek+lxAsKv4JFPIPVZr0ul0r3dPq6YoVesb5TxnvKiSlq0Hdru94lbkeFJ/UZrrd5xoRbOwbyi57+tc6HV+6kJlq43BfYXmJg+6E8LdnJT7OT+f6DE/ysruUg87kr7IqRGIMNXxqWW4GxGB8N60NQyPI6N8sk5Iw2mCCt5ZPmzI54Ki+74cD0o1IFGqI4E9g4jBYJAlkVdKPVQKDLlyax0LIoyh5MlmWd5SqjQwl2Jtcbvd6OzsSUisVkZgzwtAMaEUi8WKLlaRlp3OAGYTp6mteybv4u6gvGArc1BgjMFpz7lpgdxCpd5OwBzHFZ3MSrG8RaNRuFyuktz3fWVxhpRy+lrVRanQIhLOTVTlPGf5l60KiIVqtA1j+m+3yVgu56NwaOe9CGov0+W0n1rZoVAIXq84F2Y6zWDsQ7O5yWQQjStq/bw3c4RWggp5UbPZbM9LfZkpoZqbPOhO9gjvtu3Rint9pO2UyuRW5QsJh8Pwer2yZPu8+75co0il6UOPcf+H7wR1dXV5YcV3AqORQ7Yvvcr2Ej7G02BAfkeMcBTwugCv1ytaWFGKa5sXAFLhrVaGVqGkxVIqDQgvhVIG1Wgsl+Dc4/GUbfHmOC7vrqtE/JwQ3sWuRZSWOsl076l7tWIwq0U10h4lk0lYLJbclrOCRcCBSPnue9F91Hm3nWq0TbUQutiVX8jLGFtUxjjGGAwGgyiriZolsq8gjEsXHc+P7/rHLqf3CDahkYgXbFot2LyQU8JkMois1dt2xtBQV1lJpSUWVtWQo0NYTzUgUaojmT2dQGih4DtBOTDG+lS8EJCz/PJ7QPNuJqPRKFpxXIprpivWsyON0G0uLkMgVjW6KOPxuCb3vVpKHanFW4rIIlJkkONX05aTJy4Wi8HhyDUU3xqxMlfdFvtmKe57/n65HdC8EIPjOE1l9yeq4aJW8loA+lhEKu2+r7Qo1TsVYzabVYxNV+sberRfcI/rWK1vCPtYXw6DAXrGaymVdN/zCI1E/HhtNHLQkhwjlUbRXel4dnQkMcRXsU0yAcjnKr5mQuHNt6nXKRbewa6ccYHc94MIXiQIJwM9VhcKBRvQN9I5CN/CeDeTFPEbW+E6BwVlKFpKJW998T1CrFgH02QpVbHq1dXVFU2pU8rko0dKDqVVveWsvtf0myW8YfP3S0tYgJC++PZezstDNYSX2tiiR+xYb2KltVLN0Aa96OzsVDQuFHXfl9F+amXzyMfgvma66IlvDBaYI/h2qsQGEIC4/YT5Y/WeRXcG0hg2pLJ5jaUeQ/4apMI7t8hO7J0l9/0gRtgJpBNHb8SIcAVgKSugK4lfEENZ3DVTfMCRxhzx7cSXoSb6dHHfCwbEeILBatFWtrB+WoS3WjuVgvB5MnC5eN5Ku+/DUcDjLK09SqUvitJyqKUoDYS1h1sUK9tl127x1kq1Ykr1RNjWwhXQ/Lhlt9tFK6D5TTW0psNT/E2BiODvo3D+EJbdF2Oz7eY02nfl3Glq9eM9WdUSpZVIQcUL745OhhGNld2WWDpX2RTmKvVxgdz3gw5ebqi9mTltxdPvKCG0sNXygRLucOP39LirhfXjuJ4FQkIrYlHXdrjnTd/j8eSFN1+GxSzfYg0o/tanLaa0Z6W48I1eyxtlJBKB2+3WtKBB+HIhbKdSED5PfAhFpUUpsCfFiIb2ENavmPzOZHoWZ/T1t/dSqYbwEra1yZhLuwP0xJSWE7uc32mnAlsS9kdLqbCthcKAz7iS27mup634f2tNh6dEMpXbllPYN7q7u+FyufaUzSmOwX0FjyON1q25huJflKTk20kwButBLNGzzaya51K6dXVvsFl6hHcoymHU8MrGUAizBkjnKiXNIey9ke7y8xdXAxKlOhFLMNj2dAJhDJDQ3drb+KLcGzMnK7vaCGPYhNcijBdyOBx5i0E4HIbL5YLNyhXdX10YEyXsNML2Uxo+9LCUCq8lKFgwoOUFgDEmS9GkhrBst9uNSKT02UrpeSonJZQW+HbXMphJwwuyBVb3hbpywlpr2f2JallKhc9CSCBQ+CwgeoaJ6EU14m31RihmhHF9woUwwrbOZ9qQxMKXglK/U5tPCi3IqRVeJ8PmbbmGUot5FbaTnpZS4cp7YfsJ5zBHESNRMsVgLhIi6rH3CO9wtxEtFRalwjRPAcGLiJrmYOhpY4ae+P2+PNaSKNUJYSdQM6X39q05oPJGVG1k1yJ0HanUT6ulJaBiDVaK5UqnGYx70sNpiSktJSWU0MVeSue1SVZAKyF0YfX2PorvQS7/azkpoUpBqyjl6+dxFnb96tEelYLf0ai3VNt9L3TlJlM9izPKEaWV2mmnP66+F070otAllVhJHj3c0kKLt+oYXKQetaDey2FLe24ACBSx5OrtvlcbW6QvF4V+U4v1uc7VI7y7E2Y0N1XWXC2dq3hjldo1OhW2+Lbb7QVze9caEqU6odYJRG4fDbksSym72kgnQd5aINw0QOgqKcX1J71Gvgw+/QnQ44oIlWDN1LL6XrirUSXbOhBm+opSoaW0DPe90PUrRZj5wWazFR3M1CZNxXMFizP6mihNpVKwWHqv9KuR4krpBUUvhB4Gjits8S6VSgv2bJahyCZuJaNmXIjGAOee4YXP1pFIJGC15jqk19mTpaS3SLORFBuD+wpDfEZs353rA3xcupBUKgWTKWeKLCVbhxaExgU1930xI5GWXQOFwhvIpYmqJA6ByFQL65OGmlQqq0GlIFGqE7kHRO5il7pbevOABFXM9NVG5r6P9AT7K7neS7HSBAU7Z6gF9ptNQCLJRFZpl8tVcOGXFve9cKW41OJdqK15132+nIK/UlrZqmUIBhw+ZKBcUVpoq1E+DqmU+ml93qUhG30pprScLUaB6sWUFgsN6m3ssvC5LmbxLpVKt00ldnOS9jv+ueZdokBPtg7huQaDttRDUlJpBrNgW07hws9iY3BfYajfgp2B3HZxjMmNFPwW0oC2TTxKQS0cTNhn/EV2GuR39itEQ50R7btzg2c1cuII20loHZdqjrq6utzxPXMEv8FNf4BEqU4IB4W6ujr1N7NeWUqVBVu1KeQ6ktYvKxmJjQWscXwZfoVBRAj/1hcQvAAUm3RLFRfSOJ1Cbc0vcuIpujOSykBZCiI34p57UG5KqEKitNRVvaLFcEUSYvcVD4AS/UGUyqzmCm1d7KVNDbVV3npQ6bapxMI/pX4nhX+G9YjHVYvBVBuDQ105q2xfonmoDbtC6nmeKxkiohbypuVFTlRGkbGvqd6CHYHK7nevhlBzCK9RuD0y752NdMst1X0VEqU6IewEwiTy4jezgRNTKkzMy2/LKaxfJBIRxYL63YV30FDqYFKxybdfKUKpZFFagotdOqgWcoMDQCKZiz3VUraW3+RFunClaW/QU5QKKeq+F5TtdDr7RKoznv4gSoUvRXxbp9LixRl6jBfl7EqkRKUXOsUS+ltK5S8ACvupC0RpuWJL2u/4l2+1BVdZBhiNfcsWNqLJWbj/V1KUCtpPmG+a35EQKG18UmP4UDt2hTIyI0w10DJX8dcovRaj0YhUqjZiuhgkSnVCLSha2Al6uxJTzRVRbYQCW21HDN6NIN1tppgrN5kCrBZxDBC/j3pPGTl3i9SKUCh2Vau4MBpyKYqEZXu93nxCYiWkFpFiwltIb933wuvJvemXn6e0kCgNdgE+V0/7ms1mzYNZUfd9V084QyVSD5VDfxClwvARvq2lfaM3z5lwzOLL1tNSajAYKjqJV8JSGgqFRC7R4B6XqEHw2ArHPqnYKjWEQuo65rN1CMdVs4lDKt2766kGo4a7EY6qZ4CQzhEc9ItdFoaDqe3MVyyNn5aQiOZGB4IRoH1XFHZzdW6GgeuZq/yCuUppoxfhuCCMj/X5fEU3hqkVJEp1QuhiV6O37vuEQLDVMvZOy5utmrVAy569PLzwlpcheOuTtLXaJKdVXPB7IUst3oW2GZVOPqVM3r19uRAKEd5yXG5KqFIspaU8f8U8A8I3/b5GfxClQvjNG5TuV6nPmVCA8WX3p8USsQrscKZkYeuMAt6ed2ZV973TLl8BXQyp61hPK2y1GD3Ci0jcjK6Ycly69Fr0jF3Wko3Ap2Lx5uG35SzE6BEedHYZsHFLJzyO6ohSPj+1MBxMusU3T967KHnJ6ct5oUmU6oSWTlBOImUeq9WKZLJI7qEKUZ4oLV2wqYpSyYDt9XpVk4RrSQklLLuru2c1bTHKEd56uFV5IR1LIp8jtzfYLOrprKQip1C9hatpgR6hpEZf3IWGR+tzo0a10x6JQlskk0+pz5nsue5l2FGtyL2kVc7ybrfmRKb05Vh17OuFpblQ2dJ41b6w7bQSdR4bUhmDaj8vZ44ohpaxRQ/3/ejmnPDevK0Lda7q3If8XBWTz1XCmP6ec+Uvq30thl8IiVKdkLrvHQ4HYrGYyC1p15BEXom+4tjs7u6Gw9Hzystx4q3OAHUXlpYdj3isVitSqZRqGdL0J4Xe+rSkhMqVnQsN4Dgo7syihNKgqnaNqTSDSbCatrcWb2F9TCYOmYwOllJLTtgqIXX7FGrrUCikuT2APZYmQfB9pd26paD1uVGj0nGT2WxWtkI+HM2FRGjtG2rI+p3OOSQrTbkL/5SQjgkcJ864AvS0tWL7lSjqpfMJX3YymRSJDo7LCWRXZXe37DUc1EPbypkjitEdz6VPyteD4xQFWzH3fTFR6nFbkckasG1HN+q91Zmp+fRvHOTPpdKzl3ffl+lBqRYkSnWiKybuBD6fD1u3bs3nq+PpzbtUX3kPlqZAsluBrbvFcTe821L6Rl9oxyPp4gz+t5TLYLJYn0IdTKsblq+f1OhQKIm6LG7WpX6NwtyqAGCxWEq2eGcymXzOViG5eNySihJR0H0fYZrbWvF+FRAzmax4cUaxGN5qUq77vtJ5SiORCDyenlnGYOCQZfI4uN5MPkr3sbe7EtWCSsSUSscAVqCt5e1Xeg5ZaTgYX7a0HmYTsL2j76WD4mHY004uuWBTaie9LPLCVF1Abl7aunWr6PfsVg7dBYxEkW5tYp8xYNuuOBrqjMVP1gF+npH2SMYYOjo6FOfdgCAdIUDu+0GDsBP4/X5s2LCh7PifZEqcr64v4fcAG7Yqhy2U4prRkv5EWIY0/UkhV4RWcaFWP6fTmd82VWv9FM/VwVUtjfUTUs5CoVJiSgu1tbQ9zCYOKfWQXBl9yaVUrigtZ4tPLaiF0ujhpqukW7Ua6C1K1Z4FaciWHqFLxcqW4vcA324rHjpWS9RSK1XzOfP7/Vi/fn3J87HWcXVHIIWm+ipsqwf1dnI4HNi6davoGu1WDrGEPH6/L421UkiUVgi9RKmS66OUFdCVxO8GNmwTu7AAFTeCWz2+UEmwFXJFMJazDOWPF+hgyWRS0848fg/QEc65w0THSxBhhWIohTuM9JZKLXIoJkqlq7m1tkep9KWBslxRWmmU2ppDzrKtRcyUUrbP1c8WOumcEkqprQ0GYHdIHtve2dmJrq4uUdaQ3sTkKr1cBINBmUhSG4P7CkYDw7ZdGUVR2tnZKbL267HmQg295mM1OjqzGD60OuOF3wN0dEKU+QFQv0alEIq+NNZKIVFaIXw+HzZs2CALSjcacnu3a0XJiliLFfjZbFbmOva5OazfIs86oOZ6D6qkS1LaOcNkMqG9vV1UhssOhBWMlsXaQ8vbrs8FbNrORKtpi5VdStorNWtwKUh/D8gtcFITlFopJEpTmZ591IHS2qMQSlbEvrSrU18XpUptnXeVSty+vYkpFZZtMnFIl2DxrjV6W0qV2rrOBWzcLh77+Gwd0jCn3uzkF46KV6z7fD7s2LEDRqPYbaY2BvcVXLYUvtqUUKyfcAtpQL+Xn0yGyQSb2nysB0ZDFjuDufRQ1cDnzj17SnOV0jXqNS5UCxKlOqDUCdTcBb4SclkCyha2WrzldHZ2ipLhA7k3r/UK7nuj0YidO3eKOofHCXSqXLdS5gKltz41cVmoPbS6UNWupdhqc37nDKCwRUTpGi0WS9G95EVlKFhs9FgZXUiUStHLUtodB5ySxe196e1dD1Fabfe92wFs3iG2iFit1pKeMbWy9aa3259qQW9Rqtjv+PFCQ0hOsSwUSjDIvUHffvutTHCojVt9Ba8zg3WbM5rq15t2UqIzmntpEJWtMh+rGYlKyZfqsqWwLWDH6BHVSSXid6vPVWohCinBBjf8uX1lrJVColQH1DqBkim9VBGhJtiq/UCpCaKc60h8rt/vx+7du0WCzWDgZIuI8mUruO/59tPyZqvPrjXKbrBSyi4ovFWusZS3VbXJMVFmhjCbBaopoaSUKkqtZiCRlN94tfboKwOldKVuX0OtP7buUM4JWW7ZemO1Wiu2ECyWLC8bhRTltuZy44UWsaXD5gO8FUzrGNxX8LuBje2GEsR7+b9ZaD7RaiSKdENmiVTD68wiGPNjdLO3+Mk6UGiuUrpGkxEyT4fH4+kzi0qlkCjVAaW4T5/Pp/hmW+pKTLWyq216V3Jh+dy5IPtywwuUXNt+vx/t7e0yYdAdl+dmKyTutAaqe53Axu3K9dB6LQapuVyA2jWW1E4KO8X43FzZVqFcSihtlgG3262aE1btGVF63oNd5T83lUQPS2kld6kq1NbS3y21HkpeEb2p5OYCeqeEUu53ufFCaowAoBDmpB66pBWLxSLzPvFlK43BfYV6rwHbOqyKIV5SehPmoIRSOJjafKyWhqqUcCufG0iiDh63zikfVMiFjshfiNSusc6VCwcRUumFmOVAolQHcvEa8reWWCymaNkq5W1QaauzPmMp9eRcZUpvpaVYmQJh+c4ZPp9PsQybRd4Z6+rqym4Po5GDxaTc0UspW62bq11jKWUrJc72u8ufgNXc94kkg0WSqqvQYFZKeIE0yTvQtyylfT2mVLk/cooLfEqdfJTix62WXE5ivaikKI0lmO7ueyW3ucmYi7cV4nQ6RYt3AMBWYn5qtftls9k0j8F9hUa/GUBWFJcOAF1dXXC7xQNiqdk61FDzLirNx2ppqJR2DVSjoc4AA6q3oY3RyMFsUtYFiprDnfNY9RcqJkqDwSAuu+wyTJkyBaeeeiree+89xfPi8TiuvfZaTJ06FSeccAJefPHFSlWpYqh1AuH/88dLFaURuZjpS6IUUL52Nfef0oCrlDJErQy/RzkbQTpd/hZvSmWrtbXWVf08atdYqihVugeVEqVqSa/VkK6mzdVPeZervu6+75ei1K18v/TI1qFnYnOg0qK08qvv/R5l0VJo7NNKpBvwKIRgKJXN3+++aikdNsQKu1keplHJEBG1sUX4//xxlfk4INkYoRCNfjPMXJmm8BJR6ut+vx9msxlOp1N83MP12ZcWJSomSm+55RYMGTIEr776Ki699FIsWrRI0e139913o7OzE88//zxuvvlmLF26FK2trZWqVkVQmrztdrvym22Jg7tS2bVIfKvmwjKblN3pSgOO2wFEFeYhtWtUFKVu5cFCD1epmihVamul9gBy6TeUhHekOxdzqqVsNZR+s+KiVGGyK9TWUgub2q4pSmXX1dUhFAppqHHl0ct9n8lUZtm6kvu+kFAq5TlTur9+T/kuaCGV3PGqEqvvtb4AqI1bpQxPai+DiqJ0j6fEbu2bKaGaGx2wGqOy44XGz3JRm08sFotoR0KgyPikUcgNG2KDzaicy7pSqM1Vfr9fnjZM4VyevujCr4go7e7uxhtvvIGf//znsNlsOProozFu3DisXr1adu7zzz+P888/Hy6XC5MmTcLUqVOxcuXKSlSrYii52AGgqalJ1gkK7WyktexabBGm5MKyWzk0N8gnMZ/Pp7hASe3apelPipWhll5EiVI6nc+lva2V2gMAXI7c7l5SslnldirlPgaDQVmsn6+C7vuAQmwWj1K7qsWJqVkipG1tMpl0sXjrgR6itJLCS5r5AVDvG6U8Z2o7mPncyhbv3lJpS2ml3feF2lppXChl7lebT5TKdtqBRv2zHOnGyGEumCAf9NXGTz0kklL72e12DB8+XD4Gq41PKvdAieFD7bBbyszLVyJKz1/BOVMh9tnlciEalb8w1BpT8VNKZ/PmzXC5XGhoaMgf22uvvfDtt9+KzguHw+jo6MD48ePzxyZMmIAvvvhCsdxkMinbmtFkMpXkRi2HzTuyuPEfPrjcDByXzR//cC1w+8XyNBJ77723bJD3e4Cn3gR2d2rrfh98DThtTFS2z+fLW6CrxVtvvYU5c+bI9ibfexRkx/x+P+rr62XH6z3Ar+9mqPeKr33zDvlkWF9fr1qG381kbZ3JZGTtwRiDyWSSlcH/LT3eUAf4XOKyrVYrPv/8c1nZ7e3tOOSQQxTrd9mdDC67uH4dYeV2+te//iXrF2ps2rQJHMeJyvG7AYdVXnYpWM3A+18Dl94hLmNTO3DCZPlz7fF4cPHFF8NkEg8fsVhMfo1u4C9PAB+uE5fxzhfA8YfLy961a5fm55oxlk9Urveiog8++AAWi6WsdnU4HLj88ssrsop/586dim1d75E/C/X19bj++uvR2NhYtNxMJgOXyyUv2wPc+jDw6Cp9LCsfrZ+Jjx9rRPNbWRg4hvN/wMl+88knn8Spp54qOrYzCHyzBZgyUVzeq6++imeffRYA8Namc/Cb7Q/BZNBng5FPPvkENptNVD+fG2jwKvdps9ksO242Ab/4U1aTxXTrLuCoAxXGp4YG+P1+TWNwLVAaV0ePcCPc8RkuvfQu0bkbNmxQnE9sFu3tpMb/PgPmTleej5X6zEOvAOu2iM/9aC1w64XaUkONbnbBY5f3x0rS4FWeq1paWpTHBYVn1efzYffu3SLDmdrcqBdK22RL4VgF7Ldr1qzBDTfcgKeeeip/7K677kJXVxeuvvrq/LH29nbMnj0b7777bv7Yv//9b7z++uu44447ZOXefffduOeee0TH5syZg7lz5+p9CYokUsDOkFzHc2AYXp+BtL2V0sowBmzrMCLLtPU6i4mh0Sd3AW7fvr2qViWDwaD4phlPcrBZpPtCMySTSVitYnNFLMFhd1i+Z6rNnMWQOnknUGq/ZDqXW84oaetQKIRIRP5G7vV6ZXGOaihdC5ATAEq5HocMGSKrXzTOIRCRX6PdmkWDR3yNjDFs3bpVszXXZrNhyJAhmutdCu0BI1IZ+TM5tC4tC5IPh8OK6URcLpfsTT2bBbZ2KPeZ5oaMbPLZvXt3xSxopWA2m9HU1FRWGZFIpGLhCHa7XfTSD+TGlkRK/izE43Hs2rVLc9lKfSaZBnYE9bNhPPnkkxgxYgQOP/xw/O1ZD342K4yxTeLx7OSTT8YzzzwjOva/L2x483MbFp0REh2/4YYbMHPmTAwbNgy//se+uHneV2UJGyEWi0VR0Cv1Oz52V2rFDkc5dHZr3y96qDcNq8TWopamTI/+X0k2bW6HkZO/IDQ2NsoMSqW2kxIGLjcfS++/Uvtls7n5mEkCB9TmdDVC4QTqPNVZfQ+o33Ola8xkcymhpON4MBiEy+WSPauVZMyYMUXPqYil1G63y8zC0WhU5g5zOBzIZDKihoxGozKXN8/8+fMxb9480bFqWkqz2SysbW0YOXKkJsWvxujR5delpaWl/EIGEKW0RzabRVsJ97GSbT1aj4dBByr5OGkYhwT1qNx9HMzsvffeZZexlw714Fn7iQP19RyOPLQZq7/KIhztEt3HRCKBnTt3yp6H9zcCWQPQ0iIOY0mn0/jBD34Ar9cL//PAUUcdqWNtCS2o9ce+PleVMj6p0bevUBml+9IXxtSKiNJRo0ahq6sLu3fvzr/Nf/PNN5g9e7boPI/Hg/r6eqxfvx4HHHAAAGDdunUYO3asYrkWi6VqArQQBoOBJsEBAN3HgQHdx/6H0+lEIpGAwWCAzwOEugyi+9jZ2YlAIACO40TemVAXQzDCZPc7HA7D6/XCYDCAgzylFVE9qD/2f2p5Dyvyqw6HA1OnTsXdd9+NeDyON954Axs2bMDUqVNl586aNQt///vfEY1G8dlnn2H16tU49thjK1EtgiAIog8gXOjkdwOhqNhlGwgEkE6n0dUlXvIfCCsvTJHuo04QRP+kYr140aJF2LFjB2bMmIE77rgDv/vd7+DxePDCCy+IYkAvuOACuFwuHH/88Vi0aBEWLVrUZ1yaBEEQhP4IMxP4PUBnVDwV8dkCpFkDAhGma2oqgiD6FhVx3wO5lV133nmn7PjMmTMxc+bM/N82mw1LliypVDUIgiCIPobQUupzyUVpMBhEY2MjgsGgKPYtGIFslzGCIAYO5O8gCIIgqorNZutx33uAkIKldNy4cXJLaVi+33xfTABOEETvIFFKEARBVBVpTGlnl1yUjh8/XiZKU2nAaQNS6R4hGolENKd9Iwiib0OilCAIgqgqQlHqcQKRmNx9P378eNn2qBwn3xpSbctKgiD6HyRKCYIgiKoiFKUGg3wbTjX3PWPyrSGFW1ZmMky3pPkEQVQfEqUEQRBEVRGuvldCTZQCgN/DyUQpbymNJ/Xd954giOpCopQgCIKoKkJLqRJdXV0YNWqUyH2fTDFYzLkYVGFaKKH7PpYgUUoQ/RkSpQRBEERVsdlsMkup0IXPGIPf7xdZSoORnOu+kPueRClB9G9IlBIEQRBVxWAwIJvN5v922BiiEsOp1WpFIpHI/x0I56ykfo9clOYtpUnAXvudqAmC6CUkSgmCIIiaUufMIBCRHxfuex+I5OJJ/e7czk754xRTShADBhKlBEEQRE3xOrP5NE/ZbDYvRoWJ8YXue2lKKLH7npbfE0R/hUQpQRAEUVO8zmzeUhoOh+H1emXnBMI5172S+14oSm3kvieIfguJUoIgCKKm1LmyeaEpdMebzWakUqnc8T0xpR4nEI72fDeZTMJqzfnsaaETQfRvSJQSBEEQVUcYL+p19LjvhSme/H5/Pi1UsIvB5xZ/T1oOiVKC6N+QKCUIgiCqjjBe1OvqEaVCd7zP58unheLd9wDAVMohUUoQ/RsSpQRBEERNqXMqu++FuUqFolQNSglFEP0bEqUEQRBE1eE4Lp+rVLjQSc19H+kGXPY930XOQppMJmGx9KjQOFlKCaJfQ6KUIAiCqDrCXZ28jkxR9z3QEz/qduREqjAdFJCzlNLqe4Lov5AoJQiCIKqO3W5HLJbbxslqARK5Rfaq7nshfFoo4bkAxZQSRH/HVOsKEARBEIMPu92et5QKUXPfC/F7cgn0u2WilFHyfILox5AoJQiCIKqO0FIqJBAIoK6uDkCP+z6bZRBmgvK5OAQiQEzqvidLKUH0a0iUEgRBEFVHTZSm02mYzWYAPe77SHcuaT4P776PkfueIAYUFFNKEARBVB2bzSYSpSYjkEoz0TkejweRSCS/mxOPakxpkkQpQfRnSJQSBEEQVUdqKfW5gVCXeIcmjuPAGEMwkvucx+/OxZQK408BIE55SgmiX0Pue4IgCKLqSEWp352zfgp3aOIJRAC/p0es+txAIMIQE6SPAnJ5Sq0kSgmi30KilCAIgqg60tX3fg+wfXcSNptNdq50Nye1mFJAbGklCKJ/Qe57giAIoupILaV1LqBte5dMZAJAR5iJ3Pe+Pe77SCQCt9stO58giP4JiVKCIAii6sjc9x5g645ukTseANxuN9p3J0QLnSxmDsl0ztVPllGCGDiQKCUIgiCqjnT1vd8NbN+VkFlK/X5/TpR6pCUQBDHQIFFKEARBVB2l1fc7A2lFUbqjIyVy3wOAkn1UvkSKIIj+BIlSgiAIouooue93d2Zk7nufz4eOzqxMlGYZLWoiiIEGiVKCIAii6iilhAqGoWgpjSVSMJvEAtSAFJxuycr7ylWXIIgqoHtKqC+++AJLlizB5s2bsf/+++OGG27AsGHDFM896aSTEAgEYDDktPHMmTNxzTXX6F0lgiAIoo8hTQnldgDhmLIoTSVTsu87LHE4PM0VrydBENVDV1GaTCZx1VVX4fzzz8fxxx+Pu+++G9dddx3uuece1e8sW7YMEydO1LMaBEEQRB9Haik1GIBUUjmmNJWSi1KbsRs2V4/BI5NhMJDvjyD6Nbp24Q8//BB2ux2zZ8+G1WrFeeedhy+//BLbt2/X82cIgiCIfo5UlAJAMpVUjClNppKy75vQBZNtaP7vWIL2vSeI/o6ultJvv/0W48ePz/9tt9sxYsQIfPvtt6ou/CuuuAKMMRx44IFYuHCh6nlAzhKbTIoHJ5PJBIulOvvKZbNZ0f+J/gndx4EB3cf+jcViQXd3t+g+ptMZ2O120T21OeqQSW2R3WcuEwRnqc8fj8YBm4Weh1pB/bH/U+l7aNDgytBVlMZiMTidTtExp9MpexvmWbJkCfbZZx+kUiksW7YMCxcuxD//+U/VFZUrVqyQhQLMmTMHc+fO1ecCNNLW1lbV3yMqA93HgQHdx/5JNptFMBjM37+2tjZkM1m0tm6GcArYsjODdGwnWltbRd+PBDcj62nIH9/aYUQ66UVra6Bq10DIof7Y/6nUPRwzZkzRc0oSpRdffDHWrFmj+NmCBQtgt9sRjUZFx6PRKOx2u+J3Jk2aBACwWq24/PLLcfTRR2Pr1q0YMWKE4vnz58/HvHnzxBdQZUtpW1sbRo4cqUnxE30Tuo8DA7qP/R+bzYaRI0fm76PFuBH1Q1vgdvScE2WA1bQGLS0tou86rW/B6R2ZP54wAEPqgZYW2na0FlB/7P/0hXtYkii96667Cn7+9ttv49///nf+71gshi1btmDs2LFFy+Y4rmjOOYvFUjUBWgiDwUCdbgBA93FgQPex/8JxXP7eGQwGWAxdCHVx8Lp65oJQF4OF65Ld41RsJ9Lw5I8nUgwOK6NnocZQf+z/1PIe6vqrhxxyCGKxGJ599lkkk0ksX74c++23n2KcaHt7Oz799FOk02nEYjHccccdaGpqwvDhw/WsEkEQBNFHERoistksLIZuBMLicwJhwMx1yb6b6NqGRLbHpJpb6ESZSgmiP6NrTKnFYsGtt96K3/72t1i6dCn2228/3HjjjfnPb775ZgDANddcg2g0iptuuglbt26FzWbDgQceiD/84Q/0hkUQBDEI6ezshMeeRjAiPh6MKIvS7vA2GJI9y+1p9T1B9H90T56///7741//+pfiZ8LE+OPGjcMjjzyi988TBEEQ/QTGenarDwQC8HuAgESUBiKAwxxDMpkUhW+xdBjRWI8Rg0QpQfR/yCxJEARB1JxgMIiGOqOC+56hoc6IYDAoOi5dgkCilCD6PyRKCYIgiJoTCATQWG9WdN831psRCIhTPUkXxsaSuTylBEH0X0iUEgRBEDUnEAigqcGKQJiJj0eQOy4RpYwxCM+MJwE7iVKC6NeQKCUIgiBqgsFgyO8eEwwG0dzokMWURrqBpiFukfs+Ho/DarWCA5DN5qQpue8Jov9DopQgCIKoCTabDfF4HEBOlI4a7pbFlAJAfb1fZCkNBoPw+/3wunKiFSBRShADARKlBEEQRE2w2+35bagDgQAah9QhlRafwwHw+XwyUerz+eBzIy9iSZQSRP+HRClBEARRE6Si1O/3g0nOYQD8fr/Ifc+f63f3pJCKJRiJUoLo55AoJQiCIGqCzWbLi9JQKIS6ujrR59ksA4ecKBVaSvOi1MPlV+uTpZQg+j8kSgmCIIiaILSUZjIZmEwmCBM9haNAnVsuSnn3vd8jcN9TSiiC6PeQKCUIgiBqgt1uzy904jGbgGQq58QPRAC/G3C5XIhEepbl85ZSn8B9H0+SpZQg+jskSgmCIIiaILSU8vjcyLvkA2HA5+ZkifKFMaUi9z1ZSgmiX0OilCAIgqgJSqLU7+kRmsFI7m8pfEqonPs+Z1VNJAEriVKC6NeYal0BgiAIYnDCi9J4PA6bzQYA8Lu5fJxoIJxz30sJBALw+XywpSHKayq1qBIE0b8gSylBEARRE/jV96FQCH6/HwBEcaKBSO5vHn73p0gkApfLJXL1S1NJEQTR/yBRShAEQdQE3lLa2dmZF6XCFfWBcI/73uv1ihY7cRwHs4lDOlPtWhMEUSlIlBIEQRA1gV9939nZCZ/PB0AaU8ryotTn84kS6POQhZQgBg4kSgmCIIiawIvSUCiUF6U+FxCI9KSE4t330lylUiialCD6PyRKCYIgiJpQzH0fjOREKtAjSrPZrGhBE4lRghg40Op7giAIoibwojSRSIhEKe++z2QAkyknO3lRGg6HRduRWi1APEFOfIIYCJCllCAIgqgJvCgVuu/djtz2ooA4XpSPKeXTQeWPC1bgEwTRvyFRShAEQdQEPiWU0H3PcZzi4iXeUsrv5pQ/7gZ2dQJGY5UqTRBExSBRShAEQdQEpZhSoCdOVBgvyotSfjen/HEPh627ABvt5kQQ/R4SpQRBEERN4Fffx2Ix2O32/HEGIJZgom1DC7nvt+0G7NYqVpwgiIpAopQgCIKoCTabDfF4HIB8i9COTvEWoz6fT9V9v60DsJOllCD6PSRKCYIgiJqgtle91wls3tGzmxMAmM1mpNNpuSj1AFt3MbKUEsQAgEQpQRAEUVMYEy9t8nuADdty8aJSgsGgzH2/ldz3BDEgIFFKEARB1IxMJgODQTwV+dzA+q0sv5uTECVLaS6mlNLoE0R/h0QpQRAEUTM6Ozvh9XpFx/xuDhu2imNKeaSWUv8eSymtvieI/g+JUoIgCKJmhMNhuSjNu+/F51qtVnR3d8Nk6tmM0GkHQl3kvieIgQCJUoIgCKJmWK1WmSj1uYH1WyBz3/Mr8IVwHAevk0QpQQwESJQSBEEQNcNutyu474HdnXL3vd/vRyaTkZXhd1NKKIIYCOgqStPpNK688krMnDkThx56KHbv3l3w/C1btmDBggWYMmUK5s2bh3Xr1ulZHYIgCKKPY7PZUFdXJzrGu+2l7nu/3y9a5CQ8nyylBNH/0d1SevDBB+PWW2/VdO4111yD7373u3jttddw8skn48orr0Q6nda7SgRBEEQfRclS6nMDZhPgsInP9fl8okVOwvNJlBJE/0dXUWoymfCjH/0IEydOLHrupk2b0Nraivnz58NqteKMM85AJpPBp59+qmeVCIIgiD6M3W6XWUp97pz1U5pcnyylBDGwMRU/pTJs3LgRLS0tMJvN+WN77bUXvv32Wxx88MGK30kmk0gmk6JjJpMJFkt1gomy2azo/0T/hO7jwIDu48CAX+gkvI8mI9DSKL+3dXV18Pl8suM+F2AxMWSz4iT8RPWg/tj/qfQ9lOYjVqJmorS7uxsul0t0zOl0oru7W/U7K1aswD333CM6NmfOHMydO7cidVSjra2tqr9HVAa6jwMDuo/9mxNPPBHDhw+X3cdLT7ahtTUuOlZfX4+jjjoKra2touPfn2iBDSm0tpIorTXUH/s/lbqHY8aMKXpOSaL04osvxpo1axQ/W7BgAX72s59pLsvhcKCrq0t0LBqNwuFwqH5n/vz5mDdvnuhYtS2lbW1tGDlypCbFT/RN6D4ODOg+DgxGjhypeB9bWpTPP/DAA2XH1M4lqgf1x/5PX7iHJYnSu+66S7cfHjNmDFpbW5FOp/OJkL/55hucddZZqt+xWCxVE6CFMBgM1OkGAHQfBwZ0HwcGdB8HBnQf+z+1vIe6/2oymUQikQAApFKp/L+ljB49Gi0tLbjvvvuQTCbx2GOPwWg0Kr4FEwRBEARBEAMb3UXpaaedhilTpgAATjrppPy/AeDmm2/GzTffnP/7pptuwltvvYXp06fj3//+N2699VbR9nEEQRAEQRDE4EB3Bfjss8+qfnbNNdeI/h45ciTuvfdevatAEARBEARB9DMo8IMgCIIgCIKoOSRKCYIgCIIgiJpDopQgCIIgCIKoOSRKCYIgCIIgiJpDopQgCIIgCIKoOSRKCYIgCIIgiJrDMcZos2CCIAiCIAiippCllCAIgiAIgqg5JEoJgiAIgiCImkOilCAIgiAIgqg5JEoJgiAIgiCImkOilCAIgiAIgqg5JEoJgiAIgiCImkOilCAIgiAIgqg5JEoJgiAIgiCImkOilCAIgiAIgqg5JEoJgiAIgiCImkOilCAIgiAIgqg5JEoJgiAIgiCImkOilCAIgiAIgqg5JEoJgiAIgiCImkOilCAIgiAIgqg5JEoJgiAIgiCImtPvRenjjz8OjuPwyCOPyD6bNGkSOI7DSy+9JPts3LhxOPjggwEAr7/+OjiOw+uvv65bvTZt2gSO43DffffpVqZefPHFF7joooswefJkOJ1O3a+dIAiCIAiiVPq9KD366KPBcRxWrVolOh4IBPDZZ5/B6XTKPtuyZQu+/fZbTJ8+HQBw8MEH4+23386L1IHOBx98gKeeegp+vx8zZsyodXUIgiAIgiD6vyhtaGjAAQccILP0vfHGGzCZTPjpT38qE6X837wo9Xg8+O53vwuPx1OVOteas846C9u2bcN//vMfnH322bWuDkEQBEEQRP8XpUBOXK5duxbbt2/PH3v99ddx2GGHYdasWfjwww8RiUREnxmNRhx11FH5v6Uu7HPPPRculwvr16/HrFmz4HK5MHLkSCxcuBCJREL0+9u2bcPcuXPhdrvh9XpxxhlnoL29XbGuzzzzDCZPngyHwwG3241jjz0Wb7/9dv7zL774AhzH4bHHHssf+/DDD8FxHPbff39RWSeffDIOOeSQktvLYBgQt50gCIIgiAHEgFAnvMVTKCpXrVqFadOmYcqUKeA4Dm+++abos4MPPhher7dgualUCieffDJmzJiBp59+GgsWLMAf//hH3HLLLflzYrEYjjnmGKxcuRK/+93v8Nhjj6GpqQlnnHGGrLyHHnoIs2fPhsfjwcMPP4zly5cjGAzi6KOPxn//+18AwP77749hw4bhlVdeyX/vlVdegd1ux5dffolt27YBANLpNN544w0cc8wx+WvnOA6LFy8urfEIgiAIgiD6AANClE6bNg0GgyEvSjs6OvD5559j2rRpcLlcOPjgg/Mu+7a2NmzcuDEvZAuRTCZxww03YOHChZgxYwZuuOEGzJw5Ew899FD+nPvvvx9fffUVHnjgAVxyySX4wQ9+gDvuuAPHHXecqKxsNosrr7wSEydOxAsvvIDZs2dj7ty5eP3111FXV4err746f+6MGTNkovQnP/kJfD5f/vh7772HcDicF6Ucx8FoNJIVlCAIgiCIfsmAUDA+nw+TJk3Ki9I33ngDRqMRU6ZMAZATrbwolcaTFoLjOJx00kmiYwceeCBaW1vzf69atQputxsnn3yy6Lwf//jHor/Xrl2Lbdu24ayzzhIJR5fLhdNOOw3vvPMOuru7AeRE6bfffouNGzciHo/jv//9L44//nhMnz4dL7/8MoCcULVarTjyyCPz15hOp3HdddcVvS6CIAiCIIi+xoAQpUBOZK5btw7btm3DqlWrcMghh8DlcgHICbY1a9ags7MTq1atgslkyou5QjgcDthsNtExq9WKeDye/7ujowONjY2y7zY1NYn+7ujoAAAMGzZMdu7w4cORzWYRDAYBIG/9fOWVV/Df//4XqVQK3//+93HMMcfg1VdfzX82ZcoU2O32otdBEH2do48+Gr/85S9rXY2Kc+655+KUU07RtUw+/dzHH3+sa7lE9bn22mtx/vnnV/x3rrjiClx66aUV/x2CKJUBJUqBXGzl66+/jmnTpuU/4wXo6tWr8wugeMFaLvX19dixY4fsuHShU319PQCIFmPxbNu2DQaDAT6fDwAwYsQITJgwAa+88gpefvllHHrooairq8OMGTOwfft2vPvuu3jnnXfy4pUgCGIw88QTT+CII46A1+uF2+3G/vvvj4ULF9a6WiWxY8cO3HHHHbjmmmvyx1avXo2TTjoJw4cPB8dxeOqppzSV9cYbb+CQQw6BzWbD2LFjsWzZMtHnV111FVasWIGNGzfqeQkEUTYDRpROnToVRqMRjz/+OL744gscffTR+c+8Xi8OOugg3H///di0aZMm171Wpk+fjkgkgmeeeUZ0XBh3CgB77703mpub8dBDD4Exlj8ejUbxxBNP5Ffk8xxzzDF47bXX8PLLL+PYY48FAEyYMAGjRo3Cddddh1QqRaKUIGpEKpWqdRWIPbzyyis488wzcfrpp+O9997Dhx9+iJtuugnJZLJiv5nJZJDNZnX93vLlyzF58mSMHj06fywajWLSpEn4y1/+ovk3Nm7ciFmzZuGoo47CmjVrcM011+DSSy/FE088kT9n6NCh+MEPfiATqwRRawaMKPV4PDj44IPx1FNPwWAw5ONJeaZNm4Ynn3wSgLZ4Uq2cffbZmDBhAs4++2zcddddWLlyJX75y1/KdpEyGAy49dZb8fHHH+PEE0/EM888g8ceewzTp09HKBTC0qVLRefPmDEDu3fvxpo1a/KilD++cuVK+Hw+UTooPi/rjTfeWLTO3d3dePzxx/H444/jnXfeyX//8ccfxwsvvFBOcxA14sUXX8SRRx6Juro61NfX48QTT8SGDRvyn/Mu3ieffBLTp0+Hw+HApEmTROnIgJzFaf/994fVasXo0aNx++23iz4fPXo0lixZgrPPPhsulwstLS14+umnsWvXLsyePRsulwsTJ07EBx98kP9OR0cHfvSjH2HEiBFwOByYOHEiHn74YdVrufHGGzFx4kTZ8UMOOUQ1ZjoYDGLevHkYMmQI7HY79tprL6xYsSL/+ZYtW3DmmWfC7/fD6XTi0EMPxbvvvpv//G9/+xvGjRsHi8WCvffeGw8++KCofI7jsGzZMsyePRtOpxNLliwBADz77LMii9QNN9yAdDqtem08N9xwA4YOHQqPx4MLLrggL6AeeOAB1NfXy9LOnXbaaZpzCmezWZx33nmYMGGCKP5dCP88PProozjqqKNgt9tx2GGHYd26dXj//fdx6KGHwuVy4fjjj8euXbtE312xYgX23Xdf2Gw27LPPPvjrX/8q+vzqq6/GhAkT4HA4MHbsWFx77bUiEb948WIcdNBBePDBBzF69Gh4vV6ceeaZorR9jz/+OCZOnAi73Y76+nocc8wxiEajitfy3HPP4cgjj8SVV16JvffeGxMmTMApp5yCP//5z6LznnnmGRx66KGw2WxoaGjAqaeemv8sGAzi7LPPhs/ng8PhwMyZM/HNN9/kP7/vvvtQV1eH5557Dvvttx+sVitaW1uRTCZx1VVXobm5GU6nE0cccYQoC4za95T417/+JVubMHPmTCxZskRU12IsW7YMo0aNwp/+9Cfsu++++NnPfoYFCxbg97//vei8k08+uWA/JIiawAYQV111FQPADj30UNlnTz31FAPALBYLi0ajos9WrVrFALBVq1blj51zzjnM6XTKyrn++uuZtNm2bNnCTjvtNOZyuZjb7WannXYae+uttxgAtmLFClk9jjjiCGaz2ZjT6WQzZsxg//vf/2S/EwwGmcFgYE6nkyWTyfzxf/7znwwAO/XUUxWv4frrr1drnjwbN25kABT/a2lpKfp9ou/x+OOPsyeeeIKtW7eOrVmzhp100kls4sSJLJPJMMZ67vk+++zDnnvuObZ27Vp2+umns5aWFpZKpRhjjH3wwQfMYDCwG2+8ka1du5atWLGC2e120TPc0tLC/H4/W7ZsGVu3bh278MILmdvtZscffzx79NFH2dq1a9kpp5zC9t13X5bNZhljuf5x2223sTVr1rANGzawO++8kxmNRvbOO+/ky502bRq77LLLGGOMtbW1MYPBwN57773855988gnjOI5t2LBB8fov/v/t3Xl4U1XCP/BvuqRN2rSUsmttkVJBcUN4FREEQdnEqgguqKACbjPKoI6MDoLLuIwrLqMI/ODVYVBfRccFEAcHQRBE3FiVnVqBshWapGtyfn/ExIYmaW5y9/v9PI+P9GY7Oecu35x77rl33inOOusssXbtWrFz507x2WefiQ8//FAIIURVVZU4+eSTRZ8+fcSKFSvE1q1bxdtvvy1WrVolhBBiwYIFIj09Xbzyyivip59+Es8++6xITU0Vn3/+eej9AYg2bdqI2bNni+3bt4tdu3aJxYsXi5ycHDF37lyxfft2sWTJElFUVCSmTZsWtZ3GjBkjsrOzxdVXXy02bNggPv74Y9G6dWvxwAMPCCGE8Hq9Ijc3V7zzzjuh1xw4cEDY7faw8jQWbNvvvvtO1NbWihEjRoizzjpL7N+/P2o5Gq8PixcvFps2bRLnnXee6N69u+jXr5/48ssvxbfffiuKi4vFbbfdFnrd66+/Ltq3by/ee+89sWPHDvHee++Jli1birlz54ae8+ijj4qVK1eKnTt3ig8//FC0bdtWPPXUU6HHp06dKrKzs8WVV14p1q9fL5YvXy7atWsXqoNff/1VpKWlieeee07s3LlT/Pjjj+KVV14RVVVVEb/LE088IVq3bi3Wr18f9ft+/PHHIjU1VTz00ENi06ZN4vvvvxd/+9vfQo9fdtllomvXrmL58uXi+++/F4MGDRLFxcWhfe+cOXNEenq6OP/888XKlSvFli1bhNvtFtddd504//zzxfLly8W2bdvE008/LTIyMsTPP/8c83XHO3z4sLDZbGHbxPEAiPfffz/q40F9+vQRd911V9iyBQsWiLS0tLBjyaZNmwQAsWvXrmbfk0gtpgqlRBRQUVEhAIQO1MEQMmvWrNBzNm7cKACIzZs3CyGEuO6668TFF18c9j733XefOPXUU0N/FxYWiuuvvz709969ewUAMWXKlNCyr776SgAQe/fujVq+oUOHinvuuSf0d+NQKoQQQ4YMEbfffnvo74kTJ4p+/fpFfb/hw4eLm266KeJjM2bMEC6XSxw6dCji4+eff74YP3582LKRI0eKoUOHhv4GICZOnBj2nD59+ojHH388bNmbb74p2rdvH7WcY8aMES1btgz7Yfzqq6+K7Ozs0A+I22+/XQwZMiT0+AsvvCBOPvnkUMg/XrBtV6xYIQYOHCh69+4tKisro5ah8Wsarw/z588XAMTSpUtDy5544glxyimnhP4uKCgQ//rXv8Le69FHHxW9evWK+ll///vfxTnnnBP6e+rUqcLpdIpjx46Flt13333i3HPPFUIIsW7dOklhye12i6FDh4Z+VF999dVi9uzZoqamJvScXr16idGjR0d8/c8//ywAhHUOHDx4UDgcjtCPgzlz5ggA4vvvvw89Z9u2bcJms4ny8vKw9xswYID4y1/+EvV1kXz33XcCgNizZ0/U58QbSjt37hwWuIUQYuXKlQKA+PXXX0PLjh49KgCIZcuWNfueRGpJU7Qblsgkbr/9dpSXl6v2eSeccAJeffXVuJ+/fft2TJkyBatXr8bBgwdD49b27NmDbt26hZ53xhlnhP4dnAmioqICXbp0webNm1FaWhr2vr1798YLL7wAn8+H1NTUJu8RnHmi8en24LKKigq0a9cOPp8PTz75JN5++22Ul5ejtrYWtbW1yMrKivp9xo8fj5tvvhnPPfccUlNTMW/evCZDCRq7/fbbMWLECHz77be45JJLcPnll+P8888HAHz//fc4++yz0bJly4iv3bx5c5Mrnnv37o3p06eHLevRo0fY3+vWrcPatWvxt7/9LbTM5/OhpqYGXq83bIx4Y2eeeWbYY7169YLb7UZZWRkKCwsxfvx49OzZE+Xl5TjhhBMwZ84cjB07FjabLer3BxAaIrF06dKw97/tttvwz3/+M/S32+0O/TuetqyoqAAAHDhwAGVlZbjlllswfvz40HMaGhrCbkTy7rvv4oUXXsC2bdvgdrvR0NDQ5BbORUVFcLlcob/bt28f+pwzzzwTAwYMwOmnn45BgwbhkksuwVVXXRW6EPR4WVlZ+OSTT7B9+3b897//xerVq3HPPfdg+vTp+Oqrr+B0OvH999+HlbmxzZs3Iy0tDeeee25oWX5+Pk455RRs3rw5tMxut4fV17fffgshBEpKSsLer7a2NnRha6TXRVJdXQ0ATWZ7SdTx64r47TqGxsuDM7cEpyIk0gOGUqI4SAmIWhg+fDgKCgowc+bM0BRj3bp1a3KxR3p6eujfwQNUMMAKIaIezJp7j1jv++yzz+L555/HCy+8gNNPPx1ZWVmYOHFizAtRhg8fjoyMDLz//vvIyMhAbW0tRowYEfX5Q4YMwe7du/HJJ5/gP//5DwYMGIA777wTzzzzTFzTpkX63scvOz5E+/1+PPzwwxHH+yUSLoKfd/bZZ+PMM8/EG2+8gUGDBmH9+vX46KOPmn390KFD8c9//hOrV6/GRRddFFr+yCOP4N577434mnjaMtiOwf/PnDkzLMABCP1gWb16Na655ho8/PDDGDRoEHJzc/HWW281+UHR+DOO/5zU1FR89tlnWLVqFZYsWYKXXnoJDz74INasWYOOHTtG/f6dOnVCp06dMG7cODz44IMoKSnB22+/jZtuuinmOhBpHQ8uPz7ENf7b7/cjNTUV69atC33/oMazuxz/ukhatWoFIDC2tXXr1jGf25x27do1mf2loqICaWlpYWH58OHDAJD05xHJiaGUyOAOHTqEzZs3Y8aMGejTpw8AhG5bK8Wpp57a5HWrVq1CSUlJk4OuFCtWrEBpaSmuv/56AIGD+datW9G1a9eor0lLS8OYMWMwZ84cZGRk4Jprrona8xjUunVrjB07FmPHjkWfPn1w33334ZlnnsEZZ5yBWbNm4fDhwxF7S7t27Yovv/wy7EKiVatWxSwfAHTv3h0//fQTiouLYz7veD/88AOqq6tDQWn16tXIzs7GiSeeGHrOuHHj8Pzzz6O8vBwDBw5EQUFBs+97++23o1u3brjsssvwySefhKbFa9OmDdq0aSOpjJG0bdsWJ5xwAnbs2IHRo0dHfM7KlStRWFiIBx98MLQs2oU9sdhsNvTu3Ru9e/fGQw89hMLCQrz//vuYNGlSXK8vKiqC0+kMXRx1xhlnYOnSpbjpppuaPPfUU09FQ0MD1qxZE+pdP3ToEH7++eeY68DZZ58Nn8+HioqK0HaXqE6dOiEnJwebNm1q0vMqVa9evZr8iFmyZAl69OgR9mNgw4YNSE9Px2mnnZbU5xHJiaGUyODy8vKQn5+P119/He3bt8eePXswefJkye9zzz33oGfPnnj00Udx9dVX46uvvsLLL7/c5OpqqYqLi/Hee+9h1apVyMvLw3PPPYd9+/Y1G/rGjRsXes7KlStjPvehhx7COeecg9NOOw21tbX4+OOPQ6+99tpr8fjjj+Pyyy/HE088gfbt2+O7775Dhw4d0KtXL9x3330YNWoUunfvjgEDBuCjjz7CggULwm71G+0zL730UhQUFGDkyJFISUnBjz/+iPXr14euzo+krq4Ot9xyC/76179i9+7dmDp1Kv7whz+E3elt9OjRuPfeezFz5ky88cYbMcvR2B//+Ef4fD5ceumlWLRoUVw3CZFi2rRpuOuuu5CTk4MhQ4agtrYW33zzDY4cOYJJkyahuLgYe/bswVtvvYWePXvik08+wfvvvy/pM9asWYOlS5fikksuQZs2bbBmzRocOHAg6voybdo0eL1eDB06FIWFhaisrMSLL76I+vr60MwlU6dOxYABA9CpUydcc801aGhowKJFi/DnP/8ZnTt3RmlpKcaPH48ZM2bA5XJh8uTJOOGEE5oMZ2mspKQEo0ePxo033ohnn30WZ599Ng4ePIjPP/8cp59+OoYOHRr3d05JScHAgQPx5Zdfht1cwe12Y9u2baG/d+7cie+//x4tW7bESSedBAD4y1/+gvLy8tB6ctttt+Hll1/GpEmTMH78eHz11VeYPXt2kyvtV6xYEZp5gUg3NBzPSkQy+eyzz0TXrl1FRkaGOOOMM8SyZcvCLoxofIV20JEjR5rMOvHuu++KU089VaSnp4uTTjpJPP3002GfU1hYKJ5//vmwZTjuAozjP+vQoUOitLRUZGdnizZt2oi//vWv4sYbbxSlpaWh1xx/oVNQnz59wi60iubRRx8VXbt2FQ6HQ7Rs2VKUlpaKHTt2hB7ftWuXGDFihMjJyRFOp1P06NFDrFmzJvT4P/7xD3HyySeL9PR0UVJSIt54442Y3zFo8eLF4vzzzxcOh0Pk5OSI//mf/xGvv/561HKOGTNGlJaWioceekjk5+eL7OxsMW7cuLCLcoJuuOEG0bJly4iPNRapbZ999lnhcrkizuwR7TXBGTyOHDkSWjZnzhyRm5sb9tp58+aJs846S9jtdpGXlyf69u0rFixYEHr8vvvuC323q6++Wjz//PNh7zF16lRx5plnhr3n888/H5r5Y9OmTWLQoEGidevWIiMjQ5SUlIiXXnop6vf//PPPxYgRI0RBQYGw2+2ibdu2YvDgwWLFihVhz3vvvfdC5W7VqlXYDCaHDx8WN9xwg8jNzRUOh0MMGjQodAV9tHoQQoi6ujrx0EMPiaKiIpGeni7atWsnrrjiCvHjjz/GfF0kixcvFieccELogjchfm+T4/8bM2ZM6DljxowRF154Ydh7LVu2TJx99tnCbreLoqIi8eqrrzb5vJKSEjF//vy4ykakFpsQUQbUEBFpSAiBLl264NZbb437tK2ZXHzxxejatStefPFFrYtCKhBC4LzzzsPEiRNx7bXXKvpZn3zyCe677z78+OOPSEvjCVPSD9NMnk9E5lFRUYHnnnsO5eXlEccBmtnhw4fx1ltv4fPPP8edd96pdXFIJTabDa+//npcN19IlsfjwZw5cxhISXfYUyqB3+/H7t27UVhYGDb+i4yF7ah/NpsNrVq1wvTp03HddddFfI5Z27GoqAhHjhzBlClTol41byZmbUerYTsanx7akD+TiEh3rPxbedeuXVoXgYhIE/w5Q0RERESaYyglIiIiIs0xlBIRERGR5jimlCznl19+wS+//ILCwkKti6KYrVu34sMPP2yy3OFw4I477tCgRMYnhMCrr74auk95Y5dddhk6d+6sQamM78svv8Snn36KvLy8Zm/HGY3NZsO4ceOQk5Mjc+mISE0MpWQ5y5YtQ3l5OXr37q11URSzePFiAECPHj3Clk+dOhXjxo2D3W7XoliGVldXh3feeQcPP/xw2PK1a9diyZIlDKUJmj17Nvr06YNOnTolfMXvG2+8gZ9++gk9e/aUuXREpCaGUrIct9sduie2Wbndblx44YWhe3kHFRYWwuPxMJQmwO12o6ioKHRP+aC0tDR8+eWXGpXK+NxuN/r06YPOnTsnHErXrVsHt9stc8mISG0cU0qW4/V6I56CNROPx4Ps7Owmy7Ozs00fyJXCOlVGfX190j+S2AZE5sBQSpZjlZ7SaAGKPUqJYZ3qF9uAyBwYSsly3G43vF6v1sVQFAOU/Fin+sU2IDIHhlKyHKuE0qysrCbLs7KyePBOEOtUGXLcvYttQGQODKVkOVY4fe/1euFwOJosZ49S4qL1lDqdTtP/yNE7rtdE5sBQSpbj8XhQW1urdTEUF+lKZl4QkrhoFzqlpKTI0ttnVYnOTdoY12sic2AoJctpaGhIeOoZo2OPUuKi9ZRS4uQK81yviczBmkdmIoviwTtxDKXyq66uhtPpTPp9uF4TmQNDKVmOEML0p1ujfT9eEJK4aBc6AfL1+FlNrDqVgus1kTkwlBJZCHuUEseeUvnJVacZGRmoqamRoUREpCWGUrIcm80my8UVehbt+zGUJi7ahU6UOLlCqRW2aSIrYCglyzLrKde6urqot23kVcqJixWg0tPTUV9fr3KJjI9Bn4gaYyglS/H5fEhJSYHD4UB1dbXWxVFErPDEntLENVevDPvScUgEETXGUEqW4vV6kZWVBafTadpwFuviEbvdzrF3CaqtrY3aA80LbRLjdrtlufoeMO+ZDyIrSdO6AERqCga2hoYG04aIWL1PHHenDPZAJ4Y9pUTUGHtKyVKCY9icTqdpT7dynJ4yYgV6htLEyBlKbTYbe0uJDI6hlCwleBA0++n7WAd69pbKj2NKEyPnDyiHw8GhKUQGx1BKlhIMbGYeA9hcKGVvUmJi1ZuZ1yclyTV5PsDeaiIzYCglS7FKT6lcB3qKDwNRYuQ8fc8fBkTGx1BKlhK82tfsobS5Az17S6URQnBMqQLkDKVsAyLjYyglS+GFThx7l4jq6uqYUxcxECVG7lBq1m2ayCoYSslSGo8pNesBrLkDPQ/e0rFOleHxeDimlIhCGErJUqwypjRWgOLYO+maG6fLOk2Mz+dDamqqLO/FUEpkfJw8nywlGNjq6upMewBrLkDx4C1dPD2lrFNt8YcBkfGxp5QsJRjYrNxTygAlHetU/9gGRMbHnlKylOBFQNXV1aYdA9jchU48eEvHOtU/juslMj72lJKlWGFMaW1tLex2e9THefCWrrme0oyMDNTW1qpYInOQ8+5i/GFAZHwMpWQpHo8HTqcTaWlp8Pl8WhdHMbEO9hx7J11z43R53/XEyFlnDKVExsdQSpYihEBKirVXex68pZNzPk0K8Pl8sm6L/LFFZHzWPjoTWRBDqXTNjSkl6eSuUw5LITI+RULpjBkzMHLkSPTs2ROffvpp1OfV1NRgypQp6Nu3L4YNG4bFixcrURwiaoShVDr2lMpP7jplTymR8SkSSgsKCnDPPffgtNNOi/m8GTNm4OjRo1i4cCEef/xxPPnkk9i9e7cSRSKi37BHSbp4ApScF+1Ygdw9penp6WhoaJDt/YhIfYqE0qFDh+K8886LeQUwACxcuBATJkxAdnY2zjzzTPTt2xdLlixRokhElhDPhSPsUZKuuQudgEDd82Kn+MVTp0RkLZrNU3rs2DEcOnQIxcXFoWUlJSXYuHFj1NfU1dWhrq4ubFlaWlqz4Vcufr8/7P9kPEKIUPulpKSgvr5ettsc6oHX60VmZmbMddTpdKKqqsrw67Ga22NVVRWcTmfMz8rIyEB1dTUyMzMVL48ZHDt2DFlZWbK2Y+Pt28pqa2uxYsUKVX8kCSFQUVGBn376KeysQVFRETp37qxaOZT0ww8/oKKiQtXP7NGjB/Ly8lT5LKX3qfFc2KhZKPV6vUhNTQ3bgWdlZcHr9UZ9zZw5czBz5sywZSNHjsSoUaMUK2ckZWVlqn4eyaO+vh51dXVh7bdlyxZTjRU8dOgQAMQcBlNfX4+KigrTDJVRY3s8ePAgDh48iMrKypjP27x5M1q2bKl4ecxgx44dqK2tDbWfHO1YXV1tmvU6GevWrcOMGTPQu3dv1T97x44doX8LIfDcc8/htddeU70cSrjjjjswaNAg1T7v559/xnfffYerr75atc8ElNunduzYsdnnaBZKnU4nfD4fampqQsE0OIdkNDfddBNGjx4dtkztntKysjIUFBRYflohI6qsrESbNm1QUFCAsrIytGnTBi1btkT79u21Lpps/H4/2rVrh8LCwpjPs9vtzT5H79TcHu12Ozp16hTzOe3atUNeXp7h61UtTqcTJ510Umh7lKMdHQ4H6x/Ahg0bcMUVV+C2225T7TOjbY+lpaWmaZNWrVrhoYceUu3zli9fjq+//lq1+tNDxtEslObk5CA/Px/btm1Dt27dAAR+FZx88slRX2O321ULoLGkpKQwlBqQ1+uFy+UKtZ3L5YLX6zVVWx7/HaMx0zqsxnex2WzNfobL5UJ1dbVp6lVp1dXVyM3NDdWXHO0YTztZwdGjR5Gfn69JXURqRzO1iZrfJT8/H5WVlarXn5bHB0U+taGhAbW1tRBChP4daYzC0KFDMWvWLHg8Hqxfvx7Lly/HxRdfrESRiJpcQW3GqZHinWaHF+RIwwvI5KfEhU4pKSmmvlNbvCorK9GiRQuti2Eqzd2+WQktWrRodsiQ2SgSSh977DH07t0b3333HaZOnYrevXvj22+/xaJFi8LGf956663Izs7G4MGDMXnyZEyePBlFRUVKFInIMqGUVzRrw4zrk5KUmPvV6XTGvC7BKo4cOaLaxTHNMctUaZWVlarXaV5eHo4cOaLqZ2pNkdP306ZNw7Rp0yI+NmTIkNC/MzMz8dhjjylRBKImPB5PWGDLysoy3XydvPOQMuI5sDKUSqNEKA3OwetyuWR9X6PRUyhNTU1FQ0MD0tI0Gy0oCy3q1IzHqOaYZ6AHUTOOPwia8XQr7zykHYZSaZQKpWwDbXr1omnRogWOHj2qdTGSpkWdmqWXWQqGUrIMq5y+j+dAn5KSwvkc4+Tz+eIa9M87ZUmjRK++GbfpRFRWViI3N1frYgAIhFIznII+cuQIx+mqgKGULIOh9Hccexe/44d9RGPGnnclKTH+2YzbdCIaGhqQnp6udTEAmGdcpJ6GRJgZQylZhlVCaTwHejN+d6XEG/RZp9J4vV44HA5Z35M/DPQnLy/PFFeQazkkwkqzpTCUkmXwQqffMUDFj3WqDCGE7HMhcgiF/vD0fXKsdlaLoZQswyo9pQxQ8mKdGgfbQH94+j45Zqm/eDGUkmUwlP7OjL3ESol3SATrVHtm3KalamhoQGpqqtbFCOHp++SYpf7ixVBKlmGVUMoxpfKSEvRZp9rieh24xaherrwHePo+WWapv3gxlJJlHB8uHA6H6cbq+Hy+uCap5sE7fvGGUrvdjvr6ehVKRNHwh4H+rhI3y+nn+vp61W8zCpin/uLFUEqWUVNTg4yMjNDfKSkplrqqsTGG0vjxLlnGwQud9DVxPmC9089ys1r9MZSSpVjxDhmRMJTGj3fJkl9dXZ0ivU5cr/U3yXtmZiaqq6u1LoZh8fQ9EZkeL8qJnxKTvFtdvDckkIqhVH+n79kRkByevici0+PBO37sKZWfUnXqdDot/2NLb6EUMP7k7z6fT7NwzVBKRKbHUBo/hlL5KVWnVh4nHlRZWamr0/dmcOzYMc1mNGjRogXHlBKR8fh8vrjvkMNQGj8pFzrZbDb4/X6FS2R8DPrK0WNPqc1mM/SPBS3rNDc3F0ePHtXks7XAUEqWEG2HmJ6ejrq6OpVLowyv1xv3OD2G0vhJCVBZWVmmm2ZMCQylytFjKHW5XKiqqtK6GAnTsk5TU1Ph8/k0+WwtMJSSJdTW1iIzM7PJcjNNISPlQG+1+yknw+PxwOFwxPVcXkAWH6UudCJ9nr43+iloPdapWTGUkiVEC2xm6jGUEkpTUlJ4mjlOQggOi5AZe0qVU11dHfePKLUY/WIdrXufrTSDAUMpWQJDKanBTOuTkriuKktvIYahlOLFUEqWEO10oZlOt/KUqDKkHOAZSuOjZChNS0vj7V51xuh3JdL6LllmuvahOQylZAnsKSU1mGl9UpKS66qZxombhdHvSqT1XbKMPiZXCoZSsgSGUkqUlKlszNTzriQle/XNtE1Lpddpl3j6PjlGrz8pGErJEhhKSQ1mWp+UpHRPqVXbwO12w+VyaV2MJnj6PjlGrz8pGErJEqJNgG6mU31SJnkHOPYuHnV1dbDb7XE/38qBSAqevleG1qeZozH66XuPxwOn06nZ5xu9/qRgKCVLcLvdUS90MkuIiPYdo7HywTteUoM+Q2l8lAylZtqmpdL6NHM0Zjj9rOWMBmaov3gxlJIl8PR9U2b67kphnSqjtrZWUg+0FFZuA61PM0dj9Ds6aY2n74lMhqG0KV6U0zypvc+s0/gp1fNkpm1aKr2evk9JSdHtRVhGwNP3RCbDUNqUmb67UlinxmPlNtDr6Xsj00OY5ul7IpPhhU5NWfngHS/WqfGYaZuWSs+hVA/hLhF6uCkJQymRyVjhQiePxyPpntcMUM2T2lPqdDotG4j0wkzbtFSVlZW6PH1vZHqoU06eT2Qy0UJpRkYGampqNCiR/IQQSEmJf5NmKG2e1FCampoKv9+vYImoOVZer/XcU5qZmWnIfa0e6jQjI4O3GSUyk/r6+ohX+2o5zYfWeFFO86Re6ETNU/o0LkOpPkOpUU9B66VOjTr8QSqGUiKLsvLBO168S5b8ampqJA0zkcrK6/WxY8d0eUcnwLinoPVw+t5KGErJEmL1iJqlt1Tq97DywTteUi90ouYpHfStfKETAElDeNTEntLkmOU41RzF1t4jR47g7rvvRu/evXHllVfi66+/jvi8adOmoVevXujTpw/69OmDUaNGKVUksrBYpz7MclpE6vdgKG0ee0rlp3SdZmRkoLq6WrH31zM978sYSpNjs9ksMV49Tak3fuqpp9C6dWssXboUq1evxuTJk/HBBx8gJyenyXNvvfVWjB07VqmiEFEEDKXNYyiVn9J1apUeJaPh6fvk5OTk4NixY7ooi5IU6Sn1er344osvcNtttyEzMxP9+vVDp06dsHz5ciU+jihpeu5hiEddXR3S09MlvYYXOjUvkQudUlNT0dDQoFCJjE8P8z6alZ4DOXtKk2PU+pNKkZ7SPXv2IDs7G61atQot69y5M3bs2BHx+W+++SbefPNNFBYW4g9/+AO6d+8e8Xl1dXVNpkVIS0tT7B7Kxwt2nVuhC91Mjm+34/+fmZkJr9er6MUXSquqqkJWVpakddPpdKKqqsqw67Ma22NVVRWcTqekz8jKykJVVRVyc3MVK5eRHTt2LGxdVaIdhRCGXa8TVVNTA7vdrtn3bq4dc3NzcfjwYcO1y+HDh5Gbm6t5uVu0aIFDhw6hsLBQsc9Qep8az3hnRUJpdXV1k1/C0SY0vuaaazBp0iQ4HA785z//wZ/+9Ce8/fbbaNeuXZPnzpkzBzNnzgxbNnLkSNXHoZaVlan6eZQcr9cLANi9e3fY8sbtuGXLFrRs2VLVcslp7969EEI0+Y6xCCFw+PBhSa/RIyW3x8rKSuzbt09SD5QQAlu2bIm4DyNg586dqKmpibk9JivS+5vdgQMHkJ6ervn3jtaOXq8Xe/bs0bx8Uu3fvx+VlZU4duyYpuUQQuCnn35Cfn6+4p+l1D61Y8eOzT5HkVDqcDianBaMdreZLl26hP49ZMgQLFy4EGvWrEFpaWmT5950000YPXp02DK1e0rLyspQUFCg2yscqan9+/ejTZs2oV+Yx7dj27ZtkZeXp+gvUKVVV1ejXbt2kr+Dw+Ew7PdWY3t0OBwoKiqS9Jr27dujRYsWhq1XpTkcDuTm5kbdHuWQmZlpufr3er048cQTNfvezbWj0+mEz+czXLtkZGTEFaaU1rFjR9jtdsV7SrXOOIqE0pNOOglutxsHDx4MncLfunVrxKB5vFg9Ena7XbUAGktKSgpDqYF4vV64XK4mbRZsR5fLBa/Xa+g2jfYdm2Oz2Qz9vQHlt0ep752dnW349UlJXq8X+fn5UbdHOdhsttB/VnH06FG0bNlS8/UuWju2bNkSR48e1bx8UullH5mfn48DBw6oUhYtM44in+p0OtG3b1/MmDEDNTU1+OKLL7B9+3b07du3yXOXLl2K6upqNDQ0YMmSJfjhhx/Qs2dPJYpFFtXc1b5muAqdV4nrh9XnyWyOGnO/ZmZmora2VtHP0JvKykpdXJATTXp6Oi8ATEJeXp4hZy+QSrEoPHnyZOzfvx8DBgzA9OnT8cQTTyAnJweLFi0KGwP6r3/9C4MHD8bAgQMxb948PP300+jQoYNSxSILYiglNZlhfVKSGuuqFdvgyJEjpp8uyMpatGjBq++TkZeXhxdffLHJ8iFDhmDIkCGhv2fPnq1UEYgANN8zY4aeLd55SBmJnP61YiCSQq1Q6vF4wmaAMbsjR46gc+fOWhfDVBKZak8pVpkSSvuBEkQKa26uyWgzQxhJIvNpBhl9jlalJFovDKWxqRFKzbBNS6X30/dGpKc65el7IpPg6fvoMjIyLDf2Ll41NTXIzMyU/DorBiIpkvkBFS8zbNNSGeH0fUpKCnw+n9bFiJue6tQq+xWGUjI9htLozDB0QSmsU2WocUcnM2zTUunlzkOxGO1Wo3qqU6vMJMFQSqbHUBqdGb67UlinymhoaFB8nJ4V20Av92iPxWjjIvUUSgFrDLViKCXT44VO0Vnx4B0v1qlxmWGblqq+vl43F+VEY7SeUiMEfbNhKCXT44VO0TFARceeUuMywzYtlRFO77KnNDk2m830vaUMpWR6PH0fnRUP3vFKNOizTrVnhm1aKiOEFYbS5DidTni9Xq2LoSiGUjK95gKbGUJETU0NMjIyJL/Oiqc545Vo0Hc4HKiurlagRBQvK4ZSI+Dp++QYrf4SwVBKpufxeOB0OqM+bpbb33Gid3klGkqNcBrV7Ky2Xvt8PqSmpmpdjGaxpzQ5Rqu/RDCUkukJIZrdYRs9SCRafqsdvKXgXbLk5/P5kJKi/GHHamcA9NajF43RQhVDqfoYSsn04hlrZYTxWLHw7kPyU+POQ1bj9XoVn6MUMMeQHCn0dOehWIx2V6L6+nrY7XatixFitPpLBEMpkYVZ7eAthRp3HrIaterUauu1nu48FEuLFi1M39OnJCvUH0MpkYVZ7TSnFOwplZ9aQyLsdjvq6+sV/xy90Ntp5mh4EWByePqeyATiGW9p5DGlQgiOKVVAsgHK6ENClKBm0DfyNi2VUU7fW6lNlMDT90QWYbPZ4Pf7tS5GQmpra5GZmZnQaxlKo0smQGVkZKCurk7mEhkfe5+VYZTT90bi9/t1F6J5+p7I4BoaGuK62tfIkxInM07PamPvpEimXhn2I1MzlFqpp9oop++N5OjRo8jNzdW6GGF4+p7I4OI9BWvkEJHMgd5qY++kSOZe4gz7kfHiMWUY5fR9kBF+MOixTnNzc3H06FGti6EohlIytXgDm1VDKSmDF5BFxrlflWGk0/dG2dfqsU5TU1MNO8wsXgylZGpSekqNGiJ4oFdGMuPJjHLgVZuaP6BSUlJMfwAPMtLpe6OcgjZSnZoJQymZGntKSQtGXp+UpOa66nQ6LTP9UHV1NRwOh9bFiItRriDX4+l7K2AoJVOLdwybkccAcpye/jCURqZmKDXyNp0IvV0pHo1RriDX4+l7K2AoJVNjT2nzjHDRgRaSqRerBaJ4qfkDysjbtJnx9H1y0tLSTH1xKkMpmRpDafOMPEerUvx+f1xTiUVj5PVJSWr2lFqpDYz0w5KhNDlGqb9EMZSSqfFCp+ZlZWVZZuxdvLxeb1I9ekZen5Sk5kV5VmmDZO7opoUWLVoYZkypHk/fG6X+EsVQSqbGntLmGfm7K4V1qgyPxwOn06nKZ1mlDYx2oaNRevrYU6oNhlIyNV7o1DyrHLylYChVhhAiqWERUhh5m5ZCr+EpGqOEKr1eQGqU+ksUQymZGntKm2eVg7cUyR6QWKeRqTn20cjbtBR6Pc0cjZFOP+txWISR6i8RDKVkagylzTPyd1cK69T4rNIGRuspzcnJwbFjx7QuRrP0GEgB9pQSGZpVLnTiRTnySvaCHNZpZGoe6K3SBkYLpSkpKYaaLUBvGEqJDCzeHi+n02nYA1hDQwPS09MTfr1VepSkSLan1G63o66uTsYSkVRWWa955yH56Tk0G+WOWIliKCVT83q9yMzMbPZ5Rr5PdrI7UI5/bEqOixz0fGDTipp1YpX1mncekp/X61VtlgipjHJHrEQxlJLp6XVskF5YpUdJCqNNs2MEdXV1SfXoS2WV9dpop++NQM91ytP3RGRqVjl4S8FQKj81J84HrLNeG/H0fUZGBmpqarQuRlR6rtOMjAxTDw1iKCVTk9JLatQe1WTLbZULQqSQI0AZdX1Sitqh1Ol0wuv1qvZ5WjHi6Xu9T2tkxDo1C8VC6ZEjR3D33Xejd+/euPLKK/H1119HfF5NTQ2mTJmCvn37YtiwYVi8eLFSRSKiCKzSoyQFe0rlp3adpqamGnacuBTHjh1DTk6O1sWQRO+noPV8+t7s0pR646eeegqtW7fG0qVLsXr1akyePBkffPBBk41nxowZOHr0KBYuXIjt27fj7rvvRteuXVFYWKhU0chCpFxYYcQLU/x+f9I9cla5IEQKue7m4vf7VbuDkd5pcYccI27TUql5lyy56P0Kcj2fvjc7RUKp1+vFF198gY8++giZmZno168f5s2bh+XLl+PSSy8Ne+7ChQvx7LPPIjs7G2eeeSb69u2LJUuWYPz48U3et66urslYirS0NNjtdiW+RhPBX91W+PVtBkIICCGatFe0dkxNTUVtba2qF2Mky+12w+FwJLVOOp1OVFVVGW69VnJ7rKqqgtPpTOq9HQ5H0nPImsmxY8eQlZUV9/Yoh0jbv9no5TtKacecnBwcOnRIF+WO5PDhw2jXrp1uywcEpgKU+8eI0hknnvIqEkr37NmD7OxstGrVKrSsc+fO2LFjR9jzjh07hkOHDqG4uDi0rKSkBBs3boz4vnPmzMHMmTPDlo0cORKjRo2SsfTR7dmzB4899pgqn0XJE0Lg9NNPx+7duyM+XlZWFvZ3SUkJhg0bZqixgH6/H7169Yr6HePh8/nw66+/YtCgQTKWzNjq6+tx4MABHD58OOH3KC4uxuWXX264Xiyl1NfXY8yYMXFvj3JwuVymX6/btm2b1PYvt3jasVWrVnj66acxffp0FUokXU1NDc466yxd1WtjXbp0weDBg5M+Vj322GNo06ZNk+VKbIsA0LFjx2afYxMKnN/47rvv8PDDD+ODDz4ILXvllVfgdrtx//33h5bt27cPpaWlWLNmTWjZ+++/j2XLlkVcWfXQU1pWVoaCggIeaAyM7WgObEdzYDuaA9vR+JRuQ816SoOnrRrzeDxwOBxhy5xOJ3w+H2pqakITnHs8nqiT1trtdtUCaCwpKSnc6EyA7WgObEdzYDuaA9vR+LRsQ0U+9aSTToLb7cbBgwdDy7Zu3YqTTz457Hk5OTnIz8/Htm3bQst+/vnnJs8jIiIiInNTJJQ6nU707dsXM2bMQE1NDb744gts374dffv2bfLcoUOHYtasWfB4PFi/fj2WL1+Oiy++WIliEREREZFOKdY/O3nyZOzfvx8DBgzA9OnT8cQTTyAnJweLFi0KuzDp1ltvRXZ2NgYPHozJkydj8uTJKCoqUqpYRERERKRDilzoZFZ+vx+7d+9GYWEhx8wYGNvRHNiO5sB2NAe2o/HpoQ0ZSomIiIhIc/w5Q0RERESaYyglIiIiIs0xlBIRERGR5hhKiYiIiEhzDKVEREREpDmGUiIiIiLSHEMpEREREWmOoZSIiIiINMdQSkRERESaYyglIiIiIs0xlBIRERGR5hhKiYiIiEhzDKVEREREpDmGUiIiIiLSHEMpEREREWmOoZSIiIiINMdQSkRERESaYyglIiIiIs0xlBIRERGR5hhKiYiIiEhzDKVERNREv379MHHixNDfRUVFeOGFFzQrDxGZX5rWBSAiIv1bu3YtsrKytC4GEZkYQykRETWrdevWWheBiEyOp++JiBSyePFiXHDBBWjRogXy8/Nx6aWXYvv27QCAXbt2wWazYcGCBejfvz+cTifOPPNMfPXVV2Hv8d577+G0005DRkYGioqK8Oyzz4Y9XlRUhMceeww33ngjsrOzUVhYiH//+984cOAASktLkZ2djdNPPx3ffPNN6DWHDh3CtddeixNPPBFOpxOnn3465s+fH/O7HH/6/ujRo5gwYQLatGmDnJwcXHTRRfjhhx9Cj//www/o378/XC4XcnJycM4554SVgYjoeAylREQK8Xg8mDRpEtauXYulS5ciJSUFV1xxBfx+f+g5Dz74IO699158//33KCkpwbXXXouGhgYAwLp16zBq1Chcc801WL9+PaZNm4YpU6Zg7ty5YZ/z/PPPo3fv3vjuu+8wbNgw3HDDDbjxxhtx/fXX49tvv0VxcTFuvPFGCCEAADU1NTjnnHPw8ccfY8OGDZgwYQJuuOEGrFmzJq7vJYTAsGHDsG/fPixcuBDr1q1D9+7dMWDAABw+fBgAMHr0aJx44olYu3Yt1q1bh8mTJyM9PV2GWiUis7KJ4F6KiMgovF5gyxb1P7dLF8DpTPjlBw4cQJs2bbB+/XpkZ2ejY8eOmDVrFm655RYAwKZNm3Daaadh8+bN6NKlC0aPHo0DBw5gyZIloff485//jE8++QQbN24EEOjB7NOnD958800AwL59+9C+fXtMmTIFjzzyCABg9erV6NWrF/bu3Yt27dpFLNuwYcPQtWtXPPPMMwACFzqdddZZod7RoqIiTJw4ERMnTsTnn3+OK664AhUVFcjIyAi9R3FxMf785z9jwoQJyMnJwUsvvYQxY8YkXF9EZC0cU0pExrNlC3DOOep/7rp1QPfucT99+/btmDJlClavXo2DBw+Gekj37NmDU089FQBwxhlnhJ7fvn17AEBFRQW6dOmCzZs3o7S0NOw9e/fujRdeeAE+nw+pqalN3qNt27YAgNNPP73JsoqKCrRr1w4+nw9PPvkk3n77bZSXl6O2tha1tbVxX8i0bt06uN1u5Ofnhy2vrq4ODU+YNGkSxo0bhzfffBMDBw7EyJEj0alTp7jen4isiaGUiIynS5dAQNTicyUYPnw4CgoKMHPmTHTo0AF+vx/dunVDXV1d6DmNT2nbbDYACIVXIURoWVCkk1uR3iPW+z777LN4/vnn8cILL+D0009HVlYWJk6cGFauWPx+P9q3b49ly5Y1eaxFixYAgGnTpuG6667DJ598gkWLFmHq1Kl46623cMUVV8T1GURkPQylRGQ8TqekHkstHDp0CJs3b8aMGTPQp08fAMCXX34p6T1OPfXUJq9ZtWoVSkpKQr2kiVixYgVKS0tx/fXXAwiEzK1bt6Jr165xvb579+7Yt28f0tLSUFRUFPV5JSUlKCkpwZ/+9Cdce+21mDNnDkMpEUXFC52IiBSQl5eH/Px8vP7669i2bRs+//xzTJo0SdJ73HPPPVi6dCkeffRR/Pzzz/jf//1fvPzyy7j33nuTKltxcTE+++wzrFq1Cps3b8att96Kffv2xf36gQMHolevXrj88svx6aefYteuXVi1ahX++te/4ptvvkF1dTX+8Ic/YNmyZdi9ezdWrlyJtWvXxh16iciaGEqJiBSQkpKCt956C+vWrUO3bt3wpz/9CU8//bSk9+jevTveeecdvPXWW+jWrRseeughPPLIIxg7dmxSZZsyZQq6d++OQYMGoV+/fmjXrh0uv/zyuF9vs9mwcOFC9O3bFzfffDNKSkpwzTXXYNeuXWjbti1SU1Nx6NAh3HjjjSgpKcGoUaMwZMgQPPzww0mVm4jMjVffExEREZHm2FNKRERERJpjKCUiIiIizTGUEhEREZHmGEol8Pv92LlzZ9gtAsl42I7mwHY0B7ajObAdjU8PbchQSkRERESaYyglIiIiIs0xlBIRERGR5hhKiYiIiEhzDKVEREREpDmGUiIiIiLSHEMpEREREWmOoZSIiIiINCdrKJ09ezYefvjhsGU333wzPv/8c2zbtg3jx49H//79cf3112PTpk0AApO1Pv300xgwYAAuvPBCjB49GpWVlXIWi4iIiIh0Lk3ONxsyZAhGjx6Nv/zlL7Db7di7dy927tyJc889FyNHjsR9992Hvn37YsWKFbjvvvuwYMECrFu3Dj/++CP+/e9/w+FwYOvWrbDb7RHfv66uDnV1deFfIC0t6vPlFrzLAe9YYWz+r79GRnk5/AUFWhdFOUuXwvaf/zRdbrdD3HUXkJ+vfplkpvr2eOgQbC++CBy3DwIAMXAgMGCAOuUwGfG//4u8NWuAnBwImy2xN7HZIMaMAU45Rd7CGdXmzbC9+SYghHqfKQTyjh1r0o6iqAi49Vb1yqEUnw945hnYVO40E4MHAxdeqMpnKb1PTUlpvh9U1lDaoUMHdOrUCStXrkT//v3x6aefol+/fvjyyy9RXFyM/v37AwD69euH2bNnY/369UhLS4PH48GuXbtw2mmnoUuXLlHff86cOZg5c2bYspEjR2LUqFFyfo1mlZWVqfp5JK82Dz2EPK8XZd27a10UxbR/4AHYt2yBr3H4FALpe/bgQMuW8Fx+uWZlk5ta22PWBx+gzWOPof6kk4BGB93UgwdRu2wZ9hUXq1IOsym84w64nE74XK6E3yPt119x7MgRHJk8WcaSGVfLZ55Bzrx5aOjQQdXPzQLga/R3ituN1EOHsPOiiwCVOo+Ukr51K0584AE0tGsHkZGhymemHjiA2lWrsO+NN1T5vCCl9qkdO3Zs9jmyhlIg0Fu6ZMmSUCi9++678dNPP2Ht2rXo169f6HkNDQ04ePAgBg8ejBEjRuDxxx9HRUUFhg0bhj/+8Y9IS2tatJtuugmjR48O/wIq95SWlZWhoKAgrsRPOlVXhzq329TtaKurA264Aakvv/z7QiEg7Ha0stvRqrBQu8LJRPXt0W6HSEtD6o4dYaHUduedyFy9GoUmqFPVNTQgpaYGB6ZNQ9499yTejj17IhdADtsAAGADgO7dkbpqlWqfGXF7XLAAGDkShS1bGv/szN69AICURYuAM85Q5SNtt9yCzM2bVdu36CHjyB5KBw4ciJdffhkbNmzA4cOH0bNnTxw5cgQXXHABnn766YivGT16NEaPHo19+/bh7rvvRklJCYYNG9bkeXa7XbUAGktKSoppw4wVCI8HKV6vudvR7QZycmA7/vu5XLB5vYCJvrdq7ejxBOovNTV8eU4O4HY3rWtqntcLAPBnZyfXji4X4PGwDYKC66oG9RHWjrm5gWVeL9C6teplkdVv62pKbq56+0+N9i1aHhtl/9Tc3Fx0794dDz/8MC6++GKkpqaiT58+2LRpE7744gv4fD7U1NRg1apVcLvd2LRpEzZu3IiGhgZkZWUhLS0Nqcfv9InkVFWFFLdb61Ioq6oqcKA+nssVeIykY53K77d6E1lZyb0P2yBctHVVbcEymKFtgt9BzXq14HqtSBQeMmQIdu7cicGDBwMAsrOz8cILL+Ctt97CxRdfjMsuuwzvv/8+AMDtduORRx5B//79MWLECJx55pm4+OKLlSgWUUBVFWwej9alUBYDlPxYp/L7rd78DKXyYiiVH0OpKmQ/fQ8Abdq0wQknnIBu3bqFlnXu3Bmvvvpqk+f+z//8D95++20likEUWVUVUrxeCDWvTFVTQwNQU8MAJbdYodTrDVydy7M80sgZSrdulaFAJsFQKr+qKiA9HVDpIicAv++vhQgbx25msveUNjQ04K233sJll10m91sTJU+IwBgdny8Q3Mwo1i96htLExQqlQGAcL0kTPH2fnZ3c+3C9DsdQKj8t6tTlCnQy1Naq+7kakjWUVlZW4sILL0R5eTmuvvpqOd+aSB4eD2zBHlIz7CgjYShVRnOhlPUqHU/fK0MvoTT4Y8MMbaNVKA1+tkXIevq+RYsWWLlypZxvSSSvxht3VRXQrp12ZVFK8DtG6n3KzgYOHlS3PGZRVQW0adN0uZkOvGqT60Kn7GzWf2NVVZG3f7UFT3eboW20qNPG+xajz14QJ86fQdZyfCg1I/aUKoM9pfKrqoJIS4NIdqo/lyswfMKs48SlqK8PnO7VQ08pYJ59DntKVcFQStbSeNyfWccABr9XtABl1u+tNLebY0rlFqzTZC/icLkCgfS3uSQtLdb2rwWz7HOibf9KsuC+haGUrIU9peb93kpjT6n85Op9Yhv8Toupi2Ixyz6HPaWqYCgla2EoNe/3VhpDqfwYSuXHUKoMhlJVMJSStVgllEabT8/lAqqrA9OMUPxizf2akQGkpZl3fVISQ6n8GEqVoUUoteBFlAylZC1VVRA2G/yZmeYdpxNr52nBMUqyiHWgt9nMc+BVm1xXNDOU/o6hVBlahNK0NMDhMEf9xYmhlKzlt4OgyMoy74YeTyg163dXSnMHerMceNXGnlL5MZQqQ6u5X81Sf3FiKCVr+W3H4s/Ohs2sG3qs3icLng6SRay5X4PLWafSydVTyvX6d82tq2ozy7ah1dyvZqm/OMk6eT6R7gVDaWqqeTd09pTKjz2lypCr9ykrKzCMgm2gzT3aYzHDtlFXF/iPPaWKYygla/ltrjlhs5l3XGWs+fQ4pjQxzc39aJa5GNUm19yPNlugR4ltoM18mrGYYdvQcu5XM9SfBAylZC3BnlIhzPvrkz2l8mNPqTKqqiDkOtCzDQL0ct/7IDO0i5bjdM1QfxJwTClZy2/jgvxm7lVhKJUfQ6ky5AxQbIMAPYbS4K1PjYqhVDUMpWQtv+2wLXv1PefUTExVFWC3B/6LxGIHDlkEg4pcF4+wDQL0GEoBY7cNQ6lqGErJWoKn760aSjmnZmKaO9CzTqWT+0DPNghgKJUfQ6lqOKaUrCV4+r6uzrwbenNTl1hsihFZsE7lJ/fURWyDAK2mLorGDNN1aTnNlsXWa/aUkrX8dmGFZU/fA5b75S0L1qn82FOqDPaUyo89paphTylZy2/TpfhTUwP/FiJwStss4plPz2I7OVk0N82OywXU1AANDYExu9Q8uafZ4XodoMcpoQBjt43bHXtMuZKC67XZjlVRsKeUrMPvD+xcsrPhz8qCze8Hqqu1LpW84jnQW2zeO1nE01MKsF6lUKKnlPWv355SI7eNlnXqcgWOXTU12ny+yhhKyTo8nsD/XS4IM4xziiSeAz17lKSLN5SyXuPH0/fK0FsoNcO+VutQGiyDBTCUknU0Ogj6s7LCl5kFQ6kyGErlx1CqDL2F0rQ0wOEwdtswlKqGg5/IOhqHUp8vfJlZMJQqg6FUfs3N/SpV8PS93w+kWLS/Rct7tMdi9H0OQ6lqLLrlkiU1Cmw8fW+y7600hlL5yX2gD75XcJiOFWl5lXgsRt/nMJSqhqGUrKPRXHN+pzN8mVnEM5+exea9k0U885QGn0fxkXs+TbaBtvNpxmL0fY6Wc79abL1mKCXr4JjS3x8z2/dWGntK5adUT6mV24A9pcpgT6lqGErJOhpNlySCodTI05REEs98ei5X4J7j9fXqlcvI4hmnl5EBpKebb31SktzzaZph6qFkyT33q1yMPl2XlnO/BntKjVx/EjCUknVUVQUugHA4gJQUc97VKZ5f9Dx4SxPvgd7ovUFqY0+p/NhTqgwte0pTUwGn09j1JwFDKVlHcMcSvCuG0XeUkUgJpWb77kqJ90BvxvVJSQyl8mMoVYbW02wZvf4kYCgl6zh+x2LGDZ2hVH4MpcpgKJUfQ6kyGEpVw1BK1sFQGsCDtzQMpcqQ+0D/27AcS7dBVdXv45v1xMjbRnD8PUOpKhhKyToYSgMYSqVhKFWG3KHUZmMbaN2jF42R20UPvc9Grj+JGErJOo6fa86sFzo1N5+exea9S1q8cz8afS5GtSkx96PV20DL+TRjCbaLEFqXRDo9zP1qofWaoZSsgz2lAewplYY9pcpQolfP6m2g555Snw+oqdG6JNKxp1RVDKVkHcfPNWf0ufMiiWc+Pc6pKY3bHd84PTOuT0qpq1NmnJ7V20DL+TRjMfI0dHqY+9VC6zVDKVkHe0p/Z8bvrhTWqfyU6n2yehvouacUMGbbsKdUVQylZB0Mpb8z43dXCutUfgylymAolR9DqaoYSsk6jtthCzNu6AxQ8mOdyo+hVBkMpfJjKFUVQylZx/E77OzswDgdI14RGomU+fQstJNLmpRQGmwDio2hVBkMpfKrqgIyM4G0NO3KEBxTapZjVQwMpWQNPh/g9TY9fS8E4PFoVy45STnQW/3gLYWUUBp8PsXGUKoMhlL56aFOXS7A7w8cw0yOoZSsIXjlYuO55sw2X6eU+fQsNO9d0uKd+9Fs65OSlJr70errtV7nKc3KCvzfiG2jhzq10L6FoZSsIVLPjJF/vUfCnlJlsKdUfuwplZ8Q+ujViyQ1FXA6jdk2eqhTC+1bGErJGiLNNWfkufMikTKfnoXmvUtavHM/mm19UlK8c79K5XIFTnH6fPK+rxHU1QENDdoHqGiMus/Rw9yvFtq3MJSSNbCnNJyVe5SkYk+p/JTqfQq+p1nGiUuhh6vEYzHqPoc9papiKCVrYCgNZ9QDhBYYSuWndCi1YhswlCqDoVRVDKVkDQyl4Yx6gNACQ6n8GErlx1CqDIZSVTGUkjVE2mE7nYDNZp4NXcp8ei5XYAxaXZ3y5TIyKXO/pqcHxkmaZX1SEkOp/BhKlaGHUGrk2QskYigla6iqClwBmpHx+7KUlMDGbpYNXcrUJVY+eEshdeoiox541abUNDtWXq+VmmZLLkbdNvQwJVRKimWmO2MoJWsI/tq12cKXG3VHGYmUX/QWmvcuKVJ7nyxy4EiaUr1PVl6v9d5TatRtQw89pYBx608ihlKyhmg7FquGUiv3KEkh9UBvpvVJSTx9Lz+9h1Ijbht6mvvViPWXAIZSsoZoc80Zde68SKTMp2ehee+SImXu1+DzWKfNU2rux8zMwDAdK7aB2639PdpjMeK2UVsbmPNWL6HUaPWXAIZSsgb2lIazco+SFOwpVYZSvU82m3XbQC89etEYsV301PtsxPpLAEMpWQNDaTiG0vgwlCpDyQBl1TYwSigVQuuSxI+hVHUMpWQNDKXhGErjw6vv5af0OD2rtoERQqnfD1RXa12S+DGUqo6hlKyBoTQc59SMT1UV4HDEP07PTOuTUmprlb1Hu1XbwAihFDBW2zCUqo6hlKwh2lxzZppmQ+p8emb67kphncpP6fk0rdoGephPMxYjTtelp7lfLbJeM5SSNbCntCkzfXelsE7lp3Tvk1XbgD2l8mNPqeoYSskazD4llBDSp9kxy3dXEutUflKn2ZLKqm2g1DRbcjHiNHTBsuqhp9Qi6zVDKVlDrJ5StzswAN/IEhmnZ5Ff3klJpKe0ri7wH0XGnlJlsKdUflLHlCspeKwy0uwFCWAoJfNraAhc8RktlAKAx6NumeSWyIHeqgdvKRIJpcHXUWQMpcpgKJWfnurU5QoEUqMfq5rBUErmF+t0oRF3lJEwlCqDoVR+DKXK0FOAiiQrK/B/I7WNnurUIvsWhlIyv1gHQbNs6AylymAolZ/SVzRbcb3W0z3ao0lJMd4V5HqqU4vsWxhKyfwYSiOz4sFbKoZS+Sk9Ts/lCgzXaWhQ5v31qKZGP/doj8Vo+xyGUtUxlJL5xeqZMeLceZEk0vtktF4LLSQyT2nwdRSZ0vNpBt/bAlcqh+hpPs1YjLbP0dPcrxbZtzCUkvmxpzQyo/VaaIE9pfJTuvfJim2gp/k0YzHaPoc9papjKCXzi+dCJ6P3qiQyn55F5r1LWKJzvwKs11iUnk/Tim2g9NyvcjHaPkdPc79aZL1mKCXzi9WL4HQGBuAb/ddnIuP0XC6gvj4wxyk1lcjcr2lpQGam8dcnJbGnVH7sKVWGnnpKs7IAm81Y9ZcAhlIyv6oqID0dyMho+pjNZrxxTpEksvO04sFbikQP9EY78KqNoVR+DKXK0FMoNcuxqhkMpWR+ze1YjLajjIShVH4MpcpgKJUfQ6ky9BRKAePVXwIYSsn8GEojs+LBWwqGUmUwlMrPKFffG2nb0OPcr0aqvwQxlJL5MZRGZsWDtxQMpcpQ+kCfkREYrmOlNqiqCoyPT03VuiSxGWnbqK4G/H6GUpUxlJL5NTfXnBnG6SQyn55F5r1LWKK9T2ZYn5SkxtyPVmsDPc2nGYuR2kWPvc9Gqr8EMZSS+bGnNDL2lMbGnlJlqHFK1GptoLfTzNEEp4QSQuuSNE+P43QtsF4zlJL5NTfXnNHmzoskkfn0LDLvXcISmfsVMMf6pJRE5n5NhNXaQE/zacbicgXWAa9X65I0T49zv1pgvWYoJfNjT2lknFMztkTH6ZlhfVKKWvdot1obGKmnFDBG27CnVBMMpWR+DKXRmeG7K4V1Kj+1DvRWawOGUvkxlGqCoZTMj6E0OjN8d6WwTuXHUKoMhlL5MZRqgqGUzM/soTSZ+fSM/t2VlGydGuFiDrUxlCqDoVR+erz63gLrNUMpmV88odTrDYx1M6Jk5tOzwE4uYcmE0oYGoLZW/jIZHUOpMhhK5VdVFbjffIqOYpLLBXg8gf29SemotokUUF8fCAfNzVMKGPeqxmR+0Vtg3ruEJTr3I+d/jU6t3ierrddGmqcUMEbb6LFOjX6sigNDKZlbPD0zRvr1HkkyvU9W61GSIpme0uDrKRx7SpVhlJ7SrCzAZjNG2+ixTi2wb2EoJXOLZ645o8/Xmcx8ehaY9y5hic79aPT1SUmJzv0qlZXWa7XmfpWDzRZoeyO0jR7r1AL7FoZSMjf2lMZmtR4lKdhTKj+17tHucgXmRG1oUPZz9ECP92iPxSj7HPaUaoKhlMyNoTQ2oxwgtMBQKj+1DvRWagM9Tl0Ui1H2OQylmmAoJXNjKI3NKAcILTCUyo+hVH4MpcpgKNUEQymZm5VCaVaW9NdyTs3Ikpn71UhXGKuNoVR+DKXKYCjVBEMpmVs8U9BkZgbmojPqhp7MOL3s7MD8rDU18pfLyILj9BK5ICc1FXA4jLs+KUmtaXas9MNAj5O8x2KU6br0OCWUw2HsY1UcGErJ3KqqALs98F80Nptxfr1Hkswvegv88k5Isr1PRl6flMSeUvmxp1QZeuwpDc5eYIT6SxBDKZlbvDsWo+woI2EolR9DqTIYSuXHUKoMPYZSwDj1lyCGUjK3eOeaM/K8hsnMp2eBee8Skszcr8HXsU6bUmvuRyut12rN/SoXI2wbep771Qj1lwSGUjI39pTGZqUeJSnYU6oMtXqfgkN2rNAGerxHeyxG2Da83kAw1Wso1Xv9JcEgazFRghhKY2MojYyhVBlqnhK1Shvo9TRzNEZoFz0PiTBC/SWBoZTMjaE0NobSyBhKlcFQKj8jhlK3OzC7hV4xlGqGoZTMjaE0NitNnSNFMnO/AsZen5Si9jg9q7SBEUMpAHg82pYjFoZSzTCUkrnFO9eckafZSGY+Pc6pGVmy4/SMvD4pxetNfO7XRFilDfQ4n2YsRvghrOe5X02+XjOUkrmxp7R5Rv7uSmGdyk/t3iertIFRe0r13DbsKdUMQymZG6eEap6Rv7tSWKfyS3aaLams0gZ6nbooGiNM16X2uiqFyddrhlIyN7P3lMoxTs+o311JcvWUCiFfmYyOPaXKYE+p/JIdU64kk6/XDKVkblJCaXU10NCgfJnkFBynx1AqLzlCqc8H1NTIVyajYyhVBkOp/ILjdPU496vLFdjv+3xal0QROqxxIpnU1QX+izeUAsY7LSLHgd4qB28p5AilwfehAIZSZTCUyk/PdWrUY1WcGErJvKQcBI2wo4yEoVQZDKXyYyhVhp4DVCQOR6AHUs9to+c6Nfm+haGUzIuhND5WOXhLwVAqP7XH6VlhvdbzPdqjsdn03zYMpZphKCXzkjLXnBHmzotEjvn0TD7vXUKSnfvRqOuTktS+R3t29u9DeMzK4wkEUz3OpxmL3vc5ep771eT7FoZSMi/2lMZH770WWmBPqfzU7n2yQhvoeT7NWPS+z2FPqWYYSsm8pMw1Z9TB43LMp2fyee8SIsc0W8H3oQC1TzNboQ30PJ9mLHrf5+h5SITJ1+s0NT6kR48eeOCBBzB37lx4PB7ccMMNGDt2LACgpqYGzz//PJYtW4a0tDRceeWVuPnmm2Gz2Zq8T11dHeqOOxWTlpYGu92uxteAf+NGONasgWjdGv4I5SN9sa1eDRsAf1ZWYNqk3/h/+7e/0TJkZSEFgFixAkKP04BEYVu5MvAdHY6w7yhJVhZsVVUQH34oa9mUJoSA48ABRbZHm9sNcdx6I4nTGVifvvwSIjNT1rIZlW3DBsDlgjiuTiNuj3L4bZv2f/wxUFAg73vrxc6dge+YzLoqEyntaHO5gJ9+0u0+x1ZeDnTu3GRd1YXgsWr5cohk93unnAJ07hz6U7Ft8TcpcRxbVQmlALBu3Tq8/fbbKC8vx5gxY3DJJZegQ4cOmDVrFvbs2YP/+7//g8fjwZ133on27dtj6NChTd5jzpw5mDlzZtiykSNHYtSoUap8h7yXX0a7119X5bNIHr7cXOw5fBg4dqzJY2VlZb//IQQKWrdG2nPPwfbccyqWMHn1J5yAXxp/F4kcTifa+f2wlZbKWCp1tFPwvfc7HKjevTvh1xd06IC0l16C7aWXZCyVsXkGDUJFlDotS2IdjiQVQEFqKlL+8AdZ31dvRFoafvH74UtiXZVTPO3YKj8frv/7P9iWL1ehRIk5XFqKozqp0zBCoKBVK1mOVUcmTUJlhO1D7m0xqGPHjs0+xyaE8rcc6dGjB+bPn4/OvyXyG2+8EePHj0efPn1QWlqKadOm4eyzzwYAvPfee1i+fDmmT5/e5H007yk9ehS/bt2KDh06xJX4SQdcriZX+/r9fpSVlaGgoCC8Hb3eiOFV93JzA9OsJOPQIaC+Xp7yqMTv9+PXX39VZntMTwfy85N7D6OuT0rKzw/UbSNRt0c5HD0auCmGmTmdQE6O1qWQ1o4+H3DggDoFS4TNBrRpE/i/Hsm1b8nODrugS9FtETrrKc3Lywv9OzMzE16vFwBw4MABtGv3e39H+/btcSDKymq321ULoBHl5sLXujVSGEpNISUlJbwdj9tALaV1a61LIJ3fD199vX63RyuvTwlosj3KIS8v8B+pJq52TEkBOnRQp0BmpPC+RZFtMd7P1uRTG2ndujX27dsX+nvfvn1obcQDJBERERElTPNQOmDAAMycORNVVVXYt28f5s2bh0suuUTrYhERERGRijQPpRMmTMAJJ5yAESNG4JZbbsHgwYMxZMgQrYtFRERERCpS5UIns/D7/di9ezcKCwv1OYaN4sJ2NAe2ozmwHc2B7Wh8emhDrjlEREREpDmGUiIiIiLSHEMpEREREWmOoZSIiIiINMdQSkRERESa49X3RERERKQ59pQSERERkeYYSomIiIhIcwylRERERKQ5hlIiIiIi0hxDKRERERFpjqGUiIiIiDTHUEpEREREmmMoJSIiIiLNMZQSERERkeYYSomIiIhIcwylcTpy5Ajuvvtu9O7dG1deeSW+/vprrYtEcairq8PDDz+MoUOH4sILL8SECROwbdu20ONz587FwIEDcdFFF2H69OngXXf17ccff0TPnj0xd+7c0DK2obHMnTsXw4YNQ9++fXHdddehqqoqtJztaAxbtmzBzTffjAsvvBClpaX48MMPQ4+xHfVrxowZGDlyJHr27IlPP/007LFY7bZx40Zce+216N27NyZMmIC9e/cqV0hBcbn//vvFo48+Kqqrq8V///tf0b9/f3H06FGti0XN8Hq9YubMmWLfvn2ioaFBvPnmm+Kyyy4TQgixYsUKMWzYMFFWViYOHDggrrrqKvHBBx9oXGKKxufziTFjxogbb7xRzJkzRwjBNjSa+fPni/Hjx4tff/1V+P1+sXXrVlFTU8N2NJiRI0eKWbNmCZ/PJzZv3iz69Okjdu3axXbUuU8++UR89dVXYsyYMWLx4sWh5bHarba2VgwdOlR88MEHoqamRkyfPl2MGzdOsTKypzQOXq8XX3zxBW677TZkZmaiX79+6NSpE5YvX6510agZDocD48aNQ9u2bZGamoqrr74av/76KyorK7Fw4UJcddVVOPHEE9GqVStcf/31WLRokdZFpigWLFiAbt26oWPHjqFlbEPj8Pl8mDNnDv7617+iffv2sNlsKC4uRkZGBtvRYPbt24fBgwcjJSUFXbp0QVFREXbv3s121LmhQ4fivPPOg91uD1seq93WrVsHh8OB0tJSZGRkYPz48di0aZNivaUMpXHYs2cPsrOz0apVq9Cyzp07Y8eOHRqWihLx448/omXLlmjRogV27tyJ4uLi0GMlJSVsU506evQo5s+fjwkTJoQtZxsaR0VFBWpra/Gf//wHl1xyCa688kq8++67ANiORjNq1CgsXLgQDQ0N2LBhA/bv349u3bqxHQ0qVrvt2LEj7DGHw4ETTzxRsXZNU+RdTaa6uhpZWVlhy7KysuB2uzUqESXC7Xbj8ccfxx133AEg0AOenZ0dejwrKwter1er4lEMr7zyCq699lrk5OSELWcbGkdFRQXcbjd++eUXfPjhhygvL8cdd9yBoqIitqPB9OrVC1OnTsWsWbMAAA888ABatmzJdjSoWO0WLf9UV1crUhaG0jg4HA54PJ6wZR6PBw6HQ6MSkVS1tbW45557cMEFF6C0tBQA4HQ6w35YeDweOJ1OrYpIUWzZsgUbN27E/fff3+QxtqFxZGRkAAAmTJiAzMxMdOrUCUOHDsXKlSvZjgZSWVmJSZMmYdq0aejbty927tyJu+66C506dWI7GlSsdlM7//D0fRxOOukkuN1uHDx4MLRs69atOPnkkzUsFcWroaEBDzzwAFq3bo2JEyeGlnfs2DHsSvyff/6ZbapD3377Lfbs2YOhQ4di0KBB+Oyzz/D//t//w2OPPcY2NJDCwkKkp6dHfIztaBzl5eXIzs5G//79kZqaiuLiYpxzzjn49ttv2Y4GFavdTj755LDHqqur8csvvyjWrgylcXA6nejbty9mzJiBmpoafPHFF9i+fTv69u2rddEoDn/7299QW1uLadOmwWazhZYPHToU7733HsrLy3Hw4EHMmzcPQ4YM0bCkFMmVV16J999/H/PmzcO8efPQt29fXHPNNbj77rvZhgbicDgwYMAAzJ49G3V1ddi1axcWLVqE3r17sx0NpLCwEB6PB8uXL4cQArt27cLatWtRXFzMdtS5hoYG1NbWQggR+rff74/Zbueccw6qq6vx0Ucfoa6uDrNnz8app56K9u3bK1JGmxCcRCweR44cwdSpU7Fu3Tq0bdsW999/P84991yti0XN2Lt3L4YPH46MjAykpPz+G+zFF1/E2WefjTlz5uCf//wn/H4/Lr/8ctx1111hwZX0Z9q0aSgqKsLYsWMBgG1oIFVVVXjkkUewZs0a5ObmYsyYMbjqqqsAsB2N5KuvvsJLL72EX375BS6XCyNGjMDNN98MgO2oZ9OmTcPHH38ctuy1115Djx49Yrbbxo0b8eijj6KsrAynnnoqHnnkEYZSIiIiIjIvnr4nIiIiIs0xlBIRERGR5hhKiYiIiEhzDKVEREREpDmGUiIiIiLSHEMpEREREWmOoZSIiIiINMdQSkSkgm+++QY9evRAjx498Ouvv2pdHCIi3WEoJSKS2bRp09CjRw9MmDAhtCw7OxvdunVDt27dYLfbNSwdEZE+pWldACIiK+jSpQvmzp2rdTGIiHSLtxklIpLR8OHDsXfv3ibLX3vtNdx2220AgA8//BAdOnQI3Yu6ffv2uPXWW/Hqq6/C7Xbjsssuw5133olXXnkFH374IVwuF8aOHRu6TzwAHDhwAP/4xz/w1VdfobKyEm3btsXw4cMxduxYpKWxv4GIjId7LiIiGZ1yyimorq5GZWUlsrKy0LFjRwDAli1bor7m4MGDePLJJ9GqVSt4PB7Mnz8fq1evRkVFBbKzs7Fv3z78/e9/xznnnIOOHTuisrISY8eOxf79+0OfsWPHDrz22msoLy/H1KlT1fq6RESy4ZhSIiIZPfPMM7jgggsABALq3LlzMXfuXHTp0iXqa+rr6/Hyyy9jwYIFaNu2LQCgrKwM8+fPx7vvvouMjAz4/X6sW7cOAPDOO+9g//79yM/PxwcffID58+fjqaeeAgB8/PHHKCsrU/hbEhHJjz2lREQay8nJwVlnnQUAaNeuHfbv349OnTqhQ4cOAIC8vDzs27cPhw8fBgBs3LgRAHDo0CFcfPHFYe8lhMCGDRtQUFCg3hcgIpIBQykRkcaysrJC/05NTW2yzGazAQgEzsb/bzw8oLHMzEzFykpEpBSGUiIimQVDYU1NjSLvf9ppp2HVqlVITU3F448/HupR9Xg8+O9//4v+/fsr8rlEREpiKCUikllRUREAYNOmTbj66qvhcDgwfvx42d5/1KhR+Pe//42KigqMGDECHTt2hMfjwf79+9HQ0IBLL71Uts8iIlILL3QiIpLZZZddhosuugjZ2dnYvn07NmzYAL/fL9v75+XlYc6cORg+fDhyc3Oxfft21NbW4uyzz8akSZNk+xwiIjVxnlIiIiIi0hx7SomIiIhIcwylRERERKQ5hlIiIiIi0hxDKRERERFpjqGUiIiIiDTHUEpEREREmmMoJSIiIiLNMZQSERERkeYYSomIiIhIcwylRERERKQ5hlIiIiIi0hxDKRERERFp7v8DujasldM5o4gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Kmeans_scorer.show_anomalies(series=series_test, anomalies=anomalies, metric=\"AUC_ROC\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Univariate case with window>1 " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the previous example, we used `window=1` which was sufficient to identify all anomalies. In the next example, we'll see that sometimes higher values are required to capture the true anomalies." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Synthetic data creation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Train set" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this toy example, we generate a univariate (one component) series that can take 4 possible values.\n", + "\n", + "- possible values at each step `(0, 1, 2, 3)`\n", + "- every next step either adds `diff=+1` or subtracts `diff=-1` (50% chance)\n", + "- all steps are upper- and lower-bounded\n", + " - `0` and `diff=-1` remains at `0`\n", + " - `3` and `diff=+1` remains at `3`" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "def generate_data_ex2(start_val: int, random_state: int):\n", + " np.random.seed(random_state)\n", + " # create the test set\n", + " vals = np.zeros(100)\n", + "\n", + " vals[0] = start_val\n", + "\n", + " diffs = np.random.choice(a=[-1, 1], p=[0.5, 0.5], size=len(vals) - 1)\n", + " for i in range(1, len(vals)):\n", + " vals[i] = vals[i - 1] + diffs[i - 1]\n", + " if vals[i] > 3:\n", + " vals[i] = 3\n", + " elif vals[i] < 0:\n", + " vals[i] = 0\n", + " return vals" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Training set')" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAHECAYAAAAAtJEVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwb0lEQVR4nO3debgU5Zk28Lu7z9LdZ983joCsBuIKEjdcYlRQMaMiJvhFnKhkjOOGSYhZRINE4yRRZ5yR0QzMGNdxjCMZcFcgCyomoqIiiCBw9n3p092nl+8PUmV1n+7TVV1vdVdV37/r8rLpU/30W13b8z5V9ZYjGo1GQURERJRBzmw3gIiIiHIPExAiIiLKOCYgRERElHFMQIiIiCjjmIAQERFRxjEBISIiooxjAkJEREQZxwSEiIiIMo4JCBEREWUcExAiC3I4HKr+e+ONN3R9z6pVq+BwONL67BtvvCGkDdn24YcfYtWqVdi3b1+2m0JkKw4OxU5kPdu2bYv5989+9jO8/vrreO2112Le/9KXvoTS0tK0v+fgwYM4ePAgvvKVr2j+7MDAAD788EPdbci2Z555BosXL8brr7+OM844I9vNIbKNvGw3gIi0i08Iampq4HQ6UyYKPp8PXq9X9fdMmDABEyZMSKuNpaWlaSUuRJQbeAqGyKbOOOMMzJ49G1u2bMHJJ58Mr9eLv//7vwcAPPXUUzjnnHPQ0NAAj8eDo446CitXrsTw8HBMjESnYCZNmoQLLrgAL7zwAo4//nh4PB7MnDkT//Ef/xEzXaJTMMuWLUNxcTH27NmDhQsXori4GM3NzVixYgUCgUDM5w8ePIhLL70UJSUlKC8vx9KlS/H222/D4XBg/fr14867z+fDrbfeismTJ8PtdqOyshJz5szBE088ETPd9u3bsWjRIlRWVsLtduO4447D008/Lf99/fr1WLx4MQDgzDPPlE9tpfp+IkqNFRAiG2ttbcUVV1yB73//+1izZg2czsN9jt27d2PhwoW46aabUFRUhI8//hj33HMP3nrrrTGncRLZsWMHVqxYgZUrV6Kurg6PPPIIvv3tb2Pq1KmYP3/+uJ8dHR3FokWL8O1vfxsrVqzAli1b8LOf/QxlZWX46U9/CgAYHh7GmWeeiZ6eHtxzzz2YOnUqXnjhBSxZskTVfN9yyy149NFHsXr1ahx33HEYHh7GBx98gO7ubnma119/Heeddx7mzZuHhx56CGVlZXjyySexZMkS+Hw+LFu2DOeffz7WrFmD2267DQ8++CCOP/54AMCUKVNUtYOIxhElIsu78soro0VFRTHvnX766VEA0VdffXXcz0Yikejo6Gh08+bNUQDRHTt2yH+7/fbbo/G7iYkTJ0bdbnd0//798nsjIyPRysrK6PLly+X3Xn/99SiA6Ouvvx7TTgDRp59+OibmwoULozNmzJD//eCDD0YBRDdt2hQz3fLly6MAouvWrRt3nmbPnh39+te/Pu40M2fOjB533HHR0dHRmPcvuOCCaENDQzQcDkej0Wj0v//7v8fMBxHpx1MwRDZWUVGBs846a8z7e/fuxTe/+U3U19fD5XIhPz8fp59+OgDgo48+Shn32GOPxRFHHCH/2+12Y/r06di/f3/KzzocDlx44YUx7x199NExn928eTNKSkpw3nnnxUz3jW98I2V8ADjxxBOxadMmrFy5Em+88QZGRkZi/r5nzx58/PHHWLp0KQAgFArJ/y1cuBCtra3YtWuXqu8iovTwFAyRjTU0NIx5b2hoCKeddhrcbjdWr16N6dOnw+v14sCBA7j44ovHHKwTqaqqGvNeYWGhqs96vV643e4xn/X7/fK/u7u7UVdXN+azid5L5IEHHsCECRPw1FNP4Z577oHb7ca5556Le++9F9OmTUN7ezsA4NZbb8Wtt96aMEZXV5eq7yKi9DABIbKxRGN4vPbaa2hpacEbb7whVz0AoK+vL4MtG19VVRXeeuutMe+3tbWp+nxRURHuuOMO3HHHHWhvb5erIRdeeCE+/vhjVFdXAwB++MMf4uKLL04YY8aMGenPABGlxASEKMdISUlhYWHM+2vXrs1GcxI6/fTT8fTTT2PTpk1YsGCB/P6TTz6pOVZdXR2WLVuGHTt24L777oPP58OMGTMwbdo07NixA2vWrBn389LvpKa6Q0TqMQEhyjEnn3wyKioq8J3vfAe333478vPz8dhjj2HHjh3ZbprsyiuvxK9//WtcccUVWL16NaZOnYpNmzbhxRdfBAD5bp5k5s2bhwsuuABHH300Kioq8NFHH+HRRx/FSSedJI+DsnbtWixYsADnnnsuli1bhqamJvT09OCjjz7CX/7yF/z3f/83AGD27NkAgH//939HSUkJ3G43Jk+enPA0FBGpx4tQiXJMVVUV/u///g9erxdXXHEF/v7v/x7FxcV46qmnst00WVFREV577TWcccYZ+P73v49LLrkEn3/+Of71X/8VAFBeXj7u58866yw8//zzuOqqq3DOOefgF7/4Bb71rW9hw4YN8jRnnnkm3nrrLZSXl+Omm27C2WefjX/4h3/AK6+8grPPPluebvLkybjvvvuwY8cOnHHGGZg7d25MHCJKD4diJyLLWLNmDX784x/j888/T3uEViIyB56CISJT+pd/+RcAwMyZMzE6OorXXnsNDzzwAK644gomH0Q2wASEiEzJ6/Xi17/+Nfbt24dAIIAjjjgCP/jBD/DjH/84200jIgF4CoaIiIgyjhehEhERUcYxASEiIqKMYwJCREREGccEhIiIiDIu5xKQSCSCzz77DJFIJNtNMVQuzGcuzCPA+bQbzqd95MI8AsbNZ84lIERERJR9TECIiIgo45iAEBERUcYxASEiMjGOFUl2xQSEiIiIMo4JCBGRiTkcjmw3gcgQTECIiIgo45iAEBERUcYxASEiMrFoNMoLUcmWmIAQEZkYrwEhu2ICQkRERBnHBISIiIgyTnMCctddd+Hcc8/F6aefjiVLlmDr1q0Jp/P7/fjJT36C+fPn4/zzz8cLL7ygu7EUa/369SgvL892M4jIYDwNQ3aUp/UDS5cuxfe+9z0UFBRg586d+O53v4vnn38epaWlMdOtXbsW/f392LhxIz799FPceOONOOqoozBx4kRhjc91S5YswcKFC7PdDCIyWDQaZRJCtqM5AZk0aZL82uFwIBgMoqura0wCsnHjRvzyl79EcXExjjnmGMyfPx8vvfQSrrnmGt2NJmB0dBQejwcejyfbTSEilUZHR/HMM8/g3XffRUVFhaqkoqqqCosXL0ZZWVkGWkhaHDx4EP/zP/+DZcuWobq6Wmjs7u5uPP300xgYGFD9menTp2PRokVwuVxC22IUzQkIANx9993YsGEDAoEATj/9dBx55JExfx8YGEB3dzemTp0qvzd9+nTs3LkzYbxgMIhgMBjbsLw8FBQUpNO8cUUikZj/Z9IzzzyDn/3sZ9izZw+8Xi+OO+44/O53v0NRURHWrVuHf/qnf8Jnn32GSZMm4R//8R/xD//wDwCAffv2YcqUKXjiiSfw0EMPYdu2bXjwwQfhcDhwyy23oKenR/6ODRs24M4778TOnTtRW1uLq666Cj/60Y+Ql3d4Ud9xxx1Yt24d2tvbUVVVhUsuuQT3339/xn8LEbK5LDOJ82kfDz30EG644QbNn9u2bRv+/d//3YAWGScXludFF12Ed999F2+99RaefPJJobGvvvpqPPfcc5o/99vf/hbf+MY3hLZF67J0OtVd3ZFWArJy5Up873vfw/bt27Fnz54xf/f5fHC5XHC73fJ7RUVF8Pl8CeOtW7cODz/8cMx7ixcvxmWXXZZO81Q5cOCAYbET6ejowNKlS/GDH/wA5557LoaGhvD2229j//792LBhA+677z6sWrUKs2bNws6dO3HbbbdhZGQEl1xyCQ4dOgQA+N73vofbbrsNd955JwoKCrB161ZEIhHs378fALBlyxZcf/31uP322zF37lzs378fP/rRj9Df348bb7wRGzduxK9+9Ss88MADmDZtGrq6uvDRRx/Jn7eqTC/LbOF8Wt/LL7+c1ue2bt1q2e3UrsvT7/fj3XffBQD84Q9/EL58/vCHP6T1uZdffhknn3yy0LZI1C7LyZMnq5ourQQEAFwuF+bNm4cnnngCRx55JE466ST5b16vF+FwGH6/X05ChoeH4fV6E8a66qqrsHTp0tiGaayAnHjiiWhra1M1bTgcFlaiqq+vx1tvvZVyuu7uboRCIXz729+Wr4M599xzAQALFy7Er371KzlrPfXUU9HV1YVnn30Wt9xyizwI0YoVK7B8+XI55ocffgin0ynH+81vfoMf/vCHuOWWWxCJRHDEEUdg9erV+OEPf4hf/epX8Pv9aGxsxDe/+U3k5+cDABYtWiTkd8iGSCSCAwcOoLm5WXXGbUWcT/tQltMff/xxFBYWjjv9P/7jP6KlpQUdHR2Wu37O7stz79698uuOjg6h8zk6Ooru7m4AwIwZM7BmzZpxp+/p6ZEvbxgcHBS+rhi1LNNOQCSRSAQHDx6Mea+0tBRVVVXYs2cPZs+eDQD45JNPxpyqkRQUFOg+3dLW1iZXCjJNzQI57rjj8NWvfhXHHHMMzj33XJxzzjm49NJLEQqFcODAAVxzzTUxyUUoFEJZWRmcTqccf+7cuTHfJb2W/v/OO+/g7bffllfWaDSKSCQCv98Pv9+Pyy67DPfffz+mTp2K8847DwsXLsSFF14on56xKuVvZGecT+uT9lHFxcVYsmRJyvm877770NLSgr6+Pvj9/qSdODOz6/JsbW2VX4fDYXR1daG+vl5I7I6ODrnj+aUvfQkXX3zxuNMHg0E5AWlpaTHs9xa9LDUdeXw+HzZv3ozTTz8dBQUF2Lx5M955552E5zQXLlyIRx55BHfddRf27t2LLVu2YP369aLaPYaWBS+6AqKGy+XCyy+/jD/96U946aWX8M///M/40Y9+hA0bNgAAHn74YcybN2/MZ5SKiorG/Y5IJII77rgDF198MSKRCA4dOoSmpiY4nU643W40Nzdj165dePnll/HKK6/guuuuw7333ovNmzfLFREiMkY0GkVLSwsAoK6uTtVnGhsb5detra2YMmWKIW0j7aRlqfy3qAREGVu5DiRTUFCAmpoadHZ2jmmXmWlKQBwOB/73f/8X99xzD6LRKJqbm7F69WpMnToVmzZtwrp16/D0008DAJYvX47Vq1fjvPPOQ2lpKVauXBlzB41o27dvVzWddM3ExIkTM56VOxwOnHLKKTjllFPw05/+FBMnTsQf//hHNDU1Ye/evWNOQ2l1/PHHY9euXZg6dSoikQjy8/PHzKfH48GiRYuwaNEifPe738XMmTPx/vvv4/jjj9c7e0Q0joGBAfk6OLUJSFNTk/z60KFDTEBMJFECImo/qoytXAfG09TUhM7OTrS2tiISiVii6qQpAfF4PHjooYcS/m3BggVYsGCB/G+3243Vq1fra52NvPnmm3j11VdxzjnnoLa2Fm+++SY6Oztx1FFHYdWqVbjhhhtQWlqKBQsWIBAIYPv27ejt7cUtt9yi+jt++tOf4oILLkBzczMuueQStLW1Ydu2bdi5cydWr16N9evXIxwOY968efB6vXj00Ufh8Xgsd26ZyIqUp4jTqYBYqWebC+JP+Yu8BEAZS00FRJru3XffxejoKLq6ulBbWyusPUax9sl/CyktLcWWLVtw3333YWBgABMnTsQvf/lLOWnzer2499578f3vfx9FRUX48pe/jJtuuknTd5x77rn4/e9/jzvvvBO/+MUv4HK58KUvfQlXX301AKC8vBx33303brnlFoTDYXz5y1/Ghg0bUFVVJXp2iSiOMoFQe3BQHnyydY0bJZaoAmJEbC0JiPLzTEBIdtRRR407HP03v/lNfPOb30z4t0mTJiV8HPeyZcuwbNmymPfOPfdcnHvuuQlPNX3961/H17/+9bTngYjSp0wg1F4roCy/swJiLpmqgGg5BaP8/LHHHiusPUYx/0kiIiIbYAXEXsxeAbECJiBERBmQTgXEigeVXBCNRjNSAfF6vaqH4I+vgFgBExAiogxIpwLi9XrlJ14zATGP/v5+jIyMxLxnRAWksbFR9UMIrZisMgEhIsqAdBIQ4IsDy6FDhxJeC0aZl+gA39XVhUAgoDv28PAw+vv7Aai//gNgAkJERElIZfHa2lpNA/9JByG/34++vj4jmkYaJTvFoRwdNV3pXP8BADU1NfKo1jwFQ0REAA4PgCgdnLQcVOKnt8qBxe6USYLyMSIiKg/pJiBOpxMNDQ3C2pEJTECIiAzW0dGBcDgMQHsCwltxzUeZCB511FEJ3xcRW8spGOX0HR0dCAaDuttiNCYgREQGS7dXGz89KyDmoFyeRx99dML3RcTWs66ofTp8NjEBISIymIheLcAKiFkol6cyATFLBQSwxrrCBISIyGDKg4F0nl4tK97dYHfScnA4HJg1a9aY90XEBuxfLWMCQkRksHSebiqx2kElF0jLs7a2FhMmTBjzvojYgL4ExArJKhMQIiKDpfN0U0l9fb08GJUVDip2Fw6HY+5oKi4uRnFxMQCxp2AqKyvhdrs1fdZqo6EyASEiMpieXm1eXh7q6uoAWOOgYnednZ1j7miSDvx6E8RoNBozCqpWrIAQEVEMKXHIz89HdXW15s9LB7i2tjb54EfZkaiaJf1/aGgIAwMDacfu6emRR1PVeqou/jNWSFaZgBARGUzqjTY0NMDp1L7blQ5wkUgE7e3tQttG2iSqZikvLNZTedBTKQOAkpISFBUV6W5HpjABISIyUCAQQFdXF4D0erXxn7PCgcXOEiUJoioPem7BBQ7flSPqdFAmMAEhIjKQ8vkg6fRq4z9nhQOLnY13CgbIbgVE+bmBgQEMDQ2l3ZZMYAJCRGQgPbfgSngrrnkkWp5GJCAi1hWzJ6tMQIiIDKTnFlwJT8GYR6oKiKhTMCLWFbMnq0xAiIgMxAqIvUjLU3lHk6gEUeQpGL1tyQQmIEREBmIFxF6k5dnY2CgPEFdfXz/m73piO51OeewXrVgBISIiAGJ6tZWVlSgsLARg/oOKnQUCAXR3dwOIXZaFhYVyNUREBaS+vh4ulyutGKyAEBERADGnYBwOh3xgMftBxc6UdzTFL0vl7a+RSERz7FAoJI/xku56Ev9Zs68rTECIiAwkVSyKi4tRUlKSdhwpAenp6YHf7xfSNtJmvNNp0r9DoZA87osW7e3tcuKSbqUMiB0UzezVMiYgREQGknqhenq1gLVK63Y1XjVLb+VBRKUMOHw6qKqqKu12ZBITECIigygHg9LTqwWsVVq3KzUVkPjpRMTWSnk6KBqN6oplJCYgREQGEdWrBXgrrhmMd0GxyAqI3gRE+nwwGJQvmjUjJiBERAYxolcLsAKSLeM9q0VkBURvsmqVW3GZgBARGcSIXm18XMqc8Zan3uWTi+sKExAiIoOIPAVjlV6tnUnLs6SkZMwdTWa5CFVEWzKFCQgRkUFEnoJR3l5p5oOKXUWj0ZhRUOPV1NQgLy8PgL5TMG63G+Xl5ek3FNa5XogJCBGRQUT2aouLi1FaWgrA3AcVuxocHMTw8DCAxMvS6XTKSaKeCkhTU5M8xHu6eAqGiCjHKRMFZQUjXVa5vdKO1FSzpPc7OjoQDAZVxx4ZGUFvb++4sbWwyuk6JiBERAaRep81NTUoKCjQHU86OPl8PvT39+uOR+qpuUhUeeBva2sTGluLmpoa+VkyrIAQEeWYSCQi7/xFHFQA61xcaEdqbpNN99oLkbfgAoDL5ZIrbqyAEBHlmK6uLoRCIQDiEhCrnNu3IzVVinSXj+gKiDJOR0cHRkdHhcQUjQkIEZEBRF6AmiiOmXu2dqRmeaZboTJiXZESkGg0Kj9l12yYgBARGUDkLbiJ4rACkllaLkKNn15EbK2skKwyASEiMoCRvVrAvAcVu1Iuz2R3NImogORSssoEhIjIAEb3as16ULEraXmOd0cTKyDaMAEhIjKAERWQ+vp6eZAqsx5U7CgSiaC1tRXA+AlCaWkpioqKAKRXASkvL4fX69XR0i+wAkJElKOM6NXm5+ejtrYWgHkPKnbU2dkp39E0XjLpcDjkZa02QVQO8S4qUY2PZdZklQkIEZEBpAQhLy8PNTU1wuJKB7jW1lZEIhFhcSk5LddoSH8fHBzE4OBgyth9fX3w+/2qYmvBCggRUY6SdvoNDQ1wOsXtaqWebTgcRkdHh7C4lJyW02nKv0unbUTF1qKsrAwej2fMd5hJnpaJg8Egfv7zn+PNN9/E8PAwZsyYge9///uYOnXqmGlXrVqFF198UX46YENDA55++mkxrSYiMrFgMCgnByJ7tfHxWlpaUF9fLzQ+jaXldFr8hajTp08XFlsLh8OBpqYm7Nmzxx6nYMLhMJqamrBu3Tq89tprmD9/PlasWJF0+uXLl2Pr1q3YunUrkw8iyhnK54CI7NUCvBU3G9KtgKipPBhxC258vP7+fvlJvmaiKQHxeDy4+uqrUVdXB5fLhSVLlqClpQV9fX0GNY+IyHqM6tUCvBU3G/RUQLTEFp2smn1d0XQKJt57772HyspKlJeXJ/z7o48+ikcffRQTJ07E9ddfj+OPPz7hdMFgcMyji/Py8oQ8PTKedNGW3S/eyoX5zIV5BDifVnTw4EH5dWNjY8w86Z1P5SmXgwcPmvb3stPyVCYJ9fX1Y+ZNOY/K5XPo0KGU858stgjKAdMOHjyIKVOmpBVH67JUe81T2gnI0NAQ1qxZg+uuuy7h3y+//HLccsst8Hg8eOWVV3DzzTfjqaeeSni+ct26dXj44Ydj3lu8eDEuu+yydJuX0oEDBwyLbSa5MJ+5MI8A59NKPvjgA/l1QUEB9u/fP2aadOdTuXP/5JNPEsY2Ezssz3379gE43DH2+XxjfvNk87h79+6Uy2fPnj3y62g0KnR5ShehAocLBpMmTdIVT+2ynDx5sqrp0kpAAoEAVqxYgVNPPRUXXXRRwmlmzpwpv16wYAE2btyIN998M+H0V111FZYuXRrbMAMrIAcOHEBzc7PQK9PNJhfmMxfmEeB8WpF0WyUAHH300Zg4caL8b73zqRyoamBgICa2mdhpeXZ1dQE4XFFQHlwTzWNdXZ389/7+/pTLR7qEwel04oQTTpBv3BBh1qxZ8utgMJj2umLUstQ8p6FQCLfddhtqampw0003qf6cNHpfIgUFBYYkG+NxOp2W3yjUyIX5zIV5BDifVqK8/XLChAkJ5yfd+aypqUF+fj5GR0fR0tJi+t/K6sszGAyis7MTwOFrKlItS6/Xi6qqKnR3d6taPtK1GXV1dcKPgxMmTJBft7a26l4Oopel5kh33XUXAoEAVq1aNW5S8eqrr2JkZAShUAgvvfQSduzYgblz5+pqLBGRFRh5EarT6ZRjmvHCQrtRJpNql6Vy+USj0aTThcNh+Y4p0esJYP7RUDVVQFpbW7FhwwYUFhbizDPPlN9/4IEH0NbWhnXr1sm32z7++OO488474XA4MHHiRNx7772G/MBERGYjJQZFRUUoLS0VHr+xsRH79+9HV1cXAoEACgsLhX8HHZbObbJNTU14//33EQwG0d3djerq6oTTdXR0IBwOa4qthfIiVDMmq5oSkIaGBmzfvj3p3xcsWCC//s1vfpN+q4iILEzqbTY2No5bKU5X/Gibei8upOTSuU02/lbcZAmIkbfgAocvQq2srERPT48pKyDWPTFHRGRCymeAGHFQATgYWSalUwFR+xwWIwchi4+b6nRQNjABISISKBMHFbMPMGUn6VQp1F57YXQFRBk3EAigt7fXkO9IFxMQIiKBjHq4mJIVnnRqF3apgADmq5YxASEiEijXDyp2k05CqbZClevJKhMQIiKBjLwFV8JTMJkjLc+ioiKUlJSo+ozaBDHT64rZklUmIEREAmW6V2u2g4rdSMtTyx1NtbW1cLlcMZ8fL3ZhYSEqKyt1tjQxVkCIiHJEJnq1JSUlcm/cbAcVO0n3jiaXyyU/90xNBcSo27UBVkCIiHJGJq4BUcY+dOiQ6W6vtAs9y1KavqOjA6Ojo2P+7vf70dPTk1bsdNoBmC9ZZQJCRCSQ1MusqqoydIRSqWc7PDws99JJLD23yUrTR6NRebh1pUycqgMOP2NGen4LExAiIpuKRqPyTt7Igwpg7p6tXYiogMTHERFbC7Wng7KBCQgRkSDd3d1yud3oZ1/xQlTj6alSpLpTKVMVEOCLdaW9vR2hUMjQ79KCCQgRkSCZGNkyUXxWQIyh54LiVAliJi5WlkjrSiQSQXt7u6HfpQUTECIiQTJVVo+PzwqIMfQsTy0VkEyuK2ZKVpmAEBEJko1eLWCug4qdZKoCkslqmZmSVSYgRESCZOO8PmCug4qdSMsznTuazHIRqpq2ZAsTECIiQTJ5UGloaEj4vSSG3juaysvL4fF4AIxfASkrK0NRUZGOlqbGBISIyOYyWVYvKChATU0NAHMdVOyiq6tL1x1NDodD/lz88lEmN0YnqgBPwRAR2Z50UHG5XHJyYCTlAS4SiRj+fblERDVLOvD39/djeHhYfn9gYAA+ny9mGiOxAkJEZHNS77KhoUF+GJmRpINXKBRCV1eX4d+XS0RUs5Id+DN5sTIAVFRUwO12j/nubGMCQkQkwOjoKDo6OgBk5qAS/z1mOrDYgcgKSHy8TF4rBIx/OiibmIAQEQnQ1tYmPxQuUwkIb8U1jugKiDJeJq8Viv+e3t5ejIyMZOQ7U2ECQkQkQCZvwZWwAmIcEVWKZKdgMl0BGa8t2cQEhIhIgGwcVFgBMY6IhDLZ3SfZqIAwASEisikeVOxFWp567mgyUwXEjLfiMgEhIhIg22V1sxxU7EJanvX19Wnf0ZQqAXE4HKivr9fRSv1tySYmIEREAmSjAlJTU4O8vDwA5jmo2IHyjiY9y9Lj8aCiogJA4lMwtbW1yM/P19FS9VgBISKyqWxUQJxOpzwku1kOKnYg8o4m6cDf0tKCaDSKSCSC1tZWIbG1YAWEiMimpATA4/GgrKwsY98rHeA6OzsRDAYz9r12JrKaJR34A4EAenp60NHRgXA4LCR2Ou0AzJOsMgEhIhJA+eAyh8ORse9VHlja2toy9r12JrKaFV95yEalDAC8Xi/Ky8vldpgBExAiIp2Gh4fR398PILMHFcCc5/atTuSYLvHLJxvXCkmUo6FKp5iyiQkIEZFO2RiETGLGc/tWJ/JZLWapgABfrJsjIyPo6+vL6HcnkpftBhARWV02DypmPLdvdSKXZ/xgcaOjown/lgnxyZB0h062sAJCRKRTNsvqHA1VPCMuQpXiZvpJuEpmO13HCggRkU6sgNiLtDxF3NE0XgUkm+uKGZJVJiBERDqxAmIv0vIUcUdTbW0tnE4nIpEIDh06JCcg+fn5qK6u1t1WLcy2rvAUDBGRTtmsgJSUlKCoqGhMOyg9Q0NDGBgYACBmWebl5aGurg5A7EWojY2NGb1dW/pOiRmqZUxAiIh0Uh74pZFJM8XhcMg9WzMcVKxOGqUUEFfNkuK0tbWhq6tLaGwtzHYKhgkIEZFO0oG/srISHo8n498vHVgGBwcxODiY8e+3EyMuEpXiKMfeyHSlDDj8YD2p6mKGZJUJCBGRDtFoNKasng1m69lamRGn0xJVO7JRAYk/HZRtTECIiHTo6elBIBAAkJ2DSvz3muHAYmVGXFCcKJHJVrKqPB0kPZMmW5iAEBHpkM0LUBN9rxlK61ZmxPI0UwIifW84HEZHR0dW2iBhAkJEpEM2b8FN9L2sgOhjxPI0yykYwFyn65iAEBHpYLYKSLYPKlZnxB1NZqqAmGk0VCYgREQ6mC0ByfZBxeqk5VlRUSHsjqZE1Q4zrCvZTlaZgBAR6WCGUzBmOqhYmfKOJpHLsqKiAoWFhfK/S0pKUFJSIiy+FqyAEBHZhBkqIIWFhaiqqgKQ/YOKlSnvaBK5LJWDxQHZS1QBcyWrmhKQYDCIO+64AwsXLsTpp5+Oa6+9Fnv27Ek4rd/vx09+8hPMnz8f559/Pl544QUhDSYiMhPpgO90OuUxFrJBOqi1tLTEDHhF6hn5pFplvGwlqoCFKyDhcBhNTU1Yt24dXnvtNcyfPx8rVqxIOO3atWvR39+PjRs3Ys2aNbj77ruxf/9+IY0mIjILqRdZX18Pl8uVtXZIB7XR0VF5uG/SRlkREF2lMEsCUllZiYKCAgAWq4B4PB5cffXVqKurg8vlwpIlS9DS0oK+vr4x027cuBHXXnstiouLccwxx2D+/Pl46aWXRLU7LS+//DJ+9atf4a677kIwGBQaOxKJ4LnnnsOf//xnoXGJSL9t27bh2WefFT7wUigUQnt7O4DsltXjvz/bBxarMvJ6HrOcgnE4HHIClO31JE/Ph9977z1UVlaivLw85v2BgQF0d3dj6tSp8nvTp0/Hzp07E8YJBoNjEoK8vDw5SxPl3/7t3/C73/0OAPDDH/4QkydPFhb7ySefxNKlS+F0OvHxxx9jypQpwmKnIxKJxPzfjnJhHgHOp1779u3DqaeeinA4jP/8z//EFVdcISx2a2ur3N6GhgZVbTdqPpW3jB48eBBf/vKXhcbXyorrrTIBqa+vT9l2LfOoXD5q1xWjNDU1Yd++feju7obP54Pb7R53eq3L0ulUV9tIOwEZGhrCmjVrcN111435m8/ng8vlipmpoqIi+Hy+hLHWrVuHhx9+OOa9xYsX47LLLku3eQkprzp+9913Vf9IakjVnUgkgo0bN2LRokXCYutx4MCBbDfBcLkwjwDnM12bNm2SKx8vv/wyTjvtNGGxd+zYIb8uKSnRdJpZ9Hwq77J4//338aUvfUlo/HRZab3dtWuX/NrhcKhenmrmcfbs2XA4HHA4HDjqqKOyeklCWVmZ/Hr79u1obm5W9Tm1y1Jt5z6tBCQQCGDFihU49dRTcdFFF435u9frRTgcht/vl5OQ4eFheL3ehPGuuuoqLF26NLZhBlRAZs6cKb8OhUKYOHGisNjKJ1COjo4KjZ2OSCSCAwcOoLm5WWiiZSa5MI8A51Ov0dFR+fXg4KDQbfOvf/2r/HrmzJmqYhs1n8qKRyAQ4D4oDQMDA/LrOXPmpLxWQ8s8Tpw4Ebt374bD4cCkSZNENDdtt956K/7f//t/aGpqwvHHH59yvBOjlqXmBCQUCuG2225DTU0NbrrppoTTlJaWoqqqCnv27MHs2bMBAJ988gmOPPLIhNMXFBQITzYSUZ53a2trE/pDKs+ltbS0mGaDczqdpmmLUXJhHgHOZ7qM3Dbb2trk101NTZpii57PCRMmyK+5D0pPa2srgMNtrq+vV91utfOY7VPzkjPPPDOtz4lelpoj3XXXXQgEAli1ahUcDkfS6RYuXIhHHnkEw8PDeP/997FlyxZ87Wtf09VYvYy8SCt+J0dE5mDktmmGQcgSfT/3QemRlmd9fT3y8nRdIkkqaPqFW1tbsWHDBhQWFsZkUA888ADa2tqwbt06PP300wCA5cuXY/Xq1TjvvPNQWlqKlStXZr3sZNRwxZFIRM6cAW78RGai3B6lR5CLul3WDIOQSWpqauByuRAOh7M+voMVKe9oyvayzBWaEpCGhgZs37496d8XLFggv3a73Vi9enX6LTOAcqVSJgx6dXV1xZxn5sZPZB7K7VF6BLmoh4yZqQLicrnQ0NCAgwcPshOUhra2NnkAt2wvy1xhjRNzgpSWlqKoqAiA2CQhfmPnSIRE5pFo+xQd2+12jxmOIBukTlZHR0dMp4hSM1M1K1fkVAJi1AAs8cmM3+9Hb2+vsPhElJ6BgQEMDQ3FvGdE56OxsXHca+IyRdq/RaPRmAtkKTUmIJmXUwkI8EVpbXBwMObWWT0SJTMsgRJln5Hb5sjIiNzRMEvJnheips9Mp9NyRc4lIMpzv6I20EQ9Kl4HQpR9Rm6bZuwxG3WhfS4w4/K0u5xLQIzoIbACQmRORm6bZuwxswKSPjMuT7vLuQTEiB4CExAiczJy2zRjj5kVkPSZcXnaXc4lIDwFQ5Q7jNw2lXHMcsBiBSR9yjuaKioqstya3JBzCYhyAxVdAVEOJ8+Nnyj7lNuhtH0aUQExS8lemQhxH6SNdDwwyx1NuSDnEhDRG2gwGERHRweAww+DklZcVkCIsk+5HR599NEAgO7ubvj9ft2xzViyLysrkx8sxn2Qej6fD319fQDMsyxzQU4nICI2UOW99kcccQTq6uoAsPdBZAbSdlhTUxPzKAgRIyGb8RSMw+GQqzHcB6lnxmpWLsi5BKSwsFA+vydiA42/clpaeaVnThBRdkQiEXkbV26bgJjOhxS7vLwcXq9XdzxRpGSov78fw8PDWW6NNZixmpULci4BARBTpdA7ZHr8iiutvJFIRH6wERFlXldXF0KhEIDYbRPQ3/mIRqNyEmO2HjMvRNWOt+BmR04nIKOjo+jq6tIVK750x42fyByM3Db7+vrk60jM1mPmrbjasQKSHTmdgAD6d0Tx54G58ROZg5Hbphmv/5CwE6QdrwHJjpxPQPTuiFgBITInI7dNMx+weCuudmZOKO0sJxOQ2tpa+TUrIET2ZOS2aeaSPfdB2pl5edpZTiYg9fX18mtRPSGv14vS0lL2PohMIv6gUlxcjNLS0jF/S4eZL1pkFVY7aXma7Y4mu8vJBERZARF1LripqSnmHnyAGz9RNiVKEqQOwqFDh3TdAWfmHrPycROsgKQWjUbl5Wm2ZWl3OZmAiKqADA4OYnBwEMAXK25lZSUKCwsBcOMnyiZp287Pz0d1dTWAL7ZTn8+HgYGBtGObuQLi8XhQWVkJgJ0gNXp7e+U7msy2LO0uJxOQyspKuFwuAPqSBOVoitKK63A45J0cN36i7JG2v4aGBjidh3d1oiqU0mcdDkfMRe1modwH6R3ryO7MXM2yu5xMQFwul1ym1LMTSnbltPS6p6cHIyMjaccnovQon9GUaNsE9HU+pM/W1dUhLy8v7ThGkRKtQCCAnp6eLLfG3Mx8R5Pd5WQCAnyxI+ro6MDo6GhaMZKtuMrXIp45QUTaKJ/RlGzbTLfzEQ6H5fhmPWDxYnj1eAtu9uRsAiJVQKLRaMzOSotUFZD4aYgoM4zcNjs6OhCJRMbEMxPug9TjKZjsydkERERPKNmKy94HUXYl2zZFbPdmvgBVwrvx1LPC8rSrnE1ARPQQkq243PiJsivZtiliu7dCj5kVEPWssDztigkIxFRAlPfec+Mnyq5kBxURt+BbocfMTpB60vJ0OBwx6wcZjwkI9PeEqqqq4Ha75fe58RNlV7IkoaCgQB6IUPSpVzPhaWD1pN/HrHc02VnOJiB6k4TxRs9jBYQou8ZLEqR/t7a2yheTamGFuyZqa2vlsU+4D0rOCnc02VnOJiB6k4Tu7m4Eg0EAY1fcoqIilJWVAWDvgygbpO2uqKgIJSUlMX+TttdQKITOzs60YytjmU1eXp58OoH7oOTa29tNf0eTneVsAlJWVgaPxwMgvQ00VS9I1DMniEi7+Gc0KentfEj7i8LCQnnIczOS5rO9vR2hUCjLrTEnK5xOs7OcTUCUD45LJwFJteJK742MjKC/vz/NVhKRVome0aSk9/SrlLQ0NjaOSW7MRJrPSCSC9vb2LLfGnKxwQbGd5WwCAnyxc+rv78fw8LCmz6Yqw/JCVKLsSLVt6rlA0+/3y0Obm73HzGvRUmMFJLtyOgHRkySoPQUTPy0RGSvVQUW53WvdNq10wGInKDVWQLIrpxMQPUkCKyBE5pTqoKKnAmKFC1AlvBU3NSsllHaU0wkIKyBE9qP2+ixA+7ZphVtwJdwHpWalhNKOcjoBEdETcrlc8sBGSqyAEGVHqgSkuroa+fn5Y6bVGtvsByzug1KTErOCggJT39FkV0xA/ibdnlB9fT1cLte4sbnxE2VOqlMwTqdTfnSCna8BYQUkNeVgkma+o8mucjoBSbeHMDo6io6ODgDJd0L19fXyCs2Nnyhzkj2jSUna9ru6uhAIBFTHttJFixUVFfIjItgJGmtkZES+o8nsy9KucjoBUe6ctCQJ7e3t8uBiyVbc/Px83c+cICLtpG25uroahYWFCadRdhykobjVUJPcmIXD4YgZEJFitba2yq/NXs2yq5xOQDwej3zeT0uSoPZCNOUzJ8LhcJqtJCK1xntGk1K6t+JK05aWlqK4uDjNVmaONJ99fX3w+XxZbo25WKmaZVc5nYAAX+ykWlpaVA+ZrvZCNOlv4XA4rWdOEJE2XV1dGB0dBTD+tpnONVrK5MYqByzlfCp7/GSt63nsKucTEGlHEggE5POBqWitgMR/hoiMofagks622d/fL1cRrHLA4j4oOSvd0WRXOZ+ApNMT0loB0RKbiNKnNgFJZ9u04gGL+6DkrDSmi10xAUmjh5BOBYQbP5Hx1J7XT2e7t2LJnhWQ5Ky4PO0m5xMQvT0hnoIhMg8jKyBWvGiRFZDkWAHJvpxPQPT0hDweD8rLy5NOx42fKLPUJgklJSXyXSyiOx5mwk5QctLytModTXakKQFZu3YtFi9ejLlz5+LFF19MOt2qVatw0kkn4bTTTsNpp52Gyy67THdDjaKnJ5Rq9Dxu/ESZpSVJkLZ90adezYSngROLRqPy8rRKNcuONCUgzc3NWLFiBWbNmpVy2uXLl2Pr1q3YunUrnn766bQbaDStScLw8DD6+/sBpF5x9Txzgoi0k7Zhl8uFmpqacaeVtv2hoSEMDg6mjG3Fi1C9Xq9cpeU+6Av9/f0YGRkBYJ1k0o40JSALFy7EV77yFRQUFBjVnoyrq6uD03n4Z1CzgWrpYXEkQqLMkrbPhoaGhM9oUtLa+ZCmcTgcqK+v19HKzFLug9SOdWR3Vkwm7SjPqMCPPvooHn30UUycOBHXX389jj/++KTTBoNBBIPB2Ibl5RmS6EQikZj/SzuTlpYWtLS0yO8nc/DgQfl1Q0NDyumbmpqwf/9+dHd3Y2RkJOnQ0KLFz6cd5cI8ApxPteKf0ZQqjjIBOXjwIKZPnz7u9NJBq7a2Fi6XK+12Znp5NjY24sMPP4Tf70dPTw8qKioy8r1mXm8PHDggv1azH0/GzPMoktb5lDr1qRiSgFx++eW45ZZb4PF48Morr+Dmm2/GU089lbTXsG7dOjz88MMx7y1evNjQa0eUK2B1dTVaWlrQ3t6OTz/9FHl5yX+WHTt2yK89Hg/2798/7veUlZXJr7dv344JEyboaLV2yvm0q1yYR4DzmYpyNOPy8vKU26b0oDYAeO+99zBlypSk00YiEXkk0erq6pSx1cjU8lTug95++23MmDEjI98rMeN6+/7778uv3W637uVpxnk0gtr5nDx5sqrpDElAZs6cKb9esGABNm7ciDfffBMXXXRRwumvuuoqLF26NLZhBlZADhw4gObmZjlLmzRpEt577z1EIhG43e5xS3LSMM8AMGvWLEycOHHc75s6dWrMv1NNL0qi+bSbXJhHgPOplvKhclOnTk25rc2ePVt+HQwGx52+ra1Nfp7TpEmTdG3HmV6e8ZUd7oMQ8wTk2bNnp/2bmHkeRTJqPg07BaM03p0iAFBQUJDx60qcTqf8QyoTjtbWVjQ3Nyf9nPJ5CmoWhrLi0dbWlvGVVDmfdpUL8whwPlNRbpsTJkzQtG22traOO70yuWlqahKyHDK1POP3b9wHaV9XUjHjPBpB9HxqihQKhRAIBBCNRuXXic4JvfrqqxgZGUEoFMJLL72EHTt2YO7cucIaLZqWW3G13orHW3GJMkPrOB1anohrxVtwJRyPaCxehGoOmiogq1evxu9//3sAwF//+lfcfvvteOihh9DZ2Yl169bJt9s+/vjjuPPOO+FwODBx4kTce++9pt5otdwrr2cnx42fyDhak4SGhgb5tZbt3moHLI4FMpZV72iyG00JyKpVq7Bq1aqEf1uwYIH8+je/+Y2uRmVaOj2hiooKeDyelLFZASHKDK1JQkFBAWpqatDZ2WnrCgj3QWMp72iSxmqizLP/SSsV1PYQotGo/He1OyH2PogyI52h0qXpWltbx73F0MoVkPr6evk6PO6DgHA4LF8DYrVk0m6YgEB9BaSnp0e+elrtTqikpAQlJSUAuPETGUnadr1eb8ytp+ORDkCjo6Po6upKOp0VnwMjycvLQ11dHQBWQACgs7NTvqPJasvSbpiA4PCYAdKYAOMlCenuhDgSIZHxlNXJVHfeSdReoyUduPPz81FVVaWjldkhzafyduJcZcWnGtsVExCoHzI93TKsNO3w8LCqZ04QkTZantGkpPYUqTK5seLtltJ8RiIRtLe3Z7k12WXlapbdWG9LMoi00+rr64PP50s4TboXovEiMCJjpXtQUXP6NRAIyKdnrHrA4t14X7Dy9Tx2wwTkb5Q7FuUgNUp6KyDxMYhIDBGdg2TbpnJ/YNUDFi+G/4KV72iyGyYgf6OmJ8QKCJE5iegciN7uzYT7oC+wAmIeTED+Rk0PQUSZN9d7H0RG0HuBeHyMZLGtesDiPugLdkgo7YIJyN9o6Qk5nU75tjY1WP4kMla6dzbU1NTIT79Ott3b4aJFVkC+IC1Pq97RZCdMQP5GS0+orq5O3mlpjZ3rGz+REdJNEpxOpzwke7Lt3g49ZlZAviAtT6ve0WQn/PX/JlWSEAqF5NvXtJZhtTxzgoi0U26zyu1NDWnb7+jowOjo6Ji/2+EUTGVlJQoLCwHkdicoEAigu7sbgHWTSTthAvI3qSog7e3t8lDNWldc6ZkTQG5v/ERGkbbZyspKVc9oUop/XH08O1RAlGMd5XInyA53NNkJE5C/8Xq9KC8vB5B4A9XbC5I+k+qZE0SkTTrPaFJK1fmQ3lM+VsGKpPns6emB3+/Pcmuyww7JpJ0wAVGQkoREQ6brXXGlz4RCoXGfOUFE2qTzjCal8S5Aj0ajMdcMWBkvhrfH6TQ7YQKiIG2gfr8ffX19MX/TeyW82gfeEZE2erfN8Q7Mg4ODGB4eBmD9AxYvRGUFxGyYgCiMlyTofYARex9ExtC7bY633dvhFlwJ78az1/K0AyYgCuMlCSJ7Wbm68RMZwcgKiJ16zKyA8Em4ZsMEREFtAqK3l5WrGz+REURdnwWI3+7NhFVYVkDMhgmIgppTMIWFhaioqNAcmxUQImPoTRJKS0tRVFQEYPxTr1Y/YHEfZJ87muyCCYiCmp5QU1MTHA6H5tisgBAZQ2+SMN4YGayA2Ied7miyCyYgCskqICMjI+jt7QWQ/opbXV2N/Px8ALm58RMZRdqetD6jSUna9gcGBjA0NCS/b6cKSHFxMUpLSwHkZgVEeUeT1ZelXTABUairq5OfDaBMEkScN1Q+cyIXN34io0jbU319PVwuV1oxklUHlK+1DvFuRlKi1dLSMmasI7vjBajmwwREIS8vT+5BKVdWUSuutJPr7OxEMBhMOw4RHabnGU1KyaqfUgJSU1ODgoKCtOObhbQP8vl86O/vz3JrMosXoJoPE5A40orZ1taGcDgMQNyKq/xsomdOEJE27e3tck9e1LYpbe+RSETXEO9mlMvXorECYj5MQOJIO5pIJIKOjg4A4i5Ey+WNn8gIoq7RSJSAdHV1IRQKAbDPASuXL0RlBcR8mIDESVSKNWInx+tAiPQzonMgers3k1zeB9npjia7YAISJ1EPgRUQInMysgJixwNWLu+D7JhQWh0TkDipekJ6roTP5fInkRFEJQmJKgN2PGCxAnKYHe5osgMmIHHG6wmVlZXJIyamg0/EJRJLVJJQWFiIqqoqAIkrIHZJQFgBsc8dTXbABCROfJKgHD1PbxmWFRAisUQmCfFjZNjxFEx9fb08knMudYIikYh856Fdkkk7YAISJz5J6Ovrg9/vH/O3dJSUlCR95gQRaSclCW63O61nNClJ23cwGER3d7ctT8Hk5+ejtrYWQG51gjo7O213R5MdMAGJU1lZicLCQgCHN1CRvSCHwxHTyyIifZTP9kjnGU1K8Z0PaRvNy8tDTU2NrthmIs1na2srIpFIlluTGXY8nWYHTEDiKB9MdejQIeG9ICnG4OAgBgcHdccjylU+nw99fX0AxPRq40+/Stt+Q0OD/IgGO5D2QeFwWB7ryO7seDrNDuyzVQkkbaA9PT3Yu3ev/L7onRyrIETpE92rVcbYt28fOjs7AdjvgJWL+yA7nk6zAyYgCSg30O3bt8uvRe/kcmXjJzKC6F6tMsY777wjv7bbASsXb8XlKRhzYgKSgHIFffvttxO+ny7eikskhlGnRwHx272Z5HoFxG4VLStjApKAcgXduXNnwvfTxQoIkRiie7VGbvdmwgqIvRJKK2MCkoByBZWeiOtwOFBXVyc0dq5s/ERGEH0KpqamBi6XC8AX2z1gvwNWLlZA7HpHk9UxAUkg0c6srq4O+fn5QmPnysZPZATRp2BcLlfCIbrtXAHJlX2QXe9osjouiQQS7cxE9YKUO7hc2fiJjGBEWd3Ibd8sqqqq5M5ULlRhg8Ggbe9osjomIAkYuRMqLCxEdXU1gNzY+ImMIm0/5eXl8Hq9QmIm2s7tdtByOp3yfOZCJ0gagh2wXzJpdUxAEigqKkJZWVnMeyJ3QsqNPxqNCotLlCuUz2oRuW3GxyoqKkJJSYmw+GYh7YO6uroQCASy3Bpj8QJU82ICkkT8iipyxZV2cqOjo+jq6hIWlyhX9Pb2CntGk1Ki7V7vEO9mpEy0lBUCO+ItuObFBCSJ+BXViAoIkBslUCLRjOrVGrndm0ku3Y3HCoh5MQFJwsgKSC5t/ERGMOrZHkZu92aSS3fj8Tkw5sUEJAkje0K5tPETGcGoZ3vkYgXE7vsgPgfGvDQlIGvXrsXixYsxd+5cvPjii0mn8/v9+MlPfoL58+fj/PPPxwsvvKC7oZmWqQqI3Td+IiOwAqJPLlVhWQExL00JSHNzM1asWIFZs2aNO93atWvR39+PjRs3Ys2aNbj77ruxf/9+XQ3NNOUGWlBQgKqqKmGx+TwYIn2M6tWWlZXB4/EYEttMcmkfJM2fXe9osjJNCcjChQvxla98BQUFBeNOt3HjRlx77bUoLi7GMcccg/nz5+Oll17S1dBMU26goq+EZwVEjP379+PZZ59Ff3+/8NgdHR34z//8T7S3twuPPTAwgP/6r//CZ599Jjy23+/HE088gQ8++EB47HA4jN/97nfYtm2b8NhaGXVhocPhiNn27dpjNnof1N/fj//6r//CwYMHhcfWSpo/u97RZGV5ogMODAygu7sbU6dOld+bPn16zMOd4gWDQQSDwdiG5eWlTHTSEYlEYv6fTH19vfy6sbEx5fRaVFdXw+VyIRwO49ChQ0JjS9TOp1VFo1EsWLAAu3btwvvvv4//+I//EBr/iiuuwMsvv4yzzjoLL7/8stDYK1aswCOPPIIpU6bg448/Tjk0tJZl+ctf/hI//vGPUVZWhv379wvt8T3++OP41re+BZfLhV27dmHy5MnCYgPa5lPq1TocDtTW1gpdzxsbG7Fnzx4Ah/cDorchM2ybUjVgcHAQLS0twtty8803Y926dZg8eTJ27dolNLYWg4ODGBwcBHA4mbTjsswErfOpdrh74QmIz+eDy+WC2+2W3ysqKoLP50v6mXXr1uHhhx+OeW/x4sW47LLLRDdPduDAgXH/HolEMH36dHzyySeYN2+e8FNItbW1aG1txYEDBww9PZVqPq2qt7dX3rH94Q9/EP4b/ulPfwIA/PGPf8S+ffuE9py2bNkCAPj000/xl7/8RfXDsdQsy1dffRXA4R7o66+/jmOOOSb9hsaRqpjhcBibNm3C+eefLyy2kpr5lKaprq4Wfgph3rx52LJlC6ZOnYpoNGrY9pntbbOmpgaDg4M4ePCgYev4Z599hvfeew+VlZXCYmuxd+9e+XVpaaltl2WmqJ1PtZ0T4QmI1+tFOByG3++Xk5Dh4eFxh0q+6qqrsHTp0tiGGVgBOXDgAJqbm1NmaW+//TY++ugjzJkzR3jprrm5Ga2treju7kZjY6OQB90paZlPKxoYGJBfd3Z2YuLEicJiDw4OYnh4GAAQCARQVlaGiooKYfGl51IAhx+AlqrtWpZlX19fzOdE/y6S0dFRobEB9fMZDofl37C5uVl4O37+85/j0ksvxcyZM1FcXCw0NmCebXPSpEnYu3cvfD4fKisrUVpaKiy2ch13OBzCl5FaygRk2rRpWVtnrc6o+RSegJSWlqKqqgp79uzB7NmzAQCffPIJjjzyyKSfKSgoMCTZGI/T6Uz5Q5aWlmLevHmGfL90bjkajaKjowPNzc2GfI+a+bQi5eiNAwMD8Pl8wg4W8SNDtra2CrsIeWRkBL29vTGxTzjhBFWfVbMsldWA1tZWocteea1AS0uLYetVqvlsa2uTS8FNTU2GtOPEE08UHjNetrdN5XUgbW1tKC8vFxJ3aGgopoPQ2tqK448/XkhsrZTb8oQJE7K2ztqF6PnUFCkUCiEQCCAajcqvE50TWrhwIR555BEMDw/j/fffx5YtW/C1r31NWKPtgBei6hP/m4n8Da0ae3R0FB0dHYbEjo+XzXWWt1WKYdStuEau41pxXTE3TQnI6tWrccopp+Cvf/0rbr/9dpxyyin4y1/+gk2bNsVcr7F8+XIUFxfjvPPOw8qVK7Fy5UpMmjRJdNstLZdugzOCVZMEI2O3tbUZFjscDsfEz+ZBhQNLiWHUgIjxsbL5rBmuK+am6RTMqlWrsGrVqoR/W7Bggfza7XZj9erVuhpmd6yA6BOftIlM4hh7rI6ODoTDYUNia8Vne4hhVAXEyPVQK64r5mb/k1YmxQqIPlatUtgpdjQaFRZfCz7dVIxMVUBYLaNkmIBkCSsg+li1kmCX2MPDwzEXGmYSe7ViZKoCYoZrQKqqqlBYWJi1dlBiTECyJJeexWAEO1USjIrd19c37vg7emIney8TeGGhGA0NDfJrq6zjWkSjUfm7uZ6YExOQLCkrK5PHRmEFRJtQKDRmiHSrVhI6OzsRCAQMiQ2IW7cSxc5W4ix9b2FhYdYGuLKDgoICeRA8kfug+PWivb0doVBIWHy1urq6MDo6CoCVMrNiApIlDodD3iiYgGjT3t4+5vZvUb9hJBIZc9V+W1tbzAWYeiRqZ/zdKyJji/pdzFgB4bM99FPug0QNJx6/XkSjUWHreLrtYAXEnJiAZJG0UfT398sjb1JqyQ6GIi6KVPaaJJFIJGZ8jXQpS8JKVkgSzJKAjIyMoKenBwB7tSJI+6BQKISuri7d8Yxex7XgBajmxwQki3ghanoSlf6DwSC6u7t1x062HEScbujr68PIyIghsZPFsUJsLZTVKfZq9RN9LVp3d/eYB4uKiq0VKyDmxwQki3grbnqUOxblEP4ikjirxlYOfy06tjKOEbG1YK9WLNG34hq5jmvFdcX8mIBkESsg6VHuWI466qiE74uIfeyxx1omtnL9ER3b7/fL1aWjjz5aaGyteAuuWKIrIEau41pxXTE/JiBZxAQkPcrfSnlAFN2Dmzt3riVjz5kzR2hs5WmPSZMmGXLnhFosq4sleh9k5Hqopy1cV8yJCUgW8RRMepS/legeuTKGMkmwUuypU6eioqLCkNhNTU3yetva2irszol02sJerX6iT8Eol0+2ExCpLS6XS06ayVyYgGQRKyDpkX6rwsJCTJ8+fcz7ImIDxlYpZs6ciaKiIkNiNzY2xtxeqffuoGSxQ6EQOjs7dcXW0xb2avUTfQpGuXxmzZoljz6azVMwDQ0NcLlcGf9+So0JSBZxNNT0KEc3rK+vH/O+HtJyyMvLw4wZM+QL6UQnCcpKgpGx/X4/+vr6DIkd/7dMYAVErJqaGuTlHX4mqRHrobR9Zno9GR0dlW+d53piXkxAssjtdssjObICos7IyAh6e3sBHN6xVFZWyr0bkT04qdck7bxEnspwOByoq6uTYw8ODmJwcFBIbCC2ShH/N7PF1kpaPmVlZXIFidLndDrlIdlFruMulwu1tbWora0FIPaxAGq0tbXJlT9WysyLCUiWKXvB2Xq6qJXEnw5wuVzyDlRvEqfsNUnLRfp/T08P/H6/rvhS++rq6pCfny+0khD/uxgVO5sVkGg0Kh/g2KsVR1qenZ2dCcfw0EJaH+rr6+FyuVBXVzfmb5nASpk1MAHJMmnjCAQC8giPlFyiHYv0//b29jGjmGqhvNsjPjagbwcaDofl4agTxRZVpaisrITb7TasAtLQ0JC1Ckh/f788kBsPKuIof8v4xxBoMTo6Kj+jSYqZrQSEt+BaAxOQLOOFqNok2rFIFZBoNDrmIXV6Y4taPh0dHfLzZETHTvTUT5HrlfT5kpISlJSUZG2d5QWoxhC1PNvb2+UqbqIEJJPJKtcVa2ACkmW8FVebRBUQUb9h/O2mVomtHP5a9G+iPO0hut1asaxuDFGn1BKt4zwFQ+NhApJlrIBoY2SVgrHHGhgYkC8elGJWV1cjPz9fd2yt2Ks1hqhTaonWQ1ZAaDxMQLKMFRBtEu1YRB1sU1UpRCUJmYhdV1cHp9NpSGzlnRPs1Vqf0euhiNhacV2xBiYgWcYKiDbjXYQa/3etUlUSRJ2Cib92xYjYeXl58s5fdGzl687OTgQCgbTja8FerTGMXMezXQHxer0oKyvL2PeSNkxAsowVEG2kHUt5eTm8Xi8AY89hG3GaRIpdWFiI6upqQ2IrX7e1tckXwIqOLcXPBN7ZYAwjKyBut1t+LEA2Ttc1NjbC4XBk7HtJGyYgWVZbWyukVJ4Lko0DIboCUlRUhJKSEgBAcXExSktLdcdOVUloaWlJ+7kqqWJHIpG07w5KFTt+GiMpB3JTjoBL+pSUlMiDuhm9jmdirKPh4WH09/ePaQeZDxOQLHO5XFkbrthq+vr65MHAlDuWsrIyeDweAGJ6cPG9JhE7UCl2QUEBqqqqxsQeHR2VH3mfbmwgtjcronqTrOqQjVOH0vfU1tbKF8GSfg6HI2YdT5f0WbfbjfLycvl96VSj3++XRzE2Ek/VWQcTEBOQNpL29naEQqEst8a8Ep0iAQ7vQKV/p9uDGxoawsDAwJjYyn/7fD65Z6WVsnKjTG5EnIKTPud0OuWhr0XHjo+X6VOH4XBYHiSLvVrxpOWp57EAytu1k63jmUhWeQGqdTABMQERpfJcMN41ANK/+/v7MTw8bEjs+OnU8vv98ii3omMrPycNf21EbCm+yNhadHZ2ytexsFcrnt7lOd5pj0yfrmMFxDqYgJgAL0RVZ7wdi/Lf6QwnnaynH//vdHbOyvaIjh0KheSkVXRs5edqa2vlJwOLiq0Fe7XGMvM6rhXXFetgAmICvBVXnfF2LHp7WWorIOnENrLdyqd+io4diUSSnvZgr9ZejFzHRd1urhbXFetgAmICrICoo7YCkk4SZ2QFxMh2Gxm7s7NTviYpPnZpaSmKi4vTjq0Vb8E1lpnXQz1t4bpibkxATIAVEHVYAdEWu6KiAoWFhYbEVr6XiaSZZXVjZWodz/QpGGX1hcyHCYgJMAFRR/ptHA5HzAiLgP7f0MiLUMeLXVNTI184Krrnqff2ylQ9Sem9oaGhtO+cSKctLKuLZ+Q6rnwsQCZPwVRWVsq355M5MQExAZ6CUUf6berq6saMAyHyFMx457BFJwkul0vXc1VSJQnS9/X09MhjqKQTO9FBP5PrLSsgxhKZgMSvK8rHAhjdwYpGozHj+ZC5MQExgfLycrjdbgCsgCQTDoflIb8T7Vj0Xugm/e5VVVXyaQtJfn6+PL6GkacyOjo6MDo6mnbsREmCngOL2nanE1srKX5+fr48fD2JU1hYKA+QZ+Q63tbWZuhYRz09PfKziVgpMz8mICYgYiAtu+vo6JCHKk+0Y/F4PKisrASg/WCo7DUl22lJ77e2tmoeMl2KrbxwM1HsaDSq+bkqaisg8dNqjZ2qAmJ0ApJsIDcSR1qe6Yz4Ky3/ioqKhKc9pNiRSAQdHR06W5ocK2XWwgTEJKSNpa+vDz6fL8utMR81OxblRZFadqDd3d0IBoOqYofDYU070GTPr0kUG9CegErTxw9/LTJ2fBwRsbUIBALyMPXs1RpH+ViArq4u1Z/Tuo4bmazyWiFrYQJiEpm+Vc1q1OxYpPcDgYCmZ06kOo0R/76W5TMwMCAnlKJjK6ePH/5aZOxkpz0ytc4qB7lir9Y46S7P3t7elKc9MnW9EG/BtRYmICbBO2HGp6UCEj99Kmp2WunGNrLdPp8PfX19hsRWTt/Q0CDfxSAqdjrtiP9OEitT67iR+zeuK9bCBMQkmICMT2uSoOU3tEPsZD3PdGMHAgG5DJ+s3XrvDlKLZfXMyNQ6nqkKCNcV82MCYhK8FXd8Rp4mMTK2llNHemKLTm6UF8Mma3dhYaF8aoYVEOsz4zquFdcVa2ECYhKsgIzPyF6WVU/BqEmcioqKUFZWpiv2eDty6W/p3B2kFnu1mWHGdVwraV1xOp1jBisk82ECYhKsgIxP2rEUFBTI4xXEs2oFpKysDF6vV1fs8ZKEdG6vVHvQl/42Ojoq36kiGnu1mWHkOl5ZWSmPr5OJCkh9fb08wjCZFxMQk8jU+XSrUjMOhN4KiMvlQk1NTcJpqqqq5NFXRfcOlUOmG1ml8Pl86O/vNyR2/GdE4p0NmaF8LICR67hR+7dQKIT29nYArJRZBRMQk/B6vfI4DkxAYvn9fvT09AAYf8eifOZEOhWQhoaGpL0mp9OZ1g5UOe14D8aS5mtgYABDQ0OaY6upUsR/JluxtZLilpSUoKSkxJDvoPQfC6D2tIfysQAjIyM6WppYe3u7XOFjomoNTEBMRDkaqtaRCO1MbQ/Y5XKhvr4egPoe3OjoqDywWKqdlvT3rq4uedyDVKR21NbWjnl+TaLYgPqdv5FVCrNUQJSDXLFXa7x0HgugfEZTXl5eythA7Nguoqg5lUrmwgTERKQN1O/3y+M7kLYSvPT39vZ2Vc+caGtrU91r0roDjUQi8nRaYmutUiQb/lpE7PjPi4itxeDgIIaHh1O2g8SQfmO1jwVQnvbQso4bkazyVJ31MAExEV6ImpiWno3WZ05oucNC6+mGzs5OhMNhQ2JreeqnnlMwxcXFKC0tVRXbiHWWF6BmltZ1JdUzmvTE1orrivVoTkB6e3tx44034pRTTsHFF1+Mt956K+F0q1atwkknnYTTTjsNp512Gi677DLdjbU73oqbWDoVEEDdAdHI2Fp2iFpj9/b2wu/3A0i949dzCsaIyo0WvAU3szK1jnNdIQBIfsIuiXvuuQc1NTV49dVXsW3bNqxcuRLPPfdcwl7S8uXLsWzZMhHtzAmsgCRmZJUineqK2thGtltL4qQ19uDgoHwhbKp219bWwuVyIRwOs1drA5lax1ktI0BjBcTn82Hz5s34zne+A7fbjTPOOANTpkzBli1bjGpfTmEFJDEjKwlWrYBoiV1XVyffuiw6ttPplO+cMPq8Pnu1xmMFhDJJUwXk888/R3FxccyTMadNm4a9e/cmnP7RRx/Fo48+iokTJ+L666/H8ccfn3C6YDAoPw5dblheHgoKCrQ0TxXpfKVRozbqId3BAQAHDx7U1UYzz6dWyh1LfX39mHlTzqPyNzx06FDK+T948GDC2Iloja3cOaeKrbx9saWlJWbaRPOpbHdjY+O4sV0uF2pra9He3j4mdiLK2A0NDSmnb2xsxMGDB9HR0YFAIDDu3T7jSTSfWn5DqzDztilyHY+fT62xtZL2E263G6WlpRn5fc28LEXSOp+JHl6ZiKYEZGRkBEVFRTHvFRUVJRy34PLLL8ctt9wCj8eDV155BTfffDOeeuqpmJVQsm7dOjz88MMx7y1evNjQ60YOHDhgWOx0KW+9/fTTT7F//37dMc04n1rt27cPwOELIru7u8eMuKmcR+UgZbt27Ur5GyqT50gkMu700gWl0udSxd61a5f82ul0ppy+vLwcfX192L9/f8JplfP54Ycfyq/z8vJSxq6pqUF7eztaW1uxd+/ecUeJfO+99+TXHo9HVbslb7/9tu7ep3I+d+/eLb+ORqNCtgmzMOO2qTzAqNkHKddxh8ORcr0tKSnB4OBg0nVcD+l76urq8PnnnwuNrfa77U7tfE6ePFnVdJoSEI/HI98SJxkeHk54C+DMmTPl1wsWLMDGjRvx5ptv4qKLLhoz7VVXXYWlS5fGNszACsiBAwfQ3NysOkvLlKamJjidTkQiEfT19WHixIlpxzLzfGoRjUbR2dkJAJgwYULMb5JoHpUDVQ0MDKT8DaUBzjweD2bPnp10lFVJcXExhoaG0NPTkzL2wMCA/PqEE05AbW3tuNNPmDABfX196OjowBFHHCG3JdF8+nw++XPHHntsyrZMnDgRH3zwAcLhMLxeb8KOgERZjZw1a1bK2FOnTsVLL70E4HCile56m2g+lSO3zpkzx5B9QqaZeduMRqPweDwYGRlBb2+vpnV8zpw5MY9JSDSfEyZMwEcffTRmHdfL5/PJbTniiCN07Tu1MPOyFMmo+dSUgBxxxBEYGhpCV1eXfBpm9+7dCZOKeOOtaAUFBRnfsTidTtOtMAUFBairq0NraysOHTokpH1mnE8t+vr65IOtlKDFU85jVVUV3G43/H4/WltbU867VLZtampS9eyIpqYm7Nq1Cy0tLSljS2OA5Ofno7a2NuX0TU1N+OCDDxAMBtHX1zfmmTfK+VSOQzJhwoSUsSdMmCC/bmtrG/d8vTK2mh2OMraa3zwV5XxKJf6amhq43W5dcc3GrNtmU1MT9uzZo2kdl56MnGg/r5zPpqYmfPTRRxgZGcHg4GBM9UwP5ZgljY2NGf9dzbosRRM9n5oieb1ezJ8/H2vXroXf78fmzZvx6aefYv78+WOmffXVVzEyMoJQKISXXnoJO3bswNy5c4U13K6kA0NbW1tMyT9XaR1cSMtzVYaHh+Uettqr5qXphoaGYnp/iSiHeFez0Wq5AFD6u9qnfqYTO/5zamKLvLhQOZAbLyrMHGl59vf3j6l4x1PzjKZEsQGx6wovQLUmzanMypUr0d7ejq9+9au4//778fOf/xylpaXYtGlTzDUbjz/+OM477zycffbZeOyxx3Dvvffy1igVlANpSSMM5rJ0dizSdL29veM+c0JP7PjPxwsEAujq6jIktvLvqYa/1hMbGP/5NenE1qKzs1MezZb7jsxRuzyl0zTxn1EbW+RdU7wF15o0jwNSUVGBBx54YMz7CxYswIIFC+R//+Y3v9HXshwV30PI9Y0pnR1L/G84ZcqUhNOlM3RzfCVBea2TkvI0RrqxkwmFQnLJWe2OP50KSHV1tfwIdVGxtWCvNjvil+e0adMSTqd3+2EFhOx/0spiMvF4cysxcicnIrlJxsh2K4e/Fh1by/NrtMbWis/2yI5MreNGJatcV6yDCYjJZOLx5laSzhMu1ZZ59Z6CGS+2ke1OJ3FSG7urq0t+CqradpeVlcHr9aaMrRWfbpodmVrHRe7fuK5YExMQk2EFJBYrIOPHVruzraqqku80E91u5YW/rIBYn9UrIGquWyJzYAJiMqyAxFLupNTuWNT+hkZehJpO7Lq6OvlumWwlCemeS5emHRgYSDgwYTp4YWF2GLmO19fXy3fLGFEBKS8vl6txZH5MQEyGz4OJJf0GtbW1qof4VtvLSie5UU4n+jSJy+WSBwgTXfpWtqOrqwuBQCBlbC0HfSPWW15YmB1GruPSmDiAuPUkGo3GjOdD1sEExGQqKyvlOw9y/RRMuuNAaC0hV1ZWJhzNN5GCggLU1NSojg2kV0lob2+Xb0EdL7aWJEHZDuVdOslip9Pu+Bh6SHHy8/Njnj9FxvJ4PKisrAQgvhIHfLGutLa2ChnrqK+vD36/X3M7KPuYgJiMUefTraijo0PeQWnZsXi9XnmExWRJnLLXpHWnpVw+yR7OJH1vcXFxzPDwamNHo9GY0R0TxQbST8yS/S4iKiCiEmetA7mROMp1XPmMKiVp+ZSVlY15Rpia2OFwWH7Mgh68ANW6uFWbkLSB9vT0jDuQlt3puQgx1Q60p6dHPg2RbuxQKCQPNhZPb3KjjJEsdmFhISoqKgyJHT+9iNhaBINB+eDEXm3mSb95IBCQn5ekJCKBB8Qkq7xY2bqYgJiQmlJ5LtDTs5GmHxkZQV9f35i/67m+INVtisoLMUXHVr6vdvjrdGK7XK6UD8/TGlsL5XrPXm3mpVqefX19cudIzzouIlllBcS6mICYEG/FPUxEBSQ+jkTPHRapYhvZ7nSGv1YbW/m+1tMeoisg7NVmVzbXca24rlgXExAT4q24h4mogACpd6BWip3OEO9qY4+OjqKjo2PMtGqITpp5C252ZWod57qS25iAmBBvxT1MVC8r0U5OVAUkm7FFJwl6khu3263qzgm1eAtudmVqHee6ktuYgJiQUU+MtBqrVikyFVvrjr+4uBilpaWqYqezI5c+M96dE2qxrJ5dVqqASG1xOp2oq6vTHY8yhwmICbECcpi0c8rPz0dVVZWmz6bqwZm1ulJeXg63260qdjpJgtSeQ4cOjUkS9Jaypc8Eg0F0d3dr/nyytrBXm3lGruNVVVXyoIIiL0Ktq6tDXp7mB7xTFjEBMSFehHpYuhdEAuovQnU6nZru9gCAmpoaeUcnukqRahwYvZUB6TPDw8MYHBw0JHZ8rHSwApJdtbW14z4WQNQ6rnf/Fg6H5fFyuJ5YDxMQEyoqKkJZWRmA3K2ABAIBeYyNdHrAymdOjFcBqa+v19xrcjqd8nDVqXqH6TwYS5rfvr4++Hy+pLH1nCaJj2V0bK2UA7lJp40oc/Ly8sZ9LID0nsPhkKfTQlpXuru7kz4WQI329nZ5MEBWyqyHCYhJjVcqzwV6LogEDu9ApfPB8UlcKBRCe3t72rGVn+vs7EQwGIz5m/R91dXV8rD66cRWxkr073SSG7WxzVIBYa82e6TfPtFjAdJ5RlOi2IC+sY5YKbM2JiAmpRxIq7+/P8utyTwR1wBIn2tra4t55oSIXpPyc8oh09N9fk2y2MmSBK3DX2uJHT9dOrH1VEAGBwfl00M8qGSPtDyj0aicsAOxpz1ErON61hXegmttTEBMKtevAxHRs1E+c0Ia3wIQs9NKtny6urowOjpqSOxoNCr/O90d/3jrlfRvr9eb1mkPURUQ3lZpDsnWlXSf0ZQsNteV3MUExKRyfTAyETuWZL+hVWP39/fLw1+nu+NXUwFpamrSNMS7mthasKxuDplax/V0sLiuWBsTEJPK9VtxjaxS2CG26ArI0NAQBgYGxkyjhfLOCVFldfZqsydT67ie/RvXFWtjAmJSPAUj7hRMfLxcjq28Y0F0bJfLJcfXc1DRewEyiZGNdVwrVkCsjQmISeX6KRiRF6HGxzOyhGxklUJE7IKCAnncE9GxlZ9tb2+Xr4XRir1ac8jGOq6V9NnCwkL5UQBkHUxATIoVkMNJQnFxMUpKStKKkayXZWQJWUSPzOv1ory8fEw8UZUB6bOtra3y3UCiepLSZ+PvnNCCvVpzMHIdLykpkbdrERWQxsbGtK5bouxiAmJSyoG0cq0CIuJuj/jPJtqBut1uVFRUpBW7tLRUvg1W9AV6ys8qn6si6sAsxQ6FQvJgb6LbDaSfOOsd64TEqKiokB8LYOQ6nu5YRyMjI+jp6dHdDsoeJiAmlZ+fn7BUngsGBwcxPDwMQN+BtrKyUh4ILFEJWU+vKdlw0tLrvLw81NTUpBVbahsA+P1+9Pb2jvkePTvcRNU1UeMpiDi3r3cgNxIj1TpeUFCg+RlNSuM9FkANXitkfUxATCzZQFp2J6qHlei5Kj6fD319fbpjKz+vHDhLz/NrEsVWxpR2uA6HQ9dTPxPFNqICkk4CEo1GOQqqiSR6LICo0x56q2U8VWd9TEBMLNlAWnYncnRD6fPd3d3w+/1Cd1rxvf1gMCgvJ5Gx46sUdXV1aQ1/rSY2oO+0h95rl3p6euSLV1lWz774ddzv98tPOha9/WjFi5WtjwmIieXqWCBGJQmtra2GJiDKIdlFxxb51M9E65X0/8rKSvm8v6jYWigTbfZqsy9+eYo87aF3XWEFxPqYgJhYrt6KK7JnE1/mFTl0c3xso9rd0tKC7u5u+TSc6HYrT3uIjq2VMoljrzb7MrWOp7OusAJifdqeQ04Zlau34hpZpTDi9I4U2+PxGBZbeUur6Njd3d3yE331xi4vL4fb7R5zukstVkDMJX5dcblcCf8mIrZWrIBYHysgJsYKiPhKglEVEKNjizwwV1dXy9eQiG63w+GIub1SK1ZAzCVT67jeCggTEGtiAmJirIDoHwci/jc0qgIiOnZdXZ18F0389SV6d/xOp1P+XUW3Wxmjv79fvp1aLVZAzMXIdTzZYwHUkj5TVlYmj8lD1sIExMRytQIizWtNTQ0KCgp0xRqvBye6hCyyd5iXlyffaiu6AgJ80b7Ozk7s27dvzPsiYgOxYzWoIfJUE+ln5DqufCyA1v0bb9e2ByYgJlZVVSWXynOlAhKJRITuWJQVFGUPrry8HF6vV1fswsJCeSAmIysJbW1tQnf8ytgA8M477yR8X0RsreutlIC4XC754ETZo3wsQPw6LmKUWuU4PdJjAdTo7++XxyXhqTrrYgJiYokG0rK7rq4uhEIhAGIOhsXFxSgtLQUQexeMqF6TcvlIO2ev1yt/p4jYkUgEO3fuHPO+iNgA8PbbbxsWW+t6KyUgegdyI3ESrePKZ7mIiK18LIAavADVHriFm5yU3UsDadmdEbfWSXE+++wz+TcUHXt0dBR79uyR3xPxYCxlG3fv3g1A//DXiWIrkxvRp2C0VEBGR0flQa7YqzUPaVn4/X589tlnMe+Jig1oW1d4C649MAExufiBtOzOiJ6NckRZo2Ir4xsdW0Rykyi2qNMe6VZA2tra5IeSsVdrHplax7WsK6yA2AMTEJPLtQtRjayApHov12PX19fHjPMgIjZ7tdaXqfWQ60ruYQJicrl2K66RFZBU7zG2mNjKixPZq7W+TK2HXFdyDxMQk8u158EwAbF+bOWdE1rWWT5e3ZyYgJBRmICYnN7RAq2Gp2AyE7u0tBTFxcWGxFbGkp41owbL6uZk5lMwDocjZkAzshYmICaXqxWQvLw81NTUCIlp1UpCZWUlCgsLDYmdKJYRsQOBAHp7e1V9hr1aczJyHY9/LIBa0rS1tbXy58l6mICYXK5dAyLNo8hxIOJ7ayJ7TbW1tWMu3BTVO1SOAyM6dqJYRsVWu96KHmyNxKivrx9z55Wo5RP/WAA1wuGwfLqO64m1MQExOeWAP3avgASDQXR2dgIQ2wOO34HW1dUhL0/Mg6BdLteYZEbECJGSTFQpjI6tdr2VphM1kBuJoXwsgETkaQ9pXens7JSfyjyezs5O4bcDU3YwAbEAKctvaWlRfT7dipQXIYrs2eTn58eMbyG616SMV1VVBbfbbUhsQOwO12wVEGk6UQO5kTjK5VlbW6v7GU3JYqsZ64jXCtmH5gSkt7cXN954I0455RRcfPHFeOuttxJO5/f78ZOf/ATz58/H+eefjxdeeEF3Y3OVdNAZHh7GwMBAlltjHCOvAVDGs2rsRBeOioqd6N+iYqupgAwNDcnrNnu15pOpdVzNusJrhexDcwJyzz33oKamBq+++ipuuOEGrFy5MuFBce3atejv78fGjRuxZs0a3H333di/f7+QRueaXLkQlQlI9mK73W751lnRsdWss8qer8hTWCQGExAygqYT4T6fD5s3b8aGDRvgdrtxxhln4LHHHsOWLVtwwQUXxEy7ceNG/PKXv0RxcTGOOeYYzJ8/Hy+99BKuueYaoTOQC5Rlxvvvvx+TJ09O+ZloNIre3l5UVFRYppy9bds2+bWRp0kYO3FskeuJMvbWrVtxzz33jDu9snPCsrr5ZGo9/O1vfys/UymZ1157zbC2UGZpSkA+//xzFBcXo7q6Wn5v2rRp2Lt3b8x0AwMD6O7uxtSpU+X3pk+fHvPQK6VgMDjm4qO8vDyh5xkl0iOftTz6OduUPcK1a9dmsSWZU19fn3IZaVmWyt9QTWwtlBfkNTQ0GBbbyHY3NjYKjV1TUwOn04lIJIIPPvgAK1eu1NQuK22fWllxH5TOOq52PpWxn3vuOTz33HOa2pXN39GKyzIdWudT7R2MmhKQkZERFBUVxbxXVFSEoaGhmPd8Ph9cLlfMxXhFRUXw+XwJ465btw4PP/xwzHuLFy/GZZddpqV5mhw4cMCw2KLNmjVL3pnngrKyMtTV1ak+ZadmWR5zzDEADie2M2bMEHo6cPr06SgoKEAwGMTRRx8tNHZtbS0qKyvR09ODOXPmCI0diUQwbdo07N69GyeeeKLwU6SnnnoqtmzZoukzDocDs2fPzonTtVbaB82cORP5+fkYHR3VvI6nms+6ujpUVFSoHi9G0tjYCI/HY4p1xUrLUg+186mmSg9oTEA8Hg+Gh4dj3hseHobH44l5z+v1IhwOw+/3y0nI8PAwvF5vwrhXXXUVli5dGtswAysgBw4cQHNzs7BxJow2ceJE7NmzB3/9619VfyYajaKrqwvV1dWWOQUDHD4AnXLKKTFVtmS0LMuJEyfi448/hsfjwYQJE0Q1V469Z88eDA8PY/r06UJjA8CHH36Id955B+ecc47wdXb79u34+OOPccIJJwhfT1544QW88cYbGBkZUTV9NBpFTU0NTj75ZMtsm+mw8j5oZGQE06ZNU/UZLfP58ccf449//KPqu/xcLhfmz5+PsrIyVdMbxYrLMh1GzaemBOSII47A0NCQfGADgN27d+Oiiy6Kma60tBRVVVXYs2cPZs+eDQD45JNPcOSRRyaMW1BQYEiyMR6n02mpFWby5Mmqs0rg8Aqzf/9+TJw40VLzmQ61y3LGjBmGtaG5udmw2DU1NTjqqKMMWWdLS0tx4oknCo0p8Xg8WLBggerppXXWattmuqw2n0cccURan1Mzn7W1tfi7v/u7tOKbgdWWZbpEz6emSF6vF/Pnz8fatWvh9/uxefNmfPrpp5g/f/6YaRcuXIhHHnkEw8PDeP/997FlyxZ87WtfE9ZwIiIisi7NqczKlSvR3t6Or371q7j//vvx85//HKWlpdi0aVPMNRvLly9HcXExzjvvPKxcuRIrV67EpEmTRLadiIiILErzeNQVFRV44IEHxry/YMGCmHKr2+3G6tWr9bWOiIiIbMn+J62IiIjIdJiAEBERUcYxASEiIqKMYwJCREREGccEhIiIiDKOCQgRERFlHBMQIiIiyjgmIERERJRxTECIiIgo45iAEBERUcYxASEiIqKMc0Sj0Wi2G0FERES5hRUQIiIiyjgmIERERJRxTECIiIgo45iAEBERUcYxASEiIqKMYwJCREREGccEhIiIiDKOCQgRERFlHBMQIiIiyjgmIERERJRxOZWA9Pb24sYbb8Qpp5yCiy++GG+99Va2m2SIa6+9FieffDJOO+00nHbaabjhhhuy3STd1q5di8WLF2Pu3Ll48cUXY/62fv16nH322TjrrLNw//33w8pPF0g2nxs2bMC8efPkZXraaaehra0tiy3VJxgM4o477sDChQtx+umn49prr8WePXvkv9thmY43j3ZbnnfddRfOPfdcnH766ViyZAm2bt0q/80Oy1KSbD7ttjwB4L333sPcuXOxfv16+T3hyzKaQ37wgx9Ef/azn0VHRkair7/+evTMM8+M9vf3Z7tZwl1zzTXRF154IdvNEOr//u//on/+85+jV155Zcy8bd26NXr++edHDxw4EO3s7Ixeeuml0eeeey6LLdUn2Xw+//zz0euvvz6LLRPL5/NFH3744WhbW1s0FApFH3300eiiRYui0ah9lul482i35fnZZ59FA4FANBqNRj/44IPo6aefHu3v77fNspQkm0+7Lc9wOBy98soro9/61rei69ati0ajxmyXOVMB8fl82Lx5M77zne/A7XbjjDPOwJQpU7Bly5ZsN41UWLhwIb7yla+goKAg5v2NGzfi0ksvxYQJE1BdXY0rrrgCmzZtylIr9Us2n3bj8Xhw9dVXo66uDi6XC0uWLEFLSwv6+vpss0zHm0e7mTRpkrzOOhwOBINBdHV12WZZSpLNp908++yzmD17NiZPniy/Z8SyzJkE5PPPP0dxcTGqq6vl96ZNm4a9e/dmsVXGuffee3H22Wfjuuuuw+7du7PdHMN89tlnmDp1qvzv6dOn23aZ7tixA1/96lexePFiPPPMM9lujlDvvfceKisrUV5ebttlqpxHwH7L8+6778Ypp5yCb33rWzjppJNw5JFH2nJZJppPwD7Ls7+/H0888QSuvfbamPeNWJZ5uj5tISMjIygqKop5r6ioCENDQ1lqkXFuuOEGHHnkkXA6nXjqqadw44034plnnoHX681204Tz+XwoLi6W/11UVASfz5fFFhnj+OOPx5NPPon6+np8+OGHuPXWW1FVVYUzzzwz203TbWhoCGvWrMF1110HwJ7LNH4e7bg8V65cie9973vYvn27fK2LHZdlovm00/J88MEH8Y1vfAOlpaUx7xuxLHOmAuLxeDA8PBzz3vDwMDweT5ZaZJzZs2fD6/XC7XbjyiuvhMfjwc6dO7PdLEN4vd6YJHJ4eNiWiVZTUxMaGxvhdDoxe/ZsXH755Xj99dez3SzdAoEAVqxYgVNPPRUXXXQRAPst00TzaNfl6XK5MG/ePLz99tv485//bLtlKYmfT7ssz48//hg7d+7E3/3d3435mxHLMmcqIEcccQSGhobQ1dUln4bZvXu3vEOwM6fTvnnm5MmTsWfPHpx66qkAgE8++UQuidqZw+HIdhN0C4VCuO2221BTU4ObbrpJft9OyzTZPMazw/JUikQiOHjwoK2WZSLSfMaz6vL8y1/+gs8//xwLFy4EcLhy53K5DFuW9j0yxfF6vZg/fz7Wrl0Lv9+PzZs349NPP8X8+fOz3TShBgcHsW3bNgSDQYyOjuKxxx7DwMAAjjrqqGw3TZdQKIRAIIBoNCq/jkQiWLhwIf7nf/4Hhw4dQldXFx577DEsWLAg281NW7L5/NOf/oTe3l4Ah3spTz31FE477bQst1afu+66C4FAAKtWrYrZYdtpmSabRzstT5/Ph02bNsHn8yEUCuHVV1/FO++8g+OOO85Wy3K8+bTL8rz44ovxu9/9Do899hgee+wxzJ8/H5dffjluvPFGQ5alIxq18E3ZGvX29uL222/HO++8g7q6OvzgBz/AvHnzst0soXp7e3HDDTdg3759yM/Px/Tp03HTTTdh5syZ2W6aLqtWrcLvf//7mPceeughzJkzB+vWrcNvf/tbRCIRfP3rX8cNN9xg2R5IsvncunUrNm7cCL/fj5qaGlx22WW4/PLLs9RK/VpbW3HhhReisLAwpkL3wAMP4LjjjrPFMh1vHt944w3bLM+RkRHcfPPN+PjjjxGNRtHc3Ixvf/vb8vUPdliWwPjz+etf/9o2y1Np1apVmDRpEpYtWwZA/LLMqQSEiIiIzCFnTsEQERGReTABISIiooxjAkJEREQZxwSEiIiIMo4JCBEREWUcExAiIiLKOCYgRERElHFMQIhIiO3bt2POnDmYM2cOWlpast0cIjI5JiBEpNmqVaswZ86cmEd2FxcXY/bs2Zg9ezYKCgqy2DoisoKceRgdERlr5syZWL9+fbabQUQWwaHYiUiTCy+8EK2trWPef+ihh/Cd73wHAPD888+jsbFRfrZNQ0MDli9fjn/7t3/D0NAQFi1ahO9+97t48MEH8fzzz6OkpATLli3DpZdeKsfr7OzEv/7rv+LPf/4z+vr6UFdXhwsvvBDLli1DXh77TkRWx62YiDSZMWMGRkZG0NfXh6KiIkyePBnA4aeAJtPV1YW7774b1dXVGB4exhNPPIFt27aho6MDxcXFaGtrwy9+8QuccMIJmDx5Mvr6+rBs2TK0t7fL37F371489NBDOHToEG6//fZMzS4RGYTXgBCRJv/0T/+EU089FcDhZGT9+vVYv379uE9cHh0dxb/8y7/g2WefRV1dHQDgwIEDeOKJJ/DMM8+gsLAQkUgE77zzDgDg6aefRnt7O6qqqvDcc8/hiSeewD333AMA+P3vf48DBw4YPJdEZDRWQIjIcKWlpTj22GMBAPX19Whvb8eUKVPQ2NgIAKioqEBbWxt6enoAADt37gQAdHd342tf+1pMrGg0ig8++ADNzc2ZmwEiEo4JCBEZrqioSH7tcrnGvOdwOAAcTi6U/1ee4lFyu92GtZWIMoMJCBFpJiUAfr/fkPizZs3Cn/70J7hcLqxZs0aulAwPD+P111/HmWeeacj3ElHmMAEhIs0mTZoEAPjwww+xZMkSeDweXHPNNcLiX3bZZfjf//1fdHR04JJLLsHkyZMxPDyM9vZ2hEIhXHDBBcK+i4iygxehEpFmixYtwllnnYXi4mJ8+umn+OCDDxCJRITFr6iowLp163DhhReirKwMn376KQKBAI477jjccsstwr6HiLKH44AQERFRxrECQkRERBnHBISIiIgyjgkIERERZRwTECIiIso4JiBERESUcUxAiIiIKOOYgBAREVHGMQEhIiKijGMCQkRERBnHBISIiIgyjgkIERERZRwTECIiIsq4/w/OziDs/8uc1QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = generate_data_ex2(start_val=2, random_state=1)\n", + "series_train = TimeSeries.from_values(data, columns=[\"series\"])\n", + "\n", + "# visualize the train set\n", + "series_train[:40].plot()\n", + "plt.title(\"Training set\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Test set" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We create the test set using the same rules as the train set but we'll inject six anomalies of two different types. The anomalies can be longer than one timestamp:\n", + "\n", + "- Type 1: steps with `abs(diff) > 1` (jumps larger than one)\n", + "- Type 2: steps with `diff = 0` at values `(1, 2)` (value remains constant)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "data = generate_data_ex2(start_val=1, random_state=3)\n", + "\n", + "# 3 anomalies per type\n", + "# type 1: sudden shift between state 0 to state 2 without passing by value 1\n", + "data[23] = 3\n", + "data[44] = 3\n", + "data[91] = 0\n", + "\n", + "# type 2: having consecutive timestamps at value 1 or 2\n", + "data[3:5] = 2\n", + "data[17:19] = 1\n", + "data[62:65] = 2\n", + "\n", + "series_test = TimeSeries.from_values(data, columns=[\"series\"])\n", + "\n", + "# identify the anomalies\n", + "diffs = np.abs(data[1:] - data[:-1])\n", + "anomalies = ~((diffs == 1) | ((diffs == 0) & np.isin(data[1:], [0, 3])))\n", + "# the first step is not an anomaly\n", + "anomalies = np.concatenate([[False], anomalies]).astype(int)\n", + "\n", + "anomalies = TimeSeries.from_times_and_values(\n", + " series_test.time_index, anomalies, columns=[\"is_anomaly\"]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAJICAYAAAAjJl+iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmSElEQVR4nO3dd5gb1bk/8K/aarVF2uJu7HXHAZsWSriOC6G5BEwIppnQQgw3BQgEwk0CNgQICXADaeBriMmPEMolhAAxnQQIvYQS091tbGzvrna1WpWVNL8/9mqRdlWmnZkz0vfzPHmCtdK0M3PmnfeUcSmKooCIiIiISCC33RtARERERJWPQScRERERCcegk4iIiIiEY9BJRERERMIx6CQiIiIi4Rh0EhEREZFwDDqJiIiISDgGnUREREQkHINOIiIiIhKOQSdRFXC5XKr+949//MPwunp7e7FixYqCy7rjjjvgcrmwceNGw+ux04svvogVK1YgHA7btg0rVqyAy+Wybf3z5s3DvHnzdP32d7/7He644w5Tt4eI5OfiazCJKt/LL7+c9++f/vSn+Pvf/45nnnkm7/O99toLwWDQ0Lp2796N4cOHY/ny5VixYkXe33bt2oV169Zh//33h9/vN7QeO91www245JJLsGHDBkyYMMGWbdi6dSu2bt2KL33pS7as/7333gPQf85oNWPGDAwbNsyUhxwicg6v3RtAROINDkyGDx8Ot9ttecAyfPhwDB8+3NJ1Vqo99tgDe+yxh+Xr7e3tRV1dna5gk4iqG5vXiQgAkEwmcfXVV2P69Onw+/0YPnw4zjrrLOzatSvve8888wzmzZuH1tZWBAIBjB8/Hl//+tfR29uLjRs3DgSVV1555UCz/ZlnngmgcPP6vHnzMGPGDLz22muYPXs26urqMGnSJFx33XXIZDJ56167di2OOuoo1NXVYfjw4fjOd76Dv/3tb6q6BuzatQvLli3DuHHjBvZv1qxZeOqpp/K+99RTT+Hwww9HMBhEXV0dZs2ahaeffnrg7ytWrMAll1wCAJg4caKqrgnFmqLPPPPMvEzpxo0b4XK5cMMNN+C///u/MXHiRDQ0NODQQw8dkq0e3Lx+3HHHoa2tbcgxA4BDDjkEBxxwwMC/f/vb32LOnDkYMWIE6uvrMXPmTPziF79AX1/fkO2eMWMGnnvuOfzHf/wH6urqcPbZZxfdpyuvvBKHHHIIWlpaEAwGccABB+D2229HboPahAkTsHbtWjz77LMDxy73GHR3d+MHP/gBJk6ciJqaGowdOxYXXnghotFo0eNLRM7ATCcRIZPJYPHixXj++edx6aWX4j/+4z+wadMmLF++HPPmzcPrr7+OQCCAjRs3YtGiRZg9ezZ+//vfo6mpCdu2bcNjjz2GZDKJ0aNH47HHHsP8+fPxzW9+E+eccw4AlM1u7tixA0uXLsXFF1+M5cuX4y9/+Qv+67/+C2PGjMHpp58OANi+fTvmzp2L+vp63HLLLRgxYgTuvvtufPe731W1j9/4xjfw5ptv4pprrsG0adMQDofx5ptvor29feA7f/zjH3H66adj8eLF+MMf/gCfz4eVK1fi6KOPxuOPP47DDz8c55xzDjo6OvDrX/8aDzzwAEaPHg1AXzNzMb/97W8xffp03HTTTQCAyy+/HAsXLsSGDRsQCoUK/ubss8/G4sWL8cwzz+CII44Y+PyDDz7Aq6++il/96lcDn61btw6nnnrqQGD39ttv45prrsEHH3yA3//+93nL3b59O0477TRceumluPbaa+F2F89VbNy4Eeeeey7Gjx8PoL9bx/e+9z1s27YNV1xxBQDgL3/5C0444QSEQiH87ne/A4CBrha9vb2YO3cutm7dih/96EfYZ599sHbtWlxxxRV499138dRTT9naj5WIDFKIqOqcccYZSn19/cC/7777bgWA8uc//znve6+99poCQPnd736nKIqi3H///QoA5a233iq67F27dikAlOXLlw/52+rVqxUAyoYNGwY+mzt3rgJAeeWVV/K+u9deeylHH330wL8vueQSxeVyKWvXrs373tFHH60AUP7+97+X3OeGhgblwgsvLPr3aDSqtLS0KMccc0ze5+l0Wtl3332Vgw8+eOCz66+/fsh+lDJ37lxl7ty5Qz4/44wzlLa2toF/b9iwQQGgzJw5U0mlUgOfv/rqqwoA5e677x74bPny5UpuFd7X16eMHDlSOfXUU/PWcemllyo1NTXK7t27C25bOp1W+vr6lP/3//6f4vF4lI6OjrztBqA8/fTTqvdp8HKvuuoqpbW1VclkMgN/23vvvQv+9mc/+5nidruV1157Le/z7Hm3Zs2aousjIvmxeZ2I8Mgjj6CpqQnHHHMMUqnUwP/2228/jBo1aqDpeL/99kNNTQ2WLVuGP/zhD1i/fr0p6x81ahQOPvjgvM/22WcfbNq0aeDfzz77LGbMmDEko3jKKaeoWsfBBx+MO+64A1dffTVefvnlIU3JL774Ijo6OnDGGWfkHYNMJoP58+fjtddes6yJd9GiRfB4PAP/3meffQAg73gM5vV6cdppp+GBBx5AV1cXACCdTuPOO+/E4sWL0draOvDdf/3rXzj22GPR2toKj8cDn8+H008/Hel0Gh999FHecpubm/GVr3xF1XZns6yhUGhguVdccQXa29uxc+fOsr9/5JFHMGPGDOy33355ZXD00UebNrsCEdmHQScR4bPPPkM4HEZNTQ18Pl/e/3bs2IHdu3cDACZPnoynnnoKI0aMwHe+8x1MnjwZkydPxs0332xo/bkBUZbf70csFhv4d3t7O0aOHDnke4U+K+Tee+/FGWecgdtuuw2HHnooWlpacPrpp2PHjh0A+o8BAJxwwglDjsHPf/5zKIqCjo4OPbun2eDjkW1+zj0ehZx99tmIx+O45557AACPP/44tm/fjrPOOmvgO5s3b8bs2bOxbds23HzzzXj++efx2muv4be//W3BdWS7D5Tz6quv4qijjgIArFq1Ci+88AJee+01/PjHP1a17UB/GbzzzjtDjn9jYyMURRk4D4nImdink4gwbNgwtLa24rHHHiv498bGxoH/nj17NmbPno10Oo3XX38dv/71r3HhhRdi5MiROPnkk4VtY2tr60BgmCsbNJYzbNgw3HTTTbjpppuwefNmPPTQQ7jsssuwc+dOPPbYYxg2bBgA4Ne//nXRUf1qA9zBamtrB7KPucwOovbaay8cfPDBWL16Nc4991ysXr0aY8aMGQgGAeDBBx9ENBrFAw88gLa2toHP33rrrYLLVNuH8p577oHP58MjjzyC2travPWpNWzYMAQCgSH9SnP/TkTOxaCTiPDVr34V99xzD9LpNA455BBVv/F4PDjkkEMwffp03HXXXXjzzTdx8sknq87KaTV37lzccMMNeO+99/Ka2LNZPS3Gjx+P7373u3j66afxwgsvAABmzZqFpqYmvPfee2UHJ2ndxwkTJuB///d/kUgkBn7b3t6OF1980fC8qIOdddZZ+M///E/885//xMMPP4yLLroor6k+G0TmzpOqKApWrVplaL0ulwterzdvXbFYDHfeeeeQ7w7OYmd99atfxbXXXovW1lZMnDjR0PYQkXwYdBIRTj75ZNx1111YuHAhLrjgAhx88MHw+XzYunUr/v73v2Px4sX42te+hltvvRXPPPMMFi1ahPHjxyMejw9kpbIjphsbG9HW1oa//vWvOPzww9HS0oJhw4YZnkT9wgsvxO9//3ssWLAAV111FUaOHIk//elP+OCDDwCg5Kjqrq4uHHbYYTj11FMxffp0NDY24rXXXsNjjz2G448/HgDQ0NCAX//61zjjjDPQ0dGBE044ASNGjMCuXbvw9ttvY9euXbjlllsAADNnzgQA3HzzzTjjjDPg8/mw55575mWEc33jG9/AypUrcdppp+Fb3/oW2tvb8Ytf/ML0gBPo7+N60UUX4ZRTTkEikRiYrirryCOPRE1NDU455RRceumliMfjuOWWW9DZ2WlovYsWLcJ///d/49RTT8WyZcvQ3t6OG264oeBLAGbOnIl77rkH9957LyZNmoTa2lrMnDkTF154If785z9jzpw5+P73v4999tkHmUwGmzdvxhNPPIGLL75Y9UMREUnI5oFMRGSDwaPXFaV/9PMNN9yg7Lvvvkptba3S0NCgTJ8+XTn33HOVjz/+WFEURXnppZeUr33ta0pbW5vi9/uV1tZWZe7cucpDDz2Ut6ynnnpK2X///RW/368AUM444wxFUYqPXt97770LbmPuyG5FUZR///vfyhFHHKHU1tYqLS0tyje/+U3lD3/4gwJAefvtt4vubzweV8477zxln332UYLBoBIIBJQ999xTWb58uRKNRvO+++yzzyqLFi1SWlpaFJ/Pp4wdO1ZZtGiR8r//+7953/uv//ovZcyYMYrb7VY1ev4Pf/iD8oUvfEGpra1V9tprL+Xee+8tOnr9+uuvH/J7DJoRYPDo9VynnnqqAkCZNWtWwb8//PDDA+U8duxY5ZJLLlEeffTRIftRrGyyfxs8Av33v/+9sueeeyp+v1+ZNGmS8rOf/Uy5/fbbh5T5xo0blaOOOkppbGxUAOQdg56eHuUnP/mJsueeeyo1NTVKKBRSZs6cqXz/+99XduzYUXBbiMgZ+BpMInK0ZcuW4e6770Z7eztqamrs3hwiIiqCzetE5BhXXXUVxowZg0mTJqGnpwePPPIIbrvtNvzkJz9hwElEJDkGnUTkGD6fD9dffz22bt2KVCqFqVOn4r//+79xwQUX2L1pRERUBpvXiYiIiEg4Tg5PRERERMIx6CQiIiIi4Rh0EhEREZFwDDqJiIiISDgGnUREREQkHINOIiIiIhKOQScRERERCcegk4iIiIiEY9BJRERERMIx6CQiIiIi4Rh0EhEREZFwDDqJiIiISDgGnUREREQkHINOIiIiIhKOQScRERERCcegk4iIiIiEY9BJRERERMIx6CQiIiIi4Rh0EhEREZFwDDqJiIiISDgGnUREREQkHINOIiIiIhKOQScRERERCcegk4iIiIiEY9BJRERERMIx6CQiIiIi4Rh0EhEREZFwDDqJiIiISDgGnUREREQkHINOIiKHu+OOO9DU1GT3ZhARleRSFEWxeyOIiEi/WCyGSCSCESNG2L0pRERFMegkInKwvr4++Hw+uzeDiKgsNq8TEVns/vvvx8yZMxEIBNDa2oojjjgC0WgUALB69Wp84QtfQG1tLaZPn47f/e53A7/buHEjXC4X7rvvPsybNw+1tbX44x//WLB5/eGHH8YXv/hF1NbWYtKkSbjyyiuRSqUG/r5ixQqMHz8efr8fY8aMwfnnn2/JvhNR9fLavQFERNVk+/btOOWUU/CLX/wCX/va1xCJRPD8889DURSsWrUKy5cvx29+8xvsv//++Ne//oVvfetbqK+vxxlnnDGwjB/+8Ie48cYbsXr1avj9fjzxxBN563j88cdx2mmn4Ve/+hVmz56NdevWYdmyZQCA5cuX4/7778cvf/lL3HPPPdh7772xY8cOvP3225YeByKqPgw6iaji/Od//ie2bdtm2frGjh2LW265RdV3t2/fjlQqheOPPx5tbW0AgJkzZwIAfvrTn+LGG2/E8ccfDwCYOHEi3nvvPaxcuTIv6LzwwgsHvlPINddcg8suu2zgN5MmTcJPf/pTXHrppVi+fDk2b96MUaNG4YgjjoDP58P48eNx8MEH69p3IiK12KeTiMhC6XQaRx99NF599VUcffTROOqoo3DCCScglUphxIgRCAQCcLs/7/mUSqUQCoXw2WefYePGjZg4cSL++c9/YtasWQPfueOOO3DhhRciHA4DAOrr65HJZODxePLWG4/HEY1G0d7ejlmzZkFRFMyfPx8LFy7EMcccA6+XeQgiEoc1DBGRhTweD5588km8+OKLeOKJJ/DrX/8aP/7xj/Hwww8DAFatWoVDDjlkyG9y1dfXl1xHJpPBlVdeWTAbWltbi3HjxuHDDz/Ek08+iaeeegrf/va3cf311+PZZ5/loCQiEoZBJxGRxVwuF2bNmoVZs2bhiiuuQFtbG1544QWMHTsW69evx9KlSw0t/4ADDsCHH36IKVOmFP1OIBDAsccei2OPPRbf+c53MH36dLz77rs44IADDK2biKgYBp1ERBZ65ZVX8PTTT+Ooo47CiBEj8Morr2DXrl34whe+gBUrVuD8889HMBjEggULkEgk8Prrr6OzsxMXXXSR6nVcccUV+OpXv4px48ZhyZIlcLvdeOedd/Duu+/i6quvxh133IF0Oo1DDjkEdXV1uPPOOxEIBAb6mBIRicCgk4jIQsFgEM899xxuuukmdHd3o62tDTfeeCMWLFgAAKirq8P111+PSy+9FPX19Zg5cyYuvPBCTes4+uij8cgjj+Cqq67CL37xC/h8PkyfPh3nnHMOAKCpqQnXXXcdLrroIqTTacycORMPP/wwWltbzd5dIqIBHEhERERERMJxcngiIiIiEo5BJxEREREJx6CTiIiIiIRj0Jkjk8lgw4YNyGQydm8KGcByrAwsx8rAcnQ+lmFlkKEcGXQSERERkXAMOomIiIhIOAadRERERCQcg04iIiIiEo5BJxEREREJx6CTiIiIiIRj0ElEREREwjHoJCIiIiLhdAWd11xzDY4++mjMnTsXJ510Ep5//vmC34vH47j88ssxZ84cLFq0CI899pihjSUiIiIiZ/Lq+dHSpUtxySWXoKamBmvXrsV3vvMdPPTQQwgGg3nfW7lyJbq6urBmzRqsW7cOF1xwAb7whS+gra3NlI0nIiIiImfQFXROmDBh4L9dLheSySR27949JOhcs2YNbrzxRjQ0NGDffffFnDlz8MQTT+Bb3/pWweUmk0kkk8n8DfR6UVNTo2czNcu+Goqv+nI2lmNlYDlWBpaj87EMK4PocnS7yzee6wo6AeC6667Dww8/jEQigblz52LSpEl5f+/u7kZ7ezumTJky8Nm0adOwdu3aostcvXo1Vq1alffZkiVLcOKJJ+rdTF22bNlS9jvRaBS33HILfvCDH+hej6IoOO644zBixIi8z3t6enDKKafg2GOP1b1sUleOxdx11134j//4D0ycONHELbLH22+/jauuugotLS2qvu92u7Fy5UrTt6OjowN//OMfcf7552v6nZFyLOaaa67Bj3/8Y9OXW81uvfVWvPTSS0OSBJlMBrfffruQcqwkV111Fa644gpV333ggQcwdepUzJw5U/BW5ZOhDM877zyk0+m8z/r6+vDFL34R3/ve91Qt4wc/+AG6urryPstkMpg0aZKhekFRFBx//PEYNmyY7mUUE4/HccQRR+CMM85Q9f1LLrkE119/fcG/iSpHNfdL3UHnZZddhksuuQSvv/46PvnkkyF/7+3thcfjQW1t7cBn9fX16O3tLbrMs846C0uXLs3fQIsznVu2bMG4cePKRuwbNmzAhg0bDHUViEQi2HvvvXHXXXflff7yyy/jmWeeYTcEnbSUYzHd3d2ora2tiDJ49dVXcf755+P0009X9f1jjz1WyH5HIhFs2bJF9bLNKMdi1q9fXxFlK5Ndu3bhvvvuG/IQnX14FlGOleSVV15RfU62t7djwoQJlp3DIq9FrXw+Hx599NG8z8LhMM4//3zVxyORSOCJJ54Y8tlpp51m6Jj29vZi2rRpuOeee3Qvo5gNGzbgpptu0rSPg78rQznqDjoBwOPx4JBDDsHdd9+NSZMm4dBDDx34W11dHdLpNOLx+EDgGY1GUVdXV3R5NTU1lgWYpbjd7rIFEg6H0dnZaajgwuEwWlpahiyjtbXV8LJJXTkWE4/HkU6nK6IMwuEwxowZo3pfXC6XkP3We80YKcdiotFoRZStTDo7O9Ha2lrwuCqKIqQcK4WiKFi/fj0AdU2UnZ2dCIfDlh9PGcqwUP3U1NSE7u5uQ3Wc3+9HKpUSck83g9a4oFQ9bmc5mrLWTCaDrVu35n0WDAbR2tqalwX96KOPhjTDO1VnZyc6OzsNL6NQk2dLS4vhZZMx8Xh8SP9ip+rs7ERzc7Pq79fW1iIejwvZDhnO63Q6XbLFhfRJpVLw+XxDPg8Gg+jp6bFhi5yjt7cXiURiSJNvMbJcS1bLTWLlcrvdUBTF0LLNWEaxe7oZgsEguru7VX23r68PXq+hnKIwmoPO3t5ePProo+jt7UUqlcLTTz+NN954A/vvv/+Q7y5cuBC33XYbotEo3n33XTz33HM48sgjTdlwu5kVdBYKBpqamhAOhw0tm4yJxWIVFXRqqQibm5uF3NBkuVH29fVVTNnKxOVyFfy8ublZ9c2yWmWvC7XXhyzXktVKPUAXO/8G6+vrK/hwZAatD/haaMlMhsNhNDU1CdkOozQHnS6XC3/961+xcOFCHH744Vi9ejWuvvpqTJkyBY8++mjeoJ9zzz0XDQ0NmD9/Pi677DJcdtlleSPfnayzsxNdXV2GnoyKnaA+nw+pVMrI5pFB1ZzpFBl0qs3kiFRolgwSp7m5WYpyl1lnZydcLpfq666rq4tBp04iAzKRQacTt6MQzfnXQCCAW2+9teDfFixYgAULFgz8u7a2FldffbX+rZNYZ2cnRowYgd7eXtTX1+teRmtrq8lbRmaIxWLo6+uzezNMIVPQ2djYiHQ6DY/HY/ry1err66uYsnUCBp3ldXZ2Yo899lB93dXX1zPoLEBRlLIZT5EBmSzBnshmfqPYq1unzs5OTJo0ydCFX+oENdq3hIyppExnsX5QxYgMOidOnGh7AMJMp/lK9SFramqyvcxlp/V+UldXh2g0Knir5FPqnhkIBBCLxQwtwyjRQaeiKKpiA1mC30IYdOrU0dGBSZMmoaOjw9AyZD0xql0l9enUqrm52dB5XYwZ14wZGHSar7Ozs2iTJTOd5Wm5NjKZjOr+i5Wm1D1Tbb0l8r4r+p5eV1enahCkzLEFg06dzMp0FkuB+3w+NgHaqJqDTlGzJ0QiEYwfP972ZkEGneYrVZe1tLQw6CxDy/0kEomgsbHRgq2ST7nzTM3xE9n0LLpZW8s+MuisMIlEAqNHjxbWvC6qiZPUicfjFRP0a82KiDr3FEUZmGvOTuzTab5ydRmDztI6OzsxefJk24Mm2Zlxz3Ry87oM+2gUg06dXC6X4Ztzb29v0cnyGXTaq1IynXomuBd17plxzZghmUwilUrxPdImYtBpjNags7m5GS6Xq+r6/ssedIrOQsuwj0Yx6NRJURTDN9BSI+1kuDlXs0oZSNTV1YVQKKTpNyLPPRnO62y5MttpnnLBAOfpLC07yE5LQNHY2IhIJGLB1slD9qBTzeh5I7Tso6zZcAadBogacJFdtt0352pXCUGJngo2FAqZnpnKjrqU4bzOlmsllK8sSp1nagc/VLNIJIJhw4YhkUiU/W52kIjI+4+sSj1EyzCQSDS1+1hRk8PT502WojNC1VahyKSmpqYiMp16Kli3221603M0GkV9fb0U53W2XCuhfGXR0dFRNLNSrSOttdCSIcsG+DI8wFktk8kU7S6k9njIHJCVo3YfU6lU5bwGkz5/2jIyyrfctBd8/7p9MpkM/H5/RQQlsjSzZLdDhhslg07zydyHrNLIdC1ZzYx7ZiqVEvIaTNFN60BlxAUMOnXIXvQNDQ3o6enRtYxIJIJgMFj079VYocgiHo+jsbGxIoISvcGA2ZWnTNmZZDIJn89XEeUri3LnGbOd6qg5TtljXQkBiJnU1i2ljrHL5dLdypNtzRFJhvrTKAadOuSOHjS6jGIq4eRyqng8jlAoVBF9/mTJQGW3w+/3235c+/r6UF9fb/t2VJJyTZZGbuaVLjdD5na7kU6nS35fpgc4mZgxsKqmpkZ3vWBFXVsJZc6gU4fck0vvlBUMOuUVi8UQCoUqIhOmtyKsra1V9Uo50dshQjKZRENDQ0WUryzS6XTJPmT19fVVN9JardwMmZpBfLlBp939o60Ui8VKvs5X7RRSpb5jpC+/FXWcmsA625IjKwadOpgx+q3cMpqamhh02iQWiyEYDFZEUKK3IjT7hmbGg5pZGHSar1yZhkKhqgqQtMi9NtRcd729vQgEAlWXmDAjqCsXkBnpdmPFqHg1gbVMD/iFMOjUYXCh6rmJlhvg4fV6yzazkBjxeBzBYLAiml/1VoRm9xeTaZqSZDLJ5nWLhUKhqgqQtMi9NrT0S6y2oLPUDAlqlbvvGm1el2XQpix1bSEMOnXILdTGxkZdg4lkPzGqGTOd5nfvyK2QPR4PUqmUacvWKtunsxLKVxbl+rcz6Cwu99rQ8rBXbQOJ1NRl5TKB5ZYhe/M6UP5akz22YNCpQ24loffmrPYCIutlM52VEJT09fXB7/dr/p2IoDM3mxMOh01btlZsXjeXmj5kDDqLG3xtlDtO2ftCIBBAPB4Xvn2yUHPPrK+vRzQa1b0MJwSdQOnWVQadFUhrJVFuGSSXWCyGurq6qh5tKzrotDMAyTavM+g0h5q6jEFncVqujcHzO9vdP9pKas6zcsev3DKM9Om06p5uNLC2G4NOHawKOn0+n6rXopG5YrEYAoFARWSa9d6UzA4MI5EIGhoahCxbK06ZZC41dVkwGLQ1uy0zLfeT7u7ukvM7VzIrgk4jfTqt6reuZh9l6FtaDINOHZLJJGpqagDoH+Wr5gS1++ZcreLxOAKBgN2bYSsR07Fkg3i7p3ph87q51NRlHL1e3OCBRKWOk0wD8qymNug0cvyc0Lzu9HOEQadBejtzZ7NpIpZNxmTng3N601UqlYLH49H1W5Hnnt0PUww6zaUms8Ip4IrLDVbKXXeDj3U1TbqvZvS61uM3mJGgs6enZ6A1RyQ1+8igs4LpvYG6XK6yzbd235yrVaVkOsPhsO7Kx+xzL/dct/u8Zp9Oc7FPpzFaBqYOPtahUAjd3d3Ct1EGsvfpVHNPN4PRfbQbg06DRN5A7b45V6tsptPpfTqNVD5mvFIua3DG2O4MPvt0mkvNeVZbW1tVI621yH0jkc/nKzmd2OBjXU33iEgkgsbGxpLfsbNPp1XK7WO5V9LajUGnRoObLPVe9GqabqupQpGJmq4PTmAk6HS73aZ1Lxjc7GT3ec3mdXOpPc+c3l1FJLUj0gsFndXSV1ZRFLjdpUMWowGZkeZ1q85vNTMc6O1WZQUGnRoNPmn1XPSDp70oxu6bc7WqlOZ1o80sZlWismVn2LxuLtmb82Sn5TobPEjE7mtJNuXux+l0umRAprd53coHKqc/aDDo1GhwBVtuzqxCurq6VKW/nX5yOVW2ed3pZBnFWOhGaffodTavm8eM1xOSOrI9wMnGaNcdvc3rkUjEsqms7O6eZBSDTo0GX/R6+v2pzQw4/eRyKmY6P2fGE/zgEaPl+q2J1tfXx+Z1E3V1dSEUCpX9ntvtrpqR1moVur68Xm/R62PwtVQtQafaeqhcEqjc/Vpv87qV2X6nlzmDTo0KTbmgNfBUe4I6/eRyqkqZMsnoJMH19fXo7e01ZTtkyLhmsU+nudT2IQuFQujq6rJgi5yjUIasqamp6ET6g6+laklM9Pb2oq6uruz3jA7+dELQWSqwTiQSA3OIy4pBp0ZmnFxql8FK2h7MdPYz66Gn0HbYOTNAKpVCIBBg0GkxPkQPVejaKHWcEolEXtefajmmZtx31QRkevt0Whl0lqo7ZXvAL4RBp0bFClVLs5HaE8Pj8SCdTmvaPjKuUl6DKXPQaTcnTI1SaaolQNJCa9A5uPXF7v7RVtFShxRroVKzDL31gtX950vto+z9qxl0alTo5NI6p6EsAzyosL6+Pni9XgDOnuZF5qDT6/XaGvQZmRqF8qm9RqolQNKiWNCp9jhVSyCvtS4rdE6que86oXm9FCfEFgw6NSp0cmntV+OEp5Fq53K54PP5HJ0N6+vrg8/n0/37lpYWU4KEQqOb7X4tIoNOc8TjcdUzPVRLgKRFoSBBy/2ktrYWiURCxKZJRcsMCcFgsGASSM1910jQaeU93eVyFQysZQl+S2HQqZHW5hC1yyD5VHtgIjLTaXcAYuR1d/Q5LXWZ3WUuo0LBSrHjVG6OyUpmxnmmZhl6Ew1W39OLta46IbbQHHQmk0lceeWVWLhwIebOnYtly5bhk08+KfjdFStW4NBDD8Xs2bMxe/ZsnHjiiYY32G6F3mctMujk6+PsU+39/swKEgqNPLV71G21l61ZGHQao+WBTO3UVJXIqqDTKc3rRvbRbpqDznQ6jbFjx2L16tV45plnMGfOHFx88cVFv3/uuefi+eefx/PPP4/77rvP0MbKoFCTpcigkxW1fZyeDTM6EMrMc2/wtth9Xld7FtssrMuM0RJ0OiGgEIVBZz4nnyOag85AIIBzzjkHI0eOhMfjwUknnYRPP/206Lxi1UBrB3n2g3IGJwcmuYOh9BJ57tl9Xjv9gUIWWoMBDiTKp2UgUbFBIm63u+JnOTHjPFMzyEZvvRCNRlXNI2qWUvso+3gRY3clAO+88w5aWlqKvtbxzjvvxJ133om2tjZ897vfxQEHHFB0WclkckiBe71eyyY7zU57VGr6I0VRhvw9FArhgw8+UD1tUqFlFNPU1ITdu3fzTR4aqCnHUrLl4/P5kEgkHHns29vbEQqFDG17KBRCe3u74f3PZDIFr5n169eXXLbRcixGURR4PB4kk0lHlq1M2tvb0dTUpKocQ6EQOjo6eMxzdHR0DLlOg8EgOjs7hxynYsc6+32RwYaoa1Gtjo6OsudZVigUKnjPLHSsB/N6vbrqBUVRBv5nhWJ1c7l9FF2Obnf5PKahoLOnpwfXXnstvv3tbxf8+8knn4yLLroIgUAATz31FL7//e/j3nvvxahRowp+f/Xq1Vi1alXeZ0uWLLG8L+iWLVuK/i0Wi2HTpk15n8XjcWzcuHHI51qWUUwmk8FHH32EcePGqfo+fa5UOZaSLZ9YLIaNGzc6svP++vXr4fF4VJ9nhSiKgl27dhlaRiaTQTweH7KMRCKB9evXq1q23nIsJhaLYfPmzZquQyps3bp1mDp1qqrjuGvXLoTDYR7zHLt378auXbuwe/fuvM8jkciQ4/Txxx8jk8kM+dzj8eDf//432trahG+v2deiWjt37kR7e7uqTHlfXx82bNgw5Dht3boV0Wi05Pm3e/dudHR0aD5HC9VxIqXTaaxbt27IOnfs2IFwOIzu7u6SvxdVjhMnTiz7Hd1BZyKRwMUXX4wvf/nLWLx4ccHvTJ8+feC/FyxYgDVr1uCVV14p+v2zzjoLS5cuzd9AizOdW7Zswbhx4wpG7H19fWhsbBxycXu9XvzlL39RfdHX1dWp/u6UKVMQi8UsqVAqRblyLCcQCKCtrQ3Dhg3DsGHDHHnst2/fjra2NsPbnj0WenV1dWHkyJFDlpFIJPDcc8+VXLbRciwmu09G9436++pOnz5ddTlqqfuqQSAQwIQJE4Z8Xug4eTweTJgwYcjnEyZMEH5cRV2LahU7ToV0d3fjrbfeGnI8UqkUZsyYUXL7Q6EQampqNB9Lq+uSadOm4dVXXx2yztra2pKBn93lCOgMOlOpFH70ox9h+PDhuPDCC1X/rtzAhpqaGineG+p2uwsWSHd3N1paWob8rbW1FeFwWFUhZqe9UFvgra2tWLt2rW0niJMVK8dScsvH7/cjlUo58th3dXWhtbXV8La7XC5Dy+jq6ip4zQwbNkz1NaOnHEvJ7pPRfaP+2TzUnmc85kMVO7cLHaeuri7st99+Qz5vaWlBV1eXJcfV7GtRLS3nTan7cbl+7n6/H319fZr2MZPJWH5eF9tHtdthVzkCOufpvOaaa5BIJLBixYqSgeTTTz+NWCyGVCqFJ554Am+//TYOOugg3Rtrt2KdmQOBAHp7e1UtQ+u0F3YPuKg22VdgAs6eVkeWUYzFtqOpqamqBx9WCjPeFENDaZn4mwO08hW7Z6o59/TU+d3d3QgGg5p+Y5SRfbSb5kzn9u3b8fDDD8Pv9+Owww4b+PxXv/oVduzYgdWrVw9MjfSnP/0JV111FVwuF9ra2nD99ddjzJgx5m29xYqNftMyNY3W11SxQrFWPB7PCzqdOsK5s7MTkydPNrycbOd4vdMvFbtRer1eW0bcOqFSdhKtD9HZkdZO7CdttnIDWgZPz1fs3tHc3GxbX0sraL1m6+rqEI1Gda1Lz+t57XjAd3JcoDnoHD16NF5//fWif1+wYMHAf99+++36tkpSZpxcWkcZMtNprVgsNjCdlZOn1eno6MCBBx5oeDkNDQ3o6elBY2Ojrt+XOt/tCADT6fRAExsDUOMURdHUTNfc3DzQJF/tSmXIsi9PGDFixMBnpTKd77zzjrDttFs0GkVDQ4Pq7xuZn1jPb+14rXVdXd2Q1tXcVjqZsXONBqWCTrUnq9bANRQKlR2JRuappEynGU/fRt8cpDWzL1oymTT0Pnoyhg/Rnyt1jRY6Tn19ffD7/aq+W0n01CGD78ciAzI7Mp0ul2vIPsrSpaocBp0alAs61cx9pfXEcLvdzMhYKDfT6fQ+nWY8fRu9oclWEfb19Q0MVjT6xibSrtIDJC1KXaNajpPdr5QVzawWRlH1kCx1nCzbUQ6DTg1KVRLBYFBVRtIpJ0a1yn0idnLzejgcLvrCBi1EBp12ZJKTyaQUM2RUKwadn9Oa6SyWfHBy/z419N4zc5NAlRh0Dj4fnBJbMOjUQGsloXUZxTDTaZ1KaV7P7btohMig044AhEGneXJbBdRi0Pm5cteG2kDSyS0yaui5Zw5OAons5mNXF6LBrauydWUqhkGnBqUKVW0loffEYOBpjUppXjfrfKnEoJN9Os2hpwtHpWfltNBybaRSqaod8a/3PMs9fqIznXa873xwYG3XdmjFoFODUk2WavvV6DkxAoEAYrGYpt+QPpWS6TRLS0uLoSCht7e3aAd+OwKQ3D6dZIyeB+hK73+oRanjN/g4hcNhR2SxRNATMA4+fiIDMruatQvtoxPOEQadGpRqshTZvM6K2jqVMmWSWYxmIwuNsjRr2Xqwed08euoyNq9/Tkums9yxruSWMD0PN1ZnOu0I9qzcRzMx6DSJ2spUT6aFFbV1KiHTaWZgJfLcs7t5PTtROenDoNMYLaPXyx1rr9eLVCpl+jbKwIzzTGRAZtf8mAw6q5zaylTPEykrautUwmswzax8RJ57dmTwcx/6nFq+smDQaUyp4zf4NbHljnUlv1ZW9qDTLk7dRwadJhHZP40VtXUGDyRyYqbTzMqnvr5e9yvlMplMybkw7W5ed2r5ykLPecZj/rncVpXBPB5PXha+XBNzJd8jotEo6uvrNf1m8P3YKSO7tRi8j11dXZa/A14PBp0qlRv1KroZkiM+rZF7I3Bqn04zg06Xy6W7v1h3d3fJ93LbHXQ6tXxl4ZTRsrLScl2Vu6YrOegEtL/IYXArSqlXjjpVoZYiLa+ktYv8WygJMy76VCqla+7ESq9QZFIJmU5ZnurVZGesfpjKfXh0avnKQu95xjdBaVcuwOc9Il+h4yEiIMtkMrYFek4tcwadKpULOgOBABKJRMll6H1LDEevW2fwQCIn9vkzu2+P3iBBxn5o7NNpHqf0IXOq3Ouu3LHmPSKfkYBscNeGUrq6ukq25ojEoLPC2fn+V6eeXE5UCVMmiWj21NPEXu5893g8eW/UsAL7dJonEomgsbFR8+88Hk/FjrRWS02GzOfzDSQy1LS0VWIXLL1dewbPba1lOVrqBTsfvHLjAidNmcWgUyU1N/JyBc+gU36DR687MSgxuyJsbGxEJBKxfTvMwD6d5lEURVfTYiWPtFZLTYYst96v1oFEeh9scmkNyLTU+3Z2ZcoNrO2atkkPBp0qmXFy6V1GY2Nj3uuuSBw2rw+l94amZjus7t83uE+nE8vX6So1K6eFmmsj97pLpVK2DWS1kxmtNr29vairq1P9fZ/Pp7pekOXBuqOjwzGD+hh0qqTm5Co32bTeC8jtdjsqfe5kHEg0lN4gwYzWAbMN7tPpxPJ1OvY/VHc/0XKcKjnoNKNbm5b7rtbmdRmCPVmCXzUYdKqkplCbmprQ1dVlaBlkr9xXnTq1+VXvgLVi9AYJaoJfv9+PeDyud9M0Y59Ocxh5WKjUAEkLNddG7nEq1yJQqcfUyD3T7XYjk8loXoZT+nQCn58Xdm+HFgw6VdLaHKJ3GSQPLc0sMslkMvB4PKYtT2TzutU3y9zmdac+VMhAa5NlrkoNkLRQkyHTcpycWleVY6TVJhQKoaurS/N910nN6y6XS1dgbScGnSqZUUkYOTGMTNJN+jh1PkGzt7uSgk5OmWQOI3UZg05t10ZfX5+q+Z2dWl+VYsZ5JjLTafecyHoDazsx6FQpHA6rGm1Yqu+bkRO0rq4Ovb29un5L+jHQ1x8kJBKJgf6xxVjdv4/N6+YwGgxwIJG6oLOjowOdnZ2mdpdxEjPOM633XSc1r+vdRzsx6FRJTZOlyEwnK2pSy+xAWfQrXu0KOtm8rp+RARTMdGrLdNod2NjJjPOskvt05u6jDAOa1GDQaaJyWZty016UworaHk5rsorH4/D7/aYus6WlRdgDj519Otm8rp+Rmy1Hr2sbva42oPB6vRV3PptxnmkNyLT06Uwmk2Vbc0TK3UenPJgw6DRRuRuokQCGFTWpIaLyEZ3ptDKDzymTzGGkOY+Tw6s7flr761XicZW9T6fdnJgNZ9BpokpqhqR+TuvTKaKZZfAr5dRIp9Oq3lZjZ/O6k24usjFyk/P5fFX/Gkw1/Z2z8zOrPdYiWyTs0tvbq/tNO1YEnXbfH7L7aMabm6zCoFMFtU2W5W6gnNuORBPxxKsnQ6/mNX+AvQOJ2KdTP6Pnmd03a7upvaa0BJ2Veo/Q20KoNyBz0sNodh8VRXFMVzAGnSpoueiLPWmqnfai1LIrsUKRSaEycsqFnCVLM4usN0r26TSHkwYuOJ3argy8R+TL3o+1BmRq+3Sqbc0RyYkDjBl0qqD2Bur3+4s+IRmtpJ14cjlN7nvXnUpU0Kk1M6X2fM/2W7MK+3SaQ5aHG6fScj2pvZYYdObTezzU1gvhcNj2a8CJYz0YdKqgpYIt9kRltJJmhSJe7nvXs5zWDChqvrbsmy/M3o7sq+qswuZ1c0QiETQ0NOj+faW+QUcNLRmy2tpabN++vSoznZlMxlBLU21tLZLJpOZlqA06ZXjwypa5k1rkGHSqYMbJZXQZTnyicZpYLMZMZxGhUAjd3d22b4dRg5vXGXTqZ+RGV2kBkhZaMmTNzc3YuHGjqsnhK20gUXd3N4LBoKFl6EkaqH0gkqGO8/v96OjoQH19va3boQWDThVkCDobGhrQ09NjaBuotHg8PiTT6aQnSEBcXzutQYIMFXIhuS95YJ9O+1Rz0Knl2mhubsbOnTtVjQeotGNqRh3S09OjOSBT+zAqy1uAZNkOtRh0qqDlRu52uwtOB2L0AuK718UrlOl02jEXFexVStCZi5lO+1RagKSF1qBT7fRSlXZMzahDUqmU5mU4qXkd0LePdmLQqYKWJ4liE/Q67WmkGhUaSGR1n0Oj1E5VpJWeoFPtg5qeeUDNwD6d+pjxIFbNAyO1Bp1G7z1OZUZQp+X4ZWkJOmWYwUHPPtpJc9CZTCZx5ZVXYuHChZg7dy6WLVuGTz75pOB34/E4Lr/8csyZMweLFi3CY489ZniD7aDl5C/W91KWE5SKKzSQyGlNsJlMRsg0HlqDBK03VjsyNE4rW1lEo1FDg4iA6u6jrvV+ova+4fV6kU6njWyaVMy4Z2o5fllO6tMJ6NtHO2m+O6XTaYwdOxarV6/GM888gzlz5uDiiy8u+N2VK1eiq6sLa9aswbXXXovrrrsOmzZtMrzRVjPjBmrWCeq05l4nKZTpZBNsP61BgpbMvl1ZL5atPma02lRaU7AWWq8NLce6ku4PTsh0yhB0Oi3TqXm28kAggHPOOWfg3yeddBJuvvlmhMPhISPs1qxZgxtvvBENDQ3Yd999MWfOHDzxxBP41re+VXDZyWRySGF7vd6BKU5EyzajDm5ODYfDaGxsVNXM2tTUhK1bt2LPPffM+3znzp0IhUKGmmobGhrQ3d3tmNddlZKtHEUM1ClWjuVEo1HU1NTk/c7r9SIej+saHShyH0utU0R3gFAohLVr16pedjKZhNfrVX3NtLe3D/mu3nIsJff4eL1eJBIJ3ct30ltAzNTe3o6mpibVx61QOYZCIWzfvl3YHK0NDQ3Slk1HRwf22WcfVccvFAppOtairn8R12I57e3t2HPPPQ2ts6mpSfN9V2290NHRYfiebgYt+yi6HNW0sul/Rc7/eeedd9DS0jIk4Ozu7kZ7ezumTJky8Nm0adOwdu3aostavXo1Vq1alffZkiVLcOKJJxrdTE22bNmS9+9oNDrks2LGjRuH1atX4w9/+EPe5z6fD93d3YhGo7q3y+v14t1338XYsWN1L0MWDz30ENxuN7761a8KW4faMsv9vsfjycvGJ5NJrF+/XtfMAXfeeScmTJiA2bNna/6tXvF4XEhrQiwWw8aNG1UvOxaLqf5uJpPBRx99hPHjxxf8u9ZyVLtdsVgM4XBY9/E677zzcOutt5q2bU7xwQcfAIDm45Zbjj6fD2vXrsXpp59u6rYBwLZt23DOOefg6KOPNn3ZZti0aZPq68Pn8+Hggw9WfaxFXf9ZZl6L5WzcuBH777+/of2ZPn06WltbNS1j165d2L17d9nfZB+a4vG47u0zw3777Yf6+npN+yiqHCdOnFj2O4aCzp6eHlx77bX49re/PeRvvb298Hg8eX3k6uvr0dvbW3R5Z511FpYuXZq/gRZnOrds2YJx48blReyBQABtbW2qltHW1oZjjz1WyPaNHz8e9fX1qrdFZtmJf0XsS7FyLKehoQHDhg3L26aWlhaMHDmyaEBUSnbUqVXlFYvF0NzcLGR9Pp8Pf/7zn1UvW8s1M2XKFESj0SHf11uOarcrlUrB5/PpPl7r1q2riGtRqzfffBMTJ05Uve+FyrGtrQ0PPPCAkO17+OGHsX37dmnLJp1OY++998bIkSNVfX/mzJmqlx0MBjF69GjT75kirkU169x7770xZswY3cvQcw4oiqKq/vJ4PJg6dartGXUtD252lONguoPORCKBiy++GF/+8pexePHiIX+vq6tDOp3Om/swGo2irq6u6DJramosCzBLcbvdeQUy+N92aWlpQTgclmJbjAqHw/B4PEL3RWu5JRIJ1NXV5f3G7/cjlUrp2s5wOIyuri7LyqurqwstLS1C1tfa2qrp3HO5XKq/29raik8//bTo9828/nK3y+fz6X5/ciqVwubNm+FyuWy/6Vitq6sLw4YN03zcrKpHW1tb8cEHH0hbT4bDYbS2tgrZvpaWFnR1dakOaLWy8l4o8jiVUltbi76+vrLrdblcA3P+Oo2dMY2utaZSKfzoRz/C8OHDceGFFxb8TjAYRGtra97I9o8++giTJk3StaFUWZ3vOzs7pduXQgOJjEyrY/U+ipyWS8u0RqlUSlNlbNd5bWTu23A4jL6+vqp8YYMsAyiKkb2ezH0Vq9lk33ctCtXHVuAAQ7F0BZ3XXHMNEokEVqxYUfIpf+HChbjtttsQjUbx7rvv4rnnnsORRx6pe2PtUGgaHbtU0jQjnZ2d0s3TV2zKJKcEnaKDAbUZvUKDCktx4pyN2XJ12nabQfY5h514PpmlmvfdLGqnTCJ9NDevb9++HQ8//DD8fj8OO+ywgc9/9atfYceOHVi9ejXuu+8+AMC5556Lq6++GvPnz0cwGMRll12GCRMmmLbxVpDpqb65ubnonKhOY2Wzs1qF3khkZC7H7u5uS28AsswFq/WasTM7o7dpvKOjAx6PB52dndL2HRRFpjqxkErK9mlVSYkJu6hNNFTS9FRW0hx0jh49Gq+//nrRvy9YsGDgv2tra3H11Vfr2zJJyFTBVlJlqiiKdBMZm9283tDQIGxKmEJkOVe1bkcwGER3d7fALTJfNtislOtRC1nOs2ICgYDtI4pLEdkHuJLuEXZh87pYcqWaJNTR0SFF9giorApFxgEYZjevq52n0ixWNK+r2R+tGVe3221J1sDMdXR2dmLy5MkVcz1qEY1Gdc1bayXZ6pYsrf2dtaqUe0R2dhM7eDweVQkRWc8x2THoLEOmp3r21xGr2BuJ9DSv29H0IvpcDYVCqjK3erbDigq8r68PPp/PlGV1dnZi0qRJFXGD10rGB0an0NrfWatKCTq7uroQCoXs3gwSgEFnGTIFnfX19YYml5eFoigD/5OJmZnObP9QK/dR9ACPlpYWVQ89eq4ZK45TX1+faaOGqznolO26LUTWbRR9jVZK0ClL/3QyH4POMmQKOislu9Db24u6ujr4/X6p+l4VCjr19um0Y4Sv6HNV7Q1N776LDhQKTVWjd50dHR2YNGkSWx4k5Xa7peszDogPptQ+GMpOpvtuIel0umLux1Zj0FmGbCd/JZzo2WMq21N5JpMZ0t9Kb6Yzu49WBtbd3d0IBoPClq+2vPRcM3V1dSXfVmYGM+dHrNZMp6wZxMHUdgWxmixdYGRn97Rc5e6ziURCmqkUnYZBZxkyDSQCnFPpl5J92pdteo9CFY3ePp127aPIaahEBp1WHKdkMjmkT6feh7hwOFyVQWckEkFjY6Pdm1GWbHVLluig0+PxWDp4URS7kz3l7rOFptcjdRh0lmH3yT+Y2hHEMpM101mI3uZ1J+2jWmr3JRwOa75mrDhOZvbpTKVSCIVCwrOzsnFKXztZrzvZ7ieykv045b7em7Rh0FmGbE/2jY2NiEQidm+GIU4KyIw2r1u5j6Kz4GpnT9AzStyK42Rmn06gMrq6aCV7MJAla91ixfGrlNYwmc8zZjr1Y9BZhqIoUr05R9ZmIy1kDToLVdZOCTqtuNGIPPesmA6sUPM6oO/YZX9TCTd4Lezua6eWbHVLlmzdtWQle0adQad+8kRTpIqslakW2RuXE+Yd1dun0+p97O3tFT5ht8hzz67mdZ/PJ+UoZ1nJnoHKkrVuseL41dbWSjUriB6yn2dsXtePQWcZsmUyKiHozFYosmVtCzWXOqVPpxWVtNODzkLN63oy2bndByqhj7UWsgcDWbLWk6Inhwfk3XctZM+oM9OpH4POEmQLOIHKqFCyTSdO2BcjzetWjl63Ihjw+/1lj0VfXx+8Xq/mZVs1er1QplNr+eYe62Aw6Pg+1lo4JeiU7YE2K5VKmfZWrGKcUK+Wk0wm4ff77d6Mopjp1I9BZwlWNFlqJWuzkRYy9uks9oCht3k9OwCtkjKdQPkHMT0j1wHrMp2Db/h6yjf3WMt0DltB9r52WdVWLrmqed+twkynfgw6S5Dxqb4SKpRsQCbTRMbFJg7Xm+kE+pteKy3oFLUddvXp1FO+1R50ynCelVNt5ZKrmvfdTKUesOPxOINOnRh0liBjBStrs5EWiqLA5XLB7XZL0x+uWHOJ3j6d2QrLqsBalj5QerejsbER3d3dArbocyKa1yuh5UELWc6zcvx+PxKJhN2bYYtqOydF8Pl8SKVSRf9e6JXJpA6DzhJkDDr5FCtGseYSI5lOAJYF1lY1e3o8npKjvfVeM1bMeWnWQKLcwKvarkc2K+qnt7+zVk5PTKTTadunKSzX7YbXgX4MOkuQsf9Std3krFKsuURPnz87BqBZ9YDU1NSEcDhs+3boYWafzmy94PQbvB7VOCm+Gay6Npx+j7BihH855VpAOJBIPwadJcjYlBQIBBz96r1s03qWLDewYs0leppfo9EoGhoazNo0VWS5oRnZDtHnAvt0kp1kuUZlJ8ODa7l6gZlO/Rh0liDDyT+YLEGaXtFoNG9GgNraWsRiMRu3qF+pTKeRoASwpsxkuaEZbR0QmSUW1afTyTf4SlauK4jVZLlGZSfDfbdcvc+BRPox6CxBhpO/0gw+prJUkMUynWYEnVYE1t3d3WhsbBS6DqC/ObnUIAUjrQP19fWIRqN6N62sYs3rDDrVyWQyjnroLdcVxGpWvQIzFApJtd9aydCtzefzle3TyeZ1fRh0lsCg03yFgk4ZRloWay7Rky2xK7C2IiAQ2bwu+lwo1ryutU9nbp8zWc5fK3R3dyMYDNq9GarJVjZW3U/cbreULzZRS4b7LpvXxWHQWYIMJ38hMk01pNXgTJgsAzGKNZe4XC7NFfjgfbTi5mdVBqpc0GlkEIDoc8Gs0eupVGpgFHIgEJCie4gVZK0Pi5EtC23l8XNSRnowGcZSqGleZ6ZTHwadJWQnMZdNMBgUPqehKIObTmS5MZjZXDJ4H2UJrM1QrrzS6bTuaWFEnwtm9enM5XK5HH2D18JpQads153Tjp9dZDhOzHSKw6CzDBlvKLI1G2kha5/OUh3DtZ4DVu+jlU1pIvfFiqDTjCmTZKwTrCBDMKCFLHVLltOOn11kOE7l+nRyIJF+DDodSLbKVAtZg06zM51W7uPgGQFEEvnAI/o4mTVlUrWSYYCHFrLULVlWHj9ZZgXRQ4ags1y9YNVE/5WIQacDydZspIXMQWexJ1etmUSr99HKPlCiM50iM/hmNK8Xypa6XC7H9rHWQoa+dlrIUrdkdXZ2WjbpeSW1htmhXNA5eL5pUo9BZxEyj/6TrTLVwo5BNmqY2THc6n20MoNSU1NT9J3EhQIyLezo06k101nohhgMBtHV1WXKNspMhmBAC1nqlqxMJgOPx2PJupycmCjUImE1Pd1uSB0GnUXY8VYZtZwcdMo6yKZUplPrE21PT0/euSO6vGQJBoxuhxWj14326Sw016Is57Bospxnajm5njSqmvfdDOVaQJjl1I9BZxEyNyU5uUIZ3P+wsbERkUjExi3qV6pjuNas9+ARzaKDElmCAaPb4YQ+nYX20cnXoxaynGdqVUu5FFLN+24G9vUWh0FnETJXsLI1G2mVG5DJMpGxyDdMiA6srT5Xi5WX0e2w4o1ERvt0MuiUs04spFRXkEpXLeekKAw6xWHQWYTMFWylVSiyBJ2ipsAQHVhbfa56vd6CTdJG+5bqmYhfCzNeg1nNQacTp4mRoW4BgEQiYWk/RacmJlKplGX9XkspN2US6cegswgGnWLIchMYrNRAIi39d4rtn8j9trorSHNzc8F3O8vcJQXob1432qezWNDpxBs8Wcfq+4lT7xHhcFiKOoSZTnF0BZ0rV67EkiVLcNBBB+Hxxx8v+r0VK1bg0EMPxezZszF79myceOKJujfUajIHnYFAAIlEwu7N0KxU4GV3MGrWlEmRSMTyAWhWz59Y7IYm8zUD9Jej251f5ZnRvF4tA4lIP6uvDaeek7I8uKqZMon00TW76bhx43DxxRfj1ltvLfvdc889F2eeeaae1diqs7MTkydPtnszKkokEkEwGBzyeX19PXp7ey2b4LyQRCJhSp/OUgGgqLndZMmimLEd2SZ2q0aHas1oFBq97tSsUjXIdgUxMpWXGWS5RmUny4NrqXpBli4ATqUr07lw4UJ86Utfsn0uLZFkeeIqxolPWsUqFBkqyFKBjtfrRTqdVrWcYvuYDaxFsPKNRIDYoNPq2QzMal63+/wVLZPJOHKamGJdQaxmdTAly6wgWskSdJbq0+nEvs0yEf4epzvvvBN33nkn2tra8N3vfhcHHHBA0e8mk8khTxder9ey4Db7VpFMJoOOjg6EQiFp3zSiKIq021ZMe3s7mpqahmx3U1MT2tvbMWbMGFPWk1uOWn5T7Ps+n091RVNuH0VUVplMBoqiWPYgEgqF0N7ePmQfzbhmssepoaFBVzmWUuia8Xq9SCQSqtcRDofR2NiY9/1QKISOjg7HXY9adHZ26i5bs8tRi+z51Nraavm6cxWrF0RKp9Omrc+qMmxvb5fivluqXujt7UVtba3t26iH6HIc3H2pEKFB58knn4yLLroIgUAATz31FL7//e/j3nvvxahRowp+f/Xq1Vi1alXeZ0uWLLG8L+iWLVuwdetWRCIRbNq0ydJ1q5VIJLB+/XpHpfk/+OADKIpS8Jh+8MEHBZvejdiyZYvq78ZisaJlnUwm8cknn6javo8++gjpdHrIstxuN9auXas6Y6pFqW0Xoa+vD5s3bx6yzu3bt6Orqws9PT26l+12u/Hee+/lfaalHEspdJw6OjrQ0dGh+vhFo1Fs3bp1yOednZ3S1hVm2Lx5Mzwej6F9NKsctXC5XHj//ffh9/stX3eudevWYfLkyZaeIyLqBdFluG7dOowbN872a6m9vR27du0quB2ffvop+vr6bN9GI0SV48SJE8t+R2jQOX369IH/XrBgAdasWYNXXnkFixcvLvj9s846C0uXLs3fQIsznVu2bMG4ceMAAF/4whekbVIaPXo0mpqaLB1AYtQbb7yBSZMmoa2tLe/ziRMnwufzDflcr9xyVPPkBQB1dXVF19/c3IxRo0Zh+PDhZZfj9XoxZcqUIcuaMGECAoGAafuYS9Ryi5k+fTq2bt06ZJ1+vx+TJk0ytOwJEybA7/ejra1NVzmWUug4NTc3o6amRvXxK3asrS4Dq+3atQttbW269tHsctRi4sSJmspXFJfLhenTp1u6HWaek1aVoR3HqZDe3t6i94REIoERI0bYvo162HktZglvXs9VLoCrqamRop+o2+2Gy+WSOovY0tKCrq4uDBs2zO5NUS0cDmPYsGFDTvZhw4ahq6vL9IvA7XarXqbL5Sr6Xb/fj3Q6rWpZ4XAY06ZNG/LdlpYWhMNh0/cxOyLbygqktbW14L6UOoZalj34XDBr/wptX21tLVKplOHzxIx9l1lXVxdaWloM7aPV5ynweT1pd9mEw2G0trZauh3Z+5iZiRPRZWjHcSrE7/ejr6+v4HYkk0kEAgHbt9EIO67FgXXr+VEqlUIikYCiKAP/XaiPwNNPP41YLIZUKoUnnngCb7/9Ng466CDDG03OHLxQbGS37PuiZVodq/cxEomgsbHR9OWWIrK8rD4XtE6ZVIysLSJmkWWAh1ay1C12HL+6ujphgxdFkeU8KzV6XeSLRKqBrqDz6quvxqxZs/Cvf/0Ly5cvx6xZs/Dmm2/i0Ucfzet/+ac//Qnz58/HEUccgbvuugvXX3+9aYNFqp0TJ6SWefR6KVqm1Sm2j6LmzbOjkm5qaqqYoNPj8ajuVB+Px4v2DXS73UL668pClmBAK1nmq+zq6kIoFLJ0nbLXq4WEw2E0NTXZvRkl63yOXjdGV/P6ihUrsGLFioJ/W7BgwcB/33777bo2ym5OmI7IiRWKk4NOtdPqWL2PdgQDPp9vyDut4/G4KV1jZD4XSh3rUCg00ARdiTo7OzFz5ky7N0MzWc6nTCZjeXet7L7vsccelq7XiFQqZfucqkDpKZNisZgpczpXK+d2ShDIjiZLrWR5gteiVEBmZ9a23EOGlkxntgP6YKJufrLMJ2vWW5HsPhdKKRV0yhLciCLLeaZVpZdLKTJfS8XIkvBh87o4DDoLcEJTkhMr02g0WjAgs3si40QiUXJKFS39/opNMi8y02lHdm3wPpp1zdjxMKX2RldqH1taWhx3g9fCCXViISK7gsjOiYkJWZRrXmemUz8GnQXYdSPXwolBJ1B4wIXdgzDKPblqfVViIY2Njeju7ja0jEJkCQbM2o5AIIBYLGbCFpmvVL3g1OtRLVnOM60KdQWpFk48J+2+F2SVa15nplM/Bp0FOKEpqdIqFDsrm3Idw7X06Sy2H6L2z65gIPtOa7O3Q9RxKvUaR7XrLFUvOPF61CKZTNo+wbpT2ZUZc9o52dfXB6/X0lkci3K73UUHGHIgkTEMOgtwwlO9E/vryKpcx3C1zevl3k8tIqCy61wdfEOT/Zrp6+szPNCpmvt0kn6yXKOyk70OyeJAImMYdBbghJPf7/ebMr+gVcoFZFa+O3wws5rX7RiAZucNLfehp6Ojw7QuKSLOg2QyWTToNKNPp9Nu8GQdu1rOnJaYcMJ9F2Cm0ygGnQWEw2FHnPxOUi4ga2hoMPTObiPKNX+pDTrVVJpmB1R23dAGD1Iw84bhcrlUz52pVqmgU61yQaeTbvDVxKwXAOjFTKc6sgWdxZIkzHQaw6CzACcMJALk6XStRrngyM6RlmoynWr6dJbbx/r6ekSjUV3bWEyxKZpEE9m8HgqFTB90lUwmi87/p/Y6KlUvVPJIYbWvgJWV3cGXXcFUY2OjbQ/yepjZWmKGYgkCDiQyxrk1iUCyPXFVgnKBvJ03hnLNJWozJWr20exsmNnvVlZLZNAp4lwo1adTbfa5q6sLwWCw4N/sDmxEkuUtMXrZXTZ23U+clJQAnHPfZfO6MQw6C3DC6HWgf4SdU6YDKVeh2HljKNdcYlbzeiVlwwaXl5mv+RNxLpjRvK4oStGMn5YZDpzGKcFAMTIEnTJl8GTllPOMzevGMOgswCnp86amJoTDYbs3QxXZg04zmtft2Ee7Bl8N3pdMJmNaE6yooNNo83q1ckowUIzdD3t2Hj9Z3vCjhlPOM2Y6jWHQWYQTbkR2V6ZayBx0WjWQyOx9LDcjgEgiB85Y3bwOmHNzdtINXgunZ+rsznTa3XLmlPPSKUEnM53GMOh0MLsrUy3UBGR2jf4tl+nU0qfTyqCzu7vbtCZtrQY/8JgZ/Ip4pWSp5vVSbx8h+4Mmo+yeWcDOYMpJg4mccp6lUilpJrF3IgadDuakoLPcyEQ7s7Zq3kikJugst49m3/zsvJmJ7NphdZ9ONeWrpsuN1+t1TB9rLZySgSrG7nqyu7u76AA00ezedy1kG7DmhNZOJ2LQOYidTZZaOalCkbl5Xc1AIhn7dNoZDHg8noG5NM1ubrK6T6ea8lWThXFSH2stGHQaU2oAmmh277sWmUxGqgxisW4JTokPZMWgc5Cenh7bnkq1clKFInvQaUbzermMqdnZXLuDgWylbPZ2WN2nU02mU80+Oul61MLu88yoSi0XNap530lODDoH6erqckwFa3dfJS3KBWT19fWOfyNROZWU6RS5HVY3r6t5qKj2oNPJA4kqNQOthpPuEbJxuVyOGYTlJAw6B3FS0Omk0evl2NlkYda718sx+41EsnS8N/tNIoFAALFYzLTlAcb7dKoJOivpeswly8ONXl6vF+l02pZ12x20OOlByO5jNVixbjeybafTMOgcpKuryzFP9axQzKEm06mmT2e5fTT7ydnuDJTf70cikXBEUGK0T6faTGclZpX6+vqKHjsqze45n53yIJRIJOD3++3ejDxqu1WRNgw6B+nq6pJqBF0pTgo61bAr22lGn04zJ0dXy+5gL3v+idgOs8+FUn061TavlwvwK+16JOPsfjB0yjlpd11WSLEWEA4kMoZB5yBOal53yvyCWgIyOzKiZjSvm/kaSLXsrqhFBp1mM9q8rqYrg1Nu8GQdu68Np5yTdh+nQszqVkX5GHQO4qSg0ynUBmSNjY2IRCIWbFG+cu/lNqv5FTC3id3uilp0pjM7JZMZrGped8INvhrV1NQgkUhYvl5ZrlHZ2X2cCimU1Onr65NqWicnYtA5CINO86mtUOyqIBVFKdlkYtboZsDcwNru/mLZPowiBjSFQiF0dXWZtjxOmaRPX18fPB6P3ZthmF19G+0e7GfnrCBayBh0FqoX7K5zKwGDzkG6u7ulO/lLcUL/Ei1Bp4wDMTweT9nRr7IH1iJkb+Qi+q2Z/SpMo1MmRSIRNDY2lvxOJZVtVjgcdlR9WIxddYvdwZQT7g+A/cF5IYWCznKDTqk8Bp2DOC3T6fV6pe/XqbbitSsbYUbFbEfQafcNJbsvagIyvcs2i9E+nWreKuPz+SruNZh2B01mseuBoFKOn2h2D7gqpFC3G2Y6jWPQOUgikXDUSeWEiY/VzuMoc6aoXICnZR9lzObqkS0vEa/5ExF0GunTWa0qJWiyM+i0O5iy++FUDRnPs0ItIOVeckLlMeh0OJkDtaxKaHouN/jH6mxuJpOx/WYisrzMXrbRKZOqlYzBgB7Vnuk0c1CeCLIcp1zF+nSyed0YBp0O54TMmexBpxmjya3eRzumaBosN9MpatlmMdK8LvOLDUSTMRjQw666RYa+inbNCqKFjOdZsT6dzHQaw6DT4ZzwxgnZg04zWL2PMlTSoVBIWNeOlpYWU5dtJOjs7e1FXV2dqvU4oY+1FjI0D5vBrnpSRH9nrZxQr4bDYdsfogcr1qeTmU5jGHTmsOOtMkY5oULR0vRsR9ZWTTN1ue9YHXSa/b5zPTweD3p6elBfX2/6ss3O4Bvp06klwHfC9aiFDJk6M9jZImR3NxgnJCYymYx0U3MV6nbDgUTGOSvCEqyrq8v2p1KtnHCTU3vjsmNf1PaNLNfEqnYqjUrKdIrcDpn6dGrJ9jnhetRClvPMqEorFy2qed+NYPO6GAw6c3R0dCAYDNq9GZo4oUJJJpOqArJAIIBYLGbBFn3OrHnX1GYzzMq4yBIMuFwuRwSdRprXqznTKct5ZpTZLxtQy+4sJ+CMc1KG4zQYm9fF0BV0rly5EkuWLMFBBx2Exx9/vOj34vE4Lr/8csyZMweLFi3CY489pntDrdDZ2Sldv5JynFChqGVHxaO2ucSsbaurq0Nvb6/h5cgSDDQ3NwvZDr/fb+qIciPN61qamCvpegT6+9o1NTXZvRmGeTwey0dwK4oixSC0SjsnrcIpk8TQFXSOGzcOF198Mfbee++S31u5ciW6urqwZs0aXHvttbjuuuuwadMmXRtqBacGnbKPXtfC6kpababTrO1yuVyWTkYvmqig02xGXoNZzZnOVCpVNFin0qLRqJD+zlrJfo+IxWLw+/12b8YQnDJJDF1B58KFC/GlL32paCWetWbNGixbtgwNDQ3Yd999MWfOHDzxxBO6NtQKTg06ZZ8cXmZmdAxPp9OWD0CTZYCHk4JOr9db8G9q+nSq3UcnDNoga8j0YCjzOSnLcRqM714Xo3AtbILu7m60t7djypQpA59NmzYNa9euLfqbZDI5pJC9Xm/Z4NYsHR0dCIVC0k+km8vtdiOVSlm6zZFIBH6/X1W5pNNpuFwuTdv36quvqs4GTp06dUg/3Oy61Kyzt7cXtbW1Zb+rKErR73R2diIYDKrex1LLUkuWc7W5uRlNTU1CtiObXTZj2dmmzkIZa6/Xi0QiUXQ9HR0dqvcxFAqhvb3d0nIROZOBGeeqlutRpEwmY8p119zcrKp+am9vF3ZtaNHU1ISOjg5D26G1DJ14nAbzer1IJpN525XNysq2rWqJvhbVJF+EBZ29vb3weDx5qej6+vqS/dlWr16NVatW5X22ZMkSnHjiiaI2M8+oUaMwfPhwbNmyxZL1mSUWi1nabWHVqlWYOnUq5s2bV/a7nZ2d8Pl8qrfvuOOOw913363qu59++immTJmCc845p+Df1ZTjJ598gr6+vrLbF4/HsXHjxoKV6MaNG+H1elXvYywWw4YNGwxlR7dt24ZIJGL7m3S+/OUvo6WlRcj519fXh3Q6bcr1WOoa2bVrF9rb24v+ffPmzYhGo6r2sbe3F5s2bbL0ejzzzDPxP//zP0IezrP7Ywa761VFUfDhhx8aah79wQ9+gIsuughjxowp+90PPvgALpfL9i5lsVgM27ZtM2U71JbhpZdeivPPPx977LFH2e++//77AGD7cRqso6MDn332Wd527dixAx0dHdJtq1airsWJEyeW/Y6woLOurg7pdDqvz1w0Gi05yfJZZ52FpUuX5m+ghZnOcePGYcuWLRg3bpyj5uusra1FW1ubZevLZDLwer2q1tnX14c99thD9fadddZZqrfj7bffxv333z9k2ZlMRnU5vvfee5g4cWLZ7WtsbMTYsWML9m/buXMn2traVO/jqFGjBjKEenm9XkybNk33780i8rwbOXIkuru7sc8++xi+HgOBQNFtdblcJa+hVCqFmTNnqppOrb6+Hul02tLrMRqNIhgMYuTIkaYut6+vD8Fg0PC+aLkeRRo7diwaGxtVBYzFxONx1NXVqTom//rXv1TVLaIpigKXy2VoO7SWYSKRKHnN5XrnnXcwadIk24/TYJ9++inWr1+ft11+vx+TJ0+WblvVkuFaFBZ0BoNBtLa24pNPPsGMGTMAAB999BEmTZpU9Dc1NTWWBZiluN1uRwWdLpfL0u0Nh8Po6upStc6uri60tLQI2b5hw4YhHA4XXbaacgyHw6q2z+/3I5VKFezwrnUfW1paBn6jl9VlbofscTLjeix1vGpra9HX11f07z09PQgGg6qaCnO32SqdnZ3o6urC6NGjTV2u2deu3fVqtmzUZN+K0VL3hcNhtLa2SnOdmrEdastQ6z1CpuOUVaheyD50yLatWtl5LepaayqVQiKRgKIoA/9dqI/AwoULcdtttyEajeLdd9/Fc889hyOPPNLwRlO+cqNvzdbZ2am6Y7rITuJmdJBXu32ljrHWfTRju2WYikW0bJAgmprrR20fY6/Xi1QqZcZmqabletS6XLvfemUmMwZ5yVL3ya4SjlOxeTo5kMgYXUHn1VdfjVmzZuFf//oXli9fjlmzZuHNN9/Eo48+mtf/8txzz0VDQwPmz5+Pyy67DJdddhkmTJhg1rbT/7F6dKIsFUp9fT2i0aihZai9sZaay9GOoLMaNDc3WxZ0OvV96ZlMBuFwWMj5JMsMCWYxY+ogWeo+2Wk5TrKeZ8Xm6eSUScboal5fsWIFVqxYUfBvCxYsGPjv2tpaXH311bo2jNTLBjFm9+kqJhaLaap4x40bJ2Q7rJzvstS0Op2dndhnn31Ur9PozS+dTkv3nmIRmpqaLAnOy02ZpJWVLzno7u6Gz+cTlumUMRjQy4yHPa11nyyZ4uwMIlY1qTr1OOXiazDFcHbHBAJgfeassbFR9dygIqdzAYw3M5vRvK51H42WV6W8JaYcqzKdpYLO7CAMWXV2dmLixIkMOlUwet3FYjGMGjXKkZnOUCiE7u5uS9aVSCQwfPhwRx6nXIVaQKwM3CsVj14FsDro9Hg8SKfTqr4ra4WS1dnZqSqAM7N53WjfMtmPqVmsCjpL3UT0vFXG7MxpKR0dHZg0aZKQN85U2nlmtJ7Ueqx7enqkeCMRYO09orOzU9Nx6u7uHjLXsgysvI6rCYPOCmDla84ymYymzI8VNy4j2c50Ol30TTW5yjWvW9mns9KCgWKam5sty84Uo6e/mdU3+MmTJzPTqYIZ153WYy1Lllzmc1JRFCmzh1YP0K0W8pU0aWblq/e6u7sRCoVUV6aib1yNjY3o6ekRtvysUhVQqfd6F2JGxqWSgoFirBq9DhR/cNFz/sp8g9e6bBn72ullRgvDuHHjDA9etIOViYnOzk6MGTMG8Xhc1fdlnYmDQacYDDorgNU3OS03Ya0BmVZG911t8FyqAtJaaZqRcamkYKCY5uZm1X2HRdETdLa0tFh6g58wYYKQ41RpDzfBYNDQQ4yTM79WJiacfJxyOXlWC5kx6KwAdgSdPp8PiUTCknWWYtW+m1kBBQIBxGIx3b+vlEq9HJ/Pp7rvsFHFHj70BPhWX4/Dhg0T8i7lShuw5na7DWXVtFx3smXv7LhHqDkGsh2nXNl3r5O5GHRWADsqFFnmmjSyHYlEouBrLQsp1afT6n5b1RJ0mkXNFFNObl5Xe4PXKpPJVMXUXGppOdY9PT2qXptqFVlbw2KxWMlXY9tJlv64lYZBZwWwaj5D4PMmN5mCTr1NmVoqx2LN66lUyvIbM4NObZLJpO4uHrIHnZXWBC6z3GNdLvCUrVzsOCezc4OWwrqs+jDorAAej0dI81oh2eZGNX2ErAjIjPRVMiPo1NsEaeQpmhW1NkaCTieMXue5oI3erHC27gsGg4hEImW/K1O5WD2QqKWlBU1NTWX70Mp2nAbLradl7grgJAw6K4RVTQFamtet6BNm5Aavpb9esT6deitNNVmAYmTLoojk8XgM96VNJpNlu1GU6tOpZyCRVUFnIpFAIBCA3++Xoo+17Orq6nT3p9ZS98kWTMnaBUv2uiw30DTy8EqfY9BJmshW8RoNOtVuX7E+nXr3MRQK6R5Jm0qlqqbyCwaDhkdmq5lBwew+nVZllXLXaWZQkUgkKvIcM1I2kUgEjY2N0tR9WgQCAdVTGBnV1dWFUCik+jg5ZSYOvgLTHAw6SROtT7GiKxSrgs5izet691GWPrGyC4VCho+TkQyFnjcSGXmg0CobLJt9PskWNJnFyHHKvgLRqcGUVa1h2QFoTgzOB8s9ZrFYDLW1tTZuTWVg0FkhampqLHmSzR1IVC5jYFWmU2/mQkvTjtnN61bO5ehkZgWdepvXy/2tECv7WGeZnV2VPRjQy4zgvBKCKZFyH4RkuEcYkdsCwkynORh0VgirMmfZC0+Wireurg69vb26fmtn87qR8qqmDu3BYNDweW2keV1m6XR64PWBzHSqY1bQWS6YkrGvotXnuCz3CLMw02kOBp0VwsrBC2rXZ0WFYnQUuJaBRDIEnX19fareFV8pzJgOTE3zutvttmwierN0dXUNDNQz+/q3omuMHfQep9yATZa6Tyurz3GnHqdiYrEYM50mYNBZIazKdGaDPDX91qyqUPQGnmb06bQ66AyHw46ppM0QCoUMDyRSE3QW6j4he/Yz99xjplMdvcept7d3oG+vUzN4VvQ1jsfjA9nAShi9nntvYfO6ORh0VgirB6a43W7HT/ybHWWpRrE+nXorTb3lJfsxNVsoFDLcV1FNn85C5RuJRBAMBnWt0+/3C+9jzaBTO719X7Ue697eXunetGNFa5jW42TkGrNC7oMnm9fNwaCzQlgRdKbTaU1ZRSub6PQM3FDzesSsYn069WYezbj5VQOr+nQWKl8jx9qK65FBp3ZmPOypXYZsr1G045xUU8fJdpyKYabTHAw6K4QVcwNqyQwC1kwODwCNjY1l3xBiVKnXYKp9f3suvVmHSg0GirFqyqRC5St70JmbZefodXX0lkvusa6rq0M0GjV704SzOuisra11/AsLOGWS+Rh0Vgirmk60ZC71BmRaWVGZFmte14vN6+qYMTm83j6dRvqbWXWDz16PZvfXq9TzTO8Dau6xdkpmbjCrHoQqaQBa7uArZjrNwaCzQlj9FAv0P8la9ZaLUqwIuIs1r+vl9/t1La/SKvVyfD4fUqmUoWWo7dPptExn7vZ5PB5TBz6Fw2FNrRpO4Xa7dR2nwedCqcAzk8lIGZha0Rqm5TgpiiL9YD2fzzfwMMrR6+Zg0Fkh7Ag6y63TqgpFz77njrJUo1jzutWVZqVmoESyo0+nFZP/izwXFEVR3d+5Gmg51tnXZcrGjntEKdFoFA0NDUK3x6jcep/N6+Zg0FkhrJgOQ2vQaRU926H1hl0o6DQ6Z6YZGRcqz0ifTr1ZZTtu8LJnjZysUAav2OBFGV+BCVg/eh0oPTeoE+qy3G43bF43B4POCqFmCiOjBvdxK9Vc09fXZ0l/znLbUYyeoHNwnz87bi5OqKhlo3fKJNmb12Wf41BmWgP0wce6VN9QWa9ROx6ESs2zK+txypXbAsJMpzkYdJJqWjKdVlYoeipTrTdss5tfgf5+eFrfENLZ2WnJjAAy8Xq9hgZxVeqUSclkEn6/f+DftbW1iMVipiy7krOm9fX1mkefa6n7ZH0YkK0LlhOCztwWEGY6zcGgk1QbnNkr1Vwje9CpNUspIuhsamrSPDLbqhkBZGK0WVBv87rso9cHM6v5tNIHTOg5Tj09PXn9NEv12ZU1mPL7/cKnMBo8rZ4s9wi92KfTfAw6K4joEZOyPsXquYlo3b5Co16N7qMsfWJlZ/Q46Q06jQRfVvSxHny9m3U+OSEYMELvcco93rLUfbJRFAVu9+dhRbnjJGPf11y53W4q/WHMKgw6K4iZzWuFyBp0WjGQCBh6kzfajKZnu2WcikU0o1O96O3TCeg/3lb0sR6MQac6ZkwdJEvdJzsndkPIldvCxeZ1czDorCCiM2eJRCKvD1m5CsWqp9hAIKA52NZzYyiU6TSyj8x0qtPU1GToOOnt02mUyAeEVCqVl1ECGHSqpec4Db72nZ7Bs4rTg3M2r5uPQWcFsWLyX7Xrk71CMeMp2+g+ap3LMZlMGpqiyansal6XWaFXzJp1/ct+7Rql9XwqNKjKqRk8PYMXjXDyPQLIbwFJJBIMOk3AoLOCWDEPW65gMIju7u6Cf5O9QjGjed3qPp2yH1NRrAo6c5vXZX2rTFahbJpZ13+ln2daz6fBg4gA5w6Q0TN4Ua1CfR6depyych9GFUWRuk5wCgadFUR0c+3gC25w814u2SuU7u5uza/5s3sgUbU225kxer1cn87Bzevd3d0IBoO61wmI7WNd6Nwz6/qv9Fetaj2fih3rYhk8mfv+ibxHFMrwllpfT0+P9G8kEtHtptox6KwgIiuUdDpdMsgczOqgs9QbQgoZPMpSD6NzZjLTqY7R81pNn87BzetmHGuR16PIoLPSzzMzrjun9scW2QVLz3GSPXPotG43TqDrrtvZ2YkLLrgAs2bNwvHHH49XX3214PdWrFiBQw89FLNnz8bs2bNx4oknGtpYKk1kRVioDxlQfBLpYt8XJRQKFW3qFyWdThvqY8mgUx0zRq/bEXSKfP86g079tJ5PhY5HIBBAPB43e9OEs/pByOlBW7FZLUg/XXfMn//85xg+fDiefvppvPzyy7jsssvw4IMPFmyOOvfcc3HmmWca3U5SweoKJatQX5dUKmXpoJfsvqsNdPW8ccXsp3Izbn7VwGg/ND1TJpnRlUH09djW1pb3WTAYNGVu0Eo/zxoaGtDT06P6+5V0PET2+6+k45TF5nXzac509vb24tlnn8V5552H2tpazJs3D5MnT8Zzzz0nYvtIA5FNJ8VGZBabrsjqZhMt+673FX+Df2d0H7U+RVdipa6Gx+MxNOelnimTZG9eL3Q9FnqBgR5dXV2G+7PKTOt1q2U0uuwD0OxKTAzmlNesOj1TKyPNqajNmzejoaEBw4YNG/hs6tSpWL9+fcHv33nnnbjzzjvR1taG7373uzjggAOKLjuZTA4pYK/XW/aGYZbsjc3qSZ3N0tTUhI6ODiHb397ejubm5iHLbm5uRnt7+5CpJBRFsfQ4NjU1ob29HZlMpmw59vb2IhAIaN6+wftk1j6qXUZ7ezsOPPBAx56fWuWWo5FjnUgk4PV6S/7e6/UikUgMfGf37t0YPXq0oWMdCoUGzkmzdXR0oKmpaciyzTgnza4HZaxXtRynjo4OTJo0SdWx7uzsRDAYlGpfc4VCIV33CDVl2NHRgbFjx6o6TpFIBPX19dIepyyv14t4PG64DpKF6GtRzTgJzUFnLBZDfX193mf19fUFmytOPvlkXHTRRQgEAnjqqafw/e9/H/feey9GjRpVcNmrV6/GqlWr8j5bsmSJ5X1Bt2zZYun6zJLJZLBz505s2rTJ9GV//PHHSKfTQ5btdruxdu1apFKpvM9jsZiQ7SgmnU7j448/xtSpUwc+K1aOO3bsgNfr1bx9ufuUSCTQ19dneB+1HKdNmzZZflxlsGXLFsTjcd373dPTg61bt5b8zu7du7Fr166BdWzYsAEtLS2GjnUymcT69euFlNeWLVvQ09MzZNlGjpOZyyhEpnpVyz5u3LgRe++9d8FjvWHDhrwb7ebNm3XVLVbJ1h96t69UGW7YsAFTp04dsuy+vj6sW7cur7vVtm3b4PP5pD1OWeFwGJ999lnF1b2irsWJEyeW/Y7moDMQCCAajeZ9Fo1GC04RMX369IH/XrBgAdasWYNXXnkFixcvLrjss846C0uXLs3fQIsznVu2bMG4ceMMj2y2S21t7ZC+XmbweDyYNGnSkGVPmDABgUAg7/NEIoFgMChkO4qZOnUqPv30U7S1tZUtx0gkgvHjx2vevrq6uoHf7NixA2PHjjW8j4OPXSnpdBozZsxAa2uroXU6RW45Gjmv1RzjeDyeV74A8IUvfMFQ+ba3t+Ojjz4Sch309fVhn332GdJXNRAIYPz48YaaeLWck2rIWK9qOU6ZTAZ77703xo0bl/f5qFGj0NTUlNekvHv3bl11i1Vqa2uRSqU0b5+aMsxkMthrr72GLHv06NEIhUJ5raOdnZ1SH6essWPHIhwOY/z48aZfF3aQ4VrUHHSOHz8ePT092L1798BJ9PHHHxcNJHOVu8BramosCzBLcbvd0lSOWrlcLiHb3tXVhdbW1iHLbmlpQVdXV97nXV1daGlpsfQYtra24v33389bZ7Fy1Lt92fPX7Xabto9erxfpdLrsQBfAnuMqA7fbDb/fj76+vrzXsKql5prILj/7vXA4XPB812LYsGHo7OwUUl6pVKrgsairq0MikUBdXZ2u5WYHBYrYZpnq1cbGRkSjUVV9V4udC9m6L/chUPZrtLW1FeFwWPf2lSrDcsdpxIgRA5/Jfpyyamtr0dfXh76+PgQCAem3Vy07r0XNa62rq8OcOXOwcuVKxONxPPvss1i3bh3mzJkz5LtPP/00YrEYUqkUnnjiCbz99ts46KCDTNlwKkxUB+1inekLDeCxYxJzLQOJ9L6mLnfgj1n7qGVkdjqdhsfjMbxOJxI9L6LT5ukstU4jgwkLvVWmEmkpm56eniFdyootQ/aJ9UVOARSJRIa8uQkofo9wwqDI7PHie9fNoyvUveyyy/DZZ5/h8MMPx80334yf/exnCAaDePTRR/P6X/7pT3/C/PnzccQRR+Cuu+7C9ddfjzFjxpi28VSYiMCzWJBVaAoOOyoULTcRvds3OOg0Yx+tfnWpU1kRdObejM14q0xjYyMikYjRTdPE6Pkk83vDzaT1fCrUSidL3aeVqNH1xV644dTjBHz+MCrzW6acRtdEis3NzfjVr3415PMFCxZgwYIFA/++/fbb9W8Z6VJfX4/e3t6CT+ZGFKskClXeTgg6x48fr3kdudPqmLWPTn2zidVEB+ci5uMzawqjQooFDkbPp2p51aqW80nLse7s7MSMGTMMb18lKXacpkyZYtMWqZetF6qlBcAKldFBgQaICmJSqVTBfoeyBJ21tbVIJBKqvmsk05kNTMzKCGkpL5nn/xPN6uZ1mfX19RV98YIZQacTMlBGmXE+ObXZ2Oo5MovdI5zwcJOtF9i8bh4GnRXG6syZLEGnFmYEnVZnOhOJhBSD7Ozi1KBTxA2+1CtmGXSqo/Y4lSo/J9Z9QP/gRbP7dWo9Tk7pxpHtdsPmdfMw6Kwwom7OxSqVxsbGIe88l71CkalPp9qBH064mYlkZICMmsDP6/UOzDVr9ltlzA48S50LDDrVUXs+FRsck12GE4PO5uZmQ6+VLaS3t7fojAlOzQgD+c3rzHSag0FnhRH5KsxCCt2cZW866e7uLnojKWVwn04z9lFt3zKnVNKiiM50ulyugeCwq6uraCZRq2wfazOVeqgzev1Xy3mm9nwqd6wHLyMej0sfnIi4lrQ+CJUKUmXCgUTmY9BZYUQMuCjVh6wQu25cbrcb6XS67PeKjbIsJ7cJtqurC6FQSPMyBtNy85M5kBfNyHmtNWtp5vkr6gZf7FwwY/R6NZxnWh72ih2PQmXrhH7XVp+TxTKrTjhWnDLJfAw6K4yICiUcDpe8CQ+uPMwKyLQKhULo6uoq+z29lV1u0GnWnJlqy6taMlDFWNlX2czuITJklcxadiUx47rTMnhRJlafkz6fb8hrkp0idyARM53mYNBZYayuULJy+63ZNYm56MDE5/OZ3gFf7eTw1RIMFKP2gcKI7MOIEzKdxbbP6Nyg1XKe1dXVDXmdcyGVeDxEnJOy9+PXK9ulis3r5mHQWWHsCDrr6upM77emh5omM0VRdA/sEDHCWW0gW4k3Py3cbjcymYzm32kp6+x3zQ46ze5jXWr7cvum6lFq4EwlUdvaoeVcSKfTjnhNotXnJJB/HZo9UE8kj8eDVCrF5nUTyX+FkCZ2PMVaPXjJyHZEo1HdE+fbOZdjtQedehWbX7YUMwfCiehjLTKrlH33OvXTcqxLTWUlExHnpJb6yUkPNi6XCy6Xi5lOEzHorDCFpjAyqlyFIstbddRsh5HgLXfONqufeiu1+Uq0ZDKpen7TSmheJ3OVO9a5gxedUi52nJO5c4M65TjlYqbTPAw6K4yILEW5zE/uk7OdU4aoDTr1ZrGy/XvMrjTVlJns01DJKplMqs50ZpsAZR9IVG5gH2D9W2ecyOVyle2yUe66a2pqGuhr7JRgyurR60D+PcJpdZmiKBxIZCIGnRXI7MBTS6bTzorXikxnMpk0Peuo5g0hds0IIJPa2lrE43FNv+nr69P8JifZM53pdLrkFGYNDQ2qBskMVm1N68FgsOygK6fUfVqoHbyoRSUep1xsXjcPg04qyykVilVBp9n7qGa79c4tWkn0BHBamtezZA86Ra3TSH9nJ1JznMpluHL7kTslmBIxC0ckEkFDQ0PRv8tyj9DD5XKxed1E1X0Xq1BGRmgXoibozFa8dvY9VNNB3ow+nXYEnaRvwJqW5vVsli+ZTMLv92vevkJE9LEud23rPZ+cFgwYpeZ8Kpf9dXIwZbZyx0mGe4QeiqIw02kiBp0VqKGhAT09PaYtr7Ozs+SozMEVr139ddTcRIxUeLl9Os3cR7U3v2onOtMp4hjb0VytdzaJaguazHjYy11GtbzNSQ+nB+fMdJqHQWcFMntKjHLTzgzuJG5XhZLNRJZiJGAU1bwuYgqTSqTnOGnt0yl74KkmiNZ7PlVb0GTGdSdL3aeV1Q9DTj1OADhlkskYdFYgs5try1VQTnqKdWKfTo6c7Cc60+n1egemv5GVmnOPzevqlDtOmUymbD9qJ9V9udQMXlRLzQA0WVrD9EokEpr7hlNhDDorkNV9BOvr6wdGy8pe8RrZvmwHfLP7JJUrL9mPqVX0Bp1q+3T6fD7E43EhA7bMyqAy6DRPuePU3d2NYDCoehlOOn5m3iPUDEBz6nECPr92q2lmB5EYdFYgs4POcjfM3Ffv2V2hlNvWnp6ekqMsS7Er02n3MZWFnvNaS/N6TU0Ndu7cafpbZXIfyoxi0GkeM6673P6zemZKsIuZ9wg1D+G562PLTXVj0FmBzKxQtGSKAPtHJnq9XqRSqaJ/NzIXYTboNHvOzHIDP6otGChG7+h1rUGn2cda78CeQtTe4DmQqLxyx0lrMOUkZp6Tas6bpqYmRx4ngBlOszHorEBWVyi5uru7bZ3EXMTEx1nZgUpmz5lZbkCD3YG8LET36aypqcFnn31men8zMweKicx0Vtt5ZkamU83gRRlZfU46ob80WYNBZwUyu0JRexPOzg9q5yTmIjMP2SmTzFYuUHZix3sRgsGg5jkvtfbp/Oyzz4RkOq28HvVOmVZt51kgEEAsFiv6d63Hw0kZMavPSSfzeDwlW89IGwadFcjsCkXNTbixsdHUuUH1KrXvRl/zl21eN5vH4yn5Duhqa/YsRs/DjNY+nTt27JA+6Cy3fS6XS9d5Xm1vJCp3nNRedy6XC6lUCh6Px8zNE8qOe0T2XfdOe7OaqHq/Wjmr9EkVOyqU7DrtnsS81L4bGUQE2Ff5MOjUT5Y+nVZfj3o5KVsnmtpjrSgKwuGw6QPQRLLjnFQURdWMALKpqalhptNEDDorUH19vWlZRy1Bp1n9SI0oVZkavWHX1NSgq6tLyMjLUsE6g87PaX2o0dK8nu3TWQlBp56HP7sfGO1gxnXn8XiEPKyIZPXgNqD/+tq+fbujjhPQ3+3GKbMSOAGDzgpkZrZCbYXS3NyMTz/91PapMEr1ZzU6UEJUn79yqm2ARzlagiMtmU6RfTrNHNinNqNWjUGkVtkm30LUXndNTU3YuHGjo65Ru1rDNmzY4KjjBPQHy3bf1yoJg04qSW0n8ZaWFqxfv972DuXlMp1Gti/b/CpiH/1+PxKJRMG/ObFJSpS6urqSgz8G09qnU/bR65lMRlXfwWAwiEgkonq5Rvs7O1VTUxO6uroK/k1tMCVL3aeFmbN8aL1HMOisbgw6K5RZNxAtT7EyVCgim9e9Xq+wZrRymQendb4XRWuGRs+USTI3r6u9rrWuMxKJoLGxUe9mOVap45RIJFQFG7LUfVp4vd6Sgxe16O3tRV1dXdnvZY+Tk4JzoL9eqK2ttXszKgbvZBXMjOY1Bp2fc7lciEajtgSd1E9P0KllyqR0Oq3pZQhqmPlGIrW0Hqdq7TdsxnUnS91nJzUPQ049Tj6fj5lOEzHorFCNjY2amteKUTsqs7m5GevWrbO9QhEZdAL9FRCDTvtoPU5am9dFjEC2o9maQac6ZgWdMtR9WpnV51ftcpx6nJjpNBeDzgplVhCTTqdV9SGTpULx+XxF3xBixo21pqbG0qAzO+E+9RPdvC7q/DWjDOPxuOp9YdCpTrl5fdUuQ4a6T3ZOPU7s02kuBp0VyuopjJqbmxGLxaSuUMwYBS4y6CxUXmr7S1ULree1LEGnGbQEhlqPU7XOkFDsOKXTadX9qJ1Q9xVSU1NTdPCiWloeppx8nJjpNI+uoLOzsxMXXHABZs2aheOPPx6vvvpqwe/F43FcfvnlmDNnDhYtWoTHHnvM0MaSemaOmFWjrq4ONTU1UnQSL9acacbr2nw+n5B9LFZelf6KOa20ntda+3SKOtYul8twtlPLuaD1OFXreVbsOHV1danuapE9bk4Lpsy4R0QiEdUzazj1OLFPp7l0BZ0///nPMXz4cDz99NM4//zzcdlllxV8J/LKlSvR1dWFNWvW4Nprr8V1112HTZs2Gd5oKs+s5nW1/dFcLheam5ulrlDMyBpa3bxerc2exYju0ynqWJvRx1prppPN6+WZcd01NzejoaHB9AFooplxj9B6nAKBgOOyhmxeN5fmoLO3txfPPvsszjvvPNTW1mLevHmYPHkynnvuuSHfXbNmDZYtW4aGhgbsu+++mDNnDp544glTNpxKM6NCSSQSmt7EIEvQ6fV6i/brNDqoIxAICJlahkGnOk7t02nHDZ5BZ3lmXHdNTU2OzBJbfU6GQiG0trYaWp8d2LxuLq/WH2zevBkNDQ0YNmzYwGdTp07F+vXr877X3d2N9vZ2TJkyZeCzadOmYe3atUWXnUwmh7zb2uv1WvYKquy8ZWbNX2anUCiE++67z9DF0t3djaamJtXHY/jw4aivr7f9+IVCIdx///0YN25cXpDZ09NjeNtGjBgBwPxzJBQK4V//+hf++Mc/5n3+1ltvYdq0abYfUzsUuh5DoRDeeuutIcepmA8//BAej0fV8fN4PJrOdy2amprwpz/9CePGjdO9jBdffBFz5sxRtX2hUAjvvPOO6uP02muv4bzzzhOy7zLXq6FQCO++++6Q4/Tee+9h5MiRqs+b8ePHS7l/pYRCITz44IND7t2FKIqC9vZ2tLa25tWpH374IZqbm1Xtu8vlwoQJExx3nDwej+o6RHair0U1/aBdisaORv/6179w5ZVX4sEHHxz47Le//S16enrwwx/+cOCzHTt2YPHixXjllVcGPvvLX/6Cf/zjH7j55psLLnvlypVYtWpV3mdLlizBiSeeqGUTCf0Z6WeeecZwP7Lp06dj6tSpqr77ySef5D1k2OWjjz7Chx9+OOTzESNG4JBDDjG07HXr1mHy5MmGllGIoih4/PHHC2Zov/SlL2H48OGmr9OJFEXBE088MeThtBiPx4P58+erqgx7enoQiUQwevRoo5s5xJYtW/DWW28ZXs7s2bNV9TVUFAVPPvmk6oEiWo5TpXnyyScRj8eHfH7QQQdh1KhRqpYhS92nxa5du/Dyyy8bXs6BBx6o+ppx4nFqb2+Hy+VyZDbbahMnTiz7Hc1B5wcffIDvfe97ePLJJwc++8UvfoHa2lqcf/75A591d3fjK1/5Cv75z38OZNv++Mc/Yu3atfjZz35WcNkyZDq3bNmCcePGVWXlWylYjpWB5VgZWI7OxzKsDKLLUc0yNTevjx8/Hj09Pdi9e/dAE/vHH3+MxYsX530vGAyitbUVn3zyCWbMmAGgPwM1adKkosuuqamxLMAsxe1288KqACzHysByrAwsR+djGVYGO8tR81rr6uowZ84crFy5EvF4HM8++yzWrVuHOXPmDPnuwoULcdtttyEajeLdd9/Fc889hyOPPNKUDSciIiIi59AV6l522WX47LPPcPjhh+Pmm2/Gz372MwSDQTz66KN5/S/PPfdcNDQ0YP78+bjssstw2WWXYcKECWZtOxERERE5hOY+nZUsk8lg06ZNaGtrYxOCg7EcKwPLsTKwHJ2PZVgZZChHnj1EREREJByDTiIiIiISjkEnEREREQnHoJOIiIiIhGPQSURERETCMegkIiIiIuEYdBIRERGRcJynk4iIiIiEY6aTiIiIiIRj0ElEREREwjHoJCIiIiLhGHQSERERkXAMOomIiIhIOAadRERERCQcg04iIiIiEo5BJxEREREJx6CTiIiIiIRj0ElEREREwjHoJCIiIiLhGHQSERERkXAMOomIiIhIOAadRERERCQcg04iIiIiEo5BJxEREREJx6CTiIiIiIRj0ElEREREwjHoJCIiIiLhGHQSERERkXAMOomIiIhIOAadRERERCQcg04iIiIiEo5BJxEREREJx6CTiIiIiIRj0ElEREREwjHoJCKqMvPmzcOFF1448O8JEybgpptusm17iKg6eO3eACIistdrr72G+vp6uzeDiCocg04ioio3fPhwuzeBiKoAm9eJiHR47LHH8OUvfxlNTU1obW3FV7/6Vaxbtw4AsHHjRrhcLjzwwAM47LDDUFdXh3333RcvvfRS3jL+/Oc/Y++994bf78eECRNw44035v19woQJuPrqq3H66aejoaEBbW1t+Otf/4pdu3Zh8eLFaGhowMyZM/H6668P/Ka9vR2nnHIK9thjD9TV1WHmzJm4++67S+7L4Ob1rq4uLFu2DCNGjEAwGMRXvvIVvP322wN/f/vtt3HYYYehsbERwWAQX/ziF/O2gYioEGY6iUg+vb3ABx9Yu87p04G6OtVfj0ajuOiiizBz5kxEo1FcccUV+NrXvoa33npr4Ds//vGPccMNN2Dq1Kn48Y9/jFNOOQWffPIJvF4v3njjDZx44olYsWIFTjrpJLz44ov49re/jdbWVpx55pkDy/jlL3+Ja6+9Fpdffjl++ctf4hvf+AZmzZqFs88+G9dffz1++MMf4vTTT8fatWvhcrkQj8fxxS9+ET/84Q8RDAbxt7/9Dd/4xjcwadIkHHLIIWX3S1EULFq0CC0tLVizZg1CoRBWrlyJww8/HB999BFaWlqwdOlS7L///rjlllvg8Xjw1ltvwefzaTnaRFSNFCIi2bzxhqIA1v7vjTcMbfLOnTsVAMq7776rbNiwQQGg3HbbbQN/X7t2rQJAef/99xVFUZRTTz1VOfLII/OWcckllyh77bXXwL/b2tqU0047beDf27dvVwAol19++cBnL730kgJA2b59e9FtW7hwoXLxxRcP/Hvu3LnKBRdckLeeX/7yl4qiKMrTTz+tBINBJR6P5y1j8uTJysqVKxVFUZTGxkbljjvuKHdIiIjyMNNJRPKZPh144w3r16nBunXrcPnll+Pll1/G7t27kclkAACbN2/GXnvtBQDYZ599Br4/evRoAMDOnTsxffp0vP/++1i8eHHeMmfNmoWbbroJ6XQaHo9nyDJGjhwJAJg5c+aQz3bu3IlRo0YhnU7juuuuw7333ott27YhkUggkUioHij0xhtvoKenB62trXmfx2Kxge4DF110Ec455xzceeedOOKII7BkyRJMnjxZ1fKJqHox6CQi+dTVAQccYPdWlHTMMcdg3LhxWLVqFcaMGYNMJoMZM2YgmUwOfCe3ydnlcgHAQHCqKMrAZ1mKogxZT6FllFrujTfeiF/+8pe46aabMHPmTNTX1+PCCy/M265SMpkMRo8ejX/84x9D/tbU1AQAWLFiBU499VT87W9/w6OPPorly5fjnnvuwde+9jVV6yCi6sSgk4hIo/b2drz//vtYuXIlZs+eDQD45z//qWkZe+2115DfvPjii5g2bdpAllOP559/HosXL8Zpp50GoD+I/Pjjj/GFL3xB1e8POOAA7NixA16vFxMmTCj6vWnTpmHatGn4/ve/j1NOOQWrV69m0ElEJXH0OhGRRs3NzWhtbcX//M//4JNPPsEzzzyDiy66SNMyLr74Yjz99NP46U9/io8++gh/+MMf8Jvf/AY/+MEPDG3blClT8OSTT+LFF1/E+++/j3PPPRc7duxQ/fsjjjgChx56KI477jg8/vjj2LhxI1588UX85Cc/weuvv45YLIbvfve7+Mc//oFNmzbhhRdewGuvvaY6qCWi6sWgk4hII7fbjXvuuQdvvPEGZsyYge9///u4/vrrNS3jgAMOwH333Yd77rkHM2bMwBVXXIGrrroqb+S6HpdffjkOOOAAHH300Zg3bx5GjRqF4447TvXvXS4X1qxZgzlz5uDss8/GtGnTcPLJJ2Pjxo0YOXIkPB4P2tvbcfrpp2PatGk48cQTsWDBAlx55ZWGtpuIKp9LKdSJiIiIiIjIRMx0EhEREZFwDDqJiIiISDgGnUREREQkHIPOHJlMBhs2bBiY746cieVYGViOlYHl6Hwsw8ogQzky6CQiIiIi4Rh0EhEREZFwDDqJiIiISDgGnUREREQkHINOIiIiIhKOQScRERERCcegk4iIiIiEY9BJRERERMIx6CQiIiIi4bxqv3j77bdj69atWL58+cBnZ599Nk477TSMHz8eP//5z/HJJ59g7Nix+NGPfoS99toLmUwGN954Ix577DGkUinsscce+O1vf4umpqaC60gmk0gmk/kb6PWipqZG395plJ2lX8hs/e+/D0yZAvh85i+70qVSwNNPA4nE0L/NnAlMnJj3kSnl+OGH/f8brK4O+MpXADef10QTdj2mUsAzzwDx+NC/7b03MHmyueurcprK8ZNPgPfeM77Sgw8GRo0yvhwCIPjeKLtt24A33hj6udfbfy+orbV+m3QSXY5uFfdFl6IoipqFffrpp1i6dCkef/xx1NTUYPv27Tj11FPxyCOPYMmSJbjkkkswZ84cPP/887j++uvxwAMP4I033sAtt9yCW265BYFAAB9//DHGjx+Purq6gutYuXIlVq1alffZkiVLcOKJJ6rZRHklk2jbZx/svv56RI85xu6tcZzAM89g1DnnFPxb7OCDseOee0xf59j581Hz0UcF//bp/fcjccABpq+TrFH7/PMYfcYZBf8W328/bH/gAYu3iLLGHHcc/O+8Y3g5Pccei1033WR8g6jqjTjvPNQ/8UTBv+264Qb0HH+8xVskr4mDEkCFqM50jhkzBpMnT8YLL7yAww47DI8//jjmzZuHf/7zn5gyZQoOO+wwAMC8efNw++23491334XX60U0GsXGjRux9957Y/r06SXXcdZZZ2Hp0qX5G2hxpnPLli0YN26cqohdtfZ2uJNJDAMwrK3NvOVWC48HAJDZsiUvU+z6yU9Q+/LLaBt0TM0oR1d3N5RLL4Vy0UWff/jZZ3Dvuy9G1dQALEfhhF2PL73Uv/xPPgEaGgY+dl11FfxPPjnkfCJjtJSjq6cHyve+B+XHP9a9Ptc3v4n6RAJ1LEfTCLsWHcAVi0E54QQov/lN/ueTJqHV7Uarg84zGcpRddAJAAsWLMATTzwxEHRecMEF+PDDD/Haa69h3rx5A99LpVLYvXs35s+fj69//eu49tprsXPnTixatAjf+9734PUWXm1NTY1lAWYpbrfb3AKJRvuX29PDZlk9olGgpgbuPfbI/3zECCASgavIMTVUjpEIMGoUXCNHfv7Z/2Xo3dEoy9FCwq7HiRPzy3HkyJLnExmjqhwjEWDkyPzrTqthw4BPPmE5CmD6tegEkQgwY8bQc7KxES6H3tPtLEdNQecRRxyB3/zmN/j3v/+Njo4OHHTQQejs7MSXv/xlXH/99QV/s3TpUixduhQ7duzABRdcgGnTpmHRokWmbLxj9PTk/z9p09OTl5Ea0NAg5phmMv2ByeB11td/vj3kXD09/WU5uNIVdT6ResWudS1YjmQmq+8/FU5TqBsKhXDAAQfgyiuvxJFHHgmPx4PZs2fjvffew7PPPot0Oo14PI4XX3wRPT09eO+997B27VqkUinU19fD6/XC839NpVUlEsn/f9ImEgEaG4d+3tgo5pj+XyZsyDrd7v5gheXobKXOp56e/ocOsl4qBcRihctGC1H1AlUnq+8/FU5zfnXBggXYsGED5s+fDwBoaGjATTfdhHvuuQdHHnkkjj32WPzlL38BAPT09OCqq67CYYcdhq9//evYd999ceSRR5q7B07ATKcxpZ40k8n+/5m9vuzyC62T5ehspc4nAOjttXZ7qF/2YY+ZTpIJM52m0tS8DgAjRozA2LFjMWPGjIHPpk6diltuuWXIdw8++GDce++9xrawEjDoNKbUkyYw0OfTNNlyKpUNI+fq6Sl9PpnRxEvalbrutGAGisyS7WrFe4FpNGU6U6kU7rnnHhx77LGitqcysXndmHKZKbOPa3Z5xdbJcnS2SMTa84nUKXXdadHQ0N9Mn04b3yaqbqWy77wX6KI66AyHw5g7dy62bduGk046SeQ2VR5mOo0pl+k0+7gy01nZ1GQ6yXpmZjpzl0ekF+8FplPdvN7U1IQXXnhB5LZULmY6jenp6Z8GZTBmOkmPSARobR36OTOd9jIz0wn01xuhkLFlUXXjvcB0zptgyomY6TSGmU4yEzOdcjI708mAgIzivcB0DDqtwEynMXb16czOyzl4nSxHZ2OfTjmJyHQSGcFMp+kYdFqBmU5j7Mh0Fpo8PLtOlqOzFct0cvJ/e/X0AC7XwJu/dGOmk8zCTKfpGHRaIVv5xWL9EyCTNsUynX5//3vZRWQ6i2Vb+HTrfMXK1+PpD3hYvvbIlovLZWw5zHSSWcplOkXME13hGHRaIbfyy07BQOqUmifN5RLztFksEwbw6bYSsHzlVKpctGCmk8ySrQsKdbViH3BdGHRaIRIBhg///L9JvXJvKRGReWSms3IlEkBfH8tXRqWuOy0Cgf6uMQwGyKhIpHhXK/YB14VBpxV6eoDRoz//b1Ive0FbmZkqlwnr62OTilOVGyHNTKd9zMp0ulx8eCBzlLsXZL9DqjHotEIk8nnQyYpQm1LvQc9+bnWmM/sdcp5yI6QZrNjHrEwnwPdikzl4LzAdg04rMNOpn4yZzux3yHmY6ZSXWZlOgO9fJ3PwXmA6Bp1WYKZTP2Y6yUzMdMqLmU6SDe8FpmPQKVp29DUznfow00lmYqZTXsx0kmx4LzAdg07RsqOvhw/v7+DOilAbZjrJTMx0youZTpJNqXOypgbwellfaMSgU7TczAorQu0ikdJvKWGmk7RgplNezHSSbEqdk6Lmia5wDDpFy20eZkWoXalXUgLMdJI2kQjg8/VnKQphptM+zHSSbMqdk6wvNGPQKVpu8zArQu2KvXc9y+wnzWSyfx7OYuv0+/uDFpajM5XLpjFzYQ9FYaaT5MP6wnQMOkVjptOYYu9dz8oG8opizvrK9fnL/o3l6ExqMhd8n7L14nEgnWamk+TCTKfpGHSKxkynMWoynYoC9Paas75yff6yf2M5OpOazEX2e2QdNdedFnzAJzMw02k6Bp2iMdNpjJpMJ2DecWWms7KpyVxkv0fWUXPdaWF2CwhVn0Siv6sV7wWmYtApWvYpqK6OmU491GQ6AfOOKzOdlY2ZTjmJyHSm0/3N9kR68F4gBINO0bKZFbebmU49mOkkMzHTKScRmU6AAQHpx3uBEAw6RcsNmpjp1I6ZTjITM51yEpHpBBgQkH68FwjBoFO03KCJmU7tmOkkMzHTKSdmOkk2vBcIwaBTNGY6jbEj0+nz9c/HWWqdLEdnYqZTTuVed6sVM51kFDOdQjDoFK1QppMjKtUrl+msr+//fzMzneVufHy6da5y5cv3KdsjEvn8xQtmYKaTjFKb6ezpATIZa7apAjDoFG1wpjOT4YhKtRSlfKbT4+mfGcDMTGe5fmV8unWucuXL9ynbw8y3EQHMdJJxajOdgHnzRFcBBp2iDc50Zj+j8pJJIJWyNvPITGflymSAaJTlKyMz37sOMNNJxkUi/Zn3mpri32EfcM0YdIo2ONOZ/YzKy51YvxQzM1NqM53RKJtUnCYa7f9/ZrLlY3am0+sFamsZDJB+au8F2e+SKgw6RWOmUz+1gwvsyHQCnwcx5AxqR0gz02k9szOdAAdukjFa7gWsL1Rj0CkaM536yZzpzH6XnEPtXJDMdFrP7EwnwCnqyBjeC4Rg0CkaM536yZ7pZDk6CzOd8mKmk2TDe4EQDDpFY6ZTP2Y6yUzMdMqLmU6SDe8FQjDoFCmRAPr6Pj8x+VSkDTOdZCZmOuXFTCfJRs05afY80VWAQadIg4Om7JtuWBGqozZIYKaT1GCmU17MdJJs1JyTbnd/4Mn6QjUGnSIVah5mRaheT0//HGml5kkDmOkkdbLlVVdX+nvMdFqPmU6SjdpzkvWFJgw6RSrUPMyKUL1ybyPKMiszlZ08vNw6s00qLEdnyfavdpep9pjptB4znSQbteck6wtNGHSKxEynMeXeu55l1pNmdt7NcuvMNqmwHJ1FS+aC71O2TioFxGLMdJJcmOkUgkGnSMx0GqMl05lM9v/PCLV9/rLfYTk6i5bMBcD3KVtF7ZuitOIDPhnBTKcQDDpFYqbTGC2Zzuz3jVA7cCn7HZajs2jJXGS/T+Jpue604AM+6ZXtasV7gekYdIrETKcxWjKdgPHjykxnZdOa6WT5WkPLdadFY2N/s30qZe5yqfJpyb7zXqAJg06RIpGho6+Z6VRPa6bT6HFlprOyMdMpJ5GZTuDzAIJILd4LhGHQKVKhoImZTvWY6SQzMdMpJ5GZToABAWnHe4EwDDpFKhQ0MdOpHjOdZCZmOuUkOtPJgIC04r1AGAadIjHTaYzaIMHsTGd2Hs5SWI7OY/XANFJH7etuteLDA+ml5ZzkvUATBp0iMdNpjNrmUDMznfX15ScPB1iOTqS2uwbfp2ytSARwucq/KUordpMgvQrNPFMM7wWaMOgUqVimMx7niEo11GY6/X7A6zUn06k228KnW+dRW74eT38AxPK1RrZcXC5zl8tMJ+mlNdPZ12d8nugqwaBTpGKZToA3tHLS6f7JudU8abpc5vSrUZsJA/h06zSKwvKVlZZy0YJ1LemVvfbVdLXigDVNGHSKVCzTmf0bFaf2lZRZZowgZKazciWT/a0LLF/5aLnutAgE+rvKMBggrXp61He14j1dEwadIpXKdLIiLE3rNCp2ZDr7+oBEwtg6yRpa+mhlv8dr1BqiMp3ZFhAGA6SV1ntB9jdUFoNOkZjp1E/rNCp2ZDqzvyH5aR0hzWDFOqIynQCnsyF9eC8QhkGnSMx06ueETGf2NyQ/ZjrlJSrTCXDibtKH9wJhGHSKxEynfsx0kpmY6ZQXM50kG94LhGHQKUom0z8YhqPX9dGT6TQj6NT6dMtydAat5xMzZNbRct1pxXIkPXgvEIZBpyjFRl9zRKU6ejKdZjSva326ZTk6g9bziRky62i57rRiOZIeWs7Jmpr+eaJ5nqnCoFOUYpkVjqhUp6dH21tKmOmkUpjplBcznSQbLeeky8XzTAMGnaKUyqzw6bs8La+kBJjppNIiEcDn689KqMFr1DrMdJJstJ6TPM9UY9ApSqnMCp+KytOa/TCa6Uwm++fdVLtOv78/iGE5OoPW84nXqDUUhZlOkg/rC2EYdIrCTKcxWp80sxe9ouhfH8Cn20qlJ3ORTPJ9yqLF4/2vvGWmk2TCTKcwDDpFYabTGD2ZTkXpf1+73vUBfLqtVHoyF9nfkTh6rjsteI2SHsx0CsOgUxRmOo3Rk+nM/k7v+gA+3VYqPZmL7O9IHD3XnRbZa1RvCwhVn0Siv6sV7wVCMOgUpdToaz4Vlacn05n9nd71AXy6rVTMdMrJikxnJtPfjE+kBu8FQjHoFKXU6Gs+FZXHTCeZiZlOOVmR6cxdD1E5vBcIxaBTlFKZFT4VlcdMJ5mJmU45WZHpzF0PUTm8FwjFoFOUUpkVPhWVx0wnmYmZTjkx00my4b1AKAadojDTaYwdmU6fr3/+TbVYjs7BTKecssdXVNDJciStmOkUikGnKGoynRxRWZzWzFR9/ee/s2J9AJ9unURr+fJ9ytaIRD5/0YIIzHSSVnoznT09/YPWqCQGnaKUy3RyRGVxet5S4vH0zxRgJNOptV8Zn26dQ2v58n3K1hD5NiKAmU7STm+mE9A/T3QVYdApSrlMZ/Y7NFQiAaRS2jOPRt6/zkxn5cpkgGiU5Ssjke9dB1jXknaRSH/mvaZG/W94nqnGoFOUcpnO7HdoKL0jWo28f11vpjMaZZOK7KLR/v9nJls+ojOdXi9QW8tyJPX03guyv6WSGHSKwkynfnpHtNqR6QQ+D2pITnrPJ2Y6xROd6QRYjqSNkXsBz7OyGHSKwkynfk7KdGZ/S/LSez4x0yme6EwnwHIkbXgvEIpBpyjMdOrntEwny1FuzHTKi5lOkg3vBUIx6BSFmU79mOkkMzHTKS9mOkk2vBcIxaBThEQC6OtjplMvZjrJTMx0youZTpKNnnPS6DzRVYRBpwjlMiscUVma3reUMNNJhTDTKS9mOkk2es5Jt7s/8OR5VhaDThHUZFb49F1cJNI/R5qWedIAZjqpsGz51NVp+x2vUfGY6STZ6D0neZ6pwqBTBDWZFT59F6c3+6E305mdPFzrOrNNKixHufX09J8bbo3VHa9R8ZjpJNnoPSd5nqnCoFMEZjqN0fukqTfTmZ1nU+s6s00qLEe5Gclc8H3K4qRSQCzGTCfJhZlOoRh0isBMpzFGMp3JZP//tK4P4NNtpTKSuQD4PmVR9L4pSiteo6QFM51CMegUgZlOY4xkOgHtF77e0c3Z37Ac5WYkc5H9PZnPyHWnBa9RUivb1Yr3AmEYdIqgZvQ1n4qKM5LpzP5e6/oAPt1WKqOZTpavGEauOy0aG4F4vL85n6gUI9l33gtUYdApgprR13wqKs5oplPrcWWms7Ix0yknKzOdAAMCKo/3AuEYdIqgJrPCp6LimOkkMzHTKScrM5256yMqhvcC4Rh0iqAms8KnouKY6SQzMdMpJ6sznSxHKof3AuEYdIrATKcxdmU6s/NuasFylB8znXJippNkw0yncAw6RWCm0xg7Mp319donDwdYjk6g93zi+5TFikT6r7lAQOx6mOkktZjpFI5BpwhqM50cUVmY3sxUTU3/e+31ZDr1Zlv4dCs/veXL9ymLlX1TlMsldj3MdJJaRjOdfX3a54muMgw6RVCb6QRYEQ6WTvdPxq3nSdPl0hcEGnn/M59u5aYoLF9ZWfHedYCZTlIve47U1Wn/Lc8zVRh0iqA205n9Ln3O6FtKGhrgYqaTspLJ/tYElq98rHjvOtDffO92sxypvGz2XU9XK97TVWHQKYKWTCefivIZHdGq5/3rRjNhfX1AIqHv9ySW0fOJmU5xrMp0ulwsR1LH6L0guwwqikGnCNmnpVLYvF6Y0RGtDQ3W9+nMLoPkY/R8YqZTHKsynQDLkdThvUA4Bp0iRCLqm9f5VJTPiZnO7DJIPsx0ysuqTCfAciR1eC8QjkGnCMx06sdMJ5mJmU55MdNJsuG9QDgGnWbLZPoHwzDTqY8ZmU6rR69nl0HyYaZTXsx0kmx4LxCOQafZsqOvy524HFFZGDOdZCZmOuXFTCfJxsg56fcDPh/PszIYdJot+5RT7sTliMrCIpH+Y6P3LSXs00m5mOmUFzOdJBuj5yTPs7IYdJot+5Sj5sTVk5WrdD09+l9JCejPdBoNOlmOcurp6c8+1NTo+z2vUXGMXHdasRxJDaPnJM+zshh0mk1tpjP7HT4V5VMz8r8Urcc0keifZ9NokwrLUU5Wn0+kTvZNUVY2r7McqRzWF8Ix6DQbM53GmPGkGY32D+hSu77s74ysk+UoJzPOJ75P2XzxeP81ykwnyYSZTuEYdJqNmU5jTHjSdCkKXLGY+vX93++MrJPlKCkzMhfZ5ZB5zLjutOA1SuWYkX3neVYWg06zMdNpjBlPmgDcvb3q15fzO93rZDnKyaTzieVrMjOuOy2y16iiWLM+cp5kEkileC8QjEGn2bKjr+vqyn+XT0VDmZSZcqm98JnprGzMdMrJjkxnJgOobQGh6sN7gSUYdJpNy+hrPhUNxUwnmYmZTjnZkenMXS/RYLwXWIJBp9m0ZFb4VDSUSZkpd3aSfjXry/md7nWyHOXETKec7Mh05q6XaDDeCyzBoNNsWjIrfCoayqTMlEtt0Mmn28rGTKecmOkk2fBeYAkGnWZjptMYOzKdPl//fJtG1slylBMznXIy+qYorViOVA4znZYwJeg88MAD8cADD+DYY4/F4YcfjjvuuGPgb/F4HD/72c9w9NFHY9GiRbj99tuhVPIIQj2Zzko+HloZzUzV1wPQmOk0euPj0628jJZvTQ3g9bJ8zdbT8/mLFazATCeVY1amU8s80VXIa9aC3njjDdx7773Ytm0bzjjjDBx11FEYM2YMbrvtNmzevBn/+7//i2g0iu985zsYPXo0Fi5cOGQZyWQSyUGTMHu9XtTofYWdVldcgeH//jdQVwfF5dK3jOefB2bOhKLmpKuvhzuTgXLqqfpf+1hpuruh1Ncbumhd9fUI/ulPwDvvlC/Hd98FGhvVlVcxDQ1wbdsGLF2qfxk0lKJgeG+vseuxvR1KQ4Ox86mxEbjtNuCFF3Qvo6oVKsf33jN+3WlRXw83AOVnPwPuvNOadVYSM65F2W3cCBeAjJH7T/Y8O+WU/odVmyk/+Qmw554D/878335lBF13bhVxjGlH5cwzz0QgEMCUKVMwefJkrFu3DmPGjMGTTz6JFStWIBgMIhgMYunSpXj88ccLBp2rV6/GqlWr8j5bsmQJTjzxRLM2s6TW9evh27EDCSMLGTMGPYcdhp5Nm8p+1TtuHFpnz4ZrwwYja6wsX/oS2idPRp+K41dMy0knoWbtWiTWry//5bo6xOfNQ9jA+vwzZqB5v/2Adet0L4MK8wDGrseDD0bHtGlIGijf5iVL4H/7bZavAUPK0e9H4utfR6eBctEkk8Gwr30N3k8/ZTnqZPhadIDUkiXYvX277t9799ij/55u1XldRvvGjeirrR3y+ZYtW4Ssb+LEiWW/Y1rQ2dzcPPDftbW16P2/KWt27dqFUaNGDfxt9OjR2LVrV8FlnHXWWVg6KFtkZaYz8//+H7Zs2YJx48apitiL8QNoVfPFtjbgH//QvZ5KNcbg7zMrV2oqRz+AkJEVtrUBxx1nZAlUQCaTMeV6HG10Q265xegSqlqxcvQDCFq5Ifffb+XaKopZ16Ls/ADqjSxAsnv64HupDOUoPP87fPhw7NixA6NH91f9O3bswPDhwwt+t6amxrqm9BLcbndFX1jVguVYGViOlYHl6Hwsw8pgZzkKX+vhhx+OVatWIRKJYMeOHbjrrrtw1FFHiV4tEREREUlEeNC5bNkyjB07Fl//+tfxzW9+E/Pnz8eCBQtEr5aIiIiIJOJSKnr+Im0ymQw2bdqEtrY2NiE4GMuxMrAcKwPL0flYhpVBhnLk2UNEREREwjHoJCIiIiLhGHQSERERkXAMOomIiIhIOAadRERERCQcg04iIiIiEo5TJhERERGRcMx0EhEREZFwDDqJiIiISDgGnUREREQkHINOIiIiIhKOQScRERERCcegk4iIiIiEY9BJRERERMIx6CQiIiIi4Rh0EhEREZFwDDqJiIiISDgGnf+ns7MTF1xwAWbNmoXjjz8er776qt2bRGUkk0lceeWVWLhwIebOnYtly5bhk08+Gfj7HXfcgSOOOAJf+cpXcPPNN4NvfJXfO++8g4MOOgh33HHHwGcsR2e54447sGjRIsyZMwennnoqIpHIwOcsR2f44IMPcPbZZ2Pu3LlYvHgxHnrooYG/sRzltHLlSixZsgQHHXQQHn/88by/lSqztWvX4pRTTsGsWbOwbNkybN++XeyGKqQoiqL88Ic/VH76058qsVhM+fvf/64cdthhSldXl92bRSX09vYqq1atUnbs2KGkUinlzjvvVI499lhFURTl+eefVxYtWqRs2bJF2bVrl3LCCScoDz74oM1bTKWk02nljDPOUE4//XRl9erViqKwHJ3m7rvvVr71rW8pn376qZLJZJSPP/5YicfjLEeHWbJkiXLbbbcp6XRaef/995XZs2crGzduZDlK7G9/+5vy0ksvKWeccYby2GOPDXxeqswSiYSycOFC5cEHH1Ti8bhy8803K+ecc47Q7WSmE0Bvby+effZZnHfeeaitrcW8efMwefJkPPfcc3ZvGpUQCARwzjnnYOTIkfB4PDjppJPw6aefIhwOY82aNTjhhBOwxx57YNiwYTjttNPw6KOP2r3JVMIDDzyAGTNmYOLEiQOfsRydI51OY/Xq1fjJT36C0aNHw+VyYcqUKfD7/SxHh9mxYwfmz58Pt9uN6dOnY8KECdi0aRPLUWILFy7El770JdTU1OR9XqrM3njjDQQCASxevBh+vx/f+ta38N577wnNdjLoBLB582Y0NDRg2LBhA59NnToV69evt3GrSKt33nkHLS0taGpqwoYNGzBlypSBv02bNo3lKbGuri7cfffdWLZsWd7nLEfn2LlzJxKJBJ566ikcddRROP7443H//fcDYDk6zYknnog1a9YglUrh3//+Nz777DPMmDGD5ehApcps/fr1eX8LBALYY489hJapV9iSHSQWi6G+vj7vs/r6evT09Ni0RaRVT08Prr32Wnz7298G0J+9bmhoGPh7fX09ent77do8KuO3v/0tTjnlFASDwbzPWY7OsXPnTvT09GDr1q146KGHsG3bNnz729/GhAkTWI4Oc+ihh2L58uW47bbbAAA/+tGP0NLSwnJ0oFJlViz2icViwraHQSf6o/toNJr3WTQaRSAQsGmLSItEIoGLL74YX/7yl7F48WIAQF1dXd5DQzQaRV1dnV2bSCV88MEHWLt2LX74wx8O+RvL0Tn8fj8AYNmyZaitrcXkyZOxcOFCvPDCCyxHBwmHw7jooouwYsUKzJkzBxs2bMD555+PyZMnsxwdqFSZ2RH7sHkdwPjx49HT04Pdu3cPfPbxxx9j0qRJNm4VqZFKpfCjH/0Iw4cPx4UXXjjw+cSJE/NGsn/00UcsT0m9+eab2Lx5MxYuXIijjz4aTz75JH7/+9/j6quvZjk6SFtbG3w+X8G/sRydY9u2bWhoaMBhhx0Gj8eDKVOm4Itf/CLefPNNlqMDlSqzSZMm5f0tFoth69atQsuUQSf6nwTmzJmDlStXIh6P49lnn8W6deswZ84cuzeNyrjmmmuQSCSwYsUKuFyugc8XLlyIP//5z9i2bRt2796Nu+66CwsWLLBxS6mY448/Hn/5y19w11134a677sKcOXNw8skn44ILLmA5OkggEMDhhx+O22+/HclkEhs3bsSjjz6KWbNmsRwdpK2tDdFoFM899xwURcHGjRvx2muvYcqUKSxHiaVSKSQSCSiKMvDfmUymZJl98YtfRCwWw8MPP4xkMonbb78de+21F0aPHi1sO12Kwkm2gP55OpcvX4433ngDI0eOxA9/+EMccsghdm8WlbB9+3Ycc8wx8Pv9cLs/f3761a9+hf333x+rV6/GH//4R2QyGRx33HE4//zz8wJTktOKFSswYcIEnHnmmQDAcnSQSCSCq666Cq+88gpCoRDOOOMMnHDCCQBYjk7y0ksv4de//jW2bt2KxsZGfP3rX8fZZ58NgOUoqxUrVuCRRx7J++zWW2/FgQceWLLM1q5di5/+9KfYsmUL9tprL1x11VUMOomIiIjI2di8TkRERETCMegkIiIiIuEYdBIRERGRcAw6iYiIiEg4Bp1EREREJByDTiIiIiISjkEnEREREQnHoJOIyKDXX38dBx54IA488EB8+umndm8OEZGUGHQSEWmwYsUKHHjggVi2bNnAZw0NDZgxYwZmzJiBmpoaG7eOiEheXrs3gIjI6aZPn4477rjD7s0gIpIaX4NJRKTSMcccg+3btw/5/NZbb8V5550HAHjooYcwZsyYgXchjx49Gueeey5uueUW9PT04Nhjj8V3vvMd/Pa3v8VDDz2ExsZGnHnmmQPvKAeAXbt24Xe/+x1eeuklhMNhjBw5EscccwzOPPNMeL3MFRCRM7H2IiJSac8990QsFkM4HEZ9fT0mTpwIAPjggw+K/mb37t247rrrMGzYMESjUdx99914+eWXsXPnTjQ0NGDHjh34xS9+gS9+8YuYOHEiwuEwzjzzTHz22WcD61i/fj1uvfVWbNu2DcuXL7dqd4mITMU+nUREKt1www348pe/DKA/AL3jjjtwxx13YPr06UV/09fXh9/85jd44IEHMHLkSADAli1bcPfdd+P++++H3+9HJpPBG2+8AQC477778Nlnn6G1tRUPPvgg7r77bvz85z8HADzyyCPYsmWL4L0kIhKDmU4iIoGCwSD2228/AMCoUaPw2WefYfLkyRgzZgwAoLm5GTt27EBHRwcAYO3atQCA9vZ2HHnkkXnLUhQF//73vzFu3DjrdoCIyCQMOomIBKqvrx/4b4/HM+Qzl8sFoD+gzP3/3Ob7XLW1tcK2lYhIJAadREQaZIO+eDwuZPl77703XnzxRXg8Hlx77bUDGdFoNIq///3vOOyww4Ssl4hINAadREQaTJgwAQDw3nvv4aSTTkIgEMC3vvUt05Z/4okn4q9//St27tyJr3/965g4cSKi0Sg+++wzpFIpfPWrXzVtXUREVuJAIiIiDY499lh85StfQUNDA9atW4d///vfyGQypi2/ubkZq1evxjHHHINQKIR169YhkUhg//33x0UXXWTaeoiIrMZ5OomIiIhIOGY6iYiIiEg4Bp1EREREJByDTiIiIiISjkEnEREREQnHoJOIiIiIhGPQSURERETCMegkIiIiIuEYdBIRERGRcAw6iYiIiEg4Bp1EREREJByDTiIiIiISjkEnEREREQn3/wFcE2e9XgwH0gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "show_anomalies_from_scores(\n", + " series=series_test, anomalies=anomalies, title=\"Testing set univariate\"\n", + ")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From left to right, anomalies at positions 3, 4, and 6 are of type 1, and anomalies at positions 1, 2, and 5 are of type 2. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Use the scorer `KMeansScorer()`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We fit two `KMeansScorer` with different values for the `window` parameter (1 and 2)." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "windows = [1, 2]\n", + "Kmeans_scorer_w1 = KMeansScorer(k=4, window=windows[0])\n", + "Kmeans_scorer_w2 = KMeansScorer(k=8, window=windows[1], window_agg=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AUC_ROCAUC_PR
w_10.4602120.123077
w_21.0000001.000000
\n", + "
" + ], + "text/plain": [ + " AUC_ROC AUC_PR\n", + "w_1 0.460212 0.123077\n", + "w_2 1.000000 1.000000" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scores_all = []\n", + "metric_data = {\"AUC_ROC\": [], \"AUC_PR\": []}\n", + "for model, window in zip([Kmeans_scorer_w1, Kmeans_scorer_w2], windows):\n", + " model.fit(series_train)\n", + " scores = model.score(series_test)\n", + " scores_all.append(scores)\n", + "\n", + " for metric_name in metric_data:\n", + " metric_data[metric_name].append(\n", + " eval_metric_from_scores(\n", + " anomalies=anomalies,\n", + " pred_scores=scores,\n", + " metric=metric_name,\n", + " )\n", + " )\n", + "pd.DataFrame(data=metric_data, index=[\"w_1\", \"w_2\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The metric indicates that the scorer with the parameter window set to 1 cannot locate the anomalies. On the other hand, the scorer with the parameter set to 2 perfectly identified the anomalies." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp0AAAL2CAYAAAAD5i2nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADlVklEQVR4nOydd5xU1fn/P9PLzs7MFpC+S4cIFpQYQmiiUmyJEdRgAfONGDX2RFIUUETFGEtiIkHFEo09WAIERcDeYkeKFHGpsrszszuzM7NTzu+P/c1kZqfdXmae9+vlS/bOnTvnnvo5z3POcwyMMQaCIAiCIAiCkBGj2gkgCIIgCIIgyh8SnQRBEARBEITskOgkCIIgCIIgZIdEJ0EQBEEQBCE7JDoJgiAIgiAI2SHRSRAEQRAEQcgOiU6CIAiCIAhCdkh0EgRBEARBELJDopMgCIIgCIKQHRKdRMVz3333wWAwYNSoUWonRRYaGxsxd+5ctZMhGwaDAYsWLUr//dVXX2HRokX45ptvJP2dP/zhDxgwYADMZjO8Xq+kz5aauXPnwuVy5Vz/8MMPUV9fj2HDhmHPnj0AgMmTJ8NgMGDQoEHId0DdG2+8AYPBAIPBgEceeUTupEsGYwxPPfUUJkyYgJ49e8Jut6Nfv36YNm0aHnzwQbWTRxAVCYlOouJ5+OGHAQCbN2/G+++/r3JqCLF89dVXWLx4saSi88UXX8Stt96KCy+8EJs2bcJrr70m2bOVYsOGDZg6dSr69++Pt956Cw0NDenPqqursXv3brz++us533v44YfhdruVTKok/Pa3v8V5552HkSNH4sEHH8SaNWuwZMkSHHHEEXjxxRfVTh5BVCRmtRNAEGry0Ucf4bPPPsOpp56Kf//733jooYdwwgknqJ0sXZFIJBCPx2Gz2dROimx8+eWXAIArr7wSPXv2LHpvOByGw+FQIlmcefHFF3HOOedg7NixeOWVV+DxeLI+HzBgAKqrq/Hwww9j6tSp6evt7e149tlnMWfOHKxYsULpZAsmHA7jnnvuwYUXXoi///3vWZ/NnTsXyWRS8fSIqROV0MaIyoAsnURF89BDDwEAbr/9dvzwhz/EU089hY6Ojqx7vvnmGxgMBvzxj3/En/70JwwcOBAulwvjxo3De++9l/PMl156CePGjYPT6UR1dTVOPvlkvPvuu1n3LFq0CAaDAZ9//jlmzZoFj8eD2tpaXHvttYjH49i2bRumT5+O6upqNDY2YtmyZVnfj0QiuO6663DMMcekvztu3LiSFpxgMAiv14v58+fnfPbNN9/AZDLhzjvvLPj9VF4sW7YMS5YswcCBA2Gz2bBhwwYAXSL+jDPOQG1tLex2O4499lg888wzWc/o6OjA9ddfj4EDB8Jut6O2thbHH388/vnPf6bvmTx5MiZPnpzz+3PnzkVjY2PB9D3yyCOYNWsWAGDKlCk5buFPPvkEp512Gnr27AmbzYY+ffrg1FNPxd69ews+s7GxEX/4wx8AAEcccUSWO7+xsRGnnXYaXnjhBRx77LGw2+1YvHgxgC6heuaZZ6KmpgZ2ux3HHHMMHn300axnb9y4EQaDAU8++SRuuOEG9O7dGy6XC6effjoOHTqE9vZ2XHLJJaivr0d9fT3mzZuHYDBYMK35ePzxx3H22WfjxBNPxLp163IEZ4qLL74YL7zwAvx+f/raU089BQA499xz837n66+/xs9+9rN0fo4cORL3339/1j186qrBYMAVV1yBxx9/HCNHjoTT6cTRRx+NV155Jeu+w4cP45JLLkH//v1hs9nQo0cPjB8/Pm2BDoVCiEaj6N27d950G43ZQ180GsXNN9+MkSNHwm63o66uDlOmTME777yT9R6//e1vMXDgQFitVvTt2xeXX355Vn4BxevEwYMHMX/+fPTr1w9WqxUDBw7E4sWLEY/H098v1cYIQtcwgqhQOjo6mMfjYWPHjmWMMfbggw8yAOyRRx7Jum/37t0MAGtsbGTTp09nq1atYqtWrWKjR49mNTU1zO/3p+994oknGAB2yimnsFWrVrGnn36aHXfcccxqtbI333wzfd/ChQsZADZ8+HB2yy23sFdffZX95je/YQDYFVdcwUaMGMHuu+8+9uqrr7J58+YxAOz5559Pf9/v97O5c+eyxx9/nL3++uts7dq17Prrr2dGo5E9+uijWelvaGhgF110Ufrva665hlVVVWWlmzHGfv3rXzO73c6am5sL5lkqL/r27cumTJnCnnvuObZu3Tq2e/du9vrrrzOr1comTJjAnn76abZ27Vo2d+5cBoCtXLky/Yz58+czp9PJ/vSnP7ENGzawV155hd1+++3sz3/+c/qeSZMmsUmTJuX8/kUXXcQaGhqyrgFgCxcuZIwx9t1337GlS5cyAOz+++9n7777Lnv33XfZd999x4LBIKurq2PHH388e+aZZ9imTZvY008/zS699FL21VdfFXznjz/+mP385z9nANjatWvZu+++y5qamtJ527t3bzZo0CD28MMPsw0bNrAPPviAbd26lVVXV7PBgwezxx57jP373/9m5513HgPA7rjjjvSzN2zYwACwhoYGNnfuXLZ27Vr2wAMPMJfLxaZMmcJOPvlkdv3117N169axO+64g5lMJvarX/2qYFoz86mqqorde++9zGAwsHPPPZd1dnbmvXfSpEnsyCOPZG1tbayqqor99a9/TX92wgknsAsvvJB9+OGHOeW4efNm5vF42OjRo9ljjz3G1q1bx6677jpmNBrZokWL0vfxqaupdvb973+fPfPMM2z16tVs8uTJzGw2s507d6bvmzZtGuvRowf7+9//zjZu3MhWrVrFbrrpJvbUU0+l7xkyZAirrq5md911F9uyZQtLJpN53z8Wi7EpU6Yws9nMrr/+erZ69Wr20ksvsd/97nfsn//8J2OMsWQyyaZNm8bMZjO78cYb2bp169gf//hHVlVVxY499lgWiUTSzytUJw4cOMD69+/PGhoa2PLly9lrr73GbrnlFmaz2djcuXPT3y/WxghC75DoJCqWxx57jAFgDzzwAGOMsfb2duZyudiECROy7ksNAqNHj2bxeDx9/YMPPmAA0gNTIpFgffr0YaNHj2aJRCJ9X3t7O+vZsyf74Q9/mL6WEp133XVX1m8dc8wxDAB74YUX0tdisRjr0aMHO+usswq+SzweZ7FYjP385z9nxx57bNZn3UXnzp07mdFoZHfffXf6WjgcZnV1dWzevHkFfyMzLwYPHpwjYkaMGMGOPfZYFovFsq6fdtpprHfv3uk8GTVqFPvxj39c9HeEik7GGHv22WcZALZhw4as+z766CMGgK1atarob+cjVV6HDx/Out7Q0MBMJhPbtm1b1vVzzz2X2Ww29u2332ZdnzFjBnM6nWnBnxKdp59+etZ9V199NQPArrzyyqzrP/7xj1ltbW3J9F500UUMAAPAfvSjH2XVx+6kRGfqe8cffzxjrEtUAmAbN27MKzqnTZvG+vXrxwKBQNbzrrjiCma321lra2ve3ytWVwGwI444grW1taWvHTx4kBmNRnbbbbelr7lcLnb11VcXzYMPPviADRgwIJ0P1dXV7LTTTmOPPfZYlgBN9QMrVqwo+Ky1a9cyAGzZsmVZ159++mkGgP39739PXytUJ+bPn89cLhfbs2dP1vU//vGPDADbvHkzY6x4GyMIvUPudaJieeihh+BwONKuQ5fLhVmzZuHNN9/E119/nXP/qaeeCpPJlP77qKOOAoD0LuBt27Zh//79uOCCC7Lcdy6XCz/96U/x3nvv5bjuTzvttKy/R44cCYPBgBkzZqSvmc1mDBkyJP07KZ599lmMHz8eLpcLZrMZFosFDz30ELZs2VL0vQcNGoTTTjsNf/3rX9O7lZ988km0tLTgiiuuKPrdFGeccQYsFkv67x07dmDr1q2YM2cOACAej6f/mzlzJg4cOIBt27YBAL7//e9jzZo1WLBgATZu3IhwOMzpN8UyZMgQ1NTU4IYbbsADDzyAr776SpLnHnXUURg2bFjWtddffz29aSeTuXPnoqOjI2e5Rb56AHTVue7XW1tbObnYHQ4HTj75ZLz99tt44IEHOL3LxRdfjI8++ghffPEFHnroIQwePBgTJ07MuS8SiWD9+vX4yU9+AqfTmVPekUgka+kJn7o6ZcoUVFdXp/8+4ogj0LNnz6z6//3vfx+PPPIIlixZgvfeew+xWCznOWPHjsWOHTuwdu1a/O53v8O4ceOwfv16XHjhhTjjjDPSdX/NmjWw2+24+OKLC+ZLaoNV9ygQs2bNQlVVFdavX591PV+deOWVVzBlyhT06dMnK79SbX3Tpk1Z93dvYwRRDpDoJCqSHTt24I033sCpp54Kxhj8fj/8fj/OPvtsAP/b0Z5JXV1d1t+pRf0p0dTS0gIAedeR9enTB8lkEj6fL+t6bW1t1t9WqxVOpxN2uz3neiQSSf/9wgsvYPbs2ejbty/+8Y9/4N1338WHH36Iiy++OOu+Qlx11VX4+uuv8eqrrwIA7r//fowbNw5jxowp+d1873jo0CEAwPXXXw+LxZL132WXXQYAaG5uBtAVouqGG27AqlWrMGXKFNTW1uLHP/5xXqEvJR6PB5s2bcIxxxyD3/3udzjyyCPRp08fLFy4MK9o4Uq+8m5paSlYD1KfZ5KvHhS7zqWMjUYjXnrpJZx88sm4/PLLc9Za5mPixIkYOnQoli9fjscffxwXX3wxDAZDzn0tLS2Ix+P485//nFPeM2fOBPC/8uZbV7u3M6CrrWVOTp5++mlcdNFFePDBBzFu3DjU1tbiwgsvxMGDB7O+Z7FYMG3aNNx66634z3/+g6amJkyePBmvvPIK1qxZA6BrfWifPn1y1nl2f1+z2YwePXpkXTcYDOjVq1dOeeYr+0OHDuHll1/Oya8jjzwyK7+KPYMg9A7tXicqkocffhiMMTz33HN47rnncj5/9NFHsWTJkizLZilSg+WBAwdyPtu/fz+MRiNqamqEJzqDf/zjHxg4cCCefvrpLFEQjUY5ff/EE0/EqFGj8Je//AUulwsff/wx/vGPf3D+/e5CpL6+HkBXmJqzzjor73eGDx8OAKiqqsLixYuxePFiHDp0KG31PP3007F161YAgN1uRyAQyHlG94GZL6NHj8ZTTz0Fxhg+//xzPPLII7j55pvhcDiwYMECQc/MJ8rq6uoK1gPgf/klN3a7HS+++CJ+8pOf4IorrkAymcSvfvWrot+ZN28e/vCHP8BgMOCiiy7Ke09NTQ1MJhMuuOACXH755XnvGThwIADxdTUf9fX1uOeee3DPPffg22+/xUsvvYQFCxbgu+++w9q1awt+r66uDldffTU2btyIL7/8EjNnzkSPHj3w1ltvIZlMFhSedXV1iMfjOHz4cJbwZIzh4MGDGDt2bNb9+epEfX09jjrqKNx66615fyM1ISn2DILQOyQ6iYojkUjg0UcfxeDBg/MGiX7llVdw1113Yc2aNTluz2IMHz4cffv2xZNPPonrr78+PWiEQiE8//zz6R3tUmAwGGC1WrMGpoMHD/KKP3jllVfi0ksvRSAQwBFHHJHe9S2E4cOHY+jQofjss8+wdOlSzt874ogjMHfuXHz22We455570NHRAafTicbGRjz77LOIRqNpi3JLSwveeeedkjEju1ug82EwGHD00Ufj7rvvxiOPPIKPP/6Yc5q5MHXqVPzrX//C/v37s8TEY489BqfTiR/84AeS/l4x7HY7Vq1ahZ/85Ce48sorkUwmcdVVVxW8/6KLLsL777+PkSNHom/fvnnvcTqdmDJlCj755BMcddRRaQtsPqSoq8UYMGAArrjiCqxfvx5vv/02ACAWi6GtrS2v1TTl0k+Vy4wZM/DPf/4TjzzySEEX+9SpU7Fs2TL84x//wDXXXJO+/vzzzyMUCmWFmSrEaaedhtWrV2Pw4MGSTT4JQm+Q6CQqjjVr1mD//v2444478oblSVkAH3roIV6i02g0YtmyZZgzZw5OO+00zJ8/H9FoFHfeeSf8fj9uv/12yd4hFZLlsssuw9lnn42mpibccsst6N27N2c39fnnn4/f/va3eOONN/CHP/yhqHDgwvLlyzFjxgxMmzYNc+fORd++fdHa2ootW7bg448/xrPPPgsAOOGEE3DaaafhqKOOQk1NDbZs2YLHH388S5RfcMEFWL58Oc4//3z84he/QEtLC5YtW8YpSHnqZKm///3vqK6uht1ux8CBA/Huu+/ir3/9K3784x+nT99JhQg6+eSTRb17dxYuXJhew3fTTTehtrYWTzzxBP79739j2bJlBcMWyYXNZsO//vUv/PSnP8XVV1+NZDKZJZ4y6dOnD1atWlXymffeey9+9KMfYcKECfjlL3+JxsZGtLe3Y8eOHXj55ZfT6yClqKuZBAIBTJkyBT/72c8wYsQIVFdX48MPP8TatWvTVvZAIIDGxkbMmjULJ510Evr3749gMIiNGzfi3nvvxciRI9P3nnfeeVi5ciUuvfRSbNu2DVOmTEEymUwL73PPPRcnn3wypk2bhhtuuAFtbW0YP348Pv/8cyxcuBDHHnssLrjggpLpvvnmm/Hqq6/ihz/8Ia688koMHz4ckUgE33zzDVavXo0HHngA/fr1450fBKErVNzERBCq8OMf/5hZrVb23XffFbzn3HPPZWazmR08eDC9m/TOO+/MuQ/ddk4zxtiqVavYCSecwOx2O6uqqmJTp05lb7/9dtY9hXZDp0LddCdzh3GK22+/nTU2NjKbzcZGjhzJVqxYkX5uJt13r2cyd+5cZjab2d69ewtlRRbF8oIxxj777DM2e/Zs1rNnT2axWFivXr3YiSeemI4QwBhjCxYsYMcffzyrqalhNpuNDRo0iF1zzTU5oZoeffRRNnLkSGa329n3vvc99vTTT3Pavc4YY/fccw8bOHAgM5lM6V3XW7duZeeddx4bPHgwczgczOPxsO9///s5IbLyUWz3+qmnnpr3O1988QU7/fTTmcfjYVarlR199NFZu78Z+9/u9WeffTbr+sqVKxkA9uGHH3JKR3cK1aNoNMpOP/10BoD98Y9/ZIzlr1vdybd7nbGu+nDxxRezvn37MovFwnr06MF++MMfsiVLlmTdx7WuAmCXX355zu9n1uFIJMIuvfRSdtRRRzG3280cDgcbPnw4W7hwIQuFQun3/OMf/8hmzJjBBgwYwGw2G7Pb7WzkyJHsN7/5DWtpacl6fjgcZjfddBMbOnQos1qtrK6ujp144onsnXfeybrnhhtuYA0NDcxisbDevXuzX/7yl8zn8+WktVCdOHz4MLvyyivZwIEDmcViYbW1tey4445jv//971kwGEznabE2RhB6xsBYnsN2CYIoezo7O9HY2Igf/ehHOQHcCYIgCEJqyL1OEBXG4cOHsW3bNqxcuRKHDh0SvIGGIAiCIPhAopMgKox///vfmDdvHnr37o2//vWvnMMkEQRBEIQYyL1OEARBEARByA4FhycIgiAIgiBkh0QnQRAEQRAEITskOgmCIAiCIAjZIdFJEARBEARByA6JToIgCIIgCEJ2SHQSBEEQBEEQskOikyAIgiAIgpAdEp0EQRAEQRCE7JDoJAiCIAiCIGSHRCdBEARBEAQhOyQ6CYIgCIIgCNkh0UkQBEEQBEHIDolOgiAIgiAIQnZIdBIEQRAEQRCyQ6KTIAiCIAiCkB0SnQRBEARBEITskOgkCIIgCIIgZIdEJ0EQBEEQBCE7JDoJgiAIgiAI2SHRSRAEQRAEQcgOiU6CIAiCIAhCdkh0EgRBEARBELJDopMgCIIgCIKQHRKdBEEQBEEQhOyQ6CQIgiAIgiBkh0QnQRAEQRAEITskOgmCIAiCIAjZIdFJEARBEARByA6JToIgCIIgCEJ2SHQSBEEQBEEQskOikyAIgiAIgpAdEp0EQRAEQRCE7JDoJAiCIAiCIGSHRCdBEARBEAQhOyQ6CYIgCIIgCNkh0UkQBEEQBEHIDolOgiAIgiAIQnZIdBIEQRAEQRCyQ6KTIAiCIAiCkB0SnQRBEARBEITskOgkCIIgCIIgZIdEJ0EQBEEQBCE7JDoJgiAIgiAI2SHRSRAEQRAEQcgOiU6CIAiCIAhCdkh0EgRBEARBELJDopMgCIIgCIKQHRKdBEEQBEEQhOyQ6CQIgiAIgiBkh0QnQRCEznnkkUfg9XrVTgZBEERRDIwxpnYiCIIgCOGEw2G0t7ejZ8+eaieFIAiiICQ6CYIgdEwsFoPFYlE7GQRBECUh9zpBEITCPPfccxg9ejQcDgfq6upw0kknIRQKAQBWrlyJkSNHwm63Y8SIEfjrX/+a/t4333wDg8GAZ555BpMnT4bdbsc//vGPvO71l19+GccddxzsdjsGDRqExYsXIx6Ppz9ftGgRBgwYAJvNhj59+uDKK69U5N0JgqhczGongCAIopI4cOAAzjvvPCxbtgw/+clP0N7ejjfffBOMMaxYsQILFy7EX/7yFxx77LH45JNP8Itf/AJVVVW46KKL0s+44YYbcNddd2HlypWw2WxYt25d1m/85z//wfnnn4/77rsPEyZMwM6dO3HJJZcAABYuXIjnnnsOd999N5566ikceeSROHjwID777DNF84EgiMqDRCdBEISCHDhwAPF4HGeddRYaGhoAAKNHjwYA3HLLLbjrrrtw1llnAQAGDhyIr776CsuXL88SnVdffXX6nnzceuutWLBgQfo7gwYNwi233ILf/OY3WLhwIb799lv06tULJ510EiwWCwYMGIDvf//7cr0yQRAEAFrTSRBEGfLLX/4S+/btU+z3+vbti7/97W+c7k0kEpg2bRo++OADTJs2DaeccgrOPvtsxONx9OzZEw6HA0bj/1Y+xeNxeDweHDp0CN988w0GDhyIt956C+PHj0/f88gjj+Dqq6+G3+8HAFRVVSGZTMJkMmX9biQSQSgUQktLC8aPHw/GGKZPn46ZM2fi9NNPh9lMdgiCIOSDehiCIMoOrgJQDUwmE1599VW88847WLduHf785z/j97//PV5++WUAwIoVK3DCCSfkfCeTqqqqor+RTCaxePHivNZQu92O/v37Y9u2bXj11Vfx2muv4bLLLsOdd96JTZs20aYkgiBkg0QnQRCEwhgMBowfPx7jx4/HTTfdhIaGBrz99tvo27cvdu3ahTlz5oh6/pgxY7Bt2zYMGTKk4D0OhwNnnHEGzjjjDFx++eUYMWIEvvjiC4wZM0bUbxMEQRSCRCdBEISCvP/++1i/fj1OOeUU9OzZE++//z4OHz6MkSNHYtGiRbjyyivhdrsxY8YMRKNRfPTRR/D5fLj22ms5/8ZNN92E0047Df3798esWbNgNBrx+eef44svvsCSJUvwyCOPIJFI4IQTToDT6cTjjz8Oh8ORXmNKEAQhByQ6CYIgFMTtduONN97APffcg7a2NjQ0NOCuu+7CjBkzAABOpxN33nknfvOb36CqqgqjR4/G1Vdfzes3pk2bhldeeQU333wzli1bBovFghEjRuD//u//AABerxe33347rr32WiQSCYwePRovv/wy6urqpH5dgiCINLSRiCAIgiAIgpAdCg5PEARBEARByA6JToIgCIIgCEJ2SHQSBEEQBEEQskOiM4NkMondu3cjmUyqnRRCBFSO5QGVY3lA5ah/qAzLAy2UI4lOgiAIgiAIQnZIdBIEQRAEQRCyQ6KTIAiCIAiCkB0SnQRBEARBEITskOgkCIIgCIIgZIdEJ0EQBEEQBCE7JDoJgiAIgiAI2REkOm+99VZMmzYNkyZNwjnnnIM333wz732RSAQ33ngjJk6ciFNPPRVr164VlViCIAiCIAhCn5iFfGnOnDn49a9/DavVis2bN+Pyyy/HSy+9BLfbnXXf8uXLEQgEsHr1auzcuRNXXXUVRo4ciYaGBkkSTxAENxhjMBgMaieDIAhCNNSf6RdBls7GxkZYrVYAgMFgQGdnJ5qbm3PuW716NS655BK4XC4cffTRmDhxItatWycuxQRBEARBVCSMMbWTQIhAkKUTAG6//Xa8/PLLiEajmDRpEgYNGpT1eVtbG1paWjBkyJD0tWHDhmHz5s0Fn9nZ2YnOzs7sBJrNaYErN6mjobgcEcUYw969e9G/f39Rv/nWW2+ho6Mj5/qxxx6LHj16iHp2pcKnHAtx6NAh1NTUKFb35KSjowNvvfUW5/vr6+sxZswYydPBGMO+ffvQr18/TvdLUY6F2Lt3L+d0ENz49ttvsXXr1pzrNTU16NmzJx2hWIKmpibO48nhw4fhcrngcDhkTlUXcrZFvnzyySc4fPhwzvVhw4ahsbGR0zO+/PJL7N+/P+f6wIEDMXToUFHpKzSmS8GRRx6Jvn37crr3k08+wbHHHpt1Te5yNBpL2zENTMS0IZFI4KOPPsKOHTswZ86crM8OHjyIM888E++//3762r/+9S9s3LgR9957b97nLV++HCtWrMi6NmvWLMyePVtoEmWjubkZCxcuxP333y/4GfF4HD/+8Y9z3u+bb75B37598fOf/1xsMgmB/OlPf8LUqVNx9NFHq50U0WzYsAGrVq3Ccccdx+n+1atX46mnnpI8HU1NTbj33nvxxz/+UfJn82XevHlYuXKl2skoKxYvXoza2lp4PJ6s66+88gqeeeYZlVKlH84991zO7e7+++/H6NGjMXHiRJlTpT3OPfdczJw5M+taMBjEvn37cOutt3J6xty5c3HiiSdmXYvFYvj000/x5z//WXDakskkzjjjDFk0S3NzM2KxGG644QZO9//iF7/I0VNyM3DgwJL3CLZ0AoDJZMIJJ5yAf/7znxg0aBDGjRuX/szpdCKRSCASicButwMAQqEQnE5nwefNmzcvR7wqbelMzTZLKfZwOIzOzk5R61Obm5sxduxY3HjjjVnXP/nkE6xatYrWvgqETzkWwmKxoL6+vizKwGw247zzzsM555zD6f4PP/xQlvdubm7m1WakKMdCJBKJsihbLRGLxXDjjTfmiM6PPvoIAGQpx3Ji3759nOskYwwWi0WxOixnW+RLjx49csbMSCSCiy66iHN+uN3unGfE43Gcc845ovLU5/PhuOOOy3m2FOzfvx8333wz5/Q5HI6ce7VQjqJEZ4pkMom9e/dmXXO73airq8OOHTswatQoAMD27dtz3PCZWK1WTbgzjUZjyQLx+/1obW0VVXB+vx91dXU5z6ivr4fP51O9cesdLuVYiEgkgng8XhZl4Pf7MXLkSM7vkrpP6nf3+/2C6rWYcswHYwzBYLAsylZLtLe3w+v15mzwMJvNiMVikpdjOZFIJLBv3z50dnamjTTF8Pl88Pv9iuen2mWYTCbzpsHpdCIajXJOm8FgyLnXYrEgkUjIMqZLQV1dHef+M7XRqtC9apYj71/t6OjAmjVr0NHRgXg8jvXr1+O///1vztoBAJg5cyYefPBBhEIhfPHFF3jjjTdw8sknS5JwtWltbUVra6voZ9TW1uZcr62tFf1sQhyRSCRnfbFeKVTPCuHxeNDW1iZLOrRQr+PxOKLRqNrJKDsK7Siura1FIBBQIUX6we/3A+gSk1zQSltSmra2thxLOl8KrSiUYjc8376WDw6HA5FIhNO9oVAILpdLlnSIhbfoNBgMePHFFzFz5kxMnToVK1euxJIlSzBkyBCsWbMmay3D/Pnz4XK5MH36dCxYsAALFizgvNBX6/h8Ps4dRLFn5KugLpcLwWBQ1LMJcaSWT5QDPp8PNTU1nO+vqakRXbcLpUOO5/Il34ZFQjyFBu2amhpZJjHlRKpdcG0fWmlLSsO3L8uHnIJMivQVg6swbm1tlTUdYuDtXnc4HHjggQfyfjZjxgzMmDEj/bfdbseSJUuEp07DtLa2gjGGWCwGi8Ui+Bn5KobBYKCwECpTTqKT7+w7ZWnnsiicbzpisZjqMfZIdMpDoT6rtrY2bckj8tPa2gqXy8XZehmLxSrS0imFJVFOa6Sczwa4h4sqZNDSArTARiCtra0YPHiwqM5U7gpKCKecRGcgEMg5uKEYci3vaG1tRf/+/WULJ8IVEp3SU2wiUVNTQ6KzBK2trRgyZAjnduf1eivS0llszDSZTIjFYqKeIRatjOlaSUc+SHQKhG8nUegZhSoGnbagLuFwmFMHpgcYY7wWjdfW1srmXh8yZIjqg2UsFiubstUK7e3tBSc2tKazNKm2wXU8MZlMmoiZqTTF3NdcLep6Fp2pTXlc0qFV9zqJToH4fD4MHjxY1ABaav1HJXYqWqGcLJ18qampkc3SOWjQINXdgmTplJ5ig1xNTQ2JzhKkPGdcxpNwOMxph3s5UkzUcV2LLue6S7nXdHL1GpB7vQxpa2vDgAEDZLN0yrWDmOBGOe1e54tc7vV4PI6ePXuS6CxDivVltKazNCnRyaVtaFlQyE2pesYl//Rs6dTCO4qFRKcI6urqRA2ggUCgYPgHCpukLuVi6RSyIU3OuqeFep0SnbRZTzpKiQGydBaHz3ItLQsKudG66PT7/fB6vbI8G+D3juReL0PEhpZJBbqV49mEOMpFdAaDQVRXV/P6jlx1z2AwaKJep8o1Ho+rmo5yophbkdzrpeGzXCuV1w6HA+FwWIHUaYdS9Uxt93oikYDJZJLl2QC/d9TqxIREpwjK3SJUySQSibIQnUJm9XKt6WSMaaJep8q1HMpXKxSrZ263m+IOl8Dn86Fv376c8imV11poS0pTzIKnBUun3JCls0JJhQch0Vm+WK3WshAlQjpYi8UiuRUwEonAbrdrol6T6JSeUpE4aClDcZLJJGcLWSWLzng8XjAudjkIslJwfcdoNKrZzWYkOgWQCg8iJrRMqQDZcoWtIUrDGCsb0Sn3bko+6aitrdWUe70cylcraKWe6ZXUWMAlVF6qLdEYkQ3XvqWzsxM2m02BFElPOZQ5iU4BpGZKbrdb8K7MUCiEqqqqgp/L5eIkShOJRFBdXV0WokQrrqRUm9GCdaazsxMmk6ksylcraKWe6ZWUJZiLRTjVlmiMyEaqvkWoVT4cDsPhcIj+/WKUQ5mT6BRAqoM1Go2CK2ipTloLg3OlEolE4PF4yiKAuFbEQCodWtj80NnZCZfLVRblqxW4uCzJxZ6fzHwxGAwl4zNXsnu9GG63W/SGNavVKrhfUKKvLYcyJ9EpACXOfy0HM7peCYfD8Hg8ZWEJE+r2tNvtiEQikqYjVd/VPm0rFouhqqqqLMpXK8TjcVit1oKfV1VVob29XcEU6YdwOJz2enm93pLCqVJFZyQSKeoWF2MESiFmWZUSa0W5COtYLAaz2SxrOsRAolMAUqxfKvUMr9dbUR2KlgiHw3C73WUhSoROkKRee5nZIatt8UpZOsuhfLVCqTKt1LPCuZDZNri0u1AoBKfTqYn10UoiRRigUoJMjOhUIkwRF2Ht9/s1vb6aRKcAug/kQgbRUmJAjh3EBDfKydIpVHRKbUXRipsfINGpBh6PhybRBchsG1zbndzRU7SIFH1IKWEo1tKphT5OK+koBIlOAWQWanV1taAYdFqvGJVMOYlOoVZ5qZd3ZHb2ZrNZ1QkViU7pKbVkgkRnYTLbBh8hSaIzP8WMQKVc4OUiOsnSWWZkDuRCXRwUYkS7lJPojEajgsKDSL1LMrND9nq9qp7FTaJTWqLRaMHYiSnIvV6YzLbBZzzRwqY8JeEyZrpcLoRCoaLPkMvSqeSYXkxYa/k0IoBEpyCEuEOKPYPQFuFwGE6nU/W1h2oih3s91SGrbaEh0SktXAY5snQWhk/bSCQSBY9OLne4jJml8q/UM/Rg6SzlXdW6tqjM2isSKQZQLhVD6h3EBDcikQgcDgeJTglFQjAYTO/QJdFZXnDpy8jSWRg+RoxAIACv16tQyrQFic4uuLyjlr2oJDoFkHkUl9C1b1xM8RQ2SR2UCPKrdaTeGWswGNLr/tTedUuiU1q49GUej4f6sgJ0X9NZLJ+07jqVEy71rFTfUuoZenCvl6ojZOksc4SufUudRS3HswlxhMNhzZ5by4fOzs6Sa+0KIbU1MtNqrAVLJ8XplA4ugxy51wvTPWQSHyuW0WhEIpGQPY1aQAlLp8ViEdwvdHR0KGKsKFVHtD4xIdEpEjkHULUH50olZelUO4i5WMR0PuVcr1Oik04kkgYSneLovsmOjxWrpqZG1U15SqKUe11Mv6DEmCH2HdWGRKdI5B6cySWlPOXiXhfj7qmqqhIUCiwfyWQya/OD2vU6FouRe11CuNQzsYN5OZNaQw50hRMrZrnsLijUnsApSea68ELwtRR3R4x7XSlKlXlbWxuqq6sVTBE/SHTyJBqNZh33Juf6NHKvq0O5iE4xM14pZ+zdNz+oXa9pTae0aN2yUk50F/hqr49WmlL9UqkJbXt7O9xud8HP9SA6S5U5Y0zTEQ60mzKN0t1lKWQA5Xo2aiXNYrUEiU7p05E5UKpdr0l0SotW6lklUMmWTi6Uyg/GWFHhKlR0KhnKSu9lTqKTJ90bvd1uRzQa5fUMrmvt9F659Eqmu0vPiF1QLpW1s3s6PB4PAoGAJM8WAolOadH6xoVygkRnccR6UYSKTr/fr1goK72XOYlOnkgRFoHrMyrNdaIVymX3uth4bQaDAclkUpJ0ZA6URqNRkucKhUSntLS1tcHlcpW8T8zO4HIlHo/DZDJlXbPb7QVPGqpU93oymeQ0CbbZbKLqmFDRqeTEq1iZ6yG2NIlOnkjhSuL6DL3PaPQKude7kMoiqbVgxRQySXq4CAK1N5BpkXwWsmL55PP5su6vlDFCiqD4XASZUNGp5BITm81W0LsaDAY1vYkIINHJGyVFp5Q7iAnupESnHmaNxRA7+5ZqQNPamr9kMgmHw0GiU2HU3kCmRfK10WLtLpFIZO0HqBTRKUUf0t7eXlKQiRGdWphYayUdxSDRyZN8hWqxWHiFA+EqBjJPcSGUo1zWdIrtgKRy3RWq72qKej3sUi03yNKZSz4xVSyfuo8HleJel2pZW6lxVw/udaCwZ0EP66tJdPIkX6Hybfh8xIDerW16JBVX0mQy6fq0j7a2tqLhQUohpaWze313uVwIhUKiny0UWl8oDVzX2gFk6cxHvrZRLJ+6jwcej6cigsPzsXSazea8RiAuzxDaLyjtzSmkC7TmVcoHiU6eFJqZ8ulM9VAxCP0HtC4VHqQUcrrX1XYL6r1stUJbWxs8Hg+ne9Uucy3Cx72eT2iYTCZVN+UpBZ8xs5ClmMszhPYLSo/phcQxudfLEKVFp9o7fSuZSnfBSuW6y7dZQm23YKWXrVTwcXuSpTMXPuNJOByG0+lUKmmaQop6xkWQ6WVNpxhhrTa8RWdnZycWL16MmTNnYtKkSbjkkkuwY8eOvPcuWrQI48aNw4QJEzBhwgTMnj1bdILVJt9RXHwHUD4NSO2YhpVMpQsTqSxT3Tc/SPlsoVR62UqFFBaoSiZf/hUaT6RY16hXpKhn5bSms1gd0broLH0sTjcSiQT69u2LlStXor6+Hv/85z9x3XXX4cUXX8x7//z58zF37lyx6dQU3V2WfAfQQCDAea1d6tmV2tmoiZ6FiVjXOiCvMCTRWR7wFQNk6cwmX99eKJ+K5bUU7V3LSFHPWltbMWrUqKLfFRMcnusyEyko9o5a1wq8RafD4cD//d//pf8+55xzcO+990oSkb+zszOnwM1mc9ZZ53KScmMXc2czxnI+93q9+Oqrrzi7wbn8Toqamho0Nzdj4MCBnJ5N8MvffKTK2GKxIBKJ6HJ5Q1tbG6qrq0Wl3ePxoLW1VfT7F2oz3333XdFniy3HYukxmUyIRqO6LFst0dLSAo/Hw6kcPR4PWlpaKM8zaG1thdfrzcoTr9ebN5+am5tRU1OTc93pdOb1wEmJXG2RK1zqWQqPx4Pm5uace7k8w2w2C+oXEomEZIdpcMHr9RZ8x+71KRO5y5HLUaC8RWd3Pv/8c9TW1hYUnI8//jgef/xxNDQ04IorrsCYMWMKPmvlypVYsWJF1rVZs2Yp7pZvamoq+Fk4HMaePXuyrkUiEezevTvnOp9nFIIxhm3btqFnz56c7if+R7FyLEaqfFLlqkcLwt69e2E2mznXs3zE43Hs379f1DOA/PU9Go1i165dnJ4ttByLpWfv3r0IhUKi363S2bFjB3r37s0pH/1+P7777jvK8wwOHDgAv9+Ptra29DXGGFpaWnLyafv27UgkEjnXzWYzvvjiC/Tu3Vv29ErdFrly4MABtLW1oaOjo+S9sVgsb9/S1NRUss0fPnwYra2tvOsonzFdChKJBHbs2JHzm/v27UNbW1vJo7nlKkcuxjFRojMYDGLp0qW47LLL8n5+7rnn4tprr4XD4cBrr72Ga665Bk8//TR69eqV9/558+Zhzpw52QlU2NLZ1NSE/v3751XsyWQSTqcTDQ0NOddfffXVnOuFcDgcnO8dPHgwTCYT5/uJ0uVYilT51NfXo0ePHrrM+5aWFjQ0NIhOu8ViEfWMcDiMmpqanGcEg0F8/PHHRZ8tthwLkSpfPu2QyI/BYMCIESM4leOAAQMoz7tht9vzDtT58slkMmHo0KE51xsaGvKOS1IiV1vkisViweDBgznd29LSgh07duTkR2dnJ4466qiieqK6uhpWq5V3Xipdr4cNG4avvvoq5zfNZjOGDRtW8HtqlyMgQnRGo1Fcd911+NGPfoQzzzwz7z0jRoxI/3vGjBlYvXo13n///YL3W61WxQRmMYxGY94CaWtrg9frzfmsvr4ePp+PUyGm1t5wLfD6+nrs3r1btQqiZwqVYzEYY+nvWa1WxONxXeZ9IBBAXV2d6LQLyUMu6aivr4ff7+f0bLFp6E6q/fFph0R+/H4/6uvrOZcj5Xk2hfIj33W/34+hQ4fmXK+rq+PclsQidVvkCp96U1dXl3c8jsfjsNvtRb9rt9sRi8V4vWMqlJWS+VJIc3DNJ7XKERAYMikej+N3v/sdevTogauvvprz9/Topsyk0CJdt9uN9vZ2Ts8IBoO8AnarHVqm0ohEIumOSc+bTaRaUC72cIJCGwAofE55oIeNC3ok31hZaGcyjRHZiImSIKTP7+jokHU9bT70HAlCkOi89dZbEY1GsWjRoqJCcv369QiHw4jH41i3bh0+++wzjB07VnBi1aZQo+ezgJhvJ007PpUlHA6XjejUQuiMQumw2+2IRCIqpIiQEiGikzYSdVFsQmcwGHJOQyuU1zRGZON2u7PWyPJByIlEaoQp0vOknbd7/cCBA3j55Zdhs9kwZcqU9PX77rsPBw8exMqVK/HMM88AAJ588kncfPPNMBgMaGhowJ133ok+ffpIl3qFkWIg5/sM6lCUJRwOp89d1/OpNa2trRg9erTo5zgcjqw8EZIOLVnCEokEuXclJB6Pw2KxcL4/5RVSMryMVilmIfN6vQgEAlljRaGxo7a2Ftu3b5ctnWrDt/8pZATi4rUR4o1Vo4/LJ6w7Oztz4iFrEd4p7N27Nz766KOCn8+YMSP974ceekhYqjSKGqLT6/VWxNm6WqG76NSrpVOqQNIp151Q0am1YMWxWEwT68YrldQkmkRn8bEglU+Zn3d0dORth3q2enFBir6ss7NTtnavhlfJYDDkiGit9bWFoCk/D4pV/nyVgO8z8mE2mxGPxznfT4ijXESnVB2hWEu7Vtz8KeQcfIjS6HktmtQUaxuF1mnms8SVe54K6UO655OcgkwrYk8r6SgFiU4eFKv81dXVnDYTaW0QJrIpJ9EphaVTCtFZKB1ms1nx5QskOtWl3K1yfChmgODT7so9T4WOmZlGIDld4FoZ07W2lKkQJDp5wMUdIuYZhPpEIpGyEJ3xeFwScSV2Z2yx2XdNTY3iS0dIdEpHJBKBzWbj9R1ao/4/pBhPgK511+W8KU+ImOpuBJJz3FVL7HX3rupFW5Do5EGxysV1cJZqrR0hD+Wye11sqKMUcrrX1RAgJDqlQ4g7r9xdwXzg415PJBIwmUxKJU1TSFHPytG93l1Yk3u9DPH7/aLdIUJmI6kdxIT8lIt7XSrECsNCmx+keLYQSHRKh5C+jCyd/6OYEaN7Pvn9/oJHTZc7UtQzuS2daoi9fO+oB4MWiU4exOPxgiEJ+IhOvhWDOmrlyBSdQmK2aQWpDmKQIvB0obSoYfUi0SkdQiwr5b7+kA/F8k9J0aR1hLx793om95pONcSeXusIiU6J4DqAxmIx3uug6MQJ5SgHS2c0GuUVO7EYck541BAgmaLTaDTmBOAmuCN0Ak19WRellp7wcQ+bTKayjXIiZEmaku51MXGMxaDkO0oJiU6J4DqACllrR5ZO5SgH0Sll5yNn3VPbva7X8tUKUligKpliot3j8WQJilICX41NeUqhdfe6Wsd757PmkuisIMptcK5UyuFEIilFp9PpRCgUEvTdUqf/qOVeT1mB9Vq+WkFIPbNYLJTn/59oNJretNgdk8mUdapOKUFRzmNEKBSC0+nk9R0l3etSbdrkS/cyb2trQ3V1tSpp4QOJTo5k7mrOh9yik1xSylAOIZOk7GDFzOIDgUDRzQ9qWL0yTyTSa/lqBb1sXCgHSonOcrcg8+2Huo/H7e3tuhBkfOj+jowx1ayufCDRyZFS60q4rLvMtLLwodw7FC1RDiGTtOJm0aJ1htzr0iG0nulhYNQapcYfMkxkky8/+NQ7rtbLYpuL5aa75tBLuyLRyZFSriQuA5hQt2c5u060Rjms6dSS6Cw2ULrdbgQCAQVTRKJTSqQ4KYYoTiqvtDiB0zLdDTV86pzZbOa8wVDNUFb5LJ16gEQnR6QYyIU+gzoU5SgH0Sn1Lkahu7xLpcNoNCreUZLolI5gMIiqqire37PZbIhGozKkSD/EYrGSwd6dTmc6PnOlutdLrQsvhJi2zee7ak7wM8tcL651gEQnZ6RYvyT0NCIKmaQc5SA6pV5r5/V6BVkktWJxzYREp7QIGejIFdxlISvVNjL7fb/fD4/HU/Decs3TUuvCi5Gqm8lkklc95dMvqBmmKHMjZHt7O9xutyrp4AuJTo5IUbmEDsJidhAT/CiH4PBSiz2hlnYSnUQ+ytUqxwcu40lmu0smk0Uto+XqDRPTh6S8KHwFmV4snd3ToZdNfSQ6OcKlcpWqrLTwXvtEIhHdbySSevYt1NLO1bKvpIudRKf6lKtA4gMXkcAnn8o1T6UQU3zHXb6iUwtiTyvilwskOjnCtZMoNjjr5cSASiaZTKbXEOlVlLS1tcHlckn2PDktndXV1QgGg0KTxptM0alXS7YW4OuyzKRcXcF84NI2MvOpVF6rsSlPCcSMman+m+8z9GTpTNULPWkLEp0c4VKopdxGWpkVEYXJ7Nz1fLSclNZxOUWn0hYasnRKg5i1duRe59Y2UvnEGCvpDVBjU54SiBF1KQ8N33GXz6ERaos9i8WCaDSqK21BopMjUgygYhoQnROtPAaDQZdLG6ROs1D3eqnND4DyVi86kUgaxAy25eoK5gOXpSepfOro6BAUJaAcEDNmpvKP7zP4eEDUFnup/lNtiysfSHRyJBgMljyKS07RWVNTU5buE0J6pLZ4CBUJpTY/AMpbvcjSKQ1iBlsSnfyMGHoSFFIjNOILIDz/9ORe12MdIdHJg1IWpFIWITFHcZFLiuCCmLV2hZD7iFcl6zUdgykNYi1QtKaTm3vd5/PxEl7l5mKXop7JuaYzEAiU9ObISWYdIdFZZnAZyEsNoGICuJJ1gOBCe3u75J1gOYlOsnRKg1ivTaX3ZXxCJnHNa5fLVXah9aSoZ0LWdHLtFzI3nqpBZh2hNZ0VSDkNzoQ+kcPN4vV64ff7eX2Hq8VF6YMPSHRKgxi3p8vlQnt7u8Qp0heBQKCk18vhcCAcDnNu0+Uo5n0+n+ANa0q419WGRGeZwtVlKecASqcSEVyQo/MxmUy8N7GFw+GSa6ABsnTqFTGTG71u0JMSxhhnCxlXgV+Oyxa4rAsvRKZ7XS5Lp9qkdEE8Hk/3a1qHRCcHuIYHKTaAJpNJUWkgS6f85Jtc6G2NlFYWlHNNB4lOfSK2numtXUkNH9Gt1bakdVKW31gslo5YwQWu/YIW6nCqzLWQFq6Q6OQA10ZfXV1d0G0kdq0ddSjyk3kakV7RyoJyrtYFcq/rEzHudYKfYKlk97oYhI6ZXPuFUCgk6SEcQtCjLiDRyQGuLstis1exYoDc6/KTee66XpFzbY8cA6XNZkM0GhWTLF7QiUTSIFZ0Go1G0d4fvcKnHZlMJjQ3N1ekpVOs9S5lBOK7lIOr6NSCVym1hEBPy1VIdHKAj2As1FDEioFy61C0SLmITjk6QqfTiXA4rHo6xEKWTmmIx+Mwm82Cv+92u9HW1iZhivRDKBTiHDrP6/Vi165dFbmmk+u68EIYDAZOpzl1h+uhEVqw9rtcLjQ3N/NaPqA2JDo5IMUAKvYZQnYQE/zIJzr1NIME5HOv87W0a6FDzkcsFktvTKATidSjkifRfAwQtbW12LdvH6fJcLnlqRTjbiQSgc1m4/Udrh4QLUysDQaDJtLBBxKdHODTSRgMhrxuI7EVw2QyVaw7SikikUhZWDrlEHt8BzQtd4SpiQRZOtWj3AQSH/i0jdraWs6xN8ttTacUE9eOjg7e/ZCe3OtAl+VcC+ngColODvCpXG63O+9mIikakJ52qOmRcDicdyORnvJdLgujnKLTYrEoZnHMtFyT6FSPSl6jzqdt1NTUcN6AWm55KoWo83g8vPtDrv2CVjZtCnlHNeEtOjs7O7F48WLMnDkTkyZNwiWXXIIdO3bkvTcSieDGG2/ExIkTceqpp2Lt2rWiE6wGfCpXocFZK7MiojD53Ot6c8HG43FZ1vcIca/zaTNqDJYkOoUhxdrnSrZ08m0bXO+12+2KbsqTGynGTD75l4KPpVMLYk/IO6oJb9GZSCTQt29frFy5Eq+//jomTpyI6667Lu+9y5cvRyAQwOrVq7F06VLcfvvt2LNnj+hEKw3fNThyik49Wd30RiHRScJEmKWTa5tRyy1IZSsMKazplSw6+Y4nehIUUiKFqJNbdGqhbPRWR3hvP3Q4HPi///u/9N/nnHMO7r33Xvj9/pwA6qtXr8Zdd90Fl8uFo48+GhMnTsS6devwi1/8Iu+zOzs7cwrbbDYrFmk/tWay+9rJ1tZWeDweTmsqvV4vWlpaRD2jEA6HA6FQSNSOvkqgUDmWIhQKwWazZX3PYrEgEonoJs8ZY7Ks/fV6vdixYwfnZ3d0dOTkZSFqamrQ3Nycc6/QcixGZv6YzWZEo1FaK82T5uZm1NTUcM63fOXo8XjQ2tpakXnf0tKCESNGcHp3j8cDr9fLK6/lyFM52mIpWltbMWjQIFG/6fV6eY+7XPuFlpYWXmUjF3zeUe5y5HLKlvCYF/+fzz//HLW1tTmCs62tDS0tLRgyZEj62rBhw7B58+aCz1q5ciVWrFiRdW3WrFmYPXu22GTyoqmpKevvUCiEvXv3cvpujx49cOutt+LOO+/Mut7Z2Yn29nZEIhHB6bJYLPj888/Ru3dvwc/QCuvXr4fRaMSUKVNk+43u5cjlfoPBkGWNj0aj2LVrl6CzoletWoV+/frh+OOP5/1doYTDYVm8CZFIBLt37+b8bD7pYIxh69at6Nu3b97P+ZYj13SFw2H4/X7B+XXTTTfh5ptvlixtemHLli0AwDvfMsvRZDJh7dq12Lhxo5RJA9AlVq666ipMmDBB8mdLwTfffIMxY8Zwyj+j0YgRI0ZwzutIJCKrN1HKtliK3bt3Y9SoUaLep3///qiurub1jMOHD6O5ubnkd/bv349AIKC6t2Tw4MGw2Wy83lGuchw4cGDJe0SJzmAwiKVLl+Kyyy7L+ayjowMmkylrY0ZVVRU6OjoKPm/evHmYM2dOdgIVtnQ2NTWhf//+WYrd4XCgoaGB0zMaGhpw3nnnyZK+hoYGOJ1OzmnRMqFQCCaTSZZ3KVSOpaiqqkJdXV1Wmmpra9GzZ08MGDCAdzoCgQB69OihWHlFIhF4vV5Zfs9kMuHFF1/k/Gw+bWbw4MGIRqM59wstR67pSsWaFJpfH374YVm0Rb58+umnGDRoEOd3z1eODQ0N2LRpkyzpe/HFF3H48GHNlk0ikcCoUaPQq1evkvc2NDTguOOO4/zs6upq9OnTR/J13XK0xVIkEgkceeSR6Nevn+Bn/PznP+f9HcYY7HZ7yfpjMBgwfPhw1cPqXXnllZzvVaMcuyNYdEajUVx33XX40Y9+hDPPPDPnc6fTiUQikXW0YCnXsNVq1cSh9UajMatADAaDagWUSW1tLQKBgCbSIhafzweTySTru3Qvx1J0dnbC6XRmfcdmsyEejwtKp8/ng9/vV6y8AoEAamtrZfm9+vp6+Hw+zs/m02bq6+uxefPmgvfzLUeu6bJYLILLNpFIYPfu3TAYDKoPOkrj9/tRX1/PO9+kLMdi1NfX4+uvv9ZsP+nz+VBXVydL+lJjRM+ePSV/NqBcGQLC65lY7HY7YrFYyd81GAzpmL96Q8lyzPltIV+Kx+P43e9+hx49euDqq6/Oe4/b7UZdXV3Wzvbt27dj0KBBghJKlNfie5/Pp7nwHlJvJFL6HeVc2O5wOIp6KTJJJBK8OmO16rUYsZhyq3GNoVhOaGUDRSG0fjJPLBbjHbCcK1p/dz50dHSoEjeZa8SSSptsSoUg0XnrrbciGo1i0aJFRTN+5syZePDBBxEKhfDFF1/gjTfewMknnyw4sWqgpaMRy0l0tra2au5dpA6ZpPQ7yhk3jk8Hm29TYTHUjC8odOBIlavW6rASaPW0qRRaD5IuZwQSrb87X9QQdlxPJCKEwdu9fuDAAbz88suw2WxZm0Duu+8+HDx4ECtXrsQzzzwDAJg/fz6WLFmC6dOnw+12Y8GCBWhsbJQs8UqglVhcQJfoLBQTVW8EAgHNzRSltnS2t7crOgBopa7ytYTpcTLV2toKs9mM1tZWQet99YzWLZ3lJrz4oMe2pDUolJq88BadvXv3xkcffVTw8xkzZqT/bbfbsWTJEmEp0wha6mBramrQ0tKidjIkgTGmuZijUotOl8sFv98vQcq4oZW6yjcdbrcbbW1tMqZIelpbW9HY2FiRA7xW6lkhHA6HqCgheqac3OtqQaJTXrS50lpDaOWoK4A6FLmRWnQajUZFY7jJXVdNJhMSiQSndPCxuCpl8ZZykuPz+TB48OCKbI8dHR26iVurNWKxmCwnhqUoF0tnPB5XbZMO135Oa0YTvUCiswRacVkCJDrlRkrRqUaHJLcFyuv1crLcCkmHEvkVi8Uki47R2tqKwYMHl8UAzxfGmOaWxugFudfDlsvSAr7rwgn9QKKzBFpyJfHZQaxlMgWGlmaLmeG9UggVncFgENXV1VIljRNyT5C4WlG01GYy6ezslFR0DhkypCwGeEI55G4b5WKY0JKHkZAWEp0loMovPcFgEG63G1VVVQiHw2onJ00+0Sl0J2Oq3hgMBsWEtRIDmlyiU4l8klJ0+nw+DBkypCwG+HLEbDYLjjohJ3KPJ+XiXtfqxDUF37BwxP8g0VkCrVd+PZKyyGnNFcQYywmYK9TSmXpHp9OpmHU6FAqhqqpKtudzDW0kxIVYXV0t6KhRPuQTnUKFbqW61xOJhGaDrmdSU1Oj6CY+rsjtjaiurkYgEJDt+UqhpWVt+dBSKEW9of3eQ2W0Xvn1SErI62FWLkZ0Kv2Ocq+1k9PSqUQ+SWnp9Pv9Fbl7PRAI6GKtnVb7FrmNGEajUVNLloSitoexVD9KolM4JDpLoHbl747JZEI8Hlc7GaJI5ake1h8JFZ16ekeucB3IA4EAPB6PLM8Wg5SiM5lMwul0VlxoFb14frTa7pQYT8phk5fW6xmJTuGQ6CyBWkdxFUKrbiM+aNW9ng+hJxKp8Y5yDzZc3evJZJK3C1YJkZBPdIrNs3KwKvFBa5PwQmi1b1HCc1YOdVJt0VkqD8PhcM76f4IbJDo5oKWZo1Zn8Hwg97r0JJNJ2eupnO+ihEjo7OzMGyOxHAZppdDLciOt9i1KiSm912mtH7UaiUQ0ZYzSEyQ6dYZWZ/B8yHQ9a/1d9OJeF+LS5ouc5aVEXcgXp1OIJVvvA7oY1LZAcUWrk3Ml8s/tdiMYDMr6G3Kj9XpG7nXhkOjUGXoQaqXIdD1rcWDIROzudaUmCUq4PT0eT8mlHUIFmVrudSHlGw6H0yfyWCwWTYbmkQtyr4ujvb1d9vi95TBG+P1+2SfRYiDRKRwSnUXQYngQrc7g+VAp7vWamhrF3lEJy4DJZCp5rGdHR4egsE1KudelEJ2Zea2HiZOUkHtdHEqc5qRVwc2HZDKp6TiYJDqFoy1FpTG0GB6kHDoUpQUZFxKJRN7BQKjojEajsNvtik0StCIGhIpftXavixWdWqrDSqB1t2eKcpicC6WS310pSHQKx6x2ArSMFjvYchjkOjs7YbPZAHQtyNYChRaGCz2RKIVSkwSt1FWhGwCUsBhKJToz37HSBni9uNfdbrcmo3wosSm1HMYItTEajUVPHSLRKRyydBZBKwN5JuXWoWhlU0ahTkSopTOFw+FQ5KhPJcVAsTIT2mbE5jMX8olOIZOK7u71cmqPpfD5fJrz/uRDi0HSlUqP3uukFsqt1AZDCpkkHBKdRdCKyzKTSltDphT5zl0HlBFDUqBUXa2qqip6rKcWJ2opyL0uHjpzWjhKbCIC9G99F7ouXEpKiU4KmSQcEp1F0KIricsOYq2T6WLSSgxUKS2dsVgsKx6kEu+olNgrJbK0OFFLIZfo1PMATyiHVtqo1tHCxLVUv0DudeGQ6CyCFip/d7jsINYynZ2dMJv/t5TYaDRq4ljPYqKTb0ic7usalXAXKTVBKmVpF5MOucV5IdEppnz17srki1YmiVzRgqs2hVIBz/VeJ7UwcS217IZEp3BIdBZBC5U/H3rr+DPpLkq0cqynlJbO7pMVs9ksu7BWaq0dF0unUNFpsVgQjUaFJq0k+U4kIvc6dxhjmhJxpaiurtZUkHSljBh6F51a8DCSpVM+SHQWQQuVPx966vi70z1PtTJoF+pEhGw0UUNYx+PxLAuyXMgpOuV2VRc6kUiI6Mzcva6F+qsEmUHx9YDWlj4oJTptNpuuDyzQgoeRRKd8kOgsghYqfyH0Kjy7W4+1sjGqUCcixKqc7x3lFiZKWb+5uNeFegfkFglSrenM3ETgdrvR3t4uWRq1jFYn4YXQmsVPKxEmtI4Wxl0SnfJBorMIWj2Ky+VyFd1BrGW6dyhasRRJ2Ylo9R2loNS7FIoCwAW5RYJUojMTg8Gg6zXWfNDqcqNCaK3d6S3/1EIL+cRFdFLIJGGQ6CyCVo/i0toMng9aFWTFxBJfq0G+d5TbmquUZUPO8pK7LsghOisJLVig+FCp7nWgvNb9q0GpfoFCJgmHRKcO0YpQE0J396tWBgYpLZ3d31HuSYKSrh45y0sv7vXu6HmA54MWxAAftDY5VzL/xJ6kpiZamNyU6hei0Wj6VD2CHyQ6dYhWhJoQuncoWhkY9OxeV3Iwk7O81HCv8x2c4/F4Xu+HntfQcUULbk8+aG1yrmT+aWWtvBC0UM+4TEYrZbIpNSQ6C6DlQUQrQk0IWnWvyy065RwAlOykix3rGYvFRC1H0YN73e/35+R1dXV1RWwm0oIFig9am5x3PzRCTrT27nzQgutaSPxeghskOgug5fAgWhFqQsgXMkkLnaOUorO9vR1utzv9t9zlpRUxkE+Q8UEPojOfwNdKHZYbrdQzruh5ci4WPY8RWoDWessHic4CaLmD1XOH0tbWlnX+sFaO9SwmOvm6UZLJZNZ35B78tLLWTmw61FrTyceike8dK0XcaKWecaVSyiUflfzuUlBq2Y2WPaFah0RnAbSwrqQQerasMMayBJnRaNREyBk5Q2B4PB4EAgFZng1op66Knai5XC60tbVJmKJspDiRKN876nkSyAet1DOu2O32irVWVUqdlAuydMoHic4CaHlWr+dZrFYXX0u5jqj7OxqNRllnxkpb5Qsd6ylWlMhdN6Q4kaiSRWdHR4fqa+34ohWLVD4ru5zo1TAhdl24VJTqF7Q6jukBEp0F0LJ7Xc+iUyuDQHekWtNZ6P3KSXR6vd68SyKkmKjJ2ZlLYenMd+KSXgd4vhgMBhpsBaK0EUOvY4Tf79fEuEuWTvkQJDqXL1+OWbNmYezYsfjPf/5T8L5FixZh3LhxmDBhAiZMmIDZs2cLTqjSaNmV5HA4EI1G1U4Gb7q71rt/piZSic729vasNatKoPSAVsiyJ4X4lbMeMMZgNGZ3eVJYOvU6wPNF7TaqZ5QeT/RqfRdzjK6UkOiUD7OQL/Xv3x/XXXcdHnjggZL3zp8/H3PnzhXyM6ri8/kwdOhQtZNRED0OAN13dadwuVwIhUJwuVwqpKqLUicSFRPMmRQSgAaDgfMz+KKVAU2KdKSOlewuDuWC3OvljcViUTRUUSGU9kbo1fquFQ9jsX6hUKxeghuCevaZM2fiBz/4gaJrVJRGK5W/nCgkSrTSQRYShGazGYlEgtMzCr1jVVUVQqGQqPQVIhQKKRreq1B5SWFx9Xg8isa85BscvlJDJiUSCV0OtFoJkq70eFJdXS3rpjy50Mq4W0x0KnkCXDkiyNLJh8cffxyPP/44GhoacMUVV2DMmDEF7+3s7MwpaLPZrJi4Te2iTiaTaGlpgcfj0cTO6kJoOW35aG5uRk1NTU66vV4vmpub0bdvX0l+J7Mc+Xyn0P0WiwWRSISTsCv0jjU1NWhubpZNHKassUrg8XjQ3Nyc844tLS3wer2i6mWqLlRXVwsqx2IwxnKeZTabEY1GOf+G3+/PShvQlR8tLS26a498aG1tFdwfSl2OfEi1u/r6esV/OxM1xpN89V0oSpVhc3OzJsbdYv1CKBSC3W5XPY1CkLscuXioZBWd5557Lq699lo4HA689tpruOaaa/D000+jV69eee9fuXIlVqxYkXVt1qxZiq8FbWpqwr59+xAMBrFnzx5Ff5srnZ2d2LFjh+puIz5s2bIFAPLm6ZYtW+D1eiX9vaamJs73hsPhgmUdi8Wwc+fOvEsDurN9+3Ykk8mcZ5lMJnz11VeyCMOOjg5F62k8HseuXbtyfvPAgQPw+XyiwkMZjUZs3rw5q/PiU47FyFfGPp8PPp+Pc/51dHTkTU8gENBsXyEFu3fvhtlsFvWOUpUjHwwGA7Zs2aK6ZWrnzp0YMWKEonWkWJ8mFLnLcNeuXRg0aJDqbam5uRnNzc1507Fv3z7EYjHV0ygGucpx4MCBJe+RVXSOGDEi/e8ZM2Zg9erVeP/993HmmWfmvX/evHmYM2dOdgIVtnQ2NTWhf//+MBgMGD58uCK/K4Q+ffrA4/GgR48eaieFMx988AEGDRqEhoaGrOuDBw+GxWLJuS6UzHLkujbQ4XAU/P2amhocccQR6NmzZ8nnmEwmDBkyJOdZAwcOhM1mk+wdMymWdjk4fPgwdu3alfObdrudU6dTjEGDBqXzSUg5FiNfPtXW1vKqe4Xy2ul0KloGSnPw4EE0NjYKekepy5EPAwcOhNVq1UTZjBw5UtF0SNkvKFmGI0aMUL28Ui70fOmIRCLo2bOn6mkUgpptMYXs7vVMSm2isFqtmlgnajQaYTAYVCsULtTV1SEQCOCII45QOymc8fv96Nu3b06+1tXV4fDhw5Lnt9Fo5PzMYvfabDYkEglOz/L7/Rg9enTOvbW1tfD7/ZK/YyKRgNlsVrSu1tXV5X0XPvld7NmBQCDrOVI8F0DeNm232xGPxzk/v1C/oPX+QiyBQAB1dXWi3lGqcuRDfX29LO2OL36/X3T+8SUV4krKzYtyl6HP51M8n/Jhs9kQi8XypiMajcLpdKqeRjGo0RbTvy3kS/F4HNFoFIyx9L/zrRFYv349wuEw4vE41q1bh88++wxjx44VnWhCnztmCy0S1/q78NnhXOwd5djQEAgE4PF4JH9uMeQsL6XDD/HZSFRsaYQeo0nwQcsh5IqhlU1eamyQcbvdim7KkwKtHMpCG4nkQ5DoXLJkCcaPH49PPvkECxcuxPjx4/Hxxx9jzZo1Wesvn3zySUyfPh0nnXQSnnjiCdx5553o06ePZImvZPQYG7BQh1JOolPpd1RjMMt3rKdUokvpusDntKhiYb3KPa6fVnYV80Ur/WR7e7viIeG03q/mw+/3Kz6JzgeJTvkQ5F5ftGgRFi1alPezGTNmpP/90EMPCUqU2ughDpceO5RC1hKthDUpBF9LZ6F3LBfRaTQaczwbUsVZ1YplKh/FAlen0q2n5S580IoFii9a6ieVPs0p1ec0NjYq+rtiyHeAgxqQ6JQP9UtXg/j9fsl3UkuNlgfnQigtyLhSar0mH9FZ6IxlucpLK2JAKvGrdl0oRrF31HK6pYDc6/pDS4JbbxTr84sdJEKUhkRnHrQykBdDj4NcPB7PK8gcDgcikYgKKeqiVCfCZ91fIWuGnJZOLYgBqdKhZat3MdFZ7gO8Xt3r1dXVokJ46ZlKFtxiIUunfJDozIMeOlg9DnLF1s4p7XrKpFQnwsfSWegd7Xa7LMJarbqaOtYzhVQTNYvFgng8Lvo53ZFiE1AxYV3uA7waG9akgM+aXblIJpOq9G96M0yoXU6ZmM1mxGKxvJ+R6BQHic48aMV6VIxyG+TU7HCkFJ1Ko5ZVvvuxnlqfqKVCS4mhWF7rbYDnSzKZ1Pw690KoOaEFujYRcTlYQmr0ZpgIBoOKb7YqRLFQUyQ6xUGiMw96cK+73W74/X61k8ELtTv/QkglOgut50whx/urNUHqPqBJmQ45JiClyoYLlexe15IVSm+oNSHTm2FCD+MuQKJTLCQ686CHyq8FtxEfotFo0SM7i7kz5EYq0VlsdzMgz8Ct5oDWXXRquc1IJTor1b2ud9TsK7XSRrWO1vuQFCQ6xUGiMw96cK8D2rUc5qOUkK+pqVHNcstFdHIRxKU6TTmEtVqRFrpv+JFyoibH+tdiopNrOyr2jnob4PnAGNNVX9Od6upqVYOkl5qMyoXelnzoZdwl0SkOEp150IOlU2+UEmRqDtrhcLjo7nWulk4u7yi1sE4kEqqstZPTvS7HDvbOzs6ilnYuFHtHvQ3wfOjo6IDT6VQ7GYJR2wqtlgVPrk15cqG1cbeQdZxCJomDRGce9GLmB/Sz1qpUh6Km6IxEIpK517X6jlIjp+iUI5+kcK9Ho9GCg43a1jQ50VN/mA+1JwR6zz+l0Es+kaVTHCQ686CVo7hK4XK5snYQa5lSokTN+IxSrenk8o7lIjq7l1dnZ6dks385LFOxWEy06CyGnt3PpdCaBYovak/21HQb68UoAZB7vVIg0ZkHrRzFVQq1O1M+aN29LpXoLPWOUoopNdfadS8vKQc3OcR5KUunFOnX0wDPB72IgUKo7V7Xu2hXCr3kE4lOcWhfWREF0ZPlTMuu51KdCNcTiZR+RzU7PznLS2n3utlsRiKRkPT3ygm9uD0LoXY/qWb+2Ww2RKNRVX6bL3qpZ1Is1alkSHTqGL1ZOotZS9S0RujVva5mJ93dvS6lxVWOulBsoOAyqYjFYiWDyxsMBiSTScFp1Cp6sUAVQu1+Uq3d64C2j5Xtjp4s6uW8nEZuSHR2Q08uMrXdRnwoJZDUtEbo1b2uphjIDGvERZDxQWlLJ5fy9fv9JQdEj8dTlpuJ9GKBKoTa/WQ8Hpe0ffBBbcHNh2Ib9dSgkLDUk0bQIiQ6uxEOh1FVVaV2MjihttuID1p3r0sRMqm9vR3V1dUFP5f6HbViGZDakqP0mk4u5ctFeOmpPfJBK/VMKOVaLlxQW3ATRHdIdHbD7/frZlavp1lsW1tb0XN13W43AoGAgin6H1xCJnEJ6l5qY085udflTIcals5S5ctFeJXrAK+VeiaUShadlfzuUpDPqkmudXGQ6OxGIBDQzaxeb4Ncscaq5rGeUrnXSyG1sNaKGJDazV9VVSV5KDCxlk4u76inSSAf1FyTKAU2m021I3bVplzrpBLoLbi+XiDR2Y1AIKCJgZwLeupQtDw7lEp0lnpHqcNwqS0GUsd6Su1+NRgMkk9Aip1IRO714lCIGOFEIhHYbDbVfl8vhgmp14VLAdeoJQQ/SHR2g8uGAa1QroOc0kghOtXYtay2pTM1oKmdDi5IsaaTi3ud2iORido7//VSJ9XOp3xI5eEisiHR2Q09uddtNpsuGgUfQaaGi10K0dne3g632y110oqitthLhWORY8CQ2jJe7EQiqSyderEq8UXLXgqto/YmLL0YJtTOp3yQ6JQHEp3d0JN7XS+0tbVxOla0uroawWBQgRRlE41Gi7rAuLhZ+AhAqYS12taBlBVFjgFD6piXSqzp1MsAz5dyCBGjlqtUK21U66idT/nI1y+oGf6qXCDR2Q097V7XC1w7FLU6yFK7zqUSJYC0wrqjo0PVtXaZolPqNuPxeCTddCU2OHylutfLZZBVK0i62t4Il8ulykSeL2rnUz7y9fulwusRpSHR2Q09udf1AldLmFbdkyaTqeQxiVzfsZysYanyksNKIXVdEGvpDAQCJZdP6On0F67oaY17MdSaEKgtpuTYlCcHaudTPgqJTtpUJw4Snd3Qm+hM7SDWMlw7FLUEmRRr1ri+o1aFtRBS5RUIBIoGxReC1CJBrOgESkcfKMcQK1oUA0JQq92pHWFCL2h1TWf3sZVEp3hIdHYjGo3qqlLpwbqidfe6FFTCO3Yn9S6MMcnDQUk9AZFCdFYiWhQDQlBrQqsF0a6HjWB6WdNJolM8JDp1jh5EDB/3ulbfpVTHrbR7PR6Pw2QyiX6OGOQsL6Xd61r3FqiFFsWAECrVvZ5CjZBufNBKPmVColMeSHTqHD24a/m419V4FynWPCntXtfCWjs5y0tL7nU9rImTCy2KASGo1U9qwVLs8XjQ1tamahpKoYV86g6JTnkg0alztGwdTFEJrmel31ELa8Xcbjf8fr8sz5Za0Io5kSgYDHJes2q1WhGJRASlUYtoUQwIQS33eigUQlVVleK/m4keDBNtbW2KxzkuRb6oFpFIhHavi4REZwaxWEx1lyVf9LAbuhzc66VQ2r2uBQuU0WiULSi+liydfISXHgZ4PmihnkmBmn2L2msq9dCvyrEuXCxk6ZQHbZWyyvj9fs3Ntkqhh0GOjyBT+l0SiYQkE41YLFbQkpaJVOWlFTEg15o/qeu1mBOJ+OS1HtojH8ppTWc5lQsf9GCY0CIkOuWBRGcGPp8PXq9X7WTwQg+z2Hg8zkmQ2Ww2RKNRBVL0P7h2IlKt65NqANCKGLDb7bK4X71er2bidPLJ63Ib4LUyuRFLdXW15tc1yoUexggtQqJTHgSJzuXLl2PWrFkYO3Ys/vOf/xS8LxKJ4MYbb8TEiRNx6qmnYu3atYITqgStra2cjmvUEnoY5NR2LxVDqk6E6zvabDZJwvNoZa1dbW2tLKLEbDaXDMjPBzEnEvF1r2u9PfKBS1B8PaBGH5RMJjXR92ndyqvVjXokOuVBkOjs378/rrvuOhx55JFF71u+fDkCgQBWr16NpUuX4vbbb8eePXsEJVQJ9Cg6td6hAPw6FaU7aak6EaU7Tq1YoOQSnVIjdk1npbrXtbjWTi8EAgFNjCdaN0zItS5cLCQ65UFQbzJz5kz84Ac/KNiJp1i9ejUuueQSuFwuHH300Zg4cSLWrVsnKKFKoEf3utvtLiu3kdLiTYpOJBqNlmwLUqMV0VlTU6MJi2spiq3dldK9Xm6WTkI4WlkCo/U6qRWvTXfoRCJ5MMv14La2NrS0tGDIkCHpa8OGDcPmzZsLfqezszOn8zebzYoN6C0tLaitrdV8IN3uJJNJRdP80UcfoWfPnhgwYEDJe6PRKGw2G+f0Wa1W/OpXv+Js8ZwzZw7Gjh2bdS31W1x+MxQKcUofY6zgPXzrjRTllbLKq11X6+rqZGszqQmIFM8uVn5msxnRaLRo+Xq9Xk7p8Hg8aGlpUbRcXnjhBfzkJz+RxUsgRV3l0x7lhDGGRCIhKp9Wr16NE088kVPYnObmZs71Rk68Xi9aW1tFpYNvGa5ZswaTJ0/mJND4tC8lydcvhMNhWK1WzaWVK3K3RS5eEdlEZ0dHB0wmU1bjrKqqQkdHR8HvrFy5EitWrMi6NmvWLMyePVuuZGZx4oknwmKxoKmpSZHfk4qOjg5Fly08/fTTGDZsGE455ZSS93733XewWCyc03fTTTchEAhwunfz5s147rnn0LNnz7yfcynH7du3gzFWMn3RaBS7d+/O26i+/vprGI1Gzu8Yi8WwY8cOTpurCnHgwAH4/X60t7cLfoYUnHfeebzKlw+MMUQiEUnaYzgcLpjGw4cPo7W1teDn3377LUKhEKd37OjowLfffqtoe7zzzjsxYsQIyeNBpvJfqndRu181mUzYvHkz55ir+XjggQdQVVWFxsbGkvdu3boVBoNB9SVlsVgM+/btkyQdXMtw+fLlsNvtGDRoUMl7t2zZool86k5raysOHTqUla6DBw/C5/NpLq18kastDhw4sOQ9solOp9OJRCKRFUw1FArB6XQW/M68efMwZ86c7AQqaOlMJpNoampC//79dbWOyel0oqGhQbHfY4zBbDZz+s1gMIgBAwbIkr4ePXpg165dOc/mU46ffPIJBg4cWDJ9Ho8Hffr0gc1my/msqamJ0zNS9OvXD263u6BY5oLNZuPUoeuZvn37IhAIYOjQoaLbo8PhKFg+ZrMZNput4OexWAyjR4/OW/bdqaurQywWU7Q9hsNhVFdXo3///pI+NxgMokePHqLfRSv9av/+/eFyuUS9TzQa5dzfvvvuuxg0aJCidaEQFotFVDr4lmFnZ2fRNpfJBx98oJl8yuTQoUPYvn17VrqsVisGDx6subRyRQttUTbR6Xa7UVdXhx07dmDUqFEAuqxKxQZKq9Wq+Nq4fBiNRl2JToPBkP5PCXw+H/x+P6c8CgQCqKurkyU/6+rq4PP5Cj6bSzn6/X7U19eXvM9msyEej+d1F/F9x7q6Ovj9fvTq1YvT/fkwGAy6qqNCqK2tTdczKd610DPsdjtisVjBz2OxGOd1XNXV1QgGg4qWTWtrK/x+v+QDod/vR21trWTvona/mlmfhMK372tsbNREO5WyDXF5Dt986t27tybyKRObzZbTL0QiEVRVVWkurXxRsy0K+tV4PI5oNArGWPrf+dYIzJw5Ew8++CBCoRC++OILvPHGGzj55JNFJ5rIprq6WlE3a2trK+eF6XIuEpdiVybXDTnFNpvwfUet7ybVCrW1tZyXWohByrPX1QiRw6c98n2uFjbCSIUUG2r49n3llH98KId8ot3r8iBIdC5ZsgTjx4/HJ598goULF2L8+PH4+OOPsWbNmqz1l/Pnz4fL5cL06dOxYMECLFiwgNNaGIIfSodp8fl8muhQLBYL4vG4qGdw3WFaSnTyeUex5aXVuHZSU1NTI5noLCYGS4lOKX9LaiKRCMLhsCyiUyu7r6VCin6Sb9+nxV3ZSlAO+USiUx4EudcXLVqERYsW5f1sxowZ6X/b7XYsWbJEUMII7qRm8EqtM7FarZw7b5/Pp+n1L1w7vGIBxPkOzmItLh0dHXC5XIK/rxdqa2uxc+dO2X+nlOjkKyKVnBT4fD4cccQRskw6tWqBEkptbS327t0r+PuJRAJ2u51X36eV/LPZbFn7K+QkmUzCZrPpMp8yydcvcD3umCiMvhcmEACUd9fa7faiUQgy0frAJZV7XUnRqVXLgNRIaekshslkKmgx7+zshNnMb25uMBgUC6nS2tqKwYMHy+ZeL6d6Jraf9Pv9GDRoEOdnaCnus5LesLa2NjQ2NpalpRPQ9gl7eoBEZxmgtHudT6PTaoeSoqOjg5O7REtrOrUu5KVCqTWdxRBihfF6vYod2NDa2oohQ4aQe50DYvtJvnmdSCR4T1jkQknDBN986uzs5BQZQmmkXnZDdEGiswxQ8sSJcDgMp9PJWXjKLZCsViui0aioZ3B5l2IdUHt7Oy93t9jBr9zEQCFSu43VREheK9kefT4fhgwZQu51DogtF5/Ph0GDBqleJ4WgdJ1sbGzU/Ul5+U4kIsRDorMMUHoWW1NTw3ndWigUkjxodSZKWXmLiU6+4arIvc4NpdzrxRAivJRuj+Re54YUHob6+nokEgkJU6UMSnrDWltbUVdXp9tTe1KQpVMeSHSWAUp3KKnYfVw6X8aYrGtglJrBF5v18t04Ul1dLcoKUG4WqEI4nU6Ew2FFfqtQHRUivJRuj71790YkEpH82T6fr6xEp8ViEWW50nO7U9LSqed8yqTY5lFCOCQ6ywA1OhQtWKEAcdaLRCIBk8nE6V4pZ71iRXi5dOqlkGqykkgkBAdC1oN7Xa66EI1GFdntrCRi6lSq3XF5Rjgc1lTeKWl9T9VJLvnU2dmp2d3gRqOxYsLTKQmJzjJA6Q6lpqaG82/KvdNPjFXJ7/dz3l1aSHQmk0nFT3YoNwuU3IgJc6IH9zrVBe6IERGpdscYK/kcra27Vtr6rtd86g6JTukh0VkGKLn2JDUIc7HmJJNJRUSn0AGej6AolMdtbW1wu92Cfl8olWLplIrOzk7Bx+vqwb1OdUEZUnnNZdmH1spFDW9Y6khYLvcSlQOJzjJBqdhhfERnIBCAx+ORNT1iOlM+s+xColNMpyl0Fl1J1i2ua4eLEYvFBItOrbvXUxv1zGYz7bTlgM1mExztIrPvKzWp0FobVcO9zqUdaC2fihGLxTQTAkvPkOgkeJHpXi/V8SrhOuGSjkLw6fAKLSoXKjrdbjfa29t5fw/oWmtXKUexud1u0WuHuVg6C00AtO5eT23Uq6mpkTSUT7kOsGKX43g8Hk7lqzW3cVVVFUKhkCK/1draCq/Xq5kxQiroCExpINFJ8IKPpVOJWaza7nWh6yvFCJNKWmfkdrtFCzgx7vW2tjZUV1fz+o6YiZBQpLauluu6YTHtLplMwmQyce77tCSmlDxFJx6Pw2Kx6DKfikGiUxpIdJYJSoV34Cs65e5Q9OpeV9IFq2e8Xq9oASdGdAoJ+WU2mxWP5SiH6NSLGOCDFOtt9eheB5SfrGpljBBDZtsn0SkNJDrLBKU2L6QaHteOV+4OpaqqquRi9ULwGRjkEJ1Cy6uSzv71eDyqWjqF5rUSA3xm5ASp27/WxYBQxIjzVF3g8oxyFe1cyMwnLu51rYnzQpDolAYSnWWCUuvIMteQaaHjlSLuHheKudeVtHTGYjHOsUXLAaVEp9FozHuCipaXMmRu1JO6/WvRUicFQvMpM/wPl2doUbQXquNSo/d8KkQkEiHRKQEkOssEpd21Ho+n5MYFrQ9cfEVnvt3BQt9R6ODn9/s1nadS4/V6RW+Q4SI685WvmNO0lLBGZ9Zfcq9zQ2g+dXR0pI/z1cp6dr54vV7ZD/SIRCLpoPjl4F7PRGsB//UKic4yQcnYgABgMplKzpq13qHwCemkFfd6uYqBQni9XkUsnfnKt729XXAMVpvNJvsRnpl1QWrRqfW2KxSh7a67wC/1jFAoBKfTKSiNcqGEN4xvnWxvb+e9UU8tyL0uDSQ6ywQlOhQ+x0YCygkkg8EgyG0kxTGYQi2PQkWCFi0ocqLU7vV85StGeCkxCcysC1LvmC/Xeia0n8xce8jlGQaDQXNrr7VYJ8V4E5Qgc3kNiU5pINFZJijhXudzbCTQ1VHzuV8oHo8HbW1tsv5GIdEpNJ6h0MGvXC1QhZBq93qpYzALiU6hwkupAZ7c6/wQM9lL5YfD4UBHR4fUSZMdJcaIzHwSE4hfi5DolAYSnWWC0oNcimIbLeLxuCIBpoUKOD4zbKmPGhVqmSpXMVAIt9stul5zOZEoX/mKyWslBvjM9EkRRD+Tcp3cuFwuQdEuMvNDi1ZMLijtXueC1vPRZDKlw5+R6JQGEp1lglKDXKblp9QZxEp1KEIEd+ZuVC5IHQe10MakUpSrGCgEl7XDpeDiXs9XvmLyWokBPtMSazQaJd1p39bWJng9q5YR2id17/uK5XUikUiHstISSrvXS6HETnqxZE5Gafe6NGivZRCCUGqQyxyESwldpcLNCBHcmbtRuSC1pRMQlj/lutZOTsSs6dSLe11qtL7WTgxC2x3XvA4EAoosK+KL0u71UojZqKcUmf0C7V6XBhKdZUJ1dbXgs7y5wld0KoWQdPB1A+UTJWp0QpVm6ZQCoaJTT+51Ql66t7tMt2u+e7U4MVSjTlosloIeHT3U30yPFLnXpYFEZ5mghFWieydRzJqjZAMVsj6S78AgtSgBhJWZHjpqORBjNVdj97pS6+cyLWoGg0HTwey1gpAg6d3bXU1NTcH4sVpto2p5wwr1zVoV55l0t3SS6BQPic4yQu4Bp3snUawTU7LjFTKD5yso5BCdVquV9+5Ov9+veZeU1DgcDlExL9VyrysRwixzo57QTTLdKXfh6na7eUe74NP3adUbIcVBC6Uoh3zKhESn9JDoJDjDx72u5CxWCfe62WxGPB7Puib2HYVYaBljmtykICdi10cKPZFI62s68/2mFEI3GAzqJmC3EITkU3fBoUcLntlsLrgkQCpCoVDWWvlSYwSJzsqjskavMkdokHSu8BWdSnUoQtxGfNOXzxUu9h2FCJNy3dxRDLFiSqilMx6Pl/xeIZxOpyRWRz5IJTr1IAbEIMWEQCt9nxbJ7KOK5VP3iABahESn9JDoLCPcbresm4n8fn/WsZHFLHVKuteLra8qhBTWCLHvKEQklLvrMx9i16IJFZ1iUGJy0L0uSHUqkVYtdVIhxdpGrSwt0hp86qQexHlmKDUKmSQNJDrLCLnXkSWTyaxjI7XiXs/n+i6FFAODFO51PuVViYITEC+mhJ5IJBY5hWc+q4tU7b/cRZMU+aRH97oa6N0iTCGTpIdEZxmh9DoyPS8SF5K+7qJPCvc6n8EvFAqV9Vq7QogVCUJPJBKLnJOEfMKQ3Ovc4NtP5jtZTa9iym63i9qUV4xkMpmz3ryUe12r+ZQis1+IxWIlJ69EaUh0lhFKx810OByIRCJ5P9N6hyKFNULpNZ1aHszkRIk1nd1PJIpGo4LXc6YQEpqHK/nqr5Tu9XKuZ3zrk9/vzwn2XmzCne9+rSCnYSIQCGQtvwJKu9e1bhHuPhmtxDX1UkOis4yQMw4bX6uN1jsUKRaFi10Iz7e8tJ6nciGFe52vpVOKTQ5er1fS89AzyScMpXSvl3M9E9Lu+OR192VIWkJOwwTffNKD5VAOD0ilI0h0+nw+XHXVVRg/fjzOOussfPDBB3nvW7RoEcaNG4cJEyZgwoQJmD17tqjEEsWRs0Phe2yk0tYSm81W0OqaDylmrMFgkFeedIdveWndeiwXauxelyKv5ZwEkntdOHzzKV9+eDwe2SYUciLnGJGvThaLiaoHq2G+UGqEOASJzjvuuAM9evTA+vXrceWVV2LBggUFK9b8+fPx5ptv4s0338QzzzwjKrFEceR0nRQahAt1HKFQCE6nU5a05IPvu0u13k5Mx0nudW6oITqlyGulrUrkXucG32gX+fo+k8kka3g6uZBzIpSv3hTrH/WwMZIsndLDW3R2dHRg06ZNuPTSS2G32zF58mQMHjwYb7zxhhzpI3ggd4eSz+VmNBoL7hxXciarlXPg+eByuXidjFKp7nU1TiSSIq/lFp3d02ez2XifcMX12eWE2WzmZb3ikx9aF1JyGiYK5ZPW86QYJDqlx1z6lmy+/fZbuFwu1NfXp68NHToUu3btynv/448/jscffxwNDQ244oorMGbMmILP7uzszClgs9ksekE/V1IzVz3OYIGuNWQtLS2ypL+5uRk1NTU5z/Z6vWhtbc2qD0BXR6NkPnq9XjQ3NyOZTJYsx3g8LthSkfkdKd6RzzNaW1sxfPhw3dZPvmSWo5i8jkajMJvNRb9vNpvR2dmZvqelpQVer1dUXsvZHltbW/OmT4o62dnZWTK/+KDFfpVPPrW0tGDYsGGc8rqjowN2u11T75qJ1+vFzp07eaePSxm2tLSgsbGRUz6lNuppNZ9SmM1mtLe3i+6DtILcbZHLaXm8RWc4HM5Zx1ZVVZX39I1zzz0X1157LRwOB1577TVcc801ePrpp9GrV6+8z165ciVWrFiRdW3WrFmKrwVtampS9PekIhaLYd++fdizZ4/kz962bRuSyWTOs81mM7744gsMGjQo63o4HJYlHYVgjGHbtm0YMGBA+lqhcmxtbYXFYuGdvsx3SiQSiEajot8xEolwfsbu3btx7LHHKpqvWqCpqUlUfWpra8O+ffuKWt5bWlpw+PDh9G/s3LkTI0aMEJXXsVgMTU1NspTXnj170NHRkfNsKdqdXG1XS/0qn3a3a9cuNDQ05M3rb775JqteHThwQFDfohThcBi7d+8WnL5iZbh792706dMn59mRSCQnnw4fPgyr1arZfErh9/tx8OBB7NmzR/ExTU7kaosDBw4seQ9v0elwOBAKhbKuhUKhvDuBR4wYkf73jBkzsHr1arz//vs488wz8z573rx5mDNnTnYCFbZ0NjU1oX///ro939pisaChoUHy55rNZgwZMiTn2Q0NDXA6nVnXE4kEXC6XLOkoxJAhQ9DW1oaGhoaS5RiNRtG/f3/e6XM4HOnvtLa2onfv3qLfMfOZpUgkEjjyyCPRu3dvUb+pFzLLkU8+dcfhcKCxsbHoPR0dHTm/MXLkSFHlO2LECOzdu1eWdhCLxTB69OgcA4CYfJLyGZlosV+12+2c35Exhu9973s599fV1aFHjx5ZZZDqg5Ts+/hgMpnw8ssv804flzJMJpN520zPnj1RW1sLt9udvhYKhQT1wUrTr18/BINBDBgwQPJ2oQZaaIu8ReeAAQMQDAbR3Nycdql+/fXXBYVkJqXW+FmtVsUEZjGMRqNmOke+GAwGWdLu9/sxfPjwnGfX1dXB7/dnXU/FqVMyD+vr6/Htt99m/WahcgwEAqirq+OdPoPBkP4vEAigtrZW9Dum2gSX5/h8PkHp1jtGoxEmkwmMMcGhaErlmd1uRywWS98nRV7X19fntA2pCIfDcLlcOX2q1WoVdWY8IF8foqV+1eFwIBqNcgqb5vP5UF9fn7fvCwQCWQc2+P1+SfoFuaivr4fP5xOcvmJl6Pf7C+ZT99ilQvtgpbHZbIjFYkgkErBarZpPL1fUbIu8f9XpdGLixIlYvnw5IpEINm3ahJ07d2LixIk5965fvx7hcBjxeBzr1q3DZ599hrFjx0qScCI/cm3eKbSjNd9mCTV2v/LZRCU0fZnHbUr1jh6Ph/Nmos7Ozoo9ho3vjmO+dA8Or/WQSUD+ti52owiXI0PLAT75lC/oeeoZWuj7+OBwONDR0SHLs30+X96g+HrMpxSpjURSxHUmuhAkdRcsWIBDhw5h6tSpuPfee3HbbbfB7XZjzZo1Wesvn3zySUyfPh0nnXQSnnjiCdx5553o06ePZIknlKNQwOh8YVrUiCfJZxARujs3cyejVJ2m0keX6hUxO8G5TMS671Jtb2+Hy+US9HspvF6v4mUrNmxSpcSC5dPu8h3vCOSfVGg9/+SMKJJIJHKOCwXy10m9REhI9QuRSIREp0Twdq8DXZXovvvuy7k+Y8YMzJgxI/33Qw89JDxlhCCsVisikYjkFjG+lk6lOxQ+osTn82HYsGG8fyPVAVVVVUl2aktq4OKyALuSkSoGZSHyhUYRO0BLuQOcK2LDNJX7aUQppLBC5xOura2tGDx4sKjnlhv56qTP50P//v1VShF3yNIpPeWxQIFII5flrFCj04rrxOl05mxwK4TQ9Mll6dRbfFE1kDuf5IrHJ0eMwkQiUXA9lth80ovbUyxS1Cet9H1aR8/5lDqRKBwOV+zSJqkh0VlmyCU6C1l9Cs32le5Q+FiltCY6uZRXLBbL67qqFPQqOuUgEAjkXTsHiG//ehEDYuGaT4yxon2f3tzrQNcmkkQiodjvFRoj9GBRJ0un9JDoLDPk2rxQyGLjdrtzNnho3UUnxZpOqd3rpdB6nsqN3O51i8WSPqUmmUxKtvZNjjV0xeqv2PZfKfWMaz6FQqGcsFTFnqEH0e71eiU/N76YJVCv+QSQ6JQDEp1lhtLuWqPRmCNI1epQuLoyC+1GLUXK1QIo717XgwVFTuSu15nisL29PSumoBjsdruoIzzzUawukHudG1zzqVh+5LPgpeK9ahk52hLfOhkMBkVv1FMCEp3SQ6KzzJDDvR6Px3m5dtUauIxGI6eNG4wxQTHKuls6C7k4+cC1vCpFDBRCycmUlHktR7pLCSESnaWRot3JHRJLLpSuk4XySc6d9FJBolN6SHSWGXJ0hN0D+0p9v1TI4TbKJFN0FgoPwhc+FpdKcHsWQskBXg+is5h7XeyazkqoZ1Isa3E4HIhEIlnX9CCk5FiqUqzeZHqI9AaFTJIeEp1lhtKz2BSZru1EIiH45BgxyC1M5Nhs4vV6yb3OAY/HI3hCwXcHuZTrGuUY4IvVBbfbzfmwAb7PLieqqqoQDAZL3sd3AiJHtAKpUdq9rmdSh0bQ7nXpINFZZqghOl0uF+dwRXLC5d3FDArdT62RAovFkj7lqBiV4vYshMlkEhTzkk95p+7Vg6WzUPoMBoOoOt7W1pZ1rGO5wtUiyacuqDXZ5otahokUUm7UkxuTyYR4PE7udQkh0VlmyLGms9QstvtvqtWhcHn3YrtRSyFXWB0u+VXpolMoQs4h17PoBMS3P70IArFweU8+Fjy/36+LpQlyude51sm2tjbJNurJTSrdJDqlg0RnmVFVVYX29nZJn1lqnVemW5sxppqLicsAL8YNJNeici75VSmhbKSms7NTkOiUKq/lmgQWS58eXLxagEs+laoLKUsYl3u1glzu9WLvbrFYEI1G0/fqaQJtMBhIdEoIic4yQ664gKUsnalOLBwOw+l0Sp4GLnBZ0ynGipUSnWpYHcnS2QVfQSVEdEo5KMqxzrhU5ASxLvZKgUu0i1LtrqamJh2nWC9tVA3re+bkSy/5lAmJTukg0VmGSC08+bjX1ZzFcrEqaVF02u32nF2w3dGTS0ouqqqq0NHRwes7Qi2dWnavJ5PJomsH3W63IG9HsdN3yhEu0S5KWfAyy1cvFjyPx5NzoIdYyl100u516SDRWYZIbeXg415X08XE1b0uNH2ZolPKd+SyxqrSBEE+hKxFE2rplCrkl1zH0hZDqHW1vb29IjYRpeCST5FIpOiu5cw6qRf3utBNecUoFRQ/M6/1uFSILJ3SQaKzDDEYDJJ2Knzc62rOYpVwr8diMcktGkqfIqVXhOQTH9GZEvXxeBwWi4V3+vLhcDgUj+wgtD7p0QIlBinanVb6Pi1QbFKs93yikEnSQaKzDPF6vaJi9XWn1LGRWulQvF6vLt3rJDq5IbfolAOprdNcvBgkOrkhhRVaK32f1tF7PpGlUzpIdJYhUm9eSCaTRY+NzHQxqbmuyWw2l7TwSuVel1p0Fhv8aFNIF0q41+XIaymFJ5fBT2hIHD26PcUgRT+plb5PCEr2K93zSW/1jESndJDoLEOUtpxpZU0nULojlcLSKXWnWWrwCwaDFbXWrhBCLZ1cXeVcA/XzRcrBnYuwIUsnN0rlUywWK3nUbXcLnl7ElNPpRDgcluRZiUSiqFEC0LelkzEm6ZKbSodEZxmitOi02+3pGGxa71DEDAypE4mUdq9rPU+VQm73usViQVtbG2w2m5DkFcRoNCKRSEjyLC51gUQnN0rlE1+B7/f7iy5D0hJSjhGBQKDkxrvuu/z1Is4J6SHRWYZIuWOW667p1D1qu5hKpTUajQpeEK6We73SxEAhhAyUsViMs+i0Wq04dOiQ5HmdGctRLFxFp5D2X2n1rFQ+8RWdjDFdHIMJSHsqEd86GY/HS1qQifKFRGcZIuWaTq7HRmaeW63mLNZut0vmNupOSnSWCg/Cl1LlRZaBLuRe02m1WnHw4EHJ81rKAZ5LXRDa/iutnpXKJy59mdvtTsf61NPaayktnVzqjcvlknRzq5JUeqg6qSHRWYZI2aHwtX5ILcj4IufSgsyz16XsiMi9zg0hYoqv6JTD0ql0exQqOiutnpWKdsElP4xGo67EZgql66TehZsey1irkOgsQ6R0r3N1l5vNZsRiMRgMBlU7GDmDcWeKTimpqqoqGsux0sRAIRwOR8mTm7ojxNKpd9FptVoFbYiqNEtnqWgXfJYK6e3wBjUME3rKn0xS8ZkJaSDRWYZI6V7n6i5PrVtTe0ZY7N257EYthlyis9RZ2ZUmBqREiKVT7+51QJhlJhaLVdwO3WL5xGepUEdHB5xOp1TJkh216mQkEpF8o57cyNXvVyokOssQpReJA9oJcF4sHX6/X5SgsFqtiEQiJcODSA1ZOoVTie51Qhr45HVLS4uuykUtS6fe8gmAqodLlCMkOssQs9ksWbxBPqLz8OHDqu/eLNaZih2wrVYrvvvuO8WtjiQ0hFOJ7nVCGrjmtcvlwt69e3VVLmrUSY/Hgz179ugqn4CufoECw0sHiU6iKFxdJzU1Ndi9e3fJeG1yU1tbWzA8jVg3tVy7m4GuDQmF1peRe/1/mEwmXhMqLexel3KdMdeTUaxWazp2LlEYh8NRMNoFn75v586dumqjarjX9ZhPAIlOqSHRSRSFj6Vzx44dqs9ii63pFGslslgssrhfgS4rQCr0SnfUPj9cS/CNecn3RCK54nQqvfSEr9CNRqMVWceKWfwCgQDcbjenZ2ih7+NDMbHNF5/Px8nYoMd8Arr6BRKd0kGikygKH9G5c+dO1TsUOd3rRqNRNvemVtbEah2++cTX0un3+znFpeWD1+uVLDg8V/jmk9qHOqhFsXxijHFav62Vvk8tkskkp2VVes0nq9Uq+EARIhcSnWWKVDNZrq4TrXQoxSw8UgysRqNRNtFZKN16DTUiB3wteHxPJHK73ZLnt8lkKhqahw9c08Y3nypZdIptd1rp+9Si3POJ3OvSQqKzTJFqzU4kEuE0y6upqcGOHTtUX6/jcDgKxryU4rQkq9UqyzsWc8GqHYZKS/B1VfO1dMpVf6Uow0QiwTlyAt98UvskMbWQot1ppe9Ti3LPJxKd0kKis0xR2l1bW1uL5uZm1WexxWbdUrjGrVarou51PmsSKwG53etq199i+P1+zhv1+OZTpe6KL5RPfCYJWun7+MJ3U14+KiGfSHRKiyDR6fP5cNVVV2H8+PE466yz8MEHH+S9LxKJ4MYbb8TEiRNx6qmnYu3ataISS3BHqh2zXF0nbrcbJpNJEx1KoTRrXXTmK69KdXsWQs+iU6y1k0/95dv+K1l05sunYDDIaRNR6hkAdGfB47spLx/hcJhzUPxUPumtnpHolBZBovOOO+5Ajx49sH79elx55ZVYsGAB2tracu5bvnw5AoEAVq9ejaVLl+L222/Hnj17RCeaKI1UO2a5DpQGgwFer1cTHW+hNLe1taG6ulrUs5V2r1O4pGz4LhvRinvd6XSKXmPNpy7wbf+VWs8K5ROf5QY1NTWw2+26EyZSLMHiWyctFouuTm4CSHRKDW/R2dHRgU2bNuHSSy+F3W7H5MmTMXjwYLzxxhs5965evRqXXHIJXC4Xjj76aEycOBHr1q2TJOFEcaRwr/M9NrK2tlYTs1ij0YhEIpFznetu1GLYbDZZYpEWKq9KtUAVQq+WTinaI19LJ7nXSyNFu6upqdFl3ildJ1P5pLeNkSQ6pYX3QdTffvstXC4X6uvr09eGDh2KXbt2Zd3X1taGlpYWDBkyJH1t2LBh2Lx5c8Fnd3Z25pxxajabFYsfl9phKtVOUzXxer3YtGkT3n33XcHPSB0byTU/6uvrUV1drXr+eb1evPPOOzh06FCWyIxEIqLT1rNnTxgMBsnf0ev1Ytu2bTnl9d5778Hr9aqep2qQrz16vV5s376dc73eu3cvzGYzp/wzm8286jsfampqsHHjRgwePFjwMz788EMMHjyYU/q8Xi++/vprzvm0ZcsW2eqZlvvVQvn08ccfc64LVqsV/fv31+T7FcPr9eLdd9/llO5kMonvvvsO+/fvz+pTP/30U875ZDKZ0NjYqLt8MpvNsvT5aiB3W+Ri1OEtOsPhcE4cu6qqKgSDwaxrHR0dMJlMWTufq6qq0NHRUfDZK1euxIoVK7KuzZo1C7Nnz+abTFE0NTUp+ntykHJlPP/886KeM23aNM5LIq644grs3btX1O9JwcyZM/HRRx/h888/z7o+Y8YM0cs75s+fL8sSkWQyidGjR+ctr1NPPbWil6VktkfGGI455hjO9XrUqFHw+/05/VM+ampqcMIJJ8iS1+PGjcOmTZvw6aefinpOQ0MDp/QxxnD88cdzzqeBAweis7NT1nqmxX6VMYYTTjghbz5Nnz6dc35ceeWVumujI0eOxOrVq0X32aecckpZ59OgQYNgMBh0l+5iyNUWBw4cWPIeA+O5un3r1q341a9+hVdffTV9bdmyZbDb7bjyyivT19ra2nDiiSfirbfeSgvPf/zjH9i8eTNuu+22vM/WgqWzqakJ/fv3F+2GJdSDyrE8oHIsD6gc9Q+VYXkgdznKYukcMGAAgsEgmpub0y72r7/+GmeeeWbWfW63G3V1ddixYwdGjRoFANi+fTsGDRpU8NlWq1UTR7EZjUZqWGUAlWN5QOVYHlA56h8qw/JAzXLk/atOpxMTJ07E8uXLEYlEsGnTJuzcuRMTJ07MuXfmzJl48MEHEQqF8MUXX+CNN97AySefLEnCCYIgCIIgCP0gSOouWLAAhw4dwtSpU3Hvvffitttug9vtxpo1a7LWX86fPx8ulwvTp0/HggULsGDBAjQ2NkqVdoIgCIIgCEIn8F7TWc4kk0ns2bMHDQ0N5ELQMVSO5QGVY3lA5ah/qAzLAy2UI9UegiAIgiAIQnZIdBIEQRAEQRCyQ6KTIAiCIAiCkB0SnQRBEARBEITskOgkCIIgCIIgZIdEJ0EQBEEQBCE7FDKJIAiCIAiCkB2ydBIEQRAEQRCyQ6KTIAiCIAiCkB0SnQRBEARBEITskOgkCIIgCIIgZIdEJ0EQBEEQBCE7JDoJgiAIgiAI2SHRSRAEQRAEQcgOiU6CIAiCIAhCdkh0EgRBEARBELJDopMgCIIgCIKQHRKdBEEQBEEQhOyQ6CQIgiAIgiBkh0QnQRAEQRAEITskOgmCIAiCIAjZIdFJEARBEARByA6JToIgCIIgCEJ2NC86n3vuORgMBjz99NM5nx199NEwGAz4z3/+k/PZ4MGDMWbMGADAxo0bYTAYsHHjRsnS9c0338BgMOCRRx6R7JlSsXnzZlx22WUYN24cqqqqJH93giAIgiAIvmhedE6ePBkGgwEbNmzIut7a2oovvvgCVVVVOZ/t3bsXu3btwpQpUwAAY8aMwbvvvpsWoeXORx99hFWrVqG2thZTp05VOzkEQRAEQRDaF5319fUYNWpUjqVu06ZNMJvN+PnPf54jOlN/p0Sn2+3GD37wA7jdbkXSrDYXXHAB9u/fj3//+9+48MIL1U4OQRAEQRCE9kUn0CUet23bhgMHDqSvbdy4EWPHjsXMmTPx3//+F+3t7VmfmUwmTJgwIf13dxfz3Llz4XK5sGPHDsycORMulwv9+/fHddddh2g0mvX7+/fvx+zZs1FdXQ2Px4NzzjkHBw8ezJvWl156CePGjYPT6UR1dTVOPvlkvPvuu+nPN2/eDIPBgGeffTZ97b///S8MBgOOPPLIrGedccYZOO6443jnl9Goi2IlCIIgCKKC0IU6SVksM0Xjhg0bMGnSJIwfPx4GgwFvvvlm1mdjxoyBx+Mp+txYLIYzzjgDU6dOxYsvvoiLL74Yd999N+644470PeFwGCeddBLWrVuH2267Dc8++yx69eqFc845J+d5Tz75JM4880y43W7885//xEMPPQSfz4fJkyfjrbfeAgAceeSR6N27N1577bX091577TU4HA589dVX2L9/PwAgHo9j06ZNOOmkk9LvbjAYsGjRIn6ZRxAEQRAEoQF0ITonTZoEo9GYFp0tLS348ssvMWnSJLhcLowZMybtUm9qasLu3bvTQrUYnZ2dWLx4Ma677jpMnToVixcvxowZM/Dkk0+m73n00UexZcsWPPbYY7jiiitwyimn4N5778W0adOynpVMJvHrX/8ao0ePxpo1a3DmmWdi9uzZ2LhxI7xeL2644Yb0vVOnTs0Rneeffz5qamrS1z/44AO0tbWlRafBYIDJZCIrJkEQBEEQukQXCqampgZHH310WnRu2rQJJpMJ48ePB9AlSlOis/t6zmIYDAacfvrpWdeOOuoo7NmzJ/33hg0bUF1djTPOOCPrvp/97GdZf2/btg379+/HBRdckCUMXS4XfvrTn+K9995DR0cHgC7RuWvXLuzevRuRSARvvfUWpk+fjilTpuDVV18F0CVEbTYbfvSjH6XfMR6P46abbir5XgRBEARBEFpDF6IT6BKR27dvx/79+7FhwwYcd9xxcLlcALoE2SeffIJAIIANGzbAbDanxVoxnE4n7HZ71jWbzYZIJJL+u6WlBUcccUTOd3v16pX1d0tLCwCgd+/eOff26dMHyWQSPp8PANLWy9deew1vvfUWYrEYTjzxRJx00klYv359+rPx48fD4XCUfA+CqCQuuOACLF26VO1kAADGjh2LF154Qe1kEIQuUKrtnn322fjTn/4k++8Q/NGV6AS61jZu3LgRkyZNSn+WEphvvPFGeoNRSpCKpa6uDocOHcq53n0jUV1dHQBkbXZKsX//fhiNRtTU1AAA+vXrh2HDhuG1117Dq6++iuOPPx5erxdTp07FgQMH8P777+O9995Li9NKZ+7cufjxj3+cde25556D3W7HsmXLAACLFi2CwWDA9OnTc76/bNkyGAwGTJ48WYHUcicUCuGGG27AoEGDYLfb0aNHD0yePBmvvPKK2kmTnc2bN+OnP/0pGhsbYTAYcM8993D63ueff45///vf+NWvfpW+xhjDokWL0KdPHzgcDkyePBmbN2/mnJannnoKBoMhp44BwL59+3D++eejrq4OTqcTxxxzDP773/+mP7/xxhuxYMECJJNJzr9XSVDbLT9WrFiBCRMmoKamBjU1NTjppJPwwQcflPxevrb7wgsvYNq0aaivr4fBYMCnn37KKQ3PP/88vve978Fms+F73/se/vWvf2V9ftNNN+HWW29FW1sbr3cj5Ec3onPixIkwmUx47rnnsHnz5qxOyOPx4JhjjsGjjz6Kb775hpNrnStTpkxBe3s7Xnrppazrmes+AWD48OHo27cvnnzySTDG0tdDoRCef/759I72FCeddBJef/11vPrqqzj55JMBAMOGDcOAAQNw0003IRaLkegswIMPPog5c+bgL3/5C37zm9+kr/fu3RsbNmzA3r17s+5fuXIlBgwYoHQyS3LppZdi1apV+Mtf/oKtW7di7dq1+OlPf5q2mstBZ2enot8rREdHBwYNGoTbb789x2tQjL/85S+YNWsWqqur09eWLVuGP/3pT/jLX/6CDz/8EL169cLJJ5+cFdGiEHv27MH111+fjnSRic/nw/jx42GxWLBmzRp89dVXuOuuu+D1etP3nHrqqQgEAnkPqCByobYrHK203Y0bN+K8887Dhg0b8O6772LAgAE45ZRTsG/fvqLfy9d2Q6EQxo8fj9tvv53z77/77rs455xzcMEFF+Czzz7DBRdcgNmzZ+P9999P33PUUUehsbERTzzxBP8XJOSF6YixY8cyg8HATCYTCwQCWZ9dc801zGAwMADs1Vdfzfpsw4YNDADbsGFD+tpFF13Eqqqqcn5j4cKFLDNbQqEQGzZsGPN4POwvf/kL+89//sOuuuoqNmDAAAaArVy5Mn3vE088wQCwmTNnshdffJE988wzbOzYscxqtbI333wz63eef/55BoABYJs2bUpfnzdvHgPAampqWCKRSF/fuHEjM5lMbPHixSXzKRQKsWeffZY9++yz7LrrrmMA2KJFi9izzz7LVq9eXfL7WuOiiy5iZ555JmOMsTvuuIPZbDb23HPPZd2zcOFCdvTRR7PTTjuNLVmyJH397bffZvX19eyXv/wlmzRpUtZ3Hn74YTZixAhms9nY8OHD2f3335/1+W9+8xs2dOhQ5nA42MCBA9kf/vAH1tnZmfObjz32GGtoaGBut5udc845rK2tLX3Ps88+y0aNGsXsdjurra1lU6dOZcFgkDHGmMfjYY888kjRd49EIuzXv/4169evH7NarWzIkCHswQcfTH++cePGdB3r1asXu+GGG1gsFkt/PmnSJHb55Zeza665htXV1bGJEycyxhjbvHkzmzFjBquqqmI9e/Zk559/Pjt8+HDJ7xXi2muvZaeddlr677vvvpsBYK+88kr62rBhw9gDDzyQ892GhgZ29913F30+Y4wlEgnm9XqznplMJlmvXr3Y7bffnpVnHo8n729lEo/H2fjx49mDDz6YVcdS3HDDDexHP/pRyXTNnTuXXXDBBSXvq0So7ZZ322Wsqx1VV1ezRx99tOBv5Gu7mezevZsBYJ988knRtDLG2OzZs9n06dOzrk2bNo2de+65WdcWLVrEJkyYUPJ5hLLoxtIJdFkdGWM49thjcwK9T5o0CYwxWK1W/PCHP5TsN51OJ15//XWcdNJJWLBgAc4++2zs3bsXTz31VM69P/vZz7Bq1Sq0tLTgnHPOwbx58+B2u7Fhw4acNaYnnngijEYjqqqqMG7cuPT1lHVzypQpWRuSGGNIJBKc3HjfffcdZs2ahVmzZuGuu+4C0OXCmjVrFn75y18KygctsGDBAtxyyy145ZVX8NOf/jTvPRdffHHW0aQPP/ww5syZA6vVmnXfihUr8Pvf/x633nortmzZgqVLl+LGG2/Eo48+mr6nuroajzzyCL766ivce++9WLFiBe6+++6s5+zcuROrVq3CK6+8gldeeQWbNm1Kz9oPHDiA8847DxdffDG2bNmCjRs34qyzzkpbwnv16oXVq1cXtchdeOGFeOqpp3Dfffdhy5YteOCBB9JLR/bt24eZM2di7Nix+Oyzz/C3v/0NDz30EJYsWZL1jEcffRRmsxlvv/02li9fjgMHDmDSpEk45phj8NFHH2Ht2rU4dOgQZs+eXfR7xZg8eTLefPPNdP3ctGkT6uvrsWnTJgBdy1G2b9+etSyGL59//jn8fj+OP/749LXdu3fj4MGDOOWUU9LXbDYbJk2ahHfeeafo826++Wb06NEDP//5z/N+/tJLL+H444/HrFmz0LNnTxx77LFYsWJFzn3f//73s0K2EblQ2y3fttvR0YFYLIba2tqCv5Gv7Qrl3XffzWrvADBt2rSc9v79738fH3zwQU7cbUJlVJW8BMGBiy66iFmtVgaArV+/Pu89KctFZ2cn69mzJ9u0aRMLBoOsurqaffbZZ+yqq67Kspb079+fPfnkk1nPuOWWW9i4ceMKpmPZsmXsuOOOy/pNp9OZZR359a9/zU444QTGGGP//e9/GQD2zTff5H3epk2bWL9+/ZjFYmHHH388u/rqq9lbb72V/nzbtm15Lfcpfve737Hhw4ezZDKZvnb//fczl8uVtpJPmjSJHXPMMVnfu/HGG9kpp5ySda2pqYkBYNu2bSv4vWL4/X5mNBrZRx99xJLJJKurq2O33XYbGzt2LGOMsSeffJIdccQReb/L1dL5r3/9i5lMpqz3ffvttxkAtm/fvqx7f/GLX+S8YyZvvfUW69u3b9pClM/SabPZmM1mY7/97W/Zxx9/zB544AFmt9tzLDovvvgiMxqNWZ4Jogtqu+Xddhlj7LLLLmODBw9m4XC44D352m4mfCydFouFPfHEE1nXnnjiCWa1WrOuffbZZ0XLkFAHs0pal9AQv/zlL0uux5GSvn374m9/+xuv7xx11FFobm7GTTfdhLFjx2atC8rEYrHg/PPPx8qVK7Fr1y4MGzYMRx11VNY9hw8fRlNTE37+85/jF7/4Rfp6PB7POlDgueeewz333IMdO3YgGAwiHo/nWNgbGxuz0tK7d2989913AICjjz4aU6dOxejRozFt2jSccsopOPvss9MbyiZOnIhdu3bhvffew9tvv43XX38d9957LxYvXowbb7wRn376KUwmU0ELw5YtWzBu3DgYDIb0tfHjxyMYDGLv3r3ptXDdrQv//e9/sWHDhryb7Xbu3Ilhw4bl/V4xUuuqN27cCIvFAqPRiPnz52PhwoVob2/P2fwnhHA4DJvNlvW+KbpfY4zlvQ8A2tvbcf7552PFihWor68v+HvJZBLHH398erftsccei82bN+Nvf/tb1vGyDocDyWQS0WhU8WgTv7wriX2Hlfu9vj2Av13Hz0FGbTeXcmm7y5Ytwz//+U9s3LgxJxJMJsXarhC4tPdUW0yFKiS0AYlOgrcAVIO+ffvi+eefx5QpUzB9+nSsXbu24OB18cUX44QTTsCXX36Jiy++OOfzlBtpxYoVOOGEE7I+M5lMAID33nsP5557LhYvXoxp06bB4/HgqaeeSi9XSGGxWLL+NhgM6eebTCa8+uqreOedd7Bu3Tr8+c9/xu9//3u8//77GDhwYPr7EyZMwIQJE7BgwQIsWbIEN998M2644YaSAiZfR8v+v/sv83pVVVXO+59++ulZJ2+lyAz51f17pZg8eTI2btwIq9WKSZMmoaamBkceeSTefvttbNy4EVdffTWv53Wnvr4eHR0d6OzsTLtcU5uQDh48mJX27777Lm+oM6BrcP7mm2+yYvSmysxsNmPbtm0YPHgwevfuje9973tZ3x05ciSef/75rGutra1wOp2qhDfjKwDVgNpuLuXQdv/4xz9i6dKleO2113ImB93J13aF0qtXr5zoMfnae2trKwCgR48eon6PkBbt91gE8f8ZMGAANm3ahO+++w6nnHJKwXAYRx55JI488kh8+eWXOUH8AeCII45A3759sWvXLgwZMiTrv9SA8vbbb6OhoQG///3vcfzxx2Po0KFZhwZwxWAwYPz48Vi8eDE++eQTWK3WnPAemXzve99DPB5HJBLB6NGjkUwm02ur8t37zjvvZEVLeOedd1BdXY2+ffsW/I0xY8Zg8+bNaGxszHl/voNVJqm1Ya+//no6usSkSZPw1FNPiV7PCQDHHHMMAOCrr75KXxs4cCB69eqVPlQB6Nqtu2nTpoJru0eMGIEvvvgCn376afq/M844A1OmTMGnn36K/v37A+iyPG3bti3ru9u3b0dDQ0PWtS+//BJjxowR9W7lDrXd3Hv13HbvvPNO3HLLLVi7di0nq2q+tiuUcePGZbV3AFi3bl1Oe//yyy/Rr1+/ot4MQnlIdBK6ol+/fti4cSNaWlpwyimnIBAI5L3v9ddfx4EDB7LC22SyaNEi3Hbbbbj33nuxfft2fPHFF1i5cmU6oPCQIUPw7bff4qmnnsLOnTtx3333FR1w8vH+++9j6dKl+Oijj/Dtt9/ihRdewOHDhzFy5EgAXR398uXL8d///hfffPMNVq9ejd/97neYMmUK3G43GhsbcdFFF+Hiiy/GqlWrsHv3bmzcuBHPPPMMAOCyyy5DU1MTfvWrX2Hr1q148cUXsXDhQlx77bVFj0u9/PLL0draivPOOw8ffPABdu3ahXXr1uHiiy9GIpHg9Y6ZTJw4Ee3t7Xj55ZfTA9fkyZPxj3/8Az169MiyGnZ2dqYFX2dnJ/bt24dPP/0UO3bsKPj8Hj16YMyYMXjrrbfS1wwGA66++mosXboU//rXv/Dll19i7ty5cDqdWaLlwgsvxG9/+1sAgN1ux6hRo7L+83q9qK6uxqhRo9KWmGuuuQbvvfceli5dih07duDJJ5/E3//+d1x++eVZ6XrzzTdzNjYQuVDbLY+2u2zZMvzhD3/Aww8/jMbGRhw8eBAHDx5EMBgs+Px8bRfoskZ++umnaTG6bds2fPrpp1mWzMy2CwBXXXUV1q1bhzvuuANbt27FHXfcgddeey3HGkvtUqOot5yUILiRb5PH/v372fDhw9nYsWOZz+dLb0YoRPfNCIx1LT4/5phjmNVqZTU1NWzixInshRdeSH/+61//mtXV1TGXy8XOOeccdvfddzOPx5P+PN9v3n333ayhoYExxthXX33Fpk2bxnr06MFsNhsbNmwY+/Of/5y+d+nSpWzcuHGstraW2e12NmjQIHbllVey5ubm9D3hcJhdc801rHfv3umwKw8//HD6cy5hV6666qqc/Ni+fTv7yU9+wrxeL3M4HGzEiBHs6quvTi/0L/S9Uhx33HGsR48e6ee0tLQwg8HAzj777Kz7UhsHuv/XvYy688ADD7Af/OAHWdeSySRbuHAh69WrF7PZbGzixInsiy++yLpn0qRJ7KKLLir43Hx1jDHGXn75ZTZq1Chms9nYiBEj2N///vesz/fu3cssFgtramoqmu5Khdpu+bXdhoaGvG134cKFRZ+fr+2uXLmy5LPytd1nn32WDR8+nFksFjZixAj2/PPPZ30eDoeZ2+1m7777Lr9MIGTHwFiGfZ8gCELDRCIRDB8+HE899VRWqDG1+PWvf41AIIC///3vaieFIDSNkm33/vvvx4svvoh169bJ+jsEf2gjEUEQusFut+Oxxx5Dc3Oz2kkBAPTs2RPXX3+92skgCM2jZNu1WCz485//LPvvEPwhS2cGyWQSe/bsQUNDQ9F1NYS2oXKUnieeeALz58/P+1lDQwOvs865QuVYHlA5qosUbZfKsDzQQjmSpZMgiJKcccYZOSFqUnQPPUMQhHagtktoCRKdBEGUpLq6umBsRYIgtAu1XUJLkJ2cIAiCIAiCkB0SnQRBEARBEITskHudIHjw4RaGsSOlOT+YUI8HX2EI5IllPf0E4MiBVL4EQXSx7zCDwQD0qad+QQrI0kkQPLj4dgr2UA48upbh+BHI+s9pB158q/R3CYKoHP7zAfDM62qnonwgSydBcMTXzrBjn9qpIMQSjzPUe4BJx2RbLmqrGf65ngEgiwZBEF0Ew8DWb6lfkAqydBIER7buASKdQCJB1k49E4oALkfudZcDCIWVTw9BENolFAG27FE7FeUDiU6C4MjWb7tcsKGI2ikhxBAMFxCdzq7PCIIgUgTDDE3fqZ2K8oFEJ0FwZOsehmOHkjDROwVFp4PKliCIbIIdQJ96oLWNPFxSQKKTIDjy9V6Q6CwDgmGgyp573W4FOqLKp4cgCO0SDANjR3QtryLEQ6KTIDgSjQF17q6ZL6FfuiyduZsCDAbaKEAQRDbBMHD8cAO2fqt2SsoDEp0EwYFoJ4PV0iVWaE2nvgmFu9Zv5oNkJ0EQmUQ6gWOGpnawE2Ih0UkQHNi5HxjSF6iidX+6p9CaToIgiO4wBgztB+zYq3ZKygMSnQTBga17gJENBtpsUgaQ6CQIgg9WiwGdcbVTUR6Q6CQIDmzZA4wYQDucy4FCG4kAgBxoBEHkw2ruWmZFiINEJ0FwYOu3DCMaSHSWA6UsnYzRwEIQRDZD+4FOpJMAEp0EwQFfO1DrNtCpNWVAMMwKik67FYh2KpsegiC0z8hGA51MJAEkOgmiBJmWr66NRGQJ0zOhIpZOl4NOnCIIoovMvn/EAIrVKQUkOgmiBPsOA33ru/5N7nX9EywSMonKlyCIFJ0xwGbt+veIARQ2SQpIdBJECbZ+27VzHSBRUg4U20hUZafyJQiii8z1395qA/xBddNTDpDoJIgSbN0DjGjo+jeJTv3TEQUctvyfuRwGKl+CIADk33SYTJK1UwwkOgmiBFv2MIwY0PVvhw0I0/ncuqfQkZc0qSAIIkV30dm/Z9dyK0I4JDoJogTffgcMOKLr3waDARRRR98UO+rS5aToBARBdBEKA1X2//UYIwbQGexiIdFJECVgDDAa6VTuSoAsnQRBpOhu6RzZAAqbJBISnQRRhLYQQ3WBnc6EPilmqKaNRARBpOge6WJEA+1gFwuJToIowtY9XS4VojIgSydBECm6Wzr79QCavlMvPeUAiU6CKEJXuCS1U0FIRakjLkl0EgSRont4NaOR1vSLhUQnQRQhdeY6UR50xrqOuixE1zGnNKoQBNF1Oln3kEmeKsDfTn2EUEh0EkQRtjcBQ/tlX7NagM4YdTp6JF/cvUzI0kkQRIp8/cWIBgO2NamTnnKARCdBFCHSCThs2Ws6SZjol2KnEQFAFZUtQRD/n2AHyxGdIxvoDHYxkOgkiALE4gxmU+51Ep36hSydBEFwJa+lc0DXgSGEMEh0EkQBdu0HBvfJvV5lpwDieqVrECkcjcBqMaAzrmCCCILQLMFwl/cjkyF9ga/3qpOecoBEJ0EUYMuervU73XE56XxuvRIqYekEip9YRBBE5ZBvI5HdZkA0pk56ygESnQRRgK178odLIhesfuke7JkgCKIQnbEu70d3LGbaTCoUEp0EUYCt3zKMGJB7nUSnfim1kQgofmIRQRDEkL7Azn1qp0KfkOgkiAI0B4B6bx73uqPL7ULoj1IbiQiCIEoxYoABW79VOxX6RJDoXL58OWbNmoWxY8fiP//5T8H7IpEIbrzxRkycOBGnnnoq1q5dKzihBKEkxU6uofO59QuJToIgxDKyoWvNP8EfQaKzf//+uO6663DkkUcWvW/58uUIBAJYvXo1li5dittvvx179lBJEdrnYAvQuy7/Zy4HEOxQNj2ENOTbGNAdowFIJsnJThBEfoYP6Fp+RfBHkOicOXMmfvCDH8BqLXKeHIDVq1fjkksugcvlwtFHH42JEydi3bp1ghJKEEqy9dsuF0o+aE2nfskX7Lk7TjsQjiqTHoIg9Eedx4DWNrVToU/Mcj24ra0NLS0tGDJkSPrasGHDsHnz5oLf6ezsRGdnZ3YCzeaS4lYqkslk1v+lZO93QL+ekj+2Ynjny/zrKI8ZAvTwZl+Tohy/2gMM65/f4uW0A+0dZA2TGznaY3sYcNhY0bJz2oC2EIPDRuUrBXzK8VAr8Pku8b95wkjAXSX+OUQXco6NWiWZBGAo/M6MAYlEEgYdxViTuxyNxtJ2TNlEZ0dHB0wmE+z2/20VraqqQkdHYb/kypUrsWLFiqxrs2bNwuzZs+VKZl6amqQ/WPX/7u6Bey5thstBAxlfkklg/rLemDUxmHV9z3dmvPFRHP83oz3v98SU45fbvRhcH8KePbkB2fytJhw87MaePT7Bzye4I2V7PHS4Dr5mH1ikcKebjNdg2452RI6gKPFSwqUc//yiB6GIAb1rE4J/58tvrNi2M4zTf0BrYKRGjrFRq3REDWDxOuzZ05z3c6uxDl9uaYW7Sn9julzlOHDgwJL3yCY6nU4nEokEIpFIWniGQiE4nYWD5M2bNw9z5szJTqDCls6mpib079+fk2LnQzQOVNcMwIAjJH1sReBvB44dDtz0f7VZ1z/bATy3EWhoyL4uRTkmjcCRwzzo2yP3M5cXMJiBhga3oGcT3JCjPTITMHKYC1ZL4Xv69AQ8tW405InRSvCHTzkyE3Dtz4Ch/YT/3ur3gD2HXFR+EiLn2KhVDrUCPeuAhob8JvN+vQBXjQsNvRVOmAi0UI6yiU632426ujrs2LEDo0aNAgBs374dgwYNKvgdq9WqmMAshtFolLxAfMEkAiEDjEYd2eI1QiDEUOtmOWVS52HwB3OvpxBTjv5gEnWe/OXlrmIIRQr/LiEtUrbHeDwJu634s6qdDOEoqK1KDJdy9AeTqHOL6yfr3Ayf76TykwM5xkatEu5kqHYW7udr3UkEgvoc09UsR0G/Go/HEY1GwRhL/zvfGoGZM2fiwQcfRCgUwhdffIE33ngDJ598suhE6xF/sOs/gj/+IOB15V73uuTL03AUcNjyf2a1ANHO/J8R+oc2iqmHPwh48rR1PnT1C/pzeRLaolR4tRqXgcZ0AQgSnUuWLMH48ePxySefYOHChRg/fjw+/vhjrFmzJmv95fz58+FyuTB9+nQsWLAACxYsQGNjo1Rp1xW+9q7/CP742oGa6tzZZLWza0OPXBgKrBAvdJ3QPlykSBWJTtVIJACLWVz7qqmmvpYQT7ADcDkK10Uv1TNBCHKvL1q0CIsWLcr72YwZM9L/ttvtWLJkiaCElRPRToZYnCqoULpEZ+71LvGnjkWDdGf5QpZOfUOik5CC0pZO4HBAufSUC5WxOENl/EGgoRe514XiD3Y1cC1R5MAiQueQ6NQ3NqsBnblBJwiCF8Fwl9ejEDXVXZtcCX6Q6FQAXzswqDfgayelIgRfe5crQymKHYFJ6BsuBmqXI39MWIIgKodSp5d5qwEfrR3mDYlOBfC1AwN7k8tHKL4gy+teTyG1SAyGAVfhyF6ETkkmGadlEV2WThpMlCYeZzCZ1E4FQXTBxb1OYzp/SHQqgD8IDOxNO92E4m8v7F532ICIxDvJi/1eJmQR1RfFIhJkUuXo2kRAKEsglD9KBUGoQUnRWU1L5oRAolMBfO1dazrbQmqnRJ/4goXd614ZZpvFfi+F0y692CXkpdQgkoLWdKqDr1060Wkw0DG1hDiCYVa0v6DJqTBIdCqArx2odQPUBwqjK3RF/s/k2Knqa++KwVaMKjsJE71BolPbFAqNJgR3FU3yCXEEO4pvJKLQecIg0akAhYKbE9wp1MBrqqVftuAvEKIpExfNcnVHqY0BKarstJFIDfzB0u2OK+T6JMTCtb8g+EGiUwF87V0bYWheJD2yuddLTBJcTrKG6Y1SwZ5TmEwG5DlgjZAZKd3rcvQLRGXB1TNC8INEpwKkgpuTd116ZHOvl7R0Gkh06oxScfcyobaqPFzaHVdqqg0kOglRBMNdXo9S0IZSfpDoVICUe91mASJRqqB8KNWg5XCj+UuEaAIolqMeIcuFtiH3OqElkskur0cxnPauqBgEd0h0KkD8/58nTB0hf0qFuZHFvc7BzUcbifQHiU5t42tn5F4ndAXVM/6Q6FSAlLGOzgTmTymXW1eeSms95uZeJ9GpN/hsDKD118ojrXud+lpCfqie8YdEp4J4XbTOiC/cRKe0v9kW6gq5UgwSnfqDLJ3axiexe52OKCTkhtYO84dEp4KQe50/XethC9udPFVdJ5lICWOA0Vjc1kUhk/RHqWDPmZhMXccyEsoRjgJ2qzTP8rq6Qp8RhJzQmM4fEp0yk0gwGP9/LpMpnj+lLJ1mswGJhHLpSUEbifRHqWDPmVCsTuUxQLqA212WTkkeRRAFoTWd/CHRKTOBUJc1DiDRKQQu67zUsEdVObosZ4R+4ONep+UTyiNlayJPBCGGTGNRMWhM5w+JTpnJDAPidZEpni9aPc2JRIn+4LORiCzZ+sZgMFCsVUIwXPsKcq/zh0SnzGSeJyzHTutyh4ulU8qdxtFOBqul9H0kOvUH12DPAFnKlIYxJnnEAIpAQAiFq1eky71OYzofSHTKTGbMR1pnxJ/UEaLFMJuAmESbPriGbaE4nfqDS7DnFHTilLK0dwDVTrVTQRBdcBWd5F7nD4lOmclxr1MF5QWXU0q81UBAIjHP9VQUs5nO59YbfKYlVWTJVhQpTyPKhI4oJIQQ7OAmOuWInlLukOiUmUzLmcVsQFyFndZ6xh/830asQki5g7DLMs3NGkbjWflCyyeUhcspYHxx2OiIQkIYwTBQ5Sg9DphMZHzgC4lOmenemZJO4QcXl6iUAXqlPBWF0BZ81vjRRiJlyVz7LhXk+iSEwmfTIcEPEp0y4w+WXpNIiKNGwqgAcrn5CH1Blk5lkaPd0c5iQih0epl8kOiUme6WM9pRKT1eCS0afNx8EsWxJjQIiU5lkcO9TscOE0Ih0SkfJDplpntnajR2BZ4lpEPKqADkXi9P4nFuwZ5TUPB/ZZGj3ZF7nRAKH9EpZfSUSoBEp8x0RABnRmxA2u3GnVicwWwqfV+NhFEB+CyHMBhoAqEX+K7RojidyiLHMiRyrxNC4RPTl+oZP0h0KkDmecI0++aOP9jlOi+FV8Kg+3zcfFV2oIN2x+oCIaKTNhIphzzudeprCWGEwgwujnFjqZ7xg0Snwki507rc8bV3WTFLUeNSx71O1jD9wHeNFq3pVBZyrxNagk9/QWM6P0h0KgzNirjDNYyKlINLLNEVT5ULZA3TD1yDPadw2LqWxhDK0BaS/kQiOnaYEAo/0UljOh9IdMpIvtMwaP0Hd/xBbi43u82ASKf86emOy0nWML3ANdhzCoPBQDF1FYQBMBqlDQfhlTCUGlFZ8BGdVM/4QaJTRkJh5KwLoVkRd/i43KQarvg8p8pO53PrBQqBom3kiD5GYoAQSkeky9vBBRrT+UGiU0byLY6nCsodPqJTDasUrfvTD0JOGKEwrMohR/s1mQxI0BGFhEAMHAMx05jODxKdMpLvlI2u2Tc57rjA1b0uFYkEv1iOJDr1A1k6CYKQg64lczSmc4VEp4x07b7Oni3RrIg7vnbusfuMBiCZFNfwA6GuOKpccTm6llAQ2odEp3aJRBnsVnmeTdZqQm5oczA/BIlOn8+Hq666CuPHj8dZZ52FDz74IO99ixYtwrhx4zBhwgRMmDABs2fPFpVYveFrz40zSaKTO3zc69VOoF1k+CK+YVvI0qkf+AR7TsGQfzMgIS1yngJGpUfIDY3p/DAL+dIdd9yBHj16YP369XjvvfewYMECrFq1Cm63O+fe+fPnY+7cuWLTqUv8wdw4kw4bBRTnCh/3emrTgEeEO75rOQR320gViU7dEAwzuJz87F42C9AZA2wyWeGILuRcRmP5/0cUcg2DRhB8sVkN6IzR9IYrvC2dHR0d2LRpEy699FLY7XZMnjwZgwcPxhtvvCFH+nRNvhm8wWAglw9Hop1d4ZC4IMVsk++pKC46n1s3hAS41ykOqzJwjccrBC+FqCMITcHb0vntt9/C5XKhvr4+fW3o0KHYtWtX3vsff/xxPP7442hoaMAVV1yBMWPGFHx2Z2cnOjuzAy6azWZYrcqYGpLJZNb/xdLaDrirctcaJpl0v1HOMHDPJ68LaGljSCaZ4HJsaeuylHJdG+q0dbn0qSzlQcr22N4BOG2M17rfKjvQFmLwumhiIYZS5djS1rWWWuya7Hx4XUBLgKHOTWUoBqnHRi3TGQMsZn7vymesUhO5y9HIYScub9EZDodRVZW926KqqgrBYO508txzz8W1114Lh8OB1157Dddccw2efvpp9OrVK++zV65ciRUrVmRdmzVrluJrQZuamqR5zv4adLS1Y8+eeNb1cLgH9uw5LMlvlDPhDu75lIhW4etdSQyq/Z+/m2857trjQg9PAnv2cPOZ+wJGHDrsxZ49rbx+h+CHFO3xu5Z6tB5uQbiNu/hIxLzYvjMEFomJ/n2icDnu+KYKZhPDnj3SnylriHuw9eswbEkVTo8oQ6QaG7WMP2iEIVmDPXtaOH+Hz1ilBeQqx4EDB5a8h7fodDgcCIVCWddCoRAcjlzf1YgRI9L/njFjBlavXo33338fZ555Zt5nz5s3D3PmzMlOoMKWzqamJvTv35+TYi9F3ACMGu7O2UzkdAIDBjSAYxiwisXhBBoaGjjdO7ixy03X0CC8HI1WYOigrmdwoT4MwAw0NMi0C6LCkbQ9moDhQ6t4tbk+RwDuGg/n+kDkp1Q5mv8LDOnHvd3xobEfYHN5qQxFIvXYqGUMh4Aj6oGGBu5rrZxVQP/+DbxC7qmBFsqRt+gcMGAAgsEgmpub0y72r7/+uqCQzKRUsFWr1aqYwCyG0WiUpEDaQkl4qw05x7tVO5PoiBpQzXNjQyWRTDIYDYxzOdS5Gb45kH2UHt9y9AeTqHPnllchqhwMHRHuaSSEIU17TMJk4veMaidDR0T64xkrlULl6A8x1LnlyedaN0MgRGUoFVKNjVqmI8rgcvDr1z1VSQTDBnhlWpssNWqWI+9fdTqdmDhxIpYvX45IJIJNmzZh586dmDhxYs6969evRzgcRjwex7p16/DZZ59h7NixkiRcDzCWv7PzugA/hVgoSntH13pYrkgRoDdfMP9iGI0GUEQdfSBkKKCNRMrg5xGPly81tJGI4EnX8dX8egyqZ9wRJHUXLFiAQ4cOYerUqbj33ntx2223we12Y82aNVnrL5988klMnz4dJ510Ep544gnceeed6NOnj2SJ1ys11YCPKmhR+O4klyJAL9/fJMobisOqDL5gbjxjqaDA3QRfhBwkQfWMO4LidNbU1OC+++7LuT5jxgzMmDEj/fdDDz0kPGVlTI3LQBW0BHwDRksRMqkjAjh5BhCndbnli8sBHKQ9YrLjl3Gy19UvMNDZRARXhIjOmmoa07lS3oszNEpNNbnXS8E3ULsUJxIBpdcdE/pEyCqIKjtZOpUgnoBswdvJ7UnwRZjopHrGFRKdMtEZY7Ba8n/mdZF7vRR8Xd1qiUVa01m+kHtd/5Dbk+CLkCNzqZ5xh0SnTBQTTXRWa2nkPI+ZqCw6Ywy2AhPAYricQIhOnNI1dpsBUQrRSfBAyOllNKZzh0SnTBQTTf9bZ0QUQojoFJOjjDFB37eYu852JrSLEHcZQJZOpZC79VDrJPgg1L3uExk9pVIg0SkTxdYkel20/qMU/iBTdCe5kNkt8P/D6pAw0TQkOrVLPM7AM3wqQchKMMzgcvL7DoVB5A41d5kg97o4hFg6HTYgHBU22xTqzidhon2ErNECaCOREgRC8ocpo62BBB+EWzrlSU+5QaJTJoqJGHcV0BbK/xnRhY9noHYAqBGxmFvI7wFAFYlOzRPs4B/sGQCsFiBKx67LilJrt5NJcn0S3BAySXU5uvoZojQkOmWi2Ok2RqMB1AcWJ9ghLECv0GUL/vau+Kl8cTkMJDo1TigizL1uMBjISiYz/iDw/9q79ygpyjv/45+eGWamZ5oRROSiBBBkUXGNgJv4Q0cQLwgqioISFIgRzInZYFCjcTUiGpOs8agbs9FFFvYYDprEu+Il0SjGK45ZL4AroFwEhpsMdvfcp+v3R6eHGefSdXu6q2fer3M4Yk93VTHfp/r51FNVT/Vysd85UVbqz3Rq6B7cfF8w1Z59hE5D0k35QxNNz+mO7GWC3v1Rd09F4fR68Lm9phPmZWKkk8uZ4ERdvTqc7hDeEToN2Z/mecIMdPrPS+eyP5Y8Pe8Uz+cOPkJncBE6EUSMXJpD6DSks9PrMMPLUyGqvNxIxKm7QHN7I5HEwaFpmfie7N0zxGwhyAiLp4WkReg0JN3p9aIeUl09DbQ9bndcL0+F2O9yiibucA4+RjqDy+mTx9zgaTHIhOTsKdneiuAjdBrS0CgV9uh4iJ5TPh2rqUvuwE55Or3udqSzhNAZdG7nYJWS114zemFOusuQ/MB3LTKBdmYPoTNLmCC+Y25PuSVPr7sLCG7XyTWdwedmsueUkmJGL0zKzOl1vmthHu3MHkJnlni507qrc3vKzctptAOx5NQqTiXvXmckLMi8nF5ndgKzMnd6nX0U6Xk5q9ErQp9uB6EzSxiK71jyVLfzuwe9jB5bVnL+VKe4pjP4vNxIRH3NcnspjRN818IuL+2RdmYPodOARMJSXprfLEPxHXN7yq2gIKSmJv+3pzOMhAWfp5FOrtk1zvT0NHzXwi4v3xW0M3sInQYciKc/VcsdlR3LxCk3vxA6g6++wf1kz5FwSHHqm9MiYZ5IBHu83HRIn24PodOA/dH0E40zFN+xTD2P2Q9FhcknWCDY3I6mcVCR+5joG3bFauT6pkP6dHsInQbYmWjcy53WXV2mJ9avq7dcj4TRoXVthE5zmIoKQZM8ve7uO50+3R5CpwH7Y+lvhGEovmP7o+4mapek/HypsdHZZ6pi3k7n03cGm5fycCOROV5GlQATvNx0SJ9uD6HTADvXJDIU3zEvp9fd3MGeS6fzkVmMdJpj5zIkPzGyinS83EjE3Nv2EDoNsBNiehSE1JDhO61zRVVMOsTFnJnSP8K8q9DJaXK0Reg0J5MHezyiEHZ4CZ35+SE1Jfzdnq6I0GlApq9J7GqaEsnpj9zoFQk5Ptr0enqdyzqDy7IseSlPJCzFmfzfiOR+l5mdh1Eo2BGvdR86YQ+h0wC71ySSVdrn5ffi5rIFP0ZcOHUXTDV1yUdZusU8neZkcqSTy5lgR6zaW+ikT0+P0GmA3S9TYkr7vPxeshE6mTYpuLzcGCBxI5FJmQ2dPKIQ6cVqLJV6CJ306ekROg2we3o9P09qaqKZ+snNaTSvp9e57i+4vFyjJVFbk7zud05weh12eP2+6JEvNTTSp3eG0GlAvMbeKb1DSpNPL8JBDY2WeuS7/3zvnsl5Up3YH7U8jbgQTILL67Q8jHSa43W/c4LT67DDa+jsxaMw0yJ0GmJn0nC+CNuqiiV3XLfc373ufp2RcPICdARP3MNkz1LyhrYEd6QawTWdCBqvNxL1Zq7OtAidWcQpn7aqPM7d1zsrp9dDjIYFlNeRC5iTyVk+ejMCBRu8XgPeu2fI8Zm27obQmUVc3N7W/qjUy8Ocmb1cjGg0NEqFPdyvk1OwweW1E5G4OcCUr+JSzww9kSj5tBgqic41Nrmfrk/6Rzvj4KZThE6fOZk6h1M+be2PeRvpDBeFVJvhO8kj4eRUGwgeRjqDy7KkvLzMTDLDdy0ygXaWHqHTZ9W1sj3lAqd82qrKwUdSciNRcBE6IXHTJjKDPj09QqfP7Dx3PaUXFx23sd/jjUTZECnhRqKgivsQOpnwOfcVFITUxGOHkYbXfZ0+PT1XoXP//v1asGCBxo0bp2nTpundd99t9321tbW65ZZbVF5erilTpuiFF17wtLG5wMkdmcmheK4zamm/xxuJnGpqspTn8dCLkc7gitVYnkNnHvPpArCBPj29Ajcf+tWvfqW+ffvq5Zdf1ttvv60bb7xRTz75pMrKylq978EHH9SBAwe0atUqbdq0SQsWLNAxxxyjwYMH+7LxQZS8I9Pe8RJD8W1VRS3bv7/O2L209qvq5Kk3L7iRKLhiNfYvd+lIaXFyJLvMYzvBQbV1looKs70VQGte4yJ9enqOQ2d1dbVee+01PfPMMyouLtb48eO1YsUKrV69Wueee26r965atUp33323IpGITjjhBJWXl+ull17SvHnz2l12fX296utb3wVSUFCgwsLMfDsl/jEhX8LDxHz7vkp2TolE+uZbViJ9+ZW39XU1X0alslLL1u+vI5GwpVhtyNbvdd8B6ZCItxqUFEnRans1h31+7I/RaqmkyFt7Kg1LX8UtRcLU14326vjlV8mDvUx+91niu9YtP/bFoGtqkkIhb//GoPfppuuYZ+O0oePQuXXrVkUiER122GHNrx199NH67LPPWr3vq6++0r59+zR8+PDm10aMGKG1a9d2uOxly5ZpyZIlrV6bPn26ZsyY4XQzXbv55pu1a9euVq9tapyrmDXE1ucTKtTQ/N/rj/+xLu17LUv6oHGx+r0azAaaDQkVatOLP1NeqNH1MrY1na+Jr4yV9EXa91rKV7+8V3XWMy+7Xl+D1VMfN96k5Y/WuV4GOrPd9ScTKtKnLyxSfsh9bbY3TdY3n/22QmI/9eZgHS3lqW/eWzrrz89nbO2fNV6ufhOGZWx9XZP7fTH4Qjokb73OOusRT0v5oOE29ZuQ/QPUHqGvNOGIFbrjjjva/Gzbtm1G1jl06NC073EcOmtqalRa2vo8U2lpqWKx1mPK1dXVys/PV3Fxcav3VVd3PLfMd7/7Xc2aNav1BmZ4pPOOO+7QoEGDbCX2jo31bZu6p1WePp1IJLRt2zYHdfyWpBs8rRP+c17Hjjzj2zbBuY7r+G1JP87WZsEB//bFoDtZ0hXZ3ggfTWr1f0Goo+PQGQ6HFY+3nnsiHo8rHG594VRJSYmamppUW1vbHDzj8bhKSjqeDbiwsDBjAbMzeXl5XXzH6h6oY9dAHbsG6pj7qGHXkM06Ol7rN77xDcViMe3du7f5tQ0bNuioo45q9b6ysjL16dNHGzdubH7t008/bfM+AAAAdH2OQ2dJSYnKy8v14IMPqra2Vq+99po2bdqk8vLyNu+dPHmyHnroIcXjcX300UdavXq1zjzzTF82HAAAALnD1fjqjTfeqF27dmnixIm677779Itf/EJlZWV6/vnnW930c9VVVykSiWjSpEm68cYbdeONN2rIkCF+bTsAAAByRMhy8rDwLi6RSGjLli0aPHgw163kMOrYNVDHroE65j5q2DUEoY6ETgAAABjHIQsAAACMI3QCAADAOEInAAAAjCN0AgAAwDhCJwAAAIwjdAIAAMA4QicAAACMI3QCAADAOEInAAAAjCN0AgAAwDhCJwAAAIwjdAIAAMA4QicAAACMI3QCAADAOEInAAAAjCN0AgAAwDhCJwAAAIwjdAIAAMA4QicAAACMI3QCAADAOEInAHQz48eP1zXXXNP8/0OGDNG9996bte0B0D0UZHsDAADZtWbNGpWWlmZ7MwB0cYROAOjm+vbtm+1NANANcHodAFx44YUXdMopp6hXr17q06ePzj33XG3atEmStHnzZoVCIT3++OOaMGGCSkpKdMIJJ+itt95qtYzHHntMxx13nIqKijRkyBDdfffdrX4+ZMgQ3XHHHZo9e7YikYgGDx6sp556Snv27NHUqVMViUR0/PHH67333mv+zL59+zRz5kwdeeSRKikp0fHHH6+VK1d2+m/5+un1AwcOaP78+Tr88MNVVlam008/XR988EHzzz/44ANNmDBBPXv2VFlZmcaMGdNqGwCgPYROAHAhHo9r4cKFWrNmjV5++WXl5eXpwgsvVCKRaH7Pv/3bv+m6667T//7v/2rEiBGaOXOmGhsbJUkVFRWaMWOGLr30Un300UdatGiRbrnlFi1fvrzVeu655x6NGzdOf//73zVlyhRdfvnlmj17ti677DK9//77Gj58uGbPni3LsiRJtbW1GjNmjJ599ll9/PHHmj9/vi6//HK98847tv5dlmVpypQpqqys1KpVq1RRUaHRo0dr4sSJ+vLLLyVJs2bN0pFHHqk1a9aooqJCN954o3r06OHDbxVAVxayUt9UABAU1dXSJ59kdp0jR0olJa4/vmfPHh1++OH66KOPFIlENHToUD300EP63ve+J0lat26djjvuOK1fv14jR47UrFmztGfPHr300kvNy/jJT36i5557TmvXrpWUHIE89dRT9fDDD0uSKisrNWDAAN1yyy1avHixJOntt9/WySefrJ07d6p///7tbtuUKVN0zDHH6Ne//rWk5I1E3/zmN5tHN4cMGaJrrrlG11xzjV555RVdeOGF2r17t4qKipqXMXz4cP3kJz/R/PnzVVZWpt/85jeaM2eO698XgO6HazoBBM8nn0hjxmR2nRUV0ujRtt++adMm3XLLLXr77be1d+/e5hHOrVu36thjj5Uk/fM//3Pz+wcMGCBJ2r17t0aOHKn169dr6tSprZY5btw43XvvvWpqalJ+fn6bZfTr10+SdPzxx7d5bffu3erfv7+ampr0y1/+Uo8++qi2b9+uuro61dXV2b5RqKKiQrFYTH369Gn1ek1NTfPlAwsXLtSVV16phx9+WGeccYamT5+uYcOG2Vo+gO6L0AkgeEaOTIbATK/TgfPOO0+DBg3SkiVLNHDgQCUSCY0aNUr19fXN72l5yjkUCklSczi1LKv5tZT2Tjy1t4zOlnv33Xfrnnvu0b333qvjjz9epaWluuaaa1ptV2cSiYQGDBigV199tc3PevXqJUlatGiRvvOd7+i5557T888/r1tvvVWPPPKILrzwQlvrANA9EToBBE9JiaNRx0zbt2+f1q9frwcffFCnnnqqJOlvf/ubo2Uce+yxbT7z5ptvasSIEc2jnG68/vrrmjp1qi677DJJyRC5YcMGHXPMMbY+P3r0aFVWVqqgoEBDhgzp8H0jRozQiBEj9OMf/1gzZ87UsmXLCJ0AOsWNRADgUO/evdWnTx/913/9lzZu3KhXXnlFCxcudLSMa6+9Vi+//LJuv/12ffrpp/qf//kf3X///bruuus8bdvw4cP15z//WW+++abWr1+vq666SpWVlbY/f8YZZ+jkk0/WBRdcoBdffFGbN2/Wm2++qZtvvlnvvfeeampq9MMf/lCvvvqqtmzZojfeeENr1qyxHWoBdF+ETgBwKC8vT4888ogqKio0atQo/fjHP9Zdd93laBmjR4/WH/7wBz3yyCMaNWqUfvazn2nx4sWaO3eup2275ZZbNHr0aJ199tkaP368+vfvrwsuuMD250OhkFatWqXy8nJdccUVGjFihC699FJt3rxZ/fr1U35+vvbt26fZs2drxIgRmjFjhs455xzddtttnrYbQNfH3esAAAAwjpFOAAAAGEfoBAAAgHGETgAAABhH6GwhkUjo888/b/UYO+Qe6tg1UMeugTrmPmrYNQShjoROAAAAGEfoBAAAgHGETgAAABhH6AQAAIBxhE4AAAAYR+gEAACAcYROAAAAGEfoBAAAgHG2Q+fSpUt12223tXrtiiuu0CuvvKKNGzdq3rx5mjBhgi677DKtW7dOUnIi0rvuuksTJ07UaaedplmzZqmqqsrXfwAAAACCr8DuG8855xzNmjVLP/3pT1VYWKidO3fq888/17e+9S1Nnz5d119/vcrLy/X666/r+uuv1+OPP66Kigp9+OGHeuqppxQOh7VhwwYVFhZ2uI76+nrV19e33sCCgk4/46fULP1GZuv//e+lyZOlQw/1f9ldXVWVQvfeK9XVtfmRNX68dPbZrV7zpY5PPKHQu++2XV9JiXTddVI47H7ZsMXY/vjVVwrdc49UW9vmR9Ypp0hTpvi7vm7OUR2ffVahN97wvE5r6lTp29/2vBwkGe0bg+711xVatart6z16yLr6aqlfv8xvk0um65iXl34c03boHDhwoIYNG6Y33nhDEyZM0Isvvqjx48frb3/7m4YPH64JEyZIksaPH6+lS5fqo48+UkFBgeLxuDZv3qzjjjtOI0eO7HQdy5Yt05IlS1q9Nn36dM2YMcPuZvpi27Ztvi4vVFurIXPmaM8vfqHYJZf4uuzuoGTVKvW7/XY1DBoktWjU+fv2qf7FF7Wzg3blpY5HLlyovKoqJXr3bn4t1NCggh07tPPoo1V78smulw1n/N4fS/7yF/VbvFgNRx4p5ec3v56/b58annlGO0aN8nV9SLJTxyOuv175O3cq4eHgPH/3btV88IF2/+53rpeB9vm9L+aCfj/7mYrfe09Nffu2er3Hli3aV1Ki6MyZWdoy90zVcejQoWnfYzt0SsnRzpdeeqk5dC5YsED/93//pzVr1mj8+PHN72tsbNTevXs1adIkXXTRRbrzzju1e/duTZkyRf/6r/+qgoL2V/vd735Xs2bNar2BGR7p3LZtmwYNGmQrsdu2a5ckqU9hofoMHuzfcruLoiJJUv7GjVKLthO69loVvfCCBn/td+pHHUPV1bKuv175N9108MVdu6SBA9UvHJaoo3HG9sdUe1q/XiopaX459NOfqvCPf2zTnuCNkzqGamulH/5QoTvucL2+0CWXqGT/furoI2P7Yg4INTRIF1+s/GXLWr1u9eqlQ3v00KE51M6CUEdHofOMM87Q/fffr48//lhffvmlTjrpJO3fv1+nnHKK7rrrrnY/M2vWLM2aNUuVlZVasGCBRowYoSkdnL4qLCzMWMDsTF5enr8Fqa5OLjcebzVSB5uqq6VwWHlfbxtlZVIsplAHv1NPdYzFFCora12vQw5JLre6mjpmkJH9MS9PeaWlUih08PU07Qne2KpjLCaVlXmrQVmZ9MUX1NEA3/fFXNBRm+zZU6Ec7dOzWUdHaz3kkEM0evRo3XbbbTrzzDOVn5+vU089VevWrdNrr72mpqYm1dbW6s0331QsFtO6deu0du1aNTY2qrS0VAUFBcpvcTqr24hGW/8XzkSjUs+ebV/v2dPM77SxMXm939fXGQ4nv2CoY25LtaeWgVMy155gX0f7uhPUEX7KdP/TxTmOuuecc44+//xzTZo0SZIUiUR077336pFHHtGZZ56p888/X0888YQkKRaLafHixZowYYIuuuginXDCCTrzzDP9/RfkAkKnN+l2esvyf32p5bcUCvFF0xV01p5qa5MHHci8ujqpoYHQiWAhdPrK0el1STr88MN1xBFHaFSLi+2PPvpo/a6di7b/5V/+RY8++qi3LewKCJ3edLbTJxJSTU2ra/N8WV9q+e2tkzrmts7aU+rnLW4gQ4Z0tt85wT4KPxE6feVopLOxsVGPPPKIzj//fFPb0zUROr2xExL8Xl/L5X99ndQxt2W6PcEev0On32dA0P3U1yf/0Bf4xnborKqq0mmnnabt27frEqb9cYbQ6Q2hE34idAaTn6GzsbHdeX0BR+gLfGf79HqvXr30hg+T9nZLhE5volGpT5+2r0ciB3/u9/paLv/r66SOuS0a7bi2qZ8j8zrb75xoWcfiYm/LQvdGX+C73LvXPxcROr1hpBN+YqQzmPwc6Wy5PMAt+gLfETozIRZr/V84E4t1HhL8/r2mltfROqljbst0e4I9ne13TlBH+IW+wHeEzkxgpNObbIx09ujR/OSaNuukjrmNkc5gYqQTQcNIp+8InZmQapixGHdUutFRSCgtPfjzTKxP4oumK+iovkVFyYMN6psdqWswO3hMsm2ETvglXeiMx5PT9sE2QmcmpBpuItH8SEzYZFkdh4S8PDMXcxM6uzbqG0x+PI1IInTCP+lCp8QpdocInZnQ8m5Zvgidqa2VmpoyGxIIJV1XY2PyYQLUN3j8Cp1818Iv0ejBMyBfx8GNK4TOTIhGpQEDDv4d9qW7zisbobOmhkcl5qp0N6sQOrPHr9CZn598Qhl1hFfp+oLUe2AboTMTolFp4MCDf4d96ebuM3V6vbP1SZxSyVXZaE+wp7P9zinqCD/Y6QtoZ44QOjOB0OleEEc6W24Xcks22hPs8WukU6KO8Ad9ge8InZkQix0MnYyQOWPndKiJeTrTfdFQx9yUjfYEezrb75yijvADfYHvCJ2mWVbr0MlRkTOMdMJPjHQGFyOdCBr6At8ROk2rrk5OldS/f/L/aaDOEDrhJ0JncBE6ETSdtclwODltH+3MEUKnaakGWVbGxe1upLvxg9AJJwidwUXoRNB01iZDIdqZC4RO01p2cjRQ56LR5JOH8jpoqoROOBGNJp94094jTiX20WwidCJo0rVJ2pljhE7TWo7UMdLpXLppVPz+ndbXJ/90tM6iouQ8gNQxN6XaUyjU/s/ZR7Mj9eQxpkxCkGS6/+kGCJ2mMdLpjZ0jTT+faZ/u9CunVHKbnfaUOvBA5qR78phT7KPwAyOdviN0mtZyihYaqHPpplHp2TMZOONx/9aXWm5n66SOuclOe5Kob6bZ2e+cYB+FH+x8X9DOHCF0mvb1kU7m9HLGzpGm5N/vNd1IZ+pn1DE3Zbo9wR47+50Tfp8BQfdTVyc1NNAX+IzQaVo0mjwlW1rKUZEbdkOCX79Xu6GTOuamTLcn2GMidDY1JU/bA27QFxhB6DSt5Y0LNFDnCJ3wE6EzmEyEzpbLBZyiLzCC0Glay06OBuocoRN+InQGE6ETQUNfYASh0zRCpzfZCp2dTZNBHXMXoTOYCJ0IGkKnEYRO01rO88WcXs7ZmSct9T6/1ldYmPzT2TqpY27KdHuCPanfd2mpP8ujjvDKzgAEfYFjhE7Tvj7SGYsln8UOe9KNTJWWJq+X9TN0phtt4eg2d6Wrb+qAg/pmVjSafJZ1QYE/y2OkE17ZHemsqZEaGzOzTV0AodO0lvN8pf5bXZ297ckllpV+nrRQKHm06de0FenWJzFNRi6jvsFkpy5OMPUVvLI7Z7Pk3zzR3QCh07Svj3SmXkN6NTXJUeFMjjwy0tl1NTYmp9ChvsHj53PXJU6vw7toVCou7nz0nT7dMUKnaYRO9+zeXJCN0FlbyymVXJON9gR7/A6deXnJS2+oI9yy2xek3gtbCJ2mETrdC3LoTL0XuYPQGVx+h06JOsIb+gIjCJ2mETrdI3TCT4TO4CJ0ImjoC4wgdJpG6HSP0Ak/ETqDi9CJoKEvMILQaVIikbwDruU8nRIN1C4786Slfu5n6LSzvtR7kTuy0Z5gj539zinqCC/oC4wgdJqUmkYhdTTk95ySXR0jnfATI53BxUgngsZOmywulvLzaWcOEDpN+vo8X37PKdnVpX5P6Z5S4ue8inbncUy9F7nDzrx7qZ9T28zye55OiTrCGzttMhSinTlE6DSpvZEVjr7tS53eyEvTTBnphB3RqNSjh1RU1Pn72Eczj5FOBI3dNkk7c4TQaRKh05tM7/R1dVJDQ/p1FhUlwwt1zC10IsFkWYROBA/fF0YQOk0idHrjZKf345n2dq/5S72HOuYWJ+2poSF5EALz7D55zCn2UXhB6DSC0GkSodMbJzu95P35t4TOrs1pe6K+meFkv3OCfRRuORl9p505Qug0idDpTaZDAqGzayN0BpPJ0BmLJQME4ERtrdTURF9gAKHTpGg0eRNMOHzwNeaOs8/u3H1+zZVmdx7H1HuoY27JdHuCPU72OycikeRp++pqf5eLro++wBhCp0mpTi4UOvgaR0X2MdIJPzHSGUwmRzpbLh+wi77AGEKnSe3N88WcXvbZnbvPr3kz7c7jmHoPdcwtmW5PsMfJfucEdYRb9AXGEDpNam9khaMi+xjphJ8Y6QwmRjoRNPQFxhA6TSJ0epON0FlcLBUU2FsndcwthM5gMnVNJ3WEW4ROYwidJnUUOuNx73NKdgd2Q0I4nLxhy4/QaXe0hS+a3GO3vgUFyYMP6psZ0WjyUbfpnjzmFKETbjkNnbW1UmOj2W3qIgidJnUUOiWuAUnHsuxfg5d6/i2hE52hvsFk4mlEEqET7jkZfaedOULoNKm9KVqYjsWeeDwZPO2ecvMrdGZyfcic+vrkH+obPE72OydKSpIHpNQRTkWjyTNo+fnp30vodITQaVJnI5000M45vbnAj7nSnIy4RCIHgwyCLxvtCfaYGunMy0uetqeOcMppX5D6DNIidJpE6HTPaUjIxun11GcQfNloT7DHVOiUqCPcoS8whtBpUkfzdKZ+ho45nbvPj7nS7F5Dmlpf6jMIvmy0J9jjZL9zijrCDfoCYwidJjHS6R4jnfATI53BxUgngoa+wBhCpymJRPJmGEKnO4RO+InQGVyETgQNfYExhE5TOjqd59eckl0doRN+InQGF6ETQeOkTRYVST160M5sInSa0lEn59eckl1dNJr8XZWU2Hs/oROdcfrUG/bRzCF0ImictknamW2ETlM66+SYjiW91Nx9oZC993v9nVqWs/kCmSYjt0SjUmFh8o8d7KOZY2qeTok6wh2nbZJ2Zhuh05TOTudxVJRepo80a2ulpib760wFGOqYG9y2J8syt01w9uQxN/iuhRuMdBpD6DSlsylamMYjPacdUc+eUnV1Mji6XV9qOU7WSR1zg5v21NQk1dWZ2yYk91nLYsokBIub7wvamS2ETlMY6fTGzZGmlJwxwO36Wi7H7jqpY25w256or1lu9jsn2EfhVOpSK/oCIwidphA6vcl0SCB0dm2EzmDKROiMxbhMAvbV1CSnPKQvMILQaUo0KuXnS8XFbX9GA02P0Ak/ETqDKROh07LcnwFB90NfYBSh05RUJ9fe3dc00PQInfAToTOYMhE6W64HSIe+wChCpymddXI00PQInfAToTOYCJ0IGvoCowidpnQ2zxdzeqXnZp601Ofcrk+SSkudrZM65oZMtyfY43TSfqeoI5xy0ybpC2wjdJrCSKc32RjpDIelggJn66SOucFpeyKsZIabgz0nGOmEU4x0GkXoNKWzeb569kzeIed2TsnuwOk8acXFyRu33M6V5maCauZmyx1O61tQkDwIob5mxWLJgJ9nqCtK1Zw6wi63czbX1yf/oFOETlPSjXRKfBF2JJFwHhK8PtPezfOfObrNHdQ3mEw+d11ipBPOuTm9Tp9uG6HTFDuhky/C9qWmN8lkSCCUdF11dVJDA/UNItOhs6QkOYpKHWFXNJq83MPJ6Dt9um2ETlMIne65vaM1G6GzoYFHJQZdNtoT7DEdOkMhbvKAM277gtRn0SlCpymETvdyKXSmPovgInQGl+nQKVFHOENfYBSh0xRCp3uETviJ0BlchE4EDX2BUYROU9LN05l6D9pyO3efl9NoTudxTK0v9VkEVzbaE+xxs985RR3hBH2BUYROExobk1MiMdLpDiOd8BMjncHFSCeChr7AKEKnCenuvvY6p2RX52aetNT7Mz1PZ+qzCK5stCfY42a/c4o6wgk3bbKwMPmHdpYWodOEdCMrXueU7Oqi0eR0FeGws88x0on2MNIZXIx0ImjctknamS2EThPsdHI00I6ldvpQyNnn3P5OLYvQ2ZVFo8mzC04ecSqxj2YCoRNBQ+g0itBpAqHTm0zv9DU1yacgOV1nQUEyzFDHYPPanizL/22CuyePucF3LZwgdBpF6DSB0OmNl52+piZ5I5fT9aU+72ad1DHYvLSnRCLZpuA/t08ec4p9FE4QOo0idJpA6PTGy04vOb+Ym9DZtXltT9TXDC/7nRPso7DLstyPvtPObCF0mmBnXkDmjuuY27n73M6V5nYex9RnqGOwZbo9wR4v+50TkUhyVDWRMLse5L54PBk86QuMIXSaEI0mr/crKur4PRwVdSzTI1OMdHZtjHQGUyZHOiWms0F69AXGETpNSA3Pd3b3NXPHdczL6Y3U552ur+Xnna6TOgZbptsT7PGy3zlBHWEXfYFxhE4T7IyscFTUMUY64SdGOoMp0yOd1BHp0BcYR+g0gdDpTbZCp5vreKhj8BE6g4nQiaAhdBpH6DSB0OlNNkJnaWnyKUhu1kkdg81te+JGIrNSTx4rKTG7HkIn7CJ0GkfoNMFu6KytdT6nZHfgNiQUFUk9eribMsntaAtfNMHntr55ecmDEeprRmpWAadPHnOK0Am7vIbOhgaprs7fbepiCJ0m2JmihVGU9jU1SdXV7qdRcTNthdspddyuD5mTesQp9Q0eL3Vxgu9a2JVqI25G32lnthA6TbA70pl6Lw7yekdrz54KuQmdXkc6eVRiMNXWJg9kGMkOnkw8d12SwuHkqDV1RDqpAyG3l1qlloEOETpNIHS65/XmAjchwWvobGpKhhsETzbaE+zJVOgMhagj7PHaF6SWgQ4ROk2wMy8gc8e1z4eRTlfzdHr9oqGOwZSN9gR7vOx3TlFH2EFfYByh0wRGOt3LxZHO1DIQPIx0BlemRjol6gh76AuMI3SaQOh0j9AJPxE6g4vQiaChLzCO0Om3xsbk9X2ETnf8CAmZnjIptQwED6EzuAidCBr6AuMInX6z28ml5pSkgbbGSCf8ROgMLkIngsZLmywokIqLaWdpEDr95uSRiswB2FY0KuXnJ0O5G9mYpzO1DARPqi6lpe4+zz5qTqbm6ZSoI+zx2iZpZ2kROv3mZGSFo++2Ukeabp9S4vR3alne7lgkdAZbNJqcp7GgwN3n2UfNYaQTQeO1TdLO0iJ0+s3JFC1M49GW12lUnP5Oq6uTwdPLKZVwmDoGlV/ticn//ZV68hhTJiFIMt3/dEOETr8x0umND0eaISfPtPd6zV/qs9QxmPwYubCsZECCf+Lx5H8Z6USQMNJpHKHTb4ROb/zY6SXlpTo1O+tr8TnX66SOweRTe6K+PvNjv3OCfRTpJBL+jHTSzjpF6PQbodMbn0JCyO4pDkJn10boDKZshM7q6uRpfaA9foy+0xekRej0WzQqFRYm/6RDA22LkU74idAZTNkInRLX26Fj9AUZQej0m5NOjgbaFqETfiJ0BlO2Qid1REfoCzKC0Ok3J/N8MadXW37MkyYXp9eZm61r8qk9UV+f+bHfOUEdkQ59QUYQOv3GSKc32RrpdDt5eGqd1DGYGOkMJkY6ETSMdGYEodNvTu5+Y06vtvy4e1BSnt0pbmKx5NFpnoddgToGl9f2lDoYob7+isWS+1w4nJn1cU0n0nEyx3ZHmNc3LZeP6Wht7Nixuummm7R8+XLF43Fdfvnlmjt3riSptrZW99xzj1599VUVFBRo2rRpuuKKKxRq54kz9fX1qq+vb72BBQUqtHNTjg8Sq1crvHGjrL59lXD5RJzQhg1SJCIrkUj/5tJS5dXVKfHEE8lHP0KhAwdkRSLJ6SvcKChQqLBQRX//u6xnnklbx1BFhdSzp716dbSMSETas0fW00+7XgbasixL4T17vO2PVVXe2pP+Ud933pHVr5/rZXRn7dUx9O67yf3OsjLTQZeWKk+S9corsgiejvmxLwZd6PXXFZKUKC11/31RWqq8xkYlHn9c6tHD1+1z5f/9P+nQQ5v/N/GPf1fCw/dhZ/JsDN74EjolqaKiQo8++qi2b9+uOXPm6KyzztLAgQP10EMPaevWrfrjH/+oeDyuq6++WgMGDNDkyZPbLGPZsmVasmRJq9emT5+uGTNm+LWZnRq4YIH6f/ih5+V8NXOm9m3ZkvZ9xeGwBkjKmzbN8zq7kt3hsKpt/P46csQRR6hsxQppxQpb768dPVo7PawvEomo7969Ck2d6noZaF9/H5axu7TUW3saOFCFS5cqtHSpD1vTPbVXx7pjjtEOD3VxpL5e3ygrU/7Pf66uGZnM82NfDLqmPn20dc8eae9eV58vLi5O9ukXX+zvhrm049FHVXfSSW1e37Ztm5H1DR06NO17Qpbl/TBz7NixWrlypY4++mhJ0uzZszVv3jydeuqpmjp1qhYtWqQTTzxRkvTYY49p9erVuu+++9osJ+sjnXv2aMeWLRo4cKCtxN6hvn3tj1x++aX0tX9zt1ZQIB12mKdFJOJx7Vi/3n4de/eWioo8rVO7d3saTUNbiURCO3bs8LY/+tCeVFsrVVV5W0Y31mEde/WSiosztyHxONfbueTLvpgLysqkkhJvywhSn37ooa2mb0wkEtq2bZsGDRpkpI4ZHens3bt389+Li4tV/Y9r6vbs2aP+/Q8eIw0YMEB79uxpdxmFhYUZC5jt6ttXTdXVysvkjuW1Q0RbpaVq6ts3s3Xs3x3GATIskVBTQ0Nm69iekhLvHVF3FpQ69uyZuRuXupqg1DAX5ECfnpeXl7U6Gl9r3759VVlZ2fz/lZWV6tu3r+nVAgAAIECMh86JEydqyZIlikajqqys1IoVK3TWWWeZXi0AAAACxHjonD9/vo444ghddNFF+t73vqdJkybpnHPOMb1aAAAABIgvNxJ1FYlEQlu2bNHgwYO5biWHUceugTp2DdQx91HDriEIdaT1AAAAwDhCJwAAAIwjdAIAAMA4QicAAACMI3QCAADAOO5eBwAAgHGMdAIAAMA4QicAAACMI3QCAADAOEInAAAAjCN0AgAAwDhCJwAAAIwjdAIAAMA4QicAAACMI3QCAADAOEInAAAAjCN0/sP+/fu1YMECjRs3TtOmTdO7776b7U1CGvX19brttts0efJknXbaaZo/f742btzY/PPly5frjDPO0Omnn6777rtPPPE1+D788EOddNJJWr58efNr1DG3LF++XFOmTFF5ebm+853vKBqNNr9OHXPDJ598oiuuuEKnnXaapk6dqqeffrr5Z9QxmB588EFNnz5dJ510kl588cVWP+usZmvXrtXMmTM1btw4zZ8/Xzt37jS7oRYsy7KsG264wbr99tutmpoa669//as1YcIE68CBA9neLHSiurraWrJkiVVZWWk1NjZaDz/8sHX++edblmVZr7/+ujVlyhRr27Zt1p49e6yLL77YevLJJ7O8xehMU1OTNWfOHGv27NnWsmXLLMuijrlm5cqV1rx586wdO3ZYiUTC2rBhg1VbW0sdc8z06dOthx56yGpqarLWr19vnXrqqdbmzZupY4A999xz1ltvvWXNmTPHeuGFF5pf76xmdXV11uTJk60nn3zSqq2tte677z7ryiuvNLqdjHRKqq6u1muvvabvf//7Ki4u1vjx4zVs2DCtXr0625uGToTDYV155ZXq16+f8vPzdckll2jHjh2qqqrSqlWrdPHFF+vII4/UYYcdpssuu0zPP/98tjcZnXj88cc1atQoDR06tPk16pg7mpqatGzZMt18880aMGCAQqGQhg8frqKiIuqYYyorKzVp0iTl5eVp5MiRGjJkiLZs2UIdA2zy5Mn69re/rcLCwlavd1aziooKhcNhTZ06VUVFRZo3b57WrVtndLST0Clp69atikQiOuyww5pfO/roo/XZZ59lcavg1IcffqhDDz1UvXr10ueff67hw4c3/2zEiBHUM8AOHDiglStXav78+a1ep465Y/fu3aqrq9Nf/vIXnXXWWZo2bZr+9Kc/SaKOuWbGjBlatWqVGhsb9fHHH2vXrl0aNWoUdcxBndXss88+a/WzcDisI4880mhNC4wtOYfU1NSotLS01WulpaWKxWJZ2iI4FYvFdOedd+oHP/iBpOTodSQSaf55aWmpqqurs7V5SOO3v/2tZs6cqbKyslavU8fcsXv3bsViMX3xxRd6+umntX37dv3gBz/QkCFDqGOOOfnkk3XrrbfqoYcekiTddNNNOvTQQ6ljDuqsZh1ln5qaGmPbQ+hUMt3H4/FWr8XjcYXD4SxtEZyoq6vTtddeq1NOOUVTp06VJJWUlLQ6aIjH4yopKcnWJqITn3zyidauXasbbrihzc+oY+4oKiqSJM2fP1/FxcUaNmyYJk+erDfeeIM65pCqqiotXLhQixYtUnl5uT7//HP96Ec/0rBhw6hjDuqsZtnIPpxel/SNb3xDsVhMe/fubX5tw4YNOuqoo7K4VbCjsbFRN910k/r27atrrrmm+fWhQ4e2upP9008/pZ4B9f7772vr1q2aPHmyzj77bP35z3/Wf//3f+uOO+6gjjlk8ODB6tGjR7s/o465Y/v27YpEIpowYYLy8/M1fPhwjRkzRu+//z51zEGd1eyoo45q9bOamhp98cUXRmtK6FTySKC8vFwPPvigamtr9dprr2nTpk0qLy/P9qYhjZ///Oeqq6vTokWLFAqFml+fPHmyHnvsMW3fvl179+7VihUrdM4552RxS9GRadOm6YknntCKFSu0YsUKlZeX69JLL9WCBQuoYw4Jh8OaOHGili5dqvr6em3evFnPP/+8xo0bRx1zyODBgxWPx7V69WpZlqXNmzdrzZo1Gj58OHUMsMbGRtXV1cmyrOa/JxKJTms2ZswY1dTU6JlnnlF9fb2WLl2qY489VgMGDDC2nSHLYpItKTlP56233qqKigr169dPN9xwg771rW9le7PQiZ07d+q8885TUVGR8vIOHj/9x3/8h0488UQtW7ZMv//975VIJHTBBRfoRz/6UatgimBatGiRhgwZorlz50oSdcwh0WhUixcv1jvvvKNDDjlEc+bM0cUXXyyJOuaSt956S7/5zW/0xRdfqGfPnrrooot0xRVXSKKOQbVo0SI9++yzrV574IEHNHbs2E5rtnbtWt1+++3atm2bjj32WC1evJjQCQAAgNzG6XUAAAAYR+gEAACAcYROAAAAGEfoBAAAgHGETgAAABhH6AQAAIBxhE4AAAAYR+gEAI/ee+89jR07VmPHjtWOHTuyvTkAEEiETgBwYNGiRRo7dqzmz5/f/FokEtGoUaM0atQoFRYWZnHrACC4CrK9AQCQ60aOHKnly5dnezMAINB4DCYA2HTeeedp586dbV5/4IEH9P3vf1+S9PTTT2vgwIHNz0IeMGCArrrqKv3ud79TLBbT+eefr6uvvlq//e1v9fTTT6tnz56aO3du8zPKJWnPnj36z//8T7311luqqqpSv379dN5552nu3LkqKGCsAEBu4tsLAGz6p3/6J9XU1KiqqkqlpaUaOnSoJOmTTz7p8DN79+7VL3/5Sx122GGKx+NauXKl3n77be3evVuRSESVlZX693//d40ZM0ZDhw5VVVWV5s6dq127djWv47PPPtMDDzyg7du369Zbb83UPxcAfMU1nQBg069//WudcsopkpIBdPny5Vq+fLlGjhzZ4WcaGhp0//336/HHH1e/fv0kSdu2bdPKlSv1pz/9SUVFRUokEqqoqJAk/eEPf9CuXbvUp08fPfnkk1q5cqV+9atfSZKeffZZbdu2zfC/EgDMYKQTAAwqKyvTN7/5TUlS//79tWvXLg0bNkwDBw6UJPXu3VuVlZX68ssvJUlr166VJO3bt09nnnlmq2VZlqWPP/5YgwYNytw/AAB8QugEAINKS0ub/56fn9/mtVAoJCkZKFv+t+Xp+5aKi4uNbSsAmEToBAAHUqGvtrbWyPKPO+44vfnmm8rPz9edd97ZPCIaj8f117/+VRMmTDCyXgAwjdAJAA4MGTJEkrRu3TpdcsklCofDmjdvnm/LnzFjhp566int3r1bF110kYYOHap4PK5du3apsbFR5557rm/rAoBM4kYiAHDg/PPP1+mnn65IJKJNmzbp448/ViKR8G35vXv31rJly3TeeefpkEMO0aZNm1RXV6cTTzxRCxcu9G09AJBpzNMJAAAA4xjpBAAAgHGETgAAABhH6AQAAIBxhE4AAAAYR+gEAACAcYROAAAAGEfoBAAAgHGETgAAABhH6AQAAIBxhE4AAAAYR+gEAACAcYROAAAAGPf/AUGiiQH51IjOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "show_anomalies_from_scores(\n", + " series=series_test,\n", + " anomalies=anomalies,\n", + " pred_scores=scores_all,\n", + " names_of_scorers=[\"KMeansScorer_w1\", \"KMeansScorer_w2\"],\n", + " metric=\"AUC_ROC\",\n", + " title=\"Anomaly results from KMeansScorer\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see the accurate prediction of the scorer with a window of 2 compared to that of the scorer with a window of 1. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + }, + "vscode": { + "interpreter": { + "hash": "a447d27c34e659937e7ee0c94cb7a88bc25409c699fb96f10feba121e328fc3d" + } + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "11420627fabb4c1891b540107ff6cc5c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "3248a67fef204107937f9adf21d2e92e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3d3dbaba1e1949d6a824bfa992b16d00": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "50a7f565ce2a4cf6b49a69fb5cf209a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_b773316934f841c5abd7228f14af2207", + "IPY_MODEL_fc2b980854b2477f86c9b55ac384d015", + "IPY_MODEL_c5018cde6bf1498c98baedbc420e4fdd" + ], + "layout": "IPY_MODEL_3d3dbaba1e1949d6a824bfa992b16d00" + } + }, + "5908762fa8ac4efeac980a7c93c1c1c2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "7e756ee5a63242298124e54f25931206": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "8346846159ca4652a50a11e3d5bfbd45": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } + }, + "86d08bca35984ba88011f596751f5341": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "description_width": "" + } + }, + "961e3b451e6c49e6b04c4c1cd0f3aa8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "children": [ + "IPY_MODEL_bda225e363fc4508a78b0f41cfd692aa", + "IPY_MODEL_a4c327c0ce144c979141fae7fea7f866", + "IPY_MODEL_d4584ff5c0bb48c9aca68122e2b9649c" + ], + "layout": "IPY_MODEL_11420627fabb4c1891b540107ff6cc5c" + } + }, + "994829c2959244ddaffc951633c6e337": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2a51dc4210d4941ab4c728dd1d1e818": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "a4c327c0ce144c979141fae7fea7f866": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "bar_style": "success", + "layout": "IPY_MODEL_7e756ee5a63242298124e54f25931206", + "max": 1, + "style": "IPY_MODEL_8346846159ca4652a50a11e3d5bfbd45", + "value": 1 + } + }, + "a5a98280980d483fb0166f8a8e750461": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b773316934f841c5abd7228f14af2207": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_a2a51dc4210d4941ab4c728dd1d1e818", + "style": "IPY_MODEL_3248a67fef204107937f9adf21d2e92e", + "value": "100%" + } + }, + "bda225e363fc4508a78b0f41cfd692aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_5908762fa8ac4efeac980a7c93c1c1c2", + "style": "IPY_MODEL_a5a98280980d483fb0166f8a8e750461", + "value": "100%" + } + }, + "bfe855cea3944a98abf7d014ab1af6d2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "c5018cde6bf1498c98baedbc420e4fdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_f410c9c275a04af68cda7ed222aa4253", + "style": "IPY_MODEL_e1cb5ebdc6bf497a97ce7081f265d08b", + "value": " 1/1 [00:00<00:00, 64.00it/s]" + } + }, + "d4584ff5c0bb48c9aca68122e2b9649c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "layout": "IPY_MODEL_bfe855cea3944a98abf7d014ab1af6d2", + "style": "IPY_MODEL_994829c2959244ddaffc951633c6e337", + "value": " 1/1 [00:00<00:00, 43.19it/s]" + } + }, + "db0985e1fe2f4b41a5579ce908fd8dac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "e1cb5ebdc6bf497a97ce7081f265d08b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f410c9c275a04af68cda7ed222aa4253": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": {} + }, + "fc2b980854b2477f86c9b55ac384d015": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "bar_style": "success", + "layout": "IPY_MODEL_db0985e1fe2f4b41a5579ce908fd8dac", + "max": 1, + "style": "IPY_MODEL_86d08bca35984ba88011f596751f5341", + "value": 1 + } + } + }, + "version_major": 2, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/static/images/ad_4_sub_modules.png b/examples/static/images/ad_4_sub_modules.png new file mode 100644 index 0000000000000000000000000000000000000000..d306e72e4bb16496e4c8741ec200a00421435e1f GIT binary patch literal 453826 zcmYg%1yCEnwkS|2Rv>th;_hz6-QA(MyBDWWB)Ge~Yk=Zj+&#FvI~4i!zTf*^W-^({ z?w;MFdu&4$xMR+Lp0+uz^!E?)>$mkw2xKIPyT@ji|0)qHzZL|F|_wQBbkC zG`zgLu(*MyC@7wMKOG$&-rn84zP&|g$+NhCPESw&{Q1NFy&*I-l$e-gcXxMVW8>xd z`TFYW%NP8Vl$2~|Yk7HjvB0*ixtS#MZ;y9(wb8(Ebr~M7Uzc57Akm?m#4?aMRCcdrlwc}_4b^!ldF3N2Z!iyDzl7C^ZWuTk=P?A z*ViXITRlBJ43x}_jEo*76FtSbPr*1T)`kLp&C$`(1J$KQMn+`#gpU^&_fO9y{_g(% z0pXyzIqt9D#D%rBwGY-;;*GWPd)Kt%dN1!DWkWk0^F|Gl`)L>{=6X982fLcn60XnB zCYl?jx6ap(t}81mIYg+zdzW^~vU%?IgUiP|XLrk^Lo2%9hC$WSRMa}2N$XZtT5ey< z1~&sLr|ZVH`VMhE%FyEm%d`#mBm~wiW~ey{vVC!C+=0!nwJ* z{qwsTI(lV(p68Lwa;w1<8X9+ZcVnQ?OhFD%J@fMT_$gm;K~%KQvn!aA@@{GABs0QQ z7N}zme4H$kdNQnxmxK9C|3BZk0H=L}ZF6iR||ybMRgm3HK=z~sXVREUgi z15eWWU)LUzJ2&om&kM_16z;iwkb4Dl(sNr|j!N&<)y|jazO9-)6MWhmkb(`*pmaQve7{Xduw_U}76!Pz~N zIE_A>M=dto{1-@xHc_bQ6H*-6HgU`LQwfKC<@f(jC3eIDrB8<^8K<2dG}c812AQ&e@`c96xvW5Rc+=uhp zAL3P`9a$j0Q4N*`yZNQvb#Doglr= zIu6$Qc%?BRq)7|f|7hCPYwO=w(=VuTlTnFmhw@#bq@nyj#O~@f^zW%rZ{vtV_`ip7 zuc6PGDl^c3M<|LmSv&myBjky7;4yx8kXka|^zSgQUUZ6R^GstW7a6DBS%LG@|0Jj@ z-v%;xBW^>zkwba&jjy&fss7&@0(!)RK=$C)t9=_+2d{b_sY=`bq3=7eN#Y7uZ9FNM zrhg-YW=T>r{Ex}!da(i zt9y^%8NBm~`X8LX!rN;ew4rWlTM(C;>aOejUpPxprdTC_`Oi;f@3Q?`5%UV z!F{q;TM$=1@cbVJ{zrfBC!lacX-<#1mq&H2XLbL(#~Gc2!k*1{O66~@|4YpqYyV+G zr1;^iEYNDFl*L%{zaausL?$A2WV^Wqahf6DeA{o;|3<73Z|vU}MMBmj|7F>6r_xc{ zKPF68!+0WCw^v3MNd8}gVm1$j>*Kk&;N0k2O?>3}Z#EMvR@1(7W2#dAp7K9^Xn?Ws zC+Nk!Y@Yy|xuI!0{}(X{Fq9AUFTDkEtCNaq(tlXJb6`}{Ab8J)HD7kD@ZS*$ToG?j z=byCjq*(v2AUEA(O#)}GJF@p}qMz7BEB*elW;6oE%w?Q|m1gdL$u-p=sBegbKGZQU zK0W$>kvS`bVVl3HJ-4?l=%13f=gFII`?v2|JIq;c#_1ZZn)81xr^FnTPe{Y-g8208 zo9ptr-k;~_dy#`bzwdnyw681P#l?V!?qV%{(U~rvr1mjNQ zM8Elq6G!8{+3VH5?`5WkoORT@fi^;X-sW6+{Sp3@`fv}uI>%@pI44^&gMt!hqJC`c z$N8?RI~#ZStzs?h-2BJvS$@WDM+1{S^UeC+goi>?<~nm6?}Rn-zpTcd^rw3;2!75I zYecgo2zsS2yT_bA*g3Zw|A>IHH%|aIi}dS?dPJaS&tIATHzH38!)}TZqObW=S-J&~ybALLH)vFu*VVrI` z?LT&I#=^gvt&ZN^)9hJ-&m8^h-(9!QoyIvLznJ6x8F_fn*YiAFV0?X&y8BJ3zjen= z-i~4@hui-!?k?-Yq*I(!*4X8j4#VUk&7?Ui{5mI`0 z=IFQJ%;DrW$?;kJ{IhrO;GGJF0zJXR0QWAe|0%Nh*}|Jk+D7s?n74Ij zalDMam|jFu%n~6(86K26gr#4K44QZm;W3|KB8fdswn5O|j}FJ8f4bn5eRZ1(34dj_ zK0`0Z9`(H{r&Ju?34kfjPN5YHc)RG=&uVi$ULbr8w99z8?*Vo8=I_9i3%ph4Uu!Zw zT^wp{>$g1~>mdFh{w3B)jOy^zi>F_i!RKXK@b!Lzu&QrvLneIffogziq>=xx@@)8O zL5SRc|6G{u7r1J3NsM1X$nbR0pas%<@E)%OD=<7&dg4ew9MXm}4Q^_Cep>m9pJI{3j%XaLC$cJbo@(!&MCmWUvj2M3tDnDCjop43 z5c{-`9=@T7_59k9Jt}}H{Zpq*zpc^fu2P_8Uf?&l^7$g!c6|JI`XgzjWt0xm^0qJT zyXIEAm`AO38(@Xn2uKxofzf{fVtw-(+_`T~uzaw-AI~58`R+yUs(WcXpAPGs^n%RS zJij9=j>In-Oq1 z8p``iY%czGM*C1IP*VAxdl|1SO0TctQcFkEwtHdRV*Wv5ulXRMgShlkpsKAw5X*7N zcIMK^l0W6vJP#`dJ2UR+A|pgX>HJko4-iivE6EnDzF4 z6!N-VGUZ>sTTf|VNhy9iZrgOnHw~4}01aKY!}tLR?+D|%jJPTT_i?cn3pnf$BPX7m zg%1!R%wKkt!eNxs#5z$os{JML7f%uixexz%1S%RZYI`cPdM*kGJ9D(dJ%!R!B#Rsf zPdJh=E?4fmGeT(TgE-rWWE9rCcaa!ES{i^_uhHKQ=k+^0?nHExhv)-%vFM?$eqkNB zE?e<6G#h=r`(@H{b#2ct;XvN_s_}j~bbYY!zvOm6zJOM6?pms_(p`ZjS+)9dqA)zx z7R~lON)N=~?mrA2lCKv$!|lukx=orC&=}Xdm;(`dGX$Ch>^V1TZ4(A;R|@o z@>6K*XbKa!T3H!zb|GZ6Q1m(EhJ*BD;n$;xd@9!IbnXkOZo9;uY`IN_?YTRG7sHUb z%gRdPUjDfqvx@Bb9E`+R8-XT${}f6w9d(yX4|?|8EvMh!?o5=SaY@(Ou4bmT@9-I) ze5Xztv7u7a?RU;?Z?Z$!SCJPh-NB%D>CNJf7!ea=Vmm6hL2zVrXLnxqK`{T*hJ8ta zetyc&bOGn=SA5saEFe{a*ifcd4c>0LaWji+s(doXO*iBl7F&mF9I7H0%L zt9#Tk%wp4P9YnY+vEOm|giB~q)@vYccAb;-LJNgnopJo!e=Y@-3>dBl^U}AF^v~u* z7nI*_&=GG+(;rafD|VLdr91+dv6U|7>E(y}Na+l2wOCHIiCEb~dD?<3UxU2)p@+bZ zS(J{^-Kv^b>f4p(s~Qjtv8Qr~t~sOxX5HB0)%k3{)ct~wodX4(rAtVCQ525P&Wn0R z_@&Y!JqJBp_H78Ilb?cTKq!Ws;VcnGeiHLG9*}n4&)jTnB$l&U+vQq~8|*FwZi7&C zEQN&Cee5ZBTHG)22c7X6(%8rBQg(OFZ;z^_3xED&Yv>RSFnZtKaE-Bl-J3;@TvNAm zmN+;1De7kO8Sb$%jBksW5MOJFBdz2sMPKB)e}WfpstjGx;JQOCNtu6n&`lK@N(40_ zX)V&L4LYHI0S5AQ8!t&9fcD#Z*k1~WSY?REStsd}&2|@t)yur2o)!;QH2=K5IvXqU z&*f#m)Q^GBs+kkKtYDc(IBo8;R~WDi4H%?+h!WYT**(PSA!6k`R{|29O?pkimDNBp z==2-$y_cl@r=d)YKiDP+W9C5=AmBbBB+kl&v>I3|6e+RSShyzu!ndUwhRP8 zo0bWZ@cT?&9QIA4)6206MC8a&>q$F=tk{0~Z&%mVdlmJj zNmq&JrKI|zuMv=FDC;|BWIeP}Bfj2e=hWRNI<(op$pFiK?ssx@jLBw@0XVz!G*jR) zJvm{zW`Q?Zn$4;g+oQud*owtC7V#M4pa>4KKzu1wH)j%AJua}d<#UwLfu$@ zSxWeIE+&Yujl)+!xXGRVDhSP3Yd4gK9BPB;zWnEdyN) zdqORH0XbbA<`j$(V)n9=P7M_=?tIy8$6x;wwg>78S~{duJdV=D!Fl{H4&fkntix}7 z^inIr1`zwlv z9zlv#3-?o+cz$v0Lxl&_7G)l{dHmLdA70~4reEFjseZjzXP}lkDo5PJmF<9X{pCbf zVnavWjWkVx)!gAnAnNsYdFZK`z_nP(cGE@$d6${c_)&mGkv&oZlhgWPDp zcaVs$yDF0jD7~`Os2%?s0B^i%ZV24KHla|ZuYJwvbzI^%7uieiTJwyY80E%HA3HzB z90hajt&3bjRXzD(!B@0FUr`n?8$vtk5wY8}&+|5)BcUNG1&hEN zKzJ+4lG0KV;w=k{SwkRq92rqEu>RD%3SPM?>*IF?;l;J-+l>ud557c|wykq( z!&E8ZZ8{I}m@R~PMA4>Eu=3W4JN1!v6e2wJ97N^wZ+|0fcL=%*9P#H99sLlauw*w$5n zDqi&RJqFEeH*6~`q7LhDcrclk5(!QXE*SYaOsI7=F7FIWFf)6@JS_BBulenFRa6J} zVUu?rf*dJ38wA;nx6pXVL)FOs%8NcQcO_TFi@oug`;Ibe$GTQ**4S+I zo+Nv1r6cTTAbMpBRBGy zUter9^qeMtB<}z+@pp)shY8E7Hz&w^;5ytmMps$`zw?~6WkCX44Cac@#Y6GIV@B@>z-fQJoQ(Wj9|C8<+cg{ZlpP-!|_?G;aiEcl2CN4!v z28WDexBcS-or*nL^asPU4?+|=9${+amEvxz{$stnpgv*gsxao`{AtcGqVJ*+BXB+k zg*Gv^^`o`rKH+8cAOR%?D zI{>R8D;Gj{D;g$CoPXwzI&o@baq|OsvSG~cAF;)=KF#_`_4BQz7GpHTxx}#4kjDyp+z$LzDzVGA#eEP;hCSNB>jZgHhzbsD($ zZuWU(x?)vZHgFjquy$7BxtH77g_Ar}qpHgD$3FAQ#YvU2=Y44-A`qdM`m6&8hm(WR z-L%9)vZr{^>z%U7BCPt_UY%(Vlr1H3%k}YqHCq1Pu+>ss+?fr0v z&NjyZKd|Uz)y&tn12F*du@VXrcEM`wpM;WDZa&{DC3wYJ?VEEe{ZN)nFM;%UPo^1V z;(!wm32tQA6}pxL8H{-2_oCXnAmx$w!!UtANJW)Mz41gySxHT4P= zH1EF8r3ryVD(cicV+(9x+C&VE;{WhT088>CQ%KPR?9L(8SdJ5z&ZPYM(fj^Cdv0&JWx-j!3G@lS!^n!# zF;cTU>DLMtrX?#O8As-mYbo$RFX;4HTgE!HmC*h1= z*$i2s=A!tA=#Kboz@{VXw)T0DveK}MxX8zMqvh6%=@Dx-T`FOtkU1lDtjqr}gkXEWowJxsSgwL$06Jv46*Tw_{Kj6DR zeSFm8tR7g+PIjz&9&ABmLS-R3-^`Gs_pZLnY(Rc0DKBaKBgAnNf=1EQxBn3Dz45>UpI zCN18Rl{0T24l5+;CKbwM3%sc}rJ}e5v0PT)e|EK811j4$QO8vCKlvX(kO9K<$ zyR0HFD07HV$6XecpD9daYA`V{1@2407O&X*%*ZX-fUhXU9Dnj$(j2D|sNqrUtX~Ek z(I68~mM-e6@ZvE~mnSu`be&?N?36mp+|iMY7LYm~$ihgV77hz`=HW63L$z8#?6XSfAk;)#-5? zX%O%0ZsD6LlW601*EEsK?g>}kz1&Fak+3=RWjP1qy*_BsICTzSh6Ow-s!`2kgz}bX zLfAdY?6ko2cQ~EQod?2J2;w}f-8Jo?%&PZV(h4b}D$Zhil+PA7)$CWv9(QHZ`?`B`{NoI}mtqE{apCb%aJM$b!7mhdLs)s^{IN z>VPoynm8JOL&Bl=aMN`DeVjs0LMQE1b@?Oi0G$;KLM%ExYG6OHS$$e1#HIY6Xh8=4 zkC-#@X<`0NW0(f26Uy!JlC-SIG9VK z&ooEUP=_1AD?>Yci6dx7;2+0xsW9RRKN5Ww<7%EE4NK(#Gix_+s>0uPoula`u7q;? zoK(qBnFLo(Jhqd9{q;U*_uX@wv(~0h{-7!Gh|S88_I!*HgeD%QArUV4B1w+2Ip@D; z6#cLd7?OFA6!V8r3Wq|Uv|}~I>{MdaG zT-a|rdXo`3ZP=TD!9uPC3+0@KTP2K7Vpa1|O?Z?h7_b4D1gdJ1ZW^lw!c8lew@~Tj zW05oCk1-U_RZi#NmAx0#?|Yy?{p})d_=}kRzVLwzC4ES0pW!fxSkiI=J^T7nQx{xb z@RhsQO^NaAx^H@`r~Xf#IYOCAGS;Lm!yBtg@Ubg+BfPGWUHVN_+S73Gn!i;T#lu7b&-093O6 zW*aLjB`#qMbAZYOkP9<+M>RvTC*;#*wob4DRBRrQNk-r(PqbIg{sTC}w&k0)Ty-Nv z^^6Lk%6w3H#0yPUSX6I@R%x*?1`^n6(zyk|tKAJF0*(!-L5<9TKVB2I+|gum#L9uOZD01{9s zbi$LhKgOz?#iE4*ND{(ap+i2Ss=|p*#w-R((o46hjW%W?6@OHf{r&Ok-LGuIQJe98 zZ!f5#yJb#naR{o-7M2uf$~_SBB!r6%`$Tvt;v!MXiWpG`_+pPR{_yqIEOZ9L69*0_ zMq6udIQd^6+Z8my=*hTtD$WEN0U3shi`{qS`EL8n-x=K zi`AAKM9MQE9v{fS#7Jpwvh7kd^CVXhd}{{VP}Xt?V!2|HD3HUVI8b4ut`061;irIq zOmqeUIoa-L-BW`uPGUtp<|s?AGl!a2UaieD%Fx|J^LBJ}9o!yM@5Aw}-B+#HEdLx@ zDvsHWJXd105~dIe%Mc{J4P!8Yds9v%8ow{5Fk;g_#!bV!2J9$RH+CBDQfkzxY_azT5gvu}| zrvR%k=dXIdcM?!dFj=h@FGHnr>*QbFS}SniGV(qKc5JxaBnt4=KE=olp`8bm<1F@Xtcwp<+INL!e%04v?vUP(t#&Nb_lmIWuc!bZ!(k9!byU z{c{qMUGe&?WfzV`)WOG$7>R+`g*1Z&Mj!%@$LRKI65gd?eEksWVwumu@4o!)vs6eN z!`w$^(H=_S1VefRn*)snUorMohN`0b1Ff!}_ii5c4qx=x({Rc|4Z!GL=T$NGo)Ol4 zxQSDMBaJEMM>iPB^Q^MTb)`IaBt1ywq4h#v$wO>z5CTIjlqg0HLYV|={-*+z0qt(O z`%P{2N|TSQcW#3l+6GzJDmXvZ6aGZK7t)Ji;8W$-%~}P_3;9Lcd)FLcY7H zqfT#smgd1v{Cj8p{Ga{5Nhqj63X{l-O}BG_XkO(BOH;-v7;p}68~><*GJtU@VxNH5 zhxNMT1D@DP>6i8~z={YP#>O=Lm8WY)gL-x2dAw}zJFo`gtD9rrGE0F zpPkUc)ENktWldk&%wT}-xPW05rPRdSE9xHwW<&f}!1msAbl1VdV;_!ReMy{tt5$sN z8xzr_#(6=5cM}7z9ajzXnu*82in$V5mFk8tqM~v^T`!fHLsMcKz-#gt`o}4Io4Q3r zl6m6jKq@Oj4XqA+9zOM<_lm??W z>Mok3{E`J$GC6R|EEEt6xoZnhlZgDf?aYA=7h5^Cl_9rdYLb5ckT>_1Q}LP&AGt!~ zz@o!R5`YOT6$O$N1_rv9sX76u(e#ExupJSEgiGOKp#uUSATuod;Rv?~IFyuwie_kR z-@7V)FPk@v&zM67-+o@#}l8&HEoF56P>Y^^w{CaFf0MO{~l+EJXC85F5e%+~}OIDN`i+j?$ zqG79|KF`BA<^@fFZwwi-`nT+MM2`=_XyBSWh*;bD%g2m+QOqfEVOTK^`Vu~lEUkdZ z{1#K9OK6Z#>4s{7UNGFdfn$lA{#LADFROp(0t8rZu~M~+{h;chx{xZ6`$SCg!Fcho zUYfl3mRNc!GC;y>T*=z+I~LFo=~Y&u5BgkOp3Q+Xj*#Dqt%l<&|2BVp^l=E*VQP`_ zi^CM32{F-^l@G9GUqeh(6NE`RZWr&O%nX!@!oNwZ0s5Lup(;t4Mr zs0?=>hh{-z`)5h=)bsoP%F$AE8O&AG$bgn69(CrqBft5do8IcIc|GdPnJ4ogJ-v^_ zhg*7QtAxK-iO?e-&rwj$z8SHY4upl$igIPJ6Z5X}B?xMcMr!6$C(@&66;P%N^Oima zoWc?N|8)#R+n}`SSqfPAkqtX63cX@$k(6B?GtQ|GWd)?}?=$4&ri@IieTkhpBpG5W zAD5gvQ9Udx3|NqsjGT`QY2byW!0jR;aQ=c~fO=TU)2JHdj3RHS0uL`I8=I@TwOb03 zFqWxBS3{@Yxvu%z3#Vnm@E@AFHzLR=F=$G&L{WvM1%u?oP>+I}?$uNEl;U(GYDMJM z$4b+t^GzT>-b9RC`G3)faX8tw+mYyWHysB#?+VFZE;63)cJn2O4D+esH=595)WjDw zhdhqJe!SB&RuUk9F3>gi#L3_CZma()8iX*7bu8Q5DhND)3HT#R(jYxr@TyR5uvw`;fg$R-2dJ*^!ds7S!OehmtSeo0++?>&zH^BugqyY$+Iwv7G+EuXp-|t{w}|mQw4S9 zRk>U4O8t@0z^Ww00j$>|TH;*C$kg}W{V7Vne-HKUL3L4w{N~2ZssvTAqIUan=t$Rw zyPHfL!7TNW8&AyguLX0#1xIz%T}3wAaWH3$(9&E&WA(ORk0r7GltCWBh~p5BrJDdOMk4(A#M)iK^9Z5wvos5G+PvTvg zxrBrv)bA055J?*Uu&n?fz#s_Kc?V@*dZ(+oHa52w5s!X(#AC@qPA)1U@`TsV*-SK7 zHk1HINp{K03Udl9_cb$b5)!+qK;n==a)@q||PY&xLB`)c#}d2ZoWURRtvE?8F&}!-;hqM$Djh z$5N7)$;4j5Z)W1rGm}^Adjt@fuOtKblBCC?Y&`Z6$<8T1om#Bn!anHL46C+w_L#EFdb#>VMd=n zbHRsA?O+#^=!TZxCN)^rkZnqZzV+@ci+kx)Oui26N7(VMu#yz7gFY%x z04HL!5LR%$FtA0!xg9>RgUvNGl<>$7OR2x`G*)_kK!Yh1pH@y2 z$|JQOW%Uw=9yNg};-H2aBS? z9ew|$JLKwVqAFfU2ukow+0u)5FYw*7xvP@;`S<>AZFp*!*!O1H2ix<%&E#Er0M_x@ zZ2AR`4Y;N=u-e0XxLW0ZY)E`)V}-0#jR2}BiS|f5`uF$$%m8HyXi*I(Vu~#GSFI#5 zI97|r#tOGD6_~C?Xq$S99Znt=?GmWT?Znmy4#C7lzf`a5a!Kg)`+m2^!j^s^-&DoRt6h%<_R=t z#I~=<9#g6CiQ@n?M;aRX(s;>ehT1>`%P`5|Vu_JvI$^R)vq4xTa0=jKPq9SEcft;# z9vM>cMyw8@tG?n+cl+D(*UN_$bAiX}?IN_(5}H(X3-}}89#MeyhaS>bYkqqiY~fG8 zlj_sk#DkJlXrx73A_VOSaq)2Rz`iRFCZag2yn(H;#-!;BxmWGjVtGzG@ut0|JTybDP$n<7#!G49Q=N=g_v3f*`#QB%h@S z|GYEZdz_-|Dtxexqwey7ma+XVd`dy1+S`*qe9=c0g*6~W#Ho+rH^AUSAbfET1Jtqu zBAlEQ9fpOV1*D#NZ`s?=0n%75fv?Qm90Bk6$7BDXk5xw`8E6HN51)$WQH2WM%O;@p zuKIj%O#$&$$T!Vfx6msd)!CFN7>oxGQs^(>u3jz0`{93kTg%`SV1Xrh6<+xn!BUPM zOb@FI1LVpip(!+;{w!spV^$~2*0Fjy+qJQIAuPN#3f0Hk8a)IJmAfh+d-0khLWZ9| ziQ%7up;3SYpox$Rt7E8zRvw~@RTAbmEy%<0WKAyo0R3GE9Ym%o%cTbASQ(y8eJJ$8 zZ?58H|ERcU^V~9DJW=Is&J-ev90 z4ksG;4#GmP0dqCA69Eh#x{1ucf3jI>Uz2d#UM~Fb;X}y6pC93>HnX?;CINIiq}xeb z(<*o{Tgg#4?BO3bW)nv2`u=z8tqvxLls=e<}>YFt&ysTww{mn@yi2KBVjo5Q+(4}OeaJOlh#AE19 zn_MhT2le{T1*+qxeR+QUjkNjj-CpEjnmvVucBNGP+2A*yye`|suSJI)jn#*I8CX=O zBK)d7*s?3ac-S3Ij-SLV~Q0hcklIbmx9O4+zI(ac7Dc=Nxz%$6y>{Z%> z7}6)%+IIcfpio0?-CO(hC;NJWx9tqEY!1KoU_qnbc(7rpL^GmjHqu9RV)22W)I3#$ zEI})1U~_0t1GOc*&js{-@siJ*$UY}^d1o$6>^JhTqGA4KRTyLG4&)$ z;Ftn8u?Db!f8Qr{YR{IQ54IP)W`ROeAByh6<$T6JG7qe4UW`5OC5h>`bFSmb?%b(g zE7Ji!1<6&xZ)%x6M9qhTn4JcdwY}$&hphJuuCSw$pCK}cwP8wHf-jAtDDnGd}d*V*#Hhgz} z&c*YZ_i|A>?lq4&C)yvO2=b=yrbSiJsLxzy>P={brI(46zbQ?9@&_(BsvD+B2S(JweB(I0#2Hsx{TUA~`pLtVbmO28n<)0aSDPW7e|AE(cxdK3?{}QT`Jb)2 zPt5(gg~$LDWTk*8u8~1uIvsJ7lAnP&!e8RbK3Zn2;*sE$RtOo0n5YDht4cO&YGVfe zQ3hI-0?<&0zG+j+JgpLmONvn!#rda1r}=z)ij%rK{Tal@PRjVNJIc34EF7Q z#7{P)UyIw6t+#iblkMXrofnMgBHCKcCno_(F_T&FgbHY%8@sew9QV|qdO|Tmw{jGz z6;aLL35$D38@nj|q38X9vw-RZ`Ky&e-Hn z*7piYn%o}rp($CJA~>w?A<#H-O9(v4f<+@vG0lu4mUsyV8JcIlyyn|1WAyK&-%Brl zGwI}A;&~cTQ1^S-(*R|AZ#iNj1E!XjEyk*6t-tn?FV0= zieWTJd_Zbm6b)bzeJ`hv??Yk+AySW?DBXHRuc%Eas5BH0kH^ybV&_2V^BQ6vz`a#l1iIa6r~ z!K@Sl-ZS3GAQ0Wu`nT}lRSJitN(kkkBE6ujRWb)pTdLonp&CUBM-n3!xnSN(%p#sCOtqDLZSx<+9;{qF6mvc z#kJTsw7F0>SzkmE7pt!JDFii!+3aQ*2UY|vK7f+c`}6{G(ToVbN;8$jYVccW3(CL8 zhDIjKg`yPl7p)80e-AKQqAM5p+Kc*EC}~TI;GD<*wPSV~ ztNi(14;fCCQ>)rJGMYaHW>Cj3se9M$vK^TmZ-9tE0FFiwz>$N0nE6k>fPpD-nJU=; z@g}l4cc9{Ys)d%xHiX3Z0l7Coi!}WLK0?t7(3PP?AUuW^G$=%*4R&GpS>vQ&h6*E_ z&_yLvIO`Ov^l|#-Zh1_FBygnJ=({_U6DwUj9JZI7BY)4~NUtijb=&r4+o^sF z^$IazI|LrVO|>8>A-J$LTRUKV4s?&h1ZGg7pOE(P%^8k@)hjjpwJUFB-d_+^N}d3c zITUNtJ$ghAVDACMqntFm0Mz)ntIkkb-AX$N5Y=N805dOqcQzeopwEd$b&~iqr!m%W zCE$W4c;)?BoDjue@m`@f#+=#4U`C6h1A+`1%zsLov))!Ag1>=^8e^;pnXy_M=){9+ z;#?WJ5ydv{*j^Lj#P8`F5c+!T3U5$edXo~j%f(Y)%L^&#*ZT`ndw+!k`EjZXcz_|= zqbeYXoyhij^cLMIlB@^{hLmIgtvn-z=ld1`5KWEZ+A6PJX1Qx0(p!E05#iac`uzCm zU8;HRKPS~~hrHr^Nuh($0^mhM> z=Ivfu`-=N6;cJE_;ebSr+%0KT;WQG&DBqv*DF=z(62RF{-Xxg0hq5PuY?pp%blBe2 z&akd58$}UCznf@me~;`#>CdibjA3-|emudvL0cw92`eotMyb?vH2t!7_^VicygA`hO3t!BAm@6ehpVeUP^RPQdHUN zw>@kOUBtt(t$foG6H}t`Z_p74t2-VY^7w2qjkah=YnNj+0iF%w^R8;1FY!ZkL9uS+ zU~%g}Bg}tgW4*g>Z-WkarSC1ZC7PUYxMtSk0(=S>&@~>&07OvGQqIKMApPwm?eWLBiPg^-?;)oW9gI=CuptR zG?aJvJaDYJSOZ7!uMsO-*Hr8@RmO_Vb!uozU9_6n5zlObcIV4}2hZ?JLJw@5dM}sw zerdWAk|ff*+{^i%BbD>5i%@ebst3E%-wN-8#`nLhul9Zu3Y5f$TbiLK=&ubpVN!?M zxwzO+`P#9{%v5t>%av+s4qF?r69NDSG?fh2%N$RKdofj8;@&_o=S>X-#(w#{ny7UH zA9Jj0;U|gsJE`)~P4%W%K6-B=U>qh1-B64_e*V2kT)@KIyB^sm6OVyFA1Jqk@>RNE zf7I%W=J$)0Su+O36~8kUUu83kYuCVxbl6cP(kJ}&@3&VBsw_0ZL!~8=4p@&dxr!X( zFo0*eQ&$JMvH?FyDD-pFXn|3}kVzeUx3Z5-(k9Ac0ZX6TXb&Y?R6 z1tf-a=n@2^8JeNH5s*%4l^nV|q`N^vjCY>vy}tjz`Qe;(_TKAW_x;(Mk?+P6TC!;C zgJ9SbKgKQGb{2P{r0^yb>h?~(o^zW@eZ1Iss30FRW2?>k;o-IR#IQU_n?=|3_43ZB z?M2Vn)DRsO$N#(lL$r|>9_wI2=kOP=7aUi+{dNbs$#c@bgFjFvR4sPy`*|!}R(PeC z1(u9jXH)-U?5#O|<)wPe~j>$GYNYw7%XEcWJKW14b@t-Fm`U}HsVx?P7WKR{He z>8%}zKi`8vAJbAQ5`{r(m33906uc3(AJ^N9)vLb1*l;R^tDDwUjU>iua;j3np>LVl zKNk&*@zfgCdjifv_y-u*OlA4p|FKIOC6`ug(An>6?ZMOAk9$LdYx{m&>7g^2z4ZvV zqv%2-PVW8it_i ze?TcJNHC~vB`Ur1WC$#HyKJnw+n$f&X?=iP(J1{<{79OB;FL-M6?kH1>+* ztgZe0hCstD@^+gHil-}I5{dqKPEqep^@$7!-(A=(%S`?7XHNC94976vh)`i}k9-=& z;+>!SMI|SiZ%1r_PYJPiAC$Z~+mqvDah^pV8cO?@r(Eh|23l}x9AmyERhACcO^eP! zA}>^Po~qW-{5zhVlIanj`jcIm;4PyKVejtckqP`muZFxwB~- ze^lE{bm*7nq?v6KX0YnSA&G-v!uh_2(`71yi^}hB`yd{MZ~o;%ey%t@eT%3#@@lj6 zhZ*?so{%&6*QPgfADzU_c3f`Gj_z@ z9IFe!VVITbt^qTbm#dg-EP(X#2H1diTG)?ww;7scFBtWG8g4DY=8{upI3RlG#H1J4 zW#)?BLIwo?D@6bJaR$-(y>i>It0w{a?g+^ zZmZOP>q6>ycp?GMjwaq}fZr78r|Krkk%c$F7!9aCy2XfpkdEn4P+@mQM(-CdCS#I^ zWtYyidOEspNW|?0tKk;4$+KWUs1_Kf#Rz|^E(Fg0@DOgssquvKlWT4h=7?&i$H{&d z?LjG}YxzXsH{Rpg>Kw^Gx7JiHAiMDf&vW)D^Vlyl+Ij>Fy5vR1;ED`j!!y8^;$bT> z)!7-tAfJ=T!}(y23v>UrDJm&tHm&^lBxA)Z#vRn+-{g(?GWHW9M`q-`U?85?2_fd- zA}adN{+*e*&smQ*wuC=6PUGunLht1Jq*7y5t$y#9tYQl*Z5c)HYBD^o+p`N^&q0(?_n5iZDTjO2fXhC6!D5+nvus97RUvKWwMy4l0V)Yxy$yo|x@zjAlA zS(YnJPxrRGlpq`;X*K2H337c;NVHqr%OL?b(R*6&HVI>2sU!Y6Ec~0hZh~QZ4aIbG zr6l-Nl<>1}gMUq5CXPzR_Ct_$)VvP_&>9xam(MZ6Wg;qC_nS*4oqenX|MN8Kz!=2f zJ7+7&(bxpGzYN-0Z&w`FRHZ_*Bl6Q?Hg4aUb08}U`6namy9CcbobWGKar*(X^>lKP z?uVVu)*^F+TPhcU4RiB&f`;tUnyS+feNtXS@LAs;eHDE$c8YO`- z#>zTw3bX{Js;F1WCgx_7UQoSy?tvV-4cNEIQ?BN1UT*W~Cp1oeDJ}O^TX(dj1_Mkx z#!Nb+XyUd#yf>EZ>*9T|Pj>AP%TdKqXauKf4m=kjd|~Ee{;q}+-&vWvU!uJVX3@A{ za^8#LpnIgoC*6{h=hDW8lmaTK{d_?{rs<4~NR)6Vhf>SGk-MdM__kTmZ(}4c6y!!< z8}5rQ*yu>F@R_-y+3 zu8%)y<%_l9H8NX$jBlnLG-J3Kc%i6Tf`eoY?Ehfj-yJnI_@dV(w@66NX=}$@3&|U` z()sb4dCxP^*M4WXt@552^J0K3Eg)SxHZMXAKVX%2X~o0!@q2Eo>9;O9=eepRU^oOc z_%m}Ohq$`#fzY;@w@+))xxY|=t!zBEqn-Xv1H>SVYO$J7>hj@%r>ZCq8cb4`{TWy} z@#~1B%(&e<0#y~>weBwzci`Q=h0llk_RSL%;fEI#NnUTFHY4~M@U?IdgaDRh8buiG z>dm}fpf7e`eD{dh%A?EBg)rip!zv}*z?I(wzw-G@bQJ>`A?6|@LbYf`);p>-{OG?{ zb2K17&rb(k*oR)rSmm)^WX-`@v`^j_`EKs~O_2|qQ@$9Yt zHsd^-#o^APl{7vUkZsGrb$la%zxfpi%KeOv-_3%}^dfHLc$^_?we#a+dw@k>dAP%h zVOOJY%l%Q`DJ?!Do?CIf7xgACEp)Nd_uqGpK(&IU)_^?F``C^#f9s$(3`O=_6|xAx`4Re& z!M7;s3IRLbk?bLTZ9qLYe5RFe7c8rBDJbE8hDt5x>qW98d|W?uviB<3KQZ)9m2HE*_0Xe-BaQo7JbbcFULdj_;Sc=#6Azbrr7^6d}T zzNn7GHIG^DwmZT$_g`#vao=bD!)(L`zKC_Y8R{S}h&k-uUSYDp9e%(QqM z&wZ?w@!o3f+@D|e0tld!6>>1kP5+{%3Pb)xQ!F8xN8#;`$wwu&i{T&Pe_}pLb|3eN z2Xx}^^!@U>Pa)Fq^ZJ)Cc&YXwPrKHmz`P@`XlT4sL9a>DSF_BKLcg-C_H5p)Cd@Hs2r(Y*nzvh<2nqeFYUd&%T@I>$8 z7%UYuM7PYrYX&7uM!S6DMV6gEzy!8~$nsqZNxaQPboiukE!~2egtr`~CZz{79;`(- zs|A&W?)S%H+(bqFFfW}|<`w9^f)f^%yv_H{VTf4X)4tu8){kZP*UkudK+G1TvQ@K_ zDI#C2KV>W|m9>w4Wh7Gg?IQbmr4U<|-KY6A+%W!)uSd^*I_H^3PNcdP8v>SicO`3r z3OXCy92$-I(r|}FCZ(wyuEh-h?peQ2!xg5Jk#G0HeZ~@Ll(XuEX=%u!$Gs@<`i5ILRJ=p2ivsu4jW@SzUFU0x4L&aETKAvNZ*W-^;xq`8rgyWtbKM^SB&5ICD zOmgYc#Giw%4DRoT^d!wc0D9VzW#R@0FWzwT7kRqW z(oik>QEEvx|1+abFR6=?7x=q|n$2U4$P#+KWN$r4gYh@LHfrOUjDK8#$0w-<4pMzh z6doiPfi08def54O=$Mge3AU{c^N%lm$;>;olrT+8tL;waL&8v>B^v+1$-VZf;WC+I zif-+_71O#`uYpotqt~+rxn1_?k)0xYm_p6-^2O?@Y>~^5rsx&NaoSQ#I8=e^$u`cJ znP7&QAY(%us3B7~C+{*?uWI{Wm*ww+SPJlLb}OwI3`x9cX7hwJG&Zl3pFhGSL@o#u zj7Bx(DWyGX{+6Ct>U3$8vGaTD=k^Il*kDr8iP19>W7E37T;1t#S4k1EDC;UM$8Op5 zmrD9f#-I4VQSm#Wcxfi&sUEVaYH@)5r4tT57isxL*qby$fewXE=e`!*3hXD3y|HkY z?BJAPGa3;l!kU<0mjdN;X!_A4eqEtCxLi=j!1-ggSAP#?6c=M&_5to5+*CIBnX71@ zfjd~OAAySbSV&C|Ca&a)dY0%)+9$mlXK=+P;xRse=U|%6=lSH>;sA-+*YP)r$F1<) zKHt$DjHQoe%jy0*w(lF!d+7u?`})u@CCAY9l?&`rjK~Nf)1$*vZD4mr+NMd71AJq% z;BD`A(Ozl#9l}^WI}2&UZ4W}T%F5Ifm%R3_yjHon;RWkx(h^(liv-ozH-Cr%4P9oO zpAdZB)BjY~Ci?c+Z9GED&RS+B+$p00UrJn7ZB2(7JHT8y4DduK2||zG^YWR=t&~yX z)BLrVpj&Rp$CpT_)6#*yU&TKN-3aZmwE9?L!bl&ikDv8K51~j5Qo4D`rrj>s07l*_ z6KNyu0HqfF$m_I9E7K#AOj8QhW#Cc$LLcwqzK1YhzNj@yfk_v-vPIzE+DE9c1L_zD z1;#qSMif+_mz4M=Eb^=-{p6u=7{*HEVFsZ)ZGMydM$$n9z&rk(!mV~S)=2$Kj%5BK z)~)ekpn{z&n6o-YMyUmC$Y((c(%$eM%qpS<)(O*U?X!yIt1zqANIN=@MQEKNUxs37qB+snWUH01P-^xFXd^ z!;nrE_f96X1clvFJ^OG3d}RFZS0+1-M5h#W?XYKvqx}6W`F;Q!xQH2GlqSQZX}S?Q zJBseJJ6j!HEjAUSlj^i>f_3@_N}J>g`Bf6M?S2xf-ToO}vaJ9r(tb|XRW)P|*#)(JEL)v-g;>}Z%1785;;T^ zYa)@5ysH#wPPB5H45s2B@;VVdQ;;-0A=U2p01f4=7S-u#er{)%`~>(bP6y7um>O0R zC0~472pH(T{rS4#_SgV6m@ZYVfNhq) zNRrBw7Ac3&*}c5jk6`ETZF&+?BYp~nb&8#|Q18uKn$VjyM1 ziJ4MMuehB8>_h%}qb1Joq+P7+c}SLL=j(DhG6JSS(rQfm9z{|JYi3G8h@}UB(q2^s zTUv<)3#9w|99l}gL$wF5jHliNLtZc0M8`6h0$bB5yixNS)xm%5=%;w%D$S_Ij?l@P z6Eob*jHqUVtO8r!Ofy+_CFaPRSh#}qeQb$6_<8~DSs_c|+F>eP6>!@?u|5jf>3kp6Ge#=T3sZ9i-=RX#(W9PfR;Aj48gq6Gf|XEY*F z_ER0)<|?OV#3Fz#Nj9TwtTLQr%HNOxVJ1^U_3#jPj7>h(!9K2#>cqEto}aWLC9gq6 zV3r4o3`<~FdaC}?yFMh|_sjaUxL6sbw$@kck2@TnJX$)OAk{9!^Xdup>vp-dgHOun zXFFV}T>A}BU|B+`)HtE!@M0s}o@=rtZg7Joj%sD|o&}pzy|^6UCObBCf_p z@ABbd`ZOV6b0ssnju_D3Vr@Vw5B|>CZ-5YucqU)_E6<;hnv|>@dqkIe51qC-vL)Sy zl>8X6^K3<1F}5K{73C)y()I~sKlSD44;=wptW>%3D3eX3Cc>2s08w*n*PcL|5Wr}U zV+4`>_*x1bxbE{u_>Qv1G}W^3+pqrkF5n;cq?;$hsz%HG=kUVe@D(J2w0D_u^tJ}? zKb=5RVaafjqbe_75>Hq(!Dhe+^c}()a?J8Raw9<4Ulx8c?7#+AmRGCZQhCm@Ap45c z<8E67FD3Un%1I?t9qIrKt8!d0>?G{S9;0Vw${t;6;isDGaHtE0{v6FYb*33U_6yxy zO&)S$YU6YnxijD2miy2q9d-FPGtES#ncH+LqC{Q-D&9t#OuFpEh(f%xhe-^G(HbQ- z&2y%sT1tK%>0^;Ce~Hyux?x1t)mJ9AHeYAum-1#%p_DP9pSQ#WU<{$2oV0+$6B6xTgG2 z!o{xSFnrB#*^m3m2~23^RPq@}O(4%`{wWc`h?8dNp<=y7C;dlM%w{Rd5R6?h>#9pp z(I-!86M}R)7soi5p}P+c#7Vw!1Hw`8H|c`B zskEzn+MQ`?*}PU}Wne+ykkO~m_Z-R`G2%@9nh2HUN@WC?VrzpgRS%J<1?4D63f1Tw zVYu8>e+CgW9C}Gn5!NFahEr7zg_?$M5SDAp%=|!G#9vuLjZNMv47FOB!gi*}APoxG zAeJ$XRqiGftCs*^ijPdUKY(6)r&x)xa*qJJy09YK^exlQ#kSae3Xl1_?LVkfHZAy| zepl{OpAVjC-X>P-lkM3hTs?&3B_tc~hL|MWCMNC^&3TIOX$D+%$2T8eB>QJ6g2%C= z@S}|Q!irU(Kr+;U?{7MeJ-87k-mU_5=udKoF)D7gpmKI$yJO{)j#gb>dP`zK_&6oo zyRC!WCM}c6;~^T{akRC5kB0d;)i0}&MIk(3MOlA(q?u^2ej`y&gred==TdivIZV4C zi8h&YRt7A}dO1ZZY4;%&eXf50slk@(RU+JM+8@Y+bz(fP5#eNkP3Q}$NhA{?K_bOJ zFtk*iP=qC_9~S__TkV*IIE}fO2=g=hTk&$Q?k1uY*^9r2U6Kpo0$q}aJ#HGqu1E6WK>8j} zZ$`m*FuHyD@m;?;I6b}j^@_JZLvDM^Uy=qN$pjST01OWz-5~IHoZ3x82|}T$VX3UT zQm2VFN>i+pkiO#p%H3H}{v35qo2Q4iXv!FrVg_7Hc-2^>C9O~WwDtZtv6R$|w1p#7 ztaafp90cH7-DbZqbeZbtkWTg|;`2(MGwu0H$v|4nvQ7BF<@-gK=ygFbIeKcwDw6-k z`--vkVuktomhtoE-)$6rAWlSc!uE*Xy%Da#{-BtG6xz!d2#ic4a^J$b%!eSA z4B>AWimjT9%R;J3L&~qmTFge;bU~^T3|JCvJNxy-*NNDNap5$pwJup*El4c>oVjS+ z?XQ1RcgrUz3X1r#ljGF?^V=ZB^cGE z!c;Y-&sC7HA`I8jyk9*qk~^l(@y+%&;Ke1w$5Ubh&r-9^*J{5UzXo$f2)Rakv>bG- zNh}QJaWN|G)S$6*E*`t>3OrJ{^fITu(^yMho3A>F(&Y}MqF`bzCI4_CL$Uzq!B&-R zdXgV6WHcRI$d))TCDD2+dV#eMm!a$TXsO1BV-eLlJ(3`u2EY9NCYLCzWBDnTManZ0 zpj#!NT%yAfnepqBDzMS>OHO8FNqw{V0A69fc#lD1X{g)bbMo*a6N6-X)0qcpe~~2H zId+9VjOp*CwfWjrlt{z4!iUMLz3vs$fCzX~6xzc2dIfDRjNG}WVxm(@VA3J3?j=6Q z$c&sFAc}p4f?mfo|> zKc;!bWr}6vh|nDw$Ox-oT7J)|zWX#yvxKW)F3j}&VOo#mMJ&_9jPW;;sK4=nu}l)u z9mNXFGUhoz`2)8YM)_9+LyWpg1IpAudGv;B_raEY4?f|)lC|hfSQbh&!EN$5yYX#W z=;}D0+o?eQ`$hf(KoPY^Z38N*l+(crm$NI=BX-y36q)*E$+Pu<{KP){)ve+c(!|!^ ziFtG+jWl_Bwdo6;R51;=#*G$A8ID z@N%i({y!THTYnEkUYfc;q3poMU+1H&+tF9}%Vk<|&RdK_UFr;j#wVFYXD_sXd%E}#Ms=jiA40u7H0OsNFA`C53S=s zMz^qi(^LU64vw$9dcSPLDMH@gK4n^YJXQyVr!i&S$rg_jFp+CL+_>|lm{a}ylcRY` zPlKVfn~xuhl{^ndzcUUPefOD!w;1_SZ1iL_T4U1rQbNwBbbm4H7RH;|Xamjk$r5ND zyQe;yd8HFS$1Jl|JQS9*x!=444C-tWS#XFckLt_2793|CY~5B$@^XZ(&&SU#LRcR>a<%2Xmo= zDRBZG!oRMlwvP;I=Mj`6fuYPoezlru^EU0zMRu*jb8D-JBI{ici{Yh@j?YP~75zSf z`UVtfftytZ(TqQ?w*U5?dyIR--dJ1Fb`J!9Nt<|Kj=*Bd#xG=2O`=!!7T@9*XET7l zC`}4h=_Uiv6M{Yk50Qg*Z7VFql!W`P&+~Z7^k8CpQIm=THo@iJ0}{Gealc5T{i7CV zpGu!iPZue;`_PEZXNV5awx+>_F7y|y5%8l|I7bGt_#CWIe2_d}aA4?e6yqxFjp&yuB_NS>0}k31kZy;biTPsHO}AlOW?5xAU2=jfSG!pPx6j z4Hj2cc2Cv%X{rwH!&NnoU0U=O+=&=_fD=ofMN*hnXsWoF#Eak~;C%XeSUC*c(LfxY zpAq+L0`PK35?g{NNsuVvi#1k_sqU3|`_5)8A~oFfygzw^r7q!7uhv8Rko34#iukIO z*@_V!d4z`F(qd26NA-sOD)ZXWn#K>t+Qh2GRmN90rnkk6><_NA8;l1~cuF68xp@;- z&l>7UvHpxDwi{FFrw4au*`>FYV5v(Om%j;{eBo{+-}g{%iNZq?d+=9n`hao8qHO*# z?YkTg{y~HCN|76p6Yqj$K7O9PJ7?kkpBEsiwW))fX@~gGK&f3li~@g!JGyea$l{c6 ze!lo^LjknV0{HF%Qwd;0QF8C-MSwgj+M&VEj~dWZ-`~UcORuEw0*Gg2cvMUIKmv^45Wf2cwyk*x{%Y0e zPk#HG<@C$NIDcAvXFz0fYiask|0ecPxIqTb8#cCN*%U4npxUu`qx^IHOfB*q6z*!A zX}8iW??XnsWsv_b-Wswt1`px6o)NjdmQsYXZpp^K}UQOHf3N>nZv!k>b)CAPqQ$XHXq~a z`I9jGTP?D|v!Yh~K#lcC*4%GwWaQHGe{eR7f^zi>*)?O}wz=zyy5Xkzxcl%|o)xjj zhK4B}f#dUUTt^~>OoJYBG|hZmN4<(%h{{<;_TY21atKcQx+Hj8>rk(lPIRPN4bk(s zPlSN@Pof(-prW2lyWNGwm(Spd-qJY?NPMpT3E&@!D+!kTC=0moP*r~_;JBO<20fH$#ua;4Ad4+ z+r)gX@*(vLfNzRSwbY7nYns28xU7T-RQxDQ7^90xIO9`|v>`$UJzGo*hM$%iZFBv)5AGUV zPwy3qfv?2Fjephn%S{5KV`CF+*`J@)InwO~ z+OM$@iA%S{itOldIYhczFe0~dIvBB~l0?ph{n=Z(m{$9R1#kA^m+O65_^s;e>pqZw z&~}Mb#*E)^lAJqi=c@clj}rXsfjunKEm^)FD9c)NBA z=4^ZlZ8s?mZJI3geG&7%#-c(a{+VK3)($;_S^Uc>crwIE?&L?Zz zTs2Jt7%|OM3!e2jtJ$RZTUDMrMVjRgrRfocTV@%CT}1DcokMw7Kx&`KN?6dtk1x;` zmg)hP|K6Za+IHK@xAk||DX2|iENw2cw~{$vT2eU*fUd!$cevz_5-z@xr>|?Kdd3!m z<#2CbaPIrX6mVA`ist*4;)ZW1PW%xibN zZV-)#OA+?^G#3MUGJZxKp;pEX|I>)s*HN#lg==atYsu)kgH4#U&MH&X1w_BO(`KXN zY5iC@ZG2TK%G)T=r(voUF|Bz_l=F0{td}ELM>ge{dZG~#8X1+bBjRU``2I^-sB4uS_)yeo zB`qnC^qgft`W5co)_YwiFgeihB4cWQg3Hpk- zyXTS@vi^F``1zT~u8cPtS0Gl2o|Bk;e^yU3e2?F25s-sS`K=m7micKPe&KB<;x~e+ zjMhDmas;@=J*;$Vq&*vCn~clE-Ym3`$*P8?!t83BtE-di-!6wQv7w)s>nCOzZ}WOE zn7Qg(g=pb8!1^=tbe7jB@uYh`%ZGsPsSn%NmErC6-s==}KX$E9W#54KCP#_nAk2&v zW$vv@Wz%J5gtjio$n_z)`Y}0#)Nv3hjs{^&GXTYHN7t%%ZGsd>p+yM&e)k$co!mZI zqs0bVSRj*`n#dvk5l6w*w~!@WB+NAtMyanG&S*JC+9?4_ucvw;BN3YN*TLr1e0jlB zC?+{JhhF0D`1EtF)CQ2 zCs`c+MzZtUbyPu7-yfhV73{1GES7(!Jl;QX(ld8D(56V`K!9bY;uxOsI5YD06{Rv( zo2*s8rGWoBia2S{{Ri|p4-um^^|_fm8?@HSRXZiG+9Z&WX7muIruTo%Qf#^)>0#O^ zGyHzCdlhX-j;{u6FabF%UhNqtlBsU~u^eJ7)Rq;7`C!rx4^WT^wDF1$9@ zlIrj3BrzN`jA0&1B`&c!-JDD%=BzR7P>{xJ4zgTp#sYbQ61&Da?!#miiJwF;O30t^HayU{#cvA(N z=B1#F@GTF@eug7x$L@o4H?|X5!L;S4ou=HweV3=kQf=4F&irZ}grwc2TmB_B?|V=Y z&)Bx<-M7gZ3;&2mgV*|D$}|ig`o!Z#l)^@d47n*-^hkBHX#Rg}|FQ%klC^R<^F%}| znzZ9J3)?UnS1pd$yaUnj6Puzu=*bz|HW^pgp7pRQ(rRmFzQ_&^$<0{u9iOjmlfOpI zsqJMkJ9OOkn8tg%b>JK14{434Vksxy8I_3D^vN)NAuhrpB=FiY4F(zyRxpy5^Da;k zK+F>%ck{wZEy0Fc%m2Oz4WlAzow!!NSFEhZG#q{G0cY1yLbjZlZEiy4DWITF#99Vn z@`z*@{j%bCbBI22S#9@)NzL4%RP5bSOLw&Z>zvktRwbX)y zxF^5zt$JV^Lmz_Dx)FEq3mLnf@K#dtw2DTwywL87``Iu5~I>Y(Q1FMnP+$GV6Vx8(HTj= zc$(YDRxObasZm){Mt(C;bH--eXx-qo-ns=l56|dN0$M6@w@XVaEZTs%TID4d8)y9| zMb_F99q|Xk5EFbfEdT~RPDx_{~t? zg9>bWB7CnZNmkYfI2;wCriD}W1_5VciYZH+D`S^?LTY0rA*~iL$@JzqdQo+dH1-g_ zn*iB|L-|!bbOJQE0Gzu~=zV$MY+&7SdqQhUd3Wn+F-vSrAS2!JZ*54=AQev0a2Ywa zhj5@LjK}Oz9@^3v3&*!^fV%ho%T;cOg@+o;>7i5}vgGOhajPGu`V;E@G5dukToI;{ z%9IpoB=3?vhH_I*J|*GoR1wpljCL0p7|Xy}kVxf;Xh8iJT$avmYF~+GO&R+n^|?a9 z-s(YH#s168{e7StO#RpAm7!&odk!EAd)SaN6Iw4TEo#y_S@Pe0U&x+90-fwIUX>J! zctDGJhXY7M6ACiqi+-#Yz!I8*686m7k9ps|)qtY9umz_`EIi-O8m6!e6#zd0ONR4; zO7f$V=6h0S<@^n<2MBDYi`i$y?5y{>{w`ElKjvtzH9hXmI(%3j`JJI~1>?#6xC(CYQ_v;u(KFB68Qi5?>6~9do&7Br zRvt?$2+Q}A1I;0=v=3(oox0M4(ev`y65cCgr+_ z9Mu^8<*7J3=aGr;VqwamiB%k7r~#M6gPbwa;Dm!|lax-wz&>?*5oiM=AxOR=h8>bu zx$1b;!G(aoXD|x`LW+VFs^sAX_@o_|vj$53eQT(~P_iXKeMX8QMvCd`BH!SNrtzi4 zfEZ!F5xuvWl6LC98=zcLgVOqm&w}eOkeZ79e<0t^mAnN5bl<3&55A@+D%MY;~Q14u^>4LqU5S*SuR{Dxi|t|Hy0D29IA%i+!V~0_N_Ri?(d3 z9d01=Vl>ZFV?aJ`53A^|C5P2pb(HsW0{i|<4mS8TEjCDV`OBPm7j#?vP-~}KGDIf5!qQM7 zU6ZIbWk^9P3oK$sz|ks1gP>Zp3L^kX*Z5|Gsoy4114iV1jXV5Wv0PdAtY`)p@v^<^ z_G76fv2lJQ&N&^~lzOB=Sp$ZjAo-M_%4RM4GO%0QXt7+Hs^4J6*V6jHuCCY5=bwyy zpR!?uflAKvAW&LrR?DiCHarG=1pMOY{iv{L-S*?WbtFp_AJIxgdj1mc?|)r$_Kq<1 zTX~A?yNQZj@%_J66Qdg5G9Jj$=1M@Ko zL=V2K{3jdlw<|?1-r)^TU%!mvN2A#fXssdJN6Wcy`R!sr9Ic0mh-+b62k%^W^^D!3 zX32(nYH<-+IJ>sjz?Ux;k#y8GCy6IHr}PFAa60~V8>t@?+oaGW=Xi3NJ2;&bhe5mi z`Y)1XfdL^-THh}}B^RPmVhOZ)CgPHEi^s_0*JfSdB~_DW{QZ-lBup+3 zB!l|s!o4X=`rlY9;E{T~G+|*=V+7)^k8>H+J`!oI8pynJF znyP}13%;yZi&uI6b)kO*C@KUPg|GQnPAv6_mDPw1w29A6VNw@|C#!k1Xs9o#e!<16 zqGg8ap9h>A*qGhdtR~{%9^dolgeA1E+y)mgaRYa&ixiO&MQ@cqk>v~A2GR&H(B zvU>OD?!}U6;RejTcSv*?H zd1|Dt<{_(2^sA5V5o%%f)%L4ZXsTC5x?JQT+G6;3?%YEdndrjd+KBbaSC7q!l4I%% zq||QMm(rd72R3zwW4@apxcmf4#n6zT~JUBqee9GTcWzn)Pg*`yJ!F zW>t@VOO5a(7W&ewHiWMO9dm!K%^XLR*Az{ZB`2Xb`XWNoVLQjmMHY8Ml6S5;(*7q0 zW$TX{oXPb(^a8SrGDK@S53-4yP)Kn3&6PZ4pp5T3iq$PHVUBfAAi@DRl$vQ}qkqcg z9P_*3zkv=iSUmo zld2K3C>Fs$!o%VzSP?NRyiT_52C&>QZReD-N2p?TWn9iyF9jTz?OF;*+ldi1zc!H?q;bMT)6+0 zq?Jxn1y#NoFEM;OH^nJ+o3&W>E5Fg9s)*lF|5(b=xmArBvk&;hU@i!VVF{yck1jKr zJ~N^ux&5OZ6BQ0<3-XYry#r}!ZFT$v%MarnIv0udK*d6J1e;un)kcKL!yz$AUkJe~ zRNyy4l{-*3YAC3REfr<^i-MNhI<=FXdHa_jtM}Tsst3l8AAs4E1o;?;CGIwCz>YTy z7WhFt*M%)<(fbKdVf%u z?(y_qhvRTJKu)j$6mMDaZzQg`_9*3)qfM~_c^WBneXatl+>nFF^46-4VrFjFRa>MH zCZ230-16K!D~^S~V`*?oLK*GJL#SR+u@TA%q}rg@oiQtsDX!Y5F5le+5>ygp6M+!? zpv2?IjaPRlapFOfaEvK6^CPH=J}9Sm#d`xY(7@^1%S;%xh2e%>Y3TuZGR1vLP*u&) z^N3H+_(?mAxoGDBm2=wK9cJ6J11ey8GpoF7kfTN%gceN1?K}+K0R{X;Iy#XBqf{LE z+3&}Nn*x}es6Y|+U(~d0M4QY_4V&M2>CJvzt9Z=e+OF|Ua$E2t>w3?g(pTIuVlp<` z(~BiwH&b8TrT@q#!7Fm(=B-a)EIKBSZ3%eE83zxl*ATVD%Nj?gbMcduS{P`4tZ!zU zHH2Z$v}*F_e?Z?W_X0iE(GgNgA|Z@YssZ4*>z1(A&7$MJM|p!c0zJ+%e6rSKehal3S|pd8PqRO%ia1X@O{wkpl`qfw0m0nv$@S zTDdJ0+sX?I=ors+6}9us^c#KO*a8ytCae`B7$K*p>+Vmrq=eROv{TrVRo$^BmRh!f zmpYT7>?Q$O3(vQU$FFkYjD+Tv4Q?^P2F=2V9fl2&qAxC-?+S7Z8;Vv#_u(|7kjN3w zan``)PJx-IViLBHDYFm_cZO1!V{mM}WP_no#ODQ&lzG6rx+$&kK>I(&WXqWX3oe9D z>6h9a|BCbJfP~75QggzeQOP?^?o?2f_^Jj*X`V@wNY6X^hNJ8+6srvYpsNHrKZ+J$H7PJDhq9ccfA!1F40}Ct-1SAM@+WJ(7lMN2a1-Z z{iZ$q-Zn-X8uI{IR%G#NESz?{1KR|UEk*1;Q-{1SU*;n(*Nuc~k359kM$an#7}J%y zmtNlJs`q0s2>B%cCT$oFgrnlc`h~ zGB8MC<@;PEA{u|cXagFUtib+X#DoXMk)lQ2u5d9041D(5)0}p_PEiUm?G(Z^oko>T z(HbSc1%aTi7I<}dE=Jpdxj(Q>HQnEtz&F7~3rbqT6$`|<`z_d@S{V_o2E9~*zLrXA zp)6(O9uBU&cSZd@CO}&0CYe^en+{2MIcuNyebgS#F#nXMNLjZJOpyOl+>YEGMdD9} z;3HFk5E_z1D7<5MJIa$JhCDNpGi$7N*M1PBp>=Z#Mk$eSX@QH_4}; z5KNV^D^=#=vE!Af{+pw@|8B15buBt((K2l&@Z9d;^W~Arudg>3C#5hKfVYp$>>*h# zeFL@+9UfjJUOvrx#|>12(1bCpw;I)j)q5q?PyZYlgSwUM4k*}8EC#G5RgM+txB!Mt zp^Aqc@+|)uV}GQ5IN=Rh){BB`SDWFMebRy+46s5(xTUmS<$gF3QguDH8;|&5S4_57 zFl7$`d(`(Q<0CcfEwkmA8*=S=-$Z+x<$YntV8W=4j{qE`)5+ld8$Rb&gKucYG_Z$s3E&}SM-GNKZ6uRDF@Esm zUmc+RCm?*YZO!Whc2Z-pPOW0Ua~x0e)M~SMd6zA1rw&dE`$Uz`|NZk~oJ>}mpspjU zru76=+oR=b&%p(iw+Ejl?jkBH<~Ys&Z#ggdBOrDetV1Ff6{pIgw*iZ0%xJVs=2+Q4 zKHN8>73m1y)d+g5-b&+^!;IfAf|P_`;TIh;;4~1cN<=Z$$QE|0a|W@?y+Too<>!rJ z)@7F>rmpV~#r)rB+`N@wD8ivfapf>>8Zb8+@AIPqG8^Tz<`^A8`?JyQmlgoIR<-E} zPEoYWcmElCDqSDDB3NyV{Y^#gX3*ETSA1BKDdS7VIl%`Gbz<6B%q5A5Vk?PC!XQS8 zR7UnszTV5@Y^Ow#qIStVN0l4Fwm!Oug5Xxrl;ltcGN+MRSrt1Bwrm1Kj4lOs4$)9c zhofhjR~utXdarW5R*(8koHOtPJoU+DVrI{s#*Ka&!4h8mnBQy`P=7mLvis(4U+zjw zEs2{m)2L7a`tlfmp=AhV@B@X`bas5f)# zjz-JRh(|AF(}&#T--_=jDKa6~oMc38`8=v$p$)~MX!2rho zyl6dUK%T{n7_Gv}#y6iITOYolDkME0OT02Knzd+$)$ zI*h^;AN0kMXV|lMS!JNOC?n~08A z{$Uu<_M@H45=xz;YYs9f;|#&ygWi2002me4eY=p05L(II)BsoFbOrN8a9l`rxfU`D(XsiLXoqXs{W!^ zN0}()cMXeu?qIZoZxMToqbPVWL2SkMPjv=Aez5NAc`HRwnfuWTBynR^074P%{;O~X zRF`{kjbVY3GB3nJMF=AUpZ02jaqTJNy4S_cY7P|0!el(seG6MOj9b-goqa zpkBpUnsC2c;w%=wUE^78uJ*5jo6+?TZSlY)A~d6r&Xu(1Z@j<{pAgQaF;Ui!SR-GY zu6;0Yg}I=x?Hi}}uBRO%Z6UBR$(fK8MSLKOW!Mw8;w2l6QlTh*Kq#J=;Q=pvs1N@Z zgOrHnFG#)A*Xbeen&kEWyZ{vpdCy|IclQnJ{3BN8)qU(%^%_TSJcRMV5y?^~+{f?i z<+xLtlM;1^B%lDtpWAqmf$?`?YyPr~X~peiQzx>T<@jKE6d&*E`xobpW@2YhKeB#A zt5%%AJurk+spT&elsgM~yd-`Z1>f1$K;TEj{AWu=s8sPkd-rBQ>2@e#lpy(ASs%oz z5XJT`HHtiv7fVt*6I}9{{n@HV3suHJop0KhuE?2h;OwfheZKyx_8)xp|1A8l@;aAC zolCwbPOyIt?=FDZN|k_lWrQj9Dp(eDGcmZ+yw>`oymCEqq5CJLt*hVF<@{Rb|1tHJ zVNtekw6~H&58VPow}65)3_~~4AP5XSG!lX!J(P4wNrQqY-Q6k8kkXP;((&HUe;@nU z@Avt1Uo&%G=Q`K=E!n|;EGB`5(ZA~LX_+$zlS|fdIo&qE)b>5DVQAz!Rs?gXvgh1f z{6{rUprON^$#P;Q&eSXOCO*ni4_!mRH5Z{*T#jy%_EG7Jj`LEvh!8Q1j4}d75;3$)Ux^4y&T*#tf=NpP&| zvvdk6VoP~kl+QD>n<2MEeGHse2_*K)9ZYH=k;kIltFUE{Vsq_erJA9Dl~@U;%@8O+ zLFbUq<1qU6)(LNAq4~Knit7nhcci_LzNj0>+jZPgk!-Q)A2-sSlE_EcFWB zV4Y*_aav;E$Yd3!$UNhmNVQNe#puY4auVfe&}{kq;ERu9U4hY zw#-99eQ|%HGd)8Yvb;@KbJ*`Jfr%x0887o^URx3Pm?O1mbEt=K%QB{PyEiYpL)GD%W?EV2DU(x< z#X?qe4sPpS!?+U*aD${COx1OZ(Lr z`4w**jkt$Lw8aP33&cHjQj4+V#r^5C4Sm_6U_-3E-4rzsneDe9Xx23** z(mM!tU~i1983PQs<&3yxQlyz~A|%sa|C6z1xkh8ts|nt8RF1!nQOQqtQYX_JkQW{N zo5@tAZ75=DW-Zv6`zOi%3-(`8lUZ%s@%)XkA{|3DY5%e>Ub^a4u3Vx^_7mu5S-ck# zhe3iA%hgrGL!cjH)J$1z^QF8Ip+Sr=DCN%Exdnw#D`}#&k57+jo|UXw4S?R9Hi@_7_y44|Drg=|@TX!vW1!gI#|9hDphmp}(_bh$xEG%UC znj*_ldo_`?D3I33)J|>%3oR!lHlRh85-(iIV1+ELNC}>vg|O>ADJb!;$t6>!g=zOa zT~Dac)V3_psZ&7r5MEj&`%q|rEoH-JIRyKO7N!P7JU`SW;EA|#0R~4*xKZsq7ikQF zdo1FiXi}eSOZNR(@iUaa_wm%x@L7@5$KO*%%=rx8b*K9db-etwa;ozp3izwU_ew3| zY_%*1Z+R}BLax2s^s#~}$=a>X(a7_n)rR>SdxVT&WMR*%PJ(E>o5$P2s$ct56L=q_ z@~1JYU>RgX`+kg|Ocy#pZlO`>(60$x$uh8^QlU_MF?PVXj41ymtk4>51Y;)ewH~B3 z;H^J=T$`(2oe@;x=0A4B#5p&8mtGf}8m+E7+JI224|Je-MZFZKmXo8Wc_{=WtCe7S zl;)mArb|A*1H%JFYyE8;5-(C&wh_!$27(E^GBG+VB&DkV2H27Ae&X9k*eA2;XT-*v zda`6&Av9d;hjKpqCVv@J!gbs}G)3jZU<%5XMXV6o_8(Kt9Lb!`OT+CUuZA;KVNNvf+nkqyPQ6*$^5_dS^af;6Ib3 zH*K=6*~0GVP6NMb9OlZ-kpx~7u7fmwjqh~Nr3!l}g(BKsM-);R=2j3ASIO(j%$1Ts zJ;xOKKlKLL@@La*ve&vc?TH()abByQ@FsSurzyyr>Jb0bGiB9uQ#Tl31oI7eB7KX6 z0fiGnLraeDSfT?=6@u=N6rRgj?}n-O{k_>8j)ce!e4;>g1YtP8M3d?JlBvDThjOOXLw^5{oZ%)IT4?P_**kK+l)%qnG zgp|Mp4;pYmE5VS0tX@&%rqJtC<`l2t*08_uqx;StrI%j9)q zDz)R{bvA591gkxS{X<~Mu5-A7xIyaYf5^*13tGCU_hh>n-a@a$^ZD7`jdo7|7BcE#V=8lcwx|reDbX1=W4z7f4?pW z5_?oj+_-wG5zvVYG5ZR`;~#}pd;Qg=x!b^(Pk8rgtttwKHXOyb6cE{;lfAq3hKX*4 zhCoZe0R&rd(0JU!N{F9Zhp$%jhE|de%i3uv&z3%gF)2i^vbA%vEa9# z>B4vLhc~5HydEJ9X|qzj=Hm*+EQ(*O-qJo>`k5T{Jv+^C>?K;m zbi>}WkTd}WM#yxStrY-rE$a|0D8iVZzJ$nD9L7ja5G2X;JPFNu6({Z(;XjtDLp;Tq zLIN4iNHLwx~R2yw)ZkL~wjRhDs9Xu0#@o3H1?!9}M_xYad#Yf7u}mnp1{S|*C=9&7;@scDNr4O) zjZFTR-RF~Nfs;cP&Dtis_9B=^QUy^&{6>{sJEgyM`_0BygDPF9kr^L#A^D>`6Rcth z!XUgREzXZTon7e!e+y*pyG^Pzus-uiccloaHmdZI?^%kHL}1CNVn*o{5;NYLOI==P z#pY{si2Ptk*j-PRMQX)ryv=_2#pJKO>L6q~%m&h<*~xE_!`JQrZUIPyM&Xln`GA=G zc%I&>1t6;_z2~5?9R-?^ce@GLlyD@aDT!R1f&B(>jh!yKH6O{rK< zxlgYh`uECq-zd5Hk0-sHLHjsL@JRgX@OO`#Ml*YyJdw-L%QGv7Fz_VLSx`o`J^$tR z{eA>xs=$VPKsiuhbr0oQ2ILI4BwI(kI9}9KhPX!`$=fkv0!Nb7kMo|f(HYjmfDLV) zs{+|U7xbCU7r5o(&ygUBS;;F86|Fb(LCpN8R_q|i;_u?Ey>B0zfweP#Jbt_1?p9cX zW@H*7TSa6zGWA8+aH4>!ioB`(zvyM;!PzCslx?m96W=&`AW;>W&VBQ4)V@ZdiX2)P z)_lgqyybD*_iJA3D!&ai7EP|h7qvJKLvbX;n!iuRFCamdLTAIsx&-g|gVofIo0$x# zQTXH|upm!n22K%O>QHZCMIM#+*)oOSIKIaV*uPno7OwG#%S!m5nSb6YeA+7QY4&%z zKZ|$2B;=A1ho6WVC?=+qYUwA@n*o{q>9-FUyI5>I5i52d&R0R%4SBAuKQ+KQnc!Jo z!j3z&Shf9h5QPn;E%c>$pv&y3)ay_E9l79Lbr87UeATFJVPc=Jt%`Q-*f91k~!iXM}a49^lc6 zP?3#8Zo`rjt2;5PO>}{#NK07O)?tW`$R}^%6y#4rSW_ek+2oD-UGV~V+bD7Q8%K@$ zysKcOsEIus9qf845GIj9;s*Lrav6tz*y7O6ng&oED{Rk|ULq>ma;safmuStsTLyoL z9{1`5julH8-FuF&aq4P7-*}#?@%rzWo3~xv?DMx>&6(f(F^yFh4IRsltByeO6?~IO z=A4Xo5Z??QjjS>;8hq53e`0s!+EXSIR?e(vDEg zcww#QYLoc`6f;nTF`2dn?;UZrkZ($>`?^Q_sdhyy_%``$Ly6BZKpKxaa)U7Bml))8;C46y^fH{gW9CSRX8zmG z5=A;Ge>z`L;w`oWbHjjyfzf5TZKtoTsi-DYS-ZAS*H!iL{r+qP>MH56GVq!(gtlI3 zOIEY2h3u7zgYQp{!Sq?+$?uFz%!jj;FICA@aqIu-YL!_Uuem&xkypsP@ZT;%58B|@ zdfUXBpx%1h@yWZ=;>~74SSEPe%luB({nB}TR1DE=JLl+Bw5wai+#J;&ty>y`>~BTz z3^&5&ih*YkkBqq+18;>52*2`=+CLAQAX$kC%ctc#ov8~VSUtT=&vv(LoNj<3sU`}W zyPKmGpM8+BEx^rJu%s%#A+GpG_~S*U?2_&@_~zJy;Tto6o^e7yZ1`Avuq!MfSJy__PUtsxbbSc#;8f3Dp zTrPco#~7=$HPZB_diCAdLP?nfWdNSJ9J+E z_rcBkF$&W!g*E^pi0yD0Sq*t{ruW7t%F-m3$`!`L>=slPmZA^^>1QaCvb zBkA~Y%&^aXWV-m``P~TT7;5&}!&A{KGi*zGpjn}{mFGQ}kRHSo_@6r!@TLNsPVzKG zZY_IK5HVn;68Hy$oXAN+7kItX^ALG$j@VwR6gtWhZ=2^A!ueI44TZR3^vEXEW}Z8i zap1sS2qB+aW!$ma>;k-sXVZVP)G@yBwz4xu?nFG7B<0KPgUi`R0wy0AoR((6-(*Nm zGI4^mD7Y0vPTnX|4m$kQ9m~aF_`QP4uL6#)ubc+zn^SN&ZTF>GmS$Z36Fw)FNsSjL zgfwlI{xXq2WC++ff;e*Dz5;=nR>alF{L56^Y;|V1xSKbPchU2Ftv%Y*x!Fn0(9E0fnQ@9?I8;U#KMOfA{ zC24Er82C>l(&;CIr=zt8g#H7*cx_xUyd%uQk$#a$4D?`OFt50BSrc)bo=0C z?msl12mZ~j_W8D-QIYurKj3iDyJxG?c!>4!BYr!tBeUK@2hvoXLi96$rK_=U7KM>% zfi{&r>zbyV8)w(Tv}~{`qL2+0j=BsBysh)bXWbpYu>$PmRm7;~M)_7^h6>OgRp`zB zpH02>H6xlV&k!I+^X|+3JMHWte62fSOzi&>>Kdbaw`#T2os1Pdh~utFuuWDu z<=(~@8`x+o<6}3)_F3N*cdmbHxaXqX8h!zGFH_E|@fNX7vS0Mjyc1fa-a@NrIq<3iH3KTROG+ib8BCQdWjp$08OD zL_EO$25b$dUGRWv2Jw;hI>KQS#$;w!fa`y`BdsY^X*@q(sRkE9yMquZkQytA;$SoS zh24%6a({^V3NUJnw9&|aF2bzn+wNMf(83Pol7}?7yhMCdbE^gFMvY?UQ#n~jhdilW za_}{p8D$meLo_hprx2y8TD7EaX5*nRL>p@bCkNx_qImq{b@+I!quhO+PfpB$u+c)` zHSa=QYiqOzTz8)%@gdUVusEQ0P-v7)_mx%LPDcmhuq=j)uIF>Fp!lD1>9g$}6duB{ zrpJFXb9`wN4ri7D1%}W3lq*-7AV;j1vOa-Es)fg_7|7oJWONFp;@8vcE9OjwCNgo` zfW)F%P5(zf*B*Ye$>J0tr4eHE{p5^mL^LMXp*zbdauijng?Z~O%m+e3Q*KpF#`pfW z(A#+Tbd&w8oZ#iNJko)BeL86RT}dPr$0iW;hTD;RV=7O-&=QKaH)K6_1A#d)^yu7e zq?u_0eEW!5^S?;Q0MTt0m1Z|_o1`mwx`fm}E3lt5eb}oz{WMzlTN&kgUy*1|Z&69Xf?{q# zor`(0)HbrzbF1$!Je&?h1FxAE>vV425lY^%QsE_3cwV&`G0{?hm)5;^&;QP03On<3 z7bMz(8x+fgPc$do8c0Qaa9hjJJrn4?tJjFr_>S9Onz)-XZE&7E48kl)fGe*wn9>3w z9fg`;?4pzZOwgJgK7Z2aH%!05;<}f%g`zlI#56j<9{z@mgS-`oEXYvi# zO^Dj~p39g5%0iFh?J}OeP_&TwSWPy5{;LqM%0Q13td1Ba%t@}oQ}r66BgImltjY+; zpz6pUSekZrEaH**H?V;|27%1!fo&K`in2Oq8WK{3W&h$cPy=u!KK~)I%Xl+F9oCr@ zYhLr>0~Zn~^3l&Qj9ASx@s|b9%S&~-ZqnhiBNIv9 zx~q6}OHY2&>Cfva%Z*ZSTndcen`QO^q7`Bxtp_T7}AvLPB3|{qP{>S3; zg0>zIXysRqVxo+AqQG8H7$kFVs(?dSSdHP1Pwe;fcCuRwcwSI>7v%i6leknPMmWEbWC+&~-W9`x! zg-WUw4_q>vFB_kj{1b5G)kDY)7`Y&{_`tFqtEik(C zC|aazwy2n(W$gY{_$mR(1|hR)#=2fpGHASDj9sKuph6jD8hvrlO|Ob4Yz>Q(Q@MUY z{oj{e1GcM2Du3`T21a)M;fTA178S<<1QlP_lv?lFERX&mnXp5Y}vnkujjv7_8^YfFZ z{;a(^^Z>#meLadU#*X|q>S45rlhQ`x&HQmqKQC*|tBf@(ahX1ppjpnl@=3tisaw=t zVldXg`k2oWV)L9_4G~JF0bF>BG>+=?fxFuW+HXwQgH## z=21aZpkX~!yrJb3-r@0Dlw7#>ZB3L5Jd)hQ4<}iNfn~HcCO&olB*^*%GdhqE44~_4 zC?a(uHOTN2l4*o)@^Z^#)sa~pn=YS`uX5<<8jV=?onmacFrfR&MUQJS3@bC{Br`jD zhGcb!wdZ}Ss_WV}B;PSm>M0_)Gqm6Ez0=2MrnRoEQ$qUce~ODnu501NZ%6hbf8WlM z9$up*>@_iGc63x{<>cZ8d(<)f+vkv|SD^-Jl322WXLGt1-I8wal>MNEzqpL~dW;%_ z{Z8MegmW1E8yBUmugsmv)IIG>3V#t_;nN*u!7gPR?JT+9!)lH<%=j~ysb;L7rpB4+ zdF>3a0(yiVtE_lU*}C!=BNOL}LSHzyj?J^t;-wrAe%a)8eWFi&uNT;>x~3bwSb;KM z=!t##(re>8}PhOSdspZJrR zoQ`3Y)?Pkmrv3WjC%g}0;(-zvLGeXJFms~Cd?lsiN>H~(n*Q}V;_NK~%DD<+8a|(J zm;67^bH!{Qo}tmtr1qD*QFX-HS*M&q=}!lDF!bf{*P?IQ{;}Y4pFEUAP0k}l4*Lj| z;X+KhOtPMo^293^U|@`M%jJ1SyoScWIwVoNIda{=p#h6B^0Dh3pkg+$)|N4d#C2iW zQmY1|!YTfe!rt~IVvtmjfO-1Nw;J_|_ha{$m59Tm0`D7_irzbq8AzjOHB)vcpHhyZ zmRzuN`6GWfyc8F;78E6z(Km`eF{mck_*KDB3A<88TSWB9pf1{|(8)qE{#5!%?2xA% zh)bLF8f9nwscx=dXm_S#t@*LuF2~FHG^9?Y>z6XNk9P0?DEWQUur(jqMM@^qREs?? zrw`#zwQU6AWE+p+J>pheMI2LPH+W$f#qdw}ee8wQ;HGbM5Hq87m;i=<4RyjRi*|B3cq);H&+XLJK;Dz!x9b4@FhOqamRz2y35V@7`$?9Q zow?q(jiaOI|JMsp`a_m1FU4?c2-lxJDPi=Th!jqbs;TubUR~1Ka%-zC9GPXJe_N3 zFqn<_ja}2hUubY*6Lw}&7 zh4_uSSL=R^2hqtkeBpt=s@k=Spcj>AzU8-^|D*)DlzM5e{}-OmMZqW76*Vv z33z}zkdHM#)K;;K!@(`74)v;|vVgA18EGa@oM39qlP=mw<#tMU6$OJ^>+kYKF$L?< zkRlNm728~Z6DQH&dTA426>aUxB|rO~TNua{;GgxKHx?1wXZviC0yv8y&)o-AfCs!h zVcnnHcwUD;dWjIVyez^>H>nTMbKP*UFnQZ-ozxumP&%?f8fOO5plLI^(*s%EL@hzp zo}MjM%voFG!UqjhR=;^PlBQJSW-JK2b_{*5EPDE)O3yib5-UmHmP{4kB{^vZBJG#{ zCfsjN73tYpq8B1X4;jjXGV;SRaO%OIlK)$g|WapiEKZU;i^xmyeyBjZ0v@5nf6dm`yiiBYn-$ z^v~Ear)8vG?JF`aL4W_Nhee@Qn@Z8&aoOMN4Y{J3=VFIX5zlaC-7L*F$uR`cU_FQk zLwG?z5c0Jwd6A`L1sGz$HHNKO4H#eh9$;<|wxPan(hM{Ufo~Suy|t_K?Q@nQYZG=h zo4y7E*4GC77Yr4i=pJ>4{oE$3+)?1CHgL(fui5g{hdsu(nK=}Mcocu`d1#k?Mf(LP(K}y&&54#&oLKotf?x{_2|8uf` zQijt$qcd%Gb$yE+FlBwUn3hnxJJwR|o_RVTABXUMwtqCjbuI2zZbLCZ7vY2n{2Jic zfi>+{5x#erAwdMv$9bHl180wEmqx@L-sXfx^48#&LP+0V|0Ee6HC9*oXk(kemE zMZXfmg_y7-Pk>5pdCmw)tW&qUsL}aGv~Rk^tm8Xt&aO1 zMkj(k-=x>z`TZ?G-$fAs%1=nJ2@BA8pC3xU90E1&cim4|{OyhR^OWIHWVF4SQZwHy zJA&WI!f*Rn6AkhUkh?uM`1NF8ooueZ5D-=XUX`Y{sc%Z1uRr^=gkn*P%sJ&x zb*8Tf;GZa1tSLi}5Lj71Ck2Kdbz|m2ed4Mjf*PW6l(5yymMWwspzI=XaLZ>5F@Z9ql>FLGU% zr+~D85bR)&MoeA`|F4fGC1h-EC=JzACTm==6Q`A?z6xmZ>lX{Gys)}X^>K;6^!i3Q$u)9b|06neA6DKv>@oVepmg zio`(1>uJ-ld!1GY#349#<;jS|-h#A^v5yHwfjEV1KDKtKQjN;l&DhTb^7LvP;uQUB zGGjnl$s7Wbjo5KXRHLOL_|rAA3q4#ttbnpr^wY)N4t^#oA5SOzl}9;2|4M5!6nV1i z=L9!`PwB0-#OH>Hb^0kH zmvH&B?OBtJA~oxdCuuNy&qw6mq*s5);9Ht2K|DPdx}~eOLBs-)wxW&~e>y`SHD7;! zy-nqy{M}%xIf0z!iz;)TkAId3z0f%77j|Rq?4!btlgGCILoj1CK5Ex9Nn?FMha^vvtm@sp4%=hetjy;@i_Hf!MOO>cm%RR$ z42#2avzBqc`*vf99NnKQKtsi~k&S$^I2gY`Ymp?(I0)xdT=177=ieb>b)qR=0~415 z^0Z4e{<=)7>zGmwA`M>31@9=No8NC<%WQp**-u15@6FBson<+t(&$PsrVxjX=+vZS zs(*i7Xs99wR$8=~)^e!g@T%ihR+z2@@g4{qhQoYY2` zq%B^K=thHE;+3_gX3@wza9Hb{InY ze(C12t;+j}RA633MeU+W$+&4&-nTwg{S(}S=7!U*kMSBjA+_QdK8NFC63GdGG~|gK zoPTRZyGbQ|FdiuVn|kp{K#xuTjW;n$pWbn;e&NS*#;_>u&_9Lj=V-*gxEi#`uq0)W znn3*%^yZ3G>VM${>){XF2~IwTrN&2#;<_~T%mTLEa|zfHtAY408kPO*p;t8~d`i)w z(Os}+=sH>#^6vqWU=gsndR?uJ&Bct%#7Qeu#5jZiA$n_XoRtJALV@kd^s@S`0H;c# zd=aLvI8d6`mR6_Z!r=Tt5q$!2D;23by`tc?!Pn5^`+)Hwd$h zh!QOG7_e9`dhGw4r^=)YfGj@KJXz z(H1?a-BpJQUn9@HIRieXszWL&vrm!sFNa0n^~)_--qsr<^&6e%M!8?L<%%vg)V{(X zRj2CKGd#$ce&l(H9CD&6lLrble*MB}nfgT12zKR4?9QIv8Dshc@<-dmFnt&hU5Z77 z*a5U_6>d-TT#mz_4|2@X2S`;QUJ#3anA=r^`93w>5Tr*|)Eb?lC_FaxV=$$%7ZX0S~qew}SF3+AurPP<~YX zpF$d2D4Bh{ajYU z=lm>K2Zek&h|#6ii)$@Dx^Mb4|8qi%^N`Zym=e=ss&p9j!ZGLl?!hb#Ps%1*V$jx= z!fB%3Rp(51U}#{an*)8$PLhvyN_(tXSNoI}moTLc~arX-dHoILpnOhFNMF9Xw>)B zISaSElMMW`MFv)a6SKY$kcYW-U_7m>Lyo z4cs>pNZq*l6vH|I@3Wj#)pgC;t~wbr$yJQmis*|f4;9#uF{@0eW+cbvA%LlDPPp1? zIK}{nDFFJN4h7>Of#=hGRQ>_DfhW&qtP@PIYR15&?%DDt$kc63~@_0LYdXp+?ZpDjJGidUWtQqE%+m4KE(=k zJ-@=*tY)!S=5r(Z0?yQ3oLvw`tU45^?MJ6tm=q7hm*zl_QgDH}!iw#Fs-NW+XpScZ zsajH|c4k7HUH~s5S4%r_;w}Mf-016g>6xK^N0U z&Gp6=tR-0C-s6gxNy2#mV3R!TEu!hNAd8y3V^d#!2XAS8@&Q;du&|L4**zVKl!T-x zl|vnk|3kGyoxgW~ee{P9L)APA{#dK9o+k8)v7eOv7Klc4k)=RFFOp1a-2f6FQJY5Nt|fZW%kBqYj}AYn{|9UUmsu_-qMO{xbV)e_(~__tm*OR z29PL@3YYC|KSg@jRxu0f-g#d^kr)VU(Me?~!Ia?iZDY@F>0 zhf6PNL8)vLYN9Uw>Tyr8V&1HEA&a-Jw6MIQVur`j|L%48_jRC3sbmI_Wuz$-RicaU zm2Y_co;4Sqn;d4eUb^o#igKxNUz`pg?0p*D@CF8>CqF~kk@vN+_^5A|Y@Yy#EqByX+5H6TeD%#d;G(9D0CPniFvXWw z=E0EyW+eXy3hz+kRRMI(Z4?-Xz`%uW`LJ}AQXFzw7zm8jDbB}!JmL)B`$!7>&dBw9 z(X`v_MFf2t`L$z!SjeBIY&omw5~_f*IHA1bPS;34zSyjAe`axtYx!MgLpJhxQMi>p z5E{XtRgG_I@C3oY$~`=_0qb(-5XvXsC$s~?ZwGCQeVobB0N-_ z94XnoI~2_fFNyi4DdCmKb8-6=Ov1DhmKA2cXNtH$)0pxfV>90%qS6^p=4kd2(TNwn zKQ*Wz-)wa*b1`jX{-Nx8>A+ZprqKc!#O@kLj z2~H3E-Tnk_qsEJl1r@_hu9L&4lnuMnpkFJ)sP--XAUL*Zp^g+AIytrLx$fT~E4Hi4 zzb8!a&?@y+Wq7xUsH+E|M`QPJz&ztmmn(7L;m`WMJN54S_5r}57b+wZE%xw?DMdvy zk@ar99RlE8s;BX+R{>PX%jYc^g|jBB%7zTj{2wb6_DS06-1kavSKK#jS~DUU^BZ1? zR@(v9^74L~oMXElV{ChlAFWBIUf*rtQueWBP^$`0zHlMzG7UO3jxgLzAZSnu13?Xw z{)_d53PO6KFa+HuA+&?%z{VwsDm{L@XVl{gYioU27nIQ&W!cpPR5d9mfKj0>0zSgb$ac3aCcE;LDTpKS#zg>Nxk3>*|?3-)UGJz9LZW%8o!{G(3usSJEJ^t25y*HdIiewdPM* zuxqQIKY}r+!fI1$f?h(ychmIG9S)N^UPI@*_S$un6DV?q=Erp7foF7(kr>}nhh}33 z-``gM)wBM(+{yQA=Eal6G+15#?XQpf z&G=oQd|gNnFkw^V#h&>CMa#}uQYtaLvAinL@1G`a$R&GiX1)d`MQd7>ZZgUM>kqI> zjE-Ox0dEe8=zB_57xEEQ_;*wN5AP|$0J2F258&GXYNH}k^{0#7Yk*yGmj-2aW~1bV z_{ErOR0{T?M_vCzDL2k>Bdb4~!A+Id9}W7&9mHN)wCSsR&&)H8-^y-S#-{xxW()=M zX@WN*0IE%8x|TXc~Famu&<7|M9_1_=-qSs?5NW`;o|sbgC%H%1zX=O%=!i{W+g}*O%v0e#Crfx z>EQ9-UUadkq`js)jCc<6pvZLQb>hc2c|8w84_O5I!7MlIXuFrnzNojSXv9op)XoW? zse-v`XPK)A2$-re^fAFZ8(=1q()jXd!M`lqfz12PVhJlS9RA~P0K+NW=FOOr$s01< zOhao=haD;atUW|to=D2-(je(G2Jlj;zb|ot<^5ueq#aZGp7~Fl{t}aKSgXNNH+Beq zRA9lg_fY6u&8SqNGhJ`D`4Dy+ivkLg90xW?DSKWnE|uK;WbEk`&1`^s|H>fs*ip{u zqRVQ!HEkkD#L5j!5*3#69DdS`&6;!@eu30*wnD3P5rur+CCxFD4wG^+P`>)XBhJYZPiNFsf)6e_w#ZJ)~MA z*Kg8+6Z5gFC!CW@0nP{$Ca8}J5e2xj`h#4hrk1a?vSr}3)S{k7#1pPVKV=rmIb5CT zTXV%l#AJQ=de`Fv$Alm2k9Mzom$ZhD^)<(<{QA(OY`IZQ&8~8V9WU<3#4r3DQ+HqU zKcLmUe?(PN{uwtbnei`+Y>U8Jld$t8s{sHXg@tV17uw%bPI&7>?F?x%dQ@MFg9kF0 z%CfmnUPI`%6jRHb-+VS$&+zGaY{I(tUQKbr3th@ZWqjRFPLO36Mryxn2Z(@ z^W2{~_(a(0^E>_bm*;75p-st8WFz=Pm00D8iOb^SbU1@!+J?ULihEL;zv(So3^!1$ zTzg6jSuCoEu~SuuO z_{*H_e&aueMLseK2QPWK8T{VuLIW{Mvm(xTZZ(wZnIsN30g8T&4RK zi(2xNNhb3?9F61JxEwZANRSUC?GH!a0fNO@m7A^#5N-It!SLXvZt=O+aL!)$2jJHo zf^mKIFX$A_gb7pFNk#Jx;t%p9r@{);!BJJ%+)9Z9#d;~J(DLwj_>68cBHe;W&7)BD zeR0F{Xya;df6lEE$fG}Hb$vevFZTnbpz;j}){HD#sGW~+ zT;jui1^c752sop5+A>aR;r3;t6<#|>6M3a4o@k)uw(LOQciy}8I`#IJCHOHbi~q|G z`A+YI`$iKTPLSQpDfFQxGE(~8ojsL=|1SU51dP}Aiz)@fpK7oFIx76^mvekvk6aZ% zck%K+%V^?hPaV9-F*22fIDg7Eecx^!pG+1>NdVsZ^6q^Y()){uo>T&{yOx52eEh$Q zH5jbUn{sl{#m75YRk4jW4U-%_B<*tqCFEj_{HS*CTz+9dX%O2Uy#R-A0wjj#I3)^2 zg1~w!qn7Kqxg?;yD4rmtX;fK_tZ~GN_}3W3W3!n9e*%LbmA}L9jF-GT?44;saTMB| zRapbky-6J0&%e82f&AUgiX2K{E=`#`i0u&82Mk(P51;fECeH%GpDa?A?`W#a^QJ^< zEkFcdW#uVWm{Kgro=;VfH-7sak0P~6J@;uRri=`w7SmiPW0?-dU|ZwSjt}NxRUzPn zk9>8~_eV6N`kG|!nf#y$rU*E~6-pGyv(^A!Iw6YosLv@fk&CVlLHu4sie{5C)v#Ou@*qety&3*}6*s zq238{+!$P5+sV%jzDk8??hBHM0TzSAhX-4~kgWvzwjydY&O{ft-WVtN zeU8a&(3jlriXaEsA2fa1ieYBihJ{9Dzss|PoloMkXI00RH^k^Nb>8TJ48zg_@6F&U)uAXHWRwT4lw2}16a(-H>T z8MA(-`XLpA>(X4HYBY`9{oLz{#o1H@61uE@^Rwexfb0(j*GAclMg8?YcylC=lD;bC zDk`JR>;5K5bF9t}S#9gcVq%wPb5ViGA8)78hh%7^=t$+-V~a6aZ!C9cMU=E2osrK!ZC9#A!#>PZZ;#Eksi&(#8! z0I+dBQyi3j~7p8JG&tZONf z3O@IauLcGOTy3noxNbAszi>5dZirctU-Dy)x(Rxe{TxRMM}euKUrN+N8=92K5rZ%t z100KQ{Irb9e9*IjOgMKMC#i4=H02v|vSLa=#{Qg?pJF`)D5m-*`2B7>v#Bc2${{u$ zNv&LhiM)=l> zqDxTEd*7V!{_o^g*G7f8<4c{hAG<;@e}oR+S&HSqbdr<%A!YX%80`KE5NUu}@MLBV82{b0V7_^t3BoP~V{6XLJoBpiU26SFRf*w3wKQ zI-3+3dn1e_ajSj>C|^9Gwr@(|jHA}8m2dnUx_=k9qH8+6|0nSC5f!Gy>_D_~T{kg* zfe&4xxj#z%5v2~3GK$5J@t*2zP=NRCAgB|16u2rDhFJ+?IYEw0s(6?RbwA&Ul)b0z z`9}yNOWX;0f9LqZYZoKF^24GHyy%sd{RZ<)HZs|=e*gbt>MMiV;G%6?ifeE$B!uEn zw8bqr6n86b!Cgv=ySuvisj?(R-;DN=d)?%X@`{%0mL$vOM%z4j6=i3?19T)aTN zx8ZL1A<=}x>YH*+Uz$ z9aLoyHIea?ck)@>qb&@#8mHC$Ypq9#!;4y56|`FY zc{=2NNTCyyr&s_1!xdsj1mU1(UaZrAh+9r(!rLFl^py_FoI)S{ z%rUwo0`tuKh;S7ot`*R99-pxM-+HeJkv2yiXpAM}&uvE5q=$pP6bIoA-)ADPY-LZR zc;W=o2b!eQwFb-9@J5!+T zG99?!9v7Kff5v5PaRkM^7LZWY;ZLBI$3=KC=JlV5!Yry?#1Emp!b1#^mrd$lB5`Ce zJ1F_x4tQQF7zuuAe&wamwtD^IgJM4c1EeJ79I&p2PrLW;^=)7)h zXbROZ0v<1*igT*jWi!KH_|UmRdS0^~?jxq!PG#a5*4VSK~490~?~7pzB?eL)Dq zt`f&O7xZec=S?`YiOb)Mg)ZxFMoaH7q~6UloC*6gL(ZF`6PUs6(`DM|m!W_Xtm}Yr z%`L-K6all` zw-J5l-WWIT!60A#vbj@*o ztV@i}H+PY`^6P^Y-I3D~8R%M>&k|(5QX$FMAQ?|e zyF?G8&R2Ub(?||i=QPC~xlW)6-ku>lg8tO!mj#SJ5=DZZ>q@Uy+$lsKCWaA&k6GDL zLdJ`>Z@&In93PYtK7XWT4hJz-elGkx$rnnK%V{cKpmgv#C7bcnfYi(s3s%CW)XCz> z@>D}@y|HcL5y{FUO5_xHX~QrW#ZTsKG=+$ge0Iaj^{yGF`Re5Dik|mLZCA8%2Z>+C z%QiaFa_uhb+5Ok+HSqd=-JZ6|=EH35N0X?m1Xe%uruPSr&&E&EISx6@C~U}?mAj2= zvG_#lxQKY&(80*+D!CjuX9Gg(*S`dl4X?HjDY&oBU0f7y_akFId<&jJ4fHe-URANB zL?>tFYY~ov+-e9!%UL0Z18m3t1^82cMcfTVwvBhS`bBV;f(&r1;b!7et(?T@+( zj@J%b+llwgZ!^-!wAqfBkzW)-%HfO^%=z3pj!egNHeW}|Ub5jc$2T<=hAQ4DDJeEr$ecId~J_mTEx$L(c_QDXIvQ!}=QUz13u^HVBG#F9E= zS3Fd=E>BqXtZK}tiTq;XIaP|+ing}*ZjR%B@}>N>PAI|koLu(Adb(rh{FIi^AHKVI zZmR1#;E!@cx3Y=e0v9D|X&xpgupHp7J@#(jK&brc*q16eIZ@3qK6?m=`-xs_6#W>QeTB8 zPmSRdgwE^$!vq zd!cWk5uXfK5%Xf=PM#}!CdvW~1ba2rtNv)EkI0U&!jvSg)dR;QTU0W^p<4Oz@6bnj z?s(EN79%uajU|{Kk7u5fBF z&X-&&{YAw6%>7`I7Qw0^8zN!203=(I*EnJ}LZvP$_iXr;=J($em7;RtsxGpC+!Q~M zD`1GQ?RKJf-p9gS2f|{!%?YDd0#y3lb8TKQioS_CBLYeg4tn)xdI3U6{by33Vn>J~ zQHA9fyc5Gm4N?*7-sb%mK!_W`_n&Rd2^06gfwvG0%nZgCk~kalK8|-bL!7}(;8L9b zn7eR!LQyjTkG&QQg`Q~HdW6ZWMh4uw7V@j%Z6wuthR?+tzW|9pd6GYcy!ezKXRh@W z9!9d2e!JAanL2zYCim`W=IE$TDiv~~E6<{&5CW!?v$Q$DyyMxh+PRKSH?ZJP{GKL8 zbvkt7H~D~nDcKd+5~@U(LDL}94?V-%>=L-re|(GfTs(h4dH205@9QJ3Mz6%b#Q~)t z%G{mWJF33D#-|~`%BImfm>XA3hGEGBh4yj<*ZeRM?62zkXV*U^6UvCq^j?}HZJ|@x z-_>)7B?L*9s7>ixe&AxhoyCy`!s&97I)4fm63++P)LPBK0`?LKit)gxhm_$?Z&u57 zf(Q%!R4n5)h(=sw?e0G2!ebOUVG(tm5g)N-=_4)ZKu$Cx`9agX!YO1tuRf1C4u~=`9$K4zeB@<<*O6x1)7SDX5_cnjN zT_TApe67kWYd59g(1NwURD5t=}W{_^8+hoZy~ zghUittcvRJ5d?EC4R!pT_eaY=#1$I3yG$!jj*Upq4Xr0vKCK~4vm#KW zv*NChD}CH;O}zPVq)-nls6Z|K?HKg|-pmfSUb?RlROEpqcB(4FdYj|`u_MUe-+i{+ zdx{dHGJ2<`4qRY7?p7DXi09iwg@fbCzvd~`V9|>Y?pNNvt!lMcyg$?cdXl-TEng)Od z8xjC9WJDJwL8(iy3ZkLcC`PQ>9~&`x^xi5O|s_ z(d>y%;@I78^D^W7_h=;R**U&3@ibihID>k_%7@U3FlmZUdVhF+{oT4nW*LYaSzx<) z9_YqC7b4CLvrXLw?h|WTPZ4@~=lD5`g+e}8@GqB1xg<_yP4cf<`O|PgxNT%k&=X78 zRyRkfD7k*`TJJJFR~pzC-VXjAUCcV0I3F>Tb79=|%QX&R< z_Qyf2%TAGX+m+LIZ#ORh4IsJW&UHl0GAy&4)kH{#P zO%-bhWeSeP=LqzbM=X-Fq-yF&!Roharj8$|4ip!-!gmWJZ~}+<_*`)9=;V}cJBWX> z-khNFzaP+^{_k-h0@4&yOCgZ;gyF+yFtaD3mrgPC1&HGAe6faVRwWWkRnluAqAXD= zAj_DA5cGY5nRv58s(#GGpdplkj8Js@VGj&MD=_;jo9+3dt4oDG)}Lj990Auue*I11 zW;BcmrU478uC{+XEK1EYmIeQQ_2LpIf)Le9P4Mdl*j1Iuve|VB<{~jrOtf{G&DLOc zCzS~!kx7E_TgY*U>BEJND&-7W|X@XC7y+=h(3!9NeEBNx&x^%{N+(e#7>o z-6Y{0ouCiv4RO~dZ-<{!60VW|HVREXCMLfswRvFz^E_d{JuQMMjS*cs<|1P}m?oV+ zz1>~WSG{=K@}~87^&+E#>ctm#VlKQ73=}ZGn`JZ8YJ?*ieR|1y3kCYXqP5xER&kkg z4*Slc&L8`(&%TqWlgV00iLxe%vbYS3$!sBv$-F9IAATUuwunSX(Y)Z+Ef9Xu;BI$t z7Qt1ez?FNXO5a7RA6H4oHVRZQz9qXEs2{qMPGoeC5rjI(TSC=%$W zqQF=Ci6N@zu^NDd(0feubwdRpDW0PDvklmgzah>n!iQl>H>?%BP=z z_0%AxK}x#h=1Pr{C{zAiz4wTZ(3(cgtRg-it2rDhqzkB(E|I$>^nCA8`%P@l+ixE&+YeijMX+ zca`ofn`VxE{~dvCpY|+|Eps%|RVt6oyL~95=DE{Wa66qvte>2xfnwId!v!v7NKGAu zpj6VsBW~}vx2E!B!HIrdsg|5lRv4y3*ZgzB*(uQ^J<(4Di2;3~u0TNfXG5o8bjP4N+all? z#4F3;veDbGhOZ;56)9nHg9tKr?^;%krlp8rCEruC-C(q+`(eJ5 zT|z!QKDEM#329n%vRU(yc?}7XaZmsE2-c##5d5qG5x!8AlH1k@w}v;1k7IwM`WPmd zB^dXM2@?bEn1R41Tas1QLrTt9Nc+BGJcvc*@$FjFus(nQ<)Y*tz~Y_ z3CcoWTVNI|D7=o*Fi56E-(KUlQlLdvK&jSbm*+#stdd&Zw{f~UCEgh}l}bP_d1osn zKtZ$FZj-6kD?%gY$f6D_2pcE~KUN5Hb^}9ji+LE#!$(dvFDY@5P5Sr7PX-^Z68?6Dv(v@tZN7 z>szmJiTFGsXY+VfK^lwwCvtQ;N(QdS%Ef*>FAMLvRk4HP?>er|$i|qcn*MR-weO1N zKgFYC9v+R%Bq6wBCz$vp!D39rE^*-ylBuCGxKpkBoC7Nf`T7@}I9yLWJl2jypWKA= z-HV+bCC8%K4tn(S-`~vl=XzXT1^Ae6H^zS-k(KgE`<3WNbCSM=2risj8K(F&_uDcV zjb6)CoYSJKbN2o9|^;8>>QSHnmArGp(-79O;g( zO23E}lHrqDr2W=XM9_h8WR#@zwfVy(f`&s0NIy_MijsNILYKtX5SQCZ0As-rCy4(sT+P9J%tjZlALY zUN0vqP7;F)b<-#)QS}E^$nq7c;cfKfN;bNns=F%kDW;O5(BJ1nL&ZrRloaXgC#MzEcKZ!gDW%ByN;l{2@;R6 z;Jm0QuI7b{s;YL~qgx~P&IGB`B@3qp@taO6>!L%5bL>PpI)0cepUWzmM7}A6;!%lf zkk?LYNwt#8hs0>4{t8AqE;j~A5Eli)76uxm!4<`* zBz-|+uxf3fSF*us*VV^yC)8K_=dx?wnoSU9^SN&&qKJbI*4asQ^3NiLKE2bHvGz0n zlCH&xb?V<<3cGs*fzC7OZ06#0)@Xg%$ALxRRe%sQ5Xc9*hm$p)4_^x6g6>anBvUol z;!JJnY{L6`b)#fLKP16EI6*0z=|!ktp;#rr!mlPe2Ir5LM4JzJe??2(JRv2l-Cf}R z^XZSeqY6WF3tM^rmgiB14tbK2*y$taj8vG0FX*U~dV9!#YNWs!GvCxKMnc86^e|b& zp=c2MU*6*QTuNktM;J1Tp0gNzKTq6?%Iak{&P3%znmy~jH;X(do3K=cLz($mXQt?v z$hqI~m*bjMtj@2y4Zfr`ub3V*sHFE91rLhyrX@a88Z;JPpBgES$0CP!v_xmQ5`Cat zLF$L#qo08GnZAgdlU2-mqdS$W6mzpE6kNOnqvOnE{4l87!}VwL`+TlHvG|@pW*-F_=t76GtE>Jq-DoY6OLNP6$EmcDDZt6Gtvgs9qK?>z1kJ|gAf%Z7{B6hE zm1gDPx)H8;BgM%hUKDD;1R~4$0Ihvpo!kOP4Z3StDfNuRaf~rR?WrEDZgS*Lme!M@ zp?K9>o1;G`SI6K*BZ9sH5AAm@1XnW}$8SFxpHjnOwo-S)=(O2vI@^h`g(JbuxpWJiD0N+OB==rA&e%Lgl4afz{i+`O%fDs%eaa?a=H^Vjfq z;>3Vz6*l#{^La)bLOsz}l(0yzsJAsGtmKx%LY5})MJTu0LGFNkqI3BLQS9wg?}{O> zNP|#I>rVtq(gm3ysg}sdz@cAemTvAvl2!7krrs8Svm`P5^)O;^lFt35-zY>?P0W3J zZXLbn_m^OT5Ji|6eWWRs3WyS+mgqS{(W(GN;$zGj4Z1eva9ODnk9Y5Duwr7gFhWsP zhbWE#NRM$=#nqsG0E)fryX9zEK5(O_u(U{w|85T=F14YZx&K#yqFUp|xlQcUN}=o0 z$7zeak2l~94SAO&bI$HQc{ROc`T_Z>baOq?Qf{5x1`Bi7s?q|kZCRdD`B#4?S0n_z z&1_NW(wi(Vvfqc4{^^;mh?8rt`z7+6zHQ!cJIJ1Wez0lNcoqtGqYYN{@aK>4!$b`f zdryu~kYS}Y{Jq3ouk+={2K!5rZFQ4|w%A1EWwEMJP45mhGG;Lr*a^$XtVseCJ3&rDg zG*fLn?tf6ky>U-y5vZF@thB-bR~M~Ui6RYf~F0dA|JAEjj;j^{(iLvtFq z5$Z!PoP}$y61r-^#o0DmY5>MCy;g``5Tfs|OIEAW$);=!msKv1E+--|3NPBX>A^>F{Exb22aEP7z1Ks_ufO z2e~yi5v^IiJZf|>Wu*n(`#+tZi`g$GItSvS(qF*sd!=FEwap3bTZpZmq(wUg; z(F1%=0mzh5>&D3$=K+#L0VMRQB%q3XMIT2}OaWD_(uW!qn^-)IYTm`cBk6x~W$6 zfo6^K%HK4Y`6Y(jb9loAY!b_?S(r1k;jf&ghD@tnY#zFt|=3 zJ9$U*)0Gcb6iIOq#eaBP?HwicZK5PHKEvX5`bug{EY0q?CHQs1CV9@gFJX+l55$6N zjytY=<4}`M>Ov2$0jfer(iWB>zUa8PJwh?ba^uB=tJG>3eUW=nU*fE6Vp$`Nt1U`fm+ z^zt?S?7Ftzw#Ge@dyP;tl%qOKnIp$LT$4DN&t6}2zFW{^rrE^y6RRgidHpUtBbMUe5;Cn&sgYZ)a!Hu1I+%{QDJC z_5{>4C09SpshHOp1;u`5$5VDlMBy;JINmDK=%5EN;fBTqf%_o8mQkKqXjf@$tiDUK z=Rz!n`=8!`5}mMH!&E>1*rywa@r3@!F8Wkwzr$<4iWw0vCDSSJRcRu+RhVj2nhV z&;a(Zg@6OEtDbm0#kfzkGvS>$uj z(4)U+BpX@AS6nr7Uq!*j5A(S712brSx)1G57dg@+Qd40(ff&uF{+{(2Ey666lZ z*wReY@PFiiMXqS!m^|41+#Q{7zM`i+v=<8x7g>t?`kkILX-MkFf%p=1H`#aaWJwS# zrL{uVW7$_lJ4zgyVV_a6^3y#Ej-Cf6OOc?$_b4WANAr}C;efLS5axlpxd>@9~aPb?a> zM4N(|_)z)hB?`gF%U7G*zu9U(4}{YaK;%ur9?Xl1$Bh#fS?_qj7HWjFYnq2AiuWuw zY}OsyL#GX>-c6QvW0MJ`Mbr4bp&c`0{%)uhM-nVYprO@z1$7i%ukOh2&-MLLJdUGd z^gOO546^kc))Rx=XI4M{uyT(BEC_t`rVB@^fwUbYKLf*G@uJw^H+=$VdIb6CR#3MC zjw7E;J*K*opn@C>vpxe|P9%BKm6Wy7 zDS+?Z)8<&jDB`~6GT0gC^Cv>=|B9nncH5I4*CiSuh%XfxPilTE#`BFu`ml!T5qS=5 z$#5 zH_X(Fo9Mzx?~fZ3m28Q>Y2b()XHJw=d<+vXE;zMP#Z={Z11c~CM5DY%O__;dx?4BjE8fjd+lT|qpb4Ho9lx?)IT+dJ2*D_q#jg*HOWW}WBmGLX zcducTXbGRrh{=1UhEIt}EZa^Uh91v~WYd&+;14;7?SWJMDc=sB(j+60v9H9cS*uU%|Vf2Q8&eLaY9Br=mA#!tK_Cs)zn5OA-UkU z;SWY(Gqc>Q1w4+YN|v8&s$IOT&}cWYaBTk-A>>I`is~ZuG3Wb2FX6})e^&5TuOTP9 zI+e&E?^=PGR9IV#{E2*R{#^6`Su&H-Y})zFNR^^p!a>#l7JcalDz=Qy#LcnFrJut= zQKN_J&B{IzV@|WdIpROJx%F%3 zvU2j>W*ap4ODJBUBTvXwVaC1>(VAlY=2K03aSn@M5#!jr&?c-^Gg_0Eh{TLaoEP6; z&G%6rrh1DWAs023ZCl;r>)!GtiXFjk;XRyTKPlo?WOk^43XIQSe9jhMw(KGT1o`R* zy8U#e0UXa7SnNNt{p7~;%+qhS((+pu3e1D^dy*-y7Y+e-{$Znjt{sQ&sD_02OKDdI zjiEAQ=J1^wnGO~fW3%9t#=aoBP_tjv3cFS7#*$NBMOBRuaYID98n(-|tI)|_=mup3 zDY2jKYj=9pzn=+7#KGunZ9QmVb(VtO39J$@G41}?Up8Kt+-t{=8!SPsrUn6{`n|19X^f_9yJBQt9iYwT=on=qwM;>we*X6GH|M4EIK+iQ=a6-9k8Gf zD8xH2Cj`U|p122qAchYSC~g(>w60$7_A|n&Pl%I z^;b_fR3k70N&p=g#2*bK%oz+KGVI@L&*Lu76Hh{mJZsZ)P})qvBFyP4S6_~!KFykJ z&z5T#?C4k+c7;!^49*=vMVzRmLky~Kn`?{A1}PtLTOB?p&E!-6YMS^I z=oHBiC0@#Y(a$lop-I3=q=Z|sY-9B3ckj$9DyK%Cf@T1xZbJ((&;P0|pv+Ga!&NXc zjx0WGKs$t7f7RHccmqHd0Y7E3xxneKHKyQga_~VO8rcXoZBTpQE>n?Eo}*|))rBi{gG((b2EXzv8*t?ZF&TZ61w<$X zS(mNQSFL>dO?eS!HLFSR=}~Q;k)>Z2Ndh8vhs?A;inCt!4}-Ph8H+r~jONml+am zEdn24^p1yK5`H>6e(Bb1AKz@r=}j>bPa`qsQXYX=3o2RV&fheUWK3Z4!}K0_v*<6A zGu4@<&g?C^kxzyQrZbA0N^*)Zzb_6@g=~H^GpcqSDro&gJ!$@Wsw(-)TzCY{5I*3| zYJBU2ItQ=#R-X2nU^Vifu`t1E#_@Ut3yYu=ObGt59m$g{&Zw-KtFu2VtC~yOK)BR( zB$$XEoL3$5c_fr!ySa3#+OU0MgDq)g<zWI?|@HyaB&-RQNc>#8f z{5*L4n;jp7TDdmIi%7HEm7RWMD~EPkf)GghX*;Kp(Cb6u4&7@7YNiM-TJc?gWD9i| zPwjg5^Ij5GP#dVBLh{#pcnl3v)_wHm!3p?M>Xs( zbKUM_#BH-}?Rdr}Tc8WUs8$yg&-iE>c^U^wEH{-KcB?X7%Isp_a2r`Y4bWd!iKOnp zI)WDb3ZpACcfBAXWB5X`3x3J^1wFqHeTi$bZ3qfTlj^%nt(>pw3CL!M-p6&2b|axi zQ_9Bhp@J#J_IXVDcV|8?)l9vQNN8Zb;|E9Uubz(8wfa{hkKLUluJpQZg=}+EnSO!~=Ig`*WiYJ|PYI79F ze?R*CI8@?BNZR3{QyS4MgZ0&Gmg}&9|XE?OGoa-&<$F9@3(-EQfO~);xuzVMX(xW!>}++ zZE2+1Pp(EslaWUuHa|L|7CNP#U%PSxJ-6u^Ub}x4q(!0Yp76GQD#WBm6)2mzxi1qo ze^ajanvJ=}!1=o#j?SgT0?xc^R8Y-|UuL9hIRlnv91#M=d(K~VAb=J2|OtK(_&yDcYS+Mz9 z!02#BObWPU@e9Z0hj5sm#k;jp7drUn+3CuM>(-pX;o#xBllvIpZ>InOw8FVZlb{Km zx|&SczTP}LyYU_8Q%y;XLbjelR6iXkCPOJ12}Y{Cm?o&C%N_9&EH@j(aY@r$9Jfvv zCIhc;d!sJ^EJ!Xp!d2v-3`{%`18Xrjnml3+-v!*7xpF z>BA+pDMQO&O3~nZnkMKrtShBRt!>tO)Z|$A?`$@z_%Il7yM5Qd;5W04B1*!Db7(q| zs^(gfT&cKa!Ip;%BZ*|ulvLBRuUI6eP-B5?r0 zi`z93f!!0p_z^94XX@;(o$1~^V|j*k_^U)(v^mD|s8NRZysUtV0=;1&#PN%=vD<)- zQujz0UZeb|jmfZwQ9=SB-+_twpw8yp%;tN5q`J(VtxlyM2FRmaJD`79DHrjqAAN)~ z74ybr*pud#x}QKzcRVQF05?hf>8rt9Q!Fx8F0?J=?b$Y^T0nVePiEZo zTv|K6uHSSln8n$KXnABx+@vgP*%7|u^X19jN|8-teVV|oUoCFIG@ZiDM|ONun@m|{ ziDhR7iK9l9Zw@_m@)C=~u*7U{kb=tBpU>g5L2pqD%|T|3Rnl(cJIJ49wuUd&2ur;YYX%wL0wW&Uq3tWOy^jDk_^+e4Ez$wgfBTjG6xqW`o9 z=24JsdFF(+&cwF{PW`;XPHevjqgh+y8dFK1Yr^bt$-ST`2)JUW0OeIhu+gqVZAuVBMdN-#2L9iX? z_~$Q{;SfL1R0{MZs9^kd*y6~>w1Ch%83A))kOCOcYCzae000_x z&|Bf5Grfdfq4h51^-h&%HY0rS!(V8d`J{1gboCF%R_w^azkBsmZ(5dxhYNVlyvdg; z!0O*EIy|lYWTClFYscrG$L5MLa2%gn&EG*%@k_T&+#qUN#0TIs{544mIx34 zJ$FM(yJ=4wDvftNXL}YI>25GyclY7vc74i8vwUaRM_jyHO62qvm15INRVLbhyLoWA z#f$WA^~~mEedQ6c2POMbq z)Tif4h|zqxEKGTx$+h(@yc5mMr-EWcsL}_(7(jdy!n#x??&Oq;1R712%@Y(;H0w60Am?Wl2&2$u z*r5MibIR=2#@S$&lddMo@*a*~tRI&^R~}5%w`+y4K>%Gj_UlV4gQlN^e~=@YJsvR3q`)Bak<%U%FenW0OZSFbaCeqO9)y!9 z5Pr%Zyd|#xkh5O#!$}*#%^%Ca*?RUEkuX#pYEa%jAgq_ZkI*3%H6;zdXAp;H8`BCF3{S>anWCvoc0V6N0GFwr~@OiKJ zJ2$DTRbXcCINxN3J*_r#kqh2b{{Fb-AKh{mDh`LkQBHsLmuU~Wq=dpga%3e=X15Ua zok#pm<$fK-7oo2ox|g7npi@pK=|c|}?aHyQ$h!EU(Xuh}k&TS^1Z9A&tk6A$L2Hdr z#Dh_4^Cyq~C+iO@sdvs=ETFM-pKv}FuZ=jA7S|G-&3DIDl(<@M9j8O=Ih^5d3A%zN zkjdO8NRAeiOEEtNJ*}k4UJ00BHa`6R%|%5Yi$9^3968uZkKHb4#NPY~kRYib3%vx} zO7Kz_E+Wm~1ZLRpzu!!^^W!mNSDT3ZNH%h@)^hf5{z5>OOOjWcO$Sr9PEuY(U5+eC zXe&Xm-MFg>Kuz)1KN?MrFLY5P#glF!ZG-FU9^2URx?mf5tla=7hJ>8kuuQB(aIlQ> zTk6g+1iEFd4llyx=qMbXtL39d&+!N^mRHJFpYpWqd%hIbCCAy0Y^y2zmb)n!k@xmb zTK0-js`9J26~I|bQ%qMjj-a>_`*`YxZPv;aj?>G=D`177_=4(n3)t1zjxSC=xJ;@% zq~cI0Atitk2hm3>-JG>pN?v^O7Esvdl^{G|^X6Bt;UIbDB__5=)>S3v7H2L^%m~T< zr1jC_8(((NjR)Gu3=4AMZ^R_|wBjf_=7O(}?iqd)B9Sg+Hw&;?2V@G0dHD)_TO8-| zPqN>?VjhQDSr$itF$k709lEWzQKKCI4XpN&pqrllbH$tvP*QX}>n#=?yl%lMYbZ;WMwRn#csGsPQAlmIIF9D!aQGCqdYi z{#N=*rdk;_`BIl*g7c@Mv7=iK-^;=z)^XytoS4zhg-4$2iy(1B#11H+=$OGjESrvQ zuc-7R#YHtQWATDOEZ$-2M(-Cz$bJ!*#gF@U*o_S3T+AUX!a+5NhFScCV+Ib;Ot>uS z!Q>^>6Z4x$Ww4yuU75)gEQE#1t5&`n%LM-^^I^7-UW+2fmipsZUWJheTl}PfbUO2{ z+R<(FQ#GOx$7|lLKaR{lVRDH^sf8mB>ivTvXZu6ccP2cO2&YznfCShaXE!a%kQv>f z{T5OreMA zk*}(YxN>zm$>uXN`dr7EN>tlAtIIQVe*NLG_1k|>vZ0Lj_`#A0CYaTGxbD}gB=JJl z<-Sj1!6LLX?|H|!aCAb;Sk{&;0Pj@{J5w+{-fOiWA$M7ld0dRthTJd>+D=nGJ4@B= z)-ft?tcBsV-H|%?KO-4(lCG!Nh~S?MKKzvqso{B|tNiPveei!=fIZJ^oR4?Qy8T0k zR)T3U4&9fobGno*HUG8G!qZ@|aM{jq;idcpsJb<@B5l|j!ZPY^*JRsN^IcslWhu%J zS61ejenA7%{eLb1z73Pzoawvp6OJT{foSHW(!!K|m4s5;$Lh}6P(+!&{kGj&m90BZ zzxZ2iq^49TnAhdL^86K3&6nMSIIv#)vK4>LA8e2|it~-AI3(jokuc1Y81|R^Zz|8f zBXThI$hb$W9p4iNhCU0RTgOdyt)3%Eks+LnHXt53%0oxDj`TYc6T82B#}qYfC6@8k zT!rK#A{%Ym$&SR>vX3y|5zV}XcLXiPK#--&jog67V?^?2hJcQ!3pBZS<}LLXSp+Y^Vs%N7KmSR?%Yh z*-Ut^jUG>eY6zEVtH@TvdDXz&jTA`xhxFWIQYvTZH63h=ijFikq|Ug>hZiMEMLHS2 zO=^IKt{x~Ec}JU@v&qW?BjxX^x0l9glR6R?^Jw%3;4K3>ClLa~S9o znvF8#5ENxeP7;wJ#Qw~N*J5dgR_AOXk5(NCG9vrzP=7)%UQAiV+zY%Jp1_ z6N>>CyWpLeG0!1`_37lbMN#_7@nEkZx!;7=C(9?Ew1N5%=tM9{Pxd0zf|LzjIZxx!G5Q#nR>v&AV}IxKG90(aaV<&N;~zeHdS9)|pe?*k z`JJ=bacFYs=j76ql=ac}!u94yG^4>@{GRcS%5IGWOvNPhEgyv{OATlD=-W-j4{#V? zF}PTr7%A4Wla~19$S-MlxAsRxf6c!}fg$_AoPJy$ifLMf_LOE!&){g_S#zX30U-gW zC|y`BR3M&6?0Q!2-BxlWk?QYjS|S-&MA(|1Jm|33rJ;obPIgk^VrsrgavXzv<_qZ+ zKfe%tspjzrei4>)Cx{f7o(;)|bgfO`bDjc83c8{W_!1{3mo{M&3Pm7}Zn@gFntWgZ zV(?5ZB`GWIVit}xskBuB{Tdxa&wrCl5Cs@_6~cO8n!QME>#FBgIHDVsiFaF za|WM$`;!oqJS`v@*7mU3zxrxEeOOPg8poKP67RBorgt1!i6E-Jd#cY^5~37u=B}0O zC+fN4F&6N3l_AL3>bEZG8?Tu4*Si&LztmkT6N!68|D1Sb^zh4Osc>37Z^uyzHmVz? zPI9-$xtX_(4m1i5(O;A0bsZctsc5mZ-k-%lZTOhj2E0;E$0?q3!j|C0bYEl@I)at{ z@{JshY5Uzsm`bS6;$O(wZ zrFQf&{{~xBC@wq{SV=fbQMnQqfnNOS2mlZWLiKSWRP>WYE7Vd={MM=(1AeDiVV+iABKH2?g{5RN zU7YsT-0 z6~L;7=x!&5V?g}qFC~f&&j@65iD)8#mvRPCC)D$p)R4mNI|kQu+28%lS^SPNpfB=l znf@K0eZN(nxBN{?v6xzT{9CG;E?5^m{15ld$vW z@q6sFmhG}pPL<9Q`9#6riM+H<68OTuvj@<{9`h%)0y^FPaDmz`H2exsfoL2LPPCx5 zuGi}wrR+ZHTK$>-)biq4Y916aT|}oD@BSp-F^(mNf`SQRSzPaw;kZ~8?6l9No(|dy zRemw@9Ks*|QpJYuxP`EI2;ywW{>pvM;$9qU>HV>XPz$A{UfJ$1iFM6Ug-daBas3z? zr`zgQNomQ}^c0%BsV_k?1 zECnh7YzYlkQWU>ABL{pkRU&A-GLm-!8<#X@yhau6qX*?UaTf-W(cHOklYbSl2HduS zU6__@gQJmE9oQ&29`)b;lB-3GWcrYP--s$gES{2nA931#j<>UOzeLo%W2{CyOic@< zEJqxbUDM|bwDA*;!@hGtz~pQ@H~o)!Vdu^jEMg5kJc>=pVu4tA=b?c3hJH%a-T#)- zzrOImn{s&Ra{Cfj1KpTsh)9vrvuxkHKWtjObh6}oc2G<<|EvVVEyn1X)m0P>S?#p< zd6|4grK?BpW|J$yIcp9Oox*~vg#vX{nPq#4m8IX24!E$*fwuJHvAn~r>3)NBAujIL zY?{*(?`@nb!xqPIWLq%1K++P2`d42o88Eqm^r<5%U{F2mF5j_>@m857oMm>kL!mK# zz!RVaGI^j%+pPZ*@YQhH{TMQVHd?8j0L<(F4YGx7u`!X=vRYjA*q^g9vpa`{=OaiQ z=HSwMmF>Fm-9>s+7%v{X=KbPnyC~wb!1A$o18#(`PZmeJ+T_1f%nGpHr7_a-BFOYB z$z%jl;;<6X>3dvfptpgzGfzO|6rvk@OdCp|WlW+WVT}-nzKEyiMAI~Kn6aqxs|zAF zfs&q0)X;CW){o5>Pc!9>UvwpseArIN?wtk?->x34!#az_I<6q69eWnUpteKxrunhe zHGE(w5A!9^tp@6wsC2av#AM@C( ztkZZT<#W^=d5djWS4%TwDogJ_tJ7H*mzo&xv`FVsiZfSXvNZi}rTUy4*W85Hh^Apu z{_wwY3PUT;gU{pKguF?gZB^Qz9Za@48_sHgNu@7uI$*Xc1mMV;PnF>oFVGk*cf3$l z^cH}^fPb^CGGx;#!erQyMoF7;P@{&W{1erD*-}W+QshF8+ea-hgvscB zwfU2VjMtGW7!*IJJ=vdjxnCr&BD$#ABl7n@d}0%J!vd}Avt1v>3ShDF5vQwv)EYxo zfrossz)_uZ0+6Qr@q3Yrdz}2d3D6@-Dwvr@M^R=t+`pK0&4yB*T7O2>eN7j$wn$Bs z$&aP3+IP$sO68fKFL!f>pin$UqP;Mt!2|7wbUkYdhAL@)*Q|uJ%Y4&8tunBxUiz;l zk7a5GSbq#is11gl8bl0M1)e|WU0-YlU~FOth^{Y>`b5n!{k_*Df4@Cz(Wr^2J7m;)lfC4SQMuY& zT=-60SmHD8cZoKNe!JrN$qcypsg_kU{M?8-%rlo`*z9x#)W)ZKpN`?Aw9QK0q*n~g zhq8C)4^c-J)zIG5MJr?4wvwN_w;kU#y-FmIUmwJFly5XmXu(c$Zy{cNJo{P?Q=j67 zof`qW+}`B@EVgk|#06elq|4#@YU0#*I0we`US_T$x|S94=E~D;Pg5@p@F0{*$L?Bt ztNQ~(J73(}$Zd`0{R<|qnrH)X4~uGBcb%Qpt`JwxzrU?!<9=M}YSjKygDSFYCRlGR z#GDbZVs+|+9Sl3>U!!f}ki?fWnr}2?(A4Tbn27e!?nyOQw|$VQBM*}(ay#`ipjWCN zYg5ri!k!}lwbgbvfJjrZW|gFUeD&suNPPct8-f&gTjWpF&uFzIDoi$u#3IYEqPviA z-7`sOx~DQ|_^&*ciTjRB<()2X9}&sP6bmiGeE%j(tr>>RNT^3!hNiKJ2t6jF_kiX* zV_&S~53Nvnrp7!B(Guc3iB zoDlSy!e;j=Vp`qMo&ny~8$Y?Z{{}b7v=r&n7bt&Fo)#SbZXZ0|ZdvcjxL_4|RjBb2%`yvzA4M{rpF&3MhL2H%;&1-b{erWAH-aT8^@G zLRePzVzMOI*+66e{-`<&TDP?$a}zB;ofCjw*8l>d5}*)FAXw>XZ6DQ|TBSQn>6$!a>B~|DYU_&`ToMQAv9P7?yfK9~AmtGb-j0%Z` z--0g4SN)1L(D+isIVgVfJF9}~eSH5ZKHryjJ(Y<{rgfiB{S)g)e!Wn(pDRKyXa+~> zob}qaB1M9~=4WWwlJ|ejy36nIA`~Sy1z%$N%z$9kd7ajikmcM^z@3H$d~bRBzYx&F zgnO2}4K1%aIQ?Bh72$K%In@O(X>-$?J|`Dgh31_lRG5XnBE5x;N>8a3?(_VN90T0^ zv`tr&kYeO_#wrb$FE5;7ik#JiM)Y_4|8t{%gey(Wxg;BWx5xVjW^nYAj9QdIo1LPm8rGA5)z zlDZF-aj6WK)mHw#JOj)^l3I=VUdk79^!B);-TcM}iL`hT4@W6x0ir}V6bt-OY}Lt*_5Q@6<4+(96;!XNYB1*sOH z*htHdNA7?WOPJj@ZlofXH$)xJk%V36zkF)*H1h{w2)fSRNd}Bi@!j8{-lj_(`EL9b;4AHy zI93-hO(~bkE}+OYP`tG{HTNI|An-TVUviLEKc`BYM~X96JqKg<&BtWdlFGCk`zx}B zHw?m+jchzI(~2Cz!Q2b zx)xEMw2@(T5dV_{ktdQ5i21hht>p5yJrACgH{^HryIAA`yb!XT$+o0T>#q-{ityC3 zW|W#!=0KSokC~6nV|PUnMrj1Qv8gT`U>KER4!U}cZbvOT7B#|#C#;=An}k`w_vx1$ z<|wQ+a3T~k%d)yujPik#4zPJ@PXcPtqu+D)l59_{fLPaFuvhjt$4(SpM#4Y;bD%TC z2>cnucfSjmvw-j=@~(cVdsYsd+Rt8h^LQ!Z%O5Fymya2YO8P0_9d|TAr}{t*y_ECV zZYLDn$g*2u*NHJtkBrgQ1LIM?b2$n1Yn!%x4ENl@A5pEN|L3o^y$tcVk|Ko<#RT+z z{QwDxPHpy3`>~B?-3Cdz$f~U4CS8J!G%vd$4zNj!^VKio3o&cJnE`&WzMStmc2jbS zJ;VZJmog0k4lK`K^q!Wl5ydii zmlgfOV(N)%vlFJLw3{6T`z5f*+!3!ySLI(m?kd`LAK)G&n@3SE_E zAUVm@;#Z+?jFj`{TK=UrCd4mPR5G)4cb>A&W7J}ppNK8Tib09vtF%n5sfcw9-BmAx zFMU;a(^4a=+}#+OZQ%-6a(h2sDfE94bKj;s#@Q_kjY@}oXYwcbNp=CIq(iJM5fi95px>#wCHD8sHU&=RWvSG-fz+HOdbi_hv zjh_%ADs~=zy4vrSLqK(-)xF4uz9Be#8VD9P7YY0QE{?D@Wz8Zl>?CpZ+<@>z0Oq7QBx|y>A7V99jmEQvYbR`*GFo zWNOM*B&z0*2&Z}1-_dV246U4&elBI-a4iyu8?tt-|1CQQZre8LS< zC&K3E3qHz*5kBjE^U7D!8-AXD?nXjIPPl@n91t+e!5467z^n@^P{jAU0u$k!!^ zt`8&R(veA4E^&zX|L*v2Jb;^D^dETQrbYDTkB6*-gN6OHS+>-#eh=6QmwGyJSo8T$ z4QH!1s7!8G9X_OswtL#V$UmxDH)?$tJJ*i>#L_Da+E7A8MgkUlpCzxPPOOvmYy+CW zR@s|EJZ>N_U1VagDGBk4mFZ$+?az`=!mOb)oG|8!)&$RUoEx|oRs*GkfVlnaswwFdpkk)paTJoZLn{>bN+lkyzx0EVLpd@GBj(xGfeXw38^ zejvgZXbj6iC%a+W*G)|qy<<%4-iyU{we0}y4aQ=NVhEye=rq08#_rwLBWd~^j7uEJ zn(wf?C`YA14yh9ynFnnd zXDiB5X3=7)U=2p9H~vD>Y@f&n7FF>LgwvRXPqhEpTYjt7H1p*x8xp}E0>Crbu9J4G zsB!U8E!YAPysL*z$0HS>=qy7OVO!v@GuA~)Z(EwW!!%Z^ud!P}NUf`78}QYviw_YCjd(8B_s_=aa~3T^gf5KEZ&LDWj%qIffrfkwhc|~bkWomet{Gn{vcd!x5Wd z==-s$9r+&)9@a+LCVrX!P0oCG{4X{>SbBycA9~Luv^Es>mYG1l-h|*zSg!t1Np^Ob zvgl9hHaM2A$GL47mIWQ+Ajg46>&@Mc@muwTi88EAi;?&Y^!b@QLHdj4^)r*@%*(}2 z5)t9nYv_L$fR7K-)#uKF#K1vS9bY{$b}+LcLsVI_zjXxR;P zj2h#=F(noB_lZ?ZBP8es@W=|GJ^CQ!?YWzydqG<(uh)#Cbg1 z^g|mmclpb$BD=Gkgz+~v*}E|E`!KAD8<{MBDRShm*sqyzh-SA25CGl&aMxA05w%yM zQFUp02vQb10Vq8j*3-|<#h3~h2lgv1^pX>j&U!q7Uen*67}zN!EN6K(I>lPBEaLnq z9@yDHd`}^>=LCr=>jOEbj7ts+dL1nKBu((?%B(@QQ%xT9T>ZXo%C=LfhCKfxEvn<3 z2RN{tal8b@y|MT$us}ZOo@Ii%uRiDhO{{BKVuU%=BkJ0^a6b6F{fK7}_j)#o9^ilTIN4>Vz3 z!0dz(mF0u22*B;Fw0S{tXy!U_?SpUb^qX#yW>jjCO^wuVO4cs4g z9E`q7whYJnPx~ci$=tkX6Q!!*d5Er^!7gipH0=g=ZIlP>gOl_R8MMPv;Zk|wKz?Dn zQH24Ry<) zG`>GHz7faIG7z&i8I*Ekd{%Y;(OyINew{5#6p4epa1(iGi0@|(8%{!@3clXEQKoc- znP5tVH=kaCWjCPRu42K3t_f6G5d^Oo?c2|3P3hqCpdfb9P#b|fVBkg&`J*unK&9g@ z^AiASYfWn3T348I*pFT1LO$23h4v;OTDP$SeEzSwhCX=)JCj< z5svJYP8YS1uy%b^G@NMv^}QLn>mK9J{p-`(gkf>|LBpMCDsy>t4J#MiSTI*KZJYus zwplOTw68O*fAT!#gso!YIW`Sl?rkAp9Ok`<_yQV?k~qjkl`On2J?z&@8{%@bA?1P+ zzdD3XIUvrCG~Aq_sz>MHUCf5P?f*X(08FHAIApEmHCYnTIZ($O=PejO9I)14^+mU; z#O;IDJ;S{i9P;<6vmxPxohP+5iOoILkpM5OtmYB5pR5PMKU4*~90rXGvdll1N1kmr zkChm9<$W8kNUKYGs3!3sN#&|UNj_y#!R<<2D(*)MWSuKOyuF$@h*LSGnR&S`*MaGg z^33s7`CLjd$zk7&vj+gAaYeUfME0*rm0P-B8J-vVJMpucXy>H%?zb!kIeD0(xOPS4r1S| ztu12e`|B}kn-A^OwRtA<8iF@d?~yV+%8R(gK>w=zC;&jEqlsQ&qvowyV$|V~6*=mp zhW6J-BBB`S@FB{=i~c^n=7{`=PPhpv%epU+$Z2TS_0cSxaSHp_PeuYR#Ld%@Y_FwQ z<7J8!gNBVXX4Fo!$YV_!*(5(gu<#r~q_5~$6YvkScLE`1kjTxnuV*e6U)Tc^E7?J9 z8oAJM-0*D29-(I9Vk})>gnSUsnC+xPY7>t$eonzSj|vUA_7iDK>7c0}pGlfXA2y?! z=E3~W3;|soJK-{7sTl(Xm7Sv#m&?$vWGa@r3R6-JPrQ}U z9RM!md5!AUHy4Xj`TNrh#6p*(1jMjkrsadH(1e7WJSd)&A%G;+$slR~ki&(Hjfst^ zK}W48Bt2PPKH!@HH=r2d&{?E7<9x>%kl82GTZMfK+6`gq97I%DjjX~`O^5HLlV z5n`$L$^mP$Dzm35>d!N)m9v9tl=Hs94VVziJTIEScIycn*_^kVm+lbpwBZ40E)rKY ze^Zu5P_1MS*%_S>` z2-~?R=PX|3vI|V0cnZqZzl-%!pVn2O72EoWFlB#n@$v?3iqCNNPVV@@prt z9#-fH3!De}2tpi&+zG83*^b!sM3GPg z{66z*bn5*5Z5eFL$;S^QC)wUMSrm%zzPeZ*gXV{L4z&L(R zb3>Ap#RPD4E!b{&lm#n=xq*$$Gw#LbR$r#ubIKS+$#NMZ+uGQ-d#>X=Gp7h6Oc2`)X$Rt0O4iky9a zXMHRK=8KZ{gWGW8cWrF1et|S!c2*n@=WQv+r?ioel-RFhl_JFMGD0;Geu|8EblkF$ z9kZX{?WJmVNi%CWW$bAlxlkcnzAY8?THo?S!Vp^fOXDsbkPZe0aBUYr?zi9F@dQU$ z?HzTOu*;qMg-S8XEad&)=zL7TA!4c9MSH>;>ht*uCcCn>JT838I{x%Ut*w8z*?Qg_ z9f7O(jbP(9WnR`#{0F5xbSVokB#|x*rfKZtH&K(Ns$KjPFV$Vzf&Wwi5Tt|4{xR4- zahc6VS*%3BfCARgB^~&l%+#yCQ@~RJ+`3i6i!e}(v33a+o z7U`IKG_U(?-PVA6kX%9+Zh|~|{`PVpw-0q~d=7}0fW*&dXnjO`5GkM6`mAaQY=$b& z#Fh~7J9||&QO$U(f~ThE@BlID^JdW2i)RyS*t**AgM(5Q+B(>|nVhbD(Q9_}3!jEI zfTXn$LgPNs4%R}o6XbHBT+;7d`x43yo9iluK?nSu@5#}kR~p53Fl5h!aYH;-j1>n{ zCE>To6}~S9C#^y4rKM@EPPub`qnMt%8`may_hg8N)1pVaZ#(@;zS-zGEB#P!AT;@#69Q!s$JB&xXB;;Mn(%N#<-L8e62P6HcR< zzqO)lt^mspUV5lc`m>RIuvQaaSt&hO$w!qtW1j=-6T~C}ls!W`oic|S$f`lB3gB`c*=p>m-eUtjUUju@E}BiW+XL2D=Y5_v@9+Q^N@bF%lf^j4LZ`r*0*8{xk9b zB&X<^8r$yAd=i4utspL5$*VCg$KVWoUQEXrEh}qOPwWTc8WKy&?VQFIhKHm^q6^#q zd?T6v*Ea%ZYYsAex<+xT*K0O<-ezyKF$nF3WGg37O*-UM21jR3`xZ6JKjyS@Tb>*x z4iB%s%5wk73rFan&v9hs(wP=y~^Z4u6?)PXUvXETvw!3MSf(@L7stqV#R!_-(YFpWO?Dp z+kb_tt+yqrHayP9dLNs4!4H!~JNPj-f9wj3GLlh@~a># z8i1?sXxeSDKy96zjJg;p$vfNM57EmXS6dRIO& zH&=%DgOLZi9IPavlf#9%PGQkqqY2tn+QK}cZ-c5mjWJ0l;o~1YrgBlRahs}LVQCXw zYhumWz}@&wsx zThf2z;mkJq4=X`X;^pGoGg=dWLQeZmBhCvP7eEV4ycUsLRLg#}>KxUT<-I4B$+|MxI=ITd9plBLhrIkfjF=5DXUvZ7S<8M(Ik5|v<0?& zQ8vS~Sbkui6*YT39%^O0rdu3Pkh9t52+_L+4(xHO7fccz1rN^gxz(zwM@51szkrT; zJ8I?cJ9FJHF)GPvo?I6#@bc(D8xm^3<1-S=B$7?_3m z`Tfpv;0WZ2Nj{M1Qlk=1=y=s3x&T5!E=0%M$;4P9I2vN%bsk6#;%j4D!2it+bL~u5Zw#rDSD%IF6A8%A z_OaI`Pf#w{{2e6!byTVTvDs{YJIanB3B&Y(%quQW;NxQISeTx?vBb&p=1{00VQ{Q?(~EIk|m;D*l=>}cdJ6;<6GMMvzDO$jiupTJhM*Xvr+S&Fi~PKt zOC$_&E@hq04H8@469P%CBCTvgnRDv-8&`tbXtr}s#O?CfldnVYamw*s8-by`e z&4)EMNdQ{Mim>OflI zLP(rH4cn4K`3dc37h#>t5Lbn~&PvW_hj;(5h9>F31ShEIf6&OBus7v@PPT28ufhtO zB~!BhMsfb|bZXW-;lQxNj-qXtzbcI`5=`XvcqPC1$H84NFx1hb(0{3IYo@nykDF*kC$8S{SC@**8T45Rf^-`;O!g6PB$e`DPW<_ZO`#fExIzaQa0 zV>aWUT|e&HO;Ry}Bj1y*>-V#o$XIs;83k*?#K@9q~;NWC~wI96SDH$Gnp ze-`f)SR@e+$;RmG7Nrw6VCN>?gh5*0nEne+(ejXiO9W~PlUb%TQB4)0T3oX+d7=wJ z^m6({B$&RcqM>ZxL|d?USTdwAK4{pfb$F9Gz;|KrPv^yZH-4Xl7iolJ)PScA|JM4C zJ+h!kW*zRMF%K9xq%0y=J!FHJE#_&v$lJM?Q|ldb=K{tJ(v_te|4E=m{h1Gu96gmC z-c|)*rJqQQQMT^xZk_Ah0HcrM5ul8E@r98cpw(!ss>xM!I4dH)iYMwi%Lhz$m3mlU zW7`c)1dr|{WIA{cZ@;m~@%HOCOZ`_%_z4#OIfTLc95gRm65%-)B4QJQgdqk z2)Hn!Y@ey4;jV23M)hVT{~6mU-n{%~&v#njiHT2)C8(NwfzCbLp&1LyjU#=3Vva6ZG7w`6le#%Z4Xps8qJ$>hFHzC$ma|=cXmi0Yifw0?UbLCP9?0M?-YK#z;6Z~m2 zjJ3J8MSPAq*6}dyeoVPk@QuCh`U)Lq+BRcKGt2jbR^E3}tB|-jd2JQuJ9FZ#--=8q@@$rh)HbrW?JX@CkL##qv zva>zXMb{S*ri4PwQeWrTu@<-(X<`hh!;u#4y3^>sT0$Ljl-xLcAhAsP;gS@*jMTn#~EaHBAUXZoTl~57v)k!`Nb|mcBa* zJAX)?gA*VQ#gsp`_R6(~xXqy9_{%1B&;`RVm8nVI%;{PKKc|S@xc#@Tu2rhqvG2KW zZL3f5J0vQodM%E-K%&8~>R9!reSht$Z}6NoFo8Wvevs;R{sfHaynbpY%jHty&^+(z z#z}Hjh|^Ovme&v~t#dj3=*j-geJjb_uZBtIRdMbpx`PdW(ANS4nVL^1t6jCyT+})2 z-y>axNTTlM=L(_*g9dlFy^MB3-2@Ai+wN{Jo3Hy^_o?uXWFVuG{{A^LO*r@$^c=9t{D3r0Dbg4Sr@+9_@kNv7XvojFL6J2q70<`f zrMgE=rsl7*2zxA|B@hqvjI|Qs`QXa?Q!DlhctPg5%g9@X09TWt5EK+qB)~t6} zyR9b<*YTdrTxM$+dyfhJv*8ar+9o{Cbsd+RuwcIDeqy zm44Nh_=uU^{65g|&S-s+2wG9N-j7#0R|gOx3?O$B6Bp{%BrC zV=A5D{O5LBpoF=dIGa;ctyWa!Ey2DL|JHW{a0nk_W1gD?;}8pcR>$y}5lSPn6ADm% zlPMej+d_4W!}>ekXh@ooaF&)`JFUTFtU*9WcZTiX5t)rKbxCC~acexnZ}`vg;CR98 zhlbDdOiHdUr78Fhl~UJf6q0gZfk6RDk&ZNA3=t1GBE3^l3Q}4?J zZMMC=`m^A1_%!OQb4W0WS{WChS}<)P&e@0~&i%r>?oG-)Ro&-yP>AFM9I4kC9%{SR zof{NdxXSb-wGr3$BpSb#aj|TXIWuCcHNm#!@nw*j_Lea=9i&m9+fp39y0?^3iho4g z49*+G8YT-IN5)6iq4J;nVY#xkwEO%jD6*xYXYf`1c5-aFGoxO=b?5xKg;dkL8<0F$ zwvo5$>3t^ueW_M9aoC6}z;5JmcxiRDK}`F*+;5RGq`N!jYz(qZ5G!ifPA+1f zTn!_WtEcJ)%tazjMBAGWzb6gk>l9HoN%Aag6PMv59Mw^7j1yHZi2N?9YMWt<9<;lQ_rS z+&LU(2xzlf#}|;$sE0o$zv8=`Rt@|W*TlM;@lqdEyn3ex*`CMmM`?P@Z!ZpvnT7e@ zoK+^O>-eV4&gH-t7X8&ooMk{Unhi{2Az7?rdCUbIRv)8lLvjbm@K&U@Vhov2V!UI` z-;-QvyedGau_DzVq0iNz=d)2osz6+-O-~Lm%A+alOxgm}{p}-n3qZF;{94+`)?{cf zRInMA29P>b;Q|@Xu07MJ?2rnwQUev~*Y{O6`-`FCQ*cXLBn!(@ zWc@_4;ZPiiPYu^58s#_!Z%tAM4eTdA=vzxTkT6!iu-EgsIW_IMycNECYbL+wRhSs7 z5Gr0bXvY24@b}?cTDTjaWlWppf}Umk zi9s{Q{NxPpq<9u|jqrl6@sp~4PA<9h!$SF(p#MgjYk?qHl1f)3!o)^r?eT;A;zu8_ z_*?n{JD0$~M*&oeXQ#(nrR9{pQw`^eIlIbss1$lWdl%XLC2LBUZ{fAd*pKRcOd zyO)g(htrp}E((gsN*0fT6U{Ib{-GbJcYGcrRBwN{9BE99(N6{1;gSmBar=n8Fj^9B zq69fDEN{KY1XB%v-&-Bb&dLY>m+|YR`WyRh^QsDU#>)P(Buq9Ql|SrovMv8ZS#90l z8;RRcvca6w%?#riLUjBL%lhHO?&4cBbro0wmHB~?c&I@GizPCfzZNNsL@4RtPRX5E zPgIgE;3fWS%tTr71w<+yXe{IloIktB#UvvC;ghyGKD;CELev*gcK(rkB;IUm@O7_5 zkeimI;ZD$*=OPB9>L)BT>fsgJ3S zrxf?a%5sp;UeFIUui)n`ud|@@evThpYFdHE9QDuJy0NCzB=ygkbu;(GtEL&}{0BcC z$5%HWf3f`egPipLSb+NHSKU`(kIm{qR#x23)!O0OvFHinwq%a;drPqTT6G3pFCHcb1&W~wTz6?;(L~e zyvs72C*PJ@#L zc0w6pIf*&FJ_?EvZ8@hq$1jZoYwJddckf7r$<;T8Gq*mH9pBdZj+-(EPk1kl&O8p2 zAhlP`r!{m|$P3rq+{Ey_;588`xkTp^`V@{( z;tE~Qd*6Mln6Vym?ywIl#8bbEBOuL~Eu8IrXYhl?^(c61 zrCgF8ueIE-asIuzotD-}U6}2&6h>T(U5`~<3-izh7on~tgwHqMwK@S)GSjc~KkK_! zql1udwrdfs=Z6sjTTfxmw#A}+*h*SxA_X>%h>Sf?Kp>xp{{d}KQ)Ii8d4Ej(`#;L5 z2ZHlk8Dp*$E+2xLt{xCY)GvE(qh7~`_u)hG)#^O3*fA923>59L>rKu} zcDSn@sIBmE;95VgtNZt3O*RCKABEVL@_&?6Rq27L*SNTw?8aS}A9yOLdPq?&mT@;- zhJB1N0;8XVU(aup0j#}mw?lL!W%uWy+6A9xMiQ>Fdz zIR^IoKVo>$)0_Bw;C&9dTNPJTIoE1yXH2L6XHsMq#QV^wln5m;Y`*%qa505*3w%EK*cg{S?yunhxBcU)U#M9SYKSW>wPi8LR~ zNvd!Tj%JT$B_uSlOV7u?WCce?I=TDW@E+(;rEe=HigO$V!P<9O>=+ zXqY!}^?h5MuaLxAi%^kjxTdgNBm)jV0@4l*wup!#VXlZg5)hl`Asp zGxII(rhtT6%*%gU<7HvBXwCyH4M_VVxBEHGU*hWx0{v0lY5bPA1P!H+IS+siKjL#= zQ92X&`J&|7%v48?;8x`i`?7~?yutkRw^4q71|Em|JC{)X`}}PzcXnx>-?gb29^Xy5 z?NjUIQA|?~JM!X&KVjU^OvxlBOy##4Nm}dnewF;XX}P1`D!9u#} zqT*FB^*LkjXK}TYNQ}GoH23iA}s^*h!^z zl_gzK}GwumUG^1E2O&i|q79UtooxNYw?Mq@SEF&j0uZCj0P+qRR&jcx7N zwr!h@@$Nq7ocEsl;r*9 z`RyDBA*G@6m;QboW2wRgy4@X$yj5ko44?m|K1DrmK*aU5Gv+d39jDDfIFH~Em1>x4 zAKAj{aDMKPv$5{-PdiB*GvA)P>xqAwdL$ikAA;#D_da_%O$>F}y#s0;R@5BpZPzAp z*8k<8Dx}^3ml2#*DkSBTu}tr8_irSw{O?6_`QIXm3g)r=AXikE+UX6DYIx0*{1`Uh zaYgezG&lio-+NTU)n#MBiA%dMgwb7SyLRs7eQz#E} zkZGRpMhm;%?=QCEf)|ZUgr0RY!ZtqN`}?<6?hjMDLin@~N2H%h*Gq^yNOopluR2?m zd0o(sQag!8sc&owr{AH8q!?yYqK=}i`}BB}-6yssJ^60WA>yPnf8MVLY21Uy2Ryof z&N({E4+ctm7(2RmiVl!l_q}X|H8esG{T;BtnSj-?CA~E8ua|Ss@JFdAKI(ssQ287? z%6pn`vv*y~as$sfskhLxH<_8ZBCDNlI0NA{il(gaaC!i4T5>uaqjcVKcV`1n%|2!% zn^S9UDpllijN<60O&rxUNcw3p!%g-BeQ6_y`%3LYp)AY8$Zo*P434mKzFW4F@kO z72f^AVoL_<@^%WRj+W=!!_y#sQsu_+*Uhs7*Y;XvbRjQ-)L>_%jNf_9ygZ&S%$H8) zKK+l8p^Mpl2zD$a&>5&CQB<*!onxSI#Wgkpm*Sz`W}q?*YZej-BQ;o)Om0iy{Q zv$4vn7;S#$bXLlA=xH_mS`L)O%pjpv?gzbB|61rHIvX)u)Vi##(7|z4+hQa&Nv;X% z_T~f374ygCWNP(1Y@_q#j@rAcXj}Ght_$<3@M`sl`X8})Tp`afLV;YE&Au-0)469) z#4M_+Ikb8pANg!a7`0O7ifRtK|JF(8NZZ2=a^-g*yjOdQwAB-9HztR`gdv-)PJ6iR z*Wqz;ZMzBCX$k4TEuDs349q<^aW*xN;0zO*5$AC|)byq?@WyW|VS3d2!xk%)LKJzt z_I1i1hA+N%a=`G<>c`Zd?>soqKKs7ygU(YK)jj>bUG|^Nzxy(!7OfaN-bCE396YcR zr`D!5TJQIkQr=FR**jytKBJkoefAC+5$rz2*u5QC4pVFj>R{?vsY`X?BbfIEXQqZGTQ$fE%ftM(Q1j6~%O7c4N@Nb$y6*|!4U@$5On(;R` za?$bDZCXk|0lc+Ev5CcHIPULH_rI#7LR7QTGghM8B(8(^-Yr9MVogJf<(P7Bv)X0m z)RFZQZIQ3Cx9(>4Vr|B>Yz?47p4bhI_T!^(rS-mN59Biw_87q8K51fWBkT5Ka7F}p zMuM?UTGc6BU6+cPel&rR8ewEtE}0y%PV9!ni0%JS%S2~Xgo(X{m&Z{cP0C)#*;;%suvu~C4H(MQw`vPJsWw<###;Y8uu1=G^_)b zN$-TEY$a+w0p8*G&wIURv$ePVWowPODzLM|7D}%veV@x6s=r_EnjghE(f4#8u#1mx z#0@cg2%XWUz!%dqjL+xCR~r>qfG0G#I%KY!-BRm+!xg@_1ljIod9zcxhESE_cz}vS zBu_Ds_JvPRgz+wqM}$usekqyJR_Wz~hjps4##psqP5XmC)(8?qT|if5cGbKu`xgZ} z-fh+zx>ZCgqRe{P?e|BIVcAC60;v?~hVHaYBx2(xrX2$=^e2iKr~uMG0F`0U{S zDrP~_=5xOv#&D+%g+|tH?>r#Bz#R-#Z8rycv6CLyUinBtG8EYoik}=XXSP} zsqkd4CLV$2}!GkYl1Q9i*Fc#CV3Hk4#;YF)k(4 zm6(Dm%rIP-3_{7Y_1@#-wsO0#bbLwXP^qYmS<`+$86PH9tpF=_BO)wVGv2V^TGs>2 zMw-oz63)Bq_O+tWq=5IYWTcmrsT!ZrAxQT7FOplu{Z>!ZaJ+5^{3|JMF^<@o&wtq} zKG6o$x^gwfEpJsRc_AQDG#@{$oNRjynbo4pY0Z_{`uUxgSSvy<)P4#Hrrr}ApO_V8 zjfk8&_W}z&s)kGE&k`j3)JjE*aphA*Fo-JW5-J`iX>5tC4g2O`Q>U`HI?Qij7s_I*D%YXjLFDuyHx6Pz6#T*(pG z7OOc~I!n5(}oUA?^i^FW#%jCX^rE2!az_`s2gP zc*vf_thkR)0clmH4&M$dLvL75V|dy!njdr02VV0$veOKW5|2ms@~&?AEt_fpkRCx3 zn8|iyJYMC#!^mciFbg#RAiyOoU$H{oy12ain^gH!T3%MMZHL^b$r&i9UK^hWMM z8<3mTAXBrgS(i_2SS`FZw!X<+q#v=)*26^vV!`Xi`sAa;&B;6w=|}C^)8Ddn4k1U+g3Ipg>FFq^r`T}G_SZ@PrP0yfgWqtm*+4h=t)C<#3g^5%ZSml( zy(rt{SE+u+@VusdmS2|%j>ezy2v`i(YOjC>hD@SIG3_+`W7pTllUAYZ*VpyoOAfn| z<)GkM-PLXtfFw7IUErYPd#`qFfwEEUL)4&nk`b211O$E_F;a&`E(w=k#9u=*OfZ>@ zl@GwA;?*b0+Ut)u3N4@5U}Uy5#{RY_(3@cPEksrs^bg271Ob$r*+&a*e=2W zs~Q;BxN=i3!P+Rc6<`v`y|JXK(y#NZ--9vvoO{ zYo6YF-vuh)?B3$XD!cnDvL(Gvc6`>F`J^BSh9S^;N_mx#)JAu$dO{V}lCabEr-{cq z?CW+V*_UdqK)~@5?@GO)*}k&l;mKyl8E~|JDQ~9FS&aeHlvN*9yUk~>Q3<$*zh8{c zE8<&y=|2}c>8I976g?ETW60YcPwBnsnZeg5TEEQh^c!_)Z$r-JX++6saEKtQ(M#!q zsUMi;aE9-NooPXGWXDwU;Kf9t`2Da%XMk-&tVsrE>y>4>8UbjGbE{8CPRJnC0D0MU+3dfSc&T0rZcw|c;ZlJ ze)FVmyW`nnWj+8z9^P{JIIJXDswUvLAFg7Wxx^$JFNO5X*$30yEY@F%h9_`{8*4Ff?>yRh|Jo*%#~$px=uI zMZeAwae2eB!y+kuN_b9M;Wi_Jt38+k!&x#a#(_gyMB|50X_`KPOc~NPFK1x0L8i&q zLrq91EN|Owdla$S@o3CsuBiKpQFAj1ZOMXSzg7mD>$ma?w ztdgJAqqBD*oB5yfn*I{YroyfR&!8@SEWc-D>M}Nn@kfXo^1?|qx?EW4xBZDGKEd1a ztzjJLpsv7|P=0=FK#JkxC!9`(x|+{Ono`r2eNX5LVm$?nTBl4d@Bw4MYs|?2)^t+M zDaBg|uog9z9vxj|LmIN!S$3}RaNhZP)C9-NX5{kDU(Gln2zkprbX;Jfklkfu41N{9 z&0Guj{6x>k3*c;jWd;2XPw0s&tB%M|O|EspkE8%-IX?g1*7}TQgBge4iA4Cyb)_tk z&9gNz0tQ_jHfKF^a}y(T>dX3=-Ow6O7&sG1*Zy-T#L5gv(xE$~(E^#M8uueU5LGRqk7ppUv%%s0o_>GAi}`)w_BMF>+!c>C%}Vw_U4 zp0jcV^E~37qTPB&YkU{Yr1~GZ>uP-2ZWnYkSbD~z*I*dwH4hxG%?HHfbO)JQmfq}z zZU(+)9xNj~SluVy!G8z2uX&p|8!98U%gUf}*?ow#P@e8@;@Brftg&+lN{jU^PTwTP ztINCE=6a{To&&aOuJ&_D#5%cdHtgSQPU_m8SaUmHBwc1>SIIaBPN|(tkR?{vdF(4~Ua7t?v?l))Jc8>;GZdwB$<}$5-|y)cqM) z0_&svC>AXq4&Nm;q0^;mn z#E`yyCuCr|!K4uXd#QxJa}$bOLU%D}JP{%~=Yq<4nK7DeEN43o=8ayKAZL}PJ&j&- z`PrWB*4;0qz}DhGnnF8CQhzJ!%bf&%LST;K2&u@7MXF`WcBj!cyzCZ|cwp9GyAi@Q zxfrd77dqeR?Bg-Op_N3KWt(m8AW{EFSxj5>61`O9-pt!Pan^*-8>lR8yFI_0-T^Fk zz%cz1aYFvlt3{VqJ?$CBhGg7pRx!}tdvQbceR?E{SzYrMO+Z%d=#Zkg8muQx?<${% zgd}wv`7$aKjVsX&8r3qlc1;VQ^~pCL1F+Ab*b3RnpszfLUEC!R@lmL{*?M>MxS{NJ|NTJ)D8?OSWr8k};85=H8 z-a69v`kGtoiuAOSrSoQl1Zn`urzlrn1`=G}k?w?R-n?LcRQH_4sdzp(uxyw>3mD8O z3WxT~s*U)8x($k@71-ljYYOD*ZjwAkh=g0vt$(E@aEYf}2=N|j2fGr+W^;QuQDh?o z7sl+{j%;T#)tKx`246KklUq`e+6yqP#9sB=CN8Yx4%iifLxlN(T-@=1oUwK;-j~mA zc8W*@5WAZ%CWDn-E4pfP#J#6!#(v!JUIiC#Yp7Zh&Gn5m$1(WAF>8hWC%g+80xs7Q zryY##!s>d6r-aQd6EEPpv`u@=0S6zChjL2K1peg~*7#L+6T8piJK6Z+P;KviuiKGK z0ki<5luN*|6)%-dSjRC4B#fV&@J1>~D@_868Xs!@&vXZ}WH0v*R|`^s$^GG8O}|Kf z)OG*#{&-JB@0!nGwHxydXys^QQ?yOnCx-hzNe<+K_yn4~(nUO_ZL}fV{e5huPkfIg ztGE@2`S5&azmaJ`+4w2z_n z{X5Zy6i?WMw+Uvd;Kp#q+8K15i7@GLYHnip2ZVV%J}e1W1PBI>DAo zz&;^@QvdcMRsWQtVtA2_ajU~Pym+-ig7l}?z;bHJ^ax0ka0bRkAvcwsq2td1cXg!G zsFvZt0~5fj*3L5~cFneUX?DKsC0dj;C_0V{%@LaCkLv6VVgtogmQQ94MAY4&ECxYW zf1KZ6U~}g?l-w9Kf7kp#W{cXcN}dA%xDahFxLP*}`x$&nJW`OBlG5#k>2@$acvpVJ9$3<>+y~W#7r+8Ai4qFkk8YdsHB>yD z4{otIs(idoAsu~6#0I_G53SNJTzq0;t66aeC}d`T&TT_+y95U2naqo}QFD+wl4T0| zlTKV<-N+tGbdH2$Z|{fiG3JbTwSAT9N1#~#Q8m0OO`#)QC00r}hmFqL_H8tg# zDlqwZnT1ZBFPJ8D9N{`_gw>L{545vG)Iqnc9BZaOvDXZok>h3JGVAiYY7sE(qX0^v zYJ$zoXnVs;@iM3`+e24~5UGHY{r_x=W>H*%q=~1pkoa-ghYdC`Ly=`9Q)z-r+-rhdNg;j3?7}i_Z6BPewj&7X&cks8qBGEXOMvjq(&^6ftKH~Z$3z`z zcULp@;DmxT&5IFSi`6va-yqpR8L8bru!Sr_M$XPrh6fjEdB4zJ>LT=i4^V)s(!t@H z;8zbRmH2#^VVQgxM{NU|=o=he9BM6HWcxJa-?&XISZ5IIU@dezJTRm<@@tcjT`f$v zm|WndVr2L(YWs_1S&^hZiPJVzb1v-L_7`9kJmJ+deCWY%%_ytggI(NH#pz}PEVx(S zx{$JaX$hIbGEPGAb9O^bNC1E9X{sE|zGdF2@3K_ws-`mWX?@&A)TV-_vfdr*modIo zh9FxP-HxCE^hNfk6{eN@Qv$A6WVz8^u_%Y~!79roL>peVJEV4!r~4TgUM>Ls2eev% z8@-w%8h%r(t^d@ehU#9*&0 zFww>8-s0cKP^!M?iwhV}mk^kde0vV))eQGSQg*|603^CVb1kOJl5M9D-O^o9F&;<(b-bejty| z2$2&*yRk&W!2yJ&;o22$Z?WcH`PQ1l2eJ=?s7azRz-B%8gv)S^PWKbh#+uze>`HzY ztxIUj+sAASrJXiBd-&7awOMyD^y1Yq)SM_{dG|r||5P-5sSj^g5pVP37Z>@eG(1YzSd`#v5TpK#X^PLSMey6UbGIW5 zvDq|kxL)Gg33-$cLU~D|$z*P71%x4=E5BX-=|Js77K5hy=j&Gboq4?VXTO+(uQ8xf zroHIV>f>~cPCZde?9!K$2yI=`rwwH9xD3jCLZ^8u^4nYv_oUmvnt4W!Zn3u|4+gB(iZBeEoat_{Hrz!=+$96Uo%@knZ??F@fR6 zt=aQ6vrW;^W2r0A)D>!8uCwDQ9392q@VRx)?uTEA&~Rr9e>_9K5Q&s!d-p%@pPnzY zU@&IbpMr*a$QqHt6AW6C%?tQEoZA0*0VK2y_prT4^oFKnd3Z@;&24CNc6H#Id?YpB{igE+(QTbg_7?WHp32o`AR za9?Vve|p)}kU(|3oe0fs^b$$|*cfULNWc)N-g;gz&)S3`?4~@X#hoZIS^$ZRlaH&D zZEGi@cN7)~0k17y(LZ@*(VV?hETXv?q&FQwOcC13z|a#y%ck9y_(dMKez|EU*wVUV z&N7E=1XPWNh1TYS{YkXcE4*%qV8~^POvJcUwVd`^W1JjV9iZd>Wv&)m^ZL5O$MRn^ z3c2;x5$iEitSW7HyFV@O^;}p(O}c#d8=hAis}A;Do!`6FzTh5SR_(`)W4u(HHesdI zQfpmqb~wMk`Io|n+BK7AF9YxPqa)Y&)*SG4wfbZ}*seB#p3kEPZ8_DO&3D7ekvTf- z*M7R=DI7Rk25YmNO$R)k?qRRoM(jqoy&&^*EhKkR>;`x1&QmnWZ-Ll7HLYmj5Q13Y z#Z;)5zWmLc!@qK>SBcMvd!F~x(NnHfygv7dSpZev&>V|{urx7NJ039+of8bF^chkR zzFcCoE^C2i31t_yQd69kLvl5Zu@=iC%X7Zo$kHlTcZGeOK zVc#n4*4x+sOfud2llePDd}wSb(8)er1$D_v>dAh!O?mh2{z|<-=Iz8)ch?f^wiKV7 z`T0Ym(GRgq>?2`{%smp$*5_@g*=OkQ(ySW&#O>4U)#uwlsBR}* zj&JPhY;4!l!BvaV-tM&!?z1!aiLUv2v7V)Jn82Fx2GnY36{3)ayp}}fNRW?DGBnFT zDH=L?2>rma2ng)6lh$>68V;0v|>JWiOn_YjyA$lttf7Kp?V0Xn!@R7mrVq;mo%YMMd z%TqJVK6GFmZas4tal5Y}6zL`l;u(&aJe!Hnk|3p4CX?DV>$Rnou^A4Ho5s3-sk!*^ zO0)6ohU2a3@BC#8i>dvIq0#Zq{%3sf`CxhZAF9~DobA@4+twCVZ~}? z)n6ECc^SlbQ(b-5`ki#Oo?m%d!Y*a3+|Of9tz&On++^G0`Mw+c=#t$Yyv7#*A;NpE zi`j8&?RPwN{lFz=ljSG&J421Y{d&7TLoCLs#p``BKJvC4e|NE0GA{6|O7RpK23=zDfTvD49F4WPZ@9Tw5qvSPxGGh@&p5h$pubfGbN z-WgA+uN!?1Zv7tDwm$K3!EFcOj`Bgs6mb}<8SpBX z#Q`);S@l>s$!_tQXhq?!(p67)n?_SL`&|(7#ITI*qtMFHWxe(W=hcW1j?G4p-8sr^ zwQ4WJs`VQJkuNzmQV_=2DvbmEd73U|wt>F3 zu6s5=f4RC*^CIt?+PI-IMp0qC%XzEja__=l?mTjv$M}9VkLKBE-P^X_j1-v2$qju= zxG$54S}%H@yQ^0(stuPcivZ6K;b5+FT|@00idfTnTCT~-kJ^IF!f+8vh|}bqz?MKv zdwD*gD85mZ(oIn(;x<4dTxgW6L<;Fl7|bOlSoc6*D5th3QbwL(!f* znI=I^gw+{n?IqaGB1Bc6;zckXc=b?za|Lt;_GK8UeW=&V4EIT@8gS061hKw3HmTR| zoXvV9@|lvaC(+5}3)`P?wGS0MI5t&J|Jg$C4kSx$7ol_VOqF}gi3`my@jDymdjd~M z?Y!AKUkx?8WzovGX`c}t3(2o=22}kLZ-OpOmgEIP{r{OTySv?oJ*6vAMT@HKX0RIBjIGb(Q`XJ>8Ff#%YW8Rm8W?8}ln>-9TL(`E)o~R< zrq{>uyGM%xYqm?({kvwwSvJ}8O`?%pF#p`N;x^VCcg8k=Zuy!$Vjp{*JLFhh`z(m| zW-m3EgKxkjq$wyvqc>t7Z3}NZn2|2@^i=0=UHwKrbt~rC%sW^dxJo1_(L-TuKvQFc z$!R^`0TC-Afe8YAfV#)nQx2gbfj9E1N}NQ)?LT)tUh=>x6S(5DUF1Q-%1tC!pGe2T6YSWlS07MecJcZ1Hr zrQOZa3FyZ?UU7?Ck9x2%BWxdc6HLCL!4UGRQ2-~6?&2WZAJYNM^lQ6POSiReNRaVU zxj_Rz(f#SC-n|gzf>2ZFNipYfJ1|@owjBvww}~hk!lo{Lf7*&wW%S$!U76Sh2>YBD z)}EdF*OKF(g|$gu3nLOO@Xi^5Fd8m=zgtiF=!y~nnLPvs?THG zj(#p)-=>w{{qDa(a|uP7++||$3Sf6nx2$?^(@(pmhsaq*n7aon{~FKrqJ?BneHg>! z=w_Rg&)#NwmyIobf%M3iHPlx=77tkKU-=-x`($=#FuXCyRSrjqZChOgS?pFi;-#0) zliPWy+%;QeN<+bjaN$C0i1+@$EU2Oe9{URwBIhL!i0g@~qvsmZ!H|*g9d#RpI@s&y zg33yq2hN=wMb53dI`5v2kdQONF0Mu}&g2%7OX0V6Ecd*a(6^L4k#!cU_M+GBu&!AJ zaFVUI2^+rF=gQ<)uMWV@DwK|-iiDYqCT0$flT(hla7-$tg_!qO{UarxC*`8W|8fXX z_fvd*t?u-JZ{AIe=Q>vj{;TU9Mk#UdGdZ8AK>~yG&&S*1lI{+)#l59j_510WZchTg zPO4}NEQHdb*8Si!g>aTzs@L7ZlI=)+lQ3*Euw4XcrL016n#zWGBsvnMk8;)dcC|jK z&{S6Mr>Dv*p=@M{VljwVrBXTa>nEPn7sV8{#xSKcM&{cLOICtkT^O;kOF1FgogUU7 z#t?s(*KvFpjl)68dS0qOoxA>b-3Qea31IoC=Yf^HkTgB~;*Hgb#$LDWBj zsK+NHQA5m%p%_`)EcZCM`Eu5WFUHh}BH5ZQHoXyZ>WNO8i?Xkw1Zfigv>SX5HnvsC zph~d6W`3K&K#AQThwMr$M*cN-D#bsZyo1@b8mdd>t;s*Eg9zUmg|TsuHqOQ5iO8E} z9=&r06&=5(y`I4PP2bKe$d{N^2r?)QNtb!O{c*cAhiAjh+y`}oH?mDdJeVzFRm^6< zWPRE_8eXO`kq`#iO5e$knD}4@Hm5`agC z)%QWoXP{)2q25Zi5QGdWi!c{9gcP7Dtog-0p=EZT3H#ZrG|kyk?fu&oKz8TM{P$V5 zY&ua~5YdVJcfrtUm`(R}J`M--3FfQJlP?Ntntcwj#GUa7N2BpdBu?pBlcI<@12dD% zKKg^5;%aOTr*K?Z?ar9yButz?^W~uh=wRa!StzE?J$l*V29mAze?4`?+kNMqF@Fh> zfh-Lw!VgbeB^^=kCQtao6t=7&HZ}Z%a4&U%7u^o|MuFM+2 z`2pIc3Y> zP^&#&!vcSVQHns3rkow$dsSD@IB93PsG}P?)8j@1I0~bI$8}mB_^%N>ihpoD!guUC57Qx(BU3H*tndwGL92m&I$w_|+{8UuR6nY176GJOeyT~qOM z82Q&3j;oF7)0LuHnSpgxwXcB$jY=Yec4umR?0Y++JoWY!;=53qs>dddC(p4+aS=8#-dwc@KZCfBP{P1E$EP_Q7em= z?i|owYp_vv3PoiR%o~w_Ua@c7R497o7pX4ysjbP=sv7RJIA7+m4sA|VTE{GENv!Oe zr5ICodg)m?iIe;qA88Mr9-)>TxR_L?2;v&D6d|`sM1#B2 z3Qh9j^e}Ne9U7AbvzZbg?KFQiT6I{36PDh62|!{dog@om4Wj;zp zsCqo|1DSyO(k6De0Pc=UP&*gIx*jI4fN2$bBq8el(5~d&DA6WAqX%>so*EwTh>L0? z5RpTQtyey!?80F}+!GelO=%(Jp+o6bU0xN^-7uMHX`Xd~wS_T~tUkbDceufkBw04t zw=kzlprJA70;ixcSVG0owjtTm#>Gi&Z3T6`9zUYfh9MkOM&?cLG+C=S_8%V;>Ctl z;j0w$m?5cH)tSUqzX>kv@E#?#_AyxvCkEt|jDH3oB-LP^B1-U|rYhP>(N1cHHn0}U zlR>J!?py0mCC?kcx@u%il>OogS>4rOg&?EKL=O6+LeefQR08*b5O;0evqDJPUYQo2uw0PPzHkBBiG`IcvN)bWzxVP9_-($E@hb{1 zsl%2r9zP$0k5^3oY)Vwbz0vcy<8NheP*JxztzzlFIX91*A+7=XijeeluN*H8|FLhO z3doa&iU2DND9BDlKZf%de;mzQ4_`Pn5x+KJSee9e>-ToMTn=Mb_FL+A7>2L(t;B%UI+=NKrCU&25-7lLyNgVNleI*Ht{PxI8udKH-T zq0h%MSY2%Gear;t9>FRb9i;3D@e4uig$fX+DHG(^bbP~q*|C<~MP3BUld+)))g!(z zDdEFhEj1KC>eq2B1UI^-$1|E}DsYk*6b}^}8p|-QS*8$-{3=rSQIik~KW-~4n!S0wT z5WY$U<7&`y72@A@)HhN{yAEj;TwX^J?@I_MI0>?cUS$*xUgQ*(^Rl1X4J$Wf>D>QEavRv28R=AU#mx9HBxR!;ZF}k zL_kj6`P_#!D$7HM|G2U;>p}hzMAs=@dp5YC5=PGX*yIe*#aoML#!95#Bnfp3Wefw9 z2vT`(Iw9*KFMCdu?u51xLoPk!1IlV@TE7h60XPt18UGNA(s)>CLBC~A3=MfA2M(ab ziAoAfhJ8!TLMH|zhB2=c)Q*(j&HwpQ2fvvemy<;OczHb%U(WZsDOL!&yGUpZ&SnOy zCqaPF?VxH@VvCOLq4a%ID?uH3mznrTB3mr~_@&`K-=LsP3ywQRMo>ha zh}WT&@~dv&B)LhFeT6j;E{(jPf$V2aCjF*B`7J!juwRCzUgm>uY*?dxzjo8qJ&q-# z9eR?>tpRBf`~)>v-BS|H#66IIzgXJlO#+!PNkqcQD5+l~N*WsiK?;uHq9$?D6A^Z3 zpZo0?6lNNyv#9PI_w<}`KC@lx=6NkquR8s1_TO?mXFYD}nOpkYeo;-gYvWE*Za%tA zxsFxBtcMBl9AUC@p&l7semaY24xDo+DWQGg{F-7U|Ccf$%?zb|WY;EAbbPGjOk>(& zO|vxVLmM{*2jn>9U?qsUg*7G-85o>yP-hi{)OHy}Ic_}hAeVr!4Nbbeh^}juu(hRf zS&#;Dki|~KA)`LrRljTi5S#nNVSn2p6^jP3Cw_GBXQQ6X_d8aC6b9Y{x74@q(c9>^ z?V_@o4%NrL zINyjj;$`D!G&6(Bbx~o$n=D&u5($-;KKabm(vND50FP5E^u$|pC2#yWfDx&@1dDu} z;3P|yBMYIVto-3&4r^k?Qd1kgL-j^uTIGJ#1+4bQv`;ukJ=x!OU<($oC5xwTr&!=0 zvymmDIZ2}(`m}d51LV&2Y@f9X|sG zewn>OLjM-9LrBl{7@m5t(r(oCQRwFw2q3HPH{e~anGSaeBb}MgU8L`{<7seDAvNbg zW?3yYr6jzJiL0TW$z>OjB}FD{HX*i)c%fA zpEkMb(xb(3YJ!9Da}b2g^SE`Xiu(cofQkqekC}5fZBi^ErbVUvD$(YEA}4Z)M~dUU zwFR5-Ei*WwfLcyE&Jt=4*F+_{PmyAdFi@>B4x$kA0Pe=nY!UW$u-CRu)DV3hwiK=# zM2e8L_!bNAY|v5ouHICubEC*VbH)+b*isU-PbFD=k(S>gi0IqI*x08-eUNfo#UW7e zrm^uJ^|1X_o+(`W(mr{w)u%|UQ5qouZ=Z~PPB=y4wxKY@tQj+}vxOR#7|x_W$(j*P zs4=cK%~H-MTY#Obr2PKN+lRpxP5~N65KNj_kZ`(4;^Ot)R|M|FI)JdX3gK>PEs)k9 zro$cn5m%6V>~!=Fha)^^40WmGJmJYuSPJ*XYI*=ud*I0rY(L8|pM?WYde@6F0n7_@0F-Xo*Py2EE|y9aa~UYJmD z3&?QT!c@v}pRl{`;=hLPZW&>+#df#B0wRR2rQ;zKeCn>!cf%ka2^Ao%iLW*op!`E2MM+c2($_EQC+N}S;+Z8jtGtA1OYT^o! z-o^H=Q7jeU7lhF~J0;QT;898{Pj{EgwmD}h@^@1?>-8ZDNFB=|rFnw4N(n9uqIcvF zuKVtd{iPRP0i#7OWEfWTOg;d;dY?<60NhFRcc2Knh*_TlVpn{tnD}~JE2_6>MlFA{ zj~ygYh~F_d@k7Uyeu^a$UVHNrCf zusBi}7DldK1DAk8TeUy5AwCUN+WWDlzCH?^&pa`be3q>LKv1MZ5(#%uMGgOxtxNy0 zBK%HOAQML>JtGZ=7e!rrZ3=f9@LhROu#H)<^^E1eMv+BbC-@>cq5>tw7%bXPuc=&3 z@)Bj7|Ln-UCFzj=ThF}T6c4cr#WDrHk&%6a(~pVg-aG0323cAVYU($90L>~BdRjHw zAf~@WIBx%Q&+^lvGq5Dc?2|Svm?(}EGoir*|7v+W2U$$P8-*(!90UgKCOYE;I`tEY zgs%U*aPq5BTAxqWOpy$w`SpL!A4gX7)gO-SMtbW<=!Bj4hcTm{+cF7V#lKoT2EyU6Nd0y0`LUMJxf-`{2o+F|Fk`eKuqf->i*aw zLZ|z^D5(GO0+1Ew&GCW=*Ub5UUKBC>lG~-T=8p$ak;q20e^D38CLm90E>O&_X66Mc zM{^k;npMU1-SbN-9s`~XJ|H|6qZ^AgZkB(XPRr#kta<`r{Yr}(7Y#!7%}PP^#vMnTNW>6 zOi!*Jc^xj{I}XfD@FWAup{^HuC(d?}~2KePaqzLKQ68L4H3b340|2{oMmqE?S!QL`3265Vly+MFhuU zRu#UZmA~3l_bCqc>}szO;)ouuJP|$O!PHlpCC%^Rh#)0=wIn^zMs^wU;&4C(YmDJ< zc#kqN9)Iat{#!M(Gxu}p;r7+2+)K3ZTdx)|%3Z_Po!@=_kHjk`uIb$**?IYl0 z8?*mmc+l+PHj6r+N{-Dew-1nmEpndkna+R-f3Du9h~$HkXv)@Ogudw`<2!Km&f*0u zj!(wUCLh*<>aT}b8p=7Fro5FwgdB!kcZa)%qrYY~f-w~-7zQnMW=>5nV}zlo3XLbc z;o4tRZyC$VlFW~|W#iU|F%sq_K;uP~LD)pLBp`9Np@}?7fwMmr@&61MjYEI^bn&Go?Ct2lG4`C*DDto>C4D_dcpUSO(a;K(PU&DVqIM=VUK_LBkMI(g`}|U- z0#GyQ|NG=pmMW}xtfw6wtSem_(CSxLWE405F))CbYCV3K5MrB%Ul(?w%2em2q zAW)k$&;S|SfaKc_nOnd<7MO}NwK}KZeinz|0HUX00AVfS2(?p_c#&#f%DUiDZG38K^l;^a>dXU-!^j%W0l}ndKz=Azq5f(40geb9H8J z6RI{|l9bmjvg!#o0j2_*9cAI0_7+9SxbDSH5q6aQkZ|!u!u6;;`afp0NKBNdvE69I zvUOvmOoC$qrJsU)P65>yYWFnG(iyHew;x2T7afN~b+kKKEav0||2~E!=*b*M$7i&O zLix1PR%aCc*S5kF4cb=d8GZZnhv?^ubPiqmiG%|rkyF)(0_0Po#v{Y`g9RE~Fa3aL zc!Lbi!wGp#%QGVz0l^a;M7)9^%8L`a)@oD-aJO%F2#0HiG`$h;6g=-n5h^J}A@*I* zk`?f?O=iJ!ppDy@-Kc0bK8#DF5$ytb+;a4=n4d^`tnQo~!QI^|)b97nE-9jUGg{oV z*`3P_Mhxd*s3A`Nmc8=7;V>zP&WP-t3SA~dOsNW|1GY?Aj?9p_R+8cf>6ecK8KGPy z#tO_|ELfK2+Jm(k+5Ps@8Nr`gsYaE-Ah~xwPLfoT)xM&**~WtlI`%{p@@mr6UbZ|G(JUg)!I6SAR1HR<)Ca zR->t{$6c$E+9wur3Z+GFqIlIy_u(nNAv^z#2i*dSO0b-?-87APn=N&3IqBA1!gQBs zP=obOU<3m910GV{^oNnJMRfFE)HIIN{5yzFlDSv;@~U-ac%O7hSPu;K_5Z>r+2jE zBY*u{A%|2#&OV)#fqN0{e*sw`CBZXfn3X`nM_D#Gq~p-A<^F0Of&w{#NU)1}|99|X zII>akguWil(@0gYR5I3-hD%Vrc71%_|5^%WaA=Hy?mi0{vYZmDU-YYmIG%X#Azq^H&tBh81C?LbID z6;x#_a9P)4Fsu58NW{l_CQm@J1YIx->K+!!E9d#wCR}Ht6_BWxkV{(_83?k-Ri_el7XiZK7SU{YOWXWc7Lpb`-;p7P;B%|5h}{!;=M38=&hA zn6muXC13(l5;B!e5vSyd7`cIvI>Hz(j%F( z?RI3L&$Xnbc`xQNgfbyn3O zRaI_?^oQiKi13VZD)A`6v_(L$m!QBhNY{ldm}XpGl|jG*K1|wq(rI^w^2t;9EP%(a zkC9ZmEsZK1dSjBVlv%Xhr#e~y0!$1~5Q<#%$vbN0C|9;-ZW%0YRi+OO&-3)ko{P_N zm;xD>F{$u7lK7QC_hCkSp;y$V>|3g?%SSseq5GH~Us{S)F(jBNEk4KSxu@0c9rEJ-{;T;7mL0jd9A8tz~^W;H9BaI zb*xQc)x#=e+j7YVCE1cA?iQ<=I* z2V086J^LGoi&ClvM<%1^ zQ_rX?f>e4lZ$V--S6-(%8fR1QoP{cQ||lB{o8Wt7PTlr03)`=kkY2ZL*bmi6e6 zAgja5m?4ppwOy zCtU}-eVGjA{|0F$iyCiaz${DU_||lPIFk# zlSZth$Wwh7^-R5ZE^L}e{;h`+oKg~Q7!rx@%=4I-U|SAKF*N$yRri7gc2wANKT?r| z7`9bL4~Y{YIxRnKNdDGtd?|KKBoy64HE%Ig>W~H~Lo#?ykD&?b?lRk1>V0HI&bIhO z*FsRtsjMMCev&U>(TJW;P>o4>w}1}sVjx{)xb`{DoSjL`KEHc(%gHI8q{KL0-WH@Z zs0<#jBcVZlJM&s0)}8LHX6}woSVFWZGN+!M z3SS799_(TAnGbB3owS|fhd_WP>`WE~)pch`4)x0D+!pAjttaJe!`x1pqbR^W6n6%M zYf)4!A2%Y|hjon@LQHPD#s6m{<6uPc>>=su&ItweE1-kSlUo25Y|S;#5#lM*GB%o& z$sa*3{^A0~YI)4_JsW?w{S8oxkIcmXqN)hqZ>Jv^7Oz#j}kR z)ir&ncHs%)CWEpA4|m=QIlwalIUv#zK37Wm|H`sR1SG7$er_vrZQE042MGdIyKvQD z_Fo$UJW&;OO2DgP5{qN8*Hw42^O%mAd6cUooRljMoB{T7FvY|q4E9VaL)(+e1r5$* zkhFUV4CKLaoi?Goka1MP#p7YmnPeq3(-4ipbiqzW$T zv(wiO&}Lr?_>SK1vdrtEj4QrBEXXKoiug0Yu6Y9d+Su)!pCl*ij_SN9bLGKO8jgei z5+8MSW5f64*gb#q2sa;j+8{Es3MOZ)m$RH0!TBBFnO-%=|vi#-Ac3l09?1=Ilg^(=*=yMOq7(c)mzK8iap$IRX- z6f`vB)a8Huo7q|mvrQ=ERKBp#TJek{T~P3!wT^ob&#-gaaOa${IQJXxuWIQFFtDC)i655RB)jiB*kz!F(4~<&aCB zy9}6wyVv&lKG;bb9VbyNvecP3`#?Cb?1??&o|hHZ?`WBelJX;u9o2FDDx zD>ZKM4?&(f_Mn=dDx)N`Q0UqMXK{Q`k-u`eINW^WIY|lUYiW9&6DBZ9NA)tY>kpRg zlA;qY4;_O*Py0e&kag*c51_$Hl|A@Y58^LpI4Eic)|8tLV9$z*DcLWB9o!woKAT#DE3QvXbyTA;&vd-$%*o6 zX_7;$*RZjo<(;KqQSFL#cPVC9EVT@`(0MS6M9F}i+ zo{a{YLrsdkJa!iaMfP7VP=TDe<+e{ij3IGRyf~J`zgGD+1SEM<5GwtaPG(P`-n}rP zR?zqn>ziOF;joxSApcfY!A+H=I7}gxi5s>mV+b*#%UdYn^A4|eQpV{j`wcpYr*yJh zU}KBoBuSCX^-_9bFaYRH(_8;NTl~^tvWG;%bP3ngSn84r8bV+*UTH=ebalH;GO)K| zpeh9zf(@Pgx>5(@>Xg0`F)vxEl7_+p`2gl zm*usS7OQ;kcN2Y?C_+bGtaA=S?--b!DZz?$#M^1>*#LMTmWwE;4u^FFLRq8Z-awi` zHTfTAbXf4eF{5LlIe)hLe@A*ilyu8t;GxUR6AUY6PNqod+uPowVETN^R)palHOc7B zJ8q33{ValBe*FGPx(G~S@$JRUh9Kwdb{qh*^!)vSn&Tz>aUn>*scc8Ohoha09E=f@N@5-~H-@gDD25&`{VoPOosTzw7*gX-inKZKyFN z%y;|$tyiX}CNuK+cIMeeJmtAS`s28dvcy~iW6=UPq2KE@oL36GrcB_qW**{icpz&X zLWaM84PFTL)R!a$ae;3|2`DB<4&j>PAmMD7d_ZaE>K`FqNo5K07$??OVI3|cp*~r3 z9<)-$C^bsH%$zh!o$;i(zGHNYu07cNW;kt&Z%SDOU+56-OfArAAFuP=&Wx!cHl6RL>SOBjd;q0cl!lrCWvsf2HVFcSXFE-lmKR4slLxGOyHk7 zGyRH!)tpNYYpmh66}*c`%DfW55u((qc4e@fpq};*+hhBG$MzU{3w%3davdI(C(XS% zqY9v+IrB;**40Da&O7L6iaI7Vih|yEsaVFW3R{hIgjkW6A$=?9?)N88)%I6MONNom zO!~!X+VuaL>e;EX8OH&CXfytCOAhtFqt%&^eO(H2XPEQ+LN`;)>m6F=dB$mQ=OK( zF4j8M9)qXcskK-Vah87&Vbc_`!7i=t2B^FTZX>pPDjTisFl z)xN9-lSoyISU_E)M(ajYYp&f{7@@e_97{&Dv<5r1U=yD5UxcLY^e*TRb!pbh>gA(S z1eAbM$S>llBlm;sx~MBqTA7e5Oq|y@oD%_H5GMnxRwN->#L?&Ys-rcyv6p3YvTw+{>D=CpdH%w zAzr-{sQ~L6lOQK{+m^_|xJA|boMj-Ckd`*+E@|Qn=!^Yec*@ zChH+|wZNG)G>Q-vsaH|Yc*I7OK)vR6U{4nEVROlQyBdh1e8ExQl;3h4JXM#^PDkx- z3pBv-dBMdn`dNoq7a(Z)j_42u)%icq;jcCUAjG_)H>42dG@^175%{7sOxGF?-D(<9Dw`BKWE3BJ~u^iW1BV)njkgsA}rR%}DM!1R~zv4qmQz~CsKizD$P4l(sk`x=yLE+$f# zQ2r`WBuO#s|B<3j4~yde)3lsr2)kW?Vn^Xj%l7iY0LurJe=oVgS&y}q&s@DT67-;q z>M)+^d3l9CxWdL-1PmEmJbpV+vh_FCAcWvo^lwy9Ce$Zul%qX>Ww#91gbyV>!5-OF zut1HW7;I^s&n?A)8RSj&oo8mq^V5nG&`kLCsW8;;!>IV(kGm}!?EG-^8_HezEotUH zkz#hg`{EHKsxOK${jZUF5HERdst@cFJB6R}Xn%Nvniup%J-qC`yud#@Z$UiZcsb?2 zlP51cr_Gv*0$BuNY>EZVm{bX2s4l-QNs<%%^Qx5V#ZIFn_#ns(Q34=CX+V*qNL<;h zk9Hzza_bt=$bzvK_4BtelaGBEsIwh5d!_{Sbi|<9AFjW%KPvdk$EV5q%1nEjL>ytQ z`2Enk2lW-27N`^TG$)WmBFZCW$SO#U zpFw6ZTKilA*k+DG^qjI>p_8i91%={uu)#D01J%g=;#l6%$J>pD2h0cbfeT;wQ&<^wB|MP zS_C06>8`Nlu|=aK5x4YhFodF~PJJkPzD6G@oKz@1%X=60*B&Trkj4KUHX1VjFT9+qjf(wNF#ay~U7{<>k)~YUd9RLf|$h>it3V##(XU0|m3m1-BAAKPi}!i!HGCD;Pq6gZ3(krEiLEQMWr! zX6^LUPAC2wv~!N047%ps+4YQHiw%Wbw~`$-%>`u5v5!KaG#jYDTk>W{Smoz|-6ul; zk20VN`;M)Z;oK&saiupc<&SYJ~N=xXYb4bc*dwE&pfPcAZ&9dHoxE@`}1C= z7=)eYKCzCSW@yWdHsl5Vn;;`e+^O`#%7wZ1qs zPlMBRMDPeEGSA2-?^M>P5}7Z+UoI)mxASXx1jMzmlaMR^<~M&^sG3)YJ`Sh@Ke4$b zD%o}#%HNWf3)3j!jD)^EbEGOg2IUqGP~HU)njFCT2!b45f9qAoE_xl$oGp;@dEFh8 zY~|lxfXU`lpUdr8n`xUl3R-X_p^nI+dVW?M5GiR3$)*7fD>@-2_)a(M{-qm`gmXtx zB3aEOv`g(pSL^%Xh6xW0mO&UQy7n{s5{yv)yd5tLorc|t=g1t3lV8IeF##cL;oR&L zV_Z=pZb%N5N@)Kpf;GesiV~ALs>s75NE+YWXRTU#LySiJ9cUVg;HmDPZF`KCH4bD9 z-TQp1rXqfSO{-u3F|C$tkOs`$VmGJE2U5gF=74-1IjW%T^6biLa7bkp(S+r+%MHkc zSa3$`HaCGkS$xIw`AGE#q@o3Jhnjj}s0F$Fl*3inIiAGb!d4MLL=^Oq^H0cG)~Y-# z!*ON!UaNv-&>7+&R`5x}bC*JwWie0)rKMLXChCg)tyyZ-6WD)k?OP-YAdcN5=HD>t zocCV=Q53#Be)=`tfvog zKq3M$h%%9Fc;_;R1)Q0@{qzsA0tQ|^F9HnVTgRdWPu;ZkO(OA>^_Zi8xhOW8ci+>u z#_Szkb87z&Bk>HSaY}usz9q&LQL_s}Vg<)%MVJl)lB+@_wq@ppDU0v61%$45f9CgO z0Xu%?!FJwwo=;Vp06hZsq%=vhT=Oq2?0Oh=sTlZLG$Q8;@wuiBw`*nCAkZx<+$H01 ztGO`r>^&DS2#TOiWAnBm`t0r2CgAq3F7Ir`abeGBP|ssX!AvqNOeKd6uPh2aX&{yp z_5XY6l184^S$oYA&YEp5i(M2FiH!O%zLOGe(ELz|>ysil%L#g8(2z6EUt)94O=*`! zNk#v8V%}H_k?cl9a+<5$w#HVN*~kI^pzmx7St`*w7crlTtU>omnuT`V)4BEU%j-?i zB|4-`uG1_u%q-7cT}I~>jx(hL7}BbQ$1{npPQEqxnQ=C@KmlwY&j|oJ&u4G9AyBtd zDp;Z57&3rAlLVaez#|Ago@_%fOfX_r9C;w5SyqG)qPjN-k%td}VDdBUCy-ROlNSGo z3|Tww_hC0_WR700!qRkJd_Rqphb%Qhxvf?{#Xz-z#hQYUovrYHp>Wa`fHWedm$DO2 zE|)Wd`2115QwgYa=|RYM-EdT*)BTz2iPIiR3HNCQB|>3cZvy_smHHn6VkkQ?*+;Fo z4`XyNh#hyJ}*%BDvVogw1lXJz$$rn-t(L<;*9xJWA~R#nDXXM(Ub?e80Ri z-=6H37gop)k>CPBEziKVMiP4t2JrQ}ux|E21Mx;{>HlW)o*lEIyp6lcF#W|gn?rJ# z2;_!#!K0v1ZCIP!4di|N~l`X0rfdv>5vDVe=T>B?_a;!4k z4BHRC8Vp0H8Q!<=n}&0eip&GeOOa{MyfBGn?OSLOOAeHB0D3l`<1sElmn!diF|RXQ z5~)HS`91hJcb1O+r`n9p%3ihR z%CD*Fzh<1BvTQZ-A)J0ZZ@~c&`^)Dc{(%|>(`dQQt@&s68B`3G3I%7Gd}6a$mdj8<|Vv5+V*6_0X3|BH>8QUc1I z4it|RMKR`eiER_R-veLW+~QA>ylSmAsT|{u%GYzR*FF64>+{jRt+q`D{MYoe*T+>I zua{BJmp?d52+O|T(a~~dRg!#>~7jqijY=V~9d zMD^T_RqNCf&hrimY!g{qQ<(QMt<-Vuv&dYGLHkY&>3$* z!r0He*pi}X2k!zZxpH{he&}#P1IG-g`#y*_t&4Im@IGqQ!m{RU{BZl z1oPybKw4QsA=?Gb?(Lc*fHAs9lb&3X&BweRLJ{ETc^d}ibtD8@VIlY*^(vYwNRC3T zkSl06xzRdF%)#w;+`5yYgO1YWIeEAf-AfBm*&)9Hc=# z;G4-@1pk^J+sXq@V?y4F{agBK{}>X4tUvpYWnn`t)|emUsgH|-P+<74WQm7YFK-oc zmVzQUk~zOVYl@KZOWyHmm2CLkY;Um=W_ggNljx1>^W%Lk=Qf}rWbpwO2+#HT zwBhaQa!^MNqvhkOQf4AafVh{*+)ltgM$r?|qQxY@!QA;FCty{B`vY^*0eS*Twed4| zd7J4OB$V_dZ>;J~TEJ`%<8RKp@l*D`<9Aw|gL~EpCHZ}-u)wdOCPBrXD7I9s+VEQ# z-@#CwR-D25(J}oXy0dbh_kUP%TiK!PPnIA%^S^8fN%WN|O5&6;ep&V3YDicVb){Mn zTlM?-0||GM-;|6&D`g7~P`tc6_C_{ehFdQrp)$tXIV{y`Y4=hKQ92(^XPkf(UmKqv z#z*4sH%%~_96vUca^nx{nkc&d@IHPQTi~8sF1VOGgH9*iGapG`+ATdj5LkSXUn3@$ z`5*k~;C^zqnm_J!Rd;8>D5D8(T`Jfu!8o}4lntaR1V$({e1;X95Qqn1vF72wC5`Bp za3c9v>zRZ$^sm^p4W#~9BkCxnAafXz2?lammgE+$Y|m&yT0oMsu}+Zrc!ZYB*cF`vj1?i`^{|!MfVR4oJvZTbE$xzuA|-qjGEcezA(4;iMMYw55n? zSM+59aZH2YkV$&4NeX2DysP~{Br3U~`7$cOWX$*JDUciRU(-|i>z@~-*WqK=!*PnA zl=yQoEPLe*Y7yW-z)c-A7301Ql7+u{6g!bqU>wKB@bqdMH#jW?bdG*r%CD@V@em{= zx9X&+C6NQaR&TW1O@fO%2;woa<6_Rai0$opk&e)*?fS0L!p6oK z(&Z?8)1B**@->cmwQxwZ^XEomhx;d&lkiSYxOmb^kFl4BFO2B1itrctI>5$dtI>>! z2RM=ZuZHK-!~@S{&fNeOw#T(bQk2de_UGR*UOFu|ZR~(6PLYGws{hVrB5NL3&tMb#18SgvsXK9vQSz7X@S$Ha+j8ZBk#qp9S6K?1gsZbLJ ze-JyQ%nq>|UZJhTa6Q7YI1+DG^7k$P?)ixxeH@3B-oKkRPu)mAd0ZZ(NRf zlvMX9Lwy46p9MQ!)lno9O{CR&WKp%~1^)tktBB1WalpQwT;9EIkFR-3efSL4Iqj3Z z0pPBd`zA5m>CY*V=qaQd&YGsD1H@BGctd}E=%3jg$I%JqJif8tKyc>n4~u9ys|XC! z|JNn+tU7*?pU5FG_yV=kQLH^38nXt9xlzOOI@Rk}O6F?o*`-XA`ON zkolD~wjdi(g>@L8e`RIC*-TA~BKfHV+--(Q{!G}K2~ZmG+C(ZJpL zdqTW~#MaKN=d0|XwOt-H0`Vk#YPOVa1-gDFuva5IV&s{w#ywhJ;}~dP&v;0U zUM6Egc$R6%SWd0LFQp-7C;%+x?bHG0b_e z%L?syHkIvohID)=wuJl7SuWcE7S804Uu0TYDq-7j)gGVvVj7({UcyB(a4af2imzvI z7=C+X&m>-;lQzV=$I9xoXWeO3tQoZep*Fy_1|SI<5FUhg8#mv`g{U8~$Irw2+%iy) z;3%`Nv%iNXdXc<@({;Wg`}j4UR@W%bIBoi%SYOT6xfqO5_wPLe&w^z(f!+=0!1#jB zAg__9wtJhnxU(8mk3nq`w_=EYRuIE}?|q^#lq3lStddWR!4oUKBL}5m26|LTamWxB zI?5@uo22vj{uYd~^cEblRvcFO+fsjFx|P8E0b_j3ra$ZT(ysFlJs`3|>q-7xTK3Cv zEVkO=*M*L4$LBA9I`8HaB~j=?K0T=?ILPO`;7JkT+c=Dp*z&{(w#3mYAYv!;4-Q+2 z3J|%Vgut!hT%p+-hCFx15ASi?tt47F->=?pg4}nUGcWvq=w8do*gPko?w85{4LS-2 zN2TW%c!fODk}vyO-R+m(8oc;9!2+;(_xL6lvCRwr6d&ki|2}e_|7s%>1EvVFt-u=w zpA|>iTsK=9zN8c)vcA%6i@n56=*?c=z-|P*;Iq)hH%9GQbUs3EAnIn(zRH+Oe5cV0 zSv2sfQqg~iyOo)Fi(zZqJ=fVGX8k}qwO9Tj++OuDib-`)N^;1l-wTl0GvkA>bR%>3 z7#0cqd`qhTLh2rTx1ynQHNPpC&ibT$I1``g`2w~UmDQV?BSF^DSLX}_oZ!S~ZVvEW zC|qlfk|^-c0OXGIx&ArLInN04ml6DIKtzpdYZMeT_`jH{PXC{ns@|)K#iTYu&2)&h z^LoLl(uBM%E7RIy@~KoC)f=gHtt)bJ5eW=peBxD5-v}pnG^N9mt^%c3I4gZ;LLKRS zS(ShDNqQsC!$TNM`{OeX8xdX5C4;Aai0Xj}s&%`7mFGl(naqNPPVgTMce(9E;5FsU zOkdw~96_;-1fT(?nM?2J+508B77xWp>yD(iOJj97AECn z?eHoOdyKC+R3{3f?P#RYk#WDB#PweM{&}Ml2>D5B;$RimSnY=PHKw1=IVQ125PF~a zPiGGFIjb?~SELK{W31^PGZs=nny;Vn~%ex#R2!i<}0zx zsisRo#8CorML>~}qG)cgO)_4jPO_wOp*un9J-;`FQ?Pp`j=x=WMx@UeX+B?2(Hsh^ z_VcNSo0|-G=2I94xsQ*~7pT3D8BU&G#zZxrid)`Ta(&KCPmUv4`K2XA{fENPn?D*I zZMJ9TT$`{+%$cRxWBR9(?G0#jv{RB*0}*xGOfKItr$m#>Xdd+?%-QB#iN~ymJSYl$ zLlSUwvfCqav7J5L&a+#`^_-=RoMO&28pB(vS5 z>AejLRW3HGdihDkba6NMM6-UsrZ!AzmE?Fc0t?+&eD_{$`Gn81yij&5j^?DS!SUZJ$V_8L#bqr4*1k6&^QIR z1}4iYj9 z7&@{(m7ibO?*g)AfRN|cKYklbsFjv1tN_kwi=T_?l$d!kE}0LC=oiXLlt#N=p`0^Q z)syaEoC<`d)%ELsu0GYJhWn_`jU|Z>78OVh^by)-g`(yA&1*Q;jn~%0v^7-%4%#;N z)Z8%6gefrzUZ}Gv9$(-IskVOzKce$nnGn;Q!6Um+$q2y~66IIVNd;-t)wMopFi~&F zvarCc82fmugj^_wl@oPVY;c~5pk#*sV#X0~DGPCC`AYN|XynZ^ETlxyHCYhA4^>CyRRl91H%F+~;Be0gtfTsLEHy9(7zDYxf-k1ryO zzqL4LdGBVuI#@?Zg5j+8>cc4zmm4Tv-`xUQ2}dIBb= zhn;6b1XS32r7u{V;Afb@g4V=jS#;3G+BhbR+QmGst>s9}xz0hnj*&VM*2YJ&Q|w$% z&9_R%{P+cEpgXz#%-z4pdoB=HUkJ9 zTfs;r@ZrE~jkI)*ey`fFq9G}!F#Ju2_fb2=+=60?3!RF78xu9QD@*zNs4}$jGEGlP zHoZg!1bPlZ*l&kPSB);pq-1n8M`?Pd3R7H&&-1Kbh3Lc@L6u8#6ipM(5RD7ED4eRvXT;mcU30WuD1GFm4k`W}$mz79o?)qgy?bG{eCFgJZCjgOu8M&G!b zvpArPRVNynlc3e2+V(CB$`Ctn7u>jl=H#FI(T>b|P;qfRW(@yi8j4W%vu6K(`6k`6 zC}&I<2G~{G#v|&#-{?RjWY$*8J>W{-K{qZ5BX^tjsY_3Ojvq;BJ3Ey{WA(W9VSaEuJGRQa;A+~x7}`>k#qpT4-R`Q#+)V$9h7F>-fA!@fHCc)*qM?sGF-9HlE< zqFFl-Lo?yIBH!8>6YWke*uakgeo06ZgJFJZq!dt2A0XF|s(LcSz+Ocuw;(%o5(DPf z6>+=Kgn8aGfAUS#IZ@S6C7rp~7bPn}N7sV3K0L0QG6}1qHOccq=R4^{If3duBN7gMEyRX&(hYGhWa!48|n~t&!voW_jutW{wSA9e%QC( zM5`o98hQlEH7!?Nc=ADol`XSK4L*J<3L68PZ4|HqwpfeXk3l{bf82YS)0=$j;?wnB zFnsYbhoSM6sH*N^V@rVCO2&Ygb592om+CH2&tB5`pe;{4vQkitbA>3|1i=TWsu$J>{^dHJFHaOa5*#OggB3Osnqu-d z&6+hOnv2bwA{7IRX*m(H>)mUx@p-ogXG)Q1bpTyKICm8uuSnktJ_AdUrZVqM8Cf-eLCw}8{F?SnCj}B zeEm%~6w_0wpYIg3@oh=1R*k>qB$dSZ{)C78ZFBfHe%}Y?ei5o{xX1qIshcSO6H?@3 zQcK57cxdJ(dV5^auS_@;bfPUF-Bg&Cq(Y+aNgv4X!+GNfHy#+6GFwik|1f52F`9Kho7ZT0T)pyLs(Izzj5**<(Lkh3yP^z7l@u`S@a zcJg(fz2%xkJ0K32b9n&#Al)RbJ6XWAvTGu68C)5$dA)q_cA0tBDH16xuZQoEz;YF7 z4pm7@8Dz&!VTE=Q|3^9O&&7M_!^db+3oFrMp=$uR-#d(7+Dc$;s78w6ML89ZQ9lSE z+19Z=@&_TMrcsVOx|`7HY1h=ytD*(33^367YN)nFjlIQJp<=b&ZsjK`MH}lK& zt4@0m`d-wK`g6O zR4ZJZ(DYF0kRjtapt6=-MF?N zQwI{OS33Jn)@$mDI`(c~&TF}IW~+|Hc4La)N?n~Jw$w8OLW{nehW4%!yJxCprxmNc zBCp!FhXF)4fCDOz^-^M0xMrUqNAqk&XTB`UL973ETTuWS!bXL&lMj)q3lLUH(0uw9 zQLnae!UZL*2EXyFX{fhCzLtzG1PB3zJ0MRfA-qw5*4$V!-#{__TOT{g7scuvhbq_7 zhz1v=aDnP<1CgFq+li;?GcPr6;?I*7GqLzT9Ton(@z22{TSYSn8;#Kz%2~ubG@bBt7KJdo8cvW1u|}Nj!PBFa+ZLym-}osQ%EwHjLqd*b|W9 zl|i1FnWBuI^bkX0LHQ%s#B|gu!30Q+4mIvet2J$3qXycbR#h;|VTZZcIz_@HC=63XUF=Q!uW!?WF=%KV&WDwDv0QlszWHq(DvcjFL}n`f;ZLU9!lyKah>eyMsi2#(T`|EZw2CiGHAp%YW}R z0#K9aKPOZOAwtqb(8hi<&(O9LcWj@Vv8{sBd#SbJsHwIQMN|K}oR+h1iF6;Wr6QfW zY&96qCoZ3c<;;Q{98G}adSyz_rxR$P)Znc?2JA&w3zhgIZ)Xcv!ZV9uLF;Tf9!SmM zZ_^57U1J5XR8{g1vR=4$Y5Z73iVWS!J-U;9oc{1efsoBLJ2-)Cf+NJWVULj^|L1wGyZY@)We>s0<1Lk&-Y(mRdDS|^!)^%7$`|U zr@$v|6KtpS&QZx{X|D8N9oug%o-e(mmoJrkKp*mYGCAv;<@vsOW%Oxg2&_bKj?)e-x~KYTa9Z?sy!3c5d+( z3ul>_tKzdCoIG9M_mmv=g*EzT9T`OG7XRiDtD!s`m)o8m-QmC_ zfumTr4iWWXnQq~ZX4z~%Z`P6h6`j{rv~e}7<9?mm`FM4}khXOIb@ohVy<+xR^*CUG z4!Ga!^~{am68FMs_4wB5ag8zJ4G~1p;qjWi`NL^*vTQg`-b)n|4F$<6d_FO;$tFcwcNZp9H0Fw1~x@2!kBzyL;m5 z_1m;=|8efyA|J+Iz#L?PB`aoG*qN#C2f@q7R8xY-SG=J zT*AhrZ*s=WaRFHz$AMPO7f60(#@(1&#DJfXhf2RJU_Ng z&QnsQu#mC%bI#_N($cH9T4wJ(tq?L8;^-;Q7FekGaLPADlt2c_W{>uY{jzCyOPse) z+TUHN>V^N9JYR6Xq4#T?g#1sGX|Pqb+g(%Et`c1z!&C_&Df>fImI}`YU#7lrr88u7 zhg-R!53r{Y%*i7GiPI2?fgUytRgC9cbAMPgwWGR;01cQ^3p4Dfhe1`2Z(iZD#IpU%#MclQ@SA zrD(}cI5CaTZU!-MGt4YI)mt#=L#E6vhNTcIA={=P1Oy!K z%O-)7W9v^IDJCUqN@Q++4lJ?DJJ?caHQkqZG?cAT#et#1n&#ll4gs-#NXyZnc648B zpjU3eN{YE*4;eRSo`mUPccnk8_gUT$9!5Dpt-KPjfjkF7R0@nZ5X0sVN~iLS$3iO1 zg<9qZRxK`<=qM{^&m^XC>_3r>)R`=qKl|VcU|TF$?iC@)5ea=?kmH@S(5tBpHka$? zSgN4K6uiEn7ZWmoTTcRqs!TxvEaWUi8AqLE+#Y##SA}U;dGN7-;1XNK=MWqsqF$E< zN>`S+kRiST*X7^k%f?K?CTt<-LdeVhP|t>hWCQAOJ8Em6TxdBtIW^k`mFzNpQaty> zrQvGewb$#>q78ZArA}+cdSHs2hVn59!W&2Xj6H!%xckvi;KL^)m7Qc`HCFBuJA!Lh z5B)@&)1y$CaV8OGVcz`%+c7)X5cwLY0@h!&sM$uBVh-J($RTlu@aZJjple4p7~PUE zJ?}mLXez*bGUTd<<2WF`N)S;2-rk8jn6P&FjZdTX7toIJ7GmVC4p|_UN#zQBlggV4 z26g`{%&GLleB~u%--=Wjp%%`@=9JYX!2k{ph?k}`RMOp~Y)!$w7DaIL%ZtI|6sNOpC38fz81{Kw zlCtn;O6H@ad77oHTJxTA;?eBHdtoD{U?dE>WBIG3Iv~C*&q{Z8d~$OdO(*xHg74We_XDcr^!>IC;b(iOHY56 zvHU|m%0P6y61C3o8xu}CQBe#Zt>B2b&g@J8W;kXGy%5J^E7hJUX>{_-VM$)tP@luS zz#-&nEB}FEEoc)$nU*e3fq|2A!T;gyEu-T8mN#GArE!NwgS$fr4#C~sr6D*00>Rzg z-CY}Z_uw=ZJa|aZgaFg|opb&(Yi7;8Yu!6*-t&fU?_Il|r#@A6{+5trLby=%OXJ~E zTAj8bj8k^l^$wk6$$W=(`p#j-YY4Z$LS_-wBYPkfU%4nuXN zdY9s)hq-ZaNy*~klO+8QhWYZMU36qxR=<+<8GkHm9AV@q=;%$PBU|SsFW22BnF!rp zYTF_>nH-8ZfOQUGGBR+pHfa`uzmM{I@a^;6uXiuyn-Djyp zO~wjZn|!Cp0G179cRQKmHtGelS&i;wRX@D%rSY|Dh{3q8q!U_F8O;opOn>uwEiJeZ zOBo7ftD(9&!#XES=`aDz-ZZH|9BN^y$jh_t!=E!s zF(Zn&v+R16w#Grb*sRkPC)D?{>|Ak$l_OjurG(U_FmN=#X6qRjBTOp2sf$INp=mn5 z&1og6W!?qZ>l%-itQiIIWufi+G}d*kkA^Vj5iZ%JEJ;#{{G8_iiQ5#(`Q7UIlVIyT zTykZ6N2~|QXw4Q+B(N~j6Cr^`?AnFD`dh~KM*8KwYsp;RwK-Brc*p48LELwo!m?zn zDGYil0=#T(vviYltR2~+D20|xHC!Skz1LCf=T(kXMeg9fU>6DP4|`|-GXD@)8(DWr zzYJ~WXJ3k1Yjk%_g3D+NfuUeuyKIkmT%YNZM!lZ5BM>gF?0q6mxKcGrB~*tRv3tX& zqxGW;qgVsp^$GA|U2_HV)upQn z95N?YiE}IW;abSXURM1bWHd;%MH@Jkq+GOQ{hvmnX7z!y>HJ{-C4Pt%xcD5oRntLJgH6B%UTY9f4zjhd!ijZ z%c1hoyHpjs%e-ZKBs-LKlTov4UB<6YZd=pE$uXK4Ed>#rt(o3CFGI>IY=}M@q7+@s zR%m#>AXGrZ^=_{@4g<`2C^9YdC<+L4ba( z*VJk@UFukhtNn{>VY$7TfcWI`7bLlw-&WEI?ajKQ`xrmb9Pdq#iS4iPYI%Lyh7*h? zs~xZqHK<%|YaBH`l9uiuGsj;Xta7vAuZn=Finp4*xcQH*)wDPah$3MZmY7n*)2nT= zcu`RqAYa5C@};e8|6?*>@^G=W3FskrV*mzzuivLpCIz;tr8hqy9uR7njj`%=5lY}U z3WAloDt&w>nO5#J6f;U>N?$58WTw+gEjlArG-r$??DvOa7Aa86Q)*h(I9aRsPu zH15E#s3@tj;?TK-{_`Im6Mk-Blxp!Em3fiwZ-mDNete4=D@hJ-8Yj_sAxYOYqzo~@ zTh4oX$)JJZdn^V@15?fW9pgmcYTN>raJtrHuyR;Cq8grTC5aZEzGWkkF>jPZbiq1GFvV$?AAcD1 z$&h{+3gb2zY@BW_W4WkMJV-TMBvUv%>4Mbe=nDbM@+nLh-`3TE1mww6nj4C)F60}k z38ELZvo@GxmjXMLKwajSr7;gS}f>);I z>B<}M4%fiKd+))X;42X+nnEW}f$|9IIvZIKZtxW3{-3uBF>Q*Ohn)o)O z!IKCPsQ333U_L&BeqVoGpm-v?z{)b4EU3W3B3LONM^!@JRxX^o zsju0D;_B5J&zceviabS%=3~rl23T*}kqRqzajO&ZgFHopIPRcz)K%*=oeJR-S>7cxewo8mJwQa?gL^!yxLo4(=yd+_l~UY4{T^#M9e$%Jf3=8*1Rdtk zc+b?Bio^+e+r47KKx;fao1_B#^>u@T_I_P3vi8?SmQr4G5_Yh(_#R^+H*bw|Ax!h?QV%TUi zk`>`3)k_k&?l3M}epZB5*59P0^2)%w;66#~zalmj#Ff%RT}9@$C^LWCbZObYr!CHP z#z*u$rkqeCg;?a=n=KeRK?aod_ZLsrtUfPGj}Ng%IVkWP!Y~jlMO)E#v<2lRd4W{U z!(fyzP7WH?#r>gcmTy|-Y35~NJ=gat6FZ-oJebUWWjU90p27%JU^UfY(GO`zynH|5 zM2A5}{qAaNpU3iCw%L7>t^8ZFCNfgX7xR_*5@HWP7HK<0IgMJ&z zwR8k4sQe&818RLF)gLt@1BrT9WuznObPND@@sXE{;V>60H<;KElD! zjt4{zdm{5v(_Y-&=t93!psdr(OdM=>;Ie=|4=ju0&wBgsnI+cHq0kf@C`E-shZ;>&#_iRu}|!Gdnlr zWh>!o7*le>!9(^Zq0|ekV z*Y8z5mR{4rj{M&AVeik#n()$He&tXxs%hoc0xz&45fwuM-@8z!z{-c}PBJkSh_V4i z@LUwNCExxmO{A2c;AcRUaCbvx&cHK@?2y24XlonH?!LWGHlpK7}>LG+TyMZNXqAg|QB zZ8y1Gvw%Ln9j4c9;=(wJUG2PEVHtj`%K7F1mg=QO>@T^YhOj50!S*;UFxzH}N1Oy= zYnU$WuDWNB@{h(JzC)b}L)LD`-96l&QIWn$D$okx_D4C6HhZw|G1;oZG?})gu*l{H>mD4tWrwm7B3gYrX zNCK4$URaTbpm+(<8qGB75JJ{NYD z-~V_PQhIyC=`{8AZFPgCz<;}8glwfOqIx>fs|b9bEUh&Zc?fE?6pOp+5t4p?_gq?l zVME=hzA4OQ3SjqCO(nxqQz>Gmt6ZQ7{yaCgAy+31Vu*4{7PJ^nIccr zNsEs0NGv3Tb3|^n?ndEcmQNxjtlqXW1ops*uWAC`oRDogIszih$|VH8xBRGO`DVn# zmAv-0Y!!?YwmUXy*-s(t_gyiGuf~nc`NN}%2_X? zgzlY=2s&&^u$;AO;uh-cs*;(G3JeBpoR!o1mGsjb>L1xU`H?zh5^h&lZ(7#O-cAF)|;q=AyvYa|eP-Y|_*GMKwh<)rf<(^Y+2 z_1Z?7%vYn2k0IgxzjcTA#0&+kzm=xJd#j`dR{sizJ%m`>-n1sa-oZAKKBQIBYA^X~r<;`HvG4-+Z8=bIOJ=o^vi>OH z4z^yTJAlFU(K>!D`lnF7jUpn1v=HQ^I|Bpa)eRP$^W0>TJ` zyqh$+8(JueM;S9?IC%vi1vU~pXqw6BC5D)HUx!ewv%NAxz6|ELJDVGbgs-$6+6<8U z-e4GPO~frr`#ZaEnv>4gPn`xI(RHDw7)#RrXe#30f`Ft0Nha*J4_{x3nfMML{+sz9 zN0{keTtWxr3Nsr}%Nbg@pevE^h~kRfYSa3mty}&Fuk5GJP&{tcMM3H{^a&JRI*XD( zx1o&61;$QwaXhczwU6`IdhT!7191BITdd(7!D(sG!!eqcX1eu4(36U=X)E>=^118V zo39@ub^EtDdIN6@6_4#!!x6YJi`p&Fr8%S{LxEDIz{IHaOszy3MwK7~tZydVAv_5; zb|MK9gDDI}tP-m>4iV7&=T!-5)=fCZ?iP+UeCt0ffV6KBB71^=o1ttbPsZ%yaTqCt z4SBlseZvPI8+UBgdwPFDBV|g2FHNZ{nRyE)kJ1@;%Wd_{tGWPo`G{<)=^Y|gH1}+^ z5OhrqA$?4{Jtx&!uYB$*`d}q!>8=bHYr^*=%VSRN5Jw{WMmQK=bq{(VG?g#TItE%i zO9Fp~es6<*5)>0cO<(ChL@*Qj4*i+!Jw<#uw&3o*pZ4*W2w9i51y6s#^8w`s`_d={ z3J9Z4aNKDSUm#aRI!iSlSqi+Ti%@NK*>C9hZCneKxwl7&dbi+)JW(LrBWjo&&{ndm zTC3noup-gVg6Ts302z!~PFqYJ?Q6}gn_bbc&^|iDG(#Rzwd82aJ|8 zT*>Y)4Cfky;)6wuqneA7aC5vOS6s7vy+9OsP2ax0H!YS{BYf z&E7*)S-3v^Zh80d1kCa7@fXMNK`JxpIKK4k6mX9~0dUm~4=97K&EYC=2<}GCFqij3 z(=wvTA;EJ|avJvKGl@hXlZ{-v2-ewQO&En!?fK~Vh*mLCo~f}7=kH{`#!S;Nwk?vM8!3l zNI1gr^!G%3svJUPT_z5vZmp5auUgf1kYtz%#5gD6rK!%!CA^A)yoS&%1Xe*cvD9H& zA@qT6yDcOk5PqY@3-=MlscQ&(_j>khFV+L3PcUoOq12kc9^$qAYX!N$QHc+_;?1WB zse}~sT-s43k=hp+4jiNb;NiHT5!I)m*`~rt!r^HFcJzUv?&p$UtdvsTW0yt}B#5!o z{{5rMELTXOL`d~A()J%QviUBzxwK?SpOxXRyRoLRpIe9J{37b=R}#La-1XFaQkG-A zg=76ljaw|{MP4pwHvh8v@VtwpdOTunC}NZYveQx)au-c#6b1UPV3^ekd_`5s=mpRQ zApGnWB`|E_W74tkACIEpIVa5VV6HeuIfmA3z^tt{C2U)wE&lgQc9|y*hxKhAzW(O0 zsg|&6AK*Vt(KfVQDZ#lIL2T5H)wLaf+gCz>T@zzx3(cJXS+7Om9h%nc8-)@tdih>S z61W|B^Raq=$7h8qpR$e(Km<*e2LI(U@B12if^8z&k`0qd(VMJFx6G4u&LJj@>dyt_V*c zuMp5~IPeDZHBiE5mXI_tN!7xMC!#;j6i13@Mn6QG;1B+T=;O*sA)x;vQj(l3wNs$` ztl|#!uw~TbiOWd2rrkyg*5j9EJ6p*_cx_ z9tl_TGPXBM-ts z;uicT{QFP3aC)Iao}3I`Xl3TYk0jvY_wt;R;a1b>*%fE74Qdb*6bzaD!z4yWOfk{s znu`*`ad5+~44hgKtMzwuXyQE(tKaDHzbJTixfuCp)w1YxHq=0`mwF}V?gQJ0=jqR% zj;KDPbAaOz5p(4o0(w?q^7GakbtU8+n{_;$5P%}%(ja``sIs*^)l@mb8kO09UGUxP z*$Cho$c?uS67YMz;5BU4qNU7Q=VeY3b;zt%|(qk;HREGV0{xsTuB z=Iirq*zPh6VIvE}-f?6sG*-$Gd=4!mvr8gKo6!#J$k&<0&GB|Fhe=m1j7DeriVzWY z;#?rWQX{@ZFh2vTC;>rn1CeoDS@;vPPax6rDIr}2v?Fco^Hs8O(rNdUoQ(@;E8q8S)S@(a#Z<$7$hBnNCpiX|d zz}JB!h9pR%O^DPF)a3b3_aFM7J98Iu-HjX3#~s62sKLvwu{4ZX*b6eTw3xT&QZ zYrN{!q>R|bdRlLoY9YSVb_BgVrw0~LdncigJyf);y2;j?zCt%m2xyVLaqpJ29;y~5 z)LKW)Zn;&M^8n#aya62$;)q!I7`N~A-7J1t#WU|yBdmwM%nlQ+E|zG?0i9uvz`sR6 z-V!X6YHiIAVU^Itognfh`in|NTAE+LbqEz>OBJkov0zJqiC1F^dfpmFVTzv;REy(d zT98+xSxwCdS|fXAB2E;M@4IZnI{q|!XqXbQX=m-SX(_s%DX(~WQ`7$G8M*)0xZ&qJ z^doGgP=?hv(#WkYvR%Vz?nrPEFgAyCrSYG>%=a!E7$#~8WRJ&wSU?JwAQlW z1@$@-qt3bO>ryErB6YFp=vi$NC*E&-0Ei$_(+>ChATe<&N0fq^#K)>FOlA3G+o#mo zW=6$CdemsUtwRD00dEef!jUxaY{5p70-s(-)Sr;n3gnb-1Soe*% zF@|9ehhA%9_Q<+Ev>UxRaJ0#KQD$~YQKhOr!=Q_t?VqGRF)mE18u)JXim1QiV4|Ww zXl4xC`PxTJz$yPbBL6^^uqfGkDV=9j z+#WoV42*ywZ`#*C+qC8uPL69o+*Ep@k;0#cnjHWBAR%(YzYg+*Cav%7`5N`?YZ027 zvhwDEm4mBAh{!s|YfB1cw2WB_0F@7}7RlKFTMc_d;0?(kV~SM$o~#wVe7Dy_3Ih?<#6>~z*EAz$3GNp zRiQAl0!pVyOIoPPw^6z-Pir5qSOrgKMx0w$~0^KJR6AhGHO@1gx1A4 z8j?xRKD8M)NGwM>yx%O+1VaV-M}vL|4O*mns-YdB);PP|plZB)*5D@fCg|Qu0R-Wp z+?A9pB85uyPxf3W8-|4bn3$yuz_p8+U@ooyf0n?^4NAV9BmX-x4>Jz_JesR&!Sz$O zIv8P}F^`Tt*cJJ^ghLFNA)GY+s zsXT;B;Qd7|yXOro66p+7p{Zjbms1r!1WS<&3HZqdjOoX9oedrH33%P@{U59rnbl1- zuJjjGd^J#ziy7&oC@D09#lt$OV$2)zUbJWh(vFliXpW#Ue+ z={(4+P`ieK&Mx9mnbu7T##miK2Mxr%*D-dmBigVs24hsgzp?H3Qm_j8Gz>p1cl3voWIU}e%<`sVR^Sy z0DVP7PCtVuS@`ydsmT{YF0_p_>Cc-jBqKf8MWcnWE`DO8BT5Pi5(%YX-?J6?@@Cd5 z3EyEwF;|LOP0w33A;U3V;PGeW#w0@_ zN+n$}VxbSNY-B1s;YoKko*lo%j@r(@13QWaPqal=|Cn1?oXEOu9W89THyN{+_+|sn zwwtx_%o{ivKt4h%OtHv=X(ayE$Ug8wWb*Or%P8#l&x%F#1TM-i%pk^zSR4u+Ti6N5 z$1#`&^bP-evfbdl58{g#$p}qS8Pw&xZKzV(Iafcws#ORXV{One^MxiGW z0O!&%tLC2*kg^HT^8Kj)^z_rm12*mV5@zUbXwCg_L9%D=+GwFl(O^1Nrw~PSY8vVh z&Gag6tHc@p$Vhb$2ElUXL75A5gq6^VXcH&&P^cH-rm;yKa_qyOED_g)zNdsU>+N}n z9x1|(6XmVpn7ISh+pZ{Bb5_~1Y@VMnPwfR{FLsa72zr?v>@V*I!bzd!$U2{pT(x(4 z^bb4VXqxr!vWrl^?Q|F88{pp=GI+lJv4(;RXa*^mx#VXZmY=Zbr9&*C;#_G^c zdfWBpF29E><8IwIH9cQKdMRA}Y0*TRSI*#J?wv`^*0w+FJXP38tr%WCFZDiD-~X=p zz^kAz%|!twg@GKJS9raJ(@)UC=GjyeW_WfP=9S18s7hhodI4G^Chyhc52_}3Z zi>lyAYt)hXodI+f*c0fs>k}GGSg4aZiiH__ciY*ZgT@J#~>o8Za^7(Wbg&3^jb{rYvbb+X)W?qEmLXZ#`^ zaSin1Q*F>vxAiLr`MZzzgDq4^tzG79-1ACxm2C04CpgTNV$)DDY>2fJpoqlA+#?RT zMly0-O@UZRGSKB*`F?(~;dd0^lhzdj{!G=7o5rqY^eZJl<3e;b_`m_E8eAR4aNC>! zVkF1!m>kN}zAuo29#5n;wqT&;*1};j&XQ;@fj}Hqcq>D#HQztp$od71|KAR$l~w=- zion=Dhq|m8bD>he>M5clr&b)FU4~&R10I(qTPHZPt6_o?$C(C^Go7L4!qHej2g#F@ z^IqSRY+WG~OVZC+8FImR-aY!Y-n!uI0wUkZw-s>7^YvvCT=3^Gq5pX+uEqE<<_#F- z*AyrVhIQ2V_v*Aj{Me1-Pmf7Z()=Q)HGjkN-K)U6dB}tasB7DFD@|AoH(+hEdm@`{ z=ale+^vgws&-3GwDdhe}^?Ser*~1?Z+{k2%d&&ud1ssl**cuns<{5wSOrahjb~sYH zrJzE@p=5W71P+7TNvosvg`<`P{E4swy_ViLzfkw|ldB68s~dNF)=-NiWzvQaH{KIL zwo07TN1d=3ilXhEm5_kDO)5?ipn6%m5nzILuk)yy4Nlz7c(YL1zRr0f&Q$G+SrkBmHdkcfb#T3~fTuDlF*)ev$TpCtlA>Xe zaSSHyYvQgd%RdRe+L%nygY7e2y%Kjs}G|5 zu=94Ow@VlqNZq~G_r%M+S%y3YR@`iV_o7m^;v6ZD^}JC?Mr88z^hG#jSP8}_HaalX z*eE_e=Y9Y_!))8s^mNUmJTf3~7Th_W>fP}*wv_{#p(Ue;Vi$$TPJ z6J0dP&}9hV4u*F30ojj6%_Az12R5~Jgg#K}MjT4!t6G`|?% zNG&w8z8WTY3-Q5aWkz(@+m|kSJuhlY-r@$-E)1#Sb|QL7bpTN>^BFKzr~VV;_S@BU zqz~Caj%r%+f6Fzc!Ro49E|mWp=SM5v2(`jG0ML)zt(q}D_}Z}&Z`Has3q zq)yE_6uP-tkQWbfX_9Y6#r&5(^nTWi@a}hAo2UGpRz z^j-Uc$f4D&&WTa?BosWAO1@=vHJw;a0`vbkf^qrs9IXRKO$}btDDKD2Bwzokg(I^p z-qSm_dC=9~WMAoga1C^%mvDMBX$#K=dcjF^e%Gq@=x?+k#8Wlsbnd5M8FLjp2N!b% z<~KF4Y(1A%kU33;HtEDFs94Y%g4M@r* zPepFBw;lH}KGRT5btwF&{9g5CkLv0dYJg^rNt@T^yPdn;Z?Aj#PTtQymSPJ|Gfz@Q zWTo%LsO5?KnAs7UsL7W|{iqRso6d%j>#W98%+JU!^C&7R+Ny5Iy|sL=m85AuZ9yfy zpIj~;iS@R2g{&6W4UNvA{HTL3S%smu8i7``j7W0skPi#$E;{{*CMI=0`7vFM7VuNe zdx?|+e?NobpT^Gz8=_H<|6`W%QAM!mdVbuYy=6`TQCiH>-sx4}EIenj==*Y^8MwzR zIV^*g=hMqCK~p1RZ#FxAkfb=wBFQWWvcvVRQNYkQ*=+tmEjX*?kK@5q!^l$Vd&;2L z>|f4+zyUR9>;x28TgiCbT?LGx#7P9^uc;~3*GKPH%-5GA9&Q|L`JK<_Utcc2zHEPf zLi#)rjugsNs}ny?*{0`+j|^<>!(ElH zx3Vytpaz=~e53KVk(%Jcv>0v2&vV-vfC&X_pu|~m!*nA3Q+zOs)sOZ^^Xp@QWgW^D zCdLy9TjZqpgJHNpN0(_O)oiUet9kcVymBCf)42YWPi;e@qJ(JQtH)Sw>R!{pR{n#d z#r(hHXb9rJMDyXwbDka`&8TbRr;qF811W)@7kIG;W8=WT9{f^gqH)M z6Z5wE4uZUMD@un#U2z)i@WoRaU;}k&-}y*AINhG1AW;aUES3#>o7&n~)+mRp^}=)f z$jn@kK9AeX%*6eP61|qoZcx^28=nNz8|@^%Ud0A4Jy5 zg-EtLOU`ehnPl}-kQ>^$2J`yKcS=XlYz}$ce~*msyLhZy2pq+s6CoVJZ!!kI@}h(F zJt?)j>14M(Q=| zgGeTVAR2>|*94O^HfTC+uNGKQ-1l>{eWj z>qB4g=3^WdK|~wT&Q{ZNP(}o7y%J_+iF89U8KV5A!Xy&~!bgg%%a!p$@dT_v*es{< zgNBQEYD^Y@zYuVk#s+TYtw99Z>*){Dhc~-K#x3fm{z9=o#F9H!LA)clDnTeLcxlJz z2zuX!JnQ3vKjWgX6Q>8Fn2(TKMZ3Qv3_c8-R2}&pN0XK zjs1pX*KNs6c_Bb_A%(y9{sK79E8blmU%EuU)ZW&Fd-roiWL zBx8aSq9r+&hxRF97%!Sw7d>P%fr7#gqKB*rc8^H+IHwfUdRZGAcNT|0xw3HhesNxh zV_Dc`kXERc95ia4S+c4yWu^R(vH`c_sG%N=!5=fi?yMeh;_be0Uj;+oty;*gr<$l+ z2Z@wo>tUkx8G9mUDxiHsurVa%+eb=7uKwBhP(iLvz?m;G-nSusH=%a-(-R@;b=Q5I zdPx1_iaf0f`-o!tBo3`aIA$`&1tf>nI~ueY`$9lxh)U;XUR~z?3eNZdDIrEl7;FA5TTP5J3@w+(z4MGz zh%l}GUzbBE@PEiEdB%gg&}Ob|7zKn#^InhxeQ0n%F{)_r05{CY1bPEfc1gyL7<2Yw zJNKfR#-AV~rXC4nbkbzQB?ueJ$uhZlaWurd+K1v| z2Rf%KzcbT%6ocZwl1k9*F}qa(E$hfo87KDd#$f6R)ZAc~PucUNwQfk3Q*o0pBccLF zf%?_BM&v^?_lrj%BJ+J8;Sz7g)6>)EP1fW4wEn{ajQE3>2~%6z>Zr%o+b}z=+?+6& zt3yGR!4{;U`yl8y#w;JRGJB+zQQkk^v)~J+y z`}_awgb|f@p&uHc9iI=+!LN@Gi7FC4qPg3!ASt|g1j^d-DLw?d+57bOm=sF1Ei^oa zbynz^U`Z}lC|U_8=)5SDdT|CEFuhh`Gl`RqZyw|$%_1QWc;s!6jfX+{Mk9y;bI96e zI%8{A9ER-`aduLE2{4O&#_gdYS~NEl>s__8Kyn45d(3)D{XG>fcwC&PztMF{}zV zlZ%p`WjmQ$)fIgrcdVWKNr`K5zKH(azrKGEPLGGRgV)Qz8KCk|+m4tUoJB^a{cS{t zKaBsM_5>J(_OQ=S2Ypx7qR1yT?DyiqFxt~6G{v?TY(iD0vfyvEoya5hg*uU zd)~fHh9$=5Lf>_6F{wZZfYPgMci&Lr1y>G&$l|N*XK?CPcwwlyf#L4#AOZG6U7!Px zM9@HOF{98B(%~=%>-Rr^ET_|D>Oal{)K=iK64fha0JBbOU56UKneZ|o5=BD#R!W{g z%q;Q?m_PDOc}E+d0h8DYU!!)BkhixQ(EK#j>8^TaJK{$@jI@A;x;XjP?8_ANfTEOV zj!l$bA9ru4uUPe>viu8ep__YL|2boWy!xrsWPn8$QXedgA!FfG%P?gSqUy2YiKh^} zNa}>xpc2?c4E|`^Xh+Q#)zlJ@K_m?uV>w+KlU^#$l_j|=ey$ztfx3W~*W&N)oeIk|tp~0@hjJbb)~CByjupT#`EEOkpSVgm zyVwJ_A51oy4lc(_N%2qC_W1flX8P{b;HxLEkFg@MVB8Z{ix%a!{GjNVVT&F+j( zq>zN_r$l*_O|;Mv*hv5f(ngXxd{u;2ZcmUBzK=2%Vxk16&~;c@9`XypuZxTKYI&j& z#rRHcY5-8yG2=9ChHR9{mEa>gv)-6#xPzka;N7Oz~ix}0+#_ofu& zKp&aBr8lMOm^vOSyo%^8cADYIx)s(!VoJ~>Y}t+ZN0W<~v-R?$xn7_K%qiEBrPJ~X zlbi+cK`Ze0%LTqjTwx^q=w(q9TW}VhHEnf4mDiJP|Ek3z)X<1}Rvr;$a&5-G{fIy& zz+GJrG=!9fd?}LU>XCwDG&Zdveb9C{$@{wMNeipOHQcqyuW|)ePXuI-in;JWbZHSrL2)z%yosDxs>@rS4v368PVh@cL0~Y0Lu;REOI?b8$UOa zUl#z%>BgD+Vr#Hg`2;E=UB%++GG^T$;@!k|1z`7eatuwAbwW(_2Uk`_)+%Z!iV4k=pe!a1LZKMcmW(0AodRQwzR5PocdD~#+xa(( z84?(5mr9e^yI_iwy~K@`y*Y*bON)f;G3sMUpc#eS0rDy}jqtu8(#NA6#ST*YH_9%J z^9jp2BEj6XK(YQbt-Q%Q=M&wC<$$ekbq)U29X5uOE9x;^O zLUDj1AW4}383v8Q{XB(_)aL{q1|L7R#Ro)97-hw0XR#Ucv4=hW;zT!VPrj+8&PgBc zf~jdZ5i^_)GAJit`Op(fW$$-`La!lnUJ27$T_ZJYPHG09L<2@@4Cf=Om%S1gtw`mi z@aj)^0%h#*yBo6bSC;lTZipP)L2-fbCr~R-#pw8|SahMHePraF_@{b_i=}*{T}uY) zV@@F9lT^Hi!UVfD_)VkDX4DMW?HHP)CVb2iX`98i^=R82vJ6s7GYQEZYNH5@T(cq3 zYW2J;kLVXy>YYx9fTs%en-*w@{nZBJwb9G#46EOkfZBKIAVy0J?ddX+r)AXsP`O>$ zz}VaiAXWe)BuMK!UhgFtTT`_Og8dOWa0Ah-nV`s!9W|oOOmLYa&i@<&$yud{Uu$#X zL9FB&i0{7d_9$q0g>O*4fl+xr#|p%)8fN*t(f54UEuyd*m^SWG;544oHJ`4-8)(mC zZ5w?;65$B<5yKID`QbD6UWYfk60#MTLa*gcc{MyW_e-}gR9v$|yF!|wolsVRP2`v@ z_X%%O$i`PLK{Lq@C_nx`hP(EE*Mu};mRA;+#v}tU$$M_}y zUa5PiI5k=? z!=|)hm@-6PPUDE6kxX3bVwYq@A~TPDSSNS>)p79lc74uzD#@8@^h#hjwP4| z4F^i#44T7m-f*?WuW3=XLOYDVUyTtfh3VKa+17*?=cxDsuO|5qfO(iqj{Mb&HelKb zkYa@CNVZc{7PQ&fCMEaB%xcLLpMd;9vHIj-o5U4W0BP&P?c!p7j6zu6444VYv)G#~ zbJv1!kTt+(<+-s4bh@aCw{fpqpA*Dm-|U{ru#8#>1(1lX{ir$d%YLe^OEV?#Lfb;b z7u)|e2ZL%6>KkGfJ!%MeRTH`VLx!63n2M;gi$K7l|IERl^kv8^kDY)1wo$a0=RAQ-`dL+ywME0#K_ zzt3vdos1xgwB*&Jq2Y%4g)CP71+GEXZFaSZ26m^JvR64sC@xkxNR8Yq6K;8e^Y`-}AKO+1MD`*lfncq$tY0`;yJpnzmTa zHdQqhXRo#ZHiA!@vwlRE=4tLC(xrV64WecN#1(ALsOMQeB2zp4VcwhGI7(hP*{g-7 zc8u(+bJ>5rLWFSz=I)8+zpbZsbTt608G_P^?GXdHbX1%FZ$U~hH}$iJiMu8uPJV@5 zRJ`C+!Wt?JOJV|4`vy8fQ?##6wxs&m$ppwYV2aJJe@tqu5Mi_v2ufh6BF$NBVB8oZ z1Obgd!?`zc3`Q3mQZcX`(;?xorQ}DPFq!`X+?<0X`pOcj=CYOZ!jwK7O4$5rqOz#P zu!uYhmcl~!iQ2@N2#~%jTOxAdbNfZtYMp3nb8~v?@&n;KH?AMJJc(fJ9U=&)$*42cYO zY(8^jI0&bLZ~w)s3JOv=kd9^- zhJUD4a)?rc!s&F?=YQ)ZCIX`vUy=*suBxYTe){1Lhe61X;$SXfiT9vVcC%ytp0{2$ z+@joScF%7Llz<73|9f0e33f^xL$8S`P~dv~+r94f7;>n(T|>V`Sj@*g`>ojFY$pJx zXwIBD%s&9!v90CPDAZ&b0B0)9p@3H$?(~7Ed?U-Gf{>^PF4(p>4K$5G0JSZG+y21f z&!49Wi4f=~v&g!9q@4m?dEVHO1^?Cxa&hMTl})Ur1)aQ}d5;m(ItpVlxH1t!^odew zbBG?<7~a@*fgB6ta}x>o*fyJFW)F6f0_==8pLO_Kcg=qY7vC07LKKBRH8~Yz4nC}F z2%c>f+k!12Ie0`+1v|^%Sfu-)XX&_8pGD>1sRnjvbP#b2XUO%lmouYAYZm;Eey~sa zs~>1Q0K%=-mi!{jzfY1}H?pLBOr2n=2Z&dXKDQwe z;FvVd!3$Sbj$8m|R|<6wUTXH3s1fS=MZdmez-uCZYrIF=sc(DM?pvJ@^n^X287VVG zejxHLi%$ssdUwy>Y%~3JIbF7QTJ!cJ%-DhsfY87bF?N&~jtt!pmp=3m^@n=ZVcujPGn?z));I~>M zC3zRjmX|q-AS6i;QH_!5lzNyccblm+}0S$c8R)f3aInV~hiN}W7=O)1JmxYi$)VRELYs7aTF#0?6l zw2U;8kaX(b@VMiNl;dJT#utLJ+!)CQt@u?4Px`2^p@`OsaG_6yLdA2Ezo`UnlsYSf z7*&n(C(nAl0@Xs_Om3PEWnXrG8V>rv?D_`2@o8uJ6aUYqGY8!TtqMphbejk{Kh-WF zMhtKl@z3qneY;n~9rG#q>SK5HrYT}&&7lzuIl_L`X?jaXhSIMIy(ehDoN{!XN>$pq zWr_i_b(|;yELi`*&8RggN;@zU9**WTsd{U2IsyA#^bFVoH&3sR_26M6zIN-^Nd#4{ z>uPGMn;M#s)P_!CcH=Re*Pu-86DBU=Z#immmC(Vs`$xO)oTLo%de5GoIGN%Xn>?E$B#Jhn|WHj(nqBpJn4JM@#_Wn!BZ`cSVT<<+ua=+F*z zg*Uv$ggfVcsk<@sQTp?q@TDeSeyqH^6t^jnOiLy(v$lQ}F=~ORYDN(74aC|DYNg-B zOIf+o)_o}&W);Ue0wBjfpg&x#HyyC~8=D)13c`%=ZI-EeVZ&I!J=GGgnLGVcD+&L) zyo#~$(X7Dri#7**nT9}X^8#=cZ%eO5xhznSSesWDKy+N4xJ-TM`f{ye#s6pLWbP=X z(qtq|$Qn$9eYN$_pB%M(ogF!9g%!eBlYmaPQg0blX@#&#D`BAl0)tNmlWN6DP+ae; zeUYdy^s})atj}YG9jncR?O6S4>;9(YztQ!UVNr(L8}HEF(hUldl0!;&w~~@W4M-@Rf^_%L zA)$o8zyONUJ%EJ35YinIQi6D1+!B#&hfc#)+Vz5KRM zCkKxBJL!EX^9imwsZG#r*%Sa~np+ur(MUvxzj9)Rr5kU-PERg>iiSEC>u9L*IPVp6 zx(BhFt6G_xsGsSdk7-cF=B z6XVDC7B7JU_vVKhfp-($(0fdMv+i0+EyYNW7+i)l=dt$`wuD?Usn5wPSP%SkVTX2> ziAsN7WTLDj8&4n9X|TalAGfOEZ5uG^wbx-AZ#B$)bV~w}Sq@Slp#vt)%!j$lEFNs~ zI#x6I)PtwR)9GHwCEil5ijtBh2l4n~lQuh>Eq-%4myFC7ftqFeFK#oxOeiw?AX)6H zC1Mc$w>2%q26}9f`Df5;d1v#_ya*u!#?QdLlsw^~fnu|VcXiuuO>XJ7! zSF+X#E$aila0{IrfeVko%5=+4=h$T`3bBq8pl8qE1S;j&5v)VWbbao*!nMin(IV>! zbM1g=3Y!*pH9l9aOA#fUS=~f0*$gJtZDDv~ z3c|m4BzQh!f-hY)Lk`Y@C$bo!#xIFt2fyQ~lWoOQ>MLjLsqTHh>7K%W zpqsc&=_1lZJFzM&Rd>JW#-V7N%hlcs=(U@k;^d;#AkmOv;C-Ydu@vZn3nc+;BX;WvF<}_R{4s%< zub+{Ax-IExC2rehI7LmumePkP0_#l{{8t9|46oiSG+5e_TPVGV6q!dN++N&T zx=F{(U-9uU_LWfy4rxdcb*z9|p_QCN5i@MnasK!6C zXA7fhq>31`J=r`a`-mwge#P1q@$=*n@9&3e=?-|8g2|nc215y2z?^W0zSGVbCy61%xyc|=gM=-Xr35J>VO14 zPSeM3>R-BV645+K_=u8@#NCDB6&M2FFvG_!$Cnqu!I&8{1C=emY~R=>Noy;AuS}?g zPRj4FK>k%yD~Qu+amIH3WfdHY;0VxWiXhoO=s*F|lbh%n$Dpn5Y?=|YJ$a!y2<-tC zBv9f6HDvfu5nF}@fYAkP*covB4t1q`q&+S><*;x@pjU`OtO{FY5O!@2n#W&{dt>;( z#QYDyOWY!thg+Mk6=I4~XkD|x?jsj#aDPs-mPGEwE$>yThxG?7T$TmC+PGerU2nh8 zM*T9%|Aa*|IyqmdUKIlWPUNkEx2n95NF!3?Mm!?$PB2C>-!9%@f+~~d4*v}Toz>P0 z%{ge>CTp0GtD&5`Z>x)zZpJ5T%2Wv;@yB5c{t4BLq6)A!=YYz4e-aXO+pN2^2oA&y zd4~kM22|q>+X{~eHtZzA3|aSUBOYYn(oXLNzFJ<300P#4xq-|39!?ARmx@Q4`MHx% z(b9)Fv-#Z|Ar!QHJLnZiCB;Xjj(~xh^hS^jGXoiw+mvNiuJrBFujsH~AjXL^zTmg4 zNS-jri|X>DM^#eguS@<`2wXjU@+e4r(gpH_$-!c7`EC7E7G7~`s)%^fvA5qMJN2ix zz3_Xh7-NSqJ3hre(+nQuRO4S86(~eqypU*ZZx1@sp%6$0LN-L_ebw95I}>i9Z=UQZR#Gd>!1kMmyq=`R_)6~$ZigsI z7Rdk?$m4YY601J`mp{3-cMhIM@HT$RyA|+F-w$}2LtXEs}(~9 zaz<>rYZZ4{J`JXQyU0*ft53!b>6XuRnpo#LQmma?Y6Q$q3HDkS{*O(n-xYuK%f&@1 z_~|K3v+#on@m4p5NB9|W=On0k^hoJvuJGauHI~;@u^kYGL92gHDQ-M%jvl;`7FsB~ zsgDcX4H6J6-eiE&rj8F zQ4PqY0Jlf2osYSH^WwPq!1a!%itV zxVMKjQwyNBc=r*kz-a+u3$#8eA5U-Lw0>;2to&F20G_0k49P{(?yd;4A!$x53q{C6 zxM<$Xrc#U?@L3eddKB>|{HKBhR-}n~6O1wob$nDmX7Nz&l^p{%$cyPR?Vlm46(TJ4 z^oR>ItmINj!XqNDD2UPRiKiBvPQ0!dwNW||b8_k<RP(!7Pzf$CJbd5mfFKJiwqvLxS;-DvYFIz{c|js-Rz5vX_fh5Rt;+ONoD)kM zU4gZ`96jSfd(q2|e-p@=YC}VFeZfRI8>+~dJud|>eQfx=0OnJywYFrs`d}=Wo3lT& zuO@TB3se7Jyc$xM4E{7cZJQ({yW3PVwR{qn&eiXXjCLak=^wf&0S;+!Z0Dg&N@W4tAA>Go7Odwj0z@r{{WoggrUJkh>R1a70MNF zxXRV0W1pF)8W_g*@xU$RNorcyww1wM?Rqq$$f0^0p{_9P0n<&%@0M!L%4X`rU{7XJ zeZ5_H7F1!o+o`TlU(kBmYjszV_&ops!OBt+X*U|Rb@tf8Wo!jKO5&=k^=ZRmb~hq| z1p>xt)4y%5dG+;;puwh!)l?D{%jt7911L%FV~mJnqvl1^O@WNN;)J!WT(>hgorG1H zXr8p~FmreHMtV$!xUFL-)Q&>t1^46UZt`I#R2?D2a8N+Ph)AR8!VT?=){tS#;G_Ss z0QmKdjW^$Mj?wEb9rT`0fGS2sqF-4%IatBm$1kyt> zwX4tg&+_JPt`LLeBxAZJyl_V8q36lSEy3Hh9#xVTf~=VcUP0GC zib(`%zpSOoH3qrYMX*Y+c+yqJy62u|o7yjlWqwD8BF6{TdZrFo7UUr_8nWsGbt`+0XZuh;^sqn{pzH@5M9kVYg9J)82EBP5PU#k*s|@ z>j$2U^^l&38IAjBFV>_p`C%&x@ML1?p6ABiv+EYJ=fv|Rk~oO|49 z?@XhAKo&luZjWFM>+TuO%l5GdxW@V;{l3+U;nx~2(O_5%ER0e*?C=N0zbK4gK%hN> zZ|)iCoBa0Halp7-JQ$42E#qTo41bt4CFnDQ0X-fsk~Q2^<3 z3Y?`GdxUaPBC>c2HaY0>3;mDpI4iPv35EsaV19(ZCH?U0sULsx?|DKpdXN#PUPsJ1 z$jSubn%U$%nrQ)OI%$sJmQu7|JJvo)IY1x?;bt)|`cXg0uiNwNKZ*tET>y5zNsWB& zh_fbSj&V=;y)cW`koEq#duZt~suF)*G!O5Td_p-$A4F-z0_G)V#i|#?t)Y$XR(8W9 z3n%bgOQEn(N+A_8f=CVfy6_c9iJ<-n5@T z8f{OvqGrVBM|3VY+8-0|4f*_AmT~#3a^n3XUv5tr_`%DxasUXES zm1s!=B=-{l6TL)LJ(kgK2#eX7%@)+BGMlJN3d7YT{}jI_`P5L0{LK@`>MoWYZQMZ2 zto#kz#e{ex*0$=#Mk*MQ?}C-22&x>3I2(B4Nf{xU_hY01&}vT$OWT#=M}mNJqEYD_ zq1B=-q{hBo26VvCihQBl1M&U=2(gTQ6c$J~M2`x0=McR9oaC>?Jwkf_5dD5vXFJW) z(o`|$sCxepx&Qk?jpqJvdDFPVENd&|w)TylS<`4x(gqt?%kfReq0hY_?UiopBXCp6 z&h~F2^l!PN{Qc!=2G7ydHMrqlI7XM^h~>cFApyD8uMWk$0p(_RwS;4ZuiXmE6%oRi z){{rFk*ggZ+3$oAJu##~{0B1pzq=+}lwPYma96fDdPGotu=GG6rkM_NiwbvyctQ`e zw_n*J>@g{)j)Z-=tiTDmX=xSGC%@%;7BNFE!zxMhYQx{Dfot}KX#f4#JvKOBk>;jC z5>4u1jJ&}&U>FcFZ@@;mUNjkRte4I*Rr+Qyt`z^3r<#w)O8z5~S_D)g8n~(U&^3}C zP#CugtHhK1Z7mym#9pyFXnSBb%u$2&Hoax=K04lQAl{jnW=V$00zYiM%;r5uDtpO6K1ZU}?+R8338N{(B`{Xpr+RTOD~~gd zzY;@$saqgXJM8h)3&Gih1ZAUKDB64$aRjMOsND0TRklb1@;B-4x-x!RtOg_2Z&C)X zQvTxEgWYkiUn4fB0)r`cToLbtCA!{D9XO8P{wI2G?7PG3K}`t^Z0BMxXn8S|qkLhp zj8AxB@_jNLF8RYfK?EB0$R6!|hkAlhjD6)4_w zkv@uxjuFeA%c{!#gYI+5i09T`ycIy69xfVMYHW=cZqsj!;Z5=E8ahl{{Ky9kTg7sa9!=FG zuX3NOjg4N3Ezw1%DfYC=k9x$#LApb2`fjcfN)J9nvS`mW3kxs@EDFxI3TBzYL>H0{5%ydf{X=Vf_q^Kg><>FlM0{uO@B^_WESNia zUd)H=THRWRw|p%z8Q;(jjI6)_b+y8T(c&1`1v|^sba?@bV$@IgcWUKKo$jzf3ZG>a zG=u&jd-_835=%52)4vjLkft9rb+8)r+)3Hw);?gq&CxQcI}Q&8D$xm@xJ%rv z5UF5?*R%Ymo$%C=?F76b1>zBMU9ECAtP^#sZ!Dgf7PE*!dBvpKR|3Xbqz|A_gyekW zLjY5sPeEm6Uj*x60`|uZDzF%~XwM6l{>R3<+D@7A4Nk_8M?5M^Quw`+=vi0#wEz2= zeC^E@YGHALwB;JS6a#TSJ9`0<{T+dcD=xZZ%G|s0YpZ?hfOlChEc?XkJqP@n)|BfS zA(W?@Anm{dQg8n(Nv{e5W72~J+!K->q76b9{+=rK#}>A!5r1{UszAKCRaHg;#mWZX zQyHO|uXDMHXk_?3X3W%PQ%G7;tkSPCxH;m~VzRBrkI@AM0Y zVYQnVYkEiwMMij8XVwTVkm=TQ$~yY==HxdKTc1{h`<=|f%tq$^_&HrIN_yNsZ6BNe zlMKSk-%8X7)kWb{1|r~NXPZHrO9WIKv1@$dQ}0Lb9rV540B@%AS5rSwXJOc-R}T7| z9A+Y883$lN0EVyBveZ9hsaershm(0%iG|uGUVJjViH{mWkU-lSR5%$OoQIcGp3I3X zU3XUD0T4UP=1BV(YK%ju6E`ls+NhQ1DYj6_ek(UtX^1^I^1J|PuUi0XA7Gw^SlI>d zt|pWGT)gbs8~*Th9LRE2(oxiUq@IRv12-_ySEk@Q03KJsiZ2v{$Q|WV(&K-ZP(j_T z534y93(6W}VrTahlBpRJs`3v1I(wh%Q5Q-)Pen%^-=R`8%;o$r~O4(Hk9) z;V{wKw33J!=*3ZeNLZ9jf}$*lwpP~jeVN(1ui-L~!Io6~V3k#6hF-u~A74#GIdD3H zeBf~%0h>n}!lDT>MLD?n)R80lPRx*wVnHa&Q5&H2F^2i1)=Yo)OV1@P=_Zj@9_(IO z_(0}|SBub{Pe-GU>@6H0msox#+ADS92tYMRsaT*SzJ1a2`^5FC`Q;lMql~R|vCoza zmyH_HJMrzoFW^KVHD^oWlmcFo#2!(!_C)3#c}QMK&xqe1Gk{AE&8MVMBvUU@{!ufE z5pP(@)n=;PuajVeD!dJq_)J55>)9=`9hHNjkhalX4)bQkaAO^K=R9XV*m1P_25aGT z^1X0+I`f(-*$C7rAWrv&c}Y~_z2p(H;Yj-Gn;lBh3yyYzPP5% zwF8e71h~~OWvDLn>G5P{kI3JvXof%kIJUL3Z6k;0W)krHx-W^g#EvL{t)Z~LasVn} z^9+d#AjZZ#ec`~xURb?ns*|ZmL~k0-V5lM|kL>o$$dQd2~{{cW&oHo0a5G>D>K$ zKqkxWz096n>EZJSK|dc~gG06tp7_$2Qg`ypZq}v3NT>80%P`PhuD|~~yDo+=>D@KR zNzC&^HtFNj_Man*w#w*H9In{b%46$R2KVk`0A#3ZlL2S$*6)wd&|g{1fn_l<9)8UE zs*%_Z2_AazI*aduJ~JK1{&d68qJRr__*q)QKTJ2pNihzN^s&7xxP^2|IPW(WERwJT zrPRed!v`QowCnA*ch&57aI}Mi*Fs@|=JqT3i>vT92#{3V$D>&L?>N&Mzt>)To zW>R(^%A6E@h8nCzLhrRWL3u&dnH=LHAq06z#5b#FhG41T-|lVf?b1t(OmS}Ct)ikQ zU*qVZ$znY_`EbJ+#9IG~@DUF%<=f*KgnnFpN;n9Ik-}o@4U~Q*_Nbu6Rok)A=pVbi z)%>{deK3jGhErnY5pOmiq9+1UG26i>w4*0S8jQ?%9s7q%odEvB@VU+<%QlGD(R;F< zl?%%=a_N?kD#j|Nk;c!9Jv~j~dl=JSsDQsM$yttjO~Dsw3GXmq3Z|)<82HPwCH?ac zLkI;0vu|GZ3Y#Ft{Foh(&WlZyCPdeI%p`l^5{T|gL$V&NdQ$MU=j8Ztbi0S3;mGmF ziidHVtDTMjuOC49R)wi;o588tr&!nymk zm-i9vhmHvvA>lb;r&8sofj3}-CVhKu9p0~y^ta#Q*V!(MjpuXT8R^96mPXZwdwhSZ z?e88I&x*b_9pc1qKbtbNG4xc!R?B_hQfG_-(OaR_Vh=kUPF3^^NqecZ#Yyp)?89OV zcHfE@RJ66OHko0dXMjYt{oqhX`uOiL7fr{nw^Qb#it9-be$!Bc%j6xeskJPpT1GLc ze+k_W{tfg{brbN^d{g&dWxJ-}?5xnKYg&a@GkKNSdS%6pxSh{;yh{cvm5?OQr2wh* zYE`?jDibQ+{stLUo!S#7BTP?hDL3KQ8K;eQEQW98IJQ?nK;3XbeANH68aV@tC)!)N zoAAE44A9xsIuDMe&_ezma3WUl%uP)vn1A^)Q5hqx@`E|zH1VL z?M-$(KNuV!CeAt_sK9cFz zwKj{P=UiSpBlBbu65jIq( zwttUunEx?kC8HHSIs?VYM9F+TY;*vBNZXqa`(1Ba{PID>Z#RS>f!nC)H!v!gJd1gQ zBzdh;mCqYBIO<4hYRywd&a~}Vpt1?>*w|I2!{MGg93z17ygrqsz^KWz(X*zHT3?s1WTPBl?d` z)gGaN8mgV?9;*(DXHl^2$;7aCD&I!4J~^_X>xt?c$y^E~u{*b2I4RJqyeMux>nz9) zH1qX^1(Yy z35d#9ZzRCoP}B4IHAmQ6LvsF0`Ak(=fHL@*)H``w<`CK#ah1@+$$zIG>tzB^2?TE) z9Hri3=9-QLF!&y#g_xc21{{nsUdb$6UQNsX!hOU8(s}>v?oH)(D(W{{u!)gdip|Un zq+jm&IC>bvFe@Of{=Q0L9E6H^n<;r+DLrGS)ntrH%OZehXc2#rtYKyPH`m;o^BA$c zL^+i_Sk);y;CtNtn6BI82;Ek*lqp7Ui;(VZ7!8G|Ajje}ug959997hBkPse`cTMr1 z>++L;_U~dq^G2uP=liq3OO~?&yA{q#)Vv94p6pa{qiF(oh-Giu5$>M^1Q?@U)4C$y zL99Yq?l;dQTBnVb9HQPieMBf!4>&1gZYXdB4^@a~x7lB-9o<8@tN@ft2;2yT4}8yn z^3WdP+5|~g)w)*nqZ}8wlzZ~da1EoWZSx#c4bMg85p&P?LCq&Wx33*OcqZ%DHiDC+S1p!W*BUd6lq*w$AM#hV&iII^_aaVp-

7oiKkm*8SO(xpU~k$$XZn#zh>xkmdcNnX(%Ia=FiVKpJojE*(FpZJJY)QTP@H(_qsvSo*7l}&s*-|5{uFEDPG!%vX%NGPgspI%B|70@aQr=$~bJ1Rn z;<7iVfbxT%Asq(9>Cgk1Md(x&rl1_QPQ>ZFo$h;dPMmXdg*=||`Rj~@dokFh^?g8h z-~Lwj(C-?}dN!6LsppnkQquu2){9HL2qQ@tz0wnXf{xbyp5Be!g}1h?AEn`xbjTD; zIT|;~!;l}{GvP!{b53~bCLplHNAtD2LsCSdn8rFBu&~q&7NmrGLnHY9&O!-1erghH z`u$U$8Z%r`Ib)*KE1l|>&05S|dzk&FdcCsrkxFU3hd3Z5VU*cy*9)R+N269eYUO!C zZX){5qW+a}2a!*u&*_8iZp@#T>yl9ZeM#++c{Rn0ZsuP$h7(ydlaUb zb@G{mxbl-A*jU(WGGxdZlU=GtQkq`oJZO9^_GpcDQtH_Ltph4gUngr*@UE2kai48$ ztT*OvxJ6PjDHb|NlCK*e+V!8i5xEyQhvevq2xt>8B-CLR3&jae6Z=!l9E@fKpvhPV z>bYZ>&F2MS2uJEn?MaOv3pm9R1KNm)>*TUb)WUnV$?SwK))|>H?{$AUHig4E0|FAL z>V9wui&YJBbJO8i(7k?N>=T)<+im8s1vc-`<&?_%fVLzCL=NKhw$di7E)Z=HiM7`o zfg0>#*@3$nwR0cv+TXcsv5Zds>TcAvZ_V<&;eY3j7n{PLY(zMY(Gdt45`F5SuCfGi z03Mrne2<)n4ju5;? zk$if58y4P}Dw2N5vnAl*;R~Eg?j>$JKe|mBJ1mQje89b@?%M3cL-f6TP8jIlr@{^* z5r4h0c(cX^1-1Y0TN%m{#4H!8F98??CUo^Ufl_K}uV{Yx+!%e7sbCvx@xHw?P|TsrmE~oBzH7F&xDa%?aQ% z-e}$M>k_W}E2Dh}|ETg7!BJ6Wwl5AwTr70ul2O{<5QRLE!19ldu@XRGL!Ug_&g~RO?FJxU|`1FF>ju3MWw;PHJ@jtr}n(EmXa&!;faJhuZa^;uL(x)omCK zwaT23EO0+tZm#Rt4qfY`P)IrsV48OL*KSUkEEB3qQd}T^mr-f~!??1o;kWBl#!@;R zl2cSmq{uO5JP{cKrhmm&N|-Bi7amU1J~>RDdhB{4-E%o$xqpjY2UCqsEH34XT%ESC z=ODZ$@(W|eHZ}Yh=K274hK!*uv}?9_Prut*rd%*xjv&IrU>*Y3Kbt{rg#x-` zt?^;rrbiEDo|Dj_2c18-c{rX5$ms^;6@$RR=DvzI!%!&5Q6Yjc_+Y_MG=loGvjboO zcG9(lST|Q^DS@xgn6CcbLWffZ3KQZJqV@4NW@q`W z+Oe6hOiwS_u`}>$$%>{_Rpy-564uB9?V+1f>~e`=gnR6I^0_MeH!704(mxh#m$rJp z8Z1YOMX(GB5$Nk)@&^_U$6(Y3GzvvbZ7jiLZ@Q@j1vx8;px94at%1zX^-GFDyHg21 z2vePMl_3}ieWS5r&N*=pMsS^!vZS*wO8w!Rc%YQ4Tc?{OFN_9k@)ZQ0Y$= zBRDg1TqZX$hS(s9q`r75rKAU)UkEc)XZ@Sa4k%tcAN}Ak&?eu1*xwTFAbXn>#_ckZ z4cUz78YxLFkIl~&d1YO8OcmOLb})_EQx_Baz65^KR2b(9LBH3_Me@lT4`T-1zHC(ulce3+riT;Lbo-wxA_vKO zOU_L;{OQ=3jm;DCbduxGh`(^Pye<^0ZW*0A{72B&f)o>q0tPH222sg+0>_pt}G`Y7L=NCP@er%}X{fCBvgZZ_# zx0Iwj5}WSSGP!OZ>^GZX^OmE(HAgRFNJKW=@N1L)6z-PL;RrbK9yb%A$7_0j{hTjF zr1g6jqr(p1ye~&w{rFxRQxoY|2A9zD1k##ljgQjv`pgw~YterGv{9ChS~hZ_5@I?P zSlLuiShZACswbY#39DC|bly_&H5|d<{mY2gUF@>o(nm_a$q_ols4Yg(-ULnpIS6!< zgADj5s4DES3>lQFFG!p^f}wl|$rVHvq;6ah1Us`W!q_ROephINexnq+#|p(iBliya6ybe$EJ`~6~_D>N=ZiNpToqv-ZvpRo{hy7B?ntIc%Vk; zg)Y-jxfKZ)LTDg8FWB$tGpM)wHq*>tI{U(x2=;ZhmD>l)68NDCE$6-vcqH!r7181? zR%Qg;X5v}$X&)a}`l)DOD#`m#ytczSnZOnwp#}E#+;thnx{-4e-#^&<8utN|>kAo; z*VJ=LLnM_ppWiR9nSLeRvEOw6y%SGnOVbS@iuf&gi~!dCa&BMqu6|4R&XhX_t-qNz z0j-+(@v!;%ZjV~`wviu(F3$q_@a?@Sm_L|ioHacEyRMg)C%9pvL{jEv8vSHQZqc}S zK0ax(BwD$_0&n-h?|s7PXWBBi^I5Os-lex*v+yu~syNJ`=bCL8_`IMwh?pf|IaoLq zcoKS4lU4M!cb=QVG8nGJA>c_d2ddccQx2bwZqSq4@LYLn3r(Q}dxO;D1I4)CUJ$Cr z?0|(8Y+kHzTeBOYEvLuooJ=vLX@pP)=)l6}5RhcE1kPf{tZs`&&*S?e`iRileKirEpuYu>OrCi^W1!!>R* z5qg71nZmdT!(~l9Z`r#i>HQ%VSb;lj9+AEX@9+9kr)d_?!1l3stOcg+KwR1}6h|?4 zvdG7y$rYpeUK1h>rBQO7<{bo#Kn@|T(`|kYo>7t2RBT@ti0~?SZ92Js&JIP{f3Te& zS3U|bR6V9_ou)TMHr+7q1fGYVHA`=jc&E|F=4S<`gyF!Jnks z!5?!SQxp;feZg2m@u?CzG~d)vK5Ho@$a_20U=NW1bhcOtFJCnqaN4DD6U`144zE?k zwdKEQh}l?h+n@KAR}*7Ot#zXK0+ZiDkqFrlEYDaa6k@rd9C35aSNWn(anokKqrGfd z#qqtYzfrrrdTS3XnA-kes%!Lf2aoadR&z@XyawMjPT&*I%s$7>A~l0b z&fu;1JXmn@?%5vJohuY_siR;1{fUpye$ra0i>}U6!INYzr2!NvC>-*CU1u%ZW8MwI zI>VE1P$2F@l;xD;X|2%HSUSIV;flDg zMRb(AHjZ#RY}3LJBg{1suY^knm21o%1TP*LhOL(NRl$6Z7B|(cCA>vVJDYM z7#B3GPCAA{-oC!-ozQSo{?#PEqa;I<9h@jGDE>Ft81zn(qTQiXc z&vloe_ba8iR{I^>>Dj>2NPU!zmjYJ+ z)uJH4vT}yP#OfUKYos)J)PodNi208XZOl~d8?7RP4CG>*WgUAlPss(@CHh?2c?9|c z@qOLu%RR~#vhKcJ80j|60dX0HjHBakg@b@&E!5f0VU=S)_oM(%&C8$vs|7eOuHghw ztj>Ahnm)kLT!__8N}L~K!1`vu2L{A|CKnt8K)G3q9n5d>b1gggs8qL0At<+o-AN7>?I=3ZT4=lh zfux>kTe;}pDSsub$E#qWE{jvbi{>L5TA)w?Q00tU&0y90lpViR+eK?_=GZOe!|Zht z@#iCjTcT&r$l^_EXuLPD@#pzFv4u7GcvT5#t2{;Gz_#D;vB%4|LGiYWniAji5TuNi z@Iiz(GMgeilLmCuH0M2-VG5veOtzAbVlif#Go!CIf{vZf`W@_C&S`_ygz#)OZdZBc z)WUByX8ENbofD~F{nq&dQ@TawCMOfd9^ub%)jyKs@}W79xD0#qM|g zgYg9Jv@46pQ6Wx5XsZozjOsTFYba7;U)*B;Xx8rBFW#MouqF|N*LL?luuUt-}50YBC+UA0Kyg z;V}LoZ#f0kLL9wg%pL+^!|ma6WfP~WXZ$^DuS+yA9tRa%ojGSF?<`1U;RAOZ)b#LC z?RT|G^tPua|8sh8BFsFs%0*Uy%C07sQ&i#w1$3kQW~RFH;q-S> z!(mO zUN87;JcwI{X=yRx&i`0$pumf^0yj|fR*LlB65Fk%tn{Gf!6KI>4 z5SudXGV@VAcc(*^3!NMcYsc#HI5yOFomvJB}rOW74c?alUTQF|q^RV?1QZ3Bwjr+p8jY@a(L=AnOOCzCkVN z9Bz3E=Rq+{J~^N$tSXYY{tTP29-xs+p=ksn)Oo!eOYL+LLV=?$fzy;8ajw#7&sib( zliLGQrTjA(^(p<|-xoIgu#gEb`IYm!$bK_<+|`~&zw?D6KsaMD!PLjtOcKDT{qDA$ z2e&Hda_bAw;v|R(H*-@mKl*c)RLhDFro%DbP(HKHqs82Bq#I-#SR^DZ+qjIXBYmyTC}$l5)AV1YHHq zj}Z0Lbm@Z<+lsS8p;gO0q7bdS@t?bQz%je_@V~o91EE^G!%Ct_vn)p^xyfBUOxjCu z#xUGbRxVq(6c!y<6f`UP^l)6hh@CG8?!a;Hg^nph=#y&-7B~v>mEzaYh#zA$B&3Zh zE!37re^1@gwgX^%ihV;~Fv1FzBJQHH1vaQJ{&D$5J(64wVomfW;hZ{K?AHCLUULLM z+~IG*!jm?bGG2k@%pW2xDC_y|ARRJc@*Sw^<(7|%V#LP(nxRr_cXc!3KfV!372nt! zvtiW1WjtT_m*^-B7=nmL&-9Nny`JJ_&c_MNjySWBqKyJaU#m0s?pf;%qvHj+)Fgq2 zBy$&!{?s&8iBOTLEmR#CF^5`{iGj055gN^>^F4&=e&PSZ_I_VS=x);*vm^7|auJJC zOOq?Gr0&s7$9nvKQz$$59DS>=BMj@#&0VRV=wb@>jeMr|-b<0Hy@y2{qd9qzr$5NU z&qTQN?;Y{BhW^8N84Rp0nLib%t|vH7?2|euye~^IfYOw5D3TD}Wx)d9is9WW6B)xyO2_Ee)8aA9~ZRB7OvG4S*$^ZjUnZ*(PuoMvC%Pv=iR z3+El~>h`PS8%>Nx?y#*j&f--$zQ*%SfHZ7)(Q;aQG}dWI(`Ew<-4`MNE`+2jd>!Xm z_(iY=j#?O~b#0QcpzGK5uk|h74^u}i#D9O`sc|I*|EtCaU!Sn!id5S~4Z4Gn07@AM zvFp!sT3p{geM!MzQ+{!~ZZCUp_;M01MQD4|UR()n2Hd$2>3D4~t>1o-fSR4R#OBNg z#_X9_=0J3m5TN@g+3OFY&=eZGYK6zYr#0yQh%%C!e-V+i+HY~qd@o+Fd{ttl{^o#q z`ylX(S?OWVK|Rx+1f+kPH#+EHCi0^B4ai&SQ7T;gGJuP zjY(bj$qETD87fi{2M!i6RRW*mq!QN9i~v9o=ZLadeH0O<7fmfea8!|%tb$=X!{3{w z70oXdLM0)iUycH@y+Ot!W(GyQN;Jx;H+v!HT@ItG6pTMm=1~OyM2$8g5EXPeHjk#> z-v)gbl|Vir-7s9t$&9dh8tk#5kKBNb8=*}bVQw2JjtzG$@K& z5L0fOwh=Lc`ubVEKxS-+n2xfWeR-y{6|NP{i=c9=QpFB?hSx_#3ZXED@#FP zVhV1R7h{U~kyv6aUC=>eP)9lDEwCJ(hri6s!Muxvo<2f6K#Y+t3+X>ZrWNq|q(A!g zm^4iC`Wn&?BC2D4-;ns~DOb)vZ5S_3PfR3u7E3VUnxJA*2T>-}YaaRUY>*bA4Y1T8 z6g+Fb@um~%Vr&w*JlwB-Sc;BGcHRbSn3pgiVKZhojvSb`>MB>;x(Ze(lWbzudVC`g&2!OGy<}>swTaGN+=#d}{oMtYt8Z}tb>MMB zRL=Y-=0k<);?6SBChG7D@Vk19a2mdYwB%FFQ0hZm%EdMdthEjAbs1}i%kv9zn#+nQ{5#$r_rFY% zUfX?DJb8ybTtPXeuU9_xp7Wuo9-C?vv6`oYAxRfYnM14^dnZi3B7*v0x!kcs&SMK} zotqZTTsr?)jt!$Ft_mHVyYRH1A@AtvFxNpsv9g*NH$V(NjUWm_dIGNpooV;|T4>KK z1o2%Fh8_SF6_c59$1pv!<2blXSe9wZR#(2c<;04JjR}2Xp=`@ij*%2pRft;p$DvIG zd$jJ4U|g3e)=2urLbxRbr_qu2?C(*?nVFPms!fF`>tzr`JJbuc zi&6d1gV3V>ve7O`hX0&*xFriIL`S%e!L-wioJ1s>Be_ChGw#S~&L639+Y_hC^#nq( zunCw-`OiTNaRkY09%mQUk36YYAi`oTJ#1uvt51iT)?G*Vk9!Wn`8Q(SKVXI;W%58P zNUIe6_J-Rdxc+H$jUjGQ0&*sp#4sUHKY?(^eRz{L?K@~mR^V4MF%Q&)VDu^r+7B6KNno$ z^x(R;;NH_TE%~X024>N@=|n3`wT6n38%?4$yTs=)_HFyi)66omRLsPnYO(9(QWJCo z4J#CX@Y|-vLlai`nn;^9bAO4pFm#->v*yr7?N-UBLTrJ+NXW<=5~>;3)VV3z^c??c zHD&Djk0WwF_6@62?>9cWkpmWLtE`JBM>>Z9HDozS;f!LJ*j+qFU@eZd_QX;zmCfv| zCwd>fE$u_6>m3{2b*xvs`$b8u=Kj}(ljF>8cU9Egk~fB{7`Ax$p-!UbVY@o#86{F1 zc4wVkhETl~z7byFEdrIPwoFjp(kw*{3$G?mTKnL3O6ZYYZ>6`Tcn2o1rvz7aHwU2n ze{-FYHsqW?eUo$w-@-%`rL*9Wl7WuNQ8N@>0O+F#`d^Jv%2`X$QEwqkPR8RYN|fk0 zz6k-M#Y!i~gjRK8o&Z*ry)UFRnzD?WB|Z9!<TPRJ~SL7A#5(IRzYR1U{40xsm=w zIhbuzb@>4twI>WgY4afu!V-do3qxtj6pO9EAue2iV9TE9I1EAZ>(d)g`u)Z(Gp8Ry z&KH-NcGqp_@s!`IYKZ|9l4_E(->flwaGLPx+VI|YLVuYDWOJ5U~djB zsF{=EuW$w_8CO46aWM-=PJQyXnJ{!h(ei(JCTH-Sg(Uyt&{XkBPYbESsmKKd;s^Lt z&91vcX}I$5qn4S0^V?(jO7?dr5*~BPLX2$@7If8Vxua?H3Le}-S(}^{2Vmi2ktlyO zT3bK~!=Y2~XjqL5yMjkFEYf6%Fu$BrjS+eos-BN5nI1Om=meP~z$V?g$~(UqKfmMD z*uM}T5H`T3Z$R}=@O3g}Lt2fnkNvShd(=9(C zX4n+Gd^~*Zqs#{*IH%z82}tqKu2~QR8=HS?$Yb`$HU&JY$b%1J_;t@Y>ky- z&{-o4&|Cx08;uLt!F4=l$niRFciz4C!6q~k@%BQkR$fG@6aOz7AiQ_zoW(Wp&L#HN z*`78=cc&xCHZ2K)&Hd7Wc?97jft^eHp0%oq*br^Jl%AZ43M?hLJMbYt#aCzmnpq(e|;akxdtfOn)0UiKnUT3|YVVCP!wbX7aSH zVoDMNZGw|gUON|Ij?sJV1T%v~OMdX)%H z7pdbvo_|ZW+E)j-O?h(WmAiR_a?$wNJ-3~KkFp6Xm1?khs9SO?uCaH6s z?sGZJ#GO4%c&AD<8@%!3p3c#Z@Vs5G$C^$6%V?Yl4rU`p=hH<I4~55v4U01LKu5CVmg7N4$pHahNV~!hn+S5V&mdkSp)0Y zz{junY+Z|LBPMlxWA_@x(FnFh$03ZW`o!}_Z&Hd4x=oKGA(?_X5OmtipU{Qc!dHre zva9Ru)2YdScFzUc^5!{M@A#ecGY6S;9I`%@f zh!sr77hIsTPdT$4`FDe~H+WgA!(4!F5DrQ@0HK>8b0xH}U;Rv6@MKcdqF6fc)F3KR z(|1sQp*}MGam-cImY8^e?qk!jU5u`2$4UhGU;Lql@A%)r!bpKaLA))oSSc7^6h0gm zn6h-NaPO0*T5)>RIdz`nH(${ioK|wBIi4nJjxJ?D&6~I2;J7_bF?Hff$ zZ^FH5wuiQHuluo6RKvAe9PsN{E*j`omwxJu$RI#pe?t9rTUtnmK0c-B?{csnBN8)h z*UezKtYiK3Gloj}<|Zmw>Hk;t1U;_7CQD!9_0ruj)nPR|6#&g5^=HNE?H#1-o|{uf zJ-C%R6+9+vicOnIgfG0c`ow%OGn-T<6MEH!lY4$V!45calc9bG89a{PgCR7P?bGG7wL-K#RP})`1WrVAp@~S`p^RS~)>#=R&d zxDVqh4R$Oq(HlDdXRJL&A0;iBVYG06!sS2^nN_(2`Uc|RsU})&G1?r1;bg<&L=O;M z7)n!H(#}O@vhhA`+*!|)Q089b(m>smsZkfAI_SWc9bWT*s8)JBrdB?qgY2gZFD`;w zf)tWcNEYb#(UA?FezeA)DJl8?DaS8tHT-|H0>(dDVBM$*|Iuj(YhwI|t|k-rE}_N? zI~I9GSZqvR3+CLtz0~btSp4Nd~GCy6k*nCDj zEF54|CDm0o>m?bUv)! zYChWkag*_K|1lrbcHtzeuc%lqcVT&fCG=UM;(5g;(v@Id+rs6&z+xp_X^8nj6zoL& zFwTV+8rVSP~gA;@=AROj6Z@upn#_Vo@x< zw&ntvdfj2$aT0vKX!nBJO%>uKrJ$aW@>mlKiJUbX9$h7O_eIc(lu(LU zax8HEj2K9DaRJp|Pb}1=53+YuJTxrNAQ09UO<3XAhrRCntcjd`((8tJ&6o()@gb4; zW6az?C~|$8j}|~P`KLrM1LUUHR~Tblz0KnlgT0rgl6rMNxerX%MC7gEw*@hDgnhdO z&rjzyd;4%C!z+QCspD_FEYGftvUN5_?ALkBjMFr&n8NNhZre$QF;Z&Z?z1fYqN5it zD=c+|j+m$!3O%DCMN=B)hoT6MH@F5tx*UM>bM~*xw5*`~g@ugvvR?1cosm)sG1_`B&jPXawbL>~tPLrtIcJWRz(`K&;ETD9a#Cc} zOBy7lnQPk5ez}YWzl_amy=HnXw>QGej2vb;WOLi)q19`(>^gC2s)Ca_mV2pcA?7Pl z@rf!elCd9e`iVYqVwvo zSw_%c!kiNyo`dKLa+k{`$&Dp6h(uX5c>@ffsHC>6QErON7555?`W$d@%z&DX25y$# z)TRh0BI0VoD3rY%ZVzpuho>{CJ&UB9;LS95ihfY#D+oH+q&y6^m{~He$-D}p(u6Or zOHM>Lr0vF+APGhXplz8+tDULU?VzZ&d-|%hQxco9|97bhGqz= z)K(Z|{U{x?e@XTdG;m&=7z>G+lR;GfQ~Rr$8wU<&1E0S0=HZQisPs)FDaz(OMHN)o zg8ij1N~?V3V6b>2>P!)2YLl{)D7&j|>r ziv~TRC9YmukFmDt>u0c7&16(q4B4@A>jHRyjK;gVUEvxyw!2VGb~(imL`L8PwAw<` z#caiDSt$STgnQj-0se@9Yy=Nb)7xO+qjS~&Y5@X$!${lmN+S0QIj63=bP*eC>yM6g zHbc2SHJEUSR{Fk~(g2ckg6`%@BC%?(30hH|dFELM2!>dy_wfYwc$_RC7Fpbmk0RZt zt_Kus-tTcrDa&OERT4ou@TlwYwFQiHj{}TFf=k6Y3ryNi*#y>?1%8-Bh&unRz@XmD zp_T~h2sv3^^WC@-a&^cm%{@iRhZNH+VgL7ikMaPT=SiOKG8DCA7W>bGZ1;o-G^l0C zTE#3jugPeWB}?%!{I?H}KC+EG$40B4nQu~GXk z(J+_q*QBEUq~<}^=*q{2MOMQf=Y4(XuSBHshNy|svFW06Sq`xptMswn;k_yX;u>m3wG+ zm{p4nC`BzXiYH}zcAl861jp5}aY_yo3F~WZf9JFpFBXZ3$}StT6NRNs8`f(r1#Q92 zEAcL9Iu~?nCFi{8h&az>nO$|K8&L*2iHl#@57a;;@&HLhgRs-Ul}-B@nCC&O zkdX_(Kr#{4G(sE7L zA7p;QD-zkhx*@lZ5ewlnwh+yX1$-><>?sdYl}2r%!g||GUm_&8ONFtvcvx81@tU53 z&eXZ0bhG7Zzx#?yj_!nqhw2(OQgw&8zijb$r}Hww&bU%58@>k|6{#e3o`dLon7Cj1 z4q0VBj+vcU2_gb55~co%rhHg~ee6n$`8J%(FwH@I#e@zS%;~JAN8X{D zvB)2O(0{Sz$+o<2Safl>BWF2y@CBd-9&x8wi%}cbprwPCPD8_6;zo)+g@(FSt_-dQ zi!{4t7AeH4G4;1^{hR$;;UIEqe>ue0)tND|WOhcgfxQ-)+9xdOZt}xu`Ck>E9i4jL zjyKwrYpe1nHzYSlu+19KCQg!!%NKZ3pI9xffBR4G80WYnTw&Z0tE?K5KX;$OIlPjuw_|zPonzi#7C7h4}4D`|^hu4UHj!G%=s*y!9Ja zp%U(8z2=#LcaNWdDDb)f3fYwI`DCW3;(WGf@^;*w8Xa})#^?K2=ay@=coSL`rea4}+%5svtT9Jr)~W3ysS@wK-D@f)%)Z&&?)+BvR` zG@1=*_|ls`G*S;9;ScTCn%2VCB0C^tKfZ?Vmtb5cNENhq$x!y>SAn8S&=d&AR_KL; z4()zUbh);>D8i_)BBn}OIPKbqy?QPiWds%-j){Rjub1jmlk))My|gx^Uxgh9B8bJNhft9jehM z@u=X&#@mnOWg%rs$I=zwLG(yRDGwbWMjw3>{$HgH=_p9=&kR+g4%6dXGE$&3eebP`Fy6bh}A4E94@Hfw^x~iH1XuH6) z+OOVQlMw9b8evX<2j?0OqHR$#bZo%{0qASJ3^)Lm8^(R6eDaDJCC;>~WO> zy=e@HU+zm1v!NPK1s*Ix5=q?&xbz9CJ;@;v+|)-@=8GyAR{i-d)@-PFp%NX^GQk1r^w+0W^IPFF(q^ zNu$#Xe}WWDoyoDbCX+ccWkwr$(CZ8f%SO>8u2 zV>C7!PSVC`Y}-b2rr+m%&U; z3qwZW8=w0o*ZQC0^s7#Nu}a@0V*C6r1bddhLj?@WElyo+2Kyt?D%_FePmW!z-|>6c z5BmPT+#Toe_oLEdjo?ik?a9QQ!BXu{)lL`3N&;?RgfI3yEe zH@D>hsq>EMv@T{al6{XV*Z<|Q9-6vgDrgwK>fKpKL>TPQrqBH#RUn{%baf55?=6y( zj6s*dv=FV8$5fNo75nw75ZuCfN!Yme^-uNBIyM6oiqdS>U%R!yWl8cj=ZAbGyj?(J zVw5K`(MdD!?=@KzQ>{<*zf#HJJE;5h^3Vat;aK7&2OSH+Dxz^|IfqPueZeWuaTuMF z#aRxf$dV2^8c6<*u$a#;1ru}a&@vIOxydKust{i1;+?D9Ds}jaSQ-+F?vAlyD-omC zbDQS{ptq#(EE#^E8pkh3rCP>?tgV2QP-CJ}B@6EW4)MM#*fjh5m5@9#uU1&R_TVQd zQmIzXhQUgPUUkd1R|sNzr8Ue*nB-%NeF7;=7wV znAWGZIeoOv#@GfNZG}#P>Il_2Yvur!()RFOAkgF?wc6xB)L6aNz4EDJzvb67cGwZD zs3e(XfUZ27bz9kf-2cY%uGa_V`{Pyf^)#lfK^JA_XibG2tomBuVIRjFhui7oWPq@R znjer&1bysj(n=#UfG<8`0J7I-dsBW;EVj1Qpn?S2?7Rio!RQE&z0~ZVs5$sKn$Rfx z^{cmS){1oqF&2KwOtaktw?;|nf&}>D5BsM)%tL>~VP*bP(Y-_Sd4NQpAooIoK9n=&=hB4*mah^(*4@)XF>(v_Wmu1d{bbB^$qmQ z!b}#?k!u8Svry8KC~)^qW2}Qt4}LlxDIZv6-t-GdRmnokm<}18Qi@|M<0O-Atr6<^ z8$J=}SJ7vwmSj}SE@e1OX?ZPg&(`Xmj3LVkyMcYgYte)}peu_=#;%Ly8g4kcq`w9t z6k1*m@cS|trL;;aSOrC)J|&^d$``|Cpc@8d!n5QtZ1aWHyF~a)1gZKjXnhQvwraD)(uM7!OT9 z)88$D46K~RR4oM;5CP$i&j<#g84X%pSYk+RX;5 z=TAUN#p1-_QpIcjlEm~4K2|}M`8_exW`fmU&;)n)AaL1@5#SX-Kv`x!4!T>N0z^@| z^H~=|m9y#TiDq-FEcHL=hg;GuBuHk*ewxR~UKu5B#24hMRnBXNDV+?EFK9XzuSXVR z{#AZbHT$~Zg3-EB zK~yvbAcSsS7DB6=9p>bGwta^efP+hlzv`PA_>mZ$9r1x1%Otxbr5v(YZW1G=IMte` zJ8HMiB2%!R)=V*H2uIEo`=ZEpu}#&;QduT03bt`hd)X5V^`+D3X8N`X-^dvV*nF9A z8n+wLW;8Qev0GyWvk>Z?mV%=uKzX^k%aY>Ah0;(3TLU*NX2-R$8mUHjtEjWSF|u9T zXgj26Gqg@}o_<%ad_nN{Z+AHfz4dGa3AKpyj>TRLt=ryHnRR`OGp4OA#(XL76W*B4 z=`|hI?yB9&`L#5qcmCdabh@>~JQQ`;M!T%ov6$+L-y0}*A^&uf*j+uiuUD7*W4Yfi zt`Y4aW6svmM3m4~piEL;MiH;ttw4scjQ2zlbdJ@2Jyb|%Pw(pZGZL9jpI5N5R1{4; zef{NE{{3E(Q-|?Wp|3e&SJ?03_v*1w`irXOZ7RMYg392_%O)~npMV&bev9NEoNnX< zv8Zba0shCcCRCfws0XMgAb?QZ1{5C+(eGQIBExaq#AuaZ6~!K3T^H z0Al^oo#(VAZfjYeZ5|BoYK(-sk3CugbXCU%(&W-3F1Bo$H7b&YH(+%>us$L|lGV zT08Y}HmCI1V`reo(1fg;nxD5`gCH~(F{*+TvU&REIM%$kTXr<jer~O*s-^Ml+?L5k}4_*u8_LE zElUc9t}MIYx+`X#P?fD3yzRuHR%f-BOSh|9=<&~0uXRk-eLC-A9!a5+N|JaZ#aIE} zFSHefDviPOdXp9lhu_a9X8yGq0+_Un{0Y=~u#SKQ{9m34E6CKY*f|FN-Xz(EpS)4% zwz_nRYPIfa3E6^;V5sN4H4Ha{@!c`vcOh*&5sZJn|A1=Ab9#x04Gc^DF0B#q@bu!%iXq@f2ZOqEc{rlul?Tw#9~ zy=tzqvbxuaIJ;m&jt7axWk<|O>~lN;``;=~M6V!g|LNKJ+p9K5x539TZvD$#?0Ly4 z(Wg9!Nf)A~B`LT~u0&N7G-Lv$cYLa3~0~b{Fx2<9}83uc}<9wMT z!@oCt&GMU()@xPx$<{T<)ZxQV7M^FalCsC)-vHC_YLhCmY-U({b9ea@Vd3PGXQEXV znH2poD;$mQz2jv4Pv@}v&v=llkHH_4tCw$|DA*&oop4ozJ`9qBUQg7!*-R~3H|wa+ zbG%g_@@fCPI%rx4gG5e=O%*$b9n-*gq4=%rZFO>TuFB#w^Tx2M;Ec_}eeDm%4C@D1_(5vuZN zsmUpm616cX5UVEm<)(2ov#9D;ewykLlu$fGY?g!@U0#M|N(sPoQOOP;Jn@G$%h93k zfKfyXCONaTER@{^Q+;&Q^t0`7e&vQk$#|?DqC7(=73bx?6zjRAyzHppJ-B}- zSpsJt?y?irDP$lN3-N(&#JMz-Mp#s`Jc_{r*pk=cK)wcqf=1z*S@OvW6>lf~^^kVt zx~}fU6S71Si6a!_z_NYc9sg+Utmi9#nY0pBUh*+70?cG|8Q1;_xn!`K?>Ofh!UN1A znq771`D0EYb<39U(@|z7cJ;9?^Z^FMwpzx&sD7L*HsSpjADdJ!T$_23^s9&jQ9YV>;D^0830@b zDeS4v|0bQq)5~YN2LyXc zjJ6(+*|V`WOn}2w7Hw#3QPLzr>E`3aYhi!T+Sa0|Rxgk&IK5F)=onoAcMe^FE^}q~ zj}OgwU9cKVQM>>_AeC?wvs=x8xmB#0N zs$Pel)~d+VW!fs!8A#irZ)$f3Yey?=Xr1lL{G1+ESlJ`OAzx*jk|5a=AoixQyVI2m z$SD(~#7X8sexu?(W1sWw7$e&S{qsii@4+2%&X%#**Y*6^^n$xQE(-5iw1WS`B6(JNcqV{ zCYKQha63NdO4Jj3|2eE3nexmfXQJ?7jLBfIvefQyC*HI&c=(;?g6*WLd0eU3@Hsq& zZ;b%j7q5YoOi4&9lE7qZ*sqF2yT&7g1-GWqo?lpD?~1-)4J;>qLgUKKq6h zel~LZ6OPe#fGL8u<@u&3x`xS~zAL(o)Z?;1nyud<^*<)IGu1JOybE^+YQ_}NX*1FTg%5W9tJ`-+JtAXA_?iKiG;9NMZ=DMfLD2KKww8Sw6h9osDAk6`QuI2NqCHN)x8mGme7&n-x`K z$-I6bywPVeDkUq04zSBk%&O`yFeG$o(Rz8xM+ColKzsQp%XuJ;PJBWecDxY~uDL+^ z>!<`AG}MJHhB$_4WswMr(L;~@?{e!23MedR`1iV(OjW(kE^3eg9ML}KMhNbW`!FVbK=E9+UM_*qU}wr?a1Qo*h`N#- z`eLr?QwCEb>VsuQM7mGGK3-6H#|=PRcPPUh*Vz!oXuAZ-!728n>15uC5gGB1jF(8q zL`P&Ro@GF8%FO{~SijPm3*r8YA%vO9HjJCu$9C4_JcvBINc^dri_E`1X79>&i43a! zN$pIjoL-~E!|vqaICeeBLq|iJU(3$&>`CYc5j*hlX8uqqP)^JNpIWI9WOKxPLwz;B zgb`5_PlzgR5Z~Yf1*Y*w5r1ckxT5#>ETNfnJtw=BXK@%`Xy#K+YYF2S2+z7+KGc~k zo$y6|>Fy^La5e>v2nTJi2%v!c?$$)&mTw45=DrS~rlPi?-s!8r znw04E?szhCtkssA!3Ul^#Xl81FdXVLf3lC^b@cU#5*4~(=mdU;5A&Su$$T3K+noiKyRmROFaRHJHjED@rTy1${ve*(S*PV^>J9++4we0}j7SOV`^D zfs?9Lmh46;exEQkGPp}J$HD$@g6@p>dXttrqh~IR?nXu#N${hTI0%4dI%v%3OcrGv zQCk{?x<$J;zN~~uRE}~x(S!txvKna=;qhp=;d%v#+}*|^9@NTQf|enhJAJ-BH47M) z3USPu8M)-=Q&zBCNsHduMV8MHcE2URFm)Tuwi)|77!(g8rD%_h<(;5Q`8tNHmbkHZ zKK@slPY|NXfx1^G`Yj7>%1fxMFB%7p)O$ zFRQR?wun8_PJL?riF3v3=xk3^ zvcTePG)D&vyAU67XwskW3DLV7LpC}Qfo<%#;pazfy*|aYa_n{$#q%~Q@Z~m%PyXTi z*f-N=%y)MXcx@X!=kYOVFx_iS6C`$2q9#iPjTg>yXV~YzIJRI|FGmw9D`a})g_18) zx16@qdxagP*S-yR8d3mG&!Jm{bF7WfXFZYTp0Qh$Bd_&mqZYQ=vqi>)-qV$h&pTDA zFi|Rgx0$RIzIQ&mq9MFjFdTsq{fj4@3!V-3HF#Tc>P!;t0FRk>o^-;iR*z zXd|N!+=tw5755MB_$9;HNKK^Y*LXSCP{?M;#a)FFZ#F^Z7Tm&q{(ssI9q)9e63*Bv za7WTt4{^~%XV*vB!Tm=0{Pb*sRx#@2?nqJAWzcEe+MxG;TS3#|A?Co+dgUnK8lBiIE zWqKs?kZ+V}4-jg99$)^@o8Y?M15g4zp6F&~Xj+AJ<_DA32Z6s|8^VgY7jXUf1EQS< zrC>A?kE05{yu^{+;pL&EBgdu=w#ME-o1rrqwZvt$D-qHvw8-f%JE`Q;q+)5d9Y1z7n|UBh7%MWfz8o zri)^=oh1)k5!i}V`#K8M?piekZF|$zl7f^51e&Xmi~Smb$QEw?-uwLoKw6!}7W4DB z#_t2^^^_6QNcHPKJCj(p=sfPl2^;RGqjh#6D>V$*_ANKbHg2!dM5hVwG&3Wl+Fh@1 z;D3Y`sl>{|1A9CGDPFr@Uoqny&HTE_&+kLW9nv|iYW@C+fjr9%50ddZ6K;E9reE_P z-HD-@!2T>IWK`+afXRc<@4~cxmVjURYJh+Y4%q@mTlNsEDCZZRhS#y{QCDk7;Hma?%=gFfg5h<1Srx0Z}I*f0#z9N4BwBnV`2&eNXWJ zD1sbS8EF@EWJh@(Q+NJW_&8yx5Uy*9=LAvIUM?#jV;FF(04m8mu0SwS#UD9=cyGNo z4TJE+#RZH-Su`GKVuh)p@OKS&#fcWNCWwsqmU7+FjTbi=^mJ{u(rF{~85!i9ew)l8 z%4)Dtl8Rv9eVYN7EJGt4@_87)W}f$dy#TE@Ff%JjHUdc)=R7^yC}-(5Z8i?ZN5 zIOu$=@cRRf7%$M|GboE)Zm3`u#zt!+v4czvh6Rr}xL>XO;Ex?Z{-4*VopzQD0dNZ0 zBYyfmkEVBbmPdFZ<5`TteMM$GY;+#$dZOR5>UzRPAAUn}B=0W` zV6uB&d7kdmI2p1lbUwWhnuu}m{ywj}LY&9e=3a{5W`AaWQoWklD0x$9*0o&G}AL`ECHPu9#mNUAUT)c9_P`L9fdn zmmu9a`ZgK_))e<6x0v&g<$1KepQqmjc&BRYwXJmxp!NSnRPw^(VQH5Klsa~ef8p&U z_{t>B43z0Y!I6C&hsD>uR$EGx$p)EB0wjUG{7m?jAi6i{g~2<}wee<4*BUjim zB;AQRy{Ie3?V;aj*OVFSfcKFqg#5@X=Zg|@R@L{00}PG~+TFhn^_h}WQf{5iDBI75 zkeD%J1=0fIU+xz<@pB7_?b8cht`J;DE>u}d278%*+I0do{>C>j(#6Qa6O&rQM^q9E zF=CV7L78v(#bI1~XFQX9k)J{6z^b#Xnv~KDlVy$QaKXeZGj)Zh5CtwXnx@yAsga9k z7saH&579{MgxduON1>MTCE_++KkEb65uGHvFUuZ3QJ&L01aeRR#-}cm-bo*-tI)N(l7gg&v)<$lw3=|jyBVU9bm7~zke~_vS6&WgWEmJqaaw2>mH}YYD!^f|_@xTo zq*Xj(*6S&Ul6O}3=H^pd#zv#s0-&fkngclj5Dcw?L>?wj}lVU}uM8#0nPTUU*&SdM>rU?lXsr)cXx zfXy?JZmkNADU&F9b?(Ry?XFjW>-F?bWhHs5`8(8Y-c{ zud6XQi>NM{HGCdo?o3|Bfe>!EOJ9s;G{9MY^@#QYFjms?`G!DXeaoCFQqePsWCa$C z#@VVcw({v)2C|4Ghdm#&DV%r>5+)JYqb}Euq2n$1rg_^eUajAM;c>=l8!O2cpp4*R z)}o%J-xZh7kgz7TM2g)i$SVM^5dl{0>h8UBND?*Mq8AfMK>3pPHA1NX%5!Hrd z?WpP5(|)h4%jUg2*%$8OdQ(&{zdf}hZF&r*@%jfUvj^|HQ(U`=p43ae=QDBMi!w40 zG+PLx$2oxK-V=c4XEhFWq#~NC&zip&wap9clZTdXZ_}1#(=AHS<-~X276HD@J#8~1 zrU#jX^9L%vwok0nHf(qjx)j-9g()Hso%so4f-bBJ*<475V}E>tNoF(*Ww5=$Fv#Z!jslckR(yovtY*<= zr$^8&EF|b*Hw!;%Un#QC_?9=~Tj%m+POrK_^46&BJgLSLP8TjQNM?C5PSMOFY|3wZ_haDDJ&L>L{3?7!qN`(#ddt7UYljS4Q#`%3RRq#KO08Ow z)hbxkLVSGbf7o-`HM&D5I@pz;4qy6+*2oQAjUbU(Kw{FjU!*xo^X1yF*nN!KHFXq* z!|smc3TKU`uwGdM^n0)O-2sjx9sGZ9uvnH1F&~Y5jXZNL#eP~846cK$>P$1F>!cm! zANxFe{Srw#--iCY)*mCA^a;$TP1mvGt4#s% z`#J3LPpyagBLG_eFwPRAsL^uPURJsj^0Au%$+xu1Zk|EKhEF#cy=>3VfU*2SIwd^R|g@H`{7MFrFLRC^A)*J#x zd8>nuZe}ZwdJodSy%n1cwhpyoDg_m9O#1kTR0(b;@U@Pbh)dh<%o`VyxL;Eyh$`{& zsADPR!V%cw(uTwQh_!H%Z(xEuLdLfVX=A$k0`?wO=nh)gMj>7o!TRoJ zBVaRG46|LeO-USpBhjS)^{Wiu@g5<~6@oe!i6^E|hK1LpMaR3C~O!$s4UdMrY+onm+0@mH8$2fv*P zU@2$QRJ5Y4Ll-gD<2-C#;4Vd(+Ds){_hvL~2F}jO@t^R0G;s>gMZY*YN`g4p{DRr$ zoyxVzj1;3ehqQ(_&r~n{uieQGl?tY@2?u>$Nyn=6;l**>c*?aJ4{TY^2MX4 zG!@U_YCVzUO}s3Yj2JR997y*jKvMrLaO;GG$Aef}&au3%=-M}>X8xJWk32)zqead-y zEQjiIA~ntYlw#*sHx~tWkykx={EOq|(giI^bY4ZtD70~MOJuOm80%qLLa9Tz1}J*H$j)gLj`hUWS24Qs*j zSH6U^;la)*)^n1a?{5#Z1tsp^+98_QDnUxeUd}3{>FfNvpu}}*jE&1Os%X4mm0d9c z&5nKk0ZC-!=mqvhGm8cucxy&v_gq>S0|^`zEv|yUD4f$`)xx;-Pm5l%OP?(GyH`8k z8-#wt2{{~I=V1_i9!6>_B9{6KY_DmzZ}HQ9|ACOyWjZ^Hzfic}uGm7^QT2OTy5?Ct)~_NkftRfp7y-Hm zTUOPrlxj*DUR3=Phe2)`=(k6gVS;#pk~<2vY0>9Rd}&*r z2BiWo{IV3}3ho4-h~4 zy36@6j3Azk8COQjvE+8{7m=)P6M`9V>i7(@7t8PTKnnGk(Eh0efossZputmPmkc`K z+8MBwo6&$HoB2yWx^_Q*k!fr-gg#!h*_ilak8ni7!<*MSxV-r=tdcZgV6@DWLP1v* z{yW&H=hNyc3ObbDS>?nH_2rCX%d6S`s3v*aTD-LQWf8?JI~?)1^fEl+&`FpFy^Vg; zq|@)dF6jN#t5VLfDCD`(sI&7sU3a?06> z^8Z(4L7x<9vcp5Pw%P?a#gS_&^t&;L{?v-(P9D9u{k$Lx>uj)_xnd>><)pE@8r1d| zj%JMk!8a9Eyp!g-|9EC@N1efV=zP;5Jd8}2Q<9kvuZK%bl>~cc@EXJ% z_1Odc1;@tFs|z?enu#}c%RAw^XbbQnON~X@yl#O71t-T7*DeWm|9zkc;1BrhXvq|B z0wb~NJi`sQ-1;E0P^_p&-j2R_1tmOUSHil`M0$AqTr%Qdi)K)_dFo=a)ifhen+|YxlE5yAWAP~7v<_3{H*}5%FXcNg~95#z_?_P zE&6h9-9qtm3_%-lJ&ChxF6ka`lxj?#j*jQ0h08Fm_ajtqdEik9V@_MaMm3iD)dml? zWg@FU<2^1Ys&20;@3s5V}E!ZW%Y8FgPOP;nZ5jzftIKJvLe~@RKWIvwZVecnVb6f=MMJ)fd%ztKMY=}8jNppgi zrSKE+^?5gYU}=;uGo9HPQT0PZb4z83s`0mFBB5DUPZ7=UH}uIns8DDO*P@T+F$+xn zL4L{+>HLL4_FP0l$OkU5noU`8)r#L29gk7kkdZAME$6AV9~H)M*@4=l#2p@Tc;-E= zV*Bc)g`Roi z#yYL%I)OuJ*8P1$Sg6GMm5vB?yg4F7;sKO98JgoJy2)k~gmX%zLi968v6!25kt*+A`1W(!))6|DwcYf8V*UT!w&+9({|ig~ zJTuv9yV?Q}cjE31UEE0aB@l%%Zy{D^vJiwK8+pCuo4MfyKGv^`orVE3<7deQkKB>^l};VEUt>R4emdC_@<8 z_F45AGJv14Gc5(o$Z0M}FSgxstIR|}ybdePcwuCg=YHAje%A%-F6Xs7jF~euxwCXa z71ufU-E#u2UMfwXr-y#In2jJSp)!{i&x16&MltSkspgzb#S!Zo86auSd5!krfbg39n<`7cUW;}0 zb9h(&*2e+FF<($L$|E=N0HWODZh{3k>Q6o=p`xQQXYAY5CX6Gzx0l)G;59aRnvL}< z>nQVQSd!_fI;%bSD84jwk`Sgvi&nh3Vheej;*Q&2vvnFmo#RtRFBF~&2C!RHM~a3a z(ABVD$Y&f@mE*Z}7rT-BGdPvDng6de<>{%WnjJPw7w4dLH2TeqY-Awv0hwHAj6J0t z58N;pEec|jBrPnVH=0AFmro5hTD#A#;j+||#YfGCNnVv8p)h2p{k{&Km$<%)9r7#N zbV{Lm1RW>2{+gvYZf|WEy5zzg2*3|K6Y_eqDa`n}>qNl6me$_2u-sipfo}Os+={R* z1%7oArW5(@J$@*n2ookud!jTgwYiqPK8&0-tAU&CH@%YHyRmT^w$t(a;ZgFu0{cRz z@Ves!yAgQ!qPdm42^(QKV6OLZab}mpXXdXGSvsh?36)0iy79QrE_;?2ZJk{I3PyO8 zJr*66M%%`Yn?isDj zD2vt*l;Qg#v4QHxWbQK;)KoG%MY_+3Q!d<=v*qE;|XiI*u#Xkr}^_m12@IeWF#3^gc*Qc2OqG z!Ib(Ru&X-A0Ul0^_WJwuw~KtMmplaH7XG^mLnUNj z7Urq)HDOGMqdlMEAQG7Sr(&@VwuE_cIwCSl~L;tDY&bOtETFqeq?)scgFf~x*P^++4-AXx5R8bD- z)_n_nSScSN*$7+Dn=GT#J;YVaj+3B_^mr8H51T^!;SXmasE01DI=?(Pb4?v_Od+7i zOS(%Uy2GDG&fa(qiAg`*K*;#yLpKTfCD#^FBE8E&;`hJJVF}=02Hsw|6gN(M6-*2z znsrkHl##lw*9X7fBUXS`Cp|kgd!i7pw+#c#mnB6M6E=h1>x)1bOc%ujqZL1!av_R5 zH54jS22iR&dIJK`?8&&wIgD^bMy}y%amEJjbEEs)5nRIZ#f1kMI8FG5 zP{c2m5eMIzl-I?p$tMH@B?s~%tuTxcS@=2i!v17=-Ji*Pf6ChwnhM4QYybbde7f>#HYStQW7#9Lyd9lLMhN$SgB!B?wv9%Gj3b7^6!u$vtd4y z6=_5sA!r6dh55(OCEj(Ofq`2$5#<;|;GxBiIGNX79#PX=(K0KPnb+Old-d~-8&SRl zOPxq~4pMvU)774zqB+S%y)9AG&!$(a&X=JiqeEg6sq58(KhT_RxNVEvXX|Ur59m&= zPCr}V?FKOQ*@K*k3chbEaT?PHF)1z6{ALY>8nTr{I3gN`QVMrb1ZO0USOSOpe=)=m zpE9ow3dN-hP0!>+2@%wrV%fHt1@zK=vn6>#_X;k~Uq)Fn)(S16x9GA*Ta3OV_tO>c zr_lI0sIcSD()9a+a@Ci3KW@+eGL4JybbyP!p*2*?YxLWH4 zRvjI@iaBU6C2zs{#gbk;PZ;&nA0Jrc+2?C;d%$udXQI63)32oEik|j#M9%P8a%+Z| z#fcp8GZfQAt zq`1=eyAlCXn>;u%eO|cZwZpw2r30L(WVQg_5ECh>@jH6&M2q3%{cP1R6B~4PXCdAk z?R`!wcoTnv#QhdY-p7T;{jrS!`VVV7TSYn>%8izBF9ouws~*&uW+BupgNW=6-{VRN zWocT9OjGQ4Z2up#-q2d>h91_u@KR|1>U~>;!Eq&j6Nq7R@hCtNLCT2QuhAynFJby( zMh@uo$?&geQPq#obD3@>SX7^4Q(H%^H|J}^bnF`wWju4Y#%;)BxW3bAQx&E@E)Ph& zA-2*1n27nOcBE2;&g}6LASTy~ByVEAJva9nwdnxi3!zu#!)k-oH znuqA~tQn$Zl+%tiRpgKdP8~9fCVXfCN4Kx{6?c}RLJZVH0v(y9Q?w-T4kh_s?*AteQB*ogm zSc%@55nZNS^Y_?Tym;iByUij@uDtdi(&&3PPzEw{sGtrXs<>$5ohkU%9^tVbWHa?Y zN49!#b&PobB}u2VCm4TQBSKmw7eclz8?2yJWzHUFW0L=Pcw}?wUlj4>Pz7XoByv;{ z`JF<+aAmW`^pzu_1`==KPMgJz+5Le$^Om^U^dA8(Ia=oeA73{WkxpzPnGafG{P-#X2&SR420so3 zn}%I;-mE;1RP3TZG6LPMO4AHQciZ~6dt^4Hg09#{ubG1HB#3v8Br-o0I>$8G&ax_i zr3Xd!U6ZaK`6v^95YEjiNF{3 z>u8W*p~ghu!9~dFr=v(sv}Q~4b+kW^%L>0gY(=Ok75}48+WCTYPmY&g#usEX^F88W zlI{`z7gQSjMf0_LTt4`Y1Thkx?)3wZ*CeZWTI@?&isfq0tyy9 zx9?m5(D`|7XG{74y^cOSKe2cc)mVZlfKJ<_)l<5X+=+j2JH0rx`Jm<)qR+=%C{V6P z(Y_<4*|cYKjPdM#joV(IldWEsZF-?qfZ}e0T9^C}iTjez#JDq~T(Zmbxz(*WTYm{YdVQ28;{bJooYbEEDPLeG` zibMLORsiPVklKRJ-lq*7lb|zxf^Sih)u>@iRfK%N~s$+3@od6Wn-C%8C8$=1=B6%__Uyk{q(+3#WpieNEW7k z8g9VB^RQ8z@f5dDp1*AJ)y%bb`CNQQ&4jh?vA;-=a?euj#BeKnxU$^G~kQw$p}d!t1}W<P3{ZTof5)w|Xrg2!_Hd5Y8wcuAin;%`GacV+9HoFJ3ov^rjv?HMzmx zhkVpAJrm6gRFJzhHb3fltHd*>TBcC7ss)MHY^q1>!#d)Y_Akh1A6|TnvNu^6U ze|Mh3VS`&cooUUh_D{OjtrioIl4-g`M#AIHdO5f2>3(*aqtU&*47sEJ`2>RCYus8; zdl2HLe2>DwJTy~lfN@NcZeb{~gb+#Px^(W(Qu4{1M?JwRp_KhlI+QpL+4 z=N)E)Po}9%9$rr4vc+nM9A^CoGW&p}nsoM@J-r<}U2bicmrv9|7Kjnu67RPvsoXm) zzo(T58SIXZs%RnDbb>KEgDW&y9;xjo1uPu*-|~)IFLq;$LjJiw>-hB@Bo&crB*1IA z3#O9%*pFY#cY;%}{QU%b^mEY&c}*XxhfMSw*p=bOYk`U@+--Kr zt?4<1{N~0xVB`9P4KXh^a1Lk5%2YP2`&m<94orCYIh8q44r3j;{;k6I=LFobGr=wo znU1T9)3Z_U_cP=e)w=MHgEU&4l3F-I?n zP50kd-+*xmf6A*220iN^q?j)D8lh`eSMXeOKUI)m5Nlq9C~(E zdC6AEZ`41EbX2LT1JcUrr5g9hC7LUIf%(5?3QAx)EXhkp4=$UuTt~x{O`hQ0E*o|v zXWjQzu?Wi1nhOv0KlV#b#`li@HJbgNvMkvAmc^kU>1Rnj&T@^M9u)g~)i=_m*!iTm z5O-<|UAp`8_tou}QHj;X+dq!R0G~x%qq}3d63DRUS3*)(t7KxK^+_|u$PoY>&pz&t zW;I6cCQAoc6KtO%UsU>~LDnIZ4gh-GL6bt>L5A zDX*|t)7$;xbaj*dlZclE$$|3~!m@YU1!0#5V6Y9#e)2Za`4Glhy0*iN{6#6$dnD&9 zG@A@{D@)djDQiJ*3n zC2ZHa#L?+|q?o2^yeZ`dr>xv_9Q&Qnzgjkrrg4)#Q0LAXD~44@6CmZXHQh1H-G5hKmbf-%Oc0O^H7_;?VQGipE4-Lk^8y zqgH09@9h6-6!}xU+nI-+)Fi``AW1K>BW=jEPV|Wc=o!*c9O#8K#DEoFa}SSo41=^n zlwB3K^p<1FI<`H^lCHSzFF4qT8K}naB^cLNoRFV8J;wt~jp6Uprcu{daqq8~>=^n- zw*Mk+#d{&dq6Ut<98jiNpS8{bT68I(#jl2yV?YXUX0Z~K4ri1bnFKwt$`{N`yCLiq)zlt643ab|04<-*mk~1kt zK|C3_^CC{|#SM5HU5Vr2v63cm2eMhgbc(@h?7+ON8q{(AP`x`&=9ddWwKtQn)_#5Z zW-m)bdoyH|%{hR|TdI1S!%=8}j|A`UzJhN^O<;7eQ{v)SZVJ}OL4Oe`yVZUosn&$( zfh^igzsz*z@iJcg^+!t^>cYZWp!?x9Byaq#b1yL3ks(n?6vOBx*`#`#!D{6nMTQ@O zixSn$!3sVO)X{#^Py=&f*ca`1MdbL-`s#DvF6A^nKOdRZ0Ci(9ULXQ$$(ovTuICE@ zF;@s9k*Qh9Yl(6H?YhoyW~oCg-0 zIlkQWPpDzv$pqm4*N1y0^Y@p?^BFHQ6lK+4oS#BOvono2d1d=c8y{ZIPI|$YdK<5# zp701_-w_tx`^hbH!(+qSZ)L1HaiAHu4aMzogcHJn_={+p`Iy;;u*CBQj?l1a@;6GSuC+@7SBJDe7R#e}owuRzwj^wo8N8=U5qC zk0Hf@m*g0SE@iUC{_-`{HZG%vYH!RJ3b3dY4fc`@KIPJK+anNm;2+f9`zV6;<(P{Q zwaba$x)(mBN$&`8^^Tg3Z#1UwfObZC)|I5;XS^f4wiUMLaPfBvY8HMH4j-cTMdKBG z(cVZ$B16}jWGjiF`hd3JZh`We*wnC1aj+JG?njG-a7;sm*cfW=!(!PXumu6@W=Usz z+A)-ha!Ho_fErf~OKw>xecZiPDZzjLAG+RwyUwU<)Nbr_$82mHjd!d@O&T`#PST*k zj&0kvt;TGO#%gTaXZLyE=Nsc2w)m(KR33R-pgYhkeT9kDtC){0XL|i>xe* zXwt}RIj)=}zU68wJjt!7t`jb6-e6Fnf38u`1aJlv5(ya?qUAnjjEh5mT;=#m#(qqr z042o`wZm#zka8)GZR$odJWwfXvG)`<;Ja2`dvrBZ=&j|cCIG2=Dr+G6 zxV!pD3=nJgsYpL~=BUJ$BMW7YYXV_s>F&1a)9;1b%=&4sZNHH5T^zyABD<9mE$#+QBLx?;r>qgJR&p&sdiHnNz-4BqGob5`; zf*@@_aH=rb77voAl$?c-J|2|tobn0@G*sXs>&MF0=qef*$6)|Js^oz~@H_Av|gi=i^e zoltG4+MX@!qpwm&1g$$hSDjv-dO??o@-{yNS53=tMV9{9lq@9-b(@7S z8d9;9Por=W-4o~t)s4+Fb}8OH^$eZROnMLCrMKlTSm}B3;0*jx(c#O!U6oE{BRsBx zO&c0O9gCgiKiWatZk$Ze;j!k8>vU(}%Ju8*cT&d+dqx1F{=Wb5H?(t2$&ejcMjhX$ z`xEoOn?%S(qhuaj!IO(lq?8!R@j#=0pgNeeU|71xpVUD0ou89g^FCp}RM4 z!OenX4HizXS?b_V7bY%8@(-K2yJ{caKVpBn2~9A|x1ZJ=*){_UU+#m7w9KYbc)~4o zTr)JYEP9QX%k^c1xZB;&qt8`q(Jc7+7xKDH`0{$0?gVx}N$YPbQBQ!7 zD)e{_OpVbGWq9cX-38O_DUQ(=&Y1%O{3;F`dio1gWS>8$2QVopDYbv%3t&xmC>_3b zg&5fSP>7YwFjkI@=kHRD#%N@?MEIswG_-(-_pMN46sDj2I-9mX81m~h9B?UBgv>`>3nccA z4F1SPh|V)rIHa0Tydf;i{{Npa)~NefPpx8BM(lT6>gEi*F{nj+T94I+y832}h~^}T`w&rtJV$c;mg@e5VALn zVbp9SMCpIvYP8q;O|P&+Oacbg<_s*3x{kZwOz%+9Do0txdQ{KyeBluE`!+*RUSrcO z4OO!lOKPkC=B=k1U8_5WJb(|A1}OiikBz_fCr}h34cDx;Y9Z0UokWsu&Uo3j-_Ofp zGKF4lAj(yFm?EZ8!VNLA{;oUF+#vmkncJCGFMDib7`vB?R(#(;WK98_qc%yn}qn)`(ZX5 z{q3)#bLo_V6bfaen2OOVVU{Pv%F6~i8YOT;E;1_SK^F6fYTREAnQr44^r@|zltvw! zENd?yBjUyGQ(6>&fI3D@%bA^`mgL};5?D81CNGGFeJCn8qVdm06Tq*;}K zCFFgNrN#9}H+Oo`mrZpjvLRI@M?GV1RX5hFnkO(YlxDE7YJHkJ0xS4SBoJLWpR}C^ zdt?l*@i)Z}53bsqU_6pRI9R*s%Sua|eD?)0fdz&hb0d7ZTC%WX7U{Hgt;XcoAD&(x z6>q0i4cwdUE!l-;j=6E?zjr!Z-%%a(8ZX!~jqoG=e3oCoGpo>$T3#Aijlb zRjI(?=XS8e^3u~yWs+(OvSGT-SHJ@vMKXLx}>o;qGjjlhf0c{kpM7CD^G{s)7S55>| zW-(`$i^Boxn2FW>_+@wzu0sA7qz={ml-T10Yyx0rR|7~TXSU29S}=v-^~owC#u4mQ zl>KbSnEy^npcs@lw3vR{1Q22`3G>xJZG4Dt|B`-Bz%9rTg>I6>w%^dO57exK9UcN< zVBs?xm0K!odrOX(P&q{?z#KuVn0e>sgrKx7Hp)j(gDpEAeFWAZVf^G0c2LdrkFTmf zl}EOG5_|uC3>yuta147obeo{5=63msz^xQ?4(b1Zux>aSplVO=s9v7eVY7}cq`ETn z5c#`MR0v)6T1x&*t>5w%Uy^mq?p_!kY+=fA3a$I5WKGj9INVjKP)#715A7PB|a{KvaP`Q!(mpMUIV= z50@30E2w2N2F;mh1Zy-Bp;$&=ph0^orzf(Jmuog>uYXk*YCXFw^2R> z(E(y35}#E~aq%rBpxQ>N=BWH{vVzKUXsfuV>+-x17A+(ov4@`At;3n`2}Kg=OAiS?+(eSI>Z z8rdfd6Op=xnl^}3QH&&$xKL`cHJ17S^^2QFZ*JJv*a+kNm^wLMd0R|jh;+{Bu-ow# zVRG&(x5=OJaKT7ZLiVercGLG|p%q&PY77tDcvmr3#S3paQDo|Lw@H8t8Y!ol;T^>c z{xK}_f~5FI+PPwYG=X1gDSMUCB=uQo@U`r`kWrnqjHVA|_GcmCh}*)fzXVI)J$KsI z78zSUwVs7(TrF}C0EW+2=a>8Ol(O~Q_quK1Q9PA?GMl@;Ma4!Y85BDs$`9JoOkwzd z+M$yun=hGde#PjeDUOlDhEb!~_#H$lXaegJ4Mk=KKHYGKF=xBP8STgyWWuw!H)2a{M+MK`^O0q@}XVQY*Pkn5J;Un4ui6 zWPkQrSSJ8pAjvh?z#n7>x)PKp)FI7PDT^RuZqWdLtfF0E)lJ|qQ~R}9Mc^t(*!bzm zr~XHNOY|;11iQ=b_7bugjq{EcAKZp&d2Og`aW;`c9ps%c(=ROQLRXai1F_$foZX8* z(lSE2Gax;}k1r3?2yXyeSSzv=&46(E=HcXYrFf}*rLWaX2tXm!)}3k}!o)75OJaYs z#bCmQ1EXR)D_aU;pAYy!H^?6y%--3TKKCK{h$~{3<5PYyE9s8t%~Az>fWlb|U+r$8 zTKc7Oxxaz0CEbH=H@5A?X8ecvIt&em@`z7E3ot>!*?%qZ(xZ|-%DT?uBMhSJVs?hhw$`&sPa9X$;hXc9R>e`6>X5Fq3m^;jJ>sM<;aG|RoY^(*1 zmZ=DDvg`a=)nQelYO`9@;nwG23)xH&r3yHdYFy;g6tiC%#Jl95uFQacyh;a_;ONQ( zlYexi(QjcWn=q-SuQSQXO8uhN>tZt1h5U&$WUiazq z8wc>NR$!VAs@5^H=+CJX0nG6>o>L`l;8?wI2l$Bn>r-}gg9n=inDKbn=pj+M7bbu* ze&PsD3!+oDbD`YFWd(2{Vz=xe`puri_y8qG-k3%{9qZQFZVK7O*SOyzzrBdQH+wsBv47C293 zFK3dHJVgzV(mp#Sa1ONh954=x*GF^C|z6gIkArxln zE*sA&{+cSoQ%agPn1;>U^r=o+Xs+4@jyhbKAQfyBH^A1HaPZZ4I7EbkN~@hpoeAn{ zA4Fg+r}-N(No){CaS&_N+#Vi(n@I&V#KeX{RZM-JqTJ|*!A9;L2W44nth#QPE4DOR zlN|i;@I}ab>`#I$=HRkl0JIl+w+Z;*CX}cJ(lt%qfUUZ}+@ZgN%xxipQnrwM7(oZH z5z6gXJRo)dXADGw^iBtWzYr>M#4%O2^AhPCw$QHUew0m39@xnR<7 zfj@L=?MF{bOWk!}Qtyq_Ak1F(W0&lCxfftcRy_V!Uu)Ncd8hK)1XJ)L4U{E!67yLI z=;e_4L4$r7-&c3gnU-MOPSNE;xclM&tXL31_zg@Y66mqzNZCiREI54p2fNT_Z<9@1 z*?MCQMyK|Ty-O#OpSQ$L?c?{^L0;*PIX=vC0>tbeg#>^8ErW1N4pMuIrCO0WZBf=+ z?P7}aXsakRDg|!$M)4^+y*?=czUdB(4Qn0sIRuZLIj_^rVBOLu$7(w(x1-IgArQe) zVMgF@GDD~4B}p@(=tZHxi&naSm4xJ^{Ys9-5iC35=vk2CT^{o*_9FI^%Q zG5K!l*sY(@`pNOdBz9W@qX**A7oED1+#x9J^hT!{{OzXaEKFw6S)NX_BvCEPH-9hP zj-Yzsc@p%s93Dib^s4*v!qhTEIi6BxOWes4V_5cn8N5pA9JmT3zcMTq)gq^^uoq8v zPG@q@H>M3bE7=WoEY=%SCS$Dg>JHvJ{Gsz4-0E59+90?;DoHH*!ZDMBCI#sx=ha!O zt6{qJApyu2kYr_*naX<>wdhixVMhyZ8O4^-*bX?LO}J}5doN%q2q}?6@)3hx5IbG< z_xUp61+&;@3Cnb7F_lv`)2G1e2m^E^eRY9of_I2wYUnU8YkjZ%sdo@>BciEvLaee_ z4RQdcKpmu$%KPQeh|Hr!wv$F^ONcO_kOxK!g9qrloI&lQ)|;h1=a z4b?1xSC|8b)kVUx@V{zt)ra&Q?8cTNn@AynA#$BCFQ)D6H~F~J<-16B9URb8JSruD zTujLo#e(VUYR_>5Nq$^$Qs$V7)zGl1eWJ1!+_BrlJdtw>DRw3N6haJjYvsQ>7uUR> z4vyIYVXEYdm#OmYDBHll+0*!X#JCh3Wv@* z_s@5rk}Dej{Dy^swjFu4iKba-pHpiH7yUhZ)PpCu3u)}=g0P+5S5(8bF-lxvicAP3 zi|4S1Ou2ILo#jNK(6uJm@Zhd~yBMI-Oi393S$s4v0nt^udVegmuDdn%h@`v|ho@vf zow;brIBaU&u}l~p1IVpJt~T`1aJT`(`lVX)j=Xbj9=fNY03q2~TfxC|-UEcr3x~FB ziyVU_)=Q$AI_-towASs4<^s3yBe5E=H59F;#O_=m5EXqTN^4g67ZNtM7t*seS$S5| zSrpFAE}G54!)~~KG`ud2b_FWUp-FO4gnF4nys06$!f8VW7x}K75c=`LR>~c_P5_z+ z52Ylw8J#7dOd$~#m!DE14?8(w6UcEGWh)Ad+fHL6Prv9qua{)9Mge+GhvtZhP9s1e z&lVr^r~mYHx<3*NraoNy^_^Yd^)9NTT`D?5<2$-iz=`6wB$Ew7efDW4_z{;zDKj5Ol>DOQYwhU8>eM14A4PXYk_p4kk z;E41PG>{HLh~3bI|WZoo7cO%siwdYb-ItRV(sLbeOH8 zk0)Dbi2gyG@M#Od0epjj2X(20sp~yC4lSI$yRk0TkNLACBJy<72|4>v0pRr>R> zm6MBSUV_HPe_Mx%G9*J3kmQR#f15W9+)1WUx(uB+#N%7kw2EB|SncbV5BkEqZn`7) z5vfq6g1-`pIzW{!fXa5AE{nzl#7wzTHEL`KGJl~kT7Ghm&VhujMjw)6d=~kW0#%Ip zWdCPbv8U@`-vYf)o#*#`lHARsjeT3jRVtx>@1^%f^50x&5)!DOFI%P4$rG~9`-$@W~IO7faI_}rqsii@is|r9H&4=2V>528EmZ#Xm*OOu8kpGeucaS`)qR^Vm%#v` z7maO<(%fyXI=#tv@X?b~RNi1pbKMK!x~g62mF}^cf+fZk`#hw)(s*(pQs`?Yy4=*U zF$aFWy*A!KoNh`e=%f|ro5VStyty%)@M{s9;2;nS5rAawyU&#O~?Ur^E^! zcgP5=qwK!h#??#aW33z&?>WnJ_yemdNxSxAZZh0Wmy6^IxvkO3NQy zp@Paro7dkTZd%YfidvSV^US@Bd5)KQrLQ%m`CFKU7TQM-2oMAu=g?SbMDB1e?(7CD zv*Hbx_)`67DE=v6hSGQB6xDF5x!a0aNV?F+t*`yCD9EB10hn~TdLe&RG5{*C9Jfx? zRIaee6lq5C?E1n2zS2g~GHmhVF(l-Ao(0!`(FHe`y_PZPagg35BZv5Udpz4;zl3fD zgw(n_K=bl6|3%-Jg7=bSR<;dTGEPgt?Y%MZ#gh6Woav|*f`}yL1f(d4Z~r3>sgj6^ zwF!0+>~xcYu@sLm=pYs z;H&iJ5rWHu&q^lYRSOQvg28KAUpmBQ$RT)P#aZ?g1e2){ttf{FF~6VFvi#_|5?mnd zBGG`|a(h4o3*$^K3E!c6s^m0_z6@IQS2Cc-R)ILlsC%&jI|`WkAMH{ch7+jL;@kXr z+P`2N_UsKZ3xh&@#vnSbzz;l}6fB7`#m7N~t8Cm@YHvX<8H2{PNM1Scc!{T#835jF zQ&uRCOS1I^;jMVZ067|(eso-x_-N4|GoO6`K+7s$t2Xl{gO;XHEP5A1LKOO-kb=Le z6g+XSQe+z2Lu`(t1a%3DFZD=Bo0ygiIsp+jSuBi^ALc&keAJP?d>?)@;Sf$rnN_E<*F-WdzF9%-m($1XY^E)`?70*pv`z^3{!Ds&pHx8c6;oFbeWC zh?IYpkcRX(OZLS&s|Pk0Xwr$y60<*L^V>|NG*Ya##OuKKW~6YDK~n_C*KnQv!tbw7 z1avW>svHt9nQ&&;*raubkszFFnNuyD4myPXr98f{uswGwY@gE|VRC{m ze9Hd|CD*}1;JZ9$suvrlu3{J9*AMur^cFo$rc#}x@v0}8iN8rUSy^5}^d<$*h>hkg z>+Z-3j+{Kig@>PnI(H`ibTd8hr(5Mjt$PNUt4<{F&`KzNOZ&K_RsQqv48?l=^JGsr zceieOwXkAC6_>tenuYZ)+h^pV%3l02LNeSi&dGRvQ*jQ{l+y;sjx?Cnl^*l*u47Fli zmFzM(4H#P-ix{wL-whj-W)A_jkYoronyx9_%$J;QB$W{>p8-=wlr_~5h5A<6(?ULJ zJu*!DEQr@4FegDnlLPK90wYowo^$$#{a^50J{`@;6C&%k&_FKt1E~-LFB~>S^0t0m z8BwZ!mKITLp$;IGfxq5Ep8iDot(5fTyLSah`ww6?M)8&@OqyLgbJ76@G|vlw!`(@6 zqa8?t++V}8*Eg{+IWD{IWNuJ$8Rxv%7jA&r^@Wn-R$BV0Jn7T6Kk&!5|5~;7DMUhg zQnxcY#%Y6!vI6;N=F;eG#i%8M-ja{qPMLpM)_}&TD>JtTlj51BM~l>1j{VyT&yR9h zkMo|WOi1t=3bd?!J8YY^C%-zWICb2JP^Pi+e83sJn9vX<`@@wiq1q$ySyrybBkTP` zH6O=e=-4C^k6~)bC3C+pCL$Uk=l9K=_Ffey5w@!^NjdhJFCwxg; zy_odzzxJpVflm>h&In!Kd~C3UCvm~>gp9I4#Ynx*7VC3)SGDee`zEG!S2TNx8s^?O z?dUMzumUp*x%tD>CqjcQ)POnQvQAP+kc;{{2cxI2F^~EZ153UI%<*Ytfl*O;lPqE` z=hsmp{QcRa_Ky&Jo`vDzp}>M|SSBhb91zknzXi4kZMOFI6xI@Yl6wfli(WVlYOCoO z)8x^`AEmw$^cM$$(|9geOrUNFDu&#ZU1|^N^OCn}?}U>OiijCw@GB%Ddh~o5p}uS1 z9`%pEZhScSa0PPES<()DjU!~6%yC|Ybw-aUCmbF#^&8+PQ7ba5$y-dutc}kon9|Me zxN{l+-W{Pnxs^)ZhFv@*iWgCZM=`zcoeO^M)I)5ENvz2(RM=v;$o9j5{YrWi0MLU9 z^}!Yk+tDCTFan%xKPI5~e!#0c!rh?hJMDgDPZYYnArSDKrqJ;iXM!|UR+Lc|^Q}4X zTJhD_>b}4NrD-n|eU>6CtvvR2qF$SN@j^M9D<;IWRga;JJ;7#NO^#{JitGk(qr{Ov zyR4jPIy(QTwoS38XMWBcZqr7TP8?Tg&amd`UoE4aCNG$u-SDUc6OKz;muMGlrxgF5 z9P{qTLRnxVciPq%PfKkSCYXOZQd>obKy*@dMIkvCtW1J6hJRjhH*V3KllETD4r|nw z0@!itM!w2J$It-gzZ)NtpmvtH8tNJ`pQ*VGG)l?1yQgJT@Q2`KUi{@39af=x@;SaR znu_7}l6zW;!2M*GW#RtQ&mImc%e*Y z^4IixmA4oJEI%rS9xMi$(3l1=CMl*gR@O5N)xRh`sN_ajRD3vVEy5SS@$V%;Gd2Z^ zBn8Z^Q;}UHIw^nT&e-4=<3>z{4bl!i%M6x+InDA~_1M8D&`3?ekfxcA^(q@~NZBAK z;fheW7P~9cLkjL6p!O}`QZ{;NRlH(Lz0m;Kf@>I~(8ekla(Uo@RQe|f3vH^^9}pNI z!^$@a6wOe);vKg-;jvz3@=ff8JBLegoM-8HcI!`kjGKEbU8!v0ot|JP6`Bs_{>(so zckg!6EVrQ!ZcXStW0IiHY=vflwh|%-3rjZ_C7XU|#hXvJGqt9^a{y=hp9pIFoEK=e zQpWi^zipr!u>f97sB9^Sm9Xm_&f=93SXiqy;AKZJXm0P(t+S zMl)Um7`Bj#jXd3zS1f8_4IVC*nOwZ}WaJ?s{P;1hy>)cFSXezVHlbNMKfyWQ-MT&; zk8O7^zxb?VN4q(VjZ`hl>KY_(_1nb<2tc578M zKhY2YH7fVRnB6CX=GO`1E9nb1^%9%MAXYO+o+b2n%aj?xG|3R`Kx_alK|n1Pd4F9?&>CW{xQ@tkOnAYBGB6Qf>%hEzC7;zbfgq}4g}FQK zIO69H zM!ASR0mr^Yg>FBw>G$VAA@lr!3d65+R))nyPSsfGP%4cnyy%m-oS+n7 z&a;}>g4;6J@*gmlaK=rL+-wPO+~R`I-a3Afx?tFKK1%tJ<641|vqc7)H)*JAF>z&! z?~e^RTL}230Fwv=Lo(>N9Ehq&DCBEuFWub(hh@XN=$JDXRU2m%MqnD#rAH zAJ$^X&`zH_c|?}$3pHd!bplfou#2YD3j(riUEX6iHx)IRO`MG2BC`*N-P{4?ZGGGJ0{Ke|vLl0qh~OZ;&mGQITushv?xHzff94n~)Slx{F}_wWipih3zRW6mM;4klnYMK-pZqY% zMebDcrgl(lrXdt*OYdHCQ0Q7AH2rxjXW$<)9?Z)Q?^53wyh>C#O`3{`i#{!|Pph@Nbjv%Z0(9wr2uj#uZ>2;W;DLj#B<9snGxEI`nZvkXs18 zmgDzFo53%YyAAIhn!GB*Q^u1^z)27g9C>=BX5B8_9o*3oFw`?xMwK(MIUbZJ7qT#9 zlc_dZcWO=EQCuwW+H=ULuPWK+_uY6JHxcl^*?WkzBLi1NN&}v|Z1D23j-1sA|5Bbv}Id(5Lk$}Ip7_P3)yojifn}DE=zUdh z=kZ)D@>JgS1s9U!Epwn+;h9anrISkWtbC3!`L#^T@-KsfcZ!T+CyRmcDyEAF*8cEq zKFF5*NsDhcxSa$Y+eMU_Kwc1+zDtJ%FrdocYlCPQgm56L9Czj{%j- zR-x_2oRY0fsU$li}S*ejTJ5)y4yVfjg)`}IeL5dxt# znmnS?-wfhf=W`kF0Cu8d1(f_fON@!M#F84I&lp+)vQYqpWKK>cQUE8xL05=rgzWo4 z5&8KR;xpHdP7E1Ou_k|S1cTSADn~kQQ*ZrjG3o$9>nJ<|Wo6bT?^JV6Q zO+0+KKzhvxRatorHTL7TVC~5_eaoDt7q)|I5!04FsSy#C2^YdCYW)T2vA1Nle$U8( z^7kbha_XiMg&nnd{m?p-U8SB!md4ap7N8p$14VpOV#4nGS@D}< zd-6EwmGvhsQjgfH&EXE~K@p-i!GtH7MUnDx;`B zqmbRMWCOmFt>Tf-R|6=Df&huFOtS1kZ4hF;VHi?RB|}Augiw*04gxq+1?Ve@w9Iafq(;$mRJJLO$r19cRdgI$?Tl z{qB=B(xImT`J>>y=J~E$&}P0{L)Bc}57npAHr_%ZyuZt}$HG%Hu;~p;cZ}b>bT*H4 zLMMltoDLl~uo4rhXA#3e8>p%83=`FXWu%PlH{K2O!5KdM&A*@KzZLXQ5|J-Mj|*Pn z)P_K@Gxc0Dityg9zKb!bEc%#+qM$26?M;WLa5#|v2^6v%<;e*R`PYkdS)_3Uw2U;! zw$eGL{_FV}JSf^-7#k5DfTYKNA_!wNvGI{U1Ym?`Tpr`oGWBO$=+o~a@|z2bqJpg2 z$lzi(M1!T{4~57Qmdp0MANW(W9QYM>wV`2mvN>h=Ve-NeA{p1m`9%DKyxV} z8-Mbs0RMGt%$Iz}|Ht_2{_p14E?~@aNzSLGTTYtCSEBs+y2)gBLns(A$l^k2%h!jY zj@k1~zndj2tjjo`Vzs#7Ez!F`vzI;n<_%Fx=BbR4cKoeU_tEA3iWb!n9{U_K`IZtn z?LLKBqA-k_@jZid^!uyyWM9aB*A{N!h;oL95!D=40|k$|loJj@LCgyMgi863&BP?Y z3?p<~B^|mffL}-i>%!Fb({p9@M6~VXcr_FZ00`}%Vn85HNJj=2OP>r3C@|>}71C11 zr0-Xx2cnCBUl8Tj{0($8ITkf_(o!%jVr*iO=~ZWukt7asx17mIeB)@e6y7ppnz@U?-?18uT9#0{pxO-m^z2P5?{m&zoH@ zulMU8><^QFk7_0x^O$rhFeX=cB>NPedyY3$>t1ywv%KOW_;{<%MF3Tza_)C)mZF5; zbe=M@mX}f#Rkg-M>fDwcDB1)Wxrk+DE;SB_ygM9ryI$s8yiIWJ^;Oa16Cl_fXk8px zkT_6pF}bL~fPS9Hd)kPadCZ9QCXPb-dut0iD8&#D`m^b}?f#ta`)7_^(w-pEP;zK! z+^uCYOrRI_Npgd%B?gB~G&>&o%TGe!Q{-tzs<81>faUb8F;js$_uIjs>Wgkf;JO&M zZ3EL7(bsLcXj$XL{LhIoV&Lu_FK(A&)ScczkRymlz*oZ_U*z3N9h_x#4Y`{Bj;~}i z$`L3*+O=_tZf#xri_+$NUbHf<^6{ymjI++<#_`pYWE4g4siVxefJGgY}FB|mNyz*Wzvv$JwmDLVKBi?T>bNii-XyK8> z6`p!mmK<2;Z#UMH)o=5Y-UX#>@~RaP`j5A~>koG$i6U=zq?K>zn?K8$wX}}8v>X@Z zn~|bB(znqhgfvuDL&x%fq1cP#)YGO%%U@CBXXDS%twMc5QUK>5SPbBqtq=f003ldy zauVW17R!BI+J!t6?DuO9ma9U1lgA}mgr>R7DDOzprN1cGK#=V-t3FkKnE%2N8co^m zkWB`^0L>81w6f=wj2xuHy{1dX3=~!Z?+{xZ5v){})qN3@FJF8dDLNG!Q&Bp#IP{j{ z(g%Im$%bsCR8$#Q|JAAu-~2S{>Mg}z?u2^UU>lGnJg4}}w)H}ZbncfE$?*n9t*;Y0 zT>oc}Pm0+8vqV*)K6TJo#7{zVPl7(Kh!N5E4f&1dx|Ud|O`?QL7bydF%i88)Gc8K_ zd3|5WX0h^p(79K*#HzN(TQHzDU{=-Z$;Hm6K|6KM?uGI^)9Cr|Tc_OO%zf6o8Z^OD zr*z>=n@M4Fzx(-8P8}xW@W*dm%{NM3h$`ov#l>@E`7`vEG>%C^KUdyY@2UM_(6;y5 zlH|0o#P9bZBg1#+>gMCu#JNbo}Y39s@+-x@+ zybAnYo20TA{k7cA_fzWJq#TTWRx6wXFuj((3cs3dfcrJKUCKfy~rO&s=vOM5k)GfqP4nnxiP1M1^BD4kPKN#D2_`xM9zj+S}5T(y)>4kdO}pF;)}Ymmbog`BsGCi zP7FWcapb}>sIm5sNOF?8#k7)nqzf z&=89EyD^%{v|*l}7)fVvr`zr1+vB-c&_fNO%i-IuI-s-mN~G5NOsN+3VuLb6(43NG zVU!^7yh`_XO#q_IqmM00$x6xHeD^vu22rHhY+?aoNzSG1?eAIeS^ zDORzOb-I<2@9VGbgS8?EiM6|W#K}_-O2(x~XJ5@N!-j%*f+3yz*<7{co{s(-3?)UA z-TUTf$zOLu@i*Uqxs6w~1yRTK=e=a_yJ~%%$orkAfw!0+qFLT=b|&C8tHv+$*cAIU z&28K{zX|@63F@#6OM^VE8zFxN{#?Q^JX!y8lmC4u=3vDQfdUYi{`$+o=de{-G_Q}_ za0G*bywSw`BRLd%Q(mx@>c?5hkB%C9&wpka3k;c3!vHvidSPs~72oJu7z@@gsY#+HKP$cp30km41v zR=ZqIhz=^)HR@X~KXto`INaXz@${ggLssuL(ZMtQq{)lW*}gs74I0^7unNIc=WC?h zi{Fr)Q3hTuI_id4#N%fvxAJ#%%ub|KZ|I20NE6W0(nz8=bdv~0Jfr5-slLZ4p1%0s z7hLqNhf>_dZ}dZ;_x@69`E2PAY9=tF3vS+*?hmfZ`qxD}-q4}L@B*E|zMmvGu8E7y zD1LF6Kn{dxg#(rX>Gtzwc~?817jCV0+P^1w&*E1d_thDvbysKypa$*2dM9fr{!oSBMAPpi5g?R4nL)ziygnnv z@&|Mm#pH_qS>cjmx&yt}Z&XYEjgS(MsCu?JOxNBJ=r^&YnW9BfKR;>EhYH=L1*_8d z7r!w>CD}WXd(Tj^n@~<*VTF_o6Opa`b8oZgDc-dVYt+)BX81eq4D^wt{buZfvjUyz z5RiH6*r66KL^_#*yu(l2$&c!K=%6au>)KlXdHMZ`1~a9%#bH-pWU{5fi5vcN9C=St z0sP%&3K-uvlp&CIawhxAmQ1wZ1qkv_S4rfoJZ*PFz@>A|hQpzO|cbRM^wkUu7DV&90+z^(ejBM&b zLiRAcpAp_WbCb{WweD)Iuhv6~P3?HsBJ(o>iX!tL6UU@wRdsY<6=fbnoyW($bNI3?R~rd%kXhu^*7%gbI0WiW$Ed^-@GcO z8~F_upwdYki`L7=<8eM$4V-z0ZtoB?;C^}*8MvD*Ebr>cm(rTaGsHfpaEQ29AMf+P zYwXn+j%B9ojuCuF|29 z)=x9zHM3fwTxeUjq+=`+I}>R4VW+70(?n?IX(V<=H0 zBca38Q@C2)<=;O{_{J8940?OO!cTNPVmP1YW$-F7Bfn$80mCSgmsCu#mkOvx$Z-#- zMe@lv*h({;=p)X4^YmMd6-^!3Wk}}>O=^^zw0*$h++IKa#;F--DZvBJxje&zH1|bP z>?6sp|C%P=z5X9u3s*$WP3HOnyde;%WWf8{&bKJM^d6b~7ovO`{Yn@se0?9Zt&FjH zEG*n2Y-`K#3x3DbOc(kinCBKDuEvwLA6PvK`vq%%^c1*OXJXM^@qYf-2Z^fx^FWrL zVa6?UKRPxg0OA%WBA}>K!8_9kl62mwlwX(Fp?T#~7B*p?PDk?YUu~y*mEw4Zp*X(I zp&L;~eK(~U0?EJO@o|}9b#L_QJQ^!s5>K=|4J@aerUO382i$7-3pJ);ip+!zczCUtOw{+X0)Hb#Tz&x> zn1>V|dX`}aay|*#;hjsp>Mo?|ge%%#qa|8YDVX%R*dSRCXZXPL*O&dS2Zpzfu!b`j zj;PJj4|g#r=HY=O*tMa$WhuMf)H|dp!F?QrVfwR;S;N-pN6~Z6lWwRN-3c z&7Es@l=yu8$?x=(3CQ0OCESNj(1>xyBzjmlz{uvlp+^@Pr`eBa#NEjTM>OlK@5nZ9 zO3D%^SnYKr^_4sM!(F+GFGI|KzAEC}vdgTjKdzz9615~`z!oQXh(-Vz^H4G6<4PfO zb__R%lzk)~9e?}Hh{~q%Fk$2;@s&a!>)~D+}oO+hAnEYJYq;NL^$z%JG z)Lu8TM@QM`5nZNbde~*4=9Q0vC<>7k-&btn29u@s*9~bI58I|QZ`@YJut|@yY~e2# zm79e>Uk=(6{F)I**diNMhYcx)KqP@l9$dVPSH`V&-CAZSk)pV=UG5 zcG~VTyTM%W_6iDgKG$bM3Yznc_|0@4an`UJ*@^J-`|~I^9$0?9Vb}!?J|Hb?XVnip z$Zdq_yf#+9ZFye>9kkz3Y|QL;KF{)I>5qr92^pmuH<^{^hKkcFpqE2b&|iFVm?{W3 zjza-?ZCtTh*qDAf9ssw0bKC~14YnHk(_Z6yiE$IFRk(NT@!Fonq1&D(e5ug%3#aC_ z#VP*9*5JDJNGZ%J01vED^@1?5W$;7uY26XOn=G&Ljb4)v$D7+|lvLB8+RgV#e5VCF zsR~b6Xxo7H-x^H2tWoa1_yl0vnGHad7`e(oQ^VZ2o@)gWV6waz7NuRpX_x|&=2BqT zKw+Nxxpd_{j)ZJ`Y>|s&F#|L{2mCq;Ke#4HYd!hDG)69w)Q+?3)X({R;a0XB=M3&p zUt~CXwtzt_CCZU3`CXkbha4{ykm57&idPCZQ`noFq5L?8nh^cj%>Nw{V3gpN2;?w) z`h5`QTJg%l^1F>V1X^{uAcVa|{D;_QIx4U8^y%FEZS(Ut2HbJ&N1VGk&A4qn;`MC~ z9o7HS+jWMs`TuKT$EZ!wR*aAef*4g)5KZj8RqU;HtF789c4Ebjt@eshv?z+ktl4U- zYPHotTXb=vzu*6y^Zs1d$@4C+p6m16-}}Bl)*}HpZ z82v`SxX&DqLgNpvh||^^t|0gUEnB&K4G#OpsJ&}jSKcP|q#yY~I8U%V#z{xM3)nkR z=|c30wj7yyc4#+k-m`ZN?!I3g|1BGla2Q*P$MW(FvWPEty#O+eL z)T86g>yP#plppS$vH9^-CF=L)^{DUluM-A4EnQ5FavUz&3hq}eXrhbfG$~2yXg|bX zGfUy`m}2iF5`jkFmd-_{oILcBo(bf(dKiwieRd&|e1P=*EE^ulpqd?VzG%8vxY{QW zZVxd|M-7DK!1>q$q&~j(w3a}QdXEc#Vbn-lQuAlTfe&Ej=DOl6+l}_ zLgI0(8<{|FD2d9%!DXPqLV(aPh75CArOgw3Y%YHZO%+#I$u2TD65y@pjZg;p-)>cA zHY=CVVk8|3$7OyKW?Z6G=sNnGG7lIz`%~@StEbh3pp&4~6{2&{uh@l6rz7P zuzLLBc48^bj-x+&6&$yPFNfRUp?*Wit)^q^r(BvQ#Mk&o?iC@yu7!PxUxvGYNHc)xn9Tmm$jHRT}DJ^Di<` z2N-8d-Y!`q<}vi-=eiByt9}&}z!WSUxdd$SCY4lAzl>!+EpDm|FK%jbXU>6XWSlU7ua`rKMeHCx>1LsPIzZsukAkvXMg%w+6_0iEe9DL6^2ErzkPCHe( zr!v!rCiwQD?=n2e2P58;hiJ&qYx%P%qLjL@gt5lp5ewp#HJyVQB@cLh&PKS6u6~C6 zd=wfiVq+Ik;q$plv8N@`!o(q+38z^TpDkc|RJ#%(**T#rKf$aQOPNJ4A9b#KXxP6S%MoXdvTn2Y<; zBDyQO938=OscbMpT-nVEnA)6+0~EFIz#0c}S49sWyA@hg1=EOo`k=P#5(YWV+cXOY z^|B50#@7o(T)x;M*3~%5y+Y5(GosJL1{%T=WCNVCdA&+*&p$xdItF5H1(8Q}?SCtG z@$&Dwcxg#h3I~8-HmO#@=?XRjX-nQ%MzE;Z$~W5jF=rii-v~wJX9G%a{`gduVGVd& zt>qmnX;WlhXx@r7_A@lZNnKTjGFFRk=2y>n66tkz2Uo}V4SvCDW4_{n)jw&gGXk^( zMj*=n3<-DWA*8Q)EYVi;okW`25ua4uQmfg|r*A=@bdUNuWhI!2-I4I~ zN;fpYoLRzu@AY;+oj^eJ*W&X-$%njbm3QvADhaf7N8Yu^cy#HNDiD4+WsMY6%P=IY zobGpKDG;rg-)S}O6lQ!mthC9ao|8y_V}eCaO+Zd^j0Y%g^#d>GQYQz=H{|ua5d$KK zFuk$TN%jDKh>Qk!35^E8^LU~yN|>xgicD6&=duwA<%z}rmL&{5sv4~12LPmr^-m!$ z0VF}mmse}=RKK}x_;a0*#@cms{eYJ+h@H9n$+D`RRG;C}2<6skT8FVSfk$kLrs?<) zH-{p_uYj+)@*Im?HVuyS;A$5**R5y=8l92kY37;^c15qW^F)dTcTux?HFU%n;V z^Nv5V>cTeRtZ*hk-7t?VUGwB8UIJ zPe65y|BxV_HZu_{Z##T#JQPRSdGmikRXpCqhw=zXbOKXuQ-gJ#nT>&8j^7GVS_pQl z8X3|shHYTd58@A(j~PJ_3RCgaSU#^LGNF~5SqJIf5vzxj)#FipwE2B@W*7Qopn%oX zzPs<^jY3<-*9w~R!yj5Tnzp`2d2pE=NaiZes=U%j@GyxLAg3AVP161t@!pk@k+*%G z!GIhF!-Gl!-_UyEsj&U|ifTc_7`FITu-7mVB zYF+LSfsJVC^H-WF8VJ68NOB^J{@F`k(P%!+Q>;_EzJFIXO1jqZXgUS#cW`4^LW;1_ zvv^iF2KDEsmeIE&va(5nCS#YK8N@&HHpr!sR)U}DIOmQjMkkBg`w6yYaWFLLe!4E3 z7Etcos($88Rttn?ZIzP31h!{K@s8tqwwNL-q)Mh&#^}5;?Xp3DaJ!@dQ|vyX!B%9l zZ6vDn5wDku=3ZrZu*&1;xs2Q7>Xd+>!yX^%YY3WEiFZtLErY(gohS~j^^JbSC~lnC zQz^-sE5`gGP}a`{$CW5_(470G3fvS~x{4QNLF3k1C-PE{^pK1|ha48ypBd@t0Is5a zgT{{t+V096?%ObBdD>eDaB9Ll^giaAYP5@5nI2IubvABBVu&#(R=|{epQ&u6OzZS&cn{Y0fJfKD9QK*DDbUadtClXA=c~-LbGm>wA1aVR$mJ>Kd`l)HM|C1t-)Y;fwk<_m49WB1k~xw6bn^I5n_^Q_BLSd z1C8fv-2panWt(p5k0zB7z+!C3@%7y@<#aZ=CIM(4BrP&ps|zb;j>>v4MoYG|uoV$< zZ?m^CxY@6aWc3ms-9gmmK>XwN9MUAWETZi=22)NnjHOLVDSJwD{MhNcb&eJ(lF01dEt8hyh24yXJwxwFQEjW6?;yHRvvsN&CwXgy*q_)&J~Ndmm3Xc)pE39 z;q)Ct$Keblj?}COb_s7TlYW>siq{F_T5S z#;uutBz}2@vPytcGEm$srzo6Rl2SZVBWZ@ce|B$owIVl;`Nd0`qY*hlK?<9#@e&H{ z%a~YEh*d32i{SqoX}yAf{Tr&8z={d!_ZxTSj9tkG5k3?b<4AwY{!vP68KZJ8WdPE5 zVr)h3?7))_bPyt!c@U(E05^j#-)4N5W36A;v9O`)2+y!Ia74M}MF^L`t+?|! zJ93^abQXO_pTEum-q1D}UVo4=bH=+&tyoU5I5gvOh1;O4iS#a6h?3Putv!xzak&C-X~k%(!HSYhA0VyOK#+@1f-Q z1~!%*%33XPK<%UHc9n7hsYCt}mfXsqlk3m9jWa^7fx!T-SIP`Yv;;VAQS`l8J4Fk3>voKPjNNQBpDvkh*Ya z2o28Zd(L0o-;w9=R6k(cyDh2T#RGq&lIX5mp90`1_?NKS47F#uB7CxMwK9Z=y5c)N zw~H`=dH{vX$Nkn#GPT15Cd3YxXMA#(ZnThM?RdZU7UjMc?J>CulkX=1IIeG)l0`yV z-pcxcZ9q(fs>Q(MBQl?_Q_9n38HPHQ#yK$Er0#~k`e(Ni8c=$Vm+;Y`BE219x9a+j9bH-kd<~L>mkmOa z>=~h2I=t!=T)csA6&E!V*F;c2$__MVg%k%Z$7*InR>Lxo!mwD^MlC!UB15bF!{y{atUA1y{h8!$`153pK?cwJHf4n1};}r0(=IG6(Wm%bfqYYZB>M43ST&{Z`Z^&UaS>8I4 zWdqa_wlrz(1WMb%U|il3K3W|A@XzbP5Oa4<{3}iPASv17 zd0kicNkgaR+sYcL`E8YR?oBcvoN)+Q*OQ_~h0-ut2^XHnJZZD5BwjODs3BWKuyaoK zsU9l&?b4M;pITFqtFce()105{-ySFRZR8e#Qav3IV!RGxPm#EB8dOu z3ocpGFx%BQ_C^8ZurTsZBe_3!(jb2T$+>5V@?u#?uArF1igV?{Dd;t;bnu8*iEf$xY-_$8=RrOZ8YIx0 zl5UWD@KzheRiI+bjTCp+(!M@Z!KuDQ_M^^`J^lsl(k!~WSf;KXt;YE2Tg_z;%0EYZ zD+l3c3deKiq$d%En$K)kLK4>0?4%eR%=&8P5G>S9BN5&i=t*d>Sa)B+3({%cgSQVB z6SmC^gs3XX(_f6P<8|@%Np=uA$C;}6*nq1^#e;qBxe=E8{8|Y zc*XTwx`f94023v!cal#4z+!sIP;0)6$@?06XwC8g52KVC8&szqOMaY*S&S?)f%CrJ z6q%O*1Ujv1+?F;e{`9Tz_-op&N!DeIBgH$<@}4N#V~(5R!Ei8eofn{;J*zhrM9R6j!LV@e9R=cx1&ra)!vTT#@L%l&}pXF zGC2f~t-Twe*nP2aJWRC_-CMx47D86(*#9gFABGG5BeaFo4WM^BD-qrIcKGUH9%#Wm5bkk1V z{MP7DOoMS0S@)jfs>Wq$7)2g?%~Wez3oDe6wp{a@M3^9Fkej?$da7B)6OENv;ZUv@ z+1B5>(^TWAsOW#8br2R70s^ZLh2bw=!$e_g$!wcb7j}QN(oM;>=p|huCYfS}I3NX( zhC^x~F^Io+*1?L(ECTF+4b%!+vZwgfWPxz-zXRs^Ic;|14$^_)q{a153JZYm?@Hv< zU7a_tuwHTKaief;qWy1cO74xAQ3@$HiS`HARZ_kgsv{F$9m*Lh;^4|nSUc`-F>Gu7 z^$?P=HNR%|T=-DSqNas;jMo0a1RtF)9E}Ut@Gz%!=UNDc2Xk{1RBF+&7e4{l1@Jvq z&M-N?ej^sG=jH>D`ZlEm+R_-#H&}KT@KUS=11Dw7TQeZJ@$8Gaf8sabFdeiB@~^oY zO)z#LAFNPpPbZ0H)y-;KtIMUqPa|M96*S`|zO52Rw|cWUHwh!Jg*P;=fTen6S%)aF z`f4g~)NoL*tVRKW0m0Qda6a^`(%CjUWV zpL^lPel6WE`A*aq~XN_r4Y>oKm*x-g%C3lxPiIGfOlc z$NCA=`%+fwb&#*EM(WyOG(45hxoa30zbkys%4c|3<4m!QFQsRqwzhN!v5La=Po(Q? zmy!SPs@d<&)zW?9*P;2?+e70?zr?NdhSK4X&cMBC-NLA##-fU+9fzu0QL`zOccEq* z-msKGRV~g0>1( zcb(ZgN~k)axNMPn8tz8Nxhp@-dlM(o+T6LTnQZsDFRep8tL}KlwU=(+AUbwPY%P4; zB0jqMbNRC$|L&iNaE32jds|2R*DoR^&FS{un_u&GsoOk%+2Ds6+SGKH&2LCyx%DkK zKkUdNE!8Zbzu=r|OpHGLL2${vwMjl|RJThV;cJN(our?7^`>eOjoL?8oJ{a#Dgw1& z<-iA2jQh8QdqPz}6I_{7dKT?DaRiba3?z!%9nGfwiMY$~9{IZEx+d@AFSwJm`J{^B zKWbexuOmZ<`+59yVJpj0HqDN2Y2*;j=Hf{%`Zqg<;qkeJRi}Ox~kD%%2^aGp4D!-pe<^?s3tAg-e5f@hfAoRg@1?I-vDG2`s&5QxJ^tzs7BrwkN)l#e{md6t*+~IlaO>hw?1EfOXev`MX#-3BY-Z! z2x9eUX*-;F?T2*l)QI50_VHAr+^f=>@U=9YZPW)7s%8eMhaGddSC1cDy-a(d683{f zQmJBF@hf{#c5>|Uymon5M^6U(j@>q9%}YKoV$Dc=McgfUC*|CRU9u5Q)GV!qRG1dG z2AXB#01PCC?rP55^SzA04aZl2Al#9f6V8u>WO^^L^wu$XA8e1G+tCgT%hO8l!bLEY z5dK^iEa)s%*7dmLRgqA1WeP*uj4@VtUtG+m#vUQqN{7Gzs~jvzO=bsFQAe99X&MTL`Oq{{Tx&;Cf4-^@?=b@{zSl;`c>M^QKYPvlgd1U>t0n%r*VzOW{6 zq4rV-1uFEm&!BIx1}4_fP;9)K7ieVI&iG4+fOg}vw0UGKBmadfA?-;mTXN+?LxwS( z&l;%)^R;Ck7dLn?1k}09DS~$K%KoOp;psB!Z@4oS1oB3+3#>#oVP@$jyKR-L_Jga_ z3YTY^RAkTRT>Bv#Cwt#1>d^BB=HF{gB5du$^zkm+f3Dw^Y`%hAGx&Sf z`kwdo{lhhD$<4XX*=O%-U)SDy2v<{)#l|4Tc=F^4w!EB_2J8d!<@$uy! z-?vwn>-(TD3kAK3e?*N${W-b_uACGQd`ZE|S_CaRzPPq%vKU%As%`Ep^mFs@4^6Nz z7+XDdcXjRE=p!a4U!I#4D-nGcTGW)DIMdtJU7WXlvLhALBBt@qId{mh!;v86L*sIz zx?PB%gfevFkeh?ux7SzHze%r7pNOApsI~&=5*Qp3s%Ggn-qJ9>{o|RYY*toQ=j3`x z=QNF+%n#@SrLR}|M7l~)1!t00MqZhsv7J-wSH)L?c<;1`A|2Dqnj4Gq#9s=$c=H<9 z-k2>-fI#xKXK7EvXd_mB=-98T#Jn0$eN6&6QPNy50wwW04=3H+xV^1kA&oi`Po7Xe zk(UzJ@<78?VHd4W`4#(D!$NltS9ZT3UjJKX2Ur~%?;|LbFAkoNGwv*t}kG&W*TCp9+! z>wkURjy+gI&-)*4$Atf{UxhF9nHq5kGJ5X%zt;Tk4J-1rhy4p6??A&peQ&`Ls^4t5y#L4k{e=*J3U5}%eVAJH8u~x1_VL>)9~@j5}7{r`GZr)Z$qf|aIrcI+o*`d57ae&(52=MC?{oYYpx=-Iz5^MHkD zJ&j$vR-v3J{RI%jN#^wr>xi$sr(O}T`86X-!$KI5{UZu!`Ol|F5s!W-*^Qiz7-zWK zsICNMOa}kMmiN;DYxiVBzNtA#LDe+%){B4M_z7Ovn5b3K#hepc2y*QmxBG`KtAFGA-%Gj`JBHH4gPuj~;BY7R5sD!$MA@YhxQ~%tb zC?3Mzlukf$0`Ovv`6RE7fyDfui}lmQw(uQ1TU6N{sRIS&Q<>xFLvh~x^X}bgSFnGc zwdpN@g5s}>a~(ZB+yyuOX~HpaGw}C1me(RQgLmocOVubR&RzoL{~Ol+B1olF=S}58 z@J7W*!{q(Xd(-)L%OF{IihsMiEVbG^AF}%`*tuSWM&BIY`5!BC18xbBuVrwty>=MC z@b5f}-)yT@M4CGJ2kx5TUOECi@^m(;)umdNAOR~szUGvt{`+=9sdL((bDsi^^W3aG zE5Wn2cU2z$MkK1xC-rZiwx7RSQ?E0n)7L3c5`3*H^iPA*;SRLvE?77}13e_eBI+H} z9jnAG-7A3?|8%AgVrb$S{OF}&#u?>KJIN*>XThm|T0cf|W&87|Z};efigfa7Bmd4h zXf(L5D_T86bmBj~G53|I0WJ`e4A3YQk^T$GFEj9d3K&~y^pL6^%+X`XyNJ_HFcy;k z^HDs&RQqrjgyE+9^$Yn%(6j2(oDqWR%R0(`$E~TXSVpC`_3#FEnw$MXR#tZG!c<*g zj&#-k1MoYd#de#_gLLM(z~2b6r1$5^qPUzzxxBVLKFQZeU;M z`b=9@5zFHL2fRV?2C|X`OaNO^DZhv~fJ-1lL*A>pJ^j5|i5JuVG`6Xf*iD^tgXL=b z`$$!}KDYhS`E3Qw*XRGnb$=v8yukU&g(eQKMUdep)v5EQELR-&+LOZv2t;BE^;R4{SfW-j!l#%5*Vve#&Dv9FUdxmbZ51=q}^ap(qMkimjPqLV;*;eI4X+*`ym>bN3TF7I-Nc6v;MoKWyAo}9R_Q! z*RX961DJV-Ido=#+Cv5772xWntT@ve>EQ7|IIONfCI8pUl1lHqDy7maRK{RG?0hEV zs0Lv5}WQ`DP9m;B) z;c`7C7ws!_`C*<~McFCbB-4=kS@_)@ex+8^y!!tiQfb;R37Yd~3uay;>CSHo6HY45 zZk2bsB%V+m+n=%hwLQ|@1LW{ujijlvI;4N~pK&@+5IcVEjJvqQ@VA0)+|5V@s#no7 zs=`z14F<_Fv3^P!yMAwXoc9Ax?^aU8ata@)PKF;kq-z9%9#O0Fp>i+913O*iDQxH3 z$mVPXz9d*avD|r1)kkFUxQVpBLmM_dR{ZO*oe4W4^R>MhW|}1V8=RLMxSg1)?E9*> z4A#wpFjMQ|6{BY&Z`04ue4>qnwh8oNo)k1_8>D3PYQmSV4DNKR+?$RR`X8&&Ab);n z63A3R@-K%Seh>Bv7vz_by?Ir_43Q^FMb|MuA@V7xWy+!XsR^Q3!*=U%10dsdwwiEV z3JSW9ZT<(mm%+Fm^D~D^(>0&TZDE%1V?mzMzj)5_E1AELfPc^e0s;jlrZ^M-RK<@h zf+I^&%!i_un^}`1`~7|YFGiNlul{1_;kg^fT3qp)JJ@zs;deo+_PYFY{_H1Kg`jsE zTQJmP;F>%Rir$7F0p@dNqlRibD9aafCUltTTV~wQP9r2|>|1=OSO>Iz=G=6L9|-fo z+a0{|^*!EHm&2$9hunph`o-Lr_$2hgEl*D$uO*yLt@inyup8L961>zz1vl=BuEa_! zQ~>xBwuxIW05zGWLWl+=jX(i4jxxifMLdxEE?lLr0yEi`PWy_#$*p=<7UNKl-!+AFvqL6*V?JlkW zF;MRo?_w@p1@ys{28Axvj@}fb?2%4<=0x02v)ZAWufPs(60lup_CyjqTj~7zwj!wM z>E;|hntkUEnx+LLfY;D#$;Qv{?Dv@mF}0xy z-^izO56H-v!2R7bE$Wvo`Fo1Sny0WJo7uikGz}`Whh20PuAUaddm_hIC)A-uA4|f$ z9_xDt^mM@>*2Esq_V+lJ$lf)3Y42hD3M}I0^~2w zii^EwC!YONoYYXQhi){nWiJ=f`<9(0V*EUrJ^j%$7!iH(I!UX1B{b5|@DahYsn288 zB#6+v4}d{0@a@(5VHg<1K)nmiuN@H}?-b zle!?=$WAj>objg(uKkgfyI79RuM!Fu$ewW7pZEeteIPCFBHqI?qC{C%XCY* zpjQkNxv6l~C#;NYp60L>2t1fvS`eZ#)7Q!esBhf-9(+1xE3j(NvqGnbk=pg{5Es#r zX5{QJ2`b4O8D+REj3^^_aR7PiT4}TgY{ycrgvDzPZt)ey;G9L=5A}~pKrM6J1xT8` zrQpxHPZ*ZlwL0%K;pux)B4>0uy>Y%mIXs{iX#;79gy_JC&Eq~Mw}J|eF9?8<+i^?o zov!6-N)J;jvH9KOA-1mjw)&y2ddNMn4NKYn@l|0ghP(~+T8bL820{UPyuu$1Y&j4XlKEskNq$E_qvHaae%UvdX4TY!}qOQoZ!s`UJQ+ zJQCC1?zeH)$;Mn!)LOQpZwl&ms$B+s&HqF)tLc4~b`Rfq_y~!m7rDkFw~f?JUVWur0g%J01_WJ zAAFkCKtylxJ2(3Bh@bnAx7ruqmQEUsj#(as`sb&JnX&t$8=p7^-_l(<*}x$C?H}dc zvOS~bq{m1Lr&UYPy@Sc4lEi>C1i-z2j!r*Un)GI;Euucs*${mQmGGul>J|L9Ae2sb z8~ClbXVaGQt=XG|mqTp=8v!>O4^pNvg@!?$9V7w#^3uiximHhN8BYf(u#>w-IdnSgACTRcy8xKS+>Infsct7NL{7;JvD#6f@1=W9&ja4$%Dj*byQyo0)z zMmSH*H@i(Ua6oMv6Z0_!DTYY%ZS{j~pZh?2r{=hq7|1#b=gemt%tz>hgkPG}!irqP zjUfq<<&WB0>&173>-d=O9ubL`$^rXug}Bnn_Y!mG zT_-br^}r1AEIm_=NVGRNslYLr zs{DA6jbmV^`@~cyqG%rcboaGA>}W>IkP+_^)gSGLya8lzL3CRS=wa7lT1ZGw>m^b* z! z$(yD6yCNkOItB}rj=$kgNdTsL&OZGmZ{H=?5|oqJd+tZ=$%EoP^N)s738(6RKjS`m zI}_CL{!N*2nvR~aZjQ^lQBf(0?;!r+I}@^*3%xb{aIAauHh{7&Ebzo?owGAvm}>qe zwZuTIi&cv#atB+QOKh;RB1m&$jJ!38QTWI)Zis;{C=?`2t6q{LYQ?CLB7$7?>0 z5HoMDt)j&=Q98L@8ax+9jgeX*o9Tyad%gKSY+e4n4)B%jVvcrr*wT;Z@t95kE&RUE z)Ag+R$*v{O1{q3bM~ySmxLK6@Y_91`Sc`huW4^%gAX_#^bu)GOhKZiHL#*vM$o!OR zaNE~xR%S_UrW;43mHT)*ZRc%8XcJ{SP{i7}O=DeaZkc3FX?`D4&fi{4dw->y^QQ}D zdwRsQpl~RAo6fE`nl?F4Vd$MWk=)81Sr z@$Xu}_G(6icw{U5H@Z(^WbX+eA__to#4NOSa zHfaW-c}5_x=T`Ek=5HRSj^$0}&xSEm76gqTISN{Yv9bV&Mp#AiF#*={i}|B`t3wi> zSBTDUT=?#_Px8(!VrX+Bf3-?9pTX3P-sD~9Tr^$ERX(p}o)6qZFPZSh*-y2~%C)L` z-#=W}ErIWUiqd#;n7k@0j@9!>1sSKpD_x(l5a*?|E9;FjY6BD)%+dNYY3z#v3Q1M< z#mUbOk?mms)CKJt2~ER^sYI*xnR&_&)f|N6USHFM)I-$f8wvzn&rA&I-^tpYTbP6u z(!nhH1i4;Wv*10gj=B}F{WWEFEc*tPKn$Y>)_JU0_q()t3poF}?8h4z`~!^KH_Nqa z5hz-SV`6@54V2paLX&MMgDy3-MYh&`@C2JONLF@b+53%0?X=rF1QgL@YkZ=7U~1nH zy1bztRbM~ML0C?Pqh@@#&Xi_0;Zj`{IUu# zusLoNGys2nDBeperuW5|kOoV45wC64vKxLu*(U%^d5PEjWB;%{Q8Izz<5#A7eRAl{v`gBsdH z>YbyYuMT?s9=WXzz#*bpRcV;#MIL>=Hv<`A>%(%u)Qn=ZkycxCAmOTeZ=G~4Cx?Z7 zf{iBV*t3#@m#brhneC>?#IbM@ZdYN%%$(tGiHzVd$v_3I8G&l2MNp&}fgxdBGvxPp z$f^~lOl$Ce?-k1q&urL5%iaOcWn{eWDEH1sJ+tFVK-tlI^)5%OLo7<7c@+(35eF_# zf`~uqQ-yV>htWbTv!H|oATQWPyP$WLt^p|C1OHwoK^-e9gftMnMB+cA#Ndlda z2nqlSWP+G!qCd?%-o1bcj?N|+oNsnZbP~*H3!h5{da&6-Kh$<_)~4=xgCXN+>bIg7 zbG#flFs4QaD7!)*Qi{+@VJ-mKYiC#NcF0K7^6(R~mum6FFV5+c4vw!qA{3Q4^`_OR zp^F6X35;A@rh0j|Zap1;=?q9n;vHvgcUCVMI1FJ?ClyA;8GANX(nNWm1ns`|2;@Sl z$S|O-mrepzLJbxnOl)l!%uerRO={qKnSdHl$$4X#(jvk~QNOX*gFgJA-0SX$aMg7Wxv=N9Ouafl)Vay3mY zy++i@zBp^q_e38XTDYu0bEYu*j>KN(wLbIa+`4+{I{mGFV5Xen^cE3}2+thqO}Et( zBbi6TJi@~OQ08K*{=zxqNj}xS4^XN&%-9fU{d|OH=t~hYzkGGM3h&H}GQ9E&>*m-c z@xEXg8#|AnS_VbhA~Z>K{2~%UE%5nmNMe;}@*y$XNDN!lgL^o0r|arsB-H=TXT@dU z#v=b@V3C9~&Qk0Pay@Mc;m^L7^EDGg&Le|A`UEf1;DS^54KklBC^4+!6az#*!qSIfQjy1-=tessMf@=eb&(ekS@fT5j>537B%3>}Bqu zz*LP%T@*J%)NU?zxkq#|s|bzmvlkFuTlYdrHso<2xGc65EN~cf|Gp0Pe3gIYS2@bX zkz~(sbYkjQ*b5JlSID+W-t?O`)yC!Q*OfI58n3y3*U?O1aU}=Y@0lTTOsRa`Rbc_4gr(WKYr^ z{5ag8Z!u?W^;S9}H5{6+LrsgVBf5=>|0>#h8szKU(=wxYFf>^xKoeyPf2r|{%Ti}N zhOoHCb97{1AGz`TZlshhIxZZ^7amxY0iE{kB4w-PAU}0a!u2TL${J&w@L=G!*I+%& zMQbt+ow8YGMNhAJN8vsi-uXiF9cHqI>H_N@C2bMID$zPn-Z!#JY1aVqocMZAMJJlE z=Q>J{S3?qznr986SW~lYsZU}r%X}gv!IP%H`zNTel_iC-X!sBneE8z2^BZ`L!0+NJ z7V0@;pwtxxU77c-S0PP!sRt$hcdNUQc z&}RRWnccW35PD!sW_9?2T2mkxf#}~$Le#qEv*R*}HVtmf5cfdWrUD9|un{9FXJ6caWf#A7i6Mi$(+W0XsF7jY z@1dSykV@of#56y<+TfE3HQS51dIk}qyXRLY3ZSyLITa4{c?f!R?X=6|tI(Fj~u?alFsnn`pqc`^~d>3xD7>>QW$ zHW9_g1IwPghFlmQ9r~zfE*C38MFhs1>Iz?aXcy|+QLoQoeAzIbr{B7mo1<>b8d z-7w`sS+sfN6f6KUp6j>_I!GytK}2SLvfW}S@E+D*;~5M*+mzg4tkZw~>g)f^0@Mz1 zV+O5jWjt2i{6rA>UoZ0gq^&oePZs4^<5!JjAAO4{%vW4Q$)J9u zaU!mnjTEh|=KP^md>~?NE?*z$LoJAR&UdQrrEk;$B|_I@uv-76SBZL;^!Cwk`hdE` zGF3$-Wzm_|y;_K>+0Y&Ao~_M7xxq%Spv%y{9NeS(iLQCQ1j z+j-l^jm!c#~09;;ck~RRBy>DYUgNZIzB0xL};7bN9j_;2FS!wEj3XGp0uEC!3ct z;{hb8u(g|DniJzHDUNHjnc@A#W18Bc9%sBrZ{ly`I)G?vth9=ixtprsu})*v&sR#B z%b%p6YVi2X4j3y9P65)jDI|BnuVYAL(_R8t%#!#uRA_~ra;m~0D?(9E@p#crauZV z3n`I5<05{}+E@EQAE<8GoUbg?Z+`bMry-&Jnmnk_lB;|}*$Tl$-hu+L_U{qII>BXW z?CtP-b3)qu#AZ*QlqQq^OeYtMErN`Nt&M@)Z|H>{7MCq5ju96OpnNVVph)Z=U$7hh zG9cz(@0&%VF4*WtAu?W(h*^0KyPc?9;p4XuKSAC?y`%C^J5d`M_3egOrOOTCAhLD zm1l0SMmUbv zUR)8FImrs)oRK_&Zzu8l;%!Ryzm@CFw+V1w`U!YT#+9y`}Z#u;yVYgcs1MqMp28+!)!3ho#Zu zkIAgD!v0iW7|25{8+AnDO#7I{KT?Xk;QIiB)VIi+Uer%J_I<|n*K3F+JFj})MfJbe zKLCpVu2n|ToGJ7v$w*!|S2k{fZW4;}hNA zVfxa&wQ=s?oXKx%1hz8;tiX^WY9u}eX%?BsTy^;c(6jDL20B*9O8Y!t0rquZn!waj z5sIbamNqLDM~G-1MD;ABIdx);^NUoK-wx%nKqre{4gY3DB^3axLrbmdHdBs6rx#xZ zy}+=s9#{D)ck*(+saT`xTkLQ{$MZqi@+t0x1Bg(s4TG*1WrZR7-?nA~o?b$=6@xSz z6YqP3Ya(8EynXwKI}m-{FUJ`cMbBd(Y4ti&247v^0%PIBW23Jd_i!Zg(D!)SqV*PA z-U?-eJyG(dv;#&p)3X`df)VS2_5AmgKUc+PyRqQ4{m!N}ApglKaTdNaVK$ zkR}4DqWGw0ZPpR74n|M;WN9VLn*VvL)X}il{mRZO5x9}lqT!uB`0l= zJ20!84|ufoKz3ImDwQ9tDx(8d7TKz+;i_12<2)c?8zsQo<@}O_ZOveLAIj z*N7&k2^q`6+qW$rG-W^Y&f|av8>ACU*#c~P8O^GqVdAT)Q5S6PO^Dl_8%A}5&-Vk? zp`pet_PqGLJ6UEs!=v(5jXodU~F0vDdw zqBoUsFEzt_a(L4$nQOx?KD?Dl;0XAc%3UQr8AdK*_7oXb9-zZby+WY&`*OANz5Z$c z5Xn|`dEVQ+2=lM$@2To5Q1z`lpuWz(WJpA4JX@B$eyv5P5K#C5(XCPjK1$=)XFWPU zGvW)1A2JlVuvr)liFa}t&7+HVP&olILv7(5oqWPN&jNlM(cGi$L--8CVK?r;RS{|g zUfiT-+sg97!VC37!}bBRRQ#6^YQm9Zpx*uz-L18isSXJeBak5*rru4|+x1)=N6ub& z-10yrM@>HSmRUD@Kvv==@%yXQhJ%P$*vqvOLn%1qC~4<|7nJ%i`eCK?isR}5?=<)N zl-x4^pTpmgDPb7A128-GysvH@Vs}lS!)@nD$k~|BVf8d$*@j}R`cT!rPN1pz}p0&emm4?jD83CpjBdwNK&6Ll$a(F zB8!_ zU7iYO#mV4Yl7ZaT@WU1?{ld%KzST$!OkgNf3@ z$>l(enLJrbnNhi^Day` zHyo}~Gd=l_0R0=S^Ynx4*@^j}B~VZ%>(`(cOGNzBHZGn&`J!y&q7x%zUcf~sY`m@q z%LR#_Lg+QkarNFDZMd3wjuMS?Xp%~*6Ji&>e)uN?1)66^Z)2C@7WpP8T|LbBFQ-s= z;r(4zpvbx(hoEh%nroDfcFMlS4>1{L;fA2t!*4VNmZU`SMfg0wN5L0!HkMEf)8SU) z8#DE|p)DD`zu5(VOuH8`#8KA-2zWYEpv0O~C&yqp2XSSTT3+6^MPLI>3FXpa23K_nbI?beKY{^hGD4pZ*l~%7t@$LUXldh- zm(cVRCR0XyXb@GMeFywDv`Ik)DWVk_!rz;PdZClHvXc7%V73U53^SnTEoxi=zR3cp zySak@{>PfV|Ch86aMU3Lc-T~g1Bs8QCEH6hnTDra-ol9FzS`xgSzW>&>%v;Zj7LU@ ztosOaop%0zWYXbe(=xokTNRJZgc`@kUd>KBJ23Wu+@d|x>z8HgSHL#9G$xKg?wL)cx=LFto8TX~G@40C*EiQC zPWDVPpst0wu5xwj`G>aJ6AVUNI9TS;|AK!7Sn`tnkbSPS94mn*a`0#1ht^w@j38ES zzS*BA{2UYMBadyn7vfeT!o6o76ca`09|ITdn?2FTN{}}4?}O)={x1azt-wGH3fG!p zTzuhUZ?HML#%V+?%X5a$Zxz3P%L!~Du%edzTlD}SriXnU5D-3zQI&f|_V$kvG7#l? z;{8iiCtzV&cd|fDfbnxFVDQI5W;YA6vJh1ZtQnXaTq>mQtfE)oH0A!G9hFue)-SVE zbHD%@CkWTuRVzp|Nc7CH@)A|)yKmC}-pNCne4Wj=TD=Gw{`hsnv}sB=OQ1~f3o_^K z-(4F6dTcdc_S-sx<;COBBa25uN)yjv6DtLOjvFin!T#m!WO!XkvE?_8qwW@PHxi_+ z+B8NkFdOXAG9@*jesZ^NLV^FW;3{p@g>OZX#UOn_#7KPm?1Hr=_&W+HH@))4Ng&!mK#j zXo6_=S;xw#udTY*CN{I7X243lq=}G6nYavVfh&Fl^{5#JKn8M%;m* z0?;Hf|DaEVf^n~*O-71q?e5-RbS4Z)H7cz!Yg@m$n9F=a-Q`ff!iRt^!GJ@3`@xd& zX?}8*5(S%L8wYz92LFmq2vf4u+ryP<7#%RdfDI$mLM4^u%3S<@&sh{X(C;-gJ5)Hm zQ3@W7=7H*v6=*h=k=cDBWTYMo+xzxm(XBG7^7##h>6IS)wV$$QX7%4}^crvc(@CAA zytzEP8>pbVw`6-#NXfSnOcH@%T&FQ@IX+#=d?}q@T-L!}{y4jJFM~`lbaXBxt3T8L z>rqn-@ny0m%Go+9s8iRNjj>V(eZa9%W;G}DPQ?$>BUKDN_>Cn3&k*Bymp`DAbr247 zy_rsD&I;q?U1no4)|-Kk5~q9@)-R%l4TG2q?iR%K0tW$%C9YCa@NPB~ia`bHAZR+4 zjZ!dA4+Atc#pfr1A1ihTk~xe9DvgZ4@mRj=7o`C=;^nD!sm{>l^|jTdl#Y9cGi?2d zB+G3D?}GpE)c&0-f#R*Su6>dFTE)FSUoq-kHt>-)Ma=R1f0884%{0*Zgg#~>P5b(78Wsmc+f!2R+5uZWC7zO! zx(D7X;y$5yA5l_^@0qI6yzlyZdt57!wSiW8-8bM1n zUypN{iQ}ph{6r&fX~CGLsg~&ycbqs?D*aS-94!X>W7oS5X4IJM0JQnA?ynQ(5wPo1 zTu86to=_N&kn*Tj5S)<@B{i(YjM@0CHRIZkgD431l;(Yi@rF5Mi5QfiFy=OIhvM}J zXT*5LB}BE8wFKh6TBoUn1$x&!3t^(|r|9z1r4Esb>NC@o(tHv5RJLtC3xC^jT(FLL zscvq|lPIGbf3N~7tWcG;NUe6&{R~3zp_KO`;!9%avDRWhK>Ehy- z^TVJ0yPFo(C;o@fjf;bpdzUrQwuAoA6z4Z(S7I2doQ`^*OqM%#)Y|;B6VRH6^L*=t zk_FOc1u_5)cjT@8LTcU0?|YJyHL`0N)5$s%^|!gv<{B4;~JfB+$(8KF?Wb+x~Q z#_R_t%nf2Tp#dKR$T12LM+-9~ap;XkqP`Mx{v~~=Y8BRKOxG{X-PzRO_Gax$T6-IuL%PZi(^ap5v{-N2)2q3PQRbN}e(wT%X8rO4e61d(?KSeB zl|$T>*ks+%*A{gKds(pF#16_pA4;tWdf8W9jGBU0`g6VWM?u^E=?RBz?`*Pc!UsO$ zp1#hdR&rt%R#6%fEal{2a)AKXw*f;jqo8mB)m{Y(8}k2hUZ)T-p*vx^<7ekL0WFe@ zITqBKm{w?VgsI}(@6;G+kO-&Na%2RwG--HkSU0GVfFEhGUt^p;zwiHbw0p1J(RIxF zT{H6o)$)Dj0h42!w+!X$kk=|>nV%YI?>A23H0fr9)wpgDJ%4$FL*%UJ9g%Ge?%9tt z2J~)d&?APOJD(dV60+|&>0quCbn4W!ACtu!@@O|{%e~vP=R)xNF}tDL*s%ivuEAQQ z0?6E1eCzBr$poJ+`G&3|xRnazAqNl+&LEDwe6<9ENH0A35Cqp(79^a;OrE65kMao# z5v0RW8hnPFzkLlG0@7Z|7)+y+LuQUUxFS|s4c+wc-9)m?OQUEts>Ni8Hf&wdB}aMT-M(gLm5X#)c#*~`GV zC8w{7dR0(}+S||HI6bYuU-|fxAF&Z3@hei@%Y6uN@S^!(f~_OPyZkDfW#}s2A@z~` zlHtAFqFK~TJ}X!$)vi|(Y|0H&m1E3EpD0qDu1c)tP%ivH`bI&memFAm6lk0B_&cxh z!e&V(Ip6D!G{tUW?V~Sb)ga^phL#gqi>>to`O=gvBE<7l8^(4H&d-I??&bEcoL@`R zVHJ(Mzf{P4@Dm1HNp?)TIiEbi>)J}#Na)KpzV-0-_6{m~YEswGaGmryk^-o8w}ps7NdBz^P6Wto-fJL$x_{@wXv_h6#0h@cW@C04Mj( zMijF$@d*8B2s4}Uenji&=gnBx!f^`C&-dicZxB9mWp)&_J7tGb&voi?nvBQaY22C` zXWQ%lv6*n~WjlBPpKPk$k;>=%IPj3~pU zaWQvUqps-F79vLb7QOjL2~b87-tIM(%&~f>A~Dv0Uzr9BF0z`Kb|e0vBG3*c+HFQd z?XX;<-t?aR^vd&9@=b6q+T*NfI~9VrQw7HmuWG?ZcG%E1tzfae4mX$Dwm7YG)DS`9 z_UlTAc*jG(+q1b+0a)H{a;g#&DqBty7X|2`4JJ_O&#`YUlf{3ioe?$ z%yY}KQWt^Ti>BQ>B!A((iSFv4nXP=8YTKXi$NzL2?eu*V@$-#K^$wAxD1(;z)3Bsr z%-pOCY+@|J*tYKjDO+Nzv^pW1Lh{h#{E-x4W)fIAx^V@Xe!$?@hLO*St%as}3dNlb z@qJ`^V{}zDT=RPgd|S`TB~0lr8F-!vvx)4O7!GucOyL(YO78gxA}9-#{tm{H+u?3t zj|g>pOdcZ0=I1|WdFA;cVtbK&c45O-Pt(|>qUgKG$`Tc+=k0$&x+w2G23|{IKS&9>AX zf=x&^a6~r!OOW2PQhDHK1pQK-2FZDOZqz6J{#_>@YtFF%gP9DgPvTp`eEV2G2wk9~xGngE9OL18|4jvpTb^8{f1{YQ^g3PgK+C`Ugeh`+0B&^EvwT)?Mp zs~35|IzG%;%<$VJzd+nkFTdyS9Lx=D?8I^_-466koF*$mDM0_m8{EE_Z2z0*MX{|s z2~1F0m>=0b(5uHZPd2P}rAF5kucCinjtWKaug(r3j_nI~nUnuo6zspKCN{Poqg;e` zlAN`P*K{@*X=dzGS?)K(zzHx4D7??|z-Ra*-086^NbfqzkW&HeiDKZLiXd3! zYXN$|I_phUV1vWlLcTXFMLnUA+zW58(Y$kT%+#=aO7hJaD|ME|7rj2y9NR}3>O+RO z*vts@DLitTn7uA-z3Pl;smCyu0`z8o!Hd8|3b^olRONB>=keuCk%l1Qejw2U&{j$?)w<`XBAG)(d;d-pp^p4;-szSJ5R3+)P9JYa1%p zJQ_o&jzu!dWA?~<+`j=lvK)A!w;fHQ%X1HkH?0^ySd6_d?CY19@*Yfc*e2StcedhA zn1qArBTnF#%fW?I3>66Y{cLggM6$%;LHTsY>zQ1a&BvQ&qGeDmp;&RZbr=fc_@qUU z2CY!(OIThR-NurT`y{8HG1f@4un#$75HUehK&Ayw>qg-FhFpG!7C4e2-XR@Bp_Xb^F@tz9%(y{(3-s)GM_ z`1(N7OquEOM2+zDyIKYb_s;8eN)GR^5v3A9ZM+sChcdzPA^M;-!?QSmLseR(7Fiw_ zvlKn$K*`Q)(2;VbGL^~Ao1l4j0$t8x=i$k@=ug?X{vUPon7z#BD)bf@0w>-$r?n~n zISlx)(#5i=zvPZ3Xzzfo-e&q_E|%lc@8N1-^;u4HtQ7fJi#Usj&ft z`NQ7to(~kN%LktvPIoAy%dOk|KcP+U{4z0A%)Z{vu6*Kw{?i2SlJ-NMg{gR_#Ut-c z0`%MlLW=ai3u16SMK1?hq#ApO#XeXXGV)ca3lc8wk0k*=LWYB7(}Q1^PxR3X$!laD z!CKC!0rp~@CoJUV0=*+VP=#0ywDzWV=D28+2(e{};MgW7EykJ-rp3Jd)AFE!nBZT{ z(O&)8S#Q5+`*DRQ|9-B1)KsO7|kNX0c$7G&!dh% z(B>?!p14Kok1# zYWPFSVP}Uqn@qVt$_^lSHst#>%F+xs-fQwcb2(6cS)t8| zBRhfvNN^P6T#afXOQ9Aix^8vZm?G&`=gVQk{3s4=%gb8yp`f-#XmXmi;pR?~S;7@V zXC-FAB_pk=895N%o_LA-+xGhi9igI5;n(7Ia5y>pUf%t-s$9qg2JvJArjra6_(QNZ zGB=%_Gvslc{!#}S_QxfnJ{6nY_&P=CVC=r;9xASs zrGg;q!GKSZxwHU}5A`84rCMvdX}0ez?>>ZO@toxyaC^4a-QC`_)#L2&ydt);2S>-I zhlAh$Y~{y!$5cm0PNjgSYnksKH;$`_wniULWWpV;Qzj$rJBg#3uVs+Ym2eS(E_;`K zOW=vi&tJ6Xfr&*PE5yBuGAh8A{##nh0T+7HPgf-PRZ(P zMn`>iI@0g(Io{=PF{J{o5#|y@kzLrA@K{$qidimKO5@YeO^nd@>>kKp6u*XjrQGG# z_LJ+dYCieWb4$;aw?v)gRJ~hm^{zDruLf}y5ej>0PpkFqCKgc_Hcz@Q8!5GV3-Q6_ zT>GmAUN_5b;%}gpr9BMACQW7^eEA*}OmGoH(+f~H)$(5QMAJ*oYEnPPkQ$V$UX9 zilj`&Yk9lWL@r39nwsPH4wPYpt3Q6#AEskdjU1vSwTPlgo_#{)K#7JK#{2`jxRCfd zep#lhY)uv00j#?1=X3IB@=O*v*E?h&y>vj{AenCO5HYm(o8(l68>(+5$NxvuSwA${ zzJFgD0coV9kr1V%Q@R96=}zgc!2s!QknZjr-Ho(#Ou9QpZqK|w-{%k5FFSYcI<9xT zjs^iz0=^uOD>us*-oHPp>3$~bDBy@2|7FIDBU%yY+V_T1{q@FueC7P z#mvNV2XP~q2>avaooY@M4elns)lFz(Muj3Re6KwphRci(oqrfT3iSw6BWjRL%<6oQ)tw@KeXTHwb!NMW)fh)+`vb>dm# zM>sMU3S$7sajZOqkzGCwlYwTQhXeFNklbLDovX!A;mf10zeSb3kUItnzI@eIiE@I$TB0ZX|5+b)=#^!IKR|q+Ip_*jx_TD?UlzGe&4O2f(UJ>9 z&JK;P4Bu-9Q%}Uzf6`h3mN_c^o8)U`{0T-Ew12ou)o~TWn-lmEvJ;sid`Q~i;tVhK zW|Vk`BXF~|1MTXee^g<`U#;-~VIYl$HPTuk->=T#3w7RmEyxSNV692}$4|>~i=E(4 z=(8UaG^=O_0V3A@Iguc5eBtNmni=9@-e`ld**$Is?2y-fQNpNN((i;!V7m8iTd!aD z@VR5%``Jm7;pj4OzQz2Q72bF3(ffI*H&V=$CAW~B>`523ZP7x~`_M)azkR4E)mg@Y zGWNN<*&^@SSY%2f#KKXypc}4EYk`|q0(mm}hT^|Ek?GR@DCmdm+%~#Qi zpp{S^qfTE^dK;v5{r2ki^{72tDC?4MuUkA$Tv-QF&IENrtS@F3Z30LkL%_NsX-K&FCq3%lrdl_vNujX(SYa z9Dz1AwS^LRAfU8Wl4@vdcv^=5@h=+qV9;oDbGO~FNKPe+L(@Hh85JAB_C0Skx5v+2 zNZ-%P4M-Y$Hif-5Jowu2IcGBV&iLvunyr?X?T6pNHxZt9h@FO(wvhr$*FE%A!lQLI z*D#w^6?tCIqn~P6Z?QmW*)I?H;H@m>()e{lYcN@FdN}Qr42E7A{u6xk%A?)p7#p$>0?aHTc?(!&Il2QnE~=`aSb%R;;V1+69QUe zZ1BNcGm@oMyMt#(A+YM2h_2{(ciV=3Il}b647oHl0ml^XXgNBjX0MsS+l<^yE&LjO zxpK;lrer_dLEc58Q!aU%KXS7*2h>U;0`Vc=|0A)0!~B1rsu7&0|5mGKeD5)WnuN>e zR4R$U=`fMRsQ1ah?}d?G7r*Ee##Y%L&K&q?GTwoz)7$f$oSEHGbLo@XM^WQ%1ZVvO`lIo)8!tkQx!n|cT)-x;vS`j(|MqhJ*Mv36L2!_Jid8w$f z8M|tS|JoaN_)3IU+@;m5`#pXUHO))OE{J9G!f+N6>j2(ei7xv;Ci=I;RDI4g@MtXc z8ST274nJLS?!&%5t9taSs9x*3zhDMjSiwXo{%$<)Z*FgtEqLFFWf{rdCV6g!9W5V! za}(f~d^WAv-dNozaWrdm4=_@WJ9ys7jXFO?LL;JyxwZsYZ(@O31m4`c=w;NUD90@|t3T`gX`9T|7_T?YvpINH z(y)495EDJ}p7V+r$JxYg7i?*dm$~4}&E*&0re#cc6JhE@tlS~NVt?@YR9{%-W~*Ke z;X_nN@g;b;_43g7^0J7n2XL*u09o0Q5aLJ)b9Xa#vQ1;6#uSNlaU^yx$3XY!EvU9w z(<}db!66tba8;rQ1qqOrI8_C0spx+OWHv(nT~J4A$67mV6;nHPW_064dG)Kel4k2R zfl?&5tw)xo(W|@`giV`6PD(rgeFZNScsXKbQ+PF z{%e9+WXs2DI#Yfa`Kjf369;#hEA!7zvF5hf`IGrbh5JE|yIZWwu`pE(^D?cK|N{=?i#eBF|GS(o>1Pa4@M z!(UipY(z)8AMY*RsNrR=`z^hJJrn%8C}wmNyOdWsMQ*(CKswEN6_r6nNgAh>uR*qE z#I>T;eVt;7>ucwH>%Bxt*mQ{6Z5Zr`O8 z#EWi^P>hsIsPfX68-#{%$=uf&7b|F@{6ZS|q5D8=A1stB>0 zi%rjipQwl1qhi!ejF=vE1WwG|iGc1#>IX5@$arM!wXlV z=^lztxNfU&B%mp$A!-@tRF4n-+V)}VF|>KI*lrFn=X)d(bQp;17#O8a;iA~VfY~k3 z^&o-UZF%Psq5((VYh=n8^`k@ zGVZS<4!OEl&BUI<*_VXszC1luYsS>xq|r77(1}zq|Btv)bGz;TKFflqr6!}!rkc!6 zSA9b}%WH<5M*M;Qf)(LV!h%1ZlPPZ+7?I8bwh8RLME@32!i)6bU_5jqG7(txBP*x?5BXrGRsh8v8nz0fCr{2wZd! z%JEz;srsi2DWf7reII=7>ms9n1-g4Nbff%JmuNi^2@PA&8=49rAxeH zXtFpulkR#sD5qM!wN$~$!|`vf^`Szv<8-okaAZ>YtoDh20A?eRf=enkK2M!w@{NYG zA}nglvtZ-AEL5f@bAq$X-~aMhGrdPg`*0T4Xt!iQ1D95Xn*QUIiLZ) zLZOQkGf(U+i|U+T5ukV0%?71$OY=r^c4YuMVS_L_%N2r@pwYio7R9@*mEa+O4XB(Ow_xUD(K0nu?)7&XO2f*C2Oed^ITH~KP6hT9iIUd)~sUpn;$`F;k<3~VC5;q{Ys~$ z<@s#Eq=#VFiIR7|Gj<_Pa}&BtdN^?@+*tL-40hZz>_eaWEhowU;66T1ek=-UhyH8>wdi0d6eSFF)BhFrJKmfg4I+lczwF~ z*fCo}?5}`A-yXLHk*nwTl9_{tq+vS9?2fU*#p?Uqj0(r3E6a(^HANpZ92YIp=;#|h zVnYM=j#3Nb8G&Rq$qYmF3Mm(qoGKO^E# zxV1#S97Bnf@Egsry`XLx66JQfUwSsS?>X^X7K^d4L9edh4sQWhxr9f|QhmRII@otnH$_UH zYDoTAH=6(l`Mp}Ej_W&E$zkW=V%v2%z?ZXzxc%GrT0z9rfH`p?r7eNLPw!3@N_mZZ za%9GyUed3kIUc0i-+?)z*{@G3>Ov{V!;uoIT6w2Le6ca?4ZDz~j=#oLcKPJjMp@zf zc@CdAp3*0oGPHMEgskYqA;q(lh+|@|G$$_nc|&-*!j5|QW&@kXmB#)Q!}!8MH&Vtx zDh2MC@;fposu#-l)qYGpr#|8QcO&Q#ZK?yd-fiQ#a4ZLcc#=qSURkU&c6-j1KA*~m@%lxOPr|1hrVC!?7$NjY zknP8b?vC3&;@-@K(P*T?b7*J$d{Ok4`_xe7-Bg@iNc5#9jB``Q#n7$&X!7EeYRy_j zuuRbZ9oA1nFNYkma!1>hSV&HHRgr_uW9zUzWJ;B_uuy~}8U7m@PJlaVVcbq5j09s!hT5H!Gat*SK^5(~st zrx+p>@{ZpgS)sC+KeV{9I=A^oDC9Gex?^eF;k#s6)I3#(J;ZZjqqEnyMR)ur>Df`> zDM*6n>f!;<*z z)327 zcdEc~UmGDJgAl7DN!ykE9B?B-amy{itGsZ!WWU1e_j{HfH}xhkotzX44KC_zomqTz>~YawS6ek?Kzq=qqKpB=}bpk%cD>2q&mPExbHudr@EmcOi+>BN!X6nPs-hj3Qx5}b`Hyv z{aRt_*49Q$R$`}}s68U^`v#7* z_FuX}I4J!G5o?E9;a8sfexS~s?CXM(Anviq=+pjThzHe%!OJwb0(389>1+;;a&~?Z2lzK>i3qK z7+8I6Q}s*YH=eZ$|Gr_q&hy1^OBHga(`u zZ5ZSs4?~ikX(5!2OmAu0{(Mn=EYkSJ{EznHgluwDsX1xawreKOGTD$_w#KheS}B$$ zw#WO2SuQTVNJZS|g_qv^2rIBIrM;fP6Ktq>0?3J2_{PJRB4H=@a19M{c@#2pclWEx z63uZiOv5N?;pjcPYJokc+MX0T%r9>&|5<1{nUJc=xkdk~OhI}b%#ZTSja}kyXiNdN zx#qb!z~@1r%rBr=sj%~)`4;j#|KfobhXVytH=_+}{(_GCDOM$_KK$q@_Uy_e)S{2* zG=0X%aJ~)QNPBkhJy4KjuX}QjJ?28wKv;^j(VTEw%y{-YJISI1uiVo)sriii(%=j) z?jv?T7N1@EF=H#=Dv)3Uf&5?FU3k-Xoz}g+=c^s5kbJ_W;hQp!IcT>L$77NNfL-%- z_Loj;(%t7ZVIlPEYoQJXT1zhaW>2?y0PxIb{lB&093fobrMLzGB|+w=+0fJwt##A7 zDQ;22&%Z+z-y65{wEp+{1;8s!(^Nalv{&Exij^L{+@*mZ)cD6(&S}kN^&?M?iL9+f z)X)C&MCf1s;^&%2{Ir|;``tP-HhRWmW`P}_udr8u~*n{-<3fi%cwfl`d2^*^a3y50@acm?2I?Dh9{?N!9#^*@m}*?}FTZVtv##{Jk>OK~?oDPP*}Z{c+z&8xn^cC5njAR8p+G=64+)f!zlo zXG_4DvB18~->uQoBHXg#_0!pNkDmzJC+krZP8=ZOpfutIPo)&=rkTd_jjhX_HDII91j1%SUW zldX6)gUtUc{*K|K;yhPRT3wJWYas+S@yB(Hctx5wV&QuA8)n0BcC=fe&7|0 ziu-IsLQIh9RZ zGG{RnwQSwke>_h`NM(*p4f>v}IX-n&)Mv2MC6`e1#UAdi{sjm7%e3#2cnM(!(JnO3 ze*Btf?n5#%v*CW<-`-4A3rb?ZYcG$QMGD5xPe?Z+&3|vTp1_VJzxJ`;i~gUW7Vcjh zI><5ALk}*Ks<91*XW$7XXTPvE1Qljp*oFtCT`$VMLwY}#aicSnbR+ZxyIYX!{@W~R zxYpeb0Is3T!G2exj|j(B9z?mhZ1WCn&R&x>Cm2?$F2=&HZ{j30eB=MDcMXRUa(}e# z-+)m)U5FbmISH+cL4}4-SKDhbUtR`<5jy*^aYRH;`n3;pIt;t^7Y2 zFhjpj*%gFMMIViszZ3e=eeA)@GI`=C)o3Y+oJZHsDT-f(A2=`uOSdrWnPQesCM%V;3P>wmRJ2#aUic^ z$4ZIrk(SWwRu~nwf+m_UbX^&GxwSu+g#;D>Ehi`1L;PRIs_=IL>M? z(7(^cKksiq3kN$$jd#T)-LWUbqI+>KIm-sB1Ida>V^b`ROjSWYz0j0LgU8PAJ!t(~ z=g@$@A7*HC4jnz+n$tKbwM4HBGVDH2+v8^nYJ?c^!fI2s3=9*TV$`rq*1 zfW8CQN2c;vKcA}ds}p+2qE80OAl6OIc^OjTOVLD)`|IW1-zsdcI@u*Ik#2s(xeA2 z{%EIM$tuSW`6g>{KZ-c3-hwTbIG#(IOo8;VU8*WBX5DA5cj&*@Y*X}|=bMj_avDSX zl~JuN2^fAgpWLZrUnkL0yNw83Unm#x9l--|hMk^0IT-l2npBsjYr?l(t=cd)ZPM`v zz|}J|Hsz$*q#!Eg$m!}gdBzwd_XL2 z8_TeMBz)BPT2QCs&=ElO0YE4W`AJ02p)?pjFPLo4Jm#yLC|GPRj^m~8|U@z9{bJ&>nnydHqc|?A@PIgx$}U6#D#mMY3 zLL!Pv{AYz@EZVCuc-D>Rt{IJ(!Vn=cb6YlzGGC>Lws1;NpNf-P-66)Kf)sWKJ9;?@ zE3)qH->rJn?mxp6u)69MwlQ;iunBczJ;?ZBZ_P_;>Y5p22K!^R|TCOE9$rwiqiPCt241jk1}^HW!a>DDsy zif?hEYWXjY$~w_Q{|rIS6jqMwCMZTg9#{T6e-lLIiJL_UzIOGpI+zIQoSTjbEp z)0yu>QR{Q>5W66_p~t+Uhs;8ZWT-M%>bRaCYAk-c{yi1qbr2(w1)fX=Hga(_F0q2h zCoBSK3`trZ=quYXP&76l(Fs{Dh?o`_ZaN69YcD*)Di|>)w)rv)Qaf+=0nG40p5qTi zjQ7+4F@HK(7pVM|CMfH=i|2|UA$*vug^4h@+)f=EkR~C299DCw=FK z@IQ3#GYayG8RznNdY12Z@1Z_hkR+9SN*ntq27_Bow7!M^Tl!@TQ++SARiXFBD#*!1 zB&y7+gz07qsTOblBRRoy38QKa^3qINt27nn^NFFJn3?=P6RdXU_L3Z1;vz^TMBa;B z=TL%X#*_~HYllNW+y<8>=diP_dT<_NnmKp-VCH}YoL(_q>w2WM< z4n*z%c6=rEmYWuG`g+tJcgf5n@TDJGy^}6e*PCZEdvz5JA6dy_{h0GmmjZolTj*Q9 z8R`p)B6|n=I$IYgeW%gjL)>L+_W0_WHL5pQXL^yrjb{e~?RCK@w}HNEeDgk%iLJL& z*!bj95)<22XVQksO=Iqwc?VWGE_9jtzTois^QY4fSD{AHY8|4^P_;-cA)~-yAj=YF zWCy9f%9u-QJ!miY)XxPPHlWgsXW$>Nv?fcI=;6PqktCLeI!VFbi#6}#@HzQB>Vsb*C9F-`>ug?0yWb@Rfzxv5# zap@}s?A_5_u&IEs%FcG@Q3m-l&rePww?kUe=LV75L0SH=r-H2KK^X_ZwH5boGN_cx z48sm0&QoG7jdm z2N7uzl(}CK7Tn3}9Q`swm@W+CK*$TDwDTQ-L6ft<9*jaTJOZfOiB~tO+`5zEgNU^i z_y&{sDKxT_81%WzS~+Y|*7Iy1I}e}}P9uLZ2r!U^j)fbrJaQe8YVP|x5LWyPW( z)AMA(fc+n7Tk{F5AL)v5rQXEJLQYP@b2#Q&6{W%8d?N)vsZV&3=X8B+2I24g;7?7E z%oij{6(q#~hKwQ`B^9lddPh8W&G%(+Kr4s5kFClhR{~$Z)~|9atucEB;YfDZ;8~o= znuFQA6P5wlf11FTFCQZ+T@vc;Ipb*#N6+m9eYrZuAw`*yvjzD-@J~Z2S(kD1o*o(B{ zkOsj<@@p!T2l?+O#Yk(;I|PJnlPtGe+PFu;fOT$LXixH%&g7k4hb?J*lv4rETz6p? z-s3xvW2^-ku;>9y`7#JloD`U)XwhL1WwroqG zzGeW!u{HBoxnBKMRokj}CUq5YhnyU{Mq;T4I+)9V8KU;;-SCXC!;f%AVE$d7MAG5n0_d;de`B+zKW#3g@RaJ)w6Dz)n%`Gd>yTHG7{^ z)3))A<Ts^@>%y-s$GIN&x_w{UJ2gJg+|qg1;yfIq68VY;bzatV2rP4) zOT`W?Mw4VJYg0fP?VGA1vnvGR+DGT4JV0|*NCV0g2bCTl2+ht{y|lZ*`)m5{_s?uz zARLZA^KU#@1kzuG*{c2ftdke>azDT?qj;6?VmQW>CFDuDNuVf(I~%eZ!T~cR=Q>#7 zc{sASw%0!Nt*hl@P~Ybtu@K(d(JLU#qow}g?#p1d7u1xE>BD-*@LPj99|Qj-tt&%J z+lL#DF#7j@`UWwbBU?o9^<-@NuZ5a$w5VB=33kNPkgSxb;Pa;CprSJRfm2%P@DTYr zQ0nA3d+B?BOPo%`QC^Ma|7x=$fnSt{Bl%Hs;&vO03->>HjG>!2C@%+m4w27GN}~3w zH3&zZYlcs+fF)@`Q&Y^Eb4b(>q-Xl=HYbP1vnktsPl{*l^7SX54XTK)xxyGaZh&qC z*;0JxGU6$f@DB0D9}dWwRiysb=YojI<}+}o&%+@Bl)P60Ndof4tTEmqMp-|4q?j)GiZVfC+Xjg11@Q zz|Nix1BH~{<8oBY%PxC5GX>l0NB12m^&ES8XZ&T`S4t z;oeFWXZvdSS{Zu2QjH(De#Y5kGptbib2cffIM2;5DhTZ-zTP^>xg9kNwElFl)^(Ny z!P_myY}hUT61h5!B~FgK@#J>R9jK!(Iyn@$65S(bsF$Va$AeAO9-8MgLJbLm?oBOt zWr1vTli%jV(=yoqv|C(0jlt^idavt!%=frQ5y*8k&?Pz*D=XgpE%7v`$w~br9*}G~ zzc#am**p+Z`F^h2Juc)Y$4%j3zdb^HdhXFgwYUF>j634mJORoBw_#L(u@hfU$WWEL z9iEpVrG0a7aO7B1a1kO^?twnxz^%mh&M?aPAL_&fce3!?Ej%Of)qV|0gi z)4Z=}2{ew?JA7a~?lzXsgHPBoddlz0ex$97!0tI`^}cgjYI>fCIDIR!yBfQ1+1!Lx zzFUbDl)%BBd~O+_km;-O%qm+~i_AROOo91^o;Wwb{?;CeTd>HO9$zzVC{J$%A45IkUDt zqw-pt_%(_MyduAvo`bdUD7~=4ru{(+#5nTjm#jXiuV6e41$^1uUk|As7r6q{P2-E^=q4w4O?yIYE<~hSLbM+?Rf@Oy=rou z0RS+JIwD%lBfdJ1ZeC@O!=rHy%_j?Jgo)+mNo!hhAF0lY#ZP6OJPGl5%HHypfNJ!I zg@ZL9tmm_LZ@~w1HGb@_w_?$D_ZPrFM|moQ>K6jj5$i4?t4*Lsjszk(G0~HkBSU3C zQ`s2?iexuzs@P?Am9~FiI$T!iHe+JWu<82#r2F<^!2{^?BKbV=caI#+&FPH)L-ff^ zMWUd#KH~2-$dGAd11dI#WfKJ(B6s@I$@3c^blaV(bX)Z)XU04>xmKj3P} ztL1EQo>%8<_sEBQgwn>pVg7n!aR3*4B&hf0E3UUfM?z&f_teL9*8^IunUDzKJILY) z<$m)?FK-eFXiYox`%fy)27TV97$Wk`faRLMT6DHAfC!5Io$tB=`U(sYSavnJ``D@$U4Mna+O` zOYpn@EpB@=-&IF&|6rCJ)IRs8BNj0LE9MUdF5Xc;FjlpFMEMl7c>%*iq*0f#I6g0C zZuG72J5%IhIm|8tclkVAQ9$o;FV9*Ahw%;_UE_v3<7y}g1uv1Rm2im6U0nrTZV@)$ zp*(gY_WBByFH9mZjh4FV{Lv9$e^7BS9>$= z>!25c;TdDD*A>9(dvAmT7C(&d>js2O9qcK)5Mpe26Y^q}?k|Ejwv=4_fRx$W@3ZMn z2}?S26VIEJ;-ov(iddK*aB3{r@KKHn4~yt_q7^x;wGAJG)R8i>%U-5cIpS2U+grvYkfwBp((9j!Oc^+vhn^pffa?o~O|| zv<$31?JI4kzzXlTa!;%*Z}&KkXvq16;_W}^kA*DtFKF;6-9dMOHCuHS)P7Pfk5VI3 z_N&?8nR+UJlYYi7FJif(HU^hF@9yq=@Ea_o=1!aI#ko9fv6xRE&zhu4rp~L^yOh(v zO+E2~Ru2rn6o+9SbM}ph{J~wP5{;-EY#r)wvmGXUNkw(bd=ix0iH~bZd-HN1FTY9= z_DD=iz;4(_&h^as9y?@rDAe-g3RNwaPJu9|>rjAYzhY6`EqVaE)ADUsVQYawhLLCP zD#l+XR^NQN^Zm`Bp9QV{wBpJ#vejan_r!BgF(Q1p0olg4BjIh{3G>bFIp`PO;HG&8 zSse1|*lrj|o4|)Uo~OEkFre?Js~qzn)Ic}2GK48vI(kG) zolx;p1()3w5p|LRqgY~d%H(}*`adm5Ps+dHykuV z6IU2I%>lw!_n#c@x^*?_(Y6jn&zc6=1lpRic};?9d}xFLUgCcH49CdK0^%*n>TMfy zD-@uLHD76C2RXP7$3;!J9}G#>EI|vriXUo-J=hRIw-s1+pgJ0W1Efhvs$Y?GbUmE| zXYV}8L(ji`@I2X%?K-T&N~Mm7MDu zTYJNUM;(;fk-9W}f^H-=#ohJkiQ%&gMk1lTo5v(^c)|;J-zJ;^06)Cu*I{`>bxfEM z#PNETs&`sJ>BFasvIj1Y!PJAs36=Sgb!N%A&sH>56O?xGsirL|)SH{?8~>;SuW-X& z|12+-FG&ra5rD6Y{eh^8#E6x~!xXsutI?6n+3z`o9vtqsGxB>^*89wgl0Q0ucm@DH zI7My~ThCrNK8x2|Qb?EdEzH$SC{w%X$z~sr+QuU9Ved$Hq#=I0e_HhUe#j*?Idto9 z37KeO1Q=Sw+xd<(WNgMBr0ZFuh`ZA&W;i+rl);3TW5u*CmYP8OvEj2j{R`LRaCZKN z)%F&-*A&%8m+w<|yA1SeDVok?R8}56VPDPEDvM>M0#qr$LQ+@ZY9w?ndG5$6dUckNK0n`C_=~awe7>kE zxw(zt0o`=uo?19n77wwz6_~h&u$)jLtS>sYZ<86vpu@=fM12KhCG#To>o%A#o1HjY zWRRb|bk9!M)2`XxJV$S3TML-+K^S4i)8{1L(~iJa%@q1R;~SXb1Y$qcC%3A{=l+0PU1>(5GHU;oiKf6) zGrT}BCcnS%emWk9XkxC{;-Bl}54Slko@Ku(N80+NtIRY+b`0h>zLE=aM&nE#;)|RH ztZ|yC8gH#Napbi)FKOY4-W1>3&|`-TZQ0rXI&H_dWhDGESf_U3@S(QE>2oOevV&4J z<-4sh912O3Z)Qcj}F;Kt6Pmph&Hb?MTjX@Ksq7>J;q%ksn-)eu#SIEp;=x+@7r+Zv%AOUME$Zj~e+9vm~Vz{UJ8{Qj3uiB=-U6+i%!~QzKkRdDdMa6yoKFeT{bISv1(fyyO z^9&y$Z{P?X=|FZ>w=U3>`(;$r#h($)Cb$sEDiewHhX5{ZFNNvfzr0CZrG749a{cFNZ2NQIlNGcHrkwTxlO{?KJ=L( zV|y#~(PfdeTXeMHJ$O9Ba6wg$j`Ha|eyt2&*P9jPnrav!7T=|vQ~7ir^T-GK$Uy{h(2PZ+%UdA z!jMN@Y+{3Oq~`GH@fJgQ+!yb`TbWtIYqYRa$F-{iO1t^%-@#EKW|C2AWY81txZwR@ zx>k^asG@2Usc1s#@W+Jn`42p^VT8;j z_+6!Tr&6r*$0y5Wc(=6}{Wr$K%xv&`WRzB{ac|fx@T9l$4Y_(@eqT4&u_AcDukq)1 z#e8Mpl{N3I-|NU`96!e0o5&ao-$J)!F8l4}G)G~fTf^ULpRj|_uo4@MrtBQ-?Jomg zUY6#jG`W|;2;P9f-A|5DLQbBgR%0v8vGu30nl~XQx;G9oEN1|XO8sL&31x<$MnO)! zb(@Bb!|gi7QK-d>517k*{765@DbS?rG_cry`wqrgilpDUPE_8whUP{tTGyvU5q7^O zv3ZtPJmVDO>ZTgAeKA!rDWUOeHAuS2f&KNE)z;&iV!k}EcUG&K%9*bX=+~NH%9EQn zWAe>`VhFIh>NTNm_ zWWXzbLmckyL!%{BY=ZD-Au%T_B1F!NOnGUGCT7M6WYqbu*$IT~S=2iPVwzEm$q_*I0@O5j((*ah7Q1feO(9V&bl-FD+ z35=Lk@W!+1t^2pacg-Bo;cH@q%Swc=ZQJ zgi)SHmAi9fuAuGtj=F(yT1CvA2Fv0f+sj*}>5O>BfP9SB@KbJk{(^$^C`=##9ZoC< zenw_bW2dDo|8Be~MLM)=K1`HVF2X4!rlAh?x;scF-m%;@(Pb;iml=Bd5*E zT~7wbMG<04-9i`=v57U~mI1N>-A!++NnLJ(f@NUfcgfgw!JEbI-zarMxhCD;?eA^qWBi#fd%SKswMY*B;ES3O`^l(D>pn!!HCEWh^R$b_Bjh8%9D^9lTm$- z_0##Vnf9znE(Nt}B24@8GrF~CAN7l7*jxi?3P-q!t@24;gU>&TNsA=4Wjwd9bx2Sm zW?^eKXiZ8Smo$)NR4Yi8Gze3!?_SpUikJShag8o4Glo9LFuS+zqme7U56-jh>~;fVpRU}y`2+9f~LZksu;G& z;5#(F`I#h!m+elBb`NP_d^e1-Btjzum&(eRoJdSPXXTHS(D&g^9@EVey#-4Ped4!W zj{lFQa|(~FYrAzi?%1}Sj%}MAyJOq7?Q~SJZQHilvF+@7zkU5@by8Oy%$jSB`OGoK z?Gh&*PD332IUh-RC7Y?8k^biDe-#Z=4fh zq_2qbHM45?fsvN(`_Vbw)hQ(Jab^FcgY{*IGw5{2^W9p7FY)%3zz66xTpxuyfu>2A z0+pi^Kt@qbJx>tim1or~k5i!d&1E9|-Bri*Edu>{oYbIgrWQyNw$s#LJpvK0Q&1#R z-MG^7H%q&M9*E)d1tJ)31p7?yUVj2A5F+nFASZlXwbZQr>u zrbvQi)~k$S#UZ9bn733K_LJ?ltTwF2c27qvdsQ{Xqxu-@N`H%<%gp>5qVGV;rzxWT zAD{*V`GkthO4G4=0OPlX&|~mvY#EqJpd|KaVoA6H#^gmF#zbVX@wBdXdc)aBr2Ub| z+hKD5{4oEB{O*>!_HlWi7z80pY^ z!SDli++3MiGL4$4ltb-L01mH!k-0-{~20Eoh}U-7L4zvtbaP z`+R-s)xK(WtbbqsmXjKN9&c`AeCu-Xt)Rfps6hXcv~%K2*z1=ccv&F7cR&@%U#`8W z>tu6GpZrm%=g{LwXO$it`Ss3zQf&K6>5pP;)OYCU>itJTPEFf%C+U5YOO@T6X-=rw z^;?slSIecHEg>N8A{KwCrCo0yyf)C&j)AdSar^-k#+|8}!}sLjUp4)D;1WkJ6+J23 z_r>G(uNf4jgs!|rvLV(tLLxY>dpS7Varg7HR zy+V>J{9n8eDiw*xK zSU@HQH%?!;>CEM<4VHFSN#$l!*+Fat1B72^iyx*^wbk4;mf4At?zYu=+DM6u)!A!_ zTkdw}UJsXhn{PzOpS}j2TN%-_52UxTH19hHyE8~ zuI4MgC|jF#OI)bBz~OM8ZtG?_6?2qb=d`l|rtMtcf!2*%d8PKTVHVrZhxslik<^Vs|lZZ@;!Zg!|VNOE;}$% z|NelY`Y7}#yvU;55tc;N%nmIUq0|&m(bzf{BZ_D^qV+eS(JcJ=o3}S@I+0MZeeS@iPS;4AC<{kLaTLDxRm$4PlkfD$JqX~)O|S%f^_=);m4?SW z&JuHelO|pNn?>EF#c-ex_5)!pu zJu&LF^O0SCrj_$_iPyO`-7R1rVO~eo+cI4Z?b0ZUIn_pJD_I;TB$S7BgaYHbG6Gz+ zolg_Sr}N_{k4LTo!uKKV%XQ^8#EYYEBD2{i>q1j@4_v%%CX02@4%ySdSWQ9ku=oJD z-1tK_B#FxFs`1Ai*zZ?Iq8yqE%%Qa3W92U!KiQc^h;AlG^D+XIjJr%@$*Dw!qz@Ui zpo6#2`-&q7Goux^o7N06bQO`3E1@GjSzG8HY3f%hv?CYcxqS?~as1bSu^K-vP&Ofd zk=f$JBu>_xrVf7nE6p7y3ndby3?WDD{=7*Fa?k6uaw8+q zhGaawH?_wll79FyZ_pcLPrP3?cn_>~YrZv?%by$4#%^#G$;g=aWsH64c2Z=y7_GlUXmg_qu)X6)`P?h<$Y+^Au(^YfOU?k)q` zzFuAjeM()c_#d(ZzNNxq3?w8Fb-a{dfx@AI3)anQ>C2(G_SM4Xvk5WfOw|V#lRRwE|OX zK&T@h{kq_S10d)y$x~Jnzhl6Kr+~NcOUO6TeN^u5zqrEaBty>Bf}>&J`AL+&4e?vUA_6lW#if z3Y;{2KcXt1;a!jCZwl26DKfSF2E`cGKiInO@MELi$+3k{3zh#KyE$TW$42Dyk|!Mz zeKu_8E=aKHc4W-}{M%(cFZF^a+z$l`kwQkF23qK8iNYn|ZG3sBs26ajbWLpDzf zH0_^}dhM<=_%oU$U64!phM!8w!}keCR98Q$g@v-hy?=;};vag+t2#fv{20gGv=QsM zF#y{Xz~30^Y#l; zA@t55-^L9o_%!Oi)SJO^++t|)iP~SNsBgTiLfgmzrb0NC`#83KI*Q6-9 zWBB~LCiHPW8P#GvsoNAD5vKl=9~};_UCnr_UwsO0LguPqOHpK%(;%tBMq9 z#gt6|?8DL3mblhzkzuNvyflL@ZYm3d;J1yMX*~S%gR@DVKI?3#vrpwYJ4p%<_LDWv z=q|=O!vKLSqGxm0!Ph0B^4jwzA6&;b6*yC0dM$IK;2v@#=jyY1gzi#q-c9b zD$HJv{X9CC_xw_CL+dh0IfmqwEHyk+4p(+uwc*7<)U{U*h}Qkkf<8PH%ucI6V~0tg zi_}PxxBX{MIl&O4qO9ikpdcw;82Q`Vu2LtTJjM)jPU3?`T2xqqlP*b22(cJf=fDOy z4!>a(%`1i)&S4>^kebX=JQQ`5!_VcjY7=Q5Wc8m(WltE&FJGWeJ#DkH`f7}7o#wg> zzZ;dY%V{}$`VzUuIe9DUwC|bpDilQg%yCYy0|thE6m*YwcrxMfba#j#JcDpIS11zL z^gdp8K)|oJdF_f{5SxtncSabHx&uLJ>Vx0d{lJYUL~8}>vG*fSLkfXd87^t zAko||c`rs{iG27DvkxE2D%&E#S0DR-I#ec1@tp|K>`IyrPKJScca3im3eaA=RXjoa zynYugdOZEki(}_}eX_oyWA-F^fZ5w>C!FI$N_=DeP!=)9IKuB+G#T1XeznsTWo`TRa()n*E{k@)c+i(8~PV65piS(}0Wr^Id zOUVJN{32_Avn0|WFT=5CHviklr~&B;J}9Z9;m#O|yj1-B#Ml;~iC`w8qr@6DaQ&(a z5I+kh^huS_AT^YTBh!=j2?3X&+`?Qbpgy9m29dU-E!=4}bfh0PL_dH$wf*PW^DaP`5KCqt+mG zM@hDv1JL+1AfKLAz|Zb>X{1Aeai`16E!Qs^kTVMgUoUq&6fSe9m+FDx!Q4Y8D2#?GS_)-F!EQrR38BIc5eMc=EaWi=iAC+ zlnGjo?(?PJWq5~1OeY%*9O$Lmi8qd#V_^%hvm$T{EfD&oP}Iagp0+Ly0lam#UhLEM zQ5GT&+5HtYyYtRgtgL2Ub)zFi{@xFzIoj3!j(dGqAdEea?>elmin*TJcB(`meBF{1 zFo-N*q$6k>grago87|Drz!4JS-l7^%p;>F-{LO9Hw9ehcCl`LO5SK2&M70K?9z9h;>>MK%FgYF?_IDm(zMvL&lpmyHC- z7-uyGHO|aqh)b1tw#&-zhHN!^UPtFHwKa^Pz6)Sv(|)PpjX_ z0Jx9W{m0%XUmw=!Xk9*;LSH-wabyJ<;~ zTpK@ty~Vh1=URCK+waEsxFJ9WCcK@Sf~wj`?l-WLESr6+LQ3($1q`Jj*ZXSj1~y_! zJk&WbpWDqjN;{G_meYaoxgp5to)geV+B|%Zu3i$TW4Gxu>=87DfNJ;acDGeWzpW3A zuj3nb1v{+yIff-nu6)fh*N2mVFIVBKft}zNVmhF>m#H!ZeTpF~s@eL-QE;H)OC{uX zwN-@bIR5b?2P0`!mV`0*h&Cl70fFAf^V3Y1wl%P^e~qx9OGD%9p+68|TcEx+Zzk9R zDrAR@{-)fmUqXk~yqEJ0sq{=lk-e$v(`eb#uh#o#9#yVT`+C>-y&dK3IuQR^6X8!O zHT83<@VCbK>(K3`w7QgE}bB##qIb21R#VGMf2J zR$x8*HvQ;~kfZqs#2tFjcomhF(MJu>E6y(Ls>JhZ1+BYE7e21w2QwxdFHIUHLZW!Q zmA~I9x5~ktfPbH>TAeoH=G-4MWPH7rBP_aHHdg3OKQ^&j6Q_=$&j#QniwLqk1!E7e zd-w56TLJA&m3B6zh3{$m;x9k(*zM2>fu@FSu09=jT`g9YjH2=ttpX8-KX{!MD;T&; z7Z8?Ib@7Q#q~_g4hF1d{l_Jv3a3a=UgZl4r02(|8czU8G$@2(|%{|2s{yc1UzJ?RSS>9U=ZcyiN0^Y z>X}neooB5|&DElrb6LG9R2=(a+QA69?L9+sHQsB-6jj_z_8o1gdf10c5WuQ6=6{ zD4`ZfmFKb>&lg3{rX|tbxX@l-%Sl;q)V+|s2>_U1u~QmZ1QlHSlXpwEKwJ{wgxP_k&Wg;G+p zG+wGsAYfFTp@ko)YaftrJ{$zN3`KQay{3vjNqY8?l#mLBNG?m2imJD)RB-pQhsmw( zDjbyU!hSgnr#GP*?sFis%z&fePzS4z znmi)u*y-qKg%T}p!TsU##du@VPQ|(Qwbl?u-X*-%y~^*B1~hu!htVFT0eCd-W$&U+Bznec|b2W0~aX?&WokCYib4)Cnn^{W;z*6SpI>zx2It>FSK$+2U~)0%EN) zss7IkuuEUHKw}AEpZw0@<^2IFvwkh|RW9W5%bcO(1s)g`0Aq4CwEL^A@XROfZz%!C zkzT6Y(cI=5^z#hbKF`_zX4C}(zw;t%IA+vpfM|@VYz_KbQ`=dH!kG6g(KYa(&3u{? z-)0PD2m&osh#a>y7*wvjW@(utr<7ME{PU>S_Rsf6t4~AIRa2X;%gw5i?Ny8i2+Evx zyRN?xYs>sWT$C`U&hKXg)%it?H`xL;$lr`$Tje@7BZ)Ow6;xLv$gkyv7=RsMAD99* zaOY@N)Kr+GQZbzPCM-+`(E>VzH6$_~J&5z&Y=}72nQvts*_O0^gH53p5>{q)a-%4f zCT2!%F$|VU{%hD+15#{vcR~fH0@;}0exO?kvq{608Hex3rK+FgCYTh*w*|7qiOnZ7v}-yVvO15uVr4a7`(- zsNM2txr~L=LM6WUOYST;9*?Z9o4YhN&RU~a6SaU|yn}stkj(Qxdw`A4;(3^=zRDd!h<#5Fq(AD)HH{#nLeF)Wo0>upAd< za6TDj_C6xogyiARHfg7=(SHd}9#+|&-)3s>oHantS6TBJYTN}!)|cYzCD-a5VqSc^ z?{JD-Lnu(`Ncf+Bju?D%DP4Ey5Kl8OPq}spcL9Zcw8-*}NJSXzYCX{`#;jf{yd~bG zRHXf|Y;@ZUKUA5+s;o~N%^^ribD5Qf`#_!#`XdTy_Axif-(^0VMEC9&4S(+$*LXH6 zSRtqfY~ef@d9*wyNll)OF;OLhs|_}2&f@W;80Yw5OrVQ801p4~x?QgEcX#CFp2 zdY*3B`uLo89X|WJpqa}uH8V+P$D6iiSDd4xwpr}@l&#+0hQX)VIFLra@u72-F4Ss4 zOO`NGmYXYu6QNz`6PFhvf3JF><@ZQ6JV4=rjrV!b#XevhWX2db$^GuFG=iX`4zdwm z0&MQPv^@2~#F$&vn>+11SKVoSj}>YncF^GMc3(PNYMag5*yi*joh=DeBRKP2I$xY; zLJ;%?X&({5T{ZaHbO~L4?tbNQyHa_GITjDxLa{kCcpsZ#C>TaR6@)?J;}3KPysgKW zRtq6RR_X~rhHMCTSf5rXpykm^AVbZh`=K2o$%t;E!iY!y`g5@71j0M??VU)GB}haI zj*6)qV`&vBG^-UQK$07Mj4<=bifn?!OIepBAPA#bxs7X75MnT2DyWM+jCn{*GJd{c zx|ui^C~oXTh#0@wZRkLeY{cXH44oZ~#s=X=QvthrS;{}m;3tu2{K9#OpMLH$-v?kj zMF11#mkHvBTEoQ5nfcepEn<&xcK9qJ_--tBC6}!O1|O*c#XBVv+E6|(0DV=7B>_x6 z#`YWk-2i#6oC8>csjrZ3xTji2)h}Kn_WM?C@z$8nSkKnkk4ZDK72D_iVbt9*gaTB` z)Br5G`LmPUZ|piRp$3JQXM26OO(X3Tp#pq0B+tN8hcbF@`ejxv_>@ylv+7xjQ?_ey*C0sF{cT5|p1Rtd6&c4_d7iE1K-l zSY|uIMWag!tNBg$2<6`mpgjFx1iY}N>@94V#xCq5$jrj&0oFcHZQc8nZWtrrhiRk- z4-E@vFB}Y{g9+KY4v+6%7pQJM@9#=~1Ffrdgc|-G0JfmWuEbn48Pf8w;~GV z_!m9&;J<6BKFwN+5y*gxajf#fG{7;YTL$qj#&8j`q@YwW)uZ$=utwmle*ORsOfv*_ zKG1CCE8phf;weZwRu#{8E{RWj=NgN%9nJ>d$K$&^?m4mBXEqz;Nttg7x%2fR^)TP| zy7zjnW!o+zX8+cdZNkfDZ8?m*TfS>o{O9r-B|G`it&KL&Jxkmgh>=Yywb}H7fuZ}N z15fZd5Wj_-6Z_sVv+opre83LfdW>z7HNsf8^QHeVplcYH+PnFhF#fIKjqq9lHDq{y zy2rE%oB%<>#y$X^15WS{29e<}BD$}efWg|l9BuURqL_@wQTiN-Y8E${PoB3_x3U6< z-*l_1b5P$6>{Jh<+qN#u5qnG8UIgON$9LaNRRP29aki?sKfOTi*(l3xsJR3g;a2j! z-Ah6VmLIiutp4t^xsn``|p9P!50*PdSYbhSXW$x}lJC%J==X-V|b8Lt}YQ zM9pquRz*>bzD1jjSLsml$4wf`{LlZg=jfmW*7Avms*HH@kx4`K_Bz-<`J*wsvPNM^ znCwISF9bb=$zaEcJ*6E!?EBtf$OBW?i7K5*ag_?quK7P&o(oTo37_$m*yG;3TiTiN zPwLH>6$qQ$zgEsHe-8Q;Fg-8htEg@sxo;xk@^QKwZ2Ngzdgu-LA?L!Kf9ufrZp?J~ z+~0D8$KKduewOuFXt?@(f1IVA>J5ELXkBRn{L-07^*#XEJ*4TDEx^XE1)G81*L$yZ zVWNmf#^YJ07{G7Bc^b=2hC=lBc!eh!+qwjSx#Ip7R330?dVXp}&#w2wN*;}YR_%%*l8>;WkTsX`9^H}uWlEB3cMIIPnoDiNfT zA-kY$m27=Th#?=k(txa^n<=2K0~>i!-1#VqQkw5fF6>}JhAQ_s`^=ZdrDG%ePe=5j zd9EhWa{v5x?h783o)`%`cKjR;S0eZ3-4||RU8PsXigZuvdmaOLf{4)7$P)}Q$=Ko8 zJ|)sCcTq7w;y*b9AHasm`#3A$R%fa*CM5~HD@o;sVGg`p?qay3w%WVb+d$^CL1)T9 z@4u|H*S2N_i%D)azf2{D7tX4;*Fx9cbFfesuK4doYX;8SoCy=PRji45Tqu=ciQ)I5 zppbr*3_Ivc%N#N(T`7!>okUXtPcx&Nb+NGKO04{E5d2iKi0IkPj*&n1@yWJqKpPaD zFQcD|A*m0iFZGb`{b6rCCSQP%pJ>C(z-3vC_2{bS)%~CN7Oc&Kfk77D{#FKfb3$XT z*j`ujk>~f3$otD7H%klSwiob-JY_!bzs0HY-=!5*!cKX@|^HWzzNW&GF3dAZ)A9jqVD^w)i^^A`QX^q~Fr&Q#U= zhe~xUbUdFk4=+QbuA7=TSGrdyj&V4md%n0gI-66OoK~|X0qkLEL?ctJvUsIdDxxVz-6Rl$-ylVG&IQf$M&Ld{;c_AmnTWpDo zc+=Z}*=OM1U7@GLcJASSkej~%lAF=90@$^{Ocr+EQ`M|I8ScF!c9kZ4n04)OCP))2 zi%5U#2?VU_*KNiDhqRQT{v9eTq#9Ex0HJgSl43)t1woaX%F0x0bd+jPm|q?>RlI^P zbxU(G)+SbLE(l5ibkiDF;#66`#%3Qh&_XnpXoRi*0cW+>F@jTI2r42|{Rc;zFfb{E za^m%`kKpoNWE9{jm1=57;C*AlGL#I=jnx&bq=^W3v3bl!E$Pp>!2Rcbd)71a{eCty zFw(7(uXJ%E$ew0t_eof5Db{Y)JhR>9@vR2W_sy8)`F?BbLt9OvN36H)4Pm9=%YroJGlOV^*}rMfDej`EN-2z1%`_~ zOmIGIZ5rdjOSP5H=TKPlH!tsJ4g|eRJg=wAe0y|MZJNx1T;>^8z;6bJ*LIilYRG&O zDn*FLr4?-aYD8SQ`Xy*+X`f$SJ$9uJGwc1XYZC+VG=_Qh@aPfKBqVf%*hrBJcTwKY zFPjmZn05TbUDjTJ9S$X-AZCH@s!jm6I@+|1Qe(^p zsu37|I0c(V%ypoD><($1?6k57j>4prLuy+5xvCw6*PXsW6 zxim|2lQKCZqI(x@Ngg;axOQe8d_n8TQisFSoR~wWFKE?O4(TOLZBEFh+mw;IBo=ZD z?G@K;?e~WnDko^#+?=lgy;w)8NrI{@Xo+hiy972#GeT<}J&xB>9m~Yn{X{D~MKu=X zs+j-M5Z28#LUON%zImJZxp+zrPoG?bsbqV+I$!Cv*r+2UI>(;#_3xWi6-iv4vCk^;6l{CR|;rj)*icj;;btv*OxiuVRJceDL(;CxeF7;AtHAs4a8%-%|j3k@4 zW?D=YH?NW+DcXQ3XJzI|ACb#9O>7w2!P|<8AHHGO(k`+RLIBfq1(-n< zwm&z?KefmYa)dS5qDrEx zK>IolZhqFR4O^dh@v;jfy5!jHzS7sxT zwy?j>iI+=9?kU)=z}5z0#d`qsANyLlRo0lofYtbXk`$7LF`EUY`~g?s>>9ktn5<0& zMRW~~_+Bqr#zSadA|(H_UORc;x-y-Ddj3DQQO}QniC2IUp_n`k={&_6O0V%olgU;7 z#jYhq(ocy)^$h=CKK?$fwaW9ybOi|*qMB_J%ZV(=r?T^z#LmfaI5H9|a_aoEc>9}? z>tsRoWzo%T!EQ%MjmT9x(mHItSdr>t^-G`IlB{NoTEg*D{@UGS1x{6QwxViR@kG)! zXZ9yH}IA%@LxrL&-AYoDBpBA{(j`7XE?psN-Vi8Q>M|kOPQmxiF@uX30u_%m9 zJg`oL9iX2}Jc@UvvkBB|8cY>#JQeal&n04s!-!hqHdfX@X4bW!V*+A2_RI-D1@_4n zh%!wMbc{7>Ajd8-4p$6DUu(%v@uXp=)gBAC`Qq6{R4PdUf^GYn4IVJ}2l^Z~I*o0Cc9*(UCQP_xCCkg+~gMVbNh3jM6IuiJMLG z>iEASg2{TRKa$3_xrbEe56Dr&-tF;siS(qWHgpx}Tpu!8$P&!ZAEwaeoE4lD@aXQ+ zjK2@)RW0hx7TjdPl2uC;BX=idBBP@7o!R5a0Ke4_q4(j$=$XiJd*aHINvj$Kyz%78>Agi&<}geg3l<25xA#&~LSj=P>9sGj z<=J#pHbt@HFC$Hpu>{Z5e1;q%PSAbqNAQ@;AvO0`HlA~?)LF85P6EtyD!cSnw_ z8xVY(2~GJB#QHd}s6Wbu#+vdWbN)278ra3?kZvtOs=NL)M2nE;Y!5lq1>t+Eo2R{LcH1bvJi3fb(p6;T-i571R%ub5*eevG-=ziIta|A_0v8QDrPO)RcTnf&8&lM&tRqV1+9BlgCCXz;vT=S z!8a|lEKn**YS!2U=ARy9`7Kqc*BI{76MTm0=icDQl9|Lq9eJIKO_oN78212pXTF!7iD^MOYuY7>Aa}|F>BeHwlCS{MC85mu|=+ zFcCanlP9UxwhdyYT-E*uy#N%vT+%95AOmVu;FWVfi}x5+<*WVq_7Qt|h!hP&ahdIaDFTZO*xTizMr0sLmR77 z1d?CmRNXLYG|41j7^A?!3K~i{U(t5Q%4))k;R)lGTyT-*ZpfboPxX)mV)rwC_Zag+ z!PN;^;y_JQs~dk6Up-HyoX9p5gV6?4igSQucxh=Nf_K}i)N8hFrHwMub~qtM1EHGm zbOqZsuSuv@8Q3^sgh4)KBvuvp<;&R*eD>PK3hI8myD&0^=2$LMqmmdXw^&RAF{5{o z|FCIsBMJjDgcGY51|pzM5^Lzj*Id%6D-v|Oippr(F`$_4H@vB2phWL& z={n+_X_=?~r2ABS$F=!+z=bD0G8&6cDHF$*-5+NCY+MCysjXYa zd4(~M|aRVy8K>hWnqwN{%O8j}j79k#fwZA3ykjnGOR zgZT`@QOQx59YfFVtE!H7+bW`K5KtjVoRM1Vp{9zC1gAzWxyOz9UojM2S)Dr&x@fxc z1tV8Wse^gcOH+fsp^^2lRaJ9_U+(u`a7fl!-1}ip63lL=0~%Sp;MDm80iw)mkzJ7w z4oOPN=_OetQ3V2UC<7&%RRuPRhypQ#CEe{SzFk(mSETQtUptTi0>7DzMtCf>c^)USnKMHvU#Ro~=Z8jJ#IkII zTJjlXTVimJXq28R8w4VkP|@E+Hj#bB3hb0A>HH_5B@LU2`Kp$~*u-dxhOM#jDWXaZ zwpXc4#Io|=wW#?_P0s(e=ZldY@}>`o(f^w3;s@hubIzDg4yw zt&EG%8civ}XXBJJu_lTs#i1xdc!_(52k|tg^<(CLy8d3Q;UUcH21~%zNT~c}4~6d3 z;xtMqiu+hbTC_PslOC@{q7f>g>arkIc)O#Tc<1=!iQ@F>7PG8~LNW9{V_-$0Di_bi)+vffiNt7IjS23VUlIbkOzuM z=7ATzoJyIZ7P@4e?{%$>(WApOZ&^)Xg7pYCeo*Vf0k-u}?}mu}me=E%AX5z0zubar zr32^R&PX@EyuPg>P6pG_5F*{|I}`%px!f{ddDhm+Zf-+(W0an$WEe#59oLV__(BU zyluRaXRi*iBTS+p89HnU3Tq12$6uP1fI%vQ6US3hy+M2O`)G_Zd}HeE{&E|PS2~+U zik#|CDZ`L~(cMZxDsr{o7FyR;T^j3#$U`l?)@D3;6}5`V)F*e8RgkHvwzTrsg`LKi zNLExSs1szv@gjAT#OPc`%87HE@blzhEhZ6I}eaaCL(bskFNer3_2fG2cT9!UI?D*Kj9Nn~2sCIhnAmtgS|biH{S+Mb|t{K`NZKYc<)zmexs=I zmXHEArtKPnE4Cz3Rvuq|ierb=aI8789IcfoLM6r18_`k(>%i4G1n)TlE%tz@GgQIg zm!k;6Sw_!oHn<&ZY(qwGoNm^@iZVr#n;qCX)7SmtHMC-Mtq%IL{UNY;S9lZ}qns`) zSI)ZYgb&9P>7@*MF<3)|lu=&V{!ms4-$%tHAV#^{;ncz~(`+k?8r#jr_zwG4&0P~9 z33j`us3w>DLpklK!bL{8nmY;!a7P-X)E(TX8z*UE3DjV|F5v6`=;~n*D-~EIsgjM* zouOmAy)0eTUjyc$9WoRvqlF?yt3}H5twrX?6)rQmaegTz5}!oJAMLBOF4n_lu}<}x z$N{h{`||Kj<;h(q#>%Iwjq!76S54*U}a=NI+HlomZm}Q}$ zYmVTWHgv!C>cFqcvx{8L)&9>5V2#IMY2w!M8^VTErI;WxJl!LszjJaHDb)PRcD;>1LrRvI52}FMWPEuY=GfC1_*-6laXcLsx@=d1B!? zeZs=PT_G%ex|QmAoJS)vu90dAPuM1g9b=QicW7#rXglGmnTi)^{jYUpS?xpPg5}42 zpx^jYS}1G6!!P;?zu-}!Rx_Y)@|y_MvK>z*QzEWA0udABbS$EgSr3zY5C4pJ{tAHG%9Dq zT@QexRJ()wQ}7$ZJqRWCu4uZ-_G}Vlq`ID%iv?*2%t)8fq_tU5UF0@Q7!8m46IEXk zUTD3^fTtQ&I8G)WxfQYFri|t#7cYLhj~Owg^;xL3b^2wsWEvVh z&!MYbPV|O`xV`fb0P-v`zA$WRzi{j>UNXhjKn*qb?JAl@b{zolnQ`fbrJKx6whp?__q%EDOlb9zB66kz;2cyQ+0WxB7fUk^W zqZf@0nwTYKPyK|wP|J#fsHhbSPkOzw6q%`vGdtoCJ`BKv09?RYvGoe~FQzL@6Qgm6 z#Wp#ySNJoJjn+PZDQl`ynh$fPif1&NE)+uL%Sr&l*v6&FVdJ(yq;k{MicwG1_j^UK zYChvS?>Gt8;v~#>QrUJI5ajL$6JSHoiux`Kol!oINvv&;Cb~p&W!fl*`j^X70FlQ=Wsc>j%qqE!21yj{n8%yx>p{R zI6TTnN>!^^G&T<@$j8xPr72!qJBpZ0qM9QJx+XlXuBEFPq5^B8ouKiLXKx}{H8{Dg zGJ|ig??YDDt>n&mM68T1>MwWMFGop6Y<8)!AVqQx2r6JaOHWH(xxhdCsJI?Al$yKo zt%^XknzA2xK^u~;99IxTdIY^r3+x=~k+ZVd&Y9H{2?wyISQr>e%k`c{l^J_@~ zhW-!m{#0KuFSp0%`{-ZC`^xop*C2gX%Lt-Y@2(hI6%`C1RBhKNCU(_-n_e9Xk2d(< zQ5_8EXx>nPmYh&pvRS&g;5(5Pt1XL!+ip1QKtsxf$SPBEe@aV`_Qlg#J;nqmJG%&V zel?jQvkh1A&8h4bg%c!eOFWc%?+t;?7l7l;H?^R%aogn``?*Q zw5Y2OIErYC(%M>eMVoypr;DSpVSvsaz79+kqI_SPoEVW3rDVWvJaT<=Uh7HOAH}oX z!qh2w%CtNaw+rEFULkOJrVb1p#k&jbOPxEbx;S-zcd1cKaK^6*szWr%^vp_@$g}#F z4AD*qWZ?hR88Xth*Q3o{>Aa_!CG6#N#qBZh_ z2uZ_oAf%8~8gu(A>1DEt$2?u!FNJ1He^ReAsZ~uE(vCJcWlbCu==up_#eoFncKXcG z$>t7;K@~R?S`Dg5uckoNKfl7Muw|ddL?-C_ z4$CP`HTtPP15*-=ab#C=d?@_J@#6H{Lmh`C7gsS5s8Ve&Ne`Q$LYW~n)!j#o+Ef$C zJ4iOr?o>5vAAgfAut8Cb1UiOsC~2Jb53saFGv5^o+|Yhork(%frqMrZ?@!p5IGUCf74sL=l1o1vP! z0jIMJ>?`Vi zg&LE=OrtQfjjn47Qy^s&&o!g46;daZ&B~UKa^WR5FIIwGNIoNWIYi<<}kYqZO0Nr-@Uj2m#O{cu zGEzV~7So-?71K~-*%~Q;^92JR=bqffxjsu$HYpIU%gv^*5v_(!xoC8(mLY1suyAQ{ zjx$RJU5vAxMw43WC@ zYD>qF(^**^WIV~_&@Gb~vV)v|_6wT-{6jJFLE}^@yXFb!B8uQV9ge-zRPfuvDtQg( z+`1rQfnf;-GSsD293mo-Kdej~-{0Da7>dKQUD^q#y>Oh|^UsDcFG7EQ@F6_XY9&OW zC7L=BtE~u!Mwa|lQufl6Fz;Aps9bu;n%UMmPs2RXwp%~hK|M4_GkOfC%VJ?v#s`m^ zo?i!sw|9=4XKncHqR0VKyKQt zxRESF=8>}X7)@0+u*PM%CcYp*6wO_z|XLSZ(!8Dyz%P^wY;v$f2Ge|gY!FuS z?t_(JX!@k)3x(rW^!*CIWe}XRWq%)6Ko${AsgmXTo?h zNLkhw{uJbK(S`);6Oyu9k!+6AL`La#YO+Vp|k&ALs9Y1yplQHSJ?ZWGWMsf;QTB(SPjMJ!8G4k#Kn;KK5XL*$da%R$5a z{^H*;_e-kNw{O)Z0Ajtj11>{SK{mUVmYLOh>}jxS+J~=PqsWmt-fo`u)f{8@%O*lL zy9^zpNS3u*ayuMhcATV-=tESp*))zo$F75kJWvp$i71GerlX1eDX6CXn zaIgCYpibRw-f62#yT!=PEs+{>kKLDS6g3VTnszDC@-HV7D$9^WFsasclQPxGEL)De z8U_gqu|C(^8P5pRSEnG9+=8@6%aYQLn&540jXN1}qUr;Xl^tw)rA#-rfOcA7J0ADi zoEX&tUwINF`{KU@vXOGLSOy`^02Qf%|2)E7nQ{>LM-XtMxZFt;(=PvzsVe;yj?UJX zm7@g9DxRqPkU=WK8&&SwsPQ4H3?&0+eTsX1x;4{Kp|bm~l57>rif-W$6gUc0SraTx z=NJTjLj-)C$4n3t*L*58=Ei{ZV<}1-1gpx;K-^_UpcG`wADpm7!Vpzu6Xru235-&V z3Q;C~l&5*_a0V5&n&9VnPohohM#SdLP;D-l3eVZf~E zk%JZ$Ci>Hw3^l4F0@!jh2{t;=n#(Q~9N{Ds9J7$ACelVNL_-3aV+f_&C`)PBMLbz8 zGcxR$YLS_ye%k*bTfd|h{pUlw(bn5`zzVDI=5*?Uj8;8HyO)bG$bPYgB!#rKB}+W< zShB8UbJ4LRz|zY{`etMrOB+t*3-h8$z%`G zK|n4%`c@k&I#=~v=~351uLGq?!j@s*nGn&7WPfhHsVIvdOn4Ym4g&uW0-6{q(1DZb zylqf+p_!0nfT(F_CsmDwf(InK(AL_ui3|fl`$ul$?*xvBLj&IPgG7flsfdJ zWciSSZA&gJh^(ZN6$UaR53^ZDXjz;I>x#Unh#FZZ<4VT@&(%4xltSbI$&T#=TMEi> ztUwVb^Ca3wd|9m_yE$uvW+$Sh)H*z^D6vvH7`nEFXsaVadhRvjm%$=3R7greXEWJe zhHEAu{ZJGd6ah_!PRD2O&wl{0c59}dzs=k~8p&{O#eoEDDzXlHS`=BjB-|(U3!<`f zN0($+edO3%=iZkbDyX4zT>EHe^j z(ljEbSZsDKb%$-=0Qkh+>eG?xC2Y$b-BeHQ&(hDc2lP=}d2ZY=WxCiYb_^?uv)7@6 zjpX4$XYyiIfKx*@a0?kSoU)ya75qgg%IT6J!!D{Y4;u;9a5e@BOmKwMrxhK_o-ww< z$DCh{xk)>#tiln=nhO5nUR%BfsP@Z3l$2~Q2|Y>_cYLAnT<$3Z!sPFWlRr5{$&kP28Su#G5{ypq?F2T{BXt9|)pL1`p5AA)W1Z*SQaX@m;^$I0OGJtF= zRuT~bl_kN;Z)KKLRu*ZU${YxN?eDUg+&w)0t0d3g-fiuLTO_m>7l1ku?PT-tSBPxa zHq>U{B53!6DDBgXJfEvSj08@GDmE`L)iAZuXH;oxgX~`y*J(~;xDeg)TmV?MIu$ms zl`PLmIj~zgDi%0}XK(2vSfphU0n$1eG7Cm=$(`S8d;akyq&~u_V^?hbsZ*tqzP+Biq4to>cAtS7<^dSzM`FeRO{IlqE}Ik_cJOl+Te*t zbW0s7S|N5_jDmJ$mSnrY9r!%8eXHG8c`f{2=HnHiy&(9dB7X!g6r~4Ik0ceYEXZw) z)Kd%szcT{;iYMK9ja!0{ma+@eDV13ts8O8HoyY*I@%V%!%6h-WB0MO>z~dq`6Xaoetq`G9f? zWh}})lte_Hq2wd-k)oMsNKap<9Hb(U%#_wxg%U=amL^nIGGa@4s(`f(vWB2#N@ZA4 z>ELmYYN_suTzRU!n~gmcV#RO=GOB#&Vk@xdyFp+_S1Z)WC=5|87e!$a_O2pqM58)A zRt!p)+?>332)9ht4vZ1dIa~z~slq@QePZKb!pe=fLCGl${j+y>A75PjQ|;$3-oF1- z(O`=Z>}5JdthA6g+m0*6CgA{`&s7*%TxbRB_%o0zVD`Uu2HYsR2q%)^QPD z6Vgt$o>JW-=x&jgS#M4yG;wjSjmBlOdKluSanx?HE5&W1VuDx}2bH0-BeoAOE5VdB z6ve}0=t1CDM?e=k2jPMEx^E@K(j32Mw0WdWi`B9;e6LN1G6UoZ&KOcAuIF4Do=!ld`p*8KvN#-I|I}p6rflnVbaRDSvd}*p`{hc zI2zZa3{7^4+?bq#q^>$e#WI!|8%`1G=&cM_1e$C?!Y~~pk^;3ZP%O6yn`TwBL8qmy zU27FuQWSg4`*&~d-hcS;@#Du2AKu@+`Sh;h6%ie?U-aEWrzpa0WDUg~hLt77I<{E( zQ%&M@EZz<*VJ4TfhKa43qO7aIbdiSkJ#y{csFmf?rXwU0*7(yD^0aATx9fmmqth7} zF78|Nl^I%r=vv6^S$g$!8E!LTMDz%iA2y(Lje#=g(EW7t!XIEYn_c@!5nwApCWYoLim<5CR1%wzR5a@%NEw_Sso3k*PWGc2gqBr4 zOS=SN6~kb=mZUt`5DRTbiHuJsPKm=xsHik1mu5Xs`ln8O?^V)p z>M?8|k;0jk8|+tQHG724{xGoOSpV$V$F_#|mw{a7W3_LKKCJWt5M^_+n1W_-MYu$E z{s+p|!QR=S2Z0}gz?u|wvA0XGCPWabPN5x38r@{IWEDJ!P=*1kkSs&)+N=*NaEniw zM3+oSGM)r1@LbBpEGnC|WZ7OsYKD6+s+CLU3^Mf~@M|KF*R-ccj3I?)yNViX_Zx4v zu_l3NulTyx7I}qJgh&peQm#>%26Kj8Pfn5~LQQexDWX!%2ux9wgD7tat4vDdUzt@Z z!%N<>h-NZux08{Ikb;IC84H{)fp!lqghj-pU686uBWZDtigG(DSVn91OPBE%bO=IA zo0K|2Bg=y_4w#sct(}(EL(~W*MghYh*RmMvqZRHKU_GE!Nkfy1M{(1dN;UFlgxsh+H;jZ)xj zrPV1%UluU#MdRIm2*_AawKOa;av2an3d2{CJ1s$KFBHSBj>DL{v6te7Gn; zv$Ht`{Rjh!LM6NSgk)J45xz3YI2$9OC2~@cmaaGZrcZejxl}F>mmHKI*&J0; zmu84T;MYYUu4@c{hbxsV@|n6)grVdtq}Vx#wp|;t03`w_lps`MpgaKuq^Yn-mhve+ zZB?(_qIsshQW3|?s7zJ*VYymC0P7?ZEuIBLNrR-pGRm~B{6o1$BHNT^E<|-G7+c|^ z5sNL65e7m|W!WzGaPH&UXyK6It{bZ}WzzCT4>da)VHxlcS+gQYzu7ch4!6$6X1Foi zK&~`u<2nb3xVeJ~p3VCy!D3qr3PZI_!m;$lyOGLy8JD_kfQ^?tolz&bJRn)lQnS!V zLM0)Mq^K^Luu^n}NfGO$)5|uyw4p|IC_^d-iRy%9EY?&zW+x~rDHL?w+f*|YNgTGP z3)Bw7b3;S-2~-Ix4sC5MLotd?>+Fm#m15=MVA;Wl4UL>bSt0VYP|x0m5d*pN60C8+ zKFlPew#Gmw9v3knTM^2{eec#%T@(lxrch;U*DO@3sB^+53B5S(D>R z6dvFq8>5Rq@FnEFf2V=_9HLo+kc+}6nvA!ZApQ^*pX7}Fb zN6{_oo85Aoff*-x?*hwT#4z&ye6 z%F@G1VVTQGc1+B%k<`8v%GKi_DR#%Z0-tpS_LkQ@5P=CJPwjdUW^|MpCzH_et?f83 z`0T)mCmRDeI>4km*b~yprw>9pXZWN8uHq2$0jN(w(j4Vxz$mzh@YRN(GlfwNsO4Zz zOK{&D=7-2KU5eS3u&@+Xm4(+qFyx$tXFbpYqV-HrsmWmg1c&DcE79(%B+90n`zlu? z7qHVQ9dsJ$1ZO}u@RSt2^g2?o=$Whtbs&)|K!k)F9kpH*idGm5vSjxiDy2pmRwc0# z&LYT91ZA`I0ll)I@b;t#;!_CObxBMe2-#zovLRijA%(pSM=A_JM7?O0eXpI5xLb4& zFD)EEC2AowmaB(kAd9DlbHz%g!>H&d>B(4Y!=@9|3!)6jKQ7&r$m}+iSL@5%EmP@H zrrjfGv~+sE$YelK7vWM1an@?xJ7aEP5zXdiqE>DM>;$<;j27ab9rB_~BAZ0BEab+h zVz6V!3rco|x4&!a_j`XpWD3ripArwNTqCj0!(W7$dxyIMU;hg9Pe>cO=jGbuv~B+^ z0Wz$)oS`K`)i-eBm}%!PKq8?4erpq{M;TP)U?0wE$Xm%Q+tr^2N{ev+~tXABu^H=NYfLt)e?migZNw$4V zb2Wn9t9rudg)B>HKD3dLw&;XVDK6j%Q8PK!@FWZq9kk~x2ozqh#_<;ypf5D>8^dO<{13gU)z0PzG%J9yq1x3G75s zlD8wsLp0Cmcvj*a?+Sdz70^cKsP+edzi$Z<`UmkumUnz>o0H9)8=i-dIzadgq4_wy z={y0MaC`(Qy&ySk04duikuF`dqjiSH?J1l$dQ)wXzmNaCeWz$=)!HVewx@-J0PkPIAPG@9tDo?*B11!0kS{H_ge?e*k4 z{4uT%1qJ(q!Zi4}tPpeij4wKcn*XyI?{1f^xz%gm75K|nK$-pH;LS#~Lv1{MLX7VT zc0CRC%*23;5Nd~%E&+r3)<(y_gM?Gc2~diqKKIm0(O#S)pqlfWCvC zPHs~bz2jYhPr3sA1I7Mp=!bt;=DuX4#?t zhx=4fzM*C0SmBcf$Rs_JOOa627HLdaA#{z&bEqb!xXE@4WdERv%2DzH)MejgKv4SJ z8<1QVl3kIU3Q?eB7)HWQQbDG80MZON-NBS)7Wob)A#x`8gs4@K{$Z;p2`S8iW_r!w zl|Cgi3lfjrst<(O%Jf{hZpLgY!E=NeiZ-5Kpw`W~%e;hlQmJ zEkddU1|ut+EX>8ibDAhWRK)9ATfMygDPRNuByg=XnR-E|GcvT~Oqzu7C8VxmqrK^{ zm?U>qS01eb(2*Cp%H>5)pHesyif^AJRVb{5P{o&s6jeBZ%%^f!J;-Vw%ylDOmNyW& z=kMC|*6(pX7xLauWQH8C3IR9)TJoWF1lvL6XTNr**S;(8cYGlRF`XWG z4lW~5xSm7I{653ULjr(rZ3|f(qY2jBk7OishysQKyaFowK518ZDJ*!#PX&w$SSOn zF`McLbQWLBNWV}p7(5KIF;d|*#x-Cp9M8>nYAQpkuB6b)LNcNb-6xSrHHs;O%w%Q( zNthBYqI(3qLraSqP_DQrTm6Z2jP0-2Q!*vd3|jtH(w&1=43YH1CZzLYU=Fi26YMG$ z8Un2G>>L2@vKl8=I_Dj_>D0*_e)}+}U};P?d$x2L1q3|X@9|7a_XP-Y67AFZO1q702 zctJY!vl!j)HSP-h*ek#tU80%ihoO)GX~xw&aa)8H+nMYbaGtb=XRE{U8}R>M8~h_C zPf!Q4J^&2Xq(>tmc{Xo(LOAZ=02_@Ou;89K1xvX6`?xFc*;kMiV@L*XHv9&jWo5@fji$P7oDyxLJW1#+gDiA2>hx zo%)3=#??ytm|{6BNuDhKb+4~S|xwkd7P zXcsw6cy8uIV}+Q&UXbq=?e7E01W*I$aw4K=L|RNg#H1M zQj+_c zSsJ`B^VIB9yJ2}RY1qjRkRd9;VnAk^)gH?&>?Hp33M$k z2sokCOr^~#fRsReoRK)4om5<-G_2)z0{P~`LqWyWWK2Gv+F&_><@?nzv zH76w69q$T!jVr*P9^Ke7{R6a-;?NCNGt4~KPm38QG{f-J5`d9b4Q-P|lor3W?V!0z zlwyxeGnw{7jAc4tVsQ+01OOc&@lt1n0*$g#9tvFo{1(0TU4c)!0^Y>g%$dFU{)c>u#DAD*ll z2XeCWEzGp$lY)#0=4(c1GZ#bB1L;6ksJ=Z}qkKZ)McQn+826EDNh_3Wk$mt{9de^u zvnW<*QI&h?#WbJ!T_s|44>{kO7s%qAx}~jwqN?CCcm*wv2~o`Z4$9X9Itb!fS98jz zEnNjElRK2A>n5{wlu+YZwiaO(N~<1e5SKeMtB39C@1~^%mC|D^)lM@8neU2_t|uRL zN8QJ&K_U3OB_teIhk-t$@B5lvI zt*RTSkw}>SNt-$qc)S|B17#yQ0w@eo$!AVfC^aej`nxv2#h+7u4)BdX|ILXVe@q;o z4dpz2eP&?X+OX;W{6-p6dw0Am@YkG+{K@qxpV2iY)jbc;PW zk%}b8CJ4TKumeG=Jo33borHp#>Wr#2KyV!!O{%l73cYwn7{g6<}pd1svGY zn<^kqad>qF$P5fp+XwdM`lA#QHVeY+vyY~T+7Xeb?{zOuA+lh!Gs-!bF9LPI>WifH z>Ls8g2Yll1{!~SkqOP8q9th5~6Xl*QUTh|C_#*vm5#B~Vm3QqL~y0uMETym>T7UkXH~~UL@B5#=b1A39*seG}tWG zAay(-Ql_;Cl1JQVCr%3}HEGhwNRdiS_O!*Uz*9>%W#e>&1spm)6du^P_~6h3`T7`1lrx48V&vx4-yQD?{3t6x zkv+7k4E|vBFhoM8G;{nAJH#KO@mdka3Cqhke?xMyXx4x^aIjWRz!bR{pH@RiJqbYS zDv(JTGAk6tO-kC#&z#jp1W38~U4ak10@%`Pr)FQ*+-Tdg{b{w^gicX1@Z(#XPYyZ_ zIEi1Kh8|F&9a(SIzb32wTL|(|O14 zUKK(e!o|(2-RaIwDrQ16G-3@;QXtvo7+{`boCt;uNsKdQFL@?qCUkD*76` z5@K`|G#6zeNTUH6!AQ?)PKr{cU>$ZH$)3;UR?#D^nCvbYszr(w5ndE!7eKtcmg^2G z5_=_<%<;Rnd5iB44tx#}{=%RXkxoi^9gIkj9YBQ-aH*v`-WB+Qc7=;~5UJ30psR7JgKdS98pSI6wIX zZm83ojLGI9bDg^apJ)ZRg=cu#)5jJsM~}>i=E<9e^P+KlYr|0i&pws($)>=$bfN&$ zN2i2LuK>;!ppk?2{FNOg3_uy0ig_Wz_~}Qu|H)= z_@I^(A9JO#g);3*vNA=RRVp7;(J?m1lB7P8K0ZArSz?9|jv&dlkTb2Kwk z(aURfP14qD04)d6kU}Z|pHIehZ}8U@ml~i^)Ot`hA*WK`G!zI)nQjkdSb&03XaUg9 zs|er}*=Z|Wfq)Zl%bA-Gwlb=s;<<-K8&X*)UOAjR^1clTSHQNHg>?c&QpMvzIt`Tp zauKi?=5bnfnR-2qIccV{aOI{zn?|8uPv)kvbLFG&P9Wur5o9BzFh*aLJRAjyV_?Qg zAeXfhO|~K!v*=lj#fVZRQ<)>Xq^*)L3zmi*hYK56Yi~Wk z4iO2H^W%4I{TAPE{%_y-1@a?7p9&|iJ}D}I7~>(0bA%fHS&ZDwo$m_#C@a8Syf%LC zYG8UCKW!*F9GPll@d=O>c4mMMaGHTR3T^`6^7FekhZdP~f;le6GAZ(mTctaq?<7nz z_g}OwqyvgZgPz0DX$FjTXw$3VKJE&9x)nHfb9K*)vu?%lASSFSIWIp<$*=kN)`k;- z&j~n4=$x5Cv}}soy5rWn{>}p)Axz$ zm7**-kfBEl1H77X;8l7UW|xbr`4*F83yTw%WDsRA_y-2Ckh7J)EBA;!3p9rJ#I8 z`ZdA|R`niPwzKJ>xo)sRu&uQsgQP(qWW$KSBr_p!5$F$rB;c?8w!dAxGV5utpJZwCANNs;4OEXZ`kYS zf>9?QB6K=h#tT4XqqZC3x3&XZ4$S4sF+iv7&@>ZPY>!r(q^KL=v=Yi(5bsmb7omgJ z9A@0%uD~Z*0d3s9m%WvbY2vU>k2fl|M%{UA&d0Yl9}13h0~{VM>ZFu&0*rNhfYYHI zCjb=3Q#r~|noeC0k>>!%vmd+XPLjbUG2kKuXO4z&6bY%kT-M4L zxly!~c!F!>In8Pam1%`?bhHBsrtzs6D+x6Z2Ub1BnFty49n5?c4!b-9D^K7Wk-F2n z*#Q+VpIs~*$iszNZirzzHGt>UbV|Mcw7{TYyj)%nS2W5MorS?5P=?tko{eQ}>4>)g z7Lw)^O+2*}VJ(F4%&W*y_^d34EufcZ6Lyxcx%s)7rn6Yz$hmH;sUdAZak^N9F^iJc z3Y1p>u{Wt8Kotap>1gmxG0Fk7zFMn7d6AGue9>v9e}^TKEP2dpQI}D2IZ>8yyfkfg zO;ZR-gP#^F?^eZZK8(4At=W_nKMP5_cn}C3wq-ae#uCTx+VbXp9>@xvz_tga)k7I= zuha#{{3M^Ix6Qi(f9?vLTYUdosg(HRk=e0#7>NvE2m`H@9Xxa5?Hiy^TUL0Of6>2d z6FOWJ@#QpCq_b{kWt0iej9Bt9G9b<68C}7p;0~DEMURXq5o{3|cf2d`c~{^IKL-6H z0Rwl(JM5v2BLc37Z+_RN(@7l`cwXSKK+ptyWN8MEXiO+enVn3dVkHzUL-KtR2__Yk zGP?slV3!X_bsiiA)Tcr{n%O={t*sP{g!Umzp=Rz9W&6(4Z2Qgka*)tp5xQK`QP&;z zjf;d?53eUU@7|xv`*DH3V466V@`XD7u(T!$?x6D+EDbK&?eW@S5d6(WZ+z z)gi+q&K;G3F?cDW<(k+SW`wy~t6J#M)LpnMB=9l{8@ZDt|A0_4C6OR{r6?;6Db%Cl zH9~*&=Vc`i0uu2Y9znfwiYrid7^#zV1^k+>%)H9Tqg_TXNhe#at4!AoRZ`Kl{-)ER zt^wJnsyvL<71cPLB;}i=I+j%ZauOt7XkL*r$pHkbc-HoWs7-73Bsjrd7Q_K+8Lb#r zf>RcVFOVQ3a#~W*@}XizYk4(b*2TK9cFl-te*CU&eFXTV#P|Do&*z6i-v1Xxc$51h zLLU|teIXbE&e#Vs(ye;F<6VKjYz2Dr`{#lxTPhnZKOIL*4pLWMXIPTcijO(g5+F$5 zR=%~xZT$j(1-Copwn#|3C)tiP0mgP@8{yQ^DfI@5$QeRPAqF+w@vgw^U6m=95oe*e9(NtqJo`8K5b2KYg zVhl$&x$t)ad~!q#tw|(1!BaB8sjNX0c!DDu29c?_B+6`$1b9IvqXqOr)Veu_sh;#W zS3v0;i8J}_kU|xVU<#c4MXUf+@dWz50?`V0H1bM9q9l#u#cZxk5^6B9YZb2^FM^^` zMM?&?E|U&oNZrsfQpG!MJy=rh!(I&gX$4Lxc)Vg^&al`{(0voP_7>RQ6NG-MFJBwGj@M?NP6J?q0;CF zG14^KaiiD1EAZ#8Kz=YXGyfRI;m-$LLN7lZ3^%93MN6_W#MriT!hA?HfBuGK1S=FB z%!fb%Lov5o3O&rsCw=_~n4;CSSw zVDTQooSj6cPMMjRS4|@i7;#P`FHS0i(uX7vNmg!+ZKO7G`&J?pq6$qpE+Hk@Q3ZNY ziAr56$imaum^r~YfN85lgE$nBsVgBV6prH}uA#sznjXClNpvB&gfLVB^eA=eKv_iM z7(gbP!3uIA!!S@>)QzQ*<-IC&NQp&&aqzNgP(zU-Al?bRhJ^r}Nt}pfhEB7hV>v{c z$HFQDJXFMYPn7^t(slxpoEErdnE{6Ku7{*2iM5#Odf5n+;h=VQ8SuYc^dV%yLXm0T>)+Nmkr-Qc6kH1 z5jY8~pRwVTrAKbNyyIJ&&jmam)Tw}H1RoUYoZ!noU%ymJ{X-bRi+fjRB6^F8*c3ujRSds1$iVSXsY}cX=NH)|2 zgEc@%^hk1!TFo)lqkLu~0)reO^h0Fxz9)#}d5}nUveYb@fcoxS7dN^cU^q3!=}|pAe%H3&;>*^Df(*Uy zw;kh{<2aEig#q57_B!x^4Bh7)?+X0YE5JRUjXzGT%>HpGmq`Dp$a5FVfw`HqA8`^2 z(*qhHm=qAMzO^x+s77<+?9{f0b7rOtsxERIYjSG+x8Ru%il3c!mP!Tk$f@Bz?h1VT z74Y89k4rV2t*ze2j|Iw`D{!ZYv)tob+i|R@vw?j~eGDqcu#Ou%n;1#N#|j@fEab$Y zGR$=HVdWHDq)84>s?2xRqPt|Kil`8h%gPz66HSx?Drm@x|j?qbbJxdvcJ zkmHUMP>l3tCZ}-SO&ho+un#g2D>pu;zz5WVr4d^eye6Z_^UAUhZu-hPkpxhnY`ZL* z(2JOX?xr^f+SS8KbC1eNjaO;pxd)ig8B$w}P?Q#FQtrChUWPU0RfW)gZgLmdnFXei zM?4L%o9BJ@LN2Y9ziwlpi<@PvsHI^Y1Ue1TXiqB$#z5GAtXo5&x+{k{>4tiv73SzN z(t)`0$iiU5>(xj_K*xQMp{$Hi$|{4&m;>b`E7Yb)gWyEO?>VW4JkB5EL!cE#N;(sgZg+lb;@8!-j;NW6gjU1-H5nXL9gUX6jD zXB!mRO3irfqe7u)?s|zegIv-Cy>{5S*SIV2!B*hd-`d6KFxH-j3hVINp^s=;doiakA}OgR(7-!nudd}Y3p)t*R;Lf{+U%*(?Dt z0Rk9`@q!s4J_>YeSbL|u<9BU%d)HfhztOjW_xwa<(>vntatqVr@dtInS^nVO20>K=O9Rwi8DRaK->`&oOcSw7(%q35rlL3es=SWnQMHSw@5? zy+%7S{Js^&loISg7sJ6#zxG{$kGulw$6|ie_9jR3x`F&)G~_0CGXMY}07*naRC2(} zky)c2n2&F5eb~eCAcqAW72wd|U^@&PJ$RIG5DpRnpi`nDpXtb85OI)PuQSU}T=!94 zuR>RdsubRh7SRcnl0aseOTi*O#8%Ygk(*9lF{GESMW7uvxq~kX85PNlEU-;(fikSt zP;qG2Fc@;vf;5n(xLJe`1W9!nbLj#WlY}=z$eAf(Crj%NfI8v@E>DkHa5BuI@h zx{1wwz>>Gx43IeukbTzf(kTJ@j@Z5+1 zK`X4|4?di2$DV18+B{ z&yA@8j!CgbiRA`iLR%GJ;Yq%dd}CGs9b{h0lV77A1C~!mgsy1U!DvO-(Y2f-!dM0~ zvS+3&l?;>Y5GLHJE4XlZE7eP3=1EZ=$lQdOP1w^`r~QUBP+1}+jiHHCIZct%L+;Sz z#&!E@sldIE0Lf!CkwI2a`ClHD#BuV`N_n1?tY}^(_Jg>)&fa?za#Bz%KoUlk2$`e) zq9-LLMFI1I8KYl=@OY}VMg&kSQtxiH!pwiL*48rvEDO~{&kX#6F_o*1otD`)00vS75Dx%--5|XR{NiVFLUS z8DtYo!qkKqnVCKVxP2YYAyE{5Ya52F8UtaDO+`BI(a~*mX4pchP>&swShas-7_F%BV$^+1C$-DiBvwp|IW+Vt$WCOegO3Q1*m z%W6%hQ9}a^dq5fj3NDetkOQB+)pwQKb#;o@z%&#kfOh?Kh;(4xz!;_^b8VV=T=mRu>&3n6^&> zAroNBY(Sic>%=?V75I=VP}`L|_87E>G0Iw!W6RJ$2A{2w zcma5{BwI0yXaQ+2D(C%>EJ~|r$y~!~XhEiQ6>Uwp2oF0q8dXKo4AT=@OHz?8#=Sej~3P(+mXKO8x%mRi})+nh?kdV-N9>L0oi3B_|_Ds-;j5ld5L@EQC7s+E{Sx1OvLw=#EmwpNsm_*Hh$GZs%(``x z7GR?6$M4$ohL4e!2ch}YNK|Nz39pZn7qdBSB#i)uk7m5w!v*dN{LvNYU0lp<$L+a- zh!2NfJYLYE=u*TfrXd?hT@H-XkO?LxBWV7HWORDA<_ISvGa|6tpV}Ley^wciFwSvC zZ)#Lb4+TB$4A_e@zxx+>$GZX_a0T|3#ip(n=aLf$b3Nk@4VF>GUnm5gziZQ>fk%oy zDCmIEhlq9$!{-bhHXJCZ4~xyUDq=cxkTu7ia_izKa~$#k`iTixcxBcVBxvSMBZqRG zQbw2zJn!CTKJbh8xG!gV8sPz05y|U#$7m1As?kR^2f|m_f@;-Huj8T=_Mlp)I28bs zaiIX6j0rAV#W36nFsuYpz*a%#5j!}9A8RHS(n4pGUDa=r3+$;H@KmZ#HHy(u;jUScvQr=rL2 z+VlaC_j=BDYLaDNZae7fnD(H*m+AH%3F?&Ge&pS1$V!O1@~B``le%V`wx z=QTW7^h6mmR%XP@-mX#_J3?@NvH#`&oxFc{wX$T^xG*~cHx65V(3)v#UTBDCM(B^b zkn7;$#H<-tT$zOKa97|%u7J1f{CI4uI_@~Fc$jHt$h_{6&|-c0ziabBVVxJ|%mR?- zh8lP_>hoF!`i!wo7L}kglus%xu+JmR-2y6-4qDCzrpA=EU59ftk_tzj&8(VmYWFFy zrBXf&-$>kj=ga}Wo}S8y(o=|jf@E=to-`LK7!mO?=4pP?GCS>@UV;QlDFMmb4Y)MI zA86mdQ9u?_&&b-!@b{B>0A8*FL#!AnHQ+^p9-hQfO&)N*uH8tQjDYJrTq`n}A$<+8 zIHpxcCPq;ag(XcB>6G2OstCFW((H7qI}s5nH9g1~0>A3|29Z+FNUpM24=oztDPCYSyi(uB%I^0+gBlz;-4l+2pzQj)IyPim(L}x`OjC ziEbc8nY2hUA;)XU(X2s_iUt6&WTNPMU`G|9l=YBdJg-si7b0R&7H%7q2O`J{^*1Ef zpSL<*kL+KHIO+A^H1{gX)> zwG@c~uWdTB4%CtTf7c;zq*mjtg6&{WjP;|zg#W&NSRsp?K&0Ub zc`}GAOw?-}msE?!nRN^YoRRXON#^bUh7Zg0@_Tu-2x9ee!n`CS=osh5K!qGsDe#X*E zYLpoZb)+blWUJq8y_nH`wjHs3`3Z`~>ZjaZEn!0gPLgw@+8rdu!26jtX~()`Cgr4# zVFWINdNv4OQkE5^2zNMXf9>n{dds z#B&_5q|K6AXe)smToqN}O#$$hl7U`xYCt$&iTOeh*bNO4z-Uu$Afg%yx!OvIzLJ(a zUULf`&TyZl+uD6KD{kO8@Zj!Y1ccT1A!gwH z@IGu~+&|#c+}jb91|#Otn)ZV#V+0MYPjqr1&-&SH)CL;O+@w`wm@mmcdff!x6~Fvb z#zAT&4W$%_Mf!>=&@=z*Xili|OHD^jVl(5&%Z8%p=1;!+JfR4-HDoG=!Y9;M<@5&L zg!!-Kash>NT-H0sf@P#8Qi7LseMs)pFm?6sU3Tc7dNt#w)}p(4iCGI|@J5%dMNced z91O^a%Kx++I%B3e_NtyTM0lVy^16o}KoBe7Ni|-P)tcCr3I~WQNujCQLUZzB28^b} zH`7DG)o_O8Mz8>iHJO#)5M7raMWcy4n=tV=Wy`Rw7uC?U#bMvX8p(^3-LEHSK7y4_ z9T6}ltuKj5&}>(DSDixGEuvQD(4d~_`_M8wK4*CpkBt}O)5CCD&1{P@6WXF^Qt+NO z03b*o!KWyOx`LO#J!(kKBc^?!mr*YoSIp%3;aCK(ldaXQSy9<=YPB&OgEI;bCoA^{ zp#$akAmD=I5#+Z@w(>Fj+1J||$edzU4XCNVvDm|=FCredr|w_kyvYEggT-@rjU&+% z#vLJze5+DFSX^1F;s$cFK{fq{=lh%p$Dwu!4`IH)I_4BL3}S~kN-U6&ws>YgwB z%x3(m8o7ZKjOU8y>?<*u{a1ho?}B0AXi^|$Dm9mv{ysw^+|&7`%xU=UFeR`(VB+%! zEMeDG^fGVQ@p}khk3fZGaq_d`C`Q8x^(S34cDVegXw%sy$$fzSkaY9L9 zzU(%%K0*YZO|@!C>TA#?tRDHvm6xP5)GU)$-kusxlO9)`hOT00B8FbwR-(Ta$TdO` zerw`XG%6yY->X>i&c(oqGv9pOXG}m;D*Yf4U*|L3G%Pg!#cQ8})^Ur2zE%E{Xq6P% zg(P7pH?79I6C%!*&5Q^Dfaj2HOPKi`Yr9FZt8ST6%$rwGAeD*pdv?)5`st|zajhn} zstWMpCk!Gj!b-1+E4Wbh^$vlKgsjQdq@I+aKHa?5#ct~w6-x-PWT@*w(?TYxe zV}K=6R>Zw}BzeuY#CSE`UuMpH*un2Nd z>R7WBai(fJ7{Hc($S8&bvQV1DTFRudK4Y!hTAm4+NtJ#cRwEJb32ottUB0%GqUy9OW^w@qRIi=&cjWVVL&rQ8TwBJ&f3*^&@hZ3OmEY%Lo zbiJ#;Q>0hZb+eqV)|(WlE{QGfEcj`3QF5z_3>|C?ylf~^BO>=lY3S_KVc9;4m|_Y2 z580N?(b6021*);ZM8^>-&R-+vaDis%KW8Dd#<*~EKWxwnu%oL(eKz&4XS4W;C*wEx z@#kAkbIzyKwQ;bJ*uC9Yg9zR4VU*He#>KdZl8v;uM^8HK-_We@IGM1^guJ9N@f0l{ zCe0jZsHT_nY_dnQMM2cf&gQegpn>3u$zLw@A)=_hkKb`w+G77*)ur^HZ$!cEqW5<1 zF@@jg)sAChmb&^3*jfL;NC+JCP_unYgqkS%>4+u*8AE~N2+C5&r$Bk7TCYYhB#hRO zq$0GxoSy&fmtN!Q%5Ek5>?$7XQEy!ONE7|4Fh8_RQ-&{J7vXG}EY77Ufe?_zHGG91 zdp&276GvSTYQzwF0oB<_Sfw<4*NK>>=R}3`U%F}1;QjMl5Il!w76&0W)3E}TWNB~Y zl7s!B)mlCx?$_D%&h;JRco!9Lr+8Dw2)=7X6lKg0I|>`GoHw^Zck5BqQBD*)lceR8 zNFO;op@YHE_(Bvkd|?9~|5yXZ+IofC!WqCVq0g%-+j0zvHho5g7FID`S+-oHA#H|D zoz@pbFWywlft0II&@6fWAh&_n=sZ1`sr{hMw7lbjzjzz>90QLjZB!tIusbm|_A>c1 zT5GLh3X?3QO3ver6J*5tP+ha&pFD*(Jq>5@=!^_AoL9B)-u`Hm(BQOn`mz(3=j;V9 zeeWFx51ix_Mf@&$9F!|i|`dV7@>nxA{BO2QX$og2^HfxR?Uds*DxV0 zSb0XN4XFT*J5Dfn5}t*qu8LAWy+a2BZl{;|W8<}In*DZptr%f>zk%u_VpEWEdzy=1 zm26FHPQ#vwqIL!SD^YstctsVK4V8{*J1sa^Uv0hUM%N|uAt?tG9N;_GS$Ff zj_<2+7g|=E@cE#_6B^1Ox)a@m1xPi5ZT~B)Q7FHby1ZeTe*c@Q={I{BcBk6&DYK-^ zQ`^P%yqBNee*zrV3F5HA91%-s#e^jlUWl2&86izZAmWta$h@_a=DFskbsxf(5|?ul zrD8`Ra3CrM)n$YX^dJx|0CGeSYNot8?Oe^MO^SDs$ku1*l14#?{*6UJQX(uFT~(Xm zW1})e%XcVIvBsGukQN&fCZ1H;ux%jWRLQ~3vle7QS3v3nxs|@+Es%FF)T#{og%eni zhJ5w{oe`OZ*jYH1CNL8wPnrS0;U8qMIj6UQ(&KoaaR^B$n9gm_Nt9YDy@I!P<=9>h ze(P=}RcAKxGIJ2KMil^+hg)?z63T$RY~Zlh#wRWiJw_tH+|97>s1|0OCG!++M9--^ zG1;_{T~~a!b6l^D(?86*esJs=YoJ#i?zY6etSmj*Y$)hE=u&~`6khE(r+H94hlK~dYL*2`4 zcM<8kgm3p)W^c{mdb9(@J4K7UgQB}q)1krlTD7(_p>hU|2-N~j2x+C+Cm&L5+H@`8 z48pK`Wic?vQdEcGW-8F#yB}SI`Fa9!4av*S53J%1V>(<_`Cw5MtEn#Q|As5e-unD) zuSECn1$Me=G1;-nC}k~LZq1zV-&jT*!YdovFALZraktP2ZJCdhKKLRgAjAM_PepO` z+^G>3+L1!+I30X+E<9vgpe$CtIy*+!FGQVB{eBkXLLc~Kng&0oGnNZe3Rn~uu7Igx%0H@juk>B;2RPhn z2?U-v=SZf7+~RXa#d5jSNeFix^854*ily)Wq$t)%=btG$A3uG_&YsI&{O!~DvGI3& zF(eA?WR73FXrRe=_^m5PR(rZOsd5$~u+BTNLo%`z!<=5A?9=EtANx67!b*J%BA(po zgve*LMnh*Aa{y>ofpCdq5L*325}+xaHS&ndNwsldEQ3gkBFrp8UHM)7AB$d6eL z615hNP+_1aS2DZNp_0GKiu_tMK|i^jp1)i2iMNK$>_&9o9KB)#y8_GGc$h`|#{Cn9 zv04ne`j+Ps8lMTO+p0xF46RrKFJJLNSu~|ErPbK*k)TBmy0|$I-5Ip4Y`BQnWE4{!AW3+442OA~=UGq+U!hS;V?*UfP9GkziTGPPqOG~4G#uhVzC zE5ty4%Z6ILje$g&WYftfcy+tux72vD-aWJxA#<@a(Qa9t?6*B}7HA>QtQC9w^CDga zHunU7-Z|4@7^JPhX4-7-DEeI?MkCR(itwVC>UNXrk7T9~dXKZ$gubv|^&$Lw_R<$y zg7ZZ`#rw46>t!Jg-F?(n-K^gQoFLk^|1#ZO-PU`n$t+V)+!!Kr+&pCLNkSV`Ky_HG zFX^;ViYPNYwg;NqbRFtJ1TCKW`}Rf=pF%stFs}a8cb}shGh5Gb9K{c5E@m*in!|=G zBD}~k{$NX~WEpkF z1dTZ=bLoIF>MCMd}ddC09|xlS1wOI0un({DQ2+t-1|2d}#q^`#F_y9XvQ6 zS1#dm%l2rN222|CLt9FG&ss@vMaw#rp2vmQ83Em)^2R2BY?8YdpYU$`RIwP`BB*DIUVo z$r+Zh*P~#Mmn}`}IX;ALh^0EpFDcw_cO^g2#q~kPJfw#$3h zk3%M(;qNKyFWBECESD%h)a=AFu${@h6%C=`3@d_2IesJf}zbUYDp%>T`n9# z5fo~rGE`P|8vj%R)J(dM+GsA2u?a_(CsIbi-6^ivka+Oqg&gw-bq!#aJI&;Q9Ib8+ zU@*NI#oSd8kyk_;ilu|9dCESstIlOk5^xpN%MS3a=>6a?u5xEF5=yAbA4x|deHy6~ zv+7{)NqeEvsBBz-`RUhO$cbL0O1zD09iZNxUL_Cw!c7N|mRYzK^+|aYd7T9j#GLCg z*?;?-nOzPuiiCA16VV+7Py4(kg=eFedj48H+-GGM#1YBhbzsY54BcY>jz-Sf0_5># z0F_*M$n7Tc+u5SnX9~6_aJVhwM@WJRs;zXH*QL6&DwEYg?X+=adxnb>M6rW+8?Ge1 z%Rnh6;K=KdLJV2Fmf4+MIj}_Dfs%;s=VY4S-Q{DN5PEA09}mqJ=c6}Cl)*0>EAGGe z$v!$Dj6{S>kqu&0$=$Mjv1=JUEi`L)xfn@NYQ56nU%(%rrQ6_Vp{6no3(?9z`_b zS{s0k9(b#|G=WPK3mV6Zs%&c~QL{_&rnk`o>O&7y(xvH2^FMn(k0gl|mvZ`3?Pp?*r0HQ>aHS`1gNpeT2 zh)JNFJtbSy|7!t|OuK1Y+QbY^fXaqa6J8{_;1seZ6euPm?K6()g_WI~0jnyN0sb-; zb&t|^L|LhMAr}t90xZQzNl`WsV7ZJJ*=Cx}!P4mp&%6+nk4j`{h`8*dEoB86nc>77 z4GO~7&IF7g)A=<%-m~H*2krZfbS?eeMMNx5WOpf=leBX1#v8N6ks^v^fs99Q$49GV znfT2)BFkA$EQG)w<(uokSAs^9FW-Xk|BiOk(4UGsN+57~jux+!JHt-uh%nYdY+#`O z`;E}bOCmDiDnkl6AGgusDlHRs06l6Lp5kWXc~ICNip<=M#tBo9&vH{&R+oADW81T!iOH!wR&Y<%QsUbrMC`f zfmk+%3m;_eJ>{Vy2ZNUoaBT<$XbkUj^?*0XA~EzKSy$sA`=Nbh zUV=gIsm!s4zlkSuYmWY0zLuyY&fZW_60t&qE7;I=nAj$bSS`WjkR&*46jq(6Q6$d5 zTWxVZ|Kt;-Nx#j=Cud(BTS4Yrjl@!cJ= z*-&M?{qW&;^W4pku${Px8Tkqyf{^(fTxu^IH%XCf?Mlpb#bkB+Py>cfSJ*Iq5maP) z6|SawMT*Um>;fssxc(Tc85~__wxs4D7nRRUo#c%b_RC!nU<!u}f9K0W%=qAps3<{}ugTRxjkok~ePS_&cT;g2*~+!nrP%9f^$9Hqk)0Ot z&HV5iYf931e{_*W=A*WG8n|VzMiIsF03DS>xlc$P8zJ!x!OEKH^mjfnG_RxJ~Y3Eu8Oe;$J(uXGbA zS8!130yxsQA`>)bkv4Rg`LQ%V?DSh|tr~qJtK%oM?F#SgwJs?6D-E_AtPc}{xn9vN z#0?r3{S9^6I&xQR-Yur*SG`l&OCdqS&y2u3n6EzYt9FKiEQ4ai$-oatN?zUrKO47v z%4`(ZkS<_=HqdeX$1+AXl_;oQs$D6-vyze{(ePmEE zL2b2mx;khf(YsNKdMYA2Fq+=^set74I8FCe<6dTFOV#t;KLxUOb9i?N(CT3a9o#`3 zzeTCq$h_#<*i~E?LIQX7YrUEQF%2-G6orEL5zorrjUJ1}(I*T&CJwi_I+31Op|r*4 z)q{)Wo#q7LSaxK(At!~5qhR9V?A^%q%MgeDn2DBn=JI%=kJrr5q$l1I{RTuq5ji)N ze*e8yc-h@PG3IEk7u4qOP!*gdW|qZyeD4i?6$fFU{G&7Sm*(9v@wC++2aP+4oR}kL zR&`Ss#B24tZ13u)%}ZEU9}PXJ2K5^T-`+oON`V&uazcYr6ePld9<>g4-;Fd@seW<3e$sn{#=tPqfF^J!^C3cY0Wsi=9 zl8;qs3US#CW!g(3FvZdnc_cdoBlGr=r0b7wkz}&>Lc%A<^22|ia?zB~gJi#A-_JE9 zNXR1M0U)p>2LpwYwn$JvsXOYVRD4um?aAUvGJMY=Rde3KZy4q+EoIqzc$jLF#6x{! zfPTbDPF#jRNsattbwO8=RVzZ*PZJD2f}MgE*=enxUiP3w&U^dw1{t=Q-G5wFjv}(z zAr(SAg3Qh)zaG!sUGW8#Sxn|VjXcBCG4Oh2TvuA->PnwnRFm~k=>C%w5;sr)WSSh3 z@!#ak7mLB({hb!5%jfp(h_*j9&(+*#UhRJf;TzK%VPQMiNMVQJV3K*_!B^E0Z3J~} z)Dui5>IJHja(-9?7UsDu5xI!~a2-UKi&QC&V7XQ&XO~8QB~VFd@1*rCd7=v6X?wAV za4S@0#1P-FfAlpX%8nT$#DwrhF3}JEG9yEvOr#)(gP^jMScQe~Ii+0BlwE|0P*|qH zg^w>P^;Foop0{TWl*5TnUhjA&D)zjJCWOxNCis~cZFh-KP{MU6MvbJJ1jkamlg&ue z4QYxnw7x40DS2B|*oTMpONUK#VW6VyZba`7?9_9)J;XgEB*GsXToru;Q*uae6_5DS zR7?Ks33Br-e|wjvnv~ZZx5G|cICfC*6~bl0 zL*}w;)F~&+(vRe2w|QySMMizBfSV>DU(xtt6@CS{@+1?jt_OaR_ucpK+6jf(H}(!5 z)NeEr|8(QjhDfDS@Lw+SjMIPl%JDzA?)>pjipWo)buFS3()VK5Fs`FZK{opJ*sU zoZR*we;InS@EjRFpYiU$Q^b@WC^(0L`1A!qT6W*D`DuCcLR_uL^@_{7jG03QsY))!cV?b~#7wFbZdE$Q6 zB?W1Z`!;22*U2?5F`*NWShqVhr)R-=$x+Vv#0!#SW?ig{7Me6=h+lcslc2UN-43AA zbrx*&GE`MO(dn}ykdDT$BM9{|u>>ZQIg!=Cra(3>dT;q@8%P zg$ekIL!z?f!99t69pl z9Lz<*=1l1%%ZzhkyqGW!O$`uTczuH+&RK?LTo}C^GI)$S+)v9mBEm% z7T$mV7iKSi+Yl4qI~IK036&%#26-d%bsKk6YbDixLT$#OWzG^Zu^4@ys#&r-VH#l; zvGsAQK?72Y={WyHm;c>eq2Q+2A%BT0243D|JaHuiv-URWuPH_3v!ImduMj%c2yZTYxKgfEnK&GB;uE}M;aL6LR7T-ea8}f>76uK@ zDG$JvkwTX<#6d%@oMQ=-ZB(0P$aDduSbP-!%%nJ$jiWAMkA=a!{^*ci5iVw%FrhsE zUAV}qlNaQli;RsIA-RogC=RIx>#`yf<>)aq1JY)#(g~{#$gjX6FM!T?`EFIIXhT1MQWR&4-5Iye`v$>S! z8o=ZU@P~J(tH|mD2hzpmdvx1PzYGWs);*Na+}yq`pMl~|PGu_MmHCQgBc2XzkU7HA z&nOGTVA)Fh?CDKOLYD6TU3{kvWS%hVV3mLD^qQcVXGq;l z%~SKYCcI1kCK;!H4SS(+Fho^W@gn7EnqCRpa4@~Qg@-lr&psAw;W8GjdFX5rkxgy2 z)-i1Av0SvSJkE5bICcmjDIMii5r1Wsp2v)g1{AS<+?eHCVhvfEZ&YW#TX?WEd(yZ{*r$0@rFY z>$}>4XAeAkfN1J1m)hUu?|_vWy=ZeLo%9|Rg5ft}^hSkOV&lX#67zE0k8ELbl+9?l zKRDP3Js^=Drf%O(hH^0tB4#?V?lgCdBkTXHq$Cq&DtGEgPzTxpr4en7*q`Rb@5y+y zROt7dEQl@)l4p;h<=DugRNaFtY{PdCOxoq@`op|_9LRQ`Dr!?uZmKZ# zr>=u(nd7I>S&4XKnGGZUd;8Dy<{+?Vf+hUhi6H!<;QGsf<`UXcW)km$9bs9V91f04 z5>>+Jd-_Z<^OQGr?)&eJuwKirE$?6%y@D5>KYm=7*b5oD+n_sD37JirI%!V(@EUpk ze8-4{^%hf1`FIg|xDz;(zU){eP{xtUpDyZV7$i_idd5kK46p~AVYgxv_ZpOgj<@}h z{;sq0yj|~l)X#7lRDWU~d45Qaw0xZ+8$`Pz_;299Q)>_v&Sf%`0TIvG*91z()QiIr znt2`%u;jxgJLdJbO%6GaVXU027*`yV{6Y+p!=6oEqi^gRO#-I@Xx02`M!}TSGuDR* zIuloscyx6Xbg@s6@{BU%M>GSvRdf4;azr{Hg;#W8GKB4v9?vG$5WU!H+#3 ztoeDI0NI%`UhpxYMJCCn$Z{hxe}aAvnKSkNP*ci=%CDrM#`h*OUkafn6SB)ra>sQ= z=B{2Q)Jn^no)_pAvs#qqU{Wu&uCD&1jYv?3e#b0__?DR%tr;Z+}XIv9*<0hsMo zKf4fYF2b_K(5rgQWReohD=*cmJFueGl?lCK35$@d-}_T55i3QK?66h`0UbDOsjPW~ zF0SF&lpT_gtC++6`rnJT$W#STuyH5fqs}f?p<9(#NSbGTl|+Kw>rb%We6Od01lap&mANg?nSJA{fZ6#nb`F7f8%}HYw~;kJD1wBc%5+-4rZjZT? z>Jf1rWPEh9ODXZe8^2QM_Y&ReF0=4psO4qGlD z9)zwzHqF_RV%s#ze4UxdpCvQTIjXS8_Z8pqocC4S_n?)4(diDa76m^m*<@2KaFc2? zCOulktG!ESY`8?qmC*1CaSpx&9-Iwr^X^mq9wFWK4xv20wMtz^@k&j6C^4$y(Wn2I z3U`2B1e8cvKUSL|Zc%r&#XTYISnmQpdm&2p(hpjkZc4AXND1UuMz>i_)2 z_BTUUR$SDofzJQV?qGmd+XA9SfsJ>_Lb*GIso;|PLR=Te*>qjvBJI#}= zDs8;^R30&x*#vIGDPL)_262f@xk*!*tN5HKU&_!s!BgyxNO_zLo;lyfHx3$HE}og@ zsa)Ps=unmuW%#{T|BsZG<5M1mU}JGevab3ldbFX&X?pHv{lf0VhmG}{+dtGA*4Vak zaB+ii67XTQ>6vMH>cT5|TB^?ehZ90RS^mFs_2I;R?q2&*L~AZQ1#93;=A)J)iH1}Y z)3>HH)mqVU;TYmM2mHaBA`wj2kEE)!d?y96SofFYy=6vq4+)CIY%vll*te`LdIl?* z4IO;MtVH_(_=k|*8An);P^l}UhfsB8MQD&Wd4pT!C1gnqU_qlz*eGXo05=+9hkZ&- z4Qdr(hB%Uu>IF>%Ix4AvVGpi8qAArZB^x?4{TSa(q?QM=LMig5PIBZ4`w?a4%2RtJ zInj@Icj?`O-w|WWWTOO59a}h8kPuJkjv4@HiZ%sgUCfeA{#bMGvL(5H!5+ZHKue$^(*6trm-D<_n=N@ z#s+!PLYKbj<(w@`CgJ8)yYN+jnVBYxIN5ja2W&?z&@=%r{wS(27EK_sXe7k%RBq1G zksCk2*5^1>nvqx4B^F$21&>&VDD{uDE)JQbuGIe(#uWG0C)zk=8ityt*(v0X&fV#cHPIyz7Qtn zPDDsjhEIki5L69?%rJZZ0}u!a>koPpZQ%gsb=wC{wbtoPqXY`ix8#_jI|}fGtz|X$O6@m2e>E zREEF08tN5%;OYs~#K5{2?Q%rYjjZ-uoxW)URJzuERE(ra9H#HT&D#{6LZD7>j|txi znqzs9J8y$83?-efucIO2e#@A1uwGMu@4aMR$~Jpxua=P`!t2w<9Y%s$m;f=ET@jhC z^ORF`+K>L7dYk9{pB`NQo|Jrun@Lrf`CKh4F1G%WJC0Y%SaCROL_u)%it5W8(ImDh zg>N?p$j$irpubbL8l5j>k<`*G^Wy`L-`99mCqv~DcP0gZ@2@6TFLZ6}C<$2w&447` z(=g!#M9jd#Y}Ij=cn+!gII-fM1LP^OxclssDdL=+(%XcUff1N(ehJ;<+Z+^lG~bLV zG})JN0$UBEF!dJ^|CvW<&kuPIgx?=0!&SUSpgBjhHi&G_d1pyOXsU$l2y{4nc+J*r1+|m7VZF&AwfF z_K751sSGV-U`c^wBLP;ExA-Gg*KR}?UmI>o2jiOBA$pzpHz}kFmf|T*kmu$-uaF_w zM{3mf*M6eVP?s`hTS^Jjz)C+gW4xbY1s1@bFIGtPavVBMz#K~x*nrR{tj zj`NFHwjp;xxGZiH=3!3!zD~wm=P+J_(0#pv!cX$LV!+t<8G|cIBv$Ksz!due6HSi} zB43H9;nK1*sm8Tcgn@;`U~PS8iLbXEv)o*7PnXiA`Cs#!gFo2sX&8fM7VZ*$-Ldg} zM6%t&a~?lv42h(6;vA z{(S4=ZLMs5fXMSl3f*c&;#H#T6n=e17p-A7^3!k(if0sEZJW;?Vqz~YhB$dUENPd;yU2B`HQ9a{pVjt|NHUfW%sBOzFO3Qk_EB!T?pktM9NdKF;GsE zQF$V3l-#yax`~>+E1n*RmQrIAXGFJ~3aY0((Im+x3A+~-Bg>lYK9*Fkn{+%`U7aRIT7KkLO(;?uQz|PPctYUV257f^$B(fiI zv!enr5#syAyTB4AOW-x(e|AlJkx0+|Y$TuelE4@+el*ID!A}9~_lr+uDAam>#=i#= zZ3WQ5L4}TekkLdxRflZ}*+|lAiPE47#;M6$%4Z)US`00vc58p@4`NIm(#M}ZnUji~ zQo|Wxy~lJ^F0K_EwX~^HW0nn|Gg`3fP6l}7Y`1Bn37jID0U`%KpmTp~v=&_^^CaB~ zY+qYU{-o{zB?FpOra%jp!lete62rt?%S=R$X2{L|w349zyCm6<4*s`tiGv#EOTakW z{oWu5uv>5tut)HHv;=EoK@jP3b3$O<^@geUY2y=MZ@4&>4*S$~#Ie!pt_U$XFF}p8 zmqR)AUQG6d@iX@Pdzc)Duljv@WZ!FPZTYXPoJEYU&@6KvZPHSkC1D{&>$WP^RX&f) zmsmC*l)`saX`?6`MCx}leeAb2E#c4VOpFTN?wr@M(xk%~TeHJ6)FdLk;kYG>j<9oK z05$Xu7PKWo{4+uJ45^eg1oy5$)+{A7A8+kLvddKB+x60xW}}F&cQ2lnLMeKB8lBL+ z5hL=c0In*Mf^k?)R&((*Xt{aOY5%Cb-hGCQs_iM;0)o;o^S-z``vAW`7&)4>C!hmr zF9!0v!QxV~_5HD2;rJ0P-BhAABTJw}ePh}v)Q6KMpbCM|Dsfo4X9Ou}%%TyF)oKV= z=JS?MbR%;aZ?uO~^F+2GMl7OPvRiJVG<`zr-7zS|hk4$^xhSJ{J?myG3+>iL`t_vV zK$AG>Vm3etBZ-iiNDgp4iuN+3$r+xrA6ryWs6A_H6x3y+$fU&Y̻&kue#1+C(4 zaJAuC50p;MK|pizRLpKgC|o5vYQ98N4HPwv?t+^LyCUa-{hnUtL4^VxI{AzgKIdTJ zg3e6{QNtGmdNAO>KYw7cY^G-N1AoD=BsEEi>*FlO#zI#o^u5;P@{*saVIB-U9q#wr z<`3xSdtPACd1W+PWVVfQ3-^zdfU}mK5@Wm$!B3(TZ7C*&M?JdoFz=AH>4==5ZayYv zAfL3rDwwZGoJ;}OjvPN`g2t5v{nhC-N%@(S)Rt2oerVXNv*~{m8Gm!?K?lIg&M3qd znA)Yg^}|%5qZLpG?R7sPy)3qgo^BEANlP#i1NSvp4lz!UmNY0a5i(AUJAYIq+AezsaW|Lp0HOcn}bQCsBp%$Vbe;!gM5@ zO;Z! zu4D>)Kfjccj{w%4yRlNNCBHZPRur!+SX)_OvFbiSg^@^;b-BEbvlWeR+ zp6^)TDAn&7G-<{xKWF-N9;hDWoJzj$>>Vn$$QtYljy9id4j5MJk z%`gm>W^UA~H2(wneDC&+$r`pdPNy&krI6*n%XHKtxU@abDB&Bj>p9v z_4X4?mU+(36P&ig8O+roWGz11E`mHCdm^4;0INDshkmF0w(TKV%c8C)&Ub6VbM~&7 z!^i19qC6F+8#l;=5O69pj>jCkYcCm!X`#A^rF4Xe#?S+}6ar|bgHxpl-SH}K1E*Rr znc1}A(?l#qN2E(|^jK%h@P}m?YGdr!W&F(&wG$EAm90>w%UKWKB-c>!Z+)WeTG+%F zRjp!4C(mcn4K3d1o6i=&{itov-yHrKcSPOru>$^yPe(5>i3Gk@X{rC1b>^q{2A?PG zQW_VkNY4y(1Bl@zD4JxYKlt5W?x3)6?v{R@xs=$hnZT16^k zT*ilEIkK`}XEmlf{@M^_F~zf0s~U9 z{*N!klM~@Q0f9m@*BdyAImR|7a~Yb}3}^_O3p|RdWn?r{P^#T43L|*8ss3-X-GfRo z^A5c)1P7T*k34>Q+BU?kb&kbjApEan+az=5-Nlveu6`!G;%vUj$g$#T=Hb19pTUT} z;|D+$*F;ZRFLgO9J2?Tjxey!4BO8g>?9!@>-G4V|Jbh?z8{ySuMr?h4Yh((mjMDaj zr7QZiqTGgO74^66c?N_ukT@49cQ9#aYVAs%21`5&w&y$xIvUPQkk8v2jyr33ye;9wwj?vl}9NHgs=S`TEZSk=$+Za^@SUfTHba<164r% z3$}Mb+O!?^FS4$xxn3-?Mp|65THrl3js2k zBKIr$Aq^902$|ktSzbyTlPD2^l0B>W&}xNZjz!hYu!yon!`t^QGvgTZ1D+Veq8dU~ z5;*9#f;;te`klOShdSaPSpzlcnoW{DqHFs8wh>NIo>IaJ9dO`3@KL%y&0Mr%rV5^y z`*i6a{H<0InU7N2;I-fE^?UP*o~AzD;FwwuNH^2GckWX%kn=xS4FM&+k3X3>1$ z#6Og`^)5cB-I`KwK>N0RY&p9Eu7?sidLkZ^xRoJWl2Za)4Nh(~wv-%1lsSISmf|0; z(MpO<(h5YE6~D`$okh75g=u|~iE8Jn{+yUTwQs4ymFAZ}v1F!B77uyc&*i<{|F?0< zAVY=j6(3)qjTl<9J2VPcHe6R~B?FNiz>r52U>mZo4cNw8`5RK6(Ax2Ke&>VnTo`uU-;yo z{2D7EJQx9d3brRuadXRdJf>4s#?s`@vNbI_xRB9HDIY-5u=$AVo-}$VzT77s zGIbEKQ~BrCkJu-Vo6HikY*8x(JC<2x?{lHhPHVBE#0LvMbo`DxqE>eYsSI9kj5biuIUVY z+XNN(9ix0Ms9flPNt&#JU$MWAo%Z^lkZYId_D4=_&wEOQ8Kd)|c^tKfAlAHMGJ3@5 z+VPEVU26$aaj~NKvlm({NE0Eo=TYRLQS|Gm|3yrlXjW#Q*dlKGPzVZka+K=5W{+~6 zYr^DmL`1=7zX%zFo*QBfaPYErrHMRQ@*TEoc&hqC$cS_XUHYz72(z!du9O*h(5i0X ziZou73Cws5D|nJbj%m;D8xa@ta*9+!bu&;EY7Y~&!?;<+w0n<6aui8!s7rXVC`{yL z8Woglq<_yUPO89TdnC-d?DB}VU=keAx(SIOBL?fVXW?(j3bny!`FT$@6!6G?C6eiO zCU0fb-i+#foBn&GrG558;+-t`v9F@Ni10H_L2tfZXvF&hjz zkbX4luS>ImI6sC>wD=-9nP0BAN;y)E2=7860(!``oHDO>0D&81ZitltRBM$`zH-PFXJ>);a0` zWum8IPGU`dl-0y6*-B$o%cZ&1OrP@`D=KMCv2v~k<^yX^psV;oM!fY#+w3c3Ku*6} zs%Ub?4pL*qnB~CLtbNsy9GsH#3M2aE=6G_9s=nIN`$=FVb&~><4L=Dr)-e?`rR>!d zVXuX<4z5<}jMlt$Ev+Pag9t`Ccy9JiRKaD*;WHb`5)yZZ>@)+&^(EJCUaEU~JhOVQ zSR@j&Xhf+`^A=|xLKMf#7Olsx%+M=4NUdGK>mbMmh(t9;rM!!2N6H6$Mb^Y*V2lf` ztpW^kwJXE9>=l|fJdz9Q`kJ`TxbIM~Jxw2)!4)NQTtYP01&< zKRPCyO^2#kX-f)R>UM?(W+JxGA3@r6t!%M>CxN&o$6$s8LG{yJy>a$1yW zn^)WL0p;u}HbcMDwW9nUMoAM<5Dx=09x{RdT~0)oqE5ms=K663Aa##jAc4x!!HW*Q zSD9_Qn1gz{*!(eHjZg-ERc>$`1+Jjg%!xNdVaN4S>c$4jv45ShLVg=*7rwkl#JSrF@OoqTxFU}KfJ zS)EINK05~0Rbfm|Bm?XN|21BkhWjCN@C`SA0XwU>x3>x3jTJ5V<3c&lh6yBUVsV0c z^@i%p4ydJKGJfuiSW(HwAaw^KhT6$Q?qNL|YK|a;Kk$Fjd)AlI5d2}@H|r*ltLk?(^kEY> zYgg9EJIZZ>qs^z;RK&xBY|jwqnG1`L9P|A0sgxkGOz#-`15ymsx>L!MGR)i2Tv#Ix z*@Iw&2wSwtX29j_3UvSxsUy6!vki0!1^mCtdO5P%#X8xvWN|Jh!Y6F zT`6H(Nv>NmB+_i9cwFiVWfi759Tp=IZn^a4ML2X|$VL+i4qjP&Sn_yXjKG3gFxe6Q59W1%Z1IA%+~FJ#3QCqB0A zVtoOs;L3xyMlAXm<9VZ4oA1@SZ1i2(1{uX8Ai`iAxyN-q3lQK?uk!6H{6!9-U6304 z(tXQSz6&06WyoZc?YrR}!eITfrZ@d+R>INS`+@GkPtK_uH*bjd3ahEH*@0ORg48Ua zxrlMm4CORw6v@u=*qdLvEpUEi&w_Ik>73j~PagsSPoyq0BCgUbpat-b>oqyjWd>Pe z3{(V$t-tAZgg0UU1{)ELBURQR60SQUsu1G1V+`Ie#RkPk;f%oySfah80^i;k^&R96 z7-cg4$woBw;KX`bv}V^1C-y?Gr+bw|Pw^@RWek9Kzw-VIHCv(su;hvw;udKmb5c`~ z-X=)f<5JRjy?PSP9t~Rc43}si*puQF?Tu@}=`GC1gqb1lFuM^Sk+xScd z7KFNpb23s3aT$UJ(p7Bek}eB%-;2-JQqx`m5g#*eC~>dq6wIH9;TqP%F{kj#*35tK=5Tf7T7pz-&Nb9H$9>i8T)X^Lw!xI>)&WXnsMlrRF1Z0Ma(8QeEf0 zU}nasg!m=y!T}8?5MvX9&xa_-)Z<~Uv%6R%yhX*d93Y zf;|YaweA~&1tpQNN`LvO@rDH(xXoy%f6dweuPs*mTOmEURm(LLiGkue}R5}Al zBN*)gkeHI@L_|Ikol^)5-+Tn~&?0-F4-3$Ya-q1d>kh+H)N?-gb|p5-(2b2)_yPCA zg5L4HDjGUuKP`V>`U|;R$VoqR6qf?f#U608yF03l#C=9tEQo4{$>fCx$@DW;wUA;% zDs4fwcZwLwE^VSo3td{)(1Pw%?`5FbOy;J>SSN9GAQ{f2)nh|3NhfKuD{h%@Cr zRYjZ(L085yIN~N%A|fzMQ2ml#n;#DyXMVv1 zMZ)$>qv<(t+K||?loDvA*ryrkSh;MGLVuX(Nd}f_o#5Lm$ir2%lVpQL3t*NDy`q_v z69%#?Kz2Ns$9mrrSMiSzU9HavbFXhdb_K8fXb+IX!(pZ8GH=GxPk7)n0dqBcrV5&z~e29^kWtIZ5lHSH>*SMmmdFe@N&6Auv-gw27Ei|ZRE zi};I=#a+H5#c7Cu42+&8QsEBY#YgT6j`r6mgsbyZmaiCmk1=3N;F+jZY4~8*{`xKE z)vTbTE`n#Zw0!Lpq?XqePxPqntd`y?fSK$Ug1DY49y4lcCU%wmX2;fAY6eg@pPL>JT1@>*2QAjf&hPQo&m^I-dGb=pHfIVL z|7_hE&dje3fXz_J1I5*!pg0g@Xhi@X+$cK`VT~xS$IED(>#71Vlevhb@bh@|TDR;&*?{1-n-1n&ayx#eUDFXiDQiS0w zvAk~va{MWY_!8u|+@Rc$mlsOk-ZHWaXoE*APC*Y@#zvfI!7&vfWO4jo<}IrIgLumggA-DtWC zNNC1ASJXz_)n3exc{pB|@+L-G1=rKuu-3ym)u5xhCuEe%0gI4R^Z7nAnI72Tab7+g zjXyfT$tf59SwJy6K&F0}9|AbIgh-z%o@Sl0gd%$#J*Obsp~t?D+u_*TvQddLF{|~G ztl;@?oyA61Zi(S9WuHKoiPw1R_6Se#Ojcy_If1^ z8Xeu#Uf7@`C4A*Tqo}P@R1#4zzE4_H^sDTy$15Rz)T&!CaVl8#NgBiOS{4}ap zEKKi4j?;)-iV?;w1&V0;5Q|c};pb>=pIi#Qf(mOoRh-0wN_5+Dv27eDb2--6DSW>e zR~ysXq(?2osbki!REL0vqc2VgodO%Hxjr{auBG}Fa zzh@HqmW#>6V=Q$xUr3hOW(~_XlKp!YadVWgdkpi$8m^GgdekA?L=m=h6bu+Lb?MBi`32yW=EKr7NLXXhOXo2~OX6Dpk8kDgDre7b-BL#I+k&a?bcN^HTfmt6^rCE@gr*iqK%1bl&jv?7 zX9F4A2+bTw3|qJAQK{=N(epf_eOUx?i9M@wHJf0+kdc(Ph-7I>|FEG2$4{K^LZzrf z{^s1h2sk3=H^op~Vn#6I&WdAy&YP|L>;L>dNEheL?m7Qf z2G%F-ajDI@>M*KkFBTJD7RYJ~6!`A|8Dx&2Q}Dc|I|>Te$Vm-wKj#%eCM!{xy=!V3 zr~FJG&tF6aISo)qN>)q7b9{Q@OdkpTW+tUu^MvuDbg?lkhs5j(9P@QJw)q;!9p3Vi z?NY*hdPtdnl;NP-H+>t+KjNjkv!XYUZ~=4!55 z*PIDRkMiJMgbRB%czYq@6$FD}zv7C5gy`lJF!C!?7) z_Y_G9-S{&Ux#zQ{x|eAoS@z58EZNrvnE&jxYl2~k1t|a%AHv!3ID?M=Rg5BfBO|od zMZhn)0tz3d^fTIpOMmg=N*Y1#b|&^d2<0lD2~WZKO9yhmH4qSuh4n%?Ak*UqHG5$( zSPx0M04e?;ILxC2tV*GA6O=V990SgfuJ+4;K3s;^3bF*y?vS2pwk9s!=$ZQ;a=xO? z>rrs$Orw=cAqJzMSuLHM4_`H5KyX0LqyE5vtP&a93zHk`3$wH2H zLaP}$aQz7a4Hw#jfbV8eGeQX5aY*2ftCbm_38iD2`34V4kc&>?7*H!1g4Bqp0dl~A zV^MO+-HdMR^W_mi_U(pHh)u(@^zgRD*Rwe!DPolSP=y!UvV4Fg8+dv}Y{w@$cY305Ay^uuVM{~!Eq>uSl- zP`EZ448jWzh9&O!B2%+%7e!TdCd$;nM0&qSYhU|bIT=tsE?%^$;h+XNJXw7jkIQl2 zz!A1^=*TNvb>rfp?@AfP>uQ0XlU?PfoGz|j`?szhR|WBuO`on*rv?xA*jm9olia~# z&od{`#DM_v6JDeI>Vu}M0nSy z{zf`|#L1GAdn5-@1EO`I;UP!_nE;jU&-MEwe{l*}Le zg+WNXZSv=m$V_Kg6oIxC)N5oEWYBnB8?HioH0LBJ;N>i(2mvNU;mjy6LYKC7q6~)& zT=i^&+cAE$g>Cv2M(U^tzrP{5yg%7uk^^Wwx&GnR_R#)$zb}*o`vfh*Pn_oGmQ#rW zm6)g|hn_!~himOCzTcs>IZG&T4M)JEjNjO7+}_4_VW@qxgeV`k#1u83F74u{yg+Id zhih8)m^R0Y^ZTHgJz!e$q;FeXWcNa!yA;FpWk9+*Sd_JFmObg)G6C`Jj|$9q_br#u zFJNW{d9~prq=B96DFo18ebjc4D+LEJ9(^KgYo1i?z*Y?3BHhVo;v9#5Xv!3p~JM~r?etT@kWvi+;FEe{S0x=F%T;{ zt}D7>P-rqRp%#j&LtgNSk)6i5nk;E1D279eEJUB`cyz<3{^Rkbi%`Y`>F4~ar5HH1 zMB%;oI>6Y9qh5VBL)FO?fiTcEc2prSKU|@?UbpH1dQBF<t^ATjqqSQWyyn69uGCd@}pws)4LFVKep*F3ruZIm>*!Ylu9CbOK4 zQ$&U4BOEs!p373AbUZ#j8VJxVS`sE~Mh(v}B!x$$NPfpu;irads?uCOe zUf@CPk#K3RS@AqCv>lcAy{MH?DlXpiyFZRvOLm`XSX6O#$p6_(kS33 zC-l#RJA>19$mFM!~rT z#E0@wHu#lft@KY)m?xntrvt|HCm`aKIk?i?*8yO(n5cZXo~&LDrrVD33K>$r*ansuxl*=TDj1bJS} zS%iE@mdGr{EgKxlDfs|;aC26lKl$s7*P9lUJXZBNOk&J$$VcSv_E z*h+}posebfLM&+YIb$sxw`qp~i6PoJsLa1!6Vy!{Ul(-;eoIH$a3p#bI}Lufwm3q< zrx8h37GQBaMIdcGuo!v<;-c=Mp%mA@zq&#^K?CQl;g$&@$gzuAD7K)-2ipVI@df8h z+mDtU9I;b7RE=rTA6jIK z#;Y};YqW6rZ4Cs9&Tnw(pm546LkzCRgBdo-)H-WLm_LtdJg{1W7pTIF=hPBHf(UCIL-Dpsd=_-0;81a%EyMg;jd6fu?fNB8V8G<0MJf`xq4%68} zG>bXmm+(gy5A14Xl$8W_&w_O--&16UISI)3i%hFu-nYL(Dbs~U$mP7j zAEy3PP3BU5K;_C~PYGLIAjkCx`tb;tXJf_%xJM(mIR+#w^_#NR5x9O{0CV!M_{kvG zv`fX$E||>u`^GqDxL*3<>LfLL2pRq~2NT%~`78#=%6z}un*tSMh!nU<@6eni=Wj4< zl0s^*TN#O6_DpSNCQwE1)U!=c#n0klh@aI~kKha%7@ zghT3i3Piyen`Cq##4zS!g+$djDgl5|e)sR%$dDEY431!jB2hX_To4lr)MV-jfP28t z4cKNe5#8o1`Y~8?&_kVGSdcU60tE%h?>EjBdFdl;uHihLTnLQ@{koAN-v%T0QY42! zBonC#a4%V0g&N5kXi&JgH8l)XQO{g#F$;>Rt;bL@NnArUWzV#U@tvuH+mHf{Jp-@s z^V*=Kcn2d8Fdyc0j*s*FBy?Iy*}ccxi44glbUMMVA(PYS+#L8<%Rvf$S4ae+A$_T* z;KdZQLG(eTs#zIJIExgtRI)g1K6N>PUWkfU>~E;A8-TOtesxzaSC`8H_*sn|2>!I| z3X+rD>L`70&F~<^8DTCREcY5m2sL*?U6Vg7vawMizmyyzwrB36)K{%Tcr)6?{4te&4xNS`%V z0bo-Rro{zhCr)GBcG9imNsHUoOueNs8^(u-D}p*!-6K)5Vx|9*P)4*Nv;+2^5yDaP zw!hDm=~c&Z$x5dE%o`Xp>OJEL22awDy~Se`c6`MwE7daNKMYPxv3d4Dz(;WF3crei z;-QOVaTCPVkOi@03dOc0Eg)am6mn+lzhD!KSK_SsY6L5P)6ttZA#o2%99ixqA`}Gu zvm~zBes(-IVLd7;O^X&DnIvx7Vz7u_F?2)lNfiKzDyLyj2}-J*%o%}-CWjDc-fuI) zQHpoaj_C+$U#=cMe{^~Tb&40XR!>{pnybb%KzAFT;vG+Wx0`OpVs9ZBfz63}z{|=K zVhR#<59As`2XAdKJ+6Dr-7BcZ?eJ6@na6Pavd+%G)&3JN?`rrLipQ?>OK3=5U#imf0H7aw4WW^m z?-@=`536HtZm$8SR_s*u==cMt%347BbhaIOwhK@{#OKYn@C(7sk(u=;UNwxy489Ox z^tovUN~X?236$4f->v1^LAD@ny4sF@hEo^0ngrfE-mZ*}^Qjs*WoMj}iE4(**`|H7 zN)PM*7<{pn#Bxf2K*1k1?ldgzV0}uM29Tfy!vScPDfl0fE(GqGN?QlP1EA?m$Lv@*`@f0`f}k z$$fab7VOMHx4BUbeQcuA68N^9@`XtFX&8L*G&CNDNH)j-Lxvb9YUx-5j#+udPoS#B z^-B!olAjGV`8MBEkbNL(8RL!y!jgcys}MLSKhi}RGwC-g7b((k3ztZeF$xdsI1E(4 z?;uwTUenCB?6xEhg|clKI?^`uksy;t?i=bg_JObryxbEh*c|^|zy@XuU5zR+u$J4J zZuagzeB0d4rM>NOyK{|#BcEaJ^k?U$1#dC%^orxpY_~mJ%e91z`6yj_dV~+)nqK~b zU~5iEDMEXA%2Ys}RY8vDjfe#HjcC}|MG)A*h8L?)k@_b7MW_WanWQ})-0nH=K;B;6 z+W0GEFu>+!aLX@E9BqU?|7lD3kKSr?$7l=Co3|6}*d@Q2!v{38R%ac(7&ByNd1ndU z^%d3Ed+!HuRNFsap8pzdV%^g>rK9718ajC8k!#e46rN#zR@x?10U7W(eghd&x${`D#Ik-Tj>)~R-lYW=tM3CQ>YEQ|S3}9iUdfbzRBUds65p2+;`q?s1VEsC zqZh9Qlr{b?LgK`jtk#XYg6{D%##QI+k0F*3Fuw&S()Y)q^5PDh|0NV_KqCPW9Xx|_ z_&1#Oz+DikG;9UboPr0k39!200z&O?Asmf95hQ}_)a}kz7p6T0TeG);UmR%lU)7@t z+SzV80X#j|FFDup@m?@lIQ-;6ZUu%$26cEuN?L^LQl=PNRHDBQ-=3rB?5s35d)E9g zvo~R&)oOL21nB@a6=dNtXa?MwcvL3W43g2|k_i-+BinHooQMd&7XnrKbkucOvFgpO zi%jFFqL*4|X2TF=J!K|0GXXUt7~YtLT%^Xq%@d%?!nl)=R;9-Z*IsHnK=nJ}ft?G= zM%@>ix4>92$Ts{yz8%rAh{SZTrypb*5;>Mz|EvJL8YuXkesc2&KpV-5jr=IPl`DLf z!et5Lm&ze4(3hD?bp8O!=||y==u~Tsiys2?j>>M}_!HEMCJx20_4*^{RzzJHf}U9D zY0R8D9quZv<0>KFM)Ydps&;tyeh|djHO*eB!bLs+KJ}`k;ljJ0OYflPD%hO=chCWJey(m^ zjZe^ln`Fe|X;SV7Oj)t8Ma#(pX@}>#3iHiE?e)8tr5)2@&-@+KZR0#X2bd#E{U%wm zD=C`3RwIO$o`ttK)Nt%K;cWC|5cVNUQq`?!j;~xyx!Y@F3585s-x&My2MV_R-Jtg5 zh)|zq75!n|V={|}L%++*m&X@(;Fa5Q+!yo|8JRS-jq12=`~OV-+duY%tWg}pKFF4c z9RY9*XMWS@$3G{gzuiGzl`3NU^1R&k&xz6Tm+t^`pFfV`aO-@V?tpAPQoHZ^)ru5`dTvG&a}z@K;BEZ zweo)_zM|(A6p%~nHeP+azl)4K^PJuzWRi!e&;U+1N28$m9jj_A!WVO2x7^bA9aG)Y z-rCbvtf|_Q7|gLoopN9^sqyEeMRs9L_HL9qIUFvEsviml)v&|)53_NX z-U9(CV|GDz9qz#}Fz9}}kqdvG*)Z4qaX`x|gOAhhj1M9bJflQ}!~Xyo8rK=tkIb)7 zhKvv_d)W?a)&v#Jhd2U*dPA|B1NQHn+F>}eVSSZ6*VIQv|E?jpI`)hJ0{JbsNK#M` z2vhYQD*pV9rR)ET@peFK{JibEx5+KrKM%)=McO1;){H3J!dxaJS$aoYADoJ!&ja?;zI6Ij6s=_upzR0j%#C{;oIV^KDH+h_#c z(cU4u8#`yR&&rg>=EyK{rM*~@Auy423)uRj;B|G%NHYaP#Ej?2SoC`*&A{#X@^rAt zGLV!c2J9v-OpnkEPLNz7m*9BWr?*56(m|k)S_&+(2w&J~cEv)ZIMlshH@Zo?^jc0+b_lqk<-EbiV3sfS-D^2z0}qYd&V7;-Sd9{gX^{zqy-t#n+w-3 z2H}3z3&;h6>UlGQllj_M8hPjbo(SPz+GNH3*efI`!hKml*HbCp+rePyEt)g=3 zk0ZB+l#CA&$(NhNdS`9%3yxPLH|x{nsHB@pYq%aXq$PEE)1N_{q%d8@a1cHrg9{_9 z$`!RE2NT4?_3eX`IPpl;OWdwXL(+Z1X58IYt%H#-VL#sSfB1L4b!c#2dJD${u1K|o zFp+2?bMRbG%ulg8%Qq}jeY$qPe?C3={ufej+*S2_E$83f?sc~K1+dKwOG~JHbpdFc zxg?}hRFRUeGVbFf`kzbcoOII&mVIvvl1t*QZo{#yV5`RIp5v3qy*9k->|d{*YX?#` zSn3DI{VF+G)_HwJWgzCGC`n~+A}Y*25l10^qUGbg*3yqB{3_6+60ti*Wp^%?lPs9y z>%z9w#|f>7fOMkXsY&d|70JoVViU7ADEhA2%VJ2;(j4hE4tzWVwsZh??$GXV!W=7H z!Gx&&ZwQa5X1XW>52 zZpg%~qIInKy`E`;N^!pqB;UKsZY~lEJi|R41>sOX+XrX;_*7TuFyGf$P{bM411`Zz5WI*bG z^n={v=~Ua2|7{G=?0$WJzUTV+W9W~?g?zLZW8C7x=d+oia9zlsnmew22${)e?kL?v zORo#yK;sbhVVX#}j8v9e6OQXJpc6kj*%5AZ1?PVJT0i-kw7mVkRxvsa&=U(1Y#KfP zh-QgoFFbI?{A>J_6M2x6Xtz{huv-heJh@nVLnh!#`*0y57-tg8jB zp)bR>u&p2Z!sa=naXn1ge5C@81~M)no%B#s27p`ek$C=3sQ`qzWaw_*myTTD`I0{# z9f|e$(V7IfMA7dEIMP|BxuRF38I@y6{ysU|K9G+l!JY5MjA>@VX@@m&_7NMty0i;QwIoT3j5w^KCpS4K;Fwj&VJV*fyP3H<1$Ckc$ zrV;47oGV-=3MEM%p<~$92#YP_&IF2cpdw&3=5n zuxt%)^h7*qAMK7&f`O?VnZ%4JLHm!U)j%@h7{v;nY4UT34o6Y%b`up zMNt!El-ndw%{cu)HPO8M-=+XrTf4ISwpSngxg4IMdsDW90o2J`u$QsFzJpR$OX1Sh zqRSI^%SaY%UQBOu^ZCPP){OBT{?Du4bi&B9d1#9m6KGO{tK2L#Ct$38v?Z zc!CcDk@~jY=B8rw;y+izZwC}*CTaE*B-KoKx6EIpz$|5w9J6}xvsSPySci&|Fl$&K zsD;;`tnoSOWmeX80^o~Jm6ktM)dZii3BkU?urIEOhj8(Q+)OPLeer-UmHY$qW#G+L zlE~M>JNw^KvlywB@ESR@A+oOIVekwc5ELbB!83+_yJi6KliVksjp3&3433{xTuqq^>8BQucYlP}5eop_zB!`iluP@R}H^7n|c4U;w zRBSsqb&9Qf7PFM$uFf9jqO-6OmAUr`A@8?}9l9LQ59M>gt$<=_|;R$C8n_C3=k$yOm|4wNzsa(%R+GX$Xn$V^Hew`g17 zKrbF=^U#OSf^xQWYc6~ijlperH2_-r#{3>pZRz#%7(ehusS+^k+WhxL(fZ*JJa@m3 zs*u5aPfWr0fmA&f{KYqKuTspB5Y0CW z7j<2RE7?XwM|!A%)H1VmK+Z++wKI-peg|M231}%8*zecaTdRL)D~b0r>4Fc5K-Z^W z_gE?g`Ywc*5E{JNsvSRi;+vBsI-2_nC874RrgHieiG9Kl+Y&=vLO)^R6xJ3=@y4!} zw*MN`3hWl5EeB+8coa{Xnhhv36A;~}zdr388U;>@9DUmk`->L*U+oHX1qWJY@xwbs zCnFP)vcxrMjCxHCGFj7;iV~g`-BM|*_FFp*u>l+L3_$-_P5fUDZK0;2%FucU2Gv3q zj41r82pvcfvK|_j)Wum)-2{~OK--u*s&lgfJ-#_)w`w&`OQ^C@YZ#A~Bff-Y5cE4^ zCjXmDt%ZdK>xEA8FbrKnq!~vsf+T0a;YID;iOt2@_72=hO6;Z|pO_nzZ9UjT?u>d2 z=t>1=0Aaq~s)stiZs3!v_4ezR#qGE5ziU9R?zyc*yuNpLtZo&cT9SZJ(2WX3k_g93 z#`Sc{V2_YYmaw#^asc3cYDUxhFYU(&?8B8ltmQyh^i5}OEW_tUmDHuEcB9l0@>ms1M^`7u+*WFAsPB}6y_E7vL5+tIq&3#E_Na+12+)+ zk#-((w03stcS|E*gB~nr`djJHB{`WSB2XztJNBDf!8+NNOm?IvYMN2iHK}ihp?{6w z$ySbHA+B61o4PYu{yk;I0{UH@|I1r|u<6#ua%LBC%rzAAwzqae5~55rp@yg_v2B`l zqfq*hudz6ml&j}(t|_DnX8QtG32u~akIa2*uQjqIID_n&ibosj1aJEvG0-xaCTYk7 z2PfV)Ev=bJrlB$@K2gd1{KySpdnQ}3um*bLs{FPEADxqJ)d4g&>+W}&Tsx@!6HLPU zq7}F?fp6wIs9YunqQ2|2MJWCJ{(O?2My=NhJwB+3+AHQ8OD=S7+1<8+k3ED7Mp>DBbg%i zQtqGEIr+N2yQ}4Kd|6YV^UU;yJuNn$Aci$1ROX_Z^pjHds)fiveShZ8*VQsqF_69c z`drDdP|D{vjD`?eQB+WDMb=LTA4A2SN_>n2Nyw03>Lxjm95Lh+pCBg((0|L?8irc* zX7I&}$U;%>>ecZhar#-@sAfJLb!1ZmPh2#qu z1p0%iut6-jVs;O#NRA;dt>S_PV@}RO9&abh=6yYmC!n#eSiiGwLjeC>fO@o zH(ibHJ@fCGBR9u$@=WF37E_{G!l1Zb^}^l}QL@JPx9z`I=6m;lS4R796x-e~ohcD{ z`6#|#*zbd-waU_ueEo1Pnbk2H{?dYr7`ZjEo<|4C2G|3>kc6i9X5abEf` z`ZiN86l-W0!nu4a2&IHvNRGaCD(F`kS2~3l(=hKe{{w#uEE<~=9)lSeEEgKZd5S=cA{Te zQbOX2qJTj}@1UAyGM;QA8nU9a$9-dh<^)Cb>ag4`4)!=!$hBghcvQ)lu}KPpBuyuI z=I0ZJV*|E4JFTIiqGzJ%IA%Gbr-RwDl`|&r3L1`;YiIv=*kNxB0Yf_b>$z$kIp}T*T#SQcf0Nw zr@3MTs2<#F1-)T#N~L1&3x#Jz(a>KX9!BRD6N)rwaE#er%Gr)$9H+5g%vE<*431sa z5i7ExTXK$KFzw=Mv#zpGL1rpMS;|9bs#4WW;OV%#tI4zps1l=vx-B#P#!Sg4T}{@B zeh-=0t9BGG)a^8yRwJf5?Z$rbC!861{1;mE2P>5_VISy`-*R|S9|+^QP1&j zrQorBtmWH1eH^Ga9jhn&3=*-KB#xoXTY=pLPH1a5I%5RVzigq$bp4y9!mml&wtQ7@ z+{1<^_?HGn{kicGBNl`*<1i*}w4eS6GTf}VFsjm4Vk0p&72u~iQo+5O>h zmX2<#e0x4s%X^}3{_eS&gA7uXxI#!r{4^?^p~R+SI)Q|n(T8OTMuz9dwk_^86*zd< z++>$W+K!6jWWm|fA}d*^Aq$mr9yMBiI~wgfb;miSFsA=A?D#_~GJgOsxDJfAUIcvH zqB~k;yHS&|Vj}jl>W!^ZuzSS#q_>@HqxL?8C*?Uue;wIs(?!{@XK!p{Ki}EQlIIV? zlgIx6gIcv6Ag_Jv?8PQm;|t3x2q%B^T{wwwtUg}Ycq`P4IG?i(t^~RLMBP)%{NEnl zu%`c-;hG7?Mu~l&DW@2EL~d(x$V?pPWgm_z1hbmx#0)dMsZ7uaaXpGZl6@WF*6XsQ zOimW`VnT%NsLmL9&_|XO7anqQ;Q1>R)M{6S!sq!lBW*GCY6;D#VH5^XFVLn=mY=4W zNF-mpXQE+excnKRmiOavi$L5$vzd?eGKX-p_Ur0!Q-s6yf|a3(tvS|TDCZnl5?%lK zx4{VPR@qvAMvX{_b#L!a^5@A83k#_rXdx!$gNPbH+uIeJP>=dcMPWhQ9NaA8AJ^Tw zbfPSOYE}3>CMVU8KJsc!e-+WqbN?Q5;8Luie(6jg<{^(>nP14f##a9#h1q2WNd30{ z`ME3!VNc+q0sn(Sk6+}5s&OCs$ZcM42KFvXF%+X7O+cl8w<6zt42l|NAFc^EOEBxI z(j0{wVlVs_M{SKPp<(g6(bxO?D#7jwN#-7f4PXod|<281D)_e-Wt*oGRm4xCTsQ}yLKQ_gy%6&BJ7(7 z(0D#W4g&F=d)c_BM%kHG=`@dG)NH|E7?^w0 zlC7dqrHSHStbgE$sF=)gSH1K2$kNSZ28!$6O>Dp%p2Y0(kp=i=G|AjJ;>KvPpukrz zKqk%<4R?#*wSGpuxOo1X1bRbG*;?OY_br)%Zr!|b^Mf6*E)@Ny*^|!~smglH?kFii z^aW^@FR9s_0Y#jNm4ep*oJ*rr%$ooblN%kYpY+NBdxjIrZVx-*z&6oDw&@%fMY94F zfitYZM|C`PlX)axapjFJSh@bd9YNq=vT7j$y4qEmQHNnnoTxB4qdp`=&5{APH(AYe zQi)7K*1qWWeTcQ~NpIKHat+uAST_!Y#Yqpg%rN%lirfGX&a_`~jEPV`ZTAGy_IBgP z=X>J$`M-$ueMQd;u+n(?fC7TPyw;?;sr(?1)YMjDSjoj`YV^WO;|q{52;B@gPF=8M zmafOSRzN49*1g*4pkSqYva>Mo&fzcORLKM^s%230!82)JFA{wc%3c#{2bZqb23UAv zbg*E>7jfa_$S*eSP`7))N#LgEBR`r@H1Kdr2%uZ6vwkTFD+GzL9N>V*3^n1uVCqB# z=dc~AIf%8!R$D>V(U=5|uHnyq<#7$O$<2B`oUyuj;I`nLbqq;0g^#Wp0oJazAM%yg zAOALT94mXyo7ub8r+1M3Kj~+9y2X8o=*{LQ+`VGdUtq9Ia?wL#0)I?Bhogn}KdVJ7 zSZ@x?H-W90Z%Avn+73gTEWe>EyPS#=skRCOUTKJRS>cR#C?aUHEh7~$vQSfu*1iqZ z09k4}jMhyz5ZRnP7%NuuE}K}g6+i?fdFmE6{6&<<5z=g|+8(S1&*di}A&)ih>io)H z)2jGbX~wQ7OUY1ncLL@NyjCHRvzjQxQ;OS`)u+ifGuycw3`OKyWup8z)^dwg|NjqY zdOZz%w``Bsc?7;bhrKtoh{ zL*eL9<(|F+PyjVZ4(RlHq_-W!(u(3b;Ry<=gh(u%63$hm&1&14XH7x%Goio}T71@gqFLr9z%NiMkudO>pjQFwznE9%r=XzRD>MDzN;ILbMlosZ>ssOZ+= zZvPaE{bcaj?3DpOS)5yERL(p}X2--&(E1!vD~@Mp{4Vp&SHeG(K=Wkj_2l)aJo+vu zcCN)diTg`tj}9YYz)^aQgGAXLxg&sn9R{5e&UG(y9@KH zaYTY-pL#!sIi_Rr-LxHikJ&Lj_uR{%C<-O{{3_cj+_#>fX=wuirL~{4TPbp)y?8&= z2~Pw5@(k@R3icOsyhHeUc(j{wOF2MK2$6Xzkm#r8ObuEp=h>3I{{Rt)lHdQlR?om6 zcv;TlcWrO{?ggQe_f_Fle_lXoNRzx3WAWhuAau!43E~Q~oy5yb!NLYTHIiyDZRIZS ztO=aKNm{wgXc~uD0E}_BPSUukt>!T?K=;)F(5uV`VJiXQ(EP`4v*^3JyH>;kvvU-B-;+n9=a&_;)DXq1lV8gEb8*lBv zI~IHP&mFr7R|85?QevUJkZvwN-KKrTBEFcE*z^mPSwTw{j>IL>;E7t=vDzJd?Sb{R zuD5xL@omTKiCN7YdkkqQgIghK1*f$LAs?1Hs>iaQ6`tx4PJ+5Bq4}EV?{prd!xPut z_#MoFmt-0($Bz~3Jd7e&6zSWp-rt!?IS%ySOhaIs?jT}Ck4=T?r;AdiF_6Z$KKGCe z(VK)vPUm?0Y%dU<&)E2%;C95kJ8E1k3n-o*yr#i20m1=20b;gL{kEJ^Jr(8kR=~%J z|2mgrd+MJSo5(!ak5PU#o+n z$M;e>8FWO*pB-coGkW$As8=k@isWuDx|jxXWE92CMPl%H-{Wf0QZm3YFFb4=H1FM@ zQr{e}U1tICtRPOqx5kQ&(cZ5IV)}^MZWQFXdtpr^$C9bPub-P+0}~)1d@N_d-`JBSbx4K3e}JqBY;@)W<>B1OAy=*xF}JI zsjGUtAV~!LR5Cwfsx17GtLWv1Lx^`+7jG%to;IDPzEOdclL%)pNapkq*h$^=fs&J;IwsY<*A;5WL#v$2A1Nf%xc zWR~f9S3i4MW1RkRPZXn7Iu9p+q17`Btn{aWXQS>}EGhccO}bj1?!+p>FkPl(p!JQ< zVY(A%CxHZ5w)ogg{{fOwJ-7f4B@l(_8Wbq&dIGXS{-#sFvK}a#>8upk`rKuA$`XqS z6F}o+^EQqdg5ucJ$XX*RtL;*-=>NkC92> zJb$eO6PeIffR?G(zB!B?S9)o;>cka2ue2GUQ9Rzhzg!Ep3g)$Vp7Id(w3NFujwHpt zYyx$iMTR;hlL8q2JqoAac(!ks+kN?=I62Cqpk5OT zkmc^n;-}*&scPu}%wmW9>JALs2vReHzywjFt`S7{H4>;N%M-omW|-CTa9JEpV=Y>O z)DuAFtK<0@)huWyDntys_SJ@Xh&|TtPPGYArUJxg`N&Onk^p80U6m;+YQayV0$M8% z&8!P1Gr=cjlF7slfCW}kZR6}zyHiCg!qe&M;2|D=5LQ5ky{$p1aJB(L^T#s5B&kXo%3mN`6V!-q0N|@t$we*TO9eY|Q~nHCBE`Ma;}2y|0c>!mF~Qr(Xhx zN&`vU!#}_fCYY$rey|J25?@Ior@+F=;&lyiTo#?@PhZz<#Iu|%UH?%^ z@c#lhnOln=iXak4AjZ-2x%lu2eJ0K|hzFzQWWRziS>UH;sC`=~ORhMW&U3Dx4J-Yc z)MHnpR)6k4U7d|F=g8#6N`ePJiFg=A#3-gnIY3JezFp0zjnV0M>5|%Lv zjPR;9L~%TB*!G4F?sY!l3e>B)UQn2g5LYmmJl>|wSEL13s5e?+4Yv`UN)DWPL`_1V zgTS`e0UI@KsO_Kt2-cuS3lbjQ$!hvFKGzE1<<*536wk*+D0rO1uY~dg#fZ;2&eAr7 zX_@U6MmV$FUp&6GeS?2e{XuT|Uw-}Fuk{W3*S~qw(r+vF>mU3q=0E@TH^2PV3oop{ z`@TcJ{h`x-_|Hbi`0aN?_~oQE;g9syyldPQxGV6ptia=2+xz!_e^THxU_Js2V#
#3qSt+!zGzM&P$|02JH(}Jx-p7x%0(*NMf4R-OswZqQZZFKS2o7Ku zQ|N+fl;H`Efo4i3@MJXeNFbX?VDZ|M(JuIK2n;%ZL$ZTWE?{^B1BB`@rx}o?$4e4` z`48V#ikS=_0|O+!Y64b>tfp?=qz(p4Xr^Qr>Od%TAA{IWt`j|Np=gfGM4O%#?)>>y zpk740j_b8-clP=b=RG>@B~v<9+Y{{?gspLz=|a${&8m;zwf!7_QhaM-1^&Tb+3>~f zpa1`_Yl81%FV}B>`S|6SSwH;U;4ATm|KF?bueRtfUw;{Q^z|Bk6}-rgz5?HW|M$Q3 z^$&l#_%D<5rC-ec=~6!ubKgfc=)e8f|M$25@|%B*`qey`74 zK4#h*zkps` z4SzJy=|snBIN=nf-%2p*Y2O|+>uQ`)Qx>)3qAP==zqJuZUY-OnD0N_1nsSVLg&hyejWP?2`Y4uQ^t z-S^L+P`aC{QvQ9i>w-dzrHPgSKrzm*B|TaLBH-vpo{qH|sUcfIE{QmEMP|6Rlzmok@&fgec_kq8Qi|Ze1U;p}tAAb1v zKl#4C(BqFL^acHo44>cH`0oFF@6S8`{vg1ogm^3E`0U6hiL)>vK}nM>OK2;GjJd(h zk*!=1;CqVQ;MZ;F?(X>4t-xdZc-vuD)#Yi71JAY-cPEh6$s@ENm~m@fZcqq10@D|x zk71OGl=RHZgHz97n)R(M7UCT`hXqd73@Nxwn#gG&HLKOYRb56nqt zI=mG)oFl&-85|oMmEZ}*C*xJU!eX{DQWNRC=3eB(u0S_dhF@L1Z1nSbXU{Q&p`M=1 zE(6!{rZ*Jdd2Es{-2B6 ztiPMzitWT7{_*8r|7EGYd;ND`Km60kz6h;0zKz)W?*ZTa2ZP`L$NYDQzpHP{f7So~ zJ>RYW^xw68|3Cf8{`z-+UF{z;JNNMezI|dv(&Tr4ZIdJPS1t69d9y#6*72>4Z|nOF zUY`nj=U*QL!y7{WE{J1$noOaNP41M;hs{o(XcB?MelXz@`X-DlgBIbAfAI<^@m$W? zcf?7_E)SEOz2&kmADxuzd}qKD2f$bi%dJrlVzv=dSZKQfIc8|6jJBDU+bA@@Ya>A{ zDNjaOJK&Ol0&|Wd`1HsWRAa|z%&-fKgqYb++A3p4xbKogsj&@MavpQzYn39+4i|yG zhM>~qD63=pdx3Syoth!S2N8)8d$8oSCXMLC%>sc z=sdN5H*`c?fEoz+S(9iQ z86KpglORSn)@f~+@Rd)x-8=p@EAW03m7*TlL6Tp4$$%O1I8LCm40U$-f_kKZp`Lm) zc?^>1(s~T5#UW1eSekzK`vfOZGpn-@k-a zziaa=*}r}x`JbOR_g@b^ls$I9AMfia_|5p=|DUyV_3y_#Z~S*F{2jj4Jqdq~-{0Em zwf+;8`gd*L)wi}kr`F$+oBPP`+P?qStkT~jR-YJ!aM?LQv3(qAZPa1{upVRbwWTfN^iOb+9C(tRzQlHetyo6e zNBu!V$-H$sSwSUftPqWkT;o%$KyO06dc7ywGZJ6-uerx;g z|7k9b@Bbyg>!8?w#mVuw{#8Z3*w;b+rkwBd4H+x+&#$+Bd=IbRwLKR0HQ^5+^E)d1 zuI*1#n%}kk?oUhj1NDEb(A-CU*Vg;*zdm>Tmuup$p8gJhqjFudk-x$Bu;W|XdXuL) zLq070#(#cvz$6*FTI%UoU)q0GpN3+wS+8ZiuCyHWRdAAijXa2sKlNW{Ae zz=qoQj!L-qtmz$Q0)~~j$Qx}^YaB>tRZawz4n8h>8;qU#$tt`<`5Tf8iYz#J2IJgl ztC%_biZGaAm~Gk6)aaSEJXC&g=}snlgS+vv#n>Yu0ZD>aPdx~ZPBRk?;2F~c8UR`h z=1;UFzEYc^$Q?h$3giW6v*on^cxBHmb=(@6CtaSgB9GN}@1u@&QX44aFelrru4B2z z`@6O}3;rDc`+xM`E&cGDf8q=A>t8?r-M{|w_3PjN{@?!XKmPHT|CImI>AUadAB=3) z7yi4p@4ow==kHy9b$n_2;g>i%@B9CweQol$W&i$vt)HA<|Ks!K`=uc3$NF8H{xyRWSKfVhE{({ z#kkI%_jhgUPw!vMIwt;w*Xw_!_7LjdLHy@0^)>2;mtQ^PH#_(~#_L!8Yl`pY-;o?v zeiM;jzxkJVzpcaIy8JI!{+&0$^S^6*>Fc|fzLwZGW@fFicJ*%{9_#x1-yeTL^1C1H zcWw9`)uYlEmc75neD}L&Z(qpx+rzz|zRU00e*aJ0@PGH8f8t$LkH6BNSMcwOcFW(7 z(4Vf<*`M4vzqRGPUvKgL*dX{A{DG2VBcfy+A2dSr@qy8PO%svDafU@!c7^m%Dwt$* zv=>4rH|v`)_KIBl&sl-qOk-fj@anAtFKFhW$jaDp84s7NV40JeIXLF^G@NLp zVjALCQQ^&hMjy!g+*0@Z<wo(Xza0N-Nm3`@5&o{evgv!< zzx}JZKh%H9L(cd83!az%uI<;q@$cq-WhV8%{})N*KR0^*=X5W9{ZM^vfp6LVKVE)J zzy3dXRrde#OC*tgtlzcqzX#i8zHG1GwH=LpIpZgYWTWN3Ypb37kN@*G|Ni&*2UGsU zF7s{l`Ok8W(4VUG)$q=5ZR=yB-rnE6=@UBx0~z08*!9$7Yc}FKAo_BM2!<63g>w@& zT43Yfj*&&;9ecs9{im!z_E&LV=mN029Bq=bnm}WQoq+V@dsf_KV;OwSjiB*3{Qar>q1iPLM*|EDB!F@qgzr|e9OlAe)n_# zuI+5?=kwnDu8kXxUwQw;wzBTe-?fd#^# zW2HY}z#4(ck(5G;*Qf_UVP-|b@kYNPL+f$JzhDKFa_p6@l3n*CfaB+)%VZ!41sM&Z z8DPikOhh?JTyrynbsN&_@u}5aFmbZ;yS75~K%y12Pf3Y!6(*FbTmSIrfmTjTyLeZk&^Z z0m}>n`Im3i^HEjn?cN`DWJz0lzq@;_s;8c+T5EOh?zMXL`}RO9q5^s^Jv$~IiX3tl%Kj0sE0crW8Tz8 zJc#?vW#SV94!}|hp=9Yo3Qj=^D#}%E1XJylW>9Wi;k1(FcCY1(AAdhHA6oC}@3mSR zX`qe{Us8W#vr9{?TeVa0$5;jhczAGhJ7=NS{^;Rt%I;`g)3htU7wH95tghytchQdG z_p|XAg-$v?6sZE;j3qLKMp>M&B!-_{~fs5b<^S4?`vfHSD} z3dEx7tSH(5uU0HYoucpdN;W8ExDWyc>9Y88BjD#t)Vz%+6KvLH6*iMCP$~o_3^|Hp zEE%n=9Xi?b-j>E^%n`jlSAh==rWSNVzt?87(v=+oi$Uoy0HfG7B0b?@gc!vZQeMJY z4uadTfuL@3H{$k<*=BdY}`LUe-Uk|VOe5ePT9Ru&(c-0oMO+EP6 z;ub5+JiPsOM;9JBe5D$3?V(PM`;iv~vDa4C6wc7Dg@1vRS`Pb!!FA-c_`a?O_L%e9 z-uma&Ydd~Al`^(f{j}PDUfaG?E^GZC=e2F)9;3gtdHDCz_T}1#P3Qgn2*z9|O$W<+ zTI40lE7)8!aR%Dc-O~ozVIH2=lOjG%f`=rZB>g@zrFykbVb5EH-WeeaI$g-Fe_JSRGN{kgqddhFw zfh9i7pp|YdW8~2~q%FAN(5$juw@n$Lf}5I-? zo1YfbvU$+Uw68O5q=d4IbO|j1fE~gdnW7Sc3OoU2*{s^u+0Ui+s=mAESu^YRG2guA zy{LnOAAc0HxEL)je-7fBcrkgrc8%AB46nnFmnrHT*@xPYJA9B7Z{d7ADYZtJ7mW0- z!@`xSQX*VT`8ukB3jT3dN>w1>Wiq}Jtmb;t3?2jbAr zhn@4<-unFgTW`d#a36mA&P)5xdHnp<2Z!;*x*z9!^$sl0Ya5APdHLUQ%H?~%j#Dm2 z{_ybz>cKIWXMFfEPr>{n!u{y|Th|YduHSlfdES}xR&uVr_41uqqaI#8F8{#0DaZCB zDUScrOYw!r|En%dbc!cludBA*w*|ioltph0tops7?D{lgN5_SMs<`Mp6Eu$Gc+I?+t&XLiRn&~xc13@g+aFB%FBi_ zlh~@e*~y1_xR(Wa<}nBj0FM%;u((f}I@ISk0=w2Rdpr|6^+-pORYtSwtiN8vCzzwtKPQc;qELymib({fopg(FZ8nx1g|Sf(ZJqs?1! zVWeZx?Itj*IOxv`au+0+(cF$%Tt=Dek;}cd%}3~;&(Rrj{6s>o$=-Tk?A4gM#f1Z7 zp3TE+qklJW(vF8tIXl1)1i!Bs?=Ma9mf1n=wLR<&82BZ?)T~l9>yziCMX0Pp|_pjG8<>2Vx*5~=;S&lzG z=#L9tedSs`57)i6@80Y%vEX<$FY4jLk9VAMw-cS5pYasTTVehv9%_fWKck3)tCU8Y z(5U`#x;6jxB|meV)Q@B+{^8+F8rO+@_4;9~Y3sQ9GoB^-O7C6Af)2;G*}EC2`+Lej z%PF7suf@ZO5y(E?-~1XJ`|{M5{`bw{@+*G5${+hK!I%Ghzep+W1WFi=OHlD#tpOOr zvC<}a7$91wc|sw#no?;OM^L9V#_0E@eC!DHGh`h%KlwO*so_XfOkgaq!jG{4Q1vTVtbSU0!z zzzQy5V97McHN9QJi>_O-gK!FIB!{ipT1X$^CSw77pusryB_}E@O zz4%USX>{yJ~xy@l@6)AGDF9@k#+ zuEWu5$d%4oN$j5278g1E7)?349$x}eL)6?K)sCRonk1a1UB`6E8J^|(&wOZKeTj8` zO|?dY*wO8|*H+etFZ%)aljG?AWuy|k>_`h^}+tM$sC zkYHOk>U_i5l0hXuO5Q47lPTF8T5~C?2^lHxqe!jQGF}`(y&ofVi5xoucv_6-i;1XZ z?2#nUr3qpzar87y3TRyvdwHg&(oDIPcNswmxNi26bE)Y%0xn5I8D^~7pc8~6iv)^U zR-w?V2toMFN^jXxNzOhZa3&?knbXk5a&K@kQi-zB#a{+k2W77g$3aq{L>k>nJ5~_L z8e&G6>IgYth)Q-TKRqL`dFY_Bb#0lgjc3ewfT5|77qpO}W>I(v0hP7QDJ8sX0s_No zPpBtAxoW#S<_Oe8_0^cf<)Pgvp2!x{$og*K!MB5 zpMk%pM+EyD#jN$1=e8gDYLf?7qhT?#%%fP+qXoZaxU1J5K7e$T--yfO+AEy&$3^S^ zRVkPKqK9W{7eZac!rwT(qkXmO@jW{qx)SKoN1jhFdu;|a=%}tQk9IxpM7dh0FwVWU zJ*QkAanCo~ar$1H7dkKh=)HA~bp7Kx-%gx3OS4;@7qrRaD3;$>#410Kl9zA-vFcquwYPD zXfSA9;uvx*c82f6M$}f)ya2;6#EO#GKD-FezQFEZmS-7(d^YTRx(sZFX*SR-;!cL8 zvKY@CltmO!p7t2#6s6h8ddwrk*2Ffbrm6h&94A{#_5eOi8_7V@^T9kHi1P#(FZ2{nYt^_xZvM+QhVc|_qrIa~^^v}CXDnzCglw$E4l8YY+c3fQ(9poaF zpy+dNV7i!xdQ&KJpk}2oRRzxql;Xi)ZRyIz}?B(N5ElSo$o}|XK zKXrfW^7_1@pSR2o4z7Ot>Kn0Q>o3Rs8mZ{}YdxCR(SQu+HANu0DX)geE!1?`HecWt3L@CW{JJmc1)b3 z&*Qn8$Eka5Md+te<$GTbaB*(`*#8R$`gGy={C+~5){kQvsSgvXEfDaNgg(!5F>$Z0 z8k%SEvGK<=@Sq2}otB7HUeY+aH&1cBtlH{zzvh-i3hx*H1sd-Ti$f^9nb2M-$<|8Z_t78#^FefaRdu=h} ztG{dirLl=~(g;TF&-*`*d2#;rH^;nUifLg^8{?jYDCNu$JLNU+V#En&bkHu^(dW?V z;KkQ`v?%8!l=-6cu8Dq&JADNmhLvXp@f5sk-WvRKG|+Cj*XE=rwF}*2!!BxB*O0vB zGZBB>L&v?#qwm&sWnM!P1N-p1dUW%_JIv*G9e3nkJ3z2Z#yqdBCt*_`419aUd+~LZW z{}q=XVYDc9F_Ob?Bi#}x2lB*$-rK^1>ksm(oj&5HH_pr7vTE~-KHqBmxxR5_MBfo@IABvVwhi=|3&T5Bmy(7LFsm%`-;?2JG?byguYKZR)N@)(J* zpRq{POovOjw@*NtCgcn+#mdSWA!}whf@+e=r&z+NE5?E$k*`KVi|mtTxf*DpKH4!* znF@d~B8LdgF+0Q@AFxD$tS$i(-YF6&u!ls@YJp}b>P44tR$F|yz?M2OS)yub8wj>G zH2ZeES2^v*M#A+XLIzt1@mE{Z+ zGH>guEhm?kheqJq1I^&#D`EBL6LIqT3^-n???`&SH@+Vk^T*_wE0$8{4A zYOk&0#E%E!bAkFb_&ftFj^0Q*W}~+Wv4Q(?{`}c%ejXg;)t*|Ei%r9)ImL2b!! zWkqai$9zLFjOCjGm5Eji@l*k(!$5{O2olQ(p)>|Lncn2#YtXe?zfqUu_TJ?LlAtQL zhPBwLJV<1hR#xK`0~VS$i`oQ* zP$fcYap%oW4WyX?sxm3+nx%xWoY&MVl?y6;^OU z8J`x{-qJ~h2Z#R(|M7f^=NKN@k87io6!!oxH5t^3@)%_$(y`{j|MbH%_v4s1zqR#W$j&GOdvuEhr zvrO^VO5^LZn(4g2iFP46sEskE%x z>YZl10qBK45x*S_s4xh_Uz|xr&;WL@4lV0oK5U!E=4-*s667+A_1HFFBe%J+nE3>$d@hP5e>Okiy-_-!q)1g_dbZ6w9I z**()HWrt>iZ6Yzi!f&O6>`Hd5xTF~F6}AwYS<4GbBZ=lAn1)%l6_Tk|G#s<@f|MgF zNjs66QTZ$E6!!Q}Xi_ibCpH4}(d0v(NIy`N2G%CDS!z9tZAM*2g$z9*!Ir4D!DiG} z)?^(o@wp7RJg*HiLrxXMW< zKIKwjGQJ+&ykKQ`_EuV6RDaK36MmgR$fyMX7Vsm;!5df(Db6YRlT}ZuWBZXw`{X-B z?(;_DdbWrHIK!z6^~J|{K99d8P;gHiX#cESJ01G8x`+LP=I_t=PqkbRT0HOYQjd3u z^&OzKlvZuNsqA}?$(XB`5QDQ$lMkeUQWAtH3fO6k8JnC1UmU^1cv){oz)v36JI^6K zy=wlMrmT}+D-4Cr?A)3|hp=tRRr5oJyJ+5r;$j!quyiPgaVmSDUMRM zrVIdL6ue~sBNh`eR>Vu;3620C=6bBCj)$lpxyhLg-ag#(@!#w1=z4l|$~3@Obx}i* z#RR&soXdc96_7K*i+t?8n4O2~U&qMQx2nPz*Obrf&E+RE zuY1ye!8NP*+G_hPXSv#dxRqhGr+}4)-ELjTPW1Gy| zSZrODz0>qFH)ZVV@rU1<6Klcoke`x2bDZ9fAa#5;^4hhl8nO6#a3-u#Qg(k2GZ5A<}p)tP>z2IThJIXRY9TfWBcyxb3PzV?GR$&wMFaY|X1-IBpJkTmcz zNhm#IP(j%^npoHc7NYByx7`uo6A{k~50IZp{nUZfW~%gI#3tZbSZO8`ayf0Dt;7Yg z0gen)7UYy#tPV^@>Md=RvK|vCS8c;P#JZ&`4%)?{S*(rgbOwD>h|WkXGeJw8Zi9&g zvP7{7EJw%BE5&gHwvoRZC8~O#sG*Cbg)S!V?<-Jv@9w zq|C;&fl@w4Bu!e%fESyTX&82kQCmbv>kV2`jVg+)QO#Ar*lStlOLOjYVdT1q;vAup z@ANqMx*o9oI(IGd*i1Q_zDPX_t;j7LVpEKKFRTtfe(mG8>l<^qM)Z+9v-Y3YcI~^G zk;Y5AeNxd!TwLae+@-^Qt{L&IB5%$uCVZr#e0l!VL#8)s6z3|EfA>|7y{%1dTb3X>wrCE@uEse+BOVe+RSi08X#6w zybY5Bm)EqVTvsEJ>(YY8sQ`(EBFk?`)~YV{)IMkD z@CC_o!`I^2=u_I2!7ljW6>bNfMOVyalXiipBH0j z#xtd!Nijsc8Nrxk0Ri4wP>Yf`A}gi1B+IzV0n%_wox};tRzfFPIVPaCQq3OUkYs>h zGzn0t6tawap>(4TaAPs%y3)WUP~I3-!Io-u9EnB%I3y9|stYl^1WqLkZSzW7{%sJm z*o$Qe(cuT_A6~6|jnf$-jc|Z6aEW7n(^GG+iO_baIqizq_M1cAWmLGGI{sudTC115HvN)?CX%HOsj3#%yVCV{0k(F&SH#x`V1tP=?Bv;eeH4kSkX+LNb%0 zw8AZHaH=TxTHK6Hdxo3xULuck1bWc>QCpuC*3u4+h{joOETJZ%%AWnyN+-KC$>6Ay z7zemBp0PAsUPCfxt9y_7u3G#+mFAD0N5-@;4tZ_2;J-2vp14X-D?9ukEqYYiyt&V#~e7C286}w`OnagO?*VIzuX(c)>UEg+h!? zOTt80#x?6j)#i{~%F9!3eV$nBK?;et-6vL(e0R*1Zcq6pxesZmL|h4?$_CAZt}V?J z#G-^yn)D1r%vD`O(iWM`E7kT45l2TZMhGRBq%Db}Luh8Ih7flr#ts*By3v+^?-^sr zDf+PNx-#tmYJB3WZAENs4pI%(B5Esc&m>RV9(h8G`=#JcukE%T z-uz~(ju37d%~hKzdFjPGa(o{?)VfaRwKZvdx84viW`6JNj{m68^A&B;smrt>DQjbJ`Lo%MvHf{rr?8gptj%#PnA1%zkEWCt1 zr+aPl{b0PK_>F*X3D8`$DSboZ4S_6zlZ64s(ff<7uHkC`S+5b&0vD9Snc#|+`2q?U z!pnjqFdzSZqNJpI5tb1Xm9$V=Z`#0yxKd##YY7TsYt~zv0K=}q910?pPN7sp9axGt zyw^4|g3^T>LpphqkuHnS;UIb9miO2JWkFk%6t+>;_`B9}>sTYy1RGW+R!tGCHkB2^ zhE+xdZCykHof6Fqa5W23MOFULj))wC;_s7;Co(UzWV)ovYew<33!h?Bj9uqvp$b9^~(c_1TnoFgVE9ylT^V zZB1I9EK+bO%4PRy@59vFQy=G(3{TmI<2jFK#ymN$AMi8eZ_2U#h*otQxFOhH9H4rV zv323`zI&YKwT%{yhGu7K1N_*5Ub6dp#u?E6#^-deEnm~|iXR1PS5yS?Enq5;C*U|8 z&XF8<1li*lkWtpw(hahKtbJ$9$tdat7NYByH;#axAb2+Td6J-kK}g7ViYv)B*XbH^ zliC1`28-0lPI*|R1u}06FH8>fvZg3fFDJbBT^eFS$94B0SPa22`1Lr zQpmNTPqx}}Sv|fHh~eKn0*ksRW*T(etpyT=YO4hV(^fj|Xl_m!5MvX7VHAo4&w{eP zJg<#2X_a-B|K2^wnBc{<@nx-^j;_8^6GvRhA?J>#{nf8Z9lZ4M$8V3Dw;+yQ)$HC| zX4-3u;Ldh*KO2%qfMc)C$qnJWHl43_c%4(z2kA51^6`&bo%I&0i_xfPpxedEqC3S! ztmic(W5_r#dELkR{Dfm9Os0Ap4p$Ny*9n@_nV7e^{Yxk+{Hsx1;J8H8o|hb zAw+4g+bipVQxwoP08z-`3`91djhFQpfg5k${qXe6CREHgq%D<<2#^8X}27H6rpq^+*@ z7A$AMZU)dQikz%=SS4u$>({ z^4F=x@z1^h`$25;F^m^q-fQa>T1@XTp-ul{$t%3Q{f6_}9zOiB+nDwH={Ve8#!rMj zjGqNKbGy?0Vjdpr?7h!{y#CfJx`Jeav2&$y^j=$C3o?ETtRA#${%tXQ`?a2Q?+-@# z@w_&t^PU|a#SDqYpxSO@!8D5|>uirJVJh#cu(uti|Bk=Cscl7#`|1gIKhqvB&?T4Geq5ABVcs{6GlDp^iJkhhL ztFn~Pwnbu0mM{#lb%7fjRg_tj8Ukh4&;~FPxnBFVPTFiVzFwz zB(xVr0tDwQe(#UOLK& z`{AGC@_@U4`ZnD`@0T%bFTW0Az7IdWN7r84$oAtnFDV-ne_l!K`@J?09@bt(KJNL| zxasEU`&rt>gnK%Lh!+6=v;K3ks}CRY1jVC2>Z^G;w{iEpwzs?}`7@k2hTcfaA9}c^ zQ{)cfIl&bR!q?uKt|9r6av#T9GPkiZ#?D_6az9GB>M6YELR&6KmwVgW9IUXZ>su?~CKSbyByf(koyY}n6^ew#m-r;u! zFpEC50!>|mAjlL|O4J%#fy^tSsA7@^#f57{kZYwF zFvb3cWN{({qNHyetqQd@Cg6;C!Au~WRGt(ZK`DWda+>Eq9A`FG7-f348o zYYT^(z~0B=E8^A0+Og-g)py%6Tzm@-N4en?q=3%QuA7nbLLc)Qk}(jvw&AP)%Eu`$ zxfp-n)}!XVwrjV%CeYc4;psEs4s_KUuK(gG7ne54zdY)p)-@#S^fP>s5j2urMp%D^ z_JF61A~+M=J?Hd5jFIq@9&X(k zTb_1WWRgq}Be{)B8b%qecv(g#j# z0%8G*BJ0I$&0rIZWaCOMVPFu;0HL&U9&m~xNR(0EkR0}O&qD+%c6JmP0a9AqW45A- zV&*0`;Zd6BdTk8QD0ow>1YvN!SPe!!4?7I3pcG0;!ZC{Af8ak-uG$u2de$M!tRNrb zG2!V`@h*kOJ_7kT;ISB=96}6`H#A8inDvB64G7`lOC7w)qSHQ?T^4dL4RLD_TtWIZ z|MI*x&v{+qj1PlKYWod^{~DrmmiDA06VnvUPs_k(XwN zJga9|Kla0N{jHct#@yBK)Vzjd0I`D94EG4X{)KsMvnrM$EIO|}tWAhqiHcOgbzb9H z+V$f-{i&QDzh}DsvmPRJ(kEnH=kw#1*0c}A$@AKBbb5E^XNdrN=+oK`KL@2$UW+ub ze|}GKd|ul%Z<)@YSw}6l^>b4x@XO6iSS${KPP^jQpLyvRa~%bR!f zueZ0l{y_{6Mu@&Z&Eg=03t(kPp_Cyv4l5}| z92mov1?tvJYjd{tx`rg166U(i)}X5ZrUofFh7A3pT- znZL#`R&9gyc{Rt|DPE%WUR&*>@w~Q}7Q2b@1xdHaZgJs=$bIH^+5IBc{cTkA{@OoZ z_k)pjF1T_m9|+W5Tl`?2pAXlumz0n6=YBx0b75V3WN|hng5=k16-U>QjPt*Yys=&I za{&^b6~|AG&BN4$gZoT$?O`Q~wq)Cy!>z9hvE)Z9{k+Wl=~a=6Re%@=< zoU3YlV^lY1=x>9bF=lDBrAkDhB+Rk(4U1EUXNe@v)dYg{?Ww!v6OEsV_0Jpcuy@y< zGe_XcN@RxkCt3cm0!92|=vaq$y@Yjhyq<=7z5*+=lY>IGZ{hv^mk%Fru=C7fg#I1=(N*?{QsS{@Ka?E&AB;GoE#FBp0geH5|oMAYamB-o4jK z>WU2ieM0rv5`SAdUs{O!ni9B!gxUqUgvdSXWA7b0JHh-crn~>f#JYy)0nzP$HpV2;?4TI8ard-FzihLlOBe6rpEw*bh7ocCKli zItc6x4QGgg_Fe+kUGI;I-n)=9_k7;Zent%20+`Le*L~gzZuIZ_Z~r@-y!q;Q{In17 z)Er*i-#872`{DWbZ~PZezm}oT`ONih1_V{cIX?rz$k1H)HA7(HhoL4G!MfhTL^gZ_{F5iE}U-Y{=x-J1&9sO^Ad8c|7bC&a4;+>rM>?w&l z_~LwduI@)+yp`t-`8ThO4Moy^N2|y-k>Y2=d?(2+7RQFj<%1oIHtq_BRa~d((_2)y zdWiuhOt#q}J0@~;c^Id0%3n4>5Vv|k?<`5cIpS4K1)~^Ouy#F#ufeV=S`jL)Ng)?3 zFY2vCp5x+Q2kf!nPVX?=0yfDaaZ(b^*KOsBZwQ5%mYbV##OzCP)1q`lwXYP~n$mFh zExRG~i3?{gK8{%h#S95(JYeGc8H{V4F*7?AKJt*B#A%X(sAd6S3BLM$sRXU~ zuPllpU()w%lt;5N`Pk!0ITjIlz7+!8T#A$u<@o(23l2wQk$vpn)GvBUO7>GGiwF5H zU1kk8Pa=PfR<->i6MbE&W?t&nyq?#pXBr6ba69cS!k_sk!TX?D?4A-iQjdzV6&j>Z!S}VRSp$LqKTU zgB7%if_TTRLG7m##)X%}N^(H@q8X2Pqeg4GxN3(||Jjz*>c80))C5yxP4zRMcmrigNrK9LpPC_u^#K| zY(3}9YuSUd-JJCl>W!$e!Gg5&Z;j|*Htxq{59kp1BF4ca2T{1vas$5e#Abrb7x29l z!2h&_PU>_s@eqK<7-D%lp~dn!_Hjvc*&|d8w6h{e^xz#id;oXC7q&(8$*XptlnwG$ z)6^E7jmh3_<2`&Wx(G_S42Ng4hS!b!kYnpyoENa!HnlE7n)Nyq@3HqBj)(a;NAs`i zc2nS7X9??;iFWH;p{_%h`?<{+oBnMe?}A?)dqr|;TY4^QMh{nYh>Q(7@Yh{WT_?Q^ zR|B6W{}}nK>B)5i%>>hsA8#KGHwWAJ*Zhvuckh7YSmLgrkWKltJGRkQ6DKK?1@rVo zn*7V&5_R^~*WX_i3Ua2H86R42N7hKpQR^&m(_i-7mR5?Fqf~;X;hS>H>+?*$EZiHe z*Bkzb7zZpq_P-DwTRpCHidIwid~aIb2+bZGP%0DenCiO&QD#+RWDsyKdPQ$!UF4y( zk(v%+1!+&D%}OLle>6O=HeMDSEf z_GFr=MV*w(xB}S9U&116I-;T{gLSM@MiWE_u58fESo}(}6m&^Z!a%s(ylyPJX2--7 zsNcd!1q5%z8Tu)e(T~F(#R@}w5&>3IP=UENU0HpQN#qvwu!EP=XJ=D8hi1>lt-+3D zW5nXS$p1|mGmuM!rw9ZDY5;>5Tcz@pKk}GDcae8zxGJ<;ey-#Evhu>hC8%LIZMQ$3 zldu_QVhu>V?~}ojUaT*J#>JnzSSX7Ll18u^4P%!QNwrGS|7R~rV(GF<^zZB;-S7F| z$6aiV&BDIngB55AI`t3-tEESL3MUe9VWdX;5G``x3nMA*}cIP^%3{K(0-F~!OA?`_L= z5uV@Z`jp z+^!0onlDqgn3#YQqxLc5EF7YHRFI$pc<2vSq)Zv~#msd?r`$rZw5UoA9qX-)v$Yv> zmW7K%o_Ca4S`&aJWG6gcaS4FV3@}zHj)-bh6ScgDXe8#MGq<+fUH-CDX_K47-=@J$ zFMdfT(m;?^ANrHV8p-Ir+ykcM5VIfZ)ZvR#VcD#x zsMZNQ^fQFXWSUBz~G3 zi+_XjhtY$IABDek%<8T;TC^?}ivRuQ<8DV^wOcw1yBz&DmlJYXx6CYk*4-N6w?&(- z&0+EW{(NQQW8c<#Irj4QV-4c`By>OI^NgP?XCYqUGbT&v*4FXul-1kwTT**viN&+p zh~Kp3^D4N5xkgYaBKmOcUR`1S=iTAh$NZu4l2f>YK@yRKDUlMZxSTVhtEvuOj@=6* zZAQ-mES5*TfW+8xn_4>H`6{SG(;=tXpN4+V_fjy*kJ*1OYC}jZ-a;SbIWc12NI$d! z=M}pW)>KKh&@N%KHHD@$J^tK0r1a|&y(kiO zn@c&Ev(3XaQBQx^kc8hm2~r0pI-P{%Jfkr%>)3Nnx_Rea!ytd=AC@dC_j-mj9ea&v z7V!gg5l=+dX-lB*^)VNFhpOAtgLczXFv=unH{Im>$f%o%O#W&Z#46Dr zzTX$nSB_FTHP ztx#Ew30{e>;vZlIM;afhM8*UxUb^z)`lb1}Rc<*!#0!}4%kRqpV3R^_#+=-WUd=xX z$5<*MHI0o8%;zK?#Au8(CJ1%GAR2(d-0&NmCa{t^198&i*D`W4y429(&9aGE*{Zhq zRuzQ5*C|_ErB!uZ9xZt+$$F`wBo}2FX+oV5WlnXA%_&HZB}4Xr@NkY2D)R4|5HRR` z(Y~Q|kcasX42J37|IEAa`FP=|a!j?aBN%bNh)%%q-Egs@WeTPCl`a}i35O}+zqo#0 zY6-#ryb{1p0rp%r{Rh4o1lQVdu~*@J?M|;abPj_B;mUy6v=tF|f{rojIWrvxDM?!I zMnd4B9zo+IY>Zzc69w17?Fxj+YnR!o6?edG^=Cu^h4eRpeX;*lHPlxj^rV1mv*=AWi?2|f7Ov{`^Uj!;! z7O=|w@NOIPyCJwOX0rzeRP)l2%Vj`JLWQkrN;K)L44}?Q7U9D!nb58-*N=?V@7RJn zCbZdW4XoJFX)dwN(dOe zX;INiE-4w=ybV%-&}c2PWYMP3;PHin&sVcBl;f-;)wyEx#PoPKz{vdjNMo`G_8HWHw3M!+_Z19SlGRxo5daJ^&Fs9rb z4g_^XLlk9D`iGcR&02KRyoi8%^dVqi~Uh6hE%xQLzz1Dxg8T8GI*>C;g{f z2hmh&?ib! zy6n`o>`q&y|N6AFUHU&3z>}KBt{ZZVfJ6LpJXXx9SOFNbgqji;rgGCbj@&IT21Ny4 zCCXH=$1+j7yNLhfGJzK!G03D7-BrceAn21BuiMDMk^=R`Ae&+D)6A+G^Erd(M#LWP zj?x;ao8jfkv9*Bt$Gt@Jwq8UZ(Snh5FhkoI)<$;NgUa6ZJgg|}Otf9&USncJBRd5U znj#BcpvLG_F2>GQASqV_IDlW<=k-_;eYUwA2l7IoEBgm4b;&UJ1~0>YfXg8V8pakem|J0!eri zK9L=gW8ik`w&g~LrvZ1Sh4L8{lYIl=XH0Z+mzvDZZ>nt>m_;XubXcCi1hmEo+r=QT z7fIPQMHCWje&6no%JCTtKC_xN9c-XdVMr76Ge5$2dWw+or`dt_ogTL58W9LeZY>5a zcYgzzpZ`i0X#FkMr7PRPeJ7-11H+`>HHPBZ!!gascAGl6?wk-VoD`xyrI+QwOtvc0hVO11F<9!#2Pkh2yC#JwH3$dB(Z z5g>L9i51Hx9PG%nQMlco?GGM<6|K}mEqB54 zW&Lmq9BzHDmnWg=wfpM$I2=Yr(K1pHb^=>vaY z9)l6HHCBIEGg1Oo;3O$=3yy7|*TaC4;L+y8Zg;t=!W+{n0>mHbK8miiHROA5g(n_n zWmfRi?s;EcRNtsU-;%E|opBYZc(PURy+~)F#L?1*oCuyVxC|Zn)N~@9G4Q!-je|%C zsh{AAfF?GR$b^h(Uu7~;xCJ6JIMNegz-1(7C}MC_w}RDm<0pf@1mud3y)zLJYI9^S z?sur@OgrBl@9#Gm7Ti4cHGOAz04@l+IY?b)D=k}@HmAMMCMwTN88hwX_+#}??#D$V zM@@TAlX%ky(R@cx@FHtno8S~A?g?qqhGivZY*%V@{}5e?5!q9PfQ3o-1_)$y?;16e zUC?#}&v?AO&&(F?KMCb%>CfEurf0&`@(6Dro~C&Hj$5zBR;Cx++d*ulO5W`|5&3z1 zZl+NfQ*7cA#ux};sB|qWGVS>ewjmniO%v=vBos%56B{rks(R$jXTz%E=Q^pdqBhGk z-+T{)jX9;wVO}|S5_ABqF-0-iJVX9HP6-CQ6~Sx9fn9BOHhW_u`|eW!MVN%7>H#3PV%o$h1HGt$j@$4o=rDw|4`ij?*{McV4o@3L zGUik=%dBFq#btkuuP8IZw6chHG7XqsncmYX+9hL49Mm_$g{~Zs`g=&Eb)Ftje_h1O z!z;@U);EzB!Vh3oc%b3vq=z&MLdbQ9rQ23BVytTQO{~NAo&*VLolm+no^09ufhR-X zEaMnJGeH)TaKBWFxio^Bra_imL&&B~YZDP2<{7g~n&K#9`0R{W* zd`$QUxf{O|1y^K#=#~%nb|SWGlGSbs8Gx?vq69Jm@i>wC7kv?ze{=6~?8IFq(j_uYO;$=J zX`&}mt|jQ%%RX+xd*~7b$-oWHm}!R4H#KU>NrZ1&R2#EgvS_YtPJBXtnw&4WnBbjSi+k=q_9 zg2EjJcvfc^3>+J8YVW;Kj->kDaKoTPEk_IvI-nJZMliV+gCOoefuTdBCKbJ-}p ztDnLcWYtqF&y5eXd&*lzrTMIRe5OPe&!$Ak@c1;4Uw`yHNsraSmRQCtGJ?lNnq)W- z#-1)>T*_(ZjGs8*}2XVeE|+t|BIKiV;OZ49kTyTgt2*!k4X*kW~O<}IQA@ie5#ABFhGA(V#A!ld65 zfFdslBD7Acv1qsmw3j9#xtf?N<@$*$r!_qAa3<7ev%b=9H1^#8re;llvV>@D>d3k9 zB9f}K3X3gEVL;_VHOW$h4A{jJ<%Th{q>)1iWH>g{^P!an2kJ^jk#i8-RwpQm8Us&^ z&U6Qp%mP5Goe%ePuM1ZIn|+`P(_(sqGH}LC!(aydLz~KN_7w^Eg)bW?$eld6#oB6l z3L%tg?xNEQc>H+h!nBxm`;U>}ns9UUNE~JoY*)fHVsto28Yr6dYYtNGn_GU+zFC*k zmD6?C-q&^OhWk%Mi8m0#vOGvl#`F}&XS18AeF{~CtveGzcRLS5IR3#O{bY?D%MFi0mp^p^|ZRD_2cHa-+v8!jLzKDKmpD^(;ya!xov}r%C?IkAd;G+_iL^?-N4{$R>C!g;pR?AN39S@rnqU*2 zC)nR0#wGhuY22!6K{2-nbk*26`JvdATdQ;E)L^&aWRVs_TqLRUE$ww$_8|ogR}Bs& z{4^}+MrxIJOp02#zoGF-!=Q)?WQOf>$&NK~-Fnk8?e}36fG7@1t}D8c4?=1io-`cd z1%1-ZGEQhD`rxY{WuGs~0Zh&@EczhV$P^0t;16DVQ*RV>HOU#exTa~j<1GrL{!hufR} zyh-4kQ|NN}?REJ!5DA`ytMk>LVdjIM%}1SpgM0c?0;WVf9s~(2=Npqk^%B6Lwe~_( zJV+Te^B;w9aku{Kf(Z9SGoBPLn3!TKw94;@8`FcfueF&Iev9dKg7~}_1z1;6@Xfg) zHeuOHQEd)Ide9kRGE718wGri|CB-mp5{j8e=RV_^R?0`R@W*HammC1p;r<}_8u_fq z;n^iiMtr8JwY4ojv^*+AbXjaQAzKM|t9qCEPt@lPZww$e!w`v%e5BM$?259$@jxT+ z5T4)gwN1~^w?F>|Hf2-~kv2kQr%-{oBAB)dHQ~H}#9U`ylio&xDG*oBqM&AHKVN2i zJNBJvx2(=x$YyGRJvz(kJ?jU+)-;0lltAwtXo_>%;#O^8n&Gr%(Q`LURkrU|=2f9s zrG}mUIZ^#t)1gp%oSoXPvrgxg6=j9(QpL_S%}o#-SA)qyO2-POeV-t#Uvi!d>NM7r zQlTd~t)UkoIXFxP%v$*p33IdIebiLFH&{}}E=j?-cgj_r9IO(C)0yE5nqxC|31Fl+ zAQL7Pz4<|JAS%LH;86U}(FqE7p5~{;_~#d2H+sJJlJlW~0UPy8za-7qN9m~RXLzzw zF3!vQ0>6LRoy^=49(M`B%P~2o$-mQtjW}3+qHNT?f|x?uhLAfLDlCu8EYL_`;CF{T+tI!AcV3Vy=j^t=qor%cgBPn5636TpKRSVU_(dmpND2T+ zT}%vSUA%soV~cMfEVVMI+C=gfYf=#hwCZt2);V@p-l6{BkW??UN^#x%aln%?xp=wx zlM`Hlj>RbZEHbWZ5?1v*mPO-WIrETVcBj$cniviiF|D)liZem5+b2K}GEM96JE7Ze zsar@v*`9?DNFm&BT(J>>5<{KfL4gaiB{gQMcn`%>uDetM$_o#+9kl{9^A;@a2^W3o zhJe@4#Xn({dyldIqShktGirZ-d%teFwlfV@KRJ%X)%2{u)s!ad{F~-(`m+{!Zhe+{ zTDr}Ui}{1_nmos1s}N-zit&4AxyrfRYOYK8W#2GD;C*unhe&303poYK%fP0MXab}> z&-$%FKfY_7edH`o6oezBGWkG~Bzj2_H)3QpuRcOYt?-ElMOKuy{E&_*m*`EY7?ONa zvAT9&V}dg330sE-9`%{+KS>_VWL>~D+I>y{wD zoFg_pC75Sj);+H)&E02~vL)#2@8bNu5M^c$-7k4YC)Wua^DZfO8&AE(p`4B8&X-uw z>=8)`jHq<7hq11$=A{ITM<7M(5ip?=o(3|U-_2mPRtI{#CkfzKO2yW6>?u@nFiwh$-II$qT;J#9^UUz@r%G&sZq z4x<%GbQ;8<7JEi5O&bbO3yj*$-c(-Xbv`0k5P}xegX8-tc#Z;(*XtVI&=K&E`R%wU zs$`b&YSNVq#<`y$V`3h?qu4Ly&B7&^j)QayvX3JEtj2h&*3S9#cY7#79c_^Yj!%_CzYb zf;r``6j`qtLQSBCtQZ+@nDme(4rgfYGk|L!W2Jw>q)d}fyk>2J$3Tv$aIJ}L_b&Bo zu#!f{Ulskx`6L6ZJCa$3=;V~#d8~r)fEwK@NV(Y}58L;LS<#9V-QBDVO5g%E^gkXq zLp|O5Kk@1%LFvO6I=91ErphDj+UVx+Kzf0cKzS5!+5k*g29Z<_i|DSw{Io{V4BhcX zXUIz#+<{}m&5T_y#Zhmz?8T{^CLT7`%XOmC@9A9G3Aie#9wKShRT@BVpSpfbeKjXp z!7aOT*Q7Qf<+*jz54&qb+XV&?fVWA|M>GTx*{*NjN?rAZwhe(>>E*PhOzxfaGow>2 zzNghWb;Mn7f&4%*A~Eu3G1r)NNY;D}Xn*A;2w|tVSgnHbRS~Y_R^Y~T`z7Tu1TM|C z?|&^ca}{Sd;gFo~_TzJa)?WsaAGGDla7Whxpdgn;yV}z3pOx35eQ|n?8;kQ-N*;?< zZ^^Gy6BllpuWq}+;D6VceGne@Jjc3OxcoO_(Fe(Y<`64J@8;lmv-_BGSETIL$P7lJ zFCs{UH_ggz*Y|w?3=4?S)vqXxURg>xFl|=exb3bJ);oEnXxE{H{ma~fWbkn zEXJs_K^}xSQ`J8=)jI4w{T8ng7ad0_W4`Rk^W0O{qvvi%*$imBHAJA?inFuc|shaCL7bZKJDe*>4lx5zw51NX7? z9S>ooBzPw7G*$aS(!&79;-i0c7A1F!26YOrCa|KXq=)^(AdsM-_vnZZRu4K8LcR?V zx9dNS-I5+IQv`u^_Qn`ZTRE#xgYKqh(mXr)udp8XL(Q(aHio*hkv(s?4053w8l6sk zt&FlSeWX~sM+?joow&(~AlTGq)2%~hy*~gUM-NC4LS;%Yj~NX zJ&b8*Yi6;<@WRH{mJJg;L%4z~dYpcppoXM^{>p(EW$bLsB?AQApw7YCfZ%y)mJj@- zCX2&we7sGuaCcB>z{J3iVsWL?{uJ)Z#5Z|!1KMK{*M71{Xc0!j^JSg50s@_=|5eey z1PmD)Q$_xsSq>Q(1K~&nh(m{l(T-A%M1;Qs2}xxSjbeFd7RxFPgq;>1woywAXFSiQ z|MK~t2U%dXkuK@)*X~M&3^&X2q2KT%?n^h`VaGIfvz3h0sXaE&^|=7guOZGrB8A4e<#i z4NL!I#I(br7+cBKzKy#&iduuGXih^HFX(C80!P9|1E4xfv^J{KQbw$7vjJ>^+xOq! zOI4kQH){JPGL`|P@J!7lu%*n-NxcM6`imKOiI~`U#ySd4HD^T#>M;DER(A++f2esq z#E9F8U!&gf@+#RuDjx-^U&qU%1|m(qrNFq7NVva4@I(poNavm>krisW_J&y%bG0-t z3i38)!Kz^n2~PobG=5;cVrXWRm5`6RzL1$ag%}=snHhcw#RyfpQPzTH_2||(VbW!GZm8Zwzi|)5f^z&&tC(B6l|uuqijnP+lcB>- zS-4RZmod4fT;bc`^00KB;{9EzZ~3P#Kb{^N=2HMF%{JL)avI|5x8@Kbi3$1!Wc?-11V*NHWVjWs+_1hAs>&Fq3i)U?uA>BrB0>gMsM!=CxKPFk} zT7e*hW5!(`*a=?EB}3~Q+sa69k1LbkFStan(bXxRbRnATsUGw$%SM{&RyN13LBIyE zwEcd)KOKWl=h%W@edo;0L>3vGI;fk0f+Zze6nW0pd{iGzDyexrG(Q9`m6Rq#9~+z5 zR~{jHYeZ=&hfQAo{Q40!NQGBZn(tx3?s;a2U8IwFW~fyqkxF=PSgHR70V^CftPuYf zX7@QZL07IR{ud>Zd^{aGQ}P)nmP0|Nr1ZBf%BP*EIRI`O)0{rI0~RI4hDOwSw~8As z8#U#gN#|}+d8CA^z9B%OQXh-r=OIcze~>tJ?lZ$-?JSuSq6`lN!{eS?gK?pe=RU>) zxe*pb{TI)PjT3;RPvGC>P@OxU(1lEL;DdGA^AA}#}V^Jik-$Z5f#L6b+p z4DPsuoEgB@ zGVzraHjD~s;wOgqWC>7A@P!rT0hNWIiG_4YM{TSa1%q=07I2#S=mnZ52#HH%3Yx*D zJZBV$tFhXDXoYDZ?l?nrE;%SBXZ5UJd(ApE>oHy#1aj)rz0Q?YMAO~_z6cSppWByL z(=ofoY47+_1?yr{-ldEA6C$&cSzj%5$orf%B2^|pixaG6d!sq3v8J_ZPU}^~%SlLY zPi`mn&NlH>^vw}F=oY!Y6MH%hR}Ie1!bHN8nmXjPZ`~YepfH0) zgZS|3-ft?r=-*PkR^@tZ& zT1p+p{xqa4-`6~yc@=>9KEcW&QKmQxf?(st#*ApD&HF_)xRJxED}0@1_b%gRv8H5V zYZogt~pH=`S;aYds|2%Es<3Tl{3+ z*>mmh2AHMd(kmC2ry{%jhuHs#R-uNRo&c0$tps#!b2909aJkIFqbi2!K=qDa-wL?F zX`i>YZ3cfmpmMB`JP@4Ip4N5j)Hq0_eXJ&{q5zY$qTiJ6J+t#S6+RNhTqNU#Z%jLW z5gX;|=TQTysGYJ?Rc$mv-?jE-CcX*PTwn~-c`9d>B@#>jjAiS8b^hP1<7dy(svfxE z`%|T(mzNYx*)Amk`FbyT=e7YgOvgp2gI>UZgd}B$KBl~Ue_`e+uh;CBN^VoZJ9>}Y zuM0jYb4pd8>?k$S=; z_oF5FwCwq|93(r#d2lOfD0fB`1CsTnsmz*$RS49R5{Hh|W4OlA7l}(s*ANY2sgM*YO~E>QH|v4$&r@G3_F|z$r-bTlo}XnZ z)ADNmC5a4>%&6X2lo?_tkPPd`1f2%7sD+GJ(*t2FOL!+kKhkwzsXJU^bE*V#TLUHe zU(f%7EFW`F2v}@Z_;mhyGXTk(%?#To{y!EVk-_&{u`2riiq*2~sK%oHqIsKm$qe+M zAXesmHbl5;m>p63iL?c#Ih0Gw_4M!}kK)-2>nn>W5t|zK5`z{#w1$|T8I6!86U%)v zPb1Q%aBlrUYe0btghf5wavAcOGM^k?CX`St(zs{gj1a9W0bK#Xrcs&-?TIj5XM=mb z7rK4V_YF?Py|id_^F6x!rsRHaSlO@N!0L>$Xsg1Op@sLfy5ZZ?x`06xr)Z=uw?>2V zo#P`@xQJwr$0Thu1={fyg!8&QYd zjfL(r#syX2-BFf;A)2_W;czQ;m8WS0LPUzkFyu@{%H=0`Z-gEz6$;H)sWF`2zQ?J1 z*HO%W9XamY$Ji}Yu)bVZmbJj^;?*Bh6sfmVo~`f#;cnv918~EVW(Yxbq3KT~23aVs z*hl*sFIlW1RcKNN+f_JP_iKx?s>u61eYZPh` zvP_l8ZCcMPh{Kt}FzJotP1MR$OxUO^`PIcpvkE3*9QCf!C++x0*k=MH~> zVKdh+7AM`y8AkNqb@mgxN1rJlBt7T0B>PMM09JQoT{lfUu8#HoB1IR4ohq~dSbiEi z-wHePWtqf*clQ;1?*sCiua<{uV(}?Su8)V)!n>NM)74BTjhrf)N7YIGxQb+3YXm;< zpZxE=t)?`4Ja+B1n*xyHsK;MQt3FKV1j3kP%OA8NXQ`oTVsSi?VE&_Z7%_H-lN&t) zh8Ol<7GV=fA(OZXU}$n%6Z{l_dP2zK}Hot|g$mt>++h zociT#oFEF!Ppj3}sr^)%d8cF;4PfN=FWLuZr9C6yq2|`x`%r#(2pl++#^TlAOI9>wRAc`D!nQeGd3N|VZk2h-bkf*0 zf8bI%?WjhYee*_Su7(%u?{aVJxPcFMpMwl}3d2C*ruUq?x+Xs|CM`W))XZGTa>ND= zHonVdjtyHBpR1KAM*^?qqPX#hlONleNw$6)xwvfh#h}&;5Y;09G4tY zjgxto&X*n|dDj*VXEpSGKgPEa_u}6Y7Vcm31@5p3UjptAvL#ZMq=LYxFiV|9;d1PiW?sU#(z!O|>^^S=V5=+iz!M zL14adTaqZR4Jo@-|Dd$p05@;!sGxQ4=;)P{J)VRMbwKQboC4v z-x)f9T-lcG27M*4dI;ZLS(yMaFOC*xFZ{mBX*h7K z1r-uH7u9Co5+1r#6NOb}zNF81*`xdj#%?E)z|2^@9wT0hR+kJSzIQ) zgqjmyg7|02T~0Yfm77*=cR0KA0xfu`M7~Y;8=)9no}ya?$?f$)JUdQWH&EN68RaRo z#{`B&9tROIb!0GAC2?H;wZ8gwB~Rp@Mib^hIY~8zN~uC;kPnvITHt0i!PouUsV|U8 zUY~0(l*{|;!5ZK4BX1{OBbrtp(Nn>=$hH>GlKR+cK$64NJT`~SSzw`Zd~`|Xs(2f% zrHo%8x%q@kC^l{!h8$%9me2_@#q7T}*yl#reWUCbIO}Xm81?qgGiCBgHM$v%OlOS014^I9RGpyLObD08q# zFcTHK2hoSy#NOiG{K@!BctO1DmJWDJmRbwG>A#quT>!rqmyHHwRf$|gv$Dpqsy{1% zrocM389Bbif1l0qC8_Q(ndmh+^AY99NXZ z=knsYp#clY^f3;Fz5`zkpKY{;*L~M|A&|~jEj;>vU2&AjD!FR;g|pg+%qdqE98d9+ ze&`FSnjD@;(czALXJ|Fv!z}fE2WlrAig#v}c^5ykm0Z(a&*A9~qEYt{%6Slkhd2Oi z1vPYf`A^vM7WlWH?EaR1Ud8k+{;hVs1VsM|`XZRVa2@$Q^ZwsN`CNR+q-msqv=wM+ zmD?)mgJ>GRo%I&W#-g{xf;*p6%ctftt<=Rvo`(qMuJ>V~ zn|0=yo6YJI<{o)ks{@zrYYxR;SL?tU>9Y#sY?#x3D*p&mhjeR(P08IG zQJ)#aGi?~amj$DzWc0dHj)aj+h19Yax2WnPm(TcbH-Rj!XD4i%9ywsckQDJs8+<&Ds1BhVB0Y$Ez>? z0MxLiPAzmh-zEd~3FYH*QbeszJ2;aZ{x2~|G|9xn@tA4s1if8kk4SO&wEj*jl z2QDp?@nctIqO&9s^!iJW>O~X37@l)PUMBu4vaQMqZW|Zv2Q9S$U}HC-yUMguJ(w)} z!A3|mra3mSv6REHC^m&#Z!-k<-+5a4_bCbfSS4U|^}#`m^&9)_XCJVK1!3z3bJTey zr!=(wO>hw*k6n2@+|*ec44BeLqPKuB(ShyayKUeR_T=hovnmMU-9@MuK-0{UE(9AI z2&;@fsDxJ`PRf8jIQMWnl+Y1Dst7s(7@@5=ejIum9}CjWT&&> zfg*`QOaEYi50~3!N>VgkF~%ef+8ETnyck?oKW1GbumKh2mHqVcD76;HFUA{E45$-~ zzD;w*J5+oGV3~Z!uC9DpR0>{@BYL-2zh6A(4-!`#30V=KMsv|lO3^hl6IW0$BDaCM zVRZ$`ln8!M`jq$UgpsF$B^4Aqft!uBe$FX`+k~t^(| zta3^ns`|N*&$(XKDSG=6F?Zj7J}}plt)jY3Wd zD{(iC9<@{Xx&0L6U?b|SGi~N$BRbSY_j6M+mNL||e>=!ye)2wV%W@+M@z{aCQZWRR zO|SBTp&+js&lyi_K@-y}Z)Q$NsfG)mlhBKD`xAP_;9V}u3MKukvSxMTbS_pUD7?2nE+|bLnGXjTla(H@DJ9KtJuzq^*d)5i7}} zG$~4OMA~o0*^_3(l~B+YLZIOZeapIy;Ky4MoI2RQb)+3|uD9kVc2>;fO zwC|&_P%CA!zO+-IPsC6y-=5-Kh;MA4g!Nb$B26KIF?2At9FVQ7=iFU_ADzV&7`fOg zYs2)5G#DT9=gHKkOPzh(Na^R1orCRzYDL>1eS>$oAm*Qfw+%jBm#c9nl@Pq3vQNpxQLqZCY0TK`c#fXCTH9)#-_~& z%$K*f(K`gqxarE+x=X+0f-si|KO<@Df#-=fcp{TyMs?OMrg73Jo!+8=IY^bJST!X? z7&GB@Qw!$)BUht30hiI6^HOcLu7LhaQ-rK`uM_!=eq0}WqQXY6%r<}1H5L?@i!QtA zOsX;`?vHNvB*1LvYMA7pFg>41W(&s)Zf9SuXb~9=xrkje18s9n=_4)_Jvl%uMGB^y zF^-}?+SD~EU9hMSjYIhkp$Q2TfppN&wiUv&iqbe z3PpbxrfK3;K@_a}es?(uQe40y`&oC6m&CcU8cr`s)o%jFSb<44B2h8t_~MTnikC_h z6)@D6?dBSgj(T>X0+C##IR8SKaBCBa4+o7b@oow);Rs#+ZFD)Y)}K&vfas3B)mZ7M z-y_JgMQ8TruS52U(A~6)uo)YiM2l2*tpS@wMNy&KgI9k+J@!tUn)=ePuoSaIXEP$Y z${CIOw%!sIkPU>*0F8dwylnB+vy~oj&0j^I<{@wwr%6S z-#K+}-G8vFX6?1+oNJ6{oTV@AdyAEnkG$E>Yy#&l0x%=TPsTNz5gt>Rwl>RV4Sd@y zpE&@q-h0YFU`5@acTyMZ)Lv& z2SU|wVyIfFN1n!aM8jMj4$;Xt4N9ql0acXzR$s$0Y~k$^RYjclqqA}TagZ%fav~%z zi32HfXq>2#Bx}%r6=zmVN9u1K5mLSjij0`L^5_mUOJ!v0S*ekgxl}Z)v2$Uygz{BI zGvz=fIpl6_8q?r!(Cj@0UNLdD%38K)v3FNuV#| zW5Kn!k{TT>(~;6h8s{QBj)nWo21y-Ca#LNzX|zh=9zzRi%a4o>E{bMjh*o$w6^-TG z^jnGxxA?SvCjAZYD2^8`^EMXUd$3wIIwlya>2H~>=J%Ktyg~y8o3xyO>jI+HWVIw_ zdI_f~7Q|?WdW&qK?^LzUnw@??K>n_~t}%ZinIHP#$QSr>({vZize9cd+uzuGO2IA| z9x2(5M)Y@`JF&2%-W%Owb6<#2jWyeq-xgKZ+L+UbsWy%wUk%8J^%Y1RE$8(jX7Q|4 zoaw?Xnolm{Mong76K4mL5cFu6wJcozFGmx3xcn9cZ_#_ez6C#9pquy%%$Bz?-iPc? zUuVc6@r;@tlt{7wDZ{{HO-SqPZ^OTUBI%4`;ZaKtmEYO&XA`(rVjCr^=w$T!uH>|x zK`zZhY8s@#i4YMTX4)@<<(5mEXFLtfa1d4%9krFVzZoTUR89>u1ki+SiXBQ+;HP?1 z?*-&!J(ES-L85%cqb zl}iBW1Pb8KdNuf~C7?!nt9D(-?NXD|nNUv6*=)fyHY4TMC&ad~a=Ak$yUcI$%XD%Z zmN>|8&nj&jh;8lXoTUL%!R(k|kTtq_ct(%gsBzB1MK`eW*HEFiwK@M}d|-tg8NcZ9 z3E;QNGA4)(j+{7z-+TS9=x^G7oBhW{Wyrkd|IE56_XO2&AJw- zLRn&~!sS)xZsk(ONZv#FOR3bA`p~}~%lrF@~PMYqnBuS0L$31J2 z5_uv|rA;d`1gCq_#EgNr1_SC+znu@lEIGH1Fl3GtfzAd>_P3!Pzgf+xg!C#J&8k)D zZxJ@rz(4jc{6bS;ovtvn5*@L0fQ$K-DiQYuPE`DMoccM=ke$ctBHE6>_)Hn@vG=UU+_eP#_o|cVo>Txev+Cv}*Mk$pk5j_SI zbepie5ZyCNM2si)e@`mhb~bzMt=M$!fL0#Eb~7))_z6{=7~|WdU38Ur@m}UNt)l3j z9Vawpphq|_Dnm7Z7#Ql8b3ExAn5%ZswJ}?3YDIVCJd;ElZdHvXb>5=j zPK6ob$C3~i@~%HhRDv8DD@cSiQ@dzqI`+<$%Xt9cqdM|Vc*>AAVRn$NMzGYA@i2tb z$bSy~>G+SVr0q}jRC|*-8yYc3Ht(UW>S2#)XqmS0G!4Gws$V$| z9sCp|*MXmLHM$FTZd)^@4kQ`BM&3!$!Ig!o?;Z3rSs!PNfzAp@XwvsF^TAp${80E4 z>pdr@+cpStjIx80$})lU98}rN$)Q1a3U_G88|q8=;`LlKF>%m3`~)nHQ%{$n~ z=1iewJdH}L=>{1WERM#|{t9wCA?~M+W^Fkd=t3GlzD_FG)=V+J`IMbheBEcvyaWYE zYwiT$RCD6OFg3E1(U2eF%5136Zq?f0BxZ*xTB%^xaD%7mexIn75~%e+{t0gADik!k z;ghciMR7YA_H!r+!CVnpV#hqNvaVS0LIfCAH>JFA^ec8wMMBHyXd<7m`X1O2WJV zHmb9j>(Czfur3>O@{SD9;@HI;o`zpNtfM3h^yv+z3Dn+eaO@jUvTvgw>RUo%mE@`A z)WnPQcgL#sr%D8I)t%C@9yE~O;6`1()R~|`tjdzq<(WYK4b>2WN=k1w%_~E$Lu0qM zp-J$23N3Ro_xXRl{cY>>I#=Ne3sD6SANN0apk;af6TzG`;QemFJc|!W|I@&iWDE0O z1?~n?=7=~RL8|Ats3`7Y=}%NfMGd?rXoT+OV5$%lsxXfifI_*|$T8k~eVtqgjC<(J zdJ1chCnHT0Kcx7Z8pO76_z&7IBFf*EO2 zmOM&_bdmLiJ2;9+YPB~)uTcyensXHb!jSo-xcp4_KF;whXBzU*nDLK^zpz@T% z{)mvLN73~Z)?j#glfkb1`R?L4X?j_;ams9b>n%x=<;`vU- zU15ff>}n1IySNw#mEwe0vvz!eJr)>X{{;h3A1)aYhbsqpTd+Y$$D962O!>`}I6y^@ zm=e}p2N*TpIgq%dw4{vrEsjq-YOYRG4SM*dAD})*+-Q7~J#Ay6-8m@_`5$h`g{G(5 z`p=*}MD(LId;h@NK;A9P4(INaW zJx_jsOjE3PFC?>?nJ+9B!!5~e;@;YiZ59sF;b2+(#kX_FO~4#SUALK7ap~-KH8OqZ zH>lk~7$*=i5zds|5ONUam@x5j-jygPw1ssh% zl7BlGzXx`J{wbL1T+GHrRbei)mXZTudcks${8MN1UZo_9WSi`q)al&K1|;Jjnx_au zON<>Ug4t)ZXP58K*oiHKE?Z9u7`2g#uZWV2-?eKHEcHEAZ6L|+xCApcv=iXLCtbkO zxVWob(-!dlvpUxbkxrb0x{HS*!g!o%b#;Z1OSCd1Q0o5f#!Uv=-1ThNz%?wQFcszOS zY0gLPgxpTMkt`*ls0i`bK=+@!sdG^eJ8R~%8;h$Bvl~`ZgQ-uwr`?yi;n>r&x2T(H z;M@%|SVNZiC~6#go`{T4Er;!$)%HQp>;}Us&?4P*Q(nFh<7_;L^6jVG3fvC4>509Y zU8;^9A5-y1+`sCfK_!?j0V_3a9sfjzNIXqaoDo(5K8Usc8nr3+4YpP&baiw`^Tw=jbbtma zHW=0>+}5dJc=a}LluHa;25-A zGkR)tR8dqH2h&-x_-c;5q`BWaqf~IHh8<)}wsuI^3%=mm4#hCv%j->$uPudmr0^V# zLeENxq{d&VM9*1d)5M9vNbQj{2hH}Fd?eGzUo$+`v_tZJDg485#tonxaVbOXidfTl z)m!f2cK09t(A7M3Lu7@_Q8n2@{?=bK(?V}D@cg_ zlo9r*OO_G~#y>EBg(^`{zBX7jE{U_^xKa1Hx@i9){}K`BtD7;fGk2AVj-a`ZCMXTA z>$eLjVifUG_OzSm81yPOfO{gS?c^uRzJYaEd#s_8w zkv`K(=fBen-ScD^Do$NGIq&I~;$o1kWo=kqGlXO|q4R|sO2Zu#5>wH#N`47Q%elF^Y$kp`>{7sR<_ zoR?rrW1V1Sr7Q!bZ~dTMt}biYOn=upun7)w(ExSb1Ux1}^-?_nDk27062wr41_oAq z9u|3#qzS6FJq=h}w!TI9*)ymzb&e0b&}Rc;P!XB!ergL#yYPvN=jD;`K+rt+NQ)u! zLWKj_AWA}`zZCe%wk>S~quBXsXX%ukWN3_@%n6dmh#94~OJ(F&1QOb+*JCzP-L&u4 z-T`%_Y}xlfOFt>Ua^&0bVDPzla!omCTM_JZJ;2r1c6%pq`pDYxjJT2VP6Ll_6AUx2 zm8ZpyiDSPWK{11x&zW?oX(hR$<023~mV;forA$hX-qXya*JK21Fvu zhR_PqvEoVfx#7(i9=SPp!kjM&>aVK5hi?8~Ex^N&H=bf}GBwylX_f7+I%}TfJ6L^u zue*u*m@#T1D-&)#!Jn{Bc0TMpjQmomy0cH1)4uiSIYzzo&)wVXb31K*4{jv(SI1De={Z9e1MrQI^)O?xNw#$qg(MbUhGmXyilu=gosEnCk7=&0I#s< z-3<{Q*z_=ke=z9letFuFf=PC*s0;j+tkM3VR`qI7s#&btRMu`ib4vW|XGYA6znFSC zRP?l~{d}_Pf0@Fa(#8?IEehy{>Sv>Zd$CPAXW(7nN3>cHWF9^}6$WCdy5dqA!hOS_ z4FsmyEZlxF6vk79Z~?-8Y!q^CTY08ZCroAT-h`S|+t6qmIbO}^8G-v6fZXZv`MUks z5p0b)h`v}M+;so4tK48?oe6iBKXQlbGZYB`#d+{>BU9A`&j9FECq2e}osQ*t|#I@^~ddHtL2 zJ&uhF;};PaVwWt6MDnE~YJMX%_yoiB?DA^V!W|7$zp7<0b+dCll6Q%vQ$eHHnY|765jb*KFHEQE3}^|zuBA}0&F6`0;U^U@ z%CDGxL_Q^zr1x`iY{u5O%Uc@`ao# zRu+=)i{pZn7Z~1ULdDXo`ywI(liDW4Ag)Rg<117a!JMWDPX9Ni&>I}Ri5Q4<0k6(y zdGN+d*(19+Pqols!3z_|BzPoK4|e@69|qDe(g#Vh6S<;-;V>Qtew*=R=E>1hn$haW z{Vx69eZMNfd}uy#3+1vImd8q)8mt|0urMC&odc=@GWf7*=`;EK-E%cuKLzjSEGwJN zHG$hLyB+>8zj^+Eti)r!tAPJxJrh=?zx@3)lO6~L{dkqhS$uSj?n znrtxQuunEGM8X-GY(ylNx@g$G6M1;m1-LfkiWCn3RA6f=bci34md{+Q6hfbV!Um`T zz6$z+&nHwpk<(q!Z%%ODf}Pji+dlu7bwg-OZAgM38v@>|8bInE9t{uCRGr6c zK>iAH+b)%+63Qwuh3YMlbkP4_@s8j%{|U7X79M^sx8B!M{(KwB<&T?t2BN>+q-1FA zR))4$BdzS0KoJSagD4?VK9$XUdEoLi!kGYEM?Kd{Ks%nd5NADIUo)>yi$LeQ@J$Q( z%@ksF%GK{I_C(0dhE-WOqagR4!MNqA!C9h!C9`{$1HiBALX-tiPE=8>oVjQ`SX3?t z>Pc71C77e%t6~R+-68dm1<3;*SPXIu@rH5)5ThLS!HNwQn} z(4pieteHBGgojD{*bhwHG>I`DJKO?kEUH_O$WE!`!F?+0%H^Q}bqmwg>c^7P{%6;a zk0X|q2`%=J+M}7MW`8I%Sbz8KzIx@g^79X(uphJ6wI%tEAXOn6UqxIo1!s&^qd=W; ztXS{(tT0uua5Jl_JT&HQ1DCzX6IaK*KG*{ ze)T;A&-GmWMg%%N{k&%vl?EvZon=_OM`=n^r9qXcTLPpvR z)K*bk9^El^aoH8LY(;ZizI;wyyh{dh82BEYj`q~|4?Csxc9x5Ck@{VUVGp|idt36$ ze3sZo{V1+rIn~y6{FJb1=n-mnz_I>@-wyaXz?T|F=3X;Jij0MiuwCi9^dIBLDe}iE z%y|SF38rk@yLVHo+x6o6OGg8-Y02wJujp1kQ}1`uz|)88@9j3{uU!mT02w+`-`IA9 z=r-6E2q{pFQ{eHI_5|gzGfvQ3+fj4ALN*^Qd^l`?E?yXi&>>Lx{NDs%%l@YSl=ZR< zVB7xBHJuaLb1QP$)OEX`>AD@MrX#zX>r1R|=lb)0JayCaZa%$va60zdp0NL?SH?dX z@?VHDPY%}~Fl1da2_$oiQi_tlUP6PGBeLDNir3d$32TOn2JYs6i!)xA%%@M&V@Jx; zhXNx*D!O=8!3Pb=@1(Apjv_yvn{wXWW@tp9-&}yjCC7+u^A9OjOOhM7{5lmQH<4Ke zC=A<*;30$fwS_5iMl!Nb-^@;-%gPD1+^TnKO!Qp`ul$FN0g*T8pISv9*MqbA0O3?o z`nx}LXc|^`>c4|q0K>(@EmZd5r9{w7fBg+H-B(@~-L0yAYE6KDhPQ3DacGX~30=AZ zTj{}EEMzH1357Ys1D|7*i#ra!H76e@(m}mGrejIA=wV&mlGsl6Y!He`j2YT&b2g7a z$Ci}H^j9};J&>pZ;6f7goiOsmu*dPo&C7uIAf7LQ1Rd%k_x)x_xt zdj+v<+ue@8U>SdK%a(s2bmH6YeQG%N)t{F#KjY0=n!@ z{DvpMX@26l#R0gy58O+kT`IkeYp&if0k-mn2Tc9f!?qjW*FgL24xbAKb?pf@Z`p&s zDH3M+GrOyHNrR*`BlM2KVm49{$dq{x*=Md3%$me|)~$UDH(O7g+d9Zg!z zkNYmVKI20%t^!faanNFf=^xb?$s?&my({wL%94gNP~3fvLxC;i@e~kaQ^()nv4kB% zDA`i+Ambf~!-ZY6+wQ2Tv6qf{uB|x&%y^V3X60Mq#PW`?iRShHjjM?m`^^7$58&}xe?xv^Dcbr;`5 z4#Nhy2F6I>|E{0qy*>!ejeUdZ6fU@jkgj#?Fhg3 zg9$g^7cMlf0DCtN@?dEGyeQC_MJjQ%w6HQ#!qOC=dF;+bUbvz~)Fv4isBZEE*Kd|W zSN6YUR+rB&YwAcnmbnw$LC#13Z_N;9Fh1w{qr-S5Y0!Fv`oE|T)D4@9mykOV!9g#? zIhmdvZrkLXa%^(WL)UyJe{e>rN{k^gzxq{jRZ=Y#4w5casE;O=Y#Sq&*7x*4k)hdW z*O)h5Kp3RP&GBqT`u*%Q3$v_7+s7SHV%>O$ZN8u;ILG53^5Y59?@Pa9tk%gsZp znoc$rGAQFjrT{o*JI9k~c`@Y_lci|1h1n2mX9;Y9h_uSFEVwbVl3q1jQ!Py?Y+#T* zJ40#?r(9DOTQbwLjxEuD@m}L{f6(eEnq;q3@+Y0T_C%8Hl&OA==>*I8tXt*=2t@X} z+tv0vWv!?)U9U+1vT#w!>TmvB{p`4OTrF>WDw=VAMQ8HIYP&xfcS-Hx~hO_9fM=Q$a|^kFrU3}y=vpR7wqXuFjx+M5wvR4@ezpW<8X2g zIo7xL_WtcGHnT}@rdi#*y!Hu(owo3quSBR(QHZu3;@WuBg>?#WpCS%1Y?Y?MI;SwjoC-|hI%i!g1d?#XC z9fEUkF~is@&o4~jV!2@;3|&pSBIRm9cp#4qorqp4b6MObVjz1a<4dTGdh-h>Q6ZXt=T1;k*QFRiD#jpSqKf++aohV?=<8 zZI$lSnavb8wTi))OM=LP)o2qgV}J7QdJXhN?>p)L=9E1H^oaj^iT)M*`Mhw{&#aa} zVSPAxuqGq?-hI<;a#Zq@;zY=QCAOb=?FcLFT+kT{qo5 zZ81J;>69#H(2FRF3#;XA)7w5|hHB}F(%7Hq7Gh0lt0HBPH!h^DTv@UVs0BIE*D@CF z07)1a6?_k@{1!;F-z47g_6bhBPwc7o5H)QH_T zT)&@|GK@dUVjGntpU~defpAYrq6tIQA3W99@vuB{UMV0Q9}CQmis;32OY&YiOZsHV zK)@M1oa2u|Vs8}@V#W2?o1Sz1h>o(fKN}yZ-5pr^89s`qCWDlZVpB&xIAbhA9|{J} zCcVMpY{*tbXT>F)WR(y;1GT_ewOAOHDKHO=Y&?K=o!SPsRr&lzOw5(vL z+?@b)el_cV=5tP(ydQ!MHhphBrWcuQX6n@mv*ti&0-W5nTErlUkj*flmLq}ako^`y zicYAVT**C`Ny(M;!pp-A+Ghy5@rJN(?I%9>YkWSMYP>HvcP0qW9!TSrsjp%D8|ens zg}m@)cDqiR-q3UGfy>SalADl}O_{}cuCRnk>^x{lK;dJ)&YI>YlOKe|mHr=nEZQgZrWSt3ZC!p}4C_|VRHdvX1 z0>kr78=0BWP&S}{rLkvmF;6i;B?}{A4M{yHBW1|ku=_$vmx;D$9MEEzLKGP!kL}pDVU6*RZ76u!GMPS zOCzOstCw4Q9F~>_mL?|6`5HwwG5WXPv6jdgU}tFp%t78qKK zNgb?=^tY+zUs}W(0`cBiWsMGk3;S&Wtkb0RE>&LEGaju|LGzX|He@IR#Ax2KKCUYD zVW70Gh)B@gU7^`Rx8jOg<_qz(48OMTsL?2Ou3F3eVGS z=k>6w6=y6h-6R8{zn*TaX@Dn~(Rde5vjQkyM&tF7GvqzZuMZ~@6ntZ4(1M5coqw1X zf~cvdYG&qVKezh{P`|5|p8Z+U&+pJ1+w|N;cCrt2ANRMDOh4%^%-Z!%W=;Go3{DA1 zyMC|2dt4*!(89%1xa-tQ@q#u=tKZXY6?5D#aRVY%Os;@T0pBBCc*#k)gIXmJRiny! zG$iGjClJ<29vR{+tN@#s7F7A1G>I_xpocJ?2FmGKx_oq|drV|j^~58%CfI-SWYx8qCnz|SN!kfhilTPZ4H=^*ewT_X} zF&KLJg>yG!WJ)@#WKOO>S~eKZ=cJZs7w2Nr*tDU3<8}sI^A*q#P=JwT!2O;PntRkh zDzhVNvPF(BCZ5*_z8(@oZA+XK`zdW-Pmc8^QcW84NH`+Tlw{ZAwZbD5lh;YBOB>lJ^xNkA@ z`9Ar1ZqjW2nh@+t^EToAE>YV!aD!nT`OjHfbLpdShWYM+IEwkhcbmgByXZe>2+~TD z8J|{W9%xaUg=zB(I9)hENgty=#5U&w9S>&^usz&0FHFsppAu-ZuV$xtv~(bKr;;jE z7#(8yT}dAY!!X0+eDWH8w%-<>r*4s4_K*X45ssuFx)C91vZf3ksmg7K^iDSiF;GC_ zN7t4Q&^}768B2CjYqUgU-OG0nt(4&;05#nyBWG{Y+0@vD#sRrkYi6!;NQHHVMlv13 znTHh@E4C+jOL`^+VNoqV;@3F-vn1qc_S88YVhbei7ZS_*JY%0)h`b+;+=;71-IE~9 zAW)_?iK825nAT>-XTp|%36gV5qr!BHFw}tHsv+Ot4?!)2SS-OIY1n)yf(UPUrY!>L z<$$I}Y>BqI3lt%f*=S}LF$E5+0?ZPz&PIRIFN2WN07oH!Db%y#^0d8k!uJL4C3-)+ z^-}FSY9q}+i%ONYbkYuN16gU1k(5yKrMclpR&Zx*liu%#kaU5_g=PmPt86Z*Gmi9( zERJ$#H62x*)ivYU-Y?v%S>$#s;ChVt{cvMkab@%KYQFq1RyrEWW-KJcU=9`5Q(1C>Q3qd;*{)mD?u3L<$t*;Zr^}L#yDCx{sIWNtc`T#80bngk6>GB&+-yw2bLFA2CO6r30Nno!sL(e2V0zy9!4wOk=Z^^cwbVS}fb5*Pw%jGI6g&)i{Jr!B!Ys4g$dS zM|%pr6y@P#hA@N$A6Z%$x1Er`W%pUKTstQ>-Dn|2t;JSnYbJ>xo+>A`1dKj3XN8x$ zpnu(zU0c%1=DkG91egd-3P~(39R~q>`4<2#AE^88n0LqbB#<|BrmL+o+*o2-s?GdK zpFqry3riNb%~t4^&W+NZcpgH37dz;M-7rAjPZkCX;IuD17!Ve_w^eE=Dv7N(&;Etv zW!f8z6|&ee_*hSfC&V&?!Nme(LgxR@VTglN8b+_1DJ>h%!nBW3#5X^eRQhr^KG_jOhYjRt}FQku$BeE}-C znT0u7bc~QFJj{?IkE$~El!PEbfuj1CdMlOM$qev)gmzEdMB>LlfCgZSf0E37YRjiImz>irsa!2J9wQP{H@~p;K(Y^l)xbLWPNk@hv+PF(T>sC@U zNZVXb-kn@;w!P`E2{(VfbANxG9cQ*(?Vs^rV2zFJ1LrXP2@wp3S&xK!2q-!dYIm~R z^;^TbcLAjkVI@h^ROFyWjPo<6B7)MIB`T*T3E&`tj3R={c;d)Yw@N=|wwNA{s%{Mr zFjT1^E)15!!Jp*F#Cn2d^dhYhPZ-(xqT$q)lQ(#{yy=rd4G*hD$-M={K0X=P1N%UZ zYB!fC)?X{&R$btesuES}kP}B!s3Mp|D4~bVQZ*g?j@n0128R)Tu8eSu2_gu#WLv+A z`Rl5jKux;?+ej1xDnwryG=_n-#I(`V7v0qjh9R54i{KpMB)h0SpHzQ?4iv;d0sIH4 z1#%Twovve}HY04B1r&i_yxeLvh+Od)MZ&KatU()10`2g2e7?*a%pp~B%n5Ae30?{) zI>gj;QN-VrblIW4UvYR}kZjbpfT44TfV#&$`e1t2y$YSaSJEWKGa3;6(>@_SPEo$-F4fh z%}2xvdFq}54&a^K6OR|2`)K&`^9^z5L+}A7;b-LK;#IKQSFoA{J1VO_GIY%oWR~5` zBCMA~3`_vk5lpPxL8MZyw{C85s2_8xb0Kvtd4Z*Z(m?6>pgqC+dxMo#1c8!}LVR*I z4B->==aI2(DTT7xTVaqfG5u-^DE0um)4rx^8=ffXc;(aQ=Jo@KnxY+{Vw)0$`P?II zeSP>5TwGDrLm`N)a3Ek2+$$ToHXKxU+t^IucQChLK>O(Lj!3l*1*_i_#l^8K7$t6h zZMrQp{b~N7deU9ZL$#pBq^I$y2V4J4($LfHT+KzJkcf0B)*INMH;V|znT)2m=uy;{ zIMcoHhz(~T9o3g$CZQu%Q5Um`Ih~Q`Ay;sa^f?sH*i=mFAikKDB_4hNl#W!?accEh zAx-rpP;evMGgQWe8g?R+UY>e9Y(;-KuX(aAmPGkwQ74ZZNs9cub5+cb(`>81fQuK8K8^WDzz>t0o*x6_?`Z$PMMW%Y2XGjWlfai72P)!^`2zsZ$KG zbF!sg2BLP_L5M~5Q}a?q1eMZes_@Vh7i&3gBjfWJTNbRGtG~8SmUmEQbDy!Mj8dfz$hOW}$x zO!F|OA>m6se0o_@GINP&)ln!h{n#jA(?!w_A-rXr{-ubm3Qf4VHD|FGh2ZA(zlO*$ z`cJww@BfSxE;Ow!W64UN`WumT)*at_U7UiQPhYOvJ`dYdFTcC7D>$k-#SYu4(dnvN zyJ76B>16}5li=j4ZHT4@Mc@#kNdBlh;*Jm*zYX^)s2tleu2%v>i+hJIdSmMee=Nx8 zzG6BdaeB*p5S9VG>ahImYy4nEHvjJhI+E*48bB%VU;^H+lRSrc_m!iIW*aY%}%d7E?d0DEsCvn1@ED127FN zK0xT+0w>j&&~(I)A_tpKRH!wQ-4ex*;Hb$C8tYvK;Li|u!TOV>Ez!{`1u)r0#GDHK zB|I#^yI2pAORy6xn+OHgk7lRFBr$rI!*r@i+KL49#s9%q5RX=={p zYR1<38!v>LCTXp#e=JlQRyzJ3*+J41Q6(I$o=!4G3mwJ;O|C$dJSckUJbJ49>JZU6 zSKva^Nk3<$Sq~zc^*_1T2rIqCYFd)u&wK7QV8QcqGQH%vzSjzUY8gxZ@X+%kSGm$1{MBs#b%@E0v=)h% zc!@Ov!Ge}g`Sd201Bf)beqsQaSdvJPk^)+ivPq%?i5%6<=z)dv+BB`f;K1?*GWQ^4 zx5PYx%uSZff=p$Uru`MY9S)Z0E6jEtmqgV9fkMqU2ySZ?N#lxd%nM7nhf*Z-d?p8z z(6|74Hlo#fO-XgrFqqMxE24;{N;#cE4w^B)i{$HP+I1peXnx{;7MKk-4p92WXnwnH zN=`&ThBF9iM6b~wVgkeJb+p0DvhkIY=c-1IDY^j}0>d_<5Qs}?)~usiToX)c#xzrV z_gqnl9j1~U9Hq@IuE>ecSrg_cu_zgvBzmuYZfYM4P=1Y|q9V(s{a0C&d{JVZobcWa zaM7v^F5vrNCWB7Ax~0R1fYP=N28#!03xx#5c@m*B5=~K~O+5jJeyt27Xa9cNa!J@) zsxw-{zLEBmKQ&ibRZf5hIG^WK!OuNJUw0BgO@aTK;(sC!_i1?}`Wvv0`Wu0O3V#o| z+7k?OY&;NddpNv6X0%|&t2}27j`XeZ6(@0ro}m4}iE*13i(UlIii|@=Wh_rOS(8y@ z5>O%|hse-!aERW;IZ?r-8ObBIKDLRPj^-;(CS+rk1Y@;ERzOZ1m91f z_(Mcr%+0nvZrGF^EY_qe`iD5lbEHD{QQ_qYNW^W0${L5F_z@|rfglS*XWTL$xioIk ze;@&zx)?)wQ;0`i=1K=FL>m291%6juQINWj(|TK!_&~XwgDO39M*N^zVxwiGvH4q2 zZ>C7x6pEcFu{3ZkW?7>iu#z~PPe{Hpf&@<5C9w=!eG5YEZ-gxFm4WKtu$4eob$U;) z?+!#DQ`{1ij>N(M;XHhPrj^2q9ducM7qJnvV-8x3a8g4D7(dp4#OPu{{y+y#JRm+# zTXnz>NTQwK5bY?#)EYn!^7qfnKp$@hbVC0l{IvW6Eb&M+2fvPPnL-{2Z*4-+c>^6&QH4cGH|B1E1WQ$RP<$ov8Sg zU6S|KsKe?@R95Q~iXlZJXb#E=q4u;-Cf9!fOn{nQ;9VJf zTI4J|Zy0=0Fi71u<$m++w`GnokPD}c>w^@es6Z*4zpOvXBh_4b6k8-0*MaYK1dNqh zrRLLk*7!$m2rqzUL>8-e_PPajn`zc4lK0lXrdXNM|NJumz>-w_7eVXSM|#UUj8@X% zjAr|(cq`^rp0cU&BL)YFoQ>93<)KU#Aa@qo2nPHOFdYaUn}x>x(4?IaR;=QX)zCrg zWPOCpezy>hg)S8odE$lBFC$!@tY%jiuL;i8gZNiYcjIKBpx7hCm2e>1_#22pUAuQ0G0o06GZndqaVf%kz=e+r zCSzM4=+Y&!K=o0%i*AyX5EWO%75Qa}pTqVUF1trL&j8Absb|S&^QjOU^XTOUGSU3M z-7h~r;EMq}i8oCB&*3dW{?}Vv#_qSx7pIx%g+DVJoQZ#D<`>{p)?`-Gr<~w-{T7AB z`+?uUyB1|P!PxF9CUl`?glM-2*x*X)Q-w&zFNL=&BpZ#3>NidzR6yL9PX3n1kPf2E zbuz}io%~=_H2HqE75?(ph`+U1g zDLkSoxxj4(Q(lQZw0gXkdJY~Gbgag@>|QW`c>8f&TPC3?|W`@EMU=N`_j5r9LDQb3@K`N?;x zP)S0`sp$God-oZ|(&V5bKQRd%O+gE-cp1=5^#Bbq<6Yx^;S(i5d-lBc&zJlA^-)X5 z+k5QW>v@M@rf^`U+cb*t=6@cw-%8$mWCtEz)>~IF5}z=C^S$gYciH=}`t)1{y4rl_ zBtGSg+m~ExijQV2kyST*M~#3BFQ@F)1XM{ch%C1IGjLcrY7A1QwPh4>l*;8_{T+fO zX-y&wEo}cYZy6f9b-EPza3t|D^fSrd-19Mm>HD+L8FA?QZH%f&udea=8Xd|wD0fWR zymE}`)6+Zi;zpC4_;ln_cH`feB{R9^49~TS-4<2oFwVINY-oF*+6E8vl+cxxHK#xId4tU{ zJ)#b<3bF|ix8XTlf&9u$M6dGj_KTI&By{IK0amE8{ z6}pe4hD5U6U4*{&aWq>HZ(n9Aq~c#oDcP}X5~aauZXHTN@(y7X9AYq^xVrt+wBbW< ze*!>b4Xxi6!c9FZ{>7QQ`DPd+Tr7-R9 z-16~Xq!J!L4#rX}*?w72(z6MCZ1wf+G5bRPJUk`p_I&ajcDnnd7{nerKE7(y12!3! zIrx;n#>(8Mn-6djZnoT+r)>bbCcf(}KChE0d#{u0Kpnzwp~$%H7GTiekh%3Qo#tFcS7BoDtkV}se9U+X6XVhCNKa)B#yM9fc#zdk&B z-bPkUK3Z~nZl`t*pMHEBxa;h2k=_cp%4QTUU)Dd@x1BrR58#DvKzvw7d9FL(_yZ(T z8eQ?ESPEzgzMj-k-O`%}S&H+c4;v~a&^et#t4{aJqyn2+ls(^(pGnrWp9BWtA>Y5}KNH6|uE&Zv_@c!cI@GTubhEIpGP8oU0+noDmgP)+o#|`WfaM}mbl`w-p9=A86IriL=3}Xw=qT6*P@S6O5Er3{^S}1g zfOoc_@bL&5nC;yjM@#m$A(>!`zDY0lj+}YzNHERU`F5;Kx`p`dWD>YHuQT`h8!NsmACe6daf}*v z+7JZK^;fC6{MYcKlyxf@s5hGbrU1sfw~MWtpR?-+#_!$ZCtktPo%LhK@qohP7bNv5 zV#Qqc-J^0lRuCsNPcKxxrm>A6&5`ZFollv|+OKCy;%)JY(c|BLlDkME z-R=c$NSmqwsPbb#*|r&9L*~wNUclvgB1nm8cT})$;Yifi`-oHy$(kh>B8rDi_TX!( z(mMe;94B6CmOhx5v+Mt6QHWaA`&Z5GWC;Xn8NVY7O<3UAkuXxN`=;5+q%sMnrqZm| zf~-v?`;h5-`J@YpoRuPyPHTnOB=Cq`xr8?A$b%DaDv4Z`9ATw_VdNq^(*jiG_Zb-M zvi2mcifSYhG(S|g{UEf%{pXVb=!v9Mgf&ja-#M`$KP^NnqS|#98X?JiQ=ip zR4<-{&BqQQ|4a=W88!)rc++Gh(>wj#VtQR|ikjbyHX@ z_#>CK`&_l-HBflTQ}!>4qmUfY+XoP@@P-q+@|OMbe*n!uGQR@6e}t(RpzUx?TWTm( z(1!^^mYU{i8Fa!~Zn&WWap8IpMQKaf05OZiBAp|_!^AGABMEK*Sy1iB2?#{INl1ft zL`b4FOW)x%jRYD-45;a{J26%IG{&I{0%eq^i1KQxfK9tLc9I$#?8SfE*>16DW>@p~ z#B5IWbFgOD8*ZPJ;!dChM3So*gJTgac$T|^jc-UYfg+m7x&oyN$VJo;yKR;Tn~$&w z`MwxRfzzg-5n$&EkVk*gBV)pqgkH1FWGyK|*>R8yax}S8$c0TXcMVcr3%5`=)6Q%) zH=_CVVNeMpPwI@t5@2B?P8#T3bOWj#fGh?o4{~G@Gc_PzRG|NPDd#YuyBwOeq@i9F zIWmK7JH1k~5w(>Wv#9%V(*CjY z_~YHpv`_2V@Ry)J=9B&As_l{PMH~~1)9akge|Yua>ectYpTF0}YTY+U+lp`Isl&R{`(YYs;7Z zI5w~R<8>b*^&!$_z={!wSu~cKSyD-OnuH0G$(osPrcx%w8EKVISrMUCv3@~?rEHl;4#1vf8C`MUW3B~{r9k!h;2^>GM z0(~dQCSItM0(q|v|v_eZHWm}k2`Os6KhmXZ7!gMvH>By*SN>jyp}57RtO4jVX!dV4AEL8xC{ky z6?SbuBD1V0H*S1*`*z&!RivV&K!rA{8-$GVDW(Lm?KF50hk5GTD9^AyMkIRKT1s(O zRRcgMQ61vQQxR-O?ILT*s8*K@XC_0F1lfiGEjS&b?AJe0Rnrwj@h(G*a4 z6WxSt$?UW6NpzDCRDsedLpRTc#9@0HGJo&i{v|FP`P-krm@WNDUQP11zxoDR`Zx6X ziCsey?-lXd&Rf@z>fHcu2veKH#PRN+7?6#@$p~qHEYehjPAe!XNUDWaberwhI(ZBz6ZA9dfJ00hZw!gZ)s-eflCi6{S6fzM zYH?q|3Xedr?eg}*6HMpO<++C1qBq9XNDu>b6$;{3!rr8mS{wP6|F)6P4t9!qh)!%M zjg%Xa!-OGc5qI9YS+F@SeF3dSvqIv{K51&C%n;JXm`Sln89){#fYB_d(`{o4HLQxz zJW6mT10v89OoM814_i=H5W5f{L*ZXYa11yx!BbjBH__PHQb91e2zydMBX?+xmMQ&G ziF;#`{7mm?Fwoj;ho}I9U{=$o#0b`5EPK1*j=*gK|3`w<3wvx$ntyt8SAvK{mbuj zpY{3YfB&0Y!u|9StlCcA=zWydW!0AN3UTNSASy{!L)hR{!8Cn|;V8ohJN4-o@&Fx# zC=IkrZbErYmdqRSl3}4k$>JOd9x${y+FeaA2?#qS(MW*BN|{<)Luy4LfGTLtlG2P< zq_R0f);=&>v2%iQi^{0#6|pf{mQfFVV>7K&m#3hWF*V9rP84npuF?{-y&y%=h=LNE zFyt%@M$H>z8!kcu0NVnl)Wy`4z8XoA6Q`{iBgimKyXCAU&uYMkMV1&F529r=f4Jt>k+Z3Zg z6}mA;$##@nLZV;npzBj#Mg#YB(oojAZ=o`*{-8yHo0S~7l%dm zF-tkOL}2b#U5xYE{^!%}@%XQo_!VqbojK%x>uQ?&_u9s4?J=+0p8Q@LmlT-IW1SHb zdoK+riC~_rUXS=&e_mVAH-jV*CB-BH(~@Hldl5pP9b!hvLje_s5i&6w?z)NeIeTVC z$bgQR5%PHAnc0XlkG5JoyTUHf@biC*-)j5EpZ?+-7@J@GBvx(T`nx!>t$I58d}?Nm zRyaR~JvOIUS8e{xFJ9jJ{Q^=Kd{>Z}%36jgtzD%Vd_oXc7iR-X`z~wX5O*2QQw>nu zW)8<8w%?{%Pr15w0gdghy6u4!C;?T0K}>nvHzumHbnK3th$9dMzY2Q8FT}bzQ1M1Y zk{sB~S;LEYCoN%_7D;KRkvx;5hPdj~vYf^#(}1$b6r8Ks#&<2*g*69}Lai<#I|1wlh-2)UEsdo_j}`?3~EU{t)dj}hZV31N^^ z;~{)#mDi@Id7D1%9nxf^m-#6}Pwb>)l0vq+ts?}jGO$_{Gms4ynG*=n+QyWsO=2cs z$aR`EGB`nkX-|~0k@?TK-N+* zFr^`{tF}k^5%A-PHClh>-)sAi+)`TZCx5r{%*&y3LHz8O8nbc`>sWPwcsX`ai@!V;~u}0T&Ql!;7L$qwqsN0L?)Pa>@)$AdjcjrPKJZp}%8+yy2 zULl6L;=;&CYpYErL9}LDiW;JH!-_?cV z|IKY2BL{I$G5gMr4JQ~|Pt|u0S_KqLhfN7pgmOrMJV4V$oYh0zcG-SI(jVWRmwK$) z4o+Ts^?7Z%YFpQB)?rZb*{7fWqwGhgs86d5IygtggJ6COm5Ndy|2{Ia{{VDJOlyD-35s<(n5(ZiDBgo7)Kb4u? zUo?^J#2_6r+M7YdXkwh)ITAuUL%{F-Q(o);r@zOwNP_>pzxzj@<<^f=N_bB2k*ho@ z?9cq<_S)(#VR`AtOFm!s7hG=>toD!s;w>4r8*!~5HbaF{PIO)|Ym3|JOSkzJR}sUD zxA6`rAOq$d#Zxa-1Kr}RyZz9rtHei_w^a2#swM950Nz$I6Qm(4NSh+tA%;aVnk3~9B8#+xFp)-AYWRb1gqB>B#UCT)bU=z5zigNF^~Dh7FD znW0M_SN^AG`G;V+L<6>17lA6uE*M4(H90FClb8^6l#~diEFD!8RINcLv^p=uOfU~Q z1QZf)X-;_FsR>L1tg{9vI6X;#B&}pe4q(OX1zc7!sHFm+3gFOe3IafuHf0;)fNE^1 zr^SY9UjvSTXwP6#J+;6(OGt}={*#cRZ9<}I$zox}Ze)g&=QJ{28esIpJSf5uhXs%n zhg&^P#?1f#AOJ~3K~!j-!)N^rUqf>IUfX}fN+Z`AzNfHRd;Ib*|DBiY&;=F$Ls#dR ztBlY7^1J`WU#?v8_{)Fm7pj*~pZ?)@2S>Qh{?XCV@BYJNy3F#Ie}I3+i2INK=P$pU z){s97#*h7A9UdJW{`a0%CGWGp{7<(1=nxkj$)rn*{^B6f9`+zgU+4c1h2$XlFiO^E zpZ@QUkFt@G;4vA;(m;!&T&{6qo~s5- z$a7w9VwoT$jAIBOrwc6<%v;>UDM^z!;s{QJ#3jZ);uFri>B`bojzx9lZ|<|kHiv{G zF$Zxsa}VNf<`-W4)lXy9_K&}LkF)M88gc<+Fu~^ll#3kzR=gJe7@cT zYMgHffMuj@ynl?h39`j7(IKMVgeV{>pf5gR)1p$rHi6R3_bF9ex-~^%&R@0dLh3%I zO?X!!N$CM9KoOuDTok96^)AsauAS1%;cduuHV$$DNghaxA*EuVWJTYY6{c7;OU+7z zsH_>G9wh|Vc1VyIN}Cg=W!4KS1@;a;^E+6DSX>q*DG31V!f;2W*W7DMj=BJ`nz7&AWP^3#S|=?+tEN+7MQiU&b>5za1<`Lvd5m%GPKTk~je zOg4`psqR-AjaY^rMb^H{2GbrF5N+Jp(>0E;k{}xNLIjcrz83;nUySqG_UyIg3Z+*m zzx-bqPzO|HO)I9I;SZmr&+@`oAkNeXx`= z;g_-c+c}Q@W2aSL|7C8a&7>*+PwjVo>a}GCYuX=>=d-W>2Nqgc{4S6f5e$l#Q~#T+ zPk+~L8REZl71m>ylo&s7CNcBz_{(mi(`j9`J&wKJoZrWc9CQC%K4FHASvnP1a-QDP z{)BMQOWHE6S48m`bb8sHJlF{>%YzYF0cVVnu!wLE&Ai8)Ir{L}GHY!6F*rGMj@EIb z{lYi?DYn+W_S>Ii>p}ecU;Rt|dfU%mM9?h8Xn%pskK-Av9P4>)cvathod?`+4R~81 zw!ZrWrJa)iEsFt%STKXMYMMDShHdmg4AX2vEznrEP=<u}DaF>t>?Bz_CDCN6aN$$k*&T4a1zzW2eiBqC5Rfn)WxpaqAk-#Hlmz5}O z(|$tDyZKx#mScO%8Mb@3@sLR9mH7H2`wiI#Nm>|)vyg{A#7SRMh>LY0aT*|wBs zf|tdY6Py~}YR1zeyLIkfcAKqBX*~kxZNTCV97q>~n_?PZoUsDnZ7~+nDE#Ey#sVC7 z1PjkVJ(8QyCfzq0M~+H$3U<;J?^`0Nk+RvSOwZV`DY^Scc5ms)gApZgWb=Qyw`*a}Ra>^pojN!~w=#Jg zLXQrEvfI?7?Lzb~$Fw0E9LN4G!cGIyW87(&IO2P`Ay7{tM&O~mw;KiPu_8+ll8oP~I5X2m;mz%vt(*<-OCo9y$W&Wwdr2L0PJzwrBi z%d3z4=J#sj^Dq4U_kJ78xUc=>7voW>$NB7;pXhmQeAUmgrJXkszWn$5!hB~4H{NJw z6gfDkYVp#TM^mX6)CNd<-I`O*2)KhAU~SFGt!EASsTR;iHCfeYb`1nggExVYW$6y5 zr@@M{fN7PdiKurKu|}BWm^Y*y7@Q)Oz({SJhLGD(;$)<^S(3XAD{<106lQZ+OKW8- zF`YAs?(R3)v_Qn!SyhPQ5E)Y3B}}0f>`-yjQHQ@FX^wH!?LY}-6s{*ZG2p9NP%?)& z90T2BNNB=S7rs{JPZY9%jAjwp_bP*wcHikaJcfv1D&~5>C>BsprGOM{7~wWB8ME9r zYuG4`U`{a%5Us1WYR}Z$w6&V`MQX-)YD+Y%`&m*7w)r2kyB(HEkU?nqjSx+rR`?-{ zLk|TaL#Aj|OsE8HbWKy*c-ySn9^)s(k0ceQ_$rRu!@&tm5Jg43FQL@XO!rU5g$3?w8xGsXg0hnK~CqI6nJyZOPQuHBhe} zCnscFs^!!8X5;>Ydu`pR*y+ph(HPZQ?$iA%TCXnI+CPjvynWeLwz`;Ar3tS`^5i%r z2-g!iImZG(v-HqGI0CNk(F%-jLpmlHE* zXF*6m9VMLBXFHh3{yNeL0c#*Lg83=Vh-_L!F~RkQ*I7;2$^4C<{9P>C{^dXOl98Ds zh=2dn+JtG4t@4`&WZIiyw|pz*XE^yS8l0miS)~3mQXQF{AQ(nYmM>g z*Z(rd@P9;zMcagj9Lu&oKKuHy87tpspB>+*1MjwF`;XgcW7|JFeiQ5u+5Naxrw)Fn z@yM1I`iG^b?$XhZM~6P!OEER;Gp*Vl%U)Yfzk6TJb_pqAUa{yWv+myWiF3n16Egtu+zdwV{8!&&K8b1fWMN=)rw5< z!r%W}d>`^_KmB<;tf|8IPjOMnul@8_J1tD}nVa||_uA?`Am1eXlE1zIKr3F^D5Q@h zyv^*YZMTj5F^OB>poRfV(`O6mk(PO1QEH=PplXjj-F}!C@M%M;>FRguXlbkN5_!`Y za;ktfMUNB=QbVSirSF2;V@eAtl+zrN7wIj5&`UE~q?ngJkM$}ylrv%MPp=61I0B;I< z(xFX`N8Ei1ZK2FO=5%d#H>ac7mdJt*ts@O-C6}RL#DiMJmlDG1slBOX)%!Vy1)|s1 zq_9UE<6S!tQS7KXP3>R_brJ#)5I^bFp=}=eSWGk`=LamzVZ9m zYKx7v?{P4=cKgY15kj5iDcL{{=*8t)_w zH6l@@GfU?esot!LS%})@DhcI88EO=URa>=zI?61bT46NJU5d6=lhyQU{@{eE4%j!^ z)+cn{$V>CQ%bJiZ%mqLwZ6*|GA?vtP)hfa^!Ha6*$Tz*xEdF33yDf`3EdoSJtq>`t zi_-)GwxeDY*og?Y*=ek|nNpMuSl)(R=z5jca>pHfEVaeHn_)1cw7nJ8*WOHm`V`H)r@|8)9KsG+&@LIBN zbYbfv!g?{Ee=ct1(86s+y~N|Bx(8IXUlA_ncLuMpezZy45{v z&+gU3&ua7*o8V$|XLc2!d<1Oi&^B=1w0&zLhrfC{wLmRo8N1zs-gGVQu?7Ti$70G$==sOl~Fauqra9N zf=atJ(A~Rh^)k1cD$Wuml-%t?-E`t+n?AV-+Of6WUBrruOKww?&b_udse`{_j(MVL zhXzdiRv+fBK~?*nh5@K_S(22XVtM=!JsBlU6R!a zYCLe4Wxq%XB~c_*0CUaX0gJe|UW8SQF%OLH)n?XU^5mR;wsY(`=saTt zFWi5MA8Y&Y&aY|A)6TEDeR%VF`b~GqXUhDFt|6%x_iXhpf>x5d0E9Im0Wy+YUMUdn zB^G1I6qYn5=x9Tw=*a4=l_>z-Y8ap-ja|ydOt&6pGb$*Bf7~X=+rw^YOrgP+!VD$u zjZtbfO#%iCai~l*nlRDYjg7JZr%iCt24;r}lr~e`JJQhMO0}_+(8ZlvLLdu~L9iJn zS(mGW1gcwyOx-Z~rPw&Ft-_L;B%2mckqDuQJ8yjrNt(b)q4eUe zwz8LCPXzH1M%vL>P8;!KcyvmBx`IiU^vlku0tKj>1IR~Q8>tCeX_Z33W(&If6RjXd z2}~Ep&M^ZAVTWXZ{a!|UnY%C4Y9pgxZ`0`T&Bd^mF_p<&GDHc8=4yVT;LHq@qj`lcs^QQ^YvWFK=Y3zcsM>6m`;u{x*Dlz2{ca0&QJub zkC21fI%tBzNw;)|!#Ef-34#Yg5vYV}O{q90jX zVdG$Yl3zKe2c? ze~K&$2-FbS{qny$-rYyI&_`@g&F_?rE0W9_qrH6L#}0JY)z=T-)~-`yzwEuK_=UA^ zxI6Vl{NUP{4hziq9Od0dGGn~I>{xjnNuU+$F!t7>Lc+nH4EPAvEK_?o@uL9iVAQVK zbPY*?jdGqJ#V>rv@$EP-cON;<_jM|~SvN~T?p0<`dvrg~=!<-g92cwB%jqs;$^LX0VgoSkRYs^+r8Do1;Wm+gigst~rN z)d`mozC|N!Xl0pu++mtMt!i&}fckt@g#+ac#eS5}g=oPgcg7Mgnk2uu|H9 zp7KIi=CebcRvFPI&Fn^oG&oyc=(;&jxKT_LY7bS~3urZrf1GyAaXeWzXJUIwG<=^8 zYNlA(p1Q&*IBT*>wNas=8F3H9a`X_hqfhEdfo978oV~WHC!T!q!}{!U)2OG6p#Fc zZiLY>t}IfYx9mE~`&{IH`=pA^@b6D7euQLwK@DKDf+ zhsH1j62~0>uF6p``LpTdFY9}4Di*lUqQb!yOjc90Yw7M4JQ$X_$WJPk`1H<|J~~5? zb|NO7pM@O69bRSoshN?4<4~)?Cxl6zn7MiTiF7`0&TxK(nK3ry-_H5|)A&-`l{c?l zjM3pAnmG8w+i%`1r(;gezBvpFdjI4K( zHA>S5WyFO&?~@v`)wCAP2HP_L?ZV0$}fX z=rS6}lQD5Z1(?ph8~G;-aNdPLai%F7laZEg=tBlDxfQmkG76e)vem&5cijkyYOAz~ zWzO`N_F|>Lt{Y`SU=yPsq7(zRKrgJE7i2I7PO+QC74TJ5ZG&$uq39@?VZ}Y-#Q{|m zwFKD|+7ugUGCz8WXy-lEG^a(>^bo^7 zS7=-4lVeaPlBq*$vyFCU0+|z97?mGW*;vSrW>|^=fr^k4f1==&{~*04HwFVhV44PF zi12{A2ZCuHK@rQ`0)zwJAs8x~B90JFkx+CtPRXq3yT16J@_TJ@W%}_iJ~QaDXMPzi z3XD2x4{Kfkan=}7hQ)73<6xx{U*@W_`jO*A!Sci34cG6ib(FisRNnMc#2N|&Sw3>C z*gI6#Ulw$LOQL|LP7bP=epy4Czbt2F4=1+DTtbdoZhqVDmtWN0VgGJi6^{8;H^wke z88sSAWOH=#m-f9j7i=s=uwd7!`{WAdc~5{(L`34!U{QdxMP8>Nehr%=LSSm=3W+w_!s!JiN`wTzz zCBs07{^JNak{ZyQfKSaBv}VjXz$yXYDnU!64e~XPzHN|vPu?^aG+c!3IPG)GJkh0; z@zR;#Vp$Mb&^9L}cAKWh3dw)N4w7y(?{OhS2RE6n+{{1($%Q~DrR~HLUpgt#LZD(H zF~nFRPJH#4G+&KmL}R4Efr&>63qW+58fYmzM2S{6$FN~1L-EVET^j0O;LFFn(n_#J z%!J!232kAmlraR|$SSyE5*aX(O3n0xAd{bRX=k?yutpFOl(>tz@lBACo6}TE)ih%b zSAcy?^U4ua+E#en`g_;SzrEf))=t? z#Ujbce(3rM+gw>M&7C!WY_h7HgSgCNQa5GIP!R|!h+RtlooNH>OGw5qUxSm>9zh^u zuMPI~=t(^)!@Ad2fx|w&M@KlIn)qG#XM&n!ZdLB)1$ikBU(B=P zOy?RNCLO&PS4Gf7NV(W=FzBg>4tGe$6NfJX{v4Sj1&%qD9FL(Tv%wsC&4~K5%~^?0 z$c$n2oPXZTh_2Ic;q?b^#uwP$e0ovO06jcm)E3+)*8;CWbBJ=4caAcZNz~(f@^kNn zS~q)b<4vGn_4PKB?<}p5fF_xe3T?g_#hsjXmP3(7ScuJQhI7+qLi7>`YM>wk4qFBc zB9yXAEb~8r;7R8oHPRe2lmsvl9-$Lze5?^|G}+$vD0>OPgmK=f0l>k2PZN-CqL~Y( z*+nrhs6{eH4pF&v7>6E_)2JYA?>vw?A{o^PPjz*%Q*n2M4jd*scf4!%XEq`yguo?6n9U|tQJ zT%yf@6nEV^ya;StY-w?De3@%NivXML?4?9o0>q(|hB(62tsG!!ZE;f4JZQ_nQrRB@ zXj)1Pfl%V|UzC0E|2tzf-4M19QJtS5^hw*yT4yQGRYmR7$@unx-FH!JS$c*^yJVU} zYzrjcVQmY!g@iE6mw)1GNRBFJ&KUCD{5;_gU$mtzuYuZQeipDQjxKQK29)ZmaZQfA z&V9Ir>4&;jhd%!}Gol`>;H+ZU5L$5&J3qcbMn-=;F@B&ez9P2-lvh-3o@DQ}(ZqVN zg5rB^2`}Z;qo@W0SLFT@+g<&q6%n30zQvtA!ZqKa>Qo|c;+GglV#2aXg!g5RIWe8?`eN> z=Q19>c>I!h;o`^m#kMye;3|^f)$uH6`&I3=`31gTETI+3I>!J1tLNyJ>J%VG95XAPnV<<=n`tvCd%*&2=# zZS@#MoNY7Z;hf??+rf>bfgPF>6eCn3(%7bc4BYf|CC__p6()^S4_Pt2ptbI-u!>P` z5)86WrDPiyAAs`?rEX3F!j!3tR^p&Q%mZdo2$WcYtqruNFt%v&9vz|NrJ=Q!R$6N9 zo)U2x)nhuT9lWq zb*8W~ODSIW18!rOQH#dc_m~!bbd&Giy*8O<&_~FfZlj#iH{_B&ic_Dj+G~rdO-FF6 zYQsYmx^5;^Khhk$gs0BmxCUp1f>k?fIIiruNGH^oSM*rkt4hlSJr?%3qv4TKbcH!! z7Y4y}n30)0=rk+bB-#bO48A3L0RP=GW4_NY=QaQW$FZ7!?2)!k!?f0EYU*0_?9kTCyw^@`n$p^Zm-8K#C zXci~m!$PUs8pIlic0oVnA=*%kS1)XbG)Eiqyw#+_r{rY@FyN4v#YCufzzTr~Wn)|- z4Y!ff8oX&O1&xZ3(IzE3#hn?af${_fUEyaE7~7-VBt)A?85nGWlFME~X5DtSM=vn} z<3J%(F9A`AFkDF?=$7`Zq+~aXjHb26z~s-W4Q{?On{xo1qga&@jKm62n&Y(JFd?*N z7$EU%X;@?-Y(<=ut*aU6+h#OFwQ-P=(@u`i&Xmyjp7B~YH~P)ZnF1%tOoW&+Lkd8< zV=9amo88m98lkI=T2z-4(la5$O9k zzWK(X;`$(@ti$9S|LPquq(Y$0*nr@$X?_-x-)l?TD5tP>=pp^`hdz^eTKXr$`MoxA zf9dbF^+ijVcH4|JFK4ff#R3=NSo~w{&O7S>HNY*2W71gYgRq|{ykd}NEpkCrRAojW zANvDlc9YQWC%*K|90`WU%sr^YF;ZA)DAJiu;_jRk#SsLlxN{-NkiK? zo5jtMoJ3rEu%A%Kt(IcYK{CyDIEG0_7=}_jYt1RCn0q+oJca;A;knmlQUSc@|=h%Zu zz_Sb$$cjp1du+4%EHt?*!<2~#NVu#JO0ir(2$T(2-&SoeV~^uS=IFZN)V;Q<9i|Uu zmmK{G!;e_VR9VrVY~*!5h>seBKOM~qCCik$>d5#>H2gMNTm>bMyNcZzQ70HZCUzKcit;oe#W+Tqm$=u4Z5C7yy_)v|o~v{#VP-)xh&G{zQO6_- zFB5sz#G|9@2!}wwKVW7*o%qr-bI2GTGxz8d*N9)xocT~x#AnP5=e*y%7hh}p9~L8bdao zz10!N6q?$uR16Q$hUimNH*gy^469}$ztiT<4E{Q8#P8d#hTy2GhFe4ZzoZi4TI%&kx0APMX(gb8J@8nJ>$0tiWQ6jGz zKuM4_m71V+d4vXFf|MI=TXHuhp$;Ht`7i?j8qh%R`H@OVawR) zBb>eDy5V&|n^(`E+b}!@u`TPWEpEwKsTCJ+IsZgqjPX^9HPakKO>uj=H^k-*$2w8# zjM9}|H|8uzD=m$v1no$?5D1GhRGM5zp#LY{Yui>dW7@ITrZS?puO5wJBE;T8;>H$@ zU1N-&1ArxB^_4>6lZq&`c+tv{GD=JanHhzsrICdY^oSTg8;2-eCXHbEjksWrt2)w- z-0=lB#&lELd-=V#z-<~;TYj&NxkoL>se&%At{h#XeeZGI)ea!IeWvEO1#^m{Yu-!x zUK`i@s4~1T*J|FY^u%RETRbiM&C393-4f@rUz7|O-6r!UVAc!UfKg*?i2n$gdn!0h zIU4hwK^e+Cg_7m7VKPTk zlya+kAXinjg?YoUnmsy0>APPoqRj<3fDH&!GKJDM85(aXDeQ!vWSgn%8GN|-Zc2wq zOA*pyLg5IZ+mMjO%oKJwu;;y~@SDfrWI$2Np@d3TNC;*HC?_NL3YWdE_#qYmAQqV%ewKFO;UQiH62KtMRc-m0np8 zIR|@S-`DrWMhJ`AYvUk#Tg%3%+v2-uIXrN7ztQN%-8vTew(jmpBUmhrY zc{9*IlJITUnz+(r@-ipF`{*<;@AukN|Ma?DD{`S+u#cL61p*06S(25>J|gND$6^m{ zR5YkKGT<(8U%+5ZcLm!={HM;$lQ>Rnp2cUJ^Tj*(faH~r@9%k>ui=YrS8iTgPc|Q; zv!3l2`H6y4VjX`C$$Craw}ts`Q*RD>Loi!!43n6M-$c|G*xvRTNae5%SqPSY>V>Ak zcJ|c>MLX{mBEje&p-H6lS1WK-7+D^3bhfz%MRFk}*n*zm9?RrptYmFGHol>n&=!Hx z8|5sZ5{gDQ17()IVbW=>CZWXwr2q<3YoO4<4=my4DOs^?h`z8Kk4+U&9KbD=mms); zFb=7!xhN&b0ji)fBviT?1kxDT*lQ~bL$zZ|nZ$owsVHVFKq$sbFu;CMic&c^Gjm3) z8r=*cUbGOVL8{G3sAR=Xq;xv4nVGkdF~lToCBbF1;JycH1U+S*-INkrwc@ovf&(~A z=yizTIHrd=M59HPP$W|}_J1nXlO6pK^BiHudrpRlJRwvj(m{B)!c3r`~HD1=6E$HpjP7H=vy8(rEdK>oE4_*`wVW;}I$mS0OA*I?z13i%gf1 z(WRGgCJ9kR&b)@@5=2V4f=AD9cTz`X^@!J#%pvaCYjd_)pD}0-pv$R8i6~irVa*q5 zncs{%_$I!p7n_7t*&W~ll$}fBXgkfz+iT03Dp%)Pkw-m19aX@n4M6phojq){+aZIk z#3Uur0g5^^L#7^0;)BNs8Ue%%cmnYsICGo^Ofl!HshoYzdrl%l=v+WlL}jQ`2;98r zuitzVKe7D)?0L3Bd;R{yd#_!&^2r_ICkJ#yWmO;qd_{Y0d_(Yye7)=gl_l-6v_g-; zNDG}PcT=I1#mr5D3MhNAmN*(yKpPUA0r}2gLo@E){6Ue+KV%!D#=zZf$0(a9%`2yQ zRvK)g!YvjW#ptXBT0rmn98+MV6ei6uwUw|;uS|BBRv1YztCSFowNO%-YEY!76RgE3 zVPeFUfi0T6TW8PdEJ(u986J`$Rc%eJ+=JU0duUAOfk4R+ z!bdwp6BbbI@T+=d`h=`ocCgKRs%r;=MntJJ2*R@^U?`QvB>#>_PN^9^x*cgomN6+| zXlbSd+Lo5gabK1aG(}?DU3mG!=GW^SsXCj^q0lO2< z!PMyvUQ!DxWGARk7&DBMmpVH7IH)7LugJqe7#PhOGQnz+GRuH}>b7*!2(v)9Jae$i7pxclf4KiBDT#P|O)l{jf1YTBu{y?*QQNXkw@*FZ-L1tp77IU$}7jvQ8%F zj8hN-=g!lircWYH3^>5SqaYHY1lXNSq!R<&|K!8iPy0MRAh`(`0j_`iCBE49;0ysZ z6cgEVh^Oq2y-4$RudUuV^wu!m3+lzc-Za_>sWplVls0wI>c&78%T~r+WaNNR1VphE zy~UKMZZPJ}X7M1_9+2{0;HwohXpX@nb01)ht`=93{OOYN=qPp*PHF6P0L+NK)GfGp(mfD5N-;FG zp1rL4zrBo5D~wp>y2h4B2Wnq z*ysO>lo7ebk|0O*sa^{=58A(6%F5O3xIA)w3(DF z(N;Ni_mMqht3o*U+JG(}(riMEouAYUM(3nbO{EF$i~L=-<6`BiA4~YG0#pu!g2i_z z(p?>ZH;IsW-w@%IJUJwhG)F*C$Vp@->cDt7t%&v$5g2hWn+U}!agrR+76mj>0mB9d zgqr~YTBjic?hs*gd^#i%;o_J>4Eg?@&p&yp?~}ns?uPgCWX^$LL>C|9C${kc$xUX= z`10eZ+FpC@!h?GZAAW`syaKT}E%Q@^VCpqVrv$J1QyFOjgOSOu(R#T%+wdBqocE)t6J#1VL|X z$D2mln=X>Up>0LQRSO%W)>0&p=t3BnM-h;2OB|(DI6BEQnRXyc7K_xXSp{=CQ`kvC zmqL&lZ4a5jF)vxEj&2a>PY;8I1W*`-)X)umpn%)L0Z%pk0FgL8A-OlCVufiQ3`ij3 z*tkdC8vw}}BpTf!f}IN}%3e-`;%N*S1YN-jm|>H!SjQk3Wl%?!8B)=cXCL>KVv}SO zfb^oI(@d=iR5S=Yl2fCmp}>N{wU7F0OCW)oAjhA+#P$MZc@aX7$-{m*NIk;iG%U}~ z9FENzReFVzdYpn(nm~-|#P-Mxk~q%g5TQ<;rfz5+&9H2Pko7B~n?s#)z+^F-#XgP5EAmtV{eJ%02(e}ygJCsh%t z#0)O!v4Qx-lj*`*@9$MA)%8LSJ|dq6d5-!_XF${Hs?FyGbli8p*M{FFs2xjYuI33{ zGGur&X9TIE&*)3qYtwQaD{(Hyy)xIjyr8UQ&|!hEB|Kbn{cZ>b!Z6Xi4H$ZQnV3Kl zj|&Jd21M}yR}l+3Tjp|Nv}eqWoG&i( zhdd26&m|y;aLF_mF5JgYXkHJET2YLrDstm*T4x z3?Ii^%y?P-aU_mGc$t2%RIgjDlwnAo>)c|v*GP|;u0Os*Z+DJf? z%>IOA0!3&}(TA`tcI9T-kHMs4joxRnM4Zx2AK?FxB^@lFA zuwCV^hK*7xuOS&8>CQ_|R<#7-E`L5Pg8#7YwGkOPdr~oQ4h8K7tzqu_UK`4`o_-JF zBVO`FArUhr4mz7o^OE-3wD{J7UF&i$$FV+V4WR}wX@NJ99GkX8)&elbaWZiP4C2q1 zSyRw}IGH(>(=yZT)TwCnN|9tGK|aBdE`N+mG=72$>(hfKQrLh9A&z4Ls=n)h9=#B_ zLxR7W)D$pnj~_-|_TiU#!4W0|jY3dvqNe-&4nqL7X+vZN*l?7Bp})GlHoU#W>pNfK z^Q~qo{nEb@#V;=irC25qO&L>Wnv!9aFD1v3Vq^3W1-fIL@=mjuNlb=a7j!C=7gkyq zLl42!pBX{;eFLdc_2dn?@3Wx@fzve3$O2F?qk9b8EE)ysnmv-jFM&oEZfvNE6;Lku9b*+HJV)I`b_x^6`d6aAXG^#nr)ILTY+3EE7X zm39%!M)nPv9=$B=Eh>n#fnijk0x6V2g0Q!R+D2_xyEHOm16}g~0YU!0C|b5OOSY&U zZQKpELPT&I_e3b(ixwi@%fE4gN}D35)h8%boi&e8r=^FR^yVICB4f}HsIU@%SrJ(+ z)0WtOZOj;L9!?a|*smAX|K!(@tjcTMYs*pxRYZMwaQoYDU-b4-e9TWr*BFm7geno( zS6e#l>$*-n_yTq~GXWckqXt59-8Oq|1htI?PkdqT`$sillxwS`jjw2b60X|D~7>o~Ad_hLM&vRtgwBoc`r zQ;>%i>akc?jD^VM|5(Xq79f2SL924z21*EmU?6Gdw|~zr2CD;R`ixz zU=TG6p@JtNJ=bnHJ7NZ@Sm`jCq#7?G7!!n2#>J2{VhiJCBAQTTT!-FsAwk^XQEXdk z8jI(2w#p&3B7DfZ?ixX2DjL?s$5$#GH>@q+| zJf$=lbYI~dGz@ivvE#^PwrLb3qGkJ0H|QQw|A~&6R?cjnWSe`R1ol>zv$11oAo&Y0 zFo>xx5eQl+EHBOL45l>)^s1T6&NVmXP8VAVLNPizyZ!SNs12nR!Zhf^T0WZY$MsRKaH}7B! zAT~{o4?c+@zWFgDD4=+g2rqh)z{~;=@Rjbh`Ne+w`o9PFo6KSwZ#}>lTPo}p18IS@ zCCz5dIKpgUpNcWCbxS`O@{TT#rU)D+F_O@9d%l_;tfM96=Mto}o$0SkGgRt4^S51By7EySZ0|j#2w~$TA z7^;!FiogsmTU~!;0WJZ(~a;x+wij4JzYbAuC6RwAt{+m z{AwG`a{*wDP@1^`5JTg8JEfJ3HP!-AL6i5=4V2}@3LYr)X&yggJ5GQS2EY;IbbHo` z%L--Eq~ti$gszVfy=W5ybA366b<4XV2dj_Z5)Yh|Nqdz6)r>L2jGtz5n&KF~eK_g(k!vXveQs3D`w`Jwmu{w_d+ z?eEUJ$cP^Ib+0XBxGenUd;Gw{_whwM zI%S^db|g5)F{`#0xfO9-EUd7#@Wz51i*+u%wSwn@oaRJn6Ujtb6oyy^#8RGt(^Y&1 zaKsmpc~8I>m{}wAJo2Q}xd}WD%#RXVa}7nmXNci;=kwTVd+o}X@gvp>!jqM9c@u<| zN!aZVcxvX0*X}&V*Xa6jzJ|*2$|v_PRTIEZ>IEK@RZitXmm7$b0P@mxBr<~^WSmMak7LKVvYHEN9AE1z37?gCN z(TwOVwreq7rqJn!G{us0z%_0fYN&lyOlZE5eJ8AJAwah71%V)=9U-|itk#Aax0HPb zmu6cgx9Yx!gycYJiN^haK$$pogLW}R#N-dR5x1yIAUZml`=ScyAe7Q-a$6O6!vVOZ zjM46xk{>usS+zkVGp*?2NT{sTqe)z(QVU&ZRx(_XGDzytwWZ{S7OBYvH>5$yz_ywa zm?|}P@R5Kv?%4_S)0>Q8467j}U43Dsy@H!1)V5~94%C+H+3jm)206(i{W6`kwi($= zSb~Z%`IOQ8e1cDa(*E47r{b)8=AY-OEH!nV1V_+FNe*$0yZPg^m9MZ3r&NV;YQsyf zNJ(V0k~b!(U10oA`MtKN+E_c})(?t^EF`)Tx|;~9i64Hb+Uo8{g?EjSdtI`y(E6dS z2I31$BF>)Ui#q%G=9yzNhS`HM%gu&Sknupb+(%(4BZGX5p8AWK342xJ&uj8IyoWb z*-or1jN6)sAlYO8Ni1`GB=hmZ&mTUBBC&>e0b{sw?_m^e;O%C<_As{MuEcg=*zF}E z*!CzBXdNEnE8A;}*L1$#Z+pKjjdw4II+Wn;hbH9CrEbPzksZ#}DEXsnhuhsZer(EL~345@R=IvuaiV%u3=Wpa~A$ zAxN~7VF&B5u!uF=LId33R5y*nUscs6euZU##G)&!e6p1RHs2+#Y-%gCc*s#dK27Deu!5mm zm~l)G$-+#^-llSCKvL@r`?EAN(@T(N3ZJO;;Z3ZB=5-;wP(>EJnOd6sKa4ei&PA4R?+4D2o!6Ca6KiCKtX? zcEZth;sG|>YB(W&^DT>>vDX&KK_G7oRTmBk6qe=QCECG9G(=NX+reGMmqDJ(q?9cT z8?T%gxlJOr=LwQ?UTbFR~c1}TYU zFJUJj$!cKxhs|6wC_z*4$@vL$ei~mX!uf=tdXaUc@STQvtRdI)C9mcS$|PCE`^-C}gk2-#(f3EILw8tFz; zh2ILL7M-N}grs@(5Kq@+!$qEQUcx&-bDOmIWt56>(6ny?nb^5P(hYITGwr3fP~;NqS3o+WqnJ8**)%j5CCWMXx9` z2n?yUOqGVKI8lEtPDW^c`Ti`z7|Tl)bDEeF4)+pLW4Eu7gMFg6$XIG7QrFS`sB^!vK-EdWgwbtG1W%eWDkcV~qZpzSpMeN3}zgEh+RzB<~(}we@{}Mp4%c zVWCkqhPKl(hT_hTNZwt)A{V8~58vlE;X)k6*WD*BWg^HA-+y%X`_SW7)n@J6g?)Sm z^8nG{`omwp`2s_u3}JkUtw^J4!v-0+ICA*Qq-2Y>P(~T?YiPOG7UTAH|9jdD<3{JF zA}e{eo#tijwQ1GeD{o0&q(>h>YUpjq#kx&cql2e4JGx2a(w=Mjz!#pkY+$6fL%<*L z9PqzGW{=j>ty8c&6<(h)N}?+dACFV;40GnW@yXGt(+OtMJ((YTjuPyXYuH)CapA)C z*h<4sY)jjBwx8nC|DVJ~Bs)P)aBU>`it+v*ZqS2J%lo}%=ju7oVa?!4;O<_i`b|{I~K^X%q4x)q7 zG)k@Rm_!W%ID8;)=(1bxBU!Kl}7|T=Kp3b@_+8*8JW803ZNKL_t*1o_0nr zd9)!)qi06Wt_&2+gkp<(BCQl*LQIfAbY-&O-r=D)Myb>i7}UH#brWhC>2(b+CgYP5~`L<1t)%>*i6(iV0Y%Zoy?AxodA zF&UTl)pcMbjJoHad#|k~svizhsSx$UEFnhWaQBIJi@q2bKa42;C}ke8>T!d(Ka6Yt z^Vg*T>iFUN_@T9rGRFFw)OR0gckP#7d>=o!b~nEgH-EC5l_Y#;Az7c0j2}0+8yEh_ z*sPCwD^De1*j!e{>0o6Vyf41zl`+HEbA5#2W~hl0LW8^a)ebz?F|zn&IfTHGKJ0`9 zlraX_X` zd}&o1E(jT)hvbiD^HJf~)~?+AHIzNYbifa=A;`_Rn%c8fZO845y?A_guWfld2nBj} zC6pdEnd^-M^x;EQh(!>JE=BJ|<=SBRNEi%T(2u)eMa)2%ZP192YcRuXJH?B(gicp^ zUzRYY!{LlErAbIng76-2LLrxG&jMtGI`0fisEB~1L`wn9dxr;yhqxac9%!*#yy6sl z7b)_}aVD5Iqv#mrV$$&HN{#$Mg)S^Z@3%Fj>4BxUtfQ64fq(;bLZ$9COlHc4*pF43 z@Mv{Y!p@cS1xD32@hRIhdWj&B82v_C;ffZ5Zsj3j5r{k3M7{15A2dtRTeP>WD-P}I zXK#5GclfCsR}!&?D7A_Nq3M=s+nO*)b;!EgD!1Daiqwph9fR#c)2e)dWJF4HoCTO6 zk8+?2l8Ey}9q2@*q5b|jrOk;7bxeGSnmvIn+F)CDumv!0_LloJ2LjOd9N0jYvDy!G z9O}#2{|(Upub22`j2E-xHb#H)UfbsP+M-yfTh|r8{GxY{BJ!iZ{{63A_XH3dNL6KY zjqz83v}iAB-3z<>(UWiEk{n-r@$L8D{59VH?jC%UwM%s4y8e;i@X=rY`sky(tcLFX z?=VNuzF6epAvV*nSJ&lIIBBmfGHa}lo_w$B?~Cv2>vbrrR4Bzq7{f)!-NQ#uo;>;M zM|W{KNe+Kb%Cq{RYdLQ#CcC!*D|~MP-n|>)ef;&mVo;n;q{)FOet0V>$_j**H?X`eis;T26$_TBlvb{fs$eLloLojwZ&Liau#ET7srJ3u-XG^T43vu zJ^^k>Q#Hx`8sa5t9KdE2Ql}+ktLUdpg}{(B0n?zFp6c{g{IAU%53UL zF{};&XTfRgXers=%qh{U8~LoE90#Z@(OO9{4TAu$@$mk0@3mF65?>FCgH?(Ih*?VX zx4!0iv0Oja77krwJaRObBZxY_3m4TM0z?_ZE}D-j`P}+~6~|riy?-^XGZ_Kyesp-Z zW+Hx8jjq}h#ufO-j|M#AFytC_B1gvo#h}(n`J^nUPL|GJ7mxZpX`F!ZHN2dL zG9BK%`$(scbJq!&Cu}Bvd3$YMl#i9U7xwN~)2f++e%4%DZSrOn05{u8Ft9O|y#y2g z5i(;eJr0ko`Wo|v*Dv4s1m9}I@$^~|EDT~mt7Z=RHP@<59z#66$Bb9-)iyd`eE4Bh zji29%I;_YgLAdbxZK1wH@c_+K_s=QBr&lS+&FX`N+Znb9U1_Fk}YPk#Wu(z0X-a~d%c)c zja}Zu@IUkS+Ok?e=kfuSR>(i}&enK=Nb!-#ppF{DUpGr5g5ck}iM9s&h!IrzjBmEB zBwoh^(Pohr6`hN&g83~u5SM+yrDi(#MuWl>zhBc(ivfjYGbthqdcybGkUzM~H}#f8 zG3>h^{coiqQzGK$(Z%6Q+H2#ATZ{GFy6Iwo6+EUhnS&W?w)K8cra;yY?6+-^R;48p~0 zU!rb&dJRLHXSn1G7viS@uDtf)C;loNiGI{iIf=~t5AiEN`LbuHOFitzKy!9=`R)*MAN|CQ6c=4DTAnFT1@M#Q9Qj_KmuQtur&Z zcAzB{W9l~`MiJ1iEkPKDxG<-a#egu0-MzK|$0sB;RYiiw?p|9&Iic>o>q->4;)qrPwOO^D;mbe&_Nz0H zPNHa4ubN_6k7Hqf%xb+r%z+Sljad=$$@_LtTXMXrVe5KcrtQY$d z`fb6G`|*ZgaciPJ!H}0XvXx+F_G^~|K`I%{&g2`_v|U*4iKC1A&@6BJq-3_;?gM^( zD?WmNSIM}4w@dj6h{nh<)Ifx3oCQKnMN%tBKeQA*D5}Fu+?__ElUuVdrh>{jY9-6i2YiS;(f9b#NfYJ&`h4KySH(1lDeb zQPQxBf;P!56p+x+<=!sPH)g2|2*p736s=p$y|yjPgauk)-%SOt&?2Ih#4yrUQ){I9 zuPt_@d4?z;gsbO%e5cnRr%JeJWNgMx-Yq~nW|BalHYAB{G{(_S%(xk4U!ny%oKhnK zyabJE(-uLQL8e3ErNhkz$V*%r3`t4I7W&@aoTxBPGG#O`LBIrl-lHagG*m{<)BzT$ zgu#}*EtIxF7^xGKyPVr#=guhxaN3$M5urt@i9kp+C8+c9ec9h@``f?#?I-?8dW`;A zzt@I}fz?wM4p~VZTSZ0DHjl0`xYt!B2%<6Kv4LXGY1Asmmu>nYSVY@X{~bR1p?(xj z`D6HdcsxJ&Ew~&XCb_%Ww*Px=o=Deny{)JT^c!t`Z7%YB6WeOX9CvkTNqI**&ciGj z;}epne(mw!zPkN?pGrD0%qXLx?8?=;mi%t9#FtHW$^f?qm;U4^j-0kE)d#YX?C5)l z0Zk(1pOkqMFr%L_^DZrh=MmyWR`gvajAJU-AKr_S=}laD|H{*glfEGyKf-6q{QBkl z_^@MSi`yq3$5;c1A$<5{d_XdfJ(({)03W|8Hx5ixQ#p0cCqDIl+7ox{J@?xDM&K9w z>dR2?FL*CVGv5#Vrcfx1S zRfyHuQ%180?`~eX?%wF|JLG3KVT3rCbK83$HV!*{>X6-Rz?R(?wwp;&6oOWZ4znHG z`n|TT72bItfhsMrVF(dgb~%=JdzWoJ`-gA6^I0WKCk1l=Y6bOJY5*nJBRQEm%{D5M zQyK+#wOC~o)7+CSKHJ3A0WnH%s)ahRDeS=up=9}uBFUeS+_L1+t|`qxlnt!?&_Ya2 zolS;I5255C8m7&JXR6xhbYng}-uk@~C|pN|H1Da_xWv~vbSo@c3Z<0~4T6(nPxUt0 z0s6R?xj?v?Fy+8RPM7QiT7g5-Rzo?hdu?%|c*xAQnx9{Y3_t6w&qbaTWlNaz)AZ3o z6=c>VP)?w`MjLY!N1hg?XfJazG1WcRVa{j@)cgvxt=dl7oA?=QfBEY6Punt?|BdyV z&a<+b@}nv-Vy|seFl507JpO%C%o&{*VJzaTF&>TT!(|8({P6v8<;zE=VSqo(--DYO zz1Q~3FFx7{^j|;pXA$weHU>PdYI_vdLSd#nA6;-d9S0Pgwmiz9aEz;7=J80U$ia5^ z+JgS=H{&8Gc65I?BFGzo{i18Z^Kb2W~|IqX=X zn?fjdz3b*3nL7-+edfH_G`w241IVF9$Nh zz8a%;&0cV|5K6JQ2~0azwPMnoVswyv-wJh+I=^DYCD^u{=SDnS4kZU-jAL|@qazO( zxzrLWi`@s1bh+7i?L))S!OFd%V!Y>55q(~bq--4oP&m`S8xn2E*om3?!TY=0Y@PAa z8}M2@OQ9ewF?1;+ONi16n@EA6`be;CyB@NkEt|cM!33|Q9GZej>A;JFDe|Y*5G7S@ z8*m?S41s5+TtZm+(=xr1mje`Q^-R-v4-8KY6ch?0o4HlB!Bj?^OL@;fwzoVJXH%`PT|#))?^#MH(H+eOyw1xh9E&-hHzD z3AbXX69G}+6Cbe zZq8XsBDAB~5JS~;?OLh>riX}NU%nQX)PL>D$Gjehe-F*>I+KVJX%xnWPn!QzfFZ2#b+OCVdfKS32 zW6^HR*DA`t$fyhLITeLk1NOjLitt4Wq2xJ>$u?nPIYgUk#La0*#?X^(i`4hVIjNt? znoRj6Qb7>Zft+0&v}L*RixGa0_{PYOk%5$#+ev7;I%`E3w8r(p0b%=;@GflWPT_kXnIB zGJA5KWv?wiEBnTHg53Un51`Y{@j;FwjGeZa5RQS^Gfq zRkkHSy^}#uh-fR8L53fl#D_+@ScS8jwazm!TZp~mpuI45y6l0K5kuH0H{i7sNy7VrnB6m17bbFAT@ z0C3f@c`m?AN+q&G^boUyvn*<@CFrhLDQw7PCLYbag>f8a1SC>sESy5w=qaeilB$EY z%Bn5YMrQC8-}ROweHCD~8m^rjN(`Wu+9#x4P!Mr5fB%eoZ3r=*EuT7x$L8SZE%#7r zOcXZ0i%Tf&zPK4?-xlW^0|8@mmy-t+nt<678-PTIl|x{JyK$t2x9>!aaOM3n1rJo? zcrmS_G{;woKlB-u<>Q`jhwCR2Zmbfsr*y$XPY8kZ=X@%lN75Z=U@9?|*;t&G%oxt4K3Y z%W%$0WJW|K^+Wtj+mpZl*MA`tV>KcD3E;P`P5ZX8S@?nDVGM87rHL^hOaB4C3WtIJ z{mB!hE6W&Q4C~u(o;*>!bTqFgrJyrUCUK-4>e!_G>yvNtc=BJfBE`;NhTNR-S+#Ay zy0feQmPMQDwq5I4kpH)8i>f9ork1iYIlXoQ5#Ee&hT18J@VNhRd{Xhsy~q5W>kl6S z%rTrfbA)-8%$HRlKDZW{qi*~1!JXJed+pxm*lNo`DPj&pbGdNsDLzK|r9Q){@+?Pq z!kl|5KVcL2EKlCaS*kX?_HW)1Ld|ysbvC=VM?02fI4msSvW1XR>d`HhRzStEWynFO zZSLi<`S#Ck|fy)-{qEt+p#Q`=C`Kavyw6uCbD};iy*(PIHiCnEK|08`^<+Hbg zDb0fkzs6f`c1XH4t&BD>h?@jKYL{UQ@mcoTK2V@@ALNtqckdEV7PY%+YNlz*7zslo zvceuC`Zk+0t-~y8(_0^oAx?(lE2NFo%E@Q}MV6p|A@gq+X2Z5QQA_Ggv<&rgcgp%= z+ZeMav-#^y;$dxqW@sH6<*g@alhwo>QwAWun=0Wp7?^I5Gh2$%=CD?KILuecmwpXN zRc*2Ke%}4IIr@|L+O`!2b(9Zr&w9(yQm2T)miVr5tgOIZC0 zw{72P7}gAKR#cS`lh9I~6hUcc;^x}V^=e=3GPVPKfc`~aSn?yf@0_zB&8qG64Tq}Q z&Yyqh56|`WHZ0Y3u=cQm9t(Hs=p`jQv<)%5=puM(cBOgA#qjMGgr6_-nrqc^gg?`q zmt5Cw#!sbv_{p`{@QUi~llyT!lAn9d{7LOk?p(a~IltQW@Fq6h-u(F2%*+Rc^;$m; z9Ps@IG0@lUJtjPcI3HO&OWJKde6Q?#ZGK~5pRe|iExKQLTk6Q&UM%tI7hp~o8uk8q~p1VEYPg1^A>~(CvXkbP$#;R?lReTqL&L!1-CPAqnree{l5fSMS_jLSalg2|fP<^UKi;>Li$_pbhm;JuR!-h>{wR=3xn1qn2Cgy16y)|!q!3QLG z`w7YUC)}T3&b>D7nmph4+r}&W8TZ~kKO<9EPGr!93weh7rn(Qt0YrbCo2Q4WBS>7Y^J%eUP0hUL4OS3X# z(E@-VS_wu3BurD;6;y3oRX&{Gy*Sm4GuiJy-5lM;_+u!{P8f+msydst%(Tr`KJ z;@icTM?*YAnC#vsIL!*?KCu>X9)~C>B_B&B#kdSpVwTz$5%S+S=AHtz7 z`Mv~D;ttud8CSv44mGtESs2qqIn$t%jAaz3s9;78cpoJ*Kbb9P@3%gCx zFIOW8T@L%Z%$os{>2P*IUnU7c5?pQ23ZWEQgEFzL2Ew!Kwefpx3Uuz=kLUcAwoDra z+fq!`Xxk(2MoB##$H0v!2wF+|JH+LYZsw;?kF+u*adi`Kni!xPkAg@l!wS)No+xN- zrxbc2FHwk8FZPyG^;y@6>=oRv|q zwmv%$2)<9z5rxe#L#C+FrPv8`AkDUfUUwo1=N!XEs|nGIKtZCAg5mJJ9}RtXjZxgx zugiV3la@h)w^VJXJ`u-W8%npY|K*wY+pyY?#W)K9E&sLn_u79gAE?=+Lc!V~Vp$KE zMFcB~tSXqm4##93anc`126RM5cc9_%iZf%HoMQ?eA9Dks8-kTmI~gb=r{`g&G8 z^S^uR{kO)MKR9^rHwffI-fSh>z+iwjHnAqRkexM}oRb?JrBs)x*v8~0Xe6taqXSrm zRVZyI*0B~ER%?Gka^jO%IE1+CrctFl##p0G_8k9^VNF$H0)iE9uR-yDfBVz*nBQ=G zYc+lPnS+kr>AJU+B&yK}mQZTKLx-2BBS||8G(r7nDcZV;V|e9Mz<|w|nTc)U2kVWjQc^}eQ3x>O787wLB6W~xpl&Iv zrt}Dtfabsg&G#uLt78PP86ZV6g~H&wd5Fw|JT{vM zX{Uop=}l+vrycmKcZvtf4^_22N{`6KcpY?BZKrLu{pxRj8udP(Jb(GqGw!!x@r|{2 zEw;5XAB%J?;sZz`*Y4Q>t<`)HwY0CbJeT^#^J<@-Kqn7F*%R=^WoCS&;QjQeoSDcu zd+3bIRCS&-v&?+?PJHh03NEPs_+gY!AAZ7XH0nGp#1l>q5@rfcXUrwx9EEtV<7;fM zJ&iA@UAT{rW%774u7iRHARYn=bX-r)_1Kwx2HFhXqga|CnJ5~T`t7HplQA91Dmn3+E97>M%`Q*)H z6=VZ40WBlP@;}}uY>;s7HYy+<3KL=z3Q9`b!cxZOue6RTs(osZ1`rCAdUFclRqVCJ zio3Vlp85N2bM$B1Ys*q0x~vxxa52$63~7{TCi^hrkcC1ORIEo#HVJ*@9D?vPjmYU= zh>Dz{mLr8Q=!U*nlBJF|?dam39m1@dEgi6D#-z@L2yxWqGI=$X1ZCCl8Pi2RM5(U&oIVy!P<1i9tGh=2!QOt*PIq0o&dk z%R%X9=QOq|R_Fy;P+u0Pr4)OjkjGIfh0+FNh%k$iM0VX|>NM6Y-srcJqw#awb-8;H zE6lSC8e;gtmF~MpMID5s+9P_2B`}Q5wu)pQNkBX94R+d{Na-R5J>-T!kWwqfh1N8g zNNzbOWVCD5R`8Cnq|3~XHf<@(v?v|2jWZC@GL;Z+tA%l7-iCw@%e30La04Uk3fX-{ zsX4)(9A-yf)RDp-u$lT&1rJMu`zfs>X(ozZaIYMhs zh|mT?`i3i<%^H}Nb#rUl#`q$&Z_M!du@Kkbk+aWUw-=x`)yjR=gOTO*6UVb z*uT2+<*zTi{%h>I;X?c*M-~t7)XX9zUsLfpaSsX!QK{YkGV;9k;Ch_63)dguGm*YOamEB0}q<-JHw+XNgVGw=<$q22*y!Ib%f6t$&xksRvda#XRr!SqGL-D z4{}D!AbV1fAQsxV>w9gB?^X%jk%y!xX{eACN=whuB>?S+Wfa`)Gz>?I(dd@+ZPixx zWJUK`99Mm>EU?28$JLN^T)pw`8*hDg>(*QEefkcsK$#Yjzy9<+nBITm-5dD~C_nq7 z2YB`NyPw9#cEyh0h|5F#YAHyQU&-e_yZz3m@4e4-@4fNv+n=>%#u7S`efsYHORmIt zF;7mG0qA+--S=XQ-@X57#`IYt*Lj*Q>Gr#Cgx4={9^UDhEo>{AM5K7@{g}jUe%sWx zXYF&Ubo+^Nxl4$UC0Jf5)7<0UgKi+In+E<3m9_|E1W7lT;@El0A&MC-Ln6-JlF<3W z`6~9>v|BRwOrGU>l5_OWxYwpirb-qS5-c;)f_j2t2)fal9z$M9Nrg9SmyIiML1Zut zr8E#AhpZwYi4?YlXD~%|w6YGaFpm|?3 z)TQ+?!7~RuGZEvu{y2)S_<=ZGeB}Pqd$Gm$+P$Z_#TSI*GGD|m2E>OsJ+5Pkoc(Mt zmD8WWFO0E#ug$OS`BGo+D|)qGP%E2$FOy(54BILsY6ulV$;JyPVTU;_B~y?VZ3%Fu zw%Rv@tpmNfsepz?5fR^IyH)Qkx+I2K)#vKz>R5+;cJ%3cxl}yb_f?$q)jZC9@b!5w z=guGbvKu+*q=Xjnu|(s7G^ZO2()Yi^YU|T?mkp{2|Jl)btlwfG_LWwBOqqV!c?KUG zef35xNdI{0(l27YhXw3%#>kFSI;*z)y*3U=4W}Pev7If~l^l1Rh}CHI>e$abcpu-G zBeTi91|K14_Nn{s{g~)c{syxHIEyO;+0o%b2egHatTqM}I}F>Z%~th{_}<+gqJP=?Rm#ed)WJ=wSPLjj6( z^d1%?_y{iUm(KrrBw&_qeti3l{;KQY;o-p_-{b!(GWJb046;Q`2%mlZp1vT9R61^b z8ZQkbb;A){z5Rx`W?p*Z?ak2W;kn*LiALloPMzlSi-d|3=j#Y0@Uo-ud(6y(LO*Ag zWP8*kG%&C^2_>K8Ga;JO3u}?zM~y`TnJ{Egqots}umaoc6CjSGk=T$W_R(0kbGcDy ztH-m83=bN+snmXopntXBYpa#_GwipG(VxE8Hp&E)5se#r?SDJtep{}yvBbv0JWBzuzM%@T zfjn_dLLX+hOJZjt!D_%so;qa>IaM>E3bMfgt&54QFDtXh_LDR7XWHJpiPL!hVf=pD zl}~tSeauX=^Bg_rJ(+V59t&c{eM1bD&;|Xh_q{thT^H~3^8cSa03BW+$=4B_`7(dk z?Zb~RgQ^FMQqq<6*vw~q5}x)vKZ|{-+WaQ4d8yC$h(<$#qOKK#)#EJ$#B7I1una4~ zfzy@LOtJ)8yi8DzEsrq-nwXG-P^B{(MX9!M7<5bbvW)U1R(a!klJANMqRG*FWpofF z9$_p8V`YamVH}6=ADKM8GU>S+=Wmgg?1RI%-rW>#neDv;tyB-*L%3L`zC%Z6x%HLH z!>i|hfBQWz#1Q+^8!W_>-Fekt{p{6|O#Zp6ACQT2 zk;nUAag9zwu_9qTmj9~3#uiHz5tjgsz;kgO5BI^P_l_zagt&{{a_JpvM3i;m6mOza zUef%!=q&^}`NOS53+|V2a$HP+2ncQ4UKr-Arzpu))Db{58#h&38$*)QxvQI}B4(=t z20jEWd}VrvVO^kTO++5h)#k;uphkuFeYRFFXvZUAc_FuqGNS2(F!MBSV5s8IP;`N9X=%)+Ji}_j5Ht2fBo`9G;yF~B z7`1$0ExPPb@mTwK6?<*oEm`}s?zeg5=+C;>7DWPYS#MO?QB{cuR8wSa67r<5(%2yp z6%%b7jGwan33b|v3TPx5j)Cf?fQ)LYy{N+;htk=_QGtqWJA1+OOIL@K3B3wQ9HP*=ZhvR)h8Z+8B z@}llyyo)Gv0HuxZ5gxqrV-8MM@zbju5If4LeS?pax8^u^?xd4k@g>w8^-a2~e=Z<) zA(j!n9S`#+|KZ_xM;IB8eM1gIz`7+3T~SK}lJ_!(K)D(Nj6{@G8`VK=GXvNQ4s=Su za?^=GZBs!;Wy{uG8R3j0+=ge1l+Y~DET@(lp0P+CkIKPO`_C#R{_t>hKCk!`MRT5E zzTP}`upGYs=Q$MeVq~8!e*yuK$KAVcd}g}GKYEKnxp6C9_H^I9%`|A>arKyF2M0*D z99_B|;y?HA-yW6WVfQ(Kvd7ETjnB;8VZyTdOeXlL63)Bg! zHqfV(f;6;+w=Ap;!?{TUi%v(0&AzVI=A z1Pzx0i7%Wz#wQTt()x2)mB&M^6wjIY0zMNN*Q$&yJv=@aV(;zg!>9bQHsCf z7tug*=TK|i?kPK_=HH5a6BN9w(v{8-rU-`+QZw>HD65T_{9w=x{jY6FVGh3{}W{($upd zZRyhwlb?#|-G=i~wC#U-qioARC(I{K$cJyKG-8%ab?){rHmp+b-dg?|BZppub3Oqc z?fd^&LDp^X9W9f6BhPqqe4_F!BhKw#EIu`)Sf4Q&IKH1UiQY1- z0X~!9$DU5hV|^9`lXbf2rwdF*s-FbOHbG0o59B^FgOV6l-Q<_PvZEdLjp95VtG$M8 z2~arl;65I+S8@%>tk}A6tJU~f_S@#@&$`#9GDB60suR^GtRQ4$o0STUW}Kaac4cjt ztz+A^ZQFLmsMxm6ifyA}RFaDAWXER3wte=0dh`wSJ*+jx`%OHv!bHJ6l0KKt{%0$6 z2~rsw-g!^ilh#xN44y%PswS{NESIE@s_3Xouqarn#KS`ya5Od`Vu8Os*x~KUa)Anm08H3G}0i89~Xp z9_?~RAJo~5{9?pT?niO<4$r#^O+OOxOeM7u=ZY3R`;Mpl7=@x<*CUbZ4+ZvPC{~D! z7AlAuKSxSO&3dBI?(b`!`95`yfQIGzO?I8ulTW2`fBnmXT&q3=_N-mx#sc{d;+T}V zh-8?EBE5K!{K0aO*K$|^`|{Q407%7f>&IlS4KtLOkGEKj@>V zLd%{X{m3RUxb|L80?0SkG9%d=onKLA)UQ9O`ewGmt)HC*J+Bt}7nnpxM5I|C7xxwk zJ5z;tqUv9xrk_$%YDnkEPr3tx8FQ=8D{GR5N6+Jxzoi2iQFcvU9JavaQ>G5avc1SI zG^2=qZ5%Y&;4fpq!-BFs!s3ZDxJ+brz#ht`&&6sRz?T0K^!r&j2P+TRQMoRIv9afs ziS!~8j-6oab>8+J105;d+bfvwH2Dqk0que%qZQcYuLgMhMYF-tOc2B$WZmYh2I8MO zhZ`8E%Z85XJH<)2cpD9(aH4KbOi=Kf0P~B&dA^T@T@e&XOF18cX<^Z4 zs=z5hQXGyQ*FNuT+@&Mt0A#UP7Guq?rkv4|2O-5DhsBw7PEPG3wZzs<$lGYiP>-pl z{UMovO$sY`bR(*t$;K%8Q@^3l_`h2?Ohl~81OlLu70NCU^a(uakd+9{xIGWqe z#OLK_PIi1%PbTo>Uw4=st^nM^P-SXX^ z7XU=k@O$TWZFeuCH;9MN+?(Xu4r=J8{n(`eMts#h+@fD_5=SS z1vp8=NaIViF=kU)wBLt+CU?E)Z)w_7QKl8W8Q-b1k|Pd2Wo&#t@bJ70^Y64YCAA`N zH-6_Gc*5&7nPLfgBR`*cQrCrlR9YyVD~yjxEV%lAZ$jt5O%*WME9KD?TrMQPK0;S6 z6KibdHlgBfS_->W<=0Dc71)?F)k3&}v6ScAbGIT5QOg(o)#ZaIV4{)~cGH2U38t_D zH-Qqz7b`zD5 z<%FJlU;(c?twgd1YsD$7{?yBgGW!b{cY_T3sg`NACBn8qR&_~~`?;3GXewqwBUGH3 zeuumhz(JfODfCe;&-J#pqFR9PHlDy&Gpb=9u$P9nDRb9h?nSCn+-pfXwaKAi&yq&|CeW%LDq!-R@8 zZNOp5#)jV^@HO!wb}YWZHd!T2dntM!$n3_a2~e;MML2U%T$~9BaVB3_MOt=yS)8s*r{h26!lb;e zOv=OLFP1064c^+*`McrB-&)mvM32@^~(B%v@(Wqz}6M@3D51 zXqy1`1HXX&adQoGy7xUYC7)kE+_fxk(wp%te27f|`@E59luiJ798q-QFfg=VvCM#! zP??|y2Br?_7!ssCIx!wO)2*Ea_<5dQ5y)GFPF1oHfIJ>ge~>WUI3EHka)-lz?}~Na z-H=tF&2bK4XTLtK5Ra~`8+Jw(gqubPSZcWOz1z)9iMGYU8ydD_V|OVO`yg#EYCQY{ zF>5|i_J{iR0|G#UJ@*Z-!F?`AH~NGsd05t2-;T<8KzhnBbnrCPHRpJ0%oxDBVHaqk zC4T)>VG%QcsMXWjm za^l>|vC%C44Jo!XCjRQI;C>_5g|Ty&gxmq(qyX=?*O_sy%_K6;$#7rub70-48*A6W z9(@MH^C+p&Y4bUKY`9cGDfG8ch2&mRkjrkrQxFF%H=*6IVfFJfp6u$i@j-x{$ymFI zLqOVWFOW%Zu%+A0ogHm6&Hb?nWrAX~!!S}^xcX;ZVLw5poT;fgOU2tcuTG-Rr59J6 z!0$Lhx1`&`Im!#3g$!uY<3v1P*sIaCV~s=YZtVEH{e0g39)<%vxDgD7eJ#rd8uyi{ zhNK2q%8e`xSxmX-vmsr>#KQ3Nd@!A{Q%wc~R)*Z47GH?PU*9(8Fafw>g#x31#u8#3 zHHtRqBP&g4@ikkDQ(-77vkd(y6f4eQpJ@O%JGB4iFc(cXtE@~TTM$T2!btV1?MAwF zw~ona>3=aR_RE%{wx7ZMJrnT^J_8gbR#frHQN?1Vu4Hp-OONsHI3(58T!cUScY7#D zLBXm8Bo(;$*QoZKqSNT_{;^DN$E9c!Pa#Th0@Se{K2sETpXQ8uqpK7D?Skr9)BJYc zrrz%t@Mku;X!+57l)W>Pdtb8=|BDk2zrMenPwO&h`PYqM$~83@XFF~(Up82N77(i? ztY`57v2JVhMm>AA6B}|S=QkNg4NILAj;VBblxc}t{-@w_GGQM)xqhqD)jwCxOq5Al zvd=%OUJzjgnb?FmarBRw(3Q?J`@eI;9K+?;b)>m#=lk<#%|XiHgn9c5mm&j`op5LoOfgQ>9YSf`PzYhK7ggAS+kP&F-(VI0n+5n6%DrceE9)>-Z%pL%mjU`(Ry!}Sou|v~>j}ER--A40iBH<*dHEeIThxAN^`8K1gG} z-LRfXUPJ$<&l9|V47B+O{Zg*BTe}>zW9a9F%69#IA!=(=05w_$2c<*m66SXe4^JNdvQ)L1hGT-@+ z+uFYl_WPv)r=5Sd*N6Cru$P>yZcbeOT+aI%5&EMnOv+FK^B7MT20MJc$YFlBL#-(dF* z%iJh*wDSMxfAwx+{^V6wx^YjhQeLvkI@e&4?LUaNWAy>Oz}C~WhcWgTg*1_-k~N3k zKoK{ff%{XaE?Y-JYsbAObr>`YA(YQ`UjICfua5fy0#@Pp?m|DL{hj$pcbao>W#Ny*g}2Qj`8APFc0>v^x3JYs8GT zhG)Q%Ukf02iTD*~cKA=?P-RAdy^TRQz@;G&Et_3eZid+_jPS+|X7tp@rft!wRU0|A z&MMV44GQnbVpjGH$_@=d64v-buw15jLG!>I#F{K_P8ZBk=&0VL9x!>4^1lC{W?<>u zr}lF}!n`n>R36F-q$Whj26Y`H#NmmOLf9Jt$?uE{j7OE91&_UgW0fco3Y?$U!=aud zDv7{juI+DOVM?hpHoJc+N0$Vl{Tm<2)?{=j2RN(zGEvR|m_o)uBF)RV7mM;v(m%ru zrN(m0Ik>=2=Jyig?&~z)nu+#1V$6goE9a=FAHG}WDwF1d!?I>7SQJMCYeX1xLwTZ# zVnza)W3QvrQ>5n?&U~g!rqdb3Bc4-+zGDDR1q9+uKgIx8J?g_6*Q+1_M?WX8fhY5x zFA_C<@B6Re!e9u?PrV2$$|?U==0Jj-0pCmXPX!Ph%bAa}o|Opf$45Ysd)LGHVSzn2 zx`UW3rN&Q+aZ{tzz9V}!+6-2Xm;L-aiO@O6od+l_!#|Y5pr~ubwCbc;>2I|GkNr!W zUa{^JSnfpTx}KWKueOutI|sLU{#1!8`o)9p2nDuQWE(8f{gr4Re(_ z4Qi;idyL|E6xN6}5|G8>swAaq+M;5s#cRJYqh191jiT|q+C}q`7n1&vU2zPBJ_&vQ z8X`9IU`9V6-jA9@X4G?j&44S_s|pAlz>V-8C;kv5LmEhp@Oj*HJfe>J)Iv|(_jn-s zhDy!1l;dLJZD-dKl6LHN{@SYF`J}5C>2!&A@k+Y680YC&pbnlbO#b=^nIRvfS!KO6 zqp3%k^|Z&?&M%2VDXsa6hP0}zkdbhTCe`-XN#YC|AXPzSq6FCjVOrLtHtrJWZtCW$ zYjUmZ_V~>D``Nn#gmnP7Db8Y&$xPm~V;sjAVoEU2{V65^!6u-P zQ$WN4ZKf^P07X|ebTfdsfX_VK<|2_pB8Iz3NCbA=b)I0gkNjTws+#GQ_xUZHAx>GD zXkT}!UjUZ~h3$C)$8Hu{@vsi;Mm^scw7s#ltwPS0LK`21H_XHm!x_6JlL&$b9QJGp z)ayOeJHLjGBClRF`!YV6JU*C$w(l^&H!^h{1Ju!MgJdlwz}FUva(JWcsfInQtfSP_ z(9sY{;)ZD>gD>{oHp^ft=gqEqUl9fNPFgkCZ|5IJ{|1&Ij}4b0jfxqrm?;z-D&I7Y z)!!Nj3LAbP728xXY;ZWo$s!)o$<;s3_U(3R@}!MWAD!u4pLdWo7rr{LK}ZyexaZLC zsRmDD{5T#kuY2U`bec{e8qLN`;f)2Jg1$&0o8}#nkNj?p9KAjd+eKJgnd49DKdE!g z=5hU|=Z;h9cRiWQ%Y9_wcAoA;_w1KizVs z%5jzV0)I^jVovqUXvAbs43E~V3u$6vFg**$C!e)2*BgYv^IB%HPpezNywPUWZ^Z%) zHDS>uDdI(k#8jE0cz_?Y(V*{rW#E>gfVY&d$q{gRcP4`2hhA^bz2r6^NWA$-NJqv0 zZ%H8)aOfp!cu{Lfw{gQ!xg3FY3@2<3ORbo+c1~0+11=Z6D6_~8k{J4}`uJ%2$48Oj z$YG~L*agIhKJIV}#}Rg0y8Qb6UW7tRUAc>BCTT{~<-+tI+52Cck|4(KxAmS$68ZO* z2z#C8Q%dl_MIlLTfY0t@Rv@m3p*Y%=tE{I=1%uekJ(_LzR9bXa+*(QW22Jewp^>|u zH(TG5dB1mIfuv>>$=A^zp7+?8LRV{_by>|Q^C^PSYoWtvB=+Z<<-(UA_fuHoz|z}$ zp#2R3oX+OJ1o*NEh-?`P+*XiEHiV`D;+QZj`{Cknu+fWwtfAjS@<#l8ED#7179d7AC zfP1~Uq*}b+tM{*iQ*!=e$GP$wVV4JC!h$+$Uow|d=k3Zb5_x6>(C8FzWwx4UCU~L9 z_LeIYtpGp*+`}q(q)VMHh7bemkEPf?3NjnJyMvkTPZSE8g>j5fgD3t*CKUXgT!)#M ze|N{Lg9uH9DvchW*Sq+ebfWb>Js0iIi7Q7>l-F%dFZ=ce%SOwa3S+9se#N2HRR6_l z24kRuNSWn+z|ybM|5e(D6aU>@c!Yz(U>PC)Fcy9HzV3ou+Wl76Zt`AZ`0;< z;^Q^ir}>_r17S?YhQw}Gf$s^bX}hq+)X@cW0aTo)%)MJs{V@j8OudaL+(Q8dS*}@1 zV9TE=F!l_)zuGXMoq|@}5GxQ~gvst7p;aLb+ADq~{mV7*L)mfdygM5Gm|tV1W}TiA zFc*pzaP&dBW4IFBXw1VVcIkRX2`>gGO%nJcNCjltT>BACJI>>3c;!7h3q9g?`SS_& z_Gs9@)+Jqo-SQ=5`1EXM^gTy}CpL>Z5Wl@$mSU2VYvWUv38lvIz^2Y|jOso>D(O_( zH*@)TC#eKjM~vefG>Z8A!U*bZU%F> zs0{F)B1lI<3pZUO>)e#|*OmY^fsVHocgZQP|ke|hi# zj7Ge6Hr;Rox8?%TD8|WY7t`fqH}{wueqom8yVCHF$FzRX%9i1>Gq@fi@A!)G2Axnr ze_MhNG^QYU`P8zP44$SWc5cKj-O_U`%M4(XQ#Byqg z4;oQ@nG7i<6=O~aOCq`;LHqpLl#w9bVD8&dF(OEAAHKi~;uYsQ!||E@&VVJ0Z?>_#QGJ^DWDiG6aTiqUBE6V8bFF<=k|++GsL5lub! zDgAPNObHAE_b3&5zPQw%uVJLZ3cOa<+C#>DP~=FIEhjocV1?QnR$2mAD~|twF96B9 zE*2@k_?OF!eZwFZ;0HSMWt8zjVfp1%($CCv4##2XqEyg)*SyYl-ThpY`cFh5CPnauH;;x;K%X;+IzU?d0usZlYrt_AGw=InEc5t zHWC}APo=e~cMKXMq=voNeDzeP&)uqf3Mkf32*rvlib4r{f)53HvsLPFC+_n7skb~2#^8?t{EeSmmhM55YSF3pjoYikzaf!32!UKl#NP|A0g zA^_YvbulrLWj1`T$R_9sjgn()9k>NQQ3^BE5gch`JFS6`}F&QF!fK5;pr2%<7)X`R?LsE+(8p?_mUxx*h6ff=_E0fQ< zIh)yh%a-4LpA`6{D#^!wwNw4;J&kes{jm|7Bk#!2)lM^7MJ%>C7fH4y?{-7Q+RiWG zMX8J=YbNl2+GLqUVb%}CS&98%se70KX9D&h-CyhdycId5gK#z9MT4f^VQ99avzRw` zA(itD5st}RBrx63oq()gXZ<(f9*jul?L6yggo&Vfn|k}6A!Xhjiid$~EJwJMRK6(` z=Z1QzlZJ4fX4${gfW6W-9)%2!)opMY>0_ILo5WSBga9n0eB==*s5_Q1xO0R45#n3FUs=ws zM?sE;#aK)?-(~DyEeg((52iq!>Jh!XwlZmbkWJ^`ucXJGyG4sYr`zLe zTUpMQ7qX`ol$uN&iR26XalNquaz!)3T?D#E{v6EbQhy3|2w2CKkL+$KV`%%#Zz5_h z(k%cB8aZxRP?R7)N3>A;_hgh}!pfojQ`mpIP;{!w&P^BMBAjrP=C9sy!(hk{D)2tM zZr-UUHCy8luY_M#>-=8X0Xuor$=JA+Mh8qf*hc=asg((v9rB+Djy0v6 zqF#YtwSE69eBk^pytlLA*n59vq{P#si?t!X){BQNT9C51Q-6F?U|p}cB+>lCux;A; zGnfv1q|K2>LvhB$EO|lRp(M?yxd(M@gzepJVzq<_EZMZ2b(E{`Mj9qk)#%p6MFJZx zlqt!cs3+%QSer)76+#6@qGW^Zf`k4Q=yr^hyl2#ZukafkyB>cNbbkhJk2t^E3)Fty zM1H@B`%$tb_|?_q#pQfm2A=yP*Szlcp%MMM!_dKh*wc$>?n&e;Chu@?vM}FbM7AI- z3IQhq=Cl$`>G0@ekup;tUYE>zoW4`q!Vc1MRyfdNpT0tW?;CcyKnph`b|PC++48^5hFcKWq>N0Lr3IE2{I( zS2MfyTUnN}=$OFw(AtWt=v!rj-OLtVefjkrxhaka5iTD({a)N|P*t2%<`KwEH`i8i z&YwybmsbjMxcX9hR~o`B6_V>IW#T8A5z3WN4(wbV4Ytg^Dnt?oSM7@Y0|G$qzNr2h zMZxS?VIljcs(C1|ZqifpOA6Q~R2Z3zR$TKa&AG4pSRj!m z6YLvCjcq$WQVKrZRJ6zuxqlw68RHso_oZfWayo8Q)M~wD5O^_irQdr!=#m+d{jp*} z+Wi~9SJM9Q8wjU5E@=AyNA-C~5qwH?QK<-I5+#%``44vtYCxeUBiS>m`G|Z8nF9C= zJE~pf0vJE?Qv-*JZZL)jN~JFRnR&PXK^kQ3zM_Y%t;4wFl?% z9Ge*WVLdG(HDZkem|?z$_$k20dQu%*>y6eC+jKLL;b~IO*k+}GkpNQ!#AE6EeUJh- z-1=77f_(`r$3Lo`*6%JM4Z4o*&3Eb_U-Oezg=|^4HLJE*7OTob2{tHr;t=_JMpI!^ zEa^3N037B>toDkOv{`5CQZAwKzXBZM4!=}T_PL&en`P8NcmPWalmmCcmuFs#)pbqaj2V@lpplcLhaw8g<263bMBF|*Ve{*)W*vdd zkyvDbjelaPw5;-!xyw+lM$-*C%8*N&fzql4F+Dj^=pJ_xnTqKvmaTx=htA^0+RG7< z|J#w+Fa0C8&rjoAPn>H9b9?vT7$O)mI3J+m`4nlU=N zmOglyB1YV8R#X``(_E^&5dSa%UY4|W2psW7=O{&{(OUs;)Rn}Cvd{D%TBQ%8ykyw4;6Wqb z4yaA+SH%thC|PjyzfH}VSbw@*mByYlC6kex1{Vf`IImKM@rk9T3+-|K^*bp5oE4z* zDIEF(&+gR%FHfQE8M>KcghQwvAAW9Om)lzRwv|0Ph&Gnvw_HTc)6%8nf~YpOIV6tg zlS;7hPM(}7kQAUDMvI^S3(-j#$xFdvXj%hBY{&o_f^Nh-2y2uT^v5}i$Xz@spX;JX zqwC{t-g#94Pttkgrw3&~KVs+_>}3fGQQKBfhH)w0*8T^2|RCD{&EQ5;jLasfLP6ik04dA zXJK%WmOkJVY?$vM+qwubXMb@hH#nkg1CtCd>tA6r*?cl@D%2j27H)mT_$qw}9(l?w zy${-1suCMZ(uVPFkCDC%J)%#4GSJ-F|o6 z!CuJMGP%8vDmB=+wHnunt=i=D25?Tf(XezFTP!f@6Hyi<>sn|)hPF&4szt=DandXA zJ{93k2czl%7`39%c(U(xg&LNqJyd1u4$+J$|qCZ_Y-9tjY{I6Ql zw341Cy@FYiS%}D2i-a7&?9Xeih9>kwANE3fQx*z6YyA#Ufmi%)_g#%O3t`8 zA|w}JM`3Co7iwz{OGDj-292an+$^ey%y8h1-Gp*V3swV1`8H53ci8J~k&l+wl}R}> z=P`|aB`gx|agEnYnNEGU!o71~n5jIsoq}#TOO4v!f4P4!ggy| zgAvWSsSC7%9Le$y%0}$4jfw|gaE)f;E*BDQ<`X608(?xB#)3_SLPblg(I}aMjR4|% z_QiL1m1U-T`&P>X5T$E#L4aJ^k*0s*c)?opRUM5dU+3=z_@s|ED~ME zWY>YncU>yr6xhx6a7)=of2ndqFTwaYAas5Jcs?xA?h0_=pj`tHzZgGsa&5+Ylt83 zxr;>N-Z#Tt8xw<%C&rBECK1jpN&k512uFD*4(=wd=H_fD>e_%BEgVE~h6BI#B`61FbGT&WWqKZIBV7AS8U zdpkp!;!>5o>Q=>$SW;qWg*d|OwhV?qa#w-UF@1{ahBSXV$n0n#ku5xh?HZR4*zpIM zt0sV3X{lR>*X#tAz3A%q`1lN^cf($TnW;h4Q?vkg-N&WIi z1jgzQbg{iPc$QY&DKKToyTvkC)}CYL#QoEUy`B|K`XjUvHXjp1Lr2zs{x!?XU-hp= z$)?Zi%WB1RzZjUSN`mOX#pr4{!x$eUbE#yBE>BqCS|hVm+;Fq{XdEakh7goJkeI<$ zO;9QkZ?|P&!M=F-3y7%EPO+=k!Yt z;M-~fyja7^>D~W`&N{zuzcuY?f(=cUu!Qp>;;Lt^*{j)l18(u^ZeP}45ccxdWihpo zo^@<0;GL5uRwp{|P&RxSnz&po=E9?RkZmo})1QS$R`#w0mlL@qpd|k7+U}hL6$}7S zl-u~{3)W{{m@Bf+Xn%rf3I*#S9VB7@)h-O+OfJSqX1Y|ETt@C_u+n2)kx`9NlIj!# zz%cgPGSwq7Gmh4j+VIXOOj51to3rhf1+eZvuV*^dWg~&#Hmk)X&@bOAtx1U%ohOp> zOE+AA><$|7{*aL;EOxH}6abjde+)?CY{b}>GEtdAoFkL}>Cv4h;w2v)CN(wV43N)8 z5SnV$`)iDjJ}Thu3CbcI#>3WJI4+QDfyzzIyC0k47c@FAUL2@D<_~2sy{K6U5KT}C zoj|42M_i2-2)@W+fVDT)1Ldn~9a@vU;-aAK*ONGlkYQE!Z|;a@UmAvYR*21Co3&&U zubeMLji%WCFdF+-J~Y~VWg&E5+&VsK0EF;=H~({H{DBW72BS_pS~w7IODZGBGTp~D z2ODg?zYf6M1_X9rWu;tBr&Xw%iUbhdOB@0h^YTe?i&>7wQ+|gDfD0kI3kAfG?6d$> zachVMZ??dpwIZQ${bQtj7WuK-uAH^SvsG@b$~EKcA!AWGTOm)a?vhY1{fK&kx?2Np z@4QdD(}n7c##)HD^)#*NpE7QbyqrD^@h8I>D5UyHa9%+EOrw;(MN&rJAZ7$mnX9I1 z-&ii1h$TwDDGHIY{;SoS*w8P1e0XXDOy22KxmtX$}~x!N0{E${2D+8Q&3 z0+yRISMY?iZn%nOl7rMVVWYbjrzQfArg&S4K5o_LboQo1V@wqk$kyR+_w7ECGkIjY zqSTO#?AYg~nW^sgBT+xM6_1R_=nRm!h>wSop>N&@4MiyHoN?tcOT@{Gb*IIbX`fc6 z13XTRMgwzi(^VY#yt1ybKhm*6aPDV(PAP=;)Wm?CcyRE)h>2%X3nTg3P(QWe2$W6S zB#t!-dC^Hb6}6*+Yie zm+#giXZ8kwA1Ck%j>K4WNV1gm-3Yb0zq#%E+RHHh#ifN#Y)>~Q>3Q;W2oSkTn5e`e z!d0F|oFsGm>#&b(FdX8F(7{|kL$bv(!d_tJRqG0otXdMv5t@I4!22)ZW)72e8QdvC zUFFsy$2zCnm_?~WSxc{FW?SwrnQ z7)DV0AWuG(K1%;-sHm`mNLy8eOHe$fEfHCn8v7%0j@=sLybteh)pl zMUKf>hcTmxRekH{@D@z*=b>^hUWu@EeOyZjJscM9pLr+9B#7T(Vb#qr?JU?lLlS6< z?$P37u=ea1qFiYXso@W9moPafdej|Ysek#B1#l2ZLE(}WWi{2PW*p#0=IHhR^+YER z#aLb8faoV%6ab@`i-!0_7J`e6_W7_DQLVNNX2`o9jQjHcI`HY;;0+6?8&KqfMNDe< z<(+cjaE21Gwbo|8z|HG$Q~QjWz$+>*D5J)>jw$M)e+TV_#A1>k`R)!Z_yz~u1*HhH z7AnV28#Sjjgyl_TT>Hg$H&vW&Wc9m=zyNDPA34nX;OX`L1lUOmk)~1Re{X=Y!JeRr zw_|WVwBfBk_fh^el;+SRcT~|BlT9-|sHW)EEH&9maVkBmqAgeHyc{h>?fhgeQ3@xi zmJ8sxVVjUyfI8-HM&Cx7P@D+^5NzGM(z=Epx}(+tS*X3iLC~bM5yz^lf31&nR<5^_ zsx{-^`uuK6jxyA^(&~5oD?>{ny(^H*qpmH%nFDNTnPQcfqrE&?)K2aDkyttkWoFWx ziO2cuq8TpOFi)K4kYY3*Nq}rqK#vBR&Tovz;?3O;-~JCSZe12ADq-3uNX=v&mQGxS zDX!XYr62eLPXxnN9};N!Mc89-Fdfm^F4Snw&1j)2VB?iVzdG%&zzu*;Ehta_%y*9Bt*K zGmO-$I)xLAeNc(a$&LtQ#1Y4EI=ka80H_sRl}yr#!6)n1P09}$kzYt)6S>dYQ%Q8euW+Q zMZBDrY_FUBo<65m+(47B@D%z5$+P^g?L5)!NBN?J!nQ};jAS5c5hrV@T2{3ef0iwY zD6BWBhe!sF2nDutsoH#VP#fY2DO;RtzpcE0-cd}V>1xXB9=JZv!Q^OFP~ZNIa6Dlf zy-`4yWz?wo5e#QQ+}~&(YEE`DuOQ@~cgO3g35!#?62mgwnRH?@*p0$oho_t`hwZ%T zM_Nzat$s`O89p#QGtXFP#m+{KJR>o=14E~&!Pe=hPIFT_m$Hr56lGI&PB1D;|?olDd23k@RL$fH{z~I0b0}YZ4z$r09ZU*}q#!q%o zkVV!oV(L zw1_6e8-#GS+B~Z{R$v)RM{-=rUy4oGQHhY^J(AK@slb^^kk~fIL_w^o@{;k zvuyYF_TQfE<3^LfS9QBl1}*Zn-j(#>(6bN*iYBDS^s1_u8jcexifZ&lGG`8YT97KF zB2HIMS2m1V`_rPa5XOoK2f`jHQvCxfK;?y-7J@OUCxJ|iN*5Paeb}yEX0pYR+jiI# z#(~q~^xXcE*{sli=Vs-q5ip?>B6(i12zLGB>+@XrACOg4=!!VA)RnFKxKV@o{u^4; zFibQT0sPwVDdjXs_lX)cSMkWjlp~Utm&E0h960j?c`Okb0e$~jvD*4}5MUT448U%{ zADLk>q3e>ym$KTYsRa*#FwBx+jvGpNCEq}PLYZWQ7@OZUz#94@&G z%zW=hTYG%|W-h;k$5JIk4w# zws-aOgp&mfL!P2KdMHYy*|ntBO^oR%aenAsw7|Z9cBu*1y=s%Exbdhx5zl!p^u;~n z50X~3B2+kZ0JpJU*urjl9!BO6r>Lv?aT%Tf7?78-srO;<38xtFbFX?J?MB$B7;qoy zrDIka>(?2?6u&4E}FiDr%0(I?9E@W%xjenCJIgJf7Sn%(?g8PO!HgG@i`6YkZ;%Tz}gGq$* z&?NA1Yww?su6O?=Q*mX z@8_8EQ8wf~Qk;;BlSDt@#gDohii=21OAbESi4WvuSlMk-|I+1LD&e~7G9e2aoo>{4Y{ z6EXxL&#Ttw8~4Wv7$IE$%<-a!(k5yJnxcN+^%m$}JxFfSt1L2%w&|L-xH{1*aOuo4p~fdx#fa4xruY_x zX>*jh${^ZEgPcc^eop9YMZcOWtIg%xwm=vuDrw~=r46Bq-Dn!n;j%e(w>l;KT80sr z&bQI)&6(`uUhf%lTO}NewY3kZa5&_LK=H5mDa3PU$N!0zs@F05lb!)4E4JI9j6zxC zHL8w+e1b)H3PD_vwWAH_yYg2=IhxVD0n(C|e-e5Gh|TZV!dEorj2PgSR;Y7KQq7Ut z^69Q{n7!9*;S8EDK~>|(dzW`}#rl6yZT5>UX1g;8f0fghPPXdPr`!|h96h@r3Fq`O z_`O(mKx=_d7}HuvTSa%N?0cB{=GT4kR8-lr#P;2Z{pQKPr5Lo`*@iIY6wNv}0NPBr z2`1@QG#BTkCPZY~~@hc{pQ?*wUn?$~`~h?tfIGLh*qviFcU zu&8gZV{Ui74+bclnOwWPYI+T1NYo^U{DcFDfFrZmA{jJP*KdlTQ1R^j&OURwvxPQ5Pb;)J2}yh z7ycKp*Va{At)B7qvp8aNqwle1CioXFs*Ad4jY4V-pN-6aXWwh93Zv_atSUxvL2<1m zs0HqudY3>;IU+~IFgdFc$581LAP(@<%0qgDg< z7#ETJ1_)8i5Zxff>#O%i_$&`vn$G=2i9;Z4eZ(!dGT5% zY~Q6GnD2&r0VvG#N zIXYBrbXYdS4p@WI0OQ=vifc&Xkk5>y@3qk=>(y~RlDB^x*Hd{+npX zOlpHXzY26D=P}hi*XAcDBi(E z-c!{mLg_?evcnGb7cw&3A;2 zd5wo@UMg}i92_xd#ovCf4KdA_PZjUAt=j=x*4EB($XX;f{!*S5Iyr?p}bxQ(AtyZarY z#Buf9&Q@2B9L5`CjM!_VDVw>#^@kO&o_lwA9Qbk}ia0+>#!pBJ-ra`+E*tuB`o0=F zQrb#PUa-@lq}C%EkBN-Ia%E2 z1f=Ke#wm`v+_c4iK1@f7752DI10Fwnhq&yu4IJXF@!#P#KKx7jcuF5=OH7v8b_%%U z9UTt}*;u}M?(KPb)I)kL|9?(Pmf<&ZO%!=0qCJN5EHgtG-xWEu-AN$t&wF4HINX;e zV1<*IV04tEqV+v_6;zBRbVKPxpwSU+0hgRfQYV`Ks#3`$lp3rVk8%T$wx5v1`uHau zf6`*Pm&xaU8}W`?w;Z$d9^P~9eg6E|XG6#{?X^WsP_@LUEH*_9D3jKj>I~XO$pH~Z zTZL@mq+3R_OZv&%QP3l(<4|lcad8NP%zK-J1B8tSh1Ae7dxnrDf!DPhi9M_{e5W&g{`9G^e@{N@9c92oWUXWmSgYE1ZGTiOw&C*C2*ztjrpvMd)MqM@AnwdF#_+}{{P1IK zw6htRoK99~wTelX=;i|cNSt{ZSO+_B_URntXF17CA0wF2^K+w&>m;){jiM2QKkf!Y z9xY9T=#I%i_Etxv#WL+zU9}N(gFfz5oqku7IZ5pNaD)O~rnD$dD+o|( zrdcA*2VK{Yw6|%?Hq$Jw7sHXVVMuV??zJhX+FRo}pL=a#7*FE^eN;Ikjt>5DXPA^> zrA}H|sImF|4D8R@PVA&)49!gQxq7t8mHCf5A7@RbFwEA&m$Wm9V*MP#W*|$7F*4Gk z(Jc)GAxl7OXv#*LmHzE&iVP&~ixe2(9s3NV5MxM_@1SJmu-LRstpV7xTE8-3ex62o0i^x8>2t=8j>y#)T3p!paunlY6%IHCq{lcrOYCQ zZt?^y39atYHci$tOm@*y0LgX27`(lSr~@ii9Z<+CQEWOv*Ks1#U>1R>eQ1YpEM_TU%mZr6%K(_4ruj_ zf`<33Kv3bpjwQNz5=4Ya_z6UKH!&ksz;q;u;OPM|#C-wN)1iYT@xtrZp1yhS-j@#_ z+*hr%4Eb3y=lNI@MUny(*_ji+e(lbETzmw)3)gRA+v}mOpp(H9YX1gNRcAaFgeK%lO%4n&9X|#0=V-QOWVRzwKRs<;} zgyq|02j`FW9Agjc;NZ{5&KNtJU?cEy<$vw9G3nThIyk`3QWI4-KOpIEZXwxRr0EBQ z(`mccW*APZ8>=>=b1o>&;FErH(Tu$|!O^Y*FrDGRX}`Bd;rA)+YJvr#x>R5}dhf_- zx`$!;{!Ol?&yRNp{)n3c!odgAJj+RjLmZpO(qp8R&2N_VZVpMln>Hi%=~J)@WqY{E zQavoPCWl?h&eCc~x}7_Rs!ayA5)BQ@Vpx@5yj;nW2NCb;`)NQcRBkainE3sexc8LyE9aso`u2Kad1zKHL&{kB)mSX0Nn zzlOG3x~XbAX7L^Hw5VpAG0wWzrYa#S2MAp(xS9ww8Ci9x${2Kr@-26I(36c^vZW2t zN3~-9#Adqok>r#)H0FmT?k3b&TCfqlXhKp(N72!RTMMfR?9*!>W=FRy-$#^QFs=|SX+ZC0?2LJ#d07*naR6Y0FpcBl3-_MZQQ;r6G;Zd{EmEjn| z^?<5^ShREH4h?H~t>UYT6?!6;u*xTo%l$#OPX1?GHel1AJM+am@x#_} z;l@vH-nsAbD@~+7IkRT*oSETv;llj~pMQ>mQK9%z!z(v`y~)g91i(ip;}-#(a}3d^ zNl=EWsW1&pd6H{RNxXOmKi78eW9KAKX|@4VcfQ=43>8&g1yUS#w5W4oJ_l zm(nhKZS^9*ybI_xKOmsKOH5wk<-V(n7_Dw%5-iKsNrpgam^1L#9kZoMKSr^-F}hF z-w~iGE}B2Tb8`4u#))oOfQjrW+~{Bj`3Xr9&`h_e+5!SP_uBX|NTRUJueBZI_u4e< z87aTl1_vKqZT@kb%Nx$97-i9xq9QBeBKrXoRRO)q0W?SoZjUm z94Rw0BA)Z_;e;t}XG&I4IEji&IGSY==7RNt4~KT&)2n&TjHE?_K3!6?ZcAFtVvzPQ zyJ9;EDgJ{XtZ7Ks;-|@ax>+r^%(Hq+TQPe~+j!o-i0`%i7FC;<%8<{;1^bTs7aJxE zmHd4WKN}ep9mt6JK9nF1`hKfiP91_(G&42~w zU_?oVjZemd>1PZd^HLz>lWDU}i)YTBr;?sf(SCLN-}DJfyGLLx@v(;2Iy;L7EY1^A zJrFGklc*)Ui8jk`@)$u8*-FHAPe}WS&ycyo!iRo40k7fujPU`#EB8MC`0@3)-pAQ9 zGvG2r2G9AIGj7gP)pNyyNDa zQ5fsugZR0&D{r#oim)2F&J}2u_$YCd+lM7MxQHZv1srrXCY~HHpJ;yW{+#_*oqUa zgrbxuOryLy)VH8EyzN)2Y6NqoI6kh0WXmsR=l9w;hVwFJfIicYfrLUt4mHC>rOQ`9Rl@OzViGrLq!)a|qG=u449QJXI0q zU@8sy9^$#&zk2T|*0;%I#;Z3vqJL#O(sc01_uZeBJWt@c&%U~Zv#H~3C;2e<8tAi~ zqXxq06wh5<9-s40we%n4XDbVYYuptMm}34t^md7Locmz>IU%k_!dUAcg-%YU zaPuVSbw{~#1nhP>9KbUqLl{m%j@`~l@awn1)J-RW`O*AD!4cFugQ8ZZ%7O7wfq-Ku z644sm${PnWO}7pjkBuQz-Uv%!suas*>KQ3IqtWB&E?-~;ucr9~{pr8g_BU2-wOED_ zm+3!t$#5u@?^{=q$ki~ zr$`6}TQWR(6_SLFMi)8Cw_35OGMWaWz=}(T#q4wBl^-LDBjFa4kbnt=ZlY$C9GgP2 z70)RUEslx;F%$>eTAz#uvkUVq)b$i%5hq(bbxtbN=2P&~cW>9X;zl?u!F6yQZUz0a zz~@?>RxJBl+Yob6pTwypkrq@tam#}NOG}>gHP@95} zTE?*nIA{5MnIqtZix1-ms-qmcd7r<<_VJgYq59cozVH}dc)ORIay3Fc2t5^y5Qxm^ zCUI&>q{GFh*lYacj@(WRICCvT{tEb;H#5a4nQMfv@EVeS<;Tnaybsls4I$q!<~v6) zw`#C-qfO29gq%9xcQy>DO-V)of7Zj4tB4~X=5?(Ws&Jg{oSx!%m2pQw3@jytWuyaRwG7jH+hd*>c zmvf)JyPTu=sHHsCG~dONxMJQof9dYQdqD&9>bWzXWG>Sgd*4Y`QVj|6JlF9em*e!Efj;QjxVK}I~19eE}i z1CmcO_n8JK^CKA1ZPnJ<%v`sSMyS;QdK-_%e-i&$#-VQwo2s_3#BDz14-VcBQ^))4 z=neb<0ihbKl!ln~kDux<5(MLUIcA8z8RT)MWR4q2C;up7z*J@l$8)ChsWamwe(}ax zCV{!sKwf~5Q;JBM5#q-og{|>aHfoXsmBHq%4!lU@CX&Q{zhH#fv>TG;L4xG1SUQBb zQ(r(q@GiKhLZYQGp0_V-uZ>G)uc=SoYs=NO$+Z$MAPA`0uxdv;kI=^G_wTi-G;p~< z4OIh+2eiDa>uQ2^Mj5HeLt;7^H(0?GDB#s%e!vvbr9jt^697!hY>VEsaHFT%a922>C4P{zcoVhU71sax(#V}lY@9QX_uYPdj>wo=@A+!u;&a<85 z-{%0~GUphTDGv=_ZH#yMaM{88N6BKBD|ubb9Ui_<66A~)ounxYucnzOKJhf#66)A% z+a{zQ6ga8N|IvxT4x8ImqQRyNv0$l8O3DgKd&Q?v+BWZ~X~zGuG4l0c!hgAlrEv4{ z3j;ve;-ZIog0bbrN9Dnh-5R$4Cquz-V|@}HeD~?sZ{N86pGRMxf6p%40uXMB%+`Mm zI(+NXcW!_1+11ZJc>DbCMz+|sCNG*ZCNq6`uIB5Ga+9G^Y|clH?d-|qph+Aao-zsL z&Fta%0*>8aK!{G$lx^Q-%?GB!5M2DJ4ExSBim+HRMjO`sv)|6u=KThs+zEo2da z!a<;_hGv*RYZ_Hoq(@+Bvoz`sg-tt&sz~TE_?13=!(L97Gmi|}j`*UrpZznTqa-05 zaezcbuzk`3vu@69A3Bw@(4lrTfa%(YmP98nUWqEHm!jQvaWeR!OmWdrE*=7rex!lrz z3K+}EC;%T2=Lavb*G3G4%_S=jqjLLWEQ`iVA1W0_OP`s>1qA}d{l;)R+oX0anO65W<@B=6Ee z&j)*Ld7SAaYqL%xSz_mUngd3_oWuNN7}DS3O8z!h^55kHh^nnek)8xH2Er9%GHIC2 zVw5tV5UC}^s%^o_YIMeKxvk|;fo-E@GwR7U&+|%tB!SdgXPp+?qn}Ts_=F@a-N1eM zFLzV{<9Rio!EFHJH+#O3K#RLGDmp32lV!Ff(+BM4lGExEY6f#G5!`~25t8gt0hN!Ekw~{h z4a-k~>};DOK(`xh)DyD&WIPr9Jc)-}Vs?Hi{OWJoYl~-$pET|piD%F|f4~zaLS&Q* z7bq6kv5-eafIAN=smT;DSNqgR22l(6T_VW=r$xfzr8IjpFA0-p;u2#YaX0gYxR6E^ zO80I)cp7yZciirM{`4BY-G<@KA?^$KY?(I!Uw=Ke+VBI{xW&~_KE8I5AJ%*tzjwXK zjQTFh$`9W}ZG|u~It}r-Ig}u&`D|=wcEIpy5=Xm;38u8+DesawNHrIrA{b9b%bqA48H+qgg z*5~)yGT><|p%_Pe{7xfbJCo-&g3UL^E2gS8k9r+*eqIr7b7?%hH=^p-oX=(eox;*` z5)ny1)}}cmsgx4dy|&E&tYWK89NUza4$K-T5pvIniBTO8H*gqIH2@iTf4WEBzZL~9U*#rL!!ZYaz}`bpV*Gn zNfbQvx|suyibr8SHTk_ZnH5_8n}^TzTV!r1V!jS>0 zL!OFRVJAq&7RVqD<{0WXNyyF6*>%baJVK19Fvr0V60HOzv|0$IB-tPhC07vCZ=O8K+yAy%(Mc(~^Er*; zfB%i0zb~djTg_hd8k?;-3|Wgh)Ecia&rZFtC*!H;=L;Ta9`z)$zHhHhg?_iH*<7iG z=Lpxo*H*;=R^+G`a%~TRY6`vPKc0vHqc~Ut%BGNre3pP5!dZyBnJ-`e9NSx;Jh*W2 z&ciS7Md=a8n@?lg>u1R9lZI2nvv&Ofu9$!2P3`l&`ScDh>hapg%ubStu_Jcp&9HrV zCw{T*OeaSPZ~}2gcQWV02gCI*QLR43F5Yv_`NDbsjR|E>BA>vRVN{zOaqBPXfo)CcKqc9)~Nl6Mp zHH9~|0yGWAL0FW)({%3rxn4p&CIebZQkQEQV!cJ{Tq(ZuBT+SQ8daOV*H$6VkC(Z< zqCTFe%n@m(;rH6gve|1R?q=D2h^j4cnszFz{X_Wun9dwPe}50r7%@70&u1QgOp}tT zo#!)s&#>2)^`;V?eCFQMCmzp2jj{S?4>;1zDpw)K8OZ6ZpOKssPC52r^Q`0yOE*p+ zIVop0cEhc7pXKP2D*qx}W!2U;=UC#)Ts{mH8UWuFzA4g^FnNQB9O)k&eF2p?5aGqy zwd_=F@&GZ(+byIbYz*llugzXtfEg{kZ;c1>cEiXxM>AL@@)MGDDZdiJ|CGNQ{DL1L z=J>w7^<`D0CR%rd~nhR<0Qa<`U%>Ed^=ipX$e?6%igL}sjsJD2>!4jy61r z6B(Z2|5xH_+D^YET-ks^Ng(y{4Ng&hT-dXDVdh(r{464$mC;D-rtRhfyzGx%c36Zu4Eag72=q z_TdAVwwW(p!$7ZmeEp1>6(LXLZe}2w%H`|WY<%s(b*J2BHZdQP8k(mR!0WF+!1wds z)aV%K44Gf)UR%BN_bYx&d>?^IXb*0}FeP0G+eGRuW=0c@VVtJ=#Tk?UR(?^p#&TVp zfQ|sE7Ggm?TSIXB^DNqa;bk!xO$}-JTw%~;ovWwuB^!B0u^`q`Sot}w}P%i zPLrNrV}T(;E?@QPtC7&UtnIS)q1UaEY88+A%Wd@uNyOSSfSOO(gWR7szH|57rbCA*LhW^y`?)DRs<(o6E ziAa}<0ki}yjtvlMBIwF!L3?e~j%|h;Gq`aK_sO%Gy;VnP7*bmyT61571jc`}WUHHx z?pF#Vk8bCqn*ZfAkF8IFh5g<@$NQ;nL0ZWK4$0hc>5*d>f-lQ6>!QDpN6P{a}(GeeJu>qY!t8>%*} zoP9rk{ts9>??1fP*1IFQ=mroqTQ0P@_~!au)tlDsi24kBZKw}eLd<^D6S9#-VoF(! zOmE0>PXfZlF*J%*#iRy?IMM1RJ!RR!FfWBtD+@@Bu{QmwYiyS((hQb9vL(ZDe)*)9 zFMow6-AB_1t!Wp*irmr;Q2%VU!SiVyjyRr-r=p)Pn`b~i3D8B==3_i*44ps!^}qO| zwRBRT5$;!iTNdA3>0_~P0SoyquyVQItNC3bm;5HUuQ~vs367vhm4P8aZd4SV(U$rPRU$D>wss@90@L?WV~|k;r;lX z?-1gfVUhgGn=Zx-S44xA+zq-9Pz9aaJ0I%`7B~l7#dP`83GGOB=&{AdyrI_4+B(`YM zFi^M%4=~Ls2q?_fhGp6zIG`NLoI-Sx*e2+V%hy*_YZQY6&1Nnr4{qm1)Uq|$+NDgY9fO9`TRkxCGdM~;E{WVlN>xzHz&ET6VWr2boG>v zvY~3jQKKl8iPEw?8ELDrZ1p~O6*wr#Vqc$-tQazzWA5h2eTXW;Z?%5~Z#6u4W&hKA-v z2?|s>7(R)ZG$i@MoS?sXskR)zWNDixey8f_KZGOh|GoX+ZvT9qNI8xBYC2Yc#uG)UrDTtouup0Hna;H?cfOEP{neObpSS#k5@aQ*|~5Jb}2I`TCux(yn~? zkhM@;sqy+_UQkiLJQlG}$-En|h6iCzC5Oc!nshC$;Sm@5e{k{gwU0mHXC*`Z@RP^# zUFICsRbDhiXW}Pj_6VZ?^_}=!=#?vv>jw{F&OV_{J8deDF_jNL$Iq18c@cIV6%b$D z_uBGh-!J!g-N%8K{e0<1Z&5-T38rQ3HUSnjo%g)G1Z`n0yW;J$rWHfR$E2OLEmg+7xfXJ9DquQU5Y59cY{Jl0tJ9omW>HR-5w!@q| zw`>D(kygXp*=ws&hcHK1du(hZE7eNKc#7zZc*yE`=wvE_E~+SQ5>&xJQ&$K&15GmA3YA{sLDItr<)uJb z(@YEMA+zt0Bv%PV!TihD)-N;L$GrCnbmSHN_wb)vwzL2uid@8BBfagA1|5)G<2M z6dG16;anli%r(*ULRZI>b8Qhe4SL)u`I3cw z@KViOJ^;+}E{K05P0DZ9Q&DZ!%`4M&Ws9C z3WJr}R|FD{Qmw;n5H^{hGo<*R*DKDu|9-?;Gbso0|KW9=M@C&z$@?@CKJwU-w11_G z)$j7O|NUS83Ek9Tu5cyg0ul@_y5!sRa0!7Db&v6z!Yo@eI2QBd?s4N_1O~T&TaH#889mq5wYBDM#ok$Gigk}-RBrx6~Y$Zi6 z5f+1J=h85j@Z@Pt+?S@)(?E9KaqD|+#ffeR11y0i9p~D(YO9lMIVEDfvM?Ic+^}`& zH%Rh=CYd^Ke6G#U(QDV1C(n=m36~vJv-bLPZ9aal!+sx*Z)1XWobRLh@aD)Lxe2Np zsU!EsI+IWrY52872#>gv3sGyZ6an=j60h@Dxco<*-9q2QoQDtj%VQta??p3PLMd?w zPH)rUlu&LI@2rgVJpU3`Kl%JiRsN#RrQy`uM_>MV2`U){y@UskKE+y}z5vu{j7E@Q z5L25WCKz7zi!W*w?>*H|3Uo5!z4N0I!3hhg-mlITK6#Iqza%s{qjMGfq0Y78^?u$6 z$~u7#^7TL5lh$ty3GXCpr^eQ2$nnrrMqZ68O3!`@#br#XH|saNg=srC5}`$kc$_Tc zIPIkGMP2ht2hh=F{X*jVNbxulLwGe8>l%`+{J(o6r>Vp-k6P{?tlNk z|I>d-$;({7hgJlVlPUKU?P{UEzLTTd;8Uo{*MojKl8iq z@@J|_NDOb)P^pXNwZ2KiYRiut3B9(1UQPv8OeuH%i&97#5t%uOT|5t_#hu+E z(FveAUN0+#0{bcX-Osh5Ypb&!y79|x^}V+HH~e0kz5^#NMtwGt$KCtjyF}2l0m^^n z?bYA>UK^SR{m048K_K=e>M06x4`DiDFng1^N5{hvdvb^;D6YMUB-~jJ1=kwjbwEx= zBr=3`-hHlZGh!>nspZt|H~m1)xi%3%uDdpe2^q59rNWQ9}>n4|WYnzkSTBzJUE+u-}UEmg4ycF{g!K#L;YT z0t*ni0AY?S2`#H>Ar6Bn*SrDCQV`?7kPV_Z5NzYgs`2Q>j>fBkWQF>pedva-Th(nJ zJ=N(YQB!GkZTeoD!fP)R;zwKA;I+oM|l69Px zVAsYh4gdJpN0;?Czxw+>S0G2I`xBDK0`wqN5!A`O%zs!bVf)K>riSvF@xTA|KE6lcfANgc!CtRqEgW>YxAVFaF~1ko-4) z^ACTGT%5&b7(?zh?=Qv-vHTKU4!0vRNMN%t1*#e5{l#W|WZk_JREcD3uX1nIWT6?P z4gZ3bdyA0m2%=8-q0n)S; zVloh_Sf__-Cb`JzX+4u84c5^>!jxTVSexih0ssi^I@i`%vzHvWsg5}P>6rQ&l0|bh zWi*!oOCW@ea}A&!?wARE!*gvvLDzO}^;G(&zx<#1yzw*Ww9hBhAJetzEQyZX zeZ4y0( z!rkCXBH?fU>Mv6HXLbCBZHu+thSpGSkYiqblzyyjc&9Y8l4`9#|IfertAF^5dL-)D zwvLN=33gCK8_P;K-2BxXNdHqE3l~S^US$KvgDf7$=C`5TC6tI~P3p`3@h@iqIvQVj zYY|?uRujDjU9s2N{)nY$a{yS#=5ghJhAx9;m8EeiwVEJ@n|t_&kXHeMNh3;N1_TzT zO&E3W+eIL*X>?(GlNlg$1#NQDzmYQcEef1>fGNp8SncrtZzu<%%!nJknx&MiI|$|^ z|0ad0DF)|Il%Sv;*fte9(~&y~Vy0MA+EBdQ3sU%ivB<&jR*j={N)0H46}8yZhc|Fr z;yWl*PzUk*15Jh z_{R6y(w|jNwhz854{aQv{8!#y{dulUErdpN6YL~3*+Gk;oRJ9sxVDxilhIO2sFCIWjpi4%$A~CXgdZ7Wa;KR0c|{u8pfv7UI1)ldq7N zUMGVpw&_4DE4h^fK-^iw8=Py~*O1Kfhdo?xvz3vijupdpSl}j*9ufJ(fi@9A(_|reyKlS^d06j)a?o#WLT2C z#``U$0_IN2SPG60%U(@m6^zZm${N-%4%Xy|(Bl?Q##OCLhOm~jVTV6s3RcxOG&!LKKinVLZyLApqvwm13Z$zYmq+a^h!p+KL=S7Y&bE)#iieEUSSO zqUX4W7)ZJ)pCk-4dWs8@BZmcC=h`Yt!Z|2M<0zC5$WvRUX|j{5YFAqV(J;!iLu6oC zH4fgvHkfS%Q4x~m66R`Bq-|$*3ImEFRNLXm2XsqZ5Z@Uep z$IW~e3tDqbSEVc15ljup=&X~nv{qmXM@f>7aEh=nr-ufY(AzXxF~u^k-B@)MJ$o-M zwgR`AjgS&XsEnEtJ9A2oXsTc?mh+m&umck-Ku(WGtdq>zeb0CQUfWOp_)j^8&ipGK zBd68c^L($3r`&SgNF=yPyBu#5M~qu}YxT$X+PY_;(ViNLqpj#z8OxU0tp-!lUZj=T zelYeYQ-Cranhv9#6fKg`lt#p<3@rx*5>4gRwXy!Bo@@p?TkE)dudOL6nF^YzJ5aBx z4DXazCSQ(|TA03h0e9DyXG#5?yZf?Xz~|cLTy6DiVECEQ2I)aZuB?5Gtz&i{x#Q3q z?L{4fVrN# zgv`e;fPMb#5riVOa*xX5m^k!U_g023e>VFaT*{wI#17TR6~B0frmf=MiK(p1kvzeV z5)7zHsfSrher;vZKt!D{>X+7@eDvZKQnYaat`7v|$i1&JSNr${ezL88G@-sDcp;W6 z9qFg?4|%SQuke1&pO^l!!j_rEg6dm?bx5~Yi$1fABel2CqOXUZNsbFIR`melW?UjKjbK=-X(QcEMi4P zkkPJT#UkkFfD-6YNeJg2^`S8NQ0O&ulEeE*uAx>e#0jtcgygY%T!y6_XuXOtd^;yW zk)7ZLNQyLZv+^Z~WDC_48YSU4M8Ag>D3g@Mlex!EBzaL)pn%3;Y-jtygVpRES`nL^ z0=HxXixsS9nH-M+PTeoXuvbK3jLA$v9*x`voHi3EzF&$Js+$>;GYPaNzQn-((`_h} zO?EG};G1QbZVo*|L#CWij3+6zG7k@kyu=K&$U!KSY)5G)u>%1{`21HiS(i^p>ge`6 zjq2KPFkN>{|JC0!x=R)3+H&0O-)CC~>2tuXV{nWL_W}Is+TOjMYnvXzJqCf*MKrNjp*VLSrfp57u~Q2V_9ety4BLMLS6sNl?8-C$pK1uCC3C3aeL0!$IVjP}6iw z^}V)cAYOOTn9NFT*@0wN=;VXAY+Nh*AAK+dMh?nW8?f zpD%LtG~(fU4z@GeMq11%$o>Q&BVlGZJrMBL7qM$JTwrqnNvW=+ZdKR29ujm z`j1}J^*!pFV)dCrZRC7fpY(h3`AaoVLl1|u#mXK+tW5+4${oD=0v!s~FU29jMCCFC zh_)7d@j-P(pV#F`Ao%SopAX{0mrrr=$4{R_^}fnjLM`UL%39&8_xT&)A6Neua&{rJ zh#m{P>*elGgq_!rtQYt5jbL8w`+ea`alp(;PioCDeJ47D#i$XM$!DDob}kK)Y<1qe zb)_oiPE1&7liZ|3$nl$OE_sHEZ)Q37WB@i(Ryn%uC62J^lcJDQI=KymNj9VDVV-49Xh2$vcB@OdthY#M` zU8vxW&GW@otO<&84AH6O_RV7QM}Zj}ikkTnw#cAuDdBJpol@|AhOUhU_>5=ZYz#qf zhT~=#!www`ah&JRDOYn%CWO_#&Nd*KO z0<8AlmT^a&hG2A2?#o($eN5r>nh4SB7!7eNFif!)AYE}b6U5wGM`TCnI0ej?!M&z2)<9&yirmFO^gGjIS@_*(s(Yuh~o`+>`# zj)CBG8Qn&p(NH^raZ-b-5mB}^z|u|0Lm|O~#X=>@TBL^=mclDl0gMZDDv}vxaxy&C}0+`T9!_LhC2T zIo-ehujtwIOwls~&zahs*iLi++|_WLhyAZPnm>p*a(~mK`8Ous*GIfb<%iEdMw{_@ zpB%#K9z6JTx)}N%t_{a`sSL?SU*LlK?|sZuZLBOsK1f>0rSb!O3$H%Q_+2X>k4;_V z1fRQn`USeSOVf4|5iU+W4qn$x!0P^zr!MgsNow8lZUp-YnP4%^08D6JMe-hnfBaBPJXbfLUXtV4dJXn54uu zZ7kL@?~ppvU8=xXo@?5O?1`!BW{?g*_k>19DKi#hNXk2WF|Vx7cOWU6<5?Q6Ax;Tz zCs>zb%4WQN&%hjZS#(;Bz=E!E`6OU?TSla^np0P+W3>w0)Frw1V3BXI0v35ze-9d| z%S?&UDXX1jH->0CZL}s3GZb8X&)fK3+j%sNj_g-HfYy=oIp%w9KF`)iIy$(f%LGYa z+{ZrU?bY9Vu8pk&+XVLt-9ET`aE#4_I*PC}FBE2)4z(Ud!p1U;g)Q19IieK}%~=xh z>beZYH9!zsW^;)BvLB1O^1uEg9`>c$k}0+6m~airWTTAI78s~wsxtBkAlt(Yzg@(%Sh%PA|{sKIKP7zXVIT_ut`Tv<(HK+)U6v)W>qbaGvAmu)B+nRn*0Y1W{d>%^HIBCTAiHT^(U zh>!@Ox3(BlYZG8&J0-i`nIvlHNx{5qnH!w6yX1=5Wae_%Id9cIN_444VKh302QDjd z{>!E_VFk^o$<`=EUjdFygSYR=BFj#b=}+Xe;F+n3VGbkO$NFWwjdN|sIgmQ8{$HwV zyYD}LuTAIKc+l-b9d>CRglF8xLPc1spL1>QG}skPbKs@{XiUtp#~?^JLUQ6kL2Qo< zn8Tn5K{|Wr&0^~I$_78pP3)Qnva^A*SJxInG9m#mDY7PVoNEJ&P2pICmeW!&mJ@r# zDYOQdszF1Zc__=TpWxe5MqjXAZpM303FXbdZi? zZXRgsK)sK_6~>6Ij>mB@UPIp%&^TF}XyHYq3Vrd8%8N%l(%-!Dv-(8ele$)Y^=H|z z@VYujbyM#@R|CWS(e8wV`R-lue&0)EB1k2`6I1m|arpk6A2j7LZqgxGmuam23Rk=| zk&hFGzAM17zM+?EQIcm8mp-e1@Zc4%zVi8V{H(Zk>mES`t<7C%BKM$9AL0?MCBFYf z?NEp{Yk4=7(Y4KU@=t9YU0Yt>F~`QMz3qXT;SER?QB3N?old;{*@7V2(Z9 zffcmSXaWPQ5Kvl1o8`DzVK^#~iAn=-y`R5*{J;L=)R9U=QgQsU`X*t=H0{_<79QkS zzZ|Q8ap87S0yoqJm@H&)Sci8KI<$Ew1;QO=NO2cT*lw8OgzgLl-L=WFc&nI6wQWnj z5hv5HVY^Y>F+Buktp|i0NheM73dBryW~Q}cmM2TLS4P{48QFohhf3>k?P$W7yG(~s zW0`Qd5xWNLH{1qN;1IYBBS#B^@-&X`aKVXio`HlFOJqTldyp+X*fsUK@?u6cMpB0Q zwvb+(OLk=h-~_N8mw9m zZ{u7We@9DSIr7(ze)Zb#wfzHrpUp=&nQ?T@W9>fR*3o$I90e6?ul{v-#%g1WYV$= zfubS3c(pMz^W-2Tx!;NL)vx=p;JLOWLJ;I1fA!y}id7|+$Z@U>)a1zKNKBcX-$pSi zNp)mne^EbOP+yXJQ9owDRUtCP${L5Jo|WIrcyw)e zouAixy(`4$d<^4EUf7n2t2rL4j5Ahr3K7^L7;!Ek2NH!wa|32pQ1OkmU54$3h|p^Y zMmu9Js0+zpq_b?8Uej2MewbwR0Hf}@fp=I+6lxm@tU|-!OhRWg3lq&5gp_}t`ZJG; zO@={-@WoN^XMeNKw7siqkwhe^oJGHeBphN_8$eL`f)Wrw&rl+%kc=&$EY(aLc`H|x z6IA#H6TGvBxN0nrX3}<|ZG;>iYV+HG_;T2_!6)WH@kY&W|2*4p5xlroOaVl(se){J z0&0ZesJ-SBUh$-Z&sYQ7KNA-3jx3iN60I4slncS-ZqP%nq9AA*svyBeHHmmg?A=0u zTeIUiQMl_>EPBQP$ZVh~VpFe6CVkK#o@WB3yiOh6jnclbl+vuXW%O!VkcF0qb<_rg zXvgIlORV*nG&yv`U8E~?h<0#`6&T#}IfaXv5e#+LEoetttRj7^U&dRwhGdSW_35>0 z+`i^q8+x`JlJ}9hfIE)2hk?VP^499-Tw8Sjx}_~R+lOf{&@8{q8rveD_1V!F~AQFMq>^Op1|XfggYJ z+dusL!=Lkguz3IW-w=%knex8+>J!UVl|TG9fJfKHqRA_X-~IO2AAZQ{KY#bbU!%N& zrd-dp6+DaEyRFqEnz;*s+Vo{64Z4mi*8$esU7Omh{S0Wt2A^Pm^*`{i*v*(HJ~RAG zscEAQDaeCw9f9kJyARP5IgiYFn9f7?;}E^bNMDEWO~kQ$v{cCCfR$vyTjE`U#Ztlu z+)vXm|2YUp%e8@|}-g?!{QKptbHwDUZ)P zKUe?6_N8m{YyW`Awv*2Hh($l549?K`O4_4BR)?b?VVj(0Fl7TPZQxj( zqbsLIqn&AJV65QEQxxO6hr}QUq^>Pk<_a~}SWSs)j@N}+FA>k2WH0k%BT#qUQr$C? znm)_u^(1DIPQO#_C?l~H_&@)0Uy0=1pV#jQGn6>y1`H;~NICK`j>YxKZQSAUN!rY4 zFwxoDRze|;SxVjkiz2AQYkk6?H_>g<9+E@NugIB44?`QVkyG1A7e=rGcYi|CoJ(?Y zR@B-;cKt%iRpsGt2rw*LWK%$Yq@YctQqWnpd#dOu9zfZ=;JBB5*<~^VY|s zKsz=t)xF`a?tsEV%`=yi>@mmMLW>nxkk#QdKt_220xu6{-4i)-4Vn^C+|~EIjdN}I z^<$r8^Vg2*T$>M}d4zoo|FwRft*#@XL+hSE=dpGla7!R~j)jV~SHI4+u?s+B!mglZ zn(P+_gq8a?#3)4lg=X0;L}d~9(LQ!#|5}+}{eC{F`0l$ufA{CVSCvoxz)nu)~WO<=46DTJYdvxYbMUR!+<_dlR#%X7rD zo*Q_Q+2T_ts7VU;0eL#EI@Z29`1XOmxO3RQ58cr=uyr^Dp>)^LJjr2>;9ITy@&lY| z(?=9tiaYk|Md43A{}Xp@xO`<@S!A7*I`_GDl@HGGXye11Pmq*{hL0${Yp43E`llx! zeObSqoqf|E>E_W!`{+xYkoj#M?bLWszd=_Q#(d|!`YG_nYQOkIxT#zeJO#g}?b6#E zk3IkZAOJ~3K~%Nz&4O{H&)g{B!j{=%J9^F z3`Q}~$m&$9!Mof}JlAC@t0i$OnNgv#7SAT99$?hH{heT&u_ zyQ+r9S&pHaZ0*Vh6A?+CY!V#iUQIo1^s3&z|XaP`15}&-dF!^nk+5(!(ac75|)A1S6}`1 z$^y5D-bg~(uRfU*YnJ=nYP{SiW`SR=4o~bFKl}~UM5#4Q$K)&jGnRb}HM26Y5J?bs zxkhOyB0ffL1Tmb(tl_oSkn}U+pZ?{4t80+xDFevQ6+N2_Fy8i%lr;z6=_-5-&UQ;Z z*E&K6T?EgFFY#pz5ooFtiNjXHwNY_J=#VsmH)$`t`Q9TS9cf^7!MtZEsPRI_eN)*L5>naoLW=1E|dQ(GFj!DNKi z=nxh(AhRlxpy!#!>RN;_v;m7w!1^idzw|o^KNZsND*x^ui{h;%=r4~_Ggz8Hay2(3 zqupMNj5~1T8?MPu69GAP9Y&a*Pq`#T@r(kktw7@wR-^-R6TZ$$2g-=Ud)hd)9ApZ* zHu*yHS#dDa4nS8EJtIJzh*47Y=y6a};ExQ8eQy+=m!-%$T1C)J_qtpuC zSGTok)Zh$Efr4E>A*qAj?=a$A8@8Np`-dO>C6A}?l*Ea)^&bwh^`9&{Ow7UgFu*IX z-!IBI&b4(@Fs(sZ`cM6WTLw<)Kgvm`(gv~4bXM9Avb){*-JK0m^+&%uPoZ(uzwEPZ z*8JoTdvC`6(AR`an^RwC+voE{{P1_b@0L&BYr_(;yib1JfzhnbYW|@=CRxPZg?Dey zwPAT&V&;B`3cyxD#T8gCgFq42OlA+;m^Hk?xwb$4$NgO3Q;biNJbx19)8u?s;TZ)Q z54&-ojn;yjj=_EKU5vx}&-_W5m9F3CqP`Ac!Ud?kutS6m7O@zC5B zc#16ZlmJ2AA&6($_q3f|TizMwC7!SQ^FB}kzat!TFy>z)&NheB$vh$wfv{nmi z3v8R&1JIIUneZmIHAT4tK|q;IG;b5n$08*%i^<$WAVPaCLO7W_{REsPutplDcq&S) znqywdotb8t&XglhPD5=({l0jJnN{^y>%C;mUtE?%w-S+?``R_LkCmH!hKAAEkejWu zQf5^nOY}3T0?rFNal;X71;xX5_DTYg?hMR5z#~=;{b9%*UjiOOC#eUYYjft2K%JYc z#f(Viy#uFGRw~r|q;WnXbS`kaF)-84kU4nPFIIcXDza{3GnZw}zR($R0=VX{G$kj* zz&+8xnOm(Tq*8HHINiFACt&iM2nX^-~8;B@s4yQqndXwgyPEMo}JC{mP4*~O)5o}&^ z-_G~i+_g>ThOW(r%{rt$$8}_*-b{4nbfN?>?ybDFdY@~nK7g&j9*GHc_n>GKVRSr{ z%oRwCvmA9I#aSn+e*62io|qs0{P&;S**Bp-igwL6=g%VW?z_K5nXIBNadJJ=2IhxT zJD-r`LhqIR@YmWA=>=rCREOBLVeEr$LVfI>qkQo|0+%Qt@g^6??0|FE;XXWWH0+d3q7L&z zyiX7%m<=K`N6>u((5}qx;-mNL!uz{&*$=;XufCi0(Mx`Kkx?*^86sTT670&Lutb6v zVyajB^*&GZy}$(|C2e&nsw&hH7Vr5>v|=B9@rY$u&DpfGM2LLBFPPQO8o(h5a|EGV zTS1RMMVG~sej)-zNMW#QYlt}%@}n)Aaq@66mlCYcW|myRxkqp+qXwUMdD8xA=c8-$ z8-U&`=mg=r!8o$wZ_ijwi83_s@2Cx$9-dMo0Mgc@e++QUBGt}72m8WZE1iUq z*%)m3v39g`9Aqp+XD(Ot8JiA>&UF&*P$-&P_bnJ*K9z14WQqtq9<`CwJJ4oRj2yYM zE4_135O3h}4MB)Dq2bXYhN$tLox{LlQmlv0yL>{DN4no>_{m?b6K!bSe)N|-qjtAw z9X{^^ns(f!`Di@d8VizT^lu#bmy5iQt=_l?8!*t_uBRr zp@p@)v4~7jSxglf=1NPX>%*8eyveyXbzXix_=(Za4?NrSOsQ#XV(@9;u)7bwaa^ur z^FH`CbaONhA~TBs4)bh|AV`d^!+w*Mj>Gl)gb*8Y8TS#7@eA8^HIVv< zB3Hm_HGuUD4bOX@zJdg0h(>TA=9t7XvO~P5GQy9mMAi8C3szKab_<^FsUE=x4&zmQEZRiz2+!m6+RBe!;-i^Q zs_Vsy`hG{{g7`H1eukrKn|B1h+UG6cct0>lZyg#zhIPd@Qn4Y^w!0_V7}|g|wg!_* zhGL03O>D*YIAmE-@LUrtddI*3k%SlX5WSFA>=J=X=rGI|S0kZiUY1Ce)@brhSZfV@ zojY%Fft|u|lPQBY zGDGETN1P*~g(+}owkp=*h-nb8h$m87O5WX^PG#m*sln)nzIx7|`D!G^y`>ZB$})`6 zi9MNK>`rv>;AWq)pkCl8WsO0Szm}8iD`lu=GyvlcM^FMa$K3SOHiJ_SomPhJhAQ3Q z2{kie0an;5vai|HWi>=PYNIAvGZ0X8Kv?!_(#=RuDs)G=mCPuGw%!fe6)Mu%TEGH2 z^6iZ*{#??z52*`OJhMd$8W1z>4K#I&ZC;VZzh=c}7*6hz?C?~8wc)b2J04I*7K45t z>zDC1ey?qvYh%+^U0V*5cgN*p>f^A+2jYb}g%+4P%r@RRg|F4mxi&Nt=_K4AsAFh{ zQ4irVs6Iq&YJk+lvestS*>0=_#r*K{Rkz0L>LnJeY4X_;bAXAkOiLBDF0x6K7Sr=DQ7;Q<-KJh8Amzt-_JOc*t zQ^ymY4KQcgR^bj3b%^Xg;;>DY3}Peh0AjA$6%Cg!mHPNFrC*~j;H6H#3o3_4lS zUf~;8e)Qt=YF6HtFBEv>@!^;zCV2QvUaa-AJtC_goycu`0&e8to~5}DMHx9u8ar^ zG9cbhaRG@r6FG^?9qHf8z+PQ8&d+?U>&=4EMW8 z#Ezr}$zBr4wpe(fIebpT6&|wQ$;|cJ+HfQ7xoHQZ(K2-7egV$i!f>_E9@|CWx{*!L z);0ZZ!qhtAaOytTR-Q$PGAvm_XMr7WV`8^e7KvsJx+&@J@95h8248ARUS=Wi8Y#oJ zradNd;dchAI~k@n0zKR#SJa9qh_tcn060Lo1qoeo)6Qwqi91-R^5xg)sI2%wJB&OR zrm3On#_X?iZHruH#n(8VECyGcK0}FT4l|0qToZ-|i{3y;wx(90ABN`oH>nNL}%vzBSvoT)y zd-eHV+v*&;S76tm-l4{0Lkpp>`Vsmv51xAusO!JZ+wBGx^z&c-`u2-wg%`Y=rguNo zjTvVY(&we9Ok{<;>x>Z`fqxwiEfC@!At zJX}syBi0WF>n5omKxei94Bv&-xF5zm3op-rek$ZC;pc;&82$V}x}GU|>ewcR7!4nv z*Wvgawe#>@N8-R?&BjB1xX!5K_%iD*5 zY^z_C<{gz$9Rfex_uBd;-UcVxH5weF0lw3;N5fu&pukD6=JhEmdWnL{EnGOT>1SF% z0uJ3qn0OB55jbUo4tL_>J1MypmQaAnyjYWtK;1juMxzlG=O{pO$E^aN8=_YRk=q(g zn^Z#+DNDCg^}xdBj3GwNG_9`)k=w2fmydLwrvQ_^Hg3nY`fW+!Ldvb*7AMm}u;%j^Z*6x%hStJF+AUjk+w<;3lxqU>=ITGv9J zE>*mo3U)jz6kwRsWx&3ic`Y(b5+pJptka_uhmMKTw8n`HKUNc$@)WPA@|^9dl3~$% z3kKIxI=W?LEzdGQyOc|xSZJK%M05LHAo)FqmH7;8bVUZHB^RRuo{-^<$P9s<(P?Ni zvb~MpYr`ibkL~+B*H*{=Y65B+TaNmK;F$FvItwHzk)zBcAi^|Lkid;#4ZGc_Uqh=8 zK7RGp@2=lH`|!7)l+Gt}&5(M~`wZGwKi=2o{{z36_R0PYft(hrm3)%F7H0k++$X>L zw~f77nN1OsBM6;l zY5ssh??#&Q-F@xW%jeM4&8HayL0enq1s%DvczlmzY#g@FfjSPmao`PHwkQ~hlgupe z4x%#(3>Ulz(xzh+A^0K;5jo<4m@11{rV^WIqdsZ)J{pVnKC4qqm3$KG`i|8aRgAI} zCc)JTfDDspp$b4vjGls%jkLNy{}dl0{K%KbhY|$0B0T-)Ag2cppVznXo;>;dr7{HG zS^3$QXxZwH&wz4i+EErsG2pM>FW!^S>e?YfRk^$pH&l~MVh0F(cucCV%Hcd_{c!i| zD?{f8JlBSocE7x9mea5J4wg>{gJM0(z&pmp8W+KA8--nWLK_!kL{q|{SqXUOrfFV={jk8#n! z^qondwh=QV`iB#)Q#i4Pfm03QwPg{qUBsyjr>^FS44zcfS1B8D=3E<*8O#@NJ3%0w zZDD1~vq47)*tQ(JYtN3E@UEtst6aVD4r$Z6rz zHS@@J?PP>9OVS$F2#RUR8bpz$!bJK#v;nei7Z%;Y%3_YDPETqBN;7pdj%;al%3Csy znyooYC}>e^E~LW?D|2~r3^Fe#PlSLx$UUH(Y5`S%~3JW@2UN=eo>7|zgtWGEvo?EpL+all-EzNz58n{hqvD@ z0emwJ;8**c8h)=05;d+4uhsfEo+kX9(xY#q%_ut;B1xxznvpVxEwjEWdW3}c0@^LHvd5iLcfg{Z z=i2_uKmF{_{@#^(B5?^QF(_*+2x+w?T(g3M(rQk7F-%WZW`*NrCK`wH4EJRmjKeuH zCPM3oai1=PxR`Ud*%LWZ+7C+}BXn(>V&(-T;~3xs$b3m^DHy|9EQ6c|-py*SZF6i> z-xBwhfPijU1k>8FmZ!uz-1TjcxAo3MctM)AL}4brVPT!o?uFx2PRHQDk}o8TGYBui zEq`mDEazqY6FdTNj*WoPn&KLX+MN%|q4O=Blw^8}chyF{98Jp62nNv^8uFqUX-Rp; zsIQ@rO{6`8g5!_1%TMJNa|Q5s4jlps3~}`UZ{vGye_ZFiNC4v;df6quEf`(V&9~a2AE5Obb{B*o9Iqg{I|s_uYR*TS9zw zOz(d9VPAP)3g|4p)Wd6C)YKe$n?h3vMEr|P)Yk^QCCu7cfA z<~Q!vqS(k4ZS!HThXJv1O*GIENsuY65Sq`mwD-fDYr7n79|zxc?2W^G3^Y6<1)DHg z;=IXWKgEs?hGLen{T(WQ`azwB%E_){iD=@Uzwiky?OIBYHUEJem_;KzhFLb4kBHUBCuH;x98+P)^2d}Cllf)?~k3ZM; z-j^uAwP__`j#n1qH5j|AvKSBf8*ufpOa2=8NI-OXF!}$TuCI508vp3pj+gno2?U%s z0w9Ubn?XP#o#gldCckFgIyI5W0y33d_YRCa<1Gq5TMI=^83UiYq$rcigy$)GqQhI% zW*R;7qQC@aZQIh0M7i7`noqBTq#>60vTmRP24h{iGdLbn2Lv3jmrX$j5~oTz@)P{q z|B_E^eE5I-#V?$WV3;JD-C)YB*%YRQo-o1L3x>@Zdn{G&V$Ezry5#~9dWqc;64ksZ z(OR>s#gDET#`shY-VAI88s*GB&`m{q9RmzqG2h@F~r^Ayg6A#{3iClHN6 zEQ(~)rD3Ik6}<^IJVH(#1zL$ubgY!_HFVj{@%kK-9^$fkwu{KhfVbRhbo{ZBL1bme zx1QZbY4p%WFB7t7>RQ*tXdS~yC4csaF~K&2tWquT9SyCjM5e~75)?rbHV?_mmx(d= z4u>_Aa0*Efa?2q+1EXu$Sz!sQF+i#~Pw`a)xVfG3XVU|`y>o5#3CZL4+SGFGhRgPO z6qEBK=-HUkdFtnaC#zU{^=@I*Bd{f4?}5I6&4U{Rdg&M#5Ft3bi{KVxDh9P4%Z1SN zM(=)zk3lMYoNP-gR_xVZ{TsQU&llc)KIgE@EG){451jq?(A8^_jC}N- zIDQ?OBOD@(hmT*q{Pc@gkAz)_7KWg*j?_de788Qxgm@7Qk(GO>AFI|EuRea}lU?Dt z^7BveV`@)d0*5{q)O~+8Wl^#3gVq_O2v$q~n8}b%{*=79I(mAuma_dw0Cr z{i&d%Ytu`-U;EcPOpwg`%_5lQ8UxsXyU~gJttM|QyErvk$PD}Ui5>WeDa*N2QWoG9 z3YW8E4tqNGrD@b?#WH{|^fDT{Lk&>JEoItbH)}$)X6RKw?jD#NDQHyEV(-*~ zJF@7@^ul}k+rRw9KmYSDe)W%k_Gf=y%A2@WxACIrwn~9|q|yoP8Z|SVQ^&zoyk%^F zVHT$u5^&V4BhJ)84rZK|*CK}9ivl$8X*ou)mE;*~R7TMLgd~B>uySmIPXKiQlFtqstSY2stayx8x)3Y&x}_f|Ucmb7yi zc9I~D$54(!OLRfunzN=vye{Po2P|Sawm*+$`AoH{Ot_n zGn1w44Ipd$E(a+0wTJ`F>QbQiO9=&+%jf1W#sZHU$V|8y2$*$AYwLlwLiIsNW z^A@flxzDxf>uvQ3$=cFso%4AdquxwxrgWaWIGuy*q~fpDOGG+9MwGV&E z%J?i~%l;dwrms(4_U{C&4zC`Z*}iIx{1V)BO!{719w~^^=4=yyK^I@FM3hitwj~3| znLYgw=i1N;^cfZ&o}-&cd!Ud#5&NhdXdkiDe)R19k3atS{TH8p@$5L$v;@)1V517= z*w$)Sp@aCE%1L|p@X@RHd9I7!yV|>w%8$O_39V0YF?=i1YWLe#=B_+^@B;GhefDe~ z#8iI$KJyX$3>WIJ@7&df_4Eq$F!d7Ac-D!w;y(QhKVi@T7wtTL2dz5D5&RbW?8Qi= zYCXmm_ul#ZCA#8!D_7_TJJ;4P`uoKnAYS+Vn!gOQ5^KVu0}IYsPT+)G0#j`lVhbc> zPLgYmNh1zs*&6|*n}bjbLc50}?I2ko`iez_X&KC$6k!aXz3mbFnNt=9C_ZW$8nUh`~fZW##$qP;=YL}7~Q#d59gs8i= zBfzLLm`SEJ%)}(qK>Nvn%EZPoHlecQ^q3gty4#f{#}H~@i|d(_>>6PV(l9VNnJ8sB zL>#p>^km+0c9NqK(P-^fHafvoa!VnvH?n6ayqqNgqFm!EHs)9@e1~z%+K6pTG}}0p zObaWs;d44O--=fSbZa%1oI$In9}1k@y>os{#ke6mv2fkSPx?k^Q{x=Q8wRWkz9bou zU#7jJEO#`1);&NOZ{vGy|GZALv2FXsYk#k8cX89(xl2QknuYVi>ImyWyBj<$qL3wv%T-z!Q(xlp53IF! zL2E*`Hc0Ok&3_CF!FEItB0(d=)@1`@qJOlUyP^_OBrmQK?7D9Aj<=Mk@ zxH_75$Hc>O4RdT?$K~li0Cqoc^6C&Bzc!Kl`#8w^z^SGlGaGL+wb!)?q&g ztzZlcz80OKse)l^@|_h)>@6^rurxyb!--Wh~?2gZia7 ze5vl~3oOekDC14`87%%d_y?czQ;(Hhf_t;~@FCl#_t2d_`TQBbw00-4KCOxN?t@P$ z0klY0`pgTtp)!ywi(K#^JT ziMqm>o3cdj8d9uc&Xf`V$Z5v0?~M-E3r%&+6&AIP!aJu8Kz*}9f}Af=VY}2~!(6UB zW$dvzVkcwZZ-;oLS=((zM-a$eHIsr_X`0GzA}ssEO5%zk0bAyqtO;zEP>wSkH49!O z)`)=c?KSde=O-j}bo*V#KmG@uVdKb;N&feB+uaFNAYU7OFf z;rPF{OB*r34$F2d8A@$WT53B0x&cWX^Ryditr)4{tJSsXtQcco{rF$A=%4>OYNPNj zdrvHkO-*Zj_@O_{_;1O6_rtI-|MF|F2yWf4XZr$PiTDfZ%(8uXU3C0V- z79a$n8ij?m=V3tx8r(cN3V1yT@8*dz&wxQ>)pG&=akJ6>j*Kn#q`4>HF@GQUx6vI# zBd;a$;)&>pus!|w%a^Zw#_iI4;9x(}uNC|TM3<;vGOG)E)Ee@8Y+a}eKKv=a_V(o~ zARTTayi2I#ZG_l6#|S@vsSi1ZkhwEyoSs+mm|w|b%ZIExiG@FYfoo)b{u#d8_R**H zEjW^+m>Kyv@A%~7m)V*71d)%eQx9VAp*i)_2K5*}eIHk*WLDBLlUD!Ec7<{Wu|ldRz*&wV zOt~|OxPuZb=W=U&%E&tMZlG2{gw)Hh@kohyH@`V&DU**PVgx$)vxrG-dNNW9bKSSQ zxr!{po%?B#6{AK(;aH-ToFYG;ko3QH#ImAgPfABYtc|3L)g_6agZVYxX3iQqEYeAh z$2rcbX=v0~s)-%O!r*jdtb@ZH5EAN|%Y^5t<&3ot5nyYx+b9hTjl>R6bIhgFAY+>Y zKt4mri6PiNKn4;8bEgK+JW*Rm`eH4!OCtrFV?&{Z;cXc#Go@5X<0{gusY@%wUa5$^ zxXufLd6GIDutF0Zizr+}e%{($yk&;Fl34DLX+&(M*U(Ks8E@fS+aGbR4O_n0_M?B9 z<76FUukk#dnKNnb(h&AxIi_@P$tq;8-sjrVKcqiMui=IvF2m%af3W9Pf|G0`Xf9v| zteGircnJ-z?^IIhZ*Ng-7ia&n-)JUn!nff z<9!Xv509-MwqI&p>qDOSUYm=Lc<-!(TqMC*Ov*#j0$Q1Cw6JLocG5g9-`Drrd?a2| zA9J^nqwh2081+xZ$lZzTqRCc-xb`-913r%dStk)E{2$B$N%3a_gD8b1KZXtzsK5Y5|$CM9|SePB(5WxW8zpc&nJVDh} z_Eh#Fu(ZR#cQo*DfNa!$O}ZU3(>jpMq-#FB1)XMlremtRJ=Br80DwaK03Kai`k`+> zALrWGzWsuo*WHTeF^yX^_h;(Zl;U%P5%{|7e*fAUQ=4Ar+9&uA-Cf(yc|nt}=7W$Q`nn<1 zEava~vB>w@hTEZw!Eei@nCj5A(x^gU`)9dmk+V+BTd6V)yoxU(s5`Qiw;fw^KPP z4<70>n(ux7k{3AaT53JA{LgUZ`uF?GV_d%^v@73WpS!X<9-VHiUxTY}%|Q$s_qk0I zduigayQ~acslR?-?G;+IEH^b;@Bw~>t(viC?8!cV=?3-Wv+@JL2C{v zbH|3IoTN381bEyAF3YH<@xxVoj@mk*0%9}MiLmK=-aZr+3j;{DW?oBGKsPd#sxfjE zFfjPymASmsGl+UEWkl^G%?R{N3;=$4@=hgDs4i+ zH<3x7Xjq(;fzi2=Y^M#y?OxEe3`8y@x;13p*1-+Oa+m}$v(eCqVo3O$ClXu=@=k0t zW^u&;Da2(vGOmf`7rX7QX)2NEuZv6Sf|Cc})r#C7rp))+R)@F$$cOz) z=I)MZooma^a6Nno_<(9J^0=A=9sLKQ7uLwB;ONSv_&ki?)44VtUi09)x+x!h_pvt( z1Qk=9whq@fv974kOJqF#_~Xx?rhR+ob6mdgvZ2Zrv~yvV`-YWC)T+3K`km@8ajNT% zHA3{^!}oD9jgPnFg$C8q`#A{7{`R7ov;GK#TXp#FXtI&g2pQ0&$+9&yxfZ*PK zxZi8@%evnSPOsk#V$2%>tVNd7;W8#TmfmA}Oz%W)r!*Z#JF?7%V>KQ z0498*?Uw<&eOSf}s)$C>HqvCVlM0H+ozlj{7Db7}p(S^~t`TunDFQe%Sr>)0QNrdqhnKWPJ~WAg6p2k7nWmY_h=guTE!r889jUwa zX^O&{9O6iAnLEuso3)GGinNhn#iZmi#tHcmE48CG7)C#JMkd0U3$p+-f`F@r9jeEI@w zY=bcjKswN9;LOTnm}Y0Rai%iQ&_Q9g0x~huY6GrrtwI8_Xv_d$AH=_fb8SDF@3pyk z`xl-WyZiq;`=r^NJKNSeNB3su+T1O$MQ~@J{sE5ej2&&o>X6twkilN&q($RwNtoU3 z#)rR74g@}#ht^jT(Q2B`pU$RkUmfJ#>djJtP0;jnb$LoehU$}VfGe=RM)!Nv0X*DU z%4z))xka8e?Q?BZk$&miCbN_*NU1bNXPU`Ciz(O)kY^3w)44VtX0tzFhoD1y z`{f|aLw@rJki?i=QXcWkPES7i^3}6X-$&zy6I$O zH}T=)m-xa}{q*!J^lW!jmLMSf363xay0n zozQqzpa7S6;P`=XUp~b9MxnDZe}(O%_a8m0-K|q;=s&R)NrLeoz4`#{mD)NH#0wE# zZB$2Y5^Z3jdBLB*EY&9;&F_d8>8vb)@9j+6PyTp0*XGyxyy&l&dzf{1#8ciE=qjp6 zfbcadwv(C%&|9-&WWHU1A{fmXKv4M$qKTp5Ysu&k51sSWIC2tO;iT;q09(|%JcXM$ z>^_uY;i1u$(gK~w$##h6ZZBeZ3+m+(t3kJxqG7()0OSCY0dNAK-LaX#Y1>7WJ7D|U zD4XsKDblRlMNH@@Q?MeL6eX6J37w~uGff`Hp=(+3GoKZOatz@LO>jjnkHO9@yNR+L zz4sH6+4(&EI(>FkLfRvYq+rP1A-fD`9SjLE-s$lhSTae!BQqh_zZPHyhPw9+BnHT~ zqv(n>9aKjfQzjy{IVjCIt}v8cbEDGG*vT8bEfB;qog3V>&xI8W{3B|xjWZh_OYeBu za@$zIEc}uZB@lL~@wfiHwx9gV`K`7e{perPa-A(2y|b4S5tvhC(gQtsvI^Nfh`-mC z{vllhI|B@>MOfX1&>D3cp7Jq*BATbB%AaN-hjRGUPAE#~q(kB7eE?AGcl$U-?&Qyn`2gfUbODu43!W|vb zNuD))Pv_d!Q9BR3F9+W`rq?kzj^K6pj+v&9<`KXbx@xPBMAoI@fBNd>mmlMd){_sE za~}3bC;bA2369{KRkl)1mHD{Wz^nQzc2pJ*m&1SO^G_K8iNvq3d}jwEMJ={|Dvlpr z{QT4Bd4MWFb&O|)d-nO${J@%*MS)A@2e@VlE>roCKNL{Eae(?Hu}UgE%#R%K%Y`C{ z_Z|27@fROeH(1v}=}HmomC(Qo*7vksx;DPh>(zdbe9iaJ?*)symX|#X2>ZMU1a$YBn{7<{AUQ zh@F|pIK5ai72!BTR_ioRg_Z@!)6%k<5hg6sX_7?BArLspU8=PwqP<)i*U+K7cn9A5 zu?R7jVCpB7had~Cxk9>aee)+E0ON#4gjfxkTMB@1h8E%U=?UuG!$8dOgBHBOHjvIJ zy0*}677)>%JIz_}lTPgv@O*KjQ?PCUdZu7RtsQP$Rm|vFl~V7j0AJf?jD+el)&v;s z+?{@rykR3wup{G@b)xZsCc@cH+UJCKY!^x{FmD@*J?XGcFL@4Bka3JMNT9j=$ROA; z$7_NmkE6`y!ldkmYEtM;4PM0aNs5sX) zi`ZQomX2+b_g{J0`Ci*T*H)6Ps~rKrJ#xrJy-$90lr+x8-w(i$dij9*aj6C7X~L%g zoVw}1SnZlJ)3%&g5K#`4D=Yl~55F<=VL#do9hCRf$Ne}YR|btTAHRC>QC*>;u8{GF zkw?#;eeq>AaZf(iZ*EI@6xBRLhAAu~<>A41DVgok7-G4PU)4t+s~`KIuBwPLVidGt zq9Alex;DSGiQZM&3SV1UrHcLHX(`vKHvICnAI(B7T}wQ6g&YifSNQwcPd^LFoX!&w z*YmH3`tuj{!)f?XYMpdriQZ>du2X+6@goQCv8(ecM(|oWkJk+mRaIHLQtmVKy>(jE zIoHbG=O65QZR;&zUg>Ssq#NE3Vln1-j9`unCBZDek$4h)La_GzU^`F~tlGv3(sK+` zoS-y~fCwk1IUZwi?wWxa=Oo+6E+pC|aJX;?w9(QLIwK@c3Q1-#RD&ojAcH%m1!dKY zoKV)XL$J5cjDTwv=fZ4vN6Ws&8$3hpA%zZx*rT(-MO>A_-MJL(9U6T?r(~c5RsJ4T zkVp+HBC}N{(g7M6>K<^+AXK1(p^Y&`)Yv*VMDfi+H0EW6qq_s6?o0p#--5wHtpl$d zipQd3gzObw>u8~!F1|--_y$NFAd6~GIH~b_4RMwhip$K5>_RJxJ38_3~m;t&|>@(K7i)1CSXAR%ixi%l9 z_W?P59^1>p0lPbp9J&Kh|6%K4eKhcMG;JTfs4G^*?8Gy3SuCS(QJDebOv1WQ|T5_?j~wSdY{X9@a*II+t$@9aZdB5vXK(xE7tcjT+X%i>%ZS3IO#2* zk<*nIj5CJQfSaRah8UJ&GgCk@W&m1LGX`m@SP5iSa(M)1*qXz=)^c7G?0XT>P?#eI zk=pGQEQ11zVZn{u@xIS+YI~31o@t|1_zo#BBDTzeC$mQ@ji4xjk%3Ko*J>ysEkU#% z#X3jINpsBQ?_|LjX~<0`#cy3_GI|UXfR%eF7Tp!I>8v49i0%wY%j(6(I2>U| zb_d&7d}=0X(kyA|iDwB$?)`+M;x*DRdrcdLX8g?eVWLWCk5UlQYmb=WnnHm5+Cm)Y zk^;Bxx{+nVX`3b)Gc1{LAd{lEe^*3vXiu=7sRclJuR3)zdk=B z@}Sl&2cC z;y$dd4JjJBJDF=p_D{Hd_)GG{tfa46TgT)+{x)(PkLM5{$L@7xpCry8@>=lq zEw*Po%S6IM{Bl~I(wYl%Ak`Ued*D&}3T$FB6ExGU|g%GG+-+Ug9Yt_!ILXUSoS z4<7JxDxbZ?PXO?T+v+F10Uv^3KCf@^J$dp$|6H5)@WT5x`&?%=(Odd5oR`Wi_=BBm z)9X84+4+ip*WmY)Mc8BrFiT1|W5o~_#m@FSS&W3lG#?>_Ppe=C6l*2Iia5^%GH82< zjhXgJUH%R)nB?Wt93R#|V{O#+lB5}9TXyKrpuDS3l%N!B4lS{RC@qW?-YJKZ)Xd77 zjF2UxXk$oXqWQE_EP-Z=9N63=e=%GM;V^C6<#Y_?z$dmWC@G}KQkF?LgE+$+OEOCz zp@cPWM6p6bX`_LxWG#cFQ$~5gCOHVR;kavSoKy~L5w5vo1&KAFvo_gwxJU_0^XY}Y zVj)bTMJj-pr&W|09J*F?dsaA_&Ny=nDkc16w9u3QWoRpHz@`wI;U=*{jA9HeCd&k5 zn9eohc7;oT!JP)1{z(!=qXn09a;G4b!aHUKb+gcf%5q{GUb&nz9-e2vt z$HVD@VY)umq|&Ph)|H&RG*W`|nYapwHDL-w^>A8mYCDZIb88yc*0cq0=l9z7xi&U$ z|NIkmT)W?jeeL1mf46gO)f4FEc7RSd3e#(JClW|K#I-A7rqeOCpZspa>I#tFiu2W* zpKJSSerxT+uFg`w>oaS(G9><+AJhINSHjhx>S&OO;96MIvO>)Tb1xRNcaSm2BzKuk zQ!*7uinTIWhq!cNViqm)tl@h)*Oo>KhyAqEX7C8VAi(Gd7~F^bja2OUm--Uh7y5i8 z598~%n5(6zD}$hk(k3B@Q7GVdsjTHe@D+C;$;d;O>mB}V}Q`v%#KdrN8bB6Nn%AcWEt21m59@Ht$ zI=iR_RNYug;BSDBjHe<*$r$Xm)msaV2yoHm;GnP|Bla&o6dk*VM?fQi@|AWL zlOoWeVbB`)5c6s(I;>DL_X+_txQsFrA}WVnTkt#N2V# z$7r$(GSZ0vxdmx~I}{SbEPkx<9LN;nszI(26kR}>J0d4YFZ2Yi(v*-;6JumX&bB43 z5%`L=yD$*x)(|*;2S&}D#k|9$67agOsY_ALd7NyoGG2_cUA5J|voZ2jVXDhoV?s9& z0SqTYd(d#RiWXv1W+!fSOs?sYb_C>boB&<93{(vujJ+^sQ%KjbweVtxn+8 zcDLYpNJAnar*xjXIDb+yS=V!IX$Ynd5Yf#ra61}lTcZ+Ppt9E|6K57S2K9WR-o{^&$Ug? z>=ZM+BT6P~hAIOm8JTbMydD(+tsj?q-12mpXTTt`{EYI`rJrMZZh+zldF|wh2!IFI zJk<6PISZem1dK|~~zC5D7rB;r$| z_~0Ub9ZmIGP<2EMcvD$5>f@XE>Fhp3d1vLH)=9-DPu_o3TDbg4{n9~o#wE|SaY3r` z;MK=C`~+l+fP8^Yb%L+dt)ebZvR# z$gBN+L-2cnLyIx*8Q1h7$*K`X?p7oqf)LpYp;<#9&w~h%Kj@TF+yWs4-0Q~zPFy~* z4rrMijbW<0ZX*%D0x@fLoYuh|r|B%hAp)25#E>!h))u(%U3w?LzWUJ1Rx#aLaYbOZ zK=2cz_6pHFLF*&JfTM!p$V%8VS&qbB)HWHrS$vBroD$<{E%u#W-T}lBO3#p{g&0rS ziyPg75%E-(>xItQgRmN9fLvRg>#V58#P0oslSfHAFTO67d=v0yx!AU{HkC!zGT|0IFmfvfu_-Lra0qr1dFT+xS);t-96$a~- z(?JFL)u-`Z%v6lE)4dSrNoiR|28V#X7<6Y?CCC&3?YZ0l03ZNKL_t*hHhw52>D$dE z4t-U!gt10DILwBcWTSH}D&ieE!KxjrLV2Cm8#y;0}UPBVe*eYkyxyFLlX*pgQGV1dg$9F%})gISHN9r?^*+&Tf zyid#3xi(dr%S!SWOh@G z-+gdiMvlPGgLrxgkwfHBea(qi#c;pkCg9bJ`ibW!{#CCd%l!k|fNNzTTmf4FH5?)y z8W&>y3R^W2?>wz5WT1&i?%I{!rw5O}tj4H*unk0SWn2WA$vt5#ynBd9=cDlC>8C%1 zD(@Ju?S*Ss?yFpV*vGZFk3Pfq1Ch2}y0{sO!5w64FBTD$VA5AgM~ zFYBZnv?O>CSwbsx{t%}!_n_nOa&bzQy{oboe!R~8X`M^g<`;Lo@aN6IGbaqe*PBB_ zH{lE0acg-(O>A(Zlu*rAc>A3|K29@oSd30H)pyAcRC~ z=g|(MSuoPIHA5l?=crW?1e*}k__efn96c;#=@hCPiivVs12T#scZC{;O9uigMpwv$ zCqDThj!N@yNDaVfS}RQbiY3fB4ydr@HyYzQQ<>ll$_|r^JBE(Sm~>dJjyEe+APo&Wg9U+61s{k66qeShcL&=%}2Lq5jtE;`(X z!)_e{V;0n78L;V}#R+CGTp!v)g=|Wfhhp--#E+tZI@=dcnPFF~w`u9aUaIAsBJjT1r6|^iDZ)nmAsp%uCEmZKNn<1&0TK;2F{SO+Vs@ z6foFMjJ*?6fRZL?I@oXsWKdLNMQn)F4n*nPML@to@GhwxHHlM!%rIHg(ohg%?qy!K zis%L$w3*}p9Y#x;deR4^HN#!X>p@86O6VLIbi9n%O}NC@N;)+;mZ0Fy-vz=w=8&&o z{H#Gf#@xHs&)BsMVfIj~x-Vj(n#d5XcjPoyaG6?-fCIL}>5k#x?uST%UJzC=$+w=O z);fvE)6HpO4FveekL#KI8Gs&}^Z;E*3e;#utjxC=(VYZw=riqzM7Zazm>dLQ@62tZ zCVheahXUuqvb)Gc0&ktd29~u(m~_99;iSsZEh6z7oj8`%l~4>@^9W!_gyD7v9m|YG z-1%3Ye2&+UYZiPB3j&(^DoSz%G-Ik;AJ>=h7S6T(an7~*k|f{bxi&WhY8c!kpg91} zmI?Y8c2#=oe%Wn8pugRd@g2Gog%5PQ~ z>=MNC9`PdgPriH($tk#`#pABQ(Fl+g>qiFKV`GS{LQOU0Su>JsbuC4wq+MU-{p1-jl zv)Si)5cSAboh{c;uRAgU zP6kEKp$O*Wjht=<%pD(F8XYuaP*@!m++*PfKY=?yQ#CO@BwK4L6P^)Sbc|?fWVtIR ztHInw&=Cj`AOjqx-8jx@ebS5Lxi%!6bbhZ*tDFw+!=JOi zBJ;QXp~rW#cSm#cVSfqktKSTDnz{9H$`8Y3Jr1AzmY>Fieebz8EW-~^md}-OSPy}G z?w}vbAQWJY9W_90*+0O!wmRnap*D=zm!ogGA>trCHUf1a{W^kwQXj-qRv*Mae1%J8 zJPEESj`3Y3Gu6IL<*rwf&+!3Cv@!ru;zp3DQus4xxIjOaa6{ZHbnsrmi9h-jJ?cjv z_b*SY6i1|MJB)zCtng1?;tC>9>I@~f+sY3g;aB1EE8*2Lm-FOP{^G(#@KOC3woZ1I z)UMoiSN_KP{29vDPpVV-zDN6qI@hKbc)hykHGbY5$_n_pH=}SgW2Cj=3AJQFK*PdH zmM^$Q-4NB*95Djdd>2#lrgo~xuAMZKAh^spJ9iR6&K8~coLh;;hzxl!%97U-qAiNT znmM;xqa(;TFbBMgU=*@U~M@UL^Yh3l4;RDfJg`GjP^ zsI2Umq9}C)Y%TFEpWLu|EiooQ>gbM3Z1ZB*tlQe3q@A2BLvvzB+ES7!)^(J>^bBy? zWKb4JJMoQ2O0gsI7Eq8K{d#$XF_8e&E@)wun*g9ULZ z2868$)VCX!wBfx85*pMdfgasdh~D;_-!Ef{D&ONZl`z1)(Vu~#I}??pbdCLJBD4bu z8%!ARrU55HFiAE4tXqpRzWcehKhC+fd`9xG)TpJ^I_7H+7vEi)8aDQ9NK5y&SbOzf z^%vXF2XsR~lO013?kG5Qcduw)@DA+1r{r)!}e)wxR z-0!s}^I34(;#k4-BG-Sb{>QkGQw;BCapx_{$cVgY*H{?9$Bvkh zxSMh&Shk2xS#m-WQr8xbu?zu|OPtEECOTFJkCb(IKN6(&a7dVRPAMqVvCgMKu!|LR zuox)B;9)fiot*_c{y95hFtI!6kZcV)Yhd0amnCQ86TVTp4Xs24YaGl@uq+D%-!a+S z(SXX-Xr3~hmsIk5m>@Kl*9;m6tYD}Ozo{{Myd{W2qHEAuK4RJufwyd!bQh)szzxc7 z_h0~B5t=oeumMp?>74dt0Ee~jDPTqlntAzzWcs0RKl@x;TDCgh_Whr0TMfj;WRFmT zdlmH!)l9gHh(UyX$|Z0iIy&vfYtFT`(&|or&81NEllg$-ht*E~;WvNy$aGi(?wO@Ro08CnOkL{)|eksAS{*5a-%>h|UA=Iz+!5rNb4J01x^1VgKVtU*bo~ zbnQmcN#())PkH{UelD!HC1^!75WF{s#v(d!Q&~KvKYXq;RP{wGsNK;=EWx@?<7d?u zee}Ne1Cg~YqS1QRm!yKFR2Fh50z@8l$!dU$dR1naPY@eVaJB}6DpWs-EmA^PJ?XK(%D%!k7MnX2i z9V-L2{8;jkK&u8LcUX!{9NdFunawjBk+lV#Y?dXQm=^+9P>qgx>KsLa0*1ZstZhPY zQ4Es6oB{^3#VKfJrNqM=+h)5q+6PfLm)(;JOw^%Z zRE(oo7z$xDvZu0dd6O~GyOK86IRF{3QBxq9@V@1CPwENB^IQ|H8G1chg$an0GwU5h zmcz>#q(E! zY#gG;YGZ;tga_Wdvgkkh6z8p;JbfRZ4Ah}M8UQv5kJ!ohQ;V$8MOx@vSJq;(M4s@g zuXpkH;=0Nh;bD<=UJRH1|L9|PD!rDqMC_+?CfvwD#DnsnuIq@)Xx67LQL`TbKGo`CoJK)(S9xrq&& z5Rt%l%o9)Wtg%p-%cWg@Lozrv=I{wFq9j9Kv@)01YZ_2Fp@ksyuH5GLg2P?AaKt8V z^#XuxoVEZT!kJ-`y}dj~Bt+*xL~W>zNN^r>tUCqQVv9-g&VX(I0(Yd0Vcd<1LDosl znuXT5IhGBYm4LD^NHA+=y2dnNyjnpZa4I;}@OY$+)JlWIJ=>(q;@D;%*7piZ22nBC zwUtTl7!*Hh0utO-{%^tpMx9(GB(uF$F|mld21|=yqizeEG6a|2)KH{H1{7_%6YC|! z5PK@vf8EsOXq?R1k1bq8xCgX=h0|=`MoqG=f#9AyeA1ncs2L$<&W@BX2&0^a&KjbH z-dUX^1gtPw;~W@j&YK$2DE3Z(JxC%%6-v05$^i-5b>99>42I2wfMDY~s-gSDCy@rA0XXq(xs zPT1c5XrIruq0_luLvqS@ccSmLMRZ+xWdBWQ|LbmX*3SXl5DECBkm|SgnYk@2kUz_S7>+u)(!MOK6_Qwhx z&CazJb`M$4zO0tx$;XZtcu!^O^f0_t8L1UugZj>UI77zn>>feGksL*?fa`epQ+#a= zC(puSfp|r%uM1YA{Nm3Gg1|F=t+2mhW@7Q4@n`8ie_0o3q4MZ$#Z|dXdW(nxc1?s= zyf5n42kJYE_=F_4Au>a0-}#mF&0mSnEC1_dKQH+9^41~v@)i)T=SvFQhL$O;#uc;! zBzL_{3D`{9HC!?IgTfk5YUA75fb2oC03g0!DT_?=8ixe1@UAlgR}6kITPFljGload zc%wArEmPDc(SDCu6XxQtijU{C4 zT=ia6M~c}ufh#vA7bjXL0z=%ey`Vi)f&(CIaWKm^vM1Y2I9Y;L*{CqUye(w2az9bCrK9mejqv1$ zmPl7*U?0i9jqkPLY9u_zmUC`@t;3Jw`)qN}BNKg_4cNE*UfXm4Y!}ogY%?8_iS8=W zo0us_UlLKGule zO{3xv%levK=_OJS>^gZ?kJ@{`c zUUD5#!@P-dMOsBkAKvUPtyiDbBAkDQuE` zd*?fcW62nWg&;Bae!npmf5c@qUj%}|YHr`Fp>I2t8&fH}K{21uAZ6)h26+k7VZfXg zYT7C&c1k59=#sf4_X@m(l7!WXGVLk=M}T2^8wn0EZ18ipDFqV4uKDUCxi&Gv+t>n6}FL-Y(WZKayh zundu%vNCCQu#AZ%6yyko=U`%TFJSM8ajxiKUKU$!g~P_2dx#E)0$8>KJHKNFLEMS$ z5p+aTjrQBv5X#nO3a6$U-C)~?p$v_!CE;&8MkPAquXSd{3}$F%8!Qel$eLr4gQ0+6 zd$t|OwCyUbku6A@ks5|^IN~R$P`s6Mo@@K=|AY7^x7Uzd$IUu=o>2$l8T-hbeOm?{ zX=e-3ZbByo{nelkA^fFA^ymESA-F3ziwdF+By9Y|TP z06`{cG3^9wK>}JeNVQ4O$)|>R{kYUF2H8f5eM~r5lK%p zAHnMgU5D@KBZxV!gZUi$gF(Blc8?G1J^3i@5>OtqGw<;u9op;SlB*#=FVG?olOQHo znqZlyY7QwCoF>-w@6khi&I_VQOvzxu(%gd2|G(Atn0^q$yR&i@1H}vR`Ad8lQCGre zqiMpWvX-Wp?GQ)s@w58yVV%ax#VCuhD&zDfuNwKXE_;Fp`{CnH!GG_4{OI-&>-683 z^-0TjKL3(G>jru7Im^DSoa{vmgcK%osH%_fh`;k0|FqB@;^O)FnWycaa=z%R&#Yx`k9LNdcZ?o@#7{HcPEz`ajI~*-N~AM8)Ol@i>CGCCRu9KX z!(!_;Y{`wxY3W?si6M88i^BlJW2NRwTEXLCknpiOQ4=U{WE>*>kVzo37CDIrSxyBJ z9}X=@H`EAFZ3P|Z_8D;WAg$yhJ)|Q?4#wQuFt1m#IUr43){GO$T0|y(4K}F23dcO= zlT}`BW^t08=cZSh2-4ykca z&0}p2NYY_;@MIOfSMN(mRtvxe;h2f+j-l;tD7p^;SIIqs#BFrq7BcO|v_YkCIoGDt zE8V&^Roiy+-8SqVuM^1?fdu|nU;Y02UAABT?yI@@|2o%J{Ci{}{cEa0bnU|NIDk-_ z%F1ZF&>Jp-B&?An1rC0M#NTW9e!kas9E%H^QXS#kPD|?A# zkyvE%neu5}@Z+7&zd+;jy2{D6fa(cMWhgw%kF34?pRyB_C6oJ+%3Re5+z4`s&+&WV z)d8X^A4Vip5#>F2j-MEK^4=FL4DeZ9TZLbQBO^S1h7qu9JDXClM-UcQNyXt21Thea zN`3f{zf}IgOXiBQiIrBwo7cKO9dLGSd5xdf|GexIxgV~GZh4>B)H`g@_&(y8U3xQ+ zbr~kX)|w_$AjYv;s34&UH|K;q0R}=2bCO*n3{87P%HF`L&C|9TYU3aV&74&F7!t^w z1u4|DEE3|iIkS@*oLHns!b#zt0WD-xEI?XvEPsZE0or(F!7&g#Gq@{Oa7S!#3V3t! zDS_y~50;s+h6`1|VN3_m`N27xEi#=!jsgWwM9$S8K}IGFq2(25kBQ+bl!KZFnM0 zS&+=AWd@3)_iX>+yZ;a3bZz;3WOZ$9xzcH!^LZqr-VB&iXsLC}xHF2CmDgOCS*+v# zv;Z;VBVvqD zp*Ai&3O?q=Q0m7Insu%ayE_lgA`!nRK73psd92e|)$1~^>E_{Qxa)VdpGEND^B3=7 zZ(iVJ+X(Wpuj_^Ul$9&Db=ug45eDZj;+4nBFK~A8`1T!>hg*W*{iXDc6^^cLUfc5? zQZu%^akRaFWi}I7-6v#A6UUC7o^rygxo$-D0loUlETS0ZRD2f zaClZ!O}SA@O0+VEEd`GupTRu(Azh`59aYXfl(7QKvp#~k z57kyO$-T{$GD#USXFW;Etg5{?aox2sTi9ish;s)hX4C<0n<4?$K7nUMtOHQ{IWxU;U zZEoED`X}nRcE1(-+QY^F*5}%)2T1$i4#K{ggWXju9(oD#Y#fd=shqePl+dOPTj$!U zSDIGIotHEgeYBy4?RUT3SN#9wZ~QyjDMb>7uYNy$+pm3v$^2-Wt|1AMcB=TF{5HXE z*>Xm%qPt`IgL0f*6E>IibO6LeFdjs6C)1b*&Ny?#oX6#RI@iX7bsf?3nB9l;Jox7E z{^eW?;y5)^mrZ)0Nj6 z6u=&umwkTtWi>?gQwpWcM`4mle1@j3I>fB|L4AP@ACdfE{pdh_`|S}gYWYEZ;SeI& zDqC|~*UAik9nmtpcIfAI5lQfI)8>7F|L})A*XEb@yy|nl40-h*xZfNA5e{eGXaesn zV-1Ca>}@ZTHzNq-C!!n8cEIA{+I9XTwB_N>IBde&>gHSVFQ`w=4P_YNQ)7zQKh8< zD=5@sCs)}yTUNofaY>RvNtUfoR{s9CzxlU+{kPxz{`WY8hAmnq2>NmT>{`)&yI3Tj zY(dcY>UY#F;otuLcTq;oE=?|LfbUEZvI6lLn?YO=oyQa05(2leq?pN&~{s+jJ+ipM3QGPLg2D4VHce( z;LsK;d*5yt(wtG&rLeMw)IK0*jPgi0oc4!-%iuJtOz;r4j=1EAe-FKbE3T~lU?rGO zNcylaa1yi-c!^|}8}s7V@+w3&Ak*j@tjU&gniT$yi^&l~8!Zu(kwP^`s=Ne}olyIe z5i%&+Iz}U2&ANdEF!xRZ;L4$Hh`a)b4f6yL3}IO(Or^*z7Bih)lWt3HQ4f~%OkWEy zDQR#6Wmc--6B}==t0kPsvSELP^`DHa$r zZ2^Wowa6HY9g>vG6L7*oXJ)~(Ys*QnZ#)0wC;wH=n#Vfd_D|{n?^HaSL!Ds*_HEC# zxeZ8<;f|oD^ag502n2O^k_Mu?7^ZAA2}@lZri=+o9>;dIxN;Sox&ne`zNJOC8IiyY zZ~|ImS0o|pMi(h&_|CPfET}1CSg{mSxy4!elkHWBc4$V8a}7Vxxi%h$^N5^>?0pQ5 zqx^AjM9w39ke=724ta(PSC+p$?3b9X67q2_tN}R*v{gJ-C}pU_?d_h*w?ursu6`>G z>HLpMTEU^n^+VpB5851Yk+!xst}No?m-R@z^YrC&t8te`qlCLMtgqYWmvt@wy1YnT zMns9{5_Mkh%lVOmhd;%&Q0nyC7r26DB_Zz>&d60Khp+B=$ENZr*kK!9Vw13ngld)` ze)I0hJMZDw6GZIFP5r;Zxwd|*;QPQn6gu7l*1M43Fy`F@mO&b{Ysic@9LGHYnYgKl zCEj)bCNSKgEuqv3kw3!##5%=BK+l*09n`=I)~Fje+MLz#n{}8#oc0VZxqw48nE)4O z!3$-kLN(^Exwx}{LoM3L?~E9nXCMy)pt>iLdBA3xET23h+m=wvM*hf+Hu9Vs35jFO zt`A~M)RlYIm@q{$xDun+Tna1CHF{m`uOeBqV#%wSCWhDxN)kDX5d0KVqPVk!bZvu- z<+2S-?pUcsWWkkG-UehhLSu$I`6eH%t*N+K=Q59+#VFIBri3_esO-VUN_MIt!YF_; z+O`!xbLj1t5u0-y=xGb1Bg4Cd5)gBb(W*HlKxK=SX+y>ij@ZtLn26#XAvg^v?yAAf z*d#C#mi@NIt`flk+LCeiXcDIyJR9vb%kL3J-RTRIWBgo72&9)2pYse|s|cakC^tOJ zahG*=ZD$+x&AmV7_uAI?+Ssq%Ep@hX-}!rOXinTEXzpGiFo0?h(kRfPPXuloOX@~u z^Ew5o%AS$d3`^6cMV-X>U}h@}uvbn-7hQY@#3Mff4H-~&G&M6+CRJ88{l<~mwVM@= z*Vs73CU&cR#&_42r;GdddS(nF%RoQ5%+xaq6i3KwCprLdh>gQ~9g54-VZRQ(jq9i# zqkDk5K0U9Q@!kh@h9_x`sskeN(U;Xuyz?>6#$}U$1#7xg4lTHe1-mjWl@PZsh5s?W z*rlJ0L)+HHV6|f$eqD32&R4znvCmhr*5=U`Kzhg6ps1|Z!F4@HO#=Od%@g-eHy__?Td(nYGvVw1dS5x-1Li#?48C6+ zImi3PLDPE+AS6Winw*p)PLhz|;k6I}5* z$WTp}AT$V__#MPy!7}|~3U>_B+5*%pbB|3~tjRNYPLwI=HlxKRXshW=$`FMp?lj7S z5b}sm+N`u`ox<28m!;cLL}?sJog_yxxl&EwiQ8jRIo~>k1dJ8tF;5Lzlhc9F4fJu` z!k6h{KX?ki^=ry0nOM9nd$D3G9>YlweGNaZz}Hf&gRCt%dm)@;b~ z%O6u#jWpWp@(U&0;9hC`pLAIN>4eZfLJ^-kkU7HSXzy0`=KjIUT+T6JP)A#tjHg^d}XEAL9 zEp{innF!j=hz(5(O*3+na5O85Cizk*LG?1}XhQC&!zu{0?h11Cy(W8IpPU(#7B=Tm zfi+%BtYQ@FeX~6s z9DqK^&hb2s><29CIMj#F{sBMKhPL4I7j?A@Zf8$GVsT%fov5#9nS=@U^aK_ZzG);* zlfk5J84lv}m-sR7Cw2CzV5yT>!@*mXpS`GyNWS;EuIK^$hWJL6S+Is@XilGe&P!5i z0k?wRV4t6}*ZrV=$3TxZ9~|xyte3p@NL@)~mRLV$UT5dt`S>MH&v94k7wPbs&H7O{ z?A+SBN}>n2)Mf*4H}Qr?;!j^ZsS2Mz%MS~raw}F^p26S4e0FVlh1dH4UgGm^L7U+~ z9Tho5ry%NpvqWIl=xjF%#4yy|QzY)27n>CLky}R688#)h<{EXISxF3w)53BwI>338 zf>Wc3K{M}_5bHo0H^2ckvnzNt2~4_=Y6s|5$8gSKNDM&ktaB{EjsvH6N|92~fzrte zA|fze&BrNw7v4nT}*Q4hP>Zu`n)y)1^0q6QkbTZNP3{2`9v$8QVq{ z{M;i$j)W{M#5kwTVcrh*f(q1a)RK4ypAd#OF`!tyrpg>QF;_Nyd3PX_Gdj*7&;<(| zuGVl-4ye3CWG5%g*^hXJR+&rNpP-D@pLpKrAFu-b_%q7x_Nua_?DBLxu<5Z<#Odd%B z6kIVU3F#!H>Lw9}*GdbGXGKmubVbUy2D~jxn_TiH%OoXIm6_&~EGaHyd{A2@c@8t# zS%ebjyt}qMUFI1uh%7&&_+$WLCVj>n8GA^2qV+L$AKUBDoyYJM#Ig8!)LsYs_@(EM zah=2ZH85}>k_6cB?0<@es(v$!BomM3fNTcX3$Pk1-c{L4p#X9u_*@?boR*~mQ8Y_;bAXCBNBMLe*3k>B&=EpoEH0_hw&$*k|CW91u*CY^q>gNIeKZWV~Z7>8Dsr{vg~I}t$Lb>r-64p1#oaX~;dp~)7E z5H@mTw%2(_6sXv-Y8H^m{>g%PGtCFKP&)*p)hRck$`m>5O=68n?~=j6HHfL>P%P)( zPe_W`bQ-5;g@F5i3m}ATWi2zI3k0|BM0aMOQ*Wr`I+@bZ??g!^MlVq2h_6|u2tzBY z9UGh)boc@$sbJl_8a`?bGKrB3CN%_$Q%>!toWYcRs3LfTkFN5QMWf`_o5|4B{e{nM4r*ApY>#=lr;1 z{V*9k7EnY26muww&tJ03nd_(&2{FcN2#=CbHE^lyga_Qqr@H8h7nQ1*xg;9VOQM7! zE}ko|%aLGzC=n7qjak1n_k4A2^-J3?ae0*|AHS>xg8zu;IG?^>UnmqXg|lzOBMOj- z2QQTigh>~?GU~=J)75o21t4ycgh2Gu_4}B1*T$E9yvFBso^!t$_${QtHXJZAv)opVea;SR+T$HX zSPmQ~!KXRH5kqiMnXchB5T54omLJeM+btU|p<|%aHACrD4VN6VYf2vGxW@KGTfj1p zl*UCvow9Ue8Q_d@SayT2F(6l47*~nZX+pTn;^35J7jl=5Q#wkHiB7nM91rcRk~)ay zzOmSu&5>A-GQ2uZXV<2K-tRExY9u<}hVh^JF!@&YJf_J3xev+dDklf!!$4+vYxVnF z8yf<)0^J&*H|PdIeM0vV45803LtVsnEEC8H(koD#=Tw19NOep$y8@2&+z121vn92t zTs)*iuPt(oO0!r)YVZ!oM<{y6vYz z1AGRNkmrb=8GfdiM;26~1ItJ0I1=YUIgY*8!FM_G&0`dw2*d{;pM3N_zpzIBg@`O1 zx8w4Lby526+DOx3y(D4p%JhL<1Pj288^oCe|6z4t=nU&iT?}^+F%n?F<|cv1U!ZGy z!V9U8M}iU-kL3F+NAPi7n59lTy}%Nca&KjoN403Da`~>TOK;ZC;Nel@E-1#N`jI@W z{DVjHeKI6I=U?O_wrS<^DlqSS@Uj$YQz?wFUsL%YCXX|cc#q)22m3mlObn4l$m=I; zp16Oy`KD|0yMSNrYw8j(z!O^jLopgi0w#Xz=)$_ZHr?#$YzP# ze7j(XwMLrlm$3lY3Q+;3T!Wm(hBY2jl4p3Zu@u^)V}Ur|4hoBF`!8Z6&}78#nVEieT1uWxyxa25Gx=7%XS{gUDj6Hv%=m@+6Cm#fc_B9zq1B-6?^ECQgzA z42P9@#TtrqnjDrq6%*=oi2Huh4-bscV60#wB6NTmt_E8HqB9^D8w5oNQMmH8e~iln zR~rl^Y79;|c@CAkyS6+}_%xVjKtC1ol;BgOyD^57qGyVpI=0ECG=MseuMH!Q==;cA z$L~1~$00j;AnBU__|}xJb%92Jod5?DE&A};3-lPD*C+LSVBhQ}Ivv@_3K1^tU6~~E zOswEDwlPn?ctk~NP>0-BYzVsb2~S+C<4Jw(%VnBZK|?B29`{)@)DZ_|h!5*qa`^UM zEtn`3PU0j{jiLbfKnK4yw2l|h%Q zhv*D`zgU#SGCOp08i?_v%fVQ8IzqN1BzP04547$K&d?zk3NuLjj-Xf*mEQPBmW)eH z$d;p1MHWX4aW^0gu|y%ZAFnW+U+y3>m#^euIJ6it17Nm&1`hlTon9}&GVo!>#fo|} zn0V$ZIk@RgH+lra$SmsVb#*W5jM~GrOxXnTmx0V;#qBfzw_9ac#a27lkvvikiYps5Ha-3U5~~a3`yi1$F&c!lTe<>w_{}qF4RBj_H~n~7axAB@95b|0#PQd=Qw z^&ftcet`{vTZYvkr1e0AaDe0ybd;0?+>T7VNi^g&DF)yWYd&EI08WhH=A|*hY7lJt z_7Zd)F197i3QVEQlu<4E3Oi()%SnxrFtZGBJ5`2?YHUOqlcl0TDM9Y;+VW)KUzvaV zL1gh6!KX-`9Da`InbDC09l5f2q@6=;A9(ZNTZin7XqZFt2VZ=KmZvVkSeMJdaXoHj zd051U4<6OGu%5i*mZ}fyuZr-IRvQK3+#@(da8Mf`4y?u0sWxm#tBpDYK;a!B%RYSg z3TMZjyx>J7MPmllo$pHUYP&~}`~0XHsk#=(v)2*3a+av&ur}8P%Y`1)wM1%lPha73 zB-hIL4qcsxMN0XD2QxGXctZ7j*w^` zNf+X?FY&?D`n7LpFh-#`(D3s!PuoA`d_C8;4+m-2E5Ba+@y=l9@@}vQO(x|scGUjx8fiTOyffHF&n?a7$Rb}ERnZH@sBo+lMPYxY6*l|pnNt~G2 zz!S^dkO0Gp_7gh5Wqkv;@qS$)sjI@fkyjpRo@%Er<3bvut`bodR-2jVj6 zAv1Wg3fZgoZ&|xrP)E^@`it%)Xw;zFbQJ0(h^C_R_HdOh-^h+d4|eq5C>Yr-O(N>3K*l;)|zfD(dIK zbeN9L;^wfQ2lDlWt1ooLL-tfuze{mdM%DW(Z(S zP<3s%1m=_X*=Ui4i0-18rv&6k{wl}^=hbI*ImLHAywYZs1HRx#)lW5yi-5KElPOsVB@Y0Mpj5%0n$iJ zY2X(k`@|<7)kBCfizo*ge42ef!?kPcw~XWUzTXt``mZR)wuaNtdN&DEvB=E34Umal zwagzv1Wv@>WVh(aYgjS~YVPrbK_wD6zBJ@H*1YAHDQ{s;W#|@O`ta~k*P8v7)hd~6^)~r;|wEx zU|N+jA_}!daxiqr4kHP{Z6aCvNb*RBwpQ?T~nz&SWk{l<@~dq@#eN zd6p%r5b2#_P5J_yV0UeKs_?H2r*8T$R=cLmv@ItVM3e*N z%JT8K4!q&;=$tc;#(AtBlH<=luFK}X^T7*$SxpokxF1C3KfpEVaSBMnV9^>Tdk8DL zp}41VkwDH`vC;zk6|QIg4CchAqIY6fevXSS_RpDtkVLRp0;ROAC2|SwV330~Joo~a zTTIu(y z5qKGBB$ORu1Rp-a6|`U4_=lFuZpgWClC2n4A44(5>- z=UO4ck(yP^ViKD&XEkV?NHP*wzM0`?mI6E>HMS$fp*S6F-bBjM&0>|hEO@mI-HuZj z*eWGKqGpdy7*uj1un-kr0f`*~jG8i2ax`;Xrb_gPG8Gj84z~Tz zPzb>cVLRy%r*j|_0CJ$^$ai3ZhC?`5&}skE~0u!5BW+9Y&2g&Eqa^>+BbeE9=vybqp*XuHea;6B{ zBNwGXYegBZRy(PYi-rF!|0ws z!15Xxf}n0Y%AFXML?~4MA>M2gOi`#XYlvsmstUqMQs(IH^w`A-EwcayvK+AnauPB~ zK?lEc}aCGL?m?RCYdEYaN1oP|K9#{)7CS9h++ovOvrPreF8-y zFDPcq;Tn>4w2foz9CO!kw;>#O)5Nj3P>zpZpl@J%z*LYnQGx*RUw!-ONwr66s-T3h z6lK68?i!5MfT(ydnOGoZ6FEJ2fG>36D_qsJIRk=43QscyqF7(ed%qf+Cm-`isINrG z5L<#!6X+NSA%2PrIO6ozn^fk~K!gDIL5jvP)py1|s21!abYLVAr2K;iIMMk8zktVN zu7N9g%$z4rKYjlA6|$dv@NzAY6o`FIaXXhwLnS@W zzL)Vh*M=AU-0^O}H-Q;~^jpCgcd#o@x4c_`vo#lv8X=R#0cc>_U?#wCBmsJrsZ)NLts?cv$lQwJ|b+{{w*$SM`-AT4?Wfz)0Z z+a5=jVi?1!dAsE>lCXJ$B@iTjB;nV+;n)O(F0;tl6l3C|G1>`lU^E4p5^76sjWFnB z;0#_;3}CwDbiP=7ToN#kt$3nprX8TGC?Gk)gyHs7&JMTYxjvu4Lm-Z@Am5}%*l|k~_L{I7QP)V|n>$`z< zMv!HO*9!*E|JPu@+Wo2QqigGT0ld!lD}7${4a@|q?tN3b63qfca|W{nCp+MvOQ3^S zO;BQm^TzRE!Ud!dFs?5Z^)A%fH6shqkCYO?JqwXm(Aoa?e^YpNs(* zVQ?5`7m&auW_PQg#%L)sw9Fz{HDm@CgE|}p?oit>;$)thL;`EJ7clAcYsh>oifBh@ z4AU++eaq4r6RL#GU@%F@5U|H!o*8nQi?LGhgrp>|#=xB8+~iXUU7Hv~9*dNzILx7p zB{KbU1qcYv)U$H-Sj4_1k;%6M5TYE*8pn!x8B@S=aE_KF(acVsNde`hmZJ<^280Ik zsxm3Ya2A}oz!R5;aYEvlhe{0?+tf}(OmVYTUWZ}~87$^8>yjEpl1wbhm8!6FZ-M~o zKKNJ*yo1xcdkpD%SzJRAn=5NaNf`i4vU|Qk5_TqCVKq8b9l^MG+mX3IZHCOB3eSK6A=TY4RprIZ`x>`pkEZ zw8(@>niMQ10v!>C#*pKlSWLF7FVW2(c%ezmGTP_D)*8xmB~pHfb8SB4o+EPrbM(Cr z{VVYNQ=IInuY~c^^FGE$f)D0%*srvQ^?TNJX#XC6A^^HlX00yRM#p1FKJh6=9W3!- zeW$Eil#gGgi&17WqQjZ{#7O-t^{4m@;?qwR@OZP&DERR4i;tgv@I`%XuD4c)QJnX2 z(&^*6e53ZcdB=mu2S@`5twHv+@+)LszTW+5z)RPb*LJ_$ z(-nrXqiw9W1&1djt9=?ZWJYQSZNU$vEdhZ+x#cXSHq&2SGhH@9(5sE^)krECLy_BL zq(-e}vPc05uR2IsY-++c)l-Tr=0wU8o@nM|b%7ml@B%G&nc&`0#0*SzKltM~vIve1 zh3ZEE#26PT=JJ$NfUr!FvhVnrH%ZNI!)oxC8P`xp(hYPvlNb&svndz1%N#kWE%Kz4 z6({D^7a?fNvwCv8ltukner0ap-NCmGX`$yV^a~oUAUuUl5$Sz3P1q^m!T>@7k1d>5x_&1`?1!Gw8 zPNZcIV>{%}a4upM2&HD-RGskdd*0@`w)tWk4^?)zHTHQFquvY{Ee~qlGVY8btkvUt zZR#=7L8x6oZ@}h&Mr?N@HywpYRUGp&^vN2)g@qQpyS6+<_*~%Meh^vi z-}!tXK^?uG9|rhDYCF%W0IPjCj=hhAZylB^{t(}4t2XTAPjTRWNhh%n;%Pj8R!v@A zW52#*UV^ z;VJj0`|s%5@>=hg|8dXv8{mv_9IN4kGZ#fHyaCl_2b0V_lF^ZHjglyKauFHWu~3|L zOCdpzdHo&ym!_2=&w=(&AIkb~`R)GuXyEr0u6;pv80%D5XqYM&Z`fk)pyMQ90 zl5mo@xB8y9^1ZhIVSS@b=Kt(2Y&TrC&m$QfcLVbgxJ-IT2%fA$_Uf?Q=b({P(%-A+RkWKJ-&87;@9X@#tm?cJB&YYqV=aK}b0F2PN2PV=3h zbWocfIcu&0k@xHj^SlTZh^*>PC}OS_8fM*z?5+)eZfuul01*cGWH6!I`|UHeA|1@L zhw0GuyC~jCVb+$n+<1ADb*MgmS0|S0i)wgB4jVDrR#Ais_#9pJG%s*PdT#p-91^OB z&_(c;D1n3c7~fBO=jo@9iY*OrwOC`@wmJbBj;j??XE-iqZPzI$q22X+7Ze zV+;HRaXr3X#~W2fJrSp}Ap+hNtSg@~%^F!|@AD6Mu5DiM_v^gu8t(*+CT7~OS6~zZ zHevu%-Q^iG5YO*gaC2XfQ7I_pl4x=<_(xfPCHzJBoUT!3c|~e?!u;cfh4}Ct;?#0C zeB?sCwn~lg$&V_-;@r)5T1`=k)dkKv_BhFQW;t(TK`m12$v({vaF3gkrHcB^_;36O zb+ysI?r~Gj1r?2v3^nT!@|4{RcxM6Zn~5j?*a4M_e)wm?THHN5kbePqp5Ob_@0hx_ z;*ok8Afau9hQftv$nL?*1BP9rZ=_dVMlaord;lf?B1w=a9ykg0|Mh@d?<*4L|0S`L zjFk0^dNiSh4WqbPlxiqSiUtJ9CtXzd1uBEfSQP4#VUR_n8yFGq?x;i58%)Y0VQ+p+ z1Su8DT`5VeiUizxcgbcM!l?ZlPM#xfEqN0mT?y2~@>^0#=bLDVOK}<_Hdql?2qtXZ$?j^REbq(F6ml#-Thlaw8J_#9uHd-CK<{vh{M_7Y0$(X%>j_vA_a^Z=Dpw&v_| z83-wiG8f`)<;Rb>U-jw3B}c)RxcJIPx$+6a5%kHnYT2r-{-A#B4FOl?azh-=+sY)? z&=HYYNU`3PpMHw|@c#3aKkWC~@+$9_{(cKEuIX^<-63xi#(`wJBVn?~5*@y=I|0UK zFxy#9^wdi7IcBJtW}Z>?r@>!`TN~xYR*asY8f7dJvJHMyzMt{PmO_m(MicVUzu_bB zx`cZdgq`lhW$VE}M9~^$EKZr7`#OG;R>HjtS{#_k{ighzN9Z*>z_s63z(MWbpLjt> zEmh=$u1Eegd!TiBbvo$8Kc76^Vd*IkglMMzge3Sko9UAw%l_^E^uU_ESXo@N*M%uj zJ=**uW#<%peFD>N6PEI&!cMppm}l0ky0W3=3YP?-9sSeo0v>~2MJ=XnTZnU=_wRxk z*Mu{#y(zE~3e3J{cEVoKJqgX^I(LFZEB*$%z!h8)&b;<|t*Lb_kUy%*hQ+k0P!{$z z|2XR3L!RoH4+LQD{I?_48f8j__BA%Xsjdhw2&CJl(Ow6PtiUD38X&B`=WU#8`^jDB z+UCGn$I?CO5IW=Zc0ShbJRO5$3|FDcxi)qP(;u*9i0c^ohUsK%1F3kZrZB^y5F4Y0 z2Gf~7h+Nj%r3rVnkVx|Yx!TByaV!pUUWei#yG~Dw*lMRTbi5cy#U@HXg?6@5LUt`L zNW9I~639}@U8BRhYs)j_@(kb;K(TJiOj%Q&ErjU6%Cm>*aQW}M{)O|Oxg8%V#5+Qd z@F~0}AAO8VHtL0V(+2U&Nd+JITVDrnO1yF9JBj)v;gc7Ceph8w)Qj7$4V^lMdxS56 zy;DC*?O5ia8hQ0ub#3oF`7CYc4e>dz#s87NBG(0Pc;957A3kDLeqFDHXncxp^J!i9 zAG?td=kmUIA3KGv?dg{~H>lkSPfIwx*cQpnkEE48tcM0dF}K>jsJKC{Yv zd2|)s{MYWnUHg1z0q;mnw-xS8=szabqNO&kjW^r{OHeYq^UWXB@3af3jb(i8QsqE!{EuIKywbEtm-{jcKoUjwMzLi4|vFztqgS)nEfIKc!l z=MEz{<(6+;lW^L`FR5qOro-FsGWz%0)-_3fkaKNrF48Y>#!z=pv5lae@HTx+8W7JT z04qWYHlh-AMHy=3Tqn~~ujI;XUK=M>;!SL~>j|;jBArlbu7hgcn#L$VBP|b~8VX{p z%?e3hY=+`HF$#c{BCDL;wdEOD$GkE8&a^G_5Cx5c+4z-h{QI641$chF zQNW&GF`m6&Ex|jV^Yemvg+OxN$DF+cAMrQ2KleAtN-b&MurjK6X{Aux#y^bsP<)jr!bJzz++`UKlLpA(~d{irZ)+^*6XD|?-TRtFU!73 znv5mI?>8-!HyX|tXQ#rpU(;BZ6tfol!gVIojzIy9{jlSK$KP)OFbnjb=r)c>f}Qql z_%3?YW96?|&{6*?z(xIl3%YX$_>k)1x`}_A9r(IG*?xp>3Su1vhI11Kkf7G=1UYZc zf5Sg9X{DN)Fk-Xh4FL4ym%Enlw4jNktz+MVyUF+9T|qht$26|2LVv4URbSPW=| zy-r0zPeL1OR}^DJ;TmO#1UYU2^#IcoRHKZdwXy6;P!#N}=&poszM}jwQ-4>OQi;~w zJLHvoqXg|*>so@6*`4os7f}12U8v^`ch?U%R;`ua!|w;_o9_Z20gAuAf};K_=$Y>) z`}{KiP1tXHN7BM|mCc5oyqaU0>7YrwYs*vR@(kb;Loq!id~BR2OrAlY=$XPNO>E9gN3dRI z@TxQ~3Ve;Ci=hJRC8=zlYJ2k8tH*r7Ql5zYdT|ka%(Fuu>Ff~H?jxey7K}%JuL8v$ zKYIS^*%x2DeEI2@xcK~gAJ?zJWu;P>8m-96$X1!U@FUKky*z{!?R8M)+2{C8@ps<) z@{v+o5RU+|Uwww_J?f|5keU@xOgY&V%^_qS;#965)2^Z)y{K3VlFuJH_@I`(vSZda z+v*nsu)X*GPeH(~gOFk=LkR)95If0y<%u|zA3m;M7k^SeH82qQk(Re%}oB40>1g5>@^Fza|gUi z6qvoT4ZvVMwddc2Z9nHR)jj_LV4!PjA8c+$I3=oidEV__kN$Wk>OYqEXJP`zr&VAy zZsGtE>@@IKh1e1MMhR5PbL*%e=O%swfLCBvaT5oS;8EZk?}D?hf;Sb(D|8j`o0$~u zOaT9N2?_q+b{Fd3!+Ms>4v>E!VE|{WjYQ^OTE~wNlo-)u)B2-k094(ab@f|}qR5we z^9TXneb3vthGcbZm+e2!G4$@a`hc8=(c;APS&?#m?Cs-iAF7*H-dg?qUK^VOH3;bx z=(#&U^U(h4Bm}CHXvWU z%*vv)vIkWm7Iw9>dRN1eMnM8wrfrg_)r+Kj4ZCa06J?$OgZL?tXND;=ZL6Ll;A!JL zX?XSZYukE}>(?;DgVf)=zj>Z&ROhyrc5#1;2b+sr5_LTEd09DnA3Sx|7fF^Jh0( z5%HVW_$377WEpqyzS%y1QIA@En-1r(_6i^K^QNEG&$U&#%RZO?)0eo4NuBxoR1X+d z)T^?Pv%YqT_wrJ?&R16F`%Zm!)XEphAM$%`dTGZNX~`LoPZd60%v>Ru%3h#o3i%0?KkmU# z)h-|-BXX#E?}EZywT}X+`lbuoe7~|udJ53`1`B!(pR2m+8|;1ek|e_i+mC1-yw?=y zq&!ZodiM@|w*}?FLsdN`sCU9un5$Z$Z@L3a{rczJ{#Ud94d~y3|3%C{jJ_I)|FtAi zGfcaCvRxlA)(*{M%LjMBJc;{{_h$R<-GtcEg85AzT&wir{MRU%Z~pu~SEQ#YC6i$^)Sa6p)I> z`*xwyN_j2IX7le^5!Z2NfqN3(ctxlTvJ>iQk4?{WjQiQ&-rykDHvA+Azl=9xQ(-AE z$&s2AxhRe6u=!-)m7)0Rd)~(P+Wx4njh7?g@S`97$93TBj^J%&zSKW zqF$5m5`te;L)Y^@n;zo{lW@M&sPJn9>-zRQ`Gr$TI0;slM){(?S>;`*M6C&xX?lrv z62?ajEA@jqnUxp0yDLBXLT9h4!K++|9fI|##A@s6eBZiAW&{tSleM!f1vM&~ckFXr zRv*nGA2n2U<%bV_Z5OPA$x9H(bA1c1eoc@2g~bj}Dnx*m!G!>jjAjuc?8;=iVk`Q@ zU)9R4SkXj2&Ay-E_=IF$_4O{XUiTeXNWZHz_Y9UNU|?EyYr3%t*%VYTCv)6>y8;lf zW}87slXF0w&OZnSJpB2i`p+ux{QLT^Z~jU^dY%N^Bv=FW7hisWODgyz@VTQE90l&< zM^F25VM&Z&4O#$Hx!-a-|B?zm8PecdI3(d~`6@yYYD@yH8nl8baOkfGmsAYjZ9%S= z9XJc{FW3wEnn#E$$$DC^1dlz?dVAl&Ct-H@wS25kgh@E`*A6_$KLh@I;1l1^{^K7( zIq-khpO9qK1E>CHB4YpZYTZ?o%i|Ik=zj@_Y5AG5bnKEzv~Cid7M2Pu6(zX%`3RDA z=Zg9@_e_uq*Rjf~7yyAaYSmfm8zgw&)`~2qK#O;U+k~l_x>&|Ffxeb^XTp^)fx8om zyY~6c73G2WCVz#}EG;f%hV^g=WI38H++2Yxq{y8Kos>taS^66;m17s?ePjPSfL-^Q z669(RK z>{}SikeMl@nOlL2)N+wEnWO5uiDstOVr6}rx6l-yn6taQIcF_`p|R$xdK$Xq9r`mKCeB~*(8F)FN6Qtb7{M26k;8|gT`8w&!%26JFuxInG#0QV+ zIWpp3001BWNklGvjCBp?R zxfrhot^LJFIa~$q(QDWQ24yl zQ}s_h9$lMX@B1~Lulw^>;g@}dO}cRX{t$FgX)d3&!n?e$&`m6Jzx5CZiaB>mZf}#k z_$6JJQ^4cR$D9v49(rx~L+DRYK1~7w5$WI^{HQ90`By$QTLXedqz%_A@f0n(xBPFr zAU*@3dFaCn1XHe8;^|2ErhF<&A*lr&1rGg_|Gh5gHILBicK~ayZ62=g@`(BYc(X@n z{u#*HKL17Jj5Gf&xNFNll}Yixsxz>>`r!=h9|r7Y_SB|8F8E@CeSlKHg>((3}OP#&vT2h-4O^*c@dW2h&*Zu1XgSq}MMg(f>@ z(VGFN32TCRauzQ!Q8um9S`%qhst}n33vv8`sn&b_&lD; z`4O;rtjz&Q$`78b!uRTNu1z;}6X_k;LZm-X$Ss4}jEUfIoIBkKjxsRT!=S z=xB5lX}#$GLZa(1@FA5AKAu#N_0IEA3px_bDW~nkN@0Px$|Ubg?@0dT#7S} z;X-8a;e$`{G0vx7!n5P zY$&hee}@IBkV{Xs@3u>PKI}`ZSDd;tSy~~5^{3F4SyRl1x+=CAd!a`vZ;J^ZU8<`}9;~xqCKlc9hN3Y`Q z7Dt2O0}V0VxcgY-1>5n#<`OQOSimMgLJT>^zz%q0g&4uH1jdR`EF5iFLfX=s9Q|~D zhflBgm(Lty%v-Isp6;jHZ5y(^+)vf4Imf(It*Tn9yly|eDk!2|tAP4co%de_*N+Ba z4qoj^lH`!9;(*_6FRWJuqU2+-3hv&$DunSJk{lQ6{p$K{EQE}?hKE>fkTlE$0SQ>~ zBa)Z|wo>v4i_xe;$dJbm67oZsvcB&54?oq_3GcyDtlD&Iq|yf-xLN1WQmqeDOaV63Ip||T>OryTAw4FcUA^=Z808hre!c`^u&N`>HJ= zQzf)%2#&*G)WtdJc?N_9Y|?ZbtAdB`?9C^kA(%ok_`SQ<(JgJDQu^tVJUV%?ARi(%Y2t0!>+IXQm|AcrWDq} z&m1TYnoPS%z(Lt(Kzrhw!ma^1PJPs!Kw(b@cPgNap&U#quwoY!e!Ui&;8*VAg%+9w z#O8vzBv_a@IB<)4WK#!ymkj~ch)_q5a*PaeGl@GS`+sY=p2mz9kPUo)u8nnWz0JdH zO#zYtGEpO~uMo}FTGL3`a~>R&hed?}?;(h%;7n;32UH07{uLG@x~El8M7!1*)!m~} zcddf!53Q;u3>F+T4=RRG`CLJqP~CmE1uCqd44-Y2D0r^W`~9rj2g7nFoznQI0<1&{ zNNg&5DVP%F;37K{fgFk~B~F(prOjZWg+tobJ%{pK+bO+^B$jMey4g;r?XXIub2BUu7%&#-VmCI-1X5vGDOku|*+Zo;c+yi!UPzPG2$C`t6_vyO5cc`l>BD$)pFcV@Reh;XNigjQUOV7VkqYjNU_ah-%=^W&%tE6e9<9 z?kb<)vNtxy>>%w1?6VKF3Dk$7ac=Jhkq627PNmJQ^X32-<=_z;^76%!y|EG3*RI{V zaN)vL+b-R>;?_E_#}S4im+j57d~odASeLoyv*-QN-p-k;c7-dp0^Yz<_VSnd@EdFw zC_F|k&-0RVq!@L+WRC+LxqJD+x{P>+B`m!&$1`0?de#jLaoG6+*vMcgKgJ!ZWsV90n~nO!A8&zIXc4Xn3J0 zqH6EssQ~;T1(bHuIEZF{9?*bPVHr==MF+s|rvkeN6qZ_G&Hk(c3vk*GeucJP1!fLf z97(o-(7V~!+08{&c`A)n8^J>|A1^rsWdu!}l}W-v%C;vB38j@F>_Gtx-;CcC5|#vT z(Uznsaiun-yF!l$o;~s;=zEm{@OQBat!Z|Th)qaH;*vlcwMH_2uL4W+I+LShu8{mf zH3tW5)Z40p2ZEZ#Ruo&&ij*QrSQ4hxR7=5nw~rTOB9{h3$T(_TgER%jaNT00B3SX8 zC`AZvumjytDtbAQERW2@8mO;(4&xn?zG`c0x1Y$hHmw(Gr4S1WUo>cK)Yld!NSSC9 z$s&ve6{B3@;G|skS+rz<9jlsVR;*m!$a|`SV8Ie+dM*uThe!bgGK~fyn1fw4z=K&h zOPeH+=;!?K@6v`(+<=t5zG|z5d92HdBP#eb>)&fAo$)xvoIoKcm~;$$b7?n@{&X&(A0S zIONoUV5CBhgGfr2%s3!1flllw346$GiwCV$$~2TC&x0Qskys8=yOmAvdpP#3^L(#V zZ>#+*Y6%ZX@{1&u{8bJLPX}eFDHtaCMg24b%0OHEZ0l@^ssX9wcLkFqe?pd^DF7b| zMXhep1MRZ#R}M&}-fnX@GjKj~&5B@`kN$})E*7X2Ctu@I3WPo`v145i9V zE<92xGMyADgW0kqR#-|=U$sS7ne>3{3ehF}+?afJ67>zJJ2h~dIeo7UlY&hmIU}*) zrJPi3jl_3Pyz}KT+%`{f)-5c>@ToU!Pzre`Hu?D54xVk>xsESaPl20! z*Z!Fc$0*7=@8+3)BB+&~k6kdIM=tVaM@9(GSI%SAX5WTGA-OYytPAA6@KWW*)~118 zRha8QS|!WbpjFEx_|Tty(VMZ%>x?dVm$qTmHcs|c^5cdx;xNJEhj>UEoRVOSl7@29 z6m!=f^pM4-XrC`*)@G#+K zLeFi}Ng8&7m?_?aH?~Wf7C2!zrL6+V+s%P0yM92s;D_#>&Rak&c9OjU$KL+zZ-4)r z{k@Hks7Pssr-Haq@!eW<&ww&W_tXPQSydoe5!m7`+ogpT@$2v68hGsL92wE+YbXSz zYi$7{H$)c*94vT{!UCQVg~CL&40Xk2 z2fj->Fz984wIdpWi$d6D4hJD9YTps9R_G3hl6(3J$LmJ4x?hB)pHda{-yYG`Bagv= za{OXk1ctc^18c;EC5z+ux?SQ3(LrcSLg`^9pUTcw9l#mTu(xFK@*22ZL1W*ba(u!P+ z;H6j=(lV6*N&~6kz6BL`kuHUBZ5%SaTt(=Y+29MT5So0jHik#*4A~8e0TX@IrX^Qj zaTO<*W5XKE&XBWQlv(Ip2hlFSvW8|qgoeD-6wK7N zqT-uX2uy>Wz@p6j@x7IJpwE5CB7oahak=TbRgUKO^o+O}l?R0oyTh=&v32#bwVJ(Z zrALqZL-{(G@Kf;w#|)yqOp8Bf!^N7O14tWiE<0(c;@RBLr9Zqf1)G4P8G`?>fjaA* zO@~z*jt()`*P&v@3W(=XY`Vsp3RxDjNC(MRq#+)JD8z4Kd%(enG4vM}T~~U7GmTw^ zJ?#6UIu-j@@=5ek;G2SpJAwwZSBu}6a|c~}oq!S_eU#otZrC9=MMkIsmIfK|c+J30 zkr832n4yq$EK$c77nE&u`3^~``~QRZV0Lw6`b9Vv z!}h1Ie)r0Bd+x(mKmC>8DuN~(>x=3qM=eTF1BL_Em(4X-ASW9j?8vyW(?m$*bE@FR z_ZN|em6n}QMByQ%`;Dm8IZR|u+u^`-;#Wj89AN^#o5J0xLhQ`QcZ=wNRft^@O}Exw zh!LVekjE15{~R|yc#77s#mhvxHU>+SP3%Te7>uqdTF3yR6u;2P@}LZEAd>3PVbyl~ z|2h2d2fkLTSCTxL7e;30$FrHZK7x~Ko@+CKl1{UOA6mxm(f9AQX$j#g0%Wl`@U=o@ zWc#`zAf9vSAvz>76U&g!O&zUZtOyRdO$4uQHZw-z><|yUFf!PodikJYB;i&VaZOqJ zV5T74hA91#aEGJ0rkz?rAWz##$S5(MbUan$qOaPbr%ZZ4c7^B?er`-YJBj)R)SVi* z&0Jn zKoEsU>A-3#Y1Mf&Av;RlPgf~{T<=n*d6NS|*d&1*ZH;Yge`m)2N(dQQ>L@XN|0ZHj z{7iwJ1Nv(Qlz1w56ri1?nX2P*K;GxmZD_+xnxdt$+FW(WGQPN=27HN%-=du0ZE$`1 zm)~N|_ShpI*{ZEY(a6C;FGR)4sW?!Z{w~LP@#%i-9lCqtlHSs z)$hIg7e|z(`r|t!!6UyC3=eJ&YehnVZ1Hb>_u4Nf+w;#q{;!u_cvbs}b+Lewt!#oKz73~D~zgHBGF3=4rX;uJSD9cIcf3%vNED@ z))lCk>Xek(=Bq0WCY7p+V6^2wLu4oKFltyVV8zM4MAVb_DTiGF#J0x|cdpqe5ANX=D7H4i5HSE6ZWijc6)*X77CDx9jx5lkWy!@UWI07v5+m6tcRK`t;Y?+%2wP!=1WXat zExUa;QULN(qgg5ocmG;jo1EG-5YvpND@+iZ+voTikTVyy`g}13VrtB}D1nzQ+Et@7 z=do%tp3OE63IJHP(Suz|vgf262!MW2g_=DhXOFdAZ0`k0fMa1P4AT=Bwiz#s(UPr- zc{Wm^zap} zfohl9&icix-~Faw3JZ8(!v5O$P$4R%xVA|hL@xw?u2A@8g|tG|ERpD?HLKvYGtC7BaFY)zOW=pXgbY3bi2|r8 zxLY=2@Cis%!sN)a zf!w*olo~Vu>_8L0QslHaC18x?&j|yOVku}Xd8_`bJHX}H zK2diI7uhcUieFDV6Bp(j37~yI052+umV=L3BThXlnB7_%8nzz90@YqlnFhDd;+o$( z^>Kt&sU^>7no#aU(otpL95@i6oVW>)FOj_bW!>a80Po$kwwUOB+K;1z9}+CnpN=0@ z2)Ob>Cm$@bC2QoMGT^0k5`ZH4vA07JzBTJ0uL`+i?n7@>!NWRQ)Ek2vc(gg)$9YPi05q6rb z2m-vQvdhI_+GGb-FdM5p_;CasUVXn(Q8kFX%q(P5Z>6cU%0}t0xpcC*20ng}g08Gn zlsI%iIgfgM-E$b%*qmns@~Oiu2xLYfjN2N$NJWRstD#JG#U5+3OG$QBPFJpE$_)Z& zMtQU4^$Y(0(_oqE0PLPyh`=~b8Lkt_S3^0d402g=pj}7gho;x| z96@^^VH3sjym{p+8>8QmdhP~Zi}KD5+#kv-pgOIsrWPMu%P7Q{-6lLM; zEsJO8dR%Etn{IIU|D~Go?gTYlYwMGK92+>%Bk`lav@EuzAUsQ~%8=yN3MBK{8TTNS zgv(S@l0=MTlgPx`mN^BTlr|>Y9eu$5ZQH8t@z?(Qv;TVjq5u8be}C=2zhud?UqAHF z#MoSn%E*(;I|Crhb%@fmxi%j61n8brp>U&Hp+;a*$GBSTVvo3$yYYF-+JJepS)%FMA}=5x3_?(zDCwWU36pVEURe(p>X|^H=@S@5t z7lUb&9azC^tn$!~5HVsjaMbam`}=Shm@G6vBV!zbHLziaj7ThZfM-#p$3Rs<`hg8= zEAq)5l6_5dKpLyITCw3i$-927O$&!uS!lTsixHOk`U2p9h;XSdFC>kEFE^s-OA#xQ z11z>$lsG?ECj)pA(EG5fsJRx^x-$=Gof|jUjB#GXnY4;TB{N zP}^+%ft&s8b%~w}?C;!FuG+4w zXv70fp9fJJR&6{GNdsgA zw`F{pF%WxKC@kP1O7?E}08a7jd&cCJmW(h4ik?vdj4{MzfovrKj2zs9;P)AjIiVx- z_4YG=#-h!hYy0#V;`Ek@{4NIs{~iH6+ZM&hgLgYET06fSOzpQ8-55H3^nK+~iUD9b zS8d=^R!KoLX1atje+4Tdu{R6bwYFC_H{W{T`A^>Be+^pDzk21_Uw`-EZ~pc8vmd@; zC~VOj$W4ohxMU#lt?=2VtRqUXqX=q(qcvwhRf9o2M4J_k4SaO@E~F# z^4hP7aRM1FQK9e=k?eRYr!q8Hh}>+rA;;`Hq7@41>EKn!h@vhY=^d^D1`v9<^>}uA zmB=K&B`yyba}}1!vN)BOBpd}t_L@@%7#||f$Rw0WD3@4lr0r_eLx=GW$w|Ch@c;lI z07*naRJhiL^_sT3_*|P70jhsm0FVL@*xZ8n&I}nfCrXsblB)_Z z7;v-V(TQ9YUlxLkoS`A%U)h!<$_}G~ticI4LP9@S3NEx9o5mViq^Y@?EK8R~Pg0#C zV`6irGVzd71!+=1^i^A2lCYClk$LH2!r)mhAdY02V3!nKAfkV$iNj}7huBvtK}TwvdXlBaD^RBz7$ihYS1B97=|Eg9t_YE#4t%d>6|Y3R9}R zjfBs&J^#wa2Cud0jaM5RZ@lu_&vw30+Qjx2LjOWd|wn8-1 zDusyy9VcS{+>wZGs|r1$=w6d5RNqFOyFwHrzmttxj^VBEg&xuBDtK(BT$YR%#mMhu z6)I48Qx$C0#{P~z4=M`CgHB?`aHW7!9*KjM1+!TVmgT}I2OT1jA%!z;0dYY?k8+fT zRh!OvZ!3K`7HhoXhO2IWXeZ7S({Xa{XXXUz6r8C@)6r=*QX!REsYn0+(}QiXIKVyoT>gGn!}{FQhG+PCs5{FcWCJM2l-56t@eH=gl@Y=wR)P zN8S8jy4>0_&UmPX#PuaYYK&bxFX2pudY*U*A4ag(gX;5nQln*=XE(b$$#AVL4hE6u z0U-|}#z|okgpm){z-D3K6d06=0urcTxv40IICaPvxHR3^Mxs=iJ0lKB?oHc8wrYFm zlTEGKd_l0e^|zOv|Mt}nUwi!P@9b)U^`6}OwWmqJP}{__)OZu57aJHPxJ*|m90ESh zBo_mk*#F4|6b+;9^3+-Kaa+;8mO90nR&+1-ukV?q2_wNasxiPB;9p!M-Efx5BE3Vg{L1p=Jx#r_~{VkwZlK4m4`*9C+A&6+AXmE=v(^%N=%S`vn`x zs}P-CV+f_mu$c@Kmuj?0Nog1wa)`Rv=`n+baRL{4GbENUpc`aH21B^M?m3L-+J4Zg zt=%Mfm!4~T=>K(p`&qZZuUl7)#knuAY{gZaT#kX@=0uhWc1h7fyS7PlCc*5Y8OCRx znt(uExq9u)x_N;JFK%}f`W&r_+|0yc8QH| z9odODIzq(l>@`Gu{tch(_w>vVsL497^bC7faDDF``-Zg|(X?#Qiq}fo3rcK@5LsE4 z#e+<71m#}B+3udHtNK|ACo(f{9E)q?23D4r&kw6M$6LmJr_Oe#(_z)t4i%c<{a~P3 zpXoBc0d!z7M!y6GCd=gK5k_j#NQf6llT~t^QYGbyxW%E{vM(QzKJg2-IQNw86I-=C zy}4P}+KjdR+|$4O&F_!B@T{GS`a4riC3mg%v+p+Saqe?ZV)w7Ys~-ZzUv`&{XAgG! zyW-uMWr_hhj7PRr3PXii#vevN@@19sMnU<&0adeZwrp->TS%FgCJ0LvQ)<=NRQDpAJ0W^MCwTaJEBsn0fXcP;P zSnm54A@RAky4J>O*|oM`KljG=8!tTczrV9~N6Yp$Ksh#8Y8%;5FkV2$yn#VN$aIy$ z1ix+tf&tD791N zLwScJR&8y`#%palU)CA+kdEgw(^K<0;nvxCTrCML!}sX_=l$(x-2#1IMlZpx=H?l? z$iPrvFqR{;OooAp53YlR#>kJ!%%>5JcpaTMF;Kp}b?N;1D|~nOWcqNt3~65U*%2A0 z6T7jISL*VqFfiSlJV5#Em-sZA{n^6ghR!Vmmm$_uWHe1>Bn?Pjdd?CF;XJCXOK^4O zhP_II!N81Apq#0Xx?S4dILB{{U$hs2U`yZ)T#I|>mW7+gb14&MW|X@@l){L|;+ zo8FCVx@z-7g-`P_7i7bNXvxa*s-3t0tcLe%?1 zzeDm@-Yd854$1F+vGM7*zkKbxVbumj?l>eOYVU!{y()T&hti-h#fO4y)5%(RIzB)^ z=##^CSOJ-x1GUgRAV&E1?{J5tZNK}wo|W>}U%!RaICK17yKEki*@%s`^u4~y0r{=~ z{C;*Zf(!hfyLd7NSoDFQ5s?KH{aRb&6-dl3>U936hwWfoYx^gzwdHedo4D5YkUi11 z{mO$6eml06TETd#6^p2$*U`!%1LqBGS>ppPg$ceugF@ojk)%3xz=+%%%n0RS1;0gc zuc~l65p8b1`|i8%=j)4CRRK+->Q5VK;Ioa;GW;>F#CwBTR)z|{pb(l3e>-~tQI+Qw z#Sl^R;0kfr&_Jp#Uz8zKK$_GbZ_4C{(DERIs7RKEXqnYlT*dJvm}fXG23c9BxNM`4To;MaPjWOdwCRBpAtnh< z2wP{*+5!g(n$rph%IB_PYUaTFW$(}T^#>GJ0XMk-y37xw?eG>!XmW!Q(=$z6eX^&> z7=RmEX^@_&>J*%JgO{*M9G}So0)GzN*u*V~_MJ9Ud^45Tmz zQQ{$$-W1)9Oq8UM%+fTf3f(E`ey}wL_ZRk!H9FoQ`3bMJJ^Sh#>J6Kl|FmmuzuG+Z z%CG<8R!G^Yf;GB$KLqnRRMxygYOL>iEX0x2YG;%P`qG8U;!mII@j zZF5)g5;VmhG$6CX8t>^~_khC2+rN7%R&76u*J`2KdAi>U%yz-<0nK+=$NO%$t$=z3 zU@!K7+g`cL;w#%e5;z)ih$R6wMRA8@lml;NY+h8xG?OP-Jq9*hYqMwA@Nd&rZIA!c z9_W7M*{>gH-8btM9Yd{z8hRb0CB6B?26Je1;@Kz@JR69*gF@oj)zfHKRz$FgEfqYh z;I}C5RTXY0qRsbDz5e>g@6!ZpS?$&9>@9$dTQ=CxsI8Ffl4J=N_R?(1OGUP-9Gcy)Fe#zA;30R~ zvfv6USwFr14?C;9?Jd`9cEybs-E7qs=gm{&Jw;u|X`*Qw44V#eGDt$h-&4*2!|aeapXze9@WV*S zgF1(gz3seX>kr$&)I=0w=9~726yBkK9dAxNe?x%*?JCeZhbucr;>wQvt~4mC0YVN= zc(&Z$_MvC!$e#e^d5c%r%%QEA@Sy;E`%c zGOj!uwT(|99Ki}!n|=2HFY>(3W(3f|F3xOf5I~tuh=?gLJ@0`l&v+OSH*NY=)TzPf z!FM4aR&6!gW0uz(UlYHT1rQ;+4hJF4ya7r>Or+w4Bbk=8iQJ=Su122@4R0(4PdUO}w9CR+>~iMxroFRnKslt;&-)ng5x~r8t=gH25#K+Z&KsCs1U_-VTq)XDa=DS z0Gv7D3&PYAm4MV%Kf`ZR35nGgb>pJXA0zP=wp^ZnPP$@ zCeIHCWDD1T;v&UFqPb-23f_;8&z;ezm;}Iqd)DX4E?vXrG_8XYhY(@wti6B#$j&W3 z*98{CqaB(lifHFK5MXJ54$MG1TUhbc zl6-|ET!I;OCQTrXQp0!|1H%D>EQ(!UOnVw>6Bizj@O32QZLx{2+dZ9ShU%2=!?WV2 zYE}i2`xatU#hFG#h{;0`TbIsQtL$9LZ(9%&7v*MdBd!-w5$iMFc9)AP5MQ$}Gi>LvGjF>>ZNrxi;)3TxP7|YyaT>?cbhulR2ey{}WGM+FqHhNyh!=KDrD#AU}_Ob&a7Vw7=5aKzsfN06= zeTG$=eP;WS-~R3Q>A-~UsnvM7!VG8;4@m^G+vK2xDhV6(|p3cw~+Q#+ejil|n|eq!21Kr(d+uE{=p z!MfZZtd~(7D#(pBa6?8BMmgs#&G|OkF&${oYX)cqNbnDT{&Nho(vronWcjw%AG#z1 zzBb|LVH2PJ+BtIl>;+t4y3FrrCl3D1p}uwfj(r@>3hQ|Ww6@W+JxGT)Y2ZQ{tQSme zVdYpR;!O7(mrVBgv=_8VKT|h^;@*82IClX} zbkW|Qf?}E%i4;7~cJ(Z*;S=Q%scd2zl2_6VNFmEcZJj-1A?;j6tIRy#yXV^aAwx$a zP5gcoh~t6|9dS$$5QmJ;kqT2J5{c;wevpySO*^3Bf{Z+rOFOMscr&nTP59i8+MRs! z|0n(q$zSS8eLv^Zts)LQ7T$XY&Eh28K`s`7T^mkZ?8rvp?fn zo2}Y@_t*QYwrWl`X0&LG5Owy}<(;&Ql!{!n4J`3%FbyNE7qqiDeQkaB?DNmzZ6xEh zw#T1)V`J;Pho1dS1Q>aA4VVD!Jq5+=NWq)+t*Js7i%vFGpge@lLG(&G3L`0BP{@du zJcJMiVk`u2il5avyob}N!r@h6`^nE=eDvt?mruQ$QD(#uuGfIU1aBdtakovXK)v8) zlSKWJVTAM6R_GB$L&M(cMhy>+Avox;2ByN*XX@J!(NF**elf(7V*)B#;q6Lmz;3pvzK*&sq z{Z4)IPN%~il5Muv1TV%g>+=B64+wcYC~zGkoHxZc>n+E}Ne6DT#!v}5EmS87xe~M5ap$w{RXD{H<6Zk`d9<+cj zo;wh7eSA2fs|5$ia{CSclM5(XG*)eo{r0b)wjdAKLfN9++q>_wz;ci6h4+2O7Nx>n z+{Nvra~J^}4dV2{QPO4WoBR{xjYo>3qD6&K5idi3at*WUyt>bw}yu2pb@%>g}58g2a1Rm7OS9&&pa?{ z;|>C1k<^jHyFbT)k{Bc!4k(f12&W}Xg$b9%;*~e>oS)1DOAz8#3KmtP;JIa_g3VGt zyFavRZ9I>Tsq+P>GJ^K6fzfTK951I4;b^yuLB|doW z+y9|{#{V0L{sD-3ie*KUhcXF{a149SJSz2*Z|7@PK#Dm9FsV4{B}yqG0~9ux=F1+wpKeVg^C;0Lm<5bJCgeWQCdME4T1W z)8LF5oK9 z0B&sZT_>0Et`ml+Cc0)iG98(uFmBtSc%~WIQ@~CKU!LJ=3l}W$9O9B^cC)*a%vNo~ z1doFK$a8^b!ACJ!j?J2$c7fNSXk5#JNm-h@z*V7i!g} z@3s93d&U0jdu{d($<3{Q{?9+XkoU4;m$Lh%HutI$$0?$$sdvf?1e=K<#fK= z)>BX{84-g+fU#w*oS0UD|LwsJ9zEa3!N3a{@=@+EWT}xvv4Sd*n>5D2LxGG)A_tyy zWL{`!njF}7;JG$k`rxUwuDAVTy4tFh*LYT=6LIkTRGXAe+#~H8hWhter`)eeZ-M9{ z)dPwn3Z2B(Z1G zL>f50?PKTi`OWPMc)`aR`zG7e;Kn(B&TC(u(@*!z7_MBsY)h^)_Tm$X3K^cadAsJt zt84*&1$^h7OLeir?wZ6h@-m+4f<-ga>s!nxf9g?n)y(s%`b}w|QVW*;)92crX$k-CT`j3q5hGz}B1Df?(z&JK5=7wT&Bx8{v zfNe{#5iBN0LKLM0^cr|7$k?JnnvgNs?s!|Z@ePuXJ@VN7Ra>@xZz0eaUe?X^#~hs8 zg71iY8;K)_0U{-_LN5SM@mK# zjq4r2`bi1{-C0uwQ(M3n&+*ay=x3h_-TgvH(}+;r1rNoVD%`ayY`=T@=%coMe&Upc zh<|7n+ZH0)wF-uh29=5ZS0S7#fJkMxA_^}EcPXOcEl1?_3-ir}d!hrPyb3;4CXWlC z-%oxqB&fh~!Nh@q7O!F5a1G5=4Rs%zuv@HE1tA<~S!#fov7eZ{jifJ%4oKTWM#E!m z57^sCYCSd@9nWTT2?RV*Jn^A|^n)K-hU#bf_vwG17Km=5&cOcQtmsO%X8X@tv)LVz zlB;ikc8d7mHgon4$=Wn$)vU)d$A4frEf@gPj!zn5p#(+%mB+LN{uRFc(O#j?`E>>~ z1-(Q67M5?eYJ10C);Kk|eHQDvBNyx?%5gyGc*oXUG6*BenU3{ntOS-mzCVYji1-8Rsf|B0I91e$Op+H42mB%!^7^L*D{Dk+_Jkk@%9)h$g3Q}vv=3Kk@Zy@4icE>Yo-ql zS$Q;wV*wdRMv0XgLnb^8aO7#>aEeThx`ns-RX zwKnYwzC-efH|$$f-+szfo8zefMRq+T!dqFk)QKd32=WO&dRJphJFzYaE{xl@h+lFb zcq*u9+BATKgrzbX@pQIJ0_zIFmBqdBD;!AOY|<X^|LR0T5S;urbSZfNJ**4CNeTN=x1|A`4+CJK&EvD;A0D6EKRrf_IgSUVzwz@KYuY`=LL*V-O^@#IZB z_I>cZ0E1~iSE3V`?aq9cL%tpdiZMh~Z$}DtlE#{2kw4&MCXBkZaR=}jd(eDDx zA7V<0K*;#hJmKc3m=h@tUEuoWf((|$GRSAv?A?)@zqn<~fFl?2akz#vYsW6(#rHdx zBv{w8!i%aji*|n_)@1f(eFOzS{Jd-&zR>cTe}-TSU(`NwjcYV{KWp+GJ{gCK!%Em^ z=mLR{E!#$(R3x9CWuW1ppwGqGEul1W758Ia$IDo_$pTVnh5bYDOpA^OexTwI|wf9+1A{ul-MRQGVF%}l~JGw2?`#;#dIJlij=tRCINfm zV7~z&%`Hz)QZl#fHdmt<4@@d+UK; zKK;sDpZ+iWd+Wmo9(?|#XCHs?+aEP}qL#O{GY+k>R_~429c)?!jZ{U}c+cHO6J3Ej zxOW8F5u&r<$VHZQ3Am2$>{6gyAOaT@47~l-d&iF+wUd@(L;wIF07*naR7cy6ziyvw zOAlejJ;=;h=eu78)L>d?1xSgBC>IDovWF^!ephh(Y6T4fcJtYIa0W9&BnU(nf?mlC zC^cqkFkY$>J7`{T0d%Nk<@|qFG1Hhs`#JQXJlBR7`sIeD+lTkxA=w-GKD|Z@#3hPc za>XS!I~m4y^ZWSE0qbD=|ACv5=K z5t%Te+@R6MzltS~-2geYNH5T{Wu3hr@sb@lvB0y3$!4pz_%;|!?8CE%IQMMdL&I&G z*RRG03Ct)Ab7NID_0X2RA`<* z*V;JaYx3_CejH=K^O@hXK=nL~bY3Y=xGK_Gn5+UQ`-Na)q)UP(H1I=V!I3@JrcL{c zZ~kxB+UyOk$6k5qmrpUi!m=b$5jR8h!1@Wjd@klqgm2lOe9+uj}D z1_SW>3}}KsjDRK;xV?bTx?6we3ncAo8&_>+5G@xQ?X$Sw7WJLW{XlCp0NeP*HfbR` zcWK8r1=Ey1<@7Qt?6(4I1jI`PIcOFJ!7z@V;Hs?+86%^lF%zkCn=q?RM&!n&+zLWT-Ehq>0VU9-6|$Vz(6BbL?2?=2PFyi5L;^tE-~QcNAUcZGOJsH+Fm6t+v*AApPDLLf37 zDB36&sT*-l)HKYAA*O(sVKB3h=5&GS#mYe9Ptyj(sVi<66b`_R8|Q8P@s7Q<-oXVV zW0T*r-uV)*j=W?Gyq(L}Y%Mic41^@~jX#5FB#BoB)L*7a%^9Wv@56>i0;x zJLr+z-tt#O(#+;Iu5}%`d`l0u!N(1LVp;eg?K zq6iLLfqS-#`CJ=%{@CMl*l-k-H13cb|AW4UN>M(5JTtzvBR1@tdamuE#~*y~@#lZ} z(AR(Z)4v{n{_&?j{1Nj$8DQehGiJ)}VsZk_t$@uPN& zH$UzcCD|lH{6Oyc? zhEg{QxpXWQksSBoTxN+FWzy_Iqgm`1J`VX>n=jp-yMx!-cupRt`1kXFpBBIZ%eKD! z3Qk+ISr1bu`@~jllSP@@V&pb+_FP-egyT$Xd`+!By(NwlOU*5uT3`b+kCG?>6u^zm za~E)X;dQ;sV+Q1dZ%6*Gooo7@wLy2TpY{LQ%m{DbWh9r+|B4JvYT;{UFg^S1=Rl8> zB|E{rWEOXhT)uV#pU%#Bvnse4XY#9fu|LH8$hUv>8YZ?bSwKfF+gGnG8fe)jJCK5@ zA7tPo1&f=Q&M4f_h?_U;89!U>UcYwX(%Exd*dDp2D}QEdYS0)o2N(X6lWf~(Z~cHep4GYifEYR|5OoX!wf1UJ ztV9uzUfH6X$NsLT+U#1}f4$AxK|u|fg!ucaz(E6IxSmWZu*NQ9#L!-|0&DK#d4IS5 z--iKdj013E)#gPpvruZT)HAO*vSaq_=PMg{Z_mG;e&B(p|K~%GKmEW9FTD2ae|>k1 zS9I7o4bQ3|S*ZIOJ7bN;UENrF_3!oitA}uJs(@xw%e6KgBU&*jy?^ryUTb^w_{*>3 zL;?R6_X76VbPRDX5-$S{cx(IpV@`~;ko&a@-#8inuN`}Ds-3q(h>s))=E^yF{Qr{>!M zuC@6rfJuPU0%ivgWMKXx6>|kZk_%8%5%g&wpuwO)`@bIU6&UP5(Dw7!CE6=U zHm+QK$JQ$E*!QeE&R$c(D_d9NZ6GqtXeK}p#XZv>5HrtqGbUd!a^@O7TrDjF>d%V) z;M-OFUmn<7{3rqL;-s~WD;Mk=+dF5@V$p(XlPyCGYqe(@q(%S(3mdU*Zl1k`1+4w; zTt9z_O?2cu>W^p|@X$T0LQyHzOFk!_V<({U2&)*?6d!} zySpBI?X}nbWLFE`vgdNL+c?E??6xw)4uxGxIr^hhEEhi5CU;D9OW>X7#$aVVeD

OMH6e!@MwF*wKiiy`6-t<-4lno>a#7dIqFf^SKQ!gyG)jeM&gePJTG=Dk129G=yUzT|21RFy}!=I~m zlFM?h1H)b(VL(I_=IOK8dRJ0gxap!nFbA30bGRszRqLFz0FMQRgn^%JVqsmMy~dFX z|F#MQ${n=+8oM-mG}0FPtgBAv$8Q3m1s*0Qdu6O++W{m!dYCAEA<HKA_Cnk{6?Rz8-v5w@4P%?l zVeToGO}f}8IuqfwQjHFI6?}XlF4FCXo?UgSNw`W{fAR_97uCdI3~k-ntitK+naq3k z;0VlI(Mp4foEXgq7?TqSd_|_sJ*p^yzaJqc#?&*Ct}!?*_c@V)ZUP*eei0|MVvYNh?JO>|)9wp^G{7sU^P;l`Zy()6I{vzrK&gh&O*^Rbx z!e^1#e#y77{ZA6|u0}JeHwLOJNzS5`L$+aPV+9(EJQj{c;^N5x$;1L^7)qpL;iUP6yr}+LR(6GTi5u^H=m$yJ$cP*Zdj}6s=X}g&Y6&hiFSUXX7Av|9&Z&r|+cluO zSjh5~X@2Rv?Fm7Y^XPh5UQUL@W|r=M17qpaPfh>Q%9ENm=@F`R6Y$hoQ8lKEKre*= z;RzrKFa4R3EkjQKK6ABGnn^@d%o8pxrAN`HO(oC5xfBe=1WK0Ja{2^5nrXQ@^CJ6x zkS6$%-IZ3B+y4E}Jd=JyCQq6&q<^jwt!6zdxWl%uN4v)7!XFDb<`{o<{^> z0C#kFHNwLl#w2V`oJX9}XveM&suOk(rF$7^ueFE7BBvjHg!4y*BqX>_*c3}Z08r#- zLq;K6-%Q-4S7d7^7tPFf=_5&%iv5pQ zyAvZ$VE(hQ6lnwoWAE z58G$%UUi=hQ$3}@@x9q6C?>DipsQ1HUp^Ug&kt!%!;<6q5y04?{bv}rbNs{x_`73D z7#Lj8uNV&;mzinyHjeQ^$X0;Ql&7tqpa`o)1G4-5Knv?iuYZisHVy`ZZ?xU$Z1^i8 zZsc(5u`pe)WEun&UWQ}d?j9vwNO_0i5bJxoT{(PNd{+Id08ci z%1NqY4oXJarX8mVYv0O^CogsmJ)*M-Ts6LhZu<0kvJ2zqA+g(~tbQ%(B2J_q%(9V4 zq_7ym

|jEuaQ-d3f?1n_bRXr_T8frHA0pv&xJ8c=&O1>3`LQ_}7fKP3eW2X2U21 z%QM#fNLrEKJPKE(r?9qn(wXN#sNXC$THIGVpy~DtUv>;swfXco)}VG{sde1vCr?F_ z=>*yel3>54le5Ex*btQTO$7w*2TILO-+Eu^n>%hJ+p)u)6b9&M7MaATR_8b97!ddT zUvcCZo+>bL=ht~`n_!%BvbXxU_XXC(v7au{>Yzk66*@;(3@*h+#KD_~^LqXE4yXDY z_2rw6KLXKR!SUxe#KHy6qL-`e&%g5hDUvEs$1Q0!D*w`B%5tBAZfoG22Of7$$z#M` z#h^DERQel{r}bir&277n9j)z9IWQnnJ!qM7(NQyEr+-aOMV~Ys{e3`~b>$y2{r^SD zi#O5$`(p51U7~%(7`!Pu;OzVfs_2`@df#L6D_>QQ1j11 z=`c&ZWw>1R$4!gM%Xrrpj8=(0S~QUaWUVe_t!GqX%AuzC&`v zUs`T(zGn#WjA>xZVLc@tte5{+u-+>p3=_W16bRy6tNnYI<$c8pjQ>-Q;HK?{i|a$y zg+pn>b9{vLJeur4YJ>uiflpo7_xWzQgujkPhdImTQ6}m~Qa@7|v|56OK!oJ+t`HSY zBzXh_ZhcEUA#i9?0NV7AV%Nllu^Qg zut>U*%$zy$0hU5d)pwd{hyDch@Qs|;toHT|b1(t;iTS)5WF$FgtGjS>J!p3Nbh3-2 z0b&=Ym=@^FEVK}QHrf1QK|VsOkdPJ}v)jcgeN{iWp|QZK_K@09A+9@8Q6ar&OG*|n z2L4i#(~-90F)|CfP-eE%pVfJ`pmqMcxfW6-=v3&N68Vg~VMuXFJKh_+cj;dn!*u!I z$*$d^nD=X&pMz#UZVsS@L=)}`pi=m29q<;m)jE3Sb&jv&PG@f z8<)#5fB}qS-JvV282J$eeu0yJ2dk0xL82N5bG0u~0y$UdT#`cWUZy2i&hTlHRq0|? zdV*4uvhhfuCgDhWL#XZ&eWi*iC}@evs^AKKs@ULty{_nIvT-G|^m-uzx%J*{8!hDH zVP{|kep?=h+TIJBP{DD6>Q$8v{e!!w4k`NM0)s)Kn~|e`<_klyVTTcEC?fUyxoP3=?4rRF`OV}%TI=Na zZWI~sYsBESzeb~L1jvh)Qjnn7&&EX%Zm9rhWLjZ0tvAjVi5t0z0whH1Y;#f-??^Cn zhzO^7!`^h~;G$d21cNnpVDTHr+#zM#&VOuMYlJIows`?sXANXEol*FmAK~c*BOLFmeD_DzS!Lq{kRy>YAnS_`GjtsA|j<)+e*d23)hDU zH3?1&DbjsSth_5iEE_kg%!g^)v5nx41mpsd_Jb2ofASe1=bp4e6jkt=N7bg5=Bs3; z3>4;SR9d2OBK)FT;1h9l12Qq=h=%Gm4@^T!k898+$}cam;ZINcptobu+KpNkaVQcA zS>S4aP6pF{b>AosI=pzL>Th8!*A?j&f8J zA_P#Uvl>)4&+6NwlB0?~K8&@aynAC=a^Qb2+k36`@6MZ7epyCYVtY-FJ^i3AKfPYw zFjwWi9|PY9ab!|8>Pic$GSjM;`@Rp#esS5ZmVi8V zTrL2{&Gp^Sik9Ja55e|*w$6!0z))mOCa>=qO_;*i2TIX!0cY&Ubb3e-K9ho zSFSm@e59-lYxb&+*1P&Y0u8SJ%tBS#ON==St%4 z?lRsu$7chB1SZJrlKsPGn`U zQh9`6WB`#Nb@u$+ECy>SNhu)&vxoH812wCtYzPmK&+7aoijiNu@OtH7@_qFA-VFxx zj^;v;J2`z(qO?Q{0(9Y0ZJ}>uS|s13kmselDkOw>xKrhI${;l7JPze?^$k&5KmPk` z04I69kB9Rnx?|*#5o{dr+?-uGG!R>&ijwC$(VC>p0Xcdqv6wRNIbOVkkg=vzHDGx&(%gMsNWRlvxVRxv#lIn zgRD39K{4Ow#G%;MryM`wU%pA{WgUtW1K!o8klpjo+O)z-kStWGgb=5)VvLqJQbA#=tPLlni>Iq2 zNNBX@Gooi4MGe{P!tb5eb4P)$j)r`IPi)X3k3sm|EQ_duaUynXl@H;-{7|+vvgapl z_Rz*H8qHXTw{Pc<@<)r#3qcY8l+}Q8gWO5j±PidUoVB`Q86z*eWk&C0$TcVLq8 z%EO$bO79IGV^Pvq`LNXFnCCch&)8q|@%&Lw=h7G59RmFwseHl(CqhS-#zmlJ733_Nl{Gnda?*NN&wahjJw~_e z2%ATHoZ{VnbQTK46}a%n;h-k#{& zgM&*B7gb|^skxXtl-vmOQwDM_B>tgQHBO za-a}=$v+3o*1(*1OuTqXdo$xqwxQthd=VHVzqTB=nEXOsa8y#><^6oXGhG|t#I#+V zI{xou&^v-5p#fP-&rZ&sNS<$0{xY_tm}Gyh)EQ2VB`}=imBU>BTc%D#=J*4g;L%AN zoLunw(NSOUt}*SpNfYQiM`0}d5{;WUkA!7FpA6(NdQYzWj{c+-6(Y!>o6@9_g`%U` z1MskZzkJ#QAcL*~@KvPQRc>Z{h}x&G-=GN_<{}6vQi-H%Zwh zHHZ$vFa(aKS=ZZzB*vFX2bNFl(l431PEPBRSkmEw5u};eOL4IY1=!Z8IQ`2c^oFD` zAd8_NDD0nyn6>`|bmuLm_z`j+tDT27I&$&+a!^vz5iHB=9f}6xPS@wjPs4Z;rLXaud%SnK>6ppS6Fn%OM>%d}m7^(GW_*mExi_olQ!HiBpBUD!A5jJc0!>R`Alx1`sV9XG#cMur1V_dU#8jWWN|HhB z12zY;;Fq6xvlI9oc)J+r8Q(#x;Q!X(rTYS^yx#>~S-XlWSSx7k?icTZ86lczghM{} z%vyXiJ$ilr4K&&HsR`G6mXc(ok=LnW4JxuhIN3jW1+%K+Y*tshC5Qk`ur-3MxO*?} zDj1RdLT+w{aZm3w^Kb0(PTPWOCM8@M6Gyo&j58W6Ip;5Xe~Zu`!Q~t8vUkIDJRKjv z79e~q-D$m~+_(mZ;v-mZh_~1B=PElk*xbj$B3YF-o0FRrrn()RNrV>)Nlu7bHp@v0 z#YZ!IZyyNJf6#2jqi!mxC7=_n`tH-o;=BQVImbfC$TwA`Hr2m10=P<<|Gtv@arWX+ zA`aRA)8mB%8#!?YwTQ(EC;uFu^*7#19s(g{fk(2--<>~b$L%)%j|BU7Y@%An`_=F} z>>sD5cgv5in;LFnqkD{Ah!^g>%xE$*J5iLDz4p6?fD*~1(W(L{+#uT~7>_-TaL@~z zt5Yp3VP?%~L-Nnqmm52m3220bC4OO$Vnh01gtVgrWy-TqI`W&V@vaiSm`_awShG|( z5zngwx_u(*dsy?;z-dHDLk?Ka@F{F-7}wSbt8&yx?9kWjkWeklIbth`=p~6e+l9$8 z>Sl=4*J$6RdRDl)i$|){x)4OKtd_>3vIEVHCt@!~Qn$=<~t_K3qL9p7ZBo5sc4&$AC(>C~}~ zEC2S52|gl-zH9UNyCZRPLt)l+kBRwe+oM_Cvi5aT)!`x^zcycNvNmTC$e~>CjPR82 zQti!ofGbJ9*2^`}hFc;i%E4j+fjgikxgdzA0~x5owr+;{SGQa>E3JG*Uy*sxey5NK zIyZHOd)P;@{&uqd9Rf~>eiNzJbT`<}vgVkGqE z3Ld$8up%Gh%#Ut(>Lmms+=Oc@^t-kSQq3G@7-EvYtAv$I1r#fj!)BftZtCy9D`5#L zzLz9pVD4a~wA(akPzBQ0a7QjU!C2^#1O_d7kufx|#22PhpAHU`r78YqSjjX7tuFQW z{Rq7tAo*!y*0a3&#nLVQGp{wUfv#EJ#>Z(NOhW&#`W}EH!HdRNunN(9>Hm>m($?t5 zS$iVVXH8ie^t(4C_8kz+D7n6-C627qs6G64tSYppEA2J3)BO)l9R(yyk5ejG!H)7Z zFycNr5LNL{oPn;A=8udaOWkGgd@~24qD>sf050r!H)Y@iVOL-{SJEqI%~>Fmxd%8e z2hL|ULc;itRRBN#tFQA(Wg<`Y;2oY!NC6ty zIZJX5g}InQMb5+EuX2 zM-8YyKkpyf;t6zOaIZvlGM;WbUOfHevxfId+S8GCA$;{C5go%_HZSKjxXsumNaCc%#m5}S`3sv+-e(7FhWz&)3Vubt zI}v8V8b~7CVR4<5m({uI09~1ha&Gi zn{vJD!{=N;Apv8;=F1k5#91i6a~=r9FvG&Iez5r4NovCd5L7dp#P9Kk-@8?bwa7bU^eP>#Xkinree-dfxz?uQK|)6~b&q@pS(lV8tP~&% ze;*>hc$7W^($ua}!z09PNlD!__9P41?E3|bU;6LN6bZL{&mh~9e)}lzF|gOS&kZou zn}^;hUSCGb2JN5poppsW4v$&_AFbo%*b2pqts-w`^*X5z4_PoJ!e%s#_^DTKMw+D9g0X0A*KV7LpSBWNs zyPFVC5}Ts%d{9gRi%p0gL+^R5E~Nvw98qv(wJ?^PgF4`urv~;4Wk?0C)XOsX|Bjn` zz&|PPW{`EyRf!G0%9!cFj^%CA=C@C?pc|}`H{vjYG2O-g*65*VIT_~mV`^k3eIav> z9KMSexa=+9E9{x&8d^r|P{knDgU*P8mlH>dxZ^ zvCy*gde(Ao-R}nB_TuK8`R?PmdtN}%VN$gFmrQSW!Pu!GS!2Gwh8f|JSISbl8U%>XpY9+J$ftZdyE zf*j5%_U{;CU%Bz%+CRj^>?=0O1SWnlxV=d+!z^Cq2^kb0j%hw%Zm|6bYHv>{hZ&hZ z?S0LaAbUQsfh)Wqyj|IvqV6F`i`Nwps0Qp?1%mw^MGYx7K-PW!j@NA6^gBebk)gt} zbo?o1prO`22Tka3l$Tmxeb&6f#pxi<$_V?)gPM_FeQToQBW)26#> z*WMue=f1Y5e~i7QS+bsfD{956d zG7&zt4@!aI7SaR@8J%j40S1WmYT`lYGwYo)zh_>0COsX35x-@eXOm_^9zIKUKp@>* zTq#V1jup}`8mAa?Xm?%XBaal$qCZPIYk&Xv=eH`BknZmI-|@4Kz&nyNmhEn+(C0RL zlVa^J<30nIu(`Xt8JwSgX&s3StN8MJARUfbJp)gv`u(Gr-QPu1k4Kx|m?{kP`;3Az zTuWyUp57UhPnLk@&hGMnlow(d5ij9K=5qOocqs+^rL#adWYFVi<>RQ8DL?ROx>%D2 zjLs#PRn6qsW#a`q+&RP^f|m1|o#8jy))Tjcs>$q6fq_7%u1#^xx!sTzJm5zr1Qd5`*nEx5Sf^mf4gxpHnx6?UWzHvO^;&BZ1>*Zj72Y zNx{f+dJxHr47?414K_}}O`pP{1q0cBUZFZZ@=cf#%Ta@yLdi-cw3dZhV|1&;< z^Q7kRM|IMQPz_K@@Y@b=S=*LP?(4-_zQ#2KD@4pQ1st1LB=;^a|4rQoH$Qs22X(Z6pi)rBkZc}keai$#q)?@)L zWuR83QKeoNB)%9V$+gbAv}fJBCG9*FQ5xOgj=>+p!kZo}P*>osH^lIlBEY*Qg(X%u z76k48L6fHPzrtTGZ#_H3yZ^6b`ZX)BF!6-U$$@VaCU4|4MR;mcvYeBeh|p!)_NA2x zNw#!#{mjqqApDX!$g?qTGkLk%i1r)R==(#EQVheLsm{QagP@jwV&8N4iD7$RTNn)~ zTAkrzqN%QAQ)gEp`m4I_xQ(Bg%wl|SH=)m9w^98C99*yCh~f-r~wM-uW(c`_4`X?Vtw{>y^?{`{pSz0#{XpkPiA3T)=rp=nuC;Hh)2-W(khpgRO_8Tz5x=_3aziU$9gXRH2_BFxmz?$R+1AzBV&y=5K zb=t1vFVfaN5>aZCVZpqVo3mg!T-SW{CIv1e4^gy#VRa`M8gX{ablbgSCG)`l7U`CS zlJV>BI5cqpPtyNI0UR2sKc$|&|QPira89mWMLykrWF>NxLuDf=$v|6%H^qoR7lwM~aK zNOuS*4bt5q(w$O64c(2B(%s#S)JQ4a-3%Zd(%toKf9IUFzJFP37HjtGc=!8U_jS)t z0$_jau$Tz6hF635m;|kq~d7|DuK{`;ZsLxF1&&A z^8l4=a#iKb(ELd5^li;mOP^~DiMc8>40bNB((_seu10j2cC%kF(lO|7F0$#3(0>A9 zv>A`j%s3o~y}qF>a%_-61r(f*OZ_qfo+YyU2yHkhs5lYoN{+Ddj_ILflc!OvY?K2` zw5gQ+i9yKz!=zx#39@@^Vu$_N!aKMINa;)R!nb@wo6K+aj6om$RWQ)z6!a-m{;>If z?QiczKpKo^@;pVUm7!_)tVGj8E;uXr)VCYIL7A2RTY0Ieu!(YLuE&zr;nyXXu@}4Z za+@LVXC$M)Hw#MRzV-69kTs^V*T2Ae#jpgjxA%MD=5C=T!KUHg6|3)I`Z!ClVyVv` z%YVBP%KuZ>j=U&GH|g28)a>9YHZlJApzS131%Y}k$E#L^wW1cTGlFonm+enGxU^15 zeQl`Qh|6N{{|G4*Px5~|UVadR$~h1{@^j6H-<3*_-msD&`Y?Z(?#?Q{MC!uxJb(xt z<$|QY-*Br^74KgYlXHnN#9ri6k`znEKK~oUw~)m3jxmj_GXZ`1;#@Xv^JYDAgz_TH zC`CCN`b@p7?040xWE9!U+nigJrLpig2+fVt@Xe+Gu~eOUkHj-yjx4h>C7*fRGocAl z_3~x!@HQRN`nwS@iT55SXflaxQcg)&@=}PD*a$T@aoKvzeQ)@UOJ-k7E!VgvQ^VCb zu)-53MywyAuZBW&L1wsjLG>B|CEicB9j`s70k59C+I;c>AksW1ir9d|+kn6IWR?uy zh*K3P8D?ryE*E%x#zNCWZ+&-}UjK+rd>OaX+NX%$ZoSN;maJhwmioSDjihwQvDS_W zlZ`(8b!~T(>$FNkfdD4cZj1*m(3%B#u4=4JPYk_x9Y8C$RWO~XU;s0FWvpt8N--xF zpQ3*__wv@cs})wKUAZEhoT`V$5ch3tjYpJJNH{%OHB|8(SMtmr{Fd0%B5!L-jA&4IIc0#!eh+{mZ*F&SC1T;6rz-vO#Ifa1iGyl+ z>2mQcoOsd_&)PN^d3`?@a{gMvOfF(=R(bkks=YJ~dS-YHGn+ZY(@%=Z zrh<}80EPT4#~LOHdVJJ(*is32X!vZ8=D|#H#8Pasl%DR-(+aw@q^%S>t8QkzZ*rfy zsWyH+`SAM=a$IBAVcS7)hOA$|QHQr&(a0rN`0?_t*6Gi=yKm%4P1_lFYaCDa$+_rO z#J*us^Yi^0@+#+iK;hAz<_r9M_Rlqc?PbvbqsQ4&=7#@`Nj1#*s&(PfVR1IxXSpm< zK2D+!YH?9xhNhH*I6fEdS>KI>%OQW+5xMI2QeS z(Bo|E5iBNqEujh4lXoTqJM-IG`^W38_z%CYpCAT1`CGQj_7kH#ahx>CMlB6zI*S99Pp5d_H)Vwxx+wzRxmv+Rw|G7fol7p!>!948D zEl?f?Yp5+woKs5RZqD|mx!!*2HUn0XYd>(*9o6A8*v)aya0nj+`NXyW=!@t2`GB0w zhlHCOZOTK+1ENFxc77M+)$Zx+s;uh#p$x?4{t21s!#hh3)zqfH7B(A835WnZNcgxo zPOx4LG&$qoHKCane`v{XN|0pbq6%}uu=mtv3R8>Y{GliBu>e_lk+XA;RLA1~aqMZ>G8W+A>w|teQs{-uh zf90)EO<>mkW<(49;AYC(JFQPL`$T0C>acN5H%2g_^wMIj`Hpj$Dw^*_+IG!*(eeci0PzZs-yW&H~-%7b4S3<&+4FUWP(g% zFWUF(fmhZ>+Tv7AIt6H$;9of~A2tMlohp0D1s*8 zKQW2vic?eB%$~)g;b`S^wZ&C5p{bHTe~arf0WKXQ5$_$w+zVp??;~u^<%|79JU{8j z^}a-RTFjpX23D%Yj?|^*LuwUjP4jX0=(vb{;qo10xTM%N`7E-C!fGMRXC5!AOU;dY zQPw`2aF=AG79c@aY^<=Hs13Tz_pIjsK8F)TL+mD@Rz%0+(r_07&*NvC`r)o*rC%88Ao7JE5PFq5$B~Ic5Ur`LbG$I#%}J&X0G);FtHDK-)d4fY%3-66%Gu0dD0_ z@{6xAV?9R~G}hSb=VJ*=;Pj^B2~lqm*V<`L;#x~C(Epbf`0T%ywXFA?Q~Q)8lJA9u zX_2x|ePI{-i*L|jD=1y)Zz~+9eN`1OG2qA*0%>0RP9QAbL->_4laZ@*@W1)-zS7sKFo?IjT{!@6e zl}96U9w8BwY17FckXgAeCopK5vsT=+nD&STYGQKB$aVibaZz872URtNQN2##E$Y=R z6_W+eGr=GAj3q@Ik!uMA%Of{>Bg?;Np=;UzNJ1Z|0=G49UA!EjFs4mc!K~1fvhvR; zg!6voC(Gy`?+HtsJ(!rd{gCO&jTry_yXrx3x-rd~@TxAW_{p4I$4qq99_>`p*3VfE z3B-HFZ~w;v1TkOUEwr{cFXyKF$}Hl;8cDe0M<=8-J)cZ`UvdOxa{rn`u$Z!B+Etl> zW?v3v>}JixtbitSbVEf=zstz>QT9;hqH4WwKl6q^B1=iAbsPim{OSaJ7_Ij6-D2`o zqumkN=?H>Jvt0uC%`8eXdAN+xc>v%(BROr@@X*wU*&Va|SC$EAplp?7tFmHVn%5iR zOB|Ys@VG#8JOsz0rH=mLU}nV+to#BGFe+4xAyh;8nEC&9uy-01O-3Fm_+8Nldcx=j z9JlPeCRPQVPBAbZhEw^fm6x&U+!Qfpxa>}>^htYF%bPya_aMEKN-EeJZ)v|pAuPF5 z3L>idbC3SHKj8Pt{iM21MGlUdqJfO|@)FfKccBh5&|04)P&4Z!)?#i>8^Q;Jz4K%Z zrylY+@r)xrzC}iBAS26U4*!Q+pgM~2_d8pNavw&u99ah>WO8opdE=Z?cs&)TcFC^U zc&iIzgkJj|1^MN9d>%~uar8@Feg#H-s(iN z^k$%U=Pjd|ARF@)d1yEE>RFM%m3AeWtgUZBDQIl>eRT0lk)xMl^f_Z={}OjKjpk$ zZcfP9pZGzH*}p=iv>!S50xtRa5+)#HEjMTUEkeEqN+)hVegxKJ+Lt+DG-8YGb)|*7 z!8nhB6vBX54zE!^MkRfN>LUkNaw-HDC{5v;g*nm!339Nj3~g}x=0C!|EQwpP;s0 z$Uy4zRwQ_$J#6$QBy}~@H!2l*D`xgZ{Xt}zlQWZes+J}F+L|ePlDGJcV3e6VD^NB) z#yrd+uF*G_OqP6}gtAcRslRA+wRQSLTUNip?(ci@Yv$v^^(=~Ag19EpLF>O1U&~oS z*o`G5IXQQ=R+Cg>J%DQbyHioazq)0q^J?9O=T&Wu9A4A=kfMTPSqP|ggiY(Fq`*I; zQVFkRs>Ui|Ki2trZepBsVa`+Y621=XV?c5r^pG-t@d!WP^zyu04dqLGPPenz`5CaC zwRK9d4cXV-b?!5b6l{O`6~VJWo;S0SbKac+U>WTsP)1!C=5rBJu1vk-c6*q=PKQ<7 zrB7+;0zeyGoUZ~YiA}rO2xsOzIM5?m5%W|u+L*I!0en!0qw1v7TZT^|<~{zBlQtt& z1ibTb;%H5)kP>_5zbOtY#10@43IfV)Z)dU5B`#O&B|7PdfDbvz*4w9AC~DE8?8$w( zqlR!P??>7qi+aayye#@8%Kp&NUv;^F2p{#UClCS}z8^^yjmpKL6jF3W+=FiQT~>`i zS#ymlQLyI!f~mm6PAPVX`S?%u$*st|9j}3}bcGL=!?#rzeoa(Xb2_caIuk0bkk zEq86NKH-OPl5Va%*V)fldJf2fjy%9f7dm{^qW+Nux2OrqeJ-y#P=8BXh_m0sDd-s* z>_0+T44wyXeXQFacGW6h8#%Epk+_dAWM(o9bLO5VOu_GQBV_rv8b4WauJO&uKq(xR zc|EXCd^K@-x&8TauqL_?H)$9is;?(j-nS@$9`_DGly2EAp*SgHcaP>j|X_|{Kh{x`Zth2K6Ux$!C$Hv zQuvPvp2UBc@OM}A`fRQ1I7TqjBX8OwbUcju4{ufa4{zQ2hqt0RiPOG_=a3n-#o+;x zzYXPi_7-yC`yam>egTY?cz$wx|=e#!lHSqEsyT-b_;09GCEA=>CrMz8!L2^=}_>4-68PyBnwuLxYpErzAXg|%u4}Z|E z1?@&Sw0mtH>YGQ;+!YTyBi1X4_#H*9A1Et0KgXveYuCPv%NuT0THxzk8W?-6axeS3 zj9+p4aZm5Q{<#yntPI#_t)5S$v7Nds&eRV}+>AZiK1OLSZ^Q>w`&QI$-%#aN&kL;Gd|7cfL{k_Ls^Wfm9F zh#wQWq!Q{jXimrsztu6x#U#4p8|)Ks%hwYJQ*`@}Wy?-&)6kEHtYo2KQJ2Bzt8AGn zx^ECdkMbk*@5XqF>Io-ABT{6?YkdQap+?>ZPcJjR2?*k^=`@4svrCvn<`-6#hdGKL zf>!)csX3{u@a^Un;JX!vkX zFSuz3ymoHAOf0zOXl|zHfkd|Boiaoh-&Ac63tV2+_qfE#ZE<&94qK!{X&d^svbYDX zQ})_{P3A0@akQ9|M|GFq7n2iHW3~yePuVwIo&senc-*Z5ye(|*sv|kJ80+PQcAQ?B zKyP~}ToYzaN)e|wh0pyo@N_)k#RWKcoe7k%LpaZ<31AE8{hKhqd~?PA;RydiWLuuo zbR-oo%tZm%hsK%vNiOYwln_YITcxO*YZHXwv{qD1Mg;VFJDLc}c2SYwV4`H&g#Q|r zJ`NU?Lb2dMx-AT2ZVQ{CYiEv;ADh&4g+jSGlkJq{A!&b7tlb3f3eTOkc zV++52z3{1Fi zPuB`_Hr(x6({W|a9ggxSnf-E_sV?+h%Q&9+Em2ux^ibVeId48vW%qmd$kD*T4LHBE zfE{O%Mo=NvlVS@--o##(%kD<-(`91ix$kw^Z7ZCCq)pJMJ3y8RDujlrIa}=1rT(OC z@SFIPvxv0rhMWoIh553>AtYY^oP2scfv7hY(FC~0m&YA!Ds!}?;D_d#jRIxA)?qcn zzTFxN1rZoz@nLo5wajN%hy6Tyl@m3;G4#iTaWzzrBh7*-lBD^1vMDi6TxgY@9 z-4lviDCT+U(p^ruV6HgGXLr2G@`gHBxGA7xwLZi{fwSRjyA_~-Y^v0Fzmy=PxgQ2h z0yc*R8_7B4K&9dmf_Rf9ANqGVYxtaDy*HG^G0E32xymS;qXy*1H!_Zl=wuY$iSBh9 zSbKZ=aD<1?x)0_7d`D02nzq*IBeE2qfADL2jS@#&w6Bqw1oUqPOHMSnAYfat?M{33 z+uRUXJNmEwc%i?uS)9y+_vxG`T``VGcMW~`%6{ZWWr+XRMw8}~2n!&gp#70}9IO+x zL&@N3KJM|nd&#qtb$RfOP8r)nB3UE!*7-6t8umzt2!{hr?0nkXV&_=YZtcZ28(IYP z1zgp6+<~`IiSx2?1jE+f`N0+bK1BCCs`Wg0t)`uv06P~-^rb}+=KSl4X=)26Nn!os zSwAQs%c+2iOu_eTDOezue98`D2AEl(X|G>lp_9ZaTH#G0s!4-K5-znA5n&T4OQfea zmY*>8AfDYBl8V4} zne-KONsnHEUwYZ}G7HJt^Y8nQW}Q^SsNtDp&c55jXUaDhpD=%1q+go<^bQxb?d*WJ z1ibq*$9G1BZt?4~_(&L>#irm#ORIXVwrO(F=O@v}4&y&~q_te19fES#JYMN9mqdp% zlV_1c;-}Ja#(sjvb`Pl^FRn_TIAkZt=einf)@W?wWT5QcnV<6F12^f7e<2)EpN$e= zSt(TCgy?rU{uyXl0AG&ruY7R?j=lbF(;iXxFfwt=hwP-i@YlNN&yLQb`~Z=vc78|* zuNZ&!A~Fjx_6{Wm&3Tgob= z>D3;2qv%HqMxF$xn2!h*i&SZbb6^Zc-4YjI=-eK|_21CB$B(DFn~&H28&vXmvGesN zE{qC{nfPlP`_z#h+*q(kl1k7W6G${6qNzpyc>a#nzsL6e$gAB2f#c;W84tLwe9n7^ zWq}3}tXhhD9b5hESht#ovg|g{GdTb9jP%`p{nF?D z=ml$S6oofozB761-%?#!i7s@QsH{7FSR52Jsni}2%<2zr zQgAWR$&s=`>o2Q-4P81h5%FobVe`0**9Fu-CX+(hYL^Z`r}OsXs|0Zfdc9T=YNH8K zF!e{OwDIi%95vr}iEkuINGN?#Oyw;&@-t0b=shmV16cLPSMS5;!C|+Xh<76++BeFq zWKxg&L-DfL2tya;SW&2mAs@Q>_%f(cEF}k-n$bynDYguwwHBx(gFlc=`VZD5rW*I+ zUh~;k`T5GlCH^q-z=?-yo%kYre~x(Oj6=<~j>9Ur-^dd;^e~g!qFmm}{bmTo@cU^U zlKaQ*dnu8uv&Rljs?79a0=Iru1_V0S-CTdyR6eFA)A>lCt4?=4H)t1oyOZVbo}$n6 zZ4i9y2e~*ir#$3e-USAtDNk%A%X?$H9!U#UH;A_>de^Xh-6zHlTrYF_~ z+CS0gw0;{uny>)fzh)po5nVg_NUXQ?Vrl|Fib%`Rgi+X(4)@9gNJ8CveEw1)YfSdh zq>8iAJNmmNQ0YS1DS!UjWfYmiFKA9M3D}#FdSawsA5Mx4X%jWI%a+ zMBDIOTlnqh@r%73>=BCdW8_%RlA6N*@YiZzqtLVXUCW%ehp@0j+a0_Zevkg}RZO=7 ze3tio9pNtZT%ApqMxkgjZ-2%7py2bzDScsV zHLHO|O$4XD*-T&S=I`ltu7CMkc+Mr&Yrgc1=ko`gAS+;T^-YVb`zx34-r)2GSK_k|+fiTk zB;hSH8>MJ_{b3())O#|LIy0ip1?{R$xX-~S&rkkE z(N0AKd{%`v(R2Qh^We3MQ`NO=%TK(8UMO+DrRVuRU(HvxE86)TZN{fWtb2`EoWmDZ z7(Rcm%o-*5P-Qk&lHNTWoj5N;Wh=JqrxT_8$Fj}Nd)zO>%zrDZ;SgEXOz8`H9&Z~K z8xrFPB73EXMnbhz6*9ZmH2}IibAEjDPe_yil<`dbHesmOor0@iG$k7y?>3qFj}OjU zM*}W~HXq)(912FRAn)J#+@$`6rKpRf|h5+P;ay)QTQev!7JkwE&l@CxI)$rLm5_M?oXWu zH4OJJa=vqiI8J4a792Y|(2z3C?3KBSV2b$)rIQD04R-1(N3KRx1^!Z1Kv6%?MKqEqh9SVn@~qwbiuf6gk4K7CTAK-HAsj4{VfcrQYwC8HS-6c?kP zo~RpF*oOZTUPb?O@AgCgABGQwACW?2$JmCWc1aBzfT}ACr)0MMSVI3^JQ_(|S^{0S zSH92fTSXorb0g!^ix7z~P|Ib=p0LMfSb|||nZ}q$a8|_c_u83m7b44hJDV+S$CLpf zG9tqF(VTl(wig#)EYJ`TJ-k7!1@#$OngE3ipEr6VIWsd(^A|BYpEp%c&6$vsbRPWs z&E<*#e97q5$9OUx@-OLbQh-EVFb%pA5ra9@#km|m3huQIIxZltrvbp*53%gpnI8Xc z=LVkzGDoCUia1tj96rh&jm^WwkFBC!nz19G{hluy#|-v#V33y3@lsC5fDKryVYoZk zvM}eNrcY!zJ9*qf)^ayC>F?=DjQ#P46`K@qPk{##LIyJx=j;sz?SWBR=n1uaY3qI# zh7?n4F0!Ji@o^DBwn}eJI@(X+a@vK1^uK!pXS%1B^DAQG7SjrK-``%L=H@IB6t}X* zYU=ne3LhgDi&BOWS$gx`Y{ozwG2$ncx5W5feC3$n>UWwJQkP>L6F1dseU~)p_xcb6kPAi+3u@5*e5br_WDcE zG?}(tExsyaJiF}pGKuV2y&U)zL}Zun?54)Q{XKwA&0E})aU1e;l`l{e1hEVt+5;Cl z>(oI?MsH-yd4O~%9J^gf_A@QW{%z-1@;TU4rL{dgIuEYntFaK5Gwx-paq~ypM_G;9%ux0Whr7V?j0HW>f-mOCV}XIyMujWs+eW zB^=xp^{VBTyZg1g%u_MeTB1Ur(Dx#btDd2gkyeEk-y5@1CA&S2vN;InAe(;XhYSlV zTGS@UA@5*I_;+TfYPQ^j{1HG$5M@jx{U%@=GPFc2^x}0lKosb*cdj@eDd)+yiWJ=} z-=Xo&F0_PGADgKy&?HE&wD5HZxo}dTVD3bcud+t*&keb+`$7)6we zDelajG`sVI7>8#P2dnmq{@Q28>F|@be17%pgud9#Wvf_0@kGsj>!;h*g9Y1XkwG75 z-}MN>^Z46aHk*LqRZ^&?)3f{-Gv4V`{s8*iO!6FVm~%}dNc~#^{OV1%5BOI}`@9KU z0X7=LwjP7h6JN5<-WWAGFT&)7X;hB@Osz;v=}SPGW!(FH!c&Rf6Xj-*k9g1|THJU4 zj0`VwOhXuvnB|aJ>^l2EjGaXlW#$HqQEA0~^PM`&bKxtG7|*xzO#gNu8(@-Ui)53} z#BSfSE+hec_sP^nxh?#@TACYi{tVHGXw22z!EbgOdP8nA%nKQ& zBb{NRp>^9WknVle+0(k_e)P1ojZT6^)~8IG)k7$GEBdw8&bV_#9^A<@k+)Pm3fofZ z1D(GrBo~fyzQ2DSKV2!Taz6|*ehzW7HGXPPuf8vjf@ueK2#jAhumbKba|50Qce$0p z@khhaAD_(Kb|cna?`@rC4rOH=uPao2KTWvy{;BsT0eUVjE-r6i2Dbw442`tOOpyN^ zS-h@Y^rlD+gS8I{Kb4dmvW>QYB6a7dN`7S&Wc3I1Sf+CBz52)cC3R&TQZFS?3rirP z33^>r?ebS(Smp>(;)`x#vq%|Wbut(){SLB)EEWa9DV2rJ0<+flocfehd8W=iFslP* zxv5u+3|9xFHt8*)qY%GG!L>sepcwYO9vh7PTZ(uJZsQReKwFpl`3DU#0AtMd%E zAiC+FU<(2c%p*q>VtzsjexuEA!U19POx(c~*yLh#!F`Ed+|J#Lv2!E-oYXHgt>Za8 zY|a&a_kTHn3pJ4|7ML8Fej)n-{7C-wx_7~M-SVyn-|0lmvH9KwBRnLE6IvkV1PMJ% z7s|TX9#0OxNiC$jAk>b{POBno37_@YP(nRK7bQ*~V?@Uc`1%paEhoC@|1J|pi-WF- zPv4UTU$bxZh<5#7A~TB4w^L+i5KRp9z|$GWtoGY`UUr$!HD#6|Pwq>nFHesSeuw%U zuUuO0_}w+eG{-`(hsIl$Qg+t73YWAUzkVLq)IOgqyv!8dC%hQB-^{`98lu2<*IUE$Rx9dpA6rClK55uO1mhRL)BJm(JMo!mUnr#?XhkE>vBt|u^tT_3 znpI(#YDIp-YtsrUsO>C8D6=MWXIA|yoydY^KWPfb4AX^)bd646L55jKpzMjOR-uS|3xl;f%1l7OX4R(mQ z*jVqsX7y$q-%VfeC#A-2+$;h3?`!&{TK&I5Bp{Md^Z_2J=`=bD=ACjBqbAvSHv0nD z<0ZO}Z@Y<&EA1XM#VMp!W8kUiWI?l3G}>RJ<nc<3^2Xj_pe%pbGzXm&=I;xEQk6I`oYE2nD)2_ZLT$xtjp)C;Mn`!N z&cq}xANXBic(9woSzy{jM{hbk_?3Ra?+8@+V%h$y55*xQ8H$L0--3i(nPn!t1CWM0 zZS)b_A7$ph2z*SiY zh7Ah-q}jWC?Dx&sEa>ZqrDz%%e`8o}gn?mORF?k{)dE;nOFPD(OH-j8b!mq#b#j6@ zoi$&fx*8NW%VG{5<2jBYsCl}4yzjU_y_q8Ci1F8d;ZU2;St*}4%xnNf_9b#kp7?9~ zIYqTl2fz#BFq(r#m|`KDm&;CDA14;FG{#4HdRgbK6|INC%g*V0fKAJ87muz`GIpOi zu|&7dCjD2IjEML*w+Bn`c=CeO@zWT`2LZNu%+kxAcC1n~Ar4Wc0#&gbvqOZxQjRor z`@oxnSo$&dQ=VTnd{b5R-8L-q5fBjPDJz6e<7^nohyU@lOd1Tk-o&;Mw!qx*^>J1# z1oN>DwEPmYN4fFA%8Gz6_7V5^N<$!9oAA!t(NXCQ8w|Z?3!+S*JOacEVF$at; z@CBYWcR3QZVn1;rtXvu!|IPt}mx4+eAa4tgwOH;NlCOcfZ`zaeNetq*=b5e1esO)- zmT#B5_{(ogU}?trB@WwO<)Nx1KC7?zE4V^@QfPoDstCfiG>kVy;(#jn?X)g?wXNQp zn1Hf}t%lVvsE*TjWxC)b{Df z|Mm91KY_mYd)Q+IW{B*cVouy{f+}c@(X*bL=-7e~maDd%8|YEP*LJBs*%G20J^f_$ zq3Kz)rTxG%^>$wI&9r{<;!~<@?VnpH^QP4S-&dpR62?8i+5r56I+>2wku2wD9MhPo zN#b{Z68DmGb$6@ZNiAA-9=`d(8*%t_9}G}>mv|z;_P$=-%?JO!UFfYUFpeEA?898= zuZ?Y$1R241X3T>-$a2sYHhdg5HQ%v`f=ni_*3g;gPpBwF-{R~t|Bo~KfQ|Cb(tG5S zJqb2gt9Kw6OAOcq9eJ22w-{G5bpD2x@$pe=8$0xaIIw)>(rIv-3LSNSp_>0VaG!

JqwDm(|BXPNQG@dfiw(E`w$YIE3BCK=LE?3N|Bwxg1^qQ@D7``VhF-nfvR>-Z ze(8j=)*{z??kzgPUi`hRMwb?Ed|5clTwRMdp+mDi@!h*?mJR#?Xa6|z-|x6jXv?iH zxIkW)j|9i1+RGIiZy&YpCz zchnRyUhAo#h1q{)Ue)AY1YW>q92XFkO_XF?*XuaU#i5{2JDnmJD=ZJKupz1m%v;5x zo^HlgbuwvlqE3WUCCw)>tHkH;)-waLW|a(gNZVVKMGzmXOT<^xZ@2NxKtULjfl9e1 zwYuyN#?0?OWXjdV(`fK$>L+Ub5fEBd*bvVDUccF6Zg*>4SDZqCMw zOLMZ0TEA7jFb3#e<1`)%pgxL*bL_5;JvwS?%wwj3 zztaIwg6Mz;3Y~M{pJHQ%zRPq`=`TO~A%eJAD1*&{s$@jd+0l9=)Y(O9Yf)nnd)$P8ca$@FQl7$F5cdXwy{ zf$XQmLdjFuutf9M%{P=P2tp6Ul_W|5Rw@lsMB*{Y9Isf#_H> zmG_!m{=g*MJK^nx0bQ`M{~NZDZ9hmUeWg#_#*HvM`_6|37V`El2I)|vH?Tr)ObX@{ zN%r(&q>?{}^EYP0H5iTV` zwbmp-f*#ZO_KlyDOLojt52p*?m}&4CzE6Ra7=JxUanOr1GqUv-ULh_6=@pg?%YlKd ziZT5CR|oj9XK)cB`3d*ySWyY3uR0n8*={_9yZLkJl!iK~^h36YH`H3J!;MhJC5aaf z1#6(R&HvxRr4A6!>sv{4T%fZU4rx|FS%shd&HA2b9+H?ZkotkVSPB$rk46fp6f%1p zaZrpkhxzBF9Mqmp%_zgk;hbz+&xlqEJsLyE;Tq&=P#l1JpU5mFKOTh5$!)*rVjbFH z#Q&BteD*z%DoI;#%st+i!xvF>KA`2GPUS*QNyT#h3eS@JV-z&KLdD4ui)W5$7e-aI zP@<|^D_%!~LH}{?ZNo3(t3hZnWo~~E?MNx>=5Of0W6FdG7xWdu85)8W%SygbTah!s zwlteQ)=ZQL{Cb6}@8v2L4qZ1a;m2if+qPo%?lzv6v97-)=mvNm zx7gQoP@EF(t8f1p$8c2`?c~CG;70hI{1CmUbS+b-YhnVM+1SnQ<17b_>|aCOuF81j zj@SkbeJrtg4YEz4Boxk7a3C}LS5x74aDk@)GE=LKQ$LsQ=!wUsns zo<(jr2h7SlA&DGyG7GBw?=T{e#f-6Qh;3g!;kP2?>S^q1iB=~o6?Dn&_fcr_>7l)} z&3t%-=I_~v1Y5KjhQZ;df|N$->thi>!e&ujM&$-Qhl>A>CQXd6UDA2)Rdu>3FK)|u z0Nti3B%|EUdEZ8#N^W)@8luCArfL54u_%i7fu54mP{bPsD~36@6|N>WM}kLRuxs>Y z^OL12{e8CQL9VE!_C#unDT!j8~G-e zS|}gyiesZGw=}M*!<*=BY<= z70fJQ?Rx9gm2G1nY4u+i$8UNK@aCmpa-y(kID?lTC_mgk z8$AY%L`c75i1tF9Nw83z<3W={L-3zI`Q&`$7zHB(a(l_+F-}I$r84kn9udKkHrPm) z-^2C(h=2Q_Sp5ll6sxrHh>2*Ee*Kw%Iixm*vT! z^L{(u!}szK3&(Pi#Cj^~aXwLS4%_t1)<4(I7Iz3^zzvAJ`dv1h+AM*W%nG>Y=FP1+ zN_ap*e^!+BJy{f7UxoIcg_@0EtllaBtmSA4UV~aa+>c1M58@zFB)&F;aO3c@53u21 z#eS7_54Zm(Mul049=$2{{1vhB0Vkv<(-V0p^F?das53AjM3V9ghB%E-K@4HTzan{N z9Njz?q-B)H2S)0MGK(|*E2Iq?L{fKJY#O+N`tP*zj{6eyfcdm~;~kx#a;@SSW8ZWR zLvQdmCI9Be_C1<%ZF*oFX8jHxH9x|YdSz$b^AE-w!?Fkh-Q9-mIKuX{l&L3%92sZ;(RTOtp*a9 zEkvd$1*4&Wp7_e#873WLqC1l7CM*v5#-Q;a(bMSyR_L2PLV7qh0yS$HmH9VfXAF#l z&i9!NctRLn2kEI__Pe-Lu4!-|S_CH!f6CnEi1>eD8v^{7a#+SGBU5So=otxSJc&A) zX;qIOK?Ww zT;6_@OVtIrJUc*$Rbv)?s@?uI>>y70fc^a>Li2t#00a@xY+yh*KlhliU~e!a4Jv9c z@0L;|Z>i?Aqx9V*Vixwq)ierzUOUYWczewxi<#{eYuvv}_>h8S%=7IY9f*#5htA*o z@dUGC*+&=>4{;9EeVLkwQP*^rN&T;SB@w!7)L?yLD&SPbz`Z*hbJREn!r5Uwv$8lY zWV9@u*)%8;y&#jOYQoAFfL-(!hSlhH)rn@1BYB6fp*GYsv^)$>#%IYJ7_CN{{AMaW zp|a(@r$70i+&(eSH7n=TWx~q^fOd_|QIc>E{7L(C(8h4vC(H!Fzjlxofee!ag0(_( zNeNsV6vNMw9yIku{$_9oB63vTzxRm@5P%4q4FIV7dv>F_`*I;SiV^zH?W{~s_b|AL zn_X}AjEo?=50xS{R--#h4N~*kxqJOkUWS8pG(%ENz%t-=#xt_{<8p3hUN3xie>6l~ zBd$#0jQ}xzd96CxbkWgi*Z`_GFZGJ;NQqyT@_-!zoD=L}PKcL~t)yZ3oNBH5|9I=> zl~gSMas*`kyqJjOa9E{mFmT*}-G`Z1nevLa%*<9N@WJ`E-%)n9zPIUy*o-^dMabNa zrSo1FcJY$uw1Gpm2%kIcb<#j>xeSG zK*CoN%mv>ukbqSli^GiA#|zp(d>wUo_mni~cnTRNwHz%NJlTzrG`tq7J#qaqDXqj-@SM|v4J z_q=-%+@|I0Q8PHh-`t2RB5L<>F4O*SoA9EueOW))7|9h0z5d|xQ(So+BLVC39@jZ* zgi3v+>G&rx61#!4)Q7%lt=mG)fO&$Qh}J+f_)Z0vFO@0(ENr9TIk8(s_)?Wj%43zO z-j4(ZbMiKoOLYekG(yP?s4p2RsSKo#wM>D8wgzE;bQ%o3FA?{L8%BZG+M6nqvCv$G zka2jJhJj5nwy@90a)iVj>X!mzUE0%|ukx@5HOd<$>h9V~a!gCA%v&lY*WcCwL zAb%b+C-B`G)twT}gb~Mz*1EDlMBLg8-Evce>mXMhUZJ5a0jGZR~7M8k{aho~*}puZJdT#JZL}-MU`Z z2jwuXL|PiXHm;G*G#ts#?t0yYi53}kVXXj0prZc&sJeAjB2^oorg zH60bB#!`msX*E@x8C>;PrIM|%mE^oBs7I1RR%O|ZNL!CBhyN+0*zW;K62I#1y*Hin zp`mWdYcnr_+l$r*ue)H$tqP;n3wVxS3}5fHzPp9eL|U*$esg2*D(}m1*dWIWk!#M% zrq)`J|B7jVyhJ5d?yUHa9LT)G<+0~HAElOMk{eMN`gv}@Q5wJxhay4l6qGfo%EkMJ z-Az_X?7Q}l>8BB_V(vs|OV$L*RU5K@?;%(yKL?dX_8A-W2)uYMF#CSvzP1!JLMM~- zR<;?dkiY3N8+`m$74iM_+(hhHFNHaaN~@gD>ukE5tc4wjhnObI4# zON5WGYfe)cvZ&m$7tLw)H;Ydr2Ip53$-jyR;leFtpw)cLS&dwvVLQ#YON7_S5q7%& zxSHz4@Rjo~!fK*#oUPVcR9BifYayETze92Su$Nao^@XcrLd)2W%%EXz>VpJvkN~+B zD;P29*Owg6Y*@7cS5G|AU%Tnmz&d8~4Isd&4M=6M(3yh$k^UJLCZ^8>`2PPIkzv{| z?qUYPW$89WOz-d)jQrPeje69$Jz(Jh5YhB;OzP!LY+CX#LNt~P+V7xVnU#_*%b+(3 zx8d`1ROph6c%xG52ApH}XLo_+DcGs(7~%toK6h4h{=ar5{rtS{C57;?=oi!ZQmD+? z7QhSz9Gc&!e%Ao4$PXlI1Nmh1$R4bet8KTP*sxxq%_`4**!tc0bR1@v5uSc)SvOq>`jUlWs%Q&SDe|ZBES4$D5)Fp`~!Ow z#imS5+13HQMHyB#A{CCqtJ~u{a~^P`9VXN0xXHWhzRf@t(>VAXnLh4W@&K=~f`Ka) zhA_?cw;9G-3tG{VaR1)MiVA~`gN;MrF(82Tu@E+mI+KpvndH92GqU0t8}5Yexz zTJYz7)kip|H7?B$DA>vuHgpNg=c)9Ggvu-|zg*Q6iwIldP%(YZAD6;TXTd9uNb=$s zCRU%aNi$W$vcm#eUpK?{YES}>7>(kA9&Q@`PG6Qx?VEsRm;G7%80ydSChDNUp5!(i z&otSpvQXM#Nn+IM+%XK!%Fiw;ywURitHJ-L3u>#7Rlfusu`oPA)b}>&M2fuYtu&eyOqJbJs&o10u^e26+Zpbs#a_R0%B7|1em9qZeybcIssvo z5cmb~gP|suvUgZEmsC{x_e5byN#2qxS;Sc4$X|eOJ%eX9_x1X!@J(^4n2tg?>%2`r z%JsK&3Ijcqkh-<>FRrS%QpI1?#3#o``!$zU%^?hDg-dK3w?lz)taONkPg={ zQhqTCc7}1>K#e`UXn1~kAxq{_Y`BqJ{2VYk;vWVmlDCS6c%0CmjlSy_OEt?%WoF0m zexDvGetlc3<@cbuUVNQCFK*D5z$fLm#H}c3^$)U=LHyE@|fS@3}7iix0OI;{!PM)IJnX#YgR z@zXlwqt$C&_9t1k{!aPmN%v0B1t!V}c3MT!hC?>%g;HXDfvW6wnW8%L?BJ1AreIkH z+<)(yqu}gxM)iHXfly#^W1%*OeQDWSJaZ^BzB`RCeaU~HwqPz8-Vamz_d5pqgS1+x_c`NVerpSDosABjMaZe+t7#*_QvdZ9?3c!|gcT|8~5 zGJfKB?I#7Bs!>LG?%}UL-Us^j_zks##-9N#ueI1`qSqri7ouRMhS9$S5)p9X@0)-8 zopqNZbcA)kdu_N4U~@OrCSlam5Pr*9!Y+@`a#UY5C|Cd89QA!l&1^LD&;XH1dZVJ* zK1;p%S&*3O;0U)A5fmXIub2K0Y8ugs@*aemKxXLk-uq|ga1MVi!l^ih_n#>bspAqm z*8N5M(?oA#E2dKv60(13=-G~Q{63H7*dwtW7hW*(Ipx6CUr-r8V;DIjf6ap4L1tKL zterogi$?kovYL&#CnV!MorkOv6}#%W@AMbL z(vNq`gO3b-?Fjwpp3p%MHg^Q`)2A5yPcC8X4g5)b5N3|=#qhKWjbp?IBp>~9?fiC= zA17LOxicA9PlREbXjR6wyfJ9SMClOc)%6O8O^evrtak+5Ezr7}H?(?S#yLJO4eXyxCmV|StieX!QS8b77IX)xa}jOR zKTG|YDD1KmUD0KtaXDbh9j(-Smskb8lB)5}w(AZI$BF%fG)88VnSe<1bC^p(%vT{D zHVxH!TXZY{Q6d5EyHpcp^=F+U>fo)~U}sdI<#2lC=mkD9@-b&6;6?Gynu>Yzwu!r; zt6fH4_W_BcHGb+t%CfZzVYPsXRM70vG!^1FPY>3UG$Wd<@|MzJ9ij&r+yK`2n8-ci zsp2&qGPQ*t3XxQwi-C@iTB-UX&^_SS)9n<|?L$rPFhr)tZlPqTs7q6QoH;O-J2xVt+fSaA2o8Veqv zad!`{39e0W3+^7Ek)T0>OK_Qfo^#GM@63mpKX8B8ckSA1)ml}xf+(G{{Gn+MA0t6c zUl|j(Sn5(bTF9L+WHsrBOiEuLc3{1FEVTrGW0;G~uR!y&r@lR{jteY989p2WVs41I z=cn5{J7xVRE)mGGdUUhQ;&LIQ;fBHo$?wup&5lX%i5i7b8bniDqTKgY#h=7_ytm-N zVb{A@{#DC_lOTty1pLUoJ%ve-6}g<`+q7Ayh;CKxw}ptg-wfl&@l>eX4I|&7hpGGyz9|TVf76XCR5fr7&7~X*Tdvr`kl;b;zKn*f)dX$i3 zQt;oJGdJLlMq14QoCB^roRmcX+~xNajDsd%|D!E)f)H`~7H6yD{d2(%`TnYIVG&3T zRgtS2UBg+9L)dY#wE#9p)|U*9_eZO|pYcb>^FL!TQgLB8v_ym~a!q`E%HbLoGAFEI z$!QvU#Af~3C$9s7v}Zm1$d=ddx~IM3yd0x%Uig_;hMLR2%sPuixV#aq@9llv3H+M^Cl9wa&J@-q6<1~aeJKK62eOeLO&|<>SAmGzS-u0=7EoX#A*5UTv zu6plt+Uv7RcZZTGd12D4*e_73m+l^6;RAEc=|vLaDtMLRYpB-T*WK|X>lFT+Mz#Av zp9YI4Io7o^4&a>6IR!?Mri{=GBSwTV(P*DZxIRaL0wROLAs)JI^K&lLl$lLAWp?gz zIsa>0>fNb1opm}TufT^hgC0Xt>9%Zz!`B{f(jbhnewj?a4j-IM7JMu+1tWq)-u z<=J=2hjvr(cWD8c=Ox>jPn0u`jyMyIldOEq5w#>GJXb@d**ts^eQafDsdzb6zS>UA zCUBKO|0bwr6qxzelL^SafoTFz_eJx_FQbqn?k2?Vcy1#aWzt*wBBG+j4pqd~U4 z)cwzb3&c_NXcB}V-{DQK2s>@wGlC=&;YB3C*=B5i_hXrlx5kbPxwXyRxTMA8Hy1T$ z!~dR-$B#r(tv^aL3Fw;n9+N|m{wuBKs5N})rT|Y=+!FmT+Ecwy3ThcpV+6Z?k&9!ffax#E+Xak=<&f;|Tk1QTk;nav z<}<5}FE$&b6QH^iSJr;qG(M%MID>e2E4TP4%?6rIXG@kg9dr{B2Z@xh&)<%MJZp4A zLh8n*oMAy!0Mns-3MK`6vyb4T53a9|IO_J2B7gU_nFZauzyyMG7q7eGchbdV@6}ME zvrdvFUz^ZA;cPl`z~we0lbj0BJUWNh4jIO&U%B&;SsxnyQF~I6Xj9r_|dv3r9k;lsRw+= zWiQ|c{P>71`NVam;3eIzYjja1xpQkiHle$s4JTjfIKM=5bA%!l7Ak$iE%iw3uXfTA zNJcDc)5{sLBly{)cm-Sz$WX|g)B%hnPehF{?@v`eqQRPAlS$sL3v+AGsU2YfQ$8*{KV!_s8X3_43ERJjBNeV+d#>8}dl_pBKOoViLjTvWP9) z7XiMe?w}#1JUJ1Fs@Y*Q{Cr-36wq|oCUax*gK`OfpCqRx9P+?;@HO?mnG7Ug3OLxF znNXl7WpuJAqS-Nj7Xn!Z>pQ2uM`I3V%G(mhMU?xdP_ba5)Qjpy`G|h|pNuR{Pv4$T z=i+u<)G!Lsc8gD0bW89AX&YEa{FWM_06|i3dudvE0Vqd=q>JdwRs5^;fj<(RJfwNX zh6aDRyxeb{1-$pB50Kyb>WGr$IUbZ{{uayOt(uQT@VYi6SYJSfB|ojtAo2(#EiubK*%_QmXt?>_NH3gfWIMplYP-x$+j!M4 z7$@=URx*t@$4z=}ny{lFH%C0AASa;=d|VbeQrkqQuk9iu-4)gV8MOom?3e*!<^p1WT|)iXKjZWKtFX~x*sxK|YHC2&3_9e5UxB@x-LL2L*-(ni z+V(h}kijjz*9fz+ger+)isTamN#uON523^SHCisJXgkV>={JJz2PC$fRE=HA~LKFkwNO@xg@$ZunnXQFQCFiLxRA)vB6Cd9&p43jQ)?R?LqNPkDu{m?XH+C;xbJfg zF@DTVNMY31@uHn!+kG`N%y8K)37VLj2UQr{p0}~y3_Sjf8r}~(mKq$z1q7P75QAhJ-jcG;Nhgrq$Z-#_L(QMaeM-9p!t)WnRJ5Pz25K|u^clY7*$A{G<_Qf z49Shx{I$%n`EM>XqTTO2&28nfTKi4B zYQ7*MAtK`!oIb*dPTrr7VWZR@8B5>H({yWX^E zG`KeNG2t#?VqS9Cm}h`CCLhF>1o1A!*|-`ZsHfwm>&Y`4cc0Em-yfxCHZ)6h($Oe6 zsKKO*2jH7bs`=5{DMcCPWz- z^53k(Y-A3ct(({pyH#44ySHsWgc6vbedV*`lnfL1M)szHBFcB{u$?L7cMmYh&=dG0 zEm3rbjN|kqOxWRXGooNTH_ay4&-i2NC4bHew3<^R9SffL4787A`>EFXiRYidFyfOuBw=@pt$HoQski4u@yE_aW%;r}kR*!L^*GEYgV`2#pREx2MdCl?Xs9{LA9eU6)6e80^*s_O?dLZVyb8Ji!+!I1MYusQokjOwS$3v0SLxppirw&Esn z;Th=5I#CjZ;Cd=z75m;ftg5mf*gxtKO`{~31~L^oKk=3R7#&EzVO8* zKk8TtmUJO2j^I#|r9}#iOtl(5jcDF&CDllOfkkz**_;m*P9$M6T=(r-j=Mgj2FGcY zCYj6UJG(x~SeG46iK-;CVyM?z@6w%FFM{&g+VdS{P8;+j^I}0#P;s34*RP>J=(CI! z&vAz@9t@tZhAjJen#w@Zy>cGah8eopVq)w?rLM>XLFc@Y!OtvN|~yzTOdm5GK6qTZ@_HG2VY=6}ZmTq}f!KK*^&z5;D%&qy)K zBIu`EFcgmd-;ifLa?ukEQ6~8SWvktA-7T-vwPb225tNI9PZlxY`c&zhVoj@TgSLI0 z3jS@2+ru94Ahra`G*88u3|$~jDanO$6q?eCF|jj{BO(sGP2M!@=@ak`qd+eWlIi<75};8%QLo$k>t6CApxHYj^q902__*Oc6R{FQ#Z{ce z3XdaMG1Ov7D0MjIhS?h46a)iEJx{?Aa&3P?sxdKO@Q1kn2On}hOTSXDrFFvmZu1SS zFa#6=He!)EYieL`_o{YyBD9zPtB)o2w$uK}l8!*P`#pIpLF4~bagpHZ6eIwgtA!nTXU z!SE0-Ccq;;Mvc?*YYh*J5AFu-X6BvPD(3}g*MS54%nsWatJ+mq>wG4LoJe+})G%~u z?I_@-&%0)Cr-xF>xkIEMUhY>CThhXR2A9k>mk=?KCGDNHo-lG~yWEfcHv-2M!?Bs( zNEiaOxU;7XJMnS9si-0LU{ncxu&W@SrCFZK5}-ks1D6-;eyEZTk=v}5ZW4HpZBO2W zU?%)2`$BKzFM^NI<(-25Qg^`B%<+vLYpL9-R3ST?{tu#&JLL7nY*qXW)5PIiUDKRQ zVGi2{u^|e*D%p49|H(7vozr`9+8-?={ihggX&pW?oSPzShXk)mZb|G&-tgvxxXCS7 zofm8b?Bc>UJc&@i;b?raT##ETC7J!;8P?$CmV?P-IEv&9go(6SswJUGU9o-jBU!3F zBohAwh#i3Awde@^@8jenFt@I`GWhG~5aM-Pm15zg2fVCQaH-~{O@LF9T&C4u_s#2L zuL+R*s@d10ZO%^<$Vq3SqJrMtk=L^###=e%Rn*CK>?_Aaq9}u0?=>5w0;{AGy4(0V zD9`ZskaGeA_kjBeEwt<$zg8qW3S5LNOX&2E+`I6-$51R#qV5-`=(JURSUl|p z@Zd~=HvD#}H%QSN;R$vF;s2`l^RC|MZj$YOZ3hPxQlG&CYN6n3gsvmO;wn~I*gCc0 z_#0~-K(*%VvO788x591;1Q`FQyaf8d!`9lm7h{*_C5%`J2g5P+Z>88OoAKnBEl(5^ z4DlSQKScTKpxQR48bd59KGL)?d@7H#*?>Z!HFfZ~31fe%WfpNxgp|}}h!1VqvB(m< z$|wE2#oGA1pHvQwE;;iz*GD{dk@JMaJFdwJGOQ7IirLwk(z}$m#g@7~MZay3w@J*8 zA@u%#6qHTb+$QBdUJ}WW64OftwB7goFtE5D2S9m=zp7Sa=eT za?K6)PLsEwH5>Y-@RR?twNeKv&3+|;6Mm5XY7{TG_C_v)4>uNFI?lfLP00z;c7xW5h1;)F6AEkeB>( z=+;yLl;7`Qw0ko1T-=K3+}D|YNUqA%kW{8+lt+@fU#D|z3fKNapG8nCx0+P?e5np* z3i6}U;y+pA+rNe5_~h<{R=v-TiL1ZW^xoj!QlGnvksH`HV|sFp1P(vls-J<{<8=?5 z;7r`DvVE}u`Vb4?j72yS{YG=G>88;^Sd~)#PGxaV~pU{`1UtOa5MQu)rti5BJ^O z!pcI=(lF0jERA#HuUeyC%7X#n%=iN`Dcm>)i0}1>X(`|B)1GB&88d>fA@Q@?VQJrcFuoH+RcnY2nL1 zX(5s@P%n`~J%OKj*F2jyr+Z?*8$c2tkuX?b1$-Pf+wqb#%g&(5iGDBr@_0-ABO9w6 zG)QA!PKXWPdj_ef={KP~vCXyl_Y7(PZ@8kU{s8nBD8(S&2~TCd zuw*}T+mG|7C(@jt-PzLleWYMwo3Eq&%yPHW^o)}@c|~%49GGHEtQ8B(&1$eK-26Wf z;v|cN!%^T81N*dOW%E<>b~3rnJN&hu+5|eq9_xdIqyE+^R=Vy$M~|XwFg!_^Xc@T)A+Gywf}w*r4;*ECrIXc}v?jPQB;ImyGpkU3rubuh(9P6~6?D3fo2YC*BJnlDEzz0ocwr^3#%1RNh-m7I7p5+^Yt z8sddGVk^lQ3QaLiEJ&dN^>Xh8YLX3YEyPWeEB>ol-sOkA8NedO|0QP2E>cp?>_E<~ zjttS3zB^#+VDT$7_38Hl9>!`VW6OFV0q<&Rrte0Ns4PN24jX;BB8cFHO zeG=rviVSG~)B&vJEj%2X6-NX7!|ie|7kc)8%zZ$qO1-Fh#n_0sulkYt6VN-@a{*(# zxBin6s9iQG+^bE8x>+k4v`8$7W{`mcat2UJ^X4Xq2RQ{*U1*kA8lNr173g<~+6{CV z%yM!|=3RAs`k3f8TPp!ML>_GyjH-!AsM7koy~J&k*LfUkax&F@Lf#Z)YkyP7B%)-0 z>Et0kd=%oaCDm3u(?>fz*EU3Tq znj|0+bFlvI>`5%A8~5Y1o!j-IO$wj|-mzJ+9vBM5lqz{q!Sp6CWPYUaBLm0 zB56N4J!0fKD0nPGfT=3KhMUQezqfaMpF}c3Aw=^sdI@9~65-yHvj>~$np^7og10S- ziuS_wR-5XAi^w*>)^BiZQA5;Ch&HF-{>aSkOU`%ZTqB^o|uF)F58YAmB5mzw3M8s zS=yp-QX|bK0}nQvE#*MvM|8|*&$k1as*u8)@Xy42LDkmHYaX4{R?U^@V2}-z_6z3 z*Wa9~tjKVolLNP?e=%YEYdtxf@i$%d%zIO5TgmUwUBE?Efdg&jn62c|W(DLT282QS zig~cItEz&Wg0Q#ly84Z;fLCE-i1Pl{G}KnU)H1lf?X9#ZYN=iQf(!vs-+P%lxZ zavg&?`jB<8=qxM@GCu<4PGrnK_xIsOkwEW&S!t3;%Lal+Jam<}X$mVcLF_my@y=(RE8KW->f@a{})1SPuV`Sfxqtk@1pI;VqA2 zK2~%j1>tUc>Bs$7_4+?*tVJ~HOvwgnN(@pgcvP1DE(}AUJvU`%vo|S9pEux8C%Mfh zBZQBZ5_CTzlO!+dn!|F18Mq`?#3S6ogI7A4V-bbsA>DX_(|H?`+;cDOgk+>F%0C0w z*eWCh+pzdgRW)kDEqiSd41)(?tq%KKL(-F`PW!Z7suD$M%j-7+i=7p_WVb99C=KCT zOcVxI1~f2kF*qUM_tc1mNZZnIXlu%wkKYOVBH&-Z~L3}&sF++B>7KbP)Gibk%Y?9xw!X!IaF(0`5 zg4YQ3N(-PY8!O`Ind;C)^Nns4C>*Gu7W+%MRr?FPSI5NxI7?Hq4v(lpDP-`r#k8e_?jmVwsA#;^ZH}r0w4c>=tRVa9na$MoJNjR z^{hYIo%lgl0Z0))0i9kH4B&!2+$m7yA&!*}ya)aMe$Rklx;c;>rGBlHInz&a=ix`c z_K{`K76)LDxF?oL>7_W!X`zjogXp5868rU5ogO}dVo=DaJpS}g9~W8Bc;G?1Sq@Cy zBR?gO+nj`xe`}GDq}KID7}M=&k}fnT&3>xVTC+x~ub&GMeG24qnw7Ke8N&fTN21Z^ zYSwGHXNh7VkGwT3&Y7jION$RGoNRm(=)GLXVd(9A<77Y6R(2;ONpIN{XMru&PYAd&Mhp@E zzp{v$n~qI`sj`ZpSuMeK`^-_p>QXBAX_wr9)WQ z5;O`ZfeM%gVLHntIYbaV4Z2Q%{2h~wD8`_T9yZA45pZMiBX4ad$!=3?p(OA6%o#X} z%F%E12aUwYWHy?mRwNd4P3t+y1u5Ixq}$d4%5=4&L9D-(Z1X zd(;+995iw)JzX6XE1EyZC0H9wT~ssUng3DCT^>66j~X*SD}wusw)t*>NRgV199_Sr zRYBRl5>v$|s$;`ec4e{2JGtUm(v0#J0SAsIj{3@(p#Vb;N*+sE6hsUZeHL;eMICr5Vw3m`ggg=}sQgOVcKyrR!Nmp0bNtNNCmK=SIqXE^Pv6$R zK;QVYE3+V;bG3B5uJ8-`ZI&yg*Z_E>Lmx`VbIH@KGq{iD6n^vB6QY$fvR88cH&2k9 zL4*fAiyq+RV}|xhyJdqo0H%05#?{DC<-NUs$6jCfhDyn-kwyj!z|qslPf;(O-}Np> zNJxxLhi|chZlP4Z`@|HbIG%DPYE_d-J`)p+B~3fJvLJ&} zQ+{8=Bh)};`JLdc3={X%n^V3GWWy|;RuqY7-<*Olrg`71SUWDJy z_1XbA;-dbMCVJS`xzgZi-_a@SSyybU8h z(tbCZVRejc&I6_e;c?*`{cA1BTCsr93YD2?#d@{>lzCxj>S9}(<4@ynQ{M_Qg34e2 zwcy|sROD@RobO0VhGemCS4$HGS(+?lvjYV_U8NW`5K2{}(hPn^AbO35%~18DAr~Qb zM!xlf<%Yy3&R>q&{jE#7aOEP4s|eNJ^*d9!H35EnYDWaKj6OC)+%0GcmYwL>%O`l3DYQ~-pfl6-)%gw>5o2Im=~N=r94qQ8gj&LkXOc z0Dm-YoO1H=I)WM7T}XYTT+3&tI87ya1aBE60n**@v&@>Zr1Q@^WFAJaiKtkAiDiw` z+{Lt}fZz7G@!EBrR*(Nv9L`Rl;{JB-@vommHNPdsF)a(zy0BH#M)PpPmYb92YilY= zv~ewB#^1mbKu%q6J+PNi@`B?vu4G___o>&Lei*^yYxE$d+`}csJhnG_eI21O0Ec(= zOKmOYYc&6=CNm?FzCY@Me(qz)&T&NoM- zRB}Muh&v8IJZq6r%z#6EQcj`5Z)}kugd6zf`_w+3Y-9|{n?IsoiHo}#xM@4#Tr+4w zwYT`t^xfzId6afOWs+ox#tsipb*ekw8QRf$hMpfUR#Z?%8ieR{bJ9(J2b=T|{?T_L z!M%k!O~4TOJG%9zA{_7Q5JT~QjU!q_{~AYrTmKVHwm?6wU$$32gKhDXGRM@ZzH|uv zfp3=u)W)Zi!fZ7^3#hle8IetpE11cNB{%UIB)2)46#m7h9-`zC9atl^6i4tuk~>!* zLr76a#J`T3s~4&a)ly6mf+Hx|j-?JjA)JS=X=kwV_vjJ`Rc8k%P)crC)R#%m6jn1< zQJ!JWPTqhTT#K3^!i6m*qj?ze6$9zlz30c4`~j_3Goy~A|9JuSpVWvkMU?KcdSGQj z78QkXJn7kKyOF+GJF*0H zIy&`V=vaN@6(Sc4mg%0K)%5QmY~#YQg!1s{6XD!`lc3kLL$4*jAj%Gl4`qU7NoATj zYV7ahRri7u|E`gLtcR7wi=^;ai~=6T96x+8jhq-4g zyHbe1pu}=0O@exi;d`>m_)?^%lT<9HJXk?i^#I`o_HzHzPfp z9lYFL3%Uys{-MFjpcH0RhjfZ}%DgH(u-@}C$l*W(A+FmhMS)r#30BG}p+HNB4qvo> z+5jP)VKEA=_80j_bPI+o!t>9UGsnrqLJ%h^1T;R|W}~JmEHYI2Q(b=K8s; zt<(M&UfN1N0sSz;+c)y`>7%B>0 zsloZqL(m!%;Sc~BC7%nNJTSw9H_+qFF5mGQk!t%l4;4)IakXdtKMW=!tiq@E0PWg~ zvp*MXuOkr9Ujjf^sFn5;RM?J|8_{m&a^+;$-AYzv(4yW~f4(BHZIW(_} zyW>NIODm#OhJm;kl>=P1D~w^a>B&5Cq5@wdqfpC5&e<3-ky^fTY#Rpa4bp0;spyKw zTI=aPX9IZ4D9)fJbUumB23bZnMTT5@28 zDJ#D?b70;__~I_WtL>#uz`(D^%$&}JPn#ECn*Rb-eWiT-1pzJU{RE6Gl&X4@b^BgG|pwfx`T z9TH#E(Q>GmZA;It#foeciplzfT2tU%!}^$dKBgnq7w7-=s6w>u9+FSiOR2@{yuKuK zMFE(&P!T9}=!}0h^2l~;$8It3Y>z(R{ls`HuY}cmGa1iU?NBv zb6VmD8KWl;zRZA=H0tdU5`|$#Hp-t-jSHA8andJg?Bm%I_nsL`j+^}@5h#$(1e%$B z?{oQb-P}2f!#2#3|7>X%o!!-VHW$sRcv9}DapyH`QGi1cS^U*vwUDxIa&j^ss+r`$ zp_G)O$`D(3l5Nudwats7^a0-z%eMSqQ*BAAIw@(WF}tk;5fUkjG|Ux=U>C7ve^GlY zH9xy<&>*IUKV_4zMmz=`4@s2pdxt@<3-i?;E)wH4Hmcg`tg;40gJE{;o(J6t5N0Gf zr>v>TP$~Ep!ObM|Vz7a*DFqLk+&$G7Ibw02*U{fnIlPi&1)#|HN)Vk}|bc zNFy-#hZ?PZP-a9ioq{tg<*^)|b!uu1u4gtWjKLcG^%>R1VqTUxp@&GOvjB-eJ)FVm zf_EDC_1b_gtdUxWH|_d^IS=I=GE3DEnx?OLXv863_ckfVy4rwa9<5GOac`R1## z`?Y|(3O3|rh!~)8XW0g95j7iLx?I@XbAMlAwh0}<5RHmu2chzZ!4phxA~@N4qgn_5 zZc+rV!wzV;O~xuTX!Z^rpS&pUvt08c=Crr_7s z{21h4KT0{wU~60bKR=2Ze`iX(ygUOHWTg@X^;~PM5jHRsmsw`%DX#&3vwP46 z&pvx5>J0Jig%ax%)HGz>0bjgd*}dQBw!-NeaTCvZb{dJMDXpT|ik0CgLenQ;JcP9V zZr(-w>AaxF;EqmddUSBmbP9wG8=WR`9SW=_=?C@*G_%sddsiUeZA z7fP!=_+)9WUX1`^aLU^exnr=nq-YCD!3JJ5TLkSV0$w9eR%}L=K0FnB_hNu>gtCY8 zDWIo426q~`83Q~5nj4HFV11+6hWPxl9rE_!K>vOOXM>` zZ5=4aw>F#rAw??icw}xZUrUZlqLE_VYj5G(eY~guU5080r%7jL@@Xq~cldjzmi%7D zUWhcV3PM)FE>sCSTIoFyn3?ui|c-sOMNg&Kp!>6+%2Y%VdLkL@n69>AzNr(s)VX z@%oONd#j^PTV-u`lI&iB6NBdwaU>ZF5v4uILRC4SmeN%Hd=e{~lQ-;EjR4f9`rXib3~Iw32oA zW)U=|^wrARAv0Tk%S`~%f?rmz4tnn-u)Yya#Wnb+1Z@iI@fUdl$DD|oHj)3t6@f}N zX--U7q>ln`PAa7y5f9$z{`EXu*0FZ!wFKNb+)~um(#GdqzrdG0jU>Wenp^OrqW+6N zbxG)Ip8{b-at&Y`jBw-p#3c6jb)GVgnmgg(59%k*z>}y$hv_XNZoZ8Kc0Vwq9bC|W8#ZCi8rZ*dhDHt!d;-upq7wgeL$Qw0rp37%aGWqBe) zYt8F_njeaI^3-0}C#me(A)?YL-YLHvmv!Vw^rb+79Pi=pCIr1SwKHh9JnV<22(8}= zVt>a*++6YrI^XDSQ%Qo^bO_^mCU9rsTYG9YmxG-A)h*Lr$|9-3yJfFq&U-^{L!y-Y zVqdn@@7i(#pD@OD07>p0;=P^t!}sn+{|M)AG+p-U-@W;wYP}0Cnw1I@3g_%taZd=X zqQO|bIS%|pP5o}7B@7)ynFV9~1s^M>Jc2r*O~6Qh+3nBrUif|ZI!cC`%W5Vsx$HX} z10uXeHp@w`gKxMVcvyzLj}{oBQJ6Zk(%)|>IZsy`TvAEa_b6@8edwqX2IRtE zqqHPm7j9S|TmNL|tOovYAC#DAC0E}9?yli>{l^#HOD?pWt5M{LJz$E{oI!pTL8u+dzK{Bun-f*et6jklXc6iJpW1Sa zQcA$v#`e9J<{0@DC)I0)_osP_X#Na;=nQG5K3S+0eW;kZVSo@CBB{B zrmE;KqGyxi=FSrzI$vh}6!>Q-czk~f-X}|EtdL~=8F8&oPqF|9*0ynu#QvV?{3ip% z)_dATG%*Xy1%4ZMYUyU$vc~I;`_bC*Yrmq}!Bk**DgC{DL7Gj5dm8IwY~LTuu&0;-H)nft1z1qtQQwMFpz$TZN!rj;)=rE>tzEgw!g9bO0t*u z8HlgYQCl?*W2aB^w-;Ef`jEf-#c*+_e{=w`N+lCfTLi|+JX_iElrgFpL1O$M!3f=v zWuL#kC_mzR+G=ctAh?Y|^8IVzxaZN2Y#%H$j_UHnwJ6(MG&sQr2M6h|(B^vAfa#Yq zU}8_R%kWod+t;i8<|&R7C{aiM2oDkIJL%+O}tupfIVx)%p*j9vK(K1-0gf0)DC3amPa} z=M^pY!k!jzE=VicI{k7s+Y2H?*eZq?^C zpRap;OoshStD&smLx;GS&^6I%ei+Q}3B}q`IL|hTJC6M0@_F%9`{c9|ZpdG{q0S|Ftnr_#xxZ!8w<*?WPH zi1rCd_6W~ek*x8)kGSl-szzi9V~O+EjFEOMIVa^t;4Zu9 znhaDc%kDO}>=d_WzeEHd8C>Sy`8hN-0zIs^z4pX_0t<QNL3XcITxpTW*IyA2ro(`HawqF+|xVFsJ3Y`b0?+kK$ZQLU@a0-?u+ z3rZh?oylj2dLH=GssSp{)`cS8v;s?J7$p9}m`@B9?YU>u_0LSm7kwmH4DO)&Kt)u0 zHXL%+qQ_TnKy&MNy4swNyJzhfNquZ+IA!ByXcX0c>? zj9w3C&NqN|NG|T>jjepjFO%!QLFFWdZ!jxJP6*5jLdUBUou{bX*?>cQ9)QFphH^U< zD0z9_JHcoISAJgC^Fy(}yTHXD9v~Iw^%Gc`w?((*O;|{@T;$)uA0K-!KMl$m%8MO4 zN2rE!L6GX3isAKB^kJ6fwEubGjUaAKvUVivYsBT|T9X$g-*&1$3>YW!_ z7w*KweQb8##FNOGoxA$k9-DF2$~u3zPKPsZ<8^@|U(cWwlO{yS*Y|~vSQ-+U;I!u9 zM!e+kn3x+FgV%083{9Rhx1gsQkqo#Y*j;k#@w(}4uo7%DU+H=L9@~zF&iUAEaVh2z z?V>XGj@)Bw7uGGD>i-MxJ^Sdxsmlr`yYt-k%R%aw_J-)+KTpn!Ohr9*4jkj0Uf*@L z`5X#$xJa5YN?pPi4-!D--m5FmebcARUD2#$$4{m=$Z!{9jY0gZ3tVTobQ6uvZ(7@`4 z1L6-jE*uug&5^OXSFvgaO_rHIVYgaAXWQd(k?;q# zONeV6MlDmpK%adF!)tiK$=cs+10t7`f;>@hs!N#DPToQ|>th3vNTA)#^(4kV2S|_E zsD*uPW+BLh5jr%A!fw(xhNS|=h?c3qG895)ecA*Ng%5Mx?)0Ot3JFhh8kZ0TK{!M?koP{nKHba#rQ4k~Qz4Vp6FaoHVmt!PPSu?rnSt(~20<`0|^N7DYhss@%|my5FJxE~?@+md!RScili!65GQ|n{}#?i%(uhVSRQ^3#PnU|K0Ap6wLp1PHkj*zXN38z-x`G zo^X8Yahe5X-k=ZaWR38K&CLrG*=CGDPx@o_+Q*~>!>Vsb;G~+qa&3N`%m}aaPCntQ zmS*aA2%6K{A>o2NW8^=)?nxk;$kK`!Ya_!b@@u$YTRRP_xlV*;P}e{2>_|EHp-_1q zXmW4a5r3J?h2oW0hEknUsAnHuUeUMUsDl2X7GvSw065`6qAJ~dZq^}`e=5>1Kllc- z{qEpOnBd|||5{Owb%gwRR72N7Q3O`;U1X{p7ojYWO^b zP_|qs*ZaI)9w)D(s!K@nQ493SzkHi7Q~3_aG68Nm!26LmNZ}r(wQ(GMG@L;ByXAy4 zZ!4%Avb8Mvg?!vQ4-*p>2yIEL=HN9ON3 z4O!_&PfX?y7t7;xs)xaO9B#j9q!2Iq3Qt6MKq8Tt;GKSsMC$VZKM(WzC6$QS^`|Nk zbuW89DE}H4{dBn-%&O?Qsmtlwl;Rb)yecX>}OFc`y%Q{rJT z`hc&j>>i73-8zV8qvZsU9Ha{}C+k4FVLUBn_2 zA;BLloW=dLRQvWvxMw+?y4-f3QU#kQdpBolQ&DP%Wtk8tQS@v)=FHRR=f2?L_NTvA z?;rf66VFy&i9ylGW1+m%KQL~CJkQ@{HMYo$z)jEJ?G5V0Z2)#%hhOm+TvRu!>D&Bn zj;H2I*6maJldfOr(qi6}BMsc_H=aW_Ukw_+US^>^Z{bt>pAW1~cizpQyt?7Im`d%| z0Q{xh&nUWXgS^k>DL0;PJ89FBg~%e%&|bV?R;H}UX@y^pG*;F?hL%}P$xWv3J#ERH zBx~rzA<`&(NPX1))CG%=s(F(oe`nPI^)(Y*=&p4I@!DEkGQ-?eVzz8nQdqN3!eZLN zXY;*tw&cGKe$2d7(q8%FA$ZeltbHH?*WcspCC(GyOmZ48SGr|Lih9ABrTkr}jekHL zpIt9gqg?&*vUM#h87nFjAM`qsh4E#HXuoHw<&rCULfjK^ygR2eJyL@wqsZyXR4UG_ZhKKy&j9o)Jz8|FRyoUIM)Y^ zbX$dm{2q|^3f~X^8t@p(x8Owz^le*=mcDMJt z%Rl4i_GLC=w{)hS><6!7%&c&M&pnsd3EY+1z+sLF0<|KbdSbdZryt)t6ZyvX@Zux# z$~W$iM?r|F#(0h{@H_3$TnY`c0mJuPGdVRSEdk^(j17q2jBz4Ld$w<{BVt>RFSk)t zr5lDPUDf>{iA0D7L+^=}@AJ?fd+(9I0z0c0w_I0hN3?1#6=N{!>0Y@b`KjN`_6900 zPU{rmi|}iK-FNo3&%3*T*T>7}XLn-$dtQAn9mQ-gyt?!Z@9r^zZVNEp?}!LGpn=}G zN!VBrgu}JuR`i<$k`tJ44;Jnf8>gEiavrFrcCS1=T<%v>0bD!$H*~+4 z2=^9eJvtG<7~Clq6JrRjfvaCi;Ad@q(213QJh4#@U@&zu z=l=c6xXF|y;3rGru`ix^L^8#H918$XAiP6ZLAhZOV_4H4jvmL*tZUeCMYw)2TKBlS z-Cr>PEG9O3fNXn^e5hw7h0jxcJ#uLqK6AKw|mFhwNsVfNP>N?z<7+ zG+$=e^X(BAZs_d(_GiBwlKhh{@C(p+#eHb7&Yax1z=E6y`)GG9I#43sAAT~wh7kMJ ziA>sQVYrSs#?XUS z=9&hEsuVw6J~c^})4Zr?k(jMkMzEV=%a0) zoz!9?p?}P#>z?a@LTiWcYG_wscu$*q0b=I~W#?!099DLVm1Y#{H z%VXwW@_VZ7^9g!b*jk+*1rIadYv2izwK#6zfd2Zv!cZlnE`xRFj|)zIMj`jV%TuSN z&y?z=cE&#klslV_hs+pA>nJ+9zFaSKw>;41%>r60B57C755KB}lKglHu#QbxSPp=ifKR$DkW2ec!^uTm<{5h0$F4Xg$=|d19_sZS> zr;+2gk$PW&Y9)o#cnpU$6)62MTCao%;PzcMnsINFs=r59t}E8<yuCfs>zQHvlnozFEbN>krSPue?w{$bppp>AoKU;Hvf?_D>mu6rIkZ4%Gq6Ptfj-oFB^Iq zwF6{T?=}Rx7K0?(o{2zKc>!prH_Ug3_Q3SB1y`Dx{nN-b0sPMwL_sU}ymd#PluQR?qE^$efC*k?g{xVSex=~VYzIc-{GcF zF$KEZXsXt1H%ASywD{|;`LstEMIl0x+89cU$_|)!O&!o=##V|Vb3aF6?X9~uU!VI? za{RizZ0Uq?6I@dXOv)EltU7AIVkuqr(xV@kLf{R>u(^z;AHSJ%Zgxb1!26iBV-Bt0 zYv1Sp3<~h{o`3==!6e~h;O=&oGcFBOtaVhBM!tdug->r@h4QYuc|%H zt**F7)cHv~j6rUSFQ`5E&DI;sVoLhkVb?taWizm6z%_Fp&k&PU7{Ahb!-37aB?ON^ z*#J`Pkg#bHj(MhCTr6Z@UD%q<3iMFB0amru4L^BdU&2pvJ5nZxM@o-Vg}xgiV$E#B zU`XFN+sEf}Xa?sTet)HLV5UOP)!LP%HPo2|}UB93Z z#++AL2e6e&HutL~o6N3`rU6M8Ql(bN$AofvRhFnLBL;k678Wd&fJ|9DsmDY}qbNz1 zf5-;VIi<*{`| z$m~ZetCtBL|LaF2bI*GY*mMR`hLXPbee`H*?EpX*F~qus`s;EitYhpwUWD7N4Zz`L zG1~(oSfTzFsO0;4VlNafeYl@)p9j3v$R8n#k=pTNmfosJw@hXz?w|4F*7;_v6x71~ zcP??P>YvQz$22xNl}v#{{m(G(r$8jXrH4+B`+1a>t}uoqh}tcPz9DzJ8NXL0p&sT9 z=1=IzdOr))m~rT!9q9HO6qO`?0d-`DPMKVY*lEyPR){ z(LmbgeeIydA`>ek*$-Ae*^a1GkaqKK8oUL;g0&&yWjLDIhy)2*$hA4Qbw7n$n_vLX zG*v?<^qU-`Ks!htS{A$0_jG{K1>0G@!KuIE{7f(iBvgLoGy-yZ9V{!L?wJ!Wqu@Jo zDPSxFkcZw7;=u>&KmFkE9%@GUAUw8r=M^SuChg&;TOIBOy{SC#4%x?pAs)vU*lvIA zkY!kM306#KLuU+l9qj^$e{ct>uPww+j#{+#h8M4G0+~GmU3~S?vJG}eyOadWci1F^ z5fHM7v2hglN-nCMpNZnu1Zs1FA#KyMz0w#N7JWr zX8pdRhI1IA@8d|b2VR-FyfN2G{p4Jmn|K#;Piz#nYaYHbpqZbhAtIMm9ZfngbwtA5=yO}9p}@CO z5>;8n7%Sw9b(Bla-{6eFchpI(w{<&2+|O;(#ecU=FUgIq$m`SJu!^pPn@h$SIE&WhR%eqTx&w|mW!p_qxO3vqMc-Kud3a9tgtMSwz7!4)) z;^%##z2mF>rSr-P#ifLgEjk!gOK9(>v%VwTBu>_&Pn_3I|JIlvX#H9Fw7$Z6f5Z(z zq7t7f%Atcb=l%yS1QaCa$70}fy#vTbLT2MBTT0N0N=J&#c#~_Y$^RMA-5HhW@9rD$ zn&3^kn42paRY*c+2jdzx81|I?GXeej=mH0yKxD2cIryZZtLOm~=aC znkP%$JTOBCyAd*LyMA3bB5iXinb9Ds*RzyR=?ul#Cqf`?FAqu;??K`d%@2+4wTTx& zUhS!czP~={2?d8A@ly?owf6K}M%o$xbe(kF1JS24>!;Q~j|L#FHXXNDed%X0y8YfK za=2n`JCH3(-Hm=345&K0t&CTb@P($M5(f)gpI*(a-19VxS+wq1B}PhdT|NH|e{Zvn z+-S*iU9zon(R;Pm?|G){$&UI0{<-PEs+L5u5k&>r&<2^yq{SN){?l%SbhG}@DN&s3 zxrd7C-nK1sV#WtU34qGfGCaIxfp)q4?vbe6+k+N!F*^7ix5#)CPXPO8mnzvv+#02s z%7L<`v@S7V60#<@zhGp;y>97m6#2W{w<7?qZVm|l9`$$ebYYKQ@p%*tqa+g)qa(9- ze*YH+-fzkK@#J=j8i~(kHia(daV4Xg1=|G4V$uMYb`5#)TFU5G^wN6<(%rXYSnzX# z8HQdYN1I$x{6s3z9@z=Wy1hb}iP_@^$LAVLt7Nk3cj?~eeDtV{l5Sp{HZi%r zoTj2EZ1R|Zh{O}wOyAW0bJUN(6m3W5_vLx!O^2gVzZVwHv(Me?O&0IRof5|-ZOKSM zCj^+$ZNS5;kUQe0{eXrwW?c)AkY8kB1nf1XKYvROtgDtF5DeuL(98DLQ>kvh&Qr^g z+1Yw|298q*9{Y9z>(rMM`8yTLn~k_!Jptf0@o#wiYD4hK4%UDQASqtur#W-5nf?BJ z+i%i(-$cAj|5d#EsLx$5OVA-nXu#=lsnTB16Ugf87qY`ttZjOZtHES{7#4Y1{)6vk zm{_j$Lu5yva(+Q!hBgg8hG3%!t(UtnxN=`>wbjIki%6nB73G>HpN0lyg+#*?F)33+ zXLOc;*Clc`!J+Or&JS9SjemFl0V5*IFrWAS40mc;X@75eQIqrIZr&%ej$(L)+&N^Z z1F_?Wg+nh$;QILE^O%4bB09%EGZ>U6W3RL60(pl8A>;y>N|e%HbpzLL(H}9sJgS%Y zHAL|X6n(*VQU$=7?RLBEvwKqm^W^}$BeZ!mES81?IC#EB`)zlLIlDbTYBncWz@bay z#5i6Jw44W5+e~N84i!(Q0l#g$LlXJ)xBMWMD+6syMBw zZ(l@a426bB{t8n6Ua{ErLPRJ?bT4dkBe=m> z=JYmsvB;vKe??r;i0vM5AIUi;6saD-1EgtlT`bA|M6mza1CHR6qu_j)ay>S?n_=sD zL}w@j1rT=L_RIOcopN07)6q30vE8h>{VSN@m;S98X5H_>h`aDZBDx%O*o+UDxV4HC zB=KXxJ>O)OU`WMxoZ+A3A_=IeW@7MuZHOLdfW-BQfm*_k-O#KxEw4`@!L|sFjcwABx}Rl=PQn6l0Hx6l1>Ev{9njjm&31! zAiWXZS{C>o^Jl!}lc()4$O`Xopzr9*o@6lSA2=Njcx$hI53=SwN{9Kwz>OF(fbRNg zr?(csoR+)gYy)_hG}u*%TWfFhV2(h5jH!Do7>*ug%I0YSf(Fgm8x)-0;H-vnN>1-B z9+;El$bD@xZiwd@Kib+ouE_p)n^>k&5&AMpwH=%gvM~B0O)~MDjZDLzson=>Q&lsls5%&+)n(*Dbwp z_XTcNGV2X+RXJdfs0GcM4mM{a^lLqL!Be#~emdN*mY?Id>#To3<9Pu7@^8-#w73Ay zBQu$^1Uz?FOQuWR>_wTc-q*G1Kx@f-lqRDB0Ha*c6CTyMjWZ|Bx;%8`?JUiWUvBqx z@0bBxpYaQOZ;H*;fRJ-b&Q`NManE-=;*G^cZeeF2Y)o`1&G2jP+Zgu{I*ezgB}i<{ zuZnaXP9jW8a7X|fNd^vmG%(?%k1Pts0sBiU7&Ozi+4Y&?GK}a9(foWo@tPEPy=Ao`4o)2X{0p05ZC*Ko+6~=j zqV=~M7HgZQ(z@j-Z}sNNVv^Vi8DFOnm_KdJH{T=@I_cLp6cSQ5PwbT9F{|6i2|r}Gc7SM&Fu7Mel~ z`Ew9O$YY&tW7`vygUDLl`!T<9-TV3BrPn&_ml|XDdMLD2dg<5uS?P>i5FRnl@n>4- zb3XU_yNCP1m zj*{$Vk^1p+WVSWjY;Tj+d!3$uk)S&Ug^R&^&q8B&%7 zaO@J7YuRZ0n;lh9Olp=uo7eYoO6USm%d{Jwtn1MI86ij|)M@R@EI1HdDzRVun>QLM z()FHk3>NR+zi0NSGy0khXfWD0?d6i|0}I`QKjIa?nR7UUBc(^I>}K5(TKA#j8@phk z>=77TY7~5Hgt=qC>dAL=<7`ZRzF5XN0w(C9AUAw?7@OY#lfY#O4k`Zw-|be+dY`}} zSD|qs1Sytz7Lhlr-=%r)6!*spT?M0Fm@)bXy-TbB!Xax(=OH#P=I9iDpLr#wA2L?e zZtTC>kG2K`fSNZl51_4JJ>x7b{kLYv^^?l|*v&sCi~sbuCpA)Jve^tpN@ds{l?*wT zprQwL5_k67wU@_TkA%noBkqndG((v7Iv}i2kHOwn_|E4Wrybg|2K#hY?eq|e*SnPy zwcmRG3?1PxI`;8qoMbv$yvj_r`act;F@r5K%}=C!QorjSdfk^L-V~k56ejWDa)>zY;KwaHc{ae?YOY!19LT5X zEf>d=X=e+jza{`VT_q;MV_Dc(y8Y50c-UL8j4^!;&vZKQ6ut@yS70T?oNz10l~O5g zTf8HQA?rNyjB>gnzo0>|{+HWIoR;Ayu~NvFdD-(hBKa1NF32q|_mk$@yVAO2#gNbi zl5PO!ra3nPoG;zU6zwzb@HNUHU0UblT_)~`jQ1tBerQ%t+4cNhCf@v5A+tku+b4(8 zE~+Tn|NP(*H><|)LYXb7EL z4%~>nnvUKQE0-ckf1lR;k0^rEZO8I)jHA5F(?gW%%CA3>icUB@Z;>KE7x|saotvpy;_cxF zl%^V2;CYucn|&%5c#@m&NXYXGNhA!4zs#&@_XRroHB3R!9mAoupwI*w#m4#pq}K5kj06V|IbZhe^$v(JXoR#&1HgJ&y+p z-rms^&*}Jxtz>q3Q9K%;G(#Hd zF59>ja~e8t1|dm~XS#0ISBm^!kok4kB6*JPX`NV9?GPm{R7Uvhr0lj=TTpiN+g%>X zh(1<7nxlVho1#o19_Ji#o6__rcn7VHQwbJ@+pCLs-LzjodoM=%+P&`AyerwsC0uOy zXmU3K@u?37W4f*rnVf4770jvOot%vv8Fmb0Ae|gJ##^uWkGxB9V#a0*kN&7yQ^Qum z4_&sIr&Bg!E45LvgQ_ZONIDcYF4wDW`xYiVwGxNvd&dFNwXPdW`z+}V z{p#-U-(nC;i8VCozQCM6;M`G|p z)2Q(LoTy}Qz-$SI1p>wdpeaVEi87&JbkoIEuUJztm}!p@Pkvz4<^D zGCiHDnDYiaYAPsFc+tH zCbwj*_xQJ+|Gv0c<{|ZZKv>UFx-H682*h5qPJq7ydH!!^?|^b>cf8qL(XDyOr16on zfp&VFn`!zmm)94$=Y%*hdpo^@#)3v)zJxeLN^NmsMLj!`Z(47#{EfdXXN5=>xO!XK z++T)>Hc5uNcOzSwZkCcPzx?11t^GI#>7sK>L~J`~!6{D`Dsj=mN&NpZSg2zEXYNaW zqQVr2oL%zt|L))BN56KgW?flNlePD>_CdlnYolZK1Mn{954%eGa!>b9tRgd=Ud_=G zfL~Ew1p?H4o44&RMXB?Fl)TJ967^vj=a4srM9%MD1;x>K<#WG8s@CUb-`sp>e^&qR zZhq{`7Z!6iDcO`~1Dzji9S6%G%Q7f00Nx>qzOC)Mu-lLp&Nlj zf4LT!0P}G~L3@8cZcCb#t%_jNV1rn|%HaaK6 zf#9fapp+djKcTe6Sa1)4!{^M1nTTabs;BmOQo>TYZE=GF4I#)8+O$a?lq9ov^}PS~ zf?qE^)NzVvzsUGwdz6@J7vLZ11uUM_GV6gER2YrP+IDru7yQMTK&8V=i?p5}s++R? z_ScXGdcY9tl2Wkrw}p)xAaS-QIgLS5yvc?{(D>1yb>?mGVMTG@;`nHGPbR6jk?-rM zVW43;g=dIAoox(T)8#loN`K>RVEL|=XxRR@ji6ihxxqI5jZD$2>DuTDHub%7Y=+)z zi&94b8hs^?@!pv6dfBG2s!EJ%$-@L~Ha`(oGq>mcFb**Ev+XtX>5tpb+cj0YZWe6k z4fB&VY5qPGjai%e307bKA4k`O2ey+)_#Y8?7A?yjM*<8bH{)z&DSn~G+Krw*ha4M` z{)jbe_YQD9xt@Kb1rZ$h>&;UZWVvG{Jz=qi*3(oL7fC@4{FtDtpo?CX-bxM4S^slS5zt4cxQz0TU z+Z717N+9AB;jSBRR6Ix)=Kss4*nFEd55&Z&*21a_5hutl0U7j@co0(nxv@Onx6*rW z+uylniThGfVZ_&9xAaj)e)p+b$-qT=dzBJ!0<8rV^#@3LKHrL`LvGZOw6nw7h{6eeswVGg@_@!Q??V7;X*U=Y9btSuR zep&{DcB}wHrm}%WY497Y9(X$}mx;rf+x{Deh#U{fs9`rVvz3{!x9&?4CI`}hl){;o zW~BP^DUUuaG{>d{&uC-84L6T!)<6o!WPanh5>N833fc<0xl`Bi=A(=EcPWg>L0s=# z1*N&;tuZY#+Ob1$H@@_jHQgdVoEiQ`6@tZmz|u4Mx_2D#omJ_q-Z$ffudagwKTrtn zn|&NIHxvOI{to}3kgw-5N0+*k`!mY8`d47JL^yns;>eH)c?F;>W4iilYics%;M2Eo z?r`8|N(FZlKr(r_3$^EQ0yeh08@Ksz_S0l=GV|sv0yi>1-zuhidsmh{$r{?BrjIjc zPZ2!Ai4vz0d~*it>(zgx{b7(0Y{lg3*?1aep5D~kX+zWWs>&e<#tX_byu}-UEc_nL zCWRQmeX-?k2YUuq-vN!)98lt<)yyw$T2O0x19 z?ky&+g*1z4)BS!xfUl%fXWeyQeB{cY5(2J=GnZ5m2-cdOz@CuUzD{O+^YRNv3EG@>8p@h-5ZAd$a}^mo1#h<-SjG_#gVOL+p_3^ecV1d7dZOP z$`D50QV*=7@RzR`u+=u#_ER<_$+ zJs+Pxe~gZx*lpT&1S^U4?xLawzMZUvnc~<(1;5%`$GCl9`fAxeeva6_2X7e+4kqWd zg-J;tJ?f#2XW%t?0G}6t%x~6qSBStokt^)@w&Q1?D8m)za0{Fo%JuH&;EP53oDRU1 z)Jp8>#|Pq{9$UPowpN9v|1W;yH+GWQzh6sQIH0}mb~~s5hhwLC{T7=z#p8N@XE3;j z@}L?wTqvZn*KX}*_4QPB53zUlky9+nOfx$Y6flh3F9-W6t(ogg_B-05<>$qk*`)5Z zz$<5pjjlfUAbw7|dCuX_t5XZ#M<53GGRMYVs)68hjh($J`8ZsC2hUs=Szt&MxysFN5b_0P8dtH)GPn^ytf#jwlokCwgnn8^>RwQ*FiYBip0{?@K?o0eZea zmihd~aFOlzJVTNnLXgUu=jI(vQI6w@0L-scovp!e;u4^UiRO5JG%WEX&^reODtJv( z$j;*mVuk+RhoA^P$Bu6QQIIJqXKMhXXkfT~4glj0vl$K}(S#J|8)e(11p}`l7<`8% z@yR&&D&0TEVy>l-M+5480CehNM#!FL1@iQdu&B^v?R-{X=<56JSlIJ+Z|ljn9)0~0 z{>lNlvt8Z+x$|xfYC=2{y85c&^%ODz;=4sy&7{w&A8W<*Syl(Iu!2KEp|!m_UV%42 z=QlbqLTqg8f%x~jp0<-(o2=o)*ns5zih1;CcQA>HRWl7a+rX2MgF+I(Y+RJ(syJUC zgl(oWN2??Su5)5~sd$m#WO|Imo{B>ecX0IzLnu?3h2Y{+3Gkg|CvwRB37{Rtm}c-T zfM6u^dzT}P^+wf;59eyrMcv30jNsL_StEaAJO{Cm_J{Tti(~5h7nr)X%&_Y%QHo8X z{e~)jd|EU+R{dcUYSRmXhPyXx0z>boD-^vgPq!hid_y8N{{6fMkz_YAP&cxW|gs6+F^4Ug^mPJ4qP<>2ue5)R%i_mm2}3(bQc* zyl-SF!Q?A8lasxN-mON*BHiQ~%Qk82`oAwzG;ygACFi7&73dScxDMf*r2HqMdBBv~EW6wCM)ShoFKaL^!W{s+b|> zp(XZWsy%)mfC+WRp<;Ix=Y|AR6cR-LoZElEaVT|u4C|SrJED-{454`6R19QYwn04$ zwADvz5DnxmJ8b(`e4Ua0$u-lqtDe+V&K)NT&$28e%`mEr`fk_vv#R|Bq8Fx&aMOMVJBH?pe_keMf zQ+gAk5+Fsrcj@exloia!gS8jOwmj^W;G@rStVVIi&!SvUWhX zc6I9OQjmlOY;2RXVrs@23HLb?MW$kMi;e!UIc=;swuikr{MB@cPb7y_*`oS0lFlIg z91S0qBS+<2*qBDUW)h z^e08uisi1)GMzg75|(u0$|#IyfLefJ=y4N87&Ej;EKb6k<&N}ihF#`9R|}fy&7tW) zA38zuRUeRXnUY(Wge34hOX0?jdWlC8+b}JiN&nkp#gu|Bp|zHh+th$Cr?Kc^Q}P}RP_A1O0qI6_7)xzipS1mc(#m4 z;#gI~#L^WvD$yw_GazTZq@ZEbZKtuv*o8&#F^hI_Joe`;j7DgX_e=!$U^$B7OxU9b z6K4H?FpNy!?|cgZ;n-_O>?%0l7Z9tHz6gQkeGho)JpO#^Yf-D0!?Bgyj zU|$WtXuQlZd0y(PIIN7YawqVB(!R1;F*~Hy{-1ezK8fvt@zzl35gg?f*PLPmCO*0_ zLEV``Ot%tFJ5r)EWfVrhB4IrLZJl$xT*=A$Kv;UiT%dUz(-n;y9>4}q3zxv^YLxwl zzXSu9Qn!-9Z1K1UDv|RMTc0rs4!#K!o|*!e`unuIC3_^#9oeVDU~XmWE21ze{l8yH zFNwbM`3w>}GfKImiKoffbASUMRw!E|ChU1u$QEu7*1&~&Um zd5UI3BnVw`pfyO8rb(DLhEzISpfokg&3A8N9H3-}aK2#vR}s!dAuuZf#7ZD_j0Ty% z7ZGu8CfR*4*$Qk)5Uu2!+!siOHAUMCVGh4y7pfd+^T{@wm6U~wMF04a0UGZZQ(RPH zBVSJ%YC*^-{SoTMVOBx?o?N)(yuvF`^b!XiU15}hPE_$*B%fTa<2Q<_16|otxv@l9 zW|`=k;h`+BNFksykNY5o61=;0QF4xM5sbw4UjkHqpD)G=O}$s5 zU93Gh2u%W25BRo4UtxPE{GG%~aCW%bA%{}`m$3r*RKZZ$g`_I0e-9)m*yb4K!(vg} z5Vy84BlW8qg?Mm~bpA|Hk??P6235>3!~vPFrNmV3!0#leZuwC`_wyRkL-F%hTfnn$ zdJmlh-wYUNy0m zFixxF(k{3L|H=@2p^?+bcqv);| zLIs%wnguSIX3ELI;xD=O>he~IC^P}^4v6%MMNlq|*PI+|5)E+Rpjlj~O5&}#nE{;O zUo^*?C(096;pg6}s~jR^@vcN|ygN>aQG0W9{@Ls*`D1##q zG)R6cAZWSmzokJ>SK0eyG?K&~l}whPuB#36PzY-p;uvsGajE7Oavhh4C@Td25pC$P z3qFqqcs2T8Mh2+q&_buYBXhQDhROz6aZ6?!SqN_iOBGp*aVCF>v0aUMrcnh!I*alP z*FyZu;7KXWk$^+G+LOWvc&DM3qj9oNh=K-*k;2LrV+ScI@G#vw%~@e_gr($GHZv^cXfTnpN%i_sEt;Uo5)4TTL`U5Jqcz~oge)R| zITboj&t+^lvZnr*?WEA|KAmyOONSt~WT>jBfb+fKYi9EVZJ=5SH!Y$)j~s%nv3>Sn z6Ne@{I4Jp~i9zCFwd1F7aIqtCR1Eo{CngGA70zsRL(<~5lu=~NQOxvcOIE^etHOYG zV{zkpAv8w1=T}|EyABm(C9p9B3x+{Rl(KBr65<{RFmqJ}Wa`O`N6;HZHpwnecbVio z#$AOUM=Og>J%So^7R3D>X-^vtJ0U7ymF#Uv0-i^J#NvZ1|Jy@*e4?VH@ItE${E)HM zLwGkQ|E%IYC@!ajB<%U@SI)V0=F`3Zz-B*CBqBdZv_ zgp@wtK3f=2_QG7HULWX^J{m@K`AT!ZcHu!X(Fs@7*0`XUNY2BjSuIc<#)FZk zf==Xk@^AlrFcqmj+GXQHGJ_mJ{`R33GKe{mj(q7K=Pa1M_&RKJ; zgcukt5+WR1HqEwivvr4=y`|bYl1%P(6(pU_CzQ?ymG;gBl35$OyH%LzXig?FjxY<5 zz_1kw4>ZqVW00(>GAE-GGeMkkiVUxh4U^1T&aQ)Y0Tf`dmlC$dOo)b~7fN3Q?amae z|%=5l0=*gQgG*ShS~X z@i5GN6b$M8i6OWlT(R&Gp>R&W)iP+C$gLwsg zpZV`1y1aFmo8>hzc1Im-RitR-i+>4n-ng3QDUcGrDmD*=rV(S|20wJ)RG{I z5S`=|8{=-k8x4{QvNF$fGq?zp%Yvk+P~H2?_GEosEz?W-QeL{T>`K_P!kh1DCoIPVuTVFWP`>9DjQmvT{VBx!8l3mO^8kOmkyT4&$i z8|x&){)7ZBs8B3aIumBQ?UpW0NaE+D^=mdr^EKcLQeIL>#v7Wpa}?Gs1pE9B9JIQa zZ87*PwP!879a*Yk+SZ|qhIMu2P*jIYF53ygQlD%ThZW6qYp}s0jHO#f#CnYD10qj* z!Z79uu13-&Fmsq2V-annaMmGcXjqu=Z;i$mf`mzrb;|So<^k&JxDVehFComfT!bzI zsLI!&bc^}dKmxUg4B$qfOH7sbGs&pL7{4?pDjqe|SkUtrT|E*71x10VdaAM2p7KQ* zko+5A9OIiq9}zey87V8qR8HQwC4SiNDp1e)Hn;AZ0m{$*EpFEdGheU$YfQj$ZZ|b3 z)@IJOdMz&GFTk}zK02Uw>Bo&(7J1&cN{Vl5b>sZyh5EFV-z>oj9WJmkmJ1$0(K$J{ z`z+7`B-Z`qknv8daY#BFGr}itILj5>Bj9OZ+v*Im;PlWd+Q|)VGI_KIqr>&DBRLEz zw!GhbCbVx#eiG&vDP?}`Rz+|$wHogLr zGQ*@tdQ(yf34pXy+n3nFtf?n}AhKO|pyb^;Vj-P7S7K;jX1B_aB3%^pNlt4(6|Y#A zSwCjsZwY7}QQ*1sQQLr#zF>63O$tn6l9wx7msIB3DiKgdr%c=kuRrr$;J}xXtqOIL zSwhSrqBJq&f)cYNJkeIOrId~u32~qd>`e(m)SwdItAZG(oDZ|)xKtBzwUd*2#IP;N zg)mZSCY8Ppg$b#u7BMMgWC$~tZx#0-$72^t9O8qxqX1ex8FcMM}f z2PfxYJYh3deXS#LHqn(g`tPddja-N^Ep8!GL)Qh@@K=C9XR^gZ4xDJ{pk{Xvq$?}o zQCqk2Q=2Bc`Y}OcidIn2SPAaV+4LPhY6F(~N1WInip1!b#m$POV6@6|8aiDl0s2Kh zza4=*s1sG|{{o8GScFGWGhuzDWyLB+bdk;pJk)6d546G<0yrY!d4fjWg()=yJPfIO zVLY%0lptl+9BAOVEQUw5&Px6kivJurIizwVL}XKqBe1N4J0q z8%c#HzgU4h`JZ>@(}#T8jfaS+_9{k#b0O*ZQ)J)){5$@5DE*te+QFzPA=*)JQc!AP zwhKxDVDWcq1Q-Rv2VoTThCoMl@%b%{KpP_|gMOGl^-=&$+;~Z9;!tLTOi2{2m7jz} z2t9OCj>k9U;0v8~7iGVmSPtN?>d1P|@)?U`@xo=@lmpC-w;Bd;!DZxY&<)AH@0*ZG zCxtnjz`+<6+$nkmE;J}(_R`IbeuY!em!cm&3C8LRVpFP#*en zfAh2o885?utD!id$Or2Ad%x|4hdCpK+97Yc{tByYqd`TwDkRY>GF-f83!$Xy@<+{% zF*KB-7ugMP49*Rq+zgPHYlJ}iY!Yd8-@R-epaMnQeYW~-){s1XmAsk&Go znfg70vj)dNT~Ay*trMGq=1+vf__Jsq1d^)upw0iUz@DN?y@4>YP2<7iQ}V@gS*;*) z*#AlVt3!RPjNRss_N`pPqhN%yzc@jDnOP#HFFlEVuXf@jR5UeAVlR?2Ih#8;2r;FQsE~5WNIQPm5^QlS->MzdWc-BT3C7Yb z)A{d5Q6Q3cl8`|!ZH~24awUV$d>&xmlSt=>3Ff7hC08q38qU@RUoqgok7}%Mtu8>c z4;F_`)KdQ<(f5-sVxne9v%7)){po2LGG58XEmcQ0Se+81dX3xmfZ;$jDj4A}?{1np ze35Xt&JCHY^LG;X9}PEz-xR`!l|&)X3{GsNAQ=RL9k^4@bv;|WW;T0IH_vH zygGy$rCi<-#-@!VpN_HV%RVq=sAeSt7*s58gI!uiq^r4KLieYbqy=3Wnxf8i-BmK0 z3=-~_bC`QrkTSl`p9E@*Sjl+|j z16zQGbAU8~L)h5#N4Oa}oDH5V_O)!2HE6l5GZz!p62Bb@(|oD{Tk7~l3W~98)~Uos zg(9y{Ps`I@bUst(m9%2p#}G3nAI)H7h#x^5*{@ zpRY+wcQjVbv#Mp4iTT_VG*^0Zy?+>9DxjqQ=??lSoBng+Jk+ZMb5B?1M4a~amJ-pd zZBUDqAa@!E|ATI!E4EspxL757Vv}oVu)R1$HN{IFVh3)!aKu6{|2yD6VU`Eflhl-q z%25M9Q>2PDXj|qeS3G7m66mmK1|*MuHKQi*v4S!#R1ZumTAq1hsS;Nb;2uSKBC)m~7FhI)&GYuA;NAKJ|a)QOO-BV|{b~X&gnX z)MEbXb-HE6r+FSAPmk0w(K2sUs;9;~61QAzuCn?=jBWy%PZk|UhA@1GOvGpotR!A+ zQ9Ef8HkgPitIn8SI6~ei(LZQ%t`55f-B!UM(lE$Hy9_G0!O8uN=<$sBkktJFB47WU_ul}$v1Ouz9F}#tc90tpD zrTj&#!?<;Ozk@1*OfZ5|Pkv_G-AZfGb{dN;9L6tDy+LXJpiyRoi6O7_#3V7SUUL9F zuSvfCL4P<=Q$hO_C+%l3y|eMP&dlYWGXdp9N;YE}N;-qo48S8VmT z_oQHO4VD-yUnj6;B;xe?C6&u2RWKQ2)9K_~?J>``3-Cbtl$M5QIgL=3kypNg z$SX#IM$R0u6=o%_1EeV9CeYUXt7PBHOpGzZv*#qf4E&;RU~m=rN)KzyP(x5*Mre_d z5&L+%srrq*A`&ha*#MbO zR5Vf{WkYhcXbXd5>x1Z5p1?V!N*0s#_Re@l^hfFEhrU;y5(|YWoUBNDJdG8(?$371 zt?(L9gnTJ)ec?ntx%3!Cg+{R9|1QO8N{>3;u>;JO3O*KF37B%8#*vN>YVCC_Z@g!k z-%HT=3JevXR&Q;6INBtJ~XJppwU!WRD9|@!I3nyLj%&)Si)uq(qmzy4~#>q zbuf(aLR>ZOzB*WT&g8WP=Vc*#NBtZQ2GK@?f_JK-e_)2bA%R2&O4bJ1L}l%9AbKr3 zFD1+#XT}Xzb7f?$qMxF!lb668HKtQ-lyoWi$tgRL+_PpE_cE3c9aCLIRK^;+Fd*69@3$SSud2;k8`R zqvN_QS$lF|n>D@_{3i;J^EJycqOMWV_<)+%2P+ic!4D#DRCqF2Bl^mFE(Sq8@$(hb z^H3s4D2{@@qJh9SUpZ>tXVbnVdP3Ru-Cq1mB3uD) zKi7Pc`UyVn%G8k!&1T_cCx<xpvvh~~0~Kb- z2}PiHT`)bQ(ip+>sIN7MqJYs+~;7JUS^1?YNxA5FdO~ ztn}ajqd1v3onpIKHGZDF@|M^=NN7ch$cs7Q-4Eztr;w(GtCX&rigIDcLSOO0+aGX* z^5e-bzY}eVyXuE#zaZeWQ3}1Bk_Brr;ndq6E_}d=Arb8Ra`5Hji07j4^dIFKm{jCd zFQ&I#yK-*mrvQi>5sUF)cXwGTj&sY*mHp_*@&Z_dh*AP6v#VHSuB!wMFw+gmUukh# z`FEvEUUiX3yJkic>x|UbDX8Vn)9XsoDSS#5-H&%0|kK{Ap~;uhz07wf$Y&#pY^Fm?2?%> zDw~qUW}#Wj>I!%1l6>lPLZgqU=`ifEVE@Du!Bz{#Ym~qyK+FXk0_%5eD4K8p7DQCZ z!|p*`{D`F6VS@1UqMj-PodlkjAL#836@e*+Hv2Jg7%xWNQKqkdKjs49olcMs1>{H^ z7B}mb!{?GYNK4-tJ0MGzM#hrwp5HHuw>%Z!T-5T?-gFkChY%~0u88w~m*hrtmX|S* zUpN)Fg@?nT6XPvv*_^r8WBX>hgpz|evwn5H*x%}#Vt zrr@bU4Vi6mI{k)u3zMao2e@H*xemf_4m&EmkP$K-A}bH+Xx<0hDZK05MbcM4{vAe1FAQ?A=Ya^Jj0%>)3E$}#_mzN^K-=SjJeuE58sI~a>r!X6MFMaJ%3#be zcarkSSoL-t@MqT2?iLR`n*Z?r>TJ9eg`+Y|iLp$A)ebr+pfaYw5`j3$N28o8b{h9m zPCFAX<0Yqa*A9kE6h)FYm$x)z>7_0eEYnp`QTil8pRGeW_TqM2+9&^R5W~W#GRMEf zC`uLX%3GDZ{5}>H8}5kNrLfE*XDE!fEN5vU*Pft>vs4n}H((wS{Dt=&qP<*_P4i3f zF9GQ=AA5e6qXCE~MIc{-He8cUy~TK$KxHg1kH3WI2N*DN_Uw{B#01;LvXl+D#Wn26 zlauMyW(J2~sr?tELFC4iTMfN1q|&cs0j`ulWkaH6Bes(p9gRnN+|Hy`U9|P*-C(MQLNkToCy!;jNGQQ1 ztO4lZUoabN@3A>_KW7`EmT)4#%>Tx3Q>M-^ZaTuvI2lPXrlR6_mh zi;V{8(R<9NK9d=iIeL*IW#*ESerV|Nhzy8OWmhEiVrR6k4KkRdr_2%%Dp}AU zMZn8X3UJ|?jEuXjPe1E`=an1xPI=E@3>fc~#iAmPI*i_ee}=fv22j{SPn99b^d#Xt z1o>^pnkM9nM7<&C>G{-7BWti^uu2AGO2U)ss`(!k^;PtU_QCUlikV3&4W%|hB#MYv2cAKq4FyRvZXre;Z+p;lYq8=z<^gtQd<4f58vA*50ek3_--4(oV~{1 z>K<*LC^(N-_D=hm0GqERESDN-XChbv=yzN45c?%QKbhTj-ZKZB(sL@qd&a|}=>n^Me9=I04p`D<-0=XY{ z$8!|4r_!ve-WYC~(qUb8G5CqEb2Rmqh&8TpL zhlrpq`9W`+$a`97x}Pfxm|s<3{>E87y-HCTY+SF>H;gy(z5wPMz$y>5UX5l%@IYs2 z3Raz(&k40KRbs(#{A^Co7LV9yo(9|m%Npdc81Skk}SiKOytHYCQ%}j zAuw`fB45umTcE-iNfF@-5Gi&+*j;9&y6jR3?_}ea&@U-V42sde&dHfhqJZa}w!=d0 zlA$1r^=O{@*FuXJeq7Ktl}V>{&YAYaXNK0)aE#k9?O8yYj!G=P`lpII{oxhyW z4x_|9ZL(n&iE?P`3^*_8Jf4>JohnvKfb6GzG>0d7wA{cOh2$e>cQ% zNhAwi+D~{ZuQ;t_?r1s*IDr7mE45Dt03s9I|LNmXZszvR{Pcss>reiIJ}R*Rdt0WFxf4 z2ux!195`9^q#!~;&0heWPqa7ZlQZtk5bs3#ro17dL~h}C29&t8=-!1{^V5~ycRx%k z%{B`?vB?}i)QU4Hae;C1AfV3Z%&=+lT*-wb2;Ns-2t?bUB_vB5s7}tl-en(irKs>Q z92=QE8;e_^;?dt4vzzp=pnnI>rfOIvwu%IWZBR`R(f#yaLjm1-zSG7K2G|PV+UJOrt z-1fxMG|gB^m1G74PglJ&!hEC}fUCFEFjO7_{u78l>tZ&rJ;=_;QJ$=mf!kKE%ocLTNRX&voD>!>vl>klxhB~BKddiR> zgyqjtadl`2>8`Cs>e6H*@5QS%j-S&TOaps`{z|Taw6sFC12aQ4*%wb7ccPkaRT1CKu#(;)7E6j!VZq{!(2d8PSy2JfnZ?S(Z71$-$NyPl+wsM$V|_3 zKEeFeZb@u5WV0BP_PaQqtZI3(ta`$^>sao8V$J40EJ-dONFFWXTlHpl%M9nl_v^?!zv#pvSnb+6z0K{uY;nA{F%P+q!ckM zm`$GZovuLPbBmSXs=6t(guImM45CbeE1l$fRP>|V$m0ps_*+*50xou|6~5)HdiYTV zKbefOj8|T|{_upXd_r{oio=j3|D`>YcfwH0UX+^?Zw{{itvk>ytRES;Jo}MorTv{i z#a@lPQnn&G_J2c}%}LG6t72zE$Jm)QCr0-zl!9e&0OCSI*JW5$%>>Q;7(c(PDI4xn zZF!C%b@9L)7?OrA>`BJ~pL#sUMNYTP#VRfj0OIiK4s6aAeD%Ar?>a0|$CBwStLJ!a zr@ghy2@3aHM^iTKjD!u)@tUBg50g)a;}Gxome|Rn#Bx|j!s>PSxZHLP|K?0mPi5I{ z;e6>iX$62O?qa}m54$(}WoerDwH2uxVzjr}@H-kRjtaOoe%5m-j~g{lit3Dt$&(k; z@Uafu8BH=GtP{`7bE`gjQoAaKUOT_{*-w0X0&LM_il!G1@$Cnw+yxfU9=epCc6q35=@j0G&MG|0ciVn=&h_BKBJd z3^TB5Thes{TjX)B)(R zFDU^%nboCdaEPf9@WrM`aZXEw;F=%q2`uoc{)Go8W}Rt>r!&yow_OrgJ96xU2Kvuz z4K#+jy|3IZrl59iVTBTf9*{VvAT`TNJ)9PEm%mXi{u63(tDdTlF1Y*m1S$^*&PyX5 zQl&l)!gi12ZhK}SrA^C0|B*V`|9x;X1Y0w|#q`Y(1qkE-kXC1A) zHr#Mvn1ab|q})gQU?WamD*I_B0C3isEpPHx7)ij9*WJb{E-T=_cKX#q%xGhX0lExI zsepnuH5*gD5@(Uy!n{smkg;sE`umMa?BTpp9QhImU2JF@o2RhO7v&#-36q2;Ef`iG zkA|B1uj1bnq-AA1{U;#@MrpWW&x50nof7f@$N^#F<$P;D{~T_9S%hpzl7l0R@%V|8 zj|h4Te(f`SgEyDY8K#!Tn-8g=VIUznz+WiWM3M?Bi{J}vL?6ZQ8H)Ol zSY&BkYI*(uObd+1-hA`SwhI zMFjP@h#D&mDy~9(FKlBbWX`fQgnikT-UBVH6S2 zIAf~cZAU{^nwI!(JU%t@uclc~V(fBeRb{uu+FfdK9+%4(V78m{%g?Ue`h3kk%CUhd z8cdBU3FP;NhF|2WBt0%NmjbnZZTdS3_Mc6+*A7_z^u%uPQY-GZ9stK##S|b~)Kz~@ zIwSl=P-yI4$0}(6bX|dU&6?|Xi`X*`Pb{~cr{T1c0ytsAU=okMEdK0N94&OX$|spr zm69diC*_+)*y=T1meRKfq;MQmb(lq&GkA4?q6C1N5Yg;(!PM|eQgH_k@nS+#f zF@T`t6$=#8Z38?IK3;(nn-y|v1F&u@^W!(D#nf2l(lJ|O%3@46ZbKI77v7(|k;duF z}k`Q4*^joy;nVCIz@x3^VLjk=D<#Jy8mXY zBsk;;to^+2yF4`%1{`fzl}tez^TaZ#NX5a-L^8qciP*&*R4qU)#ww=2KPc;mq&^EN zqjCCKwgDa|E})F-i}D;T63rWM>ljyJO?WHw!h6p<5up?6EFJwW96(Nbp=ffiWm;QJ-GfZJ!!{S= z$;>y(?_74qXKIm|inQJ2+q4B=d?~>nKrC+b@&?37;PJ-jcDuL>5;8Pf!dE(@gaV!k zyd*U7R;_JgA|Pk2@olxri%3;Axj1SH7y#(ykq}y|xGaNfrPF`>79cI*OY2(INaAO7 zuVVe1u*^ZmXAUpB2R_lbmdT}RqM{;7aYE889Qg3s=0dkiinRko_@nb;i;YS|heb=0 zsV9i}QDPold5Ndr`wWV`z}bn*-x`0y7km&(p+1^r_$*WYDVWHyiz3-3>EcKKPARsc zs)C|JK>ll(?d<{cf__KBvt#|gO|8H~k}n49k7g4@N$527D@n`$zp^Gc_plHFUfvJj%|t74%~gh9 z)p#WcpH$7cLyDx)wX#bbn+HjC^G<@HBof3VQ=ln-9truFG27s)j^@01Yd#t<43xIN zAjwMWeHv4vv!jQ*3AYriIp@{#mk)0wk<%k{W>m3BhVA@Ebc{Bou zkA+dq#CWy98xuc7v&I8~8e{qVp3`R)EAnwc=|B;_bp zn0xJ-gdSyza0oE}lREuoA^GMT+MGpKZoL4L!uwEM!n$eqX75V(jr!?=Z~;>;qhEq! zOqP{!g?7oc!S57RLU1)@OqUw9JixXnD1sID+VH3VpWkSpLaakv7DEgx5@o|qPfKAe zt%o8^F2V<>QNS+jc>a0ENXu2&^1p+dAZWB}hsxb-^CDN~niBRg<%OtWZ&ZX_=s>DY z5eo`@z6Q~D&1nRLp#&F;=?3e&qsegj=Jhb!t^8E-rJMj4g!ox5FMm46RR!TRFx6E@aTqiBk=5W=`vMG>{N|{l>0S<)+Po6jGFF}v zJd@f`l@M}x=5y$iysa5ux*IBE!UfQ?tL#DCOHwbqjl4{Ys))3p5RtUa%{KJ6woN?? z@lP^5D$1`6ME%m}TAj}jb{l7|+8rOCE;`pNt`pf0Uze0;yP1^Z|&yZiuE!(<@Z928EAETA)KAimRGc{DA8@A#+;ZkA35RW4I=mmWR~9{RWi zSntzK(fo^{ZDGfQOtnI`LtYtF$$p34)!0hjt&Hb;dH9;refZW~hNr z9ihKH6W)L7bB767%GW|x5~akj1k7@toe0kgQPRgaKAsC6`0y-;?$!^Z;YiSWe+wP0ENJzR@>WBo3l>EQ+ zV?kh=L=NE^(V~%oS*R!^CO)wlf|~rXV9k3*CKp_i3I7^c~Fu-)I}{y47=H8)HlL}w>f7viP9zA-?_G9y7epH)M5dX3HFV7AieS^wD* zBRLN`jZdBb)p^u%dQn0nE3AB1`*Tt}ke-B)9g?a7Sm!qvzsXdBeBB@TQczu+-HF_F zx_=c(B)rp~LK=LP7MB3hVyl0h>?KZ*is)?qLKx^~(%YSWcwixdg-{{CyQi{qar6;5M-yAl~(R7n@GTEP39e^r(UjoIAUM}XUOD5$>opb){n9&m<=$rW6;;+5Sq0gI3MY-oT#6Q3 zOekJxfbws^d18KN>`-*tLa%pHwbJMbNC`5dL#1^0d+j+vg&eqHn+X~kTbd~51`QFz zLJHliJJKGnNwSIu>j9OmP4kGpJWvA2QGVA59ILJ!*T0x3vfaL2M5+Uu#N#?VTKvhS z3stF;Hm0=w4r-3~9yMH&eOav_IIzqxI=nGlA-J81fC+LFVi{uHuHltU5hVaA4Cc=?@VNWKL~!p_Fun zdNrS3744`T;35X7s<>}7L_THH<*a7tI06$XpIbkZ`7ccr#|v}eeboS~o-C^Mp2p#H zJG5x?+Hj1K=w*D{TdP=19R;e9X-G8kF@fgUF4L99&;HAF(+sMwoNYj$tp_;$XYF9K z1Uwj6EM%x(fuemHR?jvpEo=|wEXq+d#)E%-YGSj|TTHbOjrH2$rH_U1-6z7=KlZc9<1(_v$`?IKP2FY6mRPc<#`^RE3pg-0Z!=yGY1*ThJu+Si?JI4Qx z&TWg>!Y6v|J}r`cUk@Hi4a44^tyi3|-}bipIvQJHD^&+;KfrF3@K(x`8ppVzMjfvN-SXo%Eb3*N_0 zvqTcceKOGhg_v3X4Hs7nTg0Y!UISD2l7Z{{aWc z{pfVr$GU}3acOl~@=+8tfkX(fv)=P%rS7z&MAX3mvKVW*s?MAj8c}W*~DSZO-wbD-Yh6BtruhIK<#;%F2?ZjTd%x zG?+|(Z42Qn9chqcbyovJA(ga;4?sd}E)G zowvB#lj2X*nu{bdmmtwGs}K9aO|tS{v;j^HU_7ePA|htbLzC&MeHFB6$zL2O^X{P$gLvbE=s>2q^6Fh>tN4{bH}oH$*7G-`;q4xQHBHpZ$g znY5!?qdM~@c5D8*+>Se_JgWYK?Kp_$5|Xe)q2ykL5fvGR(U%m~InA*vHpm9CK}NUR z#OM3>6e>68%Kk;6Mg@n3S%rOyN|>CX6hYs(U#uStV11s8n^|D=mx}E}$3QS7VV<>2 zhSfvZt`>lr5GdXHq!sH64!u0xiR^b6(wg92Nj1cs3t`UqqV{%A9z())$m3XV{pz=* zuO>>Jvn0m?bAP$pu^HJT1#2dG1gASm|6CPxnZI*kxLQ>*;N7YqKiRRVZn^pcvQhmd z$Q=G<(LSOOwfWdsXi6$NJPllUwOtX5h!y2}CDkD$mODXZOEPiPr=p?4rmt6s<# z*kZy5$c1j^B)Q;yIheydh$tXpd=5hScBh&Yd=9gGi-*S=dNEcvraQ%`ie=(54|U={BN$ z04lbWpOc9fskhUA+D?7oVhl$((bW~g2MvIZ6tsF~4f?&pshx{u(p-xXy@m)ikD3b2 z9z*1h@%oiJ@_EVMbZ=0YzC!7e9)B|Yry-?3v;$wy^dS`qZKem}#6?Yx%1j+z5Y1?L z&LmE=&giqD`YzuA3&ee$PlP2W`H$Xyb}dOE{5?=>iu+UQ*?b9%htl~TAM4hwf?l(c zdIjrmo$IyHk&sC$D&Bacv$!-zGQZ?MF;Cex1!3s_uxSV4R7&$-)n9Re&X5PeTKE80RUvFAhYRGazMMW2M z?k+Q{@UfNL3$G!Sd}qT>eY$)LZC~FM<9+!;Zs7OoYVtxAay}Qi)6a~LHr>rc`gf+< zOWU9wzEE|3dhlk$cClo`;54)o#}Jb9>ys54UsvWM6n|z8cHcv0)b#Xb?|I69Nj-JLKT|gKMzp!PEgeYA zdWU}5=t0q~jHbSAcLo%ANL7D@MfD~BF5G(Vl(c4bO(>c%p3x?qvV6nLtmW5R5RBxv zxNN?uT5!9gYDni?#zXwtnyC|Q`<+@Jf!j)c&K})$eX$ULh?h=?p6!KwRUq~=%_>5u zWfM<-7J4*v>-jjq91ql5mAvaY#mGPEX$co6IOKo^zj*0TsIko)OHzYF{P)hOnRi%%tJ1V1c| zk{^-F0*w60whozhmBv63xBiIkfn36!u#Z!KBwTK$S^~ZUBaRb~xxYjo@SK0NIXP2B zmLG4sL(!Jo+nb~`M_#zR!|np(!pV{3xk6&Sq0(Z`$Dh@kNk0kHeJory7HrbN1`%f+CrdLc0T4RF10CQG#Y;rB&rG67fz@8PI&Mw4o?k$Psh4M7>RNCAygAyZEq8 z-B^G$1eBd0KcnN--cU1X4w<0+{%7RKGYXpPkRl=E2ix}Z#~qCQ(+B1D%SK%SPd+?z zw(yhmpSu=GZ`5+DWx6{oleCUlpAx## zx$hWfcHVX~H!NJ8La+`oorW5*6vw_ym1oH7ykQi-t|uNbH0rYalp`o7d%cUje~q!M z%>~~HUaGmmX@Rs%zQWILfxe4;7{?V-lVU&oE4wPF$Yr>BMOKvE3?Ukqbz^9{7IQR0 z(EnxRB4~xOS*;+22UTgPTqV-MH5Xm|A1${)9kvRvmjM1l<(x%h>g^^45)>9xps*pH z)=Y^sUK2f{YG7Mh_%b8mj*DFV`EU7;3gzv#Mt8E|_eaU2Sl&BbI#L~;$7RNJB{_pc zdoo8i`1OMh`@0ln)_xX$<}40!5*I&NQ&kyz*jx4lP?DU|Tf0xQE`OdH$8U8yyz5^+$gv7BuAMliBa(6el;4zh5S zhd-Ii;*Cj*U{@)7%R!EY@2zI)!l*;;aoHXsm%fggn<_PL@K~jJJV3 z`wxgjFA;9R3*A2SYuixynl*60T%MlKi8y3wL3Zv~?h;kUmehYPYIGOHiMn#?QTAA+ zLs{rmd(DQ9 z8FWrT$uGs`DHx9XTs&kozLlj}^zY&gQ?3i;rmWdx8i6%yB9x3EY=r*QvJ6R;N;n#t z7T*en+_5_wHuD5@y<~*voMFGlM9^=ayod~=OJ+ZGB!B7FO9G8(m&l)L_A}pSX98F9 ztz5rNUOoDzZ!73|*7l(#F0>luus!>0FtlIxL*vGn1Jp_1=4yCUyO`L_z=x=Xb+?n* z!evT8GreauSaY&QP&c1^is5j;QJN;WZ>76x4p<6Y_O{4wj4^U2iSQn0oYxRnAwf3n z!kK81>}V2cDLkn>Iy@};jaxT5-CrXUch8kAdfi@~6SO#4?zcQVSF}KD5kPKlCPkP$ z#5CM%K!>j9AJ40L;C+{kPk6a~r^C;AU+U5I>+-IGZ}jl~L3s^!@`=gS$aQZ!!O5!e zcJs@5_HDcD`3P7^D*}E(c*}80+xu=IU?3R(QoGMQ9}Ahke$$@$`7$rireGrwX8pa_ z&SHp7({-Gz(VEEAk!O9E>`D+G<`o&-*Pjm&1pJbHYDKg_DvK zt!#in&TL@0rOQds9dYDVlb^*_d_hI~=wbBb`Ym5rzlz_a_uRB#NGZ~P4yyh8R5wUZ zq2JRVrIY;{H<)UeKk%RDV+GtC^PIBh^Afm7NS6x>-Kc2n+cPI;zSz{nD;{5^A&wtJ$b4#Z`V1$m}PY?pL z!#jjSk*%QU|3L_*(%8bJk3km9H&l_2ALzlK=bDRlpoR83DwX;&9g@T(N<8C*G}93Jhy`u; z)gH@?29?PL++N9LhAd!;!SwV$1x+aNF%sw;(qeydYW!N^D~+F}x-v4|4>aNe47 zy|uRebD>2ZlwRc5TSsZrbhR#{kw)m%&;4Cp%gekco?iX8L)S>ne0kQD>Lvd*Rk=sy-&5qHdm^4c(U8LqiYm4dI4P`$+kp^ik0J;X%P_8b}3)v()u zfCLVuSmE3GQF^KdEGM1_TvmZlI)*ks3v^tZo_*H~&}ef<2duaA1K81o)1jH_0qZVU zEM<%F`~{DQ(e&e$E-J0ezTVyTxXagy;^DsM%FoZ-MINv#tI4N$MP0W0VtUH+ow4|V z9cVb!o0Mu9Gn`R_zgp8-QG2d4hHk%(BT;x_WhWUzWVozm?ix!tBL>0ug~YaPvC2o{ z=@Ix!azLW@5qcL0_fcN(?M$(8l03MXQ+FvJa$o~ z`BauT8+Ja|?is7=ozs0`gG`RF4Z4FP)Gv6JhlMCkGu;vm)ZKTnv?YtcQF-4_Rg~VX z!0hZZVLfk#XOr=Q?uCuLT!?yhuX+3_X2oI)*FtOg7FFwf!fRTU7peJ(E>*I{hfw5K!9FuCU~JM%wJxssk)=B!6bx<$QcI z%$%z=iKi9cj7PTBh6$lPU>N@8!Wx&X{=R?E`taNNnj!M#_p1OqX|0|sM0M8w4eI7y zE4k^Ahb}=ObCBAD;bTGIaNhX$J~RhhJTVC9z{z(nd?RqtOFh`v*>!%F=qkj>3Dwjy zD}SyGVvjqFp6)dfexH|onFv(p(!{9 zP+h1Ld7s9`-$r@Z!q{FK;aexG>n2kgk5{SJ%_f5C*{@EnND!RsqIh{R+O@C!@Y{aU zazY46p!Cora6Ftb$J4gMQT3r`Hj1u`AXYuy>jx3tj{|x7O9Njo*P!5ie(y`7-ud!B zQQxdTQFp}H9~F?r#<>_)ZC3T1WO7{CRh<^5ZcA*ZFI;@E;?Z*-Iaa?%_9|UWr7ePIk>25?b}-av(kN zT}&c3+TyROos613lC5cLdF{Gto^x}iK4S<(P&jzU5$m&Ex^&*Tm*z1+!_`G)MJ#s0 zj5eQAk^yPEAG#bc*E*?@y|>$@k>(THg!8=D1AJqp3;^auxvIi>O77!8@;n_EOk-R9 z?<|>h=O1!THeOfMv-=1RW9dg>;rD29Xh{%9kIGF z*}954G-f3Vv>M*e4Kp%~w??U~7zk-8>{|S8keN7hoa{Ihv=Y3qMIcELB2SAnr1cjunT&C7tI{Mn6Hb zb`M)qz#Hu-BD2%jvV2R(SLr>E!(s`Ywb zI`49=Z?tF6)fpq_0af|dR^Xn15wd+e{#48dvoVF(>*R9YNzpRGZ41~kbT9YkooL6- z$`$ID=Oc*LZ_^{U3zP=k-dEKw?oaT9#$x{Zm~BIcz=_qlO9N(|qkP6K9KxdSJ}W{a z>b&D%+bZ!|nqn&0B1(DL=j)+eqm%pAE9@aJ>rf|CVC$cKqzK1{VxS1Mq8nmJk1ZZ+ zFw2KMLc`AxzRGcH5M(x;jvM@oL^5f^@-tTpsut--yn$0abQ5;HqB-n&K`pJOkIyB^ zO67cSTyFZIaxs>y{e*IQM+Rzt^(|`d;gi|)z^fpkUK%AojrK_Ji_b6zFc$ymGD9$9 zdWo!cxv(&aJeafK6mPUN+X$)LUM7AP!)zPRpWGqJy;Q*Z?5ECM9HyH}#z#|nknc!6 zJ^G(X(`oOinK;ze9>-c&7h=Oa%!eIMh|*4H6x5@P#C;e-fBmSM?y3a3nCvqwAlCj7 z`*4UxQy~P$uGvOwujdCDzw(Rbz*^vtp<&GdBTyL>5o1VcOEM+XB+SKqohE|XA;pBc za)*;%183_q<2$R(UXMoAapXQc)Bg4>a*Yx>|B%CF1|K_C<%<1ueidQ$A`=F+{v&w* zoko-{hiM+4>a7*hab<- zD_A7LD+Dr2g1&l)qWJo-A%fDP_%jmW*d{qb2ToSKZfB%MV(oi>fWx-7FR|pS4ApubkYX9=DLN6Ck+XBR7@r^? zdY%x9@0-qvo?-l1+74gSEwnAAgbY^SsE755sk#1|*pjK~_GxLqFFG6RFzUFZQVQwE zPlWY(ry)FoV9(>#p7ktui*p6h7LLpL`@e$Tx zH`M-3Gu`jbhv<{T@I7ChYm6WZ7|L2r3u`U8hZ1@@zI}bq>|-~LHvyv>ZSO5C`evtD zOEgKq!2B9m%z%<_ zq{+W1N*8j^dUa7h_^5>YE@(8Ap2hSr$X{zaTGnKrX#@ruD1C@$uLYJbSlAO_NCH(X zD#!1ul7pQ-Xuqz+nwzh1??HkhhRPSS-)9~O!i`R&-|FGs_QTkcTWmbZH!EE1Wc@0& z2}4t^U?d7>$J;vUC%WvxCfgzwUwmQ-)Rb{e=1XVLQk}RdR}W)VTiX1}=NKw)W2XpH zM_);ZOV-S;jzeZJ)*hNPY8gf;zCaMp-zeW3KlJ~2S! z@*>Bny#6KB_}O#ynm1ILc)qe)b^`ny{$whL_ya0jQY|-}=I!X$5sRu{A{CaOLb1$tQgt#!^-DimZ5n2YV2UvQKYRS3 zd43keA@=KVAEi=;RH>Gv(go3j_pA+lRXz}7pv}UhU`^=6IbtVDVE7%3L_L^%6J{`4 zC}t8G4iqYBU@L0Ks@#t*Er{6u)c&wmpK)UzS;VB!mevA0PWEilqr!?16)UBjV(;+Te!e>_4D8 zP}qYB){E_2Ez5d6W|m!09WkMg;~%uhSU=Jd)C-M^+8HcMpn!O>p7Ci&mrQE1+79QO z37OaPW8ABZrW2p>*XK6h`$n0AR{wC9deM58J5D=05G+s)()t=h5SH&9Hp5GeSlpXn zl8*)?jTR&b@0rkLAq?+yUVrH|H`2f4Tq3&K&rq6bdoQ01E3w4!u4o2wmGerFvSQ@y;beE*4?1i#_{EW;0|+FH(ggFc2Mco^lF$G$F%GkHVW z2rPZMnT`+O#DH1+&3}iZb!p@SK}N9^;s(e%xxz@%!3B~RK}0z;e+5SZ*<>ZRT{=n+ zwzenjRg_;8Q*LMEaKEyi8o9xi;c!pad)&ne%XAlR9`hpDG(e=Dvm{*hCW zWZBUK#qGi{^53 zTHVIrRh8HiuT_cf&qJqMp6cpTj<6!e&_X8&XLC^ADrUa);!-$GfVR36u7txW+$D{A5e;%(rO~-iT@-lU5JU@$mYZkeT|*c@V4pY)p-HAEwM`bkiL6Ow3W_gP1OLqw`(aRIxO; zXwVOPsY<5#BDSLX1S~*Sx2EU%zl1FX;mB>R1Rgi577Us!g}12-&!P{RSH4%-#@ z3lR}f|0IXmPh(E#KtiRI`Y=~Gg_R{bZ3nSzRvv7?LZut|(^#UzxITJMnnsr^t6J)m zI<)Qm;Z>>G+;nVZa7pGJ4&NQ=|9XD6*a#BLbH$9>-yvrAg}iONTP*h!X647}Dll-& zc11q(#J>DfV>EnrkxWllfjX~JkDoa=0{xj+=OAO#H3IXTrFturm?=CV%T=mI%%cYL zJCrLpQ`WRSMxmZbYs58s{Yn>&-ka|O9%lB6!{=P}nnSC5_SWib;}>)8Vl7nb$USn> zH9b{Ui*1bvyRF!t(<39SZu72?YX^SX$*W`S-D1l@Ql+N%8Fp5a=I2JCU62oE_++flEHrcv zg8UuMHwa8ou$Sfq{I+5<_C)b>QyEwrzU8@c@iX}vHKxoDkw0R!&RJ5oLVYG@Yc$Gj zQMZD{P+^PEqLF{~dx%``VW8~5=!i<;xzr$+D+DARR2Nrw)>XY^g7y*C`hbayd*{00< zJEuQMM}qCkLyM`rq(s>b3>^ypqauK#+U;#WVZc8U@XV`m++}GORXN_Wuj^Jf&x$vhT zN1>yif4b1|yoH;{Z_J<#$!9GxcCDeDaBo~_>|Vie1jesN4`@~Mc-#{S+~p{&IQlgP zf9`BJd}7?IjY7tow5KZ;bpo!FM>9@3@3c3=Xq>FCEy(6As#soBL{1zSY#dB`u3HIz zvy3`b??%B=neArbS#P)?Z`XpB>f)76AFyRzC9>$=5}JczW4}h&O5acy>@WlCUk~vX zE?(?C@e#styrYk?TKK2HzQaUn-8PN7ydkD^d^8vL%Y;5hJ#{1Ap%n1I}`JPujDF46pl|h_!i)^Av0X&mZ(ya-JEd#%utAnaHlrD$ev{ zN+yDPmFTUeM!%0aOkL8QR<0+j_{5(8tI<8UA|%w#m$*#l!}yB!9NtS7H%cs+aWm}6 z{S47slsDf;DzCLczBi6^vf})}9DCX6eQ4SPU-BR5_pLZVL`e)GyfnaM^yfsKU_pr3)~w~m&HslIUK$|jJpC^#ou`^-2aAo zuX6)_@sT&Ui-OwrhA(W^n(mkB?bF;G8Tdlwn2h z7p3Pey1A3-gkAsHPq+j4xA(k3W13?zdCU2KP<4)had%z2pV+o-+cq29ww<(@IGNbC zZ8x^ln2p^SZPO+>bKlSVKIfco^LhSzueJ8?y4G57rU5yw#18ms>sPWUu*Yp&1fE=+joafekiEXrrTlm+7R?^Z%6g8;k?^C7 zrKE!nLSS^=-#erGN=a}X>En9YeK}F#IO4M*rle~fSZGt|AgGNry8U%Q*3}gWh3DOb z()@z{9o^&!`nM@_+c{mi?_)}~xmUetF#(+TFSYGRm9K z$QQFfo_(qM06C#`e)z9Oeb#epn`TM)oi>l;7==*5nw-JJQ-uWARIs@?xe#=ij6HC|2k{lj2nM7rWJ@}*ES<2j zB>f)G7Sd%-Skm85iTP5xq%8iu@@*M=!PYI8M?0&SBVq{Ce4fsFX_-uh)xs{D4h?o`_eJc8}N-SK1V2GsvN zpWy%Lj^A{TM8d3DlFX$amDauTN|hT{+{8gjVNFcq%}*z`PoiOKRGJJ@ilnDY7C3M=SN6d}TWMF;6{XDec>2gv2a-Uoh4@9#Ve>&0AMzYxCtL zmHU;&l^|Zfb?j+WNcS&NFh^cn7__%FJ1D^pj;CSs&d3B66Hb8rH(z@!j>+1Z`W;T6 z+#%kmxQ`?6*ALxbeXBD%6-NRYXUlN)PXUo)8~MJb3G}pX9-r2nzIc1a7p}RAE%0(Z zep9-9uiP_zM~@id*?zFq5qm)_tZYP?d)r_kV2)ZMcUeER8*Lww3d(~8p3AKzCeZP;Trm=hhXC`ugm zQwF?_>hPW;-H+;_4$bd;*OrLO2<*wwqSw=qO=3WUs;vcYhG4C=sDtcA)L$weosb5M z4}>O2sz))#E%7CGFoNi*Q-4fq9FL8XwtrecP}G?|DH2fR6)&m5S#?i==EWJyd@lK9 z2W}k2%7}`FBl1PZ%j;m-`~5a#+fq#WS&s=%O}|wl2Yg%3_wTxR3{f%vjx)bC>pRKt z$)B4ipdU_gO0+YDZ9VEXH&n~a}7f|@|yhlBGdO+10KqZkX+bgynYv94(_J$ zyCa$u(+VSdHR6lXP_lNWBH6kY+52?v25y8iFpQbsui%P?Nzew z_9OVFrh(f%$+X0`NaW||YNNgrzT)p5OmWN-v?+}-(xaIg*oYLFHSv&)F^$V) z?c|c2mfb9O(!av87%loyRLm`lj!R}R<+T(V&?7D>^K}Bg6w%4lCX1JwV@^#2N9hNo z%aoq+W*>ze>-*M4O>g@8c~SEZe?1EX-agma*7q$42JU_CfBzXwZlvEZ1DTby^A2Nq zlxQ3_HtsTlO!;xO_XhC{8swZLd~p48w|x6P(&-?>)_siD|4xFsWdM)0vPS*8&sE}p z?F-v@Et7*(H!9!L!O#BZ{M*040c59`dMlGil#Bky=MNzE6pC|h`8tHx^W+lw@?rW= z&OCk;MlwjMmthuAE;R%_tDdMNZ?%i4jh&^TntiNYs-oZEVW0@hxX7P{=68tfTcd`H zqJMv?kcNrL`EwD`AnRlp@^h+=1wv3V4-g=T#;e?YqN5kBXY}FUa@pnKQ-&Dda&Bd4 zzD8a++@qw=s3lw>w7Py-&b`WxiF6`o!M<3ROgM^!w8hr9i{yeD@!M#&a6eH z7aZ)EpJPRBCm6H1zg83d<%X>PkER!BsPiBz9lzNMQwrb52S~Jg#n~)?ZpOudAR$i-vKOs?Q(o#Qh zQ;SBd2&qJ7vQ|E8$-s49fz~K%X~$F)`pm?0i=3C{;m&ToCg00kwd)|S)>M{_uHVKKm;)`Mz{2weiiZG-bhP5ov;d&G!r2S=$ zN1s3yI@ztOr#X&k!!1Ph3Z;V`DHHEB)oc~mjuVkh0%Yi%E;7*A9f}6obg^mN6vcHF zEY>uPstVItDu~lH&=IC*7sB&YNQ;;pwp=dhIN_GHAOg4PGKt#$a1m=JY7P1X>SP`k z5hli$Bp#r1^1)$w!*xj=R|c)FMq(WfBi*GFvpJ*<>+w!jpBAaG&S)M6_jf~c4pVk@ z*1c9)@~-w^*cgwKmT1|LU?}T(4Z5@Gb9N%bs3yW!F5?CKNzklvo%vVV_z|8`J*R|e zAT^sTmLY!aUrIz+d&3IK9ULb1cgCln)#?&<$D~i@yXC|+#4}C|I5KP8>G0;-87oh1 zK4XiLI{D$B>m%cdQ@YA@&h5wFF)YTsYtx`ThiY7GRnmwpp#()Oh65?lzB= zAsi~KyKyurx_eK7*CQL69uiy|_ax|0E0z^njsYq1rg#lJ(=ii%4ks)o4@=`{-A{HA zNu)SoQgH3KF%ZycSL3h_;AZZp53JIL(x~26r!?*>s@-Yh-<+ms#1y?K@?@D^n;oNu zK-$KuMcW|WmhRvv8{tslxKXhRgwer;HBiP4J$SL9yEI{B?&^jQSsJ8U&nD9Utbbgr zA|N!xDjw_XP_V;gH*{B+TtX+H-&Z$!Fj-`5WGz35Y?<@Uhup$8lFPm8(ui0Y%a}Vn zr+(U^a_^yW(x5Y+U2D3**B_i1Xh~_n%3?wM%z>I}Q`BuKtieg%hD>BQlD$Z6>`z`Z zUTKh$&mZ-~=-EMYCBcSV!`ta}?s0W(2%aq>i4CkN)#{0KgoT`_f5-D+Qg`RXbFu!u zCgg9^c2mY>sE@v=zUveka=mmLp)8BSDQH_-A^~E+H4iCXV}rs?RhFh*YEBQBlLi@@ zj*|XG(ZoxN3$GpLYDqZ65FyAwfjCjCqQ{c8Ff=3J$xG1Sn#<#|F)dNs9-L$fJqli8 zhmnFUz-jVOV$cj3(me1ev!hp!a9MRi+RVZu0>$>+-AK@nttskx%-eyt}OnMzTL5}z`OE~T6$vUKYGTj9=R2RVJ@}HTpKDZ`en1-Iuom~HCB*iP7;>0YZO&-p-K0V zW*t%ID&Z<5>Ks;F#O@^2@12pwK3kK}el0&e9K)@nQkPra3(wFV8WUGcO#R z8M#LqqPCR%hx)vhwkC+n!C6J?R;_Bt-KP>sGwbr56Ul6KO?*SBPsWDI#rO!A?yw0F z89ppCIZz76V>mfhC}R#MQ*fQ!;)L~-(pRjpmjeJnIj!-QcElHL=D)9RBLhu=TjZFX zyl<+*5uuY`@4oHZh{9v8(FZy*0aRn1IjcsbvB&NkyDq!x0@Rn72=%S!alI1-6SHhM zw!ittTGtOkr_`21;cw3pTkj|a&gabuV=*sQSFz)NGQdi6#6>c*v+p@7!+HqBelke z6hWXrq~Z>j&ZE)8Gne;`M@#2i1_A3Njaw8Z)|^ULpd5Xe9u+anc3wkDlfyB7Xpx7t z5t4VaZJil($(yTKG@LRkRQem^q!|Z|a~5w#UvH_{)zCaP?(#I(*;7z4Z_f*IKF>a9 zy0Ym;!={po#PF5US5M7hRFWmTW?1>Sbs3|IO(#>`@PP$UetGBnJ|H3Ip&7!Z7FDdD|Sg%y+( zhGvW?e2-KKPn8{S1QAqbg4|Lm+5^53ZDbhS9JC0=ZmYl!kw0v794T8;$kVuzp?XVTaQtRf3siV7`K8L=xYf zW>}<|Ff7i-3=REt7IQavqN6Y(Eoh{KGeyaUYiiA;voMhN-Rh86w-3pvIy;*-Pf53a znEH?rKkG?Vatkv?a`Ow_(4ksKxRwRZDUCyuOf3rvs=G(}m~t&Wq6)DrBmePgXRPMo zO@8TStdQ*t%fa=wyU;3ex@ih@7}!6#Rif+nVPi?58U9+ZK^v5E%IKf1RmL-g|d zo7JG9@jfw$;-QxB_7?ekaJ7IBP&ILiY-w9)yPO}^4FXdKq*bzd7D#HROi6h!Sx0AG zg7g)5-&iD~KFaE`z=hV{RmDs%%$A)lKn{dKwYMfxl$y0L47cID$Pz|W#=X7EW>FX^|a>=WrZ$x`*hyiR#rXxI(-D}g9;0K$g#sLV4Rmrj-Yex zVT)EoDmTtPETRAgx_k&dg`P{HRTX`i(~08V$;R!K(wq{vG}Us5__S;-S)9epoZ=xK z2lq4>D&Q1Cj}USp$7P!RVzLCCG@LwI@I+m>gwCWTH!miRIkclIY?_c^H>V-}QZH$a zeeZG+mD(VJDTKX$Qd^ZFoE;Q4yr0cwcLLySS;I#*KH?NM-)vi%wTl$!8q?7$M$au( zcFHjy_9xC*eZ5%pBLAAg9W3gkCV&ZSem7m_Gg^4-vu#j`7g+5*GFWw zLp0v&*Ph?k#eDD~vNX(AqB&48o?&p^Mb&R3>;zJ$DH?qWrEaxyv#G!5_L4kTSje%o z*%P5xqfHs*o^>%R(|{4L%z>4+rqM(ngQAuE_QSn?X;kNFHmoK!Et^@n+^Bp+8RAAM z>X#ul#*Na#Iwd@?ns?08Nseacu}Z7s(^Z5j!CCFejcI$T=4aLBTpt*n5AX&wALl^P zUOn%r%REYWR$HY*V9dNuM7BZtSOjZ2fXSK5bY)tlyPwI{RmSC2RdXt|jL=hPjKYB^ z*BPr7&-Oe*dFIw?UIfXvMbpG)ZNwPzazG8KI+odRSN5L+lsX{0wsN5#NDj$>`=S0B)nWCc)g&g0*Q#Vp;QOmX$^%aS9 zh-$?7J@e}nvFfF$uJ!seqja~TTo$Jz-L86~Q&E#Or(gPf7J6EJc=0uBkE4F##iSwS z!N-OJ z&z)#^*dj)H(Yab#JeQGNwl)?~It#lQ9Y*~BaND3MJn(7X2{_rEl*lZnj?3@in zF3U;J%`y2(#DXxSe+nj&$Cv9a5@)02wc%MgMflOzNNDRa@m`7NNSY}oP5hI{Jt9?I%NbqT;Rm$X15wQS6B;w4LW?DiG^Eu1RZmU^;I%{&0(k@o0sxEm6<5lN)E$IRrcu2?7 z=G00t>c;W9r>D|3B(45-E2A@2-QX8K>|P42=$Bvf#wid$eaqsqcLb(!7Y`}AQ@UMC zkVaXze-T7Zdu2CQog$ct%*56%o-t})_0*cl$X?*ur6Dbuv91w7`ihWd#)~MJZr*H_ zkh#I3fPJ}{hTTed-#})Vj!iU9^rK#mqBbLs5qh<4l8VS;jgl);IMX=J>u7WdRyViR zp8Mh@lZ*KWn=KcSv+{iVn*=*_)k6eOaWSh38Rt&lqnKnf@^hSE)!QkbCb}1)AbuB= zAoR>N1IEVWnkA6=Bb42r7$VM(G}QeE3LF{63cQzGuMLvsnC=03XEt7+5M~aFHa0JQ zw^Ts3-L;ls8~WwY1tN2U_!)z>2ME|?c9-Ica+>D}B5%uA2|9JN+=`ur3;i+BmdBc9 z6g|g|rrpZ-);6h9=(s>@gnyP1+pTS%F9r>fNZYO~^uJz!!<3()qd_J#Y7L@UuAeVq z%@J4GYUK^{lN^v>)OD05moyO(2mupcUzoea;EXEU5%O5SN)n$GZDiuh=7N` z@J^cNYVc_KN|LotoihE{CPHT4SA56aj;xofVS8kN)DvD)r zUVdXCSlcBU0)*-c)5zE3(tp>4dyDWoN*v_l; zoS-0`-(tq@x3p5RWg4iH)yy%Zhhx%CYBKnQC*k$SR^=fg`&)lis0C08rGPstF~=S? zjQl`-NZL#FD@h?nw7r{b9SuBc6*cT-$_1kt+$_^fh346fSvgo*OjvLgnB012@{vqx zoM$tN%2BhOj2iZSGUE+PV~h+co~p3A`K|hm{LO{GMDfjt%{%R|V4stcYD@Fr%;YXT z%;4}bizaz&B4a3k>Ef^E~G$V+FRZyVWj2u6GL-*yfu%a z)h4opU?JtI1Gtn*#r_m+NOOk{$%p&#wlgp|B`_5yQD%%P`v$M$R2vUcQ*?rvq=foU zMU&;J8N#cOTdU0plL<>76kku@=0Rq~EsTV?pk!lROlEk7fR<~~n5$1A`O(bLMgyvr zhfZ)%m#wmO&Xq>_tSuiMd2Te5isoVuWX;1071i?9*ZP226e!`$sGq0W!;0xm6Aa;i zt0m`5)OLymVR7e}SB|K8=hHE)*7%!itp!!bq1Z~96$Ck4{U?+Ze@7d^P!(47>=dz7 z$bOdZM^AzWl9*4ZDz6U4uDo zV9D+kKT``-;l1XGE$Nx7z^rQ0lXRMw->oq{*7DKA)MZ0tf6Avx6@V(Pu=C-JvC^&t z8CmvUKPKm}c^fmP$$MslVtY+!oKqyL>0nUj54QlcjX|4fimimzWd@y!I7ID)+(w4U z$`rBGkMpTx%1W3K3T#?L{?@4RpE}FjE$lU!<~O-v2JbXvQC?~d>dK}qt%zX!665CJ zrC_L$M3MA|BWQx^aK9|GR<*-!H@}`Ax=8r~Oq{Rb|C;Fa;PCeuwcs4W-${*Fx-f4& zO5j|;FP{!pL#w!(wQ4I(BrE8YP!=XL+DO2qPE$+~Ld%+@P0Jv3YOsgpTY!jNx>C6O zl6Cq(O`J2jM9ki33O9!>EW`U8XpA#iWa>BIL!fCcJ4PTG!qPvd3KN6P*g)gnv1STH zp?TE_kv=nBq9Ubqo}P7ijujpKr=*3+s7Ix8m3PvP*vQaeS`%!-na2K@o)*wrvGeg# zp>4Z>{iMNIuNZz|2bTn)nn*OS;EN#f5hI=`KaQ~(cv%X`Nh6b8}uVz z){l`OA_fIlM5Q3AKB09NF8?tdj402k*7DfYIp^^*x67G=9V|D_>SZ!Ss-4~ZaUOTX z6!l{e;;4`Nadg|xM!5>HI2=popO{d}juX|TkjZ{l z0qLB=do~YmZ(j^~d^p~=%^MvTx#3h(g|4>=|H%*EVpH|64qQo_nd4MA*E>CX3B6}| z4HkQvH0LXl6N?W)zusTW-X*;L^D!^db=pC!}0+4xl>@hI*-ObqY9b_!Z09=8B7kG8VxQatB=qeK5{JNH>!H9qT2b*jT29}&EpsWR=a|Yxk-h7bO4Iu zDn}$NI_~T|CoA)TrDe$Mt|B)uiO2x~FT=iK95NfPcQ9E6JjS0HdPT&3ODkLtY#0*3UpUpXs_qE^KHFQoq8LDDYW4Nx~p&L&Kt$av5 z-BV$SF4q=|a>Z))S~`0_l1C`Mp!h4_KNHZKN*fcwzWuzE!SQ$HMM!E>cwhyId)cuJ zwsU=5GrL15B%^{mX&8XRtXs#D5-=X#{yy&5jlTaSo(mgE^`sr&B~ok795}n_fI8^V z3D0h5NF2@JwUuOSJs)}HL>$R)=kDm}RmdxA-!}6Q0ieUTJ=cd{ZoY=tsTg0i4*JV& zY^KceP5JB+a)N0&rk?A`XLKo$@r&gXJ}ir$@5yH~X+0v7%X@lB@NXlPC`DW^h5TK7 z*|i}{i_<)gqtgEm_L9oW=_zI-A{QWLQo+KnGJ4h87*39V-B2@HiSW%)1J!4{G?`ba zVN=p56Tdds%Z}_FYyMg~CrVT!!L(74K}0FGYA`VC#uT=~-&s_lllgf){@WpO%I*t1NUVh^ECA3wUxR^*Ih;g67gZRQP5$3Pb3EiO_+; z7lbt0U*n-I8HEdZDku(rz8S2`b}S|K(CM#?VO4Y=6ygS=ARHgxWUw5PXcAp%pnAeUstb-1^_=%0Qdv1a%#8oBr{73#X&Cm8Q?;Q z#$J0hpE>C^H7}~^VVke{d=K4m249&$be5Ve7?MatdiEdTRu<@LC$XRFpfPA;jqM!u z2~rXZ8<2#*WH?2fyriv4L=BnI1O&D`sb0pF$Pr#3eT&^JoLa4pP{eI3`}QakmBpQs zPmgk$@(KTwAO?n)M8-+1bxXcDKCcIkdYhD%zw%ffUh|Kx8YC`3c}t?#3f#Xgi{e_1 z>@yJzjRrVK7stitTgmax_~xRu&&#r8j+M274Q4RX?ci;5$aEr~wyaPjbjQojX_?Vg z=E>$fA(Ggjqs6JVlVYqw@QLVJ&=A!AvkT4H$P?#Z) zS&8c-M8!Nqmhih7%iLe*f+N1N_q!`eeX+zRvUZZz)a63GYjD62-?5OfEkUi#I`1-r zlYcodf@o1oXcB0zTm6w`7xcH@g>GD1S{WhvL{X=EUgx`n#yE4tkeA>$YRSM|AF`kE zx3ChC0DaNPBnXMYeOB5?fHrBhfT&Fk16X54`U%?5ypTv|Kx#X;RFGY?-D^hB?f8yJKVr({%}h5 zKuM>x%>gG~JxM6^cWtMta1AGYR;}Tb(dp0?%SV}u6{roTfloz5!Q z)(xXh@F00oV8c@ryzICo^Y`VA)$kS;sA~(Et9`ml`6~#%OmI0zf~;jbl{&8B12vC=6al^EGzdUr&R%|>6YG& zAi7IZmn%pd6*%XMWi7C?lNQS~WezGyj(+X_z{=bjVpm&zZnDDwihVuf)C$G^wJ8k~ zj^tB@O{N2Af>UZg=aM(66@W}a@(3gqcVUARektU%yQ0c z#;YKU%zPvEB-K}|d#9RD-ZCEQ;9TBK2~OpI{nno2;jN$gaEH#Lj{Hoaiz3Nrcb*9H z$l>K6#>^I?)*{@o)M+pVs|{i^D2(*r(L+cYN03(~zuuJI7atAVHs#~%GVssS^lf?b zCb0Zn<#;>X`@6r;{}%81_gk>pikbPyW^gK3J(gh#Dum#Js1)4(5AGvcSO|sp>aNAL z2g&ZD4aiN*`bFn+a8>k)WgU@I84kA>xTh(wNcrxeugE01I)O0xok^j#h^0f-<=a1! z+IcTnQad#yVUQ<1*@-k(>dbq>r_si~Gop>gL3d57IQ)&C<1?Rq-$cRBWfV%`s((r8 z0;Q$LoD82wGi}L4Y8B4iD7$7OvKFtYN||6ak=NpVz^8`Oebw_JIE=0y!w_MiAt&Nm zrMA$54BUl2C`BG`gGcvZe-5%^W`@Rx$Wv^$!yg`&1j6eHX{*(KGcX8~VHuYG_wT?~ z;Niz-raIVQF})Ye<-s~UNqj$cKIeOrw;ooFyG9d~7j#l1PUd*%>NPh{5;w=C{z z8Vo%;pN#M-){6*?W$Z>*L&&)MW=N52B9E8hK-=x6>d7l(b@7&D2iXi?SBPw`NgN>+ za?N?mVm`xj6#@*U=hhX@o$eKdfi$d%3`n(zRPvtIP}kv)K;L>2F?|jd?FwQFO%lkp z+p!vy(b_a%1ELr$B$|^tXmu2GW4yX*KU*y!QJso)VOUbe};sCR%4KkcVWl;NzL9nT4zt!+V|IJ*J z($XvE`ZZSIICcxXSbx84e0NwkwY0Ldax2`2o$5KOTlB$^kpga{r?Ej}Lz0ic&`7ld zKs!fP#NrCx_nK})pQ>k)Wzw~fUYNeU+C8XBohf?3+xbTq?`q2KKi{$=W2Svq2*Lfv zix~}48?TSo z!Gxd630uPPINJfMmP|9^e3BCTZ$_^lp>QS)8zTty!f&d#WtztUzm%E(j^{iH+Yb~_ z)`)x|$oO?+5k`1I+X^s6QA0zmyvjibL~!yQhe0X#ql;HyV38nI=fuZI7fH;#y>y7P zLhMw3&}_#HHPNGsED1vN9OlLM%EbSCYYh6>4)!9DTE(!LVzc&f{qo!ja&2L8UYMhkTDHm&SB%`t$8tx3?|&s0xC2S?0KM( zAnZS#s%Zdf1_Nr|bKq~GaT-XjbLwkgOe4NuD_~w=zOIxJfHnM!8h#KaZF+C;kijmy zEK_3vy>(FyCaxrb;qs!aw1IYuxU7OYy9`FSGQk;=$zBiNkWJAfgr*&X`I=7qPHcYE z(tg!+H}ys8Tq^>G1LvtviL%>BPQL7dn&9aQ1D8v4lk35)&0HF@o%W5$%WuHWa94~q z#OYB|stWjB^flwlz5x$W;F^sIz%jhdrk3Xk7`6ZJhB7anC@-{s{BO5$CEwR2EulJR}XSJ*C>SjqiHP=;^m85 zQwehtcFA@#Vt?k-tncQ6<;nCARMe13V%DLw$C&9qjtzdS7yGls*MDCw)@0^NDre3X zwy_SKU{U67w4pN*{w(ipwUpUu`)d7NJD

rMpCLWgggWV?nGhr)dQj_AqEd^@a1voddtq}1CK zm*`Tg73|Iw^d)}|t@m^?R&*ypmN?90FrKVTqxEb0s<()Zu{!k73D{FDxCf$q#II_B zF2JAaYWaYzpJrY&#i65+)?laTC6O~MIhUq%(~9NPwOA8YE|CYPn)j1ia9j(HcKn_B zIZDQ8`aT94;DekojB5s!VGejI2Qr1cz2`$EZTcgxvb7**Rawsf<~#6M8Wkysako!f@_pF2^aJ z>_x>=Fo1FXuPb8{EI_DW(Z+?$saXo^Art+-3WQrG2=u=S1mbvET!`JQaBDq;merJ- zVfV2GeUFco<&~R!?zowIBsmGJ)72)(GXms@fHcrdEAokwm%!uKpTOP>Q(0c@W<3uG zVms>!9f16X`*3*LD{z<_k37^Lc@uJJRl&MT5nRYk;(5yFocdT4%^u5&zzyag)zmX( zcUad2u}YzHw-@;MOQMV7qYi8aqeI zOfPWPuy?uM+0=%_x%2G)A=HS>cAK}c#&21#_W1{9lg&)epbfr##Px(M@ozS=!$KY9 z(SeVLl@FXb3zdj=T$fE%DqKC~Kc%eP4`A-K23K;W5u6#e^rs)PiGI%bz)#Rma^gXR zanp%|o^e_phfWVaR6aL=9)Hao8)io%!?Guu(maScllv*I|1>T&Y2SmFiQPS-m)$a( zl{v(>SCt6ZgOgbH&{)%+RQ5??D#ue*(wd3=gz@QXEpFBmv9%lq)Pw8CVG1~YPT+5% zXTFkTLatCP9cG-=0+_##3C@}UNX8x^yaE=Z%+%^v97oYDQ?$yZ)ljt>3)>YSn_e3P zXOoW4(BvC@g5)tBAqj~#a3YTarhKL`)QA05)pTY-p1h8qh=QiQc{?ay)~(J=n76S^ z)gmseLd8t=Ic6xek0U{c5QAPGS4W?W1itS0Pqb6vayuKYMr_8Q1;32nJ)8&9!G4aD z+)$a)m@&u#d{=zTxoFNLBY8R!d!P6a_HFZSwd7 zWHySsB8!uT-rQPVCTMU;5{FQCdKx7$4%WAX1zHF9wb`4hE-R(fk@AU*$R*p^OPQ3K z7Ss}sB7qSB8;JG11?t%QjTP_oo$eu;S0GSLsdrLv4zbCi(jr(8zz%so3l)AtFVzJG zpP>6{67pRhCD^clcd$^{)I@*_Iol%ixM@#^RF6qK$(nBhhFhKK2Fq6yQL-Im%6b*a z*S-VKw!yz`_kM@%eQ0IC-E10}?(OUt?d=T1PCeH@*U!zdSl#YCR_g_w*=8oPB)(UE z8asr)h;l{#+Z1fB0T^4Xy6TNQ zIIxX{TAIE2%Tz3z_@$Cip*o(O#=0fP{vjQDsReZPzA{m@Vso3^i<{k_aXhT(gZbmb zZ{Rm!2O%fophh8f=)(w#gGQxc_BX^U&ZJ<~z#xZW%@NOVwfqcH@eGRo!?ZnraUxB; zn!J|Ly zjVO*22SfZ{e2ReBj~F%F>y^EdMrB@I3>t=|>gqmu*G3Y+;jN)l%nm{1rac84KQd~% zf(shGVAvG0sCqmEh>(y?I&W0MSaNvO>#OQ6;r=mx@QkS;eA%qzg|JUWhw$!BD^)g# zW~m?ydqDm7^~{xu!fn2St%>eE0mNe(q@-=IZWp>`ew;R7sJEf(X75C5jrn zXAK9Vvfk#&SK`v8M&QoFHGQ0Xz{{l&Jsf@e_$$`^_w4%v8OQM3f(h5IKh77to#w!{ z7Ifw(cZ=o63$0y)i#p18+0aiIm!Hkbq#}s*n28Ke5dXkCZnF_agXXi^OBVfEm_E(I zSA($9U@4baD$Pl3kkjeXh~~)~CH3oUdQQtxG^DzQ01;CgJ}Nu~0x}dDp-fCu+Ya1+ zRf_Ip94c_GB4-uObF1ZxDbi-sA{ccbt#=W6310fMTHg+Qo%|$|QD84!Ajx+CKsz$Y zCIVP_7imc4go6Ip%gTl?m({h+Lx>80Enk1V5Jw(D_I%N|z{%otDBpoWHlnTpzD?N6 zR#0$mrstPIk`dz3m!n0IY6}V+sTrZuK7UYj7ymnzX0(h7(i5x0?-tjxz{&@fR zb35>7;A8vaEqLT3I9BZK&)$1*Bg9)_@0{2EU_QU=pV{^`bYrBB($lWR&D1qx|4QwE zjTHLN>E3Rc+L4F<>jjw1_|CTUO%qqb%R7R58~>9~B62nll|_$Q`>7Nr`cMnZOJ_r^ zR+TR{JQDeVzKlH^J?64+8N!v|BoZBBiE@>sCbG6Q8z+1_r_w%B$hXL=W}I9CmC+ah zAU)^$Y;+3+5@t0FD>6}i8Uts(6;ld7fc;PN2!JZr)b@xxJZz}pv0dE)!vEqVnvnT9%cV?~{ z*Q7-a$-eBjU#X{^V<4+L+NJC+pDG5BO-v( zW^;?yV1kve>UTws+C@ zrj~e`Zk=T3fnR_2jG(LRmW3Z5Q4D>YoPKPWGdX1k-G4~k6vT`VO9BvPyWRfQkFa}9 zDq{z7emNf?8K~Xj8fnupW~Y7Ji8U0bZ}!3lglt{xd*4}6{RU>7^GLzOwJj%*kUf%y zUzY7${W^~)?}TnouWjb~Q281b{%!oj==bD!Lb{BgjL|XlMxo%YXwfttq)jUuss7$p z4<-~*SRO0=ul2PKvhnDjcfEz7NJ0YI0oT-tY^=n~ZOVR@Q!{@Ync{Spa_x!D=IFb( zT&qYb8;AE<*hYB2Ty~-D2qz|A*Fc%wWvDsu=6@aWtZFP#TQla*-|cYy{CEln`!j8O z!X}190?*SlN_ASOGUcv;MNQg|Zc>_xB@~dQp}FG#%~bEMZbHDsL0N&6P9uaLT}oU% zO9+{A0GVAKF-A)VJy|7s~aq#Lp;B~a_@^?$D7YWY{%Vgq_M4Ku$@R7lCg_C5dap#g7Y`K6y)qp05o6h z&dmGPCv7+8lRYk7=lZ?BgX9tf`XNNnT6l1PKmG={JbB*W{h`J^8SCtsf!EE4@Cr`@ zrc-zB*!$kVpzshtf|KjlOgJ7Lr=GLv=jYzSb^kzyFsSrAmAxT_6~6E0To^d4%A^o~ z%g;8EpE8-=BJv{s?lnr2*Akx%D)EKy$A77%#$Qygs+aRq(Pfa@9BO9yk0*eG9S=@Z z9uz!J3hq~fVbG4}weJ2=fgLy57FL?Ulcz3)m8yUnzp=)Qz-l`}Yc+2J!!kR>k`WL= zbLWDmk0s~tWG$`nJ2O`3Un}dy)~wHPAFv0>qxw<+6cSg|dfxMvx_{GGOmM0@F+xh4htYyOcufbGl@wn}J)Dc|$yXKM4yt*deb(%4 zn1YDqkzwiwC0}QtrH8d14F4$Z<>R{*X15zMCiWeI*h$*Y`z~Rz>vy@N_-XvT#mgOH zze6*xcg$t$u|bo^(UiI0jL(BW3|xCbcEUTZ3H0ioD1lbhB76hAySkCM=cj(HhFQ1(t7IqUJeHW(UW;a!cb;Z1e#Y!vj6dWVDez3nntq}xJu1y`HlyYZZUjZ(d?Xih+AP4w<+f^XtSr!sMH z@}F{8-`r{5bmE(@c%RdKzq}}Xe;@es##VBVF1r&e)1Z^cJkkay?ioqE{Tq1E`*R;Q zWt+B5T_x#&LKwyE_Gp9eGbFDI2M6@zLjh9b!^7H)_YZ{7i@>Z_kym_QoEq-+VM%eN zMNbJ_+QvIoT;*XsPc2NSI>J|i9p=}iH~yVpfs!&$Ha2u@d)sSDT`7ryE*m>v1JOdL zgd{Bwnvn7p!9_$QO?Z}!&7#>nLJnIf6zx9n@4&oLvzIBFVAdp zoqbjuoRi*F&#G3%ZJhs@Fa2!{p{gcR4mv!h#?-v7C&$+gl6d2X4v{4UkvG;_an2BN z)-iFvSgHgR94A}L2^{Sd+P0Pi@aqDoN8KgzGLA?H(z>j$(IK}Bj%6A@`5Zb$;S&E5 z)?1^M<7m0&@0}YiK(K``@r3#6znc(0Vta3?oiRM@b!}-B7w(Rl`}+#oxiuyDzH#75 zZts2I?`p&C$G6P)bHg2~wHdtboT#~JyX7SqH8ZfCvwbt{r%QwBbF{(N9P*I@q0Ti| zeom_)5l*nE%E=njagR|7L$>nesPE8{#t)8an47zlZ#ld(T=$P`hdJA4>uSiNSUG{0es>i-b;6>L#=;hQsb42^UnA<~V6 zG)N=e-Q6`PAt2pd14wswcXy|B4XHG`T+-_ihi|d!~0!zXHM+Fh*mcn^-GL@vFU6AtBQc zNPX*H=fg`at~j)zl!WT2T|a+JjOH@*@zMzD!y6*fH{%Dwl48S7`;HWcCJj_q*;udj zc-cWZWYJ90PlFD(_C}ZA(@V<@uHk|n*ePr7KPk8x3fbl)ZZmOYo8Glt?|*97+p3d0VsAWpgE%GcAAu8HuK<23H4EMuEBCc?b2?uHa zKetDu-#NkT?@IsYFmIe@w!bB1Bh@s`H1E|c7ErAFsEnbNh%G$)dS6j$nmqq*W}ZFA zxGRd@0zy09Q<6}Z&`SgMSQQL=h2xyS-~V*$g=ulr8T?^FAZt6+)kd*Kk=Fe=;77K4 z^`bw*GEl_kPzei*JDTjI%dPr>mVrL+>FQR8pDza$e_%lo5IiWXj~rQsJrOW`|9?41 z2p}k2(l$Bur6Y3hTmn=^R(5+8F_{x4fhtM9=go#ID=yFVhH=d2gXwMLR-T!NpWD}J zLfnAoUvcUO816~(ZpWbvSmbLv-}&tO3?Q^_z-@JJDjTN(Bb&wMn+ z`wWvCnxYIg(=q`h?9A{mVl*n50c|SG)M{QUGlPomKLyo)JaoD$vwI)ilgoE+L{3M~ zB#3*OX8+Ow>XDu2pSs{hOk4;T8n8OPQD5S0e~m_T<)h!xhd&+*WDRH}-nRLD{N6w4 z1U1I~GK*1=O@jufBss+^@D2OWZcyXx+MiUD3#;GZ!uKw&M@vgjv|c|gM~V{WM^S(J z^nYSUb6%GBW*H@~#)7^Zb>KM`uO_Z+zfmf8x22m!$ntHRd#0Y1D~KFlpL^G|V$U-d zbG4N~UWlV%WIcsZJrX{X|sjQ<554}ugpF}CRCP{k@ui&AiHP}wgzX7W8Yc-lp+G(SUaqr(vDOv6J1er1(@H^ z7iEMg-(-yXG|dlo@!@*ym*vc^RHP9g$iAr=pdI>=atRkS#tsict-1A?P`Uf*!pxeC zQi|*}WcMSdSKx{Q=z{6dm=hb_(cd#} z541VFGQ7mjI+Nu+b*tR+Bo(BbDLq_PjCeA z7S|FAI0_u*t1t@kqwS7Fpx7|SVY}DfKOJe<;Soco63Dwlo}>okx57>B(2o%2FwqZ) zJ{nF`@aAlM9KuE@pobHME3#uzq7-V_yE_^iAs|??oHm8DBB_<^2LHAI#>L{otXB%$ zBkbGkHKGunESUkip~QlKqU=yoT!ncq7`(n#U13-2sy2sv|4e$D2X|c1H*0!Kw*1e} z*PUgi*mK>>uZYH5iyE8wpoxpK3_{-y%UbrHC8VpN%yX`x8VYJkI zi*?gqY0{&rkG;sJSp4!hfLmFkz%}U-NZ?#uK(R1YIUwC1yyoq2xYtpLq-yREL=NB7 zS#7-IAIuR!*SJ^Bem3YKP>s+W-Ekhy0r;tJJkeG>_sM5p2R2UX*&<;WAE!bJJ3!nv z{PFCVc2sU?#ERujJtX)OEX4F6Y0Uopb1S0@6TAk5kU{gv*}^4aGA?fUe|Qf z+4J9D%71^cP@sc8$0}#4C4mrFL~rKO<=g;0)&!M++#S}4{^EYgTK4tuauY$!y|?S^ z5_H-qfWR63>&w$%@0=Y4*IpKd>Mn8y>DYe37@Rw+h($y;N@Q6RieQ{zz{lX~-ogQ{ zXA_%>6n}=zYFiUd;Sf?&$6@vQN{eb-bRgj?`P(~e^4Ek*TV!sjfuQB#eK(mViooX2 z{Q-3~&dU-+tBwJ)6vnQkZ;xwddlP9#Q?EF5jx|j)8GaiIj&3TI>&JbTj)fNrtq+Za zN&N1p5vW{co=bc7;3r56M31K*b26c;A+{fOA-vbl1h|zQ9KBaQ7u8y3+NV#e(w(IgGKaW4%qr1zz@>v8Wl9 z0u!`Q5LilEt_W7GAwEd08ce0EZ`oP}Pl7G`O9p{(Ta!agqx3C?o{1}$b0DY7@$eE$ zMrn!&jDGd!+siZ^!+S%hBo+QFrpapZKH&?5`tx6FE&b8I<=szagYWX!V#V)@Evovp z7pFzZNeah@Jr08?kl5?OXaBAy60I5vQOGU!O&zi4`TTrqiTha}p#%j2rzKk&Zy9~|*nnV~-zTB=crRD7z~pf8XIfJDNm0m~x&$c-kWmbXRJ zgqG9i>kSm`M}40~LPM13EWs+zDa+1Nvp@}z-!hG__@0zIbk0leejvn|k+5}_C(KK8 zpI8r6!Z__ridI~&>um;fE@2U(08~or{(?1o@>1tWN((Rj*2c$yTUtN4=jm(rvhAtl z%Z)?(2&E8+j4fV_)Qo4Wq6_r-DG*u*xs#xN8v9IkzH>n16X!!;2S?Ob8(N(u)vnUo zE=_T@L#2;fuTryUOhsnp{T)8<2GDx18VTUj_7YO%&tfbl|CzV&LZnCNe}rqbWFqFh zUW9SF0zmws!fxpEO`+Imj5agdGuCVjpf5=B={E)tJ1|;Tnh!?h^s34`-WCrx1>fI0Rf^Owmxv0gG!c{W(~i9Nr(K7JI7Jla{m|c& zf>1G*ChY{ayIS4jR%0i-ih$3fC%+^%^lpaC6{9ng}_fNPJFBv@;3R7Ci$&EAgVY5NBd{j5(fN?PwMylCp zInx0u2#}kMK0g`TCg`4NY7MF;v6pVVmV3IEO~3m%v5W>n*Sx^?!N+ZmR(!E*q&?CT zusG?X7by+XLez)qmZ1pYDA-clrn(-v(T*Gh1#;u)g6&94Niz^N2YcwK8(Byp0e&1? zq@{`9Q9eZ4eftr{CrD0DC$oLLiUWYBCJozlnpY44ccH#ZL6m_U>h*7+wZ;@p9s#wSxSH)rb$E2D z$s1#uP4uVF#)KCUvziN<+_dcNd^KGp!Shje&nB}E4GzPEdM9EvOxlFH;FS^+apK_6 zNops-x$t+cWkqAIf6fSavw)7#$ty+ih6oX*^o|(jTtar%u%Vs5P!C+*W=MR|R7WT}<&aF&gM z>C4J=^e2CGgr>W+06$G2mPjC5!)Bn`PSVa-prklKehPd5P42-C%r6K$61~Eze=M_{0d^^ZTX(=4Jz&N?ENuEFO+lp;F-3gU zb8h5O6Cs75Y^LRNPb9m^K`T0(Rs~gW-RBE1Fm;nj(^;%0GIFC_J3Wq&F1u zy$^qnS(;_Ya)1H%x6X73fI67L2s$-A60HM{dCfO-e>=OB*Zs@>|ci!LjCCN z7?21Xag&>!x~90l_dQ6%FwM*}^}^5JzPFRVb6NH5gROp?;O}`Y*idss4=sFv{v!Og zci+oK1~u0=bOK#EetcEMwCMlBRY8-*1OsF3o(;4ev(t>_?c;=SoV`>Ma2sLDR+qQy zls%X92;Mss`aymOZW&eRk}OvovTWDfWZ(S z;t{G_c;9)>QMuCH2DgWH;Z)2gR*D?C(ty0^?z${NQG}46t9F>smP6a|57l}rhx3Ll zaLf0-z&#OnfD5)5FrnUC^&n6AmmU`p+!fiyU`?|D1_u!dE^7fGl?|Rh3e7d5q;NT| zPG!x;SPP$UYhW_oyH6kEK))8%=`byBM3bPJuEaHoRTgH_3f6heuPduT?aNH?Y|XF2 zmz(aTMQG)j(Xv7p#M*hEsU@Pl!r9;caCiLV;435Z-ic^poFIoYmV z+o78Rf~Er@r)Dk2n`$RNI^0Om`R^QN6Qw>p)zhGeQa28~c${$BWGv|3m+0Qc;A}wt zZT>km@ml>WsF)zeU8Konl>UCNtNb-W1;IJ;tjfW{MI&m1BI){~VI0ti)*l>9F$kY4}u z*QvlG+V6&Afj*)$EMP`VEWQhkij=$tR^@_93kIgvAu#Hf9XQb<5%jlvwL@+rV~9bOR4VaRMqp2 z6tf{r5kCg=zVOm42{HM|;3Xbg7W^1uG^<0NsgeD((+&!G2k=#S=4Y$d`(*F(W=B!M z#@n&xcOIOz)c`VDUy#0RW6RSXIcYbTKT8@l;e?S&>QDv^0O8T0|I*sdXzMWkHM*S8xw?12BL&Zo;NP%%iixA^uiiX zlsetgjI8zaM=kUM`B^sQ9)j0CO%bFCe>qrs>UusF+lISz_Sw@&)aY5`YSHwW_J^ND zXy=uTZJB9wR=SsF`XGNf>^zyLgD|_8Uh~e82jStD@9*h!wodL#$d`G=fNGrl@zphts9!CPV z63?|`&W>VyqZ>I|zib@p7NOCYTbOJ-CewHw0DGg43MU1K$5;uAWB__UZIHAUe3=wY zN)}rMGDHisvkQzPuf>>&tJtmH;@IkwFeFb-_QZvMFPW`ZABB~fz3(75llXdNB+;p* z##*Ni6~V&hp?8nVgRAPqFtYMP?MBds8KgR8uFRL^k88)L+_iyG&qVhAgi5DUv>ler z8T&NgnnyC+J359n`GA?ybr%4gVV)Qgm_{#`Y=mHcCf@(Sdm7%mHAM>E2=@fR8-k(S zvzhNDKi+@Av|MOCUo%3`&t8%js_9x+HDeT9wh+b>7{*M>ne^DM0m&M^|9(>92RT0@={v(pmE21zetAs*}LKYEQ+H%n2i6%>wpKc~pt`i<>WFZp5HVAu?AUO$=8sZzW34e(h6< z=iT)P1`&voLAh4cK~v#;bbtyn=JtJY>fQZk0Y%AQ=J7FqDp25z7hpN;#6{(LqrX{# zJPn?b?eHz=jSow_pTZC)H1%=oxFwO$S_t=ics+((tbM_p4_Cv3NIYYTmcR}Ys-Rr+ z_G^C9DxOAqgtVJVRnoAj-J0Xa9RRMe4g$c(G_5Nfc))IWbigx;fVVNVs~pNhkK2oA z&yXY8VHjghX)8aDXm=q1Simgixh}c;qc6{xrc`-=3sr|NjLyMjr8D%UE1z6#*`8!u zRO`-G=~G%6ANRz8jHQzp!`54)C#}rq9Gv<_VyU}kUP0IX!zBzqdf_0r9ZX&GJVfKN zf#K}!dWx>fw{c+ar|97(hP#R%e}l+sRQ&bN`yjFWFwL#+dUIAmbS>=Op=$dUB0LHh zzoT6;fbGRTM0J{X$UT9A*L3Z)otCaX{X4o+q~Xl>RpZYk-#g+})U*x_OknmPvGBpV zT8%2gs;FP4fd$i8PEX+09To_BT4|nJK`OVG%Inc+n;V!-C(zSULN+5G&nCsY_M%&< zlR8)%J@)Fmbs|?&YXzn=9LJ6rG+M&So#W$o3rwV|CB_cu-^$LkX%ByEgS5MBd*Ecf zOd^Ae$Jt;3|MpxZ0vZ4J-a|YvHa+-wvF^+q3p<(Aq9lN8nSAZ~8dhp78q?$s+|f+J z0E1q@>!_DSl{i0fENUB^J7GqBjrv!J<<4Gj$+v8>noexjyBHx2UbK=MoKQ6H9VMZu zyEr9QZ88SJC5moBClxS?FdJGux=J;uUxdJ?8u#hq*bjVS-Hhp+!q(Atps}KBZbIFI zx*{t~=pN(AK)LXT*w8y+zv4i+rRA9KLtox0t@)plCTU(lR)jR69+^hUIpWt1g^NB{ zKe@?=%&$4o@aw7FSC6iFdOKJ%%FV<$22_CeCt?mfA6OnlJP32X+W6aT zlh-V}h|$95(Wg5B+lbkJBRAHfw;_~d3zv09y9HkKrNNvv;_O4l+c=xsOF+ZT$je1x zR~955&Xv$bt@l@Yh0QNfI_r2_F_*g-7J6R$m-m*Bb&~@m!_{`^4d1)tYt+7p9|n&7 z58r_CV-@&Sq|V^j1&VG|6JJ@+VEQ*jcrfVS6fQ2Ky32j1^=}FfYT$no?D62f*-;~^ z2g!e;twre(Z3M9CvPfWm3om#1bNQr(xS`vE#ISl^sY(m*+-_pV;twBQ^#r?`mZZ${ zbaa$tq6-}P6);*qK=tkRbSW5IPA(kD%7*;0kXfP@WTrC^@ z2DsnL%+Q-YCO`v5E1w$?*y-X^cyZ)(!_1>qwaV~#`9IvurMy0N0V=#$&gLn zN0(y#is2Qp@0nA%8IdaLDE#Yb?HjG>aLDSHsauMJ80))*v-=%+Pj81$!^2e8if;+w zRP_0a{b*;sPO9B)6l<99HudZ~BglP_y0&Cg6GEX>&Uk8@B_sD2nVmy$m#n?x36llX0VnR+ zAiNb!fTfj-#bw*Wg*A|oBU>oUX18}w0))U%LK>W_C8+p|wVLlbh0UXewvmh{-XLuU z^%lcVT`-I6PF2p*2^+gJbZ}ar64qsOP1Z6LQCG}d-4qazZ4|HfeiF!znN{P8^_Sv9s6cbgZ7nGeE;8-BPyEZaMK2`??LnN^>sSL}3A<_W)9 z|JtjbtjASq*bhjl3!=)z@_xl|9A+^m-a9PeAjb?H-B-^%?u0~}++kC(+dnhXp-Trj%#A=++-Dc{=*8y%HKqpx2Y z?{p4|NXHqpVBD*1y##n8=^Oi`9XFY+qaATuskx_Y#s0L-&i3+|9XzN+{$+h^*jpc; zYh?9|kJMavWWT|u-yq1M>Z$eC-tJj&Oh5b|W*G=Uq!h0Tm-ZCokWSx$17v;AJi*^4 z7j}Q}uFKF*+ZA7+R+4HHF{gapA7u~j(Ad_o>%ELI48DwMqjr{JxyDUszLM4O?gXJyF5P{~ey9N9m9b^Q}@rnqP+LU zH$+wNTQ_LVEC8%OmD`UGh%0J7X{Fio+9fz9T5poAl}H{?e` zIJCdz)3@ae1#G?R33~4xyS=;mHcw%c88+EtZY2Ud%Rn7NM3hrhiUkq(tA>X)-8$>P zJP%!fBUL0PAoIXqKCQ6A_(?T>@-NV*_*74E*Im zTOf3zifS``sevSHohtKWf%P{_i~XxaeEF9#87Ne(@v$(Ws=y> zoqFCU;pOD8_3XV$F4eUnBL=T2Vc{^@B{=q8SHDlDRdyb1P}h~tivY3HKXxkN1-(%@ zFbmLPmlb}R^1LcZ#y+3k>3pxevE2|v{HBLu@vvp1r6w%a_EMD&N#9yQc9u!ipP67G zH`zJzffQ9x${PAwvP31{^p5o$gBMo0pxD1!%;o<`IO;ol89mX99SFg`TQRHQRqnXr zH_40Ps7NP6VALiA>a&Kv!p7>>5hXnd;lol1`EWB&00tZ+jKcc(x_C)uRxr3r&^Jrt zSUm_bI_%3i@ip2D@U|rY`c121$04>R;;S1I$JSh9Ub6tznb}U+yYeOO{W|Et78Q+Y z4HglU8usZcMVl@A={Z@@_((Y03{bg?Ufgu&3WlffHud-4rnRSiHc~{XK~`=*SubD- zd{=!Kl#P(&m>SSPY1#n;x3QJ15O38?M5!iz+V>F7X)`WRnl0!+kSdX^4QtP(DU&iP zv?)Uq9jyL*ld2O@XKD%sP*|^f4csyw86{ZZu{r<;Lx_xp?!dAnm^@O&;#@QT;+zPu zIOk+b>Y;rumLs7v$k2DH$e*~qX&!#iv7r*$%t*WNTnhW-o!f<`BNk%-j;Y_&cd6oY zHeB;zi55x$Mx(8Le<4O0Sb2UPSA2^OuBF)~S$v8E&_l!?*Q}hyL`t2Euy@FBE`od% z;2zioqwpY3yGkzt$&f95Kso_{>Yncx;bqu+6G>M`B7g*pScV_QJ2WS^m7Ql!8CtXP ztj)EWe+KT?l2vcbOC? z#E^H?btpidxXyq88slG==)r}xiC zIP2W)|H}c!#R%xRpXTO92>n%yw;zubu`2iL9zx8=#6upU__G2%1Lcr!QN+P2J4F3N zg7r}Fia&0xxEKgcEqRzYkZN^$3PrB}@z` z#)Ln=2?GcbAp2__j8VrJ9B z(1zkx`OnHOxqR_4m&vtNX(?Mgwt8VzKs1aL2IO?(UWWK)LC1@#>B*cayM)^=7!eI(22&f3w7tCfxM`J!R>C^B2n$bT+7!~;kMOiYK{>zKHT2n?{lR1IPG6Af72o<#*RlD z6ZLAaYr@3`zu^_jIke|!@$VA;OYktEZ>7d?>R;gNJk-TNw6GM;3OLRq6RglL=m*dU zg0w|ipEAe=zxeQMeX$r;JnJJ7F>cDkN(*NKmw*Q0Vza43MU0`0Fp)X;+=CJgfXca3 zm>|fDc^1sxpM2#>bd~24i2N%c{M_v6g{*wj;Y7|jITNdAxaYAqcPMO3#kLg%yHnb2 zqufYayABpg+aMj4{w!f)@%31=5`FR0F^$)|+kRLW3&1W=)7bi@dF!w`l#M)P@^+!1^dMgc{J_zRkrB2`m8tBnfr$KNH8^DX9rI zRTc*xj389lkktXarP={qaK1e7+sH7@deoUf=H{U8*tg8j<}E^`m2`!N7|V;2*Ekl_ zKLdHeATUC}?!j6(2QEy!xBF7PGY4b;T%!xVzm_8L!n5Lhb0O{v2~c1k!4A;7uYipP ze-?q@MFswywXkddlQ1JbtqO&kL6J~IRkMM)6xdI+GRoe8EroAAwdjmHBYS7_ee+y9J!@T%@60QaDK;K@Q2Uue55%%@phY8px zf>9~^2d8Il?SFH>4J-1Ugx)SNRo1=;$}XIh?A2m2-V4vZt~AA%a*PP@A^_R&za;rJ zPh1eYL|sWLSK=o!!-5c5AKhxB*zw`uciIcWFe#?#(Eti+es=0-5^(s_Bn<5UH-;MJ z&VXl@T#fYBI6Hyfg0(cs9E$31js0=q`r&kIHXjE42A!9OU7<jCX#s4PQ@U8;m*k(#)C2hVT{+)&vO$Goid(Fh03( z2Mj4hzg-N;o;F5uyKNUHv{w*&A8%b1!fG7q6nP`&VB?9p6GUO{M{Kk~fsnSntG}Uu zL~%Pyu`pCvtB%aw@9&)jEqi{jt8NN9*Wpq!JQyir7$pT zc{xxRS+nM|6hC(UI*a@`)!sc2K{ciJi1p07{=68fW|`X^ybqTn+DLt|a^uFko$Qh5 zsjAS|(A_wmScBBFAwU|7h?r-pA730?OJ*Ml{9uWFS^ye_iwPTzd_Y)F^nF)D>9C5Z zAmwcK!gH6M%1_4CgW-{-K>rjlnx4D&CQ|uY`~0cImSV7{c@Mwp9S9JCE+GOL7by13 zpcpKyB`@|Okf%}vmE!&!6YBZer?V-ce60%IH8(xxgFh1ilmyO6D@!hC5pTkXTzPvm zz`b1RB*{aJs>MTrjO$VkYb;zD_!~6e2H>@`zkxShKRk6q2L{18 zy3svs&W;;3`GKE30?<9jY4WQ$xe+dQZ&<%Gwi|;wWNv4%CS_Z`7ai4~c?}D`%+0|F~iSG|TQ?*pWR1baihFjSbvGz1_UX=F#BLVWM^(`~`#;mRd)S!gMKz zC0ne}E@uSh2yeq2ipkb#M+xE3dWnMJuQ>ls`Zw!vHP9ny>q*3R`W)rJm9SQw22m`0 znJ!1fWmcpse!=f4s9rM`+(MJ*neWhK7fb_N5MC*@T2<+8gHOb)F?D-7GhfPhS*JY! z-d9eq7qpCT3>@g&X3~h@)Cs3-U;zQSg5+2mUf0Jq6rx5R&CK0EBP-a#5v(&|WIK9P zdN8dlea7<9YQ8JVATx{s#guPt>CP|-=hW{5f)qY5U}rB^>IaSLu%QS*rwv6^$jmdT z_W<+Z5dC;FcitvLWgH=~o+y-8>DfSMDibI>jLSO=M(9@9VeN}1bP&ZcIaX`o&2})W z5XM&y^#IaPVI*yk7H0Ree76AtOhrokg^SD0&p03fG)~2F^9`vVdQ|IUT?pTOeBc5x zKA{6Z1>e8p(u^nntMm-=2;WMA_Wae=b`!jQ<7#&&0C-0zuwK}Y4FGexxoy)Tuq)Dv)>y26wW<$I8V5*WL-^=JhjPew@qZnWR4v}K|9L;3fD z*S^GB+E_h!-)fwlb^Cg`%T%~b`HYVXwg((t?`(I4J?ON4;ToGR%&>{L+&sjNd>FTQ zSBWCE<&h>k$Mj#jbf9}iy-Sg*@8L9Fc~d~+PpRDc9K^y9Y|KGzS4>C>^+awO4T^RH?34q1K680A>RJBE!)m;m>Xb=zJ) zsLLO>8r-r&laAR)S2q>MeM^;cP`Zl0f^jA9&`#wCAIy9IFHxkw{piW42s^U1xeetx z$@cLMABenHwctf!xFjX&5|7hRvE4R{ zV!M3l_hPVC!}bsJ!blA4c!~2ZWgeT0NbY!;>|XROj7@tW%JRcY@mp$O5*b%KQy%Lk zktgNh<8<1_h#WRb&pHQIr}vV5;I=}sCHt^jkt-3nXl`li*EaK{@$V?$trPqQzGJRLc}i-2rIh=90; zBV(cN5im(~$gz?XWPp8AT;|q6FqYLo9>?K zY-J6pkK-Zw^7-E67gST4oSX11d%^T5RdVDEf*7c9Uo_uLpZ@gfnD_;(`*<9z^NB#E zr`d#}X#Jb+LRTLAdNTk+8rI4e zvg(AkOulmX;cL!Jm6PD^J}pOzA%rpyv7Uh3MD#z9J9eM}e=qXdR)4!#O_WYgnsGh{ z49_`*q)#z*Ej8BMeb^eU>q6evg|bTuDnr)`K(j+34qyC!@lO0k%23rfX`jJu5kgjv zuKC$3J6k&QOV**U0Yz2^HDlLufJ^)9lxNI*()7<@7GqkyExgx;OL|YiQ~w4%hvte~-$)9CTNb~g0C&L2)@E#vki=w0d3C@hR8skVn8 zm7@i&KP4L6v9$%M`H*Tn`wG@tpnpU50G`AMRK5C0_0F@oR*6PS6o-_Z2QAV--#O_j zvO#9PmX92}KI$>Dl0ewqJuU3S3}E5=e3`LMJvn%*uZ`RCpT~qq_4eKmiWvoN zp4m$fuG#1JT|D0|tqYa<6Yn<|-k=K3dc`Yi|*65EmA-j(`CB;j7 z^}Iq?L0xzgxt|{=7BB33w{OT)98T3kyQoIz6b=C4V|}~t$*Rn8Bh88i8@4E*GYebQ zD}~vuSNaqWbuIrPfLxgN`cuj?gwu=)gr*qg#!3WHleT`|&J$ePYctGdaRkLaMs}{7LU#oV!m1&@YXg#ilG$$=JjUS(f4c7(w6p6Kr#OWX+TZ#sBvk+(^BdUizaV44tS9D2ylRwL6AFuFhZ8dhD62XHn8MC3SORCi$2?y((vt*1;o))TC(@NcK3k}v`oaJ7hO#5 zuqhTTW1)WQ1}Ik3iy^4pPN9hb7Lqn73r~2PW;dteFbAC?m#3cCcHkZZ@-Zr5^J5!B`Atq7L=yqn z!SWq=+a@6hc;kg;k;G)?{|XoI7sbjQi|ZRAke&@9_$4OyO*uWBF@my*dHcl!8Gt2y zd~h_ScR!?e`fEmn4hGyfbP$Fj`%C8F%>UhHJ)+gBy~!x~20W^t`?4%n?JjInF=Co*>iT!1(FvSTgtI8=%5 zHfmsmyqSBU(@!`&bnwK@eqT9w=23XjJwTLxHxiPbw~bcbZk$|$+~)_48n+O792<+# zu5pUpbzouHaRI-E#@edQGph@rDa>pqZ_1@?jmmIe_UGF%`6u_O;*9Y(?wHer+2Aw` zlB+L?emJyOT-Fb(;+C<)&b1oS?ODIza>6K#ED?@cuE zW{KD~n*(eNqt7X=Pwyfn7_E(1vT9P^<{Wswh&MhXFk7-%p6J3T zW9!@N0IW9&O7iW^n$Fk4&J(6nLs;L7K@deS{6#zAHhHJS04%U9CVVGB4wtwjZUu>C zB&!GxWH@=dBTA<;ej*5)MJZn1f3m-tRT|F;0BqzP9T=9gFe-e*Q$+-3v|GZqd3#uR z`ja7i&mM&}$Sqiu48zSb{o66%k&s@?G3p|Kx)^yu9a-U1eVwcfKPRrvlD!`+hTXZ9 zRT*PTr-5se_1sax=Txp3qZjXNs76e$1f7!V0ok+>KXQabq9IYIBqLJb+TKW-B0tAO}3GPu6D(Q5A*`2~B zsDeTOHa+AbCRMS4^*#Q_Edi!Zp&S6ekS&*PeVBQQ7o1zk`$L28beu$+MUIXDsN340 zhXgMa8!6#M$>HgQiQ4zZ9A+J`dxh#QiO?l|uRtahFrRh;`I(<%L~klju4u z@E$*o4uV0bDhCoGj@=V}+`pNNPf$b*+6igbX}xM$)GHj|dJvyYZLpmG3bzm+;oN>u z80Mv!WHNRah6|`|=q`kH+Vo9@@|L7!^=k(+uNLu3w-?nMCkv21A1v?{@2{Ni-`>O% zsHoMMe4XF6s-NkP>R~`6aQpIu+RRn%2#!i0#Tkyw&*>-r8Wg5w3*;M@G_wD+BfDN= zyyLu(K#$8k`F_HIt%9}YbP8<63l?cZ1%C`L0&u5ggw1LWH0l@>(|XP z_KTvRa`UC(_6GRaqiOJaEUfn`_732+8Rg`%?WtumF8L4AmaHv-I8q)NlZPspYa5VQ zF+K%OrO_ChkWXgp2KHiXUM5^VRhw-dmA=qInxy|Y)cnd)eCG6IY4W-JCs2gvN2v_M z?9(&=p&9psEx35{KqFffJ}1={6j2PC;OgNW1O$cLP70$pe)1%Xl6F6-SYJpl>EO+SQH*okT_(1&$CUU$*+`TZX@LGYnm~LeYL)^)d!xU z&((sy4Rk5e(bf3-{fnFm9>HT7>%*s>pK=+Lcz)`cgmtj9(;@smZ`#-(w-&sHU%NoS z@A3X(a~n)njZ3_W<2=$OTvkmZyXe0mEm--nVwkpVawUyDxRBgLK+6^Oejut6y=%b# z&ca~)5U9WMdL0J6^;nFLf;z|kY2}W!v6b!){!!21`-+Z!`cZi)yDVtsYmt6P4xa~s zmg-yDrN%{6w*gACctlT6AxuP6l^+gRREXA7z%+Wmw28T(H`&n%DPA->KVQq z*O3nw2m?a2%q`IKK7;8U(s{mZ3oA779H1M^amy#xD-#~!DNB!&h2B%1UT9+K-g-eJ zZaAb~=3wMSE~p4AZOuzYQS-p=evde;^4W7NzE@7ENN_vQ??lzX%OsN$wMD1e?VX4; zUFw=z*}g#M8Kr;fAGy>egmTW=&cUVjmJDdfuU!E>@@CWHXYjgBU?9D&@02Ax;qpei zZtCV6RJ@guHx_h6;tbF=SxzbrhTi-tj@?8=6th1$#b9dD2OkhZoKyjZqxwMjM*~D$W(UtHHgzz-l=@ncf7E^((X8c(WTV-|78?*d!ruBsB2+esyawTz0TGsDD;ZPu zSy>?|))aQ)_KUm)psoPs)rjJ%kIwX^Gl00RG4PDBhW)!oSxc}^#|b*G7*=inmZoh= z*Yv^|GDP#%+XfI)%N@?Iy?e(eL(E} zP(q?c67)EH0mWlghc6z2`Xc}WG=EIi5pRxv_l5M{IwEu`{iR1k?@Y@Cx7@Yd`8$X` zQ;A}4*$q=y#fQkS2`Y6?mu?f2$V-GYu*Y}H*Q7C5pPqm;_cCW5snrFtv zaFWAbX=gBfhwfoP_0eKNPE~eSsB&64`DvFelUNZVOr?dmV?bwfztUs;(8{WxrM#8@ zz2L-99ja9tOtEl+2?*rqGVE6E zq()Ye^v6J|IT%PprDy;1{+?Q-?6rlEfErc$eLOfyb0iQpaC=4LIC$UWBY6MtE!$_o z2?+d$cA<6PbF`Zf+51?8|D*iuo?FiU$il=Q80ANj2XWYZrek%NERomH=R9r! z32~8*ECL-(6#1CGxN=iuV3;Cyv~wQl6;$D z>Cmqsy~8hEq8-?sdgCf&mQ+A2I~ECgxEg}qJ6|jH1Gc?kmq?AZVcc&mI zAR$P1$I#L>fPl0#(jh6`-Q7qtbl1?GXZ!r)yyvX&Y?w#%@8&i6bWHE|0R<-V(d_|+Jv|B-+K7i=&^LxU!4JAJ&#R9PU{1Jo*? z4}5NVNt$R)=lWp z-UF1qSdrJO5s&t!)iL)x$5X-HF;TIIH$M*IaoovC{k6Pb;(&`VG6oJHqz!|zA%6{l zN3Rk&;XlM)4NAVCuwg;yM5s2a^GmLfYc*=LdLn)QrYYiuA6j9@q!G-g{oO8j?Ol3r z@y4(uaaS3V;eD@4$j6QnwtzJQXIR-N!2FP@AIpn!gBnXr1wa&PFpE~9g}VYhGnb?~ z<8_k#3R!XXT}eknJcHWn;oja}Hn{uA3~JeDjZ88p@Qea+6EJ8_XU94D5fyKP+s>}# z$Z$@~bOXp!)yv;a4}Y{+UH$Mrw|NGL{`hw=iRAV)I&#TG`Q==ziH;x;EOK?X^l-&+ zCEYLACf3*YUWtiAd-78|e=KU(&4)O~J-S0>8x?CXQ$wao)&*T%&e4Qdc*VSi+ozT6 zUu`ru`$O7#ll=+a&BwWy&OYhFx5S>6fRTp*K=xXqCwe#x3Wv znRW!5*mdu>d6E`ad1%)$SB$j1;$pT0F^j=OFHRfAy4*rBGtwzabARc1o;FH0lB>u| zYoYne^%z5e?c*^$aWM8#FwOF%Dy7I4At8cP``wAM&9er-;~7is`kOKCAPyyWLhp4<~^F?41yFRqQPvYV75ZSjh7RjvsTGiG&;x9dwBD-2v# zg*>+pGlUdVM|JNdMr+~9HeNzJvyL`!UEoI$v(;C{i}_4}~9*Z)pb9?J!H5LHgm_rSB(( z{m4WMqpv|!vcgJlSYFH$z{CUxb6J%V;SLaaSFh=bnOg z!jQ#Lb=tLK>q;B3u2(13;sFcwm4nd=dCmRrqA2-7I?jsP4E^a^nHm{wu$yH#LX21D zFNHIT&%;fNmC6#Pl&$Knn=@KNtRNP4kyDCqD@p+-M0(HhB1I*F7RAi0<&K8gu*i}? z;C-NF{?!kh!~7S#!s^7EVK_bUt~6hwy%V>)HsP%y>uZE3-b8oAyKSI<8|f;KkbaDm z`{1Kw(3RQq{1rraJnlnC)KaY{5pSj4;P4g>cDA`R1O6y<&_cImmhVSpx^;LfIQKN3RHyxB<1(%7NyPOvd}# zqqvNJn;M_xE`XgiFWDQJ}yalG}A#+oa_RHHUGVr}2D3XlkzzrqtP@TNa@ z$WJAxpe9;wvGI0#G)qHdb97z|^FC|@G)biTo;9l3`lv}spD*Fcp9}7w_73huD9Hn@ z1&^Hd$!4jG&eJp7cYfL|FM?U*^E~xC`dx-<#jaI|U6zApntxq?O)z^Swgr4k{G5IO zLTjbI0%n=Qr()*69QD-t9r2m(up!8fCS)F{1LL@=O-HwXL+=x#i%O#Rn=VpE1j$Pq zWNKJF+3@MgTZl~kJsEBkShMHaUU0bl3{@^+(W|)H$oTmIWHn~WfOK)GSdL*T+aP z-{n;>VhITO#TEyr!$e*bAg%9lsfz#HFkU62JkTRsn6|ah-M#rqk_|*{{5!o(U;;Aj zx7A$_+~2vg9M5wU?Q57e#Dh6e$_1kk^x6;~Z_>(wz50=e^?Xg7oG@I!7VrDJc;EEf zm8}Im@r$8NuH|_6x^_@_1pJgkQ6-WgW^C`v#X|wMfI~w^S{3XK&qX66m#CQwyx+h- zeHv9(D0(a(to)&ST*QRO?&7m6jY!*sUYhm!jUvB3EPtGP_ul$g2J){*cJpBe>cgcf z*NFg;8s`PM5XN17Y1z+RMG5p1{U(UWT5=y>2!0fQ5pCMV)Ap~~8;Xbt- zO8}s;YIfRjIJj5?-Pk2q9_cUq@nkfVs!7bZ2BLD0(NE5|9~&Gy9ZzhUxC4sE#_jP) znBu!x1e0n(ZQxvA%Qg??vj+9*y)x5s4rR?QXFYG>ov5nH8p3_2|LT6C!byJFKa1=%33t%*VC8NAsW(*ZH)9qXpS7_DHrt7@(5ZHB~4DnDU=5Gq2Q(*z zuBjR$0=iMM~i%1T&Dp`od^|6fBdPvMaBJI9uV%U3C4Pww^+* z8oe%HYW;6<9A>i+mbPS>-N=T)3v7)&=MiuXqgFR1#BNrVzCSaF2agD&An1su*$ZB6 z0+||kmIRMwEz(7z3+JY7)*sLnH-p^#?f|rRKssCT{pG)%RNGDP^o>rk=S#GR%7(>;Q z;f5~(q{yVmdZr|H^v6ySnmPikb14!UuqtxpZ-71w()2}qnX@{UP|H3N`SZC zc(u4?&HoU9{tE$F5S`+^;88mb5i&RQq)Foc*_0EEYeMo=dS1~$IUn1RFbkm$#{ZF zGS1B1DyZ{>LM-oG!KAD6f<#{NxJ9k!7xiW<%>@U7=b|vzYKNE?J_C@U@!HYP6j_OR zbL9)Mxz}&TkWqFiB%bEuGt~k0N?E0ouXC8eEdttmDJc|9W@p5Sldn$Mm~yZ7c^1xA zrfMlEbYQk4LOd=xS9Kt`-Zu!+hjt8P1njo`ifzg!@3anM+30?(F;f-<+|R=d0R*_^ z1hJUH+KU{~%;UiW4#MMkb<%s8#3#zVm9ZgNstBgv_)~HS6acyw@iPyjd`CF!vJ%*LIt9bJxw4>fMP2Gn3M|EV zIND`NVvJDblyCNT*uf%m_0O_4{0^8%;*tD#B)c+EYithX3F+!v9L~*z3v6sUS5Mm* z{zm>#|GozB*{}a$sDnau-b7M=*`@OAI+~bpT7Y9DsLJO?@tzz4IpagpAb+!M# z3DN59EtCKNyh$V88?)%5d(F0!UuPZo#{=IPp_2~E@PrM~NDe95e*-e^#}D85azwg| zX6K19LW39dv!j&}kLb^ke@fCSET?YKf2Uzb)iInJ2+9V*cqfN}9ixz@7Dg=n$(6a6aRf{I zGpi{lp8RdW)m9n2rqJBfZ8iOJj#JdtA$S2B@NyP?*&_+sO$j+Q?SOy@mZ*7kI(N-W01j z3&NHp9#k5K#twd-0*rX{;4loctp26%z&V^v2STjPIPiKlA?W32Ol0W+51st5oli`2ND?d+sO<| z`oDlPzp9*3v-47d>@(?)iyq{f{JIY^w2QbW{}-V#`%Zo5b+gV3{A^Nx(X2!R2}IE| z(_jV~*tqaeu(UpMhg5|iP!TYX-q`a<)41jzBcS&ZzaIkM>#s7ncPb!Y0}z~#<0JNB zb8}anyycm_6!= z%3ht#wL^r_56s8@i#!BRnY{IIoL9C7tE_W@%-&y{5ZUYMDGV8)`$pFO(0QNXMq78R zvE7LP#LfaYlirc;anH5ynZ>Xn8kkc}E`AhWW{8ppWhB zJq;a_iWH`yeVgSNdf zV_HKH^zqE0y+r2Z^MohmrjuqRh-_NQsGcy2s%)jpY4vOR`%N7kH$bC!^I7>mm(VL0 z+Yx-Uo7Ux)@0 zp|^>X^?9y!AwH1lyYUkP=8^jOnA(=vglN1)vCh2`cZEJpePBy>mv<6UnTJ}la=^Q> z2^Jo$brw4o0eb372OI4uD`TiF6Ne{~ex+xKer1^1i(3G`MES=O`pHS`8EX+_erV4y zcjmSZ1vaM!qrIa7jaIfa@U*M-&tGqBJ{RiMI8MARGy$HuE7LEl7%+G2a>Ev zAlT#sh^q8fJ%}Wi#EqYC8VBcpSOBd@1LI0UOvIR8259(iFZ|=BKIg2+kYraUVh|rT zMVY7xXvD!m8gi?C)`N_i+R2mzhrcOR0u2)p*cn>&fyb*&+R@u>%3DL^skGRX1n+;G z3sl9{8Jh_8P!7JYp{ooG1mTqrx?%0`kO|qgEs($d)=^CIOa*O`_+PPyZs+LBNQ=!} zNeI^0UMoNO_$mw5%>F)NklXdIk;@WK_R|ycPoC3Kh8kTedMPQ2!c?ALTSGBiRH#eg zqlIsElPqlew25Sx1cI~fG|(DLG8M5`39OMb3sMf(0v3onQHha2sSzeoR&8BEA4!9P zOBWX#uf^L)WSAys#an@~ho7BOsM~8WVCBT?f&a)Ok}wOwio0*9`>9x!(zDKbknimp`ekC?Vq)hzO!6Z%+wPTrK=QB(`|eXupY4aJ zuDZ?6-+s)Pvd;44rsP?Tzt;6>@qNQa!_q#IKUljVlhrt`gK1(adk9K-?5Vi1q$Q-V z@Gf%~u>kgGD-&l?9Y83P(z^Qre7FgKK3T)-zJdO=+IY%x2>|ihbq=xBbiOXdCUdEt z5lD>C%BDgANth<#L66+MP^P|8c$8px+7GQ_JXMKaT9xF;5cr zaKOp!4`#vT8(z&NZ)g&)+>3h<^OO;NMKD>oZ29n4H#dPCwet3vL%6=24n>jGO5*W&fS5^^k@57!bpiPqLwMt4F zxBTqDY=;x_Y#OI|Zy}Oj$aR`Lh}NNkr4xpT z3!O%1pA;@#9#FPMsBeG$!YZGCT2R}7?47{ptdaK%MaQ1b+x6n>lZPDPjBSg%xAmjC ztLDU9q&Q6RLL4?!FHpIJH`Z3&(29e#KwG{-ix|I)-=1P-z-X)lWMLaa7^Mo=q8DT( zf7X5Bc%;TigJtwE-g)#u-lgE2SbmnEsnkYEi94A~PU~*D6e?W~qoGYf6Mv^I z6gnhBHg@C;z@E;A-QS5fn{hO(W4nUwQ)oqnmQ2xz3jD=d$MGpot9@vRt8+K*$c)(q z*qy*l8C@mOl*cYki{W(yfleSg0s|~cKo6#ZQ%$|%Y8c{TU63k6lgi*;}<;lG#S!;jLa&V9`)@=Jh8HQO-&H>!a z)OT%}dy)}Y06Oh?t+suVwBJZhv`V@{tlS`z`mp(MAmJqQL-l_iVFxQmI?hV8g>`I3 zYbxDs$Pz`$?O#LBJIibv_qKpBr4XwQJLSPYU##P_vfee{TuaZi=x@CD3o1`bkPPDp zKZ@=HBig@%qCuoUK2Qk|nz-w0SLN58msK-TAQJ^lA%H+FG`H|ZDsTYqo~Zk=4D>mA zavZv9n5VmCgik#N0OLz-rVBBrgnpt;{-fQx)S*Q4UR$*lZ%0uupqyAxxLL(fsO^ob zW=Erv41=N1o>@zMi+uW5f}a1X()?Y3UVLcWk|Hf3Q@)_nf7jE3i$2PIq^;n?p}ZP+zgRpuaXV7;MKgi|+>y@dM&e zfBdKzHfD>^)Wo+8DtKbOReL+gke3v(8(t!3&6^~P-dp(K4XoT0mTF^;`^sJRa+`eC z-ZKK3&XQ%@Vsh_1uEX-%t}m`d`CZGh%@)<*I;8$%z0SN*HsnK=kiR6j-(Ap`K7fR- z`GPyp@~rdi`JONPoKv$HelZX>k9CB_;;fY@PX{BkNB<5eJTSp%k7jO%wCS051~j1> zd^+``jD+z+_)5mbuQ(PAld|skjow4&pNJgF`odrj9i(1|w!4z1?Ei$PTF=3YSrlj3 z?Id}VsHbRWU->r7D8G>U!Bd=^sTC0Zt}2mt_VMWUdmJML@w%%Q#T>8$8R7#7Mfz4D zo5mh@2K0m3zZf!FeO^h|_VH9sn~^#imWdRNz@E6e4uB($1NGTFGsjyuS}lYd4HP;o z0gj{ahssX-m%b}EgRb$GKLf+FIbGtVSeY%c)$}8e>L)+AR*Cgm_G_f;eaRm>O&K$m z5_Fl&6?<62F}4@QNtBkU8ymcy=hu`RKUFVoRKc-}GD+D6)`kY6k{U^+X&u(sV%r-K zhwhXRP(2yH_&3{eJ!9e3oXE^xz(*8gw9cIVM(BIfZ7_&|D~#I#WrgCAn6HFNlNh8F zX3@#tnVCS-k%SI5v!=%}GPyUQCxP2F18(Fq+4K?-R}nLR(x2)!^al)scw%j07Qg>v z3W7+;6$r#tnVECZ{ZnC{sKMEbOW@vUT;ZN8mqEexJki9Z-YETv;~VNk9~;~I-r^A1 z;~yu?QUp+$7*&M7MkAQa*z>DxAOte331{-2mL?R)>5fZt(y!sgHHRRB=pl&BJ^7-9 zqkx{=0)p8XWDS;cop0vY5csY7y{couE5OJZ!EqNc#M(8N(91?P{D#%o)7FXiIKLs} z`SV#Gcct!v2)Sl&@bCQvI>)OO1I=G%EfFC_ib7*ce>(AbSYNTC&nSz5&#?FNE1sKY zD_E)m#AFd+if$&RwuINH31_9o7uC>q{7^z= zQ!S>!Ddg-s5E?o7P1{LeosGeL$Y+>ODh~o7jQJijPwdO*QSZ@O$R)IC_up^wSRCB6 z*YMj7rU;H0xv7uYh;O0<=ZljZGf{CQ6@?y`T?v~^4*YViqecT6>SfZN!hYOLiW3@4 zED+n?T>bWi1>q+z0Od8HxcU1OGW4aUBI3OH^8A&233HZBp6o+sLKDeNyJQ<^y z+_q&?B>CaUqG)qrp~Ul~G@c2b_w1+kk#+d0t7S;PW8iO);nnz(o9_I^bl=Y?wKpK; zff~&xmfZgUAMdzBs8(Z`T77>dh&@}PYZ4)~-`Cpm!c<7RR9i=R?TGIxuq^F-zrs=w zNSC}JIl?10MZ0`)+4ClML&Xves&hZKJ@hrTIQ7Z+ z$aPC3LISIu6+az#^T*Uv6DV(mQEv1xUT%PJ!L&}`7)AQv(--*5T8c#pS-Ab(oAdhX zi>ulJk{Ryo!PJO(^07|M^TY~MWHQD}_}C>mt><&N&?t5UWDUVa zO9<hZ+p70}rRl-fK+iUsgCs ztSEMAi-u~8VC<~EuOrX@cZ%rByj>KieLSbL(tOUEMRbS;uy%Dnx#Q=YcDA>%WTt+T z`?cK7G)2yb z?|c#cJJZ$nd{qW4L}rh#2S0GC@0u+KKfyG0W$kb>?o$;%?y(6%jGh8Niw5sN`j&k> z>rqNnMzt}lWqBIPooapW2K5~?tO`Aqk%t?9f5)mGC%FPCNK@^QC`rp$=f=(Dfux$?Yq(uO2E$q{FtRWJQj z7Eq9K>3=n>NmO65G9Zbs3jBx5E@YY}DI9yE1B1mN6GI6&86AGtp@V3V_gg&NU!cH_ zhVPIqD6Hjy@(d*mEdDaY+RPZokI_|ca$_Ns1@2O!vwuZs#>aT zeJaxnjUFlJo}vd-Z}4r|J0n6f)RVdPC07QT4?hJZW|4_hLFB73h_c`U|1~9*hj&Ok z=1r%SLnpx%@PjYk{CZ4jEkaesrP+-Q&IPpL$-hFMMOUf9!c=rb?>fs^CQ>6`9>Swq z2hEr2y)N@oZ0{r=+V*gK;mxeSQ{R7jKAEkiS-dtm4am=>+?cDl_Vt=CWjjZ2)YX4< z2>(5Ljf|Jv&{}iti`RO%aJhB-_~zU0b_I@YOqf_4nSFPLApQ0uWnTbRljz+lv79`C zHOQ`U&y(S{lSmZTLfwso>SJgxu*Fa-BWNPjhO_I-_5Qe_*Hwcb4*5rT>s@(B#UnG) zNsIDTCRzJO0}cJpF>?kaPlroLUsY4bFYF)G7z9nHT|RR-U_#Cl{%&7id7El{Vf+%3 zlU1^vSceN<(S0|TnjblJDj~P<>U&Ljbi2M|H$mP`B^G9+b`h4Un}<{fwII;9RDeBz zI4Y&d0b}EoWr=KWn#6gEH71oSN^4#M;N>Q7u#W8^0r3Op+Q-`g3mT~{$f_9F@nkz| zokBn(NBNQkQLV;+^*iMxPp}L4Xs4m(eH*!RsY+Sy@Q51|g^afE&83bU_edtj6- z2Lirssjg`~j;8P{>M@H9qOdjx$sTXgBs(k6bmRlE%sY^kXQ#C2iwYJGF3#%c#R0R` z_H)Qg{2$bvqKj$$lfng5AN0MyY(&3lm!I)avzE`Sm0O;3y`nGa(LCM6vQ9 z;8Aq(PqzE22FI|y4yYmiz|~*e@~F%NyWGMFtvdE)+xQhpeU8!R^RT6Z7~W*b!BP)m zvvC;gOl=oO=c?Ol=~{a#_pPYV4X>f40=o1HxX@zNhmYiAoQBUdrVPjsbjzVEU$r^| zeNOtwH(P63W=nU)F8f)AZ2x+>^WJd_Qrf2EAa&zgvLvG z2Wm8^h+e1b8(+LAa^iJe;nmp?Bg@vbj||h8RWM(VhLcL#Z4x0X$${jQnuEo z#cy;r%Q0mq+F4fh%cL9Ox>t{V@r=te^E10~JNoiv3C#Y@Z%KA7^ezV*q#a&!$ud*l zIeU})s9Z(b+_cmWMb7p*Oqtd*ja}8!sKWv<`|H&EePdD1EW5f=Z}rJj zN>5*lO@wBoxLGAttURiiL5+L$FMy`g2}P6yTcdjrOe`$gr(BdwM||@?uSJ6 zOqEqqA|9ztqOv1zXs2#9`sB`Q>RJtE=j+GHZp!BRG!7H87Dz02X3}(AoDTJ)UX9{AO5Qf15QT|UX*25&dk+rTl3U>EajFfCe*0|nOAyXbAW(1YW7%| zN`$_jjuUY?t+^&d&hcyO_o!d(BGaGR)#FKM&9OsyC=5YzTq}JRw*A#dn7XC<_!CsYp0^FJ@(nW3^u?S#^(pBlz1-%TMRo^6ZHli zj8$*I?=WwTDcPg%8RgneTzm@_w}?(6Bk&g(;whUk#2$*YND{Mwpo{8Rl8@ki$&@wU zhd|CPF19U3HAt`pMsA>;tDSG1W7L#yda>u&OVACy&}n!DRvo6p^((;hryXq~zCJ5V zSbSK&o`5`eaxDxrx1D3gR8ZzgmEFLy9iq(KFQ56LtRIm=^g^Av#kf8 zC}9EDAowro#TuT*BfIjw^`qG|K?HJlbes~QNu*j0IK-cUPh6~no0%`6;m4d8${Mvr z(D(MlN?Y<+?5pkrH1+Y%dOj(6{g#6AswhZHO?4%9HbCT#@Mhe)U3%2l(U-dAWWW)@ z2)kc=49qU)bsg2cTw|t)zEwl54UU!Fq(V{GCTnWAjul!a`rn zSo7*?y`ya;Wd)9}DsIYq)Qaq4jc3cFIYipSi2-Vfguv^MnEdXtTlp%{wBAPo7RO&w_LV2v$=QYsP@pVFtH>>* zF34q7x_JWv3L?*vhi#<%t+7LTQQjqMy-lK*zOsFWeSUo}-uG?P1u<*p4wI^~ z?5-jO?ksIf`lY$r7%oMGa<2Wlpl&OIK9uNhc8Gf4Sa(Tn0;{Vay=n+^GN#XFIG^{) zQ-yI`>_U8RIrj(b-UnJYIYj(H)H6c+;4&a>UYYp_8cT#%hJT-7#TH# z0)z%k+k7dgfhdj~)#FE118PV+y1LbAHnKq(W&rw*-X9x}tw5Edfh{Z?9Y6hO+p92u z$m#0l?{JNbl9D@LFZcURV3|{u$kgS}37_W(;`$h@*Z=7bCOCfBK{qT8e=iOU> zus8mqp?1v_?H-2Vn+A`fe?Hmq`EsV%YU`any*sOEFq6gPpRFD+?mO>5u>CRY~(huB#QEsM@oi=Cs zKa&FivK5KWm6un2Mf(b*2SUpI$u9+j1{$D@M5cP8x8cu?hu(%uX9g&Sz1OazzokkyV=Xke2hRJ(U72We^fA9mT%U4iKZvv zxOKn~qV;CtT3N`*BU`j6&9ytaX?FH_agrvfjtOXfP7f9kSk~>{9=^t zawsspYRPS$a-)*bmZb9bmeL8bkv^TS_6C0W@r@cus?I!RZL1rR#Ke10RB{8bv-pLSfI@C>HZ@xuk=LV5Sg0j9OkU0hFiXFFB`%IE; zjvrXEIdq^o(MTbqQlY`<&%TIsj9?C+qrPty3>$m1TcQh@kRW1&QBffSJ=ms#5r4~> zGjDyNZGCkM9Jis5qP3q0p&4G-o;$|wxw?IM>0Kw#URV`U6g-vARL2WYTlMV{hL%K~ z-QD`D`iv7A>_j|Bxa{vTklAOIre^$drYl(smhcf9C`(qzoiXY}D?_xc^w?O3E1<`7 zC$OC3+mYxaAsw%W(GeCe;{KGXdJRyT>`U>&O#rf<(k~P`7@nW2YyW-8ZNd`Pcz#=KXmZlmIrOeA ziF>e9~g#;^SWs@G%}F_Id*ec_M#9;0e9wD5(z<5O~r z*?IQL9u~>e^ygC?sv2@jShWhxC#=`Jf{xXf#vlKihactc2c~YbK=g}fC7$JOBr6l8m*{x~&9?^6L(o_$2zP~{<0<4q$Izq@T3kn?;8pw&!QF4noqIY zv7oZs2!p}Ij8p^O$DwJU6dbG31jbuIx{8$R-+YhsD238o%I5i_#WT?(U_jGSjWdQe zWA?_a8s8g($ZAwNXXT+x-#99m@^a+{woR|`;BWUL=iE4WWIkMQH!pEi#AOj%bCh>M z{N!85L%-k?XC?fL9u2Ib{?_E(6GXN!(BW*GKR7bcNTt#Wjc*dOSiqrc)EPx#!g;Ph( z4&u#E(pLI~K3{fYF;uW09}AW<`uC4Ka@{m>G5YB z(bn=LJwZ?4FRTD7?E!BJH4u#`FY8TkrNFy1l}}|`-J(D}rY)^y=uXs#3A@aVgDe8k zej@dwE@aZR3X(+PMVkVU8gvekIF<~o<@90G-f#(G+reJc|vM| zxhkcZ-9Gwu&biRMReau9(Mp`X@IuV;?0L0Y-sDtE3@-jto0>5Z_AU+wdrQaA_2le2 z{swcGhU}G*iFKf}N!ZSy#cbJc-Mfy8>&Fc1z0~#Borez<*DJpF@H$`kF53n|^6xb- z()q|&p3Yv5H3i1ukoln(N4fv5Zg#u>x(oe8Mb zbPIQdbBUe3%0x)BOxeFkst=zQ&}6Cb9Jm**H+)Dd0?%$tX<5Z9L)DiyYE9aLf8 zKB-0n=$g<|*Ze$BA_ri=npFUJfo?vD*ZLMo-4uwfxDbL!)Wtx<0Jg-e z6aCwtZEF7BT|e{e*bpzKKlO?IP;m4CRdundXO4^QL}$6oiW0}YQ`HGvU!{uJMu~N7 z3lTfxQFmkBhHN9xpNMU1a->hOfSu4k*dM|vpErk|5@K}sim1MCiH>qt?wQFhFx0(Y zc#JRX7qMurZfqL*T{;w)R`tkrwa>SIq)>Fki^O$i* z&?FV_Hz7<0!g*~VK)_*1^L|8LvPTMJvFr`Fo82OeUnig&oR!9kK%0LZwV=2f?>_)u z5Zx22bpoM!I@h@)-mC%@bTz*~W*5pm+mddb_5pg1N^-q+CFby74A6B7;kCYYePM;Z zO|1jtI>HcY#x=2D>pPMCwOgdP1x|6@?-7 z$3^JYHS>=+Wo7!8e*`O?!2!nkbzVv3bv&(BBSP}44(%;&G5Pn)a>tL5gZ4hK5eH?T zZh0Q!LQwp?kGK2|Qe`V~M~$1K_d&lS4Ggm531r(Ec&A#}`9Icwk#Cl5*uD24+Hex0C==wZdfi)E2dx!cZJJ3)xKBwyl z2!lInfR{dgnND2sSs}_8?=EcQ)bh$46-5!v$engjE`E~wCckE65_X$8+=oRjn*JN> z9U-pI+8o=y&3#tmL0REIPt9fNbAg#oSXVQvv};Ch&mXna{L`4#Mx?}AU}Ww!=18f@ z31@v}pBv3`Y`Mt!9j$%Ew7IxQcX3yF4}Uo~NQuRl-_S1rq$#hRUH(=>6!T~I$p&Zu zfaJ!2d=AbCbV5~x>yG1`@0lN?f%PQuFoOKB!g}5_dH&TEiP9UQ#d6TtBe0$KvdT;d z5Jd`b7hN?$DJJjv(0q^{XUw2Ku7Cl4bK;UbS0{t&t&^ALLvwtmE-95rCSrGJiCkF| z({sU}8K1~ofN32YTsy;e+_D0-1;d9v&@qz`E_<6fSs&0c#d=jlv4C~muo6f0Jcro| zvGIv{xbv-HPd`97A}ncY2FytYNJ?9}&}F-`O0gky>{!Lpo;aJw+lN1nk%4e^d#6nn z{@IdTja6L+?d#@0URJ$SMoc%mSS?5lNQlQ&w^eq(w-hJOXqi`LRuWq;#+ql&$XEQf z|vtY#%{2i!17<1N*U-rHIiwwbgU@dx)44gFC(n^0W zNT@$`>~kKw1&bMEPhxsg3WDx-u>e2z0W3#^h_I%5^C`9v3-5lf%HW@T_nz9td+N`& zjhK7-V-CCpPdq_;VK*0PdX{p{wX!VGg_fZ$=RGy^@KGb;uBX0?z;jFxCyzepjJ4ro zFW`BoA1@2|L%@E1Y?smi#xObLD)_GA>M(d5x$IAnhX3kz6C4S_aWtuF>jv?% zmWtmh++Q(7WdfkpVdS4$pc{_L+~|CbA+T61cc&5|J5=0C!-lHXb}v)^sBa9b6R0&M zYvJ~I_?9-3&(msXUh-RiV-PVscf&cHnAN4>+wAAlgd$zjVp7}%t|cSa52I_LYZK8U zW_pO<2ef=Ur3nIn4_wruo{p-q!_HsW&&2r+gERPF;F>IS_VdDrL${Z&S_H_hJxE|~ zLrUjOvyQ`Ce8*fjzt-AwZ&%y*kajf`*uMcqg4Mu4V=FEd?X7@9Zjz zOrdxq894GBX*N7vG;7^epal)6+)T}1julmkQ0_tBt~t|AVCv`wqb!j8dBAscDi40vkjssm@ws}8+xk9={B6_3MX$;pZlitR zW|(k3^d7^4`B2!O%h^@bf?U8k^*~1_$%-)OeD@3KTL#fLq;Aw0D-`54K!?gv+;3B` zw;hKQ#!_d0u;IovGjq`V3!QdDG})_?@<{h7G9qB0FSxW@o|tXp5ciudaozZF^jZJa z#V)AN&)R;}%=5;z6$!+_=d&lKam;^p5Key8DF7SyBreI{+51QqDf%O81h74yGyAD| z8#Z>WyfS(n_dYe^!O<>@_s}w_>cw8giD;|rc`MnlQ|&h7_t$sZ5TBv` zpNSly4or0|P|Y>i66`smgSz19+=TqMJQx%Kc~=AsMo$x{d-@|*R!zSK7?Xeco=e&F zL)@hy74uzg!A?aXLfDuxC<-inBMjQIb|c!1q*oN=PBDlkcu6_>;Aq^3VOQbR-k1Jg z=M_L+rni^Z55MKV$hFBS{6HCJnw0RJhtGK4KoZAw<`S8nUsPi5L=X|*s0-%(+elSf%ew&%iLFq0b)7fTMYuOT8wwRU1S z|5}|1whuWx(vHR0Ahb6#07%<HkvvN_x*5+9r{NcdVnZcyj-DO*OmG%(wZxbUppQ z!LlUIhQy_iFy#ZGYN6(b(Zp6%P~ur{3FKYw1lYB-YMNE>i^Ke|(6yP0U4z^Gp0xd5 zlw{h{qj1)r_ygN+*hiJJh>BrCb8>oSf?>DAdm> ztTkGU_mF+;Hdj+4n$qhqPl>{9Nf@(U-V=2cDR2wgk4Y*bT&?^wU=N?fVn+}4@Cag3 z`Fr`>c~aaV9UqtVvl~LSupdFriMjYF(x|u?dDa4B6a_eGGTy*ea@$2K<(6PuH)sm8*q2}PGZOSs_P^=b z2EH@=+OkLU&Zkuh^4}>1I?-%^w;ko@92PQ+J zZ+#0&iU~=vWZ{;{$kFfW9SKs(kwA{1MR{ewsAnU?`HYEURma*KSw~W~;%N;V?-;kF zduf*_Q-ieuzqv^}a7)PMjs4DBiKS|k`D(B{Z+v4PrXLnau2xlmQPn`)R5c+0qt)l! zj8NQ&cpJVYU^t8o0LwEM^QOfo%OZA0d4bChM83N8Uz$XVjKAMK=s!45555PIR*Vo5 zGn5a@=T6qX)697NJX6>B%f`okET}yU76UCGJVpO$VRH)5OE$4@IZTDK4aQH|oii4d z=02T^Juitl-8Qw|m-zQ!SB&h%*kg-8UW2&jo1*8JYJ{Tt_0EhO}?4cUT9% z9eVjZJc_C$nkWH9*GsC|7`7$H)+GqcyaD92@OpAKt#6bs#6<^*KcBS;%p)`lHe+q| zuX~Uxz>%Hu15YiIbo1S57FOp88gv z{2n)84s8Ke*v#toI+H76Pc|fMGN^ptR#L0n?Upeu4lBOmdN;dXj?gW)+O4qMuT4^V z1M{~N#&zuIH0r|_;Ka<(-9UElwnDO3bej#rx43y1qH3dv8O5S5NdQOuZi@}mxgD656s!5 zqLttF^5p=P8%V+}x`-vR&EVELXC4Y&_CV~-&JMWbioucXY5QeTPCP%&9Xc|yF}8Ti zkQR(>X36%r#T}1@SnPPQ?$nM44L^$jRUQYChMmel!1OFfw&V6$>8^=B!+ySG^10p8 zgcB7IJ`R|$YE-~9zB|fV^cggKBq!g*^LF^EcIi;V0uFJY#uzHWhzS7pzlq1$4ko!N zfmgk)JZ>$V13-6?9!2$9hT06|8ZhC2i#}&_yY>qr>dDsSz^`g(KQf0J%>^Vma6=4u zckkw%kCV{lx~p`|1-@l+^C~>5&0P*>mhiFb!nRH?zUt93NRVBa*tbV9gmUTE!G8sX zM}0tRAu-r@NB8sRRPu3p*A2K~|Bjt)LuWv3Mtri=#>b!S?*bmg<;$&y-RojutP%xK zD%qd2*GHm&0tPfZz%b#h~CbinD}NOZ~?iL7(>4*S>Yq%Wk5U|}Y%*pAf2yb%Tur})IlNGR|Cf2}G%$~1bRt}Q z!y}>eC_LPXWDuZkU><`JOy9!DcHLQv{?X{I<1kkCw`|78W+cIACpd^2Hs84!y{#FK#ERanz#YV<8A4{HC{$flFba zmTfHt066r=j{ZgEt6gW)90Bf@9+$g;3(B-dILVOQvfM`_0Kp|613a`3SCyV`37}9+ zR0g^5;BA}hSKU+OOZZp`+y%bV>SvE_!vZ?=F@oyCe%(sBR~KoAT49W#_*j~;(@gf= zQM?$d0MrWC?%Ud2-@_}ueFg#A9WnV3R}J5Itk%+eyo*=sZpNo@d{3F2*|8l#dsRL% zXUn~lg3pFF{rIw^=4|pIt$vSppQuB`xMs`3!HpfZ&Dk`5*uc@QV|MmIQylMA+-0*I zyO{Omw~eL4Wx}s!p(D8QF(bwlv*M=*Fa2S?EZ~ZY{x-98D=gP3!^3)f-w`+ z*3Btz>hzjS_DrbMeH`Bvxf0b$4aje02J^gAi!s2(p0lwpgfHmzZNIP)tupcunJOnx zl^FvR`3PY9j;;0o<4gB{MUTDp1mFCDa=CbpF5q!CjBKwx2JK*IERc>B zj#|$AQEe5`g#s`amTIPAA+>@ggSWhFr$`E5ZSo)nwypbgFH@>z1$124`3|ac%VXVE z*!c(^fPd-1+Ds&{ijkmG2`@?VrRHotNZIcz4tiL4o$c!~QC4+avr|&h$Ibs;h7P-( zvsuSnCnIHw^TX1S8^lJCU4Q+7vKnjfd6+Lh{gdzgA$6vj4mw!HVgwXtQW4pfm1b}>}9@O?p znCXOCCI}OFYZRV-J5Kv!E>PfxGXuG8IgYQhU3Xe1RZuYKV`7+`!pX~P@X%SfARVcV z`%qn&(@tx+Xov?2#(W6RT<$I*XG=AKe5pina{4Sji}2qtAVZb`uFcIbg98{85fO}! zb4af;XS;$mi2j-$%WLxz!vXusBDX5d0Z6&XsoG(9{h6)x^?UB}s+znp(K1Y5e+Zv= zx%Z3V0;QxcCi)gyIdcA>cBw=Q=(}JeA!c~yWY+@KmvbQ^!Wr~9+k2*633lGMj`N7u zPTGbZw=m_S+PA#g13Yxq=K2%&&6+(akZRGbM86Jgpq0TW6)O-!;4ykhe`NcccnR@oc1~5FWd4bI^78Dok5l5+efJ<45`Hyq%8xOl z!yg}HGrnEBZ0kxxgkN^q+YY@Hmk0U6l;Tj#+3=Fc8167u##z>K`ti~tgiKDU8Jwo$ zWi*o7Ag^p>D|=w1H&L;6D)$!uxYPQ}m&Qi6ZH;T3-TnQa{a)O0L=G`42<>8aJpfS1 zA{>}J96aZpV}x!4aNIb90j3kYI&sH~{-T}%1|z5@p2Ns?kl!9PhdM5_PPz&80pT{v zPT`e`*B>Xv5I_c_ngl$B55io3rd)7mk(y!5hXSCF<0b$*dp%CXUX3|hrxpzZGn6;A z2p^~#0JV|8D&xn%uYZ>08Q^l2m7O^RP+)mP%;^bA)Ktu>&$GE}sv7HM3o2d(Eb^9c zvGQGjT4D}h_U>(%gWar#&jg{@b7A`kKJjwr{UPVpZOY1kkBuCeoxDx{Wqo&)Dx(CU zH_;pUUyVxiEQ~X_V;u{?V}apU;K&<_qliBPXsc-+H zlT&seywPE6&XxzYoGxegdbcSa^AW%=XvMtDM*!RS7qQD6D+_mp&^a#1@X|jhp5uesI-%KR2m=1Z4-?a~dQ{s+ zwg5;z>M$J-!dwE4hqXAHcyHlf1=uUzd) zVhX|MCC!uFvaA~*6CO!jJfm=qwa$?E^s)Ecxvz0gd8+TmEd;g|p#Dmb@qC#`! ziv&Jr^Jb{6K~Nc)nG$!qd;7bAJG}d6JFO0D+*^Yq+s>cj3)@fgL?p&FyI&}@e8*di zcAqR_v_@QVYd`prvJ67G1^BdP0bp&qjdx}2cn)9o9A+RrEocQ3)2sg*-k*F*<4n(m zK_7yFEc9`0`X&aH!+xobKS13?0JxPsmCvR}^+20nmP@sC#W9A$IttkN)CS%YauoK5 zeTZTsuy#P%+*(FEtxb<&KtA-`UXgTMn9JZ66k#3_{Scg2vf7-DX0gyyERjQ2{%|m3 zdB{t44B&9|u0ss>@v}6~h_A@ICc+>Avjh0(&E5Xd8x~MC15luToaNzTc45W`wQqT4 zyQxHvAiJOu=oRBDKDtc|8t3i;HP9LwG2cm#QOM)Fp25iW#ALJ*y=I(Zq`u|l6Wvxg za4+6ua))^xE_$82l^Cppx;76kc5&Vnrs6ydSvN>r8rl9kFT!xKaZRex!-+AG^}`q) z@Zfc}(oM%)EXF8y;C`CY28LZvv*6e->a{5=w>9t5m@D*=ZP#DN07HIXe%u`oziKyq zEFgT_Klv>WI6Bd_be*ltL(RovxV(qU%5i!#ja*jNxj{4>?QfU8&Zch1_G_%Q(-aD} zLjFtGy??4GE33WV!MLWoOuq7$)@{XpuAP{`2uu8ev*6SQhc~xzNH9GY0Qth_en_wv zXBRh~-Azj!6O9GhBVfu$wXfr&+B&FO7v?fJ0cyeTj`GuG0}Sp$sV0HtL+F4FNw8O{gwKv=8*|AFWUHBPpA$j>EhNs+2 zYxljhzICO3GE^5Ez-Tj>1s}=0GqM3G`ZM-$>g_DiWXs6*KQOLo#`d)@{f%8`DN0qX zKcJNocG&%UBU6w5v|p$yv!ys?Sg)R8Ha9pYBRA(bbA@Hj*35?7fn&e;2}x}E>PPVa z_yWQ&94kZOPd=c#zxX#~$m7%pWgPzMkKukSxcf5ZZBNH_KzGHRa4$mvTgruTpou=^ zIosav{yoMuE`R=A#tZkgHW5M^=Hl?NlL?XILBJCTaa3Wu2!IoB&`#rHmjUw0e%uJ zQ=IGq+{ccSm0|yLc4u&3rkj?v%yO&SgE#1dJCe$nxwdVA)peBFzmSj?}0o*W644`Q5gi7J@67nHhwMI zTv+U5B`_0q5|Cu$mCUu&w@2T=EBRX=E5W(DK$m8`NAs4~9wTjT#%u9TmaS)SR5cA< zE0LPXT+p{i!PD-k8NNNr2mjhij#nbPAXE-6@19tciaUX5*_gBaLCn{__D2}kO6QiC zyt`v`cbKdM9d??tHJx+ny$3t*B>y1#{a<{*r@24);Kwm?;I8?(!bCEhJofglKlsHj zKES(;LtZ|B{n3y$N4-s@7zsl&Z{Pob2(p%;N#gfqj`wwrH^#Vx6yiJ2Ia>sQ@3U`X z2>VmUuq|Kw%O7b}!?^aH*ufDr41(C#HWx$CmHw8!sunBJ1c1NQ<^mvJ2*Aq>&SKa& z#7|cDO(YBK)diUGQEj|tQa&U=ImE)~5Wp%i!A*mQp4+c0=pBZrrK}YOJQ>E@F~fzh zaK7y{JNYI?w!_P{lX?&|!LsdyAJg_RaH@1_Ik%<50uTI%h`~N!T)N72woBO2+IYko z=>PyA07*naRH7Xn;b2upt$j!V#F}6(K&VQ`#%mak;4_I}Z zTwH_?9YEJYmU9ohhbhjZuX@XeZm$l>1$$H*uPfz37djTs*#%>;2etiiHe;rNcW=Pi z$cJ>(e{Sds=(;fD-0xA2kWD4ty$!cm-t1n7i(c!2N=P>m;P+GxtLU9_{AD@Pp4FV~ z55CX-?di)d``SPMO>}6cDpY0Za8$u1S8zzm*V#&kuHJio7hVPmzg6++GWb9e<5^7Y zhJ}S9Cl*-s>u7Tb=Mc;hWf$7?kP^xUic8V?&e^y>xmZZ>LB%gIZn=E%&p57eqONfb z5W;*@LkLCe2@!2Nj2U%0q{M-o9beom0(e(7&LF_{)fm~XJ6T4yY@%bq4v-1Y4Ze92 z$6wC{1I%GiCDu+{kMp0Wb`LQ`Eo(LDgFULLZUwyT ziotfm$H4K}-eKIIvRXS?Xeg2_o|ay(HfK`f>A&!h}B7{qkPMTykOd;699OkI!T1G~?7B)%Lp32?1W`^}3hp;}p?a1u&_|S+;UnAc|JSei zxb`PMRmAwNj|j-|!YEX4i_mBE`w_qdFEDZAzb)qh;`kk9AYeM%K7)6Pe0&sUv}6-3 zC>AOJk7{qcc$Pji0I5r(IynqD$}4+MZI3a~g;Gs2O!#Ej3wWT787#@iVILB}egKzR z7(pWV6K@B^fYIFjt~AkwQ4&tO00J{=k+Rcw)}noJC}tv zU^8IYwyif}G@dFu0>}hI41Az?3l9{NxX7(}ndg4cj+0z~Ywy5UweQ^-V^<$wOeh~9 zAVa)oaS#xd%r5LK55OfK<(e!E__)Xgw%qhpeRq`4JLEb{9>DW`S3STvTQ!jZEN^zi z^c{Ot+lELp4ZzMjw(#vye>@@xWVpxBalzze{87+F?^K7SUQl|Ba?Zw|?KfWbqksK- zgmVdXSE_y7oWM?Vw$wSNWOUWOr6m3rkzEYqog`_oI~#BEuWgSA6TVH3d4Tdc*1p=3 z%o*kkn5?8^C1Ifn2E`5xS!`K+{&Tk44PA1DMm7d9zsSbf+GUqvT=QLSTdq9<%8plT zLyNJ`c#DPMYuPA0Z@_fA_Y+LP4(d%;ve+@vvA|=*&JBiV0|57~Zak%WfZ#OV19_cJ zE_z9D1)%H0sTc65w%xSS_!xQ}AD~`skD7qs?8h5BZpVXii(6V2=Ix4(3v8$9v!Le_ z=0h$BP$Wcj85kBG8|OI0tvF|s59lb(kFcp_>%7!P)YR<;~&Biqw(iFcH6;W&@V{4zYc^@79c*%N!_u0AY4hYM1QSFB@ zcp2(_-L-)`NE)Fty#H@>qsB);VrGWu4bey%LLYdFwU&`N=^8;pQ<1|1;1HN)@jvOe zNdYdvoUQCY%-JxSVb1ou_!^s*8~^0%+My8~*jfxQfI{yQoQ-6h;YX{_&m!vVP*B&i z41m9S=Q7B`UY=Zhv5ss!;KGCe&5^^*bNKe?!M8?yr21S25Il=H+b=Qcn^TF#hv{it z+PnU_elyHtD3us*$SK~1f(NyiYbP~>4APH9wG`kf49LGcL-=4r&TprSeQzYb&(>5c z^_SdJwzs0%R(~rqwGKeQBA3u|60G6Hy<1xkW7bZiSeWqs*#PcJ1?=2|w@=-0zmEsh z6R-k$KDKiIo*51aQ;cmxAU^`&541G^%NX+@LjqKJQ%k?)(rRl=kl%U)lh}Q@u-v#X zuaZ+es{M*STWD6z;2u4y-K}Kff-*8)eMCx2>V{J96de}(sLqh&S={lB&hAJ5#OHH~ zCQu^Vrld1++)u!`;#v}zR?<^7V7d>V7M-~Bru*Dm|xuXC4kv7bQN{jrCwNNWpJj!O*f z61F*78HI}gJc{Qsh+r>2Bc^-P$(iDP&;kL^;@hJipVHyccVQs|>hm1F&h|o#Y{Nd1 zy*7iLHB3jRMBXxeAKFTcx6|}As($$HuvcB)Ot_9E*6CH->^Z@1}cONM7b97<0 zpAR;Fc!FLlJY>6Dho+X3_n?9=gt7&=P{aN^!Llwi424yGlxBSW5xj!r&YlUF?fMul zOsA~TdnY=8+2eQOd5R-VCFQp2(62!E&RGYhbK)w81@5L z<~1bc3jt0LyMpgqKJ>{p6gxf!z-mF}4uDyUt!`9Bw9GAE?K)djuQmo!7}ZPP>D5cE zH3ndnh$eK1;rW*~xA1{XfwFv#3(w!ZzJB)+e^SJ8W@6An*`e;js~87vc?bJ~I_{li zl8Z$Nb)HV`QEi=q$UZv3Ik-S*VX#-5(2@~xJ)Pc#Zy9X8l*>ARN)Q4&zpAlXdTzl! z>B=+gl}#r43>8oaM(&NQzs9}Gs-2a0XFs~^D|k;}joCE75i3-USyvhgW_G~5H7{>t=}jMf^wHCtuG!$V3)8p|{%{w*Jo?f1lCZtwWUkfhTM+iG zkl1DFeZoy|ryj%wW0e};@=(TamA7|^CkSjspJ{-qu9IrdWV^gGBnS~)I8wT=E z@!e58c#XR;MPRiF69#}FRdYJs{UmNVc~LKI4uItI7!tv-iP`ML8N4y`m+I}v)b$}T z*dAE~2zfNaiTD_}$diQtw6#nC*3u$nP9IR>rHfg0&ISkAR8d)r7_H0oACs%y38SAw z0B4eX05E&}UJO$YbqSDn#l8!Z`|ic*I)ApCCbNkpT(AeV=UL#*g+{BFb4<&(M+Ymp zOf!XxxtaVPO$?k(9j?6xBiqBt1xn{ua%~b1#t~M1eBd6m6CP;G1Pvf6nE{m`4>sOC zu_zUH!p{4&@8kJgfy&BMN@*P&Gg&{4L8zItMJFBG+I_dZd@GM>l#g(+;lNfteTKrn zhOv-cx~qN*Kt{+Y)|Ohbb~R${%l3kj7Q2XSk-V@KAQL51#7flS^LuZk??vBR$Z^i5 z^UvS^fdaq)HA+y(jLSS_b2dyluvq_Hj$*~D{k-SH#R~wG&t;%^b`odgcAVCH$c`jL ze3(cC)rZN^gBTE=!+_9pfd>nhK?W00iu0cvpPVGN$504bAMmL5MtNyTwJ?_IM6GJFlf_kSx}HaLbb6T1sR9ylWb53%7f#9deX^|EH z5^Xc$#g=5^&%LG{?|*oG>nepg2J+IhQaTOj>Ovs=!mVfWW~* zV`zcS+T9rF0?*krtX=l~Z`tnaj$th2-~XSz|NYUcy4D5J`c_@EPua;XIoOmPBRE0= zizCV)VFBizi^!!zBS!{t#gCBN+5&_G7kQ(Ewn9f~;M_pc1j5fC$TmmWQi5b0WY{FT zk8b+I?Gr#CrG>h0BGKx6K+2a0ZFl~H9?vtzm}AVje!caU0|nHox7M0-jAuM!%(3R0 z>s{+zKWw#oX_dn$1~_gSI@1caeC#%;JR^X;Ps?s zYyL(6%rEu*4BtL~=gvFs?GVsxAOw!sf3XlfeI16LHs~G!x3m30Zq)7pM2P551aM!( zTea~bwE(z&AjT$5&XpPLF1eQAK6xzWt_MY0LXfick%2}Y;JxSAM^=E#Z^UJ%a(hG& z)PPYB^WM+qL!0diqigEm#!=3SzEG3STy|{LF&oC|GJvB{D(whftNyqAtVSM}{eR;S zYE((y5ij94K;wjgbK4>*1=rL|Q%|7O1|a{pVj?@E*G8`LQ8U=Daq`t2D^n!a6}akM zfiA6+6|lA8OoeP>*56I<$hiS)dtZ_heK*Mg6sH~+9!miBJ}-Nw$I=~e3}%v{5L_U; zsckP^;IXqspeO*kl$pC;TsiUQZ9DFlJHs$Vj0vC#YXOD8kriN3Zq(j(#bcUEgI0hl z1Y0HR0m#e1j~>0>cF1)IsTC#2CIoZ|?-Aa0W|Yix%$BZ=)Ui(nSu~b|yvL{+;m%l! z!vL;L)Aul}+;XA3AM+m3bUYwUq-M8BfcNDV&b;9X#vM!E5;Y8iyz!r+j5%Y5P2=%8Eyyl#lj)|B3~H_F&3&GeqYd1Yi@H z0<0W3A&X|_DAoRF}ey@>e6!w3T%h~9cf>KD0> zjFsm;X2U3{A9O05&gJlnh?t|Ir+5s&L74=73}?&jY&*YsUxz@P7Z<^Rl3ZhP%XWDn z*V(FPm=iGu0nmJY@b^J9=%H$*pm5?)p71E8zBbGpLfuL|#i>bFUg($alozXBh*yj^ ziH=5S7D6xge9NBgx}UdM*!%5WJ9ph7RMJ#@psz!yS7q&C?rS4Cdg;I><5(HWWO!o- z)`3p@@>ticuZ{G9JdM#>tVi}im|QI)Z@>Ou{+AkF*!q+ew5l|Fp2CuLNqvNl3oa{# zz#+N}d6a5|*Ah_+)jH;`IfKV+vKkM5@M65CrmXH5tJnu@b$cHW82X}pN7L@f{tT&9 ztt?A!@FM{9Y3<#`s%8M-0(o@ejt34qZ3hqp*ycFl+@L%)YB0teWM7Q0$d2&}*)hsA z(g<~@faQzir@cR)=t;vEg9ba|;^~j%(#R)}$H_b~4HzkUVrV=>o>t^#;72cgVkpL7 zYZw^#r|~-*GJ%0S$}yXd-(33mTnS^?4zUA$8JeNe>_}k%cwGjS*M7?$X%<;I zi$JRNR$95MDrfeXt$wYjuhm$;=n1~Mea%W88w7_^UzXt%1+8HCVTntXDZBurfDvdE zuy}!-k;9GJLkvNnqZ#<*+~BtRFY+&itp`#m9bE^5lrTLZd$vm-k}FWm(w9{T7LYN# zA{U+9^kfCFiU9yGLo#^_!El~lk<+3#u^rQS0_UI$^=10V)8emjhxrK^hARLXj!DES z#~c-1vLqGl8rEr2@0ga%dCVpwo`z)+cvOrHve0WAM*twQ=2(d=%CL6dUvQ(gommWh zaD=wF_kM-S)9O_qESO_7H&O zm*gZHo*LC3f*AQW*b7+3joSC)XSyK<2BR#-z&pd2La-eAZ_5rlIusLT0+B; zeiC2=%tym;&o|}4{Xc3wAWxNx8X&i7Z@>Lf4Z#khYJi2CVvG>*-qA1pOwMJFc>qBI ztnhlucks)uShZQ0J%lQc;FR0Hn>^q4UAgSzR>oF^K)?MfLKyItaCxhClZAV4`+u?>C>BaH=C6urJ;vHdD}zPRL)tRL-l%s{QTHd(jq0a(^L0J)oZ z7hfal0PWW!3<9|Gs+~K}e~=-vmtg&}PjN|xUIO+cy-{1v&(UP4k#^`~tz5x_u)g=R zD#k+KXBcM)A*X4tU8C9L`SS0`QzO4A8;|f87q;&l^svk`toA5OCV^{8?trK?yFKjEFu6i|sdsYrN_12XJmnXL*b0UKY5_8{Z5c$od{|Bm z?zrfHs(Ju0rDM(%5KoN~tpij)!cYk0{^g^OJx5;18U}?$GYNP`Zq?o zOPW-9kSCYz#I4#X3pHRg3uzciqf`0PjnT}9DHU2(#SrluSzr=Mi^PP!#@Pq)ie7$o33?Vi=_|v%CtV9 zRY%E+mrki&+&X%7CnkC<^c*V20PNaRfV~gNE@Ru%dwX4|EAoh5HXmWb&(b(Ixb5S! zyCFEhV(S7xuqH=*+n$uKnq!S<81O)@Z4Z2?qn7?ME>xoohy@;o^Yq-uJGLFYUxxsN zNpR81CIpbl7%~c=J~6E6t=imqW)Fz1v|=E}PyTl{i;!8N_PfZ(ogZkJoN)q}e%E&wq9eIcyadq*A9?}1%Gc?iID zj9>b_?KWBuvxk6`U;+ak9P*`~@+k$G;66En$Q!jiz`jPffh^_iQ$oh$KitrkJ*?dK z9r?}fYc)Xz(42nyvXF)$4o|kHOXAo+QRr3fusFm?$%VR~Gl7nCM(CA9tmC8X*>FGG z?4x#ztn0a^Wz4g**#V?#L6w3li@*!E^s3{EBUfPQk-DC(Gk-rVUW#X>plXk;*T5jfYwCw1(lq`-XR&871@l&X(WL z=8ZwzoLnGF?|r^<1^{KI2;sJ;D;d$k;TH7PE%YHIO%-*@D==9^|j@9PLb zcLF%d9vIWbkLnWO`+P$iAJ4-usB*nWEA=u}0P_XbGOhTH+TJ^@k$1^MF)w^jVEqim zKI!H9n{umm_ONpKkL0rd7kI07ZwNXffJs-Sg08QvLFImb=-u~ zBIXT8DAN6GHah#zJv?Z4hw&bX(_~dgrh<+*+vM^va9ES=+j6f}B}AnXv=pUYkY4x% zj@e>0Vg+;3PEi!-WbEQLzRLoARJI0oRrWzC0i#<;KLF?{fc(}Z*9Xc0RIiKVAp`7C z1lra^8)OHt#`B-sE-F7hwG7ru+gRPji9gFrJaK1OlZL(+X3f)wa$59?$LL`)Pt2n> zrW1q5$d#7!ByTm4y*TbL@1$WmPoMlT8~T;(b4%xAQALt;1&tgohj>9Qdu;DMn$HNqA;SlZT*v z8P1pWM(w>#o>%UB+)*M+c zsjH0@U`ENd4^@*@mZ5SEUs^;JU+6}|4blphtP`Rtp21@_Sxa1>m~kz8AvzBs-UAFJ zSnJ=~WwGzVM$f?)qpH-||Jh$v+z${KF@p?pPU8Z3bmF#;uxIOYflbCdWPm=b|3hpc z0U$vq$QB?2|A%s7@#xcX(Z6oR4Fh%|Xk}@pGQ9NBjvXI8(Zo2;FqNle+^Ef438wSJ zhH~$=o;+2k1{NV+9nvyN_o24l%|n%=ak=mUsGKfMg! z_>nwH>T7aqT8DrVNP9fohAZQ*k|QYUdjNHe>YrF~#FK#EH)3T7Ks2&yrJg$cr|&QK zWuZUD{t%cyP1DciqLl0YB=?{(Fb`qxPjEZiUEu6z=t(0UY>5j#ea}`JvGVO*ySCqP zPx4^Bw|7-~2=2iLD<87F2S)#EI;B-rk0B1Fgn`HeTEsl*+j7tEY?I^mB%qA(1z8G3 zl?xqh5~LzcO1%_{xRzuGGnBJ&E{kbht!o{%x%vc-*ji_13k8eApoBKIsy3iZ^$v*13Wd@=OR2*G03^WZ4dC>qX8%})b z?TUxEnGLs6G~P@yJTA9t%bj6$jG`H42m*e^?#a_Da#`q2Psk`UL!La3RT{!Yw6X%M z$P0huW#Dw-4729xQ#fYhC?`#kHsHg5{ieY#ref$P0hyr7aQS!SeA!>V(RwgeNsyX1 zA$;Q!xmEl2_XUM)&mMxfSzE>h@;`lM!b8(a{UPh0d(al;Jg^{{wYj@iES&R$XG5Y{e{bG=u|le!8)0~pJ~X1X?V zc=XR>c`nn!1oZ-%f-Hq$4_VU>ucf6{3eMnycIo;QS6Adls;O&~RU%X>L9U&_V>bP+ z!o8P%Me(mJu@4goDyq;j=CT=Z2$!CYE?ou^?ZJ?#Ub^Tw0QzwTJl%MQTuyJjU43yw zX+p?=HF;{(j*l+tiIL9WGJFbUwxz;AleU0|sMGvw)$e+G$1 z$2+L4BH{ATN{=`+dOzaOwcHDcbOY2f+$HZFz3@hKAK;1}BeBZxsC||*VCCLj^6t?) zA;KMIT|gaU(Zj_vIJ)`MGx9}m%!3`&Ff4|EAF_D!S&6X_@O1#47<)s=jnG@<*u2!p z+vEh|uB)W|a?WES3!z_G+^em!y>5x|(c9(9(+Bb3$dbk!LNFu%+64mnK2-*!G&;q% zaT5m0;3~jKhEn2y$OKx%Jn7rAAG7HY?E|$B+Fp;HKvf!2_sdOMlqi%+Q|@(>!4+V- z(lu?p7Y>D*LD$Z3jUuWn$s1Ua*rn0b+iKF)74votafcN%U%On*wqmtx&U^)DBROWfL;K-Gj5)*=JrZr#)V+6X-+4RUWLG?ltV$0-;ArG$AE#oB&#lCw?_vd$~r+J_YACjs1ol%k(u?eHJvnC%H%&M^S+2r2-c z8gMU?)A8(|}-1D<MKNJ@Sj(bPE(O|t0>^Bz z55r2u$5y+Sc+94I66w9RQE@3-1bezl(cQ-Y&`$tX9+Cs7ZI8>I&4{oShKuB(0`MXE zc=u=mIKd!;0rtu*1KS>xmkW$GqK)Ce8`!hq!6h4`Je5_qpah`iEdA{q`|8nPrIEd9QmO~IrICTQ8U`5Fln~QpvUJJNS-lVWg9@SMsYym3C*U6+?tl!X%UyiK#h4(Y>DyqdP}tTcVyO8^gJ9n5a#hfWyT^ zk0w3ku*@|AY0q~N#Gt9~} z&u`nY<1sm-D1sgj0}QlYIa{vV(D#ngPd@|P8L`?|wUrjqFu+2}fRAt5vEzQ;s=dxUee%!xM}R&UqRnhK+9Gm0Y;(P)eFQ+` zqHh^)k=Jbg;LeT*9*4P$nt>s_f1}*ajE5^SrXIi`fj+JA`!d*1G_qn?S=L*%<=g~4 z)>(jmw6L_YnwYQ^F=o9G+#|mre*F@})+Bnu!=G?N8;$_U?`ujP zue@vL3*Uf8_0R&OKDesWFyzBiGdgv~!ZO;~uqlARsFDIJ`XYNuWjPzkcWUdf-WlAp zAeYlX-y^O>Ri$qq(gSe%5tTs<(E{7L6Jj~0D>w(~5_A7|dq)%#EtvQW9<$jBjYRcOsSul4N;U^q4J2jI7+ZAWiP!(htHAitII z+@QKpfa!-B6tMQ(Q8^p=>jM^D4}*rlYnCk_w36>0y{KeHwoHrz2~alUrV$LNFHg9- zO$m_^gCNKM6b8% zBYj@xa_kz0m^0eTc}E17+e&b6-wPLHp%a7=#T7^+VxPB z>%llc%8wqQV@WYx010dZ>}8OrEIcW@nU7>QLvI}yWH9=QK@LT>J@9nIVVHp!RI3Dg zKa@S&(GPK%8ht|A6C=L6R)CkDl{>>u;5%(f!x%#$AgIU1)6X8=AvbDUBYFUZ!D1{s zrYZ&~QzKXoz!SK`{G|*aHUM=iEef`hBSbrnbVq_7$$Y=FF)-v^J~G5%y>OBeD@i{I zs0h4KO0&3j!Hx2ejK5so_27Vk5dQ8#yrJzIh;N1%a|kQtsrac88350!%7DeQ<#Zo@ z7L&;Vt{;feds8=!!mzf2XDna$Gj#0?IQ!n6a@FU32*I|727mzC5QJfcw`#uwI!+ej z+JhI$D{<}&4`ZtmK9hcPJ%c1hdmo=el7?;;Q$2zEr3ug}nnj;sEsI)|I&A64D(S)? zN=e-*I?9$_?chvM^raw*GkDCVUtV;4;ujJhgZ$fx3B4MFm~~=3aKJXjf1Ee>p0BcT zfF0Hdbbvtshw%*k2l#^-scRQxfHid)z;lDY7I_;&6J!UlwpXsT-*%I{olR*wfI`p! zUXjZ&uf%?+0I)^!)5cIYq9;fKmgPq69ap{t4k7S(z?fZR55$ZCRF@f69+w^RmGUz1 zHpbM7?1BtN(EWPs9VmLrfMl*~Bk5M+(xuKZd~)QIVY1d+br@g-J%G#qBFA1g>aVmI z;@v~*q7C8fM|aAb$L?c@9E@AQ0D-vRq0%#*Msx@ohBf|>^>aS>3)n<}6)IDQp-GeJ zy_LL@g|ESOPXPSlLAi7Nd^};ia-p`y5NRqt7grABhPI#SgDn%_lJmFkyy{Uq*C234 z>LKJt^myQ?Rk{_%CR8w$amovdDu}>}A}|T1Ma+}FEypoiH7;Xp?vCV*s8ma#YceDm zFc}bcSQIw{x*q~*N7E5>ytY>T79{@!j@i=sl@-iMJ4I1olR^KDJ1x-#Wq5=TJ$NPn z33N18x|Trz&&e4%xhmcK^#CFS_$~mR8|0x#02o#iBx9hZhp_jA>`O0w&Rfw1Xe&!I z9q=@6)yBI=lLzL(0iKf#a9JIsGOS%B$DMzc2dR)?B2OeJX>VOrA%HIcugI04H_5w4 zn{^ogpn-1yBETj;ItG;f(vA}wIc8%l+5inq_d8{eXL>eZ41gqaf;}5q#`3%5y`vZY zXxRX+mxCar!E9vV3hU?IA$%&;s`AdqUw)CUF@difmmW zD24D{_q}(-khYvjnr^#g`}Xa(s)yua%ERIcZ`J<&Ge%cpy!Wb|yKaBb)|6yP*MvqO z*l0wLhu9^t?|BbQ;-=eqm7SG6QA#d!bM4C3Pi>JXv&4UA(^0%VWLU0 zi(-`eb|R1&VgxvdsBNMaC3o7D6vqx>Add58QAVMt&fqbdtzfQHu0>znu}TTiYUu-l z*R96BzojvkXF#N5x?aD2jR54N7q&{rV<03D&2vc=M1XZQ*3x4H!vDne6WvJy}p3E|H3ckMj?5{5V(V-Df_d<+$G zKJFo6v@GyeZF%=-S*t0;^@X4eyir?z7^@q3IWCQP!Ll)#1q%Ub@JlV5JpSYk$`Q(9H^z@n5eW{#e$MPhQLF2^xj49}%h#_1xlLRV2F zrO>~3XqgJC*r8A=HGDwqpioE2b^Xi0St$fGXsU^%)}Yo%kl4TNGe~sZbNy-`@J>-y z{M7BFs>gTUG9dfLCo&XyjGAkhvY`>qfc2t6)> zK|?qoZ^z#8yj=GjLH0GGY6Sp?dC|%RXcH)v%$wQAP}0x_X$%*fki%7Z7W4`qMmfqL z?x;r&)N#bnhR^`;GH`i%nKKx{40-zGuZ=`jbz)bs{^Aj1Kny(^FbYWe4#T5&$Vo+c z?`Vgha*-GWC~I?N@t#}d5<)y&!*v~o9HWEetlT?t*6zBWV_(_}U?}h)Qw7*-?;cHn z&};m&g`lyl;CH((>F;*A4flOb_H2LAMz$gJq{%~ATiF{AdNvPi!#&^JxeM3h-&cIk72i=rf{H5Qiw^b}(%U$apx3dxR((?k;t7Ba zRl^L6YrIkW72a~~{a@hp*As$nAOcwaP)@SxQ=@E)QJYkq1y`J1u%)|kY1}nv(BSS4 z!QI^*f;)}71&81eT!Onh1Pc<}gS-3mcW2!-YyQIfo^?*uu4nIp!iVfr5g_YHCmHHk zH$VQiU2SisEpW*ifRVC!Fi8$sM;aaRE>R=+P)uC2(W4ar%qCYlc5~L?sH6|pUwz3~ z`$Vp!U#_JAkeUNKZu<}X*W|UuFH`NyI}*ro4%Htlk*3^j0K}dF%~>ghKmo5*{hd+q z+F@v)4Q&L^F0yHq_oQ=Ulx0Xv?%~2!@uxe$4HDQh;r;l*cS!CJ93&((6(VL(5Ipv` zT%0(-Bpq}Ffd4c+yE@UpT(Pc==8a$22ljSITaZY`dO|L~+Jsk%4=53HCnE6E>JR%%u zs_ToW3k+sZvI;za^|v4K1KXJZlx4wH_y}JARCyzL3xxkAG}aRhBzvtV8JPJVi)*Mv+a0Ahg=Su5rOo16h^XZ>nWf<_8An;8+E1*HBI$$hy&!h_5{ZdxC^ z_5IpUV9#8Az)Ju)LB^W>3)R1p%ehQZW*-s-5WP6u)|9_yhR~!#+%@aypBn0#lHMoTNGZg&FNSC>TGqJI@@FE8Y-|EQ@6&6Kzf z<+zYm{>eCtX$y+r$g|T8h|SUzmRePjZ3E3i?&-DpVK;;fo?(T9!kmg3u6rzabsl+$ z=c@y1bK(w_vxZ8+l7gO!#a@vN9|!m+VI6UCMCe7;fsMZ2rBNHKA?CSeT;9S&VstOY zal)n+W4HF>_yC9T=Q4x=&z^4o17y!d0Jw`A6z&WeRIC>{IWo$q9j{8;{DZjm&ZswqW>zJj?RN>FzcgCtmIMZR~1zLms zSqN2);r`oR44=A8d%#}g2M#Bd9TFCj1(IJ%v?_9HVFgF8K8k)yY`kyt?EJ*@_V^wq z1b_Q=T%riGFQkU8o>9mx;%Lo$)#B$jG*D`hp=8(_2~MX<=k1HmL1zSYC} zWfZ6Ay9weOpP{sQd;mMmtM6F)>Rx}WiL~qK5=x{>T z#M07l3y>kvZ{ntEeAxk?o5ofzv4F9Z^q^X9B~09Q$s_s|6U!gdo(@#1Nh>*gq->ST z?p;tCKP^$fy@jQ!c5LaC(SbLd-oGtJpc~}m&`MbH>s;FO#amD41(@(Eg*mD>PAHWEheW?%ThooG%GWXSu=cK8H1S zP2bFN3smAUV^4JR^4&2sNmhjpJJ}Ln0)Mk^dnCV3h1cLc6j{fW&N&!Kj!^+{MRa?H zI8|uJYecB+BCd89-uCB4QS-0J(x$+rQji`Ag9;5%`G+RBsjD_}qzG->yn>z(?g3qt zZ;Rq7=sbbO7OlN&k(Ec>%NfpdRH~};y6SXUktGSeSksMQQXDZ8M3)p7L0sHX z$W*`Xa+9W(nv5}Mkb81d>X1p9X%DY@*FYp9>kwpW?KTO=g>EFL`Vc!om~hRXbZFQ9 z^qzdT!T~+9J5>>L7(rje@G=4N;fs=+YYEG4`R7D~C*%U;wvq%75Vdd<7w)Pnnu0NG z5RWabkRD%M9(@QYDH2K#QF_a9do6p(o;TUG z-k-Xdaq;NwP=R3;R7p2AI#NuLX#Y5#%kQs~9%|i(MnMh;-oEqr&Xru}pk4D-yV@Ag z47!hj0291gpx>Aoj2e;ncq5l3(w2`&{~+0?7XHa5jI=|L^6}>+mJwRz@ZfG%GPr0d z{tMRZutMa?{ZBd5o~Dx1oe981%>_?_jf1$AYwZD2sPV~WWbJOP_~ogdiLnl_sf_?` z|9I`*%)f`}QH!cK@Z9Je)5ujdd*GutkScgw@)KZ+Q$i$Z1gA@-!(nezuvP6`IC)*| z$k~?fsLyfXJ$Y@$lGIJ1TF|E(UC4Gyk|s$Vu;eCazi8HMEASxNf#cH^`%sdfrGE$P zsr-hkV;KU&@y)tu-b&w2rILE=^ABv9VLTH%Rl0gf;0jh!c2XgMk>6k+n}0jB0#H^o zh!KWAO!qgW)w4hI6w)`X3!xy1k%zJ-qqWyO{GGuzAnx*V!__(MilFQ(1G=84<>i)9 zok}4C&ey|Mo%*XPN{u(&m*dzw5Q)Lp#cmEc`c&PM#r4fkBnsRD7n$0{Hm2^QvB2eV z}-lB9+;f3xHEXjvZZoR zgZZ4qdUFKrCawlZ{{Gmax&GX-+CyR_BaZ`sTRtfuJz?Rp3A`!#LR8PEfdjA$DfCoh zNBeC0V^O8=V8ov7vr_yL4miXsDJ3}J?DOI10J1uzEzO(-UdF!oN|sp#*VK-#(LHRQ zfFDFGZa;4eaKF4(R9R%>D+g7weS49{$-#8hIn4a>I!OHoA2Ms|b-h*}DDokOu^*A7 zur^K9YifCWk|64*g%;E&u<64}7qs+M6wxYYCjv}*XS-qfE#S=uCCyAiICrJ7t| zxm-TZ3dacE?RsNIh?s0CA7to(6cE0M7{W1mW{A^+6v@I&;7Z=H1FX#4Ff#)<*i{$R zYO&i@r7eEeeCma>wdDu<29kA@>Pf6!0dzevK%#YC(`VOvTks|ob*SRZeQb{N!)Nxk zoI3^3+I^6+>!B2(Ak^A?UFtTpmy_9huO#;4*7dwg7CXl7Vw3iQC? zP;XXewAy{i^o>WewIrZX(%#(hGeqsU{0@IR7z5>3S}b)UH?RWha@l&eJb>Foz@A7f zj41((fCtstctIG)k}1~P`m{o9s^76px%7Gub=Vw*O* zOQ!xtMTXE0N?)U&<_xG?5_iD>(S>#l-k$ii4!gyM8Grj-(_r0`<0f9FhX~i9(LsY; z_=TxGuIkUBccT{S7U?)l>xo^x)l2-{KSzWC2C-L$qC^eyHOPbca2O|GDNY$dz~}JS z?V$lBepkr)#l_TUrZ%^)b+az@d)WY-XbBy{QfqIz_)Aq`ElC8AY&b0x!+(d9Rr9KK zy=SqQnfb4^TRl{V)mjvR5A$z$?HA=5=gu9Q4IaMHtzYwiPN;u}M3!UP3Y)HSc8-JF zFZ&)r3H~1(bFz(-1`Tx&W`^-}j^l#AI7LQ}@v(v^p)Y^TkaTU{*!wnPz$H-Q4>reP zoY?^2&8L4dLvzFZk!JYO7ImfenDd*cxTx|J0lkvBwWhIeZ8KunnV?r7!(!qxUtr-< zvu(I54`6Eh40!NYbF}WjFj+Pn4g(Rtku62-sx)>M>Mg3ZLu|aP5zB5lVR?L1KViSh-A%|xJf?mz!g$a6fgBkB9jjba z*-GN-U;ZNPo~CV;LEaE;gCSD+Io!a6yhYjXEBImkd!Vn}6vkHjh%_u1wwq$M}6DJ{%{?0_oB+{X3({SPew6TD|aANs&*8i;i@ ziEidK^OAXoS2ZieRhoS^=lzaJ!?T<4j?SxI47O(Up+Bmz0{=7Y2!>|9(o(lMa*35Qxz2t>w5i% zit)jXJ+3S0ZB%blX&yp0p-Rv`(+IhZZTO?KPZ`W|SRQVfg>=xXA)ZOhM3p)f?3r+7 zwezjOJuDtehE21-QRb<>rI+9J1LF**YHEnUZhG1Fkz1N9u)UhQ*~-iV?9AH`LdK6@ zk2(KZdB|DB1M-fQA#Jgmva30lVlYJ1CYm+JOiAfy@B#J#qVSi4sV>i#R{*ba?r@2j zyiv6M2j(`FRWbbOWZx}7;WyTM$5;$6AOwW)*g|y$-k3>63c(&RiG5x&DiSYdHT`$} zV@b-z!Wmz&ZHb3k;Pk+}pq5w*?SEN-=dXat;x8<{gWp+S5Bqagd%Tq*W4b+Np|z9s znmo_j#hHGTv1{R1;OF!zEt6*$0)lYup|t~~HU(Giz+DSfI&~aXN04IUIrqEtCFBlu zZ_7DTp&LVUW*A@^FszXOkFs9<^=zc$y^GX_xhL)y-MGdJrFcj_;LdgtLs zYsCr=fZ{Sh*7p9oQF@QD$($%)eNrFOzXj9fts6k7wHv4pk}Ghe9xcQ$R@KB|j|b&< zTPCIlO}t?+&&JA!ffsd)`VDvi{9GRtdfm5^pED0K6mmr|;d89HcNn&RVf#4jB9I{< zz@oi}nLJ5(2i+Q-?<%jM(}Ht>mIX-L%}!3~L`}{gCAAUZ1+^$K49|^HAySm>qykbt zmI&|x(Ie@X2io&jwJ@;-6X;;gcdXLaK6&?=5czwTxJNzr}#*wx0 zltMVjthq5@mX*Z@jTY(t+pXli)DPc3?*s-!6<+~}#(aa$k8wr(k9vR5$s%S3^OfS} zcx=%?c;pX*tq)7rm48&c`LlzB>1pBXULmlm%5V3(!F71^>UfDb2|%#XVXNfI zrHHGvT#5_iyD$IGJuvZ8z1w;T<6o6I5P6D#Dfew<9w+Hy_qVb8Gk&L@AEXElz&D0q z2wq&hV&r4RoRwy(?|XZ~?`e3KjA{BGq`e_AV!z(kMlcL*OpW(g-zV2piTE|e$5;_I z@uLGI$6kX+z@pjrTLU2Qm5|NrWWWyM6BpMwI|Nd?) zKZrM)^scz_P(F0t+;%tzI{bG-6ipk>5B?=8X3xi%79bz7=O$Sc7ql}BWN0g>D2GbB zo2sKnDFSWOXa_64CynmMyfZ=$&K^v&JOBh|a@0x(fX8<&fUNJ@o=#P=z~G*^Ey4p@sUyx%0Rf}W1N@0Ux#n#~K?YFQWAdN7&rsmC zgOSj9(AVkU3oijTiU{HiP&Qt0zFcjHIsTlcomv~_o*i9d@ilrPBw}9pJeD^FG2*)G zbkzyAA22n2WppZiY;(UV&6+vZMlwiBJZ?$LlnCUH;+n&}*VCcvxXR!*D&S9S(+@&s zWJO~>rvK}e`FK0{xM0uXp2d0ED`gr7+ADx%e-okHwN1PbE(*N|OauWcqH>1R%uJW_ zw8YWHIoJp*WLVJh-qnIe(LXyAaq!~cSGAGJNKHV(B^Z>TNd2GvfIQM&IhUe)>00gG zNELG+6azuHI_O(1Ci_=Q)0>bZj)=t!GJd>o0;; z-<)pQqv@gGQ)C*A)NP=W59Ju%x{4BU(PGj+WE|(;fs%)K{veh_y3$#E&2E~J6ya36 zI9^`kGn$rh!H{bt0nalzc>H#NSe~a|{l_c`PN+qTIuiY@?J!)%3$IGpBDL*$&P!9$ z!l8gR!J2|dQi=*=i7J9ibTlz+?IT;AF5!1Acn?^0BrJ}g7*#t8cQsR$U2VHTtILeI z${EX3{8{+ILC(qr{BBvi=J=@wX4SN=NZGnQE*7{gE;cA_JwKVLQIa77Ui*N#wi4ww zFd2ev@9x9J-}@1orws+ZId+L%h$`$Q-P;U*iIe=v2rdNc7I3+eSu{P-lteAXN@VGb zwgDq5#jrFbL=K%6y} zE@BPDo88QClKg*s16BjZf%e6KT z`ovTcevopFT-cvFpL(78c0EkiH@Fb>M#TkX+q$z8LHT(lL()h?2ck^E_kbb4&U?+- zQ(Qw2Iu8hfr!QnCGHHNk@8gB=nhh*=Ia>a@E*2FKF@+ z)+8gFm+REt+ov2oGlA=$iNg2g9M_xPD&TWw8s#r}pc&IHI>a5V2Y^QWR0(0dL`~k) z>Dee4+LbPp8+|AaJxeTt*2g(=41!=x3g3Ky7k_rQJdJOw+y?jy_fZ^chAJ*baCH;} z$NsFHmfh20^q7M%D_(}L{Y{L0Q=+HgX^LJdfTTdqV8nScd$zM2Hw1U7#S`&TWbEyZ z|0o?*IkWYbO$EVxEumEet_S4kD!`Gy_?QkPC&;pX#wgTyt0_XiWxMAg+O+8VJ&1c6 zN&%3P-V6Z5N&%H_q#WEAPbj>t4PM#v2&u*0&VU-jwxXZmXi+B;6!~*I0YP`rqwv9~ z#%HHA`wpcK6M9Vz@RxtW2~Hd&@W_1A5B8!yuaYKC%%|krNbXYzl+i#|+aZ8c)*1oM z5l^U{piW&4cLsX6CjFPW^D-r}RPa0eDn4kI+hGeb<@WBV|l@rmY${ zMO@K@I&U*On5x|@tZlZzIs@5%8-o&Of$P#zay0l;7rWI>M6I-$LMjdQuN@AbuVn02 zVDCDq;vsg9#%)qFZb!qyhw4In5;CzAg6yhu(R!(;i51l-vaS%6$3_{@S4+$5Wz{s*BgD@$!W1_J;w+ zpVj!prPrjb&29t>PXt@kQiS{v2*IbcdM&C`O1K)*`vmtiQw01YxovmpQrP##5M>!; z6VIXEt5Y3vakU=VE=!TYLB&A#-HshP{9*;gJZ zR7MMdt#6?x2rt)f_PdIN5k+R%yYdG=z!4KYls#Ylv7RA|8tkBauiQ#81j*;CsYEsf z+glt%ya?id5kVQ$R_9bFFb{L5uZ{9MZ8p8V!hexdD10$(#4%xfPPAD2ns_rA!MI7T zis@`I59Wh$p%WzxuYz7VufA`Z$)z`qXr4qBzR%A}XhN{o&RulX;YTNZ`CU}XdJwFsU zg*LpyVZNA818P0jg6Iyxr(E=ghQ@6d`M5AWw%~Is1T=qu_r+m+_QoZ? zw;1lA0|SZj;vg{?OKZGAjg%S0zK>X7%yHShZD1ueCa@$m{$@`MS2Ct++;!?G|9N&b z-#R7$?9wZx3H_&neGCfnRILaiD&MBY2=$JSJ8Y(UcC6Er%a3Ryc=4|aj}^%Z!d$V> zk2)euU%G9wW11_l3~nV+3w{aPdimQh#+l_~+71Y~c5hqRHT>Pr$l4C?5Za9o|0`8M zb{`MzJjF9%!%_#+0-5Y9BKa-!l2n?YdW)Lwr-j_8fN0g@))jZUNW&ku1TiiLp3Qxt zLLS8B>Ir8;J9wy{PW``1YS`RMMYSj1;@W-23zE#PPv35z@oqLk=ZPZ#?BBBz)8kfD%GvvfGq z)BK6wwEUPASrXDdQ$h7vhBxd3b@+R30-&%3;Z~y19evTAto70u%&gE%!tivqDoWZh z*u(1TA4==_zkeEWAv)BXe8E@$e1kB%Eu7A9Tl+$gb>a=W1c5 zevkC^Offj}+Xb}?|EmVXGx{YIpiXWr$%3i#-&wEsr2h5?wkx{iUX!kEMiSf0$g!g` zGn3G_xxmJ#DAI?{ra(PCO;x3;>z^E^W-4m&A{T~)JNjZRc>W`#m|mewE>ylB{$cozylsYDSYnI$(e(xUAkczYUR_bOJz%2e-v$COGXjq6 z*F0-QH*?ZN!h`~HU_c>y>^|L476)R3~XMiqK{9g6S zn54-erMBMo*WQ7CL+-+ad>WYdL~1+^E}aZ&g)wN|F`}mZMIL|X3M>fv<6U&G(PBfi zB0&@GNIBLE-Iqr)>Yc(^wa(yF-(ldmpb2I0%K+}oKG*#a0&BYbkAb7f>R1L6t<6bI zuT2=Qe8{>wc-dK!%MWeCoSbYpPV8KqCcG{hp_@miY5T*^=_gF{NC(%wnhDy z+>ipz;t56QI=a>Q0kT@u0Vjn4@VGe902U9nHzJX^_zX-YaQa80T87qmIZ0GF5QV!C zzITFkQ>0T0yu%{yb%=OP?M?Gof_HRfG*v_x784(F2fY_2?1NM8Y;w)HU7b%mVhr%8 zb*#-2WjkOcN?sUuYy0px4QN@cm`&odRz8!5_B?MU(Twggo1_@ z$3EP{d#)X5Hdte)PbOY6sGnG5-$YdIBtPyd5Ny&p9B>==Y4M$v%`&@<&1n186b@sj#CP#!*J~$ zlFRo5VT%T=88BFds7S7k@~3%9Fn#{ngCMCd;rvFusbKTtt3-WlxD%}C?voRj+07!R zW0OeyoGsqd<-MlA#2c=Z#L5wW!!K!;-TlxK1}hLPW!0`k@H~pRNPQWRXuLk8`CBf0 z`gA$WV#!$G{M|AH7DinAo9aDE^_{)nzfg!Hh`26uL2)UE25e<0g#Th|P7RK?($o-? zpr!u5X{xix}TufPI2WZAMq@C^`{s|d-NT*;5x9!9q zvcEz(cY{U7hqw>DfeE)7p8puUHIZ~@fO+$%pd3>M0ojk<{w~K*) zK999X@9!5JOmrt?i1mDv)V;+kChVI=r~Iam!I*BFzVWVTY<)+zNnvO!7)h~w|C1JcG8kkzP&Zi0U8o$bs* z@d@*9GlzC>Abk|H{%>kaWn&ju9||tQd;OeWMy67!kfsR96MCMf&G=~`yZNm3h{Dao zQLRRaNkRh0QfNx$^8x>!@*XX!BvSt012Xo3ofQ*aR?l13CzW3R?@bZFb9sIIw7e(n zfD&I3qY#H@?;AIKPybD3EgbwHelvl^L`4MGeVZXexT&Sc%4`|+5lOgwJ+Fkz8ulXd z?#<;vUU4&ZUYTM`lfg~<}bU0FyVUC z`4RLap1x`Gh--$n9EGW?a&{vgk&+EKPext9H&?7WT;0ggTkaCxiI|TdQ@HXvJKXd@YQ7`7KPzr=WTYGoQy+px9*e zIq$yf&|Bd@3w@9zoyp|d2rtoDI6oJ`v*q}DDIMF51%@?o#t2pFHKGj@Z)a~~B6*iZ zi=1rabG61wEdva!I#ru;qiWe|hDtez_~-U~GTV)9n;oVIoeh>sulb2qn63iqGRmDS z>yhVkkbIy=i`=O8t|l9RWsPiLLu(IrCp&j|k!{>qR!5yx;I^|f<(c(WNEu^Z)D{GL zxzRf{sC$r5EuuR>u#pDO8xigEz z2Irf$?%(I|UnJVCvG)oBXt4}#p)@s_KC(Is6ylvN(M+Bm*ls6?no|A7#c4uQ^KM9Z z4xt;}gLUTAn@k`=mmEr+ov&Z zFrL>2dv#P+0rNCNTak%ZeII?4I}3v=vpFNm!XTfs^~7O1ty+3`N+2@ZS1rYlvJ(0j z`hwvY)o-Xq{WFXPp(RMaZUZ^POcN;)qEmI@A*u8-+vc%4&McrIJO=y@|HB*v!b~<; z2Kw`<)L7RB0#Y@Y-h~j0XAz`NLRuhldQT0o^_fOX^2_qykS;tu&v_!cHigP=w;OT* zVpT_xK6@2OtBj*n#}TjFs|uW2Gbm!8YIXMD!+$wH-$_3*RMjH!N!(?9xH;W?I=tGa zF|`Yf#XXi_R(sgAN=4>>RtSNMp#d?^Zu`W+`v7zI+(L{Sh;8`-(R=myO{t+RE6M~9 z7gl_xdq3y1&j{%Ie?zwn>8B^@biQ;EH#{od$~#RGIDAp$$C^%~{V;y&8-w6QNh5^x z%~q@gG);|9fJsG(HzZWscd}^}vr@HWBtRSY98Nd(m^C9=jh$+>p9QA*RmqwGUqRPmC$? z)^oVYMcj4cd(WEWzbp}EQ0Vk8bQaT#c3E*3JkT#1sbj7CW4&K5gtM5pVRhFarH89Q z_bI5w&rsDwvp>h~Mxl&K?i+Z}APoOSD!1(>)3kYCXft<|M>rIMpt$y|UehWk^#dlv zM2BPe{28WUsEpJFuVK5KASVmb50Z>y%ZXdmD-x|lIofO1lW9!;eOk38?%;@E4O&zM zG=#g6(=MnYkf5cyXiRjC7Slhwu`F2VBuL=D5Dg$C6MeZ?MoXZC`gaVWC&(nlO{ZjK z^l`{^?KJ3cf>GlgD=BL=W+cf6wJI|KP()otcWpE+V`0%^I)}P=g;D5R{LqWJonnT1 z&m5gFqHu0R-|qjouw5UDx61$4BOh`GQrKBAZ+-KQI{2g{L3rpH*(XTW8ISB8bA;-x z7K9c1uN+;1JzGP?8?dI=hp%}WCaiuKT@9qSGkYzrjnkK0<3kvii8Ptg%xB`r`3afo zi8f||tUfGCJ3VjT0-)|suh6^6onkiL-N!V9#g&L|ZQ`acUz8UjBUQ4axgG#Jnhrqo zw^Q;%q($F~Z_a5qe)rU?o{l}oOvnY_SQlkxO}Jajn2#0p$j$WAUV0{CAWKUd*|-aL z$x)1K+^!2I;5u_F;(e4k@P}N?LF}4l`5?&@`H5MKhR1A1I1bq{Ycc%e_PsAvB?Fv3 zjEn?N%CzL%9NK#FOh+FrAXDcilgVyk$b(LEA-KfO)uSG<#4cYKc0rKAo2-`{=vBn8pX^LlL zTy?E;L$*vI-+2#zIRolle`xJD)1g*Bq11;}Lp(!DC z{WlSo@4c1V5(%v4KWJa5j}lj&)cY?U>d^?`jq?di(aqXad{=Q2e%0#bU9`%OwyK!- zBIOd^3HPXbA40;waPd9_nSe<*d6om3<|4M#{kDJV7<=L&)eb96!Eak&4t~USBLxjY zi~p^cSD9{-p3czd6$k7xRuL*`rimova+ofA<@xWMX2PEtZrBuhPLgFpgn?_&cQ#!) z;*49`5R^Y2-`4ZXo(%y>Kc~SRhKZYFj@#el(!oz9)O=JwYa)F2q%M#zw#(N80B40L z6TT3jj`{7>-jGm-J9u;)dM)dqziybQYEwtbs`56z3f~7o0NHQ9cUnh|)i9pMWFzQ} zDbTjkK$|gy6ulqlI~dK%)0d+)HtmT4~9n;au2ssf9lt-|v+ z{Xby1c4AvbPPTYnh?_~Z<1|_Ob5BF7ow#(!;#by~Y(jAwi!}Ftor>Im)KI7zVe4Bp zU=^(Xp}flYu5uOyD4`ddhboaNLJ*7l)4iO!vYBMW7$O+5wb0M2hqz&^2rF!+Jzzu< zD>#9Ra6r=Z;{eMgjYeP|tVnsQ`_cu;)n_2YBNbx?OJ`2sbbdcRfSgbL`Cn(tX#0)U zgZR~#_7|^fiM3wx1I?}Q2F08vT}6MMWCQ1>=GpTuJh?viLJxdDODA{`*SDHi zHQ@=n1i%BE+@b1i!rQXck3&%FF3 zy4JZUGaU8EiKDmcMYC`ZTk5;y*l1P|rMB&*_lzU-!6}8tBp{i1Cq}RePNon}5YR@E zuD`Qhlwm4awMOYw&;QY}u_6iw-5T)iizj!i&iZWmk+b1%Z9@8F6q^E0v1Cua1|1V} zuA>nyBw9@aJiTqkTT6fN}}P$V?%3|{%&iJ{Q@}FkmcPPee|6l9`NIyhHtuVM`8$pt;;D8$k zCu#;+gEcg;QuUfYCI9y?AZXqK1P%p#5W-orSnLGdseya^0 z(s01t+y7;h)>}qy1$c(9e-Im3_llZR?>Y#O^@Dg`hnqW{Sv{G{X}L&ht zzslM9p1>9ce=4>4nnAWqvhr|*$A6DEFSR29^|wn#laW0NyiYmPqN|Bd+CQsb>rj@N zu?j!Qwof4TRlPTc@BJdMAwd_C+0rOA+S0Ind=FJx)-CQhZXTrey?_C1(nb*63o$VR zyN(8~B{5>FV;m7MLS7Xkh*tJ;Vl`rcTf?fX0#pe%d_KWOc?+qN3;+scDEyPeB*4UD z&iOJLC5i!FpE6_}=H3oLXs$r)-d8V*P&R-B=n@|=&qLjtMNB?U@~`3GE5ZK{zUwtT ztBnjq_XZw1P|0Hr}}Mo~klb zm&yylkFo)zLns#_AE4L6p}X*c(LE;cbY9X@20T-#^-6lL*5;d!x(ykWLX+-)Goi<^ zKt>OWh6xHjIg6Paj~0qoRn-MDK{A~7hlP7ZMQU-tNU2m^`Ylv%HEyifDt&u9s>6auQ`Jm6KA#OIu{{MoSUX04%cu#PK|ST~)yZ5c-|!U1sL> z4}~~dAX#u8p!zvHHNx>b|Dj?3gTpCu%6$62e!XQhFT@txkF076pg$T5Hkt#&;7~-T z*D%VjNyycV6axKa?@IHY>N=E|Wb*?FdvW|LT&QsuufHrcz*5s5&~>jxwHGVz3Z0&fkj+PjurdfOZ!#Md{t@~PtT4Up@(#Ve(zP!k zZmx06oP`m+B2gv|7Edfrk$?WtM;%$AiVA$Gxso~)zKXy4E}gXL+X0CdLPQ7s-jye3 zp@k3K&>MrOCwGd-t!JyNo(?@owK$8l7!`Sw{h!;oFpEkOGJXN`sREm4#)l7lYr6k6 zX|W({*gLc+Ro;!P#uWA@Jj6KW*f>_$YW{+l;msU2B(WvQ`l=6zw`}Syke#_ zYb_{2)uo0E_sm#?54Zr_ZdLUGY=HcPXc2IfNhZxQ={Tt^08wI(G)-85Udv4A3pPbm z5Gw#CD?+F@OTVf|oN196hO7|7%D=i;Xh>vhoZ;bu$A`LB)6E}I6}a6G)V`P$SWb4rAKckVH|l<>vSWVV8iJOosAb^7v@zab zP5&?ib0f?kU6Qo@KIZrQ)&sMf24+JJ8po}>j?vqDb8LyhZxjTfTR?TF5XB+X5+n+y zcvyfTf1vd@R1U<`(X0x|h8>FL9hTmgwAFeWY)FxDMc|c6A{tM7Ug7qRs-ZPi@ZZJU zgPacJ_UuDqs3QqLFa+pXJAeSLVwJ~-ut{+-j^CA;WW^04{Vp3!&^2gzOA2H3RhE_v zd_5nW?$44vy-4{UDM%_-eF83jyd9hhQ_VMdu`eY?eD6{f9ZWN9E-96d%)c&0E?TsT zP9>zd+lFyVUMpN31BS@6B?ss@IX?=aL7amy10cVP!?)9^5GG7fB@j(bqGy6o9M2E% zY9#(xtC{HM@S%plFFlS1SHv05K=odzP=8QQfX8Y)!VXo%#1rZ**=3@6BROoW8yVzZI`e^L_VDSe{X|De$Z5 z_TK!K8Q^`EZDca<^5b`SW;cf_JH-v0vHWC4vmOw>`}2iX$JMornPj4Yc{p)DH`6k8 zdg71Yf-n>%F(6upnf~QYTEpDMNI->@o4_r%nBv2jKXl+@w_D4a%+Id|@?rU`rtoe# zov-bV#i!uCO!^0v*vEQgF0|pUxX>T;kil(9UX)2{Sd*{k7>dL7XMR~=QN%)$9j zk~)%{83wHJO1?%>a%w!&ItD0iwXt6P%&*4HlEM81@4n_Ab9BC9@7*ELd%pKrS6pUU zo5HFE1o#J!CwB=T7&gbH1x=2sM?yeztvoBF;)eaRXj$wca`|7y9o<26`}LkT#|Ad% zQ;1M15!7Ma$}|!0bMtHyQyHcSe4S+k1)Q?rBOLx>uJ>0(DMRwjAMk*>@ei>|7b7Kl|ibjld#*@r!g{IAr8`CQN#={>i!U&!9PRS+fXk6M@2VV*N_Qu)v= zP~vy?Y5|*bE28&i@19_fv|3a6~=5?Z$Bg);ZBGrZ#`R3Wtw%$)l6C?K8EY zMCn*45G1+~Ojgu`yY*OVAq5ykKH+n*#oh^#c@mVdWdN|YN)kLyTW=9Hctv4nSaru> zo$(WH+SQRvDbyPK_5UWGlllOzU+^zLuEAon)5`M>xw)-2tFu-{eGFt1977^+kf_r6 z^q{;rVg?kXjmgLY)a~St926Z%Ax+!_MiSwt6|L^}%Tb+?>5lM@Kna~&C~*R%KZ)Dg z)1>p@87=UTZ$O>@Qdmo`60@kwESk2?vhOBS8^?~~`SMTk#JrY0@ISeWAHNlBX@}>+ z4Z%XLk0ginhET-OvvXxWRA1*Bs}k5|h0wthJq#oE%v+xw6wLNb$3wy|W4pzB2^fc) z_-p%fLO|b|IVFRCy9(Ud9bRVr+}h-BBC$d+`y znk#?vb-S!_!|h{aBYC7jL1h}tb-?YmiJduwq2(?8XDeEl1tP%B$Htz5V$i&X6?ca9 zsZ!MJWdVQX0-(lAUdU+FB3~8|%dFiNV;$no9Q6CU8;lO%wY>deY3(M0_|cDI#?LPh z=k$4?^`d&$nsE2HVf6pdqQTs7Z~#br`*y%$TQaWX37si1I1LeSGZxMj^rMq3P>%;A zdzxnlC|fWgOxSgug$8h4e_nYfAEE5(+rHgJv5I*xxpKcX?R;o^4HxIpj~0 zHb1Jo0(2I(_VEjJ?(KrmWKU?ORaV01x${#8UZURasiE zg5p*8y9Q#7g`{luJSX4MCAk)o{{9sC%O>P`(KRa*2=m}?bufk817}-qJPXA^pp4%u zPHUt49`fVMQ1uGu7Sj{v)!jvfyucj`t^0cT?|Xi|<7e8%!1jhR3#|{2hr5JMxaH#$ zwl0~o1={ZRIv@Lo^~{|wyjX1)91$CMwW$WHycfY&SxZKNO6DUqn_ci*p3^$IK6Vdt zbLD0nusaJKwVQ8CW?O!5$BJ+3OGZ6XEVVfuFAj&e_nmM5&U?C1=;t-HYI(bSAC4xh z<%8xEP6M7s7@4cO8A^rFM5Ery{FwMXAKESB zEH+@(_Swlf6wSZG=!;E3%6{o|GraW7IEurJ$Eh;8<6kJTP<1FE=v+wdughRbDTNGU z>WU=AA@ESG$QF$f#4x=bc>)1m35Wzx2Wbgs7Xcdt9z6m)s()r+MK;1`+^;~J8TS{h z3zhJb5$tEI(Lg~@eIAiCfA9fmvYZtpWo`_Tx@c-lB$42#(k^>Uvgj>E<@!GLa}&Wl z!2aV3Z7&!T@!?E-#A##TGpmT7*%mwl2EbeoUg@_BFjNQ{m$}V$X=?Qjk-{HFY-2## zxAj%iJM{7k&&1-$4Carwc;b442mc^8&8l1sw5~X9Z)wzM$mDpX2}yLhLEb|2Pvd_; zC&W353r7dRojuP6J8I?9e8i1U6>=REWMXb{FZ+${j+wlZ*TXhv8Gkqb%$QlLZiH?w zN=DP>iiV^WEYxwR{|v1!WUeoz%}%Yi$i0M?si7mcV9urCr_Idmza!(8G5J^!A^raS z$Lfx!%Knht3#p;k3uF0p^q4Doj})WR@FFc(@Y87b)K4{+ zjPw(+K>2*%`ybeVfL6Wr>Yh3O6Q7Ln++$O2oWIA%zMqT}=>PE29Gy05q^H$Y>UHHV z_`eAM72h05(d`!+eIAWn28+L?^HO8E7P3|fhYd`|r5)}eNJjkkbm>2TZWp$UVKDN3 zDtF3pUHtllT5X!7(+4=*`HU?|mkb8IfwlIkO|;$#NpFp8_(AI5n_&Mo-2jdCakJqw zP4)d`;;-TZ1VHGYvu7en!&8x+1rHjgOEhK8$0UD?u#q1FP$wGlA!!kNqSm*6CbnSS zqU^=Xbb}yI;WmmxgdUpeg+mEOe!AD@B`Rdv1##sHaH|qV3--eI2)x&uOCJk&KRpiB zRzg9y9#z)OirLZwilww=p&py{cLPp}h|6MlkSIah+t+ySa**`F(;sd9Gt_?}ed^iQ zk9KCJIIzy3b@fCw2L#mdSyy_HLZFB!B@jm^*1sm#ZtbtXc0NGcyNc(j?+>+-RvbBu z+v_Iumvpi=tNqH_9atm~F7LSTub6yhs5K(Uj4QTa15ZwrAJSo?VaOsTE9+7XkBJpy za^lfdG_y1Vu+fqJMGv*Ob5r<6zb%bALcfG%56Q>3rrmcLdN_whlMI&DgyX%MrQcvj ztMViq&^;s(zKq+|ISCwSxZkB9j5qqaH1`&f@>7MP1V+ zHc7&eZ~5%wmIGf7jnhTksy{j zeLJz-=l${tjsYWHuU9?hbP?%#MucSYjK-QN9c*xdz+4*sX{q9n;go%HLVpL%b9<3RwHr>U+mY zY(|o#*BL-LakCa+q7fh>*JCpVT%QY|wU};B7?E9yP7bTIn0CWOdq|tIfEM*RTNmzr z(c9TG;pMPDUVD30W|0dv;-QG~=N9&3_i!o=Q-rK2GJIS43ggv6T=M0IKA-#5*#DvJ zo1*J(yKi@F+qUg=$F^;wG27U-ZQE^Zn@t*9jnO7KyYKhC=YP)qIaj|ia<#{k#ktm+ zGnri2{VZ{LIlX?k&U?F+eVmOTCjBut^hD_<;3gv_M;Dyvz4?G#CPt?~TxmKGqU;3- zZ^dRsMOg=r%GXkr0xzOuW~8Sxq+#3J`Mx%|O1$0v`?^K17(vu%L?|=>}LU&$l z5vF4Y4$px_s0I|N2aF+!aO^$|9j$)^mP;-ZPx*5W0HR4IzOHELFX5OE_7$+64}qB4 zNxJWEK*xfp*bR^WHr4yD|? z$$p=*KW5t6Ja+c>R}F*bHR{9#UA}B*$LMlU>NKioY=HMo_&>3nXTD=C_I~+HvDo_u zfzR^cHU8tdl;sWQ<0ejzhxKjrBl{xd-B~kSjCc2W;Ytxx%b>&cSR>xng=+Q!wB1BE zpJfGGjfG|hu4Q2ORLxy(=KZ?;;d?dyMS~gzL=-6Oww|%7wyc5@1zoHi7h^JFi(u@i0tFn0Ry9qGx_p8bo=ttL+vCk$rivJ0%8Qw ziYVP_1;sbNv~-*BO{Sz@8fl|Sl_D02ky*lvROO9&Q*I*gB`_9@{fh->)I<3 zSh;75OI&!#SZqXvJUX^U&LDm(+Xi_xuwx}0`Px}b1}??3A8=EjQq&vFifQU=E`+7( zRDb`j_j_@CQTb@X#p6T8C}7>fEV&RnrrcrmvwMw@`ZN+8TRB-EzIm_P_mk$ZcEg1> z2#z%Xqy?5g@?%{X(-@=VTLpeUlMWYUxy#{=T)gA&eYs8aXuZ2Dw);?2MB3U@-=7!M z?zfzP#D@`S5H)>fICoh3JFQk?52TXyym%gLl3fRKHV2VfBUY- zOeVsdhVmy@9wsf@=6b_F)-3Ts{^ObIyQU??;wL{ie~<+*bgBUTa+2-nZ^}u$MPcl2 z#W6bhosWAHaf)0FLyC9~9zSe_W+WRvp27CUh$-pUo43}@-M=n3-;5pow4qh{cxL$! zTZPi>kmqM#e=ZrsqLvyGLzWfT1qQq$`a2!(U1ivM^Fk+lEfOMt* zq?&d;9=MFINOSc~GSH4$+zwN5H+5b@c2zp)&;X&$*);Y z8>>t0GXmTf!DY2i)VHP4&KBdM7v$71h>wD-*c!?^p@fU3R zFVf#yau!n1vs~rVWRc<$Ke56Y3O~+9X^tL=XHzM(Y-Zs)9BIbi)0^I1X&^`qZH%%8 zU3s5B>wMmaDXcgAm^AVu{lr|N$HyjXTEIA1ikx-(gFlp+7$A5LO$_`DsUHC%oAXuH zfYKHw3nzc-75!|9bf*p24H z@rClg6Nur|(fqB(%UPP+tP1qX>IMY}{uw$BPu zUks!}z?Mz?IObRy@qdHqf~JB;6xrN*wWX;(NB{GqQ0RxT;m2WXTyXu^#0a$Z6X89F z8-@JOV_A{kTK}Sk^JK}wX2}$0uD^+88%*dEo_-ZCKd?-O6z8;)`impiuo8jEmk$h` z%O0pA-kJMygR0F>9sLIqWIGSH$QPaJm(jDLy(S>~mVSBo5uf8Lgv?y|%mfdPIxGV=Ss$W0Bz(oFL!5kwULhiqFk(2{ zDpBGD#XuI`ndEkaIY*asQjSozX%&@(4}TlqnO2*XBMp;mf}H=Y*Zt29G2eA_+wJS{ z=(dj*a-+H-pv#ruyGbe~dz1&@OWqCE>?AVej1Ry7g?$bVoy-eSX{>Ne>e14+o2VQN z7uCasXc)sK#p|%??NJfkN)@0O#~b*q0(WKQeunkxu@A4&4UaUi$0T4L<922#p1G+_ zt$wGHb1J($RqOdmWvIvw{K|#g*Ypo&+&ZVmtvSu@8|w+qYv^yJy%-2Nhs8M*271&HMP<6K7ZgIjXoYoW{gJfACMm({hwLh zA4pbLr+%V-Jbd~XWqx@%-gb_rO72W`k#WRyrJL}d-P`tmdD=c#pb9>T{r&OBznX<= zhyJbVa(&_dIMjUrt3^Ms~eiGQ! z0#x{$i{gcw`Ek4S&q|)LWgColH26TmsP!hFn$Z1$*6g@~?Da8;r~cN}#T;NpzKv4w z2d+$CggiXi1zQz)>p=U`-Pq~Kb@ob3^}y|nr(q|r7WX_gyV`~Reo1(Igbgexs}ro^ zvnt;)aszyo%nvmWN5;i+JM92fWm1HG#X?QA5(ZxKJBFn}xzX7-fzB3NhnwYOm;12K z^UtFV6vdRDkhI{W6s1=Ngn;h2wXXpvY-_je)ToFYP91~5&HcTicn|yE`xspig*`mb zR$hvAsDiJFJ1z`iri{}yU|zj_ShE5m2Xw=8Wgy7TrKa<8UCVMZ`G7i<)hJIhFYPxG zsI#J)H}j^CTwz|k)Zmal60qElN*cMfr!-Byz1o-iX3^O6LqD)=c_ zP_GOkAQecb8IqFkTmGpW!sJi+$9;2sLcfqxYEk-RN?0K$|DmuJDA4L^NU=oNE4w9! zxTstfA1?Bbi1z8Om%@U-m|e6e%D zs_KaA1c>8yo@(n8%EpTh50?ocD*OXEW^^8c@BiFTuq>#>hsLbgfgd-Ut0$C^9|w0R zj8O}Q$^+LClB0p;97kL>I5pj?-$f8Vt)u^PmbicXT_?=tP1pFHaa&@8w?he2?Mq()<5i&>IZ>G#a$&rh zigMv(<9#BdiG2-1ZJ>M|p-o+!G_Yj9D}__mx%M{0;pyR9eJ}AxIoizfTKEocWdIfG z5V!#0*UP~fIBES0|1&}L2CLsp7B0;^HIr`eS}`?-6u#foew(+u))Ib&s{{2?&t&d> z6eD-INaOAtD z%7>(suCQvwPPgjP$EFct5o56%XA0LAnqn%HBS*kmUoJb5e^vN>8F&}xFIPt(!t?X@ z(M>7EMTly7o`D)aHMiRRT{+3`lVYp4>-G2&a*h}OG&z-n({;J}1hrs4>UrF;P^4jl z2#PPfsC^Ph+G%!(?L^(GUxRv`P25p-DfIDQa66#&)rnt0097)K8=Q;{tiG8Gj-e93 zk_-&>Ftwv>F@I``I?Ym(jnjrUvu?4V+LltuF8cP~<^`EF53hi!<@I6|WqrZ}8b#!H znrGGt5hw`oSti?2P+|S)eM#^AqDM0Ie3(31F9gjd2@(t=)xQmE?W}`?=+ypQOu{$d z8XlxVOtu7=mx~(i4Q*gHf*zTvbburF5i=w|ouszo4Dz8D?wcW0JQpuV zMO410l8i>g6VG~UE+n?cN?*OwRfpDPyaW$(MTqTNC9q zPCA8sS2HN|DNlE!{UgV2_8YO*<>YpJb=Rd|fwJo#Y%8>JQR4m>9GILXIZo%XN6aPO zmKr}RjN9f-BKgi)%u@RB z1x%4cSjYil`rI#v)i@*{yIh+iE7(etRFrE2Fmq+*SWpCe2WR z1L7(^5FBv-2kLg~F*yqqzy%J3U}6ww*vN>d@;(yE)2ftN@5jB#?y(J^T!+~##5$V!xV$1^Xw%2SKMsfHZSJ?B5 zyslbM3VG+={@}9;YG=lkKt%q!-;)4e&A=hSv-cGy3zdqv+UoZDpT09(>6Z$YE`vUa z>{XX=X){8avtcHeFJ-;W{RmI_KE?e#IA~!*-m)8qqxMvORP$|Xgifo?q_|jA-XrQ3 zt;RL9ujQ!NPGD6-V7tL(x=d)WD?Ob|bzgMq9#(~Z>_uIyBb%x{Pn>33_;k8DFQ$Kd zYqCma!xRXxod9Psdj0&3F@+IvjNpcNt69UZW{){ZapbZ1<1#YLGqB=yGKR0I808O2F5#C@2(15o_Pq#_Ahb7ptlg(EN-cD; zIJBT+Dp*}dgNouUF%8f^;TyC?tqoHLJ8jMngiic3namvo^f0S=WrH)o1!5g3iv?8R zwb+0;^3GMl2a*kb-ip8sLcArt*{4P)xBb$;Gq90h(80iLLq?_Zx`YJwN(er;8%Xx| zIxb!%7C2G?FE&mAuva1wg^Mr$Bmg-!VD;k3Z3yXdW}=^Yv*)NE-|w18@(Yn2c#L4ry>Vnqn%aT#&snFJDj?XOBPjvW`nI7Yq- zgptWr%zb9y&0iPK=pWNRcG=0i9;1@ES?O`Px%n`DnyUMw`Dl-e-t*d(BjtCORbLWaaez+uqJQ6~z;00a(bSRTkD3uP znPKp9k!%!s-Z1f?<7bg(AY^fyP-Jdt)Oiy43Et>DkXijiR-DvX|8?!-&Sj%)2cy~O zAyuCgUds4oyVsd6v(GaB0>bZP5`JiCD%SCJ|L!9>K?0*WI)R^DG$BcAvm`7WlWKNR zE8kCkz>*N3WT1J$?BnqotQL{atMR|RZT$KP)^=6Tm!CIpqwk6%qe3+Po!9zbf0mM< zp0qO)XuVlajH+%O?`j7mUto1uB^WZu@k#3JCrq%9Xh=66C#YHTrc*N`2DsW10dnd3 zbvr5qPw=?4ePHp!JLjBE)d@X>SRtb)!1fa6jYqgo_yp;?qPr5eP{|Q^leG^UF$O3} zF-Yyq6NCzWl}Y;K35m-@P~poFG8R?du8t2_@`LnTF1Cb_CYT2zG9?u{!SJn~(jMP_ zC46_kBoq;%YHdE4A3!BZB8s@6cQOx=x$KY%L@F;|B73q2GS%c^cIHqn^@b0>>XDE9 zlr4{bQBP9;#58AClx)WB?)pU6$$Pu>{t+-JnR9kxhu9z zxSE+PVro^Xqjr5gf~5WyK2GgDSz$-#wxkF^0YOdpF7 z6A#fK*5=u#qb#sVSa1~pPFz@^Y31sib@k&A+KziA;q!67c(;qT+C@)aoW}e3r{Iuq z0HGeqy8oZ=X4iE+kH7dvKl{x>tKlI#Bkr2jtKW!p11KH!$@>k@Ug1fd1o2f!O>H0> zc;Lh#c_E+;f23zdO8>H#fGI(>Pe_xX2{|C=GNlb!m@ou*z~hTLhFF@ALUMEK@?i(D z$%g{E>muiI9PI^=O>4yAu^I6P#UHiwQ?v@nsg#0 z+7uV7V{d!EPT`T<1>MOV?3ny;g@Z3>@Jh5UUXU_6I#(y{b_b2P8jR*i^qeijP(&1S zn{T38awlBMOZ17~LydbJBJsTI+7FfS-A@kY`#ni~;*dzT(yC$iFEi!wy3eOR>u~#? zZBT-(nHYI|x6+YUmg}E>E2>3`ge4sdO_0&_VPOfg&KRQ?;lXx1EJCSWaY)D@LA{LX zPij8EiWh#BZ+mM#oaCq{)zKGp>IU^-Z@9UbMg;EWeF*_@+cfh(Rt22pRiI~5A>}1` z5S@lz^#>3b-7N1mVHYvxMu7S+#9hLp25!p}Nn_)jq+HnM!^W{rb)Kgf1XV45E?2fhc&qaNZJzG zijab%7HDMf0m9)jasuVB;IiD7Z~zkE39SZTL(0z#IFJA-Xu?Y_pDS63Y5+>VP=v-| zAqMycAiPPM*#4uYHU|+*M2aC?EQ3vwtf63z@g-f7hnRAoypRTL=Lhb2UT6|E#Vtrjc4UUNTa-34L^e)m#knf?A)^2faG zxIlC1kI9QS%C|kWkKGLI(`)CBfNge}?$*nPM z1WSf$-rb0>Ktte3(dPo?YAW!+g7(5uX6B#2CXI;A>Ql5Vh_?Ol^{_elm7Vkof&FtE zkOcDJE8|dx>j7cq<^G}Jo^ZV z!zKqrk(v@d0dm4gnGz&5eFtnMmV{u;k{{bo#3jt(NqPzG_KQ3h|J%`aHFo;4#hU&) zNIKo_KDwMVOc`Y9H`7E^={>^r#GNTgxi+|aJg-kJuqmBs8S9jh@M|ah$bGs!U;Y06 z_~7NX`lC0QqE0_tEpun!!|>aMgZF;6pb&bw#4Mjn=6Apq?p5i&5VV$&M`n*Ba0k)U zefIpb(VZDX{gwAk)2hl1e>#3IKVEh^Y)Zy5+jnuGEi+oYUl%o4N>Y(>A7-P--vRFv z@wbkq-%B?{Qdj8@EG291rOK98{}Ci8Xo zLUNR?`*jJHfM>-#Qed*VWW~8Z2MJ&F}q2AK~ofVsAIjU3;_cws8&x zt|A=|EDIes1O_4_4+w}DM?_92J(G*!3Vww0nfsH~6_P+eW^o8HCWHvqvM5PFDGk>g z-Y;g%(bUt?AbD@q|Jo$ZnL{1z10MkEF2QD3ni`{L*-b1wIU74vF_nl-Q59EJY8%{W z=SEv5!UbHUAF-iQ*P}>LOY%U2&ogm3J8PREGl(3_Om%vLCFY~^_X;`?DGe9M>?q&@ z(Dx;A!6S(0iSH;0N4l+C*te_1pw`v-g9yQ<=_iG=0GS^ zu_CS+Lx9uTV3sN_BZ4mBe)vNUU#| zW(H<#DYg+r1F0ep4GY@+fnaYFDI!J;jFA203JabSHUF?^bBk)QlVRq550QJF^*J~b(lUB%`17+3g(p>Q`9|%F zCLok9GZQy>fZz2=PD1L3+4(LA?bxZDMot2U)5R0z+S^g@h%_R%5RN$&^qLv<1#?SrtVjnzQb)bR{sz2!- zPfl&Q@K{T5oYKn$?ofWDYoTJIWrXlzc!~?E0$+3Mjg4=OKh%zi&EU^ZQ9YPi{JDX* zb99vKdzcL z*24S@KXg>c#xwdbK*|+Oc;&bR3+eqL8+88#h*kB_tOaRvz?WcN zC)oyf@7Xd~13g_uS&FUxYz{gnMPGZQYc6e`MWqVun4StO(W2%;nc7PkN>-NaYIp&T zHOj1&bCtp~OY{#cGvRK_$5?fc?fFRhmtfiP?QiQ2O5KO6`l?bb(-BPI&k8BB=jaB= zGhCKx)rZge#pcN>_wlzwo7rlVhOi!q1w~P?b376;6!pY>ZfDOoMppvYiM^wr@yJcA zh5$o>&;n&A%}79K1eG}Of_%sXNaV)zYO@L-7-{?=f*?`x;@AvG z`w_vf3%$)ur2G7AwP|_>xCS8%btj2WD!_#&4ocunz-J-u#4lsP1sxcKh#~;2{%vwd zKat;@%>nWnwJEZm3TP$S6(S|obXt`yv;=xtKU37ub3uCMl6K@5 zefbXBFqJsDX*+crIl7SA6vEBdr7nyWCfzO9i(LZ8p5241?e(|M4n%CuE*^{zN{+SP z-gl6ACQEg0BhYwnP;0;=DO&9TNK}k1$Q2y-sj+e*#bX0v_?3rBt5B`NYBfu$oVwiU zbeuvXeUA*eH`VndiQ9}WEShtoN~4BykKZ~{?AzD&Np=Q8hJEnE zTy>k#4G@^!1(Fc=85OQ}$@0%h5lwh@kweG}I^mQ^fg55&3LJ+y- zH-o(g{WWM%9sSZ{OS10pYNSxsR}1|dSMvx&_}@7FcNT+Rv1k*`R+y2Q*>$BFCH}#l zx{*j8o$Rh8M~@P!eu*a@6|&?4^@+MkwxFYk1Vdq3xRb7dR-LrkX%{t%pb(}=!y&sm zLT&O&zc4LarDVOz)4?GtxSX2>m?}UDI{l%?5D$jxltuD|xB$#O{GtV&0O~F(R{0`8 z04UX93LuT~q2}CT3Q-X|Gl=?d(a_!wHM!Xo!KIZCD@|yLWy!+<*_=uzi1QjN8hPiQ z+y+cdVdf9Nc4XA-x8oKv7;fo+E74Tn?1mG->hd93IeGJ=R0OcOQ5*)#QAG*%@K8ix zt+ds$tmJ}evci%^g@b%h#Xc5I7+#IgG6zOkM!_@xl?2k;THE}JQi`Ufo>_CNR+zIC zLX~F?#zmQcKFFla6*dPXYlz5^#M0#eseTv}-Y33!t>>c37wTB^5gvF*bwa`>>V#nz zAwxhFjpsAR{D)H{WghN?l&}Bj#Fxnp=plLHZRg;K;;2BUY1DvP;@l!rYp^*b zaB@g46wP^gGH6fm24BFcJ8SxsQWKBz7$6@iG`V;HOt-mRC$ZU0LmcWFbFB41 zFsapake>w<;TDm}c!(%VKPB)oJnw;JFax=b|LCxA=D-5Dh&BtuWrU7p8OkUg#TcjD zx;w8gpuq?h*8xnms}bl}H9@0BxvzAmp{zE+SP&TweW5{btLsxeFIBGILZuD?)>@bq z0xiId#{u0I!Brf(cFyKA(h~Wf3~>HIyTk&SE&7`@x*v*Gdgx%RJiZ)tD;}s<5^tyk z(9(cO?huju8JAcc906NHlrm6`4~W2bpc=e_*73!)0NV0c9HL zYoon>1|=0-iy&q(2-Zg>fsn4$ZniR1t7&kj9DZ+18%2yKWsM?%0BtmjcufvSAU*_W zNpupRpNT*3_00H*hy9Th*VI9~wUHZoi*u$+S%RC@)m{^vqJ+PJGLCGMh)&zs}si>lXlm?j1Hc*uj zf%K21%IowN{e`j&t&2tTm{?>{YF`=)Yx^_^dx{+?Z4-}vfjqZUybNk8SXkhMMUOJl zAezDzn(Fn>X_DGG$FOW{a@z!46)a>CLF#4V1r5*XUB+3xF=QOTnlx>VRV2L9R9Q(4 zu!_Py^;es~)Cn3&x&gfjnkNmKY=AR0Oa`z>UZIdm^BDIJtq*9dH&yBhudbYyDR@ue z;$Wfn0RE*Gwk4koA}ai%2nRqWw!}5@!bnVQwp7Mli)bX|(13x$5gLG)cZ0fvSCbdd zhI00$40XZF?(Y!tDC13yN*1`EtYF!b@Y2fRn=xY$dWDPyuYklx?LyPX;C(?N0ZWfa6m7%At+ZZ)8Ci z1AwaQ=tA&_N@G?D2K<0i8Zg2qS#1J2h&^J90z(yeLhGT-$>fK)C6<~W^0G%D3i#** z#mr*b-aXTnWyXCwb&%+<2x}i|zy(?735*wP5fKdKn=**K@J#a&po(pY1g4WC1nKzt zb7CptC+7_Qz*?0(ey95<0v`65d4Ad7&zHsAT!uG+gnA_(GW`x>4yD51h(A$BN$2RL zD{jw1%ex#KCrJRI)W&V1bly&bK+YXyLH0$hVi`RUIA`YG1m5Ly9h(-HL$Xr`jb{l( z+kdcCkPPs@3ww57HMBN!^IoTF1#SM1y?`lljj=KS;Vh+t{{!xT=)Zn|`{Zzn3iJ0( zf;ZjZ#OpGK4~Q1&?r<5IDkFe`FQGgz&e} zXQQ_HSq%bfd;#{>ga-~KPhB9c(x)ad1vvYF?V zx}l%LoajlBjQ)aQPU8Prn}c@&2Q47c+n*l+2Pp`MkeqGNs0acYkc@E`OeC?efcMD& z^cc1d7@x4~l~4%I5t)D?&Y2yb&qvY}bNnHkKPO}YP-8ec-jk;>e5Km8rb$6}tP0tY z4>m|?H9HYe2xyg?Kl#^gK1%{xg6>?*3->XKB8Xkxlaqh<^u^p&L@Isj6}*+>2nt<+R=53@k00 zghodXtqsnJCSKCX3n$C%pUA|t1gOg^%j%M3*iA)FLE!f-a#-Oq;C^;-kLr0SdU(vZ!Hm>>rg&uSvzhY+f#~E1r0ihUf)TOWCVSw`S;qSSFI;z( zdoec50Ce|YdBA7cttfm_NZ#s{a^!;f&zwjnygzwlNwO6FlDcvC{)Fq1Do29gmJd*m zRZ@LWKxzLwRISh`#CYs5WY_DFgKY6S5?4U z&!usiCVVnr{io7aE|6=1v0(1Yz@p#I@-O7*`!b$+BMdV+GA6zp@2)eGG{%mc^aJs<^gq{c}_R$JjI=2`uIpjb-)1_ z5qLm^v=BH&F^3MTMdfXYiDMo^qc*ChI-mNCmM*IMNjyxnds9%_Nw6P7cdxdI0d zTZ_tp@*D>&&5vykqDjBF4VFz&&>%GpE5B z0Qvnk)Bq6(Ob#^rP$$a;&Q|h*(GBjLIxj42XFA%6YP@Vd@Ko!qF^S#Q+Z^u!N`lZr zSqQ4qlBrwON73`evlh>+K6W9jPB0TmUY{-(-sI)n5)~Y==A!{i*2-r(R+;H!gC@j^ z_sQ?Ymx-vcI&XA@mZmM@G*YzuDUgQl$4f;*dW)dnwPNwT+Uxq)Pj>ok^HF;rl`*O|7 zk#;O-c}~6Y#|PjFL4K9CC+|%wV@q_fwyYDq22Z9Le<<1%`TaB|74jy=R;e0AZWy72ZipEA&1gA?JfsJ7c)xcD~*|q^cpc?ei zxMAlRoX8SI7o7}ZStdRinA0np6EVjfjZU*>?yt?SEB+5*Ow<~w)iQ+>!(N-E(G;SW zRYT7%(a7*mE9e8gQG4l>kJjw;$*(pt_c>j>X;$!n5m@SH1O5tO*MM=<3@$rX>I&3lQVBr3~N`^?cdFLB$YBuH6Vnasn|i%^g++gx)7T1e8nKn%qE z;ul{+yrOJ%k0-IBPo!)2X6^Fh=GxT<8-AiBmUhwOC>c?*tH70@ks{7zDz-%n39M>6 zG8#hEwgN788`TsGKC$U3x<99q3dVSYbz@pB4VuU3k)^a&M8>=0F$}CW%U}lWGLzE9 zqv~p;vnq-5@Te#75X$VvO<^Lqq79P=HAm5}2GCEa!s^lSm8M21)g}X3OW5p1!#Z8S zVek^^Z@q8!p|p6z@ikW_%mF)Wow+OFYx<6f6==0vKi~M9#^@4s-`)EEX*n3?y-SYR z`69_>_56)m5XH5!Y6Y62L*@sdR@NV=#-(9 zw0eV8ZGwRnwQ8oKqw0pDCe@xsrv#pmDEQwZFFiKLeMu&2HaV0iR$k~$c&u`5=7wK` z4-}g`h#KQdcd04==?+y`o7qQg!X8f!A+oG+-Xw#R@1`p0x_Rzc^-E`Y0}bY#;xFKD#oUD4CpH<1m74JM8Tf-)g*BNmOrktW@{-!VQM@hY&r=wV%{I6`IfYo~rt0ut|0WVREHTYo zz+{1fJrK(rQsjI4x(vQM8)mm?PGm@wW&+%1`d--42$p%P(cy%vi0wHiYCeO~6cdE_ z;-*Hwgj#*q4_0Go<-ADZ+>83k)QY7F>ZY38%OPx1Rp?fTa zM5~waQ9&s03clR-;1eD-IH8-lWSCk-6Tac*Z5t^v z-L9g-t4$qjKTLsz z{dw#lpP)Q@3-gax%Kj0s+R3&aXOv__(AUtDXQ7f7?EI&)zUajoxtoe9yYeO7Nvkj<9udrMaZLDEK6#l`6Qbguw2 zvHUiU#4sX&+O7}e*#nL8`E@4$h^RG~QW*s#T3ECdwOiP|437tRLOi0+s9IH|4Bqx0 zvgsK~4<<%PmT%NJj6#C(_>Ib|yhHauff45tOD4{o%|ti87IU&2*4*aPGGg$Ab*TDvBK zl8(JW;ZZdMOqorD&gQEzb3g2yDPA9L@eMdq@~avzqJ0anatL8J7}Agn(9*@Rceqo z(KH&B0goKR8tsl81q3+G$Z!3`U1E)a--P9GJ}d`eGFdt|c#g`Z9j(Ebn&dKLuqraG zh7GOw9;x}ibjT^fNTZXenUsidwmPk$zc-*wQ++udEvecU3{X`~!9o-#6J0UZIMobu zUS7G4P6%wnm|h`L(<19%VbjZ&x)jiXm#J%C<}UBke13q?O?UXZPfU#m`gS{#ovNn< zC=h>-Dm7Ch9Kqd)WUQi~7!$l2?e3^g8055V%}=0-LD0+Bq{%hbMq-Rq$PxtCNT}^1 zt6Vmbwz4kZNL03)i3jSd-qG?-V`Ys||58pS0I?x)&S%Nar~CtnR;hx64~D@e)b`H$ zLU-A9FCzJne$7zun8N-_P~A`;{KPd-V7Zg_l>i2B6b$rm&Wk$M3)R{B-6L7<78;kC zXW~bV+$o7cq)M+b3UO1ezbKP;#;H;`@Xj6cYaq-9Of7}GuR_e3wAuL`p0y~r`#=f0 z^e1hIn9Tr+kn2%@6|&-3A%D5X-PLA66{{Q#VMD1l;%&K|=zlt>iE~H|$Z>$RRMzgw zo@;hsPmd-)FrU3ks(6dv^6ruv9fNAQ)!jb7t-Zo~@p#-jG4{9{Bf z7$8AyPE;kwJ;3ggTELQFx{=oXZhV3NOJ%EqAVffvDFfs|M|LRnU03IFAANk#s&JJY z6)1G`fVF@mE334)?(>4ti(Bn&BGbG6{fs}+R{w9?$aD#~;i|R6f+I&KS{oB_( zj-9XI4lyqDmN(+w=NU}wCzVxqRYH}bd=2Pj)AhP6-8+URrq7Ha2?I=n$<);?b(omv z8jM_?sxF1mw7;e_g{Ge0e+nhWr^Lzv!eh6HBD(AEh%LcB~+{dCdNv-L0RWHFkkK0|8WMXhl#4+>^%m`s|AQI53#OLn-jVpkbYa||KM$G{) z4kXY-?{3xz+KtHbh$!$O5$*-_fP-gM6jw`j?w$zN7pq8X@P)+Yg4>r-*60WsQQ+F* zWy&FE%aK!CQ|Xu$U~J4NiE>le%TeWGm1XN1-AN3e#`ziLwWp@aS7ic7ja3>Pv?WAR zC`=?MkN?ff3?e{jZ@LhmgkrR=(RzovP=JlS3`Nubpl>6)|CrxN1a2wFLF}M!v*KKq z!9?{vW8%J?XVfMqwGdSzzg38GEysyO8+|HpUti(5GD#`~eXC;%g5U}u?a>ea7Kd55 zX4dC5R;I3E6?+^glvox)Qf`4ssu36}@pIPEO4ZpArOu{7-;)gbBEn>g3HhHWqlERm z_z)%PQLWg08TV#SU)PsH{%!y~Ww2JYbTZU~=3=sh7Xz_Ch{n#SYSvm{Ni6NsK#?7*`# z#BfV*k^^l)UGwHi;LriK?)B{wde{-U?zirFbmi1YZ1s0_z`pwAfC2o7G&mA&)gCui zGwxXJscS}H;X^F4ihF>G@u@)HXQF2J#g($U+R+uBlpFftuMC#(b6xg-ow@1;QCcn2 z)FJCsgOMm(*VK-@wg%-L8P2ufhJ-H=)m@OVShYa-ED|1 zW7MnX|AxZ4`e5Ikvd4E~q%B%wkQ=-4BPblXt5vURH`CWtRm~mI-$SbsKKL&6*BVPow}n(klDoa;i_p%fMI>)QUeXyYqYRfTsdlL=qSlr z7@t)y1DO%KE#Qg7!<@fcM;@VXzMk^K7o=c@f|o@gxo8T3vavim4z9VLe||cm*Jq&b zhKtl(=)H7X-1>%~t-+ww3>2z>0<5wa!QEY}teeNC5O7gJfV=X9WYL6V$&n zdR38ZVQq@G)S$a3df_{ustUE2I1VjcC@kG*fs2!*$rJ2A)#vm+Fazr<@NC zbgt}apHeL*X4m9uPxMyoprs~mg!PV7EtSxLH({XSX+^I}u_aPYakC6T z4qTgVMI_vnOkP5kFWS&WVzBGqE2gG3b_ra`T`7gu#4zSU*I4v{)j23BDcvypxqu%= z%T-bwp{T%GPc98@t2ryQR(p6%1+f)}fqqUvRv|DL@Yln$aUJ6<5SDt>3aL51ne3rr0z^vpG65u%tW&I?yhG;t@#a#*vz2zd5h3Vh1^7J zbM9+@-$%q0d`hh$ytu%ayoTgEc>7-Wt+jk&1Z4(4~uQq_#v4Ge? z(W13J9TPRs5U#kO=q=1{{ME}?0VT5h094j6y>e@2Ies#1@-fgb$x~|e06rL=# zi(0c&zDOzBBT0-)l+D>1tI!*dsunS|E{5A*>z_9+cdM_YC=pxXK;1`sz~kJ;r?k` zN;qh9BSUo6{@b>kF(>Lc!=kjdDMH+Ig0=9pntRmYs}oj=emZ#j_quSIFpyv8Q?Bv;O*H44^ZB6idOR4^H`~K6 z;fe{&m;QeWic7Kq8(G5VcoBXeMjoqxd-qgOR1Cw?XfIK#Uv}_Me}(>A8kU1fL-zQZ zYT6YbTBaykl@<-VCx;Qp`i43L#hKakKrk$FX_lpy`yKuN!_?dpLH6VI_l1?Q^<~(X z1_;QK@?`tJ$t3t^QmI3?id99b-ETg?-v$p)bf;s_!3?M?)5z`p3$z5Kz{FNJr)k$O z1l653<$C1&>1z0EC}CM=TD6YhgrW6c_$$bS3)GbO??CBP%Z({6RG4V~h69t=RznSx zP`#^Qo?gxkOwwQXJt8OP`AJ`Hf-%uGiSPkClyb#%Q57_aot%+fw0_c( z)WKAbqDCC7w_)1_tlW}JaZ^HI;B@(Q6jfi!fR*!+BPPhp?4fBtAde{LybKGX z**PR18<6|z-8WmvKv*m}-54P`BSW|$6X~Mn3TL6e zwazaKELk!Zdx?P{0SYmkMd=7^o%baqs36_^RQy3TPeou&)PO7;Xv-Odj9_!jT{6BU zt#_IIkO3v+|Ha!|h2^z$>7uy1ySoLq;O_43EOpFaEPv;V&00xo!JR*mu6sOnsocs0Jz`muszX`?6yfpZ1I)Pm{ZJTq{D%3zhwHk7Cm&OTgW7v8d=aXsi z@{`}WL|qkvd-^5SsOSQ~Y(f2Cm&H@f(lWV7gVe?xsmgn9$FtGPbxm6K*TZu%P4@teGaXcxL-k6cFfk%cdNBT}(TFdz=OF2g3wWMp-9-+fom2aK2pU%iS{6E~fvb<_ebfcnr=#)cjANc6*I( zs)>E20xOk(8g;1YocfASRIHN@C^Qpqn~PfCsEj6*%a}9jDi(IaXUvFy(;d*^SSMSk zu@L1=KZ3MXGzw&RD-vh}(kz7v)e5qe%^NPtJak3pRSnYiA*| z_`zDdtR+($yu(RyTdgYfI_qz?EDon>Y$1{zf@PlqTW5B(wuB*XYD2qF14v2#?+rOn zHU+T&p;0R%@wco_^gUZP0qN&@W#Y<_$3eR#3Et0G@SjRXE=3q{3A{ zQM~JceWWHEGdHaW26`!i8Ie<*cc4~?@pg>5HHoQ%)-b{t_x(6bRw?w=H zab@+=f>9Kl9_kP9@2MLHlu%HSC;6k9*ear>l7^!#)F$88BHHw(-KQ6(oM0wZ(B8vvjt=UI!O z9Reuw)h?jdoc-2oR6s#p$&u5@QK@9t?sS*}GVIY{*O*s*IG)(L%Qk|pY$Y4;^-SR% z=)kGgqH0h1&69cG&|uh2Ki~)E&;jc>C!zJEc_n~L@i+oJUop+9iC*Li3l)h5VxT75 zb%-pZDp-5me8$)L=51)rLwEBREm1Xweedv93IK#}Y>r}?N+;K%ZKVjdOOCl#Y7nX! zlK7K4>THbF(Dr42(>hP!UKPvgX*cA@&*fMY;bOXP4i`_T(8L$;g4oLHqahf6zE%wE zve2nxFgmo-(N&ib1G;kQ2BaaL_aqj7B+}lyd5mdlU>M8;ON5>t0a^i_aKFYI%E=Na z5ous;w{2M*yY|FvGkW>>I;u_pFudNh>INy-rT%-30VKv%w%MVnt~&H_l&Pnc%N&z12FfK=19=QBENSEauKDAtv$_g-Mw!&-1M zraXv>W=Xd=04Yh0hjT#h9D_0eAXw)$Mp71y1Qw>UsRrme$3r8hAgvG%*;-2}ftr)Q zn#iU!A5yw~9_y}xRyDNDi9z^NlZ4jV_@_csUFjrh7|nUQMx7)DAYSAl`de?s`l^P* zq|XJN86BRR4%YDhd-b6H_V6;LKzEo|p)SB&!Ep&DAh}XE$figGXIPVms)Zlv2npH! z_try?l(!>+F7FV-T!$jDb2ZNrN~FYn?zK*2 zwSPgu-2Vs#X&y_R6mALZwZb&hWd2fT<~)>RCjp74NwVehkxG@Vr)J&$gmNPaA|?*U zi#|gJr-S7{sHKW_Aftmm-jR_^S8X~JFeQhEre=gdu9CD^w4%+;qKRrkpuZ5w6wtZ< z*MzYP@9!Sm`RcQOhpIC(w<(O3aSWHMA#p+G%a&`)NhXrF)gQg%>uGSr`%BgWG-{cq zYL-wNmQ=8F$xAK-68RgIkUd^(e8gjh)e%R39+jd{2Tp%9A?O#9`x16 ziIY&mAAnoJGwFD~`FK;6W$;%0FF^g~=Hir%3{;|%W95x4KU$WKr)@*q+04%#{12EZ z1~{A7KzseIt;Yg<_;O$JTFE%23iNu_Z}8_H4)d~%htF_B)LeiTV^A370D;QY(V##o zg9)m{QtW_)kg$KLd8`hRR%w0S_8SiPk+hb>q|7vishY1)d z)ak@-0gJ@xP#$3^5HBO*rR~}cFBWPno>n;-9nk7Vgu%yTJ>2laqd_qtv?5p2MY>Ye zMDG8FFRY)1t*GJP=wF4QRgBrHo-h(-RKc>wG22R{3mdxr?iwx&ytxI@WcXm)xR>=r zUqQXo=|Q)(!+muhAm`kFi~O4ij}qyvw^Dh9TD50i!2W_S#Sv|Bzv0V%|3B~r1pOWB z=4EW{FW)`$P_Nd?i{7UYShx*DVBs3Ue+1$Fg#p8L&uF1oO%+9mZ@Zo~JxSAW3p=G;eK1 z?tHK~(g=~-u*1*(S++}HG$@H zs@R&I%7w#6Q+Zn_-ev~Naq?jqXpuL`rSn*lODSUp*%F3W!c>$g{TM!lb@+H*gU%{= zgvB`0hxuSZseey@eU;c_jj+oSla~~&p005#du!in%U=KSR(o&V(8}<37+6S1H&|>0sVXgrpjL06pV(b74!tMEC@v$Jh`_|7Lcg510U29#NGDPTGZlZ zmp@1)9qv{lBhGbDO1)B5mjqLkZzhRq^|J5LWv@^2sQh8|;~F@&G(S3Q#mkMHdAEOl zT&p9j$A(bj&I_Yy=tMVl9R6JaHS3ftNKVuh>EY5#W_40QPWd6USy(E4iaFzf3{o#C zWuN{m<+_wW7FIW=483tTE{NE%Qy5kda7Di-;1!$Nf+Jp_-{=wKEE--4hBIBFF}FM) z5vcviD0jO34lgvrw&t@twEpB4hdI;_Fy%6aUE{ZkL3;EI`Iz{hNHL%Or==KI9KNE> zY~a7M($z1{R4u)$>Ukk>_OIEr6t^48HVD={7xXOGIK{&N;5U9^MP9zt_z|L7fM6sF zOFvX+94$*ECKJ~y5=+iBM?Aly`AS1L1#QMel=W^O8a_Du-JAc(l69z#}4DpIcM z7KrrLSHFmW_-s(RshqZ6$L(KdBsq4&;%rzx$qUnH5`TFarmZm{LqKnYsg?t*c37=c zj`B|5=xfkyr<;VJl$EDPv~d zf^NiG|3ExnOZivCU08Y*w7b9rZ8Qii@yH1$`}yQh9kN;g!ALuaC9N55dkbogKo57@ zD{4#ulOj5*oV9A@VVb{6ac)8-G@OI6d=!HqPZOnCZ8nH<%Lc(`DTPiNK)>JGWAyu>+o`J7G*GaIQD^`K?%b-ULn;&c>f5`WbMrts* z%=F6gRkILC$)_K19k>gGFM?~9sV!)2msqQRgo4r3&`0)BRC;M-93Ibz$kv_;x}hfl zDGt^AOvZ3DY8TD>f);H-g@q4ujs_herm=;2Ul#zK zh5he5N1Wan?LPe8@5D4MU>M1prO+e*#J1W=#?Avsa}a!0pjyhlrbNqF5mwraWOdqCwwTPBS4>roH8pxudl&+O zLcEH=9WXD~2STB(g}Rj>`V-53*S<5DEn5oDSNJQ{)Huwcq~DK{OyI4Qlt|+k1(16s zlh+~=C1>V<_rVRN|4LjI7W~O2DB-No&kOjD9Il!?#tv`Q4tdm;|Kt)hhP@vkYLbmN ze%;*ce(AH7EXDEBN!rmc7P!|mDFfn1=nloJupp6_tWh`l&CrKWXjOCgiQa%OBJ?|J zB+oSV5}EneDuO3TWDBz&-DegS7Fxz8tlwli3nJ?vN0#%C08RNi{u^*jbc>U&x+8K4 z%5#5Cj_vp3fqwM`?RdO`(rJMfr;lj4mM!-lMg`NuWa+sYl2&JPluY@PJ>=j%e`#_A0<+QRy%*)Gg8(sz7< zR{Cj!P2Qbe9=9bjN`8T9OWR;gC6djzvcWKD{xM(F@N_x=m+IrYv3Y&3i9ssylSa_0 zkZgGoltb`uv&yApEYG0XX}>7ZW*iJYBSy_Lm=1fV4D=MT#~AV3W0CmnvDCgpf+PBr z9|^`qRR{*kvbG22$|g>)EsEL;`Nrb{;MB)U#a`saN~zD+5E>nSJyPA6yk}7G`Qc0b z*4obTX1UT?iZH$`w-jfw2cK0A`mb>bt`ywhnWgNU3wBlHz>k5BU0Mg@WkN2nm<&?nGmHAo>)i&3j{EtcPB)M76VkN zIBd#~tqvaMZr=q{r3_Rp8z+>*T-7ks-xWbGC5p%)wVBwSA`yf@e9HNygh}=aKT12M z1z&6Bc#W`R3NDQ3xM6Vdf{?QTHvzeEOqRao`4Vq{`1gbcFa6jbY#_?xyl&uR(m=Ko zt8BXQ{TxPT#kA8nyxJagbi%p`rBb^aSI1$Uh~wo#ocGDid#ZJgr0Fb0aPxRmI=)Lt zJb8n&)uS+T%mb3nKc)){X22G(8$2TBZks-#G04G`=>EI&Qu*Rx^Z%FJiAIqnkYP;E zP|Pz~$`DXIHXb}yFgFuTSzO@2uZAfU-fd-}Xwk7UG2yY2t zG&*@}Rw&v0J-EO7qIz;&g*`0gxT)7LCW6el^+&HkH(`I+`)jB51$o$4VK~R|WV=Z` zYzR2gP-fK|}B-WWPlh%RpE zFv9!}ME+JeFOObAx}O>H_qi{zr1l(DO7##-bJm!d-l${~qCloK?xSfOUj#9Z>7DhB z{Eh)tE4vldR=&vX-0y&ZuBIZc_!tFk(9+eY8Cg#HAHh91s2Om*H5h34+w{tDF5-R? zZ?-ize}lnSnUU{zN_8I+^0!`;N)X}MYULPrWW-8!t7YbJ&_&WD%Wd%p=F_^E z|Ec;_%8{T25j9_V{g<^QR8Qc^6AY{bqRqkFWBzrw@8_r_JwH8CB=T{!c6=VjU{OiE z9_(BS<}^pMp>FD;&$Ca2c_~gm;U;0#Y(#%;>=kw8{q=3m2eu-E zv(UyoW6E6Z_l$dR{)ZQ~rn8o-!m)+J&|ZB>s#0Zwqn-h8_7Aj)$sq7yP$uv+Bs`}^ z=Jz}XyBSDcP3CL)ae9MTE3YZbjhT|G0~jG!I#k>0zmM^HwgtPZR7J%+JR-EFe=*jd z=cs{ohidYOeX;eKR+x`~%pFfiGptSjor6hVGhz3Y!K*VPUfgor^z@$FtK%xH1H$!% zpF3iViv!iD)viYoy^aE1o*V%KDeHyXbOPEA?A0E%A6XCNSsFkN< z@MgPlShHq2biLELrCQ`p`xEBM>9$}jC=FrCuy z7o>aWVo!K`geh|A^_o1G4!@@$?iJ+a!epn?&IcXp1zIKI(2APM)!Jnx#z()Wb>}*k zwbIg%p`f4pAMPuicl^;ajVl<87KBdYOG1o{i8NUxH&zhqhnD5k#z1oGWiP=9BcC!< zY-*Fe!54G|Z5><4^(XNDUrFDcpCJF+aaln521%=pEo}>2FE1~ysnqHAtuDvpp}l@@ zZh0;I#bc!N;-h|`EC21v^34eN7sU(~LDyO&F8(~kAIA^@JgVcBJG;KK#}MBg)W~|z z0i`fzd-iyljez;=%lFgjS1e2N&SuzoF@_aNPg59Eb+()zhDDL&*d1&!5A!$eOp9e2 z^KUs#xXAL0UV<3OUm475ayl&)TeuSWFYKh)7hDvT;ddfEo;H#SK1}nUxp^_wSqE9Wn?6V*1N#yXbflLA~i@zMX0ks?# zS@?nknOGJA_luc{A4_S9-QYtX)tH^WuACav3phv+FzXC&OVxbbU5G2xq5&B?{LkpW zD142>@;(DLatC-+c616KZ9@hnX)H=-NK@o#HpWi)j##yp_H2w_Om1&Uqn}j+;ToF!ZfI`k5vE>}B+&RcpKBo!Brl%_r`|j7> zh1u_nOMhJYe4_IzU|6qLN2!o>5dC#8(z>^VjHhxV*tx&QfO1 z{e9|NS3i6LE*R?d9ps~3A3cH_>R@dC_fn>};&|XoL>}!Ar3WJN4A3pYysFYtiC$X? zJ}$=OZ_SG<+U+$Ed^;H=1x-&Z=fXcmz!{=i0H*hN*G6lWl>-2E_?bgi^a*5xxJ#u^bX zKmnFj`-3f(%c1gIKiP0Qhv?ME*sz;0B+s`S<>zgNLs;LNRu2wHR~R^RCn6_+I*&_Z zT9ykf&ox?2tjm};3+B9=i}%!%`(~y*Y`lYWcLDqAf!HbNyVv`{9gByUhCBqYX_A72 zYC^58nA~DzZJlyse!6bxow}*IRK3%IDW-?hSdJjA$~(9om`w zn1M%V>{+Skq0tltFQgnIM(y8l-u3CZ4_#b)(S$|XdxV1$8m7xkK>iV7{l9|qtoh)8 z+nh*qjS`S=->UV&i=u!H3>XgSUJ+)-QQl_((rEIvKy`I*2r|lqLthd{LUo;M>L*lG zA6BBT37)QUZxV=H$A^f~NI4K)iJCz9L$wjsI9}{mj(ubq0cff7GRMcykY90XM{vJM z2l9r7v3=rV64cAy{VR5Bn*IaUm(ob0 zIMj-I`Kc@>j6059-K|swr5lTsUX2~9xL#N_P^{%dLHgL7tR6!r$)S}#y0dD&z2Wcc zoJ8QZFo~9I+Rghrh&vutZ+L$$^bhtRy5;uQUGne3O+`08C9;o(gv25by?y`DZ{L)p z$q+``dx{1}AbyiJqv)cGe8wsL2R`rJDcK@KZ|eIEO6v3V zp-{|(<9z;%kZp4Cz3(Y}zjh_G5r5da>|H;M36+mJOkLcwZPF9v9i2P8Kb^6F&SgCD zAmvASBJT`UypkN%-Z+l&ess0nDU_x=?LX$>ym3ViNnBJr8zj*neY(p_{b_A#j?U7e zwMq!=vxL!W}zukB(CN&cQMgCS^Vm3 zryGs*;}s5Vp`5{bjJf69WWI4=`x0tPr=@cfr|>ZZMwxT-#gJj5F4bCp`>ahz)Fep6 zm`!bPaAI%wiNL=)_?iCU=VC~UAYMSd_{GLsCHcxpL8sO_Rd{J)mM7q= zLfi3BW-(T)SCaRHtBXszio^9)YwrX^w`v`2R(^+u7X*?eF<3Po#$?&;FD zEy|8mOKIwTv)`srk9A`FhSU5Cx>Hm|+ZN*#&2Q_u?gt0iKcKl~=p}tE^{-8ffTR}^ zD;IUYIP`OM_Ky<5nmy;8VX*)=l7Cz0C0lza&@>9rieJAGW4qG5rTaSz0A1A5Y5kgR z<=a(bvYS);&m?o@e%KkQk#7#wh_sTP$98)8;n6GUL5p{agvuj^eQ%hsum3tSxZ;tCqQ(U zUdxVdu9Qiq)eeF61uVQkBuv25_r803J>er_}D%i&XK9qak^niTPf;HtZiUwul_b`8}20u zQ8@{C(0|9V;s2yy|4-&cZTw{;kWj3$1jaPa$?n!e6+MpH;9x&QHgPI!HXWtKx(0A7 zdUa$WVemukn{$V|BT0}(K9V6^4R&EQJbnJ=aFprj0X}L8>!O4)3m3KD2Y>9mmx-#3 z_es?3=OvVTc|7{}BCLmfI7=-YKkwBZ&b1)t?i9cbue2d|5@G+HyAW48Nq0YP(bIO% z$9)1G4#&CgK@jADvu@9o`RUGL-NfgTK)U zH^Bl@fjkHzl*P*y4#(>`59+FT+&EgmKy?Z7D=U;BoT%}%PKS6TV9XyW-+;pTO6@`R zN=cs6A}B|>?zO3tYBb9`tVn)fj0-kbqlH+s3{*2NC05)f8O=^~^Jc(^Qub7jD9eYJ zQ!5%nyd8LN{aoe^v>kILr3{Rk#T&wGX@O6p`U0(-<-TH(zTcLjzIf(~sR-N$u@W~O z8C|?Z>w)G^Q0)*+xDx?Tm{%LanfI~qz9RC!Z_zX!~*wC5n6iFrRwr=42J}L_}R14*OEfO z6HdD%2-=Ay=G;HX?>5ZAp6?F`FQBJ@zRgFQ&>h3yt3Q4X>0R%V7>|u@^ zg;sIyGRnkFleeegG2nQ!^3|HYT(Bh=iLOfHxfU-|=ZcYE_>$SPiXk!utU@@po94rJ zhTk~uL%g?Q67DwgW#bR8IhA4Q>_?sTiJ4tI+=Dg}gi;+qA#DPA)+4sFyZ##fa`}Yk z91-O6Q2m8)Tx{~-RM5$wlt!JLbBHyZZgk_GF0wCL@*P)iEmzN+wS%k0J#algRMy@C zuf0Z8G1h>V97^lUc-%Jpuxvj~2{vYwlsLFU-nLB$6&8vbZUweIGogrhp%54oenFdq zN?a*$%h3d8pU4o&dzMV#Npu9>AER5ROYB@c*wDoH9TSF>-XwX{ghH9`Vbzerl&|~R zOi7+?Fi#z*AcnajU4Qf_;NcpD*Z|x0`B^Cgx1@IOI$&rDiy@+W83% zCz;6h0;EkYlHKpp@1SN}K5l4lkfb#&ey-FhIx>MxSof|+r4^32n|sR}BZNtfSc1CG zhSFGr_!6_j#%IU`lk20AtFwB!Sp-j9zcHTe3+|KySc&FC>o*8($w6hA=IzL%{g>w)mC!U0#U>w=mOj4O)giW9M zUG$+p#&RZ36?p6ygVE~+J7yf0vRHOyfc$)++606wol*~Z{#!l6WZkJE)}Khpix5P- zRwb?n&yjpXPsD2=MyMwD}_z`VyR8u<7GgzZN}< z(lsjx9%q&t+f@Ys<6DC7#J3;mh9;00?LCl^<~M^Om?Iz~mN7zTJb@V`S+YOZ8#eul z>F#}MsBT{vb+M6m&ra~)R$Fl2V#7mad(|)%vnj_aLnDGAeVI5mgkbUv5wyE&q7vGt zWl;$C8IHaH&iL5^Iu7e$z#Kv@RR{eu4gRi~)HN|DZq$%vi9|@xI4|z?r16DMzBNd* z%g%;d3mkWwWtKWI)?q@<5W~fmD0?*{G6t zGUyWx@r0?QBasD%&QxjNDqs7Y#ejB$6M}eiJ0>-adEpakf*)pLL+e=9`ZK|IrOyNS z6W^Fgjvgdgq+zVe_1KWM8MW-t|ofgP&;lgPL4b&UrSwz0y7i( zbyDa52x>FxI3pEuPGH%X`%K$l-2P2*A)wD5bdO|0c&e*cf^60h{j~W?=*NoU`=1Q2 z+A4`Yh=!2mz_g^bWP9~Gi0E6q-cgCbcY>lek&ha)s$tN>{-PtFqc{_rc6j>3Mju3i z_w~FMd{l=^n5fGF%nGxpbe@Y4z5-7ouR^gESqdC4;^ScK#I2+5R@(dIghc)_Z#0?j zt8rsqHXzCFfUDc5T}q>iRryZDd+N|nzT}Mf7qkklsu6@dKR*G_d;0B^znLAK6&+ka znk_S3+`eDBOx|(Hb$QKG-zqEaU97yL(Ul}u``GVTHzx|b7X;pW{C?L==*MyZ-A?Xs z#~TW9{tr388_T%AOk%|ByAcVzS@-+=1IY~Ok{8n3jVT1yj4kY2JqOo8)9EdZX9#1k zB=9>D^c`Y#Sj(y_HtC#Fl91HxANHLP=ygjGR$_`$!&=ejhreUQE6UAOjr%I9KdX?nHhX|?K5QaxZo0w93#@gQN+T!~t?Yj<1iQJBCw>?_0JRc2? z5}ja2V7!828WgPuZFmXK?rr;)8rW0W%xpgtW*gs@m1V2P5wmA57jh(Q)QB<0se!}2 zRW^}Jvinu@7IwwKo3aVpTlRwCR6JA%2d#ohrEp=NC_qNVRep!g@YE)E!>5vDq75-a zjx=F?=X-?m<;@y8bzZ3j21R1+O4KEruniMt~pzf)kY0D8ku*b>fzHa zHROd_VJt}?0!B!EV8wJav(%n?IBW4%f3N8Lf-~A08E%}Si+G6578LTx!WcA%W7xdd zYi~9VZKKNXIC~0(j^IcrM|cCDGn>hxNEsP&*#|?DXU}k^38kh9xmOT*O)ga#F!RDhuTT%7Dz7Os z{uS94HzQL1gcnk)IyWz+N-d@Mgutm~q|xyK8LyXfg+6P|(oI*aGXZ}YZ>w{zmL}%( zRaJxTMvYeU?09@jW2{Q2J3Jm1lbSkw2|!F7iKF^QbXZf!n(ZVn=A)?z)PXgYzY&_Y*Uf<))KQC zQwh!F7wj4fk{WZ_OgrHadS)i>k*~0~EmtQbyGo+$4_E0>6t(f@5>1gOG4yO1MAcxp zc?($4u=OKFT_O1RHc&!*46UCQ7D*i$w;==G#eIkV;!;zb6fP=@j61q5#Abs{<9&)0 zMud6)<>Nv==(dX!JzX4sB;4}h71pGO!L*Z(INR)QUxKTg)QBxOX0&B|jaV^+5reJr zh~K!A#|?p&ft@7^8IH;UZgQ*|1B5;mc2V_U(NAH~YpK^oqfUQJXDX2>Cy65QVA#vPY7F+gV??!abNG@Y zC+9~A)Yr+eE4;Oh^RHEU1gZJlS23rkuYd~siDb<~iZL`_DZ#YupE_&AkU9^kB5G!$ zt8uqc^L0F$D1$u}-|`TopIcF=PGtB#8#ECz!oW1J5{AaNM!^2981yp}?EF(gPWf;r zdFOhoroXWV?+LrZ{hs|=`iyu83$@iNS` zPQi8OC&0)`nH$q)7YxX84Fjp?=f?3;mh5E3bk#Dgq?dx_6OnR>BQ@5_3 zu5t=7+cD-8)Xp}7ml(RxqN0bK$)#efYmJl#U=eoQ zzxF%|OEYN7a&+Te{Oa0XomNm`wb&=!NHJQfaU|^&9?vg8n+WdC?*y9p+NZxKl)Ow0sI0#gD+dAI15KiXnJ zGd?E*=3dfY^^u#%^?hf|FTvIIDGNto8%w89_R;z=rzTGeJ}^t}t$LSoY%K}&uc1{U zRgS~(>V0yd(W=_d1~zlCgz`kwAwQCI*p(3QnhbO1pT5hk?tZjbH}*giCTU7oaVXtM z?W>J#ObAP0LH&9gWN1EwP*ERcwxW5!OF+Azp)z4VfIiZs!SV7vSl+CIadBQceknGU zf}Pti-SA{Y=eMk3;73i-l3!+1t)x%jTF6Fr`cX{1di5kS?;^SCfF~Gd4HVe5#1Ad^ zg_(&k{%`t5OQ{H}%{Vwxb_}g}(=@l;4u*(jotaTamNv1l83y9?Mar$9i^MEb<>)1J zV3NI!&6_u7q&Kbj4e*Pn|5G zGm+>B)hWAqn}*S9%a|Ie87R+nVbW|))pR3a z$5l(`s>*6iiE*$M3)f&%^ft=eo6C_4cl}{H+$~IM-N&WvTbG=_+B$*2o6p}?A&1NK z*vBSlatY*A+fWS(~P=LaB+?RI06G!Y>s_OvA8+;6gS_wq7faEGz+VA{kwm z1X4d6uViRkR8cm~Pl9{6B_Z8m(ztOQHx%2j$rjG9JgJ&nMV(!Kazux=sREKDOujU> zuSVy+J3iLZLN|D1IF=h1NzLcDV=-O=$w!UIWdwM9E!H@Riu_2~&0S2YqAIhbhR&(m zD)TTHx*~*f9BRFf6yN(J7Dp{SlR)bmhHPsoznhWDqL6`++ShpGEc%>b3P-U5nhKlf(IEwv}nmYJ{Gs#m-#^D=`4CE+o9PVe!W5ikWk!^Ps^ zpWU2oXIH$9vf(BRnP#kb2bMWiY)CW-qP<{X{ZrN1*_9A8RhZnwE*wZSb6KHJpNGjX z^O!p{`elwNo3Sf-(V~`0l~}a8ajs1$=|hl4%1gqn@ncFx^_vv!a`J{vaeSU4Tgi&j zs+T-Vyk&6*_$0Pj#wuJ(kPlE<*&K1TJ)7@*@m$w}*Vagn)rpw5=PiOYXS!R1jNm1l zW+Po2z3d^fE@@mR?^MP5>PU9%u}mN} z*~6m;cW*bZsQ6o~9hx-Nw=+-km8R4mI`-U%>I)QH_CbVEh=_CR^321rX?R6qP}lLQ zo&6GN5+oF(UWAy}bNy74rggz-eiasKcfU~hI_zPmYFlZ&jen$PD@c&M|L9Mss>ECU zM)y-q6>}@ne3KSS1gzXZ<|<}?@&MGPoU2@v1A^+7;l;(>{QSVO+EYKpwqDJ;9a1s) z#oizZy#)70okKg zjy%}7vp|?5vx#|caS@Jqd8RvFSgj|9(XaP4P{TB+t;3Kh5`q_n5;DTe z(A!MvX4as+sji|ke+~;gVzrJeK{)BNF--f#c%bm5*0HsmJ8Qc6?m7@=l_rE$trs~d zMLho0x$iYL4|SWSL+XAXu>CM-VQ;fsq8ttr%~9Xho)zycJO=F`u36(gqa+J-h1e3( z#9CZ061Wg*#1$u)fiXz4MLH1Mw{6{RmBUYFZr7WR*qZ6f>UagAeZnUn$%4b;$S!98 zLFd}u$S7z}{;I8ATUXkvtx}vnjhOwmiKv8HE;jtu0m)$X;)YS5nL@!@Vj|O?``eH$ z*W?E*Ti-!Zjx&3iU^KKnW{IGB^)iq-ktj=l=t%#KgT7K2nkv}@YeWEhWmTjUOZ+P| z+pB{7kAleRD%?67{wfHN=pyXxep{i1|^|kuYCSE#-B-K;%J3c+K24(<~+w7iIlQUkEXSzTjyay zDKv>#a}iOs)XB1vUv7Jo*;to_b-LeFc&M7&+Y>rf^L5{7Hs%?dqD<;{rwP+fkrNXF z+5RPKGIh>i{!?5z)gTe6ZEONwxybeUE{wEF;V}uUNHqB1;d1e!+c5aAMfeosqTk~v z%B9m{^p%_%vk-3%piHDo{i_W(ZBXBo;xOubLkzY!ZnK=oG8j8NJg+>+)1$%DC6Q-B z{PP8&+c4Ir$QNG)G&2{&3ZT_~%|W4N91Qwqk;gX8w=bDLA; z+K=6?3t=FUMR7C=St5aHccSBE!;QxTm2wBicXxbR=W)aR`E<*I7Axn*s()@ zAvjRL&_D1=Zx))rr_2Es15!Hb?d8jZah)`O8i<(Km{fLiez9Hw3$5&2KCrc(q%h)K5&P?oJoU|}C8(L0O*HnE? z)g`W^X*qSrq_2d+-PjBMZHc|-1+-hVpD)-|hUBu0W-M|wW@)qZWWBw2dHTw$C;Ve+>CO}M`v|^?)w~|;pER-bqxA-3kU^r*w@>(L{)WDIYMhN0LQvUqLAb#WgXOTI zAWVD%C6wF}JI$lg!>Gw{CD+KAM?!Z=SJyIU&^+3Me)F`|4&9WWQf)-9Np;kw<$GLZ zas17qg#cF+a`y@GDVk<|OD|hxA_|RUyc<4DAyGe6QL-dB45&FJxXAut^t8zu8WXbtiizD`M~e^jbM9t0ip_#f!^)Bav5jO5 zE8E$cvUKvU#+jPQh*e3T8s4wtf_)FGlOz=je{OqaLkgK~~r1va=F! zh+GnlrWiK8&$HY}5Ur;b458G5uHhWxu2NQwzLw}w7?`c*sW`8Ubx)RuebTpepZql} z4>W+IcLvWd541CEMAdI$J#*Q6UmvA8py1_oAgCTiq}dU}l`32neoDL6eAoYBb?7K@ zdVSB-w$ms&{*yuody)|zQ90>=t$zHCVC3?GsVVY+yal4Q;?C($zGPBjko@B#d8ZON zGMQ96fYMD_x$?KhjVM&(q|qkBbs!jLi$M$Lds)9pH-8#akx zt?Afc8JXYW$|sAtio#3Tc>{6-RJy=;C3YdQ~HU zUlE|sA(8#WjX3oa#L9+mO%Z!g!AmVHU`gutvogcj|6xP5`fQK})d?IOwWUiOrOK284kM;| z0HN?~n6}&?N+U+fUOCF)W3B3=BN3mXx>;^hfrjI}EII^Yk(nx`+#VeSA3k{+>^LGt zqa^1f%f{lb&El1dJIeU9gKX-hG~7uKZY7JU=`+&aW9y$0gPPh#u3Sn;ahwgKS#WSD z$;a2sli*R0_ZsvtJcUzHqGw`+KFE9|JX#Ur zd)RyO&u*=ZFnWln7Ggur8Nv0LfmKACHf_4goRZ)TRUa$!Qh>W=?3V}&oI|%sw@gUP zf*Sf#LfSmU3LnFUFRvRFWLGBJ+oBqgk!O_}SwKhogo#~C=Hn+k0 z5EbKz_%1UEW6iuj9#=@XvL{x*xm8O4XPpc*a3UCqi5e zndf-h+Ee|R`{&|Gs9tUmv0Mt1Y3iCuTBYNhnOn}q;|+@(GgP`|*9;1e)3qYux0@Cm z7pw)kU#nVmWQY{ZO@ke&`EoGUcbgp_`rn1e?wsx19grT_$2Rq-80#ju zeA^tp{3t^p6q}KB*0Sm3bI_9G??TvW?CX78E-d(~EnzTfP$mkEMz>=ud)S{_5v>2% zfdO-74q8mYXP|?qN{l6F%vHk{i)P@4l}(t`EShLB!u1ECeck^<)?2W}87^wi*994PuXFufO~k1sMhb& z*t@)!9%h~2PLG#{Pw_8#c#2p(&KVsqd9jCTa3X^#xj&=U$Gf`{T3N_;(g-Nv{<)_d zt6BrCr)0;Lf&esvWn3ptYT?aUv6Qwz0!+!=b9PDH#)0Ht*SL_@F9&5sJ}MceI~#-M02auLwEkc86_YC(B6PpKKMWKSE%omLJ*knTDYFmY2-&@!(#U z!6m(qv&D)aZ(fkx#~Wxx^uBDxv<*qC$Z3$73$t%!10x==Et|ODs(n+gQ4@o1q<04e|{w2cJ$`o@o z3!Y`66j{!W+Z?*MZ7_CDQi*H7@zK(&>wT`v2^zPM`-H=I)(o}_e^HI3CK>S8z(-6W zP`)EtRHX}ZFCp1i&-^TuCPXtLdC`cHg4UQ3Qs0xiX2r;AEqS4CO}o~V?C!tp=xRBP zr!=sc4lYYe8PbNJu(aVP+(*wZj`-ieNhIDkYx*;GFMsr(e{`3S4b13vrgQW`+LQUG zdAKPY{`oQry0e3X-VSs3n~a=as)GV!VCLTUwd3HR(TL!I@X`>5pn(d-#+%PkeoGN3 zTu?IWSS0cqg>*>R?VXTou^2yjz2jK09^B(z$8{-ZA5cmTWO}+zBR&6i1>y=xad<_; zvJXRFar6cxFLO+f0lKf3CO_gt=syP}@&_t#l(iS@O;DcifA?*IwxG3=4Rb@Jn;BMw zcAuLx2)18O5+S`XKU-vWOi+^}S-)V!xR-P3{b6LiXAIZj4SPVtSBg<4zI3fRtdcbu zUE9tj2gjM4BP3{3{J=K>T=PXD9`o`A~$ildLH|9FTndzI5~SEHX!OHYHBMk@`b%EaEywNvB& zThmk}Zs?vJKY`~8C!vtHS}B?iRH4%@Rt>ztS--9h{wAJuQH8|$nMp?l7*pf|kk^VI zQeQ0=>FlT%2);Mb{Lka)Z~4Ok&^t2{1TpjqRMg)0ls@e92HquGDN7Qb$?qWxge7Sr z(}ae&`f1uwei+}mgGhy&&;B%fO?k|c_-#5Tq$>_r}s{B2bHBy$DKbDFYX+*J2*=+GAW z*{OwheMIl_iN%O1tYf&7zC+4j+b@Hlb>2MPiw=&{TRxz`TS{GC+Ot5j2ubPrpbdnx z1aA&C$(=$wX~5rRZ8NDPluiY&zo58B+4yI*1PQZ+Q08nvdP(?asOAQ%$&8F&UfjC? z2`Cv~wfEm?%~KaqP=HDTK8Ea!nv=d#7BPdHyhGXiKh?C~Zs(n8-{7NQ**ZvlM3O4s z5pis43k54JI{1kVsEB(-sevlbQIy;dzs$2;^HMBT!{}0kcVh);XgD{Us?a6TYARVw zh7Rfq_Ps!7`IGLeX&ds`Ch&51%x7PAvhyT6o(*VceCJdNzwA{L1T56YD6~X!k})*|6;}Z3DebWg$9wHF z>6Te_l7EU@NZRk_^(x9u2Tw0w?eePbNRe3I>rOGDSgF>lCnS`H$yGY;=249&di;M( z>tSmNDU303nu+Sl4?wP!>Wt!od7Irj930{iusq~|+r^zZ>N(}U4Ic_}E;gIbAmseB z&c>nBO|9EFj;2iKYh+BTUPa5&IM6mRNjVQ6bHkylws*qo1%r)TY^?%zX1nOXqgK+^ z-5Pn>R@RKcIMyoEc4rgi&SyHyy*D_W3}zvCMX{YWP0st-PHR`s1$o`4;Z-%F{{|v@ zO(a>B3XsQpa1e{+x_={TNNMB>PT0dY4VB(m-|1zLG#o2y#-}Zt&cwsqa^Ipm*W_Ve zj92rlQ|C#6ISTq8Fw(PpwcHp;RiqSm0w?#DQe&<);SS+wx<9QzP( zE4TqP-?K&6a|N(eH9TLa%(afqUSKdCIwWF{BWtuA+H6AQWk7tLME2eDCCT{3ThUv@ zQT>a)?(~C^(k)mLERzWMu*0FRavKs<6ST%nPF?8q5vM%v4jFaqK2%=~ap%! z4#5X~-(02LwY3GZW$2`Rxb3D4b*r_^WY{XIYTXlz`_CNFH&PC3fxtyIBvgA6>>+wJwYcM^up~qtNT&j*r zLw1&xn9QxbsKvn@M44(a2h=xpUxyb2zaNWzj6a(GJJD<1x(ipU6pOqL(;g+2iX5W& zdvwpxNL}^xMWJ6mE|r2xr}Ex}qbhMog%=`@Fjg0`G!v!{CL6|Tn*)p8%hjCn2SJay zynN#dDr5~JRSw-{b7U!pZ=hm#w)`{4yOkcsang6cYh0vn|H`?;Ds!WjwkQyiifw;1 zBMsDR4zqjbIDq9Pb|E6L}nuN%x=aa~rNu8zgi&xBr9G0+4ZfOEh$KZ3p91?^T z$AZ_z2(`c6$=NNdFF%{SdFexp)w5b~)=nz_C`QBB`E@p?!t%9fqtZU!5T-W$RpZAO z;QZTe^pio!CJj;`_`B0@H3HFaHtQ} zhv%t}UY(o|v$%#tjJEWdH536Qp;*3p$SQvjJy8%b=a|)1KxI9RN5Y_ zg0_}9LF`*wHH5e=>1lEoz+vcdgNVK~5km*3;1gZ%$(qhWD1;|zBV}3)Nm}OkZc^Be zulcr3QRHy3p-ZzK)zEKLuCnFw$3)w~W(B}6XEhSCgL!GCHugF>m+ zFScELf0hF^IsPRaaE)p%!xcYQP0=tbN#A#tiCn1KJrA}7<*V3OKgv=8yYFMRP2Sg3 zdS9NM8oJ$iGnVY**OYQBr4)+A^wNJqQ*u&7d;wAEFJXFHVZKyiLtEg$HZ8i519QV| zeW-s;ldb`N=NC7ps;H37=l{XAEZ_QbigWe$Cyp(0q@ogI>`!Zu0A@5!36*-1{(zaV<`S+jAEaJm6AM32hd5Ql^INnf=1vKN}Nq>tvh1EM?P~KcbS- zAll7re+#Li$mL(9{As3k@zJo}e{zo;pqPvMVOUL@sD(Zp{*v2@(KLT-(UxvU1V~9&5r2vbvB?|OjQoZFxWnP zrdk(fYc3;?dlcZ34Ve1c1it6wq!FU^ANJRkBFH087yIq<=ANw@+cREUzh+G7C-KzK zhXvWvZLM&r<;QKZ;uwkI`AkN?x0jULx$#8qZK7%x7-34HFEa1-extKnSBfq@0cT?tGV6ZAM~T=?GY9b~^yu1{*xc711* z_?PHvFn5ijx|%6wF-PkQ@Wk%eH!)=P1Hm)pyA)Ok>=90wF%zYh`t_2@Z`CnNc(cvu z(K&J9-d*(0O5U+ZH%LsV>^4U{)S^*TW^O@@hWl^dbkQ0WkZ=-+j`#;!81Q`zPci*cE%loIx)vD$6$XG;*q#$?LzLVHG137gVRn7}W zn+}1%CSu&CaReu&gmc6seyTPCJuJh6xwOPLPY$%9;wcPCOe*ODl981m8f`*t5GA}$ zG>NXlM6%hERU0s2>xOWP*zbk4MFeIdM9*Trfu-!mGIE2Fxzy3gEx9Cp8L#0!d-^$I z1^jwpsQ0mt-|Ignlq>ggny0rLNm_PAg$cK?bg!!-=B)73- zmgzN5u-7!*s2No_J=#P=K_jXdhAe zz(M33e{hLXAy391;t`BmurN@?%xitQ!DZt;1(h!_NGO`XB+?c8OLS-hH8vs;;~@nj zV)&nR#-K!rm#28d#O|3W5;jMTay655ZCvh&iP4c8{5WK+!eVKw$Z`v8(o397k>jc1 z7molWX;xDa0kXV}yRSO2ni~THiUR|B651?C&?Iu0nqA2Lw1j1iHd@9Ds+=l}pUWx; zKlg-LBZz!Nn7CgsSX$*gW6E0#!7w5B=rSn#_F-@2ld1pxS7#RcDeQFtPnwP9Qze-! zE+ZdDP-P~Q_*9wkmWs+S6Vm7K*>Y7U%32?P=Ff6paw-2}T--cZHUiWNc#qRn}TO2uxjqE}&FfZ|~XxsHB+L|e5_z&dO%?JGZ zhuWKU7&l;3$9R)G{E_n)^9zJL-G|q;a;8)zn)Iqf3}%KsTxj0B9No8)8W9FyQLbwG z+Qru$X@|wHhsoD0Y*U=s+Y8GGzMH)!%Ot4Sj@9?^y)noP)`=~46M2E3c$nU=m&9Hr zG|pZfI#g|ST0_R`#Tc$Lk>JyUkgY`AS6IXPn~)mQcF|QD>df51EoSBk z7p|>;dk%x-`9aSrh&;_9tU9M)w(K)U=fT7J4{%NJ+iyLwp7-h;z_$l%&c__lh;nj| z;6r*zhvf$WrYdP(Wo*(+k~>K#^An^gLxlY97d#g5udkg)A8^)66)0MO|835Rg)osf zZiI>1@J-&-e7-%8E);ZK6a{yMMI%8)4)c+mE$Q}xtT58X2uLKjmT&DHe;`ooyKcb_ zU{%jEj<$U+7Dw`PI#ebfum-TKp`ClERNhlvj3+KioNuok=mzX*t4LVU%^m3WT8~A# z(=F_wn05a1TJMR{dts(wzaG}@|G(~jL%Zt(a;Y#?X#aVtF+z;Pnf7=rX@Mb{-05{| zyV|o~Cqzq&HT)^QzsFESO$jGC`evUdlr`oD3o1t=7Y;f-V@hZe?9rgDNVO=K$~N6-OH>NM{{X zfC@fg7HioB)vSDsR=7MrEO8)&V|#k>yCJjRRV)YKhJ16Z#=|hgohNCC{$-CiV1@p< zrLTxX!8n%N-W~dvzgWum+V8n1Ft_@R)3YuDBSz_gDURhPxO4$)DHPIo5F6aDD~MP} zRhlb73^N?7eS{v9x&{ezD}-Q)@cfq_hVm2|D^}SZN-i8fJfkVK82D#` zcJtN702x!5)Aq-{N(h^8>i)#!ilZ3TMsZ|bMROnwyI7aFSd1OI%2?5%e(e$GXa#_2mt0ILsGGYP_xjN^rYP&SOgl7Z3( zXWUph?fQ_{dR4NMleL1=bHcn+iR#N}=kJwMAu>M$i!hq?KEk*}GHRxTe zr{e^E-S*=?{-x);5siICgvgM_zR|Ph=B3OJar5SN*&jjMApZDIc9TC;Mcj>zsX4W~M>^Y=dvYUjUmA zmR<>{c%)@MSzb_xrfhUxUk7zz^|GK)&5gT=k;5YTJ}43&H4no8HO#jD@GfyfWuPp0 zH5qaoYpFo8l}eGxG>^Z=wxMDVV^p(_Y-IK8#ff=$3u$yh?F2EuxS{RSLXF6i8f!E< zr%sq(S5+dA)E>}Ml-L>2{5|IcdQfd~3M=~wMSnk3Z&p6hwXeIoz@*$OG$B_Xy()$o zXd~2DXgt8N!u6}-R<>HWQZnyow6XJke98H(-C2ZnQx`Yelvj~^7e^iZ64^|G<}*E8 zNX#TogHj`XFH2@*SlcRC}EJ=`>cZx#m8ENTHrQ8c))a zuM}j2wLZKNA-@K43QdK0t?3W_w<#;sgIY0QfQ_>=_m-6V4p^e8=0c&`7hl_}WL#?9 z@=aT?tYJHyRZgjXZ{kl5iHWIU>h} zev^$?$&|G5X|;@;sQ~tlgJB%603Y+`w$P#AVYsX~v7@M>@!+>zW`0hqCJF9Q zdfDuk=HPL5H=C z&EyIEv5hx*%BFvf5^^+fi}^HlgRH!By#!9WS7$7-o>f!m*@;I0e>S^L8bLOv*@Vrf z9)6tVu=Vdc&^m>h5bQWzuI}0%g4gwyq5re7uzezGECM=QNgFoP=b{rutV`jc{j^?R za!txRhz*BA$K`YpFN7X42~Xd~;kT00p%0lr(qvpgtfO~coiwO;HN%ieLq=YW*xwbx zc0Swe3AN{6t1qGd7>LDPbdebr|9I=Ug?!fy74HvjD(hLTJhBb4AuMz}~%{7<}?QZSc?d9t7XqB)e(Q*ClQ*p%A>WIXIS|mhO#Zo>Ad-ioy0$zVcv5b#$S&C zPcdcrZ)W%nzTFA0C%8|h*;p|< z0B&}AJ;ev^pzK(e9ha2GA(j*ojLQs6)4{0O+ewAk+hBpAm65*hUF+eHx*NNfMZ>vt z-yPwgMmXRy{HB(b$l;+O1c+`nnBkzJEPTziwQXdg>=p@Q%BxN~0Wh)Y1(tMhMKNVl zXc!Y>DS*ohievuVL+x@4a_rZG7wu5kw^)dQzn7MV`YCjgcvyzl^o)`NyD(ri{cBm} z@a4i;k#GbOH4fDaDHcn`GOkZ1FP3SVLnVT(?TZ8Jw}w&rBYtyqWBz3V-XzMfa7<0i!L_jIuo&xd0jbw5AKXt0hf-ANxNnK=wkzc_rIO z4!i82G2y*sFDv8c+IufRwR~vSNY8^>)PU|(1VNae10LlBzjS1IKMumB1@B^E?he(i z4sKr{O2r13YF%|N2mj26SiMg*$%;J9 znHW$3NkLQ=(N6A8@6ZQ;kx!%WD@JmSsSlCwLbqd!B+D7EQ`0lxub3@vQbO!N4HMm;oc{g>$xT|!ckFK|R6iqUhXl zt_e4EJ*Ueh?({M&qwE)2C%`)^w1qy$j;r*S+1q!VOpe%lU-Y_ zCD?oNiMh8trVK! zt>f9B_kFTX7y+G@u(LrqBrKOG{Xy&EEP$BmQ~op2-;i^x3!k!FIE_+?vziPIV!5Iq zE@yN|2@fsRl7&i|gCD{`!=$2t{4Hv@TTYp#sR!J>)&=sIMad%|6A_^(-_0m6dUbOfKLodoD)iM!%W4vOU_`x><&U-YZh zdpW?t(BsKLcr4fNKBfbt_xZ<2$Z`a4p&WoXwMPU_d|S|0nOrkR2kG}8s7i_@P;Dbm zq=A(_d0i91*XMX7ZZrf;*yJAMM>ymh6t(@Qw26059Tn-dXMi05Y7)FqTkk)8Fo;@P)c1-Har>YDON{ribJ~c1Y;!U=wD_$Q!~9 z*C9Dn8MO8P$pCl||I$#g>~I9 z3s}kytw{v7x|47SyJJe>R*7VsUYXM@dZLYw!x%8;79+{%WYBV|KmK%6RftDcVlWA0 zlQ5ZN)@GCRgjgMwJ>tca?@WJ`SMofFGECs<7+&-@Wl*=sX)$E}7VXjkknOslPB{s9 ze(NTWrdb7uf6+Z5Lm-HQ~4?xwhgWkfE;k{fFYRyOD>z zTaI>g9ko6*KSTe_GF++BS-sGs9mCx{%bCu~v?vHkGwV0Jj)i=BG@5<-*8yEY5o0p4 zOf^B6jDC8FrW5q6$>pb&Sc!z75k%;ym~kbIFg=;AvIs@#orgMIE!G}^(4oZjtEq(q zdTW{6R)1wB^*P-2q;xYUiK6(~1?4M!qaXugun(Y@E%C-f32I zx{6}d1j0Q(tsQLVPN?I--1O97IPgAjaq4m)VDy(EVoJuwA;K3yG6dlYtxUBV6vDRg zYV_FdgP;!gW%8q#_W}_;{7&S37{Svf0+wW-LK;8 zEU|!b{=q(zHUf8ycY#A=tI(&Q^j}12&Gnt~LvGlEpUmgY zIqBQp9f22aTLFY%#0dLFW!$Y_9}zYnJ=b#^Ry+A)Q{Kvb%a3~v4_AFru*Bm@le~R3>Eg=8*o|>@q9%pC2L906MDiD|WRfVD7YTuT z8(%I~j4`(nh!Qo+_{y_B1-ef;elS02eo5`7?&EQDQmRO$GqMc_wmV=}batjce5G}Z z4O(}@DDt|s5f0#J#deU3dH^;a_|!yuW%b-UJv5g6wS-rg$zI{QVOw55lxIf)31jJy z*)Vgc!&cW8$DipYCMD)_r*n@h7eu&*v)Ldam-^%tncB)Pr%xur!D|)$GK8F4QvFsa z;&l#6ly9x5?ERy6YM)ax0~oZ*YzM|wO2LaKlS9(97l^Hr6Phc+_dgk5-qz{qAgg37 zHgSE{W>@vuBVcwhry)-wr|}e);RZQ$_MjC0+!;)AcQfatL6eO1_3h$0mopE1D;!N4 zdYBYYjW$FFj?x+>od(`bal<$TQ=2i#$?Nc3AnH3H80+}3)oCPb{& z`FZ!F5#NyEImS(;@lf-ap9?+PoyqFU4qk53MwiRaH~Czj_xVF*Hmj!OH&ow>bdCST z-TwNZw*QE2d3dv4?y;%->u}BYyh;Gwfk_X)CP2r$bZT89em7_i~vCfNg&p ztzMW$fsVEkXg2PXq$Z*XHsvkXmkuw!J-)SiU&$m^9>zSXWAV6OaU%CGCR4xjQL8?4 z=Dk6XE60@o0Bn#O)3O1K@m5C4%cWAo%H=6_3!PLSCiMB=_rz!b9vyD+lNwt*Ln0^_ z$!=02O#=e()i57#G<{q6(D0n7!aueFk!%#C@@gSl>otqCI8>nTcc*dFZwbx(2K2rR z#h=W#DByaB#IkrPK0fUP8Mo7HFSyJ-v>70^%eSo~eNKpQ`hqo)Jiy~u8Ul$tA!`XI=k)s?AcV0rc8kG80v1&7-W(d2kyoe{aBc$SYOzQ%ffYE~~__vk&b zj6^`N)dHHY`C9`AuvI7GxN-(E!s)0PYjmOPrcWNxzI3<_;+`#=cuWp;%x<)G2P}iS znRri548~P9mn&+YyK=@|trxDXtW79g8mFki;pe3n2Gs(%2fhvf!W^P4XN=iK_a^gt zjKoy)D}>*$oYLWK;AF>p=9C>Em3uO%hR)XiLsWRwdxv4o{fQu`!ijrDc`kp$>MD!@ zWlZzAu2bYVUh@1EBy!eDI^Y4%ean8RW29m22@&2p-)m}S$Vlo1U%O!&PCK!cF%E`9 zBk3kGBO~$xyS%4=@xMEmyRt30y1=<`gYOJ;PpnASBkKgz=t7E!K3m5oKgh3*5(?G) zh8>l+@k8tyfQU&X{&}bQ1Ms-$LsT}OmA0dw17pK0HAv(ir8$BnGeVqXNaP1K1Olcl zXSPHIMCUr`NU969g-GQdycb$`4h?7p&M%A&qcG?IQO*Z~WYoBMSPy z&8JzMdSXsphc3x}ayK)Btz~h3jXOG*G{6mT(?3dKE5_bDEdu%p!5$OUwHu`?LsSW6 z;`wRl%0v+AJUlwpSf`wY{UTfCXU<#J<)J&Z1w8h@l#2jZoig}o(oU}t*TB+)P*f$v=wDNTYeR0BVVR|EM$_*)f z=f9lJ1H(V=)Xt%+EEMglu=^{l83^SX`~5K4O(THR{z3?*!N^CuipC1`oTaIYb1l4 zCO)wUm|!BLVzg^n!_CR<;;~Bc*c9)U&$r#*$oSbevn&nJ`%>EhP44kyK_*c!2O1ND zxslsabQjv9r(yzXkzSGlD@9bGy2*bcB+%Y1nY;4b+t?zf?Qk;EQO`Io1I12aZEkPQ ze|go1OCfKdN69_C(9wdc)b@gTmf)pv#c_$Kt<7ZP6lqA-uGvOHe#~I$(g;T2id5Q4 z$d};4fd8I?YQ3JcW&111DY=)G9WakEs-D%hOUhs`Sp}D_%0Z)59IZDpfZK=EW@qhv zl?|e`ueQm~U?ijS&q8a^JigK(jIT->1a7izH=YUB8k(O;4=~k(cj^y!rYFxL9-ux{ z;musUD$w~7oV{Xv$ZLzk-jm6_viLhLbgIr<#8eS_lz{Tw^d8(r&CxdQU;cN_9F2^J9}9{s0u10NheapQWY2 z4iqe*hq|9yPvmaYjfImJD)D*n76jujIB?M>|UooX;kq|tE+YQvcvK;&yOfbT@HFshgDSFcK<6hS;_aO`%ARgOyG%8Jm6 ze%x+J!m|;C=H(7rCFX^>3;=_Tz8DYG6+47OtB>#;o!eS&1$UZqE(LdeEGE{0Qh`Q9 z5K>JoOLM@7Da*=x@GK>8Gbs4=?$7E($66)&Ffu-!a78j_z;XxB^Q*$IgqAE4X@KfI zWqx6+Cq(MEl51L>SahAgce${gDV*+M#Gt_%BC8V1 zAJNoP#;B-^fc$zp0w)>yrDLQoPsuf-%UYfcXVqc4#U2?H&_=M#jc^#4#$B>@vI7&qtNu|eY|k&j0#@CcHFo+;O5HtL|}XoBs$MP*v^ zUsa4e2js{;s3go^-t^eqn22YgzkXF(IAGvQchu}hk_m+9&}~+;Xw3}lPWyh0Mv-bq zCxE7>NmrQbi?#fpSsxXfM3#B;-qP2#vb#R`3o3+Kwgjy|M7Ii}))j_QkEs<}oumcu zr@a6kNA5d}25&u)s|H1?XrPTQJ#KiHq)&FUvMM3hX4OPu4X5xmIo$HcqezNQb8!X{ z#4s0ej{HAyXs`@~)B><$P;6~j5*ZQU>C741iyZ)g;D@{c-KQ#|L2>gDq*Fdmffueu zx$G31NiK_~o0%x}=`R1DRJOwK(COLoYm_OrTC+o{x6_!Dx_ItaJ=pBa{s(5)Z4bEY zXFouyDze(k#7p4ZS{9*ZEwoPRdlv2<#zRXh1UxUUs{cAkkia=}7MlD3OSQl00d=LW zKp3hz@j8ZASz9VVkcKqTalG-JOI}MA)0vbg5nXEL4pUU+;XH^*=w($^8q{srt07~; z5<@rolmoPfqC5v9*|o|UBmBi%kvjSFXgW}r1RuW>4J}Y0gy?kiS2i_T+nv$<;8%2e zxDU`}_p)NZoENy1!l{#M_(g`n(Zi2B?=p@jgEfH+8Qo)xOk2Ia&eXcbbZgRH<9nUr zj0};S+KqaO6IjD4*8-i_1(2!sRpz87KbKHp~_NQJ{qAD2Vg;xm>QB_1}_rOnOOUpfKB6zL?8Tb30C zbK8$Osh18c5mCANedj&48BA}nR;Lz-_7YshPHA9my~KB3*^l@5Sj!i-)CQi*;_=r# zN;;?d7gH|w)qKRHsU1+CX;+HE<6L_jGh^@fiFt@&j(^cxUM3MHYPBmit85aHt$zro zn8dON(z1$0sB<-4kmwW$$95{%ppi0OR8<#d5^KBHNgB2Ad$G0vA|IBK&etzA);}41 zpK5Q%|JUgnRx1{wm2&%n@ii_AEqq+woh_T!=;?e!L$o6Yt0%7v2@5tRY~Fjwba*w5 z=?6oRER}W@Wvw(Mr7MeTzBo~vEAoak(RUvU*{??)l|A z4MmAh@)9rith#PXe*`&vB5@8udS7S;Ao7H_9!n1hJJkcI6OSV z0F(8ImcO@60CQwD0FX7jvO0j4pIp@>-bT$oql$KG{vCD@-i;VFDF_~%!u;)E#U~Wm zB|BiqSQB5>qsaTjjFCq8J2Uai@mQjGIR_%!GBT`Wmg_#>IFz-j*qXvq%@&H?E}y(-ZNY$|>VPAjUhTMQ~r9K$XQ-dbg7EChD*r4YjqAcj8J zRv>i3GyoDTo(=qWNc?wi?Bh8sK#^5l3RjDQ`$P{^9KoD(@GGi&0`RlKTk!(_%wU35 zdHH!u9zl-yTVdi+&QKwWH%Qu60bBArh2+<6!pJ{Plw)NanD`kbp4Rj96_s4ZsygAZ z%i=Td`v@$z6^o3>UB3a`31*+}A4=((v;;dry&}`~PAxy-q?NKnJBam`pKf`7iM(F< zVlt5kbMc3jOpa6jyj1uRJ+zmnI1rgMy^8d3N+sRZja5RNV zjL{SN*)IGuGx>(xom(OM&%V*Dr+$QqRKA?l>LT-9vakVK1W9pn+XG1=$2x6R?jkIy z$S;EaRT6n5Wt7o!^R>vrz%sXUvQMZ4(KqxFZ779`PV|t$avQ@GK#i+p=G)v-#8G3; zkJS@#*-QjxuH6WsYFs_g(jMiO`SYOz9Ua-ze#^>^{kl)14fE#mb+zX2u6&Hi3j>dW zn9if4YtQ(do$K2BY?b~`n^gDbm8M}v2T7ad4{%{L%prQLBE-&1#3u-zo)(g5q3$I1 z?pR?!c2xnP>%F9`O<#4R3xQY;?pv(O7e4EN9N|)tIp$@7^M#opOB`w|bZ3gJEP;tf z4(b^EB9fef0x{1;`;^rc2+K`{leJyqQoO#W`>IVdRe&o!++ozj^dFuZxk=Gof)+SV zImnGKm(Uz|%9+bg+6LH7V=iSl6$1P~BBTRKCyzyh4KP;kjrk{`<|W~e|7mGn)RV-D zlV}nbR#4-tN_{!-tbZWPwWX=86yGXCW7;`pz?{t~F(pr; zXgcmdkNNTE6t0aRHf&=O4GJ170bFQ09o>`NMPm9~pofI5ZwB@7->ETbp;Wibe}y zkmZ76MQJ_hGMVx9=xcd}E_^N%w>u9xvApfE=|w8Q7W9hVAD=D-Vyy#T!*t z>{ylr+H_dX|3rX0LWrF@qyZiKm(wC5XwR87F8=PJu2&zrxp_Sr`i>0nhN2IK`Fc5aI-<88y?6f04GD*#4+YnbDlr@tcU1d8)qJKa^SL-j5=EP`LgnwebB3nn zBd-TEskFTJqd07AvwxSjk9!wMty_nAR4R*4#R{ij$_e1(6XDV@3&dy%IWJ<8Q~Vze z9aVR9?zWx_c_2S0dNoJdQ&K$)_?>0ZAnC_z3IA8 z3sqsX%TCr24s59Y1zoga7hYT(vdOm>CS5ef-sp-OIJ1&p7MrxF7l})e3VT?}gLB>r%sT`B$=f;!KhK#jN9_nSM9d^Sg z{$_C-#@fT-sj=l9+Wg$O8vU7t#3Z5eq8~Ut7p;RRGqU_J0$4RLH`hgyau0P0_q+e^ z05kf4D#!pcB7;fYfL$LmkE#0_{BH;ff*f`TR>&r1@5sgCkqkNxim}(j%f5nn(n{56 zDY!|Q4C9(Vn8T)|dFYtxl@nR-n0`Kq3iPYSMld4NZChBqEWh#9<~&WI>fsBFY~bMj zEmmJ%x6IQKDy#cne`9}>IBUd^RE^a^jxMjN!ayoKvd`q=OX&Bbujxq3h<0%;w&8My z#`4(gnsJD?GVyLJri(fm9#1@5i*08L8QgC)1xuohp-9cCL^hpU%%K;EYzIr5`6=)i zVAb3v=dwi)`0G%Z0Q3x1$mk|00o05I2v5GDA0pW>u^#5kq$Dw#C&a&hB2ZX!+ zT_!uj$Ieu0zI8QL)%Q?C#)=E!N#Nl`drnsSAENCt?%UN+2{M64HH2{_CBL6X7Mmqy zASI?IGbm}#ey1uXrIsVw`JYlziI_uc=TACxPQQ65*N8=pH{;KgEYPV8t#$g+vMcbMB)W*sn@fC28xMA`+fkmy(_KtA4Z@Ije; zo9n09-N@uyAe-u?AEwKT;8Uj0I{~CLJO&?>{6BoXg;&&3-}WogQbS5NLra%*cXxM} z3<4s8NOyNicMaV&Gy~EO-6)N8$rHil=oAe1ay|R68u8+0}_%fjYblX5<$dhi+TlG z{Z@%|{<4sQm}yzhTvh(#vVh4r+a;CRu=|TqeEw>Y2?|XbiUfU!b7gtrO z)F@7vZ0bAPHPxC7u%PdQsZ0waWzS<`q!<3Jkxej)t8ImjdbD;K0JqGc`t?!Gcd#Q; z_|>tIxxF+-HrCl;kKP7B#Fwf)B1`V9{;P^v?#Xq_AUwKedqWWAjx(J)6L`kr#@NI# z2^PDYS6jOm-w1UPit&jH(f{e`a=ZFekWAs}p(A7jN7NXvoetxD8P zq|HL~<5yY?>1bqM?u$Hb`?fXmYd+&GzEDn+z%lfE1BWEGKnJ|wYTN2UF#I${%Vtqb zD6z+KcbBWibIu5k*JUKOQa4b~s_dzWAjKA1-~ptGA#(_hnXMG_RJnj)!!q_q*Pb0l_X)?Pt!yzXt#+j5DFzm+etsV1!5u?|{C7yynq0?%LbRz7HZm6RvV?=mX=v{XoFYDLQ9PWNjIplG@4iS4WkW437Vzq1cXNCb+e05Zd-j9kq}u?rjcIxbLQoNho_pU zu2%rVjr$KH&r9cKf0SPRXi8yenh~VG?X6Ar$>ml7mhoBNdHbk|X;*`jtFV$S5_HNq zaYdqJ8H_cp)%f>9Y^ofr-XvS>hFa4lkiP2X~J5HbXFD>riPQ-tZhzr^Bku0 zT-#2Y_ddnC{IJs?WbWL(kr5tBdX9TZ#*tbzdk$-v$P94jQPb$L5s(LcN@HWp*7eY$ zCu-HjlZ$Z?vDbcux797IQi^GG7cRQ%>Lv`fAk0WT znntouEEyrJp#@UnNVpE#Ht{H+rYAC~1Z6c>3iU^`Er3lBDKqIi#v4+oHQ=W$FE-5y zenGhw$gZylP?Th zeuYN6(#>K148NtOv1Irw|EL^7~_JmH9aIk&?4w$F@TjopcSbKJtR{nB9ahBjQUoWwUXL?8El~FRMqsB&{kh| zs@)aMFE|19M?+-G_#7UGAZL$V03!)k6mof-T6tWJ<#f!N>N?YC#HjVvtz)u(DV zgv13rRRkIUxZSi<{?BRujPp*#S}BL4M#WLD(r61TWy=?|e0d-XM=n@zU29ivYBqmN z5tSpe*$lqOQzKNkrB%=mTAM4#Rqzoh8ZLmtKPZpP{6vnOOnCRAq#LT5c2WPa-XqIH zTl4#|Lg^w($>Q$%=pRwJ4YMoP;U4_dZ|*7~@Ern*)1uprb8?r;aa<%oFApe{%gV3& zx^UT-7C;OtHnmLxk^|yE!@i5Pm0*Wwx=#}?>`P|P>@qE^Zu@I#H;FANrdiruYXI9C zfndeF2hgPjDU?JO`%Z)GjDTJq1Hn1K-DV~k+KMxfm4_)E?EA*BCW0dV2^I3WNFw9| zwh}7j-MySFHJE&7TcvO!1W>7s?bi(d6`K!Vo&O97b**5CkMOT0c#@_+VCVf&8++!@$_ZU0Wy#T{eJfzQ z#S9inJ12rrk4?y89^p7AB*9mx&0FOw*>y>iq0UqRBHy3|^18ctG(;A1f0R@sSh7NZ z@p5agHXRg?)9XtPiM~e1>EVGPvsbJU^e9aUWb$b&CwKpfwj6&r(P67r@AVrVJpf|7 zPr{G3>v&V^(}^qpT6%f9AGG)dM)wN%*sIaxPCK4MO-_@`)h^#xhjw8ECtEYwTiRgj z#doH#-{Q<*)A)SK+>AD1`4*29iiM%3u(DQrS6=Dlzj+LW{~hmj9l7vx6P!V5`)mEi zU+eUx5zCYy(;|63yxL-R_9d|*&{wcAKt&5t1Ge$#BqCNyeqsX@FBlH^DZc5g;yCEW zH=sTVn4O=eWG%h74mX8yE%TUWt-9g(9!iIltgl2@eL=msywRAAY4Z^X(DTc-|NK~E z9w*Nz&~&cGAT^^OItXgDHKhA5b?Bd7g&9n^;p#@|_ek(rEo4N1!(GUfwsAZt$SL1w zMtP#-{e(SGbHrdVYi$N;uLO+ulMlUCN~`J|Db}P$sQ@nFPq+g*(4Rzz3Q#~i*iU0s z1{L5H8yfy>M5k$1>cn^3j-2MPutaj`h@fzla2_J_-%-L}p457izWgSJ_hkc+efk@( z#dn&9A1AR|)vG(V?oT#kER216pKC|Ig9}sKwC%lFSH!Q$#y|H)%+%*ye>-w%@TzEB;_iqyO&sMw zdK;TPRlw+eUt@{32_Y>A4k;b8+dGXcmZ|-#3>nR0^|S#Dwlkv4owG|~eC^i3;wc-0pB#qh$o*SC?Gm#@j3K>_jrKRYJ~eo)_kuYm*2L$; z+qs9YYqSEgOfDJWz>4vq|CXi7o2}Wtz{T|<0bT?jxvZNYgI7OaVL9-zuuh~cEf!@k zouQLkd}Hy>Q^1gt`FIqV^Cr?LG%{u~^Qv5G%1*nynID9G*&G{we&m3M)i5{mVeYvg zxmM9l{Ttj#6q3trvB80^Xe=CoA90Zu{Hr-=>_CKqQ~}_C zV4M?ss%-BnXs9Dnd`(QV#jf zkr9~Tc@8vcEm5;PyJoH``P>iyHX&Qc$?5^O>Ldqra*I$p3k-=>n3P?m2)%W_6`#cn zKC-vUH`}Xk`qQDRf$Qc3%CB*@3HCw<@9a*7QWnK~S21>xnBwg+0c2b@Boa*(tUe#<>Sr_)7Q%GF%7z~Xx z)>opdS9qf-7pdTfYmVEkNlln=S@X$!8?8X12SlQ`d+?w4u~R1m7Ej=cQj6eij6vFv zXeAA*jIouY$p0{KJ0@jll(+%mrcJyM!qSUDm!qDSzsJoun^G&D`Q<8~_Y^`a(Vdyf zdg?%Mri<2Ixlkl}vMdakOfMfH2IQ@^;#F3NZ?&7S#`50kFn`#51#TQX;Od8YBjxmv8B{>DrIR> zkr!3!yAwkSA^D5tQIco7nA?>rY?Hk#UvzO+Yh$gJ^1{;M8;g@XdsaSMM@ec~$R@c^ z7e+ie`Ldd#;glI08P%$t3d>v3vCPc+a^*M?V-MRVkqMm%xas`g-RKk5Pgf8$|LLmU`LrK;;v2be{^-*rISc>a6*0ZR>$u}EmW^eUXt3J zw=WTM7C1i>u21>gR{!Nwg_)vR2>&NH1pqTziJ{u4e^S=V#K>V{;YFID&?=Rp{z8go zxp9j^ji{1DK1Bp2S$qw@Z^M+c=z-1^$3;tgz8^apnO!jok~|p(nR5dwI74 zmF(-T{^Ngy!O})53C#gKGU+)I#cGb+B+d3!vLV0W#%)ii9J}-2;{#A~*g1`uqvA1% zg?-QjW@(g_153UXy#4ei=X3vxC%`>!H+Xj0>K%5jgPoeCc2ToD{=?l=`#qGyqxolo zC+J{xH7%WgoYT`!E@kfj#$_hG8m7|Jt3?g->PG4FA;0=VLe5S&G!;0?_3i5^`-vf) zu;E^&?3Lh;zguZen7gS?GDW^okqVx> z7*7pY{1( za&i<#=q4mCl5^C?VgMOFHsPhqX#hI5=46QV)9Yxa4!e*l!){VkRKPxgZa(J0jfv)Y zd0j6=GA;7!XNM`Blz%575U<tJ`CMEkg~bWMP?oc0i@8dN9$V zwBc|T`}?6fO^+|_1#^Y;59|PJ1R+TsWCm&v{CEp1I@GLGVh8|1li@8IkR+&(ex&W= zn8)7&F9|)3sdoE|w9)%PN|?%eB=pi#IG>&U)GhvYTtl}S)u}ghDCMSlBYKHL{L>q& z_60Q|AJX1xPXMEgB=k9rdbegBN5*RQ-|@1uULe94!x;FAtVhXFIi#6d+1&D}`1SkE z5spW{l{`(8`{5C>u9JKL%}{b%r?L_1Z-vEi3J+!2{yG&BMR#xmUkS@S!wvsIG*-Oz zcSL+k0w5gVe3y(kv-<6sj8+v1XpQI86GO|$^1XI{MTyBzoOXrqYffI*BZ^FmI1Lz! z#qZkZLZXjwTH8E-$+^^}ap+leg0g?#UwvZSo6G6*6JPcaAP!uC%U^yv?}X5h9-HW@ zF!x$=s%PU9H7FwMRL%;GpCjXHyaM1fz||-@=RqJ;%g(B0K$UDe3Twa-NSM4VeHpN^ zBy*#IbxrST^6oyQ_ss4RI^cBPbYpnlaS4h5YkQbML~ubCx4>ngTO4`OhS>aueGx|S z%k$_?|7EvP&LHB!SM$WB%ZW8=Dz&aN?HgBI zVzJ{c#6w8ECxlFa|Ez9VYN{d^&AV;f7J6w` zf#&X_JA|uf7>pFu{;gKmk5V{xV@^!L`W+zo63;zOm;C!E zL`8U!{qrOekgQRiS`h&WfgFai6mOM(5qq1)&$xmwyl-rqw9A`nTN|%9S7qi$7tp=m ziIFTI9(3e-yDqX;aQxW19kK_}?oeOO+VOMN&nIt|14vf~f-Rapm9bS{3oHC-y8~1X zeQHFG<|SAssn|jDkYSWzdjlaMAtQ)|!`V|?$VuazJC#7#JI#qN_KfDYn!9XW;n{Qt z@xO0p3iUO}-^`=iELUy}yG*yB+V6XxG31MgeUjLOu+tGB5sr+R8u!~UL5$>lx& zSaR{H-OW-hn3N(NNIl3X=b9{{z+Nt-o=)9HoDA{vkIDSd{AVHmXU>m{GwefYZEw)c z9vS1J==s{1VhG36>)&hq4cWOt-&@_bd2q~M3RqVt7_!E}_NcvVu?i&aP~h8`ss5Rs zx(vDR=N}tzn&VI`#Ze#tJ6xIf=|QiUGwQ+AtIU0<$*(OHC5~AoB;Emq7yU*fsSoY zm)}{%`CFgJimAG4MT3l?Krt+)mdzOzE+O4SaYobreTkHNby3@Bn7#M906)82E=k2z zG}u}~#>U=>Zh%|r`wuZw6%8vDxxfhZ`mo|?`KgNFw%)&+LM=T_sCBP0^M&EKgt7ou zz>WNGmZ~FDBp{s^yRfzQXO7c>FX!|mAF9aV`gWn#_TY#6IVEU90q9>40h}c^!Suh? z3BuB>tjhAV++TlFM>3Pfi;&{nv?hnv<@@N}_t}|F2KONU7@!mt96T$ClXg(9qGPMY zNUl^UN_#WLh23oC2~UjtbFL3u^xrd1Zj4_K=7|$n$HGQbIqeBeJek&itBOKXy7;5Q zocbfX}lS)R!S%ZQ45Vs?uHKr=0FFlRpPAuo7U}J_zIrq|c{=6F~*)ca)yzN`t*zSI7kog#~ZE? z7HSd$?n8?K(2Q3#prkq|RYxcoUY70JEudMmWL%9k08#wv7NGQFi5U(!vLfMpE3wn6 zQ)bWhGW@H{I7ZoHYd(bz+wo`rzEDAR)rkt2+&x!mSTAi^HaZg|RP15R{PNG`1dhd2 z=CFs_RW_uaoEFK=SAEO}&~{AerTZO~nEeA5Ls0PHT2D+_A0PtmPZk43iP(LSv8H;C zNd6FH0>+Lw-PEByw#_E0yvUnTBBy*oPW#qp)JrA>kVKLKzIm2P)~_JD2roY^Z_uCf z-y}~2t3rwmPE#Q7t)FR`?b7nG+4#BN_NwXI`1VW)mSAFcokk5bO0A17Rb+!-m<^;$ z^}^qddGYf+*MH56_r$2>pB&is|2X`P+O92&A6L$h3$4 zPL)>GiY6OZn+iB$Jp#IY`Q&|5djRMb^Z6@6Oz4pIOQT&mgD zlHJR*z_FT|GvSzYvoH~NquLG7zRn^TX2Cl3S`t5_zJD}oF5xp~-R5odl0CReMGM+) zfZrvxvn~q0yYevJal49oMWb%2g!#Hy%OuF0|#k33Fo7Bmc@;dF1?TYf3M4tzb1k0hHU4~u zfJfhSomkG^x(@O_CZH?#TvkbYS5_(2Q>usdOKS+g%5flgI{(xEV>cfYuh0`MC8+a* z+dL3|X^GN-9P0G3rrb|pdaI%t2c;Bb8auU3-`CXpZ-C4?51KTza8A~Dsfs#_Gn;W1a+T$J!I2fS zLl7a2sbAx-jbS*tHxp>aK4N^roquh+q@1^HpJeomVeo{NJ4`p4_N~8#iV}rF?L#vh zgQ>dGMfTxLD=r>sbl9?n{0&W?YU&yn^5k&#dYDOZaVd5pY`mVKR`G9vHk2v`oKm-h z5paHEXkxYSgymS}xM43&eC>(Yc57co`Pi6e*#-Alu)5YKS8hIZ)x>gD%4PUI%St~p z5czA^iR@~y;&6#`WJWGT-G3UIzs{4E6Kw^(xqTKPdu>1$RwGG?rw@XLq3xTiKVhha zG(Awr0w$JyD1v|H%%3=dO>&YI^voDrp5O6M=dh9#8i7HbBdP#-OqGy?IXkVrSCZH% zbU>9(ZLdv-$%M1OK~TT1?-4GqkBehUEMh*lKNHXlc5K0tfz z-=-518JyJFru-+Kr{mvn8h5f29sf#+d;F#L$R!pn+%vK&!~8#5Dc)BBUw+bg+2$o@ z5#-PXd*%-t0lh=p&>4Y5g5+GBxGeaDndIQp95gtoCPD!O?;ig^fS}*wQU{a8zfY9P z60YeC8rL4Vr`lGhM{mxrj|H0Bm^z=$&#P9B7T4~-%-Xb%8y$7SPfb-}q2kwR{-=33 z-NGucm~upEY3jo{-D9k@i!3ShHO*R(W(-(h7B@6ABO&-MxFsvG7SmE!E-}w$gN_TYpeZ~G0E-dHx+I`Owjm z8I19Ho94EcgxOneZwu9el zRDM(liLIngbthj{l1AEY4`&tqfzuLdH(Qm%cG(NZxoFh~2?cRV>y8Ym6l*Kb=m;la z&IP~LmMkrA4yp|2cq7%?kBm*As$Yg^$+ESn4=Lv6jYjV z;t?2urBYT&kL*~M%4+-qKI-i7bhZA`KL%EYfM7VHpq!&^Vf4nQ-R|<&0-D2UwNoCq z{zquo%z{I@W}FNkr6ilN%d6CZG-053vt_1#-cQSYQ+yg|0=K@PF59-(Xn$zwv4q@5 z9lV`ofn7LazY$|jU^PzvNgPMWXCvZm?CRw&i)gCua1I%>+rEjlT3_gA?_EIsB3u@D z{R=f-QQ^WGQ4w__VjG4Kfkr3=EU9Ev1kAwEtL#E}I&ex1q-tDJGSzyu`K_1No=6xO zUrSDHr3QY}`7as~j1MvHulnVJXoelsuX?x;%9iu4%Pv;d%HmN984i9qcHKCq=Xpt+ z>Xi}6653_HHAO~1=>D&=6B(5-PX&3a_jPuJq*B1tj5qP>iWfiI(z|iOm9vdckGIy< zz|ON+7a1N%p6)1_^63tC(*Ai%*lc*@V7B-qP5up`!$*!vE;eE~Ph^Upji=a)NIIsy zFo_Z|6}A`&;1?OSfuPHCMMfskM;PpVaTr%qTL&R8y4*@LJR$vtbZ}gj$(Q6EVaaa1 zaHqTAxAwAicMDO;O=nq+saFWA;xiQ48{ee3Iy-!Z`&EA17De*n+0O5fH;Gt51jtz- zxbswpjWXGE^VR$ifGB(c!#M^jUXZ0eU<%mwoIq~m;De=z#+avPijQX3*83)BswAxL z&P$Tt^aSkaPe67#)#Rqgcj6np#%8Lrs33H3cmKA0iYM+m+5N-OS!pkhC&TSyMTM$1 zrmOPW_Iolb6`lY-&y(4`gLb3FlfsTEB0WkyMMPE4P(2C&<=~`Hwh_K0VU>@9%0F*D z%LQwrV|!d>37gkKjtPyez5Uq`Y*c(L)^E>VFzn6r_KE_2_ndqsUH%4gca zPJNs|&#c3KeLT*3RI~Kz=Jq(N4mSB*$umziR7~n`jp2XP;G~^4`yFg}H@EL?IQ+hO z_0{q1J0WhB@Li0I$gOa;gI$^)?TurD%8VAcAmWv0*@kwsHk@R$3lvzvUn7d>2@sCU zKV2`Ja4`kl>>POQ`}8dRTE_h+Ejetxxa%PnMaGLOXN6aZnLfBrZ=2YVR+9j3Z1gc}aNADo?7!Xj^O&76^Takg&glB zZ<1;@nEVD^GX+c6flL(eYlCMd=5lwJzw6LiVEy&1)AX?Qr@+S_)*y39 z6~j5v4DuCGfyQJ3i>wSiKmNRo{7j(_I<^QiOI>i|u+kQ-D!4sWLe?r$hQShUEOfBP zOZdl#h`7YmtFxcpypY7Ah@g#Pr1zAbS$3=Iy`18q(d4=z32mm1{nYe}ytjg42DqqQ z6T12*-N_YUv~D*GirN+j!u0tU?g776KJn-;+uVf<&VsEgU!_tv48KxEYxSk+^5#U3 zn2v%JkJ2Txghw!uW-Ce?zNN^551Z6YxEj(#;F^*DaWSkWlLyfY3ry1oXMoy<7n+DHsqStNF22XQH(Q`*mu*HB{6qEp8E zUGfoUIstKE3+%RbM0eDN)@K1bTqFJA_roUaQ}{Jf%lmeNgWuhVzF@I|Y$+pfyey@IvO z*i-W!GXE!(R zyw!IpB*+*NaR}1WrS=h1G7ZZ+z#=n1na(*Ml1AQ)4t;~raM;2TvH6PI!A$=5Yno=b z1snkl_n}paR*JBsPI9v2+Ml3jdej>+;4?2xO3w>XPE?M8&rp6Hwko%bip06P#IlM( ziA15=Oh`$IfevGW3mG~BS0VnJLQcb@1DHykEN0kp**EesL%K0bMh<1QkAG-SNZ=cR z#!g&Vy&G+KAzR9@de9Vwh5>?56u!)S$*pk`kN>C3$;nk^;h?d=9M@0F&;WN~>UnxW z1z5Q?$#N+G9$?8IP5B1cW9JvKf{G)0)q+ZrRx{-7eKbFhVqPLy)u>du$)APoksIq# z+MegMuS9NiA+stu`=qBu8~1hYhd$A1Rz5<;s}}shS30Lw07HxqtAnF=zq68QiK;OD zcspgM_!qI1%|aAYi%7X}N9C15fc@%D?HLmEwx({cxRV{?J)Ee6+C!ExkCW)!-W9BE z$KENPL>f~em)%lH+H@k{CY7TmPZ-SReI~x$zzZI z?*_^pN<^wz(0|J6KSw-j!&!pIg5#XFMLxrdx|WnlFU017C9WdW__%*jv{+V-eqC|W zFM8{lZ63vt&YDfF6)*-jB;=XCu%(4|<~N5!V5mPyL29{q`5T}gI*r>%T(-gayf~QL zMj%4ZB6q7W;|uLXPMv?Sb{1d(+n7I#dxk>33Obu#R&)vR=X7NKB*97a+&SAjv!n4tuqr*?6!Oyh9UYX`j6pBonGW z;$q@|_ueS(aS;s}_ydK0>aXtLp&`@>1D;fNyE}1`IWvCuDOnt>2Uiu4TcKsM6(isR zXmWx}Ji-R3^Hf#7Jiw!RNycTYF!0~Xx=I@J*xI-5$h!c0zPvr<`;;OOwOTbQXIr=d zw6F7*nr^(Xcd52tqd=l%RbD9iIa{()U2zDxIlsEC{-g)Ayfu_Iq)DovKYG=i zrD6a1>BuD)n#4tziy_l}q{LBTh!vbThSeg{F+L(uF2!0Y;Y101T^Qb7&eZt_)RNza zL5oA~eN>NNYj^W28jbZcO~Z8*VWt(uNr4@9KTWGV#U9aI#t%R5t-P;KdEV~56k@~1 z3Z*B69_!3SW9>|fE>tq)mKHy}T2yOBydevcO;zV0JD)GMNt_WAb~ zh>OPYFJ>yEXmzV!$%`w(*S(jIrbXfy;B;H6uEAfWCteq8S3k&5d~azs1w`Xw?Pm-svjytT&djai;-*7up1G-q3aIW)TMH7S&M92I8v zysPkKo?MLLW5x_pEWW%8LDQpVVg>|M=#*?0J4Uj6t6xFv%piy`U1bHRpIfM;a1tu} zsbs!3B(W{48^(!Od%E~s-~AA;AbRoTcT3@Mvq0gil^P#y$!ko!wQ=mWj9)2w)1UK^ z@qL-7C`ZwRL{Ma!xP!(UCdFo(xk;YDy#F|?*&kEnYV6woP$2$hIQ8+%)*ZI!v-oUO z``1U8nhpoQNdfeQo}wWQbkiGhYfSMI!OQ5`dv|kk^6B^WkQGs;gM*~HpN^I3%CFYn z&!`{5M{DUyE~|zNdR5OpIR?1dU1G<(1bb?7>MfPgl-*W5K67Dk){f0 zQv9}DhSLG6XROq5r1IhU8fMc6>?R3z?Bl$tafV{$*6GGI|_x-}+QAx;!{k z`a&6OS%`!r2;LTVpd@l~d;nSj;A?OCYv}wP=UY%;h@k(lp7(>lOpDj8%gB-A*#IK! zsJ3BLu2yzxV(Ef=1p>J}!&cQH&m!jM&3u~b2X*CY;l-%@T!lUeKyZY5(iLa(I>9g=h!k~C}= z_PSbqP>yJO+8cOD(7PJ_P~GBkzJ7QSJn28e4Wd~2)m>MF-XCD;{cLRjhUQCX*ea&y zTu=Y8M^n4_XltAF;2M!b-a;@>Ym-{9gGZD{TNTKFrzHs|v!!99JEuS`E)b-XWd)E> z!qWG%PT2Id8bl#KJ#M&>z^Y&Ub7Y3|8b4iCyF_TNvULz&o9c~)RQQYmmxAy_2uZSK z`FF2G$g138`}mt3tLVGpkf|Z^3Tp|cg-x9n@c8kr56(!c8;|n0)S}*Dg^#u5)`KfV{H|L8uqQ&JS-DDy;Ica@ML3c|>Rj~8v8H}%Y3Z>4 zIGk+2)?V`^SYX{(+9gC2^0b-jvyOs}d%RXN?7_;P#!3K!?)!uUCXN`e@2-E>V4MH= z#xq!oq2cb9`T+|^_av}H;Q*r5GH?%XpGz)=zB~PEpWS|D{k8jHYsI5UfrhD*UmjRJ zUCN8gyMa$jo$AR5A8vk$Cf8*JvAymfok|pP9FS=RSL$WJOS@Yh@N*{U>@zl;eeS$q z;Yh1{e*WJ4TKpT8dnZF~1yZHH;d`?)e)ssSIgQ2aGZndG!!UpA*yn$0O1^9X{ckE+ zzDJT4Ch_hv-$`XU@CU!q(@GNWYtOw2DHju(vgHzDIt$WBtQ@bL$P@zs>gwOG(b)e% zTEF?aNpF<@0A(A4M-TM@ikiyaP5!u}K)r{MpPF6}`HTwPQ-6h#!RHUmMWdM}5rGWT zHvi(~qq4yX1hAM?a~?HHT<72Q^IK_T>=88o8Nw6T%YgP&Uh)Uj{5;1~Xpi;;}u&mu#YT*u%1#kP79tJRpV z3-{11;lNccy0;obALxbPaqm9`URiH94efr9lGc$NoS(^S*xURo-IbF_z5>b<4b(q5 zD+15h826_I1gjjO(}4WmKmaAq3-Hm{gCg6gUEJ1s>VS>Jly%4A$S9F&sdD-F&4eQg zC5BT|hm$YSkMVVUrkA~5bjFWZ33|Ha<0bR8^f)1y@1)_>8$KTP?T^_Jvc&AmY+&YN zcotl=nzosD8nS^xB(LsZtW{PxC9)_{Lso8j%y-D>Fn(eXYufUN|A?5!wLK z!u!W}wn~J0JH1=I{eU@aeX@Ua_*;+4PC_Q+AUe0#H7t1Ijb?}z7sx2^Wmnq584`>^KHZ>K}o9d;yj zc{lF*k+KduPq#|Mh>wXH>@1?Am8Y9oHN&mL9W|1f( zuPI-yPJx=BOznd1O~n!1=Kd+}^7CVJTUyI0bLVF@QVK!W&mwp8ex6nivwKOPE*8bsmV!VjGY(OVqR6C6nnGT^0j(jfm9ZoaTx7c zk49MSytV7d?{6m@1@+jx@8iOzx?g1@pQPR6J@HFKgG(aymo^^JoCrqW?Ymx+2CS42 z#d5TuNJED9L>@Iv<3^gGU)$;7qNWGi&tyi8zvZymlA2_euYO1yUyKCdh_L*2la1yx zQSScxC?NK;G64;9+CYr%U3RJ1rs&H3f{1>M~uttZ}9{$|Gvnxx5fzxPfJsc1(ZfI%`AU(X|pu>^h8q`O>3U4uRH7% zpD(4^D;hcX{W3hx;I>j51)eH2f?=!W$0hOQjJDhFVBHON4IHQIHCU@=fgck{(}d}LsI!_H>EQuI*2=& z3xii^G5{*Z$Mfd(-qU>S<>VzY3Zk zGyAD~`?btTHsNUx<1OX;n~aw!WSN>Qa(-(nv(~Shg4(V^XTNnH{dj$%-;{Xf6h@Vg zvGdS0N-BJ3J{~=N;Sp%PRiyJ>7>8u2=C8)gC32kLBtT;58QTkXbHTarOjAgbtxace ze%)VgGB+vRcO_a3?e4Y)4SdESVIX(9S5}&KJL5;6_|; z%)SnH=WqPYTQp)bqI}o-sZVB_k-oB=oqMx~cNB?eraer%hgdN>!RW>+Zk*U%LZMnN zjT$RnOD`70+AhWyYvZ*rvp)R{VX^BoVmVkePMNKYwPK7bNY4&-XLYu50;P9cu)J}5 zB*X)nFv?kNZ?quJO~8c>b=ePA(!|3()IaDa8qx&9u+=3747rhN{!j|b_jdN2bZ`Vt&{sLsX+uCmYOosJ+V$Df(_}PRkh`H-;aLrr<=4=uP>7%|sY1ocYZYyy_-c7PMGX&9{zRI5t@) z_tH0te})y*{Eu<}Uy4%+S|G&Lm0-GFGdiPhH^;LEF$?ZxlRnJk6q|Z*Z0z2wlOq^a>-bAS>0?v{S25`291Ui z7CQCGUt(OoN17};j^fughEl?i>KSX5Kj6Myi+u661;K=?5nl5TO?~={d7Ez#sI@sT zAtPe(x-1a(l^@*I2w88H)h)*Mt`xe?Wwc^m#5RyTXfWjuSZ_0WPBm}z$Z&rc$!8!_ z*r{spHdfjp``Z^65S2F-M8?Kv$6l?MAR!nMk%5MQ6>;&)^7XKlqZOEZ4B1bbUPz^q z2v1J{PCvybRGCs@686KPBjfn4swNhdtq45z?X5X}zQfIC&FkxMU29#eYX?K&^e8qz zr0jSP5c1gjhi<9O^hUcQz6=|!8Gm-??~4nhljO?)T7w{H9G8kyt3s+`VzO(Lt}ykS zu$o9jC(v%6a#ikcdBb}UQ(l+AX=oEFj?cJI+{#~{omgzcKT_42qkA<>P&KHqxHAGFr6yFAP>TuF#ut@$M4Oq$pRmKcneM zxES~oki3FJ#4s{sWXkqJr88yO3q|3RxRHQF45OpJcF z(2U>Qx-4Xh3a_GKGE?|L^{NY64OOcq)=<~d-8j2J51n;a^~}z6?SDs=@7j4+aU$|n zieB8*0vp0AwAC6ao=2#U`zdlkA6CQzT#Zr8GuRqLW#ibmn(ZHc*;Nm#9hcjcaXCz6 zivHRD$Hi=$4k2OzA}2l8u-kJ>B_d~&&Q>-XD#DhKmR#yo%wE(5#`b7ho*@$-G~hW8 z+H#iPe}yX~oyOV}&$JJG;nzCA72w2!b(6jq|K-e&%>I>g6AM{<^)++gX?att%HL}b z8LEbbj;ZwuWOVx-=xB>z@CV@q151nX-#D^W7VZqimSumPbpbP+$?31ZYeuT%#+ zZF>UdCd#-xUQZt@zmYbGX~Xix^dtGCw#X?*S>>2TS5hF{hk+=`Jm4Hn$p z-6c3Q8r&hcySuv++}+(>8iE9O*ASp_Cj^I}jog0Ex#tT%;2EQf+O^l3Gse@qkL8Fg zaGwkN%&E8Q`OU-YVO`KQ<|1VS6Li^9)KbIL^aFUFIrt#!TQlTFvGU~G9#n^%N3`6< z@mbAJb=ZMmM#p@M@?^8dyqj>X*=obhOc<&wDg`1+%~do@d}8nQhH6R>3eQ9TB^#Nq zUgc_DDmBA?w7YgJpYH$$!%9_)q&CD2p4xEC7}#k-mAv9 z=}#0r#5D0x6a2A7nq{6$xY1}g&Q9))Y>Rny{s^)N81LHQH4COVbLZ6ZX2%;9eNQyLPYgDKE!N_i(XOMKg(HN&v;#i&R8ETy}~Q|sY~ zo{rAx;{ZlmQStRC5Em08ndd@Ru3-zWroR4#Y^NydIfSypya6PRo@NOCtRjAoW^rmt zIYAj;>~do@yFRLfhmR1;P{~fHl<3N!IN>xt`8`1H`jygPHy6}x99=#YJ1I9s28i~* zQYizGx+NN9=M@EGe9>=svqEifd^DmgEfbbgHr;nayE?LLr|0t$TT3Z7&)ag3EeZNE zr{_kj3)wq0L{=bZj&ch_g*Sj0-Woq*JoC(m5A+P*7B@21k6)Gw#iWso5Y#MZwIG2p zs+2X4`45l>yquvC;ir})%$A; zkX|rm=CGe>Uj-_ZaTc=xV+Uz;dl6>@BGEHCf7~T>3Z|ZQm3n$imF^JAcd&L_SLmn~ zS7YTa7iRdzV{VRh&q*g761KEPWZ1%bcD=KHHYGi?UWGP`cHr7q8!zUZ{ND|EDw7G- z^K!Am+`0cax+`Vt(Z9)pyF2&p>upAHZ3AU3uf3LEof0r-KsJENe)~rkOy@=agZ|~Z zmH%>EEz6IU^=Sdi;>jvB%CMp_-GwDaxKbmtKv)0N)dR9+E)4N_2Kv0b?*CPy1n644 z2@n%UUHlF1j8R5k-E;y2Kp41WOMmar2{lBneFlCj8?_P=mV02A&dHaCELKDKs&)?x zJY9@HC{t%29H_;Gt4-}2-EGbx+FT^ZD*6)&`Hs4fHbyF9ExXgkU<-MRyR@>w5%NPT z?9ZzXaj;DlYzyl?*2d_}{?3QAJ$$$7Bq!uMV`5`tYnhQ65>D+J@O?LV>&>@z!`W+| zjSFgnekm~&l8=yl3nwOx^omNmAzHcnP|jz~G+ZsbbM-h#Vd6d5xu|m=uO3u9Y1o+^ ziT|Rlv|M;vbuGx(A^HkC)fe31tsl|mkLNbYbRVc)Rb9oIwwTT{9ye9L!wgRg(#T9F zgG8eZ7f5WSFBC=p>TpqfmXze7#K^=P>Rk4N+Dkc)k12tSE77*#fY3|b^Bjf*YX8C&MYN&ZFh0A1ILl~y4+h$+Y zVanKUxdXVuO)Jd70SG=&0%x5C`49-1sz%7WXd%x?y>`Kq!8HS~_!y#JS-P8|yI;tI zY#viLZ@P=e{S{FdAiOp4Xj)7 zU!sD}=c7a+wFY;Ut+*dsMVHohYXhruL@*D6p z{|S0KfqyH^75q~E|&X_WQbvUBo(`*=|}YzZsSHhls-X0 zTyx@VJ#EAtO4rA-O%wdS zM1KE=t^W5P+uOl}pMIvb+=_smu*IBk4pEqz-F{GY(^?L5B}XHB#(H_J#>IMePdyKM zCv#JgP?Nq>?B*Pu3Me5%eh^-+4X}|HhmT zeg7?WT{;~mj~R{8m;M`a7tN+4?#I1o!i029(W^}TM(5Ve&(7(%)v!YTe5SQ?ZR8wk}j_>W@W~IPm<(P~`Ki%14No*~)$t(e5|)vCXW#T!y?C zUQ7pGo)emHAi-rs>whLxpXJhw=y-`sK4HeGbh3q8bm9NakU$KaQZ{F8zXU%byRK$I zZd5((wAR$d_a9x%{Y_`CL#XO28(R=O@cAEBtrLt!r~O9ms*X|4)Uh7&1PD>N!KUr! zY%MFfW}+w2V!eGJ!IU!jh$HnKdf{QrU__dr^>Ig!By1~`7|@*tbf&21&f542kS^cG@0;Z7*xy4vZ)NT%{sQ} z{9Rfc;)2F@GNqdR%bc2i3icfHHtSz5S5g;2S<%k9Eu)|hd+|J_oA%_z zKe_L-=+GF6K7(b)o#qF654j3F0wD%vDvA6L&K>x)&9N{S2=MD|%CD&#X)X=$eo~04 z-F&#q`;g1Z(^I7@j#Hp?x}d9cX{S|WisxD_NoR{PQm3v=nadP)6Y{Wms*Xh68g&Ex zo@2i8cAHg~iZ-2WZqS*fR4`y}DcEtENvq93>a+3jI_MsFfw`o)nBm?&@-(j66(UJ^ z=^B8S1v(!GBB%WcG*<&VzQ~!JB$2x2#pbj}lRTAJIPDe8d;y7MQD5kibVFE&hvT9Z z6Ju)+)9`GG%so~T7GNIKMyGhkb&)p}ylER^q7w_1 z&ryg!ac@IT5B&p3dG3C*G`BtAF8MIlGp)x{4t05Oo~D?4R%WvmEep;c&K`MnY8X;; z)l)zKWGa#1*k=0CxhCD2WI^5A2bB%U>Hh7r@u}0*gg83irSyr1SZuh7!-%^@T4oIb zNW;z@4l6r~e2*Wmgc|ddJ@R7zf^!=TtnboNFLrUns!0$Bf(Kbs`3%JTh3A{jAt0-Z z557dl?I5hPc9r0y!n!m46qFTI4X+wv8qEPR)l%cM(By+ndh-Coy5)4Y&^Xp1NVkih?(P&gdW2e(-~rd+^N)AWcai ze|?yw+L`m=y}gO1C&Q;A%3x5#QYxMh_WatO3d_km_#IHW(VXs#L)5&o631{Kk`GN> zbkJVAcEY2NXpqo}3sn<1^JnqbV8x2gBF{#K5b^Vw&`{>PxNb+FJ|5;CtCq9&(yh&h zRiNzM4_9{OyCeZ;?C21TJ&a|E+>Gytj-Bk3_)*F0)KMr1$dZ{7D%v?X2s$x)@=P0c zu1&ySofX0R(^qwXjSo1;BDw0CRx7s?$hQ-_DsA-LxO))2P5Atd=-QIWo^*MZhFL+9 zwD7&KLfX=2<%N`nL^#pkpJMMVmB#{sD6D^>t6vvRTpDDO-l+I;SZ+!MGb9dr^GSC+ z-Zd95Hn}?fPq_+_hC1NxO{c=3MIh$(U^Y?YKtQYs^|j&olM!!V7d4Of>wg50CqWzW zzj|3*2}Obh2k5@|nhULyW@}RdBEM8_Bh2v=Va0o~qD26JYj!8s?!zpvLPW5jQ|v{9 zO8;qa(^Dj0(mzRFSj913C(-!F;SOjEeu#M(3n%%y0T%H%XRv>fBw03R8>$XBUurCC zh>qjLPOm04P`XLd6ehQS8kI5Dq221Pn2W$)FRqm+J=<)Hk%tV;}8kr2wSJQS0MdVkP2bjFW8Fp;PBp5%*z8j-}X&MF~S;1}u5F zMrWr}N!TP-SNBz67FZ;aLE zBONWAxzt|LJY<{{_c-xN{^^rSI9}!nC2zA_^_qVE^~dA^G(doI+D9;n2B>o3JABV8p99foKCVqNX8v@bf`>g^+08alRxLxUpsI=e<+X+F9#+7Q+%!eoh-*)u$ouE+H*B?1S_M%{g5njip*SZb0Tghg@7fbNO;NS3MH4*J_1O!w=<7@6Wh)Hy< zjhpUJ4MO>_2X_%+^`NDv|He8<_ zwuH6oHdaJ~AucOyoh)B>MG*L-&1wI^A3_U4b5452yJRP5WT`-+qFW?eg@vow82i@V zE(6h|Wh~=0z2!D=$33LiL$O9SiY)t5WZAP%Ux~act{+>w?oBEpeW5Pg>D8WU{0n)a zazPW#9anPaboRgloR88 z2VFn2=1`UY1OX;dZ@QBM$!qO-AN6{pjGHC=+Uxr4FfpzOQO3R-cXaMP512>Gppy`} zO6Ew$xY6G%P|?OxrBDl#rQqP;dSjKA$7rynu$+dco_6s8NdsBx;eJS07c+dOQoj>Z zomEUk(6uQuvIcuzE$|`>G`2oB&%fW|`WGA?K|XteJE`Sbfdg@5ZB5xE_Px%Ct|II_ zEC5zU6`B}>GG0N9AehPl4VR9MAl|hLFsZwHe@aHzDF3^hv&Ie5OzZxa=ips~%)6aL z|EbX@F^TUto{Et_jFFhz@V_@mR^w^L+uj{Za`#WW=DBXZa4j`|y|wEsH8_X1d|ba( z*O}Fp!v3+u%}J}*up}|m+l4oqEbmspuy!{xj>g*SAnqxr4PRwlr|eTxXHianGdvfK zw3=cjbJWaV*y8+O$*ssrmznN%^qC${sD#d(e@m5tHJi@9rL@tjj9QAgiE4js`yvSs z9kzwtTz39!zKU&<%AMP|L0%Y&eJsG3`TDwru5enMqi0)IxvFOV;Kv=n-ze9XhUp$c z(0Rl&Et`&_=?ZlueKK=+YzzXs#;C08Q*>(m=^|(O0~68%d+Dlqm(X2wZ`*Y z&j<$JWp9cC`NVqQU&%|Rv_30O32qV#6GdsRnbXH>#ec6HeKr!BRgXo-_P9F|jVc)} zhsnYKJU|uN>_J%81gTPC07}Q({JEKhzMemk+Yo00;>H~d^s!aFY#kF1t!@Ki@68b2 zwvoiBW|R$a(Pklw_4T%FP|3@rqa}FM(O4rNbfYC1Y?-6WUT*mx}?05@1Qdr{Vo~R9>#)KdI zq{e}7J651P6?`+4S>D2&zU4P{G3Ca8xfi$7!5bV?VlOv&?+qt(22Kj*3AcSQhR3m# zFDN*1sWah(N-YnPe=^kR#HDEH}fg^M~=M%!f^TKJ=|Wa z2sp(0kp)jvQSqyym1!8PLVT_U6r%=a>DTyp>lW9QRzx{BG~=%pg8wX3{DDk0-zn&8 z)O?7s*SB7>7CL>RA@076?=n=!?dQVqM>6T(?_dFklK)ctmlBQp9lH;)(y>0JRtFE` z-xu<1oZP#KNs5f{G^zKETl*$FN>}>qEe;Pyg~=w+&<3R!4~1t4)}p!sL(>uEH4*|2 zCKNFc&L>LNM6@oGe_FNTYQ_Qpg}SDQ%8^WKsWzIYGkDGP(uS?B7#zxhMQxej&<*fz zNl@I)M#Pj3b{?I9PKC~LmrAheNx71wxYl6kllI`)t4?lyCUB2CbBxAYez>+ggcG&;vOPor1xUL(2U0}J4qG1QHv5iJqHbSWN1dKJha1K_QfW7XF*HU! ziB^qJmr0@c@b#O50ZPjWv{7Q`9nDRB$eTi5i~L|7HS6jyjmC|gVJ-KOh2!Y+lk(=2 zYiWltgoQHE{>)Ag1=OfkP*#hGh82r^@$D~p|A%R`DTw17CMgGzkyYjof7!PVR2J3h ztRDIX02Rl+rSLzUK%u(MP5H!By3bZ-eHql=ACn#9(X@g6#=$NRc7V9X(nCx+$}p|v zWha-#9mamnR8_ia$B?z5FNUqF>gr={dQw@_;Bc~Vjn;ve&YhzA0G@=hukD~Kd z+lTuK+_?lFC%1ndo(JRg+Xx3s+J)043sgh&PT$=I@-faUABDW2zTkq~Tz&=>@hrma zgJ`VrL?;9~)cZM|48%dT@(>@&ssmo!3?8+kmMx{y;NK~Q_ef%RffWbQ54au@zD*q6 z`mWVxVIa?b*mxq2>iVc}fyR`4DQTBZ$cG<>T6eL2MzKDoZJ`|ow52Dsnq;!c{LjGg zeKqFe^oiwS|Lj>sWqj_~?6ZII^MsE6nW*vVV0@#LAyLT^^b!JFs-WvEL%e@DLX#acSuMQLj(ivg z;Zr1aS;b){H5R|LrwrZviu$h&v*7{KNT*DU7O0;|;xGlWGh(PANiHW#cxYO_nFsLf zBleyTV{V|`tXg8((H=G<&Ml>Hb!yK?DfrvzrQbiC1190umH!%{2MUV3e*UiZ|DUZmoib_HMErlbzUDZn3rl z*gLHb;ut;L6n1udy=q4O4h}5EI$-jdH{4530)jHOEO(&BEg-`6C$QFN>P)@k92fFDgF_TJ>Tot+InUzZ2{iolPbzL2u3Bd z>At@VA806?-xK5Q$qpAq8YpUM8G<$CTxOqBW-yC2p?Ru7B?+nS{HoEyBv?z*haT3> zF&5OrvmrZM`rx@KKV3CXD&iNgv;F=UB!Yg@ zD)H*es9Z+HL=2sZGC5!t9?{CmC}8HS4%JTSLJwaXp|w?|aEz2UitNsxtzmKny;gLf z+9_ZwA}**DMyd5yE%pU<+u`SY^Vyw4!x{!<*=K46&Fs=x;2I&o%_s(> zmZ|1gxaDiETdOGzIn>-NO52)Rr6}x1zo1LZ7B7#$N-j%R#@L@^He1zw*Hhy#AglLV zaX8YS(eEFdPoDDJGl6mPUt<%sDxL)}mOA7KMllpA#=<#u#&JM3M*R=-8!3@!og^jQ zvkS_keHnJ~`9}`y7G^IiUB^gyyU!b+tL;T-aLf2I-Kx1^JK7nigJ#MH^!`u#D(ia* zr};d|9sF;andQILGULBLV*ox)@(xuG^>VY&>MJQVJ>@F(VhW(g5AIoi$q%|72%XLI zb{_P)PWSXzc}&Siu{t#`aFiEazTG#^ne_JoOuWYRFuTGXp`iTYeT|&WG(QQTfZyN> zgzYEf>u{D) zDLaUTtt*uw#WDn1yh2JEXIiHO|Ea{qp4QG)3DHdVoYJA~%;Cc3@QiKb3%V)hKKSr*Gcw4BO_H29F+LqpGu-)vhnC})Cd)DA+LDi*-YgP;lK@Y z>CKlZ_3iij4vNPr@Tj1k5QN6w-LxqRcn&m3>4p=9rC?=-&9$)1ac_b(=?7{l^e{|r zq%py!g%Fsv{g-~%Z!;PA8_9Pz*$dz9kTY0-#Qzbw6&mk{Jb3hQ{h;icafTSxkatt$RjxsB=#85Cy8Vu)T>-is=ouHR^x~;c#6FoW&E%I zyliHE516T_U80Yg^37)|WC3^O^L`!n4n(pp35x3Obg27M)_F?a=;qD%`8In!R9@cP zc@>0%PJkr@D!+oz>qU9j^)-neRJ zpU^~yIa|MH?!s4`Qw}Lp)lhI4Vw|y*gQWPxVO!lQVm{%|a2XLVwV^0my|UbN>KwM^ z;K(YVxjvl?W@`W{t#K5bCTuxe(FQGOEIUM_Iz126Q{&y!_;%wDP+xsjIXN`jKQL9G z1C9=m(>nI+4}0T7S==F%ZMB8CD8{ouX(NlJy80Mo*k(;A1zIJhG_+QGUHMOGBRZ=4?(Xv3^Yn?Vi->>PA0rA#;SfWP$?#l z1K>@9b<$D5Jf${=2wPCF;c=A4sU?n<-Hf>gvUYN_$(rj3)AgzE_L{KF7V8N}6 z!j!gIh(uY&B14Oe{3}X@WN7QXC&0%oO4uV+qeMwFjxgQb2fxor=qVd1734Wlavl+J zZOYx&Oy2=KJVmN7YwSr)xqy3sZ+~fK>l-9ycIADDXla@8@BdCS8jB#4V3T4NKaQRx zD7k06`x6-@sdPnh(rRX5Uk|1x*Y>w|Xjc2G1J6G9z9v3kQ7DH2BKwmjXYd?aT5(|I zQwIW(;*FSrjx0^fL-TgpTze)PA>-Thn5da}a%l(sm*U@sq8YfNGd@eor2b3!tuM{q zSJ1SZ;BT6GXhUZ~H#Y~#h0CGQj(@mVCIs3*E=3aTgqom>;4#CG)gFfcyp{3!I6BL# zp}P0gEuZ_tL&%Qknv3^`HlzJl-JZ}-5(XCgDHG9qzC+GYk4`mxX>tOtX%u`ozmp zk)L4ft=HV$N8zw0!Xzv;0`7g}Av91k6gT<%0|7n{)ZhFO)*L@wTArIo-XoIj2<5%` z({Nx}Thx^{qSqK0F8M zFBsq6?DKVj!bh4pYZAPJ;lF9BX2T5_e&@JYA(g_=5!^{?$WnOFP*IH0OsoDFg8ZS) ziha>kMz~UYc=5*o6%MEXYaU+oT}3B*g$`_pQYOnf_9G_v_7n7XdeKA`UR>bQTGH>2 z6(IYK(qZW{(2u^kW75jH4A1&Sf6Mw96aBZaO1Gq5gbx4Rp>1q%p>WVG#rFQwE-%Hk z7wg$8_h;7cgvng|D;Y75>^zK+j}EKd4M7Y%6_YRscQ;=wyuMzVPqJsRj$57;Kg{pr z!&#vTA&>b&a~}%%qNH3%_3X98^VFd`C+U5{*)Vlmt0sL)P-p4(BHw5qw&Kjzh|U#u z2%z(At%lUZt>`J0AQ{mB0tvK$R9^<_V~>Goq%U|Wj&J=puJlf?pRYW9KXs?Zm1F)j zN@0~kr=u23)(~UTRE!ZyO3@NqZNxW$n>9NOD>k=aGM8BEQ^S8#x*+;aRbft@MwLrD zEn>n`nL$OXLuO5FFY}1{Nk&dTERs|bMEgh?AE>V-(DlBvuc=q`4kfK`em<;-7K6NG z+Udp!TE=AYksdUQBp{|?+Kp~Z2BCha0#&=;R|5P%Bx87&v-Yes*l z8>Fr8Z?=AuH{XX@+iC3`TLosB`G|d3-0&(56MZTTL)KmXTkMA7>9lf=C`8l?UfUzx zI30N;9XKm83WLAoAmBt~gE7Zw*T>LJ)Z`xa(0s^0G{l886c@ti6RXhnWhSo|wD*7x z031V2s2z8NLawT$Fjr@PuWQwd0vQrST<2|Oif9vLJ#Nr0_2)brOE}HkgZ?d7Yl*LWQj&BL&^?-kC7a2fLSdS zjiCkkKYWdy7LuKzjZh_)0z;RAJJi_;IUbpsdlb;*fk5%beBkN_oc79P?}~oU4OtKQ zGoqmMzj*s;kkcNWjgcQDGw}ZW7(UmIruT*4)`-K&5t3>b(oMnyk%OOqlVRhxp7z(!H zwqR(TzrOPG7N%tA^H3VTOT^iryKGZBNsbd|RD^mSrO%bW4bZ}C5<-)`vEg#E;5Z`2 z@JgTHU8xXGPW!pyqjCv~GS1&{^CJ$@`uZdM+r>yZfqhi|J-tiH9B+grJEl?g?tt6cEp^Pko$e@YVR< zAHDl-3a(yTW!j>}gB-~A|5+vku_Q6c|5k*{Se`Pp9(FM*o!|v@6_mYEqdXkN+i&Wb zCV=cHvJ56`V7n`VlTqEHdU#u{DNV-EFj*)B7RS_CF#$Gh`oV z0<4`f`aq!GxNDpo`w+M2zA<*IV%eP6e%pbzEc}T%4eS$tHrh;-mv%XpI=pNalusZD-hF_R;#bOK1?Agn3(ha1anB&4M@ zLi)mQ&T#t>93B;RPimV-zq`Ro ztKKMc{%r2S${`Aht#}xBYXJQ@>O3Xx0SlN?UGS2|Z+t#q1+fT7)>kjmM9?A=;sv8L zzMY+(h*ni@_nre+37M-j#&&*cS#b5N$t>~Pe@Xpy@y!QTAW^e5{!2xKtzoNfwJOHT z$&T!gJ7e&=^E)^OD~u=xLCZB>N9!(}&wY?WHN^lD!}8*F13x7=P#;7I)ADCu^Q z_+N?LNx(9=3g9TH$8u>)HDuQ%A;tCD^Kih0n>Ox3wF#$d$g?B-~UK^OjaiYy2J{J3e`uOp4@j1U{4_v>jM zYZV_=PEOk)4&8rmbA*cy956PJ3eW?iWE=S&xvNs4vc=bMDoNXUsR}wl{Z`aBTw-Km zOriZh9EazY*0`)@5KU#~jROo4TX%d-16h2b?+GbRWy2^UZ3dPQ3Y*^+uEnT~rkbRt zMeELT;=otS3+o3D_(DWkk!A}S5%lwbqb%X{MiE|?;=!Pze zXxe?02k+$Oh@F^KZRVtF=o#B;PO>S~ZODZSHqbdoNg)?u(4sAdg2R?Kp}Ic2J|F14 z6#~Jg%|pnc!FQpaXN|-9G$7Bu-hkQ29OqxgpN24mk}(wb`G1lydO3YLXwy?C8k}?O8={cF>hPDJgM(Gr7^Lvk?}v(|3Vnx_i9+u8xOG*=ZsCg43rvt&x=lH2JIW>U zyJut*ki$o~)$?yjf337`t0`@V>90!bc+^@wM+J6AUxnxwFzR3#4jdC^7)@VBqDC(t z5Ek-cs<-H7_xF`2UY{&UkCH__gDpJO=J%he#@F10vV@BaXE1}kjd?&_TrFd~GjPwW z&M9LuGKvV&o7MBrLWNo4!K^>laYGWVk;Y@=8+o+HA_7VmGiS*@yMA(AW%Vh_+|H32 z`8SQOSP$NG=S}IIQul^j_kzWaFYQIXXT9B_ek;kR9#dAeDC8_Xhp9SoO!kXS062e}{r9(n?e1l$V^=M)^BB6B7o^F^15YKnA8cW{qngmf4owM|k1 z#B|EJcAe}XkkGYN4vc?X?qYk2%> zdcWgSe6^+~&>b1-Bm5b8gplAyN{t<_{VqT(1D0uewI|e1C`YZ5797imAuG#w&}rpW zIu{{c;ofDd7gFh@RSF-XQ3=N+#WkFXDq*1_-u@i(NMb%**6`mk_HOVSHt?>LM=$9&Uv4%)*Amk+6}d3!T%1M+_=?@(Siqu#&=yG%X~MiqJ8XA)B}6Rx{ht zQpVt%iA?VDD&*dD!tY2-aF(-~jg^MO?kOjpcN082&$x-0v6rveE6$iHE*1?8jwv~o zs%H5Z79(n}ue3)pLb(gEIer(w5R?+@!G)LUlG2o{{0ZdMW?H)_|}Ifqi~?} z)Airp=@sbsdO%?4+t8SFDU0*$alz6CA5mZ;;Ie{0e!TPq5|d{wA)Hj%)e;H*riTGt zr$qbx290bb&=TcVCyv;zK{WBsL%(noS+=%7kkP!^yt_XO;k&(FW{o zbqwZSsGkBuyLwfSP$fgT!54Ddx~=#f9XNEtZbVix7jFLBf)jkv`I5hD<<*scndv}S zy^9jBNX_&$sT=CG$yZoAVpJ-4ynd6&Sv%v-*H%E&YJMas7_D{pz(~|!Aj2gKVN-) ze{2f6hn%Ks1*@3e)aENZJ5RW&#^8*`<&=5npnGCAsQ$arJ7Wcf!HNcu8BSn2zm-S; zOV_Qu@K9wZ-uHE~o$69MEkgee!y>Mr(a!)!Zo@BPY73CgUI-G06%^qV>@N)#L^CEX zO3G{;fH;C4cMJ2kL=#m@XfymY+;0zm>0Js?ogd--9gxYbEx?z4_K7vOtdO6!c5{4Q zLEjzM*$Sle|I1=FooBTEuA=lFE_LPiVryiy(^=kI+!7?$b{86M1R^R{z1dUK>yEJP z*)_A8?sMNp5^vud+PE}qu;PfD&1v?nbp~S|S|BjVWzZY%yBl@FtJR}W0>H*YppMzA zn-vsCFOnKzL$`QD{%#03)&|NG zw2H=F^ULPnLudZ*xQp=ZK#&1V^D;K&W6Ky7CGbN!njFT_FDfI@__dA3RtAk z(XXl|@q!N?Pf1y8xFuqH2j|4Z9+(%D{r3mwAf>!*VemtxQeNe`FHdQk6?kAM!3^(; z7!)o@HONG@VN4j&=D5T-IXx$WMkehOr8&Ppv{qSTJts1(xlMQIN`sE`En-#5dXZQI z!@H`-^hZ|}KV}Q__(N|>r*;Z-Fz(G%(#Nd5bF{-6&c8;nS1OeS2#9gN&;9*%nNQ@Q zpedAFYAHB40b^zDuL?SQ@N7aqG~58N0g_jgY;Ou$aU6p01oZuuwL?N!XX{6`)3a&k zbi|u23v4}j$ElU(_cij4K_>kyT^h0Kd&Ad@8PWxR8=iE^$w{jNVTK$ zPe4|CC$K&xivE!$mS!D;y&%$%CW|v&A9Gf6u!=Q#fbH7_XNo-7 zA=DU=`f2Fzwk&&dvV=fcn(*kD$t?yFSrx{PM@xgG00!>5$MpC?uqE84lCF8FtG~Vn zM>AKh7hytJr(-FKL%Vh@#PF-Fwff2DT`0?}#R$Asu%qf3r;eh&`idkbPdv1|dQL;j ze$xLmUmA>>Y+yO;NfB^v9-Vmdp|5@Ony7%Nv!2_)BSLE*!`$@By|1?=>q*UUK&%Pu z+I7U>ROaL1;HV)e1$=MDfZLD~^X)HfyA>Z!1vHWTIit)**tnK(ID8kQ6(h|I0HaICPm}5AW z`ri!r($MIP@<1}0ih8wv(!pT=`y5(Zk;^Bm?B4d&gsyaN(gbMA)&Qh-b4_VWp zNF7#a^MtYP%}p#sw^RPqxI|NE9Q)_G21Nc*S->Fj(Ad3`gc>*K#f9&yAgaROPyZgY zA}Ue!Ti(c^{y0h}HCzdq_Xo^2*G#leivNb6h>a4@u)8J0WgaF?j0|DQWbQUA>TcBnfbbo&u0oHeH*OzX~T{gAm};y&1*YkAV8|dIPip6 zr&LKPP_?IeZB=phN^-5oJ)+1O?28g0vfepvvw@HYhvUzXX^dsnLUdo_XJLcJ##%Bak^Y_AOu4Z`UOf*fUxdWy z10hzZ)6~@F_fcwX;lS45FF{gPcQ+Rd_+hwwBGX`8WgX%ccqM&HwYAphXfauoL;)tT zkr5PZQGr;B1alx4~F!A(@-~K6YRbpfJ_rkky z4;a4~X3uvJnx_)N8(ql!wPwpUrp{U2OX*84#pt;}UIEE65|W_4w^D(%g9IMAaA$*i z?8j?Sr=8b{HqM&QsFF2fRp)^J5Wa0*(0zjQr(vc%kGUJ-<-PvN&x6XQm!kbQsG_2i zAsuZz`lK2ODkznxmLPC;F6!FCy2}f@zHbeRUCURU(t@{=i%C1*p9P2@hFKj9Qr%Cn zl+b3hUa{gKNUDY_O^PEuR9Fy`idGlr-lJ>U_mSHSN6u4quRXgS4B!3kc!$bKo+s5j zeP=YKh4_SE$jz;(D{nMOsM%?MJ1d1?r8QZhzK^csC#xq?1nq>)RM;2ZmXi`~H2MFT zP9fQwuS>r=iBLn#wYz z6|2Ef7YBi^RQT2O_p`(XiUH*zUh=M)Oy(}NP3reP@$|r?iUK!I>`ulz<@N3|w^DHp zn1z3azoT$5x(Fqh|0F*b*w-TPK_p*N=yt`STz=BZT`3+OD-2!CO! zLLT!?E)+L@OvXfkEE~S>?30$+QKjhnkyvptgR@V6-{s-B8}4C`eCJ*=vEBFz0%un` zBRG_4l;5fftOLYDS>UMQn3-|3w2$gnvK(q2N9dLpZ!gVPUG6Idr5!k)N!g{cnKz~& z-B*rb8zxJu;+BWSL02E(w|xglLR58%If}n%eD20!6l?*XZudedUJWty9Mpf=!_iUWb9osP< znRnM0f{c!rtZjDUKe^IfTn>M+n{xoscCpeSM?LN%Z9)kRDpk}Avrar=o4nuzSDz4E z`rK`tK)6y;bo)c8=nge#oI2HOI{DNATLA zdMN>jJ-a?L zBR698*`ATGQ#PN;v^eq`njAH==_DO?X53};6f9$%2`!yKjA{)f7Pg!F{yL-Jo5=pk zNCyj0HPjyy)K^5k@jL00>&d+XShy46ab#Gn(OB2Ho2R!e3K3$wnV6$gbmNkx$w8L9 z(2bIki>S`c0@}4F(^fztyAf0Z506S5*^g-ZDGe|(EdedLD=#X$+k;(OrEJ@LivY7d zgJs)ofOM(c?@I}!$JaY}X}+_qgvF%L?9EW@P>+~NAFU_(EXN=pM1A= z#loSdE}(y^4Wm%zvV0^No#naPC=RELWtt%h_c8yLO`x;6FlN|^E8V|&!G6QEHX`}E zK18mf(|w}Q@ktf72V)eeO(w=&eM)n1&@eMk|A}@w7k@f)?Vr==bVhh*M7Q~<33)v8 z5`*?qUKafiLO&Lhy@Cer3rFel{(Vk;Mm`(!+2c{njDY*k6i$IO9G4*NX1_lr z4XCNSvIsRXIIF21^P^B zEC*&0Hfe@EeAgu^#|!jn61nA~{*1_eMZxrPugd?hUwE=6H(5Ko$+qp<*|uw^$+kV&lg-I) zvTfTseedVF*E+wPKVh%EuFrM7U$ne7tMaqq(5wH8x7u1e)sT50Z9FFPVBlcB2}F*i zgUP^lPc8U3M8thc#%9LBEH?vv6KDosd@xlk8)q8k+d)V2~fW&rVcK4mW<1 z?Nl5~oHkA{q+;S<>QqNF*^`b|KB~!S+MR@(HGFv$ zPXL@ZlT!sL>6o8#;)UPiU>d+;JP}u=1qLgweO`h=7HQSnzH9;BJ4IT=*axv?P_+Zl zSfbQCBZtkfc7ROtWXSr-@o-EYFW;zhTK8sbR9bI_BD$pXPCMgu+}58E)w8*~!N6oG zi5$->ZFqTFN1WSa&`vpY&Fg8csg!?M zq|7utyIi2gg`Y{_#bCupb&FX1ITtU$Vb@Qo0x$|{=Rwt6&XbicsToL+Xi;7Zt|M`A z8C|Jf)){dTL~|^13&bizeagf9BYnn29o@b%OoWk{?&m1rd%U7OHkc@5X^f^wY|FKv zAEJ8sg96PL<8fmu_v5qv(Y{+t_ptR_%tAs3`}&KIyv*lhIRZJ*h~YQZ zJPcMsv7{5ZXvsiy6&ZwK>!dXh%ehtWXJ!%qdNyqJSjP-*yT;}A3pTVuzs+xy;1j*?4 zi5*}Dt%fJ0ex*E`yR3jpmZ*SU49Sw3P=?ETF%u7H^efu{J}T@AYLG#1Hzv0{3OdAr zIDElyv81UnJK3{D^8Hse6;Z#K32B8%9O8DorDjo2<6N)K<2i#@Ap5>`N>>+(W=)@-K8+}D`> zbhsDmc3A!^kzRsAOlid#j6t%XCet_95h8N{hQP7!vKbzY_!D$&wf?dzH?l4HXZ7gTfAIrod?xdfa`X8^|y9%Fh`?gYI>}GV8h63G8 zcnZp{X3TiuPEkp_(PcYTg}im1F#@&Y#>vPC9|P6Snsw5a=s$S1w6#>(xWU3!EFG z-_{2_4j|RZk*EQpCzGAQX;*aKPvx(o*s}|#g=fVSRjb1KXV!l)rlN> z)*%W(@J>KjkMb!rCQ3O=Hdny7j$PcC3a!%cC14BdV0zMqC4g<~JhZ`dGOA7sOr6IlJ}Y9Q-Kl5G6*5w?12>c}#jbzn(HZVy^}MVR+V+gnd|7gTS=nN1#AA^H@|}{Um~?MoSCW}&Q(wl)>Hldi&)6_oHtuo z2fkJmgRcb>SNO|c1MLpU!W;}Ib!`-ZM@9w^9-jspL`FkIue%|0kV;&Z#l}gceR4Lu z)@cg&&UFUDn)9gcHUc@F7G;PhO>C6doX5&X>IVa(ZF6$W#_V!7)Y-Jx>(r1@b7n7P z=#!vgmZfDL8{}5Gj`X_(2}CfiiwNVspO|RS6ffbYSDwvPQQ(Dn&22b2oi;?)%^&uMrp>(t5*>(m|UKhF{6a zO6pR{On97r!r4sO{ZJ`PnW9*e2{VG@IRlQh2}B(e1GMWXGSmgx{R7VIh)W-s$P+eu z2ium9+!?6#gsp>2_6kNQ5=lR^o-HoxpYfKkIQ(}z4@pazei`njO>98cbetb@n9)+I znNuiekc~1a`%>J#L3d_pl8nDQ